Priapism in Patients with Chronic Myeloid Leukemia (CML): A Systematic Review

Elrazi Ali¹, Ashraf Soliman², Vincenzo De Sanctis³, Doris Nussbaumer⁴, Mohamed A Yassin⁴

¹ Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar; ² Department of Pediatrics, Hamad Medical Centre, Doha, Qatar; ³ Coordinator of the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A), Ferrara, Italy; ⁴ Hematology and Oncology Department, Hamad Medical Corporation, Doha, Qatar

Summary. Background: Priapism is defined as a penile erection that persists four or more hours and is unrelated to sexual stimulation. Priapism resulting from hematologic malignancy is most likely caused by venous obstruction from microemboli/thrombi and hyperviscosity caused by the increased number of circulating leukocytes in mature and immature forms. In patients with leukemia, 50% of cases of priapism are due to Chronic Myeloid Leukemia (CML). We present a systematic review of priapism in CML. Acquisition of evidence: An extensive literature research was carried out in PubMed, Google Scholar, SCOPUS, and Science Citation Index databases. The search included cases up to 4th August 2020. Synthesis of evidence: A total of 68 articles were found and included in our review, including 3 reviews from three different centers. We found 68 articles (102 patients; figure 1) and several case reports on priapism in CML. Priapism was noticed in some patients at the first presentation of CML. However, it was infrequently reported during the start of treatment, following the stop of medication and post-splenectomy. The mean age at presentation was 27.4 years, and the mean time from onset of priapism to the time to get medical attention (presentation) was 78.2 hours. The mean white blood cell count associated with priapism was 321.29x10⁹/L, and the mean platelet count was 569 x10⁹/L. The chronic phase of CML was the most common phase where priapism occurred. Most patients were Asian (>50%). Nearly a quarter of patients (27.4%) developed permanent erectile dysfunction. Conclusions: Priapism is a urological emergency requiring urgent multidisciplinary management to prevent erectile dysfunction. Because of the relatively rare occurrence of priapism in CML patients, there is no standard treatment protocol. (www.actabiomedica.it)

Keywords: Chronic myeloid leukemia, Chronic granulocytic leukemia, Erectile dysfunction, Priapism, Male fertility.

Introduction

Hematological disorders are the leading cause of priapism, accounting for 20% of the cases and include SCD, hyperviscosity syndromes as seen with the myeloproliferative diseases, hypercoagulable states such as deficiencies of proteins C and S, antiphospholipid syndromes, and amyloidosis (1). Priapism is defined as a penile erection that persists four or more hours and is unrelated to sexual stimulation (2). The condition is classified into three subtypes: ischemic (low-flow), non-ischemic (high-flow), and stuttering (intermittent) priapism (3). Stuttering priapism is characterized by a recurrent and intermittent erection, frequently occurring in a specific patient population with SCD and less commonly with thalassemia (4). The clinical presentation of CML consists of lymphadenopathy (80%), asthenia, and fatigue (60%), spleen or liver enlargement (50%), weight loss (15–20%), and bleeding (10%), hyperleukocyto-
sis about 80%, central nervous system affection (15%) kidney (5%) and priapism (≤ 3%) (5). Priapism due to hematological disorder is most likely due to venous obstruction from microemboli/thrombi as well as hyperviscosity due to an increased number of circulating leukocytes n mature and immature forms. Other accessory mechanisms are venous congestion of the corpora cavernosa secondary to mechanical pressure from the abdominal veins draining the spleen or infiltration of the sacral nerves or the central nervous system by leukemia cells (6). It is also seen that increased production of cytokines and adhesion molecules by leukemia cells result in endothelial cell activation and lead to increased sequestration of cells in the microvasculature (7).

Prolonged corporeal ischemia lasting more than 24 to 48 hours may result in varying extents Of irreversible fibrosis with endothelial and trabecula destruction of the erectile tissue and Subsequently in permanent erectile dysfunction and, therefore, is considered as a urologic Emergency. Reduced sperm count related to TKIS in patients with CML as well as priapism adversely affects the quality of life, particularly in populations where adolescent and young adults represent the majority of patients (8,9).

The objectives of this review were to: (a) assess the characteristics and risk factors of CML patients with priapism, (b) realize the common type of priapism in CML, (c) describe the management options adopted for priapism in CML, and (d) investigate the outcome and erectile dysfunction.

Acquisition of evidence

We searched the English literature (Google Scholar, PubMed, SCOPUS, and Science Citation Index databases) including original articles, reviews, case series, and case reports using the terms: “chronic myeloid leukemia,” “chronic myelogenous leukemia,” “chronic myelocytic leukemia” and “priapism”. A total of 68 articles were found and included in our review, among them 3 reviews were found from three different centers. The search included cases up to 4th August 2020.

Synthesis of evidence

We found 68 articles on priapism in CML (102 patients; figure 1) and several case reports (10-77). The youngest patient was 7 weeks old, and the oldest was 60 years old. The first case was reported in 1960 and the last in 2020. Most patients had priapism at their first presentation of CML. Three patients developed priapism after starting CML treatment, two after stopping treatment, and two were previously diagnosed. 80/102 patients had splenomegaly (on clinical examination or by US abdomen), and 31/102 had hepatomegaly. The lowest white blood cell count (WBC) associated with priapism was 37 x10⁹/L, and the highest was 782 x10⁹/L.

Table 1 presents the characteristics of stuttering and ischemic priapism in patients with CML.

Most patients had lower hemoglobin (Hb) levels, and in two reviews, the CML patients with priapism had lower Hb levels than their matched CML patients who didn’t have priapism.

Treatment modalities (Table 2) included medications, aspiration, and irrigation to the corpora cavernosa, radiotherapy, leukoreduction, and surgical shunts. Medications were used in 59 CML patients, aspiration of the corpora cavernosa in 49 patients, leukapheresis in 19 patients, radiotherapy in 9 patients, and shunt in 40 patients.

Figure 1. The PRISMA flow diagram detailing the cases of chronic myeloid leukemia (CML) presenting priapism.
Discussion

CML is a myeloproliferative neoplasm (MPN) characterized by the uncontrolled production of mature granulocytes. The three stages of the CML are the blast phase, accelerated phase, and chronic phase. Most of the patients are diagnosed incidentally with an elevated white blood cell count on the CBC during their chronic asymptomatic period. Unfortunately, in most cases, the diagnosis of CML is reached late, as it has a large variety of vague clinical manifestations that may include lymphadenopathy, fatigue, hepatosplenomegaly, weight loss, bleeding tendency, and thromboembolic phenomena due to hyperleukostasis (78).

The mechanism of priapism in leukemia is believed to be related to blood sludging with white blood cells (6, 79). Severe anemia implies tissue hypoxia, which may interfere with the NO cGMP balance and precipitate the occlusion. Repeated priapism (stuttering) episodes can lead to prolonged ischemia and tissue damage (80). Most patients with priapism had lower Hb levels compared to their matched CML patients without priapism (78,81).

Although anemia may be an essential factor in priapism’s pathogenesis, it is not clear if blood transfusion is useful to alleviate an acute priapic attack, or it may worsen the condition. Blood exchange transfusion for treating patients with SCD and major priapism has been shown to be efficacious and safe.

WHO defines CML’s blast phase as more than 20% blasts (large cells) in bone marrow or peripheral smear (82). Although this could lead to more stasis, unexpectedly, priapism is not more common in the blast crisis phase and accelerated phase (only 5/102 patients). The majority of priapism cases (n = 97/102) occurred during the chronic phase.

In the era before the introduction of tyrosine kinase inhibitors, the chronic phase of CML accounted for 85% of CML presentation at the time of diagnosis (5). Most patients were below the age of 40 years, with a mean of 27.4 years. This means that it is more common in younger patients with CML patients. The peak age of priapism in adults (without CML) is between 20-50 years (83).

Thrombocytosis, with platelets (PLT) count above 600 x10^9/L is seen up to 30% of CML patients (5,84). The high mean PLT count may have some impact on the occurrence of priapism in CML and/or may influence the type of priapism (stuttering versus ischemic) rather than its occurrence. In CML patients with stuttering type priapism, the PLT count was lower (506.8 x10^9/L) compared to those with the ischemic type (609 x10^9/L). Moreover, there was no significant difference in the PLT count between CML patients with and without priapism (78).

In essential thrombocythemia (ET), another form of MPN with extremely high PLT counts, priapism was much less reported compared to CML (85). The few reports might reflect the minimal role of PLT in occluding the penile circulation compared to WBC.

The enlarged spleen indicates an advanced CML stage, which supports the late presentation. Moreover, splenomegaly is of prognostic importance; massive splenomegaly indicates poor prognosis and increased risk of dying due to CML (86). In this review, splenomegaly was reported in 80/102 (78.4%) patients and hepatomegaly in 31 patients, but organomegaly was not addressed in 20 patients (Table-3). Splenomegaly was seen in 28/31 (90%) with the stuttering type and in 50/70 (73.2%) with the ischemic type.

Ethnicity might have a role in the predisposition to priapism as 57% of the CML patients with priapism were Asian. Most of these reports came from India.

Table 3. Characteristics of stuttering and ischemic priapism in patients with chronic myeloid leukemia (CML)

Priapism type	Stuttering (n=32)	Ischemic (n=70)
Mean time to presentation	220.9 hours (n. 20)	77.8 hours
Mean Age (year)	23.78	27.93
Mean WBC	314.9 x10^9/L	320.49 x10^9/L
Mean PLT	506.8 x10^9/L	609 x10^9/L
Mean Hb	9.6 g/dl	8.78 g/dl
CML phases	All chronic phase	1 accelerated phase
	4 blast phase	67 chronic phase
Erectile dysfunction	16 not addressed	41 not addressed
	13 had erectile dysfunction	16 had erectile dysfunction
	3 no erectile dysfunction	14 no erectile dysfunction
Splenomegaly (n)	29	51
Hepatomegaly (n)	9	22
This could be due to genetic susceptibility or difficulty accessing health care for the nonspecific symptoms of CML until WBC reached high levels, causing vascular stasis and priapism. Also, priapism occurred in patients with a problem with compliance or stopped medications (30, 46, 76). Surprisingly, priapism developed after starting cytoreductive therapy in 3 patients (32, 49, 50). It is hard to conclude that initiating cytoreductive therapy will raise the risk of priapism.

Priapism is a urological emergency, which must be treated early to prevent erectile dysfunction. It is predicted that if priapism lasts more than 24 hours, the risk of permanent erectile dysfunction is more than 90% (87). Therefore, a rapid and expert reversal of the priapism is highly required. The mean time that a CML patient with priapism sought medical advice was 78.28 hours (n=76), which carried a high risk for developing permanent erectile dysfunction (88). However, despite this delayed presentation to medical attention, the reported erectile dysfunction was not high. The erectile dysfunction after the episode(s) of priapism in CML patients was reported in 29/102 (28.15%) and did not occur in 17/28 (60.7%). Probably, the lack of information and methods used to assess the erectile function in CML patients may explain the low reported percentage of erectile dysfunction in CML patients.

Over the past decade, we have witnessed significant advances in knowledge of CML's biology and treatment. Imatinib is a first-line tyrosine kinase inhibitor for treating CML and has dramatically improved the prognosis of this disease. Chang et al. (89) have shown that Imatinib crosses the blood-testis barrier and reduces sperm density, sperm count, sperm survival rates, and sperm activity in CML patients in the chronic phase. But did not affect the structure of reproductive organs or sex hormone levels.

Forty patients needed a surgical shunt to relieve priapism, 5 of them had a partial response and continued chemotherapy to control the priapism. Forty-nine patients responded to aspiration and irrigation, and 2 of them required chemotherapy to control priapism due to incomplete response. Irradiation to the penis and spleen was used in 9 patients; leukapheresis was used in 19 patients, 6 of them required surgical shunts (43, 51, 63, 66).

Medications alone were used to treat priapism in 14 patients. However, reversing priapism using medications required longer duration compared to other modalities (mean duration in 7 patients was 14.4 days). Medications used included: hydroxyurea (n=48), cyclophosphamide (n=3), busulfan (n=15), terbutalin (n=1), prednisolone (n=2), vincristine (n=1), priscoline hydrochloride (n=1), hyaluronidase injection (n=1), imatinib (n=5), cytarabine (n=1), diethylstilbestrol (n=2), cytarabine (n=2), low-molecular-weight heparin (n=3), anticoagulation (n=2), opioids (n=1), blood transfusions (n=2).

The response to systemic therapy alone (medication) is usually prolonged and may represent the natural history of ischemic priapism rather than the effect of the medications (90). The American Urology Association (90) recommended an early treatment in a step-wise fashion starting with therapeutic aspiration (with or without irrigation) or intra-cavernous injection of sympathomimetics.

For CML patients, two points shall be considered. First, the late presentation to medical attention, which means that the slowly acting medications are less likely to be effective alone. In contrast, urological aspiration and irrigation within the first 24 hours decrease the risk of erectile dysfunction (91). Therefore, it is reasonable to start with aspiration and irrigation not to rely on oral medication for the treatment of CML alone. Secondly, treating the underlying mechanism of increased WBC count is needed to control and prevent priapism recurrence. Leukapheresis was used as a modality to treat both the high WBC of CML and priapism. The pitfalls of leukapheresis are that it is not available everywhere, is costly, and may require several sessions before a significant reduction in WBC count, which may take days. Besides, there is no clear-cut WBC value below which priapism is anticipated to be controlled. The mean WBC count after which priapism was controlled, is 22 x10^9/L. However, other patients were controlled only with WBC count between 3-10 x10^9/L. It remains an option for patients who failed aspiration and refused surgical shunt.

Similarly, the effects of irradiation were not rapid (6 days, 2 weeks, and 19 days), as documented in a few patients (45, 58, 69).

Four major types of surgical shunts are used for
the treatment of priapism. These include percutaneous distal shunts, open distal shunts, open proximal shunts, and vein anastomoses/shunts (92). The goal of surgery is to create a channel or fistula that allows the deoxygenated blood to drain from the corpora cavernosa. For all shunt procedures, the patient should receive preventive perioperative antibiotics.

Guidelines advocate for an aggressive approach in treating patients with refractory priapism by proceeding in a serial fashion from distal to proximal shunts to vein shunting as quickly and safely as possible to achieve penile flaccidity (92).

A delayed penile implant was used in one patient. It is generally used for patients who developed erectile dysfunction; however, it can be used acutely to control priapism and prevent fibrous tissue formation (93). The erectile dysfunction occurs more frequently following proximal or vein shunts compared to the distal shunts. However, it is difficult to attribute the erectile dysfunction to the shunt operation as patients had received different modalities of treatment and had different duration before seeking medical attention (89).

Conclusion

Priapism is a rare complication of CML. It is mostly seen at the first presentation of the disease and much less during the start of treatment. It may occur after stopping the medication or post-splenectomy. Late presentation negatively affects the response to treatment as well as erectile function. Therefore, physicians must interfere early and follow a timely plan and shall follow the patients closely for developing erectile dysfunction. Conservative and medical therapy without urological intervention is less likely to be sufficient. Starting treatment of CML to decrease the high WBC count might accelerate the resolution of the priapism and sometimes is needed for a complete resolution.

Conflicts of interest: Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article.

References

1. Rodgers R, Latif Z, Copland M. How I manage priapism in CML patients. Br J Haematol. 2012; 158: 155-64.
2. Salonia A, Eardley I, Giuliano F, Hatzichristou D, Moncada I, Vardi Y, Wespès E, Hatzimouratidis K; European Association of Urology. European Association of Urology guidelines on priapism. Eur Urol. 2014;65:480-9.
3. Broderick GA, Kadioglu A, Bivalacqua TJ, Ghanem H, Nehra A, Shamblou R. Priapism: pathogenesis, epidemiology, and management. J Sex Med. 2010;7:476-500.
4. Sardar S, Ali EA, Yassin MA. Thalassemia and Priapism: A Literature Review of a Rare Association. Cureus. 2021 Apr;13(4).
5. Turkina A, Wang J, Mathews V, Saydam G, Jung CW, Al Hashmi H, et al. TARGET: a survey of real world management of chronic myeloid leukaemia across 33 countries. Br J Haematol. 2020;190: 869-76.
6. Mulhall JP, Honig SC. Priapism: etiology and management. Acad Emerg Med. 1996;3:810-6.
7. Hashmat AI, Rehman JU: Priapism. In: Hashmat AI, Das S (eds.), The Penis. Philadelphia, Lea & Febiger. 1993; pp. 219-43.
8. Yassin MA, Soliman AT, Sanctis V. Effects of tyrosine kinase inhibitors on spermatogenesis and pituitary gonadal axis in males with chronic myeloid leukemia. J Cancer Res Ther. 2014;2:116-21.
9. Yassin MA, Abdul MA-J, Chandra P, et al. Chronic Myeloid Leukemia in Adolescents and Young Adults: A Single Institute Experience. Blood. 2019;134 (Supplement 1):5915.
10. Ergenc H, Varum C, Karacaer C, Çekdemir D. Chronic myeloid leukaemia presented with priapism: Effective management with prompt leukaapheresis. Niger J Clin Pract. 2015;18:828-30.
11. Thakur P, Verma V, Fotedar V, Singh K. Priapism in a Pediatric Chronic Myeloid Leukaemia Patient: Unusual Presentation of a Rare Disease in Children Case Report. Clin Cancer Investig J. 2019;8:76.
12. Dhar J, Chhabra G, Khandelwal L, Batra A, Gupta N. Priapism as a debut presentation of chronic myeloid leukemia. J Coll Physicians Surg Pakistan. 2019;29:78–80.
13. Ponniah A, Brown CT, Taylor P. Priapism secondary to leukaemia: Effective management with prompt leukaapheresis. Int J Urol. 2004;11:809–10.
14. Farhan S, Anjum F, Al-Qahtani FS, Al-Anazi KA. Chronic Myeloid Leukemia Presenting with Priapism. J Leuk.2014; 3: 171.
15. Becerra-Pedraza LC, Jiménez-Martínez LE, Peña-Morfin I, Nava-Esquivel R, Villegas-Martínez JA. Priapism as the initial sign in hematologic disease: Case report and literature review. Int J Surg Case Rep. 2018;43:13–7.
16. Htun TH, Dublin N, Parameswaran M, Razack AH, Chua CB. Chronic myeloid leukaemia presenting as Priapism - how should We treat these? J Heal Transl Med. 2008;11:27–9.
17. Ocheni S, Ibegbulam O, Olusina D, Oyekunle A, Durosini M. Chronic myeloid leukemia presenting as priapism: a report of 2 cases and review of literature. Int J Med Health Dev. 2010;15:76-81.
18. Afroze R, Nebhmani D, Wadhwa N. Cutaneous myeloid sarcoma of the penile foreskin. Turk Patoloji Derg. 2015;31:131-5.
19. Jana K, Aggarwal R, Gawande A, Lal M. Priapism: A chronic myeloid leukemia harbinger in exigency. Ann Trop Med Public Health. 2013;6:583-5.
20. Dhanju AS, Tyagi P, Dhalwal SS, et al. Priapism: a rare presentation in chronic myeloid leukemia. Int J Adv Med. 2019;6:1937-9.
21. Aggarwal V, Himanshu, Sathi S, Gupta A, Agrawal P. Priapism in CML. Indian J Med Paediatr Oncol. 2008;29:30-1.
22. Sareen R, Kapil M, Malpani BK. Priapism: A Rare Presentation of CML. J Hematol Oncol Forecast. 2018;1:1-3.
23. Chang M-W, Tang C-C, Chang SS. Priapism—a rare presentation in chronic myeloid leukemia: case report and review of the literature. Chang Gung Med J. 2003;26:288-92.
24. Huei TJ, Lip HTC, Omar S. A rare presentation of chronic myeloid leukemia with priapism treated with corpororganular shunting. Med J Malaysia. 2018;73:420-2.
25. Wajih Ullah M, Rehan A, Cheeti A, et al. Priapism and chronic myelogenous leukemia Int J Adv Res. 2018;6:144-6.
26. Shaer OK, Shaer KZ, AbdelRahman IF, El-Haddad MS, Selim OM. Priapism as a result of chronic myeloid leukemia: Case report, pathology, and review of the literature. J Sex Med. 2015;12:827-34.
27. Becker HC, Pralle H, Weidner W. Therapy of priapism in high counting myeloid leukemia - A combined onco-logical-urolological approach. Two case reports. Urol Int. 1985;40:284-6.
28. Qu M, Lu X, Wang L, Liu Z, Sun Y, Gao X. Priapism secondary to chronic myeloid leukemia treated by a surgical cavernosa-corpus spongiosum shunt: Case report. Asian J Urol. 2019;6:373-6.
29. SwapnaY, Narmada N. Emergency leukapheresis in chronic myeloid leukemia presenting with priapism. Asian J Pharm Heal Sci. 2017;7:1701-4.
30. Abd El Salam M, Ibrahim NH, Hassan S. Discontinuation of treatment in a chronic myeloid leukemia patient caused priapism: A case report. Hum Androl. 2019;9:21-3.
31. Atas U, Meydanal YE, Ilter U, Ulas T, Salim O, Undar L. Priapism-A Rare Presentation of Chronic Myeloid Leukemia. J Clin Diagnostic Res. 2019;13.
32. Dogra PN, Kumar P, Goel R, Dash SC. Long duration priapism in blast crisis of chronic myeloid leukemia. J Ass Phys India. 2004;52:170.
33. Jameel T, Mehmod K. Priapism – an unusual presentation in chronic myeloid leukemia: case report and review of the literature. Biomedica. 2009;25:197-9.
34. Irizi M, MhannaT, El Houmaid A, et al. Delayed penile prosthesis implantation in the delayed presentation of ischemic priapism. Arch Case Reports. 2020;4:4-6.
35. Tazi L. Priapism as the first manifestation of chronic myeloid leukemia. Ann Saud Med. 2009; 29:412.
36. Khan A, Shafiq I, Shah MH, Khan S, Shahid G, Arabdlin M. Chronic myeloid leukemia presenting as priapism: A case report from Khyber Pakhtunkhwa. J Pak Med Assoc. 2018;68:942-4.
37. Patil RB, Wasekar N, Bamborde S, et al. Priapism: Rare presenting manifestation of chronic myeloid leukemia and its management-Case series of 5 patients. Int J Sci Res. 2019;8:357.
38. Hazra SP, Priyadarshi V, Gogoi D, Sharma PK, Pal DK, Chakraborty SC. Pediatric priapism: a rare first manifestation of leukemia. APSP J Case Rep. 2013;4:39.
39. Veljković D, Kuzmanović M, Mićić D, Šerbić-Nonković O. Leukapheresis in management hyperleucocytosis induced complications in two pediatric patients with chronic myelogenous leukemia. Transfus Apher Sci. 2012;46:263-7.
40. Ammour Z, Mouhaoui M. Priapism a rare and unusual presentation in chronic myeloid leukemia [a case report]. AMMUR. 2019;3:36.
41. Castagnetti M, Sainati L, Giona F, Varotto S, Carli M, Rigmonti W. Conservative management of priapism secondary to leukemia. Pediatr Blood Cancer. 2008;51:420-3.
42. Avci AE, Kurtulus F, Fazlioglu A, Keskin S, Güctas O, Cek M. Priapism as an initial presentation of chronic myelogenous leukemia: A case report. UHOD. 2005;15:153-5.
43. Morano SG, Latagliata R, Carmosino I, Girmenia C, Dal Forno S, Alimena G. Treatment of long-lasting priapism in chronic myeloid leukemia at onset. Ann Hematol. 2000;79:644-5.
44. Kumar P, Rahman K, Kumari S, Singh MK, Gupta R, Nityanand S. Priapism as a rare presentation of chronic myeloid leukemia. J Can Res Ther. 2018;14:1442-3.
45. Graivier L, Gran G, Rhoades RB, Reynolds RC, Windmiller J. Priapism in a 7-week-old infant with chronic granulocytic leukemia. J Urol. 1971;105:137-9.
46. Patil P L, Somkuwar K, Kataria P S, Gaikwad N. Priapism - A Rare Presentation in Chronic Myeloid Leukemia. Vidarbha J Intern Med. 2016;21:50-1.
47. Agarwal A, Lavania P. Priapism in a patient of chronic myeloid leukemia: A case report. Indian J Urol. 2020;24:S53.
48. Chaudhary R, Rai BK, Bhandari R, Yadav A. Unusual Case of Priapism in Emergency Department of Tertiary Care Hospital of Eastern Nepal. Int J Clin Urol. 2017;4:39-40.
49. Shafique S, Bona R, Kapilan AA. A case report of therapeutic leukapheresis in an adult with chronic myelogenous leukemia presenting with hyperleukocytosis and leukostasis. Ther Apher Dial. 2007;11:146-9.
50. Stutz FH, Bergin JJ. Priapism in Leukemia: A report of two cases. Mil Med. 1970; 135:44-8.
51. Suri R, Goldman JM, Catoysky D, Johnson SA, Wilshaw E, Galton DAG. Priapism complicating chronic granulocytic leukemia. Am J Hematol. 1980;9:295-9.
52. Chowdhury ZZ, Al-Asad H, Rahman MH, et al. Management of Priapism with Chronic Myeloid Lukaemia- A Rare Presentation and Our Experiences. Haematol J Bangladesh. 2020;3:39-41.
53. Nabi G, Dogra PN. Chronic myeloid leukaemia presenting as priapism in children: need for multidisciplinary approach. East Afr Med J 2000;77:576.

54. Gupta A, Bambrey P, Varma S, Vaidyanathan S, Deodhar SD. Priapism in chronic myeloid leukaemia: combined medical and surgical treatment. A report on two patients. Indian J Cancer. 1987;24:176-9.

55. Dutta TK, Purohit OP, Vaidyanathan V, Gupta BD, Rao MS. Radiation therapy of priapism complicating chronic myeloid leukaemia--review and report of a case. Indian J Cancer.1979;16:90-3.

56. Ekeke O, Omunakwe H, Nwauche C. Chronic myeloid leukemia presenting as priapism. Int Surg. 2015;100:552-7.

57. Almaeena W, Azzuz S. Underdiagnosed Chronic Myelogenous Leukemia Presented By Priapism. Int J Acad Sci Res.2020;4:20-1.

58. Ritz ND, Purfar M. Chronic myeloid leukaemia with priapism in eight-year-old child. N Y State J Med. 1964;64:553-6.

59. Babel CS, Jain KC, MathurA, Bhu N. Priapism in child with chronic granulocytic leukaemia. Indian Pediatr.1976;13:961.

60. Agrawal DK, Jha S, Verma A, Tripathi AK, Singh BN. Priapism, complicting chronic myeloid leukemia. A case report. Indian J Cancer.1991:28:51-2.

61. Ghalaut PS, Kalra GS, Gupta S. Priapism - A rare presentation in chronic myeloid leukaemia. J Assoc Physicians India. 1996;44:354-5.

62. Bhatia P, Arya LS, Chinnapappan D, Choudhry VP, Pati H. Priapism in chronic myelogenous leukaemia. Indian J Pediatr. 1992;59:130-2.

63. Mishra K, Jandial A, Singh V, Radotra B, Malhotra P. Priapism in chronic myeloid leukaemia: Meeting at the crossroads and heading in different directions. Indian J Med Paediatr Oncol. 2020;41:418.

64. Saikia T, Advani SH, Dinshaw KA, Gopal R, Nair CN, Chandwani IM. Priapism complicating chronic myeloid leukemia and its management. J Indian Med Assoc. 1984;82:294-6.

65. Villegas Osorio JF, Corchuelo Mañol C, Cuevas Palomino A, Medina López RA. Ischaemic priapism as a presentation of chronic myeloid leukaemia. Arch Esp Urol. 2014;67:708-11.

66. Clark AJ, Hsu P, Darves-Bornoz A, Tanaka ST, Mason EF, Katzenstein HM. Priapism in a 13-year-old boy. Pediatr Rev. 2018;39:617-9.

67. Haar H, Shanbrom E, Miller S. The treatment of leukemic priapism with A-139. J Urol. 1960;83:429-32.

68. Shankar J. Priapism in Teenager Chronic Myelogenous Leukemia: a Rare Occurrence. Asian J Pharm Heal Sci. 2011;1:226.

69. Graw RG, Skeel RT, Carbone PP. Priapism in a child with chronic granulocytic leukaemia. J Pediatr.1969;74:788-90.

70. Abbott LS, Moineau G, Johnston DL. Case 1: An unusual cause of headaches and priapism in a teenager. Paediatr Child Health. 2008;13:299–301.

71. Ocheni S, Ibegbulam O, Olusina D, Oyekunle A, Durosimi M. Chronic myeloid leukaemia presenting as priapism: a report of 2 cases and review of literature. J Coll Med. 2012;15:76–81.

72. Musa A, Ndakotsu M, Abubakar S, Agwu P. Chronic myeloid leukaemia with an initial presentation as ischemic priapism: A case report and review of literature. Arch Int Surg. 2017;7:68.

73. Gupta A, Seth T, Gupta A. Successful use of terbutaline in persistent priapism in a 12-year-old boy with chronic myeloid leukaemia. Pediatr Hematol Oncol. 2009;26:70–3.

74. Ervie M, Boongaling DC, Rose S, Mortel C, Deala RP. Priapism as a Rare Presentation of Chronic Myelogenous Leukemia. Philippine J Inter Med. 2015;53:1-5.

75. Nabi G, Dogra PN. Chronic myeloid leukaemia presenting as priapism in children: need for multidisciplinary approach. East Afr Med J 2000;77:576.

76. Musa A, Ndakotsu M, Abubakar S, Agwu P. Chronic myeloid leukaemia with an initial presentation as ischemic priapism: A case report and review of literature. Arch Int Surg. 2017;7:68.

77. Gupta A, Seth T, Gupta A. Successful use of terbutaline in persistent priapism in a 12-year-old boy with chronic myeloid leukaemia. Pediatr Hematol Oncol. 2009;26:70–3.

78. Sun HH, Zhang JH, DeWitt-Foy M, Waldron M, Mukherjee S, Montague DK. Urologic Management of Priapism Secondary to Chronic Myeloid Leukemia. Urology. 2019;125:24-8.

79. Minckler MR, Conser E, Figueroa JJ, Scott AJ, Gaither J, Amini R. The Semantics of Priapism and the First Sign of Chronic Myeloid Leukemia. Case Rep Emerg Med. 2017;2017:2656203.

80. Savage DG, Szydlo RM, Goldman JM. Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol. 1997;96:111-6.

81. Steinhardt GF, Steinhardt E. Priapism in children with leukaemia. Urology. 1981 ; 18:604-6.

82. Emond AM, Holman R, Hayes RJ, Serjeant GR. Priapism and Impotence in Homozygous Sickle Cell Disease. Arch Intern Med. 1980;140:1434-7.

83. Jandial A, Mishra K, Sandal R, Lad D, Prakash G, Khadwal A, et al. CML patients presenting with priapism: Is there any disparity in outcome? J Clin Oncol. 2019;37 (15 Suppl): e18545.

84. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–302.

85. Cherian J, Rao AR, Thwaini A, Kapasi F, Shergill IS, Samman R. Medical and surgical management of priapism. Postgrad Med J. 2006;82:89-94.

86. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. New Engl J Med. 1999;341:164–72.

87. Ali EA, Nashwan AJ, Yassin MA. Essential thrombocythemia with (type2) calreticulin presented as stuttering priapism. Eng J Med. 1999;341:164–72.
88. Kumar M, Garg G, Sharma A, Pandey S, Singh M, Sankhwar SN. Comparison of outcomes in malignant vs. non-malignant ischemic priapism: 12-year experience from a tertiary center. Turkish J Urol. 2019;45:340-4.

89. Chang X, Zhou L, Chen X, et al. Impact of Imatinib on the Fertility of Male Patients with Chronic Myelogenous Leukaemia in the Chronic Phase. Target Oncol. 2017; 12: 827-32.

90. Montague DK, Jarow J, Broderick GA, et al.; Members of the Erectile Dysfunction Guideline Update Panel; American Urological Association. American Urological Association guideline on the management of priapism. J Urol. 2003;170:1318-24.

91. Kulmala RV, Tamella TL. Effects of priapism lasting 24 hours or longer caused by intracavernosal injection of vaso-active drugs. Int J Impot Res.1995;7:131-6.

92. Burnett AL, Sharlip ID. Standard Operating Procedures for Priapism. J Sex Med. 2013;10:180-94.

93. Ralph DJ, Garaffa G, Muneer A, et al. The Immediate Insertion of a Penile Prosthesis for Acute Ischaemic Priapism. Eur Urol. 2009;56:1033-8.

Received: 29 September 2020
Accepted: 12 October 2020
Correspondence:
Dr. Mohamed A Yassin
Consultant Hematologist
Associate Professor of Medicine
Hematology section-Medical Oncology
National Center for Cancer Care and Research
Hamad Medical Corporation,
College of Medicine –Qatar University
Doha –Qatar, P.O.BOX 3050
E-mail: yassinmoha@gmail.com
Table 1. shows the characteristics of CML patients with priapism

Referenced	Age in Years	Priapism from onset to presentation to the hospital	First presentation or previously	Type of priapism	WBC x10^9/L	PLT x10^9/L	HB g/dL	Splenomegaly/ hepatomegally, below costal margin in cm or if presdnt	stage of CML	
10	18	72 hours	Yes	ischemic low flow	100	1,002	6	spleen 2-3 cm	chronic phase	
11	15	2 days	Yes	ischemic low flow	135	197	9	spleen to the umbilicus	chronic phase	
12	52	4 hours	Yes	ischemic low flow	239	625	8.9	spleen 8cm, liver 3 cm	chronic phase	
13	19	18 hours	Yes	ischemic low flow	513	NA	NA	N/A	chronic phase	
14	38	30 hours	Yes	ischemic low flow	378	155	10.5	spleen 18 cm	chronic phase	
15	52	6 days	Yes	ischemic low flow	282	368	10	N/A	chronic phase	
16	21	72 hours	Yes	ischemic low flow	619	N/A	7.4	splenomegally	chronic phase	
17	30	9 days	Yes	ischemic low flow	261	86	9.2	spleen 10 cm	chronic phase	
18	29	3 days	Yes	ischemic low flow	366.34	622	6.7	spleen 5 cm, liver 2 cm	chronic phase	
19	20	4 hours	Yes	ischemic low flow	158	N/A	10.9	spleen 8 cm	chronic phase	
20	18	14 hours	Yes	ischemic low flow	363	527	9.7	spleen 9 cm	chronic phase	
21	55	2 days	Yes	ischemic low flow	420	280	9.5	spleen up to umbilicus, liver 2 cm	chronic phase	
22	NA	6 days	Yes	ischemic low flow	377.31	730	11.3	Hematopoesenomegaly Blasts+ Promyelocytes-12%	chronic phase	
23	21	19 hours	Yes	ischemic low flow	216	1746	8.3	spleen 7 cm, liver 6 cm	chronic phase	
24	18	2 days	Yes	ischemic low flow	294	94	6.6	spleen 2	chronic phase	
25	22	4 days	Yes	ischemic low flow	218.6	324.2	8.2	spleen 6	chronic phase	
26	21	6 days	Yes	ischemic low flow	410	N/A	N/A	spleen 3 fingers	chronic phase	
27	18	75 hours	Yes	ischemic low flow	323	N/A	N/A	N/A	chronic phase	
28	18	72 hours	Yes	ischemic low flow	257	5450	N/A	spleen 2-3	chronic phase	
29	18	4 days	Yes	ischemic low flow	144	350	9.6	spleen 9-10 cm, liver 2-3 cm	chronic phase	
30	18	16 hours after stopping	ischemic low flow	210	45	10.3	huge splenomegaly	chronic phase		
31	18	5 days	Yes	ischemic low flow	215	470	6.9	spleen 10 cm	chronic phase	
32	18	10 days after start of treatment	ischemic low flow	320	normal	6.5	hepato-splenomegaly	blast crisis		
33	21	8 hours	Yes	ischemic low flow	316	670	8.3	liver palpable 6 cm, spleen 7 cm	chronic phase	
34	55	12 hours	Yes	ischemic low flow	282	260	9	spleen 7 cm	chronic phase	
35	36	5 days diagnosed at 33	ischemic low flow	N/A	N/A	N/A	N/A	chronic phase		
36	25	22 hours	Yes	ischemic low flow	400	1,200	10.53	spleen 4 cm	chronic phase	
37	16	11 days	Yes	ischemic low flow	614.8	907	5.7	liver 2cm spleen 4cm	blast crisis	
38	30	20 hours	Yes	ischemic low flow	285	462	11.2	spleen 2cm, liver 3 cms	chronic phase	
39	25	2 days	Yes	ischemic low flow	670	320	11.3	spleen 1 cms	chronic phase	
40	28	7 hours	Yes	ischemic low flow	441	422	7	spleen 15 cms	chronic phase	
41	14	24 hours	Yes	ischemic low flow	226.9	310	9.9	spleen 6 cm	chronic phase	
42	16	12 hours	Yes	ischemic low flow	320	417	11	spleen 4 cm	chronic phase	
43	25	16 hours	Yes	ischemic low flow	301,570	269	10.3	no organomegally	chronic phase	
44	9	9 hours	Yes	ischemic low flow	274	1235	8.2	splenomegally	blast crisis	
45	55	8 hours	Yes	ischemic low flow	184	277	9	spleen 3 cm, liver 2 cm	chronic phase	
46	55	3 days	Yes	ischemic low flow	650	321	8	hepatopoesenomegaly	chronic phase	
47	5 days	Yes	ischemic low flow	297	N/A	N/A	hepatopoesenomegaly	chronic phase		
48	42	7 days	Yes	ischemic low flow	390	N/A	N/A	spleen 6 cm	chronic phase	
49	28	6 days	Yes	ischemic low flow	206	N/A	N/A	no hepatopoesenomegaly	chronic phase	
50	28	5 days	Yes	ischemic low flow	37	344	10	liver and spleen were palpated below the costal margin.	blast crisis	
Day	8 hours	48 hours	96 hours	After day 4 of treatment	Known CML	Stopped medications	Ischemic low flow	Hepato-splenomegaly	Blast Crisis	Chronic Phase
-----	---------	----------	----------	--------------------------	----------	---------------------	------------------	-------------------	-------------	---------------
22	N/A	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A	N/A
47	137	670	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
48	150	215	11.9	Yes	N/A	N/A	N/A	N/A	N/A	N/A
49	22	8 hours	N/A	Yes	N/A	N/A	N/A	N/A	N/A	N/A
50	46	46 hours	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
51	42	24 hours	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
52	46	46 hours	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
53	46	46 hours	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
54	22	6 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
55	26	6 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
56	26	N/A	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
57	36	N/A	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
58	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
59	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
60	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
61	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
62	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
63	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
64	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
65	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
66	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
67	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
68	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
69	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
70	30	8 days	N/A	22 hours	N/A	N/A	N/A	N/A	N/A	N/A
Patient	Duration	Resolution	Diagnosis	Hematocrit	Spleen Size	Phase of CML				
---------	----------	------------	-----------	------------	-------------	---------------				
65	14 hours	Yes	stuttering - ischemic	177.15 N/A	10.3 N/A	chronic phase				
65	6 hours	Yes	stuttering - ischemic	402.24 N/A	8.2 N/A	chronic phase				
56	2 weeks	Yes	stuttering - ischemic	360 N/A	N/A	chronic phase				
56	16 months before	Yes	stuttering - ischemic	360 N/A	222 N/A	chronic phase				
66	3 days	Yes	stuttering - ischemic	350 N/A	450 N/A	chronic phase				
67	prolonged	Yes	stuttering - ischemic	540 N/A	HCT 25% spleen 7 cm	chronic phase				
51	3-5 days	Yes	stuttering - ischemic	197 N/A	350 N/A	chronic phase				
51	NA	Yes	stuttering - ischemic	202 N/A	900 N/A spleen 12 cm	chronic phase				
51	38 days	Yes	ischemic - stuttering	240 N/A	1150 N/A spleen 19 cm	chronic phase				
51	70 days	Yes	stuttering - ischemic	186 N/A	218 N/A spleen 7 cm	chronic phase				
51	24 hr	Yes	stuttering - ischemic	500 N/A	345 N/A spleen 14 cm	chronic phase				
68	12 hours	Yes	stuttering - ischemic	290 N/A	550 N/A	chronic phase				
68	duration after presentation 36 days	Yes	ischemic - stuttering	470 N/A	180 N/A	chronic phase				
50	24 hours	Yes	stuttering - ischemic	290 N/A	230 N/A	chronic phase				
69	7.5 days	Yes	stuttering ischemic	337 N/A	7 N/A splenomegaly	chronic phase				
70	2 times resolved spontaneously	Yes	stuttering - ischemic	480 N/A	130 N/A	chronic phase				
41	several days	Yes	stuttering - ischemic	509 N/A	1200 N/A	chronic phase				
41	4 days	Yes	stuttering - ischemic	169 N/A	663 N/A	chronic phase				
71	34 hour	Yes	ischemic - stuttering	65 N/A	800 N/A spleen 12 cm	chronic phase				
71	4 day	Yes	ischemic - stuttering	356.4 N/A	220 N/A	chronic phase				
37	3 months duration	Yes	stuttering - ischemic	284 N/A	370 N/A	chronic phase				
72	12 days	Yes	stuttering - ischemic	199 N/A	504 N/A spleen 18 cm	chronic phase				
37	3 days	Yes	stuttering - ischemic	292 N/A	490 N/A spleen 15 cm	chronic phase				
73	2 days	Yes	ischemic - stuttering	346 N/A	924 N/A	chronic phase				
74	one month intermittent	Yes	stuttering-ischemic	185 N/A	10.7 N/A	chronic phase				
75	over 24 hours	Yes	stuttering ischemic	296 N/A	936 N/A	chronic phase				
76	9 hours	Yes	stuttering - ischemic	450.01 N/A	509 N/A	chronic phase				
77	6 hours	Yes	ischemic stuttering	588 N/A	109 N/A	chronic phase				
Table 2. Treatment modalites of priapism and the outcome of erectile dysfunction

Patient reference	Medications for priapism	Aspiration and irradiation	Leukophresis	Irradiation	Shunt	Best responded to	Erectile dysfunction					
10	Imatinib	No	Yes	No	No	Leukapheresis	No					
11	No	Yes	No	No	No	Glenocorporal shunt, corporospongiosal shunt	Winter's shunt	N/A				
12	No	Yes	No	No	Winter's shunt	No						
13	No	Yes	Yes	No	Leukapheresis	No						
14	Yes	Yes	Yes	No	No	After leukophresis and medication	N/A					
15	No	Yes	No	No	Surgery penis shunts	Surgery penis shunts	N/A					
16	No	Yes	No	No	Winter's shunt	Winter’s shunt partial response, hydroxyurea after combined complete response	Yes					
17	Yes	Yes	No	No	Bilateral T-shunts	After shunt	Yes					
18	No	No	No	No	Winter shunt	Winter shunt	N/A					
19	No	Yes	No	No	Cavernosa aspiration, epinephrine irrigation	No						
20	No	Yes	No	No	Cavernosa aspiration and irrigation with epinephrine	No						
21	No	No	No	No	Corpus cavernosa–glans shunt	Corpus cavernosa–glans shunt	N/A					
22	No	Yes	No	No	No	Aspiration following intra-cavernosal injection of phenylephrine	N/A					
23	No	Yes	No	No	No	Cavernosa aspiration and epinephrine irrigation	No					
24	Hydroxyurea, allopurinol, Cytarabine	Yes	No	No	Corporoglandular shunting	Corporoglandular shunting	N/A					
25	No	Yes	No	No	No	Aspiration and irrigation of the corpora cavernosa	N/A					
	Treatment	E2021193	Allopurinol	Hydroxyurea	Leukapheresis	N/A	Interventions	Results				
---	----------------------------	----------	-------------	-------------	---------------	-----	---	-----------------------------------				
26	Imatinib	Yes	Yes	No	No		Failed aspiration, Leukapheresis ended in, penile prosthesis,	Yes				
27	Allopurinol, Hydroxyurea	Yes	Yes	No	transglandular cavemosum-spongiosum shunt	transglandular cavemosum-spongiosum shunt	N/A					
28	No	Yes	No	No	proximal corpora cavemosum-corpus spongiosum shunt	surgical proximal corpora cavemosum-corpus spongiosum shunt	No					
29	No	No	Yes	Yes	No		Improved after 48 hr leukapheresis procedure	N/A				
30	No	Yes	No	No	No		Aspiration and irrigation with ephedrine	Yes				
31	Hydroxyurea	No	Yes	No	No		Hydroxyurea, Leukapheresis 5 sessions	N/A				
32	Hydroxyurea, Allopurinol	No	No	No	Winter's shunt	shunt, hydroxyurea, allopurinol failed	Yes					
33	Oral pentazocaine, Allopurinol, Hydroxyurea, busulphan	No	No	No	No		Allopurinol, Hydroxyurea	N/A				
34		Yes	No	No	No		Cavernosa aspiration and epinephrine irrigation	No				
35		Yes	No	No	No		Aspiration of the corpora cavernosa	N/A				
36		No	No	No	Proximal surgical shunt	shunt was performed	Yes					
37		Yes	No	No	Al-Ghorab shunt	Aspiration Shunt	No					
	Treatment	Initial	Treatment	Initial	Procedure	Final	Comment					
---	----------------------------	---------	------------	---------	-----------------------------------	-------	---					
37	hydroxyurea	Yes	No	No	Al-Ghorab shunt	Aspiration Shunt	EHS2. Grade 1 developed ED					
38	hydroxyurea	Yes	No	No	Al-Ghorab shunt	Aspiration Shunt	No					
39	No	Yes	No	No	No	cavernosal aspiration, irrigation and phenylepinephrin partial response after 5 days improved	N/A					
40	Hydroxiurea ARA-C	No	Yes	No	No	Hydroxiurea ARA-C / LeukapheresisOne session per day for 3d /LMWH	N/A					
41	No	Yes	No	No	No	corporal aspiration	N/A					
42	Cyclophosphamide	No	Yes	No	No	transglanular to corpus cavernosal shunt	N/A					
43	LMWH SC	No	Yes	No	No	transglanular to corpus cavernosal shunt	N/A					
44	hydroxyurea	No	Yes	No	No	transglanular cavernospongiosum shunt	surgical curettage of the penis.					
45	NA	Yes	No	No	No	winter’s T shunt,	N/A					
46	Vincristine sulfate and prednisone	No	No	Yes	No	radiation, complete resolution after 6 d	N/A					
47	imatinib	Yes	No	No	No	cavernosasapiration was unsuccessful. Imatinib	N/A					
48	NA	Yes	No	No	No	Distal corporoglanular shunt	N/A					
49	analgesics, anxiolytics and steroids	Yes	No	No	No	bilateral aspiration and irrigation	N/A					
	hydroxyurea, allopurinol and intravenous fluids	No	Yes	No	No	leukapheresis	N/A					
---	---	----	-----	----	----	---------------	-----					
51	busulfan	No	No	No	No	subsided gradually over a two to three week period	Yes					
51	hyaluronidase	No	No	Yes	No	NA	N/A					
51	Busulfan	No	Yes	No	No	NA	No					
51	Busulfan, hydroxyurea	No	Yes	No	No	sapheno-cavernous bypass.	NA					
52	Busulfan, hydroxyurea	No	Yes	No	No	sapheno-cavernous bypass.	N/A					
52	pain killers	NA	No	No	No	Proximal shunt	N/A					
52	Cavernosal Pseudo-Ephedrine Inj, pain killers	NA	No	No	No	N/A	N/A					
52	pain killers	NA	No	No	No	Proximal shunt	N/A					
52	Cavernosal Pseudo-Ephedrine Inj, pain killers	NA	No	No	No	N/A	N/A					
52	pain killers	NA	No	No	No	No	N/A					
53	N/A	Yes	No	No	No	Winter shunt	N/A					
53	NA	NA	No	No	No	Winter shunt	NA					
53	NA	NA	No	No	No	Winter shunt	NA					
53	NA	NA	No	No	No	Winter shunt	NA					
54	NA	NA	No	No	No	Winter shunt	NA					
54	allopurinol hydroxyurea	NA	No	No	No	cavernosum-spongiosum shunt	No					
	Treatment	Initial	Aspiration	Irrigation	Response	Shunt	Initial	Aspiration	Irrigation	Response	Shunt	
---	---------------------------	---------	------------	------------	----------	---------------------------	---------	------------	------------	----------	---------------------------	
55	allopurinol hydroxyurea	NA	No	No	No	cavemosoum-spongiosum shunt	No	No	No	No	No	
56	meyleran endoxan	No	No	Yes	No	radiation to the penis	N/A	No	No	No	N/A	
57	NSAIDS and Diethyl Stilbestrol	No	No	No	glandulo-cavernosal shunt	improved after the shunt	Yes	No	No	No	No	
58	No	Yes	No	No	No	N/A	N/A	No	No	No	N/A	
59	cold compressison, priscoline hydrochloride, diethylstilbestrol	No	No	Yes	No	radiation therapy the penis	N/A	No	No	No	N/A	
60	benzyl penicillin, busulfan, trioxyphenbutazone	Yes	No	No	No	initial aspiration little response improved after irrigation (lowsey operation)	N/A	No	No	No	N/A	
61	N/A	NA	No	No	NA	immediate surgical decompression	N/A	No	No	No	N/A	
62	NO	NO	NO	NO	NO	saphenocavernous anastomosis	N/A	No	No	No	N/A	
63	Yes	Yes	Yes	No	No	corpus cavernosa–glans shunt	Aspiration and irrigation	Yes	No	No	No	N/A
64	Busulfan	Yes	No	No	No	with both busulfan, irrigation and aspirartion of the corpora cavernosa	Yes	No	No	No	N/A	
65	Yes	No	No	Yes	No	improved after aspiration and irrigation	Yes	No	No	No	N/A	
65	No	Yes	No	Yes	No	after aspiration and irrigation of corpora cavernosa	Yes	No	No	No	N/A	
ID	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Outcome 1	Outcome 2	Outcome 3	Outcome 4				
----	-------------	-------------	-------------	-------------	-----------	-----------	-----------	-----------				
56	hydroxyurea	No	No	No	N/A	Yes	Yes	Yes				
66	allopurinol	Yes	Yes	No	Distal shunt	r distal distal shunt procedure	N/A					
67	Myleran	No	No	No	No	flaccid after two weeks of medical therapy	N/A					
51	hydroxyurea	No	Yes	No	sapheno-cavernous bypass.	after sapheno-cavernous bypass.	Yes					
67	Myleran intravenous A-139 l, demerol	No	No	No	No	N/A	Yes					
51	N/A	Yes	No	No	N/A	Yes	N/A	Yes				
51	Busulfan	Yes	No	No	N/A	Yes	N/A	Yes				
51	Busulfan Steroids, Anticoagulants.	No	No	No	No	N/A	Yes					
51	busulfan	No	Yes	No	N/A	Yes	N/A	Yes				
68	Allopurinol	No	No	No	No	the priapism subsided after 24 hr of starting medical treatment no aspiration was done	No					
51	Busulfan Anticoagulants	NA	No	Yes	No	no benefit	Yes					
50	Busulfan	Yes	No	No	shunt between the right saphenous vein and corpus cavernosus	shunt between the right saphenous vein and corpus cavernosus	N/A					
69	Busulfan then, 6-mercaptopurine, busulfan again	No	No	Yes	No	improved after radiotherapy on the 2 weeks period	N/A					
70	No	Yes	No	No	No	on presentation no priapism was there , two episodes of priapism that resolved, and he was treated three times with metronidazole for presumed balanitis	N/A					
	Treatment Details	Initial	Follow-up	Tumor Metastasis	Tumor Growth	Other Tumors	Observation Details					
---	--	---------	-----------	------------------	--------------	-------------	---					
41	1 LMWH SC BID for one month, Hydroxyurea Cyclophosphamide	No	Yes	No	No	N/A	N/A					
41	1 LMWH SC / hydroxyurea	No	No	No	No	Hydroxyurea	N/A					
71	hydroxycarbamide aspiration done	No	No	No	No	hydroxycarbamid aspirin 4 units of PRBC	No					
71	cyclophosphamide 1g stat, hydroxycarbamide 1g 12 hourly	No	No	No	No	20th day of admission with significant healing of the penile shaft ulcers, significant detumescence	N/A					
37	No	No	No	No	No	Imatinib	developed ED EHS2. Grade 1					
72	Yes	No	No	No	No	By the 4th week of cytoreduction	Yes					
37	hydroxyurea	Yes	No	No	No	Aspiration Shunt	developed ED EHS2. Grade 2					
73	Yes	No	No	No	No	terbutaline 0.125 mg subcutaneously	N/A					
74	Paracetamol, Morphone Diazepam, prednisone Terbutaline terbutaline 5.0mg, hydroxyurea	No	No	No	No	Winter shunt	Corpora cavernosa aspiration (winter), prednisone 2, Terbutaline terbutaline 5.0mg, tab hydroxyurea	N/A				
75	No	Yes	No	No	No	corporal aspiration and phenylephrine irrigation	N/A					
76	No	Yes	No	No	No	aspiration followed by intracavernosal injection of 1 dose of phenylephrine	No					
77	No	Yes	No	No	No	penile aspiration and irrigation	N/A					