Optimization in Knowledge-Intensive Crowdsourcing

Senjuti Basu Roy†, Ioanna Lykourentzou‡, Saravanan Thirumuruganathan‡,△, Sihem Amer-Yahia‡, Gautam Das‡,△.
†UW Tacoma, ‡CRP Henri Tudor/INRIA Nancy Grand-Est, △UT Arlington, △QCRI, △CNRS, LIG
senjutib@uw.edu, ioanna.lykourentzou@tudor.lu.inria.fr, saravanan.thirumuruganathan@mavs.uta.edu, sihem.amer-yahia@imag.fr, gdas@uta.edu

ABSTRACT
We present SmartCrowd, a framework for optimizing collaborative knowledge-intensive crowdsourcing. SmartCrowd distinguishes itself by accounting for human factors in the process of assigning tasks to workers. Human factors designate workers’ expertise in different skills, their expected minimum wage, and their availability. In SmartCrowd, we formulate the worker-to-task assignment as an optimization problem, and rely on pre-indexing workers and maintaining the indexes adaptively, in such a way that the task assignment process gets optimized both qualitatively, and computation-wise. We present rigorous theoretical analyses of the optimization problem and propose optimal and approximation algorithms. We finally perform extensive performance and quality experiments using real and synthetic data to demonstrate that adaptive indexing in SmartCrowd is necessary to achieve efficient high quality task assignment.

1. INTRODUCTION
Knowledge-intensive crowdsourcing (KI-C) is acknowledged as one of the most promising areas of next-generation crowdsourcing, mostly for the critical role it can play in today’s knowledge-savvy economy. KI-C refers to the collaborative creation of knowledge content (for example, Wikipedia articles, or news articles) through crowdsourcing. Crowd workers, each having a certain degree of expertise, collaborate and “build” on each other’s contributions to gradually increase the quality of each knowledge piece (hereby referred to as “task”). Despite its importance, no work or platform so far has tried to optimize KI-C, a fact which often results in poor task quality and undermines the reliability of crowds for knowledge-intensive applications.

In this paper, we propose SmartCrowd, an optimization framework for knowledge-intensive collaborative crowdsourcing. SmartCrowd aims at improving KI-C by optimizing one of its fundamental processes, i.e., worker-to-task assignment, while taking into account the dynamic and uncertain nature of a real crowdsourcing environment.

Consider the example of a KI-C application offering news articles on demand as a service to interested stakeholders, such as publication houses, blogs, individuals, etc. Several thousands of workers are potentially available to compose thousands of news articles collaboratively. It is easy to imagine that such an application needs to judiciously assign workers to tasks, so as to ensure high quality article delivery while being cost-effective. Two main challenges need to be investigated: 1) How to formalize the KI-C worker-to-task assignment problem? 2) How to solve the problem efficiently so as to warrant the desired quality/cost outcome of the KI-C platform, while taking into account the unpredictability of human behavior and the volatility of workers in a realistic crowdsourcing environment?

SmartCrowd has been envisioned as follows: First, we formalize the KI-C worker-to-task assignment as an optimization problem (Section 2). In our formulation, the resources are the worker profiles (knowledge skill per domain, requested wage) and the tasks are the news articles (assumed to have a minimum quality, maximum cost and skills needed). The objective function is formalized so as to guarantee that each task surpasses a certain quality threshold, stays below a cost limit, and that workers are not over or under utilized. Given the innate uncertainty induced by human involvement, we also use probabilistic modeling to include one of the human factors (formalized as the workers’ acceptance ratio) in the problem formulation.

Then, we argue that it may be prohibitively expensive to assign workers to the tasks optimally in real time and reason about the necessity of pre-computation for efficiency reasons. We propose index design (C-Dex) as a means to efficiently address the KI-C optimization problem (Section 3). One of the novel contributions of this work is in proposing how the C-Dex solution can be used to precompute crowd indexes for KI-C tasks, which can be used efficiently afterwards during the actual worker-to-task assignment process. We show how KI-C tasks could benefit from crowd-indexes to efficiently maximize the objective function.

Third, we examine the problem under dynamic conditions of the crowdsourcing environment, where new workers may subscribe, existing ones may leave, worker profiles may change over time, and workers may accept or decline recommended tasks. To tackle such unforeseen scenarios, SmartCrowd proposes optimal adaptive maintenance of the pre-computed indexes, while enforcing the non-preemption of workers.

Fourth, we prove several theoretical properties of the C-Dex design problem, such as NP-Completeness (using a reduction from the Multiple Knapsack Problem), as well as sub-modularity and monotonicity under certain conditions. This in-depth theoretical analysis is critical to un-
understand the problem complexity, as well as to design efficient principled solutions with theoretical guarantees.

Finally, we propose novel optimal and approximate solutions for the index design and maintenance problem, depending on the exact problem conditions. Our optimal solution uses an integer linear programming (ILP) approach (Section 4). For the case where optimal index building or maintenance is too expensive, we propose two efficient approximate strategies: 1) a greedy computation and maintenance of C-DEX that needs polynomial computation time and admits a constant time approximation factor under certain conditions, and 2) C-DEX+, a strategy that is an optimized version of C-DEX, which leverages the clustering of similar workers (based on the notion of “virtual worker”) to warrant further efficiency (Section 5).

We design comprehensive experimental studies (Section 6) both with real-users and simulations to validate SMARTCROWD, qualitatively and efficiency wise. With an appropriate and intelligent adaptation of Amazon Mechanical Turk (AMT), we conduct extensive quality experiment involving real workers to compose news articles. Such an adaptation is non-trivial and needs a careful design of the validation strategies, since AMT (or any other platforms) does not yet support KL-C tasks. Extensive simulation studies are used to further investigate our proposed framework, in terms of quality and efficiency. In these, we compare against several baseline algorithms, including one of the latest state-of-the-art techniques [1] for online task assignment. The obtained results demonstrate that C-DEX and C-DEX+ achieve 3x improvement, both qualitatively and efficiency wise, corroborating the necessity of pre-computed indexes and their adaptive maintenance for the KL-C optimization problem.

Our main contributions are summarized as follows:

1. We initiate the study of optimizing knowledge-intensive crowdsourcing (KI-C), formalize the problem, and propose rigorous theoretical analyses.
2. We propose the necessity of index design and dynamic maintenance to address the KL-C optimization problem. We propose novel optimal and approximate solutions (C-DEX, greedy C-DEX, and C-DEX+) for index creation as well as adaptive maintenance.
3. We conduct extensive experiments on real and simulated crowdsourcing settings to demonstrate the effectiveness of our proposed solution qualitatively and efficiency wise.

Sections 2 and 3 contain the settings, problem statements, and theoretical analyses. Sections 4 and 5 have the solutions. Sections 6 and 7 contain the experiments and related work. We conclude in Section 8.

2. KI-C PROBLEM SETTINGS

2.1 Data Model

We are given a set of workers $U = \{u_1, u_2, \ldots, u_n\}$, a set of skills $S = \{s_1, s_2, \ldots, s_m\}$ and a set of tasks $T = \{t_1, t_2, \ldots, t_k\}$. In the context of collaborative editing, skills represent topics such as Egyptian Politics, Play Station, or NSA document leakage. Tasks represent the documents that are being edited collaboratively.

Skills: A skill is the knowledge on a particular topic and is quantified in a continuous scale between [0, 1]. It is associated to workers and tasks. When associated to a worker, it represents the worker’s expertise of a topic. When associated to a task, a skill represents the minimum quality requirement for that task. A value of 0 for a skill reflects no expertise of a worker for that skill. For a task, 0 reflects no requirement for that skill.

Workers: Each worker $u \in U$ has a profile that is a vector, $(u_{s_1}, u_{s_2}, \ldots, u_{s_m}, w_u, p_u)$, of length $m + 2$ describing her m skills in S, her wage w_u, and her task acceptance ratio p_u.

- Skill $u_{s_i} \in [0, 1]$ is the expertise level of worker u for skill s_i. Skill expertise reflects the quality that the worker’s contribution will assign to a task accomplished by that worker.
- Wage $w_u \in [0, 1]$ is the amount of money a worker u is willing to accept to complete a task. The wage represents the minimum amount the worker expects to be paid for any task.
- Acceptance ratio $p_u \in [0, 1]$, the probability at which a worker u accepts a task. It reflects the worker’s willingness to complete tasks assigned to her. A value of 0 is used to model workers who are not available (as workers who do not accept any task).

We refer to a worker’s skill, wage expectation and acceptance ratio as human factors that may vary over the time.

Tasks: A task $t \in T$ is a vector, $(Q_{t_1}, Q_{t_2}, \ldots, Q_{t_m}, W_t)$ of length $m + 1$ reflecting its minimum skill requirement for each skill and its maximum cost (or wage). A task t that is being executed has a set of contributors $U_t \subseteq U$ so far. For collaborative tasks, the quality of a task is the aggregate of the skill of the workers contributing to t, for a given skill. t is hence characterized by:

- Current quality $q_t = \sum_{u \in U_t} u_{s_i}$ for skill s_i, with u_{s_i} being the expertise of worker u on skill s_i. q_t aggregates the expertise of all workers who have contributed to t so far.
- Current cost $w_t = \sum_{u \in U_t} w_u$, with w_u being the wage paid to worker u. w_t aggregates the wages of all workers who have contributed to t so far.

Workload: We assume a static workload T that represents a set of active tasks over a time period.

2.2 Constraints

The following constraints are considered: 1. Quality constraint: For each task $t \in T$, the worker-to-task assignment has to be such that the aggregated skill of assigned workers is at least as large as the minimum skill requirement of t for each skill. 2. Cost constraint: For each task $t \in T$, the aggregated workers’ wage (w_t) cannot exceed the maximum cost that t can pay, i.e., $w_t \leq W_t$. 3. Non-preemption constraint. Once a worker has been assigned to a task, she cannot be pulled out of that task until finished. 4. Tasks per worker constraint: A worker must be assigned a minimum number of X_t tasks and no more than X_h tasks.

2.3 Objective

Given a set T of tasks and a set U of workers, the objective is to perform worker-to-task assignment for all tasks in T, such that the overall task quality is maximized and the cost is minimized, while the constraints of skill, cost, and tasks-per-worker are satisfied.

ΔQ_{t_j} is the threshold for skill j and $q_{t_j} \geq Q_{t_j}$.
Running Example 1. A running example is described consisting of a minuscule version of the news article composition task. Assume that the platform consists of 6 workers to compose 3 news articles (tasks) on “Egyptian Politics” (t1), “NSA leakage” (t2) and “US Health Care Law” (t3). For simplicity, we assume that all tasks belong to the same topic (“Politics”) and therefore require only one skill (knowledge in politics). We also assume that X1 = 1, X2 = 2. Worker profiles (skill, wage, acceptance ratio) and task requirements (minimum quality, maximum cost) are depicted numerically in Tables 1 and 2. This example will be used throughout the paper to illustrate our solution.

3. SMARTCROWD

The overall functionality of SMARTCROWD is as follows: A set of indexes I, referred to as C-dex are pre-computed based on a simple definition of past task workload. This step is referred to as the offline phase. Then, the idea is to make use of these indexes for efficient worker to task assignment once the actual tasks arrive. This latter step is referred to as the online phase. However, indexing workers in Ki-C is more challenging than data indexing for query processing due to human factors in a dynamic environment, as workers may be unavailable/decline tasks, new workers may join, existing workers may have updated profiles, etc. Therefore, SMARTCROWD must design adaptive maintenance strategies of C-dex to account for worker replacements, additions, deletions, or updates in their profiles. The maintenance strategies also need to be cognizant of workers non-preemption, since workers currently engaged in tasks can not be withdrawn until completion. SMARTCROWD proposes further optimization opportunities for both offline and online phase, with a greedy C-dex building and maintenance strategy and an alternative index, namely C-dex+. The latter two strategies are crucial to ensure efficiency for applications that involve a large set of workers and tasks. Both of them are approximate, yet greedy C-dex could entail provable approximation factor under certain conditions. Interestingly, the treatment of index building or their adaptive maintenance is uniform inside SMARTCROWD, with appropriate adaptation of similar solution strategy. Of course, if the actual tasks are substantially different from the workload, SMARTCROWD has to halt and re-design the indexes from scratch. The latter scenario is orthogonal to us.

In the following we formalize the index design problem (C-dex) through which we aim at optimizing the Ki-C optimization problem and propose an in-depth theoretical analysis. Then we investigate further optimization opportunities in index design by formalizing C-dex+ Finally, we propose adaptive maintenance of the indexes, which is related to the online index maintenance phase.

3.1 C-DEX

We define the crowd index C-DEX as follows:

Definition 1 (C-DEX). A C-DEX \(i^t = (P_i^t, L_i^t) \) is a pair that represents an assignment of a set of workers in \(U \) to a task \(t \). Formally, it is described by a vector \(P_i^t \) of length \(m + 2 \), and a set of workers \(L_i^t \). \(P_i^t = (v_1, q_1, \ldots, q_m, w_i) \) contains the value \(v_i \) of task \(t \), its expected minimum expertise \(q_i \) for each skill \(s_i \), and its maximum cost \(w_i \). \(L_i^t \subseteq U \) contains the workers assigned to index \(i^t \).

Consider Example 1 with \(T = \{t_1, t_2, t_3\} \) for which three indexes are to be created offline. If workers \(\{u_1, u_2, u_6\} \) are assigned to task \(t_1 \) with \(W_1 = W_2 = 0.5 \), then the index for task \(t_1 \) will be, \(i^1 = ((0.6, 0.74, 0.58), \{u_1, u_2, u_6\}) \).

C-DEX Design Problem: We start with the Ki-C problem described in Section 2. We define \(v_t \) to denote the value of each task \(t \) in \(T \) (in the beginning \(v_t \) is 0 for every task). The task value is associated with the current quality and cost of the task. More specifically, task value is calculated as a weighted linear combination of skills (higher is better) and cost (lower is better). The objective is to design an index C-dex such that the sum of values \(V = \Sigma v_t v_t \) of all tasks \(t \) is maximized, while the problem constraints are satisfied.

For a task \(t \), its individual value \(v_t \) and the global value \(V \) is defined in Equation 1.

\[
\text{Maximize } V = \Sigma v_t v_t \tag{1}
\]

\[
v_t = \begin{cases}
W_1 \times \Sigma q_j \geq Q_{1t}, & \text{if } q_j \geq Q_{1t} \\
0, & \text{if } q_j < Q_{1t} \\
\end{cases}
\]

where \(W_1, W_2 \geq 0 \) and \(W_1 + W_2 = 1 \).

Note that the above formulation is a flexible incorporation of different skills and cost, letting the application select the respective weights, as appropriate.

Since C-DEX are pre-computed for future use, skills (or quality) and wages are computed in an expected sense considering acceptance ratio, instead of the actual aggregates, as follows:

\[
q_j = \Sigma u \in U u_t \times p_u \times w_u \geq Q_{1t}, \forall j \in \{1..m\}
\]

\[
w_t = \Sigma u \in U u_t \times p_u \times w_u \leq W_t
\]

\[
Q_{1t} = 0/1
\]

\[
X_1 \leq \Sigma v_t \in T \{u_t\} \leq X_2
\]

The above formulation is to design an assignment of a user \(u \in U \) to a task \(t \in T \) to generate the C-DEX set \(I \).

3.1.1 Theoretical Analyses

Theorem 1. The C-DEX Design Problem is NP-Complete.

Proof. It is easy to see that the problem is in NP. To prove NP-completeness, we prove that the well known Multiple-Knapsack Problem (MKP) is polynomial time reducible to an instance of the C-DEX Design Problem, i.e., MKP \(\leq_p \) C-DEX Design Problem.

An instance of MKP is as follows: a pair \((B, S)\), where \(B\) is a set of bins, and \(S\), a set of items. Each bin \(b \in B\) has a capacity \(c(j)\), and each item \(a\) has a size \(s(a)\) and profit \(p(a)\). The objective is to find a subset \(U \subseteq S \) of maximum profit such that \(U \) has a feasible packing in \(B\). The decision version of this problem is to find a feasible packing with \(U \) using \(|B|\) bins, where \(U \subseteq S \), such that the total profit is \(P \).

We reduce an instance of MKP to create an instance of the C-DEX Design Problem as follows. We assume that \(S = \{s\} \) (i.e., \(m = 1 \)), \(W_1 = 1, W_2 = 0 \). The workload consists of \(|B|\) tasks (equal to the number of indexes). Each bin \(j \) represents a C-DEX \(j \), and the capacity of the bin \(c(j)\) represents the maximum expected workers’ wages assigned to index \(j \) (i.e., \(c_j = W_j \)). In this simpler version of the C-DEX Design problem, we assume that each C-DEX has the minimum quality requirement of 0, i.e., \(q_j = 0 \).

The item set \(S \) represents the worker set, where each item \(a \) is a worker \(u \), \(p(a) = s(a) \), and \(w_u = s(a) \), \(p_u = 1 \). This creates the following instance of the C-DEX Design problem,
where v_j is the value of j-th C-dex, and V is the overall value:

$$V = \Sigma_{v \in B} v_j$$

$$v_j = 1 \times q_j + 0 \times \left(1 - \frac{w_j}{W_j}\right),$$

$$q_j = \Sigma_{v \in A} u_j \times p_u \times w_u \geq 0,$$

$$w_j = \Sigma_{v \in A} u_j \times p_u \times w_u \leq W_j,$$

$$u_j = [0/1], 0 \leq \Sigma_{v \in B} u_j \leq 1.$$

Given the above instance of the C-dex Design Problem, the objective is to create $|B|$ C-dex, such that $V = P$ and there exists a solution of the MKP problem with total profit P, if and only if a solution to our instance of the C-dex Design Problem exists.

Effect of Constraints on C-Dex Design Problem: Interesting theoretical properties of the optimization problem (Equation 1) are investigated under different conditions and constraints. In particular, we investigate the sub-modularity and monotonicity properties [21] of the objective function that are heavily used in designing approximation algorithms in Section 4.

Submodular Function: In general, if A is a set, a submodular function is a set function: $f : 2^A \rightarrow \mathbb{R}$ that satisfies the following condition: For every $X, Y \subseteq A$ with $X \subseteq Y$ and every $x \in A \setminus Y$, we have $f(X \cup\{x\}) - f(X) \geq f(Y \setminus \{x\}) - f(Y)$. Value function v_t for task t satisfies this form: it maps each subset of the workers S from U to a real number v_t, denoting the value if that subset of workers are assigned to task t. Conversely, global optimization function $V = \Sigma_{v \in T} v_t$ is defined over a set of sets, each set maps an assignment of a subset of the workers from U to a task in T with value v_t.

Monotonic Function: A real valued function f defined on non-empty subsets of \mathbb{R} is monotonic if $f(X \cup \{x\}) \leq f(X)$ for all $x \leq y$. If $X \subseteq R \subseteq \mathbb{R}$, f is submodular if $f(\emptyset) = 0$, $f(R) = f(S)$ and $f(R \cup \{x\}) - f(R) \geq f(S \cup \{x\}) - f(S)$. Without the skill threshold, i.e., $Q_{t_j} = 0$, $\forall j \in \{1..m\}$, if k is added to S instead, where $S \subseteq R$, the following condition of submodularity will hold: $f(S \cup \{x\}) - f(S) < f(R \cup \{x\}) - f(R)$. Furthermore, V strictly increases when $W_2 = 0$ and $X_1 = 0$ (i.e., a worker may not be assigned to any task) and ensures monotonicity.

3.2 C-Dex+

Even though solved offline, the computation time of C-dex may still be very expensive, when the number of workers or tasks is large. C-Dex+ is a novel alternative towards that end, where the actual worker pool is intelligently replaced by a set of Virtual Workers, that are much smaller in count. SMARTCROWD uses the Virtual Workers and the same workload to pre-compute a set of indexes, referred to as C-Dex+. C-Dex+ enables efficient pre-computation, as well as faster assignments from workers to tasks.

Intuitively, a Virtual Worker represents a set of “indistinguishable” actual workers, who are similar in skills and cost. For the simplicity of exposition, if we assume that in a given worker pool, there are 3 workers who possess exactly same skill s and cost w, then a single Virtual Worker V could be created replacing those 3 with skill s and cost w. Obviously, when there are variations in the skills and costs of workers, the profile of V needs to be defined conservatively - by taking maximum of individual worker’s cost as V’s cost, and minimum of individual worker’s expertise, per skill. The formal definition of V is:

Definition 2. Virtual Worker $V : V$ represents a set n' of actual workers that are “indistinguishable”. V is an $m \times 2$ dimensional vector, $\langle V_{s_1}^s, V_{w_1}^s, \ldots, V_{s_m}^s, V_{w_m}^s, \{n'\} \rangle$ describing expected skill, expected wage, number of actual workers in V, where, $V_{s_i}^s = \min_{v \in n'} p_u \times w_u$, $V_{w_i}^s = \max_{v \in n'} p_u \times w_u$.

Consider Example 1 again, if u_2 and u_3 are grouped together to form a Virtual Worker V, then $V = (0.21, 0.18, 2)$.

C-Dex+ Design Problem: It is apparent that the Virtual Workers help reduce the size of the optimization problem. The formal definition of C-Dex+ is:

Worker	u_1	u_2	u_3	u_4	u_5	u_6
Skill	0.1	0.3	0.2	0.6	0.4	0.5
Wage	0.05	0.25	0.3	0.7	0.3	0.4
Acceptance ratio	0.8	0.7	0.8	0.5	0.6	0.9

Table 1: Workers Profiles

Task	Quality threshold	Cost threshold
	t_1	t_2
	0.7	0.8
	1.08	1.1
	2.0	2.0

Table 2: Task Descriptions
Definition 3 (C-DEX²). A C-DEX² \(i^V = (P^i, L_i^V)\) is a pair that represents an assignment of a set of Virtual Workers in \(N\) to a task \(t\). \(P^i\) and \(L_i^V\) are similar to \(P^i, L_i\) and defined using the Virtual Worker set \(N\).

3.3 Index Maintenance

A unique challenge that SmartCrowd faces is, even if the most appropriate index is selected for a task, one or more workers who were assigned to the task may not be available (for example, they are not online or they decline the task). Note that the acceptance ratio only quantifies an overall availability of a worker, but not for a particular task. Therefore, SmartCrowd needs to dynamically find a replacement for unavailable workers. At the same time, SmartCrowd needs to strictly ensure non-preemption of the workers, since workers who accepted a task are required to continue their work. SmartCrowd proposes several principled solutions that make use of the theoretical analysis in Section 3.1.1.

Furthermore, SmartCrowd has to deal with scenarios where, new workers could subscribe to the system any time, or some existing ones could delete their accounts. Similarly, as existing workers complete more tasks, the system may update their profile (refine their skills for example). How to learn the profile of a new worker or an updated profile of an existing worker is orthogonal to this work. What we are interested in here is how SmartCrowd makes use of these updates, by maintaining them incrementally.

We therefore investigate principled solution towards incremental index maintenance for four scenarios: (1) worker replacement, (2) worker addition, (3) worker deletion, (4) worker profile update.

4. OPTIMAL ALGORITHMS

Section 4.1 proposes the C-DEX building solution, whereas, Section 4.2 discusses the maintenance.

4.1 C-DEX Design (offline phase)

Recall Theorem 1 and note that the C-DEX Design Problem is proved to be NP-hard. SmartCrowd proposes an integer linear programming (ILP) based solution that solves the optimization problem defined in Equation 1 optimally satisfying the constraints.

While the optimization problem is a linear combination of weights and skills, unfortunately, the decision variables (i.e., \(u_t\)’s) are required to be integers. More specifically, C-DEX set are created by generating a total of \(n \times |T|\) boolean decision variables, and the solution of this optimization problem assigns either a 1/0 to each variable, denoting that a worker is assigned to a particular task, or not. These integrality constraints make the above formulation an Integer Linear Programming (ILP) problem [8]. A solution to the ILP problem would perform an assignment of a worker to a task in \(T\). Once the optimization problem is solved, an index \(i^t\) is designed for each task in the workload, \((P^t, L^i)\) is calculated. Algorithm 1 summarizes the pseudocode.

Given Example 1 when \(W_1 = W_2 = 0.5\), the best allocation gives rise to \(V = 1.98\), with the following worker to task allocation: \(u_1 = \{t_1\}, u_2 = \{t_2, t_3\}, u_3 = \{t_2\}, u_4 = \{t_2, t_3\}, u_5 = \{t_2, t_3\}, u_6 = \{t_1, t_3\}\). This creates the following 3 indexes:

- \(i^{t1} = \{0.6, 0.74, 0.58\}, \langle u_1, u_2, u_6 \rangle\),
- \(i^{t2} = \{0.59, 0.75, 0.71\}, \langle u_3, u_4, u_5 \rangle\),
- \(i^{t3} = \{0.79, 1.15, 1.13\} \langle u_3, u_4, u_6 \rangle\).

Algorithm 1 Optimal C-DEX Design Algorithm

Input: Workload \(T\)

1. Solve the C-DEX Design ILP to get an assignment of the \(u_t = 0/1\), where \(u_t\) is a worker, and \(t \in T\).
2. using \(u_t\), for each \(t \in T\), compute and output \(i^t = (P^t, L^i)\)
3. **return** Index set \(I\)

Unfortunately, ILP is also NP-Complete [7]. The commercial implementations of ILP use techniques such as Branch and Bound [8] with the objective to speed up the computations. Yet, computation time is mostly non-linear to the number of associated variables and could become exponential at the worst case.

4.2 C-DEX Maintenance (online phase)

We design index maintenance algorithms, which generate optimal solutions under the non-preemption constraint (constraint no.3, Section 2.2). Non-preemption of workers enforces that the existing assignment of an available worker can not be disrupted, only new assignments could be made if she is not maxed-out. Under this assumption, all four incremental maintenance strategies described below are optimal.

4.2.1 Replacing Workers

To dynamically find a replacement for unavailable workers, without disrupting already made assignments, we formulate a marginal ILP and solve the problem optimally only with the available set of workers.

We illustrate the scenario with an example. Suppose that after the most appropriate index \(i^t\) is selected for task \(t = \langle Q_1, Q_2, \ldots, Q_m, W_t \rangle\) using Equation 1 a subset of workers in \(L_i^t\) is unavailable or declines to work on \(t\). Imagine that the quality of \(i^t\) declines to \(q_{t'}\) from \(q_{t}\), for skill \(j\), \(\forall j \in m\), and the cost declines to \(w_t'\) from \(w_t\) as some workers do not accept the task. Consequently, the value of \(i^t\) also declines, let us say, to \(i^t_1\) from \(i^t\). From the worker pool \(U\), let us imagine that a subset of workers \(U'\) are available and their current assignment has not maxed out (i.e., \(C_i' < X_i\)). To find the replacement of the unavailable workers, SmartCrowd works as follows: It formulates a marginal ILP problem with the same optimization objective for \(t\), only with the workers in \(U'\). More formally, the task is formulated as:

Maximize \(i''_t = \langle i''_t, W_t + \Sigma v_j \in m q''_{t} + W_t \times (1 - \frac{w''_t}{W_t})\) \(\langle W_t + W_t = 1, q''_{t} = q_{t} + \Sigma v_j \in m q_{j} u'_{t} \times p_{u'} \times u_{t}\rangle \geq Q_{t'}, w''_{t} = w_{t} + \Sigma v_j \in m u'_{t} \times p_{u'} \times u_{t}\rangle \leq W_t, u''_{t} = [0/1]\).

Lemma 2. The marginal ILP in Equation 2 involves only \(|U'|\) variables.

The above optimization problem is formulated only for a task \(t\) and considering only \(|U'| < |U|\) workers. It is incremental in nature, as it “builds” on the current solution (notice that it uses the declined cost, skills, and value in the formulation), involving a much smaller number of variables and leading to small latency. Moreover, this strategy is fully aligned with the optimization objective that SmartCrowd proposes. After this formulation is solved, \(L_i^t\) is updated with the new workers for which the above formulation has produced \(u''_{t} = 1\).
4.2.2 Adding New Workers

Assume that a set A of new workers has subscribed to the platform. The task for SMARTCROWD is to decide whether (or not) to assign those workers to any task in T, and if yes, what should be the assignment. Note that SMARTCROWD already has assigned the existing worker set U to the tasks in T and they can not be preempted.

The overall idea is to solve optimally a marginal ILP only with the new workers in A and tasks T, without making any modifications to the existing assignments of the U workers to the T tasks. Formally, the problem is formulated as follows:

Maximize $\sum_{v \in T} (v')$ \hspace{1cm} (3)

$\{v'_1\} = v_1 = v_t + W_1 \times \sum_{j \in \{1...m\}} q_{tj} + W_2 \times (1 - \frac{w'_t}{W_t})$

$W_1 + W_2 = 1$,

$q_{tj} = \{q_{tj} + \sum_{v \in A} u_t \times p_u \times u_{sj}\} \geq Q_{tj}$,

$w'_t = \{w_t + \sum_{v \in A} u_t \times p_u \times w_u\} \leq W_t$

$u_t = [0/1], 0 \leq \sum_{v \in T} (u_t \in A) \leq X_h$.

Lemma 3. The optimization problem in Equation 3 involves only $|A| \times |T|$ variables.

4.2.3 Deleting Workers

In principle, the treatment of worker deletion is analogous to that of worker replacement strategies in Section 4.2.1. Basically, the idea is to determine the increased quality, cost, and value of each of the tasks that are impacted by the deletion, and then re-formulate an optimization problem only with those tasks, and the remaining workers who are not maxed-out yet (i.e., $C_u < X_h$) on their assignment, using the current quality, cost, and value. Similar to Section 4.2.1, this formulation is also a marginal ILP that is incremental in nature, and involves a smaller number of variables. We omit further discussion on this for brevity.

4.2.4 Updating Worker Profiles

Interestingly, the handling of updates in worker profile is also incremental in SMARTCROWD. If the skill, wage, or acceptance-ratio of a subset A' of workers gets updated, SMARTCROWD first updates the respective value of the tasks (where these workers were assigned), by discounting the contribution of the workers in A'. After that, a smaller optimization problem is formulated involving only A' workers and T tasks. After discounting the contribution of the workers in A', if the latest value of a task t is v_t'' current quality on skill j is q_{tj}', and current cost is w_t', then the optimization problem is formulated as:

Maximize $\sum_{v \in T} (v'_1)$ \hspace{1cm} (4)

where $v'_1 = v_t + W_1 \times \sum_{j \in \{1...m\}} q_{tj}'' + W_2 \times (1 - w'_t/W_t)$,

$W_1 + W_2 = 1$,

$q_{tj}'' = \{q_{tj} + \sum_{v \in A} u_t \times p_u \times u_{sj}\} \geq Q_{tj}$,

$w''_t = \{w_t'' + \sum_{v \in A} u_t \times p_u \times w_u\} \leq W_t$

$u_t = [0/1], X_t \leq \sum_{v \in T} (u_t \in A') \leq X_h$.

Similar to the previous cases, the proposed solution is principled and well-aligned with the optimization objective that SMARTCROWD proposes. The solution involves only $|A'| \times |T|$ variables, and our experimental study corroborates that it generates the output within reasonable latency.

5. APPROXIMATION ALGORITHMS

The optimal algorithm presented in Section 4 may be very expensive during index building as well as maintenance time, since the ILP-based solution may have exponential computation time at the worst case. To expedite both of these steps, two approximate solutions are discussed next: a) A greedy approximate solution for C-DEX that has provable approximation factor under certain conditions. b) A clustering-based solution C-DEX* which offers high efficiency but may give approximate result.

5.1 Greedy Approximation for C-DEX

Next we describe the greedy strategies for C-DEX creation and adaptive maintenance, both guaranteed to run in polynomial time. The quality of the results is approximate but the approximation factor can be guaranteed under certain conditions.

5.1.1 Approximate C-DEX Design (offline phase)

The approximate C-DEX design algorithm Offline-CDEX-Approx follows a greedy strategy for index building which admits a provable approximation factors under certain conditions. Given the pool of tasks and workers, it iteratively adds a worker to a task such that the addition ensures the highest marginal gain in V in that iteration, while ensuring the quality, cost, and tasks-per-worker constraints. Imagine a particular instance of Offline-CDEX-Approx on Example 1 after first iteration. After a single worker assignment (first iteration will assign one worker to one of the indexes), if only u_1 is assigned to i^1 and nobody to i^2 and i^3 yet, then the algorithm may select u_6 to assign to i^2 in the second iteration to ensure the highest marginal gain in V.

Theorem 5. Offline-CDEX-Approx has an approximation factor of $(1 - 1/e)$, when $Q_{tj} = 0, \forall j \in \{1...m\}$ and $W_2 = 0$ and $X_i = 0$.

Proof. Sketch: The proof relies on our theoretical analyses in Section 3.1.1 and on the fact that the optimization function V becomes submodular and monotonic under the above-mentioned conditions. We omit the details for brevity.

Lemma 4. The run time of algorithm Offline-CDEX-Approx is polynomial, i.e., $O(X_h \times |U| \times |T|)$.

5.1.2 Approximate C-DEX Maintenance (online phase)

We discuss four greedy maintenance strategies next that are incremental and designed ensuring worker non-preemption.

Replacing Workers: After a task arrives if one or more of the assigned workers to this task are not available, an efficient greedy solutions is proposed by selecting replacement workers from the available pool. This strategy leads to a provable approximation algorithm, when $Q_{tj} = 0, \forall j \in \{1...m\}$ and $W_2 = 0$. We describe the greedy algorithm Online-CDEX-Approx next.

Given a set of unavailable workers in L_t, SMARTCROWD performs a simple iterative greedy replacement from the available pool of workers U'. In a given iteration, the idea is to select that worker from the available pool and add her
to L_i which results in the highest marginal gain in v_i. This iterative process continues until the cost constraint exceeds. This greedy algorithm is approximate in nature but admits a provable approximation factor under certain conditions.

Theorem 6. Algorithm Online-CDEX-Approx admits an approximation factor of $1 - 1/e$, when $Q_{t_i} = 0, \forall j \in \{1..m\}$ and $W_2 = 0$.

Proof. Sketch: We omit the details for brevity; however, our proof uses the monotonicity and submodularity property of v_i as proved in Section 3.1.1 under these conditions. □

Of course, unless the above conditions are satisfied, the above approximation factor does not theoretically hold.

Lemma 5. The run time of Online-CDEX-Approx is polynomial, i.e., $O(|U|)$.

Addition of New Workers: Our proposed greedy solution is similar in principle to the offline greedy approximation algorithm described in Section 4.1.1. New workers are to be assigned to the pre-computed indexes based on the highest marginal gain in value without disrupting the existing allocation of the current workers. In order to satisfy any theoretical guarantee, this objective function has to relax quality and cost threshold, number of tasks per worker, and make $W_2 = 0$. We omit further discussions for brevity.

Deletion of Workers: This solution is akin to that of the greedy worker replacement strategy described above. It admits the exact same set of theoretical claims under similar conditions as described above.

Updates of Worker Profile: If the skill, wage, or acceptance ratio of a subset A' of workers gets updated, SMARTCROWD first updates the respective value of the tasks (where these workers were assigned), by discounting the contribution of the workers in A'. After that, it adapts the Offline-CDEX-Approx (Section 5.1.1) involving A' workers and T tasks. It iteratively adds a worker in A' to a task in T based on the highest marginal gain in value, as well as satisfy the skill, cost, and number of workers per task constraint. Akin to Offline-CDEX-Approx, this algorithm does not satisfy the $(1 - 1/e)$ approximation factor, unless $Q_{t_i} = 0, \forall j \in \{1..m\}$ and $W_2 = 0$ and $X_1 = 0$.

5.2 C-DEX+

Next, we present our second approximate solution C-DEX+ for index building and adaptive maintenance based on clustering of workers. This solution is approximate yet very efficient, since it replaces the actual set of workers with a very small set of Virtual Workers (a Virtual Worker represents a set of “indistinguishable” actual workers, who are similar in skills and cost, as defined in section 5.2.1).

5.2.1 C-DEX+ Design (offline phase)

We work in two steps: 1) Creating virtual Workers and 2) Designing the C-DEX+.

Creating Virtual Workers First, a set \mathcal{N} of Virtual Workers is created, given U. Intuitively, a Virtual Worker V should represent a set of workers who are similar in their profile. In SMARTCROWD, Virtual Workers are created by performing multi-dimensional clustering on U, and considering a threshold α that dictates the maximum distance between any worker-pairs inside the same cluster. The size of the Virtual Worker set \mathcal{N} clearly depends on α, a large value of α leads to smaller $|\mathcal{N}|$, and vice versa. Interestingly, this allows flexible design, as the appropriate trade-off between the quality and the cost could be chosen by the system, as needed. Formally, given U and α, the task is to design a set of Virtual Workers, such that the following condition is satisfied:

$$\forall u, u' : u \in V, u' \in V, Dist(u, u') \leq \alpha$$

Our implementation uses a variant of Connectivity based Clustering [10] considering Euclidean distance to that end.

For example, if $\alpha = 0.25$, Example 1 will create $|\mathcal{N}| = 2$ Virtual Workers; V_1 with $\{u_1, u_2, u_3, u_4\}$ and V_2 with $\{u_4, u_5\}$; $V_1 = (0.08, 0.18, 4)$ and $V_2 = (0.3, 0.36, 2)$.

Designing C-DEX+: For a Virtual Worker V with $|n'|$ actual workers, a counter C_V is created stating the maximum assignments of V, i.e., $C_V = |n'| \times X_h$. An ILP is designed analogous to Section 3 with $|\mathcal{N}|$ workers, and all the tasks in T. Additionally, a total of $2|\mathcal{N}|$ constraints are added; one per V, stating that the maximum and the minimum allocation of V are C_V and $(|n'| \times X_h)$, respectively.

Lemma 6. The optimization problem for C-DEX+ involves only $|\mathcal{N}| \times |T|$ variables

Using the above lemma, it is easy to see that the ILP is likely to get solved faster for C-DEX+, as it involves less number of variables.

Example 1 gives rise to 2 Virtual workers V_1, V_2 when $\alpha = 0.25$. Two additional maximum allocation constraints will be added to the optimization problem, such that $C_{V_1} = 4, C_{V_2} = 2$. Therefore, the index-design problem with Virtual Workers could be solved for 3 tasks and 2 Virtual Workers, involving only $3 \times 2 = 6$ decision variables, instead of $6 \times 3 = 18$ variables that C-DEX+ has to deal with. While this solution is much more efficient compared to C-DEX, it may give rise to approximation to the achieved quality (i.e., in the objective function value V), as the search space for the optimization problem gets further restricted with the Virtual Workers, leading to sub-optimal solution for V. Interestingly, our empirical results shows that this alternative solution is efficient, yet the decline in the overall quality is negligible.

The output of the optimization problem is the set of task indexes I_V using virtual workers. Considering Example 1 $I_V = \{i^{V_1}, i^{V_2}, i^{V_3}\}$. For task t_1, created $i^{V_1} = ((0.38, 0.76, 1.08), \{V_1, V_1, V_2, V_3\})$, when $W_1 = W_2 = 0.5$. The individual worker to task assignment could be performed after that by a simple post-processing.

5.2.2 C-DEX+ Maintenance (online phase)

Recall that the maintenance strategies are designed for 4 different scenarios, enforcing worker non-preemption constraint.

Replacing Workers: C-DEX+ designs a marginal ILP involving task t, and all the Virtual Workers whose current $C_V > 0$, akin to its C-DEX counterpart. Once the solution is achieved, individual worker assignment could be performed with a post-processing algorithm, in a round robin fashion, by keeping track of individual V's.

Addition of New Workers: First, the existing Virtual Worker set \mathcal{N} needs to get updated. Interestingly, since α is pre-determined, the new workers could be accommodated with incremental clustering, just by forming new clusters (i.e., creating new Virtual Workers) involving those additions, without having to re-create the entire \mathcal{N} from scratch.
After that, a smaller ILP is formulated only involving the Virtual Workers that are affected by the updates, considering existing partial assignments, akin to Equation \[\text{8} \]. We omit the details for brevity.

Deletion of Workers: The handling of worker deletion is akin to addition, in the sense, first SMARTCROWD propagates these updates incrementally to the Virtual Worker set \(\mathcal{N} \). To satisfy the pre-defined \(\alpha \), it accounts for those remaining actual workers from each of the Virtual Worker \(V \), that has at least one deleted worker. It reruns a smaller clustering solutions only involving those remaining workers. After \(\mathcal{N} \) gets updated, the rest of the maintenance is exactly same as what is discussed in handling deletion inside Section \[\text{4.2} \]. We omit the details for brevity.

Updates of Worker Profile: Similarly, if SMARTCROWD gets to have updated profile of some of the workers, it first updates the Virtual Workers set by solving a smaller clustering problem, akin to deletion. With the updated Virtual Workers set, the rest of the maintenance here is same as solving a marginal ILP involving only the updated Virtual Workers, as has been discussed in Section \[\text{4.2} \] for maintaining profile updates.

6. EXPERIMENTAL EVALUATION

We perform 2 different types of experiments: i) Real data experiments - conducted involving 250 AMT\[\text{9} \](AMT) workers in 3-different stages; ii) Synthetic data experiments - conducted using an event-based crowd simulator. The real-data experiments aim at evaluating the proposed approach in terms of quality and feasibility, while the synthetic ones aim at validating its scalability and quality.

6.1 Real Data Experiments

The purpose of these experiments is to evaluate our approach in terms of feasibility and quality. We study feasibility since the current paid crowdsourcing platforms (like AMT) do not support KI-C task development and thus this is one of the first studies trying to optimize KI-C task production in such an environment. We study quality with the aim to measure the key qualitative axes of the knowledge produced by the hired workers.

Overall the study is designed as an application of collaborative document writing by AMT workers selected using SMARTCROWD. These results are compared to the respective results achieved using 2 representative rival strategies: Benchmark (workers self-appoint themselves to articles after a skill-based pre-selection process, akin to how the current paid platforms work) and Online-Greedy (workers are assigned to the available tasks taking into account the workers’ marginal utility on each task; this is the adaptation of one of the latest state-of-the-art online task assignment algorithms \[\text{11} \]). Workers are asked to produce documents on 5 different topics (KI-C tasks) of current interest: 1) Political unrest in Egypt; 2) NSA data leakage; 3) Playstation (PS) games; 4) All electric cars and 5) Global Warming. For simplicity and ease of quantification, we consider that each task requires one skill (i.e., expertise on that topic). The user study is conducted in 3 stages.

6.1.1 Stage 1 - Worker Profiling

In this stage, we hire 20 AMT workers per task, totaling 100 unique workers. The workers are informed that a subset of them will be invited (through email) in Stage 2 to collaboratively write a document on that topic. We design a set of 8 multiple choice questions per task, assessing the workers’ knowledge over facts related to the task (e.g., on Egypt - “What is the name of the place in Cairo where the protests took place?” with possible answers: Tahrir Square, Mubarak Plaza, Al Azhar Square, or on the NSA leakage topic: “Who is Adrian Lemo?” with possible answers: A computer hacker, A federal agent, Both). The skill of a worker is then calculated as the percentage of her correct answers. Workers are also asked questions to extract their acceptance ratio and wage. Figure \[\text{1} \] shows the quantification of worker profile distributions for the “Egypt” task. Worker profiles for the other topics exhibit similar distributions and are omitted for brevity. A strong positive correlation among workers’ skill and their wage is also observed.

6.1.2 Stage 2 - Worker-to-Task Assignment

In this stage, a subset (56 out of the 100) of the workers among those who participated in Stage 1 is selected according to 3 worker-to-task assignment strategies: SMARTCROWD, Benchmark and Online-Greedy, as presented above. The minimum skill requirement per task is considered to be 1.8, the maximum wage \(\$2.0 \) and \(W_1 = W_2 = 0.5 \). The selected workers for each task are provided with a Google doc to collaboratively compose an article on the task’s topic up to 150 words and in a time window of 24 hours. The workers are suggested to use the answers of the Stage-1 questionnaires, as reference and/or starting point of their work. Workers are also asked to care for quality aspects of their article, such as language correctness and information completeness. The final outcome of this stage is a production of 3 documents per task, and a total of 15 documents.

6.1.3 Stage 3 - Task Evaluation

KI-C evaluation is a delicate topic because it is objective. An appropriate technique for such objective evaluation is to again leverage the wisdom of the crowds. This way a diverse and large enough group of individuals can accurately evaluate information to nullify individual biases and herding effect. Therefore, we crowdsource the task evaluation. Each completed task (set of 3 documents) from Stage 2 is set up as a HIT in AMT, and 30 workers are assigned to evaluate it considering 5 key quality assessment aspects \[\text{4} \], without knowing the underlying task production algorithm. The results listed in Table \[\text{3} \] indicate that the use of SMARTCROWD indeed leads to more qualitative KI-C tasks, across all of the measured quality axes.

6.2 Synthetic Data Experiments

These experiments are conducted on an Intel core i7 CPU, 8 GB RAM machine. IBM CPLEX version 12.5.1 is used for solving the ILP. An event-based simulator is designed on Java Netbeans to simulate the crowdsourcing environment. All results are presented as the average of 3 runs.

Simulator Parametrization: The distribution of the parameters presented below are chosen akin to their respective distributions, observed in our real AMT populations.

1. Simulation Period - We simulate the system for a time period of 10 days, i.e. 14400 simulation units, with each simulation unit corresponding to 1 minute.
2. \# of skills - a total of \(|S| = 10 \) skills are simulated. Unless otherwise stated, the default \# of skills in a task is 1.
3. \# of Workers - \(|U| = 10,000 \).
4. Profile of a worker - \(u_{sk} \), in skill \(s_k \), receives a random value from a normal distribution with the mean set to 0.5,
6.

Weights - Unless otherwise stated, \(W_1 = W_2 = 0.5 \).

7. Worker Arrival, Task Arrival - Workers arrive following a Poisson process, with an arrival rate of \(\mu = 10/\text{minute} \). Tasks arrive also in a Poisson distribution with an arrival rate of \(\kappa = 20/\text{minute} \).

8. Workload - Unless otherwise stated, the workload is designed with 10,000 tasks.

Implemented Algorithms: Benchmark: It models a typical crowdsourcing environment, where the workers are self-appointed to the tasks, trying to maximize their individual profit. The algorithm also performs worker pre-filtering, similar to the pre-qualification tests used by today’s crowdsourcing platforms, allowing workers to undertake a certain task \(t \) only if their skill is above 10% of the task’s skill requirement \(Q_t \).

Online-Greedy: As soon as a worker arrives, it finds from the available tasks the ones that pay more than the worker’s minimum wage. Then it calculates the worker’s marginal utility on the filtered tasks and suggests worker the task with the highest utility. This algorithm is an adaptation of one of the latest state-of-the-art strategies for online task assignment [1].

Online-Optimal: It optimally solves the ILP problem of Equation 1 in a purely online fashion; when invoked, it uses only the workers that are currently online on the tasks that currently require worker assignment.

C-DEX: generates an optimal solution (Section 4).

Offline-CDEX-Approx, Online-CDEX-Approx: generates an approximate solution for offline computation and online maintenance (Section 5.1).

C-DEX+: generates an approximate solution (Section 5.2).

6.2.1 Performance Experiments

We design experiments for: Offline phase (index building) and Online phase (index maintenance). Two measures are used: clock time for the index building and maintenance stages, and the fraction of successful tasks for the worker-to-task assignment stage (\# of successful task assignments).
6.2.1.1 Index Building (offline).

We vary the workload size of C-DEX, C-DEX+ and Offline-CDEX-Approx with $|U| = 10,000$, and measure clock time for index computation (in minutes). Recall that C-DEX+ needs to have the Virtual Worker set (V) computed first. For that, our experimental evaluation sets α to 20-th percentile pair-wise Euclidean distance in ascending order, and observes that the computation time is within 2 minutes, resulting in $|V| \approx 620$ Virtual Workers. The results are presented in Figure 2 (consider the primary Y-axis). Unsurprisingly, Offline-CDEX-Approx is the fastest among the three alternatives, but C-DEX+ is very comparable. Beyond 50,000 tasks, Index fails to respond.

6.2.1.2 Worker Replacement (online).

We compare the six implemented algorithms. The index-based algorithms (C-DEX, C-DEX+ and Online-CDEX-Approx) become clear winner compared to the rest.

Simulation period - Figures 3, 4, 5. In figures 3 and 4, we measure system performance (fraction of successful tasks) throughout the simulation period at discrete intervals (every 2 days). Figure 4 captures the special case with $W_2 = 0, X_1 = 0$ and zero skill threshold. Note that, under this condition Online-CDEX-Approx has a provable approximation factor. We can observe that the proposed index-based strategies outperform the remaining ones significantly and that they maintain their throughput over the entire simulation period, while the other algorithms peak and then drop midway, as a result of their myopic worker-task assignment decisions that penalize the overall outcome. However, Figure 4 and 5 still depict a better-than-reality performance for some algorithms, since certain bad assignments are not counted as such due to the measurement discretization. For example, if a task comes at time unit 1, languishes until time 2388 before getting assigned, it will still count as a successful task. Figure 6 investigates this behavior by measuring average task end-to-end time, i.e. the difference in time between a task arrival and the time when a set of workers satisfying the task’s quality/cost requirements have accepted to take it. This measurement is taken only for successful tasks and smaller is better. It can be observed that our proposed algorithms finish in less than 2 time units mainly because of our worker replacement strategy. The other algorithms including Online-Greedy take significantly more time that justifies the necessity of pre-computation.

Vary the ratio of task to worker arrival rate - Figure 6. All algorithms perform well when the ratio of task arrival to worker arrival rate is small, because of the oversupply of workers. However, with high task arrival rate index based strategies outperform all the remaining solutions.

Vary # skills/task - Figure 7. As skills per task increase, the fraction of successful tasks decreases for all algorithms, since finding the right worker becomes harder in a high-dimensional task/worker setting. Nevertheless, the index-based strategies still manage to keep a steadily high performance, outperforming all remaining ones.

Vary acceptance ratio - Figure 8. With high acceptance ratio, performance improves in general, as workers become more predictable. The index-based strategies consistently outperform the others.

Vary mean skill - Figure 9. As expertise becomes scanty (i.e. low values of mean worker skill) Benchmark and Online-Greedy perform very poorly as they need to scan and seek more workers to reach the task skill threshold. This justifies that the optimization objective in SMARTCROWD is meaningful for knowledge-intensive tasks.

6.2.1.3 Worker Addition, Deletion, Update (online).

We vary the # of new workers, # of deleted workers, and # of workers with profile updates and measure the incremental maintenance time for C-DEX, C-DEX+, and Online-CDEX-Approx. The results for worker addition are presented in Figure 10.

The deletion and update cases give similar results and are omitted for brevity. Results show that our incremental index maintenance techniques are efficient. However, the approximate solutions warrant higher efficiency compared to the optimal one.

6.2.2 Quality Experiments

For the quality simulation experiments we measure the value of the normalized objective function.

6.2.2.1 Index Building (offline).

The setting is akin to Section 6.2.1.1 but here we measure the objective function value instead. The results (consider the secondary Y-axis of Figure 2) demonstrate that both approximation algorithms C-DEX+ and Offline-CDEX-Approx return high quality solutions that are comparable to its optimal counterpart C-DEX.

6.2.2.2 Worker Replacement (online).

Simulation period - Figures 10 and 11 have similar settings that of Figure 3 and 5. Our proposed index-based strategies significantly outperform the others throughout the period of the simulation. As expected, Benchmark performs the worst. Online-CDEX-Approx returns higher quality in Figure 11 as the algorithm guarantees a provable approximation factor under that settings.

Vary # skills - Figure 12. The index-based strategies outperform all remaining ones, even for tasks that require multiple skills, similarly to Figure 7.

Vary acceptance ratio - Figure 13. The index-based strategies C-DEX, C-DEX+, and Online-CDEX-Approx outperform all the remaining ones, even with small mean worker acceptance ratio.

Vary mean skill - Figure 14. The index-based strategies consistently win over the rest, including the case where expertise is very scarce.

Vary W_1, W_2 - Figure 15. As expected, when W_1 increases, all algorithms seek to improve quality more than cost and task quality increases. The index based solutions outperform the rest of the competitors with high W_1 (task that require optimization over skills), compared to the rest.

6.2.2.3 Worker Addition, Deletion, Update (online).

It considers similar settings as Experiment 6.2.1.3. We observe that our index based approximate solutions (Online-CDEX-Approx and C-DEX+) are comparable to the optimal solution C-DEX in quality. The results are omitted for brevity.

7. RELATED WORK

A growing number of crowdsourcing systems are available nowadays, both as commercial platforms (like AMT and Crowdflower) or for academic use. Examples of applications include sentence translation, photo tagging and sentiment analysis, but also query answering (CrowdDB [6], Qurk [20], Deco [23], sCOOP, FusionCOMP, MoDaS, Cy-log/CrowdU), or entity resolution (such as CrowdER [26], planning queries [14], perform matching [27], or counting [19]. A common element shared across the above crowd-sourcing systems is that the tasks that they handle are
Figure 2: Index Building Time and Quality varying workload

Figure 3: Performance varying simulation time

Figure 4: Performance varying simulation time with no skill threshold and $W_2 = 0, X_1 = 0$

Figure 5: Performance after entire simulation period

Figure 6: Performance varying the ratio of task to worker arrival rate

Figure 7: Performance varying # of skills/task

Figure 8: Performance varying acceptance ratio

Figure 9: Performance varying mean skill

Figure 10: Objective function varying simulation time

Figure 11: Objective function varying simulation time with no skill threshold $W_2 = 0, X_1 = 0$

Figure 12: Objective function varying # of skills/task

Figure 13: Objective function varying acceptance ratio

Figure 14: Objective function varying mean skill

Figure 15: Objective function varying W_1, W_2

Figure 16: Time for index maintenance varying # worker addition
micro-task/binary. As such, the handling of these tasks does not necessitate collaboration, but plurality optimization. According to this, many workers are appointed to each micro-task, in order to identify the task’s “true value”, by means of majority voting or more sophisticated techniques. The optimization problem in that case is to select the correct workers to identify the true values efficiently, with as low cost as possible. Conversely, commercial systems typically allow workers to self-appoint themselves to tasks, and then apply worker filtering (based on reputation mechanisms, screening mechanisms, pre-qualification tests, or “golden data” as a means of ensuring task quality. Another means of passive quality assurance deals with refining task quality evaluation after the tasks are completed, or being completed. Very recent research studies try to actively improve plurality optimization through mechanisms that suggest tasks to workers. Apart from plurality optimization, other optimization problems examined by current literature aim at improving the application’s response time for micro-task/binary crowdsourcing.

Knowledge-intensive crowdsourcing (KI-C) handles tasks related to knowledge production, such as article writing, decision-making, science journalism. These tasks require a “collaboration” among workers rather than their voting. Our problem bears some resemblance with existing team formation problems in social networks (SN), in the sense that here too users are grouped together with the purpose of collaboration on a set of tasks. There are however two critical differences: whereas SN-based team formation relies on user affinity within the social network, crowdsourcing entails a huge scale of diverse worker pool unknown to each other, who do not necessarily need the synergy of a “team” to work together (e.g., a Wikipedia-style of work can be used). Second, KI-C deals with unique challenges related to human factors in a dynamic environment, which is rarely seen for SN-based team formation.

Although recent works acknowledge that more sophisticated methods of crowd coordination and optimization are needed to handle tasks that are knowledge-intensive, no work to the best of our knowledge does so. Our contribution is one of the first ever attempts to address this gap.

8. CONCLUSION

We propose SmartCrowd, a unified framework for optimizing worker-to-task assignment in knowledge intensive crowdsourcing. SmartCrowd formalizes the optimization objective and designs principled optimal and approximate solutions considering multiple skills and cost, which is flexible enough to be adapted to different applications. Unlike existing works, SmartCrowd makes a deliberate acknowledgement of human factors in designing the solutions. SmartCrowd relies on a set of pre-computed indexes, and uses them adaptively to enable effective worker-to-task assignment. The uniformity is illustrated in handling different scenarios with appropriate adaptations. Finally, the effectiveness of SmartCrowd is validated through extensive real-data and synthetic experiments, considering both quality and performance.

References

[1] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S. Leonardi. Online team formation in social networks. In WWW, pages 839–848, 2012.

[2] M. S. Bernstein, D. R. Karger, R. C. Miller, and J. Brandt. Analytic methods for optimizing realtime crowdsourcing. CoRR, abs/1204.2995, 2012.

[3] R. Boim, O. Greenshan, T. Milo, S. Novgorodov, N. Polyzotis, and W. C. Tan. Asking the right questions in crowd data sourcing. In ICDE, pages 1261–1264, 2012.

[4] K. Chai, V. Potdar, and T. Dillon. Content quality assessment related frameworks for social media. ICCSA ’09.

[5] J. S. Downs, M. B. Holbrook, S. Sheng, and L. F. Cranor. Are your participants gaming the system?: screening mechanical Turk workers. CHI ’10.

[6] A. Feng, M. J. Franklin, D. Kossmann, T. Kraska, S. Madden, S. Ramesh, A. Wang, and R. Xin. Crowdbiq: Query processing with the vldb crowd. PVLDB, 4(12).

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. 1979.

[8] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: task assignment for reliable crowdsourcing systems. CoRR, abs/1110.3564, 2011.

[9] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J. Zimmerman, M. Lease, and J. Horton. The future of crowd work. In CSCW ’13, 2013.

[10] A. Kulkarni, M. Can, and B. Hartmann. Collaboratively crowdsourcing workflows with turkomatic. CSCW ’12.

[11] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: a crowdsourcing data analytics system. Proc. VLDB Endow., 5(10):1040–1051, June 2012.

[12] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh. Counting with the crowd. In PVLDB 2013, 2013.

[13] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-powered sorts and joins. Proc. VLDB Endow., 5(13):23–24, Sept. 2011.

[14] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 1978.

[15] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and J. Widom. Crowdscreen: algorithms for filtering data with humans. In SIGMOD, 2012.

[16] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution. Proc. VLDB Endow., 4(12).

[17] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive relations for crowdsourced joins. In SIGMOD Conference, pages 229–240, 2013.

[18] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise. In NIPS, 2009.