Higher Genus Correlation Functions in CFTs with $T\bar{T}$ Deformation

Song He♣, Yun-Ze Li♣

♣Center for Theoretical Physics and College of Physics, Jilin University, Changchun 130012, People’s Republic of China
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm, Germany

Abstract

Since the definition of $T\bar{T}$ deformation in the curved Riemann surface is obstructive in the literature, we propose a way to generalize the deformation in the higher genus Riemann surface by sewing prescription. We construct the correlation functions of conformal field theories (CFTs) on genus two Riemann surfaces with the $T\bar{T}$ deformation in terms of the perturbative CFT approach. Thanks to sewing construction to form higher genus Riemann surfaces from lower genus ones and conformal symmetry, we systematically obtain the first order $T\bar{T}$ correction to the higher genus correlation functions in the $T\bar{T}$ deformed CFTs, e.g. partition function and one/higher-point correlation functions. In the weak-coupling limit, the higher genus correlation functions can be decomposed by lower genus correlation functions. Our results offer $T\bar{T}$ deformed field theories data to allow us to extract quantum chaos signals and multiple-interval Rényi entropies in deformed field theories.

1hesong@jlu.edu.cn
2lyz21@mails.jlu.edu.cn
1 Introduction

The $T\bar{T}$ deformation of 2d quantum field theories (QFTs) was first introduced by Zamolodchikov [1], has attracted much research interest recently. This deformation
has many remarkable properties such as integrability [2–7]. It means that for an undeformed theory with infinite commuting conserved charges, the charges keep conservation and still commute with each other along with the $T\bar{T}$ deformation. In a sense, the integrability of the $T\bar{T}$ deformation makes it solvable.

Quantum chaotic theories are quite different from the integrable theories. It is a nature question to ask how $T\bar{T}$ deformation changes the characteristic behaviors of chaotic/integrable theories. To extract the quantum chaos signals [8], there were several objects capturing quantum chaos, for example, spectrum form factor (SFF) [9], out of time ordered correlation function (OTOC) [10–12], operator growth [13], eigenstate thermalization hypothesis (ETH) [14–16], pole-skipping phenomenon [17], Loschmidt echo [18], and quantum entanglement entropies [19]. In deformed theories, there were some preliminary studies [20, 21] to extract quantum chaos signals in terms of quantum entanglement and OTOC. To read off quantum chaos signals from these quantities in the $T\bar{T}$ deformed theories, one has to construct the correlation functions essentially.

There were extensive attempts to construct the correlation functions in deformed theories. The $T\bar{T}$ deformed partition function on torus, namely zero-point correlation function, could be computed and the associated modular properties have been investigated in [22–24]. Furthermore the partition function with chemical potentials for KdV charges turning on was also obtained by [25–26]. The correlation functions for stress tensor operators have been obtained in terms of random geometry [27, 28] and holography [29–32]. The deformed correlation functions for generic operators have been obtained in perturbative CFT approach [20, 21, 33–34]. In [35], they obtained the deformed correlation functions of the deep UV theories in a non-perturbative way. In the context of a massive scalar [3] and Dirac fermion [36], integrability was used to fix renormalization ambiguities presented in correlation functions. More recently, authors of [37–39] try to construct surface charges of $T\bar{T}$ deformation to constrain the correlation functions.

In current work, one specific motivation to investigate the theories on higher genus manifold is to explore field theory data for holography, e.g. the field theory defined on torus will be important to understand the boundary theory which is
holographic dual to the BTZ black hole \[40\]. The other motivation to study the correlation functions in deformed theory on the torus is associated with reading the information about multiple-interval Rényi entropy \[41\]-\[44\]. Motivated by these, we focus on the correlation functions in \(T\bar{T}\)-deformed CFTs live on a higher genus Riemann surface by sewing flat tori \[45\]-\[47\]. Since the \(T\bar{T}\) operator via point splitting in curved backgrounds is ambiguous \[48\], we propose a possible sewing prescription in a local patch of the genus 2 Riemann surface with a local flat metric. There are main two ways called by sewing prescriptions to construct high genus Riemann surface, the one is Schottky Uniformization \[44, 49, 50\] and the other is offered by \[45\]-\[47\]. In the current work, we focus on the second sewing prescription. We assume that on genus two Riemann surface, the \(T\bar{T}\) deformed action can still be written as

\[
S^\lambda = S_{\text{CFT}} - \lambda \int_{\Sigma^{(2)}} d^2 z T\bar{T}^\lambda(z, \bar{z}),
\]

where \(\Sigma^{(2)}\) is the genus two Riemann surface formed by sewing two tori, and \(z\) are the local coordinates on them. We focus on the deformation nearby the CFTs, which means the \(T\bar{T}\) coupling \(\lambda\) is sufficiently small, and the conformal Ward identity still holds when we calculate the first order deformation.

The structure of this paper is as follows. In Section 2, we review general approaches to form a genus two Riemann surface by sewing two tori, and the associated Ward identity used. In Section 3, we apply the conformal Ward identity on genus two Riemann surface to calculate the first order \(T\bar{T}\) deformation of the partition function. In Section 4, we calculate the first order deformation of correlation functions. Conclusions and discussions are given in the final section. In the appendices, we would like to list some relevant techniques and notations which are useful in our analysis.

\[3\]In such situation, the deformation is still available, which is slightly different from the cases discussed in \[48\].
2 Mathematical preparation

In this section, we review some mathematical facts about the Riemann surface which are relevant in the main content. Firstly, we present a typical approach of sewing together two tori to form a genus two Riemann surface, and review a method of constructing high genus partition function. Then we review the genus two Ward identity, which plays a crucial role in calculating the first-order $T\bar{T}$ deformation.

2.1 Sewing construction

We review a general approach to form a genus two Riemann surface by sewing together two tori \[45–47\]. Two complete tori T^2_a for $a = 1, 2$ are introduced with modular parameters τ_a and local coordinates z_a, respectively. We construct the torus T^2_a with periods $2\pi i$ and $2\pi i\tau_a$. A closed disk $\{z_a, |z_a| \leq r_a\}$ is introduced on T^2_a, which has radius r_a and is centered at $z_a = 0$. For the disk, in order not to overlap with itself, its radius r_a must be less than half the minimum period D_a of the torus. A complex parameter ϵ is introduced to sew the two tori together, and an annulus $A_a = \{z_a, |\epsilon|/r_a \leq |z_a| \leq r_a\}$ is introduced on each torus T^2_a. The modulus of ϵ is upper bounded:

$$|\epsilon| \leq r_a/r_\bar{a} < \frac{1}{4}D_aD_{\bar{a}},$$

(2)

where we use the convention $1 = 2$, $\bar{2} = 1$. The genus two Riemann surface, which is denoted as $\Sigma^{(2)}$ in the following context, can be formed by identifying two annuli A_1 and A_2 as a single region A via the sewing relation $z_1z_2 = \epsilon$. After removing the small disk $\{z_a, |z_a| \leq |\epsilon|/r_\bar{a}\}$ and annulus A, the remainder of the torus T^2_a is denoted as S_a, thus $\Sigma^{(2)}$ can be divided into three parts, as shown in Fig.1

$$\Sigma^{(2)} = S_1 \cup A \cup S_2.$$

(3)

By this construction, a sewn genus two Riemann surface can be completely described by five parameters $(\tau_1, \tau_2, \epsilon, r_1, r_2)$. The period matrix Ω of $\Sigma^{(2)}$, which is used to parameterize the moduli space of Riemann surfaces, can be completely determined by the parameters τ_1, τ_2 and ϵ, by a holomorphic map $F^{\Omega} : (\tau_1, \tau_2, \epsilon) \mapsto \Omega(\tau_1, \tau_2, \epsilon)$ in [46]. Here the parameters $\tau_1, \tau_2 \in \mathbb{H}_1$ and $\epsilon \in \{\epsilon, |\epsilon| < \frac{1}{4}D_1D_2\} \subset \mathbb{C}$, and the
period matrix $\Omega \in \mathbb{H}_2$, where \mathbb{H}_n is the Siegel upper half-space. The explicit form of $\Omega(\tau_1, \tau_2, \epsilon)$ is given by

\begin{align*}
2\pi i \Omega_{11} &= 2\pi i \tau_1 + \epsilon[A_2(\mathbb{1} - A_1 A_2)^{-1}](1, 1), \\
2\pi i \Omega_{22} &= 2\pi i \tau_2 + \epsilon[A_1(\mathbb{1} - A_2 A_1)^{-1}](1, 1), \\
2\pi i \Omega_{12} &= 2\pi i \Omega_{21} = -\epsilon[(\mathbb{1} - A_1 A_2)^{-1}](1, 1),
\end{align*}

where $(1, 1)$ refers to the component of a matrix. A_a is the infinite matrix with components

\[A_a(m, n) = \epsilon \frac{m+n}{2} (-1)^{m+1} \frac{1}{\sqrt{mn}} \frac{(m+n-1)!}{(m-1)!(n-1)!} E_{m+n}(\tau_a). \]

It has been proved in [46] that the holomorphic map F^Ω is injective but not surjective.

The general method of calculating the high genus partition function is to decompose it into correlation functions on lower genus Riemann surface. A Riemann surface $\Sigma^{(g)}$ can be divided into two lower genus ones by cutting it along a particular closed curve. For instance, the sewn Riemann surface with genus-2 in Fig.1 can be divided into two tori by cutting it along a non-contractible closed curve in the annulus A. By inserting the complete set of boundary states, the partition function on $\Sigma^{(2)}$ can be decomposed into set of one-point functions on two tori. We will follow the convention in [47] throughout the rest of the discussion. We will use the square bracket Vertex Operator Algebra, which was first introduced by Zhu in [51]. A new vertex operator $V[v, z]$ is defined as

\[V[v, z] = V(e^{zL(0)}v, e^z - 1). \]

In Vertex Operator Algebra, Virasoro generators are the Laurent modes of a particular vertex operator:

\[V[\tilde{\omega}, z] = \sum_{n \in \mathbb{Z}} L[n] z^{-n-2}, \]

where $\tilde{\omega}$ is called conformal vector with conformal weight $L[0]\tilde{\omega} = wt[\tilde{\omega}]\tilde{\omega} = 2\tilde{\omega}$. For v is a primary state, $wt[v] = wt(v)$. \mathcal{H} is used to denote the complex vector space in which quantum states live, which can be written as a sum of subspaces spanned
Figure 1: The method for constructing a genus two Riemann surface. The annuli A_1 and A_2 (two gray areas) are introduced on the two tori respectively, and identify them as a single region by sewing relation $z_1z_2 = \epsilon$. The two red lines refer to the identification of the boundaries of the two annuli.

by states with the same conformal weight:

$$\mathcal{H} = \bigoplus_{n \in \mathbb{Z}} \mathcal{H}_n,$$ \hspace{1cm} (10)

where $\mathcal{H}_n = \{ v \in \mathcal{H} | L[0]v = wt[v]v = nv \}$. $\{ u_i^{[n]} \in \mathcal{H}_n, i = 1, ..., \dim \mathcal{H}_n \}$ is a basis for \mathcal{H}_n, and its dual basis $\{ \bar{u}_i^{[n]} \}$ is defined by $\langle u_i^{[n]} , \bar{u}_j^{[n]} \rangle_{sq} = \delta_{i,j}$, where \langle , \rangle_{sq} is the square bracket Li-Zamolodchikov metric in [52]. The partition function $Z^{(2)}(\tau_1, \tau_2, \epsilon)$ on the sewn Riemann surface $\Sigma^{(2)}$ can be decomposed into a combination of product of one-point functions on two tori. $Z^{(1)}(v, x; \tau_a)$ is used to denote a unnormalized one-point function on torus with a general state v inserted at $x \in T^2_a$. The torus one-point function is independent of coordinate x because of translation invariance.

The genus two partition function of the sewing construction is given by [52]

$$Z^{(2)}(\tau_1, \tau_2, \epsilon) = \sum_{n \geq 0} \epsilon^n \sum_{i=1}^{\dim \mathcal{H}_n} Z^{(1)}(u_i^{[n]}; \tau_1)Z^{(1)}(\bar{u}_i^{[n]}; \tau_2).$$ \hspace{1cm} (11)

In particular, the subspace $\mathcal{H}_{[0]}$ is spanned by the vacuum state $\mathbf{1}$ in CFT, and for vacuum state the one-point function $Z^{(1)}(\mathbf{1}; \tau_a)$ is the partition function on torus T^2_a.

There are other sewing constructions to form a genus two Riemann surface. In [44][50], four disks are removed from the Riemann sphere, and the boundaries of each pair of disks are identified to obtain two handles. Besides, the annuli A_1
and A_2 mentioned above can be introduced on the same torus and are centered at two separate points. One can identify the two annuli by sewing relation to form a self-sewn torus. One can also obtain the Riemann surface of arbitrary genus by sewing some spheres with three punctures on each. In this paper, our calculation is based on the sewing construction in Fig.1 and we follow the conventions in [47].

2.2 Genus two Ward identity

We review the genus two ward identity derived by Gilroy and Tuite in [47]. They generalize the Zhu recursion [51] to genus two correlation function, which provide an approach to represent $(n + 1)$-point function in terms of n-point functions. The genus-2 Ward identity is a special case of their result. On the genus two Riemann surface $\Sigma^{(2)}$, some general states u_1, \ldots, u_L and v_1, \ldots, v_R are inserted at $x_1, \ldots, x_L \in S_1 \cup A$ and $y_1, \ldots, y_R \in S_2 \cup A$, respectively, which provides an unnormalized $(L + R)$-point correlation function denoted as $Z(u_1, x_1; \ldots; u_L, x_L; v_1, y_1; \ldots; v_R, y_R; \tau_1, \tau_2, \epsilon)$. The conformal vector $\tilde{\omega}$ are inserted at $z \in \Sigma^{(2)}$ to obtain an $(L + R + 1)$-point function, which satisfies the genus two Ward identity [47]

$$Z(\tilde{\omega}, z; u, x; v, y; \tau_1, \tau_2, \epsilon) = D_z Z(u, x; v, y; \tau_1, \tau_2, \epsilon) + \sum_{l=1}^{L} \sum_{j=0}^{\infty} 2^{P_{1+j}}(z, x_l; \tau_1, \tau_2, \epsilon)Z(\ldots; L[j-1]u_l, x_l; \ldots) + \sum_{r=1}^{R} \sum_{j=0}^{\infty} 2^{P_{1+j}}(z, y_r; \tau_2, \tau_1, \epsilon)Z(\ldots; L[j-1]v_r, y_r; \ldots),$$

where $(u, x; v, y)$ is used to mark $(u_1, x_1; \ldots; u_L, x_L; v_1, y_1; \ldots; v_R, y_R)$. In what follows, we will explain the notations in eq.(12) and introduce some of our conventions to facilitate the subsequent calculation. The operator D_z contains the derivative operator of the sewing parameters $(\tau_1, \tau_2, \epsilon)$ which is defined as

$$D_z = 2^{\mathcal{F}_1}(z; \tau_1, \tau_2, \epsilon) \frac{1}{2\pi i} \partial_{\tau_1} + 2^{\mathcal{F}_2}(z; \tau_1, \tau_2, \epsilon) \frac{1}{2\pi i} \partial_{\tau_2} + 2^{\mathcal{F}_\Pi}(z; \tau_1, \tau_2, \epsilon) \epsilon^{\frac{1}{2}} \partial_{\epsilon}.$$

4One can refer to [53] and section 9.3 of [51] for construction details.
The index 2 at the top left of the \mathcal{F} function represents the conformal weight of $\tilde{\omega}$ in [17]. The definitions of $^2\mathcal{F}_a(z; \tau_1, \tau_2, \epsilon)$ for $a = 1, 2$ are

\[
^2\mathcal{F}_a(z; \tau_1, \tau_2, \epsilon) = \begin{cases}
1 + \sum_{k \geq 1} P_{k+3}(z, \tau_a) \alpha_a(k), & z \in S_a \cup A, \\
\sum_{k \geq 1} P_{k+3}(z, \bar{\tau}_a) \beta_a(k), & z \in \bar{S}_a \cup A,
\end{cases}
\]

(14)

where $P_k(z, \tau_a)$ is the Elliptic function defined in Appendix A. When the conformal vector $\tilde{\omega}$ is inserted on the different torus, the $^2\mathcal{F}_a(z; \tau_1, \tau_2, \epsilon)$ takes various forms. The column vectors with components $\alpha_a(k)$ and $\beta_a(k)$ are defined as follows. Firstly, the infinite matrix $\tilde{\Lambda}_a$ is introduced with components

\[
\tilde{\Lambda}_a(m, n) = \epsilon^{\frac{m+n+2}{2}} (-1)^{n+1} \binom{m+n+1}{n+2} E_{m+n+2}(\tau_a),
\]

(15)

where $E_n(\tau_a)$ is the Eisenstein series (see Appendix A), which is equal to zero for n odd. Then we define the Θ_a matrix by

\[
\Theta_a = (\mathbb{I} - \tilde{\Lambda}_\bar{a} \tilde{\Lambda}_a)^{-1},
\]

where \mathbb{I} is the identity matrix. We expand the components of Θ_a by the powers of ϵ and have

\[
\Theta_a(m, n) = \delta_{m,n} + \sum_{k \geq 1} \epsilon^{\frac{m+n+2k+4}{2}} A_{k,\bar{a}}^{m,n+2} E_{k+n+2}(\tau_a) + \left(\sum_{k \geq 1} \epsilon^{\frac{m+n+2k+4}{2}} A_{k,\bar{a}}^{m,n+2} E_{k+n+2}(\tau_a) \right)^2 + ...,
\]

(16)

where the coefficient $A_{k,a}^{m,n}$ is

\[
A_{k,a}^{m,n} = (-1)^{k+n} \binom{m+k+1}{k+2} \binom{k+n-1}{n} E_{m+k+2}(\tau_a).
\]

(17)

By the properties of the Eisenstein series, only if $(m+n)$ is even, $A_{k,a}^{m,n}$ does not all equal to zero. The components $\alpha_a(k)$ and $\beta_a(k)$ are defined as

\[
\alpha_a(k) = \sum_{l \geq 1} \epsilon^{\frac{k+l}{2}} \Theta_a(k, l) A_{1,\bar{a}}^{l,l},
\]

(18)

\[
\beta_a(k) = \epsilon^\frac{k}{2} \Theta_a(k, 1).
\]

(19)

The definition of $^2\mathcal{F}^{\Pi}(z; \tau_1, \tau_2, \epsilon)$ that appears in eq.(13) is

\[
^2\mathcal{F}^{\Pi}(z; \tau_1, \tau_2, \epsilon) = \epsilon^{\frac{n}{2}} \sum_{k \geq 1} P_{k+1}(z, \tau_a) \theta_a(k)
\]

(20)
for \(z \in S_a \cup A \). \(\theta_a \) is a column vector with components

\[
\theta_a(k) = \epsilon^{k+1} \times \begin{cases}
1, & k = 1, \\
0, & k = 2, \\
\sum_{l \geq 1} \epsilon^{k+l+2} \Theta_a(k-l, l) \left(lE_{l+1}(\tau_a) + \sum_{m \geq 1} \epsilon^{m+1} A_{m,a}^1 E_{m+1}(\tau_a) \right), & k \geq 3.
\end{cases}
\]

(21)

The function \(^2P_{1+j}(z, x; \tau_a, \tau_\alpha, \epsilon) \) that appears in Ward identity eq. (12) is referred to as the Genus Two Generalised Weierstrass Function in [47], and the index 2 at the top left of it has the same meaning as \(^2F(z; \tau_1, \tau_2, \epsilon) \). Firstly, the definition of \(^2P_1(z, x; \tau_a, \bar{\tau}_\alpha, \epsilon) \) is

\[
^2P_1(z, x; \tau_a, \bar{\tau}_\alpha, \epsilon) = \begin{cases}
P_1(z - x, \tau_a) - P_1(z, \tau_a) + \sum_{k \geq 1} P_{k+3}(z, \tau_a)[\xi_a^{(0)}(x)](k), & z, x \in S_a \cup A, \\
-\epsilon P_3(z, \tau_a) + \sum_{k \geq 1} P_{k+3}(z, \tau_a)[\xi_a^{(0)}(x)](k), & z \in S_a \cup A, x \in S_a \cup A.
\end{cases}
\]

(22)

We define the two column vectors \(\xi_a^{(0)}(x) \) and \(\zeta_a^{(0)}(x) \) that depend on the coordinate \(x \) with components

\[
[\xi_a^{(0)}(x)](k) = \sum_{l \geq 1} \epsilon^{k+l+4} \Theta_a(k, l) \left[\frac{l(l+1)}{2} E_{l+2}(\tau_a) + \sum_{m \geq 1} \epsilon^m A_{m,a}^0 P_m'(x, \tau_a) \right],
\]

(23)

\[
[\zeta_a^{(0)}(x)](k) = -\sum_{l \geq 1} \epsilon^{k+l+2} \Theta_a(k, l) \left[P_l'(x, \tau_a) + \sum_{m \geq 1} \epsilon^{m+2} A_{m,a}^{L,2} E_{m+2}(\tau_a) \right],
\]

(24)

where we define \(P_k'(x, \tau) = P_k(x, \tau) - E_k(x, \tau) \), which is the elliptic function \(P_k \) minus the constant term of its Laurent expansion. The functions \(^2P_{1+j}(z, x; \tau_1, \tau_2, \epsilon) \) for \(j \geq 1 \) are defined by taking the derivative of \(^2P_1(z, x; \tau_1, \tau_2, \epsilon) \) multiple times \(\partial_z [^2P_1(z, x)] \) in [47]. We introduce two column vectors \(\xi_a^{(j)}(x) \) and \(\zeta_a^{(j)}(x) \) to write \(^2P_{1+j}(z, x) \) as

\[
^2P_{1+j}(z, x; \tau_a, \bar{\tau}_\alpha, \epsilon) = \begin{cases}
P_{1+j}(z - x, \tau_a) + \sum_{k \geq 1} P_{k+3}(z, \tau_a)[\xi_a^{(j)}(x)](k), & z, x \in S_a \cup A, \\
\sum_{k \geq 1} P_{k+3}(z, \tau_a)[\zeta_a^{(j)}(x)](k), & z \in S_a \cup A, x \in S_a \cup A.
\end{cases}
\]

(25)
where
\[
\xi_a^{(j)}(x)(k) = \sum_{l, m \geq 1} \epsilon^{l + 1 + 2m + 4} \Theta_{a(k, l)} A_{m, a}^{l, j} P_{m+j}(x, \tau_a),
\]
\[
\zeta_a^{(j)}(x)(k) = (-1)^{1+j} \sum_{m \geq 1} \epsilon^{\frac{k + m + 2}{2}} \Theta_{a(k, m)} \left(\frac{m + j - 1}{j} \right) P_{m+j}(x, \tau_a).
\]

In eq. (12), we are only considering the Ward identity by inserting the holomorphic stress tensor. The Ward identity for inserting an anti-holomorphic stress tensor is similar to eq. (12), we conjugate all the functions, coordinates and parameters, and replace \(L[j - 1] \) by \(\bar{L}[j - 1] \).

3 Partition function

In this section, we apply the genus two Ward identity eq. (12) to calculate the first-order deformation of partition function under \(T\bar{T} \) on \(\Sigma^{(2)} \). The deformed Lagrangian \(L^\lambda \) with parameter \(\lambda \) satisfies the flow equation
\[
\partial_\lambda L^\lambda(z, \bar{z}) = -T\bar{T}^\lambda(z, \bar{z}),
\]
(28)
where \(T\bar{T}^\lambda(z, \bar{z}) \) is the deformed \(T\bar{T} \) operator. We can expand the \(L^\lambda \) and \(T\bar{T}^\lambda \) to the power of \(\lambda \):
\[
L^\lambda = \sum_{n=0}^{\infty} \lambda^n L^{(n)}, \quad T\bar{T}^\lambda = \sum_{n=0}^{\infty} \lambda^n T\bar{T}^{(n)}.
\]
(29)
The index \((n) \) here and below refers to the expansion coefficient of order \(\lambda^n \). From the flow equation eq. (28), we can derive a recursion relation
\[
L^{(n+1)} = -\frac{1}{n+1} T\bar{T}^{(n)}.
\]
(30)
We write down the deformed action \(S^\lambda \) and expand it to the first-order of \(\lambda \)
\[
S^\lambda = \int_{\Sigma^{(2)}} d^2 x L^\lambda = \int_{\Sigma^{(2)}} d^2 z \left(L^{(0)} - \lambda T\bar{T}^{(0)} \right) + O(\lambda^2).
\]
(32)
\[\text{Since} \quad \Sigma^{(2)} \text{is formed by sewing, the integral in the action should be divided into three parts}
\]
\[
\int_{\Sigma^{(2)}} d^2 z = \int_{z_1} d^2 z_1 + \int_{z_2} d^2 z_2 + \int_{z_3} d^2 z_3,
\]
(31)
where \(z_1 \) and \(z_2 \) are the coordinates of the two tori.
The deformed partition function Z^λ can be derived using the path integral formula

$$Z^\lambda = \int D\phi \ e^{-S^\lambda[\phi]}$$

$$= \int D\phi \left(1 + \lambda \int_{\Sigma^{(2)}} d^2 z T\bar{T}^{(0)} \right) e^{-S^{(0)[\phi]} + O(\lambda^2)}$$

$$= Z^{(0)} + \lambda Z^{(0)} \int_{\Sigma^{(2)}} d^2 z \langle T\bar{T}^{(0)} \rangle^{(0)} + O(\lambda^2), \quad (33)$$

Here $Z^{(0)}$ in the second term of eq.(33) comes from the normalization. $Z^{(0)}$ and $T^{(0)}$ are the undeformed partition function and stress tensor, respectively, and we will omit the index (0) below. The radius parameters r_1, r_2 affect the first-order deformation of the partition function (the domain of integration depends on r_1 and r_2, see Fig.1). To ensure that the $T\bar{T}$ first-order deformation on $\Sigma^{(2)}$ can degenerate to that on two tori when we take the limit $\epsilon \to 0$, we set up a relationship between radius parameter and ϵ:

$$r_1 = r_2 = \sqrt{|\epsilon|}. \quad (34)$$

In current work, for simplicity, we choose the above condition which satisfies the prerequisite conditions given by eq. (2). Intuitively, the condition causes the width of the annulus A to be 0. Even though the condition eq.(34) is introduced to constrain the shape of the Riemann surface $\Sigma^{(2)}$ largely, we can still read two characteristics from the sewing parameter ϵ. The modulus $|\epsilon|$ determines the coupling degree of the two tori, and the argument $e^{i\varphi} = \epsilon/|\epsilon|$ determines the relative rotation between them. The undeformed theory is assumed to be a CFT, which means that the expectation value $\langle T\bar{T} \rangle$ (at zeroth-order of λ) can be calculated by CFT Ward identity. From the genus two Ward identity eq.(12), $\langle T\bar{T}(z, \bar{z}) \rangle$ is regular on the annulus A, and its integral over A vanishes under condition eq.(34). Finally, the first-order deformation of the partition function can be divided into two parts

$$\delta\lambda Z = \int_{S_1} d^2 z_1 Z \langle T\bar{T}(z_1, \bar{z}_1) \rangle + \int_{S_2} d^2 z_2 Z \langle T\bar{T}(z_2, \bar{z}_2) \rangle$$

$$= \int_{S_1} d^2 z_1 D_{z_1} \bar{D}_{\bar{z}_1} Z + \int_{S_2} d^2 z_2 D_{z_2} \bar{D}_{\bar{z}_2} Z. \quad (35)$$

The integral of $D_z \bar{D}_{\bar{z}}$ is calculated in detail in Appendix C.2. Here we consider the weak coupling between S_1 and S_2, which means that $|\epsilon|$ is sufficiently small. We
approximate $\delta \lambda Z$ to $|\epsilon|^1$ and obtain:

$$\delta \lambda Z = \sum_{a=1}^{2} \left[\frac{1}{2} (\text{Im}[\tau_a] - \frac{|\epsilon|}{6\pi}) \partial_{\tau_a} \partial_{\bar{\tau}_a} Z - \frac{i}{2} \epsilon \partial_{\tau_a} \partial_{\bar{\tau}_a} Z \right] + \pi |\epsilon| \partial_{\tau_a} \partial_{\bar{\tau}_a} Z + c.c. + O(|\epsilon|^2), \quad (36)$$

where c.c. refers to complex conjugate term.

In particular, we consider the case of $\epsilon = 0$, which means that the two tori are completely decoupled. According to eq.(11), the genus two partition function Z under $\epsilon = 0$ can be written as the product of two torus partition functions Z_1 and Z_2. The decoupled first-order deformation can be obtained from eq.(36):

$$\delta \lambda Z \Big|_{\epsilon=0} = Z_2 \text{Im}[\tau_1] \partial_{\tau_1} \partial_{\bar{\tau}_1} Z_1 + Z_1 \text{Im}[\tau_2] \partial_{\tau_2} \partial_{\bar{\tau}_2} Z_2 + Z_2 \delta \lambda Z_1 + Z_1 \delta \lambda Z_2. \quad (37)$$

One can read off the deformation of the torus partition function $\delta \lambda Z_a$, which coincides with the first order deformation of the torus partition function obtained by up to a normalization factor.

To close this section, we would like to add some potential applications of the deformed genus two partition function obtained here. One can apply the first-order deformation of the partition function to investigate the multiple-interval Rényi entropy [41–44]. There has been a resurgence of interest in higher-genus partition functions of two-dimensional deformed CFTs, which is partly motivated by the perturbative study of entanglement entropies. The computation of entanglement entropies via the replica trick involves evaluating Rényi entropy, which can be regarded as certain higher-genus partition functions with the deformation perturbatively. Particularly interesting research applies calculations of Rényi entropy to check whether the holographic Ryu-Takayanagi formula [56,57] exists or not in the $T\bar{T}$ deformed theories. This is a check of our basic understanding of AdS_3/CFT_2 duality with $T\bar{T}$ deformation.

4 Correlation functions

In this section, we further consider first-order deformation of correlation functions on genus two Riemann surface $\Sigma^{(2)}$. X is used to denote the product of a series of
fields, which also flow under $T\bar{T}$. We expand X^λ to the power of λ:

$$X^\lambda = \sum_{n=0}^{\infty} \lambda^n X^{(n)} = X + \lambda \delta\lambda X + O(\lambda^2).$$

(38)

The deformed correlation function $\langle X^\lambda \rangle^\lambda$ can be derived by the path integral formula

$$\langle X^\lambda \rangle^\lambda = \frac{1}{Z^\lambda} \int D\phi X^\lambda[\phi] e^{-S^\lambda[\phi]}$$

$$= \left(1 - \frac{\lambda \delta\lambda Z}{Z}\right) \frac{1}{Z} \int D\phi \left(X + \lambda \delta\lambda X\right) \left(1 + \lambda \int_{\Sigma^{(2)}} d^2z T\bar{T}(0)\right) e^{-S[\phi]} + O(\lambda^2)$$

$$= \langle X \rangle + \lambda \left[\frac{\delta\lambda Z}{Z} \langle X \rangle + \langle \delta\lambda X \rangle + \int_{\Sigma^{(2)}} d^2z \langle T\bar{T}(z, \bar{z})X \rangle\right] + O(\lambda^2).$$

(39)

In eq. (39), the first-order deformation $\delta\lambda \langle X \rangle$ can be divided into three parts. The first part $-\frac{\delta\lambda Z}{Z} \langle X \rangle$ is contributed by the deformation of the normalization factor (i.e. the partition function), which has been calculated in eq. (36). The second part $\langle \delta\lambda X \rangle$ depends on the flow of the field X under $T\bar{T}$. Since λ is small enough, the conformal symmetry still hold and we do not take the $T\bar{T}$ flow effect of $\delta\lambda X$ here as shown in [20, 33, 55]. In this paper we focus on the contribution of the third term $\int_{\Sigma^{(2)}} d^2z \langle T\bar{T}(z, \bar{z})X \rangle$. We normalize the Ward identity eq. (12) by dividing both sides by Z:

$$\langle T(z)X(u, x; v, y) \rangle$$

$$= D_z \langle X(u, x; v, y) \rangle + \langle X(u, x; v, y) \rangle D_z \log Z$$

$$+ \sum_{l=1}^{L} \sum_{j \geq 0} 2^l P_{l+j}(z, x_l; \tau_1, \tau_2, \epsilon) \langle X(...; L[j - 1]u_l, x_l; ...) \rangle$$

$$+ \sum_{r=1}^{R} \sum_{j \geq 0} 2^l P_{l+j}(z, y_r; \tau_2, \tau_1, \epsilon) \langle X(...; L[j - 1]v_r, y_r; ...) \rangle. \quad (40)$$

In what follows, we will consider the $T\bar{T}$ deformed correlation function of primary fields and of stress tensors respectively. We will calculate the first-order deformation of one-point and two-point functions, and generalize to higher-point functions.

4.1 One-point function of primary field

The vertex operator of a primary state u satisfies

$$V[L[-1]u, x] = \partial_x V[u, x], \quad V[L[0]u, x] = wt[u]V[u, x], \quad V[L[j > 0]u, x] = 0. \quad (41)$$
Let X denote the product of primary fields, and Ward identity eq.\(\text{[40]}\) can be simplified to

$$
\langle T(z)X(u, x; v, y) \rangle = D_z \langle X(u, x; v, y) \rangle + \langle X(u, x; v, y) \rangle D_z \log Z
$$

$$
+ \left(\sum_{l=1}^{L} \mathcal{P}_{z,x_l} + \sum_{r=1}^{R} \mathcal{P}_{z,y_r} \right) \langle X(u, x; v, y) \rangle,
$$

(42)

where the operator $\mathcal{P}_{z,x}$ is defined as

$$
\mathcal{P}_{z,x} = 2\mathcal{P}_1(z, x; \tau_a, \bar{\tau}_a, \epsilon) \partial_x + 2\mathcal{P}_2(z, x; \tau_a, \bar{\tau}_a, \epsilon) \text{wt}[u],
$$

(43)

for $x \in S_a$, and $\text{wt}[u]$ is the conformal weight of u. Following the prescription in \[58\], we remove a small open disk $D_{\delta} = \{z, |z - x| < \delta\}$ centered on the singularity $z = x$, which introduces an additional boundary ∂D_{δ} to the domain of integration demonstrated by Fig.4. In the rest of $\Sigma^{(2)}$, the commutativity of $\mathcal{P}_{z,x}$ and $\mathcal{P}_{\bar{z},\bar{x}}$ is preserved. After integration, we regularize it by taking the limit $\delta \to 0$ and simply discarding the divergence.

Let us begin with the first-order deformed one-point function of primary field. We insert a pair of primary states (u, \bar{u}) at $(x, \bar{x}) \in S_a$ and apply Ward identity eq.\(\text{[42]}\) to obtain

$$
\int_{\Sigma^{(2)} \setminus D_{\delta}} d^2z \langle T \bar{T}(z, \bar{z}) V \rangle = \frac{1}{Z} \int_{\Sigma^{(2)} \setminus D_{\delta}} d^2z \left[D_z \bar{D}_{\bar{z}} + D_{\bar{z}} \bar{D}_z + \bar{D}_z \mathcal{P}_{z,x} + \mathcal{P}_{z,x} \bar{D}_{\bar{z}} \right] (Z \langle V \rangle).
$$

(45)

The integrals of $D_z \mathcal{P}_{\bar{z},\bar{x}}$, $\bar{D}_{\bar{z}} \mathcal{P}_{z,x}$, and $\mathcal{P}_{z,x} \mathcal{P}_{\bar{z},\bar{x}}$ is calculated in detail in Appendix C.3. Using eqs.\(\text{[174]}\)\(\text{[176]}\)\(\text{[178]}\) we obtain eq.\(\text{[45]}\) up to $|\epsilon|^1$:

$$
\int_{\Sigma^{(2)} \setminus D_{\delta}} d^2z \langle T \bar{T}(z, \bar{z}) V \rangle = \frac{1}{Z} \left\{ \sum_{a=1}^{2} \left[\frac{1}{2} \left(\text{Im}[\tau_a] - \frac{|\epsilon|}{6\pi} \right) \partial_{\bar{\tau}_a} \partial_{\tau_a} - \frac{i}{2} \epsilon \partial_{\tau_a} \partial_{\bar{\tau}_a} \right] + \pi |\epsilon| \partial_{\bar{\tau}_a} \partial_{\tau_a} \right\}
$$

6The commutativity of $\mathcal{P}_{z,x}$ and $\mathcal{P}_{\bar{z},\bar{x}}$ is broken at singularities, due to

$$
\partial_x \mathcal{P}_1(\bar{z}, \bar{x}) = \partial_x \left(\frac{1}{\bar{z} - \bar{x}} \right) = -\pi \delta^{(2)}(z - x),
$$

$$
\partial_x \mathcal{P}_2(\bar{z}, \bar{x}) = \partial_x \left(\frac{1}{\bar{z} - \bar{x}} \right)^2 = -\pi \delta^{(2)}(z - x).
$$

(44)
\[+ i \left(\text{Re}[x] - \frac{|\epsilon|}{3} \bar{P}_1(\bar{x}, \bar{\tau}_a) \right) \partial_{\tau_a} \partial_{\bar{x}} + i \left(\frac{1}{2} + \frac{|\epsilon|}{3} \bar{P}_2(\bar{x}, \bar{\tau}_a) \right) wt[\bar{u}] \partial_{\tau_a} + \pi \epsilon P_1(x, \tau_a) \partial_{\tau_a} \partial_{\bar{x}} \]

\[+ \pi \left(\log |Q(x, \tau_a)|^2 + \frac{1}{4} - \frac{|\epsilon|}{3} |P_1(x, \tau_a)| \right) \partial_{\bar{x}} \partial_{\bar{x}} - \frac{\pi |\epsilon|}{3} |P_2(x, \tau_a)|^2 wt[u] wt[\bar{u}] \]

\[+ \pi \left(\bar{P}_1(\bar{x}, \bar{\tau}_a) + \frac{2|\epsilon|}{3} P_1(x, \tau_a) \bar{P}_2(\bar{x}, \bar{\tau}_a) \right) \partial_{\bar{x}} wt[\bar{u}] \right) \left(\bar{Z}(V) \right) + \text{c.c.} + O(|\epsilon|^2), \] (46)

where \(\log Q(x, \tau_a) \) is introduced by eq.(80) as a primitive function of \(P_1(x, \tau_a) \).

4.2 Higher-point function of primary field

We consider the \(T\bar{T} \) deformed correlation function with two pairs of primary states \((u_1, \bar{u}_1)\) and \((u_2, \bar{u}_2)\) inserted at \((x_1, \bar{x}_1)\) and \((x_2, \bar{x}_2)\), respectively. According to eq.(42) the first-order correction depends on

\[\int_{\Sigma^{(2)}} d^2z \langle T\bar{T}(z, \bar{z}) V_1 V_2 \rangle \]

\[= \frac{1}{Z} \int_{\Sigma^{(2)}} d^2z \left[D_z \bar{D}_{\bar{z}} + D_{\bar{z}} \bar{D}_z \right] + \frac{1}{2} \bar{D}_z \partial_{\bar{x}_1} \partial_{\bar{x}_1} \]

\[+ P_{z,x_1} P_{\bar{z},\bar{x}_1} + P_{z,x_2} P_{\bar{z},\bar{x}_2} + P_{z,x_1} P_{\bar{z},\bar{x}_2} + P_{z,x_2} P_{\bar{z},\bar{x}_1} \right] \left(\bar{Z}(V_1 V_2) \right). \] (47)

Let us consider two different profiles. The one profile is that two points are inserted in the same torus \(x_1, x_2 \in S_a \), one can obtain eq.(47) using eqs.(174)(176)(178)(182), up to \(|\epsilon|^1\):

\[\int_{\Sigma^{(2)}} d^2z \langle T\bar{T}(z, \bar{z}) V_1 V_2 \rangle \]

\[= \frac{1}{Z} \left\{ \sum_{a=1}^{2} \left[\frac{1}{2} \text{Im}[\tau_a] - \frac{|\epsilon|}{6\pi} \partial_{\tau_a} \partial_{\tau_a} - \frac{i}{2} \bar{\epsilon} \partial_{\tau_a} \partial_{\bar{\epsilon}} \right] + \pi |\epsilon| \partial_{\tau_a} \partial_{\bar{\epsilon}} \right\} \]

\[+ \sum_{i=1}^{2} \left[i \left(\text{Re}[x_i] - \frac{|\epsilon|}{3} \bar{P}_1(\bar{x}, \bar{\tau}_a) \right) \partial_{\tau_a} \bar{P}_1(x_i, \tau_a) \bar{P}_1(x_i, \tau_a) wt[\bar{u}_i] \partial_{\tau_a} \right] \]

\[+ \pi \epsilon P_1(x_1, \tau_a) \partial_{\tau_a} \partial_{\bar{x}_1} + \pi \left(\log |Q(x_2, \tau_a)|^2 + \frac{1}{4} - \frac{|\epsilon|}{3} |P_1(x_2, \tau_a)| \right) \partial_{\bar{x}_1} \partial_{\bar{x}_1} \]

\[- \frac{\pi |\epsilon|}{3} |P_2(x_1, \tau_a)|^2 wt[u_i] wt[\bar{u}_i] + \pi \left(\bar{P}_1(\bar{x}_1, \bar{\tau}_a) + \frac{2|\epsilon|}{3} P_1(x_1, \tau_a) \bar{P}_2(\bar{x}_1, \bar{\tau}_a) \right) \partial_{\bar{x}_1} \partial_{\bar{x}_1} \]

\[+ \pi \bar{P}_1(\bar{x}_1, \bar{\tau}_a), \]

\[+ \pi \left(P_1(x_2 - x_1, \tau_a) + \bar{P}_1(\bar{x}_2, \bar{\tau}_a) + \frac{2|\epsilon|}{3} P_1(x_2, \tau_a) \bar{P}_2(\bar{x}_2, \bar{\tau}_a) \right) \partial_{\bar{x}_1} \partial_{\bar{x}_2} \]

\[+ \pi \left(P_1(x_2 - x_1, \tau_a) + \bar{P}_1(\bar{x}_2, \bar{\tau}_a) + \frac{2|\epsilon|}{3} P_1(x_2, \tau_a) \bar{P}_2(\bar{x}_2, \bar{\tau}_a) \right) \partial_{\bar{x}_1} \partial_{\bar{x}_2} \]
The first-order correction is derived by Ward identity eq. (42) as follows:

\[
- \frac{2\pi|\epsilon|}{3} \left\{ P_2(x_1, \tau_a) \bar{P}_2(\bar{x}_2, \bar{\tau}_a) wt[u_1] wt[\bar{u}_2] \right\} \left(Z(V_1 V_2) \right) + c.c. + O(|\epsilon|^2). \tag{48}
\]

The other profile is that two points are inserted in the different tori. We set \(x_1 = x \in S_{a_1} \) and \(x_2 = y \in S_{a_2} \), and insert primary states \(u_1 = u \) and \(u_2 = v \) at \(x \) and \(y \) respectively. The first-order correction is given by eqs. (174) (176) (178) (183):

\[
\int_{\Sigma^{(2)} \backslash D_\delta} d^2 z \langle T \bar{T}(z, \bar{z}) V_x V_y \rangle
\]

\[
= \frac{1}{Z} \left\{ \sum_{a=1}^{2} \left[\frac{1}{2} (\text{Im}[\tau_a] - |\epsilon|) \partial_{\tau_a} \partial_{\bar{\tau}_a} - \frac{i}{2} \bar{\epsilon} \partial_{\bar{\tau}_a} \partial_{\epsilon} \right] + \pi |\epsilon| \partial_{\epsilon} \partial_{\bar{\epsilon}} \right.
\]

\[
+ \sum_{i=1}^{2} \left[i (\text{Re}[x_i] - |\epsilon|) \bar{P}_1(\bar{x}_i, \bar{\tau}_a) \right] \partial_{\tau_a} \partial_{\bar{\epsilon}_i} + i \left(\frac{1}{2} + \frac{|\epsilon|}{3} \bar{P}_2(\bar{x}_i, \bar{\tau}_a) \right) wt[u_i] \partial_{\tau_a},
\]

\[
+ \pi |\epsilon| P_1(x_i, \tau_a) \partial_{\epsilon_i} \partial_{\bar{\epsilon}_i} + \pi \left(\text{log} |Q(x_i, \tau_a)| \right)^2 + \frac{1}{4} - \frac{|\epsilon|}{3} |P_1(x_i, \tau_a)| \partial_{\epsilon_i} \partial_{\bar{\epsilon}_i},
\]

\[
- \frac{|\epsilon|}{3} |P_2(x_i, \tau_a)|^2 wt[u_i] wt[\bar{u}_i] + \pi \left(\bar{P}_1(\bar{x}_i, \bar{\tau}_a) + \frac{2|\epsilon|}{3} \bar{P}_2(\bar{x}_i, \bar{\tau}_a) \right) \partial_{\bar{\epsilon}_i} \partial_{\epsilon_i}
\]

\[
- \frac{\pi}{2} \left(\epsilon \bar{P}_2(\bar{x}, \bar{\tau}_a) + \epsilon P_2(y, \tau_a) \right) \partial_{\bar{\epsilon}_i} \partial_{\epsilon_i} \right\} \left(Z(V_x V_y) \right) + c.c. + O(|\epsilon|^2). \tag{49}
\]

\[\text{Figure 2: A primary (L + R)-point function on sewn Riemann surface with genus-2.}\]

\[\text{We generalize our result to a (L+R)-point function of primary fields. As shown in Fig 2, we insert L pairs of primary states (u_1, \bar{u}_1), \ldots, (u_L, \bar{u}_L) and R pairs of primary states (v_1, \bar{v}_1), \ldots, (v_R, \bar{v}_R) at (x_1, \bar{x}_1), \ldots, (x_L, \bar{x}_L) \in S_1 and (y_1, \bar{y}_1), \ldots, (y_R, \bar{y}_R) \in S_2, respectively. For a primary (L + R)-point function, } X_L X_R = (\prod_{i=1}^{L} V_{u_i} \prod_{r=1}^{R} V_{v_r}), \text{ the first-order correction is derived by Ward identity eq. (42) as follows:}\]

\[
\int_{\Sigma^{(2)} \backslash D_\delta} d^2 z \langle T \bar{T}(z, \bar{z}) X_L X_R \rangle
\]

\[\text{For simplicity, the vertex operator corresponding to each pair of primary states (u_i, \bar{u}_i) at } (x_i, \bar{x}_i) \text{ is denoted as } V_{u_i}, \text{ and } (v_r, \bar{v}_r) \text{ at } (y_r, \bar{y}_r) \text{ is denoted as } V_{v_r}.\]
\[\frac{1}{Z} \int_{\Sigma(z) \setminus D_3} d^2z \left\{ D_z D_{\bar{z}} + \sum_{l=1}^{L} \left[D_z \mathcal{P}_{\bar{z},z_l} + D_{\bar{z}} \mathcal{P}_{\bar{z},\bar{z}_l} + \mathcal{P}_{z,z_l} \mathcal{P}_{\bar{z},\bar{z}_l} \right] \right. \\
+ \sum_{r=1}^{R} \left[D_z \mathcal{P}_{z,r} + D_{\bar{z}} \mathcal{P}_{\bar{z},r} + \mathcal{P}_{z,r} \mathcal{P}_{\bar{z},\bar{r}} \right] + \left[\sum_{l', r'} \mathcal{P}_{z,l'} \mathcal{P}_{\bar{z},r'} + \sum_{l', r'} \mathcal{P}_{\bar{z},l'} \mathcal{P}_{\bar{z},\bar{r'}} \right] \\
+ \left[\sum_{l,r} \mathcal{P}_{\bar{z},l} \mathcal{P}_{\bar{z},r} + \mathcal{P}_{z,x_l} \mathcal{P}_{\bar{z},\bar{y}_r} \right] \} \left[Z \langle X_L X_R \rangle \right]. \]

(50)

The first term in eq. (50) is analogous to eq. (174) (we call it the zero-point contribution). The second and third terms in eq. (50) are the sum of all one-point contribution eqs. (175) (177). The fourth and fifth terms in eq. (50) contain all the two-point contribution eqs. (182) (183). No matter how many points are inserted, the first-order correction of correlation function contains at most two-point contribution. The contribution of three or more points can be found in higher-order correction.

4.3 One-point function of stress tensor

In the next two subsections, we consider the $T \bar{T}$ deformed correlation functions of stress tensor based on first-order perturbation theory. The holomorphic stress tensor $T(z)$ is the vertex operator of conformal vector $\tilde{\omega}$, and it is a quasi-primary field with conformal weight $wt[\tilde{\omega}] = 2$, which satisfies

\[V[L[-1] \tilde{\omega}, z] = \partial_z V[\tilde{\omega}, z], \quad V[L[0] \tilde{\omega}, z] = 2V[\tilde{\omega}, z], \quad V[L[j \geq 1] \tilde{\omega}, z] = \frac{c}{2} \frac{1}{2} \delta_{j,2} \]

(51)

where $\mathbb{1}$ is the identity operator and c is the central charge. The one-point function of stress tensor can be obtained in undeformed CFT by Ward identity eq. (40) and operator D_x in eq. (13):

\[\langle T(x) \rangle = \frac{1}{Z} D_x Z = \frac{1}{2 \pi i Z} 2 \mathcal{F}_a(x) \partial_{\tau_a} Z + \frac{1}{2 \pi i Z} 2 \mathcal{F}_a(x) \partial_{\bar{\tau}_a} Z + \frac{1}{Z} 2 \mathcal{F}^\Pi(x) \epsilon^{\frac{1}{2}} \partial_{\bar{\epsilon}} Z, \]

(52)

where $x \in S_a$. According to the definition of \mathcal{F} functions eqs. (14) (20), the expectation value $\langle T(x) \rangle$ is biperiodic on each torus. The first-order $T \bar{T}$ deformation $\delta_\lambda \langle T(x) \rangle$ is obtained by eq. (39):

\[\delta_\lambda \langle T(x) \rangle = -\frac{1}{Z^2} \delta_\lambda Z D_x Z + \langle \delta_\lambda T(x) \rangle + \int_{\Sigma(z)} d^2z \langle T \bar{T}(z, \bar{z}) T(x) \rangle. \]

(53)
The first term is the flow effect of normalization factor, which has been calculated in eq. (36). The second term depends on specific Lagrangian. The third term \(\int_{\Sigma} d^2 z \langle T \bar{T}(z, \bar{z}) T(x) \rangle \) can be calculated by eq. (40):

\[
\int_{\Sigma(\alpha) \setminus D_\alpha} d^2 z \langle T \bar{T}(z, \bar{z}) T(x) \rangle = \int_{\Sigma(\alpha) \setminus D_\alpha} d^2 z \left\{ \frac{1}{Z} D_\alpha D_\alpha D_x Z + \frac{1}{Z} D_z P_{z,x} (D_x Z) + \frac{c}{2Z} 2 P_3 (z, x) \bar{D}_z Z \right\},
\]

(54)

which is discussed in detail in Appendix C.2. We approximate the first-order correction of \(\langle T(x) \rangle \) to \(|\epsilon|^1 \) using eqs. (174)(176)(181):

\[
\delta_{\lambda} \langle T(x) \rangle = \langle \delta_{\lambda} T(x) \rangle = - \frac{1}{2\pi} \left[1 + \frac{2|\epsilon|}{3} P_2(x, \tau_a) \right] \frac{\partial_{\tau_a} \partial_{\bar{\tau}_a} Z}{Z} - \frac{i|\epsilon|}{6} |P_4(x, \tau_a) \frac{\partial_{\tau_a} Z}{Z} \right.
\]

\[
- \frac{i}{2\pi} \sum_{b=a, \bar{a}} \left[\left(\text{Im}[\tau_b] - \frac{|\epsilon|}{6\pi} \right) \partial_{\tau_a} + i \text{Im}[\tau_b] P_2(x, \tau_a) \partial_\tau \right] \left(\frac{\partial_{\tau_a} \partial_{\bar{\tau}_a} Z}{Z} \right)
\]

\[
- \frac{1}{4\pi} \sum_{b=a, \bar{a}} \partial_{\tau_a} \left[\int \frac{\partial_{\bar{\tau}_a} Z}{Z} - \int \frac{\partial_{\bar{\tau}_a} Z}{Z} \right] + i|\epsilon| \left(\text{Re}[x] \partial_x - i \text{Im}[\tau_a] \partial_\tau + 2 \right) P_2(x, \tau_a) \frac{\partial_{\bar{\tau}_a} Z}{Z}
\]

\[
- i|\epsilon| \left(\partial_{\tau_a} + 2\pi i P_2(x, \tau_a) \right) \frac{\partial_{\bar{\tau}_a} Z}{Z} + O(|\epsilon|^2).
\]

(55)

In decoupling limit, the genus two partition function \(Z \) satisfies \(Z|_{\epsilon=0} = Z_a Z_{\bar{a}} \), where \(Z_a \) denotes torus partition function on \(T_a^2 \). According to eq. (52), the decoupled one-point function of stress tensor is \(\langle T(x) \rangle|_{\epsilon=0} = \frac{1}{2\pi i Z_a} \partial_{\tau_a} Z_a = \langle T(x) \rangle_{T_a^2} \), where \(\langle T(x) \rangle_{T_a^2} \) is completely defined on torus \(T_a^2 \). One can read off the first-order deformation of \(\langle T(x) \rangle_{T_a^2} \) from eq. (55) with \(\epsilon = 0 \):

\[
\left(\delta_{\lambda} \langle T(x) \rangle - \langle \delta_{\lambda} T(x) \rangle \right)|_{\epsilon=0} = - \frac{1}{2\pi} \frac{\partial_{\tau_a} \partial_{\bar{\tau}_a} Z_a Z_{\bar{a}}}{Z_a Z_{\bar{a}}} - \frac{i}{2\pi} \text{Im}[\tau_b] \frac{\partial_{\tau_a} \partial_{\bar{\tau}_a} Z_a Z_{\bar{a}}}{Z_a Z_{\bar{a}}} - \frac{i}{2\pi} \text{Im}[\tau_a] \frac{\partial_{\tau_a} \partial_{\bar{\tau}_a} Z_a Z_{\bar{a}}}{Z_a Z_{\bar{a}}}
\]

\[
= - \frac{1}{2\pi} \partial_{\tau_a} \partial_{\bar{\tau}_a} Z_a Z_{\bar{a}} - \frac{i}{2\pi} \text{Im}[\tau_a] \partial_{\tau_a} \frac{\partial_{\bar{\tau}_a} Z_a Z_{\bar{a}}}{Z_a Z_{\bar{a}}} + \frac{i}{2\pi} \text{Im}[\tau_a] \partial_{\bar{\tau}_a} \frac{\partial_{\tau_a} Z_a Z_{\bar{a}}}{Z_a Z_{\bar{a}}}
\]

\[
= \delta_{\lambda} \langle T(x) \rangle_{T_a^2} - \langle \delta_{\lambda} T(x) \rangle_{T_a^2}
\]

(56)

This result coincides with the first order deformation of the expectation value of stress tensor on torus obtained by [55] up to a normalization factor.
4.4 Higher-point function of stress tensor

We consider two types of the two-point function of stress tensor, \(\langle T(x_1)T(x_2) \rangle \) and \(\langle T(x_1)\bar{T}(\bar{x}_2) \rangle \) respectively. In undeformed CFT, these two expectation values can be obtained by eqs. (10)

\[
\langle T(x_1)T(x_2) \rangle = \frac{1}{Z} \left[D_{x_1} + 2\mathcal{P}_1(x_1, x_2)\partial_{x_2} + 2\mathcal{P}_2(x_1, x_2)2 \right] (D_{x_2}Z) + \frac{2\mathcal{P}_4(x_1, x_2)}{2}.
\]

\[
\langle T(x_1)\bar{T}(\bar{x}_2) \rangle = \frac{1}{Z} D_{x_1} \bar{D}_{\bar{x}_2} Z.
\]

As in the previous sections, we concentrate on using Ward identity eq. (10) to compute integrals \(\int_{\Sigma(z)} d^2z \langle T\bar{T}(z, \bar{z})T_1T_2 \rangle \) and \(\int_{\Sigma(z)} d^2z \langle T\bar{T}(z, \bar{z})T_1\bar{T}_2 \rangle \), which contribute to first-order deformation. For the first type \(\langle T_1T_2 \rangle \) we have

\[
\int_{\Sigma(z)} d^2z \langle T\bar{T}(z, \bar{z})T_1T_2 \rangle = \frac{1}{Z} \int_{\Sigma(z)} d^2z \left\{ \left[D_z \bar{D}_z + \bar{D}_z \mathcal{P}_{z,x_1} + \bar{D}_z \mathcal{P}_{z,x_2} \right] (Z \langle T_1T_2 \rangle) + \frac{c_2}{2} \mathcal{P}_4(z, x_1) \bar{D}_z (Z \langle T_1 \rangle) \right\}.
\]

The one profile is that two insertion points live on the same torus \(x_1, x_2 \in S_n \), the first-order correction is obtained by eqs. (57), (174), (176), (181), up to \(|\epsilon|^1\):

\[
\int_{\Sigma(z)} d^2z \langle T\bar{T}(z, \bar{z})T_1T_2 \rangle = \frac{1}{Z} \left\{ \sum_{b = a, \bar{a}} \left[(\text{Im}[\tau_b] - \frac{|\epsilon|}{\epsilon}) \partial_{\tau_b} \partial_{\tau_{\bar{b}}} + \frac{i}{2} \bar{\epsilon} \partial_{\tau_b} \partial_{\tau_{\bar{b}}} - \frac{i}{2} \epsilon \partial_{\tau_{\bar{b}}} \partial_{\tau_b} \right] + 2\pi |\epsilon| \partial_{\tau_b} \partial_{\tau_{\bar{b}}} - 2i \partial_{\tau_a} \right\}
\]

\[
- \frac{2i|\epsilon|}{3} \sum_{i=1,2} P_2(x_i, \tau_a) \partial_{\tau_a} \left[- \frac{1}{4\pi^2} \partial_{\tau_a}^2 Z + \frac{1}{\pi i} P_2(x_1 - x_2, \tau_a) \partial_{\tau_a} Z + \frac{c_2}{2} P_4(x_1 - x_2, \tau_a) Z \right]
\]

\[
+ \left[\left(2\text{Re}[x_1 - x_2] - \frac{2|\epsilon|}{3} \right) \left[P_1(x_1, \tau_a) - P_1(x_2, \tau_a) \right] \right] \partial_{\tau_a} - 2\pi i \epsilon \left[\bar{P}_1(\bar{x}_1, \bar{\tau}_a) - \bar{P}_1(\bar{x}_2, \bar{\tau}_a) \right] \partial_{\bar{\tau}_d}
\]

\[
\times \left(\frac{1}{\pi} P_3(x_1 - x_2, \tau_a) \partial_{\tau_a} Z + i\epsilon P_3(x_1 - x_2, \tau_a) Z \right)
\]

\[
+ \epsilon \partial_{\tau_d} \left[\sum_{b = a, \bar{a}} \text{Im}[\tau_b] \partial_{\tau_b} \partial_{\tau_{\bar{b}}} - i \sum_{i=1,2} \text{Re}[x_i] \partial_{\tau_d} \partial_{\tau_a} - 2i \partial_{\tau_a} \right] \left[\frac{1}{2\pi i} \sum_{i=1,2} P_2(x_i, \tau_a) \partial_{\tau_d} Z \right]
\]

\[
+ \left(\frac{1}{2\pi i} \partial_{\tau_a} + [P_1(x_1 - x_2, \tau_a) - P_1(x_1, \tau_a)] \partial_{\tau_a} + 2P_2(x_1 - x_2, \tau_a) P_2(x_2, \tau_a) Z \right]
\]

\[
- \frac{c_2|\epsilon|}{12\pi} \sum_{i=1,2} P_4(x_i, \tau_a) \partial_{\tau_a} \partial_{\tau_d} Z \right\} + O(|\epsilon|^2).
\]
The other profile is that two points are inserted in different tori \(x \in S_a\) and \(y \in S_a\). We combine eqs. (57), (174), (176), (181) and have

\[
\int_{\Sigma^{(2)} \setminus D_{\delta}} d^2z \langle T \bar{T} (z, \bar{z}) T_x T_y \rangle = \frac{1}{Z} \left\{ \left[\sum_{b=a, \bar{a}} \left[(\text{Im}[\tau_b] - \frac{|e|}{6\pi}) \partial_{\tau_b} \partial_{\bar{\tau}_b} + \frac{i}{2} \bar{c} \partial_{\tau_b} \partial_{\bar{\tau}_b} - \frac{i}{2} c \partial_{\bar{\tau}_b} \partial_{\tau_b} \right] + 2\pi |e| \partial_{\tau_b} \partial_{\bar{\tau}_b} - i \partial_{\tau_a} - i \partial_{\bar{\tau}_a} - \frac{i|e|}{3} P_2(x, \tau_a) \partial_{\tau_a} - \frac{i|e|}{3} P_2(y, \bar{\tau}_a) \partial_{\bar{\tau}_a} \right] \right. \\
+ \epsilon \partial_{\tau} \left(\sum_{b=a, \bar{a}} \text{Im}[\tau_b] \partial_{\tau_b} \partial_{\bar{\tau}_b} - i \partial_{\tau_a} - i \partial_{\bar{\tau}_a} \right) \left[\frac{1}{2\pi i} (P_2(x, \tau_a) \partial_{\tau_a} + P_2(y, \bar{\tau}_a) \partial_{\bar{\tau}_a}) Z \right] \\
+ \epsilon \partial_{\bar{\tau}} \left(\sum_{b=a, \bar{a}} \text{Re}[\tau_b] P_3(x, \tau_a) \partial_{\tau_a} \partial_{\bar{\tau}_a} Z + \text{Re}[y] P_3(y, \bar{\tau}_a) \partial_{\tau_a} \partial_{\bar{\tau}_a} Z \right) \\
- \frac{c|e|}{12\pi} \left(P_4(x, \tau_a) \partial_{\tau_a} \partial_{\bar{\tau}_a} Z + P_4(y, \bar{\tau}_a) \partial_{\tau_a} \partial_{\bar{\tau}_a} Z \right) \right\} + O(|e|^2). \tag{60}
\]

For the second type \(\langle T_1 \bar{T}_2 \rangle\) we have

\[
\int_{\Sigma^{(2)} \setminus D_{\delta}} d^2z \langle T \bar{T} (z, \bar{z}) T_1 \bar{T}_2 \rangle = \int_{\Sigma^{(2)} \setminus D_{\delta}} d^2z \frac{1}{Z} \left\{ D_z \bar{D}_z + D_{\bar{z}} \bar{D}_{\bar{z}} + \bar{D}_z P_{\bar{z}, x_2} + P_{\bar{z}, x_1} \bar{P}_{\bar{z}, \bar{x}_2} \right\} (Z(\langle T_1 \bar{T}_2 \rangle)) \\
+ \frac{c^2}{2} \bar{P}_4(z, \bar{x}_2) \left[D_z + P_{\bar{z}, x_1} \right] (Z(\langle T_1 \rangle)) + \frac{c^2}{2} P_4(z, x_1) \left[\bar{D}_{\bar{z}} + \bar{P}_{\bar{z}, \bar{x}_2} \right] (Z(\langle \bar{T}_2 \rangle)) \\
+ \frac{c^2}{4} P_4(z, x_1) \bar{P}_4(\bar{z}, \bar{x}_2) Z. \tag{61}
\]

In the case of two points inserted in the same torus, one can obtain first-order correction using eqs. (57), (174), (176), (181), (182), (184), (185):

\[
\int_{\Sigma^{(2)} \setminus D_{\delta}} d^2z \langle T \bar{T} (z, \bar{z}) T_1 \bar{T}_2 \rangle = \frac{1}{Z} \left\{ \left[\sum_{b=a, \bar{a}} \left[(\text{Im}[\tau_b] - \frac{|e|}{6\pi}) \partial_{\tau_b} \partial_{\bar{\tau}_b} + \frac{i}{2} \bar{c} \partial_{\tau_b} \partial_{\bar{\tau}_b} - \frac{i}{2} c \partial_{\bar{\tau}_b} \partial_{\tau_b} \right] + 2\pi |e| \partial_{\tau_b} \partial_{\bar{\tau}_b} - i \partial_{\tau_a} - i \partial_{\bar{\tau}_a} \right. \\
- \frac{2i|e|}{3} P_2(x, \tau_a) \partial_{\tau_a} + \frac{2i|e|}{3} \bar{P}_2(\bar{x}_2, \bar{\tau}_a) \partial_{\bar{\tau}_a} \left(\frac{1}{4\pi^2} \partial_{\tau_a} \partial_{\bar{\tau}_a} Z \right) \\
+ \left(\sum_{b=a, \bar{a}} \text{Im}[\tau_b] \partial_{\tau_b} \partial_{\bar{\tau}_b} - i \partial_{\tau_a} - i \partial_{\bar{\tau}_a} \right) \left[\frac{1}{2\pi i} (\bar{c} \bar{P}_2(\bar{x}_2, \bar{\tau}_a) \partial_{\bar{\tau}_a} - \epsilon \bar{c} \bar{P}_2(\bar{x}_2, \bar{\tau}_a) \partial_{\bar{\tau}_a} \right. \\
+ \left. \epsilon \partial_{\tau} \left(\sum_{b=a, \bar{a}} \text{Re}[\tau_b] P_3(x, \tau_a) \partial_{\tau_a} \partial_{\bar{\tau}_a} Z + \text{Re}[y] P_3(y, \bar{\tau}_a) \partial_{\tau_a} \partial_{\bar{\tau}_a} Z \right) \\
+ \frac{c|e|}{12\pi} \left[P_4(x, \tau_a) \partial_{\tau_a} \partial_{\bar{\tau}_a} + P_4(y, \bar{\tau}_a) \partial_{\bar{\tau}_a} \partial_{\tau_a} \right] \right) \right\} Z
\]
\[- \varepsilon \partial_i P_3(\bar{x}_2, \bar{\tau}_a) \left[\frac{1}{\pi} \text{Re}[x_2] \partial^2_{\tau_a} - 2i (P_1(x_2 - x_1, \tau_a) + P_1(x_1, \tau_a)) \partial_{\tau_a} \right. \\
- \frac{\pi c}{3} (P_3(x_2 - x_1, \tau_a) + P_3(x_1, \tau_a)) \right] Z + O(|\varepsilon|^2). \quad (62)\]

In the case of two points inserted in different tori, one can obtain first-order correction from eqs. (57) (174) (176) (181) (183) (186) (187):

\[
\int_{\Sigma^{(2)}} d^2z \langle T \bar{T} (z, \bar{z}) T \bar{T} \rangle \\
= \frac{1}{Z} \left\{ \left[\sum_{b=a, \bar{a}} \left[(\text{Im}[\tau_b] - |\varepsilon|) \partial_{\tau_b} \partial_{\bar{\tau}_b} + \frac{i}{2} \varepsilon \partial_{\tau_b} \partial_{\bar{\tau}_b} - \frac{i}{2} \varepsilon \partial_{\tau_b} \partial_{\bar{\tau}_b} \right] + 2\pi |\varepsilon| \partial_{\bar{\tau}_b} \partial_{\bar{\tau}_b} \partial_{\bar{\tau}_a} \right. \\
- \frac{2i |\varepsilon|}{3} P_2(x, \tau_a) \partial_{\tau_a} + \frac{2i |\varepsilon|}{3} \bar{P}_2(y, \bar{\tau}_a) \partial_{\tau_a} \left(\frac{1}{4\pi^2} \partial_{\tau_a} \partial_{\bar{\tau}_a} Z \right) \\
+ \left(\sum_{b=a, \bar{a}} \text{Im}[\tau_b] \partial_{\tau_b} \partial_{\bar{\tau}_b} + i \partial_{\tau_b} - i \partial_{\tau_b} \right) \left[\frac{1}{2\pi^2} \left(\bar{P}_2(y, \bar{\tau}_a) \partial_{\bar{\tau}_a} - \varepsilon \partial_{\bar{\tau}_a} \right) Z \right] \\
- \frac{i}{12\pi} P_4(x, \tau_a) \partial_{\tau_a} \partial_{\tau_a} + \bar{P}_4(y, \bar{\tau}_a) \partial_{\tau_a} \partial_{\bar{\tau}_a} \right] Z \\
- \frac{i}{Z} \text{Re}[x] P_3(x, \tau_a) \partial_{\tau_a} \partial_{\tau_a} \partial_{\tau_a} Z - \frac{\bar{\varepsilon}}{\pi} \text{Re}[y] \bar{P}_3(y, \bar{\tau}_a) \partial_{\bar{\tau}_a} \partial_{\bar{\tau}_a} \partial_{\bar{\tau}_a} Z \right\} + O(|\varepsilon|^2). \quad (63)\]

As an example, we consider the decoupling limit of the first-order correction of \(\langle T_1 \bar{T}_2 \rangle \) in eq. (62). According to eq. (57), \(\langle T_1 \bar{T}_2 \rangle \big|_{\varepsilon=0} = \frac{1}{4\pi Z_a} \partial_{\tau_a} \partial_{\bar{\tau}_a} Z_a = \langle T_1 \bar{T}_2 \rangle_{T^2_a} \), which is completely defined on torus \(T^2_a \). Thus we can read off first-order correction of \(\langle T_1 \bar{T}_2 \rangle_{T^2_a} \) from eq. (62) with \(\varepsilon = 0 \):

\[
\left(\delta_\lambda \langle T_1 \bar{T}_2 \rangle - \langle \delta_\lambda T_1 \bar{T}_2 \rangle \right) \big|_{\varepsilon=0} \\
= \frac{1}{4\pi^2 Z_a Z_{\bar{a}}} \left[\text{Im}[\tau_a] \partial_{\tau_a} \partial_{\bar{\tau}_a} + \text{Im}[\tau_{\bar{a}}] \partial_{\tau_{\bar{a}}} \partial_{\bar{\tau}_a} + i \partial_{\tau_a} - i \partial_{\bar{\tau}_a} \right] \partial_{\tau_a} \partial_{\bar{\tau}_a} Z_a Z_{\bar{a}} - \frac{\delta_\lambda Z_{\bar{a}}}{Z} \langle T_1 \bar{T}_2 \rangle \big|_{\varepsilon=0} \\
= \frac{1}{4\pi^2 Z_a} \left[\text{Im}[\tau_a] \partial^2_{\tau_a} \partial^2_{\bar{\tau}_a} Z_a + i \left(\partial^2_{\tau_a} \partial_{\bar{\tau}_a} - \partial_{\tau_a} \partial^2_{\bar{\tau}_a} \right) Z_a \right] - \frac{\delta_\lambda Z_a}{Z} \langle T_1 \bar{T}_2 \rangle_{T^2_a} \\
= \delta_\lambda \langle T_1 \bar{T}_2 \rangle_{T^2_a} - \langle \delta_\lambda T_1 \bar{T}_2 \rangle_{T^2_a}. \quad (64)\]

Figure 3: An \((L + R + L' + R')\)-point function of stress tensors on sewn Riemann surface with genus-2.
Now we consider the first-order deformation of a general \((L + R + L' + R')\)-point function of stress tensors, as shown in Fig.3 \((L + R)\) holomorphic stress tensor are inserted at \(x_1, ..., x_L \in S_1\), \(y_1, ..., y_L \in S_2\) and \((L' + R')\) anti-holomorphic stress tensor are inserted at \(\bar{x}'_1, ..., \bar{x}'_{L'} \in S_1\), \(\bar{y}'_1, ..., \bar{y}'_{R'} \in S_2\), respectively. For simplicity, we define\(^8\)

\[
\begin{align*}
X_L &\equiv T(x_1) \cdots T(x_L), \quad X_R \equiv T(y_1) \cdots T(y_R), \\
\bar{X}_{L'} &\equiv \bar{T}(\bar{x}'_1) \cdots \bar{T}(\bar{x}'_{L'}), \quad \bar{X}_{R'} \equiv \bar{T}(\bar{y}'_1) \cdots \bar{T}(\bar{y}'_{R'}), \\
\langle L \rangle X_L &\equiv T(x_1) \cdots T(x_{l-1})T(x_{l+1}) \cdots T(x_L), \\
\langle L \rangle \bar{X}_{L'} &\equiv \bar{T}(\bar{x}'_1) \cdots \bar{T}(\bar{x}'_{l'-1})\bar{T}(\bar{x}'_{l'+1}) \cdots \bar{T}(\bar{x}'_{L'}).
\end{align*}
\]

Then we use eq.\(^{(40)}\) to calculate the first-order deformation of \(\langle X_L \bar{X}_{L'} X_R \bar{X}_{R'} \rangle\):

\[
\begin{align*}
\int_{\Sigma(2) \setminus D_4} d^2z \langle T \bar{T}(z, \bar{z})X_L \bar{X}_{L'} X_R \bar{X}_{R'} \rangle &= \frac{1}{Z} \int_{\Sigma(2) \setminus D_4} d^2z \left\{ D_\hat{z} \mathcal{P}_{z,r} + \sum_{l=1}^L \left[D_\hat{z} \mathcal{P}_{z,x_l} + \frac{c}{2} D_\hat{z}^2 \mathcal{P}_4(z,x_l) \right] \right. \\
&\quad + \sum_{r=1}^R \left[D_\hat{z} \mathcal{P}_{z,y_r} + \frac{c}{2} D_\hat{z}^2 \mathcal{P}_4(z,y_r) \right] + \sum_{r' = 1}^{L'} \left[D_\hat{z} \mathcal{P}_{\bar{z},\bar{x}'_{r'}} + \frac{c}{2} D_\hat{z}^2 \mathcal{P}_4(\bar{z},\bar{x}'_{r'}) \right] \\
&\quad + \sum_{r'=1}^{R'} \left[D_\hat{z} \mathcal{P}_{\bar{z},\bar{y}'_{r'}} + \frac{c}{2} D_\hat{z}^2 \mathcal{P}_4(\bar{z},\bar{y}'_{r'}) \right] \left. \right\} \left[\langle X_L \bar{X}_{L'} X_R \bar{X}_{R'} \rangle \right].
\end{align*}
\]

The first term in eq.\(^{(69)}\) is calculated in eq.\(^{(174)}\). The terms from second to fifth contains all the one-point contribution of stress tensors eqs.\(^{(176)}\)\(^{(181)}\). The remaining terms contains all the two-point contribution eqs.\(^{(184)}\)\(^{(186)}\)\(^{(185)}\)\(^{(187)}\).

To close this section, we would like to add a potential application of these deformed correlation functions. To check the \(AdS_3/CFT_2\) with \(T \bar{T}\) deformation \(^{[29, 59, 60]}\), one has to match the correlation functions in both field theory side and gravity side. As reviewed in the introduction, it is a nontrivial attempt to construct

\footnote{For simplicity, \(\langle L \rangle X_L\) stands for delelating the \(l\)-th factor in \(X_L\).}
the nonperturbative deformed correlation functions. Here we apply the perturba-
tive field theory approach to construct the generic deformed correlation functions in
the boundary field theories with nontrivial topology. Since the holographic CFTs
show maximal quantum chaotic behavior [10–12], to extract the chaos signals of the
deformed holographic CFTs is an important step to check the holographic dictio-
nary. In particular, one can directly apply the higher point correlation functions in
deformed theory on higher genus Riemann surface to calculate OTOC and multiple-
interval Rény entropies as following previously works [20,21]. Further, one can also
do Fourier transformation of deformed two-point functions of stress tensor to look at
the poles structure to read off the chaos signals, namely, pole-skipping phenomenon
proposed by [17].

5 Conclusions and perspectives

To understand the quantum chaos of $T\bar{T}$ deformed conformal field theories, one has
to calculate OTOC, spectrum form factor, and pole skipping phenomenon, which
are associated with the correlation function in deformed field theory. Further the
definition of $T\bar{T}$ deformation in the curved Riemann surface is ambiguous in the lit-
erature, we propose a way to generalize the deformation in the higher genus Riemann
surface. Furthermore, it is highly nontrivial to construct the correlation function in a non-perturbative approach. Alternatively, one can follow a perturbative ap-
proach [20,21] to earn some lessons about quantum chaos of deformed CFTs. In
this work, we have applied the perturbative conformal field theory approach to con-
struct higher genus correlation functions of $T\bar{T}$-deformed theories to offer field the-
ories data to achieve our final goal of understanding the quantum chaos of deformed
CFTs. The most important ingredients are sewing construction and the conformal
ward identity of CFTs on higher genus two-dimensional Riemann surface. Thanks
to sewing construction, one can construct the higher genus correlation functions in
terms of the correlation functions on the low genus Riemann surface. In the cur-
rent work, we apply a particular sewing construction and perturbative conformal
field theory approach to obtain the first order $T\bar{T}$ deformation of the function and
correlation functions on a genus two Riemann surface. As a consistency check, we take the decoupling limit to find genus two correlation functions can be expressed by genus one partition function and correlation functions presented in the literature. To obtain the final results, we apply a systematic renormalization \[58\] by following the calculation given in the TT deformation in genus one CFTs \[26,55\].

It is a preliminary tempt to calculate the correlation functions in the higher genus TT deformed CFTs in perturbative approach. To go beyond the first-order calculation will be a highly nontrivial project along this direction, even in the free field theory \[26\]. In higher-order deformation, one has to take the flow effects of TT operator into account. Further, one can follow up the resulting correlation functions to investigate quantum chaotic signals or quantum integrability structure of TT deformed theories, as we mentioned at the beginning. We would like to report further progress in future works.

Acknowledgements

We thank Miao He, Hao Ouyang, Hongfei Shu, Yuan Sun, and Yu-Xuan Zhang for useful discussions. S.H. would like to appreciate the financial support from Jilin University, Max Planck Partner group as well as Natural Science Foundation of China Grants (No.12075101, No.12047569).

A Elliptic functions

In this appendix, we list the elliptic functions that appear in the context and their properties. We follow the conventions in \[46,52\]. The torus T^2 is defined by the identification on complex plane $z \sim z + 2\pi i$ and $z \sim z + 2\pi i\tau$. $P_k(z, \tau)$ is used to denote an elliptic function with subscript k, and its Laurent expansion in the neighborhood of $z = 0$ is

$$P_{k \geq 1}(z, \tau) = \frac{1}{z^k} + (-1)^k \sum_{n \geq k} E_n(\tau) \binom{n - 1}{k - 1} z^{n-k},$$ \hspace{1cm} (70)
where τ is modular parameter of the torus. $E_n(\tau)$ is the Eisenstein series for $n \geq 2$ which equals to zero for n odd, and for n even $E_n(\tau)$ can be defined as

$$E_n(\tau) = -\frac{B_n}{n!} + \frac{2}{(n-1)!} \sum_{m \geq 1} \sigma_{n-1}(m) q^m,$$

(71)

where B_n is the n^{th} Bernoulli number, $\sigma_{n-1}(m) = \sum_{d|m} d^{n-1}$ and $q = e^{2\pi i \tau}$. In this paper, we also use the convention $P_0 = 1$. There are simple relations among $P_1(z, \tau), P_2(z, \tau)$ and classical Weierstrass functions:

$$P_2(z, \tau) = \wp(z, \tau) + E_2(\tau),$$

(72)

$$P_1(z, \tau) = \zeta(z, \tau) - E_2(\tau)z,$$

(73)

where $\wp(z, \tau)$ is Weierstrass P-function and $\zeta(z, \tau)$ is Weierstrass ζ-function. These two functions are defined as

$$\wp(z, \tau) = \frac{1}{z^2} + \sum_{(m,n) \neq (0,0)} \left[\frac{1}{(z - w_{m,n})^2} - \frac{1}{w_{m,n}^2} \right],$$

(74)

$$\zeta(z, \tau) = \frac{1}{z} + \sum_{(m,n) \neq (0,0)} \left[\frac{1}{z - w_{m,n}} + \frac{1}{w_{m,n}} + \frac{z}{w_{m,n}^2} \right],$$

(75)

where $w_{m,n} = 2\pi im + 2\pi i\tau n$ is the coordinate of the lattice. The k-th derivative of $P_1(z, \tau)$ with respect to z gives $P_{k+1}(z, \tau)$:

$$P_{k+1}(z, \tau) = (-1)^k \frac{1}{k!} \partial_z^k P_1(z, \tau) = -\frac{1}{k} \partial_z P_k(z, \tau).$$

(76)

$P_1(z, \tau)$ is quasi-periodic, and $P_k(z, \tau)$ is periodic for $k \geq 2$, and they satisfy

$$P_1(z + 2\pi i, \tau) = P_1(z, \tau) + 2P_1(\pi i, \tau) = P_1(z, \tau),$$

(77)

$$P_1(z + 2\pi i\tau, \tau) = P_1(z, \tau) + 2P_1(\pi i\tau, \tau) = P_1(z, \tau) - 1,$$

(78)

$$P_k(z + 2\pi i, \tau) = P_k(z + 2\pi i\tau, \tau) = P_k(z, \tau).$$

(79)

We define $Q(z, \tau)$ function by

$$\int_0^z dz' \left(P_1(z', \tau) - \frac{1}{z'} \right) = \log \frac{Q(z, \tau)}{z},$$

$$P_1(z, \tau) = \partial_z Q(z, \tau) = \partial_z \log Q(z, \tau),$$

$$\log Q(z, \tau) = \log z - \sum_{n \geq 1} \frac{1}{n} E_n(\tau) z^n.$$
The relationship between $Q(z, \tau)$ and Weierstrass σ-function is

$$Q(z, \tau) = e^{-\frac{1}{2}E_2(\tau)z^2}\sigma(z, \tau), \quad (81)$$

and Weierstrass σ-function is defined as

$$\sigma(z, \tau) = z \prod_{(m,n)\neq(0,0)} \left[1 - \frac{z}{w_{m,n}}\right] \exp\left(-\frac{z}{w_{m,n}} + \frac{z^2}{2w_{m,n}^2}\right). \quad (82)$$

$Q(z, \tau)$ is an odd function just like $\sigma(z, \tau)$, and it is quasi-periodic with

$$Q(z + 2\pi i, \tau) = -Q(z, \tau), \quad (83)$$

$$Q(z + 2\pi i\tau, \tau) = -e^{-(z+i\pi\tau)}Q(z, \tau). \quad (84)$$

B Some useful integrals

In this appendix, we discuss the details of integrals $I_a, J_a(x, \bar{x})$ and $K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)$ that appear in the context. The integrands over a torus may contain singularities.

Following the prescription in [58], we regularize the domain of integration by removing some small disks ($D_{\delta_1}, ..., D_{\delta_N}$) of radiiuses ($\delta_1, ..., \delta_N$) centered on the singularities ($x_1, ..., x_N$) (see Fig.4). $f(z, \bar{z})$ is used to denote a general function on torus T^2 with these singularities, and we assume that it can be written as the divergence of some vector field F^μ:

$$f(z, \bar{z}) = \partial_\mu F^\mu(z, \bar{z}) = \partial_z F^\bar{z}(z, \bar{z}) + \partial_{\bar{z}} F^z(z, \bar{z}). \quad (85)$$

The integral of $f(z, \bar{z})$ over the regularized domain can be calculated using the Stoke’s theorem

$$\int_{T^2\setminus D_\delta} d^2z \partial_\mu F^\mu(z, \bar{z}) = \frac{i}{2} \left(\int_{\partial T^2} - \sum_{i=1}^{N} \int_{\partial D_{\delta_i}} \right) (F^z d\bar{z} - F^\bar{z} dz). \quad (86)$$

After integrating eq.(86), we take the limit ($\delta_1, ..., \delta_N \to (0, ..., 0)$) and discard the divergent term (if it exists) to regularize the integral. In this paper, we introduce constraints on the integrand $f(z, \bar{z})$. The integrand may diverge at the boundary of the torus ∂T^2, for instance, the elliptic function $P_k(z, \tau)$ diverges at points on the lattice $z = 2\pi im + 2\pi i\tau n$ with $m, n \in \mathbb{Z}$. To avoid contact between the boundary of
disk and the boundary of torus, we require that the integrand \(f(z, \bar{z}) \) be biperiodic on the torus with respect to both the variables \(z \) and \(\bar{z} \). Under this condition we can translate the parallelogram of the torus on the complex plane to ensure that the singularities only appear inside. Next we require that the integrand can be factorized into two parts:

\[
f(z, \bar{z}) = g(z)h(\bar{z}),
\]

and we assume that \(G(z) = \partial_z g(z) \) and \(H(\bar{z}) = \partial_{\bar{z}} h(\bar{z}) \). Since we have removed the disks around the singularities, \(g(z) \) and \(h(\bar{z}) \) are holomorphic and antiholomorphic respectively over the domain of integration. Thus we can construct the vector fields \(F^\mu \) and \(F'^\mu \) as

\[
F^z(z, \bar{z}) = G(z)h(\bar{z}), \quad F^\bar{z}(z, \bar{z}) = 0,
\]

\[
F'^z(z, \bar{z}) = 0, \quad F'^\bar{z}(z, \bar{z}) = g(z)H(\bar{z}).
\]

Take the first construction for example, eq.(86) can be further written as

\[
\int_{T^2 \setminus D_3} d^2 z f(z, \bar{z}) = \frac{i}{2} \int_{z_0}^{z_0 + 2\pi i} d\bar{z} [G(z) - G(z + 2\pi i)]h(\bar{z})
- \int_{z_0}^{z_0 + 2\pi i} d\bar{z} [G(z) - G(z + 2\pi i)]h(\bar{z})
\]
where the biperiodic property of \(h(\bar{z}) \) is used in the first two terms. In the rest of this Appendix, we will apply the above method to calculate three types of integrals, which play an important role in calculating first-order corrections.

B.1 Integral \(I_a(k, l) \)

The first type of integral that we encounter is

\[
I_a(k, l) = \int_{S_a} d^2 z_a P_k(z_a, \tau_a) \bar{P}_l(\bar{z}_a, \bar{\tau}_a),
\]

for \(k, l \geq 0 \). \(z_a \) is the local coordinate of the torus \(T^2_a \), and we will omit its subscript \(a \) later. \(S_a \) is the remainder of the torus \(T^2_a \) after removing the a disk of radius \(\sqrt{|\epsilon|} \) centered at \(z_a = 0 \), and the integrand \(P_k(z_a, \tau_a) \bar{P}_l(\bar{z}_a, \bar{\tau}_a) \) is regular in the domain of integration. \(I_a(k, l) \) has a simple property:

\[
I_a(l, k) = I_a(k, l).
\]

For \(k \geq 3 \) and \(l \geq 2 \), we can construct \(F^{z}(z, \bar{z}) = \frac{1}{k-1} P_{k-1}(z, \tau_a) \bar{P}_l(\bar{z}, \bar{\tau}_a) \) (and \(F^{\bar{z}} = 0 \)) using the recursion eq.(76) of \(P_{k}(z, \tau_a) \). In this case \(P_{k-1}(z, \tau_a) \) is still biperiodic on the torus, and thus the first two terms of eq.(90) vanish. The last term contains integral over the annulus \(A \) (of radius \(\sqrt{|\epsilon|} \) centered at \(z = 0 \)), which can be calculated using the Laurent expansion eq.(70):

\[
I_a(k, l) = \frac{1}{2(k-1)} \int_0^{2\pi} d\theta \left[\sqrt{|\epsilon|}^{2-k-l} e^{-i(k-l)\theta} \right.
\]
\[
+ (-1)^l \sum_{n \geq l} \bar{E}_n(\bar{\tau}_a) \left(\begin{array}{c} n-1 \\ l-1 \end{array} \right) \sqrt{|\epsilon|}^{n+2-k-l} e^{-i(k-l+n)\theta}
\]
\[
+ \left. (-1)^{k-1} \sum_{m \geq k-1} E_m(\tau_a) \left(\begin{array}{c} m-1 \\ k-2 \end{array} \right) \sqrt{|\epsilon|}^{m+2-k-l} e^{-i(k-l-m)\theta} \right]
\]
\[
\times \sqrt{|\epsilon|^{m+n+2-k-l} e^{-i(n-m+k-l)\theta}}
\]
\[
= \frac{\pi}{k-1} \left[\frac{1}{|\epsilon|^{k-l}} \delta_{k,l} + \sum_{n \geq l} C_{n-3} \epsilon^{n-l+1} \right],
\]

(93)
where the coefficient $C_{n,l}^{k,a}$ is defined as

$$C_{n,l}^{k,a} = (-1)^{k+l} \binom{n+k-l+2}{k+1} \binom{n+2}{l+2} E_{n+k-l+3}(\tau_a) \bar{E}_{n+3}(\bar{\tau}_a),$$

and it is easy to prove that

$$C_{n,l}^{k,a} = \frac{k+2}{l+2} \bar{C}_{n+k-l,a}^{l,k}.$$

(95)

From eq.(92) and eq.(95) we immediately obtain the case for $k \geq 2$ and $l \geq 3$:

$$I_a(k,l) = \frac{\pi}{l-1} \left[\frac{1}{|\epsilon|^{l-1}} \delta_{l,k} + \sum_{n \geq k} \bar{C}_{n-3,a}^{l-3,k-3} |\epsilon|^{n-k+1} \right]$$

$$= \frac{\pi}{k-1} \frac{1}{|\epsilon|^{k-1}} \delta_{k,l} + \frac{\pi}{l-1} \sum_{n' \geq l} \bar{C}_{n'-3,k-3}^{l-3,k-3} |\epsilon|^{n'-l+1}$$

$$= \frac{\pi}{k-1} \left[\frac{1}{|\epsilon|^{k-1}} \delta_{k,l} + \sum_{n \geq l} \bar{C}_{n-3,a}^{k-3,l-3} |\epsilon|^{n-l+1} \right],$$

(96)

which is consistent with eq.(93). When we consider the case $k = 2$ and $l = 2$, the integrand $F^{\zeta}(z, \bar{z}) = -P_1(z, \tau_a) \bar{P}_2(\bar{z}, \bar{\tau}_a)$ is quasi-periodic and its integral on the torus boundary can be written as

$$\oint_{\partial T^2} F^{\zeta} d\bar{z} = \int_{z_0}^{z_0+2\pi i} d\bar{z} \left[P_1(z + 2\pi i \tau_a, \tau_a) - P_1(z, \tau_a) \bar{P}_2(\bar{z}, \bar{\tau}_a) \right]$$

$$- \int_{\bar{z}_0}^{\bar{z}_0+2\pi \bar{\tau}_a} d\bar{z} \left[P_1(z + 2\pi i, \tau_a) - P_1(z, \tau_a) \bar{P}_2(\bar{z}, \bar{\tau}_a) \right]$$

$$= 2\eta_a \int_{z_0}^{z_0+2\pi i} d\bar{z} \bar{P}_2(\bar{z}, \bar{\tau}_a) - 2\eta'_a \int_{\bar{z}_0}^{\bar{z}_0+2\pi \bar{\tau}_a} d\bar{z} \bar{P}_2(\bar{z}, \bar{\tau}_a)$$

$$= 8 \text{Im}[\eta_a \eta'_a],$$

(97)

where $\eta_a = P_1(\pi i, \tau_a) = 0$ and $\eta'_a = P_1(\pi i \tau_a, \tau_a) = -\frac{1}{2}$, thus this term has no contribution. Then we compute the integral over A and finally we obtain

$$I_a(2,2) = \frac{\pi}{|\epsilon|} - \frac{\pi}{2} \sum_{n \geq 1} n |E_{n+1}(\tau)|^2 |\epsilon|^n,$$

(98)

which is also consistent with eq.(93).
For $k \geq 3$ and $l = 0$, we construct $F^z = -\frac{1}{k-1} P_{k-1}(z, \tau_a)$ and obtain
\[
I_a(k, 0) = \frac{1}{2(k-1)} \int_0^{2\pi} d\theta \left[\sqrt{|\epsilon|}^2 e^{-ik\theta} \right. \\
\left. + (-1)^{k-1} \sum_{m \geq k-1} E_m(\tau_a) \left(\begin{array}{c} m-1 \\ k-2 \end{array} \right) \sqrt{|\epsilon|}^{m+2-k} e^{i(m-k)\theta} \right] \\
= -\pi |\epsilon| E_k(\tau_a),
\]
and for the case $k = 0$ and $l \geq 3$ we have
\[
I_a(0, l) = -\pi |\epsilon| \bar{E}_l(\bar{\tau}_a).
\]

For $k = 2$ and $l = 0$ we have
\[
I_a(2, 0) = \frac{i}{2} \int_{z_0}^{z_0 + 2\pi i} dz \left[P_1(z + 2\pi i \tau_a, \tau_a) - P_1(z, \tau_a) \right] \\
- \frac{i}{2} \int_{\bar{z}_0}^{\bar{z}_0 + 2\pi i \bar{\tau}} d\bar{z} \left[P_1(z + 2\pi i \tau_a, \tau_a) - P_1(z, \tau_a) \right] \\
+ \frac{1}{2} \int_0^{2\pi} d\theta \left[e^{-i2\theta} + \sum_{m \geq 1} E_m(\tau_a) \sqrt{|\epsilon|}^m e^{i(m-2)\theta} \right] \\
= -\pi - \pi |\epsilon| E_2(\tau_a).
\]

For $k = 0$ and $l = 2$ we have
\[
I_a(0, 2) = -\pi - \pi |\epsilon| \bar{E}_2(\bar{\tau}_a).
\]

B.2 Integral $[J_a(x, \bar{x})](k, l)$

The second type of integral is
\[
[J_a(x, \bar{x})](k, l) = \int_{S_a} d^2 z_a P_k(z_a, \tau_a) \tilde{P}_l(z_a, \bar{x}, \bar{\tau}_a),
\]
where \tilde{P}_l is defined as
\[
\tilde{P}_l(z, x, \tau) = \begin{cases}
 P_l(z - x, \tau) - P_l(z, \tau) & (l = 1), \\
 P_l(z - x, \tau) & (l \geq 2).
\end{cases}
\]

30
This integral depends on the coordinate of the singularity \((x, \bar{x})\), and from the recursion eq. (76) and Laurent expansion eq. (70) we have

\[
\partial_x [J_a(x, \bar{x})](k, l) = \int_{S_a} d^2 z P_k(z, \tau_a) \partial_x \left(\frac{1}{(l-1)!} \partial_x^{l-1} \frac{1}{\bar{z} - \bar{x}} \right)
= - \frac{\pi}{(l-1)!} \partial_x^{l-1} P_k(x, \tau_a)
= - \pi P_k(x, \tau_a) \delta_{l,1},
\]

where in the last step we restrict the insertion point \(x \neq 0\).

For \(k \geq 3\) and \(l = 1\), we construct \(F^z = \frac{1}{k-1} P_{k-1}(z, \tau_a) \left[\bar{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a) - \bar{P}_1(\bar{z}, \bar{\tau}_a) \right]\). Since \(x \neq 0\), \(\bar{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a)\) is regular around the origin and has Taylor expansion

\[
\bar{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a) = - \sum_{l \geq 1} \bar{P}_l(\bar{x}, \bar{\tau}_a) \bar{z}^{l-1}.
\]

Using eq. (101) we have

\[
[J_a(x, \bar{x})](k, 1) = - \frac{i}{2(k-1)} \oint_A d\bar{z} P_{k-1}(z, \tau_a) \left[\sum_{l \geq 1} \bar{P}_l(\bar{x}, \bar{\tau}_a) \bar{z}^{l-1} + \bar{P}_1(\bar{z}, \bar{\tau}_a) \right]
+ \frac{i}{2(k-1)} P_{k-1}(x, \tau_a) \oint_{\partial D_A} d\bar{z} \bar{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a) \bigg|_{\delta \to 0}
= \frac{\pi}{k-1} \left[P_{k-1}(x, \tau_a) - \sum_{l \geq 1} \frac{k-1}{l} |\epsilon|^l A^{(0)}_{k-3,a} \bar{P}_l(\bar{x}, \bar{\tau}_a) \right],
\]

where the coefficient \(A^{(0)}_{k,a}\) is defined in eq. (11), and \(P_k'(x, \tau) = P_k(x, \tau) - E_k(\tau)\). For \(k = 2\) and \(l = 1\) we have

\[
[J_a(x, \bar{x})](2, 1) = - \frac{i}{2} \oint_{\partial T^2} d\bar{z} P_1(z, \tau_a) \left[\bar{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a) - \bar{P}_1(\bar{z}, \bar{\tau}_a) \right]
- \frac{i}{2} \oint_A d\bar{z} \bar{P}_1(z, \tau_a) \left[\sum_{l \geq 1} \bar{P}_l(\bar{x}, \bar{\tau}_a) \bar{z}^{l-1} + \bar{P}_1(\bar{z}, \bar{\tau}_a) \right]
+ \frac{i}{2} P_1(x, \tau_a) \oint_{\partial D_A} d\bar{z} \bar{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a) \bigg|_{\delta \to 0}
= \pi P_1(x, \tau_a) + \pi \sum_{l \geq 1} |\epsilon|^l E_{l+1}(\tau_a) \bar{P}_l(\bar{x}, \bar{\tau}_a),
\]

where the integral over \(\partial T^2\) is calculated using the quasi-periodic property of \(Q(z, \tau_a)\) in eq. (84). For \(k = 0\) and \(l = 1\), we construct \(F^z = z \left[\bar{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a) - \bar{P}_1(\bar{z}, \bar{\tau}_a) \right] \) and
have

$$[J_a(x, \bar{x})](0, 1) = \frac{i}{2} \oint_{\partial \mathcal{T}^2} d\bar{z} \bar{z} \left[P_1(\bar{z} - \bar{x}, \bar{\tau}_a) - P_1(\bar{z}, \bar{\tau}_a) \right]$$

$$+ \frac{i}{2} \oint_A d\bar{z} \left[\sum_{l \geq 1} \bar{P}_l(\bar{x}, \bar{\tau}_a) \bar{z}^{l-1} + \bar{P}_l(\bar{z}, \bar{\tau}_a) \right]$$

$$- \frac{i}{2} \oint_{\partial \mathcal{D}_s} d\bar{z} \bar{P}_l(\bar{z} - \bar{x}, \bar{\tau}_a) \bigg|_{\delta \to 0} = -2\pi \text{Re}[x] + \pi |\epsilon| P_1(\bar{x}, \bar{\tau}_a). \quad (110)$$

For $k \geq 3$ and $l = 2$, we construct $F^\ddagger = \frac{1}{k-1} P_{k-1}(z, \tau_a) \bar{P}_2(\bar{z} - \bar{x}, \bar{\tau}_a)$ and have

$$[J_a(x, \bar{x})](k, 2) = \frac{i}{2(k-1)} \oint_A d\bar{z} \sum_{l \geq 1} l\bar{P}_l+1(\bar{x}, \bar{\tau}_a) P_{k-1}(z, \tau_a) \bar{z}^{l-1}$$

$$+ \frac{i}{2(k-1)} P_{k-1}(x, \tau_a) \oint_{\partial \mathcal{D}_s} d\bar{z} \bar{P}_2(\bar{z} - \bar{x}, \bar{\tau}_a) \bigg|_{\delta \to 0} = \pi \sum_{l \geq 1} |\epsilon|^l A_{k-3, a}^{l, 0} \bar{P}_{l+1}(\bar{x}, \bar{\tau}_a). \quad (111)$$

For $k = 2$ and $l = 2$ we have

$$[J_a(x, \bar{x})](2, 2) = -\frac{i}{2} \oint_{\partial \mathcal{T}^2} d\bar{z} P_1(z, \tau_a) \bar{P}_2(\bar{z} - \bar{x}, \bar{\tau}_a)$$

$$+ \frac{i}{2(k-1)} \oint_A d\bar{z} \sum_{l \geq 1} l\bar{P}_l+1(\bar{x}, \bar{\tau}_a) P_1(z, \tau_a) \bar{z}^{l-1}$$

$$+ \frac{i}{2(k-1)} P_1(x, \tau_a) \oint_{\partial \mathcal{D}_s} d\bar{z} \bar{P}_2(\bar{z} - \bar{x}, \bar{\tau}_a) \bigg|_{\delta \to 0} = -\pi \sum_{l \geq 1} |\epsilon|^l E_{l+1}(\tau_a) \bar{P}_{l+1}(\bar{x}, \bar{\tau}_a). \quad (112)$$

For $k = 0$ and $l = 2$, we construct $F^\ddagger = \bar{z} \bar{P}_2(\bar{z} - \bar{x}, \bar{\tau}_a)$ and have

$$[J_a(x, \bar{x})](0, 2) = \frac{i}{2} \oint_{\partial \mathcal{T}^2} d\bar{z} \bar{z} \bar{P}_2(\bar{z} - \bar{x}, \bar{\tau}_a)$$

$$- \frac{i}{2} \oint_A d\bar{z} \sum_{l \geq 1} l\bar{P}_l+1(\bar{x}, \bar{\tau}_a) \bar{z} \bar{z}^{l-1}$$

$$- \frac{i}{2} \oint_{\partial \mathcal{D}_s} d\bar{z} \bar{P}_2(\bar{z} - \bar{x}, \bar{\tau}_a) \bigg|_{\delta \to 0} = -\pi - \pi |\epsilon| \bar{P}_2(\bar{x}, \bar{\tau}_a). \quad (113)$$

These results can also be obtained by using eq. (106).
For $k \geq 3$ and $l = 4$, we construct $F^z = -\frac{1}{k-1} P_{k-1}(z, \tau_a) \tilde{P}_4(\bar{z} - \bar{x}, \bar{\tau}_a)$ and obtain

$$[J_a(x, \bar{x})](k, 4) = \pi \sum_{l \geq 1} |\epsilon| E_{l+1}^{l, 0} \frac{l^2 + 3l + 2}{6} \tilde{P}_{l+3}(\bar{x}, \bar{\tau}_a).$$ \hspace{1cm} (114)

For $k = 2$ and $l = 4$ we have

$$[J_a(x, \bar{x})](2, 4) = -\pi \sum_{l \geq 1} |\epsilon| E_{l+1}(\tau_a) \frac{l^2 + 3l + 2}{6} \tilde{P}_{l+3}(\bar{x}, \bar{\tau}_a).$$ \hspace{1cm} (115)

For $k = 0$ and $l = 4$, we construct $F^z = z \tilde{P}_4(\bar{z} - \bar{x}, \bar{\tau}_a)$ and obtain

$$[J_a(x, \bar{x})](0, 4) = -\pi |\epsilon| \tilde{P}_4(\bar{x}, \bar{\tau}_a).$$ \hspace{1cm} (116)

B.3 Integral $[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](k, l)$

The last type of integral is

$$[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](k, l) = \int_{S_a} d^2 z_a \tilde{P}_k(z_a, x_1, \tau_a) \tilde{P}_l(\bar{z}_a, \bar{x}_2, \bar{\tau}_a),$$ \hspace{1cm} (117)

for $k, l \geq 1$. This integral appears in the first order deformation of the two-point function (for the case where x_1 and x_2 are inserted in the same torus.) In particular, if we fix x_1 and x_2 at the same point x, the corresponding integral is

$$[K_a(x, \bar{x})](k, l) = \int_{S_a} d^2 z_a \tilde{P}_k(z_a, x, \tau_a) \tilde{P}_l(\bar{z}_a, \bar{x}, \bar{\tau}_a),$$ \hspace{1cm} (118)

which appears in the first-order deformation of one-point function. Using the definition of $\tilde{P}_l(z, x, \tau)$, the recursion eq.(76) and the Laurent expansion eq.(70), we obtain some properties of $K_a(x, \bar{x})$:

$$\partial_x[K_a(x, \bar{x})](k, l) = \int_{S_a} d^2 z \left[\partial_x P_k(z - x, \tau_a) \tilde{P}_l(\bar{z}, \bar{x}, \bar{\tau}_a) + \tilde{P}_k(z_a, x, \tau_a) \partial_x \tilde{P}_l(\bar{z} - \bar{x}, \bar{\tau}_a) \right]$$

$$= k \cdot [K_a(x, \bar{x})](k + 1, l) + \frac{-\pi}{(l-1)!} \int_{S_a} d^2 z \partial_-^{l-1} \tilde{P}_k(z, x, \tau_a) \delta^{(2)}(z - x)$$

$$= k \cdot [K_a(x, \bar{x})](k + 1, l) + \pi P_l(x, \tau_a) \delta_{k, l} \delta_{l, 1}$$

$$+ \frac{(-1)^{k-1} \pi^2}{(k-1)!(l-1)!} \int_{S_a} d^2 z \delta^{(2)}(z - x) \partial_-^{k-1} \partial_-^{l-2} \delta^{(2)}(z - x),$$ \hspace{1cm} (119)

$$\partial_{\bar{x}}[K_a(x, \bar{x})](k, l) = l \cdot [K_a(x, \bar{x})](k, l + 1) + \pi \tilde{P}_l(\bar{x}, \bar{\tau}_a) \delta_{k, l} \delta_{l, 1}$$

$$+ \frac{(-1)^{l-1} \pi^2}{(k-1)!(l-1)!} \int_{S_a} d^2 z \delta^{(2)}(z - x) \partial_-^{k-2} \partial_-^{l-1} \delta^{(2)}(z - x).$$ \hspace{1cm} (120)
The last term in each of these equations is purely divergent, and we discard it to regularize the integral. We have similar properties for $K_a(x_1, x_2)$:

\[
\partial_{x_1}[K_a(x_1, x_2); x_2)](k, l) = k[K_a(x_1, x_2; x_2)](k + 1, l),
\]

(121)

\[
\partial_{x_1}[K_a(x_1, x_2; x_2)](k, l) = -\pi \tilde{P}_l(\bar{x}_1, \bar{x}_2, \bar{\tau}_a)\delta_{k,1},
\]

(122)

\[
\partial_{x_1}[K_a(x_1, x_2; x_2)](k, l) = -\pi \tilde{P}_k(x_2, x_1, \tau_a)\delta_{l,1},
\]

(123)

\[
\partial_{x_1}[K_a(x_1, x_2; x_2)](k, l) = \delta_1[K_a(x_1, x_2; x_2)](k, l + 1),
\]

(124)

where we restrict the insertion points $x_1, x_2 \neq 0$ and $x_1 \neq x_2$.

First we calculate the integral $[K_a(x, \bar{x})](k, l)$, which appears in the deformed one-point function of primary field. For $k = 2$ and $l = 2$ we have

\[
[K_a(x, \bar{x})](2, 2) = -\frac{i}{2} \oint_{\partial \Omega^2} d\bar{z} P_1(z - x, \tau_a) P_2(\bar{z} - \bar{x}, \bar{\tau}_a)
\]

\[
-\frac{i}{2} \oint_A d\bar{z} \sum_{k,l \geq 1} lP_k(x, \tau_a) P_{l+1}(\bar{x}, \bar{\tau}_a) \bar{z}^{k-1} \bar{z}^{l-1}
\]

\[
+\frac{i}{2} \oint_{\partial D^s} d\bar{z} P_1(z - x, \tau_a) P_2(\bar{z} - \bar{x}, \bar{\tau}_a) \bigg|_{\delta \to 0}
\]

\[
= -\pi \sum_{k \geq 1} \| \epsilon^k |P_{k+1}(x, \tau_a)|^2 + \frac{\pi}{\delta} \bigg|_{\delta \to 0},
\]

(125)

and we can simply discard the last term. For $k = 2$ and $l = 1$ we have

\[
[K_a(x, \bar{x})](2, 1) = -\frac{i}{2} \oint_{\partial \Omega^2} d\bar{z} P_1(z - x, \tau_a) \left[\tilde{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a) - \tilde{P}_1(\bar{z}, \bar{\tau}_a) \right]
\]

\[
+\frac{i}{2} \oint_A d\bar{z} \sum_{k \geq 1} P_k(x, \tau_a) \bar{z}^{k-1} \left[\tilde{P}_{k+1}(\bar{x}, \bar{\tau}_a) \bar{z}^{l-1} + \tilde{P}_1(\bar{z}, \bar{\tau}_a) \right]
\]

\[
+\frac{i}{2} \oint_{\partial D^s} d\bar{z} P_1(z - x, \tau_a) \left[\tilde{P}_1(\bar{z} - \bar{x}, \bar{\tau}_a) - \tilde{P}_1(\bar{z}, \bar{\tau}_a) \right] \bigg|_{\delta \to 0}
\]

\[
= \pi P_1(x, \tau_a) + \pi \sum_{k \geq 1} \| \epsilon^k |P_{k+1}(x, \tau_a)| \tilde{P}_k(\bar{x}, \bar{\tau}_a),
\]

(126)

and we immediately obtain the case for $k = 1$ and $l = 2$:

\[
[K_a(x, \bar{x})](1, 2) = [K_a(x, \bar{x})](2, 1)
\]

\[
= \pi \tilde{P}_1(\bar{x}, \bar{\tau}_a) + \pi \sum_{k \geq 1} \| \epsilon^k |P_{k+1}(x, \tau_a)| \tilde{P}_k(\bar{x}, \bar{\tau}_a).
\]

(127)
We know from eq. (120) that \([K_a(x, \bar{x})](1,1)\) satisfies

\[
\partial_z [K_a(x, \bar{x})](1,1) = [K_a(x, \bar{x})](2,1) + \pi P_1(x, \tau_a) - \pi \int_{S_a} d^2z \delta^{(2)}(z-x) \frac{1}{z-x} = 2\pi P_1(x, \tau_a) + \pi \sum_{k \geq 1} |\epsilon|^k P_{k+1}(x, \tau_a) \bar{P}_k(\bar{x}, \bar{\tau}_a) + A,
\]

(128)

\[
\partial_{\bar{z}} [K_a(x, \bar{x})](1,1) = [K_a(x, \bar{x})](1,2) - 2\pi i \bar{P}_1(\bar{x}, \bar{\tau}_a) - \pi \int_{S_a} d^2z \delta^{(2)}(z-x) \frac{1}{z-x} = 2\pi \bar{P}_1(\bar{x}, \bar{\tau}_a) + \pi \sum_{k \geq 1} |\epsilon|^k P'_k(x, \tau_a) \bar{P}_{k+1}(\bar{x}, \bar{\tau}_a) + A,
\]

(129)

where \(A\) is purely divergent term. We discard \(A\) and integrate them to obtain the regularized \([K_a(x, \bar{x})](1,1)\):

\[
[K_a(x, \bar{x})](1,1) = 2\pi \log |Q(x, \tau_a)|^2 - \pi \sum_{k \geq 1} |\epsilon|^k \frac{1}{k} |P'_k(x, \tau_a)|^2.
\]

(130)

Then we calculate the integral \([K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](k,l)\), which appears in the deformed two-point function. For \(k = 2\) and \(l = 2\) we have

\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](2,2) = -\frac{i}{2} \oint_{\partial T^2} d\bar{z} P_1(z-x_1, \tau_a) \bar{P}_2(\bar{z} - x_2, \bar{\tau}_a)
- \frac{i}{2} \int_{\partial A} d\bar{z} \sum_{k,l \geq 1} l P_k(x_1, \tau_a) \bar{P}_{l+1}(\bar{x}_2, \bar{\tau}_a) z^{k-1} \bar{z}^{l-1}
+ \frac{i}{2} \bar{P}_2(\bar{x}_1 - \bar{x}_2, \bar{\tau}_a) \oint_{\partial D_{\bar{x}_1}} d\bar{z} P_1(z-x_1, \tau_a)
+ \frac{i}{2} P_1(x_2 - x_1, \tau_a) \oint_{\partial D_{\bar{x}_2}} d\bar{z} \bar{P}_2(\bar{z} - \bar{x}_2, \bar{\tau}_a)
\]

(131)

For \(k = 2\) and \(l = 1\) we have

\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](2,1) = \pi P_1(x_1, \tau_a) + \pi P_1(x_2 - x_1, \tau_a)
+ \pi \sum_{k \geq 1} |\epsilon|^k P_{k+1}(x_1, \tau_a) \bar{P}'_k(\bar{x}_2, \bar{\tau}_a).
\]

(132)

For \(k = 1\) and \(l = 2\) we have

\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1,2) = \pi \bar{P}_1(\bar{x}_2, \bar{\tau}_a) + \pi \bar{P}_1(\bar{x}_1 - \bar{x}_2, \bar{\tau}_a)
+ \pi i \sum_{k \geq 1} |\epsilon|^k P'_k(x_1, \tau_a) \bar{P}_{k+1}(\bar{x}_2, \bar{\tau}_a).
\]

(133)

35
For \([K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1, 1)\) it satisfies
\[
\partial_{x_1}[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1, 1) = \pi P_1(x_1, \tau_a) + \pi P_1(x_2 - x_1, \tau_a)
+ \pi \sum_{k \geq 1} |\epsilon|^k P_{k+1}(x_1, \tau_a) \bar{P}'_k(\bar{x}_2, \bar{\tau}_a),
\] (134)
\[
\partial_{\bar{x}_1}[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1, 1) = -\pi \left[\bar{P}_1(\bar{x}_1 - \bar{x}_2, \bar{\tau}_a) - \bar{P}_1(\bar{x}_1, \bar{\tau}_a) \right],
\] (135)
\[
\partial_{x_2}[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1, 1) = -\pi \left[P_1(x_2 - x_1, \tau_a) - P_1(x_2, \tau_a) \right],
\] (136)
\[
\partial_{\bar{x}_2}[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1, 1) = \pi \bar{P}_1(\bar{x}_2, \bar{\tau}_a) + \pi \bar{P}_1(\bar{x}_1 - \bar{x}_2, \bar{\tau}_a)
+ \pi \sum_{k \geq 1} |\epsilon|^k P'_k(x_1, \tau_a) \bar{P}_{k+1}(\bar{x}_2, \bar{\tau}_a).
\] (137)

We integrate these equations to obtain \([K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1, 1)\):
\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1, 1) = \pi \log \frac{|Q(x_1, \tau_a) Q(x_2, \tau_a)|^2}{|Q(x_1 - x_2, \tau_a)|^2}
- \pi \sum_{k \geq 1} |\epsilon|^k \frac{k^2 + 3k + 2}{2} P_{k+3}(x_1, \tau_a) \bar{P}'_k(\bar{x}_2, \bar{\tau}_a).
\] (138)

For \(k = 4\) and \(l = 1\) we have
\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](4, 1) = \frac{\pi}{3} P_3(x_1, \tau_a) + \frac{\pi}{3} P_3(x_2 - x_1, \tau_a)
+ \frac{\pi}{3} \sum_{k \geq 1} |\epsilon|^k \frac{k^2 + 3k + 2}{2} P_{k+3}(x_1, \tau_a) \bar{P}'_k(\bar{x}_2, \bar{\tau}_a).
\] (139)

For \(k = 1\) and \(l = 4\) we have
\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](1, 4) = \frac{\pi}{3} \bar{P}_3(\bar{x}_2, \bar{\tau}_a) + \frac{\pi}{3} \bar{P}_3(\bar{x}_1 - \bar{x}_2, \bar{\tau}_a)
+ \frac{\pi}{3} \sum_{k \geq 1} |\epsilon|^k \frac{k^2 + 3k + 2}{2} P'_k(x_1, \tau_a) \bar{P}_{k+3}(\bar{x}_2, \bar{\tau}_a).
\] (140)

For \(k = 4\) and \(l = 2\) we have
\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](4, 2) = -\frac{\pi}{3} \sum_{k \geq 1} |\epsilon|^k \frac{k^3 + 3k^2 + 2k}{2} P_{k+3}(x_1, \tau_a) \bar{P}_{k+1}(\bar{x}_2, \bar{\tau}_a).
\] (141)

For \(k = 2\) and \(l = 4\) we have
\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](2, 4) = -\frac{\pi}{3} \sum_{k \geq 1} |\epsilon|^k \frac{k^3 + 3k^2 + 2k}{2} P_{k+1}(x_1, \tau_a) \bar{P}_{k+3}(\bar{x}_2, \bar{\tau}_a).
\] (142)

For \(k = 4\) and \(l = 4\) we have
\[
[K_a(x_1, \bar{x}_1; x_2, \bar{x}_2)](4, 4) = -\frac{\pi}{3} \sum_{k \geq 1} |\epsilon|^k \frac{(k+1)^2(k+2)^2}{12} P_{k+3}(x_1, \tau_a) \bar{P}_{k+3}(\bar{x}_2, \bar{\tau}_a).
\] (143)
C Complete integral results

In this appendix, we demonstrate the complete integral results that appear in the first-order deformation of the partition function and the correlation function. These integrals can be classified into three types, e.g. $F\tilde{F}$-type, $FP\tilde{F}$-type (or $P\tilde{F}$-type), and $P\tilde{P}$-type. The $F\tilde{F}$-type appears in zero-point contribution $\int d^2z D_\sigma \tilde{D}_\sigma(\sigma)$. The $FP\tilde{F}$-type (or $P\tilde{F}$-type) appears in one-point contribution $\int d^2z D_\sigma \tilde{P}_{\bar{z},\bar{x}}(\sigma)$. The $P\tilde{P}$-type appears in two-point contribution $\int d^2z P_{z,x} P_{\bar{z},\bar{x}}(z)$. All of these integrals can be represented by integrals can be represented by column vectors α, β, θ, $\xi(x)$ and $\zeta(x)$ defined in Subsection 2.2. As an example, consider the following $P\tilde{P}$-type integral:

$$\int_{\Sigma(2)} d^2z \left[\frac{1}{2} \mathcal{P}_1(z, x_1; \tau_1, \bar{\tau}_1, \epsilon) \right] \frac{1}{2} \mathcal{P}_2(z, x_2; \bar{\tau}_1, \tau_1, \epsilon)$$

$$= \int_{s_a} d^2z \left\{ \mathcal{P}_1(z, x_1, \tau_1) + \sum_{k=1} P_{k+3}(z, \tau_1) [\mathcal{S}_a^{(0)}(x_1)](k) \right\} \times \left\{ \mathcal{P}_2(z, x_2, \bar{\tau}_1) + \sum_{l=1} \mathcal{P}_{l+3}(z, \bar{\tau}_1) [\mathcal{S}_a^{(1)}(x_2)](l) \right\}$$

$$+ \int_{s_a} d^2z \left\{ - \epsilon P_3(z, \tau_1) + \sum_{k=1} P_{k+3}(z, \tau_1) [\mathcal{S}_a^{(0)}(x_1)](k) \right\} \left[\sum_{l=1} \mathcal{P}_{l+3}(z, \bar{\tau}_1) [\mathcal{S}_a^{(1)}(x_2)](l) \right]$$

$$= \left[\mathcal{K}_a(x_1, x_2; x_2, \bar{x}_2) \right](1, 2) + \sum_{k,l} \mathcal{I}_a(k, l, 3)[\mathcal{S}_a^{(0)}(x_1)](k) [\mathcal{S}_a^{(1)}(x_2)](l)$$

$$+ \sum_{k,l} \mathcal{I}_a(k, l, 3)[\mathcal{S}_a^{(0)}(x_1)](k) [\mathcal{S}_a^{(1)}(x_2)](l) + \sum_{k=1} \mathcal{J}_a(x_2, \bar{x}_2)[k, 3, 2][\mathcal{S}_a^{(0)}(x_1)](k)$$

$$+ \sum_{k=1} \mathcal{J}_a(x_1, \bar{x}_2)[k, 3, 1][\mathcal{S}_a^{(1)}(x_2)](k) - \epsilon \sum_{l=1} \mathcal{I}_a(3, l, 3)[\mathcal{S}_a^{(1)}(x_2)](l).$$ (144)

C.1 The full form of three types of integrals

The following are the $F\tilde{F}$-type integrals that appear in the deformed partition function:

$$\int_{\Sigma(2)} d^2z \left(\frac{1}{2} \mathcal{F}_a \mathcal{F}_a \right)$$

$$= 4\pi^2 \text{Im}[\tau_1] - \pi|\epsilon| - 2\pi|\epsilon| \sum_{k=1} \text{Re}[E_{k+3}(\tau_1)\alpha_a(k)]$$

$$+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{\epsilon} \delta_{k,l} - \sum_{n \geq l} C_{n,a}^{k,l} |\epsilon|^{n-l+1} \right] \alpha_a(k) \alpha_a(l)$$

37
The following are the functions of primary field and of stress tensor:

\[\int_{\Sigma (2)} d^2z \left(2 \mathcal{F}_a^2 \bar{F}_a \right) \]

\[= - \pi |\epsilon| \sum_{k \geq 1} \left[\mathcal{E}_{k+3}(\bar{\tau}_a) \beta_a(k) + \mathcal{E}_{k+3}(\tau_a) \beta_a(k) \right] \]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} - \sum_{n \geq l} C_{n,a}^{k,l} |\epsilon|^{n-l+1} \right] \beta_a(k) \beta_a(l), \] (145)

\[+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} - \sum_{n \geq l} C_{n,a}^{k,l} |\epsilon|^{n-l+1} \right] \alpha_a(k) \beta_a(l) \]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} - \sum_{n \geq l} C_{n,a}^{k,l} |\epsilon|^{n-l+1} \right] \beta_a(k) \bar{\alpha}_a(l), \] (146)

\[+ \frac{\pi}{2} \int_{\Sigma (2)} d^2z \left(\epsilon \mathcal{F}_a^2 \bar{F}_a \right) \]

\[= 2\pi |\epsilon| - \pi |\epsilon|^3 \sum_{a=1,2} \sum_{n,k \geq 1} |n| |n-1| |E_{n+1}(\tau_a)|^2 \]

\[- \sum_{a=1,2} \sum_{n,k \geq 1} \frac{2\pi}{k+2} |n| \text{Re}[C_{n,a}^{k-1} \epsilon \theta_a(k+2)] \]

\[+ \sum_{a=1,2} \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} - \sum_{n \geq l} C_{n,a}^{k,l} |\epsilon|^{n-l+1} \right] \theta_a(k+2) \bar{\theta}_a(l+2), \] (147)

The following are the \(\mathcal{F}\bar{P} \)-type integrals that appear in the deformed one-point functions of primary field and of stress tensor:

\[\int_{\Sigma (2) \setminus D_0} d^2z \left(2 \mathcal{F}_a^2 \bar{P}_1 \right) \]

\[= - 2\pi \text{Re}[\xi] + \pi |\epsilon| \bar{P}_1(x, \bar{\tau}_a) \]

\[+ \bar{\epsilon} \sum_{k,n \geq 1} \frac{\pi}{k+2} C_{k,a}^{n-1,0} |\epsilon|^n \beta_a(k) + 2\pi i |\epsilon| \sum_{l \geq 1} \bar{E}_{l+3}(\tau_a)(\xi_a^{0}(\bar{x}))(l) \]

\[+ \sum_{k \geq 1} \frac{\pi}{k+2} \left[\bar{P}'_{k+2}(x, \tau_a) - \sum_{l \geq 1} \frac{k+2}{l} |\epsilon|^l A_{k,a}^{0,l} \bar{P}'_l(x, \bar{\tau}_a) \right] \alpha_a(k) \]

\[= \bar{\epsilon} \sum_{k,n \geq 1} \frac{\pi}{k+2} C_{k,a}^{n-1,0} |\epsilon|^n \beta_a(k) \]

\[+ \sum_{k \geq 1} \frac{\pi}{k+2} \left[\bar{P}'_{k+2}(x, \tau_a) - \sum_{l \geq 1} \frac{k+2}{l} |\epsilon|^l A_{k,a}^{0,l} \bar{P}'_l(x, \bar{\tau}_a) \right] \alpha_a(k) \]
\[
\int_{\Sigma^{(2)} \setminus D_3} d^2 z \left(2 \mathcal{F}_a \frac{\gamma}{2} \mathcal{P}_1 \right)
\]

\[
\int_{\Sigma^{(2)} \setminus D_3} d^2 z \left(2 \mathcal{F}_a \frac{\epsilon}{2} \mathcal{P}_2 \right)
\]

\[
= \pi \epsilon P_1(x, \tau_a) - 2 \pi i \epsilon \sum_{l \geq 1} \tilde{P}_l^1(\tilde{x}, \tilde{\tau_a}) E_{l+1}(\tau_a) \epsilon \left| l \right| + \pi \epsilon \sum_{n \geq k \geq 1} \bar{C}_{0,a}^k \epsilon^n \theta_a(k + 2)
\]
\[\begin{align*}
&= -\pi |\epsilon| \sum_{l} E_{l+3}(\tau_a)|\zeta^{(1)}_a(\bar{x})|(l) + \pi \sum_{k,l \geq 1} |\epsilon| A_{k,a}^{l,0} \bar{P}_{l+1}(\bar{x}, \tau_a) \beta_a(k) \\
&\quad + \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] \beta_a(k) [\zeta^{(1)}_a(\bar{x})](l) \\
&\quad + \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] \alpha_a(k) [\zeta^{(1)}_a(\bar{x})](l), \quad (153) \\
&\int_{\Sigma^{(2)} \setminus \mathcal{D}_a} d^2 z \left(2 \mathcal{F}_{11}^{a} \epsilon^{a/2} \bar{P}_2 \right) \\
&= -\pi |\epsilon| \sum_{l \geq 1} l P_{l+1}(\bar{x}, \tau_a) E_{l+1}(\tau_a) |\epsilon|^{l} + \pi \sum_{k,l \geq 1} |\epsilon| A_{k,a}^{l,0} \bar{P}_{l+1}(\bar{x}, \tau_a) \theta_a(k+2) \\
&\quad + \sum_{k,l \geq 1} \frac{\pi}{l+2} \left[\frac{1}{|\epsilon|^{l+2}} \delta_{k,l} + \sum_{n \geq k} \bar{C}_{l,a}^{n,k} |\epsilon|^{n-k+1} \right] \theta_a(k+2) [\zeta^{(1)}_a(\bar{x})](l) \\
&\quad + \sum_{k,l \geq 1} \frac{\pi}{l+2} \left[\frac{1}{|\epsilon|^{l+2}} \delta_{k,l} + \sum_{n \geq k} \bar{C}_{l,a}^{n,k} |\epsilon|^{n-k+1} \right] \theta_a(k+2) [\zeta^{(1)}_a(\bar{x})](l) \\
&\quad + \sum_{n,l \geq 1} \frac{\pi}{l+2} |\epsilon|^{n-1} \left[\bar{C}_{l,a}^{n-2,1} [\zeta^{(1)}_a(\bar{x})](l) + \bar{C}_{l,a}^{n-2,1} [\zeta^{(1)}_a(\bar{x})](l) \right], \quad (154) \\
&\int_{\Sigma^{(2)} \setminus \mathcal{D}_a} d^2 z \left(2 \mathcal{P}_4^{2} \mathcal{F}_{a}^{2} \right) \\
&= -\pi P_{4}(x, \tau_a) |\epsilon| - \pi \sum_{k \geq 1} |\epsilon| E_{k+3}(\tau_a) [\zeta^{(3)}_a(x)](k) \\
&\quad + \pi \sum_{k,l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon| A_{k,a}^{l,0} \bar{P}_{l+3}(x, \tau_a) \bar{\alpha}_a(k) \\
&\quad + \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} + \sum_{n \geq l} \bar{C}_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\zeta^{(3)}_a(x)](k) \bar{\alpha}_a(l) \\
&\quad + \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} + \sum_{n \geq l} \bar{C}_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\zeta^{(3)}_a(x)](k) \bar{\beta}_a(l), \quad (155) \\
&\int_{\Sigma^{(2)} \setminus \mathcal{D}_a} d^2 z \left(2 \mathcal{P}_4^{2} \mathcal{F}_{a}^{2} \right) \\
&= -\pi \sum_{k \geq 1} |\epsilon| E_{k+3}(\tau_a) [\zeta^{(3)}_a(x)](k) + \pi \sum_{k,l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon| A_{k,a}^{l,0} \bar{P}_{l+3}(x, \tau_a) \bar{\beta}_a(k) \\
&\quad + \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\zeta^{(3)}_a(x)](k) \bar{\beta}_a(l) \\
&\quad + \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\zeta^{(3)}_a(x)](k) \bar{\alpha}_a(l), \quad (156) \\
&\int_{\Sigma^{(2)} \setminus \mathcal{D}_a} d^2 z \left(2 \mathcal{P}_4^{2} \mathcal{F}_{a}^{2} \right)
\end{align*}\]
The following are the $\mathcal{P}\mathcal{P}$-type integrals that appear in the deformed one-point functions of primary field:

\[
\int_{\Sigma(2) \setminus D_3} d^2 z (2\mathcal{P}_1^2\mathcal{P}_2) = \pi \sum_{l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon|^l P_{l+3}(x, \tau_a) \left[\mathcal{E}_l E_{l+1}(\bar{\tau}_a) - \tilde{A}_{k,a}^l \tilde{\theta}_a (k + 2) \right] \\
+ \sum_{k, l \geq 1} \frac{\pi}{k + 2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} + \sum_{n \geq k} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\xi_1^{(3)}(x)](k) \tilde{\theta}_a (l + 2) \\
+ \sum_{k, l \geq 1} \frac{\pi}{k + 2} \left[\frac{1}{|\epsilon|^{k+2}} \delta_{k,l} + \sum_{n \geq k} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\zeta_1^{(3)}(x)](k) \tilde{\theta}_a (l + 2).
\]

(157)
The following are the \mathcal{PP}-type integrals that appear in the deformed two-point function, and the two insertion points x_1 and x_2 are on the same torus S_α:

$$
\begin{align*}
&\int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \\
&= \pi \log \left| \frac{Q(x_1, \tau_a)Q(x_2, \tau_a)}{Q(x_1 - x_2, \tau_a)} \right|^2 + \frac{\pi}{2} - \sum_{k \geq 1} \frac{1}{k+2} \left[|\epsilon|^{k+2} \left\{ \int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right\} \right] \\
&+ \sum_{k \geq 1} \frac{\pi}{k+2} \left[P_{k+2}(\bar{x}_1, \bar{\tau}_a) - \sum_{l \geq 1} \frac{k+2}{l} |\epsilon|^{k+2} \left\{ \int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right\} \right] \left\{ \int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right\} \\
&+ \sum_{k \geq 1} \frac{\pi}{k+2} \left[P_{k+2}(x_2, \tau_a) - \sum_{l \geq 1} \frac{k+2}{l} |\epsilon|^{k+2} \left\{ \int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right\} \right] \left\{ \int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right\} \\
&+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left| \epsilon(k+2) \delta_{k,l} - \sum_{n \geq l} C_{k,\alpha}^{n,l} |\epsilon|^{k+1} \left\{ \int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right\} \right] \left\{ \int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right\} \\
&+ \sum_{k \geq 1} \frac{\pi}{k+2} \left[\int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right] \left\{ \int_{\Sigma(2)\setminus D_k} d^2z (2\mathcal{P}_1^{(x_1)} 2\mathcal{P}_1^{(x_2)}) \right\}.
\end{align*}
$$

(160)
\[
\pi \sum_{k,l \geq 1} |\epsilon|^l [P_{l+1}(x_1, \tau_a) \check{A}_{k,a}^{l,0} [\check{\xi}_a^{(1)}(\bar{x}_2)](k) + \check{P}_{l+1}(\bar{x}_2, \bar{\tau}_a) A_{k,a}^{l,0} [\xi_a^{(1)}(x_1)](k)] + \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2} \check{\delta}_{k,l}} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\xi_a^{(1)}(x_1)](k) [\bar{\xi}_a^{(1)}(\bar{x}_2)](l)
\]

\[
\sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2} \check{\delta}_{k,l}} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\bar{\zeta}_a^{(1)}(x_1)](k) [\bar{\zeta}_a^{(1)}(\bar{x}_2)](l),
\]

(163)

\[
\int_{\Sigma(2) \setminus D_8} d^2z (2P_1^{(x_1)} 2\bar{P}_4^{(x_2)}) = \frac{\pi}{3} \left[\check{P}_3(\bar{x}_2, \bar{\tau}_a) + \check{P}_3(\bar{x}_1 - \bar{x}_2, \bar{\tau}_a) \right] + \sum_{k,n \geq 1} \frac{\pi}{k+2} \check{C}_{k,a}^{n-1,0} |\epsilon|^{n} [\check{\xi}_a^{(3)}(\bar{x}_2)](k)
\]

\[
+ \sum_{l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon|^l \check{P}_{l+3}(\bar{x}_2, \bar{\tau}_a) \left[|\epsilon|^{l} \check{P}_l^{(x_1)}(x_1, \tau_a) + \sum_{k \geq 1} A_{k,a}^{l,0} [\xi_a^{(0)}(x_1)](k) \right] + \sum_{k \geq 1} \frac{\pi}{k+2} \check{P}_{k+2}(\bar{x}_1, \bar{\tau}_a) - \sum_{l \geq 1} \frac{k+2}{l} |\epsilon|^l \check{A}_{k,a}^{l,0} [\xi_a^{(0)}(x_1)](k)
\]

\[
+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2} \check{\delta}_{k,l}} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\xi_a^{(0)}(x_1)](k) [\bar{\xi}_a^{(3)}(\bar{x}_2)](l)
\]

\[
+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2} \check{\delta}_{k,l}} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\bar{\zeta}_a^{(0)}(x_1)](k) [\bar{\zeta}_a^{(3)}(\bar{x}_2)](l),
\]

(164)

\[
\int_{\Sigma(2) \setminus D_8} d^2z (2P_2^{(x_1)} 2\bar{P}_4^{(x_2)}) = \pi \sum_{k,l \geq 1} |\epsilon|^l \check{A}_{k,a}^{l,0} \check{P}_{l+1}(x_1, \tau_a) [\check{\xi}_a^{(3)}(\bar{x}_2)](k)
\]

\[
- \sum_{l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon|^l \check{P}_{l+3}(x_1, \tau_a) \left[|\epsilon|^l \check{P}_l^{(x_1)}(x_1, \tau_a) - \sum_{k \geq 1} A_{k,a}^{l,0} [\xi_a^{(1)}(x_1)](k) \right] + \sum_{k \geq 1} \frac{\pi}{k+2} \check{P}_{k+2}(x_1, \tau_a) - \sum_{l \geq 1} \frac{k+2}{l} |\epsilon|^l \check{A}_{k,a}^{l,0} [\xi_a^{(1)}(x_1)](k)
\]

\[
+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2} \check{\delta}_{k,l}} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\xi_a^{(1)}(x_1)](k) [\bar{\xi}_a^{(3)}(\bar{x}_2)](l)
\]

\[
+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\frac{1}{|\epsilon|^{k+2} \check{\delta}_{k,l}} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\bar{\zeta}_a^{(1)}(x_1)](k) [\bar{\zeta}_a^{(3)}(\bar{x}_2)](l),
\]

(165)

\[
\int_{\Sigma(2) \setminus D_8} d^2z (2P_4^{(x_1)} 2\bar{P}_4^{(x_2)}) = \left[\frac{\pi}{3} \sum_{l \geq 1} \frac{l(l+1)^2(l+2)^2}{12} |\epsilon|^l \check{P}_{l+3}(x_1, \tau_a) \check{P}_{l+3}(\bar{x}_2, \bar{\tau}_a)
\]

\[
+ \sum_{k,l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon|^l \check{P}_{l+3}(\bar{x}_2, \bar{\tau}_a) A_{k,a}^{l,0} [\xi_a^{(3)}(x_1)](k)
\]

\[
+ \sum_{k,l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon|^l \check{P}_{l+3}(x_1, \tau_a) \check{A}_{k,a}^{l,0} [\xi_a^{(3)}(\bar{x}_2)](k)
\]

43
The following are the $\mathcal{P}\mathcal{P}$ function, and the two insertion points x and y are on different tori:

\begin{align}
\int_{\Sigma(2)\setminus D_8} d^2z (2\mathcal{P}_1^{(x)2}\mathcal{P}_1^{(y)}) \\
= -\frac{\pi}{2} \left[\mathcal{P}_{l+1}(\vec{x}, \vec{\tau}_a) - \sum_{l \geq 1} |l| (l + 1) \mathcal{P}_l(x, \tau_a) \bar{E}_{l+2}(\vec{\tau}_a) \right] \\
- \frac{\pi}{2} \epsilon \left[\mathcal{P}_{l+1}(y, \tau_a) - \sum_{l \geq 1} |l| (l + 1) \bar{\mathcal{P}}_l(y, \vec{\tau}_a) E_{l+2}(\bar{\tau}_a) \right] \\
+ \sum_{k,n \geq 1} \frac{\pi}{k+2} \left[\mathcal{P}_{l+2}(\vec{x}, \vec{\tau}_a) - \sum_{l \geq 1} \epsilon \left[|l| \mathcal{A}_{k,a}^{l+1} \mathcal{P}_l(x, \tau_a) \right] \bar{\mathcal{A}}_{k,a}^{l+1} \right] (\vec{\xi}_a^{(0)}(x))(k) \\
+ \sum_{k \geq 1} \frac{\pi}{k+2} \left[\mathcal{P}_{l+2}(y, \tau_a) - \sum_{l \geq 1} \epsilon \left[|l| \mathcal{A}_{k,a}^{l+1} \mathcal{P}_l(y, \vec{\tau}_a) \right] \bar{\mathcal{A}}_{k,a}^{l+1} \right] (\vec{\xi}_a^{(0)}(y))(k) \\
+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \left[\epsilon \left[|l| \mathcal{A}_{k,a}^{l+1} \mathcal{A}_{k,a}^{l+1} \mathcal{P}_l(x, \tau_a) \right] \bar{\mathcal{A}}_{k,a}^{l+1} \right] (\vec{\xi}_a^{(0)}(x))(k) \bar{\mathcal{A}}_{k,a}^{l+1} (\vec{\xi}_a^{(0)}(y))(l), \\
(166)
\end{align}

The following are the $\mathcal{P}\mathcal{P}$-type integrals that appear in the deformed two-point function, and the two insertion points x and y are on different tori:

\begin{align}
\int_{\Sigma(2)\setminus D_8} d^2z (2\mathcal{P}_1^{(x)2}\mathcal{P}_1^{(y)}) \\
= -\frac{\pi}{2} \epsilon \sum_{l \geq 1} |l| (l + 1) \bar{\mathcal{P}}_{l+1}(\bar{y}, \vec{\tau}_a) E_{l+2}(\vec{\tau}_a) \\
+ \sum_{k,n \geq 1} \frac{\pi}{k+2} \epsilon \left[|l| \mathcal{A}_{k,a}^{l+1} \mathcal{A}_{k,a}^{l+1} \mathcal{P}_l(y, \tau_a) \right] \bar{\mathcal{A}}_{k,a}^{l+1} (\bar{\xi}_a^{(0)}(y))(k) \\
+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \epsilon \left[|l| \mathcal{A}_{k,a}^{l+1} \mathcal{A}_{k,a}^{l+1} \mathcal{P}_l(y, \vec{\tau}_a) \right] \bar{\mathcal{A}}_{k,a}^{l+1} (\bar{\xi}_a^{(0)}(y))(l), \\
(167)
\end{align}

\begin{align}
\int_{\Sigma(2)\setminus D_8} d^2z (2\mathcal{P}_1^{(x)2}\mathcal{P}_1^{(y)}) \\
= -\frac{\pi}{2} \sum_{l \geq 1} |l| (l + 1) \bar{\mathcal{P}}_{l+1}(\bar{y}, \vec{\tau}_a) E_{l+2}(\vec{\tau}_a) \\
+ \sum_{k,n \geq 1} \frac{\pi}{k+2} \epsilon \left[|l| \mathcal{A}_{k,a}^{l+1} \mathcal{A}_{k,a}^{l+1} \mathcal{P}_l(x, \tau_a) \right] \bar{\mathcal{A}}_{k,a}^{l+1} (\bar{\xi}_a^{(0)}(x))(k) \\
+ \sum_{k,l \geq 1} \frac{\pi}{k+2} \epsilon \left[|l| \mathcal{A}_{k,a}^{l+1} \mathcal{A}_{k,a}^{l+1} \mathcal{P}_l(y, \vec{\tau}_a) \right] \bar{\mathcal{A}}_{k,a}^{l+1} (\bar{\xi}_a^{(0)}(y))(l), \\
(168)
\end{align}
\[= \pi \sum_{k,l \geq 1} |\epsilon|^l \left[\bar{P}_{l+1}(x, \tau_a) \bar{A}_{k,a}^{(1)} \tilde{\zeta}_a^{(1)}(y)(k) + \bar{P}_{l+1}(\bar{y}, \bar{\tau}_a) \bar{A}_{k,a}^{(1)} \tilde{\zeta}_a^{(1)}(x)(k) \right]
\]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k + 2} \left[|\epsilon|^l k \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\tilde{\zeta}_a^{(1)}(x)(k)][\tilde{\zeta}_a^{(1)}(\bar{y})(l)]
\]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k + 2} \left[|\epsilon|^l k \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\tilde{\zeta}_a^{(1)}(x)(k)][\tilde{\zeta}_a^{(1)}(\bar{y})(l)], \quad (169)\]

\[\int \Sigma^{(2)} \setminus D_8 \, d^2 z (2\hat{P}_1^{(x)} \hat{P}_4^{(y)})\]

\[= -\frac{\pi}{2} \sum_{l \geq 1} \frac{l(l + 1)^2(l + 2)}{6} |\epsilon|^l \bar{P}_{l+3}(\bar{y}, \bar{\tau}_a) E_{l+2}(\tau_a) + \sum_{k,n \geq 1} \frac{\pi}{k + 2} C_{k,a}^{n-1,0} |\epsilon|^{n} [\tilde{\zeta}_a^{(3)}(\bar{y})(k)]
\]

\[+ \pi \sum_{k,l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon|^l \bar{P}_{l+3}(\bar{y}, \bar{\tau}_a) \bar{A}_{k,a}^{(0)} \tilde{\zeta}_a^{(0)}(x)(k)
\]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k + 2} \left[|\epsilon|^l k \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\tilde{\zeta}_a^{(0)}(x)(k)][\tilde{\zeta}_a^{(0)}(\bar{y})(l)]
\]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k + 2} \left[|\epsilon|^l k \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\tilde{\zeta}_a^{(0)}(x)(k)][\tilde{\zeta}_a^{(3)}(\bar{y})(l)], \quad (170)\]

\[\int \Sigma^{(2)} \setminus D_8 \, d^2 z (2\hat{P}_1^{(x)} \hat{P}_4^{(y)})\]

\[= \pi \sum_{l \geq 1} \left[|\epsilon|^l \bar{A}_{k,a}^{(1)} \bar{P}_{l+1}(x, \tau_a) [\tilde{\zeta}_a^{(3)}(\bar{y})(k)] \right]
\]

\[+ \pi \sum_{l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon|^l \bar{P}_{l+3}(\bar{y}, \bar{\tau}_a) \bar{A}_{k,a}^{(0)} [\tilde{\zeta}_a^{(0)}(x)(k)]
\]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k + 2} \left[|\epsilon|^l k \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\tilde{\zeta}_a^{(1)}(x)(k)][\tilde{\zeta}_a^{(3)}(\bar{y})(l)]
\]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k + 2} \left[|\epsilon|^l k \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\tilde{\zeta}_a^{(1)}(x)(k)][\tilde{\zeta}_a^{(3)}(\bar{y})(l)], \quad (171)\]

\[\int \Sigma^{(2)} \setminus D_8 \, d^2 z (2\hat{P}_1^{(x)} \hat{P}_4^{(y)})\]

\[= \pi \sum_{k,l \geq 1} \frac{l^2 + 3l + 2}{6} |\epsilon|^l \left[\bar{P}_{l+3}(\bar{y}, \bar{\tau}_a) \bar{A}_{k,a}^{(1)} [\tilde{\zeta}_a^{(3)}(x)(k)] + \bar{P}_{l+3}(x, \tau_a) \bar{A}_{k,a}^{(0)} [\tilde{\zeta}_a^{(0)}(\bar{y})(l)] \right]
\]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k + 2} \left[|\epsilon|^l k \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\tilde{\zeta}_a^{(3)}(x)(k)][\tilde{\zeta}_a^{(3)}(\bar{y})(l)]
\]

\[+ \sum_{k,l \geq 1} \frac{\pi}{k + 2} \left[|\epsilon|^l k \delta_{k,l} - \sum_{n \geq l} C_{k,a}^{n,l} |\epsilon|^{n-l+1} \right] [\tilde{\zeta}_a^{(3)}(x)(k)][\tilde{\zeta}_a^{(3)}(\bar{y})(l)]. \quad (172)\]
C.2 Details of deformed partition function

In this Appendix we discuss the detailed calculation of the first-order deformed partition function. Applying eqs. (12) (13) (35) we have

\[\delta_{\lambda}Z = \int_{\Sigma^{(2)}} d^2z D_{\tau} \bar{D}_{\bar{\tau}} Z \]

\[= \frac{1}{4\pi^2} \int_{\Sigma^{(2)}} d^2z \left\{ (2\mathcal{F}_1 2\bar{\mathcal{F}}_1) \partial_{\tau_1} \partial_{\tau_2} + (2\mathcal{F}_2 2\bar{\mathcal{F}}_2) \partial_{\tau_1} \partial_{\tau_2} - 2\pi i \epsilon^2 (2\mathcal{F}_1 2\bar{\mathcal{F}}_1) \partial_{\tau_1} \partial_{\bar{\tau}} + (2\mathcal{F}_2 2\bar{\mathcal{F}}_2) \partial_{\tau_1} \partial_{\bar{\tau}} - 2\pi i \epsilon^2 (2\mathcal{F}_2 2\bar{\mathcal{F}}_2) \partial_{\tau_2} \partial_{\bar{\tau}} \right. \]

\[+ 2\pi i \epsilon^2 (2\mathcal{F}_1 2\bar{\mathcal{F}}_1) \partial_{\tau_1} \partial_{\bar{\tau}} + 2\pi i \epsilon^2 (2\mathcal{F}_2 2\bar{\mathcal{F}}_2) \partial_{\tau_1} \partial_{\bar{\tau}} + 4\pi^2 \epsilon^2 \epsilon_0 (2\mathcal{F}_1 \mathcal{F}_2) \partial_{\tau_1} \partial_{\bar{\tau}} \}

\[Z. \quad (173) \]

The \(\mathcal{F} \bar{\mathcal{F}} \)-type integrals are calculated in eqs. (145) (146) (147) (148). For simplicity, we approximate the result up to \(|\epsilon|^3 \):

\[\delta_{\lambda}Z = \sum_{a=1,2} \left[\text{Im}[\tau_a] - \frac{|\epsilon|}{6\pi} \partial_{\tau_a} \partial_{\bar{\tau}} Z \right] + \left[2\pi |\epsilon| - \frac{2\pi}{3} |\epsilon|^2 \sum_{a=1,2} |E_2(\tau_a)|^2 \right] \partial_{\tau_a} \partial_{\bar{\tau}} Z \]

\[+ \sum_{a=1,2} 2\text{Re} \left[- \frac{i}{2} \epsilon + \frac{i}{3} \epsilon^2 |\epsilon| E_2(\bar{\tau}_a) + \frac{i}{2} |\epsilon|^2 E_2(\tau_a) E_4(\bar{\tau}_a) \right] \partial_{\tau_a} \partial_{\bar{\tau}} Z \]

\[+ 2\text{Re} \left[- \frac{|\epsilon|}{6\pi} \left(\epsilon^2 E_4(\tau_2) + \epsilon^2 \bar{E}_4(\bar{\tau}_1) \right) \right] \partial_{\tau_1} \partial_{\tau_2} Z + O(|\epsilon|^4). \quad (174) \]

C.3 Details of deformed one-point function

In this Appendix we discuss the detailed calculation of the first-order deformed one-point functions. For primary one-point function, the first-order correction depends on integral eq. (13). The first term in eq. (15) has been calculated in eq. (173) already.

For the second term in eq. (15), we apply eqs. (13) (13) and obtain

\[\frac{1}{Z} \int_{\Sigma^{(2)}} d^2z D_{\tau} \bar{D}_{\bar{\tau}} \langle Z(V) \rangle \]

\[= \frac{1}{Z} \int_{\Sigma^{(2)}} d^2z \left\{ \sum_{b=a,\bar{a}} (2\mathcal{F}_b 2\bar{\mathcal{F}}_b) \frac{1}{2\pi i} \partial_{\tau_a} \partial_{\bar{\tau}} + (2\mathcal{F}_1 \mathcal{F}_2) \partial_{\tau_a} \partial_{\bar{\tau}} \right. \]

\[+ \sum_{b=a,\bar{a}} (2\mathcal{F}_b 2\bar{\mathcal{F}}_b) \frac{1}{2\pi i} \partial_{\tau_a} \text{wt}[\bar{u}] + (2\mathcal{F}_1 \mathcal{F}_2) \partial_{\tau_a} \text{wt}[\bar{u}] \}

\[\langle Z(V) \rangle. \quad (175) \]
The $F\tilde{P}$-type integrals are calculated in eqs. (149) (150) (151) (152) (153) (154), we approximate eq. (175) up to $|\epsilon|^3$:

\[
\frac{1}{Z} \int_{\Sigma^{(2)} \backslash D_\delta} d^2z D_z \tilde{P}_{\bar{z}, \bar{z}} \langle Z \langle V \rangle \rangle
= \frac{1}{Z} \left[i \left[\text{Re}[x] - \frac{|\epsilon|}{3} \tilde{P}_1(\bar{x}, \bar{\tau}_a) \right] \partial_{\tau} \partial_{\bar{x}} + i \left[\frac{1}{2} + \frac{|\epsilon|}{3} \tilde{P}_2(\bar{x}, \bar{\tau}_a) \right] wt[\bar{u}] \partial_{\tau}
- \frac{i}{6} \left[\epsilon^2 P_3(x, \tau_a) + 2|\epsilon| \left(\epsilon^2 E_4(\tau_a) + \epsilon^2 \bar{E}_4(\bar{\tau}_a) \right) \bar{P}_1(\bar{x}, \bar{\tau}_a) \right] \partial_{\tau} \partial_{\bar{x}}
+ \frac{i|\epsilon|}{3} \left[\epsilon^2 E_4(\tau_a) + \epsilon^2 \bar{E}_4(\bar{\tau}_a) \right] \bar{P}_2(\bar{x}, \bar{\tau}_a) wt[\bar{u}] \partial_{\tau}
+ \pi \left[\epsilon P_1(x, \tau_a) + \left(\frac{2|\epsilon|}{3} E_2(\tau_a) - \frac{\hat{\epsilon}}{\pi} |\epsilon E_4(\tau_a)|^2 \right) \bar{P}_1(\bar{x}, \bar{\tau}_a) + \frac{\epsilon^2}{3} E_2(\tau_a) P_3(x, \tau_a) \right] \partial_{\tau} \partial_{\bar{x}}
- \left[\frac{2\pi}{3} |\epsilon| E_2(\tau_a) - \hat{\epsilon} |\epsilon E_4(\tau_a)|^2 \right] \bar{P}_2(\bar{x}, \bar{\tau}_a) wt[\bar{u}] \partial_{\tau} \right] \langle Z \langle V \rangle \rangle + O(|\epsilon|^4), \tag{176} \]

One can obtain the third term contribution in eq. (145) by taking complex conjugate of eq. (176). For the fourth term in eq. (145), we can divide the fourth term into four parts using eq. (143):

\[
\int_{\Sigma^{(2)} \backslash D_\delta} d^2z \mathcal{P}_{z, \bar{z}} \mathcal{P}_{\bar{z}, \bar{z}} \langle V \rangle
= \int_{\Sigma^{(2)} \backslash D_\delta} d^2z \left\{ (2\mathcal{P}_1^2 \mathcal{P}_1) \partial_x \partial_{\bar{x}} + (2\mathcal{P}_2^2 \mathcal{P}_2) \partial_x wt[\bar{u}]
+ (2\mathcal{P}_2^2 \mathcal{P}_1) wt[u] \partial_{\bar{x}} + (2\mathcal{P}_1^2 \mathcal{P}_2) wt[u] wt[\bar{u}] \right\} \langle V \rangle. \tag{177} \]

Using $\mathcal{P}\bar{P}$-type integrals eqs. (158) (160) (159), up to $|\epsilon|^3$, then it becomes

\[
\int_{\Sigma^{(2)} \backslash D_\delta} d^2z \mathcal{P}_{z, \bar{z}} \mathcal{P}_{\bar{z}, \bar{z}} \langle V \rangle
= \left[2\pi \log |Q(x, \tau_a)|^2 + \frac{\pi}{2} \right] \partial_x \partial_{\bar{x}} \langle V \rangle + 2 \text{Re} \left[\pi \bar{P}_1(\bar{x}, \bar{\tau}_a) \partial_x wt[\bar{u}] \langle V \rangle \right]
- \sum_{k=1}^{3} \frac{2\pi}{k(k+2)} |\epsilon|^k P_x^{(k)} \bar{P}_x^{(k)} \langle V \rangle + O(|\epsilon|^4). \tag{178} \]

where the operator $P_x^{(k)}$ is introduced to simplify the result:

\[
P_x^{(k)} = P_x^k(\bar{x}, \bar{\tau}_a) \partial_x - k P_{x+1}(\bar{x}, \bar{\tau}_a) wt[u], \tag{179} \]

for $x \in S_a$. log $Q(x, \tau_a)$ in eq. (178) is the primitive function of $P_1(x, \tau_a)$ defined by eq. (80).
For one-point function of stress tensor, the first-order correction is shown as eq. (54). The first two terms in eq. (54) have been calculated in eq. (174) and eq. (176) respectively. The third term in eq. (54) can be further written by eq. (13) as

\[
\frac{c}{2Z} \int_{\Sigma^{(2)} \setminus D_3} d^2z \left\{ \sum_{b=a,a} \left(2\mathcal{P} \bar{\mathcal{F}}_b \right) \frac{1}{2\pi i} \partial \tau_a + \left(2\mathcal{P} \bar{\mathcal{F}}_b \epsilon \right) \partial \tau_b \right\} Z,
\]

(180)

which is obtained using eqs. (155), (156), (157), up to |\epsilon|^3:

\[
\frac{c}{2Z} \int_{\Sigma^{(2)} \setminus D_3} d^2z \left\{ i|\epsilon| \mathcal{P} x, \tau_a \partial \tau_a + i|\epsilon| \left[\epsilon^2 E_4(\tau_a) + \epsilon^2 \bar{E}_4(\bar{\tau}_a) \right] \mathcal{P} x, \tau_a \partial \tau_a \\
+ 2\pi \epsilon |\epsilon| \bar{E}_2(\bar{\tau}_a) \mathcal{P} x, \tau_a \partial \tau_a \right\} Z + O(|\epsilon|^4).
\]

(181)

C.4 Details of deformed two-point function

In this Appendix we discuss the detailed calculation of the first-order deformed two-point functions. For primary two-point function, the first-order correction depends on eq. (47). After equality the first lines have been calculated in eqs. (174), (176). In the second line, the integrals of \(\mathcal{P}_{x_1,z_1} \bar{\mathcal{P}}_{\bar{z}_1,\bar{\tau}_1} \) and \(\mathcal{P}_{x_2,z_2} \bar{\mathcal{P}}_{\bar{z}_2,\bar{\tau}_2} \) have been calculated in eq. (178). To calculate remaining integrals of the second line, there are two different profiles. The one profile is that two insertion points live on the same torus \(x_1, x_2 \in S_a \). Using eqs. (161), (162), (163), we approximate the result up to |\epsilon|^3:

\[
\int_{\Sigma^{(2)} \setminus D_3} d^2z \mathcal{P}_{x_1,z_1} \bar{\mathcal{P}}_{\bar{z}_1,\bar{\tau}_1} \langle V_1 V_2 \rangle \\
= \left[\pi \log \left| \frac{Q(x_1, \tau_a)Q(x_2, \tau_a)}{Q(x_1 - x_2, \tau_a)^2} \right| + \frac{\pi}{2} \right] \partial x_1 \partial x_2 \langle V_1 V_2 \rangle \\
+ \left[\pi \bar{P}_1(\bar{x}_1 - \bar{x}_2, \bar{\tau}_a) + \pi \bar{P}_1(\bar{x}_2, \bar{\tau}_a) \right] \partial x_1 w[t_2] \langle V_1 V_2 \rangle \\
+ \left[\pi \bar{P}_1(x_2 - x_1, \tau_a) + \pi \bar{P}_1(x_1, \tau_a) \right] w[t_1] \partial x_2 \langle V_1 V_2 \rangle \\
- \sum_{k=1}^{3} \frac{2\pi}{k(k+2)} |\epsilon|^k \mathcal{P}_{x_1} \mathcal{P}_{x_2} \langle V_1 V_2 \rangle + O(|\epsilon|^4).
\]

(182)

The logarithmic divergence \(\log |Q(x_1 - x_2, \tau_a)|^2 \) in eq. (182) in the deformed two point functions has been observed in [20]. The other profile is that two insertion
points live on different tori \(x_1 = x \in S_a \) and \(x_2 = y \in S_a \), and their corresponding primary states are \(u \) and \(v \), respectively. Using eqs.\([167][168][169]\) we obtain the integral of \(\mathcal{P}_{z,x} \mathcal{P}_{\bar{z},\bar{y}} \) up to \(|\epsilon|^3 \):

\[
\int_{\Sigma(z,x) \setminus D_\delta} d^2z \mathcal{P}_{z,x} \mathcal{P}_{\bar{z},\bar{y}} \langle V_x V_y \rangle
\]

\[
= \sum_{k=1}^{3} \frac{-\pi}{k+1} \left[\epsilon^k \mathcal{P}_{k+1}(y, \tau_a) \mathcal{P}_{x}^{(k-1)} \partial_{\bar{y}} + \epsilon^k \mathcal{P}_{k+1}^\prime(\bar{x}, \bar{\tau}_a) \partial_x \mathcal{P}_{\bar{y}}^{(k-1)} \right] \langle V_x V_y \rangle
\]

\[
+ \frac{3\pi}{2} |\epsilon|^2 \left[\epsilon^2 \mathcal{E}_4(\bar{\tau}_a) \mathcal{P}_x^{(2)} \partial_{\bar{y}} + \epsilon^2 \mathcal{E}_4(\tau_a) \partial_x \mathcal{P}_{\bar{y}}^{(2)} \right] \langle V_x V_y \rangle
\]

\[- \frac{2\pi}{3} |\epsilon|^3 \left[\epsilon^2 \mathcal{E}_4(\bar{\tau}_a) + \epsilon^2 \mathcal{E}_4(\tau_a) \right] \mathcal{P}_x^{(1)} \mathcal{P}_{\bar{y}}^{(1)} \langle V_x V_y \rangle + O(|\epsilon|^4). \tag{183}
\]

For two-point function of stress tensor, there are two types to consider: \(\langle T_1 T_2 \rangle \) and \(\langle T_1 \bar{T}_2 \rangle \). The first-order correction of \(\langle T_1 T_2 \rangle \) is shown as eq.\([58]\), and all the integrals have been computed in eqs.\([174][176][181]\) above. The first-order correction of \(\langle T_1 \bar{T}_2 \rangle \) is shown as eq.\([61]\), and all the integrals in eq.\([61]\) have been computed in eqs.\([174][176][182][183][181]\) except for the last three ones. In the case of two insertion points live on the same torus \(x_1, x_2 \in S_a \), The integral of \(2\mathcal{P}_4(\bar{z}, \bar{x}_2) \mathcal{P}_{z,x_1} \) is obtained using eqs.\([164][165]\), up to \(|\epsilon|^3 \):

\[
\frac{c}{2} \int_{\Sigma(z,x) \setminus D_\delta} d^2z \ 2\mathcal{P}_4(\bar{z}, \bar{x}_2) \mathcal{P}_{z,x_1} \langle T_1 \rangle
\]

\[
= \frac{\pi c}{6} \left[\mathcal{P}_3(\bar{\bar{x}}_1 - \bar{x}_2, \bar{\tau}_a) + \mathcal{P}_3(\bar{x}_2, \bar{\tau}_a) \right] \partial_{x_1} \langle T_1 \rangle
\]

\[
+ \frac{\pi c}{6} \sum_{k=1}^{3} (k+1) |\epsilon|^k \mathcal{P}_{k+3}(\bar{x}_2, \bar{\tau}_a) \mathcal{P}_{x_1}^{(k)} \langle T_1 \rangle + O(|\epsilon|^4). \tag{184}
\]

The integral of \(2\mathcal{P}_4(z, x_1) 2\mathcal{P}_4(\bar{z}, \bar{x}_2) \) is computed in eq.\([166]\):

\[
\frac{\epsilon^2}{4} \int_{\Sigma(z,x) \setminus D_\delta} d^2z \ 2\mathcal{P}_4(z, x_1) 2\mathcal{P}_4(\bar{z}, \bar{x}_2)
\]

\[
= - \sum_{k=1}^{3} \frac{k(k+1)^2(k+2)\pi c^2}{72} |\epsilon|^k \mathcal{P}_{k+3}(x_1, \tau_a) \mathcal{P}_{k+3}(\bar{x}_2, \bar{\tau}_a) + O(|\epsilon|^4). \tag{185}
\]

In the case of two insertion points live on different tori \(x_1 = x \in S_a \) and \(x_2 = y \in S_a \), \(^9\)The integral of \(2\mathcal{P}_4(z, x_1) \mathcal{P}_{z,x_2} \) is complex conjugate of eq.\([184]\).
the integral of $2\mathcal{P}_4(\bar{z}, \bar{y})\mathcal{P}_{z,x}$ is obtained using eqs. (170)-(171):

$$\frac{c}{2} \int_{\Sigma^{(2)} \setminus D_3} d^2z \, 2\mathcal{P}_4(\bar{z}, \bar{y})\mathcal{P}_{z,x}(T_x)$$

$$= \left[\frac{\pi c}{6} \left(\varepsilon^2 \mathcal{P}_3(\bar{x}, \bar{\tau}_a)\mathcal{P}_4(\bar{y}, \bar{\tau}_a) + \frac{\pi c}{2} \varepsilon^2 \mathcal{P}_4'(\bar{x}, \bar{\tau}_a)\mathcal{P}_3(\bar{y}, \bar{\tau}_a) - 3\pi c \varepsilon |\mathcal{E}_4(\bar{\tau}_a)\mathcal{P}_3(\bar{y}, \bar{\tau}_a)| \right) \partial_x \langle T_x \rangle \right]$$

$$+ \frac{\pi c}{3} \varepsilon \left[\varepsilon^2 \mathcal{E}_4(\bar{\tau}_a) + \bar{\varepsilon}^2 \bar{\mathcal{E}}_4(\bar{\tau}_a) \right] \mathcal{P}_4(\bar{y}, \bar{\tau}_a) P_x(1) \langle T_x \rangle + O(|\varepsilon|^4). \quad (186)$$

The integral of $2\mathcal{P}_4(z, x)^2\mathcal{P}_4(\bar{z}, \bar{y})$ is computed in eq. (172):

$$\frac{c^2}{4} \int_{\Sigma^{(2)} \setminus D_4} d^2z \, 2\mathcal{P}_4(z, x)^2\mathcal{P}_4(\bar{z}, \bar{y})$$

$$= - \frac{\pi c^2}{6} \varepsilon \left[\varepsilon^2 \mathcal{E}_4(\tau_a) + \bar{\varepsilon}^2 \bar{\mathcal{E}}_4(\bar{\tau}_a) \right] \mathcal{P}_4(x, \tau_a) \mathcal{P}_4(\bar{y}, \bar{\tau}_a) + O(|\varepsilon|^4). \quad (187)$$

References

[1] A. B. Zamolodchikov, *Expectation value of composite field T anti-T in two-dimensional quantum field theory*, hep-th/0401146.

[2] F. A. Smirnov and A. B. Zamolodchikov, *On space of integrable quantum field theories*, Nucl. Phys. B 915 (2017) 363–383, 1608.05499.

[3] A. Cavaglià, S. Negro, I. M. Szécsényi and R. Tateo, *$T\bar{T}$-deformed 2D Quantum Field Theories*, JHEP 10 (2016) 112, 1608.05534.

[4] V. Rosenhaus and M. Smolkin, *Integrability and renormalization under $T\bar{T}$*, Phys. Rev. D 102 (2020) 065009, 1909.02640.

[5] B. Le Floch and M. Mezei, *KdV charges in $T\bar{T}$ theories and new models with super-Hagedorn behavior*, SciPost Phys. 7 (2019) 043, 1907.02516.

[6] G. Jorjadze and S. Theisen, *Canonical maps and integrability in $T\bar{T}$ deformed 2d CFTs*, 2001.03563.

[7] M. Guica, *An integrable Lorentz-breaking deformation of two-dimensional CFTs*, SciPost Phys. 5 (2018) 048, 1710.08415.
[8] T. Guhr, A. Muller-Groeling and H. A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept. 299 (1998) 189–425, cond-mat/9707301.

[9] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker et al., Black Holes and Random Matrices, JHEP 05 (2017) 118, 1611.04650.

[10] S. H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132, 1412.6087.

[11] J. Maldacena, S. H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2015) 106, 1503.01409.

[12] D. A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603, 1412.5123.

[13] D. A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051, 1409.8180.

[14] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys.Rev.A 43 (1991) 2046.

[15] M. Srednicki, Chaos and quantum thermalization, Phys.Rev.E 50 (1994) 888.

[16] N. Lashkari, A. Dymarsky and H. Liu, Eigenstate Thermalization Hypothesis in Conformal Field Theory, J. Stat. Mech. 1803 (2018) 033101, 1610.00302.

[17] M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP 10 (2018) 127, 1801.00010.

[18] M. Z. T. Prosen, Thomas H. Seligman, Theory of Quantum Loschmidt Echoes, Prog. Theo. Phys. Supp. 150, 200 (2003).

[19] P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002, hep-th/0405152.

[20] S. He and H. Shu, Correlation functions, entanglement and chaos in the $T\bar{T}/\bar{J}\bar{T}$-deformed CFTs, JHEP 02 (2020) 088, 1907.12603.
[21] S. He, *Note on higher-point correlation functions of the $T\bar{T}$ or $J\bar{T}$ deformed CFTs*, *Sci. China Phys. Mech. Astron.* 64 (2021) 291011, [2012.06202].

[22] S. Datta and Y. Jiang, *$T\bar{T}$ deformed partition functions*, *JHEP* 08 (2018) 106, [1806.07426].

[23] O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, *Modular invariance and uniqueness of $T\bar{T}$ deformed CFT*, *JHEP* 01 (2019) 086, [1808.02492].

[24] J. Cardy, *$T\bar{T}$-deformed modular forms*, [2201.00478].

[25] M. Asrat, *KdV charges and the generalized torus partition sum in $T\bar{T}$ deformation*, *Nucl. Phys. B* 958 (2020) 115119, [2002.04824].

[26] S. He, Y. Sun and Y.-X. Zhang, *$T\bar{T}$-flow effects on torus partition functions*, *JHEP* 09 (2021) 061, [2011.02902].

[27] S. Hirano and M. Shigemori, *Random boundary geometry and gravity dual of $T\bar{T}$ deformation*, *JHEP* 11 (2020) 108, [2003.06300].

[28] S. Hirano, T. Nakajima and M. Shigemori, *$T\bar{T}$ Deformation of stress-tensor correlators from random geometry*, *JHEP* 04 (2021) 270, [2012.03972].

[29] P. Kraus, J. Liu and D. Marolf, *Cutoff AdS$_3$ versus the $T\bar{T}$ deformation*, *JHEP* 07 (2018) 027, [1801.02714].

[30] Y. Li and Y. Zhou, *Cutoff AdS$_3$ versus $T\bar{T}$ CFT$_2$ in the large central charge sector: correlators of energy-momentum tensor*, *JHEP* 12 (2020) 168, [2005.01693].

[31] Y. Li, *Comments on large central charge $T\bar{T}$ deformed conformal field theory and cutoff AdS holography*, [2012.14414].

[32] S. Ebert, E. Hijano, P. Kraus, R. Monten and R. M. Myers, *Field Theory of Interacting Boundary Gravitons*, [2201.01780].
[33] S. He, J.-R. Sun and Y. Sun, The correlation function of $(1,1)$ and $(2,2)$ supersymmetric theories with $T\bar{T}$ deformation, JHEP 04 (2020) 100, [1912.11461].

[34] S. Ebert, H.-Y. Sun and Z. Sun, $T\bar{T}$ deformation in SCFTs and integrable supersymmetric theories, JHEP 09 (2021) 082, [2011.07618].

[35] J. Cardy, $T\bar{T}$ deformation of correlation functions, JHEP 12 (2019) 160, [1907.03394].

[36] A. Dey and A. Fortinsky, Perturbative renormalization of the $T\bar{T}$-deformed free massive Dirac fermion, JHEP 12 (2021) 200, [2109.10525].

[37] M. Guica and R. Monten, Infinite pseudo-conformal symmetries of classical $T\bar{T}$, JT and JT_α - deformed CFTs, SciPost Phys. 11 (2021) 078, [2011.05445].

[38] P. Kraus, R. Monten and R. M. Myers, 3D Gravity in a Box, SciPost Phys. 11 (2021) 070, [2103.13398].

[39] M. He, S. He and Y.-h. Gao, Surface charges in Chern-Simons gravity with $T\bar{T}$ deformation, [2109.12885].

[40] E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev. D 59 (1999) 104001 [hep-th/9808037].

[41] M. A. Rajabpour, Fate of the area-law after partial measurement in quantum field theories, [1503.07771].

[42] M. A. Rajabpour, Post measurement bipartite entanglement entropy in conformal field theories, Phys. Rev. B 92 (2015) 075108 [1501.07831].

[43] M. A. Rajabpour, Entanglement entropy after a partial projective measurement in $1+1$ dimensional conformal field theories: exact results, J. Stat. Mech. 1606 (2016) 063109, [1512.03940].
[44] M. Headrick, A. Maloney, E. Perlmutter and I. G. Zadeh, Rényi entropies, the analytic bootstrap, and 3D quantum gravity at higher genus,
\[\text{JHEP 07 (2015) 059, \[1503.07111\].}\]

[45] A. Yamada, Precise variational formulas for abelian differentials, Kodai Mathematical Journal 3 (1980) 114–143.

[46] G. Mason and M. P. Tuite, On genus two Riemann surfaces formed from sewn tori, Commun. Math. Phys. 270 (2007) 587–634, \[\text{math/0603088}.\]

[47] T. Gilroy and M. P. Tuite, Genus Two Zhu Theory for Vertex Operator Algebras, \[\text{1511.07664}.\]

[48] Y. Jiang, Expectation value of TT operator in curved spacetimes,
\[\text{JHEP 02 (2020) 094, \[1903.07561\].}\]

[49] X. Yin, Partition Functions of Three-Dimensional Pure Gravity,
\[\text{Commun. Num. Theor. Phys. 2 (2008) 285–324, \[0710.2129\].}\]

[50] M. R. Gaberdiel, C. A. Keller and R. Volpato, Genus Two Partition Functions of Chiral Conformal Field Theories,
\[\text{Commun. Num. Theor. Phys. 4 (2010) 295–364, \[1002.3371\].}\]

[51] Y. Zhu, Modular invariance of characters of vertex operator algebras,
\[\text{J. amer.math.soc 9 (1996) 237–302}.\]

[52] G. Mason and M. P. Tuite, Free bosonic vertex operator algebras on genus two Riemann surfaces I, Commun. Math. Phys. 300 (2010) 673–713, \[\text{0912.0117}.\]

[53] A. Sen, Some aspects of conformal field theories on the plane and higher genus Riemann surfaces, \[\text{Pramana 35 (1990) 205–286}.\]

[54] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12, 2007, \[\text{10.1017/CBO9780511816079}.\]

[55] S. He and Y. Sun, Correlation functions of CFTs on a torus with a TT deformation, \[\text{Phys. Rev. D 102 (2020) 026023, \[2004.07486\}.}\]
[56] S. Ryu and T. Takayanagi, *Holographic derivation of entanglement entropy from AdS/CFT*, Phys. Rev. Lett. **96** (2006) 181602, hep-th/0603001.

[57] V. E. Hubeny, M. Rangamani and T. Takayanagi, *A Covariant holographic entanglement entropy proposal*, JHEP **07** (2007) 062, 0705.0016.

[58] R. Dijkgraaf, *Chiral deformations of conformal field theories*, Nucl. Phys. B **493** (1997) 588–612, hep-th/9609022.

[59] L. McGough, M. Mezei and H. Verlinde, *Moving the CFT into the bulk with $T\bar{T}$*, JHEP **04** (2018) 010, 1611.03470.

[60] M. Guica and R. Monten, *$T\bar{T}$ and the mirage of a bulk cutoff*, SciPost Phys. **10** (2021) 024, 1906.11251.