Abstract

We calculate the $\pi\Delta\Delta$ coupling $g_{\pi^0\Delta^{++}\Delta^{++}}$ using light cone QCD sum rule. Our result is $g_{\pi^0\Delta^{++}\Delta^{++}} = (11.8 \pm 2.0)$.

PACS numbers: 12.39.Fe, 14.20.Gk
The $\pi\Delta\Delta$ coupling constant g_1, like the nucleon axial charge g_A, is a basic parameter which enters the loop calculation in all processes involved with delta resonance in chiral perturbation theory. Unfortunately it is not directly accessible experimentally. A special quartet scheme of chiral symmetry realization for even- and odd-parity baryon resonances was proposed in \cite{2}. Based on such a scheme the authors found that the parity nonchanging couplings such as $\pi\Delta^\pm N^*\mp$, $\pi\Delta^\pm\Delta^\pm$, and $\pi N^* N^*$ are forbidden at the leading order \cite{2}. Such a result is very different from quark model prediction \cite{3} and large N_c argument $g_1 = \frac{9}{5}g_A$ \cite{5}.

Recently an attempt was made to extract this important coupling from the fit to the phase shift data of pion-nucleon scattering in the fourth order chiral perturbation theory analysis \cite{4}. Because this coupling only appears in the third order loop contribution, it’s very hard to pin down the value precisely. However the preliminary result was $g_1 = -0.94 \sim -2.65$ \cite{4}. These value for g_1 comes out very differently from the large N_c prediction as noted in \cite{4}. So an independent theoretical extraction may prove useful to help clarify the present ambiguous situation concerning this coupling.

We have calculated πNN and πNN^* \cite{6}, ηNN \cite{7} and ρNN, ωNN \cite{8} coupling constants in the framework of light cone QCD sum rule (LCQSR). The extracted values of various couplings from LCQSR are in good agreement with those used in or obtained from phenomenological analysis. In this short note we extend the same formalism to calculate the $\pi\Delta\Delta$ coupling constant.

Let’s first introduce some notations. For the Δ resonance, we use the isospurion formalism, treating the Δ field $T^i_{\mu}(x)$ as a vector spinor in both spin and isospin space with the constraint $\tau^i T^i_{\mu}(x) = 0$ \cite{1}. The components of this field are

\begin{equation}
T^3_{\mu} = -\sqrt{\frac{2}{3}} \left(\frac{\Delta^+}{\Delta^0} \right)_{\mu}, \quad T^+_{\mu} = \left(\frac{\Delta^{++}}{\Delta^+/\sqrt{3}} \right)_{\mu}, \quad T^-_{\mu} = -\left(\frac{\Delta^0/\sqrt{3}}{\Delta^-} \right)_{\mu}.
\end{equation}

The field T^i_{μ} also satisfies the constraints for the ordinary Schwinger-Rarita spin-$\frac{3}{2}$ field,

\begin{equation}
\gamma^\mu T^i_{\mu} = 0 \quad \text{and} \quad p^\mu T^i_{\mu} = 0.
\end{equation}

To be specific, for the $\pi\Delta\Delta$ and πNN interaction we use pseudoscalalar form:

\begin{equation}
L_{PS} = g_{\pi\Delta\Delta} T^i_{\mu} i\gamma^5 \vec{T} \cdot \vec{\pi} T^i_{\mu} + g_{\pi NN} \tilde{N} i\gamma^5 \vec{T} \cdot \vec{\pi} N + \cdots
\end{equation}

The pseudoscalar coupling $g_{\pi\Delta\Delta}$ can be realated to the pseudovector one g_1 via the relation:

\begin{equation}
g_1 = \frac{F_\pi g_{\pi\Delta\Delta}}{m_\Delta},
\end{equation}

where $F_\pi = 92.4$ MeV is the pion decay constant.

Since the light cone QCD sum rule \cite{9} has proven useful in extracting strong coupling constants, we use it to calculate $g_{\pi\Delta\Delta}$ and consider the correlator:

\begin{equation}
i \int dx e^{ipx} < 0|T_{\mu}(x), \bar{\eta}_\nu(0)|\pi^0(q)>.
\end{equation}
with the interpolating current for Δ^{++}, $\eta_{\mu}(x) = \epsilon^{abc}[u^a T \Gamma_{\mu} u^b] \sigma^{c}(x)$. We also introduce $\langle 0|\eta_{\mu}(0)|\Delta^{++}\rangle = \lambda_{\Delta^{++}}$ with ν_{μ} a vectorial spinor for the spin $\frac{3}{2}$ delta field and λ_{Δ} is the overlapping amplitude. At the phenomenological side we consider the Lorentz structure $ig_{\mu\nu}(\gamma_{\nu})$ which admits contribution from resonances with $I = 3/2, J = 3/2$ only.

The calculation is routine. We first make operator product expansion and express Eq. (5) with pion light cone wave functions [9]. After finishing Fourier transformation we make double Borel transformation twice to extract the double spectral density $\rho(s_1, s_2)$. Finally we subtract the continuum contribution to Eq. (5). The present sum rule is symmetric with s_1, s_2 which enables a clean subtraction of the continuum. Similar and detailed calculation steps can be found in [6]. We present final sum rule directly.

\[
m_{\Delta}^{2} g_{\pi^{a} \Delta^{++} \Delta^{++}} e^{-\frac{m_{\Delta}^{2}}{\bar{M}^{2}}} = \frac{e_{\pi}}{2} \left\{ \frac{M^{6} f_{2}(\frac{s_{\Delta}}{\bar{M}^{2}})}{48} \right\} - \frac{3}{2} \left[g_{1}(\frac{1}{2}) + G_{2}(\frac{1}{2}) \right] M^{4} f_{1}(\frac{s_{\Delta}}{\bar{M}^{2}}) + \frac{1}{18} a_{\mu} \sigma_{\mu} \phi_{\sigma}(\frac{1}{2}) M^{2} f_{0}(\frac{s_{\Delta}}{\bar{M}^{2}}) \right\} + \cdots
\]

where M^2 is the Borel parameter, $a = -4\pi^2(qq) = 0.55$ GeV3 is the quark condensate, $\mu_\pi = 1.65$ GeV at the scale of 1 GeV, s_Δ is the continuum threshold of delta mass sum rule, $\phi_\pi(\frac{1}{2})$ etc are the values of various pion wave functions at the point $\frac{1}{2}$. Their values are $\phi_\pi(\frac{1}{2}) = 1.5 \pm 0.2, g_1(\frac{1}{2}) + G_2(\frac{1}{2}) = 0.042, \phi_\sigma(\frac{1}{2}) = 1.47$ at the scale 1 GeV [3]. Functions $f_n(x) = 1 - e^{-x} \sum_{k=0}^{n} \frac{x^k}{k!}$ are used to subtract the continuum contribution. We need delta mass sum rule [10]:

\[
(2\pi)^{4} \phi_{N}^{2} e^{-\frac{m_{\pi}^{2}}{M^{2}}} = \frac{1}{5} M^{6} f_{2}(\frac{s_{N}}{M^{2}}) - \frac{5}{72} b M^{2} f_{0}(\frac{s_{N}}{M^{2}}) + \frac{4}{3} a^{2} = \frac{7}{9} a^{2} M^{2}
\]

where $b = \langle g_{G}^{2} G^{2} \rangle = 0.48$ GeV4 is the gluon condensate, $m_{0}^{2} = \langle \frac{g_{\pi} \sigma \cdot G_{0}}{q q} \rangle = 0.8$ GeV2.

For comparison we collect the sum rule for $g_{\pi^{a} PP}$ and nucleon mass sum rule in literature below.

\[
m_{N}^{2} \phi_{N}^{2} e^{-\frac{m_{N}^{2}}{M^{2}}} = \frac{e_{\pi}}{2} \left\{ \frac{M^{6} f_{2}(\frac{s_{N}}{M^{2}})}{48} \right\} - \frac{3}{2} \left[g_{1}(\frac{1}{2}) + G_{2}(\frac{1}{2}) \right] M^{4} f_{1}(\frac{s_{N}}{M^{2}}) + \frac{1}{18} a_{\mu} \sigma_{\mu} \phi_{\sigma}(\frac{1}{2}) M^{2} f_{0}(\frac{s_{N}}{M^{2}}) \right\} + \cdots
\]

\[
(2\pi)^{4} \phi_{N}^{2} e^{-\frac{m_{N}^{2}}{M^{2}}} = \frac{1}{2} M^{6} f_{2}(\frac{s_{N}}{M^{2}}) + \frac{1}{8} b M^{2} f_{0}(\frac{s_{N}}{M^{2}}) + \frac{2}{3} a^{2} = \frac{1}{6} a^{2} M^{2}
\]
Numerically we get

\[g_{\pi^0\Delta^{++}\Delta^{++}} = (11.8 \pm 2.0) \]
\[g_{\pi^0pp} = (13.2 \pm 1.5) \] (10)

The central value corresponds to \(M^2 = 1.4 \text{ GeV}^2 \), \(s_N = 2.25 \text{ GeV}^2 \), \(s_\Delta = 3.5 \text{ GeV}^2 \). The errors arise from the variation with the continuum threshold and Borel parameter in the working region of the sum rules only. Our calculation shows that the \(\pi\Delta\Delta \) coupling is large although it is only half of the quark model [3], SU(6) [11], U(12) [12] and especially, large \(N_c \) prediction [3]: \(g_{\pi^0\Delta^{++}\Delta^{++}} = \frac{9}{\pi} g_{\pi^0pp} \). It’s interesting to note that our result is consistent with the phenomenological value extracted from an old isobar production experiment in \(\pi^- p \to \pi^+ \pi^- n \) near threshold [13].
REFERENCES

[1] T. R. Hemmert, B. R. Holstein and J. Kambor, J. Phys. G 24, 1831 (1998).
[2] D. Jido, T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. 84, 3252 (2000).
[3] G. E. Brown and W. Weise, Phys. Rep. 22, 279 (1975).
[4] N. Fettes and Ulf-G. Meissner, hep-ph/0006299.
[5] R. Dashen, E. Jenkins and A. V. Manohar, Phys. Rev. D 49, 4713 (1994).
[6] Shi-Lin Zhu, W.-Y. P. Hwang and Yuan-Ben Dai, Phys. Rev. C 59, 442 (1999).
[7] Shi-Lin Zhu, Phys. Rev. C 61, 065205 (2000).
[8] Shi-Lin Zhu, Phys. Rev. C 59, 435 (1999); ibid. C59, 3455 (1999).
[9] I. I. Balitsky, V. M. Braun and A. V. Kolesnichenko, Nucl. Phys. B 312, 509 (1989);
 V. M. Barun and I. E. Filyanov, Z. Phys. C 48, 239 (1990);
 V. M. Belyaev et al., Phys. Rev. D 51, 6177 (1995).
[10] W.-Y. P. Hwang and K.-C. Yang, Phys. Rev. D 49, 460 (1994).
[11] F. Gursey, A. Pais and L. A. Radicati, Phys. Rev. Lett. 13, 299 (1964).
[12] B. Sakita and K. C. Wali, Phys. Rev. 139, 1355 (1965).
[13] R. A. Arndt et al., Phys. Rev. D 20, 651 (1979).

Figure Captions

Fig 1. The variation of $g_{\pi N}^{\Delta++\Delta++} [g_{\pi P P}]$ with the Borel parameter M^2 and the continuum threshold $s_\Delta [s_N]$. The upper and lower three curves are for $g_{\pi P P}$ and $g_{\pi N}^{\Delta++\Delta++}$ respectively. From top to bottom $s_N = 2.35, 2.25, 2.15 \text{ GeV}^2$ and $s_\Delta = 3.6, 3.5, 3.4 \text{ GeV}^2$ respectively.
\[\ell_{\pi}^0 \Delta^{++} \Delta^{++} \]

\[g_{\pi}^0 \Delta^{++} \Delta^{++} \]

\[s_N = 2.35 \text{ GeV}^2 \]
\[s_N = 2.25 \text{ GeV}^2 \]
\[s_N = 2.15 \text{ GeV}^2 \]
\[s_\Delta = 3.4 \text{ GeV}^2 \]
\[s_\Delta = 3.5 \text{ GeV}^2 \]
\[s_\Delta = 3.6 \text{ GeV}^2 \]