SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network

Wei Li,a,b,1 Shuai Yang,a,b,1 Peng Xu,a,b,1 Dapeng Zhang,c,1 Ying Tong,a,b,1 Lu Chen,a,b,1 Ben Jia,d Ang Li,e,h Cheng Lian,a,b Daoping Ru,a,b Baolong Zhang,a,b Mengxing Liu,a,b Canccan Chen,a,b Weihui Fu,c,h Songhua Yuan,c,h Chenjian Gu,c Lu Wang,g Wenxuan Li,a,b Ying Liang,a,b Zhicong Yang,a,b Xiaoguang Ren,a,b Xiaoyan Zang,a,b Yuanlin Song,g Youhua Xie,f Hongzhou Lu,h Jianqing Xu,e,h* Hailin Wang,c* and Wenqiang Yu,a,b**

aLaboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
bShanghai Key Laboratory of Medical Epigenetics, Shanghai 200032, China
cState Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
dShanghai Epiprobe Biotechnology Co., Ltd, Shanghai 200233, China
eInstitute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
fKey Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
gDepartment of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
hShanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China

Summary

Background Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored.

Methods Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients.

Findings Five short sequences (24–27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients.

Interpretation HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment.

*Corresponding authors.**Corresponding author at: Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.
E-mail addresses: xujianqing@shphc.org.cn (J. Xu), hlwang@rcees.ac.cn (H. Wang), wenqiangyu@fudan.edu.cn (W. Yu).
1 These authors contributed equally to this work.

eBioMedicine 2022;76: 103861 Published online xxx https://doi.org/10.1016/j.ebiom.2022.103861
Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 infection has swept across the world. Both DNA and RNA viruses can generate small RNAs to mediate the interaction between hosts and viruses. We previously discovered that a series of miRNA located in nucleus could activate gene expression by targeting enhancers, termed “Nuclear activating miRNAs (NamiRNAs)”. Significantly, the transcripts of SARS-CoV-2 could be enriched in the host nucleolus. Except for the functional transcripts, SARS-CoV-2 can also produce numerous unknown transcripts. However, very little is known regarding how these unknown transcripts function in the interaction between host and SARS-CoV-2.

Add value of this study

We identified five short elements sharing sequence identity between SARS-CoV-2 and human genomes, at lengths of 24 nt to 27 nt, which we have named Human Identical Sequences (HIS). In vitro, HIS of SARS-CoV-2 activated expression of both adjacent and distant genes associated with inflammation by directly interacting with human enhancers. One of the activated genes, hyaluronan synthase 2 (HAS2) resulted in the accumulation of hyaluronan, which was closely correlated with the severity of COVID-19. HIS antagonism and hyaluronan synthesis inhibitor 4-Methylumbelliferone (4-MU) inhibited the formation of hyaluronan, which could be an effective strategy for blocking the clinical progression of COVID-19.

Implications of all the evidence available

Our findings highlight that the interaction between HIS of SARS-CoV-2 and their target enhancers in human loci may contribute to COVID-19 progression by activating gene transcription. Hyaluronan may be a useful biomarker to predict the progression of COVID-19, and could be explored as a therapeutic target for COVID-19. The discovery of HIS expands our understanding of potential pathogeneses of viruses and contributes to the development of nucleic acid drugs for virus-related disease.
regulating virus replication, vsRNAs also function in regulating host response and disease processes. For instance, repression of LMP2A by miR-BART22 derived from the Epstein-Barr virus (EBV) protects the infected cells from host immune surveillance. Moreover, vsRNAs can mediate the silencing of host genes in Caenorhabditis elegans, and SARS-CoV virus N gene-derived small RNA (vsRNA-N) could enhance lung inflammatory pathology. Recent research identified 7 key miRNAs in SARS-CoV-2 genomes, similar to human miRNAs. However, little is known on whether SARS-CoV-2 derived vsRNAs participate in the replication of virus or the host response in COVID-19 patients.

MicroRNAs (miRNAs) are 19–23 nucleotides (nt) non-coding RNAs (ncRNAs) that primarily regulate post-transcriptional silencing by targeting the 3’-untranslated region (3’-UTR) of mRNA transcripts in the cytoplasm. However, we discovered that miRNAs located in the nucleus were capable of activating gene expression by targeting enhancers and termed them as “Nuclear activating miRNAs (NamiRNAs)” Consistent with our findings, Sharp and colleagues deciphered the interaction between super-enhancers (SEs) and miRNA networks. NamiRNAs not only activate adjacent genes by targeting the enhancer where miRNA is located, but also activate distant genes by targeting other enhancers. SARS-CoV-2 was projected to be enriched in the nucleolus by a computational model named RNA-GPS. Besides, numerous unknown transcripts have been identified from the architecture of SARS-CoV-2 transcriptome in infected Vero cells, which may serve as precursor miRNAs (pre-miRNAs). Therefore, these findings imply that SARS-CoV-2 may generate vsRNAs that function in host cells.

Here we identified five sets of short sequences which share identity between SARS-CoV-2 and humans, which we refer to as “Human Identical Sequences (HIS)”. They are conserved fragments with high similarity across different primates. Further bioinformatics analysis indicated that HIS embedded in SARS-CoV-2 could potentially encode virus-derived small RNAs. HIS-SARS-CoV-2 RNA could directly bind to their target human DNA loci in vitro. Moreover, these virus fragments containing HIS could increase enhancer marker H3K27 acetylation (H3K27ac) enrichment at the corresponding regions of the human genome in different mammalian cell lines and activate the expression of adjacent and distant genes associated with inflammation. Notably, HIS also activated hyaluronan synthase 2 (HAS2) and increased the production of hyaluronan in vitro. Further studies demonstrated an upregulation of hyaluronan in severe COVID-19 patients’ plasma, which correlated with the severity and clinical manifestations of COVID-19. Further studies are needed to determine whether hyaluronan contributes to disease severity. Hyaluronan inhibitor treatment downregulated the hyaluronan level and thus may be a potential therapeutic strategy for COVID-19 patients worthy of further investigation.

Methods

Ethics
We retrospectively analyzed 137 COVID-19 patients admitted to The Shanghai Public Health Clinical Center (SPHCC), which was approved by the SPHCC Ethics Committee (YJ-2020-S008-02, March 26 in 2020). All participants provided written informed consent for sample collection and subsequent analyses. All animal treatments were approved by the Animal Research Ethics Committee of Fudan University (202109009S, September 9 in 2021).

Cell cultures
Transformed human embryonic kidney cell HEK293T, and human fetal lung fibroblast cell MRC5 cells were cultured in DMEM/High glucose medium (HyClone, Cat# SH30243.01B) supplemented with 10% FBS (Gibco, Cat# 10270-106) and 1% Penicillin-Streptomycin solution (HyClone, Cat# SV30010). Human umbilical vein endothelial cells (HUVEC) were cultured in the commercial culture medium (AllCells, Cat# H-004). VERO C1008 (E6) (Cat# GNO17) and its culture medium MEM Complete Medium (Cat# SCSP-651), HEK293T (Cat# GHU17), and MRC5 (Cat# GHN44) were bought from The Cell Bank of Type Culture Collection of Chinese Academy of Sciences.

Clinical subjects
The COVID-19 patients in SPHCC were confirmed in strict accordance with the World Health Organization (WHO) diagnostic criteria. Based on the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7) released by National Health Commission & State Administration of Traditional Chinese Medicine on March 3, 2020, COVID-19 patients with pneumonia were categorized as mild and severe based on the characteristic pneumonia features of chest CT. During the hospitalization of COVID-19 patients, they accepted necessary laboratory examinations and imaging examinations at any time according to their conditions, including lymphocyte count (137 patients), D-dimer (132 patients), and CRP (135 patients). Moreover, ELISA was performed to detect the hyaluronan level in their plasma at the same time points.

Mice and hyaluronan administration
Eight-week-old C57BL6/J mice were bought from the Animal Center of Jiesijie in Shanghai. All mice were fed in independent ventilated cages in 12:12-h light-dark cycle. They were randomly divided into two
groups \((n = 5/\text{group})\). Hyaluronan between 200 to 400 kDa was dissolved in \(1 \times \text{PBS}\). After anesthetization, the solvent hyaluronan (60 mg/kg) was intratracheal to mice as the experiment group. Meanwhile, the mice were treated with \(1 \times \text{PBS}\) as the control group. The lungs of mice were monitored via micro CT imaging.

Viral genome and human genome blast & filter

The DNA BLAST was completed between the SARS-CoV-2 reference genome (Accession number: NC_045512) and the human reference genome (hg38) online (http://asia.ensembl.org/Multi/Tools/Blast) with the follow parameters:

- (1) search against: Human and DNA database (Genome sequence);
- (2) search tool: BLASTN;
- (3) Search Sensitivity: normal;
- (4) General options: ① Maximum number of hits to report: 100; ② Maximum E-value for reported alignments: 10; ③ Word size for seed alignments: 11; ④ Scoring options: ① Match/Mismatch scores: 1,-3; ② Gap penalties: Opening: 2; ③ Filters and masking options: ① Filter low complexity: choose; ② Filter query sequences using Repeat Masker: choose; ③ Searching result Filter: the 100% similarity results and the length more than 20 bp were kept for further studies.

RNA secondary structure prediction

RNA secondary structure prediction was calculated by the minimum free energy algorithm (MEF)\(^{27,28}\), which was proposed by Zuker based on the energy date of experiments. The base pairs and nucleotides in the RNA molecule are connected by hydrogen bonds. Free energy is defined by the energy consumed to break the hydrogen bonds in different substructures of the RNA secondary structure. SARS-CoV-2 RNA sequence in FASTA form was put in the web (https://tanuki.ibisc.univ-evry.fr/everyrna/mirna-fold/mirnafold_form) and analyzed as follows: (1) sliding window size 150; (2) minimum hairpin size:0; (3) maximal thermodynamic value of hairpins:0; (4) percentage of verified features:70; (5) species parameters: all miRBase.

Gene function annotation

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis on the surrounding (±500 kb) genes of the identical sequences of HIS-SARS-CoV-2 in human genome and genes regulated by HIS-SARS-CoV-2 via targeting pulmonary enhancer were performed using DAVID\(^{29}\) and EnhancerAtlas 2.0.\(^{10}\) GO biological processes were ranked by \(P\)-value.

Plasmid construction and antagomir synthesis

Five HIS in SARS-CoV-2 were chosen to construct plasmids, named HIS-SARS2-1, HIS-SARS2-2, HIS-SARS2-3, HIS-SARS2-4, and HIS-SARS2-5. Moreover, we chose HIS-SARS1 in SARS-CoV as the parallel group. In brief, as HIS precursors, 100–150 bp virus DNA fragments containing 24–27 bp HIS in SARS-CoV and SARS-CoV-2 were obtained by annealing and extension with specific primers synthesized by Shanghai SunnyBio-technology Co., Ltd. Then, these HIS were cloned into the pCDH-CMV-MCS-EF1-copGFP lentiviral vector\(^{30}\) at EcoR I (\('5') and BamH I (\('3') sites through ClonExpress II One Step Cloning Kit (Vazyme, Cat# C112) according to the manufacturer’s manual. In addition, diverse single guide RNAs (sgRNAs) targeting the HIS precursors were designed and cloned into modified lentivirus plasmids containing Cas13d. Also, the antagomirs for HIS-SARS2-1, HIS-SARS2-2, HIS-SARS2-3, HIS-SARS2-4, HIS-SARS2-5, and HIS-SARS1 were purchased from Guangzhou Ribobio Co., Ltd. The sequences of primers, HIS precursors, and antagomirs are listed in Table S1.

Vector transfection

Cells were transfected with plasmids or antagomirs at 70–80% confluency via Hieff Trans\(^{31}\) liposome nucleic acid transfection reagent (YEASEN, Cat# 40802ES02) following the manufacturer’s instruction. We changed fresh medium containing 10% FBS at 6–8 h after transfection and harvested transfected cells at 72 h after transfection to detect the expression of HIS and target genes or perform ChIP assay. In addition, RNA sequencing was conducted to analyze the potential function of HIS using HEK293T cells transfected with the empty vector and HIS-SARS2-4 plasmid. The raw RNA-seq data reported in this paper have been deposited in the Genome Sequence Archive\(^{32}\) in National Genomics Data Center,\(^{33}\) China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences, under accession number HRA001589 that are publicly accessible at http://bigd.big.ac.cn/gsa-human.

Lentivirus package and cell screening

We co-transfected pCDH-pre-HIS, pSPAX2 (RRID: Addgene_12259), and pMD2.G (RRID: Addgene_12259) plasmids into HEK293T cells in a ratio of 4:3:1.2 and collected the virus supernatant by filtering cell culture supernatant with 0.45 \(\mu\)m filters at 48 h after transfection and harvested transfected cells at 72 h after transfection to detect the expression of HIS and target genes or perform ChIP assay. In addition, RNA sequencing was conducted to analyze the potential function of HIS using HEK293T cells transfected with the empty vector and HIS-SARS2-4 plasmid. The raw RNA-seq data reported in this paper have been deposited in the Genome Sequence Archive\(^{32}\) in National Genomics Data Center,\(^{33}\) China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences, under accession number HRA001589 that are publicly accessible at http://bigd.big.ac.cn/gsa-human.

SARS-CoV-2 viral RNA preparation

Vero cells were infected with SARS-CoV-2 strain nCoV-SH01 (GenBank: MT121215.1) at a multiplicity of
infection (MOI) of 0.05 and cultured in MEM complete medium at 37 °C, 5% CO₂ for 48 h; then we harvested cells to extract the total RNA. The study was approved by The Institutional Biosafety Committee of Shanghai Medical College Fudan University and experiments were performed in Biosafety Level 3 Laboratory at Shanghai Medical College, Fudan University.

Quantitative RT-PCR (RT-qPCR)
Total RNA was extracted from freshly harvested cells using TRIzol Reagent (Invitrogen, Cat# 15596026). Complementary DNA (cDNA) was synthesized with the PrimeScript™ RT reagent Kit (Takara, Cat# RR047A) involved in genomic DNA erasing. Quantitative PCR was performed using SYBR Green Pre-Mix (TIANGEN, Cat# FP205) on the Roche LightCycler480 instrument. GAPDH was the normalized endogenous control gene. Relative gene expression was calculated according to 2⁻ΔΔCt method. The primers for target genes and diverse HIS precursor fragments are shown in Table S1.

Chromatin immunoprecipitation (ChIP)
ChIP assay was carried out as our previous study described. In brief, transfected cells were cultured in 10 cm dishes and crosslinked with 1% formaldehyde in 1 x PBS for 10 min at room temperature. After sonication, sheared chromatin was immunoprecipitated with H3K27ac antibody (Abcam Cat# ab177178, RRID: AB_2828007) and Protein A magnetic beads (Invitrogen, Cat# 10002D) overnight at 4 °C. DNA from the chromatin immunocomplexes was extracted with QIAquick PCR Purification Kit (QIAGEN, Cat# FFp205) on the Roche LightCycler480 instrument. GAPDH was the normalized endogenous control gene. Relative gene expression was calculated according to 2⁻ΔΔCt method. The primers for target genes and diverse HIS precursor fragments are shown in Table S1.

Loss-of-function assay for HIS
Loss-of-function of HIS was performed by inhibiting the enhancer components with JQ1 (Selleck Chemicals Inc., Cat# S7110) or blocking them via antagonirs synthesized by Guangzhou RiboBio Co., Ltd (see Table S1 for antagonist sequences). Cells were co-transfected with antagonirs and HIS precursor vectors and harvested at 72 h. Cells transfected with HIS precursor vectors were then treated with 500 nM JQ1 for 24 h. As indicated time points, total RNA was extracted from the harvested cells and the effect of loss-of-function for HIS on the target genes expression was evaluated by RT-qPCR.

UV-Vis spectroscopy measurement
UV-Vis spectroscopy experiments were performed on a SHIMADZU UV-1900 UV-Vis spectrophotometer (Tokyo, Japan) at room temperature. The DNA or/and RNA oligonucleotide, DNA-RNA hybrid, DNA duplex samples (2 mL) were diluted to 2.0 μM in 10 mM Tris-HCl, 50 mM NaCl buffer at pH 7.0. Spectra were recorded over a wavelength range from 350 to 200 nm with a scan rate at 100 nm/min and data interval for 1 nm. A 10 mm optical path length quartz cuvette was used for UV-Vis measurement.

Thermal melting (Tm) analysis
Melting temperatures (Tm) of self-complementary sequences were determined from the changes in absorbance at 260 nm as a function of temperature in a 10 mm path length quartz cuvette on a SHIMADZU UV-1900 UV-Vis spectrophotometer (Tokyo, Japan) equipped with a temperature control system. Solutions (2 mL) of 2 μM pre-hybridized DNA-RNA hybrid or DNA duplex in aqueous buffer (10 mM Tris-HCl, 50 mM NaCl, pH 7.5) were equilibrated at 10 °C for 5 min and then slowly ramped to 90 °C with a 2 °C step at a rate of 1 °C/min. Tm values were calculated as the first derivatives of heating curves.

Probes preparation
All DNA-RNA hybrid and DNA duplex were prepared as follows: Firstly, the oligonucleotide was mixed with an equal molar of the complementary target strand in hybridization buffer (10 mM Tris-HCl pH 7.8, 50 mM NaCl, 1 mM EDTA), then the mixtures were annealed by heating them to 95 °C for 5 min, and then slowly cooled to room temperature. Secondly, the annealed mixtures were separated on 16% nondenaturing polyacrylamide gel at 100 V for 120 min using 0.5 x TBE as electrophoresis buffer. Thirdly, the target bands in the gel were cut and recovered the nucleic acid probes from the gel according to Molecular Cloning: A Laboratory Manual.

Protein purification
Full-length hAGO2 coding sequence was amplified and cloned into the BamH I and Hind III restriction endonuclease sites of a home-reconstructed pMAL-C5X expression vector for protein purification. The constructed plasmid was transformed into a laboratory-built Dam knock out Rosetta (DE3) cells for protein expression. The colony was inoculated into 50 mL of LB containing 100 μg/mL ampicillin and allowed to grow overnight at 37 °C. This culture was diluted into 41 LB containing 100 μg/mL ampicillin and grown at 37 °C until A600 reached 0.4–0.6. Then the culture was overnight induced by the addition of 0.2 mM isopropyl-β-D-galactopyranoside at 16 °C. The cells were harvested at 10,000 rpm for 5 min at 4 °C and then suspended in 100 mL lysis buffer (20 mM Tris-HCl pH 7.5, 500 mM NaCl, 10% glycerol, 1 mM DTT) supplemented with EDTA-free protease inhibitor. The
suspended cells were lysed by ultrahigh-pressure continuous flow cell breaker under the low-temperature (4°C) water bath. Following centrifugation 12,000 rpm for 30 min at 4°C, the cleared lysate was loaded onto 5 mL MBP Trap™ HP column pre-equilibrated with 20 mM Tris-HCl pH 7.5, 200 mM NaCl, 10% glycerol, 0.2 mM DTT. The MBP-hAGO2 recombinant protein was eluted by the 20 mM Tris-HCl pH 7.5, 200 mM NaCl, 1.0 mM maltose, 10% glycerol, 0.2 mM DTT. The eluted recombinant protein was digested by thrombin to remove the MBP-tag under the ice-water bath, and then the digested mixture was further purified by the 1 mL His Trap HP column.

Electrophoretic mobility shift assay (EMSA)
The oligonucleotide probes (20 nM) were incubated with hAGO2 recombinant protein on the ice for 30 min in the fresh prepared binding buffer (10 mM PBS pH 7.5, 5 mM MgCl2, and 0.1% Triton-100). The protein-substrate complexes were separated from the unbound substrate probes on 5% nondenaturing polyacrylamide gels at 100 V for 50 min using 0.5 TBE as electrophoresis buffer. After electrophoresis, the resolved oligonucleotide probes in the gel were detected using an Odyssey CLX dual-color IR-excited fluorescence imaging system (LI-COR, Lincoln, NE).

Enzyme-linked immunosorbent assay (ELISA)
Hyaluronan of COVID-19 patients’ plasma was measured in 1:5 dilution by the enzyme-linked sandwich assay Hyaluronan DuoSet ELISA (R&D Systems, Cat# DY3614-05, Minneapolis, MN, USA) following the manufacturer’s descriptions. To evaluate the effect of hyaluronan inhibitor, 5 × 10⁶ cells were seeded in 12-well plates and incubated for 24 h under appropriate treatments (with 500 μM 4-MU or 200 μg/ml hymecromone, and DMSO as the control group). Then, we collected the culture supernatants and quantified hyaluronan using the same ELISA kit. 4-MU (Cat# S2256) were purchased from Selleck. And hymecromone was provided from Correction Pharmaceutical Group Co., Ltd. in China.

Statistics
The miRNA relative expression level for each sample was evaluated by 2⁻ΔΔCt method and presented relative to GAPDH. The results of RT-qPCR (Figs. 3a–i and 4), ChIP-qPCR (Fig. 3k) and hyaluronan detection of cell culture supernatants (Fig. 6a,g–h) are presented as mean ± SEM. P-values were calculated using the unpaired, two-tailed Student’s t test by GraphPad Prism 7.0. The evaluation of clinical indicators of COVID-19 are shown in scatter plot (Fig. 6b–e), and the means were compared using the two-tailed nonparametric Mann–Whitney test by GraphPad Prism 7.0. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, not significant.

Role of the funding source
The funders had no role in study design, data collection, analysis and interpretation, writing and submission of the manuscript.

Results
Identification of human identical sequences in SARS-CoV-2 genome
Conserved regulatory elements have been revealed in certain viral genomes.⁹,35 We previously identified a series of human miRNAs located in the nucleus, which could activate gene expression by interaction with enhancers.²² Recent study showed that miR-1339 can regulate tumor suppressor gene transcription by targeting enhancers in the human genome.²⁵ Therefore, we speculated that the interaction between nucleotide sequence of SARS-CoV-2 and human genome might function in SARS-CoV-2 infection and its pathogenicity during the clinical progression of COVID-19. Considering that the shortest regulatory RNAs are 19–23 nt miRNAs,²⁶ we first analyzed the sequence similarity between the genome of SARS-CoV-2 (accession number NC_045512) and human (GRCh38/hg38) with the following conditions: (1) length range of sequences are greater than 20 bp; (2) matching rate is 100%. Surprisingly, we found five fully identical sequences between the genome of SARS-CoV-2 and human (Fig. 1a), which were collectively termed as "Human Identical Sequences (HIS)". HIS-SARS-CoV-2-1 (abbreviated as "HIS-SARS2-1") and HIS-SARS2-2 are located in chromosome 3 (chr. 3) (Fig. 1b), while HIS-SARS2-3, HIS-SARS2-4, and HIS-SARS2-5 are in chromosome 5 (chr. 5), chromosome 18 (chr. 18), chromosome X (chr. X), respectively (Fig. S1a). HIS-SARS-CoV-2 were abbreviated as HIS-SARS2.

We further investigated the characteristics of these identical sequences of HIS-SARS2 in the human genome, and found that all these human genomic loci were widely associated with H3K27ac, a well-known marker of enhancers (Figs. 1c and S1b), suggesting that HIS-SARS2 may function as a regulator with the host enhancer. Intriguingly, there were many well-recognized genes near the location of HIS-SARS2 in human, including genes associated with inflammation (Fig. 1b). Furthermore, KEGG pathway analysis of the neighbor genes of HIS-SARS2 showed that they were enriched in the cGMP-PKG signaling pathway and muscle contraction (Fig. 1d).

Collectively, we identified five HIS in the SARS-CoV-2 genome, and their targeted human genome loci were enriched with inflammation-related genes, indicating...
that HIS may facilitate the inflammatory cytokine storm of COVID-19 patients and play a role in pathological progression.

Conservation and widespread of HIS
SARS-CoV-2 belongs to the Coronavirusae subfamily, which contains six well-known human coronaviruses...
(HCoVs), including two alphacoronavirus (HCoV-299E, HCoV-NL63), two lineages A beta-coronavirus (HCoV-OC43, HCoV-HKU1), one lineage B beta-coronavirus (SARS-CoV), and one lineage C beta-coronavirus (MERS-CoV). To figure out whether HIS is a common feature embedded across the HCoVs’ genome (The accession number for each HCoVs refers to Table S2), we analyzed the HCoVs and human genome sequence using the same criteria. Except for the five HIS in SARS-CoV-2 mentioned above, we identified 17 HIS overall, including five HIS in HCoV-HKU1, five HIS in HCoV-NL63, two HIS in HCoV-SARS, two HIS in HCoV-299E, two HIS in HCoV-OC43, and one HIS in MERS-CoV (Fig. 2a). Similar to HIS-SARS-CoV-2 being abbreviated as HIS-SARS2, HIS-SARS-CoV and HIS-MERS-CoV were abbreviated as HIS-SARS and HIS-MERS, respectively (The detailed information of 22 HIS in HCoVs refers to Table S3). Similarly, diverse sequences of HIS were embedded in the genome of other more than 100 pathogenic RNA viruses (Table S4), such as the Avian influenza virus, HIV, Ebolavirus, and Zika virus.

To explore the distribution of HIS-SARS2 across species, we explored the conversation of HIS in 19 different species, including eight primates (human, rhesus, crab-eating macaque, baboon, green monkey, marmoset, squirrel monkey, bushbaby), squirrel, mouse, rat, cat, dog, four bats (megabat, David’s myotis bat, microbat, big brown bat) and chicken (The accession number for each species refers to Table S2). Results demonstrated that all five HIS-SARS2 were highly conserved in primates (Figs. 2b and S2). Among them, HIS-SARS2-1, HIS-SARS2-4, and HIS-SARS2-5 were also highly conserved in bats and relatively poorly conserved in other mammals, such as squirrel, mouse, rat, cat, or dog (Figs. 2b and S2c,d); while HIS-SARS2-2 and HIS-SARS2-3 showed weakly conservation except primates (Fig. S2a,b). When it comes to the domesticated animals exampled by chicken, which is the main host for avian influenza, no conserved HIS were identified.

These results imply that the conservation of HIS across species may be a hint of the propagation evolution pathway of SARS-CoV-2, which highlights the potential significance of HIS.

HIS-SARS2 forms miRNA-like precursors
To investigate whether HIS can work as miRNAs, RNA secondary structures prediction37 was performed to evaluate the potential of HIS-containing fragments in forming typical hairpin structures. HIS-containing fragments were predicted to form the typical hairpin structure like miRNA precursors (Figs. 2c and S3), suggesting that HIS are similar in structure and function to miRNAs.
miRNA. In addition, in silico prediction tools suggest that SARS-CoV-2 RNA could potentially be found in the host nucleus, indicating that HIS-SARS2 may function in the nucleus. Combining these results above, we suspected that HIS-SARS2 could interact with host enhancers and function as NamiRNA.

HIS-SARS2 activates host genes involved in COVID-19 pathogenic processes

To investigate whether HIS could activate host gene expression, we constructed vectors containing HIS fragments from SARS-CoV-2 and SARS-CoV. We transfected them into HEK293T, MRC5, and HUVEC, and detected the expression of both surrounding and distant genes, which could be regulated through HIS and human enhancer interaction. The expression level of coronavirus fragments was verified by RT-qPCR (Fig. S4a–c). We confirmed that HIS precursor fragments were also detected in Vero cells with SARS-CoV-2 infection (Fig. S4d,e) and COVID-19 patients (Fig. S4f). HIS-SARS2-1 could upregulate the upstream gene KALRN in the HEK293T cell (Fig. S4a). KALRN contributes to the development of sarcoidosis, a systemic inflammatory disease involved in multiple organs throughout the body. Likely, FBXO15, TIMM21, and CYB5A were localized upstream of the targeted locus of HIS-SARS2-4. As an E3 ligase subunit, FBXO15 impairs mitochondrial integrity and induces lung injury in pneumonia. Both TIMM21 and CYB5A encode the components of mitochondrial membrane, implying their fundamental roles in mitochondria. Simultaneously, we found FBXO15 was upregulated when HIS-SARS2-4 was transfected into HEK293T (Fig. 3a), MRC5 (Fig. 3b), and HUVEC (Fig. 3c). Meanwhile, TIMM21 and CYB5A were upregulated in HEK293T (Fig. 3a) and MRC5 (Fig. 3b), respectively. Besides, HIS can also work as cis-regulatory elements. For example, MYL9 was obviously up-regulated by HIS-SARS2-3 in HEK293T (Fig. 3c). MYL9 encodes the critical enzyme for the production of hyaluronan, which accumulates in the lung of ARDS patients infected with SARS-CoV. Given that ARDS is the most typical clinical manifestation of severe COVID-19 cases, it is intriguing to explore whether HIS-SARS2 could activate MYL9. Surprisingly, we found that both HIS-SARS2-3 and HIS-SARS2-4 could activate the expression of HAS2 about 2–4 folds in HEK293T (Fig. 3g) and MRC5 (Fig. 3h). Remarkably, the expression of HAS2 was upregulated more than ten folds in HUVEC (Fig. 3i). In addition, we noticed that ACE2 was also upregulated by HIS-SARS2-3 and HIS-SARS2-4 (Fig. S7e). Accordingly, the expression of HAS2 and ACE2 was significantly activated in SARS-CoV-2 infected Vero cells (Fig. S7f).

Combined with the enhancer database EnhancerAtlas 2.0, we also identified the target genes regulated by the pulmonary specific enhancers and HIS-SARS2 regulatory cascade. Interestingly, the lung’s enhancers which are targeted by HIS could regulate 298 genes (Table S5) supported by recent results made by the bronchoalveolar lavage fluid (BALF) of COVID-19 patients transcriptome sequencing. Importantly, 58 of all genes regulated by HIS-SARS2 were involved in the “cytokine activity term” (GO:0005125) (Table S6), such as IL-6, CXCL10, and CCL2, which were increased significantly in COVID-19 patients. Additionally, we performed functional annotation of all genes regulated by HIS-SARS2 in lung. As shown in Fig. S6a, these genes were significantly enriched in cell-cell adhesion, apoptotic process, viral process, mRNA splicing via spliceosome, which was also supported by the findings that SARS-CoV-2 infection indeed disrupts the mRNA splicing, protein translation and trafficking in host cells. Moreover, we performed RNA sequencing to evaluate the functional consequence of the HIS-mediated gene activation in HEK293T cells. Given that HIS could activate gene expression by targeting enhancer, functional annotation was carried out from the upregulated genes (Fig. S6b). Notably, viral process was also enriched in the upregulated genes caused by HIS-SARS2-4. At the same time, cilium assembly and cilium morphogenesis were surprisingly observed in the functional annotation of differentially expressed genes of SARS-CoV-2–infected ciliated cells in COVID-19 patients. Consistent with this finding, the infection of SARS-CoV-2 caused the ultrastructurally abnormal cilia of the ciliated cells. In accordance with DNA repair, the DNA damage response was triggered by SARS-CoV-2 in Vero E6 cells.

Therefore, these results demonstrate that HIS-SARS2 can activate adjacent and distant host genes, which have been previously implicated to be involved in COVID-19 pathogenesis.

HIS-SARS2 activates the host genes through NamiRNA-enhancer network

H3K27ac marks enhancers, which is critical for gene activation. To explore the underlying mechanism of HIS-SARS2 regulated gene expression, we transfected HEK293T with HIS fragments and performed H3K27ac ChIP-qPCR. We found that HIS fragments could increase the enrichment of H3K27ac at HIS targeted loci (Fig. 3k). JQ1, as a potent inhibitor of the BET family proteins, could inhibit gene expression regulated by...
Figure 3. HIS-SARS2 activates genes related to COVID-19 pathology. (a–c) The relative mRNA expression of the neighboring genes FBXO15, TIMM21, and CYB5A after HIS-SARS2-4 vector transfected in HEK293T cells (a), MRC5 cells (b), and HUVEC cells (c). (d–f) The
enhancers. And we found that the upregulation of HIS targeted genes (such as KALRN, HAS2, and MYL9) was abolished after JQ1 treatment (Fig. S7). To further confirm whether HIS is indispensable for gene activation, we knocked down HIS expression by Cas13d and found that the activation of targeted genes was abolished (Fig. 4a–c). Moreover, we transfected cells with HIS antagomirs and found that antagomirs of HIS-SARS2-1, HIS-SARS2-3, and HIS-SARS2-4 downregulated the corresponding inflammatory genes, such as KALRN (Fig. 4d), HAS2, MYL9 (Fig. 4e), FBXO15, and TIMM21 (Fig. 4f). These data revealed the specificity of HIS for regulating the host genes, which suggest that targeting HIS may be an efficient strategy for fighting against RNA virus-related disease. The behaviors of HIS-SARS2 RNA are highly similar to our earlier identified NamiRNAs, which activate genes as enhancer triggers in the nucleus.22,52 Overall, these data suggest that HIS activate the host gene through the NamiRNA-enhancer network.

Figure 4. Loss-of-function of HIS abolishes the upregulation of their targeted genes. (a) The relative mRNA expression of HIS-SARS2-1 targeted gene KALRN in HEK293T cells after Cas13d knocked down HIS-SARS2-1. (b) The relative mRNA expression of HIS-SARS2-3 targeted genes HAS2 and MYL9 in HEK293T cells after Cas13d knocked down HIS-SARS2-3. (c) The relative mRNA expression of HIS-SARS2-4 targeted genes HAS2, FBXO15, and TIMM21 in HEK293T cells after Cas13d knocked down HIS-SARS2-4. (d–f) The relative mRNA expression of the targeted gene KALRN (d), MYL9 (e), HAS2, FBXO15, and TIMM21 (f) after transfection of antagomirs of HIS-SARS2-1, HIS-SARS2-3, and HIS-SARS2-4, respectively. Data are represented as mean ± SEM (n = 3). In all figures, P-values were calculated using the unpaired, two-tailed Student’s t test by GraphPad Prism 7.0. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.
cascade.53 Here, we investigated whether AGO2 was essential for the NamiRNA-enhancer-gene activation dsDNA. Results demonstrated that the HIS-SARS2-1 RNA-DNA-Hybrid (62.7 °C) was higher than dsDNA (60.3 °C) (Fig. 5b), which reflected the robustness of the HIS-SARS2-1-RNA-DNA hybrid over dsDNA.

Previously, we have shown that AGO2 was also essential for the NamiRNA-enhancer-gene activation cascade.53 Here, we investigated whether AGO2 was necessary for HIS-induced gene activation. We assessed the interaction between human AGO2 (hAGO2) and HIS-SARS2-1 DNA-S, HIS-SARS2-1 dsDNA, HIS-SARS2-1 RNA-DNA-Hybrid by EMSA assay. It showed that hAGO2 could partially bind to HIS-SARS2-1 DNA-S in high hAGO2 concentrations (Fig. 5c), while the interaction between hAGO2 and HIS-SARS2-1 dsDNA or the HIS-SARS2-1 RNA-DNA-Hybrid was more intense (Fig. 5d,e), which was verified in a fixed concentration of hAGO2 (Fig. 5f). We simulated the hAGO2 binding curves of these three forms of nucleic acid and calculated the corresponding dissociation constant (Kd). Results demonstrated that the HIS-SARS2-1 RNA-DNA-Hybrid has the smallest Kd, indicating the strongest binding ability. Compared with the HIS-SARS2-1 RNA-DNA-Hybrid, HIS-SARS2-1 dsDNA exhibited a relatively low binding capability, and HIS-SARS2-1 DNA-S bound weakly to hAGO2 (Fig. 5g).

These data suggest that HIS-SARS2 RNAs could bind to their targeted DNA loci in the host genome, which further support that HIS-SARS2 can potentially activate genes related to COVID-19 pathology via the AGO2-dependent NamiRNA-enhancer network.

Hyaluronan acts as a predictor of progression and therapeutic target for COVID-19 treatment

ARDS is one of the common clinical symptoms of SARS-CoV and SARS-CoV-2 infected patients. It has been proven that hyaluronan accumulates in the lung of patients with adult respiratory distress syndrome.44 Among HIS-activated genes, HAS2 arose to our special attention for its ability to regulate hyaluronan levels. Along with the upregulation of HAS2 activated by HIS-SARS-1, HIS-SARS-3, and HIS-SARS-4, we found that HIS significantly upregulated the hyaluronan level in supernatant of culture medium for HEK293T (Fig. 6a), which was also the case for MRC5 (Fig. S8a).

To examine whether hyaluronan may play a role in COVID-19 disease, we collected the plasma from COVID-19 patients who have been hospitalized at The Shanghai Public Health Clinical Center. We categorized patients into mild (n = 37) and severe (n = 100) groups based on the characteristic pneumonia features of chest CT. In severe patients, the mean value of hyaluronan (80.39 ng/mL) (Fig. 6b) was significantly (P < 0.0001) higher than that in mild patients (5.70 ng/mL), suggesting that hyaluronan may act as a predictor of COVID-19 severity.

In order to test whether hyaluronan itself could be an indicator for characterizing the clinical manifestations of COVID-19 patients, we categorized patients into mild and severe groups based on their hyaluronan levels. We found that in severe patients, the level of lymphocytes decreased (Fig. 6c), D-Dimer increased (Fig. 6d), and CRP was significantly elevated (Fig. 6e), which were in line with reported indicators of severity in COVID-19 patients54. Ground-glass opacity (GGO) of lung is another typical clinical symptom in COVID-19 patients,55 which can develop into consolidation. We further reproduced this pathogenic progression in mice, and results showed that pulmonary lesions, including GGO and consolidation were induced by hyaluronan administration (Fig. 6f). These data suggest that hyaluronan may contribute to COVID-19 severity.

For the purpose of further testing whether hyaluronan could function as a target for COVID-19 progression, we treated HEK293T with 4-Methylumbellif erone (4-MU), a hyaluronan synthesis inhibitor56. After treatment, hyaluronan was downregulated in all groups (Fig. 6g), which was also the case for MRC5 (Fig. S8b). We noted that hymecromone was an oral prescription drug containing 4-MU. Similarly, we treated HEK293T with DMSO-dissolved hymecromone and found that hyaluronan levels reduced accordingly in the cell culture supernatants (Fig. 6h).

Taken together, hyaluronan promoted by HIS may emerge as a potential target for COVID-19 treatment, and the downregulation of HAS2 by HIS antagonomirs or blocking hyaluronan synthesis by hymecromone may provide novel strategies for treating COVID-19 patients by blocking progression from developing severity.

Discussion

It is critical to understand the mechanisms of how SARS-CoV-2 causes inflammation leading to cytokine storm in the host. In this current study, we observed that HIS-SARS2 activate host genes associated with inflammation through the NamiRNA-enhancer network. Ectopic expression of these fragments containing HIS-SARS2 promotes H3K27ac enrichment at their corresponding enhancer regions in host cells. It is notable that these HIS-SARS2 can bind to their targeting loci.
within human genome facilitated by AGO2 in vitro. Importantly, HIS activates HAS2 expression and increase hyaluronan level in different cells, while COVID-19 patients who have higher plasma hyaluronan levels were associated with severe symptoms. These results uncover potential pathogenic mechanisms underlying COVID-19 progression and provide novel therapeutic targets for COVID-19.
A growing number of studies indicate that the infection of various viruses, including both DNA and RNA viruses, has species- and organ-specific signatures. We found HIS fragments are conserved in primates. We also identified HIS between other highly pathogenic beta-coronaviruses (such as SARS-CoV and MERS-CoV) and humans. In particular, HIS was found within other more than 100 pathogenic RNA viruses, including HIV, Ebolavirus, and Zika virus, indicating a common phenomenon that pathogenic viruses share.

Figure 6. Hyaluronan can serve as a potential therapeutic target for COVID-19. (a) Hyaluronan released in cell culture supernatants of Mock, HIS-SARS-1, HIS-SARS2-3, and HIS-SARS2-4 overexpressed in HEK293T cell. (b) Hyaluronan in mild patients (n = 37) and severe patients (n = 100). (c-e) HA level (10 ng/mL) functions as a discriminator for patients’ lymphocytes number (c), D-Dimer level (d), and CRP level (e). (f) Represented CT images of pulmonary lesions in mice treated with hyaluronan were presented (n = 5/group). (g) HA released in cell culture supernatants of Mock, HIS-SARS-1, HIS-SARS2-3, or HIS-SARS2-4 overexpressed in HEK293T after treated with 500 µM 4-MU and DMSO as control. (h) HA released in cell culture supernatants of Mock, HIS-SARS-1, HIS-SARS2-3, and HIS-SARS2-4 overexpressed in HEK293T after treated with 200 µg/ml hymecromone and DMSO as control. Data are represented as mean ± SEM (n = 3). In (a, g-h), P-values were calculated using the unpaired, two-tailed Student’s t-test; in (b–e), P-values were calculated using the two-tailed nonparametric Mann–Whitney test by GraphPad Prism 7.0. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
identical genomic sequences to their hosts. Accordingly, these identical sequences, termed here as “host identical sequences (HIS)”. There are also similar sequences between the genomes of SARS-CoV-2 and their potential hosts including bat,54 Malayan pangolins,55,66 ferrets, and cats.57 Meanwhile there are no identical sequences between SARS-CoV-2 and chicken. In this case, it is natural to speculate that HIS from the pathogen genome may help to trace the lines of the host, especially for mediated hosts during SARS-CoV-2 virus evolution. Interestingly, SARS-CoV-2 infection in human results in COVID-19 without being fatal for its other potential hosts, including bats and pangolins, which may be associated with different gene-network regulated by HIS targeted enhancers in diverse species. Therefore, HIS may be essential in viral susceptibility and pathogenicity.

Our results showed that HIS-SARS2 activate host genes associated with inflammation in the pathogenic processes. In recent years, multiple DNA and RNA viruses have been demonstrated to produce miRNA-like non-coding RNAs.54 Previously, we revealed that miRNA located in the nucleus can activate tumor suppressor gene expression.53 The fragments containing HIS in SARS-CoV-2 are predicted to form potential premiRNA structure, indicating HIS may function as miRNA-like RNAs. Further bioinformatic analysis showed that many HIS-SARS2 and enhancers cascade regulating genes are associated with cytokines, which may in part explain why most severe COVID-19 patients are characterized clinically by a cytokine storm, the main cause for ARDS leading to death.68 Consistent with our KEGG pathway analysis for the genes regulated by HIS, modulation of cGMP-PKG pathway with the inhibitor of its upstream regulator phosphodiesterase 5 (PDE5) could be a potential treatment for COVID-19 patients.69 An increasing number of research points to SARS-CoV-2 infection as causing multiple organ damage involved in the lung, kidney, and liver by activating the inflammation response.5 Consistent with these findings, different HIS-SARS2 upregulate genes associated with inflammation among HEK293T, MRC5, and HUVEC cells. For example, KALRN upregulated by HIS-SARS2-1 could cause systemic inflammation in multiple organs such as kidney and lungs.68 Alternatively, HIS-SARS2 activates genes associated with mitochondria, such as FBXO15, CYB5A, and TIMM21, which may result in the mitochondrial dysfunction in COVID-19 pathogenesis.70 Collectively, these evidence emphasize HIS-SARS2 probably as a potential key player of the inflammation response observed in COVID-19 through activation of gene expression.

We found that interaction between HIS-SARS2 and host enhancers activates host gene expression. MiRNAs can activate gene transcription epigenetically by triggering H3K27ac enrichment at their target enhancer regions.72 Interestingly, H3K27ac was enriched in the corresponding DNA loci of the human genome that contains the identical sequences of HIS in HEK293T. Inhibition of enhancer function with JQ1 significantly reduced the gene activation (such as FBXO15) mediated by HIS-SARS2 in HEK293T, which further supports the notion that HIS-SARS2 mediated gene activation may be related to enhancer function. Furthermore, blocking HIS-SARS2 with antagomirs or degrading HIS-SARS2 with CasRx system significantly inhibited the gene upregulation (such as FBXO15) activated by HIS-SARS2, proving HIS-SARS2’s indispensability in gene activation. During this process, AGO2 may serve as a guide mediating the binding of miRNAs to their target enhancers, resulting in gene activation.30 Clearly, HIS-SARS2-4 RNA could hybridize its target ssDNA and form stable double strands, which can be stabilized by hAGO2 through reducing the dissociation constant (Kd). This implies that AGO2 may participate in the host gene activation due to HIS-SARS2. Therefore, these results demonstrate that HIS can activate gene transcription epigenetically by targeting enhancers mediated by AGO2. Given that HIS activate host genes through enhancers, which are well known for their tissue-specific signature, our findings may help unravel why viruses typically show organ or tissue-specific pathogenesis.

Importantly, we identified that hyaluronan could be a potential candidate target for COVID-19 treatment, once this is tested in human trials. At first, HAS2 located upstream of the HIS targeted site in the human genome attracted our interest as the major enzyme responsible for hyaluronan synthesis.71 HIS-SARS2 can activate HAS2 expression drastically in host cells, causing the upregulation of hyaluronan in cell medium supernatant. Correspondingly, we found that hyaluronan is significantly increased in severe COVID-19 patients with ground-glass opacity by chest CT scan compared to the patients without GGO, and the level of hyaluronan is correlated with the clinical prognosis of patients with COVID-19.72 Hyaluronan can absorb a large volume of water, which enables it to determine the water content in specific tissues.73 It has been reported that the extravascular lung water volume is positively correlated with hyaluronan level in normal animal lungs.74 Therefore, the water absorption characteristics of hyaluronan suggest the possibility that the increased hyaluronan induced by the upregulated HAS2 in lung cells after SARS-CoV-2 infection, binds a large quantity of water and thereby forms the jelly-like substances underlying ground-glass opacity commonly observed in COVID-19 patients. Notably, hyaluronan directly causes GGO and consolidation of lung in mice, indicating that hyaluronan could be fundamental for the formation of GGO. The decreased lymphocytes, increased D-Dimer, and CRP observed in severe patients can be distinguished by their hyaluronan levels,
which is in surprising unanimity with the pathological features of ICU COVID-19 patients.\(^7\) In other words, hyaluronan could be a potential indicator for characterizing the clinical progression of COVID-19 patients. Conspicuously, the total number of T cells was significantly reduced in COVID-19 patients compared to normal levels.\(^7\) Such decrease of T cells may be due to the binding between hyaluronan and its ligand CD44, which can induce the death of activated T cells.\(^7\) Another hyaluronan ligand HABP2 (also called factor VII-activating protease), which combines with hyaluronan, plays an important role in blood coagulation by activating the pro-urokinase-type plasminogen activator,\(^7\) thereby causing the dysregulation of the fibrinolytic system in COVID-19 patients. In addition, HABP2 aggravates the disruption of the hyaluronan-mediated endothelial cell barrier,\(^8\) which may help explain the sudden brain hemorrhage of ICU patients with COVID-19.\(^9\) Further studies will need to be performed to elicit the mechanisms behind hyaluronan’s proposed links with these clinical characteristics of COVID-19 progression. 4-MU is reported to be an efficient inhibitor for hyaluronan production.\(^7\)\(^6\) Our results demonstrate that 4-MU or hymecromone treatment can inhibit hyaluronan synthesis and block the pathogenic progression induced by HIS-SARS2. Overall, decreasing hyaluronan levels could be an efficient strategy for improving some clinical symptoms observed in COVID-19 patients.

There are some potential limitations in our study. It should be noted that the potential of hymecromone to prevent severe outcome in COVID-19 patients need to be tested in human trials in the future. Although SARS-CoV-2 replication generally occurs in the cytoplasm,\(^8\) Burke and colleagues showed that part of SARS-CoV-2 mRNAs are located in nucleus,\(^8\) which provides a glimpse that HIS could be located in nucleus. The location of HIS in nucleus need further to be confirmed in SARS-CoV-2 infected cells. Besides, hyaluronan is related to diabetes and hypertension,\(^8\)\(^2\)\(^8\) the common complications for COVID-19, which need further investigate their potential relation in clinical trials.

Our in vitro results provide a potential mechanism whereby SARS-CoV-2 can induce the host response by regulating host gene expression through a direct interaction between HIS and their targeted enhancers following SARS-CoV-2 infection. This mechanism deepens our insights into the potential pathogenicity of diverse viruses. Our findings suggest that blocking HIS with nucleic acid drugs or inhibiting hyaluronan production with specific medication like hymecromone may provide new strategies for COVID-19 treatment.

Declaration of interests

Wenqiang Yu, Wei Li, Jianqing Xu, Hailin Wang, Cheng Lian, Peng Xu, Shuai Yang, and Daoping Ru are listed as inventors on patents’ application related to this work; no other relationships or activities that could appear to have influenced the submitted work.

Contributors

W.Y. conceived this project. W.Y., H.W., J.X. took charge of the project administration. W.L., B.J., W.L., S.W. performed bioinformatic analysis. S.Y., Y.T., L.C., L.D., D.R., B.Z., M.L., C.C., P.X., C.G., L.W., Y.L., Z.Y., X.R., Y.S., Y.X. performed experiments and analyzed data. A.L., W.F., S.Y., X.Z., H.L. coordinated patient enrollment and sample collection. W.L., S.Y., Y.T., L.C., C.L., C.C. W.Y. have verified the underlying data. P.X., S.Y. wrote the original draft. S.Y., W.L., P.X., W.Y., H.W., J.X. conducted critically review and editing of the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements

Modified Cas13d plasmid was a generous gift from Professor Pengyu Huang at ShanghaiTech University. We thank Yue Yu for editorial help and comments on the manuscript. We thank all the participants involved in this study. This research was supported by the National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18ZC14111101), and the National Natural Science Foundation of China (31872814, 32000905).

Data sharing statement

The raw sequence data reported in this paper have been deposited in GSA database (HRA001589) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa. The other data are provided as figures, supplementary figures, or supplementary tables. Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Wenqiang Yu (wenqiangyu@fudan.edu.cn).

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.ebiom.2022.103861.

References

1 Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720.
2 Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(5):667–678.
3 Warninga WJ, Rhodes A, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of
coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;324(8):795–797.

14 Zhang B, Zhou X, Qiu Y, et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS One. 2020;15(3):e0235458.

15 Hassan AO, Case JB, Winkler ES, et al. A SARS-CoV-2 infection model in human biopsy samples demonstrates protection by neutralizing antibodies. Cell. 2020;182(1):91–101.e14.

16 Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.

17 Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):294–304.e14.

18 Chen Y, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(11):5438–4405.

19 Diao BW, Tan C, Chen Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11:87.

20 Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(11):e548–e540.

21 Suzuki HI, Young RA, Sharp PA. Super-enhancer-mediated RNA transcription in mammalian cells. J Virol. 2013;87(24):12789–12805.

22 Perez JT, Varble A, Sachidanandam R, et al. Influenza A virus-genetically as an enhancer trigger. Cell Host Microbe. 2012;13(4):271–282.

23 Liang Y, Lu Q, Li W, et al. Reactivation of tumour suppressor in mouse lung adenocarcinoma: in vivo evidence of an expression switch in tumor cells. Int J Mol Med. 2014;33(1):87–94.

24 Enjuanes L, Sola I. SARS-CoV-encoded small RNAs contribute to inhibition of host innate immune response to SARS-CoV. Cell. 2017;168(6):1000–1014.e15.

25 Hanson D, Sherman BT, Lemrpci SA. Systematic and integrated analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(4):44–57.

26 Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcription. Cell. 2020;181(2):294–304.e14.

27 Chen Y, Chen X, Zhang Y, et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genom Proteom Bioinf. 2021. In press.

28 Green MR, Hughes H, Sambrook J, Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press; 2012:1890.

29 Bernard HU. Regulatory elements in the viral genome. Virology. 2015;445(1):197–204.

30 Fans PC, Chen CC, Chen YC, Chang YS, Chu PH. MicroRNAs in acute kidney injury. Hum Genom. 2016;10:219.

31 Bungard V, Calender A, Bouvry D, et al. G908R NOD2 variant in a sarcoidosis family: toward explosive data growth and diverse data types. J Med Genet. 2017;54(11):776–778.

32 Dhurandhar EV, Gielen I, Long J, et al. Comparison of two methods for automated microRNA quantification of deep sequencing data. Nucleic Acids Res. 2013;41(15):e154.

33 Members C-N. Partners. Database resources of the national genomics data center, China national center for bioinformatics in 2021. Nucleic Acids Res. 2021;49(D1):D18–D28.

34 Mathews DH, Disney MD, Childs J, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 2004;101(10):3728–3729.

35 Besnard V, Calender A, Bouvry D, et al. G05R NOD2 variant in a family with sarcoidosis. Respir Res. 2020;11(1):44.

36 Chen BB, Coon TA, Glaser JR, et al. El ligase subunit Fbl015 and PINK1 kinase regulate cardiopulmonary stability and mitochondrial function in pneumocytes. Am J Respir Cell Mol Biol. 2012;47(6):e438–ee40.
68 Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506.

69 Giorgi M, Cardarelli S, Ragusa F, et al. Phosphodiesterase inhibitors: could they be beneficial for the treatment of COVID-19? Int J Mol Sci 2020;21(15).

70 Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 2020;54:1–7.

71 Cucka AB, Frost GI, Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 2002;20(8):499–508.

72 Ding M, Zhang Q, Li Q, Wu T, Huang YZ. Correlation analysis of the severity and clinical prognosis of 12 cases of patients with COVID-19. Respir Med 2020;167:105981.

73 Turino GM, Cantor JO. Hyaluronan in respiratory injury and repair. Am J Respir Crit Care Med 2001;163(4):1169–1175.

74 Bhattacharya J, Cruz T, Bhattacharya S, Bray BA. Hyaluronan affects extravascular water in lungs of unanesthetized rabbits. J Appl Physiol 1989;66(6):2355–2359. [1989].

75 Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020;71(13):2762–2768.

76 McCallip RJ, Do Y, Fisher MT, Robertson JL, Nagarkatti PS, Nagarkatti M. Role of CD44 in activation-induced cell death; CD44-deficient mice exhibit enhanced T cell response to conventional and superantigens. Int Immunol 2001;13(4):1015–1026.

77 Kanse SM, Parahuleva M, Muhl I, Kernkes-Matthes B, Sedding D, Preissner KT. Factor VII-activating protease (FSAP): vascular functions and role in atherosclerosis. Thromb Haemost 2008;99(2):286–289.

78 Mambetsariev N, Mirzapoiazova T, Mambetsariev B, et al. Hyaluronic acid binding protein 2 is a novel regulator of vascular integrity. Arterioscler Thromb Vasc Biol 2010;30(3):483–490.

79 Barrios-Lopez JM, Rego-Garcia I, Munoz Martinez C, et al. Ischaemic stroke and SARS-CoV-2 infection: a causal or incidental association? Neurology 2020;95(5):305–302.

80 Klein S, Cortese M, Winter SL, et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun 2020;11(1):3885.

81 Burke JM, St Clair IA, Perera R, Parker R. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. RNA 2021;27(11):1318–1329.

82 Mine S, Okada Y, Kawahara C, Tabata T, Tanaka Y. Serum hyaluronan concentration as a marker of angiopathy in patients with diabetes mellitus. Endocr J 2006;53(6):761–766. advpib:0609110032-.

83 Kalay N, Elick D, Canatan H, et al. Elevated plasma hyaluronan levels in pulmonary hypertension. Tohoku J Exp Med 2013;210(1):17–11.