The typical structure of Gallai colorings and their extremal graphs

József Balogh Lina Li*
May 18, 2019

University of Illinois at Urbana–Champaign

31st Cumberland Conference on Combinatorics, Graph Theory and Computing
1. Introduction

2. Gallai colorings of complete graphs

3. Erdős-Rothchild-type problems

4. Proof idea for dense graphs
Introduction
An edge coloring of a graph G is a Gallai coloring if it contains no rainbow triangle, that is, no triangle is colored with three distinct colors. [Gyárfás, Simonyi]

Gallai colorings occur in relation of deep structural properties of fundamental objects.

- The theory of partially ordered sets [Gallai]
- Some applications in Information theory [Körner, Simonyi]
- Generalizations of the perfect graph theorem [Cameron, Edmonds, Lovász]
The study of Gallai colorings has a rich history.

- Structural results
- Ramsey-type results

Extremal perspective:

- ♣ How many Gallai r-colorings are there?
- ♣ Can we describe the typical structure of Gallai r-colorings?
Gallai colorings of complete graphs
Given r colors, the number of 2-colorings of K_n is exactly

$$\binom{r}{2} \left(2^{\binom{n}{2}} - 2 \right) + r = \binom{r}{2} 2^{\binom{n}{2}} - r(r - 2).$$
Given r colors, the number of 2-colorings of K_n is exactly

$$\binom{r}{2} \left(2 \binom{n}{2} - 2 \right) + r = \binom{r}{2} 2 \binom{n}{2} - r(r - 2).$$

If we further consider all Gallai colorings of K_n using exactly 3 colors, in which one of the colors i is used only once, the number of them is exactly

$$\binom{n}{2} \left(2 \binom{n}{2} - (n-1) - 2 \right).$$
Given r colors, the number of 2-colorings of K_n is exactly

$$\binom{r}{2} \left(2^{\binom{n}{2}} - 2 \right) + r = \binom{r}{2} 2^{\binom{n}{2}} - r(r - 2).$$

If we further consider all Gallai colorings of K_n using exactly 3 colors, in which one of the colors i is used only once, the number of them is exactly

$$\binom{n}{2} \left(2^{\binom{n}{2} - (n - 1)} - 2 \right).$$

Therefore, the trivial lower bound is

$$\left(\binom{r}{2} + 2^{-n} \right) 2^{\binom{n}{2}}.$$
Upper bounds

Theorem (Falgas-Ravry, O’Connell and Uzzell, 2018)

The number of Gallai 3-colorings of K_n is $2^{(1+o(1)) \binom{n}{2}}$.

Multicolor container method!

Theorem (Benevides, Hoppen and Sampaio, 2017)

For all $n \geq 2$, the number of Gallai 3-colorings of K_n is at most

$$\frac{3}{2} (n-1)! \cdot 2^{\binom{n}{2}}.$$

Theorem (Bastos, Benevides, Mota and Sau, 2019+)

For all $n \geq 2$, the number of Gallai 3-colorings of K_n is at most

$$7 (n+1) \cdot 2^{\binom{n}{2}}.$$
Our results

Theorem (Balogh and Li, 2019+)
For every integer $r \geq 3$, there exists n_0 such that for all $n > n_0$, the number of Gallai r-colorings of K_n is at most

$$\left(\binom{r}{2} + 2^{\frac{n}{4 \log^2 n}}\right) 2^{\binom{n}{2}}.$$
Theorem (Balogh and Li, 2019+)

For every integer $r \geq 3$, there exists n_0 such that for all $n > n_0$, the number of Gallai r-colorings of K_n is at most

$$\left(\binom{r}{2} + 2^{-\frac{n}{4 \log^2 n}} \right) 2^{\binom{n}{2}}.$$

Recall that the number of Gallai r-colorings using at most 2 colors are around $\binom{r}{2} 2^{\binom{n}{2}}$.

Theorem (Balogh and Li, 2018+)

For every integer $r \geq 3$, almost all Gallai r-colorings of the complete graph are 2-colorings.
Our results

Theorem (Balogh and Li, 2019+)
For every integer $r \geq 3$, there exists n_0 such that for all $n > n_0$, the number of Gallai r-colorings of K_n is at most

$$\left(\binom{r}{2} + 2^{-\frac{n}{4 \log^2 n}} \right) 2^{\binom{n}{2}}.$$

Recall that the number of Gallai r-colorings using at most 2 colors are around $\binom{r}{2} 2^{\binom{n}{2}}$.

Theorem (Balogh and Li, 2018+)
For every integer $r \geq 3$, almost all Gallai r-colorings of the complete graph are 2-colorings.

Bastos, Benevides, and Han also proved the above result for $r \leq 2^{n/4300}$.
Erdős-Rothchild-type problems
Erdős-Rothchild problem, 1974

Which n-vertex graph has the maximum number of two-edge-colorings without monochromatic triangles?

Erdős and Rothchild believed that $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is the only extremal graph.

In 1996, Yuster confirmed that Erdős and Rothchild’s conjecture for sufficiently large n.

Technique: Szemerédi’s regularity lemma and the stability method.
Erdős-Rothchild problems

Erdős-Rothchild problem, 1974

Which n-vertex graph has the maximum number of two-edge-colorings without monochromatic triangles?

Erdős and Rothchild believed that $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is the only extremal graph.

In 1996, Yuster confirmed that Erdős and Rothchild’s conjecture for sufficiently large n.

Let an (r, F)-coloring of a graph G be an r-coloring of its edges without any monochromatic copies of F.

Theorem (Alon, Balogh, Keevash and Sudakov, 2004)

Turán graph $T_k(n)$ admits the largest number of (r, K_{k+1})-coloring for $k \geq 3$ and $r = \{2, 3\}$.

Technique: Szemerédi’s regularity lemma and the stability method.
More variants:

- k-uniform hypergraphs;
- Boolean lattice (Sperner’s Theorem);
- Sum-free sets.

Another natural generalization of Erdős-Rothchild problem is to consider other color patterns.

For a r-colored graph \hat{F}, a graph G on n vertices is called (r, \hat{F})-extremal if it admits the largest number of r-colorings which contain no subgraph whose color pattern is isomorphic to \hat{F}.

- $T_{k-1}(n)$ is $(2, \hat{F})$-extremal, where \hat{F} is a 2-coloring of a clique K_k that uses both colors [Balogh, 2006];
- $r \geq 3$, \hat{F} be an r-coloring of K_k which is not monochromatic [Benevides, Hoppen, Sampaio, Lefmann, Odermann and etc].
A graph G on n vertices is called \textit{Gallai r-extremal} if the number of Gallai r-colorings of G is the maximum over all graphs on n vertices.

\textbf{Theorem (Hoppen, Lefmann, and Odermann, 2017)}

For all $r \geq 10$ and $n \geq 5$, the only Gallai r-extremal graph of order n is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.

\textbf{Theorem (Hoppen, Lefmann, and Odermann, 2017)}

For all $r \geq 5$, there exists n_0 such that for all $n > n_0$, the only Gallai r-extremal graph of order n is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.
A graph G on n vertices is called \textit{Gallai r-extremal} if the number of Gallai r-colorings of G is the maximum over all graphs on n vertices.

Theorem (Hoppen, Lefmann, and Odermann, 2017)

For all $r \geq 10$ and $n \geq 5$, the only Gallai r-extremal graph of order n is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.

Theorem (Hoppen, Lefmann, and Odermann, 2017)

For all $r \geq 5$, there exists n_0 such that for all $n > n_0$, the only Gallai r-extremal graph of order n is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.

What happens for $r \in \{3, 4\}$?
A graph G on n vertices is called *Gallai r-extremal* if the number of Gallai r-colorings of G is the maximum over all graphs on n vertices.

Theorem (Hoppen, Lefmann, and Odermann, 2017)

For all $r \geq 10$ and $n \geq 5$, the only Gallai r-extremal graph of order n is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.

Theorem (Hoppen, Lefmann, and Odermann, 2017)

For all $r \geq 5$, there exists n_0 such that for all $n > n_0$, the only Gallai r-extremal graph of order n is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.

What happens for $r \in \{3, 4\}$?
Theorem (Benevides, Hoppen and Sampaio, 2017)

There exists n_0 such that the following hold for all $n > n_0$.

- For all $\delta > 0$, if G is a graph of order n, then the number of Gallai 3-colorings of G is at most $2^{(1+\delta)n^2/2}$.
- For all $\xi > 0$, if G is a graph of order n, and $e(G) \leq (1 - \xi)\binom{n}{2}$, then the number of Gallai 3-colorings of G is at most $2^{\binom{n}{2}}$.

Theorem (Hoppen, Lefmann, and Odermann, 2017)

There exists n_0 such that the following hold for all $n > n_0$. For all $\delta > 0$, if G is a graph of order n, then the number of Gallai 4-colorings of G is at most $4^{(1+\delta)n^2/4}$.
Our results

Conjecture (Benevides, Hoppen and Sampaio, 2017): The only Gallai 3-extremal graph is the complete graph K_n.

Conjecture (Hoppen, Lefmann, and Odermann, 2017): The only Gallai 4-extremal graph is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.
Our results

Conjecture (Benevides, Hoppen and Sampaio, 2017): The only Gallai 3-extremal graph is the complete graph K_n.

Conjecture (Hoppen, Lefmann, and Odermann, 2017): The only Gallai 4-extremal graph is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.

Theorem (Balogh and Li, 2019+): There exists n_0 such that for all $n > n_0$, among all graphs of order n, the complete graph K_n is the unique Gallai 3-extremal graph.

Theorem (Balogh and Li, 2019+): There exists n_0 such that for all $n > n_0$, among all graphs of order n, the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is the unique Gallai 4-extremal graph.
Proof idea for dense graphs
An \textit{r-template} of order \(n\) is a function \(P : E(K_n) \rightarrow \{0, 1\}^r\), associating to each edge \(e\) of \(K_n\) a list of colors \(P(e) \subseteq [r]\); we refer to this set \(P(e)\) as the \textit{palette} available at \(e\).

Let \(P_1, P_2\) be two \(r\)-templates of order \(n\). \(P_1\) is a \textit{subtemplate} of \(P_2\) (or \(P_1\) is contained in \(P_2\)) if \(P_1(e) \subseteq P_2(e)\) for every edge \(e \in E(K_n)\).

For an \(r\)-template \(P\), denoted by \(RT(P)\) the number of subtemplates of \(P\) that are rainbow triangles.
Using the hypergraph container theorem, we obtain the following.

Theorem

For every $r \geq 3$, there exists a constant $c = c(r)$ and a collection C of r-templates of order n such that

- every rainbow triangle-free r-template of order n is a subtemplate of some $P \in C$;
- for every $P \in C$, $RT(P) \leq n^{-1/3} \binom{n}{3}$;
- $|C| \leq 2^{cn^{-1/3} \log^2 n} \binom{n}{2}$.
Using the hypergraph container theorem, we obtain the following.

Theorem

For every $r \geq 3$, there exists a constant $c = c(r)$ and a collection C of r-templates of order n such that

- every rainbow triangle-free r-template of order n is a subtemplate of some $P \in C$;
- for every $P \in C$, $RT(P) \leq n^{-1/3} \binom{n}{3}$;
- $|C| \leq 2^{cn^{-1/3} \log^2 n \binom{n}{2}}$.

Every Gallai r-coloring of a n-vertex graph G is a subtemplate of some $P \in C$.
Lemma 1

For $n^{-1/6} \ll \delta \ll 1$, let P be a r-template in C with more than $2^{(1-\delta)n\choose 2}$ Gallai r-colorings. Then the number of triangles T of K_n with $\sum_{e \in T} |P(e)| = 6$ and $P(e) = P(e')$ for every $e, e' \in T$ is at least $(1 - 6\delta){n\choose 3}$.

• Partition all the containers into r^2 classes such that for the containers in the class $C_{i,j}$, almost all edges use the palette $\{i, j\}$;
• From Lemma 2, we can easily conclude that the number of colorings contained in some $P \in C_{i,j}$ is at most $2^{1+o(1)} n^2$;
• The total number of colorings contained in C is at most $r^2(1+o(1)) n^2$.

Properties of containers

Lemma 1

For \(n^{-1/6} \ll \delta \ll 1 \), let \(P \) be a \(r \)-template in \(\mathcal{C} \) with more than \(2^{(1-\delta)\binom{n}{2}} \) Gallai \(r \)-colorings. Then the number of triangles \(T \) of \(K_n \) with \(\sum_{e \in T} |P(e)| = 6 \) and \(P(e) = P(e') \) for every \(e, e' \in T \) is at least \((1 - 6\delta)\binom{n}{3}\).

Lemma 2

For \(n^{-1/6} \ll \delta \ll 1 \), let \(P \) be a \(r \)-template in \(\mathcal{C} \) with more than \(2^{(1-\delta)\binom{n}{2}} \) Gallai \(r \)-colorings. Then there exist two colors \(i, j \in [r] \) such that the number of edges of \(K_n \) with palette \(\{i, j\} \) is at least \((1 - 6r^4\delta)\binom{n}{2}\).
Properties of containers

Lemma 1

For $n^{-1/6} \ll \delta \ll 1$, let P be a r-template in C with more than $2^{(1-\delta)\binom{n}{2}}$ Gallai r-colorings. Then the number of triangles T of K_n with $\sum_{e \in T} |P(e)| = 6$ and $P(e) = P(e')$ for every $e, e' \in T$ is at least $(1 - 6\delta)\binom{n}{3}$.

Lemma 2

For $n^{-1/6} \ll \delta \ll 1$, let P be a r-template in C with more than $2^{(1-\delta)\binom{n}{2}}$ Gallai r-colorings. Then there exist two colors $i, j \in [r]$ such that the number of edges of K_n with palette $\{i, j\}$ is at least $(1 - 6r^4\delta)\binom{n}{2}$.

- Partition all the containers into $\binom{r}{2}$ classes such that for the containers in the class $C_{i,j}$, almost all edges use the palette $\{i, j\}$;
- From Lemma 2, we can easily conclude that the number of colorings contained in some $P \in C_{i,j}$ is at most $2^{(1+o(1))\binom{n}{2}}$;
- The total number of colorings contained in C is at most $\binom{r}{2}2^{(1+o(1))\binom{n}{2}}$.
Properties of containers

Lemma 1

For $n^{-1/6} \ll \delta \ll 1$, let P be a r-template in \mathcal{C} with more than $2^{(1-\delta)(\binom{n}{2})}$ Gallai r-colorings. Then the number of triangles T of K_n with $\sum_{e \in T} |P(e)| = 6$ and $P(e) = P(e')$ for every $e, e' \in T$ is at least $(1 - 6\delta)\binom{n}{3}$.

Lemma 2

For $n^{-1/6} \ll \delta \ll 1$, let P be a r-template in \mathcal{C} with more than $2^{(1-\delta)(\binom{n}{2})}$ Gallai r-colorings. Then there exist two colors $i, j \in [r]$ such that the number of edges of K_n with palette $\{i, j\}$ is at least $(1 - 6r^4\delta)\binom{n}{2}$.

- Partition all the containers into $\binom{r}{2}$ classes such that for the containers in the class $C_{i,j}$, almost all edges use the palette $\{i, j\}$;
- Based on Lemma 2, further analysis shows that the number of Gallai colorings contained in some $P \in C_{i,j}$ is at most $(1 + o(1))2^{\binom{n}{2}}$;
- The total number of Gallai colorings contained in \mathcal{C} is at most $(1 + o(1))\binom{r}{2}2^{\binom{n}{2}}$.

15
Thanks!