The impact of the cooling effect of urban parks on thermal comfort from the physiological and the psychological perspective

Farshid Aram¹, Ebrahim Solgi², Ester Higueras García¹, Amir Mosavi³,⁴, *

¹ Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid-UPM, Madrid 28040, Spain
² School of Engineering and Built Environment, Griffith University, Gold Coast 4222, Australia
³ Kalman Kando Faculty of Electrical Engineering, Obuda University, Budapest 1034, Hungary.
⁴ Institute of Structural Mechanics, Bauhaus University Weimar, 99423 Weimar, Germany

*Corresponding Author: Tel: +49- 1797410281, e-mail: amir.mosavi@kvk.uni-obuda.hu
The impact of the cooling effect of urban parks on thermal comfort from the physiological and the psychological perspective

Abstract

Background: In densely populated urban centers, increased air temperature due to urban heat island (UHI) effect can undermine the thermal comfort and health of citizens. Research has shown that large urban parks can mitigate the effect of UHIs and improve thermal comfort, especially in the warmer months of the year when temperature changes are more noticeable. This study investigated the cooling effect intensity (CEI) of the Retiro Park in the center of Madrid at three different distances from its southern edge and the impact of this cooling effect on thermal comfort from physiological and psychological perspectives. This investigation was performed by measuring microclimate data and conducting a survey simultaneously during the summer days.

Results: The results showed that the CEI of the park varies with distance from its edge. Because of this effect, air temperature within the 130m and 280m distance of the park was respectively 1.6°C and 0.9°C lower than the temperature at the 520m distance (the nearest heat island). After examining the effect of the park in terms of Physiological Equivalent Temperature (PET), it was found that the PET at the 130m and 280m distance of the park was 9.3% and 5.4% less than the PET in the heat island domain. More than 81% of the respondents (in all three areas) had a mental image of the park as the place where they would experience the highest level of outdoor thermal comfort, and this rate was higher in the areas closer to the park. The analysis of citizens’ responses about perceived thermal comfort (PTC) showed that citizens in areas with higher CEI had perceived a higher degree of thermal comfort from the psychological perspective.

Conclusion: This study demonstrates the significant role of large urban parks located in the core of the populated cities in providing thermal comfort for citizens from both physiological and psychological perspectives.

Keywords: Urban Park; Urban Heat Island; Thermal comfort; Perceived Thermal Comfort; Physiological Equivalent Temperature; Cooling Effect Intensity

Background

Climate change has had visible effects on many human communities all over the world, but these effects are more deeply felt in large, densely populated cities (IPCC, 2019; Bulkeley, 2013). Research has shown that urban areas are typically warmer than their rural counterparts; a difference that can be attributed to the phenomenon known as urban heat island effect (UHI) (Ward et al., 2016; Oke, 1982; Taha, 2017). This effect is strong enough to cause major physical and mental health problems for citizens (Luber & McGeehin, 2008; Tan et al., 2010; Lemonsu et al., 2015; Błażejczyk et al., 2018). Urban green spaces not only beautify the urban landscape but also moderate urban climate by increasing humidity and lowering air temperature (Brown et al., 2015; Zhang et al., 2017). Over the years, the value of parks and green spaces for cities and their benefits...
for the health and welfare of citizens has been discussed and proven in many studies (Hunter et al., 2019; Shen et al., 2017; Bertram & Rehdanz, 2015; Twohig-Bennett & Jones, 2018). In general, green spaces are an essential part of the urban landscape, as they are crucial for the stability and sustainability of cities (Belmeziti et al., 2018; Aram, Solgi, & Holden, 2019). Hence, designing and building green spaces should be a key part of any urban plan that aims to create sustainable cities with healthy communities (Shashua-Bar et al., 2009; Buyadi et al., 2015; Lee et al., 2016). Urban green spaces are known to have a cooling effect on air temperature (Du et al., 2017; Xu et al., 2017). Typically, this effect can be felt not only in the park itself but also within a radius around the park, leading to improved thermal comfort in the neighborhood (Hamada & Ohta, 2010; Yan et al., 2018; Aram et al., 2019).

Thermal comfort has received much attention because of its great impact on the quality of life of citizens (Lai et al., 2019; Chen & Ng, 2012). According to CIBSE, human thermal comfort refers to the temperature conditions that satisfy at least 80% of individuals (CIBSE, 2015). Human thermal comfort depends on several factors including climate, air temperature, humidity, sunlight, and air movements (Rupp et al., 2015). Ultimately, people’s perception of environmental conditions also depends on non-climatic factors such as clothing type, coping ability, age, gender, physical appearance, subcutaneous fat, fitness, diet, and skin color (Djongyang et al., 2010; van Hoof & Hensen, 2007).

Serious research on the subject of thermal comfort began in 1956 with the study of conditions of human thermal comfort in indoor spaces and later expanded to outdoors (Orosa, 2009). What makes the assessment of outdoor thermal comfort different from the analysis of indoor thermal comfort, besides the scale of work, is the massive difference between the thermal needs of different individuals, which vary with the region and study conditions (Nikolopoulou & Lykoudis, 2006; Lin, 2009). Following the manifestation of the consequences of climate change, the subject of thermal comfort in outdoors has attracted the attention of many researchers, especially those working in the fields of climate, urban development, and environmental research (Chen & Ng, 2012; Jamei et al., 2016; Lai et al., 2019). Over the years, researchers have introduced various indexes for measuring outdoor thermal comfort, which include; Predicted Mean Vote (PMV) (Fanger, 1973), Standard Effective Temperature (SET*) (Gagge et al., 1986), which was later developed into OUT-SET* (Pickup & De Dear, 2000), Man-Environment heat Exchange (MENEX) (Blazejczyk & Krawczyk, 1994), Physiological Equivalent Temperature (PET) (Höppe, 1999), Comfort Formula (COMFA) (Kenny et al., 2009), and Universal Thermal Climate Index (UTCI) (Jendritzky et al., 2009) among others.

To analyze thermal comfort in urban environments, the measure of analysis should take into account the local climatic conditions and the four main climatic factors that affect human thermal comfort, i.e. air temperature, humidity, wind speed, and solar radiation (Sharmin et al., 2015; Lai et al., 2014; Ng & Cheng, 2012). Among the existing thermal comfort indexes, the PET, which has been derived from the human energy balance, not only meets the aforementioned requirement but also takes the features of human physiology into account (Matzarakis et al., 1999; Krüger et al., 2017; Matzarakis & Amelung, 2008). Highly suitable for urban and environmental studies,
PET is one of the four most widely used indexes in outdoor thermal comfort research (PET, PMV, UTCI, SET*). PET has also been used in a wider range of climatic regions than other indexes (Potchter et al., 2018).

ASHRAE defines thermal comfort not solely as an environmental and physiological phenomenon but also as a condition of mind that expresses satisfaction with the thermal environment (ASHRAE, 2010, 2015). In this definition, the term “condition of mind” refers to the fusion of mental and physiological conditions in the concept of thermal comfort (ASHRAE, 2017).

Numerous studies have shown that different people have vastly different perceptions of thermal comfort and temperature preferences and also differ in their behavioral and physiological coping and their psychological habits or their expectations from the climate (Nikolopoulou & Steemers, 2003; Knez & Thorsson, 2008; Lenzholzer et al., 2018; Ruggiero et al., 2019). These differences make it difficult to study people’s perceptions of the thermal comfort of their environment (Nikolopoulou, 2011). However, using methods like surveying to ask people how they feel about temperature and thermal conditions can provide a broad picture of people’s perceived thermal comfort and satisfaction with the thermal conditions of their environment (Hadavi et al., 2018; Klemm et al., 2015).

According to studies conducted on the subject of thermal comfort in open spaces, another factor that can significantly influence the results of such studies is people’s cognition and mental images of their environment (Knez & Thorsson, 2006; Nikolopoulou et al., 2001). Since people’s mental conditions play a key role in their cognition of the environment (Mansournia et al., 2020), these conditions can massive impacts on their thermal perception of the environment and consequently their comfort conditions (Knez et al., 2009; Aljawabra & Nikolopoulou, 2010; Shin, 2016). Indeed, the response of a human to an external stimulus depends on the “information” that the individual has in and about that particular situation (Moskaliuk et al., 2017). People’s cognition and perception of their environment can be studied by the use of environmental psychology methods and instruments. One of the most common of these instruments is cognitive maps (Kitchin, 1994; Heft, 2013; Wang & Schwering, 2015). These maps can represent people’s knowledge of places and their importance in people’s minds, and can, therefore, be used in outdoor comfort studies to gain an insight into how important people believe a place is in terms of contribution to thermal comfort (Aram et al., 2019). In other words, these maps can help us examine the citizens’ perception of places based on their role in creating thermal comfort (Klemm et al., 2015b).

Given the role of urban green spaces in mitigating urban heat and creating thermal comfort in built-up spaces, they have a fundamental impact on the quality of life of citizens and sustainable development of urban environments. In this study, we examined the cooling effect of a large central park at different distances and the consequent impact on thermal comfort from physiological and psychological perspectives. It should also be mentioned that a study similar to the purpose and case study of this study was carried out in Madrid (Aram, et al., 2019), but the north part of the park was investigated in that study in the morning.
Methods

The measuring sites

This study was performed in Madrid, Spain (40°25′08″N; 3°41′31″W), which according to Köppen-Geiger classification, has a “Hot-summer Mediterranean” climate (Kottek et al., 2006).

The case chosen for examining the effect of large urban green spaces on thermal comfort was the Retiro Park, which, with an area of about 125 ha, is one of the largest parks in the center of Madrid.

The area of interest was in the southern side of this park, where according to the Madrid’s UHI maps, there is a heat island at the 520m distance from the edge of the park (Núñez Peiró et al., 2017).

According to the UHI of Madrid (Núñez Peiró et al., 2017), there is a heat island near the Granada-Narciso Serra district located 520m away from the southern edge of the park (marked red in Figure 1)(Román et al., 2017). For a more precise examination of the cooling effect of the park, two areas at the intersection of Gutenberg-Valderribas-Fuenterrabía and Torrejón-Agustín Querol, which are located in the orange and yellow zones at the 280m and 130m distance from the park, were also included in the study. All selected intersections are physically and structurally identical. For easier reference, hereafter, the Torrejón-Agustín Querol intersection (150m) is called intersection A, the Gutenberg-Valderribas-Fuenterrabía intersection (280m) as called intersection B, and the Granada-Narciso Serra intersection (520m) is called intersection C.

![Fig. 1. Madrid’s UHI map (July 26, 2015) and the investigated area at the southern side of the Retiro Park (green zone). Area A is located in the yellow zone, area B in the orange zone, and area C in the red zone near one of the Madrid’s UHIs](image)

The southern side of the Retiro Park has a regular and grid-like texture mostly consisting of 7-story buildings. The façade of most buildings in this area is made of red brick. The roads of the area are asphalt and the sidewalks are mostly made of bright colored mosaic tiles (Figure 2).

The data collected in this study were of two types: (I) Microclimate data including air temperature, humidity, and wind speed, which were measured inside the Retiro Park and at all three
Intersections on six days starting from the summer of 2018: June 22, July 10 & 24, August 10 & 24, and September 10. (II) Survey data, which were collected by a questionnaire measuring citizens’ perceived thermal comfort and also cognitive maps whereby citizens were asked to specify the places where they feel the most thermal comfort.

All data (both microclimatic and survey) were collected on clear sunny days. At each intersection, data collection was performed over a 10 minute period, during which one group collected temperature data and the other group conducted the survey. Since the peak temperature inside the park in the summer of 2017 had been observed, on average, between 13:28 and 15:08 CEST (AEMET, 2018), all stages of data collection were scheduled to start after 13:30.

Fig. 2. Street views of the three investigated intersections (A-C), and their Sky View Factor values (calculated by RayMan 1.2)

Microclimate measurements

Air temperature (T_a) and relative humidity (RH) were measured by a mobile microclimate station (HOBO MX2301A Temperature/RH Data Logger, produced by Onset Computer Corporation Co., MA, USA) with an accuracy of ±2.5% for RH and ±0.2°C for T_a. Wind speed (WS) was measured by a Proster digital anemometer model MS6252a. All measurement devices were equipped with a visor and installed 1.5 meters above the ground. A fisheye lens (Sigma 8 mm circular) was used to assess the sky view and take fisheye photographs. T_a and RH data were automatically logged at 1-min intervals and averaged over every 10 minutes. Wind speed data were also recorded manually at 1-min intervals and averaged over every 10 minutes. Climatic data including T_a and RH were also collected from the AEMET station (Agencia Estatal de Meteorología) located inside the Retiro Park (AEMET, 2018).
Survey
Throughout the study, researchers surveyed a total of 133 individuals (N_{node A} =46, N_{node B}=43, N_{node C}=44), who were randomly chosen from among people either living or working in the area. Surveys were conducted during the same 10 minutes in which the microclimate measurements were being made (on average, 7 people per intersection per day). Respondents were from both genders and different age groups (excluding children) and had different activity levels (sitting, standing, and walking). The citizens’ perceived thermal comfort was measured by a researcher-made questionnaire consisting of two sections: questions and cognitive maps.

The cognitive map section of the questionnaire was a map of the area between the southern edge of the Retiro Park and the heat islands to its south, on which citizens were asked to mark the areas where they normally feel thermal comfort. To avoid bias, this map was drawn so that the park would make up only a small portion of the map. The obtained cognitive maps were analyzed with the software AMMA (Aram, Solgi, García, Mohammadzadeh, et al., 2019). In this analysis, the maps on which the park was marked were awarded a score of 100 and the maps on which there was no mention of the park were given a score of 0 (Table 1).

The questions section of the questionnaire itself consisted of two parts. The first part consisted of the questions enquiring directly about the perceived thermal comfort of the respondent. These questions were designed based on the 5-item Likert scale with

Variable	Categories	Percentage (%)		
		A	B	C
Age	13-21	19.6	23.3	15.9
	22-30	21.7	11.6	6.8
	31-45	30.4	30.2	34.1
	46-60	13.0	23.3	20.5
	61-85	15.2	11.6	22.7
Gender	Men	47.8	55.8	56.8
	Women	52.2	44.2	43.2
Q1	Very low (1)	.0	2.3	4.5
	Low (2)	13.0	14.0	31.8
	Medium (3)	37.0	41.9	34.1
	High (4)	39.1	34.9	27.3
	Very high (5)	10.9	7.0	2.3
Q2	Very low (5)	8.7	18.6	18.2
	Low (4)	45.7	34.9	47.7
	Medium (3)	37.0	37.2	25.0
	High (2)	6.5	4.7	9.1
	Very high (1)	2.2	4.7	0.0
Q3	Very low (1)	6.5	4.7	9.1
	Low (2)	19.6	27.9	29.5
	Medium (3)	15.2	30.2	36.4
	High (4)	34.8	25.6	20.5
	Very high (5)	23.9	11.6	4.5
Q4	Very low (1)	.0	0.0	6.8
	Low (2)	34.8	23.3	6.8
	Medium (3)	32.6	32.6	34.1
	High (4)	19.6	27.9	34.1
	Very high (5)	6.5	9.3	13.6

AMMA results

| Park Mentioned (100) | 8.7 | 18.6 | 29.5 |
| Park Not mentioned (0) | 91.3 | 81.4 | 70.5 |

Clothing

Item	Percentage (%)		
Shirt and Normal Pants-0.65 clo	21.3	6.5	13.6
Tshirt and normal pants-0.61 clo shirt and Shorts-0.45 clo	8.5	37.0	29.5
Tshirt and Shorts (or skirt)-0.40 clo Dress-0.35 clo	6.4	6.5	6.8
Tshirt and Shorts (or skirt)-0.40 clo Súeet-0.90 clo	31.9	30.4	31.8
Tshirt and Shorts (or skirt)-0.40 clo Other clothing	23.4	13.0	13.6
Tshirt and Shorts (or skirt)-0.40 clo Other clothing	2.1	2.2	0.0
Tshirt and Shorts (or skirt)-0.40 clo Other clothing	6.4	4.3	4.5

Activity

Activity	Percentage (%)		
Walking-115 w	80.4	73.9	77.3
Standing-70 w	13.0	15.2	18.2
Sitting-60 w	6.5	17.4	4.5
scores ranging from 1 (Very Low) to 5 (Very High) (Table 1). The questions included in this section were: 1. How thermally comfortable do you feel (neither too hot nor too cold)? 2. How hot do you feel? 3. How much do you feel the cooling effect of the Retiro Park? 4. How heat-tolerant are you? The responses to this part of the questionnaire were analyzed in SPSS using statistical methods.

The second part of this section was dedicated to demographic and personal information, including age, gender, type of clothing, and activities. Given the importance of information collected in this part of the questionnaire for the calculation of PET (Matzarakis et al., 2010), for each respondent, the type of clothing was quantified based on the Cl index and the type of activity was quantified based on relevant standards (Streinu-Cercel et al., 2008) (Table 1).

Results

As mentioned, the data of this study were collected on six days, with approximately 14-day intervals, starting from the summer of 2018. During the data collection days, the min, mid, and max temperatures inside the park, which were measured by the AEMET station (AEMET, 2018), were 32.4°C, 26.1°C, and 19.7°C on average (Table 2). As expected (from Madrid’s 2015 UHI), the selected intersections had different temperatures depending on their distances from the park (Table 3). The Torrejón-Agustín Querol intersection, which was closest to the park (130 m), had the closest average temperature (33.7°C) to the average temperature inside the park (32.4°C). In comparison, the Gutenberg-Valderribas-Fuenterrab intersection at a distance of 280 m from the park and the Granada-Narciso Serra intersection at a distance of 520 m from the park had higher average temperatures (34.4°C and 35.3°C) (Figure 3).

Table 2

The individual and average values for air temperature (T_a) relative humidity (RH) and wind velocity (W) in the Retiro Park on all the measurement days.

Date	Retiro parka T_a (°C)	Time of T_a in Retiro parka	HR % of parka	Wind in parka				
	Min	Mid	Max	Min	Max			
22.06.2018	21.6	27.7	33.8	04:50	14:40	22.95	1.7	
10.07.2018	21.5	28.4	35.2	06:00	13:50	22.95	2.2	
24.07.2018	19.8	26.4	33.0	05:00	13:50	22.94	1.9	
10.08.2018	17.5	24.4	31.3	05:40	13:40	36.8	2.2	
24.08.2018	20.6	26.8	33.0	05:30	14:20	19.25	1.4	
10.09.2018	17.3	22.8	28.3	05:20	13:45	33.55	1.9	
Average	19.7	26.1	32.4	05:23	14:04	26.4	1.9	

a AEMET data

Considering these temperature differences, PET and PTC were also predicted to be different. After determining the PET of each respondent (based on gender, age, clothing type, and weather conditions at the time of the survey) with the software RayMan 1.2 (Fröhlich et al., 2019), the average PET at distances of 130, 280, and 520 m from the park was calculated to 38.4°C, 40.0°C, and 42.3°C, respectively. This suggests that thanks to the cooling effect of the park, citizens at the...
130m and 280m distance from the park have respectively 3.9°C PET and 2.3°C PET less than those at the 520m distance from the park (closer to the heat island) (Table 3).

The investigation of psychologically perceived thermal comfort, which was done with the help of questions and cognitive maps, showed that the cooling effect of the park has had a positive impact on the minds of citizens, as people living or working closer to the park were feeling more thermally comfortable than others who were farther away from the park and closer to one of the heat islands. After processing the respondent’s answers to direct questions about their perception of thermal comfort (at the moment of the survey), which were scored from 1 to 5 (Very low = 1, Low = 2, Medium = 3, High = 4, Very high = 5), the results showed that the mean score decreased from 3.16 for intersection A, which was 130m away from the park, to 3.07 for intersection B, which was 280m away from the park, and finally to the sub-average score of 2.88 for intersection C, which was 580m away from the park (Table 3).
Table 3
Intersection mean values for air temperature (T_a), relative humidity (RH), mean radiant temperature (T_{mrt}), Wind Speed (WS), PET and PTC on the all measurement days (13:30–15:20 CEST).

Date	Intersec on	Time	Mean WS, m/s	Mean RH, %	Mean T_a, °C	Mean T_{mrt}, °C	Mean PET, °C	Mean PTC
22 Jun	A	14:15-14:25	2.16	15.2	34.6	50.7	40.5	3.25
	B	13:55-14:05	2.68	15.1	36.97	53.5	43.8	3.44
	C	13:35-13:45	0.96	16.7	36.07	53.7	44.9	3.15
10 July	A	15:10-15:20	1.73	15.03	35.17	48.6	40.6	2.75
	B	14:50-15:00	1.68	16.17	35.9	51.9	42.8	2.96
	C	14:15-14:25	2.18	17.66	37.18	52.8	45	2.48
24 July	A	14:30-14:40	2.56	15.35	32.71	47.8	36.8	3.15
	B	14:10-14:20	3.01	15.1	33.08	49.2	37.4	3.01
	C	13:40-13:50	1.88	16.7	35.29	52.1	42.2	2.76
10 Aug	A	14:20-14:30	1.73	27.27	33.73	48.8	39.7	2.94
	B	14:00-14:10	2.11	29.31	35.28	50.8	41.7	2.74
	C	13:30-13:40	1.72	26.71	35.39	52	42.6	2.38
24 Aug	A	14:55-15:05	3	15.78	35.56	47.7	40.3	3.35
	B	14:35-14:45	2.19	15.87	35.81	49	41.6	3.03
	C	14:15-14:25	1.13	17.87	36.38	50.8	43.2	2.88
10 Sept	A	15:10-15:20	1.43	27.76	31.63	42.3	34.8	3.46
	B	14:45-14:55	1.33	28.16	31.65	43.8	35.6	3.25
	C	14:15-14:25	1.1	36.41	32.44	46.1	37.9	3.08
Average	A	14:42-14:52	2.10	19.40	33.70	47.65	38.43	3.16
	B	14:15-14:25	2.17	19.92	34.42	49.70	39.98	3.07
	C	13:51-14:01	1.60	22.01	35.26	51.25	42.29	2.79

The analysis of the obtained cognitive maps with the AMMA software showed that out of 133 respondents, 108 people or about 81% marked the park. This means that the majority of citizens know Retiro Park as the place where they would feel the highest degree of thermal comfort. As expected, it was found that the people at the Andrés Torrejón-Agustín Querol intersection had the highest rate of reference to the park (91.3%). In comparison, 81.4% of people at the Gutenberg-Valderribas-Fuenterrabía intersection and 70.5% of people at the Granada-Narciso Serra intersection mentioned the park. The last figure is still quite high considering the relatively long distance of the Granada-Narciso Serra intersection from the park. The results of the AMMA analysis of the obtained maps were also plotted in the form of color spectra showing the places most frequently marked by citizens. These plots also show that on every data collection day, the Retiro Park was more frequently mentioned than any other public space in the study area (Figure 4).
Since the two main variables of this study were PET and PTC, statistical tests were used to find out whether there is any significant difference between the three nodes in terms of these indexes.

PET differences between the three nodes

One-Way Analysis of Variance (ANOVA) was used to compare the PET values of the three examined nodes on the south side of the Retiro Park. After this analysis, in cases where there were significant differences between means (P<0.05), Tukey’s honest significance test, which is a Post Hoc test, can be used to find the source of significant difference between response levels (Barnett et al., 1975) (Table 4).
Since the results of ANOVA showed a significant difference between the average PETs of nodes A, B, and C (P-value <0.05), Tukey’s test was used to determine which of the response levels had a significant difference (Tables 5 and 6).

Table 5. Multiple Comparisons Tukey PET analyses in the three investigated intersections.

(I) Intersection	(J) Intersection	Mean Difference (I-J)	Std. Error	P-value	95% Confidence Interval Lower Bound	95% Confidence Interval Upper Bound
A	B	-1.55111*	.56029	.018	-2.8795	-.2227
	C	-3.86057*	.55699	.000	-5.1811	-2.5400
B	A	1.55111*	.56029	.018	.2227	2.8795
	C	-2.30946*	.56641	.000	-3.6523	-.9666
C	A	3.86057*	.55699	.000	2.5400	5.1811
	B	2.30946*	.56641	.000	.9666	3.6523

*. The mean difference is significant at the 0.05 level.

Table 6. Tukey PET analyses in the three investigated intersections (A, B and C).

Tukey HSD	Subset for alpha = 0.05			
Intersection	N	1	2	3
A	46	38.4326		
B	43	39.9837		
C	44	42.2932		
P-value	1.000	1.000	1.000	

The above results can be interpreted as the presence of a significant difference between the average PETs of all three points, i.e. A, B and C, located respectively at the 130, 280 and 520m distance from the park. Based on these statistical results, it can be confidently claimed that the cooling effect of the Retiro Park reduces PET and increases thermal comfort in nearby areas.

PTC differences between the three nodes

As mentioned earlier, the data collected by the questions included in the questionnaire were used to determine PTC. As with PET, ANOVA Analysis was used to compare PTC in the three nodes in the southern neighborhoods of the Retiro Park (Table 7).
Since the results of ANOVA showed a significant difference between PTC in different nodes (P-value < 0.05), again, Tukey’s test was used to identify the source difference between the response levels. The results of this test are provided in the tables below (Table 8 and 9).

Table 8. Multiple Comparisons Tukey PTC analyses in the three investigated intersections.

(I) Intersection	(J) Intersection	Mean Difference (I-J)	Std. Error	P-value	95% Confidence Interval	
					Lower Bound	Upper Bound
A	B	.08784	.11049	.707	-.1741	.3498
	C	.27693*	.10984	.034	.0165	.5373
B	A	-.08784	.11049	.707	-.3498	.1741
	B	.18909	.11170	.212	-.0757	.4539
C	A	-.27693*	.10984	.034	-.5373	-.0165
	B	-.18909	.11170	.212	-.4539	.0757

* The mean difference is significant at the 0.05 level.

Table 9. Tukey PTC analyses in the three investigated intersections (A, B and C).

Intersection	N	Subset for alpha = 0.05	
		1	2
C	44	2.8807	
B	43	3.0698	3.0698
A	46	3.1576	
P-value	.206	.708	

The above results suggest that there is a significant difference between average thermal comfort in the Andrés Torrejón-Agustín Querol intersection (Intersection A), which is 130m away from the park and the Granada-Narciso Serra intersection (Intersection C), which is farther away from the park and closer to the heat island. This test proves that the cooling effect of the park is well perceived by the people living or working close to the park, causing them to have a significantly different level of PTC than those living or working further away from the park.

Discussion

Research has shown that because of factors such as low albedo (Xu et al., 2017), extensive shading (Sun et al., 2017), and moisture generation and evaporation from leaf surfaces (Vidrih & Medved, 2013), the space within a park often has a lower ambient air temperature than the surrounding environments (Park et al., 2017). The results of the present study showed that during the data
collection days (June 22, July 10 & 24, August 10 & 24, and September 10), the average maximum
temperature of the Retiro Park at noon hours (13:40-14:40) was 32.4°C, but at the same time, the
average air temperature at the distance of 520m from the park was about 35.3°C. Studies carried
out in various parts of the world have shown that large urban parks (>10 ha) can reduce the air
temperature by an average of 1-2°C within a radius of 350 meters (Aram, Higueras García, Solgi,
et al., 2019). In the present study, it was found that the cooling effect of the Retiro Park on the
neighborhoods to its south has led to a 0.9°C reduction in air temperature within the 280m distance
and a 1.6°C reduction in air temperature within the 130m distance of this park (compared to air
temperature in the nearest heat island). which is in areas closer to the park. At a distance of 130 m,
it was 1.6. Indeed, the findings of this study confirm that the Retiro Park, like other large parks,
generates a cooling effect that can reduce the temperature of its surrounding area. However, the
focus of this study was the impact of this cooling effect on the thermal comfort of citizens from
both physiological and psychological perspectives; a matter that was explored with the help of
well-established tests and standards.

In a few studies conducted in China (Chen et al., 2015; Sun et al., 2017), Egypt (Mahmoud, 2011)
and Israel (Cohen et al., 2012), researchers have used PET index to measure the thermal comfort
generated by large urban parks, but there seems to be a gap in the research literature regarding of
the impact of this effect on the perceived thermal comfort from a psychological perspective.
Another gap in the existing literature is that previous studies have been mostly focused on the
space inside the park itself and neglected the consequent impacts on the spaces around the park.
Considering these gaps and the importance of this subject, the present study examined the cooling
effect of the Retiro Park on the neighborhoods to its south during hot summer days and the
consequent impact on the thermal comfort of citizens from both physiological and psychological
perspectives. The PET index was used to quantify the physiological aspect of this impact. The
psychological aspect of the subject was explored with the help of a researcher-made questionnaire
and through the analysis of cognitive maps. Since the questions included the questionnaire directly
asked the citizens about their perceived thermal comfort, the total score of the questionnaire was
defined as the measure of perceived thermal comfort (PTC). The obtained PET and PTC values
showed that within a 230m distance from the park, where the cooling effect intensity (CEI) is
significant, citizens feel more thermal comfort than in other areas where the park’s cooling effect
is not as strong (near the heat island to the south of the Retiro Park).

The trends of PET and PTC values clearly illustrate the cooling effect of the park at different
distances from its edge in all days of measurement. Since PET is in degrees Celsius (like air
temperature), the areas with higher CEI (Torrejón-Agustín Querol and Gutenberg-Valderribas-
Fuenterrabía) have less PET values. For PTC, which was measured on the Likert scale on the range
of 1 to 5, higher values indicate higher levels of perceived thermal comfort; a feeling that was
more frequent in the areas near the park, where its cooling effect is strong. The analysis of
cognitive maps showed that in areas with peak CEI, citizens are more likely to perceive the Retiro Park as a place of thermal comfort.

Although the environments examined in this study were physically, socially, and culturally identical and the times chosen for measurements were close to the time of peak temperature inside the park, further studies with a more detailed examination of geographical features (slope, height, etc.) are needed to completely differentiate the impact of the park’s cooling effect from other environmental factors. The elements inside a park can also play a significant role in the CEI of that park (Sun et al., 2017). However, considering the limitations of this study and since its main goal was to prove the cooling effect of the park on the thermal comfort of citizens from physiological and psychological perspectives, we did not investigate the impact of internal components of the park. In previous studies, the effect of the quality of vegetation, water features, and other elements within the park on thermal comfort inside the park has been explored (Xu et al., 2017), but future studies need to accurately examine the effect of these factors on thermal comfort outside the park so that the results can be used to improve the design of urban parks for stronger cooling effects and increased thermal comfort generation in the surrounding urban landscape.

Conclusion

UHI effect can cause significant outdoor thermal discomfort in densely populated centers of large cities, especially those in the Mediterranean climate, which experience hot summers. The presence of large urban parks can mitigate the UHI effect. The 125-hectare Retiro Park in the center of Madrid plays an important role in reducing the impact of heat islands in this city. In the present study, it was found that the cooling effect of the Retiro Park on the neighborhoods to its south varies with the distance from the park and diminishes at the distance of 520m, which falls in the domain of a heat island. The cooling effect intensity (CEI) of the park is higher in the areas closer to the park, causing a 1.6°C reduction in air temperature within the 130m distance and a 0.9°C reduction in air temperature within the 280m distance of the park compared to Granada-Narciso Serra intersection (520m away from the park).

The results showed that any increase or decrease in the CEI of the Retiro Park will change the level of thermal comfort of citizens who live or work near the park from both physiological and psychological perspectives. The amount of PET within the 130m distance of the park was 4% less than the PET at the 280m distance and 9.3% less than the PET at the 520m distance, which means citizens within this distance of the park enjoy higher physiological thermal comfort. Also, the PET at the 280m distance from the park was 5.4% less than the PET at the 520m distance.

The analysis of cognitive maps obtained from citizens to study the impact of the park’s cooling effect on their perception of thermal comfort showed that more than 81% of respondents had a mental image of the park as the place that would provide them with the highest degree of thermal comfort. This rate was above 81% and 91% in the two districts that were nearest to the park and did not fall below 70.5% in the district that was farther from the park. The total score of the questionnaire, which was used as a direct measure of PTC, showed that citizens in the area with...
the highest CEI had the highest perception of thermal comfort from the psychological perspective and citizens in the area with the lowest CEI had the lowest PTC.

The results of this study demonstrate the critical role of large urban parks in generating thermal comfort for citizens from both physiological and psychological perspective. Considering the ongoing and upcoming effects of climate change on the temperature of densely populated urban centers, future studies need to focus on finding practical solutions to strengthen the cooling effect of urban parks and expand their area of effect in line with the objectives of sustainable urban development.

Abbreviations

UHI: Urban Heat Island; CEI: Cooling Effect Intensity; PET: Physiological Equivalent Temperature; PTC: Perceived Thermal Comfort

** Declarations**

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

All data generated or analysed during this study are included in this published article and 10.3390/en12203904.

Competing interests

The authors declare that they have no competing interests.

Funding

This work is supported by the Hungarian State and the European Union under the EFOP-3.6.116-2016-00010 project and the 2017-1.3.1-VKE-2017-00025 project.

Authors' contributions

Conceptualization, F.A. and E.H.G.; methodology, F.A. and E.S; software, F.A. and A.M.; validation, F.A., E.S. and E.H.G.; formal analysis, F.A. and A.M.; investigation, F.A.; data curation, A.M. and E.S.; writing—original draft preparation, F.A. and E.S; writing—review and editing, E.H.G. and A.M.; visualization, F.A. and A.M; supervision, E.H.G and E.S.

Acknowledgements

Not applicable
References

AEMET. (2018). Agencia Estatal de Meteorología. Retrieved from http://www.aemet.es/es/portada

Aljawabra, F., & Nikolopoulou, M. (2010). Influence of hot arid climate on the use of outdoor urban spaces and thermal comfort: Do cultural and social backgrounds matter? Intelligent Buildings International, 2(3), 198–217. https://doi.org/10.3763/inbi.2010.0046

American Society of Heating, R. and A.-C. E. (2017). 2017 ASHRAE handbook : fundamentals. In ASHRAE handbook : fundamentals.

American Society of Heating Refrigerating and Air-Conditioning Engineers Inc. (2015). 2015 ASHRAE Handbook - Heating, Ventilating, and Air-Conditioning Applications (SI Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. https://www.engineeringvillage.com/share/document.url?mid=kna_14693509155b12b410178163171&database=kna

Aram, F., Higueras García, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. In Helion (Vol. 5, Issue 4). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2019.e01339

Aram, F., Solgi, E., García, E. H., Mohammadzadeh, S. D., Mosavi, A., & Shamshirband, S. (2019). Design and validation of a computational program for analysing mental maps: Aram mental map analyzer. Sustainability (Switzerland), 11(14). https://doi.org/10.3390/su11143790

Aram, F., Solgi, E., García, E. H., Mosavi, A., & Várkonyi-Kóczy, A. R. (2019). The cooling effect of large-scale urban parks on surrounding area thermal comfort. Energies, 12(20). https://doi.org/10.3390/en12203904

Aram, F., Solgi, E., & Holden, G. (2019). The role of green spaces in increasing social interactions in neighborhoods with periodic markets. Habitat International, 84, 24–32. https://doi.org/10.1016/j.habitatint.2018.12.004

ASHRAE. (2010). ASHRAE Standard 55-2010. ASHRAE Inc., 2010, 42. https://doi.org/ISSN 1041-2336

Barnett, V., Neter, J., & Wasserman, W. (1975). Applied Linear Statistical Models. Journal of the Royal Statistical Society. Series A (General), 138(2), 258. https://doi.org/10.2307/2984653

Belmeziti, A., Cherqui, F., & Kaufmann, B. (2018). Improving the multi-functionality of urban green spaces: Relations between components of green spaces and urban services. Sustainable Cities and Society, 43, 1–10. https://doi.org/10.1016/J.SCS.2018.07.014

Bertram, C., & Rehdanz, K. (2015). The role of urban green space for human well-being. Ecological Economics, 120, 139–152. https://doi.org/10.1016/J.ECOLECON.2015.10.013

Błażejczyk, A., Błażejczyk, K., Baranowski, J., & Kuchcik, M. (2018). Heat stress mortality and desired adaptation responses of healthcare system in Poland. International Journal of Biometeorology, 62(3), 307–318. https://doi.org/10.1007/s00484-017-1423-0

Błażejczyk, K., & Krawczyk, B. (1994). Bioclimatic research of the human heat balance. Publications - Institute of Geography & Spatial Organisation, Polish Academy of Sciences,
Brown, R. D., Vanos, J., Kenny, N., & Lenzholzer, S. (2015). Designing urban parks that ameliorate the effects of climate change. *Landscape and Urban Planning, 138*, 118–131. https://doi.org/10.1016/j.landurbplan.2015.02.006

Bulkeley, H. (2013). Cities and climate change. In *Cities and Climate Change*. Taylor and Francis. https://doi.org/10.4324/9780203077207

Buyadi, S. N. A., Mohd, W. M. N. W., & Misni, A. (2015). Vegetation’s Role on Modifying Microclimate of Urban Resident. *Procedia - Social and Behavioral Sciences, 202*(December 2014), 400–407. https://doi.org/10.1016/j.sbspro.2015.08.244

Chen, L., & Ng, E. (2012). Outdoor thermal comfort and outdoor activities: A review of research in the past decade. *Cities, 29*(2), 118–125. https://doi.org/10.1016/j.cities.2011.08.006

Chen, L., Wen, Y., Zhang, L., & Xiang, W. N. (2015). Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. *Building and Environment, 94*, 644–653. https://doi.org/10.1016/j.buildenv.2015.10.020

CIBSE. (2015). CIBSE Guide A: Environmental Design. In *Environmental Design* (Vol. 19, Issue 8, pp. 38–46). www.cibse.org

Cohen, P., Potchter, O., & Matzarakis, A. (2012). Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. *Building and Environment, 51*, 285–295. https://doi.org/10.1016/j.buildenv.2011.11.020

Djongyang, N., Tchinda, R., & Njomo, D. (2010). Thermal comfort: A review paper. In *Renewable and Sustainable Energy Reviews* (Vol. 14, Issue 9). Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.07.040

Du, H., Cai, W., Xu, Y., Wang, Z., Wang, Y., & Cai, Y. (2017). Quantifying the cool island effects of urban green spaces using remote sensing Data. *Urban Forestry & Urban Greening*. https://doi.org/10.1016/j.ufug.2017.06.008

Fanger, P. O. (1973). Assessment of man’s thermal comfort in practice. In *British Journal of Industrial Medicine* (Vol. 30, Issue 4, pp. 313–324). https://doi.org/10.1136/oem.30.4.313

Fröhlich, D., Gangwisch, M., & Matzarakis, A. (2019). Effect of radiation and wind on thermal comfort in urban environments - Application of the RayMan and SkyHelios model. *Urban Climate, 27*(October 2018), 1–7. https://doi.org/10.1016/j.uclim.2018.10.006

Gagge, A. P., Fobelets, A. P., & Berglund, L. G. (1986). STANDARD PREDICTIVE INDEX OF HUMAN RESPONSE TO THE THERMAL ENVIRONMENT. *ASHRAE Transactions, 92*(pt 2B), 709–731.

Hamada, S., & Ohta, T. (2010). Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. *Urban Forestry and Urban Greening, 9*(1), 15–24. https://doi.org/10.1016/j.ufug.2009.10.002

Heft, H. (2013). Environment, cognition, and culture: Reconsidering the cognitive map. *Journal
Höppe, P. (1999). The physiological equivalent temperature - A universal index for the biometeorological assessment of the thermal environment. *International Journal of Biometeorology, 43*(2), 71–75. https://doi.org/10.1007/s004840050118

Hunter, R. F., Cleland, C., Cleary, A., Droomers, M., Wheeler, B. W., Sinnett, D., Nieuwenhuijsen, M. J., & Braubach, M. (2019). Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. *Environment International, 130*, 104923. https://doi.org/10.1016/J.ENVINT.2019.104923

IPCC. (2019). Special Report on Climate Change and Land. *Ipcc, August 2017, 2019*. https://www.ipcc.ch/report/srccl/

Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. *Renewable and Sustainable Energy Reviews, 54*. https://doi.org/10.1016/j.rser.2015.10.104

Jendritzky, G., Havenith, G., Weihs, P., & Batchvarova, E. (2009). Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. In *Final report COST Action 730*. http://www.utci.org/cost/documents.php

Kenny, N. A., Warland, J. S., Brown, R. D., & Gillespie, T. G. (2009). Part A: Assessing the performance of the comfa outdoor thermal comfort model on subjects performing physical activity. *International Journal of Biometeorology*. https://doi.org/10.1007/s00484-009-0226-3

Kitchin, R. M. (1994). Cognitive maps: What are they and why study them? *Journal of Environmental Psychology, 14*(1), 1–19. https://doi.org/10.1016/S0272-4944(05)80194-X

Klemm, W., Heusinkveld, B. G., Lenzholzer, S., Jacobs, M. H., & Van Hove, B. (2015). Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. *Building and Environment, 83*, 120–128. https://doi.org/10.1016/j.buildenv.2014.05.013

Klemm, W., Heusinkveld, B. G., Lenzholzer, S., & van Hove, B. (2015). Street greenery and its physical and psychological impact on thermal comfort. *Landscape and Urban Planning, 138*, 87–98. https://doi.org/10.1016/j.landurbplan.2015.02.009

Knez, I., & Thorsson, S. (2006). Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. *International Journal of Biometeorology, 50*(5), 258–268. https://doi.org/10.1007/s00484-006-0024-0

Knez, I., & Thorsson, S. (2008). Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. *Building and Environment, 43*(9), 1483–1490. https://doi.org/10.1016/j.buildenv.2007.08.002

Knez, I., Thorsson, S., Eliasson, I., & Lindberg, F. (2009). Psychological mechanisms in outdoor place and weather assessment: Towards a conceptual model. *International Journal of Biometeorology, 53*(1), 101–111. https://doi.org/10.1007/s00484-008-0194-z

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of Köppen-Geiger Climate Classification - (updated with CRU TS 2.1 temperature and VASClimO v1.1 precipitation data 1951 to 2000). *Meteorologische Zeitschrift, 15*(3), 259–263.
Krüger, E., Rossi, F., & Drach, P. (2017). Calibration of the physiological equivalent temperature index for three different climatic regions. *International Journal of Biometeorology*. https://doi.org/10.1007/s00484-017-1310-8

Lai, D., Guo, D., Hou, Y., Lin, C., & Chen, Q. (2014). Studies of outdoor thermal comfort in northern China. *Building and Environment, 77*, 110–118. https://doi.org/10.1016/j.buildenv.2014.03.026

Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. *Science of The Total Environment, 337–353*. https://doi.org/10.1016/j.scitotenv.2019.01.062

Lee, H., Mayer, H., & Chen, L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. *Landscape and Urban Planning, 148*, 37–50. https://doi.org/10.1016/j.landurbplan.2015.12.004

Lemonsu, A., Viguié, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). *Urban Climate, 14*, 586–605. https://doi.org/10.1016/j.uclim.2015.10.007

Lenzholzer, S., Klemm, W., & Vasilikou, C. (2018). Qualitative methods to explore thermo-spatial perception in outdoor urban spaces. *Urban Climate, 23*, 231–249. https://doi.org/10.1016/j.uclim.2016.10.003

Lin, T. P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. *Building and Environment, 44*(10), 2017–2026. https://doi.org/10.1016/j.buildenv.2009.02.004

Luber, G., & McGeehin, M. (2008). Climate Change and Extreme Heat Events. In *American Journal of Preventive Medicine* (Vol. 35, Issue 5, pp. 429–435). https://doi.org/10.1016/j.amepre.2008.08.021

Mahmoud, A. H. A. (2011). Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. *Building and Environment, 46*(12), 2641–2656. https://doi.org/10.1016/j.buildenv.2011.06.025

Mansournia, S., Bahrami, B., Farahani, L. M., & Aram, F. (2020). Understanding children’s perceptions and activities in urban public spaces: The case study of Zrêbar Lake Waterfront in Kurdistan. *Urban Studies, 004209802090300*. https://doi.org/10.1177/0042098020903008

Matzarakis, A., & Amelung, B. (2008). Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. *Seasonal Forecasts, Climatic Change and Human Health, 161–172*. https://doi.org/10.1007/978-1-4020-6877-5_10

Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. *International Journal of Biometeorology, 43*(2), 76–84. https://doi.org/10.1007/s004840050119

Matzarakis, A., Rutz, F., & Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. *International Journal of Biometeorology, 54*(2), 131–139. https://doi.org/10.1007/s00484-009-0261-0
and interpersonal spaces differently in men and women. *Journal of Environmental Psychology, 63*, 52–59. https://doi.org/10.1016/J.JENVP.2019.04.004

Rupp, R. F., Vásquez, N. G., & Lamberts, R. (2015). A review of human thermal comfort in the built environment. In *Energy and Buildings* (Vol. 105, pp. 178–205). Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2015.07.047

Sharmin, T., Steemers, K., & Matzarakis, A. (2015). Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka, Bangladesh. *Building and Environment*. https://doi.org/10.1016/j.buildenv.2015.10.007

Shashua-Bar, L., Pearlmutter, D., & Erell, E. (2009). The cooling efficiency of urban landscape strategies in a hot dry climate. *Landscape and Urban Planning, 92*(3–4), 179–186. https://doi.org/10.1016/j.landurbplan.2009.04.005

Shen, Y., Sun, F., & Che, Y. (2017). Public green spaces and human wellbeing: Mapping the spatial inequity and mismatching status of public green space in the Central City of Shanghai. *Urban Forestry and Urban Greening, 27*(August 2016), 59–68. https://doi.org/10.1016/j.ufug.2017.06.018

Shin, J. (2016). Toward a theory of environmental satisfaction and human comfort: A process-oriented and contextually sensitive theoretical framework. *Journal of Environmental Psychology, 45*, 11–21. https://doi.org/10.1016/J.JENVP.2015.11.004

Streinu-Cercel, A., Costoiu, S., & Mârza, M. (2008). Models for the indices of thermal comfort. *Journal of Medicine and Life, 1*(2), 148–156. http://www.scopus.com/inward/record.url?eid=2-s2.0-77953083744&partnerID=40&md5=8298d1538cdd80241154863d771d7ab6

Sun, S., Xu, X., Lao, Z., Liu, W., Li, Z., Higueras García, E., He, L., & Zhu, J. (2017). Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. *Building and Environment, 123*, 277–288. https://doi.org/10.1016/J.BUILDENV.2017.07.010

Taha, H. (2017). Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California. *Climate, 5*(3), 59. https://doi.org/10.3390/cli5030059

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., Li, F., & Chen, H. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. *International Journal of Biometeorology, 54*(1), 75–84. https://doi.org/10.1007/s00484-009-0256-x

Twohig-Bennett, C., & Jones, A. (2018). The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. *Environmental Research, 166*, 628–637. https://doi.org/10.1016/J.ENVRES.2018.06.030

van Hoof, J., & Hensen, J. L. M. (2007). Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones. *Building and Environment, 42*(1), 156–170. https://doi.org/10.1016/j.buildenv.2005.08.023

Vidrih, B., & Medved, S. (2013). Multiparametric model of urban park cooling island. *Urban Forestry and Urban Greening, 12*(2), 220–229. https://doi.org/10.1016/j.ufug.2013.01.002

Wang, J., & Schwering, A. (2015). Invariant spatial information in sketch maps — a study of
survey sketch maps of urban areas. *Journal of Spatial Information Science, 11*(11), 31–52. https://doi.org/10.5311/JOSIS.2015.11.225

Ward, K., Lauf, S., Kleinschmit, B., & Endlicher, W. (2016). Heat waves and urban heat islands in Europe: A review of relevant drivers. *Science of the Total Environment, 569–570*, 527–539. https://doi.org/10.1016/j.scitotenv.2016.06.119

Xu, X., Sun, S., Liu, W., García, E. H., He, L., Cai, Q., Xu, S., Wang, J., & Zhu, J. (2017). The cooling and energy saving effect of landscape design parameters of urban park in summer: A case of Beijing, China. *Energy and Buildings, 149*, 91–100. https://doi.org/10.1016/j.enbuild.2017.05.052

Yan, H., Wu, F., & Dong, L. (2018). Influence of a large urban park on the local urban thermal environment. *Science of the Total Environment, 622–623*, 882–891. https://doi.org/10.1016/j.scitotenv.2017.11.327

Zhang, Y., Murray, A. T., & Turner, B. L. (2017). Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. *Landscape and Urban Planning*. https://doi.org/10.1016/j.landurbplan.2017.04.009