High-Plex Spatial RNA Profiling Reveals Cell Type–Specific Biomarker Expression during Melanoma Development

Maija Kiuru1,2,7, Michelle A. Kriner3,7, Samantha Wong1, Guannan Zhu1,4, Jessica R. Terrell1, Qian Li5, Margaret Hoang3, Joseph Beechem3 and John D. McPherson6

Early diagnosis of melanoma is critical for improved survival. However, the biomarkers of early melanoma evolution and their origin within the tumor and its microenvironment, including the keratinocytes, are poorly defined. To address this, we used spatial transcript profiling that maintains the morphological tumor context to measure the expression of >1,000 RNAs in situ in patient-derived formalin-fixed, paraffin-embedded tissue sections in primary melanoma and melanocytic nevi. We profiled 134 regions of interest (each 200 μm in diameter) enriched in melanocytes, neighboring keratinocytes, or immune cells. This approach captured distinct expression patterns across cell types and tumor types during melanoma development. Unexpectedly, we discovered that S100A8 is expressed by keratinocytes within the tumor microenvironment during melanoma growth. Immunohistochemistry of 252 tumors showed prominent keratinocyte-derived S100A8 expression in melanoma but not in benign tumors and confirmed the same pattern for S100A8’s binding partner S100A9, suggesting that injury to the epidermis may be an early and readily detectable indicator of melanoma development. Together, our results establish a framework for high-plex, spatial, and cell type–specific resolution of gene expression in archival tissue applicable to the development of biomarkers and characterization of tumor microenvironment interactions in tumor evolution.

INTRODUCTION

Melanoma, the deadliest of the common skin cancers, is curable with early diagnosis and treatment (Gershenwald et al., 2017). However, histopathologic diagnosis of melanoma can be complicated by morphological mimicry, especially in its early forms, by a subset of melanocytic nevi. Because the development of melanoma is a stepwise process in which melanocytes accrue mutations and escape environmental controls on proliferation (Villanueva and Herlyn, 2008), understanding the interaction of melanocytes with neighboring cell types is crucial to the development of diagnostic tools and effective treatments.

Many melanoma-associated genes have been identified (Bastian, 2014; Charbel et al., 2014; Roh et al., 2015; Shain and Bastian, 2016; Shain et al., 2015), and molecular tests for diagnosis and prognosis of melanoma are gradually being introduced (Clarke et al., 2015; Gerami et al., 2015a, 2015b), but markers of early melanoma development, including within the tumor microenvironment, remain lacking. In addition, although the treatment of metastatic melanoma has changed drastically since the development of immune checkpoint inhibitor therapies (Khair et al., 2019), biomarkers predicting durable treatment response are largely unknown. Given the heterogeneity, low cellularity, and spatial context of immune and microenvironment responses (Finotello and Eduati, 2018), spatially resolved techniques are likely to outperform bulk molecular profiling for the discovery of early-stage and predictive biomarkers.

Previous studies have revealed the importance of keratinocyte (KC)-derived growth factors and cell adhesion molecules in limiting melanocyte proliferation in normal skin and elucidated the mechanisms by which malignant melanocytes escape this regulation (Haass et al., 2005; Villanueva and Herlyn, 2008). However, these experiments relied on the use of co-culture systems or heterologous expression of KC-derived genes in melanocytes, neither of which capture the spatial element of melanocyte–KC interactions in situ. Furthermore, single-cell RNA sequencing (RNA-seq) studies on melanoma have largely focused on melanoma metastases, overlooking the KC microenvironment of primary melanomas (Jerby-Arnon et al., 2018; Tirosh et al., 2016). Because...
single-cell RNA-seq relies on fresh tissue, studies on benign melanocytic tumors in humans are also lacking.

To address the challenges outlined above, we took a discovery-based approach to studying tumor microenvironment interactions during melanoma evolution within the native morphological context of the tumor, including within the KC microenvironment. Specifically, we examined the expression of over 1,000 genes (Supplementary Table S1) in 134 regions of interest (ROIs) enriched for melanocytes, neighboring KCs, or immune cells in patient-derived formalin-fixed, paraffin-embedded (FFPE) tissue sections from 12 melanocytic tumors, ranging from benign to malignant, using the NanoString GeoMx Digital Spatial Profiler (DSP) (Beechem, 2020) (Figure 1). We discovered that the damage-associated molecular pattern (DAMP) S100A8, which is a known melanoma marker (Clarke et al., 2015) thought to be expressed by immune cells (Wagner et al., 2019), is KC derived in melanoma and confirmed this finding by immunohistochemistry (IHC) in a cohort of 252 melanomas.

RESULTS

Cell type and case type both influence the expression profile of each ROI

We validated the technical performance of DSP on one FFPE tissue from each of four case types (common nevi [CNs], dysplastic nevi [DNs], melanoma in situ [MIS], and invasive melanoma [MMI]), observing high reproducibility across replicate experiments and expected gene expression patterns across ROI types using a 108 gene test panel (1,048 probes, 10 probes per gene for most genes) (Supplementary Figure S1). Next, we used a 1,412 gene panel (4,998 probes, 3 probes per gene for most genes) to profile three tumors per case type. Two of the three melanoma cases were stage pT1a, and the third was stage pT2b. We selected 6–16 circular ROIs (200 μm diameter) in each tissue, with 134 ROIs in total (Supplementary Figure S2). One KC-rich ROI on the periphery of each tissue was chosen to serve as normal control (Figure 2a). To facilitate comparison across tissues, we assigned all other ROIs to one of five categories (immune rich, melanocyte rich, immune/melanocyte rich, KC/melanocyte rich, or mixed) (Figure 2a) and evaluated the cell type composition of each ROI (Figure 2b). Raw counts were normalized to the upper quartile (Bullard et al., 2010) for each ROI to enable comparison across ROIs.

To further validate the performance of DSP, we examined the expression of known melanomagenesis-associated genes across the cohort. We observed that the melanoma biomarker PRAME (preferentially expressed antigen in melanoma) (Clarke et al., 2015; Gerami et al., 2017) and the melanoma-associated developmental marker PMEL (Sarantou et al., 1997) were significantly and specifically elevated in melanocyte-containing ROIs in the three MM cases (Figure 2c). The keratin gene KRT14 and the chemokine gene CXCL14 (Riker et al., 2008) were elevated in KC-containing ROIs relative to melanocyte-rich or immune-rich ROIs in all the four tumor types and were further upregulated in the melanomas (Figure 2c). Finally, the pan-leukocyte marker PTPRC (CD45) and the T-cell chemoattractant gene CXCL9, which are included in a gene expression–based diagnostic test for melanoma (Clarke et al., 2015), were detected specifically in immune-rich ROIs, particularly in melanomas (Figure 2c). Together, these results validated previous data and also revealed cell type–specific expression of known melanoma biomarkers.

Unbiased clustering of ROIs based on pairwise correlation coefficients revealed that cell type and tumor type both affect the similarity between ROIs (Figure 2d). The ROIs clustered into five groups, two of which consisted of melanocyte-rich ROIs (M1 and M2; Figure 2d), two consisted of immune-rich ROIs (I1 and I2; Figure 2d), and one consisted of KC-rich ROIs (K; Figure 2d). For the M and I clusters, the differences between groups 1 and 2 were based on case type: M1 and I1 contained only melanoma or MIS ROIs, whereas M2 and I2 had no melanoma ROIs (Figure 2d). The K cluster contained all the 12 control KC ROIs and most of the mixed KC/melanocyte ROIs, suggesting that KC-specific genes drive the clustering of these ROIs.

A framework for identification of cell type–specific gene expression

Because the I1 and M1 clusters were composed entirely of ROIs from the melanoma or MIS cases, the genes expressed only in these clusters have biomarker potential. Importantly, because ROIs were selected on the basis of enrichment of certain cell populations, we were able to perform a cell type–specific analysis. We performed linear regression to identify the genes that were (i) significantly enriched in M1 or I1 ROIs compared with those in other ROIs containing the same cell type(s) and (ii) not detected in any ROIs from CN. For M1, the known biomarker PRAME was by far the most significantly enriched gene (Figure 3a). The other top hits LEFT1, CD276, BCL2A1, and SLC7A5 have been shown to be upregulated or amplified in melanoma but are also detectable in benign nevi or normal melanocytes (Haq et al., 2013; Tekle et al., 2012; Wang et al., 2014; Xu et al., 2015). For the immune ROIs in I1, the two most highly enriched genes in melanoma that were also not detected in nevi were PTPRC and CXCL9 (Figure 3b), followed by genes broadly related to leukocyte biology (Figure 3b), including major histocompatibility complex class II antigen presentation (HLA-D, CTSS).

Enrichment analysis does not provide information on the relationship of genes with each other, so to further leverage the spatial resolution of DSP data, we used the dimensionality reduction technique Uniform Manifold Approximation and Projection (UMAP) to visualize the relative spatial expression profiles of all genes (Figure 3c and d). This approach can be used to determine which genes tend to be expressed in the same location (or not), a property that is lost in bulk measurements such as RNA-seq. Importantly, marker genes with different spatial expression profiles can provide orthogonal information, whereas genes with the same expression profile are more likely to be reporting on similar biology. We chose UMAP over other methods such as t-distributed stochastic neighbor embedding (t-SNE) because it preserves both local and global data structure and captures meaningful biological relationships (Becht et al., 2019). At the global level, UMAP analysis produced three gene clusters on the left side of the plot space, and we validated the UMAP output by confirming that gene clustering correlated with cell
Figure 1. Experimental design for spatially resolving mRNA biomarkers in FFPE samples from four pathologically defined tumor types. (a) Schematic of comparisons enabled by the experimental design (blue arrows). (b) Selected pathway content of 1,412 target (4,998 probes) gene panel for DSP with NGS readout. Panel content is approximately 35% immune related, 40% tumor-related, and 20% microenvironment related, with 1% housekeeping genes and 3% negative probes. (c) Schematic of probe design for DSP with NGS readout. Each probe contains an antisense sequence that hybridizes to target mRNA (green), a photocleavable linker (purple), an RNA ID that identifies the mRNA target (red), and a unique molecular identifier (blue) to allow removal of PCR duplicates when converting reads to digital counts. DSP probe pools target each gene with 1–10 probes that hybridize to different sequences along the mRNA transcript and contain >80 negative probes that target scrambled or nonhuman sequences. (d) Workflow for DSP with NGS readout. Collected oligos are PCR amplified using indexing primers to preserve ROI identity, pooled, purified, and sequenced. (e) Illustration of ROI selection process. Top images: ROIs selected by a pathologist on the basis of enrichment for melanocytes, keratinocytes, or immune cells in H&E section. Bottom images: ROIs collected from a serial section during DSP. Fluorescent antibodies to melanocyte markers S100B and PMEL, T-cell marker CD3, lymphocyte marker CD45, and DNA stain SYTO 13 were used as visualization markers during DSP to guide the matching of ROIs to the H&E sections. Bar = 0.2 mm. CN, common nevus; CT, cancer/testis; DN, dysplastic nevus; DSP, Digital Spatial Profiler; ECM, extracellular matrix; EMT, epithelial to mesenchymal transition; FFPE, formalin-fixed, paraffin-embedded; ID, identifier; MIS, melanoma in situ; MM, invasive melanoma; NGS, next-generation sequencing; PI3K, phosphatidylinositol 3 kinase; ROI, region of interest; TLR, toll-like receptor; UMI, unique molecular identifier.
Figure 2. Cell type and tumor type both influence the expression profile of each ROI. (a) Example ROIs for each of the six categories defined in phase II of this study. H&E and matching DSP images are shown. All ROIs selected in this study were 200 μm circles. (b) Ternary plot displaying cell type composition (% melanocyte, keratinocyte, or immune) of each ROI as determined by pathologist evaluation. The shaded regions indicate assignment to the ROI categories shown in a. (c) Boxplots of upper quartile-normalized counts by tumor type for selected melanomagenesis-associated genes known to be enriched in melanocytes (green boxes), keratinocytes (blue boxes), or immune infiltrates (red boxes). (d) Correlation matrix showing the pairwise correlation coefficients (Pearson R) between all ROIs using scaled
type (Figure 3c, colored dots) and tumor type (Figure 3d, colored dots).

Notably, the expression profiles of PMEL, CTNNB1, LDHB, and CDK2 were more similar to that of PRAME compared with the expression profile of the genes enriched in melanoma melanocytes (Figure 3c and d), but of these genes, only CDK2 was not detected in nevi (Figure 3e). Genes enriched in melanoma immune ROIs were not tightly UMAP adjacent (Figure 3c); instead, they clustered next to genes expressed by the same cell type or within the same pathway (Figure 3d): for example, PTPRC and LCP1 are expressed by lymphocytes, and HLA-DMA and HLA-DQA1/2 are expressed by antigen-presenting cells, while CXCL9 clustered with other IFN-γ-stimulated genes such as GBP1. All of these genes were primarily detected in MIS or MM (Figure 3f). The gene signatures shown in Figure 3e and f were both predictive of cell type and case type (Supplementary Figure S3). Together, these results established a framework for the identification of cell type–specific gene expression during melanoma evolution.

Analysis of intermediate ROI clusters reveals the components of the KC microenvironment in melanoma

Because the K1/M2 clusters encompass most epidermal KC-containing ROIs (Figure 2d), we reasoned that K1/M2 might reveal the markers of MIS, which grows within the epidermis. We performed linear regression comparing the seven malignant ROIs in K1 and M2 with all the other ROIs in K1 and M2. The most highly enriched gene in this analysis that was also not detected in CN was the S100 calcium-binding protein family member and DAMP S100A8 (Figure 4a).

We determined by IHC that S100A8 is expressed by KCs rather than by melanocytes (Figure 4b); yet, S100A8 was most strongly expressed in ROIs containing >50% melanocytes rather than in those containing >50% KCs (Figure 4c), suggesting that KCs may express S100A8 in response to consumption of the epidermis by malignant melanocytes. Indeed, we observed that the ROIs with the highest S100A8 expression had melanocytes scattered throughout the epidermis, a histopathologic feature of MIS (Figure 4d). Expression of S100A8 was not strongly correlated with KC content (Figure 4d), further indicating that high S100A8 expression is not merely a function of KC abundance. KRT17 and KRT6 were the closest points to S100A8 in UMAP space, and indeed, these genes were enriched in the same ROIs (Figure 4f). This profile was not seen for other keratin genes such as KRT14 (Figure 4f). KRT17 and KRT6 are known to be upregulated in wounded skin (Zhang et al., 2019); thus, enrichment of these genes in the same ROIs as S100A8 supports the notion that the growth of MIS within the epidermis elicits an injury response within the KCs.

S100A8/A9 are detected in the KC microenvironment of melanoma

To further validate the data from the spatial transcript profiling, we performed S100A8 IHC on an independent cohort of 252 melanocytic tumors (68 CN, 66 dysplastic nevi, 69 MIS, 49 MM) (Table 1). S100A8 expression was scored on the basis of the percentage of epidermis expressing S100A8 that was directly associated with the tumor (epidermis containing tumor and/or epidermis overlying intradermal tumor; a schematic of the scoring is shown in Supplementary Figure S4). Notably, the KC microenvironment of melanoma (Figure 5a and b and Supplementary Figure S5) and many cases of MIS (Figure 5c and d) showed prominent expression of S100A8, whereas the KC microenvironment of most dysplastic nevi (Figure 5e and f) and CN (Figure 5g and h and Supplementary Figure S5) lacked or had only limited staining (Table 2) (P < 0.001; Figure 5i; area under the curve = 0.83) (the representative images of scores 1–5 are shown in Supplementary Figure S6). A binary logistic regression model showed that increased S100A8 IHC score was significantly associated with MM tumor type (OR = 2.49, 95% confidence interval = 1.93–3.21) and remained significant after adjusting for sex, anatomic site, and age (OR = 2.54, 95% confidence interval = 1.92–3.36). S100A8 expression was also apparent in scattered immune cells within the dermis of both nevi and melanoma as well as within the normal hair follicle epithelium (Figure 5 and Supplementary Figure S5), but this expression was not taken into account when scoring S100A8 staining. Remarkably, if the tumor showed skip areas, that is, areas of uninvolved skin, the epidermis lacked S100A8 expression in these foci (Figure 5j).

S100A8 is generally coexpressed with S100A9, forming a complex known as calprotectin (Gebhardt et al., 2006). Because the DSP probe pool used in our experiments did not target S100A9 and our S100A8 antibody (CF-145) is not cross-reactive, we analyzed the expression of S100A9 in a subset of tumors by IHC. Similar to S100A8, S100A9 was expressed by the KCs associated with melanoma but not with nevi (Supplementary Figure S7 and Supplementary Table S2). Together, these data show that epidermal KCs express S100A8/A9 in response to melanoma growth, revealing the cellular origin of a melanoma biomarker within the tumor microenvironment and emphasizing the interaction between melanoma and the KC microenvironment.

DISCUSSION

Melanoma is the fifth most common cancer type in the United States and causes the vast majority of skin cancer deaths (Surveillance, Epidemiology, and End Results Program, 2019). Despite advances in immunotherapy, markers predicting sustained treatment response are inadequate. Understanding the interplay between melanocytes and neighboring KCs and immune cells will be crucial to the development of improved diagnostic and prognostic tools and therapeutic targets. We aimed to study tumor microenvironment interactions in melanoma within their native morphological context using GeoMx DSP.

After validating the performance and reproducibility of the DSP assay on our FFPE tissue sections, we profiled 134 ROIs in a cohort of 12 common benign and malignant melanocytic tumors with a panel that targets 1,400+ immune-oncology–related genes. We detected over 900 targets with high confidence in a single experiment, which would traditionally
Figure 3. Analysis of M1 and I1 clusters reveals melanoma biomarker candidates. (a) Volcano plot comparing gene expression in M1 ROIs with that in all other ROIs classified as keratinocyte rich, melanocyte rich, keratinocyte/melanocyte, or mixed. Significance (−log₁₀ of P-value) was determined by linear regression with a term for random effects from intertissue variation. (b) Volcano plot comparing gene expression in I1 ROIs with that in all the other ROIs classified as immune or immune/melanocyte. Significance (−log₁₀ of P-value) was determined by linear regression with a term for random effects from intertissue variation. In a and b, genes were only considered if they were above the detection threshold in at least three ROIs, and gene names are only shown if the gene was below the detection threshold in all common nevus ROIs. (c, d) UMAP analysis comparing the spatial expression profiles of all 923 genes detected in at least one ROI.
require tedious microdissection or be limited to a few genes (Wang et al., 2012). Other technologies for transcriptome-scale spatial profiling have recently been applied to melanoma, but our experiment detected approximately 10 times more transcripts per square micron than a recent study (Thrane et al., 2018). Importantly, the compatibility of GeoMx DSP with FFPE enables the profiling of archival tissues (all specimens in our study were at least aged 2 years), which has been especially difficult for skin samples (Kwong et al., 2018). This is particularly important for the study of melanoma evolution in patient-derived benign and malignant primary tumors and the KC microenvironment, which have been mainly overlooked in single-cell RNA-seq studies of melanoma. (Jerby-Arnon et al., 2018; Tirosh et al., 2016)

A cell type–enriched ROI selection strategy enabled us to directly compare similar cell populations across tumors when looking for gene enrichment in melanomas (Figures 2 and 3). This approach, coupled with a dimensionality reduction–based approach to identify coexpressed genes, successfully identified known melanoma-associated markers and showed their specificity to melanocytes, immune infiltrates, or the epidermal (KC) microenvironment (Figures 3 and 4). Interestingly, genes enriched in melanocytes (PRAME), KCs (S100A8), or immune cells (PTPRC, CXCL9) in our study correspond to the three components of a commercially available diagnostic test; our results may explain why the three components do not correlate well with each other and are all required to generate the most predictive score (Clarke et al., 2015).

Importantly, a published bulk RNA-seq dataset comparing 57 melanomas and 23 nevi (Kunz et al., 2018) validates our data and highlights the advantages of a spatially resolved, cell type–specific analysis, especially regarding the tumor microenvironment. Although the melanoma markers specific to melanocyte ROIs were also melanoma enriched in the bulk RNA-seq data, markers of the immune and KC micro-environment were not as strongly melanoma associated (Supplementary Figure S8), likely reflecting the masking of less abundant cell types in bulk measurements. By contrast, enrichment of these gene sets in melanoma was of similar magnitude for melanocyte-associated versus for immune-associated genes in the DSP data (Figure 3a and b), suggesting that this technology may be more sensitive for identifying gene products that originate from nontumor cells in the tumor microenvironment. In fact, a recent study using GeoMx DSP to study protein expression in melanoma found that expression of PD-L1 in macrophages rather than in tumor cells was predictive of response to immunotherapy (Toki et al., 2019). Because the understanding of tumor microenvironment interactions in melanoma is much needed in the era of melanoma immunotherapy, additional studies are warranted to validate the genes enriched in melanoma immune infiltrates in our DSP cohort.

S100A8 is a DAMP that has multiple roles in promoting immune responses and inflammation (Nukui et al., 2008; Srikrishna, 2012). It is most well-known as part of the S100A8/A9 complex (calprotectin), which is canonically expressed and secreted by neutrophils, monocytes, and macrophages (Gebhardt et al., 2006). *S100A8/A9* is also upregulated in a number of inflammatory disorders such as psoriasis and cystic fibrosis (Gebhardt et al., 2006; Nukui et al., 2008) and is expressed in a variety of epithelial tumor types (Gebhardt et al., 2006), where it is associated with invasiveness and poor prognosis (Arai et al., 2008). Although the upregulation of *S100A8/A9* in melanoma has been established using bulk methods (Clarke et al., 2015; Kunz et al., 2018; Wagner et al., 2019), previous studies have assumed that it is expressed by immune cells (Clarke et al., 2015; Wagner et al., 2019). Our analysis reveals the KC-derived origin of *S100A8/A9* during melanoma development (Figures 4a–c and 5 and Table 2 and Supplementary Figures S5–S7). This observation may explain why *S100A8/A9* is strongly detected in primary melanomas but not in metastases (Xiong et al., 2019). Furthermore, it emphasizes the importance of understanding a biomarker’s cellular origin because noncutaneous metastasis and microdissected tumors may lack KCs and thus produce falsely low expression levels of *S100A8/A9* in the current commercially available tests. In addition, expression of *S100A8/A9* specifically at the skin surface in early melanoma could potentially be exploited to increase the sensitivity of an adhesive patch biopsy assay, similar to that already available for PRAME (Gerami et al., 2017). Finally, the results suggest a potential role for *S100A8* IHC as an ancillary test for the diagnosis of melanoma, especially because IHC-based testing can be readily adopted for use in most pathology laboratories.

Owing to the correlation of *S100A8* expression with melanocyte growth within the epidermis (Figure 4b–d) and expression of the wound-associated keratins 6 and 17 (Figure 4e), *S100A8* expression in this context may be a response to inflammation or destruction of the epidermis by the melanocytes. This notion is supported by the previous literature on *S100A8* being expressed in epithelial cells in response to stress and inflammation (Kerkhoff et al., 2012). Cytokines secreted by nearby tumor cells likely play a role as well because KCs overlying melanoma purely within the dermis also strongly expressed *S100A8* (Figure 5), and multiple cytokines are known to induce *S100A8* in normal KCs (Nukui et al., 2008). Because *S100A8/A9* is a chemoattractant for melanocytes that express certain cell adhesion molecules such as MCAM, ALCAM, and RAGE (Ruma et al., 2016), induction of *S100A8* in the epidermis may stimulate melanocyte migration; indeed, *S100A8/A9* has been implicated in metastasis of melanoma and other tumor types (Arai et al., 2008; Ruma et al., 2016; Saha et al., 2010). Additional
Figure 4. Analysis of K1/M2 clusters reveals enrichment of S100A8 in keratinocytes during melanomagenesis. (a) Volcano plot comparing gene expression in the subset of ROIs classified as melanoma in situ by a pathologist with that in all other ROIs in K1/M2. Significance (−log_{10} of P-value) was determined by linear regression with a term for random effects from intertissue variation. Genes were only considered if they were above the detection threshold in at least three ROIs, and gene names are only shown if the gene was not detected in any CN ROIs. (b) Representative IHC image (left panel) and corresponding H&E image (right panel) showing that S100A8 is expressed by keratinocytes (arrowhead) rather than by melanocytes (arrow). (c) Ternary plot of S100A8 expression in all the ROIs, with a zoomed-in view of keratinocyte/melanocyte ROIs at left. (d) H&E images of selected ROIs containing a mixture of keratinocytes and melanocytes. Norm S100A8 counts are plotted against keratinocyte score and colored by tumor type. (e) Ridgeline plot of Norm counts for selected genes in all the ROIs, organized by tumor type. The blue line indicates LOQ in each ROI. Bar = 0.05 mm. CN, common nevus; DN, dysplastic nevus; FC, fold change; IHC, immunohistochemistry; LOQ, limit of quantitation; MIS, melanoma in situ; MM, invasive melanoma; Norm, normalized; Q, quartile; ROI, region of interest.
DSP studies profiling a larger number of patients and ROIs are warranted to further resolve the interplay between KCs and melanocytes during melanomagenesis.

MATERIALS AND METHODS
See Supplementary Materials and Methods for more details.

Cases
This study was approved, and a waiver of the informed consent requirement was granted by the institutional review board of the University of California Davis (Sacramento, CA) because specimens were deidentified. Pathology archives were searched for CN, dysplastic nevi, MIS, and MM, and archived H&E-stained sections were reviewed by a dermatopathologist (MK) to confirm diagnoses.

Serial sections of 5-μm thickness derived from FFPE tissue blocks were cut. One section was stained with H&E, and two unstained sections were mounted on positively charged histology slides for in situ hybridization and DSP. Whole-slide imaging of the H&E sections was performed on a Nikon TE2000-E microscope (Nikon, Tokyo, Japan), and ROIs representative of the tumor and its microenvironment were selected by the pathologist.

In situ hybridization
See Supplementary Materials and Methods for details.

Digital spatial profiling
Slides were blocked for 30 minutes as described (Merritt et al., 2020) and then incubated with 300 nM SYTO 13 and fluorescently conjugated antibodies to CD3, S100B, PMEL, and CD45 for 1 hour and washed in ×2 saline–sodium citrate. Slides were loaded onto a DSP instrument and submerged/washed in PBS with 0.1% Tween 20 as described (Merritt et al., 2020). After ×20 fluorescence scanning to obtain a high-resolution image of the tissue, ROIs were selected by matching to the pathologist-selected regions on the H&E-stained serial section. Between 6 and 16 ROIs were chosen per tissue (all were 200-μm diameter circles). Indexing oligos were released from each ROI by exposure to UV light as described (Merritt et al., 2020), and 10 μl of liquid from above the ROI was collected by a micro-capillary tip and deposited in a 96-well plate.

Library preparation and sequencing
Indexing oligos from each ROI were PCR amplified using primers that (i) hybridize to constant regions and (ii) contain unique dual-indexed barcoding sequences to preserve ROI identity. PCR products were pooled and purified twice with Ampure XP beads (Beckman Coulter, Brea, CA). Library concentration and purity were measured using a high-sensitivity DNA Bioanalyzer chip (Agilent Technologies, Santa Clara, CA). Paired-end (2 × 75 bp reads) sequencing was performed on an Illumina MiSeq instrument (pilot

Table 1. Patient and Tumor Characteristics of a Cohort of 252 Tumors Stained for S100A8 by Immunohistochemistry

Tumor Type	Common Nevis, n (%)	Dysplastic Nevis, n (%)	Melanoma in Situ, n (%)	Invasive Melanoma, n (%)	Total n (%)
Total	68	66	69	49	252
Sex					
Male	28 (41.2)	35 (53.0)	39 (56.5)	33 (67.3)	135 (53.6)
Female	40 (58.8)	31 (47.0)	30 (43.5)	16 (32.7)	117 (46.4)
Average age (y)	44.1	52.8	62.5	62.2	55.0
Location of Tumor					
Face	5 (7.4)	1 (1.5)	10 (14.5)	7 (14.3)	23 (9.1)
Scalp or neck	9 (13.2)	0 (0.0)	5 (7.2)	5 (10.2)	19 (7.5)
Trunk	39 (57.4)	49 (74.2)	22 (31.9)	12 (24.5)	122 (48.4)
Upper extremity	5 (7.4)	11 (16.7)	24 (34.8)	13 (26.5)	53 (21.0)
Lower extremity	10 (14.7)	5 (7.6)	7 (10.1)	12 (24.5)	34 (13.5)
Unknown	0 (0.0)	0 (0.0)	1 (1.4)	0 (0.0)	1 (0.4)
Nevus growth pattern					
Junctional	7 (10.3)	38 (57.6)	NA	NA	NA
Compound	30 (44.1)	28 (42.4)	NA	NA	NA
Intradermal	31 (45.6)	0 (0.0)	NA	NA	NA
Invasive melanoma average tumor thickness (mm)	NA	NA	2.33	NA	
Invasive melanoma ulceration present	NA	NA	NA	5 (10.2)	
Primary tumor stage					
Tis	NA	NA	69	NA	NA
T1a	NA	NA	NA	29 (59.2)	NA
T1b	NA	NA	NA	5 (10.2)	NA
T2a	NA	NA	NA	2 (4.1)	NA
T2b	NA	NA	NA	2 (4.1)	NA
T3a	NA	NA	NA	5 (10.2)	NA
T3b	NA	NA	NA	1 (2.0)	NA
T4a	NA	NA	NA	3 (6.1)	NA
T4b	NA	NA	NA	2 (4.1)	NA

Abbreviation: NA, not available.
Data processing

See Supplementary Materials and Methods for details.

Data analysis

A high-confidence detection threshold was set at the geometric mean plus 2.5 SDs of the negative probes. A total of 923 of 1,412 genes (65%) in the full panel were above the detection threshold in at least one ROI. The 489 genes below the...
Table 2. S100A8 Expression in a Cohort of 252 Tumors

Tumor Type	Common Nevus, n (%)	Dysplastic Nevus, n (%)	Melanoma in Situ, n (%)	Invasive Melanoma, n (%)	Total n (%)	P-Value*
Total	68	66	69	49	252	0.001
S100A8 IHC score						
Score 1 (0–4%)	51 (75.0)	48 (72.7)	21 (30.4)	3 (6.1)	123 (48.8)	
Score 2 (5–25%)	15 (22.1)	13 (19.7)	13 (18.8)	7 (14.3)	48 (19.0)	
Score 3 (26–50%)	1 (1.5)	2 (3.0)	8 (11.6)	10 (20.4)	21 (8.3)	
Score 4 (51–75%)	0 (0.0)	2 (3.0)	19 (27.5)	12 (24.5)	33 (13.1)	
Score 5 (>75%)	1 (1.5)	1 (1.5)	8 (11.6)	17 (34.7)	27 (10.7)	

Abbreviation: IHC, immunohistochemistry.

*Pearson chi-square.

#REFERENCES

Arai K, Takano S, Teratani T, Ito Y, Yamada T, Nozawa R. S100A8 and S100A9 overexpression is associated with poor pathological parameters in invasive ductal carcinoma of the breast. Curr Cancer Drug Targets 2008;8:243–52.

Bastian BC. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 2014;9:239–71.

Becht E, McNines L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 2019;37:38–44.

Beecham JM. High-plex spatially resolved RNA and protein detection using digital spatial profiling: a technology designed for immuno-oncology biomarker discovery and translational research. In: Thrurun M, Cesano A, Marincola FM, editors. Biomarkers for immunotherapy of cancer: methods and protocols. New York, NY: Humana; 2020. p. 563–83.

Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010;11:94.

Surveillance, Epidemiology, and End Results Program. Cancer stat facts: melanoma of the skin (accessed 24 February 24 2020), https://seer.cancer.gov/statfacts/html/melan.html; 2019.

Charbel C, Fontaine RH, Malouf GG, Picard A, Kadlub N, El-Murr N, et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi. J Invest Dermatol 2014;134:1067–74.

Clarke LE, Warf MB, Flake DD 2nd, Hartman AR, Tahan S, Shea CR, et al. Clinical validation of a gene expression signature that differentiates benign nevi from malignant melanoma. J Cutan Pathol 2015;42:244–52.

Finotello F, Eduati F. Multi-omics profiling of the tumor microenvironment: paving the way to precision immuno-oncology. Front Oncol 2018;8:430.

Gebhardt C, Németh J, Angel P, Hess J, S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006;72:1622–31.

Gerami P, Cook RW, Russell MC, Wilkinson J, Amary D, Gonzalez R, et al. Gene expression profiling for molecular staging of cutaneous melanoma in patients undergoing sentinel lymph node biopsy. J Am Acad Dermatol 2015a;72:780–5.e3.

Gerami P, Cook RW, Wilkinson J, Russell MC, Dhillon N, Amary RN, et al. Development of a prognostic genetic signature to predict the metastatic risk associated with cutaneous melanoma. Clin Cancer Res 2015b;21:175–83.

Gerami P, Yao Z, Polsky D, Jensen B, Busam K, Ho J, et al. Development and validation of a noninvasive 2–gene molecular assay for cutaneous melanoma. J Am Acad Dermatol 2017;76:114–20.e2.

Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 2017;67:472–92.

Haass NK, Smalley KS, Li L, Herlyn M. Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 2005;18:150–9.

Hag R, Yokoyama S, Haryluk EB, Jonsson GB, Frederick DT, McHenry K, et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc Natl Acad Sci USA 2013;110:4321–6.

#SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at www.jidonline.org. and at https://doi.org/10.1016/j.jid.2021.06.041.
Kerkhoff C, Voss A, Scholzen T, Averill MM, Zanker KS, Bornfeldt KE. Novel jerk on RNA Profiling in Melanoma.

M Kiuru

Kunz M, Loeffler-Wirth H, Dannemann M, Willscher E, Doose G, Kelso J, et al. Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol 2019;10:453.

Kwong LN, De Macedo MP, Haydu L, Joon AY, Tetzlaff MT, Calderone TL, et al. Biological validation of RNA sequencing data from formalin-fixed paraffin-embedded primary melanomas. JCO Precis Oncol 2018;2018. PO.17.00259.

Lezcano C, Jungbluth AA, Nehal KS, Hollmann Tj, Busam KJ. PRAME expression in melanocytic tumors. Am J Surg Pathol 2018;42:1456–65.

Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol 2020;38:586–99.

Nukui T, Ehama R, Sakaguchi M, Sonegawa H, Katagiri C, Hibino T, et al. S100A8/A9, a key mediator for positive feedback growth stimulation of normal human keratinocytes. J Cell Biochem 2008;104:453–64.

Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 2008;1:13.

Roh MR, Elaides P, Gupta S, Tsao H. Genetics of melanocytic nevi. Pigment Cell Melanoma Res 2015;28:661–72.

Ruma IM, Putranto EW, Kondo E, Murata H, Watanabe M, Huang P, et al. MCAM, as a novel receptor for S100A8/A9, mediates progression of malignant melanoma through prominent activation of NF-κB and ROS formation upon ligand binding. Clin Exp Metastasis 2016;33:609–27.

Saha A, Lee YC, Zhang Z, Chandra G, Su SB, Mukherjee AB. Lack of an endogenous anti-inflammatory protein in mice enhances colonization of B16F10 melanoma cells in the lungs. J Biol Chem 2010;285:10822–31.

Sarantou T, Chi DD, Garrison DA, Conrad AJ, Schneid P, Morton DL, et al. Melanoma-associated antigens as messenger RNA detection markers for melanoma. Cancer Res 1997;57:1371–6.

Shain AH, Bastian BC. The genetic evolution of melanoma. N Engl J Med 2016;374:995–6.
SUPPLEMENTARY MATERIALS AND METHODS

Cases and histopathologic review
Pathology archives were searched for common nevi, dysplastic nevi, melanomas in situ, and invasive melanomas, and archived H&E-stained sections were reviewed by a dermatopathologist (MK) to confirm diagnoses. One common nevus, one dysplastic nevus, one melanoma in situ, and one invasive melanoma were included in the first phase of digital spatial profiling. Three common nevi, three dysplastic nevi, three melanomas in situ, and three invasive melanomas from trunk or extremity of male and female patients aged 49–69 years were included in the second phase of digital spatial profiling. A total of 12 common nevi, 12 dysplastic nevi, 11 melanomas in situ, and 12 invasive melanomas were included in the immunohistochemistry (IHC) study (as shown later).

Serial sections of 5-µm thickness derived from formalin-fixed, paraffin-embedded tissue blocks were cut. One section was stained with H&E, and two unstained sections were mounted on positively charged histology slides for in situ hybridization and digital spatial profiling. Whole-slide imaging of the H&E sections was performed on a Nikon TE2000-E microscope (Nikon, Tokyo, Japan), and regions of interest (ROIs) representative of the tumor and its microenvironment were selected by the pathologist.

In situ hybridization
The pilot experiment probe pool contained probes that target 108 mRNA transcripts and 80 negative probes (1,048 probes total, a median of 10 probes per target). The full panel included probes that target 1,412 mRNA transcripts and 130 negative probes (4,998 probes total, median of 3 probes per target).

To expose epitopes, unstained formalin-fixed, paraffin-embedded sections were deparaffinized, heated in ER2 solution (Leica, Wetzlar, Germany) at 100 °C for 20 minutes, and treated with 1 µg/ml protease K (Ambion, Austin, TX) at 37 °C for 15 minutes on a BOND RXm autostainer (Leica). An overnight in situ hybridization was performed as described (Merritt et al., 2020) with a final probe concentration of 4 nM per probe. The pilot experiment probe pool contained probes that target 108 mRNA transcripts as well as 80 negative probes (1,048 probes total, a median of 10 probes per target).

The full panel included probes that target 1,412 mRNA transcripts as well as 130 negative probes (4,998 probes total, a median of 3 probes per target). Slides were washed twice at 37 °C for 25 minutes with 50% formamide/×2 saline—sodium citrate buffer to remove unbound probes.

Digital spatial profiling
Slides were blocked for 30 minutes as described (Merritt et al., 2020) and then were incubated with 300 nM SYTO 13, and fluorescently conjugated antibodies to CD3, S100B, PMEL, and CD45 were added for 1 hour and washed in ×2 saline—sodium citrate. Slides were loaded onto a digital spatial profiler instrument and submerged/washed in PBS with 0.1% Tween 20 as described (Merritt et al., 2020). After ×20 fluorescence scanning to obtain a high-resolution image of the tissue, ROIs were selected by matching to the pathologist-selected regions on the H&E-stained serial section (as discussed earlier). Between 6 and 16 ROIs were chosen per tissue (all were 200 µm diameter circles). Indexing oligos were released from each ROI by exposure to UV light as described (Merritt et al., 2020), and 10 µl of liquid from above the ROI was collected by a microcapillary tip and deposited in a 96-well plate.

Library preparation and sequencing
Indexing oligos from each ROI were PCR amplified using primers that (i) hybridize to constant regions and (ii) contain unique dual-indexed barcoding sequences to preserve ROI identity. PCR products were pooled and purified twice with AMPure XP beads (Beckman Coulter, Brea, CA). Library concentration and purity were measured using a high-sensitivity DNA Bioanalyzer chip (Agilent Technologies, Santa Clara, CA). Paired-end (2 × 75 base pair reads) sequencing was performed on an Illumina MiSeq instrument (pilot experiment) or Illumina HiSeq 2500 instrument (full panel experiment) (Illumina, San Diego, CA).

Data processing
After sequencing, reads were trimmed, merged, and aligned to a list of indexing oligos to identify the source probe. The unique molecular identifier region of each read was used to remove PCR duplicates and duplicate reads, thus converting reads into digital counts. A total of 40% of reads were unique in the pilot experiment, and 2% of reads were unique in the full panel experiment, indicating that in both cases the sequencing depth was sufficient to sample the population. For each gene in each sample, the reported count value is the mean of the individual probe counts after removal of outlier probes.

Data analysis
A high-confidence detection threshold was set at the geometric mean plus 2.5 SDs of the negative probes. A total of 923 of 1,412 genes (65%) in the full panel were above the detection threshold in at least one ROI. The 489 genes below the detection threshold in all ROIs were excluded from further analysis.

IHC
Tissue sections of 5-µm thickness were cut from formalin-fixed, paraffin-embedded tissue blocks. After antigen retrieval using EnVision FLEX Target Retrieval Solution, High pH (Agilent Dako, Santa Clara, CA), and endogenous peroxidase blocking (EnVision FLEX Peroxidase Block, Agilent Dako), PRAME, S100A8, and S100A9 expression were analyzed by IHC using PRAME rabbit recombinant mAb (EPR20330) (catalog number ab219650, Abcam, Cambridge, United Kingdom) at a dilution of 1:4,000 with 1-hour incubation in room temperature, S100A8 mouse mAb (CF-145) (catalog number 14-9745-82, eBioscience, San Diego, CA) at a dilution of 1:500 with 30-minute incubation in room temperature, and S100A9 mouse mAb (clone #747315) (catalog number 14-9745-82, eBioscience, San Diego, CA) at a dilution of 1:500 with 10-minute incubation in room temperature, and S100A9 mouse mAb (clone #747315) (catalog number MAB5578-SP, R&D Systems, Minneapolis, MN) at a concentration of 8 µg/ml with 20-minute incubation in room temperature, respectively, on an automated Dako Autostainer Link 48 stainer platform according to the manufacturer’s instructions. Goat secondary antibody molecules coupled with peroxidase molecules against rabbit and mouse immunoglobulins (EnVision FLEX/HRP, Agilent Dako) and 3,3′-diaminobenzidine tetrahydrochloride (EnVision FLEX DAB+.
Chromogen, Agilent Dako) were used to detect primary rabbit and mouse antibodies, respectively. S100A8 staining was scored with 100% consensus agreement by two observers (MK, SW) on the basis of the percentage of epidermis stained that is directly associated with the tumor using a previously described scoring system with appropriate modifications (Lezcano et al., 2018): score 1 = 0–4%, score 2 = 5–25%, score 3 = 26–50%, score 4 = 51–75%, and score 5 = >75% (Supplementary Figure S3).

Statistics
IHC data were summarized with descriptive statistics. A chi-square test was implemented to examine whether the frequency of S100A8 scores or S100A9 scores were significantly different between the tumor types. Chi-square tests and ANOVA tests were utilized to test for associations between S100A8 score and sex, age, location of tumor, nevus growth pattern, invasive melanoma tumor thickness, invasive melanoma ulceration, and primary tumor stage. To evaluate the association of S100A8 IHC score, sex, location, and age with the occurrence of invasive melanoma tumor, we used multivariable binary logistic regression to calculate adjusted ORs and 95% confidence interval. All analyses were conducted using IBM SPSS Statistics for Windows, version 26 software (IBM, Armonk, NY).

Study approval
This study was approved, and a waiver of the informed consent requirement was granted by the institutional review board of the University of California Davis (Sacramento).
Supplementary Figure S1. DSP yields highly reproducible gene counts that are consistent with sample biology. (a) Scatterplot comparing raw counts from replicate library prep PCRs performed from the same DSP aspirate. Each dot represents a gene count from two measurements of the same ROI. (b) Scatterplot comparing raw counts from replicate DSP experiments performed on serial sections from the same tissue. Each dot represents a gene count from replicate ROIs on serial sections. (c) Raw probe counts (open circles) and gene counts (filled circles) for representative melanocyte-rich and immune-rich ROIs (ROIs 13 and 14 from pilot melanoma case). Counts for probes targeting the same gene tracked together. The geometric mean of the negative probes for each ROI is indicated by a red dot, and the detection threshold (geometric mean plus 2.5 SDs of the negative probes) is indicated by a red line. Examples of genes expected to be enriched in melanocytes or immune cells are indicated by green or pink vertical bars, respectively. (d) Counts for the genes used as visualization markers correlate qualitatively with the corresponding fluorescent signals during DSP. Left: H&E image of ROIs 12–17 from the pilot melanoma case. Center: DSP IHC image of ROIs 12–17 from the pilot melanoma case. Right: Bar plot of counts from ROIs shown for genes corresponding to the DSP visualization markers. The filled color represents the IHC channel; $S100B$ and PMEL antibodies both fluoresced in the green channel. Counts were scaled by gene to allow for the plotting of different genes on the same axis. Black lines represent two (*) detection thresholds because two genes are plotted per bar. DSP, digital spatial profiling; IHC, immunohistochemistry; ROI, region of interest.
Supplementary Figure S3. Gene signatures depicted in Figure 3e and f are predictive of cell type and case type. PCA was performed on log2-transformed upper quartile-normalized counts using only the gene signatures shown in (a) Figure 3e or (b) Figure 3f. (a) PC1 differentiates melanocyte-containing ROIs in melanoma cases from all other ROIs. (b) PC1 differentiates immune cell-rich ROIs from melanoma and melanoma in situ cases from all other ROIs. PC, principal component; PCA, principal components analysis; ROI, region of interest.

Supplementary Figure S4. Schematic of the semiquantitative scoring of S100A8 expression. S100A8 staining was scored as follows on the basis of the percentage of epidermis stained associated with the tumor: 1 = 0–4%, 2 = 5–25%, 3 = 26–50%, 4 = 51–75%, and 5 = >75%. E, epidermis; T, tumor.
Supplementary Figure S6. Representative images of S100A8 staining scores 1‒5. (a‒d) Score 1: Representative images of (c, d) S100A8 IHC staining score 1 and (a, b) corresponding H&E staining in a common nevus. (e‒h) Score 2: Representative images of (g, h) S100A8 IHC staining score 2 and (e, f) corresponding H&E staining in a dysplastic nevus. (i‒k) Score 3: Representative images of (k, l) S100A8 IHC staining score 3 and (i, j) corresponding H&E staining in melanoma in situ; an associated melanocytic nevus is present. (m‒p) Score 4: Representative images of (o, p) S100A8 IHC staining score 4 and (m, n) corresponding H&E staining in melanoma in situ; an associated melanocytic nevus is present. (q‒s) Score 5: Representative images of (s, t) S100A8 IHC staining score 5 and (q, r) corresponding H&E staining in metastatic melanoma.
Supplementary Figure S7. S100A9 is expressed in the epidermis associated with melanoma. (a–d) Representative images of S100A9 IHC (right panel) and corresponding H&E staining (left panel) of (a, b) invasive melanoma and (c, d) common nevus. S100A9 (brown) is expressed by keratinocytes in (b) invasive melanoma but not in (d) common nevus. Letter e indicates epidermis and letter t indicates tumor. IHC, immunohistochemistry.

staining in melanoma in situ. (q–t) Score 5: Representative images of (s, t) S100A8 IHC staining score 5 and (q, r) corresponding H&E staining in invasive melanoma. Tumors were double stained for S100A8 (brown) and PRAME (magenta). If present, S100A8 is expressed by keratinocytes and scattered immune cells, and PRAME is expressed by melanocytes. Magnification ×40 for a, c, e, g, i, k, m, o, q, and s or ×100 for b, d, f, h, j, l, n, p, r, and t. IHC, immunohistochemistry.
Supplementary Figure S8. Published RNA-seq data support DSP findings. Bulk RNA-seq data (log2 Norm values) from (Kunz et al., 2018) for genes named in Figure 4a (melanocyte associated; top row), Figure 4b (immune cell associated; middle rows), and Figures 3c and 5a (keratinocyte associated; bottom row). For each gene, values from 53 melanomas and 27 nevi are plotted (gray points), with bars representing the mean ± 95% confidence interval. P-values were calculated using the t-test method of the stat_compare_means() function in R. DSP, digital spatial profiling; Norm, normalized; RNA-seq, RNA sequencing.
Supplementary Table 1. List of Genes Targeted by 1,412-Plex DSP Panel

Gene	Description
A2M	alpha-2-macroglobulin
ABCB1	ATP binding cassette subfamily B member 1
ABCF1	ATP binding cassette subfamily F member 1
ABL1	ABL proto-oncogene 1, non-receptor tyrosine kinase
ACVR1B	activin A receptor type 1B
ACVR1C	activin A receptor type 1C
ACVR2A	activin A receptor type 2A
ADA	adenosine deaminase
ADAM12	ADAM metallopeptidase domain 12
ADGRE1	adhesion G protein-coupled receptor E1
ADM	adrenomedullin
AICDA	activation induced cytidine deaminase
AIRE	autoimmune regulator
AKT1	AKT serine/threonine kinase 1
AKT2	AKT serine/threonine kinase 2
AKT3	AKT serine/threonine kinase 3
ALCAM	activated leukocyte cell adhesion molecule
ALDOA	aldolase, fructose-bisphosphate A
ALDOC	aldolase, fructose-bisphosphate C
ALK	ALK receptor tyrosine kinase
ALKBH2	alkB homolog 2, alpha-ketoglutarate dependent dioxygenase
ALKBH3	alkB homolog 3, alpha-ketoglutarate dependent dioxygenase
AMBP	alpha-1-microglobulin/bikunin precursor
AMER1	APC membrane recruitment protein 1
ANGPT1	angiopoietin 1
ANGPT2	angiopoietin 2
ANGPTL4	angiopoietin like 4
ANLN	anillin actin binding protein
ANPA2B	acidic nuclear phosphoprotein 32 family member B
ANXA1	annexin A1
APC	APC, WNT signaling pathway regulator
APH1B	alph-1 homolog B, gamma-secretase subunit
API5	apoptosis inhibitor 5
APLN	apelin receptor
APOL1	apolipoprotein L6
APP	amyloid beta precursor protein
AQP9	aquaporin 9
AR	androgen receptor
AREG	amphiregulin
ARG1	arginase 1
ARG2	arginase 2
ARID1A	AT-rich interaction domain 1A
ARID1B	AT-rich interaction domain 1B
ARID2	AT-rich interaction domain 2
ARNT2	aryl hydrocarbon receptor nuclear translocator 2
ATF1	activating transcription factor 1
ATF2	activating transcription factor 2
ATF3	activating transcription factor 3
ATG10	autophagy related 10
ATG12	autophagy related 12
ATG5	autophagy related 5
ATG7	autophagy related 7
ATM	ATM serine/threonine kinase
ATR	ATR serine/threonine kinase
ATRX	ATRX, chromatin remodeler

(continued)
Gene	Description
C8B	complement C8 beta chain
C9	complement C9
CACNA1C	calcium voltage-gated channel subunit alpha1 C
CACNA1D	calcium voltage-gated channel subunit alpha1 D
CACNA1E	calcium voltage-gated channel subunit alpha1 E
CACNA1H	calcium voltage-gated channel subunit alpha1 H
CACNA2D1	calcium voltage-gated channel auxiliary subunit alpha2delta 1
CACNA2D2	calcium voltage-gated channel auxiliary subunit alpha2delta 2
CACNA2D3	calcium voltage-gated channel auxiliary subunit alpha2delta 3
CACNA2D4	calcium voltage-gated channel auxiliary subunit alpha2delta 4
CACNB2	calcium voltage-gated channel auxiliary subunit beta 2
CACNB3	calcium voltage-gated channel auxiliary subunit beta 3
CACNB4	calcium voltage-gated channel auxiliary subunit beta 4
CACNG1	calcium voltage-gated channel auxiliary subunit gamma 1
CACNG4	calcium voltage-gated channel auxiliary subunit gamma 4
CACNG6	calcium voltage-gated channel auxiliary subunit gamma 6
CALML3	calmodulin like 3
CALML6	calmodulin like 6
CAMK2B	calcium/calmodulin dependent protein kinase II beta
CAMP	cathelicidin antimicrobial peptide
CAPN2	calpain 2
CARD11	caspase recruitment domain family member 11
CARD9	caspase recruitment domain family member 9
CASP1	caspase 1
CASP10	caspase 10
CASP12	caspase 12 (gene/pseudogene)
CASP3	caspase 3
CASP7	caspase 7
CASP8	caspase 8
CASP9	caspase 9
CBL	Cbl proto-oncogene
CCL1	C-C motif chemokine ligand 1
CCL11	C-C motif chemokine ligand 11
CCL13	C-C motif chemokine ligand 13
CCL16	C-C motif chemokine ligand 16
CCL19	C-C motif chemokine ligand 19
CCL20	C-C motif chemokine ligand 20
CCL21	C-C motif chemokine ligand 21
CCL22	C-C motif chemokine ligand 22
CCL25	C-C motif chemokine ligand 25
CCL26	C-C motif chemokine ligand 26
CCL28	C-C motif chemokine ligand 28
CCL5	C-C motif chemokine ligand 5
CCL7	C-C motif chemokine ligand 7
CCL8	C-C motif chemokine ligand 8
CCNA1	cyclin A1
CCNA2	cyclin A2
CCNB1	cyclin B1
CCNB3	cyclin B3
CCND1	cyclin D1
CCND2	cyclin D2

(continued)
Supplementary Table 1. Continued

Gene	Description
CD68	CD68 molecule
CD69	CD69 molecule
CD7	CD7 molecule
CD74	CD74 molecule
CD79A	CD79a molecule
CD79B	CD79b molecule
CD80	CD80 molecule
CD81	CD81 molecule
CD83	CD83 molecule
CD84	CD84 molecule
CD86	CD86 molecule
CD8A	CD8a molecule
CD9	CD9 molecule
CD96	CD96 molecule
CD99	CD99 molecule (Xg blood group)
CDC14A	cell division cycle 14A
CDC14B	cell division cycle 14B
CDC20	cell division cycle 20
CDC25A	cell division cycle 25A
CDC25B	cell division cycle 25B
CDC6	cell division cycle 6
CDC7	cell division cycle 7
CDH1	cadherin 1
CDH11	cadherin 11
CDH2	cadherin 2
CDH5	cadherin 5
CDK1	cyclin dependent kinase 1
CDK2	cyclin dependent kinase 2
CDK4	cyclin dependent kinase 4
CDKN1A	cyclin dependent kinase inhibitor 1A
CDKN1B	cyclin dependent kinase inhibitor 1B
CDKN2B	cyclin dependent kinase inhibitor 2B
CDKN2C	cyclin dependent kinase inhibitor 2C
CDKN2D	cyclin dependent kinase inhibitor 2D
CEACAM1	carcinoembryonic antigen related cell adhesion
	molecule 1
CEACAM6	carcinoembryonic antigen related cell adhesion
	molecule 6
CEACAM8	carcinoembryonic antigen related cell adhesion
	molecule 8
CEBPA	CCAAT/enhancer binding protein alpha
CEBPE	CCAAT/enhancer binding protein epsilon
CENPF	centromere protein F
CEP55	centrosomal protein 55
CES3	carboxylesterase 3
CFB	complement factor B
CFI	complement factor I
CFP	complement factor progerdin
CHAD	chondroadherin
CHEK1	checkpoint kinase 1
CHEK2	checkpoint kinase 2
CHUK	conserved helix-loop-helix ubiquitous kinase
CIC	capicua transcriptional repressor
CLCF1	cardiostrophil like cytokine factor 1
CLEC14A	C-type lectin domain containing 14A
CLEC4A	C-type lectin domain family 4 member A
CLEC4C	C-type lectin domain family 4 member C
CLEC4E	C-type lectin domain family 4 member E
CLEC5A	C-type lectin domain containing 5A

(continued)
Supplementary Table 1. Continued

Gene	Description
CXCL16	C-X-C motif chemokine ligand 36
CXCL3	C-X-C motif chemokine ligand 3
CXCL6	C-X-C motif chemokine ligand 6
CXCL8	C-X-C motif chemokine ligand 8
CXCL9	C-X-C motif chemokine ligand 9
CXCR1	C-X-C motif chemokine receptor 1
CXCR2	C-X-C motif chemokine receptor 2
CXCR3	C-X-C motif chemokine receptor 3
CXCR4	C-X-C motif chemokine receptor 4
CXCR5	C-X-C motif chemokine receptor 5
CXCR6	C-X-C motif chemokine receptor 6
CXorf36	chromosome X open reading frame 36
CX3C4	CXXC finger protein 4
CYBB	cytochrome b-245 beta chain
CYFIP2	cytoplasmic FMR1 interacting protein 2
CYLD	CYLD lysine 63 deubiquitinase
DAB2	DAB2, clathrin adaptor protein
DAXX	death domain associated protein
DDB2	damage specific DNA binding protein 2
DDT3	DNA damage inducible transcript 3
DDT4	DNA damage inducible transcript 4
DDX43	DEAD-box helicase 4
DDX58	DExD/H-box helicase 58
DEFB1	defensin beta 1
DEFB134	defensin beta 134
DEPTOR	DEP domain containing MTOR interacting protein
DKK1	dickkopf WNT signaling pathway inhibitor 1
DKK2	dickkopf WNT signaling pathway inhibitor 2
DKK4	dickkopf WNT signaling pathway inhibitor 4
DLL1	delta like canonical Notch ligand 1
DLL3	delta like canonical Notch ligand 3
DLL4	delta like canonical Notch ligand 4
DMBT1	deleted in malignant brain tumors 1
DNMT1	DNA methyltransferase 1
DNMT3A	DNA methyltransferase 3 alpha
DOCK9	dedicator of cytokinesis 9
DPP4	dipeptidyl peptidase 4
DTX1	deltex E3 ubiquitin ligase 1
DTX3	deltex E3 ubiquitin ligase 3
DTX3L	deltex E3 ubiquitin ligase 3L
DTX4	deltex E3 ubiquitin ligase 4
DUSP1	dual specificity phosphatase 1
DUSP10	dual specificity phosphatase 10
DUSP2	dual specificity phosphatase 2
DUSP4	dual specificity phosphatase 4
DUSP5	dual specificity phosphatase 5
DUSP6	dual specificity phosphatase 6
DUSP8	dual specificity phosphatase 8
E2F1	E2F transcription factor 1
E2F3	E2F transcription factor 3
E2F5	E2F transcription factor 5
EB13	Epstein-Barr virus induced 3
ECSTI	ECSTI signalling integrator
EDN1	endothelin 1
EFNA1	ephrin A1
EFNA2	ephrin A2
EFNA3	ephrin A3
EFNA5	ephrin A5

(continued)
Supplementary Table 1. Continued

Gene	Description
FCN1	ficolin
FCRL2	Fc receptor like 2
FN1	flap structure-specific endonuclease 1
FZ1	fasciculation and elongation protein zeta 1
FG1	fibroblast growth factor 1
FG10	fibroblast growth factor 10
FG11	fibroblast growth factor 11
FG12	fibroblast growth factor 12
FG13	fibroblast growth factor 13
FG14	fibroblast growth factor 14
FG16	fibroblast growth factor 16
FG17	fibroblast growth factor 17
FG18	fibroblast growth factor 18
FG19	fibroblast growth factor 19
FG2	fibroblast growth factor 2
FG20	fibroblast growth factor 20
FG21	fibroblast growth factor 21
FG23	fibroblast growth factor 23
FG3	fibroblast growth factor 3
FG4	fibroblast growth factor 4
FG5	fibroblast growth factor 5
FG6	fibroblast growth factor 6
FG7	fibroblast growth factor 7
FG9	fibroblast growth factor 9
FGFR1	fibroblast growth factor receptor 1
FGFR2	fibroblast growth factor receptor 2
FGFR3	fibroblast growth factor receptor 3
FGFR4	fibroblast growth factor receptor 4
FLNA	filamin A
FLNB	filamin B
FLNC	filamin C
FLT1	fms related tyrosine kinase 1
FLT3	fms related tyrosine kinase 3
FN1	fibronectin 1
FOS	Fos proto-oncogene, AP-1 transcription factor subunit
FOSL1	FOS like 1, AP-1 transcription factor subunit
FOXO1	forkhead box J1
FOXL2	forkhead box L2
FOXO4	forkhead box O4
FOXP3	forkhead box P3
FPR1	formyl peptide receptor 1
FPR2	formyl peptide receptor 2
FPR3	formyl peptide receptor 3
FST	follistatin
FSTL3	follistatin like 3
FUBP1	far upstream element binding protein 1
FUT4	fucosyltransferase 4
FUT5	fucosyltransferase 5
FUT7	fucosyltransferase 7
FUT8	fucosyltransferase 8
FYN	FYN proto-oncogene, Src family tyrosine kinase
FZD10	frizzled class receptor 10
FZD2	frizzled class receptor 2
FZD3	frizzled class receptor 3
FZD7	frizzled class receptor 7
FZD8	frizzled class receptor 8
FZD9	frizzled class receptor 9
G6PD	glucose-6-phosphate dehydrogenase

(continued)
Gene	Description
HES1	hes family bHLH transcription factor 1
HES5	hes family bHLH transcription factor 5
HEY1	hes related family bHLH transcription factor with YRPW motif 1
HGF	hepatocyte growth factor
HHEX	hematopoietically expressed homeobox
HHIP	hedgehog interacting protein
HIF1A	hypoxia inducible factor 1 alpha subunit
HK1	hexokinase 1
HK2	hexokinase 2
HLA-DMA	major histocompatibility complex, class II, DM alpha
HLA-DMB	major histocompatibility complex, class II, DM beta
HLA-DOA	major histocompatibility complex, class II, DO alpha
HLA-DOB	major histocompatibility complex, class II, DO beta
HLA-E	major histocompatibility complex, class I, E
HLA-F	major histocompatibility complex, class I, F
HMGA1	high mobility group AT-hook 1
HMGA2	high mobility group AT-hook 2
HNF1A	HNF1 homeobox A
HOXA10	homeobox A1
HOXA11	homeobox A1
HPGD	15-hydroxyprostaglandin dehydrogenase
HPRT1	hypoxanthine phosphoribosyltransferase 1
HSD1B1	hydroxysteroid 11-beta dehydrogenase 1
HSPA2	heat shock protein family A (Hsp70) member 2
HSPB1	heat shock protein family B (small) member 1
IBSP	integrin binding sialoprotein
ICAM1	intercellular adhesion molecule 1
ICAM2	intercellular adhesion molecule 2
ICAM3	intercellular adhesion molecule 3
ICAM4	intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)
ICAM5	intercellular adhesion molecule 5
ICOS	inducible T-cell costimulator
ICOSLG	inducible T-cell costimulator ligand
ID2	inhibitor of DNA binding 2, HLH protein
ID4	inhibitor of DNA binding 4, HLH protein
IDH1	isocitrate dehydrogenase (NADP(+) 1, cytosolic
IDH2	isocitrate dehydrogenase (NADP(+) 2, mitochondrial)
IDO1	indoleamine 2,3-dioxygenase
IER3	immediate early response 3
IFI27	interferon alpha inducible protein 27
IFI35	interferon induced protein 35
IFI6	interferon alpha inducible protein 6
IFIH1	interferon induced with helicase C domain 1
IFIT1	interferon induced protein with tetratricopeptide repeats 1
IFIT2	interferon induced protein with tetratricopeptide repeats 2
IFIT3	interferon induced protein with tetratricopeptide repeats 3
IFITM1	interferon induced transmembrane protein 1

(continued)
Gene	Description
IL26	interleukin 26
IL2RA	interleukin 2 receptor subunit alpha
IL2RB	interleukin 2 receptor subunit beta
IL2RG	interleukin 2 receptor subunit gamma
IL3	interleukin 3
IL32	interleukin 32
IL33	interleukin 33
IL34	interleukin 34
IL3RA	interleukin 3 receptor subunit alpha
IL4R	interleukin 4 receptor
IL5	interleukin 5
IL5RA	interleukin 5 receptor subunit alpha
IL6	interleukin 6
IL6R	interleukin 6 receptor
IL7	interleukin 7
IL7R	interleukin 7 receptor
IL9	interleukin 9
ILF3	interleukin enhancer binding factor 3
INHBA	inhibin beta A subunit
INHBB	inhibin beta B subunit
INPP5D	inositol polyphosphate-5-phosphatase D
IRAK1	interleukin 1 receptor associated kinase 1
IRAK2	interleukin 1 receptor associated kinase 2
IRAK3	interleukin 1 receptor associated kinase 3
IRAK4	interleukin 1 receptor associated kinase 4
IRF1	interferon regulatory factor 1
IRF2	interferon regulatory factor 2
IRF3	interferon regulatory factor 3
IRF4	interferon regulatory factor 4
IRF9	interferon regulatory factor 9
IRGM	immunity related GTPase M
IRS1	insulin receptor substrate 1
ISG20	interferon stimulated exonuclease gene 20
ITCH	itchy E3 ubiquitin protein ligase
ITGA1	integrin subunit alpha 1
ITGA2	integrin subunit alpha 2
ITGA2B	integrin subunit alpha 2b
ITGA3	integrin subunit alpha 3
ITGA4	integrin subunit alpha 4
ITGA5	integrin subunit alpha 5
ITGA6	integrin subunit alpha 6
ITGA7	integrin subunit alpha 7
ITGA8	integrin subunit alpha 8
ITGA9	integrin subunit alpha 9
ITGAE	integrin subunit alpha E
ITGA1L	integrin subunit alpha L
ITGAM	integrin subunit alpha M
ITGAV	integrin subunit alpha V
ITGAX	integrin subunit alpha X
ITGB1	integrin subunit beta 1
ITGB2	integrin subunit beta 2
ITGB3	integrin subunit beta 3
ITGB4	integrin subunit beta 4
ITGB6	integrin subunit beta 6
ITGB7	integrin subunit beta 7
ITGB8	integrin subunit beta 8
ITK	IL2 inducible T-cell kinase
JAG1	jagged 1

(continued)
Gene	Description
LIFR	LIF receptor alpha
LIG4	DNA ligase 4
LILRA1	leucocyte immunoglobulin like receptor A1
LILRB1	leucocyte immunoglobulin like receptor B1
LILRB4	leucocyte immunoglobulin like receptor B4
LOXL2	lysyl oxidase like 2
LRPI	LDL receptor related protein 1
LRPI	LDL receptor related protein 2
LRRC32	leucine rich repeat containing 32
LRRN3	leucine rich repeat neuronal 3
LTA	lymphotoxin alpha
LTBPI	latent transforming growth factor beta binding protein 1
LTBRI	lymphotoxin beta receptor
LTF	lactotransferrin
LTK	leucocyte receptor tyrosine kinase
LY6E	lymphocyte antigen 6 family member E
LY86	lymphocyte antigen 86
LY9	lymphocyte antigen 9
LY96	lymphocyte antigen 96
LYN	LYN proto-oncogene, Src family tyrosine kinase
LYZ	lysozyme
MAD2L2	mitotic arrest deficient 2 like 2
MAF	MAPK8IP2 MAPK8 interacting protein 2
MAGEB2	MAGE family member B2
MAGEC1	MAGE family member C1
MAGEC2	MAGE family member C2
MAML2	mastermind like transcriptional coactivator 2
MAP2K1	mitogen-activated protein kinase kinase 1
MAP2K4	mitogen-activated protein kinase kinase 4
MAP2K6	mitogen-activated protein kinase kinase 6
MAP3K1	mitogen-activated protein kinase kinase 1
MAP3K12	mitogen-activated protein kinase kinase 12
MAP3K13	mitogen-activated protein kinase kinase 13
MAP3K14	mitogen-activated protein kinase kinase 14
MAP3K5	mitogen-activated protein kinase kinase 5
MAP3K7	mitogen-activated protein kinase kinase 7
MAP3K8	mitogen-activated protein kinase kinase 8
MAP4K2	mitogen-activated protein kinase kinase 2
MAPK1	mitogen-activated protein kinase 1
MAPK10	mitogen-activated protein kinase 10
MAPK11	mitogen-activated protein kinase 11
MAPK12	mitogen-activated protein kinase 12
MAPK14	mitogen-activated protein kinase 14
MAPK3	mitogen-activated protein kinase 3
MAPK8	mitogen-activated protein kinase 8
MAPK8IP2	mitogen-activated protein kinase 8 interacting protein 2
MAPKAP2K	mitogen-activated protein kinase-activated protein
MAPT	microtubule associated protein tau
MARCO	macrophage receptor with collagenous structure
MASP1	mannann binding lectin serine peptidase 1
MASP2	mannann binding lectin serine peptidase 2
MAVS	mitochondrial antiviral signaling protein
MBL2	mannann binding lectin 2
MCAM	melanoma cell adhesion molecule
MCM2	minichromosome maintenance complex component 2
MCM4	minichromosome maintenance complex component 4
MCM5	minichromosome maintenance complex component 5

(continued)
Supplementary Table 1. Continued

Gene	Description
NEIL1	nei like DNA glycosylase 1
NF1	neurofibromin 1
NF2	neurofibromin 2
NFAM1	NFAT activating protein with ITAM motif 1
NFATC1	nuclear factor of activated T-cells 1
NFATC2	nuclear factor of activated T-cells 2
NFATC3	nuclear factor of activated T-cells 3
NFATC4	nuclear factor of activated T-cells 4
NFE2L2	nuclear factor, erythroid 2 like 2
NFI3	nuclear factor, interleukin 3 regulated
NKBP1	nuclear factor kappa B subunit 1
NKBP2	nuclear factor kappa B subunit 2
NFkB1	NFKB inhibitor alpha
NFkB1	NFKB inhibitor epsilon
NFkB2	NFKB inhibitor zeta
NGF	nerve growth factor
NGFR	nerve growth factor receptor
NID2	nidogen 2
NKD1	naked cuticle homolog 1
NKX1	nuclear killer cell granule protein 7
NLRB5	NLR family CARD domain containing 5
NLRP3	NLR family pyrin domain containing 3
NOD1	nucleotide binding oligomerization domain containing 1
NOD2	nucleotide binding oligomerization domain containing 2
NODAL	nodal growth differentiation factor
NOG	noggin
NOS2	nitric oxide synthase 2
NOS3	nitric oxide synthase 3
NOTCH1	notch 1
NOTCH2	notch 2
NOTCH3	notch 3
NPM2	nucleophosmin/nucleoplasm 2
NR4A1	nuclear receptor subfamily 4 group A member 1
NR4A3	nuclear receptor subfamily 4 group A member 3
NRAS	NRAS proto-oncogene, GTPase
NRDE2	NRDE-2, necessary for RNA interference, domain containing
NRP1	neproilin 1
NSD1	nuclear receptor binding SET domain protein 1
NT5E	5'-nucleotidase ecto
NTF3	neurotrophin 3
NTRK1	neurotrophic receptor tyrosine kinase 1
NTRK2	neurotrophic receptor tyrosine kinase 2
NUMBL	NUMB like, endocytic adaptor protein
NUP107	nucleopirin 107
OAS1	2′-5′-oligoadenylate synthetase 1
OAS2	2′-5′-oligoadenylate synthetase 2
OAS3	2′-5′-oligoadenylate synthetase 3
OASL	2′-5′-oligoadenylate synthetase like
OA21	ornithine decarboxylase antizyme 1
OLFM2B	olfactomedin like 2B
OSM	oncostatin M
OTOA	otoacorin
P2RY13	purinergic receptor P2Y13
P4HA1	prolly 4-hydroxylase subunit alpha 1
P4HA2	prolly 4-hydroxylase subunit alpha 2
PAK3	p21 (RAC1) activated kinase 3

(continued)
Supplementary Table 1. Continued

Gene	Description
PLAU/R	plasminogen activator, urokinase receptor
PLCB1	phospholipase C beta 1
PLCB4	phospholipase C beta 4
PLCE1	phospholipase C epsilon 1
PLCG2	phospholipase C gamma 2
PDL1	phospholipase D1
PLOD2	procollagen-lysine,2-oxoglutarate 5-dioxygenase 2
PRM1	protein kinase, DNA-activated, catalytic polypeptide
PRR5	proline rich 5

(continued)
Supplementary Table 1. Continued

Gene	Description
ROPN1	rhophilin associated tail protein 1
ROR2	receptor tyrosine kinase like orphan receptor 2
RORA	RAR related orphan receptor A
RORC	RAR related orphan receptor C
RPA3	replication protein A3
RPL7A	ribosomal protein L7a
RPS27A	ribosomal protein S27a
RPS6	ribosomal protein S6
RPS6KA5	ribosomal protein S6 kinase A
RPS6KA6	ribosomal protein S6 kinase A
RPS6KB1	ribosomal protein S6 kinase B
RPTOR	regulatory associated protein of MTOR complex 1
RRAD	RRAD, Ras related glycosylation inhibitor and calcium channel regulator
RRAS2	RAS related 2
RRM2	ribonucleotide reductase regulatory subunit M2
RSAD2	radical S-adenosyl methionine domain containing 2
RUNX1	runt related transcription factor 1
RUNX1T1	RUNX1 translocation partner 1
RUNX3	runt related transcription factor 3
RXR	retinoid X receptor gamma
S100A12	S100 calcium binding protein A12
S100A8	S100 calcium binding protein A8
S100B	S100 calcium binding protein B
SAMD9	sterile alpha motif domain containing 9
SAMSN1	SAM domain, SH3 domain and nuclear localization signals 1
SBNO2	strawberry notch homolog 2
SDHA	succinate dehydrogenase complex flavoprotein subunit A
SELE	selectin E
SELL	selectin L
SELP	selectin P
SELPLG	selectin P ligand
SERPINA1	serpin family A member 1
SERPINB2	serpin family B member 2
SERPINB5	serpin family B member 5
SERPING1	serpin family G member 1
SERPINH1	serpin family H member 1
SETBP1	SET binding protein 1
SETD2	SET domain containing 2
SF3B1	splicing factor 3b subunit 1
SFRP1	secreted frizzled related protein 1
SFRP2	secreted frizzled related protein 2
SFRP4	secreted frizzled related protein 4
SFXN1	sideroflexin 1
SGK1	serum/glucocorticoid regulated kinase 1
SGK2	SGK2, serine/threonine kinase 2
SH2B	SH2B adaptor protein 2
SH2D1A	SH2 domain containing 1A
SH2D1B	SH2 domain containing 1B
SHC1	SHC adaptor protein 1
SHC2	SHC adaptor protein 2
SHC3	SHC adaptor protein 3
SHC4	SHC adaptor protein 4
SIGIRR	single Ig and TIR domain containing
SIGLEC1	sialic acid binding Ig like lectin 1
SIGLEC5	sialic acid binding Ig like lectin 5

(continued)
Supplementary Table 1. Continued

Gene	Description
STAG2	stromal antigen 2
STAT1	signal transducer and activator of transcription 1
STAT2	signal transducer and activator of transcription 2
STAT3	signal transducer and activator of transcription 3
STAT4	signal transducer and activator of transcription 4
STAT5B	signal transducer and activator of transcription 5B
STAT6	signal transducer and activator of transcription 6
STC1	stanniocalcin 1
STK11	serine/threonine kinase 11
STK11P	serine/threonine kinase 11 interacting protein
STMN1	stathmin 1
SUV39H2	suppressor of variegation 3-9 homolog 2
SYCP1	synaptosomal complex protein 1
SYK	spleen associated tyrosine kinase
SYT17	synaptotagmin 1
TAB1	TGF-beta activated kinase 1 (MAP3K7) binding protein 1
TAF3	TATA-box binding protein associated factor 3
TAL1	TAL bHLH transcription factor 1, erythroid differentiation factor
TANK	TRAF family member associated NFKB activator
TAP1	transporter 1, ATP binding cassette subfamily B member
TAP2	transporter 2, ATP binding cassette subfamily B member
TAPBP	TAP binding protein
TARP	TCR gamma alternate reading frame protein
TBC1D10B	TBC1 domain family member 10B
TBK1	TANK binding kinase 1
TBL1XR1	transducin beta like 1 X-linked receptor 1
TBP	TATA-box binding protein
TXB21	T-box 21
TXBAS1	thromboxane A synthase 1
TCF3	transcription factor 3
TCF7	transcription factor 7
TCF7L1	transcription factor 7 like 1
TCF7L2	transcription factor 7 like 2
TCLI1A	T-cell leukemia/lymphoma 1A
TCLI1B	T-cell leukemia/lymphoma 1B
TDO2	tryptophan 2,3-dioxygenase
TERT	telomerase reverse transcriptase
TET2	tet methylcytosine dioxygenase
TFDP1	transcription factor Dp-1
TFE3	transcription factor binding to IGHM enhancer 3
TFE8	transcription factor EB
TGF1	transforming growth factor beta 1
TGF2	transforming growth factor beta 2
TGF3	transforming growth factor beta 3
TGFBR1	transforming growth factor beta receptor 1
TGFBR2	transforming growth factor beta receptor 2
THBD	thrombomodulin
THBS1	thrombospondin 1
THBS4	thrombospondin 4
THEM4	thioesterase superfamily member 4
THY1	Thy-1 cell surface antigen
TIAM1	T-cell lymphoma invasion and metastasis 1
TICAM1	toll like receptor adaptor molecule 1
TIE1	tyrosine kinase with immunoglobulin like and EGF like domains 1
TIGIT	T-cell immunoreceptor with Ig and ITIM domains

(continued)
Supplementary Table 1. Continued

Gene	Description
TRAT1	T-cell receptor associated transmembrane adaptor 1
TREM1	triggering receptor expressed on myeloid cells 1
TREM2	triggering receptor expressed on myeloid cells 2
TRIM21	tripartite motif containing 21
TSHR	thyroid stimulating hormone receptor
TSLP	thymic stromal lymphopoietin
TSPAN7	tetraspanin 7
TTC30A	tetratricopeptide repeat domain 30A
TTK	TTK protein kinase
TUBB	tubulin beta class I
TWF1	twinfilin actin binding protein
TWIST1	twist family bHLH transcription factor 1
TWIST2	twist family bHLH transcription factor 2
TXK	TXK tyrosine kinase
TXNIP	thioredoxin interacting protein
TYK2	tyrosine kinase 2
TYMP	thymidine phosphorylase
TMY5	thymidylic synthetase
UBA7	ubiquitin like modifier activating enzyme 7
UBB	ubiquitin B
UBE2T	ubiquitin conjugating enzyme E2 T
USP9Y	ubiquitin specific peptidase 9, Y-linked
UTY	ubiquitously transcribed tetratricopeptide repeat containing, Y-linked
VCA1M1	vascular cell adhesion molecule 1
VCAN	versican
VEGFA	vascular endothelial growth factor A
VEGFB	vascular endothelial growth factor B
VEGFC	vascular endothelial growth factor C
VHL	von Hippel-Lindau tumor suppressor
VSIR	V-set immunoregulatory receptor
VTCN1	V-set domain containing T-cell activation inhibitor 1
VECN1	VECN1 G2 checkpoint kinase
WIF1	WNT inhibitory factor 1
WNT10A	Wnt family member 10A
WNT10B	Wnt family member 10B
WNT11	Wnt family member 11
WNT16	Wnt family member 16
WNT2	Wnt family member 2
WNT2B	Wnt family member 2B
WNT3	Wnt family member 3
WNT4	Wnt family member 4
WNT5A	Wnt family member 5A
WNT5B	Wnt family member 5B
WNT7A	Wnt family member 7A
WNT7B	Wnt family member 7B
WT1	Wilms tumor 1
XCL1	X-C motif chemokine ligand 1
XCR1	X-C motif chemokine receptor 1
XPA	XPA, DNA damage recognition and repair factor
XRCC4	X-ray repair cross complementing 4
YTHDF2	YTH N6-methyladenosine RNA binding protein 2
ZAP70	zeta chain of T-cell receptor associated protein kinase
ZBTB16	zinc finger and BTB domain containing 16
ZBTB32	zinc finger and BTB domain containing 32
ZC3H12A	zinc finger CCCH-type containing 12A

Supplementary Table 2. S100A9 Staining Results

S100A9 Score	Common Nevi (n)	Melanoma (n)	P = 0.01
Score 1	6	0	
Score 2	2	0	
Score 3	1	2	
Score 4	0	3	
Score 5	0	4	

¹Percentage of epidermis associated with tumor stained: 1 = 0–4%; 2 = 5 to 25%; 3 = 26–50%; 4 = 51–75%; 5 = >75%.

Abbreviations: ADP, adenosine diphosphate; AP-1, activator protein-1; ATP, adenosine triphosphate; DSP, Digital Spatial Profiler; LDL, low density lipoprotein.