Examining SNP-SNP interactions and risk of clinical outcomes in colorectal cancer using multifactor dimensionality reduction based methods

Aaron Curtis¹,², Yajun Yu¹,², Megan Carey¹, Patrick Parfrey³, Yildiz E. Yilmaz¹,³,⁴ and Sevtap Savas¹,²,⁵*

¹Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada, ²Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada, ³Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada, ⁴Department of Mathematics and Statistics, Faculty of Science, Memorial University, St. John’s, NL, Canada, ⁵Discipline of Oncology, Faculty of Medicine, Memorial University, St. John’s, NL, Canada

Background: SNP interactions may explain the variable outcome risk among colorectal cancer patients. Examining SNP interactions is challenging, especially with large datasets. Multifactor Dimensionality Reduction (MDR)-based programs may address this problem.

Objectives: 1) To compare two MDR-based programs for their utility; and 2) to apply these programs to sets of MMP and VEGF-family gene SNPs in order to examine their interactions in relation to colorectal cancer survival outcomes.

Methods: This study applied two data reduction methods, Cox-MDR and GMDR 0.9, to study one to three way SNP interactions. Both programs were run using a 5-fold cross validation step and the top models were verified by permutation testing. Prognostic associations of the SNP interactions were verified using multivariable regression methods. Eight datasets, including SNPs from MMP family genes (n = 201) and seven sets of VEGF-family interaction networks (n = 1,517 SNPs) were examined.

Results: ~90 million potential interactions were examined. Analyses in the MMP and VEGF gene family datasets found several novel 1- to 3-way SNP interactions. These interactions were able to distinguish between the patients with different outcome risks (regression p-values 0.03–2.2E-09). The strongest association was detected for a 3-way interaction including CHRM3.rs665159, EPN1.rs6509955, PTGER3.rs1327460 variants.

Conclusion: Our work demonstrates the utility of data reduction methods while identifying potential prognostic markers in colorectal cancer.

KEYWORDS colorectal cancer, MDR, MMPs, prognostic markers, protein interaction network, SNP-SNP interactions, VEGF family
Background

Colorectal cancer is a common disease accounting for ~10% of the global cancer cases (Bray et al., 2018). The first years following diagnosis are critical and associated with a higher risk of negative disease outcomes (Yu et al., 2019). Select disease, tumor, and patient characteristics (Compton et al., 2000; Berian et al., 2015; Steele et al., 2019) are helpful while estimating prognosis and making treatment recommendations. Sadly, the survival rates vary across different countries and a significant portion of the patients are lost to this disease (5-years survival rate <60%) (Coleman et al., 2008; Pathy et al., 2012; Arnold et al., 2017). In the current era of Personalized Medicine, one of the main aims is to identify additional prognostic markers that can help with better risk classification and improve patient outcomes.

Genetic variants, such as Single Nucleotide Polymorphisms (SNPs), are widely studied in prognostic research in oncology (Savas and Liu, 2009; Xu et al., 2015; Ziv et al., 2015). A common goal of this research area is to assess whether genetic variants are associated with, and hence, can be a marker of patient outcome risk. Survival studies examining genetic variants in colorectal cancer, including large-scale association studies (Pander et al., 2015; Xu et al., 2015; Phipps et al., 2016; Penney K. L. et al., 2019, Penney et al., 2019 M. E.; Yu et al., 2021) have mostly focused on analysis of SNPs one by one, assuming their individual effects and/or associations with the outcomes. This approach, while quite valuable, has also an obvious limitation: it misses detection of potential interactions among the variants.

It is possible that genetic variations jointly, but not alone, affect patient survival outcomes (i.e. interactions). That means that the effects of variants/genotypes are only detectable when they exist together in the patient genomes and are examined using specific approaches. While it is possible to examine interactions using statistical methods, these analyses may suffer from several well-known complexities (e.g. sparse data, need for computational resources), especially as the number of variables examined increases (Motsinger and Ritchie, 2006a). As an example of this complexity, the number of possible combinations of three SNPs, or “3-way interactions,” in a dataset of 100 SNPs is 161700, a large number of variables to study. Because of such methodological restrictions and the fact that there are large numbers of genetic variations in the human genome, it is necessary to apply other approaches, such as data reduction methods, for comprehensive SNP interaction analyses.

Multifactor Dimensionality Reduction (MDR) is a data reduction method designed for use in studies examining the interactions among variables while accounting for difficulties inherent in interaction analysis (Ritchie et al., 2001). Initially created to support a small number of study designs, MDR has since been adapted for other types of studies. Generalized MDR (GMDR) (Lou et al., 2007) is an extension of MDR to support generalized linear models (e.g. logistic regression).

Cox-MDR (Lee et al., 2012) is a type of GMDR which is designed specifically for survival/time-to-event studies and utilizes the Cox-regression method.

Studies that have so far considered the interactions of genetic variants in colorectal cancer outcomes using MDR are quite limited (Iglesias et al., 2009; Afzal et al., 2011a; Pander et al., 2011; Sarac et al., 2012; Hu et al., 2018; Jung et al., 2020). As a result, potential SNP interactions that may be associated with patient outcomes largely remain unknown. In this study, we aimed to explore the potential roles of SNP interactions in outcome risk of colorectal cancer patients using MDR-based methods. For this purpose, we utilized the genotype and outcome data of a cohort of colorectal cancer patients from Newfoundland and Labrador. We explored and compared the functionality of two MDR-based software—Cox-MDR (Lee et al., 2012) and GMDR 0.9 (Lou et al., 2007), and applied these software to examine the interactions among SNPs from the Matrix Metalloprotease (MMP) family of genes and Vascular Endothelial Growth Factor (VEGF)-family interaction network genes. Our results show that there are unique limitations and strengths of Cox-MDR and GMDR 0.9, which should be considered in future studies. More importantly, our results identified novel SNP interactions that can help distinguish between colorectal cancer patients with significantly different outcome risks.

Data and methods

Ethics approval

This study was conducted with ethics approval by the Health Research Ethics Authority of Newfoundland and Labrador (HREB #2018.051; #2009.106). This study was a secondary use of data study, hence, HREB waived the requirement for patient consent.

Part 1: Exploration of Cox-MDR and GMDR 0.9 programs and analysis of interactions between the SNPs from the MMP family of genes.

Patient cohort, genes selected, outcome measures, covariates, and data considerations

This is a cohort study. The baseline characteristics of the patient cohort included in this part of the study (n = 439) are shown in Supplementary Table S1. Patients were recruited by the Newfoundland Familial Colorectal Cancer Registry (NFCCR) (Green et al., 2007; Woods et al., 2010). They were under the age of 76 at the time of diagnosis and were diagnosed with colorectal cancer between 1999 and 2003. Pathological/clinical and follow-up data were collected from resources such as clinical reports, the
Newfoundland Cancer Treatment and Research Foundation database, and follow-up questionnaires (Green et al., 2007; Woods et al., 2010; Negandhi et al., 2013; Yu et al., 2019). The date of last follow up was 2010. Genetic data was previously obtained from blood samples via the Illumina Omni1-Quad human SNP genotyping platform (reactions were outsourced to Centrillion Biosciences, United States), and sample quality control (QC) measures were implemented (Xu et al., 2015). As a result, all patients included into the analyses were of Caucasian ancestry and unrelated to each other (Xu et al., 2015).

Since one of our aims in Part 1 was to examine and compare the performance and functionality of the two MDR-based programs, we opted for a set of genes and SNPs that were previously examined in our lab (Supplementary Table S2). Specifically, the best suited genetic model for SNPs from the MMP family was obtained using the MDR methods during the current study. We kept the covariates and outcome measure examined in Part 1 the same as in that previous study. The covariates included age at diagnosis, disease stage, MSI (microsatellite instability)-status, and tumor location (rectum, colon). The outcome of interest was death from any cause (Overall Survival; OS).

Since Cox-MDR and GMDR 0.9 make their calculations, classify the patient genotypes as high-risk or low-risk, and select best models based on different scoring methods (i.e. martingale residuals obtained by Cox regression in Cox-MDR and logit score obtained by logistic regression in GMDR 0.9), Cox-MDR and GMDR 0.9 differ in data requirements. For example, as GMDR 0.9 utilizes logistic regression method, the 5-years-survival outcome measure was used. In Cox-MDR analysis, survival status and time to death (or the last date of alive contact) were used. Considering these and additional input data requirements for each program, a number of measures were taken while preparing the data files for analysis (see Supplementary Material for details). Since we aimed to compare their performance in this first part of the study, we also examined the same set of patients in the Cox-MDR and GMDR 0.9 analyses.

Single Nucleotide Polymorphism genotype data and quality control measures

SNPs from the MMP family genes were extracted from the genome-wide SNP genotype data files using the gene genomic location information and the PLINK software (Purcell et al., 2007; PLINK, 2017 version 1.07), with the following quality control parameters being implemented: minor allele frequency (MAF) ≥ 0.05, Hardy-Weinberg Equilibrium (HWE) $p > 0.0001$, and missing genotype rate $= 0$. Pairwise squared correlation coefficient (r^2) values and MAFs were calculated using PLINK. When there were multiple SNPs with $r^2 = 1$ (i.e. those which would score identically using the MDR procedure), SNPs were removed such that only one of these SNPs was present in the final dataset. As a result, 201 SNPs from 21 MMP genes were included into the analysis (Supplementary Table S2).

Cox-MDR and GMDR 0.9 analyses

The work-flow is summarized in Figure 1.

We focused on 1-way, 2-way, and 3-way ($k = 1–3$) interactions. 1-way interaction analysis examines whether the genotype groups of a single SNP may be categorized as high-risk and low-risk genotypes, and associated with an outcome/response variable. 2-way and 3-way interaction analyses examine whether combinations of genotype groups of two or three SNPs may be categorized as high-risk and low-risk genotypes, and associated with an outcome/response variable, respectively. Cox-MDR uses martingale residuals of Cox-regression models (Lee et al., 2012) and GMDR 0.9 (Lou et al., 2007) uses logit scores to categorize patient genotypes as high-risk and low-risk genotypes.

Cox-MDR code (Lee et al., 2012) was requested and received from the developer, Dr. Seungyeoun Lee (Sejong University, South Korea). We extended the code in order to add additional functionality and return the output that would be needed for our study using R (Core Team, 2017) (Supplementary Material). GMDR 0.9 code was downloaded from the UAB Department of Biostatistics Section on Statistical Genetics website (GMDR) on 11 December 2018. Command line arguments to set the random seeds were added to the permutation testing Perl script included with GMDR 0.9 (Supplementary Material). Once we verified that Cox-MDR worked as expected, it was run with the dataset (including both the clinical [i.e. covariates and OS time and status] and the genotype data of the SNPs from the MMP genes).

All interaction analyses were performed using a 5-fold cross-validation procedure. 5-fold cross validation is appropriate when the sample size is modest, like ours, while still providing adequate power (Motsinger and Ritchie, 2006b). 4/5 of these folds served as a training set for the MDR procedure and the final 1/5 was an independent testing set from which the final model score was derived. The code was run 20 times, each run yielding a “best Cox-MDR model,” with different random seeds to ensure different partitioning of the dataset into each of the five cross-validation folds (i.e. to reduce the influence of any specific partitioning of the data). Given the 5-fold cross-validation procedure, this resulted in each SNP or SNP combination being examined in potentially a total of 100 patient datasets. Among the best Cox-MDR models returned by each of the
20 runs, we prioritized the most frequently detected best Cox-MDR model (with consistent SNP ID(s) and high-risk and low risk genotype information) with the highest testing balance accuracy (TBA) score. We refer to these models as the "top" Cox-MDR models throughout this manuscript.

GMDR 0.9 was applied to the same dataset as used in Cox-MDR, with the only exception of using the 5-years survival status as the response variable. In contrast to Cox-MDR, GMDR 0.9 can only select the best models based on the cross-validation consistency (CVC); that is, the model with the highest CVC among cross-validation folds is selected. After running the GMDR 0.9 analysis 20 times, we selected the top model as in Cox-MDR and based on the highest average TBA value among cross validation folds (GMDR 0.9's analogue to Cox-MDR's highest TBA). In cases when there were multiple models satisfying the best MDR model criteria in a dataset, we used the TBA, and if still needed, the CVC information, as the tie breaker.

Permutation testing

Once the top Cox-MDR or GMDR 0.9 model was identified, the significance of the model was assessed using permutation testing. For GMDR 0.9, permutation testing was performed using the included Perl script, which was extended to allow setting of random seeds. For Cox-MDR permutation testing, an R function was written. The permutation procedure was performed using 1,000 permutations of the data (Supplementary Material).
Permutation testing was performed for all top models selected from k-way runs (1-3-ways). As noted by others (Ritchie et al., 2001; Motsinger and Ritchie, 2006b; Edwards et al., 2009; Güi et al., 2011; Lee et al., 2012; De et al., 2015; Gola et al., 2016), it is possible that a single SNP with a strong main effect (that can be identified as the top MDR-model in 1-way analysis), may impact higher order interaction analysis when using MDR-based methods, and hence, needs to be removed from the 2-way and 3-way interaction analyses. Therefore, we first performed the permutation testing for the top MDR model identified in the 1-way analysis and, if it turned out to be a significant MDR model, then we assessed whether the high-risk and low-risk genotype groups of this top model were associated with survival outcomes in the patient cohort using statistical methods (see below). In the case where a significant association was detected, we then performed subsequent runs by excluding this SNP and any other SNP in the dataset that was in high linkage disequilibrium (LD) with it ($r^2 \geq 0.8$). This SNP removal procedure was repeated until all SNPs with strong main effects in 1-way analyses were removed from the dataset (Figure 1). We then proceeded to 2-way and 3-way analyses on the final dataset with all SNPs with strong main effects removed.

Kaplan-Meier curves and multivariable regression analyses

Following identification of a significant top MDR model by permutation testing, we assessed whether the high-risk and low-risk genotype groups of the model were associated with survival outcomes in the patient cohort. For this purpose, we applied multivariable Cox regression analysis (for the models identified by Cox-MDR) and logistic regression analysis (for the models identified by GMDR 0.9) using the same clinical covariates for adjustment that were used in the Cox-MDR and GMDR 0.9 runs. When needed, Kaplan-Meier curves were constructed to visualize the survival times of the patient groups with the high-risk and low-risk genotype groups over time. These analyses were performed using IBM SPSS Statistics software (versions 25 and 26, Armonk, NY) (IBM SPSS Statistics for Windows, 2017) or R. A p-value of <0.05 was considered significant.

Identification of interaction partners of the VEGF family proteins

Each of the seven VEGF proteins were searched in the BioGRID 3.5 database (Stark et al., 2006; Oughtred et al., 2021; BioGRID | Database of protein, chemical, and genetic interactions) to find proteins that interact with them (i.e., protein-protein interaction networks; BioGRID accessed on 22 October 2019). Genomic locations for all interactors were obtained from the Ensembl database (Howe et al., 2021; Ensembl Genome Browser) using the legacy archive Biomart (Archives). PLINK was used for genotype extraction from the genome-wide SNP genotype data files, followed by LD-based pruning. Interactors located on the X chromosome (FIGF, IKBKG, and VSIG4) and genes with no SNPs after quality control and pruning steps (BCS1L, CTGF, LRFN3, NUDT16L1, SCH1, TXNIP, and UBIAD1) were excluded. In 7 VEGF networks, there was a total of 1,517 unique SNPs (number of SNPs in each set: VEGFA = 401; VEGFB = 174; VEGFC = 38; PIGF = 102; VEGFR1 = 222; VEGFR2 = 747; VEGFR3 = 328) in a total of 131 unique genes (number of genes in each set: VEGFA = 43; VEGFB = 14; VEGFC = 3; PIGF = 5; VEGFR1 = 15; VEGFR2 = 68; VEGFR3 = 23). Please see Supplementary Figure S1 and Supplementary Tables S4, S5 for the interaction networks, proteins in each interactome, and the IDs of SNPs retrieved and analyzed in this part of the study.

Bioinformatics analyses

In order to explore the links between the SNPs of interest and clinical outcomes, we utilized literature reports (from PUBMED),
and dbANGIO (Savas, 2012) and dbPCPO (Savas and Younghusband, 2010) databases. We also searched RegulomeDB (Boyle et al., 2012; RegulomeDB) and GTEx databases (Lonsdale et al., 2013) to identify eQTLs that are associated with expression levels of genes (Note that GTEx has no data for rectal tissues, so only transverse and sigmoid colon tissue information was available). Information on the type of variation (e.g. intronic) were retrieved from dbSNP (Sherry et al., 2001).

Results

Part 1: Examination of the interactions between the MMP gene family SNPs using Cox-MDR and GMDR 0.9

Interactions among 201 SNPs from 21 MMP genes were examined as a set (a total of 1,353,601 potential interactions). As a result, 1-way Cox-MDR interaction analysis identified MMP27-rs11225388 (MAF = 0.27; an intronic SNP) and classified its genotypes as high-risk (AA) and low-risk (AG and GG) in the top MDR model. Permutation testing was also significant (p < 0.001). It is interesting that the best MDR-models identified this SNP and its genotype model was independently associated with OS (Table 1). Therefore, Cox-MDR successfully identified a significant 1-way interaction. These results also meant that the rs11225388 SNP had a significant main effect, which necessitated it (as well as two other SNPs with high LD with it: rs11225389 and rs12365082) being removed from the dataset prior to future analyses. Upon re-running Cox-MDR 1-way analysis and applying permutation testing to the top model, we did not identify a significant 1-way MDR model. We, therefore, proceeded with 2-way and 3-way analysis. These runs did not identify any significant multi-loci Cox-MDR models in this dataset.

In contrast, in the 1-way analysis, GMDR 0.9 selection procedure did not identify a significant model following permutation testing. However, 2-way analysis identified a two-loci MDR model including the MMP16-rs2664369 and MMP24-rs2254207 variants (permutation testing p = 0.001; Table 2). Multivariable logistic regression analysis verified that this model had a significant association with 5-years survival of patients when adjusted for other prognostic covariates (high risk genotypes versus low risk genotypes; OR: 3.27; p = 4E-6). Both of these SNPs are non-coding region SNPs and were common in the patient cohort (MAFs = 0.25 and 0.26, respectively). Additionally, in the 3-way analysis, a GMDR 0.9 model including genotypes of MMP16-rs2664369, MMP20-rs11225332, and MMP2-rs11639960 variants were identified in the top model (permutation testing p < 0.001). Multivariable logistic regression analysis showed that this model distinguished patients based on their 5-years survival status independent of other covariates and this association was quite strong (p = 1.3E-8; OR: 4.5; Table 2). Kaplan Meier curves for the identified high-risk and low-risk genotypes are shown in Supplementary Figure S2. Rs2664369 is a 3′-untranslated region variant, and rs11225332 and rs11639960 are both intronic variants. These SNPs were common in the patient cohort (MAF = 0.43, 0.40, and 0.35, respectively).

| TABLE 1 Multivariable Cox regression analysis result for the significant 1-way Cox-MDR model in the MMP dataset (overall survival). |
|-------------------------------|-----------------|-----------------|
| **Top model SNP** | **High risk genotypes** | **p-value** | **HR** | **95% CI (lower-upper)** |
| rs11225388_GA | AA | 0.002 | 0.591 | 0.425–0.821 |

CI: confidence interval; HR: hazards ratio; SNP: single nucleotide polymorphism. HR calculated for low risk genotypes (GG + GA) versus high-risk genotype (AA).

| TABLE 2 Multivariable logistic regression analysis results for the significant 2-way and 3-way GMDR 0.9 models in the MMP dataset (overall survival). |
|-------------------------------|-----------------|-----------------|
| **Top model SNPs** | **High risk genotypes** | **p-value** | **OR** | **95% CI (lower-upper)** |
| rs7817382_GA and rs2254207_CA | (0AA,1CA), (0AA,2CC), (1GA,8AA), (1GA,2CC), (2GG,1CA) | 4.194E-06 | 3.266 | 1.971–5.414 |
| rs2664369_GT, rs11225332_CT and rs11639960_GA | (0TT,0TT,2GG), (0TT,1CT,1GA), (0TT,1CT,2GG), (0TT,2CC,1GA), (1GT,0TT,1AA), (1GT,2CC,1GA), (1GT,1CT,2GG), (1GT,2CC,2GG), (2GG,0TT,1AA), (2GG,1CT,2GG), (2GG,2CC,0AA), (2GG,2CC,2GG) | 1.292E-08 | 4.503 | 2.681–7.563 |

CI: confidence interval, OR: odds ratio, SNP: single nucleotide polymorphism. Alleles are given in the order major allele minor allele. 0,1,2 refer to additive coding, i.e. dosage of the minor allele (0 = 0 copies of the minor allele, 1 = 1 copies of the minor allele, 2 = 2 copies of the minor allele).
TABLE 3 Permutation testing and multivariable Cox-regression analysis results for the top Cox-MDR models in the VEGF interaction network set analyses (disease specific survival).

Interactor set	Top model SNP(s)	High risk genotypes	Permutation p-value	Cox regression p-value	HR	95% CI (lower-upper)
VEGFA	FN1 rs2289200 [TG]	1 (TG), 2 (TT)	0.273	---	---	---
VEGFA	VEGFA rs833070 [GA]	1 (GA)	0.201	---	---	---
VEGFA	VEGFC rs1485766 [CA]	1 (CA)	0.346	---	---	---
VEGFR1	FKSR1 rs142269 [CT]	0 (TT)	0.07	---	---	---
VEGFR2	PTPN12 rs1024723 [TC]	0 (CC), 2 (TT)	0.181	---	---	---
VEGFR3	LRRK2 rs930847 [CA]	1 (CA), 2 (CC)	0.098	---	---	---
PIGF	RNF123 rs11130216 [AC]	1 (AC), 2 (AA)	0.032	0.003	1.977	1.265-3.089

Iteration 1

- **VEGFA**
 - CLU rs7982 [TC], FLT1 rs7332329 [GA]
 - (0 [CC], 0 [AA]), (1 [TC], 1 [GA])
 - 0.392
 - ---
 - ---

- **VEGFB**
 - FAT1 rs1055467 [TC], VEGFA rs3025010 [CT]
 - (1 [TT], 1 [CT])
 - 0.225
 - ---
 - ---

- **VEGFC**
 - KDR rs1789876 [GA], VEGFC rs775195 [AC]
 - (1 [GA], 1 [AC])
 - 0.146
 - ---
 - ---

- **VEGFR1**
 - FLT1 rs9551462 [TC], FKSR1 rs1823023 [AG]
 - (1 [TC], 0 [TT])
 - 0.128
 - ---
 - ---

- **VEGFR2**
 - APP rs2096488 [CA], DNM2 rs2464673 [TG]
 - (2 [CC], 0 [GG])
 - 0.389
 - ---
 - ---

- **VEGFR3**
 - CRHMr3 rs665159 [TC], PGTER3 rs1327460 [AG]
 - (0 [CC], 1 [GC])
 - 0.004
 - 2.03E-06
 - 3.147| 1.961-5.050

- **PIGF**
 - NRP1 rs2474723 [GA], RNF123 kgp9864706 [AG]
 - (0 [AA], 0 [GG])
 - 0.527
 - ---
 - ---

Iteration 2

- **PIGF**
 - VEGFA rs833070 [GA]
 - 1 (GA)
 - 0.045
 - 0.298
 - 1.256| 0.818-1.928

2-way

- **VEGFA**
 - CLU rs7982 [TC], FLT1 rs7332329 [GA]
 - (0 [CC], 0 [AA]), (1 [TC], 1 [GA])
 - 0.392
 - ---
 - ---

- **VEGFB**
 - FAT1 rs1055467 [TC], VEGFA rs3025010 [CT]
 - (1 [TT], 1 [CT])
 - 0.225
 - ---
 - ---

- **VEGFC**
 - KDR rs1789876 [GA], VEGFC rs775195 [AC]
 - (1 [GA], 1 [AC])
 - 0.146
 - ---
 - ---

- **VEGFR1**
 - FLT1 rs9551462 [TC], PIK3R1 rs1823023 [AG]
 - (1 [TC], 0 [GG])
 - 0.128
 - ---
 - ---

- **VEGFR2**
 - APP rs2096488 [CA], DNM2 rs2464673 [TG]
 - (2 [CC], 0 [GG])
 - 0.389
 - ---
 - ---

- **VEGFR3**
 - CRHMr3 rs665159 [TC], PGTER3 rs1327460 [AG]
 - (0 [CC], 1 [GC])
 - 0.004
 - 2.03E-06
 - 3.147| 1.961-5.050

3-way

- **VEGFA**
 - FOS rs7101 [CT], NRP2 rs681079 [TC], TAFAP2A rs503055 [CT]
 - (0 [TT], 0 [CC], 0 [TT])
 - 0.058
 - ---
 - ---

- **VEGFB**
 - ALOXE3 rs3809882 [CA], COL6A2 rs7280485 [AG], NRP1 rs6481844 [CT]
 - (1 [CA], 0 [GG], 0 [TT])
 - 0.217
 - ---
 - ---

- **VEGFC**
 - FLT4 rs2242217 [CT], FLT4 rs11748431 [AG], VEGFC rs148576 [TC]
 - (2 [CC], 0 [GG])
 - 0.229
 - ---
 - ---

(Continued on following page)
Interactor set	Top model SNP(s)	High risk genotypes	Permutation p-value	Cox regression p-value	HR (95% CI)
VEGFR1	FLT1 rs12429309, FLT1 rs9551462, PKC9R1 rs1823023 [AG]	(2 [CC], 0 [GG], 1 [TC])	0.097	—	1 —
		(1 [CT], 1 [AG], 1 [TC])		—	—
		(2 [CC], 1 [AG], 1 [TC])		—	—
		(0 [TT], 0 [GG], 2 [TT])		—	—
		(2 [CC], 0 [GG], 2 [TT])		—	—
		(1 [CT], 1 [AG], 2 [TT])		—	—
VEGFR2	COL18A1 rs4819101, AG044 rs10765181 [GT], PALLD rs10004025 [TC]	(0 [GG], 0 [TT], 0 [CC])	0.12	—	1 —
		(1 [AG], 0 [TT], 0 [CC])		—	—
		(2 [AA], 0 [TT], 0 [CC])		—	—
		(0 [GG], 1 [GT], 0 [CC])		—	—
		(2 [AA], 1 [GT], 1 [CC])		—	—
		(1 [AG], 1 [TT], 1 [CC])		—	—
		(0 [GG], 1 [GT], 2 [AA])		—	—
		(0 [GG], 2 [GG], 1 [TC])		—	—
		(1 [AG], 2 [GG], 1 [TC])		—	—
		(1 [AG], 0 [TT], 2 [TT])		—	—
		(2 [AA], 0 [TT], 2 [TT])		—	—
		(1 [AG], 2 [GG], 2 [TT])		—	—
		(2 [AA], 2 [GG], 2 [TT])		—	—
VEGFR3	CHRM3 rs665159, EPN1 rs6509955, AG044 rs10765181 [GT], PTGER3 rs1327460 [AG]	(1 [TC], 0 [GG], 0 [GG])	0.007	2.21E-09	5.004 – 2.952 – 8.481
		(0 [CC], 1 [AG], 0 [GG])		—	—
		(1 [TC], 1 [AG], 0 [GG])		—	—
		(0 [CC], 2 [AA], 0 [GG])		—	—
		(0 [CC], 0 [GG], 1 [AG])		—	—
		(0 [CC], 1 [AG], 1 [AG])		—	—
		(0 [CC], 2 [AA], 1 [AG])		—	—
		(1 [TC], 1 [AG], 1 [AG])		—	—
		(2 [TT], 0 [GG], 2 [AA])		—	—
		(2 [TT], 0 [GG], 2 [AA])		—	—
PGF	FLT1 rs17086609, FLT1 rs1855381, NRP1 rs2006141	(1 [GA], 0 [AA], 0 [TT])	0.253	—	—
		(0 [AA], 1 [CA], 0 [TT])		—	—
		(0 [AA], 2 [CC], 0 [TT])		—	—
		(2 [GG], 2 [CC], 0 [TT])		—	—
		(1 [GA], 0 [AA], 1 [CT])		—	—
		(0 [AA], 1 [CA], 1 [CT])		—	—
		(0 [AA], 2 [CC], 1 [CT])		—	—
		(2 [GG], 1 [CA], 1 [CT])		—	—
		(0 [AA], 0 [AA], 2 [CC])		—	—
		(2 [GG], 0 [AA], 2 [CC])		—	—
		(2 [GG], 1 [CA], 2 [CC])		—	—

CI: confidence interval; HR: hazards ratio; SNP: single nucleotide polymorphism.

0, 1, and 2 in the High Risk Genotype column refer to additive coding, where the number refers to the number of minor alleles in the genotype. Square brackets in the Top Model SNPs column indicate major and minor alleles for each SNP, which the first letter represents the minor allele and the second letter represents the major allele. In the high risk genotypes column, the three items enclosed in parentheses signify the genotypes of the combination of SNPs which was found to be high risk by Cox-MDR. Commas separate the genotypes for each SNP in the order in which they appear in the corresponding Top Model SNPs entry. Whenever a SNP with a main effect was identified in 1-way analysis, the analysis was repeated with that SNP removed from the dataset (i.e. successive iterations). FLT1 is also known as VEGFR1; KDR is also known as VEGFR2; FLT4 is also known as VEGFR3; and PGF is also known as PIGF.
Part 2: Examination of the interactions in the VEGF interaction network datasets using Cox-MDR and GMDR 0.9

In this part of the study, we investigated SNP interactions separately for seven sets of VEGF family protein interaction networks (Supplementary Tables S4, S5). Altogether, these analyses examined 88,989,448 potential interactions. Cox-MDR identified four significant MDR models, three of which were also confirmed by multivariable Cox regression analysis (Table 3). In the 1-way analysis of the PIGF network, we identified one SNP associated with DSS (RNF123.rs11130216). Additionally, both 2-way and 3-way interactions were detected and they were both identified during the VEGFR3 network analysis. These multi-loci interactions include SNPs from CHRM3, PTGER3, or EPN1 genes. The strongest association with disease-specific survival was detected in the 3-way analysis with a very strong p-value of 2.21E-09 (CHRM3.rs665159, EPN1.rs6509955, PTGER3.rs1327460; HR: 5.0). As also demonstrated by the Kaplan Meier curve (Figure 2), this model’s genotype classification was able to clearly separate patients based on their outcome risks.

Similar to Cox-MDR, GMDR 0.9 also identified interactions that were able to distinguish between patients with different outcome risk (the multivariable logistic regression p-values 0.032–2.4E-09; Table 4). GMDR 0.9 identified a larger number significant interactions than Cox-MDR (11, six, and seven 1-way, 2-way, and 3-way interactions, respectively). The strongest association with DSS (p = 2.4E-09) was detected for the 3-way ADRB2.rs1042711_NRP1.rs17296436_VEGFB rs11603042 interaction in the VEGFB network analysis (HR: 10, 95% CI: 4.691–21.276; Kaplan Meier curves for the high-risk and low-risk genotypes are shown in Figure 3). Overall, the significant associations, particularly for multi-loci interactions, were quite encouraging. Generally, the significance levels of interactions increased with the order of interactions (i.e. from 1-way to 3-way). Of note, 3-way analysis identified significant interactions in all seven VEGF interaction networks examined. Rarely, interaction models included both the VEGF ligand and receptor (FLT4.rs307823_KDR.rs6828477_KDR.rs12502008) or two SNPs from the same gene (FLT4.rs1739750_FLT4.rs307814; Table 4), both detected in the VEGFC interaction network. For interested readers, the Kaplan Meier curves for the GMDR 0.9 identified interactions are shown in Supplementary Figure S3.

Comparison of Cox-MDR and GMDR 0.9 results

Both Cox-MDR and GMDR 0.9 identified RNF123.rs11130216 SNP in the 1-way analysis of the PIGF network. In both cases, the same genotypes were identified as high-risk and were associated with DSS in multivariable models. All other significant interactions were identified by either of the programs. Our results, hence, showed that there was little overlap between the results provided by Cox-MDR and GMDR 0.9. This may be initially attributed to the use of different scoring systems and response variables by these programs. However, Cox-MDR was the software which identified the MMP27.rs11225388 variant, as well as the high-risk/low-genotype classification, that was previously identified to be associated with OS in a highly similar patient cohort (Dan et al., 2016). Of note, this SNP had the strongest association in that dataset, so it is being identified by Cox-MDR and in all of the 20 1-way runs as the best SNP is quite striking (Supplementary Table S6). This SNP, however, was missed by GMDR 0.9. In addition, in GMDR 0.9, it was observed that there was no obvious way in which ties between “best models” (i.e. multiple “best models” with equal CVC values when selecting the best model) were being resolved. To test the effect of SNP order in the input data file, MMP27.rs11225388, a SNP with a known statistical significance, was moved to the beginning of the input data file. This change resulted in significantly different GMDR 0.9 results (making rs11225388 the top SNP identified for this analysis) and thus, showed that input SNP order can affect results when the CVC is 1 or 2, out of a possible 5 (when multiple best models have the same CVC). Further observation confirmed that the earliest SNP in the dataset is chosen by GMDR 0.9 in the event of a CVC tie. Therefore, this not only explains why GMDR 0.9 missed this SNP, but...
TABLE 4 Multivariable logistic regression analysis results for the top GMDR 0.9 models in the VEGF interaction network set analyses (disease-specific survival).

Interaction set	Top model SNP(s)	High risk genotypes	Permutation p-value	Logistic regression p-value	OR	95% CI (lower-upper)
1-way						
Iteration 1						
VEGF	NRP2 rs3771003 [TG]	0 [GG], 2 [TT]	0.014	0.010	2.399	1.230–4.679
VEGF	COL6A2 rs9978018 [GA]	0 [AA], 2 [GG]	0.02	0.032	2.015	1.062–3.822
VEGF	FLT4 rs3797102 [CT]	1 [CT], 2 [CC]	0.358	—	—	—
VEGFR1	MICAL2 rs11022550 [GT]	0 [TT]	<0.001	0.002	2.941	1.468–5.891
VEGFR2	PTPN12 rs1024723 [TC]	0 [CC], 2 [TT]	<0.001	1.442E-04	3.662	1.875–7.152
VEGFR3	CHRM3 rs12057424 [CT]	0 [TT]	0.005	0.004	2.616	1.369–4.997
PIGF	RNF23 rs11130216 [AC]	1 [AC], 2 [AA]	0.045	0.011	2.359	1.222–4.554
Iteration 2						
VEGF	HNRNPL rs10403012 [GA]	0 [AA]	0.022	0.012	1.984	0.673–5.847
VEGF	VEGFB rs11603042 [TG]	1 [TG], 2 [TT]	0.067	—	—	—
VEGFR1	MICAL2 rs988189 [TC]	1 [TC], 2 [TT]	0.116	—	—	—
VEGFR2	MAPK1 rs2298432 [AC]	0 [CC]	0.001	3.425E-04	3.467	1.756–6.848
VEGFR3	CHRM3 rs2276642 [TG]	1 [TG], 2 [TT]	0.007	0.006	2.924	1.362–6.278
PIGF	FLT4 rs3936415 [AG]	0 [GG]	0.069	—	—	—
Iteration 3						
VEGF	HNRNPL rs2278012 [CT]	0 [TT]	0.051	—	—	—
VEGF	DNM2 rs724667 [TG]	1 [TG], 2 [TT]	0.079	—	—	—
VEGFR1	MICAL2 rs988189 [TC]	1 [TC], 2 [TT]	0.007	0.011	2.243	1.207–4.169
VEGFR2	MAPK1 rs2298432 [AC]	0 [CC]	0.001	3.425E-04	3.467	1.756–6.848
VEGFR3	CHRM3 rs2276642 [TG]	1 [TG], 2 [TT]	0.007	0.006	2.924	1.362–6.278
PIGF	FLT4 rs3936415 [AG]	0 [GG]	0.069	—	—	—
Iteration 4						
VEGF	HNRNPL rs17161155 [AG]	0 [GG]	0.043	0.009	2.317	1.235–4.346
Iteration 5						
VEGF	HNRNPL rs17161155 [AG]	0 [GG]	0.043	0.009	2.317	1.235–4.346
2-way						
VEGF	ELAVL1 rs3786619 [AG]	0 [GG], 2 [AA]	<0.001	3.180E-05	4.387	2.186–8.805
VEGF	FLT4 rs3936415 [AG]	0 [GG], 2 [AA]	<0.001	3.180E-05	4.387	2.186–8.805
VEGF	ADRB2 rs1042711 [CT]	0 [TT], 1 [CT]	0.018	7.082E-05	3.696	1.940–7.044
VEGF	HAL rs1213737 [CT]	0 [TT], 1 [CT]	0.018	7.082E-05	3.696	1.940–7.044
VEGF	FLT4 rs1173750 [TG]	0 [CC], 1 [TC]	0.002	1.335E-04	3.827	1.922–7.620
VEGF	FLT4 rs307814 [TC]	0 [CC], 1 [TC]	0.003	1.852E-04	3.361	1.780–6.346
VEGF	CHRM3 rs1782357 [TC]	0 [CC], 1 [TC]	<0.001	3.872E-05	3.892	2.037–7.433
VEGF	MICAL2 rs7946327 [CA]	0 [CC], 1 [TA]	0.003	1.852E-04	3.361	1.780–6.346
VEGF	COL6A1 rs2778425 [TC]	0 [CC], 1 [TA]	<0.001	3.872E-05	3.892	2.037–7.433
VEGF	CHRM3 rs1872357 [TC]	0 [CC], 1 [TC]	<0.001	3.872E-05	3.892	2.037–7.433
PIGF	FLT4 rs2387632 [TC]	0 [CC], 1 [TC]	<0.001	3.872E-05	3.892	2.037–7.433
3-way						
VEGF	CLU rs3531888 [CG]	0 [GG], 1 [TC]	<0.001	2.146E-07	9.322	4.010–21.672
VEGF	ELAVL1 rs3786619 [AG]	0 [GG], 2 [AA]	<0.001	2.146E-07	9.322	4.010–21.672
VEGF	FLT4 rs3936415 [AG]	0 [GG], 2 [AA]	<0.001	2.146E-07	9.322	4.010–21.672
VEGF	NRP2 rs1861079 [TC]	0 [GG], 1 [TC]	<0.001	2.146E-07	9.322	4.010–21.672
VEGF	ADRB2 rs1042711 [CT]	0 [TT], 1 [CT]	<0.001	2.146E-07	9.322	4.010–21.672
VEGF	PTPN12 rs1024723 [TG]	0 [TT], 1 [CT]	<0.001	2.146E-07	9.322	4.010–21.672

(Continued on following page)
also an important limitation of this and any other MDR software that uses CVC to pick the best model. Despite its limitation, it is worth noting that GMDR 0.9 also identified a number of models that were missed by Cox-MDR and distinguished patients based on their significantly different outcome risks (Tables 2, 4).

Discussion

In this study, we explored the functionality and feasibility of two MDR-based programs, Cox-MDR (Lee et al., 2012) and GMDR 0.9 (Lou et al., 2007) and applied them to examine single-locus and multi-loci interactions in MMP family and VEGF interaction network genes in relation to survival outcomes in colorectal cancer. Our results identified novel and statistically significant interactions that predicted the survival outcomes in colorectal cancer. Our results also showed that these two programs generally yielded different top MDR models and interactions, hence, they can be considered complementary while examining SNP interactions. To our knowledge, this is the first large-scale MDR analysis study that examined SNP interactions in relation to colorectal cancer outcomes.

Interactions among variables are understudied in cancer research. It is possible that the interactions among genetic variables, such as SNPs, play a role in survival outcomes biologically. Hence, limiting a study to associations of individual SNPs and survival outcomes has the potential to miss not only genetic relationships but also important biological information. In this regard, there has been little work done on studying multi-loci interactions in colorectal cancer with respect to survival outcomes, especially using a large number of variants. For example, limited MDR-based interaction analyses were conducted (Iglesias et al., 2009; Afzal et al., 2010).
Interestingly, both of the variants identified in the MMP dataset; MMP27.rs11225332_MMP2.rs11639960 had a low p-value (1.3E-08) in the multivariable regression analysis and is, therefore, a particularly interesting example of both the potential biological roles of MMP gene variants in disease outcomes and the potential utility multi-loci interactions to help classifying patients based on their different outcome risks.

In the analyses of the seven VEGF interaction networks (VEGFA, VEGFB, VEGFC, PIGF, VEGFR1, VEGFR2, VEGFR3 networks), similar to MMP gene analyses, MDR programs identified generally different results (e.g. interactions and SNPs). There is not any report linking the 1 way SNP identified by both programs with colorectal or other cancers (RFN123.rs11130216). However, both programs were again able to identify previously unknown and significant interactions. For example, the most significant interaction associated with disease-specific survival was detected in the 3-way Cox-MDR analysis including the CHRM3.rs665159_EPN1.rs509955_PTGER3, rs1327460 variants (VEGFR3 network; p = 2.2E-09; Table 3). All of these genes were previously linked to cancer or tumor invasion. For example, high CHRM3 levels are linked to invasion and metastasis in colon cancers (Cheng et al., 2017; Felton et al., 2018); loss of EPN1 was linked to elevated VEGFR2 degradation and disorganized angiogenesis (Pasula et al., 2012); and elevated PTGER3 levels was linked to shorter survival times in cervical
from GMDR 0.9 is the ability to use testing balanced accuracy (TBA) score, as an alternative to CVC, to pick a best model from the cross-validation folds. GMDR 0.9 has a limitation that if two models tie for the best model among the cross-validation folds, then the model starting with the first SNP in the input dataset is chosen. This obviously has the potential to miss significant models as equally high-scoring models will be silently ignored by the software. This is an issue when using CVC to pick a best model more so than TBA (an option available in Cox-MDR), as when CVC is low it is quite likely that two or more models will tie for best model (used in GMDR 0.9); as we discuss earlier, GMDR 0.9 has missed identifying MMP27-rs11225388 in its 1-way analysis because of how it selects the top models (i.e. CVC and the order of data in the input files). This is rarely an issue while using TBA (that can be used in Cox-MDR) for the same purpose because as a floating point number with much higher variability than CVC, a tie is unlikely. Therefore, Cox-MDR using the TBA option overall gives results with less random model selection than GMDR 0.9, and this is an important strength of Cox-MDR. Despite its limitations, GMDR 0.9 also identified interactions that were missed by Cox-MDR.

Additionally, both Cox-MDR and GMDR 0.9 proved to have different resource usage difficulties and requirements. The Cox-MDR software cannot examine interactions in parallel, and thus, is significantly slower than GMDR 0.9. Our VEGFR2 3-way analysis of 747 SNPs took approximately 18 days to complete on the local computing cluster whereas on a similar dataset GMDR 0.9 took only 12 h. GMDR 0.9, on the other hand, has extremely large memory requirements. For the largest of our aforementioned analyses, GMDR 0.9 required a massive 220 gigabytes of RAM to complete successfully, which at the time of writing is a very large amount for a researcher to be able to obtain even on a computing cluster. In comparison, Cox-MDR only required 15 gigabytes of RAM, practically obtainable on consumer hardware. An additional resource usage issue for GMDR 0.9 is that the permutation testing procedure is performed using a Perl script external to the Java binary which contains the main program. This script uses the user’s hard drive as memory, greatly slowing down the permutation testing procedure. For a very high number of permutations this may become a significant issue. Overall, while MDR-based data reduction methods allow researchers to examine large number of interactions, in our experience, both programs have unique strengths, limitations, and feasibility concerns while examining large datasets. Therefore, while they can be considered complementary while examining SNP interactions, application of these programs widely will likely be dependent on further development.

One limitation of this study is that the patients included are all of Caucasian ancestry. We also limited our work to common SNPs and genes from autosomal chromosomes, therefore, the potential interactions among rare SNPs and MMP/VEGF-interactor genes located in X or Y chromosomes remain unexamined. Our results are exploratory, therefore replication studies are needed to confirm whether these SNPs/interactions...
have prognostic value in the clinic. The genes were limited to select genes related to cancer and progression, therefore further studies are needed to examine the potential interactions in other genes/interaction networks. Our study also has several strengths. This is one of the first studies that applied MDR-based approaches while examining survival outcomes in colorectal cancer, and the first one, in our knowledge, that examined such relatively large number of interactions (~90 million). We explored and applied two different MDR-based programs, using the survival times (Cox-MDR) and the other 5-years survival status (GMDR 0.9) with a slightly different methodology that allowed us to comprehensively examine the interactions and compare the programs’ utility. The patient cohort is a well annotated cohort. Additionally, the use of cross-validation and permutation testing, as well as the repeating the Cox-MDR/GMDR 0.9 runs (20 times) to identify the most consistent best models (called top models in this study) were critical and helped reduce the false-positive findings. More importantly, our results demonstrated that MDR can be powerful in detecting interactions among genetic variants in prognostic studies and the novel 2-way and 3-way SNP interactions identified in this study bring a new depth to colorectal cancer and prognostic research.

In conclusion, we performed a two-part study applying two MDR-based programs to examine the SNP interactions in relation to patient outcomes in colorectal cancer. Our work indicates that MDR-based programs can be quite useful in examining the interactions among the genotypes/SNPs while examining the novel prognostic markers in colorectal cancer. Our results also suggest the presence of novel SNPs and interactions in MMP and VEGF family genes that are associated with the patient outcomes in colorectal cancer. These SNPs are excellent candidates for further biomarker studies.

Data availability statement

The datasets presented in this article are not readily available. Data that support the findings of this study are available from the Newfoundland Colorectal Cancer Registry/Memorial University. However, restrictions apply to the availability of this data, and so data are not publicly available. The data used in this study cannot be made publicly available as patients were not consented to make their data publicly available or accessible. Clinical and genetic data are available from the Newfoundland Colorectal Cancer Registry (NFCCR) upon reasonable request for researchers who meet the criteria for access to confidential data. Request to access the datasets should be directed to Newfoundland Colorectal Cancer Registry (PP; pparfrey@mun.ca) and Research, Grant, and Contract Services (rgcs@mun.ca) at Memorial University of Newfoundland, St. John’s, NL, Canada, and the ethics approval shall be obtained from the Health Research Ethics Board (HREB), Ethics Office, Health Research Ethics Authority, Suite 200, 95 Bonaventure Avenue, St. John’s, NL, A1B 2X5, Canada. The Cox-MDR code can be requested from Dr. Seungyeoun Lee. The GMDR 0.9 code can be requested from the developers, Drs. Xiang-Yang Lou, Jun Zhu, or Ming D. Li.

Ethics statement

The studies involving human participants were reviewed and approved by the Health Research Ethics Authority of Newfoundland and Labrador (HREB). Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Author Contributions

AC: performed all data management steps, programming, and MDR/permutation analyses; performed the statistical analyses; helped interpret the results, gather and interpret eQTL information, and conduct literature search; drafted the manuscript, created Figure 1; YY: helped with permutation testing, statistical analyses, gathering eQTL information, and literature search; MC: helped collect and process the patient outcome data; PP: led the Newfoundland Colorectal Cancer Registry; helped collect the clinical and genetic data; YEY: helped with the statistical/permutation analyses; SS: conceived the idea; led the study; supervised the students and research assistant; helped collect the genetic and outcome data; helped interpret the results and draft the manuscript; finalized and submitted the manuscript.

Funding

This study was supported by the Memorial University Seed, Bridge, and Multidisciplinary research funds (Seed funds to SS).

Acknowledgments

Authors thank the patients recruited to and investigators/staff at Newfoundland Colorectal Cancer Registry (NFCCR); Dr. Seungyeoun Lee for allowing to use the Cox-MDR code; Dr. Guobo Chen for correspondence related to their GMDR 0.9 software; staff at the Provincial Tumor Registry-NL and NLCHI for their help with the clinical data; Lucas Gillingham from CHIA, who helped with computational issues, especially during the COVID-19 pandemic/lock-down. This study was supported by the Memorial University Seed, Bridge, and Multidisciplinary research funds (Seed funds to SS). SS is a senior scientist of Beatrice Hunter Cancer Research Institute (BHCRI).
Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/article/10.3389/fgene.2022.902217/full#supplementary-material

References

Afaf, S., Gusella, M., Jensen, S. A., Vainer, B., Vogel, U., Andersen, J. T., et al. (2011a). The association of polymorphisms in 5-Fluorouracil resistance genes with outcome in adjuvant treatment of colorectal cancer. Pharmacogenomics 12, 1257–1267. doi:10.2217/pgs.11.83
Afaf, S., Gusella, M., Vainer, B., Vogel, U. B., Andersen, J. T., Broedbaek, K., et al. (2011b). Combinations of polymorphisms in genes involved in the 5-Fluorouracil pathway are associated with gastrointestinal toxicity in chemotherapy-treated colorectal cancer patients. Clin. Cancer Res. 17, 3822–3829. doi:10.1158/1078-0432.CCR-11-0304
Altalal, A., and Detmar, M. (2012). Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31, 4499–4508. doi:10.1038/ onc.2011.602
Archives, Ensembl. Available at: http://useast.ensembl.org/info/website/archives/index.html (Accessed January 20, 2021).
Arnold, M., Sierra, M. S., Laservesanne, M., Soerjomataram, I., Jemal, A., Bray, F., et al. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683–691. doi:10.1136/gutjnl-2015-310912
Berian, J. R., Benson, A. B., and Nelson, H. (2015). Young age and aggressive treatment in colon cancer. JAMA 314, 613–614. doi:10.1001/jama.2015.9579
BioGRID Database of protein, chemical, and genetic interactions. Available at: https://thebiogrid.org (Accessed January 29, 2020).
Boyle, A. P., Hong, E. L., Hanhrefan, M., Cheng, Y., Schaub, M. A., Kasowski, M., et al. (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797. doi:10.1101/gr.137323.112
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 68, 394–424. doi:10.3322/caac.21492
Cheng, K., Shang, A. C., Drachenberg, C. B., Zhu, M., and Raufman, J.-P. (2017). Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget 8, 21106–21114. doi:10.18632/oncotarget.15500
Coleman, M. P., Quaresma, M., Berrino, F., Lutz, J.-M., Angelis, R. D., Capocaccia, R., et al. (2008). Cancer survival in five continents: A worldwide population-based study (CONCORD). Lancet Oncol. 9, 730–756. doi:10.1016/S1470-2045(08)70179-7
Compton, C. C., Fielding, L. P., Burgart, L. J., Conley, B., Cooper, H. S., Hamilton, S. R., et al. (2008). Prognostic factors in colorectal cancer. College of American Pathologists consensus statement 1999. Arch. Pathol. Lab. Med. 124, 979–994. doi:10.1043/0002-8826(2000)124<0979:FPGF>2.0.CO;2
Core Team, R. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Cotte, A. K., Aires, V., Fredon, M., Limagne, E., Derangère, V., Thibaudin, M., et al. (2018). Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat. Commun. 9, 322. doi:10.1038/s41467-017-02732-5
Dan, L. A., Werdyan, S., Xu, J., Shetopaloff, K., Hyde, A., Dicks, E., et al. (2016). No associations of a set of SNPs in the Vascular Endothelial Growth Factor (VEGF) and Matrix Metalloproteinase (MMP) genes with survival of colorectal cancer patients. Cancer Med. 5, 2221–2231. doi:10.1002/cam4.796
De, R., Verma, S. S., Drenos, F., Holzinger, E. R., Holmes, M. V., Hall, M. A., et al. (2015). Identifying gene-gene interactions that are highly associated with body mass index using quantitative multifactor dimensionality reduction (QMDR). BioData Min. 8, 41. doi:10.1186/s13040-015-0074-0
Dong, W., Li, H., Zhang, Y., Yang, H., Guo, M., Li, L., et al. (2011). Matrix metalloproteinase 2 promotes cell growth and invasion in colorectal cancer. Acta Biochim. Biophys. Sin. 43, 840–848. doi:10.1093/abbs/gmr085
Edwards, T. L., Lewis, K., Veld, J. R., Dudge, S., and Ritchie, M. D. (2009). Exploring the performance of Multifactor Dimensionality Reduction in large scale SNP studies and in the presence of genetic heterogeneity among epistatic disease models. Hum. Hered. 67, 183–192. doi:10.1159/000181157
Felton, J., Hu, S., and Raufman, J.-P. (2018). Targeting M3 muscarinic receptors for colon cancer therapy. Curr. Mol. Pharmacol. 11, 184–190. doi:10.2174/187446211666180119115828
Gao, M., Zhang, X., Li, D., He, P., Tian, W., Zeng, B., et al. (2016). Expression analysis and clinical significance of eIF4E, VEGF-C, E-cadherin and MMP-2 in colorectal adenocarcinoma. Oncotarget 7, 8502–8514. doi:10.18632/oncotarget.13453
Genome Browser, Ensembl. Available at: http://grch37.ensembl.org/index.html (Accessed January 29, 2020).
GMDDR. Available at: http://www.ssg.uab.edu/gmddr (Accessed July 19, 2019).
Gola, D., Mahachie John, J. M., van Steen, K., and König, I. R. (2016). A roadmap to multifactor dimensionality reduction methods. Brief. Bioinform. 17, 293–308. doi:10.1093/bib/bbv038
Green, R. C., Green, J. S., Buehler, S. K., Robb, J. D., Daftary, D., Gallinger, S., et al. (2007). Very high incidence of familial colorectal cancer in Newfoundland: A comparison with ontario and 13 other population-based studies. Fam. Cancer 6, 53–62. doi:10.1007/s10609-006-9104-x
Guil, J., Moore, J. H., Kelsey, K. T., Maris, C. J., Karagas, M. R., Andrew, A. S., et al. (2011). A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis. Hum. Genet. 129, 101–110. doi:10.1007/s00439-010-0905-5
Heidegger, H., Dietmeier, S., Ye, Y., Kuhn, C., Vattai, A., Aberl, C., et al. (2017). The prostaglandin EP3 receptor is an independent negative prognostic factor for cervical cancer patients. Int. J. Mol. Sci. 18, 1571. doi:10.3390/ijms18071571
Hicklin, D. J., and Ellis, L. M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011–1027. doi:10.1200/CO.2005.06.081
Howe, K. L., Achuthan, P., Allen, J., Allen, J., Alvarez-Jarreta, J., Amode, M. R., et al. (2011). Ensembl 2011. Nucleic Acids Res. 39, D884–D891. doi:10.1093/nar/gkq4942
Hu, X., Qin, W., Li, S., He, M., Wang, Y., Guan, S., et al. (2018). Polymorphisms in DNA repair pathway genes and ABCG2 gene in advanced colorectal cancer: Correlation with tumor characteristics and clinical outcome in oxaliplatin-based chemotherapy. Cancer Manag. Res. 11, 285–297. doi:10.2147/CRRR.S181922
Hua, H., Li, M., Luo, T., Yin, Y., and Jiang, Y. (2011). Matrix metalloproteinases in tumorgenesis: An evolving paradigm. Cell. Mol. Life Sci. 68, 3853–3868. doi:10.1007/s00018-011-0763-x
IBM SPSS Statistics for Windows (2017). IBM SPSS Statistics for Windows. Armonk, NY: IBM Corp.
Pathy, S., Lambert, R., Sauvaget, C., and Sankaranarayanan, R. (2012). The incidence and survival rates of colorectal cancer in India remain low compared with rising rates in East Asia. Dis. Colon Rectum 55, 900–906. doi:10.1097/DCR.0b013e318254f6ce

Penney, K. L., Banbury, B. L., Bien, S., Harrison, T. A., Hua, X., Phipps, A. I., et al. (2019a). Genetic variant associated with survival of patients with stage II-III colon cancer. Clin. Gastroenterol. Hepatol. 18, 2717–2723. e3. doi:10.1016/j.cgh.2019.11.046

Penney, M. E., Parfrey, P. S., Savas, S., and Vilman, Y. E. (2019b). A genome-wide association study identifies single nucleotide polymorphisms associated with time-to-metastasis in colorectal cancer. BMC Cancer 19, 133. doi:10.1186/s12885-019-3346-5

Phipps, A. I., Passarelli, M. N., Chan, A. T., Harrison, T. A., Jeon, J., Hutter, C. M., et al. (2016). Common genetic variation and survival after colorectal cancer. J. Genet. Genom. 43, 87–95. doi:10.1016/j.jgg.2016.01.006

PLINK (2017). Whole genome data analysis toolset. Available at: http://zzz.bwh.harvard.edu/plink/(Accessed October 2, 2019).

Pen, F., Tang, R., Zhang, X., Madwishi, W. M., Luo, D., Dang, Y., et al. (2015). Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: A systematic review and meta-analysis. PLoS ONE 10, e0135544. doi:10.1371/journal.pone.0135544

Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Fratt, F. F., et al. (2001). Multi-factor dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147. doi:10.1086/321276

Sarac, S. B., Rasmussen, C. H., Aftal, S., Thrstrup, N., Jensen, S. A., Colding-Jorgensen, M., et al. (2012). Data-driven assessment of the association of polymorphisms in 5-Fluorouracil metabolism genes with outcome in adjuvant treatment of colorectal cancer. Basic Clin. Pharmacol. Toxicol. 111, 189–197. doi:10.1111/j.1742-7843.2012.00883.x

Savas, S. (2012). A curated database of genetic markers from the angiogenesis/VEGF pathway and their relation to clinical outcome in human cancers. Acta Oncol. 51, 243–246. doi:10.3109/0284186X.2011.636758

Savas, S., and Liu, G. (2009). Genetic variations as cancer prognostic markers: Review and update. Hum. Mutat. 30, 1369–1377. doi:10.1002/humu.21078

Savas, S., and Youngblood, H. B. (2010). dbCPCCO: a database of genetic markers tested for their predictive and prognostic value in colorectal cancer. Hum. Mutat. 31, 901–907. doi:10.1002/humu.21285

Scherer, D., Balavarca, Y., Hаберманн, Н., Buck, К., Сeibold, P., Kap, L., et al. (2014). Abstract 2186: Genetic variation in angiogenesis-related genes is associated with colorectal cancer risk and prognosis. Cancer Res. 74 (19 Suppl). ment), 2188. doi:10.1158/1535-7163.am2014-2188

Sherry, S. T., Ward, M. H., Khodolov, M., Baker, J., Pham, L., Smigelski, E. M., et al. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311. doi:10.1093/nar/29.1.308

Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M., et al. (2006). BioGRID: A general repository for interaction databases. Nucleic Acids Res. 34, D535–D539. doi:10.1093/nig/2006.10.1.954

Steel, C. W., Whittle, T., and Smith, J. J. (2019). Review: KRAS mutations are influential in driving hepatic metastases and predicting outcome in colorectal cancer. Clin. Oncol. 31, 53. doi:10.1016/j.cact.2019.08.16

van der Jagt, M. F. P., Wobbes, T., Sweep, F. C. G. J., and Span, P. N. (2010). Metalloproteinases and their regulators in colorectal cancer. J. Surg. Oncol. 101, 259–269. doi:10.1002/jso.21462

Velapalasy, S., Alex, L., Chahil, J. K., Lye, S. H., Munnetram, K., Hashim, N. A., et al. (2013). Influences of multiple genetic polymorphisms on ovarian cancer risk in Malaysia. Genet. Test. Mol. Biomarkers 17, 62–68. doi:10.1089/gtmb.2012.0233

Wang, H.-L., Zhou, P.-Y., Zhang, Y., and Liu, P. (2014). Relationships between abnormal MMP2 expression and prognosis in gastric cancer: A meta-analysis of cohort studies. Cancer Biother. Radiopharm. 29, 166–172. doi:10.1089/cbr.2014.0169

Woods, M. O., Youngblood, H. B., Parfrey, P. S., Gallagher, S., McLoughlin, J., Dicks, E., et al. (2010). The genetic basis of colorectal cancer in a population-based incident cohort with a high rate of familial disease. Gut 59, 1369–1377. doi:10.1136/gut.2010.208462
Wu, S., Ma, C., Shan, S., Zhou, L., and Li, W. (2017). High expression of matrix metalloproteinases 16 is associated with the aggressive malignant behavior and poor survival outcome in colorectal carcinoma. Sci. Rep. 7, 46531. doi:10.1038/srep46531

Xu, W., Xu, J., Shetopaloff, K., Dicks, E., Green, J., Parfrey, P., et al. (2015). A genome wide association study on Newfoundland colorectal cancer patients’ survival outcomes. Biomark. Res. 3, 6. doi:10.1186/s40364-015-0031-6

Yu, Y., Carey, M., Pollett, W., Green, J., Dicks, E., Parfrey, P., et al. (2019). The long-term survival characteristics of a cohort of colorectal cancer patients and baseline variables associated with survival outcomes with or without time-varying effects. BMC Med. 17, 150. doi:10.1186/s12916-019-1379-5

Yu, Y., Werdyani, S., Carey, M., Parfrey, P., Yilmaz, Y. E., Savas, S., et al. (2021). A comprehensive analysis of SNPs and CNVs identifies novel markers associated with disease outcomes in colorectal cancer. Mol. Oncol. 15, 3329–3347. doi:10.1002/1878-0261.13067

Zhao, H., Bernardo, M. M., Osenkowski, P., Sohail, A., Pei, D., Nagase, H., et al. (2004). Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation. J. Biol. Chem. 279, 8592–8601. doi:10.1074/jbc.M308708200

Ziv, E., Dean, E., Hu, D., Martino, A., Serie, D., Curtis, K., et al. (2015). Corrigendum: Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients. Nat. Commun. 6, 10203. doi:10.1038/ncomms10203