Properties of Recombinant Human Cytosolic Sialidase HsNEU2

THE ENZYME HYDROLYZES MONOMERICALLY DISPERSED GM1 GANGLIOSIDE MOLECULES*

Cristina Tringali‡§, Nadia Papini‡§, Paola Fusi‡, Gianluigi Croci‡, Giuseppe Borsani‡, Augusto Preti‡, Paolo Tortora‡, Guido Tettamanti‡, Bruno Venerando‡, and Eugenio Monti**

From the ‡Department of Medical Chemistry, Biochemistry, and Biotechnology, University of Milan, Medical Faculty, Laboratorio Interdisciplinare Tecnologie Acanzate (L.I.T.A.)-Segrato, Via Fratelli Cervi 93, 20890 Segrato, Milan, Italy, and the ¶Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy, and the **Department of Biomedical Science and Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy

Recombinant human cytосolic sialidase (HsNEU2), expressed in Escherichia coli, was purified to homogeneity, and its substrate specificity was studied. HsNEU2 hydrolyzed 4-methylumbelliferyl α-NeuAc, α-2–3 sialyllactose, glycoproteins (fetuin, α-acid glycoprotein, transferrin, and bovine submaxillary gland mucin), micellar gangliosides GD1a, GD1b, GT1b, and α-2–3 paragloboside, and vesicular GM3, α-2–6 sialyllactose, colominic acid, GM1 oligosaccharide, whereas micellar GM2 and GM1 were resistant. The optimal pH was 5.6, kinet-
ics Michaelis-Menten type, V_{max} varying from 250 IU/mg protein (GD1a) to 0.7 IU/mg protein (α1-acid glycoprotein), and K_m in the millimolar range. HsNEU2 was activ-
ated by detergents (Triton X-100) only with ganglio-
sidic substrates; the change of GM3 from vesicular to mixed micellar aggregation led to a 8.5-fold V_{max} in-
crease. HsNEU2 acted on gangliosides (GD1a, GM1, and GM2) at nanomolar concentrations. With these disper-
sions (studied in detailed on GM1), where monomers are bound to the tube wall or dilutedly associated (1:2000, mol/mol) to Triton X-100 micelles, the V_{max} values were 25 and 72 μIU/mg protein, and K_m 10 and 15 × 10^{-9} M, respectively. Remarkably, GM1 and GM2 were recogn-
ized only as monomers. HsNEU2 worked at pH 7.0 with an efficiency (compared with that at pH 5.6) ranging from 4% (on GD1a) to 64% (on α1-acid glycoprotein), from 7% (on GD1a) to 45% (on GM3) in the presence of Triton X-100, and from 30 to 40% on GM1 monomeric dispersion. These results show that HsNEU2 differentially recognizes the type of sialosyl linkage, the aglycone part of gangliosides (GD1a) to 0.7 IU/mg protein (α1-acid glycoprotein), and K_m in the millimolar range.

Received for publication, July 31, 2003, and in revised form, November 12, 2003 Published, JBC Papers in Press, November 12, 2003, DOI 10.1074/jbc.M308381200

Sialidases (N-acetylneuraminosylglycohydrolases; EC 3.2.1.18) constitute a group of enzymes that hydrolytically remove sialic acid residues from sialoglycoconjugates. The wide occurrence of these enzymes from viruses and bacteria to vertebrates (1) highlights their importance in regulating the sialic acid content and turnover of sialoglycoconjugates, molecules that are fundamental to several cellular processes (2). Due to their easier availability, viral and bacterial sialidases have been exten-
sively studied at the molecular level, and the three-dimen-
sional structure of several of them has been established (3–5). Despite an amino acid sequence homology of only 35%, viral and bacterial sialidases share a similar molecular architecture with the protein chains folded into six-sided β-sheet barrels and the active site constituted by almost the same amino acids and organized in a similar manner (6).

The molecular features of mammalian sialidases, including the human enzymes, remained long obscure, since factors like subcellular localization (cytosol, plasma membrane, and lyso-
somes), low cellular content, and the labile nature of the puri-
fied enzymes prevented workers from obtaining sufficient amounts of pure and active enzyme for detailed studies (7, 8). Beginning in 1993, several mammalian sialidases started be-
ing cloned from the corresponding cDNAs, prompting a great acceleration of the studies aimed at ascertaining their struc-
tural and kinetic properties (9, 10). Knowledge of the amino acid sequences of these sialidases provided insight into the following: (i) the differences between the lysosomal (NEU1) (11–13), cytosolic (NEU2) (14, 15), and plasma membrane-
associated (NEU3) sialidases (16, 17), which are unequivocally different enzymes, and (ii) the structural homologies indicating that they belong, unequivocally too, to a unique family of pro-
teins. Of course, a great advance provided by expressing mam-
nalian sialidases in suitable host cells was to obtain pure proteins in adequate amounts and sufficient stability to perform systematic studies.

Issues concerning mammalian sialidases that still require deeper understanding are their relationships with the putative natural substrates, particularly sialglycolipids (gangliosides) and sialglycoproteins and the conditions of their action under physiological conditions, since most of them feature in vitro an acidic optimal pH (1, 2, 18, 19). It is known that sialidases occur ceilularly at different sites (plasma membrane, lysosomes, and cytosol), and sialglycoconjugates occur primarily at the level of the plasma and Golgi’s stack membranes (18, 19) or inside the lysosomes, where their complete degradation occurs (2, 18). Another possible difference can reside in the topology of mem-
brane location (sidedness) of sialidases and sialglycoconju-
gates. It is also known that (some) gangliosides can be highly enriched in lipid rafts on the plasma membrane together with other lipid components and specialized proteins (20). These
structures move within the fluid bilayer and may function as mobile platforms able to transduce signals from the outside to the interior of the cell (21). Of course, gangliosides are also present in a much more "diluted" way in the areas of the membrane surrounding rafts. Therefore, gangliosides occur as "patched" or "dispersed" molecules (monomeric dispersions), this constituting a further possible matter of differential recognition by sialidase. With regard to the biological environment, the only one having an acidic pH is the lysosomal matrix, where the lysosomal sialidase works. However, both the plasma membrane-bound and the cytosolic sialidases, besides the lysosomal one, display an acidic pH optimum (1, 2).

On these premises and with the aim to provide a deeper insight into sialidase action, we (i) purified to homogeneity the recombinant form of the human cytosolic sialidase NEU2 (HsNEU2), produced by Escherichia coli cells, (ii) carried out a basic bio-chemical characterization of the enzyme, (iii) studied the specificity of the enzyme action on different sialyglycoconjugates, with particular attention to the ability of the enzyme to differentially recognize the aggregated (micellar) form and monomeric dispersion of the ganglioside substrates, and (iv) verified the ability of the enzyme to act at neutral pH.

EXPERIMENTAL PROCEDURES

Commercial chemicals were of the highest grade available. N-Acetyl-d-glucosamine (NeuAc), 4-methylumbelliferyl-α-NeuAc, and 4-methylumbelliflorone, the N-glycosyated glycoproteins human fetuin, human α1-acid glycoprotein, human transferrin, and O-glycosylated glycoprotein mucin from bovine submaxillary glands, α2→3 sialylactose sodium salt (purity, better than 98%), α2→6 sialyllactose (purity better than 98%), crystalline bovine serum albumin, sialidases (from Arthrobacter ureafaciens, Salmonella typhimurium (recombinant), Vibrio cholerae, and Clostridium perfringens), Triton X-100, CHAPS, octyl glucoside, and sodium deoxycholate were provided by Sigma; [3H]Horborydride (6500 Ci/mol−1) was provided by Amersham Biosciences; DEAE-Sephadex A-25 was from Amersham Biosciences; Dowex 2 × 8 resin (200–400-mesh), prepared in acetate form (22), was from Bio-Rad; cationic and anionic exchange columns (Mono S HR 5/5 and Mono Q HR5/5), glutathione (GST) 4B-Sepharose, and thrombin were from Amersham Biosciences; ultrafiltration apparatus Mod.52 and Diaflo membranes (cut-off 10 kDa) were from Amicon (Witten, Germany); precoated silica gel high performance thin layer chromatography (HPTLC) plates (Kiesel gel 60, 250-μm thickness, 10 × 20 cm) and cation exchange thin layer plates cellulose (100-μm thickness, 10 × 20 cm) were from Merck; and water was doubly distilled in a glass apparatus and used to prepare the different solutions. The oligosaccharide from ganglioside GM1 was prepared according to Wiegangt and Bucking (23). Standard molecular biology techniques were performed as described by Sambrook and Russell (24). DNA restriction and modifying enzymes were from Roche Applied Science unless indicated otherwise.

Expression and Purification of Recombinant HsNEU2

The entire coding region of HsNEU2 was obtained by PCR amplification using the isolated genomic clone HG7 as template as previously described (15). Briefly, the DNA sequence from the Met to the Gin in position 67 (exon 1) was amplified using NEU2-F (5′-CATGAGTCTAT-GGCCCTCCCCCTCGTCTGGC-3′) and a 5′-His restriction site (NEU2-67R; 5′-CGTAAGCTTCGTC-3′). The DNA sequence from the Trp in position 68 to the stop codon (exon 2) was amplified using NEU2-F2B (5′-TG-GCAAGCTCAGGAGTGTTG-3′) and NEU2-C2 (5′-CTAGAATCTC-TACTGAGGGACTG-3′) with a 5′-EcoRI restriction site. The two PCR products, obtained using cloned Plu polymerase (Stratagene, La Jolla, CA), were ligated using T4 ligase, and the resulting fragment was subcloned into BamHI-EcoRI sites of pGEX-2T expression vector (Amersham Biosciences). The recombinant plasmid, pGEX-2T-NEU2, was completely sequenced using both vector- and gene-specific primers. E. coli DH5α cells were transformed with the recombinant plasmid pGEX-2T-NEU2 or the expression vector pGEX-2T alone, and the transformed cells were grown in LB-ampicillin medium at 37 °C to midlog phase before the addition of isopropyl-β-D-thiogalactopyranoside (1 mM) to an optical density at 600 nm of 0.05. After overnight growth at room temperature, bacteria were harvested by centrifugation and suspended in 50 volumes of phosphate-buffered saline (PBS). Cells lysed by sonication and supernatants obtained after centrifugation at 12,000 × g for 10 min were assayed for sialidase activity using MU-NeuAc as substrate. Purification of glutathione S-transferase (GST)-HsNEU2 fusion protein was carried out by affinity chromatography on a GST-Sepharose 4B column (using the GST portion of the chimeric protein for affinity binding) according to the manufacturer’s instructions (GST Gene Fusion System; Amersham Biosciences), with minor modifications. After an additional washing with PBS plus 0.5 M NaCl, cleavage of GST from the GST-HsNEU2 fusion protein bound to the matrix was carried out adding 0.5 IU of thrombin/ml in PBS and incubating the column for 2–3 h at room temperature. The resulting eluted enzyme was further purified by two successive high performance chromatographic steps. The first was on a MONO Q HR5/5 column equilibrated with 20 mM Tris/HCl, pH 7.3. The enzyme activity was eluted in the column flow-through and the collected fractions carrying the enzyme were dialyzed against four changes of 50 volumes of 50 mM MES buffer, pH 6.7, at 4 °C, concentrated under vacuum to about 2 ml in a rotating evaporator and applied to a MONO S HR5/5 column equilibrated in the same buffer. The enzyme was eluted using a linear gradient of 50 mM MES buffer, pH 6.7, containing 1 M NaCl. The two chromatographic steps were carried out at room temperature with an elution rate of 1 ml/min in a BioLogic apparatus (Amersham Biosciences). Elution profiles of E. coli crude lysate and from the different fractions obtained along the purification procedure were assayed for sialidase activity and protein content and monitored for purity by reducing SDS-PAGE (25) with GELOCODE Blue Stain protein detection reagent (Pierce). The purity of the final enzyme preparation was assessed also by isoelectrofocusing according to Bieghelli (26).

Preparation of Cold and 3H-Labeled Gangliosides and Neutral Glycolipids

Gangliosides GM1, GM2, GD1a, and GD1b from calf brain (27), GM3 (carrying NeuAc) from human spleen (28), and α2→3 sialyloligosaccharide (α2→3SPG) from human erythrocytes (29) were prepared and structurally analyzed as previously described (30). Asialo-GM1 (GA1) was generously provided according to Claringbold et al. (31). GM1, GD1a, and GD1b were 3H-labeled at C-3 of the sphingosine (Sph) moiety (32), and the erythrofuran and modified (33), were employed. GM3 was 3H-labeled at the level of the N-acetyl group of sialic acid ([NeuAc-3H]GM3) according to Chigorno et al. (34). Ga1 3H-radiolabeled at the level of Sph was prepared according to Ref. 35. The radiochemical purity of [Sph-3H]GM1, [Sph-3H]GM2, [Sph-3H]Ga1, [NeuAc-3H]GM3, and [Sph-3H]Ga1 was better than 99%, and the specific radioactivity was 1.63, 0.96, 1.85, 0.60, and 1.58 Ci mmol−1, respectively. Radiolabeled gangliosides were stored at −20 °C in n-propyl alcohol/water (4:1, v/v), and maintenance of radiochemical purity was assessed before use.

Preparation of Homogeneous Micelles (or Vesicles) of Gangliosides or of Mixed Micelles of Gangliosides and Detergents

It is known that gangliosides form micelles in water solution. Their critical micellar concentration (CMC) is in the range 10−5 to 10−7 M, depending on the ganglioside (36). Therefore, at concentrations above the CMC (e.g. in the millimolar range), they are present essentially as micelles, whereas below the CMC (e.g. in the nanomolar range) they are present only as monomers. The only exception is ganglioside GM3 that undergoes vesicular aggregation in aqueous solution. Homogeneous micelles of gangliosides α2→3SPG, GM1, GM2, GD1a, GD1b, and GT1b and homogeneous vesicles of GM3 (with the addition of 0.15 μM of the 3H-labeled form in the cases of GM1, GM2, GD1a, and GM3) were prepared as follows. Each ganglioside was dissolved in chloroform/water (4:1, v/v), and maintenance of radiochemical purity was assessed before use.

The abbreviations used were: MU-NeuAc, 4-methylumbelliferyl-α-NeuAc; CHAPS, 3-[3-cholamidopropyl]dimethylammonio-1-propanesulfonic acid; GST, glutathione S-transferase; PBS, phosphate-buffered saline; MES, 4-morpholineethanesulfonic acid; FPLC, fast protein liquid chromatography; α2→3SPG, α2→3 sialyloligosaccharide; CMC, critical micellar concentration; HPTLC, high performance thin layer chromatography; GM2-AP, GM2 activator protein. The ganglioside nomenclature proposed by Svennerholm was followed (Svennerholm, L. (1980) Adv. Exp. Med. Biol. 125, 111). NEU is the official human gene symbol approved by HUGO Gene Nomenclature Committee. In order to avoid misinterpretation, the NEU symbol indicates the gene product (i.e. sialidase); NEU2 is the symbol for cytosolic sialidase; the two-letter code preceding NEU2 indicates the species of origin (e.g. Hs indicates Homo sapiens).
HsNEU2 Hydrolysis of Monomerically Dispersed GM1 Ganglioside

Preparation of Monomeric Dispersions of Gangliosides

Dispensons on Tube Walls

A known volume of ganglioside solution in n-propyl alcohol/water (4:1, v/v), containing the desired amount of ganglioside, was transferred into an Eppendorf tube, and the solvent was completely removed by nitrogen fluxing. The residue was kept for several hours under vacuum over P2O5 and then dissolved with 60 μl of distilled water, and allowed to equilibrate at room temperature, as described above. At the end, each mixture was buffered and used for sialidase assay in a final volume of 100 μl.

Monomeric Dispersions of Gangliosides as Substrates—

Dispersions on the Surface of Triton X-100 Micelles

On the basis of the indications provided by the experimental approaches described above, complete dispersion of Sph-HGM1 on the surface of Triton X-100 micelles was obtained mixing radiolabeled GM1 and Triton X-100 in a molar ratio of 1:2000. On this basis, the proper amount of Sph-HGM1 in n-propyl alcohol/water (4:1, v/v) and a 2000-fold (in molar terms) amount of Triton X-100 in chloroform/methanol (2:1, v/v) were pipetted into an Eppendorf tube, and the solvent was completely removed by nitrogen fluxing; the subsequent steps were the same described above.

Sialidase Assay

The activity of HsNEU2 sialidase was determined essentially as described by Venerando et al. (38). The reaction mixtures contained the established amounts of HsNEU2 and substrate (see below), 50 mM sodium citrate/phosphate buffer at the optimum pH (established to be 5.6 and at pH 7.0) in a final volume of 100 μl. The control mixtures (blanks) were carried out using heat-inactivated (5 min in boiling water) recombinant HsNEU2, Ks, and apparent Vmax values were determined by the method of Lineweaver and Burk. The sialidase activity was expressed as IU (μmol of liberated NeuAc/min at 37 °C). The results are always the means of two or three separate experiments carried out in triplicate. The influence on sialidase activity of the following detergents was studied: Triton X-100, CHAPS, octyl glucoside, and sodium deoxycholate. The following assay methods were employed.

Fluorimetric Method

The reaction mixtures (100 μl) were set up with an appropriate concentration of MU-NeuAc, in the presence or absence of 20 μg of bovine serum albumin and of different amounts of a detergent (when used) were incubated at 37 °C with recombinant HsNEU2 (0.02 μg at pH 5.6; 0.15 μg at pH 7.0) for 10 min (pH 5.6) or 20 min (pH 7.0). Reactions were stopped by the addition of 1.5 ml of 0.2 M glycine/NaOH, pH 10.2. Fluorescence emission was measured on a Jasco FP-770 fluorometer with excitation at 365 nm and emission at 445 nm, using 4-methylumbelliferyl to set up a calibration curve. A fluorescence of 0.10 corresponded to 0.16 nmo1 of released 4-methylumbelliferyl.

Colorimetric Method

The reaction mixtures (100 μl) were set up with appropriate concentrations of α2–3 or α2–6 sialyllactose, colominic acid, sialoglobin (human fetuin, human α1-acid glycoprotein, human transferrin, and mucin from bovine submaxillary glands), or gangliosides (GM1, GM2, or GD1a) dispersed in chloroform/methanol (2:1, v/v) and GM1 dispersed in Triton X-100, CHAPS, octyl glucoside, and sodium deoxycholate, and radioactive methods were measured as described above.

The conditions providing passage of monomeric dispersions of glycolipid from the tube wall to the aqueous medium were worked out with preliminary experiments using [Sph-H]GM1 and Triton X-100. The experimental approaches were as follows. (i) 0.1–2 pmol of [Sph-H]GM1 in n-propyl alcohol/water (2:1, v/v) and different amounts of Triton X-100 (0.4–40 nmol) in chloroform/methanol (2:1, v/v) were transferred into an Eppendorf tube, and the solvent was completely removed by nitrogen fluxing. The resulting residue was kept for several hours under vacuum over P2O5 and then dissolved with 60 μl of redistilled water and allowed to equilibrate at room temperature. At the end, the mixture was buffered and used for sialidase assays, in a final volume of 100 μl. Under these conditions, the ganglioside molecules are known (36) to adhere, at least partially, to the tube surface, in order to establish the distribution of ganglioside as well as the sialidase reaction product(s), between the aqueous solution and the tube surface, the aqueous assay mixture (before and after incubation with sialidase) was transferred with a Pasteur pipette into a tube, the pipette being washed several times with methanol, and the washings were added to the pipetted incubation mixture. The resulting mixture, containing the glycolipid in free solution, was frozen and lyophilized. The residue was resuspended with 5 ml of emulsifier (Ultima Gold, Packard), and the radioactivity was determined with a liquid scintillation counter (Packard Tri-Carb 460). The starting Eppendorf tube and containing monomeric dispersions of ganglioside, as well as the sialidase reaction product(s), was worked out with chloroform/methanol (2:1, v/v), and mixed, and the radioactivity was measured as described above.

The conditions providing passage of monomeric dispersions of glycolipid from the tube wall to the aqueous medium were worked out with preliminary experiments using [Sph-H]GM1 and Triton X-100. The experimental approaches were as follows. (i) 0.1–2 pmol of [Sph-H]GM1 in n-propyl alcohol/water (2:1, v/v) and different amounts of Triton X-100 (0.4–40 nmol) in chloroform/methanol (2:1, v/v) were transferred into an Eppendorf tube, and the solvent was completely removed by nitrogen fluxing. The resulting residue was kept for several hours under vacuum over P2O5 and finally dissolved with 60 μl of redistilled water and allowed to equilibrate at room temperature. The mixture was then added with buffer (at the optimal sialidase pH 5.6 or at pH 7.0) and enzyme (final volume 100 μl) and used for sialidase assays. The distribution of GM1 and sialidase reaction product in the aqueous solution and tube wall was determined as described above. (ii) 40 nmol of Triton X-100 in chloroform/methanol (2:1, v/v) and different amounts of [Sph-H]GM1 (0.9–83 pmol) in n-propyl alcohol/water (4:1, v/v) were transferred into an Eppendorf tube, and the solvent was completely removed by nitrogen fluxing; the successive procedural steps were the same described above.

Radiochemical Methods

Ganglioside Substrates Used as Micellar Aggregates—The incubation mixtures (100 μl) containing different concentrations in the (millimolar range) of micellar [H]-labeled ganglioside GM1, GM2, or GD1a or vesicular GM3 (each carrying a 0.15 μCi of radioactivity) and in the presence or absence of different amounts of detergent, were incubated at 37 °C with recombinant HsNEU2 (0.02 μg at pH 5.6, 0.15 μg at pH 7.0) for up to 10 min (pH 5.6) or 30 min (pH 7.0) or up to 60 min in the case of GM1 and GM2. The incubations were terminated by cooling the tubes in an ice bath, adding 400 μl of tetrahydrofuran and careful vortexing. The mixtures were then centrifuged at 10,000 × g for 5 min, and 5 μl of the resulting supernatants were subjected to HPTLC on silica gel plates with chloroform, methanol, 0.2% aqueous CaCl2 (50:42:11, v/v/v) as a solvent system to separate the reaction products from the substrates. The separated glycolipids were quantified by radiochromatoscanning (Beta Image 2000, equipped with the software interface BetaiMess, Dionet Optiplex Systems, Biospace Mesures, Paris, France), and the enzyme activity was calculated as described (38).

Monomeric Dispersions of Gangliosides as Substrates—The assay of sialidase activity on monomeric dispersions of [H]-labeled gangliosides (GM1 in most experiments; GD1a and GM2 in some experiments) was carried out as follows. The incubation mixtures (100 μl) set up in Eppendorf tubes and containing monomeric dispersions of ganglioside (concentration from 1.0 × 10–9 to 2 × 10–5 M) and 0.2 μg (at pH 5.6) or 1.5 μg (pH 7.0) of recombinant HsNEU2 were placed in an incubator shaker and incubated at 37 °C for the established time (usually 10 min). The reaction was quenched by immersion of the tubes in an acetone/solid CO2 bath and immediately freeze-dried. When different microbial sialidases were employed, the same amount of enzyme (0.2 μg) was incubated in the presence of 4 × 10–9 M [H]-labeled GM1 for a proper period of time at the optimal pH described for the single bacterial strain.

The identification and quantification of the product of GM1 enzymatic hydrolysis were carried out by the already described HPTLC and column chromatography procedures. In the case of the HPTLC method, the freeze-dried residues were dissolved in 50 μl of chloroform/methanol (2:1, v/v), and the product of GM1 enzymatic hydrolysis was separated by HPTLC, quantified by radiochromatoscanning, and used to determine the total enzyme activity. The identification of the reaction product was performed by co-chromatography with standard [H]-labeled GA1. In the case of the chromatographic method, the freeze-dried residues were dissolved with 100 μl of distilled methanol and quantitatively transferred upon DEAE-Sepharose A-25 columns (200 μl of swol-
HsNEU2 Hydrolysis of Monomerically Dispersed GM1 Ganglioside

Expression and Purification of HsNEU2 in E. coli Cells—In order to facilitate the characterization of this human recombinant enzyme, we expressed it in E. coli, using the pGEX-2T vector (15) that provides HsNEU2 expression as a fusion protein with GST. HsNEU2 expression was easily detected on crude E. coli extracts, due to the lack of endogenous sialidase activity in these cells and the full conservation of catalytic power by the protein chimera GST-HsNEU2, which was also shown to exhibit a high degree of thermal stability. The fusion protein was purified from a crude bacterial lysate by affinity chromatography with GSH-Sepharose 4B. Cleavage of HsNEU2 from GST was achieved directly on the column using thrombin, whose recognition sequence is located immediately upstream of the ATG of the sialidase protein. Released HsNEU2 was directly eluted from the column with PBS and further purified by FPLC using Mono Q and Mono S ion exchange columns (Fig. 1). As shown in Fig. 2, the purified protein appeared as a single band on SDS-PAGE, with an apparent molecular mass of about 42 kDa, and exhibited a single band at pH 6.8 upon isoelectrofocusing, indicating a high degree of purity. The average recovery of recombinant HsNEU2 sialidase was about 0.9 mg protein starting from 1 liter of E. coli culture.

HsNEU2 Basic Biochemical Characterization

pH Optimum, Stability, and General Characteristics—The experiments concerning this point were carried out using MUG as substrate. The purified recombinant HsNEU2 had a pH optimum 5.6, with appreciable activities in the pH range 5.0–7.2 (Fig. 3A) and was unstable upon freezing at −20 °C (50% loss after one cycle of freezing-thawing) and storage at 4 °C (50% loss after 24 h). Notably, the enzyme could be stored in PBS at −80 °C in small aliquots and thawed just before use without any significant loss of activity (assessed after 1 year). All measurements were carried out in the presence of bovine serum albumin (0.2 mg/ml) to overcome any possible enzyme inhibition exerted by liberated sialic acid. At the optimal pH, the enzyme reaction occurred linearly with incubation time up to 30 min and with the amount of protein up to 0.08 g (Fig. 3B), the eluted fractions from the 5/5 column carrying the enzyme, after dialysis and concentration under vacuum, were applied to a Mono S HR 5/5 column. The assay of sialidase was performed by the fluorimetric assay (substrate MUG), and protein was determined by measuring absorbance at 280 nm. Hatched line, elution with 50 mm MES buffer, pH 6.7, carrying a linear NaCl gradient from 0 (after 9 ml of elution) to 1 M (after 19 ml of elution). For details, see “Experimental Procedures.”

Substrate Specificity—Table I shows the different sialyl-glycoconjugates tested as substrates for recombinant HsNEU2 and the corresponding Vmax values, measured after incubation at the optimum pH (5.6) and at pH 7.0. HsNEU2 acted on 2→3 sialyllactose but not on the 2→6 isomer nor on the 2→3 sialyl linkage of the GM1 oligosaccharide, even using long incubation times (90 min) and high enzyme concentrations (5 μg). The activity of HsNEU2 on sialylglycoproteins was generally low, with the exception of fetuin; the apparent Vmax at pH 5.6 decreased from a maximum of 12.7
IU/mg protein (fetuin) to a minimum of 0.7 IU/mg protein (α1-acid glycoprotein). The affinity for these substrates could not be measured accurately due to the paucity of the enzyme action. Since these glycoproteins contain α2–3 and α2–6 (α1-acid glycoprotein), and α2–6 (transferrin) sialosyl linkages (to galactose), the detected activity confirmed the ability of HsNEU2 to hydrolyze α2–3 linked sialosyl residues in glycoproteins. However, the enzyme was also capable of hydrolyzing the α2–6 sialosyl bond of transferrin, differently from the α2–6 sialosyl linkage present in α2–6 sialyllactose. The enzyme did not seemingly discriminate between N- and O-glycosylated glycoproteins. Moreover, HsNEU2 did not cleave at all the α2–8 sialosyl linkage present in colominic acid. HsNEU2 removed with high efficiency sialic acid residues from gangliosides GD1α, GT1b, α2–3SPG, and GD1b (producing GM1, GD1b, asialo-SPG, and GM1, respectively). At the used concentrations (10^-4 to 10^-5 M), all of these gangliosides were present as micelles. Instead, using the same concentrations, the enzyme action on GM3 (vesicles) was extremely poor and completely null on GM1 and GM2, which also occur as micelles (see Table I).

The V[S] curves (see examples in Fig. 4) obeyed typical Michaelis-Menten kinetics. The calculated K_m at the optimal pH had similar values for GD1b and GT1b (0.59 and 0.62 × 10^{-3} M), α2–3SPG (0.43 × 10^{-3} M), and GM3 (0.43 × 10^{-3} M) but a higher value for GD1α (0.91 × 10^{-3} M). The apparent V_max value, always at the optimal pH, was the highest for GD1α (250 IU/mg protein), followed by GT1b and α2–3SPG, and the lowest for GM3 and GD1b (7.8 and 7.5 IU/mg protein, respectively). This indicates that the enzyme prefers the α2–3-linked sialic acid residues at the terminus of the ganglioside oligosaccharide chain, although it is also able to hydrolyse the α2–6-linked sialic acid residues present in ganglioside GD1b. The apparent V_max of HsNEU2 on pure GM3 (which features a vesicular type of aggregation) is low anyway (7.8 mg protein), despite the presence of the α2–3 sialosyl linkage.

As shown in Table I, HsNEU2 expressed appreciable activity at pH 7.0 with all tested substrates on which the enzyme was capable of working. The ratio between the activity (V_max) at the optimal pH and pH 7.0, in the absence of detergents, ranged from a minimum of 1.55 with α1-acid glycoprotein to a maximum of 24 with GD1α. With all substrates, the K_m values were practically identical at pH 5.6 and 7.0.

Effect of Detergents—The effect of neutral (Triton X-100 and octyl glucoside) and ionic (sodium deoxycholate and CHAPS) detergents on HsNEU2 activity was studied. None of these detergents (up to 0.5% concentration) influenced the enzyme activity on MU-NeuAc, sialyl-oligosaccharides, coloinmic acid, and all the tested sialoglycoproteins. Conversely, remarkable activating effects were observed with gangliosidic substrates. The highest activation (1.5–2.5-fold, depending on the ganglioside) was observed with Triton X-100 at the optimal 0.02% (w/v) concentration, followed by octyl glucoside (1.3–2.2-fold at 0.08% w/v) and sodium deoxycholate (1.1–1.8-fold at 0.03% w/v). The only exception was GD1b, where all detergents caused a small decrease of the apparent V_max.

The activity of HsNEU2 toward mixed micelles of ganglioside/Triton X-100 followed again regular Michaelis-Menten kinetics (see, for example, the case of GM3 (Fig. 4)). In any case, the most striking effect of the detergent was detectable just on ganglioside GM3, where the presence of Triton X-100 caused a more than 8-fold increase of apparent V_max. Moreover, the presence of detergent increased the affinity, as compared with homogeneous micelles. This increase was highest, about 6-fold, with GD1α. Notably, none of the used detergents, in a wide range of concentrations, enabled HsNEU2 to work on micellar GM1 and GM2.

The effect of Triton X-100 was present also at pH 7.0. At this pH, the increase of enzyme activity due to Triton X-100 was markedly higher than at the optimal pH. In the case of GM3, the activity increased 8.6-fold at pH 5.6 and 13.7-fold at pH 7.0, and in that of GD1b, the detergent caused a substantial in-
experiments showed the formation of an additional radioactive HsNEU2 to hydrolyze monomeric GD1a. However, the same product in a time-dependent manner, indicating the ability of shown in Fig. 5, GM1 was formed as the principal reaction method, the only method possessing adequate sensitivity. As shown are the average of two experiments carried out in triplicate.

Also, in the presence of detergent, the increase (2.7-fold) against an almost 30% decrease at pH 5.6. The enzyme activity was measured by the fluorimetric method with MU-NeuAc, by the colorimetric method with 3 sialyllactose, and GM3. The data shown in Table III, using a fixed amount of radioactive GM1 (1 nM) and increasing amounts of Triton X-100 (from 3.9 to 396 mM), a progressive passage of the ganglioside into the aqueous phase was observed. Actually, using 396 μM detergent (i.e. about 0.4 mM), 97% of the total radiolabeled GM1 was recovered in the aqueous solution, and only 1.7% bound to the tube wall. On the other hand, maintaining constant detergent concentrations (0.4 mM) and increasing the quantity of radioactive GM1 from 1.0 to 40.2 nM (Table III, bottom), almost all of the ganglioside (about 97%) remained in the aqueous phase. Finally, as shown in Table IV, the sialidase activity on GM1, which was almost completely (95.7%) linked to the tube wall in the absence of Triton X-100, moved to the aqueous solution with increasing amounts of added detergent reaching 97.5% at 0.4 mM detergent concentration. Using monomeric dispersions of GM1 on the surface of Triton X-100 micelles (GM1/Triton X-100 molar ratio, 1:2000) the activity of Triton X-100 (CMC about 10−4 M) to promote the passage of monomERICALLY dispersed GM1 from the reaction tube walls to the aqueous solution was ascertained. As shown in Table III, using a fixed amount of radioactive GM1 (1 nM) and increasing amounts of Triton X-100 (from 3.9 to 396 μM), a progressive passage of the ganglioside into the aqueous phase was observed. Actually, using 396 μM detergent (i.e. about 0.4 mM), 97% of the total radiolabeled GM1 was recovered in the aqueous solution, and only 1.7% bound to the tube wall. On the other hand, maintaining constant detergent concentrations (0.4 mM) and increasing the quantity of radioactive GM1 from 1.0 to 40.2 nM (Table III, bottom), almost all of the ganglioside (about 97%) remained in the aqueous phase. Finally, as shown in Table IV, the sialidase activity on GM1, which was almost completely (95.7%) linked to the tube wall in the absence of Triton X-100, moved to the aqueous solution with increasing amounts of added detergent reaching 97.5% at 0.4 mM detergent concentration. Using monomERICALLY dispersed of GM1 on the surface of Triton X-100 micelles (GM1/Triton X-100 molar ratio, 1:2000) the Vf(S)/Vmax values could be determined with an acceptable degree of approximation: about 10 × 10−9 M and 25 μIU/mg protein, respectively (Fig. 7A). Moreover, pilot experiments showed that HsNEU2 was able to affect [Sph-3H]GM2 at 2−5 nM concentrations with formation of a compound migrating a little faster than GM2 and lacking the acidic charge, presumably asialo-GM2.

Hydrolysis of MonomERICALLY Dispersed GM1 in Triton X-100 Micelles

The capability of Triton X-100 (CMC about 10−4 M) to promote the passage of monomERICALLY dispersed GM1 from the reaction tube walls to the aqueous solution was ascertained. As shown in Table III, using a fixed amount of radioactive GM1 (1 nM) and increasing amounts of Triton X-100 (from 3.9 to 396 μM), a progressive passage of the ganglioside into the aqueous phase was observed. Actually, using 396 μM detergent (i.e. about 0.4 mM), 97% of the total radiolabeled GM1 was recovered in the aqueous solution, and only 1.7% bound to the tube wall. On the other hand, maintaining constant detergent concentrations (0.4 mM) and increasing the quantity of radioactive GM1 from 1.0 to 40.2 nM (Table III, bottom), almost all of the ganglioside (about 97%) remained in the aqueous phase. Finally, as shown in Table IV, the sialidase activity on GM1, which was almost completely (95.7%) linked to the tube wall in the absence of Triton X-100, moved to the aqueous solution with increasing amounts of added detergent reaching 97.5% at 0.4 mM detergent concentration. Using monomERICALLY dispersed of GM1 on the surface of Triton X-100 micelles (GM1/Triton X-100 molar ratio, 1:2000) the Vf(S)/Vmax values could be determined with an acceptable degree of approximation: about 10 × 10−9 M and 25 μIU/mg protein, respectively (Fig. 7A). Moreover, pilot experiments showed that HsNEU2 was able to affect [Sph-3H]GM2 at 2−5 nM concentrations with formation of a compound migrating a little faster than GM2 and lacking the acidic charge, presumably asialo-GM2.

Hydrolysis of MonomERICALLY Dispersed GM1 in Triton X-100 Micelles

The capability of Triton X-100 (CMC about 10−4 M) to promote the passage of monomERICALLY dispersed GM1 from the reaction tube walls to the aqueous solution was ascertained. As shown in Table III, using a fixed amount of radioactive GM1 (1 nM) and increasing amounts of Triton X-100 (from 3.9 to 396 μM), a progressive passage of the ganglioside into the aqueous phase was observed. Actually, using 396 μM detergent (i.e. about 0.4 mM), 97% of the total radiolabeled GM1 was recovered in the aqueous solution, and only 1.7% bound to the tube wall. On the other hand, maintaining constant detergent concentrations (0.4 mM) and increasing the quantity of radioactive GM1 from 1.0 to 40.2 nM (Table III, bottom), almost all of the ganglioside (about 97%) remained in the aqueous phase. Finally, as shown in Table IV, the sialidase activity on GM1, which was almost completely (95.7%) linked to the tube wall in the absence of Triton X-100, moved to the aqueous solution with increasing amounts of added detergent reaching 97.5% at 0.4 mM detergent concentration. Using monomERICALLY dispersed of GM1 on the surface of Triton X-100 micelles (GM1/Triton X-100 molar ratio, 1:2000) the Vf(S)/Vmax values could be determined with an acceptable degree of approximation: about 10 × 10−9 M and 25 μIU/mg protein, respectively (Fig. 7A). Moreover, pilot experiments showed that HsNEU2 was able to affect [Sph-3H]GM2 at 2−5 nM concentrations with formation of a compound migrating a little faster than GM2 and lacking the acidic charge, presumably asialo-GM2.
better understand the sialidase specificity toward gangliosides, natural substrates of amphiphilic nature, in comparison with companion sialglycoproteins and sialooligosaccharides. The particular attention to gangliosides had the following grounds: (i) gangliosides show characteristic aggregation properties in aqueous media, since they undergo monomer to micellar transition at very low critical micellar concentrations, 10⁻⁸ to 10⁻⁷ M, with the exception of GM3, which adopts a vesicular form of aggregation; (ii) they occur in membranes either in a packed organization (lipid rafts) (20, 21), resembling a micellar organization or in molecular dispersion as monomers; and (iii) they are involved in important events of social cell behavior, like cell-cell interactions, receptor regulation, and transmembrane signaling (42, 43), where their molecular and supramolecular features may play a crucial role. For the first time, the recombinant human cytosolic sialidase HsNEU2 was employed as a model enzyme.

HsNEU2 was expressed in E. coli cells as a protein chimera with GST with the advantage of grossly purifying it by column affinity chromatography on GSH-Sepharose, using GST as the binding portion, and of having an active and stable sialidase. After two additional chromatographic passes on FPLC, with concomitant detachment of GST by thrombin treatment, the enzyme was homogeneous although thermolabile (unless stored at −80 °C). The pH optimum was confirmed to be 5.6 on all of the used substrates, as already reported for HsNEU2-related sialidases. The pH reported to be optimal for the individual bacterial sialidases (5.5 for V. cholerae sialidase; 5.6 for the remaining ones), formation of radiolabeled GA1 was observed in the case of A. aerogenes and C. perfringens sialidases. The activities of these enzymes corresponded to about 48 and 3.8% of that displayed by HsNEU2, respectively. No activity at all on monomeric GM1 was detectable with S. typhimurium and V. cholerae sialidases.

DISCUSSION

The mammalian sialidases so far cloned (9, 10) show remarkably similar amino acid sequences and a highly conserved active site. However, they have different biological origin and subcellular localization, display different biological implications, and exhibit different substrate specificities. The molecular features responsible for these behavioral differences are unknown. The first aim of the present investigation was to

Fig. 5. HsNEU2 activity on monomeric dispersions of [Sph-³H]GD1a. Enzyme assay conditions, at 37 °C, were as follows: 2 nM [Sph-³H]GD1a; 0.2 µg of enzyme and 10–30-min incubation at pH 5.6; 1.2 µg of enzyme and 30-min incubation at pH 7.0. Lane 1, blank mixture (without enzyme); lanes 2 and 3, mixture incubated at pH 5.6 (10 and 30 min, respectively); lane 4, mixture incubated at pH 7.0; lane 5, standard [Sph-³H]GD1a; lane 6, standard [Sph-³H]GM1; lane 7, standard [Sph-³H]GA1.

Table I

Substrate	Triton X-100 (0.02%, w/v)	V_max (IU/mg of protein)	K_m (10⁻³ M⁻¹)
	pH 5.6	pH 7.0	
Gangliosides			
GM3	−	7.80	2.23
	+	67.00	30.70
GD1a	−	250.00	10.41
	+	322.00	22.50
GD1b	−	5.45	2.20
	+	133.00	17.50
GT1b	−	190.00	27.20
	+	105.00	12.22
α2–3SPG	−	253.00	29.12
GM1	−	ND	ND
	+	ND	ND
GM2	−	ND	ND
	+	ND	ND
Glycoproteins			
Fetuin	No effect*	12.70	3.40
Transferrin	No effect	0.75	0.40
α1-acid glycoprotein	No effect	0.70	0.45
Mucin	No effect	1.82	0.17
Colomonic acid	No effect	ND	ND
Oligosaccharides			
α2–3 sialyllactose	No effect	10.00	2.12
α2–6 sialyllactose	No effect	ND	ND
GM1-oligosaccharide	No effect	ND	ND
Artificial substrate	No effect	47.60	14.17
MU-NeuAc	ND	ND	ND

* No variations were detectable between acidic and neutral pH values.

+ ND, not detectable.

+p Not established, it could not be established in an accurate way.

+c From bovine submaxillary glands.
Micellar one with Triton X-100. Remarkably, the micelles of ganglioside transition from the vesicular form of aggregation to the (mixed) micellar form. In the presence of detergent, very likely due to its amphiphilic nature.

The accessibility or inaccessibility of the sialic acid of GM1 and GM2 to sialidase action is an old and controversial issue. The lack of accessibility exhibited by some bacterial (V. cholerae), viral (influenza virus), and mammalian sialidases (1) was assumed to derive from a steric hindrance by the vicinal N-acetylhexosamine residue preventing the enzyme from properly interacting with the substrate (44). In other words, the constraint was viewed as residing at the substrate level. However, other sialidases of bacterial and mammalian origin resulted in the ability to promote sialic acid removal from GM1 and GM2 (45–49), pointing to structural features at the enzyme level. Notably, Wang et al. (50) showed that proper point mutations on recombinant rat plasma membrane-bound sialidase markedly enhanced the ability of the enzyme to hydrolyze GM2. An important contribution to clarify the issue comes from GM1 and GM2 were completely resistant to HsNEU2 action, regardless of the presence or absence of detergents. As a whole, these data are consistent with the notion that HsNEU2 is capable of recognizing not only the type of sialosyl linkage and the aglycone part of the molecule, but also the supramolecular organization (micelles and vesicles) of sialoglycoconjugates of an amphiphilic nature.

The third novel aspect of HsNEU2 is its peculiar ability to remove sialic acid from gangliosides in the concentration range 10^{-9} to 10^{-8} M, which is their monomeric form. This was observed with GD1a but also, and particularly, with GM1, which was studied in detail, and GM2. The very important difference was that in the case of GD1a, the enzyme works also on the micellar aggregation, whereas with GM1 and GM2 it absolutely does not. It should be recalled that at very low concentrations, the ganglioside substrate is not free in the aqueous reaction mixture but bound to the test tube wall. Despite this, recombinant HsNEU2 affects GM1 with the expected dependence on time and enzyme amount and with a V/S curve obeying Michaelis-Menten kinetics. The apparent V_{\max} was 25 μIU/mg protein, and the K_m was as low as 10 nM, which is quite surprising for an enzyme. Moreover, the enzyme activity on monomeric dispersions of GM1 occurs also in the presence of Triton X-100. In this case, detergent addition leads to complete “solubilization” (detachment from the tube wall) of the monomeric GM1, probably because ganglioside is incorporated into the surface of Triton X-100 micelles, which are soluble. It seems reasonable to suggest that recombinant HsNEU2 is able to recognize ganglioside molecules dispersed on surfaces. Using Triton X-100/GM1 micelles with a molar ratio of 2000:1, which is a very dispersed form of GM1, the apparent K_m was still very low (15 nM) and V_{\max} was raised to 72 μIU/mg protein.

A further aim of the investigation was to quantify the capability of HsNEU2 to work at a neutral pH. It was surprising to observe that the enzyme displayed, on all tested substrates and in the absence of Triton X-100 a substantial activity at pH 7.0, ranging (with reference with that at pH 5.6) from a minimum of 4% with GD1a to a maximum of 64% with a 1,3-acid glycoprotein. Using ganglioside substrates, in the presence of Triton X-100, the activatory effect of detergent tended to be relatively more effective at pH 7.0 than 5.6. In fact, the percentage of activity in reference to that at the optimal pH, rose from 4 to 7% with GD1a, from 28 to 45% with GM3, and from 10.7 to 40.3% with GD1b. The K_m values were in all cases identical at two pH values, indicating that the affinity of the enzyme was not affected by pH within the range used. Notably, also the ability of the enzyme to recognize monomeric dispersions of ganglioside substrates and to affect monomeric dispersions but not micellar aggregations of GM1 was expressed also at 7.0, with constant K_m and a 30–40% decrease of apparent V_{\max}.

The first message concerned the linkage specificity, namely the sialosyl linkages $\alpha 2\rightarrow 3$ and $\alpha 2\rightarrow 6$ to galactose and $\alpha 2\rightarrow 8$ to a further sialic acid residue. The highest activity and affinity were observed on the $\alpha 2\rightarrow 3$ linkage-containing glycoconjugates, followed by $\alpha 2\rightarrow 8$ and $\alpha 2\rightarrow 6$ linkages, although with some relevant exceptions. In fact, the $\alpha 2\rightarrow 3$ linkage present in the GM1 oligosaccharide and in micellar GM1 and GM2 was resistant to the enzyme action as well as the $\alpha 2\rightarrow 8$ linkage present in colonic acid and the $\alpha 2\rightarrow 6$ linkage present in $\alpha 2\rightarrow 6$ sialyllactose. This means that a portion of the substrate molecule other than the sialyl residue plays an important role in catalysis, suggesting the presence in HsNEU2 of additional sites (peptide domains or single amino acid residues sterically vicinal to the active site) involved in substrate recognition. The second message concerned the effect on the enzyme activity of neutral and ionic detergents, the most active being Triton X-100. The detergent effect was observed only on ganglioside substrates, indicating its action at the substrate, not enzyme, level. At the optimal pH, and using millimolar ganglioside concentrations, largely above the CMC, hence in their micellar form, the detergent effect consisted in an increase of apparent V_{\max} (1.7-fold in the case of GD1a, where the activatory effect was the highest) and decrease of K_m (the highest decrease, about 6.5-fold, again on GD1a). GD1b was the only ganglioside where the effect of detergent was almost null. Instead, GM3 showed the highest change in apparent V_{\max} (8.5-fold rise), in the presence of detergent very likely due to its transition from the vesicular form of aggregation to the (mixed) micellar one with Triton X-100. Remarkably, the micelles of GM1 and GM2 were completely resistant to HsNEU2 action, regardless of the presence or absence of detergents. As a whole, these data are consistent with the notion that HsNEU2 is capable of recognizing not only the type of sialosyl linkage and the aglycone part of the molecule, but also the supramolecular organization (micelles and vesicles) of sialoglycoconjugates of an amphiphilic nature.

The accessibility or inaccessibility of the sialic acid of GM1 (and GM2) to sialidase action is an old and controversial issue. The lack of accessibility exhibited by some bacterial (V. cholerae), viral (influenza virus), and mammalian sialidases (1) was assumed to derive from a steric hindrance by the vicinal N-acetylhexosamine residue preventing the enzyme from properly interacting with the substrate (44). In other words, the constraint was viewed as residing at the substrate level. However, other sialidases of bacterial and mammalian origin resulted in the ability to promote sialic acid removal from GM1 and GM2 (45–49), pointing to structural features at the enzyme level. Notably, Wang et al. (50) showed that proper point mutations on recombinant rat plasma membrane-bound sialidase markedly enhanced the ability of the enzyme to hydrolyze GM2. An important contribution to clarify the issue comes from...
Table II

Action of HsNEU2 on monomeric dispersions of 3H-labeled GM1: Evidence for the enzyme activity on tube wall-bound gangliosides

Assay conditions were as follows: HsNEU2, 0.4 µg; 1 nm [Sph-3H]GM1; 50 mM citrate/phosphate buffer, pH 5.6; 30 min at 37 °C. Separation of GM1 (and GA1, after incubation) between the tube wall-bound form and the form present in the aqueous solution was performed as described under “Experimental Procedures.” The data are the means ± S.D. of three experiments carried out in triplicate. The same radioactivity distribution pattern was observed at pH 7.0, using 1.2 µg of enzyme.

Before incubation	After incubation				
Total radioactivity	Percentage	Total radioactivity	Percentage	Sialidase activity	Percentage
dpm	%	dpm	%	εIU/mg of protein	%
Aqueous solution	53 ± 3	1.7	58.4 ± 4	1.83	ND*
Test tube wall	3120 ± 240	98.1	3100 ± 280	97.5	1.31 ± 0.09
Total	3180 ± 159	100	3100 ± 159	100	1.37 ± 0.07
Recovery (%)	99.8	99.33	ND*		

* Not detectable.

Fig. 7. Kinetics of HsNEU2 on monomeric dispersions of GM1 in the absence of Triton X-100 (dispersion on the tube wall) (A) or presence of Triton X-100 (dispersion on the detergent micelle) (B). Enzyme assay conditions were as follows: 0.4 mM Triton X-100, when present; [Sph-3H]GM1 at different concentrations; 0.2 µg of enzyme and 10 min incubation at pH 5.6; 1.2 µg enzyme and 30 min incubation at pH 7.0. The data shown are the average of two experiments carried out in triplicate. A, pH 5.6; B, pH 7.0.

the reported resolution of the three-dimensional structure of human GM2 activator protein (GM2-AP) (51). This protein is a cofactor in the intralysosomal degradation of gangliosides, and its genetically determined defect leads to a variant of Tay-Sachs disease known as AB GM2 gangliosidosis (52). The GM2-AP crystal structure reveals a ω-cup-shaped folding, with a central hydrophobic cavity, which is suitable for binding the ceramide lipid tail of gangliosides, namely GM2. The activator protein probably extracts single ganglioside molecules from the membrane and concentrates on the head saccharide moiety a new conformation that renders it accessible to the enzyme, in this case a ω-N-acetyhexosaminidase. This model can be applied also to the GM1/GM2 sialidase interactions. Actually, in a recent study, mouse plasma membrane-associated sialidase (MmNEU3) was shown to remove sialic acid from GM1 and GM2 in the presence of GM2-AP but also, although with a much lower efficiency, in the absence of the activator (49). A possible explanation for all of these different behaviors is that the oligosaccharide portion of gangliosides, like GM1 and GM2, should have a particular conformation relative to the hydrophobic tail, in order to be recognized and hydrolyzed by sialidase. This conformation can simply be met by ganglioside molecules dispersed on a surface (as in the case of recombinant HsNEU2) or by ganglioside molecules inserted into the hydrophobic cavity of GM2-AP. For the case where sialidases seemingly act on GM1 and GM2 micelles, the hypothesis can be put forward that the right substrate conformation is obtained through a preliminary interaction of the substrate with a binding site of the enzyme itself acting somewhat like the GM2-AP. The availability of different recombinant sialidases, properly engineered by selected point mutations, might contribute to verify this line of interpretation.

The importance of structural differences among sialidases, especially with regard to substrate specificity and kinetics parameters, is also stressed by differences in the action of recombinant HsNEU2 and the other mammalian cytosolic sialidases purified from rat liver (53) and Chinese hamster ovary cells (54). For instance, the latter enzymes, differently from Hs-NEU2, have a pH optimum of 6.0, recognize as substrates 3-sialyllactose and colominic acid, and display a higher activity on transferrin than fetuin and a relatively lower activity on (micellar) gangliosides. Instead, they share with Hs-NEU2 the inability to hydrolyze micellar GM1 and GM2. It is unknown whether these sialidases are able to affect gangliosides as monomeric dispersion. The reason for all of these differences may reside in structural differences or, in some cases, the different analytical procedures employed or seemingly because the issue (it is the case of ganglioside monomeric dispersions) was not addressed.

Finally, the possible link between the results provided by this study and the possible physiological significance of cytosolic sialidases in mammalian cells deserves comment. Transfection of rat B16 melanoma cells with rat NEU2 cDNA was reported (55) to suppress pulmonary metastases, and the met-
Experimental conditions were as follows. Top, [Sph-\(^3\)H]GM1, 1 nm; Triton X-100, from 0 to 396 \(\mu\)M; 50 mM sodium citrate/phosphate buffer, pH 5.6; final volume, 0.1 ml; 37 °C. Bottom, [Sph-\(^3\)H]GM1, from 1 to 40.2 nm; Triton X-100, 396 \(\mu\)M; 50 mM sodium citrate/phosphate buffer at pH 5.6; final volume, 0.1 ml; 37 °C. The mixtures were prepared, and the distribution of GM1 molecules between the Eppendorf test tube wall and the aqueous solution was determined as described under “Experimental Procedures.” The data shown are the mean values ± S.D. of three experiments carried out in triplicate. No cold GM1 was used. Starting GM1-bound radioactivity was 3180 dpm. No significant difference in the distribution of radioactivity into the test tube wall and aqueous solution was observed at pH 7.0.

Triton X-100	GM1-bound radioactivity			
	Aqueous solution	Test tube wall		
	Radioactivity	Percentage	Radioactivity	Percentage
0	53 ± 3	1.7	3120 ± 159	98.1
3.9	700 ± 45	22.0	2400 ± 122	75.5
33.0	1220 ± 72	38.4	1900 ± 101	59.7
99.0	1890 ± 98	59.4	1050 ± 55	33.0
198.0	2660 ± 130	83.6	480 ± 22	15.1
297.0	3010 ± 138	94.6	80 ± 5	2.5
396.0	3990 ± 141	91.2	50 ± 2	1.6

TABLE III

Triton X-100 mediates the passage of monomeric dispersions of GM1 from the test tube wall to the aqueous medium

The same trend of enzyme activity distribution in the aqueous solution carried out in triplicate. Starting total sialidase activity was 0.55 nIU. "\(^/-3\)H\]GM1; radioactivity into the test tube wall and aqueous solution was observed at pH 7.0.

Triton X-100	GM1-bound radioactivity			
	Aqueous solution	Test tube wall		
	Radioactivity	Percentage	Radioactivity	Percentage
nM	total dpm	%	total dpm	%
1.0	3180	97.2	50 ± 2	1.6
1.3	4334	97.4	58 ± 3	1.4
5.05	16,059	97.1	321 ± 18	2.0
9.02	28,684	96.6	946 ± 51	3.3
15.79	62,646	96.8	1940 ± 142	3.1
40.2	127,836	96.7	3068 ± 153	2.4

TABLE IV

Action of HsNEU2 on monomeric dispersions of GM1: Effect of Triton X-100-mediated passage of GM1 monomers from the test tube wall to the aqueous solution

The data shown are the mean values of two experiments carried out in triplicate. Starting total sialidase activity was 0.55 nIU. The same trend of enzyme activity distribution in the aqueous solution and test tube wall was observed at pH 7.0 (1.2 \(\mu\)M of enzyme).

Triton X-100	Sialidase activity			
	Aqueous solution	Test tube wall		
	Activity	Percentage	Activity	Percentage
nM	total nIU	%	total nIU	%
0	ND\(^*\)	0.528	95.7	
3.9	0.124	22.5	0.412	74.9
33.0	0.209	38.1	0.331	60.2
99.0	0.330	60.1	0.171	32.4
198.0	0.457	83.1	0.086	15.7
297.0	0.522	94.9	0.012	2.2
396.0	0.543	97.7	ND	

\(^*\) ND, not detectable.

Astacistic potential of sublines of mouse colon adenocarcinoma was inversely proportional to the level of endogenous NEU2 (56). On the other hand, transfection of human epidermoid carcinoma cells with hamster NEU2 matched with enhancement of epidermal growth factor receptor activity (57) and overexpression of rat NEU2 in rat myoblasts led to promotion of differentiation toward myotubules (58). Taken together, these data indicate that whenever an increase or appearance of NEU2 activity was observed, a decrease of GM3 and an increase (or appearance) of lactosylceramide, the product of GM3 desialylation, were detected. Since both GM3 and lactosylceramide are involved in transmembrane signaling pathways (59), generally with opposite biological effects, a role of sialidase as a regulatory switch can be easily suggested. The fact that HsNEU2 displays activity also at a neutral pH removes, at least in part, the objection of what can be the physiological role of a cytosolic enzyme having an optimal pH in the acidic range. Instead, it can be suggested that a transient acidification of a microenvironment of the cytosol may constitute an efficient mechanism of in vivo enzyme regulation.

Assuming gangliosides as a main target for cytosolic sialidase and considering that the assumed intracellular localization of gangliosides is to the external surface of the plasma membrane or the luminal surface of Golgi membrane, the problem of substrate accessibility to the enzyme is pivotal. The possibility that under proper conditions the cytosolic enzyme can leave its residential compartment and reach ganglioside cannot be excluded. In fact, it was shown (60, 61) that in human cultured fibroblasts and Chinese hamster ovary cells, NEU2 could be released in the medium and reach surface-linked ganglioside. Moreover, small amounts of gangliosides are associated with intermediate filaments and microtubules (62) or are present in the cytosol in the form of protein complexes (63) and, as such, can be reached by the cytosolic sialidase. At this level, the ability of the enzyme to act on either monomerically dispersed or ‘clustered’ gangliosides, although with quite different affinity and efficiency, might be critical for the dynamics...
and function of lipid rafts. Of course, huge efforts must be made to properly approach and make clear these important issues.

REFERENCES

1. Saito, M., and Yu, R. K. (1995) in Biology of the Sialic Acids (Rosenberg, A., ed) pp. 261–313, Plenum Press, New York
2. Schauer, R., Kelm, S., Reuter, G., Ruggenenti, P., and Shaw, L. (1995) in Biology of the Sialic Acids (Rosenberg, A., ed) pp. 7–67, Plenum Press, New York
3. Varghese, J. N., Laver, W. G., and Colman, P. M. (1983) Nature 303, 35–40
4. Crennell, S. J., Garman, E., Laver, G., Vimr, E., and Taylor, G. L. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 8852–8856
5. Crennell, S., Garman, E., Laver, G., Vimr, E., and Taylor, G. (1994) Structure 2, 535–544
6. Taylor, G. L. (1996) Curr. Opin. Struct. Biol. 6, 830–837
7. Venerando, B., Fiorilli, A., Di Francesco, L., Chiarini, A., Monti, E., Zizioli, D., and Tettamanti, G. (1994) Biochim. Biophys. Acta 1208, 229–237
8. Saito, M., Frendo, C. L., and Yu, R. K. (1996) J. Neurochem. 66, 2265–2268
9. Achyuthan, K. E., and Achyuthan, A. M. (2001) Comp. Biochem. Physiol. B Biochem. Mol. Biol. 129, 29–64
10. Monti, E., Preti, A., Venerando, B., and Borsani, G. (2002) Neurochem. Res. 27, 649–663
11. Bonten, E., van der Spoel, A., Fornerod, M., Grosveld, G., and d’Azzo, A. (1996) Genes Dev. 10, 3156–3169
12. Milner, C. M., Smith, S. V., Carrillo, M. B., Taylor, G. L., Hollinshead, M., and Borsani, G. (1999) Biochim. Biophys. Acta 1461, 65–79
13. Monti, E., Preti, A., Rossi, E., Ballabio, A., and Borsani, G. (1999) J. Neurochem. 76, 620–629
14. Chigrino, V., Cardace, G., Pitt, M., Sonnino, S., Ghidoni, R., and Tettamanti, G. (1986) Anal. Biochem. 153, 283–294
15. Sambrook, J., and Russell, D. (2001) Mol. Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
16. Svennerholm, L. (1957) Nature 180, 1075–1077
17. Hakomori, S. (2002) Biochim. Biophys. Acta 1577, 137–143
18. Darder, M., and Schauer, R. (1993) J. Biol. Chem. 268, 1825–1829
19. Nagai, Y., and Iwamori, M. (1995) in Biology of Sialic Acids (Rosenberg, A., ed) pp. 145–196, Plenum Press, New York
20. Sato, K., and Miyagi, T. (1996) Biochim. Biophys. Acta 1298, 234–254
21. Wright, C. S., Li, S. C., and Rastinejad, F. (2000) Biochim. Biophys. Acta 1461, 528–553
Properties of Recombinant Human Cytosolic Sialidase HsNEU2: THE ENZYME HYDROLYZES MONOMERICALLY DISPERSED GM1 GANGLIOSIDE MOLECULES

Cristina Tringali, Nadia Papini, Paola Fusi, Gianluigi Croci, Giuseppe Borsani, Augusto Preti, Paolo Tortora, Guido Tettamanti, Bruno Venerando and Eugenio Monti

J. Biol. Chem. 2004, 279:3169-3179.
doi: 10.1074/jbc.M308381200 originally published online November 12, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M308381200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 57 references, 15 of which can be accessed free at http://www.jbc.org/content/279/5/3169.full.html#ref-list-1