Sex-specific regulation of follicle-stimulating hormone secretion by synaptotagmin 9

Lindsey K. Roper1,2,3,4, Joseph S. Briguglio1,2,3, Chantell S. Evans1,2,3,4, Meyer B. Jackson1,3,4 & Edwin R. Chapman1,2,3,4

The anterior pituitary releases six different hormones that control virtually all aspects of vertebrate physiology, yet the molecular mechanisms underlying their Ca\(^{2+}\)-triggered release remain unknown. A subset of the synaptotagmin (syt) family of proteins serve as Ca\(^{2+}\) sensors for exocytosis in neurons and neuroendocrine cells, and are thus likely to regulate pituitary hormone secretion. Here we show that numerous syt isoforms are highly expressed in the pituitary gland in a lobe, and sex-specific manner. We further investigated a Ca\(^{2+}\)-activated isoform, syt-9, and found that it is expressed in a subpopulation of anterior pituitary cells, the gonadotropes. Follicle-stimulating hormone (FSH) and syt-9 are highly co-localized in female, but not male, mice. Loss of syt-9 results in diminished basal and stimulated FSH secretion only in females, resulting in alterations in the oestrus cycle. This work uncovers a new function for syt-9 and reveals a novel sex difference in reproductive hormone secretion.
The precise control of peptide hormone secretion from the pituitary is essential for regulating vertebrate physiology and homeostasis, as these hormones control diverse processes including growth, metabolism and reproduction. The anterior pituitary consists of five major cell types, which secrete specific hormones. Gonadotropes are the only pituitary cell type that secretes two hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH); however, they are differentially released, and this difference is necessary for their physiological action. In both males and females, FSH and LH are rhythmically secreted to control reproductive physiology. In males, these hormones drive the synthesis of testosterone and the production and development of sperm. In females, FSH triggers follicle maturation, and a sudden surge in LH drives ovulation. Surprisingly, the differential secretion of FSH and LH are both driven by the pulsatile release of the same hormone, gonadotropin-releasing hormone (GnRH), originating in the hypothalamus. GnRH triggers Ca²⁺ oscillations in gonadotropes with specific patterns (amplitudes and frequencies) that can differentially trigger the release of FSH and LH. The signalling steps through which GnRH-receptor interactions mobilize intracellular Ca²⁺ are well-understood; however, little is known concerning the Ca²⁺ sensors that ‘decode’ these oscillations to trigger exocytosis.

Hormone secretion is mediated by soluble NSF attachment protein receptor (SNARE) proteins: large dense core vesicles (LDCV) harbour vesicular SNAREs (v-SNAREs) that assemble into four-helix bundles with target membrane SNAREs (t-SNAREs), thus catalysing fusion. Numerous regulatory proteins control SNARE-catalysed fusion, including the synaptotagmin (syt) family of proteins, which have been shown to play crucial roles in the regulation of exocytosis in a variety of cell types including neurons and neuroendocrine cells. Seventeen isoforms of syt have been identified in mammals, and many, but not all, bind to—and are activated by—Ca²⁺ (ref. 13). Moreover, the affinity of syts for Ca²⁺ can differ greatly between distinct isoforms, indicating that syts might be able to differentially integrate Ca²⁺ signals in cells.

In hippocampal neurons, a pHluorin screen revealed that most syt isoforms expressed in brain recycle, in response to depolarization, with kinetics suggestive of targeting to non-overlapping subsets of LDCVs. Indeed, syt-4 has been shown to regulate the release of brain-derived neurotrophic factor from both axons and dendrites, and syt-10 was proposed to regulate the release of brain-derived neurotrophic factor from both axons and dendrites, respectively (reviewed in the study by Moghadam and Jackson). The emerging view is that many, if not most, isoforms of syt are LDCV proteins. The pituitary harbours the greatest variety of LDCVs, but little is known concerning the expression and function of syts in this gland.

Syt family members 1, 4, 7 and, as studied here, syt-9, are expressed in most endocrine tissues and while progress has been made concerning their functions, the role of syt-9 (accession # NM_016908; sometimes referred to as syt-5 (ref. 18) remains controversial and somewhat obscure. In the mouse brain, syt-9 was reported to be a LDCV protein, while another group reported that this isoform was targeted to synaptic vesicles where it acts as a Ca²⁺-sensor for fast release, but this latter finding could not be confirmed in a subsequent study. In addition, in INS-1E cells, knockdown of syt-9 had no effect on basal insulin release, but reduced glucose-stimulated secretion of insulin by 69% (ref. 21); however, changes in insulin secretion were not detected in vivo studies. However, in PC12 cells, it is well-established that syt-9 regulates LDCV secretion. In addition, analysis of all four syt isoforms expressed in PC12 cells (syt-1, 4, 7 and 9), revealed that each is differentially sorted to LDCVs of different sizes, where they influence the mode of fusion.

Here we show that syt-9 is enriched in both the anterior and posterior lobes of the pituitary. In the anterior pituitary, syt-9 is expressed in a subpopulation of cells, including the gonadotropes. Intriguingly, FSH is highly co-localized with syt-9 in female, but not male, mice, and knockout (KO) of syt-9 in female mice strongly reduces FSH secretion. Syt-9 KO females also exhibit a prolonged oestrus phase. Finally, we demonstrate that a number of additional syt isoforms are highly expressed, at the protein level, in each lobe of the pituitary. Interestingly, these expression patterns are, in some cases, sex specific. Together these results uncover a novel function for syt-9, provide new insights into sex-specific differences in the control of the endocrine system, and represent a step towards unravelling the molecular mechanisms that underlie the differential secretion of pituitary hormones.

Results

Syt-9 expression in the pituitary and other brain regions. As outlined in the Introduction, recent studies indicate that many, if not most isoforms of syt, are targeted to LDCVs in neurons; the syts are therefore likely candidates for regulating the release of hormones from the pituitary. To begin to address this issue, an antibody was raised against syt-9 (validation in Supplementary Fig. 1a top two panels), a somewhat controversial isoform that is expressed in both neurons and neuroendocrine cells. This antibody was then used to investigate the expression patterns of syt-9 in different brain regions (Fig. 1; Supplementary Fig. 2); interestingly, the highest expression levels occur in the pituitary (Fig. 1a,c; Supplementary Fig. 2a). The second highest relative expression level of syt-9 was in the hypothalamus, another tissue that is rich in LDCVs. Significant levels of expression were also detected in the olfactory bulb and thalamus, with lower levels in the cortex, hippocampus and midbrain. Syt-9 was not detected at high levels in the cerebellum or hindbrain, or in any brain region obtained from syt-9 KO mice. Analysis of the individual lobes revealed that syt-9 is expressed at significantly higher levels in the anterior pituitary than in the whole brain, but expression is most robust in the posterior lobe (Fig. 1b,c; Supplementary Fig. 2b). Here we address the function of syt-9 in the anterior pituitary; a separate study will explore the potential role of syt-9 in posterior pituitary hormone secretion.

Syt-9 is expressed in a subset of anterior pituitary cells. Staining of syt-9 in coronal slices of pituitary glands confirmed robust expression in the posterior lobe and in a subset of cells that are randomly distributed throughout the anterior lobe (Fig. 2a). These sections were co-stained for FSH, to mark gonadotropes within the anterior pituitary, and 4,6-diamidino-2-phenylindole (DAPI) to mark the nuclei of all cells; even at this low level of magnification some degree of co-expression with FSH was apparent. We therefore examined higher magnification images, and in addition to FSH, we stained for LH and growth hormone (GH). These experiments clearly revealed that syt-9 is expressed in gonadotropes, as evidenced by its presence in cells that express FSH and LH. In contrast, syt-9 was not expressed in somatotropes, as shown by the lack of co-localization with GH (Fig. 2b).

Co-localization of syt-9 with FSH in females. To determine the sub-cellular localization of syt-9, and whether it co-localizes with either FSH- or LH-containing vesicles, we turned to primary cultures of dissociated pituitary cells and acquired higher resolution images (Fig. 3a,b). We examined the degree of syt-9 co-localization with each of these hormones, and we also examined...
Syt-9 folds t-SNAREs to drive Ca\(^{2+}\)-regulated membrane fusion. These findings suggest that syt-9 might regulate the exocytosis of gonadotropin-containing LDCVs. In reconstituted systems, Ca\(^{2+}\)-syt-9 can in fact accelerate SNARE-catalysed fusion\(^{26}\); however, in the standard \textit{in vitro} fusion assay, which utilizes pre-assembled t-SNARE heterodimers (syntaxin-1A (syx) and SNAP-25B), fusion is enhanced by simply aggregating v- and t-SNARE vesicles\(^{27}\), so it remained unclear as to whether syt-9 can regulate fusion via a more specific mechanism. Indeed, we found that Ca\(^{2+}\)-syt-9 does in fact aggregate vesicles (Fig. 4a). We therefore utilized a variant of the reconstituted fusion assay in which syx is reconstituted into liposomes and SNAP-25B is added in a soluble form. Under these conditions, syt-1 must first fold SNAP-25B onto syx for fusion with syb-bearing vesicles to occur; aggregation alone has no effect\(^{27}\). We found that, syt-9, like syt-1, is able to drive fusion in response to Ca\(^{2+}\) in this ‘split t-SNARE’ fusion assay (Fig. 4b). So, syt-9 is a \textit{bona fide} Ca\(^{2+}\) sensor that can directly regulate SNARE-catalysed fusion \textit{in vitro}.

Reduced FSH secretion in female but not male syt-9 KO mice. To determine whether syt-9 regulates FSH or LH release from gonadotropes, hormone secretion from whole dissected pituitary glands (Fig. 5a), from wild type (WT) and syt-9 KO mice, was monitored with (stimulated) or without (unstimulated) the addition of the relevant tropic hormone. We also monitored GH release as a negative control. Secretion of FSH and LH was stimulated by the addition of GnRH, and the release of GH triggered by adding GH-releasing hormone (GHRH). As shown in Fig. 5b, FSH secretion was significantly reduced in female syt-9 KO mice, in the stimulated condition, at 30 and 60 min.
Interestingly, we also observed reductions in unstimulated FSH secretion at all time points tested; however, LH was unaffected under all conditions. Loss of syt-9 did not affect either FSH or LH secretion in male mice under any conditions tested (Fig. 5c), revealing that the role of syt-9 in FSH secretion is sex specific. Furthermore, GH release was unaffected by loss of syt-9, in both females and males (Fig. 5b,c), which is consistent with the absence of syt-9 in somatotropes. In addition, loss of syt-9 had no effect on the total levels of any pituitary hormones tested (Fig. 5d).

Syt-9 KO mice exhibit alterations in the oestrous cycle. Given the importance of FSH in follicle maturation in the ovary, disruption of FSH secretion could potentially lead to reproductive deficits in syt-9 KO females. Surprisingly, we found no differences between breeding rates among all combinations of WT and syt-9 KO mice (Supplementary Fig. 3a). The sex ratios (Supplementary Fig. 3b), as well as the number of offspring in each litter (Supplementary Fig. 3c), were also unchanged. In addition, corpora lutea and follicles of all sizes were present in similar numbers in both the WT and syt-9 KO animals (Fig. 6a). Serum was collected from female mice in the dioestrus phase of the oestrous cycle as determined by visual inspection of the vaginal opening28; however, there were no detectable changes in FSH levels. We then repeated this experiment utilizing oestrous smears28,29 for more precise timing of the cycle and only found a small but significant decrease in FSH serum levels in syt-9 KO females (Supplementary Fig. 4b).

While collecting oestrous smears for blood collection, we observed that syt-9 KO females exhibit subtle, but significant changes in the oestrous cycle. Namely, the oestrus phase of the cycle is longer in the KOs than in WT females (Fig. 6b,c). We therefore re-examined the KO mice for alterations in breeding rates, but this time using a more stringent approach, in which syt-9 KO females were challenged with a constrained mating period. The mouse oestrous cycle lasts for 4–5 days, so eight WT and eight syt-9 KO females were individually paired with a male for a period of 4 days; males were then removed. After 18 days, six WT females (75%) were pregnant and gave birth to pups soon after, whereas only three (37.5%) syt-9 KO females became pregnant and delivered litters (Fig. 6d). Together, these data further support an in vivo role for syt-9 in the regulation of FSH release in female mice.

In contrast with syt-9 KO females, syt-9 KO males did not exhibit a detectable reproductive phenotype (Supplementary Fig. 3a). Testes histology (Supplementary Fig. 5) and FSH serum levels (Supplementary Fig. 4a) were unaffected in the KOs.
mediated liposome aggregation, which was fully reversible by the
subsequent addition of EGTA. (b) Split t-SNARE in vitro membrane fusion assay using reconstituted syntaxin-1A and soluble SNAP-25B. Syt-1 and 9 were able to facilitate membrane fusion in the presence of Ca2+, but not in the control EGTA condition. The extent of fusion (%F\textsubscript{max}) was 41.5 ± 4.9 and 41.9 ± 5.3 for syt-1 and syt-9, respectively.

Figure 4 | Syt-9 folds t-SNAREs to promote Ca2+-regulated membrane fusion. (a) A time course of protein-free liposomes turbidity was monitored by measuring the absorbance at 400 nm. On the addition of Ca2+, syt-9 mediated liposome aggregation, which was fully reversible by the subsequent addition of EGTA. (b) Split t-SNARE in vitro membrane fusion assay using reconstituted syntaxin-1A and soluble SNAP-25B. Syt-1 and 9 were able to facilitate membrane fusion in the presence of Ca2+, but not in the control EGTA condition. The extent of fusion (%F\textsubscript{max}) was 41.5 ± 4.9 and 41.9 ± 5.3 for syt-1 and syt-9, respectively.

Differential expression patterns of syt isoforms. To further investigate the sex-dependent sorting of syt-9 uncovered above, we compared samples from males and females to determine whether there are sex-specific differences in expression patterns and expressions levels. We also conducted a survey to identify additional syt isoforms that could regulate the secretion other pituitary hormones. Immunoblots of the whole brain, anterior and posterior pituitary extracts were probed with isoform-specific antibodies. For this screen, commercially available antibodies were used to detect syt-1, 4 and 7, and new antibodies were generated against syt-10, 11 and 12 (Supplementary Fig. 1a,b). These experiments revealed that the syt-9 expression pattern was the same in both sexes (Fig. 7; Supplementary Fig. 6). So, while syt-9 displayed sex-specific subcellular localization (Fig. 3c), there were no discernible differences in anterior pituitary expression levels in females versus males (Fig. 7). Syt-1 is expressed in the posterior pituitary of both males and females; surprisingly, this isoform was expressed in the anterior pituitary in males only, thus uncovering a novel sex-dependent difference, but in this case at the level of protein expression. Syt-7 is also expressed in the anterior and posterior lobes of the pituitary in both males and females. This isoform is thought to undergo extensive alternative splicing, and striking sex differences in the putative splice variants in each lobe were apparent revealing yet another novel sex-specific difference. Syt-10 and 11 were almost exclusively expressed in the anterior pituitary in both sexes; syt-10 was more abundant in females. Syt-12 also exhibited a marked sex difference: this isoform was detected only in the posterior pituitary of males. Finally, syt-4 is expressed at equal levels in both lobes, and like syt-9 expression is similar in both sexes. We also compared the absolute expression levels of each syt isoform in the two lobes of the pituitary to the levels observed in brain. Syt-7, 10 and 11 are expressed at much lower levels in brain as compared with the anterior pituitary; only syt-1 and 12 were expressed at higher levels in whole brain. Finally, syt-4 was expressed at roughly equal levels in brain versus the pituitary (see also the 2009 study by Zhang et al., where mouse syt-4 was expressed at higher levels in the pituitary than in specific brain regions). Relative expression of all syt isoforms, except syt-7, were quantified using densitometry in males and in females (Fig. 7b,c).

Discussion

The highly coordinated release of the gonadotrophic hormones FSH and LH are crucial aspects of mammalian reproduction. While the differential release of these two hormones has been well-studied, the molecular mechanisms that underlie their secretion remain unknown. The findings that FSH is highly co-localized with syt-9 in female mice (Fig. 3a,c), and that loss of syt-9 leads to reduced FSH release only in females (Fig. 5b), offers the first insight into the Ca2+-sensing molecular machinery that regulates differential pituitary hormone secretion, and uncovers a novel sex difference. Because basal FSH release in unstimulated WT females at 60 min equaled the degree of release from female syt-9 KO glands that had been stimulated with GnRH for 60 min (Fig. 5b), syt-9 appears to play a major role in the Ca2+-triggered release of FSH in females, by acting as a Ca2+ sensor. Reduced FSH secretion in syt-9 KO females was also observed under basal conditions, in which release is unlikely to be driven by Ca2+. These findings raise the possibility that syt-9 plays additional roles in LDCV trafficking, akin to syt-1, which is thought to contribute to the docking and priming of LDCVs in chromaffin cells. We are currently establishing primary culture systems to directly address this issue using imaging methods that cannot be applied to the whole tissue experiment utilized here.

Because there is some degree of syt-9 co-localization with FSH in males, and with LH in both males and females, it remains possible that subtle alterations occurred but were not measurable in our *in vitro* stimulation assay. It should also be noted that GnRH was added in a single bolus, but *in vivo* this hormone is released from the hypothalamus in a pulsatile manner. Future experiments, in which GnRH is applied in a more temporally controlled manner, might reveal additional alterations in FSH or LH secretion. Finally, it is possible that other factors dominate the regulation of release of LH, to occlude the function of syt-9 on these vesicles. Nonetheless, even the simple addition of GnRH revealed a marked and unexpected sex difference regarding syt-9 control of FSH secretion in males and females.

Numerous mouse models, with deficits in the gonadotropin signalling pathway, have been generated and characterized. Ablation of FSH signalling leads to infertility in females, and has mixed effects on male55. Complete loss of FSH, by knocking out the gene for FSHβ34, and frame shift mutations in FSHβ in humans35, have been shown to arrest follicle development at the primary/preantral stage, leading to infertility. We hypothesize that the partial reduction in FSH secretion observed in syt-9 KO mice only slows the development of the dominant follicle, thus prolonging the oestrus phase. Indeed, breeding rates were normal, when mice were allowed to breed over a prolonged period. However, if the mating time was restricted, deficits in reproduction were observed (Fig. 6d), and this could be due to diminished serum levels of FSH (Supplementary Fig. 4b). A stronger reproductive phenotype will likely await identification of other additional molecules that drive this residual release. In addition, compensatory changes in the serum half-life of FSH could ameliorate the effect of reduced FSH release, as multiple
studies have shown that the ratio of sialic acid to sulfonated N-acetylgalactosamine residues on circulating FSH molecules can drastically alter serum half-life. In addition to the sex-specific sub-cellular localization of syt-9, we also uncovered multiple syt isoforms—syt-1, 7, 10 and 12—that exhibited sex-specific expression patterns in the pituitary gland. Further studies are needed to determine the putative sex-specific functions of these differentially expressed isoforms, which might contribute to sex differences in the regulation of other hormones. Further study of other anterior pituitary syts (that is, 4, 7, 10 and 11) will likely reveal isoforms that regulate the release of additional anterior pituitary hormones, including LH, GH, FSH, LH and GH secretion.

Figure 5 | Reduced secretion of FSH in female syt-9 KO mice. (a) Diagram of the in vitro stimulation assay used to analyse FSH, LH and GH secretion from intact isolated pituitary glands. Release was stimulated by the addition of 100 nM GnRH (FSH and LH) or 100 nM GHRH (GH). (b,c) Quantitation of hormone release, as measured using a multiplex ELISA. Syt-9 KO females exhibited lower levels of FSH release in both unstimulated and stimulated conditions. FSH release in males and LH release in both sexes were unaffected by loss of syt-9. Syt-9 was not detected in cells that release GH, and loss of syt-9 had no effect on GH secretion. (d) Total hormone levels in whole pituitary glands: levels of all three hormones are unchanged in syt-9 KO, as compared with WT, animals. N ≥ 10 animals. Plotted values are mean ± s.e.m. Student’s t-test: * P ≤ 0.05, ** P ≤ 0.01.
adrenocorticotropin hormone, thyroid stimulating hormone and prolactin. Moreover, the posterior pituitary, which releases oxytocin and vasopressin, expresses myriad syt isoforms (that is, 1, 4, 7, 9 or 12), but the identity of the isoform(s) that regulate hormone secretion from this tissue remains unknown. Finally, another unresolved question is whether multiple syt isoforms are targeted to overlapping populations of vesicles; in principle, co-targeting of multiple isoforms could contribute to the ability of LDCVs to decode and integrate Ca$^{2+}$ signals.

Methods

Animals. Animal use and care was conducted in accordance with the guidelines established by the National Institutes of Health and approved by the Animal Care and Use Committee of the University of Wisconsin-Madison (protocol# M01221). Wistar rats were purchased from Harlan Labs (Indianapolis, IN). Syt-9 KO mice were obtained from Jackson Laboratory (Bar Harbor, ME).

Antibodies and hormones. The rabbit polyclonal α-syt-4 (1:500), α-syt-7 (1:500) and the α-syt-9 (1:500) antibodies used for immunocytochemistry were purchased from Synaptic Systems (Goettingen, Germany). The mouse monoclonal α-valosin-containing protein (VCP) (1:1,000), α-green fluorescent protein (GFP) (1:2,000) and α-his, tag (1:2,000) antibodies were purchased from Abcam (Cambridge, UK). For immunoblot analysis, we used an α-syt-9 (1:250) rabbit polyclonal antibody generated using the C2B domain of the protein as the antigen. Also, α-syt-10 (1:500) and α-syt-11 (1:500) mouse monoclonal antibodies, and an α-syt-12 rabbit polyclonal antibody (1:500), were generated using the C2A domain of each respective syt isoform as the antigen. The α-syt-11 monoclonal antibody is available from Biolegend (San Diego, CA). The mouse polyclonal α-syt-1 antibody hybridoma (mab48; ref. 38 was obtained from Developmental Studies Hybridoma Bank (Iowa City, IA), and mouse ascites fluid was generated at Covance (Princeton, NJ). Guinea pig and rabbit polyclonal α-FSH, LH and GH antibodies were provided by the National Hormone and Peptide Program (Torrance, CA).
For immunofluorescence, the secondary antibodies were τ-γuinea pig Alex A488 and τ-α rabbit Alexa 647 (1:8000) purchased from Life Technologies (Madison, WI). Secondary τ-rabbit- or τ-mouse-conjugated hors eradish peroxidase (H + L) antibodies, used for immunoblot analysis (diluted 1:10,000 or 1:10,000), were obtained from Synchronic Systems.

GST (HIHHR Salmon) was purchased from Sigma Aldrich (St. Louis, MO), and GHRH (GRI, rat) was purchased from Bachem Chemicals (Bubendorf, Switzerland).

To validate the τ-syt-9, -10 and -12 antibodies, HEK cells were transfected with plasmids encoding syt-1-12 fused to GFP, in a pCI vector under a CMV promoter. The N-terminal GFP tags were preceded by a pre-prolactin signal sequence identical to syt-1-12 (syt-2, 139–423; syt-3, 290–569; syt-4, 152–425; syt-5, 2-mercaptoethanol (his6 purification buffer). Bacteria were sonicated in the 25 mM HEPES pH 7.4, 100 mM NaCl, 5 mM KCl, 2 mM MgCl2, 1 mM EGTA, 5 mM glucose, 400 mM sucrose) at 37°C for 15 min, washed three times with PBS plus 0.1% Triton X-100 and incubated at 4°C with secondary antibodies. Slices were washed in the same buffer three times and immediately imaged.

Cultured pituitary cells were fixed in 4% paraformaldehyde in stabilization buffer (5 mM PIPES, 1 mM NaH2PO4, 125 mM NaCl, 5 mM KCl, 2 mM MgCl2, 1 mM EGTA, 1 mM glucose, 400 mM sucrose) at 37°C for 15 min, washed three times with PBS and permeabilized in PBS with 0.5% Triton X-100 for 15 min at RT. Cells were blocked with 4% BSA in PBS for 2 h at RT and incubated with primary antibodies overnight at 4°C. Cells were then washed three times with PBS plus 0.1% Triton X-100 and incubated with secondary antibody for 1 h at 4°C. Finally, cells were four times washed with PBS plus 0.1% Triton X-100 and mounted in ProLong Gold (Life Technologies, Carlsbad, CA).

Protein extraction and immunoblot analysis. For immunoblotting, harvested tissue samples were homogenized in phosphate-buffered saline (PBS) plus protease inhibitors, on ice, with a glass-tissue homogenizer. Bacteria were sonicated in the presence of the protease inhibitor cocktail and solubilized with 1% Triton X-100 for 2 h at 4°C. Insoluble material was removed by centrifugation (39,700g for 25 min at 4°C) and the supernatant was incubated at 4°C, with glutathione- or Ni-Sepharose beads, for GST or his, fusion proteins, respectively. Beads were washed twice with 50 vol of their respective purification buffer containing an additional 1 M NaCl and 10 μg ml−1 DNAse/RNase, followed by two more washes in a buffer containing additional 0.1% Triton X-100 for 2 h at 4°C. Twenty microliters of protein was subjected to SDS–PAGE and immunoblot analysis under the same protocol as above except that 1% Triton X-100 was included in all buffers for the first two washes; 1% octyl glucoside was included in the final washes.

Isolated pituitary cell culture. Pituitary glands were dissected in ice-cold dissection buffer (HBSS without Ca2+ or Mg2+, 10 mM HEPES, 100 mM glucose and 500 μg ml−1 BSA) and digested with 20 U ml−1 of papain at 37°C in 5% CO2 for 20 min. The digested tissue was then washed three times with 1 M NaCl and 10 mM HEPES, pH 7.4, 2 mM EGTA, and a protease inhibitor cocktail (1 μg ml−1 aprotinin, pepstatin and leupeptin, and 1 mM PMSF) using a cell scraper, and homogenized with 20–30 strokes in a Dounce homogenizer. Large fragments were removed via centrifugation at 400g for 2 min at 4°C. The supernatant was then subjected to centrifugation at 21,000g for 15 min at 4°C, and the pellet was resuspended in solubilization buffer (50 mM HEPES, pH 7.4, 120 mM NaCl, 1% Triton X-100, 0.5% cholate plus the protease inhibitor cocktail). Samples were then subjected to centrifugation at 21,000g for 15 min at 4°C, and the resulting supernatant was dialyzed in SDS sample buffer (125 mM SDS, 62.5 mM Tris, 0.1% sucrose, 10% BME and bromophenol blue) boiled for 5 min, and subjected to SDS–PAGE and immunoblot analysis.

The τ-syt-11 mouse monoclonal antibody was validated against recombinant his6-tagged cytoplasmic domains of syts 1–12.

Recombinant proteins. Complementary DNA was provided as follows: syx and synaptobrevin-2 (syb) were from J.E. Rothman (New Haven, CT), SNAP-25B was from M. Tsien (Harvard, MA), 2-syt-1-12 from C. Thompson (Baltimore, MD). The cytoplasmic domain of syt-1 (96–421) was subcloned into a pGEX vector to generate a GST fusion protein. The cytoplasmic domain of syt-1-12 (syt-2, 139–423; syt-3, 290–569; syt-4, 152–425; syt-5, 256–425; syt-6, 139–423; syt-7, 290–569; syt-8, 152–425; syt-9, 256–425; syt-10, 139–423; syt-11, 290–569; syt-12, 152–425) was subcloned into a pTrcHis vector to generate his6-tagged fusion proteins.

Bacterial cultures were grown overnight at 37°C to an OD600 of 0.6. Recombinant protein expression was induced with 0.004 IPTG for 5 h at 37°C. Bacteria were collected by centrifugation (3,700g for 15 min at 4°C) and resuspended in 50 mM HEPES pH 7.4, 100 mM NaCl (GST purification buffer) or 25 mM HEPES pH 7.4, 100 mM KCl, 20 mM imidazole, 10% glycerol and 5 mM 2-mercaptoethanol (his6 purification buffer). Bacteria were sonicated in the presence of the protease inhibitor cocktail and solubilized with 1% Triton X-100 for 2 h at 4°C. Insoluble material was removed by centrifugation (39,700g for 25 min at 4°C) and the supernatant was incubated at 4°C, with glutathione- or Ni-Sepharose beads, for GST or his, fusion proteins, respectively. Beads were washed twice with 50 vol of their respective purification buffer containing an additional 1 M NaCl and 10 μg ml−1 DNAase/RNase, followed by two more washes in a buffer containing additional 0.1% Triton X-100 for 2 h at 4°C. Twenty microliters of protein was subjected to SDS–PAGE and immunoblot analysis under the same protocol as above except that 1% Triton X-100 was included in all buffers for the first two washes; 1% octyl glucoside was included in the final washes. Proteins were subjected to SDS–PAGE and immunoblot analysis under the same conditions as above except that 1% Triton X-100 was included in all buffers for the first two washes; 1% octyl glucoside was included in the final washes. Protein concentrations were determined using a BSA standard curve.
References

1. Moriarty, G. C. Immunocytochemistry of the pituitary glycoprotein hormones. J. Histochem. Cytochem. 24, 846–863 (1976).

2. Kühn, P. & Nett, T. M. Differential secretion of follicle-stimulating hormone and luteinizing hormone from ovine pituitary cells following activation of protein kinase A, protein kinase C, or increased intracellular calcium. J. Biol. Chem. 277, 1549–1556 (2002).

3. Tomic, M., Cesnajaj, M., Catt, K. J. & Stojilkovic, S. S. Developmental and functional aspects of Ca2+ signaling in agonist-stimulated pituitary gonadotrophs. Endocrinology 135, 1762–1771 (1994).

4. Sanchez-Cardenas, C. & Hernandez-Cruz, A. GmRh-Induced (Ca2++)-activated patterns in mouse gonadotrophs recorded from acute pituitary slices in vitro. Neuroendocrinology 48, 253–258 (1988).

5. Anderson, J. Intracellular mechanisms triggering gonadotrophin secretion. Rev. Reprod. 1, 193–202 (1996).

6. Chapman, E. R. How does syncytin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008).

7. Gustavsson, N. & Han, W. Calcium-sensing beyond neurotransmitters: functions of syncytotagmins in neuroendocrine and endocrine secretion. Bioessays 28, 425–435 (2006).

8. Moghadam, P. K. & Jackson, M. B. The functional significance of syncytotagmin diversity in neuroendocrine secretion. Front. Endocrinol. 4, 124 (2013).

9. Sudhof, T. C. Synaptotagmins: why so many? J. Biol. Chem. 277, 7629–7632 (2002).

10. Craxton, M. Synaptotagmin gene content of the sequenced genomes. BMC Genomics 5, 43 (2004).

11. Bhalla, A., Chicka, M. C. & Chapman, E. R. Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nat. Neurosci. 17, 813–821 (2014).

12. Byers, S. L., Lines, K. L., Martin, T. F. & Mikoshiba, K. Synaptotagmin IX regulates Ca2+-dependent synaptic function in PC12 cells. Biol. Chem. 391, 4601–4604 (2002).

13. Zhang, Z. et al. Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol. Biol. Cell 22, 2324–2336 (2011).

14. Wide, L., Eriksson, K., Sluss, P. M. & Hall, J. E. Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J. Clin. Endocrinol. Metab. 94, 958–964 (2009).

15. Wide, L., Naessen, T., Sundstrom-Poromaa, I. & Eriksson, K. Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J. Cell. Physiol. 217, 15, 421–428 (2004).

16. Lynch, K. L. & Martin, T. F. Synaptotagmins I and IX function redundantly in regulating glucose homeostasis or insulin secretion. PLoS ONE 5, e14444 (2010).

17. Lynch, K. L. & Martin, T. F. Synaptotagmin I and IX function redundantly in regulating glucose homeostasis or insulin secretion. PLoS ONE 5, e14444 (2010).

18. Wide, L., Eriksson, K., Sluss, P. M. & Hall, J. E. Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J. Clin. Endocrinol. Metab. 94, 958–964 (2009).

19. Wide, L., Naessen, T., Sundstrom-Poromaa, I. & Eriksson, K. Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J. Cell. Physiol. 217, 15, 421–428 (2004).

20. Wide, L., Eriksson, K., Sluss, P. M. & Hall, J. E. Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J. Clin. Endocrinol. Metab. 94, 958–964 (2009).

21. Wide, L., Naessen, T., Sundstrom-Poromaa, I. & Eriksson, K. Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J. Cell. Physiol. 217, 15, 421–428 (2004).

22. Wide, L., Eriksson, K., Sluss, P. M. & Hall, J. E. Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J. Clin. Endocrinol. Metab. 94, 958–964 (2009).

23. Lynch, K. L. & Martin, T. F. Synaptotagmin I and IX function redundantly in regulating glucose homeostasis or insulin secretion. PLoS ONE 5, e14444 (2010).

24. Fukuda, M., Kowalchyk, J. A., Zhang, X., Martin, T. F. & Mikoshiba, K. Synaptotagmin IX regulates Ca2+–dependent synaptic function in PC12 cells. J. Biol. Chem. 277, 4601–4604 (2002).

25. Zhang, Z. et al. Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol. Biol. Cell 22, 2324–2336 (2011).

26. Bhalla, A., Chicka, M. C. & Chapman, E. R. Analysis of the synaptotagmin family during reconstituted membrane fusion. uncovering a class of inhibitory isoforms. J. Biol. Chem. 283, 21800–21807 (2008).

27. Hui, E. et al. Mechanism and function of synaptotagmin-mediated membrane apposition. Nat. Struct. Mol. Biol. 18, 813–821 (2011).

28. Suga, S. et al. Synaptotagmin VII as a plasma membrane Ca2+ sensor in eyeconosis. Neuron 30, 459–473 (2001).

29. Zhang, Z., Bhalla, A., Dean, C., Chapman, E. R. & Jackson, M. B. Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nat. Neurosci. 12, 163–171 (2009).

30. Mohrmann, R. et al. Synaptotagmin II interacts with SNAP-25 governs vesicle docking, priming, and fusion triggering. J. Neurosci. 33, 11447–11450 (2013).

31. Burns, K. H. & Matzuk, M. M. Minireview: genetic models for the study of gonadotropin action. Endocrinology 143, 8283–8285 (2002).

32. Kumar, T. R., Wang, Y., Lu, N. & Matzuk, M. F. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 35, 201–204 (1997).

33. Matthews, C. H. et al. Primary amenorrhoea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. J. Clin. Endocrinol. Metab. 94, 948–958 (1991).

34. Leong, D. A. & Thorner, M. O. A potential code of luteinizing hormone–beta subunit–cholesterol interactions in the regulation of luteinizing hormone–beta subunit secretion. J. Biol. Chem. 248, 10679–10683 (1973).

35. Matthews, C. H. et al. Primary amenorrhoea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. J. Clin. Endocrinol. Metab. 94, 948–958 (1991).

36. Wide, L., Eriksson, K., Sluss, P. M. & Hall, J. E. Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J. Clin. Endocrinol. Metab. 94, 958–964 (2009).

37. Wide, L., Naessen, T., Sundstrom-Poromaa, I. & Eriksson, K. Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J. Cell. Physiol. 217, 15, 421–428 (2004).

38. Wide, L., Eriksson, K., Sluss, P. M. & Hall, J. E. Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J. Clin. Endocrinol. Metab. 94, 958–964 (2009).

39. Wide, L., Naessen, T., Sundstrom-Poromaa, I. & Eriksson, K. Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J. Cell. Physiol. 217, 15, 421–428 (2004).
Acknowledgements

We thank A. Audhya and E. Frankel for invaluable image acquisition and co-localization analysis advice, D. Ramanan for the generating the immunoblots shown in Supplementary Fig. 1, and J. Levine for analysis and interpretation of oestrous smear and histology data. This study was supported by grants from the NIH (MH061876 to E.R.C. and NS072905 to M.B.J. and E.R.C.). C.S.E. is supported by a PhRMA foundation pre-doctoral fellowship. L.K.R. and C.S.E. are supported by the UW-Madison Molecular and Cellular Pharmacology Training Grant (ST32-GM008688). This study was also supported in part by a core grant to the Waisman Center, the University of Wisconsin-Madison, from the National Institute of Child Health and Human Development (P30 HD03352). E.R.C. is an Investigator of the Howard Hughes Medical Institute.

Author contributions

L.K.R. performed all immunoblot, cell culture and slice immunocytochemistry, in vitro pituitary gland stimulation assays and whole animal studies. J.S.B. imaged and analysed cultured pituitary cells. C.S.E. performed all in vitro experiments in Fig. 4a. L.K.R., J.S.B., C.S.E., M.B.J. and E.R.C. wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Roper, L. K. et al. Sex-specific regulation of follicle-stimulating hormone secretion by synaptotagmin 9. Nat. Commun. 6:8645 doi: 10.1038/ncomms9645 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/