Josephson current mediated by ballistic topological states in Bi$_2$Te$_{2.3}$Se$_{0.7}$ single nanocrystals

Vasily S. Stolyarov1,2,3,4, Dmitry S. Yakovlev1,5,6, Sergei N. Kozlov1,2,7,8, Olga V. Skryabina1,5, Dmitry S. Lvov5, Amir I. Gumarov4, Olga V. Emelyanova9, Pavel S. Dzhumaev9, Igor V. Shchetinin10, Razmik A. Hovhannisyan1, Sergey V. Egorov5,6, Andrey M. Kokotin5, Walter V. Pogosov1,3, Valery V. Ryazanov5, Mikhail Yu. Kupriyanov4,11, Alexander A. Golubov1,12 & Dimitri Roditchev1,8,13

Superconducting proximity devices using low-dimensional semiconducting elements enable a ballistic regime in the proximity transport. The use of topological insulators in such devices is considered promising owing to the peculiar transport properties these materials offer, as well as the hope of inducing topological superconductivity and Majorana phenomena via proximity effects. Here we demonstrate the fabrication and superconducting properties of proximity Josephson devices integrating nanocrystals single of Bi$_2$Te$_{2.3}$Se$_{0.7}$ with a thickness of a few unit cells. Single junctions display typical characteristics of planar Josephson devices; junctions integrating two nanocrystals behave as nanodimensional superconducting quantum interference devices. A peculiar temperature and magnetic field evolution of the Josephson current along with the observed excess current effect point towards the ballistic proximity regime of topological channels. This suggests the proposed devices are promising for testing topological superconducting phenomena in two-dimensions.
The surface electronic modes of three-dimensional (3D) topological insulators are protected by a spin–momentum locking. The resulting unique electronic properties are revealed in hybrid systems, where topological insulators are brought into contact with conventional superconductors. It is expected that the superconducting correlations induced into topological insulators by proximity may have, in addition to the trivial s-wave order, a chiral $p_x + p_y$ component. This combination may lead to a topological superconducting order with a degenerate ground state characterized by exotic edge modes—Majorana fermions. The latter are believed to become a basis for topological quantum computation, with the quantum bits encoded by Majorana states. Moreover, the implementation of ballistic topological insulator–based hybrids could advance the realization of new kinds of qubits.

Recently, Bi$_2$Se$_2$Te and Bi$_2$Te$_2$Se were predicted to be topological insulators, forcing the topological modes to carry the electric current. The resistivity of the samples was measured, and the quantum-coherent magneto-transport properties of the implemented devices are dominated by the predominantly ballistic coherent electron transport.

Results

Elaboration of single Bi$_2$Te$_2.3$Se$_0.7$ nanocrystals containing Josephson junctions. Synthesis of topological insulator nanocrystals was carried out by the PVD technique. Figure 1a–d demonstrates the sample preparation technique, growth result, and electronic transport property evolution. The design of the setup is sketched in Fig. 1a. The source material, polycrystalline Bi$_2$Se$_2$Te melt, was placed on a tantalum–covered copper heater. The substrate, a 5 × 10-mm2 Si (100) wafer, was put on a separate support at a distance ~10 cm, all inside a quartz tube. Before growth, the quartz tube was evacuated and then filled with a 99.9995% pure Ar gas. During deposition, Ar was circulated at a pressure of 100 Torr. The temperatures of the source and substrate were kept at 550 ± 10 °C and 350 ± 10 °C respectively. After ~10 min of deposition, the heaters were switched off and the system was left to cool down.

The physical vapor deposition (PVD) technique does not suffer from the disadvantages of the exfoliation method and, at the same time, is much simpler and cheaper than the fully controlled growth by molecular-beam epitaxy. The PVD method enables a reproducible synthesis of single crystals of various layered quasi-two-dimensional materials including topological insulators (i.e., Bi$_2$Se$_3$, Bi$_2$Te$_3$). The resulted single crystals have a well-defined crystallographic orientation; their composition, thickness, size, and the surface density on the desired substrate can be controlled.

The thickness control is particularly important for 3D TIs in which the trivial (bulky) electronic channels usually dominate the transport properties and mask the response of the topological (surface) modes. By reducing the thickness, one lowers the contribution of trivial bulk channels into the total conduction, thus forcing the topological modes to carry the electric current. Recently, Bi$_2$Se$_2$Te and Bi$_2$Te$_2$Se were predicted to be topological insulators; the latter system having one of the highest bulk resistivity, due to a low carrier density in the trivial channels. For nonstoichiometric alloy Bi$_2$Te$_{3-x}$Se$_x$, key factors that determine the nontrivial topological properties, such as the crystal structure, spin–orbit coupling strength and bulk bandgap are close to those of Bi$_2$Se$_3$ and Bi$_2$Te$_3$. Bi$_2$Te$_{3-x}$Se$_x$ is expected to remain topological for all atomic ratios 0 ≤ x ≤ 1, similar to the case of (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ topological insulator. This gives a chance for the realization of ultrathin Bi$_2$Te$_2.3$Se$_{0.7}$ nanocrystal–based devices in which the topological channels dominate the electron transport.

In the present work, we report on the growth of ultrathin single nanocrystals of the three-dimensional topological insulator Bi$_2$Te$_2.3$Se$_{0.7}$ and their successful integration into proximity Josephson junctions. We demonstrate that due to a very small thickness of the crystals, the quantum-coherent magneto-transport properties of the implemented devices are dominated by the topological surface channels. The experiments are compared with numerical simulations performed in the frameworks of the diffusive and ballistic models, witnessing for a strong Josephson coupling and the predominantly ballistic coherent electron transport.

Experimental results. We now present magneto-transport properties of the five junctions. Figure 1e shows the temperature dependence of the Josephson junctions resistance $R(T)$ in zero magnetic field. As the temperature is lowered, the junctions...
undergo several transitions, before they reach the superconducting state (the corresponding temperature windows are marked by vertical gray bands). Color schemes presented in Fig. 1c help in identifying these essential steps (see also the “Methods” section: “Measurement details” and Supplementary Figs. 4 and 5). At 8.5–9 K a tiny jump (~20 Ω in resistance) in resistance witnesses for the expected superconducting transition of Nb leads (the critical temperature T^c_{Nb} is marked by black vertical arrow). The superconducting transition of Bi$_2$Te$_2.3$Se$_{0.7}$ regions overlapped with Nb takes place at 2.5–5.5 K. This transition is progressive, due to a poor Nb/topological insulator interface, and a competition between the superconducting correlations induced from Nb and normal quasiparticles injected from the uncovered parts of Bi$_2$Te$_2.3$Se$_{0.7}$ crystal. As a result, the decay of $R(T)$ depends on the details of the Nb/Bi$_2$Te$_2.3$Se$_{0.7}$ interface barrier and on the geometry of each Josephson junction. At $T_c \approx 2.5$ K Nb-covered parts of the crystals become superconducting; in all devices, the residual resistance falls below 90 Ω. At yet lower temperatures, the resistance of the devices decays again, reflecting the progression of the superconducting correlations by proximity from the Nb-overlapped parts of Bi$_2$Te$_2.3$Se$_{0.7}$ nanocrystals toward the uncovered parts. Below ~1 K the resistance of all junctions becomes immeasurably small.

The current–voltage $V(I)$ characteristics measured below 1 K confirmed that all devices behave as Josephson junctions. The plots in Fig. 1d demonstrate that at low current bias, the devices remain in the zero-resistance state. The state lasts till some critical current value $I_c = 0.2–1.3$ μA at which each Josephson junction abruptly jumps into a resistive state. Above I_c, $V(I)$ curves asymptotically approach the Ohm’s law; the corresponding normal-state resistance is $R^\text{NS}_{NP} = 19–80$ Ω (Table 1). Upon up–down current cycling, no hysteretic behavior is observed.

All devices demonstrate a sharp rise of the critical current with decreasing temperature (presented in Fig. 3 and discussed later); no sign of $I_c(T)$ saturation, characteristic to diffusive Josephson junctions, was observed down to 700 mK. In general, the shape of the curves is typical of superconductor/normal metal/superconductor (SC/NM/SC) Josephson junctions having highly transparent SC/NM interfaces.

When an external field H is applied, the critical current of the junctions exhibits pronounced $I_c(H)$ oscillations. The oscillatory behavior, presented in Fig. 2a–e, strongly depends on the detailed
shape/size of Bi$_2$Te$_2$Se$_0$.7 nanocrystals and on how they are connected to Nb leads. In Fig. 2f-j we present 2D plots of the color-coded differential resistance dV/dI of each junction as a function of the bias current and the external magnetic field; $I_c(H)$ variations are plotted in Fig. 2k-o, respectively. These curves clearly remind Fraunhofer-like $I_c(H)$ interference patterns.

Discussion

The analysis of the observed magnetic field response requires considering the Meissner diamagnetism of Nb electrodes, leading to the field enhancement in the junction area by a geometry-dependent “focusing” factor $\alpha \sim 1.3-1.9$, as compared with an externally applied field H. (See the “Methods” section: “Magnetic...
Fig. 2 Results of $I(V,H)$ transport measurements. a–e SEM images of Nb-Bi$_2$Te$_2$Se$_{0.7}$-Nb Josephson junctions. The junctions have a width W_{eff} of 135, 412, 524, 298 and 490 nm from a to e respectively and -135 nm distance between Nb leads. f–j 2D color plots of differential resistance (dV/dI) versus current bias and applied magnetic field of (f) SJ1, (g) SJ2, (h) SJ3, (i) SQ1, and (j) SQ2, measured at $T = 700$ mK for the samples depicted in (a–e) respectively. The superconducting region is visible in dark blue, with a resistance $R = 0 \, \Omega$, while the nonsuperconducting regions appear as light-blue areas, and exhibit $R > 0 \, \Omega$. k–o Critical current as a function of an external magnetic field for all samples. The Fraunhofer pattern is clearly visible, and a fit using Eq. (1) is shown as the red line, valid for a short junction. The size of the circles corresponds to the measurement error. k Junction SJ1 based on the smallest nanoball behaves in a different way. Its critical current does not oscillate with the magnetic field, but monotonically decays. l Junction SJ2 based on the nanocrystal. Its critical current exhibits several Fraunhofer-like oscillations with periodicity $\delta H \approx 12.9 \, \text{mT}$. m Junction SJ3 based on the widest nanocrystal. $\delta H \approx 8.2 \, \text{mT}$. n Junction SQ1 based on two nanocrystals. Its critical current exhibits several Fraunhofer-like oscillations with periodicity $\delta H \approx 10.5 \, \text{mT}$. o Junction SQ2 based on two nanocrystals with $\delta H \approx 13.5 \, \text{mT}$. SEM scanning electron microscopy.

Table 1 Relevant parameters for all the measured devices at 700 mK.

Sample	I_c (µA)	R_{exp}	W_{cryst} (nm)	d (nm)	W_{eff} (nm)	L (nm)	δH (mT)	A_{eff} (μm^2)	T_c (K)	ρ (µΩ cm)
SJ1	0.20	80	443 ± 8	28 ± 3	135	136 ± 10	-	0.04	1.35	735
SJ2	0.45	44	514 ± 6	18 ± 3	412	132 ± 10	12.9	0.16	1.77	325
SJ3	1.30	19	1538 ± 5	29 ± 2	524	132 ± 10	8.2	0.25	2.03	553
SQ1	0.38	48	(470 ± 8) +	(44 ± 2) +	(128 ± 10) +	138 ± 10	10.5	0.195	1.25	1075
SQ2	0.25	32	(520 ± 5) +	(35 ± 2) +	(235 ± 9) +	128 ± 10	13.5	0.148	1.30	764

I_c, critical current, R_{exp}, normal resistance extracted from $I(V)$ curves, W_{cryst}, crystal lateral size, d, crystal sickness, W_{eff}, weak-link lateral size, L, distance between niobium leads, δH, Fraunhofer-like oscillations periodicity, A_{eff}, effective loop area, T_c, critical temperature, ρ, resistivity.

Fig. 3 Evolution of the critical current with temperature. Blue, green, and red open circles represent the experimental data points corresponding, respectively, to SJ1, SJ2, and SJ3 devices. The size of the circles corresponds to the measurement error. Black dashed lines: fits considering a diffusive transport (the KO-1 model). The curves fail in reproducing a steep rise of $I_c(T)$ at low temperatures. Black solid lines: fits within the ballistic regime (the KO-2 model).

Additional field-generated supercurrents inside Bi$_2$Te$_2$Se$_{0.7}$ nanocrystal that interfere destructively with the Josephson current flowing through the junction. The main effect of these additional currents on $I_c(H)$ is produced in the area $\sim L \times W_{\text{eff}}$ of the nanocrystal, W_{eff} being an effective width of the region where most of Josephson current flows. From the SEM image of SJ1 in Fig. 2a, one would expect W_{eff} to be smaller than the physical width of the crystal, $W_{\text{eff}} < W_{\text{cryst}} \approx 440$ nm (Table 1), due to narrow S/N contacts (~ 140 nm).

The red solid line in Fig. 2k is the best fit obtained within the ballistic approximation. The fit is obtained taking a very reasonable $W_{\text{eff}} = 268$ nm. The model fits well the experimental data, yet taken alone, this fact does not rule out the possibility of a diffusive transport. Indeed, a theory developed by Bergeret and Cuevas with the diffusive Usadel formalism also correctly reproduces the bell-shaped $I_c(H)$ dependence; the best fit is presented as a black solid line in Fig. 2k. These fitting parameters are reasonable $W_{\text{eff}} = 400$ nm and the diffusion coefficient $D = 0.02$ m2s$^{-1}$, leading to the mean-free path $l = D/V_F = 35$ nm, that is still within the diffusive regime $l < L$. Thus, at this stage, both ballistic and diffusive scenarios for the superconducting transport remain possible (details are available in the “Methods” section: “Magnetic field dependence of the critical current”).

Unlike SJ1, the junctions SJ2 and SJ3 have rather large proximity regions, Fig. 2b, c. These junctions show an oscillatory $I_c(H)$ behavior typical of wide Josephson junctions (Fig. 2g, h, m): the zero-order oscillation is wider in H than the following ones. The best fit is obtained using the Fraunhofer expression, $I_c(H) = I_c(0) \frac{\sin(\Phi(H)/\Phi_0)}{\Phi(H)/\Phi_0}$ with $\Phi(H) = \alpha HLW_{\text{eff}}$ and $\Phi_0 = h/2e$. The deviations are most probably due to a complex geometry of these junctions, flux focusing, and a spatially inhomogeneous magnetic field.

$I_c(H)$ characteristics of samples SQ1 and SQ2 involving two nanocrystals connected in parallel (Fig. 2d, e) are similar to those of direct current superconducting quantum interference devices (SQUID) (Fig. 2i, n, j, o, and Table 1). The oscillation period δH is constant in H; it can be associated with the magnetic flux.
crossing some effective loop area A_{eff} of the SQUID, such that $a\Phi_{0}\alpha = A_{\text{eff}}\Phi_{0}$. In SQ1, the period is $BH \approx 10.5$ mT. For our poorly screened loops, we can reasonably assume $A_{\text{eff}} \approx (W_{\text{L}}^{-1}/2 + W_{\text{R}}^{-1}/2 + \delta W) \times (L + 2L^{\text{Nb}})$, where W_{L}^{-1} and W_{R}^{-1} are the widths of the two proximity branches, δW is the space between them, and $L^{\text{Nb}} = 0.080$ μm is the effective London penetration length in niobium. For SQ1, by using $W_{\text{L}}^{-1} = 0.13$ μm, $W_{\text{R}}^{-1} = 0.17$ μm, $\delta W = 0.20$ μm and $L = 0.14$ μm, one gets $A_{\text{eff}} = 0.10$ μm2. This results in $\Phi_{0}/A_{\text{eff}} = 20$ μT, that is, ~ 2 times larger than $\delta H = 10.5$ mT. The calculation done for SQ2 leads to the same result. This result is a direct proof of the field focusing inside the junctions; it also provides an independent estimate for $a = 2$.

Though, unlike in SQUIDs, in SQ1 and SQ2, the amplitude of $I(H)$ oscillations rapidly decreases with the increasing field, similarly to what is observed in single junctions $SJ_{1,2,3}$. One can suggest that the dephasing and dephasing phenomena that affect small single Josephson junction-like our SJ1 should also influence the response of SQUID-like devices in which the the junction areas are comparable with the size of the SQUID hole. As a first estimate, one can combine the usual expression for SQUIDs with a bell-shaped envelope function $I_{c}(H)$ (like in Fig. 2k), which would represent the dephasing effects in the two crystals forming the SQUID branches, to obtain

$$I_{c}(H) = 2I_{c}(H)\cos(\pi H/\alpha \delta H)$$

(1)

The fits using Eq. (1) are presented as red solid lines in Fig. 2n, o for SQ1 and SQ2, respectively. Despite the simplicity of the formula, the fits show a very good agreement with the experimental data.

The magnetic field response of our Josephson junctions being compatible with both diffusive and ballistic regimes, a deeper analysis of $V(I, T)$ characteristics is required to decide which one is realized. In general, in the nonoverlapped Bi$_2$Te$_2.3$Se$_{0.7}$, the normal-state resistance R_{N} is due to two parallel conductive channels, 2D-topological ones at surfaces, and a trivial 3D channel in the bulk. Depending on the crystal quality and the position of the Fermi level, the resistivity of the trivial 3D channel is relatively high sheet resistance $R_{\text{N}} \approx (2 ÷ 3) \times 10^{5} \Omega$. Topological channels have 10–100 times lower sheet resistance, 100–200 Ω. Taking into account the two topological channels we have in parallel, this value corresponds well to the observed $R_{0}(T \approx 2 K)$. Therefore, in agreement with theoretical (upper and lower) surface channels carry in our nanocrystals most of electric current and shunt the trivial ones.

In the equivalent ballistic picture, such a normal resistance $R_{\text{N}} = h/2e^2N = 12.9/N/K\Omega$ is due to N-parallel $2e^2/h$ conductive modes. The experimentally recorded values, 80, 44, and 19 Ω for the junctions $SJ_{1,2,3}$, respectively, require $N \approx 160$, 250, and 680. The trivial 3D band can contribute with $N_{3D} = (2W_{\text{cryst}}/\lambda_{c} - 3\delta) \times (2d/\lambda_{c} - 3\delta)$, where W_{cryst} and d are width and thickness of the crystal, $\lambda_{c} - 3\delta = 30$ nm is the Fermi length of the trivial 3D channel49,51,54. Estimating W_{cryst} and d from SEM images results in $N_{3D} = 55, 41$ and 198 for $SJ_{1,2,3}$, respectively. That is 3–6 times smaller than the required N. It means that in our ultrathin nanocrystals the 3D channels cannot dominate the electron transport. Indeed, the ballistic resistance of these N_{3D} modes would be $\sim 234, 314$, and 65 Ω, that is several times lower than the $R_{\text{bulk}}^{\text{N}}$. This means that the trivial 3D channel is in a strongly diffusive regime. Topological surface channels can contribute with $N_{2D}^{\text{TS}} = 2W_{\text{cryst}}/\lambda_{c}$ ballistic modes, where λ_{c} is the Fermi length of the topological channel, $\lambda_{c} = 2m_{\text{e}}/k_{\text{B}} \approx 6$ nm51,54. This gives $N_{2D}^{\text{TS}} = 147, 171$, and 512 topological ballistic modes in $SJ_{1,2,3}$, respectively. As compared with N_{3D}^{TS}, these numbers are much close to N required from the experiments. Moreover, the expected total resistance of these topological ballistic modes is $\sim 87, 75$, and 25 Ω, close to the recorded R_{exp} (Table 1). The above estimation also works for SQ1 and SQ2, leading to reasonable values 47 and 41 Ω, respectively. This means that in our devices, the normal-state electron transport through nonoverlapped regions of topological insulator crystals is insured by ballistic topological modes that shunt the diffusive contribution of trivial 3D channels.

The temperature dependence of the critical current $I_{c}(T)$ in zero field for three single junctions $SJ_{1,2,3}$ is presented in Fig. 3. The first observation is a clear relation between the geometry of devices and their $I_{c}(T)$ characteristics. The highest I_{c} and T_{c} are realized in SJ_{3} involving the largest nanocrystal and the strongest Nb/topological insulator overlaps; the lowest values are observed in the smallest SJ_{1}. Another remarkable effect is an almost linear rise of the critical current when lowering temperature. This is hardly compatible with the diffusive regime, usually leading to a saturation of $I_{c}(T)$ at low temperatures. Black dashed lines in Fig. 3 are fits assuming a diffusive regime. Clearly, the fits fail in reproducing a steep rise of the critical current below ~ 1 K. Black solid lines in Fig. 3 represent $I_{c}(T)$ fits considering a fully ballistic transport35. The fits reproduce correctly the observed fast rise of $I_{c}(T)$. From these fits, we get reasonable $\Delta_{\text{min}} = 0.31, 0.40$, and 0.46 meV for $SJ_{1,2,3}$, respectively, that is $\Delta_{\text{min}}/k_{B}T_{c} = 2.2 \pm 0.2$. It has to be mentioned that both fits are quite imprecise in the case of SJ_{2}, due to a significant asymmetry of SC/NM contacts in this junction. Remarkably, the estimated number N of ballistic channels carrying the supercurrent is very low: 8, 9, and 27 for junctions $SJ_{1,2,3}$ respectively. The fitting parameters are summarized in the “Methods” section: “Temperature dependence of the critical current” and in Supplementary Fig. 7).

At low temperatures, $V(I)$ curves manifest the so-called excess current phenomenon63,64. Fig. 4. At $T < T_{c}$ and high currents $I > I_{c}$ flowing through the device, the $V(I)$ characteristics are linear, as expected (see red dashed lines in Fig. 4), yet they cross the horizontal axis at finite current values $\pm I_{\text{exc}}$. The excess current I_{exc} enables evaluating the number of truly ballistic topological channels carrying the Josephson current, using the expression

$$I_{\text{exc}} = 0.52 \mu A$$

Fig. 4 Excess current effect observed in SJ_{1}. Blue line: $V(I)$ characteristics of SJ_{1} measured at 700 mK. Red dashed lines: extrapolated linear parts of the experimental $V(I)$ curve at high currents determine the excess current $I_{\text{exc}} = 0.52 \mu A$. Black line in the inset: linear fit of $V(I)$ at low currents; its slope defines $R_{\text{N}}^{\text{exp}} = 80 \Omega$ for SJ_{1}.

6 COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-020-00037-y | nature.com/commsmat
regions with a smaller minigap; they do not contribute significantly to the excess current. Within such a picture, both \(I_{\text{exc}} \) and \(I_{\text{fl}} \) are limited by \(N \) and the corresponding high \(R_n = h/e^2 N \sim 1.6 \, \text{k}\Omega \). In the normal state, however, all channels contribute to the current flow; \(R_n = h/e^2 N^{2D} \sim 90 \, \text{Q} \), in agreement with the measured \(R^{\text{exp}} \). Notice that even if the explanation of our results requires only surface channels to be considered, a possible contribution from the bulk states to the transport cannot be completely ruled out.

Finally, to further advance in the understanding of magneto-transport properties, we measured their \(I(V, H) \) characteristics of the devices at very high currents \(I \gg I_c \sim 1 \, \text{mA} \). The results of these measurements are presented in Fig. 5 for SJ1. One can clearly see that at zero field, \(I(V, H = 0) \) curve displayed in Fig. 5a is nonlinear and exhibits several bends at high currents. These nonlinearities are better revealed in the differential resistance \(dV/dI(V) \) (right red and blue curves) that manifest several jumps. At very high currents, some hysteretic (upon up/down current sweeps) jumps are observed, pointing either toward nonequilibrium phenomena or stochastic processes of the current redistribution between channels at the moments when new channels are connected (current increase) or existing ones turn off (current decrease). At a moderate current \(\approx 1 \, \text{mA} \), a nonhysteretic jump is observed (marked by red and blue circles and arrows). The corresponding bias is \(V_0 \approx \pm 0.56 \, \text{mV} \), close to \(2\Delta_{\text{mini}}/e = 0.6 \, \text{mV} \), as expected for Andreev reflections. The evolution of \(V_0 \) with temperature and field is presented, respectively, in Fig. 5b, c. The \(V_0(T) \) trend is exactly what one would expect for the temperature dependence of \(\Delta_{\text{mini}}(T) \). Moreover, the evolution of \(V_0(H) \) in low magnetic fields makes appearing a dome of a width related to the size of the junction. The data displayed in Fig. 5b, c unambiguously relate the observed \(V_0 \) feature to induced superconductivity, and specifically to the Andreev reflection processes inside the junction. Note that other peaks/jumps behave quasi-chaotically in the field; nevertheless, this “chaos” is reproducible upon the field sweeps. Interestingly, the reversal of the field direction makes the “chaos” be mirrored to reverse currents. In general, the phenomena depicted in Fig. 5 and in Supplementary Fig. 9 are

\[I_{\text{exc}} R_n = (8/3) \Delta_{\text{mini}}/e^{56,66} \]

where \(R_n \) is the net resistance of ballistic channels coupled to proximized regions under Nb electrodes. Taking \(I_{\text{exc}} = 0.52 \, \text{mA} \) found in SJ1, and the estimated \(\Delta_{\text{mini}} \) one gets \(R_n \sim 1.6 \, \text{k}\Omega \), which corresponds to approximately \(N = 8 \) ballistic channels. This is remarkably close to \(N \) estimated for this junction from the ballistic fits of \(I(T) \). (Other \(V(I) \) for SJ2, SJ3, SQ1, and SQ2 structures are presented in Supplementary Fig. 8).

The number \(N \) of open ballistic channels that carry most of the supercurrent is therefore by a factor of \(\sim 19 \) lower than the total number \(N^{2D} \) of surface channels available in the crystals. We can assume that each of \(N^{2D} \) available channels connects to the Nb electrodes in its specific manner, via diffusive overlapped regions. Only a few channels are “well connected” to these proximized regions; others are poorly linked or linked through diffusive regions with a smaller minigap; they do not contribute significantly to the excess current. Within such a picture, both \(I_c \) and \(I_{\text{exc}} \) are limited by \(N \) and the corresponding high \(R_n = h/e^2 N \sim 1.6 \, \text{k}\Omega \). In the normal state, however, all channels contribute to the current flow; \(R_n = h/e^2 N^{2D} \sim 90 \, \text{Q} \), in agreement with the measured \(R^{\text{exp}} \). Notice that even if the explanation of our results requires only surface channels to be considered, a possible contribution from the bulk states to the transport cannot be completely ruled out.

Finally, to further advance in the understanding of magneto-transport properties, we measured their \(I(V, H) \) characteristics of the devices at very high currents \(I \gg I_c \sim 1 \, \text{mA} \). The results of these measurements are presented in Fig. 5 for SJ1. One can clearly see that at zero field, \(I(V, H = 0) \) curve displayed in Fig. 5a is nonlinear and exhibits several bends at high currents. These nonlinearities are better revealed in the differential resistance \(dV/dI(V) \) (right red and blue curves) that manifest several jumps. At very high currents, some hysteretic (upon up/down current sweeps) jumps are observed, pointing either toward nonequilibrium phenomena or stochastic processes of the current redistribution between channels at the moments when new channels are connected (current increase) or existing ones turn off (current decrease). At a moderate current \(\approx 1 \, \text{mA} \), a nonhysteretic jump is observed (marked by red and blue circles and arrows). The corresponding bias is \(V_0 \approx \pm 0.56 \, \text{mV} \), close to \(2\Delta_{\text{mini}}/e = 0.6 \, \text{mV} \), as expected for Andreev reflections. The evolution of \(V_0 \) with temperature and field is presented, respectively, in Fig. 5b, c. The \(V_0(T) \) trend is exactly what one would expect for the temperature dependence of \(\Delta_{\text{mini}}(T) \). Moreover, the evolution of \(V_0(H) \) in low magnetic fields makes appearing a dome of a width related to the size of the junction. The data displayed in Fig. 5b, c unambiguously relate the observed \(V_0 \) feature to induced superconductivity, and specifically to the Andreev reflection processes inside the junction. Note that other peaks/jumps behave quasi-chaotically in the field; nevertheless, this “chaos” is reproducible upon the field sweeps. Interestingly, the reversal of the field direction makes the “chaos” be mirrored to reverse currents. In general, the phenomena depicted in Fig. 5 and in Supplementary Fig. 9 are
rich and complex. Uncovering their origin(s) is the subject of a separate work.

To summarize, in this work, we have realized and studied superconductor-normal metal-superconductor Josephson devices in which individual single nanocrystals of three-dimensional topological insulator Bi$_2$Te$_2$Se$_{0.7}$ were implemented as normal parts. We measured magneto-transport characteristics of three such devices comprising one single crystal and two devices implicating two crystals in parallel and working as SQUIDs. We demonstrated clear quantum interference characteristics of the devices in the magnetic field. The experimental results were compared with the existing theories developed for both diffusive and ballistic transport in the proximity of Josephson devices. The analysis showed that in the studied samples, the superconducting transport properties are dominated by topological channels, with a significant contribution of ballistic modes. Our findings open a route for the fundamental studies of coherent superconducting hybrids involving high-quality topological nanomaterials, and for the search for future types of superconducting quantum devices.

Methods

Energy-dispersive X-ray spectroscopy (SEM EDX)
To determine the composition of the synthesized nanocrystals, the SEM EDX was used. Table 2 provides the results of EDX analysis of the source Bi$_2$Te$_x$Se$_{1-x}$ material (S) and as-grown nano-crystals (SS). The source material was used as a reference; its composition was independently found to correspond to the stoichiometric Bi$_2$Te$_3$. High-energy (10-keV) electrons penetrate into the sample up to ~0.5 μm, that is much larger than the crystal's thickness. Hence raw EDX spectra demonstrate the presence of a significant amount of Si (substrate material). The content data presented in Table 2 are corrected to exclude the interference of Si and Nb.

E-beam lithography and Nb deposition
After PVD growth, the substrate was coated with 30-nm PMMA as a resist. The thin films were patterned by means of electron lithography for subsequent Nb film deposition. Base pressure into the magnetron chamber 5 x 10$^{-9}$ mbar. Prior to Nb deposition, the unprotected parts of samples were etched in Ar plasma (RF power 60 W, acceleration voltage 483 V, pressure 2 x 10$^{-2}$ mbar and duration 10 s) to remove organic and contaminating residuals from the surface. The chamber was then pumped down to base pressure (1.3 x 10$^{-8}$), and filled with pure argon (99.999%) up to a pressure of 2 x 10$^{-2}$ mbar. The Ar plasma was switched on, and a 118-nm thick Nb layer was deposited by RF magnetron sputtering, with the deposition rate 0.19 nm s$^{-1}$ (Ar pressure 4 x 10$^{-2}$ mbar, RF power 200 W and V$_{DC}$ = 202 V). After deposition, the standard lift-off procedure was done.

Measurement details

Measurements are performed in a quasi-four-probes configuration, using a nanovoltmeter Keithley 2182A and precision current source Keithley 6220. All of the data presented in this paper have been measured in an Oxford Heliox VL system. To estimate the magnitude of magnetic flux focusing, the magnetic field in Josephson junction by some factor was calculated using a nanovoltmeter Keithley 2182A and precision current source Keithley 6220. All of the data presented in this paper have been measured in an Oxford Heliox VL system. The samples were mounted on a holder such that the magnetic field was perpendicular to the nanoplate surface. Stages of low-pass RC-filter placed at the cryogenic part of the sample holder (at 700 mK) to avoid the noise >1.6 Hz. (R = 1 kΩ, C = 100 mF). All 24 lines are twisted pairs of beryllium–bronze.

Magnetic flux focusing

In order to explain the features of measured I(H) curves, we have to take into account the existence of flux focusing on the junction due to the fact that superconducting leads repel the external magnetic field. It can change evaluation of a real magnetic field in Josephson junction by some factor a from the external field H. To estimate the magnitude of magnetic flux focusing effect, i.e., the value of a, we used COMSOL program. We simulated our junction as several rectangular electrodes (see Supplementary Fig. 6 for certain simulation geometry) and solve Maxwell equations with the external field equal to $H = 1$ in infinity and without other sources of the magnetic field. The electrodes have been approximated as ideal diamagnetics ($μ = 10^{-4}$), i.e., full Meissner effect. In the center of junction factor, a can reach values from 1.3 to 1.9 depending on geometry. That can cause to real magnetic field value H (see Table 3).

Magnetic field dependence of the critical current

The same approaches are applied to fit the critical current versus external magnetic field dependencies. In the ballistic regime, the critical current versus external magnetic field dependency was found using Barzykin and Zakosgin model. Within this approach, the expression

Table 2 Results of EDX analysis.

Sample	Bi (at.%)	Te (at.%)	Se (at.%)
S	39.20 ± 0.44	39.36 ± 0.43	21.45 ± 0.26
SS	39.24 ± 0.51	47.12 ± 0.66	13.64 ± 0.32
SJ2	31.19 ± 1.91	52.71 ± 1.87	16.09 ± 3.19
SJ3	40.63 ± 1.08	47.05 ± 1.04	12.32 ± 0.14
SQ1	36.64 ± 0.64	49.47 ± 0.96	13.89 ± 0.13
SQ2	38.02 ± 0.49	38.02 ± 0.49	14.86 ± 0.29

EDX electron-dispersive X-ray.
Extracted atomic composition of the source material—S, as-grown nano-crystals—SS, and devices—SJ2, SJ3, SQ1 and SQ2, taking into account the influence of Si and Nb.

X-ray diffraction (XRD)
According to PDF-2 (ICDD) database, the unit-cell volume of phases Bi$_2$(Se$_x$Te$_{1-x}$) and Bi$_2$Te$_x$ is changed from 450.5 Å3 to 508.4 Å3 respectively. The unit-cell volume gradually decreases as the Se atomic fraction increases, according to Vegard’s law, and can be approximated as $V = V_0(1 - x)^{0.6} + V_x(1 - Bi_{2}Te_{x})$, where V_0 and V_x are the unit-cell volume of Bi$_2$Te$_3$ and Bi$_2$Te$_x$ respectively.

Table 3 Magnetic field “focusing” factor for all measured samples.

Sample	SJ1	SJ2	SJ3	SQ1	SQ2
α	1.5	1.3	1.6	1.9	1.9

α magnetic flux focusing coefficient.
for the Josephson current is given by

$$I_j(\chi) = \frac{e_n \Phi_0}{4 \pi L} \int_{-W/2}^{W/2} dy_2 \int_{-W/2}^{W/2} dy_1 \frac{dy_2}{1 + \left(\frac{y_2}{L \cos \theta_s} \right)^2} \times \frac{L}{\cos \theta_s \gamma_1} \sin \left(\frac{\lambda_0 (y_1 + y_2) + \chi}{2}\right) \right.$$

$$\times \left(\frac{\lambda_0 (y_1 - y_2)}{2 \cos \theta_s \gamma_1} \right) \sin \left(\frac{\lambda_0 (y_1 - y_2)}{2 \cos \theta_s \gamma_1} \right).$$

(2)

where L and W are, respectively, the length and the width of the junction, η_1—Fermi velocity, λ_0—Fermi wavelength, Φ_0—the magnetic flux crossing the area $\lambda_0 = L \cos \theta_s \gamma_1$, $\gamma_1 = \arctan(y_2 - y_1)/L$ is the phase difference between the points y_1 and y_2 situated at the edges of the S/N contacts, $\xi_1 = \frac{\hbar}{2 e n \Phi_0}$. In the fitting procedure, we define L and W from junction function, $\eta_1 = 5.8 \times 10^4$ s$^{-1}$ is taken from70-72, and λ_0 is calculated from the number of channels N that we take from the $I_0(T)$ fits. The Fermi wavelength is estimated as $\lambda_0 = \sqrt{\frac{\hbar}{m}}$, where $\sqrt{\hbar/m}$ is the cross section of the junction. The critical current is found as $I_c = \max_{\chi < \chi_{c\text{eff}}} I_j(\chi)$.

In the diffusive case, the quasiclassical approach developed by Bergeter and Cuevas^66 gives for the critical current

$$I_c = \frac{4 e_n \hbar \omega_n}{\pi \xi_0 \sqrt{\eta_1}} \sum_{n=0}^{\infty} \frac{\lambda_{c\text{eff}}^n}{\lambda_{c\text{eff}}^n + \omega_n^2} \frac{1}{\sqrt{2} \left(2 \eta_1 + \frac{\omega_n^2}{\lambda_{c\text{eff}}^n}\right)} \left(\frac{\lambda_{c\text{eff}}^n}{\lambda_{c\text{eff}}^n + \omega_n^2}\right),$$

(3)

where Φ_0 is the magnetic flux quantum. Now, there are two fitting parameters: effective width W where current circulates and dimensionless parameter $\lambda_{c\text{eff}}$. The resulting fit for SJ1 is obtained with parameters $W = 395$ nm and 136 nm for ballistic and diffusive cases, respectively. Parameters are shown in Table 4.

Now, we would like to turn to SQUID field dependencies of a critical current. As it was suggested in the main text, these dependencies can be described by

$$I_{c\text{eff}}(H) = I_{c\text{eff}}(H) \cos(\pi H/\Phi_0),$$

(4)

where $I_{c\text{eff}}(H)$ is a bell-shaped envelope function calculated using Zagoskin’s model that was described above with certain parameters for average single Josephson junction of a SQUID (see Table 5). Fitting parameters are presented in Table 5, where W^S and L^S are width and Josephson junction playing role of an envelope and $\lambda_{c\text{eff}}(H)$ is a square of SQUID itself. All values in Table 5 are presented without the focusing factor.

Temperature dependence of the critical current. In the diffusive regime, the supercurrent is determined by the Kulik–Omel’yanchuk-1 (KO-1) theory^73

$$I_c(\chi) = \frac{4 e_n \hbar}{\pi \xi_0} \sum_{n=0}^{\infty} \frac{\lambda_{c\text{eff}}^n}{\lambda_{c\text{eff}}^n + \omega_n^2} \left(\frac{\lambda_{c\text{eff}}^n}{\lambda_{c\text{eff}}^n + \omega_n^2}\right) \cos \left(\frac{\lambda_{c\text{eff}}^n \sin \chi}{\lambda_{c\text{eff}}^n}\right),$$

(5)

where χ—global phase difference between the two superconducting electrodes, $\omega_n = n \Phi_0/(2 \pi)$ is the Matsubara frequency, R_n is the resistance in the normal state, $\Omega_n = \sqrt{\omega_n^2 + \lambda_{c\text{eff}}^n \sin \chi^2}/\chi$, $\lambda_{c\text{eff}}$ is the gap induced into the crystal and was considered having the BCS-like temperature evolution. Here and after $\lambda_{c\text{eff}}$ for SJ1 extracted from $I(\chi)$ curve, for SJ2 and SJ3, it is calculated assuming that the ratio R_n is the same for all crystals due to the same material and synthesis conditions. T_c is defined from experiment, so the only fitting parameter is R_n. Once $I_c(\chi)$ dependence is established, the critical current can be found as $I_c = \max_{\chi < \chi_{c\text{eff}}} I_c(\chi)$. The resulting curves are pictured in the main text and their parameters are shown in Table 6.

In the ballistic regime, critical current versus temperature can be described by the Galaktionov–Zaikin theory^74. In this model, the supercurrent supported by N-surface modes can be written as

$$I_c = \frac{N \pi e n}{R} \delta H^2 \sin \chi \sum_{\gamma_1 \gamma_2 > 0} \int_{t_1 - t_2}^{t_1} d\tau_1 \frac{\gamma_1(\tau_1) \gamma_2(\tau_1)}{Q^2(\gamma_1, \gamma_2)} \left(\frac{\lambda_{c\text{eff}}}{\lambda_{c\text{eff}}^n \sin \chi}\right),$$

(6)

where $\mu = k_B T / \Phi_0$ is the integration variable, k_B is the Fermi wave vector, k_0 is a wave vector of the ballistic mode along the junction, χ is a phase difference, N is the amount of conducting channels, $t_1, t_2 = \frac{\pi}{2} D_i$, D_i are being the transparencies of the two SC/NM interfaces (here we assume that $D_i = 1$), and

$$Q = \frac{\gamma_1 \gamma_2 (1 + t_1 t_2 + \frac{\omega_n^2}{\lambda_{c\text{eff}}^n} \cos \frac{2 \omega_n L}{\hbar \phi_0})}{\mu \phi_0} + \frac{\gamma_1 \gamma_2}{\lambda_{c\text{eff}}^n \sin \chi} \left(\frac{2 \omega_n L}{\hbar \phi_0} \right),$$

(7)

where L is a junction length. The coherence length at $T = T_c$ is defined as $\xi_c = \frac{\hbar}{2 \pi e n \Phi_0}$. Switching to dimensionless units, we introduce the parameter

$$l = L / \xi_c = \frac{\hbar}{2 \pi e n \Phi_0}.$$

The junction length L for our samples is determined from experimental data (Table 1) and $\eta_1 = 5.8 \times 10^4$ s$^{-1}$ from literature data for this material70-72. Estimates for our samples provide lhe value of $\xi_c < 1 \mu m$. Thus the junctions are in the short-junction regime $l << 1$ described by the Kulik–Omel’yanchuk-2 (KO-2) model^75 and the only fitting parameter is the number of ballistic current channel N_i.

The resulting curves are presented in the main text and the fitting parameters are shown in Table 7. Remarkably, the number $N = 8$ for SJ1 matches the value deduced from the excess current phenomenon.
Acknowledgements

We thank E. Chulkov and I. Soloviev for fruitful discussions and advice. We also thank L. Tagirov for the help with realization of EDX analysis of crystals. The samples were theoretically described owing to the support of RFBR project No. 19-52-50026. The sample preparation and transport measurements were carried out with the support of the RSF-ANR (20-42-09033). D.R. acknowledges COST Action CA16218—Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies. French ANR grant SUPERSTIPES. A.A.G. acknowledges support by the European Union H2020-WIDESPREAD-05-2017-Twinning project SPINTECH under Grant Agreement No. 810144. D.R. is grateful for the hospitality during a visiting professor semester at MIPT, supported by the Russian Ministry of Education and Science within the program "Stop100", M.Y.K. and A.I.G. acknowledges the partial support by the Program of Competitive Growth of Kazan Federal University.

Author contributions

V.S.S. suggested the idea of the experiment. V.S.S conceived the project and supervised the experiments. V.S.S. and D.S.Y. provided the PVD growth of the crystals. A.I.G., O.V.E., P.S.D. and I.V.S. realized the SEM EDX, EBSD, and XRD analysis of the crystals. V.S.S., O.V.S., and S.V.E. realized e-beam lithography of the sample and deposited the Nb film by magnetron sputtering for providing low-temperature experiments which were done by V.S.S., D.S.L., D.S.Y. and A.M.K., V.S.S., D.R., V.V.R., W.V.P., M.Y.K., and A.A.G. provided the explanation of the observed effects. S.N.K., R.A.H. did numerical modeling with contributions from V.S.S. and D.R., D.R. and V.S.S wrote the paper with essential contributions from other authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s43246-020-0037-y.

Correspondence and requests for materials should be addressed to V.S.S.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020