Long Noncoding RNA Plasmacytoma Variant Translocation 1 (PVT1) Promotes Colon Cancer Progression via Endogenous Sponging miR-26b

Background:
Recently, long noncoding RNAs (lncRNAs) have received wide attention in the area of tumor progression. Dysregulation of lncRNAs has been shown to participated in colon cancer, a known malignant tumor. This study aimed to identify the way lncRNA PVT1 affects the progression of colon cancer.

Material/Methods:
Both human colon cancer tissues and 30 paired adjacent normal tissue samples, as well as the colon cancer cells, were collected. Then quantitative real-time (qRT-PCR) was performed to detect the expression of lncRNA PVT1 and miR-26b. Furthermore, the role of PVT1 was determined by function assays such as cell proliferation assay, invasion assay, and wound healing assay. The mechanism was studied using western blot assay and luciferase assay.

Results:
We demonstrate that the expression of PVT1 was significantly higher in tumor tissue compared with the adjacent normal tissue with a lower expression of miR-26b. Moreover, PVT1 promoted tumor growth, migration, and invasion in vitro. In addition, further experiments revealed that miR-26b was a direct target of PVT1 and could inhibit cell migration, invasion, and proliferation in colon cancer.

Conclusions:
Our results suggest that PVT1 could promote metastasis and proliferation of colon cancer via endogenous sponging and inhibiting the expression of miR-26b, which may highlight the significance of lncRNA PVT1 in colon cancer tumorigenesis.

MeSH Keywords: Cell Proliferation • Colonic Neoplasms • RNA, Long Noncoding

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/910955
Background

Colorectal cancer (CRC) is the fourth most common diagnosed cancer and ranks as the second leading cause of cancer-related death worldwide [1]. Though the quality of life for CRC patients have significantly improved by current treatment strategies, the 5-year survival rate is still only 31% in China [2], principally due to the late diagnosis time and recurrence/metastasis of tumor cells [3]. Therefore, exploring the key molecular mechanisms involved in CC progression would have a significant impact for CRC therapy. Long noncoding RNAs (lncRNAs) are defined as transcripts comprising more than 200 nucleotides in length without encoding proteins and previously believed to be transcriptional “noise” [4]. Increasing evidence revealed that lncRNAs have significant potential application prospect in the diagnosis, treatment, and prognosis in malignant tumor, including colon cancer (CC) [5]. For instance, lncRNA breast cancer anti-estrogen resistance 4 (BCAR4) was reported highly expressed in CC and by energizing of Wnt/β-catenin signaling pathway facilitated CC cell proliferation and migration [6]. LncTCF7 could promote metastasis and invasion of CRC cell through Wnt/β-catenin signaling pathway [7]. LncRNA SUMO1P3 expedites the malignant behaviors of CC through regulating the levels of cyclin D1, vimentin, and VEGFA [8].

The novel lncRNA plasmacytoma variant translocation 1 (PVT1) is 1716 nucleotides in length locates near Myc at human chromosome8q24 [9] and in a variety of carcinoma studies the oncogenic roles of PVT1 have already been reported. Additionally, PVT1 was discovered associated with tumor size, advanced histological grades, metastases, poor prognosis, and cisplatin resistance of CRC patients, it is a significant regulator in tumorigenesis and cisplatin resistance of CRC [10]. However, the specific molecular mechanism of PVT1 involved in the progression of CC remains largely unclear.

The assembling of evidence established that through the microRNAs (miRNAs) response elements (MREs), lncRNA may act as molecular sponges for a miRNA, thereby depresses the expression of the respective miRNAs’ targets, which is proposed as competing endogenous RNA (ceRNA) hypothesis. Emerging data indicated that this regulatory action plays important roles in CRC development [11]. For example, long intergenic non-protein-coding RNA 1567 (LINC01567) which is upregulated in CRC development [12]. LncRNA MALAT1 may mediate HMGB1 by sponging miR-129-5p, then induce CC development [13]. Upregulated HNF1A-AS1 can promote the metastatic progression of CC serving as a competing endogenous RNA to modulate miRNA-34a expression, subsequently with repression of miR-34a/SIRT1/p53 feedback loop and activation of canonical Wnt signaling pathway [14].

MiR-26b, which is a significant miRNA family member, was shown to participate in diverse human neoplasms biological functions. For instance, miR-26b could regulate invasion and migration of lung cancer cells through targeting hENT1 depending on Rhoa/ROCK-1 pathway [15]. By suppressing COX-2 expression, miR-26b could inhibit glioma proliferation in vitro and in vivo [16]. In addition, miR-26b, which is downregulated by irradiation, could suppress autophagy in breast cancer cells by targeting DRAM1 mRNA [17]. However, the function of miR-26b in CC and the relevance between PVT1 and miR-26b remains unknown.

In our current study, we found that miR-26b is decreased in CC cells and it is a target of lncRNA PVT1. Through sponging miR-26b, lncRNA PVT1 promotes the migration, invasion and proliferation of colon cells. Our findings may be a valuable reference into the roles of lncRNA in CC progression.

Material and Methods

Human CC tissue specimens and cell lines

Thirty pairs of CC tissues were collected. CC cell lines SW480, NCM460, and HCT116 were procured from Shenyang Medical University. The cells were maintained at 37°C and 5% CO2 in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) and 1% PS (100 mg/mL streptomycin sulfate and 100 U/mL penicillin sodium).

Plasmid construction

All primers used are illustrated in Table 1 and all constructs were validated by DNA sequencing.

RNA extraction and quantitative real-time PCR (qRT-PCR)

Total RNA from CC tissues and cell lines were isolated by TRIzol reagent (Invitrogen, Carlsbad, USA) according to the manufacturer’s instructions. NanoDrop-2000 spectrophotometer was used to determine the quality of the RNA. The isolated RNA was reverse transcribed into cDNA. qRT-PCR was performed by the SYBR Premix Ex Taq Kit (Takara, Japan). All primers used are illustrated in Table 1.
used to confirm the quantity and quality of the extracted RNA. RNA was reversely transcribed by M-MLV (Promega, Madison, WI, USA), and then Premix ExTaq II Kit (Takara) was used to perform qPCR. The relative fold changes of candidate genes in the transcripts were analyzed with \(2^{-\Delta\Delta C_{t}}\) method. The specific primers are shown in Table 1.

Luciferase reporter assay

The wild-type or mutant PCA1 binding miR-26b was subcloned into a pGL3-basic vector (Promega) to form the reporter vectors named as pGL3-PVT1-WT (PVT1-WT) and pGL3-PVT1-MUT (PVT1-MT). Then, HCT116 cells were cultured in 24 well plates and co-transfected constructed luciferase plasmids

Figure 1. Differential expression of lncRNA PVT1 and miR-26b in CC tissues and cells. (A) The relative expression level of PVT1 in 30 pairs of CC tissues and adjacent non-tumor tissues; β-actin was used for normalization. (B) The mRNA levels of miR-26b were detected with qRT-PCR in 30 cases of CC. (C, D) The relative mRNA expression levels of PVT1 (C) and miR-26b (D) in NCM460, SW480, and HCT116 cell lines were assessed by qRT-PCR. (E) Pearson’s correlation analysis between miR-26b and PVT1 expression in CC tissues. The data are shown as the mean ±SD of 3 independent experiments. (**P<0.001). CC – colon cancer; lncRNA – long noncoding RNA.
Together with the internal control vector containing Renilla luciferase, pRL-TK (Promega), and miR-26b or miR-control using Lipofectamine 2000 transfection reagent (Invitrogen). After 48-hour post-transfection, HCT116 cells were lysed and the Dual-Luciferase Reporter Assay System (Promega) were used for monitoring the luciferase activity.

Cell proliferation assay

Cell proliferation in vitro was detected by MTT assay. Briefly, after transfection, the density of CC cell lines was 2000 cells/well in 96-well plates and all groups were respectively incubated for 24 hours and 48 hours. MTT was added into each well (5 mg/mL, Sigma, USA), and culture was maintained at 37°C for 4 to 6 hours. Samples were measured at 570 nm using the MTT cell proliferation kit (Cayman Chemical).

Wound healing assay

We incubated cells in 6-well plates with normal cell growth medium. When the culture reaches 85%, we scratched the cell layer using 20 µL sterile pipette tip and then washed it in culture medium, then cultured for 48 hours with the 1% FBS culture medium. Because cell proliferation may affect cells migrated, to the analysis of the wound, the cells were incubated at 37°C for 1 hour with mitomycin C (10 µg/mL). We used a microscope to obtain images at different time points (0, 48 hours).

Cell invasion assays

Transwell chamber inserts with an 8 µm pore, with Matrigel, were used to analyze the invasion ability of CC cells. Then 2x10^4 HCT116 cells were seeded into the upper compartment of each insert, which was coated with 40 µL Matrigel (2 mg/mL). While the bottom of the insert was incubated with 500 µL RPMI 1640 with 20% FBS. Then, the chambers were maintained for 24 hours at 37°C in 5% CO2. Afterwards, the cells were fixed, stained, and measured through the pores by calculating under a 20x microscope (Zeiss, Germany).

Statistical analysis

Statistical analysis was performed using Prism 5.0 (GraphPad Prism) software. Experimental results are presented as means ± standard deviation. The comparisons between the groups were conducted with Student’s t-test or ANOVA with multiple comparison with P value less than 0.05 considered statistically significant.

Results

LncRNA PVT1 was highly expressed while miR-26b was downregulated in CC tissues and cell lines

To explore the expression profiles of PVT1 and miR-26b in CC, qRT-PCR analysis was performed in CC tissues and adjacent normal tissues. The results showed that PVT1 was remarkably overexpressed in the cancer samples compared with the non-cancerous tissues (Figure 1A). Conversely, miR-26b was downregulated significantly in the cancer samples (Figure 1B). Furthermore, the same observations were obtained in NCM460 cells, SW480 cells, and HCT116 cells (Figure 1C, 1D). As expected, the correlation analysis showed that the expression of miR-26b had a negatively correlation with PVT1 (Figure 1E). Collectively, these results showed that PVT1 was expressed highly in CC tissues and cell lines with a lower expression of miR-26b.
LncRNA PVT1 regulated the expression of miR-26b

To explore the relationship between PVT1 and miR-26b in CC, lncRNA PVT1 mimics and inhibitors were constructed and the effectiveness was verified using qRT-PCR (Figure 2A). As shown in Figure 2B, the mRNA levels of miR-26b were markedly decreased after PVT1 overexpressed, and remarkably increased when PVT1 was knocked down in HCT116 cells. These results suggest that PVT1 inhibited the expression of miR-26b in HCT116 cells.

LncRNA PVT1 promoted colon cell migration, invasion, and proliferation

Since the expression levels of PVT1 were markedly increased in CC tissues and cells, we speculated that it might be involved in CC progression. To estimate the function of PVT1 on the malignant behaviors of human CC, wound healing assay was conducted. As shown in Figure 3A and 3B, when PVT1 was overexpressed, the migration capacity of HCT116 cell was significantly increased, while PVT1 knockdown decreased cell migration ability of HCT116 cells. Next, we performed Transwell assays to assess the invasion abilities of HCT116 cells. The results showed that pWPXL-PVT1 enhanced CC cell invasion ability, but si-PVT1...
inhibited the invasion ability of CC cells, which was consistent with the results of wound healing assays (Figure 3C, 3D). Then, an MTT assay was performed to determine whether PVT1 influenced cell viability. Compared with the control, HCT116 cells transected with pWPXL-PVT1 showed a significant increase in cell viability. Conversely, HCT116 cells transected with si-PVT1 exhibited decreased cell viability (Figure 3E).

LncRNA PVT1 directly interacted with miR-26b

Accumulating evidence has suggested that lncRNAs can act as a competing endogenous RNA by binding to specific miRNAs, we conducted dual-luciferase reporter assay to confirm whether PVT1 plays its role in such a way. We subcloned the pGL3-promoter vector containing wild-type (WT) or mutant PVT1-3'UTR with miR-26b respectively; pRL-TK was used for normalization. The data are shown as the mean ±SD of 3 independent experiments. (** P<0.01; *** P<0.001; ns – not significant). LncRNA – long noncoding RNA.

MiR-26b inhibited cell migration, invasion, and proliferation in CC

To evaluate the impact of miR-26b on the progression of CC, wound healing assays were performed. The migration of HCT116 cells were remarkably reduced by the upregulation of miR-26b. And we observed the opposite result when the expression of miR-26b was suppressed (Figure 5A, 5B). As for Transwell assays, the results showed that the invasion abilities of HCT116 cells were markedly enhanced after overexpression of miR-26b, and the opposite observation was obtained when miR-26b knockdown (Figure 5C, 5D). Furthermore, the cell proliferation of HCT116 cells were monitored using MTT assays. As shown in Figure 5E, the cell viability of HCT116 cells were significantly inhibited after transected with miR-26b mimics, while miR-26b inhibitor caused an increase. Those results indicated that miR-26b inhibited cell migration, invasion, and proliferation in CC.

Discussion

LncRNAs could communicate with other RNA transcripts through miRNA response elements according to the ceRNA hypothesis as the letters of a novel RNA language [18]. Many studies have reported that interactions between IncRNAs and miRNAs play important roles in cancer progression [1]. Thus, a better understanding of the interaction between IncRNA and miRNA would be important for CC. Our study demonstrated that PVT1 could suppress the expression of miR-26b through directly interacting with it. Furthermore, PVT1 regulated migration, invasion, and proliferation of CC cells via sponging miR-26b, which provided new evidence of the existence of ceRNA regulatory network in CC cells.
Accumulated evidence has shown that PVT1 is upregulated and functions as an oncogenic lncRNA in multiple types of tumors. Xue et al. reported that PVT1 regulates the malignant behaviors of human glioma cells by targeting miR-190a-5p and miR-488-3p [20]. Chang et al. demonstrated that PVT1 can promote EMT by upregulation of Twist1, a transcription factor associated with EMT via acting as a sponge for miRNA-186-5p in prostate cancer [21]. Furthermore, PVT1 showed higher expression in nasopharyngeal carcinoma, it could predict poor prognosis, and it could induce radio-resistance by regulating DNA repair and cell apoptosis [22]. In this study, we demonstrated that PVT1 was significantly upregulated in human CC tissues and CC cell lines and that PVT1 contributed to the malignant behavior of CC cells. Specifically, PVT1 overexpression significantly enhanced the migration, invasion, and proliferation, whereas PVT1 knockdown had the opposite function. Thus, PVT1 may act as an oncogene in CC, consistent with the previous researches [23,24].

The mechanism by which PVT1 regulates migration, invasion, and proliferation in CC cells remains largely undefined. To explore these mechanisms, we focused on the miR-26b, which has been shown to be remarkable dysregulation in varies of cancers, such as esophageal squamous cancer [25] and gastric cancer [26]. Furthermore, diverse downstream genes of miR-26b have been identified. Li et al. demonstrated that miR-26b could facilitate apoptosis and inhibit proliferation/invasion of neuroglioma cells via downregulating Bcl-2 expression and potentiating caspase-3 activity (effects of miRNA-26b on proliferation and invasion of glioma cells and related mechanisms).
Mir-26b could also suppress esophageal cancer cell proliferation by inhibition of MYCBP, subsequently downregulating c-MYC pathway (mir-26a and mir-26b inhibit esophageal squamous cancer cell proliferation through suppression of c-MYC pathway). In addition, mir-26b might be implicated in CRC progression via direct targeting FUT4 (tumor-suppressive mir-26a and mir-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer). Our study demonstrated that mir-26b was downregulated and inhibited cell migration, invasion, and proliferation in CC tissues and cell lines. In addition, PVT1 was evidenced to regulate the expression of mir-26b through directly interacted with it. But by which targets of mir-26b did PVT exert its function needs further research.

References:

1. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2018. Cancer J Clin, 2018; 68(1): 7–30
2. Jiang Z, Li Y, Han G et al: [Association of serum albumin level with clinicopathologic features and prognosis in colon cancer]. Zhonghua Wei Chang Wai Ke Za Zhi, 2016; 19(1): 80–83 [in Chinese]
3. Fedewa SA, Flanders WD, Jemal A et al: Racial and Ethnic disparities in interval colorectal cancer incidence. Ann Intern Med, 2018; 168(1): 80–87
4. Kunej T, Obsteter J, Pogacar Z et al: The decalog of long non-coding RNA in colorectal cancer: A systematic review. Gene, 2018; 645: 157–62
5. Meng C, Liu Y, Shen Y et al: MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation. Oncol Lett, 2018; 15(2): 1435–40
6. Meng C, Liu Y, Shen Y et al: MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation. Oncol Lett, 2018; 15(2): 1435–40
7. Salmena L, Poliseno L, Tay Y et al: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language. Cell, 2011; 146(3): 353–58
8. Meng C, Liu Y, Shen Y et al: MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation. Oncol Lett, 2018; 15(2): 1435–40
9. Meng C, Liu Y, Shen Y et al: MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation. Oncol Lett, 2018; 15(2): 1435–40
10. Salmena L, Poliseno L, Tay Y et al: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language. Cell, 2011; 146(3): 353–58
11. Meng C, Liu Y, Shen Y et al: MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation. Oncol Lett, 2018; 15(2): 1435–40
12. Salmena L, Poliseno L, Tay Y et al: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language. Cell, 2011; 146(3): 353–58
13. Meng C, Liu Y, Shen Y et al: MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation. Oncol Lett, 2018; 15(2): 1435–40

Conclusions

Our research indicated that PVT1 was upregulated in CC tissues and cell line with a significant dysregulation of mir-26b. Furthermore, PVT1 enhanced cell migration, invasion, and proliferation through negatively regulating mir-26b in CC, clarifying the molecular mechanism of the oncogenic role of PVT1 in CC, which allowed us to better understand the pathogenesis and development of CC and provided a lncRNA-directed target for this deadly disease.