Landau model for the elastic properties of the ferroelastic crystal Rb$_4$LiH$_3$(SO$_4$)$_4$

G Quirion1, W Wu2, O Aktaş1, J Rideout1, M J Clouter1 and B Mróz3

1 Department of Physics and Physical Oceanography, Memorial University, St John’s, Newfoundland, A1B 3X7, Canada
2 Department of Physics, University of Toronto, Toronto, ON, Canada
3 Faculty of Physics, Adam Mickiewicz University, Poznan, Poland

Received 8 June 2009, in final form 7 October 2009
Published 21 October 2009
Online at stacks.iop.org/JPhysCM/21/455901

Abstract
Using sound velocity measurements, we report a detailed investigation of the elastic properties of Rb$_4$LiH$_3$(SO$_4$)$_4$ realized as a function of temperature and pressure. Results are compared to predictions of a phenomenological Landau model. Supported by recent Raman scattering measurements, we assume that the $4 \rightarrow 2$ structural transformation observed at $T_c = 134$ K corresponds to a pseudo-proper ferroelastic transition. For the numerical analysis, all coupling parameters are determined using the temperature dependence of the frequency of the soft optical B mode, the temperature dependence of spontaneous strains, and the pressure dependence $dT_c/dP = 191 \pm 2$ K GPa$^{-1}$ also determined in this work. Our comparison indicates that the $4 \rightarrow 2$ structural transition in Rb$_2$LiH$_3$(SO$_4$)$_4$ is fully consistent with predictions derived using our pseudo-proper ferroelastic model. Thus, all data presented in this paper corroborate that the mechanism leading to the structural transition at $T_c = 134$ K results from the softening of the B optical mode observed at 31 cm$^{-1}$. This detailed analysis also refutes the idea that Rb$_4$LiH$_3$(SO$_4$)$_4$ shows incomplete softening of the soft acoustic mode also associated with that structural transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction
Over the years, there have been many controversies regarding the properties of the ferroelastic compound Rb$_4$LiH$_3$(SO$_4$)$_4$. Initially designated as LiRb$_3$(SO$_4$)$_3$.1.5H$_2$SO$_4$ [1–4], subsequent chemical analysis revealed that Rb$_3$LiH$_3$(SO$_4$)$_4$ is the proper chemical formulation. The room temperature point group assignment for Rb$_4$LiH$_3$(SO$_4$)$_4$ [5, 6] was also incorrect. This led to the misleading interpretation that the structural transformation at 134 K was a $4mm \rightarrow 2mm$ ferroelastic phase transition. It was only after additional x-ray [7] and neutron diffraction [8] measurements that the correct $4 \rightarrow 2$ group–subgroup symmetry change was identified. Subsequently, the elastic properties of Rb$_4$LiH$_3$(SO$_4$)$_4$ have been revisited by different groups. Both experimental approaches, Brillouin scattering [9] and ultrasonic study [10], have now confirmed that the effective elastic constant $(C_{11} - C_{12})/2$ partially softens as the temperature is decreased down to T_c. Nonetheless, in order to account for their respective findings, different models have been used. On the one hand, the ultrasonic velocity measurements [10] are interpreted within the framework of a pseudo-proper ferroelastic model driven by an order parameter Q which differs from the strains. On the other hand, Mróz et al [9] analyzed their data using a proper ferroelastic model assuming that the strain combination $e_s = \alpha_1(e_1 - e_2) + \alpha_6e_6$ is the order parameter. In their interpretation they also claimed that the softening of the acoustic mode, associated with the spontaneous strain e_s, is incomplete at T_c. This conclusion is atypical as all known proper [11] and pseudo-proper [12, 13] ferroelastic compounds show complete softening for a continuous phase transition. For a general review on proper and pseudo-proper ferroelastic phase transitions, readers are invited to consult papers by Carpenter et al [14] and Salje [15].

In order to elucidate the nature of the ferroelastic transition, as well as to validate or refute the possibility of incomplete softening in Rb$_3$LiH$_3$(SO$_4$)$_4$, we present a detailed investigation of the elastic properties measured as a function of temperature and pressure. These results are complemented by new Raman measurements [16] which...
indicate that the character of the ferroelastic transition observed at $T_c = 134$ K is more likely pseudo-proper. Thus, our ultrasonic velocity data are compared to numerical predictions derived using a Landau model. As we show, the pseudo-proper ferroelastic model accounts very well for the temperature/pressure dependence of the elastic moduli, the temperature dependence of the spontaneous strains, the temperature dependence of the soft optical mode [16], and the pressure dependence of T_c. Finally, our analysis also indicates that the elastic properties of Rb$_4$LiH$_3$(SO$_4$)$_3$ are compatible with complete softening of the acoustic mode at T_c.

The remainder of the paper is organized as follows. In section 2 we briefly describe the experimental methods used for this investigation, while section 3 provides the theoretical background related to a pseudo-proper ferroelastic phase transition. Section 4 is dedicated to the determination of all background related to a pseudo-proper ferroelastic phase transition. Section 4 is dedicated to the determination of all background related to a pseudo-proper ferroelastic phase transition. Finally, our analysis also indicates that the structural transition in Rb$_4$LiH$_3$(SO$_4$)$_3$ is pseudo-proper ferroelastic. Thus, in this section we present a Landau free energy that can be used to predict the behavior of the soft optical mode, the spontaneous strains, and the temperature/pressure dependence of the elastic moduli. The total Gibbs energy considered here is similar to the one derived by David [21] to account for the $4/m \rightarrow 2/m$ ferroelastic transition observed in BiVO$_4$. As the $4 \rightarrow 2$ ferroelastic transition belongs to the same irreducible representation, we adopt the same phenomenological approach for Rb$_4$LiH$_3$(SO$_4$)$_3$.

For convenience, we divide the Landau expansion of the Gibbs free energy into four distinct contributions

$$G(Q, e_s) = F_1(Q) + F_3(e_s) + F_c(Q, e_a) + F_p(P, e_a)$$

where $F_1(Q)$ is the usual second-order Landau free energy expanded in terms of an order parameter Q.

$$F_1(Q) = \frac{1}{2} A Q^2 + \frac{1}{4} A_4 Q^4.$$ \hspace{1cm} (2)

As shown in [22], the saturation of the order parameter in ferroelastic compounds can be accounted for by using

$$A = \alpha \theta_k \left[\coth \left(\frac{\theta}{T} \right) - \coth \left(\frac{\theta}{T_c} \right) \right],$$

which is equivalent to the usual Landau term $A = \alpha(T - T_a)$ in the high temperature limit ($T \gg \theta_k$). The elastic energy $F_3(e_s)$ for the high temperature point group 4 symmetry [23] is

$$F_3(e_a) = \frac{1}{2} C_{11}(e_1^2 + e_2^2) + \frac{1}{2} C_{33} e_3^2 + \frac{1}{2} C_{44} (e_4^2 + e_5^2) + \frac{1}{2} C_{66} e_6^2 + C_{12} e_1 e_2 + C_{13} (e_1 + e_2) e_3 + C_{15} (e_1 - e_2) e_5,$$

where $C_{\alpha\beta}$ represent the bare elastic constants of the high temperature phase. Here, the elastic constants $C_{\alpha\beta}$ and strains e_a are defined relative to the Voigt notation ($\alpha, \beta = 1 \ldots 6$). The coupling energy $F_c(Q, e_a)$, representing the coupling between the strain components e_a and the order parameter Q, can be obtained using simple symmetry arguments [21]. Thus, the lower-order invariant coupling terms correspond to

$$F_c(Q, e_a) = \beta Q(e_1 - e_2) + \eta Q e_6 + \delta Q^2 e_3 + \lambda Q^2 (e_1 + e_2) + \xi e_4 e_5 Q + \eta (e_4^2 - e_5^2) Q.$$ \hspace{1cm} (5)

2. Experiment

The Rb$_4$LiH$_3$(SO$_4$)$_3$ crystal was grown by the Crystal Physics Laboratory of the Faculty of Physics at Mickiewicz University, Poland [9]. For this investigation, several samples in the form of about $3 \times 3 \times 3$ mm3 cubes were used to measure the sound velocity along different crystallographic directions. Longitudinal and transverse waves were generated and detected using 30 MHz lithium niobate transducers mounted on one of the parallel faces of the crystal. The relative variation in the sound velocity ($\Delta V/V$) with a resolution of 1 ppm was measured as a function of temperature and pressure using a pulsed acoustic interferometer. For measurements under pressure, the transducer-sample assemblage was inserted in a Cu–Be pressure cell filled with a 3-methyl-1-butanol fluid acting as the pressure-transmitting medium. A small wire of lead mounted close to the sample was used to determine the actual pressure at different temperatures [17].

3. Pseudo-proper ferroelastic model

According to the classification adopted by Toledano et al [18], a pseudo-proper ferroelastic transition is not strictly speaking a strain-induced structural transformation. However, one of the necessary requirements is that the primary order parameter Q must belong to the same irreducible representation [18, 14] as that of the spontaneous strain e_s, acting as a secondary order parameter. Under this condition, the invariant bilinear coupling term $Q e_s$ leads to softening of the acoustic mode associated with e_s. Thus, the observation of soft acoustic and optical modes, both with the same representation, generally leaves no doubt regarding the nature of the ferroelastic transition. For example, it has been clearly established that the elastic instability in ferroelastic compounds BiVO$_4$ [12], LaPyO$_{14}$ [19], and SnO$_2$ [13] is triggered by the softening of an optical mode. In the case of Rb$_4$LiH$_3$(SO$_4$)$_3$, according to group theory [20], a $4 \rightarrow 2$ pseudo-proper ferroelastic transition could be driven by the softening of a B optical mode which couples to the strain $e_s = \alpha_1(e_1 - e_2) + \alpha_6 e_6$ [18]. As softening of the B active Raman mode [16] and acoustic mode (this paper) have been confirmed, it is sensible to assume that the structural transition in Rb$_4$LiH$_3$(SO$_4$)$_3$ is pseudo-proper ferroelastic. Thus, in this section we present a Landau free energy that can be used to predict the behavior of the soft optical mode, the spontaneous strains, and the temperature/pressure dependence of the elastic moduli. The total Gibbs energy considered here is similar to the one derived by David [21] to account for the $4/m \rightarrow 2/m$ ferroelastic transition observed in BiVO$_4$. As the $4 \rightarrow 2$ ferroelastic transition belongs to the same irreducible representation, we adopt the same phenomenological approach for Rb$_4$LiH$_3$(SO$_4$)$_3$. For convenience, we divide the Landau expansion of the Gibbs free energy into four distinct contributions

$$G(Q, e_s) = F_1(Q) + F_3(e_s) + F_c(Q, e_a) + F_p(P, e_a)$$

where $F_1(Q)$ is the usual second-order Landau free energy expanded in terms of an order parameter Q.

$$F_1(Q) = \frac{1}{2} A Q^2 + \frac{1}{4} A_4 Q^4.$$ \hspace{1cm} (2)

As shown in [22], the saturation of the order parameter in ferroelastic compounds can be accounted for by using

$$A = \alpha \theta_k \left[\coth \left(\frac{\theta}{T} \right) - \coth \left(\frac{\theta}{T_c} \right) \right],$$

which is equivalent to the usual Landau term $A = \alpha(T - T_a)$ in the high temperature limit ($T \gg \theta_k$). The elastic energy $F_3(e_s)$ for the high temperature point group 4 symmetry [23] is

$$F_3(e_a) = \frac{1}{2} C_{11}(e_1^2 + e_2^2) + \frac{1}{2} C_{33} e_3^2 + \frac{1}{2} C_{44} (e_4^2 + e_5^2) + \frac{1}{2} C_{66} e_6^2 + C_{12} e_1 e_2 + C_{13} (e_1 + e_2) e_3 + C_{15} (e_1 - e_2) e_5,$$

where $C_{\alpha\beta}$ represent the bare elastic constants of the high temperature phase. Here, the elastic constants $C_{\alpha\beta}$ and strains e_a are defined relative to the Voigt notation ($\alpha, \beta = 1 \ldots 6$). The coupling energy $F_c(Q, e_a)$, representing the coupling between the strain components e_a and the order parameter Q, can be obtained using simple symmetry arguments [21]. Thus, the lower-order invariant coupling terms correspond to

$$F_c(Q, e_a) = \beta Q(e_1 - e_2) + \eta Q e_6 + \delta Q^2 e_3 + \lambda Q^2 (e_1 + e_2) + \xi e_4 e_5 Q + \eta (e_4^2 - e_5^2) Q.$$ \hspace{1cm} (5)
Table 1. Values of the bare elastic constants.

Bare elastic constant	10^{10} (N m$^{-2}$)
C_{11}	5.67
C_{12}	0.50
C_{16}	1.80
C_{16}	-0.24
C_{13}	5.14
C_{44}	0.74
C_{66}	1.14

Finally, in order to calculate the pressure dependence of the elastic constants, we also consider the hydrostatic pressure contribution

$$F_P(P,e_a) = P(e_1 + e_2 + e_3).$$ (6)

Using the equilibrium condition, $\partial G/\partial e_a = 0$, solutions for the spontaneous strains $e_a(Q, P)$ are obtained and correspond to

$$e_1 - e_2 = \frac{2(\gamma C_{16} - \beta C_{66})}{C_d} Q,$$

$$e_1 + e_2 = \frac{2(\delta C_{13} - \lambda C_{33})}{C_a} Q^2 - \frac{2(C_{33} - C_{13})}{C_a} P,$$

$$e_3 = -\frac{\delta(C_{11} + C_{12}) - 2\lambda C_{13}}{C_a} Q^2 - \frac{C_{16}}{C_a} P,$$

$$e_4 = 0 \quad e_5 = 0 \quad e_6 = -\frac{\gamma(C_{11} - C_{12}) - 2\beta C_{16}}{C_d} Q,$$

with

$$C_a = (C_{11} + C_{12})C_{33} - 2C_{13}^2,$$

$$C_d = (C_{11} - C_{12})C_{66} - 2C_{16}^2,$$

$$C_s = C_{11} + C_{12} - 2C_{13}. $$ (7)

Subsequently, solutions for the order parameter $Q(T, P)$, the critical temperature T_c and dT_c/dP are obtained from the minimization of the free energy with respect to Q. These solutions can be expressed as

$$Q^2(T, P) = \frac{\alpha C_a}{\Delta} \left\{ \theta_s \left[\coth \left(\frac{\theta_s}{T_c} \right) - \coth \left(\frac{\theta_s}{T_c} \right) \right] + \frac{dT_c}{dP} \right\},$$

$$\frac{C_b}{\alpha C_d} = \theta_s \left[\coth \left(\frac{\theta_s}{T_c} \right) - \coth \left(\frac{\theta_s}{T_c} \right) \right],$$

$$\frac{dT_c}{dP} = -\frac{2C_s}{\alpha C_d},$$

where

$$C_b = \gamma^2(C_{11} - C_{12}) + 2\beta(C_{66} - 2\gamma C_{16}),$$

$$C_s = \delta(C_{11} + C_{12} - 2C_{13}) + 2\lambda(C_{33} - C_{13}),$$

$$\Delta = A_4C_d - 4\lambda^2 C_{33} - 2(C_{11} + C_{12})\delta^2 + 8\gamma\lambda C_{13}. $$ (8)

Due to the bilinear coupling terms $\beta Q(e_1 - e_2) + \gamma Qe_6$, the transition temperature T_c, given by equation (10), is shifted with respect to the uncoupled limit T_o.

4. Determination of the coupling coefficients

As mentioned previously, recent Raman measurements [16] indicate that the character of the ferroelastic transition in $Rb_4LiH_3(SO_3)_k$ is pseudo-proper. In this case, the order parameter Q can be associated with the normal coordinate vibrations of a soft mode. If one treats this mode as a simple harmonic oscillator, the first term of equation (2) can be directly written as

$$\frac{1}{2}m\omega_Q^2(T)Q^2 = \frac{1}{2}A Q^2,$$

where, according to group theory [20], ω_Q must correspond to the frequency of a B mode for a $4 \rightarrow 2$ pseudo-proper ferroelastic transition. Using the total free energy, the temperature dependence of $\omega_Q^2(T) = \partial^2 G/\partial Q^2$ [13] corresponds to

$$m\omega_Q^2(T) = \alpha\theta_s \left[\coth \left(\frac{\theta_s}{T} \right) - \coth \left(\frac{\theta_s}{T_c} \right) \right] \approx \alpha(T - T_c),$$

$$T > T_c,$$

$$m\omega_Q^2(T) = -2C_sA_\lambda \alpha\theta_s \left[\coth \left(\frac{\theta_s}{T} \right) - \coth \left(\frac{\theta_s}{T_c} \right) \right] + \frac{C_h}{C_d}.$$ (11)

The Raman scattering data are very valuable as they can be used to obtain good numerical estimates for the model’s parameter T_o. Using the numerical values reported in tables 1 and 2, we compare in figure 1 predictions given by equation (14) with recent Raman data [16] obtained for the low frequency B/A mode (the symmetry of the soft mode in the low temperature monoclinic phase is A). As shown, the peculiar temperature dependence of the soft mode is well accounted for using $T_o = -510$ K and $\theta_s = 65$ K; the saturation temperature θ_s has been estimated from the temperature dependence of the strains (see figure 3).

For our numerical analysis, the elastic constants have been deduced from ultrasonic velocity measurements (this
Table 2. Values of the coupling constants deduced from the soft optical mode, spontaneous strains, and the pressure dependence of T_c.

Variables	Values
α	6.74×10^9
θ_0	65
A_4	1.64×10^{17}
T_c	-868 K
T_e	134 K
β	-3.35×10^{11}
γ	-1.14×10^{10}
δ	2.06×10^{13}
λ	1.10×10^{13}
η	-1.00×10^{10}
ζ	2.00×10^{19}
ρ	2810

work). Values reported in table 1 correspond to bare elastic constants in the absence of any coupling or anharmonic softening. For that reason, those values differ slightly from previous published data [10, 9]. In order to determine the pressure dependence of T_c (equation (11)), we also performed a series of sound velocity measurements at different pressures. These results, which show the temperature dependence of the velocity of longitudinal waves propagating along the z-axis, are presented in figure 2. This mode is particularly convenient as the ferroelastic transition temperature coincides with a sudden drop in the value of the velocity ($\Delta V/V \sim 2\%$). As shown in figure 2, the ferroelastic transition temperature is very sensitive to pressure and increases at a rate of $dT_c/dP = 191 \pm 2$ K GPa$^{-1}$.

Using the value of dT_c/dP (this work), the spontaneous strain data [8], and T_c determined from the Raman data [16], the remaining coefficients γ, β, δ, λ, and A_4 have been obtained using

$$\frac{C_b}{\alpha C_d} = T_e - T_0 = 642.8 \text{ K}$$

$$\frac{dT_c}{dP} = 2 \frac{C_s}{\alpha C_a} = 191 \text{ K GPa}^{-1}$$

The last coefficients ζ and η are set by hand in order to reproduce the experimental data obtained on C_{44}. The numerical values derived from this set of equations are reported in table 2. To show the pertinence of the numerical procedure, we compare in figure 3 the calculated spontaneous strains (equation (7) with coefficients given in tables 1 and 2) to the experimental data obtained by Mróz et al [8]. The numerical calculations (continuous lines) using the temperature dependence of the order parameter defined in equation (9) are also compared to the usual mean-field predictions where $Q \propto \sqrt{T_c - T}$ (broken lines). As shown, setting the saturation temperature, $\theta_0 = 65$ K, adequately accounts for the temperature dependence of the strains, even at low temperatures.

5. Elastic properties and experimental results

As all elastic and coupling constants are determined, the model can be used to calculate the temperature/pressure dependence of the elastic constants using [24]

$$C_{mn}^* = \frac{\partial^2 G}{\partial \varepsilon_m \partial \varepsilon_n} - \frac{\partial^2 G}{\partial Q \partial \varepsilon_m} \left(\frac{\partial^2 G}{\partial Q^2}\right)^{-1} \frac{\partial^2 G}{\partial \varepsilon_n \partial Q}$$

As shown in table 3, all 13 independent elastic constants of the monoclinic phase are obtained, illustrating that the model...

Figure 2. Temperature dependence of the sound velocity of longitudinal waves propagating along the z-axis obtained at different pressures. The inset shows the pressure dependence of the ferroelastic critical temperature T_c for Rb$_4$LiH$_3$(SO$_4$)$_4$.

Values of the coupling constants deduced from the soft optical mode, spontaneous strains, and the pressure dependence of T_c.

Variables	Values
α	6.74×10^9
θ_0	65
A_4	1.64×10^{17}
T_c	-868 K
T_e	134 K
β	-3.35×10^{11}
γ	-1.14×10^{10}
δ	2.06×10^{13}
λ	1.10×10^{13}
η	-1.00×10^{10}
ζ	2.00×10^{19}
ρ	2810

Figure 3. Temperature dependence of the spontaneous strains (symbols) obtained by Mróz et al [8]. Here the Voigt notation representations $e_1 - e_2 = e_{11} - e_{22}$ and $e_6 = 2e_{12}$ have been used. The continuous lines are obtained using equation (7) with the order parameter Q given by equation (9), while the broken lines correspond to mean-field predictions with $Q \propto \sqrt{T_c - T}$.

$$e_1 - e_2 = -\frac{2(\gamma C_{16} - \beta C_{60})}{\gamma(C_{11} - C_{12}) - 2\beta C_{16}} = 3$$

$$e_6(0 \text{ K}) = \frac{\gamma(C_{11} - C_{12}) - 2\beta C_{16}}{C_{dd} Q_o} = 0.0096$$

$$e_3(0 \text{ K}) = \frac{\delta(C_{11} + C_{12}) - 2\lambda C_{13}}{C_{aa} Q_o} = -0.0016$$

$$Q_o^2 \approx \frac{\alpha T_c}{A_4}$$

(15)
Table 3. Temperature/pressure dependence of the elastic constants for a 4 → 2 pseudo-ferroelastic phase transition. The superscript o corresponds to bare elastic constants in the absence of coupling or anharmonic softening.

Tetragonal 4	Monoclinic 2
$C_{11} \rightarrow C_{11}^o - \frac{\rho^2}{A(T)} \frac{\partial^2}{\partial P^2}$	$C_{11}^o - \frac{(\beta+2)(\alpha+2)}{A(T)+2\alpha Q}^2$
$C_{22} \rightarrow C_{11}^o - \frac{\rho^2}{A(T)} \frac{\partial^2}{\partial P^2}$	$C_{11}^o - \frac{(\beta-2)(\alpha+2)}{A(T)+2\alpha Q}^2$
$C_{33} \rightarrow C_{33}^o$	$C_{11}^o - \frac{4\alpha Q^2}{A(T)+2\alpha Q}$
$C_{44} \rightarrow C_{44}^o$	$C_{44}^o + 2\eta Q^2$
$C_{55} \rightarrow C_{44}^o$	$C_{55}^o - 2\eta Q^2$
$C_{66} \rightarrow C_{66}^o - \frac{\rho^2}{A(T)} \frac{\partial^2}{\partial P^2}$	$C_{66}^o - \frac{(\beta+2)(\alpha+2)}{A(T)+2\alpha Q}^2$
$C_{12} \rightarrow C_{12}^o + \frac{\rho^2}{A(T)} \frac{\partial^2}{\partial P^2}$	$C_{12}^o + \frac{(\beta+2)(\alpha-2)}{A(T)+2\alpha Q}^2$
$C_{13} \rightarrow C_{13}^o$	$C_{13}^o - \frac{2\beta(\alpha+2)}{A(T)+2\alpha Q}$
$C_{16} \rightarrow C_{16}^o - \frac{\rho^2}{A(T)} \frac{\partial^2}{\partial P^2}$	$C_{16}^o + \frac{2\beta Q}{A(T)+2\alpha Q}$
$C_{23} \rightarrow C_{13}^o$	$C_{23}^o + \frac{2\beta(\alpha-2)}{A(T)+2\alpha Q}$
$C_{26} \rightarrow C_{16}^o + \frac{\rho^2}{A(T)} \frac{\partial^2}{\partial P^2}$	$C_{26}^o - \frac{2\beta Q}{A(T)+2\alpha Q}$
$C_{36} \rightarrow 0$	$-2\eta Q$
$C_{45} \rightarrow 0$	ζQ

Figure 4. Comparison of the elastic properties of Rb$_4$LiH$_4$(SO$_4$)$_4$ and the isomorphic compound K$_4$LiH$_4$(SO$_4$)$_4$ using the temperature dependence of C_{11} and γ_1. The continuous lines represent fits obtained using equation (18) with the coefficients listed in table 5.

Fortunately, in the case of Rb$_4$LiH$_4$(SO$_4$)$_4$, the anharmonic contribution can be evaluated independently using velocity measurements for the isomorphic compound K$_4$LiH$_4$(SO$_4$)$_4$. As that compound shows no ferroelastic transition [9], the temperature dependence of the elastic properties is solely due to the anharmonic contribution, equation (18).

For that purpose, a series of sound velocity measurements have been performed on K$_4$LiH$_4$(SO$_4$)$_4$ as a function of temperature/pressure. After fitting with equation (18), values for Θ, α_T, and α_P have been determined, see table 5. The set of coefficients (Θ_i, α_T, α_P) with $i = 1$ are for C_{11} and C_{22} while $i = 3$ represents the anharmonic contribution for C_{33}. The last series of coefficients, $i = 4$, is associated with the temperature/pressure dependence of C_{44}, C_{55}, and C_{66}.

As an example, we present in figure 4 the fit obtained on K$_4$LiH$_4$(SO$_4$)$_4$ for the effective modulus associated with longitudinal waves propagating along z and x (C_{33} and γ_1). These results are also compared with equivalent measurements realized on Rb$_4$LiH$_4$(SO$_4$)$_4$. In the paraelastic phase, this comparison shows that the temperature dependence of C_{33} is practically identical in both materials. This is consistent with the model’s prediction as no temperature dependence due to the soft optical mode is expected on C_{33} (see table 3 in the tetragonal phase). This indicates that the anharmonic contributions for these two isomorphic compounds are indeed very similar. Hence, the difference in the temperature dependence of γ_1 for K$_4$LiH$_4$(SO$_4$)$_4$ and Rb$_4$LiH$_4$(SO$_4$)$_4$ can be attributed to coupling with the soft optical mode.

As all parameters are now determined, it is straightforward to carry out a detailed comparison between the numerical and experimental effective moduli. These comparisons as a function of temperature and pressure are presented in figures 5 and 6, respectively. Here, numerical predictions correspond to continuous lines with the experimental data represented by symbols. As shown in figures 5 and 6, the largest variation, 77%, is observed on the effective modulus γ_1 associated with transverse waves propagating along [110] with a polarization along [110]. Unfortunately, due to the
large acoustic attenuation, we were unable to obtain data in the ferroelastic phase or even close to the critical point. Significant decreases at the critical point are also observed in the value of \(\gamma_1 \) (longitudinal modes propagating along [100]) and \(C_{33} \), approximately 8% and 2.5%, respectively. Finally, anomalies on the other modes are visible, however, with much smaller variation. In general, we note that the temperature/pressure dependence in the paraelastic phase is remarkably well captured by the pseudo-proper ferroelastic model. However, below the critical point, a clear departure is observed for \(\gamma_1 \) and \(C_{33} \). We attribute those differences to the existence of structural domains in the low temperature ferroelastic phase. In the case of Rb4LiH3\(\text{SO}_4 \), these domains have been effectively observed and they consist of two mutually perpendicular walls inclined at 35° relative to the x-axis [8].

6. Soft acoustic mode

In their initial work, Mróz et al [9] claimed that Rb4LiH3\(\text{SO}_4 \) could be described as a proper ferroelastic compounds and that the acoustic mode associated with the order parameter \(\epsilon_s \) showed incomplete softening at \(T_c \). As typical proper or pseudo-proper ferroelastic compounds [12, 13] show complete softening, it is thus imperative to re-examine that claim. In order to determine the effective modulus of the soft mode, we first need to identify the elastic submatrix related to the strain components \(e_1 - e_2 \) and \(e_6 \). For a \(4 \rightarrow 2 \) ferroelastic phase transition this corresponds to

\[
\begin{pmatrix}
\frac{C_{11} + C_{22} + C_{66}}{2} & C_{13} & C_{16} \\
C_{13} & \frac{C_{22} + C_{33} + C_{66}}{2} & C_{26} \\
C_{16} & C_{26} & \frac{C_{55} + C_{66}}{2}
\end{pmatrix}
\] (19)

which is different from the matrix used by Mróz et al [9]. Considering that elastic tensors are necessarily symmetric, it is clear that the form used by Mróz et al [9] is incorrect, as well as all the non-symmetry ferroelastic submatrices listed by Boccara [27]. Thus, the correct expression for the soft modulus, obtained by finding the eigenvalues of the submatrix

Table 4. Expression of \(\rho \nu^2 \) for the monoclinic phase. \((C_P = \frac{C_{11} + C_{22} + C_{33}}{2}, C_m = \frac{C_{11} + C_{22} + C_{33}}{2} - \frac{C_{12} + C_{21}}{2}, C_{16} = C_{66} + C_{16} + C_{26}, \text{and } C_{16}' = C_{16} - C_{26}).

Direction/mode	Monoclinic phase
[100] L	\(\gamma_1 \rightarrow \frac{1}{2}(C_{11} + C_{66} + \sqrt{(C_{11} - C_{66})^2 + 4C_{16}^2}) \)
\(T_{[010]} \gamma_2 \rightarrow \frac{1}{2}(C_{11} + C_{66} - \sqrt{(C_{11} - C_{66})^2 + 4C_{16}^2}) \)	
\(T_{[001]} \gamma_3 \rightarrow C_{55} \)	
[010] L	\(\gamma_4 \rightarrow \frac{1}{2}(C_{22} + C_{66} + \sqrt{(C_{22} - C_{66})^2 + 4C_{26}^2}) \)
\(T_{[100]} \gamma_5 \rightarrow \frac{1}{2}(C_{22} + C_{66} - \sqrt{(C_{22} - C_{66})^2 + 4C_{26}^2}) \)	
\(T_{[001]} \gamma_6 \rightarrow C_{44} \)	
[001] L	\(\gamma_7 \rightarrow C_{33} \)
\(T_{[100]} \gamma_8 \rightarrow \frac{1}{2}(C_{44} + C_{55} + \sqrt{(C_{44} - C_{55})^2 + 4C_{55}^2}) \)	
\(T_{[010]} \gamma_9 \rightarrow \frac{1}{2}(C_{44} + C_{55} - \sqrt{(C_{44} - C_{55})^2 + 4C_{55}^2}) \)	
[110] L	\(\gamma_{10} \rightarrow \frac{1}{2}(C_P + C_{66} + \sqrt{(C_{12} + C_{66})^2 + (Cm + C_{16}^2)}) \)
\(T_{[110]} \gamma_{11} \rightarrow \frac{1}{2}(C_P + C_{66} - \sqrt{(C_{12} + C_{66})^2 + (Cm + C_{16}^2)}) \)	
\(T_{[001]} \gamma_{12} \rightarrow \frac{C_{11} + C_{22} + 2C_{44}}{2} \)	

Table 5. Parameters for the anharmonic contribution.

\(\Theta_i \) (K)	\(\alpha_{\gamma_i} \) (10^{-11} N m⁻¹)	\(\alpha_{P_i} \) (GPa⁻¹)
1	0.044	0.167
3	0.058	0.187
4	0.028	0.040
The experimental results are represented by open symbols while the continuous lines correspond to predictions derived from the pseudo-proper ferroelastic model.

The experimental results are represented by open symbols while the continuous lines represent predictions obtained from the pseudo-proper ferroelastic model.

\begin{align}
C_s &= \frac{1}{2} \left(C_{11} - C_{12} \right) + C_{66} \\
&- \sqrt{\left(\frac{C_{11} - C_{12}}{2} - C_{66} \right)^2 + 4C_{46}^2} \tag{20}
\end{align}

while the direction of propagation [23] is given by

\[\tan 4\varphi = \frac{4C_{16}}{C_{11} - C_{12} - 2C_{66}} \tag{21} \]

Using values of elastic constants at room temperature, the direction for complete softening in Rb₄LiH₃(SO₄)₄ should correspond to \(\varphi \approx 12^\circ \) relative to the [110]. As that direction does not coincide with one of the principal crystallographic directions, this has contributed to delaying the experimental determination of the actual soft mode. In figure 7 we present new ultrasonic data that illustrate the temperature dependence of the elastic modulus for transverse waves propagating and polarized in the \(xy \)-plane. The direction of propagation is identified by an angle \(\phi \) measured away from the \(x \)-axis. Moreover, as no ultrasonic signal was detected in the ferroelastic phase, due to a rapid increase in the acoustic attenuation, our results are combined with Brillouin scattering data [9]. Figure 7 shows an increase in softening as the direction of propagation is changed from \(\phi = +54^\circ \) to \(35^\circ \). The experimental results are compared to predictions derived from the pseudo-proper model (continuous lines) which captures the overall temperature dependence. Finally, considering that the pseudo-proper model indicates complete softening at \(T_c \), and that the experimental data agree well with those predictions, we conclude that there is no experimental evidence that Rb₄LiH₃(SO₄)₄ shows incomplete softening \(T_c \).

7. Conclusions

In this investigation, we present a detailed analysis of the elastic properties of Rb₄LiH₃(SO₄)₄. A substantial set of experimental data, as a function of temperature and pressure, is compared to a Landau model associated with a 4 → 2 pseudo-proper ferroelastic phase transition. The model assumes that the elastic anomalies are due to the coupling with a B optical mode which acts as the principal order parameter. The proposed model is tested using a minimum number of coupling parameters, adjusted using the temperature dependence of the Raman soft B mode at 31 cm\(^{-1}\) [16], the thermal expansion data [8], and the pressure dependence of the critical temperature \(dT_c/dP = 19.1 \pm 0.2 \text{ K kbar}^{-1} \) (determined in this work). Our analysis shows that within the framework of the pseudo-proper ferroelastic model, it is possible to obtain predictions that account for the temperature/pressure dependence of all elastic constants. No such quantitative agreement is achieved using a proper ferroelastic model. Departure from the pseudo-proper model’s predictions, principally on \(C_{13} \) and \(\gamma_1 \), is attributed to structural domains emerging in the ferroelastic phase. Thus, as argued in this investigation, Rb₄LiH₃(SO₄)₄ presents all the characteristics associated with a pseudo-proper ferroelastic transition. We also demonstrate that there is no experimental evidence of incomplete softening at \(T_c \). In fact, the elastic properties of Rb₄LiH₃(SO₄)₄ are very similar to those of BiVO₄ which shows a 4/2 → 2/m pseudo-proper ferroelastic transition. Raman measurements [12] on BiVO₄ show clear evidence of softening of the optical B\(_g\)/A\(_g\) mode. As for
Rb$_4$LiH$_3$(SO$_4$)$_4$, the direction of propagation for the soft acoustic transverse mode is a few degrees away from [110] ($\phi_0 = 10^\circ$). Moreover, in their analysis, Tokumoto et al [28] show that the temperature dependence of the soft mode is nonlinear and that complete softening is reached at T_c. These similarities are not accidental as both compounds belong to the same irreducible representation. The elastic properties of BiVO$_4$ have been analyzed by David [21] and their predictions are similar to those presented in this work. In conclusion, the ferroelastic character of Rb$_4$LiH$_3$(SO$_4$)$_4$ is not unique and should also be compared with that of (NH$_4$)$_4$LiH$_3$(SO$_4$)$_4$ [29].

Acknowledgments

This work was supported by grants from the Natural Science and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI) as well as by the Ministry of Science and Higher Education (Poland), grant No. 1 PO3B 066 30.

References

[1] Mróz B, Kiefte H and Clouter M J 1988 Ferroelectrics 82 105
[2] Mróz B, Tuszyński J A, Kiefte H and Clouter M J 1989 J. Phys.: Condens. Matter 1 4425
[3] Wolejko T, Piskunowicz P, Brecezewski T and Krajewski T 1988 Ferroelectrics 81 175
[4] Wolejko T, Pakulski G and Tylczynski Z 1988 Ferroelectrics 81 179
[5] Piskunowicz P, Brecezewski T and Wolejko T 1989 Phys. Status Solidi a 114 505
[6] Minge J and Krajewski T 1988 Phys. Status Solidi a 109 193
[7] Pietraszko A and Lukaszewicz K 1988 Z. Kristallogr. 185 564
[8] Mróz B, Kim S M, Powell B M, Kiefte H and Donaberger R L 1997 Phys. Rev. B 55 11174
[9] Mróz B, Kiefte H, Clouter M J and Tuszyński J A 1991 J. Phys.: Condens. Matter 3 5673
[10] Brecezewski T, Gomez-Cuevas A, Perez-Mato J M and Bocanegra E H 1990 Solid State Commun. 76 639
[11] Peercy P S and Fritz I J 1974 Phys. Rev. Lett. 32 466
[12] Pinzuk A, Burns G and Dacol F H 1977 Solid State Commun. 24 163
[13] Hellwig H, Goncharov A F, Gregoryanz E, Mao H and Hemley R J 2003 Phys. Rev. B 67 174110
[14] Carpenter M A and Salje E K H 1983 Acta Cryst. A 47 453
[15] Dieulesaint E and Royer D 1980 Elastic Waves in Solids (New York: Wiley)
[16] Varshini Y P 1970 Phys. Rev. B 2 3952
[17] Quirion G, Kelly A, Newbury S, Razavi F S and Garrett J D 2003 Can. J. Phys. 81 797
[18] Boccara N 1968 Ann. Phys. 47 40
[19] Varshini Y P 1970 Phys. Rev. B 2 3952
[20] Rehwald W 1973 Adv. Phys. 22 721
[21] Rehwald W 1973 Adv. Phys. 22 721
[22] Quirion G, Kelly A, Newbury S, Razavi F S and Garrett J D 2003 Can. J. Phys. 81 797
[23] Varshini Y P 1970 Phys. Rev. B 2 3952
[24] Rehwald W 1973 Adv. Phys. 22 721
[25] Varshini Y P 1970 Phys. Rev. B 2 3952
[26] Quirion G, Kelly A, Newbury S, Razavi F S and Garrett J D 2003 Can. J. Phys. 81 797
[27] Boccara N 1968 Ann. Phys. 47 40
[28] Tokumoto H and Unoki H 1983 Phys. Rev. B 27 3748
[29] Mróz B, Kiefte H, Clouter M J and Tuszyński J A 1993 J. Phys.: Condens. Matter 5 6377