QUASIARITHMETIC-TYPE INVARIANT MEANS ON PROBABILITY SPACE

BEATA DERĘGOWSKA AND PAWEŁ PASTECZKA

ABSTRACT. For a family \((A_x)_{x \in (0, 1)}\) of integral quasiarithmetic means satisfying certain measurability-type assumptions we search for an integral mean \(K\) such that \(K((A_x(P))_{x \in (0, 1)}) = K(P)\) for every compactly supported probabilistic Borel measure \(P\).

Also some results concerning the uniqueness of invariant means will be given.

1. Introduction

For a continuous, strictly monotone function \(f: I \to \mathbb{R}\) (\(I\) is an interval) define a (discrete) quasiarithmetic mean \(A[f]: \bigcup_{k=1}^{\infty} I^k \to I\) by

\[
A[f](x_1, \ldots, x_k) := f^{-1} \left(\frac{f(x_1) + \cdots + f(x_k)}{n} \right),
\]

where \(k \in \mathbb{N}\) and \(x_1, \ldots, x_k \in I\). This notion was introduced in 1930s by Aumann, Knopp [21] and Jessen independently and then characterized by Kolmogorov [22], Nagumo [28] and de Finetti [14]. For the detail concerning the early history of this family we refer the reader to the book of Hardy-Littlewood-Pólya [17]. From now on, a family of all continuous, strictly monotone functions on the interval \(I\) will be denoted by \(\mathcal{CM}(I)\).

It is well known that for \(\pi_p: \mathbb{R}_+ \to \mathbb{R}\) given by \(\pi_p(x) := x^p\) if \(p \neq 0\) and \(\pi_0(x) := \ln x\), the quasiarithmetic mean \(A[\pi_p]\) is a \(p\)-th power mean \(P_p\). Remarkably, the mean \(P_1\) is the arithmetic mean.

For a vector \(f = (f_1, \ldots, f_k)\) of functions in \(\mathcal{CM}(I)\) one can define a selfmapping \(A[f]: I^k \to I^k\) by

\[
A[f](x_1, \ldots, x_k) := \left(A[f_1](x_1, \ldots, x_k), \ldots, A[f_k](x_1, \ldots, x_k) \right).
\]

Institute of Mathematics, Pedagogical University of Kraków, Podchorążych 2, 30-084 Cracow, Poland
E-mail addresses: beata.deregowska@up.krakow.pl, pawel.pasteczka@up.krakow.pl
2010 Mathematics Subject Classification. 26E60, 39B12, 39B52.

Key words and phrases. Iteration process, invariant means, quasi-arithmetic means, integral means, mean-type mapping.
Based on a classical result by Borwein-Borwein [5, Theorem 8.8] it is known that there exists exactly one \(A^f \)-invariant mean, that is a mean \(K: I^k \to I \) (a function satisfying the inequality \(\min(x) \leq K(x) \leq \max(x) \) for all \(x \in I^k \)) such that \(K \circ A^f = K \). Furthermore the sequence of iterations of \(A^f \) tends to \((K, \ldots, K)\) pointwise.

Invariant means in a family of quasi-arithmetic means were studied by many authors, for example Burai [7], Daróczy-Páles [11], J. Jarczyk [18], J. Jarczyk and Matkowski [20]. In fact invariant means were extensively studied during recent years, see for example the papers by Baják–Páles [1, 2, 3, 4], by Daróczy–Páles [10, 12, 13], by Głązowska [15, 16], by Matkowski [23, 24, 25], by Matkowski–Páles [27], by Pasteczka [29, 32, 30] and Matkowski–Pasteczka [26]. For details we refer the reader to the recent paper of J. Jarczyk and W. Jarczyk [19].

In (nearly) all of this paper authors referred to some counterpart of a result by Borwein-Borwein which guarantees that the invariant mean is uniquely determined. Regretfully such consideration cannot be generalized to the integral setting. Therefore our paper is based on a recent result by Matkowski–Pasteczka [26] and Pasteczka [32] for noncontinuous means.

1.1. Integral means. Hereafter \(I \) stands for the arbitrary subinterval of \(I \), \(\mathcal{B}(I) \) and \(\mathcal{L}(I) \) denote the Borel and the Lebesgue \(\sigma \)-algebra on \(I \), respectively. Furthermore, let \(\mathcal{P}(I) \) be a family of all compactly supported probabilistic measures on \(\mathcal{B}(I) \). An (integral) mean on \(I \) is a function \(M: \mathcal{P}(I) \to I \) such that

\[
M(\mathcal{P}) \in [\inf \text{supp } \mathcal{P}, \sup \text{supp } \mathcal{P}] \quad \text{for all } \mathcal{P} \in \mathcal{P}(I).
\]

Using the notion \(\gamma(\mathcal{P}) := [\inf \text{supp } \mathcal{P}, \sup \text{supp } \mathcal{P}] \) we can rewrite it briefly as \(M(\mathcal{P}) \in \gamma(\mathcal{P}) \).

Following the notion of Hardy-Littlewood-Pólya [17] for all \(f \in \mathcal{CM}(I) \) we can define the (integral) quasiarithmetic mean \(A^f: \mathcal{P}(I) \to I \) by

\[
A^f(\mathcal{P}) := f^{-1}\left(\int f(x) \, d\mathcal{P}(x) \right).
\]

We slightly abuse the notion of quasiarithmetic mean as \(A^f \) is both discrete and integral quasiarithmetic means. However it do not cause misunderstandings as they are defined of disjoint domains. Moreover for \(k \in \mathbb{N} \) and a vector \((x_1, \ldots, x_k) \in I^k \) we have

\[
A^f\left(\frac{1}{k}(\delta_{x_1} + \cdots + \delta_{x_k}) \right) = A^f(x_1, \ldots, x_n),
\]
where \(\delta_x \) stands for the Dirac delta. Thus this definition generalizes the discrete one. Similarly to the discrete setting we define a \(p \)-th power mean by \(P_p := A^{[\pi_p]} \).

The aim of this paper is to generalize the notion of invariant means to infinite families of integral quasiarithmetic means.

2. Auxiliary results

Let us first prove a simple result concerning the properties of a distance between two quasiarithmetic means.

Proposition 1. Let \(I \subset \mathbb{R} \) be a compact interval and \(f, g \in \text{CM}(I) \). Define \(d_{f,g}: (0, |I|] \to [0, |I|] \) by
\[
d_{f,g}(t) := \sup_{P: |\gamma(P)| \leq t} |A^{[f]}(P) - A^{[g]}(P)|.
\]
Then \(d_{f,g} \) is nondecreasing and continuous. Moreover \(d_{f,g}(t) < t \) for all \(t \in (0, |I|] \).

Proof. Denote briefly \(d \equiv d_{f,g} \). For \(t \in (0, |I|] \) define
\[
S_t := \{(x, y, \theta) \in I \times I \times [0, 1]: |x - y| \leq t\}.
\]
and \(m: I^2 \times [0, 1] \to \mathbb{R} \) by
\[
m(x, y, \theta) := |A^{[f]}(\theta \delta_x + (1 - \theta)\delta_y) - A^{[g]}(\theta \delta_x + (1 - \theta)\delta_y)|.
\]
Then \(m \) is continuous and \(m(x, y, \theta) < |x - y| \) unless \(x = y \).

On the other hand by [8] we have
\[
d(t) = \sup_{(x,y,\theta) \in S_t} m(x, y, \theta) = \sup_{S_t} m.
\]
Since \(S_t \) is compact we have \(d(t) < t \) for all \(t \in (0, |I|] \).
Moreover for all \(t_1 \leq t_2 \) we have \(S_{t_1} \subseteq S_{t_2} \), thus
\[
d(t_1) = \sup_{S_{t_1}} m \leq \sup_{S_{t_2}} m = d(t_2)
\]
which implies that \(d \) is nondecreasing.

Now we prove that \(d \) is continuous. Fix \(t_0 \in U =: U_0 \) and consider a monotone sequence \((t_n)_{n=1}^{\infty} \), \(\lim_{n \to \infty} t_n = t_0 \). Due to the monotonicity of \(d \) we obtain that \((d(t_n))_{n=1}^{\infty} \) is convergent.

As \(m \) is continuous for all \(n \geq 0 \) the set \(S_{t_n} \) is compact, and we have
\[
d(t_n) = m(s_n) \quad \text{for some } s_n \in S_{t_n} \subset I^2 \times [0, 1], \quad n \in \{0, 1, \ldots\}.
\]
As \(I^2 \times [0, 1] \) is compact, there exists a subsequence \((s_{n_k})_{k=1}^{\infty} \) convergent to some element \(\bar{s} \). Then \(\bar{s} \) belongs to a topological limit of \(S_{t_{n_k}} \), i.e. \(\bar{s} \in S_{t_{n_0}} \).
Therefore
$$\lim_{n \to \infty} d(t_n) = \lim_{k \to \infty} m(s_{n_k}) = m(\lim_{k \to \infty} s_{n_k}) = m(\bar{s}) \leq d(t_0).$$

To prove the converse inequality take a sequence \((x_n)_{n=1}^{\infty}\) convergent to \(s_0\) such that \(x_n \in S_n\) for all \(n \in \mathbb{N}\). Then
$$d(t_0) = m(s_0) = m(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} m(x_n) \leq \liminf_{n \to \infty} m(s_n) = \lim_{n \to \infty} d(t_n).$$

Therefore \(d(t_0) = \lim_{n \to \infty} d(t_n)\). \(\square\)

At the end of this section let us recall a folk result for discrete dynamical systems with a trivial attractor.

Lemma 1. Let \(I\) be an interval with \(\inf I = 0\) and \(d : I \to I\) be a continuous function such that \(d(x) < x\) for all \(x \in I \setminus \{0\}\). Then the sequence of iterates \((d^n(x))\) converges to zero for all \(x \in I\).

3. Invariance of Quasiarithmetic Means

In this section we study the invariance of infinite family of quasiarithmetic means. First, we need to define a selfmapping which is a counterpart of (1.1). Contrary to the discrete case where such mapping is well-defined for every tuple we need some additional restrictions.

Family \(F := (f_x)_{x \in [0,1]}\) of functions \(f_x : I \to \mathbb{R}\) is called *admissible* if

1. each \(f_x\) is continuous and strictly monotone,
2. a bivariate function \(I \times [0,1] \ni (t, x) \mapsto f_x(t)\) is measurable with respect to the product \(\sigma\)-algebra \(\mathcal{B}(I) \times \mathcal{L}[0,1]\).

For an admissible family \(F := (f_x)_{x \in [0,1]}\) and \(\mathbb{P} \in \mathcal{P}(I)\) define a measure \(A_F(\mathbb{P})\) on \(\mathbb{R}\) by

\[
A_F(\mathbb{P}) : S \mapsto \left| \{x \in [0,1] : A^{[f_x]}(\mathbb{P}) \in S\} \right|
\]

Now we are in the position to prove one of the most important results in this note.

Lemma 2. Let \(F := (f_x)_{x \in [0,1]}\) be an admissible family and \(\mathbb{P} \in \mathcal{P}(I)\). Then each \(A^{[f_x]}(\mathbb{P})\) is well-defined and, moreover, \(A_F(\mathbb{P}) \in \mathcal{P}(I)\).

Proof. Let \(h(x) := \int_I f_x \, d\mathbb{P}\) for \(x \in [0,1]\). Since \(\mathbb{P}\) is probabilistic measure with support contained in \(I\) and \(f_x\) is continuous, strictly monotone function, we have \(h(x) \in f_x(I)\) and thus \(A^{[f_x]}(\mathbb{P}) = f_x^{-1}(h(x))\) is well defined.

Moreover by the measurability of the map \(I \times [0,1] \ni (t, x) \mapsto f_x(t)\) and Fubini-Tonelli theorem, we get that \(h\) is Lebesgue measurable. Let \(S \in \mathcal{B}\). Because \(f_x\) is continuous, injective mapping defined on an
Theorem 1. Let γ be a \mathcal{A}_F-invariant measure on I. Then both L and γ which proves that the upper-invariant mean M is measurable in the sense of Lebesgue. Therefore, $A_F(\mathcal{P})$ is well-defined Borel measure on I. Obviously, $A_F(\mathcal{P})(I) = 1$, which concludes the proof.

Applying the above lemma we can introduce the notion of invariance in the spirit of Matkowski. Namely for an admissible family $\mathcal{F} := (f_x : I \to \mathbb{R})_{x \in [0,1]}$ a mean $M : \mathcal{P}(I) \to I$ is called A_F-invariant provided $M = M \circ A_F$. We are going to study properties of A_F-invariant means. Adapting some general results from [32] define the lower- and the upper-invariant mean $\mathcal{L}_F, \mathcal{U}_F : \mathcal{P}(I) \to I$ by

$$
\mathcal{L}_F(\mathcal{P}) := \lim_{n \to \infty} \left(\inf \gamma(A^n_F(\mathcal{P})) \right),
$$

$$
\mathcal{U}_F(\mathcal{P}) := \lim_{n \to \infty} \left(\sup \gamma(A^n_F(\mathcal{P})) \right).
$$

Now we show that these means are A_F-invariant. Moreover, similarly to the discrete case, \mathcal{L}_F and \mathcal{U}_F are the smallest and the biggest A_F-invariant means, respectively.

Theorem 1. Let $\mathcal{F} := (f_x : I \to \mathbb{R})_{x \in [0,1]}$ be an admissible family. Then both \mathcal{L}_F and \mathcal{U}_F are A_F-invariant means. Moreover for every A_F-invariant mean $M : \mathcal{P}(I) \to I$ the inequality $\mathcal{L}_F \leq M \leq \mathcal{U}_F$ holds.

Proof. Take $\mathcal{P} \in \mathcal{P}(I)$ arbitrarily. By virtue of Lemma 2 we obtain that $A^n_F(\mathcal{P}) \in \mathcal{P}(I)$ for all $n \in \mathbb{N}$.

Moreover as $A^n_F(\mathcal{P}) \in \gamma(A^n_F(\mathcal{P}))$ for all $x \in [0,1]$ we obtain $\gamma(A^{n+1}_F(\mathcal{P})) \subseteq \gamma(A^n_F(\mathcal{P}))$. In particular for every $\mathcal{P} \in \mathcal{P}(I)$ we have

$$
\mathcal{L}_F(\mathcal{P}) = \lim_{n \to \infty} \left(\inf \gamma(A^n_F(\mathcal{P})) \right) \subseteq \gamma(A^0_F(\mathcal{P})) = \gamma(\mathcal{P}),
$$

which proves that \mathcal{L}_F is a mean. Moreover

$$
\mathcal{L}_F(\mathcal{P}) = \lim_{n \to \infty} \left(\inf \gamma(A^n_F(\mathcal{P})) \right) = \lim_{n \to \infty} \left(\inf \gamma(A^{n+1}_F(\mathcal{P})) \right)
$$

$$
= \lim_{n \to \infty} \left(\inf \gamma(A^n_F(\mathcal{P})) \right) = \mathcal{L}_F(\mathcal{P}),
$$

which shows that \mathcal{L}_F is A_F-invariant. Similarly \mathcal{U}_F is an A_F-invariant mean.

Now let $M : \mathcal{P}(I) \to I$ be an arbitrary A_F-invariant mean. Then, applying the definition of A_F-invariance iteratively, we obtain

$$
M(\mathcal{P}) = M \circ A^n_F(\mathcal{P}) \text{ for all } \mathcal{P} \in \mathcal{P}(I) \text{ and } n \in \mathbb{N}.
$$
By mean property it follows that for all $P \in \mathcal{P}(I)$ we have
$$M(P) \in \gamma(A^n_F(P)) \quad (n \in \mathbb{N})$$
and therefore, as $\gamma(A^n_F(P)) \subseteq \gamma(A^{n-1}_F(P))$, we obtain
$$M(P) \in \bigcap_{n=1}^{\infty} \gamma(A^n_F(P)) = [\mathcal{L}_F(P), \mathcal{U}_F(P)].$$
The latter inequality can be rewritten as $\mathcal{L}_F \leq M \leq \mathcal{U}_F$. \quad \square

3.1. Conjugacy of means. Following the idea contained in Bullen [6] and Chudziak-Páles-Pasteczka [9], let us introduce the notion of conjugacy of means. For a continuous and strictly monotone function $u: J \to I$ and a mean $M: \mathcal{P}(I) \to I$ define a the conjugancy $M[u]: \mathcal{P}(J) \to J$ by
$$M[u](P) = u^{-1}\left(M\left(u(x) \, d\mathbb{P}(x)\right)\right).$$
It is easy to see that $(M[u])[u^{-1}] = M$. Moreover for every $f \in \mathcal{CM}(I)$ the quasiarithmetic mean $A[f]$ is a f-conjugant of the arithmetic mean (which coincides with the expected value).

The following lemma is easy to see

Lemma 3. Let $\mathcal{F} := (f_x: I \to \mathbb{R})_{x \in [0,1]}$ be an admissible family, $u: J \to I$, and $\mathcal{G} := (g_x = f_x \circ u)_{x \in [0,1]}$. Then $M: \mathcal{P}(I) \to I$ is a $A_\mathcal{F}$-invariant mean if and only if $M[u]$ is a $A_\mathcal{G}$-invariant mean.

3.2. Uniqueness of invariant means. In what follows we show few sufficient condition in order to guarantee the uniqueness of $A_\mathcal{F}$-invariant mean. First observe that Theorem 1 has the following corollary

Corollary 1. Let $\mathcal{F} := (f_x: I \to \mathbb{R})_{x \in [0,1]}$ be an admissible family. Then $\mathcal{L}_F = \mathcal{U}_F$ if and only is there exists exactly one $A_\mathcal{F}$-invariant mean.

The main disadvantage of this result is that it is very difficult to verify this condition in practice. In the next result we show that whenever \mathcal{F} is bounded from one side then the invariant mean is uniquely determined in a weak sense.

Theorem 2. Let $\mathcal{F} := (f_x: I \to \mathbb{R})_{x \in [0,1]}$ be an admissible, upper (lower) bounded family. Then there exists a (uniquely determined) $A_\mathcal{F}$-invariant mean $K_F: \mathcal{P}(I) \to I$ such that
$$\lim_{n \to \infty} A^{[k]} \circ A^n_F(P) = K_F(P) \quad \text{for all } k \in \mathcal{CM}(I) \text{ and } P \in \mathcal{P}(I).$$
Proof. Assume that $A^{[f_x]} \leq A^{[u]}$ for some $u : I \to \mathbb{R}$ and define
$$G := (g_x := f_x \circ u^{-1})_{x \in [0,1]}.$$
As $A^{[f_x]} \leq A^{[u]}$ we get $A^{[g_x]} \leq A$ for all $x \in [0, 1]$.

Take $P_0 \in \mathcal{P}(u(I))$ arbitrarily and let $P_n := A_G(P_{n-1})$ for all $n \in \mathbb{N}_+$. Then we know that
$$P_1(P_{n+1}) \leq P_2(P_{n+1}) \leq \sup \gamma(P_{n+1}) \leq A(P_n) = P_1(P_n).$$
This implies that all intervals $[P_1(P_n), P_2(P_n)]$ are disjoint. In particular
$$\lim_{n \to \infty} P_2(P_n) = \lim_{n \to \infty} P_1(P_n) =: m(P).$$
Thus we obtain
$$\lim_{n \to \infty} \text{Var}(P_n) = \lim_{n \to \infty} \left(P_2(P_n) - (P_1(P_n))^2 \right) = 0.$$
In view of Chebyshev’s inequality we have
$$\Pr\left(\|P_n - m(P)\| \geq \xi \right) \leq \Pr\left(\|P_n - P_1(P_n)\| \geq \xi - |P_1(P_n) - m(P)| \right) \leq \frac{\text{Var}(P_n)}{(\xi - |P_1(P_n) - m(P)|)^2} \text{ for all } \xi > 0.$$
Whence in view of (3.2) and (3.3) we obtain
$$\lim_{n \to \infty} \Pr\left(\|P_n - m(P)\| \geq \xi \right) = 0 \text{ for all } \xi > 0$$
which shows that $P_n \to \delta_{m(P)}$ in a (Lebesgue) measure. As each P_n is compactly supported we obtain that
$$\lim_{n \to \infty} A_k^n(P_n) = m(P) \text{ for all } k \in \mathcal{CM}(u(I)).$$
Consequently, as $A^{[f_x]} = A^{[g_x \circ u]} = (A^{[g_x]})^{[u]}$ for all $x \in [0,1]$ we have
$$\lim_{n \to \infty} A_k^n(P) = m^n(P) \text{ for all } k \in \mathcal{CM}(I) \text{ and } P \in \mathcal{P}(I)$$
which yields (3.1) with $K_F := m[u].$ \hfill \Box

Now we show a result in a case when the family \mathcal{F} satisfy some sort of boundedness. It is important to emphasize that even a finite family of quasi-arithmetic means can be unbounded (in the family of quasiarithmetic means with a pointwise ordering), see [31] for details.

Theorem 3. Let $\mathcal{F} := (f_x : I \to \mathbb{R})_{x \in [0,1]}$ be an admissible family and \mathcal{T} be a finite subset of $\mathcal{CM}(I)$. Assume that for every $x \in [0, 1]$ there exists $l_x, u_x \in \mathcal{T}$ such that $A^{[l_x]} \leq A^{[f_x]} \leq A^{[u_x]}$. Then there exists a uniquely determined $A_{\mathcal{F}}$-invariant mean $K_{\mathcal{F}} : \mathcal{P}(I) \to I$.
Proof. Define $d : (0, |I|] \to [0, |I|]$ by

$$d(t) := \max_{l,u \in T} \sup_{P : |\gamma(P)| \leq t} |A[l](P) - A[u](P)| = \max_{l,u \in T} d_{l,u}(x).$$

Then by Proposition 1 we obtain that d is continuous and $d(x) < x$ for all $x \in (0, |I|]$. Therefore by Lemma 1 we obtain that the sequence of iterations $(d^n)_{n=1}^\infty$ tends to zero pointwise.

On the other hand for every mean $P \in \mathcal{P}(I)$ and $x \in [0, 1]$ we obtain

$$\min_{l \in T} A[l](P) \leq A[f_{x}](P) \leq \max_{u \in T} A[u](P).$$

Therefore

$$\sup_{x \in [0, 1]} A[f_{x}](P) - \inf_{x \in [0, 1]} A[f_{x}](P) \leq \max_{u \in T} A[u](P) - \min_{l \in T} A[l](P) \leq d(|\gamma(P)|).$$

Thus $|\gamma(A_{F}(P))| \leq d(|\gamma(P)|)$ for every $P \in \mathcal{P}(I)$. Therefore

$$\mathcal{U}_{F}(P) - \mathcal{L}_{F}(P) = \lim_{n \to \infty} |\gamma(A_{F}^{n}(P))| \leq \lim_{n \to \infty} d^n(|\gamma(P)|) = 0,$$

which proves $\mathcal{U}_{F}(P) = \mathcal{L}_{F}(P)$. As P was taken arbitrarily we obtain $K_{F} := \mathcal{U}_{F} = \mathcal{L}_{F}$, which by Corollary 1 implies that A_{F}-invariant mean is uniquely determined. \[\square\]

Applying this theorem we can easily show the finite counterpart of this result

Corollary 2. Let $F := (f_{x} : I \to \mathbb{R})_{x \in [0, 1]}$ be an admissible family which contains finitely many distinct functions. Then there exists a uniquely determined A_{F}-invariant mean $K_{F} : \mathcal{P}(I) \to I$.

References

[1] Sz. Baják and Zs. Páles. Computer aided solution of the invariance equation for two-variable Gini means. *Comput. Math. Appl.*, 58:334–340, 2009.

[2] Sz. Baják and Zs. Páles. Invariance equation for generalized quasi-arithmetic means. *Aequationes Math.*, 77:133–145, 2009.

[3] Sz. Baják and Zs. Páles. Computer aided solution of the invariance equation for two-variable Stolarsky means. *Appl. Math. Comput.*, 216(11):3219–3227, 2010.

[4] Sz. Baják and Zs. Páles. Solving invariance equations involving homogeneous means with the help of computer. *Appl. Math. Comput.*, 219(11):6297–6315, 2013.

[5] J. M. Borwein and P. B. Borwein. *Pi and the AGM*. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity, A Wiley-Interscience Publication.

[6] P. S. Bullen. *Handbook of means and their inequalities*, volume 560 of *Mathematics and its Applications*. Kluwer Academic Publishers Group, Dordrecht, 2003.
[7] P. Burai. A Matkowski–Sutô type equation. *Publ. Math. Debrecen*, 70:233–247, 2007.

[8] G. T. Cargo and O. Shisha. A metric space connected with generalized means. *J. Approximation Theory*, 2:207–222, 1969.

[9] J. Chudziak, Zs. Páles, and P. Pasteczka. From the Ingham–Jessen property to mixed-mean inequalities. *arXiv*, arXiv:1909.13769.

[10] Z. Daróczy. Functional equations involving means and Gauss compositions of means. *Nonlinear Anal.*, 63(5-7):e417–e425, 2005.

[11] Z. Daróczy and Zs. Páles. A Matkowski–Sutô type problem for quasi-arithmetic means of order α. In Z. Daróczy and Zs. Páles, editors, *Functional Equations — Results and Advances*, volume 3 of *Adv. Math. (Dordr.)*, page 189–200. Kluwer Acad. Publ., Dordrecht, 2002.

[12] Z. Daróczy and Zs. Páles. Gauss-composition of means and the solution of the Matkowski–Sutô problem. *Publ. Math. Debrecen*, 61(1-2):157–218, 2002.

[13] Z. Daróczy and Zs. Páles. The Matkowski–Sutô problem for weighted quasi-arithmetic means. *Acta Math. Hungar.*, 100(3):237–243, 2003.

[14] B. de Finetti. Sul concetto di media. *Giornale dell’ Instituto, Italiano degli Attuatori*, 2:369–396, 1931.

[15] D. Głazowska. A solution of an open problem concerning Lagrangian mean-type mappings. *Cent. Eur. J. Math.*, 9(5):1067–1073, 2011.

[16] D. Głazowska. Some Cauchy mean-type mappings for which the geometric mean is invariant. *J. Math. Anal. Appl.*, 375(2):418–430, 2011.

[17] G. H. Hardy, J. E. Littlewood, and G. Pólya. *Inequalities*. Cambridge University Press, Cambridge, 1934. (first edition), 1952 (second edition).

[18] J. Jarczyk. Invariance of weighted quasi-arithmetic means with continuous generators. *Publ. Math. Debrecen*, 71(3-4):279–294, 2007.

[19] J. Jarczyk and W. Jarczyk. Invariance of means. *Aequationes Math.*, 92(5):801–872, 2018.

[20] J. Jarczyk and J. Matkowski. Invariance in the class of weighted quasi-arithmetic means. *Ann. Polon. Math.*, 88(1):39–51, 2006.

[21] K. Knopp. Über Reihen mit positiven Gliedern. *J. London Math. Soc.*, 3:205–211, 1928.

[22] A. N. Kolmogorov. Sur la notion de la moyenne. *Rend. Accad. dei Lincei (6)*, 12:388–391, 1930.

[23] J. Matkowski. Iterations of mean-type mappings and invariant means. *Ann. Math. Sil.*, (13):211–226, 1999. European Conference on Iteration Theory (Muszyna-Zlockie, 1998).

[24] J. Matkowski. On iteration semigroups of mean-type mappings and invariant means. *Aequationes Math.*, 64(3):297–303, 2002.

[25] J. Matkowski. Lagrangian mean-type mappings for which the arithmetic mean is invariant. *J. Math. Anal. Appl.*, 309(1):15–24, 2005.

[26] J. Matkowski and P. Pasteczka. Invariant means and iterates of mean-type mappings. *Aequationes Math.*, 2019.

[27] J. Matkowski and Zs. Páles. Characterization of generalized quasi-arithmetic means. *Acta Sci. Math. (Szeged)*, 81(3-4):447–456, 2015.

[28] M. Nagumo. Über eine Klasse der Mittelwerte. *Japanese J. Math.*, 7:71–79, 1930.
[29] P. Pasteczka. Limit properties in a family of quasi-arithmetic means. *Aequationes Math.*, 90(4):773–785, 2016.

[30] P. Pasteczka. On the quasi-arithmetic Gauss-type iteration. *Aequationes Math.*, 92(6):1119–1128, 2018.

[31] P. Pasteczka. Interval-type theorems concerning quasi-arithmetic means. *Math. Inequal. Appl.*, 22(2):509–518, 2019.

[32] P. Pasteczka. Invariant property for discontinuous mean-type mappings. *Publ. Math. Debrecen*, 94(3-4):409–419, 2019.