EFFECT OF SEED PRIMING ON GERMINATION OF OKRA (Abelmoschus esculentus var. Arka Anamika)

Anuj Lamichhane*, Mamata K.C., Manisha Shrestha and Binaya Baral

Agriculture and Forestry University, Rampur, Chitwan, Nepal

*Corresponding Author e-mail: anuj.lamichhane23@gmail.com

Seed priming is an effective, eco-friendly method to promote seed germination and seedling vigor of okra to overcome the reduced and delayed germination in fresh or stored okra seeds caused by seed hardness. An experiment was carried out to evaluate the effects of different priming on okra seeds germination and seedling vigor using Arka Anamika variety at Horticulture lab of Agriculture and Forestry University, Rampur, Chitwan, Nepal. Investigation was carried out with 6 treatments (T1: seed priming with tap water, T2: seed priming with 200ppm NAA solution, T3: seed priming with 10% PEG-200 solution, T4: seed priming with 200ppm GA3 solution, T5: seed priming with 5% Trichoderma solution and T6: no priming) with 4 replications in Complete Randomized Design (CRD). Seeds primed with T1 to T5 were soaked for 24 hours and shade dried for 6 hours before sowing. Priming with T4 was found to be best in terms of maximum seed germination (60.12%), seed vigor index (5772.68 cm), mean germination rate (7.53 seeds per day). The highest shoot length (81.40 mm) was observed at T5 whereas enhancement of root length occurred with the priming with T6. All treatments had a significant positive effect on all the germination parameters in comparison to control. The study concluded that GA3 priming enhanced germination as well as seed vigor in okra and hydro priming and tricho-priming can be used as an alternative to GA3 priming among farmers in Nepal.

KEYWORDS
Abelmoschus esculentus; okra; priming; seed germination; seed vigor.

1. INTRODUCTION

Okra (Abelmoschus esculentus [L.] Moench) is a native crop of Tropical Africa that belongs to the family Malvaceae. For its robust nature, dietary fibers and distinct family seed protein balanced in both lysine and tryptophan amino acids; it is also called “a perfect villager’s vegetable” (Kumar et al., 2013). It is an important summer vegetable of Nepal and is mainly cultivated for its tender pods and is consumed in many different forms; raw, steamed, boiled, or fried (Farinde et al., 2007; Maurya et al., 2013). Okra contains various vitamins and minerals including vitamin A, vitamin C, folic acid, potassium, magnesium, copper, zinc, iron, and flavonoids. Furthermore, okra is the best food source of mucilage, which is the soft slimy substance found in the skin and seeds of okra (Farinde et al., 2007; Maurya et al., 2013). Okra is also rich in fiber that helps in controlling the absorption of cholesterol in the body (Maurya et al., 2013).

Germination is considered a critical stage in the life cycle of weed and crop plants (Radosевич et al., 1997). Genotype, sowing date, time of pod harvest, seed moisture content, and micronutrient applications affect the germination of okra seeds. (Purquerio et al., 2010; El Balla et al., 2011; Mohammadkenarmereki, 2014). Okra seeds germinate very slowly and unevenly although they are viable seeds. Reduced, delayed, and erratic emergence is a serious problem in okra cultivation caused by seed hardness as it creates problems in rapid germination and uniform seedling stand (Purquerio et al., 2010). The hard seed coat restricts the water imbibition and uniform growth and development of the embryo and as a result interferes with seed germination (Mereddy et al., 2015).

The problem of low germination due to the hard seed coat in okra can be overcome by seed priming. Seed priming is the process of controlled hydration of seeds which is potentially able to promote rapid and more uniform seed germination and plant growth (Sharma et al., 2014). Priming allows some of the metabolic processes necessary for germination to occur without germination taking place. Seed priming induced synchronized germination, increased seed vigor, and growth of seedlings under stressful conditions i.e. increase in germination and emergence rate (Bajehbaj, 2010). Different seed priming methods has been used to enhance germination and seed vigor of okra. Among them, Hydro-priming i.e. seed soaking in pure water and re-drying to original moisture content before sowing; Osmo-priming i.e. soaking the seed in a solution of osmoticum; Hormonal priming i.e. soaking of seeds in different plant growth regulators(GA3, NAA, etc); halo-priming i.e. use of salt solutions for seed soaking, bio-priming i.e. seed imbibition together with biological inoculation(bacteria, fungi, etc.) of seed and solid-matrix priming i.e. seed soaking in solid medium(matrix) for controlled water uptake; are commonly used seed priming methods (Latts et al., 2016).

The experiment aimed to study the effect of various priming treatments on the germination of okra seeds for overcoming the germination hindrance of okra seeds.

2. METHODOLOGY

2.1 Experiment design and Treatments

An experiment was carried out in the Horticulture Lab (27°38’ N latitude and 84°20’ E longitude) at Agriculture and Forestry University in March 2020 to evaluate the effect of different priming methods on the seed germination and seedling development of okra in Complete Randomized Design (CRD).
The seeds of Okra [Abelmoschus esculentus (L.) Moench var. Arka Anamika] was used as research material. The experiment consisted of 6 treatments (Table 1) with 4 replicates.

Treatment	Concentration
T1 Hydro-Primming	
T2 NAA-Primming	200ppm NAA solution
T3 PEG-Primming	10% PEG-200 solution
T4 GA3-Primming	200 ppm GA3 solution
T5 Trichoderma-Primming	5% solution of Trichoderma
T6 Control (No Priming)	

The treatment solutions were prepared and seeds were primed with respective treatments for 24 hours followed by shade drying for 6 hours. The primed seeds were then sown in a germination tray and were watered. All the replicate-trays were watered at 5 PM daily until the experiment was completed.

2.2 Data Collection

There were 42 seeds sown on each plot. The data on the number of germinated seeds was taken daily until the number of germinated seeds remains the same in two consecutive counts. The root and shoot length of seedlings was measured at the end of the germination counting day by randomly selecting 7 seedlings from each plot. SGP, SGR, MGT, SVI and AC were calculated according to the Table 2 (Tompsett & Pritchard, 1998; Ranal & De Santana, 2006; Rezaie & Yarnia, 2009; Vashisth & Nagarajan, 2010).

Table 1: Treatments and their concentration used in this research

Treatment	Concentration
T1 Hydro-Primming	
T2 NAA-Primming	200ppm NAA solution
T3 PEG-Primming	10% PEG-200 solution
T4 GA3-Primming	200 ppm GA3 solution
T5 Trichoderma-Primming	5% solution of Trichoderma
T6 Control (No Priming)	

Table 2: Formulas related to the variables related to seed germination used in this research

Variable	Formula	References
SGP	Germination Percentage	$GP = \frac{N}{n} \times 100$ (Rezaie & Yarnia, 2009)
SGR	Germination Rate	$GR = \frac{\sum (nN)}{\sum n}$ (Ranal & De Santana, 2006)
MGT	Mean Germination Time	$MGT = \frac{\sum (nN)}{\sum n}$ (Tompsett & Pritchard, 1998)
SVI	Seedling Vigor Index	$SVI = \frac{(SL+RL)}{2} \times G$ (Vashisth & Nagarajan, 2010)
AC	Allometric Coefficient	$AC = \frac{NL}{SL}$ (Ranal & De Santana, 2006)

Table 3: Effect of different seed priming on germination and its parameter.

Treatments	Root length (mm)	Shoot length (mm)	Mean days to germination	Germination Percentage (%)	Germination Rate	Seed Vigor Index (mm)	Allometric Coefficient
Hydro-priming	82.35^a	81.40^a	7.23^c	54.17^b	6.54^b	4447.26^b	1.01^d
NAA-priming (200ppm)	61.43^{ab}	63.93^{cd}	9.88^{ab}	47.62^c	4.70^d	2982.65^c	0.96^c
PEG priming (10%)	125.03^a	70.70^{bc}	10.69^a	50.60^{bc}	4.09^d	4949.29^b	1.77^c
GA3-priming (200ppm)	113.93^a	78.75^{ab}	6.80^c	60.12^b	7.53^c	5772.68^b	1.45^b
Tricho-priming (5%)	96.63^c	79.85^a	8.89^b	52.98^b	5.56^c	4676.43^b	1.21^c
Control (No-priming)	76.70^d	56.08^d	8.96^b	43.52^d	3.45^d	2291.19^d	1.37^b
LSD (0.05)	10.41	11.10	4.20	4.20	0.57	5214.8	0.15
SEa(z)	1.42	1.11	0.15	0.58	0.076	71.35	0.02
F-probability	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
CV,%	7.53	7.58	8.44	5.64	7.30	8.34	7.52
Grand Mean	92.68	71.78	8.74	61.43	5.23	4186.58	1.30

Note: N (The number of germinated seeds), N (Number of seeds used), D (The number of days after germination), RL (Root length), SL (Shoot length), G (Ultimate germination), n (nth day), SGP (Seed Germination Percentage), SGR (Seed Germination Rate), MGT (Mean Germination Time), SVI (Seedling Vigor Index), AC (Allometric Coefficient)

2.3 Statistical analysis

Obtained data were analyzed by using MS-Excel and RStudio software and mean comparisons were done by Duncan multiple range tests (DMRT) at 0.05 level of significance.

3. Result and Discussion

3.1 Effect on the shoot and root length of seedlings

The shoot length and root length of seedlings showed significant variation with the application of various priming treatments (Table 3). The maximum shoot length (81.40 mm) was recorded in T1, and the minimum shoot length (56.08 mm) was observed in the control condition (Fig1). Similarly, the maximum (125.03 mm) and minimum (61.43 mm) root lengths were observed in T3 and T2, respectively. Increment in root and shoot length were also observed by other researchers due to seed priming treatment (Dubey et al., 2007; Tian et al., 2014). Though auxin (NAA) is believed to have a certain role in the root initiation (Štefančič et al., 2005), this study showed it had an adverse effect on the root length of the seedling compared to control. Similar observations were also reported by other researchers (Sevik & Guney, 2013; Jyoti et al., 2016).

Cite the Article: Anuj Lamichhane, Mamata K.C., Manisha Shrestha and Binaya Baral (2021). Effect of Seed Priming on Germination of Okra (Abelmoschus esculentus var. Arka Anamika). Malaysian Journal of Sustainable Agriculture, 5(2): 111-114.
3.2 Effect on Seed Germination Percentage (SGP)

Statistical analysis of Figure 2 showed significant differences in treatments at $P \leq 0.05$ levels. Results showed that all seed priming treatments were found effective in enhancing the germination percentage compared to the control. However, among them, the T_1, i.e. priming with 200ppm GA$_3$ solution showed a maximum seed germination percentage of 60.12% (Table 3). T_3, T_5, and T_7 increased germination percentage but were non-significant among themselves (LSD=4.09). Generally, seed germination occurs in three phases: imbibition, lag phase, and radicle growth and emergence. The lag phase is prolonged due to seed priming so that pre-germination physiological and biochemical processes take place which keeps the seed from germination. In agreement with other researchers, our result also marked a notable increase in germination percentage on account of seed priming (Muhammad & Shik Rha, 2007; Mohammadi et al., 2014; Oliviera et al., 2019).

![Figure 2: Effect of different priming treatments on germination percentage of okra seeds.](image)

3.3 Effect on Germination Rate (GR) and Mean Germination Time (MGT)

The germination rate and mean germination time varied with different treatments significantly ($p<0.05$). The maximum germination rate of 7.53 seeds/day was observed in the 4th treatment (T_4) and the minimum germination rate was 2.95 seeds/day in control. Similarly, mean germination time was found lowest for the 4th treatment (T_4) i.e. 6.80 days, and highest for the 3rd treatment (T_3) i.e. 10.69 days. The endosperm is rapidly utilized for the synthesis of various amino acids and amides in GA3 treated seeds (Gupta & Mukherjee, 1982), which could be the cause for the elevated germination rate and reduced mean germination time in T_4. A highly significant ($P \leq 0.01$) negative correlation ($r = -0.675^{**}$) was found between GR and MGT representing a trend of increase in Mean Germination Time (MGT) with a decrease in Germination Rate (GR) (Figure 3).

![Figure 3: Effect of different priming treatments on germination rate and mean germination time of okra seeds.](image)

3.4 Effect on Seed Vigor Index (SVI)

Significant variations were observed due to various seed priming treatments as compared to the control group on seed vigor index (Table 3). T_1 (200ppm GA$_3$ priming) showed a greater influence on seed vigor index, and the germination rate was slightly elevated in T_1, T_3, and T_7 when compared with other treatments. The maximum seed vigor index was found 5772.68 in the 4th treatment (T_4) and minimum SVI was found 2291.19 in control (Figure 4). Correlation between SVI and GP was found positive ($r = 0.885^{**}$) and highly significant ($P \leq 0.01$). The enhancement in seed vigor in primed seeds might be due to low membrane injury coupled with high enzyme activities (dehydrogenase and amylase) (Pandey et al., 2017). The enhancement in seed vigor index due to seed priming holds close conformity to other researchers (Maiti et al., 2011; Tania & Rhaman, 2020).

![Figure 4: Effect of different priming treatments on the Seed Vigor Index of okra seeds.](image)

3.5 Effect on Allotropic Coefficient (AC)

A significant effect was reported in the AC value at a 5% level of significance due to the seed priming treatments according to our research. The lower AC value suggests that root growth was lower than the shoot growth; also, it means that plumule/shoot is more receptive to seed priming than the radicle/root. Similarly, a higher AC value suggests that seed priming has a productive impact on radicle or root growth in comparison to plumule or shoot because AC is resulting from root length/shoot length. The maximum AC value observed was 1.77 in the 3rd treatment (T_3) and the minimum AC value observed was 0.97 in the 2nd treatment (T_2) (Figure 5).

![Figure 5: Effect of different priming treatments on Allotropic Coefficient of okra seedlings.](image)

4. CONCLUSION

Priming of okra seeds might be the best option to overcome the reduced and delayed germination in fresh or stored okra seeds caused by seed hardness. Priming of seed before sowing facilitates the plant growth and development and its yield. Okra seed priming with different treatments on seed germination and seedling vigor revealed that the GA$_3$ priming was better than any other treatment whereas hydro priming and trichopriming can be used as an alternative to GA$_3$ priming. So, seed priming is a useful technique for improving the germination percentage, germination rate, seedling growth, mean germination time and tolerant to different abiotic and biotic factors. However, further research needs to be done to know the impact of seed priming on the morphological characters and yield of okra.

ACKNOWLEDGEMENT

The authors would like to express their special thanks to the Department of Horticulture, Agriculture and Forestry University, Rampur Chitwan Nepal, for providing the resources and for all assistance and guidance during the research.

REFERENCES

Bajehbaj, A. A. (2010). The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. African Journal of Biotechnology, 9(12), 1764–1770. https://doi.org/10.5897/ajb10.1019
Dubey, S. C., Suresh, M., & Singh, B. (2007). Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biological Control, 40(1), 118–127. https://doi.org/10.1016/j.biocontrol.2006.06.006

El Bailla, M. M., Saidahmed, A., & Makwali, M. (2011). Effect of moisture content and maturity on hardseededness and germination in okra (Abelmoschus esculentus L. Moench). International Journal of Plant Physiology and Biochemistry, 3(6), 102–107. http://www.academicjournals.org/jippb

Farinde, A. J., Owolarfe, O. K., & Ogungbemi, O. I. (2007). An overview of few Vegetable Crops. International: The CIGR Ejournal. Manus. 2(9), 1–17.

Gupta, P., & Mukherjee, D. (1982). Influence of GA3 pre-soaking of seeds on biochemical changes in seedling parts of Pennisetum typhoides Rich. Proceedings of Indian National Science Academy, 45(5), 642–648.

Jyoti, B., Gaurav, S. S., & Pant, U. (2016). Use of growth regulators as priming agent for improvement of seed vigour in tomato (Lycopersicum esculentum). Journal of Applied and Natural Science, 8(1), 84–87. https://doi.org/10.103.1018/vsbb1.752

Kumar, S., Dagnoko, S., Haougui, A., Ratnadass, A., & Kouame, C. (2010). Okra (Abelmoschus spp.) in west and central africa: Potential and progress on its improvement. African Journal of Agricultural Research, 5(25), 3590–3598. https://doi.org/10.5897/AJAR10.839

Lutfis, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garncarska, M. (2016). Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. New Challenges in Seed Biology - Basic and Translational Research Driving Comprehensive Approaches for an Old Empirical Technique. 51, 1–46. https://doi.org/10.5772/64420

Maiti, R. K., Vidyasagar, P., Rajkumar, D., Ramaswamy, A., Gonzalez, & Rodriguez, H. (2011). Seed Priming Improves Seedling Vigor and Yield of few Vegetable Crops. International Journal of Bio-Resource and Stress Management, 2(1), 125–130. http://www.indianjournals.com/ijor.aspx?target=ijorbsm&volume=2&issue=1&article=022

Maurya, R. P., Bailey, J. A. B., & Chandler, J. S. A. C. (2010). Impact of Plant Spacing and Picking Interval on the Growth, Fruit Quality and Yield of Okra (Abelmoschus esculentus (L.) Moench). American Journal of Agriculture and Forestry, 1(4), 48. https://doi.org/10.11648/j.ajaf.20130104.011

Mereddy, R., Wu, L., Hallgren, S. W., Wu, Y., & Conway, K. E. (2015). Solid. International: The CIGR Ejournal. Manus. 80(April 2015), 33–37.

Moomaw, G., Khan, E. M., Petroopoulos, S. A., Chachalis, D. B., Akbari, F., & Yarsi, G. (2014). Effect of Gibberellic Acid and Harvesting Time on the Seed Quality of Four Okra Cultivars. Journal of Agricultural Science, 6(7). https://doi.org/10.5539/jas.v6n7p200

Mammadikenarmereki, G. (2014). Studies of factors effecting an improvement of seed production and seed quality in okra , seed hardness and methods of overcoming this problem. University of Thessaly.

Muhammad, J., & Shik Rha, E. (2007). Gibberellic Acid (GA3) Enhance Seed Water Uptake, Germination and Early Seedling Growth in Sugar Beet under Salt Stress. Pakistan Journal of Biological Sciences, 10(4), 654–658. https://doi.org/10.3923/pjbs.2007.654.658

Oliveira, C. E. D. S., Steinier, F., Zuffo, A. M., Zoz, T., Ahves, C. Z., & De Aguiar, V. C. B. (2019). Seed priming improves the germination and growth rate of melon seedlings under saline stress. Ciencia Rural, 49(7), 1–11. https://doi.org/10.1590/0103-8478cr20180538

Pandey, P., Bhanuprakash, K., & Umesh, A. (2017). Effect of Seed Priming on Biochemical Changes in Fresh and Aged Seeds of Cucumber. Journal of Agricultural Studies, 5(2). 62. https://doi.org/10.1590/s0102-05362010000200017

Radoshevich, S., Holt, J., & Ghera, C. (1997). Weed ecology: implications for management John Wiley and Sons.

Ranal, M. A., & De Santana, D. G. (2006). How and why to measure the germination process? Revista Brasileira de Botanica, 29(1), 1–11. https://doi.org/10.1590/S0100-84042006000100002

Rezaie, F., & Yarnia, M. (2009). Allelopathic effects of Chenopodium album, Amaranthus retroflexus and Cydonon dactylon on germination and growth of safflower. Journal of Food, Agriculture and Environment, 7(2), 516–521.

Rhaman, M. S., Rauf, F., Tania, S. S., & Khurram, M. (2020). Seed Priming Methods: Application in Field Crops and Future Perspectives. 5(2), 8–19. https://doi.org/10.17934/NJRCS/2020/v5i230091

Sevik, H., & Guney, K. (2013). Effects of IAA, IBA, NAA, and GA3 on rooting and morphological features of melissa officinalis L. stem cuttings. The Scientific World Journal, 2013(2001). https://doi.org/10.1155/2013/909507

Sharma, A. D., Rathore, S. V. S., Srinivasan, K., & Tyagi, R. K. (2014). Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Scientia Horticulturae, 165, 75–81. https://doi.org/10.1016/j.scienta.2013.10.044

Štefančič, M., Štampar, F., & Osterc, G. (2005). Influence of IAA and IBA on root development and quality of Prunus “GSeLA 5” leafy cuttings. HortScience, 40(7), 2052–2055. https://doi.org/10.21273/hortic.40.7.2052

Tania, S. S., & Rhaman, M. S. (2020). Hydro-priming and halo-priming improve seed germination, yield and yield contributing characters of Okra (Abelmoschus esculentus L.). The Journal of the Society for Tropical Plant Research, 7(1) (April), 86–93. https://doi.org/10.22271/trp.2020/v7i1.012

Tian, Y., Guan, B., Zhou, D., Yu, J., Li, G., & Lou, Y. (2014). Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). Indian Journal of Plant Physiology, 19. https://doi.org/10.9734/ijppl/2014/v19i230091

Vashisth, A., & Nagaraian, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 167(2), 149–156. https://doi.org/10.1016/j.jplph.2009.08.011

Cite the Article: Anuj Lamichhane, Mamata K.C., Manisha Shrestha and Binaya Baral (2021). Effect of Seed Priming on Germination of Okra (Abelmoschus esculentus var. Arka Anamika). Malaysian Journal of Sustainable Agriculture, 5(2): 111-114.