Crop production has been substantially reduced by devastating fungal and oomycete pathogens, and these pathogens continue to threaten global food security. Although chemical and cultural controls have been used for crop protection, these involve continuous costs and time and fungicide resistance among plant pathogens has been increasingly reported. The most efficient way to protect crops from plant pathogens is cultivation of disease-resistant cultivars. However, traditional breeding approaches are laborious and time intensive. Recently, the CRISPR/Cas9 system has been utilized to enhance disease resistance among different crops such as rice, cacao, wheat, tomato, and grape. This system allows for precise genome editing of various organisms via RNA-guided DNA endonuclease activity. Beyond genome editing in crops, editing the genomes of fungal and oomycete pathogens can also provide new strategies for plant disease management. This review focuses on the recent studies of plant disease resistance against fungal and oomycete pathogens using the CRISPR/Cas9 system. For long-term plant disease management, the targeting of multiple plant disease resistance mechanisms with CRISPR/Cas9 and insights gained by probing fungal and oomycete genomes with this system will be powerful approaches.

Keywords: CRISPR/Cas9, plant resistance, fungal and oomycete pathogens, plant genome editing, fungal and oomycete genome editing

INTRODUCTION

An increasing human population needs to have sufficient food supplies. With a projected global population in 2050 of 9.2 billion, this creates a significant increase in demand for food. Not only is global food security challenged by an increasing population and climate change, but by a multitude of evolving, emerging, and introduced plant pathogens (Anderson et al., 2004; Bebber and Gurr, 2015). The most destructive plant pathogens are the fungi and oomycetes, which are taxonomically distinct but have similar filamentous growth and host infection structures (Dong et al., 2015). These pathogens can destroy crops in a short period of time and cause severe famine such as the Irish potato famine caused by the oomycete pathogen Phytophthora infestans (Turner, 2005; Fones et al., 2020) and the Bengal famine caused by the rice brown spot fungal pathogen, Cochliobolus miyabeanus (Chakrabarti, 2001; Corredor-Moreno and Saunders, 2020). The use of pesticides, cultural, and cultivation
practices can provide a level of protection from plant disease. However, pesticides can cause severe environmental devastation and are rapidly losing efficacy due to pathogen evolution, and they are often strictly regulated to minimize unwanted side effects (McDonald and Stukenbrock, 2016; Vannier et al., 2019; Esse et al., 2020; Tyagi et al., 2021). The development of plant varieties with inherent disease resistance through breeding provides an environmentally friendly and often complimentary approach to plant disease management (Sánchez-Martín and Keller, 2019). Plant breeding for disease-resistance generally relies on identifying plants that carry considerable disease resistance traits, the growth, and development of breeding candidates in a disease-conducive setting, and finally, selecting disease resistance individuals that retain yield.

Current plant breeding methods to obtain productive, disease free, nutritious, and safe crops utilize both conventional and molecular methods (Yin and Qiu, 2019; Kaiser et al., 2020; Tyagi et al., 2021). These approaches have been developed, modified, and re-examined over time. Conventional breeding strategies include pure line selection, pedigree, interspecific hybrids, and back-cross methods. Alternatively, molecular approaches contain variation within multiple genes, marker-assisted breeding, transgenic and tissue culture methods, gene silencing, and plant susceptibility alleles (Capriotti et al., 2020). Conventional breeding, mutation breeding, and transgenic technology have been successful over the last few decades, but several limitations exist, including: (i) intensive labor cost, (ii) inherent genetic variation within plant populations, and (iii) transfer of undesirable genes or traits along with desired resistance genes (Gao, 2018; Ahmad et al., 2020).

In recent years, new breeding technologies such as meganucleases (MNs), zinc-finger nucleases (ZFNs), transcription-activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) endonucleases have been developed to overcome these limitations (Townsend et al., 2009; Gao et al., 2010; Cermak et al., 2011; Li et al., 2012, 2013; Nekrasov et al., 2013; Shan et al., 2013). These new breeding technologies allow precise genetic modifications of single or multiple gene targets in plants (Borrelli et al., 2018). MNs, ZFNs, TALENs and CRISPR/Cas9 are sequence-specific nucleases that cleave target DNA. Double-stranded breaks present in DNA are repaired by host cell repair mechanisms such as homology-directed repair (HDR) or non-homologous end-joining (NHEJ), but small indels (insertions/deletions) can occur within the target region (Langner et al., 2018). Although MNs, ZFNs, and TALENs were applied before the introduction of CRISPR/Cas9, the three techniques have not been widely utilized for plant breeding due to the need for complex protein engineering systems. The increasing number of recent reports for plant genome editing using the CRISPR/Cas9 system indicates that this approach is practical to apply due to its higher success rate and ease of use. The CRISPR/Cas9 system has been applied to enhance multiple beneficial traits of plants including the improvement of disease resistance (Borrelli et al., 2018; Langner et al., 2018; Yin and Qiu, 2019; Zaynab et al., 2020). In addition to applications in plants, genes encoding proteins that interact between host plants and fungal and oomycete pathogens have been targeted by CRISPR/Cas9 to elucidate the underlying molecular mechanism of host-pathogen recognition and to generate screening systems for disease resistance (Fang and Tyler, 2016; Li et al., 2018).

To date, most reviews of plant disease resistance using the CRISPR/Cas9 system have focused primarily on plant genome modifications (Borrelli et al., 2018; Langner et al., 2018; Yin and Qiu, 2019; Zaynab et al., 2020). In this review, we provide an overview of studies using CRISPR/Cas9-mediated genome editing of host plants and fungal/oomycete pathogens for improving disease resistance. We also describe CRISPR/Cas9 and CRISPR/Cpf1 systems in plants and fungi/oomycetes and conclude with limitations and future perspectives for plant disease resistance through genome editing of host and pathogen.

APPLICATION OF CRISPR/Cas9 AND CRISPR/Cpf1 SYSTEMS IN PLANT

Unlike TALENs or ZFNs, CRISPR/Cas genome editing is relatively more efficient and convenient, including no need for protein engineering, efficient target cleavage, and utilization of a relatively small protein (Mahfouz et al., 2014). Furthermore, highly feasible multi-target site cleavage and DNA-free delivery of the CRISPR/Cas construct became an exceptional development in the history of genome editing, which can be conducted by delivery of preassembled Cas protein and guide RNA into target organism's cell (Woo et al., 2015; Zetsche et al., 2017). These beneficial properties provide a more precise and efficient tool for the generation of transgenic non-GMO regulated plants. The most widely characterized and utilized Cas genes are _cas9, Cas9_ (Deltcheva et al., 2011), and _cpf1, Cas12a_ (Zetsche et al., 2015). The obvious difference between Cas9 and Cpf1 systems are the RNA complex that binds to each nuclease. The CRISPR/Cas9 system generally uses sgRNA (single guide RNA), which is an artificial chimera carries crRNA (CRISPR RNA), and tracrRNA (trans-activating CRISPR RNA) required for the maturation of crRNA (Deltcheva et al., 2011). The CRISPR/Cpf1 system uses only a crRNA, containing a protospace and RNA sequences that bind to Cpf1, often called a direct repeat. The minimum length required for RNA to successfully bind to and cleave the target is also different between Cas9 and Cpf1. The minimum guide RNA length for the cleavage of the target using Cas9 is considered 96 bp, including protospace, but for Cpf1, only 43 bp are required (Xie et al., 2015; Wang et al., 2017). Not only the sgRNA size, but the cleavage mechanisms are also different between Cas9 and Cpf1, which include a variation of the protospace adjacent motif (PAM) sequence; the Cas9 recognizes 5’-NGG-3’, whereas Cpf1 recognizes 5’-TTN-3’.

Scheneke and Cai (2020) summarized that there are several strategies for researching plant disease resistance via the CRISPR/Cas system: (i) knock-out of susceptibility factor-encoding genes (e.g., _MLO_; a mildew resistance locus O) (Nekrasov et al., 2017), (ii) deletion, modification, or introduction of cis-elements in promoters (Oliva et al., 2019), (iii) introducing specific mutations in coding regions via HDR,
(iv) alteration of amino acids in plant surface receptor proteins for evasion of secreted pathogen effectors (e.g., AtBAK1) (Li et al., 2016), (v) knock-out of negative regulators of plant defense responses (e.g., TcNPR3) (Fister et al., 2018), or (vi) modification of central regulators of defense response (e.g., BnWRKY70) (Sun et al., 2018). These strategies are applied via three different methods: (i) transformation of Cas and sgRNA constructs into the target plant genome often via Agrobacterium-mediated transformation (AMT) (Fister et al., 2018), or (ii) delivering a ribonucleoprotein (RNP) complex consisting of the Cas protein and sgRNA into plant cells for DNA-free plant genome editing via polyethylene glycol (PEG)-mediated protoplast transformation (Figure 1) or (iii) biolistic delivery of RNP complex into plant embryo cells (Svitashev et al., 2016). For the selection of transformants containing the Cas gene and guide RNA expression cassette, a herbicide selective marker, bialaphos resistance gene (bar) (Bao et al., 2019), kanamycin resistance gene (kanR) (Danilo et al., 2019), or hygromycin resistance gene (hph) (Lee et al., 2019) has been used. The various constitutive promoters, such as Cauliflower mosaic virus 35S (CaMV 35S), Arabidopsis thaliana ubiquitin 1 (AtUBQ1), and promoter of meioocyte specific gene Zea mays dmc1 (Zmdmc1) have been used for the expression of Cas protein. For transcription of guide RNA, A. thaliana U6 promoter, Oryza sativa U3 promoter, and Z. mays U3 promoter have been utilized (Xie and Yang, 2013; Mao et al., 2016; Feng et al., 2018). In plant systems, human or model plant codon-optimized Cas proteins have been used, but it may have affected mutation efficiency in different crops. In addition, the expression of sgRNA is important for successful genome editing. The crop optimized promoters for sgRNA expression have been tested and showed higher efficiency than promoters of model plants in cotton (Long et al., 2018) and grape (Ren et al., 2021), respectively.

APPLICATION OF CRISPR/Cas9 AND CRISPR/Cpf1 SYSTEMS IN FUNGI AND OOMYCETES

In fungi and oomycetes, homologous recombination of donor DNA or split marker (for fungi) was previously considered as one of the classical methods for generating mutants, but this
method can have the disadvantage of obtaining a small number of mutants (Jeong et al., 2007; Mcleod et al., 2008). Therefore, introducing the donor DNA or split marker together with the CRISPR system was attempted and showed high efficiency (Matsu-ura et al., 2015; Sang et al., 2018; Wang et al., 2019).

For genetic engineering of fungi and oomycetes using the CRISPR system, fungal or human codon optimized Cas9 and Cpf1 sequences have been used. The introduced cassette contains the CRISPR (Cas9 or Cpf1) gene appended with a SV40 or synthetic nuclear localization signal and expression is controlled by a constitutive fungal/oomycete promoter (e.g., ptef1, pgpd, pEND1, pptrpC, and pHam34) and terminator. SgRNA or crRNA is a guide sequence with a CRISPR target controlled by the promoters of heterologous U6 Pol III, SNR52 promoter, 5s rRNA and tRNA for fungi, and RPL41 promoter for oomycetes, especially Phytophthora species (Vyas et al., 2015; Fang and Tyler, 2016; Schuster and Kahmann, 2019). These expression cassettes were delivered by various transformation methods in fungi and oomycetes. For filamentous fungi, there are four commonly used methods: (i) exogenous DNA introduction using PEG solution into protoplasts generated by cell wall lysing enzymes (protoplast mediated transformation, PMT) (Nodvig et al., 2015), (ii) Agrobacterium tumefaciens co-cultivation for transferring vector DNA (AMT) (Zou et al., 2020) (Figure 1), (iii) reversible membrane permeabilization induced by local application of electric pulses (Electroporation, EP), and (iv) tungsten particles coated with DNA, accelerated to a high velocity, and introduced into cells (Biologistic transformation, BT) (Wang, 2018). In oomycetes, protoplast- or AMT methods have been mainly used for delivering the CRISPR/Cas9-guide RNA constructs into the cells (Fang and Tyler, 2016; Gumtow et al., 2018).

To efficiently screen the mutants generated by the CRISPR/Cas9 system, a selective marker can be used with the Cas protein and guide RNA sequence cassette. Two types of selective markers are primarily used in fungi: (i) drug resistance markers such as hygromycin-B-phosphotransferase (hph, hygromycin resistance), phleomycin resistance protein (Bre, phleomycin resistance) (Zhang et al., 2016), or nourseothricin N-acetyl transferase (NAT, nourseothricin resistance) (Min et al., 2018), and (ii) auxotrophic markers such as uridine and arginine, pyrG (van Leeuwe et al., 2019) and argB (Zheng et al., 2017), respectively, have been commonly used across various fungal species. In oomycetes, hph is an available selective marker for P. infestans, but this marker has low efficiency for other Phytophthora species. Recently, oxathiapiprolin resistance gene (PcMoURP1) from P. capsici has been tested as a novel selective marker and showed high efficiency for Phytophthora species transformation (Wang et al., 2019).

PLANT GENOME EDITING TO IMPROVE DISEASE RESISTANCE AGAINST FUNGAL PATHOGENS

Fungal pathogens have an enormous impact on agriculture and represent the dominant causal agents of plant diseases. They cause numerous diseases such as mildews, smuts, blights, rusts, and rots. Additionally, some fungal pathogens also produce mycotoxins, which can cause severe human and animal health problems (Borrelli et al., 2018; Yin and Qiu, 2019; Zaynab et al., 2020). Diverse fungal lifestyles and high genetic flexibility allow fungi to adapt to new hosts, break resistance (R) gene-mediated resistance, and evolve resistance to fungicides, making disease control challenging (Yin and Qiu, 2019).

The CRISPR/Cas9 system has facilitated targeted mutagenesis efficiently and precisely in plants to enhance resistance to fungal diseases. Much attention has been paid to susceptibility genes and negative regulators involved in the defense mechanism for plant disease resistance. The susceptibility gene, a mildew resistance locus O (MLO), is the most widely studied gene for resistance to fungal diseases (Jørgensen, 1992). The MLO gene encodes an integral membrane protein with seven transmembrane domains and is conserved throughout monocots and dicots (Acevedo-Garcia et al., 2014). Nekrasov et al. (2017) described that there are 16 MLO genes in tomato plants and SlMlo1 is a major gene responsible for powdery mildew disease susceptibility. The CRISPR/Cas9 technology has been employed to knock-out SlMlo1 in tomato plants. The knock-out mutants conferred resistance to the powdery mildew fungus Oidium neolycopersici without generating any other unwanted phenotypic effects. Second generation progeny (F1) were cultivated by selfing the first-generation (F0) resistant mutants, which resulted in the CRISPR/Cas9 transfer DNA being removed via segregation. The F1 progeny also exhibited resistance to O. neolycopersici. Likewise, the susceptibility gene Powdery Mildew Resistance 4 (PMR4), which functions as a callose synthase, has also been mutated by the CRISPR/Cas9 system, which resulted in resistance to O. neolycopersici in tomato (Santillán Martínez et al., 2020). Additionally, in wheat plants mutated by CRISPR/Cas9, one (TaMLO-A1) of the three MLO homoalleles showed improved resistance to Blumeria graminis f. sp. tritici infection (Wang et al., 2014). In grapevine, the molecular feasibility of deleting VvMLO7 has been demonstrated through CRISPR/Cas9 RNP delivery to protoplasts, but no plants have been regenerated (Malnoy et al., 2016). Parallel experiments with RNAi plants showed that the loss of VvMLO7 reduced susceptibility to Erysiphe necator in grapevine (Pessina et al., 2016).

Rice resistance to the rice blast disease caused by Magnaporthe oryzae has been improved by targeting negative regulators associated with the defense mechanism using the CRISPR/Cas9 system. This study showed RNAi expression knock-down of the ethylene responsive factor in rice, known as APETELA2/ethylene response factor (AP2/ERF) type transcription factor (OsERF922), which resulted in reduced accumulation of abscisic acid and thus increased disease resistance against M. oryzae (Liu et al., 2012). Similarly, this gene was targeted by CRISPR/Cas9 in the japonica rice variety and T2 generation homozygous mutant lines displayed increased resistance to rice blast disease with no difference of agronomic traits with the wild-type rice (Wang et al., 2016). Also, introduced mutations into the coding regions of the thermosensitive male sterile gene TMS5, proline-rich protein Pi21 gene, and bacterial blight resistance a recessive gene Xa13 in rice via CRISPR/Cas9 improved resistance against rice blast
and bacterial blight. This is because the knock-out of recessive genes, *Pi21* and *Xa13*, positively mediated resistance to rice blast and bacterial blight, respectively (Chu et al., 2006; Fukuoka et al., 2009; Li et al., 2019). In grape, the CRISPR/Cas9-mediated targeted mutagenesis of the transcription factor *VvWRKY52* generated biallelic mutation mutant lines and knock-out of *VvWRKY52* enhanced resistance to gray mold disease caused by *Botrytis cinerea* (Wang et al., 2018). In soybean, the novel chromosome rearrangement technique using CRISPR/Cas9 was reported (Nagy et al., 2021). This study engineered two NLR gene clusters called Rpp1-like and Rps1, which related with the resistance for *Phakopsora pachyrhizi* and *P. sojae*, respectively, and showed a possible advanced approach for managing plant disease through artificially creating chimeric paralogs. Together, these studies demonstrated the improved plant resistance against fungal pathogens through mutagenesis of single to multiple CRISPR/Cas9 targets (Table 1).

PLANT GENOME EDITING TO IMPROVE DISEASE RESISTANCE AGAINST OOMYCETE PATHOGENS

The diseases caused by oomycetes include blights, mildews, damping-off, and root rots. They resemble filamentous fungi but are taxonomically different and are more closely related to diatoms and brown algae. The impact of oomycetes on humankind is well documented as both a persistent threat to subsistence and commercial farming as destructive pathogens of native plants and represent a recurring threat to global food security (Kamoun et al., 2015; Derevina et al., 2016). Among the top 10 oomycete pathogens, *Phytophthora* represents seven species, followed by *Pythium*, *Hyaloperonospora* and *Albugo* species (Kamoun et al., 2015).

CRISPR/Cas tools have been successfully established to reduce oomycete diseases. The knock-out of the PAMP-triggered immunity repressor *AtERF019* (ethylene-responsive factor 19 gene) in *Arabidopsis* via CRISPR/Cas9 increased resistance to *Phytophthora parasitica*, a model organism of *Phytophthora* species (Lu et al., 2020). The *ObDMR1* knock-out mutants of sweet basil (*Ocimum basilicum*) were generated, but pathogenicity tests in those mutants were not conducted (Navet and Tian, 2020). In the cacao tree (*Theobroma cacao*), genome editing was conducted using *Agrobacterium*-mediated transient transformation to introduce CRISPR/Cas9 components that targeted non-expressor pathogenesis-related 3 (*TcNPR3*), a suppressor of the defense response, into cacao leaves and cotyledon cells. The *TcNPR3* deleted leaves exhibited up-regulated expression of defense genes, such as pathogenesis related (PR) genes, and enhanced resistance to the black pod disease caused by *Phytophthora tropicalis* (Fister et al., 2018). Lastly, the coding region of pathogenesis-related 4 protein genes of *Vitis vinifera* (*VvPRA4B*) in grape was knocked-out, and these mutant lines displayed increased susceptibility to downy mildew, confirming that the gene plays an active role in the defense of grapevine against downy mildew (Li et al., 2020) (Table 1).

FUNGAL AND OOMYCETE GENOME EDITING USING CRISPR/Cas9 FOR DISEASE RESISTANCE STUDY

Diverse strategies are being applied to prevent or control plant diseases. With the development of CRISPR/Cas9, editing the genomes of fungal and oomycete species for various purposes also can provide new strategies for plant disease management. Mutants of plant pathogens with variable pathogenicity from wild type can be generated using the CRISPR/Cas9 system. Zou et al. (2020) described a point mutation in the avirulence gene of *Leptosphaeria maculans* 7 (*AvrLm7*) that resulted in a shift from an avirulent strain (*UMAvr7*) to a virulent strain (*umav7*) on the *Brassica napus* Rlm7 genotype. This pathogen *L. maculans* causes a severe disease called blackleg in canola (*B. napus*). Resistance-susceptibility evaluation based on this mutant strain revealed that six of the 123 *B. napus* genotypes showed resistance to this strain. This mutant generated by the CRISPR/Cas9 system helped to discover new resistance genotypes and potentially novel resistance genes. For the ergot fungus, a widespread biotrophic plant pathogen *Claviceps purpurea*, the CRISPR/Cas9 method was used for directed mutagenesis targeting pyrimidine biosynthesis and tryptophan biosynthesis genes (*pyr4* and *TrpE*). The *TrpE* mutants showed no infection to rye plants because of a reduction of the plant hormone auxin, which is normally synthesized by *C. purpurea* in *Trp*-dependent and *Trp*-independent biosynthetic pathways, ultimately affecting the ability of the fungus to colonize rye plants (Králóvá et al., 2021).

It is well known that oomycete pathogens secrete numerous effector proteins into host tissues to suppress host defense responses and promote effective colonization. Due to inherent characteristics, oomycetes being diploid, polyploid, or heterothallic, genetic identification of their virulence genes had been very challenging until the recent emergence of CRISPR/Cas9-mediated gene-editing technology (Fang and Tyler, 2016; Gumtow et al., 2018). Fang and Tyler (2016) used the technology to validate the contribution of the *P. sojae* RXLR effector *Avr4/6* in the recognition of the soybean resistance gene loci, *Rps4* and *Rps6*. By knocking out *PsAvr3c* in *P. sojae* using the CRISPR/Cas9 system, it was observed that the mutants could infect soybeans with the *Rps3c* resistant gene and that *PsAvr3c* is required for full virulence of *P. sojae* (Juang et al., 2017). It was also found that *P. sojae* evades the soybean resistance gene *Rps1b* through silencing of *Avr1b* by epigenetic modification. After editing *PsSu(z)12*, which encodes a core subunit of the H3K27me3 methyltransferase complex, with the CRISPR/Cas9 system, the knock-out mutants lost the ability to avoid immune recognition by soybeans carrying *Rps1b* (Wang et al., 2020). Knock-out of pectin acetyesterases (*PiPAE4* and *PiPAE5*) from *Peronosphythora litchi*, the causal agent of the downy blossom blight, using the CRISPR/Cas9 system is another example. The *PLPAE5* knock-out mutants were less capable of host invasion than the wild-type strain, which suggested that *PiPAE5* is involved in oomycete pathogenicity (Kong et al., 2019). In the papaya pathogen *Phytophthora palmivora*, homozygous
TABLE 1 | Applications of CRISPR/Cas9 and CRISPR/Cpf1 systems for plant resistance to fungal and oomycete pathogens.

Fungal or oomycete pathogen	Plant species	Target gene	Encoding protein/function of gene	Disease resistance/phenotype	Method	References
Plant genome editing						
Blumeria graminis f. sp. tritici (Powdery mildew)	Triticum aestivum (Wheat)	TaMLO-A1, B1, D1	Transmembrane protein/Negative regulator of defense response	Increased resistance to B. graminis	Triple-knock-out using particle bombardment of Cas9 and selective marker plasmid	Wang et al., 2014
Botrytis cinerea (Gray mold)	Vitis vinifera (Grape)	VvWRKY52	Transcription factor/Positive regulator of defense response	Increased resistance to B. cinerea	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Wang et al., 2018
Erysiphe necator (Powdery mildew)	Vitis vinifera (Grape)	VvMLO7	Transmembrane protein/Negative regulator of defense response	No mutated plants regenerated	Protoplast transformation with Cas9/gRNA expression binary vectors	Mahoy et al., 2016
Magnaporthe oryzae (Rice blast)	Oryza sativa (Japonica rice)	OsERF922	Ethylene responsive factor /Negative regulator of defense response	Enhanced resistance to M. oryzae	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Wang et al., 2016
Magnaporthe oryzae (Rice blast)	Oryza sativa (Japonica rice)	Pi21	Negative regulator of defense response	Enhanced resistance to M. oryzae	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Li et al., 2019
Oldium neolycopersici (Powdery mildew)	Solanum lycopersicum (Tomato)	SIMLO1	Transmembrane protein/Negative regulator of defense response	Enhanced resistance to O. neolycopersici	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Nekrasov et al., 2017
Oldium neolycopersici (Powdery mildew)	Solanum lycopersicum (Tomato)	S1PR4	Callose synthase gene/Negative regulator of defense response	Enhanced resistance to O. neolycopersici	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Santillán Martínez et al., 2020
Pathogenicity not tested	Ocimum basilicum (Sweet basil)	ObDMR1	Homoserine kinase/Phosphorylation of Homoserine	No infection assay	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Navet and Tian, 2020
Phytophthora parasitica (black shank)	Arabidopsis thaliana (Arabidopsis)	AtERF019	Ethylene responsive factor /Negative regulator of defense response	Enhanced resistance to P. parasitica	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Lu et al., 2020
Phytophthora tropicalis (black pod)	Theobroma cacao (Cacao)	TcNPR3	NPR protein family/Negative regulator of defense response	Enhanced resistance to P. tropicalis	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Fister et al., 2018
Plasmopara viticola (Downy mildew)	Vitis vinifera (Grapevine)	VvPR4b	Chitinase/Inhibition of fungal mycelium growth	Decreased resistance	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Li et al., 2020
Sclerotinia sclerotiorum (stem rot)	Brassica napus L. (Rapeseed)	BrnWRKY70	Central regulator of salicylic acid and jasmonic acid signal pathways.	Enhanced resistance to S. sclerotiorum	Agrobacterium-mediated transformation with Cas9/gRNA expression binary vectors	Sun et al., 2018
Fungi/oomycete genome editing	Secale cereale (Rye)	CpsTrpE, Cpsyr4	α-subunit of anthranilate synthase/Key enzyme of tryptophan biosynthesis orotidine 5′-phosphate decarboxylase/Involved in pyrimidine biosynthesis	Decreased virulence	CRISPR/Cas9 and Homologous recombination (HR) knock-out	Králová et al., 2021
Table 1 (Continued)

Fungal or oomycete pathogen	Plant species	Target gene	Encoding protein/function of gene	Disease resistance/phenotype	Method	References
Leptosphaeria maculans	Brassica napus (rapeseed)	AvrLm7	Effector protein/Recognized by host R gene	Enhanced virulence CRISPR/Cas9	Zou et al., 2020	
Peronophythora litchii	Litchi chinensis (Litchi)	PlPAE5	Pectin acetylesterase/Consume host pectin as carbon source	Less invasion CRISPR/Cas9	Kong et al., 2019	
Phytophthora sojae	Glycine max (Soybean)	PsSu(z)12	Core subunit of H3K27me3 methyltransferase/Participate in gene silencing	Induced disease resistance by soybeans CRISPR/Cas9	Wang et al., 2020	
		PsAvr3c	RxLR effector/Promotes host susceptibility	Decreased aggressiveness CRISPR/Cas9	Huang et al., 2017	
		Avr4/6	RxLR effector/Promotes host susceptibility	Evasion of R gene-mediated resistance in Rps soybean line CRISPR/Cas9	Fang and Tyler, 2016	
Phytophthora palmivora	Carica papaya (Papaya)	PpalEPICs	Cysteine protease inhibitor/Inhibition of Cysteine protease in host	Induced disease resistance in papaya CRISPR/Cas9 and Agrobacterium-mediated transformation	Gumtow et al., 2018	

PpalEPIC8 mutants were generated using the CRISPR/Cas9 system, and it was found that the mutants exhibited reduced pathogenicity on papaya fruits. This is because knock-out of the cysteine protease inhibitor PpalEPIC8 reduced the inhibition of papain in papaya, a cysteine protease that confers defense against plant pathogens (Gumtow et al., 2018) *(Table 1)*.

LIMITATIONS OF CRISPR/Cas9 AND FUTURE PERSPECTIVES

The increasing availability of crop and fungal/oomycete genome sequences and user-friendly CRISPR/Cas9 tools with open resources (e.g., protocols and plasmids) have accelerated the development of disease resistance in diverse crops. However, there are few limitations that will need to be addressed. For example, the relatively long-life cycle of crop plants, in comparison to model plants, makes accuracy and frequency of mutant generation a significant issue. The recent application of the CRISPR/Cas9 system through agroinfiltration to cacao was tested and succeeded in showing a disease resistance phenotype (Fister et al., 2018). Therefore, increased research into the fast and convenient ways to confirm the resistance phenotype by transient expression of CRISPR/Cas9 components are needed. For fungi/oomycetes, more fundamental difficulties limit genome editing, such as lack of selectable markers. Recently, the selectable marker (oxathiapiprolin-resistance gene) for *Phytophthora* sp. was developed and has shown a considerably lower minimal inhibitory concentration than geneticin (G418) or hygromycin B (Wang et al., 2019), but other oomycetes have not been studied yet.

The side effects of editing or mutating plant susceptibility genes should be considered before applying CRISPR/Cas9 genome editing techniques. It is known that the susceptibility gene(s) are linked with plant growth and fitness and can cause pleiotropic effects (Tyagi et al., 2021). This is also a most frequently observed phenomenon after artificially boosting plant immunity through knock-out of a negative regulator (Ding et al., 2018). Although several studies have indicated that deletion or mutation of these genes do not have any negative impact on plant growth or plant health (Pyott et al., 2016), further studies and experimentation are needed. Additionally, introduction of off-target mutations by the CRISPR/Cas9 system is an important issue to consider. An off-target mutation is an undesirable result that causes non-specific changes in the genome sequences that ultimately influences protein structure and/or function. Currently, scientists are working on reducing off-target issues by using computational tools (Guide-seq, Diagenome-seq, DISCOVER, etc.) and by re-editing the CRISPR components such as Cas proteins and gRNA (Ahmad et al., 2020).

Genome editing by CRISPR/Cas9 could produce desired disease-resistance within a short period compared to traditional or molecular breeding methods. However, single gene-editing based disease resistance can eventually be overcome by pathogens due to rapid evolution and genetic diversity of fungal and oomycete populations. For long-term disease management, targeting multiple genes and/or the combined
editing of both plant and fungal/oomycete genomes using these rapid-developing CRISPR/Cas9 technologies could be powerful approaches. One concept that can be demonstrated by combined genome editing is the interaction between a pathogen effector and host plant resistance gene. For example, editing of the *P. sojae* effector *avr* genes (Fang and Tyler, 2016) and the soybean *rps* genes (Nagy et al., 2021) can be combined and applied for controlling Phytophthora root and stem rot in soybean. Also, one example that can be applied to plant disease control is eradicating malaria vector mosquitoes by the targeted disruption of the doublex gene using the CRISPR/Cas9 gene drive system (Kyrou et al., 2018). This gene drive system could be a model to control sexually inheriting plant pathogens. Application of the CRISPR/Cas9 system to beneficial fungal species, such as *Trichoderma* sp., to enhance plant immunity and function as a biocontrol agent against fungal and oomycete pathogens is also a promising approach. CRISPR/Cas9-based plant and pathogen genome editing will likely be widely adopted to enhance plant disease-resistance, and the disease-resistant transgene-free crops will be necessary for global demand for food in the future.

REFERENCES

Acevedo-Garcia, J., Kusch, S., and Panstruga, R. (2014). Magical mystery tour?: MLO proteins in plant immunity and beyond. *New Phytol.* 204, 273–281. doi: 10.1111/nph.12889

Ahmad, S., Wei, X., Sheng, Z., Hu, P., and Tang, S. (2020). CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. *Brief. Funct. Genom.* 19, 26–39. doi: 10.1093/bfgp/elz041

Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., and Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. *Trends Ecol. Evol.* 19, 535–544. doi: 10.1016/j.tree.2004.07.021

Bao, A., Chen, H., Chen, L., Chen, S., Hao, Q., Guo, W., et al. (2019). CRISPR/Cas9-mediated targeted mutagenesis of *GmSNP9* genes alters plant architecture in soybean. *BMC Plant Biol.* 19:131. doi: 10.1186/s12870-019-1746-6

Bepper, D. B., and Gurr, S. J. (2015). Crop-destroying fungal and oomycete pathogens challenge food security. *Fungal Genet. Biol.* 74, 62–64. doi: 10.1016/j.fgb.2014.10.012

Borelli, V. M. G., Brambilla, V., Rogowsky, P., Maroco, A., and Lanubile, A. (2018). The enhancement of plant disease resistance using CRISPR/Cas9 technology. *Front. Plant Sci.* 9:1245. doi: 10.3389/fpls.2018.01245

Capriotti, L., Baraldi, E., Mezzetti, B., Limera, C., and Sabbadini, S. (2020). Biotechnological approaches: gene overexpression, gene silencing, and genome editing to control fungal and oomycete diseases in grapevine. *Int. J. Mol. Sci.* 21:5701. doi: 10.3390/ijms21165701

Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. *Nucleic Acids Res.* 39:e82. doi: 10.1093/nar/gjr218

Chakrabarti, N. K. (2001). "Epidemiology and disease management of brown spot of rice in India," in *Major Fungal Diseases of Rice*, eds S. Sreenivasaprasad and R. Johnson (Dordrecht: Springer Netherlands), 293–306. doi: 10.1007/978-94-017-2157-8_21

Chu, Z., Fu, B., Yang, H., Xu, C., Li, Z., Sanchez, A., et al. (2006). Targeting *avr*13, a recessive gene for bacterial blight resistance in rice. *Theor. Appl. Genet.* 112, 455–461. doi: 10.1007/s00122-005-0145-6

Corredor-Moreno, P., and Saunders, D. G. O. (2020). Expecting the unexpected: factors influencing the emergence of fungal and oomycete plant pathogens. *New Phytol.* 225, 118–125. doi: 10.1111/nph.16007

Danilo, B., Perrot, L., Mara, K., Botton, E., Nogué, F., and Mazier, M. (2019). Efficient and transgene-free gene targeting using *Agrobacterium*-mediated delivery of the CRISPR/Cas9 system in tomato. *Plant Cell Rep.* 38, 459–462. doi: 10.1007/s00299-019-02373-6

Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzalez, K., Chao, Y., Pirzada, Z. A., et al. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor Rnase III. *Nature* 471, 602–607. doi: 10.1038/nature09886

Derevina, L., Petre, B., Kellner, R., Dagdas, Y. F., Sarowar, M. N., Giannakopoulou, A., et al. (2016). Emerging oomycete threats to plants and animals. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 371, 20150459. doi: 10.1098/rstb.2015.0459

Ding, Y., Sun, T., Ao, K., Peng, Y., Zhang, Y., Li, X., et al. (2018). Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. *Cell* 173, 1454.e–1467.e. doi: 10.1016/j.cell.2018.03.044 1454-1467.e145

Dong, S., Rafaële, S., and Kamoun, S. (2015). The two-speed genomes of filamentous pathogens: waltz with plants. *Curr. Opin. Genet. Dev.* 35, 57–65. doi: 10.1016/j.gde.2015.09.001

Esse, H. P., Reuber, T. L., and Does, D. (2020). Genetic modification to improve disease resistance in crops. *New Phytol.* 225, 70–86. doi: 10.1111/nph.15967

Fang, Y., and Tyler, B. M. (2016). Efficient disruption and replacement of an effector gene in the oomycete *Phytophthora sojae* using CRISPR/Cas9: *Phytophthora sojae* CRISPR/Cas9. *Mol. Plant Pathol.* 17, 127–139. doi: 10.1111/mpp.12318

Feng, C., Su, H., Bai, H., Wang, R., Liu, Y., Guo, X., et al. (2018). High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. *Plant Biotechnol. J.* 16, 1848–1857. doi: 10.1111/pbi.12920

Fister, A. S., Landherr, L., Maximova, S. N., and Guiltinan, M. J. (2018). Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in *Theobroma cacao*. *Front. Plant Sci.* 9:268. doi: 10.3389/fpls.2018.00268

Fones, H. N., Bepper, D. B., Chalonier, T. M., Kay, W. T., Steinberg, G., and Gurr, S. J. (2020). Threats to global food security from emerging fungal and oomycete crop pathogens. *Nat. Food* 1, 332–342. doi: 10.1038/s43016-020-0075-0

Fukuoka, S., Saka, N., Koga, H., Ono, K., Shimizu, T., Ebana, K., et al. (2009). Loss of function of a proline-containing protein confers durable disease resistance in rice. *Science* 325, 998–1001. doi: 10.1126/science.1175550

Gao, C. (2018). The future of CRISPR technologies in agriculture. *Nat. Rev. Mol. Cell Biol.* 19, 275–276. doi: 10.1038/nrm.2018.2

Gao, H., Smith, J., Yang, M., Jones, S., Djuikanovic, V., Nicholson, M. G., et al. (2010). Heritable targeted mutagenesis in maize using a designed endonuclease. *Plant J.* 61, 176–187. doi: 10.1111/j.1365-311X.2009.04041.x

Giannakopoulou, A., et al. (2016). Emerging oomycete threats to plants and animals. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 371, 20150459. doi: 10.1098/rstb.2015.0459

Gumtow, R., Wu, D., Uchida, J., and Tian, M. (2018). A *Phytophthora palmae* extracellular cystatin-like protease inhibitor targets papain to contribute to

AUTHOR CONTRIBUTIONS

HS conceptualized, designed, edited, managed, and acquired funding to conduct the research. NCP and S-WP contributed equally to the writing of the manuscript. HL, SC, JM, JSM, and MC wrote and edited parts of the manuscript. All authors reviewed and edited and have read and agreed to submit the final version of the manuscript.

FUNDING

This work was supported by grants from the New Breeding Technologies Development Program (Project No. PJ01483603), Rural Development Administration, South Korea, and National Research Foundation of Korea (2020R1C1C1010108). This research was also supported by Gwangju Jeollanam-do Regional Innovation Platform (2020 University Innovation-146), South Korea.
virulence on papaya. *Mol. Plant Microbe Interact.* 31, 363–373. doi: 10.1094/MPMI-06-17-0131-FI

Huang, J., Guo, L., Zhan, X., Yan, T., Kong, G., Kong, L., et al. (2017). An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. *Nat. Commun.* 8:2051. doi: 10.1038/s41467-017-0223-5

Jeong, J. S., Mitchell, T. K., and Dean, R. A. (2007). The *Magnaporthe grisea* snodpro1 homolog, MSP1, is required for virulence. *FEBS Microbiol. Lett.* 273, 157–165. doi: 10.1111/j.1574-6968.2007.00796.x

Jørgensen, J. H. (1992). Discovery, characterization and exploitation of *Mlo* powdery mildew resistance in barley. *Euphytica* 63, 141–152.

Kaizer, N., Douches, D., Dinghra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., et al. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. *Trends Food Sci. Technol.* 100, 51–66. doi: 10.1016/j.tifs.2020.03.042

Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, R. J. D., et al. (2015). The top 10 oomycete pathogens in molecular plant pathology: top 10 oomycete plant pathogens. *Mol. Plant Pathol.* 16, 413–434. doi: 10.1111/mpp.12190

Kong, G., Wan, L., Deng, Y. Z., Yang, W., Li, W., Jiang, L., et al. (2019). Pectin acetylxylerase PAE5 is associated with the virulence of plant pathogenic oomycete *Peronospora tabacina*. *Physiol. Mol. Plant Pathol.* 106, 16–22. doi: 10.1016/j.pmpp.2018.11.006

Kralová, M., Bergougnoux, V., and Frebort, I. (2021). *CRISPR/Cas9* genome editing in ergot fungus *Claviceps purpurea*. *Plant J.* 135, 341–354. doi: 10.1111/tpj.14089

Kurow, K., Hammond, A. M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A. K., et al. (2018). A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged *Anopheles gambiae* mosquitoes. *Nat. Biotechnol.* 36, 1062–1066. doi: 10.1038/nbt.4245

Langner, T., Kamoun, S., and Belhaj, K. (2018). *CRISPR Crops*: plant genome editing toward disease resistance. *Annu. Rev. Phytopathol.* 56, 479–512. doi: 10.1146/annurev-phyto-080417-050158

Lee, K., Eggenberger, A. L., Banakar, R., McCaw, M. E., Zhu, H., Main, M., et al. (2019). *CRISPR/Cas9*-mediated targeted T-DNA integration in rice. *Plant Mol. Biol.* 99, 317–328. doi: 10.1007/s11103-018-00819-1

Li, J., Zhang, Y., Zhang, Y., Yu, P.-L., Han, H., and Rollins, J. A. (2018). Introduction of large sequence inserts by CRISPR-Cas9 to create pathogenicity mutants in the multinucleate filamentous pathogen *Sclerotinia sclerotiorum*. *mbio* 9, e00567-18. doi: 10.1128/mBio.00567-18

Li, J.-F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., et al. (2013). Multiplex and homologous recombination–mediated genome editing in *Arabidopsis* and *Nicotiana benthamiana* using guide RNA and *Cas9*. *Nat. Biotechnol.* 31, 688–691. doi: 10.1038/nbt.2654

Li, L., Kim, P., Yu, L., Cai, G., Chen, S., Alfano, J. R., et al. (2016). Activation-dependent destruction of a co-repressor by a *Pseudomonas syringae* syringe factor dampens plant immunity. *Cell Host Microbe* 20, 504–514. doi: 10.1016/j.chom.2016.09.007

Li, M.-Y., Jiao, Y.-T., Wang, Y.-T., Zhang, N., Wang, B.-B., Liu, R.-Q., et al. (2020). *CRISPR/Cas9*-mediated *VvPR4b* editing decreases downy mildew resistance in grapevine (*Vitis vinifera* L.). *Hortic. Res.* 7:149. doi: 10.1038/s41438-020-00371-y

Li, S., Shen, L., Hu, P., Liu, Q., Zhu, X., Qian, Q., et al. (2019). Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. *J. Integr. Plant Biol.* 61, 1201–1205. doi: 10.1111/jipb.12774

Li, T., Liu, B., Spalding, M. H., Weeks, D. P., and Yang, B. (2012). High-efficiency TALEN-based genome editing produces disease-resistant rice. *Nat. Biotechnol.* 30, 390–392. doi: 10.1038/nbt.2199

Li, D., Chen, X., Liu, J., Ye, J., and Guo, Z. (2012). The rice ERF transcription factor *OsrERF922* negatively regulates resistance to *Magnaporthe oryzae* and salt tolerance. *J. Exp. Bot.* 63, 3899–3912.

Long, L., Guo, D.-D., Gao, W., Yang, W.-W., Hou, L.-P., Ma, X.-N., et al. (2018). Optimization of *CRISPR/Cas9* genome editing in cotton by improved sgRNA expression. *Plant Methods* 14:85. doi: 10.1186/s13007-018-0553-0

Lu, Y., Feng, F., Liu, J., Chen, X., Li, J., Wen, Q., et al. (2020). The *Arabidopsis thaliana* gene *AETR019* negatively regulates plant resistance to *Phytophthora parasitica* by suppressing PAMP-triggered immunity. *Mol. Plant Pathol.* 21, 1179–1193. doi: 10.1111/mpp.12971
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. *Nat. Biotechnol.* 31, 686–688. doi: 10.1038/nbt.2650

Sun, Q., Lin, L., Liu, D., Wu, D., Fang, Y., Wu, J., et al. (2018). CRISPR/Cas9-mediated multiplex genome editing of the *BnaWRKY11* and *BnaWRKY70* genes in *Brassica napus* L. *Int. J. Mol. Sci.* 19:2716. doi: 10.3390/ijms19092716

Svitasev, S., Schwartz, C., Lenderts, B., Young, J. K., and Mark Cigan, A. (2016). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. *Nat. Commun.* 7:13274. doi: 10.1038/ncomms13274

Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., et al. (2015). *OsERF922*, a wound-inducible factor gene confers blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene using the CRISPR/Cas9 system. *PLoS One* 11:e0154027. doi: 10.1371/journal.pone.0154027

Vyas, V. K., Barrasa, M. I., and Fink, G. R. (2015). A *Cryptococcus neoformans* isolate carrying a mutated *ADE1* gene underlies host adaptation in an oomycete plant pathogen. *Nucleic Acids Res.* 43, 1790–1799. doi: 10.1093/nar/gku1160

Wang, B., Miao, Y., Lu, Y., Tao, X., and Zhu, J. (2017). Multiplex gene editing in plants using a CRISPR-Cas9 multiplex editing capability with the endogenous RNA-processing system. *Proc. Natl. Acad. Sci. U. S. A.* 114, 3570–3575. doi: 10.1073/pnas.1420294112

Xie, K., and Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR–Cas9 system. *Mol. Plant* 6, 1975–1983. doi: 10.1093/mp/stt119

Yin, K., and Qiu, J.-L. (2019). Genome editing for plant disease resistance: applications and perspectives. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 374:20180322. doi: 10.1098/rstb.2018.0322

Zaynab, M., Sharif, Y., Fatima, M., Afzal, M. Z., Aslam, M. M., Raza, M. F., et al. (2020). CRISPR/Cas9 to generate plant immunity against pathogen. *Microb. Pathog.* 141:103996. doi: 10.1016/j.micpath.2020.103996

Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Esvelt, K. M., et al. (2015). Cas9 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell* 163, 759–771. doi: 10.1016/j.cell.2015.09.038

Zhang, C., Meng, X., Wei, X., and Lu, L. (2016). Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in *Aspergillus fumigatus*. *Fungal Genet. Biol.* 86, 47–57. doi: 10.1016/j.fgb.2015.12.007

Zheng, Y.-M., Lin, F.-L., Gao, H., Zou, G., Zhang, J.-W., Wang, G.-Q., et al. (2017). Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology. *Sci. Rep.* 7:9250. doi: 10.1038/s41598-017-10052-3

Zou, Z., Liu, F., Selin, C., and Fernando, W. G. D. (2020). Generation and characterization of a virulent *Leptosphaeria maculans* isolate carrying a mutated *AvrLm7* gene using the CRISPR/Cas9 system. *Front. Microbiol.* 11:1969. doi: 10.3389/fmicb.2020.01969

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Paul, Park, Liu, Choi, Ma, MacCready, Chilvers and Sang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.