GABA_B Receptor Signaling in the Mesolimbic System Suppresses Binge-like Consumption of a High-Fat Diet

- Binge-like eating of HFD

- Suppression of binge-like eating of HFD by GABA_BR agonist

HIGHLIGHTS
GABA_BR KO in corticostriatal neurons enhances binge-like feeding of HFD
Baclofen suppresses binge-like feeding of HFD via the mesolimbic system
GABA_BR signaling in mesolimbic system does not affect energy balance
GABA\textsubscript{B} Receptor Signaling in the Mesolimbic System Suppresses Binge-like Consumption of a High-Fat Diet

Taku Tsunekawa, 1 Ryoichi Banno, 1, 2, * Hiroshi Yaginuma, 1 Keigo Taki, 1 Akira Mizoguchi, 1 Mariko Sugiyama, 1 Takeshi Onoue, 1 Hiroshi Takagi, 1 Daisuke Hagiwara, 1, 3 Yoshihiro Ito, 1, 4 Shintaro Iwama, 1 Motomitsu Goto, 1 Hidetaka Suga, 1 Bernhard Bettler, 5 and Hiroshi Arima 1, 6, *

SUMMARY

Binge eating could contribute to the development of obesity, and previous studies suggest that gamma-aminobutyric acid (GABA) type B receptor (GABA\textsubscript{B}R) signaling is involved in the regulation of binge eating. Here, we show that time-restricted access to a high-fat diet (HFD) induces binge-like eating behavior in wild-type mice. HFD consumption during restricted time was significantly increased in corticostriatal neuron-specific GABA\textsubscript{B}R-deficient mice compared with wild-type mice. Furthermore, the GABA\textsubscript{B}R agonist baclofen suppressed HFD intake during restricted time in wild-type mice but not in corticostriatal or dopaminergic neuron-specific GABA\textsubscript{B}R-deficient mice. In contrast, there were no significant differences in food consumption among genotypes under ad libitum access to HFD. Thus, our data show that the mesolimbic system regulates food consumption under time-restricted but not ad libitum access to HFD and have identified a mechanism by which GABA\textsubscript{B}R signaling suppresses binge-like eating of HFD.

INTRODUCTION

Obesity has become a major health concern worldwide, as it is associated with the development of various diseases such as type 2 diabetes, cardiovascular diseases, cancer, and mood-related disorders (Finkelstein et al., 2009). Obesity is caused when energy intake overwhelms energy expenditure, and predisposing factors to obesity include excess in palatable and calorie-rich food intake such a high-fat diet (HFD) (O’Rahilly, 2009), as well as irregular eating such as binge eating (Kessler et al., 2016). Feeding behavior is controlled by both the homeostatic and reward systems (Waterson and Horvath, 2015). The latter is mainly composed of the mesolimbic system, in which dopaminergic neurons in the ventral tegmental area (VTA) project to the nucleus accumbens (NAc) and caudate putamen (CPu) in the striatum (Kenny, 2011).

Gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter that has been implicated in the regulation of the mesolimbic system (Hayes et al., 2014), acts on two types of receptors: ionotropic GABA\textsubscript{A} and GABA\textsubscript{C}, and metabotropic GABA\textsubscript{B} receptors (GABA\textsubscript{B}Rs) that are located both pre- and postsynaptically (Bettler et al., 2004; Gassmann and Bettler, 2012). Previous studies suggest that the GABA\textsubscript{B}R agonist baclofen is effective in reducing binge-like eating in rodents (Berner et al., 2009; Buda-levin et al., 2005; Czyzyk et al., 2010; Rao et al., 2008; Wojnicki et al., 2013; Wong et al., 2009) as well as binge eating in humans (De Beaurepaire et al., 2015; Broft et al., 2007; Corwin et al., 2012), although the site of action remains to be elucidated.

The time-restricted access to HFD causes binge-like eating behavior, as shown by increases in motivation to consume (Lardeux et al., 2013) and gradual increases in the consumption (Furlong et al., 2014; Valdivia et al., 2015). These behaviors are accompanied by the activation of neurons in both VTA and NAc (Valdivia et al., 2015) and increases in extracellular dopamine concentrations in the NAc (Liang et al., 2006; Naef et al., 2015; Sahr et al., 2008), suggesting that the time-restricted access to HFD is a good model to investigate the mechanisms underlying binge eating of HFD.

To investigate the role of GABA\textsubscript{B}Rs in the mesolimbic system in binge eating, we generated mice that lack GABA\textsubscript{B}Rs exclusively in dopaminergic or corticostriatal neurons and compared their binge-like eating behavior induced by the time-restricted access to HFD with wild-type (WT) littermate mice.
Figure 1. Generation of Dopaminergic Neuron-Specific and Corticostriatal Neuron-Specific GABAB1R Deficient Mice

(A and B) Detection of deleted GABAB1R alleles (Δ) in GABAB1R^{lox511/lox511} DAT-Cre (D-KO) mice and GABAB1R^{lox511/lox511} GPR88-Cre (CS-KO) mice. DNA was extracted from different tissues, and deletion of the floxed allele was detected by PCR. Vta, ventral tegmental area; Sub, substantia nigra; Hyp, hypothalamus; Cor, cerebral cortex; Hip, hippocampus; Cer, cerebellum; BS, brain stem; mPfc, medial prefrontal cortex; Ofc, orbitofrontal cortex; NAc, nucleus accumbens; CPu, caudate putamen; PC, positive control; NC, negative control. PCR reaction with GAPDH was used as an internal control.
RESULTS

Generation of Dopaminergic Neuron-Specific and Corticostriatal Neuron-Specific GABA_B-R-Deficient Mice

To generate dopaminergic neuron-specific GABA_B-R deficient (D-KO) mice, GABA_B1Rlox511/lox511 mice were crossed with dopamine transporter (DAT)-Cre (DAT-Cre) mice. Then, we crossed the GABA_B1Rlox511/lox511 DAT-Cre mice with GABA_A1R+/lox511 or GABA_B1Rlox511/lox511 mice to yield GABA_B1Rlox511/lox511 DAT-Cre mice and littermate controls (hereafter termed WT mice). GPR88 is an orphan G-protein-coupled receptor that is highly expressed in striatal and cortical neurons (Hisatsune et al., 2013; Quintana et al., 2012). To generate corticostriatal neuron-specific GABA_B-R-deficient (CS-KO) mice, GABA_B1Rlox511/lox511 mice were crossed with GPR88-Cre mice. Then, we crossed the GABA_B1Rlox511/lox511 GPR88-Cre mice with GABA_A1R+/lox511 or GABA_B1Rlox511/lox511 mice to yield GABA_B1Rlox511/lox511 GPR88-Cre mice and WT mice. Deletion of the GABA_A1 receptor allele in D-KO mice was only detected in DNA extracts from the VTA (Figures 1A and S1A). Similarly, deletions of the GABA_A1 receptor allele in CS-KO mice were detected in DNA extracts from the NAc, CPu, medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) (Figures 1B and S1B). In contrast, no recombined alleles were detected in WT mice (Figures 1A, 1B, S1A, and S1B). To visualize dopaminergic neuron-specific and corticostriatal neuron-specific Cre-mediated recombination, we crossed D-KO and CS-KO mice to yield GPR88-Cre mice and WT mice. Deletion of the GABA_A1 receptor allele in D-KO mice was only detected in DNA extracts from the VTA (Figures 1A and S1A). Similarly, deletions of the GABA_A1 receptor allele in CS-KO mice were detected in DNA extracts from the NAc, CPu, medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) (Figures 1B and S1B). In contrast, no recombined alleles were detected in WT mice (Figures 1A, 1B, S1A, and S1B).

Time-Restricted Access to HFD Gives Rise to Binge-like Eating

To examine the hedonic regulation of HFD intake, male WT mice were divided into three groups, “control group,” “ad libitum HFD group,” and “restricted HFD group” (Figures 2A and 2B). All mice were fed only a chow diet (CD) from conditioning day 1–5. Then, the mice in control group were given free access to both CD and HFD for 2 days, followed by access to only CD (Figures 2A and 2B). The mice in ad libitum HFD group could access both CD and HFD from the conditioning day 6 to the end of the experiments (Figure 2B). In the restricted HFD group, mice were given free access to both CD and HFD on conditioning days 6 and 7, followed by access to only CD from conditioning day 8–12. The mice were then given the access to HFD for 2 h (zeitgeber time 12 to 14), whereas they could always access CD from experimental day 1–6 (Figures 2A and 2B). The protocols of conditioning and experimental days are determined based on previous studies (Bake et al., 2014; Berner et al., 2008; Cao et al., 2014; Czyzyk et al., 2010; Johnson and Kenny, 2010; King et al., 2016) with some modifications.

The mice in the ad libitum HFD group showed increases in both body weight and daily food intake compared with restricted HFD and control groups (Figures 2C and 2D). The findings were supported by a group effect (F (2,15) = 9.580, p = 0.002, for body weight; F (2,15) = 8.479, p = 0.003, for food intake) and an interaction effect between time and group (F (34,255) = 9.311; p < 0.001, for body weight; F (34,255) = 5.309, p < 0.001, for food intake). In both control and restricted HFD groups, the food intake was decreased when the mice were returned to CD from HFD on conditioning day 8, as reported previously.
The mice in the restricted HFD group consumed only HFD during the restricted time (zeitgeber time 12 to 14), and they consumed more calories during this period than mice from the other two groups (Figure 2E). The mice in the restricted HFD group consumed about 60% of the daily calorie intake from HFD during the restricted time on experimental day 1, and consistent with previous studies (Johnson and Kenny, 2010; Valdivia et al., 2015), the ratios of HFD intake to daily calorie intake on experimental days 3–6 are significantly increased compared with that on experimental day 1 (time effect; $F(5,50) = 80.096, p < 0.001$, Figure 2F). On the other hand, calorie intake in the ad libitum HFD Ad-HFD group was almost from HFD, but not from CD, throughout experimental days ($n = 6$). All values are mean ± SEM. Statistical analysis were performed using two-way ANOVA assessed by repeated measures (C–E) or one-way ANOVA assessed by repeated measures (F) followed by Bonferroni post hoc test. #p < 0.05, ###p < 0.001 versus Control; *p < 0.05, ***p < 0.001 versus R-HFD; †p < 0.05, †††p < 0.001 versus the ratio of HFD in R-HFD on experimental day 1. See also Table S1 for the details of statistics.
was almost from HFD, but not from CD, throughout experimental days (Figure 2F). These data suggest that time-restricted access to HFD gives rise to a pattern of binge-like eating of HFD.

GABAB Receptor Signaling in Corticostriatal Neurons Suppresses HFD Consumption under Time-Restricted Access to HFD

To clarify the role of GABA BR signaling in the hedonic regulation of HFD intake, we placed male D-KO and CS-KO mice on time-restricted HFD access. The HFD intake during the 2 h was significantly increased in male CS-KO, but not in D-KO, compared with WT mice in experimental days 1 and 2 (Figures 3A and 3B). This was supported by a genotype effect between WT and CS-KO mice (F(1,14) = 7.475, p = 0.003; genotype x time interaction: F(5,70) = 1.074, not significant). All values are mean ± SEM. Statistical analyses were performed using two-way ANOVA assessed by repeated measures followed by Bonferroni post hoc test. *p < 0.05 versus WT. See also Table S2 for the details of statistics.

was almost from HFD, but not from CD, throughout experimental days (Figure 2F). These data suggest that time-restricted access to HFD gives rise to a pattern of binge-like eating of HFD.

GABAB Receptor Signaling in Corticostriatal Neurons Suppresses HFD Consumption under Time-Restricted Access to HFD

To clarify the role of GABA BR signaling in the hedonic regulation of HFD intake, we placed male D-KO and CS-KO mice on time-restricted HFD access. The HFD intake during the 2 h was significantly increased in male CS-KO, but not in D-KO, compared with WT mice in experimental days 1 and 2 (Figures 3A and 3B). This was supported by a genotype effect between WT and CS-KO mice (F(1,14) = 7.475, p = 0.003; genotype x time interaction: F(5,70) = 1.074, not significant). All values are mean ± SEM. Statistical analyses were performed using two-way ANOVA assessed by repeated measures followed by Bonferroni post hoc test. *p < 0.05 versus WT. See also Table S2 for the details of statistics.

Baclofen Suppresses HFD Consumption under Time-Restricted Access to HFD via GABAB Receptor Signaling in Dopaminergic and Corticostriatal Neurons

To evaluate the effects of GABA BR agonists on the hedonic regulation of HFD intake, we injected male mice in the restricted HFD group with baclofen interperitoneally 30 min before the beginning of dark cycle (ZT 12) on experimental days 1 and 5. Baclofen at a dose of 3 μg/g body weight reduced HFD intake for 10 min, 30 min, and 2 h in male WT mice compared with vehicle on both days (treatment effect; day 1: F
There Were No Significant Differences in Energy Balance or the Effects of Baclofen on Feeding Behavior among Genotypes under ad libitum Access to HFD or CD

Finally, we examined the role of GABA\(_B\)R signaling in the mesolimbic system in the regulation of food consumption and body weight under ad libitum access to HFD or CD. There were no significant differences in daily food intake, body weight, feed efficiency (\(\Delta\) body weight/\(\Delta\) food intake), or fat pad weight between WT and D-KO mice (Figures 5A–5H) or CS-KO mice on HFD (Figures 5I–5P) or CD (data not shown). There were no significant differences between genotypes in glucose metabolism estimated by fasted serum glucose, intraperitoneal glucose tolerance test, and insulin tolerance test (Figures S4A–S4F). The administration of baclofen (3 \(\mu\)g/g body weight) reduced daily HFD intake and body weight in WT mice, as reported previously (Sato et al., 2007) (Figures S4Q–S4T), and it also reduced daily HFD intake and body weight in D-KO (Figures 5Q and 5R) and CS-KO mice (Figures 5S and 5T). These data suggest that the GABA\(_B\)R signaling in the mesolimbic system does not affect the feeding behavior under ad libitum access to HFD.

DISCUSSION

In the present study, we generated dopaminergic neuron- and corticostriatal neuron-specific GABA\(_B\)R-deficient mice and demonstrated that HFD intake during the time-restricted access was significantly increased in corticostriatal neuron-specific KO mice compared with WT mice. Furthermore, the suppressing effect of baclofen on HFD intake during the restricted time observed in WT mice was absent in both KO mice. On the other hand, there were no significant differences in daily food consumption or body weight under ad libitum access to HFD among genotypes. Thus, our data indicate that the GABA\(_B\)R signaling in the mesolimbic system suppresses food consumption under time-restricted access to HFD.

Consistent with previous studies (Berner et al., 2009; Buda-levin et al., 2005; Czyzyk et al., 2010; Johnson and Kenny, 2010; Rao et al., 2008; Valdivia et al., 2015; Wong et al., 2009), WT mice under the time-restricted access to HFD consumed a substantial amount of calories from the HFD, and baclofen suppressed the HFD intake in WT mice. Although the site of action of baclofen has not been investigated so far, we now clearly demonstrate that baclofen suppresses HFD intake via GABA\(_B\)Rs in dopaminergic and corticostriatal neurons. The effects of baclofen observed in the present study might be mediated via a decreased dopaminergic tone in the mesolimbic system, as it is reported that (1) dopaminergic neurons in the mesolimbic system receive GABAergic inputs from various neurons (Filip et al., 2015) and (2) GABA inhibits mesolimbic dopamine signaling in the VTA and striatum (Ferrario et al., 2016; Pierce and Kumaresan, 2006).

Our data also showed differences between CS-KO and D-KO mice: HFD intake under the restricted time was significantly increased in CS-KO, but not in D-KO, compared with WT mice. These data suggest that the suppressive effects of endogenous GABA\(_B\)R signaling on hedonic HFD intake during the restricted time is more dominant in corticostriatal than dopaminergic neurons. Because the striatal neurons receive neural projections from not only the VTA but also other areas such as hippocampus, amygdala, prefrontal cortex, and hypothalamus (Ferrario et al., 2016), it is possible that the lack of GABA\(_B\)R in the striatal neurons enhances the activity of these neurons. The detailed mechanisms by which the absence of GABA\(_B\)Rs in the corticostriatal neurons enhances hedonic consumption of HFD needs to be clarified in future experiments.

Our data clearly demonstrate that there are no significant differences in daily food consumption or body weight between WT, CS-KO, and D-KO mice under ad libitum access to HFD and that baclofen suppressed HFD intake in all genotypes. We previously reported that baclofen decreased orexigenic neuropeptide Y mRNA expression while increasing anorexigic proopiomelanocortin mRNA expression in the hypothalamic arcuate nuclei, leading to reduced food intake and body weight in WT mice fed HFD (Sato et al., 2007). Furthermore, proopiomelanocortin neuron-specific GABA\(_B\)R KO mice showed increased body weight under ad libitum access to HFD (Ito et al., 2013). Taken together with the data presented herein, it is...
suggested that GABA_{B2}R signaling in the mesolimbic system regulates hedonic food consumption, whereas that in hypothalamic neurons plays an important role in homeostatic regulation of energy balance. These results contrast with previous studies showing that food intake and body weight are increased in mice with

Figure 4. Baclofen Suppresses HFD Consumption under Time-Restricted Access to HFD via GABA_{B2}R Signaling in Dopaminergic and Corticostriatal Neurons (A, D, and G) Intake of HFD during ZT12-14 and daily intake of CD in male (A and D) and female (G) GABA_{B2}R^{−/−} (WT) mice in R-HFD under treatment of baclofen on experimental days 1 (A) and 5 (D and G). Baclofen at a dose of 3 μg/g body weight reduced HFD intake for 10 min, 30 min, and 2 h in male WT mice compared with vehicle on days 1 (treatment: F(1,12) = 39.602, p < 0.001; time: F(3,36) = 20.949, p < 0.001, n = 7 per group) and 5 (treatment: F(2,24) = 165.583, p < 0.001; treatment × time interaction: F(2,24) = 4.286, p = 0.026, n = 7 per group) as well as in female WT mice on day 5 (treatment: F(1,10) = 46.609, p < 0.001; time: F(2,20) = 167.084, p < 0.001; treatment × time interaction: F(2,20) = 4.465, p = 0.025, n = 6 per group). (B, E, and H) Intake of HFD during ZT12-14 and daily intake of CD in male (B and E) and female (H) GABA_{B2}R^{lox511/lox511} DAT-Cre (D-KO) and WT mice in R-HFD under treatment of baclofen on experimental days 1 (B) and 5 (E and H). The inhibitory effect of baclofen on HFD intake was absent in male D-KO on days 1 (treatment: F(1,35) = 22.669, p < 0.001; genotype: F(1,35) = 0.568, not significant; treatment × genotype interaction: F(1,35) = 9.658, p = 0.004, n = 9–10 per group) and 5 (treatment: F(1,32) = 23.803, p < 0.001; genotype: F(1,32) = 2.969, not significant; treatment × genotype interaction: F(1,32) = 6.546, p = 0.015, n = 7–10 per group) as well as in female D-KO mice on day 5 (treatment: F(1,32) = 20.867, p < 0.001; genotype: F(1,32) = 4.326, p = 0.025; treatment × genotype interaction: F(1,32) = 6.026, p = 0.02, n = 7–10 per group). (C, F, and I) Intake of HFD during ZT12-14 and daily intake of CD in male (C and F) and female (I) GABA_{B2}R^{lox511/lox511} GPR88-Cre (CS-KO) and WT mice in R-HFD under treatment of baclofen on experimental days 1 (C) and 5 (F and I). The inhibitory effect of baclofen on HFD intake was absent in male CS-KO on days 1 (treatment: F(1,31) = 16.937, p < 0.001; genotype: F(1,31) = 12.671, p < 0.001; treatment × genotype interaction: F(1,31) = 4.503, p = 0.021, n = 7–10 per group) and 5 (treatment: F(1,36) = 9.661, p = 0.004; genotype: F(1,36) = 6.320, p = 0.017; treatment × genotype interaction: F(1,36) = 9.770, p = 0.003, n = 9–11 per group) as well as in female CS-KO on day 5 (treatment: F(1,38) = 18.808, p < 0.001; genotype: F(1,38) = 5.077, p = 0.03; treatment × genotype interaction: F(1,38) = 10.005, p = 0.003, n = 9–11 per group). All values are mean ± SEM. Statistical analysis were performed using two-way ANOVA assessed by repeated measures (A, D, and G) or two-way factorial ANOVA (B, E, F, H, and I) followed by Bonferroni post hoc test. *p < 0.05, ***p < 0.001 versus vehicle in WT. Ns, not significant. See also Table S3 for the details of statistics.
a genetic lack of insulin or leptin receptors in the mesolimbic system (Bronneke et al., 2011; Georgescu et al., 2006) and further highlight a role of the GABA BR signal in the mesolimbic system in binge-like eating of HFD.

As shown in Figure 2F, intake of HFD during 2 h under the time-restricted access increased only in the first 2 days. These results are consistent with previous studies in which the duration of time-restricted HFD was set for 30 days or longer (Bake et al., 2014; Berner et al., 2008; Johnson and Kenny, 2010; King et al., 2016) and suggest that, although time-restricted access to HFD induces binge-like eating behavior, HFD intake reaches a plateau in the first few days. The finding that CD consumption was decreased when the mice were returned to CD from HFD on day 8 (Figure 2D) is also consistent with previous studies (Berner et al., 2008; Corwin et al., 1998; Czyzyk et al., 2010; King et al., 2016). A possible interpretation is that mice subjected to the time-restricted access to HFD learned to wait for HFD.

In conclusion, our data show that the mesolimbic system regulates binge-like eating of HFD and provide a mechanism by which the GABA BR signaling suppresses palatable food consumption.

Limitations of the Study
GPR88-positive neurons include not only striatal neurons but also mPFC and OFC. Indeed, we showed that GABA BRs were knocked out in mPFC and OFC in CS-KO mice. As these areas have a crucial role in decision making (Rangel et al., 2008) and have been implicated in reward-guided behavior (Miller and Cohen, 2001), we cannot exclude the possibility that phenotypes observed in CS-KO mice were due to deficiency of GABA BRs in mPFC or OFC. Furthermore, both dopamine D1 and D2 receptors are expressed in GPR88-positive neurons (Massart et al., 2009); it remains to be established which receptor is critical for GABA BR signaling to suppress binge-eating behavior.

METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.09.032.

ACKNOWLEDGMENTS
We thank Michiko Yamada for helpful technical assistance. This work was supported by a Grant-in Aid for Scientific Research (C) from the Japanese Society for Promotion of Science (15K09426), a Junior Scientist...
Development Grant supported by Novo Nordisk Pharma Ltd. from the Japan Diabetes Society, and a grant from the Suzukien Memorial Foundation.

AUTHOR CONTRIBUTIONS
T.T., R.B., B.B., and H.A. designed the study and wrote the manuscript. T.T., H.Y., K.T., A.M., M.S., T.O., H.T., D.H., Y.I., S.I., M.G., and H.S. performed experiments.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: April 8, 2019
Revised: August 13, 2019
Accepted: September 23, 2019
Published: October 25, 2019

REFERENCES
Bake, T., Morgan, D.G.A., and Mercer, J.G. (2014). Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague-Dawley rat. Physiol. Behav. 128, 70–79.

De Beaurepaire, R., Joussaume, B., Rapp, A., and Jaury, P. (2015). Treatment of binge eating disorder with high-dose baclofen: a case series. J. Clin. Psychopharmacol. 35, 346-349.

Bake, T., Morgan, D.G.A., and Mercer, J.G. (2014). Bingeing, self-restriction, and increased body weight in rats with limited access to a sweet-fat diet. Obesity 16, 1998–2002.

Bettler, B., Kaumann, K., Mosbacher, J., Gassmann, M., and Structure, M. (2004). Molecular structure and physiological functions of GABA B receptors. Physiol. Rev. 84, 835–867.

Brof, A.I., Spanos, A., Convin, R.L., Mayer, L., Steinglass, J., Devlin, M.J., Attia, E., and Walsh, B.T. (2007). Baclofen for binge eating: an open-label trial. Int. J. Eat. Disord. 40, 687–691.

Błoniecka, H.S., Tovar, S., Kloppenburg, P., Hess, S., Hambel, B., Masoros, A., Brüning, J.C., Verhagen, L.A.W., Evers, N., Sánchez-Lasheras, C., et al. (2011). Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 13, 720–728.

Buda-levin, A., Wojnicki, F.H.E., and Convin, R.L. (2005). Baclofen reduces fat intake under binge-type conditions. Physiol. Behav. 86, 176–184.

Cao, X., Xu, P., Oyola, M.G., Xia, Y., Yan, X., Saito, K., Zou, F., Wang, C., Yang, Y., Hinton, A., et al. (2014). Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice. J. Clin. Invest. 124, 4351–4362.

Corwin, R.L., Wojnicki, F.H.E., Fisher, J.O., Dimitriou, S.G., Rice, H.B., and Young, M.A. (1998). Limited access to a dietary fat option affects ingestive behavior but not body composition in male rats. Physiol. Behav. 65, 545–553.

Corwin, R.L., Boan, J., Peters, K.F., and Ulbrecht, J.S. (2012). Baclofen reduces binge eating in a double-blind, placebo-controlled, crossover study. Behav. Pharmacol. 23, 616–625.

Czyzyk, T.A., Sahr, A.E., and Statnick, M.A. (2010). A model of binge-like eating behavior in mice that does not require food deprivation or stress. Obesity 18, 1710–1717.

Ferrario, C.R., Labougle, G., Liu, S., Nieh, E.H., Routh, V.H., Xu, S., and O’Connor, E.C. (2016). Homeostasis meets motivation in the battle to control food intake. J. Neurosci. 36, 11469–11481.

Filip, M., Frankowska, M., Sadowsk-Judcy, A., Suder, A., Szymiec, L., Mierzakiewski, P., Bienkowski, P., Przegalinski, E., and Cryan, J.F. (2015). GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators. Neuropharmacology 88, 36–47.

Finkelstein, E.A., Trogdon, J.G., Cohen, J.W., and Dietz, W. (2009). Annual medical spending attributable to obesity: payer- and service-specific estimates. Health Aff. (Millwood) 28, w822–w831.

Furlong, T.M., Jayaweera, H.K., Balleine, B.W., and Corbit, L.H. (2014). Binge-like consumption of a palatable food accelerates habitual control of behavior and is dependent on activation of the dorsolateral striatum. J. Neurosci. 34, 5012–5022.

Gassmann, M., and Bettler, B. (2012). Regulation of neuronal GABAB receptor functions by subunit composition. Nat. Rev. Neurosci. 13, 380–394.

Georgescu, D., Thurmon, J.J., Sears, R.M., Trinko, R., Hommel, J.D., D’Leon, R.J., Marinielli, M., Liu, Z.-W., and Gao, X.-B. (2006). Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810.

Hasegawa, Y., Daitoku, Y., Sekiguchi, K., and Tanimoto, Y. (2013). Novel ROSA26 Cre-reporter knock-in C57BL/6N mice exhibiting green fluorescence in pro-opiomelanocortin neurons protects against obesity, insulin resistance, and hypothalamic inflammation in male mice on a high-fat diet. J. Neurosci. 33, 17166–17173.

Johnson, P.M., and Kenny, P.J. (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641.

Kenny, P.J. (2011). Common cellular and molecular mechanisms in obesity and drug addiction. Nat. Rev. Neurosci. 12, 636–651.

Kessler, R.M., Hutson, P.H., Herman, B.K., and Potenza, M.N. (2016). The neurobiological basis of binge-eating disorder. Neurosci. Biobehav. Rev. 63, 223–238.

King, S.J., Rodrigues, T., Watts, A., Murray, E., Wilson, A., and Abizaid, A. (2016). Investigation of a role for ghrelin signaling in binge-like feeding in mice under limited access to high-fat diet. Neuroscience 319, 233–245.

Larude, S., Kim, J.J., and Nicola, S.M. (2013). Intermittent access to sweet high-fat liquid induces increased palatability and motivation to consume in a rat model of binge consumption. Physiol. Behav. 114–115, 21–31.

Liang, N.-C., Hajnal, A., and Norgren, R. (2006). Sham feeding corn oil increases accumbens dopamine in the rat. Am. J. Physiol. Integr. Comp. Physiol. 291, R1236–R1239.

Massart, R., Guilloux, J.P., Mignon, V., Sokoloff, P., and Diaz, J. (2009). Striatal GPR108 expression is confined to the whole projection neuron population and is regulated by dopaminergic...
and glutamatergic afferents. Eur. J. Neurosci. 30, 397–414.

Miller, E.K., and Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 30, 167–202.

Naef, L., Pitman, K.A., and Borgland, S.L. (2015). Mesolimbic dopamine and its neuromodulators in obesity and binge eating. CNS Spectr. 20, 574–583.

O’Rahilly, S. (2009). Human genetics illuminates the paths to metabolic disease. Nature 462, 307–314.

Pierce, R.C., and Kumaresan, V. (2006). The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev. 30, 215–238.

Quintana, A., Sanz, E., Wang, W., Storey, G.P., Gu¨ler, A.D., Wanat, M.J., Roller, B.A., La Torre, A., Amieux, P.S., McKnight, G.S., et al. (2012). Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat. Neurosci. 15, 1547–1555.

Rangel, A., Camerer, C., and Montague, P.R. (2008). A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556.

Rao, R.E., Wojnicki, F.H.E., Coupland, J., Ghosh, S., and Corwin, R.L.W. (2008). Baclofen, raclopride, and naltrexone differentially reduce solid fat emulsion intake under limited access conditions. Pharmacol. Biochem. Behav. 89, 581–590.

Sahr, A.E., Sindelar, D.K., Alexander-Chacko, J.T., Eastwood, B.J., Mitch, C.H., and Statnick, M.A. (2008). Activation of mesolimbic dopamine neurons during novel and daily limited access to palatable food is blocked by the opioid antagonist LY255582. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R463–R471.

Sato, I., Arima, H., Ozaki, N., Ozaki, N., Watanabe, M., Goto, M., Shimizu, H., Hayashi, M., Ianno, R., Nagasaki, H., et al. (2007). Peripherally administered baclofen reduced food intake and body weight in db/db as well as diet-induced obese mice. FEBS Lett. 581, 4857–4864.

Valdivia, S., Cornejo, M.P., Reynaldo, M., De Francesco, P.N., and Perello, M. (2015). Escalation in high fat intake in a binge eating model differentially engages dopamine neurons of the ventral tegmental area and requires ghrelin signaling. Psychoneuroendocrinology 60, 206–216.

Waterson, M.J., and Horvath, T.L. (2015). Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962–970.

Wojnicki, F.H.E., Charny, G., and Corwin, R.L.W. (2013). Baclofen-induced reductions in optional food intake depend upon food composition q. Appetite 64, 62–70.

Wong, K.J., Wojnicki, F.H.W., and Corwin, R.L.W. (2009). Pharmacology, Biochemistry and Behavior Baclofen, raclopride, and naltrexone differentially affect intake of fat/sucrose mixtures under limited access conditions. Pharmacol. Biochem. Behav. 92, 528–536.
Supplemental Information

GABA_B Receptor Signaling
in the Mesolimbic System Suppresses
Binge-like Consumption of a High-Fat Diet

Taku Tsunekawa, Ryoichi Banno, Hiroshi Yaginuma, Keigo Taki, Akira Mizoguchi, Mariko Sugiyama, Takeshi Onoue, Hiroshi Takagi, Daisuke Hagiwara, Yoshihiro Ito, Shintaro Iwama, Motomitsu Goto, Hidetaka Suga, Bernhard Bettler, and Hiroshi Arima
Supplemental Figures

Figure S1

A

WT	D-KO
Spi Liv Pan Kid Mus WAT BAT	Spi Liv Pan Kid Mus WAT BAT PC NC

→ \(\text{GABA}_{\beta_1}\text{R} \text{ allele} \)

B

WT	CS-KO
Spi Liv Pan Kid Mus WAT BAT	Spi Liv Pan Kid Mus WAT BAT PC NC

→ \(\text{GABA}_{\beta_1}\text{R} \text{ allele} \)

C

DAT-Ab DAPI tdsRed Merge

D-KO x R26GRR

D

GPR88-Ab DAPI tdsRed Merge

CS-KO x R26GRR

E

GPR88 GABA\(_{\beta_1}\text{R} \) DAPI Merge

WT

CS-KO

F

GPR88 GABA\(_{\beta_1}\text{R} \) DAPI Merge

WT

CS-KO

G

GPR88 GABA\(_{\beta_1}\text{R} \) DAPI Merge

WT

CS-KO

H

GPR88 GABA\(_{\beta_1}\text{R} \) DAPI Merge

WT

CS-KO

Supplemental Figures

0.5 kb

0.2 kb

mPFC

OFC

mPFC

OFC
Figure S1. Generation of dopaminergic neuron-specific and corticostriatal neuron-specific GABA\(_B\)R deficient mice, related to Figure 1

(A and B) Detection of deletion of \(\text{GABA}_B\)R alleles (Δ) in \(\text{GABA}_B\)R\(^{lox511/lox511}\) DAT-Cre (D-KO) and \(\text{GABA}_B\)R\(^{lox511/lox511}\) GPR88-Cre (CS-KO) mice. DNA was extracted from different tissues, and deletion of the floxed allele was detected by PCR. Spi, spine; Liv, liver; Pan, pancreas; Kid, kidney; Mus, muscle; WAT, white adipose tissue; BAT, brown adipose tissue; PC, positive control; NC, negative control. PCR reaction with \(\text{GAPDH}\) was used as an internal control. (C) The representative photographs showing the staining of DAT (green), tdsRed (magenta) and DAPI (blue) in the VTA of \(\text{GABA}_B\)R\(^{lox511/lox511}\) DAT-Cre R26GRR mice. White arrow heads show colocalization of DAT and tdsRed. Scale bar: 50 μm. (D) The representative photographs showing the staining of GPR88 (green), tdsRed (magenta) and DAPI (blue) in the NAc and CPu of \(\text{GABA}_B\)R\(^{lox511/lox511}\) GPR88-Cre R26GRR mice. Scale bar: 100 μm. (E-H) The representative photographs showing the staining of GPR88 (green), \(\text{GABA}_B\)R (magenta) and DAPI (blue) in mPFC (E and F) and OFC (G and H) in WT and CS-KO mice. White arrow heads show colocalization of GPR88 and \(\text{GABA}_B\)R. Scale bar: 20 μm. All data are from male mice.
Figure S2.

GABA\textsubscript{B} receptor signaling in corticostriatal neurons suppresses HFD consumption under time-restricted access to HFD, related to Figure 3

Daily CD intake in male (A, B) and female (C, D) D-KO (A, C), CS-KO (B, D) and WT (A, B, C, D) mice in R-HFD (male: WT, n=11; D-KO, n=5; CS-KO, n=5; female: WT, n=10-11; D-KO, n=4; CS-KO, n=7). All values are mean ± SEM. Statistical analysis were performed using two-way ANOVA assessed by repeated measures. See also Table S5 for the details of statistics.
Figure S3. Baclofen suppresses HFD consumption under time-restricted access to HFD via GABABR signaling in dopaminergic and corticostriatal neurons, related to Figure 4

(A) Locomotor activity during ZT12-14 in male WT mice in R-HFD under treatment of 3 μg/g body weight baclofen on experimental day 1 (n=6 per group). (B) HFD intake during ZT12-14 and daily CD intake in male WT mice in R-HFD under treatment of 0.3 μg/g body weight baclofen on experimental day 5. Baclofen reduced HFD intake for 10 min, 30 min and 2 hours in male WT mice compared to vehicle (treatment: $F_{(1,14)} = 21.153, P < 0.001$; time: $F_{(2,28)} = 881.763, P < 0.001$; treatment × time interaction: $F_{(2,28)} = 6.043, P = 0.007, n=8$ per group). (C, D) Intake of HFD during ZT12-14 and daily intake of CD in male D-KO (C), CS-KO (D) and WT (C, D) in R-HFD under treatment of 0.3 μg/g body weight baclofen on experimental day 5. The inhibitory effect of baclofen on HFD intake was absent in D-KO (treatment: $F_{(1,33)} = 18.611, P < 0.001$; genotype: $F_{(1,33)} = 0.330$, not significant; treatment × genotype interaction: $F_{(1,33)} = 3.826, P = 0.049, n=8-10$ per group) and CS-KO (treatment: $F_{(1,33)} = 5.655, P < 0.001$; genotype: $F_{(1,33)} = 17.915, P < 0.001$; treatment × genotype interaction: $F_{(1,33)} = 3.772, P = 0.023, n=8-11$ per group). All values are mean ± SEM. Ns: not significant. Statistical analysis were performed using two-way ANOVA assessed by repeated measures (A, B) or two-way factorial ANOVA (C, D) followed by Bonferroni post-hoc test. * $P < 0.05$, ** $P < 0.001$ versus vehicle in WT. See also the Table S6 for the details of statistics.
Figure S4. There were no significant differences in energy balance or the effects of baclofen on feeding behavior among genotypes under *ad libitum* access to HFD, related to Figure 5

(A, D) Blood glucose of D-KO (A), CS-KO (D) and WT (A, D) under *ad libitum* access to HFD (n=8-11 per group). (B, E) Glucose tolerance test (GTT) in D-KO (B), CS-KO (E) and WT (B, E) mice under *ad libitum* access to HFD (n=8-10 per group). (C, F) Insulin tolerance test (ITT) in D-KO (C), CS-KO (F) and WT (C, F) under *ad libitum* access to HFD (n=8-11 per group). All values are mean ± SEM. Statistical analyses were performed using two-way ANOVA with repeated measures (B, C, E, F) or unpaired t-test (A, D). See also Table S7 for the details of statistics.
Supplemental tables

Table S1. The details of statistics related to Figure 2.

Two-way ANOVA assessed by repeated measures

Time	Group	Interaction	F value	P value	η²	F value	P value	η²	F value	P value	η²
Figure 2C			F(2,15) = 25.412	P < 0.001	0.66	F(2,15) = 9.868	P = 0.002	0.51	F(2,15) = 3.911	P < 0.001	0.66
Figure 2D			F(2,15) = 36.294	P < 0.001	0.77	F(2,15) = 9.479	P = 0.003	0.51	F(3,25) = 5.309	P < 0.001	0.50
Figure 2E			F(2,32) = 17.327	P < 0.001	0.90	F(2,16) = 83.996	P < 0.001	0.91	F(4,32) = 24.585	P < 0.001	0.77

Bonferroni post-hoc test

Control versus Ad-HFD	Control versus R-HFD	Ad-HFD versus R-HFD										
Time	F value	P value	r	95% CI	F value	P value	r	95% CI	F value	P value	r	95% CI
Figure 2C												
Conditioning day 8	F(2,15) = 7.923	P = 0.010	0.68	-2.927 - -0.370	F(2,15) = 7.923	Na	0.07	-1.297 - 1.230	F(2,15) = 7.923	P = 0.012	0.67	0.357 - 2.863
Conditioning day 9	F(2,15) = 13.102	P = 0.004	0.80	-4.258 - 1.208	F(2,15) = 13.102	Na	0.52	-2.056 - 0.992	F(2,15) = 13.102	P = 0.004	0.71	0.675 - 3.725
Conditioning day 10	F(2,15) = 13.662	P = 0.001	0.81	-4.086 - 1.212	F(2,15) = 13.662	Na	0.60	-2.055 - 0.872	F(2,15) = 13.662	P = 0.004	0.67	0.645 - 3.522
Conditioning day 11	F(2,15) = 9.986	P = 0.002	0.75	-3.922 - -0.845	F(2,15) = 9.986	Na	0.46	-1.939 - 1.139	F(2,15) = 9.986	P = 0.010	0.75	0.445 - 3.512
Conditioning day 12	F(2,15) = 9.860	P = 0.009	0.73	-4.040 - 0.560	F(2,15) = 9.860	Na	0.21	-1.406 - 0.207	F(2,15) = 9.860	P = 0.003	0.80	0.894 - 4.373
Experimental day 1	F(2,15) = 13.576	P = 0.007	0.73	-3.906 - -0.594	F(2,15) = 13.576	Na	0.56	-0.806 - 2.506	F(2,15) = 13.576	P = 0.001	0.80	1.444 - 4.796
Experimental day 2	F(2,15) = 13.027	P = 0.010	0.74	-3.759 - -0.475	F(2,15) = 13.027	Na	0.52	-0.725 - 2.559	F(2,15) = 13.027	P = 0.001	0.83	1.391 - 4.675
Experimental day 3	F(2,15) = 16.199	P = 0.002	0.80	-4.283 - 0.950	F(2,15) = 16.199	Na	0.41	-0.933 - 2.400	F(2,15) = 16.199	P = 0.001	0.81	1.683 - 5.017
Experimental day 4	F(2,15) = 14.104	P = 0.003	0.80	-4.267 - 0.867	F(2,15) = 14.104	Na	0.33	-1.117 - 2.283	F(2,15) = 14.104	P = 0.001	0.72	1.450 - 4.850
Experimental day 5	F(2,15) = 8.070	P = 0.027	0.70	-3.665 - -0.201	F(2,15) = 8.070	Na	0.29	-1.215 - 2.249	F(2,15) = 8.070	P = 0.005	0.79	0.718 - 4.182
Experimental day 6	F(2,15) = 12.896	P = 0.003	0.78	-4.372 - -0.928	F(2,15) = 12.896	Na	0.19	-1.422 - 2.022	F(2,15) = 12.896	P = 0.001	0.76	1.228 - 4.672

Figure 2D

Time	F value	P value	r	95% CI
Conditioning day 8	F(2,15) = 57.372	P < 0.001	0.92	-13.567 - -4.172
Conditioning day 9	F(2,15) = 6.995	P = 0.024	0.63	-4.570 - -0.105
Conditioning day 10	F(2,15) = 17.297	P = 0.003	0.83	-5.490 - -1.240
Conditioning day 12	F(2,15) = 5.881	P = 0.028	0.57	-3.840 - -0.404
Experimental day 1	F(2,15) = 3.915	P = 0.045	0.57	-4.134 - -0.296

Figure 2E

Time	F value	P value	r	95% CI
10 min	F(2,15) = 36.581	Na	0.01	-0.497 - -0.451
30 min	F(2,15) = 31.016	Na	0.23	-0.785 - -0.189
2 hours	F(2,15) = 62.215	Na	0.19	-1.236 - -0.802

One-way ANOVA assessed by repeated measures

Time	F value	P value	η²
Figure 2F R-HFD	F(5,50) = 9.580	P < 0.001	0.49

Bonferroni post-hoc test

Time	F value	P value	r	95% CI
Day 1 versus day 2	F(5,50) = 9.580	Na	0.52	-0.188 - 0.22
Day 2 versus day 3	F(5,50) = 9.580	P = 0.022	0.69	-0.248 - -0.016
Day 1 versus day 4	F(5,50) = 9.580	P = 0.034	0.72	-0.271 - 0.008
Day 1 versus day 5	F(5,50) = 9.580	P = 0.001	0.76	-0.239 - -0.107
Day 1 versus day 6	F(5,50) = 9.580	P = 0.005	0.64	-0.229 - -0.035

CI = confidence interval, ns = not significant.
Table S2. The details of statistics related to Figure 3.

Two-way ANOVA assessed by repeated measures

	Time	Genotype	Interaction			
	F value	P value	η^2	F value	P value	η^2
Figure 3A	$F(5,70) = 14.505$	$P < 0.001$	0.51	$F(1,14) = 1.034$	$P = 0.35$	0.07
Figure 3B	$F(5,70) = 31.215$	$P < 0.001$	0.69	$F(1,14) = 7.475$	$P = 0.003$	0.35
Figure 3C	$F(5,70) = 11.835$	$P < 0.001$	0.46	$F(1,14) = 2.203$	$P = 0.14$	0.07
Figure 3D	$F(5,70) = 20.126$	$P < 0.001$	0.57	$F(1,15) = 5.025$	$P = 0.041$	0.25

Bonferroni post-hoc test

	WT versus CS-KO			
	F value	P value	r	95% CI
Figure 3B	$F(1,14) = 7.661$	$P = 0.015$	0.60	-1.567 - -0.199
	$F(1,14) = 6.603$	$P = 0.022$	0.57	-1.439 - -0.130
Figure 3D	$F(1,15) = 4.923$	$P = 0.042$	0.50	-0.873 - -0.018
	$F(1,15) = 5.935$	$P = 0.028$	0.53	-1.726 - -0.115

CI = confidence interval, ns = not significant.
Two-way ANOVA assessed by repeated measures

Treatment	Time	Interaction	
Figure 4A	$F(1,12) = 30.602$	$P < 0.001$	0.77
	$F(2,24) = 620.053$	$P < 0.001$	0.06
Figure 4D	$F(1,12) = 21.486$	$P < 0.001$	0.84
	$F(2,24) = 165.583$	$P < 0.001$	0.03
Figure 4G	$F(1,10) = 46.609$	$P < 0.001$	0.82
	$F(2,20) = 167.084$	$P < 0.001$	0.94

Bonferroni post-hoc test

WT-vehicle versus WT-baclofen	F value	P value	r	95% CI
Figure 4A 10 min	$F(1,12) = 10.796$	$P = 0.007$	0.69	$0.232 - 1.152$
30 min	$F(1,12) = 25.068$	$P < 0.001$	0.82	$0.601 - 1.527$
2 hours	$F(1,12) = 54.790$	$P < 0.001$	0.91	$1.419 - 2.603$
Figure 4D 10 min	$F(1,12) = 9.671$	$P = 0.009$	0.67	$0.342 - 1.945$
30 min	$F(1,12) = 15.519$	$P = 0.002$	0.75	$0.951 - 3.304$
2 hours	$F(1,12) = 20.445$	$P < 0.001$	0.79	$1.260 - 3.604$
Figure 4G 10 min	$F(1,10) = 8.053$	$P = 0.018$	0.67	$0.176 - 1.464$
30 min	$F(1,10) = 9.792$	$P = 0.011$	0.70	$0.490 - 2.940$
2 hours	$F(1,10) = 24.683$	$P < 0.001$	0.86	$1.658 - 4.104$

Two-way factorial ANOVA

Treatment	Genotype	Interaction	
Figure 4B HFD	$F(1,35) = 22.668$	$P < 0.001$	0.34
CD	$F(1,35) = 0.968$	$P = 0.331$	0.01
Figure 4C HFD	$F(1,31) = 16.937$	$P = 0.001$	0.25
CD	$F(1,31) = 12.671$	$P < 0.001$	0.19
Figure 4E HFD	$F(1,32) = 23.803$	$P < 0.001$	0.34
CD	$F(1,32) = 2.969$	$P = 0.049$	0.04
Figure 4F HFD	$F(1,36) = 9.651$	$P = 0.004$	0.16
CD	$F(1,36) = 6.779$	$P = 0.017$	0.10
Figure 4H HFD	$F(1,36) = 9.651$	$P = 0.004$	0.16
CD	$F(1,36) = 6.326$	$P = 0.025$	0.07
Figure 4I HFD	$F(1,38) = 18.808$	$P < 0.001$	0.27
CD	$F(1,38) = 5.077$	$P = 0.033$	0.07
Figure 4J HFD	$F(1,35) = 4.047$	$P < 0.001$	0.10
CD	$F(1,35) = 3.002$	$P = 0.07$	0.001

Bonferroni post-hoc test

WT-vehicle versus WT-baclofen	F value	P value	r	95% CI
Figure 4B HFD 30 min	$F(1,35) = 30.145$	$P < 0.001$	0.79	$1.799 - 3.911$
Figure 4C HFD 30 min	$F(1,35) = 1.405$	$P = 0.29$	0.23	$-0.428 - 1.629$
Figure 4E HFD 30 min	$F(1,35) = 23.389$	$P < 0.001$	0.80	$1.214 - 2.600$
Figure 4F HFD 30 min	$F(1,35) = 18.501$	$P = 0.001$	0.71	$1.324 - 3.687$
Figure 4H HFD 30 min	$F(1,35) = 27.988$	$P < 0.001$	0.79	$1.652 - 4.171$
Figure 4I HFD	$F(1,35) = 28.125$	$P < 0.001$	0.78	$1.339 - 2.992$

Bonferroni post-hoc test

KO-vehicle versus KO-baclofen	F value	P value	r	95% CI
Figure 4B HFD 30 min	$F(1,35) = 30.145$	$P < 0.001$	0.79	$1.799 - 3.911$
Figure 4C HFD 30 min	$F(1,35) = 1.405$	$P = 0.29$	0.23	$-0.428 - 1.629$
Figure 4E HFD 30 min	$F(1,35) = 23.389$	$P < 0.001$	0.80	$1.214 - 2.600$
Figure 4F HFD 30 min	$F(1,35) = 18.501$	$P = 0.001$	0.71	$1.324 - 3.687$
Figure 4H HFD 30 min	$F(1,35) = 27.988$	$P < 0.001$	0.79	$1.652 - 4.171$

CI = confidence interval, ns = not significant.
Table S4. The details of statistics related to Figure 5.

Two-way ANOVA assessed by repeated measures

Figure	Genotype	Time	Interaction	
5A		F(13,208) = 561.677	P < 0.001	0.97
5E		F(13,234) = 265.533	P < 0.001	0.94
5I		F(13,182) = 376.879	P < 0.001	0.96
5M		F(13,182) = 177.169	P < 0.001	0.93

F value	**P value**	**η²**
F(1,16) = 0.379	No	0.02
F(1,16) = 0.229	No	0.01
F(1,14) = 0.041	No	0
F(1,14) = 1.456	No	0.09

F value	**P value**	**η²**
F(13,208) = 0.864	No	0.05
F(13,234) = 0.336	No	0.02
F(13,182) = 0.180	No	0.01

Two-way factorial ANOVA

Figure	Treatment	Genotype	Interaction
5Q	F(1,20) = 15.961	P < 0.001	0.7
5R	F(1,20) = 79.515	P < 0.001	0.76
5S	F(1,20) = 40.887	P < 0.001	0.67
5T	F(1,20) = 44.684	P < 0.001	0.69

F value	**P value**	**η²**
F(1,20) = 3.289	No	0.03
F(1,20) = 2.411	No	0.02
F(1,20) = 0.497	No	0.01
F(1,20) = 0.575	No	0.01

F value	**P value**	**η²**
F(1,20) = 2.932	No	0.12
F(1,20) = 3.147	No	0.03
F(1,20) = 0.157	No	0

Bonferroni post-hoc test

Figure	WT-vehicle versus WT-baclofen	KO-vehicle versus KO-baclofen						
5Q	F(1,20) = 92.682	P < 0.001	0.92	1.337 - 2.075	F(1,20) = 15.892	P < 0.001	0.93	0.337 - 1.075
5R	F(1,20) = 57.150	P < 0.001	0.89	2.719 - 4.293	F(1,20) = 25.512	P < 0.001	0.91	1.473 - 3.546
5S	F(1,20) = 40.887	P < 0.001	0.67	4.79 - 6.409	F(1,20) = 23.059	P < 0.001	0.99	0.604 - 1.531
5T	F(1,20) = 23.429	P < 0.001	0.77	2.307 - 5.802	F(1,20) = 21.281	P < 0.001	0.93	2.117 - 5.612

F value	**P value**	**r**	95% CI	**F value**	**P value**	**r**	95% CI
F(1,20) = 15.892	P < 0.001	0.93	0.337 - 1.075	F(1,20) = 23.059	P < 0.001	0.99	0.604 - 1.531

CI = confidence interval, ns = not significant.
Table S5. The details of statistics related to Figure S2.

Two-way ANOVA assessed by repeated measures

	Time	Genotype	Interaction						
F value	P value	η\(_p\)^2	F value	P value	η\(_p\)^2	F value	P value	η\(_p\)^2	
Figure S2A	F(5,70) = 7.013	P < 0.001	0.33	F(1,14) = 1.433	Ns	0.09	F(5,70) = 0.323	Ns	0.02
Figure S2B	F(5,70) = 10.048	P < 0.001	0.42	F(1,14) = 0.408	Ns	0.03	F(5,70) = 0.219	Ns	0.02
Figure S2C	F(5,65) = 2.647	P = 0.031	0.17	F(1,13) = 2.065	Ns	0.14	F(5,65) = 0.330	Ns	0.03
Figure S2D	F(5,75) = 4.272	P = 0.002	0.22	F(1,15) = 0.038	Ns	0.05	F(5,75) = 0.811	Ns	0.05

Ns = not significant.
Table S6. The details of statistics related to Figure S3.

Two-way ANOVA assessed by repeated measures

	Treatment	Time	Interaction				
	F value	P value	η² value	F value	P value	η² value	
Figure S3A	F(1,10) = 0.455	Ns 0.04		F(3,30) = 10.408	P < 0.001	0.51	
	Figure S3B	F(1,14) = 21.153	P < 0.001 0.60	F(2,28) = 881.763	P < 0.001 0.98	F(2,28) = 6.043	P < 0.007 0.30

Bonferroni post-hoc test

	Treatment	Genotype	Interaction	
	F value	P value	r value	95% CI
Figure S3B 10 min	F(1,14) = 6.190	P = 0.026 0.55	0.075 - 1.013	
	F(1,14) = 16.796	P = 0.001 0.74	0.652 - 2.085	
	F(1,14) = 19.037	P = 0.001 0.76	0.796 - 2.329	

Two-way ANOVA assessed by repeated measures

	Treatment	Genotype	Interaction			
	F value	P value	η² value	F value	P value	η² value
Figure S3C HFD	F(1,33) = 18.611	P < 0.001 0.33	F(1,33) = 0.030	Ns 0.01	F(1,33) = 3.826	P = 0.049 0.07
	F(1,32) = 5.655	P < 0.001 0.10	F(1,33) = 17.915	P < 0.001 0.31	F(1,33) = 3.772	P = 0.023 0.05
	F(1,33) = 3.135	Ns 0.06	F(1,33) = 5.964	P = 0.021 0.14	F(1,33) = 0.050	Ns 0
Figure S3D HFD	F(1,33) = 5.655	P < 0.001 0.10	F(1,33) = 17.915	P < 0.001 0.31	F(1,33) = 3.772	P = 0.023 0.05
	F(1,33) = 3.135	Ns 0.06	F(1,33) = 5.964	P = 0.021 0.14	F(1,33) = 0.050	Ns 0

Bonferroni post-hoc test

	Treatment	KO-vehicle	Interaction	
	F value	P value	r value	95% CI
Figure S3C HFD	F(1,33) = 20.304	P < 0.001 0.67	1.068 - 2.820	
	F(1,33) = 1.041	Ns 0.21	-0.426 - 1.284	
Figure S3D HFD	F(1,33) = 8.344	P < 0.007 0.75	0.467 - 2.689	
	F(1,33) = 3.144	Ns 0.50	-2.080 - 0.143	

CI = confidence interval, ns = not significant.
Table S7. The details of statistics related to Figure S4.

Two-way ANOVA assessed by repeated measures

	Time	Genotype	Interaction						
	F value	P value	η²	F value	P value	η²			
Figure S4B	F(4,64) = 187.947	$P < 0.001$	0.92	F(1,16) = 0.006	$N S$	0	F(4,64) = 0.554	$N S$	0.03
Figure S4C	F(5,85) = 87.299	$P < 0.001$	0.84	F(1,17) = 0.749	$N S$	0.04	F(5,85) = 1.609	$N S$	0.09
Figure S4E	F(4,64) = 179.038	$P < 0.001$	0.92	F(1,16) = 0.953	$N S$	0.02	F(4,64) = 0.473	$N S$	0.03
Figure S4F	F(5,80) = 79.812	$P < 0.001$	0.83	F(1,16) = 1.461	$N S$	0.08	F(5,80) = 0.369	$N S$	0.02

Ns = not significant.
Transparent Methods

Mice
All animal procedures were approved by the Animal Care and Use Committee of Nagoya University Graduate School of Medicine and performed in accordance with the institutional guidelines that conform to the National Institutes of Health animal care guidelines. Mice were maintained on a 12 h light/12 h dark cycle in a temperature-controlled barrier facility, with free access to water and food. Age-matched littersmates were used for all experiments.

Mice with DAT-specific and GPR88-sepecific deletion of GABA$_{B1}$

GABA$_{B1}^{R_{lox511/lox511}}$ mice were generated previously (Haller et al., 2004). DAT-Cre transgene mice (RRID: IMSR_JAX:006660) express functional Cre-recombinase only in dopaminergic neurons (Turiault et al., 2007), and GPR88-Cre transgene (RRID: IMSR_RBRC10287) mice express functional Cre-recombinase mainly in medium spiny neurons and a small population of parvalbumin-positive interneurons in the caudate-putamen and nucleus accumbens (Hisatsune et al., 2013). ROSA26 Cre-reporter knock-in C57BL/6N mice (RRID: IMSR_RBRC04874), which exhibit green emission before and red after Cre mediated recombination (Hasegawa et al., 2013). GPR88-Cre transgene mice and ROSA26 Cre-reporter knock-in C57BL/6N mice were provided by RIKEN BRC through the National Bio-Resource Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan. DNA was extracted from a tail from each experimental mouse at the age of 10 days. DNA was subjected to genotyping analyses by PCR with KOD FX DNA polymerase (Toyobo, Osaka, Japan) and the oligonucleotide primers. The PCR was performed with SimpliAmp™ Thermal Cycler (The Applied Biosystems™, CA, USA). The condition was 5 min at 95℃ followed by 30 cycles at 95℃ for 30 sec, 56℃ for 20 sec and 72℃ for 60 sec with a 7 min final extension. Primer sequences used for genotyping of GABA$_{B1}^{R_{lox511/lox511}}$, DAT-Cre and GPR88-Cre mice were as follows: GABA$_{B1}^{R}$ forward, 5’-TGCGGCTGCTCTACATGCAGCGGAGCG; reverse, 5’-GCTCTTTACCTTCAACCCAGCCTCAGGC AGGC; DAT-Cre forward, 5’-TGGCTGTTGGTGAAGTGG; reverse, 5’-GGACAGGGACATGGAAGCT [to detect wild-type (WT) gene] or 5’-CCAAAAGACGGCAATATGTT (to detect transgene); GPR88-Cre forward, 5’- ACC TGATGGACATGGTCAGGATCG; reverse, 5’-TCCGGTATCTCAACTTGTACGACCAC; R26GRR mice were genotyped using the following R26GRR primers: forward, 5’-AAAGTCGCTTCAGGATGTTAT; reverse, 5’-CTTGTACAGCTCGTCCATGCGAG. Primer sequences used for the
occurrence of a spurious germline deletion were as follows: $GABAB_1R\Delta/\Delta$ forward, 5'-ATCTCTTCTTTGGCT GGTTCTTGCTTCGCTCG; reverse, 5'-GGGTTATGGAATATGACTGGAATTCTCCTCGACT; $GAPDH$ (for an internal control) forward, 5'-ACGACCCTTCTATTGAC; reverse, 5'-TCCACGACATATACTCAGCAC. All $GABAB_1R^{lox511/lox511}$ mice, DAT-Cre and $GPR88-Cre$ mice were backcrossed more than 10 generations onto a C57BL/6J background.

Isolating DNA from tissues for detection of recombination of floxed alleles

Tissues (VTA, substantia nigra, hypothalamus, cerebral cortex, hippocampus, cerebellum, brain stem, mPFC, OFC, NAc, CPu, spine, liver, pancreas, kidney, muscle, white adipose tissue, brown adipose tissue) of male mice at the age of 8 weeks were digested by 50 mM NaOH for 10 minutes at 95°C, and 1 M Tris-HCl (pH 8.0) was added to the digestion. Samples were centrifuged for 10 minutes at 12,000 × g, and supernatants were transferred to a fresh tube. Then DNA was subjected to genotyping analyses by PCR as described above.

Body composition and food intake

At weaning (3 weeks old), mice were placed on diets of either CD (CE-2, CLEA Japan, Tokyo, Japan; 24.9% protein, 4.6% fat and 70.5% carbohydrate) or HFD (Test Diet 58Y1, PMI Nutrition International, KS, USA; 18.3% protein, 60.9% fat, and 20.1% carbohydrate). The composition of fats in the HFD was as follows: 39.2% total saturated fatty acids, 40.1% total monounsaturated fatty acids, 13.5% linoleic acid, 1.1% linolenic acid, 0.2% arachidonic acid and 1.1% omega-3 fatty acids. Body weight was monitored until the age of 16 weeks. Measurement of epididymal or perigonadal fat pad weight was performed at the age of 16 weeks in the beginning of the light cycle (between 09:00 and 10:00 a.m.) when mice were in the fed state. Food intake in both CD and HFD was assessed by multifeeders (Shinfactory, Fukuoka, Japan) at the age of 8 weeks. Feed efficiency was calculated as grams of body weight gained per grams of food consumed over a 3-day period.

Assessment of feeding behavior under time-restricted access to HFD

As shown Figure 2B, mice (8 weeks of age) were divided into three groups. Food intake of both CD and HFD were assessed by multifeeders (Shinfactory, Fukuoka, Japan). We conducted interperitoneally injection of $GABA_B$ agonist baclofen (Sigma-Aldrich, MO,
USA; 3 μg/g body weight or 0.3 μg/g body weight) or vehicle (saline) 30 minutes before the beginning of dark cycle (ZT 12).

Locomotor activity under during time-restricted access to HFD
Male mice in R-HFD were acclimated to the test cage for 22h on conditioning day 12. Locomotor activity was measured simultaneously by infrared beam interruption (Model MK-5000RQ/02; Muromachi Kikai, Tokyo, Japan) during ZT12-14 on experimental day 1 and reported as average counts per 30 minutes.

Effect of baclofen on ad libitum HFD feeding
Male mice (10-12 weeks of age) housed individually were fed HFD for 6 weeks. Thereafter, weight-matched male mice were injected intraperitoneally with baclofen (3 μg/g body weight) or vehicle (saline) every 6 hours (ZT 0, 6, 12, 18) for 2 days, and mean daily food intake and body weight were measured.

Glucose tolerance test (GTT) and insulin tolerance test (ITT)
GTT and ITT were performed in male mice (10-12 weeks of age) fed HFD for 4 weeks. GTTs were performed on fasted (12 h) mice. Animals were injected intraperitoneally with D-glucose (20% solution; 1 mg/g of body weight), and blood glucose values were determined at 0, 15, 30, 60 and 120 min postinjection. ITTs were performed on fasted (6 h) animals. Blood glucose values were measured immediately before and at 15, 30, 60, 90 and 120 min after intraperitoneal injection of the insulin (Humulin R; Eli Lilly Japan, Kobe, Japan). The insulin dose was 0.6 mU/g body weight. Blood glucose was assayed in tail blood using a glucometer (Medi-safe mini; Terumo, Tokyo, Japan). Measurements were taken after the onset of the light cycle (between ZT 0 and ZT 2).

Brain collection for immunohistochemistry
Male mice (9 weeks of age) were deeply anesthetized and transcardially perfused with a cold fixative containing 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS) pH 7.4, between ZT 0 and ZT 1 in the fed state. After fixation, brains were removed and immersed in the same fixative for 2 h at 4°C. The brains were kept in PBS containing 10-20% sucrose at 4°C for cryoprotection. They were embedded in Tissue-Tek O.C.T. compound (Sakura Finetek, Tokyo, Japan) and stored at -80°C until sectioning. Brains were cut into 20-μm sections on a cryostat at -20°C, thawed and mounted on Superfrost Plus microscope slides (Matsunami, Tokyo, Japan), and stored at -80°C until immunohistochemistry.
Immunohistochemistry

The frozen sections were washed with PBS, 0.3% Triton X-100 in PBS (15min) and 50 mM glycine (15 min) followed by blocking with a mixture of 3% bovine serum albumin (Wako, Osaka, Japan) in PBS for 1 h at room temperature. Next, the sections were incubated with anti-DAT antibody (1:500; Merck Millipore, Darmstadt, Germany, RRID:AB_2190413), anti-GPR88 (1:750; Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Japan) or anti-GABA_B1 receptor (1:500; abcam, Cambridge, UK, RRID:AB_941703) overnight at 4°C. The sections were then treated with Alexa Fluor 488-conjugated anti-rabbit IgG secondary antibody (1:500; Invitrogen, CA, USA, RRID:AB_221544), Alexa Fluor 488-conjugated anti-rat IgG secondary antibody (1:1000; Invitrogen CA, USA, RRID:AB_2722511), Alexa Fluor 594-conjugated anti-mouse IgG secondary antibody (1:500; Invitrogen CA, USA, RRID:AB_2650601) for 1 h at room temperature. After washing in 1×PBS, sections were placed on slides, air dried, and cover slipped with Vectashield (Vector Labs, CA, USA). All fluorescently stained sections were examined with either a confocal laser microscope (TiE1R; NIKON INSTECH, Tokyo, Japan) or a fluorescence microscope (BZ-9000, Keyence, Japan, RRID:SCR_015486), and viewed using NIS-Elements software (NIKON INSTECH, Tokyo, Japan, RRID:SCR_014329).

Statistical analysis

The statistical significance of the differences between groups was analyzed by either unpaired *t*-test, one-way ANOVA with repeated measures, two-way factorial ANOVA or two-way ANOVA assessed by repeated measures followed by Bonferroni post-hoc test by using SPSS Statistics 25 (IBM, NY, USA, RRID:SCR_002865). Results are expressed as means ± SEM, and differences were considered significant at $P < 0.05$. The detail of statistical analyses is shown in Table S1 to S7.
References
Haller, C., Casanova, E., Müller, M., Vacher, C.M., Vigot, R., Doll, T., Barbieri, S., Gassmann, M., and Bettler, B. (2004). Floxed allele for conditional inactivation of the GABAB(1)gene. Genesis 40, 125–130.
Hasegawa, Y., Daitoku, Y., Sekiguchi, K., and Tanimoto, Y. (2013). Novel ROSA26 Cre-reporter Knock-in C57BL / 6N Mice Exhibiting Green Emission before and Red Emission after Cre-mediated Recombination. 62, 295–304.
Hisatsune, C., Ogawa, N., and Mikoshiba, K. (2013). Striatum-specific expression of Cre recombinase using the Gpr88 promoter in mice. Transgenic Res. 22, 1241–1247.
Turiault, M., Parnaudeau, S., Milet, A., Parlato, R., Rouzeau, J.D., Lazar, M., and Tronche, F. (2007). Analysis of dopamine transporter gene expression pattern - Generation of DAT-iCre transgenic mice. FEBS J. 274, 3568–3577.