Comparative study of selected indoor concentration from selective laser sintering process using virgin and recycled polyamide nylon (PA12)

A A M Damanhuri1,*, A S A Subki2, A Hariri3, B T Tee4, M H F M Fauadi5, M S F Hussin1, and M S S Mustafa6

1Centre of Advance Energy Research (CARe), Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
2Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia Malaysia
3Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Pt Raja, Bt Pahat, Johor, Malaysia
4Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia Malaysia
5Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia Malaysia
6Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400, Pt Raja, Bt Pahat, Johor, Malaysia Johor, Malaysia

*E-mail: amir.abdullah@utem.edu.my

Abstract. Additive manufacturing (AM) stands out as one of the promising technologies that have huge potential towards manufacturing industry. The study on additive manufacturing impact on the environment and occupational exposure are attracting growing attention recently. However, most of the researcher focus on desktop and fused deposition modelling type and less attention given to the industrial type of AM. Usually, during the selective laser sintering process, recycle powder will be used again to reduce cost and waste. This article compares the PM 2.5, carbon dioxide (CO2) and total volatile organic compound (TVOC) concentration between virgin and recycled powder using polyamide-nylon (PA12) towards indoor concentration. Four phases of sampling involve during air sampling accordingly to the Industry Code of Practice on Indoor Air Quality 2010 by DOSH Malaysia. It was found that PM 2.5 and CO2 concentration are mainly generated during the pre-printing process. The recycle powder tended to appear higher compared to virgin powder in terms of PM 2.5, and CO2. The peak value of PM 2.5 is 1452 µg/m³ and CO2 is 1218 ppm are obtained during the pre-printing process during 8 hours of sampling. TVOC concentration from recycling powder is slightly higher during the post-printing phase where confirm the influence of the powder cake and PA12 temperature from the printing process. In summary, this work proves that elective laser sintering (SLS) machine operators are exposed to a significant amount of exposure during the SLS printing process. Mitigation strategies and personal protective equipment are suggested to reduce occupational exposure.
1. Introduction
Additive manufacturing (AM) technology introduced by Charles Hull in 1986 has grown significantly in the last three decades. In contrast to subtractive manufacturing, AM introduced an automated manufacturing technology that can build a prototype or product from CAD model data [1]. AM uses raw materials efficiently, unlike traditional manufacturing where waste materials are the main concern. This technology widely uses in various industries including aerospace, manufacturing, medical devices, and construction [1]. There is various type of AM technology and process present worldwide as illustrated in Figure 1. AM technology offers several benefits including less material waste, energy efficiency, time, and finishing [2]. It is expected that the growth of AM and 3D printing market from USD 5.31 Billion to USD 21.5 billion in 2025 [3].

Exposure from AM process towards indoor air quality and health address huge concern recently. Several researchers conduct an aerosol and chemical concentration assessment towards fused deposition modelling (FDM) type [4]–[8]. However, the study on emission from the selective laser sintering (SLS) 3D printing process still limited. Only Pal Graff et al., in 2017 investigates the exposure from SLS process using metal powder [9]. SLS use polymer or metal powder to build a prototype. In contrast to the other approaches, SLS does not require any object to support during the sintering process. SLS using laser power to sintered powder to become the product. The only powder which heated by the laser will crystallize, and others remain and turn to recycle powder which can be used again [10], [11]. Polyamide powder is typical material use in SLS printing process. Polyamide like nylons is semi-crystalline polymers that have high strength, fatigue resistance, high thermal stability and excellent surface resolution [11]. According to Bours et al., (2017), the industrial scale of AM likewise SLS give more impact to the occupational exposure compare to the desktop scale of AM [12]. Chemical concentration and particulate matter released from the AM process could affect the operators and surrounding air quality [13], [14]. Respirable dust such as PM 2.5 and total volatile organic compound (TVOC) may penetrate the human respiratory system and influence to the human and workers health [15], [16]. Therefore, this paper compares the exposure from SLS printing process using virgin and recycle polyamide- nylon (PA12) powder at an indoor environment. Several indoor concentration parameters selected in this study which could impact the indoor air quality and SLS operator’s health.

Figure 1: Additive manufacturing technology and process [17]–[19].
2. Methodology

(SLS) brand Farsoon model SS402P located at SLS Laboratory FTKMP Universiti Teknikal Malaysia Melaka is used in this experiment. The SLS machine has an external dimension size of 2660mm x 1540mm x 2150mm and weight of 3000 kg. The maximum build product in the SLS chamber is 400mm x 400mm x 450mm. CO$_2$ is used as a laser with 100W power while scanning speed is 12.7m/s. The laser wavelength is 0.3mm and 0.1mm thickness of powder layer for every rotating roller.

PA12 powder is collected from well-known powder supplier with bulk the density 0.4 g/cm3, density of part 0.95 g/cm3, melting point 183$^\circ$C and the powder is in white. Meanwhile, recycle PA12 powder was collected from the previous SLS printing process where have been heated at 193 $^\circ$C laser temperature, also from the same brand and properties.

Calibration block (143mm x 143 mm x 23mm) by manufacturer set to be print to investigates the concentration release from SLS process [13] as depicted in Figure 2 [20], [21]. The SLS laboratory is controlled by an air conditioning system and set to be 20 $^\circ$C with relative humidity around 60%. The sampling strategies such several sampling points, sample position, sampling period and sampling technique accordingly to Industry Code of Practice on Indoor Air Quality 2010, Department of Occupational Safety and Health (DOSH) Malaysia [22]. The environmental emission monitoring from SLS is divided into four phases, where a) background data; b) pre-processing (powder mixing), c) processing (SLS printing), and d) post-processing (powder cake break). Real-time monitoring was used to measure respirable particulate matter (PM2.5), the TVOC and CO$_2$ [23], [24]. The interval times for data measurement were 5 minutes. There are two rooms involve in this project with a dimension of 6 m length x 4 m width x 3 m height where 24 m2 involves as depicted in Figure 3. Respirable particulate matter (PM2.5) in indoor air measured using Dustrak (DRX Aerosol monitor model8533, USA, TSI Inc.). Meanwhile, TVOC’s concentration was quantified using the ppbRAE monitor (ppbRAE 3000, USA, RAE System Inc. Meanwhile, CO$_2$ used Environmental monitor model EVM 7, the USA by 3M. The activity and task for every activity involve during SLS printing process are presented in Figure 4. Four different phases involve in whole SLS printing process where:

i. Background data (0 – 30 minutes)
ii. Pre-printing process (30 - 140 minutes) (Figure 4 (A), (B), (C) and (D))
iii. SLS printing process (140 - 360 minutes) Figure 4 (E)
iv. Post printing (360 – 480 minutes) Figure 4 (F), (G) and (H)

![Figure 2: Calibration block used for SLS printing process.](image-url)
3. Result and Discussion
The indoor sampling of PM 2.5, CO₂ and TVOC are presented hereafter. Figure 5 illustrates the indoor concentration between virgin and recycled powder. Background data shows an average of 21.8 µg/m³ of PM 2.5 concentration. However, a pre-printing process where powder activities are mainly involved shows the highest value of PM 2.5 at 1452 µg/m³. Recycle powder demonstrates a higher amount of PM 2.5 through the SLS process. These results are in line with those previous study where Pal Graff et al.,
in his paper found that recycle powder tended to be smaller from virgin and new powder [9]. It is observed that PM 2.5 relatively shows steady-state trend during SLS printing process due to SLS machine are fully closed. Contrary to the expectations, this study shows that post-printing activities did not influence much in PM 2.5 generation in indoor concentration.

CO₂ concentration as depicted in Figure 6 seems to be consistent with PM 2.5 generation during the pre-printing process. CO₂ generation significantly increases for both virgin and recycled powder during this phase and above DOSH Malaysia recommendation limit [22], [25]. However, the generation of CO₂ of recycles powder are much higher compared to the virgin powder at post-printing phase at 995 ppm.

Surprisingly, TVOC concentration during SLS printing process shows the highest during the post-printing process. Recycle powder significantly emit higher TVOC compare to the virgin powder. Pre-printing and SLS printing process did not show any huge difference in values. These results are consistent with the data obtained from the previous study that TVOC concentration is influenced by the temperature of the material during the SLS printing process [14], [23], [26]. Table 1 summarises all the data involves during four phases of SLS printing process. Average (avg), minimum (min), maximum (max) and standard deviation of data collected from this experiment.

![Figure 5: PM 2.5 concentration using virgin and recycle powder](image-url)
Figure 6: CO$_2$ concentration from SLS printing process using virgin and recycle powder

Figure 7: TVOC concentration using virgin and recycle powder
Table 1: Summary of data collection at SLS laboratory using virgin and recycle powder

	Background data	Pre-printing (powder preparation)	SLS Printing	Post printing					
	0-30 minutes	30-140 minutes	140-360 minutes	360-480 minutes					
	Virgin	Recycle	Virgin	Recycle	Virgin	Recycle	Virgin	Recycle	
PM 2.5 (µg/m²)	Avg	21.8	47.5	523.0	706.0	39.4	45.6	45.5	94.6
	Min	15.0	37.0	158.0	221.0	26.0	21.0	31.0	36.0
	Max	30.0	76.0	1070.0	1452.0	128.0	332.0	62.0	469.0
	Std.Dev	6.67	15.9	253.0	312.0	18.6	45.6	7.5	108.1
TVOC (ppm)	Avg	0.10	0.08	0.38	0.27	0.23	0.56	0.35	1.05
	Min	0.00	0.00	0.30	0.1	0.1	0.4	0.2	0.6
	Max	0.20	0.10	0.44	0.5	0.4	0.7	0.5	0.7
	Std.Dev	0.06	0.04	0.04	0.12	0.05	0.06	0.12	0.42
CO₂ (ppm)	Avg	725	749	954	914	613	577	757	869
	Min	712	713	800	577	473	510	651	721
	Max	749	851	1218	1211	892	758	833	995
	Std.Dev	13.03	52	73	224	118.9	58.0	52.8	74.3

4. Conclusion
In this investigation, the aim was to assess indoor concentration during SLS printing process. This study set out to explore the influence of virgin and recycle powder that impacts to the indoor concentration. This study has identified that recycle powder tended to be smaller than virgin powder and exceed the exposure limit by DOSH Malaysia. CO₂ and PM 2.5 generation are mainly exposed during the pre-printing process where powder preparation is being done. TVOC emission meanwhile are influenced by the temperature of powder cake from SLS printing process. This study has found that generally operators and workers are exposed to occupational hazard during SLS printing process. The evidence from this study suggests that efficient mitigation strategies such as ventilation could reduce the impact of powder on indoor air quality. Apart, suitable protective equipment (PPE) is needed to make sure operators and workers occupational exposure is reduced.

Acknowledgments
The author thanks the Faculty of Engineering Technology Mechanical and Manufacturing (FTKMP) Universiti Teknikal Malaysia Melaka (UTeM) for support of equipment’s, materials and SLS machine for this study. The author also would like to gratitude and acknowledge Universiti Teknikal Malaysia Melaka (UTeM) for the funding under short term grant, UTeM/PJP/2018/FTK (11A)/S01612.

References
[1] K. S. Prakash, T. Nancharaih, and V. V. S. Rao, “Additive Manufacturing Techniques in Manufacturing -An Overview,” Mater. Today Proc., vol. 5, no. 2, pp. 3873–3882, 2018.
[2] R. H. Awad, S. A. Habash, and C. J. Hansen, 3D Printing Methods. Elsevier Inc., 2018.
[3] Frost & Sullivan, “Global Additive Manufacturing Market, Forecast to 2025,” 2016.
[4] J. Yi et al., “Emission of particulate matter from a desktop three-dimensional (3D) printer,” J. Toxicol. Environ. Heal. - Part A Curr. Issues, vol. 79, no. 11, pp. 453–465, 2016.
[5] Y. Kim et al., “Emissions of Nanoparticles and Gaseous Material from 3D Printer Operation,” Environ. Sci. Technol., vol. 49, no. 20, pp. 12044–12053, 2015.
[6] Z.-M. Wang, J. Wagner, and S. Wall, “Characterization of Laser Printer Nanoparticle and VOC Emissions, Formation Mechanisms, and Strategies to Reduce Airborne Exposures,” Aerosol Sci. Technol., vol. 45, no. 9, pp. 1060–1068, Sep. 2011.
[7] B. S. Parham Azimi, Torkan Fazli, “Predicting Concentrations of Ultrafine Particles and Volatile Organic Compounds Resulting from Desktop 3D Printer Operation and the Impact of Potential Control Strategies,” *J. Ind. Ecol.*, vol. 21, pp. S107–S119, 2017.

[8] P. Steinle, “Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings,” *J. Occup. Environ. Hyg.*, vol. 13, no. 2, pp. 121–132, 2016.

[9] P. Graff, B. Ståhlbom, E. Nordenberg, A. Graichen, P. Johansson, and H. Karlsson, “Evaluating Measuring Techniques for Occupational Exposure during Additive Manufacturing of Metals: A Pilot Study,” *J. Ind. Ecol.*, vol. 21, pp. 120–129, 2017.

[10] A. Ramya and S. I. Vanapalli, “3D Printing Technologies in Various Applications,” *Int. J. Mech. Eng. Technol.*, vol. 7, no. 3, pp. 396–409, 2016.

[11] S. K. Tiwari, S. Pande, S. Agrawal, and Santosh M. Bobade, “Selection of selective laser sintering materials,” *Rapid Prototyp. J.*, vol. 21, no. 6, pp. 630–648, 2015.

[12] J. Bours, B. Adzima, S. Gladwin, J. Cabral, and S. Mau, “Addressing Hazardous Implications of Additive Manufacturing: Complementing Life Cycle Assessment with a Framework for Evaluating Direct Human Health and Environmental Impacts,” *J. Ind. Ecol.*, vol. 21, pp. S25–S36, 2017.

[13] P. Azimi, D. Zhao, C. Pouzet, N. E. Crain, and B. Stephens, “Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments,” *Environ. Sci. Technol.*, vol. 50, no. 3, pp. 1260–1268, 2016.

[14] N. Afshar-Mohajer, C. Y. Wu, T. Ladun, D. A. Rajon, and Y. Huang, “Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer,” *Build. Environ.*, vol. 93, no. P2, pp. 293–301, 2015.

[15] P. Wolkoff, “Indoor air humidity, air quality, and health – An overview,” *Int. J. Hyg. Environ. Health*, vol. 221, no. 3, pp. 376–390, 2018.

[16] P. Wolkoff, C. K. Wilkins, P. a Clausen, and G. D. Nielsen, “Organic compounds in office environments - sensory irritation, odor, measurements and the role of reactive chemistry,” *Indoor Air*, vol. 16, no. 1, pp. 7–19, Feb. 2006.

[17] D. Duncan, “Additive Manufacturing (or 3D Printing),” *DSP J.*, vol. October, pp. 3–10, 2015.

[18] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” *Compos. Part B Eng.*, vol. 143, no. December 2017, pp. 172–196, 2018.

[19] S. Ford and M. Despeisse, “Additive manufacturing and sustainability: an exploratory study of the advantages and challenges,” *J. Clean. Prod.*, vol. 137, pp. 1573–1587, 2016.

[20] J. Gu, M. Wensing, E. Uhde, and T. Salthammer, “Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer,” *Environ. Int.*, vol. 123, no. January, pp. 476–485, 2019.

[21] P. Azimi, D. Zhao, C. Pouzet, N. E. Crain, and B. Stephens, “Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments,” *Environ. Sci. Technol.*, vol. 50, pp. 1260–1268, 2016.

[22] DOSH Malaysia, “Industry Code of Practice on Indoor Air Quality 2010, JKKP DP (S) 127/379/4-39,” *Minist. Hum. Resour. Dep. Occup. Saf. Heal.*, pp. 1–50, 2010.

[23] A. A. M. Damanhuri, A. M. Leman, A. H. Abdullah, and A. Hariri, “Effect of toner coverage percentage and speed of laser printer on total volatile organic compound
(TVOC),” *Chem. Eng. Trans.*, vol. 45, no. February 2016, 2015.

[24] A. A. M. Damanhuri, “MOonitoring of Air Ducting Using Mechanical Robot for Indoor Air Quality (IAQ) Improvement,” 2013.

[25] A. A. M. Damanhuri, A. Hariri, Muhammad Hafidz Fazli Md Fauadi, M. R. Alkahari, and M. R. Omar, “Emission of selected Environmental Exposure from Selective Laser Sintering (SLS) Polyamide Nylon (PA12) 3D printing Process,” pp. 1–6, 2019.

[26] K. Jelena, A. Dragan, O. Ivana, K. Jelena, A. Savka, and M. Mirjana, “Correlation between Ozone and Total VOCs in Printing Environment,” *J. Chem. Eng.*, vol. 5, pp. 423–428, 2011.