Brane realization of q-theory and the cosmological constant problem

F.R. Klinkhammer$^{+1}$, G.E. Volovik$^{+2}$

$^+$ Institute for Theoretical Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

* Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland

$^&$ Landau Institute for Theoretical Physics RAS, Kosygina 2, 119334 Moscow, Russia

We discuss the cosmological constant problem using the properties of a freely-suspended two-dimensional condensed-matter film, i.e., an explicit realization of a 2D brane. The large contributions of vacuum fluctuations to the surface tension of this film are cancelled in equilibrium by the thermodynamic potential arising from the conservation law for particle number. In short, the surface tension of the film vanishes in equilibrium due to a thermodynamic identity. This 2D brane can be generalized to a 4D brane with gravity. For the 4D brane, the analogue of the 2D surface tension is the 4D cosmological constant, which is also nullified in full equilibrium. The 4D brane theory provides an alternative description of the phenomenological q-theory of the quantum vacuum. As for other realizations of the vacuum variable q, such as the 4-form field-strength realization, the main ingredient is the conservation law for the variable q, which makes the vacuum a self-sustained system. For a vacuum within this class, the nullification of the cosmological constant takes place automatically in equilibrium. Out of equilibrium, the cosmological constant can be as large as suggested by naive estimates based on the summation of zero-point energies. In this brane description, q-theory also corresponds to a generalization of unimodular gravity.

PACS: 04.20.Cv, 98.80.Es, 95.36.+x

1. INTRODUCTION

General relativity and the relativistic quantum field theory of the Standard Model are probably effective theories, as manifested by their ultraviolet divergences. Especially troublesome is the quartic divergence of the energy density from the vacuum fluctuations, which leads to the so-called cosmological constant problem (CCP) [1, 2, 3].

A particular mechanism for the nullification of the relevant vacuum energy density works for vacua which have the property of being self-sustained media [4, 5, 6, 7, 8]. A self-sustained medium has a definite macroscopic volume even in the absence of an environment. Two condensed-matter examples are a droplet of quantum liquid at zero temperature in empty space [9] and a freely-suspended film [10]. Here, we focus on the last example.

The Lorentz-invariant self-sustained medium relevant to the CCP is characterized by a relativistic scalar q. Distinct from a fundamental scalar ϕ, the vacuum variable q allows the medium to exist without external environment.

2. FUNDAMENTAL VS. CONSERVED SCALARS

In order to understand the difference between fundamental and conserved scalars, let us compare gravity with a fundamental scalar ϕ and gravity with a conserved scalar q obtained from a 4-form field strength F [11, 12, 13, 14, 15, 16, 17, 18], with $F_{\kappa\lambda\mu\nu} \propto q_{\kappa\lambda\mu\nu}$ and $q^2 \propto F_{\kappa\lambda\mu\nu} F^{\kappa\lambda\mu\nu}$. Let us consider these theories for the simplest possible arrangement: no explicit derivatives of ϕ and q, and no direct couplings of ϕ and q to the Ricci scalar R.

The action for gravity with a non-dynamic fundamental scalar ϕ is

$$I_1 = -\int d^4x \sqrt{-g} \left(\frac{R}{16\pi G_N} + \epsilon_1(\phi) \right).$$

The action for gravity with a three-form gauge field A is

$$I_2 = -\int d^4x \sqrt{-g} \left(\frac{R}{16\pi G_N} + \epsilon_2(q) \right).$$

Both functions $\epsilon_1(\phi)$ and $\epsilon_2(q)$ may include a genuine cosmological constant Λ_{bare}.

Variation over $g^{\mu\nu}$ of the action I_j, for $j = 1$ or 2, gives the Einstein equation in standard form,

$$\frac{1}{8\pi G_N} \left(R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \right) = \Lambda_j g_{\mu\nu}.$$

2)e-mail: frans.klinkhamer@kit.edu
2)e-mail: volovik@boojum.hut.fi
but with different expressions for the vacuum energy density,

\begin{align}
\Lambda_1(\phi) &= \epsilon_1(\phi), \\
\Lambda_2(q) &= \epsilon_2(q) - q \frac{d\epsilon_2(q)}{dq}.
\end{align}

(4a) (4b)

The calculation of the energy-momentum tensor gives an extra term in the $\Lambda(q)$ expression above, because the metric also enters the composite field q. Recall, in fact, the precise definitions $\eta^2 \equiv -(1/24) F_{\kappa\lambda\mu\nu} F^{\kappa\lambda\mu\nu}$ and $F_{\kappa\lambda\mu\nu} \equiv \nabla_{(\kappa} A_{\lambda\mu\nu)}$, with the three-form gauge field A, the covariant derivative ∇, and a pair of square brackets around spacetime indices standing for complete antisymmetrization.

The field equations for ϕ and q are also different,

\begin{align}
\frac{de_1(\phi)}{d\phi} &= 0, \\
\nabla_\nu \left(\frac{de_2(q)}{dq} \right) &= 0.
\end{align}

(5a) (5b)

The field equation for ϕ does not have the freedom to nullify the cosmological constant. The two requirements for nullification, $\epsilon_1(\phi) = 0$ and $d\epsilon_1(\phi)/d\phi = 0$, demand fine-tuning of the parameters entering the function $\epsilon_1(\phi)$, cf. Refs. [1], [2].

In contrast, the solution of the field equation for q is given by

$$
\frac{d\epsilon_2(q)}{dq} = \mu,
$$

(6)

where μ is an arbitrary integration constant. Hence, we have the complete freedom of choosing the value of μ in [3] as regards solving the field Eq. (5a), which leaves us to consider the vacuum energy. Writing $\Lambda_2(q)$ from Eq. (4b) as $\epsilon_2(q) - \mu q$, we then see that the huge vacuum energy density stored in $\epsilon_2(q)$ can be compensated by the counterterm $-\mu q$. This compensation occurs due to thermodynamic identities applied to the equilibrium self-sustained vacuum (we shall see this for the example of a freely-suspended film in Sec. 3). Here, μ plays the role of a chemical potential [5], which is self-tuned in the equilibrium state of the quantum vacuum. The self-tuning gives rise to the nullification of the vacuum energy density for the equilibrium vacuum in the absence of matter fields,

$$
\Lambda_2(q_{eq}) = \epsilon_2(q_{eq}) - \mu_{eq} q_{eq} = 0.
$$

(7)

No such compensation is expected for the vacuum of the fundamental scalar field ϕ. However, if both ϕ and q fields are present, then the energy $\epsilon_1(\phi)$ will also be compensated in the equilibrium vacuum by the readjustment of the chemical potential μ [4].

3. FREELY SUSPENDED FILM

The thin film considered here is a two-dimensional (2D) object embedded into the three-dimensional (3D) Euclidean space \mathbb{R}^3 with Cartesian coordinates X, Y, Z. In modern parlance, this film is a 2D brane [19]. We are interested in a freely-suspended film, which is not surrounded by dense matter. In equilibrium, the film is parallel to the (X,Y)-plane, and this state is analogous to the 4D equilibrium Minkowski vacuum to be discussed in Sec. 4.

The Hamiltonian [10] which describes the deformations of the film – variation of the density of the film and bending (displacement) of the film – can be written in the following form:

$$
H = \int d^2x \left[\sqrt{g} \epsilon \left(\frac{n}{\sqrt{g}} \right) - \mu n \right] + H_{\text{bending}}.
$$

(8)

Here, $n(x,y) \equiv \int dz n(x,y,z)$ is the 2D particle density obtained by integrating over the extra dimension of the bulk space \mathbb{R}^3. For simplicity, we assume the absence of folding. The total number of particles in the film, $N = \int d^2x n(x,y)$, is a conserved quantity. We introduce the corresponding Lagrange multiplier μ, which plays the role of a chemical potential. Particle conservation (or mass conservation in Ref. [10]) is the main condition for the existence of a stable freely-suspended film. Hence, the film belongs to the class of self-sustained systems.

The potential term [the first term in the integrand of Eq. (8)] depends on the quantity n/\sqrt{g}, the particle density per unit area of the curved film (recall $dS = \sqrt{\gamma} dx dy$). Here and in Eq. (8), we have used the definition $g \equiv \det(g_{ik})$ for the curved-film metric g_{ik} with signature $(+, +)$. The second term on the right-hand side of Eq. (8) is the bending energy. It contains gradients of the metric, but, due to the lack of invariance under general coordinate transformations, it is not equivalent to the standard curvature term in gravitation theories. Still, it includes the Gauss curvature R, which is a total derivative in two dimensions. Here, we are not really interested in the second term H_{bending} of Eq. (8), since the central point of our argument will concern the first term, which will be seen to be equivalent to the vacuum energy. So, let us consider only the first term on the right-hand side of Eq. (8).

Variation of the Hamiltonian [8] over n gives the following equation:

$$
\frac{dc}{dq} = \mu,
$$

(9a)

$$
q \equiv \frac{n}{\sqrt{g}}.
$$

(9b)
and variation over \sqrt{g} gives the surface tension σ of the film,
$$\sigma \equiv \frac{\delta H}{\delta \sqrt{g}} = \epsilon(q) - \frac{d\epsilon}{dq} = \epsilon(q) - \mu q.$$ \hfill (10)

For the freely-suspended film (i.e., no forces from the environment), the surface tension is zero in equilibrium, $\sigma_{eq} = 0$. The chemical potential μ is self-tuned to reach the equilibrium state. Since the variation over the metric g^{ik} gives the stress tensor $T_{ik} = -\sigma g_{ik}$ \[10\] \[20\] \[21\], the surface tension σ plays the role of a cosmological constant in the 2+0 gravity theory of the film, which is nullified in equilibrium.

As emphasized in Ref. \[10\], the equilibrium condition $\sigma = 0$ is not disturbed by quantum fluctuations, because it is the consequence of the thermodynamic identity $\sqrt{g} \epsilon - \mu n = -P$, where P is the external pressure (thermal effects are not considered). In the absence of external forces, the surface tension is zero irrespective of the quantum fluctuations. Of course, the quantum fluctuations contribute to the energy ϵ, and this contribution can be essential. But this contribution is always fully compensated by the counterterm $-\mu n$ in equilibrium, which is, in fact, the property of any self-sustained vacuum. This suggests that, if the vacuum of our Universe belongs to the class of self-sustained systems, its energy in equilibrium is fully cancelled in spite of the huge effects of vacuum fluctuations. The cancellation results in a zero value for the cosmological constant in an equilibrium Universe without ponderable matter.

4. 4D BRANE

The corresponding modification of the Einstein action on the four-dimensional (4D) "brane" is
$$I = -\int d^4x \sqrt{-g} \left[\epsilon \left(\frac{n}{\sqrt{-g}} \right) + \frac{R}{16\pi G_N} + \mathcal{L}^M[\psi] \right] + \mu \int d^4x \ n,$$ \hfill (11)

where the metric $g_{\mu\nu}$ has a Lorentzian signature (−, +, +, +) making for a negative determinant $g \equiv \det(g_{\mu\nu})$ and where n is the 4D analog of the particle density of the 2D film (the 4D density n perhaps refers to the "atoms" of spacetime). In principle, the gravitational coupling G may also depend on n, $G = G(n)$, but we fix $G = G_N$, for simplicity. Similarly, we omit any n-dependence of the parameters in the matter Lagrange density $\mathcal{L}^M(\psi)$, where ψ stands for a generic matter field.

Variation of the action (11) over the density n gives the analog of Eq. (9).
very different from gravity in two dimensions, for example, there are gravitational waves (gravitons) in four dimensions but not in two. For the 4D theory (11), we may then consider gravitational processes at energies far below the binding energy of the “atoms” of spacetime responsible for the number density n. For such low-energy processes, n is effectively fixed and nondynamical, $n = n_0$. From the 4D general covariance of (11), we have that n is a scalar density with the same weight as the square root of the negative of the determinant of the metric. Introducing a prior metric with determinant g_0, we then have $n = n_0 \propto \sqrt{-g_0}$ and the q variable is effectively equal to $q \propto \sqrt{-g_0}/\sqrt{-g}$. The theory (11) written in terms of the inverse variable $\tilde{\sigma} = \sqrt{-g}/\sqrt{-g_0}$ is essentially the one studied in Ref. [28], where the role of vacuum-matter energy exchange has been investigated.

Now, return to the original form of q as given by Eq. (12b). It can then be shown that, for homogeneous matter fields in a cosmological context, the vanishing covariant divergence of the vacuum-energy term on the right-hand side of Eq. (13) gives $\partial \Lambda = 0$, which implies $dq/dt = 0$. From the definition of q, we can then relate the rate of change of the metric determinant to the rate of change of the brane number density, $d(\ln \sqrt{-g})/dt = d(\ln n)/dt$. The role of this type of intra-brane dynamics needs to be clarified.

Let us also comment on the main difference between our approach and the one of Ref. [27], where the cosmological constant was estimated as \sqrt{N}, with N the number of elements. Reference [27] noted that the individual contributions to the action I have random signs and assumed that their sum vanishes on average, with residual fluctuations of order \sqrt{N} being responsible for the observed value of Λ. In our case, the contribution to the action I is proportional to N, while the cancellation takes place for the quantity Λ which enters the Einstein equations. Λ does not necessarily coincide with the vacuum energy density ϵ, which enters the action. The difference between Λ and ϵ reflects two different definitions of the energy of quantum fields on an external time-independent background, see Ref. [28]. The first one defines the energy in terms of the stress-energy tensor, while the second one identifies the energy with the Hamiltonian.

According to the q-theory approach to the cosmological constant problem, the present small value of Λ is the result of the incomplete cancellation of the vacuum energy in a slowly evolving nonequilibrium Universe [31].

GEV thanks Elfin Kats and Vladimir Lebedev for valuable discussions.

Note Added in Proof. An early paper on the vanishing surface tension of fluid membranes as an analog of the near-zero cosmological constant of general relativity is Ref. [29].

1. S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 1 (1989).
2. S. Weinberg, “Theories of the cosmological constant,” in: N. Turok, Critical Dialogues in Cosmology (World Scientific, Singapore, 1997), p. 195, arXiv:astro-ph/9610044.
3. S. Nobbenhuis, “Categorizing different approaches to the cosmological constant problem,” Found. Phys. 36, 613 (2006), arXiv:gr-qc/0411093.
4. F.R. Klinkhamer and G.E. Volovik, “Self-tuning vacuum variable and cosmological constant,” Phys. Rev. D 77, 085015 (2008), arXiv:0711.3176.
5. F.R. Klinkhamer and G.E. Volovik, Dynamic vacuum variable and equilibrium approach in cosmology, Phys. Rev. D 78, 063528 (2008), arXiv:0806.2805.
6. F.R. Klinkhamer and G.E. Volovik, “Gluonic vacuum, q-theory, and the cosmological constant,” Phys. Rev. D 79, 063527 (2009), arXiv:0811.4347.
7. F.R. Klinkhamer and G.E. Volovik, “Vacuum energy density kicked by the electroweak crossover,” Phys. Rev. D 80, 083001 (2009), arXiv:0905.1919.
8. F.R. Klinkhamer and G.E. Volovik, “Towards a solution of the cosmological constant problem,” JETP Lett. 91, 259 (2010), arXiv:0907.4887.
9. G.E. Volovik, The Universe in a Helium Droplet, Paperback Edition (Oxford UP, 2008).
10. E.I. Kats and V.V. Lebedev, “Nonlinear fluctuation effects in dynamics of freely suspended films,” Phys. Rev. E 91, 032415 (2015), arXiv:1501.07603.
11. M.J. Duff and P. van Nieuwenhuizen, “Quantum invariance of supergravity,” Nucl. Phys. B 134, 179 (1980).
12. A. Aurilia, H. Nicolai, and P.K. Townsend, “Hidden constants: The theta parameter of QCD and the cosmological constant of $N = 8$ supergravity,” Nucl. Phys. B 176, 509 (1980).
13. S.W. Hawking, “The cosmological constant is probably zero,” Phys. Lett. B 134, 403 (1984).
14. M.J. Duff, “The cosmological constant is possibly zero, but the proof is probably wrong,” Phys. Lett. B 226, 36 (1989).
15. M.J. Duncan and L.G. Jensen, “Four-forms and the vanishing of the cosmological constant,” Nucl. Phys. B 336, 100 (1990).
16. R. Bousso and J. Polchinski, “Quantization of four-form fluxes and dynamical neutralization of the cosmological constant,” JHEP 0006, 006 (2000), arXiv:hep-th/0004134.
17. A. Aurilia and E. Spallucci, “Quantum fluctuations of a ‘constant’ gauge field,” Phys. Rev. D 69, 105004 (2004), arXiv:hep-th/0402090.
18. Z.C. Wu, “The cosmological constant is probably zero, and a proof is possibly right,” Phys. Lett. B 659, 891 (2008), arXiv:0709.3314.
19. V.A. Rubakov, “Large and infinite extra dimensions: An introduction,” Phys. Usp. 44, 871 (2001), arXiv:hep-ph/0104152.
20. V.V. Lebedev and A.R. Muratov, “Dynamics of micelles and vesicles,” Sov. Phys. JETP 68, 1011 (1989).
21. E.I. Kats and V.V. Lebedev, Fluctuational Effects in the Dynamics of Liquid Crystals (Springer, Berlin, 1993).
22. J.J. van der Bij, H. van Dam, and Y.J. Ng, “The exchange of massless spin two particles,” Physica 116 A, 307 (1982).
23. A. Zee, “Remarks on the cosmological constant problem,” in: S.L. Mintz and A. Perlmutter (eds.) High-Energy Physics: Proceedings of Orbis Scientiae 1983 (Plenum Press, N.Y., 1985), p. 211.
24. W. Buchmüller and N. Dragon, “Einstein gravity from restricted coordinate invariance,” Phys. Lett. B 207, 292 (1988).
25. M. Henneaux and C. Teitelboim, “The cosmological constant and general covariance,” Phys. Lett. B 222, 195 (1989).
26. F.R. Klinkhamer, “A generalization of unimodular gravity with vacuum-matter energy exchange,” to appear in Int. J. Mod. Phys. D, arXiv:1604.03005.
27. M. Ahmed and R.D. Sorkin, “Everpresent Λ. II. Structural stability,” Phys. Rev. D 87, 063515 (2013), arXiv:1210.2589.
28. D.V. Fursaev, “Energy, Hamiltonian, Noether charge, and black holes,” Phys. Rev. D 59, 064020 (1999), arXiv:hep-th/9809049.
29. J. Samuel and S. Sinha, “Surface tension and the cosmological constant,” Phys. Rev. Lett. 97, 161302 (2006); arXiv:cond-mat/0603804.