Coding-Complete Sequence of a SARS-CoV-2 Strain from an Omicron (B.1.1.529+BA.1) Variant Detected in Morocco

Taha Chouati,a,b Mouhssine Hemlali,a,b Marouane Melloul,a,b Sanaa Alaoui-Amine,a,b Safae Rhoulam,a Hamza Ghamaz,a,b Maha Ouarab,a,b Omar Askander,f Lamiae Belayachi,g Nadia Touil,c Bouchra El Mchichi,c Hicham Elannaz,c Abdelillah Laraqui,c Mostafa Elouennass,d Khalid Ennibi,c Elmostafa El Fahimea,b

Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
Neuroscience and Neurogenetics Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
Center of Virology, Infectious and Tropical Disease, Mohamed V Military Teaching Hospital, Rabat, Morocco
Microbiology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, Mohamed V Military Teaching Hospital, Rabat, Morocco
Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco
Research Genetics Center of the Cheikh Zaid Foundation, Abulcasis International University of Health Sciences, Rabat, Morocco

ABSTRACT
Here, we describe the coding-complete sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain HM36, identified as a strain of concern of B.1.1.529+BA (Omicron).

The global pandemic affecting the world since the start of 2020 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Betacoronavirus genus, Betacoronaviridae family) (1). The monitoring of the spread of the variants of concern (VOCs) is of crucial importance (2).

In late November 2021, The World Health Organization classified the B.1.1.529 variant (Omicron) as a VOC which shows a high number of mutations at the level of the protein S gene and seems to spread at a higher rate than the previously dominant variants (3). In Morocco, the first case of Omicron was reported on 15 December 2021, and it quickly spread to account for about 60% of the sequenced samples in the first week of January 2022.

Here, we describe the coding-complete sequence of SARS-CoV-2 sample HM36, which was collected from an asymptomatic female patient at Ibn Rochd Hospital of Casablanca, Morocco, and tested positive for SARS-CoV-2 by quantitative reverse transcription (RT)-PCR using a GeneProof COVID-19 Plus Real Amp kit.

The swab sample was received at the National Center for Scientific and Technical Research on 16 December 2021 as part of the ongoing SARS-CoV-2 variant surveillance. Viral extraction was performed using a MagPurix viral RNA extraction kit (Zinexts Life Science, China). Whole-genome sequencing was performed using Ion Proton technology (Applied Biosystems, USA). Briefly, cDNA was obtained through reverse transcription using a VILO cDNA synthesis kit (Invitrogen, Thermo Fisher Scientific, USA). A DNA library was prepared using the Ion AmpliSeq SARS-CoV-2 research panel (Thermo Fisher, USA) and then processed with an Ion Chef instrument for template preparation and chip loading. The sequencing was performed using an Ion S5 sequencer.

The obtained sequences (2,423,738 reads; mean length, 184 bp) were quality controlled and assembled using SPAdes v3.14.1 (4), and then a consensus sequence was
TABLE 1 Amino acids changes of strain hCoV-19/Morocco/CNRST_HM36/2021[EPI_ISL_8074123 compared with the Wuhan-Hu-1 SARS-CoV-2 reference sequence (GenBank accession number NC_045512)]

Protein	Amino acid change(s)
NSP1	No aa changes
NSP2	No aa changes
NSP3	K38R, S1265del, L1266l, A1892T
NSP4	T14I, T492I
NSP5	P132H
NSP6	L105del, S106del, G107del, I189V
NSP7	No aa changes
NSP8	No aa changes
NSP9	No aa changes
NSP10	No aa changes
NSP11	No aa changes
NSP12	P323L
NSP13	I42V
NSP14	No aa changes
NSP15	No aa changes
NSP16	No aa changes
Spike	A67V, H69del, V70del, T95I, G142D, V143del, Y144del, Y145del, N211del, L212l, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, N969K, L981F
NS3	No aa changes
E	T9I
M	D3G, Q19E, A63T
NS6	No aa changes
NS7a	No aa changes
NS7b	No aa changes
NS8	No aa changes
N	P13L, E31del, R32del, S33del, R203K, G204R

generated using Unipro UGENE v38.1 (5), with the reference sequence being the Wuhan-Hu-1 sequence obtained from NCBI (GenBank accession no. NC_045512). Both tools were used with default parameters. The generated sequence was 29,804 bp long with a GC content of 37.96%.

Lineage identification using Pangolin (https://pangolin.cog-uk.io/) showed that the strain belonged to the B.1.1.529+BA lineage (Omicron), first detected in South Africa (Fig. 1A). CoV-GLUE analysis (http://cov-glue.cvr.gla.ac.uk/) revealed that the spike protein contained 36 modifications, including 29 amino acid (aa) substitutions, 6 deletions, and 1 insertion. A total of 15 genes showed no aa changes compared to the Wuhan virus (Table 1).

Among the observed amino acid changes in sample HM36 (Table 1), there is a marked overlap with other VOCs (6), namely, the widespread N501Y and D614G, but also K417N, found in the Beta and Gamma variants, T478K in the Delta variant, and P681H in the Alpha variant. E484A is also noticeable, as a similar change is found in Alpha, Beta, and Gamma variants, albeit to a different amino acid (E484K) (7). However, other changes seem to be specific to the Omicron variant, such as G446S, G496S, T547K, N856K, and L981F (Fig. 1B).

Data availability. The SARS-CoV-2 genome sequence was submitted to the GISAID database under the identifier EPI_ISL_8074123 (https://www.epicov.org/epi3/frontend#6111c3 after login process) and to NCBI GenBank under the accession number OM011974. The raw data are available under BioProject number PRJNA817433.
ACKNOWLEDGMENTS
This study was supported and financed by the Hassan II Academy of Science and Technology, Morocco. We declare no conflict of interest. The study was approved by the Local Ethics Committee of Hospital Cheikh Zaid Foundation, Rabat, Morocco (approval number CEFCZ/PR/2021/Ennibi-26, delivered on 2 November 2021).

REFERENCES
1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JI, Xu Y, Holmes EC, Zhang YZ. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579:265–269. https://doi.org/10.1038/s41586-020-2008-3.
2. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Peacock SJ, Robertson DL, COVID-19 Genomics UK (COG-UK) Consortium. 2021. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19:409–424. https://doi.org/10.1038/s41579-021-00573-0.
3. Abdool Karim SS, Abdool Karim Q. 2021. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet 398:2126–2128. https://doi.org/10.1016/S0140-6736(21)02758-6.
4. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
5. Okonechnikov K, Golosova O, Fursov M, UGENE Team. 2012. Unipro UGENE: an unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091.
6. Mullens JL, Tsueng G, Latif AA, Alkuwzeyen M, Cano M, Haag E, Zhou J, Zeller M, Huftbauer E, Matteson N, Andersen KG, Wu C, Su AI, Gangavarapu K, Hughes LD, Center for Viral Systems Biology. 2020. outbreak.info. https://outbreak.info/.
7. Otto SP, Day T, Arino J, Colijn C, Dushoff J, Li M, Mechali S, Van Domselaar G, Wu J, Earn DJD, Ogden NH. 2021. The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr Biol 31:918–929. https://doi.org/10.1016/j.cub.2021.06.049.