Abstract. The authors study the geometry of lightlike hypersurfaces on a four-dimensional manifold \((M, c)\) endowed with a pseudoconformal structure \(c = CO(2, 2)\). They prove that a lightlike hypersurface \(V \subset (M, c)\) bears a foliation formed by conformally invariant isotropic geodesics and two isotropic distributions tangent to these geodesics, and that these two distributions are integrable if and only if \(V\) is totally umbilical. The authors also indicate how, using singular points and singular submanifolds of a lightlike hypersurface \(V \subset (M, c)\), to construct an invariant normalization of \(V\) intrinsically connected with \(V\).

1991 MS classification: 53A30, 53B25.
Keywords and phrases: Pseudoconformal structure, lightlike hypersurface, isotropic fiber bundle, isotropic geodesics, singular point, invariant normalization.

0 INTRODUCTION

A four-dimensional pseudo-Riemannian manifold \((M, g)\) with a metric quadratic form of signature \((3, 1)\) is a geometric model of the classic spacetime in general relativity. Its natural generalization is a pseudo-Riemannian manifold \((M, g)\) of dimension \(n = \text{dim } M\) with a nondegenerate quadratic form of arbitrary signature \((p, q)\), \(p + q = n\). Such manifolds are considered in a construction of multidimensional models of spacetime and in the theory of superstrings.

Let \(x\) be a point of a manifold \((M, g)\), and \(T_x(M)\) the tangent space at the point \(x\). For \(p \cdot q > 0\), the quadratic form \(g\) defines a real isotropic cone \(C_x\) in the space \(T_x\). Its equation is \(g(\xi, \xi) = 0\), \(\xi \in T_x\). This cone is also called the light cone or the null cone.

A hypersurface \(V \subset (M, g)\) is called lightlike if it is tangent to the cone \(C_x\) at each point \(x \in V\). The lightlike hypersurfaces are also called isotropic or null...
hypersurfaces. On the manifold \((M, g)\), such hypersurfaces separate domains with different physical or geometric properties—they are models of physical or geometric horizons (see, for example, [HE 73]).

Many physical and geometric objects on a manifold \((M, g)\) are invariant under conformal transformations of the metric \(g\), that is, under a passage from the metric \(g\) to the metric \(\tilde{g} = \sigma g\), where \(\sigma = \sigma(x)\) is a differentiable function such that \(\sigma(x) \neq 0\), \(x \in M\). Examples of such objects are the light cones and the lightlike hypersurfaces. Hence it is appropriate to study such objects not only on a pseudo-Riemannian manifold \((M, g)\) but also on a manifold \((M, c)\) endowed with a conformal structure \(c = \{\sigma g\}\).

Note that lightlike hypersurfaces arose in the papers of Duggal and Bejancu [DB 91] and [Be 96] (see also their book [DB 96], Section 4.7). They considered them in a pseudo-Riemannian manifold of constant curvature \(c\), and in particular, in pseudo-Euclidean spaces \(\mathbb{R}^4_1\) and \(\mathbb{R}^4_2\). Lightlike hypersurfaces were also studied by Kupeli [Ku 87] (see also his book [Ku 96], Section 4.4). He considered them in a (pseudo-)Riemannian space \((M, g)\) of constant sectional curvature. Lightlike hypersurfaces appeared in the paper Rosca [Ro 71] in which he studied a pair of lightlike hypersurfaces in 1-to-1 correspondence in a Lorentz manifold.

Note also that the totally umbilical lightlike hypersurfaces in Riemannian and pseudo-Riemannian manifolds \((M, g)\) were extensively studied by many authors. They considered their local and global properties. For example, in the papers [Y 75], [Ak 87], [Ra 87], and [Z 96] the authors found necessary and sufficient conditions for a complete spacelike hypersurface to be totally umbilical in \((M, g)\).

The totally umbilical lightlike hypersurfaces in \((M, c)\) endowed with a conformal or pseudoconformal structure were not yet studied extensively. In the papers [AG 99a] and [AG 99b] we have already studied the geometry of lightlike hypersurfaces \(V\) on a manifold \((M, c)\) endowed with a conformal structure \(c\) of Lorentzian signature \((n - 1, 1)\).

In the present paper we consider lightlike hypersurfaces on a four-dimensional manifold \((M, c)\) endowed with a conformal structure of ultrahyperbolic signature \((2, 2)\). We find some properties of the structure of such hypersurfaces and prove that they bear two isotropic two-dimensional distributions in addition to the fibration of isotropic geodesics. We also prove that integrability of these distributions is necessary and sufficient for a lightlike hypersurface to be totally umbilical. We constructed an invariant normalization of \(V \subset (M, c)\) in a fourth differential neighborhood of a point of \(V\). In the case in question, i.e., for \(c = CO(2, 2)\), we were able not only to construct such normalization but also to find a foliation of canonical frames.

For our study of lightlike hypersurfaces on a manifold \((M, c)\), \(\dim M = 4\), \(\text{sign } c = (2, 2)\), we use the apparatus developed in [A 96] (see also [AG 96], Ch. 5). As far as we know, the lightlike hypersurfaces on such manifolds are studied in the present paper for the first time.
1 A MANIFOLD \((M, c)\)

Consider a manifold \((M, c)\) endowed with a conformal structure \(c\) of signature \((p, q)\), \(\dim M = n = p + q\). Let \(x\) be an arbitrary point of \(M\), \(T_x(M)\) be its the tangent space, and \(C_x \subset T_x(M)\) be the isotropic cone in \(T_x(M)\). The space \(T_x(M)\) can be compactified by adding the point at infinity \(y\) and the isotropic cone \(C_y\) with vertex \(y\). After this enlargement, the space \(T_x(M)\) becomes a pseudoconformal space \((C^n_x)\) of the same signature \((p, q)\).

Under the Darboux mapping (see [AG 98] or [AG 96], Ch. 1), the space \((C^n_x)\) will be mapped onto a hyperquadric \((Q^n_x)\) of a projective space \(P^{n+1}_x\) of dimension \(n + 1\). In the space \(P^{n+1}_x\), the hyperquadric \((Q^n_x)\) is defined by the equation \((x, x) = 0\).

We associate a family of projective local frames \(\{A_0, A_i, A_{n+1}\}, i = 1, \ldots, n\), with this hyperquadric in such a way that \(A_0 = x\) and \(A_{n+1} = y\), where \(x\) and \(y\) are points of the hyperquadric \((Q^n_x)\) for which \((x, y) \neq 0\). This implies
\[
(A_0, A_0) = (A_{n+1}, A_{n+1}) = 0, \quad (A_0, A_{n+1}) = -1
\]

The last condition is obtained by taking an appropriate normalization of the points \(A_0\) and \(A_{n+1}\). Here and in what follows the parentheses denote the scalar product with respect to the quadratic form occurring in the left-hand side of the equation of the hyperquadric \((Q^n_x)\).

Denote by \(T_x\) and \(T_y\) the tangent hyperplanes to \((Q^n_x)\) in the points \(x\) and \(y\) and locate the points \(A_i\) at the intersection of these hyperplanes, \(A_i \in T_x \cap T_y, i = 1, \ldots, n\). Then we find that
\[
(A_0, A_i) = (A_{n+1}, A_i) = 0, \quad (A_i, A_j) = g_{ij},
\]
where \(\det(g_{ij}) \neq 0\), \(\text{sign} \ (g_{ij}) = (p, q)\) (see Figure 1).
Now

$$(A_\xi, A_\eta) = (g_{\xi\eta}) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & g_{ij} & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad \xi, \eta = 0, 1, \ldots, n + 1, \quad (1)$$

and the equation of the hyperquadric $(Q^n_q)_x \subset P^{n+1}_x$ can be written in the form

$$(x, x) = g_{ij}x^i x^j - 2x^0 x^{n+1} = 0.$$

The family of projective frames we have constructed is called a first order frame bundle associated with the manifold (M, c).

The isotropic cone C_x is the intersection of the hyperquadric $(Q^n_q)_x$ and the tangent hyperplane T_x:

$$C_x = T_x \cap (Q^n_q)_x,$$

and it is defined by the equation

$$g = g_{ij}\xi^i\xi^j = 0, \quad \xi = (\xi^i) \in T_x.$$

The group of transformations of the tangent space $T_x(M)$ preserving the invariant cone C_x is the group $G = \text{SO}(p, q) \times H$, where $\text{SO}(p, q)$ is a special pseudoorthonormal group of signature (p, q) and $H = \mathbb{R}^+$ is the group of homotheties.

It follows from relations (1) that the equations of infinitesimal displacement in the first-order frame bundle have the form

$$\begin{cases}
 dA_0 = \omega^0_i A_0 + \omega^0_i A_i, \\
 dA_i = \omega^0_i A_0 + \omega^i_j A_j + \omega^{n+1}_i A_{n+1}, \\
 dA_{n+1} = \omega^{n+1}_i A_i - \omega^0_i A_{n+1},
\end{cases} (2)$$

where

$$\begin{align*}
 \omega^0_i &= \omega^i \\
 \omega^{n+1}_i &= g_{ij} \omega^j, \quad \omega^{n+1}_i = g^{ij} \omega^0_j, \\
 dg_{ij} - g_{ik} \omega^k_j - g_{kj} \omega^k_i &= 0,
\end{align*} (3)$$

and g^{ij} is the inverse tensor of the tensor g_{ij}, i.e., $g^{ik} g_{kj} = \delta^i_j$. Note that the tensor g_{ij} and the 1-forms ω^i are defined in a first-order neighborhood of a point $x \in (M, c)$, the 1-forms ω^0_i and ω^i_j are defined in its a second-order neighborhood, and the 1-forms ω^{n+1}_i are defined in its third-order neighborhood.

The 1-forms ω^i define a displacement of a point A_0 and consequently of a frame $\{A_0, A_i, A_{n+1}\}$ along the manifold M. This is the reason that they are called the basis forms. For $\omega^i = 0$, equations (2) take the form

$$\begin{cases}
 \delta A_0 = \pi^0_0 A_0, \\
 \delta A_i = \pi^0_i A_0 + \pi^i_j A_j, \\
 \delta A_{n+1} = \pi^{n+1}_i A_i - \pi^0_i A_{n+1}.
\end{cases} (4)$$
Here δ is the symbol of differentiation for $\omega^i = 0$, i.e., with respect to the fiber parameters of the frame bundle, and $\pi_\eta^i = \omega^i_\eta(\delta)$. Formulas (4) define admissible transformations in a fiber of a first-order frame bundle. These transformations form the group $G' = G \ltimes \mathbf{T}(n)$ that is obtained by a differential prolongation of the group G acting in the space $T_x(M)$. Here $\mathbf{T}(n)$ is a subgroup of the group G' which is isomorphic to the group of parallel translations, and the symbol \ltimes is the semidirect product (see [AG 96], Ch. 4). Equations (4) show that the group G' is isomorphic to the subgroup of the group of pseudoconformal transformations of the space C_n^q keeping invariant the point $x = A_0$ of this space.

2 THE TENSOR OF CONFORMAL CURVATURE OF A MANIFOLD $(M, c), \ c = CO(2, 2)$

As was proved in Ch. 4 of the book [AG 96], the structure equations of the manifold (M, c) endowed with a conformal structure of an arbitrary signature (p, q) have the form

$$
\begin{align*}
\text{d}\omega^i &= \omega^0_\eta \wedge \omega^i + \omega^i_\eta \wedge \omega^j, \\
\text{d}\omega^0_\eta &= \omega^i \wedge \omega^0_\eta \\
\text{d}\omega^i_\eta &= \omega^0_\eta \wedge \omega^i + \omega^i_\eta \wedge \omega^j_\eta + \omega^i_{n+1} \wedge \omega^j_{n+1} + C^i_{jkl} \omega^k \wedge \omega^l, \\
\text{d}\omega^j_\eta &= \omega^0_\eta \wedge \omega^j + \omega^j_\eta \wedge \omega^k + C^j_{ikl} \omega^i \wedge \omega^k.
\end{align*}
$$

Here the quantities C^i_{jkl} are defined in a third-order neighborhood of a point $x \in (M, c)$ and form the tensor of conformal curvature, also called the Weyl tensor. Denote it by the letter C, where $C = (C^i_{jkl})$.

The quantities C_{ijk} are defined in a fourth-order neighborhood of a point $x \in (M, c)$, and for $n \geq 4$, they do not form a tensor. Denote the object C_{ijk} by C', i.e. $C' = (C_{ijk})$. The reason for this notation is that for $n \geq 4$, this object is expressed in terms of the covariant derivatives of the tensor C. For $n \geq 4$, the condition $C = 0$ implies $C' = 0$, and a manifold (M, c) is conformally flat, i.e., it is locally equivalent to a conformal space C_n^q.

For $n = 3$, the tensor $C = (C^i_{jkl})$ is identically equal to 0, and the curvature of the space is defined by the object $C' = (C_{ijk})$ which in this case becomes a tensor. In what follows, we will assume that $n \geq 4$.

The components of the tensor C and the object C' satisfy the equations

$$
\begin{align*}
C_{ijkl} &= g_{im} C^m_{jkl}, \\
C_{ijkl} &= -C_{jikl} = -C_{ijlk}, \quad C_{ijkl} = C_{klij}, \\
C_{ijkl} + C_{iklj} + C_{iljk} &= 0, \\
C^i_{jki} &= 0, \quad C_{ijk} = -C_{ikj}.
\end{align*}
$$
Note that we will use the notation C not only for the tensor C_{ijkl} but also for the tensor C_{ijkl}.

3 ISOTROPIC FRAMES FOR $(M, c), \ c = CO(2, 2)$

Consider four-dimensional manifold (M, c) endowed with a pseudoconformal structure $c = CO(2, 2)$. The fundamental quadratic form of this signature is reduced to the form

$$g = 2(\xi^2 \xi^3 - \xi^1 \xi^4).$$

(7)

It follows that the matrix of its coefficients is

$$(A_i, A_j) = (g_{ij}) = \begin{pmatrix}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}.$$

(8)

Note that we changed the signs of components of the tensor g_{ij} in comparison with the book [AG 96] and the paper [A 96].

The isotropic cone $C_x \subset T_x(M)$ is defined by the equation

$$\xi^2 \xi^3 - \xi^1 \xi^4 = 0.$$

We will clarify a structure of this cone. The last equation can be written in two different ways:

$$\frac{\xi^1}{\xi^4} = \frac{\xi^2}{\xi^4} = -\lambda, \quad \frac{\xi^1}{\xi^2} = \frac{\xi^3}{\xi^4} = -\mu.$$

It follows that the cone C_x carries two families of two-dimensional plane generators. These are defined by the equations

$$\xi^1 + \lambda \xi^3 = 0, \quad \xi^2 + \lambda \xi^4 = 0$$

(9)

and

$$\xi^1 + \mu \xi^2 = 0, \quad \xi^3 + \mu \xi^4 = 0.$$

(10)

The 2-planes defined by equations (9) are called α-generators, and the 2-planes
defined by equations (10) are called β-generators of the cone C_x.

Figure 2

Under the projectivization of the tangent space $T_x(M)$ with center at a point $x = A_0$, there corresponds a ruled quadric PC_x for the cone C_x where PC_x belongs to a three-dimensional projective space $P_3^3 = PT_x(M)$. With respect to the frame $\{A_i\}$, where $A_i = PA_i$, the quadric PC_x is defined by the same equation (7) (see Figure 2).

For the conformal structure $CO(2,2)$, the group of transformations of the tangent space $T_x(M)$ preserving the invariant cone is split into three subgroups: $G = SL(2) \times SL(2) \times H$. The first two of these subgroups transfer the families of α- and β-generators of the cones C_x into themselves and are isomorphic to the group of projective transformations on a projective straight line P^1. As in the general case, the third subgroup is the group of homotheties.

On the manifold (M, c), the isotropic α- and β-generators of the cone C_x form two fiber bundles E_α and E_β with the common base M. The fibers of E_α and E_β are the families of α- and β-generators of the cones C_x. By (9) and (10), these fibers are parameterized by means of nonhomogeneous projective parameters λ and μ and are isomorphic to real projective straight lines RP_α and RP_β. Thus the fiber bundles E_α and E_β can be written as $E_\alpha = (M, RP_\alpha)$ and $E_\beta = (M, RP_\beta)$. These fiber bundles are real twistor fibrations similar to those introduced on four-dimensional manifolds of Lorentzian signature $(3,1)$ by Penrose (see, for example, [PR 86]).

Consider α- and β-generators of the cone C_x. For $\omega^i = 0$ (i.e., for fixed principal parameters), they are defined by equations (9) and (10). One can easily prove that these generators intersect one another in an isotropic straight line connecting the point $A_0 = x$ with the point

$$B = \lambda\mu A_1 - \lambda A_2 - \mu A_3 + A_4,$$

and that they belong to a three-dimensional subspace of the space $T_x(M)$ defined by the equation

$$\xi^1 + \mu\xi^2 + \lambda\xi^3 + \lambda\mu\xi^4 = 0.$$
This subspace is tangent to the isotropic cone C_x along its generator A_0B and is also called isotropic.

In the space $T_x(M)$, we specialize our moving frame in such a way that its vertex A_1 coincides with the point B and the isotropic straight line A_0B coincides with the straight line A_0A_1. Then the nonhomogeneous projective parameters λ and μ occurring in equations (9) and (10) for isotropic 2-planes $A_0A_1A_2$ and $A_0A_1A_3$ become ∞, $\lambda = \infty$, $\mu = \infty$, and equations (9) and (10) take the form
\[
\xi^3 = 0, \quad \xi^4 = 0
\]
and
\[
\xi^2 = 0, \quad \xi^4 = 0.
\]
The equation of the isotropic subspace (12) containing these isotropic α- and β-generators becomes
\[
\xi^4 = 0.
\]

4 THE STRUCTURE EQUATIONS OF A MANIFOLD (M, c)

For a manifold (M, c) endowed with a conformal structure $c = CO(2,2)$, in the isotropic frame bundle, equations (8) and the last equation of (3) imply that
\[
\begin{align*}
\omega^1_1 &= \omega^0_0 = \omega^3_3 = \omega^4_4 = 0, \\
\omega^2_2 &= \omega^1_1, \\
\omega^3_3 &= \omega^2_2, \\
\omega^4_4 &= \omega^1_1 + \omega^4_4 = 0, \quad \omega^2_2 + \omega^3_3 = 0.
\end{align*}
\]
Thus on the manifold (M, c), among the forms ω^j_j only the forms ω^1_1, ω^2_2, ω^3_3, ω^4_4, and ω^0_0 are independent. Hence on such a manifold (M, c), the structure equations (5) take the form
\[
\begin{align*}
d\omega^1 &= (\omega^0_0 - \omega^1_1) \wedge \omega^1 + \omega^2 \wedge \omega^3 + \omega^4 \wedge \omega^4, \\
d\omega^2 &= (\omega^0_0 - \omega^2_2) \wedge \omega^2 + \omega^3 \wedge \omega^4 \wedge \omega^4, \\
d\omega^3 &= (\omega^0_0 + \omega^3_3) \wedge \omega^3 + \omega^1 \wedge \omega^4 + \omega^4 \wedge \omega^4, \\
d\omega^4 &= (\omega^0_0 + \omega^4_4) \wedge \omega^4 + \omega^2 \wedge \omega^2 + \omega^3 \wedge \omega^3, \\
d\omega^0_0 &= \omega^1 \wedge \omega^1 + \omega^2 \wedge \omega^2 + \omega^3 \wedge \omega^3 + \omega^4 \wedge \omega^4.
\end{align*}
\]
As a result, the curvature forms of the fiber bundles A and B can be written as

$$\begin{align*}
\Omega_1^2 &= -2 \{b_0 \omega^1 \wedge \omega^3 + b_1 (\omega^1 \wedge \omega^4 + \omega^2 \wedge \omega^3) + b_2 \omega^3 \wedge \omega^4\}, \\
\Omega_1^3 &= +4 \{a_1 \omega^1 \wedge \omega^2 + a_2 (\omega^1 \wedge \omega^4 - \omega^2 \wedge \omega^3) + a_3 \omega^3 \wedge \omega^4\}, \\
\Omega_2^1 &= -2 \{b_0 \omega^1 \wedge \omega^3 + b_1 (\omega^1 \wedge \omega^4 + \omega^2 \wedge \omega^3) + b_2 \omega^3 \wedge \omega^4\}, \\
\Omega_2^2 &= +4 \{b_1 \omega^1 \wedge \omega^2 + b_2 (\omega^1 \wedge \omega^4 + \omega^2 \wedge \omega^3) + b_3 \omega^2 \wedge \omega^4\},
\end{align*}$$

and

$$\begin{align*}
\Omega_3^1 &= +2 \{a_2 \omega^1 \wedge \omega^2 + a_3 (\omega^1 \wedge \omega^4 - \omega^2 \wedge \omega^3) + a_4 \omega^3 \wedge \omega^4\}, \\
\Omega_3^2 &= +2 \{b_2 \omega^1 \wedge \omega^3 + b_3 (\omega^1 \wedge \omega^4 + \omega^2 \wedge \omega^3) + b_4 \omega^2 \wedge \omega^4\}.
\end{align*}$$

From equations (23) and (24) it follows the tensor $C = (C_{ijkl})$ of conformal curvature is split into two subtensors A and B, $C = A + B$, where

$$A = \{a_u\}, \quad B = \{b_u\}, \quad u = 0, 1, 2, 3, 4.$$
These are the curvature tensors of the fiber bundles E_α and E_β.

If one of subtensors A or B vanishes, then a manifold (M, c) is called \textit{conformally semiflat}. In this case the fiber bundle E_α (respectively, E_β) admits a three-parameter family of two-dimensional integral surfaces V_α (respectively, V_β).

If both subtensors A and B vanish, then the tensor C also vanishes. In this case a manifold (M, c) becomes \textit{conformally flat} and is locally equivalent to a pseudoconformal space C^4_2. Under the Darboux mapping, a hyperquadric Q^4_2 of a projective space P^5 corresponds for the space C^4_2. Under this mapping, two-dimensional plane generators of the hyperquadric Q^4_2 correspond for two-dimensional integral surfaces V_α and V_β of the fiber bundles E_α and E_β.

5 PRINCIPAL ISOTROPIC BIVECTORS

Suppose that ξ and η are vectors of the space $T_x(M)$, and $p = \xi \wedge \eta$ is a bivector defined by ξ and η. The coordinates of p are

$$p^{ij} = \xi^i \eta^j = \frac{1}{2}(\xi^i \eta^j - \xi^j \eta^i), \quad p^{ij} = -p^{ji}.$$

The tensor of conformal curvature $C = (C_{ijkl})$ allows us to define the \textit{relative conformal curvature of the bivector p}:

$$C(p) = C_{ijkl} p^{ij} p^{kl}. \quad (25)$$

Let us find relative conformal curvatures of the bivectors p_λ and p_μ defined by α- and β-generators of the isotropic cone C_x of the manifold (M, c). From equations (9) it follows that the vectors ξ_λ and η_λ defining the bivector p_λ are defined by the formulas

$$\xi_\lambda = e_3 - \lambda e_1, \quad \eta_\lambda = e_4 - \lambda e_2.$$

As a result, the coordinates of the bivector p_λ are

$$p^{12} = \lambda^2, \quad p^{13} = 0, \quad p^{14} = -\lambda, \quad p^{23} = \lambda, \quad p^{34} = 1, \quad p^{42} = 0.$$

Substituting these values of coordinates p^{ij} into formula (25) and applying relations (22), we find that

$$\frac{1}{4}C(p_\lambda) = a_0 \lambda^4 - 4a_1 \lambda^3 + 6a_2 \lambda^2 - 4a_3 \lambda + a_4.$$

Since the right-hand side of the last equation contains only the components of the curvature tensor A of the isotropic fiber bundle E_α, this formula can be written as

$$\frac{1}{4}A(p_\lambda) = a_0 \lambda^4 - 4a_1 \lambda^3 + 6a_2 \lambda^2 - 4a_3 \lambda + a_4. \quad (26)$$
Similarly, the bivector p_μ is defined by the vectors
\[\xi_\mu = e_2 - \mu e_1, \quad \xi_\mu = e_4 - \mu e_3, \]
and its coordinates are
\[p^{12} = 0, \quad p^{13} = \mu^2, \quad p^{14} = -\mu, \quad p^{23} = -\mu, \quad p^{34} = 0, \quad p^{42} = -1. \]
This implies that the relative conformal curvatures of the bivector p_μ is
\[\frac{1}{4}B(p_\mu) = b_0\mu^4 - 4b_1\mu^3 + 6b_2\mu^2 - 4b_3\mu + b_4. \] (27)

The isotropic bivectors whose relative conformal curvature vanishes are called the principal isotropic bivectors. By (26) and (27), the values of parameters λ and μ defining such bivectors satisfy the algebraic equations
\[a_0\lambda^4 - 4a_1\lambda^3 + 6a_2\lambda^2 - 4a_3\lambda + a_4 = 0 \] (28)
and
\[b_0\mu^4 - 4b_1\mu^3 + 6b_2\mu^2 - 4b_3\mu + b_4 = 0. \] (29)
Thus in the general case the isotropic cone C_x bears four principal α-generators and the same number of principal β-generators if we count each of these generators as many times as its multiplicity.

On a manifold (M, c), the principal isotropic bivectors form four principal α-distributions and the same number of principal β-distributions. It was proved in [A 96] that if λ is a multiple root of equation (28), then the principal α-distribution defined by this root is integrable. In the same way if μ is a multiple root of equation (29), then the principal β-distribution defined by this root is integrable.

Suppose that λ and μ are two fixed roots of equations (28) and (29), respectively, and p_λ and p_μ are the principal isotropic distributions defined by these two roots. By means of a frame transformation indicated at the end of Section 3, the values of parameters λ and μ can be made to equal ∞, $\lambda = \infty$, $\mu = \infty$. As a result, by (9) and (10), we find that these two distributions are defined by the following two systems of equations:
\[\omega^3 = 0, \quad \omega^4 = 0 \] (30)
and
\[\omega^2 = 0, \quad \omega^4 = 0. \] (31)
Moreover, equations (28) and (29) become
\[- 4a_1\lambda^3 + 6a_2\lambda^2 - 4a_3\lambda + a_4 = 0 \] (32)
and
\[- 4b_1\mu^3 + 6b_2\mu^2 - 4b_3\mu + b_4 = 0. \] (33)
If the coefficient a_1 in equation (32) vanishes, then the root $\lambda = \infty$ of this equation is a multiple root, and as a result, the principal distribution (30) defined by this root is integrable. Two-dimensional integral surfaces V_α of this distribution form an isotropic fiber bundle on the manifold (M, c). Similarly, if the coefficient b_1 in equation (33) vanishes, then the root $\mu = \infty$ of this equation is a multiple root and the principal distribution (31) defined by this root is integrable. In addition, the two-dimensional integral surfaces V_β of this distribution form an isotropic fiber bundle on the manifold (M, c).

6 LIGHTLIKE HYPERSURFACES ON (M, c), $c = CO(2, 2)$

As we already said in the introduction, a hypersurface V on a manifold (M, c), $\dim V = 3$, is said to be lightlike if its tangent subspace $T_x(V)$ is tangent to the isotropic cone C_x, i.e., this subspace is isotropic. The aim of this paper is to study the geometry of lightlike hypersurfaces on a manifold (M, c), where $c = CO(2, 2)$.

With a point x of a lightlike hypersurface V, we associate a moving frame in such a way that its vertex A_0 coincide with $x \in V$, $A_0 = x$, the points A_1, A_2, and A_3 belong to the tangent subspace $T_x(V)$, and the point A_1 belongs to the isotropic straight line along which the subspace $T_x(V)$ is tangent to the isotropic cone C_x. The subspace $T_x(V)$ contains two isotropic α- and β-planes intersecting one another along the straight line A_0A_1. Thus the 2-plane $A_0 \wedge A_1 \wedge A_2$ is an α-generator of the cone C_x, and the 2-plane $A_0 \wedge A_1 \wedge A_3$ is its β-generator.

We place points A_2 and A_3 of our moving frame to these two planes and normalize them by the condition $(A_2, A_3) = 1$. The subspace $A_0 \wedge A_2 \wedge A_3$ is called the screen subspace and is denoted by S_x, $S_x = A_0 \wedge A_2 \wedge A_3 \subset T_x(V)$. Further we take a point A_4 on the isotropic cone C_x in such a way that the subspace $A_0 \wedge A_1 \wedge A_4$ is conjugate to the subspace S_x with respect to the cone C_x. In addition, we normalize the points A_1 and A_4 by the condition $(A_1, A_4) = -1$.

A straight line $N_x = A_0 \wedge A_4$ does not belong to the tangent subspace $T_x(V)$. This line is called a normalizing straight line. Its location is uniquely determined by the location of the subspace S_x.

The matrix of scalar products of the points A_i, $i = 1, 2, 3, 4$, now has the form (8).

the family of frames we have constructed is called a family of first-order frames associated with a point x of a lightlike hypersurface $V \subset (M, c)$.

We will now find the equations of a bundle of first-order isotropic frames associated with a lightlike hypersurface V. Since its tangent subspace $T_x(V) = A_0 \wedge A_1 \wedge A_2 \wedge A_3$, with respect to this frame bundle the equation of V is

$$\omega^4 = 0,$$

(34)
and as a result, we have
\[dA_0 = \omega_0^0 A_0 + \omega^1 A_1 + \omega^2 A_2 + \omega^3 A_3. \] (35)

The 1-forms ω^1, ω^2, and ω^3 are independent. They are basis forms of the frame bundle in question and of the hypersurface V.

Equations
\[\omega^2 = \omega^3 = 0 \] (36)
define on V a foliation formed by isotropic lines. As was proved in [AG 99b], these lines are isotropic geodesics for all pseudo-Riemannian metrics g compatible with the conformal structure $c = CO(2, 2)$ on the manifold (M, c).

We will assume that the isotropic geodesics defined by equations (36) can be prolonged indefinitely on a hypersurface V. In this case each of these geodesics bears the geometry of a projective straight line P^1, and a hypersurface V is the image of the product $M^2 \times P^1$ under its differentiable mapping f into the manifold (M, c): $V = f(M^2 \times P^1)$, $f : M^2 \times P^1 \to (M, c)$.

Equation $\omega^3 = 0$ defines on V a fibration of isotropic α-planes $A_0 \wedge A_1 \wedge A_2$, and equation $\omega^2 = 0$ defines on V a fibration of isotropic β-planes $A_0 \wedge A_1 \wedge A_3$ (cf. these two equations with equations (30) and (31)).

In an isotropic frame bundle, the first fundamental form I of a lightlike hypersurface $V \subset (M, c)$ becomes
\[I = g|_V = (dA_0, dA_0) = 2\omega^2 \omega^3. \] (37)

This form is of rank 2 and of signature $(1, 1)$, and its coefficients form the matrix
\[(g_{ab}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad a, b = 2, 3. \] (38)

7 SINGULAR POINTS AND TOTALLY UMBILICAL HYPERSURFACES

By the last equation of (17), exterior differentiation of equation (34) (the basic equation of a lightlike hypersurface V) leads to the following exterior quadratic equation:
\[\omega^2 \wedge \omega^1 + \omega^3 \wedge \omega^1 = 0. \] (39)

Applying Cartan’s lemma to this equation, we that
\[\begin{cases}
\omega_3^2 = \lambda_{22} \omega^2 + \lambda_{23} \omega^3, \\
\omega_1^2 = \lambda_{32} \omega^2 + \lambda_{33} \omega^3,
\end{cases} \] (40)

where $\lambda_{23} = \lambda_{32}$.
By means of the Cartan test (see [BCGGG 91] and cf. [AG 99a]), one can prove that lightlike hypersurfaces $V \subset (M, c)$, where $c = CO(2, 2)$, exist and depend on a function of two variables.

Differentiating equation (35), we obtain

$$d^2 A_0 \equiv \left(\omega^2 \omega_2^4 + \omega^3 \omega_3^4\right) A_4 + \left(\omega^2 \omega_2^5 + \omega^3 \omega_3^5\right) A_5 \pmod{T_x(V)}.$$ \hspace{1cm} (41)

But by (3) and (8) we have

$$\omega_2^5 = \omega^1, \quad \omega_3^5 = \omega^2, \quad \omega_2^4 = \omega^3, \quad \omega_3^4 = \omega^4.$$

Thus by (40) relation (41) takes the form

$$d^2 A_0 \equiv \left(\lambda_{22}(\omega^2)^2 + 2\lambda_{23}\omega^2\omega^3 + \lambda_{33}(\omega^3)^2\right) A_4 + 2\omega^2\omega^3 A_5 \pmod{T_x(V)}. \hspace{1cm} (42)$$

Note that the coefficient in A_5 in equation (42) coincides with the first fundamental form (37) of a hypersurface $V \subset (M, c)$.

Denote by $	ilde{I}$ the coefficient in A_4 in equation (42):

$$\tilde{I} = \lambda_{22}(\omega^2)^2 + 2\lambda_{23}\omega^2\omega^3 + \lambda_{33}(\omega^3)^2.$$ \hspace{1cm} (43)

Then equation (42) takes the form

$$d^2 A_0 = \tilde{I} A_4 + I A_5 \pmod{T_x(V)}. \hspace{1cm} (44)$$

If we multiply expression (43) by a point $A_1 - xA_0$, then by (1) and (8), we find that

$$(d^2 A_0, A_1 - xA_0) = - (\tilde{I} - xI).$$

The expression in the parentheses of the right-hand side is a pencil of the second fundamental forms of a hypersurface $V \subset (M, c)$:

$$\tilde{I} - xI = \lambda_{22}(\omega^2)^2 + 2(\lambda_{23} - x)\omega^2\omega^3 + \lambda_{33}(\omega^3)^2.$$ \hspace{1cm} (45)

The matrix of their coefficients is

$$\begin{pmatrix} \lambda_{ab} \
\end{pmatrix} = \begin{pmatrix} \lambda_{22} & \lambda_{23} - x \\ \lambda_{23} - x & \lambda_{33} \end{pmatrix}.$$

From the pencil (43) we will take the form whose matrix is apolar to the matrix (g_{ab}), that is, the matrix satisfying the condition

$$\tilde{\lambda}_{ab} g^{ab} = 0.$$ \hspace{1cm} (46)

Since by (38) we have

$$(g_{ab}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$
it follows that
\[\bar{\lambda}_{ab}g^{ab} = 2(\lambda_{23} - x). \]

Thus condition (45) leads to the relation
\[x = \lambda_{23}. \] (46)

Condition (45) singles out from a pencil (44) of the second fundamental forms of a hypersurface \(V \subset (M, c) \) a conformally invariant fundamental form
\[II = \bar{I}I - \lambda_{23}I = \lambda_{22}(\omega^2)^2 + \lambda_{33}(\omega^3)^2. \] (47)

Its matrix has the form
\[(h_{ab}) = (\lambda_{ab}) - \lambda_{23}(g_{ab}) = \begin{pmatrix} \lambda_{22} & 0 \\ 0 & \lambda_{33} \end{pmatrix} \] (48)
and is diagonal.

Consider singular points of the map \(f(M^2 \times P^1) = V^3 \subset (M, c) \). We will look for these points in the form \(X = A_1 - sA_0 \). At these points the dimension of the tangent subspace \(T_X(V) \) must be reduced. By (3), (11), and (34), we have
\[dA_1 = \omega_0^1A_0 + \omega_1^1A_1 + \omega_2^1A_2 + \omega_3^1A_3. \] (49)

Applying equations (49) and (35), we find that
\[d(A_1 - sA_0) = (\omega_0^1 - x\omega_0^0 - dx)A_0 + (\omega_1^1 - x\omega_1^0)A_1 + (\omega_2^1 - x\omega_2^0)A_2 + (\omega_3^1 - x\omega_3^0)A_3. \]

Further by (40) we obtain
\[d(A_1 - sA_0) \equiv (\lambda_{23} - s)A_2 + \lambda_{22}A_3(\omega^2) + (\lambda_{33}A_2 + (\lambda_{23} - s)A_3)(\omega^3) \pmod{A_0, A_1}. \]

The tangent subspace \(T_X(V) \) is determined by the points \(A_0, A_1, (\lambda_{23} - s)A_2 + \lambda_{22}A_3, \) and \(\lambda_{33}A_2 + (\lambda_{23} - s)A_3 \). Thus the dimension of the tangent subspace is reduced only in the points \(X = A_1 - sA_0 \) in which
\[\det \begin{pmatrix} \lambda_{23} - s & \lambda_{22} \\ \lambda_{33} & \lambda_{23} - s \end{pmatrix} = 0. \]

This equation can be written as
\[s^2 - 2\lambda_{23}s + (\lambda_{23}^2 - \lambda_{22}\lambda_{33}) = 0. \] (50)

Denote by \(s_1 \) and \(s_2 \) the roots of this equation. They are calculated by the following formula:
\[s_{1,2} = \lambda_{23} \pm \sqrt{\lambda_{22}\lambda_{33}}. \]

The points \(F_1 = A_1 - s_1A_0 \) and \(F_2 = A_1 - s_2A_0 \) are singular points of an isotropic geodesic \(l = A_0A_1 \) of a hypersurface \(V \).
By Vieta’s theorem, it follows from equation (50) that
\[
s_1 + s_2 = 2\lambda_{23}.
\]
Thus the point \(H = A_1 - \lambda_{23}A_0 \) is the fourth harmonic point \(H \) of the point \(A_0 \) with respect to the points \(F_1 \) and \(F_2 \) on the line \(l = A_0A_1 \). The singular points \(F_1 \) and \(F_2 \) are located symmetrically with respect to the points \(A_0 \) and \(H \).

Now the conformally invariant second fundamental form \(II \) of a hypersurface \(V \subset (M, c) \) can be written as
\[
II = -(d^2A_0, H).
\]

We take a moving frame whose vertex \(A_1 \) coincides with the point \(H \). This implies \(\lambda_{23} = 0 \). As a result, equation (50) becomes
\[
s^2 - h_{22}h_{33} = 0,
\]
and
\[
s_{1,2} = \pm \sqrt{h_{22}h_{33}}. \tag{51}
\]

The following theorem follows from relation (51).

Theorem 1 (a) The second fundamental form \(II \) of a hypersurface \(V \subset (M, c) \) at a point \(A_0 \) is positive definite or negative definite if and only if the isotropic geodesic \(l = A_0A_1 \) through the point \(x = A_0 \) bears two real singular points. If at a point \(x = A_0 \) this form is an indeterminate form of rank two, then the singular points on the straight line \(l = A_0A_1 \) are complex conjugate.

(b) The second fundamental form \(II \) of a hypersurface \(V \subset (M, c) \) at a point \(x = A_0 \) has the rank less than two if and only if the singular points on the isotropic geodesic \(l = A_0A_1 \) coincide. In this case the point \(H \) coincides with this multiple singular point.

On a lightlike hypersurface \(V \), 2-planes \(A_0 \wedge A_1 \wedge A_2 \) and \(A_0 \wedge A_1 \wedge A_3 \) of an isotropic frame bundle compose an \(\alpha \)- and \(\beta \)-distribution. Denote them by \(\Delta_{\alpha} \) and \(\Delta_{\beta} \). These distributions are defined on \(V \) by the equations
\[
\omega^3 = 0 \quad (\alpha) \quad \omega^2 = 0 \quad (\beta) \tag{52}
\]

In general, the distributions \(\Delta_{\alpha} \) and \(\Delta_{\beta} \) are not integrable. Let us find the conditions of their integrability.

Exterior differentiation of equation (52α) gives the following exterior quadratic equation
\[
\omega^1 \wedge \omega^3 = 0.
\]
Substituting the value of the form \(\omega^3 \) from (40) into this equation and taking into account (48), we find that the distribution \(\Delta_{\alpha} \) is integrable if and only if
\[
h_{22} = 0. \tag{53}
\]

16
Similarly the distribution Δ_β is integrable if and only if
\[h_{33} = 0. \]
\[(54) \]

Comparing the conditions (53) and (54) with relations (51) we arrive at the following result.

Theorem 2 If at least one of the isotropic distributions Δ_α and Δ_β on a light-like hypersurface $V \subset (M, c)$ is integrable, then the singular points on each of its isotropic generators coincide.

If both isotropic distributions Δ_α and Δ_β are integrable on a hypersurface V, then conditions (53) and (54) are satisfied simultaneously, and the second fundamental form II of V vanishes. But this means that hypersurface V is totally umbilical. This implies the following result.

Theorem 3 Both isotropic distributions Δ_α and Δ_β on a lightlike hypersurface $V \subset (M, c)$ are integrable if and only if the hypersurface V is totally umbilical.

8 SOME PROPERTIES OF LIGHTLIKE HYPERSURFACES

We will pass now to the study of properties of a lightlike hypersurface $V \subset (M, c)$ connected with third- and higher-order differential neighborhoods.

We make a reduction in our isotropic second-order frame bundle by taking a specialized frame whose vertex $A_1 \in l$ coincides with the fourth harmonic point H of the point A_0 with respect to the singular points F_1 and F_2 of the straight line $l = A_0A_1$. Then we obtain
\[\lambda_{23} = 0, \ h_{22} = \lambda_{22}, \ h_{33} = \lambda_{33}, \]
and equations (40) become
\[\omega_1^3 = h_{22}\omega^2, \ \omega_1^2 = h_{33}\omega^3. \]
\[(55) \]

By (12), (14), (15), (18), and (19), exterior differentiation of equations (55) gives
\[\left\{ \begin{array}{l}
\Delta h_{22} \land \omega^2 + (-\omega_1^3 + h_{22}h_{33}\omega^1 - 2a_1\omega^2 - 2b_1\omega^3) \land \omega^3 = 0, \\
(-\omega_1^3 + h_{22}h_{33}\omega^1 - 2a_1\omega^2 - 2b_1\omega^3) \land \omega^2 + \Delta h_{33} \land \omega^3 = 0,
\end{array} \right. \]
\[(56) \]
where
\[\left\{ \begin{array}{l}
\Delta h_{22} = dh_{22} + h_{22}(\omega_0^0 - 2\omega_2^0 - \omega_1^1) + 2a_0\omega^1, \\
\Delta h_{33} = dh_{33} + h_{33}(\omega_0^0 + 2\omega_2^0 - \omega_1^1) + 2b_0\omega^1.
\end{array} \right. \]
\[(57) \]
By Cartan’s lemma, it follows from (56) that
\[
\begin{align*}
\Delta h_{22} &= h_{22}^2 \omega^2 + h_{223}^2 \omega^3, \\
\omega_0^1 &= h_{22} h_{33}^3 \omega^1 - (h_{223} + 2a_1) \omega^2 - (h_{233} + 2b_1) \omega^3, \\
\Delta h_{33} &= h_{233}^2 \omega^2 + h_{333}^2 \omega^3.
\end{align*}
\] (58)

We will apply now equations (58) to totally umbilical hypersurfaces \(V \subset (M, c) \). For such hypersurfaces we have \(h_{22} = h_{33} = 0 \). As a result, equations (55) take the form
\[
\omega_1^3 = 0, \quad \omega_1^2 = 0,
\] (59)
and equations (58) imply that
\[
a_0 = 0, \quad b_0 = 0, \\
h_{222} = h_{223} = h_{233} = 0,
\] (60)
and
\[
\omega_0^1 = -2(a_1 \omega^2 + b_1 \omega^3).
\] (62)

Conditions (60) mean that the isotropic distributions \(\Delta_\alpha \) and \(\Delta_\beta \) are principal. Moreover, it follows now from equations (49) that
\[
dH = \omega_0^0 H - 2(a_1 \omega^2 + b_1 \omega^3) A_0.
\] (63)

This implies the following result.

Theorem 4 A lightlike totally umbilical hypersurface \(V \subset (M, c) \) possesses the following properties:

(a) The isotropic distributions \(\Delta_\alpha \) and \(\Delta_\beta \) are integrable and principal.

(b) The multiple singular point \(H \) of the isotropic geodesic \(l = A_0 A_1 \) describes an isotropic line tangent to the straight line \(l \) at the point \(H \).

(c) If \(a_1 = b_1 = 0 \), then the point \(H \) is fixed, and a totally umbilical hypersurface is an isotropic cone \(C_H \) with vertex \(H \).

Proof. The statement (a) follows from the fact that on a hypersurface \(V \), the isotropic distributions \(\Delta_\alpha \) and \(\Delta_\beta \) are defined by equations (52) and correspond to the values \(\lambda = \infty \) and \(\mu = \infty \) in equations (9) and (10). Hence for \(a_0 = b_0 = 0 \), these values satisfy equations (32) and (33) defining the principal isotropic distributions.

The statement (b) follows immediately from equation (63).

Note that the conditions \(a_1 = b_1 = 0 \) along with conditions (60) imply that the values \(\lambda = \infty \) and \(\mu = \infty \) are multiple roots of equations (32) and (33). This implies that the statement (c) can be also formulated as follows:
A lightlike totally umbilical hypersurface $V \subset (M, c)$ is an isotropic cone if and only if it bears multiple isotropic distributions Δ_α and Δ_β.

Note also that in this case the integral surfaces of the distributions Δ_α and Δ_β on a hypersurface V are two-dimensional plane generators of the cone C_H.

9 CONSTRUCTION OF A CANONICAL DISTRIBUTION OF FRAMES FOR A LIGHTLIKE HYPERSURFACE

We associated a family of the second-order frames with a point $x = A_0$ of a lightlike totally umbilical hypersurface $V \subset (M, c)$ in such a way that the vertex A_1 coincides with the harmonic pole H of the isotropic tangent A_0A_1. But the points A_2 and A_3 of these frames can move freely in α- and β-planes containing the straight line A_0A_4, and its point A_4 can move freely along the isotropic straight line A_0A_1 that is conjugate to the screen subspace $A_0 \wedge A_2 \wedge A_3$ with respect to the isotropic cone C_x.

For a fixed point $x = A_0$, by equations (16) and (40), we find that

$$\begin{align*}
\delta A_2 &= \pi_0^0 A_0 + \pi_1^1 A_1 + \pi_2^2 A_2, \\
\delta A_3 &= \pi_3^3 A_0 + \pi_4^4 A_1 + \pi_5^5 A_3.
\end{align*}$$

Here $\pi_0^0, \pi_1^1, \pi_3^3,$ and π_4^4 are fiber forms defining a displacement of the points A_2 and A_3 in the corresponding isotropic 2-planes.

In order to find the points A_2 and A_3 uniquely in these 2-planes, one needs to make the above mentioned fiber forms vanish. However, this must be done in such a way that a fixing of the points A_2 and A_3 would be intrinsically connected with the geometry of a hypersurface V. The latter can be achieved by fixing in a certain way the coefficients h_{abc} occurring in equations (58). These coefficients are associated with a third-order neighborhood of a hypersurface V.

To this end, we take exterior derivatives of equations (58). As a result, we obtain the following exterior quadratic equations:

$$\begin{align*}
\Delta h_{222} \wedge \omega^2 + \Delta h_{223} \wedge \omega^3 + H_{22} &= 0, \\
\Delta h_{223} \wedge \omega^2 + \Delta h_{233} \wedge \omega^3 + H_{23} &= 0, \\
\Delta h_{233} \wedge \omega^2 + \Delta h_{333} \wedge \omega^3 + H_{33} &= 0,
\end{align*}$$

(64)

where

$$\begin{align*}
\Delta h_{222} &= dh_{222} + h_{222}(2\omega_0^0 - 3\omega_2^2 - \omega_1^1) + 2a_0\omega_1^1 + 3h_{222}\omega_2^2 - 3(h_{222})^2\omega_1^1, \\
\Delta h_{223} &= dh_{223} + h_{223}(2\omega_0^0 - \omega_2^2 - \omega_1^1) + 2a_0\omega_1^1 - h_{223}\omega_2^2 + h_{222}\omega_3^3\omega_1^2, \\
\Delta h_{233} &= dh_{233} + h_{233}(2\omega_0^0 + \omega_2^2 - \omega_1^1) + 2b_0\omega_1^1 - h_{233}\omega_2^2 + h_{223}\omega_3^3\omega_1^3, \\
\Delta h_{333} &= dh_{333} + h_{333}(2\omega_0^0 + 3\omega_2^2 - \omega_1^1) + 2b_0\omega_1^1 + 3h_{333}\omega_3^3 - 3(h_{333})^2\omega_1^2.
\end{align*}$$
Theorem 5

This proves the following result.

Equations (64) imply that the 1-forms Δh_{222}, Δh_{223}, Δh_{233}, and Δh_{333} are linear combinations of the basis forms ω^1, ω^2, and ω^3.

For a fixed point $x = A_0$, i.e., for $\omega^1 = \omega^2 = \omega^3 = 0$, these forms vanish, and their expressions become

$$
\begin{align*}
\Delta_3 h_{222} &= \delta h_{222} + h_{222}(2\pi_0^0 - 3\pi_2^2 - \pi_1^1) + 2a_0\pi_2^1 + 3h_{222}\pi_0^0 - 3(h_{222})^2\pi_3^1 = 0, \\
\Delta_3 h_{223} &= \delta h_{223} + h_{223}(2\pi_0^0 - \pi_2^2 - \pi_1^1) + 2a_0\pi_2^3 - h_{222}\pi_3^3 + h_{223}h_{333}\pi_3^1 = 0, \\
\Delta_3 h_{233} &= \delta h_{233} + h_{233}(2\pi_0^0 + \pi_2^2 - \pi_1^1) + 2b_0\pi_2^1 - h_{333}\pi_3^3 + h_{223}h_{333}\pi_3^3 = 0, \\
\Delta_3 h_{333} &= \delta h_{333} + h_{333}(2\pi_0^0 + 3\pi_2^2 - \pi_1^1) + 2b_0\pi_2^3 + 3h_{333}\pi_3^3 - 3(h_{333})^2\pi_3^3 = 0.
\end{align*}
$$

Equations (65) contain the fiber forms π_0^0, π_1^0, π_0^1, and π_3^1 defining a displacement of the points A_2 and A_3 in the α- and β-planes $A_0 \cup A_1 \cup A_2$ and $A_0 \cup A_1 \cup A_3$. Consider the determinant D of the matrix of coefficients in these fiber forms in equations (65):

$$
D = \det \begin{pmatrix}
3h_{22} & 2a_0 & 0 & -3(h_{22})^2 \\
0 & h_{223} & -h_{22} & 2a_0 \\
-h_{33} & 2b_0 & 0 & 3h_{223}h_{333} \\
0 & -3(h_{33})^2 & 3h_{333} & 2b_0
\end{pmatrix}.
$$

Calculating this determinant, we find that

$$
D = 4(3h_{22}b_0 + h_{33}a_0)(h_{22}b_0 + 3h_{33}a_0).
$$

If this determinant does not vanish, $D \neq 0$, then equations (65) imply that the quantities h_{222}, h_{223}, h_{333}, and h_{333}, occurring in equations (58) can be simultaneously reduced to 0 by means of the fiber forms π_0^0, π_1^0, π_0^1, and π_3^1 (see [O 62]). As a result, the points A_2 and A_3 are uniquely determined in the planes $\alpha = A_0 \cup A_1 \cup A_2$ and $\beta = A_0 \cup A_1 \cup A_3$, and we arrive at a family of third-order moving frames associated with a point $x = A_0 \in V \subset (M, c)$.

With respect to a third-order frame we have constructed, equations (58) take the form

$$
\begin{align*}
h_{22} &+ h_{22}(\omega_0^0 - 2\omega_2^2 - \omega_1^1) = -2a_0\omega^1, \\
\omega_0^0 &+ h_{223}\omega^1 - 2b_0\omega^2 - 2b_0\omega^3, \\
h_{33} &+ h_{33}(\omega_0^0 + 2\omega_2^2 - \omega_1^1) = -2b_0\omega^1.
\end{align*}
$$

This proves the following result.

Theorem 5 If on a lightlike hypersurface V the determinant D does not vanish, then it is possible to construct a third-order frame bundle on V intrinsically connected with the geometry of V. In this frame bundle, $h_{abc} = 0$.

20
Note that if the $CO(2, 2)$-structure on a manifold (M, c) is conformally flat, then a third-order frame bundle indicated above cannot be constructed since for a conformally flat structure we have $a_0 = b_0 = 0$, and consequently, $D = 0$. However, for a conformally semiflat $CO(2, 2)$-structure the above construction is possible. A construction of a canonical frame bundle for lightlike totally umbilical hypersurfaces is also impossible since for them $h_{22} = h_{33} = 0$, and consequently, $D = 0$.

In order to complete our construction of a canonical frame bundle, we also have to fix the vertex A_4 on the isotropic straight line $A_0 A_4$ which is conjugate to the screen subspace $S_x = A_0 \land A_2 \land A_3$ with respect to the isotropic cone C_x. This can be done in the same way as we did for a lightlike hypersurface $V \subset (M, c)$ whose conformal structure c is of Lorentzian signature, $c = CO(n - 1, 1)$. The family of straight lines $A_0 A_4$ associated with a hypersurface V is an isotropic congruence (see [AG 99b]) each ray of which bears two singular points F'_1 and F'_2. To complete our specialization of moving frames, we choose a frame whose vertex A_4 coincides with the harmonic pole H' of the point A_0 with respect to singular points F'_1 and F'_2 (see Figure 3). Since the singular points are defined in a fourth-order differential neighborhood of a point $x \in V$, the point A_4 is defined also in this neighborhood.

Thus we arrive at the following result.

Theorem 6 If $D \neq 0$, a canonical frame bundle on a lightlike hypersurface $V \subset (M, c), c = CO(2, 2)$ is defined by elements of a fourth-order differential neighborhood of a point $x \in V$.

Figure 3
References

[A 96] Akivis, M. A., *On the real theory of four-dimensional conformal structures*. J. Geom. Phys. 21 (1996), 55–80.

[AG 96] Akivis, M.A., and V. V. Goldberg, *Conformal differential geometry and its generalizations*, John Wiley & Sons, New York, 1996, xiii+383 pp.

[AG 98] Akivis, M.A., and V. V. Goldberg, *The Darboux mapping of canal hypersurfaces*, Beiträge Algebra Geom. 39 (1998), no. 2, 396–411.

[AG 99a] Akivis, M.A., and V. V. Goldberg, *The geometry of lightlike hypersurfaces on manifolds endowed with a conformal structure of Lorentzian signature*, Proceedings of Intern. Conf. on Differential Geom. and Appl. (Brno, Czech Republic, 1998) (to appear).

[AG 99b] Akivis, M.A., and V. V. Goldberg, *Lightlike hypersurfaces on manifolds endowed with a conformal structure of Lorentzian signature* (submitted).

[Ak 87] Akutagawa, K., *On space-like hypersurfaces with constant mean curvature in the de Sitter space*, Math. Z. 196 (1987), 13–19.

[Be 96] Bejancu, A., *Geometry of degenerate hypersurfaces*, Arab J. Math. Sci. 2 (1996), no. 1, 1–38. (1987), 337–361.

[BCGGG 91] Bryant, R. L., S. S. Chern, R. B. Gardner, H. L. Goldsmith, and P. A. Griffiths, *Exterior differential systems*, Springer-Verlag, New York, 1991, vii+475 pp.

[DB 91] Duggal, K. L. and A. Bejancu, A., *Degenerate hypersurfaces of semi-Riemannian manifolds*, Bull. Inst. Politehn. Di­na­s­i, Sect. I 37 (1991), no. 1–4, 13–22.

[DB 96] Duggal, K. L. and A. Bejancu, A., *Lightlike submanifolds of semi-Riemannian manifolds and Applications*, Kluwer Acad. Publ., 1996, vii+300 pp.

[HE73] Hawking, S. W., and G. F. R. Ellis, *The large scale structure of spacetime*, Cambridge Univ. Press, London, 1973, xi+391 pp.

[Ku 87] Kupeli, D. N., *Degenerate submanifolds in semi-Riemannian geometry*, Geom. Dedicata 23 (1987), 337–361.

[Ku 96] Kupeli, D. N., *Singular semi-Riemannian geometry*, Kluwer Academic Publishers Group, Dordrecht, 1996, x+177 pp.
Ostianu, N.M: *On a canonization of a moving frame of an embedded manifold*, (Russian) Rev. Roumaine Math. Pures Appl. 7 (1962), no. 2, 231–240.

Penrose, R., and W. Rindler, *Spinors and space-time*, vol. 2: *Spinor and twistor methods in space-time geometry*, Cambridge Univ. Press, Cambridge, 1986, x+501 pp.

Ramanathan, J., *Complete space-like hypersurfaces of constant mean curvature in the de Sitter space*, Indiana Univ. Math. J. 36 (1987), 349–359.

Rosca, R., *Sur les hypersurfaces isotropes de défaut 1 incluses dans une variété lorentzienne*, C. R. Acad. Sci. Paris Sér. A, 272, 393–396.

Yau, S. T., *Submanifolds with constant mean curvature II*, Amer. Math. J. 97 (1975), 349–359.

Zheng, Y., *Space-like hypersurfaces with constant scalar curvature in the de Sitter spaces*, Differential Geom. Appl. 6 (1996), 51–54.

Authors’ addresses:

M. A. Akivis
Department of Mathematics
Jerusalem College of Technology
– Mahon Lev, P. O. B. 16031
Jerusalem 91160, Israel

E-mail address: akivis@avoda.jct.ac.il

V. V. Goldberg
Department of Mathematics
New Jersey Institute of Technology
University Heights
Newark, NJ 07102, U.S.A.

E-mail address: vlgold@numerics.njit.edu