Association between use of aspirin or non-aspirin non-steroidal anti-inflammatory drugs and erectile dysfunction

A systematic review

Tao Li, MDa,b, Changjing Wu, MDa, Fudong Fu, MDa, Feng Qin, MDa, Qiang Wei, MDb, Jiuhong Yuan, MDa,b,*

Abstract

Objective: There are various etiologies of erectile dysfunction (ED), including endothelial dysfunction, atherosclerosis, and chronic inflammation. Aspirin has a protective role against endothelial dysfunction and atherosclerosis, whereas all non-steroidal anti-inflammatory drugs (NSAIDs) are known for their anti-inflammatory properties. However, association between the use of aspirin or non-aspirin NSAIDs and ED is controversial. Therefore, we reviewed this relationship.

Methods: We systematically reviewed the pathophysiology of ED, physiological effect of prostaglandins, pharmacological action of NSAIDs, and clinical and basic research studies that evaluated the effect of aspirin or non-aspirin NSAIDs on ED.

Results: The research studies that assessed association between aspirin or non-aspirin NSAIDs are limited, and only 12 articles have been published. One clinical and three basic studies have claimed that aspirin or non-aspirin NSAIDs are beneficial for ED by preserving nitric oxide synthase impairment or penile blood hypercoagulability. One basic and two clinical studies considered them as risk factors because they interfered with prostaglandin production. By contrast, four clinical studies showed irrelevant results after controlling various medical indications. In addition, the mechanical effect of aspirin or non-aspirin NSAIDs on the nitric oxide pathway is still controversial.

Conclusions: The available research studies revealed that association between aspirin or non-aspirin NSAIDs and ED is controversial. Considering the high frequency of drug use, further clinical and basic investigations should be conducted to clarify their exact relationship.

Abbreviations: AA = arachidonic acid, CAMP = cyclic adenosine monophosphate, CCS = corpus cavernosum strips, COX = cyclooxygenase, CVD = cardiovascular disease, ED = erectile dysfunction, EF = erectile function, EFS = electrical field stimulation, eNOS = endothelial nitric oxide synthase, ICP/MAP = intracavernosal pressure/mean arterial pressure, iNOS = inducible NOS, nNOS = neuronal NOS, NO = nitric oxide, NSAIDs = non-steroidal anti-inflammatory drugs, PCa = prostate cancer, PGD2 = prostaglandin D2, PGE2 = prostaglandin E2, PGG2 = prostaglandin G2, PGH2 = endoperoxide, PGI2 = prostaglandin I2, PGs = prostaglandins, PKA = protein kinase A, TXA2 = thromboxane A2.

Keywords: Aspirin, chronic inflammation, endothelial dysfunction, erectile dysfunction, non-aspirin non-steroidal anti-inflammatory drugs

1. Introduction

Erectile dysfunction (ED) is defined as the inability to achieve or maintain sufficient penile erection for a satisfactory sexual performance. It is a common disease in middle-aged and elderly men, with an estimated prevalence rate of 25%–35%. ED is mainly considered an organic vascular disease, with similar risk factors, including hypertension, diabetes, and hyperlipidemia. All these factors reduce nitric oxide (NO) production, which is essential for normal erectile function (EF).

Bodies of evidences show that ED has been considered as an early indicator of CVD and that its severity is associated with heart disease severity. Considering its protective role against CVD, aspirin should be beneficial for ED. Meanwhile, low-grade inflammation processes or high circulating proinflammatory markers are also related to the ED process. Thus, aspirin or non-aspirin non-steroidal anti-inflammatory drugs (NSAIDs), with their anti-inflammatory ability, may also improve ED.

On the contrary, as vasodilative agents of prostaglandin I2 (PGI2) and prostaglandin E2 (PGE2), they have been used for penile rehabilitation by using SuperEnzyme of COX-2-linker-PGIS, aspirin or non-aspirin NSAIDs would deteriorate normal EF as they block cyclooxygenase (COX) activity to decrease these vasodilative prostaglandins (PGs).
ED is common in patients with prostate cancer (PCa), regardless of whether they received surgery or external beam radiation therapy. As inflammatory infiltration is found in the pathogenesis and progression of PCa, whether aspirin prevents PCa prevalence or progression is currently investigated. Thus, the effect of aspirin on PCa-related ED should be recognized. Although aspirin and non-aspirin NSAIDs consumption is tremendous (10–20 billions of aspirin has been taken annually to prevent CVD or atherosclerosis in the United States), we first systematically reviewed the potential role of aspirin or non-aspirin NSAIDs on ED progression, presenting a conclusion for concerned consumers.

2. PGs

As one of the most prevalent autacoids, PGs play an important role in regulating penile erection. Synthesis of PGs involves 2 steps. First, arachidonic acid (AA) released from cell membranes is converted to an unstable endoperoxide (PGG2) by PG endoperoxide synthase or COX. This is followed by the cleaving of peroxidase to peroxide and then the transformation to endoperoxide (PGH2). The unstable PGH2 are rapidly isomerized to biologically active end-products of PGI2, PGE2, prostaglandin D2 (PGD2), prostaglandin F2α (PGF2α), and thromboxane A2 (TXA2) by the corresponding synthase. PGs have incredible broad-spectrum effects and modulate almost every biological function.

In the penile erectile process, PGI2 and PGE1 can bind to the endothelial PGI receptor (IP) and PGE receptor (EP, mainly EP2/EP4). This will initiate adenylyl cyclase to increase intracellular cyclic adenosine monophosphate (cAMP) levels. The elevated cAMP can finally stimulate protein kinase A (PKA) to induce cascade of phosphorylation and inhibit myosin light chain kinase, with a result of trabecular smooth muscle relaxation and vasodilation. For this relaxant ability, PGI2 has been regarded as a valid candidate for ED treatment, whereas repeated intracavernous or intraurethral PGE1 injection can increase neuronal and endothelial NOS proteins to improve ED. PGD2 also produced modest relaxation of penile arteries via interaction with EP2 and other receptors. Except the relaxant PGs, PGI2 can also convert to TXA2 and PGF2α, which stimulate TXA2 and PGF2α receptors, respectively, to mediate contraction in human penile smooth muscle cells and arteries in various pathophysiological conditions. Meanwhile, hypercoagulability subsequent to the elevated TXA2 plays a key initiating role in aging impotence (Fig. 2).

3. NSAIDs

As the rate-limiting enzyme of PGs biosynthesis, COX was first purified from sheep seminal vesicles in 1976. Now, we recognize 2 distinct enzymes in humans, the constitutive COX-1 and inducible COX-2. They have a molecular weight of 70 to 71 kDa and an almost identical length, with 63% of its >600 amino acid content having similar sequences.

NSAIDs are a generic term for many chemically distinct drugs, including aspirin. Although having different family members and individual effects, all NSAIDs share a unifying mechanism of inhibiting COX activity to reduce PGs production, including the relaxant PGI2/PGE2/PGD2 and/or contractile TXA2/PGF2α.

PGD2 also produced modest relaxation of penile arteries via interaction with EP2 and other receptors. Except the relaxant PGs, PGI2 can also convert to TXA2 and PGF2α, which stimulate TXA2 and PGF2α receptors, respectively, to mediate contraction in human penile smooth muscle cells and arteries in various pathophysiological conditions. Meanwhile, hypercoagulability subsequent to the elevated TXA2 plays a key initiating role in aging impotence (Fig. 2).

4. Beneficial factors

Endothelial dysfunction, chronic inflammation, and hypercoagulability play important roles in the ED process. As aspirin or non-aspirin NSAIDs prevent CVD or atherosclerosis, reduce hypercoagulability, increase NO bioavailability, and induce anti-inflammatory effects, it is reasonable to infer that they also improve ED. Whereas one clinical study and four basic studies evaluated this relationship and concluded with a beneficial result (Table 1).

Lithium carbonate, one of the few effective methods for maintenance therapy of bipolar affective disorder, has adverse effects on endothelium-mediated relaxation of corporeal tissue and leads ED through impairment of the NO pathway. The clinical study recruited lithium-related ED patients and found that aspirin improved EF in 85.4% of patients, which was significantly higher than the 19.7% of patients who showed improvement with placebo. In another rat study, indomethacin, another NSAID, reversed the lithium-related NO pathway deterioration and improved relaxant responses of corpus cavernosum strips (CCS). They speculated that aspirin or indomethacin improved the impaired endothelium-dependent relaxations in lithium-related ED by upregulation of the NO pathway. Another in vitro study also revealed that indomethacin strengthened the endothelium-dependent relaxation of human and rabbit CCS to bradykinin, acetylcholine, and substance P.
To decrease these vasorelaxation PGs[24] and interrupt

improve ED. As aspirin or non-aspirin NSAIDs inhibit the COX

fi

of CCS to acetylcholine and electrical

al pressure (ICP/MAP) ratio, and improved relaxation response

normalized the diminished intracavernosal pressure/mean arteri-

proved that aspirin preserved impaired nNOS expression,

protective effect was also observed in diabetic rat penis, which

this assumption (Table 1).

Meantime, elevated TXA2 during erection contributes to
hypercoagulability, which is essential to initiate penile vascular
changes and impotence. With decreased TXA2 biosynthesis,
aspirins delay intimal proliferation, prevents blood hypercoagu-
ability, and improves arterial flow in the penis of chacma baboon.[23] As a result, penile atherosclerosis and aging
impotence were prevented.[23,25] ED is also known for reduced
ED in the NSAID group.[4] The adjusted OR decreased to 1.09
(95% CI 1.06–1.13) and 1.38 (95% CI 1.29–1.47), respectively,
after controlling the risk factors. However, the ORs were still
significantly higher, and a dose-response relationship was
observed.[4] Another Finnish study recruited 1126 men and
controls of smoking, age, and some medical indications.
The results showed that the relative risk of ED in the NSAID
group was 1.8 (95% CI 1.2–2.6). Patients with (incidence density
ratio [IDR]=2.0, 95% CI 1.2–3.5) or without arthritis (IDR=
1.9, 95% CI: 1.2–3.1) who received NSAIDs showed increased
incidence of ED as compared with those who did not use NSAIDs
and had no arthritis. For the men with arthritis who did not
receive NSAIDs, the risk was just slightly elevated (IDR=1.3,
95% CI: 0.9–1.8).[5]

Meanwhile, a rat study showed that single-dose indomethacin
significantly reduced the ICP/MAP ratio, whereas longer-term
management significantly decreased the ratio at higher frequen-
cies and even completely abolished erectile responses at low
frequencies, with significantly total plasma NO level reduction
observed.[25] It also significantly decreased the relaxation
response of CCS to acetylcholine.[24] Moreover, diclofenac,
another NSAID, also reduced erectile responses at low frequen-
cies.[25]
Table 1

Study results.

Journal (year)	Author/reference	Research object	Research type	Evidence level	Medicine	Main result
BJU Int (2007)	Sadeghipour et al[26]	Lithium-treated SD rats	Basic	Basic	Indomethacin	Indomethacin significantly increased relaxant responses to acetylcholine in lithium-treated rat CCS.
J Urol (1992)	Azadbai et al[27]	Human and rabbit CCS	Basic	Basic	Indomethacin	Indomethacin significantly decreased the response to bradykinin, acetylcholine and substance P.
Br J Urol (1987)	Bonman et al[28]	Chacma baboons	Basic	Basic	Aspirin	Aspirin prevented penile blood hypercoagulability, which may delay penile atherosclerosis and ageing impotence.
Andrologia (2014)	Hafez et al[29]	Diabetic rats	Basic	Basic	Aspirin (Acetylsalicylic acid)	Aspirin preserved impaired NOG, normalized diminished IDR/MAP ratio, and improved relaxant response of diabetic rat CCS to acetylsalicylic acid and EFS.
J Urol (2011)	Gleason et al[30]	Kaiser Permanente Medical Care Program	Cohort study	2b	NSAIDs	NSAIDs significantly improved moderate (OR: 1.09) and severe (OR: 1.38) ED.
J Urol (2011)	Stiri et al[31]	Tampere Aging Male Urological Study	Retrospective study	3b	NSAIDs	NSAIDs increased ED incidence with arthritis (IDR: 2.0) or without (IDR: 1.9) than those who do not use NSAIDs and was free from arthritis.
World J Urol (2011)	Senber[32]	Health rats	Basic	Basic	Indomethacin	Single-dose indomethacin significantly reduced erectile response to electrical stimulation at all frequencies. Longer-term indomethacin abolished erectile responses at low frequencies and significantly reduced IDR/MAP at higher frequencies. It significantly reduced total plasma NO.
Irrelevance BJU Int (2016)	Patel et al[33]	Prostate Cancer Prevention Trial	Retrospective study	3b	Aspirin	OR of severe ED reduced to insignificant 1.10 (P = 0.18).
BJU Int (2013)	Kapelian et al[34]	Boston Area Community Health Survey	Cohort study	2b	Aspirin-containing medications	OR of ED reduced to insignificant 1.15 (95% CI: 0.72–1.85).
Am Heart J (2007)	Bohm et al[35]	Ontario/TRANSCEND	Retrospective study	3b	Aspirin or clopidogrel	89.2% Patients received aspirin or clopidogrel, which did not increase ED risk.
Int J Urol Nephrol (2008)	Bene et al[36]	Clinical Stroke patients	Retrospective study	3b	Aspirin	Aspirin is the most common taken drug, the taken frequency is similar with ED (75%) and without (71%).

BAP = bipolar affective disorder, CCS = corpus cavernosum strips, CI = confidence interval, CVD = cardiovascular disease, ED = erectile dysfunction, EFS = electrical field stimulation, IDR = intracavernosal pressure/mean arterial pressure, IDRI = incidence density ratio, nNOS = neuronal nitric oxide synthase, NSAIDs = nonsteroidal anti-inflammatory drugs, OR = odds ratio, ONTARGET/TRANSCEND = ONGoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial/Telmisartan Randomized Assessment Study in Aged-Risk Subjects with Cardiovascular Disease, RCT = randomized controlled trial.
*Estimated with Oxford Centre for Evidence-Based Medicine.

6. Irrelevance

Aspirin or non-aspirin NSAIDs inhibit the production of vasodilative and vasoconstrictive PGs. Considering that PG2 concentration is low in penile blood during erection, prevention of PG2 synthesis is probably of minor importance in the erectile process.[37] Meanwhile, the relationship between PGE1 or PG2 and the NO signal pathway is still vague.[13] Thus, the protective or detrimental role of aspirin or non-aspirin NSAIDs on ED remains to be verified. Four large clinical investigations[21,9,5,12] have been performed and concluded an irrelevant relationship between aspirin or non-aspirin NSAIDs and ED (Table 1).

The Prostate Cancer Prevention Trial recruited 4726 men and summarized that administration of non-aspirin NSAIDs increased the risk of mild/moderate ED (OR 1.16; P = .02) and aspirin increased the risk of severe ED (OR 1.16; P = .03). As many NSAIDs indications such as arthritis, joint pain, muscle aches, hypertension, hyperlipidemia, coronary artery, and atherosclerotic disease directly cause ED, whether this association attributes to NSAID usage or medical disease is unclear. After a strict control of NSAID indications, the OR was reduced to insignificant values of 1.10 (P = .99) and 1.10 (P = .16).[10] The Boston Area Community Health survey included 2301 aged men and revealed that aspirin-containing medications were associated with higher ED risk in unadjusted analyses. However, OR was also reduced to an insignificant value of 1.15 (95% CI: 0.72–1.85) in the multivariable analyses.[38] A sub-study of ONTARGET/TRANSCEND trials evaluated the association between ED and current treatment in high-risk CVD patients. As a result, 89.2% of the patients received aspirin or clopidogrel, which
would not increase ED risk.12,19 Meanwhile, the Qatar trial of male stroke patients revealed that approximately 48.3\% of the patients claimed some degree of ED. Among the stroke survivors, aspirin was the most commonly used drug, while the use frequency of aspirin was similar for patients with (75\%) and those without ED (78\%).12 All these studies showed no association between aspirin or non-aspirin NSAIDs and ED.

7. NO and PGs

During penile erection, NO has been considered as the principal relaxing factor that causes cavernosal smooth muscle relaxation.24,28 Meanwhile, basal release of PGs has protective and relaxant roles in this process.12 NO and PGs also share considerable “cross talk” pathways.

First, NO activates COX activity to increase PGs production directly.12,23 As an antioxidant, NO removes superoxide to prevent COX autoactivation, it increases production of nitrosothiols12 and peroxynitrite34 to stimulate COX activity. Meanwhile, NO promotes post-transcriptional or translational level to increase COX-2 production,33 maintains prolonged COX gene expression,36 and acts on extracellular signal-related p38 kinase pathway and protein kinase to induce COX-2 activity.37 Thus, inhibited NO will prevent PGs expression.13

In certain conditions, NO also inhibits COX-2 to reduce PGs production.38 Second, PGs interfere NOS expression and NO production. Elevated PGE\textsubscript{2} prevents inducible NOS (iNOS) mRNA expression and NO production by mediating cAMP levels in LPS-stimulated microglia cells.139 On the contrary, some COX inhibitors, such as aspirin or indomethacin, reduce intracellular Ca2+ levels to inhibit NOS activity in human platelets.140 Third, PGs and NO manage their own biosynthesis by regulating COX and NOS expressions.12,21 (Fig. 2).

After reviewing published literatures, we found that aspirin improved the deteriorated nNOS expression in diabetic rat penis29 and prevented blood hypercoagulability.23 Aspirin and indomethacin preserved impaired lithium-related NO pathway,23 whereas celecoxib significantly increased NO levels.23

However, indomethacin reduced total plasma NO level.123 In conclusion, the interaction between NO and PGs biosynthesis occurs at multiple levels, but, its specific mechanism remains elusive.

8. Conclusion

Most clinical trials indicated an association between aspirin or non-aspirin NSAIDs and ED, but other studies reported inconsistent results, ranging from beneficial effects to marginal/moderate risk. These diverse clinical consequences may come from various study designs, population samples, dosages, or medical indications. In basic studies, aspirin improved EF in diabetic rats. Indomethacin preserved the lithium-related NO pathway, whereas celecoxib increased NO levels. Further clinical and basic studies must be performed to investigate the exact relationship between the use of aspirin or non-aspirin NSAIDs and ED.

Author contributions

Conceptualization: Tao Li.
Data curation: Fudong Fu.
Formal analysis: Fudong Fu.
Funding acquisition: Jiuhong Yuan.

Investigation: Fen Qin.
Methodology: Changjing Wu, Fen Qin.
Resources: Changjing Wu.
Supervision: Qiang Wei.
Writing – original draft: Tao Li.
Writing – review & editing: Jiuhong Yuan.

References

[1] Fazio L, Brock G. Erectile dysfunction: management update. CMAJ 2004;170:1429–37.
[2] Bohn M, Baumhakel M, Probstfield JL, et al. Sexual function, satisfaction, and association of erectile dysfunction with cardiovascular disease and risk factors in cardiovascular high-risk patients: substudy of the ONGoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial/Telmisartan Randomized AssessmentNT Study in ACE-InTolerant Subjects with Cardiovascular Disease (ONTARGET/TRANSCEND). Am Heart J 2007;154:94–101.
[3] Shiri R, Koskimaki J, Hakkinen J, et al. Effect of nonsteroidal anti-inflammatory drug use on the incidence of erectile dysfunction. J Urol 2006;175:1812–5. discussion 15-16.
[4] Gleason JM, Slizak JM, Jung H, et al. Regular nonsteroidal anti-inflammatory drug use and erectile dysfunction. J Urol 2011;185:1388–93.
[5] Kupelian V, Hall SA, McKinlay JB. Common prescription medication use and erectile dysfunction: results from the Boston Area Community Health (BACH) survey. BJU Int 2013;112:1178–87.
[6] Blumentals WA, Gomez-Camino A, Sjo S, et al. Should erectile dysfunction be considered as a marker for acute myocardial infarction? Results from a retrospective cohort study. Int J Impot Res 2004;16:350–3.
[7] Virag R, Bouilly P, Friedman D. Is impotence an arterial disorder? A study of arterial risk factors in 440 impotent men. Lancet 1985;1:181–4.
[8] Sullivan ME, Thompson CS, Dashwood MR, et al. Nitric oxide and penile erection: is erectile dysfunction another manifestation of vascular disease? Cardiovasc Res 1999;43:658–65.
[9] Patel DP, Schenk JM, Darke A, et al. Non-steroidal anti-inflammatory drug (NSAID) use is not associated with erectile dysfunction risk: results from the Prostate Cancer Prevention Trial. BJU Int 2016;117:500–6.
[10] Vlachopoulos C, Rokkas K, Ioakeimidis N, et al. Inflammation, metabolic syndrome, erectile dysfunction, and coronary artery disease: common links. Eur Urol 2007;52:1590–600.
[11] Hotaling JM, Waggott DR, Goldberg J, et al. Pilot genome-wide association search identifies potential loci for risk of erectile dysfunction in type 1 diabetes using the DCCT/EDIC study cohort. J Urol 2012;188:514–20.
[12] Mollace V, Muscoli C, Masini E, et al. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 2005;57:217–52.
[13] Lin H, Yuan J, Ruan KH, et al. COX-2-10aa-PGIS gene therapy improves erectile function in rats after cavernous nerve injury. J Sex Med 2013;10:1476–87.
[14] Siegel T, Mou I, Spevak M, et al. The development of erectile dysfunction in men treated for prostate cancer. J Urol 2001;165:430–5.
[15] Cheng I, Witte JS, Jacobsen SJ, et al. Prostatitis, sexually transmitted diseases, and prostate cancer: the California Men’s Health Study. PLoS One 2010;5:e8736.
[16] Luo JL, Tan W, Ricono JM, et al. Prostate cancer in men treated for prostate cancer. J Urol 2001;165:430–5.
[17] Smith CJ, Dorsey TH, Tang W, et al. Aspirin use reduces the risk of aggressive prostate cancer and disease recurrence in African-American men. Cancer Epidemiol Biomarkers Prev 2017;26:845–53.
[18] Chen LW, Yin HL. A literature review of anti-thrombotic and antiinflammatory drug use on the incidence of erectile dysfunction. J Urol 2011;185:1388–93.
[19] Smith CJ, Dorsey TH, Tang W, et al. Aspirin use reduces the risk of aggressive prostate cancer and disease recurrence in African-American men. Cancer Epidemiol Biomarkers Prev 2017;26:845–53.
[20] Chen LW, Yin HL. A literature review of anti-thrombotic and antiinflammatory drug use on the incidence of erectile dysfunction. J Urol 2011;185:1388–93.
[21] Yuan J, Westney OL, Ruan KH, et al. A new strategy, SuperEnzyme gene therapy in penile rehabilitation. J Sex Med 2009;6(suppl 3):328–33.
[22] Angulo J, Westney P, Ruan KH, et al. Regulation of human penile smooth muscle tone by prostanooid receptors. Br J Pharmacol 2002;136:23–30.
[23] Bornman MS, Franz RC, Jacobs DJ, et al. Effect of single dose aspirin on the development of penile hypercoagulability during erection. Br J Urol 1987;59:267–71.

[24] Sadeghipour H, Ghasemi M, Nobakht M, et al. Effect of chronic lithium administration on endothelium-dependent relaxation of rat corpus cavernosum: the role of nitric oxide and cyclooxygenase pathways. BJU Int 2007;99:177–82.

[25] Senbel AM. Functional inhibition of erectile process in rats by indomethacin. World J Urol 2011;29:523–7.

[26] Eshrug A, Marn R, Mas M. Repeated PGE1 treatment enhances nitric oxide and erection responses to nerve stimulation in the rat penis by upregulating constitutive NOS isoforms. J Urol 1999;162:2205–10.

[27] Ruan K-H, Mohite A, So S-P, et al. Establishing novel prostacyclin-synthesizing cells with therapeutic potential against heart diseases. International Journal of Cardiology 2013;163:163–9.

[28] Hafez G, Goulalan U, Kosan M, et al. Acetylsalicylic acid protects erectile function in diabetic rats. Andrologia 2014;46:997–1003.

[29] Cheng Y, Austin SC, Rocca B, et al. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science (New York, NY) 2002;296:539–41.

[30] Liu PP, Liu HH, Sun SH, et al. Aspirin alleviates cardiac fibrosis in mice by inhibiting autophagy. Acta Pharmacol Sin 2017;38:488–97.

[31] Azadrou KM, Kim N, Brown ML, et al. Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone. J Urol 1992;147:220–5.

[32] Bener A, Al-Hamaq AO, Kamran S, et al. Prevalence of erectile dysfunction in male stroke patients, and associated co-morbidities and risk factors. Int Urol Nephrol 2008;40:701–8.

[33] Salvemini D, Misko TP, Masferrer JL, et al. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 1993;90:7240–4.

[34] Alvarez B, Ferrer-Sueta G, Freeman BA, et al. Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J Biol Chem 1999;274:842–8.

[35] von Knethen A, Brune B. Cyclooxygenase-2: an essential regulator of NO-mediated apoptosis. FASEB J 1997;11:887–95.

[36] Perkins DJ, Kniss DA. Blockade of nitric oxide formation down-regulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol 1999;65:792–9.

[37] Notoya K, Jovanovic DV, Reboul P, et al. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J Immunol 2000;165:3402–10.

[38] Guastadisegni C, Minghetti L, Nicolini A, et al. Prostaglandin E2 synthesis is differentially affected by reactive nitrogen intermediates in cultured rat microglia and RAW 264.7 cells. FEBS Lett 1997;413:314–8.

[39] Minghetti L, Nicolini A, Polazzi E, et al. Prostaglandin E2 downregulates inducible nitric oxide synthase expression in microglia by increasing cAMP levels. Adv Exp Med Biol 1997;433:181–4.

[40] Chen L, Salafranca MN, Mehta JL. Cyclooxygenase inhibition decreases nitric oxide synthase activity in human platelets. Am J Physiol 1997;273 (4 pt 2):H1834–9.