THE ASTROPHYSICAL JOURNAL, 521:587–590, 1999 August 20
© 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE GALACTIC CENTER ISOLATED NONTHERMAL FILAMENTS AS ANALOGS OF COMETARY PLASMA TAILS

STEVEN N. SHORE1 AND T. N. LA ROSA2,3

Received 1999 January 25; accepted 1999 April 1

ABSTRACT

We propose a model for the origin of the isolated nonthermal filaments observed at the Galactic center based on an analogy to cometary plasma tails. We invoke the interaction between a large-scale magnetized galactic wind and embedded molecular clouds. As the advected wind magnetic field encounters a dense molecular cloud, it is impeded and drapes around the cloud, ultimately forming a current sheet in the wake. This draped field is further stretched by the wind flow into a long, thin filament the aspect ratio of which is determined by the balance between the dynamical wind and amplified magnetic field pressures. The key feature of this cometary model is that the filaments are dynamic configurations, and not static structures. As such, they are local amplifications of an otherwise weak field and not directly connected to any static global field. The derived field strengths for the wind and wake are consistent with observational estimates. Finally, the observed synchrotron emission is naturally explained by the acceleration of electrons to high energy by plasma and MHD turbulence generated in the cloud wake.

Subject headings: Galaxy: center — ISM: magnetic fields — ISM: structure — MHD — radiation mechanisms: nonthermal

1. INTRODUCTION

The isolated nonthermal filaments (hereafter NTFs) in the Galactic center (hereafter GC) have not been satisfactorily explained since their discovery by Morris & Yusef-Zadeh (1985). It is generally accepted that these are magnetic structures emitting synchrotron radiation, since their emission is strongly linearly polarized, with the magnetic field generally aligned with the long axis of the filaments (Bally & Yusef-Zadeh 1989; Gray et al. 1995; Yusef-Zadeh, Wardle, & Parastaran 1997; Lang, Morris, & Echevarria 1999). These structures are notable for their exceptionally large length-to-width ratios, of order 10–100, and their remarkable linearity (Yusef-Zadeh 1989; Morris 1996).

To date, seven objects have been classified as NTFs. Six of these point perpendicularly to the Galactic plane, but the most recently discovered NTF is parallel to the plane (Anantharamaiah et al. 1999). The filaments have lengths up to 60 pc and often show feathering and subfilamentation on a smaller transverse scale when observed at high spatial resolution (Liszt & Spiker 1995; Yusef-Zadeh et al. 1997; Lang et al. 1999; Anantharamaiah et al. 1999). The observed radio 20/90 cm spectral indices (defined as the source flux, S, varying as ν^α) show a range, $-0.3 < \alpha < -0.6$ (LaRosa et al. 1999). To date there is no strong evidence that the spectral index varies as a function of length along the NTF (Lang et al. 1999; Kassim et al. 1999). Last, it appears that all well-studied NTFs may be associated with molecular clouds and/or H II regions (Serabyn & Morris 1994; Uchida et al. 1996; Stahgung et al. 1998).

Several different types of models have been proposed for the filaments. These include magnetic field generation by an accretion disk dynamo, with subsequent transport of field into the interstellar medium (Heyvaerts, Norman, & Pudritz 1988); electrodynamic models of molecular clouds moving with velocity v across a large-scale ordered magnetic field, B, resulting in current formation by $v \times B$ electric fields and subsequent pinching of these currents into filaments (Benford 1988, 1997; Lesch & Reich 1992); magnetic reconnection between a molecular cloud field and the large-scale ordered field (Serabyn & Morris 1994); and particle injection into interstellar magnetic field ropes at a stellar wind termination shock (Rosner & Bodo 1996). Nicholls & Le Strange (1995) proposed a specifically tailored model for G359.1 $-$ 0.2, also called the "Snake." They invoke a high-velocity star with a strong stellar wind that is falling through the galactic disk, to create a long wake, which they call a "star trail." They must, however, fine-tune their model in order to obtain radio emission from the trail by requiring the high-energy electrons to be injected into the trail from the supernova remnant G359.1 $-$ 0.5.

Although each of these models can in principle explain the particle acceleration and radio emission, none except for the specialized star-trail scenario has satisfactorily accounted for the observed structure of the filaments. For instance, Rosner & Bodo (1996) employ a stellar wind termination shock as the source of high-energy particles that they assume are loaded onto preexisting interstellar field lines. The width of the resulting NTF scales with the radius of the stellar wind bubble. Synchrotron cooling leads, through a thermal instability, to collapse of the filaments and amplification of the internal magnetic field. The streaming of the particles along these otherwise quiescent field lines is assumed to produce the observed long threads. However, MHD stability is a problem for this model and, indeed, for all models listed above, because magnetic fields left to their own devices will deform through a rich variety of modes. These range from kink and sausage instabilities for ideal MHD to tearing modes for resistive plasmas (e.g.,

1 Department of Physics and Astronomy, Indiana University South Bend, 1700 Mishawaka Avenue, South Bend, IN 46634-7111; sshore@paladin.iusb.edu.
2 Department of Biological and Physical Sciences, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144; tded@avatar.kennesaw.edu.
3 Navy-ASEE Summer Faculty Fellow, Naval Research Laboratory.
wake now. The diffusion time is where here will deflect around the object and drape the field along the wind that impacts a finite blunt body with low resistivity rather well, is more than a mere analogy. Any magnetized This picture, which explains solar system scale phenomena from the shearing between the wake and the external wind. This field-line tilt and amplification result from the shearing between the wake and the external wind. Consequently, the wakes so produced should generally be perpendicular to the plane. For simplicity, however, we will assume here a compact source. The number density in the wind is given by $n_w = M v_w c r_{100}^{-3}$ cm$^{-3}$ for a mass-loss rate in M_\odot yr$^{-1}$, a wind speed v_w, in 103 km s$^{-1}$, and a distance r_{100} in 100 pc. For a cloud to survive in a postulated galactic-scale wind, its internal pressure must at least balance the ram pressure of the background. We assume that the cloud pressure is given by $B = \rho_c \sigma_v^2$, where ρ_c is the cloud mass density and σ_v its internal velocity dispersion. Hence, for a wind of density ρ_w and speed v_w, the required cloud density is given by $\rho_c = \rho_w (v_w/\sigma_v)^2$. It has been inferred from $Ginga$ and ASCA X-ray observations that the inner Galaxy displays a strong wind (Yamauchi et al. 1990; Koyama et al. 1996). The average wind density within a radius of 80 pc of the GC is around 0.3 cm$^{-3}$, with a temperature of 10 keV and an expansion velocity of about 3000 km s$^{-1}$ (Koyama et al. 1996). These parameters correspond to a mass-loss rate of $10^{-2} M_\odot$ yr$^{-1}$ for a wind speed of around 1000 km s$^{-1}$, which yields a
critical cloud density of order \(n_c \geq 10^3 \text{ cm}^{-3} \) for \(\sigma = 20 \text{ km s}^{-1} \) (a typical line width for molecular clouds in the GC region; see Morris & Serabyn 1996), although clouds nearer the center will need higher densities to survive. This density estimate is a lower limit. For clouds to survive in the GC tidal field they must have densities of at least an order of magnitude above this (e.g., Güsten 1989). The effect on the cloud population is that massive, dense clouds will survive, while lower density, low-mass clouds likely disperse on a dynamical timescale, and thus the cloud population may depend on galactocentric distance. Dense clouds form wakes by geometrically blocking and deflecting the wind. We identify this wake, drawn out by the wind, with the NTFs. This scenario is sketched in Figure 1. Thus follows the essential predictive feature of our model: since the filaments are not static structures, the classic MHD instabilities do not limit the aspect ratio as they would for a static equilibrium field.

What determines the structural properties of the wake, i.e., its aspect ratio and length? Given that \(L \gg L/v_w \), the draped field is stretched by the wind. If \(\Delta \delta \) is the boundary layer shear between the wind and cloud wake and \(\Delta \) is a characteristic width for the layer (of order \(L \), the cloud radius), then the axial field, \(B_z \), as a function of distance \(z \) behind the cloud is given by the induction equation, \(\partial B_z/\partial t = (\partial B/\partial x)B_y \), where \(B_y \) is the external field and \(x \) is the cross-tail direction. This has the approximate solution

\[
B_z = B_0 \delta v z / \Delta v_w. \tag{1}
\]

The axial field will continue to amplify until the draped magnetic field pressure balances the ram pressure of the wind. In other words, when the wake Alfvén speed equals the wind speed, \(B_y/(4\pi \rho_0)^{1/2} = v_w \), the field can no longer be stretched. This provides a critical length

\[
z_c = 5 \times 10^2 n^{1/2} v_w^2 \Delta / (B_0 \delta v_3), \tag{2}
\]

where \(\delta v_3 = \delta v / 10^3 \text{ km s}^{-1} \), \(n \) is the number density, and \(B_0, \delta v_3 \) is the external field in \(\mu G \). Thus, for \(n \approx 1 \text{ cm}^{-3} \) and \(B_0, \delta v_3 \approx 10 \), the predicted aspect ratio is \(z_c/\Delta \approx 50 \). Notice that stronger ambient fields lead to shorter wakes.

We now address the question of stability for the filaments. In the MHD case, the velocity shear must exceed the Alfvén speed to produce a growing mode for the Kelvin-Helmholtz instability (KHI). Other classical instabilities, such as the streaming, sausage, and kink modes, have a similar criterion (e.g., Wang 1991). Nonlinear models by Malagoli, Bodo, & Rosner (1996) find that the fastest growing mode has a wavenumber given by \(k \Delta \approx 0.05 \). The KHI can therefore be suppressed if the draped field amplification length is less than \(2\pi/k \). Hence, for stability \(z_c \leq 40\pi\Delta \). With this constraint, we find a lower limit on the external wind field strength, \(B_{0,\delta} \geq 40n^{1/2} v_w/\delta v_3 \). Equi-partition for the wind plasma gives \(B_{0,\delta} \approx 20 \) for the parameters derived from the ASCA data, which is in surprisingly good agreement with the stability constraint. Thus the expected amplified field strength is \(B_z \approx 2 \text{ mG} \) for \(z/\Delta \), which is given by equation (2).

Thus the key parameters that can be derived from our model are the aspect ratio, which depends on the wind parameters, and the magnetic field strength in the filament. The required input parameters are the background density and pressure and the assumption of equipartition for the magnetic field strength. The observed aspect ratios can then be explained using equation (2) with wind parameters consistent with the ASCA data. There are no direct measurements of the magnetic fields in the filaments. An estimate for the magnetic field can be derived from the observed synchrotron luminosities using a minimum energy analysis. The synchrotron luminosities are around \(10^{33} - 10^{34} \text{ ergs s}^{-1} \) (Gray et al. 1995; Lang et al. 1999; Kassim et al. 1999) and yield a magnetic field of \(\sim 0.1 \text{ mG} \), about an order of magnitude smaller than our model result. Another estimate for the field strength comes from assuming that the particles traverse the length of an NTF in a time equal to their synchrotron lifetime. The synchrotron lifetime is \(t_{1/2} = 1.20 \times 10^4 B_{z,\mu G} E_{\text{Gev}} \text{ yr} \), where \(B_{z,\mu G} \) is the axial field in milligauss and \(E \) is the electron energy in GeV (e.g., Moffet 1975). Without reacceleration, assuming that the electrons are injected near one end and radiate as they stream at the Alfvén speed (e.g., Wentzel 1974), the observed filament lengths give a field strength of 1 mG for a length scale of 30 pc. Fields strengths of 1 mG have also been derived from dynamical arguments by Yusef-Zadeh & Morris (1987). We therefore conclude that our estimate of 1 mG is very reasonable and that the minimum energy analysis of such structures, which assumes static and/or equilibrium conditions, may produce misleading results. Note that the synchrotron lifetime argument indicates that reacceleration or acceleration along the length of the filament is not required, although as we now discuss acceleration along the filament is expected in our picture.

Finally, since the NTFs are radiating via synchrotron emission, we address the question of particle energization. The observed emission requires only a very small population of relativistic particles, of order \(10^{-5} \text{ cm}^{-3} \). The maximum energy that is available for conversion to high-energy particles is \(VB_z^2/8\pi \), where \(V \) is the volume of the wake. The maximum mean energy per particle that results from this conversion is 10 GeV. This is more than enough to explain the radio emission. A number of mechanisms that may be responsible for particle acceleration are natural consequences of this MHD configuration. The wake must contain a current sheet. Such structures have been extensively studied in space plasmas. The simulation of sheared helmet plumes in the solar corona by Einaudi et al. (1999) is particularly relevant to our scenario. They show that a current sheet embedded in a wake flow is unstable to the generation of a local turbulent cascade without destruction of the large-scale advected structure. Such cascades efficiently accelerate particles through wave-particle interactions (Miller et al. 1997). This turbulent acceleration would therefore occur along the entire length of the filament, and thus spectral aging would not be observed in this scenario.

3. DISCUSSION AND CONCLUSIONS

There are two broad schemes for inferring the magnetic field configurations for the isolated nonthermal filaments. One is to assume that they represent local enhancements of an otherwise weak, but invisible, pervasive field. The other is to assume that one is seeing a region, e.g., a flux tube, that happens to be locally illuminated but is part of otherwise extensive and uniform strong magnetic field. We explicitly adopt the local enhancement picture and propose a dynamical mechanism that can amplify the field to much higher strength and still be stable.

The common explanation for the stability of the isolated NTFs invokes the existence of a pervasive background
magnetic field that pressure-confines the filaments (e.g., Morris 1998). Nonetheless, this field still leaves the stability question unresolved for the following reasons. A force-free equilibrium background field that is presumably anchored in the turbulent gas of the Galactic center will not be stable. For instance, the solar corona has a pervasive field that suffers both local and global instabilities. Moreover, to stabilize a filament, a pervasive field must have a pressure gradient perpendicular to the filaments, so the field cannot be uniform. If it has gradients and curvature, a static magnetic field is likely to be unstable, although if the field is anchored in the Galactic halo it may avoid this problem (see Chandran, Cowley, & Morris 1998). In contrast, as we have argued in this paper, stability is not an issue for a dynamical model.

The simplest geometry predicted by the cometary analogy is that every filament should be associated with a molecular cloud on the side toward the galactic plane. This is seen for the Sgr C filament (Liszt & Spiker 1995) and the Snake (Uchida et al. 1996). The model does not, however, require this, and more complex geometrical arrangements are certainly possible in which environmental clouds interact with or are superimposed on the filaments almost anywhere along their lengths. For instance, Yusef-Zadeh & Morris (1987) find that a milligauss field suffices to stabilize the filaments against ram pressure by colliding molecular clouds. We note that this is precisely the field strength produced dynamically by the cometary model.

Santillan et al. (1999) have recently published numerical MHD simulations of cloud collisions with a magnetized galactic disk. Although these are ideal MHD and not of wind flow, they clearly demonstrate that field-line draping occurs as the interstellar clouds move through a large-scale background field. In particular, their Figure 4 shows the formation of a narrow, straight tail for the cloud slaming into a transverse field imbedded in a planar gas layer. Dynamically, this simulation differs from wind flow because the cloud is slowed by the environmental gas. Yet the essential physical process is the same and closely resembles the simulations of cometary tail evolution by Rauer et al. (1995). This cloud-wind interaction, which may destroy the clouds if their masses are low enough (see Vietri, Ferrara, & Miniati 1997), is able to generate long magnetized tails with large aspect ratios.

In addition, a final state, where the cloud is completely dissipated, could still permit the survival of the filament and has a cometary analog. There are many instances in comets where the tail completely separates from the coma and yet maintains structural coherence as it is advected in the solar wind (e.g., Brandt & Niedner 1987). These so-called disconnection events could also occur in our picture. In such instances, there would be no cloud at either end of the filament.

We close by emphasizing that our aim here has been the exploration of the consequences of a general scenario that can serve as a framework for more quantitative calculations of the physical properties of the Galactic center filaments. Although we use the special conditions at the GC to constrain the mechanisms, the model is not constructed specifically to explain the NTFs. Instead, they result from the conditions that likely arise in any starburst galactic nucleus (see Mezger, Duschl, & Zyka 1996) and should be observable in such environments.

We thank G. Einaudi, J. R. Jokipii, N. Kassim, C. Lang, J. Lazio, M. Niedner, and M. Vietri for discussions, and A. Santillan for permission to quote his results prior to publication. We especially thank the referee, Mark Morris, for his critical reading of the manuscript and for discussions, and B. Chandran for communicating his paper in advance of publication.

REFERENCES

Miller, J. A., et al. 1997, J. Geophys. Res., 102, 14, 631
Miller, A. 1975, in Galaxies and the Universe, Vol. 10, ed. A. Sandage & J. Kristian (Chicago: Univ. Chicago Press), 211
Morris, M. 1996, in IAU Symp. 169, Unsolved Problems of the Milky Way, ed. I. Blitz & P. Teuben (Dordrecht: Kluwer), 247—, 1998, in IAU Symp. 184, The Central Regions of the Galaxy and Galaxies, ed. Y. Sofue (Dordrecht: Kluwer), 331
Morris, M., & Serabyn, E. 1996, ARA&A, 34, 645
Morris, M., & Yusef-Zadeh 1985 AJ, 90, 2511
Nicholls, J., & Le Strange, E. T. 1995, ApJ, 443, 638
Parker, E. N. 1979, Cosmical Magnetic Fields (Oxford: Clarendon Press)
Rauer, H., Wegmann, R., Schmidt, H. U., & Jockers, K. 1995, A&A, 295, 529
Russel, C. T., Le, G., Luhmann, J. G., & Fedder, J. A. 1991, in Cometary Plasma Processes, ed. A. D. Johnstone (Washington, DC: American Geophysical Union), 139
Rosner, R., & Bodo, G. 1996, ApJ, 470, L49
Sanfilic, A., Franco, J., Martos, M., & Kim, J. 1999 APJ, 512, 657
Serabyn, E., & Morris, M. 1994, ApJ, 424, L91
Synce, G., Slavin, A. J., Smith, E. J., Tsurutani, B. T., Jones, D. E., & Mendis, D. A. 1986, Geophys. Res. Lett., 13, 287
Stasik, I., Stutsik, J., Uchida, K. I., & Yusef-Zadeh, F. 1998, A&A, 336, 290
Vietri, M., Ferrara, A., & Miniati, F. 1997, ApJ, 483, 262
Uchida, K. I., Morris, M., Serabyn, E., & R. 1996, ApJ, 462, 768
Wang, S. 1991, A&A, 243, 21
Wentzel, D. G. 1974, ARA&A, 12, 71
Yamauchi, S., Koyama, K., Maeda, Y., Sonobe, T., Takeshima, T., Tanaka, Y., & Yamauchi, S. 1996, PASJ, 48, 249
Zanin, C. C., Morris, M., & Echevarria, L. 1998, ApJ, submitted
LaRosa, T. N., Kassim, N. E., Lazio, T. J. W., & Hyman, S. 1999, AJ, submitted
Lesh, H., & Rhee, W. 1992, A&A, 264, 493
Lietz, H., & Spiker, R. 1995, ApJS, 98, 259
Luhmann, J. G. 1995, in Introduction to Space Physics, ed. M. Kivelson & C. T. Russell (Cambridge: Cambridge Univ. Press)
Malagoli, A., Bond, G., & Rosner, R. 1996, ApJ, 456, 708
Mezger, P. G., Duschl, W. J., & Zyka, R. 1996, A&A Rev. 7, 289

SHORE & LAROSA