Data of the rhodium(triphenylphosphine)carbonyl-2,4-dioxo-3-pentyl-4-hydroxybenzoate plus iodomethane oxidative addition and follow-up reactions

Marrigje M Conradie

Department of Chemistry, University of the Free State, PO Box 339, 9300 Bloemfontein, Republic of South Africa

Article history:
Received 20 August 2020
Accepted 26 August 2020
Available online 1 September 2020

Keywords:
Rhodium
Oxidative addition
DFT
CO insertion
Methyl migration

Abstract

Density functional theory (DFT) free energy data and the reaction mechanism of the rhodium(triphenylphosphine)carbonyl-2,4-dioxo-3-pentyl-4-hydroxybenzoate plus iodomethane reaction are presented. The rhodium(I) reactant is a simplified model of the rhodium(I) of the rhodium(triphenylphosphine)carbonyl-2,4-dioxo-3-pentyl-4-decanyloxybenzoate plus iodomethane reaction (full model), presented in the related research article “Rhodium(triphenylphosphine)carbonyl-2,4-dioxo-3-pentyl-4-decanyloxybenzoate: A DFT study of Oxidative Addition and Methyl Migration” [1]. The goal is to illustrate that DFT calculations of a simplified model give the same information regarding the reaction scheme and free energy data as for the full model, while it requires much less computational resources to obtain the data. Furthermore the reaction scheme of the simplified model are in agreement with experimental observation of the full model [2].

© 2020 The Author. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Physical and Theoretical Chemistry
Specific subject area	DFT calculations of chemical reaction kinetics.
Type of data	Image
How data were acquired	Electronic structure calculations, using the Amsterdam Density Functional (ADF) 2018 programme.
Parameters for data collection	Default criteria for calculations as implemented in the ADF 2018 programme were used, with the implicit solvent model COSMO, the BP86 functional with D3 dispersion correction and all electron STO-ZORA/TZP basis set, computing analytical frequencies.
Data format	Raw
Data accessibility	With the article.
Related research article	M.M. Conradie, Rhodium{(triphenylphosphine)carbonyl-2,4-dioxo-3-pentyl-4-decanyloxybenzoate: A DFT study of Oxidative Addition and Methyl Migration, Inorganica Chim. Acta. (2020) In Press. https://doi.org/10.1016/j.ica.2020.119954

Value of the Data

- Oxidative addition reactions has application in catalysis, such as the Monsanto process, where a rhodium catalyst reacts with methyl iodide. Free energy data and understanding of related reactions between rhodium and methyl iodide may lead to the development of more efficient catalysts.
- Data of free energy involved in model catalytic cycles is vital for industry, while theoretical chemists may use the data for the design of alternative cheaper catalysts.
- Comparison of the free energy data of a simplified model reaction mechanism versus the full model reaction mechanism, suggest that the simplified rhodium complex should have a similar experimental behaviour as the full large experimental rhodium molecule.
- Free energy data of a simplified model reaction show in this case that the same information may be obtained by a simplified reactant as by a full large reactant, saving on computational resources.

1. Data Description

This data article provide free energies and the reaction mechanism of the [Rh(CH₃COC(HOC₆H₄COO)COCH₃)(CO)(PPh₃)]+CH₃I reaction, a simplified model system of the [Rh(CH₃COC(C₆H₅)OCH₃)(CO)(PPh₃)]+CH₃I reaction described in the related research article [1], see Fig. 1 for the BP86-D3 optimized geometries of the simplified and full experimental rhodium(I) reactant (CH₃I = methyl iodide). Both the full and simplified reactant are of the type [Rh(β-diketonato)(CO)(PPh₃)] of which various experimental [3–6] and some theoretical studies [7–9] are available, however none of the other published [Rh(β-diketonato)(CO)(PPh₃)] studies had a R³ substituent on the C3 position of the β-diketone.
H$_3$C-CO-CHR3-CO-CH$_3$. The free energies of the different rhodium(III) reaction products of the simplified and full experimental system shown in Fig. 2, are compared in Fig. 3. The same reaction scheme is obtained for the simplified model as for the full experimental model, see Scheme 1, that are in agreement with experimental observation of the full model [2]. The free energies involved in the transition states and different reaction products of the simplified and full experimental system are compared in Fig. 4. Tables with the free energy data as well as the optimized geometries are provided as supporting information. Free energy data of the full model is from the related research article [1].

2. Experimental design, materials and methods

DFT calculations were done as described in the related research article [1], namely the ADF 2018 (Amsterdam Density Functional) programme [10] with the BP86 functional, the Grimme’s D3 dispersion correction and all electron STO-ZORA/TZP basis set as implemented in ADF. Solvent effects were taken into account in all calculations using the implicit COSMO model of solvation with methanol ($\varepsilon_0 = 32.6$) as solvent. Analytical frequency analyses have been performed on all the solvent-optimized geometries to verify minima, TS geometries and to obtain free energies G. The geometries of the different molecules was constructed, using ChemCraft [11]. ChemCraft was also used to visualize the optimized geometries obtained. Free energies were obtained from the ADF output files, looking for “Gibbs free energy”. Example input files, as well as the optimized geometries are provided as supporting information.
Fig. 2. Geometries of the different Rh(III) products of the Rh(I) + CH₃I reaction. Each product shown also has an enantiomer (mirror image). $R^3 = (\text{HOC}_6\text{H}_4\text{COO})$ for the simplified model of this study and $R^3 = (\text{C}_{10}\text{H}_{21}\text{OC}_6\text{H}_4\text{COO})$ for the full model from [1].
Fig. 3. Relative BP86-D3 calculated free energies ΔG (kJ mol$^{-1}$) of the different Rh(III)-alkyl and Rh(III)-acyl reaction products of the Rh(I) + CH$_3$I reaction for the full experimental model [1,2] and the simplified model. G(Rh(I) + CH$_3$I) is taken as zero. Acyl5 converged to acyl2. 1 eV = 96.485 kJ mol$^{-1}$.

Fig. 4. Relative free energies ΔG (kJ mol$^{-1}$) of the reactants, transition states and products of the Rh(I) + CH$_3$I reaction for the full experimental model [1,2] and the simplified model. G(Rh(I) + CH$_3$I) is taken as zero. 1 eV = 96.485 kJ mol$^{-1}$.
Scheme 1. Schematic presentation of the DFT calculated different reaction steps of the Rh(I) + CH₃I reaction. The movement of the applicable atoms in the transition states is indicated with red arrows. From reference [1] with stylistic changes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Ethics statement

This work does not require any ethical statement.

Declaration of Competing Interest

The author declares that there is no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The author acknowledge financial support from the South African National Research Foundation (Grant numbers 108960). The CHPC of South Africa, the High Performance Computing facility of the UFS and the Norwegian Supercomputing Program (UNINETT Sigma2, Grant no. NN9684K) are acknowledged for computer time.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106253.
References

[1] M.M. Conradie, Rhodium(triphenylphosphine)carbonyl-2,4-dioxo-3-pentyl-4-decanoyloxybenzoate: a DFT study of oxidative addition and methyl migration, Inorganica Chim. Acta (2020), doi:10.1016/j.ica.2020.119954.

[2] N.F. Stuurman, B.E. Buitendach, L. Twigge, P.J. Swarts, J. Conradie, Rhodium(triphenylphosphine)carbonyl-2,4-dioxo-3-pentyl-4-decanoyloxybenzoate: synthesis, electrochemistry and oxidative addition kinetics, New J. Chem. 42 (2018) 4121–4132, doi:10.1039/C7NJ05039A.

[3] J. Conradie, G.J. Lamprecht, A. Roedt, J.C. Swarts, Kinetic study of the oxidative addition reaction between methyl iodide and [Rh(FcCOCHCOCF$_3$)(CO)(PPh$_3$)]$_2$: Structure of [Rh(FcCOCHCOCF$_3$)(CO)(PPh$_3$)(CH$_3$)(I)], Polyhedron 26 (2007) 5075–5087, doi:10.1016/j.poly.2007.07.004.

[4] N.F. Stuurman, J. Conradie, Iodomethane oxidative addition and CO migratory insertion in monocarbonylphosphine complexes of the type [Rh((C$_6$H$_5$)COCHCO((CH$_2$)$_n$CH$_3$))CO](PPh$_3$)], J. Organomet. Chem. 694 (2009) 259–268, doi:10.1016/j.jorganchem.2008.10.040.

[5] S.S. Basson, J.G. Leipoldt, J.T. Nel, The oxidative addition of methyl iodide to β-diketonecarbonyltriphenylphosphinerhodium(I) complexes, Inorg. Chim. Acta 84 (1984) 167–172, doi:10.1016/S0020-1693(00)82403-2.

[6] Y.S. Varshavsky, T.G. Cherkasova, N.A. Buzina, L.S. Bresler, Spectral characteristics of products formed by reaction between Rhacac(PPh$_3$)(CO) and methyl iodide, J. Organomet. Chem. 464 (1994) 239–245, doi:10.1016/0022-328X(94)87280-5.

[7] J. Conradie, Density functional theory calculations of Rh-β-diketonato complexes, Dalton Trans. 44 (2015) 1503–1515, doi:10.1039/C4DT02268H.

[8] M.M. Conradie, J. Conradie, Methyl iodide oxidative addition to [Rh(acac)(CO)(PPh$_3$)]: an experimental and theoretical study of the stereoechemistry of the products and the reaction mechanism, Dalton Trans. 40 (2011) 8226–8237, doi:10.1039/c1dt10271k.

[9] M.M. Conradie, J. Conradie, Methyl iodide oxidative addition to rhodium(I) complexes: a DFT and NMR study of [Rh(FcCOCHCOF$_3$)(CO)(PPh$_3$)] and the rhodium(III) reaction products, S. Afr. J. Chem. 61 (2008) 102–111.

[10] G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, Chemistry with ADF, J. Comput. Chem. 22 (2001) 931–967, doi:10.1002/jcc.1056.

[11] CHEMCRAFT, (n.d.). http://www.chemcraftprog.com/.