NK Cell-Based Immunotherapy and Therapeutic Perspective in Gliomas

Changqing Pan¹, You Zhai², Guanzhang Li², Tao Jiang¹,²,³,⁴* and Wei Zhang¹,²,³,⁴*

¹ Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, ² Beijing Neurosurgical Institute, Capital Medical University, Beijing, China, ³ China National Clinical Research Center for Neurological Diseases, Beijing, China, ⁴ Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA), Beijing, China

Glioma is the most common malignant primary brain tumor diagnosed in adults. Current therapies are unable to improve its clinical prognosis, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor and its immunosuppressive microenvironment. Development of new therapies that avoid this immune evasion could improve the response to the current treatments. Natural killer (NK) cells are an intriguing candidate for the next wave of therapies because of several unique features that they possess. For example, NK cell-based immunotherapy causes minimal graft-versus-host disease. Cytokine release syndrome is less likely to occur during chimeric antigen receptor (CAR)-NK therapy, and CAR-NK cells can kill targets in a CAR-independent manner. However, NK cell-based therapy in treating glioma faces several difficulties. For example, CAR molecules are not sufficiently well designed so that they will thoroughly release functioning NK cells. Compared to hematological malignancies, the application of many potential NK cell-based therapies in glioma lags far behind. Here, we review several issues of NK cells and propose several strategies that will improve the efficacy of NK cell-based cancer immunotherapy in the treatment of glioma.

Keywords: natural killer cells, alloreactivity, chimeric antigen receptor, adoptive cell immunotherapy, glioma

INTRODUCTION

Gliomas are the most common intracranial primary malignant tumor (1). The incidence of gliomas is approximately of six cases per 100,000 individuals worldwide. Glioblastoma (GBM), the most common glioma histology, has a 5-year relative survival of ~5%. While the majority of cases are sporadic, a small portion of these tumors are associated with neurofibromatosis type I, tuberous sclerosis, and Li-Fraumeni syndrome. Standard medical care, including the most extensive tumor resection followed by radiotherapy and chemotherapy. Surgery is commonly performed with both diagnostic and therapeutic intent. The therapeutic goal of surgery is to remove as much tumor tissue while preserving neurological function. Even for diffuse gliomas, a biopsy is recommended to acquire tissue specimens for molecular profiling (IDH mutations,1p/19q codeletion, MGMT promoter methylation, EGFR amplification et al) (2). Most patients receive chemotherapy. Classic schemes including Stupp (NCT00006353) and PCV (Procarbazine, CCNU, and Vincristine) (3). The strategies of radiotherapy are determined by the disease subtype and prognostic factors, including residual tumor volume, age, KPS. The details of novel strategies...
including tumor-treated fields (TTFields), checkpoint inhibitor, vaccine and oncolytic virus are described in Table 1. In general, the prognosis of high-grade glioma is still unpleasant, which calls for more efficient approaches.

Adoptive cell therapy (ACT), especially CAR-armed cell therapy, has great potential due to its high cytotoxicity and precise strikes. ACT consists of a series of infusions of autologous or allogeneic immune cells to kill targets, and T cell-based immunotherapy is an example of a mainstream form of ACT that is well-studied. Chimeric antigen receptor (CAR) T cells targeting CD19 is one therapy that has resulted in encouraging success in patients with B cell malignancies and has been approved by the US Food and Drug Administration (FDA) (5–7). However, there are numerous logistic and clinical limitations to the use of autologous CAR-modified T cells. Personalized CAR-T products are time-consuming and expensive to produce. Allogeneic T cell-based therapy can cause substantial toxic effects, such as graft-versus-host disease (GvHD) and cytokine release syndrome (CRS) (8). Furthermore, the results of CAR-T cell therapy for solid tumors are suboptimal. These shortcomings of CAR-T cells have called for interest in other candidate.

NK cells are a subpopulation of the innate immune system (9, 10). NK cells can be identified by CD3(−) CD56(+) CD16(−). Depending on the level of CD56 and CD16 expression, NK cells can be divided into CD16−CD56dim and CD16+CD56bright cells. CD16−CD56dim NK cells predominate in peripheral blood while CD16+CD56bright NK cells are distributed into secondary lymphoid organs (11). CD16−CD56dim NK cells are robust cytokine producers and are weakly cytotoxic while the CD16−CD56dim NK cell population can mediate serial killing of infected and/or malignant cells. NK cell receptors are germline-encoded without a requirement for ‘V(D)J’ recombination. Natural killer (NK) cells have gained attention as a promising alternative candidate for ACT owing to their unique biological attributes.

NK cells do not require any prior antigen and can rapidly recognize and kill cells for which major histocompatibility complex (MHC) class I molecular expression is compromised by infection or transformation (9). Once activated, NK cells can release perforin and granzyme, contributing to target cell lysis. NK cells upregulate death ligands on their surface, such as FAS ligand and TRAIL, and initiate the caspase pathway of tumor cells and induce apoptosis when binding to death receptors on target cells. NK cells can eradicate cancer cells through antibody-dependent cellular cytotoxicity (ADCC) mediated by FcγRIIIA/CD16a. Furthermore, NK cells produce interferon gamma (IFN-γ), regulating and activating the adaptive immune response.

NK cell-based therapy is safe and has potential generated as off-the-shelf cellular therapy products. Autologous NK cells exert limited cytotoxicity against autologous tumors, while allogeneic NK cells are highly cytotoxic and cause minimal risk of GvHD (12–16). Thus, NK cells can originate from different sources, such as peripheral blood NK cells (PBNK), induced pluripotent stem cells (iPSCs), umbilical cord blood (UCB) and NK-92 cells, and this eliminates the need to produce a personalized CAR-NK product. However, the claim that allogeneic NK cells cause no or minimal GvHD and CRS is controversial and originated from observations obtained during clinical trials, especially in the setting of hematopoietic cell transplantation (HCT), the mechanism of which has not been thoroughly discussed. Here, we review important issues regarding NK cells and glioma and discuss several options that can be used to improve the efficacy of CAR-NK in glioma treatment.

THE SAFETY OF NK CELL-BASED IMMUNOTHERAPY

NK Cell Alloreactivity

All NK cells are non-responsive towards healthy autologous cells, which involves the interaction of at least inhibitory killer immunoglobulin-like receptors (KIRs) or CD94-NKG2A with one autologous MHC class I molecule. KIRs can be classified based on two factors: the number of immunoglobulin-like

Table 1 | Applications of novel strategies in glioma

Strategies	Interventions	Results	Tumors	Phase	Reference/NCT
TTFields	TTFields plus temozolomide VS temozolomide alone nivolumab VS bevacizumab	TTFields plus temozolomide improve PFS and OS significantly	Glioblastoma	III	NCT00916409
Checkpoint	Inhibitor				
nivolumab	Nivolumab failed to improve OS				
Pembrolizumab	Nivolumab extended OS and enhanced both the local and systemic antitumor immune response				
Vaccine	Rindopepimut (CDX-110), a vaccine targeting EGFRVIII peptide vaccine [IDH1-vac] targeting mutant IDH1 autologous dendritic cell vaccine ICT-107	Rindopepimut did not increase OS			
Oncolytic	intratumoral infusion of poliovirus chimera (PVSRIPO) intratumoral injection of oncolytic adenovirus (DNX-2401)	IDH1-vac increased PFS and immune responses, but accompanied by a high frequency of pseudoprogression			
Virus	PVSRIPO therapy increased OS	ICT-107 significantly improved PFS	Grade III and IV	I	NCT02454634
			Astrocytomas		NCT01280552
			Glioblastoma		
					NCT01491893
					NCT000805376
domains (2D and 3D) and the length of the intracytoplasmic tail (L or S). Inhibitory KIRs usually possess a long cytoplasmic tail (KIR2DL), whereas activating KIR possess a short one (KIR2DS), except for the activating KIR2DL4, which has a long cytoplasmic tail. Inhibitory KIRs contain immunoreceptor tyrosine-based inhibition motif (ITIM) sequences responsible for the inhibitory signal. Unlike cytotoxic CD8+ T cells, which are highly specific for antigens, NK cells express clonally distributed inhibitory receptors termed KIRs that recognize determinants (KIR ligands) shared by subsets of HLA-B or -C allotypes (17–20). More than fifty KIR family members have been identified, and each of these genes is highly polymorphic and has thousands of alleles (21). Three subfamilies and associated inhibitory specificities are well determined (Table 2). The CD94-NKG2A heterodimer, belonging to C-type lectins, is specific for HLA-E (24–26).

Major models used to predict NK cell alloreactivity include ‘missing self’ and ‘missing ligand’ (Figure 1). Missing self-recognition (the ‘ligand–ligand’ model) was proposed by Karre et al. and occurs under HLA haplotype-mismatched transplants in the graft-versus-host direction (27). Donor NK cells express a KIR for the self HLA class I group that is absent in the recipient, which mediates alloreactions (28–30). HLA testing is required to predict NK cell alloreactivity due to the missing self-model.

Because the genes for KIR, HLA, and CD94–NKG2 are located on different chromosomes (31–33), KIR genes segregate independently of the HLA genes, and thus, KIR mismatches can exist in two HLA-matched individuals. Also, it was found that many individuals have 3 inhibitory KIRs (for HLA-C1 and -C2 and for HLA-Bw4 alleles), while their own cells only express 1 or 2 HLA KIR ligands (22, 34, 35). KIR expression is donor specific, but not related to the donor or recipient HLA and is not affected by the recipient’s HLA groups (36). The missing ligand model (the ‘receptor-ligand’ model) was based on these. According to this model, NK cell alloreactivity occurs not only in HLA haplotype-mismatched transplants, but also in HLA haplotype-matched transplants from donors possessing ‘extra’ KIR(s), for which neither donor nor recipient possess HLA ligand(s) (35–37). The donor’s potentially self-reactive NK cells can trigger an alloreactive effect in the recipient while maintaining anergy in the donor. Analysis of the KIR expression on the donor’s NK cells and HLA testing of the recipient’s cells are required to predict NK cell alloreactivity due to the missing ligand model.

The missing self and missing ligand models can be used to predict NK cell alloreactivity. Although alloreactive NK cells can eradicate tumor cells, the anti-tumor effect is not confined to alloreactive NK cells. NK cell activity depends on the balance between inhibitory and stimulatory receptors. An anti-tumor effect can be mediated by NK cells expressing stimulatory receptors, such as activating KIR and NKG2D (38–40).

TABLE 2 | Three subfamilies of KIRs and specific ligands.

Groupa	HLA-class I specificityb
KIR2DL1(CD158a)	C2(-Cw2, -Cw4, -Cw5, -Cw6)
KIR2DL2/3(CD158b1/b2)	C1(-Cw1, -Cw3, -Cw7, -Cw8)
KIR3DL1(CD158e1)	Bw4(-B27, -B51)

aEach group compromises different numbers of alleles, which differ by 1-9 nucleotide substitutions (23).

bTwo groups of HLA-C alleles are distinguished by dimorphic positions Ser 77–Asn 80 (C1) and Asn 77–Lys 80 (C2) of the α1 helix (23). HLA-B allotypes share the Bw4 sequence motif at positions 77–83 of the α1 helix (22).

FIGURE 1 | T-CAR designs. (A–D) show the four generations of T-CAR. In brief, CAR contains three parts: extracellular domains are comprised of a single-chain variable fragment (scFv) for recognizing targeted antigen and transmembrane domains, and endocellular domains for transducing signals. First generation CARs consist of the basic structure with CD3ζ (A). Second generation CARs contain an additional costimulatory domain such as CD28 or 4–1BB (B). Third generation CARs possess multiple costimulatory domains (C). Fourth-generation CARs, also known as ‘armored CARs’ can be designed to secret cytokines to improve the proliferation, persistence.
NK CELL-BASED IMMUNOTHERAPY CAUSES MINIMAL GvHD AND CRS

GvHD refers to a condition resulting from the systemic attack of allogenic T cells on recipient tissues after allogeneic hematopoietic stem cell transplantation or infusion of allogenic T cells (41–43). The effects of GvHD are commonly manifested in the gastrointestinal tract, liver, and skin (44), and severe GvHD can be fatal. The role of alloreactive NK cells on GvHD in the setting of HCT varies among studies. Some investigations found that alloreactive NK cells were related to decreased GvHD (36, 45, 46), which was partially attributed to the observations that allogeneic NK cells would be expected to kill host dendritic cells (DCs) and donor T cells (46, 47). Miller et al. analyzed 2,062 patients undergoing unrelated donor HCT (48). They found that one or more KIR ligands were missing versus the presence of all ligands, which is associated with a low relapse rate in patients with early myeloid leukemia. This omission predicted a greater risk of developing grade 3-4 relapse rate in patients with early myeloid leukemia. This result was de

HCT after ablation of bone marrow is used to cure hematological malignancies and results in less cancer relapse compared to chemoradiotherapy (49). T cells of allogeneic hematopoietic grafts for treating leukemia mediate the antileukemia effect as well as lethal GvHD. In many studies, it was attempted to prevent GvHD by depleting the T cells from the graft and infusing large numbers of hematopoietic stem cells to overcome rejection (50), which was at the expense of immunity reconstitution failure and infection. Later, NK cells from alloreactive donors were found to protect patients against rejection and GvHD in the setting of HCT (46). Interestingly, we found the idea that NK cell-based therapy caused GvHD mostly happened in the setting of HCT. But we should not evaluate the effects of alloreactive NK cells on GvHD in the setting of HCT because the effect of T cells in the grafts is negligible. It is likely that T cell interference is the most important controversial element with respect to the alloreactive NK cell effects on GvHD.

In fact, NK cell-based immunotherapy is safe and causes minimal GvHD. GvHD most likely occurs when NK cells from donors with several KIR subfamilies are infused into recipients possessing one group HLA ligand. Valiante et al. analyzed NK cell receptor repertoires in the peripheral blood of two human donors (donor PP only possessed group 1 HLA-C ligand, and donor NV possessed group 1 and 2 HLA-C ligands and the Bw4 HLA-B ligand, both of which have three KIR subfamilies as demonstrated in Table 2) (51). They found that more than 98% of NK clones were inhibited self-HLA class I allotypes, and no NK cell from either donor was able to lyse the autologous B cell line (51). Interestingly, NV possessed approximately 15% of the analyzed NK cell clones, did not express KIR2DL2 or CD94: NKG2a, and was able to lyse the B cell line from PP, whereas the NK cell clones from PP failed to lyse the B cell line from NV (51). Ruggeri adopted functional analysis to evaluate the NK cell alloreactivity in more than 200 NK clones (46). Alloreactivity was defined as positive when the frequency of lytic clones was no less than 1 in 50 (46). In addition, the expression of CD94: NKG2a is inversely related to KIR levels (51). Approximately, 50% of NK cells in an individual express CD94:NKG2a (51, 52). Cell-surface HLA-E expression depends on many peptides, including the leader peptides of HLA-A, -B, or -C, and downregulation of HLA-E expression requires the elimination of three types of HLA molecules (53, 54). Thus, NK cells expressing CD94–NKG2A display no alloreactivity because all individuals express HLA-E molecules. Therefore, NK cell-based immunotherapy is safe most of the time and will cause minimal GvHD because alloreactive NK cells only account for a small proportion. In addition, healthy cells express high levels of MHC class I molecules, but they express no or minimal level of ligands for NK cell activating receptors. Conversely, tumorigenic cells downregulate MHC class I expression but upregulate the expression of ligands for NK cell activating receptors. For example, MICA/MICB and ULBP, ligands for NKG2D, are often induced by stress or transformation (55, 56). The integration of the activating and inhibitory signals from the ligand/receptor determines NK cell activity. Some studies indicated that the positive signal delivered by NKG2D could override inhibition. Therefore, NK cells become alloreactive prior to killing tumor cells.

CRS involves elevated levels of circulating cytokines, especially interferons and immune-cell hyperactivation, which manifests as an influenza-like syndrome, organ failure, and even death (57). CAR-NK is less likely to induce CRS and neurotoxicity partially because of a different spectrum of secreted cytokines consisting of activated NK cells that produce IFN-gamma and GM-CSF, and CAR-T cells that predominantly release tumor necrosis factor (TNF)-a and interleukins, such as IL-1, IL-2, and IL-6 (57, 58). The mechanism was validated by clinical trials. Liu et al. launched a clinical trial (NCT03056339) that administered HLA-mismatched anti-CD19 CAR-NK cells to 11 patients with high-risk lymphoid malignancies (16). The administration of CAR-NK cells was not associated with the development of cytokine release syndrome and there was no increase in the levels of inflammatory cytokines, including interleukin-6, over baseline (16).

NK EXPANSION TECHNIQUES

Large numbers of cells are essential for successful adoptive transfer cell therapy. It has been proved that high doses of NK cells from 10^7 cells/kg to 4.7×10^10 total NK cells can be well tolerated (16, 59, 60). NK cells only account for approximately 10% of peripheral blood mononuclear cells. The NK92 cell line is used in current clinical trials with CAR-NK because of their unlimited proliferation ability in vitro. However, the NK92 cell line is tumorigenic and lacks CD16 and NKP44 expression, and additionally, these cells will lose their proliferation ability due to
lethal irradiation infusion (61, 62). Because of these drawbacks, it is unlikely that they will be an ideal cell source for CAR-NK cell therapy.

Expansion protocols possess considerable heterogeneity. The expansion process often takes 2-3 weeks of culture in the presence of mitogenic cytokines, and engineered feeder cells can optimize the expansion process. K562 cells engineered to express membrane-bound IL-15 or IL-21 along with the adhesion molecule 4-1BBL are adopted as feeder cells in many clinical trials (63, 64). There have been reports of 300-fold expansions combined with IL-2 and IL-15. IL-15 is important to NK cell survival and function (65, 66), and 4-1BBL provides a cell to cell contact-dependent co-stimulatory signal (67). We observed that low density less than 10^5 cells/mL is not ideal for NK expansion. We recommend that the ratio of engineered K562 feeder cells and NK cells is 1:1 to 2:1. The K562 cell line possesses unique properties and lacks HLA expression. As described above, inhibitory KIRs recognizing corresponding HLA ligands can inactivate NK cells. This can be proved by our laboratory findings that other cell lines engineered to express IL-21 and 4-1BBL failed to achieve high-fold NK expansion. Some studies used RetroNectin-stimulated T (RN-T) cells as feeder cells (68, 69). Briefly, the procedure for this is to culture T cells from autologous peripheral blood mononuclear cells (PBMCs) with RetroNectin and anti-CD3 monoclonal antibody. In approximately 2 weeks, RN-T cells can serve as feeder cells after irradiation. RetroNectin plays a role in cell adhesion (70). The anti-CD3 monoclonal antibody leads to T-cell activation and cytokine secretion, and activated T cells express ligands of NKG2D (47, 71). Irradiated PBMCs as feeder cells were utilized by Parkhurst et al. and share a similar mechanism with RN-T in NK cell expansion (60, 72). The CD14+ monocyte fraction of irradiated PBMCs function in cell-cell contact (73). Feeder cells derived from autologous PBMCs eliminate the need for infusion of viable malignant feeder cells into the NK cell product. Feeder-free expansion approaches have also been tested. Li et al. cultured NK cells in an anti-CD16 (Beckman Coulter)-coated flask (74). Antibody-coated beads targeting CD2 and NKp46 (CD335) are commercially available. However, not everyone or each NK cell expresses these stimulatory receptors, and feeder-free expansion protocols lose cell-to-cell contact effects. For example, only a part of NK cells of an individual expresses CD16 on blood NK cells (75, 76).

ADOPTIVE CELL THERAPY AND CAR-NK CELLS

There are several developmental stages in ACT. Lymphokine-activated killer (LAK) cells, which consist of a mixture of NK cells, NKT cells, and T cells, were adopted to overcome insufficient quantities of immune cells (77). An unwanted side effect of a high dose of IL-2 is that it induces capillary leak syndrome and neuropsychiatric diseases in a manner similar to that of CRS. To obtain immune cells that can effectively respond to tumors, Rosenberg introduced the concept of tumor-infiltrating lymphocytes (TILs) (78), which have many similarities with LAK cells except the origin of lymphocytes. The former is isolated from the stroma of tumors, while the latter is acquired from PBMCs. Success with TILs has been achieved in many solid tumors, including breast cancer tumors (79, 80). With TCR engineering, tumor-specific TCR α and β chains are identified and integrated with T cells via viral vectors (81). There must be specificity with T-cell engineering and CAR-T. Compared to CAR-T therapy, there are limited choices for physiological receptors with TCR engineering. Effective CAR-T cell therapy relies on optimal CAR molecular design. The CAR construct is becoming increasingly sophisticated with the understanding of T cell activation and tumor-specific and -associated antigens (82). Four generations of CAR designs have been developed that are mainly different in categories and number of co-stimulation factors (Figure 1). For safety and effectiveness, many novel designs have been tested, such as ‘inverted CAR,’ ‘off-switch CAR’ and ‘logic-gate CAR’ (83–85).

NK cell-based immunotherapy is a subset of ACT and is similar to adoptive T therapy, especially with respect to CAR therapy. CAR-NK-related clinical trials show that the most adopted CAR design corresponds with first and second generation T-CAR (86). Most NK-CARs use CD28 and 4-1BB, which are more specific to T cells, as their transmembrane and intracellular domain, respectively (87, 88). Later studies began to design CARs specific to NK cells. For example, intracellular domains replaced CD28 with 2B4, DAP12, or DAP10 (89, 90). Li et al. proved that the signaling domains of CAR-NK, such as NK2G2D-2B4, exhibited superior in vitro and in vivo anti-tumor activities compared to that which contains CD28-4-1BB (91). The revolution of CAR-NK therapy is described in Figures 2A–D, and it is clear that the CAR construct is becoming increasingly sophisticated with the growing understanding of T cell activation and tumor-specific and -associated antigens that are also suitable for NK cells.

IMMUNOSUPPRESSIVE MECHANISMS OF GLIOMA

Glioma, especially GBM, shows an extreme cell heterogeneity, diffuse growth patterns and high invasiveness. Gliomas were thought to be “immune cold” tumors with low infiltration of lymphocytes (95). Furthermore, microenvironment of the glioma has the ability to suppress immune response systematically and locally.

Mahaley et al. first reported the presence of lymphopenia in GBM (96). Studies have found patient-derived peripheral blood lymphocytes shows immune defects that exhibited varying levels of proliferative unresponsiveness to the T-cell mitogens concanavalin A (ConA), phytohemagglutinin (PHA) and anti-CD3 monoclonal antibody as well as with the T-dependent B-cell mitogen, pokeweed mitogen (PWM) (97, 98). A selective impairment of the IL-2 system and T cell receptor-mediated signaling in lymphocytes of patients with glioblastomas may contribute to the unresponsiveness (99, 100). Compared to healthy individuals,
accumulation of myeloid-derived suppressor cells (MDSCs) in the peripheral blood of patients with glioma was found (101, 102). MDSCs impair tumor immunity by interacting with macrophages to increase IL-10 and decrease IL-12 production, driving a tumor-promoting type 2 response (103). Inhibitory soluble factors secreted by glioma can suppress lymphocyte function. Transforming growth factor beta (TGF-β) can impair peripheral blood NK cell function by downregulating NKG2D (104–107). Therefore, the immune responses are suppressed systematically in glioma microenvironment.

Gliomas often overexpress phosphorylated signal transducer and activator of transcription 3 (p-STAT3) that induces a variety of immunosuppressive factors including IL-10, prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF) and TGF-β (108). These soluble factors can suppress cytotoxic T lymphocytes activity and proliferation (108). TGF-β and IL-10 can induce Tregs that inversely modulate immune response (109). Chemokines and cytokines, such as CX3CL1 and CCL5 can recruit tumor-associated macrophages to GBM microenvironment and contribute to abnormal angiogenesis (110, 111). Most GBM cells express high levels of MHC class I molecules that can inhibit NK cells by interacting with inhibitory KIRs (112). Absolute survival advantages of tumor depriving of nutrition and oxygen might suppress NK cell metabolism and antitumor activity (113). N6-methyladenosine (m6A) modification is an emerging field in the study of tumorigenicity and therapy resistance of glioma (114, 115). The relationship between m6A states and immune infiltration and function in glioma is still unclear. Studies found higher m6A score was associated with T cells exhaustion and lower NK cells in the m6A score-high pancreatic ductal adenocarcinoma (116). So, the immune responses are suppressed locally in glioma microenvironment.

APPLICATIONS OF NK CELLS FOR GLIOMA TREATMENT

Except for unique advantages of NK cells, there is still a potential of NK cells in treating glioma. Cözer et al. analyzed RNA-seq datasets from the TCGA database and found NK-cell infiltration in both low grade glioma and GBM and even had higher scores compared to T-cell infiltration, which paved the way for the use of treatments targeting NK cells in glioma (117). Similar to adoptive T therapy, NK cell-based immunotherapy mainly concentrates on hematological malignancies. Thus far, the therapeutic utility of NK cell-based immunotherapy for the treatment of glioma has mainly been investigated in preclinical studies (Table 3). These trials most utilize either PBNK cells or NK92 cells, as well as first and second generation CARs designed for T cells and not optimized for NK cell signaling. Furthermore, clinical trials pay more attention to evaluate the safety of CAR-NK therapy. Although preclinical studies began to test the efficiency of DAP12 specific for NK cell signaling. Most of
them adopted similar CARs as used in clinical trials. Compared to hematological malignancies, both in the quantity and CARs design, the application of NK cell-based therapies in glioma lags far behind.

FUTURE PERSPECTIVES

Compared to T cell-based therapy, the development of NK cell-based therapy falls behind to some degree in the treatment of glioma. Adoptive NK cell therapy is lack of in vivo persistence without cytokine support, which may limit the efficacy of the NK cell immunotherapy. System administration of cytokines is associated with undesirable toxicities as described above. Trafficking to tumor beds is critical for the efficacy of adoptive cellular therapy. Müller et al. observed an infiltration increase of anti-EGFRvIII CAR-NK cells engineered to express CXCR4 to CXCL12/SDF-1α secreting glioblastoma cells, leading to improved tumor regression and survival in a mouse model of glioblastoma (90). The difficulty may be resolved by intratumoral administration of NK cells products. In general, there is much room for the development of CAR-NK therapy in the field of glioma treatment. Much more pressing for NK cell-based therapy is designing more efficient products in treating glioma. Therefore, we try to put up several strategies to achieve the goal on the base of the knowledge of NK cells and glioma.

NK cell therapy is the lack of in vivo persistence in the absence of cytokine support. IL-15 is essential for NK cell function and homeostasis and can be added to CAR molecules to mimic the fourth generation of T-CAR. TGF-β plays an essential role in impairing NK cell function. Inverted CAR may be applied to reverse the situation by fusing the ectodomain of the TGF-β receptor to the endodomain of an activating receptor. CD3ζ is found in the intracellular domains of T-CAR and NK-CAR. Furthermore, CD3ζ containing three immunoreceptor tyrosine-based activation motifs (ITAMs; TykL/Ix6–8TykL/I, with 29 amino acids), has a limited impact on the effectiveness of the CAR due to its mono-phosphorylated ITAM and BRS motif, respectively (124). Incorporation of the ITAM of CD3ζ into a second-generation CAR increased the antitumor activity of CAR-T cells by reducing the cytokine production and promoting the persistence of CAR-T (124). NK cells possess many types of stimulatory receptors, such as CD16, NKp46, and NKG2D, and these stimulatory receptors do not act separately. In fact, apart from CD16, which is sufficient for activation of resting NK cells, it is necessary for all activating receptors to cooperate and synergize with one another for NK activation (125).

Interestingly, the ITAM of many stimulatory receptors or their related adaptors, such as FcγRIγ and DAP12, also consists of 29 amino acids with different sequences. Therefore, an exchange may produce more effective CAR-NK cells (Figure 2E) with mild changes in CD3ζ structure.

CAR-NK cells can kill targets in a CAR-independent manner. Combination therapy with monoclonal antibodies is promising, and it was observed that trivalent antibodies recognized targets and simultaneously engaged NKP46 and CD16, which controlled tumor growth in mouse models (126). A team used antibodies to prevent the loss of cell surface MICA and MICB in human cancer cells, which stabilizes the bond between NKG2D and its ligands. These antibodies inhibit tumor growth in mouse models, and the antitumor effect is mediated mainly by the activation of NKG2D and CD16 (127). Apart from the activating receptors, antibodies blocking the inhibitory receptors of NK cells, such as KIR, NKG2A, TIM3, and TIGIT have been studied (52, 128–130). NK cells can express FcγRIIIA/CD16a and/or FcγRIIC, which bind to the Fc portion of human immunoglobulins. Once antibodies bind to targets, NK cells are able to recognize the Fc portion and lyse target cells through antibody-dependent cell-mediated cytotoxicity (ADCC) (131). So, the combination of immune checkpoint inhibitors and NK cell-based therapy may be potential. Although, Nivolumab failed to improve overall survival of patients with recurrent glioblastoma. Studies have found that cancer type 1 or 2 susceptibility gene (BRCA1/2) alteration was associated with higher tumor mutation burden (TMB) and may serve as a novel indicator associated with better treatment outcomes of immune checkpoint inhibitors (132). The function of BRCA1/2 and other DNA mismatch repair gene alteration are worth being investigated in glioma. Most GBM cells express high levels of MHC class I molecules (112). Thus, blockade of such KIRs with antibodies may enhance NK-cell mediated killing.
NK cells and T cells originate from a common ancestor and share many similarities. Both interact with MHC class I molecules, contributing to innate and adaptive immunity. They have similar cell-surface phenotypes and cellular functions, such as cytotoxicity, secretion of cytokines, and interaction with DCs (133). NK cells also play a role in regulating T cell response. For example, NK cells can produce IFN-gamma, which promotes CD4+ T cell differentiation into TH1 helper cells (134). The latter contributes to an enhanced CD8+ T cell response (135). NK cells produce IFN-gamma, leading to DC maturation and IL-12 secretion, which is sufficient for CD8+ T cell activation independent of CD4+ T cell (136). As an important constituent of the innate immunity response, NK cells can kill target cells and release antigen for cross-presentation and activation of T cells (137). NK cells can also negatively regulate solid tumors (140). Moreover, CAR-NK cells can improve the infiltration in solid tumors were also infiltrated with T cells (117). Anti-IL15Rα, anti-HER2, and anti-EGFRvIII CAR-T have been tested in glioma (141–143). Utilizing the safety of CAR-NK cells and the high efficacy of CAR-T cells is worth exploring in gliomas.

Oncolytic virus (OV) OVs have a double oncolytic action by both directly attacking the cancer cells and inspiring a tumor specific immune response. OVs can be engineered to repress antibodies targeting tumor antigen and/or secret cytokines activating immune response. Xilin Chen et al. observed that the combination of EGFR-CAR NK-92 cells with oHSV-1 resulted in more efficient killing of MDA-MB-231 tumor cells and significantly longer survival of tumor-bearing mice (144). Rui Ma et al. (145) generated a therapy that combined off-the-shelf EGFR-CAR NK cells and an Oncolytic virus OV called OV-IL15C. OV-IL15C-infected GBM cells can secrete soluble IL15/IL15Rα complex. GBM-bearing mice models exhibited that the therapy synergistically suppressed tumor growth. These potential therapies are anticipated to be further investigated in clinical trials. Combination therapies are based on the knowledge of NK cell biology. An evolving understanding of gliomas can inspire treatment strategies targeting the basic elements of these malignant cells and their microenvironments. We believe NK cell-based immunotherapy will have a better performance in treating glioma in the future.

AUTHOR CONTRIBUTIONS

CP conceived the article. YZ compiled the review and prepared the draft of the manuscript. GL, TJ, and WZ reviewed and edited the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from National Natural Science Foundation of China (No.82072768), Construction Project of Multi Omics Platform for Major Brain Diseases (PXM2019_026280_000002), Sino German Cooperation and Exchange Project (Mobility Programme, M-0020), Research Fund for Clinical and Translational Medicine of Chinese Academy of Medical Sciences (2020-I2M-C&T-A-024).
Pan et al. NK Cell Therapy for Gliomas

Natural Killer Cell Transplantation in Childhood Acute Myeloid Leukemia. J Clin Oncol (2010) 28(6):955–9. doi: 10.1200/jco.2009.24.4590

Miller JS, Soong SJ, Panosonis-McNeil A, McNeeley R, Yen GH, Faustsch SK, et al. Successful Adoptive Transfer and In Vivo Expansion of Human Haploidentical NK Cells in Patients With Cancer. Blood (2005) 105 (8):3051–7. doi: 10.1182/blood-2004-07-2974

Morvan MG, Lanier LL. NK Cells and Cancer: You can Teach Inmate Cells New Tricks. Nat Rev Cancer (2016) 16(1):1–7. doi: 10.1038/nrc.2015.5

Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med (2020) 382(6):545–53. doi: 10.1056/nejmoa1906077

Colonna M, Samaridis J. Cloning of Immunoglobulin-Superfamily Members Associated With HLA-C and HLA-B Recognition by Human Natural Killer Cells. Science (1995) 268(5209):405–8. doi: 10.1126/science.7716543

Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Alosi T, et al. Donor Natural Killer Cell Allorecognition of Missing Self in Haploidentical Hematopoietic Transplantation for Acute Myeloid Leukemia: Challenging Its Predictive Value. Blood (2007) 110(1):433–40. doi: 10.1182/blood-2006-07-038687

Storkus WJ, Howell DN, Salter RD, Dawson JR, Cresswell P. NK Susceptibility Varies Inversely With Target Cell Class I HLA Antigen Expression. J Immunol (1987) 138(6):1657–9.

Moretta A, Vitale M, Bottino C, Orrenu AM, Morelli L, Augugliaro R, et al. PSH Molecules as Potent Receptors for Major Histocompatibility Complex (MHC) Class I Molecules in Human Natural Killer (NK) Cells: Anti-PSH Antibodies Reconstitute Lysis of MHC Class I-Protected Cells in NK Clones Displaying Different Specificities. J Exp Med (1993) 178(2):597–604. doi: 10.1084/jem.178.2.597

Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Lunardi E, et al. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front Immunol (2019) 10:1179. doi: 10.3389/fimmu.2019.01179

Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, et al. Killer Ig-Like Receptors: New Biology and Insights Into the Graft- Versus-Host Disease. Nature Rev Immunol (2005) 15(10):654–5. doi: 10.1038/jimmunol.172.1.644

Hsu KC, Gooley T, Malliki M, Pinto-Agnelo C, Dupont B, Bignon JD, et al. KIR Ligands and Prediction of Relapse After Unrelated Donor Hematopoietic Cell Transplantation for Hematologic Malignancy. Biol Blood Marrow Transplant (2006) 12(8):828–36. doi: 10.1016/j.bbmt.2006.04.008

Verheyden S, Schots R, Duquet W, Demonet C. A Defined Donor Activating Natural Killer Cell Receptor Genotype Protects Against Leukemic Relapse After Related HLA-Identical Hematopoietic Stem Cell Transplantation. Leukemia (2005) 19(8):1446–51. doi: 10.1038/sj.leu.2403839

Sconocchia G, Lao M, Provenzano M, Ravezni K, Wongsewa F, Fujihara W, et al. The Antileukemic Effect of HLA-Matched NK and NK-T Cells in Chronic Myelogenous Leukemia Involves NKGR2D-Target-Cell Interactions. Blood (2005) 106(10):3666–72. doi: 10.1182/blood-2005-02-0479

Verheyden S, Demonet C. NK Cell Receptors and Their Ligands in Leukemia. Leukemia (2008) 22(2):249–57. doi: 10.1038/leu.2004040

Shimasaki N, Jain A, Campiana D. NK Cells for Cancer Immunotherapy. Nat Rev Drug Discovery (2020) 19(3):200–18. doi: 10.1038/s41573-019-0052-1

Weiden PL, Flournoy N, Thomas ED, Prentice R, Feffer A, Buckner CD, et al. Antileukemic Effect of Graft-Versus-Host Disease in Human Recipients of Allogeneic-Marrow Grafs. N Engl J Med (1979) 300(19):1068–73. doi: 10.1056/nejm197905103001902

Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-Versus-Leukemia Reactions After Bone Marrow Transplantation. Blood (1999) 75(3):553–62. doi: 10.1182/blood.v75.3.553

Ferrara JL, Levine JE, Reddy P, Holler E. Graft-Versus-Host Disease. Lancet (2009) 373(9674):1550–61. doi: 10.1016/s0140-6736(09)62037-3

Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G, et al. Survival Advantage With KIR Ligand Incompatibility in Hematopoietic Stem Cell Transplantation From Unrelated Donors. Blood (2003) 102(3):814–9. doi: 10.1182/blood-2003-01-0091

Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tost A, et al. Effectiveness of Donor Natural Killer Cell Alloreactivity in Mismatched Hematopoietic Transplants. Science (2002) 295(5562):2097–100. doi: 10.1126/science.1068440

Corbini C, Zingoni A, Cippitelli M, Piccoli M, Frati L, Santoni A. Antigen-Activated Human T Lymphocytes Express Cell-Surface NKGR2D Ligands via an ATM/ATR-Dependent Mechanism and Become Susceptible to Autologous NK-Cell Lysis. Blood (2007) 110(2):1606–15. doi: 10.1182/blood-2006-05-25720

Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL, et al. Survival Advantage With KIR Ligand Incompatibility in Hematopoietic Stem Cell Transplantation From Unrelated Donors. Blood (2005) 105(12):6058–61. doi: 10.1182/blood-2007-01-065383

Barnes DW, Corp MJ, Loutit JF, Neal FE. Treatment of Murine Leukaemia With X Rays and Homologous Bone Marrow; Preliminary Communication. Br Med J (1956) 2(4993):626–7. doi: 10.1136/bmj.2.4993.626

Bachar-Lustig E, Rachamin N, Li HW, Lan F, Reissner Y. Megadose of T Cell-Depleted Bone Marrow Overcomes MH Class B Barriers in Sublethally Irradiated Mice. Nat Med (1995) 1(12):1268–73. doi: 10.1038/nm1295-1268

Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andrea A, et al. Functionally and Structurally Distinct NK Cell Receptor
Pan et al. NK Cell Therapy for Gliomas

Repertoires in the Peripheral Blood of Two Human Donors. *Immunity* (1997) 7(6):739–51. doi: 10.1016/s1074-7613(00)80389-3

52. André P, Denis O, Sudbas C, Bourbon-Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor That Promotes Anti-Tumor Immunity by Unleashing Both T and NK Cells. *Cell* (2018) 175(7):1731–43.e13. doi: 10.1016/j.cell.2018.10.014

53. Braud V, Jones EY, McMichael A. The Human Major Histocompatibility Complex Class Iib Molecule HLA-E Binds Signal Sequence-Derived Peptides With Primary Anchor Residues at Positions 2 and 9. *Eur J Immunol* (1997) 27(5):1164–9. doi: 10.1002/eji.1802705171

54. Braud VM, Allan DS, Wilson D, McMichael AJ, TAP- and Tapasin-Dependent HLA-E Surface Expression Correlates With the Binding of an MHC Class I Leader Peptide. *Cancer Biol* (1998) 8(1):1–10. doi: 10.1016/s0960-9822(98)70014-4

55. Bauer S, Groh V, Wu J, Steine A, Phillips IH, Lanier LL, et al. Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. *Science* (1999) 285(5427):729–9. doi: 10.1126/science.285.5427.727

56. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, et al. ULBPvariants: Novel MHC Class I-Related Molecules, Bind to CMV Glycoprotein UL16 and Stimulate NK Cytotoxicity Through the NKG2D Receptor. *Immunity* (2001) 14(2):123–33. doi: 10.1016/s1074-7613(01)00095-4

57. Fajgenbaum DC, June CH. Cytokine Storm. *N Engl J Med* (1997) 337(5):856.

58. Klingemann H. Are Natural Killer Cells Superior CAR Drivers? *Immunity* (2001) 13(5):635–7. doi: 10.1006/immu.2001.1311

59. Maki G, Klingemann HG, Martinson JA, Tam YK. Factors Regulating the Cytotoxic Activity of the Human Natural Killer Cell Line, NK-92. *J Hematother Stem Cell Res* (2001) 10(3):369–83. doi: 10.1089/152581601750288975

60. Schönfeld K, Sahn C, Zhang C, Naundorf S, Bredel C, Odendahl M, et al. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor. *Mol Ther* (2015) 23(2):330–8. doi: 10.1038/mt.2014.219

61. Vela M, Corral D, Carrasco P, Fernández L, Valentin J, González B, et al. Haploidentical IL-15/41BBL Activated and Expanded Natural Killer Cell Immunotherapy After Salvage Chemotherapy in Children With Relapsed and Refractory Acute Myeloid Leukemia. *Am J Cancer Res* (2018) 8(6):1083–9.

62. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive Transfer of Autologous Natural Killer Cells Leads to High Levels of Circulating Natural Killer Cells But Does Not Mediate Tumor Regression. *Clin Cancer Res* (2011) 17(19):6287–97. doi: 10.1158/1078-0432.Ccr-11-1347

63. Maki G, Klingemann HG, Martinson JA, Tam YK. Factors Regulating the Cytotoxic Activity of the Human Natural Killer Cell Line, NK-92. *J Hematother Stem Cell Res* (2001) 10(3):369–83. doi: 10.1089/152581601750288975

64. Ciurea SO, Schafer JR, Bassett R, Denman CJ, Cao K, Willis D, et al. Phase 1 Clinical Trial of Adoptive Transfer of Expanded Natural Killer Cells in Combination With IgG1 Antibody in Patients With Gastric or Colorectal Cancer. *Int J Cancer* (2018) 142(2):2599–609. doi: 10.1002/ijc.31285

65. Rumahiti E. Fibroinectin and its Receptors. *Annu Rev Biochem* (1988) 57:375–413. doi: 10.1146/annurev.bi.57.070188.002111

66. Guo Y, Luan L, Patil NK, Sherwood ER. Immunobiology of the IL-15/IL-68. *Sakamoto N, Ishikawa T, Kokura S, Okayama T, Oka K, Ideno M, et al.* Phase 1 Clinical Trial of Autologous NK Cell Therapy Using Novel Expansion Method in Patients With Advanced Digestive Cancer. *J Transl Med* (2015) 13:277. doi: 10.1186/s12976-015-0632-8

67. Ishikawa T, Okayama T, Sakamoto N, Ideno M, Oka K, Enoki T, et al. Phase 1 Clinical Trial of Adoptive Transfer of Expanded Natural Killer Cells in
Pan et al. NK Cell Therapy for Gliomas

98. Altavera B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S, et al. 2b4 (CD244) Signaling by Recombinant Antigen-Specific Chimeric Receptor Costimulates Natural Killer Cell Activation to Leukemia and Neuroblastoma Cells. Clin Cancer Res (2009) 15(15):4857–66. doi: 10.1158/1078-0432.Ccr-08-2810

99. Müller N, Michen S, Tietze S, Topfer K, Schulte A, Lamszus K, et al. Engineering NK Cells Modified With an EGFVR8-Specific Chimeric Antigen Receptor to Overexpress CXCRI4 Improves Immunotherapy of CXL12/SDF-1α-Infused Glioblastoma. *J Immunother* (2015) 38(5):197–210. doi: 10.1097/j.jito.0000000000000082

100. Li Y, Hermanson DL, Morriety BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered With Chimeric Antigen Receptors Enhance Anti-Tumor Activity. *Cell Stem Cell* (2018) 23(2):181–92.e5. doi: 10.1016/j.stem.2018.06.002

101. Billadeau DD, Upshaw JL, Schoon RA, Dick CJ, Leibson PJ. NKG2D-DAP10 Triggers Human NK Cell-Mediated Killing via a Syk-Independent Regulatory Pathway. *Nat Immunol* (2003) 4(6):557–64. doi: 10.1038/nijm29

102. Blyth DA, Upshaw JL, Schoon RA, Dick CJ, Leibson PJ. NKG2D-DAP10 Triggers Human NK Cell-Mediated Killing via a Syk-Independent Regulatory Pathway. *Nat Immunol* (2003) 4(6):557–64. doi: 10.1038/nijm29

103. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, Coactivation, Talk Between Myeloid-Derived Suppressor Cells and Macrophages Subverts Natural Human Monocytes Exposed to Glioma Cells Acquire Myeloid-Derived Suppressor Cell Phenotype. *Blood* (2011) 118(20):5776–84. doi: 10.1182/blood-2010-09-307224

104. Chakravartthy A, Furness A, Joshi K, Ghosani E, Ford K, Ward MJ, et al. Pan-NK Cell Deconvolution of Tumour Composition Using DNA Methylation. *Nat Commun* (2018) 9(1):3220. doi: 10.1038/s41467-018-05570-1

105. Mahaley MS Jr., Gentry RE, Bigner D. Immunobiology of Primary Intraocular Tumors. *J Neurosurg* (1977) 47(1):35–43. doi: 10.3171/jns.1977.47.1.0035

106. Elliott LH, Brooks WH, Roszman TL. Activation of Immunoregulatory Lymphocytes Obtained From Patients With Malignant Gliomas. *J Neurosurg* (1987) 67(2):231–6. doi: 10.3171/jns.1987.67.2.0231

107. McVicar DW, Davis DF, Merchant RE. In Vitro Analysis of the Proliferative Potential of T Cells From Patients With Brain Tumor: Glioma-Associated Immunosuppression Unrelated to Intrinsic Cellular Defect. *J Neurosurg* (1992) 76(2):251–60. doi: 10.3171/jns.1992.76.2.0251

108. Ashkenazi E, Deutsch M, Tirosch R, Weinreb A, Tsukerman A, Brodie C. A Selective Impairment of the IL-2 System in Lymphocytes of Patients With Glioblastomas: Increased Level of Soluble IL-2R and Reduced Protein Tyrosine Phosphorylation. *Neuroimmunomodulation* (1997) 4(1):49–56. doi: 10.1159/00007315

109. Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL. T Cell Receptor-Mediated Signaling Defects in T Cells Obtained From Patients With Primary Intraocular Tumors. *J Immunol* (1997) 159(9):4415–25.

110. Raychaudhuri B, Rayman P, Ireland J, Tilton JC, Long EO, Watzi M. Molecular Basis for Positive and Negative Signaling by the Natural Killer Cell Receptor 24B (CD244). *Blood* (2005) 105(12):4722–9. doi: 10.1182/blood-2004-09-3776

111. Sh pembly A, Mutschler S, Maae J, Weiler M, Schulte A, Lamszus K, et al. NKG2D-Mediated Antiglioma Immune Response, Inhibits Glioma Cell Migration and Invasiveness, and Abrogates Tumorigenicity In Vivo. *Brain Cancer Res* (2004) 64(20):7596–603. doi: 10.1158/0008-5472.Can-04-1627

112. Frieze MA, Mutschler S, Maae J, Weiler M, Schulte A, Lamszus K, et al. RNA Interference Targeting Transforming Growth Factor-Beta Enhances NKG2D-Mediated Antiglioma Immune Response, Inhibits Glioma Cell Migration and Invasiveness, and Abrogates Tumorigenicity In Vivo. *Brain Cancer Res* (2004) 64(20):7596–603. doi: 10.1158/0008-5472.Can-04-1627

113. Castriconi R, Cantiotti C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, et al. Transforming Growth Factor-Beta Inhibits Expression of NKp30 and NKG2D Receptors Consequences for the NK-Mediated Killing of Dendritic Cells. *Proc Natl Acad Sci USA* (2003) 100(7):4120–5. doi: 10.1073/pnas.0730641100

114. Cawley ME, Gonzalez GC, Zhang L, Ibrahim G, Kelly JG, Gustafson MP, et al. Normal Human Monocytes Exposed to Glioma Cells Acquire Myeloid-Derived Suppressor Cell-Like Properties. *Neuro Oncol* (2010) 12(4):351–65. doi: 10.1093/neuonc/nop023

115. Sinha P, Clements VK, Bunt SK, Alsbelda SM, Ostrand-Rosenberg S. Cross-Talk Between Myeloid-Derived Suppressor Cells and Macrophages Subverts Tumor Immunity Toward a Type 2 Response. *J Immunol* (2007) 179(2):977–83. doi: 10.4049/jimmunol.179.2.977

116. Frieze MA, Mutschler S, Maae J, Weiler M, Schulte A, Lamszus K, et al. RNA Interference Targeting Transforming Growth Factor-Beta Enhances NKG2D-Mediated Antiglioma Immune Response, Inhibits Glioma Cell Migration and Invasiveness, and Abrogates Tumorigenicity In Vivo. *Brain Cancer Res* (2004) 64(20):7596–603. doi: 10.1158/0008-5472.Can-04-1627

117. Castriconi R, Cantiotti C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, et al. Transforming Growth Factor-Beta Inhibits Expression of NKp30 and NKG2D Receptors Consequences for the NK-Mediated Killing of Dendritic Cells. *Proc Natl Acad Sci USA* (2003) 100(7):4120–5. doi: 10.1073/pnas.0730641100

118. Genßler S, Burger MC, Zhang C, Oelsner S, Mildenberger I, Wagner M, et al. Transforming Growth Factor Beta 1 Inhibits Expression of NKp30 and NKG2D Receptors: Consequences for the NK-Mediated Killing of Dendritic Cells. *Proc Natl Acad Sci USA* (2003) 100(7):4120–5. doi: 10.1073/pnas.0730641100

119. Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, et al. CAR-Engineered NK Cells for Targeted Therapy of Glioblastoma. *Cancer Discovery* (2016) 6:351–64. doi: 10.1093/cancerdiscovery/cdw128

120. Gómez S, Gómez A, Sanz C, Beltrán R, Escudero A, Vazquez J, et al. Natural Killer Cell Therapy for Gliomas: The Current State and Future Perspectives. *Front Immunol* (2017) 8:216. doi: 10.3389/fimmu.2017.00216

121. Zhang C, Burger MC, Zhang A, Guimaraes FS, Rabbiloud J, Grau M, et al. TGF-B Inhibits the Activation and Functions of NK Cells by Repressing the mTOR Pathway. *Sci Signal* (2016) 9(415):ra19. doi: 10.1126/scisignal.aad1884

122. Burger MC, Zhang C, Oelsner S, Mildenberger I, Wagner M, et al. CAR-Engineered NK Cells for Targeted Therapy of Glioblastoma. *Cancer Discovery* (2016) 6:351–64. doi: 10.1093/cancerdiscovery/cdw128

123. Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, et al. CAR-Engineered NK Cells for Targeted Therapy of Glioblastoma: Turning
Innate Effectors Into Precision Tools for Cancer Immunotherapy. *Front Immunol* (2019) 10:2683. doi: 10.3389/fimmu.2019.02683

121. Tahir W, Zhou Q, Masubuchi T, Shi X, Li H, Xu X, et al. Multiple Signaling Roles of CD3ε and Its Application in CAR-T Cell Therapy. *Cell* (2020) 182 (4):855–71.e23. doi: 10.1016/j.cell.2020.07.018

122. Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy Among Receptors on Resting NKG Cells for the Activation of Natural Cytotoxicity and Cytokine Secretion. *Blood* (2006) 107(1):159–66. doi: 10.1182/blood-2005-04-1351

123. Gauthier L, Morel A, Anceira N, Rossi B, Blanchard-Alvarez A, Grondin G, et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. *Cell* (2019) 177(7):1701–13.e16. doi: 10.1016/j.cell.2019.05.045

124. Ferrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, et al. Innate Immunity Deforms the Capacity of Antiviral T Cells to Limit Persistent Infection. *J Exp Med* (2010) 207(6):1333–43. doi: 10.1084/jem.20091193

125. da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, et al. Reversal of NK-Cell Exhaustion in Advanced Melanoma by Tim-3 Antibody-Mediated Inhibition of MICA and MICB Shedding Promotes NK Cell-Driven Tumor Immunity. *Science* (2018) 359(6383):1537–42. doi: 10.1126/science.aao5050

126. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. *JAMA Oncol* (2017) 3(8):1094–101. doi: 10.1001/jamaoncol.2017.0184

127. Benson DM Jr, Hofmeister CC, Padmanabhan S, Suvannasankha A, Morrisette JD, et al. A Single Dose of Peripherally Infused EGFRVIII-Directed CAR-T Cells Mediates Antigen Loss and Induces Adaptive Resistance in Patients With Recurrent Glioblastoma. *Sci Transl Med* (2017) 9(399):eaat0984. doi: 10.1126/scitranslmed.aat0984

128. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. *Front Immunol* (2015) 6:368. doi: 10.3389/fimmu.2015.00368

129. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. *Front Immunol* (2015) 6:368. doi: 10.3389/fimmu.2015.00368

130. Zhou Z, Li M. Evaluation of BRCA1 and BRCA2 as Indicators of Response to Cell-Mediated and Humoral Responses. *Blood* (2009) 113(26):6593–602. doi: 10.1182/blood-2009-01-201467

131. Cook KD, Whitmire JK. The Depletion of NK Cells Prevents T Cell Exhaustion to Efficiently Control Disseminating Virus Infection. *J Immunol* (2013) 190(2):641–9. doi: 10.4049/jimmunol.1202444

132. Andrews DM, Estcourt MJ, Andoniou CE, Wäström ME, Khong A, Voigt V, et al. Innate Immunity Defines the Capacity of Antiviral T Cells to Limit Persistent Infection. *J Exp Med* (2010) 207(6):1333–43. doi: 10.1084/jem.20091193

133. Pan et al. NK Cell Therapy for Gliomas