EFFECT OF VIRGIN COCONUT OIL ON MYCOBACTERIUM SMEGMATIS AND STAPHYLOCOCCUS AUREUS TREATED WITH EXTRACTS OF ZANTHOXYLUM ACANTHOPODIUM FRUIT

HEDDY JULISTIONO*, INTAN PERMATASARI SUSENO, NURUL HANAYANI, RINI HANAYANI, PUSPA DEWI LOTULUNG

Research Center for Chemistry LIPI, Jakarta, Indonesia. Email: hedd001@lipi.go.id

Received: 11 May 2021, Revised And Accepted: 20 July 2021

ABSTRACT

Objectives: To understand the potency of herbal formulation of virgin coconut oil (VCO) and andaliman (Zanthoxylum acanthopodium) fruit activity against microbes, effects of ethylene acetate and hexane extracts of fruit of andaliman on viability and ions leakages of Mycobacterium smegmatis dan Staphylococcus aureus treated with VCO has been investigated.

Methods: Antibacterial activity of extracts of andaliman fruit, or VCO, or andaliman and VCO against M. smegmatis and S. aureus was investigated using MTT assay method. Membrane disruption of bacterial cells treated with the plant extract and VCO was determined by measuring potassium and sodium ions leakages using Atomic Adsorbtion Spectrophotometer.

Results: VCO of 512 µg/ml did not have antibacterial activity. In M. smegmatis treated with andaliman hexane extract, presence VCO decreased both ions leakage whereas in S. aureus treated with ethyl acetate extract only sodium ion was decreased. In both microorganisms, VCO could not protect cells of both M. smegmatis and S. aureus from death caused by andaliman extracts.

Conclusions: VCO prevented ions leakages of the bacteria treated with extract of andaliman but did not protects cells from death.

Key words: Mycobacterium smegmatis, Staphylococcus aureus, Virgin coconut oil, Zanthoxylum acanthopodium, Ions leakages.

INTRODUCTION

Traditional coconut oil, which is widely known before virgin coconut oil (VCO), is an oil that is processed from dried coconut (Cocos nucifera) called as copra. However, nowadays, the VCO, refined coconut oil, has been becoming more popular due to its unchanging oil content and vitamins content such as provitamin A, Vitamin E, phytosterol, and polyphenol. VCO is also free of aflatoxin and not rancid. The concept of VCO production was inspired by virgin olive oil (VOO). Virgin oil is produced from olive oil in the Mediterranean region [1]. VCO is processed from fresh and ripe coconut flesh mechanically or naturally (without heat), by chemical distillation, bleaching process, and deodorization to maintain oil content [2]. Some examples of VCO health benefits were immunomodulators in chickens [3] and antibacterial used directly [4,5] and through pretreatment to release bound fatty acid content [6]. VCO could be enriched with herbal mixture that has certain ability such as antioxidants to obtain health product that can be used both orally and topically [7]. One of the advantages of this method is the application of herbal maceration via “green process” in oil.

In the effort of discovering the potential of VCO to be used with medicinal plants in a combined-formula, a preliminary study of the toxicity of the mixture of VCO and fruit extract of Andaliman (Zanthoxylum acanthopodium) on Mycobacterium smegmatis and Staphylococcus aureus was carried out. The andaliman fruit essential oil is notorious to have anti-bacterial [8] and anti-mycobacterial activities [9]. M. smegmatis is a type of a non-virulent Mycobacterium genus that was used as a model to study pathogenic Mycobacterium responses including Mycobacterium tuberculosis [10-12].

According to Yoon et al. [13], the cell membrane of bacteria is one of the targets of fatty acids, as well as essential oils, antibacterial action [14] that resulted in the cell membrane damage. Therefore, in this research, the study of VCO and fruit andaliman effects on Gram-positive bacteria M. smegmatis and S. aureus was emphasized on the destruction of membranes characterized by the leaking of K+ dan Na+ ions.

METHODS

Bacterial and mycobacterial cultures

The cultures of S. aureus InaCC-B4 and M. smegmatis NBRC 3082 were obtained from INACC LIPI, Indonesia. Laboratory collection of Lactobacillus plantarum was used for coconut oil fermentation.

Plant extract

The plants and green andaliman fruits were obtained from North Sumatra about 24 h after the harvest. Plants were identified in Herbarium Bogoriense, Indonesia. Before the extraction, andaliman fruits were stored at 4°C overnight. As many as, 366 g of fruits was extracted with 1500 ml of hexane; and then the residue was extracted with ethyl acetate.

Coconut milk was fermented by L. plantarum for 24 h for VCO preparation. The oil formed was separated from the water, and then filtered with filter paper [4]. Fatty acids content of this VCO is presented in Table 1.

The growth of target microbes

The cultures of M. smegmatis and S. aureus InaCC-B4 were grown on 100 ml of liquid media (Nutrient Broth, NB, HIMEDIA) in 300 ml Erlemeyer flask, incubated on a shaker at 100 rpm and room temperature for 72 h (M. smegmatis) and 24 h (S. aureus).

Minimum inhibition concentration (MIC) measurement

Anti-mycobacterial or antibacterial activity was measured as MIC using MTT (Thiazolyl Blue Tetrazolium Blue) according to [15-17]. MIC
The effect of the mixture of VCO and andaliman fruits extract on the viability of *M. smegmatis* or *S. aureus*

Principally, the method of studying the effect of VCO and fruit extract of andaliman on microbes viability was carried out as in MIC measurement. The treatments included; the mixture of 512 µg/ml of VCO on both tested microbes, the mixture of 512 µg/ml VCO and 64 µg/ml of hexane extract of andaliman fruit on *M. smegmatis* or 2048 µg/ml of ethyl acetate extract on *S. aureus*.

Measurements of cell leakage

The effects of VCO and andaliman extracts on the damage of cell membrane were observed indirectly by inspecting the ion leakage on cell membrane [18]. About 2 × 100 ml of 1 day old *S. aureus* culture and 3 days old of *M. smegmatis* culture were harvested through centrifugation at 15,000 g for 10 min. The pellets were washed with sterile distillation water and centrifuged. Sterile physiology solution was added into the pellet until the volume was 10 ml. About 1 ml of the suspension was taken after one day incubation by centrifugation and it was incubated for 2 h. The reduction of MTT by the cell enzymes produced formazan. It then was measured using a microplate reader at the wavelength of 595 nm. MIC was determined at the same absorbance of the NB media, the absorbance at the time of reduction of MTT into formazan since there was no activity of the reducing enzyme detected. As the positive control, *M. smegmatis* culture was added with 8 µg/ml of rifampicin while *S. aureus* was added with 32 µg/ml of amoxicillin.

Table 1: Fatty acids composition of VCO sample analyzed using gas chromatography

Fatty Acids	Percentage
Caprylic acid	9.028
Capric acid	6.825
Lauric acid	41.693
Myristic acid	17.121
Palmitic acid	9.092
Oleic acid	11.149
Linoleic acid	3.839
Linolenic acid	Not detected

Fig. 1: (a) Effect of hexane extract of andaliman fruit and Virgin coconut oil on viability of *Mycobacterium smegmatis*. Bars represent mean ± standard error of three independent experiments. (b) Effect of ethyl acetate extract of andaliman fruit and virgin coconut oil on viability of *Staphylococcus aureus*. Bars represent mean ± standard error of three independent experiments.
The MIC of VCO and andaliman extract was evaluated on various bacteria. The MIC values for andaliman extracts were 64, 2048, and 512 µg/ml, respectively. However, VCO had no antibacterial activity against these bacteria. The presence of VCO attenuated the harmful effect of andaliman extract on bacterial growth. The MIC of andaliman extract was compared with VCO in the study (Table 2).

DISCUSSION

Our results show that VCO had no inhibitory capability to M. smegmatis or S. aureus Long et al. [6], reported that the VCO was not active against S. aureus, Salmonella typhi, and Escherichia coli. However, free lauric acid showed antibacterial activity toward those microbes. Although VCO contained lauric acid (Table 2), it did not have antibacterial activity unless the lauric acid was released from the glycerol of VCO. In S. aureus, Chen and Alonzo [20] demonstrated a secreted lipase of S. aureus that could inactivate bacterial-derived lipoproteins and change the local inflammatory environment [17]. Lipolytic enzymes of the bacteria that could be able to release free lauric acid from VCO could, therefore, harmful for bacteria itself.

The essential oils contained in the fruit of andaliman that possess antibacterial activity were reported by [8]. Our previous research showed that geranyl acetate of andaliman extract was responsible for cell death in M. smegmatis exerting ion leakage [9]. The presence of andaliman fruit hexane extract resulted in the leakage of K⁺ ions and Na⁺ while the presence of VCO attenuated this harmful effect of the extract (Fig. 2a and b). This data indicated that toxicity of andaliman extract in M. smegmatis involved not only the cell wall or membrane but also its effect on the cytoplasm as described by Nazzaro et al. [14]. Interestingly, in M. smegmatis VCO decreased potassium and kalium ions in supernatant whereas cell viability was not affected. Note that VCO is emulsified by Tween 80. Mechanism by which VCO inhibits ions movement out of the cells is not known. However, it is known that lipids in cell membrane could affect ion channel activity [21,22].

Since VCO was not toxic (Fig. 2) and did not induce leakage, the presence of VCO was suspected to affect ion exchange activity. To the best of author knowledge, the effect of VCO on mycobacterial membrane and cell wall is still unclear. According to Chen and Alonzo [17], the olive oil interacted with the cell wall of Mycobacterium brumae and affected the cell physiology. Although this study did not have the data on the membrane characters dynamics or the changes on M. smegmatis cell walls treated with VCO, the effect on the cell wall may turn out to be similar to that in M. brumae. Further study on the role of cell wall or membrane on the effects of VCO affecting ionic exchange on M. smegmatis was required.

Contrary to M. smegmatis, the exchange of K⁺ and Na⁺ ions in S. aureus was not affected by VCO (Fig. 3a and b). The ethyl acetate extract of andaliman resulted in ions leakage and the death of S. aureus cells (Fig. 2). VCO was not able to restore the intracellular and extracellular ion balance.

CONCLUSIONS

VCO had no antibacterial activity but affected the balance of intracellular and extracellular ions in cells of M. smegmatis. The extract of the

Table 2: MIC of VCO and andaliman extracts on M. smegmatis and S. aureus

Target microbe	MIC of andaliman extracts (µg/ml)	MIC of VCO (µg/ml)
M. smegmatis	64	>2408
S. aureus	>2408	2408

MIC: Minimum inhibition concentration; VCO: Virgin coconut oil.
andaliman fruits resulted in the leakage of K+ dan Na+ ions and the death of both M. smegmatis and S. aureus. VCO attenuated ions leakage in cells treated with fruit andaliman extract but could not prevent cells death.

ACKNOWLEDGMENT

This research was supported by Project DIPA LIPI No. 3400.01.0.002.052 "Utilization of Bioresources in the Food Sector".

CONFLICT OF INTEREST STATEMENT

The authors had no conflict of interest regarding this manuscript.

AUTHOR CONTRIBUTION STATEMENTS

Hj: Conceived and planned the experiments, and wrote the manuscript; NH and IPS performed anti-microorganisms experiments; RH wrote manuscript and prepared VCO; DPL performed chemical analysis.

REFERENCES

1. Chua LS, Alitabarimansor M, Lee CT, Mat R. Hydrolysis of virgin coconut oil using immobilized lipase in a batch reactor. Enzyme Res 2012;2012:542589.
2. Bureau of Agriculture and Fisheries Standards, Philippine vco standard, Philipp Natl Stand; 2007. p. 8.
3. Wachidah EY, Asmara W, Artama WT, Tabbu CR. Virgin coconut oil meningkatkan aktivitas fagositosis makrofag ayam pedaging. J Vet 2013;14:190-6.
4. Rini H, Sulistyo J, Rahayu RD. Extraction of coconut oil (Cocos nucifera L.) through fermentation system. Biodiversitas J Biol Divers 2009;10:151-7.
5. Rahmadi A, Abdiah I, Sukarno MD, Purwaningsih T. Karakteristik fisikokimia dan antibakteri virgin coconut oil hasil fermentasi bakteri asam laktat. J Teknol Ind Pangan 2013;24:178-83.
6. Loung FS, Silalahi J, Suryanto D. Antibacterial activity of enzymatic hydrolyzed of virgin coconut oil and palm kernel oil against Staphylococcus aureus, Salmonella thyphii and Escherichia coli. Int J Pharmtech Res 2014;6:628-33.
7. Peñalvo GC, Robledo VR, Callado CS, Santander-Ortega MJ, Castro-Vázquez L, Victoria Lozano L, et al. Improving green enrichment of virgin olive oil by oregano. Effects on antioxidants. Food Chem 2016;197:509-15.
8. Parhusip AJ, Yassei S, Elizabeth Y. Kajian mekanisme antibakteri ekstrak Andaliman (Zanthoxylum acanthopodium DC) terhadap mikroba patogen dan perusak pangan. J Ilmu Tekno Pangan 2003;1:112-23.
9. Julistiono H, Lestari FG, Iryanto R, Lotulung PD. Antimycobacterial activity of fruit of Zanthoxylum acanthopodium DC against Mycobacterium smegmatis. Avicenna J Phytomed 2018;8:432-8.
10. Campen RL, Ackerley DF, Cook GM, O’Toole RF. Development of a Mycobacterium smegmatis transposon mutant array for characterising the mechanism of action of tuberculosis drugs: Findings with isoniazid and its structural analogues. Tuberculosis 2015;95:432-9.
11. Staudinger T, Redl B, Glasgow BJ. Antibacterial activity of rifamycin for M. smegmatis with comparison of oxidation and binding to tear lipocalin. Biochim Biophys Acta 2014;1844:750-8.
12. Fan S, Li DF, Wang DC, Fleming J, Zhang H, Zhou Y, et al. Structure and function of Mycobacterium smegmatis 7-keto-8-aminopenicillanic acid (KAPA) synthase. Int J Biochem Cell Biol 2015;58:71-80.
13. Yoon BK, Jackman JA, Kim MC, Cho NJ. Spectrum of membrane morphological responses to antibacterial fatty acids and related surfactants. Langmuir 2015;31:10223-32.
14. Nazzaro F, Fratianni F, De Martino L, Coppola R, de Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013;6:1451-74.
15. Moodley S, Koobranally NA, Moodley T, Ramjugernath D, and Pillay M. The 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay is a rapid, cheap, screening test for the in vitro antibacterial activity of chalcones. J. Microbiol Methods 2014;104: 72-8.
16. El Baz AF and Setaia YM. Evaluation of Different Assays for the Activity of Yeast Killer Toxin. Int J Agr Biol 2005;7:1003-6.
17. Julistiono H, Lestari FG, Iryanto R, Lotulung PD. Antimycobacterial activity of fruit of Zanthoxylum acanthopodium DC against Mycobacterium smegmatis. Avicenna J Phytomed 2018;8:432-8.
18. Suryanarayanan B, Shannugam K, Santhosh RS. Synthetic quercetin inhibits mycobacterial growth possibly by interacting with DNA gyrase. Rom Biotechnol Lett 2013;18:8587-93.
19. Chen X, Alonzo F. Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proc Natl Acad Sci USA 2019;116:3764-73.
20. Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore. J Biol Chem 2006;281:14408-16.
21. Weisbuch M, Worcester DL, Bezrukov SM. Lipid nanodomains change ion channel function. Nanoscale 2017;9:13291-7.