Efficiency for multitime vector variational problems on Riemannian manifolds involving geodesic quasiinvex functionals

Ștefan Mititelu, Mădălina Constantinescu, Constantin Udriște

Abstract

We study the connection between a multitime scalar variational problem (SVP), a multitime vector variational problem (VVP) and a multitime vector fractional variational problem (VFP). For (SVP), we establish necessary optimality conditions. For both vector variational problems, we define the notions of Pareto efficient solution and of normal efficient solution and we establish necessary efficiency conditions for (VVP) and (VFP) using both notions. The main purpose of the paper is to establish sufficient efficiency conditions for the vector problems (VVP) and (VFP). Moreover, we obtain sufficient optimality conditions for (SVP). The sufficient conditions are based on our original notion of \((\rho, b)\)-geodesic quasiinvexity.

Mathematics Subject Classification: 65K10, 90C29, 26B25

Key words: multitime fractional variational problem, efficient solution, normal efficient solution, \((\rho, b)\)-geodesic quasiinvexity.

1 Introduction and preliminaries

Beginning with Valentine [16] in 1937, during the years, the variational problem with constraints experienced different stages of development. In 2008, Mititelu [6] studied a single-time vector (or multiobjective) fractional variational problem. Mititelu [6] and Mititelu & Stancu-Minasian [9] established for this problem necessary efficiency (Pareto minimum) conditions. Using generalized quasiinvex functions, they developed a duality theory including weak, direct and converse duality theorems.
In 2007 Udris¸te and Ţevy [15] gave new results for a multitime variational problem of vector variable. In 2009 Pitea, Udris¸te and Mititelu [11], [12] considered the multitime vector variant of the problem (MSP) into geometrical language, using curvilinear integrals, and establishing necessary efficiency conditions and developed a duality theory for this problem. Recently Mititelu and Postolache [8] studied the same subject for multitime vector fractional and nonfractional variational problems on Riemannian manifolds, but using multiple integrals.

The purpose of this work is to deduce necessary and sufficient optimality conditions for the multitime scalar problem (SVP) (sections 2, 4) and of Pareto efficiency for the multitime vector variational problems (VVP) and (VFP) (section 3, 4), in a geometrical framework [11], [12].

Let (T, h) and (M, g) be two Riemannian manifolds of dimensions m and n. In addition, M is a complete manifold. Denote t = (t^1, ..., t^m) = (t^v) the points of a measurable set Ω in T and x = (x^1, ..., x^n) = (x^i) the points of M. Consider the first order jet bundle J^1(T, M) = Ω × R^n × R^{nm} and the functions

\[x : Ω \subset T \to M, \quad X : J^1(T, M) \to R, \]
\[f = (f_r) : J^1(T, M) \to R^p, \quad k = (k_r) : J^1(T, M) \to R^p, \]
\[g = (g_α) : J^1(T, M) \to R^m, \quad h = (h_s) : J^1(T, M) \to R^q, \]

where \(m, p, q \in \mathbb{N}^* \), \(r = \overline{1, p} \), \(\alpha = \overline{1, m} \) and \(s = \overline{1, q} \), all of \(C^2 \)-class.

The argument of each function \(X, f, k, g, h \) is \(j^1x = (t, x, x^v) \), the first prolongation jet of \(x \). For functionals, based on Lagrangians \(X, f, k, g, h \), we use the pullback \(j^1_1x = (j^1_1x)(t) \), where \(t \in Ω \) and \(x(t) = (x^i(t)) \), and \((\partial x/\partial t^v)(t) = (x^i_v(t)) \).

The Euler-Ostrogradsky PDEs produced by the Lagrangian \(X \) are

\[\frac{\partial X}{\partial x^k} - \frac{\partial}{\partial t^v} \left(\frac{\partial X}{\partial x^k_v} \right) = 0, \quad k = \overline{1, n}; \quad v = \overline{1, m}. \]

To develop our theory, we shall use a normed vector space of functions \(\mathcal{F}(Ω, M, || \cdot ||) \), where

\[\mathcal{F}(Ω, M) = \{ x : Ω \to M \mid x \text{ is piecewise } C^1 \}, \]

and

\[||x|| = ||x||_\infty + \sum_{\gamma=1}^m \sum_{k=1}^n ||x^k_\gamma||_\infty. \]
The induced distance is $d(x^0(\cdot), x(\cdot)) = ||x(\cdot) - x^0(\cdot)||$, $x^0(\cdot), x(\cdot) \in \mathcal{F}(\Omega, M)$. In this sense, $(\mathcal{F}(\Omega, M), d)$ is a metric space.

The following partial ordering is used for two n-tuples $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$:

$$
\begin{align*}
 v = w &\iff v_i = w_i, \quad i = 1, n \\
 v < w &\iff v_i < w_i, \quad i = 1, n \\
 v \preceq w &\iff v_i \leq w_i, \quad i = 1, n \\
 v \leq w &\iff v \preceq w \text{ and } v \neq w.
\end{align*}
$$

Similar partial relations are used also for m-tuples.

Let $dv = \sqrt{\det h dt^1 \wedge dt^2 \ldots \wedge dt^m}$ be the volume element on Ω. We use the functionals

$$
F_r(x(\cdot)) = \int_a^b f_r(j^1_t x)dv, \quad K_r(x(\cdot)) = \int_a^b k_r(j^1_t x)dv, \quad r = \underbrace{1, \ldots, p}_{p},
$$

and a vector fractional functional

$$
J(x(\cdot)) = \left(\frac{F_1}{K_1}(x(\cdot)), \ldots, \frac{F_p}{K_p}(x(\cdot)) \right).
$$

The general problem of study is the multitime vector fractional problem

$$
\text{(VFP)} \quad \begin{cases}
\text{Maximize Pareto } J(x(\cdot)) \\
\text{subject to } g(j^1_t x) \preceq 0, \quad h(j^1_t x) = 0, \\
x(t)|_{\partial \Omega} = u(t) \text{ (given), } \forall t \in \Omega.
\end{cases}
$$

This problem include the multitime vector variational problem

$$
\text{(VVP)} \quad \begin{cases}
\text{Minimize Pareto } (F_1(\cdot), \ldots, F_p(x(\cdot))) \\
\text{subject to } g(j^1_t x) \preceq 0, \quad h(j^1_t x) = 0, \\
x(t)|_{\partial \Omega} = u(t), \forall t \in \Omega.
\end{cases}
$$

and the following multitime scalar variational problem

$$
\text{(SVP)} \quad \begin{cases}
\text{Minimize } E(x(\cdot)) = \int_{\Omega} X(j^1_t x)dv \\
\text{subject to } g(j^1_t x) \preceq 0; \quad h(j^1_t x) = 0, \quad t \in \Omega \\
x(t)|_{\partial \Omega} = u(t).
\end{cases}
$$

The three variational problems have the same domain

$$
\mathcal{D} = \{ x \in \mathcal{F}(\Omega, M) \mid g(j^1_t x) \preceq 0, \quad h(j^1_t x) = 0, \quad x(t)|_{\partial \Omega} = u(t) \}.
$$
Definition 1 ([1]) Let \((M, g)\) be a complete Riemannian manifold. Let \(\eta : M \times M \to TM, \eta(u, x) \in T_uM, u, x \in M\) be a vector function and \(S \subset M\) a nonempty set.

(ii) The set \(S\) is called \(\eta\)-geodesic invex if, for every \(u, x \in S\), there exists exactly one geodesic \(\gamma_{u,x} : [0, 1] \to M\) such that
\[
\gamma_{u,x}(0) = u, \dot{\gamma}_{u,x}(0) = \eta(u, x), \gamma_{u,x}(\tau) \in S, \forall \tau \in [0, 1].
\]

Definition 2 ([16]) Let \(x^0(\cdot), x(\cdot) \in F(\Omega, M)\). A function \(\varphi(t, \tau), t \in \Omega, \tau \in [0, 1]\) is called geodesic deformation of the pair of functions \((x^0(\cdot), x(\cdot))\), if it satisfies the properties: (1) the function \(\tau \to \varphi(t, \tau)\) is a geodesic; (2) \(\varphi(t, 0) = x^0(t), \varphi(t, 1) = x(t)\).

Definition 3 The set \(S = F(\Omega, S) \subset F(\Omega, M)\) is called \(\eta\)-geodesic invex if, for every \(x^0(\cdot), x(\cdot) \in S\), there exists exactly one geodesic deformation \(\varphi(t, \tau), t \in \Omega, \tau \in [0, 1]\) such that the vector function
\[
\eta(x^0(t), x(t)) = \frac{\partial \varphi}{\partial \tau}(t, \tau)|_{\tau=0} \in T_{x^0(t)}M \equiv \eta(t) = (\eta^1(t), \ldots, \eta^n(t))
\]
is of class \(C^1\) and satisfies \(\eta(t)|_{\partial \Omega} = 0\).

For our sufficient conditions of efficiency and optimality, we shall introduce the notion of \((\rho, b)\)-geodesic quasiinvex functionals. We fix a number \(\rho \in R\), a functional \(b : F(\Omega, M) \times F(\Omega, M) \to [0, \infty)\) and the distance function \(d(x(\cdot), y(\cdot))\) on \(F(\Omega, M)\). We consider the functional
\[
E : F(\Omega, M) \to R, \ E(x(\cdot)) = \int_\Omega X(j^1_i x) \, dv.
\]

Definition 4 Let \((M, g)\) be a complete Riemannian manifold. Let \(S\) be an open \(\eta\)-geodesic invex subset of \(F(\Omega, M)\).

(i) The functional \(E\) is called (strictly) \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \in S\), with respect to \(\eta(t)\), if \(E(x(\cdot)) \leq E(x^0(\cdot))\) implies
\[
b(x, x^0) \int_\Omega \left(\eta^i \frac{\partial X}{\partial x^i}(j^1_i x^0) + \eta^j \frac{\partial X}{\partial x^j}(j^1_i x^0) \right) \, dv \quad (\leq) \quad -\rho b(x, x^0)d^2(x, x^0),
\]

\[
\int_\Omega \left(\eta^i \frac{\partial X}{\partial x^i}(j^1_i x^0) + \eta^j \frac{\partial X}{\partial x^j}(j^1_i x^0) \right) \, dv \quad (\leq) \quad -\rho b(x, x^0)d^2(x, x^0),
\]

4
for any \(x(\cdot) \in S \).

(ii) The functional \(E \) is called monotonic \((\rho, b)\)-geodesic quasiinvex at \(x^0(t) \in S \), with respect to \(\eta(t) \), if \(E(x(\cdot)) \leq E(x^0(\cdot)) \) implies

\[
b(x, x^0) \int_{\Omega} \left(\eta^i \frac{\partial X}{\partial x^i}(j^1_t, x^0) + \frac{\partial \eta^i}{\partial \nu^i} \frac{\partial X}{\partial x^i} (j^1_t, x^0) \right) \, dv = -\rho b(x, x^0) d^2(x, x^0),
\]

for any \(x(\cdot) \in S \).

Example Let us fix the domain
\[
E = \{ x : \Omega = [0,1]^m \subset R^m \rightarrow R_+ \mid x(\cdot) \text{ continuous} \}
\]
and the "negative" Boltzmann-Shannon functional
\[
J : E \rightarrow R, \quad J(x(\cdot)) = \int_{\Omega} x(t) \ln x(t) \, dv.
\]
This functional is geodesic quasiinvex with respect to
\[
\eta(t) = \begin{cases}
-(\ln x(t) + 1) \, d^2(x, x^0) & \text{if } t \in \text{int } \Omega \\
0 & \text{if } t \in \partial \Omega.
\end{cases}
\]

2 Necessary optimality conditions for scalar problem (SVP)

In all the paper, we simplify supposing \(T = R^m \) and hence \(\det h = 1 \).

We start with variational problem (SVP), recalling a well-known result.

Theorem 1 (Necessary optimality to (SVP) (Mititelu, Postolache [8, Theorem 2.1]). If \(x^0(\cdot) \in D \) is an optimal solution to problem (SVP), then there exist a scalar \(\tau \in R \) and the piecewise smooth multipliers \(\lambda(t) = (\lambda^\alpha(t)) \in R^m \) and \(\mu(t) = (\mu^s(t)) \in R^q \) that satisfy the following conditions:

\[
\begin{align*}
&\tau \frac{\partial X}{\partial x^0} + \lambda^\alpha(t) \frac{\partial g^\alpha}{\partial x^0} + \mu^s(t) \frac{\partial h^s}{\partial x^0} \\ &- \frac{\partial}{\partial \nu^i} \left(\tau \frac{\partial X}{\partial x^0} + \lambda^\alpha(t) \frac{\partial g^\alpha}{\partial x^0} + \mu^s(t) \frac{\partial h^s}{\partial x^0} \right) = 0 \\
&\lambda^\alpha(t) g^\alpha(j^1_i x^0) = 0, \text{ for each } \alpha = 1, m \text{ (no summation)} \\
&\tau \geq 0, \quad (\lambda^\alpha(t)) \geq 0, \quad t \in \Omega,
\end{align*}
\]

\((S\overline{F}J)\)
where
\[x^0 = (x^k)^0, \quad \frac{\partial X}{\partial x^0} := \frac{\partial X}{\partial x}(j^1_i x^0), \quad \frac{\partial X}{\partial x^v} := \frac{\partial X}{\partial x}(j^1_i x^0) \]
etc.

Definition 5 A point \(x^0(\cdot) \in \mathcal{D} \) is called normal optimal solution to (SVP) if \(\tau > 0 \).

3 Necessary efficiency conditions for multitime vector variational problems (VVP) and (VFP)

3.1 Efficiency for multitime vector variational problems (VVP)

We consider the vector functional
\[F(x(\cdot)) = (F_1(x(\cdot)), \ldots, F_p(x(\cdot))) \]
and the multitime vector variational problem

(VVP) \[\begin{aligned} \text{Minimize Pareto } & F(x(\cdot)) \\ \text{subject to } & g(j^1_i x) \leq 0, \quad h(j^1_i x) = 0, \\ & x(t)|_{\partial \Omega} = u(t), \quad \forall t \in \Omega. \end{aligned} \]

The domain of (VVP) is just \(\mathcal{D} \).

In this section we establish necessary Pareto efficiency conditions for the program (VVP).

Definition 6 A function \(x^0(\cdot) \in \mathcal{D} \) is called an efficiency solution (Pareto minimum) to (VVP) if there exists no \(x(\cdot) \in \mathcal{D} \) such that \(F(x(\cdot)) \preceq F(x^0(\cdot)) \).

Theorem 2 (Necessary efficiency to (VVP) (Mititelu, Postolache [8, Theorem 3.1])). Consider the vector multitime variational problem (VVP) in the framework presented in Section 1.1 and let \(x^0(\cdot) \in \mathcal{D} \) be an efficiency solution to (VVP). Then there are the vector Lagrange multipliers \(\tau = (\tau^r) \in \mathbb{R}^p \) and
\(\lambda(t) = (\lambda^a(t)) \in \mathbb{R}^m \) and \(\mu(t) = (\mu^s(t)) \in \mathbb{R}^q \), all functions being piecewise smooth, which satisfy the conditions

\[
(VFJ)
\begin{align*}
\tau^r \frac{\partial f_r}{\partial x^{0^r}} + \lambda^a(t) \frac{\partial g_a}{\partial x^{0^a}} + \mu^s(t) \frac{\partial h_s}{\partial x^{0^s}} - \\
- \frac{\partial}{\partial t^u} \left(\tau^r \frac{\partial f_r}{\partial x^{0^u}} + \lambda^a(t) \frac{\partial g_a}{\partial x^{0^u}} + \mu^s(t) \frac{\partial h_s}{\partial x^{0^u}} \right) = 0 \\
\lambda^a(t) g_a(j^1 t x^0) = 0, \quad \text{for each} \quad a = 1, m \\
(\tau^r) \succeq 0, \quad (\lambda^a(t)) \succeq 0, \quad t \in \Omega,
\end{align*}
\]

where

\[
\frac{\partial f}{\partial x^0} := \frac{\partial f}{\partial x}(t, x^0(t), x^0(t)), \quad \frac{\partial f_r}{\partial x^{0^u}} := \frac{\partial f_r}{\partial x^{0^u}}(j^1 t x^0)
\]

etc.

Definition 7 The function \(x^0(\cdot) \in \mathcal{D} \) is called a normal efficient solution to \((VVP)\) if, in the conditions \((VFJ)\), there exists \(\tau \) with \(\tau \succeq 0, < e, \tau > = 1 \), where \(e = (1, \ldots, 1) \in \mathbb{R}^p \).

3.2 Necessary efficiency for multitime vector fractional variational problems (VFP)

In this section we recall some definitions and results that will be needed later in our discussion about Pareto efficiency conditions for the multitime vector fractional variational problem

\[
(VFP) \quad \begin{cases}
\text{Maximize } J(x(\cdot)) = \left(\frac{F_1}{K^1}, \ldots, \frac{F_p}{K^p} \right)(x(\cdot)) \\
\text{subject to } g(j^1 t x) \leq 0, \quad h(j^1 t x) = 0, \\
x(t)|_{\partial \Omega} = u(t) \text{ (given), } \forall t \in \Omega.
\end{cases}
\]

The domain of \((VFP)\) is the same set \(\mathcal{D} \).

Definition 8 A feasible solution \(x^0(\cdot) \in \mathcal{D} \) is called efficient solution of \((VFP)\) if there is no \(x(\cdot) \in \mathcal{D}, x(\cdot) \neq x^0(\cdot) \) such that \(J(x(\cdot)) \preceq J(x^0(\cdot)) \).
To present efficiency necessary conditions for (VFP), we need the following statements. Let $x^0(\cdot)$ be an efficient solution to (FVP). Consider the problem

$$(FP)_{r}(x^0)$$

$$\begin{cases}
\text{Minimize} & \frac{F_r(x(\cdot))}{K_r(x(\cdot))} \\
\text{subject to} & x(t)|_{\partial\Omega} = u(t), \forall t \in \Omega \\
& g(j^1_t x) \preceq 0, h(j^1_t x) = 0 \\
& \frac{F_j(x(\cdot))}{K_j(x(\cdot))} \leq \frac{F_j(x^0(\cdot))}{K_j(x^0(\cdot))}, j = 1, p, j \neq r.
\end{cases}$$

Denoting

$$R^0_r = \frac{F_r(x^0(\cdot))}{K_r(x^0(\cdot))} = \min_{x(\cdot)} \frac{F_r(x(\cdot))}{K_r(x(\cdot))}, r = 1, p,$$

the problem $(FP)_{r}(x^0)$ can be written as

$$(FPR)_r$$

$$\begin{cases}
\text{min} & \frac{F_r(x(\cdot))}{K_r(x(\cdot))} \\
\text{subject to} & x(t)|_{\partial\Omega} = u(t), \forall t \in \Omega, \\
& g(j^1_t x) \preceq 0, h(j^1_t x) = 0 \\
& F_j(x(\cdot)) - R^0_j K_j(x(\cdot)) \leq 0, j = 1, p, j \neq r.
\end{cases}$$

We add now the problem

$$(SPR)_r$$

$$\begin{cases}
\text{min} & (F_r(x(\cdot)) - R^0_j K_r(x(\cdot))) \\
\text{subject to} & (t)|_{\partial\Omega} = u(t), \forall t \in \Omega \\
& g(j^1_t x) \preceq 0, h(j^1_t x) = 0 \\
& F_j(x(\cdot)) - R^0_j K_j(x(\cdot)) \leq 0, j = 1, p, j \neq r.
\end{cases}$$

Lemma 1 (Jaganathan [2]). The function $x^0(\cdot) \in \mathcal{D}$ is optimal to $(FRP)_r$ if and only if it is optimal to $(SPR)_r$.

Definition 9 The efficient solution $x^0(\cdot) \in \mathcal{D}$ is called normal efficient solution to (VFP) if $x^0(\cdot)$ is normal optimal to at least one of scalar problems $(SPR)_r$, $r = 1, p$.

Theorem 3 (Necessary efficiency in (VFP) (Mititelu, Postolache [8, Theorem 3.2])). Let \(x^0(\cdot) \in D \) be a normal efficient solution to problem (FVP). Then there exist a vector \(\tau = (\tau^r) \in \mathbb{R}^p \) and piecewise smooth functions \(\lambda = (\lambda^\alpha(t)) \in \mathbb{R}^m \) and \(\mu = (\mu^r(t)) \in \mathbb{R}^q \) (Lagrange multipliers) that satisfy the conditions

\[
(MFJ) \quad \begin{cases}
\tau^r \left[\frac{\partial f_r}{\partial x^0} - R^0_r \frac{\partial k_r}{\partial x^0} \right] + \lambda^\alpha(t) \frac{\partial g^\alpha}{\partial x^0} + \mu^r(t) \frac{\partial h^r}{\partial x^0} - \\
- \frac{\partial}{\partial t^v} \left(\tau^r \left[\frac{\partial f_r}{\partial x^0} - R^0_r \frac{\partial k_r}{\partial x^0} \right] + \lambda^\alpha(t) \frac{\partial g^\alpha}{\partial x^0} + \mu^r(t) \frac{\partial h^r}{\partial x^0} \right) = 0 \\
\lambda^\alpha(t) g^\alpha_j(x^0(t)) = 0, \quad \text{for each} \quad \alpha = 1, m \\
\tau \geq 0, \quad < e, \tau > = 1, \quad (\lambda^\alpha(t)) \geq 0, \quad t \in \Omega,
\end{cases}
\]

where

\[
\frac{\partial f_r}{\partial x^0} = \frac{\partial f_r}{\partial x^0} (j^i x^0), \quad \frac{\partial f_r}{\partial x^v} = \frac{\partial f_r}{\partial x^v} (j^i x^0)
\]

eq 0.

etc.

Obviously, we have \(R^0_r = F_r(x^0(\cdot))/K_r(x^0(\cdot)), r = 1, p \). Taking into account these relations and denoting \(\lambda(t) := K_r(x^0(\cdot)) \lambda(t), \mu(t) := K_r(x^0(\cdot)) \mu(t) \), Theorem 3 becomes

Theorem 4 (Necessary efficiency in (VFP) (Mititelu, Postolache [8, Theorem 3.3])). Let \(x^0(\cdot) \in D \) be a normal efficient solution to problem (VFP). Then there exist a vector \(\tau = (\tau^r) \in \mathbb{R}^p \) and piecewise smooth functions \(\lambda = (\lambda^\alpha(t)) \in \mathbb{R}^m \) and \(\mu = (\mu^r(t)) \in \mathbb{R}^q \) (Lagrange multipliers) that satisfy the conditions

\[
(MFJ)_0 \quad \begin{cases}
\tau^r \left[K_r(x^0) \frac{\partial f_r}{\partial x^0} - F_r(x^0) \frac{\partial k_r}{\partial x^0} \right] + \lambda^\alpha(t) \frac{\partial g^\alpha}{\partial x^0} + \mu^r(t) \frac{\partial h^r}{\partial x^0} - \\
- \frac{\partial}{\partial t^v} \left(\tau^r \left[K_r(x^0) \frac{\partial f_r}{\partial x^0} - F_r(x^0) \frac{\partial k_r}{\partial x^0} \right] + \lambda^\alpha(t) \frac{\partial g^\alpha}{\partial x^0} + \mu^r(t) \frac{\partial h^r}{\partial x^0} \right) = 0 \\
\lambda^\alpha(t) g^\alpha_j(x^0(t), x^v_0(t)) = 0, \quad \text{for each} \quad \alpha = 1, m \\
\tau \geq 0, \quad < e, \tau > = 1, \quad (\lambda^\alpha(t)) \geq 0, \quad t \in \Omega.
\end{cases}
\]

Definition 10 (Equivalent to Definition 8). The efficient solution \(x^0(\cdot) \in D \) is called normal efficient solution to (VFP) if the conditions (MFJ) or (MFJ)_0 exist with \(\tau \geq 0, < e, \tau > = 1 \).
4 Sufficient efficiency conditions for problems (VVP) and (VFP)

In this section we shall establish sufficient efficiency conditions for (VVP) and (VFP). In all our theory it is used the essential Main Condition: Suppose that the subset $S \subset F(\Omega, M)$ is η-geodesic invex set, where the C^1 vector function $\eta(t)$ is as in Definition 2, and instead of $F(\Omega, M)$ we use S.

Theorem 5 (Sufficient efficiency for (VVP)). Let $x^0(\cdot) \in S$, $\tau = (\tau^r)$, $\lambda = (\lambda^a)$ and $\mu = (\mu^s)$ be multipliers satisfying the relations (MFJ) from Theorem 3. For each $x^0(\cdot) \in S$, let $x(\cdot) \in S$ be an arbitrary geodesic perturbation. If the following conditions are fulfilled:

a) Each functional $F_r(x(\cdot))$ is (ρ^1_r, b)-geodesic quasiinvex at $x^0(\cdot)$, with respect to η and d.

b) The functional $\int_{\Omega} \lambda^a(t)g_a(j^1_t x) \, dv$ is (ρ_2, b)-geodesic quasiinvex at $x^0(\cdot)$, with respect to η and d.

c) The functional $\int_{\Omega} \mu^s(t)h_s(j^1_t x) \, dv$ is monotonic (ρ_3, b)-geodesic quasi-invex at $x^0(\cdot)$, with respect to η and d.

d) One of the functional of a)-b) is strictly (ρ, b)-geodesic quasiinvex at $x^0(\cdot)$.

e) $\tau^r \rho^1_r + \rho_2 + \rho_3 \geq 0$ ($\rho^1_r, \rho_2, \rho_3 \in \mathbb{R}$),

then $x^0(\cdot)$ is an efficient solution to (VVP).

Proof. Let us suppose toward a contradiction, that $x^0(\cdot)$ is not an efficient solution for (VVP). Then, for each $r = 1, \ldots, p$, there exists $x(\cdot) \neq x^0(\cdot)$, a feasible solution to (VVP), such that

$$\int_{\Omega} f_r(j^1_t x) \, dv \leq \int_{\Omega} f_r(j^1_t x^0) \, dv.$$

According to hypothesis a), it follows that

$$b(x, x^0) \int_{\Omega} \eta(t) \frac{\partial f_r}{\partial x^0} \left(j^1_t x^0 \right) + \frac{\partial \eta}{\partial t} \frac{\partial f_r}{\partial x^0} \left(j^1_t x^0 \right) \, dv \leq -\rho^1_r b(x, x^0) \|d(x, x^0)\|_2,$$

(see Definition 2).
Transvecting this inequality by $\tau^r \geq 0$, we obtain

$$b(x, x^0) \int_\Omega [\eta_t(t) \tau^r \frac{\partial f_r}{\partial x^i}(j^1_i x^0) + \frac{\partial \eta_t}{\partial t^v} \tau^r \frac{\partial f_r}{\partial x^i_v}(j^1_i x^0)] \, dv$$

$$\leq - (\tau^r \rho^1_r) b(x, x^0) d^2(x, x^0).$$

From the continuity of the functions, we choose $x(t) \in S$ such that

$$\int_\Omega \lambda^\alpha(t) g_\alpha(t, x, x_v) \, dv \leq \int_\Omega \lambda^\alpha(t) g_\alpha(t, x^0, x_v^0) \, dv.$$

Then, taking into account the condition b) and Definition 2, it follows

$$b(x, x^0) \int_a^b [\eta_t(t) \lambda^\alpha(t) \frac{\partial g_\alpha}{\partial x^i}(j^1_i x^0) + \frac{\partial \eta_t}{\partial t^v} \lambda^\alpha(t) \frac{\partial g_\alpha}{\partial x^i_v}(j^1_i x^0)] \, dv$$

$$\leq - \rho_2 b(x, x^0) d^2(x, x^0).$$

Taking into account the condition c) and Definition 2, the equality

$$\int_\Omega \mu^s(t) h_s(j^1_i x) \, dv = \int_\Omega \mu^s(t) h_s(j^1_i x^0) \, dv$$

implies

$$b(x, x^0) \int_\Omega [\eta_t(t) \mu^s(t) \frac{\partial h_s}{\partial x^i}(j^1_i x^0) + \frac{\partial \eta_t}{\partial t^v} \mu^s(t) \frac{\partial h_s}{\partial x^i_v}(j^1_i x^0)] \, dv$$

$$\leq - \rho_3 b(x, x^0) d^2(x, x^0).$$

We sum side by side the relations (4.1), (4.2) and (4.3) and take into account d). Then we obtain

$$b(x, x^0) \int_\Omega \eta_t(t) \left[\tau^r \frac{\partial f_r}{\partial x^i} + \lambda^\alpha(t) \frac{\partial g_\alpha}{\partial x^i} + \mu^s(t) \frac{\partial h_s}{\partial x^i} \right] (j^1_i x^0) \, dv +$$

$$+ b(x, x^0) \int_\Omega \frac{\partial \eta_t}{\partial t^v} \left[\tau^r \frac{\partial f_r}{\partial x^i_v} + \lambda^\alpha(t) \frac{\partial g_\alpha}{\partial x^i_v} + \mu^s(t) \frac{\partial h_s}{\partial x^i_v} \right] (j^1_i x^0) \, dv$$

$$< - (\tau^r \rho^1_r + \rho_2 + \rho_3) b(x, x^0) d^2(x, x^0).$$

From (4.4) it follows $b(x, x^0) > 0$ and then

$$\int_\Omega \eta_t(t) \left[\tau^r \frac{\partial f_r}{\partial x^i} + \lambda^\alpha(t) \frac{\partial g_\alpha}{\partial x^i} + \mu^s(t) \frac{\partial h_s}{\partial x^i} \right] (j^1_i x^0) \, dv +$$

$$+ \int_\Omega \frac{\partial \eta_t}{\partial t^v} \left[\tau^r \frac{\partial f_r}{\partial x^i_v} + \lambda^\alpha(t) \frac{\partial g_\alpha}{\partial x^i_v} + \mu^s(t) \frac{\partial h_s}{\partial x^i_v} \right] (j^1_i x^0) \, dv$$

$$< - (\tau^r \rho^1_r + \rho_2 + \rho_3) d^2(x, x^0).$$
We denote
\[V = [\tau r + \lambda^\alpha(t)g_\alpha + \mu^s(t)h_s(j^1_1x^0)] \]
and then the relation (4.5) becomes
\[
(4.6) \quad \int_\Omega \eta_i(t) \frac{\partial V}{\partial x^i} dv + \int_\Omega \frac{\partial \eta_i}{\partial t} \frac{\partial V}{\partial x^i} dv < - (\tau^r \rho^1_r + \rho_2 + \rho_3)d^2(x, x^0),
\]
where we denoted \(\frac{\partial V}{\partial x^i} = \frac{\partial V}{\partial x^i}(j^1_1x^0) \).

For an integration by parts in the second integral of (4.5), we have
\[
\frac{\partial}{\partial t^v} \left(\eta_i(t) \frac{\partial V}{\partial x^i} \right) = \frac{\partial \eta_i}{\partial t} \frac{\partial V}{\partial x^i} + \eta_i(t) \frac{\partial}{\partial t^v} \left(\frac{\partial V}{\partial x^i} \right), v = \Gamma, m.
\]

and
\[
(4.7) \quad \int_\Omega \frac{\partial \eta_i}{\partial t} \frac{\partial V}{\partial x^i} dv = \int_\Omega \frac{\partial}{\partial t^v} \left(\eta_i(t) \frac{\partial V}{\partial x^i} \right) dv - \int_\Omega \eta_i(t) \frac{\partial}{\partial t^v} \left(\frac{\partial V}{\partial x^i} \right) dv.
\]

Using the flow-divergence formula, we find
\[
(4.8) \quad \int_\Omega \frac{\partial}{\partial t^v} \left(\eta_i(t) \frac{\partial V}{\partial x^i} \right) dv = \int_{\partial \Omega} \left(\eta_i(t) \frac{\partial V}{\partial x^i} \right) n_v d\sigma = 0,
\]
where \(\bar{n} = (n_v) \) is the normal unit vector of the hypersurface \(\partial \Omega \) and \(\eta(t) |_{\partial \Omega} = 0 \). Then, relation (4.7) becomes
\[
(4.9) \quad \int_\Omega \frac{\partial \eta_i}{\partial t} \frac{\partial V}{\partial x^i} dv = - \int_\Omega \eta_i(t) \frac{\partial}{\partial t^v} \left(\frac{\partial V}{\partial x^i} \right) dv
\]
and according to (4.9), the relation (4.6) can be written
\[
(4.10) \quad \int_\Omega \eta_i(t) \left[\frac{\partial V}{\partial x^i} - \frac{\partial}{\partial t^v} \left(\frac{\partial V}{\partial x^i} \right) \right] dv < - (\tau^r \rho^1_r + \rho_2 + \rho_3)d^2(x, x^0).
\]

Taking into account the first relation of (VVP), the relation (4.10) becomes
\[
0 < - (\tau^r \rho^1_r + \rho_2 + \rho_3)d^2(x, x^0).
\]
Having \(d(x, x^0) \geq 0 \) and the hypothesis (e), we obtain the inequality \(0 < 0 \) that is a false. Therefore \(x^0 \) is an efficient solution to (VVP), because \(M \) is a complete Riemannian manifold.

In what follows we establish **efficiency sufficient conditions for the problem (VFP)**.
Theorem 6 (Sufficient efficiency for (VFP)). Let \(x^0(\cdot) \in S \) and \(\tau = (\tau^r), \lambda = (\lambda^a), \mu = (\mu^s) \) be multipliers satisfying the relations (MFJ) from Theorem 3. Suppose \(\tau \) fulfilled the following conditions:

\(a' \) Each functional \(F_r(x(\cdot)) - R^0_\tau K_r(x(\cdot)) \) is \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).

\(b' \) The functional \(\int_\Omega \lambda^a(t)g_\alpha(j^1_1 x) \, dv \) is \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).

\(c' \) The functional \(\int_\Omega \mu^s(t)h_\beta(j^1_1 x) \, dv \) is \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).

\(d' \) One of the functionals from \(a' \), \(b' \) and \(c' \) is strictly \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \) \((\rho = \rho_1, \rho_2 \) or \(\rho_3 \), respectively).

Then \(x^0(\cdot) \) is an efficient solution to (VFP).

Proof. It is similar to those of Theorem 5, where, for each \(r = \overline{\tau, p} \), the Lagrangian \(f_r(j^1_1 x) \) is replaced by \(f_r(j^1_1 x) - R^0_\tau k_r(j^1_1 x) \).

Theorem 7 (Sufficient efficiency for (VFP)). Let \(x^0(\cdot) \in S \) and \(\tau = (\tau^r), \lambda = (\lambda^a), \mu = (\mu^s) \) be multipliers satisfying the relations (MFV) \(^0\) from Theorem 4. Suppose

\(d'' \) Each functional \(r = \overline{\tau, p}, \int_\Omega [K_r(x^0)f_r(j^1_1 x) - F_r(x^0)k_r(j^1_1 x)] \, dv \) is \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).

\(b', c' \) and \(e' \) of Theorem 5.

\(d'' \) One of the functionals from \(d'' \), \(b' \) and \(c' \) is strictly \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \) \((\rho = \rho_1, \rho_2 \) or \(\rho_3 \), respectively).

Then \(x^0(\cdot) \) is a geodesic efficient solution to (VFP).

Proof. It is similar to those of Theorem 5, where the hypothesis \(a' \) is replaced by hypothesis \(a'' \) of this theorem.

If, in Theorems 5-7, the functionals from the hypotheses \(b' \) and \(c' \) are replaced by the functional \(\int_\Omega [\lambda^a(t)g_\alpha(j^1_1 x) + \mu^s(t)h_\beta(j^1_1 x)] \, dv \), then we have the following results:

Corollary 1 (Sufficient efficiency conditions for (VVP)). Let \(x^0(\cdot) \in S \) and \(\tau, \lambda, \mu \) be multipliers satisfying the relations (VFJ) from Theorem 3. Suppose

\(a \) Each functional \(r = \overline{\tau, p}, F_r(x(\cdot)) \) is \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).
The functional \(\int_{\Omega} \left[\lambda(t)g_{\alpha}(j_{1}^{1}x) + \mu(t)h_{\alpha}(j_{1}^{1}x) \right] dv \) is \((\rho_{2}, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).

d) The functionals from a) and b) are strictly \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \) \((\rho = \rho_{1}^{*} \text{ or } \rho_{2}) \), respectively.

e) \(\tau^{*} \rho_{1}^{*} + \rho_{2} \geq 0 \).

Then \(x^0(\cdot) \) is an efficient solution to (VVP).

Corollary 2 (Sufficient efficiency conditions for (VFP)). Let \(x^0(\cdot) \in \mathcal{S} \), and \(\tau, \lambda, \mu \) be multipliers satisfying the relations (MFJ) from Theorem 3. Suppose the following conditions are satisfied:

- Each functional \(r = \overline{1, p}, F_r(x(\cdot)) - R_{\tau}^{0}K_r(x(\cdot)) \) is \((\rho_{1}, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d_{1} \).
- b) and e) from Corollary 1.

Then \(x^0(\cdot) \) is an efficient solution to (VFP).

Corollary 3 (Sufficient efficiency conditions for (VFP)). Let \(x^0(\cdot) \in \mathcal{S} \), and \(\tau, \lambda, \mu \) be multipliers satisfying the relations (MFV) from Theorem 4. Also, we consider a vector function \(\eta \) as in Definitions 3. Suppose the following conditions are satisfied:

- Each functional \(r = \overline{1, p}, \int_{\Omega} [K_r(x^0)f_r(j_{1}^{1}x) - F_r(x^0)k_r(j_{1}^{1}x)] \ dv \) is \((\rho_{1}, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).
- b) and e) from Corollary 1.

Then \(x^0(\cdot) \) is an efficient solution to (VFP).

Corollary 4 (Sufficient optimality conditions for (SVP)). Let \(x^0(\cdot) \in \mathcal{S} \), and \(\tau, \lambda, \mu \) be multipliers satisfying the relations (SFJ) from Theorem 1. If the following conditions are satisfied:

- a) \(\int_{\Omega} X(j_{1}^{1}x)dv \) is \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).
- b) From Corollary 1, c), we have \(\tau \rho + \rho_{2} \geq 0 \).
- d) One of the functionals from \(\tau \) and \(b \) is strictly \((\rho, b)\)-geodesic quasiinvex at \(x^0(\cdot) \), with respect to \(\eta \) and \(d \).

are satisfied, then \(x^0(\cdot) \) is an efficient solution to (SVP).
References

[1] A. Barani, M. R. Pouryayevali, *Invex sets and preinvex functions on Riemannian manifolds*, J. Math. Anal. Appl., 328(2007), 767–779.

[2] R. Jagannathan, *Duality for nonlinear fractional programming*, Z. Oper. Res., 17 (1973) 1–3.

[3] A. L. Kim, *Optimality and duality for nondifferentiable multiobjective variational problems*, J. Math. Anal. Appl., 274 (2002), 255–278.

[4] Şt. Mititelu, *Invex functions*, Rev. Roumaine Math. Pures Appl., 49 (2004), (5-6), 529–544.

[5] Şt. Mititelu, *Efficiency and duality for multiobjective fractional problems in optimal control with ρ-quasiinvexity*, International Conference „Trends and Challenges in Applied Mathematics”- ICTCAM 2007, June 20-23, 2007, Bucharest, Romania.

[6] Şt. Mititelu, *Efficiencies conditions for multiobjective fractional variational problems*, Applied Sciences, 10 (2008), 162-175.

[7] Şt. Mititelu, M. Postolache, *Mond-Weir dualities with Lagrangians for multiobjective fractional and nonfractional variational problems*, J. Adv. Math. Studies, 3(2010), 1, 41–58.

[8] Şt. Mititelu, M. Postolache, *Efficiency and duality for multitime vector fractional variational problems on manifolds*, Balkan J. Geom. Appl., 16(2011), Nr. 2, 90–101.

[9] Şt. Mititelu, Stancu-Minasian, I.M, *Efficiency and duality for multiobjective fractional variational problems with (ρ, b)-quasiinvexity*, Yugoslav J. of Oper. Res. 19(2009), 1, 85–99.

[10] B. Mond, I. Husain, *Sufficient optimality criteria and duality for variational problems with generalized invexity*, J. Austral. Math. Soc., Series B, 31(1989), 1, 108–121.

[11] Ariana Pitea, C. Udrişte, St. Mititelu, *PDI & PDE-constrained optimization problems with curvilinear functional quotiens as objective vectors*, Balkan J. Geom. Appl 14 (2009), 2, 65–78.
[12] Ariana Pitea, C. Udrişte, St. Mititelu, New type dualities in PDI and PDE constrained optimization problems, J. Adv. Math. Studies, 2(2009), 1, 81-90.

[13] V. Preda, S. Gramatovici, Some sufficient optimality conditions for a class of multiobjective variational problems, An. Univ. Bucureşti. Matematic-Informatică, 6(2002), 1, 33-43.

[14] C. Udrişte, Multitime maximum principle for curvilinear integral cost, Balkan J. Geom. Appl., 16, 1 (2011), 128-149.

[15] C. Udrişte, A. Bejenaru, Multitime optimal control with area integral costs on boundary, Balkan J. Geom. Appl., 16, 2 (2011), 138-154.

[16] C. Udrişte, A. Bejenaru, Riemannian convexity of functionals, J. Glob. Optim. 51 (2011), 361-376.

[17] C. Udrişte, A. Pitea, Optimization problems via second order Lagrangians, Balkan J. Geom. Appl., 16, 2 (2011), 174-185.

[18] C. Udrişte, I. Ţevy, Multitime dynamic programming for multiple integral actions, J. Glob. Optim., 51, 2 (2011), 345-360.

[19] F. A. Valentine, The problem of Lagrange with differentiable inequality as added side conditions, 407-448, in "Contributions to the Calculus of Variations", 1933-37, Univ. of Chicago Press, 1937.

Ştefan Mititelu
Technical University of Civil Engineering
Balkan Society of Geometry
E-mail: st_mititelu@yahoo.com

Mădălina Constantinescu, Constantin Udrişte
University Politehnica of Bucharest
Department of Mathematics and Informatics
313 Splaiul Independenţei, 060042 Bucharest
E-mail: udriste@mathem.pub.ro