STANDARD TREATMENT GUIDELINES 2022

Bronchiolitis

Lead Author
Pallab Chatterjee

Co-Authors
Vineet Sehgal, Samir Shah

Under the Auspices of the IAP Action Plan 2022

Remesh Kumar R
IAP President 2022

Upendra Kinjawadekar
IAP President-Elect 2022

Piyush Gupta
IAP President 2021

Vineet Saxena
IAP HSG 2022–2023
IAP Standard Treatment Guidelines Committee

Chairperson
Remesh Kumar R

IAP Coordinator
Vineet Saxena

National Coordinators
SS Kamath, Vinod H Ratageri

Member Secretaries
Krishna Mohan R, Vishnu Mohan PT

Members
Santanu Deb, Surender Singh Bisht, Prashant Kariya,
Narmada Ashok, Pawan Kalyan
Bronchiolitis

Bronchiolitis is an acute inflammatory condition of the bronchioles that is a result of virus-induced injury.

Respiratory syncytial virus (RSV) is the most common viral agent isolated in about 75% (30–70% in Indian studies).

Other viruses: Rhinovirus, parainfluenza, adenovirus, human metapneumovirus, and bocavirus are the other viruses commonly causing the condition. Mycoplasma is more frequently implicated in older children with bronchiolitis.

- Persistent cough, following a prodrome of coryza lasting 1–3 days, with tachypnea with or without chest recessions and wheeze and/or crackles occurring in a child <2 years of age (usually below 1 year of age, with a peak between 3 and 6 months).
- Associated fever, usually below 39°C, in around 30% cases and poor feeding, vomiting usually after 3–5 days of illness.
- Apnea may be the only presenting feature, particularly below 6 weeks of age.
- The chest may appear hyperexpanded and may be hyper-resonant to percussion. Wheezes and fine crackles may be heard throughout the lungs.
Signs of Severe Bronchiolitis

- Persistent tachypnea >60 breaths/minute or respiratory distress in form of grunting, recessions
- Inadequate oral intake, inability to feed, dehydration, and inadequate fluid intake (50–75% of usual volume)
- Oxygen saturation (SpO₂) <92% in room air
- Child appears seriously unwell to the healthcare provider
- Skill and confidence of the caregiver to look after the child at home and distance from the hospital

- Apnea, observed/reported
- Marked respiratory distress (severe grunting/chest indrawing/tachypnea >70/minute)
- Central cyanosis, or SpO₂ below 90% (age > 6 weeks) or below 92% (age < 6 weeks, or any age with underlying health conditions)

Predictors of Severe Bronchiolitis are presented in Table 1.

A. Host-related risk factors	B. Environmental risk factors	C. Clinical predictors
Prematurity, especially <32 weeks of gestation	Having older siblings	Toxic or ill appearance
Low birth weight	Passive smoke	Oxygen saturation <95% by pulse oximetry while breathing room air
Age <6–12 weeks	Household crowding	Respiratory rate 70 breaths per minute
Chronic lung disease including BPD	Child care attendance	Moderate/severe chest retractions
Hemodynamically significant congenital heart disease (e.g., moderate-to-severe pulmonary hypertension, cyanotic heart disease, or congenital heart disease that requires medication to control heart failure)	Lower socioeconomic status	Atelectasis on chest radiograph
Immunodeficiency		
Neuromuscular disorders		
Bronchiolitis

- *Pneumonia:* Fever >39°C with persistent focal crackles
- *Episodic viral wheeze:* Persistent wheeze without crackles, or recurrent episodes with or without a family history of atopy

Differential Diagnosis

- Is a clinical diagnosis based on age, seasonal occurrence, typical clinical presentation, and physical examination?
- Blood investigations and radiology is routinely not indicated.
- A pulse oximetry reading helps to identify hypoxia and need for admission.
- Investigations in admitted patients to rule out alternate diagnosis such as bacterial pneumonia, congenital heart disease with failure, or sepsis might occasionally be indicated.
- Admitted babies may need an arterial blood gas (ABG) analysis, complete blood count, C-reactive protein (CRP), serum electrolytes, and chest radiography for managing the more serious patients.
- Measurement of lactate dehydrogenase (LDH) concentration in the nasal-wash fluid has been proposed as an objective indicator of bronchiolitis severity [Table 2].
- Identification of viral agents does not affect management in the majority of patients.

However, in the hospital setting, to avoid antibiotic abuse and prevent nosocomial transmission may be done by:
- Antigen detection, immunofluorescence, polymerase chain reaction (PCR), and culture of respiratory secretions obtained by nasal wash or nasal aspirate.
- New techniques such as real-time PCR, nested PCR, and multiplex PCR have improved the virologic diagnosis of bronchiolitis immensely.

TABLE 2: Severity of bronchiolitis.
Mild
Feeding ability
Respiratory distress
Saturation
Management of Bronchiolitis

- Treatment is focused on symptomatic relief and maintaining hydration and oxygenation.
- Fever should be controlled with paracetamol.
- Nose block should be cleared with saline nasal drops and gentle suctioning.
- Child should be made to lie in a propped up or head end elevated positioning.
- Orogastric tube feeding may be indicated in admitted patients. Intravenous (IV) fluids in children with impending respiratory failure or who do not tolerate orogastric/nasogastric (OG/NG) fluids.
- Suctioning of the upper airway in children with apnea, respiratory secretions, and feeding difficulties due to upper airway secretions.
- Supplemental oxygen in children with SpO\textsubscript{2} below 90% (>6 weeks) or below 92% (<6 weeks or with underlying health issues).
- Continuous positive airway pressure (CPAP) in babies with impending respiratory failure (limited low-quality evidence).
- High-flow nasal cannula (HFNC) oxygen may have a role as a rescue therapy to reduce proportion of those requiring intensive care.
- Drugs with questionable value might reduce need for admission or length of hospital stay, but broad consensus is lacking.
 - *Nebulized hypertonic saline*: In children hospitalized for >3 days
 - *Nebulized adrenaline*: 0.1–0.3 mL/kg/dose of 1:1,000 as a potential rescue medication; however inconsistent and short-lived improvement
 - *Beta-agonists*: Optional single trial; may be continued if there is clinical response (a trial of bronchodilator therapy may be initiated, but should be discontinued if there is no objective improvement).
- No role of:
 - Chest physiotherapy
 - Antibiotics
 - Antivirals
 - Montelukast
 - Ipratropium bromide
 - Systemic or inhaled steroids
 - Steam inhalation
 - RSV polyclonal immunoglobulin/palivizumab (no roll in acute management but useful in prophylaxis)
 - Inhaled furosemide/inhaled interferon alfa-2a/inhaled recombinant human deoxyribo-nuclease (DNase)
- Interventions which are possibly effective for most severe cases:
 - CPAP
 - Surfactant
 - Heliox
 - Aerosolized ribavirin
Bronchiolitis

Criteria for Discharge

- Clinically stable
- Taking adequate oral feeds, at least 75% of usual
- Maintaining SpO_2 above 90% (>6 weeks) and 92% (<6 weeks or with health issues) in room air
- Ability of the caregiver to look after at home and distance from the hospital, and have understood the “red flag” signs

Red flag signs for the caregiver at home:

- Increased work of breathing (e.g., grunting, nasal flaring, and chest retractions)
- Fluid intake <50–75% of normal or no urine for 12 hours
- Apnea or cyanosis
- Exhaustion (i.e., not responding normally to social cues and responds only with prolonged stimulation)

Prevention

- **Breastfeeding:** Three-fold greater risk in non-breastfed infant
- Hand hygiene
- Avoid passive smoking
- **Immune prophylaxis:**
 - **Palivizumab:** Monoclonal antibody, monthly injections during seasonal epidemics
 - **Indications:** Infants <12 months with prematurity <29 weeks; CLD of prematurity; hemodynamically significant heart disease
 - Palivizumab is administered intramuscularly at a dose of 15 mg/kg monthly (every 30 days) during the RSV season. A maximum of five doses is generally sufficient prophylaxis during one season.
 - **Nirsevimab:** On trial; single dose for 5 months
 - **Motavizumab,** a second-generation mAb, and Numax-YTE, a third-generation mAb—under trial
Bronchiolitis

Complications

- Acute respiratory distress syndrome (ARDS)
- Myocarditis
- Congestive heart failure
- Arrhythmias
- Bronchiolitis obliterans
- Secondary bacterial infection
- Predisposition to childhood asthma

Flowchart 1: Summary of viral bronchiolitis.

Flowchart:

Viral bronchiolitis

- **Mild**
 - Normal ability to feed
 - Little/no respiratory distress
 - No hypoxia
 - Does not need investigations
 - Home treatment

- **Moderate**
 - Moderate respiratory distress
 - Mild hypoxemia +/- brief
 - Apnea +/- short of breath
 - Admit
 - Humidified O_2 to keep $SpO_2 > 92\%$
 - IV fluids
 - Adrenaline/hypertonic saline trial
 - Observe for deterioration

- **Severe**
 - Severe respiratory distress +/-
 - Apnea +/- hypoxia
 - Looks tired/cannot feed
 - Admit
 - ICU care
 - O_2 keep $SpO_2 > 92\%$
 - IV fluid; adrenaline/HS trial
 - Cardiorespiratory monitor
 - ABG/Chest X-ray
 - Assess for ICU/ventilation

Improvement

- Decrease O_2 guided by SpO_2
- Re-establish feeding
- Discharge when feeding well and distress less

Deterioration

- Treat as severe bronchiolitis

(ABG: arterial blood gas; ICU: intensive care unit; IV: intravenous; SpO_2: oxygen saturation)
Gupta S, Shamsundar R, Shet A, Chawan R, Srinivasa H. Prevalence of respiratory syncytial virus infection among hospitalized children presenting with acute lower respiratory tract infections. Indian J Pediatr. 2011;78:1495-7.

National Institute for Health and Care Excellence. (2015). Bronchiolitis in children: diagnosis and management. [online] Available from www.nice.org.uk/guidance/ng9. [Last accessed March, 2022].

Ralston SL, Lieberthal AS, Meissner HC, Alverson BK, Baley JE, Gadomski AM, et al. Clinical practice guideline: the diagnosis, management and prevention of bronchiolitis. Pediatrics. 2014;134(5): e1474-502.