A Novel Gaussian Based Similarity Measure for Clustering Customer Transactions Using Transaction Sequence Vector

M.S.B.Phridvi Raj1, Vangipuram Radhakrishna2, C.V.Guru Rao3

1 prudviraj.kits@gmail.com, Department of CSE, Kakatiya Institute of Technology and Science, Warangal, India.
2 radhakrishna_v@vnrvijiet.in, Department of Information Technology, VNR VJIET, Hyderabad, India.
3 Principal and Professor, S.R.Engineering College, Warangal, India.

Abstract. Clustering Transactions in sequence, temporal and time series databases is achieving an important attention from the database researchers and software industry. Significant research is carried out towards defining and validating the suitability of new similarity measures for sequence, temporal, time series databases which can accurately and efficiently find the similarity between user transactions in the given database to predict the user behavior. The distribution of items present in the transactions contributes to a great extent in finding the degree of similarity between them. This forms the key idea of the proposed similarity measure. The main objective of the research is to first design the efficient similarity measure which essentially considers the distribution of the items in the item set over the entire transaction data set and also considers the commonality of items present in the transactions, which is the major drawback in the Jaccard, Cosine, Euclidean similarity measures. We then carry out the analysis for worst case, the average case and best case situations. The Similarity measure designed is Gaussian based and preserves the properties of Gaussian function. The proposed similarity measure may be used to both cluster and classify the user transactions and predict the user behaviors.

Keywords: Transaction Sequence vector, similarity measure, cluster, transaction

1. INTRODUCTION

Clustering Transactions in sequence databases, temporal databases, and time series databases is achieving an important attention from the database researchers and from the perspective of the software industry. The importance for clustering comes from the need for decision making such as classification, prediction. The input to clustering algorithm in databases is usually a set of user transactions with the output being set of clusters of user transactions. One of the important properties of clustering is, all the patterns within a cluster share similar or properties in some sense and patterns in different clusters are dissimilar in corresponding sense. The advantage of clustering w.r.t databases is that each user transaction has a fixed item set with the item set consisting of fixed set of items and do not change frequently. In other words, the item set is static. This eliminates the need of preprocessing the transaction dataset. The motivation of this work comes from our previous research (M.S.B.Phridvi Raj et.al; 2014).

In this paper, we design the similarity measure for clustering the user transactions which has the Gaussian property and considers the distribution of each item from the item set over the entire database of transactions. In case the transactions are arriving as a stream then we can first find the closed frequent item set and apply the similarity measure on the final set of transactions.

In the recent years, clustering data streams has gained lot of research focus in academia and industry (Albert Bifet et.al; 2011, Chang Dong Wang et.al; 2013, Chen Ling et.al; 2012, Shi Zhong; 2005). An approach for handling text data stream is discussed in (Yu Bao Liu; 2008). A similarity measure for clustering and classification of the text which considers the distribution of words is discussed in (Yung-Shen Lin et.al; 2014) which helped us a lot in carrying out the work. A tree based approach for clustering text stream data using the concept of ternary vector is discussed in (M.S.B.Phridvi Raj et.al; 2013).

2. PROPOSED MEASURE

The idea for the present similarity measure comes from our previous work (Phridvi Raj et.al; 2014, Chintakindi Srinivas et.al; 2014) considering the feature distribution and commonality which also holds good between the pair of any two transactions. In this work we assume each transaction to be a sequence of 2-tuple elements, the first being count of each item and the later denoting the presence or absence of an item in that transaction say T_i. The table.1 denotes the function Φ, and here we use it as a second element in the 2-tuple representation. We define another function called Δ (I_{jk}, I_{ij}) which is used to store the difference of count of items w.r.t transactions T_i and T_j. The table.1 and table.2 define functions Φ and Δ for the binary and non-binary transaction-item set.
Table 1. Function definitions Φ and Δ for transaction item set in binary form

i_k	j_k	$\Phi(i_k, j_k)$	$\Delta(i_k, j_k)$
0	0	U	0
0	1	0	1
1	0	0	1
1	1	1	0

Table 2. Function definitions Φ and Δ for transaction itemset in non-binary form

i_k	j_k	$\Phi(i_k, j_k)$	$\Delta(i_k, j_k)$
C_{ik}	C_{jk}	$C_{ik} - C_{jk}$	

2.1 Transaction Vector ([Γ_i])

Let Γ_i be any transaction with items defined from the item set $I = \{I_1, I_2, I_3, \ldots, I_m\}$ then the transaction vector is a sequence of 2-tuple elements separated by comma (,) and is denoted by each pair of the form (C_{ik}, E_{ik}) with C_{ik}, E_{ik} being count of item k and presence/absence of item k in transaction T_i respectively.

Let $\Gamma_1 = \{(C_{11}, E_{11}), (C_{12}, E_{12})\ldots, \ldots (C_{1m}, E_{1m})\}$ and $\Gamma_2 = \{(C_{21}, E_{21}), (C_{22}, E_{22})\ldots, \ldots (C_{2m}, E_{2m})\}$ be two transaction vectors. Here C_{ik} denote the count of item k in transaction T_i present and E_{ik} denote presence or absence of an item in transaction T_i. In case we are using binary representation of items without counting then we denote $C_{ik} = 1$; if $E_{ik} = 1$ or we denote $C_{ik} = 0$ in the case $E_{ik} = 0$. If we are maintaining count of each item in transaction, then C_{ik} can be any count if $E_{ik} = 1$ and $C_{ik} = 0$ in the case $E_{ik} = 0$.

2.2 Sequence Vector (SV [Γ_i, Γ_j])

Let Γ_i and Γ_j be any two transaction vectors with items defined from the item set $I = \{I_1, I_2, I_3, \ldots, I_m\}$ then the sequence vector over Γ_i and Γ_j is defined as SV [Γ_i, Γ_j] = $U_k \{T<i,j> \} = U_k \{\Delta^{ij}_k, \Phi^{ij}_k\}$ with U_k denoting union of all 2-tuple elements and is represented as

$$SV[\Gamma_i, \Gamma_j] = [T<i,j>_1, T<i,j>_2, T<i,j>_3, \ldots \ldots T<i,j>_m]$$

where $T<i,j>_k$ is a 2-tuple denoted by $T<i,j>_k = ((C_{ik} - C_{jk}), \Phi(E_{ik}, E_{jk}))$

Let Γ_i and Γ_j be any two transaction vectors with items defined from the item set $I = \{I_1, I_2, I_3, \ldots, I_m\}$ then the sequence vector over Γ_i and Γ_j is thus given by

$$SV [\Gamma_i, \Gamma_j] = [T<1, 2>_1, T<1, 2>_2, T<1, 2>_3, \ldots \ldots, T<1, 2>_m] \quad (1)$$

Where

- $T<1, 2>_1 = ((C_{11} - C_{21}), \Phi(E_{11}, E_{21}))$
- $T<1, 2>_2 = ((C_{12} - C_{22}), \Phi(E_{12}, E_{22}))$
- $T<1, 2>_3 = ((C_{13} - C_{23}), \Phi(E_{13}, E_{23}))$

...

- $T<1, 2>_m = ((C_{1m} - C_{2m}), \Phi(E_{1m}, E_{2m}))$

In general, the Sequence Vector for any two transaction vectors Γ_i and Γ_j is given by

$$SV [T_i, T_j] = U_k \{T<i,j>_1\} = U_k \{\Delta^{ij}_k, \Phi^{ij}_k\} \quad (2)$$
with \(U_k \) denoting union of all 2-tuple elements.

Now, we generalize the sequence vector of two transaction vectors to represent \(SV[T_i, T_j] \) as

\[
SV[T_i, T_j] = \{ T \langle i, j \rangle_1, T \langle i, j \rangle_2, T \langle i, j \rangle_3, \ldots \ldots \ldots T \langle i, j \rangle_m \}
\]

(3)

where

\[
T \langle i, j \rangle_k = (\Delta (I_{ik}, I_{jk}), \Phi (I_{ik}, I_{jk}))
\]

(4)

with

\[
\Delta (I_{ik}, I_{jk}) = |I_{ik}| - |I_{jk}|
\]

\(\Phi \) (\(I_{ik}, I_{jk} \)) is the function on item w.r.t the two transactions \(T_i \) and \(T_j \)

m is the no of items in the item set and k varying from 1 to m.

The sequence vector is a 2 tuple of the form \((\Delta, \Phi)\) with the elements \(\Delta \) and \(\Phi \). Here \(\Delta \) contains the difference of the count of two items in both transactions \(T_i \) and \(T_j \). Here we have the count values of items as 0 or 1. Having defined all the required definitions and terms now we now define our proposed similarity measure given by the equation below

\[
TSIM = \frac{1 + S(\alpha, \beta)}{2}
\]

(5)

Where

\[
S(\alpha, \beta) = \frac{\sum_{k=1}^{m} \alpha \left(T_{ik}, T_{jk} \right)}{\sum_{k=1}^{m} \beta \left(T_{ik}, T_{jk} \right)}
\]

(6)

\[
\alpha \left(T_{ik}, T_{jk} \right) = \begin{cases}
0.5 \times [1 + e^{-\gamma^2}] & ; \Phi(I_{ik}, I_{jk}) = 1 ; \Delta (I_{ik}, I_{jk}) = 0 \\
-e^{-\gamma^2} & ; \Phi(I_{ik}, I_{jk}) = 0 ; \Delta (I_{ik}, I_{jk}) = 1 \\
0 & ; \Phi (I_{ik}, I_{jk}) = U ; \Delta (I_{ik}, I_{jk}) = 0
\end{cases}
\]

(7)

Where

\[
\gamma = \frac{\Delta (I_{ik}, I_{jk})}{\sigma_k}
\]

(8)

and \(\sigma_k \) = standard deviation of feature k in all files of training set.

\[
\beta \left(T_{ik}, T_{jk} \right) = \begin{cases}
0 & ; \Phi(I_{ik}, I_{jk}) = U \\
1 & ; \Phi(I_{ik}, I_{jk}) \neq U
\end{cases}
\]

(9)
Here, \(T_{ik} \) indicates presence or absence of the \(k \)th feature in \(i \)th transaction. The values of \(\alpha \) and \(\beta \) are used to measure the contribution of each feature in finding similarity.

3. VALIDATION OF PROPOSED MEASURE

3.1. Best Case Scenario

In the best case situation, all the items may be present in the pair of transactions considered. For the best case situation \(T_1 = \{1, 1, 1, 1, 1 \ldots \ldots m\} \) and \(T_2 = \{1, 1, 1, 1, 1 \ldots \ldots m\} \). Then the sequence vector is denoted by \(SV_{12} \) and is represented as \(SV_{12} = <1, 1, 1, 1, 1 \ldots \ldots m> \). The value of \(S(\alpha, \beta) \) is computed using eq.7 and eq.9 as shown below

\[
S(\alpha, \beta) = \frac{\alpha(T_1, T_1) + \alpha(T_{12}, T_{12}) + \alpha(T_{13}, T_{13}) + \ldots + \alpha(T_{im}, T_{jm})}{\beta(T_1, T_1) + \beta(T_{12}, T_{12}) + \beta(T_{13}, T_{13}) + \ldots + \beta(T_{im}, T_{jm})}
\]

\[
= 0.5 \times [\left(1 + e^{-\gamma_1^2}\right) + \left(1 + e^{-\gamma_2^2}\right) + \ldots (1 + e^{-\gamma_m^2})] \]

\[
= 0.5 \times (1 + 1 + 1 \ldots \ldots \text{m times}) = 0.5 \times (e^{-\gamma_1^2} + e^{-\gamma_2^2} + e^{-\gamma_3^2} \ldots \ldots e^{-\gamma_m^2}) = \frac{1}{m}
\]

For the best case situation the values of \(\sigma_k \) for \(k = 1 \) to \(m \), approaches zero. This makes the values of \(e^{-\gamma_1^2}, e^{-\gamma_2^2}, e^{-\gamma_3^2} \ldots \ldots e^{-\gamma_m^2} \) become 1.

This means the above equation reduces to

\[
= \frac{0.5 \times m + 0.5 \times m}{m} = \frac{m}{m} = 1
\]

In this case, the similarity measure is

\[
TSIM = \frac{(F + 1)}{(\lambda + 1)} = \frac{(1 + 1)}{(1 + 1)} = 1
\]

(10)

The value of \(TSIM = 1 \) indicates that the two text files are most similar to each other.

3.2 Worst Case Scenario

The worst case situation occurs when all the items are absent in the transactions considered. This means in the worst case worst case \(T_1 = \{0, 0, 0, 0, 0 \ldots \ldots m\} \) and \(T_2 = \{0, 0, 0, 0, 0 \ldots \ldots m\} \). The Sequence Vector is denoted by \(SV_{12} \) and is represented as \(SV_{12} = <U, U, U \ldots \ldots \text{m times}> \).

The value of \(S(\alpha, \beta) \) is computed using eq.7 and eq.9 as shown below

\[
S(\alpha, \beta) = \frac{\alpha(T_1, T_1) + \alpha(T_{12}, T_{12}) + \alpha(T_{13}, T_{13}) + \ldots + \alpha(T_{im}, T_{jm})}{\beta(T_1, T_1) + \beta(T_{12}, T_{12}) + \beta(T_{13}, T_{13}) + \ldots + \beta(T_{im}, T_{jm})}
\]

\[
= \frac{U}{U} \quad \text{(indeterminate situation)}
\]

\[
= -1 \quad \text{(so return -1)}
\]
In this case, the similarity measure is
\[
TSIM = \frac{(F + 1)}{(\lambda + 1)} = \frac{(-1 + 1)}{(1 + 1)} = 0
\]

The value of \(TSIM = 0\) indicates that the two text files are least similar to each other or dissimilar w.r.t each other.

3.3 Average Case Scenario

In the average case situation, \(T_1 = \{1, 0, 1, 0 \ldots m \text{ times}\}\) and \(T_2 = \{0, 1, 0, \ldots m \text{ times}\}\). Then the Feature Vector is denoted by \(SV_{12}\) and is represented as \(SV_{12} = <1, 1, 1, 1 \ldots \ldots m \text{ times}>\). The value of \(S(\alpha, \beta)\) is computed as shown below using eq.7 and eq.9

\[
S(\alpha, \beta) = \frac{\alpha(T_{i1}, T_{j1}) + \alpha(T_{i2}, T_{j2}) + \alpha(T_{i3}, T_{j3}) + \ldots + \alpha(T_{im}, T_{jm})}{\beta(T_{i1}, T_{j1}) + \beta(T_{i2}, T_{j2}) + \beta(T_{i3}, T_{j3}) + \ldots + \beta(T_{im}, T_{jm})}
\]

\[
= \frac{(-e^{-\gamma_1^2}) + (-e^{-\gamma_2^2}) + (-e^{-\gamma_3^2}) \ldots \ldots (-e^{-\gamma_m^2})}{1 + 1 + 1 \ldots \ldots \ldots \text{mtimes}}
\]

\[
= \frac{(-e^{-\gamma_1^2} + e^{-\gamma_2^2} + e^{-\gamma_3^2} \ldots \ldots \text{mtimes})}{m}
\]

Assuming the exponent values all the same, the above equation reduces to

\[
= \frac{-me^{-\gamma^2}}{m} = -e^{-\gamma^2}
\]

(12)

Case 1: \(\gamma = 0\).

The value for similarity measure denoted by \(S\) is now given by

\[
TSIM = \frac{(1 - e^{-\gamma^2})}{(1 + 1)} = \frac{(1 - 1)}{(1 + 1)} = 0
\]

(13)

Case 2: \(\gamma \neq \infty\). Practically it is not infinite.

Then the value for \(S\) is

\[
TSIM = \frac{(1 - e^{-\gamma^2})}{(1 + 1)} = 0.5 \ast (1 - e^{-\gamma^2})
\]

(14)

4. CASE STUDY

Consider the transactions with the following items as in Table.3. The Table.4 below shows the Binary representation of the transaction-item matrix. The entire computation is shown for each pair of transactions as shown below. The value of \(\lambda\) is assumed as 1 for the purpose of biasing the similarity measure. Here \(\sum \alpha\) and \(\sum \beta\) indicates Numerator and Denominator of the function \(S(\alpha, \beta)\) respectively.
Table 3. User transactions with items

FREQUENT ITEMS
T1 {BREAD, BUTTER, JAM}
T2 {JAM, COFFEE, MILK}
T3 {BUTTER, JAM, COFFEE, MILK}
T4 {BREAD, BUTTER, JAM, MILK}
T5 {JAM, BUTTER}
T6 {BREAD, BUTTER, MILK}
T7 {BREAD, BUTTER, COFFEE}
T8 {BUTTER, COFFEE}
T9 {BUTTER, JAM, MILK}

Table 4. Transaction-Itemset matrix in binary form

	bread	butter	jam	coffee	milk
T1	1	1	1	0	0
T2	0	0	1	1	1
T3	0	1	1	1	1
T4	1	1	1	0	1
T5	0	0	1	1	0
T6	1	1	0	0	1
T7	1	1	0	1	0
T8	0	1	0	1	0
T9	0	1	1	0	1

4.1 computations

<T1-T2>: <(1, 0), (1, 0), (0, 1), (1, 0), (1, 0)>

\[\sum^\alpha = -0.02732 -0.00584+1-0.02732 -0.02732 = 0.9122 \]
\[\sum^\beta = 5 \]
\[\text{TSIM} = (0.18244+1)/(1+1) = 0.59122 \]

<T1-T3>: <(1, 0), (0, 1), (0, 1), (1, 0), (1, 0)>

\[\sum^\alpha = -0.02732+1+1-0.02732-0.02732 =1.91804 \]
\[\sum^\beta = 5 \]
\[\text{TSIM} = 0.691804 \]

<T1-T4>: <(0, 1), (0, 1), (0, 1), (0, U), (1, 0)>

\[\sum^\alpha = 1 +1+1+0-0.0273 = 2.97268 \]
\[\sum^\beta = 4 \]
\[\text{TSIM} = (0.74317+1)/(1+1) = 0.871585 \]

<T1-T5>: <(1, 0), (1, 0), (0, 1), (1, 0), (0, U)>

\[\sum^\alpha = -0.0273-0.00584+1-0.02732+0=0.92704 \]
\[\sum^\beta = 4 \]
\[\text{TSIM} = (0.23176+1)/(1+1) =0.61588 \]

<T1-T6>: <(0, 1), (0, 1), (1, 0), (0, U), (1, 0)>

\[\sum^\alpha = 1+1-0.01832+0-0.02732=1.95436 \]
\[\sum^\beta = 4 \]
\[\text{TSIM} = (0.48859+1)/2=0.744295 \]
<T1-T7>: < (0, 1), (0, 1), (1, 0), (1, 0), (0, U)>
\[\begin{align*}
L^\alpha &= 1 + 1 - 0.0183 - 0.0273 + 0 = 1.95436 \\
L^\beta &= 4 \\
TSIM &= (0.48859 + 1) / 2 = 0.744295
\end{align*} \]

<T1-T8> = <(1, 0), (0, 1), (1, 0) , (1, 0), (0, U)>
\[\begin{align*}
L^\alpha &= -0.0273 + 1 + 1 + 0 - 0.0273 = 0.92704 \\
L^\beta &= 4 \\
TSIM &= (0.23716 + 1) / 2 = 0.61588
\end{align*} \]

<T1-T9> = <(1, 0), (0, 1), (0, U), (1, 0)>
\[\begin{align*}
L^\alpha &= -0.0273 + 1 + 1 + 0 - 0.0273 = 1.94536 \\
L^\beta &= 4 \\
TSIM &= (0.48634 + 1) / 2 = 0.74317
\end{align*} \]

<T2-T3> = <(0, U), (1, 0), (0, 1), (0, 1)>
\[\begin{align*}
L^\alpha &= 0 + 0.00584 + 1 + 1 + 1 = 2.9213 \\
L^\beta &= 4 \\
TSIM &= 0.8651625
\end{align*} \]

<T2-T4> = <(1, 0), (0, 1), (1, 0), (0, 1)>
\[\begin{align*}
L^\alpha &= -0.0273 - 0.00584 + 1 - 0.0273 = 1.8940 \\
L^\beta &= 5 \\
TSIM &= 0.6894
\end{align*} \]

<T2-T5> = <(0, U), (0, U), (1, 0), (1, 0), (0, 1)>
\[\begin{align*}
L^\alpha &= 0 + 0 - 0.0183 - 0.0273 + 1 = 0.9271 \\
L^\beta &= 3 \\
TSIM &= 0.6545
\end{align*} \]

<T2-T6> = <(1, 0), (1, 0), (1, 0), (0, 1)>
\[\begin{align*}
L^\alpha &= -0.0273 - 0.00584 - 0.0183 + 0.0273 + 1 = 0.9486 \\
L^\beta &= 5 \\
TSIM &= 0.59486
\end{align*} \]

<T2-T7> = <(1, 0), (1, 0), (1, 0), (0, 1), (1, 0)>
\[\begin{align*}
L^\alpha &= -0.0273 - 0.00584 - 0.0183 + 0.0273 + 1 = 0.9486 \\
L^\beta &= 5 \\
TSIM &= 0.59486
\end{align*} \]

<T2-T8> = <(0, U), (1, 0), (1, 0), (0, 1), (1, 0)>
\[\begin{align*}
L^\alpha &= 0 - 0.00584 - 0.0183 + 0.0273 + 1 = 0.9213 \\
L^\beta &= 4 \\
TSIM &= 0.6152
\end{align*} \]
\(<T2-T9> = <(0,U), (1,0), (0,1), (1,0), (0,1)> \)

\[\mathcal{L} \alpha = 0+0.00584+1+0.02732+1=1.9213 \]
\[\mathcal{L} \beta = 4 \]
\[\text{TSIM} = 0.7402 \]

\(<T3-T4> = <(1,0), (0,1), (0,1), (1,0), (0,1)> \)

\[\mathcal{L} \alpha = -0.0273+1+1+0.02732= 2.8940 \]
\[\mathcal{L} \beta = 5 \]
\[\text{TSIM} = 0.7894 \]

\(<T3-T5> = <(0,U), (1,0), (0,1), (1,0), (1,0)> \)

\[\mathcal{L} \alpha = 0+0.00584+1+1+0.02732=1.9213 \]
\[\mathcal{L} \beta = 4 \]
\[\text{TSIM} = 0.7402 \]

\(<T3-T6> = <(1,0), (0,1), (1,0), (0,1), (0,1)> \)

\[\mathcal{L} \alpha = -0.0273+1-0.01832+0.02732=1.8940 \]
\[\mathcal{L} \beta = 5 \]
\[\text{TSIM} = 0.6894 \]

\(<T3-T7> = <(1,0), (0,1), (1,0), (0,1), (1,0)> \)

\[\mathcal{L} \alpha = -0.0273+1-0.01832+1+0.02732=1.8940 \]
\[\mathcal{L} \beta = 5 \]
\[\text{TSIM} = 0.6894 \]

\(<T3-T8> = <(0,U), (0,1), (1,0), (0,1), (1,0)> \)

\[\mathcal{L} \alpha = 0+1-0.01832+1+0.02732 = 1.9213 \]
\[\mathcal{L} \beta = 4 \]
\[\text{TSIM} = 0.7402 \]

\(<T3-T9> = <(0,U), (0,1), (0,1), (1,0), (0,1)> \)

\[\mathcal{L} \alpha = 0+1+1+0.02732+1=2.9213 \]
\[\mathcal{L} \beta = 4 \]
\[\text{TSIM} = 0.8652 \]

\(<T4-T5> = <(1,0), (1,0), (0,1), (1,0), (1,0)> \)

\[\mathcal{L} \alpha = -0.0273-0.00584+1-0.02732+0.02732= 0.8940 \]
\[\mathcal{L} \beta = 5 \]
\[\text{TSIM} = 0.5894 \]

\(<T4-T6> = <(0,1), (0,1), (1,0), (0,U), (0,1)> \)

\[\mathcal{L} \alpha = 1+1-0.01832+0+1= 2.9213 \]
\[\mathcal{L} \beta = 4 \]
\[\text{TSIM} = 0.8652 \]
\[\langle T_4-T_7 \rangle = \langle (0,1), (0,1), (1,0), (1,0), (1,0) \rangle \]

\[\mathcal{L}^\alpha = 1 + 1 - 0.01832 - 0.02732 - 0.02732 = 1.8940 \]
\[\mathcal{L}^\beta = 5 \]
TSIM = 0.6894

\[\langle T_4-T_8 \rangle = \langle (1,0), (0,1), (1,0), (1,0), (1,0) \rangle \]

\[\mathcal{L}^\alpha = -0.0273 + 1 - 0.01832 - 0.02732 - 0.02732 = 0.8940 \]
\[\mathcal{L}^\beta = 5 \]
TSIM = 0.5894

\[\langle T_4-T_9 \rangle = \langle (1,0), (0,1), (0,1), (0,1), (0,1) \rangle \]

\[\mathcal{L}^\alpha = -0.0273 - 0.00584 - 0.01832 - 0.02732 - 0.02732 = -0.0514 \]
\[\mathcal{L}^\beta = 4 \]
TSIM = 0.4949

\[\langle T_5-T_7 \rangle = \langle (1,0), (1,0), (1,0), (0,1), (0,1) \rangle \]

\[\mathcal{L}^\alpha = -0.0273 - 0.00584 - 0.01832 + 1 + 0 = 0.9213 \]
\[\mathcal{L}^\beta = 4 \]
TSIM = 0.6152

\[\langle T_5-T_8 \rangle = \langle (0,1), (1,0), (1,0), (0,1), (0,1) \rangle \]

\[\mathcal{L}^\alpha = 0 - 0.00584 - 0.01832 + 1 + 0 = 0.9486 \]
\[\mathcal{L}^\beta = 3 \]
TSIM = 0.6581

\[\langle T_5-T_9 \rangle = \langle (0,1), (1,0), (0,1), (1,0), (1,0) \rangle \]

\[\mathcal{L}^\alpha = 0 - 0.00584 + 1 - 0.02732 - 0.02732 = 0.9213 \]
\[\mathcal{L}^\beta = 4 \]
TSIM = 0.6152

\[\langle T_6-T_7 \rangle = \langle (0,1), (0,1), (0,1), (1,0), (1,0) \rangle \]

\[\mathcal{L}^\alpha = 1 + 1 + 0 - 0.02732 - 0.02732 = 1.9123 \]
\[\mathcal{L}^\beta = 4 \]
TSIM = 0.7390

\[\langle T_6-T_8 \rangle = \langle (1,0), (0,1), (0,1), (1,0), (1,0) \rangle \]

\[\mathcal{L}^\alpha = -0.0273 + 1 + 0 - 0.02732 - 0.02732 = 0.9123 \]
\[\mathcal{L}^\beta = 4 \]
TSIM = 0.6140
\(<T6-T9> = <(1,0), (0,1), (1,0), (0, U), (0,1)>\)

\[\mathcal{L}_\alpha = -0.0273 + 1.01832 + 0 + 1 = 1.9213\]
\[\mathcal{L}_\beta = 4\]
TSIM = 0.7402

\(<T7-T8> = <(1,0), (0,1), (0, U), (0, U), (0,1)>\)

\[\mathcal{L}_\alpha = -0.0273 + 1.01832 - 0.0183 + 1 + 0 = 1.9396\]
\[\mathcal{L}_\beta = 5\]
SIM = 0.8652

\(<T7-T9> = <(1,0), (0,1), (1,0), (1,0), (1,0)>\)

\[\mathcal{L}_\alpha = -0.0273 + 1.01832 - 0.01832 - 0.02732 - 0.02732 = 0.8940\]
\[\mathcal{L}_\beta = 5\]
SIM = 0.5894

\(<T8-T9> = <(0, U), (0,1), (1,0), (1,0), (1,0)>\)

\[\mathcal{L}_\alpha = 0.01832 - 0.02732 - 0.02732 = 0.9213\]
\[\mathcal{L}_\beta = 4\]
SIM = 0.6152

The table below shows the similarity value for each transaction pair called similarity matrix. As the similarity values of the matrix are symmetric, we only show the upper triangular element values in the table depicting similarity matrix.

	T1	T2	T3	T4	T5	T6	T7	T8	T9
T1	-	0.59122	0.6918	0.8715	0.6158	0.7442	0.7442	0.6158	0.7431
T2	-	-	0.8651	0.6894	0.6545	0.5948	0.5948	0.6152	0.7402
T3	-	-	-	0.7894	0.7402	0.6894	0.6894	0.7402	0.8652
T4	-	-	-	-	0.5894	0.8652	0.6894	0.5894	0.8652
T5	-	-	-	-	-	0.4949	0.6152	0.6581	0.6152
T6	-	-	-	-	-	-	0.7390	0.6140	0.7402
T7	-	-	-	-	-	-	-	0.8233	0.5894
T8	-	-	-	-	-	-	-	-	0.6152
T9	-	-	-	-	-	-	-	-	-

The final set of Clusters formed after applying Clustering algorithm (Vangipuram et al; 2014, C.Srinivas et al; 2013, Phridviraj et al; 2014) is

Cluster-1: \{ T_1, T_2, T_3, T_4, T_6, T_9 \}
Cluster-2: \{ T_7, T_8 \}
Cluster-3: \{ T_5 \}
5. CONCLUSIONS

The objective of this research is to propose a new similarity measure which considers the distribution of the items of the transaction over the entire transaction dataset and can be used for clustering and classification of transactions and also the users based on the transactions carried out. This helps in predicting user behaviors in advance. In this paper, we design and define a novel similarity measure which can be used to cluster the user transactions. The similarity measure is analyzed for worst case, average case and best case situations. To extend the clustering process to data stream of transactions we may use the algorithm defined in (M.S.B.PhriddviRaj et.al, 2014). In future we may extend the research to handle the data streams and evaluate the suitability of proposed similarity measure to perform the classification.

REFERENCES

Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Ricard G. (2011) Mining Frequent Closed Graphs on Evolving Data Streams. ACM SIGKDD International Conference on Knowledge discovery and Data Mining, 591-599.
Chang Dong Wang, Dong Huang. (2013) A Support Vector Based Algorithm for Clustering Data Streams. IEEE Transactions on Knowledge and Data Engineering, 25(6), 1410-1424.
Charu C. Aggarwal, Jiawei Han, Wang J, Philip S. (2004) On Demand Classification of Data Streams. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 503-508.
Chen Ling, Zou Ling Jun, Tu Li. (2012) Clustering Algorithm For Multiple Data Streams based on Spectral Component Similarity. Information Sciences, 18 (3), 35-47.
Cheqing Jin, Weining Qian, Chaofeng Sha, Jeffrey X.Yu, Aoying Z. (2003) Dynamically maintaining frequent items over a data stream. International Conference on Information and Knowledge Management. 287-294.
Chintakindi Srinivas, Vangipuram Radhakrishna, C.V. Guru Rao. (2014) Clustering Software Components for Program Restructuring and Component Reuse Using Hybrid XNOR Similarity Function. Procedia Technology Journal, 12, 246-254.
Chintakindi Srinivas, Vangipuram Radhakrishna, C. V. Guru Rao. (2014) Clustering and Classification of Software Component for Efficient Component Retrieval and Building Component Reuse Libraries. Procedia Computer Science Journal, 31, 1044-1050.
Haiyan Zhou, Xiaolin Bai, Jinsong Shan. (2011) A Rough Set based Clustering Algorithm for Multi-Stream. Procedia Engineering, 15, 1854-58.
Hoang Thanh Lam, Toon Calders. (2010) Mining Top-K Frequent Items in a Data Stream with Flexible Sliding Windows. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 283-292.
Jun Yan, Benyu Zhang et.al. (2006) A Scalable Supervised Algorithm for Dimensionality Reduction on Streaming Data. Information Sciences, 176(6), 2042-2065.
Jun Yan, Benyu Zhang, Ning, Shuicheng Yan Liu, Qiansheng Cheng. (2006) Effective and Efficient Dimensionality Reduction for Large-Scale and Streaming Data Preprocessing. IEEE Transactions on Knowledge and Data Engineering, 18, 320 – 333.
L.Rutkowski, Lena Pietruczuk, Piotr Duda, Maciej Jaworski. (2013) Decision trees for Mining Data Streams Based on McDiarmid’s Bound. IEEE Transactions on Knowledge and Data Engineering, 25, 1272-1279.
M.S.B.PhriddviRaj, Chintakindi Srinivas, C.V. GuruRao. (2014) Clustering Text Data Streams – A Tree based Approach with Ternary Function and Ternary Feature Vector. Journal Procedia Computer Science, 31, 976-984.
M.S.B.PhriddviRaj, C.V. GuruRao. (2014) Data Mining – Past, Present and Future, A Typical Survey on Data Streams, Journal Procedia Technology, 12, 255-263.
M.S.B.PhriddviRaj, C.V. Guru Rao. (2013) Mining Top-K Rank Frequent Patterns in Data Streams -A Tree Based Approach with Ternary Function and Ternary Feature Vector. ACM International Conference on Innovative Computing and Cloud Computing, 271-277.
Mohamed Medhat Gaber. (2012) Advances in Data stream mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 79–85.
Nan Jiang and Le Grunewald. (2006) Research Issues in Data Stream Association Rule Mining. SIGMOD Record, 35(1).
Panagiotis Antonellis, Christos Makris, Nikos Tsirakis. (2009) Algorithms for Clustering Click Stream Data. Information Processing Letters,109(8), 381–385.
Pedro Pereira Rodrigues, Joao Gama and Joao Pedro Pedro. (2008) Hierarchical Clustering of Time Series Data Streams. IEEE Transactions on Knowledge and Data Engineering, 20(5), 1041-4347.
Shi Zhong. (2005) Efficient Streaming Text Clustering. *Neural Networks, 18* (5), 790–798.
Vangipuram Radhakrishna, C. Srinivas, C. V. Guru Rao. (2013) Document Clustering Using Hybrid XOR Similarity Function for Efficient Software Component Reuse. *Procedia Computer Science Journal, 17*, 121-128.
Yu Bao Liu et.al. (2008) Clustering Text data streams. *Journal of Computer Science and Technology, 23*(1), 112-128.
Yung Shen Lin, Jung Yi Jiang, Shie Jue Lee. (2014) A Similarity Measure for Text Clustering and Classification. *IEEE Transactions on Knowledge and Data Engineering, 26*(7), 320 – 333.