Electronic Supplementary Information

Synergistic effects of CH$_3$CO$_2$H and Ca$^{2+}$ on C-H bond activation by MnO$_4^-$

Huatian Shi,† Lin Cheng,† Yi Pan, Chi-Keung Mak,* Kai-Chung Lau* and Tai-Chu Lau*†

†Department of Chemistry, City University of Hong Kong. Tat Chee Avenue, Kowloon Tong, Hong Kong, China.

†These authors have equal contributions.

*Correspondence: bhtclau@cityu.edu.hk, kaichung@cityu.edu.hk, chikmak6@cityu.edu.hk.
Contents

Experimental details .. S1
Materials.. S1
Instrumentations.. S1
Stoichiometric oxidation of cyclohexane by KMnO4 ... S1
(1) Stoichiometric oxidation of cyclohexane by KMnO4-AcOH in CH3CN .. S1
(2) Stoichiometric oxidation of cyclohexane by KMnO4-Ca(OTf)2 in CH3CN.................................. S1
(3) Stoichiometric oxidation of cyclohexane by KMnO4-Ca(OTf)2-AcOH in CH3CN.................... S1
Determination of KIE .. S1
(1) Stoichiometric oxidation of cyclohexane by KMnO4-AcOH in CH3CN .. S1
(2) Stoichiometric oxidation of cyclohexane by KMnO4-Ca(OTf)2 in CH3CN.................................. S2
(3) Stoichiometric oxidation of cyclohexane by KMnO4-Ca(OTf)2-AcOH in CH3CN.................... S2
Determination of the oxidation state of the manganese product dation .. S2
(1) Oxidation of cyclohexane by KMnO4 in the presence of Ca(OTf)2 and acetic acid in CH3CN ... S2
(2) Oxidation of cyclohexane by KMnO4 in the presence of Ca(OTf)2 in CH2CN S2
(3) Oxidation of cyclohexane by KMnO4 in the presence of AcOH in CH3CN S2
Stoichiometric oxidation of toluene by KMnO4-Ca(OTf)2-AcOH in CH3CN S2
Analysis of manganese product (brown solid) ... S2
DFT Calculations. ... S3
References ... S3
Figures and Tables .. S4
Fig. S1 UV-Vis spectra of KMnO4 in CH3CN, KMnO4 and 3 M AcOH in CH3CN, and KMnO4, 3 M AcOH and 1 eq. Ca(OTf)2 in CH3CN. .. S4
Fig. S2 Solution IR spectra (950-500 cm\(^{-1}\)) of KMnO4 (2.5 mM), Ca(OTf)2 (2.5 mM) and KMnO4+Ca(OTf)2 (2.5 mM) in CH3CN measured with a 1 mm KBr IR cell. The IR spectra show that upon addition of 1 equiv. Ca(OTf)2 to KMnO4 in CH3CN the stretching frequency of Mn=O at 904 cm\(^{-1}\) is not shifted. .. S5
Fig. S3 Time trace for the oxidation of toluene by KMnO4 in acetonitrile with 1 equivalent of Ca(OTf)2 and 2.8M acetic acid, Temperature: 22°C. Conditions: KMnO4(0.01M), Ca(OTf)2(0.01M), AcOH(2.8M), toluene(1M), solvent: CH3CN ... S5
Fig. S4 UV-Vis monitoring the reaction of KMnO4 (0.0003 M), Ba(OTf)2 (0.0003 M), AcOH (3 M) and cyclohexane (1 M) in CH2CN at 25 °C .. S5
Fig. S5 UV-Vis monitoring the reaction of KMnO4 (0.0003 M), Mg(OTf)2 (0.0003 M), AcOH (3 M) and cyclohexane (1 M) in CH2CN at 25 °C .. S6
Fig. S6 UV-Vis monitoring the reaction of KMnO4 (0.0003 M), Sc(OTf)3 (0.0003 M), AcOH (3 M) and cyclohexane (1 M) in CH2CN at 25 °C .. S6
Fig. S7 Mn2p XPS spectra of 1 and 2 .. S7
Fig. S8 Mn3s XPS spectra of 1 and 2. ..S8

Fig. S9 PESs for cyclohexane oxidation by [MnO₄]⁻/[MnO₄(AcOH)]⁻/[MnO₄(AcOH)₃]⁻/[MnO₄(CaOTf)]⁻/[MnO₄(CaOTf)(AcOH)]⁻/[MnO₄(CaOTf)(AcOH)₃] at the B3LYP-D3(BJ)/def2-SVPD level...S9

Fig. S10 PES and structures for cyclohexane oxidation by [MnO₄(AcOH)]⁻ at the B3LYP-D3(BJ)/def2-SVPD level..S10

Fig. S11 PES and structures for cyclohexane oxidation by [MnO₄(CaOTf)(AcOH)] at the B3LYP-D3(BJ)/def2-SVPD level..S11

Fig. S12 Arrhenius plot of the reaction of KMnO₄ (0.00025 M) with cyclohexane (1.0 M) in CH₃CN in the presence of AcOH (3.0 M) and Ca(OTf)₂ (0.00025 M). ...S12

Table S1 Transition state of hydroxylation of cyclohexane by KMnO₄ via rebound mechanism of KMnO₄/AcOH/Ca(OTf)₂ system. ...S13

Table S2. XYZ coordinates of molecular species ...S14
Experimental details

Materials

KMnO₄ and Ca(OTf)₂ were purchased from Sigma-Aldrich and used as received. Reagent grade cyclohexane and acetic acid were obtained from Sigma-Aldrich and were purified according to standard methods.¹ Acetonitrile (RCI Labscan), toluene (VWR Chemicals), cyclohexanol (Johnson Matthey Electronics) and d₁₂-cyclohexane (Cambridge Isotope Laboratories) were of analytical grade and were used as received.

Instrumentations

Gas chromatographic analyses were performed on a HP 6890 gas chromatograph with a HP-5MS (25 m × 0.2 mm × 0.33 um) or a HP-FFAP (25 m × 0.2 mm × 0.33 um) column equipped with FID detector. GC-MS measurements were carried out on a HP 6890 gas chromatograph interfaced to a HP 5970 mass selective detector. UV-Vis spectroscopy was performed on an Agilent 8453 photodiode-array spectrophotometer. Elemental analysis was conducted with an Elementar Carbon-Hydrogen-Nitrogen micro-Analysers. ICP-AES was performed with a PerkinElmer Optima 6000 Spectrometer. Magnetic susceptibility was conducted with Sherwood Scientific Magnetic Susceptibility Balance (MK1) and the balance was calibrated with both Hg[Ca(SCN)₄] and (NH₄)₂FeSO₄. X-ray photoelectron spectroscopy was carried out with a PHI 5800 X-ray Photoelectron Spectrometer. Liquid Infrared spectra were recorded on a Nicolet iS50 FTIR spectrometer with a 1 mm KBr liquid cell.

Stoichiometric oxidation of cyclohexane by KMnO₄

(1) Stoichiometric oxidation of cyclohexane by KMnO₄-AcOH in CH₃CN

In a typical experiment, 0.031 mmol of KMnO₄ was added to a solution of CH₃CN containing cyclohexane (0.314 ml), acetic acid (0.1-1.5 ml) and chlorobenzene (1 uL, as internal standard) at 23 °C (Total volume = 3.1 ml). 1 uL of the reaction mixture was withdrawn at different reaction times and analyzed with GC until the amount of product formed from the reaction became steady.

(2) Stoichiometric oxidation of cyclohexane by KMnO₄-Ca(OTf)₂ in CH₃CN

In a typical experiment, 0.031 mmol of KMnO₄ was added to a solution of CH₃CN containing cyclohexane (0.314 ml), Ca(OTf)₂ (0.5 to 4 equivalents with respect to KMnO₄) and chlorobenzene (1 uL, as internal standard) at 23 °C (Total volume = 3.1 ml). 1 uL of the reaction mixture was withdrawn at different reaction times and analyzed with GC.

(3) Stoichiometric oxidation of cyclohexane by KMnO₄-Ca(OTf)₂-AcOH in CH₃CN

In a typical experiment, 0.031 mmol of KMnO₄ was added to a solution of CH₃CN containing cyclohexane (0.314 ml), Ca(OTf)₂ (0.5 to 4 equivalents), AcOH (0.1 ml to 1.5 ml) and chlorobenzene (1 uL, as internal standard) at 23 °C (Total volume = 3.1 ml). 1 uL of the reaction mixture was withdrawn at different reaction times and analyzed with GC.

Determination of KIE

(1) Stoichiometric oxidation of cyclohexane by KMnO₄-AcOH in CH₃CN

0.031 mmol of KMnO₄ was added to a solution of CH₃CN containing cyclohexane (0.157 ml), d₁₂-cyclohexane (0.157 ml), acetic acid (0.5 ml) and chlorobenzene(1 uL, as internal standard) at 23 °C (total volume = 3.1 ml). The reaction mixture was analyzed by GC fitted with a HP5MS column. The deuterated products were well separated and corresponding areas were used to calculate the KIE.
(2) Stoichiometric oxidation of cyclohexane by KMnO₄-Ca(OTf)₂ in CH₃CN

0.031 mmol of KMnO₄ was added to a solution of CH₃CN containing cyclohexane (0.157 ml), d₁₂-cyclohexane (0.157 ml), Ca(OTf)₂ (1 equivalent) and chlorobenzene (1 uL, as internal standard) at 23 °C (Total volume = 3.1 ml). The reaction mixture was analyzed by GC fitted with HP5MS column.

(3) Stoichiometric oxidation of cyclohexane by KMnO₄-Ca(OTf)₂-AcOH in CH₃CN

0.031 mmol of KMnO₄ was added to a solution of CH₃CN containing cyclohexane (0.157 ml), d₁₂-cyclohexane (0.157 ml), Ca(OTf)₂ (1 equivalent), AcOH (0.5 ml) and chlorobenzene (1 uL, as internal standard) at 23 °C (Total volume = 3.1 ml). The reaction mixture was analyzed by GC fitted with HP5MS column.

Determination of the oxidation state of the manganese product
dation

(1) Oxidation of cyclohexane by KMnO₄ in the presence of Ca(OTf)₂ and acetic acid in CH₃CN

0.031 mmol of KMnO₄ was dissolved in solution containing 1.69 ml of CH₃CN, 1 ml of acetic acid, 0.031 mmol of Ca(OTf)₂ and 0.31 ml of cyclohexane. The reaction was allowed to react in room temperature (23 °C) until the amount of cyclohexanone formed was constant based on GC analysis. 114 mg of N(Bu)₄I and 1 ml of CH₃CN was added to the resulting solution. The solution turned brown immediately. 5 uL of the brown solution was withdrawn by 5 uL-syringe and added to 4 ml of solution in a 1 cm cuvette. The absorbance at 363 nm of the diluted solution was taken by a UV-vis spectrophotometer.

(2) Oxidation of cyclohexane by KMnO₄ in the presence of Ca(OTf)₂ in CH₃CN

Similar method as that of (1), except that 2.69 ml of CH₃CN was used for the oxidation.

(3) Oxidation of cyclohexane by KMnO₄ in the presence of AcOH in CH₃CN

Similar method as that of (1), except no Ca(OTf)₂ was added to the reaction mixture for the oxidation.

Stoichiometric oxidation of toluene by KMnO₄-Ca(OTf)₂-AcOH in CH₃CN

0.031 mmol of KMnO₄ was added to a solution of CH₃CN containing toluene (0.33 ml), (1 equivalent), acetic acid (0.5 ml) and chlorobenzene (1 uL, as internal standard) at 23 °C (Total volume = 3.1 ml). 50 uL of the reaction mixture was withdrawn and then added to 50 uL of isopropanol to quench the reaction at different reaction time, 1 ul of the resulting solution was withdrawn and analyzed by GC. The yield was taken when the amount of product determined from the GC analysis became steady.

Analysis of manganese product (brown solid)

Experimental results	MW	Ca (%)	Mn (%)	C (%)	N (%)	H (%)
Ca₃Mn₆O₁₀(CF₃SO₃)₆(CH₃CN)₁₃H₂O	1368	5.84	20.10	5.26	1.02	2.12
Ca₃Mn₅O₁₄(CF₃SO₃)₆(CH₃CN)₁₀H₂O	1885	6.37	20.42	6.37	1.49	1.38
Ca₃Mn₃O₁₆(CF₃SO₃)₆(CH₃CN)₂₀H₂O	2125	5.65	20.71	5.65	1.32	2.16
DFT Calculations.

The structures and energies of all molecular species were calculated at the B3LYP-D3(BJ) level\(^2\) with the def2-SVPD basis sets\(^3-4\). The polarizable continuum model (PCM)\(^5-6\) was used to account for the solvent effect in acetonitrile and the D3 version\(^7\) of Grimme’s dispersion with Becke-Johnson damping were included. All calculations were performed with Gaussian 16 package of program.\(^8\)

References
1. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, 3\(^{rd}\) ed., Pergamon Press, Oxford, 1988.
2. A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
3. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
4. D. Rappoport and F. Furche, J. Chem. Phys. 2010, 133, 134105.
5. S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phy. 1981, 55, 117-129.
6. S. Miértušand J. Tomasi, Chem. Phy. 1982, 65, 239-245.
7. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
8. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
Figures and Tables

Fig. S1 UV-Vis spectra of KMnO$_4$ in CH$_3$CN, KMnO$_4$ and 3 M AcOH in CH$_3$CN (using 3 M AcOH as background), and KMnO$_4$, 3 M AcOH and 1 eq. Ca(OTf)$_2$ in CH$_3$CN (using 3 M AcOH as background). In spectrum of KMnO$_4$, 3 M AcOH and 1 eq. Ca(OTf)$_2$ in CH$_3$CN (blue), the absorbance at 527 nm decreased as the KMnO$_4$ decayed slightly after addition of Ca(OTf)$_2$.

![UV-Vis spectra](image.png)
Fig. S2 Solution IR spectra (950-500 cm\(^{-1}\)) of KMnO\(_4\) (2.5 mM), Ca(OTf)\(_2\) (2.5 mM) and KMnO\(_4\)+Ca(OTf)\(_2\) (2.5 mM) in CH\(_3\)CN measured with a 1 mm KBr IR cell. The IR spectra show that upon addition of 1 equiv. Ca(OTf)\(_2\) to KMnO\(_4\) in CH\(_3\)CN the stretching frequency of Mn=O at 904 cm\(^{-1}\) is not shifted.

Fig. S3 Time trace for the oxidation of toluene by KMnO\(_4\) in acetonitrile with 1 equivalent of Ca(OTf)\(_2\) and 2.8M acetic acid, Temperature: 22\(^\circ\)C. Conditions: KMnO\(_4\) (0.01M), Ca(OTf)\(_2\) (0.01M), AcOH (2.8M), toluene (1M), solvent: CH\(_3\)CN

Assuming KMnO\(_4\) also acted as a 3-electron oxidant as that for the oxidation in cyclohexane, the yield for the oxidation of toluene is 30.7%.

\(k_{\text{obs}}\) for the reaction 0.31 min\(^{-1}\). The oxidation of cyclohexane under the same conditions: \(k_{\text{obs}} = 0.054\) min\(^{-1}\) (yield: 57\%). Therefore, the ratio of \(k_{\text{obs}}\) of toluene to cyclohexane = 5.75:1.
Fig. S4 UV-Vis monitoring the reaction of KMnO$_4$ (0.0003 M), Ba(OTf)$_2$ (0.0003 M), AcOH (3 M) and cyclohexane (1 M) in CH$_3$CN at 25 °C. 3 M AcOH in CH$_3$CN was used as background in measurement.

Fig. S5 UV-Vis monitoring the reaction of KMnO$_4$ (0.0003 M), Mg(OTf)$_2$ (0.0003 M), AcOH (3 M) and cyclohexane (1 M) in CH$_3$CN at 25 °C. 3 M AcOH in CH$_3$CN was used as background in measurement.
Fig. S6 UV-Vis monitoring the reaction of KMnO₄ (0.0003 M), Sc(OTf)₃ (0.0003 M), AcOH (3 M) and cyclohexane (1 M) in CH₃CN at 25 °C. 3 M AcOH in CH₃CN was used as background in measurement.

Fig. S7 Mn2p XPS spectra of 1 and 2.
Fig. S8 Mn3s XPS spectra of 1 and 2.
Fig. S9 PESs for cyclohexane oxidation by $[\text{MnO}_4^-]/[\text{MnO}_4(\text{AcOH})^-]/[\text{MnO}_4(\text{AcOH})_3^-]/[\text{MnO}_4(\text{CaOTf})]/[\text{MnO}_4(\text{CaOTf})(\text{AcOH})]/[\text{MnO}_4(\text{CaOTf})(\text{AcOH})_3]$ at the B3LYP-D3(BJ)/def2-SVPD level. Relative 298 K Gibbs free energies in acetonitrile are given in kcal mol$^{-1}$.
Fig. S10 PES and structures for cyclohexane oxidation by $[\text{MnO}_4(\text{AcOH})]^{-}$ at the B3LYP-D3(BJ)/def2-SVPD level. Relative 298 K Gibbs free energies in acetonitrile are given in kcal mol$^{-1}$.
Fig. S11 PES and structures for cyclohexane oxidation by [MnO₄(CaOTf)(AcOH)] at the B3LYP-D3(BJ)/def2-SVPD level. Relative 298 K Gibbs free energies in acetonitrile are given in kcal mol⁻¹.
Fig. S12 Arrhenius plot of the reaction of KMnO$_4$ (0.00025 M) with cyclohexane (1.0 M) in CH$_3$CN in the presence of AcOH (3.0 M) and Ca(OTf)$_2$ (0.00025 M). Rate constants in temperature range of 20-50 °C were obtained by Pseudo-first-order reaction fitting of the absorbance of KMnO$_4$ at 527 nm. $\Delta G^\ddagger = 10.4 \pm 0.6$ kcal/mol.
Table S1 Transition state of hydroxylation of cyclohexane by KMnO$_4$ via rebound mechanism of KMnO$_4$/AcOH/Ca(OTf)$_2$ system.

	TS for hydroxylation via rebound mechanism and $\Delta G^{\ddagger}_{298}$	$\Delta G^{\ddagger}_{298}$ (current TS2)
MnO$_4^-$![diagram](image1)	20.3
$\Delta G^{\ddagger}_{298}$=22.9		
MnO$_4^-$/AcOH	![diagram](image2)	17.6
$\Delta G^{\ddagger}_{298}$=19.6		
MnO$_4^-$/(CaOTf)$^+$![diagram](image3)	8.2
$\Delta G^{\ddagger}_{298}$=11.6		
Table S2. XYZ coordinates of molecular species		
--		
MnO$_4$		
INT1		
Mn	2.12609400	0.00049900
O	1.87185700	0.30097000
O	3.67796400	-0.29002900
O	1.68427200	1.26195600
O	1.27491700	-1.27192800
H	-0.63005200	-0.60018500
C	-2.07510000	-1.40634400
C	-1.63117100	-0.35654000
C	-1.62487300	1.05063400
C	-2.98072600	1.40559500
C	-3.41422100	0.35504200
C	-3.43061700	-1.05164400
H	-1.34797500	1.79180100
H	-2.32053700	-0.37607700
H	-1.31127600	1.46462500
H	-2.11876700	2.40103700
H	-3.74220000	1.46330200
H	-2.93743800	2.40140900
H	-4.40441100	0.60606100
H	-2.70749800	0.37025700
H	-4.21038700	1.09495100
H	-3.70740000	-1.79513800
H	-0.84624600	1.09849200
TS1		
Mn	2.26040200	0.01045000
O	1.52489400	0.64207300
O	3.35692500	-1.06023800
O	2.80262300	1.17458700
O	0.95845000	-0.78996200
H	-0.08339800	0.55142300
C	-2.14352500	-1.38877400
C	-1.25148400	-0.30181100
C	-1.61861800	1.09199000
C	-3.09516700	1.38872600
C	-4.02460000	0.31063900
C	-3.61735800	-1.08888900
H	-0.95685100	1.83477300
H	-1.08019900	-0.38099700
H	-2.04353900	-1.42215500
H	-1.85074500	-2.37501900
H	-3.20970000	1.43055500
H	-3.36917600	2.38108800
H	-5.06568300	0.51865700
H	-3.98892200	0.34495900
H	-3.74882800	-1.15922100
H	-4.26531100	-1.85537500
H	-1.48632800	1.16994200	-1.18767300

INT2

Mn	2.34567700	0.02630100	-0.04767800
O	1.63579600	0.55633000	1.31246100
O	3.53743200	-0.97827600	0.30079700
O	2.70627900	1.25102800	-1.00502600
O	1.02135000	-0.90347300	-0.78381700
H	0.21498000	-0.76959000	-0.22956800
C	-2.31019500	-1.42345200	-0.04239400
C	-1.47363800	-0.38415000	0.63528700
C	-1.64843400	1.02696700	0.17243300
C	-3.14505800	1.42252300	0.20938400
C	-4.00543600	0.40191300	-0.54328000
C	-3.80494000	1.01780000	-0.00246000
H	-1.04312300	1.71789000	0.77202300
H	-1.09628900	-0.57005100	1.64208400
H	-2.01675100	-1.50338600	-1.10534600
H	-2.16585500	-2.41386900	0.40945200
H	-3.47591700	1.47544300	1.25922500
H	-3.27163000	2.42793100	-0.21851100
H	-5.06730300	0.68275500	-0.47791500
H	-3.73737600	0.42221700	-1.61332900
H	-4.16176600	-1.06624300	1.03890700
H	-4.39851000	-1.74133400	-0.58057300
H	-1.30302500	1.11983300	-0.87363200

TS2

Mn	2.21293000	0.03453900	-0.03645600
O	1.15172900	0.07087500	1.21511000
O	3.40467000	-0.98672400	0.26339500
O	2.58694500	1.50951600	-0.51192200
O	1.07902700	-0.69516300	1.21115700
H	0.24665700	-0.76619200	-0.70577500
C	-1.99230600	-1.38002600	0.02458400
C	-1.29777400	-0.25299700	0.72901900
C	-1.54656000	1.11488800	0.18476300
C	-3.07121700	1.39163100	0.15260000
C	-3.82264900	0.27416600	-0.57956600
C	-3.51963700	-1.10277600	0.02099700
H	-1.02567000	1.87652900	0.77775400
H	-1.14312000	-0.35367900	1.80171700
H	-1.67471300	-1.44604300	-1.03064400
H	-1.77592200	-2.34761400	0.49619800
H	-3.44296200	1.46453200	1.18741600
H	-3.25926400	2.36449700	-0.32518800
H	-4.90551500	0.46692000	-0.55155200
H	-3.52752800	0.27614400	-1.64249200
H	-3.89488600	-1.14459200	1.05595900
H	-4.03406800	-1.89599100	-0.54147700
H -1.16435600 1.18471300 -0.84828500

INT3
Mn 1.87704900 0.03326300 -0.01681500
O 0.49522300 -0.38674400 0.03007900
O 3.08569300 -0.97497800 0.30174400
O 2.20230700 1.60567600 0.08976600
O 1.21985400 -0.32348100 -1.66984900
H 0.56244200 -1.03025900 -1.62186000
C -1.55815500 -1.34195700 0.12235600
C -0.89000400 -0.17459200 0.85852600
C -1.22464800 1.16199400 0.18982100
C -2.74135900 1.36451000 0.08976600
C -3.41771700 0.19634200 -0.63649200
C -3.07561500 -1.14206600 0.02753100
H -0.75839000 1.97665400 0.76040800
H -1.32277400 -0.14753600 1.87741100
H -1.14908300 -1.41334600 -0.89814400
H -3.13219000 -2.28177900 0.63661300
H -3.16489100 1.45244100 1.10440100
H -2.95853300 2.31266300 -0.42344900
H -4.50780400 0.34212100 -0.66210100
H -3.07482500 0.17622100 -1.68492000
H -3.50752400 -1.16503200 1.10110100
H -3.37944700 1.19456900 1.18291900

TS3
Mn 1.86194100 0.08682100 -0.21355100
O 0.49382500 -0.16553100 1.15742400
O 1.25458400 0.15767500 -1.70421200
O 2.90792400 1.21812200 0.24857900
O 2.17012600 -1.51048100 0.35550500
H -1.01398800 -1.12155300 1.10110100
C -1.34743600 1.23481200 0.43662800
C -0.93043300 -0.14344000 0.93393300
C -1.38123800 -1.24859300 -0.01649000
C -2.89861300 -1.18836200 -0.23281000
C -3.33559700 0.19278700 -0.73390000
C -2.86324500 1.30070400 0.21429500
H -1.08535500 -2.22810900 0.38586600
H -1.37926000 -0.31790400 1.92604100
H -0.82434400 1.42748100 -0.51263200
H -1.02044500 1.99888900 1.15570100
H -3.41302000 -1.40995000 0.71662600
H -3.20161400 -1.97002800 -0.94420800
H -4.42903300 0.22867000 -0.84696100
H -2.90531900 0.36627900 -1.73429600
H -3.37944700 1.19456900 1.18291900
H -3.13651300 2.28930600 -0.18100200
H -1.52620300 -0.96955800 1.86927300
H -1.12085700 0.59466200 1.15026700
H -3.38780100 -1.54840900 -1.67081000
H -3.76229200 -3.10875300 -0.92534600
H -4.95057000 -1.20421200 0.22300300
H -3.85755200 -2.05569100 1.32033500
H -3.27879800 0.60096200 -0.10496900
H -3.58413500 0.39177600 1.62465500
H -1.62275300 -3.07857400 0.32480800
C -1.68825200 3.77793300 -0.36642000
H -1.77651300 4.97649000 0.45232300
H -2.59401200 3.15593400 -0.40925100
H -1.60388500 4.29967700 -1.32845300
C -0.49527900 2.88370000 -0.15118800
O 0.16590700 2.86201700 0.87431000
O -0.25051400 2.09985200 -1.19172100
H 0.51316300 1.45621300 -1.01401200
Mn 2.46110500 0.57298800 0.05941300

INT2
O 3.70702600 -1.42371100 -0.67521800
O 1.74247800 0.32677700 -0.98765200
O 1.29368400 -1.77260300 0.54166600
O 2.98509100 0.20785500 1.35654600
C 1.69926800 -0.35039000 0.91032400
C 1.32109500 -0.97038800 -0.39661800
C 2.05741000 -2.21620700 -0.76914000
C 3.58317600 -1.93348900 -0.75573700
C 4.02275600 -1.31821300 0.57786100
C 3.22093000 -0.05731100 0.91933800
H 1.74618700 -2.59336100 -1.75227500
H 0.95173600 -0.32189200 -1.19160100
H 0.43629000 -1.51111800 0.11697000
H 1.48757000 -1.05587700 1.73296200
H 1.12493200 0.56088700 1.11034100
H 3.82227400 -1.23788700 -1.57605100
H 4.13269900 -2.86570300 -0.95304900
H 5.09719200 -1.08413000 -0.54588600
H 3.88404300 -2.06074800 1.38138400
H 3.43829600 0.72943700 0.17933900
H 3.51420600 0.33720100 1.90326300
H 1.85366400 -3.00982600 -0.02878900
C 1.57608900 3.74601000 -0.39239900
H 1.69275100 4.45132100 0.43527200
H 2.47710600 3.11996600 -0.46967600
H 1.46709600 4.28241000 -1.34352200
C 0.38872700 2.85062200 0.15363000
O 0.21294900 2.78194000 0.90560700
O 0.07060200 2.11841500 -1.21506600
H 0.66538600 1.46005900 -1.02108700
Mn 2.55647100 -0.62455000 0.07534300

TS2
O 3.07182500 -2.02597500 -0.82177800
O 1.11291500 -0.20391600 -0.75634700
O 2.44186000 -0.75550500 1.50400900
C -1.61856300 0.12249600 0.78032900
C -1.47450500 -0.39444100 -0.61199800
C -2.36296800 -1.53817900 -0.99303200
C -3.83959400 -1.11285900 -0.76595600
C -4.05086400 -0.61976100 0.66932400
C -3.09646200 0.52583100 1.02333700
H -2.20489000 -1.84432400 -2.03512000
H -1.20637400 0.31202600 -1.39471800
H -0.14708500 -1.95932000 -0.06877600
H -1.35572100 -0.66584100 1.50580400
H -0.94940400 0.97005800 0.96429900
H -4.09435900 -0.30877700 -1.47440600
H -4.50084000 -1.96285000 -0.98963400
H -5.09365300 -0.29660600 0.80551200
H -3.88459300 -1.45796000 1.36671600
H -3.33272300 1.40497000 0.40277300
H -3.22404100 0.82984500 2.07249500
H -2.17747000 -2.41813000 -0.35358100
C 0.44548600 4.53400700 0.89778000
H 0.48292000 5.17524000 0.96429900
H -0.55348200 4.57825700 0.89778000
H 1.16192700 4.89194700 -1.19470500
C 0.77191300 3.10953400 -0.07297900
O 1.05968400 2.74776600 1.05683300
O 0.71356700 2.28730200 -1.11019900
H 0.92383300 1.32303200 -0.85995400
Mn 1.97893000 -1.32956300 0.10017100

INT3
O 0.64180700 -2.79074000 -1.26541300
O 0.23317000 -0.27929300 -0.20074200
O -1.61243400 -2.34248100 0.24361300
O 0.84726700 -2.38160100 1.48345800
C -1.44156500 0.86752200 1.18870300
C -0.75383900 0.74015200 -0.17282300
C -1.75379200 0.63683600 -1.32787100
C -2.73484900 1.81554300 -1.30584500
C -3.43810500 1.93178300 0.05137400
C -2.42428000 2.04456600 1.19561400
H -1.19888300 0.60335700 -2.27582600
H -0.18541200 1.67482500 -0.32244300
H -2.10565900 -1.51897700 0.15049600
H -1.98245900 -0.05973800 1.43127100
H -0.67027600 0.99213600 1.96090600
H -2.18258000 2.74844800 -1.50737800
H -3.47171400 1.70520900 -2.11417700
H -4.11512500 2.79863500 0.05570000
H -4.06552900 1.03851000 0.21104100
H -1.86109500 2.98640300 1.08780900
H -2.94063400 2.09581600 2.16485900
H -2.31917700 -0.30586300 -1.26538900
C 4.32927300 2.09358000 -0.25061500
H 4.56169500 3.00952400 0.30049700
H 4.45419500 2.26290600 -1.32922100
H 5.02845800 1.29569400 0.03575500
C 2.91479800 1.65269300 0.03202100
O 2.15420400 2.25325800 0.77766500
O 2.58064400 0.54971000 -0.61407300
H 1.61558600 0.24571600 -0.40499800
Mn 0.17982000 -2.09334200 0.07846800
TS3 2.53515400 -1.59634100 0.24141400
O 0.03820100 -0.32740700 -0.56031600
O 0.47285500 -2.40320900 -1.50944400
O 0.19613900 -2.68131900 1.27416500
C -2.29218800 -0.77673000 0.10255800
C -1.15919000 0.23945100 0.04861900
C -1.54979600 1.48919200 -0.73252600
C -2.81245900 2.12517600 -0.13718700
C -3.96647300 1.12044000 -0.06268800
C -3.55180900 -0.13997600 0.70352800
H -0.71905300 2.20591300 -0.72624100
H -0.84866000 0.51950200 1.06325700
H -0.10570700 -1.00282600 -1.35931400
H -2.50528700 -1.12172000 -0.92245600
H -1.97594800 -1.64980800 0.68586800
H -2.58451900 2.49442100 0.87625000
H -3.09804300 3.00202300 -0.73482500
H -4.84332700 1.58399500 0.41213900
H -4.26867700 0.83923300 -1.08526300
H -3.35589100 0.12153200 1.75661600
H -4.36767600 -0.87605000 0.70928700
H -1.73203600 1.20437000 -1.78110900
C 3.22660300 3.29163200 0.13260300
H 3.25241500 3.89680400 1.04312100
H 3.04202000 3.92752200 -0.74354100
H 4.20020100 2.80387600 -0.01728100
C 2.15782600 2.23974300 0.23840700
O 1.49429600 2.02197100 1.23574500
O 2.00441800 1.54792400 -0.89200000
H 1.31345600 0.85071100 -0.76559500
Mn 0.97412600 -1.95304100 0.06050800
MnO₄/3AcOH

INT1

Element	X	Y	Z
O	2.18118500	2.83931900	0.38453900
O	3.59252100	0.73329800	-0.31486300
O	1.10984500	0.47618000	0.40467500
O	1.68077900	1.60752400	-1.84941800
H	1.79838600	-4.55029600	-0.82836500
C	2.15233300	-3.92627600	-0.00295400
H	2.98117700	-4.41476100	0.52396800
H	1.33762400	-3.77225000	0.71833500
C	2.57209700	-2.57658000	-0.51841300
O	2.29290400	-2.13901100	-1.61761000
O	3.28058900	-1.88467000	0.37801000
H	3.46075500	-0.97261800	0.03969300
C	-1.46627200	-1.50104600	-1.51586100
C	-1.47822800	0.01829000	-1.31939700
C	-2.72993300	0.65784400	-1.92756300
C	-4.00063000	0.01413000	-1.37319900
C	-4.00016600	-1.50634500	-1.57553000
C	-2.74525200	-2.14561600	-0.96871200
H	-2.72781400	1.73913300	-1.73211200
H	-2.72781400	1.73913300	-1.73211200
H	-1.45627900	0.23772100	-0.24279900
H	-0.57018300	0.46490200	-1.74674200
H	-0.57986000	0.19372390	-1.03726700
H	-4.07591200	0.23216800	-0.29417400
H	-0.24279900	-1.34322200	-1.37319900
H	-0.24279900	-1.34322200	-1.37319900
C	-1.53880700	-2.93742800	2.71359900
H	-2.51110500	-2.81349400	3.19732900
H	-0.81676800	-3.36948300	3.42451400
H	-1.61948800	-3.63829700	1.87197000
C	-1.03421900	-1.16117700	2.21682000
O	-1.60892700	-0.54948300	2.36424500
O	0.13371300	-1.72161900	1.58336400
H	0.43058900	-0.85180200	1.22071400
C	-2.55546000	2.61882300	1.43662800
H	-3.36571100	2.76190000	0.71693700
H	-2.75853300	3.18618500	2.35475200
H	-2.47299400	1.55923200	1.71416400
C	-1.25032600	3.06029400	0.83928100
O	-1.10361500	3.46110000	-0.29934900
O	-0.23323800	2.95699600	1.70298600
H	0.62070200	3.10735900	1.23291000
Mn	2.14556200	1.41862700	-0.35078300
Element	X-coord	Y-coord	Z-coord
---------	-------------	-------------	-------------
H	-4.92738800	1.61694100	0.05120600
C	-4.54754800	0.78243500	0.64769400
O	-3.88847500	1.16740400	1.43842600
O	-2.82278200	2.93035400	-0.66658000
C	-2.01200300	1.41873000	-1.99269800
C	2.44430300	2.87395100	-1.69989500
C	3.27857500	3.14717400	-2.36260800
C	2.53574900	2.93035400	-2.09429200
C	2.08988100	-2.77824300	0.69754700
Mn	-0.22279700	-2.28532800	-0.64884400
INT2
O 0.65478700 -3.52703600 -0.33305400
O -1.94139100 -2.79321500 -0.79596900
O -0.30537100 -1.26920400 0.59919600
O 0.10549100 -1.39916500 -1.96540200
H -4.68432100 2.04536500 -0.13027900
C -4.41479900 1.19331200 0.50024500
H -5.30656400 0.76786900 0.97707600
H -3.73300900 1.52456500 1.29599300
C -3.70046100 0.15130300 -0.31498900
O -3.23903600 0.34273400 -1.42574300
O -3.60323300 -1.01778200 0.31710800
H -3.03556600 -1.65193900 -0.20028600
C -0.19025000 2.05180800 -1.20914600
C 0.98908400 1.15299400 -1.02725100
C 2.17042200 1.43860800 -1.89570100
C 2.62196400 2.90340900 -1.65055400
C 1.45725800 3.88320400 -1.83488000
C 0.25603700 3.51565100 -0.95668100
H 2.98964700 0.73990800 -1.69009800
H 1.17569500 0.74965800 -0.03208100
H 0.40704600 -0.49990800 -1.64397900
H -0.56086800 1.98217700 -2.24557300
H -1.01878400 1.77817900 -0.54883000
H 3.01056500 2.98542600 -0.62294200
H 3.45104300 3.15159600 -2.32947200
H 1.78915900 4.90735700 -1.60839300
H 1.14450700 3.87806200 -2.89234400
H 0.53030500 3.62611600 0.10429100
H -0.58845700 4.19490100 -1.14336500
H 1.89421400 1.33991300 -2.95976600
C -0.97085400 2.89542900 2.90046500
H -0.21485800 3.47672100 3.43491400
H -1.81382600 2.66300900 3.56394100
H -1.36799200 3.48386800 2.06153900
C -0.36997800 1.62353900 2.36600800
O 0.81511700 1.34655600 2.41903400
O -1.27911300 0.82977600 1.80834300
H -0.86066600 0.02603400 1.38407800
C 3.69720600 -0.56952500 1.96304000
H 4.53616300 0.00295600 1.55627900
H 4.00154400 -1.12217700 2.86011500
H 2.88873700 0.12102800 2.24712400
C 3.14949300 -1.49927400 0.91767200
O 3.32355700 -1.36581400 -0.28014000
O 2.41355600 -2.48353400 1.43599400
H 1.89851700 -2.93984200 0.71966400
Mn -0.41031500 -2.35920500 -0.59767600

TS2
X	Y	Z
-1.4227750	-3.1582520	0.1773620
1.3034000	-3.1540420	0.5947940
0.0463460	-1.0277080	-0.3675710
-0.3293550	-1.4850460	2.0755490
4.5201510	1.3335480	0.1075760
4.2182740	0.5049400	-0.5388500
5.0944800	0.0827410	-1.0485530
3.5259960	0.8605070	-1.3145750
3.5295230	-0.5612830	0.2683760
3.2930280	-0.4800720	1.4604760
3.1894680	-1.6168510	-0.4681370
2.5867090	-2.2240760	0.0444350
0.8760190	1.8364970	0.8711920
-0.5048820	1.2829300	0.9477300
-1.2965630	1.6276080	2.1681370
-1.3748030	3.1757450	2.2749680
0.0248490	3.7978670	2.2526550
0.8087980	3.3811670	1.0043960
-2.2992780	1.1877010	2.1255360
-1.0420370	1.1296770	0.0156860
-0.3558690	-0.5333190	1.8120340
1.4936260	1.4417190	1.6924790
1.3668750	1.5580220	-0.0661550
-1.9648600	3.5624930	1.4292410
-1.9119670	3.4475600	3.1952820
-0.0499760	4.8944120	2.3010770
0.5769870	3.4768190	3.1516060
0.3182830	3.7933640	0.1083900
1.8301200	3.7875240	1.0282750
-0.7971630	1.2597350	3.0803880
1.0586980	2.1438020	-3.8076210
0.3834560	2.9010740	-4.2152350
1.4565760	1.5140450	-4.6143690
1.9158730	2.6312450	-3.3220110
0.3387720	1.2913650	-2.7973270
-0.8037960	1.4893870	-2.4223770
1.0929430	0.2950580	-2.3444670
0.6288950	-0.2297220	-1.6256010
-3.9971380	0.5987850	-1.5015950
-4.6154570	1.3042670	-0.9392080
-4.5605420	0.1786630	-2.3444510
-3.1178180	1.1164100	-1.9117600
-3.5051560	-0.4961400	-0.5969900
-3.5656710	-0.4632970	0.6196110
-2.9645650	-1.5111520	-1.2690900
-2.4999440	-2.1392250	-0.6506540
-0.0901460	-2.3575640	0.5696120

INT3

X	Y	Z
0.7843160	-0.5201490	-2.3738970
\[
\begin{align*}
\text{O} & : 0.27900700 \quad 1.17144100 \quad -0.10348000 \\
\text{O} & : -0.37322900 \quad 2.14636300 \quad -2.06129300 \\
\text{H} & : -5.89147100 \quad 1.62160300 \quad 1.19428300 \\
\text{C} & : -5.42811800 \quad 0.64383500 \quad 1.03343200 \\
\text{H} & : -6.16824200 \quad -0.07715800 \quad 0.66382600 \\
\text{H} & : -5.04480500 \quad 0.26179100 \quad 1.99101500 \\
\text{C} & : -4.27776600 \quad 0.76242500 \quad 0.06867500 \\
\text{O} & : -3.77762900 \quad 1.82105900 \quad -0.27109600 \\
\text{O} & : -3.85211900 \quad -0.41769600 \quad -0.36710100 \\
\text{H} & : -3.00682600 \quad -0.31917100 \quad -0.90532900 \\
\text{C} & : 1.62809500 \quad 1.53106000 \quad 1.87145300 \\
\text{C} & : 1.62789100 \quad 1.01276300 \quad 0.43782100 \\
\text{C} & : 2.65939100 \quad 1.72637900 \quad -0.42522000 \\
\text{C} & : 4.05635900 \quad 1.57532400 \quad 0.19056100 \\
\text{C} & : 4.09171600 \quad 2.08160100 \quad 1.63623000 \\
\text{H} & : 5.08882700 \quad 1.92197000 \quad 2.07167700 \\
\text{C} & : 3.26877000 \quad 0.31536100 \quad 2.57388500 \\
\text{H} & : 3.01897300 \quad 1.79171400 \quad 3.51053100 \\
\text{H} & : 2.39452300 \quad 2.79424300 \quad -0.49138300 \\
\text{C} & : -2.43494300 \quad -1.77231500 \quad 2.62383900 \\
\text{C} & : -2.12557800 \quad -2.77641600 \quad 2.92658800 \\
\text{H} & : -3.33020700 \quad -1.83703400 \quad 1.98934300 \\
\text{H} & : -2.69346300 \quad -1.16657000 \quad 3.50148100 \\
\text{C} & : -1.34587000 \quad -1.10869600 \quad 1.82892700 \\
\text{O} & : -0.36623300 \quad -1.67789100 \quad 1.38462600 \\
\text{O} & : -1.57408700 \quad 0.19188300 \quad 1.63853000 \\
\text{H} & : -0.89480800 \quad 0.56715900 \quad 1.02456000 \\
\text{C} & : 1.80637900 \quad -4.15118700 \quad 0.23306400 \\
\text{H} & : 2.66769500 \quad -4.37607400 \quad 0.86892800 \\
\text{H} & : 1.61000100 \quad -4.97792400 \quad -0.46024700 \\
\text{H} & : 0.91479500 \quad -4.01618600 \quad 0.86226100 \\
\text{C} & : 2.03178500 \quad -2.86609900 \quad -0.51441600 \\
\text{O} & : 2.87239900 \quad -2.03636300 \quad -0.21138800 \\
\text{O} & : 1.19866600 \quad -2.71485400 \quad -1.53935500 \\
\text{H} & : 1.25253900 \quad -1.79305800 \quad -1.92877000 \\
\text{Mn} & : -0.24270700 \quad 0.46674000 \quad -1.84627600 \\
\end{align*}
\]

MnO$_4$-(CaOTf)$_2$

INT1

\[
\begin{align*}
\text{C} & : 0.15745400 \quad 3.46301300 \quad 1.09043300 \\
\text{C} & : -0.36743800 \quad 2.18271500 \quad 0.43276400 \\
\end{align*}
\]

S26
C -0.35552200 2.28767100 -1.09457800
C 1.03477100 2.66178100 -1.62099500
C 1.55182800 3.82807700 0.56793400
H -0.68596200 1.33981100 -1.54092900
H 0.26471400 1.33574200 0.73608000
H -1.38363400 1.96054300 -1.40550100
H -0.53769300 4.29180800 0.87280800
H 0.17610300 3.34866700 2.18469400
H 1.72544400 1.83264600 -1.40550100
H 1.00924500 2.77788600 -2.71521100
H 2.57497900 4.16825400 -1.32168300
H 0.92301900 4.79255000 -1.26079500
H 2.26529900 3.04424600 0.87318200
H 1.89784700 4.76810700 1.02390500
H -1.08380800 3.05389100 -1.40964500
Mn -3.34793300 -0.32492500 0.21424300
O -3.07369000 -1.08228500 -1.18089100
O -4.59473900 -0.94582400 0.95141200
O -3.57336900 1.21483300 -0.02535600
O -2.00420200 -0.56143500 1.07741800
Ca -0.84983800 -1.91437300 -0.54297200
C 2.78442700 -0.74751800 0.94989400
S 2.16316400 -1.66410900 -0.57394800
F 1.76592300 -0.48851600 1.77014600
F 3.35562800 0.39961600 0.58748000
F 3.67832300 -1.49901800 1.59091100
O 1.16919800 -0.71705100 -1.18859600
O 3.36604400 -1.96353200 -1.35904500
O 1.40420100 -2.83182900 -0.00700600
TS1
C 0.40818200 3.12281000 -0.86403300
C 0.38374800 2.00173400 0.14763700
C -0.04367000 2.41962700 1.53567400
C -1.44657300 3.06375200 1.45831000
C -1.47482100 4.21233600 0.44525700
C -0.99808500 3.76088000 -0.93864100
H -0.06065600 1.55532100 2.21153300
H -0.15003900 1.11646000 -0.20589200
H 1.54237600 1.60186300 0.27049500
H 1.13397000 3.89255500 -0.55780300
H 0.71374000 2.75321800 -1.85188900
H -2.17449800 2.29315300 1.16303200
H -1.73901100 3.41737900 2.45777300
H -2.49168200 4.62670700 0.37528100
H -0.82459500 5.02750700 0.80354400
H -1.70420300 3.02042600 -1.34669100
H -0.97676800 4.60773100 -1.63995500
H 0.66633200 3.15543200 1.94458600
Atom	X	Y	Z
Mn	3.09277500	-0.27548800	-0.19244200
O	3.17040000	-1.43094200	0.93350900
O	4.28523400	-0.19087800	-1.22264400
O	2.80439100	1.21129900	0.50700000
O	1.66978400	-0.57917700	-0.9610900
Ca	0.94870400	-2.29806000	0.44432200
C	-2.58913500	-0.66168500	-0.93576500
S	-2.03843600	-1.69424000	0.41880000
F	-1.54862500	-0.40998200	-1.72965900
F	-3.10522600	0.49335700	-0.51568400
F	-3.51407400	-1.32634300	-1.62689300
O	-0.94403200	-0.88079800	1.17289900
O	-2.65567500	-1.89753700	1.33661200
O	-1.42261900	-2.91212100	-0.08752000

Atom	X	Y	Z
C	0.03779000	3.16409200	0.92528300
C	-0.02829900	2.03571600	-0.04949700
C	0.32946600	2.35819900	-1.46404600
C	1.76188600	2.95095400	-1.49278100
C	1.88444500	4.31628300	-0.52916400
C	1.47143900	3.76000700	0.89793600
H	0.27392800	1.46216400	-2.09887700
H	0.17339300	1.02995400	0.31228800
H	-1.78688600	1.70768900	-0.26866500
H	-0.66752700	3.96167000	0.63552800
H	-0.22470600	2.83795900	1.93990100
H	2.47691400	2.16508300	-1.20604800
H	2.00914000	3.25554300	-2.52008200
H	2.91695800	4.51577900	-0.53174000
H	1.24325000	4.95966500	-0.88539000
H	2.17334200	3.01214700	1.29883100
H	1.51613900	4.63591100	1.56129300
H	-0.36203600	3.11073600	-1.87230800
Mn	-3.17735600	-0.05127700	0.19338900
O	-3.29192400	-1.15659900	-0.97756900
O	-4.36171200	0.09006600	1.22344400
O	-2.75257700	1.50367000	-0.46389600
O	-1.76748800	-0.44831000	0.95275900
Ca	-1.14127800	-2.17015800	-0.49245800
C	2.50315400	-0.91347800	0.96164500
S	1.87143300	-1.84812700	-0.54723600
F	1.48812700	-0.62923400	1.77768400
F	3.08669300	0.22230400	0.58019400
F	3.39033100	-1.66282600	1.61399900
O	0.85016800	-0.92097100	-1.14782800
O	3.06675900	-2.12586400	-1.35264900
O	1.14789300	-3.02870100	0.03611700

TS2
Atom	X	Y	Z
C	1.52922200	2.69438600	-0.84852300
C	0.63117700	1.78896100	-0.08070900
C	0.11923700	2.29479700	1.22740400
C	-0.64440400	3.62299400	0.95862200
C	0.24129100	4.62114300	0.20739200
C	0.11923700	2.29479700	1.22740400
C	-0.64440400	3.62299400	0.95862200
C	0.24129100	4.62114300	0.20739200
H	-0.53372300	1.56024600	1.71110000
H	-0.00260100	1.10635900	-0.63878900
H	1.91465900	0.76882100	0.91711000
H	2.43768100	2.91883500	-0.26547700
H	1.84109000	2.23924500	-1.79567900
H	-1.54467700	3.40339600	0.36495200
H	-0.98251500	4.39047000	1.91836800
H	-0.02324300	5.54041900	-0.00155300
H	1.08871100	4.90953900	0.85103400
H	-0.03909100	3.84427800	-1.79112300
H	1.45707100	4.73771400	-1.60040500
H	0.95002000	2.52518000	1.91486500
Mn	2.98589800	-1.01794400	0.11854200
O	2.44507200	-2.45442700	0.62665800
O	4.43306700	-0.87663200	-0.48829800
O	2.66076900	0.23576900	1.29572300
O	1.82137400	-0.53734700	-0.96464800
Ca	0.36939300	-2.31133700	-0.58996700
C	-3.06690800	0.08028000	-0.43531300
S	-2.34402400	-1.41431400	0.45224800
F	-2.27061800	0.44317800	-1.44204500
F	-3.18077400	1.09795000	0.41734900
F	-4.26998300	-0.22091500	-0.92038100
O	-1.00446000	-0.93767700	-0.93946100
O	-3.33678100	-1.75847100	1.47801800
O	-2.11988500	-2.41851400	-0.64292800

| INT3 | C | X | Y | Z |
|-------|---------|---------|---------|
| C | 2.45876600 | 1.80426000 | -0.88455400 |
| C | 1.19922200 | 1.09470700 | -0.39674300 |
| C | 0.74237900 | 1.63295500 | 0.95770700 |
| C | 0.49003100 | 3.14326000 | 0.87506600 |
| C | 1.73264900 | 3.88566600 | 0.37098800 |
| C | 2.21884100 | 3.31716100 | -0.96720700 |
| H | -0.15645200 | 1.09436700 | 1.28029800 |
| H | 0.39882100 | 1.28847400 | -1.12882600 |
| H | 2.37587000 | -0.29351600 | 2.16256500 |
| H | 3.28110400 | 1.59863200 | -0.18218200 |
| H | 2.75391100 | 1.39923000 | -1.86107800 |
| H | -0.35252400 | 3.33079300 | 0.19018700 |
| H | 0.18518600 | 3.52337200 | 1.86000000 |
| H | 1.52016700 | 4.95993400 | 0.27178100 |
| H | 2.53783500 | 3.78825400 | 1.11809900 |
| H | 1.46363500 | 3.52059200 | -1.74425800 |
Element	X	Y	Z
H	3.14201700	3.82095500	-1.28641100
H	1.53122600	1.44720700	1.70342200
Mn	2.77935200	-1.32176900	0.09763600
O	1.96930900	-2.75417200	0.07518000
O	3.97204700	-1.13423800	-0.91465800
O	3.12839500	-0.73170800	1.73923800
O	1.32901300	-0.33011600	-0.38584900
Ca	-0.19627500	-2.07124600	-0.46879500
C	-3.16158600	0.87415100	-0.25529300
S	-2.92676000	-0.91976300	0.26480500
F	-2.10592700	1.28742200	-0.95760600
F	-3.29345500	1.64412200	0.82415600
F	-4.25450400	0.98611100	-1.00891200
O	-1.68342700	-0.89033200	1.11078200
O	-4.17753300	-1.28353200	0.94316800
O	-2.61377500	-1.63400200	-1.01836200

TS3
Element	X	Y	Z
C	-2.59102900	1.92484700	0.19299200
C	-1.30396400	1.17662500	-0.12462100
C	-0.48369200	1.88286800	-1.19765200
C	-0.16455800	3.31960600	-0.76471900
C	-1.43870600	4.09887400	-0.42443500
C	-2.27360200	3.36155400	0.62785300
H	0.43690800	1.32021100	-1.39193200
H	-0.70737800	1.06859000	0.79047400
H	-2.45973700	-0.36804400	-1.22930400
H	-3.22678300	1.93719800	-0.70650800
H	-3.14584600	1.39877500	0.98049200
H	0.49347900	3.29156500	0.11838900
H	0.39927000	3.82404700	-1.56145900
H	-1.18305500	5.10641200	-0.06654700
H	-2.04027400	4.22802500	-1.33924300
H	-1.71773800	3.33317500	1.57941900
H	-3.21074300	3.89918100	0.82692000
H	-1.06796700	1.89404400	-2.13150300
Mn	-2.79094000	-1.44147100	0.38356000
O	-1.67507300	-2.67040100	0.43835800
O	-3.54181400	-1.00686300	1.70912000
O	-3.54955100	-1.19855100	-1.11109900
O	-1.56591400	-0.18623200	-0.57124500
Ca	0.16375900	-2.00295100	-0.72583800
C	3.00000700	0.70286400	0.75037400
S	2.96243400	-0.87162000	-0.28156300
F	1.77173700	0.99620700	1.17957100
F	3.45633200	1.71504600	0.01433900
F	3.79746200	0.53158600	1.80310400
O	2.05689400	-0.53683900	-1.43386700
O	4.36832200	-1.14574000	-0.60402400
O	2.26122700	-1.86542800	0.60171900

S30
MnO₄⁻/(CaOTf)⁺/AcOH

INT1

Atom	X	Y	Z
C	-0.5173	1.7670	0.8120
C	-0.8407	2.1686	-0.6284
C	-1.7439	3.4044	-0.6752
C	-1.1333	4.5725	0.1089
C	-0.8085	4.1695	1.5529
C	0.0934	2.9306	1.5986
H	-1.9324	3.7013	-1.7181
H	0.1028	2.3775	-1.1557
H	-1.3158	1.3267	-1.1495
H	-1.4430	1.4396	1.3124
H	0.1649	0.9109	0.8122
H	-0.2034	4.8937	-0.3909
H	-1.8123	5.4386	0.0983
H	-0.3364	5.0083	2.0866
H	-1.7501	3.9470	2.0835
H	1.0755	3.1811	1.1640
H	0.2783	2.6293	2.6406
H	-2.7235	3.1468	-0.2398
Mn	-3.4238	-0.8516	-0.3144
O	-4.0941	-0.9045	1.1106
O	-1.7956	-1.0449	-0.1371
O	-3.6990	0.5474	-0.9865
O	-3.9908	-2.0040	-1.2305
Ca	-0.1358	-2.0298	-1.4301
H	1.5182	-1.5421	3.6296
C	1.2964	-2.4448	3.0469
H	0.7524	-3.1371	3.7052
H	2.2187	-2.9147	2.6968
C	0.4207	-2.0960	1.8857
O	0.6512	-2.4642	0.7329
O	-0.6276	-1.3660	2.1958
H	-1.1589	-1.1709	1.3700
C	3.4136	-0.1701	0.3297
S	2.7297	0.2634	-1.3728
F	3.5778	-1.4892	0.4464
F	2.5831	0.2445	1.2916
F	4.5972	0.4242	0.5026
O	1.3446	-0.3183	-1.3240
O	2.7412	1.7383	-1.4051
O	3.6320	-0.4326	2.3141

TS1

Atom	X	Y	Z
C	-0.4379	1.9957	1.4867
C	-0.7743	2.1388	0.0197
C	-0.8446	3.5719	-0.4628
C	0.4922	4.2844	-0.1604
C	0.8401	4.1864	1.3277
C 0.88805000 2.72849300 1.79146900
H -1.06470400 3.61097700 -1.53831500
H -0.16327300 1.49472400 -0.62068800
H -1.90665400 1.70421900 -0.13423700
H -1.23954700 2.44065200 2.09770800
H -0.36005500 0.93883800 1.76525900
H 1.28984500 3.81019600 -0.75148900
H 0.42409600 5.33496800 -0.47933900
H 1.80792000 4.67315200 1.52062700
H -1.65664400 4.10227200 0.05961700
Mn -3.46482300 -0.23492000 -0.27585100
O -4.27878700 -0.67264500 1.00257500
O -1.87839400 -0.78729200 -0.14103200
O -3.22539400 1.41552300 -0.26139400
O -4.06752600 -0.68291200 -1.66447300
Ca -0.55267200 -1.94948100 -1.58833500
H 1.42111700 -2.31338900 3.24332700
C 0.82859500 -3.10240500 2.76012000
H 0.15422200 -3.51703200 3.52068400
H 1.49156800 -3.87861200 2.36983900
C 0.02701300 -2.49470100 1.65113000
O 0.19033800 -2.79622900 0.46442700
O -0.85680800 -1.60868400 2.03619400
H -1.33972200 -1.22723200 1.21932900
C 3.08145400 -0.65382200 0.28206200
S 2.51567600 0.06580400 -1.36654900
F 3.16244700 -1.98337000 0.20912700
F 2.22104300 -0.33034900 1.25279900
F 4.28468100 -0.16858600 0.59777200
O 1.07856000 -0.37543400 -1.43037300
O 2.66279500 1.52456500 -1.20139400
O 3.38284300 -0.58761100 -2.36852000
INT2
C -0.21951100 2.05408300 1.46919300
C -0.42326700 2.16442800 -0.00497400
C -0.41576800 3.54403000 -0.57836700
C 0.91772600 4.24106100 -0.19531200
C 1.14011400 4.20006000 1.31991600
C 1.10413200 2.76611200 1.85646000
H -0.54153600 3.52747200 -1.66876600
H -0.08844500 1.33914800 -0.62941800
H -2.16791300 1.79864800 -0.21210500
H -1.04436900 2.55576500 2.00420700
H -0.20211700 1.00803400 1.79283300
H 1.74322100 3.71942500 -0.70069700
H 0.90350700 5.27777300 -0.56196200

S32
Atom	X	Y	Z
O	-3.286593	1.486954	-0.598621
O	-4.095582	-0.920840	1.623903
Ca	-0.555895	-1.859397	-1.567113
H	1.207888	-2.230150	3.352529
C	0.610289	-2.994707	2.837625
H	-0.129998	-3.369501	3.556751
H	1.256976	-3.806591	1.677299
O	0.110554	-2.704204	0.506438
O	-0.934802	-1.413789	1.996240
H	-1.357103	-1.017745	1.143687
C	3.026332	-0.580045	0.452551
F	3.089629	-1.906716	0.568684
F	2.039039	-0.127677	1.234275
F	4.178952	-0.056460	0.874929
O	1.323906	-0.586418	-1.583729
O	2.809572	1.389200	-1.328757
O	3.751211	-0.814192	-2.105980

INT3

Atom	X	Y	Z
C	-1.907377	1.722856	1.491180
C	-1.012659	1.256018	0.347165
C	-1.004504	2.235262	-0.821789
C	-0.576116	3.627502	-0.340946
C	-1.459885	4.120559	0.809523
C	-1.478190	3.116131	1.966991
H	-0.322188	1.870690	-1.598208
H	0.018590	1.192934	0.724278
H	-3.486656	1.238191	-1.226470
H	-2.951628	1.756220	1.147098
H	-1.861419	0.998436	2.314989
H	0.472115	3.575967	-0.008826
H	-0.606207	4.332749	-1.182928
H	-1.109485	5.100607	1.163462
H	-2.488991	4.265027	0.440613
H	-0.470668	3.051597	2.409142
H	-2.152547	3.457290	2.764659
H	-2.007575	2.308122	-1.270633
Mn	-2.982734	-0.863132	-0.264952
O	-3.453369	-1.337757	1.159077
O	-1.310620	-0.095689	-0.065656
O	-3.969154	0.442218	-0.961409
O	-2.511895	-1.975350	-1.365506
Ca	-0.276749	-1.405257	-1.840024
H	1.600489	-3.001533	2.959983
C	1.138816	-3.530762	2.119125
H	0.386295	-4.221667	2.527273
H	1.882248	-4.105081	1.559644
C	0.443025	-2.568422	1.211061
O 0.41413000 -2.69912700 -0.01384400
O -0.16155300 -1.57467000 1.82166800
H -0.63474100 -1.00185500 1.14736700
C 3.19304600 0.08865800 0.69118500
S 2.78405400 0.64042900 -1.06242700
F 3.23292800 -1.24620500 0.76362700
F 2.26910100 0.53288400 1.54832000
F 4.38233400 0.57222200 1.05529400
O 1.45622900 -0.01957600 -1.29333000
O 2.69945200 2.11137600 -0.96811300
O 3.87610600 0.08381800 1.88719100

TS3
C -1.81907300 2.10737400 0.91958700
C -0.87350100 1.41185900 -0.04798400
C -0.11618900 2.41076400 -0.91569500
C 0.66897500 3.39030200 -0.03530800
C -0.24552100 4.09795400 0.96881800
C -1.03363100 3.08433400 1.80454400
H 0.55622300 1.87325100 -1.59195900
H -0.16487900 0.79021600 0.50992300
H -2.41646400 0.96893100 -1.53485100
H -2.58324600 2.65278200 0.34464600
H -2.34092300 1.36630000 1.53455900
H 1.45194700 2.83549700 0.50335500
H 1.18477900 4.11919700 -0.67536000
H 0.34470400 4.75309200 1.62536800
H -0.95232200 4.74546500 0.42411000
H -0.33505500 2.51213500 2.43689700
H -1.72714600 3.59635800 2.48548200
H -0.84601900 2.96305400 -1.52897600
Mn -3.19147700 -0.55233600 -0.62275000
O -3.55972400 -0.58274400 0.95578700
O -1.56169200 0.49058700 -0.95676500
O -3.73936500 0.67907800 -1.63749400
O -2.64848100 -1.92643300 -1.33158700
Ca -0.34069500 -1.67028700 -1.48144000
H 0.97934200 -1.32092500 3.37976500
C 0.46309000 -2.22448700 3.02324800
H 0.01142300 -2.72232300 3.88750200
H 1.19625000 -2.86862500 2.53075000
C -0.58610100 -1.79764200 2.04347100
O -0.37365800 -1.71853300 0.83290300
O -1.73698400 -1.48524100 2.58482000
H -2.42475000 -1.16723900 1.91333500
C 3.18065500 -0.36558900 0.67022900
S 3.00921400 -0.08807000 -1.18403100
F 2.99872400 -1.65577800 0.96228600
F 2.27607500 0.35695800 1.33850100
F 4.40037400 -0.00327500 1.07381300
O 1.56318300 -0.42639600 -1.41831000
O 3.30943000 1.34379300 -1.37490600
O 3.94863400 -1.05554500 -1.78686200
MnO\textsubscript{4-}/(CaOTf+/3AcOH)

INT1
C 2.39425300 -1.95284800 -3.08507500
C 1.36016800 -1.64171200 -1.99798200
C 1.56255600 -2.51409500 -0.75671800
C 2.99490100 -2.41757500 -0.22252700
C 4.02642600 -2.73133400 -1.31219700
C 3.82425700 -1.83925400 -2.54317000
H 0.85591900 -2.21226600 0.02312800
H 1.44870400 -0.58671300 -1.70115800
H 0.34398300 -1.78120300 -2.39350300
H 2.23090200 -2.97806600 -3.45826300
H 2.25590600 -1.28022600 -3.94462000
H 3.15974200 -1.39578000 0.15042100
H 3.12416500 -3.09342800 0.63606300
H 5.04667500 -2.61193800 -0.91757200
H 3.92673800 -3.47879530 -1.61378600
H 4.01791100 -0.79105100 -2.26160900
H 4.55198400 -2.09785600 -3.32716300
H 1.33423000 -3.56396000 -1.00678800
Mn -2.26545100 -2.08580500 -0.43793300
O -3.79270600 -1.74130900 -0.13051100
O -1.38525700 -0.73076400 -2.47693500
H -1.73159000 -3.14180000 0.62543500
Ca -1.01654500 1.04250700 1.31141200
H -0.65624800 4.11247400 -2.42014600
C -0.75538500 3.15423500 -2.93535900
H 0.11876600 2.96688800 -3.57202700
H -1.63923700 3.16614200 -3.58765000
C -0.89898700 2.04682900 -1.94134100
O -0.98292500 2.22871800 -0.72926000
O -0.93907500 0.84289700 -2.47693500
H -1.05736000 0.16314500 -1.76438200
C -4.54023700 3.01600700 -0.20053700
H -4.37760900 3.64201300 0.68185000
H -5.57540400 3.08189800 -0.55078700
H -3.87963000 3.37276900 -1.00515100
C -4.15823400 1.60152400 0.10170400
O -3.30603300 1.29160500 0.93024900
O -4.78835400 0.69925600 -0.61989900
H -4.44547500 -0.21133300 -0.41571300
C 1.25572800 -1.33985400 3.98955700
H 0.90057900 -0.67458500 4.78354900
H 2.03623600 -0.80576200 3.42670000
H 1.68085100 -2.25873100 4.40368400
Atom	X	Y	Z	
C	0.13796100	-1.62968300	3.04058500	
O	-0.70534800	-0.79788600	2.71192400	
O	0.13325300	-2.85199100	2.55236100	
H	-0.58641400	-2.95328700	1.87742600	
C	2.86160000	2.28402100	-0.15883100	
S	2.02196500	1.49089600	0.75140100	
O	-0.70534800	-0.79788600	2.71192400	
O	0.13325300	-2.85199100	2.55236100	
H	-0.58641400	-2.95328700	1.87742600	
C	2.86160000	2.28402100	-0.15883100	
S	2.02196500	1.49089600	0.75140100	
F	1.99609000	2.58224400	-1.01259200	
F	3.75755700	1.43601700	-0.66496600	
F	3.48370800	3.40196600	0.21645500	
O	1.27252800	0.32804900	0.75140100	
O	3.13516500	1.16406800	2.23528500	
O	1.03546300	2.50857000	1.81792000	
TS1	C	-1.62013300	2.24093200	-2.93292300
C	-1.09112400	1.98201000	-1.54237000	
C	-1.81543600	2.72336700	-0.44467500	
C	-3.30981400	2.33084200	-0.48376000	
C	-3.90817500	2.56534500	-1.87370800	
C	-3.11458700	1.83720500	-2.96255300	
H	-1.38757700	2.47934900	0.53398500	
H	-1.00738700	0.91687400	-1.31343300	
H	0.05864700	2.40212900	-1.51495000	
H	-1.52961200	3.30830500	-3.18603500	
H	-1.05754600	1.66856400	-3.68220600	
H	-3.39817800	1.26806300	-0.21633100	
H	-3.85407600	2.90464100	0.28009800	
H	-4.95709000	2.23330700	-1.89105400	
H	-3.91456100	3.64608600	-2.09079300	
H	-3.19174900	0.74959200	-2.80640900	
H	-3.52647900	2.05180700	-3.95344400	
H	-1.72079300	3.80985800	-0.59427100	
Mn	2.15773400	2.11139900	-0.20529500	
O	3.61160400	1.74433700	-0.75791400	
O	1.25957000	0.73163300	-0.15242400	
O	1.28866300	2.99394800	-1.30810300	
O	2.13343800	2.82981500	1.21884700	
Ca	1.02857600	-1.11109000	1.28158500	
H	0.73099700	-3.85219200	-2.74562800	
C	0.83926400	-2.83831300	-3.13817900	
H	-0.00625800	-2.58300700	-3.78901300	
H	1.75302000	-2.76744300	-3.74448300	
C	0.92977800	-1.85524600	-2.01485900	
O	1.01683700	-2.18612200	-0.83265800	
O	0.92313300	-0.59511000	-2.39165100	
H	1.02616400	-0.00293500	-1.58709700	
C	4.52424600	-3.03515300	-0.32733100	
H	4.54392900	-3.59209700	0.61400600	
H	5.50217600	-3.05145600	-0.81973900	
H	3.79275100	-3.50953900	-0.99892600	
	X	Y	Z	
---	------	------	------	
C	4.06405400	-1.63198400	-0.08132400	
O	3.33871400	-1.31432700	0.85837700	
O	4.47758100	-0.76704800	-0.98281200	
H	4.12272000	0.15180400	-0.82716800	
C	-1.38090000	1.14440700	4.07064600	
H	-1.18782700	0.38952800	4.83978700	
H	-2.16193700	0.75103400	3.40286700	
H	-1.73025900	2.08168800	4.51394400	
C	-0.14980900	1.35158700	3.24741800	
O	0.63410900	0.44358700	2.97135800	
O	0.02120300	2.57941100	0.76125500	
H	0.82683100	2.64907700	2.22554900	
C	-2.83979500	-2.26056500	-0.27513600	
S	-2.03364300	-1.53550200	1.26591000	
F	-1.93023000	-2.48800600	-1.22251300	
F	-3.74543500	-1.40158100	-0.74685900	
F	-3.44596000	-3.40913100	0.02690000	
O	-1.30738300	-0.32646600	0.76125500	
O	-0.02120300	2.57941100	0.76125500	
H	0.82683100	2.64907700	2.22554900	

INT3

	X	Y	Z																						
C	-0.52543600	2.57250800	-2.08939000																						
C	-0.52463900	1.77035600	-0.79201400																						
C	-1.03994200	2.59187600	0.38205900																						
C	-2.46180900	3.08389400	0.08738000																						
C	-2.52469500	3.86766600	-1.22795700																						
C	-1.95273600	3.05123300	-2.39197100																						
H	-1.03159900	1.98200500	1.29035100																						
H	-1.20908000	0.92390500	-0.93287800																						
H	1.97962500	3.56349400	-1.41865900																						
H	0.12694300	3.45109200	-1.98980600																						
H	-0.14174200	1.96011000	-2.91464100																						
H	-3.13200200	2.21191600	0.02859600																						
H	-2.81745800	3.70216300	0.92304400																						
H	-3.56122200	4.16267600	-1.44922200																						
H	-1.94431200	4.79902900	-1.12237500																						
H	-2.59368900	2.17344500	-2.57373000																						
H	-1.95489000	3.64242400	-3.31777300																						
H	-0.37251900	3.44991300	0.54593700																						
Mn	2.17880100	1.97341500	0.29164100																						
O	3.41760100	1.04802200	-0.16593300																						
O	0.75486400	1.13706100	-0.51883100																						
O	2.22420000	3.56695700	-0.48162900																						
O	1.87201700	2.09386400	1.86066600																						
Ca	0.44839200	-1.11483800	0.60428900																						
H	1.47545100	-3.17411800	-3.69720000																						
C	1.65884400	-2.11242100	-3.87905700																						
H	1.02883200	-1.75524500	-4.70514800																						
H	2.70441900	-1.94890700	-4.17169400																						
	C	O	O	H	C	H	H	C	O	O	H	C	O	O	H	C	O	O	H	C	O	O	H		
---	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------		
C	1.35609500	-1.31546400	-2.65057000	1.33540600	4.09571000	3.72859100	-4.34693200	1.33540600	0.45013700	-1.92374200	4.09571000	-3.70838900	0.10022600	2.54603700	-2.05875300	0.89936200	4.27171800	-1.39484200	-0.34946800	3.88100700	-0.47239200	-0.23648100	3.23121700	-0.31688000	4.60884000
H	-1.01812100	-1.32709100	4.97306200	-2.17833000	-0.35019700	4.04918000		-1.33555800	0.39052400	5.43708500															
F	2.39008400	-0.45346100	1.00047300	-3.91023400	-2.54604600	-1.48401300		-1.93998100	-0.37422600	0.95935600															
O	-3.68282300	-2.12482100	1.50162500	-1.47909500	-2.70333600	0.39723200																			

TS3

	C	O	O	H	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
C	-2.18712700	3.15847500	-0.54477300	-1.64522300	1.97883300	0.25566600		-2.49640400	1.67375300	1.47660500																		
C	-3.94425500	1.40014400	1.05123100	-4.52266100	2.55949900	0.23356300		-3.63459200	2.88204200	-0.97232800																		
H	-2.08377200	0.80693000	2.00432600	-1.58860000	1.08778600	-0.37742500		0.07372100	3.13296200	1.27366400																		
H	-2.14705700	4.06185100	0.08365500	-1.55224500	3.33825200	-1.42195500		-3.96875800	0.47908600	0.44802400																		
H	-4.55722800	1.21022900	1.94282300	-5.54174000	2.31733600	-0.10007100		-4.60104800	3.45255700	0.87518000																		
H	-3.64516900	2.03066300	-1.67174600	-4.02459100	3.74982900	-1.52197900		-2.45984700	2.53230700	2.16543000																		
O	0.83698500	1.48569800	1.99516900	2.04873600	0.75042800	1.13704700																						
Element	X	Y	Z																									
---------	------------	------------	------------																									
O	-0.25756900	2.27184100	0.59593700																									
O	0.96169800	3.14180200	2.28328900																									
O	0.06258000	0.62353800	3.10341100																									
Ca	1.50329600	-1.23291500	-0.05931200																									
H	2.26131100	0.67478100	-4.15575900																									
C	2.19480800	1.61569400	-3.60374500																									
H	1.67699100	2.38185900	-4.19245900																									
H	3.20919600	1.98589600	-3.39457600																									
C	1.49786300	1.39799800	-2.29747500																									
H	1.31550500	0.28821800	-1.80732200																									
O	0.96169800	3.14180200	2.28328900																									
C	2.19480800	1.61569400	-3.60374500																									
H	1.67699100	2.38185900	-4.19245900																									
H	3.20919600	1.98589600	-3.39457600																									
C	1.49786300	1.39799800	-2.29747500																									
H	1.31550500	0.28821800	-1.80732200																									