Identification and Characterization of an Escorter for Two Secretory Adhesins in *Toxoplasma gondii*

Matthias Reiss,* Nicola Viebig,* Susan Brecht,* Marie-Noelle Fourmaux,† Martine Soete,‡ Manlio Di Cristina,§ Jean François Dubremetz,¶ and Dominique Soldati*

*Center for Molecular Biology, University of Heidelberg, Heidelberg D-63120, Germany; †Institute of Biology CNRS, Institut Pasteur de Lille, Lille, 59019 France; and ‡Department of Cell Biology, Imperial College of Science, Technology, and Medicine, London, SW7 2AZ United Kingdom

Abstract. The intracellular protozoan parasite *Toxoplasma gondii* shares with other members of the Apicomplexa a common set of apical structures involved in host cell invasion. Micronemes are apical secretory organelles releasing their contents upon contact with host cells. We have identified a transmembrane micronemal protein MIC6, which functions as an escorter for the accurate targeting of two soluble proteins MIC1 and MIC4 to the micronemes. Disruption of *MIC1*, *MIC4*, and *MIC6* genes allowed us to precisely dissect their contribution in sorting processes. We have mapped domains on these proteins that determine complex formation and targeting to the organelle. MIC6 carries a sorting signal(s) in its cytoplasmic tail whereas its association with MIC1 involves a luminal EGF-like domain. MIC4 binds directly to MIC1 and behaves as a passive cargo molecule. In contrast, MIC1 is linked to a quality control system and is absolutely required for the complex to leave the early compartments of the secretory pathway. MIC1 and MIC4 bind to host cells, and the existence of such a complex provides a plausible mechanism explaining how soluble adhesins act. We hypothesize that during invasion, MIC6 along with adhesins establishes a bridge between the host cell and the parasite.

Key words: parasite • *Toxoplasma gondii* • protein targeting • regulated secretion • EGF-like domain

Introduction

The first and essential event in obligate intracellular parasite infection is host cell invasion. In apicomplexan parasites, apical secretory organelles ensure the accumulation and the appropriate release in time and space of adhesins and other invasion factors. An increasing number of micronemal proteins sharing common features have been identified among the Apicomplexa and recent studies illustrated their central role in parasite motility and host cells invasion (for review see Tomley and Soldati, 2001). *Toxoplasma gondii* has developed a remarkable ability to actively penetrate a broad range of cells within the mammalian hosts, whereas the members of the *Plasmodium* genus exhibit very restricted host range specificities. The molecular bases of host range specificity have not been elucidated yet but might implicate the repertoire of micronemal proteins and their adhesive interactions with host cell receptors (Barnwell and Galinski, 1995). The micronemal proteins of the TRAP family have been identified as active players in host cell invasion and gliding motility in the invasive stages of the rodent malaria parasites *Plasmodium berghei* (Sultan et al., 1997; Dessens et al., 1999; Yuda et al., 1999). Thrombospondin-related adhesive proteins (TRAPs) contain a putative transmembrane spanning domain and a conserved short cytoplasmic tail. MIC2, the homologue of TRAP in *T. gondii* (Wan et al., 1997), is shed apically on the surface of the parasites and relocates toward the posterior pole by a mechanism dependent on the parasite actomyosin system (Sibley et al., 1998). In a recent complementation experiment, the cytoplasmic domain (CD) of MIC2 was shown to functionally replace the corresponding domain in PbTRAP (Kappe et al., 1999), suggesting that the machinery for invasion is conserved among members of the phylum. We have identified a novel family of transmembrane micronemal proteins including MIC6 (Meissner, M., and D. Soldati, unpublished results; sequence data are available from GenBank/EMBL/DDBJ under accession number AF110270). Analysis of the deletion

M. Reiss and N. Viebig contributed equally to this study.

Address correspondence to D. Soldati, ZMBH, Im Neunheimer Feld 282, P.O. Box 106249, Heidelberg D-69120, Germany. Tel.: 49-6221-54-68-70, Fax: 49-6221-54-58-92. E-mail: soldati@zmbh.uni-heidelberg.de

Abbreviations used in this paper: CD, cytoplasmic domain; GPI, glycosyl-phosphatidyl-inositol; HFF, human foreskin fibroblast; IFA, indirect immunofluorescence assay; PBSFCS, 10% PBS FCS; RH, wild-type parasite of RH strain; TM-CD, transmembrane and CD of the MIC6; TRAP, thrombospondin-related adhesive protein.
duced amino acid sequence of MIC6 revealed a secretory signal sequence and three EGF–like domains. The COOH-terminal region exhibits a putative transmembrane spanning domain and a short cytoplasmic tail homologous to MIC2 and to the other members of the TRAP family. Four soluble micronemal proteins, MIC1, MIC3, MIC4, and MIC5 have been characterized so far in T. gondii. These proteins contain multiple thrombospondin-like, EGF-like, or apple domains potentially conferring adhesive properties to these molecules (see Fig. 1 A). Indeed, MIC1 (Fourmaux et al., 1996), MIC3 (Garcia-Réguet et al., 2001), and MIC4 (Brecht et al., 2001) bind to host cells, but it is still unclear how they establish a link between the parasite and the host cell. Similarly, little is known about how in general soluble secretory proteins are sorted to their appropriate organelles. Understanding how T. gondii copes with the sorting of the large variety of secreted proteins in the multiple distinct secretory compartments is an area of intense investigation (Kaasch and Joiner, 2000; Ngo et al., 2000). Recent studies have demonstrated that the targeting of transmembrane proteins in specialized organelles is achieved through the use of evolutionary conserved signals and machinery (Hoppe et al., 2000).

In this study, we have abrogated the expression of MIC1, MIC4, or MIC6 by gene disruption. Analysis of these mutants demonstrated that the sorting of the two soluble proteins MIC1 and MIC4 to micronemes is critically dependent on the presence of the transmembrane protein MIC6. We confirmed the existence of a complex between these three micronemal proteins and mapped some of the domains involved in protein–protein interactions and sorting. Such a complex potentially explains how soluble secretory adhesins can be sorted, and how they could contribute efficiently to the invasion process.

Materials and Methods

Host Cells and Toxoplasma Strains Growth

Tachyzoites of the wild-type parasite of RH strain (RH) T. gondii were maintained by growth on monolayers of human foreskin fibroblasts (HFF) or on African green monkey (Vero) cells, grown in DMEM (GIBCO) containing 5% or 10% fetal calf serum (GIBCO). A clonal isolate of the RH/hxgprt of T. gondii, was used as the recipient strain for the experiments described here.

DNA Constructs

The vectors for the replacement of MIC1, MIC4, and MIC6 genes were generated by insertion of large 5′ and 3′ flanking sequences of the MIC genes in the vector pdrfrthxgprt to give pmic1khxgprt, pmic4khxgprt, and pmic6khxgprt, respectively. Approximately 2,500 bp of 5′ and 3,000 bp of 3′ flanking sequences of MIC1 gene, 1,561 bp of 5′ and 1,726 bp of 3′ flanking sequences of MIC4 gene and 1,788 kb of 5′, and 2,257 bp of 3′ flanking sequences of MIC6 gene were used.

Construction of mic6 Mutants

All MIC4 and MIC6 mutants were cloned in pT (pT/5R20), a plasmid derived from pHblueescrit II SK’. (Stratagene) containing the promoter sequence of the TUB1 gene, a 3′ untranslated sequence (3′UTR) of SAG1, described previously (Soldati and Boothroyd, 1995). MIC1 and SAG1 mutants were cloned into pm2 vector, which contains 1,479 bp of 5′ and 1,200 bp of 3′ flanking sequence of the MIC2 gene as described recently (Di Cristina et al., 2000).

The pTMIC6 construct was obtained by PCR amplification of the full MIC6 cDNA using primers MIC6/5 and MIC6/6 and cloning into EcoRI and PacI sites of pT/5R20. The Ty-1 epitope tag was introduced by insertion of double-stranded oligonucleotides into the SalI site using the primers Ty-1/5 and Ty-1/6.

Construction of mic4 Mutants

The pTMIC4 construct was obtained by PCR amplification of the full-length MIC4 cDNA using primers MIC4/1 and MIC4/2 and cloning into EcoRI and PacI and sites of pT/5R20. Approximately 2,257 kb of 3′ and 3,000 bp of 5′ flanking sequences of MIC4 gene and 1,788 kb of 5′ and 2,257 bp of 3′ flanking sequences of MIC6 gene were used.

Previously described (Bastin et al., 1996) was introduced by inverse PCR at the amino acid position 195. One of the primers contains the sequence corresponding to the tag and both primers contain a unique restriction site not present on the vector (NsiI) and matching sequence in sense and antisense direction at the site of tag insertion. The whole plasmid was amplified by inverse PCR, cut with NsiI, and ligated. The amplified plasmid was then cut with NsiI and ligated. The XbaI restriction site was introduced during amplification using the primers Ty-1/1 and Ty-1/2 to generate pTMIC6/1. The construct pTMIC6/CD was obtained by amplification of MIC6 lacking the last 31 amino acids and deletion of the tyrosine residue 311, using the primers MIC6/5 and MIC6/7. The construct pTMIC6GPI was cloned in two steps. The fragment encoding the glycosylphosphatidylinositol (GPI) signal from SAG1 was amplified by PCR and cloned between the NsiI and PacI sites in pT/5R20 to generate pTgPI using the primers SAG1/A and T3. Subsequently, the GPI flanking domain was amplified by PCR using the primers MIC6/5 and MIC6/8 and cloned into pTgPI between EcoRI and NsiI sites. The construct pTMIC6TyGPI was obtained by the amplification of MIC6ty by pTMIC6Ty and insertion into pTgPI as described above. MIC6 mutants lacking an EGF-like domain were generated by inverse PCR creating a nesA site introduced in the primers. The constructs pTMIC6/EGF-1, pTMIC6/EGF-2, and pTMIC6/EGF-3 were generated by combining primers MIC6/9 with MIC6/17, MIC6/9 with MIC6/16, and MIC6/11 with MIC6/12, respectively. Inverse PCR was used to generate pTMIC6ΔAD, using primers MIC6/13 and MIC6/14. The construct pMSAG1TM-CD was obtained by exchanging the CD of MIC2 by the CD of MIC6 in the construct pSAG1/TM-CDMIC1 (Di Cristina et al., 2000). The unique vector expressed SAG1 under the control of the 5′ and 3′ flanking sequences of MIC2. The GPI anchoring signal of SAG1 has been replaced by the transmembrane and CD of MIC6 (MDMIC6) obtained by PCR amplification using the primers MIC6/15 and MIC6/16 and cloned into SalI and PacI sites. A Ty-1 epitope tag was introduced by insertion of double-stranded oligonucleotides into the SalI site using the primers Ty-1/5 and Ty-1/6.
GTCTTTCGCTTC-3'; MIC4/3, 5'-CCITAAATTACGGATACCGCA- AAATCGAGACTCC-3'; and MIC4/4, 5'-CCITAAATAGATGCA- TCCTCCATCTCCTCTGTGATAA-3'.

Transfection and Selections
Disruptions of MIC1, MIC4, and MIC6 genes were obtained by double homologous recombination using TgyHXGPRT as selectable marker in the RHhxgprt background. The complementation of miclko, mic3ko, and mic6ko were achieved by cotransfection with a selectable plasmid expressing the chloramphenicol acetyltransferase (CAT) gene as previously described (Soldati and Boothroyd, 1993).

To generate stable transformants, 5 × 10^6 extracellular RHhxgprt parasites were transfected and selected as previously described (Donald et al., 1996), with the modifications described below. Parasites were transfected with 80–100 µg of linearized plasmid. 24 h later, parasites were subjected to mycophenolic acid/Xanthine (MPA/X) exposure and cloned 3–5 d later by limiting dilution in 96-well microtiter plates containing HFF cells in the presence of MPA/X. To generate MICs knockout recombinants, four transfections using 10^8 freshly released parasites with 25, 50, 75, or 100 µg of linearized plasmid were conducted in parallel. Pools of stable transformants were analyzed by indirect immunofluorescence assay (IFA) for the absence of MIC1, MIC4, or MIC6 protein, respectively. Selection for the absence of HXGPRT marker gene was achieved as described above, whereas selection for the presence of CAT was done as previously described (Kim et al., 1993). Stable transformants obtained under chloramphenicol selection were cloned by limiting dilution 6 d after the beginning of chloramphenicol treatment.

SDS-PAGE and ImmunobLOTS
SDS-PAGE was performed according to Laemmli (1970). Freshly released tachyzoites were harvested, washed in PBS, and lysed in RIPA solution (150 mM NaCl, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0, 1 mM EDTA). Polyacrylamide gels (8.5-10%) were run under reducing condition with 0.1 M dithiotreitol in samples, mAbs (mouse ascitic fluid) and rabbit polyclonal antiserum were diluted 1:1,000 in PBS, 0.05% Tween 20, and 5% nonfat milk powder. After washing the nitrocellulose membrane was incubated for 1 h with a peroxidase-conjugated goat anti–mouse antibody (Bio-Rad Laboratories) and bound antibodies visualized using the ECL system, POD (Boehringer).

Immunoprecipitation
Freshly lysed parasites (5 × 10^9) were washed and resuspended into 2-ml PBS in presence of a mix protease inhibitors (complete protease inhibitor mix; Roche) and sonicated for 1 min. All manipulations were carried out at room temperature. Tachyzoites-infected HFF cells on glass coverslips were fixed with 3% paraformaldehyde for 20 min and blocked in 2% FCS or BSA in PBS for 20 min. The cells were then stained with the primary antibodies followed by Alexa 594 goat anti–rabbit or Alexa 488–conjugated goat anti–mouse antibodies (Molecular Probes; Cappel; and Bio-Rad Laboratories). Confocal images were collected with a Leica laser scanning confocal microscope (TCS-NT DM/IRB) using a 100× Plan-Neofluar objective with NA 1.30. Single optical sections were recorded with an opti-
mal pinhole of 1.0 (according to Leica instructions) and 16 times averaging. Other micrographs were obtained with a Zeiss Axiophot equipped with a charge-coupled device camera (CH-250; Photometrics). Adobe® Photoshop™ was used for image processing.

Immunoelectron Microscopy

Infected monolayers were fixed by mixing the culture medium with one volume of 4% paraformaldehyde minus 0.2% glutaraldehyde in 0.2 M sodium phosphate buffer, pH 7.5, and incubating for 15 min at room temperature, followed by doubling the total volume by addition of culture medium and incubating for 90 min. The fixed infected cells were then washed in 10% PBS FCS (PBSFCS), scraped with a teflon blade, and infused in 2.3 M sucrose containing 10% polyvinylpyrrolidone before being frozen in liquid nitrogen. Sections were obtained on a Leica Ultracut equipped with a FCS cryoattachment operating at \(-100^\circ C\). Sections were floated successively on PBSFCS, anti-MIC4, or anti-MIC6 rabbit antiserum diluted 1:40 in PBSFCS, 8 nm protein A–gold diluted to 0.05 OD 525 nm in PBS, with 5 × 3 min washings in PBS between each step. Detections with anti-MIC1 or anti-SAG1 mAbs included an additional step with anti–mouse immunoglobulin antiserum followed by protein A–gold. Sections were embedded in methylcellulose (2%)-uranyle acetate (0.4%) and observed with a Philips EM 420 electron microscope.

Results

Disruption of MIC1, MIC4, and MIC6 Genes by Double Homologous Recombination

Micronemal proteins have a modular structure composed of diverse adhesive domains. A schematic representation of the micronemal proteins analyzed in this study is depicted in Fig. 1 A, and the postexocytosis processing events on these proteins are indicated by arrows. These proteolytic cleavages occur on the parasite surface, upon release by the micronemes, except for MIC3 and MIC6. We have previously shown that MIC6 is processed at the NH2 terminus during its transport to the micronemes, whereas cleavage at the COOH terminus takes place after discharge by the organelles (Meissner et al., unpublished results).

To investigate the function of the micronemal proteins in *T. gondii*, we have generated mutant parasite cell lines in which MIC1, MIC4, or MIC6 genes have been disrupted by gene replacement. The vectors used to generate these knockouts contained \(1,500\) bp of homologous sequences corresponding to the 5' and 3' flanking sequences of MICs genes. The selectable marker gene cassette used in those experiments was HXGPRT controlled by DHFRTS flanking sequences (Donald and Roos, 1998). Parasite clones resistant to mycophenolic acid were examined for the absence of MIC1, MIC4, or MIC6, respectively, by IFA. 10–20% of the resistant clones appeared to have recombined homologously in the case of MIC4 and MIC6. One clone of mic1ko, mic4ko, and mic6ko were kept for further analysis. The absence of MIC1, MIC4, and MIC6 proteins in mutant cell lines was confirmed by Western blot analysis. The rabbit serum anti-MIC4 and the antisera raised against the CD of MIC6 recognized two bands corresponding to processed forms of MIC4 and MIC6, respectively. In the knockout strains, both signals disappeared, confirming that the two forms are indeed processed forms of the same gene products (Fig. 2). Southern blot analysis established that disruption of these three micronemal genes occurred by double homologous recombination events (data not shown).

![Figure 2](image-url) **Figure 2.** Disruption of MIC1, MIC4, and MIC6 genes in *T. gondii* tachyzoites by double homologous recombination. Western blot analysis of an equal loading of whole cell lysates corresponding to \(5 \times 10^6\) tachyzoites from RH, mic1ko, mic4ko, and mic6ko. In A–C, membranes were probed with rabbit antibodies anti-MIC4, anti-MIC6, and mAb anti-MIC-1, respectively.
mulation of MIC4 in mic6ko was confirmed by immunolocalization of MIC4 in mic6ko. The label is over the dense material found at the posterior end of a tachyzoite fixed early after invasion, typical of dense granules exocytosis. T, tachyzoite; V, parasitophorous vacuole; H, host cell. (C) Schematic representation of the secretory pathway in a tachyzoite. The nucleus (gray), the ER (dark green), the Golgi apparatus (light green), the apicoplast (pink), the dense granules (blue), the rhoptries (yellow), and the micronemes (red). (D) Schematic representation eight parasites arranged in rosette within the parasitophorous vacuole after three cell divisions. Bars: (A) 1 μm; (B) 0.2 μm.
Absence of MIC6 Protein Causes Complete Mistargeting of the Two Soluble Micronemal Proteins MIC1 and MIC4

Recombinant parasites lacking MIC6 (miec6ko) showed normal growth and appeared to bind and invade HFF cells like the parent strain in the cell culture conditions tested so far. Upon analysis of other micronemal proteins by IFA, we observed that two soluble proteins MIC1 and MIC4 failed to accumulate in the micronemes in absence of MIC6. Instead, as shown in Fig. 3 A (and see Fig. 5 A), both MIC1 and MIC4 are rerouted into the default secretory pathway, which in T. gondii traffics through the dense granules and ends in the parasitophorous vacuole (Karsten et al., 1998). Mild fixation protocols were used to visualize the presence of MIC4 and its colocalization with GRA3 in the dense granules (Bermudes et al., 1994). In contrast, the transmembrane protein MIC2 and two other micronemal proteins exhibiting no putative transmembrane domain, MIC3 (García-Réguet et al., 2001), or MIC5 (Brydges et al., 2000) were faithfully targeted to the micronemes in miec6ko (data not shown). Analysis of the miec6ko by transmission electron microscopy confirmed the unprecedented localization of the micronemal proteins MIC4 (Fig. 3 B) and MIC1 (not shown) in the parasitophorous vacuolar space. The distinct compartments of the secretory pathway in T. gondii are schematically drawn in Fig. 3 C. After few divisions by endodyogeny, the parasites are organized in rosette within the parasitophorous vacuole (Fig. 3 D).

The Cytoplasmic Tail of MIC6 Contains a Microneme-targeting Signal(s)

Mistargeting of MIC1 and MIC4 in absence of MIC6 implies that MIC6 carries sorting signals to the micronemes. A recent study in T. gondii has demonstrated the existence of tyrosine-based sorting signals, the corresponding machinery, and their involvement in the targeting of proteins to the rhoptries (Hoppe et al., 2000). In parallel, a mutagenesis analysis of the CD of MIC2 has revealed that two conserved motifs are both necessary and sufficient for targeting proteins to the micronemes (Di Cristina et al., 2000). One of these signals contains tyrosine residues, whereas the other one is composed of a stretch of acidic residues. Both motifs are also present and strictly conserved in the CD of MIC6. We have replaced the GPI-anchoring signal in the major surface antigen SAG1 with the transmembrane and CDs of MIC6 (TM-CDMIC6) and have expressed stably SAG1TM-CDMIC6 in the miec6ko parasites (Fig. 1 B). Deletion of the GPI anchor signal led to the accumulation of soluble SAG1 in the parasitophorous vacuole (data not shown). In contrast, SAG1TM-CDMIC6 localized essentially to the micronemes, as detected by IFA with antibodies specific for the CD of MIC6 (Fig. 4 A). The expression of SAG1TM-CDMIC6 failed to restore the miec6ko phenotype since both MIC1 and MIC4 still accumulated in the vacuolar space and are absent from micronemes, as evident from the lack of colocalization with MIC2 (Fig. 4 A). Immunoelectron microscopy analysis of parasites expressing SAG1TM-CDMIC6 with anti-SAG1 mAbs demonstrated SAG1 reactivity in micronemes, in addition to its normal location at the parasite surface (Fig. 4 B).

MIC6 Is Associated to MIC1 and MIC4

The results described above suggested that MIC6 is interacting with MIC1 and MIC4 and thus its presence is prerequisite for the accurate targeting of these two soluble proteins to the micronemes. To confirm that MIC6 fulfills this function and that indeed the absence of MIC6 only was responsible for the observed phenotype, we reintroduced the full-length MIC6 carrying a Ty-1 epitope tag (MIC6Ty-1; Fig. 1 B) into miec6ko strain. MIC6Ty-1 accumulated to the micronemes and was able to fully rescue the missorting phenotype of MIC1 (Fig. 5 A) and MIC4 (data not shown). Two additional mutant constructs of MIC6 were integrated into miec6ko and provided compelling evidence that MIC6 interacts directly with MIC1 and MIC4 via its luminal domain. Deletion of the CD of MIC6 produces a truncated protein, MIC6ΔCD, which lacks sorting signals and is retained predominantly in the perinuclear region (Fig. 5 B). Under these circumstances, both MIC1 and MIC4 were retained in the same compartment as MIC6ΔCD. The best evidence for a physical association between the three MICs was obtained when the TM-CDMIC6 were replaced by the GPI anchoring signal of SAG1. In this case, the GPI anchorage of MIC6GPI occurs in the ER, and the chimeric protein is efficiently targeted to the plasma membrane, likely via the constitutive secretory pathway (Karsten et al., 1998). As expected, MIC6GPI localized perfectly at the plasma membrane as seen by IFA on nonpermeabilized extracellular parasites (data not shown), and on permeabilized intracellular parasites (Fig. 5 C). In miec6ko expressing MIC6GPI, both MIC1 and MIC4 were efficiently transported to the parasite surface where they remained tightly associated with the parasite membrane without diffusing in the vacuolar space (Fig. 5 C). Interestingly, the unusual presence of these three micronemal proteins at the plasma membrane dramatically increased the stickiness of the parasites, which showed a high tendency to aggregate after release from their host cells (data not shown). Western blot analysis of recombinant parasites confirmed that MIC6Ty-1 had the appropriate size and was correctly processed both at the NH\textsubscript{2} and COOH terminus (Fig. 5 D). The migration of MIC6ΔCD did not allow identifying without ambiguity if processing had occurred. These results provided additional evidence that the NH\textsubscript{2}-terminal processing of MIC6 occurred in the TGN rather than in the micronemes, since MIC6GPI is not expected to traffic through these organelles. This approach provided compelling genetic evidence for a stable direct or indirect interaction between MIC6, MIC1, and MIC4.

MIC1, MIC4, and MIC6 Interact Physically

Evidence for the existence of a complex between MIC1, MIC4, and MIC6 was confirmed and supported biochemically by coimmunoprecipitation experiments. Parasite lysates were prepared under mild conditions by sonification and subjected to immunoprecipitation with mAb against MIC1. Western blot analysis revealed that both MIC4 and MIC6 coprecipitated (Fig. 6 A). Interestingly, the two processed forms of MIC6 coimmunoprecipitated with anti-
Figure 4. The CD of MIC6 contains sorting signals for the micronemes targeting. (A) IFA analysis by confocal microscopy on monolayers of HFF cells infected with mic6ko mutant expressing stably SAG1TM-CDMIC6. The subcellular distribution of the SAG1TM-CDMIC6 fusion protein was detected by using antibodies raised against the CD of MIC6. The colocalization of SAG1TM-CDMIC6 with MIC2 is illustrated by the yellow color in the merged image and indicated by arrows. In this genetic background, both MIC1 and MIC4 were missorted and accumulated in the vacuolar space, as indicated by arrowheads. (B) SAG1TM-CDMIC6 accumulates precisely in the micronemes as demonstrated by immunoelectron microscopy using anti-SAG1 antibodies. SAG1 is detected by gold particles and, when GPI anchored, was found in its normal location at the parasite surface (arrowheads). In contrast, SAG1TM-CDMIC6 was found in the micronemes (arrow). As micronemes are thinner than the section, some of them were not exposed to the antibody and were not labeled. Bars: (A) 1 μm; (B) 0.2 μm.
Figure 5. Rescue of mic6ko and evidence for a direct interaction between MIC1 MIC4 and MIC6. (A) Subcellular distribution of endogenous MIC1 and MIC6Ty-1 were analyzed by confocal microscopy in mic6ko and mic6ko expressing MIC6Ty1. The missorting of MIC1 to the vacuolar space (arrowhead) in mic6ko was reverted in mic6ko expressing MIC6Ty-1. MIC6Ty-1 localized to the micronemes as detected by mAb anti-Ty1 (arrows). (B) Expression of pTMIC6ΔCD in mic6ko was analyzed by IFA using anti-MIC6 raised against the EGF domains. MIC6ΔCD lacking the microneme sorting signals was retained in a perinuclear region (arrowheads). Similarly, endogenous MIC1 and MIC4 accumulated in the same compartments. The absence of accumulation of MIC4 in the vacuolar space or MIC1 targeting to the micronemes were observed by double IFA with the two markers GRA3 and MIC2, respectively. (C) MIC6GPI is covalently linked to a GPI and, as a consequence, anchored at the plasma membrane (arrowhead) of the parasites in mic6ko. The localization of MIC6GPI at the plasma membrane caused the quantitative redistribution of endogenous MIC1 and MIC4 to the surface of the parasites (arrowheads). MIC6GPI and MIC4 were excluded from the micronemes as seen by the lack of colocalization with MIC2. Moreover, MIC1 and MIC4 colocalized perfectly. (D) RH and transformed parasites expressing MIC6Ty-1, MIC6GPI, and MIC6ΔCD were analyzed by Western blot with anti-MIC6. The two processed forms of MIC6 detectable in RH were also present in the rescued parasites expressing MIC6Ty-1. Two forms of MIC6GPI are detectable suggesting that the NH2-terminal processing occurred. Bars, 1 μm.
MIC1, strongly suggesting that the complex is present both in the micronemes and at the surface of the parasites, where the COOH-terminal processing of MIC6 takes place. Co-immunoprecipitation experiments using mic6ko parasites clearly indicated that an interaction exists between MIC1 and MIC4 even in the absence of MIC6 (Fig. 6 B). Cell lysates from mic1ko parasites expressing MIC1myc were used to demonstrate that the polyclonal anti-CDMIC6 can coimmunoprecipitate MIC1 and MIC4 as detected on immunoblot using the mAb anti-myc 9E10 and the mAb anti-MIC4 5B2 (Fig. 6 C). Finally, the polyclonal anti-NtMIC6 also coimmunoprecipitated MIC4 in lysates from wild-type parasites (Fig. 6 D). Together, these data provided complementary information with regard to the topology of the complex, which is schematically depicted in Fig. 6 E.

The Third EGF-like Domain (EGF-3) of MIC6 Is Involved in the Sorting of MIC4 and MIC1

MIC6 mutants with various deletions in their lumenal domains were generated and stably expressed in the mic6ko strain. Phenotypic analysis of these mutants by IFA allowed identifying the domain on MIC6, interacting with MIC1 and MIC4. MIC6 mutants lacking either the three EGF domains or the acidic domain were poorly targeted to the micronemes. These large deletions are likely to cause significant alteration of the folding properties of the protein. A complex between MIC1, MIC4, and MIC6 forms in the early compartments of the secretory pathway and ensures the proper targeting of MIC1 and MIC4 to the micronemes via the interaction of MIC6 cytoplasmic tail with the sorting machinery. During its transport, MIC6 is processed at the NH₂ terminus and loses the first EGF-like domain. Upon contact with host cells, an increase in free intracellular calcium stimulates the discharge of the microneme contents. The complex of MICs is liberated at the surface of the parasites, potentially anchored within the plasma membrane via MIC6.
truncated proteins. However, more subtle deletions of each individual EGF-like domain produced truncated proteins that were perfectly targeted to the organelle. Western blot analysis of the deletion mutants using the anti-MIC6 tail demonstrated that the MIC6 mutants were expressed at comparable levels (Fig. 7 A). The migration behavior of the various mutants and the absence of processing on MIC6ΔEGF-2 indicated that the NH₂-terminal cleavage of MIC6 occurred within the second EGF domain. The subcellular distribution of MIC1 and MIC4

Figure 7. The EGF-3 domain of MIC6 is necessary for accurate targeting of MIC1 and MIC4 to the micronemes. (A) Western blot analysis of cell lysates from RH and recombinant parasites expressing MIC6ΔEGF1, MIC6ΔEGF2, and MIC6ΔEGF3 with anti-CDMIC6 antibodies (raised against the CD of MIC6). MIC6ΔEGF1 and MIC6ΔEGF3 were still subjected to NH₂-terminal cleavage, whereas a single form of MIC6ΔEGF2 was detectable, suggesting that the cleavage site has been deleted by removing the EGF-2 domain. (B) IFA analysis by confocal microscopy. MIC6ΔEGF-3 expressed in mic6ko was accurately targeted to the micronemes, as detected with anti-CDMIC6, and colocalized with MIC2 (arrows). In this mutant, MIC4 was only partially sorted to the micronemes (arrowhead), with a significant amount of protein still accumulating in the dense granules. MIC1 and MIC4 colocalized (arrows). Bar, 1 μm.
in these mutants was analyzed by IFA. In summary, MIC6ΔEGF-1 and MIC6ΔEGF-2 were able to fully rescue the missorting phenotype, with both MIC1 and MIC4 faithfully targeted to the micronemes (data not shown). In contrast, in parasites expressing MIC6ΔEGF-3, neither MIC1 nor MIC4 were quantitatively sorted to the micronemes, although MIC6ΔEGF-3 localized to these organelles as shown by colocalization with MIC2 (Fig. 7 B). These results suggest that the EGF-3 domain is necessary for an efficient interaction of MIC6 with MIC1 and MIC4 individually or with one of the two, whereas MIC1 and MIC4 are directly associated. A possible contribution of the adjacent acidic domain cannot be excluded by this analysis.

MIC4 Is a Passive Cargo Protein and Two Apple Domains at the NH2 Terminus Are Sufficient to Target the Protein to the Micronemes

To assess the contribution of each partner in the complex, we have abrogated selectively their expression. MIC4 cDNA has a predicted ORF of 580 amino acids that contains a single NH2-terminal hydrophobic region. The protein contains six apple domains comprising six cysteine residues separated by variable spacing that are predicted to form a structure resembling an apple (McMullen et al., 1991a,b). Homologues of this protein have been identified in *Spironucleus muris* and in *Eimeria* species (Brown et al., 2000). The protein is an adhesin, which is proteolytically cleaved both at the NH2 and COOH terminus at the surface of the parasite after release from the micronemes (Brecht et al., 2001). The level of expression and subcellular distribution of the other micronemal proteins was carefully examined in the mic4ko. We concluded that all micronemal proteins described in *T. gondii* so far were appropriately expressed and sorted in this mutant (data not shown). The correct targeting of MIC1 in absence of MIC4 testified for a direct association of MIC1 with MIC6, excluding an association via MIC4. Two deletion mutants of MIC4 lacking the last two, MIC4ΔA5-6, or the last four apple domains, MIC4ΔA3-6 (Fig. 1 B) were generated and expressed stably in the mic4ko recipient strain. These clones were analyzed by Western blotting and showed products of the expected sizes (Fig. 8 A). IFA analysis of these mutants confirmed that the truncated proteins lacking the NH2-terminal two or four apple domains were still localized to the micronemes and have consequently retained the ability to associate with MIC1 (Fig. 8 B). The MIC4ΔA5-6 mutant was substantially overexpressed compared with MIC4 in wild type, causing a significant spill over of the truncated protein into the default pathway leading to an accumulation of the protein into the dense granules, as perceptible by IFA.

MIC1 Is Necessary for MIC6 and MIC4 to Leave the Golgi

MIC1 localizes to micronemes and has been shown to bind to host cells (Fourmaux et al., 1996). MIC1 gene encodes a polypeptide of 456 amino acids containing two domains bearing some homology to the thrombospondin domains present in the TRAP family (Naitza et al., 1998). The absence of MIC1 gene is not essential for the survival of the parasites in culture, and, like in mic4ko, the targeting of other micronemal proteins was investigated in the mic1ko strain. Unlike MIC4, the absence of MIC1 has a drastic and specific effect on the sorting of the two other members.
of the complex. In absence of MIC1, both MIC2 and MIC3 are properly localized in the micronemes, whereas MIC4 and MIC6 were retained in the early compartments of the secretory pathway. A selective accumulation of these proteins in the perinuclear region, ER, Golgi, and possibly TGN was observed. Within each single vacuole, all the parasites showed a homogeneous distribution in a particular compartment of the secretory pathway, whereas the distribution varied between vacuoles. The heterogeneity of staining observed within the population of vacuoles is

Figure 9. Analysis of mic1ko. MIC1 is necessary for MIC6 and MIC4 to leave the ER and Golgi. (A) Subcellular distribution of MIC4 and MIC6 in mic1ko strain analyzed by IFA. MIC3 was faithfully sorted to the micronemes, whereas MIC4 and MIC6 were retained in the early compartments of the secretory pathway. Two vacuoles stained with anti-MIC4 and three vacuoles stained with anti-MIC6 are presented here to illustrate the various compartments where the two proteins are retained. A double IFA of MIC4 and MIC6 in mic1ko indicated that in all vacuoles, both proteins colocalized perfectly as shown in the merged image. (B) Immunolocalization of MIC6 and MIC4 in mic1ko by electron microscopy revealed various patterns of distribution in the early secretory compartments. (A) MIC4 was detected in the nuclear envelope (arrowheads) and in the successive stacks of the Golgi (arrows). N, nucleus; G, Golgi apparatus. (B) MIC6 staged in the cis-Golgi. (C) MIC4 staged in the ER (arrows) and nuclear envelope (arrowheads). (C) The mic1ko mutant expressing MIC1myc showed rescue of the phenotype by IFA. In presence of MIC1myc, both MIC4 and MIC6 were quantitatively sorted to the micronemes. A slight overexpression of MIC1 led to some leakage to the vacuolar space as detected by anti-MIC1 mAb. (D) Western blot analysis of lysates from RH, mic1ko, and mic1ko complemented with MIC1myc using either anti-MIC1 sera or anti-myc mAb. A slight increase in the size of MIC1myc was apparent compared with endogenous MIC1, due to the presence of the myc tag. Bars: (A and C) 1 μm; (B) 0.2 μm.
suggestive of a cell cycle-dependent effect. Fig. 9 A shows retention of MIC4 and MIC6 in various compartments of the secretory pathway. Analysis by immunoelectron microscopy confirmed the localization of MIC4 in the Golgi stacks and ER (Fig. 9 B). In all circumstances, MIC4 and MIC6 perfectly colocalized, and we failed to identify a single vacuole with a MIC4 or MIC6 localized to the micronemes. A complete rescue of this phenotype was observed by IFA when mic1ko were stably transformed with the vector pM2MIC1myc (Fig. 9 C). Expression of MIC1myc fully restored the transport of MIC4 and MIC6 to the micronemes. In this mutant, MIC1 did not only accumulate in the micronemes, but a small proportion of it also transited via the dense granules and reached the parasitophorous vacuole. This result suggests that MIC6 is present in limiting amount, and when this escorter becomes saturated, both MIC1 and MIC4 are missorted. Western blot analysis of the mic1ko rescue showed that the reintro-
duced MIC1myc was slightly overexpressed compared with MIC1 in RH (Fig. 9 D). MIC6 in mic1ko indicated that retention of MIC6 in the early compartments of the secretory pathway correlated with the accumulation of the unprocessed form of the protein (Fig. 2 B). In the rescued mutant expressing MIC1myc, the ratio between full-length MIC6 and the NH2-terminal processed form is restored as in wild type (data not shown).

Discussion

The mechanism by which regulated secretory proteins are sorted has been extensively studied in higher eukaryotic cells. Transmembrane proteins exhibit critical tyrosine residues in their cytoplasmic tails, which facilitate their sorting by binding to the cytoplasmic adaptors complexes that, together with coat components, assist vesicular transport (Marks et al., 1997; Hirst and Robinson, 1998). Tyrosine-based sorting signals and the associated machinery exist in the ER and to a lesser extent in the Golgi compartments (Fig. 10 A). In this genetic background, endogenous MIC4 is still retained in the early compartments of the secretory pathway and MIC6 (data not shown). In contrast, the trafficking of SAG1TyTM-CDMIC6 (Fig. 1 B) in mic1ko was not affected, confirming the MIC1 acts on the luminal part of MIC6. As expected, SAG1TyTM-CDMIC6 colocalized perfectly with another micronemal marker, MIC7 (Meissner et al., unpublished results) (Fig. 10 B). Detection of the SAG1TyTM-CDMIC6 in mic1ko using the polyclonal antibody anti-CDMIC6 confirmed that the endogenous MIC6 is still retained in the early secretory pathway in this mutant.
nism. The processes of retention of MIC4 and MIC6 in the mic1ko and the precise role played by MIC1 remain to be investigated.

In a previous study, a combination of approaches suggested that in T. gondii, secretion from the ER to the Golgi uses the nuclear envelope as an intermediate compartment (Hager et al., 1999). In mic1ko, the population of vacuoles showed a heterogeneous distribution of MIC4 and MIC6 in discrete compartments along the secretory pathway. The nuclear envelope constitutes certainly one of the specific steps, corresponding to a defined compartment along the pathway.

Some micronemal proteins are modified at the post-translational level by proteolytic cleavages (Achbarou et al., 1991; Brydges et al., 2000). Diverse processing events occur either during transport in the secretory pathway or after release by the micronemes and involve distinct prosequences (Carruthers et al., 2000). The NH₂-terminal processing of MIC6 occurs before the protein reaches the micronemes, possibly in the TGN. The retention of MIC6 caused by the absence of MIC1 interferes with this process. However, the presence of the prosequence does not seem to be needed for the complex to leave the Golgi since the mutant MIC6ΔEGF-1 lacking most of the prosequence restored faithfully the mic6ko phenotype. The biological significance of this processing is still unclear.

MIC6 interacts specifically with MIC1 and MIC4 and escorts these adhesins to the micronemes with the assistance of the sorting signals, presumably interacting with adaptor complexes. The stoichiometry of the complex is not determined yet, but our data suggested that the MICs are present in roughly equimolar ratio. A slight overexpression of MIC4 or MIC1 leads to leakiness, whereas an overexpression of MIC6 causes its retention in the ER/Golgi. Beside its role as an escorter, MIC6 potentially plays a key function during invasion as a subunit of an adhesin complex. In wild-type parasites, the coimmunoprecipitation of the two processed forms of MIC6 with anti-MIC1 antibodies argues for the existence of a stable complex at the surface of the parasites. By anchoring the two adhesins to the surface of the parasites, MIC6 could establish a molecular bridge between the host and parasites. Its potential association with the host receptor–adhesin complexes would provide us with a satisfactory explanation as to how soluble adhesins can functionally contribute to host–cell parasite interaction. Consistent with a subsequent role during invasion, MIC6 possesses conserved amino acids in the cytoplasmic tail, including a tryptophan residue, like MIC2 and other members of TRAP family (Tomley and Soldati, 2001). The tail in PbTRAP is essential for motility and is anticipated to connect directly or indirectly with the actomyosin system of the parasite (Kappe et al., 1999). According to the capping model, the complex should redistribute towards the posterior pole of the parasites and, through the presence of the adhesins MIC1 and MIC4, contribute to gliding motility and host–cell invasion (Sibley et al., 1998).

We have thereby demonstrated for the first time in Apicomplexa that soluble secretory proteins are escorted to their target organelle through association with a transmembrane protein, which might in addition be a subunit of an adhesin complex. Like for the previous example of P. falciparum RAP1 and RAP2, this study reveals that secretory proteins can be considered individually but rather as part of a network of interacting molecules. MIC6 belongs to a family of transmembrane micronemal proteins carrying EGF-like domains (Meissner et al., unpublished results), which leaves open the hypothesis that other members of this family are involved in the sorting of other sets of soluble adhesins. Indeed, preliminary data suggest that MIC7, an EGF-like containing transmembrane protein, influences the sorting of the soluble adhesin MIC3 (Meissner et al., unpublished results). Finally, it is surprising to realize that both the disruption of either MIC1 or MIC6 genes do not show significant alteration of invasiveness in vitro, despite the fact that these mutants are actually triple functional knockouts. These proteins may actually play a role at another parasite stage or be involved in some specific host–cell interaction in the host, or there is enough redundancy in parasite invasion to cope with this major deletion. Further studies will be needed to clarify this question.

We are indebted to Dr. Thierry Soldati for his stimulating and active participation in the project and his precious assistance at the confocal microscopy. We thank David Sibley for kindly providing us with the mAbs against MIC4. Special thanks Ursula Jackle, Alexander Löwer, and Anne Loyens for their valuable technical assistance and the other members of the labs for critical reading of the manuscript.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG grant SO 366/1-1, SO366/1-2) and by French Ministry of Research (PRFMMP).

Submitted: 15 August 2000
Revised: 18 December 2000
Accepted: 18 December 2000

References

Achbarou, A., O. Mercereau-Puijalon, J.M. Autheman, B. Fortier, D. Camus, and J.F. Dubremetz. 1991. Characterization of micronemal proteins of Toxoplasma gondii. Mol. Biochem. Parasitol. 47:223–233.

Baldi, D.L., K.T. Andrews, R.F. Waller, D.S. Roos, R.F. Howard, B.S. Crab, and A.F. Cowman. 2000. RAPI controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. EMBO (Eur. Mol. Biol. Organ.) J. 19:2435–2443.

Barnwell, J.W., and M.R. Galinski. 1995. Plasmodium vivax: a glimpse into the unique and shared biology of the merozoite. Annu. Trop. Med. Parasitol. 89:113–120.

Bastin, P., Z. Bagherzadeh, K.R. Matthews, and K. Gull. 1996. A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei. Mol. Biochem. Parasitol. 77:235–239.

Bermudes, D., J.F. Dubremetz, A. Achbarou, and K.A. Joiner. 1994. Cloning of a CDNA encoding the dense granule protein GRA3 from Toxoplasma gondii. Mol. Biochem. Parasitol. 68:247–257.

Brech, S., V.B. Carruthers, D.J. Ferguson, O.K. Giddings, G. Wang, U. Jackle, J.M. Harper, L.D. Sibley, and D. Soldati. 2001. The toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains. J. Biol. Chem. In press.

Brown, P.J., K.J. Billington, J.M. Bumstead, J.D. Clark, and E.M. Tomley. 2000. A microneme protein from Eimeria tenella with homology to the apple domains of coagulation factor XI and plasma pre-kallikrein. Mol. Biochem. Parasitol. 107:91–102.

Brydges, S.D., G.D. Sherman, S. Nockemann, A. Loyens, W. Däubener, J.-F. Dubremetz, and V.B. Carruthers. 2000. Molecular characterization of TgMIC5, a proteolytically processed antigen secreted from the micronemes of Toxoplasma gondii. Mol. Biochem. Parasitol. 111:51–66.

Carruthers, V.B., G.D. Sherman, and L.D. Sibley. 2000. The Toxoplasma adhe-
sive protein MIC2 is proteolytically processed at multiple sites by two para-
site-derived proteases. J. Biol. Chem. 275:14346–14353.
Dessens, J.T., A.L. Beetsma, G. Dimopoulos, K. Wengelnik, A. Crisanti, F.C.
Kafatos, and R.E. Sinden. 1999. CTRP is essential for mosquito infection by
malaria ookinete. EMBO (Eur. Mol. Biol. Organ.) J. 18:6221–6227.
Di Cristina, M., R. Spaccapelo, D. Soldati, B. Bistoni, and A. Crisanti. 2000.
Two conserved amino acid motifs mediate protein targeting to the mic
ornes of the apicomplexan parasite Toxoplasma gondii. Mol. Cell. Biol. 20:
7332–7341.
Donald, R.G., and D.S. Roos. 1998. Gene knock-outs and allelic replacements
in Toxoplasma gondii: HXGPRT as a selectable marker for hit-and-run mu-
tagenesis. Mol. Biochem. Parasitol. 91:295–305.
Donald, R.G.K., D. Carter, B. Ullman, and D.S. Roos. 1996. Insertional tag-
ging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xan-
thine-guanine phosphoribosyltransferase gene. Use as a selectable marker
for stable transformation. J. Biol. Chem. 271:14010–14019.
Fourmaux, M.N., A. Achbarou, O. Mercereau-Puijalon, C. Biderre, I. Briche,
A. Loyens, C. Odberg-Ferragut, D. Camus, and J.F. Dubremetz. 1996. The
MIC1 microneme protein of Toxoplasma gondii contains a duplicated recep-
tor-like domain and binds to host cell surface. Mol. Biochem. Parasitol. 83:
201–210.
Frand, A.R., J.W. Cuozzo, and C.A. Kaiser. 2000. Pathways for protein disul-
phide bond formation. Trends Cell Biol. 10:203–209.
Garcia-Réguet, N., M. Lebrun, M.-N. Fourmaux, O. Mercereau-Puijalon, T.
Mann, C.J.M. Beckers, B. Samyn, J. Van Becumen, D. Bout, and J.F. Du-
bremetz. 2001. The microneme protein MIC3 of Toxoplasma gondii is a
secretory adhesin which binds to both the surface of the host cells and the
surface of the parasite. Mol. Microbiol. In press.
Glombik, M.M., and H. Gerdes. 2000. Signal-mediated sorting of neuroepi-
tides and prohormones: Secretory granule biogenesis revisited. Biochimie.
82:315–326.
Hager, K.M., B. Striepen, L.G. Tilney, and D.S. Roos. 1999. The nuclear enve-
lope serves as an intermediary between the ER and Golgi complex in the in-
tracellular parasite Toxoplasma gondii. J. Cell Sci. 112:2631–2638.
Hirst, J., and M.S. Robinson. 1998. Clathrin and adaptors. Biochim. Biophys.
Acta. 1404:173–193.
Hoppe, H.C., H.M. Ngo, M. Yang, and K.A. Joiner. 2000. Targeting to rhoptry
organelles of Toxoplasma gondii involves evolutionarily conserved mecha-
nisms. Nat. Cell Biol. 2:449–456.
Kaasch, A.J., and K.A. Joiner. 2000. Protein-targeting determinants in the
secretory pathway of apicomplexan parasites. Curr. Opin. Microbiol. 3:422–
428.
Kappe, S., T. Bruderer, S. Gantt, H. Fujioka, V. Nussenzwieg, and R. Menard.
1999. Conservation of a gliding motility and cell invasion machinery in api-
complexan parasites. J. Cell Biol. 147:957–944.
Kim, K., D. Soldati, and J.C. Boothroyd. 1993. Gene replacement in Toxo-
plasma gondii with chloramphenicol acetyltransferase as selectable marker.
Science. 262:911–914.
Laemmli, U.K. 1970. Cleavage of structural protein during the assembly of the
head of bacteriophage T4. Nature. 227:680–685.
Marks, M.S., H. Ohno, T. Kirchhausen, and J.S. Bonifacino. 1997. Protein sort-
ing by tyrosine-based signals: adapting to the Ysand wherefores. Trends Cell
Biol. 7:124–128.
McMullen, B.A., K. Fujikawa, and E.W. Davie. 1991a. Location of the disulfide
bonds in human coagulation factor XI: the presence of tandem allele do-
mains. Biochemistry. 30:2056–2060.
McMullen, B.A., K. Fujikawa, and E.W. Davie. 1991b. Location of the disulfide
bonds in human plasma prekallikrein: the presence of four novel allele do-
mains in the amino-terminal portion of the molecule. Biochemistry. 30:2050–
2056.
Morrissette, N.S., and D.S. Roos. 1998. Toxoplasma gondii: a family of apical
antigens associated with the cytoskeleton. Exp. Parasitol. 89:296–303.
Naitza, S., F. Spano, K.J.H. Robson, and A. Crisanti. 1998. The trombospondin-
related protein family of apicomplexan parasites: the gears of the cell inva-
sion machinery. Parasitol. Today. 14:479–484.
Ngo, H.M., H.C. Hoppe, and K.A. Joiner. 2000. Differential sorting and post-
secretory targeting of proteins in parasitic invasion. Trends Cell Biol. 10:67–
72.
Sibley, L.D., S. Hakansson, and V.B. Carruthers. 1998. Gliding motility: an effi-
cient mechanism for cell penetration. Curr. Biol. 8:R12–14.
Soldati, D., and J.C. Boothroyd. 1993. Transient transfection and expression in
the obligate intracellular parasite Toxoplasma gondii. Science. 260:349–352.
Soldati, D., and J.C. Boothroyd. 1995. A selector of transcription initiation in
the protozoan parasite Toxoplasma gondii. Mol. Cell. Biol. 15:87–93.
Sultan, A.A., V. Thathy, U. Frevert, K.J. Robson, A. Crisanti, V. Nussenzwieg,
R.S. Nussenzweig, and R. Menard. 1997. TRAP is necessary for gliding mo-
tility and infectivity of plasmodium sporozoites. Cell. 90:511–522.
Thiele, C., H.H. Gerdes, and W.B. Huttner. 1997. Protein secretion: puzzling
receptors. Curr. Biol. 7:R496–500.
Tomley, F.M., and D. Soldati. 2001. Mix and match modules: structure and
function of microneme proteins in apicomplexan parasites. Parasitol. Today.
In press.
Wan, K.L., V.B. Carruthers, L.D. Sibley, and J.W. Ajioka. 1997. Molecular char-
acterization of an expressed sequence tag locus of Toxoplasma gondii
encoding the micronemal protein MIC2. Mol. Biochem. Parasitol. 84:203–
214.
Yuda, M., H. Sakaida, and Y. Chinnzei. 1999. Targeted disruption of the Plasmo-
dium berghei CTRP gene reveals its essential role in malaria infection of the
vector mosquito. J. Exp. Med. 190:1711–1716.