Rituximab for the Treatment of Common Variable Immunodeficiency (CVID) with Pulmonary and Central Nervous System Involvement

Patrick-Pascal Strunz1,*, Matthias Fröhlich1, Michael Gernert1, Eva C. Schwanack1, Lea-Kristin Nagler1, Anja Kroiss1, Hans-Peter Tony1 and Marc Schmalzing1

1Department of Medicine II, Division of Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany

1. GENETIC DIAGNOSTICS

There are several mutations described which can cause a CVID-like syndrome and can predispose to GLILD like LRBA, CTLA4, RAG1, BIRC4, NFKB1 or KMT2D [1 - 9]. Genetic testing was performed on one patient revealing a gain of function mutation of STAT3. GOF-STAT3-syndrome is a relatively new described syndrome and can cause a CVID-like disease with hypogammaglobulinemia, autoimmune features, lymphoproliferation, and interstitial lung disease [10].

2. HISTOPATHOLOGIC FINDINGS

Patient 1: In 2010, a lung biopsy was performed in an external clinic revealing dense lymphoid infiltrates in histologic testing. A follicular arrangement of CD20-positive B cells and CD3-positive T cells was described without S100 or CD30 positive cells. Re-biopsy in 2013, presented a heterogeneous pattern consisting of NSIP and chronic and partly follicular bronchiolitis. No evidence of malignancy.

Patient 2: In 2009, we performed a biopsy on the right lower lobe of the lung. Histologic examination presented medium-sized epithelioid cell granuloma. In the granuloma wall, loosely scattered CD20 positive B lymphocytes mixed with CD5 positive T cells were found. Poorly present plasma cells without light chain restriction. No evidence of malignancy.

Patient 3: VATS with wedge resection for histologic sampling was performed in 2017. Wedge resection on the upper lobe showed the histologic image of a lymphoplasmohistiocytic infiltration. Wedge resection of the left lower lobe also presented the same chronic lymphoplasmohistiocytic infiltration. Histologic presentation of a mixed image of dominating CD5-positive T cells with CD20-positive B cells in the background with partly loose and follicular aggregation. Low level of plasma cells without light chain restriction. No evidence of malignancy.

3. B CELL REGENERATION CORRELATED WITH GLILD RELAPSE AFTER RITUXIMAB-TREATMENT

Table 1. Flow cytometric analysis of peripheral blood during rituximab-therapy.

Flow cytometric analysis	4x rituximab 375mg/m² 09/2007	2x rituximab 1g abs. 08/2010	2x rituximab 1g abs. 08/2014	2x rituximab 1g abs. 09/2015
Flow cytometry pre-rituximab 06/2006; 14% B cells, 27% naïve CD10+ B cells, low count of memory B cells, 1.3% postswitch memory B cells, normal count of CD21low B cells.	Flow cytometry post-rituximab 10/2007; No B cells detectable	Flow cytometry post-rituximab 09/2010; No B cells detectable	Flow cytometry post-rituximab 09/2014; No B cells detectable	Flow cytometry post-rituximab 09/2015; No B cells detectable
Flow cytometry pre-rituximab 06/2010; 5% B cells. No memory B cells, normal count of transitional B cells.	Flow cytometry post-rituximab 09/2010; No B cells detectable	Flow cytometry post-rituximab 09/2014; No B cells detectable	Flow cytometry post-rituximab 09/2015; No B cells detectable	
Flow cytometry pre-rituximab 03/2014; 4.7% B cells. No increase of transitional B cells, complete loss of memory B cells.	Flow cytometry post-rituximab 09/2014; No B cells detectable	Flow cytometry post-rituximab 09/2015; No B cells detectable		
Flow cytometry pre-rituximab 08/2013; 18% B cells. No increase of transitional B cells, complete loss of memory B cells.	Flow cytometry post-rituximab 09/2014; No B cells detectable	Flow cytometry post-rituximab 09/2015; No B cells detectable		

DOI: 10.2174/1874312902115010009, 2021, J5, i:iii

Flow cytometric analysis

Strunz et al.	Flow cytometry pre-rituximab 01/2015:
1% B cells. No further sub differentiation possible.	Flow cytometry post-rituximab 05/2016:
2x rituximab 1g abs. 06/2017	

Strunz et al.	Flow cytometry pre-rituximab 08/2016:
Very low count of B cells	Flow cytometry post-rituximab:
2x rituximab 1g abs. 01/2019	

Strunz et al.	Flow cytometry pre-rituximab 10/2018:
Very low count of B cells (<0.1%)	Flow cytometry post-rituximab
2x rituximab 1g abs. 10/2019	

Strunz et al.	Flow cytometry pre-rituximab 08/2016:
3% B cells	Flow cytometry post-rituximab 08/2017:
2x rituximab 1g abs. 02/2017	

Strunz et al.	Flow cytometry pre-rituximab 08/2016:
1.5% B cells	Flow cytometry post-rituximab 03/2018:
No B cells detectable	
2x rituximab 1g abs. 09/2018	

Strunz et al.	Flow cytometry pre-rituximab 08/2018:
8.5% B cells	Flow cytometry post-rituximab 12/2018:
1.7% B cells. Almost complete as transitional B cells. 6.2% preswitch and no postswitch memory B cells.	

Patient 2:

Flow cytometry pre-rituximab 02/2014: 7% B cells, 5.2% transitional B cells, 8.6% preswitch memory B cells. 1% postswitch memory B cells. No CD21-positive population.

Flow cytometry post-rituximab 11/2014: No B cells detectable

Flow cytometry pre-rituximab 08/2016: 3% B cells.

Flow cytometry post-rituximab 08/2017: No B cells detectable

Patient 3:

Flow cytometry pre-rituximab 06/2017:

2.7% B cells. No preswitch and postswitch memory B cells. Increase of transitional B cells, no increase of CD21low cells.

Flow cytometry post-rituximab 11/2017: 1.5% B cells

Flow cytometry pre-rituximab 11/2017:

1.5% B cells. No preswitch and postswitch memory B cells. Increase of transitional B cells, no increase of CD21low cells.

Flow cytometry post-rituximab 12/2018: 1.7% B cells. Almost complete as transitional B cells. 6.2% preswitch and no postswitch memory B cells.

Table S2. List of GLILD-patients.

Patient	Gender	EUROclass subtype	autoimmune Cytopenia	Treatment
1	male	B+SmB-CD21⁺⁺⁺T⁺⁺⁺	No	IgRT
2	male	B+SmB-CD21⁺⁺⁺T⁺⁺⁺	Yes	Prednisolone, azathioprine
3	female	B+SmB-CD21⁺⁺⁺T⁺⁺⁺	Yes	Prednisolone only
4	female	B+SmB-CD21⁺⁺⁺T⁺⁺⁺	Yes	Prednisolone, azathioprine, rituximab
5	female	B+SmB-CD21⁺⁺⁺T⁺⁺⁺	Yes	Prednisolone, azathioprine, rituximab
6	female	B+SmB-CD21⁺⁺⁺T⁺⁺⁺	Yes	Prednisolone, rituximab, combination of rituximab and azathioprine, rituximab.

Table S3. Contingency table for cytopenia and GLILD

-	CVID-patients with autoimmune cytopenia	CVID-patients without autoimmune cytopenia
CVID-patients with GLILD	5	1
CVID-patients without GLILD	11	33

REFERENCES

[1] Alkhairy OK, Abolhassani H, Rezaei N, et al. Spectrum of phenotypes associated with mutations in LRBA. J Clin Immunol 2016; 36(1): 33-45. [http://dx.doi.org/10.1007/s10875-015-0224-7] [PMID: 26707784]

[2] Buchbinder D, Baker R, Lee YN, et al. Identification of patients with RAG mutations previously diagnosed with common variable immunodeficiency disorders. J Clin Immunol 2015; 35(2): 119-24. [http://dx.doi.org/10.1007/s10875-014-0121-5] [PMID: 25516070]

[3] Deyá-Martínez A, Esteve-Solé A, Vélez-Tirado N, et al. Sirolimus as an alternative treatment in patients with granulomatous-lymphocytic lung disease and humoral immunodeficiency with impaired regulatory T cells. Pediatr Allergy Immunol 2018; 29(4): 425-32. [http://dx.doi.org/10.1111/pai.12890] [PMID: 29532571]

[4] Kuehn HS, Ouyang W, Lo B, et al. Immune dysregulation in human
subjects with heterozygous germline mutations in CTLA4. Science 2014; 345(6204): 1623-7. [http://dx.doi.org/10.1126/science.1255904] [PMID: 25213377]

[5] Lawless D, Geier CB, Farmer JR, et al. Prevalence and clinical challenges among adults with primary immunodeficiency and recombination-activating gene deficiency. J Allergy Clin Immunol 2018; 141(6): 2303-6. [http://dx.doi.org/10.1016/j.jaci.2018.02.007] [PMID: 29477728]

[6] Li R, Zheng Y, Li Y, et al. Common variable immunodeficiency with genetic defects identified by whole exome sequencing. BioMed Res Int 2018; 20183724630 [http://dx.doi.org/10.1155/2018/3724630] [PMID: 30363934]

[7] Lindsley AW, Saul HM, Burrow TA, et al. Defects of B-cell terminal differentiation in patients with type-1 Kabuki syndrome. J Allergy Clin Immunol 2016; 137(1): 179-187.e10. [http://dx.doi.org/10.1016/j.jaci.2015.06.002] [PMID: 26194542]

[8] Schwab C, Gabrysch A, Olbrich P, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol 2018; 142(6): 1932-46. [http://dx.doi.org/10.1016/j.jaci.2018.02.055] [PMID: 29729943]

[9] Verbsky JW, Hintermeyer MK, Simpson PM, et al. Rituximab and antimetabolite treatment of granulomatous and lymphocytic interstitial lung disease in common variable immunodeficiency. J Allergy Clin Immunol 2020; S0091-6749(20): 31069-1. [http://dx.doi.org/10.1016/j.jaci.2020.07.021] [PMID: 32745555]

[10] Fabre A, Marchal S, Barlogis V, et al. Clinical aspects of stat3 gain-of-function germline mutations: A systematic review. J Allergy Clin Immunol Pract 2019; 7(6): 1958-1969.e9. [http://dx.doi.org/10.1016/j.jaip.2019.02.018] [PMID: 30825606]