A List of Important Honeybee Nectariferous and Polleniferous Plant Species in the West Bank Governorates, Palestine

Imadeddin Albaba
P. O. Box 64, Halhul, Hebron Dist, West Bank 741, Palestine

Abstract: The main goal of this study is to provide information about the foraging value of a number of specific plant species for honeybees in Palestine, since one of the limiting factors of Palestine’s apiculture industry is the unpredicted seasonality in the blooming phenology of nectariferous and polleniferous plant species. This limiting factor can be overcome by increasing and diversifying the population of bee forage plant species throughout man made plantations. In this survey, a combination of literature and field surveys were used in order to identify and compile a list of plant species, which are of importance for fulfilling the honeybee’s needs of nectar and pollen. The study was conducted through bi-weekly visit to a numbers of randomly selected sites located in some nature reserves and agricultural fields, within the West Bank Governorates. A total of 143 nectariferous and polleniferous plant species, belonging to 37 families, were identified through direct observation of foraging bees, and/or through literature survey. The dominant families are Compositae with 27 (18.8%) belonging species, followed by Lamiaceae family with 24 (16.7%) belonging species, then followed by Boraginaceae family with 8 (5.5%) belonging species and then followed by other families. The identified plant species was grouped into pollen, nectar and both pollen and nectar sources plant species. The polleniferous plant species group counted 17 which is equivalent to 11.8%; the nectariferous plant species group counted 29 which is equivalent to 20.2%; and the third groups of plant species that have been visited by bees for collecting both pollen and nectar counted 97, which is equivalent to 68%. The chronologies of the blooming plant species were also recorded. It was concluded that any of the studied locations can be profitably utilized for commercial and or large scale beekeeping, if the important limiting factor can be overcome by increasing and diversifying the population of bee forage plant species throughout man made plantations. The paper provides information on the wild and cultivated nectariferous and polleniferous plants that are important for the bees in the West Bank Governorates, Palestine.

Key words: Diversity, honeybees, nectariferous, polleniferous, Palestine.

1. Introduction

Flowers are the mainstay of bee’s life. Honeybee workers make thousands of visits to flowers in order to collect nectar and pollen. Flowering plants of several plant families are blooming at different time intervals of the year [1]. Depending upon the soil type, climatic factors and the habitat of the vegetation, the time of the blossoming may change for even the same nectar plants [2]. Sound information on duration of flowering and blooming time is essential for proper beekeeping management [3]. The practice of beekeeping is not only depends on the better strain of honeybees but also on abundance and occurrence of pollen and nectar sources within the surrounding area of an apiary [4]. The good knowledge of the diversity, density and blooming chronologies of nectariferous and polleniferous species are prerequisite and essential for guiding beekeepers in the choice of the best suitable sites for locating their apiaries and subsequently enhancing the efficiency of beekeeping industry and successful beekeeping. Such enhancement may enable beekeepers to harvest a good yield of honey and other bee products, and increase their own financial profits.
A List of Important Honeybee Nectariferous and Polleniferous Plant Species in the West Bank Governorates, Palestine

Literature survey showed that information on local bee forage plants was compiled by several studies conducted by several scientists, like Refs. [1, 5-13]. In the book, Free [1] mentioned that pollen are more efficiently collected and distributed by mechanical means (by insects or wind current) on crop plants which require cross pollination. The author also arranged crops needing pollination by various pollinator insects in general and those plant families pollinated by honeybees, notably Papilionaceae and Rosaceae. Zohary [5] includes the whole area of the West Bank and the Gaza Strip in his flora palestinae multi volume books, which have updated nomenclature, distribution and habitat data for 2,700 species. Fahn [6] identified nectaries of honey plants in the land of Israel, their structure and the effects of ecological factors on nectar secretion. Gindel [7] studied the acclimation of *Eucalyptus* during 1935-1951 in Israel as a potential source of food rewards for honeybees. Lupo and Eisikowitch [8] concluded that *Eucalyptus erythrocoris* is important source of nectar and pollen for honeybees in Israel. In their evaluation study, Dag et al. [9] studied the economic values of bee forage plants planted in Israel. Dag et al. [10] studied the pollen sources for honeybee colonies in Israel. Reves [11], the author of a guide to *Eucalyptus* species growing in Israel, had shown the importance of different species grown for beekeeping purposes. Tamar and Shmida [12] compiled a list of 266 local wild plant species that have high food potential for honeybees in the neighboring state of Israel. Albaba [13] in previous study showed that a total number of 393 species of plants were identified with the recorded species belonging to 57 families, as potential forage plants for bees in the West Bank, Palestine.

The results of identification of the plant species collected in the investigated sites, their systematic, phenology and other information have followed the Israeli website called the Flora of Israel, which is powered by the Hebrew University in addition to Al Sheikh and Salman [14].

2. Material and Methods

2.1 Study Site

The West Bank is mostly located on the Central highlands of Palestine, just above the Jordan valley. It is composed of four climatically differentiated zones. The semi-coastal zone, which is a narrow strip extending at 100-300 m above sea level, in the North-Northwest corner, comprises of Jenin, Qalqilia and Tulkarem districts; soil is mostly alluvial and loam; the annual rainfall is 600 mm. The second climatic zone is Central highlands, which is mountainous rock and hilly area rising up 1,027 m above sea level, includes area from Jenin Southwards until Hebron district and receives annual rainfall around 400 mm. The third zone is Eastern slope zone, comprises of steep mountains with little rainfall (150-300 mm) and represents the semi-desert climate, as transitional area between Mediterranean and desert. The fourth climatic zone is the Jordan valley and lies 390 m below sea level; the soil is brackish with high content ratio of sodium [15].

2.2 Survey of Nectariferous and Polleniferous Species

A combination of literature and field surveys were used in order to identify and compile a list of 143 plant species, which are of importance for fulfilling the honeybee’s needs of nectar and pollen. The study was conducted through bi-weekly visit to the selected sites located in some nature reserves or agricultural fields, which was randomly selected in the West Bank Governorates. In every site visit, four line transects of 1,000 m in length each, were selected and stationed on two separate points in each surveyed site. The start and end of each transect were marked with the national flags to enhance visibility. While moving on the transects each five steps interval, flowering plants found within 2 m radius, were visited and observed for the presence and foraging activities of honeybees within a predetermined period of 10 min. Plants were scored as bee foraging species, when at least three
honeybees had visited and foraged on the flowers within the observation period [16]. Camera shots were used to prove the honeybee’s presence and identification of the plant species.

The literature survey revealed a preliminary list of plants diversity as potential forage plants for bees in the West Bank, Palestine. It was compiled based on field survey and literature survey of many existing references, such as Refs. [3-5, 7, 10, 12, 14, 16, 17]. Plant identification, phenology and other information were obtained basically from Ref. [5], flora of Israel web [18] and the preliminary checklist and ecological data—base of plants of the West Bank [14].

3. Results and Discussion

The study area (the West Bank) is mostly located on the Central highlands of Palestine, just above the Jordan valley, whereas natural forest, agricultural fields and irrigated crops are found. Annex 1 lists 143 species from the native flora of Palestine that were identified as bee forage plants out of an initial list of 393 potential plants. The table also reports these species’ main food rewards and their blooming period in Palestine. Based on the results of this study, a total of 143 nectariferous and polleniferous plant species, belonging to 37 families (Fig. 1), were identified through direct observation of foraging bees, and/or through literature survey.

The results have shown that the most important nectariferous and polleniferous plants species are the representatives of family Compositae (Achillea falcata, Achillea fragrantissima, Achillea santolina, Carthamus glaucus, Carthamus nitidus, Carthamus tenuis, Centaurea hyalographe, Centaurea iberica, Centaurea lanulata, Centaurea pallescens, Centaurea veratum, Chiladenus iphionoides, Crupina crupinastrum, Onopordum alexandrinum, Onopordum blancheanum, Onopordum carduiforme, Onopordum cynaroccephalum, Senecio joppensis, Senecio vernalis, Silybum marianum, Cynara syriaca, Dittrichia graveolens, Dittrichia viscosa, Echinops gaillardottii, Echinops philistaeus, Eupatorium cannabinum, Notobasis syriaca), followed by the representatives of family Lamiaceae (Ballota undulata, Coridothymus capitatus, Lamium moschatum, Lavandula stoechas, Mentha sp., Micromeria fruticosa, Prasium majus, Rosmarinus officinalis, Salvia fruticosa, Salvia hierosolymitana, Salvia indica, Salvia judaica, Satureja thymbra, Sideritis perfoliata, Sideritis pulullan, Stachys distans, Teucrium creticum, Teucrium divaricatum, Teucrium scordium, Trifolium fragiferum, Trifolium palustre, Trifolium purpureum, Trifolium repens, Trifolium resupinatum), then followed by the representatives of family Boraginaceae (Alkanna strigosa, Cynoglossum creticum, Echiochilon fruticosum, Echium angustifolium,
Echium glomeratum, Echium judaeum, Echium plantagineum, Moltkiopsis ciliata), and followed by other families representatives as listed in Annex 1.

The identified plant species was grouped into three groups based on their food rewards: a group of pollen source plants species, a group of nectar source plants species and the third group of both pollen and nectar sources plant species. The results have shown the dominance of the plant species which have been visited for collecting both pollen and nectar, counted 97 (68%). The pollen source plant species counted 17 (12%) and the nectar source species were 29 (17%). Flower morphology and the low pollen productivity of nectariferous plants may affect the quantitative participation of pollen as a food rewards sources to attract bees. Some species of Fabaceae family (Medicago sativa, Melilotus albus) have a secondary period of flowering in late autumn or in summer, which is very important for supplying the honeybees with nectar and pollen during the dry season here in Palestine (Fig. 2).

Column five of Annex 1 provides a classification of the survey species according to their main food elements to honeybees (nectar (N), pollen (P) or both (N+P)). This classification is based on qualitative observations of honeybees behavior and does not express the quantity of nectar or pollen produced per plant or collected by bees. The chronology of main period of blooming plant species were defined as in Fig. 3. The peak blooming period was recorded in April, followed by May, then by March and then by June, etc..

Fig. 3 showed that the months January and December are characterized by a low number of flowering polleniferous and nectariferous plants. This study emphasizes the importance of polleniferous and nectariferous plants for honeybees in the West Bank.
Governorates, Palestine. Their findings demonstrate the fluctuations in pollen and nectar availability for bees throughout the months of the year, which will subsequently affect negatively the honey yields and pollination services. These finding are in agreement with many regional and international studies. The listed plant species are of importance for securing food of honeybees and also contribute to the beautiful landscape. Considering its environmental importance, these plant species are recommended to be protected by competent agencies of the Palestinian authority as well as by the surrounding countries.

4. Conclusions

The author’s findings have led to some conclusions about the local flora visited by honeybees for nectar and pollen grains. A hundred and forty three taxa have been established in the study of importance for the honeybees in Palestine.

It could be concluded that any of the studied locations can be profitably utilized for commercial or large scale beekeeping, if the important limiting factor can be overcome by increasing and diversifying the population of bee forage plant species throughout man made plantations. The results and subsequent conclusion are in agreement with many regional studies.

Six species of the surveyed plants (Hedera helix, Moltkiopsis ciliate, Senecio vernalis, Maresia pulchella, Sinapis alba and Leucophyllum frutescens) produce pollen and nectar, and have long blooming period. Therefore, the author recommend their conservation and planting if possible as pollen and nectar sources, in combination with other plants that can serve as sources of food elements for honeybees in Palestine.

References

[1] Free, J. B. 1970. Insect Pollination of Crops. London: Academic Press, 544.
[2] Rodinov, V., and Shabanshov, V. 1986. The Fascinating World of Bees. Moscow: Mir Publishers, 35-75.
[3] Kumar, R., Rajput, G. S., Mishra, R. C., and Agrawal, O. P. 2013. “A Study on Assessment of Duration of Dearth Period for Honeybees in Haryana, India.” Munis Entomology and Zoology 8 (1): 434-7.
[4] Akirathanakal, P. 1987. “Beekeeping in Asia.” FAO, United Nations. Accessed April 7, 2015. http://www.fao.org/docrep/x0083e/x0083e00.HTM.
[5] Zohary, M. 1966. Flora Palaestina. Jerusalem: The Israeli Academy of Science and Humanities.
[6] Fahn, A. 1948. The Nectarious of Honey Plants in the Land of Israel: Their Structure and the Effects of Ecological Factors on Nectar Secretion. Rehovot: Hebrew Apiculturists Society.
[7] Gindel, Y. 1951. The Eucalyptus in Israel: A Study of Its Acclimation during 1935-1951. Rehovot, Israel: Agricultural Research Station.
[8] Lupo, A., and Eissikowitch, D. 1987. “Eucalyptus erythrocorys: A Honey and Pollen Plant.” Hassade 77: 2363-7. (in Hebrew)
[9] Dag, A., Regev, A., and Bar-Yossef, Y. 1998. “The Economic Values of Planted Bee Forage Plants.” Ecology and Environment 4: 234-5. (in Hebrew)
[10] Dag, A., Rotem, T., and Sela, N. 1993. “Finding Pollen Sources for Bee Colonies.” Hassade 63: 1286-9. (in Hebrew)
[11] Reves, Y. 2004. A Guide to Eucalyptus Species Growing in Israel. Rehovot, Israel: Novell Publishers. (in Hebrew)
[12] Tamar, K., and Shmida, A. 2009. “An Evaluation of Israeli Forestry Trees and Shrubs as Potential Forage Plants for Bees.” Israel Journal of Plant Sciences 57 (1-2): 49-64.
[13] AlBaba, I. 2013. “A Preliminary Survey of West Bank Plants Diversity as Potential Forage Plants for Bees in West Bank-Palestine.” Pro. J. of Agr. Sci. Res. 1 (3): 57-63.
[14] Al-Sheikh, B., and Salman, M. 2000. Preliminary Checklist and Ecological Data-Base of Plants of the West Bank. Jerusalem: Al-Quds University.
[15] Palestinian Institute for Arid Land and Environmental Studies (PIALES). 1996. A Preliminary Investigation of Biodiversity in Palestine: Problems and Prospects. Hebron, Palestinian Territories: PIALES.
[16] The Jerusalem Botanic Gardens. 2015. “Flora of Israel.” Accessed April 30, 2015. http://www.botanic.co.il/Pages/Show/106.
[17] Deodikar, G. B., and Thakar, C. V. 1966. “Utilization and Improvement of the Local Floras as Bee Pasturage.” Indian Bee J. 28: 11-5.
[18] Zohary, M. 1947. “The Honey Plants of the Land of Israel.” Publication of the Agricultural Research Station, Rehovot, Israel. Accessed April 7, 2015. http://www.honey.org.il/lit/zohary/plants.htm. (in Hebrew)
A List of Important Honeybee Nectariferous and Polleniferous Plant Species in the West Bank Governorates, Palestine

No.	Spp. scientific name	Family name	Spp. English name	Food elements	Blooming months
1	Asphodeline lutea	Liliaceae	Yellow Asphodel	P & N	March-May
2	Asphodelus aestivus	Liliaceae	Asphodel	P & N	February-May
3	Acer obtusifolium	Aceraceae	Syrian Maple	P & N	March-May
4	Ammi visnaga	Apiaceae	Toothpick	P	April-August
5	Cuminum cyminum	Apiaceae	Cumin	P & N	March-April
6	Eryngium creticum	Apiaceae	Field Eryngo	P & N	May-August
7	Eryngium glomeratum	Apiaceae	Sea Holly	P & N	May-September
8	Eryngium maritimum	Apiaceae	Sea Holly	P & N	April-August
9	Hedera helix	Araliaceae	Ivy	P & N	January-December
10	Scilla hyacinthoides	Asparagaceae	Hyacinth Squill	P & N	February-April
11	Alkanna strigosa	Boraginaceae	Strigose Alkanet	N	March-June
12	Cynoglossum creticum	Boraginaceae	Blue Hound’s Tongue	N	April-May
13	Echioclinon fruticosum	Boraginaceae	Bushy Bugloss	N	March-June
14	Echium angustifolium	Boraginaceae	Hispid Viper’s-bugloss	P & N	March-August
15	Echium glomeratum	Boraginaceae	Tall Viper’s-bugloss	P & N	March-June
16	Echium judea	Boraginaceae	Judean Viper’s-bugloss	P & N	March-April
17	Echium plantagineum	Boraginaceae	Purple Viper’s Bugloss	P & N	January-April
18	Moltkiopsis ciliata	Boraginaceae	Callous-leaved Gromwell	N	December-August
19	Ceratonia siliqua	Caesalpinaceae	Carob tree	P & N	July
20	Cercis siliquastrum	Caesalpinaceae	Cercis	N	February-May
21	Capparis aegyptiaca	Capparaceae	Egyptian Caper	P & N	March-August
22	Capparis sicula	Capparaceae	Caper	P & N	April-October
23	Capparis spinosa	Capparaceae	Spiny Caper	P & N	March-August
24	Scabiosa palaeastina	Caprifoliaceae	Scabious	P & N	March-May
25	Scabiosa prolifera	Caprifoliaceae	Prolific Scabious	P & N	March-May
26	Cistus incanus	Cistaceae	Hairy Rockrose	P	March-June
27	Helianthemum vesicarium	Cistaceae	Pink Sun-rose	P & N	January-May
28	Achillea falcate	Compositae	Sulphur-colored Milfoil	P & N	April-May
29	Achillea fragrantissima	Compositae	Lavender Cotton	P & N	March-May
30	Achillea santolina	Compositae	Woolly Yarrow	P & N	March-May
31	Cardamus glaucus	Compositae	Glaucous Star Thistle	N & P	May-August
32	Cardamus nitidus	Compositae	Smooth Distaff thistle	N & P	April-August
33	Cardamus tenuis	Compositae	Safflower	N & P	May-September
34	Centaurea hyalolepis	Compositae	Centaury-thistle	N & P	March-June
35	Centaurea iberica	Compositae	Spanish Centaury-thistle	N & P	April-July
36	Centaurea lanulata	Compositae	Centaury-thistle	N & P	January-May
37	Centaurea pallescens	Compositae	Centaury	N & P	April-August
38	Centaurea verutum	Compositae	Centaury-thistle	N & P	May-July
39	Chiladienus iphioides	Compositae	Goldy Locks	P	September-November
40	Crupina crupinastrum	Compositae	False Saw-wort	N & P	March-May
41	Onopordum alexandrinum	Compositae	Thistle	N & P	March-May
42	Onopordum blanchianum	Compositae	Cotton Thistle	P & N	March-June
43	Onopordum carduiforme	Compositae	False Plumed Thistle	N & P	March-June
44	Onopordum cynarocophalum	Compositae	Artichoke Cotton-Thistle	N & P	May-July
45	Senecio joppensis	Compositae	Jaffa Groundsel	P & N	January-April
46	Senecio vernalis	Compositae	spring Groundsel	P & N	January-December
47	Silybum marianum	Compositae	Milk Thistle	N & P	March-May
48	Cynara syriaca	Compositae	Syrian Artichoke	N & P	June-August
(Annex 1 continued)

No.	Sp. scientific name	Family name	Sp. English name	Food elements	Blooming months
49	Dittrichia graveolens	Compositae	Stinkwort	P & N	August-December
50	Dittrichia viscosa	Compositae	Inula	P & N	September-November
51	Echinops gaillardotii	Compositae	Globe Thistle	N & P	June-July
52	Echinops philistaeus	Compositae	Pale Globe Thistle	N & P	May-August
53	Eupatorium cannabinum	Compositae	Common Hemp Agrimony	P & N	June October
54	Notobasis syriaca	Compositae	Syrian Thistle	N & P	April-June
55	Convulvulus althaeoides	Convolvulaceae	Mallow Bindweed	N	March-June
56	Convulvulus dorycnium	Convolvulaceae	Splendid Bindweed	N	April-July
57	Diplotaxis erucoides	Cruciferae	White Wallrocket	N	February-March, November-December
58	Diplotaxis harra	Cruciferae	Wall rocket	N	January-May
59	Eruca sativa	Cruciferae	Arugula	P & N	February-May
60	Maresia pulchella	Cruciferae	Pretty Maresia	P & N	January-November
61	Sinapis alba	Cruciferae	White Mustard	P & N	January-December
62	Sinapis arvensis	Cruciferae	Charlock	P & N	March-May
63	Zilla spinosa	Cruciferae	Spiny Zilla	N	January-May
64	Raphanus raphanistrum	Cruciferae	Sea-Radish, White Charlock	N	January-May
65	Echallium elaterrium	Cucurbitaceae	Squirtung Cucumber	N & P	May-October
66	Cephalaria jappensis	Dipsaceae	Jafa Scabious	P & N	May-September
67	Arbuthus andrachne	Ericaceae	Eastern Strawberry Tree	N	March-April
68	Lupinus pilosus	Fabaceae	Blue Lupine	P	February-April
69	Prosopis farcta	Fabaceae	Prosopis	P & N	May-August
70	Lotus collinus	Fabaceae	Judean Bird’s-foot Trefoil	P & N	March-May
71	Lotus creticus	Fabaceae	Silvery Bird’s-foot Trefoil	P & N	March-August
72	Lupinus palaestinus	Fabaceae	Palestine Lupine	P	February-May
73	Medicago sativa	Fabaceae	Buffalo Herb	P & N	April-July
74	Melilotus albus	Fabaceae	Yellow Melilot	N & P	April-October
75	Hypericum triquetrifolium	Gluciaceae	Tumble St. John’s-wort	P	May-September
76	Moluccella laevis	Labiatae	Molucca Balm; Shell Flower; Bells of Ireland	N	April-July
77	Origanum syriacum	Labiatae	The Rose of Jericho	N & P	January-September
78	Ballota undulata	Lamiaceae	Common Ballota	N	April-October
79	Coridothymus capitatus	Lamiaceae	Cone Head Thyme	P & N	May-October
80	Lamium moschatum	Lamiaceae	Musky Archange	N	March-April
81	Lavandula stonechas	Lamiaceae	French Lavender; Spanish Lavender	N	February-May
82	Mentha sp.	Lamiaceae	Mint	N	June-July
83	Micromeria fruticosa	Lamiaceae	White Leaved Savory	P & N	February-June
84	Prasium majus	Lamiaceae	Great Hedge-nettle	N	July-October
85	Rosmarinus officinalis	Lamiaceae	Rosemary	N	March-September
86	Salvia fruticosa	Lamiaceae	Greek Sage	N	March-June
87	Salvia hierosolymitana	Lamiaceae	Jerusalem Sage	P & N	March-July
88	Salvia indica	Lamiaceae	Wild Sage	P & N	April-May
89	Salvia judaica	Lamiaceae	Judean Sage	P & N	April-June
90	Satureja thymbra	Lamiaceae	Savory of Crete	N	March-July
91	Sideritis perfoliata	Lamiaceae	Mountain Tea	N	June-October
92	Sideritis pullulans	Lamiaceae	Branching Ironwort	N	May-October
93	Stachys distans	Lamiaceae	Lamb’s Ear	N	May-June
94	Teucrium creticum	Lamiaceae	Cretan Germander	N & P	May-September
No.	Spp. scientific name	Family name	Spp. English name	Food elements	Blooming months
-----	----------------------	-------------	-------------------	---------------	-----------------
95	Teucrium divaricatum	Lamiaceae	Spreading Germander	P & N	April-June
96	Teucrium scordium	Lamiaceae	Water Germander	P & N	June-October
97	Trifolium fragiferum	Lamiaceae	Strawberry Clover	N	April-May
98	Trifolium palaestinum	Lamiaceae	Palestine Clover	P & N	April-May
99	Trifolium purpureum	Lamiaceae	Purple Clover	P & N	April-May
100	Trifolium repens	Lamiaceae	Dutch Clover	N	April-May
101	Trifolium resupinatum	Lamiaceae	Trifolium Pink Clover	P	April-May
102	Urginea maritima	Liliiaceae	Sea-squill	P & N	July-October
103	Alcea dissecta	Malvaceae	Bristly Hollyhock	P & N	April-July
104	Alcea setosa	Malvaceae	Hollyhock	P & N	April-June
105	Eucalyptus sp.	Myrtaceae	Eucalyptus	N	February-May,
					August-December
106	Glaucium flavum	Papaveraceae	Yellow-horned Poppy	P	April-August
107	Glaucium grandiflorum	Papaveraceae	Red-horned Poppy	P	April-May
108	Anagyris foetida	Papilionaceae	Mediterranean Stinkbush	P	January-April
109	Ononis alpeoguroides	Papilionaceae	Foxtail Rest Harrow	P	April-May
110	Ononis hirta	Papilionaceae	Hairy Rest Harrow	P	March-May
111	Ononis natrix	Papilionaceae	Sticky Rest Harrow	P	April-September
112	Ononis pubescens	Papilionaceae	Downy Rest Harrow	P	March-July
113	Retama raetam	Papilionaceae	White Broom	N & P	March-April
114	Calligonum comosum	Polygonaceae	Calligonum Fringed	N & P	February-April
115	Anemone coronaria	Ranunculaceae	Crown Anemone	P	February -May
116	Clematis cirrhosa	Ranunculaceae	Virgin’s Bower	P & N	November-February
117	Clematis flammula	Ranunculaceae	Sweet Virgin’s Bower	P & N	April-June
118	Reseda alba	Resedaceae	White Upright Mignonette	P & N	February-April
119	Reseda boissieri	Resedaceae	Mignonette	P & N	February-May
120	Reseda decursiva	Resedaceae	Mignonette	P & N	February-November
121	Reseda lutea	Resedaceae	Yellow Mignonette	P & N	March-June
122	Reseda muricata	Resedaceae	Mignonette	P & N	March-April
123	Reseda orientalis	Resedaceae	Oriental Mignonette	P & N	December-February
124	Rhamnus lycioides	Rhamnaceae	Palestine Buckthorn	P & N	January-April
125	Ziziphus spina-christi	Rhamnaceae	Christ’s Thorn Jujube	P & N	April-October
126	Amygdalus communis	Rosaceae	Common Bitter Almond	P & N	February-March
127	Amygdalus korschinskii	Rosaceae	Wild Almond	P & N	February-March
128	Amygdalus sp.	Rosaceae	Almond	P & N	February-March
129	Prunus avium	Rosaceae	Sweet Cherry	P & N	March-April
130	Prunus domestica	Rosaceae	Plum	P & N	March-April
131	Prunus persica	Rosaceae	Peach	P & N	March-April
132	Prunus ursina	Rosaceae	Bear’s Plum	P & N	March-April
133	Citrus spp.	Rutaceae	Lemon	P & N	April-June
134	Salix alba	Salicaceae	Willow	P & N	March-June
135	Verbasium galilaeum	Scrophulariaceae	Common Mullein	P	April-July
136	Verbasium sinaicum	Scrophulariaceae	Sinai Mullein	P	April-July
137	Verbasium sinaatum	Scrophulariaceae	Scallop-leaved Mullein	P	April-October
138	Syringa officinalis	Styracaceae	Storax Tree	N & P	March-April
139	Tamarix aphylla	Tamaricaceae	Athel Pine	P & N	July-November
140	Tamarix tetragnata	Tamaricaceae	Tamarisk	P & N	March-May
141	Phylla nodiflora	Verbenaceae	Sawtooth Fogfruit	N	April-September
142	Nitaria retusa	Zygophyllaceae	Salt Tree	P & N	April-May
143	Zygophyllum dumosum	Zygophyllaceae	Bushy Bean Caper Plant	P & N	February-April

P = pollen and N = nectar.