Carriage of stx2a Differentiates Clinical and Bovine-Biased Strains of Escherichia coli O157

Smriti Shringi¹, Carrie Schmidt¹, Kaya Katherine¹, Kelly A. Brayton¹, Dale D. Hancock², Thomas E. Besser¹*

¹ Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America, ² Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America

Abstract

Background: Shiga toxin (Stx) are cardinal virulence factors of enterohemorrhagic E. coli O157:H7 (EHEC O157). The gene content and genomic insertion sites of Stx-associated bacteriophages differentiate clinical genotypes of EHEC O157 (CG, typical of clinical isolates) from bovine-biased genotypes (BBG, rarely identified among clinical isolates). This project was designed to identify bacteriophage-mediated differences that may affect the virulence of CG and BBG.

Methods: Stx-associated bacteriophage differences were identified by whole genome optical scans and characterized among >400 EHEC O157 clinical and cattle isolates by PCR.

Results: Optical restriction maps of BBG strains consistently differed from those of CG strains only in the chromosomal insertion sites of Stx2-associated bacteriophages. Multiplex PCRs (stx1, stx2a, and stx2c as well as Stx-associated bacteriophage - chromosomal insertion site junctions) revealed four CG and three BBG that accounted for >90% of isolates. All BBG contained stx2c and Stx2c-associated bacteriophage – sbcB junctions. All CG contained stx2a and Stx2a-associated bacteriophage junctions in wrbA or argW.

Conclusions: Presence or absence of stx2a (or another product encoded by the Stx2a-associated bacteriophage) is a parsimonious explanation for differential virulence of BBG and CG, as reflected in the distributions of these genotypes in humans and in the cattle reservoir.

Introduction

Enterohemorrhagic E. coli O157:H7 (EHEC O157) is an important cause of food- and water-borne illnesses in developed nations. Diseases associated with EHEC O157 infections include hemorrhagic colitis (HC) and the hemolytic uremic syndrome (HUS) [1]. HUS following EHEC O157 infection is associated with 3% to 5% mortality [2]. Cattle are a major reservoir of EHEC O157 and consumption of contaminated bovine-origin foods is frequently linked to EHEC O157 outbreaks [3,4].

Shiga toxin (Stx) expression is an important virulence factor of EHEC O157. Stx are encoded in late genes of lambdoid bacteriophages; specific bacteriophages, associated with specific Stx variants, are typically inserted at one or two preferred chromosomal locations. Bacteriophages play a major role in generating genetic diversity in the EHEC O157 genome [5,6,7,8,9,10,11,12,13]. Molecular epidemiological studies using Stx-associated bacteriophage insertion (SBI) sites for strain differentiation have shown that EHEC O157 can be classified into several genotypes [5,10,14]. Bovine-biased genotypes (BBG) are significantly over-represented among cattle isolates compared to clinical isolates, whereas clinical genotypes (CG) are typical of clinical isolates and are also frequently isolated from cattle [13,16]. Other genotyping methods also demonstrate a similar bias in distribution of EHEC O157 lineages/clades among cattle and human host [6,8,12]. Both BBG and CG usually carry both EHEC O157 cardinal virulence factors: production of one or more Stx and expression of the Locus of Enterocyte Effacement (LEE) pathogenicity island required for intestinal colonization [1,17]. The pronounced differences in their frequency of isolation from human disease and from cattle suggest that BBG may have reduced virulence. This possibility was supported by the recent demonstration that CG strains cause more severe clinical signs, more severe histopathologic lesions, and higher mortality than BBG strains in two animal models of human disease [15].

We hypothesize that specific bacteriophage-associated genetic factors underlie the differential virulence of CG and BBG EHEC.
human illness and cattle reservoir. SBI genotypes and with their relative frequency of isolation from associated bacteriophages were strongly associated with specific Optical Mapping Bacterial Strains

Materials and Methods

Bacterial Strains

For optical mapping, seven EHEC O157 strains representing the four most common SBI genotypes (one isolate CG-1 and two isolates each CG-3, BBG-5 and BBG-6) isolated from cattle and banked at the Field Disease Investigation Unit at Washington State University [5] were selected by random number table (Table 1). An additional larger set of EHEC O157 strains were randomly selected from the strain bank, stratified to include no more than one isolate per cattle farm per calendar year, for comparison with the optically mapped strains. The bovine isolates included 227 EHEC O157 isolates from four countries including Canada, Japan, Scotland and several states within the USA (WA, OR, ID, CO, AZ, TX, KS, MN, SD, IA, NE, PA, and NY) obtained in field research studies conducted between 1991 and 2010. Human isolates (n = 192), kindly provided by the Washington State Department of Health, included 40–45 isolates randomly selected from among reported cases for each year from 2006 through 2009, and all 19 isolates available from 2010 at the time this study was initiated. Each isolate was confirmed as EHEC O157 by PCR detection of eae and flicH7 by PCR [18,19,20] and latex agglutination detection of O157 antigen (E. coli PRO O157, Hardy Diagnostics, USA).

Optical Mapping

Optical maps of seven EHEC O157 isolates were constructed and provided by OpGen technologies, Inc (Madison, WI, USA) using the procedure described previously [21,22]. We compared the whole genome optical maps of each strain with the in silico BamH1 restriction enzyme (RE) map of strain Sakai (BA000007) using Map Viewer software (OpGen). An inventory of genomic differences involving restriction fragments > 2 kb (the resolution of the optical mapping technology) was prepared for each strain in comparison to the reference Sakai sequence [22].

Multiplex PCR Method for SBI Genotyping

To confirm the genetic differences between CG and BBG strains detected by optical mapping, a multiplex PCR was developed and standardized (Table 2). The PCR targets included the left and right bacteriophage-bacterial backbone junctions of three different bacteriophages potentially inserted at four sites \(yehV, \) \(wrbA, \) \(argW\) and \(sbcB\) in the EHEC O157 genome, a previously identified variable bacteriophage-\(yehV\) right junction \([5,10], \) and \(stx1, \) \(stx2a, \) and \(stx2c. \) Each of the forward primers was \(5'\)-labeled with a fluorescent dye (PET, 6-FAM VIC or NED) as indicated (Table 2). This multiplex PCR is capable of amplifying 16 different genetic regions; the twelve listed above and in addition the four intact chromosomal insertion sites.

The PCR reaction mixture included IX PCR buffer, 0.05 U/ul of Platinum Taq DNA polymerase (Invitrogen, USA), 2.4 mM MgCl2, 0.4 mM dNTP, 0.2 \(\mu\text{M}\) of each forward and reverse primers to amplify the junctions of 4 bacteriophages \((A, B, C, D, E, F, G, H, argW-A, argW-B, argW-C, argW-D, \) \(sbcB-F, \) \(sbcB-R2, \) \(2851-80, \) and \(2851-82\)), \(0.3 \mu\text{M}\) of each \(stx1\) and \(stx1-1\) to amplify \(stx1, \) \(0.2 \mu\text{M}\) of each \(stx2-1072F\) and \(stx2-1197R\) to amplify \(stx2a, \) \(0.1 \mu\text{M}\) of each \(stx2c-F858\) and \(stx2c-R1100\) to amplify \(stx2c, \) \(0.12 \mu\text{M}\) of primer E3, and \(1 \mu\text{M}\) of Chelex DNA extract supernatant as template. For DNA extraction, a colony of bacteria from a Columbia blood agar (Hardy diagnostics) was added and mixed with 200 \(\mu\text{L}\) of 5% Chelex 100 Resin (Bio-Rad), boiled for 10 min, and centrifuged at 13,000 rpm for 1 min. The PCR cycling conditions included initial denaturation at 95\(^\circ\text{C}\) for 5 min followed by 35 cycles of 94\(^\circ\text{C}\) for 30 sec, 58\(^\circ\text{C}\) for 45 sec, and 72\(^\circ\text{C}\) for 1 min 30 sec and a final extension at 72\(^\circ\text{C}\) for 10 min. Strains E5880 (BBG-5), E10970 (CG-1) and Sakai (CG-3) were used as positive controls.

The method used to differentiate \(stx2a\) and \(stx2c\) in the current study did not differentiate \(stx2c\) and \(stx2d\)-activatable. Therefore, Stx2a Differentiates EHEC O157 Genotypes

Strain	SBI Genotype*	Genome size (bp)\(^b\)	BamH1 fragments (No.)	Total number of genetic rearrangements*
E2325	CG-1 (AY2)	5,407,641	478	Insertions 6, Deletions 24, RFLP 1 Inv, 3 Sub
E5252	CG-3 (WH12)	5,376,952	488	Insertions 7, Deletions 7, RFLP 1 Sub
E3046	CG-3 (WH12)	5,486,716	540	Insertions 0, Deletions 16, RFLP 1 Inv, 1 Sub
E5880	BBG-5 (SY2c)	5,426,915	532	Insertions 2, Deletions 12, RFLP 2 Inv, 5 Sub
E3855	BBG-5 (SY2c)	5,390,209	500	Insertions 5, Deletions 16, RFLP 3 Sub
E2309	BBG-6 (ASY12c)	5,504,252	518	Insertions 3, Deletions 6, RFLP 1 Inv, 1 Tnv, 3 Sub
E6996	BBG-6 (ASY12c)	5,583,835	551	Insertions 4, Deletions 5, RFLP 18, 4 Sub

*Modified SBI genotype for each isolate is indicated in parenthesis. This shows the concatenation of presence of specific bacteriophage at argW, stxB, wrbA or yehV locations designated by uppercase first letter of each insertion site (A, S, W or Y,) followed by the presence of stx1, stx2a or stx2c denoted by 1, 2 or 2c.

**Genome sizes predicted on the basis of optical maps of each strain.

The method used to differentiate \(stx2a\) and \(stx2c\) in the current study did not differentiate \(stx2c\) and \(stx2d\)-activatable. Therefore, Stx2a Differentiates EHEC O157 Genotypes

Strain	SBI Genotype*	Genome size (bp)\(^b\)	BamH1 fragments (No.)	Total number of genetic rearrangements*
E2325	CG-1 (AY2)	5,407,641	478	Insertions 6, Deletions 24, RFLP 1 Inv, 3 Sub
E5252	CG-3 (WH12)	5,376,952	488	Insertions 7, Deletions 7, RFLP 1 Sub
E3046	CG-3 (WH12)	5,486,716	540	Insertions 0, Deletions 16, RFLP 1 Inv, 1 Sub
E5880	BBG-5 (SY2c)	5,426,915	532	Insertions 2, Deletions 12, RFLP 2 Inv, 5 Sub
E3855	BBG-5 (SY2c)	5,390,209	500	Insertions 5, Deletions 16, RFLP 3 Sub
E2309	BBG-6 (ASY12c)	5,504,252	518	Insertions 3, Deletions 6, RFLP 1 Inv, 1 Tnv, 3 Sub
E6996	BBG-6 (ASY12c)	5,583,835	551	Insertions 4, Deletions 5, RFLP 18, 4 Sub

*Modified SBI genotype for each isolate is indicated in parenthesis. This shows the concatenation of presence of specific bacteriophage at argW, stxB, wrbA or yehV locations designated by uppercase first letter of each insertion site (A, S, W or Y,) followed by the presence of stx1, stx2a or stx2c denoted by 1, 2 or 2c.

**Genome sizes predicted on the basis of optical maps of each strain.

The method used to differentiate \(stx2a\) and \(stx2c\) in the current study did not differentiate \(stx2c\) and \(stx2d\)-activatable.

Table 1. Summary of genetic differences among three clinical genotypes (CG) and four bovine-biased genotypes (BBG) of EHEC O157 identified using optical mapping technology.
we further tested all stx2c strains (n = 131) to detect possible presence of stx2d-activatable using one or both of the two subtyping methods [23,24]. These analyses confirmed that no strains in this study carried stx2d-activatable. Additionally, two of the stx2c carrying strains, one each from human and cattle sources, carried an insertion sequence within stx2c coding region as demonstrated by partial DNA sequencing (data not shown).

Capillary Electrophoresis

For capillary electrophoresis, 2 μl of PCR product was mixed with 12.5 μl of Hi-Di formamide (Applied Biosystems, Foster City, CA) and 0.5 μl of Liz 1200 size standard (Applied Biosystems). The capillary electrophoresis was performed using ABI-3730 DNA analyzer at WSU Genomic Core. GeneMarker software (SoftGenetics, LLC, State College, PA, USA 16803) was used to identify the electropherogram peaks corresponding to each PCR product according to their molecular size and associated dye colors.

Table 2. Oligonucleotide primers and amplified PCR products in the study.

Primer	Dye	Oligonucleotide sequences (5’-3’)	Target	Amplicon (bp)	Reference
2851-80	PET	GTGCTTGATGTCATTTCCTGT	Phage-sbc left junction	914	[26]
stc8-R2	None	TCCAGGGTTAAAGATCGTGA	stc8 right junction	730	This study
stc8-F	VIC	GACAGCAAAACAACGATTTAAC	stc8 insertion site	406	This study
stc8-F	VIC	GACAGCAAAACAACGATTTAAC	stc8 variant right junction	295	[10]
stc8-R2	None	TCCAGGGTTAAAGATCGTGA	stc8 left junction	824	This study
F	6FAM	CACCGAAGGCAACATGCTTC	yehV insertion site	340	[10]
B	None	AACAGGATGTGGTTGATTGCTCG	yehV right junction	702	[10]
A	PET	AAGTGGCGTGTGCTCTTGTGAT	Phage-yehV right junction	302	[10]
E	None	GATGCAAGATAAGCCATCAAGGC	Phage-yehV left junction	295	[10]
A	PET	AAGTGGCGTGTGCTCTTGTGAT	Phage-yehV variant right junction	295	[10]
E3	None	AGCGATAAGATCTCTACAC	wrbA insertion site	340	[10]
A	PET	AAGTGGCGTGTGCTCTTGTGAT	Phage-wrbA right junction	592	[10]
G	None	ATCTGTCGGAAGAATACAC	Phage-wrbA left junction	506/537	This study
H	PET	CCAGCCTTTGTAGCGATTGAA	Phage-wrbA left junction	506/537	This study
D	None	CACATGGCTACGGAATAGAGA	wrbA variant right junction	295	[10]
C	6FAM	AGGAAAGTGATCGAATTGACC	wrbA left junction	314	[10]
D	None	CACATGGCTACGGAATAGAGA	wrbA insertion site	314	[10]
argW-A	VIC	CCGTAAAGCACATGAGCAACAG	Phage-argW left junction	583	This study
argW-B	None	GACGTATCGGCGAGAAGCTGAAG	Phage-argW variant right junction	462	This study
argW-C	6FAM	GCATCTCCCGAGCAAGTAC	argW insertion site	216	This study
argW-D	None	ATCTGCTGCTAAGGAGGTC	argW left junction	462	This study
Stx1-2	VIC	CAGAGACTGCCTGCGAGTGAG	Stx1	475	[20]
Stx1-1	None	CAGTTAACTGGTGTGGGCAAG	Stx1	475	[20]
stx2-1072F	NED	AGGTAGACACATTACTAGTAGGTT	Stx2a-specific	126	[50]
stx2-1197R	None	CACAGTTAGCTGATTGATTGGAC	Stx2a-specific	126	[50]
stx2c-F858	NED	CGACAGGGCGCCCTTATACAAAA	Stx2c-specific	243	This study
stx2c-R1100	None	GCCCCTTTTACTGGAATGATC	Stx2c-specific	243	This study

Statistical Analysis

Association of the Stx-associated bacteriophage and stx2 gene variant content with the bovine-biased and clinical genotypes of EHEC O157 was analyzed using the Fisher’s exact test.

Results

Optical Mapping

A total of 112 polymorphisms were identified in the optical scan restriction maps of seven representative SBI genotype strains compared to the in silico BamHI restriction map of the genome sequence of Sakai (Table 1 and Table S1). Of these polymorphisms, 32 unique to one or more CG strains (and therefore uninformative about BBG - CG strain differences) were not further investigated. Of remaining 80 polymorphisms, 30 affected one or more strains belonging to both CG and BBG, while 50 were unique to one or more BBG strains.

Only one polymorphism differentiated all BBG strains from all CG strains, an insertion detected in BBG strains but absent in CG...
Modified SBI Genotype Designations

Since the multiplex PCR described here includes additional targets compared to previous SBI genotyping reports [5,10,14], modification of the previously used SBI genotype nomenclature was necessary. In place of the arbitrary numerical genotypes previously used (e.g., CG-1 and BBG-5), genotypes are identified here by concatenation of the upper case letters of bacteriophage insertion loci (e.g., CG-1 strain E2325 is viewed as containing an intact \(\text{argW} \) bacteriophage). Corresponding to the Stx-associated bacteriophage differences detected in optically mapped strains, \(stx2a \) was detected by PCR in all CG-1 and CG-3 strains, whereas \(stx2c \) (but not \(stx2a \)) was detected in all BBG-5 and BBG-6 strains. The absence of \(stx2c \) in BBG-6 strains that contain \(\text{Stx2a} \)-associated bacteriophage sequences within \(\text{argW} \) was associated with altered BamHI restriction fragment patterns in a partial \(\text{Stx2a} \)-associated bacteriophage at this locus (Figure S2); E2325 (CG-1, with an intact \(stx2a \) encoding bacteriophage) has four restriction fragments totaling 59,809 bp, whereas BBG-6 strain E6996 has seven restriction fragments totaling 58,185 bp and BBG-6 strain E2309 has five restriction fragments totaling 50,780 bp.

Table 3. Selected BBG polymorphisms in comparison to reference strain Sakai (CG-3).

Sakai strain*	Start Location (bp)	End Location (bp)	Fragment	Features	BBG strains	Polymorphism	Size (bp)	Stx-associated bacteriophage
2,740,136	3,172,859	3,198,717	377–380	Sp16 (argW)	3	Insertion	48,365	Stx2a
2,912,120	2,912,120	2,912,120	347–349	Sp15	1	RFLP	3,718	Stx1

*Sakai strain (CG-3) chromosomal location, in \(\text{silico BamHI} \) fragments, and features present in the polymorphic region.

**Genes cited are known Stx-associated bacteriophage insertion sites. In Sakai, Sp5 is the Stx2-associated bacteriophage inserted in \(wrbA \); SpLE = Sakai prophage; SpE2 = Sakai prophage-like elements.

†BBG isolate(s) in which the polymorphism was detected: 1: E5880; 2: E3855; 3: E2039; 4: E6996.

‡Stx-associated bacteriophage potentially involved in polymorphism based on optical maps.

doi:10.1371/journal.pone.0051572.t003

SBI Genotyping on Additional EHEC O157 Isolates

The distribution of SBI genotypes among cattle and human was determined by testing 419 additional EHEC O157 isolates. The PCR differentiated these isolates into 21 different genotypes (Table 4) of which eight genotypes represented a large majority (95%) of the isolates. Seven of these eight genotypes were significantly differentially distributed in cattle and human hosts (P<0.05, Table 4). Three genotypes (SY2c, ASY2c and SY2c, \(n=107 \)) were significantly more frequent among bovine isolates BBG, 42.7% of bovine isolates \(\sim 5.2% \) of clinical isolates). Four SBI genotypes (\(WY2c, AY2, ASY2c, \) and \(AY2c, \) \(n=280 \)) were significantly more frequent among clinical isolates (CG, 89.1% of the former SBI designations (Table 1): CG-1 strain E2325 is \(76.6\% \) of the isolates. Seven of these eight genotypes were considered distinct genotypes in the previous system. As a result, the modified nomenclature resulted in both splitting and lumping of genotypes in comparison with the former system (Table 4). Isolates formerly designated CG-1 (\(n=91 \)) now include \(AY2 (61.5\%), \) ASY2c (10.7%), ASY2 (4.3%) and SY2c (5.5%) genotypes. Isolates formerly designated CG-3 (\(n=173 \)) remain, with a single exception, a single genotype, \(WY12. \) Isolates formerly designated BBG-5 (\(n=46 \)) now include SY2c (89%), ASY2c (4.4%) and ASY2c (6.5%). Isolates formerly designated BBG-6 (\(n=60 \)) now include genotypes ASY2c (76.6%), SY2c (21.7%), and SY2c (17.7%). Finally, all isolates formerly designated BBG-7 are now in \(WY12. \) Under this modified SBI genotype nomenclature, the optically mapped strains represent the modal genotypes of the former SBI designations (Table 1): CG-1 strain E2325 is SY2c, CG-3 strains E5252 and E3046 are both SY2c, BBG-5 strains E5880 and E3855 are both SY2c, and BBG-6 strains E2509 and E6996 are both ASY2c.

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e51572
Table 4. SBI Genotyping on human and bovine isolates of EHEC O157.

SBI Genotype Coding	Bovine (%)	Human (%)	Total (%)	SBI Genogroup^b	P-value^b	Former SBI genotype designation (%)^c
Y	2 (0.4)	1 (0.2)	3 (0.6)	Unclassified	N/A	0 (0)
SY2c	2 (0.9)	0 (0.0)	2 (0.5)	Unclassified	N/A	5 (100)
AWY12	1 (0.4)	1 (0.2)	2 (0.5)	Unclassified	N/A	3, 18
Y1	0 (0.0)	1 (0.2)	1 (0.2)	Unclassified	N/A	8 (100)
ASY1	1 (0.4)	0 (0.0)	1 (0.2)	Unclassified	N/A	13 (100)
Y1	1 (0.4)	0 (0.0)	1 (0.2)	Unclassified	N/A	13 (100)
SWY2c	1 (0.4)	0 (0.0)	1 (0.2)	Unclassified	N/A	12 (100)
SY12c	0 (0.0)	1 (0.5)	1 (0.2)	Unclassified	N/A	9 (100)
AWY2	1 (0.4)	0 (0.0)	1 (0.2)	Unclassified	N/A	6 (100)
Total	227 (92)	192 (65)	419 (18)			

^aConcatenation of presence of specific bacteriophage at argW, sbcB, wrbA or yehV locations designated by uppercase first letter of each insertion site (A, S, W or Y) followed by the presence of stx1, stx2a or stx2c denoted by 1, 2 or 2c.

^bThe SBI Genotypes that are significantly over-represented among cattle isolates as compared to human isolates are referred as bovine-biased genotypes (BBG); the SBI Genotypes that show significantly over-representation/similar-representation among human isolates as compared to cattle isolates are referred as clinical genotypes (CG); the SBI genotypes that could not be evaluated for a bovine association due to small numbers (1–4 isolates) are designated “unclassified” genotypes in this manuscript (Fisher’s exact test P<0.05).

^cPercent of isolates belonging to most common previously defined SBI genotype [5,10,14].

doi:10.1371/journal.pone.0051572.t004

Distribution of Stx2 Gene and Associated Bacteriophages

Stx2a-associated bacteriophage sequences detected adjacent to either wrbA and/or argW and the detection of stx2a were significantly associated with CG compared to BBG strains (P<0.001): all CG have Stx2a-associated bacteriophage sequences inserted in sbcB and the presence of stx2c were significantly more common in BBG compared to CG isolates (P<0.001): all BBG had both these traits, while only 11.8% of CG belonged to genotypes (ASY2 and ASY22c) with Stx2-associated bacteriophage sequences inserted in sbcB, and only 7.1% of CG isolates (ASY22c) carried stx2c (Table 5). Many BBG (42.9%) had Stx2a-associated bacteriophage sequences adjacent to wrbA or argW but lacked detectable stx2a (Table 5).

Corresponding differences were observed in the frequency of carriage of stx2 variants in human- and bovine-origin isolates. A large majority (85.9%) of the 192 human-origin isolates carried stx2a only and an additional 7.8% carried both stx2a and stx2c, while only 5.2% carried stx2c only and 1.0% carried neither stx2 variant. Of 227 bovine isolates 49.8% carried stx2a only, 44.1% carried stx2c only, 2.6% carried both, and 3.5% carried neither variant.

Discussion

Optical mapping technology accurately identified genetic changes consistent with bacteriophage insertions or deletions in EHEC O157 genotypes. This technology was used previously by Kotewicz et al. to identify differences in EHEC O157 strains representing SNP clusters and spinach outbreak strains [22,30]. While Kotewicz et al. provided valuable information on genetic diversity among EHEC O157 strains of clinical origin, their clinical isolate strain set lacked defined BBG isolates. Our study was specifically designed to identify bacteriophage-related differences between the predominant CG (CG-1 and CG-3, now AY2 and WY12) and BBG (BBG-5 and BBG-6, now SY2c and ASY12c) groups that previously had been associated with differential virulence potential [15].

SBI has proven to be a useful genotyping technique to identify strains of EHEC O157 differing in distribution [5,10,14], gene expression [16] and virulence [15]. Although based on the content and insertional locations of bacteriophages (i.e., mobile genetic elements), SBI genotypes are empirically stable characteristics of EHEC O157 strains, as recently confirmed by Bono et al. [33] in their demonstration of close correlation between SBI genotypes and chromosomal backbone SNP-defined lineages of EHEC O157. Specifically, CG-1 (referred in current paper as AY2/
Table 5. Consistency of type of Stx-associated bacteriophage and stx in SBI genotypes in clinical and bovine strains.

SBI genotypes*	SIB-associated bacteriophage	Insertion site	Origin	CG	BBG	Unclassifiedb	Total
	Stx2a	wrbA	Bovine	92 (92)	0 (0)	11 (9)	103 (101)
	Stx2c	argW	Human	97 (97)	0 (0)	9 (9)	106 (106)
	Stx2c	sbcB	Human	74 (74)	8 (0)	1 (1)	83 (75)
	Stx1	yeel	Human	109 (92)	97 (52)	18 (5)	224 (149)
Strains in study			Bovine	110	97	20	227
			Human	171	10	11	192

*Numbers of isolates with the corresponding SIB-associated bacteriophage sequences in the insertion site. Numbers in parentheses indicate the isolate also positive for the expected stx. Association of the SIB-associated bacteriophage and stx2 gene variant with the BBG and CG strains was analyzed using the Fisher’s exact test (P ≤ 0.05).

Two strains of AWY12 and single strain of AWY2 had Stx2-associated bacteriophages inserted into both argW and wrbA, and our data cannot determine whether stx2a is carried by one or both of these bacteriophages.

Stx-associated bacteriophage differences among SIBI genotypes identified in earlier studies [5,10].

Stx-associated bacteriophage differences among SBI genotypes identified in this study.

doi:10.1371/journal.pone.0051572.t005

ASV2/ASV22c and CG-3 (WY12) correspond to SNP lineage II and I, respectively, and BBG-5 (SY2c) and BBG-6 (SY12c/ASV12c) corresponds to lineages III, IV, V and VII [33]. Therefore, the SBI multiplex PCR described here provides a means for presumptive identification of EHEC O157 lineages as defined by SNP typing.

SBI genotypes were modified to incorporate data from additional targets and to provide a biologically-based nomenclature. The additional targets include independent detection of stx2a and stx2c variants and two additional chromosomal - bacteriophage insertion sites, argW and sbcB. Even before addition of these targets well over 20 different SBI genotypes had been reported, and this cumbersome number as well as the arbitrary nature of the ordinal genotype designations threatened the usability of the system. Therefore, here we propose identification of SBI genotypes by the concatenation of letters representing specific chromosomal insertion sites followed by numbers indicating the strains detected. Isolates classified by this revised SBI designation system are more strongly associated with specific hosts, suggesting that the system is consistent with the biological behavior of the bacterium.

The findings of this study clarify the bacteriophage related genetic differences characterizing BBG and CG, and confirm the strong association of stx2 subtypes in these two genogroups.

Using a panel of 419 EHEC O157 geographically and temporally diverse cattle- and human-origin isolates, consistent patterns of SIBI-associated bacteriophage insertions and stx2 variant carriage defined by the optically mapped strains was consistently observed: CG strains were characterized by the presence of the Stx2a-associated bacteriophage sequences inserted into argW or wrbA, and by carriage of stx2a, while BBG strains were characterized by Stx2c-associated bacteriophage sequences adjacent to sbcB and carriage of stx2c. Some CG strains additionally have Stx2c-associated bacteriophage sequences adjacent to sbcB, with or without stx2c carriage, and about half of BBG isolates additionally have Stx2a-associated bacteriophage sequences adjacent to argW but lack stx2a. The close association of stx2a with the more clinically relevant CG strains is the most striking finding of our study.

We recently demonstrated that CG strains (carrying stx2a with or without stx2c) induced more severe clinical symptoms, earlier and higher mortality, and more severe histopathological lesions compared to BBG strains (carrying stx2c only) in two animal models [15]. That study also demonstrated that CG strains produced higher amounts of ELISA-reactive Stx than BBG strains. A recent microarray study [16] demonstrated differential expression profiles of BBG and CG strains suggesting that the increased prevalence of EHEC O157 illness caused by certain strains is associated with over-expression of several virulence factors including ehx, genes on the LEE pathogenicity island, and pO157 genes, although no difference in stx expression was identified.

Other comparative genomic studies on EHEC O157 have demonstrated similar variation in the frequency of stx variants among cattle and human isolates. Using octamer-based genome scanning and LSPA-6 genotyping [12,13,34], EHEC O157 isolates were differentiated into three lineages: I, I/II, and II. Recent studies demonstrated concordance between LSPA-6 and SBI genotyping, indicating that the lineage I, I/II, II strains predominantly belonged to SBI genotypes CG-3, CG-1 and BBG-6, respectively [35,36]. Ziebell et al. [37] and Zhang et al. [34] demonstrated that nearly all lineage II strains carried stx2c, nearly all of the lineage I strains carried stx2a and 50.0% of lineage I/II strains carried stx2c. Similarly a recent study on Japanese isolates also suggests stx2a is the most distinctive feature in clinical isolates compared to cattle isolates. The human isolates, predominantly LSPA-6 lineage I or I/II, typically carried stx2a alone or in combination with stx1 or stx2c while LSPA-6 lineage II cattle isolates carried stx2c alone or in combination with stx1 [38]. These investigators also demonstrated that lineage I (stx1-stx2a) isolates showed multiple stress resistances when compared to the lineage II (stx1-stx2c) genotypes [39].

Other studies have evaluated association of stx2a and stx2c content with human virulence [23,40,41,42,43,44,45,46,47,48,49]. Several of these epidemiological studies [41,42,43,45,46,47,48]
demonstrated that EHEC O157 carrying stx2a (with or without stx2c) rather than stx2c were more frequent among clinical isolates, in agreement with the results presented here. Recently, Kawano et al. [48] along with others [43,45,46] suggested that EHEC O157 carrying stx2c were associated with asymptomatic individuals and mild disease however it is also isolated from patients with severe disease (bloody diarrhea, HC and HUS) as shown by others [23,40,41,44,47,49]. Furthermore, Fuller et al. recently demonstrated that purified Stx2a is more potent than Stx2c against primary human kidney cell lines and in mouse models [42]. It is possible that carriage and expression of stx2a alone is sufficient to confer increased virulence in animal models and increased expression of human disease, but alternatively these phenotypes may result in whole or in part on other genetic factors that are correlated with stx2a. Knock-out and complementation studies to evaluate the role of stx2a in otherwise isogenic strains may be required to clarify this question.

In conclusion, optical scanning proved effective at identifying large genetic indels associated with insertion or deletion of Stx-associated bacteriophages among major SBI genotypes of EHEC O157. The multiplex PCR described in this study provides a simple and rapid method to efficiently determine SBI genotypes of EHEC O157 isolates, now known to correlate with lineages within the EHEC O157 clade. We conclude that differential virulence of EHEC O157 genotypes may be due to variation in the presence of stx2 variants and/or bacteriophages associated these variants. Unraveling the roles of these genetic elements in EHEC O157 virulence will improve our understanding of pathogenesis and may facilitate development of strategies for the prevention and control of this important food-borne pathogen.

Supporting Information

Figure S1 Differences in insertion of stx2c-associated bacteriophage in sbeB. The differences in insertion of Stx2c-associated bacteriophage in sbeB are shown by the hatched fragments. The yellow arrows indicate the phages (Sp) or prophage-like elements (SpLE) in sequenced strain Sakai (names shown below the map). Red marks indicate the insertion sites (sbeB and yehQ) for Stx-associated bacteriophage, and left junction (YL) for Stx1-associated bacteriophage inserted in yehF (names shown above the map). The restriction enzyme map of sequenced strain EC4115 (GenBank accession # CP001164) shows the known insertion of Stx2c-associated bacteriophage in sbeB locus (hatched fragments). The restriction enzyme map for Sakai and EC4115 are in silico maps and the other seven maps are optical maps of test strains. Plus (+) and minus (−) signs represent presence and absence of stx gene in the strains.

(TIF)

Figure S2 Differences in insertion of Stx2a-associated bacteriophage in argW. The differences in insertion of Stx2a-associated bacteriophage in argW are shown by the hatched fragments. The yellow arrows indicate the phages (Sp) in sequenced strain Sakai (names shown below the map). Red marks indicate the insertion sites (argW/IntS) for Stx-associated bacteriophage (names shown above the map). The restriction enzyme map of the sequenced strain EC4115 (GenBank accession # CP001164) shows the known insertion Stx2a-associated bacteriophage in argW locus (hatched fragments). The restriction enzyme map for Sakai and EC4115 are in silico maps and the other seven maps are optical maps of test strains. Plus (+) and minus (−) signs represent presence and absence of stx gene in the strains.

(TIF)

Table S1 Polymorphic sites in optical maps of seven EHEC O157 strains when compared to the in silico BamHI restriction enzyme map of the EHEC O157 Sakai strain (CG-3).

(DOCX)

References

1. Paton JC, Paton AW (1998) Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11: 450–479.
2. Rivas M, Sosa-Estani S, Rangel J, Caletti MG, Valles P, et al. (2008) Risk factors for sporadic Shiga toxin-producing Escherichia coli infections in children, Argentina. Emerg Infect Dis 14: 763–771.
3. Besser RE, Griffin PM, Slusnker L. (1999) Escherichia coli O157:H7 gastroenteritis and the hemolytic uremic syndrome: an emerging infectious disease. Ann Rev Med 50: 355–367.
4. Borczyk AA, Karmali MA, Lior H, Duncan LM (1987) Bovine reservoir for Shiga toxin-producing Escherichia coli. J Infect Dis 155: 408–414.
5. Besser RE, Shafizadeh N, Holt NJ, Tarr PI, Konkel ME, et al. (2007) Greater diversity of Shiga toxin-encoding bacteriophage insertion sites among Escherichia coli O157:H7 isolates from cattle than in those from humans. Appl Environ Microbiol 73: 671–679.
6. Kim J, Niefeldt J, Benson AK. (1999) Octamer-based genome scanning distinguishes a unique subpopulation of Escherichia coli O157:H7 strains in cattle. Proc Natl Acad Sci U S A 96: 13288–13293.
7. Kim J, Niefeldt J, Ju J, Wise J, Fegan N, et al. (2003) Acinular divergence, genome diversification, and phylogenetic variation in subpopulations of sorbitol-negative, beta-glucuronidase-negative enterohemorrhagic Escherichia coli O157. J Bacteriol 185: 3596–3605.
8. Manning SD, Motivola AS, Springman AC, QW, Lacher DW, et al. (2008) Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreak. Proc Natl Acad Sci U S A 105: 4806–4873.
9. Ohnishi M, Terajima J, Kurokawa K, Nakayama K, Murata T, et al. (2002) Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci U S A 99: 17043–17048.

10. Shaikh N, Tarr PI (2003) Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J Bacteriol 185: 3596–3605.
11. Wick LM, QW, Lacher DW, Whittam TS (2005) Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J Bacteriol 187: 1703–1709.
12. Yang Z, Kowar J, Kim J, Niefeldt J, Smith DR, et al. (2004) Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ Microbiol 70: 6846–6854.
13. Zhang Y, Laing C, Steele M, Ziebell K, Johnson R, et al. (2007) Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8: 121.
14. Whitworth JH, Fegan N, Keller J, Gobius KS, Bono JL, et al. (2008) International comparison of clinical, bovine, and environmental Escherichia coli O157 isolates on the basis of Shiga toxin-encoding bacteriophage insertion site genotypes. Appl Environ Microbiol 74: 7447–7450.
15. Shringi S, Garcia A, Lahmers KK, Potter KA, Muthupalani S, et al. (2012) Differential virulence of clinical and bovine-biased enterohemorrhagic Escherichia coli O157:H7 genotypes in piglet and Dutch belted rabbit models. Infect Immun 80: 369–380.
16. Vanaja SK, Springman AC, Besser TE, Whittam TS, Manning SD (2010) Differential expression of virulence and stress fitness genes between Escherichia coli O157:H7 strains with clinical or bovine-biased genotypes. Appl Environ Microbiol 76: 60–68.
17. Law D (2000) Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J Appl Microbiol 88: 729–745.
10. Cobbold RN, Hancock DD, Rice DH, Berg J, Stillborn R, et al. (2007) Rectal section colonization of feedlot cattle by *Escherichia coli* O157:H7 and its association with supershedders and excretion dynamics. Appl Environ Microbiol 73: 1563–1568.

19. Gannon VP, D’Souza S, Graham T, King RK, Rahim K, et al. (1997) Use of the flagellar H7 gene as a target in multiplex PCR assays and improved specificity in identification of enterohemorrhagic *Escherichia coli* strains. J Clin Microbiol 35: 636–642.

24. Scheutz F, Teel LD, Beutin L, Pierard D, Buvens G, et al. (2012) Multicenter evaluation of a sequence-based protocol for subtyping *Shiga* toxins and standardizing *Stx* nomenclature. J Clin Microbiol 50: 2951–2963.

32. Recktenwald J, Schmidt H (2002) The nucleotide sequence of *Shiga* toxin (Stx) and 454 sequencing of phage 933W from *Escherichia coli* O157:H7. J Clin Microbiol 153: 1720–1733.

35. Laing CR, Buchanan C, Taboada EN, Zhang Y, Karmali MA, et al. (2009) In silico genomic analyses reveal three distinct lineages of *Escherichia coli* O157:H7, one of which is associated with hyper-virulence. BMC Genomics 10: 287.

36. Whitworth J, Zhang Y, Bono J, Pleydell E, French N, et al. (2009) Diverse genetic markers concordantly identify bovine origin *Escherichia coli* O157 genotypes underrepresented in human disease. Appl Environ Microbiol 76: 361–365.

38. Ziebell K, Steele M, Zhang Y, Benson A, Taboada EN, et al. (2008) Genotypic characterization and prevalence of virulence factors among Canadian *Escherichia coli* O157:H7 strains. Appl Environ Microbiol 74: 4314–4323.

39. Lee K, French NP, Hara-Kudo Y, Iyoda S, Kobayashi H, et al. (2011) Multivariate analyses revealed distinctive features differentiating human and cattle isolates of *Shiga* toxin-producing *Escherichia coli* O157 in Japan. J Clin Microbiol 49: 1493–1500.

40. Lee K, French NP, Jones G, Hara-Kudo Y, Iyoda S, et al. (2012) Variation in Stress Resistance Patterns among *Shiga Toxin-Producing Escherichia coli* O157. Appl Environ Microbiol 78: 3561–3568.

41. Eklund M, Lemo K, Siirola A (2002) Clinical *Escherichia coli* strains carrying *stx* genes: *stx* variants and *stx*-positive virulence profiles. J Clin Microbiol 40: 4565–4569.

43. Kawano K, Okada M, Haga T, Maeda K, Goto Y (2008) Relationship of genetic type of *Shiga* toxin to manifestation of bloody diarrhea in *Escherichia coli* O157:H7. J Clin Microbiol 46: 3577–3584.

44. Lefebvre B, Diarra MS, Vincent C, Moisan H, Malouin F (2009) Relative pathogenicity for humans and *stx* genotype in *Shiga* toxin-producing *Escherichia coli* serotype O157. Eur J Clin Microbiol Infect Dis 27: 227–232.

45. Friederich AW, Biealiaszevka M, Zhang WL, Pulz M, Kurczaus T, et al. (2002) *Escherichia coli* harboring *Shiga* toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 185: 74–84.

46. Fuller CA, Pellino CA, Flager MJ, Strasser JE, Weiss AA (2011) *Shiga* toxin subtypes display dramatic differences in potency. Infect Immun 79: 1329–1337.

47. Kawano K, Okada M, Haga T, Maeda K, Goto Y (2008) Relationship between pathogenicity for humans and *stx* genotype in *Shiga* toxin-producing *Escherichia coli* O157:H7 isolates from the Sakai outbreak. Genes Genet Syst 74: 227–239.

48. Nordgren D, Bousquet J, St-Onge P, Pichet D (2012) Relative virulence of *Shiga* toxin variants and *stx*-positive virulence profiles. J Clin Microbiol 49: 4565–4572.

49. Nishikawa Y, Zhou Z, Hase A, Osakabe K, Cheasty T, et al. (2000) Genetic structure and chromosomal integration site of the cryptic prophage CP-1639 encoding *Shiga* toxin 1. Microbiology 146: 941–950.

50. Fogg PC, Gossage SM, Smith DL, Saunders JR, McCarthy AJ, et al. (2007) Identification of multiple integration sites for *Stx*-phage PhiHb in the *Escherichia coli* genome, description of a novel integrase and evidence for a functional anti-repressor. Microbiology 153: 4098–4110.

51. Koch C, Hertwig S, Appel B (2003) Nucleotide sequence of the integration site of the temperate bacteriophage V72-Sakai carrying the *verotoxin* 2 genes of the enterohemorrhagic *Escherichia coli* O157:H7 derived from the Sakai outbreak. Genes Genet Syst 74: 227–239.

52. Strauch E, Hammel JA, Konietzny A, Schreuer-Bekel S, Arnold W, et al. (2008) Bacteriophage 2951 is a prototype phage for dissemination of the *Shiga* toxin variant gene *2c* in *Escherichia coli* O157:H7. Infect Immun 76: 5466–5477.

53. Creuzburg K, Kohler B, Hempel H, Schreier P, Jacobs E, et al. (2005) Genetic structure and chromosomal integration site of the cryptic prophage CP-1639 encoding *Shiga* toxin 1. Microbiology 151: 941–950.

54. Fogg PC, Gossage SM, Smith DL, Saunders JR, McCarthy AJ, et al. (2007) Identification of multiple integration sites for *Stx*-phage PhiHb in the *Escherichia coli* genome, description of a novel integrase and evidence for a functional anti-repressor. Microbiology 153: 4098–4110.

55. Koch C, Hertwig S, Appel B (2003) Nucleotide sequence of the integration site of the temperate bacteriophage V72-Sakai carrying the *verotoxin* 2 genes of the enterohemorrhagic *Escherichia coli* O157:H7 derived from the Sakai outbreak. Genes Genet Syst 74: 227–239.

56. Strauch E, Hammel JA, Konietzny A, Schreuer-Bekel S, Arnold W, et al. (2008) Bacteriophage 2951 is a prototype phage for dissemination of the *Shiga* toxin variant gene *2c* in *Escherichia coli* O157:H7. Infect Immun 76: 5466–5477.

57. Creuzburg K, Kohler B, Hempel H, Schreier P, Jacobs E, et al. (2005) Genetic structure and chromosomal integration site of the cryptic prophage CP-1639 encoding *Shiga* toxin 1. Microbiology 151: 941–950.

58. Fogg PC, Gossage SM, Smith DL, Saunders JR, McCarthy AJ, et al. (2007) Identification of multiple integration sites for *Stx*-phage PhiHb in the *Escherichia coli* genome, description of a novel integrase and evidence for a functional anti-repressor. Microbiology 153: 4098–4110.

59. Koch C, Hertwig S, Appel B (2003) Nucleotide sequence of the integration site of the temperate bacteriophage V72-Sakai carrying the *verotoxin* 2 genes of the enterohemorrhagic *Escherichia coli* O157:H7 derived from the Sakai outbreak. Genes Genet Syst 74: 227–239.

60. Strauch E, Hammel JA, Konietzny A, Schreuer-Bekel S, Arnold W, et al. (2008) Bacteriophage 2951 is a prototype phage for dissemination of the *Shiga* toxin variant gene *2c* in *Escherichia coli* O157:H7. Infect Immun 76: 5466–5477.

61. Creuzburg K, Kohler B, Hempel H, Schreier P, Jacobs E, et al. (2005) Genetic structure and chromosomal integration site of the cryptic prophage CP-1639 encoding *Shiga* toxin 1. Microbiology 151: 941–950.

62. Fogg PC, Gossage SM, Smith DL, Saunders JR, McCarthy AJ, et al. (2007) Identification of multiple integration sites for *Stx*-phage PhiHb in the *Escherichia coli* genome, description of a novel integrase and evidence for a functional anti-repressor. Microbiology 153: 4098–4110.