Review

Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis

Patrizia LoPresti

Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA; patrizia.lopresti.22@gmail.com

Abstract: Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.

Keywords: neurodegeneration; cognition; progressive multiple sclerosis; biomarkers; diagnosis; treatment; prognosis; personalized medicine; cytoskeleton; synapse

1. Introduction

Multiple Sclerosis (MS) affects approximately 2.2 million people worldwide, with prevalence in white northern European descendants, and affecting more women than men [1–3]. The onset of this debilitating disease is usually between 20 and 40 years, so the disability associated with MS, unfortunately, occurs in the prime of life, making MS the most common neurological disability in young adults. While the cause of MS has not been determined, combinations of epidemiology, genetics, and environment are thought to contribute.

The risk of developing MS increases with low exposure to the sun, viral infections, smoking, genetic susceptibility, and location north of the equator. Recent work has shown that the high prevalence of Epstein-Barr virus is associated with MS [4,5]. Overall MS disease results from multiple agents priming the immune system over time until the immune system starts to attack and damage the central nervous system (CNS) [3,5]. Each patient has unique inflammatory responses as well as interactions between the innate and acquired immune systems. The involvement of inflammation and complex interactions between innate and acquired immunity makes the disease unique in each patient with different impacts on the CNS.

The symptoms of MS include fatigue, depression, vertigo, visual problems, cognitive dysfunction, muscle-related symptoms, bowel and bladder symptoms, and sexual dysfunctions. The diagnosis of MS is made using a combination of tests, such as magnetic
resonance imaging, spinal tap, and evoked potential analysis. In addition, the expanded disability status scale is widely used to measure the degree of disability [6,7]. The use of diagnostic tools to detect subclinical neuronal functional decline is imperative; a new MS classification should address the degree of neurodegeneration, which would facilitate correct enrollment into clinical trials.

MS is a complex disease, having independent and interconnected components [8]. The subclinical mobility defect detected with the highly sensitive glove test [9] was not included in the definition of relapsing-remitting (RR)-MS, whereas Benedict et al. [10] described some recovery of cognitive function throughout the disease; however, that recovery was partial, which inevitably would result in a progressive decline of cognitive functions.

The main therapeutic challenge is that within an apparent clinically homogenous group of MS patients, the underlying neurodegeneration might be at earlier or later stages. Indeed, detecting such subclinical (silent) progression would aid in MS diagnosis, treatment with new therapeutics, and prognosis [11,12]. Neurons damaged during MS release molecules into the extracellular CNS compartments where they can be re-internalized and/or destroyed [13]. The extent of re-internalization and/or destruction would determine the levels of biomarkers detected in cerebrospinal fluid (CSF) and blood samples. CSF sampling offers a more accurate analysis [13,14]; however, CSF sampling is not easy for patients. In contrast, blood samples can be obtained from patients with little stress or discomfort, and serum-based biomarkers are a less expensive means to assess neuronal degeneration. These tests can be easily repeated at a low cost. In contrast, Magnetic Resonance Imaging (MRI)-based biomarkers can only be performed at select clinical medical centers, in addition to being expensive and time-consuming.

A personalized medicine approach is greatly needed as a set of biomarkers could flag each patient affected by MS before and after treatment [15,16]. Biomarkers provide a platform for identifying disease mechanisms and pharmacological targets. Exploratory analysis and validation are some of the steps required to validate biomarkers for routine clinical practice [13,14]. The combined use of several biomarkers could better elucidate the underlying mechanisms during neurodegeneration. Biomarkers of axonal and neuronal degeneration could include NFL, tau, P-tau, β-amyloid 1-42, Bri2 (Integral membrane protein 2B), Bri2-23 (generated from Bri2), the neuronal mitochondrial metabolite NAA (N-acetyl aspartate), and 14-3-3. At the same time, a biomarker of T-cell-mediated autoimmunity such as Osteopontin could be added to further analyze disease activity [17–29]. In addition to the enzyme-linked immunosorbent assay (ELISA), new technologies with increased sensitivity and accuracy have been developed, including electrochemiluminescence (ECL), single-molecule array (SIMOA) technology, immunomagnetic reduction, immunoprecipitation/mass spectrometry, and dried plasma spot [30].

It is important to determine the ratio of CSF/plasma of selective biomarkers in disease models and upon treatment with various therapeutics. The widely used experimental autoimmune encephalomyelitis (EAE) mice should be used in parallel with additional models, including the model of MS where oligodendrocyte death results in immune-mediated CNS demyelination [31]. In addition, the Non-Obese Diabetic (NOD)-EAE model could also be useful since this model mimics RR-MS becoming Secondary Progressive (SP)-MS [32].

Synapses are believed to be an early target of MS disease, driving processes that lead to permanent neuronal loss [33–42]. Such an insidious foe for the synapses and neurons at the beginning of disease requires insight and targeted therapeutics. The United States Food and Drug Administration (FDA) has approved drugs that regulate immune-mediated inflammation. However, subclinical synaptic alterations are largely unmodified by current approaches, and a set of biomarkers could be used to characterize early vs. late neurodegeneration. Understanding where a patient is along the subclinical neurodegeneration pathway could be a critical tool for guiding drug enrollment in clinical studies (Figure 1).
neurodegeneration. Understanding where a patient is along the subclinical neurodegeneration pathway could be a critical tool for guiding drug enrollment in clinical studies (Figure 1).

Figure 1. Biomarkers during Subclinical Cognitive Decline. During the subclinical cognitive decline preceding progressive multiple sclerosis, the patients are in early or late subclinical decline, i.e., far from, or closer to, developing progressive multiple sclerosis. A set of distinct biomarkers at these two-time points can provide insight into both diagnosis and treatment. The red dots represent synaptic dysfunction and neurodegeneration, whereas the panels with biomarkers indicate representative differences in biomarkers and distinctive signatures.

It is crucial to determine normal and pathological values of biomarkers (Figure 2) along with their specific fold-increase over longitudinal patient analysis [13,27,43]. Kappos et al. [44] have proposed using a roving reference value in prospective studies rather than a fixed value. Further, the distinction between biomarker expression during disease activity and progression must be understood in the context of underlying events, such as increased protein turnover vs. increased protein levels due, for example, to cytoskeletal disruption.

Figure 2. Biomarkers in Multiple Sclerosis. Biomarkers of neurodegeneration and inflammation are indicated. Neurodegeneration biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Bril2 and Bril2-23, N-Acetylaspartate, and 14-3-3 family proteins, whereas Osteopontin is an inflammation biomarker.
2. Neurofilaments

Neurofilaments (NFs) are proteins of the axonal cytoskeleton that are critical for intracellular transport and the health of the axons [45–47]. Neurofilaments consist of NF-light (L), -middle (M), and heavy (H) chains [48,49]. NF-L is a soluble and abundant component of neuronal axons.

NF-L is the most abundant and soluble, whereas NF-H is the largest [13]. Both NF-H and NF-M regulate axonal diameter based on their phosphorylation levels. Highly phosphorylated NF-H is believed to indicate an axonal injury and may also increase during the progression of neurological diseases [50,51]. Healthy individuals have low levels of NF-L in the blood, whereas high levels of NF-L are detected in degenerative diseases, including Amyotrophic lateral sclerosis (ALS), MS, and Alzheimer’s disease (AD) [52–54].

NF-L levels correlate with axonal damage and with cognitive performance [55,56]. Studies on NF-L in AD could offer insight into approaches to neurodegeneration in MS because elevated NF-L levels in CSF and plasma indicate a neuronal injury and appear to be promising markers of AD severity and progression [57,58]. Of note, NF-L levels are increased in pre-symptomatic and early symptomatic stages of AD and correlate with cognitive decline, progression of brain atrophy, and decreased survival. Furthermore, the use of ultrasensitive biomarker assays such as SIMOA has allowed the quantitation of low NF-L levels in blood samples. Plasma or serum NF-L levels differentiate pre-symptomatic and early symptomatic AD from controls in studies of familial and sporadic AD, accurately predicting rates of disease progression over time [46,59].

NF-L increases during the acute phase of MS and high N-FL levels correlate with disease progression and/or conversion of RR-MS to SP-MS [60–66]. In contrast, the concentration of NF-L did not correlate with gender, age, or disease duration [13,67]. Blood NF-L levels are associated with clinical and MRI-related measures of disease activity and neuroaxonal damage and have prognostic value. Work by Kuhle et al. [68] supports the utility of blood NF-L as an easily accessible biomarker of disease evolution and treatment response. Of interest, the CSF NF-L chain predicts 10-year clinical and radiologic worsening in multiple sclerosis [69,70]. Lycke et al. [70] also showed that the CSF NF-L protein is a potential marker of activity in multiple sclerosis. Immunosuppressive therapy reduces axonal damage, and NF-L levels in CSF are a potential marker for treatment efficacy [68,71]. Further, diffusely abnormal white matter in clinically isolated syndrome, a first clinical episode compatible with MS, is associated with parenchymal loss and elevated neurofilament levels [72], and NF-L levels are associated with chronic white matter inflammation [73]. Recent important work has shown that antibodies to NF-L are potential MS biomarkers [74], and new MRI activity and NF-L levels effectively monitor MS patients [75]. In summary, NF-L is recognized as having an important value in both research and clinical trial settings [76]. Barro et al. [53] showed that CFLs predict disease worsening and brain and spinal cord atrophy in MS. Further, NF-L in CSF and serum is a sensitive marker for axonal white matter injury [77]. Bridel et al. [78] showed that NF-L is associated with progression in Natalizumab-treated patients with RR-MS, whereas Kuhle et al. [79] showed a reduction in sNF-L following early alemtuzumab treatment in RR-MS patients. Cantó et al. [80] showed an association between sNF levels and long-term disease course, and Kuhle et al. [81] demonstrated a correlation between high NF-L levels and long-term outcomes. Additional work is required to investigate whether selected drugs aimed at neuroprotection decrease NF-L levels in MS patients. Table 1 summarizes neurofilament detection in various types of human samples using a variety of assays, including ELISA, ECL, and SIMOA.
Table 1. Neurofilament light is detected in various types of MS patient samples. Neurofilament light is detected in various types of human samples. The detection methods use a variety of assays as indicated, including ELISA, ECL, and SIMOA [65,68,82–113].

Sample	Detection	References
Serum	ELISA	[65]
Blood	SIMOA	[84–86]
CSF	ELISA	[87–103]
Plasma	SIMOA	[104]
Serum + CSF	SIMOA	[108–113]
	ECL	[107]

3. Total and Phosphorylated Tau

Tau protein is important for the cytoskeleton of both neurons and oligodendrocytes [114–117]. Neurons and oligodendrocytes depend on efficient intracellular transport to accomplish tasks such as synaptic transmission and myelination, which are both essential for CNS health. Abnormally phosphorylated (P-)tau, a hallmark of CNS degenerative diseases, was found in chronic EAE and progressive MS [118,119].

Abnormally phosphorylated P-tau in neurons and/or oligodendrocytes causes cells to deteriorate, which would enhance disease progression [115–117,120,121]. Histological studies have clearly shown increased levels of P-tau in progressive MS [117–119]. Surprisingly, studies on total tau and P-tau as MS biomarkers have yielded contradictory data, perhaps due to a high sensitivity to tau protein degradation during improper samplings [13]. Indeed, some studies have reported higher levels of tau/P-tau in MS than in controls; however, others could not confirm this finding. Similar contradictions were reported regarding the correlation between a disability, inflammation, and age or MS disease duration [13,122]. Prednisolone effectively reduces plasma tau and P-tau in EAE rats [123]. Of interest, Rojas et al. [124] showed that CSF NF-L and tau phosphorylated at threonine 181 (P-tau181) predict disease progression in Progressive Supranuclear Palsy. It is imperative to investigate whether drugs aimed at neuroprotection in MS decrease NF-L levels in association with decreased tau phosphorylated at a specific site. Because cerebrospinal Tau levels predict early disability in MS [21], NF-L and tau have been proposed as biomarkers to monitor prognosis and treatment response, distinguishing different MS subtypes [125].

4. Amyloid-Peptide-β, Bri2, and Bri2-23

Amyloid precursor protein (APP) functions as cargo transported by fast anterograde axonal transport, whereas APP builds up in the cell body during diseases of axons [43]. APP, an integral membrane protein, is cleaved by the integral membrane aspartyl protease BACE1 (β-site APP-cleaving enzyme 1) into three fragments (α-sAPP, β-sAPP, and Aβ42) [13]. CSF levels of these fragments were lower in MS patients than in controls. Interestingly, the Bri2 and Bri2-23 molecules interact with APP and regulate amyloid-peptide-β (Aβ42) cleavage and aggregation in vivo. Bri2 is a transmembrane protein and Bri2-23 is a peptide cleaved from Bri2. Because Bri2-23 levels have been suggested as a potential biomarker for cognitive deficit in progressive MS, studies should assess the effect of drugs aimed at neuroprotection on APP-derived proteins and on Bri2 and Bri2-23. Finally, Aβ42 does not correlate with age or disease duration [13,126,127].

The extent of APP expression appears to correlate with histopathological lesions, suggesting that APP detection is a sensitive marker for MS disease progression [126,128]. Insight from studies in AD could help to better tackle the challenges of MS biomarkers. High levels of CSF tau and/or P-tau181, and low levels of CSF Aβ42, are detected in the pre-symptomatic stages of AD disease [129]. Importantly, the ratio of CSF tau/Aβ42 or
CSF P-tau181/Aβ42 indicates the progression of AD pathology, which could also predict cognitive impairment in cognitively normal individuals [130–132]. The utility of the ratio of CSF levels Aβ42/Aβ40 or Aβ42/Aβ38 provides a better diagnostic value than the total levels of CSF Aβ42 [131]. Tau phosphorylation at selective sites, in particular, levels of CSF P-tau231 (threonine 231) and P-tau181, but not CSF P-tau199 (serine tau 199), differentiate AD from non-AD dementias [131]. CSF P-tau231 aids in differentiating AD from frontotemporal dementia and CSF P-tau181 differentiates AD from Lewy body dementia (LBD) [131]. In addition, the levels of CSF P-tau217 (threonine tau 217) increase in AD and provide a better diagnostic performance in differentiating AD from non-AD dementias than CSF P-tau181 [133]. The levels of CSF P-tau217 had a stronger correlation with CSF and positron emission tomography (PET) measures of cortical amyloid deposition than did CSF P-tau181 [131].

Levels of the blood-based biomarker, plasma P-tau181, increase early in AD, differentiating AD from cognitively normal controls and other dementias [131]. Plasma P-tau181 levels also increase with AD disease progression over time and predict progression to AD dementia in individuals with mild cognitive impairment (MCI). Plasma P-tau217 has received attention as a blood-based biomarker for AD [134].

In contrast to AD, MS affects the entire CNS, without predictable insight into which region of the CNS will be affected in each MS patient. Thus, a form of tau phosphorylated at a specific site might not be found. Novel assays, using immunoprecipitation coupled with mass spectrometry or SIMOA, allow the measurement of plasma Aβ with high precision and demonstrate the ability of plasma Aβ40/Aβ42 levels to accurately predict amyloid-positive PET scans in cognitively normal or impaired individuals. The SIMOA platform has also been used successfully for plasma P-tau181 measurements, demonstrating the ability of plasma P-tau181 to accurately predict increased brain amyloid and tau on PET scans [30]. For subclinical neurodegeneration in MS, ideally, biomarkers would also need to correlate with changes at the CNS level, indicating neurodegenerative events.

5. N-Acetylaspartate

N-Acetylaspartate (NAA) is an abundant amino acid (AA) synthesized in neurons [13,135]. Several functions for this AA have been postulated, including working as an osmolyte important for the removal of water from neurons. Acetate is also important for myelin synthesis and is a mitochondrial energy source. Acetate is a precursor for N-acetyl aspartyl glutamate and a ligand for glutamate receptors [13]. Reduced acetate levels have been found in MS lesions. Of interest, glatiramer acetate, widely used to treat MS, increases NAA levels in MS lesions [136]. CSF NAA levels decrease during axonal degeneration and disease progression [13,135–137]. In addition, Narayanan et al. [137] showed that NAA increases in interferon (IFN) treated vs. untreated groups, suggesting that IFN reverses, in part, axonal injury during MS. It is imperative to investigate whether drugs aimed at neuroprotection increase NAA. Of interest, NAA is a marker of disability in secondary progressive MS as shown in a proton MR spectroscopic imaging study [138].

6. 14-3-3 Family Proteins

14-3-3 family proteins are highly concentrated in the brain and are expressed in the cytoplasmic and nuclear regions of neurons and glia [13]. These proteins regulate a variety of intracellular processes by interacting with hundreds of target proteins. 14-3-3 proteins are also molecular chaperones with anti-apoptotic effects. The presence of 14-3-3 protein in the CSF establishes Creutzfeldt-Jakob disease, but 14-3-3 protein is also detected in the CSF during other prion-unrelated conditions associated with CNS tissue damage. In MS, CSF 14-3-3 protein levels correlate with a higher relapse rate and more severe disability, predicting permanent neurological disability after an acute episode [13,139–142]. No study to date has studied how neuroprotective drugs regulate 14-3-3 protein levels.
7. Additional Biomarkers of Neurodegeneration

Contactin-1 and contactin-2 in cerebrospinal fluid are potential biomarkers for axonal dysfunction in MS [143,144]. Contactin 1, a cell adhesion molecule, is a glycosylphosphatidylinositol-anchored neuronal membrane protein [145], and Contactin-2 is a cell adhesion molecule critical for neuronal patterning and ion channel clustering [146]. Recent evidence has shown the importance of MiR-142-3p for synaptopathy-driven disease progression in MS [147]. Previous studies have also shown glial activation markers in CSF and serum from patients with PP-MS. The authors suggested that serum glial fibrillary acidic protein (GFAP) is a potential marker for disease severity progression [148,149]. Further, monitoring reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products might identify the redox status of MS patients [150], and thiol homeostasis may be useful to monitor disease activity [151]. The role of low levels of vitamin D in MS progression is an area of intense research, thus, serum levels of 25-hydroxyvitamin D should also be monitored during MS disease [152].

8. Osteopontin

Osteopontin (OPN) is an extracellular matrix glycol-phosphoprotein with a role in autoimmune-mediated demyelinating diseases during multiple sclerosis. OPN regulates inflammatory and regenerative processes during various diseases of the nervous system. OPN concentrations are increased in CSF during active multiple sclerosis [153,154].

9. Future Directions

The perspective of serum-based biomarkers described in this review must be combined with additional diagnostics. Work by LoPresti [33,155] indicated that an early defect at the level of HDAC6 is present in an animal model of MS. Serum-biomarkers should be added to in vivo HDAC6 changes. HDAC6 human brain mapping with [18F] Bavarostat as a radiotracer has been proposed [156] and could be added to serum-based biomarkers to define MS types based on neurodegeneration, subgrouping MS into those patients with early or late neurodegeneration.

This review offers a new approach to elucidate a set of neurodegeneration biomarkers at two distinct time points. The aim is to identify distinct biomarker signatures in early and late subclinical cognitive decline. Newly identified biomarkers could identify the transition between early and late subclinical cognitive decline. For example, recent evidence pointed to GFAP as an important biomarker for progressive MS [148,149], as increased GFAP levels could help to delineate the transition into the late phase of subclinical cognitive decline, preceding progressive MS. Another approach could be the analysis of non-coding RNAs (ncRNAs). Joilin et al. [157] identified a potential ncRNA biomarker signature for ALS. In MS, a potential area of interest could include ncRNAs that distinguish disease activity from cytoskeletal disruption.

The biggest challenges in MS are two-fold; first, immune-inflammatory alterations during the disease are specific to each patient. Second, any area of the CNS can be a target of the disease. Therefore, by extending the concept of personalized medicine, we propose that the biomarker signature must be personalized for each patient. For example, standard assays should establish the baseline signature of selective biomarkers for each patient, and the evolution of such signature over time would be monitored. The signature shift could indicate progression along with subclinical cognitive decline, bringing that specific patient closer to developing progressive MS.

10. Summary

Focusing on neurons in MS patients, synaptic dysfunction and neurodegeneration should be measured so therapeutics can be planned to target each of these problems. Since tau protein is present at the synapses, a specific change in tau posttranslational modification might reveal a synaptic dysfunction, whereas large amounts of tau could indicate tau release due to neurodegeneration. Initial studies in mouse models of MS will highlight the relative
importance of a set of serum-based biomarkers that characterizes synaptic dysfunction and neurodegeneration at early, mid, and late stages. In human samples, we expect distinct biomarker profiles to be identified in apparently similar types of MS. In particular, analysis of the blood of MS patients will show that each patient has a unique pattern, irrespective of their apparent clinical type, providing an educated rationale for intervention with selective therapeutics to modify the synaptic or neurodegeneration component. As the ability to distinguish synaptic dysfunction and neurodegeneration is established in each patient, a new understanding of the disease and therapeutic horizons can be envisioned.

11. Outstanding Questions
 a. Would a new classification of MS types have to include silent progression?
 b. Within clinically similar MS types, could we identify separate entities based on biomarkers of synaptic dysfunction and neurodegeneration?
 c. Can a biomarker-based diagnostic test determine 1. The rate of subclinical memory decline, and 2. The time before the transition from subclinical to clinically apparent neurodegeneration?

Funding: This research received no external funding.

Acknowledgments: The author thanks Vieri Failli for assistance in preparing the Figures.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

AA: Amino acid
AD: Alzheimer’s disease
ALS: Amyotrophic lateral sclerosis
APP: Amyloid precursor protein
CNS: Central nervous system
CSF: Cerebrospinal fluid
EAE: Experimental autoimmune encephalomyelitis
ECL: Electro chemi luminescence
ELISA: Enzyme-linked immunosorbent assay
GFAP: Glial fibrillary acidic protein
IFN: Interferon
LBD: Lewy body dementia
MCI: Mild cognitive impairment
MRI: Magnetic resonance imaging
MS: Multiple sclerosis
NAA: N-Acetylaspartate
NFs: Neurofilaments
NFL: Neurofilament light
PET: Positron emission tomography
PP-MS: Primary progressive multiple sclerosis
RR-MS: Relapsing-remitting multiple sclerosis
SIMOA: Single-molecule array
sNF: Serum neurofilament
SP-MS: Secondary progressive multiple sclerosis

References
1. GBD 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. *Lancet Neurol.* 2019, 18, 269–285. [CrossRef]
2. Hogancamp, W.E.; Rodriguez, M.; Weinshenker, B.G. The epidemiology of multiple sclerosis. *Mayo Clin. Proc.* 1997, 72, 871–878. [CrossRef] [PubMed]
3. Compston, A.; Coles, A. Multiple sclerosis. *Lancet* 2002, 359, 1221–1231. [CrossRef]
4. Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals a high prevalence of Epstein-Barr virus-associated with multiple sclerosis. *Science* **2022**, 375, 296–301. [CrossRef]

5. Kuchroo, V.K.; Weiner, H.L. How does Epstein-Barr virus trigger MS? *Immunity* **2022**, 55, 390–392. [CrossRef]

6. Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). *Neurology* **1983**, 33, 1444–1452. [CrossRef]

7. Tsang, B.K.; Macdonell, R. Multiple sclerosis- diagnosis, management and prognosis. *Aust. Fam. Physician* **2011**, 40, 948–955.

8. Banwell, B.; Giovannoni, G.; Hawkes, C.; Lublin, F. Multiple Sclerosis is a multifaceted disease. *Mult. Scler. Relat. Disord.* **2014**, 3, 555–554. [CrossRef]

9. Bonzano, L.; Bove, M.; Sormani, M.P.; Stromillo, M.L.; Giorgio, A.; Amato, M.P.; Tacchino, A.; Mancardi, G.L.; De Stefano, N. Subclinical motor impairment assessed with an engineered glove correlates with magnetic resonance imaging tissue damage in radiologically isolated syndrome. *Eur. J. Neurol.* **2019**, 26, 162–167. [CrossRef]

10. Benedict, R.H.; Pol, J.; Yasin, F.; Hojnacki, D.; Kolb, C.; Eckert, S.; Tacca, B.; Drake, A.; Wojcik, C.; Morrow, S.A.; et al. Recovery of cognitive function after relapse in multiple sclerosis. *Mult. Scler. J.* **2021**, 27, 71–78. [CrossRef]

11. LoPresti, P. Silent Free Fall at Disease Onset: A Perspective on Therapeutics for Progressive Multiple Sclerosis. *Front. Neurol.* **2018**, 9, 973. [CrossRef] [PubMed]

12. Cree, B.A.C.; Hollenbach, J.A.; Bove, R.; Kirkish, G.; Sacco, S.; Caverzasi, E.; Bischof, A.; Gundel, T.; Zhu, A.H.; Papinutto, N.; et al. Silent progression in disease activity-free relapsing multiple sclerosis. *Ann. Neurol.* **2019**, 85, 653–666. [PubMed]

13. Dujmovic, I. Cerebrospinal fluid and blood biomarkers of neuroaxonal damage in multiple sclerosis. *Mult. Scler. Int.* **2011**, 2011, 767083. [CrossRef] [PubMed]

14. Comabella, M.; Montalban, X. Body fluid biomarkers in multiple sclerosis. *Lancet Neurol.* **2014**, 13, 113–126. [CrossRef]

15. Gafson, A.; Craner, M.J.; Matthews, P.M. Personalised medicine for multiple sclerosis care. *Mult. Scler. J.* **2017**, 23, 362–369. [CrossRef]

16. Fox, R.J. Tissue Markers for Acute Multiple Sclerosis Treatment Response-A Step toward Personalized Medicine. *JAMA Neurol.* **2018**, 75, 406–407. [CrossRef]

17. Shinomoto, M.; Kasai, T.; Tatebe, H.; Kondo, M.; Ohmichi, T.; Morimoto, M.; Chiyonobu, T.; Terada, N.; Allsop, D.; Yokota, I.; et al. Plasma neurofilament light chain light: A potential prognostic biomarker of dementia in adult Down syndrome patients. *PLoS ONE* **2019**, 14, e0211575. [CrossRef]

18. Preische, O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Gräber, S.; Kuder-Buletta, E.; LaFougere, C.; Laske, C.; et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. *Nat. Med.* **2019**, 25, 277–283. [CrossRef]

19. Lee, J.Y.; Taghian, K.; Petratos, S. Axonal degeneration in multiple sclerosis: Can we predict and prevent permanent disability? *Acta Neuropathol. Commun.* **2014**, 2, 97. [CrossRef]

20. Cree, B.A.; Gourraud, P.A.; Oksenberg, J.R.; Bevan, C.; Crabtree-Hartman, E.; Gelfand, J.; Goodin, D.; Graves, J.; Green, A.; Mowry, E.; et al. Long-term evaluation of multiple sclerosis disability in the treatment era. *Ann. Neurol.* **2016**, 80, 499–510.

21. Virgilio, E.; Vecchio, D.; Crespi, I.; Serino, R.; Cantello, R.; Dianzani, U.; Comi, C. Cerebrospinal Tau levels as a predictor of early disability in multiple sclerosis. *Mult. Scler. Relat. Disord.* **2021**, 56, 103231. [CrossRef] [PubMed]

22. Kapoor, R.; Smith, K.E.; Allegretta, M.; Arnold, D.L.; Carroll, W.; Comabella, M.; Furlan, R.; Harp, C.; Kuhle, J.; Leppert, D.; et al. Serum neurofilament light as a biomarker in progressive multiple sclerosis. *Neurology* **2020**, 95, 436–444. [CrossRef] [PubMed]

23. Hein Née Maier, K.; Köhler, A.; Diem, R.; Sättler, M.B.; Demmer, I.; Lange, P.; Bähr, M.; Otto, M. Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. *Neurosci. Lett.* **2018**, 653–54. [CrossRef] [PubMed]

24. Miller, D.H. Biomarkers and surrogate outcomes in neurodegenerative disease: Lessons from multiple sclerosis. *NeuroRx* **2004**, 1, 284–294. [CrossRef]

25. Agah, E.; Zardoui, A.; Saghazadeh, A.; Ahmadi, M.; Tafakhori, A.; Rezaei, N. Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: A systematic review and meta-analysis. *PLoS ONE* **2018**, 13, e0190252. [CrossRef]

26. Housley, W.J.; Pitt, D.; Hafer, D.A. Biomarkers in multiple sclerosis. *Clin. Immunol.* **2015**, 161, 51–58. [CrossRef]

27. Ferreira-Atuesta, C.; Reyes, S.; Giovanonni, G.; Gnanapavan, S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. *Front. Neurosci.* **2021**, 15, 642384. [CrossRef]

28. Traka, M.; Podojil, J.R.; McCarthy, D.P.; Miller, S.D.; Popko, B. Oligodendrocyte death results in immune-mediated CNS demyelination. *Nat. Neurosci.* **2016**, 19, 65–74. [CrossRef] [PubMed]
32. Basso, A.S.; Frenkel, D.; Quintana, F.J.; Costa-Pinto, F.A.; Petrovic-Stojkovic, S.; Puckett, L.; Monsonego, A.; Bar-Shir, A.; Engel, Y.; Gozin, M.; et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. *J. Clin. Investig.* 2008, 118, 1532–1543. [CrossRef]

33. Di Filippo, M.; Mancini, A.; Bellingacci, L.; Gaetani, L.; Mazzucchetti, P.; Zelante, T.; La Barbera, L.; De Luca, A.; Tantucci, M.; Tozzi, A.; et al. Interleukin-17 affects synaptic plasticity and cognition in a experimental model of multiple sclerosis. *Cell Rep.* 2021, 37, 110094. [CrossRef] [PubMed]

34. Basso, A.S.; Frenkel, D.; Quintana, F.J.; Costa-Pinto, F.A.; Petrovic-Stojkovic, S.; Puckett, L.; Monsonego, A.; Bar-Shir, A.; Engel, Y.; Gozin, M.; et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. *J. Clin. Investig.* 2008, 118, 1532–1543. [CrossRef]

35. LoPresti, P. The Selective HDAC6 Inhibitor ACY-738 Impacts Memory and Disease Regulation in an Animal Model of Multiple Sclerosis. *Front. Neurol.* 2019, 10, 519. [CrossRef] [PubMed]

36. K Allison, J.; The Selective HDAC6 Inhibitor ACY-738 Impacts Memory and Disease Regulation in an Animal Model of Multiple Sclerosis. *Front. Neurol.* 2019, 10, 519. [CrossRef] [PubMed]

37. LoPresti, P. Glatiramer acetate guards against rapid memory decline during relapsing-remitting experimental autoimmune encephalomyelitis. *Neurochem. Res.* 2015, 40, 473–479. [CrossRef]

38. Buffolo, F.; Petrosino, V.; Albini, M.; Moschetta, M.; Carlini, F.; Floss, T.; Kerlero de Rosbo, N.; Cesca, F.; Rocchi, A.; Ucelli, A.; et al. Neuroinflammation induces synaptic scaling through IL-1β-mediated activation of the transcriptional repressor REST/NRSF. *Cell Death Dis.* 2021, 12, 180. [CrossRef]

39. Rizzo, F.R.; Musella, A.; De Vito, F.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Stapamamoni Bassi, M.; Buttari, F.; Mandolesi, G.; et al. Tumor Necrosis Factor and Interleukin-1β Induce Synaptic Plasticity during Neuroinflammation. *Neural. Plast.* 2018, 10, 1–12. [CrossRef]

40. Bruno, A.; Dolcetti, E.; Rizzo, F.R.; Fressegna, D.; Musella, A.; Gentile, A.; De Vito, F.; Caioli, S.; Guadalupi, L.; Bullitta, S.; et al. Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. *Front. Cell. Neurosci.* 2020, 14, 169. [CrossRef]

41. Nasios, G.; Bakirtzis, C.; Messinis, L. Cognitive Impairment and Brain Reorganization in MS: Underlying Mechanisms and the Role of Neurorehabilitation. *Front. Neurol.* 2020, 11, 147. [CrossRef] [PubMed]

42. Rizzo, F.R.; Musella, A.; De Vito, F.; Fressegna, D.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Stampanoni Bassi, M.; Buttari, F.; Mandolesi, G.; et al. Tumor Necrosis Factor and Interleukin-1β Induce Synaptic Plasticity during Neuroinflammation. *Neural. Plast.* 2018, 10, 1–12. [CrossRef]

43. Teunissen, C.E.; Dijkstra, C.; Polman, C. Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. *Lancet Neurol.* 2005, 4, 32–41. [CrossRef]

44. Kappos, L.; Butzkueven, H.; Wiendl, H.; Spelman, T.; Pellegrini, F.; Chen, Y.; Dong, Q.; Koendgen, H.; Belachew, S.; Trojano, M.; et al. Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study. *Mult. Scler.* J. 2018, 24, 963–973. [CrossRef] [PubMed]

45. Brady, S.T. Motor neurons and neurofilaments in sickness and in health. *Cell* 1993, 73, 1–3. [CrossRef]

46. Yuan, A.; Nixon, R.A. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. *Annu. Rev. Neurosci.* 2022, 45, 203–229. [CrossRef] [PubMed]

47. Teunissen, C.E.; Dijkstra, C.; Polman, C. Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. *Lancet Neurol.* 2005, 4, 32–41. [CrossRef]

48. Semra, Y.K.; Seidi, O.A.; Sharief, M.K. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. *J. Neuroimmunol.* 2002, 122, 132–139. [CrossRef]

49. Mandolesi, G.; Gentile, A.; Musella, A.; Fressegna, D.; De Vito, F.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Stapamamoni Bassi, M.; Buttari, F.; Mandolesi, G.; et al. Tumor Necrosis Factor and Interleukin-1β Induce Synaptic Plasticity during Neuroinflammation. *Neural. Plast.* 2018, 10, 1–12. [CrossRef]

50. Nadjar, A.; et al. Complement C3 mediates early hippocampal neurodegeneration and memory impairment in experimental multiple sclerosis. *Neurobiol. Dis.* 2021, 160, 105533. [CrossRef] [PubMed]

51. Malmestrom, C.; Haghighi, S.; Rosengren, L.; Andersen, O.; Lycke, J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. *Neurology* 2009, 73, 194–199. [CrossRef] [PubMed]

52. Trapp, B.D.; Nave, K.A. Multiple sclerosis: An immune or neurodegenerative disorder? *Annu. Rev. Neurosci.* 2008, 31, 247–269. [CrossRef]

53. Barro, C.; Benkert, P.; Disanto, G.; Tsagkas, C.; Amann, M.; Naegelin, Y.; Leppert, D.; Gobbi, C.; Granziera, C.; Yaldizli, Ö.; et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. *Mult. Scler.* 2022, 4, fcac045. [CrossRef] [PubMed]

54. Budelier, M.M.; He, Y.; Barthelemy, N.R.; Jiang, H.; Li, Y.; Park, E.; Henson, R.L.; Schindler, S.E.; Holtzman, D.M.; Bateman, R.J. A map of neurofilament light chain species in brain and cerebrospinal fluid and alterations in Alzheimer’s disease. *Brain Commun.* 2022, 4, fca045. [CrossRef] [PubMed]

55. Gunnarsson, M.; Malmström, C.; Axelsson, M.; Sundström, P.; Dahle, C.; Vrethem, M.; Olsson, T.; Piehl, F.; Norgren, N.; Rosengren, L.; et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. *Ann. Neurol.* 2011, 69, 83–89. [CrossRef] [PubMed]
56. Jakimovski, D.; Zivadinov, R.; Ramathan, M.; Hagemeier, J.; Weinstock-Guttman, B.; Tomic, D.; Kropshofer, H.; Fuchs, T.A.; Barro, C.; Leppert, D.; et al. Serum neurofilament light chain level associations with clinical and cognitive performance in multiple sclerosis: A longitudinal retrospective 5-year study. *Mult. Scler. J.* **2020**, *26*, 1670–1681. [CrossRef] [PubMed]

57. Chen, Y.; Therriault, J.; Luo, J.; Ba, M.; Zhang, H.; Initiative, A. Neurofilament light as a biomarker of axonal degeneration in patients with mild cognitive impairment and Alzheimer’s disease. *J. Integr. Neurosci.* **2021**, *20*, 861–870. [CrossRef]

58. Lee, E.H.; Kwon, H.S.; Koh, S.H.; Choi, S.H.; Jin, J.H.; Jeong, J.H.; Jang, J.W.; Park, K.W.; Kim, E.J.; Kim, H.J.; et al. Serum neurofilament light chain level as a predictor of cognitive stage transition. *Alzheimer’s Res. Ther.* **2022**, *14*, 6. [CrossRef]

59. Silva-Spinola, A.; Lima, M.; Leitão, M.J.; Durães, J.; Tabuas-Pereira, M.; Almeida, M.R.; Santana, I.; Baldeiras, I. Serum neurofilament light chain as a surrogate of cognitive decline in sporadic and familial frontotemporal dementia. *Eur. J. Neurol.* **2022**, *29*, 36–46. [CrossRef]

60. Fialová, L.; Bartos, A.; Svarcová, J.; Zimova, D.; Kotoucova, J. Serum and cerebrospinal fluid heavy neurofilaments and antibodies against them in early multiple sclerosis. *J. Neuroimmunol.* **2013**, *259*, 81–87. [CrossRef]

61. Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. *Ann. Neurol.* **2017**, *81*, 857–870. [CrossRef]

62. Kuhle, J.; Nourbakhsh, B.; Grant, D.; Morant, S.; Barro, C.; Yaldizi, Ö.; Pelletier, D.; Giovannoni, G.; Waubant, E.; Gnanapavan, S. Serum neurofilament is associated with progression of brain atrophy and disability in early MS. *Neurology* **2017**, *88*, 826–831. [CrossRef]

63. Brüe, A.; Blanchard-Bregeon, V.; Pech, C.; Hamon, S.; Chaillou, P.; Guillemot, J.C.; Barneoud, P.; Bertrand, P.; Pradier, L.; Rooney, T.; et al. NF-L in cerebrospinal fluid and serum is a biomarker of neuronal damage in an inducible mouse model of neurodegeneration. *Neurol. Dis. Treat.* **2017**, *104*, 73–84. [CrossRef]

64. Martin, S.J.; McGlasson, S.; Hunt, D.; Overell, J. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: A meta-analysis of case-control studies. *J. Neurol. Neurosurg. Psychiatry* **2019**, *90*, 1059–1067. [CrossRef]

65. Siller, N.; Kuhle, J.; Muthuraman, M.; Barro, C.; Uphaus, T.; Groppa, S.; Kappos, L.; Zipp, F.; Bittrn, S. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. *Mult. Scler. J.* **2019**, *25*, 678–686. [CrossRef]

66. Sellebjerg, F.; Royen, L.; Soelberg Sørensen, P.; Oturai, A.B.; Jensen, P. Prognostic value of cerebrospinal fluid neurofilament light chain and chitinase-3-like-1 in newly diagnosed patients with multiple sclerosis. *Mult. Scler. J.* **2019**, *25*, 1444–1451. [CrossRef]

67. Norgren, N.; Sundström, P.; Svenningson, A.; Rosengren, L.; Stigbrand, T.; Gunnarsson, M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. *Neurobiology* **2004**, *63*, 1586–1590. [CrossRef]

68. Kuhle, J.; Kropshofer, H.; Hearing, D.A.; Kundu, U.; Meinert, R.; Barro, C.; Dahlke, F.; Tomic, D.; Leppert, D.; Kappos, L. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. *Neurology* **2019**, *92*, e1007–e1015. [CrossRef]

69. Bhan, A.; Jacobsen, C.; Dalen, I.; Bergsland, N.; Zivadinov, R.; Alves, G.; Myhr, K.M.; Farbu, E. CSF neurofilament light chain predicts 10-year clinical and radiologic worsening in multiple sclerosis. *Mult. Scler. J. Exp. Transl. Clin.* **2021**, 7, 20552173211060337. [CrossRef]

70. Lycke, J.N.; Karlsson, J.E.; Andersson, O.; Rosengren, L.E. Neurofilament protein in cerebrospinal fluid: A potential marker of activity in multiple sclerosis. *J. Neurol. Neurosurg. Psychiatry* **1998**, *64*, 402–404. [CrossRef]

71. Cai, L.; Huang, J. Neurofilament light chain as a biological marker for multiple sclerosis: A meta-analysis study. *Neuropsychiatr. Dis. Treat.* **2018**, *14*, 2241–2254. [CrossRef]

72. Vavasour, I.M.; Beccuart, P.; Gill, J.; Zhao, G.; Yik, J.T.; Trabousee, A.; Carruthers, R.L.; Kolind, S.H.; Schabas, A.J.; Sayao, A.L.; et al. Diffusely abnormal white matter in clinically isolated syndrome is associated with parenchymal loss and elevated neurofilament levels. *Mult. Scler. Relat. Disord.* **2021**, *57*, 103422. [CrossRef]

73. Maggi, P.; Kuhle, J.; Schädelin, S.; van der Meer, F.; Weigel, M.; Galbusera, R.; Mathias, A.; Lu, P.J.; Rahmannzadeh, R.; Benkert, P.; et al. Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis. *Neurology* **2021**, *97*, e543–e553. [CrossRef]

74. Puente, P.; Benkert, P.; Amor, S.; Kuhle, J.; Giovannoni, G. Antibodies to neurofilament light as potential biomarkers in multiple sclerosis. *BMJ Neurol. Open* **2021**, *3*, e000192. [CrossRef]

75. Calabresi, P.A.; Arnold, D.L.; Sangurdekar, D.; Singh, C.M.; Altincatal, A.; de Moor, C.; Engle, B.; Goyal, J.; Deykin, A.; Szak, S.; et al. Temporal profile of serum neurofilament light in multiple sclerosis: Implications for patient monitoring. *Mult. Scler. J.* **2021**, *27*, 1497–1505. [CrossRef]

76. Jakimovski, D.; Dwyer, M.G.; Bergsland, N.; Weinstock-Guttman, B.; Zivadinov, R. Disease biomarkers in multiple sclerosis: Current serum neurofilament light chain perspectives. *Neurodegener. Dis. Manag.* **2021**, *11*, 329–340. [CrossRef]

77. Bergman, J.; Ding, A.; Zetterberg, H.; Blennow, K.; Norgren, N.; Gilthorpe, J.; Bergenheim, T.; Svenningson, A. Neurofilament light in CSF and serum is a sensitive biomarker for axonal white matter injury in MS. *Neuro. Neuroimmunol. Neuroinflamm.* **2016**, *3*, e271. [CrossRef]

78. Bridel, C.; Leurs, C.E.; van Lierop, Z.; van Kempen, Z.; Dekker, I.; Twaalfhoven, H.; Moraal, B.; Barkhof, F.; Uitdehaag, B.; Killestein, J.; et al. Serum Neurofilament Light Association with Progression in Natalizumab-Treated Patients With Relapsing-Remitting Multiple Sclerosis. *Neurology* **2021**, *97*, e1898–e1905. [CrossRef]
101. Arrambide, G.; Espejo, C.; Eixarch, H.; Villar, L.M.; Alvarez-Cermeño, J.C.; Picón, C.; Kuhle, J.; Disanto, G.; Kappos, L.; Sastre-Garriga, J.; et al. Neurofilament light chain level is a weak risk factor for the development of MS. Neurology 2016, 87, 1076–1084. [CrossRef]

102. Reyes, S.; Smets, L.; Holden, D.; Carrillo-Loza, K.; Christmas, T.; Bianchi, L.; Ammoscato, F.; Turner, B.; Marta, M.; Schmierer, K.; et al. CSF neurofilament light chain testing as an aid to determine treatment strategies in MS. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e880. [CrossRef]

103. Modvig, S.; Degn, M.; Roed, H.; Sørensen, T.L.; Larsson, H.B.; Langkilde, A.R.; Frederiksen, J.L.; Sellebjerg, F. Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Mult. Scler. J. 2015, 21, 1761–1770. [CrossRef]

104. Manouchehrinia, A.; Stridh, P.; Khademi, M.; Leppert, D.; Barro, C.; Michalak, Z.; Benkert, P.; Lycke, J.; Alfredsson, L.; Kappos, L.; et al. Plasma neurofilament light chain levels are associated with risk of disability in multiple sclerosis. Neurology 2020, 94, e2457–e2467. [CrossRef]

105. Novakova, L.; Zetterberg, H.; Sundström, P.; Axelsson, M.; Khademi, M.; Malmström, C.; Svenningsson, A.; Olsson, T.; Piehl, F.; et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology 2017, 89, 2230–2237. [CrossRef]

106. Engel, S.; Friedrich, M.; Muthuraman, M.; Steffen, F.; Poplawski, A.; Groppa, S.; Bittner, S.; Canales, M.; et al. Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Mult. Scler. J. 2016, 22, 1500–1509. [CrossRef]

107. Piehl, F.; Kockum, I.; Khademi, M.; Blennow, K.; Lycke, J.; Zetterberg, H.; Olsson, T. Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod. Mult. Scler. 2018, 24, 1046–1054. [CrossRef]

108. Ayriognac, X.; Le Bars, E.; Duflos, C.; Hirtz, C.; Maleksa Maceski, A.; Carra-Dallière, C.; Charif, M.; Pinna, F.; Prin, P.; de Champfleur, N.M.; et al. Serum GFAP in multiple sclerosis: Correlation with disease type and MRI markers of disease severity. Sci. Rep. 2020, 10, 10923. [CrossRef]

109. Watanabe, M.; Nakamura, Y.; Michalak, Z.; Isobe, N.; Barro, C.; Leppert, D.; Matushita, T.; Hayashi, F.; Yamasaki, R.; Kuhle, J.; et al. Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD. Neurology 2019, 93, e1299–e1311. [CrossRef]

110. Wong, Y.Y.M.; Bruijstens, A.L.; Barro, C.; Michalak, Z.; Melief, M.J.; Wierenga, A.F.; van Pelt, E.D.; Neuteboom, R.F.; Kuhle, J.; Hintzen, R.Q. Serum neurofilament light chain in pediatric MS and other acquired demyelinating syndromes. Neurology 2019, 93, e968–e974. [CrossRef] [PubMed]

111. Häkansson, I.; Tisell, A.; Cassel, P.; Blennow, K.; Zetterberg, H.; Lundberg, P.; Dahle, C.; Vrethem, M.; Ernerudh, J. Neurofilament levels, disease activity and brain volume during follow-up in multiple sclerosis. J. Neuroinflamm. 2018, 15, 209. [CrossRef] [PubMed]

112. Kouchaki, E.; Dashti, F.; Mirazimi, S.; Alirezaei, Z.; Jafari, S.H.; Hamblin, M.R.; Mirzaei, H. Neurofilament light chain as a biomarker for diagnosis of multiple sclerosis. EXCLI J. 2021, 20, 1308–1325. [CrossRef]

113. Binder, L.I.; Frankfurter, A.; Rebhun, L.I. The distribution of tau in the mammalian central nervous system. J. Cell Biol. 1985, 101, 1371–1378. [CrossRef]

114. Lo Presti, P.; Szuchet, S.; Papasozomenos, S.C.; Zinkowski, R.P.; Binder, L.I. Functional implications for the microtubule-associated protein tau: Localization in oligodendrocytes. Proc. Natl. Acad. Sci. USA 1995, 92, 1036973. [CrossRef]

115. Lo Presti, P. Inducible Expression of a Truncated Form of Tau in Oligodendrocytes Elicits Gait Abnormalities and a Decrease in Myelin: Implications for Selective CNS Degenerative Diseases. Neurochem. Res. 2015, 40, 2188–2199. [CrossRef]

116. Lo Presti, P. Tau in Oligodendrocytes Takes Neurons in Sickness and in Health. Int. J. Mol. Sci. 2018, 19, 2408. [CrossRef]

117. Anderson, J.M.; Hampton, D.W.; Patani, R.; Pryce, G.; Crowther, R.A.; Reynolds, R.; Franklin, R.J.; Giovannoni, G.; Compton, D.A.; Baker, D.; et al. Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis. Brain 2008, 131, 1736–1748. [CrossRef]

118. Anderson, J.M.; Patani, R.; Reynolds, R.; Nicholas, R.; Compton, A.; Spillantini, M.G.; Chandran, S. Evidence for abnormal tau phosphorylation in early aggressive multiple sclerosis. Acta Neuropathol. 2009, 117, 583–589. [CrossRef]

119. Ballatore, C.; Lee, V.M.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature reviews. Neuroscience 2007, 8, 663–672.

120. Mandelkow, E.M.; Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harbor Perspect. Med. 2012, 2, a006247. [CrossRef] [PubMed]

121. Bartosik-Psujek, H.; Stelmasiak, Z. The CSF levels of total-tau and phosphotau in patients with relapsing-remitting multiple sclerosis. J. Neural Transm. 2006, 113, 339–345. [CrossRef] [PubMed]

122. Schneider, A.; Araújo, G.W.; Trajkovic, K.; Herrmann, M.M.; Merkler, D.; Mandelkow, E.M.; Weissert, R.; Simons, M. Hyper-phosphorylation and aggregation of tau in experimental autoimmune encephalomyelitis. J. Biol. Chem. 2004, 279, 55833–55839. [CrossRef] [PubMed]
147. De Vito, F.; Musella, A.; Fresegnia, D.; Rizzo, F.R.; Gentile, A.; Stampanoni Bassi, M.; Gilio, L.; Buttari, F.; Procaccini, C.; Colamatteo, A.; et al. MiR-142-3p regulates synaptopathy-driven disease progression in multiple sclerosis. *Neuropathol. Appl. Neurobiol.* 2021, 48, e12765. [CrossRef]

148. Axelsson, M.; Malmeström, C.; Nilsson, S.; Haghighi, S.; Rosengren, L.; Lycke, J. Glial fibrillary acidic protein: A potential biomarker for progression in multiple sclerosis. *J. Neurol.* 2011, 258, 882–888. [CrossRef]

149. Abdelhak, A.; Hottenrott, T.; Morenas-Rodriguez, E.; Suárez-Calvet, M.; Zettl, U.K.; Haass, C.; Meuth, S.G.; Rauer, S.; Otto, M.; Tumani, H.; et al. Glial Activation Markers in CSF and Serum from Patients With Primary Progressive Multiple Sclerosis: Potential of Serum GFAP as Disease Severity Marker? *Front. Neurol.* 2019, 10, 280. [CrossRef]

150. Tanaka, M.; Vécsei, L. Monitoring the Redox Status in Multiple Sclerosis. *Biomedicines* 2020, 8, 406. [CrossRef]

151. Arslan, B.; Arslan, G.A.; Tuncer, A.; Karabudak, R.; Dinçel, A.S. Evaluation of Thiol Homeostasis in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. *Front. Neurol.* 2021, 12, 716195. [CrossRef] [PubMed]

152. Bivona, G.; Gambino, C.M.; Lo Sasso, B.; Scuzzione, C.; Giglio, R.V.; Agnello, L.; Ciaccio, M. Serum Vitamin D as a Biomarker in Autoimmune, Psychiatric and Neurodegenerative Diseases. *Diagnostics* 2022, 12, 130. [CrossRef] [PubMed]

153. Börnsen, L.; Khademi, M.; Olsson, T.; Sørensen, P.S.; Sellebjerg, F. Osteopontin concentrations are increased in cerebrospinal fluid during attacks of multiple sclerosis. *Mult. Scler. J.* 2011, 17, 32–42. [CrossRef] [PubMed]

154. Jakovac, H.; Grubić Kezele, T.; Šučurović, S.; Mulac-Jerčević, B.; Radošević-Štašić, B. Osteopontin-metallothionein I/II interactions in experimental autoimmune encephalomyelitis. *Neuroscience* 2017, 350, 133–145. [CrossRef]

155. LoPresti, P. HDAC6 in Diseases of Cognition and of Neurons. *Cells* 2020, 10, 12. [CrossRef]

156. Strebl, M.G.; Campbell, A.J.; Zhao, W.N.; Schroeder, F.A.; Riley, M.M.; Morin, T.M.; Haggarty, S.J.; Wagner, F.F.; Ritter, T.; et al. HDAC6 Brain Mapping with [18F] Bavarostat Enabled by a Ru-Mediated Deoxyfluorination. *ACS Central Sci.* 2017, 3, 1006–1014. [CrossRef]

157. Joilin, G.; Gray, E.; Thompson, A.G.; Bobeva, Y.; Talbot, K.; Weishaupt, J.; Ludolph, A.; Malaspina, A.; Leigh, P.N.; Newbury, S.F.; et al. Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis. *Brain Commun.* 2020, 2, fcaa053. [CrossRef]