INTRODUÇÃO

Os cuidados a pacientes de transplante de fígado (TF) consistem em abordagem específicas, que são diferentes das usuais nas cirurgias abdominais de grande porte. Na literatura, encontram-se descrições gerais referentes aos cuidados pós-operatórios de pacientes cirúrgicos, mas uma descrição da abordagem prática no TF é percebida como necessária. Ao longo destes anos, ocorreram modificações de diversos conceitos; entretanto, as práticas variam entre os centros e levam em consideração a experiência adquirida relativa a aspectos específicos e características locais. Assim, consideramos que será útil apresentar uma abordagem desenvolvida em nosso centro de transplantes ao longo de anos, desde o início do programa de transplante de fígado em 1992. Apenas pacientes adultos são admitidos em nossa unidade, e a maior parte dos órgãos é oriunda de doadores falecidos, com exceção do transplante “em domínio”, que utiliza fígados oriundos de pacientes portadores de polineuropatia amiloidótica familiar (PAF). (1-3)

A vigilância dos pacientes submetidos ao TF é realizada por uma equipe multidisciplinar, (2,4,5) com a participação de diferentes especialidades e, consequentemente, variadas capacidades e funções. Os autores apresentam a perspectiva da terapia intensiva com relação às primeiras 48 horas após o TF. Encontram-se, além do nosso escopo, as complicações cirúrgicas específicas ou questões ligadas à imunossupressão para o acompanhamento em longo prazo.
Considerações gerais

Os eventos observados nas primeiras horas após o TF são condicionados, principalmente, por instabilidade intraoperatória, características do enxerto e condições clínicas pré-TF do receptor (Tabela 1). São informações importantes para a unidade de terapia intensiva (UTI) as quantidades recebidas de transfusão sanguínea e solução salina normal, a necessidade de utilizar vasopressores, o débito urinário, a caracterização hemodinâmica geral e as complicações intraoperatórias. Durante o ato cirúrgico, o TF se caracteriza por três estágios: fase de hepectomia, fase não hepática e fase de reperfusão. Esta última é crítica, e a maior parte do desequilíbrio se deve a um aumento da pressão ventricular direita e da pressão intracraniana, surgimento de arritmias e sobrecarga de potássio, sobrecarga de citocinas, embolias e piora de coagulopatia.

Tabela 1 - Complicações imediatas após transplante de figado

| Disfunção precoce do enxerto hepático |
| Disfunção primária/mau funcionamento do enxerto |
| Rejeição precoce |
| - Rejeição celular aguda |
| - Ausência de imunossupressão |
| Síndrome colestática não específica |
| Hepatoxicidade de fármacos |
| Complicações da técnica cirúrgica |
| Complicações arteriais |
| - Trombose da artéria hepática |
| Trombose da veia porta |
| Obstrução de veia hepática |
| Complicações biliares |
| - Extravasamento ou fistula biliar |
| - Estreitamento biliar |
| Complicações clínicas |
| Perdas sanguíneas e hemorragia aguda |
| Complicações hemodinâmicas |
| Insuficiência renal aguda e alteração de eletrólitos |
| Disfunção respiratória |
| - Hipoxemia e síndrome hepatopulmonar |
| Estado neurogênico alterado |
| Infecções |
| - Órgão doador |
| - Hemoderivados transfundidos |
| - Reativação de infecção prévia |
| - Microorganismos exógenos e flora endógena |

Fonte: Adaptado de Moreno R, Berenguer M. Post-liver transplantation medical complications. Ann Hepatol. 2006;5(2):77-85.
distributivo ou vasogênico de hipotensão (débito cardíaco elevado e baixa resistência vascular periférica). Quando se interpreta a hipotensão nestes pacientes, devem-se avaliar condições como hipovolemia, perda sanguínea e baixa resistência vascular periférica causada pela condição inflamatória. Deve ser utilizado um método para avaliação hemodinâmica, seja invasivo ou não, para estabelecer o padrão fisiopatológico e dar suporte a qualquer ação terapêutica. Nenhum método específico é considerado superior, porém geralmente se pode considerar a utilização de um monitoramento hemodinâmico invasivo (PiCCO® e cateter de Swan-Ganz em artéria pulmonar).10

O controle da administração de fluidos é essencial, com o alvo de proporcionar volemia adequada e evitar hipotensão, ao mesmo tempo em que se evita carga excessiva de volume.11,12

Devemos estar alertas ao fato de que o período pós-operatório de TF é uma condição inflamatória, caracterizada por aumento da permeabilidade capilar e, consequentemente, por redistribuição de fluidos para o espaço intersticial.8

Os parâmetros hemodinâmicos de responsividade a fluidos não são isentos de armadilhas. Tanto os parâmetros hemodinâmicos estáticos (como pressão venosa central, ou pressão capilar pulmonar) quanto os dinâmicos (validados apenas para pacientes mecanicamente ventilados e sem estímulos respiratórios) de responsividade a fluidos são erráticos, porém são as únicas ferramentas disponíveis para orientar a terapêutica. Quando possível, e se superior a 15%, a variação do volume sistólico de pacientes em ritmo sinusal significa que o objetivo da administração de fluidos tem boa chance de ser atingido. Em nossa prática, a administração rápida de 100 a 200mL de solução salina normal é eficaz e, se o paciente persistir hipotensivo, deve ser iniciada uma infusão contínua de vasopressor para evitar a infusão de grandes volumes e um período mais prolongado de hipotensão.11,12

Esta estratégia é também válida na presença de sangramentos. Grandes quantidades de fluidos têm um efeito deletério e são responsáveis por hemodiluição, diluição dos fatores de coagulação circulantes (especialmente em pacientes com baixo débito urinário) e destruição dos pequenos coágulos já formados.13

Embora não seja rotineiramente utilizado em nosso centro, algumas situações podem demandar expansão de volume com soluções de albumina. Isto é particularmente verdadeiro no caso de drenagem contínua de ascite após TF, que pode durar dias e é controlada com utilização de albumina.

A recuperação hemodinâmica normal e a diminuição do lactato sérico é desejável. Espera-se um retorno dos líquidos sequestrados, e uma pressão venosa central não superior a 5cmH2O assegura gradiente pressórico entre a circulação portal e central, resultando em melhor perfusão do enxerto.4,13 Sugeriu-se que a função do enxerto pode ser afetada pelos níveis plasmáticos de glicose.4,13 Se ocorrer hipoglicemia em pacientes de TF, ela deve ser imediatamente controlada com utilização de bólus de dextrose 30% ou 50%, e infusões contínuas de dextrose 5% ou 10%.

A cardiomiopatia cirrótica é uma entidade distinta, reconhecida precocemente em pacientes com cirrose sem consumo de álcool.14 Ela se caracteriza por alterações tanto sistólicas quanto diastólicas e redução da ativação de membrana por estímulos adrenérgicos. Ela pode provocar insuficiência cardíaca não reconhecida e levar à instabilidade elétrica após TF, o que pode interferir nos desfechos.

Lesão por isquemia-reperfusão

A isquemia do fígado é inerável durante o TF. Esta interrupção no fluxo sanguíneo, assim como o trauma cirúrgico, leva a uma disfunção celular multifatorial e à liberação de mediadores inflamatórios ainda mais exacerbada durante a fase de revascularização/reperfusão, em razão de estresse oxidativo.

Este fenômeno clínico é conhecido como síndrome pós-reperfusão (SPR), ou talvez definida de forma mais precisa como IRI.15,16

Durante a cirurgia de TF, tanto o trauma cirúrgico quanto a IRI têm o potencial de produzir reações inflamatórias, capazes de influenciar a função do enxerto hepático em longo prazo.17 Quase todos os pacientes apresentam algum grau de IRI, e três distintos períodos devem ser considerados por potencialmente contribuírem para o dano hepático.17 O primeiro deles ocorre após a remoção do fígado do doador, perfusão do órgão com soluções de preservação e armazenagem em gelo, para permitir o transporte do órgão ao centro de transplantes (período de isquemia fria). Após isto, segue-se um curto período de reaquecimento durante a realização da anastomose (período de isquemia quente). Finalmente, concluída a anastomose arterial, o fígado é totalmente vascularizado, e a temperatura do enxerto sobe para até 37°C, dando início ao período de reperfusão.

Considerando um ponto de vista imunológico, na fase de reperfusão devem ser considerados dois períodos distintos: geração de espécies reativas de oxigênio e nitrogênio caracteriza a primeira delas - nas primeiras, 1 ou 2
horas após a reperfusão, levando a um estágio inicial de processo inflamatório e estresse oxidativo. O óxido nítrico produzido durante este período está relacionado com o dano e a disfunção mitocondrial. O segundo período, que ocorre entre 6 e 48 horas mais tarde, caracteriza-se por lesão celular e ativação de células imunocompetentes, como células de Kupffer e neutrófilos.\(^{16,17}\)

A disfunção cardiovascular na IRI é caracterizada por diminuição na pressão arterial média, frequência cardíaca e resistência vascular sistêmica, usualmente associadas com aumento no índice de resistência vascular pulmonar e pressão na artéria pulmonar, refletindo vasoconstrição pulmonar.\(^{15}\)

Este padrão hemodinâmico é atribuído à temperatura induzida no enxerto, a alterações em termos de pH e eletrólitos, assim como a mediadores inflamatórios, comprometimento da função ventricular direita, variações na pré-carga cardíaca durante a cirurgia de TF ou condições perioperatorias, e devido à cardiomiópatia cirrótica preexistente.

É de fundamental importância manter a estabilidade hemodinâmica nas condições perioperatorias para restaurar a função do enxerto hepático e recuperar com segurança o paciente cirúrgico na terapia intensiva.\(^{16}\)

Monitoramento da hemorragia aguda e coagulopatia

O diagnóstico do sangramento pós-operatório é tanto clínico quanto laboratorial.\(^{1,4,7,18}\) Sinais clínicos, como taquipnéia, hipotensão ou perda sanguínea por drenos abdominais, levantam suspeita, que pode ser confirmada pela diminuição nos níveis de hemoglobina.

A hemorragia pós-operatória precoce é definida como qualquer sangramento que necessite de mais de três unidades de concentrado de hemácias dentro de 12 horas, ou de nova intervenção cirúrgica.\(^{18}\) As causas podem incluir má função do enxerto, coagulopatia por diluição, hipocalcemia, hipotermia, acidose, hiperfibrinólise e aspectos cirúrgicos.\(^{18}\)

Quando se avaliam perdas sanguíneas, devem-se diferenciar duas importantes condições (Tabela 2): diátese hemorrágica ou um vaso que sangra por hemostasia intraperitônica incompleta.\(^{18,19}\) Estas condições são tratadas de maneiras diferentes: a diátese é tratada clinicamente, como fatores de coagulação (a cirurgia é raramente necessária); por outro lado, o tratamento do sangramento de um vaso é, em geral, cirúrgico.

No manejo da coagulopatia pós-operatória, o risco de hemorragia deve ser contrabalançado com risco de trombose, principalmente trombose da artéria hepática (HAT).\(^{1,4,20,21}\)

Não existem diretrizes validadas para os valores limite de hemoglobina, plaquetas, tempo de protrombina (TP), tempo de tromboplastina parcial ativada (TTPa) e tempo de trombina (TT) que determinem a transfusão de hemoderivados, e os protocolos clínicos variam entre diferentes centros.\(^{20,21}\) Entretanto, há evidências clínicas da associação da transfusão de hemoderivados com aumento da morbimortalidade de pacientes, taxas mais elevadas de lesão pulmonar aguda relacionada a transfusão (TRALI) e infecções.\(^{22}\)

Em nosso centro, utilizamos os exames clássicos de coagulação - TF, TTPa, dímero (DD) e fator V, que refletem a via pró-coagulante - e, no primeiro dia após o TF, também monitoramos anticoagulantes naturais (antitrombina III, proteínas C e S), já que estes se recuperam de forma mais lenta do que os pró-coagulantes, levando a um estado pró-trombótico transitório.\(^{23,26}\)

Os níveis pós-operatórios previstos de hemoglobina se encontram entre 7 e 9g/dL, dependendo das condições clínicas do paciente: 7g/dL para os pacientes sem fatores de risco, até 9g/dL se houver condições prévias, como cardiopatia isquémica ou lesão cerebral.\(^{25}\) O valor basal para transfusão de plaquetas é 20 × 10⁹/litro, exceto para pacientes com sangramento ativo, para os quais a contagem de plaquetas deve ser de, pelo menos, 50 × 10⁹/L.\(^{5,7,18}\) O objetivo é restringir o uso de hemoderivados tanto quanto for possível.

Não há necessidade de se utilizar plasma fresco congelado para corrigir elevações moderadas da razão normalizada internacional (RNI) abaixo de 1,8, a menos que exista um sangramento ativo ou perante reintervenção cirúrgica prevista.\(^{28}\) Para depleção de volume nas horas iniciais após o TF, é aconselhável, quando possível, o uso de plasma fresco congelado, para evitar cristaloides (evitar coagulopatia de diluição),\(^{11,12}\) e de coloides (interferem na coagulação e função plaquetária). Caso exista risco de sobrecarga de volume, o défice de fatores de coagulação dependentes de vitamina K é manejado pela administração de concentrado de complexo de protrombina.\(^{25}\)

Os níveis de fibrinogênio devem ser levados em consideração no caso de sangramento ativo ou antes de procedimentos invasivos, para serem mantidos entre 1,5 e 2,0g/L.\(^{11}\) Isto pode ser obtido por meio da infusão de concentrado de fibrinogênio e/ou crioprecipitado, especialmente no paciente urêmico, já que também contém o fator de von Willebrand.\(^{25,26}\)

No período pós-operatório inicial, hemorragia microvascular pode ser um sinal de hiperfibrinólise. O método de tromboelastometria rotacional (ROTEM®) é uma forma de avaliar a fibrinólise junto ao leito de forma rápida e sensível.\(^{21,25,26}\) Na hiperfibrinólise não controlada
Abordagem ao período pós-operatório inicial no transplante de fígado

e com repercussão clínica, devem ser utilizados agentes antifibrinolíticos como ácido tranexâmico. (18,26) Apesar de sua segurança, sem qualquer evidência de aumento de complicações tromboembólicas, estes produtos só são indicados em casos de sangramento ativo (e não como medida profilática) e devem ser evitados em pacientes com alto risco conhecido de tromboembolismo (síndrome de Budd-Chiari e doenças tromboembólicas). (18,26)

Na maioria dos casos, a administração de hemoderivados é suficiente para compensar casos de hemorragia pós-operatória moderada. Porém, na presença de alterações graves da coagulação, com hemorragia incontrolável, até mesmo a infusão maciça de hemoderivados e antifibrinolíticos pode ser ineficaz. (21,25,26) Nestas condições, a administração de fator VIIa recombinante ativado (rFVIIa) tem se demonstrado eficaz; seu uso profilático não é recomendado, já que aumenta os riscos de HAT. (27)

Sistema respiratório

Demonstrou-se que a extubação precoce em pacientes apropriados melhora a função do enxerto, reduz o tempo de permanência na UTI e diminui as taxas de infecção hospitalar. (28)

O derrame pleural se caracteriza por ocorrer de um único lado (geralmente à direita), em razão do transudato resultante da ascite abdominal transferido via defeitos diaphragmáticos e comprometimento da drenagem linfática pela cirurgia. Os derrames pleurais podem aumentar na primeira semana pós-operatória; contudo, ele, em geral, resolve-se dentro das semanas seguintes, sem necessidade de qualquer intervenção. As causas de atelectasia incluem derrame pleural, paralisia do lado direito do diafragma, obstrução brônquica, imobilização prolongada, inspiração insuficiente em razão da dor e depuração comprometida de secreções. (5) A paralisia do lado direito do diafragma pode ocorrer quando o nervo frênico direito é lesado durante a cirurgia, culminando em atelectasia do lobo inferior direito. (28,29)

A síndrome do desconforto respiratório agudo (SDRA) é um dos problemas respiratórios mais graves após TF. Síndrome de reperfusão grave, transfusão maciça (TRALI), (29) período cirúrgico longo e infecção constituem causas importantes de SDRA. (29) O manejo das complicações respiratórias, isto é, da SDRA, envolve primariamente terapia de suporte (antibióticos, oxigenoterapia, prevenção de hipervolemia, drenagem de derrames pleurais maciços e ascite, e aspiração por broncoscopia). Contudo, caso sejam sinais de insuficiência respiratória, o suporte com ventilação mecânica deve ser reiniciado sem demora. (7,29)

Outra causa de hipoxemia após TF é a síndrome hepatopulmonar (SHP), definida como um defeito na oxigenação arterial induzido por dilatação vascular pulmonar em condições de doença hepática. (30) Esta síndrome está presente em 10 a 32% dos pacientes com cirrose, embora possa estar presente durante a cirurgia e deve ser diagnosticada por ecocardiografia junto ao leito. (30) Considera-se que é relacionada com a vasoconstrição pulmonar pós-operatória e resulta em uma alteração abrupta nos mediadores vasculares que entram no pulmão a partir de efluentes hepáticos. Devido a possibilidade de remodelamento e comprometimento da vasoconstrição em casos nos vasos dilatados da SHP, vasos pulmonares não dilatados (normais) podem ter vasoconstrição desproporcional, resultando em aumento adicional do fluxo por meio dos vasos dilatados da SHP e, consequentemente, piora transitória no descompasso subjacente entre difusão-perfusão (VQ) da HPS, culminando em grave hipoxemia. (30)

Outra causa de hipoxemia é a hipertensão portal. Esta situação afeta entre 2 e 5% dos pacientes com cirrose, embora tenha graves implicações clínicas e formas graves, que podem impedir a realização do TF. Após o TF, seu prognóstico é sombrio, com taxa de mortalidade de 35% em pacientes com pressão arterial média superior a 35mmHg. O TF não corrigia esta condição.

| Tabela 2 - Hemorragia devido a anormalidades da coagulação versus anormalidades vasculares |
|--|--|--|
| Características temporais | Diástese hemorrágica | Sangramento de vaso |
| Tempo após o transplante | Geralmente mais lenta, dentro de horas | Geralmente rápida, dentro de minutos |
| Hematocrito no líquido de drenagem | Geralmente < 50% do hematocrito no sangue | Geralmente > 50% do hematocrito no sangue |
| Pressão arterial | Hipotensão se estabelece progressivamente | Geralmente se observa queda rápida |

Rev Bras Ter Intensiva. 2019;31(4):561-570
Problemas renais após transplante de fígado

A real incidência de insuficiência renal após TF é desconhecida em razão das diferenças, em termos de critérios e métodos aplicados para avaliação da função renal. Os relatos variam entre 5 e 50%, sendo que 8 a 17% dos receptores apresentam necessidade de terapia de substituição renal (TSR). Cerca de 10% dos pacientes com disfunção renal (DR) desenvolvem nefropatia terminal. A DR pode se desenvolver devido à insuficiência aguda ou exacerbação de uma DR pré-operatória subjacente.

Há diversos fatores de risco para DR, como condição clínica antes do transplante (MELD, diabetes mellitus, síndrome hepatorenal e nefropatia crônica), eventos intraoperatórios (distúrbios hemodinâmicos e transfusão maciça), complicações pós-operatórias graves (infeções e reoperação) e investigações radiológicas. A DR pós-operatória provavelmente ocorre também em disfunções do enxerto, uso prolongado de agentes vasoativos e lesão tubular induzida por fármacos (ciclosporina, tacrolimo, anfotericina e aminoglicosídeos).

As complicações renais geralmente ocorrem no período inicial após TF, e a principal razão é a má distribuição de fluido entre os compartimentos e, assim, hipovolemia relativa. A oligúria pode ser o primeiro sinal de DR, tempo, são prioritários: monitoramento horário rigoroso da diurese, assegurar correção de hipovolemia por reposição adequada de fluidos, assim como evitar fármacos nefrotóxicos.

Tem sido demonstrado que o uso de terlipressina no tratamento pré-operatório de HRS reduz o desenvolvimento pós-operatório de DR, e alguns estudos demonstraram que o uso profilático de fenoldopam proporciona vasodilatação renal pós-quirúrgica e diminui os riscos de DR. Nosso grupo investigou esta questão, porém não se adotou qualquer terapêutica especifica.

Geralmente não se observa DR induzida por inibidores de calcineurina nas primeiras horas após TF, porém, na presença de DR, as doses dos fármacos devem ser ajustadas e monitoradas por meio de dosagem dos níveis séricos, ou estes devem ser removidos do regime imunossupressor. A lesão por inibidores de calcineurina se caracteriza por uma artrite aguda, embora a verdadeira fisiopatologia ainda não tenha sido completamente elucidada.

Se a DR é suficientemente grave para provocar retenção de fluidos dos distúrbios metabólicos (acidose, encefalopatia etc.) e desequilíbrios eletrolíticos, deve-se evoluir para TSR. Os critérios para TSR não diferem dos geralmente utilizados em pacientes de terapia intensiva. Duas questões devem ser levadas em consideração: primeiramente, os biomarcadores usados para DR podem não ser precisos nestes pacientes; a creatinina reflete a massa e a função muscular, e os níveis sanguíneos de ureia têm relacionamento estreito com a função hepática. Em segundo lugar, em pacientes oligúricos, o balanço hídrico deve ser monitorado de perto, para evitar sobrecarga de fluidos. Esta sobrecarga de fluidos pode provocar edema periférico e especialmente visceral, que contribui negativamente para a recuperação do enxerto.

Encefalopatia hepática, doador falecido, MELD, perda sanguínea intraoperatória e TF por carcinoma hepatocelular foram identificados como preditores independentes de TSR pós-operatória.

O basiliximabe é um anticorpo monoclonal CD25 para o receptor interleucina 2 (IL-2) das células T. Ele bloqueia a atividade das células T por reduzir sua proliferação. Quando se reconhece uma comorbidade renal após protocolo com basiliximabe como imunossupressor na fase inicial após TF, é aconselhável retardar a introdução de inibidores de calcineurina.

Problemas neurológicos e seu manejo

Antes do transplante, é crucial conduzir uma avaliação basal do perfil neuropsiquiátrico, e a progressão neurológica deve ser constantemente verificada, já que as complicações neurológicas são muito frequentes após o TR, e a exacerbação de sintomas prévios aumenta o risco inerente. As complicações neurológicas mais frequentemente observadas após o TR são encefalopatia, convulsões e hemorragia intracraniana. Uma função ruim do enxerto pode resultar em recorrência de encefalopatia, apesar de que sua precisa etiologia é frequentemente de difícil determinação, já que podem estar envolvidos múltiplos fatores, como hemorragia subaracnóidea, meningite, infarto, necrose medular e infecção por citomegalovírus. Convulsões se constituem na segunda complicação neurológica mais comum, frequentemente precedidas de algum grau de encefalopatia, embora existam outras possíveis etiologias, como acidente vascular cerebral, distúrbios metabólicos, desequilíbrios eletrolíticos, toxicidade de fármacos, história prévia de crises epilépticas e infeção. O infarto cerebral pode ocorrer na fase péroperatória inicial e é principalmente resultado de eventos isquêmicos anôxicos, frequentemente precedidos por hipotensão. Manifestações neurológicas conectadas com a imunossupressão podem estabelecer-se após doses elevadas de corticosteroides e inibidores de calcineurina. Elas incluem...
cefaleia, confusão/psicose, diminuição do limiar convulsivo, apraxia da fala, mioclónia, alucinações visuais, tremor, delírium, cegueira cortical e coma.

A síndrome de mielinólise pontina central é uma das complicações neurológicas mais graves após o TF e se caracteriza por perda mielinica simétrica da ponte. Não existe tratamento definitivo, entretanto ela pode ser prevenida por correção lenta da hiperontrema e estrito monitoramento dos níveis séricos de sódio. Embora seja também uma complicação temida, a psicose pode resultar exclusivamente de uma prolongada permanência na UTI, do uso de esteroides e da imunossupressão, assim como de interações medicamentosas.

Condições que aumentam o risco de comprometimento neurológico pós-operatório também incluem alterações preexistentes da barreira hematoencefálica, que provocam níveis intracerebrais tóxicos de fármacos, alterações dismetabólicas e transtornos eletrolíticos e osmóticos.

Infecções na fase inicial após transplante de fígado

O risco de infecção na fase inicial após o transplante de fígado é multifatorial e uma das principais causas de morbimortalidade pós-operatória. Os fatores de risco podem ser relacionados ao doador, ao receptor e ao próprio transplante. Os fatores relativos ao transplante incluem IRI, transfusão sanguínea intraoperatoria, níveis e tipo de imunossupressão, rejeição, complicações, tempo prolongado de permanência na UTI, qualidade do fluxo biliar, tipo de drenagem biliar, cirurgias repetidas, retransplante, antibióticos, regime antiviral e ambiente. Os riscos relativos ao doador incluem infecção prévia, tempo prolongado de permanência na UTI, qualidade do fluxo biliar e condicionalização prévia. Para o receptor, os fatores mais importantes são MELD acima de 30, outras comorbidades, fatores como tempo de isquemia (fria e quente), características do doador e condição viral. Para o receptor, os fatores mais importantes são MELD acima de 30, outras comorbidades e tempo de isquemia (fria e quente), dependendo da função hepática e da hemodinâmica. Em muitos pacientes, um tratamento combinado, por exemplo, com dipirona magnésica ou paracetamol em baixa dose (< 2g ao dia) mais tramadol até 300mg ao dia é uma opção razoável e segura para o período pós-operatório imediato, com superioridade analgésica em comparação a seus componentes isolados e sem toxicidade adicional. A dor não aliviada pode amplificar a resposta ao estresse cirúrgico e a disfunção de órgãos, e prolongar a recuperação.

Monitoramento da recuperação da função do enxerto

Após sofrer múltiplos insultos, o enxerto lentamente recupera sua função, refletida por um aumento nos níveis de fator V e normalização do RNI observados dentro das primeiras 24 horas após o TF, ocasionais até 72 horas, exibindo disfunção inicial do enxerto. O fator V é sintetizado estritamente no fígado, dependente de vitamina K e curta meia-vida plasmática, o que permite sua utilização no monitoramento da função hepática. Determinações seriadas do lactato sérico também são importantes para avaliar a recuperação da função do enxerto pela mensuração da depuração hepática de lactato, avaliando a perfusão do órgão. Os níveis séricos de ami-notransferases e de bilirrubina devem ser monitorados; um aumento inesperado destes parâmetros deve alertar quanto a complicações, devendo-se imediatamente afastar a ocorrência de uma trombose vascular. A disfunção do enxerto influencia nas características do fluxo biliar, que se torna mais claro e menos viscoso.

O tempo de recuperação se relaciona com variados fatores, como tempo de isquemia (fria e quente), características do doador e qualidade geral do enxerto, isto é, presença de estenose. Isquemia fria superior a 12 horas,
Tabela 3 - Potenciais fatores de risco associados com disfunção do enxerto hepático

Doador	Perioperatório	Receptor
Idade e sexo	Isquemia quente	Idade
Raça	Complicações técnicas	Comorbidades
Peso	Uso de hemoderivados	Condicionamento clínico
Causa da morte cerebral		Insuficiência renal
Tempo de permanência na UTI		Retransplante
Preservação a frio		Uso de vasopressores
Sódio sérico		
Uso de vasopressores		
Estenose		

UTI – unidade de terapia intensiva.

isquemia quente superior a 1 hora, e estenose superior a 30% são considerados fatores de risco para retardo da recuperação do enxerto ou falência precoce do enxerto.3,4 A impossibilidade de recuperar função adequada define ausência primária de função e representa necessidade de retransplante urgente.

Avaliação rotineira da vascularização do enxerto por ultrassonografia com Doppler é importante para a detecção precoce de trombose arterial ou venosa.47 A elevada resistência anastomótica arterial inical em geral se normaliza dentro de alguns dias; casos em que ela persiste juntamente de um fluxo hepatofugal no exame com Doppler podem refletir outros problemas do enxerto, como rejeição.47,48

O teste com indocianina verde, embora não rotineiramente utilizado em nosso centro, também pode avaliar a função do enxerto.47

A trombose vascular após TF pode provocar falência do enxerto, quer imediata ou em longo prazo, e, na maioria dos casos, é um indicador da necessidade urgente de retransplante.48,49

Heparina é o anticoagulante de escolha, com preferência para a heparina de baixo peso molecular (HBPM), porque, por ser um inibidor seletivo do fator Xa de coagulação, tem menos complicações hemorrágicas.21

Doses profiláticas de HBPM são, em geral, iniciadas logo que se identifique uma tendência de normalização do TP, RNI (< 1,5) e TTPa, e que as plaquetas se encontrem acima de 50.000 (na ausência de diálise hemorrágica), sendo mantidas por 2 semanas.48,49

Eventos trombóticos arteriais, como HAT, ocorrem especialmente em casos de discrepância de dimensões entre os vasos do enxerto e nativos, redução do fluxo arterial, aumento da resistência sinusoídal, lesões de preservação ou estenose da anastomose.21,26,48 Estudos focalizados na eficácia e na segurança de terapia antiplaquetária em pacientes após TF demonstraram evidência de benefício tanto na HAT precoce quanto tardia, sem aumentar o risco de hemorragia ou de complicações cirúrgicas.21,26 Atualmente, utilizamos ácido acetilsalicílico 100mg ao dia, introduzido no décimo dia ou antes, com base no julgamento clínico, em pacientes com alto risco de HAT precoce. A administração é mantida por 3 meses ou indefinidamente, nos casos em que se mantém o risco de trombose arterial.

O paciente com polineuropatia amiloidótica familiar

Como há uma elevada incidência desta doença em Portugal, o transplante de fígado é uma terapia possível. Também, pacientes com PAF geralmente doam seus fígados para outro paciente em um procedimento cirúrgico chamado “em domínio”.2,3 Diversos aspectos particulares devem ser levados em conta. Primeiramente, o fígado tem função normal, exceto quanto à produção de uma proteína anormal. Este fator protege os pacientes de um sangramento importante. Em segundo lugar, há uma incidência mais alta de HAT,50 de forma que o monitoramento vascular é, em geral, mais frequente. Nestes pacientes estão frequentemente presentes fenômenos disautonômicos, sendo que a resposta aos vasopressores e, especialmente, a agentes inotrópicos, pode ser aberrante. Além disto, a última questão é a possível recorrência da PAF no receptor; isto afeta a seleção do paciente, que não é realizada pelo médico intensivista.

CONCLUSÃO

Oferecemos um ponto de vista com respeito à abordagem do paciente após cirurgia de transplante de fígado em nosso centro de transplantes, com base em experiência própria. Neste artigo, discutimos principalmente o perfil clínico do receptor, as complicações preoces e sua abordagem adequada, assim como o manejo geral nas primeiras horas após o transplante.
ABSTRACT

The liver transplant program in our center started in 1992, and post-liver transplant patients are still admitted to the intensive care unit. For the intensive care physician, a learning curve started then, skills were acquired, and a specific practice was established. Throughout this time, several concepts changed, improving the care of these patients. The practical approach varies between liver transplant centers, according to local specificities. Hence, we wanted to present our routine practice to stimulate the debate between dedicated teams, which can allow the introduction of new ideas and potentially improve each local standard of care.

Keywords: Liver transplantation; Postoperative period; Intensive care; Perioperative period/adverse effects; Liver/surgery

REFERÊNCIAS

1. Sauer IM, Bechstein WO, Neuhaus P. Liver transplantation. In: Holzheimer RG, Mannick JA, editors. Surgical treatment: evidence-based and problem-oriented. Munich: Zuckschwerdt; 2001.
2. Bispo M, Marcelino P, Marques HP, Martins A, Perdigoto R, Aguiar MJ, et al. Domino versus deceased donor liver transplantation: association with early graft function and perioperative bleeding. Liver Transpl. 2011;17(3):270-8.
3. Feltracco P, Barbieri S, Galligioni H, Michieletto E, Carollo C, Ori C. Intensive care management of liver transplanted patients. World J Hepatol. 2011;3(3):61-71.
4. Keegan MT, Kramer DJ. Perioperative care of the liver transplant patient. Crit Care Clin. 2016;32(3):453-73.
5. Moraes AC, Oliveira PC, Fonseca-Neto OC. The impact of the MELD score on liver transplant allocation and results: an integrative review. Arq Bras Cir Dig. 2017;30(1):65-8.
6. Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, Durand F, Gustot T, Saliba F, Domenicali M, Gerbes A, Wendon J, Alessandria C, Laleman W, Zeuzem S, Trebicka J, Bernardi M, Arroyo V. CANONIC Study Investigators of the EASL-CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426-37, 1437.e1-9.
7. Moreno R, Berenguer M. Post-liver transplantation medical complications. Ann Hepatol. 2006;5(2):77-85.
8. Fabbroni, Bellamy M. Anaesthesia for hepatic transplantation. Contin Educ Anaesth Crit Care Pain. 2006;6(5):171-5.
9. Kumar A, Das K, Sharma P, Mehta V, Sharma BC, Sarin SK. Hemodynamic studies in acute-on-chronic liver failure. Dig Dis Sci. 2009;54(4):689-78.
10. Al-Hamoudi WK. Cardiovascular changes in cirrhosis: pathogenesis and clinical implications. Saudi J Gastroenterol. 2010;16(3):145-53.
11. Simpson RG, Quayle J, Stylianides N, Carlson G, Soop M. Intravenous fluid and electrolyte administration in elective gastrointestinal surgery: mechanisms of excessive therapy. Ann R Coll Surg Engl. 2017;99(6):497-503.
12. Barmparas G, Liou D, Lee D, Fioren N, Bloom M, Ley E, et al. Impact of positive fluid balance on critically ill surgical patients: a prospective observational study. J Crit Care. 2014;29(6):836-41.
13. Jiang GQ, Chen P, Bai DS, Tan JW, Su H, Peng MH. Individualized perioperative fluid therapy facilitating early-phase recovery after liver transplantation. World J Gastroenterol. 2012;18(16):1981-6.
14. Møller S, Henriksen JH. Cirrhotic cardiomyopathy: a pathophysiological review of circulatory dysfunction in liver disease. Heart. 2002;87(1):9-15.
15. O'Connor ME, Prowle JR. Fluid overload. Crit Care Clin. 2015;31(4):803-21.
16. Aggarwal S, Kang Y, Freeman JA, Fortunato FL Jr, Pinsky MR. Postreperfusion syndrome: hypotension after reperfusion of the transplanted liver. J Crit Care. 1993;8(3):154-60.
17. Razonable RR, Findlay JY, O'Riordan A, Burroughs SG, Ghobrial RM, Agarwal B, et al. Critical care issues in patients after liver transplantation. Liver Transpl. 2011;17(5):511-27.
18. Alkozi EM, Lisman T, Porte RJ. Bleeding in liver surgery: prevention and treatment. Clin Liver Dis. 2009;13(1):145-54.
19. Pham HP, Shaz BH. Update on massive transfusion. Br J Anaesth. 2013;111 Suppl 1:71-82.
20. Sopinath R, Sreekanth Y, Yadav M. Approach to bleeding patient. Indian J Anaesth. 2014;58(5):596-602.
21. Lisman T, Caldwell SH, Burroughs AK, Northup PG, Senzolo M, Stravitz RT, Tripodi A, Trotter JF, Valla DC, Porte RJ. Coagulation in Liver Disease Study Group. Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol. 2010;53(2):362-71.
22. Duffy JP, Hong JC, Farmer DG, Ghobrial RM, Yersiz H, Hiatt JR, et al. Vascular complications of orthotopic liver transplantation: experience in more than 4,200 patients. J Am Coll Surg. 2009;208(5):896-903; discussion 903-5.
23. Benson AB, Burton JR Jr, Austin GL, Biggins SW, Zimmerman MA, Kam I, et al. Differential effects of plasma and red blood cell transfusions on acute lung injury and infection risk following liver transplantation. Liver Transpl. 2011;17(2):149-58.
24. Tripodi A, Salemo F, Chantarangkul V, Clerici M, Cazzaniga M, Primignani M, et al. Evidence of normal thrombin generation in cirrhosis despite abnormal conventional coagulation tests. Hepatology. 2005;41(3):553-8.
25. Nedel WL, Rodrigues Filho EM, Pasqualotto AC. Thrombin activatable fibrinolysis inhibitor como preditor de sangramento no transplante hepático: estudo piloto observacional. Rev Bras Ter Intensiva. 2016;28(2):161-6.
26. Senzolo M, Burra P, Cholangitis E, Burroughs AK. New insights into the coagulopathy of liver disease and liver transplantation. World J Gastroenterol. 2006;12(48):7725-36.
27. Arshad F, Lisman T, Porte RJ. Hypercoagulability as a contributor to thrombotic complications in the liver transplant recipient. Liver Int. 2013;33(6):820-7.
28. Steadman RH, Con: immediate extubation for liver transplantation. J Cardiothorac Vasc Anesth. 2007;21(5):756-7.
29. Feltracco P, Carollo C, Barbieri S, Pettenuozzo R, Ori C. Early respiratory complications after liver transplantation. World J Gastroenterol. 2013;19(48):9271-81.
30. Nayar D, Man HS, Granton J, Lilly LB, Gupta S. Proposed management algorithm for severe hypoxemia after liver transplantation in the hepatopulmonary syndrome. Am J Transplantat. 2015;15(4):903-13.
31. Umbro I, Tinti F, Scalera I, Evison F, Gunson B, Sharif A, et al. Acute kidney injury and post-reperfusion syndrome in liver transplantation. World J Gastroenterol. 2016;22(42):3914-23.
32. Marcelino P, Tavares I, Carvalho D, Marques C, Silvestre MJ, Perdigoto R, et al. Is urinary γ-glutamyl tranpeptidase superior to urinary neutrophil gelatinase-associated lipocalin for early prediction of acute kidney injury after liver transplantation? Transplant Proc. 2014;46(6):1812-8.
33. Bobadilla NA, Gamba G. New insights into the pathophysiology of cyclosporine nephrotoxicity: a role of aldosterone. Am J Physiol Renal Physiol. 2007;293(1):F2-9.
34. Nadeem A, Salahuddin N, El Hazmi A, Joseph M, Bohlega B, Sallam H, et al. Chloride-liberal fluids are associated with acute kidney injury after liver transplantation. Crit Care. 2014;18(6):625.
35. Živković SA. Neurologic complications after liver transplantation. World J Hepatol. 2013;5(8):409-16.
36. Wu SY, Chen TW, Feng AC, Fan HL, Hsieh CB, Chung KP. Comprehensive risk assessment for early neurologic complications after liver transplantation. World J Hepatol. 2016;22(24):5548-57.
37. Campagna F, Biancardi A, Cillo U, Gatta A, Amodio P. Neurocognitive-neurological complications of liver transplantation: a review. Metab Brain Dis. 2010;25(1):115-24.
38. van Hoek B, de Rooji BJ, Verspaget HW. Risk factors for infection after liver transplantation. Best Pract Res Clin Gastroenterol. 2012;26(1):61-72.
39. Laici C, Gamberini L, Bardi T, Siniscalchi A, Reggiani ML, Faenza S. Early infections in the intensive care unit after liver transplantation-epidemiology and risk factors: A single-center experience. Transpl Infect Dis. 2018;20(2):e12834.
40. Kim SI. Bacterial infection after liver transplantation. World J Gastroenterol. 2014;20(20):6211-20.
41. Feltracco P, Carollo C, Barbieri S, Millevoi M, Pettenuzzo T, Gringeri E, et al. Pain control after liver transplantation surgery. Transplant Proc. 2014;46(7):2300-7.
42. Milan Z. Analgesia after liver transplantation. World J Gastroenterol. 2015;7(21):2331-5.
43. Pai SL, Aniskevich S, Rodrigues ES, Shine TS. Analgesic considerations for liver transplantation patients. Curr Clin Pharmacol. 2015;10(1):54-65.
44. Russo FP, Bassanello M, Senzolo M, Cillo U, Burra P. Functional and morphological graft monitoring after liver transplantation. Clin Chim Acta. 2001;310(1):17-23.
45. Wu JF, Wu RY, Chen J, Ou-Yang B, Chen MY, Guan XD. Early lactate clearance as a reliable predictor of initial poor graft function after orthotopic liver transplantation. Hepatobiliary Pancreat Dis Int. 2011;10(60):587-92.
46. Wiggans MG, Starkie T, Shahtahmassebi G, Wooley T, Birt D, Erasmus P, et al. Serum arterial lactate concentration predicts mortality and organ dysfunction following liver resection. Perioper Med (Lond). 2013;2(1):21.
47. Bolondi G, Mocchegiani F, Montali R, Nicolini D, Vivarelli M, De Pietri L. Predictive factors of short term outcome after liver transplantation: a review. World J Gastroenterol. 2016;22(26):5936-49.
48. Gopal PB, Kapoor D, Raya R, Subrahmanym M, Juneja D, Sukanya B. Critical care issues in adult liver transplantation. Indian J Crit Care Med. 2009;13(3):113-9.
49. Borg MA, van der Wouden EJ, Sluiter WJ, Slooff MJ, Haagsma EB, van den Berg AP. Vascular events after liver transplantation: a long-term follow-up study. Transplant Int. 2008;21(1):74-80.
50. Bispo M, Marcelino P, Freire A, Martins A, Mourão L, Barroso E. High incidence of thrombotic complications early after liver transplantation for familial amyloidotic polyneuropathy. Transpl Int. 2009;22(2):165-71.