Epilepsy is the most common neurological disorder in dogs and cats, which is characterized by recurrent epileptic seizures caused by various etiologies. With reasonable seizure control, especially in idiopathic epilepsy, a relatively good and long-term prognosis can be expected with adequate antiseizure drug (ASD) therapy, which is known as antiseizure medication (ASM) (Hamamoto et al., 2016). In veterinary medicine, phenobarbital (PB) and potassium bromide (KBr) have been popular due to their long history, widespread availability and low cost. Besides, since the 1990s, as the second generation of ASDs, such as levetiracetam (LEV), zonisamide (ZNS), felbamate, topiramate, gabapentin (GBP) and pregabalin (PGB), has been developed and approved in human medicine, veterinarians have begun to use these drugs for their patients. Most recently, imepitoin (IMP) has been approved as a new generation ASD in veterinary medicine. For dogs with epilepsy, the International Veterinary Epilepsy Task Force (IVETF) (Bhatti et al., 2015) and the American College of Veterinary Internal Medicine (ACVIM) (Podell et al., 2016) proposed consensus statements and recommendations for ASD use based on previously published studies including systematic reviews (Charalambous et al., 2014, 2016). These consensuses recommend that ASM should be initiated in dogs with (1) ≥2 seizures within a 6-month period; (2) cluster seizures (or acute repetitive seizures) or status epilepticus; (3) the presence of structural lesions; and (4) prolonged, severe or unusual postictal period. Conversely, a consensus report for ASD usage in cats with epilepsy has not been published, but several reviews and research papers have been created (DZP) for cats as the third or fourth line.

The survey period was 7 days (18–24 September 2020). Approximately 300 veterinary hospitals were newly diagnosed with idiopathic or structural epilepsy per year (The average for the last 3–5 years). Approximately 60% of those hospitals held ZNS (97.7%) and ZNS was used as the most frequently prescribed, second-most prescribed, third-most prescribed.

Finally, we received responses from 511 veterinary hospitals (response rate: 9.4%), and all respondents were the director and answered on behalf of each hospital. Approximately 60% of those hospitals had only one veterinarian (director). The results are summarized in Tables 2 and 3 and Figures 1–4 (see Supplementary Table 1), which provides professional veterinary information on the Internet that veterinarians or veterinary hospitals can register for as members for free. Recruitment was conducted by sending a direct mail to 5,421 veterinarians or veterinary hospitals in Japan in 2020 was 12,247 according to Japan’s Ministry of Agriculture, Forestry and Fisheries.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. Veterinary Medicine and Science published by John Wiley & Sons Ltd.
TABLE 2 The characteristics of Japanese veterinary hospitals

	Average	Median
New canine patients	4.1	3
diagnosed with idiopathic or structural epilepsy per year		
Canine patients with idiopathic or structural epilepsy who have been treated continuously since the previous year	7.6	5
New feline patients	1.3	1
diagnosed with idiopathic or structural epilepsy per year		
Feline patients with idiopathic or structural epilepsy who have been treated continuously since the previous year	2.0	1

epilepsy (75.9%) (Figure 2). Additionally, ZNS was the most frequently used ASD in combination therapy (Figure 3). In cats, although PB was used most frequently for idiopathic (47.8%) and structural (50.7%) epilepsy, ZNS was also used frequently (40.5% and 36.2%, respectively) (Figure 4).

TABLE 3 The answers for when ASD blood concentrations were measured

Performed at the first time and at the time of dose change	45.79%
Performed when adverse effects appear	25.64%
Not done	22.11%

Reasons why:
• They did not feel the necessity for measuring blood concentration: 49.56%
• The owner’s financial limitations: 25.66%
• Measuring blood concentration took time and effort: 12.39%
• Other: 12.39%

Performed regularly	16.24%
• Every 1 month: 2.40%	
• Every 2 months: 3.61%	
• Every 3 months: 20.48%	
• Every 4 months: 4.82%	
• Every 6 months: 56.63%	
• Every 12 months: 12.05%	
Other	7.44%

Although most veterinary hospitals measured ASD blood levels at initiation, dose changes and the occurrence of adverse effects, another noteworthy result is that more hospitals (22.1%) did not measure ASD blood levels at all compared to those that did regularly (16.2%).

FIGURE 1 The types of ASD held in Japanese veterinary hospitals. DZP, diazepam; GBP, gabapentin; IMP, imepitoin; KBr, potassium bromide; LEV, levetiracetam; LRZ, lorazepam; PB, phenobarbital; PGB, pregabalin; PHT, phenytoin; PRM, primidone; TPM, topiramate; ZNS, zonisamide
Figure 2 ASD usage for dogs with idiopathic and structural epilepsy in Japanese veterinary hospitals. Detailed data are available in Supplementary Table 2. IE, idiopathic epilepsy; SE, structural epilepsy; 1st, the most prescribed drug; 2nd, the second-most prescribed drug; 3rd, the third-most prescribed drug. Abbreviations for ASD are the same as in Figure 1.

Despite the fact that the consensus reports in dogs and a systematic review in cats did not recommend ZNS as a first-line drug for either species, this survey revealed that ZNS was being used overwhelmingly more frequently in Japan than in Western countries. Potential reasons for this include that ZNS was originally developed in Japan in the 1980s and has a long history of use not only in human medicine but also in veterinary medicine, and Japanese veterinarians have rarely experienced serious adverse effects with ZNS in their long history of its usage. These experiences facilitated the licensing of ZNS as the first ASD for dogs in Japan (2015). At that time, ZNS was widely campaigned to Japanese veterinarians. Conversely, these factors may have led Japanese veterinarians to misunderstand the effectiveness and safety of ZNS (and PB) in cats with epilepsy. In cats, the adverse effects of ZNS are more likely to occur at lower blood concentrations than in dogs (Hasegawa et al., 2008; Matsuda et al., 1979), and PB is highly valued for both its safety and efficacy in cats, and rarely causes hepatic enzyme induction or biochemical abnormalities (Charalambous et al., 2018; Hermans et al., 2021). Additionally, IMP was also licenced in Japan for dogs in 2015; however, it has not been sold so far.

Furthermore, this survey revealed the frequency of DZP (10–24% in dogs; Figure 2) and KBr (0–14% in cats; Figure 4) use in Japanese veterinary hospitals. Chronic oral administration of DZP is not recommended for dogs because of its short half-life and the development of (Table 3). The main reasons for not measuring ASD blood levels were that Japanese clinicians did not feel it necessary (49.6%) and owners’ financial limitations (25.7%).

Figure 3 The combined usage of two ASDs for dogs with idiopathic epilepsy in Japanese veterinary hospitals. Abbreviations for ASD are the same as in Figure 1.
ASDs for idiopathic and structural epilepsy in cats

1st for IE

 40.51

 47.75

 9.71

1st for SE

 36.20

 50.68

 9.98

2nd for IE

 31.90

 29.35

 4.31

 6.46

 24.07

2nd for SE

 34.25

 27.20

 4.70

 7.83

 22.50

3rd for IE

 18.40

 11.94

 11.74

 14.87

 23.68

 9.78

 9.59

3rd for SE

 20.35

 10.76

 13.70

 13.89

 23.68

 8.22

 9.40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ZNS PB KBr LEV DZP GBP Other

FIGURE 4 ASD usage for cats with idiopathic and structural epilepsy in Japanese veterinary hospitals. Detailed data are available in Supplementary Table 2. Abbreviations are the same as in Figure 2.

tolerance (Podell, 2013). Similarly, the use of KBr in cats is not recommended because it reportedly causes a relatively high rate of bronchial asthma, which is sometimes fatal (Boothe et al., 2002). Although these drugs were not used frequently in this survey, some Japanese veterinarians may have misunderstood their appropriate use.

According to the concept of therapeutic drug monitoring (TDM), measurements of ASD blood (serum or plasma) concentrations should be performed under the following circumstances: (1) when a steady state has been reached after initiation, the dose is changed, and/or a loading dose is given; (2) when seizures are not controlled despite an adequate dose; (3) when ASD-related toxicity (adverse effect) is suspected; and (4) when regularly checking for changes in drug activity every 6 (PB and ZNS) to 12 (KBr) months, as recommended in IVETF and ACVIM consensus statements (Bhatti et al., 2015; Podell et al., 2016). Although it is ideal that TDM is conducted for all ASDs, TDM in veterinary medicine has been recommended in ASDs that have a certain half-life such as PB, KBr, and ZNS. In particular, when used in combination with PB, the pharmacokinetics of ZNS are changed (Hojo et al., 2002; Orito et al., 2008), so practitioners should pay attention to its levels. ASDs are often taken for the rest of a patient’s life and can be an economic burden on the owner; however, if we do not follow TDM, different ASDs may be prescribed before the initial treatment has shown a sufficient effect or may cause more adverse effects than necessary. Therefore, clinicians should measure blood levels as much as possible for adequate and successful ASM. On the other hand, DZP and new generated ASDs such as LEV, GBP, PGB and IMP do not require TDM due to their unique profiles including short half-life, safety and unestablished correlation between concentration and efficacy or toxicity (Bhatti et al., 2015; Podell et al., 2016).

The limitation of this study was that the determination of prescription frequency order was entrusted to each hospital; therefore, selection criteria were not certain. Furthermore, only the director responded to this questionnaire, thus in hospitals where many veterinarians worked, there may be variations among clinicians. We note that these results were based on a survey of prescribing frequency, not prescribing priority; that may not accurately reflect the meaning of the order of the first, second and subsequent lines of ASM. In addition, we did not investigate the detailed frequency of prescriptions, long-term therapeutic efficacy and safety of each ASD. Therefore, further studies including these factors, such as a large-scale examination of ZNS or IMP (or other newer ASDs) in dogs and cats in Japan or worldwide, may change the future recommendations for ASM.

To the best of our knowledge, this is the first report to investigate the actual situation of ASM for dogs and cats with epilepsy in Japan. In this survey, we revealed the peculiarities of ASD usage in Japan and also learned the importance of continuously educating veterinarians with current information about the efficacy and safety of each ASD and adequate ASM including TDM in each species. Veterinary neurologists, pharmacologists and academics should make the effort to perform research to build up evidence for appropriate ASM, while general practitioners should always be up to date with the latest and correct knowledge.
ACKNOWLEDGEMENTS
We would like to thank Zpeer, Inc. for conducting the questionnaire survey and the Japanese veterinarians who participated in this survey. This study was partially funded by Sumitomo Pharma Animal Health Co., Ltd. (former DS Pharma Animal Health Co., Ltd.).

CONFLICT OF INTEREST
The authors’ laboratory received a donation for academic research from Sumitomo Pharma Animal Health Co., Ltd. (former DS Pharma Animal Health Co., Ltd.).

ETHICS STATEMENT
No ethical approval was required as no animals were used.

AUTHOR CONTRIBUTION
Satoshi Mizuno: Data curation, Visualization, Writing - original draft; Daisuke Hasegawa: Conceptualization, Methodology, Project administration, Writing - review & editing.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author (DH) upon reasonable request.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/vms3.810.

Satoshi Mizuno1 D
Rikako Asada1 D
Daisuke Hasegawa1,2 D

1Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, Tokyo, Japan
2The Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan

Correspondence
Daisuke Hasegawa, Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan.
Email: disk-hsgw@nvlu.ac.jp

ORCID
Satoshi Mizuno https://orcid.org/0000-0002-2595-5482
Rikako Asada https://orcid.org/0000-0002-5080-2998
Daisuke Hasegawa https://orcid.org/0000-0002-7554-9108

REFERENCES
Barnes Heller, H. (2018). Feline Epilepsy. The Veterinary clinics of North America: Small Animal Practice, 48(1), 31–43. https://doi.org/10.1016/j.cvsm.201708.011
Bhatti, S. F. M., De Risio, L., Muñana, K., Penderis, J., Stein, V. M., Tipold, A., Berendt, M., Farquhar, R. G., Fischer, A., Long, S., Löscher, W., Mandigers, P. J. J., Matiasek, K., Pakozdy, A., Patterson, E. E., Platt, S., Podell, M., Potschka, H, Rusbridge, C., & Volk, H. A. (2015). International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe. BMC Veterinary Research, 11, 176. https://doi.org/10.1186/s12917-015-0464-z
Booth, D. M., George, K. L., & Couch, P. (2002). Disposition and clinical use of bromide in cats. Journal of the American Veterinary Medical Association, 221(8), 1131–1135. https://doi.org/10.2460/javma.2002.221.1131
Charalambous, M., Pakozdy, A., Bhatti, S. F. M., & Volk, H. A. (2018). Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy. BMC Veterinary Research, 14, 64. https://doi.org/10.1186/s12917-018-1386-3
Charalambous, M., Shivapour, S. K., Brodbelt, D. C., & Volk, H. A. (2016). Antiepileptic drugs’ tolerability and safety—A systematic review and meta-analysis of adverse effects in dogs. BMC Veterinary Research, 12, 79. https://doi.org/10.1186/s12917-016-0703-y
Charalambous, M., Brodbelt, D., & Volk, H. A. (2014). Treatment in canine epilepsy—A systematic review. BMC Veterinary Research, 10, 257. https://doi.org/10.1186/s12917-014-0257-9
Engel, O., Von Klopman, T., Maiolini, A., Freundt-Revilla, J., & Tipold, A. (2017). Imepitoin is well tolerated in healthy and epileptic cats. BMC Veterinary Research, 13, 172. https://doi.org/10.1186/s12917-017-1087-3
Hamamoto, Y., Hasegawa, D., Mizoguchi, S., Yu, Y., Wada, M., Kuwabara, T., Fujiwara-Igarashi, A., & Fujita, M. (2016). Retrospective epidemiological study of canine epilepsy in Japan using the International Veterinary Epilepsy Task Force classification 2015 (2003–2013): Etiological distribution, risk factors, survival time, and lifespan. BMC Veterinary Research, 12, 248. https://doi.org/10.1186/s12917-016-0877-3
Hasegawa, D., Kobayashi, M., Kuwabara, T., Ohmura, T., Fujita, M., & Orima, H. (2008). Pharmacokinetics and toxicity of zonisamide in cats. Journal of Feline Medicine and Surgery, 10, 418–421. https://doi.org/10.1016/j.jfms.2008.10.006
Hermans, M., Charalambous, M., Pakozdy, A., Eisl-Glantschnigg, U., Neßler, J., Van Meervenne, S. A., Serrano, G., Cornelis, I., Van Ham, L., Paep, D., Broeckx, B. J., & Bhatti, S. F. (2021). Evaluation of the effect of phenobarbital administration on the biochemical profile, with a focus on serum liver values, in epileptic cats. Journal of Feline Medicine and Surgery, Advance online publication. https://doi.org/10.1177/1098612X211037431
Hojo, T., Ohno, R., Shimoda, M., & Kokue, E. (2002). Enzyme and plasma protein induction by multiple oral administrations of phenobarbital at a therapeutic dosage regimen in dogs. Journal of the Veterinary Pharmacology and Therapeutics, 25, 121–127. https://doi.org/10.1046/j.1365-2885.2002.00385.x
Masuda, Y., Utsui, Y., Shiraiishi, Y., Karasawa, T., Yoshida, K., & Shimizu, M. (1979). Relationships between plasma concentrations of diphenylhydantoin, phenobarbital, carbamazepine, and 3-sulfamoylmethyl-1,2-benzisoxazole (AD-810), a new anticonvulsant agent, and their anticonvulsant or neurotoxic effects in experimental animals. Epilepsia, 20(6), 623–633. https://doi.org/10.1111/j.1528-1157.1979.tb04846.x
Moore, S. A. (2014). Seizures and epilepsy in cats. Veterinary Medicine (Auckland, N. Z), 5, 41–47. https://doi.org/10.2147/VMRR.S62077
Orito, K., Saito, M., Fukunaga, K., Matsu, E., Takikawa, S., Muto, M., Mishima, K., Egashira, N., & Fujiwara, M. (2008). Pharmacokinetics of zonisamide and drug interaction with phenobarbital in dogs. Journal of the Veterinary Pharmacology and Therapeutics, 31, 259–264. https://doi.org/10.1111/j.1365-2885.2008.00955.x
Pakozdy, A., Halasz, P., & Klang, A. (2014). Treatment and long-term follow-up of cats with suspected primary epilepsy. Journal of Feline Medicine and Surgery, 15(4), 267–273. https://doi.org/10.1177/1098612x12464627
Podell, M., Volk, H. A., Berendt, M., Löscher, W., Muñana, K., Patterson, E. E., & Platt, S. R. (2016). 2015 ACVIM small animal consensus statement on seizure management in dogs. *Journal of Veterinary Internal Medicine, 30*, 477–490. https://doi.org/10.1111/jvim.13841

Podell, M. (2013). Antiepileptic drug therapy and monitoring. *Topics in Companion Animal Medicine, 28*(2), 59–66. https://doi.org/10.1053/j.tcam.2013.06.009

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.