Assessment of Natural Radioactivity for Some Secondary Ceilings Samples in Iraq

Ali Saeed Al Rmahi1 and Ali Abid Abojassim1,∗
1Department of Physics, Faculty of Science, University of Kufa, Al-Najaf, Iraq.
∗Corresponding author’s email: ali.alhameedawi@uokufa.edu.iq

Abstract. This research focuses on measuring of specific activity of natural radioactive sources (238U, 232Th and 40K) in some types of secondary ceilings that used as a decorate material and available in Iraq markets. The measurements were done using gamma ray spectroscopy system that based on NaI(Tl) Detector. Also, the radiological hazard indices have been assessed for all samples in present study. The results show that the specific activity vary from 8.7±0.6 to 32.9±2.3 Bq/kg for 238U, 2.9±0.2 to 40.3±1.5 Bq/kg for 232Th, and 117.4±2.6 to 649.1±7.9 Bq/kg for 40K. The latter levels were compared with the world mean values that reported by the UNSCEAR 2008. It was found that all values of 238U and 232Th were below the world wide published values, while the values of only two samples of 40K were above the upper range of the world wide published values. Regarding the average values of radiological hazard risk were found to be within the permissible limit according to the OECD, UNSCEAR 2000, and ICRP. It can be concluded that natural radioactivity levels together with radiological hazard risk studied from the most of the secondary ceilings samples available in local markets of Iraq within natural rates of permissible limits and may not cause any danger to the human when being used.

1. Introduction

Radiological and toxicological contaminants are one the of environmental pollutions that can cause cancerous disease and other changes in the health of humans and the living world in general. This is, therefore, substantially influencing the changes in the environment [1]. The earth and its residents are exposed to radiation emitted from radioactive materials that originally found in the crust of the earth, the sun, and other sources. Radioactivity on the earth can be originated from two types of sources: natural and artificial ones. These sources are currently part of the ecosystem. The natural radioactivity major sources are the nuclides of long half-lives that existed since the formation of the earth and nuclides produced via cosmic rays [2]. The natural radionuclides of concern are mainly 238U, 235U, and 232Th, and their progenies and 40K. Radiation is existed in all parts of our life. It, perhaps, has been found on the earth since it was formed. As a result, life has been developed in an environment that may have a few amounts of ionized radiation [3]. Therefore, one can conclude that radiation is available in everywhere around us (in the atmosphere, the water sources, the buildings and even in the construction materials used in these buildings). Natural materials such as soil, sand, cement and, rock etc., which contain
amounts of natural radioactivity of 238U, 232Th and 40K were used as building materials for construction of buildings and houses [4]. Life development has brought the people to spend most of their time (almost ninety percent of life) in enclosed and confined spaces such as residential buildings (houses and offices) and transportation vehicles. Buildings that are used as shelter should protect us from the environmental conditions (Pollutants, heat, cold and noise). Unfortunately, these shelters do not appear to be safe enough due to the many types of pollutants within them. In this regards, the latter pollutants may have detrimental effects on our health, which in turn be increased dramatically with time. On a daily basis, our body is exposing to many natural sources of radiations that are presented in water, food, and building materials. The motivation of the present study is to assess the specific activity of natural radioactivity in some types of secondary ceilings samples that used in most Iraqi building materials as a decorate materials. Exposure to high levels of radiation could be a reason for the significant damage to humans bodies and can lead to death [5] (WHO, 2016). In this study building materials (secondary ceilings) samples were selected because it is in direct touch with human. There are many previous studies for measuring radioactivity levels in building materials using gamma ray spectroscopy [6-8]. The purpose of this study is to evaluate the natural radioactivity raised from (238U, 232Th and 40K) in some types of secondary ceilings that available in Iraqi markets using NaI(Tl) detector with dimensions of "3x3". Moreover, ten radiological hazard parameters using different equations were calculated.

2. Materials and Method

2.1. A Collection of Samples
Twenty samples were collected in this study that reflects various types of secondary ceilings. They were taken from the local markets in Al-Najaf governorate, as shown in Tables (1).

Table 1. Information about the secondary ceilings

No.	Sample name	Sample code	Country of Origin
1	Saten	S1	Germany
2	Cardcles	S2	
3	Turbo	S3	Turkey
4	Fuga	S4	
5	Akwsatak	S5	
6	Gypsum Board	S6	
7	Rota trofor	S7	
8	Flogan	S8	
9	Summit	S9	
10	ABS	S10	Iran
11	Azran	S11	
12	Arcopa	S12	
13	Fs.AB	S13	
14	MDF- KS	S14	China
15	CNC - KS	S15	
16	Peld	S16	
17	Against fire	S17	
18	Anti-humidity	S18	Saudi
19	Cement board	S19	
20	Techno	S20	Bulgaria

2.2. Preparations of Samples
The collected samples were crushed into small pieces first, then they were converted into a fine powder, using electric grinder. The fine powder, after that, was sieved to obtain grain size of about 300μm for
about 750gm in weight using special sieves. Then, the samples were dried at 100 °C for 2 hours using an oven (Model Memmert GmbH+ Co. KG, Germany). Next, the samples were packed in (1L) polyethylene Marinelli beaker of constant volume ((See Figure 1). Then, All samples were stored for about four weeks before the measurement, to allow secular equilibrium between 222Rn and 226Ra [9].

![FIGURE 1. Samples in Marinelli beaker](image)

2.3. Measurement of Samples
Gamma-ray spectrum from each samples was recorded using Sodium iodide doped with thallium NaI(Tl) with "3×3" crystal dimensions (See Figure 2). It was processed using the MAESTRO-32 software. NaI(Tl) detector was calibrated by radioactive standard sources (137Cs, 60Co, 22Na, 54Mn, and 152Eu) of known energies and activity. The specific activity for 238U and 232Th were determined using gamma-lines 1765 keV (214Bi) and the gamma-ray lines 2614 keV (208Tl), respectively [9,10]. The specific activity for 40K was determined directly by its gamma-line of 1460 keV [9,10]. The samples were placed on the detector and measured for a period of 18000 sec.

![FIGURE 2. Block diagram of NaI(Tl) spectrometer system.](image)

2.4. Theoretical calculations
2.4.1. Specific Activity (A)
The specific activities of 238U, 232Th, and 40K (A_{U}, A_{Th} and A_{k}) radionuclides were calculated using following equation [11,12]:

$$A \left(\frac{Bq}{kg}\right) = \frac{N}{I_{\gamma} \varepsilon MT} \quad \ldots \ldots \quad (1)$$

where, N is net area under photo peak, I_{γ} is the probability of gamma decay , ε is the efficiency of detector, M is the mass of sample, and T is time measured.
2.4.2. External Hazard Index (H_{ex})

The external hazard index was calculated using the following equation [13]:

\[H_{ex} = \frac{A_U}{370} + \frac{A_{Th}}{259} + \frac{A_K}{4810} \ldots \ldots (2) \]

2.4.3. Internal Hazard Index (H_{in})

The internal hazard index was calculated using the following equation [14]:

\[H_{in} = \frac{A_U}{185} + \frac{A_{Th}}{259} + \frac{A_K}{4810} \ldots \ldots (3) \]

2.4.4. Representative Level Index (I_r)

Representative level index was calculated using the following equation [15].

\[I_r = \left(\frac{1}{150} \right) A_U + \left(\frac{1}{100} \right) A_{Th} + \left(\frac{1}{1500} \right) A_K \ldots \ldots (4) \]

2.4.5. Alpha Index (I_\alpha)

Alpha index was calculated using the following equation [13]:

\[I_\alpha = \frac{A_U}{200 \left(\frac{Bq}{kg} \right)} \ldots \ldots (5) \]

2.4.6. Radium Equivalent Activity (Ra_{eq})

Radium equivalent activity was calculated using the following equation [16]:

\[Ra_{eq} \left(\frac{Bq}{kg} \right) = A_U + 1.43 A_{Th} + 0.077 A_K \ldots \ldots (6) \]

2.4.7. Exposure Rate (\dot{X})

The exposure rate was calculated as the following equation [14,17]:

\[\dot{X} \left(\frac{\mu R}{h} \right) = 1.90 A_U + 2.82 A_{Th} + 0.197 A_K \ldots \ldots (7) \]

2.4.8. Absorbed Dose Rate in Air (D_r)

The absorbed dose rate in air 1 meter was calculated using the following equation [18]:

\[D_r \left(\frac{nGy}{h} \right) = 0.462 A_U + 0.604 A_{Th} + 0.0417 A_K \ldots \ldots (8) \]

2.4.9. Annual Gonadal Equivalent Dose (AGED)

Annual gonadal equivalent dose was calculated using the following equation [19-21] as:

\[AGED \left(\frac{mSv}{y} \right) = 3.09 A_U + 4.18 A_{Th} + 0.314 A_K \ldots \ldots (9) \]

2.4.10. Annual Effective Dose Equivalent (AEDE)
Annual effective dose equivalent indoor was calculated using the following equation [22].

\[
AEDE_{\text{indoor}} = \left[D_r \left(\frac{mSv}{hr} \right) \times 8760 \text{ hr} \times 0.8 \times \frac{0.75\text{Gy}}{\text{Sv}} \right] \times 10^{-6} \ldots \ldots (10)
\]

2.4.11. Excess Lifetime Cancer Risk (ELCR)

Excess lifetime cancer risk indoor according to Duration of Life (DL = 70 year) and Risk Factor (RF = 0.05 y/Sv) was calculated using the following equation [11, 16]:

\[
ELCR = AEDE \times DL \times RF \ldots \ldots (11)
\]

3. Results and Discussion

The results of specific activity for 238U, 232Th, and 40K in different types of secondary ceilings samples of the present study were shown in Table (2), all were measured in units of Bq/kg. Examining the results in Table 2, the range of specific activity of 238U with the standard error was 8.7±0.6 Bq/kg in the sample S16 to 32.9±2.3 Bq/kg in the sample S14, with an average of 22.4±1.6 Bq/kg. Also, the specific activity of 232Th was ranged between relatively high values in S14, where it reached 40.3±1.5 Bq/kg, and the lowest value in the S4 which was 2.9±0.2 Bq/kg, with an average of 12.2±1.8 Bq/kg. While, the results of specific activity for 40K were ranged from 117.4±2.6 Bq/kg in sample S4 to 649.1±7.9 Bq/kg in sample S6, with an average of 282.2±26.6 Bq/kg. According to the above results, it was found that the specific activity of 238U in all samples present study are within the permissible limit set by the UNSCEAR (i.e. 33 Bq/kg) [18], as shown in Figure 3. From figure 4, it was found that the specific activity of 232Th in all samples in present study were less than the permissible limit set by the UNSCEAR (i.e. 45 Bq/kg) [18]. The present results show that the values of the specific activity of 40K in all samples were less than the recommended value of (420) Bq/kg, that given by worldwide UNSCEAR 2008 [18], except samples S6 and S12 (see Figure 5). So, It recommend not to use this type of secondary ceiling (S6 and S12). The results of the natural radioactivity in secondary ceilings samples as building materials in the present study were varied, because of the different geological nature of original materials and basic components that made of the samples in the present study. The calculation of ten hazard indices such as (Ra_{eq}, H_{ex}, H_{in}, I_y, I_r), and (Exposure, D_r, AGED, AEDE_{indoor}, ELCR) in secondary ceilings samples from Iraq markets are listed in tables 3 and 4, respectively. Form Table 3, it can be seen that the average value of R_{aq}, H_{ex}, H_{in}, I_y, I_r) were 61.6±4.9 Bq/kg, 0.166±0.013, 0.227±0.016, 0.459±0.036, and 0.112±0.008, respectively. The highest value of R_{aq}, and (H_{ex}, H_{in}, I_y, I_r) were 107.8 Bq/kg, (0.291, 0.380, 0.772, 0.164) in S14 which were less than the recommended value of 370 Bq/kg [23], and [24] (see Figure 6), respectively. Form Table 4, it is found that the average value of Exposure, D_r, AGED, AEDE_{indoor}, and ELCR in secondary ceilings samples were 132.6±10.5µR/h, 29.5±2.3 nGy/h, 208.9±16.3 mSv/y, 0.145±0.011 mSv/y, and (0.500±0.039)×10^{−3}, respectively. The highest value of D_r, and AEDE_{indoor} were 48.9 nGy/h, and 0.240 mSv/y in S14 which were less than the recommended value of 55 nGy/h [25], and 0.42 [26], respectively. While, the highest value of AGED was 340.7 mSv/y in S14 which were larger than the average value of 300 Bq/kg [27]. Comparing the results of the specific activity for 238U, 232Th and 40K that shown in the present study sample that produced in different countries, it can be seen that the highest average value of the specific activities for 238U and 232Th was in Chinese sample, but for 40K was in Turkey sample as shown in Figure 7. While, the radiological hazard index (R_{aq}, H_{ex} and H_{in}) were highest values in Chines, as shown in Figure 8. This increase in values may be due to geological nature for the origin of soil that made of secondary ceilings samples. But, the average values for all samples of secondary ceilings of specific activity for (238U, 232Th, and 40K) and radiological hazard index were within the world's average according to UNSCEAR 2008, UNSCEAR2000, OECD and ICRP.

No.	Specific activity in Bq/kg							
238U	40K	232Th						
3	4	5	6	7	8	9	10	11

Table 2. Results of specific activity for 238U, 232Th, and 40K in present samples.
Sample code	Average ± Error	Average ± Error	Average ± Error
U			
1 S1	14.8 ± 0.9	6.7 ± 0.4	234.0 ± 3.8
2 S2	22.9 ± 1.2	9.9 ± 0.5	270.4 ± 4.1
3 S3	22.4 ± 1.4	15.8 ± 0.7	315.6 ± 5.5
4 S4	14.1 ± 0.9	2.9 ± 0.2	117.4 ± 2.6
5 S5	12.1 ± 0.9	11.0 ± 0.5	250.3 ± 4.3
6 S6	23.6 ± 1.4	22.6 ± 0.9	649.1 ± 7.9
7 S7	19.9 ± 1.2	18.8 ± 0.7	348.5 ± 5.4
8 S8	25.2 ± 1.4	7.6 ± 0.5	241.9 ± 4.6
9 S9	32.8 ± 1.6	8.1 ± 0.5	149.7 ± 3.5
10 S10	25.2 ± 1.7	7.0 ± 0.4	300.0 ± 5.0
11 S11	24.1 ± 1.5	9.0 ± 0.5	290.0 ± 4.5
12 S12	31.0 ± 2.0	11.6 ± 0.8	460.9 ± 8.2
13 S13	32.6 ± 2.1	13.0 ± 0.8	393.6 ± 7.6
14 S14	32.9 ± 2.3	40.3 ± 1.5	224.8 ± 6.2
15 S15	26.0 ± 1.8	12.5 ± 0.8	332.8 ± 6.8
16 S16	8.7 ± 0.6	3.9 ± 0.3	143.3 ± 2.7
17 S17	30.6 ± 1.4	13.0 ± 0.6	310.5 ± 4.8
18 S18	18.6 ± 1.4	16.6 ± 0.8	254.5 ± 5.5
19 S19	17.3 ± 1.0	5.8 ± 0.3	178.4 ± 3.3
20 S20	14.0 ± 0.8	7.4 ± 0.3	178.9 ± 2.9

Minimum: 8.7±0.6, 2.9±0.2, 117.4±2.6
Maximum: 32.9±2.3, 40.3±1.5, 649.1±7.9
Average±S.E: 22.4±1.6, 12.2±1.8, 282.2±26.6

Worldwide [18]: 33, 45, 420
FIGURE 3. The comparison of specific activity between present samples with UNSCEAR limit, for 238U.

FIGURE 4. The comparison of specific activity between present samples with UNSCERAR limit, for 232Th.
FIGURE 5. The comparison of specific activity between present samples with UNSCEAR limit, for \({}^{40}K \).

Table 3. Results of Ra\(_{eq}\), H\(_{ex}\), H\(_{in}\), \(I_{\gamma} \), and \(I_{\alpha} \)

No.	Sample code	Ra\(_{eq}\) (Bq/kg)	H\(_{ex}\)	H\(_{in}\)	\(I_{\gamma}\)	\(I_{\alpha}\)
1	S1	42.4	0.115	0.155	0.322	0.074
2	S2	57.9	0.156	0.218	0.432	0.114
3	S3	69.3	0.187	0.248	0.518	0.112
4	S4	27.3	0.074	0.112	0.201	0.071
5	S5	47.1	0.127	0.160	0.358	0.061
6	S6	105.9	0.286	0.350	0.816	0.118
7	S7	73.6	0.199	0.253	0.553	0.099
8	S8	54.7	0.148	0.216	0.405	0.126
9	S9	55.9	0.151	0.240	0.399	0.164
10	S10	58.3	0.158	0.226	0.438	0.126
11	S11	59.3	0.160	0.225	0.444	0.120
12	S12	83.1	0.224	0.308	0.630	0.155
13	S13	81.5	0.220	0.308	0.610	0.163
14	S14	107.8	0.291	0.380	0.772	0.164
15	S15	69.5	0.188	0.258	0.520	0.13
16	S16	25.3	0.068	0.092	0.193	0.043
17	S17	73.1	0.197	0.280	0.541	0.153
18	S18	61.9	0.167	0.218	0.460	0.093
19	S19	39.3	0.106	0.153	0.292	0.086
20	S20	38.4	0.104	0.141	0.287	0.07
	Average± S.E.	61.6±4.9	0.166±0.01	0.227±0.01	0.459±0.03	0.112±0.00
	Worldwide	<370[23]	<1[24]	<1[24]	<1[24]	<1[24]
Figure 6. The comparison of $R_{\text{eq}}, H_{\text{ex}}, H_{\text{in}}, I_{\gamma}$ and I_{α} between present samples with world limit.

Table 4. Results of X, D_{α}, AGED, AEDE$_{\text{indoor}}$, and ELCR

No.	Sample code	Exposure (μR/h)	D_{α} (nGy/h)	AGED (mSv/y)	AEDE$_{\text{indoor}}$ (mSv/y)	ELCR x 10^{-3}
1	S1	93.1	20.6	147.2	0.101	0.354
2	S2	124.7	27.8	197.0	0.137	0.478
3	S3	149.3	33.1	234.4	0.162	0.567
4	S4	58.1	13.2	92.6	0.065	0.226
5	S5	103.3	22.7	162.0	0.111	0.389
6	S6	236.4	51.6	371.2	0.253	0.886
7	S7	159.5	35.1	249.5	0.172	0.602
8	S8	117.0	26.3	185.6	0.129	0.452
9	S9	114.7	26.3	182.2	0.129	0.451
10	S10	126.7	28.4	203.1	0.139	0.487
11	S11	128.2	28.6	203.1	0.141	0.492
12	S12	182.4	40.5	289.0	0.199	0.696
13	S13	176.1	39.3	278.7	0.193	0.675
14	S14	220.4	48.9	340.7	0.240	0.840
15	S15	150.2	33.4	237.1	0.164	0.574
16	S16	55.8	12.4	88.2	0.061	0.212
17	S17	156.0	34.9	246.4	0.171	0.600
18	S18	132.3	29.2	206.8	0.143	0.502
19	S19	84.4	18.9	133.7	0.093	0.325
20	S20	82.7	18.4	130.4	0.090	0.316
Average ± S.E. | 132.6±10.5 | 29.5±2.3 | 208.9±16.3 | 0.145±0.011 | 0.500±0.03
Worldwide | ----- | 55[25] | ≤ 300 [27] | 0.42 [26] | -----

FIGURE 7. The comparison of specific activity in present samples for different countries.
FIGURE 8. The comparison of radiological hazard index in present samples for different countries.

4. Conclusions

Natural radioactivity and radiological hazard index in samples of present study were within the allowed limit according to world limit (UNSCEAR, UNSCEAR, OECD, and ICRP). Therefore, our gamma spectroscopic investigations allow us to confirm that samples of secondary ceilings were safe, except samples S6 and S12.

5. References

[1] Rao, C. S. (2007). Environmental pollution control engineering. New Age International.
[2] Tykva, R., & Berg, D. (Eds.). (2004). Man-made and natural radioactivity in environmental pollution and radiochronology. Springer Science & Business Media.
[3] Cherry, S. R., Sorenson, J. A., & Phelps, M. E. (2012). Physics in nuclear medicine e-Book. Elsevier Health Sciences.
[4] Whittle, K. (2020). Nuclear materials science. IOP Publishing.
[5] World Health Organization. (2016). Ionizing radiation, health effects and protective measures. World Health Organization.
[6] Trevisi, R., Leonardi, F., Risica, S., & Nuccetelli, C. (2018). Updated database on natural radioactivity in building materials in Europe. Journal of environmental radioactivity, 187, 90-105.
[7] Maxwell, O., Emmanuel, J. S., Olusegun, A. O., Cyril, E. E. O., Ifeanyi, A. T., & Embong, Z. (2019). A study of natural radioactivity in some building materials in Nigeria. Radiation protection dosimetry, 183(3), 332-335.
[8] Rashid, J. M., & Mansor, M. A. (2020). Evaluation of natural radioactivity for building materials samples used in Tall Al Ubaid Archaeologist in Dhi-Qar governorate-Iraq. Samarra Journal of Pure and Applied Science, 2(1), 53-66.
[9] Dhahir, D. M., Mrainty, H. A. A., Abojassim, A. A., Najam, L. N., & Al-kazrajy, H. Y. Y. (2020). Natural radioactivity in soil samples of some school in AL-Shatrah at DhiQur governorate, Iraq. *Malaysian Journal of Science*, 104-114.

[10] Abojassim, A. A., & Rasheed, L. H. (2019). Mapping of Terrestrial Gamma Radiation in Soil Samples at Baghdad Governorate (Karakh Side), Using GIS Technology. *Nature Environment and Pollution Technology*, 18(4), 1095-1106.

[11] Al-Hamidawi, A. (2014). Assessment of radiation hazard indices and excess life time cancer risk due to dust storm for Al-Najaf, Iraq. *Wseas Trans. Environ. Dev.*, 10, 312.

[12] Abojassim, A. A., (2017). Estimation of human radiation exposure from natural radioactivity and radon concentrations in soil samples at green zone in Al-Najaf, Iraq. *Iranica journal of energy and environment*, 8(3), 239-248.

[13] Krieger, R. (1981). Radioactivity of construction materials. *Betonwerk Fertigteil Techn.*, 47(468).

[14] Venturini, L., & Nisti, M. B. (1997). Natural radioactivity of some Brazilian building materials. *Radiation protection dosimetry*, 71(3), 227-229.

[15] Mahler, R. L., & Hamid, A. (1994). Evaluation of water potential, fertilizer placement and incubation time on volatilization losses of urea in two northern Idaho soils. *Communications in soil science and plant analysis*, 25(11-12), 1991-2004.

[16] Abojassim, A. A., Oleiwi, M. H., & Hassan, M. (2016). Natural radioactivity and radiological effects in soil samples of the main electrical stations at babylon governorate. *Yaderna fyizika ta energetika*, 17(3), 308-315.

[17] Kahn, B., Eichholz, G. G., & Clarke, F. J. (1983). Search for building materials as sources of elevated radiation dose. *Health physics*, 45(2), 349-361.

[18] UNSCEAR.(2008). Sources and effects of ionizing radiation: Report to the general assembly, (United Nations, New York), with scientific annexes,2,1-219.

[19] United Nations Scientific Committee on the Effects of Atomic Radiation. (1988). Sources, Effects and risks of ionizing radiation. UNSCEAR 1988 report to the general assembly, with scientific annexes, New York.

[20] Arafa, W. (2004). Specific activity and hazards of granite samples collected from the Eastern Desert of Egypt. *Journal of environmental radioactivity*, 75(3), 315-327.

[21] Okogbue, C., & Nweke, M. (2018). The 226Ra, 232Th and 40K contents in the Abakaliki baked shale construction materials and their potential radiological risk to public health, southeastern Nigeria. *Journal of environmental geology*, 2(1).

[22] UNSCEAR.(1994). Sources and Effects of Ionizing Radiation. UNSCEAR 1994 Report to the General Assembly, with Scientific Annexes. United Nations publications, 49.

[23] Nuclear Energy Agency. (1979). Exposure to radiation from the natural radioactivity in building materials: report. OECD.

[24] Kaiser, S. (1999). Radiological protection principles concerning the natural radioactivity of building materials. *Radiation Protection*, 112.

[25] United Nations. Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation: sources (Vol. 1). United Nations Publications.

[26] Abojassim, A. A., & Rasheed, L. H. (2021). Natural radioactivity of soil in the Baghdad governorate. *Environmental Earth Sciences*, 80(1), 1-13.

[27] ICRP, International Commission on Radiological Protection ICRP publication 65, *Annals of the ICRP* 23(2). Pergamon Press, Oxford. 1993.