On an arithmetic inequality on $\mathbb{P}^1_{\mathbb{Q}}$

Mounir Hajli

Tuesday 23rd September, 2014, 02:31

Abstract

We establish an inequality comparing the height and the χ-arithmetic volume of toric metrized divisors on $\mathbb{P}^1_{\mathbb{Q}}$. This gives a partial answer to a question of Burgos, Moriwaki, Philippon and Sombra ([5, remark 5.13]).

In [5, remark 5.13] the authors ask if the following inequality

$$h_D(X) \leq \hat{\text{vol}}_{\chi}(X, D)$$

holds for any toric DSP metrized \mathbb{R}-divisor D on $X = \mathbb{P}^1_K$, where K is a global field, $h_D(X)$ is the height of X and $\hat{\text{vol}}_{\chi}(X, D)$ is χ-arithmetic volume with respect to D.

In this note we give an affirmative answer to this question when $K = \mathbb{Q}$, D is nef and D is a toric DSP metrized divisor such that the metric on all non-archimedean places is the canonical metric (see theorem (0.2)).

Let L be a line bundle on $\mathbb{P}^1(\mathbb{C})$. A metric $\|\cdot\|$ on L is semipositive if it is the uniform limit of a sequence of semipositive smooth metrics. The metric $\|\cdot\|$ is DSP if it is the quotient of two semipositive ones.

We denote by $M_{\mathbb{Q}}$ the set of places of \mathbb{Q}. For any $v \in M_{\mathbb{Q}}$, we denote by $\mathbb{P}^1_{\mathbb{Q}}$ the v-adic analytification of $\mathbb{P}^1_{\mathbb{Q}}$. Similarly a line bundle L on $\mathbb{P}^1_{\mathbb{Q}}$ defines a collection of analytic line bundles $\{L^v\}_{v \in M_{\mathbb{Q}}}$, see [5, §3] for more details.

Definition 0.1. A metrized divisor on $\mathbb{P}^1_{\mathbb{Q}}$ is a pair $\mathcal{D} = (D, (\|\cdot\|_v)_{v \in M_{\mathbb{Q}}})$ formed by a divisor D with $\|\cdot\|_\infty$ is a continuous hermitian metric on $\mathcal{O}(D)_{\infty}$ and $\|\cdot\|_v$ is the canonical metric of $\mathcal{O}(D)_v$ for v a non-archimedean place. We say that \mathcal{D} is smooth or semipositive if so is the metric $\|\cdot\|_\infty$. We say that \mathcal{D} is a DSP divisor if it is the difference of two semipositive divisors. The Green function of \mathcal{D} is the function $g_{\mathcal{D}} : \mathbb{P}^1(\mathbb{C}) \setminus |D| \to \mathbb{R}$ given by

$$g_{\mathcal{D}}(p) = -\log \|s_D(p)\|_\infty,$$

where s_D is the canonical section of $\mathcal{O}(D)$.

Let \mathcal{D} be a metrized DSP divisor on $\mathbb{P}^1_{\mathbb{Q}}$ as in (0.1). We suppose that \mathcal{D} is toric, see [5 §4]. This means that D is a toric divisor and $\|\cdot\|_\infty$ is invariant under the action of S^1 the compact torus of $\mathbb{P}^1(\mathbb{C})$ (see [5, definition 4.12] and [5, proposition 4.16]). In the sequel, we assume that \mathcal{D} satisfies these hypothesis and D is nef.

*National Center for Theoretical Sciences (Taipei Office) National Taiwan University, Taipei 106, Taiwan
E-mail:hajlimounir@gmail.com

Date Tuesday 23rd September, 2014 at 02:31
Theorem 0.2. Under the previous hypothesis, we have

\[h_{\overline{D}}(\mathbb{P}^1_q) \leq \overline{\text{vol}}(\mathbb{P}^1_q, \overline{D}). \]

In order to prove this theorem, we assume first that \(\overline{D} \) is smooth. By definition, \(g_{\overline{D}} \) is a smooth weight of \(\| \cdot \|_\infty \). We denote by \(P_{\overline{D}} \) the equilibrium weight of \(g_{\overline{D}} \) (see the appendix) instead of \(P_{\overline{D}} \) and by \(\| \cdot \|_{\overline{P}} \) the hermitian metric defined by \(P_{\overline{D}} \) and we denote by \(\overline{D}_P \) the metrized divisor \(D \) endowed with the metric \(\| \cdot \|_P \) on the archimedean place and with the canonical metric on all non-archimedean places.

Claim 0.3. \(\overline{D}_P \) is a semipositive toric divisor.

Proof. By definition \(P_{\overline{D}} \) is a psh weight on \(\mathcal{O}(D) \) and we know that \(\| \cdot \|_P \) is a continuous metric (see for instance [2, §1.4, before (1.8)]). Then the Chern current \(c_1((\mathcal{O}(D), P\| \cdot \|)) \) is semipositive. By [3] theorem 4.6.1, \(\| \cdot \|_P \) is a semipositive metric.

Let \(g \) be a psh weight function on \(\mathcal{O}(D) \) with \(g \leq g_{\overline{D}} \). Let \(\theta \in \mathbb{S}^1 \). We set \(g_\theta \) the function given by \(g_\theta(z) = g(\theta \cdot z) \) for any \(z \in \mathbb{P}^1(\mathbb{C}) \). Then \(g_\theta \) is clearly a psh weight on \(\mathcal{O}(D) \). We have \(g_\theta(z) = g(\theta \cdot z) \leq g_{\overline{D}}(\theta \cdot z) = g_{\overline{D}}(z), \forall z \in \mathbb{P}^1(\mathbb{C}) \). Then, \(g_\theta(z) \leq P_{\overline{D}}(z), \forall z \in \mathbb{P}^1(\mathbb{C}) \). Therefore, \(P_{\overline{D}}(\theta \cdot z) \leq P_{\overline{D}}(z), \forall \theta \in \mathbb{S}^1, \forall z \in \mathbb{P}^1(\mathbb{C}) \). We conclude that

\[P_{\overline{D}}(\theta \cdot z) = P_{\overline{D}}(z) \quad \forall \theta \in \mathbb{S}^1, \forall z \in \mathbb{P}^1(\mathbb{C}). \]

Which means that \(\| \cdot \|_P \) is an invariant metric. We conclude that \(\overline{D}_P \) is a semipositive toric divisor on \(\mathbb{P}^1_q \).

Recall that if \(\overline{D} := (D, (\| \cdot \|_{\overline{D}})_{\nu \in \mathcal{M}_D}) \) is a smooth metrized divisor as in (0.1), then by [4] proposition 3.2.2, we have

\[h_{\overline{D}}(\mathbb{P}^1_q) - h_{\overline{D}}(\mathbb{P}^1_q) = - \int_X (g_{\overline{D}} - g_{\overline{D}})(c_1(\mathcal{O}(D), \| \cdot \|) + c_1(\mathcal{O}(D), \| \cdot \|')). \]

By [7], one can extend this equality to the case of DSP divisor \(\overline{D}_P \), and we have

\[h_{\overline{D}}(\mathbb{P}^1_q) - h_{\overline{D}}(\mathbb{P}^1_q) = - \int_X (g_{\overline{D}} - g_{\overline{D}})(c_1(\mathcal{O}(D), \| \cdot \|) + c_1(\mathcal{O}(D), \| \cdot \|')). \]

where \(c_1(\mathcal{O}(D), \| \cdot \|') \) is the first Chern current of \((\mathcal{O}(D), \| \cdot \|') \).

Since \(\overline{D}_P \) is semipositive, then the previous equality gives

\[h_{\overline{D}}(\mathbb{P}^1_q) - h_{\overline{D}}(\mathbb{P}^1_q) = - \int_X (g_{\overline{D}} - g_{\overline{D}})(c_1(\mathcal{O}(D), \| \cdot \|) + c_1(\mathcal{O}(D), \| \cdot \|)). \]

From (6), we have

\[h_{\overline{D}}(\mathbb{P}^1_q) \leq h_{\overline{D}}(\mathbb{P}^1_q). \tag{1} \]

Since \(\overline{D}_P \) is a semipositive toric divisor, then by [5] corollary 5.8

\[h_{\overline{D}_P}(\mathbb{P}^1_q) = \overline{\text{vol}}(\mathbb{P}^1_q, \overline{D}_P), \tag{2} \]

and by [5] theorem 5.6, we have

\[\overline{\text{vol}}(\mathbb{P}^1_q, \overline{D}_P) = 2 \int_{\Delta_D} \vartheta_{\overline{D}_P} d\text{vol}_{\Delta}, \]

where \(\vartheta_{\overline{D}_P} \) is the roof function associated to \(\overline{D}_P \) (see [5] definition 4.17).
Claim 0.4. We have,\[\vartheta_{\mathcal{D}} = \vartheta_{\mathcal{D}}, \]
on \Delta_D.

Proof. This is an easy consequence of the combination of [5] proposition 5.1 (1) and [3] proposition 2.8. Indeed, by [3] proposition 2.8 we have supp_{\mathcal{D}} \parallel s \parallel_{k \mathcal{D}} = \sup_{\mathcal{D}} \parallel s \parallel_{k \mathcal{D}}^1,\]
for any \(s \in H^0(\mathbb{P}^1, \mathcal{O}(kD)) \) and \(k \in \mathbb{N}^*. \) But, we know that \(\sup_{\mathcal{D}} \parallel s_m \parallel = \exp(-k\vartheta_{\mathcal{D}}(m/k)) \) where \(s_m \) is the global section of \(\mathcal{O}(kD) \) corresponding to \(m \in k\Delta_D \cap \mathbb{Z} \) (see for instance [5] proposition 5.1)). By continuity and density arguments we deduce the equality of the claim.

By [5] theorem 5.6 and the claim (0.4) we have,\[\hat{\text{vol}}_{\chi}(\mathbb{P}_Q^1, \mathcal{D}) = \hat{\text{vol}}_{\chi}(\mathbb{P}_Q^1, \overline{\mathcal{D}}). \]

Then from (1), (2) and (3) we conclude that\[h_{\mathcal{D}}(\mathbb{P}_Q^1) \leq \hat{\text{vol}}_{\chi}(\mathbb{P}_Q^1, \mathcal{D}). \]

This ends the proof of the theorem (0.2).

1 Appendix

Let \(X \) be compact manifold of dimension \(n \) and \(L \) an ample holomorphic line bundle on \(X \). Let \(\phi \) be a weight of a continuous hermitian metric \(e^{-\phi} \) on \(L \). When \(\phi \) is smooth we define the Monge-Ampère operator as\[\text{MA}(\phi) := (dd^c \phi)^n. \]

The equilibrium weight of \(\phi \) is defined as: \[P_X \phi := \sup \{ \psi \text{ psh weight on } L, \psi \leq \phi \text{ on } X \}. \]

where * denotes upper semicontinuous regularization. When \(\phi \) is smooth then \(P_X \phi = \sup \{ \psi \text{ psh weight on } L, \psi \leq \phi \text{ on } X \}. \) It is known that \(P_X \phi \) is a psh weight and the metric \(e^{-P_X \phi} \) is continuous (see for instance [2] §1.4, before (1.8)). By the theory of Bedford-Taylor, the Monge-Ampère operator can be extended to

3Here semipositive, means that the associated first Chern form is semipositive
locally bounded psh weights \(\phi \) (see [1]).

By [3] proposition 2.10 we have

\[
\int_X (P_X \phi - \phi) \text{MA}(P_X \phi) = 0. \tag{5}
\]

When \(\dim(X) = 1 \), we have

\[
\int_X (\phi - P_X \phi)(\text{MA}(\phi) + \text{MA}(P_X \phi)) \leq 0 \tag{6}
\]

Indeed,

\[
\frac{1}{2} \int_X (\phi - P_X \phi)(\text{MA}(\phi) + \text{MA}(P_X \phi)) = \frac{1}{2} \int_X (\phi - P_X \phi)(dd^c \phi - dd^c P_X \phi) \quad \text{by [5]}
\]

\[
= -\int_X d(\phi - P_X \phi) \wedge d^c (\phi - P_X \phi)
\]

\[
\leq 0.
\]

References

[1] Eric Bedford and B. A. Taylor. A new capacity for plurisubharmonic functions. *Acta Math.*, 149(1-2):1–40, 1982.

[2] Robert Berman. Sharp inequalities for determinants of Toeplitz operators and \(\bar{\partial} \)-Laplacians on line bundles. *arXiv.org*, arXiv:1105.5584v1 [math.AG], Mai 2011.

[3] Robert Berman and Sébastien Boucksom. Growth of balls of holomorphic sections and energy at equilibrium. *Invent. Math.*, 181(2):337–394, 2010.

[4] J.-B. Bost, H. Gillet, and C. Soulé. Heights of projective varieties and positive Green forms. *J. Amer. Math. Soc.*, 7(4):903–1027, 1994.

[5] José Ignacio Burgos Gil, Atsushi Moriwaki, Patrice Philippon, and Martín Sombra. Arithmetic positivity on toric varieties. *arXiv.org*, arXiv:1210.7692 [math.AG], October 2012.

[6] Vincent Maillot. Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables. *Mém. Soc. Math. Fr. (N.S.)*, 80:vi+129, 2000.

[7] Shouwu Zhang. Small points and adelic metrics. *J. Algebraic Geom.*, 4(2):281–300, 1995.