Efficacy and safety of high-dose tigecycline for the treatment of infectious diseases

A meta-analysis

Jinhong Gong, MMab, Dan Su, MBa, Jingjing Shang, MMa, Hai Yu, MDc, Guantao Du, MMd, Ying Lin, MMa, Zhiqiang Sun, MD, PhD, Department of Pharmacy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China; bDepartment of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China; cDepartment of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China; dInstitution of Drug Clinical Trial, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, China.

Abstract

Background: High-dose (HD) tigecycline regimen is increasingly used in infectious diseases, however its efficacy and safety versus low-dose (LD) is still unclear.

Methods: A systematic review and meta-analysis was performed; PubMed, Embase, Cochrane Library, ScienceDirect, Web of Science, clinicalTrials.gov, Wanfang, VIP, and China National Knowledge Infrastructure (CNKI), were searched using terms “tigecycline” AND “dose” up to October 31, 2018. Eligible studies were randomized trials or cohort studies comparing mortality, clinical response, microbiological eradication and safety of different tigecycline dose regimens for any bacterial infection. The primary outcome was mortality, and the secondary outcomes were clinical response rate, microbiological eradication rate and adverse events (AEs). Meta-analysis was done with random-effects model, with risk ratios (RR) and 95% confidence intervals (CI) calculated for all outcomes.

Results: Of 951 publications retrieved, 17 studies (n = 1041) were pooled in our meta-analysis. The primary outcome was available in 11 studies, and the RR for mortality was 0.67 (95% CI 0.53–0.84, P < .001). Clinical response (RR 1.46, 95% CI 1.30–1.65, P < .001) and microbiological eradication rate (RR 1.61, 95% CI 1.35–1.93, P < .001) were both higher in HD than in LD tigecycline regimen. However, non-Chinese study subgroup presented no statistical significance between HD and LD regimen, RR for mortality, clinical response and microbiological eradication were 0.79 (95% CI 0.56–1.14, P = .21), 1.35 (95% CI 0.96–1.92, P = .26), 1.00 (95% CI 0.22–4.43, P = 1.00), respectively. AEs did not differ between HD and LD tigecycline (RR 1.00, 95% CI 0.80–1.26, P = .97).

Conclusion: HD tigecycline regimen reduced mortality meanwhile improved clinical efficacy and should be considered in serious infections caused by multidrug-resistant and extensively drug-resistant (MDR/XDR) bacteria.

Abbreviations: AEs = adverse events, CI = confidence intervals, HAP = hospital-acquired pneumonia, HD = high-dose, LD = low-dose, MDR = Multidrug-resistant, PK/PD = pharmacokinetic and pharmacodynamic, RR = risk ratios, VAP = ventilator-associated pneumonia, XDR = extensively drug-resistant.

Keywords: clinical response, high dose, meta-analysis, mortality, tigecycline

1. Introduction

Multidrug-resistant (MDR) to current available antibiotics is increasing. Resistant pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, Enterococcus faecium and Staphylococcus aureus account for the majority of nosocomial infections which challenged the prognostic of infection diseases. Infections with resistant pathogens are associated with increased mortality, morbidity, and length and cost of hospital stay. Classic agents used to treat these pathogens have become powerless and new antibiotics available might have already become targets for bacterial mechanisms of resistance.[1,2] Therefore, development of new antibiotics with high potency, stability against the mechanisms of resistance, and favorable pharmacokinetic and pharmacodynamic (PK/PD) characteristics has become an urgent priority.

Tigecycline is a glycylcycline antibiotic with broad-spectrum activity against nearly all Gram-positive, Gram-negative (except Proteus sp. and Pseudomonas aeruginosa), atypical, anaerobic, as well as MDR pathogens.[3,4] Tigecycline was first approved by the FDA in 2005. Its FDA approved uses include complicated skin/skin structure infections, complicated intra-abdominal infections, and community-acquired bacterial pneumonia.[4]
Due to its low potential for resistance and broad spectrum activity, tigecycline is increasingly used for treatment of MDR infections. However, several studies have reported on the treatment failures of standard dose tigecycline therapy (100 mg IV × 1 followed by 50 mg IV q12h), for example, in a phase 3 study, the cure rates for patients with hospital-acquired pneumonia (HAP) treated with tigecycline at the approved dose were lower than those seen with patients treated with imipenem/cilastatin (47.9% vs 70.1%, respectively). A meta-analysis of Phase 3 and 4 clinical trials also demonstrated an increase in all-cause mortality in standard dose tigecycline treated patients especially with ventilator-associated pneumonia (VAP) compared to controls. From the point of its PK/PD characteristics, especially with ventilator-associated pneumonia (VAP) cause mortality in standard dose tigecycline treated patients.

Phase 3 and 4 clinical trials also demonstrated an increase in all-cause mortality in standard dose tigecycline treated patients. Phase 3 and 4 clinical trials also demonstrated an increase in all-cause mortality in standard dose tigecycline treated patients.

Therefore, we performed a systematic review and meta-analysis to compare the efficacy and safety of HD with LD tigecycline regimens in treating serious infections.

2. Methods

2.1. Data source and searches

An extensive search of PubMed, Embase, Cochrane Library, ScienceDirect, Web of Science, clinicalTrials.gov, as well as Wanfang, VIP, and China National Knowledge Infrastructure (CNKI) up to October 31, 2018 were performed. The search terms applied to all databases was as follows: “tigecycline” AND “dose”. The reference lists of the all relevant articles were manually searched to find further potentially eligible studies. No language restrictions were imposed.

2.2. Study selection

Studies that compared HD tigecycline vs LD tigecycline for the treatment of any bacterial infections were considered eligible for inclusion in the meta-analysis. Studies published as both conference abstracts/posters and full-text articles were included. Studies including overlapped patient populations, the latest published studies were included. Cohort studies only reporting on the outcomes of patients receiving HD tigecycline without comparing with LD regimen were excluded. Case reports, clinical studies reporting on PK/PD outcomes as well as studies reporting none of the following outcomes were also excluded: mortality, clinical response rate (as defined in individual studies), microbiological eradication rate and adverse events (AEs).

2.3. Data extraction and outcomes

Two reviewers (JHG and ZQS) independently did the search, applied predefined inclusion & exclusion criteria and extracted the data. For all outcomes, data were extracted for the available largest patient population evaluated. The following data were extracted from every study: name of the first author, year of publication, study design and period, country, number of patients, site of infection, causative pathogen, dosing regimen of tigecycline, concomitant antibiotic treatment administered. In addition, outcomes such as mortality, clinical response rate, microbiological eradication rate and AEs according to different tigecycline doses were recorded. The primary outcome was all-cause mortality, secondary outcomes including treatment response, microbiological eradication and AEs.

2.4. Statistical analyses

The meta-analysis was done with random-effects models in Review Manager (RevMan) [Computer program] [Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014]. Mantel-Haenszel model with random effects was used because of the obvious heterogeneity across the studies included in the meta-analysis (e.g., different site or severity of infections, concomitant antibiotic treatment, and time to test of cure visit). For all outcomes, pooled risk ratios (RR) and 95% confidence intervals (CI) were calculated according to the Mantel-Haenszel method. Heterogeneity in the results of the studies was assessed using the χ² test for heterogeneity and the I² measure of inconsistency. For outcomes of mortality and AEs, RR < 1 favors HD-regimen of tigecycline, and for clinical response rate and microbiological eradication rate, RR > 1 favors HD-regimen. Subgroup analyses were done by country, type of infection and, for the outcome of AEs, by systems/manifestation. All subgroup and sensitivity analyses were pre-specified, with the exception of 1 sensitivity analysis excluding 2 studies with different HD or LD regimen.

This is a meta-analysis, which does not need to be approved by the institutional review board or Ethics committee.

3. Results

3.1. Characteristics of included studies

Figure 1 presents the overall search protocol. 951 potential articles were identified, 26 studies met the inclusion & exclusion criteria according to information in the title and abstract were assessed for eligibility, of which 9 were excluded. Seventeen studies with a total of 1041 patients were included in the meta-analysis: 16 single-center study and one multi-center study. 3 random controlled trials among which one was a phase 2 double-blind study, one described the randomization method, while the other without any detail illustration. 3 prospective cohort study and 11 retrospective cohort study. Studies covered several different countries, including Italy (2 studies), Spain (2 studies), Brazil (1 study), China (11 studies, 3 published in English, and 8 in Chinese) and one international multicenter.

The HD and LD regimen in most studies were 100 mg every 12 hours and 50 mg every 12 hours respectively, except one compared 100 mg every 12 hours vs 75 mg every 12 hours and one compared 75 mg every 12 hours vs 50 mg every 12 hours. At least 1 concomitant systemic antibiotic was applied in 14 trials, 2 trials without concomitant antibiotic treatment and one did not refer to concomitant antibiotics (Table 1).
3.2. All-cause mortality

Eleven studies reporting mortality were included for analysis. All-cause mortality for patients treated with HD tigecycline was significantly lower than LD (RR 0.67, 95% CI 0.53–0.84, 11 studies, 629 patients) without significant heterogeneity ($P = .30, I^2 = 15\%$). Subgroup analyses by country showed similar result in Chinese study (RR 0.56, 95% CI 0.41–0.75), while studies in other countries presented no significant difference (RR 0.79, 95% CI 0.56–1.14) (Fig. 2A). Compared with LD regimen, all-cause mortality significantly decreased in HD regimen for subgroup of VAP (RR 0.61, 95% CI 0.45–0.83), nosocomial pneumonia (RR 0.42, 95% CI 0.22–0.81) and intra-abdominal infection (RR 0.14, 95% CI 0.02–0.92), while bloodstream infection subgroup showed no statistical significance (RR 0.68, 95% CI 0.43–1.09) (Fig. 2B). Sensitivity analysis excluding two different dose regimen studies was consistent (RR 1.53%, 95% CI 1.34–1.76).

3.3. Clinical response rate

Twelve studies reporting clinical response rate were included for analysis. Clinical response rate of HD regimen was significantly higher than LD (RR 1.46, 95% CI 1.30–1.65, 12 studies, 755 patients) without significant heterogeneity ($P = .37, I^2 = 8\%$). Subgroup analyses by country showed similar result in Chinese study (RR 1.49, 95% CI 1.30–1.70), while studies in other countries presented a negative result (RR 1.35, 95% CI 0.96–1.92) (Fig. 3A). Clinical response rate of HD regimen in subgroup of VAP (RR 1.55, 95% CI 1.32–1.82) and nosocomial pneumonia (RR 1.40, 95% CI 1.19–1.64) increased significantly than LD regimen (Fig. 3B). Sensitivity analysis excluding 2 different dose regimen studies was consistent (RR 1.53%, 95% CI 1.34–1.76).

3.4. Microbiological eradication rate

Ten studies reported microbiological eradication rate were included for analysis. Microbiological eradication rate of HD regimen was significantly higher than LD (RR 1.61, 95% CI 1.35–1.93, 10 studies, 580 patients) without significant heterogeneity ($P = .86, I^2 = 0\%$). Subgroup analyses by country showed similar result in Chinese study (RR 1.63, 95% CI 1.35–1.97), while studies in other countries presented a negative result (RR 1.00, 95% CI 0.22–4.43) (Fig. 4A). HD tigecycline
Main characteristics of the studies included in the meta-analysis.

First author, year	Study design, period, country	No. of pts	Type of infection & causative pathogens	i.v. Tigecycline dose & regimen/pts	Concomitant antibiotic treatment	Outcomes
Ramirez 2013[32]	MC, DB-RCT Europe, Asia, Australia	71	nosocomial pneumonia; AC, Enterobacteriaceae, Aeromonas spp., Stenotrophomonas maltophilia, MSSA, MRSA	HD: 35 pts, 200 mg × 1+ 100mg q12h LD: 36 pts, 150 mg × 1+ 75mg q12h	Yes (cefazolin + tobramycin, amikacin + i.v. vancomycin)	1, 2, 4 VAP-Sub:2
Di Carlo 2013[33]	SC-PC 2011.8.1–2012.8.3 Italy	30	Klebsiella pneumoniae	HD: 12 pts, 200 mg × 1+ 100mg q12h LD: 18 pts, 100mg × 1+ 50 mg q12h	Yes (colistin)	1, 4
De Pascale 2014[34]	SC-RC 2009.6.1–2012.5.31 Italy	100	Severe infections (VAP, IA, BSI and cSSSI) CR-GN (mainly AB, KP)	HD: 46 pts, VAP-sub 33 pts: 200 mg × 1+ 100mg q12h LD: 54 pts, VAP-sub 30 pts: 100 mg × 1+ 50mg q12h	Yes, NS	Total:4 VAP-sub:1, 2, 3, 4
Balandin Moreno 2014[35]	SC-RC 2009.9–2011.9 Spain	15	Serious infections (Pneumonia, UTI, peritonitis, CRB, meningitis) CRKP	HD: 46 pts, 100mg q12h LD: 69 pts, 50mg q12h	Yes, NS	1
De Maio Carrilho 2015[36]	SC-PC 2011.3–2012.12 Brazil	115	CRE infections, eg. Pneumonia, UTI, etc.	HD: 28 pts, 100mg q12h LD: 51 pts, 50mg q12h	Yes, NS	2
Lv 2016[37]	SC-RC 2011.6–2014.3 China	79	VAP, mainly AB, PA and KP	HD: 40 pts, 200 mg × 1+ 100mg q12h LD: 31 pts, 100mg × 1+ 20mg q12h	Yes (Penicillins, third generation cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, phosphonopyrimidines)	2, 3
Fei 2016[38]	SC-RC 2012.2–2015.12 China	71	VAP; AB, KP, Serratia marcescens, E.Coli, S. aureus	HD: 21 pts, 200 mg × 1+ 100mg q12h LD: 11 pts, 100mg × 1+ 50 mg q12h	Yes (ceftazidime + tobramycin, piperacillin-tazobactam, carbapenem)	1, 2, 3
Wu 2016[39]	SC-RC 2013.1–2015.12.31 China	31	nosocomial pneumonia; CR-GNB (AB, KP, E. coli, SM etc.)	HD: 63 pts, VAP LD: 36 pts, 200 mg × 1+100 mg q12h LD: 27 pts, 100 mg × 1+ 50 mg q12h	None	1, 2, 4
Zhao 2016[40]	SC-RC 2014.2–2016.5 China	57	Pneumonia; MDR-AB	HD: 29 pts, 100 mg × 1+ 75 mg q12h LD: 28 pts,100 mg × 1+ 50 mg q12h	Yes (ceftazidime + tobramycin)	1, 2, 3, 4
Zhao 2017[41]	SC-RC 2015.4–2016.4 China	52	Pneumonia; XDR-AB	HD: 26 pts, 100mg q12h LD: 26 pts, 100 mg × 1+ 50 mg q12h	Yes (ceftazidime + tobramycin)	2, 3, 4
Wu 2017[42]	SC-RCT 2015.6–2017.7 China	52	Pneumonia; XDR-AB	HD: 26 pts, 100mg q12h LD: 26 pts, 100 mg × 1+ 50 mg q12h	Yes (ceftazidime + tobramycin)	2, 3, 4
Chen 2018[43]	SC-R 2013.1–2015.12 China	123	VAP; MDR pathogens (mainly AB, KP)	HD: 69 pts, 100mg q12h LD: 54 pts, 100 mg × 1+ 50 mg q12h	Yes (ceftazidime + tobramycin, piperacillin-tazobactam, carbapenem) None	1, 2, 3, 4
Cui 2018[44]	SC-R 2013.5–2016.5 China	100	HAP	HD: 50 pts, 200 mg × 1+100 mg q12h LD: 50 pts, 100 mg × 1+ 50 mg q12h	Yes (Carbapenems, beta-lactamase inhibitors, aminoglycosides)	1, 3
Geng 2018[45]	SD-R 2014.1–2016.12 China	40	Nosocomial BSI; CRKP	HD: 23 pts, 200 mg × 1+ 100mg q12h LD: 17 pts, 100 mg × 1+ 50 mg q12h	Yes (imipenem-clavulanate, meropenem, carbapenems sodiun/subactam sodium, piperacillin sodium/tazobactam sodium, amikacin, linezolid)	2, 4
Xia 2018[46]	SC-R 2015.6–2018.1 China	27	Carbapenem failure blood diseases infection; KP, Enterobacter cloacae, AB, PA	HD: 11 pts, 100mg q12h LD: 16 pts, 100 mg × 1+ 50 mg q12h	Yes (ceftazidime + tobramycin, piperacillin-tazobactam, carbapenem)	2, 3, 4
Li 2018[47]	SC-RC 2016.2–2017.8 China	46	Pneumonia; CR-AB	HD: 22 pts, 100mg q12h LD: 24 pts, 100mg q12h	None	1
Caballero Requejo 2018[48]	SC-RC 2017.1–2017.3 Spain	21	Infections due to MDR-AB	HD: 9 pts, 200 mg × 1+ 100 mg q12h LD: 12 pts, 100 mg × 1+ 50 mg q12h	NR	1

1 = mortality, 2 = Clinical response rate, 3 = microbiological eradication rate, 4 = AEi, AB = Acinetobacter baumanii, AC = Acinetobacter calcoaceticus, BSI = bloodstream infection, CAP = community-acquired pneumonia, CRKP = carbapenemase producing Klebsiella pneumoniae, CR = carbapenem resistant, CRB = catheter-related bacteremia, CRE = carbapenem-resistant enterobacteriaceae, cSSSI = complicated skin and skin-structure infection, DB = double-blind, E. coli = Escherichia coli, GNB = Gram-negative bacteria, HAP = hospital-acquired pneumonia, HD = high-dose regimen, IA = intra-abdominal infection, KP = Klebsiella pneumoniae, LD = low-dose regimen, MC = multi-center, MDR = Multidrug-resistant, MRSA = methicillin-resistant staphylococcus aureus, MSSA = methicillin-sensitive staphylococcus aureus, NR = not reported, NS = not specified, PA = Pseudomonas aeruginosa, PC = prospective cohort study, pts = number of patients, RC = retrospective cohort study, RCT = random controlled trial, SC = single-center, SM = stenotrophomonas maltophilia, sub = subgroup, UTI = urinary tract infection, VAP = ventilator-associated pneumonia, XDR = extensively drug-resistant.
had a higher microbiological eradication efficiency in subgroup of VAP (RR 1.68, 95% CI 1.28–2.21) and nosocomial pneumonia (RR 1.62, 95% CI 1.25–2.09), but bloodstream infection subgroup showed no statistical significance (RR 1.60, 95% CI 0.77–3.35) (Fig. 4B). Sensitivity analysis excluding one different dose regimen study[33] was consistent (RR 1.63%, 95% CI 1.35–1.99). There existed a high heterogeneity in non-Chinese subgroup analysis (P=.06, I²=71%), which might be induced by the opposite clinical result of the 2 included studies.[26,27]
3.5. AEs
Twelve studies[12,25–27,30,32–38] reported AEs were included for analysis. Averse events between HD and LD regimen was similar (RR 1.00, 95% CI 0.80–1.26, 12 studies, 710 patients) without significant heterogeneity ($P = .86, I^2 = 0\%$). Subgroup analyses by country showed similar result in both Chinese study (RR 1.00, 95% CI 0.70–1.44) and non-Chinese study (RR 1.01, 95% CI 0.75–1.31) (Fig. 5A). Sensitivity analysis excluding 2 different dose regimen studies[12,33] was consistent (RR 1.03, 95% CI 0.80–1.32). Further analysis showed that there was no difference between HD and LD in allergy, diarrhea, nausea/vomiting, hepatopancreatic, and hematological toxicity (Fig. 5B).
4. Discussion

Recently, the increasing risk of MDR/XDR organisms propelled the use of tigecycline either in approved indications or off-label uses and high-dose regimen was resorted to be an approach for serious infections. We conducted a meta-analysis of all available studies comparing high and low dose tigecycline regimen. The pre-defined primary outcome was all-cause mortality. We found a statistically significant decrease in all-cause mortality with HD tigecycline. The RR for mortality was 0.67, denoting a 33% decrease in mortality, the 95% CI ranging between a 16% and 47% increase, different infection type presented no discrepancy.
Pooled analysis of non-Chinese study also showed a mortality decrease by 21% but without significant difference.

We found a statistically significant increase of clinical response and microbiological eradication efficiency with HD vs LD tigecycline. Although no significant difference was observed in non-Chinese subgroup, the trend of improved efficacy (RR >1) was consistent. We speculated that the non-significant advantage of HD regimen might due to the different...

Figure 5

A. Adverse events. The analysis is subcategorized by country. RR > 1.0 suggests more adverse events with HD tigecycline treatment.

B. Adverse events. The analysis is subcategorized by manifestation. RR > 1.0 suggests more adverse events with HD tigecycline treatment. HD = high-dose, LD = low-dose, RR = risk ratio.
situation of bacterial resistance between Chinese and non-Chinese countries.

FDA stated a “black box” warning\(^{[40]}\) of higher mortality with tigecycline than comparators based on data from one meta-analysis.\(^{[17]}\) Recent meta-analyses also suggested increased risk of death in patients receiving tigecycline compared with other antibiotics, particularly in patients with VAP.\(^{[44,42]}\) Further interpretation considered the increased death probably was ascribed to decreased clinical and microbiological efficacy.\(^{[17]}\) Knowledge on PK/PD of tigecycline has been questioned - and updated during recent years.\(^{[21,43–45]}\) Many studies and experts suggested dose adjustment of tigecycline based on the indication, pathogens and their susceptibility, PK targets and etc.\(^{[46,47]}\) A higher dose regimen might be a solution to treat infections caused by carbapenemase-producing \(K\). \textit{pneumoniae} with a favorable result.\(^{[50]}\) The results observed in our meta-analysis are consistent with the above findings.

In our meta-analysis, HD tigecycline did not elevated the risk of AEs, however a minor increase was seen in non-Chinese subgroup analysis (RR > 1) with no statistical significance. Other systematic analysis indicated more AEs with HD tigecycline.\(^{[11]}\) Nausea, vomiting, diarrhea are still the most common AEs,\(^{[40,42]}\) nevertheless, reports on tigecycline related coagulopathy and hypofibrinogenemia are increasing.\(^{[43–59]}\) Tigecycline could change series of coagulation parameters, including prolonged prothrombin time, activated partial thromboplastin time, thrombin time, and decreased fibrinogen, especially obvious in patients receiving higher dose.\(^{[56–59]}\) Tigecycline induced coagulation disorders usually could be reversed after promptly discontinuation. Routine strict monitoring of coagulation parameters in patients receiving tigecycline, particularly when given at high dose and/or will last for a longer duration.

Limitations of our analysis include missing data of a negative results study.\(^{[24]}\) We tried to obtain detail data by contacting with the author for several times but failed. Only one high-quality RCT study and 3 prospective cohort studies were available, others were all retrospective cohort studies. Most available studies were from European and China, with the latter predominating. Additionally, in most included studies, tigecycline was used in combination with other systemic antibiotics, and concomitant antibiotics were various.

5. Conclusions
HD tigecycline regimen was safe and effective in patients with serious infections caused by MDR/XDR pathogens. It should be a choice for serious infections with closely monitoring of AEs. Furthermore, well-designed studies especially RCTs from more different countries are required to establish the effectiveness and safety of HD tigecycline.

Author contributions
Conceptualization: Hai Yu, Zhiqiang Sun, Guangjun Liu.

References
[1] Kang SS, Kanafani ZA. Current concepts in antimicrobial therapy against resistant gram-negative organisms: extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin Proc 2011;86:250–9.
[2] Eckmann C, Dryden M. Treatment of complicated skin and soft-tissue infections caused by resistant bacteria: value of linezolid, tigecycline, daptomycin and vancomycin. Eur J Med Res 2010;15:534–6.
[3] Zhanel GG, Homenuk K, Nichol K, et al. The glycylcyclines: a comparative review with the tetracyclines. Drugs 2004;64:63–88.
[4] Stein GE, Babichkach T. Tigecycline: an update. Diag Microbiol Infect Dis 2013;75:331–6.
[5] Ni WT, Han YL, Liu J, et al. Tigecycline treatment for carbapenem-resistant enterobacteriaceae infections: A systematic review and meta-analysis. Medicine (Baltimore) 2016;95:e3126.
[6] Freire AT, Melnyk V, Kim MJ, et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diag Microbiol Infect Dis 2010;68:140–51.
[7] Yahav D, Lador A, Paul M, et al. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother 2011;66:1963–71.
[8] Meagher AK, Ambrose PG, Grasela TH, et al. The pharmacokinetic and pharmacodynamic profile of tigecycline. Clin Infect Dis 2005;41(Suppl 5):S333–40.
[9] Barbour A, Schmidt S, Ma B, et al. Clinical pharmacokinetics and pharmacodynamics of tigecycline. Clin Pharmacokinet 2009;48:373–84.
[10] Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant enterobacteraeae. Curr Opin Infect Dis 2016;29:583–94.
[11] Poulakou G, Bassetti M, Righi E, et al. Current and future treatment options for infections caused by multidrug-resistant Gram-negative pathogens. Future Microbiol 2014;9:1053–69.
[12] Ramurier J, Dartois N, Gandjini H, et al. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem/cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother 2013;57:1756–62.
[13] De Pascale G, Montini L, Spanu T, et al. High-dose tigecycline use in severe infections [abstract P80]. In: 33rd International Symposium on Intensive Care and Emergency Medicine, Brussels, Belgium. Crit Care 2013;17(Suppl 2):S29.
[14] Geng TT, Xu X, Huang M. High-dose tigecycline for the treatment of nosocomial carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Medicine (Baltimore) 2018;97:e99611.
[15] Barza M, Trikalinos TA, Lau J. Statistical considerations in meta-analysis. Infect Dis Clin North Am 2009;23:195–210.
[16] Hoggins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 2003;327:357–60.
[17] Gandjini H, McGovern PC, Yan JL, et al. Clinical efficacy of high tigecycline dosage regimens vs. imipenem/cilastatin in hospital-acquired pneumonia: Results of a randomised phase II clinical trial. Clin Microbiol Infect 2012;18(Suppl 3):64.
Wu XM, Zhu YF, Chen QY, et al. Tigecycline therapy for nosocomial infection. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2018;26:684–90.

Zang HL, Wang SC, Cheng H. Clinical effect of high dose tigecycline on ventilator-associated pneumonia caused by multi-drug resistant bacteria. Zhongguo Yi Yao 2018;13:380–2.

Jesus R, Pablo PH, Esther V, et al. Analysis of treatment failure with standard and high dose of tigecycline in critically ill patients with multidrug-resistant bacteria. Eur J Clin Pharm 2017;19:93–9.

Di Carlo P, Gulotta G, Casuccio A, et al. KPC-3 Klebsiella pneumoniae ST258 clone infection in postoperative abdominal surgery patients in an intensive care setting: Analysis of a case series of 30 patients. BMC Anesthesiol 2013;13:13.

De Pascale G, Montini L, Pennisi MA, et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit Care 2014;18:890.

Balandin Moreno B, Fernandez Simon I, Pintado Garcia V, et al. Tigecycline therapy for infections due to carbapenemase-producing Klebsiella pneumoniae in critically ill patients. Scand J Infect Dis 2014;46:175–80.

de Maio Carrilho CMD, de Oliveira LM, Gaudereto J, et al. A prospective study of treatment of carbapenem-resistant Enterobacteriaceae infections and risk factors associated with outcome. BMC Infect Dis 2016;16:629.

LV XC, Cai GL, Xu QH. Observation of the clinical efficacy of tigecycline for treatment of ventilator-associated pneumonia in critically ill elderly patients. Zhonghua Yi Xue Za Zhi 2016;96:533–8.

Fei M, Zhang M, Cai W. Efficacy and safety of high dose tigecycline in treatment of patients with ventilator-associated pneumonia. Chin J Clin Infect Dis 2016;9:416–21.

Wu XM, Zhu YF, Chen QY, et al. Tigecycline therapy for nosocomial pneumonia due to carbapenem-resistant gram-negative bacteria in critically ill patients who received inappropriate initial antibiotic treatment: a retrospective case study. Biomed Res Int 2016;2016.

Zhao GY. Clinical study on tigecycline for the treatment of ventilator-associated pneumonia in critically ill elderly patients. Zhongguo Ji Yi Xue Za Zhi 2016;8:119–21.

Zhai ZH, Wang XL, Ma ZQ. Clinical study on off-label use of tigecycline combined with cefoperazone and sulbactam in the treatment of pneumonia caused by multidrug-resistant acinetobacter baumannii. J China Pharm 2017;28:201–4.

Wu YH, Yang YY, Gao XH. The clinical analysis of different doses of tigecycline in the treatment of severe pneumonia caused by extensively drug-resistant acinetobacter baumannii. Zhongguo Wei Sheng Biao Zhan Guan Li 2017;8:104–7.

Chen ZH, Shi XY. Adverse events of high-dose tigecycline in the treatment of ventilator-associated pneumonia due to multidrug-resistant pathogens. Medicine (Baltimore) 2018;97:e12467.

Cui N, Yang LZ, Yu ZB, et al. Comparative effects among different doses of tigecycline and imipenem cilastatin in treating hospital acquired pneumonia. Zhongguo Yao Ye 2018;27:62–4.

Xu L, Bao J, Xia RX. Efficacy and safety of salvage tigecycline in severe infection with haematological disorders. Anhui Yi Xue 2018;39:1109–11.

Li ZH, Zhang H, Gao YQ. Study on tigecycline in the treatment of pneumonia patients with carbapenem-resistant acinetobacter baumannii. Zhongguo shi you xin kan 2018;45:99–101.

Caballero Requejo C, Gil Candela M, Gallego Munoz C, et al. High dosage of tigecycline in multidrug resistant acinetobacter baumannii: Use analysis during an outbreak. Eur J Hosp Pharm Sci Pract 2018;23(Suppl 1):A179–80.

Inc, WP. TYGACIL (tigecycline) for injection for intravenous use (highlights of prescribing information). Available at: http://labelingpdf.zercom/ShowLabeling.aspx?id=491 [Accessed Oct 31, 2018].

Prasad P, Sun J, Danner RL, et al. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis 2012;54:1699–709.

Cai Y, Wang R, Liang BB, et al. Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob Agents Chemother 2011;55:1162–72.

Xie J, Wang TT, Sun JY, et al. Optimal tigecycline dosage regimen is urgently needed: results from a pharmacokinetic/pharmacodynamic analysis of tigecycline by Monte Carlo simulation. Int J Infect Dis 2014;18:62–7.

Cunha BA, Baron J, Cunha CB. Once daily high dose tigecycline - pharmacokinetic/pharmacodynamic based dosing for optimal clinical effectiveness: dosing matters, revisited. Expert Rev Anti Infect Ther 2017;15:257–67.

Deitchman AN, Singh RSP, Derendorf H. Nonlinear protein binding: not what you think. J Pharm Sci 2018;107:1754–60.

Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol 2011;7:1459–70.

Borruk-De Moor A, Ryputal E, Potre B, et al. Population pharmacokinetics of high-dose tigecycline in patients with sepsis or septic shock. Antimicrob Agents Chemother 2018;62:e02273–2317.

Xie J, Roberts JA, Alobaid AS, et al. Population pharmacokinetics of tigecycline in critically ill patients with severe infections. Antimicrob Agents Chemother 2013;57:1065–72.

Shana F, Malacarne P, Viaggi B, et al. Carbapenem-sparing antibiotic regimens for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in intensive care unit. Clin Infect Dis 2013;56:897–700.

Xu L, Wang YL, Du S, et al. Efficacy and safety of tigecycline for patients with hospital-acquired pneumonia. Chemotherapy 2016;61:323–30.

Rello J. Pharmacokinetics, pharmacodynamics, safety and tolerability of tigecycline. J Chemother 2005;17(Suppl 1):12–22.

Sabanis N, Paschoou E, Gurvenlaki E, et al. Hypofibrinogenemia induced by tigecycline: a potentially life-threatening coagulation disorder. Infect Dis (Lond) 2015;47:743–6.

Bourneau-Martin D, Crochette N, Drabiller G, et al. Hypofibrinogenemia complicated by hemorrhagic shock following prolonged administration of high doses of tigecycline [Abstract]. In: 20th Annual Meeting of French Society of Pharmacology and Therapeutics, 37th Pharmacovigilance Meeting, 17th APNET Seminar, 14th CHU CIC Meeting. France Fundam Clin Pharmacol 2016;30(Suppl 1):29.

Yilmaz Duran F, Yildirim H, Sen EM. A lesser known side effect of tigecycline. Turk J Haematol 2018;35:103–4.

Pieringer H, Schmekal B, Biesenbach G, et al. Severe coagulation disorder with hypofibrinogenemia associated with the use of tigecycline. Ann Hematol 2010;89:1063–4.

Zhang Q, Zhou SM, Zhou J. Tigecycline treatment causes a decrease in fibrinogen levels. Antimicrob Agents Chemother 2015;59:1630–5.

Xu QX, Zhao P, Dong L, et al. A case report of patient with severe acute cholangitis with tigecycline treatment causing coagulopathy and hypofibrinogenemia. Medicine (Baltimore) 2017;96:e9124.