STRICTLY CONVEX WULFF SHAPES
AND C^1 CONVEX INTEGRANDS

HUHE HAN

Abstract. Let $\gamma : S^n \to \mathbb{R}_+$ be a continuous function and let \mathcal{W}_γ be the Wulff shape associated with γ. We show that Wulff shape \mathcal{W}_γ is strictly convex if and only if convex integrand of \mathcal{W}_γ is of class C^1. We also show that if the boundary of \mathcal{W}_γ is a C^1 submanifold, then γ must be the convex integrand of \mathcal{W}_γ.

1. Introduction

Let n be a positive integer. Given a continuous function $\gamma : S^n \to \mathbb{R}_+$ where $S^n \subset \mathbb{R}^{n+1}$ is the unit sphere and \mathbb{R}_+ is the set consisting of positive real numbers, the Wulff shape associated with γ, denoted by \mathcal{W}_γ, is the following intersection

$$\mathcal{W}_\gamma = \bigcap_{\theta \in S^n} \Gamma_{\gamma,\theta}.$$

Here, $\Gamma_{\gamma,\theta}$ is the following half-space:

$$\Gamma_{\gamma,\theta} = \{x \in \mathbb{R}^{n+1} \mid x \cdot \theta \leq \gamma(\theta)\}.$$

Figure 1. A Wulff shape \mathcal{W}_γ.

By definition, the Wulff shape \mathcal{W}_γ is a convex body such that the origin of \mathbb{R}^{n+1} is an interior point of \mathcal{W}_γ. The notion of Wulff shape was first introduced by G. Wulff in [9]. Let $Id : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \times \{1\}$ be the map defined by $Id(x) = (x, 1)$. Denote the point $(0, \ldots, 0, 1) \in \mathbb{R}^{n+2}$ by N. The set $S^n \cap H(-N)$ is denoted by N.

2010 Mathematics Subject Classification. 52A20, 52A55, 82D25.
Key words and phrases. Wulff shape, dual Wulff shape, strictly convex, convex integrand, support function.
$S_{N,+}^{n+1}$. Let $\alpha_N : S_{N,+}^{n+1} \to \mathbb{R}^{n+1} \times \{1\}$ be the central projection relative to N, namely, α_N is defined as follows for any $P = (P_1, \ldots, P_{n+1}, P_{n+2}) \in S_{N,+}^{n+1}$ (see Figure 2):

$$\alpha_N(P_1, \ldots, P_{n+1}, P_{n+2}) = \left(\frac{P_1}{P_{n+2}}, \ldots, \frac{P_{n+1}}{P_{n+2}}, 1\right).$$

![Diagram of central projection α_N.](image)

Figure 2. The central projection α_N.

Next, we consider the mapping $\Psi_N : S^{n+1} - \{\pm N\} \to S_{N,+}^{n+1}$ (see Figure 3), defined by

$$\Psi_N(P) = \frac{1}{\sqrt{1 - (N \cdot P)^2}}(N - (N \cdot P)P).$$

The mapping Ψ_N was introduced in [5], has the following intriguing properties:

![Diagram of mapping Ψ_N.](image)

Figure 3. $P \cdot \Psi_N(P) = 0$.

(1) For any $P \in S^{n+1} - \{\pm N\}$, the equality $P \cdot \Psi_N(P) = 0$ holds,

(2) for any $P \in S^{n+1} - \{\pm N\}$, the property $\Psi_N(P) \in \mathbb{R}N + \mathbb{R}P$ holds,

(3) for any $P \in S^{n+1} - \{\pm N\}$, the property $N \cdot \Psi_N(P) > 0$ holds,

(4) the restriction $\Psi_N|_{S_{N,+}^{n+1} - \{N\}} : S_{N,+}^{n+1} - \{N\} \to S_{N,+}^{n+1} - \{N\}$ is a C^∞ diffeomorphism.

For any point $P \in S^{n+1}$, let $H(P)$ be the closed hemisphere centered at P, namely,

$$H(P) = \{Q \in S^{n+1} | P \cdot Q \geq 0\},$$
where the dot in the center stands for the scalar product of two vectors \(P, Q \in \mathbb{R}^{n+2} \).

For any non-empty subset \(\hat{W} \subset S^{n+1} \), the spherical polar set of \(\hat{W} \), denoted by \(\hat{W}^\circ \), is defined as follows:

\[
\hat{W}^\circ = \bigcap_{P \in \hat{W}} H(P).
\]

for details on spherical polar set, see for instance [1, 6]

Proposition 1 ([6]). Let \(\gamma : S^n \to \mathbb{R}_+ \) be a continuous function. Let \(\text{graph}(\gamma) = \{ (\theta, \gamma(\theta)) \in \mathbb{R}^{n+1} - \{0\} \mid \theta \in S^n \} \), where \((\theta, \gamma(\theta))\) is the polar plot expression for a point of \(\mathbb{R}^{n+1} - \{0\} \). Then, \(\mathcal{W}_\gamma \) is characterized as follows:

\[
\mathcal{W}_\gamma = \text{Id}^{-1} \circ \alpha_N \left(\left(\Psi_N \circ \alpha_N^{-1} \circ \text{Id}(\text{graph}(\gamma)) \right)^\circ \right).
\]

Proposition 2 ([6]). For any Wulff shape \(\mathcal{W}_\gamma \), the following set, too, is a Wulff shape:

\[
\text{Id}^{-1} \circ \alpha_N \left(\left(\alpha_N^{-1} \circ \text{Id}(\mathcal{W}_\gamma) \right)^\circ \right).
\]

Definition 1 ([6]). Let \(\mathcal{W}_\gamma \) be a Wulff shape. The Wulff shape given in Proposition 2 is called the dual Wulff shape of \(\mathcal{W}_\gamma \).

A Wulff shape \(\mathcal{W}_\gamma \) said to be self-dual Wulff shape if the equality \(\mathcal{W}_\gamma = \text{Id}^{-1} \circ \alpha_N \left(\left(\alpha_N^{-1} \circ \text{Id}(\mathcal{W}_\gamma) \right)^\circ \right) \) holds, for details on self-dual Wulff shapes, see for instance [4].

The mapping \(\text{inv} : \mathbb{R}^{n+1} - \{0\} \to \mathbb{R}^{n+1} - \{0\} \), defined as follows, is called the inversion with respect to the origin of \(\mathbb{R}^{n+1} \).

\[
\text{inv}(\theta, r) = \left(-\theta, \frac{1}{r} \right).
\]

Let \(\Gamma_\gamma \) be the boundary of the convex hull of \(\text{inv}(\text{graph}(\gamma)) \). If the equality \(\Gamma_\gamma = \text{inv}(\text{graph}(\gamma)) \) is satisfied, then \(\gamma \) is called a convex integrand. The notion of convex integrand was firstly introduced by J. Taylor in [8].

2. Main Results

Theorem 1 ([2]). Let \(W \subset \mathbb{R}^{n+1} \) be a convex body containing the origin of \(\mathbb{R}^{n+1} \) as an interior point of \(W \). Then, \(W \) is strictly convex if and only if its convex integrand \(\gamma_W \) is of class \(C^1 \).

Theorem 2 ([3]). Let \(\gamma : S^n \to \mathbb{R}_+ \) be a continuous function and let \(\mathcal{W}_\gamma \) be the Wulff shape associated with \(\gamma \). Suppose that the boundary of \(\mathcal{W}_\gamma \) is a \(C^1 \) submanifold. Then, \(\gamma \) must be the convex integrand of \(\mathcal{W}_\gamma \).

3. Applications of Theorem 1

Since the boundary of the convex hull of a \(C^1 \) closed submanifold is a \(C^1 \) closed submanifold (for instance, see [7, 10]), as a corollary of Theorem 1, we have the following:

Corollary 1 ([2]). Let \(\gamma : S^n \to \mathbb{R}_+ \) be a function of class \(C^1 \). Then, \(\mathcal{W}_\gamma \) is strictly convex.

In particular, we have the following:
Corollary 2 ([6], Theorem 1.3). Let $\gamma : S^n \to \mathbb{R}_+$ be a function of class C^1. Then, W_γ is never a polytope.

On the other hand, the converse of Corollary 1 does not hold in general (see Figure 4).

Combining Theorem 1 and Proposition 1 yields the following:

Corollary 3 ([2]). A Wulff shape in \mathbb{R}^{n+1} is strictly convex if and only if the boundary of its dual Wulff shape is C^1 diffeomorphic to S^n.

In particular, we have the following:

Corollary 4 ([2]). A Wulff shape in \mathbb{R}^{n+1} is strictly convex and its boundary is C^1 diffeomorphic to S^n if and only if its dual Wulff shape is strictly convex and the boundary of it is C^1 diffeomorphic to S^n.

It is interesting to compare Corollary 4 and the following proposition:

Proposition 3 ([6]). A Wulff shape in \mathbb{R}^{n+1} is a polytope if and only if its dual Wulff shape is a polytope.

Finally, we give an application of Theorem 1 from the view point of pedal.

Definition 2 ([2]). Let p (resp., $F : S^n \to \mathbb{R}^{n+1}$) be a point of \mathbb{R}^{n+1} (resp., a C^1 embedding). Then, the pedal of $F(S^n)$ relative to p is the mapping $G : S^n \to \mathbb{R}^{n+1}$ which maps $\theta \in S^n$ to the nearest point in the tangent hyperplane to $F(S^n)$ at $F(\theta)$ from the given point p.

Let W be a Wulff shape in \mathbb{R}^{n+1}. Suppose that ∂W is C^1 diffeomorphic to S^n. Then, ∂W may be regarded as the graph of a certain C^1 embedding $F : S^n \to \mathbb{R}^{n+1}$, and γ_∂ is exactly the pedal of ∂W relative to the origin. Theorem 1 gives a sufficient condition for the pedal of ∂W relative to the origin to be smooth:

Corollary 5 ([2]). Suppose that a Wulff shape W in \mathbb{R}^{n+1} is strictly convex and its boundary is C^1 diffeomorphic to S^n. Then, the pedal of ∂W relative to the any interior point of W is of class C^1.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig4}
\caption{A strictly convex Wulff shape W_γ having non smooth support function γ.}
\end{figure}
References

[1] H. Han and T. Nishimura, *The spherical dual transform is an isometry for spherical Wulff shapes*, preprint (available from arXiv:1504.02845 [math.MG]).

[2] H. Han and T. Nishimura, *Strictly convex Wulff shapes and C^1 convex integrands*, preprint (available from arXiv:1507.05162 [math.MG]).

[3] H. Han and T. Nishimura, *Uniqueness of the surface energy density for a Wulff shape with C^1 boundary*, preprint (available from arXiv:1509.02786 [math.MG]).

[4] H. Han and T. Nishimura, *Self-dual Wulff shapes and spherical convex bodies of constant width $\pi/2$*, preprint (available from arXiv:1511.04165 [math.MG]).

[5] T. Nishimura, *Normal forms for singularities of pedal curves produced by non-singular dual curve germs in S^n*, Geom Dedicata 133(2008), 59–66.

[6] T. Nishimura and Y. Sakemi, *Topological aspect of Wulff shapes*, J. Math. Soc. Japan, 66 (2014), 89–109.

[7] S. A. Robertson and M. C. Romero-Fuster, *The convex hull of a hypersurface*, Proc. London Math. Soc., 50(1985), 370–384.

[8] J. E. Taylor, *Crystalline variational problems*, Bull. Amer. Math. Soc., 84(1978), 568–588.

[9] G. Wulff, *Zur frage der geschwindigkeits der wachstrums und der auflösung der krysalflachen*, Z. Kristallographine und Mineralogie, 34(1901), 449–530.

[10] V. M. Zakalyukin, *Singularities of convex hulls of smooth manifolds*, Functional Anal. Appl., 11(1977), 225–227(1978).

Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan

E-mail address: han-huhe-bx@ynu.jp