Research paper

Fisetin is a senotherapeutic that extends health and lifespan

Matthew J. Yousefzadeh, Yi Zhu, Sara J. McGowan, Luise Angelini, Heike Fuhrmann-Stroissnigg, Ming Xu, Yuan Yuan Ling, Kendra I. Melos, Tamar Pirtskhalava, Christina L. Inman, Collin McGuckian, Erin A. Wade, Jonathon I. Kato, Diego Grassi, Mark Wentworth, Christin E. Burd, Edgar A. Arriaga, Warren L. Ladiges, Tamar Tchkonia, James L. Kirkland, Paul D. Robbins, Laura J. Niedernhofer.

Senescent Life
span
Progeria
Aging
Senolytic

Keywords:
Senolytic
Aging
Progeria
Healthspan
Senescence

Article history:
Received 11 July 2018
Received in revised form 30 August 2018
Accepted 10 September 2018
Available online 29 September 2018

Abstract

Background: Senescence is a tumor suppressor mechanism activated in stressed cells to prevent replication of damaged DNA. Senescent cells have been demonstrated to play a causal role in driving aging and age-related diseases using genetic and pharmacologic approaches. We previously demonstrated that the combination of dasatinib and the flavonoid quercetin is a potent senolytic improving numerous age-related conditions including frailty, osteoporosis and cardiovascular disease. The goal of this study was to identify flavonoids with more potent senolytic activity.

Methods: A panel of flavonoid polyphenols was screened for senolytic activity using senescent murine and human fibroblasts, driven by oxidative and genotoxic stress, respectively. The top senotherapeutic flavonoid was tested in mice modeling a progeroid syndrome carrying a p16INK4a-luciferase reporter and aged wild-type mice to determine the effects of fisetin on senescence markers, age-related histopathology, disease markers, and health span and lifespan. Human adipose tissue explants were used to determine if results translated.

Findings: Of the 10 flavonoids tested, fisetin was the most potent senolytic. Acute or intermittent treatment of progeroid and old mice with fisetin reduced senescence markers in multiple tissues, consistent with a hit-and-run senolytic mechanism. Fisetin reduced senescence in a subset of cells in mice in the murine and human adipose tissue, demonstrating cell-type specificity. Administration of fisetin to wild-type mice late in life restored tissue homeostasis, reduced age-related pathology, and extended median and maximum lifespan.

Interpretation: The natural product fisetin has senotherapeutic activity in mice and in human tissues. Late life intervention was sufficient to yield a potent health benefit. These characteristics suggest the feasibility to translation to human clinical studies.

Fund: NIH grants P01 AG043376 (PDR, LJN), U19 AG056278 (PDR, LJN, WILL), R24 AG047115 (WILL), R37 AG013925 (JLK), R21 AG07984 (JLK), P30 DK054456 (Adipocyte Subcore, JLK), a Glenn Foundation/American Federation for Aging Research (AFAR) BIG Award (JLK), Glenn/AFAR (LJN, CEB), the Ted Nash Long Life and Aging Research Grant (JLK, the Connor Group (JLK), Robert J. and Theresa W. Ryan (JLK), and a Minnesota Partnership Grant (AMAY-UMN#99)-P00461041-1 (JLK, EAA).

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pharmacologically targeting fundamental mechanisms of aging is anticipated to reduce the severity or delay the onset of multiple age-associated co-morbidities simultaneously [5–7]. One key mechanism demonstrated to drive aging is cellular senescence, whereby accumulation of DNA damage and/or other cellular stressors [1–4] cause proliferating [8,9] or terminally differentiated non-dividing cells [10–13] to...
Research in Context

Evidence before this study

Pharmacological targeting of fundamental mechanisms of aging has the ability to reduce the severity or delay the onset of multiple age-associated co-morbidities simultaneously. One key mechanism demonstrated to drive aging is cellular senescence, whereby accumulation of DNA damage and/or other cellular stressors cause proliferating or terminally differentiated non-dividing cells to enter a state characterized by profound chromatin and secretome changes, increased expression of the cell cycle inhibitor p16\(^{INK4a}\) in many but not all senescent cells, replicative arrest, and resistance to apoptosis. Senescent cells can develop a senescence-associated secretory phenotype (SASP), which has deleterious paracrine and systemic effects. Senescent cells are rare in young individuals, but increase with age in multiple tissues. Drugs able to selectively kill senescent cells, termed senolytics, have been identified including the combination of dasatinib and quercetin (D ± Q), which improves many aspects of aging in mouse models of accelerated and natural aging. However, safer and improved drugs targeting senescence likely are needed to eliminate senescent cells safely from multiple organs or even within a single tissue.

Added value of the study

This study identifies the flavonoid polyphenol fisetin as having greater senotherapeutic activity in cultured cells than quercetin. In addition, fisetin had potent senotherapeutic activity in vivo. Treatment of progeroid and aged wild-type mice acutely or intermittently with fisetin reduced senescence markers in multiple tissues and a subset of cell types in adipose tissue. Importantly, chronic administration of fisetin to wild-type mice late in life improved tissue homeostasis, suppressed age-related pathology, and extended median and maximum lifespan. This result, similar to a recent report on the combination of D ± Q, is the first to document extension of both health span and lifespan by a senolytic with few side effects, even though administration was started late in life.

Implications of all the available evidence

Taken together, these data establish the natural product fisetin as a potent senotherapeutic, able to reduce the burden of senescent T, NK, progenitor, and endothelial cells from fat tissue, and demonstrate that reducing the senescent cell burden in mice even late in life is sufficient to have a significant health impact. Given the known safety profile of fisetin in humans, clinical trials are beginning in order to test if fisetin can be used effectively to reduce senescent cell burden and alleviate dysfunction in elderly subjects.

The role of senescent cells in age-related decline was identified by studies demonstrating the therapeutic benefits of clearing of senescent cells from progeroid or naturally-aging INK-ATTAC mice using a suicide gene expressed only in p16\(^{INK4a}\) expressing cells [J.L.K., T.T., J.M. van Deursen, and D.J. Baker [all Mayo Clinic] designed the INK-ATTAC strategy [19,20,24–26]]. Conversely, injection of senescent cells is sufficient to drive age-related conditions such as osteoarthritis, frailty, and decreased survival [26,27]. Thus, the development of therapies that selectively kill senescent cells was anticipated to delay the onset of aging phenotypes, attenuate severity of age-related diseases, improve resilience, and enhance survival. Importantly, it was also predicted that senolytic therapies could be administered intermittently, serving to reduce the senescent cell burden by treating quarterly or even annually, which minimizes the risk of side effects [28,29].

We previously identified drugs that selectively kill senescent cells using a hypothesis-driven discovery paradigm [30]. Senescent cells are resistant to apoptosis due to upregulation of Senescent-Cell Anti-Apoptotic Pathways (SCAPs) [28,29]. Targeting SCAPs in cell culture using a combination of dasatinib and quercetin, an inhibitor of BCL-2 pro-survival pathway members, Navitoclax, or the more specific BCL-XL inhibitor, A1331852, results in apoptosis of some but not all senescent cell types [30–33]. Treatment of mice with dasatinib plus quercetin (D + Q) improves cardiac ejection fraction and increases vascular reactivity in old mice after a single, 3 day treatment course [30,34]. In addition, D + Q treatment decreases vascular calcification and increases vascular reactivity in hypercholesterolemic, high fat diet fed ApoE\(^{-/-}\) mice after three monthly 3 day treatment courses [34]. Intermittent oral D + Q treatment improves pulmonary function and reduces pulmonary fibrosis in a bleomycin-induced murine model of idiopathic pulmonary fibrosis [35], reduces high fat diet-induced liver steatosis [36], alleviates gait impairment caused by leg irradiation [30] and reduces osteoporosis in aged mice [10]. Finally, D + Q also decreases frailty, osteoporosis, loss of intervertebral disc glycosaminoglycans, and spondylosis in the Ercc1\(^{-/-}\) mouse model of a human progeroid syndrome after intermittent treatment [30]. Similarly, Navitoclax, which decreases abundance of some but not all human and mouse senescent cell types in vitro [33], reduces hematologic dysfunction caused by whole body radiation [31] and reduces senescent cell-like, intimal foam cell/macrophages in vascular plaques in high fat fed Ldlr\(^{-/-}\) mice [37]. Treatment with A1331852 reduces senescent cholangiocytes and liver fibrosis in Mdr2\(^{-/-}\) mice [38]. Taken together, these studies demonstrate that senolytic compounds can have significant effects on chronic degenerative diseases and age-related pathology.

However, not all senescent cells are the same. Senescent cells may express different SASP factors, senescent markers, and more importantly use different mechanisms to resist apoptosis [30,39]. Furthermore, certain cancer therapeutics target SCAPs, e.g. Navitoclax, and could be repurposed as senolytics, but cause considerable toxicity including neutropenia and platelet deficiency [40,41]. Thus, new and improved senotherapeutic drugs and combinatorial approaches are needed to eliminate senescent cells safely from multiple organs or even within a single tissue [28–30,42].

Here, we screened a panel of flavonoids for senotherapeutic activity to determine if we could improve upon quercetin. In primary murine embryonic fibroblasts induced to senesce through oxidative stress and in human fibroblasts induced to senesce with the genotoxin etoposide, fisetin was most effective at reducing senescent markers. Fisetin also reduced senescent markers in progeroid Ercc1\(^{-/-}\) mice and aged WT mice, as well as human explants of adipose tissue. Fisetin treatment extended the health and lifespan in WT mice even when treatment was initiated in aged animals. This flavonoid is a natural compound present in many fruits and vegetables such as apples, persimmon, grapes, onions, cucumbers and strawberries [43,44], suggesting that it is imminently translatable. Importantly, no adverse effects of fisetin have been reported, even when given at high doses [45]. Thus, our results suggest that supplementation or even intermittent
treatment with this safe, natural product could improve healthy aging, even in elderly individuals.

2. Materials and methods

2.1. Chemicals

Chemicals were from Sigma-Aldrich (St. Louis) unless otherwise noted. The flavonoids were purchased from Selleckchem (Houston, TX): resveratrol (Cat #S1396), fisetin (Cat #S2298), luteolin (Cat #S2320), rutin (Cat #S2350), epigallocatechin gallate (EGCG, Cat #S2250), curcumin (Cat #S1848), pirenidone (Cat #S2907), and myricetin (Cat #S2326). Apigenin, catechin, and quercetin were purchased from Sigma-Aldrich (Cat #1760595, #1096790 and 1,592,409, respectively).

2.2. Animals

All animal studies were conducted in compliance with the U.S. Department of Health and Human Services Guide for the Care and Use of Laboratory Animals and were approved by the Scripps Florida or Mayo Clinic Institutional Animal Care and Use Committees. Erc1−/− mice were bred as previously described [46]. p16-luciferase reporter mice were obtained from Ohio State University [47] and bred to create an albino C57BL/6 β-gal + / and FVB/n p16 Δmice. These mice were further crossed to create F1 p16 +/−;Erc1−/− mice with white fur for imaging. All animals were genotyped by TransnetYX (Cordova, TN) and routinely noted. The p16+/Luc;Ercc1+/− mice were dosed with 100 mg/kg of resveratrol (Cat #S2298), luteolin (Cat #S2350), epigallocatechin gallate (EGCG, Cat #S2250), curcumin (Cat #S1848), pirenidone (Cat #S2907), and myricetin (Cat #S2326). Apigenin, catechin, and quercetin were purchased from Sigma-Aldrich (Cat #1760595, #1096790 and 1,592,409, respectively).

2.3. MEF isolation

The Erc1−/− MEFs were isolated from pregnant females at embryonic day 13 (E13) and cultured in a 1:1 mixture of Dulbecco’s modified Eagle’s medium and Ham’s F10 with 10% fetal bovine serum, 1× non-essential amino acids, penicillin, and streptomycin and incubated at 3% O2 initially, followed by a shift to 20% for 5 passages to induce senescence [48]. Cells were genotyped by TransnetYX (Cordova, TN) and routinely tested for mycoplasma contamination using the MycoAlert PLUS mycoplasma detection kit (Lonza, Walkersville, MD).

2.4. Assays to identify senotherapeutics

Erc1−/− MEFs were passaged 5 times at 20% O2 to induce senescence then seeded at 5000 cells per well in 96 well plates at least 6 h prior to treatment. Following the addition of drugs, the MEFs were incubated for 24–48 h at 20% O2. Subsequently SA-β-gal activity was measured in three independent experiments, as previously described [49]. Briefly, cells were washed with PBS then 10 μM C12FDG added in fresh culture medium and incubated for 2 h. Ten min prior to analysis, 2 μg/mL Hoechst dye was added. An IN Cell Analyzer 6000 was used to quantitate total number of viable cells (Hoechst +) and the number of senescent cells (C12FDG +). All samples were analyzed in duplicate with 3–5 fields per well and reported as the mean ± S.D. Senotherapeutic activity was confirmed in human fibroblasts (IMR90). The cells were obtained from American Type Culture Collection (ATCC) and cultured in EMEM medium with 10% FBS and antibiotics. To induce senescence, the cells were treated for 24 h with 20 μM etoposide. Two days after etoposide removal, ~70% of the cells were SA-β-gal +. Cells were treated for 48 h with different concentrations of fisetin (1–15 μM) and the percentage of SA-β-gal + cells was determined using C12FDG, as described above.

2.5. IVIS in vivo imaging detection of luciferase activity

Isoflurane-anesthetized mice (n = 2–10 mice per group) were injected intraperitoneally with 10 μL per gram body weight D-luciferin substrate (Caliper Life Sciences, Hopkinton, MA; 15 mg/mL diluted in sterile PBS) and were imaged using an IVIS Lumina (PerkinElmer, Billerica, MA), as previously described [47,50].

2.6. Measurement of lipid peroxidation

Levels of 4-hydroxynonenal-protein adducts of liver lysates (n = 4–6 mice per group) were determined in RIPA buffer were measured in the livers of mice using the OxiSelect HNE Adduct Competitive ELISA kit (Cell Biolabs, San Diego, CA), as described [50].

2.7. Measurement of glutathione

Murine livers (n = 4–7 mice per group) fixed in 5% sulfosalicylic acid were prepared and analyzed for the concentration of reduced (GSH) and oxidized (GSG) glutathione using the Glutathione Assay Kit (Cayman Chemical, Ann Arbor, MI), as described [50]. Sample absorbance was measured at 405 nm using a plate reader and the ratio of GSH:GSSG was reported for each sample.

2.8. Clinical chemistries

Whole blood (n = 3–6 mice per group) was collected immediately following animal euthanasia via cardiac puncture into heparinized tubes for analysis of clinical chemistries utilizing VetScan Comprehensive Diagnostic Profile rotors on a VetScan VS2 (Abaxis, Union City, CA).

2.9. Serum MCP-1

Serum concentrations of MCP-1 (n = 5 mice per group) were measured using a mouse-specific MCP-1 ELISA (Raybiotech, Norcross, GA), as described [51].

2.10. Histopathology

Mouse tissues were collected at necropsy (n = 3–8 mice per group) and placed in 10% neutral buffered formalin for 48 h, transferred to 70% alcohol, and subsequently processed into paraffin blocks for sectioning and hematoxylin and eosin staining. Tissue sections were scored for the presence and severity of a well-defined panel of age-related lesions by a veterinary pathologist to create a composite tissue lesion score for each animal that reflects healthspan, as previously described [52].

2.11. RNA isolation and qPCR

Tissues were harvested from mice (n = 4–10 mice per group) and snap frozen in liquid nitrogen. Total RNA was harvested from tissues and the expression of several markers of senescence was measured, as previously described in [51]. Total RNA was quantified using a Nanodrop spectrophotometer (Thermo Fisher, Waltham, MA) and 1 μg of total RNA was used to generate cDNA using the Transcriptor First Strand cDNA synthesis kit (Roche, Basel, Switzerland). Gene expression changes were carried out in 20 μL reactions using the Universal SYBR Green master mix with ROX (Roche) and a StepOne thermocycler (Thermo Fisher). Primers for the genes of interest are as follows: Cdkn1a (p21) Fwd 5′-GCTAAGGTGTCGCTGCTCCG-3′, Cdkn1a (p21Flp1) Rev. 5′-CGGTTCCGAGACATGACGAG-3′, Cdkn2a (p16Ink4a) Fwd 5′-GCAGAA GAGCTGCTACGTGAA-3′, Gapdh Fwd 5′-AAGGTATCCGAGCTGAA-3′.
Gapdh
Rev. 5'-CTGCTCCACCTTCTTGA-3'; Il6 Fwd 5'-CTGGGAAATCG TGGAAAT-3'; Il6 Rev. 5'-CGATTGTGATACCTCATC-3'; Mcp1 Fwd 5'-
GCATCAGGTGGCCTCA-3'; Mcp1 Rev. 5'-CTCAGCTACTCATGGGG ATCA-3'. Data were analyzed by ΔΔCt method and gene expression
was normalized to Gapdh.

2.12. Isolation of peripheral blood CD3+ T lymphocytes

Blood was obtained from mice n = 4–10 mice per group) postmor-
tem by cardiac puncture, immediately placed into 1/10th volume of
0.5 M EDTA, and gently mixed to prevent coagulation. Samples were
centrifuged at 300 g for 10 min in a table top centrifuge. The supernatant
was discarded and the cell pellet was resuspended in 1 mL ACK buffer
(150 mM NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA, pH 7.4) and incu-
bated at room temperature for 10 min to lyse red blood cells. The cells
were spun down and ACK lysis repeated. The cells were spun down,
dwashed with PBS, and resuspended in PBS containing 0.5% PBS and
2 mM EDTA. Fifty μL of CD3-Biotin conjugate (Miltenyi Biotech, San
Diego, CA) were added to the cell suspension and incubated for
30 min on ice. The cells were centrifuged at 100 g for 10 min and washed
twice in resuspension buffer. The cell pellet was resuspended in 500 μL
of resuspension buffer and 100 μL of anti-biotin microbeads were added
followed by a 15 min incubation on ice. The cells were washed twice
and then resuspended in 500 μL of resuspension buffer and applied to
a MACS column attached to a magnet. The cells were washed with 3 col-
umn volumes of resuspension buffer before elution. The cells were cen-
trifuged and RNA isolation conducted using an RNasey kit (Qiagen,
Germantown, MD) according to the manufacturer’s specifications.
qPCR analysis of senescence markers was performed as indicated above.

2.13. Senescence-associated β-galactosidase (SA-β-gal) staining of tissue

Fresh fat tissues (n = 6–7 mice per group) were fixed and stained to
detect senescence-associated β-galactosidase activity, as described [53].

2.14. Mass cytometry/CyTOF in adipose tissue

This high dimensional single-cell proteomics technique combines
time-of-flight mass spectrometry with metal-labelling technology to
detect up to 40 protein targets per cell [54,55]. A panel of antibodies
based on cell surface markers and transcription factors (see Supplemen-
tal Table 1) was designed for CyTOF analysis of adipose tissues. Each an-
tibody was tagged with a rare metal isotope and its function veri-
tified mass cytometry according to the factory manual (Multi Metal labeling
Kits, Fluidigm, CA). A CyTOF-2 mass cytometer (Fluidigm, South San
Diego, CA) were added to the cell suspension and incubated for
2 mM glutamine, MEM vitamins, MEM non-essential amino acids, and
antibiotics with 20 μM of fisetin or DMSO. After 48 h, the adipose ex-
plants were washed 3 times with PBS and was then maintained in the
same media without drugs for 24 h to collect conditioned medium
(CM) for multiplex protein analysis. The adipose explants then were
fixed and stained to detect senescence-associated β-galactosidase activ-
ity [85].

2.16. Multiplex protein analyses

Pro-inflammatory cytokine and chemokine protein levels in CM
from the adipose tissue explants (n = 3) were measured using Luminex
xMAP technology. The multiplexing analysis was performed using the
Luminex™ 100 system (Luminex, Austin, TX) by Eve Technologies Corp.
(Calgary, Alberta, Canada). Human multiplex kits were from
Millipore (Billerica, MA). The secreted protein levels in CM were nor-
malized to the tissue weights and plotted as a percent relative to the ve-
hicle control.

3. Results

We previously demonstrated that the flavonoid quercetin, an anti-
oxidant, which also targets PI3 kinase delta as well as certain BCL-2 fam-
ily members, reduces senescence in primary human umbilical vein
endothelial cells (HUVECs) and murine embryonic fibroblasts (MEFs),
especially when used in combination with the tyrosine kinase inhibitor
dasatinib [30]. To determine if other flavonoids might have more potent
senotherapeutic activity than quercetin, a panel of flavonoids was
screened for effects on senescence induced by oxidative stress [49]. Pri-
mary MEFs from Ercc1 Δ/Δ mice were used. These cells undergo prematu-
re senescence if grown at atmospheric oxygen [56]. Ercc1 Δ/Δ MEF
cultures were established at 3% O2 then shifted to 20% O2 for three pas-
sages to induce senescence. To quantify senescent cells, SA-β-gal activ-
ity was measured using the fluorescent substrate C12,FDG [57] using an
IN Cell Analyzer 6000 confocal imager. At a dose of 5 μM, fisetin was
most effective in reducing the fraction of SA-β-gal positive MEFs
(Fig. 1A). Luteolin and curcumin also showed weak activity at a dose
where quercetin was ineffective. In addition, fisetin reduced senescence
in MEFs and IMR90 cells in a dose-dependent manner (Fig. 1B and C).
These results are consistent with our previous finding that fisetin selec-
tively reduces the viability of senescent HUVECs without affecting pro-
liferating cells [32]. In HUVECs, fisetin induces apoptosis as measured
by caspase3/7 activity, whereas in MEFs, fisetin suppressed markers of
senescence without evidence of cell killing [32].

To test the senotherapeutic activity of fisetin in vivo, initially
progeroid Ercc1 Δ/Δ mice carrying a p16Ink4a−/−luciferase reporter trans-
gene were used [47,50]. These mice show accelerated accumulation of
senescent cells compared to WT mice, but the overall level of senes-
cence never exceeds that of naturally aged mice [50]. Ercc1 Δ/Δ;
p16Ink4a−/−luciferase mice were fed a standard Teklad 2020 chow diet
with or without supplementation with 500 ppm (500 mg/kg) of fisetin,
ad libitum (approximately 60 mg/kg fisetin per day). The mice were ex-
posed to a fisetin diet intermittently from 6 to 8 then 12–14 wks of age.
Whole body luciferase activity was measured before starting the fisetin
diet then weekly thereafter. Animals in the two treatment groups had
an equivalent luciferase signal prior to administration of the experimen-
tal diet. Dietary fisetin suppressed the luciferase signal of Ercc1 Δ/Δ;
p16Ink4a−/−luciferase mice significantly (Fig. 2A-B). The luciferase signal
was lower at every time point after initiation of the fisetin diet
(Fig. 2B-C). Notably, the level of p16Ink4a expression remained signi-
ficantly lower in the fisetin-treated mice throughout the 4 week period
when the animals were not exposed to fisetin (8–12 wks of age, Fig.
2B). This is consistent with a mechanism of action where senescent
cells are cleared (senolytic) or senescence is reversed (senomorphic)
but not a mechanism in which fisetin must be chronically present to
suppress senescence.
To validate the imaging data, Ercc1−/Δ mice were treated with the 500 ppm fisetin diet for 10 wks beginning at 10 wks of age, then tissues collected for measurement of multiple markers of senescence including p16ink4a and p21cip1 and SASP factors. Expression of p21cip1 was included since not all senescent cells are p16ink4apositive: some are p21cip1apositive, but p16ink4anegative. As shown in Fig. 3A-D, p16ink4a and p21cip1 mRNA, as well as SASP markers, were significantly elevated in the fat, spleen, liver, and kidney of Ercc1−/Δ mice compared to age-matched WT mice. Fisetin reduced expression of senescence and SASP markers significantly in all tissues. Similarly, there was a reduction in the expression of p16ink4a, p21cip1 and the SASP factors in peripheral blood CD3+ T cells (Fig. 3E), a cell type that demonstrates a robust increase in p16ink4a expression as humans age [58]. In addition, fisetin reduced oxidative stress in the liver as determined by measuring the lipid peroxidation product 4-hydroxynonenal (HNE) adducts and an increase in the ratio of reduced to oxidized glutathione (Fig. 3F-G), consistent with data

![Fig. 1. Identification of fisetin as a putative senescent marker.](image)

![Fig. 2. Intermittent treatment of progeroid mice with fisetin reduces senescent cell burden.](image)
indicating fisetin has antioxidant activity as well as increasing intracellular glutathione [45].

To confirm further the data obtained in progeroid mice, we employed naturally aged C57BL/6 mice and different methods of detecting senescence in tissue. 22–24-month-old mice were treated with 100 mg/kg fisetin for 5 consecutive days by oral gavage, or vehicle only. Mice were sacrificed 3 days after the last dose and the number of SA-β-gal+ cells present in inguinal fat was determined by staining tissue sections to measure SA-β-gal activity. Fat tissue was chosen for the analysis since there is a clear upregulation of senescence markers including SASP in our mouse models, the tissue has a significant increase in the fraction of senescent cells including senescent immune cells, such as T and endothelial cells and macrophages, and injection of senescent pre-adipocytes is sufficient to induce frailty in young mice [26,50,59,60]. Short-term treatment with fisetin significantly reduced the fraction of senescent cells in white adipose tissue (WAT). To determine which cells become senescent in WAT and which cell types are cleared by fisetin, CyTOF analysis was performed on subcutaneous adipose tissue from aged INK-ATTAC mice expressing a Flag-tagged FKBP-Casp8 protein from the \(p^{16\text{ink}^{-}} \) promoter (Fig. 4B). The Flag tag enabled identification of senescent \(p^{16\text{ink}^{-}} \)-expressing cells using an anti-Flag antibody. CyTOF analysis revealed a significantly elevated fraction of senescent cells in fat from old mice compared to young and identified these cells as mesenchymal stem/progenitor cells, T lymphocytes, natural killer cells, and endothelial cells (Fig. 4C). The short-course treatment with fisetin resulted in a significant reduction in the fraction of senescent cells in each of these populations (Fig. 4C). Fisetin reduced the fraction of \(p^{16\text{ink}^{-}} \)-expressing, c-Kit+ stem/progenitor cells, CD4+ and CD8+ T cells, NK-1.1+ NK cells, and CD146+CD31+ endothelial cells (Fig. 4C). These data are also shown in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) analysis (Supplemental Fig. 1). To confirm senescence in these cell populations, CENP-B protein was measured by CyTOF (Fig. 4D). CENP-B binds centromeric satellite DNA [61], which becomes distented in senescent cells. The fraction of CENP-B+ cells in WAT was significantly increased in old mice compared to young and suppressed by treating the mice with a short-course of fisetin, in the same manner as \(p^{16\text{ink}^{-}} \)-expressing/FLAG+ cells. In contrast, p21\(^{\text{Cip1}} \) (another cell-cycle regulator that is often up-regulated in senescent cells) expression was not significantly reduced in the fraction of macrophages or dendritic cells with high \(p^{16\text{ink}^{-}} \). This effect on macrophages and dendritic cells was observed in \(p^{16\text{ink}^{-}} \)-expressing cells in subcutaneous WAT including mesenchymal stem/progenitor, immune, and endothelial cells. This is the first time a senotherapeutic has been demonstrated to differentially affect senescent cells of different lineages in vivo.

To determine if fisetin also reduces senescence in human adipose tissue, greater omental adipose explants resected during surgery were treated with fisetin ex vivo. The tissue explants were treated for 48 h with 20 µM fisetin, washed, and cultured for an additional 24 h before measuring SASP factors by multiplex protein analysis [26]. Fisetin treatment caused a significant reduction in the percent of SA-β-gal positive cells (Fig. 4E) as well as in expression of the SASP factors IL-6, IL-8,
and MCP-1 in human WAT (Fig. 4F). These data support the translational potential of fisetin to reduce senescent cell burden and associated inflammation.

To determine if fisetin-mediated clearance of senescent cells impacts the health or lifespan of mice, WT fl C57BL/6:FVB mice were fed a diet containing 500 ppm fisetin beginning at 85 wks of age, roughly equivalent to age 75 years in humans. This resulted in an extension of median as well as maximal lifespan (Fig. 5A-B). Amylase and alanine aminotransferase (ALT) were significantly lower in aged WT mice fed the diet supplemented with fisetin, consistent with improved pancreatic and liver homeostasis (Fig. 5C). Brain, kidney, liver, lung, and forepaw tissue sections were stained with hematoxylin and eosin and evaluated by a veterinary pathologist. Using the Geropathology Grading Platform to score age-related lesions [63], several tissues had reduced age-related pathology in the fisetin diet group compared to the control diet (Fig. 5D). An example of this is illustrated in a representative image from renal sections in Fig. 5E. Similar to the progeroid mice, fisetin reduced the expression of senescence and SASP factor expression in peripheral CD3+ T cells (Fig. 5F). Furthermore, there was a reduction in senescence and SASP factor expression in peripheral CD3+ T cells (Fig. 5F).}

Fig. 4. Acute fisetin treatment reduces senescent cell burden in aged wild-type mice and human explants. (A) 22–24-month-old WT C57BL/6 mice were given fisetin (100 mg/kg) or vehicle for 5 days by oral gavage. 72 h after the final dose, the mice were sacrificed and the SA-β-gal+ cells were quantified in inguinal fat (n = 6–7 mice per group). Two-tailed unpaired Student’s t-test; *p < .01. (B) Schematic diagram of the INK-ATTAC transgene [25]. Expression of FLAG-tagged FKBP-Caspase-8 protein is driven by the p16INK4a promoter enabling detection of p16-expressing cells in tissues using immunodetection of FLAG. (C) Aged INK-ATTAC male mice (22–24 months) were acutely treated with fisetin as described above and CyTOF analysis used to quantify p16INK4a/FLAG+ cell populations in subcutaneous fat tissue (c-kit+ mesenchymal stem cells, CD4+ and CD8+ T cells, NK-1.1+ NK cells, and CENP-B+ CD4+ and CD8+ T cells). Subcutaneous fat tissue from 6 month-old male mice was used as a control. Quantification of another marker of cellular senescence and SASP factor expression in peripheral CD3+ T cells (Fig. 5F). Furthermore, there was a reduction in senescence and SASP factor expression in peripheral CD3+ T cells (Fig. 5F).
Fig. 5. Late-life intervention with fisetin in aged wild-type mice extends health span and lifespan. (A) At 85-weeks of age (~20 mth), male and female mice were administered a diet containing 500 ppm (500 mg/kg) fisetin or fed a control diet with no drug. Lifespan was measured. n = 8–9 mice per group. Log rank (Mantel-Cox) test. (B) Median lifespan of the same cohort of mice. Each dot represents an individual animal. Black bars indicate the mean ± S.E.M. Two-tailed unpaired Student’s t-test. (C) Clinical chemistry on blood from the above mice to measure markers of liver (alanine aminotransferase/ALT) and pancreatic (amylase/AMY) dysfunction. n = 3–6 mice per group. Two-tailed unpaired Student’s t-test. (D) Composite lesion scores for aged-related pathologies in multiple tissues determined by histopathologic analysis according to the criteria of the Geropathology Grading Platform [63]. n = 3–8 mice per group. Two-tailed unpaired Student’s t-test. (E) Representative images of the kidney of a mouse fed control chow or fisetin chow. In the control mouse, arrows
4. Discussion

Aging is a complex process involving numerous pathways and both genetic and environmental components [64–69]. The biological processes that drive the aging process contribute to the etiology of most chronic diseases including: 1) chronic, “sterile” inflammation; 2) macromolecular changes in proteins, carbohydrates, lipids, mitochondria, and DNA; 3) stem cell and progenitor dysfunction; and 4) increased cellular senescence [5,70]. These processes are linked in that interventions that target one appear to attenuate others. For example, senescent cells accumulate with age and at sites of pathogenesis in chronic diseases [5,70]. Reducing senescent cell burden can lead to reduced inflammation, decreased macromolecular dysfunction, and enhanced function of stem/progenitor cells [1,3,19]. Adult stem cells also become dysfunctional with age, displaying evidence of senescence [71]. We previously demonstrated that the combination of dasatinib and quercetin function as a senolytic in vivo, alleviating many age-related diseases [26,30]. Because of the senotherapeutic activity of quercetin, we examined other natural flavonoids for effects on senescent cells in hopes of improving therapeutic efficacy.

Here, we demonstrate that when tested against a panel of other flavonoids, fisetin had the most potent senotherapeutic effects in several cell types in vitro and showed strong anti-geronic effects in vivo. We demonstrated that acute (oral) or chronic (dietary) treatment of progeroid and WT mice with fisetin reduces markers of senescence and senescence-associated secretory phenotype in multiple tissues (Fig. 3A-D, 4A, 5F-I). These data were collected in two labs using progeroid and WT mice in two distinct genetic backgrounds. Specifically, p16Ink4a-expressing or CENP-B+ mesenchymal stem/progenitor T lymphocytes, natural killer and endothelial cells were removed from subcutaneous fat of old mice, but not activated senescent-like macrophages or dendritic cells. The effect of fisetin was greater on p16Ink4a-expressing cells than on p21Cip1-expressing cells, at least in subcutaneous fat (Fig. 4). Our findings reveal that fisetin targets multiple, but not all types of senescent cells in vivo. Furthermore, by reducing the percent of senescent cells, fisetin reduces expression of senescence markers in multiple organs as measured by qPCR. This results in improved tissue homeostasis and reduction in multiple age-related pathologies, consistent with effects on a fundamental aging process.

The fact that fisetin reduced the fraction of senescent T and NK cells could help amplifying the beneficial effects of fisetin, since healthy immune cells are important for clearing senescent cells [72,73]. Similarly, fisetin reduces markers of inflammation and oxidative stress (Figs. 3F-G and 5L-M), consistent with prior literature [45]. This too could contribute to the reduction in senescence markers. The decrease in these markers was observed in tissues harvested several days after completion of fisetin administration. Since the rapid and terminal half-lives of fisetin are 0.09 and 3.1 h respectively [74], these improvements did not depend on continued presence of circulating fisetin. This is more consistent with fisetin causing removal of senescent cells, which take days to weeks to form after an insult (at least in culture), than with effects exerted by continued occupancy of a receptor or effects on an enzyme. However, it is important to note that given the multiple reported activities of flavonoids like fisetin, it is also possible that the extension of healthspan is due to mechanisms in addition to the reduction in senescence, such as altering the gut microbiome [75].

Fisetin extends the replicative lifespan of S. cerevisiae by 55% [76] and the lifespan of D. melanogaster by 23% [77]. Here, we show for the first time a similar effect in vertebrate animals. Chronic exposure to fisetin improves healthspan and extends the median and maximum lifespan of mice. Importantly, in our study fisetin supplementation was initiated in mice >20 months old. This increases the translational potential of our study since senotherapeutic interventions are most feasibly administered in elderly humans after the onset of age-related diseases, rather than in younger asymptomatic subjects, in whom any side effects would be unacceptable.

Fisetin is a member of the flavonoid family, a family of naturally occurring polyphenolic compounds. Fisetin, a high Trolox-equivalent antioxidant, is present in low concentrations in many fruits and vegetables such as apples, persimmon, grapes, onions, and cucumbers and at higher concentrations in strawberries [43,44]. The average dietary intake of naturally occurring fisetin in Japan is approximately 0.4 mg/day [78,79], apparently without any adverse effects. Fisetin has anti-cancer activity and appears to block the PI3K/AKT/mTOR pathway [80]. We previously found that transiently disrupting the PI3K/AKT pathway by RNA interference leads to death of senescent cells [30], as with other SCAPs that defend senescent cells from their own proapoptotic SASP [28,29]. Fisetin, like some other flavonoids, is a topoisomerase inhibitor, which may also contribute to its anti-cancer activity [81]. It increases the catalytic activity of hSIRT1 at least in vitro [76]. Also in vitro, fisetin inhibits the activity of several pro-inflammatory cytokines, including TNfα, IL-6, and the transcription factor NF-κB [82]. Fisetin has direct activity as a reducing agent, chemically reacting with and neutralizing reactive oxygen species [83,84]. Fisetin scavenges free radicals as a result of its electron donating capacity, which is due to the presence of two hydroxyl groups on one ring and a third hydroxyl group on another ring. Fisetin also upregulates synthesis of glutathione, an endogenous antioxidant [43,82]. Other biological activities include anti-hyperlipidemic [84–86], anti-inflammatory [85], and neurotrophic [87] effects, some of which could be mediated through a reduction in the senescent cell burden, particularly since when administered intermittently, fisetin alleviated dysfunction despite its short elimination half-life, more consistent with elimination of senescent cells than action on a receptor or enzyme requiring continuous drug presence.

The chemical structure of fisetin is almost the same as quercetin except for a hydroxyl group in position 5. Thus, it is highly likely that these two closely related compounds exert many similar effects. Interestingly, preliminary medicinal chemistry on fisetin has identified analogues with enhanced senotherapeutic activity, suggesting that even more effective flavonoids can be developed for extending healthspan with minor alterations in the structure of fisetin.

Given that fisetin is a natural product found in common foods and available as an oral dietary supplement and has no reported adverse side effects [45], our pre-clinical data suggest that fisetin should be imminently translatable and could have a significant benefit to the health of elderly patients. Based on these mouse studies, clinical trials to evaluate the short-term benefits of intermittent fisetin treatment on certain aspects of aging such as frailty are currently underway.

Author contributions

M.J.Y. and J.I.K. performed the analyses of senescence and SASP markers in the tissues of the treated mice; Y.Z. performed the CyTOF
analyses with oversight and analysis by E.A.A.; Supplementary data to this article can be found online at https://doi.org/10.7554/eLife.12997.

References
[1] Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013;123 (3):966–972.
[2] Lebrasseur NK, Tchkonia T, Kirkland JL. Cellular senescence and the biology of aging. Nat Cell Biol 2014;16:1424–1431.
[3] Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Khosla S, Tchkonia, et al. New agents that target senescent cells: the flavonoid, fisetin, and the BCL-XL inhibitors, A1311822 and A155463. Aging (Albany NY) 2017;9 (3):955–63.
[4] Zhu Y, Tchkonia T, Frumosoiu H, Gouws E, Tchkonia T, et al. Targeting senescent cholangiocytes and activated fibroblasts in liver disease. Aging Cell 2016:Oct;15(6):1184–92.
[5] Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Coll Cardiol 2018;72:126–127.
[6] Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, et al. Monitoring cell senescence. Antioxid Redox Signal 2013;19(2):151–168.
[7] Coppe JP, Desprez PY, Campisi J, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010;5:99–118.
[8] Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Khosla S, Tchkonia, et al. Targeting senescent cholangiocytes and activated fibroblasts in liver disease. Aging Cell 2016:Oct;15(6):1184–92.
[9] Tchkonia T, Morbeck DE, van Zglinicki T, de Vos J, Martin-Ruiz C, et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 2012;11(2):345–9.
[10] Sigala D, Ferreira M, de Vos J, Carey LD, Sedivy JM. Cellular senescence in aging primates. Science 2006;311(5756):1257–9.
[11] Tchkonia T, Morbeck DE, van Zglinicki T, de Vos J, Martin-Ruiz C, Schable H, et al. Fat tissue, aging, and cellular senescence. Aging Cell 2010;9:967–84.
[12] Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016;530(7589):184–9.
[13] Baker DJ, Wijshake T, Tchkonia T, Leusenhorst NR, Chills BG, van de Sluis B, et al. Clearance of p16(INK4a)-positive senescent cells delays aging-associated disorders. Nature 2011;479(7372):232–6.
[14] Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Deckeler T, et al. Transplanted senescent Cells Induce an Osteoarthrits-like Condition in mice. J Gerontol A Biol Sci Med Sci 2017;72(6):780–5.
[15] Kirkland B, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc 2017;65(10):2297–301.
[16] Kirkland JL, Tchkonia T. Cellular Senescence: a Translational Perspective. EBioMedicine 2017;21:21–8.
[17] Zhu Y, Tchkonia T, Pirtskhalava T, Gower A, Ding H, Giorgadze N, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015;14:644–58.
[18] Zhang H, Nimmer PM, Tahir SK, Chen J, Fryer RM, Hahn KR, et al. Bcl-2 family proteins are essential for plateau survival. Cell Death Differ 2007;14(5):943–51.
[19] Kirkland JL, Tchkonia T. Clinical strategies and animal models for developing senolytic agents. Exp Gerontol 2015:68:19–25.
[20] Khan N, Syed DN, Ahmad N, Muldhar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 2017;19(1):1–22.
[21] Adhami VM, Syed DN, Khan N, Muldhar H. Dietary flavonoid fisetin: a novel dual inhibitor of PK3 and Akt and potentiator for prostate cancer management. Biochem Pharmacol 2012;84(10):1277–81.
[22] Meher P. How fisetin reduces the impact of age and disease on CNS function. Front Biosci (Schol Ed) 2015:7:538–82.
[23] Ahmad A, Robinson AR, Duensing A, van Drunen E, Beverloo HB, Weisberg DB, et al. ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell 2008:26(8):5082–9.
[24] Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, et al. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 2015:162(1):340–51.
[25] Niedernhofer LJ, Odkj H, Budzowski M, van Druen E, Beeverlo HB, Weisberg DB, et al. ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell 2008:26(8):5082–9.
[26] Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, et al. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 2015:162(1):340–51.
[27] Niedernhofer LJ, Odkj H, Budzowski M, van Druen E, Maas A, Theil AF, et al. The structure-specific endonuclease XPC-Ej is required to resolve DNA interstrand crosslinks induced during alkylating DNA damage. Mol Cell 2006;23(1):577–86.
[28] Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Khosla S, Tchkonia, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 2015. https://doi.org/10.7554/eLife.12997.

Competing financial interests
J.L.K., T.T., Y.Z., M.X., and T.P. have a financial interest related to this research. Patents on senolytic drugs (PCT/US2016/041964) are held by Mayo Clinic. This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and was conducted in compliance with Mayo Clinic Conflict of Interest policies. None of the other authors has a relevant conflict of financial interest.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.ebiom.2018.09.015.
Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Reqaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest 2004;114(9):1299–307.

Ladiges W. Pathology assessment is necessary to validate translational endpoints in preclinical aging studies. Pathobiol Aging Relat Dis 2016;6:31478.

Zhu Y, Tchkonia T, Pitkashvila T, Gower AC, Ding H, Giorgadze N, et al. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell; 2015.

Krishnamurthy J, Torrice C, Ramsey MR, Al-Regaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest 2004;114(9):1299–307.

Ladiges W, Khan WA, Chisholm R, Tadayyon S, Norton P, Samarabandu J, et al. Reversal of age-related telomere shortening in human cells by panobinostat. Aging Cell 2016;15(8):1475–85.

Franceschi C, Bonafe M, Valensi S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000;908:244–54.

Krishnamurthy J, Torrice C, Ramsey MB, Kovalev GI, Al-Reqaiey K, Su L, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest 2004;114(9):1299–307.

Lavasanii M, Robinson AR, Lu A, Song M, Feduska JM, Ahani B, et al. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progenitor model. Nat Commun 2012;3:608.

Xue W, Zender L, Mietheing C, Dickinson RA, Hernandez E, Krizhanovsky S, et al. Senescent and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007;445(7128):656–60.

Lannono A, Thompson TW, Ardlino M, Lowe SW, Raulet DH, p53-dependent chemokine production by senescent tumor cells supports NKGD2-dependent tumor elimination by natural killer cells. J Exp Med 2013;210(10):2057–69.

Touil YS, Auzel N, Boulinguez F, Sahigh H, Regazzetti A, Scherman D, et al. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. Biochem Pharmacol 2011;82(11):1731–9.

Curau F, Baldoni S, Prattichizzo F, Espinosa E, Amenta F, Procoppio AD, et al. Anti-senescence compounds: a potential nutraceutical approach to healthy aging. Ageing Res Rev 2018;46:14–31.

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JC, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425(6954):191–6.

Wood JC, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin activators mimic caloric restriction and delay aging in metazoans. Nature 2004;430(7000):686–9.

Kimira M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol 1998;8(3):166–75.

Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonoids, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 2000;130(9):2243–50.

Syed DN, Adhami VM, Khan M, Mukhtar H. Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anticancer Agents Med Chem 2013;13(7):999–1001.

Safourn S, Da Settimio F, Taliani S, Simonini F, La Motta C, Formenti G, et al. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs. Curr Med Chem 2010;17(35):4270–90.

Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Aggarwal BB. Down-regulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 2014;539:91–9.

Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 2001;30(4):433–46.

Prasath GS, Subramanian SP. Antihyperlipidemic effect of fisetin in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2011;25(6):307–13.

Syed DN, Adhami VM, Khan M, Mukhtar H. Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anticancer Agents Med Chem 2013;13(7):999–1001.