On chiral extrapolations of coupled-channel reaction dynamics for charmed mesons

Xiao-Yu Guo
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
E-mail: x.guo@gsi.de

Yonggoo Heo
Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
E-mail: y.heo@g.sut.ac.th

Matthias F.M. Lutz
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
Technische Universität Darmstadt, D-64289 Darmstadt, Germany
E-mail: m.lutz@gsi.de

We perform an analysis of QCD lattice data on masses of charmed meson with $J^P = 0^-$ and $J^P = 1^-$ quantum numbers. The quark-mass dependence of the data set is used to gain information on the size of counter terms in the chiral Lagrangian formulated with open-charm mesons. Of particular interest are those counter terms that are active in the exotic flavour sextet channel. A chiral expansion scheme is developed and applied to the lattice data set. An accurate reproduction of the lattice data based on ensembles of PACS-CS, MILC, ETMC and HSC with pion and kaon masses smaller than 600 MeV is achieved. It is argued that a unique set of low-energy parameters is obtainable only if additional information from an HSC ensemble on some scattering phase shifts is included in our global fits. Based on such low-energy parameters we find a clear signal for a member of the exotic flavour sextet states in the πD phase shift, between the ηD and $\bar{K}D_s$ thresholds. A striking dependence of such phase shifts on the values of the up, down and strange quarks is predicted.

The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018
22-28 July, 2018
Michigan State University, East Lansing, Michigan, USA.

*Speaker.
1. Introduction

Open-charm meson systems are believed to be of crucial importance in understanding the low-energy behavior of QCD [1, 2]. A heavy charm quark is surrounded by a light quark, either a u, d or s quark. The interplay of the heavy-quark spin symmetry for the charm quark and the chiral SU(3) symmetry for the u, d or s quarks make such systems unique and effective field theory approaches particularly predictive. The leading order chiral Lagrangian already produces significant short-range and attractive forces that may dynamically generate open-charm resonances. Within the coupled-channel approach [3], the scalar meson $D^{s0}_{00}(2317)$ is well described by the leading order chiral interaction [4, 5, 6, 7, 8, 9]. At this leading order further predictions are made on exotic scalar resonances in a flavour sextet [4, 5, 6]. The existence of such states depends on the precise form of chiral forces generated by higher order chiral counter terms [5, 6, 10, 2]. The aim of this work is to report on the impact of lattice data from [11, 12, 13, 14] on such counter terms and their implications for coupled-channel open-charm systems.

We notice that the counter terms have significant impact not only on the open-charm coupled channel systems but also on the quark-mass dependence of the D-meson masses. The lattice data sets on charmed meson masses from [11, 12, 13] are considered and play a crucial role in our derivation of a set of the low-energy parameters. Such data are supplemented by first lattice data from HSC on the s-wave πD scattering process at a pion mass of about 400 MeV [14]. Based on our fit scenarios, we present the pole positions found for the scalar open-charm mesons in the exotic flavour sextet channels as expected for the physical choice of the quark masses. A striking quark-mass dependence of such states is illustrated by presenting the form of the s-wave πD phase shift as extrapolated down from the considered HSC ensemble at a pion mass of about 400 MeV to the physical point.

2. The chiral Lagrangian for open-charm mesons

We recall the SU(3) chiral Lagrangian formulated in the presence of anti-triplets of D mesons with $J^P = 0^-$ and $J^P = 1^-$. In the relativistic version the Lagrangian was developed in [4, 5, 6]. The chiral Lagrangian used in [15] considers the anti-triplets fields, D and $D_{\mu\nu}$, of charmed mesons with $J^P = 0^-$ and $J = 1^-$ quantum numbers respectively. The terms relevant here read

$$\mathcal{L} = \left(\tilde{\partial}_\mu D \right) \left(\tilde{\partial}^\mu D \right) - M^2 D^2 D + 2 g_{\mu \nu} \left\{ D_{\mu \nu} U^\mu \left(\tilde{\partial}^\nu D \right) - \left(\tilde{\partial}^\nu D \right) U^\mu D_{\mu \nu} \right\}$$

$$- \left(4 c_0 - 2 c_1 \right) D \tilde{\partial} \chi_+ - 2 c_1 D \chi_+ \tilde{D} + 4 \left(2 c_1 + c_3 \right) D \tilde{\partial} \left(U_{\mu} U^{\mu \dagger} \right) - 4 c_3 D U_{\mu} U^{\mu \dagger} \tilde{D}$$

$$+ \left(4 c_4 + 2 c_5 \right) \left(\tilde{\partial}_\mu D \right) \left(\tilde{\partial}_\nu D \right) \left[U^{\mu}, U^{\nu \dagger} \right] / M^2 - 2 c_5 \left(\tilde{\partial}_\mu D \right) \left[U^{\mu}, U^{\nu \dagger} \right] / M^2 \left(\tilde{\partial}_\nu D \right) / M^2$$

$$+ 4 g_1 D \chi_-, \tilde{\partial}^\nu D / M - 4 g_2 D \left[U_{\mu}, \left[\tilde{\partial}_\nu, U^{\mu \dagger} \right] \right] - \left[U_{\mu}, \left[\tilde{\partial}_\mu, \left[\tilde{\partial}_\nu, U^{\mu \dagger} \right] \right] \right] \tilde{\partial}^\nu D / M$$

$$- 4 g_3 D \left[U_{\mu}, \left[\tilde{\partial}_\nu, U^{\mu \dagger} \right] \right] - \left[\tilde{\partial}_\mu, \left[\tilde{\partial}_\nu, \left[\tilde{\partial}_\rho, \right] \right] \right] \tilde{D} / M^3 + \text{h.c.},$$

(2.1)

where

$$U_{\mu} = \frac{1}{2} e^{-i \frac{\phi}{2}} \left(\partial_\mu e^{i \frac{\phi}{2}} \right) e^{-i \frac{\phi}{2}}$$

$$\Gamma_{\mu} = \frac{1}{2} e^{-i \frac{\phi}{2}} \partial_\mu e^{i \frac{\phi}{2}} + \frac{1}{2} e^{i \frac{\phi}{2}} \partial_\mu e^{-i \frac{\phi}{2}}$$

$$\chi_{\pm} = \frac{1}{2} \left(e^{i \frac{\phi}{2}} \chi_0 e^{i \frac{\phi}{2}} \pm e^{-i \frac{\phi}{2}} \chi_0 e^{-i \frac{\phi}{2}} \right)$$

$$\chi_0 = 2 B_0 \text{diag}(m_u, m_d, m_s)$$

$$\tilde{\partial}_\mu \tilde{D} = \tilde{\partial}_\mu \tilde{D} + \Gamma_{\mu} \tilde{D}$$

$$\tilde{\partial} \mu D = \tilde{\partial}_\mu D - D \Gamma_{\mu}.$$

(2.2)
The quark masses enter via χ_\pm and the octet of the Goldstone bosons is encoded into the 3×3 matrix Φ. The covariant derivative $\hat{\partial}_\mu$ in the kinetic term of the D mesons generates the leading order two-body chiral interaction, recognized as the Weinberg-Tomozawa interaction. Its interaction strength is determined by the parameter f, the chiral limit value of the pion-decay constant.

The parameter M measures the mass of the D mesons in the chiral limit, provided that a suitable renormalization scheme is applied [16, 15]. We consider the isospin limit with $m_u = m_d = m$. The hadronic decay width of the charged D^*-meson implies $|g_P| = 0.57 \pm 0.07$ [6]. Further symmetry breaking counter terms involving two χ_\pm fields are not shown in (2.1) but are systematically considered in [15]. In the latter work it was illustrated in great detail that a chiral decomposition of the charmed meson masses is well converging if it is organized in terms of on-shell meson masses, rather than bare masses. This implies that the derivation of the charmed mesons masses on a given lattice ensemble requires the solution of a coupled and non-linear set of four equations.

The role of subleading operators of chiral order Q^3 as introduced first in [9] was explored. Such terms, proportional to g_I in (2.1), do not affect the charmed-meson masses but do impact the scattering phase shifts.

3. Fit to QCD lattice data

We determine the LECs of the chiral Lagrangian from lattice QCD simulations of the D-meson masses. HPQCD provides a data set for the pseudoscalar D-meson masses [12], based on the MILC AsqTad ensembles [17]. Those ensembles are also used in [10], however employing domain-wall quarks as set up by LHPC. This work provides the pseudoscalar charmed meson masses but also some s-wave scattering lengths, that characterize the low-energy interaction of the charmed mesons with the Goldstone bosons. Based on the PACS-CS ensembles, the masses for charmed
Table 1: The low-energy constants (LEC) from four fit scenarios as explained in [15]. Each parameter set reproduces the isospin average of the empirical D and D* meson masses from the PDG. The value $f = 92.4$ MeV was used in [15].
shifts of HSC [14]. In Fit 3 and 4, the subleading counterterms (2.1) are activated. We note that Fit 1 and 3 imposes the relations \(c_2 = -c_3/2 \) and \(c_4 = -c_5/2 \) which hold in the large \(N_c \) limit of QCD.

4. Phase shifts and poles in the complex plane

In this section we discuss the coupled-channel dynamics of \(J^P = 0^+ \) charmed meson. We apply the on-shell reduction scheme as developed in [3] to derive the coupled-channel unitarized scattering amplitude. This approach rests on a matching scale \(\mu_M \), the natural value of which is given in [4]. Given the set of low-energy parameters in Tab. 1 phase shifts and inelasticity parameters are determined in all flavour sectors characterized by isospin \((I) \) and strangeness \((S) \) quantum numbers.

In this Proceeding we focus on the \(\pi D \) phase shift with \((I,S) = (1/2,0) \). The phase shift and inelasticities generated by the leading order Weinberg-Tomozawa interaction are shown in Fig. 2. The rapid rise of the phase shift through 90° and 180° reflects the presence of a broad and a narrow

\((I,S) \)	\((I,S) = (1,1) \)	\((I,S) = (1/2,0) \)	\((I,S) = (0,-1) \)
WT	2.488\(\pm \)22\(\pm \)15 - 0.083\(\pm \)14\(\pm \)5 \(\mathrm{i} \)	2.390\(\pm \)20\(\pm \)17 - 0.038\(\pm \)15 \(\mathrm{i} \)	2.335\(\pm \)43\(\pm \)15
Fit 1	2.542\(\pm \)15\(\pm \)16 - 0.114\(\pm \)19\(\pm \)6 \(\mathrm{i} \)	2.471\(\pm \)8\(\pm \)7 - 0.046\(\pm \)3\(\pm \)3 \(\mathrm{i} \)	2.360\(\pm \)1\(\pm \)0 - 0.143\(\pm \)17\(\pm \)14 \(\mathrm{i} \)
Fit 2	2.450\(\pm \)8\(\pm \)9 - 0.297\(\pm \)10\(\pm \)8 \(\mathrm{i} \)	2.460\(\pm \)17\(\pm \)11 - 0.152\(\pm \)5\(\pm \)2 \(\mathrm{i} \)	2.287\(\pm \)4\(\pm \)2 - 0.124\(\pm \)14\(\pm \)12 \(\mathrm{i} \)
Fit 3	2.389\(\pm \)6\(\pm \)9 - 0.336\(\pm \)11\(\pm \)6 \(\mathrm{i} \)	2.463\(\pm \)37\(\pm \)27 - 0.106\(\pm \)8\(\pm \)6 \(\mathrm{i} \)	2.230\(\pm \)4\(\pm \)3 - 0.121\(\pm \)13\(\pm \)11 \(\mathrm{i} \)
Fit 4	2.382\(\pm \)10\(\pm \)9 - 0.322\(\pm \)12\(\pm \)10 \(\mathrm{i} \)	2.439\(\pm \)42\(\pm \)32 - 0.092\(\pm \)7\(\pm \)3 \(\mathrm{i} \)	2.229\(\pm \)4\(\pm \)3 - 0.083\(\pm \)13\(\pm \)11 \(\mathrm{i} \)

Table 2: Pole masses of the \(0^+ \) meson resonances in the flavour sextet channels, in units of GeV. The \((1,1), (1/2,0), (0,-1) \) poles are located on the \((-,+) \), \((-,-,+) \), \((-) \) sheets respectively according to the notation used in [21]. The asymmetric errors are estimated by varying the matching scale \(\mu_M \) around its natural value by 0.1 GeV. With 'WT' we refer to the leading order scenario that relies on the parameter \(\mu_R \) from its natural value. M

\[
\begin{array}{c|c|c|c}
\hline
\text{Fit} & (I,S) = (1,1) & (I,S) = (1/2,0) & (I,S) = (0,-1) \\
\hline
\text{WT} & 2.488_{-22}^{+22} - 0.083_{-5}^{+14} \mathrm{i} & 2.390_{-17}^{+20} - 0.038_{-17}^{+15} \mathrm{i} & 2.335_{-15}^{+43} \\
\text{Fit 1} & 2.542_{-16}^{+15} - 0.114_{-9}^{+19} \mathrm{i} & 2.471_{-7}^{+8} - 0.046_{-3}^{+7} \mathrm{i} & 2.360_{-0}^{+1} - 0.143_{-14}^{+17} \mathrm{i} \\
\text{Fit 2} & 2.450_{-9}^{+8} - 0.297_{-8}^{+10} \mathrm{i} & 2.460_{-11}^{+17} - 0.152_{-2}^{+5} \mathrm{i} & 2.287_{-2}^{+4} - 0.124_{-12}^{+14} \mathrm{i} \\
\text{Fit 3} & 2.389_{-9}^{+6} - 0.336_{-6}^{+11} \mathrm{i} & 2.463_{-27}^{+37} - 0.106_{-6}^{+8} \mathrm{i} & 2.230_{-3}^{+4} - 0.121_{-11}^{+13} \mathrm{i} \\
\text{Fit 4} & 2.382_{-10}^{+10} - 0.322_{-10}^{+12} \mathrm{i} & 2.439_{-32}^{+42} - 0.092_{-3}^{+7} \mathrm{i} & 2.229_{-3}^{+4} - 0.083_{-11}^{+13} \mathrm{i} \\
\hline
\end{array}
\]

Figure 2: Predictions for \((I,S) = (1/2,0) \) \(\pi D \) phase shifts and inelasticities from Weinberg-Tomozawa terms at physical quark masses. The blue band indicates the uncertainty by allowing ±0.1GeV deviation of \(\mu_M \) from its natural value.
resonance state in this channel. The narrow one seen around the ηD threshold is a member of the flavour sextet. The uncertainty band is implied by a variation of ± 0.1 GeV in the matching scale μ_M around its natural value [4]. In comparison, the πD phase shift is shown in Fig. 3 from our preferred Fit 4. The result at physical quark masses is shown in a black solid line. We clearly see a signal of a resonance in between the ηD and $\bar{K}D_s$ thresholds. Most striking are our predictions for the quark-mass dependence of the πD phase shift. We present the phase shifts at different unphysical quark masses in dashed and dotted lines in Fig. 3.

In all the sextet channels, poles are found in the lower complex plane, following the analytic continuation method illustrated in [21]. The pole masses are listed in Tab. 2. The pole at $(I, S) = (1/2, 0)$ sector is lying well between the ηD and $\bar{K}D_s$. The width depends on fitting scenarios, but is always significantly smaller than the antitriplet partner in the same channel. The latter exhibits a pole at $(2.082^{+9}_{-2} - 0.187^{+44}_{-32}i)$ GeV (Fit 4) where the asymmetric error is implied by a ± 0.1GeV deviation of μ_M from their natural values [4].

5. Summary

We studied the chiral extrapolation of charmed meson masses based on the three-flavour chiral Lagrangian. About 80 lattice data points from 5 different lattice groups are analyzed. Such data pose a significant constraint on the low-energy constants of the chiral Lagrangian formulated for charmed meson fields. The implication of higher order counter terms in the coupled-channel dynamics of the open-charm sector of QCD is explored. A striking quark-mass dependence of phase-shifts and inelasticity parameters is derived. At the physical point we predict a clear signal for the flavour sextet in the πD phase shift with a pole lying in the complex plane between the ηD and $\bar{K}D_s$ thresholds.

References

[1] T.-M. Yan, H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin and H.-L. Yu, Heavy quark symmetry and chiral dynamics, Phys. Rev. D46 (1992) 1148.

[2] M. F. M. Lutz et al., Resonances in QCD, Nucl. Phys. A948 (2016) 93 [1511.09353].
On chiral extrapolations of coupled-channel reaction dynamics for charmed mesons

Xiao-Yu Guo

[3] M. F. M. Lutz and E. Kolomeitsev, Relativistic chiral SU(3) symmetry, large N(c) sum rules and meson baryon scattering, *Nucl. Phys. A700* (2002) 193 [nucl-th/0105042].

[4] E. Kolomeitsev and M. F. M. Lutz, On Heavy light meson resonances and chiral symmetry, *Phys. Lett. B582* (2004) 39 [hep-ph/0307133].

[5] J. Hofmann and M. F. M. Lutz, Open charm meson resonances with negative strangeness, *Nucl. Phys. A733* (2004) 193 [nucl-th/0105042].

[6] M. F. M. Lutz and M. Soyeur, Radiative and isospin-violating decays of D(s)-mesons in the hadrogenesis conjecture, *Nucl. Phys. A813* (2008) 14 [0710.1545].

[7] F.-K. Guo, P.-N. Shen, H.-C. Chiang, R.-G. Ping and B.-S. Zou, Dynamically generated 0+ heavy mesons in a heavy chiral unitary approach, *Phys. Lett. B641* (2006) 278 [hep-ph/0603072].

[8] Z.-H. Guo, U.-G. Meißner and D.-L. Yao, New insights into the D∗s(2317) and other charm scalar mesons, *Phys. Rev. D86* (2012) 094508 [1208.4535].

[9] M.-L. Du, F.-K. Guo, U.-G. Meißner and D.-L. Yao, Study of open-charm 0+ states in unitarized chiral effective theory with one-loop potentials, *Eur. Phys. J. C77* (2017) 728 [1703.10836].

[10] L. Liu, K. Orginos, F.-K. Guo, C. Hanhart and U.-G. Meißner, Interactions of Charmed Mesons with Light Pseudoscalar Mesons from Lattice QCD and Implications on the Nature of the D∗s(2317), *Phys. Rev. D87* (2013) 014508 [1208.4535].

[11] D. Mohler and R. Woloshyn, D and Ds meson spectroscopy, *Phys. Rev. D84* (2011) 054505 [1103.5506].

[12] H. Na, C. T. Davies, E. Follana, G. P. Lepage and J. Shigemitsu, |Vcd| from D Meson Leptonic Decays, *Phys. Rev. D86* (2012) 054510 [1206.4936].

[13] M. Kalinowski and M. Wagner, Masses of D mesons, Ds mesons and charmonium states from twisted mass lattice QCD, *Phys. Rev. D92* (2015) 094508 [1509.02396].

[14] G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas and D. J. Wilson, Coupled-Channel Dπ, Dη and DsK Scattering from Lattice QCD, *JHEP* 10 (2016) 011 [1607.07093].

[15] X.-Y. Guo, Y. Heo and M. F. M. Lutz, On chiral extrapolations of charmed meson masses and coupled-channel reaction dynamics, *Phys. Rev. D98* (2018) 014510 [1801.010122].

[16] M. F. M. Lutz, Y. Heo and X.-Y. Guo, On the convergence of the chiral expansion for the baryon ground-state masses, *Nucl. Phys. A977* (2018) 146 [1801.06417].

[17] MILC collaboration, A. Bazavov et al., Nonperturbative QCD Simulations with 2+1 Flavors of Improved Staggered Quarks, *Rev. Mod. Phys.* 82 (2010) 1349 [0903.3598].

[18] C. Lang, L. Leskovec, D. Mohler, S. Prelovsek and R. Woloshyn, Ds mesons with DK and DsK scattering near threshold, *Phys. Rev. D90* (2014) 034510 [1403.8103].

[19] M. F. M. Lutz, R. Bavontaweepanya, C. Kobdaj and K. Schwarz, Finite volume effects in the chiral extrapolation of baryon masses, *Phys. Rev. D90* (2014) 054505 [1401.7805].

[20] EUROPEAN TWISTED MASS collaboration, N. Carrasco et al., Up, down, strange and charm quark masses with N_f = 2+1+1 twisted mass lattice QCD, *Nucl. Phys. B887* (2014) 19 [1403.4504].

[21] X.-Y. Guo, Y. Heo and M. F. M. Lutz, On chiral excitations with exotic quantum numbers, 1809.01311.

[22] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards and C. E. Thomas, Coupled ππ, KK scattering in P-wave and the ρ resonance from lattice QCD, *Phys. Rev. D92* (2015) 094502 [1507.02599].