Wasserstein Convergence Rate for Empirical Measures on Noncompact Manifolds *

Feng-Yu Wanga,b)

a) Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
b) Department of Mathematics, Swansea University, Bay Campus, Swansea, SA1 8EN, United Kingdom

July 6, 2021

Abstract

Let \(X_t \) be the (reflecting) diffusion process generated by \(L := \Delta + \nabla V \) on a complete connected Riemannian manifold \(M \) possibly with a boundary \(\partial M \), where \(V \in C^1(M) \) such that \(\mu(dx) := e^V(x)dx \) is a probability measure. We estimate the convergence rate for the empirical measure \(\mu_t := \frac{1}{t} \int_0^t \delta_{X_s} \, ds \) under the Wasserstein distance. As a typical example, when \(M = \mathbb{R}^d \) and \(V(x) = c_1 - c_2 |x|^p \) for some constants \(c_1 \in \mathbb{R}, c_2 > 0 \) and \(p > 1 \), the explicit upper and lower bounds are present for the convergence rate, which are of sharp order when either \(d < \frac{4(p-1)}{p} \) or \(d \geq 4 \) and \(p \to \infty \).

AMS subject Classification: 60D05, 58J65.

Keywords: Empirical measure, diffusion process, Wasserstein distance, Riemannian manifold.

1 Introduction

Let \(M \) be a \(d \)-dimensional complete connected Riemannian manifold, possibly with a boundary \(\partial M \). Let \(V \in C^1(M) \) such that \(Z_V := \int_M e^V(x) \, ds < \infty \), where \(dx := \text{vol}(dx) \) stands for the Riemannian volume measure. Then \(\mu(dx) := Z_V^{-1} e^V(x) \, dx \) is a probability measure, and the (reflecting if \(\partial M \) exists) diffusion process \(X_t \) generated by \(L := \Delta + \nabla V \) is reversible with stationary distribution \(\mu \). When \(M \) is compact, the convergence rate of the empirical measure

\[\mu_t := \frac{1}{t} \int_0^t \delta_{X_s} \, ds, \quad t > 0 \]

is supported in part by NNSFC (11771326, 11831014, 11921001).
under the Wasserstein distance is investigated in [19]. More precisely, let ρ be the Riemannian distance on M, and let

$$\mathbb{W}_2(\mu_1, \mu_2) := \inf_{\pi \in \mathcal{C}(\mu_1, \mu_2)} \|\rho\|_{L^2(\pi)}$$

be the associated L^2-Wasserstein distance for probability measures on M, where $\mathcal{C}(\mu_1, \mu_2)$ is the class of all couplings of μ_1 and μ_2. For two positive functions ξ, η of t, we denote $\xi(t) \sim \eta(t)$ if $c^{-1} \leq \frac{\xi(t)}{\eta(t)} \leq c$ holds for some constant $c > 1$ and large $t > 0$. According to [19], for large $t > 0$ we have

$$E[\mathbb{W}_2(\mu_t, \mu)^2] \sim \begin{cases} t^{-1}, & \text{if } d \leq 3, \\ t^{-1} \log t, & \text{if } d = 4, \\ t^{-\frac{2}{d-2}}, & \text{if } d \geq 5, \end{cases}$$

where the lower bound estimate on $E[\mathbb{W}_2(\mu_t, \mu)^2]$ for $d = 4$ is only derived for a typical example that M is the 4-dimensional torus and $V = 0$. Moreover, when ∂M is either convex or empty, we have

$$\lim_{t \to \infty} t E[\mathbb{W}_2(\mu_t, \mu)^2] = \sum_{i=1}^{\infty} \frac{2}{\lambda_i},$$

where $\{\lambda_i\}_{i \geq 1}$ are all non-trivial eigenvalues of $-L$ (with Neumann boundary condition if ∂M exists) listed in the increasing order counting multiplicities. See [17, 18] for further studies on the conditional empirical measure of the L-diffusion process with absorbing boundary.

In this note, we investigate the convergence rate of $E[\mathbb{W}_2(\mu_t, \mu)^2]$ for non-compact Riemannian manifold M.

1.1 Upper bound estimate

We first present a result on the upper bound estimate of $E^\nu[\mathbb{W}_2(\mu_t, \mu)^2]$, where E^ν is the expectation for the diffusion process with initial distribution ν. When $\nu = \delta_x$ is a Dirac measure, we simply denote $E^x = E^{\delta_x}$.

Let $p_t(x, y)$ be the heat kernel of the (Neumann) Markov semigroup P_t generated by L. We will assume

$$\gamma(t) := \int_M p_t(x, x) \mu(dx) < \infty, \quad t > 0. \quad (1.2)$$

By [12 Theorem 3.3] (see also [14, Theorem 3.3.19]) and the spectral representation of heat kernel, (1.2) holds if and only if L has discrete spectrum such that all eigenvalues $\{\lambda_i\}_{i \geq 0}$ of $-L$ listed in the increasing order satisfy

$$\sum_{i=0}^{\infty} e^{-\lambda_i t} < \infty, \quad t > 0.$$

Since M is connected, the trivial eigenvalue $\lambda_0 = 0$ is simple, so that

$$\lambda_1 := \inf \{\mu(|\nabla f|^2) : f \in C^1_b(M), \mu(f) = 0, \mu(f^2) = 1\} > 0. \quad (1.3)$$
The first non-trivial eigenvalue λ_1 is called the spectral gap of L, and \((1.3)\) is known as the Poincaré inequality.

In particular, \((1.2)\) holds if P_t is ultracontractive, i.e.

$$\sup_{x, y \in M} p_t(x, y) = \|P_t\|_{L^1(\mu) \to L^\infty(\mu)} < \infty, \quad t > 0.$$

Since $\gamma(t)$ is decreasing in t, \((1.2)\) implies

$$\beta(\varepsilon) := 1 + \int_{\varepsilon}^1 ds \int_s^1 \gamma(t) dt < \infty, \quad \varepsilon \in (0, 1].$$

Moreover, let

$$\alpha(\varepsilon) := \mathbb{E}^\mu[\rho(X_0, X_\varepsilon)^2] = \int_M \rho(x, y)^2 p_\varepsilon(x, y) \mu(dx) \mu(dy), \quad \varepsilon > 0.$$

Finally, for any $k \geq 1$, let $\mathcal{P}_k = \{\nu \in \mathcal{P} : \nu = h_\nu \mu, \|h_\nu\|_\infty \leq k\}$, where \mathcal{P} is the set of all probability measures on M.

Theorem 1.1. Assume \((1.2)\).

1. For any $k \geq 1$,

$$\limsup_{t \to \infty} \left\{ t \sup_{\nu \in \mathcal{P}_k} \mathbb{E}^\nu[\mathcal{W}_2^2(\mu_t, \mu)] \right\} \leq \sum_{i=1}^\infty \frac{8}{\lambda_i^2}. \tag{1.6}$$

If P_t is ultracontractive, then

$$\limsup_{t \to \infty} \left\{ t \mathbb{E}^\nu[\mathcal{W}_2^2(\mu_t, \mu)] \right\} \leq \sum_{i=1}^\infty \frac{8}{\lambda_i^2}. \tag{1.7}$$

holds for $\nu \in \mathcal{P}$ satisfying

$$\int_0^1 ds \int_M \mathbb{E}^\nu[\rho(x, X_s)^2] \mu(dx) < \infty. \tag{1.8}$$

2. There exists a constant $c > 0$ such that

$$\sup_{\nu \in \mathcal{P}_k} \mathbb{E}^\nu[\mathcal{W}_2^2(\mu_t, \mu)] \leq ck \inf_{\varepsilon \in (0, 1]} \{ \alpha(\varepsilon) + t^{-1}\beta(\varepsilon) \}, \quad t, k \geq 1. \tag{1.9}$$

If P_t is ultracontractive, then there exists a constant $c > 0$ such that for any $\nu \in \mathcal{P}$ and $t \geq 1$,

$$\mathbb{E}^\nu[\mathcal{W}_2^2(\mu_t, \mu)] \leq c \left\{ \frac{1}{t} \int_0^1 \mathbb{E}^\nu[\mu(\rho(X_s, \cdot))^2] ds + \inf_{\varepsilon \in (0, 1]} \{ \alpha(\varepsilon) + t^{-1}\beta(\varepsilon) \} \right\}. \tag{1.10}$$

Since the conditions \((1.2)\), \((1.5)\) and \((1.8)\) are less explicit, for the convenience of applications we present the following consequence of Theorem 1.1.
Corollary 1.2. Assume that $\partial M = \emptyset$ or ∂M is convex outside a compact set. Let $V = V_1 + V_2$ for some functions $V_1, V_2 \in C^1(M)$ such that

\[
\text{Ric}_{V_1} := \text{Ric} - \text{Hess}_{V_1} \geq -K, \quad \|\nabla V_2\|_\infty \leq K
\]

holds for some constant $K > 0$, where Ric is the Ricci curvature and Hess denotes the Hessian tensor. For any $t, \varepsilon > 0$, let

\[
\tilde{\gamma}(t) := \int_M \frac{\mu(dx)}{\mu(B(x, \sqrt{t}))}, \quad \tilde{\beta}(\varepsilon) := 1 + \int_{\varepsilon}^{1} ds \int_{s}^{1} \tilde{\gamma}(r) dr.
\]

(1) There exists a constant $c > 0$ such that

\[
\sup_{\nu \in \mathcal{P}_k} \mathbb{E}^{\nu}[\mathbb{W}_2(\mu_t, \mu)^2] \leq ckt^{-1}, \quad t, k \geq 1.
\]

(2) If $\|P_t e^{\lambda \rho_{\beta}^2}\|_\infty < \infty$ for $\lambda, t > 0$, then for any $t \geq 1$ and $\nu \in \mathcal{P}$,

\[
\mathbb{E}^{\nu}[\mathbb{W}_2(\mu_t, \mu)^2] \leq c\left[t^{-1}\nu(|\nabla V|) + \inf_{\varepsilon \in [0, 1]} \{\varepsilon + t^{-1}\tilde{\beta}(\varepsilon)\}\right].
\]

1.2 Lower bound estimate

Consider the modified L^1-Warsserstein distance

\[
\tilde{W}_1(\mu_1, \mu_2) := \inf_{\pi \in \mathcal{P}(\mu_1, \mu_2)} \int_{M \times M} \{1 \wedge \rho(x, y)\} \pi(dx, dy) \leq \mathbb{W}_2(\mu_1, \mu_2).
\]

We have the following result.

Theorem 1.3. (1) In general, there exists a constant $c > 0$ such that

\[
\mathbb{E}^{\mu}[\tilde{W}_1(\mu_t, \mu)^2] \geq ct^{-1}, \quad t \geq 1.
\]

If (1.3) holds, then

\[
\liminf_{t \to \infty} \left\{t\mathbb{E}^{\nu}[\tilde{W}_1(\mu_t, \mu)^2]\right\} > 0, \quad \nu \in \mathcal{P}.
\]

(2) Let ∂M be empty or convex, and let $d \geq 3$. If $\mu(|\nabla V|) < \infty$ and

\[
\text{Ric} \geq -K, \quad V \leq K
\]

holds for some constant $K > 0$, then there exists a constant $c > 0$ such that

\[
\inf_{\nu \in \mathcal{P}_k} \mathbb{E}^{\nu}[\tilde{W}_1(\mu_t, \mu)] \geq c(kt)^{-1}, \quad k, t \geq 1,
\]

and moreover

\[
\liminf_{t \to \infty} \left\{t^{\frac{1}{d-2}}\mathbb{E}^{\nu}[\tilde{W}_1(\mu_t, \mu)]\right\} > 0, \quad d \geq 4, \nu \in \mathcal{P}.
\]

(3) Assume that P_t is ultracontractive, ∂M is either empty or convex, and $\text{Ric} - \text{Hess}_V \geq K$ for some constant $K \in \mathbb{R}$. Then

\[
\liminf_{t \to \infty} \inf_{\nu \in \mathcal{P}} \left\{t^{-1}\mathbb{E}^{\nu}[W_2(\mu_t, \mu)^2]\right\} \geq \sum_{i=1}^{\infty} \frac{2}{\lambda_i^2}.
\]
Remark 1.1. According to Theorem 1.1(1) and Theorem 1.3(3), when P_t is ultracontractive, ∂M is either empty or convex, and $\text{Ric} - \text{Hess}_\nu \geq K$ for some constant $K \in \mathbb{R}$, we have

$$\sum_{i=1}^{\infty} \frac{2}{\lambda_i^2} \leq \liminf_{t \to \infty} \left\{ t^{-1} \mathbb{E}^\nu[W_2(\mu_t, \mu)^2] \right\} \leq \limsup_{t \to \infty} \left\{ t^{-1} \mathbb{E}^\nu[W_2(\mu_t, \mu)^2] \right\} \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_i^2}, \quad \nu \in \mathcal{P}.$$

Because of (1.1) derived in [19] in the compact setting, we may hope that the same limit formula holds for the present non-compact setting. In particular, for the one-dimensional Ornstein-Uhlenbeck process where $M = \mathbb{R}, V(x) = -\frac{1}{2}|x|^2$ and $\lambda_i = i, i \geq 1$, we would guess

$$\lim_{t \to \infty} \left\{ t \mathbb{E}^\nu[W_2(\mu_t, \mu)^2] \right\} = \sum_{i=1}^{\infty} \frac{2}{i^2}.$$

However, there is essential difficulty to prove the exact upper bound estimate as the corresponding calculations in [19] heavily depend on the estimate $\|P_t\|_{L^1(\mu) \to L^\infty(\mu)} \leq ct^{-\frac{d}{2}}$ for some constant $c > 0$ and all $t \in (0, 1]$, which is available only when M is compact.

1.3 Example

To illustrate Corollary 1.2 and Theorem 1.3, we consider a class of specific models, where the convergence rate is sharp when $d < \frac{4p-1}{p}$ as both upper and lower bounds behave as t^{-1}, and is asymptotically sharp when $d \geq 4$ and $p \to \infty$ for which both upper and lower bounds are of order $t^{-\frac{d}{2}}$. The assertions will be proved in Section 4.

Example 1.4. Let $M = \mathbb{R}^d$ and $V(x) = -\kappa|\gamma| + W(x)$ for some constants $\kappa > 0, \alpha > 1$, and some function $W \in C^1(M)$ with $\|\nabla W\|_\infty < \infty$.

(1) There exists a constant $c > 0$ such that for any $t, k \geq 1$, we have

$$\sup_{\nu \in \mathcal{P}_k} \mathbb{E}^\nu[W_2(\mu_t, \mu)^2] \leq \begin{cases} ckt^{-\frac{2(\alpha-1)}{(\alpha-2)|\gamma|+2}}, & \text{if } 4(\alpha-1) < d\alpha, \\ ckt^{-1} \log(1+t), & \text{if } 4(\alpha-1) = d\alpha, \\ ckt^{-1}, & \text{if } 4(\alpha-1) > d\alpha. \end{cases}$$

(2) If $\alpha > 2$, then there exists a constant $c > 0$ such that for any $t \geq 1$,

$$\sup_{x \in \mathbb{R}^d} \mathbb{E}^x[W_2(\mu_t, \mu)^2] \leq \begin{cases} ct^{-\frac{2(\alpha-1)}{(\alpha-2)|\gamma|+2}}, & \text{if } 4(\alpha-1) < d\alpha, \\ ct^{-1} \log(1+t), & \text{if } 4(\alpha-1) = d\alpha, \\ ct^{-1}, & \text{if } 4(\alpha-1) > d\alpha. \end{cases}$$

(3) For any probability measure ν, there exists a constant $c > 0$ such that for large $t > 0$,

$$\mathbb{E}^\nu[W_2(\mu_t, \mu)^2] \geq \mathbb{E}^\nu[\tilde{W}_1(\mu_t, \mu)^2] \geq ct^{-\frac{2}{2v(2-\gamma)}}.$$

5
2 Proofs of Theorem 1.1 and Corollary 1.2

By the spectral representation, the heat kernel of P_t is formulated as

\begin{align}
 p_t(x,y) &= 1 + \sum_{i=1}^{\infty} e^{-\lambda_i t} \phi_i(x) \phi_i(y), \quad t > 0, x, y \in M,
\end{align}

where $\{\phi_i\}_{i \geq 1}$ are the associated unit eigenfunctions with respect to the non-trivial eigenvalues $\{\lambda_i\}_{i \geq 1}$ of $-L$, with the Neumann boundary condition if ∂M exists.

We will use the following inequality due to [9, Theorem 2]

\begin{align}
 W_2(f\mu, \mu)^2 &\leq 4\mu(\|\nabla(-L)^{-1}(f - 1)\|^2), \quad f \geq 0, \mu(f) = 1,
\end{align}

which is proved using an idea due to [2], see Theorem A.1 below for an extension to the upper bound on $W_p(f_1\mu, f_2\mu)$. To apply (2.2), we consider the modified empirical measures

\begin{align}
 \mu_{\varepsilon,t} := f_{\varepsilon,t}\mu, \quad \varepsilon > 0, t > 0,
\end{align}

where, according to (2.1),

\begin{align}
 f_{\varepsilon,t} := \frac{1}{t} \int_0^t p_{\varepsilon}(X_s, \cdot) = 1 + \sum_{i=1}^{\infty} e^{-\lambda_i \varepsilon} \xi_i(t) \phi_i, \quad \xi_i(t) := \frac{1}{t} \int_0^t \phi_i(X_s) ds.
\end{align}

Proof of Theorem 1.1. (1) It suffices to prove for $\sum_{i=1}^{\infty} \lambda_i^{-2} < \infty$. In this case, by [19, (2.19)] whose proof works under the condition (1.2), we find a constant $c > 0$ such that

\begin{align}
 \sup_{\nu \in \mathcal{P}} \left| t E^{\nu}[\mu(\|(-L)^{-\frac{1}{2}}(f_{\varepsilon,t} - 1)\|^2)] - \sum_{i=1}^{\infty} \frac{2}{\lambda_i^2 e^{2\varepsilon\lambda_i}} \right| \leq \frac{ck}{t} \sum_{i=1}^{\infty} \frac{1}{\lambda_i^2 e^{2\varepsilon\lambda_i}}.
\end{align}

This together with (2.2) yields

\begin{align}
 t \sup_{\nu \in \mathcal{P}} E^{\nu}[W_2(\mu_{\varepsilon,t}, \mu)^2] &\leq \sum_{i=1}^{\infty} \frac{8}{\lambda_i^2} + \frac{ck}{t} \sum_{i=1}^{\infty} \frac{4}{\lambda_i^2}, \quad \varepsilon > 0.
\end{align}

To approximate μ_t using $\mu_{\varepsilon,t}$, for any $n \geq 1$ let

\begin{align}
 W_{2,n}(\mu_1, \mu_2) := \inf_{\pi \in \mathcal{P}(\mu_1, \mu_2)} \left(\int_{M \times M} \{n \wedge \rho(x, y)^2\} \pi(dx, dy) \right)^{\frac{1}{2}}, \quad \mu_1, \mu_2 \in \mathcal{P}.
\end{align}

Given $\gamma \in \mathcal{P}$, let $(X^\gamma_s)_{s \geq 0}$ be the (reflecting, if $\partial M \neq \emptyset$) diffusion process generated by L with initial distribution γ, and let γP_s denote the distribution of X^γ_s. By the continuity of the diffusion process and the dominated convergence theorem, we have

\begin{align}
 \limsup_{\varepsilon \downarrow 0} W_{2,n}(\gamma P_s, \gamma)^2 = 0, \quad n \geq 1, \gamma \in \mathcal{P}.
\end{align}
Observing that $\mu_{\varepsilon,t} = \mu_{t}\varepsilon$, we have
\[
\limsup_{\varepsilon \downarrow 0} \mathbb{W}_{2,n}(\mu_{\varepsilon,t}, \mu_{t})^2 = 0, \quad n \geq 1, t > 0.
\]
Since $\mathbb{W}_{2,n}(\mu_{\varepsilon,t}, \mu_{t})^2 \leq n$ and $\nu \leq k\mu$ for $\nu \in \mathcal{P}_k$, this and the dominated convergence theorem yield
\[
\limsup_{\varepsilon \downarrow 0} \sup_{\nu \in \mathcal{P}_k} \mathbb{E}^\nu \mathbb{W}_{2,n}(\mu_{\varepsilon,t}, \mu_{t})^2 = \mathbb{W}_{2,n}(\mu_{\varepsilon,t}, \mu_{t})^2 = 0, \quad n \geq 1, t > 0.
\]
Combining this with (2.5) and applying the triangle inequality of $\mathbb{W}_{2,n}$, we derive
\[
t \sup_{\nu \in \mathcal{P}_k} \mathbb{E}^\nu \mathbb{W}_{2,n}(\mu_{t}, \mu)^2 \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_i^2} + \frac{ck}{t} \sum_{i=1}^{\infty} \frac{4}{\lambda_i^2}, \quad n \geq 1, t > 0.
\]
Therefore, for any $t > 0$ we have
\[
(2.6) \quad \limsup_{t \to \infty} \left\{ t \mathbb{E}^\nu \mathbb{W}_{2}(\mu_{t}, \mu)^2 \right\} = \sum_{i=1}^{\infty} \frac{8}{\lambda_i^2} + \frac{ck}{t} \sum_{i=1}^{\infty} \frac{4}{\lambda_i^2}, \quad \varepsilon > 0.
\]
which implies (1.6).

Next, when P_t is ultracontractive, we have
\[
d(\varepsilon) := \sup_{t \geq \varepsilon, x, y \in M} p_t(x, y) < \infty, \quad \varepsilon > 0.
\]
Then the distribution ν_{ε} of X_{ε} starting at ν is in the class $\mathcal{P}_{d(\varepsilon)}$. For any $\varepsilon \in (0, 1]$, let
\[
\overline{\mu}_{\varepsilon, t} := \frac{1}{t} \int_{\varepsilon}^{t+\varepsilon} \delta_{X_s} ds.
\]
By the Markov property and (2.6), we obtain
\[
(2.7) \quad \limsup_{t \to \infty} \left\{ t \mathbb{E}^\nu \mathbb{W}_{2}(\overline{\mu}_{\varepsilon,t}, \mu)^2 \right\} = \limsup_{t \to \infty} \left\{ t \mathbb{E}^{\nu_{\varepsilon}} \mathbb{W}_{2}(\mu_t, \mu)^2 \right\} \leq \sum_{i=1}^{\infty} \frac{8}{\lambda_i^2}, \quad \varepsilon > 0.
\]
On the other hand, since
\[
\pi := \frac{1}{t} \int_{0}^{\varepsilon} \delta_{(X_s, X_{s+t})} ds + \frac{1}{t} \int_{\varepsilon}^{t} \delta_{(X_s, X_s)} ds \in \mathcal{C}(\mu_t, \overline{\mu}_{\varepsilon,t}),
\]
and since the conditional distribution of X_{s+t} given X_s is bounded above by $\delta(1)\mu$ for $t \geq 1$, we have
\[
t \mathbb{E}^\nu \mathbb{W}_{2}(\mu_t, \overline{\mu}_{\varepsilon,t})^2 \leq t \mathbb{E}^\nu \int_{M \times M} \rho(x, y)^2 \pi(dx, dy)
\]
\[= \int_0^\varepsilon \mathbb{E}^\nu[\rho(X_s, X_{s+t})^2] ds \leq \delta(1) \int_0^\varepsilon \mathbb{E}^\nu[\mu(\rho(X_s, \cdot)^2)] ds =: r_\varepsilon. \]

Combining this with (1.3), (2.7), and applying the triangle inequality of \(\mathbb{W}_2\), we arrive at

\[
\lim_{t \to \infty} \sup_{\varepsilon > 0} \left\{ t\mathbb{E}^\nu[\mathbb{W}_2(\mu_t, \mu)^2] \right\}
\leq \lim_{\varepsilon \to 0} \left(1 + r_\varepsilon^2 \right) \lim_{t \to \infty} \sup_{\varepsilon > 0} \left\{ t\mathbb{E}^\nu[\mathbb{W}_2(\mu_{\varepsilon, t}, \mu)^2] \right\} + (1 + r_\varepsilon^{-2}) r_\varepsilon
\leq \sum_{i=1}^{\infty} \frac{8}{\lambda_i^2}.
\]

(2) By (1.3), we have

\[
(2.8) \quad \int_M |P_tf - \mu(f)|^2 d\mu \leq e^{-2\lambda_1 t} \int_M |f - \mu(f)|^2 d\mu, \quad t \geq 0, f \in L^2(\mu).
\]

By (2.1)-(2.3), and noting that \(L\phi_i = -\lambda_i \phi_i\) with \(\{\phi_i\}_{i \geq 1}\) being orthonormal in \(L^2(\mu)\), we obtain

\[
(2.9) \quad \mathbb{W}_2(\mu_{\varepsilon, t}, \mu)^2 \leq 4\mu(|\nabla(-L)^{-1}(f_{\varepsilon, t} - 1)|^2) = 4 \sum_{i=1}^{\infty} \lambda_i^{-1} e^{-2\lambda_i \varepsilon} |\xi_i(t)|^2.
\]

Below we prove the desired assertions respectively.

Since for \(\nu \in \mathcal{P}_k\) we have \(\mathbb{E}^\nu \leq k \mathbb{E}^\mu\), it suffices to prove for \(\nu = \mu\). Since \(\mu\) is \(P_t\)-invariant and \(\mu(\phi_1^2) = 1\), we have

\[
(2.10) \quad \mathbb{E}^\mu[\phi_1(X_{s_1})^2] = \mu(\phi_1^2) = 1.
\]

Next, the Markov property yields

\[
\mathbb{E}^\mu(\phi_1(X_{s_2})|X_{s_1}) = P_{s_2-s_1} \phi_1(X_{s_1}) = e^{-\lambda_i(s_2-s_1)} \phi_1(X_{s_1}), \quad s_2 > s_1.
\]

Combining this with (2.10) and the definition of \(\xi_i(t)\), we obtain

\[
\mathbb{E}^\mu[|\xi_i(t)|^2] = \frac{2}{t^2} \int_0^t ds_1 \int_{s_1}^t \mathbb{E}^\mu[\phi_1(X_{s_1})\phi_1(X_{s_2})] ds_2
= \frac{2}{t^2} \int_0^t ds_1 \int_{s_1}^t \mathbb{E}^\mu[\phi_1(X_{s_1})^2] e^{-\lambda_i(s_2-s_1)} ds_2 \leq \frac{2}{t\lambda_i}.
\]

Substituting into (2.9) gives

\[
(2.11) \quad \mathbb{E}^\mu[\mathbb{W}_2(\mu_{\varepsilon, t}, \mu)^2] \leq \frac{8}{t} \sum_{i=1}^{\infty} \lambda_i^{-2} e^{-2\lambda_i \varepsilon} = \frac{32}{t} \sum_{i=1}^{\infty} \int_{s}^{\infty} ds \int_0^\infty e^{-2\lambda_i r} dr.
\]

Noting that (2.8) and the semigroup property imply

\[
p_{2t}(x, x) - 1 = \int_M |p_t(x, y) - 1|^2 \mu(dy) = \int_M |P_{\frac{t}{2}} p_{\frac{t}{2}}(x, \cdot)(y) - 1|^2 \mu(dy)
\]
we deduce from (2.1) that
\[\sum_{i=1}^{\infty} e^{-2\lambda_i t} = \int_{M} \left\{ p_{2i}(x, x) - 1 \right\} \mu(dx) \leq e^{-\lambda_1 t} \int_{M} \left\{ p_{t}(x, x) - 1 \right\} \mu(dx) \leq e^{-\lambda_1 t} \gamma(t). \]

Therefore, by (2.11) and that \(\gamma(t) \) is decreasing in \(t \), we find a constant \(c_1 > 0 \) such that
\[\mathbb{E}^{\mu}[\bar{W}_{2}(\mu_{t}, \mu)] \leq \frac{32}{t} \int_{0}^{\infty} ds \int_{s}^{\infty} e^{-\lambda_1 t} \gamma(t) dt \]
\[\leq \frac{32}{t} \int_{0}^{1} \left(\int_{s}^{1} \gamma(t) dt + \gamma(1) \int_{1}^{\infty} e^{-\lambda_1 t} dt \right) ds + \frac{32\gamma(1)}{t} \int_{1}^{\infty} ds \int_{s}^{\infty} e^{-\lambda_1 r} dr \]
\[\leq \frac{c_1}{t} \beta(\varepsilon), \quad \varepsilon \in (0, 1]. \]

On the other hand, (2.3) and (2.9) imply that the measure
\[\pi(dx, dy) := \frac{1}{t} \int_{0}^{t} \delta_{X_s}(dx)p_{\varepsilon}(X_s, y) \mu(dy) ds \]
is a coupling of \(\mu_t \) and \(\mu_{\varepsilon, t} \). Combining this with the fact that \(\mu \) is \(P_t \)-invariant, we obtain
\[\mathbb{E}^{\mu}[\bar{W}_{2}(\mu_{t}, \mu_{\varepsilon, t})] \leq \frac{1}{t} \mathbb{E}^{\mu} \int_{0}^{t} ds \int_{M} \rho(X_s, y)^2 p_{\varepsilon}(X_s, y) \mu(dy) = \alpha(\varepsilon). \]

By (2.12) and the triangle inequality of \(\bar{W}_2 \), this yields
\[\mathbb{E}^{\mu}[\bar{W}_{2}(\mu_{t}, \mu)] \leq 2 \inf_{\varepsilon \in (0, 1]} \{ \alpha(\varepsilon) + c_1 t^{-1} \beta(\varepsilon) \}. \]

Therefore, (1.9) holds for some constant \(c > 0 \) and \(\nu = \mu \).

Finally, let \(P_t \) be ultracontractive. Then there exists a constant \(c_1 > 0 \) such that
\[(2.13) \quad \sup_{t \geq 1} p_t(x, y) \leq c_1, \quad x, y \in M. \]

So, the distribution of \(X_1 \) has a distribution \(\nu_1 \leq c_1 \mu \). Let \(\bar{\mu}_t = \frac{1}{t} \int_{0}^{t} \delta_{X_s}(ds) \). It is easy to see that
\[(2.14) \quad \pi := \frac{1}{t} \int_{0}^{1} \delta_{(X_s, X_{s+t})} ds + \frac{1}{t} \int_{1}^{t} \delta_{(X_s, X_s)} ds \in \mathcal{C}(\mu_t, \bar{\mu}_t), \]
so that (2.13) yields
\[(2.15) \quad \mathbb{E}^{\nu}[\bar{W}_{2}(\mu_t, \bar{\mu})] \leq \frac{1}{t} \mathbb{E}^{\nu} \int_{0}^{1} |X_s - X_{s+t}|^2 ds \leq \frac{c_1}{t} \mathbb{E}^{\nu} \int_{0}^{1} \mu(X_s, \cdot)^2 ds. \]

On the other hand, by the Markov property and (1.9), we find a constant \(c_2 > 0 \) such that
\[\mathbb{E}^{\nu}[\bar{W}_{2}(\bar{\mu}_t, \mu)] = \mathbb{E}^{\nu}[\bar{W}_{2}(\mu_t, \mu)] \leq c_2 \inf_{\varepsilon \in (0, 1]} \{ \alpha(\varepsilon) + t^{-1} \beta(\varepsilon) \}. \]

Combining this with (2.15) and using the triangle inequality of \(\bar{W}_2 \), we prove (1.10) for some constant \(c > 0 \).
Proof of Corollary 1.2
(1) By [16, Lemma 3.5.6] and comparing \(P_t \) with the semigroup generated by \(\Delta + \nabla V_1 \), see for instance [3] (2.8), (1.11) implies that the Harnack inequality
\[
(2.16) \quad (P_t f(x))^2 \leq \{P_t f^2(y)\}e^{C + Ct^{-1}p(x,y)^2}, \quad x, y \in M, t \in (0, 1]
\]
holds for some constant \(C > 0 \). Therefore, by [15, Theorem 1.4.1] with \(\Phi(r) = r^2 \) and \(\Psi(x, y) = C + Ct^{-1}p(x,y)^2 \), we obtain
\[
p_{2t}(x, x) = \sup_{\mu(f^2) \leq 1} (P_t f(x))^2 \leq \frac{1}{\int_M e^{C + Ct^{-1}p(x,y)^2} \mu(dy)} \leq \frac{e^{3C}}{\mu(B(x, \sqrt{2t}))}, \quad t \in (0, 1], x \in M.
\]
This implies
\[
(2.17) \quad \gamma(t) \leq e^{3C} \gamma(t), \quad t \in (0, 2].
\]
On the other hand, by (1.11) and Itô's formula due to [7], there exists constant \(C_1 > 0 \) such that
\[
d\rho(x, X_t)^2 \leq \left[C_1 (1 + \rho(x, X_t)^2) + |\nabla V(x)|^2 \right] dt + 2\sqrt{2}\rho(x, X_t) dt,
\]
where \(b_t \) is a one-dimensional Brownian motion. So, there exists a constant \(C_2 > 0 \) such that
\[
(2.18) \quad \mathbb{E}[\rho(x, X_t)^2] \leq (C_1 + \nu(|\nabla V|^2)) t e^{C_1 t} \leq C_2 (1 + \nu(|\nabla V|^2)) t, \quad t \in [0, 1], x \in M.
\]
Then there exists a constant \(c > 0 \) such that
\[
\sup_{\nu \in \mathcal{S}} \int_M \mathbb{E}^\nu [\rho(x, X_\varepsilon)^2] \mu(dx) \leq k \int_M \mathbb{E}^\mu [\rho(x, X_\varepsilon)^2] \mu(dx) \\
\leq C_2 k (1 + \mu(|\nabla V|^2)) \varepsilon \leq ck\varepsilon, \quad \varepsilon \in (0, 1], k \geq 1.
\]
Combining this with (2.17), we prove the first assertion by Theorem 1.1(2). The second assertion follows from (2.18) and Theorem 1.1(2), since \(P_t \) is ultracontractive provided \(\|P_t e^{\lambda \rho^2}\|_\infty < \infty \) for \(\lambda, t > 0 \), see for instance [16, Theorem 3.5.5].

3 Proof of Theorem 1.3

(1) We first prove that for any \(0 \neq f \in L^2(\mu) \),
\[
(3.1) \quad \lim_{t \to \infty} \frac{1}{t} \mathbb{E}^\mu \left[\int_0^t f(X_s) ds \right] = 4 \int_0^\infty \mu((P_s f)^2) ds > 0.
\]
As shown in [3, Lemma 2.8] that the Markov property and the symmetry of \(P_t \) in \(L^2(\mu) \) imply
\[
(3.2) \quad \frac{1}{t} \mathbb{E}^\mu \left[\int_0^t f(X_s) ds \right] = \frac{2}{t} \int_0^t ds \int_{s_1}^t \mathbb{E}^\mu [f(X_{s_1} P_{s_2 - s_1} f(X_{s_1}))] ds_2 \\
= \frac{2}{t} \int_0^t ds \int_{s_1}^t \mu((P_{s_2 - s_1} f)^2) ds_2 = \frac{4}{t} \int_0^{t/2} \mu((P_s f)^2) ds \int_s^{t-s} dr \\
= \frac{4}{t} \int_0^{t/2} (t - 2s) \mu((P_s f)^2) ds, \quad t > 0,
\]
where we have used the variable transform \((s, r) = (\frac{s_2-s_1}{2}, \frac{s_1+s_2}{2})\). This implies (3.1). On the other hand, we take \(0 \neq f \in L^2(\mu)\) with \(\mu(f) = 0\) and \(|f|_\infty \vee \|\nabla f\|_\infty \leq 1\). Then
\[
t\mathbb{E}^\mu [\tilde{W}_1(\mu_t, \mu)^2] \geq \frac{1}{t} \mathbb{E}^\mu \left[\left| \int_0^t f(X_s) ds \right|^2 \right].
\]
Combining this with (3.1), we prove (1.14) for some constant \(c > 0\).

If (1.3) holds, then
\[
\|P_t f - \mu(f)\|_{L^2(\mu)} \leq e^{-\lambda_t} \|f - \mu(f)\|_{L^2(\mu)}, \quad t \geq 0, f \in L^2(\mu).
\]
Let \(\nu = h_{\nu} \mu \in \mathcal{P}\) with \(h_{\nu} \in L^2(\mu)\). Similarly to (3.2), for any \(f \in L^2(\mu)\) with \(\mu(f) = 0\), we have
\[
\frac{1}{t} \left\{ \mathbb{E}^\nu \left[\left| \int_0^t f(X_s) ds \right|^2 \right] - \mathbb{E}^\mu \left[\left| \int_0^t f(X_s) ds \right|^2 \right] \right\}
\]
\[
= \frac{1}{t} \int_M \{h_{\nu}(x) - 1\} \mathbb{E}^\nu \left[\left| \int_0^t f(X_s) ds \right|^2 \right] \mu(dx)
\]
\[
= \frac{2}{t} \int_0^t ds_1 \int_{s_1}^t \mu \{h_{\nu} - 1\} P_{s_1} \{f P_{s_2-s_1} f\} ds_2
\]
\[
= \frac{2}{t} \int_0^t ds_1 \int_{s_1}^t \mu \{P_{s_1} (h_{\nu} - 1)\} \cdot \{f P_{s_2-s_1} f\} ds_2
\]
\[
\geq \frac{2}{t} |f|_\infty \int_0^t ds_1 \int_{s_1}^t \|P_{s_1} (h_{\nu} - 1)\|_{L^2(\mu)} \|P_{s_2-s_1} f\|_{L^2(\mu)} ds_2.
\]
Taking \(0 \neq f \in L^2(\mu)\) with \(\mu(f) = 0\) and \(|f|_\infty \vee \|\nabla f\|_\infty \leq 1\), by combining this with (3.1) and (3.3), we derive
\[
\liminf_{t \to \infty} \left\{ t \mathbb{E}^\nu [\tilde{W}_1(\mu_t, \mu)^2] \right\} \geq \liminf_{t \to \infty} \left\{ \frac{1}{t} \mathbb{E}^\nu \left[\left| \int_0^t f(X_s) ds \right|^2 \right] \right\}
\]
\[
\geq 4 \int_0^\infty \mu ([P_s f]^2) ds > 0, \quad \nu = h_{\nu} \mu \text{ with } h_{\nu} \in L^2(\mu).
\]
Next, let \(\bar{\mu}_t = \frac{1}{t} \int_1^{t+1} \delta_{X_s} ds, \quad t > 0\). By (2.14) we have
\[
\tilde{W}_1(\bar{\mu}_t, \mu_t) \leq \int_{M \times M} 1_{\{x \neq y\}} \pi(dx, dy) = \frac{1}{t}.
\]
Noting that for any \(x \in M\) we have \(\nu_x := p_1(x, \cdot) \mu\) with \(p_1(x, \cdot) \in L^2(\mu)\), by the Markov property and (3.4), we obtain
\[
\liminf_{t \to \infty} \left\{ t \mathbb{E}^\nu_x [\tilde{W}_1(\bar{\mu}_t, \mu)^2] \right\} = \liminf_{t \to \infty} \left\{ t \mathbb{E}^\nu_x [\tilde{W}_1(\mu_t, \mu)^2] \right\} > 0.
\]
Combining this with (3.5) and the triangle inequality leads to
\[
\liminf_{t \to \infty} \left\{ t \mathbb{E}^\nu_x [\tilde{W}_1(\mu_t, \mu)^2] \right\} > 0, \quad x \in M.
\]
Therefore, by Fatou’s lemma, for any \(\nu \in \mathcal{P} \) we have
\[
\liminf_{t \to \infty} \left\{ t \mathbb{E}^x \left[\tilde{W}_1(\mu_t, \mu)^2 \right] \right\} = \liminf_{t \to \infty} \int_M \left\{ t \mathbb{E}^x \left[\tilde{W}_1(\mu_t, \mu)^2 \right] \right\} \nu(dx) \\
\geq \int_M \left(\liminf_{t \to \infty} \left\{ t \mathbb{E}^x \left[\tilde{W}_1(\mu_t, \mu)^2 \right] \right\} \right) \nu(dx) > 0,
\]
which implies (1.15).

(2) Let \(d \geq 3 \), and let \(\partial M \) be empty or convex. By (1.16), we have \(\mathrm{Ric} \geq -K \) for some constant \(K > 0 \). Then the Laplacian comparison theorem implies (see [4])
\[
\Delta \rho(x, \cdot)(y) \leq \sqrt{K/(d-1)} \coth \left(\sqrt{K/(d-1)} \rho(x, y) \right) \leq C \rho(x, y)^{-1}, \quad (x, y) \in \hat{M}
\]
for some constant \(C > 0 \), where \(\hat{M} := \{(x, y) : x, y \in M, x \neq y, x \notin \text{cut}(y)\} \), and \(\text{cut}(y) \) is the cut-locus of \(y \). So,
\[
L \rho(x, \cdot)(y) \leq |\nabla V(y)| + C \left\{ \rho(x, y) + \rho(x, y)^{-1} \right\}, \quad (x, y) \in \hat{M}.
\]
Combining this with the Itô’s formula due to [7], we obtain
\[
d\rho(X_0, X_t) \leq \sqrt{2}db_t + \left\{ |\nabla V(X_t)| + C \rho(X_0, X_t) + C \rho(X_0, X_t)^{-1} \right\} dt + dl_t,
\]
where \(b_t \) is a one-dimensional Brownian motion, and \(l_t \) is the local time of \(X_t \) at the initial value \(X_0 \), which is an increasing process supported on \(\{t \geq 0 : X_t = X_0\} \). Thus, we find a constant \(C_1 > 0 \) such that
\[
d\left\{ \frac{\rho(X_0, X_t)^2}{1 + \rho(X_0, X_t)^2} \right\} \leq C_1 (1 + |\nabla V(X_t)|) dt + dM_t
\]
for some martingale \(M_t \). Since \(\mu \) is \(P_t \)-invariant, this implies
\[
\mathbb{E}^\mu \left\{ \rho(X_0, X_t) \right\}^2 \leq C_2 \left\{ 1 + \mu(|\nabla V|) \right\} t, \quad t \geq 0, x \in M
\]
for some constant \(C_2 > 0 \). Therefore, for any \(N \in \mathbb{N} \) and \(t_i := (i-1)t/N, \) the probability measure
\[
\tilde{\mu}_N := \frac{1}{N} \sum_{i=1}^N \delta_{X_{t_i}} = \frac{1}{t} \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \delta_{X_t} ds
\]
satisfies
\[
\mathbb{E}^\mu \tilde{W}_1(\tilde{\mu}_N, \mu_t)^2 \leq \frac{1}{t} \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \mathbb{E}^\mu (\rho(X_{t_i}, X_s) \wedge 1)^2 ds ≤ C_3 t
\]
for some constant \(C_3 > 0 \).
for some constant $C_3 > 0$. So,

$$(3.6) \quad \sup_{\nu \in \mathcal{P}_k} \mathbb{E}^\nu[\tilde{W}_1(\tilde{\mu}_N, \mu_t)^2] \leq k \mathbb{E}^\mu[\tilde{W}_1(\tilde{\mu}_N, \mu_t)^2] \leq \frac{C_3 k t}{N}, \quad N, k \geq 1.$$

On the other hand, by $\text{Ric} \geq -K$ and $V \leq K$ in (1.16) and using the volume comparison theorem, we find a constant $C_4 > 1$ such that

$$\mu(B(x, r)) \leq C_4 r^d, \quad x \in M, r \in [0, 1],$$

where $B(x, r) := \{y \in M : \rho(x, y) \wedge 1 \leq r\}$. Since μ is a probability measure, this inequality holds for all $r > 0$. Therefore, by [8, Proposition 4.2], there exists a constant $C_5 > 0$ such that

$$\tilde{W}_1(\tilde{\mu}_N, \mu) \geq C_5 N^{-\frac{1}{d}}, \quad N \geq 1.$$

Combining this with (3.6) and using the triangle inequality for \tilde{W}_1, we obtain

$$\sup_{\nu \in \mathcal{P}_k} \mathbb{E}^\nu[\tilde{W}_1(\mu_t, \mu)] \geq C_5 N^{-\frac{1}{d}} - \sqrt{C_3 k t N^{-\frac{2}{d}}}, \quad N, k \geq 1.$$

maximizing in $N \geq 1$, we find a constant $c > 0$ such that (1.17) holds.

Now, let $d \geq 4$. To prove (1.18) for general probability measure ν, we consider the shift empirical measure

$$\tilde{\mu}_t := \frac{1}{t} \int_1^{t+1} \delta_X, ds, \quad t \geq 1,$$

and the probability measures

$$\nu_x := \delta_x P_1 = p_1(x, \cdot)\mu, \quad \nu_{x,1} := \frac{1_{B(x,1)}}{\nu_x(B(x,1))} \nu_x, \quad x \in M.$$

By the Markov property, we obtain

$$\mathbb{E}^x[\tilde{W}_1(\tilde{\mu}_t, \mu)] = \mathbb{E}^{\nu_x}[\tilde{W}_1(\mu_t, \mu)] = \int_M \mathbb{E}^{y}[\tilde{W}_1(\mu_t, \mu)] p_1(x, y) \mu(dy) \geq \int_{B(x,1)} \mathbb{E}^{y}[\tilde{W}_1(\mu_t, \mu)] p_1(x, y) \mu(dy) = \nu_x(B(x,1)) \mathbb{E}^{\nu_{x,1}}[\tilde{W}_1(\tilde{\mu}_t, \mu)].$$

Noting that $h(x) := \sup_{y \in B(x,1)} p_1(x, y) < \infty$, this and (1.17) yield

$$\mathbb{E}^x[\tilde{W}_1(\tilde{\mu}_t, \mu)] \geq g(x) t^{-\frac{1}{d-2}}, \quad g(x) := c \nu_x(B(x,1)) h(x)^{-\frac{1}{d-2}}, \quad x \in M, t \geq 1.$$

Consequently, for any probability measure ν,

$$\mathbb{E}^\nu[\tilde{W}_1(\tilde{\mu}_t, \mu)] = \int_M \mathbb{E}^x[\tilde{W}_1(\tilde{\mu}_t, \mu)] \nu(dx) \geq \nu(g) t^{-\frac{1}{d-2}}, \quad t \geq 1.$$

Combining this with (3.5) and noting that $d \geq 4$ implies $t^{-\frac{1}{d-2}} \geq t^{-\frac{1}{2}}$ for $t \geq 1$, we find a constant $c_\nu > 0$ such that when t is large enough,

$$\mathbb{E}^\nu[\tilde{W}_1(\mu_t, \mu)] \geq \mathbb{E}^\nu[\tilde{W}_1(\tilde{\mu}_t, \mu) - \tilde{W}_1(\tilde{\mu}_t, \mu_t)] \geq c(\nu) t^{-\frac{1}{2}}.$$

13
Moreover, (4.2) |\mu - \kappa z| \leq e^{-2\varepsilon K} |\mu|, \quad \varepsilon \geq 0.

Combining this with (3.7), we derive
\liminf_{t \to \infty} \left\{ t \inf_{x \in M} E^x [W_2(\mu_{t, t}, \mu)] \right\} \geq e^{2\varepsilon K} \sum_{i=1}^{\infty} \frac{2}{\lambda_i^2 e^{2\varepsilon \lambda_i}}, \quad \varepsilon \in (0, 1].

By letting \varepsilon \downarrow 0 we finish the proof.

4 Proof of Example 1.4

(1) Taking \(V_1 \in C^\infty(\mathbb{R}^d) \) such that \(V_1(x) = -\kappa |x|^{\alpha} \) for \(|x| \geq 1 \), and writing \(V_2 = V + W - V_1 \), we see that (1.11) holds for some constant \(K \in \mathbb{R} \). By Corollary 1.2, it suffices to estimate \(\tilde{c}(t) \). For any \(x \in \mathbb{R}^d \) with \(|x| \geq 1 \), and any \(t \in (0, 1] \), let \(x_t = \frac{x}{|x|} (|x| - \frac{1}{2} \sqrt{t}) \). We find a constant \(c_1 > 0 \) and some point \(z \in B(x, \sqrt{t}) \) such that
\[
\mu(B(x, \sqrt{t})) \geq \int_{B(x, \frac{1}{2} \sqrt{t})} e^{-\kappa |y|^{\alpha} + W(y)} dy \geq c_1 t^{\frac{d}{2}} e^{-\kappa (|x| - \frac{1}{4} t^{\frac{1}{2}})^\alpha + W(z)}.
\]
Since \(|x| \geq 1, t \in (0, 1] \) and \(\alpha > 1 \), we find a constant \(c_2 > 0 \) such that
\[
|x|^{\alpha} - (|x| - t^{\frac{1}{2}})^{\alpha} = \alpha \int_{|x| - t^{\frac{1}{2}}}^{|x|} r^{\alpha-1} dr \geq c_2 \frac{\alpha t^{\frac{1}{2}}}{4} \left(\frac{|x|}{2} \right)^{\alpha-1} \geq c_2 |x|^{\alpha-1} t^{\frac{1}{2}}.
\]
Moreover,
\[
|W(z) - W(x)| \leq \|\nabla W\|_\infty |x - z| \leq \|\nabla W\|_\infty, \quad t \in (0, 1], z \in B(x, t^{\frac{1}{2}}).
\]
Combining this with (4.1) and (1.2), we find a \(c_3 > 0 \) such that
\[
\mu(B(x, \sqrt{t})) \geq c_3 t^{\frac{d}{2}} e^{-\kappa |x|^{\alpha} + c_2 |x|^{\alpha-1} t^{\frac{1}{2}} + W(x)}, \quad t \in [0, 1], x \in \mathbb{R}^d.
\]
Noting that \(-\kappa |x|^{\alpha} + 2|W(x)| \) is bounded from above, we find constants \(c_4, c_5 > 0 \) such that
\[
\int_{|x| \geq 1} \frac{\mu(dx)}{\mu(B(x, \sqrt{t}))} \leq c_4 t^{-\frac{d}{2}} \int_1^{\infty} r^{d-1} e^{-c_2 r^{\alpha-1} t^{\frac{1}{2}}} dr \leq c_5 t^{\frac{d}{2} - \frac{d}{\alpha(\alpha-1)}} = c_5 t^{-\frac{d}{\alpha(\alpha-1)}}, \quad t \in (0, 1].
\]
On the other hand, there exists a constant $c_6 > 0$ such that $\mu(B(x, r)) \geq c_6 r^d$ for $|x| < 1$ and $r \in (0, 1]$. In conclusion, there exists a constant $c_7 > 0$ such that

$$
\tilde{\gamma}(t) := \int_{\mathbb{R}^d} \frac{\mu(dx)}{\mu(B(x, \sqrt{t}))} \leq c_7 t^{-\frac{d}{2(\alpha - 1)}} + c_6^{-1} t^{-\frac{d}{2}}, \quad t \in (0, 1].
$$

Thus, there exists a constant $c_8 > 0$ such that for any $\varepsilon \in (0, 1]$,

$$
\tilde{\beta}(\varepsilon) \leq 1 + c_6 \int_0^1 ds \int_s^1 t^{-\frac{do}{2(\alpha - 1)}} dt \leq \begin{cases}
\frac{c_8}{\varepsilon^{2 - \frac{d}{2(\alpha - 1)}}}, & \text{if } 2 < \frac{d\alpha}{2(\alpha - 1)}, \\
\frac{c_8}{\varepsilon^{2 - \frac{d}{2(\alpha - 1)}}}, & \text{if } 2 = \frac{d\alpha}{2(\alpha - 1)}, \\
c_8, & \text{if } 2 > \frac{d\alpha}{2(\alpha - 1)}.
\end{cases}
$$

By taking $\varepsilon = t^{-\frac{2(\alpha - 1)}{(d - 2)\alpha + 2}}$ if $4(\alpha - 1) < d\alpha$, $\varepsilon = t^{-1}$ if $4(\alpha - 1) = d\alpha$, and $\varepsilon \downarrow 0$ if $4(\alpha - 1) > d\alpha$, we derive

$$
\inf_{\varepsilon \in (0, 1]} \{\varepsilon + t^{-1}\tilde{\beta}(\varepsilon)\} \leq \begin{cases}
c_t^{-1} \log(1 + \varepsilon^{-1}), & \text{if } 4(\alpha - 1) < d\alpha, \\
c_t^{-1} \log(1 + t), & \text{if } 4(\alpha - 1) = d\alpha, \\
c_t^{-1}, & \text{if } 4(\alpha - 1) > d\alpha
\end{cases}
$$

for some constant $c > 0$. Therefore, (1.20) follows from Corollary 1.2(1).

(2) Next, by [10, Corollary 3.3], when $\alpha > 2$ the Markov semigroup P_t^0 generated by $\Delta - \kappa \nabla : |^\alpha$ is ultracontractive with

$$
\| P_t^0 \|_{L^1(\mu_0) \to L^\infty(\mu_0)} \leq c_1(1 + t^{-\alpha/(\alpha - 2)}), \quad t > 0
$$

for some constant $c_1 > 0$, where $\mu_0(dx) := Z^{-1} e^{-\kappa|x|^\alpha} dx$ is probability measure with normalized constant $Z > 0$. According to the correspondence between the ultracontractivity and the log-Sobolev inequality, see [3], (1.4) holds if and only if there exists a constant $c_2 > 0$ such that

$$
\mu_0(f^2 \log f^2) \leq r \mu_0(|\nabla f|^2) + c_2(1 + r^{-\frac{\alpha}{\alpha - 2}}), \quad r > 0, \mu_0(f^2) = 1.
$$

Replacing f by $f e^W$ and using $\|\nabla W\|_\infty < \infty$ which implies $\mu(e^{cW}) < \infty$ for any $c > 0$ due to $\alpha > 1$, we find constants c_3 such that

$$
\mu(f^2 \log f^2) \leq \mu(f^2 W) + 2r \mu(|\nabla f|^2) + 2\|\nabla W\|_\infty^2 + c_2(1 + r^{-\frac{\alpha}{\alpha - 2}})$$

$$
\leq \frac{1}{2} \mu(f^2 \log f^2) + \frac{1}{2} \log \mu(e^{2W}) + 2r \mu(|\nabla f|^2) + 2\|\nabla W\|_\infty^2 + c_2(1 + r^{-\frac{\alpha}{\alpha - 2}})$$

$$
\leq \frac{1}{2} \mu(f^2 \log f^2) + 2r \mu(|\nabla f|^2) + c_3(1 + r^{-\frac{\alpha}{\alpha - 2}}), \quad r > 0, \mu(f^2) = 1,
$$

where in the second line we have used the Young inequality [11, Lemma 2.4]

$$
\mu(f^2 g) \leq \mu(f^2 \log f^2) + \log \mu(e^g), \quad \mu(f^2) = 1, g \in L^1(f^2 \mu).
$$

Hence, for some constant $c_4 > 0$ we have

$$
\mu(f^2 \log f^2) \leq r \mu(|\nabla f|^2) + c_4(1 + r^{-\frac{\alpha}{\alpha - 2}}), \quad r > 0, \mu(f^2) = 1.
$$
By the above mentioned correspondence of the log-Sobolev inequality and semigroup estimate, this implies
\[\|P_t\|_{L^1(\mu) \to L\infty(\mu)} \leq e^{c_5(1+t^{1-\alpha/(\alpha-2)})}, \quad t > 0 \]
for some constant \(c_5 > 0\). In particular, this and \(\mu(e^{\lambda^2|\cdot|^2}) < \infty\) imply \(\|Pe^{\lambda|\cdot|^2}\|_{\infty} < \infty\) for \(t, \lambda > 0\), so that by Corollary 1.2 (2), (1.21) follows from (1.3) and the fact that \(|\nabla V(x)|^2 \leq c'(1 + |x|^{2(\alpha-1)})\) holds for some constant \(c' > 0\).

(3) By [11, Corollary 1.4], the Poincaré inequality (1.3) holds for some constant \(\lambda_1 > 0\). Moreover, it is trivial that the condition (1.16) holds for some constant \(K \geq 0\). So, the desired lower bound estimate is implied by Theorem 1.3.

Acknowledgement. The author would like to thank the referees for useful comments and careful corrections.

References

[1] M. Arnaudon, A. Thalmaier, F.-Y. Wang, Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stoch. Proc. Appl. 119(2009), 3653–3670.

[2] L. Ambrosio, F. Strà, D. Trevisan, A PDE approach to a 2-dimensional matching problem, Probab. Theory Relat. Fields 173(2019), 433–477.

[3] P. Cattiaux, D. Chafai, A. Guillin, Central limit theorems for additive functionals of ergodic Markov diffusions processes, ALEA Lat. Am. J. Probab. Math. Stat. 9(2012), 337–382.

[4] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, Amsterdam: North-Holland, 1975.

[5] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.

[6] F. Z. Gong, F.-Y. Wang, Heat kernel estimates with applications to compactness of manifolds, Quart J. Math. 52(2001), 1–10.

[7] W. S. Kendall, The radial part of Brownian motion on a manifold: a semimartingale property, Ann. Probab. 15(1987), 1491–1500.

[8] B. Kloeckner, Approximation by finitely supported measures, ESAIM Control Optim. Calc. Var. 18(2012), 343–359.

[9] M. Ledoux, On optimal matching of Gaussian samples, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 457, Veroyatnost’ i Statistika. 25, 226–264 (2017).

[10] M. Röckner, F.-Y. Wang, Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds, Forum Math. 15(2003), 893–921.
A Upper bound estimate on $\mathbb{W}_p(f_1\mu, f_2\mu)$

For $p \geq 1$, let \mathbb{W}_p be the L^p-Wasserstein distance induced by ρ, i.e.

$$\mathbb{W}_p(\mu_1, \mu_2) = \inf_{\pi \in \mathcal{E}(\mu_1, \mu_2)} \|\rho\|_{L^p(\pi)}.$$

According to [9, Theorem 2], for any probability density f of μ, we have

(A.1) $$\mathbb{W}_p(f\mu, \mu) \leq p^p \mu(|\nabla (-L)^{-1}(f - 1)|^p).$$

The idea of the proof goes back to [2], in which the following estimate is presented for probability density functions f_1, f_2:

(A.2) $$\mathbb{W}_2(f_1\mu_1, f_2\mu_2)^2 \leq \int_M \frac{|\nabla (-L)^{-1}(f_2 - f_1)|^2}{\mathcal{M}(f_1, f_2)} \, d\mu,$$
where $\mathcal{M}(a, b) := 1_{\{a \land b > 0\}} \log \frac{a}{a-b} \log \frac{b}{a-b}$ for $a \neq b$, and $\mathcal{M}(a, a) = 1_{\{a > 0\}} a^{-1}$. In general, for $p \geq 1$, denote $\mathcal{M}_p = \mathcal{M}$ if $p = 2$, and when $p \neq 2$ let

$$
\mathcal{M}_p(a, b) = 1_{\{a \land b > 0\}} \frac{a^{2-p} - b^{2-p}}{(2-p)(a-b)} \text{ for } a \neq b, \quad \mathcal{M}_p(a, a) = 1_{\{a > 0\}} a^{1-p}.
$$

In this Appendix, we extend estimates (A.1) and (A.2) as follows, which might be useful for further studies.

Theorem A.1. For any probability density functions f_1 and f_2 with respect to μ such that $f_1 \lor f_2 > 0$,

$$
\mathcal{W}_p(f_1 \mu, f_2 \mu)^p \leq \min \left\{ p^{p-1} \int_M |\nabla (-L)^{-1}(f_2 - f_1)|^p \, d\mu, \, p^p \int_M |\nabla (-L)^{-1}(f_2 - f_1)|^p \, d\mu, \, \int_M |\nabla (-L)^{-1}(f_2 - f_1)|^2 \, d\mu \right\}.
$$

Proof. It suffices to prove for $p > 1$. Let $\text{Lip}_b(M)$ be the set of bounded Lipschitz continuous functions on M. Consider the Hamilton-Jacobi semigroup $(Q_t)_{t>0}$ on $\text{Lip}_b(M)$:

$$
Q_t \phi := \inf_{x \in M} \left\{ \phi(x) + \frac{1}{pt^{p-1}} \rho(x, \cdot)^p \right\}, \quad t > 0, \phi \in \text{Lip}_b(M).
$$

Then for any $\phi \in \text{Lip}_b(M)$, $Q_0 \phi := \lim_{t \to 0} Q_t \phi = \phi$, $\|\nabla Q_t \phi\|_\infty$ is locally bounded in $t \geq 0$, and $Q_t \phi$ solves the Hamilton-Jacobi equation

$$
\frac{d}{dt} Q_t \phi = -\frac{p-1}{p} |\nabla Q_t \phi|_{p-1}^p, \quad t > 0.
$$

Let $q = \frac{p}{p-1}$. For any $f \in C^1_b(M)$, and any increasing function $\theta \in C^1((0, 1))$ such that $\theta_0 := \lim_{s \to 0} \theta_s = 0, \theta_1 := \lim_{s \to 1} \theta_s = 1$, by (A.3) and the integration by parts formula, we obtain

$$
\mu_1(Q_1 f) - \mu_2(f) = \int_0^1 \left\{ \frac{d}{ds} \mu(\left[f_1 + \theta_s(f_2 - f_1) \right] Q_s f) \right\} \, ds \\
= \int_0^1 ds \int_M \left\{ \theta_s'(f_2 - f_1) Q_s f - \frac{f_1 + \theta_s(f_2 - f_1)}{q} |\nabla Q_s f|^q \right\} \, d\mu \\
= \int_0^1 ds \int_M \left\{ \theta_s' \langle \nabla (-L)^{-1}(f_2 - f_1), \nabla Q_s f \rangle - \frac{f_1 + \theta_s(f_2 - f_1)}{q} |\nabla Q_s f|^q \right\} \, d\mu \\
\leq \frac{1}{p} \int_M |\nabla (-L)^{-1}(f_2 - f_1)|^p d\mu \int_0^1 \frac{|\theta_s'|^p}{\left[f_1 + \theta_s(f_2 - f_1) \right]^{p-1}} \, ds,
$$

where the last step is due to Young’s inequality $ab \leq a^p/p + b^q/q$ for $a, b \geq 0$. By Kantorovich duality formula

$$
\frac{1}{p} \mathcal{W}_p(\mu_1, \mu_2)^p = \sup_{f \in C^1_b(M)} \left\{ \mu_1(Q_1 f) - \mu_2(f) \right\},
$$

18
and noting that
\[
f_1 + \theta_s(f_2 - f_1) = f_1 + f_2 - \theta_s f_1 - (1 - \theta_s) f_2 \\
= (f_1 + f_2) \left(1 - \frac{\theta_s f_1}{f_1 + f_2} - \frac{(1 - \theta_s) f_2}{f_1 + f_2}\right) \\
\geq (f_1 + f_2) \min\{1 - \theta_s, \theta_s\},
\]
we derive
\[
(A.4) \quad \mathcal{W}_p(\mu_1, \mu_2)^p \leq \int_0^1 \frac{\theta_s'|^p}{\min\{\theta_s, 1 - \theta_s\}^{p-1}} ds \int_M \frac{|\nabla(-L)^{-\frac{1}{2}}(f_1 - f_2)|^p}{(f_1 + f_2)^{p-1}} d\mu.
\]
By taking
\[
\theta_s = 1_{[0,\frac{1}{2}]}(s) 2^{p-1} s^p + 1_{(\frac{1}{2},1]}(s) \{1 - 2^{p-1}(1-s)^p\},
\]
which satisfies
\[
\theta_s' = p 2^{p-1} \min\{s, 1-s\}^{p-1}, \quad \min\{\theta_s, 1 - \theta_s\} = 2^{p-1} \min\{s, 1-s\}^p,
\]
we deduce from (A.4) that
\[
\mathcal{W}_p(f_1 \mu, f_2 \mu)^p \leq p^p 2^{p-1} \int_M \frac{|(-L)^{-\frac{1}{2}}(f_2 - f_1)|^p}{(f_1 + f_2)^{p-1}} d\mu.
\]
Next, (A.4) with \(\theta_s = 1 - (1-s)^p\) implies
\[
\mathcal{W}_p(f_1 \mu, f_2 \mu)^p \leq p^p \int_M \frac{|(-L)^{-\frac{1}{2}}(f_2 - f_1)|^p}{f_1^{p-1}} d\mu.
\]
Finally, with \(\theta_s = s\) we deduce from (A.4) that
\[
\mathcal{W}_p(f_1 \mu, f_2 \mu)^p \leq \int_M \frac{|(-L)^{-\frac{1}{2}}(f_2 - f_1)|^2}{\mathcal{M}_p(f_1, f_2)} d\mu.
\]
Then the proof is finished. \(\square\)