Fermionic T-duality of $\text{AdS}_n \times S^n (\times S^n) \times T^m$ using IIA supergravity

Michael C Abbott, Jeff Murugan and Justine Tarrant

The Laboratory for Quantum Gravity & Strings, Department of Mathematics & Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa

E-mail: michael.abbott@uct.ac.za

Received 16 October 2015
Accepted for publication 21 December 2015
Published 7 March 2016

Abstract
We show that the string backgrounds $\text{AdS}_2 \times S^2 \times T^6$ and $\text{AdS}_d \times S^d \times S^d \times T^{10-3d}$ ($d = 2, 3$) are self-dual under a series of bosonic and fermionic T-dualities. We do this using the fermionic Buscher rules derived by Berkovits and Maldacena, thus working at the level of the supergravity fields. This allows us to explicitly track the behaviour of the RR fields, from which we see that we need T-duality along some torus directions. For the $\text{AdS} \times S \times S$ cases, which contain cosets of $D(2, 1; \alpha)^d^{-1}$, it is necessary to perform bosonic T-duality along some complexified Killing spinors in one of the spheres.

Keywords: fermionic T-duality, AdS$_3$, T-duality, AdS/CFT, string theory

1. Introduction
An important theme in our understanding of the AdS/CFT correspondence [1] has been that both theories have far more symmetry than initially meets the eye. The largest example of this was the discovery of integrability on both sides of the correspondence, giving an infinite tower of conservation laws [2]. But a particularly important example is that of dual conformal symmetry, which began life as a symmetry of scattering amplitudes of $\mathcal{N} = 4$ SYM [3], acting on the momenta in the same way that ordinary conformal symmetry acts on positions. The AdS/CFT connection between scattering amplitudes and Wilson loops is built on this symmetry, associating each amplitude to a string worldsheet in a dual AdS space. The symmetry extends to the whole superconformal group, and it is believed to be part of the structure of integrability [4, 5].

The existence of dual conformal symmetry was later understood to be a consequence of the self-duality of the string background $\text{AdS}_5 \times S^5$ [6, 7], meaning that the total effect of a sequence of bosonic and fermionic T-duality transformations is to return us to exactly the same background. The bosonic dualities along boundary directions of AdS_5 map the momenta...
of the scattering amplitude into the path bounding the Wilson loop. Fermionic T-duality is a cousin of bosonic T-duality, acting along a Killing spinor, or in fact necessarily a complexified Killing spinor, rather than a Killing vector. It was introduced by [6, 7]; for reviews see [8, 9] and for other perspectives see [4, 10]. As in the bosonic case, one adds a constrained auxiliary field and then integrates out the original field (i.e. original target space co-ordinate, or fermion) to obtain an action of the same shape which can be interpreted as describing strings on a dual background. Rather than performing this process for each background we encounter, we can do it once and write down the rules for mapping one background to another, usually called the Buscher rules [11]. The rules for bosonic T-duality are now understood to be particular generators of the \(O(D, D) \) symmetry of generalised geometry [12].

The correspondence between \(\mathcal{N} = 4 \) SYM and IIB strings in AdS\(_5 \times S^5\) is by far the best understood example of AdS/CFT. We are interested in extending this understanding to other examples, with less than maximal supersymmetry. In the correspondence between ABJM theory and IIA strings on AdS\(_4 \times \mathbb{CP}^3\) [13, 14], dual conformal symmetry is observed in the amplitudes [15–17] but attempts to show T-self-duality in the string theory have failed [18–21], apart from the much simpler case of the pp-wave limit [22]. We have nothing to add to this puzzle now, but turn instead to IIB.

The study of strings in AdS\(_5 \times S^5\) was greatly facilitated by the observation that the Green–Schwarz (GS) action can be written using a \(\mathbb{Z}_4 \)-graded coset structure (i.e. the supersymmetric cousin of a symmetric space) \(PSU(2, 2|4)/SO(1, 4) \times SO(5) \) [23, 24]. This idea was used heavily in integrability [25–27], and also in the understanding of fermionic T-duality: Beisert et al. [7] work entirely with the coset action, fixing a particular \(\kappa \)-symmetry gauge at the start, and find that the dual model amounts to a different choice of \(\kappa \)-gauge. Similar cosets are useful in describing strings on AdS\(_4\), AdS\(_3\), and AdS\(_2\) backgrounds, but there are more caveats. The coset \(OSP(6|4)/SO(2, 1) \times U(3) \) describes a partially \(\kappa \)-fixed GS string in AdS\(_4 \times \mathbb{CP}^3\), although this gauge choice forbids some solutions of interest [28].

Fermionic T-duality of AdS\(_3 \times S^3 \times T^4\) (with RR flux) was studied using the coset model \(PSU(1, 1|2)^2/SU(1, 1) \times SU(2) \) by Adam et al. [18]. This describes GS strings in a \(\kappa \)-symmetry gauge which turns off all the non-coset fermions; like the gauge used to write AdS\(_5 \times \mathbb{CP}^3\) as a coset, this one is not always legal. Another approach was explored by Ó Colgáin [29], using the Buscher rules derived by Berkovits and Maldacena [6]. This avoids all mention of both cosets and \(\kappa \)-symmetry, working only with the supergravity fields of the background. It also allows one to see the effect on the RR fields explicitly. (This was used for AdS\(_5 \times S^5\) in [6]; see also [21, 30, 31] for other applications.)

In this paper we use this idea of working only with the supergravity fields to prove the self-duality of backgrounds AdS\(_2 \times S^2 \times T^6\) and AdS\(_d \times S^d \times S^d \times T^{10-3d}\) for \(d = 2, 3\). We find it more convenient to begin in the type IIA theory, although the bosonic T-dualities necessarily take us through IIB. (See figure 1.) For the cases with \(S^d \times S^d\) we show that it is necessary to perform bosonic T-duality along some complexified Killing vectors of one of the spheres.

There is some overlap between this paper and another longer paper [32], written as part of a larger collaboration. The presentation of the supergravity approach there is however very different, using the currents of the coset model to generate Killing spinors, thus treating many backgrounds at once. The aim of the present paper is to give a much more elementary (if less general) explanation of the duality of these backgrounds.
1.1. Outline

In section 2 we fix some notation and recall the Buscher rules for fermionic T-duality. Section 3 treats backgrounds AdS$_2 \times S^2 \times T^6$ (for two different choices of RR flux) and AdS$_2 \times S^2 \times S^2 \times T^4$ (which requires bosonic T-duality in a complex direction). Section 4 repeats this one dimension up: AdS$_3 \times S^3 \times S^3 \times S^1$. We conclude in section 5.

Appendix A reviews the necessary facts about bosonic T-duality (including a non-trivial dilaton). Appendix B has gamma matrix conventions.

2. Preliminaries

In type IIA string theory we have two Majorana–Weyl spinors of opposite chirality. Since we use a basis in which $\Gamma_{11} = \sigma^3 \otimes 1$, we can write these as

$$\begin{pmatrix} \epsilon^\beta \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 \\ \tilde{\epsilon}^\beta \end{pmatrix}, \quad \beta = 1\ldots16.$$

It is convenient to write the Killing spinors using one 32-dimensional $E = (\epsilon, \tilde{\epsilon})$. Our notation is that $\mu, \nu = t, x, z, \theta_1, \ldots, \psi_8, u$ are curved and $m, n = 0, 1, 2\ldots9$ flat spacetime indices, and α, β spinor indices as above. The constraints on a Killing spinor E from the gravitino and dilatino variations are

$$D_{\nu}E = -\frac{1}{8} S_{\mu}^\nu E, \quad TE = 0,$$

where the covariant derivative is $D_{\nu}E = \partial_{\nu}E + \frac{1}{4} \epsilon_\mu^\nu \Gamma^{\mu\rho}E$, and we define

$$S \equiv F^{(2)} \Gamma_{11} + F^{(4)}, \quad T \equiv \frac{i}{16} \Gamma_m S^m = \frac{3i}{8} F^{(2)} \Gamma_{11} + \frac{i}{8} F^{(4)}.$$

Fermionic T-duality acts on the dilaton and the RR forms, but leaves the metric and the NS–NS two-form invariant. We will employ here the Buscher rules for this derived by Berkovits and Maldacena [6]. The direction along which we dualise is specified by a complex Killing spinor, which we write $E = E_0 + i E_2$ etc. We can perform the duality along several directions E_i at once. These must obey an orthogonality condition
which is not solved by any real spinors—this is why we must use complex Killing spinors. Then we find a matrix \(C \) from

\[
\partial_j C_{ij} = i \bar{\partial}_j \Gamma^i \Gamma_{i1} \bar{\epsilon}_j
\]

and this gives the change in the dilaton\(^1\)

\[
\Delta \Phi \equiv \Phi' - \Phi = \frac{1}{2} \log (\text{det } C)
\]

and in the RR forms

\[
\Delta F \equiv e^{\Phi} F^{(4)\alpha\beta} - e^{\Phi} F^{(4)\alpha\beta} = \frac{16}{i} (C^{-1})_{ij} \epsilon_i^\alpha \bar{\epsilon}_j^\beta.
\]

Here the lower-case spinors are now complex, \(\bar{\epsilon}_i = (\epsilon_i, \bar{\epsilon}_i) \), and \(F \) is the bispinor encoding the RR forms, defined

\[
F^{(4)\alpha\beta} = \frac{1}{2!} F_{\mu
u}^{(2)} (\gamma^\mu\gamma^\nu)_{\alpha\beta} + \frac{1}{4!} F^{(4)}_{\mu\nu\rho\sigma} (\gamma^\mu\gamma^\nu\gamma^\rho\gamma^\sigma)_{\alpha\beta}.
\]

The lower-case gamma matrices are the following \(16 \times 16 \) blocks (full details are in appendix B)

\[
\Gamma^m = \begin{bmatrix}
0 & (\gamma^m)_{\alpha\beta} \\
(\gamma^m)_{\alpha\beta} & 0
\end{bmatrix}.
\]

3. AdS\(_2 \times M\) backgrounds

This section looks at AdS\(_2 \times S^2 \times S^2 \times T\) backgrounds, all having eight supersymmetries. However we are interested only in those supersymmetries which commute with the \(\partial \)AdS translations along which we will perform bosonic T-duality. This restricts us to considering the four Poincaré Killing spinors, allowing for two complex directions along which to perform fermionic T-duality.

The metric has a parameter \(\alpha \in [0, 1] \), such that at \(\alpha = 1 \) the second sphere becomes flat:

\[
d s^2 = d s_{\text{AdS}}^2 + \frac{1}{\alpha} d s_{S_2}^2 + \frac{1}{1 - \alpha} d s_{S_2}^2 + \sum_j d y_j^2 = \eta_{\mu\nu} e^\mu_i e^\nu_j d x^i d x^j.
\]

We adopt Poincaré co-ordinates for AdS\(_2\)

\[
d s_{\text{AdS}}^2 = -d t^2 + \frac{d z^2}{z^2}, \quad \Rightarrow \omega_{\lambda[01]} = \frac{1}{z}
\]

and for the spheres

\[
d s_{S_2}^2 = d \theta_+^2 + \sin^2 \theta_+ d \phi_+^2, \quad \Rightarrow \omega_{\phi[23]} = -\cos \theta_+, \quad \omega_{\phi[45]} = -\cos \theta_-
\]

and similarly for \(S^3 \). Note that the spin connection components \(\omega_{\mu ab} \) are independent of \(\alpha \) (although the vielbeins \(e^m_i \) are of course not). We take \(\Phi = 0 \), the following RR flux:

\({}^1\) Notice that scaling any \(\bar{\epsilon}_i \) by a constant factor changes \(\Phi' \) by a constant, and has no effect on \(\Delta F \).
\[
\mathcal{F}^{(4)} = \Gamma^{01}(-\Gamma^{67} + \Gamma^{89}) + \sqrt{\alpha} \Gamma^{23}(\Gamma^{68} + \Gamma^{79}) + \sqrt{1 - \alpha} \Gamma^{45}(-\Gamma^{78} + \Gamma^{69}).
\]

At \(\alpha = 1\), bosonic T-duality along the \(x^5\) direction takes us to the IIB AdS\(_2 \times S^2 \times T^6\) case studied by [33], with only \(F^{(5)}\). (Section 3.3 below looks at an alternative IIA choice.) Following [34] we can write
\[
\mathcal{F}^{(4)} = -4\Gamma^{0167}P_1(1 - P_2),
\]
where
\[
P_1 = \frac{1}{2}(1 + \Gamma^{6789}), \quad P_2 = \frac{1}{2}(1 + \sqrt{\alpha} \Gamma^{012378} + \sqrt{1 - \alpha} \Gamma^{014568}).
\]

The Killing spinor equation is \(D_\mu \epsilon = -\frac{i}{2} \mathcal{F}^{(4)} \Gamma_\mu \epsilon\), and we can build up a solution \(E = z^{-1/2} R_{S+} R_{S-} \xi\) as follows:

- We look for Poincaré killing spinors, i.e. those independent of the boundary co-ordinates of AdS. Here this means \(\partial_t \epsilon = 0\), and thus the rest of the \(\mu = t\) equation gives us a constraint
 \[
 E = -\frac{\Gamma^{067}}{2} P_1 P_2 E.
 \]
 The \(\mu = z\) equation then reads \(\partial_z \epsilon = -1/2 z \epsilon\), with solution \(\epsilon \propto z^{-1/2}\).

- When \(\mu \in S_+\), we get (using \(P_1 E = P_2 E = E\))
 \[
 D_\mu E = \frac{\sqrt{\alpha}}{2} \Gamma_\mu \Gamma^{23} E.
 \]
 Lü et al [35] gave the Killing spinors for \(S^2\) as follows: the equation \(D_\mu \epsilon = \pm \frac{i}{2} \epsilon a^a \Gamma_\mu a \epsilon\) is solved by \(\epsilon = \exp \left(\frac{i}{2} \epsilon a^a \Gamma^{23} \right)\). The \(\theta\) equation is trivial, and the \(\varphi\) equation uses \((i \Gamma^2)^2 = -1\) and \((i \Gamma^2, \Gamma^{23}) = 0\). Our equation replaces \(i \Gamma^2 \to \Gamma^{368}\) which still satisfies these conditions. We also have radius \(1/\sqrt{\alpha}\) which does not affect the solution:
 \[
 R_{S+} = \exp \left(\frac{\theta_+}{2} \Gamma^{368} \right) \exp \left(\frac{\varphi_+}{2} \Gamma^{23} \right).
 \]

- When \(\mu \in S_-\), we get instead
 \[
 D_\mu E = \frac{\sqrt{1 - \alpha}}{2} \Gamma_\mu \Gamma^{4578} E.
 \]
 Notice that \(\Gamma_\mu \Gamma^{4578}, R_{S+} = [D_\mu, R_{S+}] = 0\), so this is precisely the equation which must be solved by \(R_{S-}\) alone.

The complete solution is then
\[
E(\xi) = \frac{1}{\sqrt{\xi}} \exp \left(\frac{\theta}{2} \Gamma^{368} \right) \exp \left(\frac{\varphi_+}{2} \Gamma^{23} \right) \exp \left(\frac{\theta_+}{2} \Gamma^{4578} \right) \exp \left(\frac{\varphi_-}{2} \Gamma^{45} \right) \xi
\]
with constant \(\xi\) obeying
\[
-\Gamma^{067} \xi = P_1 \xi = P_2 \xi = \xi
\]
(since the \(R_{S\pm}\) commute with these conditions). There are exactly four such vectors \(\xi_a\), and we may take them to be orthogonal and normalised: \(\xi_a \cdot \xi_b = \delta_{ab}\).

Fermionic T-duality needs complex combinations \(\xi^a\) of these Killing spinors. In section 3.2 we will want to explore the most general possibility, so let us write these as
Then the orthogonality condition (2) reads
\[b_{ia} V_{ab} b_{ja} = 0, \quad V_{ab} = E_a \Gamma^\nu E_b. \] (13)

In the present AdS\(_2\) case it is easy to show (using \(\Gamma^{067} E = -E\)) that \(V^\mu = 0\) except for \(\mu = t\), where
\[V_{ab}^t = E_a^T \Gamma^0 z \Gamma^0 E_b = -\epsilon_a^T \xi_b = -\delta_{ab}. \]

Thus the orthogonality condition on the coefficients \(b_{ia}\) is simply
\[b_{ia} b_{ja} = 0. \]

3.1. Case \(\alpha = 1\): AdS\(_2\) \(\times S^2 \times \mathbb{T}^6\)

For the simplest case we can proceed almost exactly parallel to [29]'s treatment of IIB AdS\(_3 \times S^3 \times T^4\), although it is even simpler as we have only two complexified Killing spinors.

Using \(P_2 E = E\) the \(\mu \in S_7\) equation (10) above simplifies to \(D_\mu E = \frac{1}{2} \Gamma_\mu \Gamma^7 E\), and thus the solution is just
\[E(\xi) = \frac{1}{\sqrt{c}} \exp \left(\frac{\theta}{2} \Gamma^{21} \right) \exp \left(\frac{\phi}{2} \Gamma^{23} \right) \xi \] (14)
with \(\xi_a, a = 1 \ldots 4\) still solving (12):\(^2\)
\[(\xi_a)^\beta = \frac{1}{2} \delta_a^\beta - 1 + \frac{1}{2} \delta_{2a-\beta+8} + \frac{1}{2} \delta_{2a-\beta+16} - \frac{1}{2} \delta_{2a-\beta+23}. \]

Choosing the complex combinations \(E_i = b_{ia} E(\xi_a)\) specified by
\[b_1 = (1, 0, i, 0), \quad b_2 = (0, 1, 0, i) \]
and integrating (3), we get
\[C = \frac{1}{z} \begin{bmatrix} i \cos \theta_+ - \sin \theta_+ \sin \phi_+ & -\cos \phi_+ \sin \theta_+ \\ -\cos \phi_+ \sin \theta_+ & i \cos \theta_+ + \sin \theta_+ \sin \phi_+ \end{bmatrix}. \]

Taking the determinant, (4) gives the shift in the dilaton to be
\[\Delta \Phi = \Phi' - \Phi = -\log(z). \] (15)

Bosonic \(T\)-duality along time (the only boundary direction of AdS\(_2\)) un-does this shift, giving \(\Phi'' = \Phi' = \log(z)\). It also changes the metric as follows:
\[dz_{\text{AdS}}^2 = \frac{-dr^2 + dz^2}{z^2} \rightarrow -z^2 \, dr^2 + \frac{dz^2}{z^2} = \frac{-dr^2 + dz' \, dz'}{z'^2}, \] (16)
where in the last step we define \(z' = 1/z\) to bring the metric back to its original form.

Turning to the RR forms, \(\Delta F\) from (5) has real terms cancelling the original flux (9), and imaginary terms leading to
\[e^{\Phi'} F^{(2)'} = i \Gamma^{14} \]
\[e^{\Phi'} F^{(4)'} = -i \Gamma^{0235} - i \Gamma^{1569} + i \Gamma^{1578}. \]

\(^2\) I.e. each \(\xi\) has four nonzero entries at the positions indicated, with \(\beta = 1 \ldots 32\) by a temporary abuse of notation.
Then bosonic duality along directions x^0, x^4, x^6 and x^7 returns us to the original RR flux. Notice that we need to dualise along half of the torus directions here, and that the total number of bosonic dualities is four (as it was in $\text{AdS}_5 \times S^5$).\(^3\)

The earlier treatment of $\text{AdS}_2 \times S^2$ in [18, 36] studied only the coset σ-model $PSU(1, 1|2)/U(1)^2$, rather than the whole critical string theory. Thus the need for bosonic T-duality along torus directions was not seen there. This approach was extended in [32] to include non-coset fermions, which forced us to include duality along torus directions.

3.2. Case $\alpha < 1$: $\text{AdS}_2 \times S^2 \times S^2 \times T^4$

Using the setup for generic complex combinations $E_i = b_{ia} E_a$ above, it is fairly easy to prove that no choice of b_{ia} can lead to $\Delta \Phi = \log z + \text{const}$. Fermionic T-duality thus necessarily produces a shift in the dilaton which depends on some of the sphere co-ordinates θ_+, φ_+, which bosonic T-duality along time (and flat torus directions) cannot undo.

The way around this problem is to allow bosonic T-duality along a complex Killing vector. To do this we introduce some unusual co-ordinates for S^2 which arise from the form of the coset element used in [32].\(^4\) There, $S^2 = SU(2)/U(1)$ is parameterised by

$$g = e^{i\nu_i} L_i \in SU(2), \quad L_{\pm} = \mathbb{I}_1 \pm L_2, \quad L_3 = \frac{1}{2i} \sigma_n$$

with the coset’s denominator taken to correspond to the first factor in $\mathfrak{su}(2) = \mathfrak{g}_{(0)} \oplus \mathfrak{g}_{(2)}$, where

$$\mathfrak{g}_{(0)} = \{L_+ + L_-, L_1\}, \quad \mathfrak{g}_{(2)} = \{L_+ - L_-, L_3\} = \{L_2, L_3\}.$$

Then writing $J_{(2)}$ for the projection of the current onto $\mathfrak{g}_{(2)}$:

$$J_{(2)} = |g^{-1} d g|_{(2)} = e^{i\lambda} d \lambda_+ L_2 + d \lambda_3 L_3$$

the metric is

$$d s_+^2 = -2 \text{Tr} (J_{(2)} J_{(2)}) = d \lambda_3^2 + e^{2i\lambda} d \lambda_+^2.$$

Comparing this to (8), it is easy to show that the new co-ordinates $x^2 = \lambda_3$ and $x^3 = \lambda_+$ are related to the original ones by

$$e^{i\lambda_3} = \cos \theta_+ + i \sin \theta_+ \cos \varphi_+, \quad \lambda_+ = e^{-i\lambda_3} \sin \theta_+ \sin \varphi_+ = \frac{\sin \varphi_+}{\cot \theta_+ + i \cos \varphi_+}.$$

Below we will write $e^3 = e^3 \, d x^\mu = \sin \theta_+ d \varphi_+$ etc for the original co-ordinates, and underlined flat indices for the new complex co-ordinates: $x^2 = \lambda_3$, $x^3 = \lambda_+$. Notice that the volume form is preserved by this change: $e^2 \wedge e^3 = e^2 \wedge e^2$.

The original real S^2 was the slice in which $\theta_+, \varphi_+ \in \mathbb{R}$, but now we allow these to be complex. And importantly, we dualise along the λ_+ direction, as well as time (and some of the torus directions y_i). This gives dual metric

\(^3\)This was also seen in [29]’s supergravity treatment $\text{AdS}_3 \times S^1 \times T^4$, where it was necessary to dualise along two torus directions and the two boundary directions of AdS_3.

\(^4\)We suppress all except this $SU(2)$ part. We have also re-scaled the algebra to avoid factors $c = \sqrt{\alpha'}$. See also [36] for discussion of some related parameterisations.
and a shift in the dilaton of
\[\Phi'' - \Phi' = \log(z e^{-i\lambda_3}) = \log \frac{z}{\cos \theta_+ i \sin \theta_+ \sin \varphi_+}. \] (21)

The dual metric \(ds_{\text{AdS}}^2 \) in terms of \(\theta_+ , \varphi_+ \) is no longer real. To recover a sphere we must afterwards pick a different real slice: define \(\theta' , \varphi' \) by (19) with \(\lambda_3 \) replaced by \(-\lambda_3 \), i.e.
\[e^{-i\lambda_3} = \cos \theta' + i \sin \theta' \cos \varphi' , \quad \lambda_+ = \frac{\sin \varphi'}{\cot \theta' + i \cos \varphi'}. \]

Then obviously \(ds_{\text{AdS}}^2 = d\theta'^2 + \sin^2 \theta' d\varphi'^2 \). And to recover \(\text{AdS}_2 \) we must also invert the radial co-ordinate, defining \(z' = 1/z \), which clearly gives \(ds_{\text{AdS}}^2 = (-dr^2 + dz'^2)/z'^2 \).

Returning to the fermionic \(T \)-duality, we now use very simple complex combinations
\[\begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} = \begin{bmatrix} E_1 + iE_4 \\ -E_2 + iE_3 \end{bmatrix}. \]
For this to be meaningful we must specify the eigenvectors \(\xi_\alpha \) used; they are easy to calculate but messy to type. Let us order them by the position of the first first non-zero component, and choose the sign such that this is positive:
\[(\xi_\alpha)^\beta = 0 \text{ for } \beta < a , \quad (\xi_\alpha)^\beta > 0 \text{ for } \beta = a \] (22)
for example \(\xi_3 = \frac{1}{\sqrt{2}} (0, 0, \sqrt{1 + \sqrt{\alpha}} , 0, 0, \sqrt{1 - \sqrt{\alpha}} , 0, 0, ...) \). Then we get
\[C = -2i \frac{\cos \theta_+ + i \sin \theta_+ \cos \varphi_+}{z} \left[-e^{-i\varphi_+} \sin \theta_- \cos \theta_- \cos \theta_+ \right] = C_+ C_- \] (23)
and hence the change in the dilaton is
\[\Phi' - \Phi = \log \frac{\cos \theta_+ + i \sin \theta_+ \cos \varphi_+}{z} + \log(-2i) \] (24)
cancelling the bosonic shift perfectly (apart from a constant which we could have absorbed).

Next we must look at the change in the RR forms, and we begin with the two-form:
\[e^{i\phi} F_{(2)'} = \sqrt{1 - \alpha} \left(\sin \theta_+ - i \cos \theta_+ \cos \varphi_+ \right) e^1 \wedge e^2 + i \sin \varphi_+ e^1 \wedge e^3 \]
\[= -i \sqrt{1 - \alpha} e^1 \wedge e^2. \] (25)
On the second line we see that this simplifies greatly in terms of the new complex co-ordinates (or rather, the corresponding flat directions). The change in the four-form field \(\Delta F_{(4)} \) has real terms precisely cancelling the original \(F_{(4)} \), and imaginary terms which likewise simplify greatly in the new co-ordinates, to give
\[e^{i\phi} F_{(4)'} = -i(e^1 e^2 e^6 e^8 + e^1 e^2 e^7 e^9) + i \sqrt{\alpha} (-e^6 e^2 e^6 e^7 + e^6 e^4 e^8 e^9) + i \sqrt{1 - \alpha} (e^6 e^2 e^4 e^5). \] (26)

Bosonic \(T \)-duality now acts on \(F_{(2)'} \) and \(F_{(4)'} \) in the usual way, and we dualise along directions \(t = x^0 , \lambda_+ = x^3 \) and \(x^7 , x^8 \). This gives \(F_{(2)''} = 0 \) and
\[F_{(4)''} = (-e^0 e^6 e^7 + e^0 e^4 e^8) + \sqrt{\alpha} (e^2 e^3 e^6 e^8 + e^2 e^3 e^7 e^9) + \sqrt{1 - \alpha} (-e^4 e^5 e^8 + e^4 e^5 e^9). \]
We interpret these flat components as being with respect to the new metric \(ds^2 \) (20) created simultaneously by bosonic T-duality, hence \(e^{i2} = e^{-i\lambda_3} = e^{i2} \). Note that \(e^{i2} = -d\lambda_3 = -e^{i2} \), so that the volume form is preserved also by the second change of coordinates, to the new real coordinates \(\theta' = x' \), \(\varphi' = x^3 \). We write \(e^{i2} \wedge e^{i2} = e^{i2} \wedge e^{i3} \). Then we have recovered the original flux (9).

3.3. Aside on \text{AdS}_2 \times S^2 \times T^6 with other RR fluxes

The \(\alpha = 1 \) background in section 3.1 above has only \(F^{(4)} \) turned on. Various other combinations of fluxes are possible with the same geometry, and one of the cases considered in [33] is

\[
F^{(2)} = -\Gamma_0^1, \quad F^{(4)} = \Gamma^{23}(\Gamma^{45} + \Gamma^{67} + \Gamma^{89}).
\] (27)

This is also the case studied in [24], and one of the cases in [32]. It is equally easy to show the self-duality of this background using the same methods, and we look at this briefly before moving on to \text{AdS}_3 \times \mathcal{M}.

We can write

\[
S = -4\Gamma_0^1 \Gamma_1^1 P, \quad T = -4\Gamma_0^0 \Gamma_1^1 (1 - P)
\]

in terms of

\[
P = \frac{1}{4}(1 - \Gamma^{6789} - \Gamma^{4589} - \Gamma^{4567}).
\]

The Killing spinors are still given by (14), but the constraint on \(\xi \) is now

\[
\Gamma_0^0 \Gamma_1^1 \xi = \xi.
\]

We choose solutions \(\xi \) which obey (22), and then take the following complex combinations:

\[
\xi_1 = iE_1 + E_4, \quad \xi_2 = iE_2 - E_3.
\]

This gives

\[
C = \frac{1}{\xi} \left[\begin{array}{c} i e^{i\delta} \sin \theta_+ - i \cos \theta_+ \\ -i e^{-i\delta} \sin \theta_+ \end{array} \right]
\]

and hence the change in the dilaton is \(\Delta \Phi = -\log(\xi) \). This is the same as (15) above, and is similarly cancelled by the bosonic duality along time.

The change in RR forms is

\[
\Delta F^{(2)} = \gamma^{01}, \quad \Delta F^{(4)} = -\gamma^{23}(\gamma^{45} + \gamma^{67} + \gamma^{89}) - i \gamma^{1468} + i \gamma^{1479} + i \gamma^{1569} + i \gamma^{1578}.
\]

Clearly the real terms again cancel the original flux. Acting with bosonic T-duality on the remaining (imaginary) terms along directions \(t = x^0, x^4, x^6 \) and \(x^8 \) returns us to (27).

4. The background \text{AdS}_3 \times S^3 \times S^3 \times S^1

The metric here is still of the form (7), but now with one more dimension. We choose nested co-ordinates for the \(S^3 \) as in [35]:

\[ds^2_{\text{AdS}} = -\frac{dt^2 + dx^2 + dz^2}{z^2} \]
\[\Rightarrow \omega_{t[02]} = \omega_{t[21]} = 1/z \]
\[ds^2_{\text{S}^2} = d\theta^2_\pm + \sin^2 \theta_\pm (d\varphi^2_\pm + \sin^2 \varphi_\pm d\psi_\pm) \]
\[\Rightarrow \omega_{\varphi,[34]} = -\cos \theta_\pm, \quad \omega_{\psi,[35]} = -\cos \theta_\pm \sin \varphi_\pm, \quad \omega_{\psi,[45]} = -\cos \varphi_\pm. \]

We take the following flux [34]:
\[F^{(4)} = 2(-\Gamma^{0129} + \sqrt{\alpha} \Gamma^{3459} + \sqrt{1-\alpha} \Gamma^{6789}) \]
\[= -4\Gamma^{0129}(1-P). \] (28)

Bosonic T-duality along the \(x^9 \) direction returns us to the fluxes of (for instance) [37], and then taking the limit \(\alpha \to 1 \) reduces this to the IIB \(\text{AdS}_3 \times S^3 \times T^4 \) case for which [29] studied fermionic T-duality. Because of this study of the \(\alpha = 1 \) case, we focus here only on the \(0 < \alpha < 1 \) case.

This background has 16 supersymmetries, and thus eight Poincaré Killing spinors, allowing for four complex directions along which we can perform fermionic T-duality. We can build up a solution \(E = z^{-1/2} R_{S_\pm} \xi \) to the Killing spinor equation as before:

- Poincaré killing spinors must now have \(\partial_t E = 0 \) and \(\partial_x E = 0 \). The rest of the \(\mu = t \) equation gives us a constraint \(E = \Gamma^{019} P E \); the \(\mu = x \) equation is identical. The \(\mu = z \) equation is solved by \(E \propto z^{-1/2} \).
- When \(\mu \in S_\pm \) we get (using \(P E = E \))
\[D_\mu E = \frac{\sqrt{\alpha}}{2} \Gamma^\mu \Gamma^{0145} E \]
which (again generalising [35]) is solved by a factor \(R_{S_\pm} = e^{\frac{\xi}{2} \Gamma^{0145}} e^{\frac{\psi_4}{2} \Gamma^{14}} e^{\frac{\psi_1}{2} \Gamma^{45}} \).
- When \(\mu \in S \), we get \(D_\mu E = \frac{\sqrt{1-\alpha}}{2} \Gamma^\mu \Gamma^{016789} E \). Notice that \([\Gamma^{\mu}, \Gamma^{016789} R_{S_+}] = [D_\mu, R_{S_+}] = 0 \), so this is precisely the equation which must be solved by \(R_{S_+} \) alone.

The complete solution is then
\[E(\xi) = \frac{1}{\sqrt{z}} \exp\left(\frac{\theta_\pm}{2} \Gamma^{0145}\right) \exp\left(\frac{\varphi_\pm}{2} \Gamma^{34}\right) \]
\[\times \exp\left(\frac{\psi_\pm}{2} \Gamma^{45}\right) \exp\left(\frac{\theta_\pm}{2} \Gamma^{0178}\right) \exp\left(\frac{\varphi_\pm}{2} \Gamma^{67}\right) \exp\left(\frac{\psi_\pm}{2} \Gamma^{78}\right) \xi \]

with constant \(\xi \) obeying
\[\Gamma^{019} \xi = P \xi = \xi. \]

There are exactly eight such spinors, as advertised. Let us order the (orthogonal) \(\xi_a \) such that
\[(\xi_\beta)\beta = 0 \quad \text{for} \quad \beta < a, \quad (\xi_a)\beta = \frac{1}{2} \quad \text{for} \quad \beta = a. \]

The orthogonality relation is now non-trivial for two values of \(\mu \), in terms of \(V^\mu \) defined in (13) reads
\[V^t = -1, \quad V^x = -\sqrt{\alpha} \sigma^2 \otimes \sigma^2 \otimes I_{2 \times 2} - \sqrt{1-\alpha} \otimes I_{2 \times 2} \]

After some experiments we solve this by taking
\[\mathcal{E}_1 = E_1 - iE_8, \quad \mathcal{E}_2 = E_2 + iE_7, \quad \mathcal{E}_3 = E_3 - iE_6, \quad \mathcal{E}_4 = E_4 + iE_5. \]
With this choice C factorises into

$$C = C_+ (\theta, \varphi_+, \psi_+) \ C_- (\theta, \varphi_-, \psi_-)$$

where $C_+ = 2i \sin \theta_+ (\cos \varphi_+ + i \sin \varphi_+ \cos \psi_+)$ is a number, and C_- a matrix with det $C_- = 1$:

$$C_- = \begin{pmatrix}
-c_0 - i s_0 \sqrt{c_0 + i s_0} & -i c_0 s_0 & -\sqrt{c_0} s_0 & i s_0 \sqrt{c_0 - i s_0} \\
-i c_0 s_0 & c_0 - i s_0 \sqrt{c_0 + i s_0} & i c_0 s_0 & -\sqrt{c_0} s_0 \\
-\sqrt{c_0} s_0 & i c_0 s_0 & c_0 + i s_0 \sqrt{c_0 - i s_0} & i s_0 \sqrt{c_0 + i s_0} \\
s_0 \sqrt{c_0 - i s_0} & i c_0 s_0 & i s_0 \sqrt{c_0 + i s_0} & c_0 - i s_0 \sqrt{c_0 - i s_0}
\end{pmatrix}$$

writing (only here) $s_0 = \sin \theta_-, c_0 = \cos \theta_-$ and $\tilde{\alpha} = \sqrt{1 - \alpha}$. Then we get

$$\Phi' = \Phi = 2 \log \frac{\sin \theta_+ (\cos \varphi_+ + i \sin \varphi_+ \cos \psi_+)}{z}. \quad (29)$$

To undo this shift using bosonic T-duality we again need to dualise along some complex directions. The parameterisation of the coset element chosen in [32] implies a metric for S^3 generalising (18):

$$ds^2_{S^3} = d\lambda_+^2 + e^{2\lambda_+} d\lambda_-^2 - e^{-2\lambda_+} d\lambda_+^2.$$

Dualising along λ_+ and λ_- (as well as two AdS_3 directions t, x) gives a shift in the dilaton of

$$\Phi'' - \Phi' = 2 \log (z \ e^{-\lambda_+})$$

from which we read off

$$e^{\lambda_+} = \sin \theta_+ (\cos \varphi_+ + i \sin \varphi_+ \cos \psi_+).$$

The same duality also changes the metric $ds^2 = d\lambda_3^2 + e^{2\lambda_3} d\lambda_+^2 - e^{-2\lambda_3} d\lambda_-^2$, which as before we can absorb into the relation between λ_3 and the real co-ordinates for S^3, writing $e^{-\lambda_3} = \sin \theta' (\cos \varphi' + i \sin \varphi' \cos \psi')$.

Finally we look at the change in the RR fields. Fermionic T-duality produces a two-form field which, as in (25) above, is much simpler written in the new complex co-ordinates. Writing $e^2 = d\lambda_3$, this is

$$\Delta F^{(4)} = 2 \sqrt{1 - \alpha} \left\{ \cot \theta_+ e^2 e^3 + \frac{i(\cos \varphi_+ \cos \psi_+ + i \sin \varphi_+)}{\sin \theta_+ (\cos \varphi_+ + i \sin \varphi_+ \cos \psi_+)} \right\}$$

$$= 2i \sqrt{1 - \alpha} e^2 e^3. \quad (30)$$

One of the $\sqrt{\alpha}$ terms in the change in the four-form field is similarly simple, on the first line here:

$$\Delta F^{(4)} = -2 \sqrt{\alpha} e^0 e^3 e^9 \left\{ \cot \theta_+ e^3 + \frac{i(\cos \varphi_+ \cos \psi_+ + i \sin \varphi_+)}{\sin \theta_+ (\cos \varphi_+ + i \sin \varphi_+ \cos \psi_+)} \right\}$$

$$+ 2 \sqrt{\alpha} e^0 e^e e^6 + 2 \sqrt{1 - \alpha} e^0 e^3 e^6 e^9 - 2 e^0 e^3 e^9$$

$$+ 2 e^0 \left\{ \cot \theta_+ e^9 + \frac{-i(\cos \varphi_+ \cos \psi_+ + i \sin \varphi_+)}{\sin \theta_+ (\cos \varphi_+ + i \sin \varphi_+ \cos \psi_+)} \right\}.$$

On the second line we have terms cancelling the original $F^{(4)}$. The square bracket on the third line here is precisely $i \ e_0 e^3$, as can be seen by noting that the volume form should be the same as for the initial co-ordinates—the product of the two square brackets above is
Thus the RR fields after the fermionic step are:

\[
e^{\theta'}F^{(2)'} = 2i\sqrt{1-\alpha} e^2 e^3 \\
e^{\theta'}F^{(4)'} = 2i\sqrt{\alpha} e^0 e^1 e^2 e^9 + 2i e^2 e^5 e^9.
\]

(31)

Bosonic T-duality along \(t, x, \) and \(\lambda_\pm \) (i.e. directions 0, 1, 4, 5) leads to

\[
e^{\theta'}F^{(4)''} = -2e^0 e^2 e^9 + 2\sqrt{\alpha} e^1 e^3 e^5 e^9 + 2\sqrt{1-\alpha} e^6 e^8 e^9.
\]

Then using \(e^3 e^4 e^5 = e^1 e^4 e^6 \)' to write this in terms of the final set of real co-ordinates \(\theta', \varphi', \psi' \), we recover the original RR field, (28).

5. Conclusions

In this paper we have shown that type IIA string theory on backgrounds \(\text{AdS}_2 \times S^2 \times T^6 \) and \(\text{AdS}_2 \times S^2 \times S^d \times T^{10-3d} \) for \(d = 2, 3 \) is self-dual under bosonic and fermionic T-duality. We have deliberately kept our computations as ‘low-tech’ as possible, constructing Killing spinors by hand following [35], and then using the Buscher rules of [6] to work out the effect of fermionic T-duality. This approach makes particularly clear that we cannot avoid bosonic T-duality along torus directions, and in the \(S^+ \times S^- \) cases also along some complexified sphere directions.

All of these backgrounds have also been studied (in various ways) using coset sigma models. These approaches have different strengths and weaknesses:

- \(\text{AdS}_1 \times S^3 \) is the bosonic part of \(\text{PSU}(1,1)[2]/SU(1, 1) \times SU(2) \), which in turn is a truncation of the \(\text{PSU}(2, 2)[4] \) super-coset used for \(\text{AdS}_3 \times S^3 \). This truncation lets you re-use many parts of the story, however it omits the flat torus directions, and half the fermions of the GS action\(^5\). It is possible to fix a kappa-gauge such that the non-coset fermions all vanish, as was done by [18]. The approach of [32] was to start with this coset, and then explicitly add the non-coset fermions. This made visible the need for T-duality along torus directions.

- \(\text{AdS}_3 \times S^2 \times S^3 \) is likewise the bosonic part of the exceptional group coset \(D(2,1; \alpha^2)/SO(1, 2) \times SO(3)^2 \), which again omits half the GS fermions\(^6\). For this case the approach of [32] was different: since all the Killing spinors lie in the coset directions, one can re-cast the fermionic Buscher rules into this language. Once this is done, self-duality follows in a few lines.

- In the case \(\text{AdS}_2 \times S^2 \subset \text{PSU}(1, 1)[2]/SO(1, 1) \times U(1) \), only eight of the GS string’s 32 fermions are described by these coset, thus a kappa gauge cannot remove all the non-coset fermions. (This is also true for \(\text{AdS}_2 \times S^2 \times S^2 \subset D(2, 1; \alpha)/SO(1, 1) \times SO(2)^2 \).) The same list of approaches is possible here: one can truncate to the coset [18], or explicitly add non-coset fermions to the action [32], or generate Killing spinors from the coset to use in the supergravity rules [32].

\(^5\) In the integrable picture, the same truncation of \(\text{AdS}_3 \times S^3 \) omits the massless modes, from the torus directions and their superpartners. This was the first sector to be explored, see review [38]. Many details of the massless sector are still being worked out [39, 40].

\(^6\) However in this case the coset only omits two bosonic directions, see [41–43].
Apart from these backgrounds, in the introduction we mentioned the goal of resolving the longstanding problem with AdS$_5 \times$ CP3 self-duality $[18, 19, 21]$. Another open direction concerns backgrounds with mixed RR and NS–NS fields. All of the above geometries can be supported by some such mixture, and some can be supported by pure NS–NS flux $[34]$. The integrability of such backgrounds has been a topic of much recent interest $[44, 45]$ but nothing is known about their fermionic T-duality.

Acknowledgments

We have benefited greatly from discussions with our co-authors of $[32]$, and more locally with Emanuel Malek. We must especially thank Martin Wolf, for pointing out to us the need to dualise along complex λ_{\pm}.

Michael is supported by an NRF Innovation Fellowship. Jeff is supported by the NRF CPRR program under GUN 87667. Justine thanks the UCT Faculty of Science for PhD support.

Appendix A. Bosonic T-duality

While our focus here is on fermionic T-duality, the self-duality involves also bosonic T-duality. For this the tools are much better developed, and we review briefly what we need of these.

A.1. Generalised metric and dilaton

The most convenient formalism for working out the effect of bosonic T-duality on the metric G, the Kalb–Ramond antisymmetric B field, and the dilaton Φ is to use generalised geometry, where T-duality is generated by an $O(D, D)$ transformation.

The generalised metric M and generalised dilaton d are defined by

$$
M = \begin{bmatrix}
G - BG^{-1}B & BG^{-1} \\
G^{-1}B & G^{-1}
\end{bmatrix}
\quad e^{-2d} = e^{-2\Phi}\sqrt{\det G}.
$$

$O(D, D)$ transformations act $M \rightarrow M' = T^{-1}MT$, and d is invariant. T-duality is implemented by the following matrix, with for instance $\nu = (0, \ldots, 0, 1)$ to dualise along the last direction:

$$
T_v = \begin{bmatrix}
1 & -n \\
-\nu & 1 - n
\end{bmatrix}, \quad n_{\mu\nu} = \nu_\mu \nu_\nu.
$$

Then it is easy to see that dualising along several co-ordinate directions, we have $T_v T_w = T_{v+w}$. Reading off G^{-1} from M', the change in the dilaton is clearly

$$
\Delta \Phi = \frac{1}{4} \log \frac{\det G'}{\det G}.
$$

When $B = 0$, if we write $g_{\mu\nu}$ for the block of $G_{\mu\nu}$ in the directions along which we are dualising, then this becomes simply

$$
\Delta \Phi = -\frac{1}{2} \log (\det g).
$$
A.2. Effect on Ramond–Ramond fields

One way to work out the changes in the RR form fields, from Fukuma et al [46], begins by writing them using a set of fermionic creation operators ψ^m. In terms of the potentials $C^{(p)}$ this reads

$$|C\rangle = \sum_{p} \frac{1}{p!} C^{(p)}_{m_{p}\ldots m_{1}} \psi^{m_{p}} \ldots \psi^{m_{1}} |0\rangle,$$

where the algebra is

$$\{\psi^{m}, \psi^{n}\} = \delta^{m}_{n}, \quad \{\psi^{m}_{,}, \psi^{n}_{,}\} = 0$$

and destruction operators $\bar{\psi}_{m}$ annihilate the vacuum $|0\rangle$. Then the action of bosonic T-duality in the i direction is given by

$$T_{m} = \psi^{m}_{,} + \psi^{m}_{,}.$$ \hspace{1cm} (33)

Note that different T_{m} clearly anti-commute, so the sign of the final $C^{(p)'}$ depends on the order (but is not physical). However there are two additions to this which matter for us:

- If there is a non-trivial dilaton, these rules should apply instead to $e^{\phi}dC^{(p)}$. This is mentioned in the very last paragraph of [46] (before the appendix), but is also implicit in [6, 29].
- T-duality along the time direction exchanges real and imaginary fluxes [47], which means that (33) applies to $m = 0$, and $T_{0} = i(\psi_{0}^{,} + \psi_{0})$.
- Also note that if there is a B-field turned on, then these rules should apply not to C but to the modified potential D introduced by [46]. We do not consider this case.

Another way to write this was given by Hassan [48], acting directly on the fields $F^{(p)}$. When dualising along direction x^9, the new fluxes are

$$F_{\mu_{0}\ldots \mu_{9}}^{(p)'} = F_{\mu_{0}\ldots \mu_{9}}^{(p-1)} - \frac{P}{G_{99}} G_{99} F_{\mu_{0}\ldots \mu_{9}}^{(p-1)}$$

and

$$F_{m_{9}m_{0}\ldots \mu_{9}}^{(p)'} = F_{m_{9}m_{0}\ldots \mu_{9}}^{(p+1)} - \mu B_{9} F_{m_{9}m_{0}\ldots \mu_{9}}^{(p)'}.$$ \hspace{1cm} (34)

with $m, n, \ldots, q = 0, 1, \ldots, 8$, and antisymmetrisation $[n, \ldots, q]$ acting on the letters only. In all our cases G is diagonal and B is zero, and thus the second terms here vanish. Note that when dualising along time we still need to insert a factor of i [47]. And with a non-trivial dilaton we should include its factor too.

We can write the transformation very simply in terms of the bispinor defined in (6) above, and its IIB cousin

$$F^{\alpha\beta} = \frac{1}{3!} F^{(1)}_{m_{p}\ldots \mu_{9}} (\gamma^{m})^{\alpha\beta} + \frac{1}{3!} F^{(3)}_{m_{p}\ldots \mu_{9}} (\gamma^{m})^{\alpha\beta} \gamma_{9} (\gamma^{p})^{\alpha\beta}$$

$$+ \frac{1}{2 \times 4!} F^{(5)}_{m_{p}\ldots \mu_{9}} \gamma_{9} \gamma_{\mu_{p}} (\gamma^{q})^{\alpha\beta}.$$ \hspace{1cm} (35)

Incorporating e^{ϕ} as above, we then have

7 Notice that (33) and (34) appear to produce fields $F^{(p)}$ with $p > 5$. These are of course not independent, and the IIA ones are related by [46]

$$e^{F^{(9)}_{\mu_{0}\ldots \nu_{1}}} = F^{(2)}, \quad e^{F^{(8)}_{\mu_{0}\ldots \nu_{1}}} = -F^{(4)}.$$ \hspace{1cm} (36)

This fact is built into the bispinor (6), where it amounts to $\prod_{m=0}^{9} \gamma_{m} = 1$.
In fact we always need four dualities, and acting on the F' produced by fermionic T-duality this reads

$$e^{\Phi} F'' = \pm i (0^{mpn}) (e^\Phi F'),$$

where m, n, p vary in the different backgrounds. (We have always chosen the sign \pm, or equivalently the order of the dualities, to produce the tidiest result.)

Appendix B. Gamma matrices

We adopt the same conventions as [9, 29] among others, defining

$$\Gamma^0 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \Gamma^m = \begin{bmatrix} 0 & (\gamma^m)^{\alpha\beta} \\ (\gamma^m)^{\alpha\beta} & 0 \end{bmatrix}$$

with 16×16 blocks as follows:

$$\begin{array}{cccc}
\gamma^1 &=& \sigma^2 \otimes \sigma^2 \otimes \sigma^2 \otimes \sigma^2 \\
\gamma^2 &=& \sigma^2 \otimes 1 \otimes \sigma^3 \otimes \sigma^2 \\
\gamma^3 &=& \sigma^2 \otimes 1 \otimes \sigma^3 \otimes 1 \\
\gamma^4 &=& \sigma^2 \otimes \sigma^1 \otimes \sigma^2 \otimes 1 \\
\gamma^5 &=& \sigma^2 \otimes \sigma^3 \otimes \sigma^2 \otimes 1 \\
\gamma^6 &=& \sigma^2 \otimes \sigma^2 \otimes 1 \otimes \sigma^1 \\
\gamma^7 &=& \sigma^2 \otimes \sigma^2 \otimes 1 \otimes \sigma^3 \\
\gamma^8 &=& \sigma^2 \otimes 1 \otimes 1 \otimes 1 \\
\gamma^9 &=& \sigma^3 \otimes 1 \otimes 1 \otimes 1 \\
\gamma^{10} &=& -\delta_{\alpha\beta}, \quad (\gamma^{10})^{\alpha\beta} = \delta^{\alpha\beta}. \quad \text{These } \gamma^m \text{ are all clearly real and symmetric. We take the charge conjugation matrix to be } C = \Gamma^0. \quad \text{And we notice that } \Gamma_1 \equiv \prod_{m=0}^{15} \Gamma^m = \sigma^3 \otimes 1_{16 \times 16}. \\
\end{array}$$

References

[1] Maldacena J M 1999 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 38 1113–33

[2] Beisert N et al 2012 Review of AdS/CFT integrability: an overview Lett. Math. Phys. 99 3–2

[3] Drummond J, Henn J, Korchemsky G and Sokatchev E 2010 Dual superconformal sym metry of scattering amplitudes in $N = 4$ super-Yang–Mills theory Nucl. Phys. B 828 317–74

[4] Beisert N 2009 T-duality, dual conformal symmetry and integrability for strings on $\text{AdS}_5 \times S^5$ Fortschr. Phys. 57 329–37

[5] Drummond J 2012 Review of AdS/CFT integrability, chapter v.2: dual superconformal symmetry Lett. Math. Phys. 99 481–505

[6] Berkovits N and Maldacena J M 2008 Fermionic T-duality, dual superconformal sym metry, and the amplitude/Wilson loop connection J. High Energy Phys. JHEP09(2008)062

[7] Beisert N, Ricci R, Tseytlin A A and Wolf M 2008 Dual superconformal symmetry from $\text{AdS}_5 \times S^5$ superstring integrability Phys. Rev. D 78 126004

[8] Ó Colgáin E 2012 Fermionic T-duality: a snapshot review Int. J. Mod. Phys. A 27 1230032

[9] Bakhmatov I 2011 Fermionic T-duality and U-duality in type II supergravity PhD Thesis QML (arXiv:1112.1983)

[10] Sfetsos K, Siampos K and Thompson D C 2011 Canonical pure spinor (fermionic) T-duality Class. Quantum Grav. 28 055010

[11] Buscher T 1988 Path integral derivation of quantum duality in nonlinear sigma models Phys. Lett. B 201 466
[12] Alvarez E, Alvarez-Gaume L and Lozano Y 1995 An introduction to T-duality in string theory
Nucl. Phys. B 41 1–20

[13] Aharony O, Bergman O, Jafferis D L and Maldacena J M 2008 $\mathcal{N} = 6$ superconformal Chern–Simons-matter theories, M2-branes and their gravity duals *J. High Energy Phys.* JHEP10 (2008)091

[14] Klose T 2012 Review of AdS/CFT integrability, chapter iv.3: $\mathcal{N} = 6$ Chern–Simons and strings on AdS$_4 \times \mathbb{CP}^3$ *Lett. Math. Phys.* 99 401–23

[15] Huang Y and Lipstein A E 2010 Dual superconformal symmetry of $\mathcal{N} = 6$ Chern–Simons theory *J. High Energy Phys.* JHEP10(2010)076

[16] Lipstein A E 2011 Dual superconformal symmetry of the ABJM theory *Nucl. Phys. B* 216 249–51

[17] Bianchi M S, Leoni M, Mauri A, Penati S and Santambrogio A 2012 One loop amplitudes in ABJM *J. High Energy Phys.* JHEP07(2012)029

[18] Adam I, Dekel A and Oz Y 2009 On integrable backgrounds self-dual under fermionic T-duality *J. High Energy Phys.* JHEP04(2009)120

[19] Adam I, Dekel A and Oz Y 2010 On the fermionic T-duality of the AdS$_4 \times \mathbb{CP}^3$ sigma-model *J. High Energy Phys.* JHEP10(2010)110

[20] Bargheer T, Loebbert F and Meneghelli C 2010 symmetries of tree-level scattering amplitudes in $\mathcal{N} = 6$ superconformal Chern–Simons theory *Phys. Rev. D* 82 045016

[21] Bakhmatov I 2011 On AdS$_4 \times \mathbb{CP}^3$ T-duality *Nucl. Phys. B* 847 38–53

[22] Bakhmatov I, Ó Colgáin E and Yavartanoo H 2011 Fermionic T-duality in the pp-wave limit *J. High Energy Phys.* 10 JHEP10(2011)085

[23] Metsaev R R and Tseytlin A A 1998 Type IIB superstring action in AdS$_5 \times S^5$ background *Nucl. Phys. B* 533 109–26

[24] Cagnazzo A, Sorokin D, Tseytlin A A and Wulff L 2013 Semiclassical equivalence of Green-Schwarz and pure-spinor/hybrid formulations of superstrings in AdS$_5 \times S^5$ and AdS$_2 \times S^2 \times T^6$ *J. Phys. A: Math. Theor.* 46 065401

[25] Bena I, Polchinski J and Roiban R 2004 Hidden symmetries of the AdS$_5 \times S^5$ background *Phys. Rev. D* 69 046002

[26] Betsir N, Kazakov V A, Sakai K and Zarembo K 2006 The algebraic curve of classical superstrings on AdS$_5 \times S^5$ *Commun. Math. Phys.* 263 659–710

[27] Schäfer-Nameki S 2012 Review of AdS/CFT integrability, chapter ii.4: The spectral curve *Lett. Math. Phys.* 99 169–90

[28] McLaughlin T, Roiban R and Tseytlin A A 2008 Quantum spinning strings in AdS$_4 \times \mathbb{CP}^3$; testing the Bethe ansatz proposal *J. High Energy Phys.* JHEP11(2008)069

[29] Ó Colgáin E 2012 Self-duality of the D1–D5 near-horizon *J. High Energy Phys.* JHEP04(2012)047

[30] Bakhmatov I and Berman D S 2010 Exploring fermionic T-duality *Nucl. Phys. B* 832 89–108

[31] Godazgar H and Perry M J 2011 Real fermionic symmetry in type II supergravity *J. High Energy Phys.* JHEP01(2011)032

[32] Abbott M C, Murugan J, Penati S, Pittelli A, Sorokin D, Sundin P, Tarrant J, Wolf M and Wulff L 2015 T-duality of Green–Schwarz superstrings on AdS$_4 \times S^4 \times M^{10−2d}$ *J. High Energy Phys.* JHEP12(2015)104

[33] Sorokin D, Tseytlin A, Wulff L and Zarembo K 2011 Superstrings in AdS$_2 \times S^2 \times T^6$ *J. Phys. A: Math. Theor.* 44 275401

[34] Wulff L 2014 Superperimetry and integrability of superstrings *J. High Energy Phys.* JHEP05(2014)115

[35] Lü H, Pope C and Rahmfeld J 1999 A construction of killing spinors on S^n *J. Math. Phys.* 40 4518–26

[36] Dekel A and Oz Y 2011 Self-duality of Green–Schwarz sigma-models *J. High Energy Phys.* JHEP03(2011)117

[37] Forini V, Puletti V and Ohlsson Sax O 2012 Generalized cusp in AdS$_4 \times \mathbb{CP}^3$ and more one-loop results from semiclassical strings *J. Phys. A: Math. Theor.* 46 115402

[38] Sfondrini A 2014 Towards integrability for AdS$_4$/CFT$_2$ *J. Phys. A: Math. Theor.* 48 023001

[39] Borisato R, Ohlsson Sax O, Sfondrini A and Staflisński B 2014 The complete AdS$_4 \times S^3 \times T^4$ worldsheet S-matrix *J. High Energy Phys.* JHEP10(2014)066

[40] Sundin P and Wulff L 2015 The AdS$_{n} \times S^{4n} \times T^{0−2n}$ BMN string at two loops *JHEP11(2015)154

[41] Babichenko A, Staflisński B and Zarembo K 2010 Integrability and the AdS$_4$/CFT$_2$ correspondence *J. High Energy Phys.* JHEP03(2010)058
[42] Lloyd T and Stefański B 2014 AdS3/CFT finite-gap equations and massless modes J. High Energy Phys. JHEP04(2014)179
[43] Abbott M C and Aniceto I 2015 Macroscopic (and microscopic) massless modes Nucl. Phys. B 894 75–107
[44] Babichenko A, Dekel A and Ohlsson Sax O 2014 Finite-gap equations for strings on $AdS_3 \times S^3 \times T^4$ with mixed 3-form flux J. High Energy Phys. JHEP11(2014)122
[45] Lloyd T, Ohlsson Sax O, Sfondrini A and Stefański B 2014 The complete worldsheet S-matrix of superstrings on $AdS_3 \times S^3 \times T^4$ with mixed three-form flux Nucl. Phys. B 891 570–612
[46] Fukuma M, Oota T and Tanaka H 2000 Comments on T-dualities of Ramond–Ramond potentials on Tori Prog. Theor. Phys. 103 425–46
[47] Hull C 1998 Timelike T-duality, de Sitter space, large N gauge theories and topological field theory J. High Energy Phys. JHEP07(1998)021
[48] Hassan S 2000 T-duality, space-time spinors and RR fields in curved backgrounds Nucl. Phys. B 568 145–61