Singularity Analysis of Composite Laminated Piezoelectric Rectangular Plate Structure with 1:2 Internal Resonance

Yuhong Guo,1 Yuhua Guo,2,3 Wei Zhang,4 and Ruiping Wen

1Department of Mathematics, Taiyuan Normal University, Jinzhong 030619, China
2State Key Laboratory of Space-Ground Integrated Information Technology, Beijing 100095, China
3Beijing Institute of Satellite Information Engineering, Beijing 100095, China
4Beijing Key Laboratory on Nonlinear Vibrations and Strength of Mechanical Structures, College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Yuhong Guo; gst9901@163.com

1.Introduction

Singularity theory has been widely applied as a qualitative bifurcation analysis method. It can use the uniform and clear method to deal with various complex bifurcation problems and establish comprehensive links between system dynamic behavior and system parameters with singularity theory. But so far, the application of singularity theory in the chaotic dynamics of dynamical systems faces challenges. The introduction of the singularity theory to the single-degree-of-freedom system with a single parameter can lead to complex and interesting bifurcation phenomena, such as the pitchfork bifurcation. Schaeffer and Golubitsky [1] investigated the bifurcation phenomenon of a model under the chemical reaction. Martinet [2] discussed the open fold of smooth mapping buds under the strong equivalence and gave various forms of open fold theorem. Chen and Langford [3] gave the C-L method, by combining the L-S method and singularity theory, and studied the bifurcation of the periodic solution for nonlinear dynamical equation undergoing parametric excitation. Jin and Zou [4] studied a restrained pipe conveying fluid and obtained dynamical behaviors by singularity theory in different persistent regions. Chen et al. [5] gave the bifurcation analysis of an arch structure with the parametric and forced excitations in codimension 5. Nigol et al. [6, 7] analyzed the torsional galloping mechanism under a galloping excitation. Yu et al. [8] also studied the torsional feedback mechanism under a galloping excitation. Then, with the gradual adding of bifurcation parameters, the singularity theory has been applied to a single-degree-of-freedom system with multiparameters. Futer et al. [9] and Sitta [10] gave classification of bifurcation problems under codimension not greater than 1, considering the bifurcation parameter symmetry. Lari-Lavassani and Lu [11] gave a full and accessible account of unfolding and finite determinacy and stability theorems of the multiparameter bifurcation problem. Seyranian and Mailybaev [12] studied the multiparameter stability theory and analyzed the
influence of system parameters on the stability. Qin and Chen [13] analyzed a bifurcation system with two parameters. Zhang and Chen [14] studied stability and bifurcation behaviors for a model of simply supported functionally graded materials rectangular plate subjected to the transversal and in-plane excitations by means of combination of analytical and numerical methods. Guo and Zhang [15] studied the bifurcation problems of the composite laminated piezoelectric rectangular plate structure with three bifurcation parameters by singularity theory in the case of 1:2 internal resonance, the sign function is employed to the universal unfolding of bifurcation equations in this system, the proposed approach can ensure the nondegenerate conditions of the universal unfolding of bifurcation equations in this system to be satisfied, the study presents the proposed system with three bifurcation parameters is a high codimensional bifurcation problem with codimension 4, and 6 forms of universal unfolding are given.

The current piezoelectric materials, which include piezoelectric lead-zirconate-titanate (PZT) and piezoelectric polyvinylidene fluoride (PVDF), are new type of functional materials in engineering fields. Piezoelectric materials can be used as the actuators and sensors in engineering structures. Tauchert et al. [16] reviewed the theoretical research progress of the piezoelectric intelligent composite structure. Halim and Reza Moheimani [17] studied that piezoelectric materials were glued or embedded into controlled structures as sensing elements to achieve vibration suppression by consuming or diverting the mechanical energy of controlled structures. Zhang et al. [18] investigated the nonlinear oscillations and chaotic dynamics of a parametrically excited simply supported symmetric crossply laminated composite rectangular thin plate with the geometric nonlinearity and nonlinear damping. Della and Shu [19] reviewed various models and numerical analysis results of piezoelectric composite laminated plates. Hao et al. [20] analyzed the nonlinear oscillations, bifurcations, and chaos of a functionally graded materials plate. Karnaukov and Tkachenko Ya [21] studied the active damping of nonstationary vibrations of a hinged rectangular plate with distributed piezoelectric actuators by the dynamic-programming method. Liu et al. [22] studied the nonlinear forced vibrations of functionally graded material (FGM) sandwich cylindrical shells with porosities on an elastic substrate and analyzed the effects of the core-to-thickness ratio, porosity volume fraction, power-law exponent, and external excitation on nonlinear forced vibration characteristics of FGM sandwich shells with porosities. Liu et al. [23] developed a new solution approach to solve nonlinear forced vibrations of functionally graded (FG) piezoelectric shells in multiphysics fields; the novel feature of this approach is that it can efficiently obtain the unstable solution and tackle the difficult problems in mathematics encountered during formulation. Zhang et al. [24] established the governing equations of motion for the nonlinear oscillations of a simply supported symmetric crossply composite laminated piezoelectric plate subjected to the transverse, in-plane excitations, and the excitation loaded by piezoelectric layers and studied the periodic and chaotic dynamics of the composite laminated piezoelectric plate.

The singularity theory for two-degree-of-asymmetry freedom bifurcation systems with a single parameter has been well developed by Golubitsky and Schaeffer [25]. The universal unfolding of bifurcation equations was obtained, and the conclusion showed that the number of codimension was equal to the number of auxiliary parameters. Present, there is limited research about the singularity theory for two-degree-of-asymmetry freedom bifurcation systems with multi-parameters. In two-degree-of-asymmetry freedom bifurcation systems with multi-parameters, the number of auxiliary parameters is less than codimension, which is contradiction with the previous conclusion. In this work, the sign function is introduced to solve this problem and ensure nondegenerate conditions of universal unfolding of the bifurcation equations are satisfied, and determining the summation of the number of sign functions and the number of auxiliary parameters is equal to codimension. Then, for the dynamical equations of the composite laminated piezoelectric rectangular plate structure in the case of principal parametric resonance and 1/2 subharmonic resonance for the first-order mode and primary resonance for the second-order mode because only transverse nonlinear oscillations of the composite laminated piezoelectric rectangular plate are considered, the governing equations of motion can be reduced to a two-degree-freedom nonlinear system under combined parametric and external excitations by using Galerkin’s method [24]. By employing sign function, the universal unfolding of the 1:2 internal resonance bifurcation equations is derived. The transition sets in the parameters plane are calculated, and the bifurcation diagrams are depicted. The main material parameters that affect the dynamic behavior of the laminated piezoelectric rectangular composite plate near the singularity under transverse excitation are revealed by universally unfolding with codimension 3. The motivation of this work is to provide theoretical basis for the materials selection in the product design stage.

2. Bifurcation Equations of the Composite Laminated Piezoelectric Rectangular Plate with 1 : 2 Internal Resonance

The nondimensional motion equations of the laminated piezoelectric composite rectangular plate as shown in (1) are taken into consideration [24]:

\[\text{(1)} \]
where w_1 and w_2 are the amplitudes of the first-order and second-order modes for the composite laminated piezoelectric rectangular plate vibration, $F_1 = F_2 = -16g/3π^2$ denotes the transverse excitation, $μ_1$ and $μ_2$ are the structure damping coefficients, and other coefficients in (1) are presented in Appendix.

Consider the case of principal parametric resonance and 1:2 internal resonance. In this resonant case, there are the following resonant relations:

\[
\begin{align*}
\omega_1^2 &= \frac{1}{4} \omega_1^2 + εa_1, \\
\omega_2^2 &= \omega_1^2 + εa_2, \\
Ω_1 &= \omega, \\
Ω_2 &= Ω_3 \\
ω_2 &= 2ω_1,
\end{align*}
\]

where $ω_1$ and $ω_2$ are the two different linear natural frequencies, and $σ_1$ and $σ_2$ are the two detuning parameters.

By using the multiple scale method [24], it can obtain the averaging equations:

\[
\begin{align*}
\dot{a}_1 &= \frac{1}{2} μ_1 a_1 - \frac{1}{4} (a_2 + a_3 + a_4) a_1 sin 2φ, \\
\dot{a}_2 &= \frac{1}{2} μ_2 a_2 - \frac{1}{4} F_2 sin φ, \\
\dot{a}_1' &= \frac{1}{2} σ_1 a_1 - \frac{1}{4} a_6 a_1^2 a_2^2 + \frac{3}{8} a_7 a_1^3, \\
\dot{a}_2' &= \frac{1}{4} σ_2 a_2 - \frac{1}{8} a_5 a_2^2 a_2^2 + \frac{3}{16} β_3 a_2^3 - \frac{1}{4} F_2 sin φ_2.
\end{align*}
\]

Using the relations between trigonometric functions, the bifurcation equations can be determined from (3) as follows:

\[
\begin{align*}
\left(\dot{a}_1 + \frac{1}{2} μ_1 a_1\right)^2 + \left(a_1 φ_1 - \frac{1}{2} σ_1 a_1 + \frac{1}{4} a_6 a_1 a_2^2 + \frac{3}{8} a_7 a_1^3\right)^2 &= \left(\frac{1}{4} (a_2 + a_3 + a_4) a_1\right)^2, \\
\left(\dot{a}_2 + \frac{1}{2} μ_2 a_2\right)^2 + \left(a_2 φ_2 - \frac{1}{4} σ_2 a_2 + \frac{1}{8} a_5 a_2 a_2^2 + \frac{3}{16} β_3 a_2^3\right)^2 &= \left(\frac{1}{4} F_2\right)^2.
\end{align*}
\]

Expanding (4) leads to the following bifurcation equations:

\[
\begin{align*}
g_1 &= k_{11} a_1^6 + k_{12} a_1^4 a_2^2 + k_{13} a_1^2 a_2^4 + k_{14} σ_1 a_1^4 + k_{15} σ_1 a_1^2 a_2^2 + σ_1^2 a_1^2 + k_{16} a_1^2 + τ_1 = 0, \\
g_2 &= k_{21} a_2^6 + k_{22} a_2^4 a_2^2 + k_{23} σ_2 a_2^4 + k_{24} σ_2 a_2^2 a_2^2 - σ_2 a_2^2 a_2^2 + σ_2^2 a_2^2 + 4μ_2 a_2^4 - F_2^2 + τ_2 = 0,
\end{align*}
\]

where
\(k_{11} = \frac{9}{16} \alpha_2 \),

\(k_{12} = \frac{3}{4} \alpha_1 \alpha_2 \),

\(k_{13} = -\frac{1}{4} \alpha_2 \),

\(k_{14} = \frac{3}{2} \alpha_1 \),

\(k_{15} = -\alpha_3 \),

\(k_{16} = \frac{3}{2} \alpha_1 \),

\(\tau_1 = 4 \dot{a}_1 \left(\dot{a}_1 + \mu \dot{a}_1 \right) + \phi_1 \left[4 \phi_1 + 3 \alpha_1 \alpha_2^2 + 2 \alpha_3 \alpha_2^2 - 4 \alpha_1 \right] \),

\(k_{21} = \frac{9}{16} \beta_2 \),

\(k_{22} = \frac{3}{4} \beta_2 \),

\(k_{23} = -\frac{3}{2} \beta_2 \),

\(\tau_2 = 16 \dot{a}_2 \left(\dot{a}_2 + \mu \dot{a}_2 \right) + \phi_2 \left[16 \phi_2 + 4 \phi_1 \right. \left. + 6 \beta_2 \alpha_2^2 - 8 \alpha_1 \right] \). \hspace{1cm} (6)

In (6), \(\tau_1 \) and \(\tau_2 \) refer to the combined gradients of displacement and phase angle. It can be referred to as the periodic parameter in (5). Studies on the dynamical behavior near the singularity have been carried out in the literature for the cases where \(\tau_1 = 0 \) and \(\tau_2 = 0 \) [15]. Therefore, when \(\tau_1 \neq 0, \tau_2 \neq 0 \), and \(\sigma_1 = \sigma_2 \), the study on the dynamical behavior near the singularity is focused in this work.

3. Singularity Analysis for 1:2

Internal Resonance

Proposition 1. The universal unfolding of (5) is given as

\[
G = (G_1, G_2) = \left(a_1^2 + 2 \epsilon_1 \sigma_1 a_2 + 2 \epsilon_3 F_2 + \tau_1, a_2^2 - F_2^2 + 2 \epsilon_2 F_2 a_1 + \tau_2 \right),
\]

where \(\epsilon_i (i=1, 2, 3) \) is the sign function. The proof process of Proposition 1 will be given later in this work.

When \(\tau_1 \neq 0 \) and \(\tau_2 \neq 0 \), (7) is further written as

\[
G = (G_1, G_2) = \left(a_1^2 + 2 \epsilon_1 \sigma_1 a_2 + 2 \epsilon_3 F_2 + \tau_1, a_2^2 - F_2^2 + 2 \epsilon_2 F_2 a_1 + \kappa \tau_1 \right),
\]

where \(\kappa = \tau_2 / \tau_1 \) is called the period ratio in this work.

In the following analysis, the transition set of the universal unfolding (8) is discussed.

Equation (8) for bifurcation points is obtained as

\[
a_1^2 + 2 \epsilon_1 \sigma_1 a_2 + 2 \epsilon_3 F_2 + \tau_1 = 0, \hspace{1cm} (9a)
\]

\[
a_2^2 - F_2^2 + 2 \epsilon_2 F_2 a_1 + \kappa \tau_1 = 0, \hspace{1cm} (9b)
\]

\[
a_1 + \frac{\epsilon_1 \sigma_1}{\epsilon_2 F_2} = \frac{\epsilon_1 \sigma_1}{\epsilon_2 a_1 - F_2}. \hspace{1cm} (9c)
\]

Multiplying \(-\kappa \) in equation (9a) and then substituting it into equation (9b), obtain

\[
k(a_1^2 + 2 \epsilon_1 \sigma_1 a_2 + 2 \epsilon_3 F_2) - a_2^2 + F_2^2 - 2 \epsilon_2 F_2 a_1 = 0. \hspace{1cm} (10)
\]

By equation (9c), it can get

\[
a_1 = \frac{F_2 \pm \sqrt{F_2^2 + 4 \epsilon_2 \epsilon_3 F_2}}{2 \epsilon_2},
\]

\[
a_2 = \frac{-\epsilon_1 \sigma_1 F_2 \pm \epsilon_1 \sigma_1 \sqrt{F_2^2 + 4 \epsilon_2 \epsilon_3 F_2}}{2 \epsilon_2}. \hspace{1cm} (11)
\]

Substituting (11) into (10), the bifurcation occurs when

\[
\kappa \left(a_1^2 + 2 \epsilon_1 \sigma_1 a_2 + 2 \epsilon_3 F_2 \right) - a_2^2 + F_2^2 - 2 \epsilon_2 F_2 a_1 = 0.
\]

Equation (8) for hysteresis points is obtained as

\[
a_1^2 + 2 \epsilon_1 \sigma_1 a_2 + 2 \epsilon_3 F_2 + \tau_1 = 0, \hspace{1cm} (13a)
\]

\[
a_2^2 - F_2^2 + 2 \epsilon_2 F_2 a_1 + \kappa \tau_1 = 0, \hspace{1cm} (13b)
\]

\[
a_1 a_2 - \epsilon_1 \epsilon_3 \sigma_1 F_2 = 0, \hspace{1cm} (13c)
\]

\[
\left(v_1^2, v_2^2 \right) \in \text{range} \left(dG \right),
\]

where \(v = (v_1, v_2) \). Now assume \(\sigma_1 \neq 0, F_2 \neq 0 \), and

\[
v = (a_1, \epsilon_1 \sigma_1), \hspace{1cm} (14)
\]

and it is noted that \((v_1^2, v_2^2) \in \text{range} \left(dG \right) \) if and only if

\[
\left(v_1^2, v_2^2 \right) \cdot (\epsilon_1 \sigma_1, a_2) = 0. \hspace{1cm} (15)
\]
Equation (15) implies that
\[a_1^2 + \varepsilon_1 \sigma_1 a_2 = 0, \]
\[a_2^2 + 2 \varepsilon_1 \sigma_1 a_2 + 2 \varepsilon_2 F_2 + \tau_1 = 0, \]
and using equations (16) and (17), get
\[a_2 = -\varepsilon_1 \sigma_1^{2/3} F_2^{2/3}. \]
Substituting equations (17) and (18) into (10), the hysteresis occurs when
\[F_2^2 + \sigma_1^{2/3} F_2^{4/3} + \kappa \left(2 \varepsilon_2 F_2 - \sigma_1^{4/3} F_2^{2/3} \right) = 0. \]
Equation (8) for the double limit points is
\[a_1^2 + 2 \varepsilon_1 \sigma_1 a_2 + 2 \varepsilon_2 F_2 + \tau_1 = 0, \]
\[a_2^2 - F_2^2 + 2 \varepsilon_2 F_2 a_1 + \kappa \varepsilon_1 a_2 = 0, \]
Equation (12), double limit points occur when
\[\kappa \left(\varepsilon_2 \varepsilon_3 \left(F_2^2 \pm \sqrt{F_2^2 + 4 \varepsilon_2 \varepsilon_3 F_2} \right) \right) = \left. \frac{\varepsilon_1 \sigma_1}{4 \varepsilon_2 \sigma_2} \left(2 \varepsilon_2 F_2 - \sigma_1^{4/3} F_2^{2/3} \right) \right|_. \]

From the above analysis, (22a)–(22c) represent the relationship among transverse excitation \(F_2 \), period ratio \(\kappa \), and detuning parameter \(\sigma \) when the composite laminated piezoelectric rectangular plate structure subjected to small perturbations exists the bifurcation, hysteresis, and double limit points.

4. Numerical Results

The system is simulated by using MAPLE. It take amplitudes \(a_1 \geq 0 \), \(a_2 \geq 0 \), and transverse excitation \(F_2 \geq 0 \). Three-dimensional sketch of transition variety of \(F_2 \) is obtained by applying (22a)–(22c), in Figure 1, where B implies the bifurcation set, H implies the hysteresis set, and D implies the double limit points. From Figure 1, it can be seen that the whole parametric space is divided into three kinds of different persistent regions by (22a)–(22c). It is observed that the amplitudes \(a_1 \) and \(a_2 \) have a solution in region \(\Box \), corresponding to the original system frequency response equations that have only one solution, the composite laminated piezoelectric rectangular plate structure subjected to small perturbations is in stable state. Having multiple solutions in region \(\copyright \), corresponding to the multiple solutions band of the original system frequency response equations, the composite laminated piezoelectric rectangular plate structure subjected to small perturbations is in stable state. Having nonsolution in the region \(\bigcirc \), corresponding to the original system frequency response equations have no solution, the composite laminated piezoelectric rectangular plate structure with small perturbations is in stable state. However, entering region \(\Box \) from region \(\copyright \), jumping will occur, and the hysteresis will occur when entering region \(\Box \) from region \(\bigcirc \); either way, the composite laminated piezoelectric rectangular plate structure subjected to small perturbations is in unstable state.

The bifurcation diagrams of the three kinds of different persistent regions are given in Table 1. From Table 1, it is observed that when the period ratio \(\kappa \) changes in region \(\Box \), there is a steady solution, whereas when the period ratio \(\kappa \) translates into region \(\copyright \), there are multiple solutions. Furthermore, it is observed that when the period ratio \(\kappa \) changes in region \(\bigcirc \), there is no periodic solution because the amplitude \(a_1 \) is negative.

In Figure 2, it is observed that entering region \(\Box \) from region \(\copyright \) causes jumping. Furthermore, it is observed that hysteresis occurs while entering region \(\Box \) from region \(\bigcirc \). From Figure 2, it is further found that the system is stable and the motion is periodic whether period ratio \(\kappa \) is chosen.
in region ① or ②. However, the amplitudes of the periodic motions are not the same for different initial values. Furthermore, it is observed that the system is unstable when period ratio κ is chosen in regions ① and ②, or regions ①, ②, and ③, or regions ② and ③.

Case 1. The period ratio κ is chosen in regions ① and ② as shown in Figure 3. Entering region ① from region ② causes jumping in the motion state of amplitude a_1; thus, the system is unstable and bifurcation occurs. Due to the periodicity of the period ratio κ, the case of the value of the amplitude a_1 is given as $\ldots \rightarrow$ single value \rightarrow more values \rightarrow single value $\rightarrow \ldots$.

Case 2. The period ratio κ is chosen in regions ①, ②, and ③ as shown in Figure 4. Entering region ① from region ②, jumping will occur, the hysteresis will occur when entering region ② from region ③, so jumping and the hysteresis will occur in the motion state of amplitude a_1; thus, the system is unstable and bifurcation occurs. Due to the periodicity of the period ratio κ, the case of the value of the amplitude a_1 is

![Figure 1: Three-dimensional sketch of transition variety of (8) when $\varepsilon_1 = 1$, $\varepsilon_2 = 1$, and $\varepsilon_3 = 1$, B represents the bifurcation set, and H represents the hysteresis set.](image1)

![Figure 2: Plane sketch of amplitude a_1 when $\varepsilon_1 = 1$, $\varepsilon_2 = 1$, $\varepsilon_3 = 1$, $\tau_1 = -6$, $F_2 = 0.2$, and $\sigma_1 = -1$, B represents the bifurcation set, and H represents the hysteresis.](image2)
From Figure 5, it is observed that when the excitation F_2 changes, (8) is unable to compute the analytic solutions for amplitude a_1. This is due to the uncertainty of the time point from region ③ to region ②. Therefore, (8) may produce chaotic solutions.

Case 3. The period ratio κ is chosen in regions ② and ③ as shown in Figure 6. Entering region ② from region ③, the hysteresis will occur in the motion state of the amplitude a_1; thus, the system is unstable and bifurcation occurs. Due to the periodicity of period ratio κ, the case of the value of the amplitude a_1 is given as ... → no solution → more values → no solution → ... → ... →

It is observed that when the excitation F_2 changes, (8) may produce chaotic solutions. This is due to the uncertainty of the time point from region ③ to region ②.

In (6), the expressions of τ_1 and τ_2 indicate that the initial value of parameters α_6, α_7, and β_7 have an important influence on the range of value of period ratio κ. In other words, in addition to the transverse excitation F_2 in (8), the initial values of parameters α_6, α_7, and β_7 can change the range of value of period ratio κ. From the above analysis, a set of appropriate initial values for parameters α_6, α_7, and β_7 can be chosen, so that the period ratio κ can be chosen in region ① or ②; thus, the system is stable and the motion is periodic.
By the changing of bifurcation parameters F_2 and σ_1, understand bifurcation properties of the composite laminated piezoelectric rectangular plate structure subjected to small perturbations. Figure 7 is the bifurcation diagrams of (9a) and (9b) when parameters F_2 and κ change and the other parameters are fixed. In Figure 7(a), the parameters are chosen as $F_2 = 0.4$, $\kappa = 0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis occur. In Figure 7(b), the parameters are chosen as $F_2 = 0.4$, $\kappa = -0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis cannot occur. In Figure 7(c), the parameters are chosen as $F_2 = 0.5, \kappa = 0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis occur. In Figure 7(d), the parameters are chosen as $F_2 = 0.5, \kappa = -0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis cannot occur. In Figure 7(e), the parameters are chosen as $F_2 = 1.9, \kappa = 0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis occur. In Figure 7(f), the parameters are chosen as $F_2 = 1.9, \kappa = -0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis cannot occur. In Figure 8 is also the bifurcation diagrams of (9a) and (9b) when the parameters σ_1 and κ change and the other parameters are fixed. In Figure 8(a), the parameters are chosen as $\sigma_1 = 0.5, \kappa = 0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis occur. In Figure 8(b), the parameters are chosen as $\sigma_1 = 0.5, \kappa = -0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis cannot occur. In Figure 8(c), the parameters are chosen as $\sigma_1 = 1, \kappa = 0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis cannot occur. In Figure 8(d), the parameters are chosen as $\sigma_1 = 1, \kappa = -0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis cannot occur. In Figure 8(e), the parameters are chosen as $\sigma_1 = 2, \kappa = 0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis occur. In Figure 8(f), the parameters are chosen as $\sigma_1 = 2, \kappa = -0.3$, and $\tau_1 = -6$, in which the bifurcation and hysteresis cannot occur. It is observed that the jumping phenomenon and hilltop bifurcation occur at the critical point from region (1) to region (2).

Meanwhile, by choosing different bifurcation parameters F_2 and σ_1, displacement portraits of the amplitude α_1 are simulated. Figure 9 is displacement portraits of the amplitude α_1 of (9a) and (9b) when the parameter F_2 change and the other parameters are fixed. In Figure 9(a), the parameters are chosen as $F_2 = 0.1$ and $\sigma_1 = 1$, in which the jump phenomenon cannot occur. In Figure 9(b), the parameters are chosen as $F_2 = 0.5$ and $\sigma_1 = 1$, in which the bifurcation and hysteresis occur. In Figure 9(c), the parameters are chosen as $F_2 = 1.5$ and $\sigma_1 = 1$, in which the bifurcation and hysteresis occur. In Figure 9(d), the parameters are chosen as $F_2 = 2$ and $\sigma_1 = 1$, in which the bifurcation and hysteresis cannot occur. Figure 10 is also displacement portraits of the amplitude α_1 of (9a) and (9b) when the parameter σ_1 change and the other parameters are fixed. In Figure 10(a), the parameters are chosen as $F_2 = 0.5$ and $\sigma_1 = 0.2$, in which the jump phenomenon occurs. In Figure 8(b), the parameters are chosen as $F_2 = 0.5$ and $\sigma_1 = 0.6$, in which the jump phenomenon occurs. In Figure 8(c), the parameters are chosen as $F_2 = 0.5$ and $\sigma_1 = 1.2$, in which the jump phenomenon occurs. In Figure 8(d), the parameters are chosen as $F_2 = 0.5$ and $\sigma_1 = 1.4$, in which the jump phenomenon cannot occur.

5. The Proof of Proposition 1

The proof process of Proposition 1 is briefly described as follows. The proof process is divided into five steps. The first step is to calculate the restricted tangent space as per equation (5). The second step is to obtain a strong equivalent normal form of equation (5) using the restricted tangent space. The third step is to establish the necessary and sufficient conditions that should be satisfied by the universal unfolding of the normal form. The fourth step is to calculate the polynomial space of the normal form. Finally, the fifth step is to prove the universal unfolding of the normal form.

Step 1. Calculating of the restricted tangent space of (5).

Proposition 2. The restricted tangent space $RT(g, 1)$ of the germ $g(z, \lambda)$ is given as

$$RT(g, 1) = (M^2 + M\langle \sigma_1, F_2 \rangle + \langle F_2^2 \rangle + \langle \tau_1 \rangle + \langle \tau_2 \rangle) E_{z, \lambda}.$$

(23)

Proof. According to Proposition 1.4 (page 169 in Golubitsky and Schaeffer II, 1985), $RT(g, 1)$ is generated (as module over $E_{z, \lambda}$) by the sixteen mappings:

$$
\begin{align*}
& (0, g_1), \\
& (0, g_2), \\
& a_1(g_1, a_1, g_2, a_1), \\
& a_2(g_1, a_1, g_2, a_1), \\
& \sigma_1(g_1, a_1, g_2, a_1), \\
& F_2(g_1, a_1, g_2, a_1), \\
& \tau_1(g_1, a_1, g_2, a_1), \\
& \tau_2(g_1, a_1, g_2, a_1), \\
& a_1(g_1, a_1, g_2, a_2), \\
& a_2(g_1, a_1, g_2, a_2), \\
& \sigma_1(g_1, a_1, g_2, a_2), \\
& F_2(g_1, a_1, g_2, a_2), \\
& \tau_1(g_1, a_1, g_2, a_2), \\
& \tau_2(g_1, a_1, g_2, a_2).
\end{align*}
$$

(24)

$(M^2 + M\langle \sigma_1, F_2 \rangle + \langle F_2^2 \rangle + \langle \tau_1 \rangle + \langle \tau_2 \rangle) E_{z, \lambda}$ is generated by the following twenty mappings:
Figure 7: The bifurcation diagrams of (9a) and (9b) when $\varepsilon_1 = 1$, $\varepsilon_2 = 1$, and $\varepsilon_3 = 1$ (left, $\kappa = 0.3$; right, $\kappa = -0.3$).
Figure 8: The bifurcation diagrams of (9a) and (9b) when $\epsilon_1 = 1$, $\epsilon_2 = 1$, and $\epsilon_3 = 1$ (left, $\kappa = 0.3$; right, $\kappa = -0.3$).
There exists a reversible matrix A between (24) and (25) when $(a_1, a_2, \sigma_1, F_2) = (0, 0, 0, 0)$:

$$
\begin{pmatrix}
 u_1 \\
 u_2
\end{pmatrix} = A \begin{pmatrix}
 v_1 \\
 v_2
\end{pmatrix} = \begin{pmatrix}
 A_1 & A_2 \\
 A_3 & A_4
\end{pmatrix} \begin{pmatrix}
 v_1 \\
 v_2
\end{pmatrix},
$$

where

$$
\begin{align*}
(a_1^2, 0), & \quad (0, \sigma_1 a_1), \\
(a_1 a_2, 0), & \quad (0, \sigma_1 a_2), \\
(\sigma_1 a_1, 0), & \quad (0, F_2 a_1), \\
(\sigma_1 a_2, 0), & \quad (0, F_2 a_2), \\
(F_2 a_1, 0), & \quad (0, \tau_1), \\
(F_2 a_2, 0), & \quad (0, \tau_2), \\
(\tau_1, 0), & \quad \left(0, F_2^2\right).
\end{align*}
$$

Figure 9: Displacement portraits of the amplitude a_1 of (9a) and (9b) when $\varepsilon_1 = 1$, $\varepsilon_2 = 1$, and $\varepsilon_3 = 1$.

- (a) $(a_1, a_2, \sigma_1, F_2) = (0, 0, 0, 0)$
- (b) $(a_1, a_2, \sigma_1, F_2) = (0, 1, 0, 0)$
- (c) $(a_1, a_2, \sigma_1, F_2) = (1, 0, 0, 0)$
- (d) $(a_1, a_2, \sigma_1, F_2) = (0, 0, 1, 0)$
Figure 10: Displacement portraits of the amplitude a_1 of (9a) and (9b) when $\varepsilon_1 = 1$, $\varepsilon_2 = 1$, and $\varepsilon_3 = 1$.

\[
\begin{align*}
\mathbf{u}_1 &= \begin{bmatrix} (g_1, 0) & (g_2, 0) & (0, g_1) & (0, g_2) & a_1(g_{1a_1}, g_{2a_1}) \\
\end{align*}
\end{align*}
\]

\[
\begin{align*}
\mathbf{u}_2 &= \begin{bmatrix} \tau_1(g_{1a_1}, g_{2a_1}) & \tau_2(g_{1a_1}, g_{2a_1}) & a_1(g_{1a_2}, g_{2a_2}) & a_2(g_{1a_2}, g_{2a_2}) \\
\begin{bmatrix}
g_{1a_1} = \left[6k_{11}a_1^4 + 4k_{12}a_2^3 + 2k_{13}a_2^2 + 4k_{14}a_2^2 + 2k_{15}a_1^2 + 2k_{16}a_2^2 + 2(\sigma_1^2 + k_{18}) \right]a_1, \\
g_{2a_1} = (a_1^2a_2 - 2\sigma_1a_2)a_1a_2, \\
g_{1a_2} = (2k_{13}a_3^2 + 4k_{14}a_1^2 + 2k_{15}a_1a_2)a_1a_2, \\
g_{2a_2} = \left[6k_{21}a_2^4 + \frac{1}{2}a_1^4 + 4k_{22}a_1^2a_2^2 + 4k_{23}a_1^2a_2^2 + 2(\sigma_1^2 + 4\sigma_2^2) \right]a_2,
\end{align*}
\]
\[
A_1 = \begin{pmatrix}
 c_1 & 0 & 0 & c_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & c_3 & 0 & c_4 & 0 & 0 & -1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 c_5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & c_5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & c_5 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & c_5 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & c_5 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & c_5 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_5 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_5 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_5 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
A_2 = \begin{pmatrix}
 c_1 & 0 & 0 & c_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & c_3 & 0 & c_4 & 0 & 0 & -1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 c_6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & c_6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & c_6 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & c_6 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & c_6 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & c_6 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_6 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_6 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_6 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
A_3 = \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_2a_1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_3a_1 & 0 \\
 0 & c_7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & c_7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & c_7 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & c_7 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & c_7a_2 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & c_7a_2 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_7a_2 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_7a_2 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_7a_2 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
A_4 = \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_6a_1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_6a_1 & 0 \\
 0 & c_8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & c_8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & c_8 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & c_8 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & c_8a_2 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & c_8a_2 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_8a_2 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_8a_2 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_8a_2 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
c_1 = k_{11}a_1^4 + k_{12}a_1^2a_2^2 + k_{13}a_2^4 + k_{16}, \tag{29a}
\]
\[
c_2 = k_{14}a_1^3 + k_{15}a_1a_2^3 + \sigma_1a_1, \tag{29b}
\]
\[
c_3 = k_{21}a_2^4 + \frac{1}{4}a_1^4 + k_{22}a_1^2a_2^2 + 4a_2^2, \tag{29c}
\]
\[
c_4 = k_{33}a_2^3 - a_1^2a_2 + \sigma_2a_2, \tag{29d}
\]
\[
c_5 = 6k_{11}a_1^4 + 4k_{12}a_1^2a_2^2 + 2k_{13}a_2^4 + 4k_{14}a_1^2a_1^2 + 2k_{15}a_1^2a_2^2 + 2(\sigma_1^2 + k_{16}), \tag{29e}
\]
\[
c_6 = (a_1^2a_2^2 + 2k_{22}a_2^3 - 2\sigma_2a_2)a_2, \tag{29f}
\]
\[
c_7 = (2k_{12}a_1^3 + 4k_{13}a_1^2a_2^2 + 2k_{15}\sigma a_1)\sigma_1, \tag{29g}
\]
\[c_k = 6k_{21}a_2^4 + \frac{1}{2}a_1^4 + 4k_{22}a_1^2a_2^2 + 4k_{23}a_2^2 + 2\sigma_2^2a_1^2 + 2(\sigma_2^2 + 4\mu_2^2). \] (29h)

In (5), if \(k_{16} = 0 \), bifurcation analysis is meaningless, so \(k_{16} > 0 \) will be studied in this study; similarly, \(k_{16} < 0 \) can also be analyzed. When \(a_1 = a_2 = \sigma_1 = F_2 = 0 \), substituting \(\mu_2 > 0 \) into (29a)–(29h), it can obtain

\[\begin{align*}
 c_1 &= k_{16} \neq 0, \\
 c_2 &= 0, \\
 c_3 &= 4\mu_2^2 > 0, \\
 c_4 &= 0, \\
 c_5 &= 2k_{16} \neq 0, \\
 c_6 &= 0, \\
 c_7 &= 0, \\
 c_8 &= 8\mu_2^2 > 0.
\end{align*} \] (30)

This matrix \(A \) equals

\[\begin{pmatrix}
 A'_1 & A'_2 \\
 A'_3 & A'_4
\end{pmatrix}. \] (31)

where

\[
A_1 = \begin{pmatrix}
 k_{16} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 4\mu_2^2 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 2k_{16} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 2k_{16} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 2k_{16} & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 2k_{16} & 0 & 0 & 0 \\
\end{pmatrix},
\]

\[
A_2 = \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 k_{16} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 4\mu_2^2 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}, \] (32b)

\[
A_3 = \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}, \] (32c)

\[
A_4 = \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}, \] (32d)

It can be seen that there are the columns with the linear correlation in the 16 × 20 matrix \(A \), namely, the 3th, 8th, and 10th columns, the 11th and 19th columns, and the 13th,
18th, and 20th columns. The 9th, 10th, 15th, and 16th rows and the 5th, 7th, 14th, and 16th columns are identically zero. Therefore, the 9th, 10th, 15th, and 16th rows and the 5th, 7th, 8th, 10th, 14th, 16th, 18th, and 20th columns can be eliminated. Thus, the original 16×20 matrix has rank 12. The proof is completed.

Step 2. The strong equivalent normal form of (5).

By Proposition 2, a higher order term of f is strongly equivalent normal form of (5).

Proposition 3. Let

$$g(z, \lambda) = h(z, \lambda) + q(z, \lambda),$$

where

$$q = \left(k_{11}a_1^4 + k_{12}a_1^4a_2^2 + k_{13}a_1^2a_2^4 + k_{14}\sigma_1a_1^4a_2^2, k_{21}a_2^6 + \frac{1}{4}a_1^4a_2^2 + k_{23}\sigma_1a_1^4 - \sigma_1a_1^2a_2^2 \right).$$

By applying Theorem 1.3 (page 168 in Golubitsky and Schaeffer II, 1985), it can get g is strongly equivalent to h. The proof is completed.

According to Proposition 3, polynomial g will be replaced by polynomial h in the following discussion.

Proposition 4. The nondegenerate conditions of h satisfy

$$D > 0,$$

$$(\tau_1, \tau_2) \times (k_{16}, 0) \neq 0,$$

$$\text{and } h \text{ is equivalent to}$$

$$(a_1^2 + \tau_1, a_2^2 - F_2 + \tau_2).$$

Proof. Let

$$h(z, \lambda) = f(z) + F_2^2(0, -1) + (\tau_1, \tau_2),$$

where $f(z) = (k_{16}a_1^4, 4\mu_2^2a_2^4)$; according to (2.6), (2.7), and (2.8) (page 402 in Golubitsky and Schaeffer I, 1985),

$$Q(h) = \begin{bmatrix} 2k_{16}a_1 & 0 \\ 0 & 8\mu_2^2a_2^2 \end{bmatrix} = 16k_{16}\mu_2^2a_1a_2^2,$$

$$D = b^2 - 4ac = 256k_{16}\mu_2^4.$$

Since $k_{16} \neq 0$, $\mu_2 > 0,$

$$D > 0.$$ (42)

Applying Theorem 2.2 (page 403 in Golubitsky and Schaeffer I, 1985), choose nonzero vectors $z_1 = (1, 0)$ and $z_2 = (0, 1)$, one on each line, and let $w_i = f(z_i), i = 1, 2.$ It can obtain

$$w_1 = (k_{16}, 0),$$

$$w_2 = (0, 4\mu_2^2).$$

Thus,

$$q \in (M^3 \times M^2\langle \sigma_1, F_2 \rangle + M\langle F_2 \rangle + M\langle \tau_1 \rangle + M\langle \tau_2 \rangle) \overrightarrow{E}_{z, \lambda}.$$

Since $\tau_1 \neq 0$ and $\tau_2 \neq 0,$
\[(\tau_1, \tau_2) \times (k_{16}, 0) \neq 0, \quad (\tau_1, \tau_2) \times (0, 4\mu_2^2) \neq 0, \quad (44)\]

and it can be known that \((\tau_1, \tau_2)\) lies in quadrant 1 or quadrant 2 (page 403 in Golubitsky and Schaeffer I, 1985).

The normal form of the germ \(h\) can be expressed as
\[
(a_1^2 + \tau_1, a_2^2 - F_2^2 + \tau_2^2). \quad (45)
\]

The proof is completed. It is observed from (45) that its universal unfolding needs complementary linear terms about the state variables and constant terms.

Step 3. The necessary and sufficient conditions that the universal unfolding of the normal form of \(h\) should satisfy.

Improving Theorem 3.1 (page 409 in Golubitsky and Schaeffer I, 1985), by introducing a sign function \(\varepsilon\) in (Guo and Zhang, 2019), Proposition 5 is given as follows.

Proposition 5. Let \(H(a_1, a_2, \sigma_1, F_2, \tau_1, \tau_2)\) be the unfolding of a bifurcation problem \(h\) in two state variables which satisfies the nondegeneracy conditions of Proposition 4. Then, \(H\) is a universal unfolding of \(h\) if and only if
\[
H(a_1, a_2, 0, F_2, \tau_1, \tau_2) = (h_1(a_1, a_2, 0, F_2, \tau_1, \tau_2), h_2(a_1, a_2, 0, F_2, \tau_1, \tau_2)), \quad (46)
\]

where it is evaluated at \((a_1, a_2, \sigma_1, F_2, \tau_1, \tau_2) = (0, 0, 0, 0, \tau_1, \tau_2).\)

Proof. Matrix \(P\) can be expressed by six vectors:
\[
P = (\chi_1, \chi_2, \chi_3, \chi_4, \chi_5, \chi_6)^T, \quad (49)
\]

where
\[
\chi_1 = (0, h_1a_1\sigma_1, h_1a_2\sigma_1, 0, h_2a_1\sigma_1, h_2a_2\sigma_1), \quad (50a)
\]
\[
\chi_2 = (0, h_1a_1\sigma_1, h_1a_2\sigma_1, 0, h_2a_1\sigma_1, h_2a_2\sigma_1), \quad (50b)
\]

\[
\chi_3 = (h_1a_1\sigma_1, h_1a_2\sigma_1, h_2a_1\sigma_1, h_2a_2\sigma_1), \quad (50c)
\]
\[
\chi_4 = (h_1F_2^2, h_1F_2a_1\sigma_1, h_2F_2a_1\sigma_1, h_2F_2a_2\sigma_1), \quad (50d)
\]
\[
\chi_5 = (h_1\tau_1, h_1\tau_2, h_2\tau_1, h_2\tau_2), \quad (50e)
\]
\[
\chi_6 = (h_1\tau_1, h_1\tau_2, h_2\tau_1, h_2\tau_2). \quad (50f)
\]

Substituting (45) into (50a)–(50f),
\[
X_1 = (1, 0, 0, 0), \quad \chi_1 = (0, 0, 0, 0, 0), \quad \chi_2 = (0, 0, 0, 0, 0), \quad \chi_3 = (0, 0, 0, 0, 0), \quad \chi_4 = (0, 0, 0, 0, 0), \quad \chi_5 = (1, 0, 0, 0, 0), \quad \chi_6 = (0, 0, 0, 0, 0).
\]

In (51), only four vectors \(\chi_1, \chi_2, \chi_5, \chi_6\) are linearly independent because \(H\) is the universal unfolding of \(h\), and there exist two complementary linearly independent vectors. It is easy to find a complementary subspace to \(h\), spanned by
\[
(\varepsilon_1 a_1\sigma_1, 0), \quad (0, \varepsilon_2 F_2a_1), \quad (52)
\]

where \(\varepsilon_1\) is a sign function, \(\varepsilon_1 = +1, 0, -1 (i = 1, 2)\).

The introduced \(\varepsilon\) can satisfy (47) and (48) (Guo and Zhang, 2019). From (52), it is obtained that
\[
H(a_1, a_2, 0, F_2, \tau_1, \tau_2) = (h_1(a_1, a_2, 0, F_2, \tau_1, \tau_2), h_2(a_1, a_2, 0, F_2, \tau_1, \tau_2)). \quad (53)
\]

Obvious, when \(\varepsilon_1 = 0, \quad H(a_1, a_2, F_2, \tau_1, \tau_2, 0) = (h_1(a_1, a_2, F_2, \tau_1, \tau_2, 0), h_2(a_1, a_2, F_2, \tau_1, \tau_2, 0)). \quad (54)
\]

Substituting (53) into (48), when \(\varepsilon_1 \neq 0,
\[
\det(P) \neq 0. \quad (55)
\]

Conversely, in (51), there are only four vectors \(\chi_1, \chi_2, \chi_5, \chi_6\), which are linearly independent because \(\det(P) \neq 0\), and the linearly independent vectors complementary to \(h\) need two. It may be adopted that
\[
(\varepsilon_1 a_1\sigma_1, 0), \quad (0, \varepsilon_2 F_2a_1), \quad (56)
\]

Thus, \(H = (a_1^2 + 2\varepsilon_1 a_1\sigma_1 + \tau_1, a_2^2 - F_2^2 + 2\varepsilon_2 F_2a_1 + \tau_2)\) will be obtained. The proof is completed.
Step 4. Calculating of the polynomial space of the normal form of \(h \).

Proposition 6. The polynomial space of \(h \) is given by

\[
\begin{align*}
\mathbb{R}\{ (dh)_{z,\lambda}(Y_1), \ldots, (dh)_{z,\lambda}(Y_m), h_1, \lambda h_1, \lambda^2 h_1, \ldots \} \\
= \mathbb{R}\{ (a_1, 0), (0, a_2), (0, F_2), (1, 0), (0, 1) \}.
\end{align*}
\]

Proof. To derive the above equality, it should be noted that

\[
\begin{pmatrix}
u_1' \\ u_2'
\end{pmatrix}
= B
\begin{pmatrix}
v_1' \\ v_2'
\end{pmatrix}
= \begin{pmatrix}
B_1 & B_2
\end{pmatrix}
\begin{pmatrix}
v_1' \\ v_2'
\end{pmatrix},
\]

where

\[
\begin{align*}
u_1' &= \begin{pmatrix}
h_{1,a,1,0} \\ h_{1,a,2,0} \\ h_{1,F_2,0} \\ h_{1,T_2,0}
\end{pmatrix}^{\top}_{1\times 5}, \\
u_2' &= \begin{pmatrix}
h_{2,a,1} \\ h_{2,a,2} \\ h_{2,F_2} \\ h_{2,T_2}
\end{pmatrix}^{\top}_{1\times 5}, \\
v_1' &= \begin{pmatrix}
(a_1, 0) \\ (a_2, 0) \\ (F_2, 0) \\ (1, 0)
\end{pmatrix}^{\top}_{1\times 5}, \\
v_2' &= \begin{pmatrix}
(0, a_1) \\ (0, a_2) \\ (0, F_2) \\ (0, 1)
\end{pmatrix}^{\top}_{1\times 5}.
\end{align*}
\]

It is found that \(u_1^T u_2^T \) can be expressed by four vectors \((a_1, 0), (0, a_2), (0, F_2), (1, 0), (0, 1)\). Hence, it can be obtained that

\[
\begin{align*}
\mathbb{R}\{ (dh)_{z,\lambda}(Y_1), \ldots, (dh)_{z,\lambda}(Y_m), h_1, \lambda h_1, \lambda^2 h_1, \ldots \}
= \mathbb{R}\{ (a_1, 0), (0, a_2), (0, F_2), (1, 0), (0, 1) \}.
\end{align*}
\]

The proof is completed.

Step 5. Proving of the universal unfolding of the normal form of \(h \).

Proposition 7. The codimension of \(h \) in \(\mathbb{E}_{z,\lambda} \) is 3, and the universal unfolding of (39) is given as

\[
G = \left(a_1^2 + 2\varepsilon_1 a_2 + 2\varepsilon_3 F_2 + \tau_1, a_2^2 - F_2^2 + 2\varepsilon_2 F_2 a_1 + \tau_2 \right).
\]

where \(\varepsilon_i (i = 1, 2, 3) \) is a sign function.

Proof. According to Theorem 2.1 and equation 2.7 (page 211 in Golubitsky and Schaeffer II, 1985), it can be obtained that

\[
T(h, 1) = \left(M^2 + M\langle F_2 \rangle + \langle \sigma_1, F_2 \rangle + \langle \tau_1 \rangle + \langle \tau_2 \rangle \right) \mathbb{E}_{z,\lambda}
+ \mathbb{R}\{ (a_1, 0), (0, a_2), (0, F_2), (1, 0), (0, 1) \}.
\]
It is not difficult to see that the largest intrinsic ideal ItrT(h, 1) contained in T(h, 1) is just

\[
\text{ItrT}(h, 1) = \left(M^2 + M\langle \sigma_1, F_2 \rangle + \langle F_2^2 \rangle + \langle \tau_2 \rangle \right)^{\frac{1}{2}},
\]

\[
[\text{ItrT}(h, 1)]^\bot = \mathbb{R}\{(a_1, 0), (a_2, 0), (\sigma_1, 0), (F_2, 0), (0, a_1), (0, a_2), (0, F_2), (0, \sigma_1), (1, 0), (0, 1)\},
\]

whose dimension is 10.

Clearly, the dimension of \(\mathbb{R}\{(a_1, 0), (a_2, 0), (0, F_2), (1, 0), (0, 1)\}\) is 5; hence, there exists a basis for a subspace of \([\text{ItrT}(h, 1)]^\bot\), which is complementary to \(\mathbb{R}\{(a_1, 0), (0, a_2), (0, F_2), (1, 0), (0, 1)\}\).

Consequently, it is easy to find a complementary subspace to \(T(h, 1)\), spanned by

\[(a_2, 0),\]
\[(\sigma_1, 0),\]
\[(F_2, 0),\]
\[(0, a_1),\]
\[(0, \sigma_1).\]

(64)

According to Proposition 5, in (64), for \((a_2, 0)\) and \((0, a_1)\), there exist two sign functions \(\varepsilon_1\) and \(\varepsilon_2\), such that \((\varepsilon_1, \sigma_1, a_2, 0)\) and \((0, \varepsilon_2 F_2, a_1)\) will exist in universal unfolding of \(h\). For \((F_2, 0)\), there exist one sign function \(\varepsilon_3\), such that \((\varepsilon_3, F_2, 0)\) will exist in universal unfolding of \(h\). For \((\sigma_1, 0)\) and \((0, \sigma_1)\), there exists one sign function \(\varepsilon_4\), such that \((\varepsilon_4, F_2, 0)\) will exist in universal unfolding of \(h\).

According to the above analysis, the universal unfolding of \(h\) is given by

\[
G = \left(a_1^2 + 2\varepsilon_1 \sigma_1 a_2 + 2\varepsilon_3 F_2 + \tau_1, a_2^2 - F_2^2 + 2\varepsilon_2 F_2 a_1 + \tau_2 \right).
\]

Using Proposition 5, when \(\varepsilon_i = 0\), (65) can be obtained that

\[
G(a_1, a_2, \sigma_1, F_2, \tau_1, \tau_2) = \left(a_1 + \tau_1, a_2^2 - F_2^2 + \tau_2 \right).
\]

(66)

When \(\varepsilon_i \neq 0\), it is obtained from (65) that

\[
\det\begin{pmatrix}
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 2\varepsilon_1 & 0 & 0 & 0 \\
2\varepsilon_3 & 0 & 0 & 2\varepsilon_2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \neq 0.
\]

(67)

Obviously, Proposition 1 and Proposition 7 are the same. \(\square\)

6. Conclusions

The bifurcation of the laminated piezoelectric composite rectangular plate structure with 1:2 internal resonance is a high codimensional problem. The universal unfolding with codimension 3 of the bifurcation equations is carried out using the extended singularity theory method. Furthermore, the main material parameters \(\alpha_6\), \(\alpha_7\), and \(\beta_7\) that affect the dynamic behavior of the laminated piezoelectric composite rectangular plate structure near the singularity under transverse excitation are revealed by the transition set of universal unfolding with codimension 3.

The transition set divides the parameters space into three kinds of different persistent regions, the results indicate that entering region \(\mathbb{R}\) from region \(\mathbb{P}\), jumping will occur, the hysteresis will occur when entering region \(\mathbb{P}\) from region \(\mathbb{R}\), and the composite laminated piezoelectric rectangular plate structure subjected to small perturbations is in an unstable state. The numerical results from the above analysis show that the stability of the proposed system is better when \(\kappa < 0\). It can pick a set of appropriate initial value for parameters \(\alpha_6\), \(\alpha_7\), and \(\beta_7\) such that period ratio \(\kappa\) is chosen in region \(\mathbb{R}\) or \(\mathbb{P}\); thus, the system is stable and the motion is periodic.

For the composite laminated piezoelectric rectangular plate structure, it is demonstrated that there exists abundant dynamic bifurcation patterns in a small perturbation sense. Some new chaotic dynamics are also presented. Clearly, these results provide some inspiration and guidance for the analysis and dynamic designs of this structure.

Appendix

The coefficients of equation (15) (Zhang and Yao, 2009) are presented as follows:
\[
\begin{align*}
\mathcal{A}_i &= \frac{2688}{715} \frac{\alpha A_{12}}{\beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} + \frac{27264}{715} \frac{\beta^2 A_{11}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} - \frac{384}{715} \frac{\alpha A_{66}}{\beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} \\
\mathcal{B}_i &= \frac{2688}{715} \frac{\alpha A_{12}}{\beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} + \frac{27264}{715} \frac{\beta^2 A_{11}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} - \frac{384}{715} \frac{\alpha A_{66}}{\beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} \\
\mathcal{C}_i &= \frac{3328}{33075} \frac{\alpha A_{12}}{\beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} + \frac{3328}{33075} \frac{\beta^2 A_{11}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} - \frac{10496}{3696} \frac{\alpha A_{66}}{\beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} \\
\mathcal{D}_i &= \frac{896}{225} \frac{\alpha A_{12}}{9 \beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} + \frac{896}{225} \frac{\beta^2 A_{11}}{9 \alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} - \frac{128}{225} \frac{\alpha A_{66}}{9 \beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} \\
\mathcal{E}_i &= \frac{81792}{1001} \frac{\alpha A_{12}}{9 \beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} + \frac{1152}{1001} \frac{\beta^2 A_{11}}{9 \alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} - \frac{1152}{1001} \frac{\alpha A_{66}}{9 \beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} \\
\mathcal{F}_i &= \frac{264448}{40425} \frac{\alpha A_{66}}{9 \beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} + \frac{23808}{13475} \frac{\beta^2 A_{11}}{9 \alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} + \frac{29952}{13475} \frac{\alpha A_{12}}{9 \beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} \\
\mathcal{G}_i &= \frac{27264}{715} \frac{\alpha A_{12}}{\beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} + \frac{2688}{715} \frac{\beta^2 A_{11}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} - \frac{384}{715} \frac{\beta A_{66}}{\beta^2 \pi A_{11} + \alpha^2 \pi A_{66}} \\
\mathcal{H}_i &= \frac{2688}{715} \frac{\beta A_{12}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} + \frac{27264}{715} \frac{\alpha^2 A_{22}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} - \frac{384}{715} \frac{\beta A_{66}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} \\
\mathcal{I}_i &= \frac{3328}{33075} \frac{\beta A_{12}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} + \frac{3328}{33075} \frac{\alpha^2 A_{22}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} - \frac{10496}{3696} \frac{\beta A_{66}}{\alpha^2 \pi A_{11} + \alpha^3 \pi A_{66}} \\
\mathcal{J}_i &= \frac{81792}{1001} \frac{\beta A_{12}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} + \frac{1152}{1001} \frac{\alpha^2 A_{22}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} - \frac{1152}{1001} \frac{\beta A_{66}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} \\
\mathcal{K}_i &= \frac{896}{225} \frac{\beta A_{12}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} + \frac{896}{225} \frac{\alpha^2 A_{22}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} - \frac{128}{225} \frac{\beta A_{66}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} \\
\mathcal{L}_i &= \frac{29952}{13475} \frac{\beta A_{12}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} + \frac{23808}{13475} \frac{\alpha^2 A_{22}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} - \frac{264448}{40425} \frac{\beta A_{66}}{9 \alpha^2 \pi A_{11} + \beta^2 \pi A_{66}} \\
\end{align*}
\]

(A.1)

\[\text{in particular, for arbitrary constants } k_i \ (i = 13, \ldots, 18), \text{ the expressions}\]
are also the solutions of equation (12) (Zhang and Yao, 2009).

The coefficients of equation (1) in this work are presented as follows:
\[
\begin{align*}
\alpha_5 &= \frac{208\pi A_{11}k_1}{315\alpha^3} + \frac{112\pi A_{22}k_6}{45\beta^2} + \frac{64\pi A_{66}k_1}{945\alpha^3} + \frac{64\pi A_{22}k_6}{225\alpha^2\beta} + \frac{64\pi A_{66}k_1}{45\alpha^2\beta^2} \\
&+ \frac{\pi^4 A_{11}}{32\alpha^2\beta^2} - \frac{112\pi A_{22}k_4}{225\beta^2} + \frac{5\pi^4 A_{22}}{945\beta^2} + \frac{64\pi A_{66}k_6}{32\alpha^2\beta^2} + \frac{64\pi A_{22}k_6}{45\alpha^2\beta^2} + \frac{64\pi A_{66}k_1}{45\alpha^2\beta^2} \\
&+ \frac{3\pi^4 A_{66}}{8\alpha^2\beta^2} - \frac{64\pi A_{11}k_1}{25\alpha^2\beta} - \frac{64\pi A_{66}k_1}{45\alpha^2\beta} - \frac{27\pi^4 A_{11}}{32\alpha^4} + \frac{9\pi^4 A_{22}}{32\alpha^4} + \frac{112\pi A_{11}k_1}{45\alpha^2\beta^2}, \\
\alpha_6 &= \frac{64\pi A_{66}k_3}{945\alpha^2\beta^2} - \frac{64\pi A_{22}k_3}{945\alpha^2\beta^2} - \frac{208\pi A_{11}k_3}{315\alpha^3} + \frac{64\pi A_{66}k_3}{225\alpha^2\beta} + \frac{64\pi A_{22}k_3}{45\alpha^2\beta^2} - \frac{9\pi^4 A_{22}}{16\alpha^3} - \frac{9\pi^4 A_{22}}{16\alpha^3} \\
&+ \frac{9\pi^4 A_{11}}{32\alpha^3} + \frac{9\pi^4 A_{11}}{32\alpha^3} - \frac{112\pi A_{22}k_6}{225\beta^3} - \frac{81\pi^4 A_{11}}{16\alpha^3} + \frac{112\pi A_{22}k_6}{45\alpha^2\beta^2}, \\
\alpha_7 &= \frac{64\pi A_{22}k_1}{45\alpha^2\beta^2} - \frac{64\pi A_{66}k_4}{45\alpha^2\beta^2} + \frac{64\pi A_{11}k_1}{45\alpha^2\beta^2} - \frac{9\pi^4 A_{11}}{32\alpha^3} \\
&+ \frac{112\pi A_{22}k_3}{45\alpha^2\beta^2} - \frac{9\pi^4 A_{11}}{32\alpha^3} - \frac{9\pi^4 A_{11}}{32\alpha^3} - \frac{112\pi A_{22}k_3}{45\alpha^2\beta^2} + \frac{8\pi A_{66}k_1}{45\beta^3} + \frac{32\pi^3 A_{22}}{32\alpha^4} - \frac{32\pi^3 A_{22}}{32\alpha^4}, \\
\alpha_8 &= \frac{64\pi A_{22}k_2}{945\alpha^2\beta^2} + \frac{64\pi A_{66}k_2}{945\alpha^2\beta^2} - \frac{208\pi A_{11}k_2}{315\alpha^3} - \frac{64\pi A_{66}k_2}{225\alpha^2\beta} - \frac{64\pi A_{22}k_2}{25\alpha^2\beta} + \frac{225\alpha^2\beta}{225\alpha^2\beta}, \\
F_1 &= \frac{16d_4}{3\pi^3}, \\
\beta_2 &= \frac{9\pi^2 q_x}{\alpha^2}, \\
\beta_3 &= \frac{\alpha^2 q_y}{\pi^2}, \\
\beta_4 &= \frac{9\pi^2 N_p^p}{\alpha^2 + \beta^2}, \\
\beta_5 &= \frac{192\pi A_{66}k_3}{143\alpha^3} + \frac{264\pi A_{12}k_3}{175\alpha^2\beta} - \frac{192\pi A_{66}k_6}{175\alpha^2\beta} + \frac{48\pi A_{22}k_6}{25\beta^3} + \frac{192\pi A_{22}k_1}{143\alpha^3} - \frac{64\pi A_{31}k_2}{945\alpha^2\beta^2}, \\
\beta_6 &= \frac{192\pi A_{66}k_4}{143\alpha^3} + \frac{264\pi A_{12}k_4}{175\alpha^2\beta} - \frac{192\pi A_{66}k_6}{175\alpha^2\beta} + \frac{48\pi A_{22}k_6}{25\beta^3} + \frac{192\pi A_{22}k_1}{143\alpha^3} - \frac{64\pi A_{31}k_1}{945\alpha^2\beta^2}, \\
\beta_7 &= \frac{192\pi (-A_{66}k_2 + A_{21}k_5)}{143\alpha^3} + \frac{48\pi A_{22}k_5}{25\beta^3} - \frac{729\pi A_{11}}{32\alpha^4} - \frac{9\pi^4 A_{31}}{32\alpha^4} + \frac{9\pi^4 (-4A_{66} - A_{21} - A_{12})}{32\alpha^4}, \\
\beta_8 &= \frac{408\pi A_{11}k_5}{143\alpha^3} + \frac{\pi (264A_{12}k_5 - 192A_{66}k_5)}{175\alpha^3} \\
&+ \frac{208\pi A_{11}k_5}{315\alpha^3} + \frac{64\pi (-9A_{11}k_4 + A_{66}k_4)}{\alpha^2}. \\
F_2 &= \frac{16d_4}{3\pi^3}.
\end{align*}
\]
Data Availability
The data used to support the findings of the study are included within the article.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) (11832002) and the fund of Independent Research and Development Program of China Aerospace Science and Technology (503Y-Y-Y-FZLDTX-20).

References
[1] D. G. Schaeffer and M. A. Golubitsky, "Bifurcation analysis near a double eigenvalue of a model chemical reaction," Archive for Rational Mechanics and Analysis, vol. 75, no. 4, pp. 315–347, 1981.
[2] J. Martinet, Singularities of Smooth Functions and Maps, Cambridge University Press, Cambridge, UK, 1982.
[3] Y. S. Chen and W. F. Langford, "The subharmonic bifurcation solution of nonlinear Mathieu's equation and Eulerl dynamically buckling problem," Acta Mechanica Sinica, vol. 4, no. 4, pp. 350–362, 1988.
[4] J. D. Jin and G. S. Zou, "Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluidfluid," Journal of Sound and Vibration, vol. 260, no. 5, pp. 783–805, 2003.
[5] F. Chen, J. Liang, Y. Chen, X. Liu, and H. Ma, "Bifurcation analysis of an arch structure with parametric and forced excitation," Mechanics Research Communications, vol. 34, no. 3, pp. 213–221, 2007.
[6] O. Nigol and P. Buchan, "Conductor galloping part I - den hartog mechanism," IEEE Transactions on Power Apparatus and Systems, vol. 100, no. 2, pp. 699–707, 1981.
[7] O. Nigol and P. Buchan, "Conductor galloping part II torsional mechanism," IEEE Transactions on Power Apparatus and Systems, vol. 100, no. 2, pp. 708–720, 1981.
[8] P. Yu, N. Popplewell, and A. H. Shah, "Instability trends of inertially coupled galloping Part II: periodic vibrations," Journal of Sound and Vibration, vol. 183, no. 4, pp. 679–691, 1995.
[9] J. E. Futer, A. M. Sitta, and I. Stewart, "Singularity theory and equivariant bifurcation problems with parameter symmetry," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 120, no. 3, pp. 547–578, 1996.
[10] A. M. Sitta, "Singularity Theory and Equivariant Bifurcation Problems with Parameter Symmetry," Ph. D. thesis, University of Warwick and USP-sao Carlos, Sao Carlos, Brazil, 1993.
[11] A. H. Lari-Lavassani and Y.-C. Lu, "Equivariant multiparameter bifurcation via singularity theory," Journal of Dynamics and Differential Equations, vol. 5, no. 2, pp. 189–218, 1993.
[12] A. P. Seyranian and A. A. Mailybaev, Multiparameter Stability Theory with Mechanical Application, World Scientific, Singapore, 2003.
[13] Z. Qin and Y. Chen, "Singular analysis of bifurcation systems with two parameters," Acta Mechanica Sinica, vol. 26, no. 3, pp. 501–507, 2010.
[14] D. M. Zhang and F. Q. Chen, "Stability and bifurcation for a simply supported functionally graded material plate with one-to-one internal resonance," Journal of Applied Mathematics, vol. 2014, Article ID 414903, 2014.
[15] Y. H. Guo and W. Zhang, "Bifurcation analysis of composite laminated piezoelectric rectangular plate structure in the case of 1:2 internal resonance," Mathematical Problems in Engineering, vol. 2019, Article ID 6830724, 2019.
[16] T. R. Tauchert, F. Ashida, N. Noda, S. Adali, and V. Verijenko, "Developments in thermopiezoelectricity with relevance to smart composite structures," Composite Structures, vol. 48, no. 1-3, pp. 31–38, 2000.
[17] D. Halim and S. O. Reza Moheimani, "An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate," Mechatronics, vol. 13, no. 1, pp. 27–47, 2003.
[18] W. Zhang, C. Z. Song, and M. Ye, "Further studies on nonlinear oscillations and chaos of a rectangular symmetric cross-by laminated plate under parametric excitation," International Journal of Bifurcation and Chaos, vol. 16, no. 2, pp. 325–347, 2006.
[19] C. N. Della and D. Shu, "Vibration of delaminated composite laminates: a review," Applied Mechanics Reviews, vol. 60, no. 1, pp. 1–20, 2007.
[20] Y. X. Hao, L. H. Chen, and W. Zhang, "Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate," Journal of Sound and Vibration, vol. 312, no. 4, pp. 862–892, 2008.
[21] V. G. Karnaukhov and V. Tkachenko Ya, "Damping the vibrations of a rectangular plate with piezoelectric actuators," International Applied Mechanics, vol. 44, no. 1, pp. 78–84, 2008.
[22] Y. Liu, Z. Qin, and F. Chu, "Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate," Nonlinear Dynamics, vol. 104, no. 2, pp. 1007–1021, 2021.
[23] Y. F. Liu, Z. Y. Qin, and F. L. Chu, "Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads," International Journal of Mechanical Sciences, vol. 2021, Article ID 106474, 2021.
[24] W. Zhang, Z. Yao, and M. Yao, "Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance," Science in China Series E: Technological Sciences, vol. 52, no. 3, pp. 731–742, 2009.
[25] M. Golubitsky and D. G. Schaeffer, "Singularities and groups in bifurcation theory," in Applied Mathematical Sciences-Springer, New York, NY, USA, 1985.