Dynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells

Zakary S. Singer,1,7 John Yong,2,7 Julia Tischler,6 Jamie A. Hackett,6 Alphan Altinok,2,3 M. Azim Surani,6 Long Cai,4 and Michael B. Elowitz5,*

1Computation and Neural Systems
2Division of Biology
3Biological Network Modeling Center
4Program in Biochemistry and Molecular Biophysics and Division of Chemistry and Chemical Engineering
5Howard Hughes Medical Institute and Division of Biology and Department of Applied Physics
California Institute of Technology, Pasadena, CA 91125, USA
6The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
7Co-first author
*Correspondence: melowitz@caltech.edu
http://dx.doi.org/10.1016/j.molcel.2014.06.029

SUMMARY

Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the “2i” signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

INTRODUCTION

Many cell populations appear to consist of mixtures of cells in distinct cellular states. In fact, interconversion between states has been shown to underlie processes ranging from adult stem cell niche control (Lander et al., 2009; Rompolas et al., 2013) to bacterial fitness (Suel et al., 2006) to cancer development (Gupta et al., 2011). A central challenge is to identify transcriptional states, along with the mechanisms that control their stability and generate transitions among them.

Single-cell transcriptional studies have revealed substantial gene expression heterogeneity in stem cells (Canham et al., 2010; Chambers et al., 2007; Chang et al., 2008; Guo et al., 2010; Yamanaka et al., 2010). Moreover, subpopulations expressing different levels of Nanog, Rex1, Dppa3, or Prdm14 show functional biases in their differentiation propensity (Hayashi et al., 2008; Singh et al., 2007; Toyooka et al., 2008; Yamaji et al., 2013). This heterogeneity could in principle arise from stochastic fluctuations, or “noise,” in gene expression (Eldar and Elowitz, 2010; Raj et al., 2008; Zenklusen et al., 2008). Alternatively, it could reflect the coexistence of multiple cellular states, each with a distinct gene expression pattern showing correlation between a set of genes (Guo et al., 2010; Gupta et al., 2011; Jaitin et al., 2014; Shalek et al., 2013). Disentangling these two sources of variation is important for interpreting the transcriptional states of individual cells and understanding stem cell dynamics.

A related challenge is to understand the mechanisms that stabilize cellular states despite noise. DNA methylation has been shown to be heritable over many generations, is critical for normal development (Okano et al., 1999), and may help stabilize irreversible cell fate transitions (Hackett et al., 2013; Reik, 2007; Schübeler et al., 2000; Smith et al., 2012). However, the role of DNA methylation in the reversible cell state transitions that underlie equilibrium population heterogeneity has been much less studied (Fouse et al., 2008; Mohn et al., 2008). Recently, it was reported that exposing ESCs to inhibitors of MEK and GSK3β (called 2i) abolishes heterogeneity and induces a “naïve” pluripotent state (Marks et al., 2012; Wray et al., 2011) with reduced methylation (Ficz et al., 2013; Habibi et al., 2013; Leitch et al., 2013). However, a causal role linking methylation, heterogeneity, and 2i remains to be elucidated.

Together, these observations provoke several fundamental questions: First, how do noise and states together determine the distribution of expression levels of individual regulatory genes (Figure 1A)? Second, how do gene expression levels vary dynamically in individual cells, both within a state and during transitions between states (Figure 1B)? Finally, how do cells stabilize metastable gene expression states, and what role does DNA methylation play in this process?
RESULTS

Mouse ESCs Show Three Distinct Types of Gene Expression Distributions

The process of mRNA transcription is inherently stochastic. As a result, even a clonal cell population in a single state is expected to display variability in the copy number of each mRNA (Blake et al., 2003; Elowitz et al., 2002; Friedman et al., 2006; Ozbudak et al., 2002; Paulsson and Ehrenberg, 2000; Peccoud and Ycart, 1995; Raj et al., 2006; Shahrezaei and Swain, 2008; Suter et al., 2003; Elowitz et al., 2002; Friedman et al., 2006; Ozbudak et al., 2007; Suël et al., 2006; Zong et al., 2010).

In order to accurately measure mRNA copy numbers in large numbers of individual ESCs, we developed an automated platform for smFISH (Supplemental Information). This system enables rapid analysis of four genes per cell across ~400 cells per sample (Figures S1A–S1D). We validated the system by comparing three measures of expression of the same gene in the same cells using a Rex1-dGFP reporter line (Wray et al., 2010) (Figure S1E).

Using this platform, we analyzed 36 pluripotency-associated regulators that play critical roles in ESCs or are heterogeneously expressed, as well as several markers of early cell fates and housekeeping genes. The resulting mRNA distributions exhibited a range of distribution shapes and degrees of heterogeneity (Figure 2A). We analyzed these distributions within the framework of bursty transcriptional dynamics. In this model, mRNA production occurs in stochastic bursts that are brief compared to the mean interburst interval and are exponentially distributed in size. Bursty dynamics produce negative binomial (NB) mRNA distributions (Paulsson et al., 2000; Raj et al., 2006), whose shape is determined by the frequency and mean size of bursts.

Genes exhibited three qualitatively distinct types of mRNA distributions. First, most genes were unimodal and well-fit by a single NB distribution (Figures 2B and S2A, maximum likelihood estimation [MLE], χ² goodness of fit [GOF] test p > 0.05). This class included Oct4, Rest, Tcf3, Smarcc1, Sall4, and Zfp281. Coefficients of variation (CV) were typically ~0.5 for the most homogeneous genes (Figure 2A).

Second, a subset of unimodal genes exhibited “long-tailed” distributions, in which most cells had few, if any, transcripts, while a small number of cells displayed many transcripts. These distributions were also well fit by a single NB distribution, but with resulting distributions that generally decreased monotonically with increasing mRNA concentration (Figures 2B and S2A, χ² GOF p > 0.05). The most heterogeneous long-tailed genes had burst frequencies of less than one burst per mRNA half-life. These included Tbx3 (CV = 2.13 ± 0.23, mean ± SEM), Dppa3 (CV = 1.76 ± 0.31), and Prdm14 (CV = 1.599 ± 0.20). Other long-tailed genes such as Pecam1, Klf4, Blimp1, Socs3, Nr0b1, and Fgfr2 had higher burst frequencies and less skew. Long-tailed genes arising from rare bursts could provide a source of stochastic variation that could propagate to downstream genes.

Third, there were some genes whose mRNA distributions were significantly better fit by a linear combination of two NB distributions than by one (Supplemental Information, Akaike’s Information Criteria [AIC] and log-likelihood ratio test, p < 0.05). These genes included Rex1, Nanog, Esr2b, Tet1, Fgfr4, Sox2, Tcf1, and Lifr (Figures 2B and S2A). In some cases, the two components of these distributions were well separated from one another (e.g., Rex1 and Esr2b), while in other cases they overlapped strongly (e.g., Nanog and Lifr), such that the absolute number of transcripts for a single gene did not accurately indicate to
which state the cell belonged. These bimodal distributions sug-
ggested the existence of multiple cell states (see below).

Markers of most differentiated fates including Pax6 (neuroec-
toderm), Fgf5 (epiblast), Sox17 and FoxA2 (definitive endoderm),
and Gata6 (primitive endoderm) showed no detectable expres-
sion (data not shown). However, the mesendodermal regulator
Brachyury (T) was expressed at a level of ~5–20 transcripts in
6% of Rex1-low cells. Similarly, the two-cell-like state marker
Zscan4c (Macfarlan et al., 2012) showed ~3–60 transcripts in
3% of cells (Figure S2A). These genes did not fit well to NB dis-
tributions, suggesting that processes other than transcriptional
bursting impact their expression in this small fraction of cells.

Bimodal Genes Vary Coherently

We next used the smFISH data to determine whether the
bimodal genes were correlated, which would suggest their con-
trary to a single pair of distinct cell states, or varied independently,
which would suggest a multiplicity of states. The data revealed a
cluster of bimodal genes that correlated with one another. Rex1,
Nanog, and Esrrb displayed the strongest correlations ($r = -0.7$,
Figures 2C and S2B), while genes with strong overlap between
modes, such as Tcf1, Lifr, Sox2, and Tet1, displayed somewhat
weaker, but still significant, correlations ($r = -0.5$, Figures 2C and
S2B), beyond those observed between bimodal and nonbimodal
genes (e.g., $r = 0.2$ for Rex1 and Oct4). Thus, a cell in the high-
or low-expression state of one bimodal gene is likely to be in the
corresponding expression state of others. Some correlations
were negative: expression of the de novo methyltransferase
Dnmt3b was reduced in the Rex1-high state (Figure 2C).

Note that cell cycle effects did not explain these corre-
lations (Figure S2C). Together, these data suggest that bimodal
genes appear to be broadly coregulated in two distinct states.

Long-tailed genes exhibited more complex relationships.
Those with very large variation (CV > 1.5) were correlated with
the expression state of the bimodal gene cluster, but not with one another (Figures 2C, 2D, and S2B). For example, genes
like Dppa3, Tbx3, and Prdm14 burst predominantly in the Rex1-
high state, but even in this state, most cells showed no tran-
scripts of these genes (p < 0.001, see Supplemental Information
for statistical analysis). Thus, it appears that these genes are ex-
pressed in infrequent, stochastic bursts that occur mainly in one
of the two cellular states.

Interestingly, expression of Socs3, a negative regulator and
direct target of Stat signaling (Auerhammer et al., 1999), ap-
peared conditional on expression of its bimodally expressed
receptor Lifr (note absence of Socs3 expression in low-Lifr cells
in Figure S2B). Analysis of additional regulators not measured
here could in principle reveal additional states or more complex
distributions. Overall, however, the multidimensional mRNA dis-
tributions measured here are consistent with a simple picture
based on two primary states and stochastic bursting.

**The Two Primary States Exhibit Distinct DNA
Methylation Profiles**

These data contained an intriguing relationship between three
factors involved in DNA methylation: the de novo methyltransfer-
ase Dnmt3b, the hydroxylase Tet1, which has been implicated in
removing methylation (Picz et al., 2011; Ito et al., 2010; Koh et al.,
2011; Wu et al., 2011), and Prdm14, which represses expression
of Dnmt3b (Grabole et al., 2013; Leitch et al., 2013; Ma et al.,
2011; Yamaji et al., 2013). While Rex1 was anticorrelated with
Dnmt3b expression and positively correlated with Tet1 (Fig-
ure 3A), Prdm14 showed a long-tailed distribution conditioned on the Rex1-high state (Figure 2D). Based on these relationships
and the observation that methylation increases during early
development (Meissner et al., 2008), we hypothesized that the
Rex1-low state might exhibit increased methylation compared to
the Rex1-high state.

To test this hypothesis, we sorted Rex1-high and -low cells us-
ing the Rex1-dGFP reporter line and performed locus-specific
bisulfite sequencing at known targets of methylation Dazl, Mael,
and Sycp3 (Borgel et al., 2010) (Figures 3B, S3A, and S3B). These promoters exhibited 2–3 times greater methylation
in Rex1-low cells compared to Rex1-high cells, indicating the
two states are differentially methylated in at least some genes.
In contrast, Rex1-low cells that subsequently reverted to the
Rex1-high state recovered the methylation levels of Rex1-high
cells, indicating that methylation is reversible. Similarly, quantita-
tive ELISA analysis demonstrated both differential methylation
and reversibility in global methylation levels (Figure 3C).

We next asked more generally which genes exhibited differen-
tial promoter methylation. We again sorted Rex1-high and -low
cells and assayed DNA methylation by reduced representation
bisulfite sequencing (RRBS), analyzing regions 2 kb upstream
to 500 bp downstream of each ESC-expressed mRNA transcrip-
tional start site (Meissner et al., 2008; Marks et al., 2012). The
distributions of methylation levels across genes were bimodal
in both Rex1 states, with the more highly methylated peak
shifted to even higher methylation levels in Rex1-low cells
(Figure 3D). By analyzing the shift in methylation on a gene-
by-gene basis, we found that the increase in methylation in
Rex1-low cells occurred predominantly through increased
methylation of the promoters that were more highly methylated
in Rex1-high cells (Figures 3E and S3C). Thus, the change in pro-
moter methylation occurs in a specific subset of promoters.
Furthermore, the overall methylation level of a gene was related
to the number of CpGs in its promoter, such that the larger the
CpG content of a promoter, the lower its methylation in both
states. Not all gene promoters were well covered by RRBS.
However, among those that were, several key ESC regulators
including Esrrb, Tet1, and Tcf1 all showed increased levels of
methylation in the Rex1-low state. Figure 3E (inset) and Fig-
ure S3C show methylation levels of individual CpGs. These
results provide a view of the change in promoter methylation
that occurs during transitions between the Rex1-high and -low
states.

**Bursty Transcription Generates Dynamic Fluctuations in
Individual Cells**

Evidently, cells populate two transcriptional states, each charac-
terized by distinct methylation profiles. To understand the dy-
namic changes in gene expression that occur as individual cells
switch between these states, we turned to time-lapse micro-
scopy. We analyzed transcriptional reporter cell lines for
Nanog and Oct4, each containing a histone 2B (H2B)-tagged fluoro-
phore expressed under the control of the corresponding
We imaged the reporter cell lines for 50 hr periods with 15 min intervals between frames and segmented and tracked individual cells over time in the resulting image sequences. For each cell lineage, we quantified the instantaneous reporter production rate, defined as the rate of increase of total fluorescent protein in the cell, corrected for the partitioning of fluorescent protein into daughter cells during cell division (Supplemental Information). The H2B-fluorescent protein degradation rate is negligible under these conditions (Figure S4C), enabling us to

Figure 2. smFISH Reveals Gene Expression Heterogeneity and Correlation

(A) Top: coefficients of variation (CV, mean ± SEM) for ESC-associated regulators and housekeeping genes. Bottom: Distributions (violin plots) normalized by maximum expression level reveal qualitatively distinct gene expression distributions. Genes are sorted by increasing CV.

(B) Smoothed histograms for mRNA distributions overlaid with NB fits. Solid lines show individual NB distributions. Dashed gray lines show their sum (for bimodal genes). * denotes 95th percentile for Prdm14. P value: c^2 goodness of fit test.

(C) Pairwise relationships between genes, analyzed by smFISH (r, Pearson correlation coefficient; p value by 2D K-S test (see Experimental Procedures and Figures S2A and S2B).

(D) Heat maps show examples of four-dimensional data sets.
use the reporter production rate as a measure of instantaneous mRNA level. An advantage of this approach is that it provides relatively strong fluorescence signals per cell, but still enables high time-resolution analysis (Locke and Elowitz, 2009). Consistent with static smFISH distributions, the production rate distributions of the Nanog and Oct4 fluorescent reporters were bimodal and unimodal, respectively (Figure 4A).

Dynamically, cells remained in either one of two distinct Nanog expression states for multiple cell cycles (Figure 4B). During these periods, expression levels varied over the full range of Nanog expression levels within each state, with no evidence for persistent substrates. However, closer examination revealed fluctuations within a single state, which typically occurred in discrete steps separated by periods of steady expression (Figure 4C). Using a computational step detection algorithm (Figure S4D and Supplemental Information), we found that Nanog and Oct4 reporters exhibited 0.38 and 0.29 steps per cell cycle, respectively. These steps occurred in a single cycle phase-dependent manner (Figure 4D), with down-steps clustered around cell division events and up-steps more broadly distributed across cell cycle phases.

Could these step-like dynamics arise simply from transcriptional bursting? To address this question, we simulated single-cell mRNA and protein traces using the bursty transcription model, with parameters determined from the NB fits of the static mRNA distributions (Supplemental Information). These simulations generated dynamic traces resembling those observed experimentally (Figures 4E and S4E). In the simulations, mRNA half-life and burst frequency determine the characteristics of detectable steps (Figure S4F); in general, steps were prominent at low burst frequencies and short mRNA half-lives and became difficult to discriminate at high burst frequencies and long mRNA half-lives.

Step-like dynamics appear to be a natural consequence of stochastic expression, with up-steps reflecting burst-like production of mRNA and down-steps resulting from ~2-fold reduction in mRNA copy number at cell division (Figure S4G). This interpretation is consistent with the observed clustering of down-steps around cell division events and a more uniform cell cycle distribution of up-steps (Figure 4D). Because large bursts can effectively cancel out mRNA dilution at cell division events, they may appear underrepresented near cell division events. Note that most cell cycles showed no up-steps, suggesting that they are not due to increased gene dosage after chromosome replication (Brewster et al., 2014; Rosenfeld et al., 2005).

Dynamic Transitions between Cellular States

We next asked how cells transition dynamically between states. Previous work has relied on cell sorting, which can distort the signaling environments. By contrast, movies enable direct observation of switching events within a mixed cell population. Since the Nanog reporter production rate fluctuations even within a single state, we used a hidden Markov model (HMM) to classify each cell as either Nanog-high or Nanog-low at every point in time (Supplemental Information). We trained the HMM using time-series data of Nanog reporter production rates, sampled at fixed intervals across all tracked cell cycles, and used it to identify switching events and estimate switching frequencies.

Transitions from the Nanog-low to the Nanog-high state or vice versa occurred at a rate of 2.3 ± 0.25, or 7.9 ± 1.2, transitions per 100 cell cycles (mean ± SD), respectively (Figures 4F and 4G). These events did not correlate between sister cells (Table S1), consistent with independent, stochastic events. Interstate switching on average showed bigger and longer-lasting fold changes than intrastate steps in production rates (Figure S4H). Together, these results suggest that gene expression dynamics are dominated by a combination of step-like changes due to bursty transcription on shorter timescales and abrupt, apparently stochastic interstate switching events on longer timescales.

“2i” Inhibitors Modulate Bursty Transcription and State-Switching Dynamics

We next asked how gene expression heterogeneity and dynamics change in response to key perturbations. Dual inhibition of MEK and GSK3β, known as “2i,” were shown to enhance pluripotency and reduce Rex1 and Nanog heterogeneity (Marks et al., 2012; Wray et al., 2010). However, it has remained unclear how 2i affects the distribution of other heterogeneously expressed regulatory genes and what impact it has on dynamic fluctuations in gene expression.

We found that addition of 2i to serum + LIF media reduced variability in the mRNA levels of most genes (Figure 5A). In principle, this could reflect the elimination of one cellular state and/or changes in burst parameters. In 2i, the bimodal distributions from Figure 2A became unimodal, suggesting that 2i suppresses one of the two cellular states (Figures 5A and S5A). In the case of Nanog, the remaining state increased its mean transcript level by ~1.5-fold, to what we term Nanog-SH (super high). Tet1, Sox2, and Tcl1 also became unimodal, but displayed an overall decrease in absolute expression. With long-tailed genes, we found that the mean Dppa3 expression decreased slightly, while Prdm14 and Tbx3 became more homogenously expressed, exhibiting an increase in mean expression by ~300% and ~1,000%, respectively. These changes reflect the fact that nearly all cells were now observed to express Prdm14 and Tbx3. Thus, 2i appeared to reduce variability in most genes, either by eliminating bimodality or by increasing their burst frequency.

Recently, it was shown that 2i-treated cells exhibit differentiation propensity similar to sorted Rex1-high subpopulations in embryoid body formation, suggesting they may represent similar functional states (Marks et al., 2012). We used the time-lapse movie system to compare the dynamic behavior of 2i-treated cells to that of cells in the Rex1-high subpopulation. Consistent with mRNA measurements, 2i shifted most cells into a Nanog-SH state (96% of total), characterized by ~3-fold higher median production rate compared to the Nanog-high state in serum + LIF (Figure 5B). Only a small fraction of cells showed expression overlapping with the Nanog-low state in serum + LIF at the beginning of the movies (after 6 days in treatment). Moreover, these cells switched to the Nanog-SH state at a >40-fold higher rate than the Nanog-low to Nanog-high switching rate measured in serum + LIF, with no reverse transitions observed (Figures 5C and S5B). These observations suggest that 2i increases the Nanog-low to Nanog-high
Figure 4. Movies Reveal Transcriptional Bursting and State-Switching Dynamics in Individual Cells

(A) Distribution of Nanog and Oct4 production rates from representative movies in serum + LIF, and Gaussian fits to the components. Production rates were extracted from a total of 376 and 103 tracked cell cycles for Nanog and Oct4, respectively.

(B) Production rate distributions of individual cell lineage trees, each consisting of closely related cells descending from a single cell. Lineage trees are color-coded by the state they spend the majority of time in.

(C) Example single lineage traces exhibiting step-like changes in production rates within a state.

(D) Cell cycle phase distribution of steps within the Nanog-high state. Step occurrences are normalized by the frequencies of each cell cycle phase observed in the tracked data.

(E) Representative trace showing apparent steps from simulations under the bursty transcription model, using parameters estimated from mRNA distribution for the Nanog-high state (see Supplemental Information; see Figure S4E for simulation of Oct4 dynamics).

(F) Example traces of individual cells switching between Nanog-low and Nanog-high states.

(G) Empirical transition rates (mean ± SD) between the two Nanog states (N^lo, Nanog-high; N^hi, Nanog-low).

Molecular Cell Dynamics, Stochasticity, and Methylation in ESCs
Figure 5. 2i and DNA Methylation Modulate Bursty Transcription and State-Switching Dynamics

(A) Comparison of mRNA distributions and CV between cells grown in serum + LIF and 2i + serum + LIF. Top: For each gene, the CV in serum + LIF is plotted on the left, and the CV for 2i + serum + LIF is plotted on the right. Dnmt3b in 2i + serum + LIF is represented in gray to reflect its marginal case of poor quality of fit in both bimodal and long-tailed models. Bottom: The left half of each violin represents the mRNA distribution in serum + LIF, while the right represents 2i + serum + LIF. Each gene’s distributions are normalized by a value corresponding to the larger 95th percentile between the two treatments.

(B) Distribution of Nanog production rates from movies in 2i + serum + LIF.

(C) Empirical transition rates between the two Nanog states in the presence of 2i (N^{Lo}, Nanog-low; N^{Hi}, Nanog-SH).

(D) A c protein production rate.

(E) TKO WT

(F) DMSO

(G) 5-Aza 2d

(legend continued on next page)
switching rate and reduces or eliminates Nanog-high to Nanog-low transitions (Figure 5C).

What effect, if any, does 2i have on the dynamics of gene expression noise? Static distributions suggested that 2i increased Nanog burst frequency ~45% from 0.39 to 0.55 burst/hr using the Nanog mRNA half-life previously estimated (Table S1 in Sharova et al., 2009) and assuming no change between conditions. To analyze the effects on dynamics, we computed the “mixing time,” previously introduced to quantify the mean timescale over which a cell maintains a given expression level relative to the rest of the cell population (Sigal et al., 2006). Simulations of the bursty gene expression model showed that higher burst frequencies lead to faster mixing times, while burst size has little effect (Figure S5C). Together with smFISH measurements, this model predicted that Nanog mixing times should be faster in 2i. Qualitatively consistent with this prediction, the mixing time of Nanog production rate was reduced from 8.5 hr in Nanog-high in serum + LIF media to 1.7 in Nanog-SH cells in 2i-containing media (Figures 5D and S5D).

Together, these results indicate that 2i impacts ESC heterogeneity at three levels: First, it reduces gene expression variation in many, but not all, genes. Second, it eliminates one cell state by increasing the rate of transitions out of the Nanog-low state and inhibiting the reverse transition. Third, as shown for Nanog, 2i increases burst frequency and reduces mixing times, effectively speeding up the intrastate equilibration rate within the cell population.

DNA Methylation Modulates Metastability

Previous work has shown that in addition to reducing heterogeneity, 2i also diminishes global levels of DNA methylation (Ficz et al., 2011; Habibi et al., 2013; Leitch et al., 2013). While the Rex1-high and -low states appear differentially methylated (Figures 3B–3E), it remains unclear whether methylation plays a functional role in stabilizing these states. To address this issue, we used a triple-knockout (TKO) cell line lacking the active DNA methyltransferases Dnmt1, Dnmt3A, and Dnmt3B (Tsumura et al., 2006). We compared the expression distribution of Rex1, Nanog, and Esrrb in TKO cells to its parental line using smFISH. The TKO cell lines had 35% ± 2% fewer cells in the Rex1-low state (Figure 5E), with similar results observed for Nanog and Esrrb. This change did not reflect global upregulation of all genes, as expression of the housekeeping gene SDHA was indistinguishable between the two cell lines. These results suggest that DNA methyltransferases increase the population of the Rex1-low state.

To see if these results could be recapitulated with acute rather than chronic perturbations to methylation, we assayed changes in heterogeneity in Rex1-dGFP reporter cells exposed to 70 nM 5-azacytidine (5-aza), an inhibitor of DNA methylation. Within 6 days, the number of cells in the Rex1-low state diminished by more than half from 29% to 13% of all cells (Figure 5F). Thus, acute as well as chronic methylation inhibition reduced the occupancy of the low state.

Finally, we asked whether methylation was similarly required for cells to return to the low state after removal of 2i from 2i + serum + LIF conditions. The Rex1-low population began to emerge within 48 hr of 2i removal (Figure 5G). However, when 2i was removed and replaced with 5-aza, the emergence of Rex1-low cells was severely delayed and diminished. After 6 days, 5-aza-treated cells only showed 6% Rex1-low cells, compared to 25% in DMSO-treated cells. Together, these results suggest that methylation is required for normal exit from the 2i state. Reduced methylation in 2i thus contributes to the stability of the 2i “ground state” (Ficz et al., 2011; Habibi et al., 2013; Leitch et al., 2013; Marks et al., 2012).

DISCUSSION

Recent work on ESC biology from a systems perspective has highlighted the apparent complexity and strong interconnectivity of the circuit governing pluripotency (Chen et al., 2008; Wang et al., 2006). But it has been unclear how variably this circuit behaves in different cells and to what extent population average measurement techniques may obscure its single-cell dynamics. Because gene expression is a stochastic process, levels of both mRNA and protein in each cell are effectively random variables, best characterized by their distributions. The framework of stochastic gene expression provides a tool to more rigorously and quantitatively separate stochastic fluctuations inherent to gene expression from variation due to multiple cell states specified by the underlying transcriptional and signaling circuit. While the simplified model of bursty transcription used here can explain the data, other models, including the “telegraph” model of transcription, may provide other insights (Iyer-Biswas et al., 2009; Peccoud and Ycart, 1995).

Our data suggest that heterogeneity emerges in three distinct ways: First, gene expression is inherently noisy, occurring in stochastic bursts, even in genes such as Oct4 that are distributed in a relatively uniform fashion. Second, cells switch stochastically between distinct states that impact the expression of many genes in a coordinated manner. Third, “long-tailed” regulators such as Prdm14, Tbx3, and Dppa3 are uncorrelated with one another and are distributed in a manner consistent with low burst frequencies and large burst sizes, leading to very high variability. Live-cell imaging will be required to determine the absolute burst kinetics for these genes. However, an mRNA distribution in which only a small subpopulation of cells exhibit a large number...
of mRNA molecules for a particular gene need not, and most likely does not, indicate a distinct cellular state. Moreover, infrequent bursting may provide a potential mechanism for stochastic priming of cell fate decision-making (Maamar et al., 2007; Süel et al., 2006). Further investigation of this possibility will require determining whether these bursts propagate to influence subsequent cell fate decision-making events (Dunlop et al., 2008; Pedraza and van Oudenaarden, 2005).

The data above implicate methylation as a key regulatory mechanism affecting stochastic switching between states. Methylation was previously explored in ESCs at the population level (Ficz et al., 2011; Fouse et al., 2008; Habibi et al., 2013; Ito et al., 2010; Leitch et al., 2013; Mohn et al., 2008), but it remained unclear whether methylation itself contributes to heterogeneity (Chambers et al., 2007; Hayashi et al., 2008; Toyooka et al., 2008; Yamaji et al., 2013). smFISH data revealed a strong reciprocal relationship between the hydroxymethylase Tet1 and the DNA methyltransferase Dnmt3b, with Tet1 expressed more highly in the Rex1-high state and Dnmt3b expressed more highly in the Rex1-low state. This difference in expression correlates with a differential global DNA methylation and in the methylation of the promoters of key pluripotency regulators. Finally, methylation appears to be functionally required for transitions, since either genetic deletion of DNA methyltransferases or pharmacological inhibition both impact the populations of the two cell states and the underlying dynamics of state-switching (Figures 5E–5G). It will be interesting to see whether methylation plays similar functional roles in other stochastic state-switching systems.

These data provoke further questions about the molecular mechanisms through which methylation is regulated and how it modulates metastability. For example, while known methyl binding proteins that aid in methylation-dependent chromatin compaction and silencing are expressed in ESCs (Marks et al., 2012), DNA methylation may also inhibit binding of transcription factors (Shukla et al., 2011; Takizawa et al., 2001; You et al., 2011) and can control mRNA isoform selection via alternative splicing (Shukla et al., 2011). The Esrrb gene, whose activity is central to maintenance of pluripotency (Festuccia et al., 2012; Martello et al., 2012), may provide a good model system to investigate the effects of methylation, since its methylation levels and expression levels are both strongly state dependent. Regulation of this methylation likely involves Prdm14, which is known to inhibit Dnmt3b expression (Ficz et al., 2013; Grabole et al., 2013; Habibi et al., 2013; Leitch et al., 2013; Ma et al., 2011; Yamaji et al., 2013). Given the long-tailed expression pattern of Prdm14 observed here in serum + LIF and its strong upregulation in 2i, it will be interesting to see how much of the variation in Dnmt3b/Tet1, and methylation more generally, can be attributed to bursty expression of Prdm14.

Previous studies of ESC gene expression dynamics have focused on the equilibration of FACs-sorted subpopulations of high and low Nanog and Rex1 expression (Chambers et al., 2007; Toyooka et al., 2008). Two groups explored transcriptional circuit models to explain the long timescales of state-switching dynamics (Glauche et al., 2010; Kalmar et al., 2009). These included noise-induced bistable switches, oscillators, and noise-excitable circuits (Furusawa and Kaneko, 2012). Our dynamic data demonstrate that both Nanog-high and Nanog-low states in serum + LIF conditions typically persist for ≥4 cell cycles, and that state-switching events are abrupt at the level of promoter activity. Depending on protein and mRNA half-lives, the timescale of resulting protein level changes may follow somewhat more slowly. State-switching events are also infrequent (<0.1 per cell cycle) and uncorrelated between sister cells. Together, these findings appear incompatible with oscillatory or excitable models, which predict deterministic state-switching or an unstable excited state, respectively, but are consistent with the stochastic bistable switch model previously proposed (Kalmar et al., 2009). These properties could make this state-switching system a useful model for understanding the circuit level dynamics of spontaneous cell state transitions in single cells.

Several competing explanations were proposed for the apparent heterogeneity in Nanog expression in serum + LIF conditions. These models suggest heterogeneity is an artifact of knockin reporters (Faddah et al., 2013), or that it arises at least in part from monoallelic regulation (Miyanari and Torres-Padilla, 2012) or is manifested biallelically (Filipczyk et al., 2013; Hansen and van Oudenaarden, 2013). Our smFISH data support the existence of Nanog expression heterogeneity in wild-type cells in a standard feeder-free culture condition. Further, both static and dynamic measurements indicate that intrastate heterogeneity in Nanog is consistent with bursty transcription, with a relatively low burst frequency of ~0.39 burst/hr. Thus, active transcriptional loci analyzed by smFISH against nascent transcripts (Miyanari and Torres-Padilla, 2012) would be expected to “flicker” on and off stochastically due to bursting. Such bursting could also cause the misleading appearance of weak correlations between alleles in static snapshots and in measurements based on destabilized fluorescent reporters. On the other hand, the Nanog protein fusion reporters analyzed by Filipczyk et al. showed correlated steady levels between alleles, likely because the longer lifetime of their reporters allowed integration of signal over many transcriptional bursts, and because transitions between cellular states are rare and affect both alleles in a correlated fashion. The results of Faddah et al. with dual transcriptional reporters similarly showed general correlations between the two alleles, consistent with the smFISH correlations shown here (Figures S1E and S4B). Taken together, these previous studies and data presented here appear to converge on a relatively simple picture of heterogeneity based on two states and stochastic bursting.

The quantitative measurement and analysis platform described above should enable further investigation of the structure of static and dynamic heterogeneity in single ESCs. With the advent of higher-dimensionality smFISH (Lubeck et al., 2014; Lubeck and Cai, 2012), single-cell RNA-seq, and microfluidic high-throughput qPCR approaches, as well as improved methods for rapidly and accurately constructing knockin reporters (Wang et al., 2013), it will soon be possible to explore the dynamics of ESC components in higher dimensions in individual cells, both within metastable states and during cell state transitions (Kueh et al., 2013). Ultimately, this should provide a better understanding of the dynamic architecture of cell fate transition circuits.
EXPERIMENTAL PROCEDURES

Culture Conditions and Cell Lines
E14 cells (E14Tg2a.4) obtained from Mutant Mouse Regional Resource Centers were used for smFISH studies. Nanog-Cit cells, created by Kathrin Plath, were generated by targeting the endogenous Nanog locus in V6.5 cells with H2B-Citrine-ires-neo-SV40pa (Figure S4A). Nanog-Cit-Cer cells were generated by randomly integrating into Nanog-Cit cells a linearized PGK-H2B-Cerulean-BGHpa-SV40-Hygro-SV40pa vector. Nanog-Cit-Cer cells were generated by randomly integrating into E14 cells (a kind gift from Bill Skarnes and Peri Tate) a linearized bacterial artificial chromosome (BAC) containing the Oct4 locus (BACPAC [CHORI]), in which H2B-Cerulean-SV40pa-PGK-neo-BGHpa was inserted before the coding sequence (Figure S4A). Rex1-dGFP cells were kindly provided by the Austin Smith lab (Wray et al., 2011). The Dnmt TKO cell line was provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. All cells were maintained on gelatin-coated dishes without feeders.

smFISH Hybridization, Imaging, and Analysis
The RNA FISH protocol from Raj et al., 2008 was adapted for fixed cells in suspension. See Supplemental Experimental Procedures for details. Semiautomated dot detection and segmentation were performed using custom Matlab software. A Laplacian-of-Gaussian (LoG) Kernel was used to score potential dots across all cells. The distribution of these scores across all potential dots was thresholded by Otsu’s method to discriminate between true dots and background dots (see Figures S1A–S1D). Please see Table S2 for the smFISH probe sequences used in this study.

mRNA Distribution Fitting
The Negative Binomial Distribution is defined as

\[P(n;r,\rho_0) = \binom{n + r - 1}{n} \rho_0 (1 - \rho_0)^n. \]

where \(n \) = number of transcripts per cell, \(\rho_0 \) = probability of transition from the “on” promoter state to the “off” promoter state, and \(r \) = number of bursting events per mRNA half-life. The average burst size is computed as \(b = (1 - \rho_0)/\rho_0 \). Using this model, individual mRNA distributions were fit using maximum likelihood estimation. To discriminate between unimodal and bimodal fits, two tests were used to ensure that the improvement of the fit is counterbalanced by the additional degrees of freedom from the added parameters. To be considered bimodal, a distribution was required to pass both Akaike Information Criteria (AIC) and the log-likelihood ratio test (\(p < 0.05 \)).

Fluorescence Time-Lapse Microscopy and Data analysis
Reporter cells were mixed with unlabeled parental cells at 1:9 ratio and plated at a total density of 20,000 cells/cm² on glass-bottom plates (MatTek) coated with human laminin-511 (BioLamina) >12 hr before imaging. Images were acquired every 15 min for ~50 hr with daily medium change. Cells were segmented and tracked from the acquired images using our own Matlab code (see Supplemental information for image analysis methods).

2i Perturbation and Analysis
For 2i treatment we supplemented serum + LIF media with MEK inhibitor PD0325901 at 1 μM and GSK3 inhibitor CH99021 at 3 μM. Cells grown in serum + LIF media were treated with 2i for 6 days before harvesting for smFISH assay and imaging for movies.

Methylation Analysis and Perturbation
RRBS preparation and high-throughput sequencing were performed by Zymo Research. RRBS data were processed using Bismark and Galaxy. To be included in the analysis, each CpG had to have at least five reads. For perturbation experiments, 5-aza (Sigma) was used at a final concentration of 70 nM. SmC ELISA was performed with ELISA 5mC kit (Zymo).

ACCESSION NUMBERS
Sequencing data have been deposited in NCBI’s GEO under accession number GSE58396.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, five figures, two tables, and four movies and can be found with this article online at http://dx.doi.org/10.1016/j.molcel.2014.06.029.

AUTHOR CONTRIBUTIONS
Z.S.S. and J.Y. contributed equally and are listed alphabetically. Z.S.S., J.Y., J.T., L.C., M.A.S., and M.B.E. conceived experiments. Z.S.S., J.Y., J.T., and J.A.H. performed experiments and analyzed data, with Z.S.S. leading smFISH and methylation experiments and J.Y. leading the movie experiments and modeling. A.A. contributed computational algorithms. M.A.S. and M.B.E. supervised research. Z.S.S., J.T., J.Y., and M.B.E. wrote the manuscript with substantial input from all authors.

ACKNOWLEDGMENTS
We thank Jordi Garcia-Ojalvo, Xiling Shen, Georg Seelig, Arjun Raj, and David Sprinzak for helpful comments on the manuscript; the Kathrin Plath Lab, the Austin Smith Lab, and RIKEN for kindly providing reporter and knockout cell lines; and the Caltech FACS Facility for assistance with cell sorting. This work was supported by the National Institutes of Health grants R01HD07560A, R01GM086793A, and P50GM068763; the Westen Havens Foundation; Human Frontiers Science Program; the Packard Foundation; a Wellcome Trust Investigators Grant to M.A.S.; and a KAUST, APART, and CIRM Fellowship to J.T. This work is funded by the Gordon and Betty Moore Foundation through Grant GBMF2809 to the Caltech Programmable Molecular Technology Initiative.

Received: October 18, 2013
Revised: April 4, 2014
Accepted: June 18, 2014
Published: July 17, 2014

REFERENCES
Auernhammer, C.J., Bousquet, C., and Melmed, S. (1999). Auto-regulation of pituitary corticotroph SOCS-3 expression: characterization of the murine SOCS-3 promoter. Proc. Natl. Acad. Sci. USA 96, 6964–6969.
Blake, W.J., KAerH, M., Cantor, C.R., and Collins, J.J. (2003). Noise in eukaryotic gene expression. Nature 422, 633–637.
Borgel, J., Gilbert, S., Li, Y., Chiba, H., Schübeler, D., Sasaki, H., Forné, T., and Weber, M. (2010). Targets and dynamics of promoter DNA methylation during early mouse development. Nat. Genet. 42, 1093–1100.
Brewster, R.C., Weinert, F.M., Garcia, H.G., Song, D., Rydenfelt, M., and Phillips, R. (2014). The transcription factor titration effect dictates level of gene expression. Cell 156, 1312–1323.
Cai, L., Friedman, N., and Xie, X.S. (2006). Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362.
Canham, M.A., Sharov, A.A., Ko, M.S.H., and Brickman, J.M. (2010). Functional heterogeneity of embryonic stem cells revealed through transcriptional amplification of an early endodermal transcript. PLoS Biol. 8, e1000379.
Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M., Vrana, J., Jones, K., Groteveld, L., and Smith, A. (2007). Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234.
Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E., and Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547.
Hansen, C.H., and van Oudenaarden, A. (2013). Allele-specific detection of mouse embryonic stem cells. Cell Stem Cell, 360–369.

Ficz, G., Hore, T.A., Marques, C.J., Andrews, S., and Reik, W. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402.

Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V.B., Wong, E., Orlov, Y.L., Zhang, W., Jiang, J., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117.

Choi, P.J., Cai, L., Frieda, K., and Xie, X.S. (2008). A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446.

Ficz, G., Branco, M.R., Seisenberger, S., Santos, F., Krueger, F., Hore, T.A., Marques, C.J., Andrews, S., and Reik, W. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402.

Ficz, G., Hore, T.A., Santos, F., Lee, H.J., Dean, W., Arand, J., Krueger, F., Oxyley, D., Paul, Y.-L., Walter, J., et al. (2013). FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13, 351–359.

Filipczyk, A., Gkatzis, K., Fu, J., Hoppe, P.S., Lickert, H., Anastassiadi, K., and Schroeder, T. (2013). Biallelic expression of nanog protein in mouse embryonic stem cells. Cell Stem Cell 13, 12–13.

Fouse, S.D., Shen, Y., Pellegrini, M., Cole, S., Meissner, A., Van Neste, L., Jaenisch, R., and Fan, G. (2008). Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2, 160–169.

Freedman, N., Cai, L., and Xie, X.S. (2006). Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97, 168302.

Fu, J., Kwon, K., Khan, G., and Le, T.P. (2013). Single-cell analysis reveals that expression of nanog is biallelic and equally variable as that of other pluripotency factors in mouse ESCs. Cell Stem Cell 13, 23–29.

Grabolbe, N., Tischler, J., Hackett, J.A., Kim, S., Tang, F., Leitch, H.G., Magnússon, D., and Surani, M.A. (2013). Pdmd14 promotes germline fate and naive pluriptocity by repressing FGF signalling and DNA methylation. EMBO Rep. 14, 629–637.

Guo, G., Huss, M., Tong, G.Q., Wang, C., Li Sun, L., Clarke, N.D., and Robson, P. (2010). Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685.

Gupta, P.B., Fillmore, C.M., Jiang, G., Shapiro, S.D., Tao, K., Kupershatter, C., and Lander, E.S. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644.

Habibi, E., Brinkman, A.B., Arand, J., Kroeze, L.I., Kerstens, H.H.D., Matarese, F., Lepikhov, K., Gut, M., Brun-Heath, I., Hubner, N.C., et al. (2013). Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369.

Hackett, J.A., Sengupta, R., Zylcic, J.J., Murakami, K., Lee, C., Down, T.A., and Surani, M.A. (2013). Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452.

Hayashi, K., Lopes, S.M.C. de S., Tang, F., and Surani, M.A. (2008). Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401.

Io, S., D’Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133.

Iyer-Biswas, S., Hayot, F., and Jayaprakash, C. (2009). Stochasticity of gene products from transcriptional pulsing. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 031911–031911.

Jain, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretzky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A., and Amit, I. (2014). Massively parallel single-cell RNA-seq for marker-free decompositions of tissues into cell types. Science 343, 776–779.

Kälmar, T., Lim, C., Hayward, P., Muñoz-Descalzo, S., Nichols, J., Garcia-Ojalvo, J., and Martinez Arias, A. (2009). Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149.

Koh, K.P., Yabuuchi, A., Rao, S., Huang, Y., Cunniff, K., Nardone, J., Laiho, A., Tahiliani, M., Sommer, C.A., Mostoslavsky, G., et al. (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8, 200–213.

Kueh, H.Y., Champhekar, A., Nutt, S.L., Elowitz, M.B., and Rothenberg, E.V. (2013). Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341, 670–673.

Lander, A.D., Gokoffski, K.K., Wan, F.Y.M., Nie, Q., and Calof, A.L. (2009). Cell lineages and the logic of proliferative control. PLoS Biol. 7, e15.

Lubeck, E., and Cai, L. (2012). Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748.

Magee, C., Buscaglia, K., Klein, A., and Cai, L. (2014). Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361.

Ma, Z., Swigt, T., Valouev, A., Rada-Iglesias, A., and Wysocka, J. (2011). Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat. Struct. Mol. Biol. 18, 120–127.

Maas, H., Raj, A., and Dubnau, D. (2007). Noise in gene expression determines cell fate in Bacillus subtilis. Science 317, 526–529.

Macfarlan, T.S., Gifford, W.D., Driscoll, S., Lettieri, K., Rowe, H.M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S.L. (2012). Embryonic stem cell potency fluctuations with endogenous retrovirus activity. Nature 487, 57–63.

Marks, H., Kalkan, T., Menafra, R., Denissov, S., Jones, K., Hofemeister, H., Nichols, J., Kranz, A., Stewart, A.F., Smith, A., and Stunnenberg, H.G. (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604.

Martello, G., Sugimoto, T., Diamanti, E., Joshi, A., Hannah, R., Ohutsuka, S., Göttgens, B., Niwa, H., and Smith, A. (2012). Esrrb is a direct Nanog target gene that can substitute for Nanog function in the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 11, 491–504.

Meissner, A., Mikkelsen, T.S., Gu, H., Wenig, M., Hanna, J., Stavashenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770.

Miyarari, Y., and Torres-Padilla, M.-E. (2012). Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483, 470–473.

Mohn, F., Weber, M., Rehban, M., Rolof, T.C., Richter, J., Stadler, M.B., Bibel, M., and Schübeler, D. (2008). Lineage-specific polycomb targets and de novo
DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766.

Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.

Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D., and van Oudenaarden, A. (2002). Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73.

Paulsson, J., and Ehrenberg, M. (2000). Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys. Rev. Lett. 84, 5447–5450.

Paulsson, J., Berg, O.G., and Ehrenberg, M. (2000). Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. USA 97, 7148–7153.

Peccei, J., and Ycart, B. (1995). Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 48, 222–234.

Pedraza, J.M., and van Oudenaarden, A. (2005). Noise propagation in gene networks. Science 307, 1965–1969.

Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S. (2006). Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309.

Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A., and Tyagi, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879.

Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432.

Rompolas, P., Mesa, K.R., and Greco, V. (2013). Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518.

Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S., and Elowitz, M.B. (2005). Gene regulation at the single-cell level. Science 307, 1962–1965.

Schübeler, D., Lorincz, M.C., Cimbora, D.M., Telling, A., Feng, Y.Q., Bouhassira, E.E., and Groudine, M. (2000). Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol. Cell. Biol. 20, 9103–9112.

Shahrezaei, V., and Swain, P.S. (2008). Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. USA 105, 17256–17261.

Shalek, A.K., Satija, R., Adiconis, X., Gertner, R.S., Gaubiumme, J.T., Raychowdhury, R., Schwartz, S., Yosef, N., Malbouef, C., Lu, D., et al. (2013). Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240.

Sharrova, L.V., Sharov, A.A., Nedorezov, T., Piao, Y., Shaik, N., and Ko, M.S. (2009). Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 16, 45–58.

Shukla, S., Kavak, E., Gregory, M., Imashizimu, M., Shutinosiski, B., Kashlev, M., Oberdoerffer, P., Sandberg, R., and Oberdoerffer, S. (2011). CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79.

Singh, A.M., Hamazaki, T., Hankowski, K.E., and Terada, N. (2007). A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25, 2534–2542.

Smith, Z.D., Chan, M.M., Mikkelsen, T.S., Gu, H., Giri, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344.

Süel, G.M., Garcia-Ojalvo, J., Liberman, L.M., and Elowitz, M.B. (2006). An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550.

Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., and Naef, F. (2011). Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474.

Takizawa, T., Nakashima, K., Namihira, M., Ochiai, W., Uemura, A., Yanagisawa, M., Fujita, N., Nakao, M., and Taka, T. (2001). DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 7, 749–758.

Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K., and Niwa, H. (2008). Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918.

Tsumura, A., Hayakawa, T., Kumaki, Y., Takebayashi, S.-i., Sakaue, M., Matsuoka, C., Shimotohno, K., Ishikawa, F., Li, E., Ueda, H.R., et al. (2006). Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–814.

Wang, J., Rao, S., Chu, J., Shen, X., Lesvausse, D.N., Theunissen, T.W., and Orkin, S.H. (2008). A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364–368.

Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.

Wray, J., Kalikan, T., and Smith, A.G. (2010). The ground state of pluripotency. Biochem. Soc. Trans. 38, 1027–1032.

Wray, J., Kalikan, T., Gomez-Lopez, S., Eckardt, D., Cook, A., Kemler, R., and Smith, A. (2011). Inhibition of glycoconjugase synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat. Cell Biol. 13, 838–845.

Wu, H., D’Alessio, A.C., Ito, S., Xia, H., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., and Zhang, Y. (2011). Dual functions of TET in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393.

Yamaji, M., Ueda, J., Hayashi, K., Ohta, H., Yabuta, Y., Kurimoto, K., Nakato, Y., Yamada, Y., Shirahige, K., and Saitou, M. (2013). PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12, 368–382.

Yamanaka, Y., Lanner, F., and Rossant, J. (2010). FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137, 715–724.

You, J.S., Kelly, T.K., De Carvalho, D.D., Taberlay, P.C., Liang, G., and Jones, P.A. (2011). OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes. Proc. Natl. Acad. Sci. USA 108, 14497–14502.

Znakku, D., Larson, D.R., and Singer, R.H. (2008). Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271.

Zong, C., So, L-H., Sepulveda, L.A., Skinner, S.O., and Golding, I. (2010). Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene. Mol. Syst. Biol. 6, 440.