A generalization of Hardy’s operator and an asymptotic Müntz-Szász Theorem

Jim Agler John E. McCarty *

May 5, 2022

1 Overview

In this note we shall give a novel proof that Hardy’s Operator H, defined on $L^2([0,1])$ by the formula,

$$Hf(x) = \frac{1}{x} \int_0^x f(t)dt, \quad x \in (0,1],$$

is bounded. This new proof relies only on algebra together with the observation that the monomial functions are eigenvectors for H. Specifically, for each $k \geq 0$,

$$Hx^k = \frac{1}{k+1} x^k. \quad (1.1)$$

Always intrigued by results in analysis whose proofs rely mainly on algebra, the new proof of Hardy’s Inequality prompts the authors to propose the following definition.

Definition 1.2. We say that T is a **monomial operator** if T is a bounded operator on $L^2([0,1])$ and there exist a number m and a sequence of scalars $c_0, c_1, c_2 \ldots$ such that for all k,

$$Tx^k = c_k x^{k+m}. \quad (1.3)$$

We shall call the number m in (1.3) the **order** of T. It can be any complex number with non-negative real part, though in all our examples it will be a natural number. In addition to H, a monomial operator of order 0, other examples of monomial operators are the multiplication operator M_x that sends a function $f(x)$ to the function $xf(x)$, and the Volterra operator $V = M_x H$, the operator given by

$$Vf(x) = \int_0^x f(t)dt, \quad x \in (0,1].$$

Both M_x and V are of order 1.

For $0 \leq s \leq 1$ we shall use $L^2[s,1]$ to denote the closed subspace of $L^2[0,1]$ of functions that are 0 on $[0,s]$.

Partially supported by National Science Foundation Grant DMS 2054199
Definition 1.4. We shall say that a bounded operator \(T : L^2[0, 1] \rightarrow L^2[0, 1] \) is *vanishing preserving* if \(TL^2[s, 1] \subseteq L^2[s, 1] \) for every \(s \) in \([0, 1)\).

In this note we shall prove the following result.

Theorem 1.5. If \(T \) is a monomial operator, then \(T \) is vanishing preserving.

Why might such a theorem be true? If \(T \) is a monomial operator, and \(f \) is a polynomial that vanishes at 0 to some high order \(M \), then \(Tf \) also vanishes to order at least \(M \). So if one thinks of vanishing on \([0, s]\) as an extreme case of vanishing to high order, one might believe that monomial operators preserve this property.

Our proof of Theorem 1.5 relies on a new type of Müntz-Szász Theorem, wherein the monomial sequence is allowed to drift. This may be more interesting than the theorem itself!

2 Hardy’s Inequality

For a continuous function \(f \) on \([0, 1]\) consider the continuous function \(Hf \) on \((0, 1]\) defined by the formula

\[
Hf(x) = \frac{1}{x} \int_0^x f(t) dt, \quad x \in (0, 1].
\]

(2.1)

Noting that as \(x \to 0, \frac{1}{x} \to \infty \) and \(\int_0^x f(t) dt \to 0 \), the following question arises:

How does \(Hf \) behave near 0?

Invoking the Mean Value Theorem for Integrals yields that for each \(x \in [0, 1] \), there exists \(c \in [0, x] \) such that \(Hf(x) = f(c) \). Thus,

\[
|Hf(x)| \leq \max_{t \in [0,x]} |f(t)|, \quad x \in (0, 1],
\]

(2.2)

so that in particular, \(Hf \) is bounded near 0. More delicately, if we apply the MVT to the function \(f(x) - f(0) \), we obtain the estimate

\[
|Hf(x) - f(0)| \leq \max_{t \in [0,x]} |f(t) - f(0)|, \quad x \in (0, 1],
\]

(2.3)

which implies that \(Hf(x) \to f(0) \) as \(x \to 0 \). Therefore, if we agree to extend the definition of \(Hf \) at the point \(x = 0 \) by setting \(Hf(0) = f(0) \), then our observations imply the following proposition.

Proposition 2.4. If \(f \) is a continuous function on \([0, 1]\), then \(Hf \) is a continuous function on \([0, 1]\). Furthermore,

\[
\max_{x \in [0,1]} |Hf(x)| \leq \max_{x \in [0,1]} |f(x)|.
\]

(2.5)

Hardy [5] was the first to study the local behavior of \(H \) at 0 for functions equipped with norms other than the supremum norm. His result when specialized to \(L^2([0, 1]) \), the Hilbert space of square integrable Lesbesgue measurable functions on \([0, 1]\), is as follows.
Proposition 2.6. (Hardy’s Inequality in \(L^2([0,1]) \)) If \(f \) is a measurable function on \([0,1]\), then \(Hf \) is a measurable function on \([0,1]\), and

\[
\int_0^1 |Hf(x)|^2 dx \leq 4 \int_0^1 |f(x)|^2. \tag{2.7}
\]

A linear operator \(T \) on a normed vector space \(V \) is called \textit{bounded} \(^1\) if there is some constant \(C \) so that

\[
\|Tv\| \leq C \|v\| \quad \forall v \in V. \tag{2.8}
\]

The infimum of all \(C \) for which (2.8) holds is called the norm of \(T \), and written \(\|T\| \). Using this terminology, (2.7) says \(\|H\| \leq 2 \).

Our proof of Proposition 2.6 in Section 4 relies on a new “sum of squares identity” involving the operator \(H \), proved using (1.1).

3 Hilbert Space distance formula

Let \(h_1, \ldots, h_n \) be \(n \) vectors in a hilbert space \(\mathcal{H} \). We may associate to these vectors their \textit{Gram matrix}, i.e., the \(n \times n \) matrix \(G[h_1, \ldots, h_n] \) defined by

\[
[G[h_1, \ldots, h_n]]_{ij} = [\langle h_j, h_i \rangle_{\mathcal{H}}].
\]

An often used application is the following elegant formula for the distance to the span of \(h_1, \ldots, h_n \).

Theorem 3.1. (Hilbert Space Distance Formula) If \(\mathcal{H} \) is a Hilbert space, \(h \in \mathcal{H} \), and \(h_1, h_2, \ldots, h_N \in \mathcal{H} \) are linearly independent, then

\[
\text{dist}(h, \text{span}\{h_1, h_2, \ldots, h_N\}) = \sqrt{\frac{\det G[h, h_1, h_2, \ldots, h_N]}{\det G[h_1, h_2, \ldots, h_N]}}. \tag{3.2}
\]

Proof. Write \(h = k + m \), where \(k \) is in the span of \(\{h_1, \ldots, h_N\} \) and \(m \) is perpendicular to the span. Then \(\|m\| = \text{dist}(h, \text{span}\{h_1, h_2, \ldots, h_N\}) \).

We can write

\[
det G[h, h_1, h_2, \ldots, h_N] = det G[k, h_1, h_2, \ldots, h_N] + det G[m, h_1, h_2, \ldots, h_N].
\]

Since \(k \) is in the span of \(\{h_1, \ldots, h_N\} \), we have

\[
det G[k, h_1, h_2, \ldots, h_N] = 0.
\]

Moreover, \(G[m, h_1, h_2, \ldots, h_N] \) is a matrix whose first row is \(\langle m, m \rangle, 0, \ldots, 0 \). Therefore

\[
det G[m, h_1, h_2, \ldots, h_N] = \|m\|^2 \det G[h_1, h_2, \ldots, h_N].
\]

Combining these observations, we get (3.2). \(\quad \text{QED} \)

\(^1\)It is a straightforward exercise to show that a linear operator is bounded if and only if it is continuous.
A Hilbert space proof of Hardy’s Inequality

The key step in our proof is the following lemma.

Lemma 4.1. An Identity for H

\[\|f\|^2 = \|(1-H)f\|^2 + \left| \int_0^1 f(x)dx \right|^2 \quad \forall f \in L^2([0,1]). \]

Proof. It suffices to show for f a polynomial, since the polynomials are dense in $L^2[0,1]$. If

\[f(x) = \sum_{j=0}^{n} a_j x^j \]

then

\[\|f\|^2 = \int_0^1 \sum_{i,j=0}^{n} a_i \overline{a_j} x^{i+j} dx = \sum_{i,j=0}^{n} a_i \overline{a_j} \frac{1}{i+j+1}. \]

Likewise, as

\[(1-H)f(x) = \sum_{j=0}^{n} \frac{j}{j+1} a_j x^j, \]

\[\|(1-H)f\|^2 = \sum_{i,j=0}^{n} a_i \overline{a_j} \frac{ij}{(i+1)(j+1)(i+j+1)}. \]

Hence

\[\|f\|^2 - \|(1-H)f\|^2 = \sum_{i,j=0}^{n} a_i \overline{a_j} \left(\frac{1}{i+j+1} \right) - \frac{ij}{(i+1)(j+1)(i+j+1)} \]

\[= \sum_{i,j=0}^{n} a_i \overline{a_j} \left(\frac{1}{(i+1)(j+1)} \right) \]

\[= \left| \int_0^1 f(x)dx \right|^2. \]

QED

Proof. We now complete the proof of Proposition 2.6. We want to prove that $\|H\| \leq 2$. By Lemma 4.1, $\|(1-H)\| \leq 1$. Therefore,

\[\|H\| = \|1-(1-H)\| \leq 1 + 1 - H \| \leq 1 + 1 = 2. \]

QED
5 An asymptotic M"untz-Szász Theorem

Let S be a subset of the non-negative integers. When is the linear span of the monomials \(\{x^n : n \in S\} \) dense? The M"untz-Szász Theorem, proved by M"untz [6] and Szász [7], answers this question in both \(L^2[0,1] \) and \(C[0,1] \), the continuous functions on \([0,1]\). The answer is basically the same in both cases, but the constant function 1 plays a special role in \(C[0,1] \), since it cannot be approximated by any polynomial that vanishes at 0 (which all the other monomials do).

Theorem 5.1. (M"untz-Szász Theorem) (i) The linear span of \(\{x^n : n \in S\} \) is dense in \(L^2[0,1] \) if and only if
\[
\sum_{n \in S} \frac{1}{n+1} = \infty. \tag{5.2}
\]
(ii) The linear span of \(\{x^n : n \in S\} \) is dense in \(C[0,1] \) if and only if \(0 \in S \) and (5.2) holds.

What happens if the approximants come from a set of linear combinations of monomials that is losing as well as gaining members? Fix an increasing sequence \(\{N_n\} \) of natural numbers and for each \(n \) define
\[
S_n = \{n, n+1, \ldots, n+N_n\} \quad \text{and} \quad \mathcal{M}_n = \text{span} \ \{x^n, x^{n+1}, \ldots, x^{n+N_n}\}.
\]
For each \(n \) let \(\rho_n \) denote the fraction of the non-negative integers less than or equal to \(n+N_n \) that do not lie in \(S_n \), i.e.,
\[
\rho_n = \frac{n}{n+N_n+1}.
\]
Finally, with this setup, let
\[
\mathcal{M}_\infty = \{f \in L^2([0,1]) \mid \lim_{n \to \infty} \text{dist}(f, \mathcal{M}_n) = 0\}. \tag{5.3}
\]

We wish to characterize \(\mathcal{M}_\infty \) (Theorem 5.12 below). We shall follow M"untz’s original proof of Theorem 5.1 [6]. His argument involved an ingenious calculation using Theorem 3.1 and the following venerable formula of Cauchy [3].

Theorem 5.4. (The Cauchy Determinant Formula) If \(M \) is the \(N \times N \) Cauchy matrix defined by the formula
\[
M = \begin{bmatrix}
\frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} & \cdots & \frac{1}{x_1-y_N} \\
\frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} & \cdots & \frac{1}{x_2-y_N} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{x_N-y_1} & \frac{1}{x_N-y_2} & \cdots & \frac{1}{x_N-y_N}
\end{bmatrix},
\]
where for all \(i \) and \(j, x_i \neq y_j \), then
\[
\det M = \prod_{1 \leq j < i \leq N} (x_i - x_j)(y_j - y_i) \prod_{1 \leq i, j \leq N} (x_i - y_j).
\]
We need two more auxiliary results.

Proposition 5.5. (Baby Brodskii-Donoghue Theorem) Let \(\mathcal{M} \) be a closed subspace of \(L^2[0,1] \) that is invariant under both \(M_x \) and \(V \). Then \(\mathcal{M} = L^2[s,1] \) for some \(s \) between 0 and 1.

Proof. Note that the constant function 1 has the unique representation in \(L^2([0,1]) \),

\[
1 = f + g \quad (5.6)
\]

where \(f \perp \mathcal{M} \) and \(g \in \mathcal{M} \). The fact that \(\mathcal{M} \) is \(M_x \) invariant, implies that \(pg \in \mathcal{M} \) whenever \(p \) is a polynomial\(^2\), it follows that \(f \perp pg \) whenever \(p \) is a polynomial. But then \(f\bar{g} \perp p \) for all polynomials which implies that

\[
f\bar{g} = 0 \quad (5.7)
\]

For a Lebesgue measurable set \(E \subseteq [0,1] \) we let \(\chi_E \) denote the characteristic function of \(E \), i.e., the function defined by

\[
\chi_E(x) = \begin{cases}
0 & \text{if } x \notin E \\
1 & \text{if } x \in E
\end{cases}
\]

We observe that (5.6) and (5.7) imply that there exists a partition of \([0,1]\) into two measurable sets \(F \) and \(G \) such that \(f = \chi_F \) and \(g = \chi_G \). We define a parameter \(s \in [0,1] \) by setting

\[
s = \sup \{ x \mid g(t) = 0 \text{ for a.e. } t \in [0,x] \}. \quad (5.8)
\]

Notice that with this definition, we have that

\[
Vg(x) = 0 \text{ for a.e. } x \in [0,s] \quad \text{and} \quad Vg(x) > 0 \text{ for a.e. } x \in [s,1]. \quad (5.9)
\]

Since \(g \in \mathcal{M} \), we have \(Vg \in \mathcal{M} \). Also, recall that \(f \in \mathcal{M}^\perp \). Therefore, using (5.9) we see that \(F \subseteq [0,s] \). In light of (5.6), this implies \([s,1] \subseteq G \), which in turn, implies via (5.8) that

\[
f = \chi_{[0,s]} \quad \text{and} \quad g = \chi_{[s,1]}. \quad (5.10)
\]

As \(pf \in \mathcal{M}^\perp \) and \(pg \in \mathcal{M} \) whenever \(p \) is a polynomial, it follows immediately from (5.10) and the fact that the polynomials are dense in both \(L^2([0,s]) \) and \(L^2([s,1]) \), that

\[
L^2([0,s]) \subseteq \mathcal{M}^\perp \quad \text{and} \quad L^2([s,1]) \subseteq \mathcal{M}.
\]

Hence, we have that both \(L^2([s,1]) \supseteq \mathcal{M} \) and \(L^2([s,1]) \subseteq \mathcal{M} \), so that \(L^2([s,1]) = \mathcal{M} \), as was to be proved.

We call Proposition 5.5 the Baby Brodskii-Donoghue Theorem because Brodskii and Donoghue independently proved the far deeper fact that the only closed invariant subspaces of \(V \) are \(L^2[s,1] \) [2, 4]. The operator \(M_x \) has other invariant subspaces. Indeed the ideas in the preceding proof can be adapted to show that the invariant subspaces of \(M_x \) are the spaces \(\{ f \in L^2[0,1] : f(x) = 0 \text{ a.e. on } F \} \), where \(F \) is any measurable subset of \([0,1]\).

\(^2\)Note that it is also true that \(pf \in \mathcal{M}^\perp \) whenever \(p \) is a polynomial, since \(M_x \) is self-adjoint.
Lemma 5.11. If \mathcal{M}_∞ is as in (5.3), then there exists $s \in [0, 1]$ such that $\mathcal{M}_\infty = L^2([s, 1])$.

Proof. Observe first that if

$$p(x) = \sum_{k=n}^{n+N_n} a_k x^k \in \mathcal{M}_n,$$

then

$$M_x p(x) = xp(x) = \sum_{k=n+1}^{n+N_n+1} a_{k-1} x^k \in \mathcal{M}_{n+1}.$$

Hence,

$$M_x \mathcal{M}_\infty \subseteq \mathcal{M}_\infty.$$

Likewise,

$$V \mathcal{M}_\infty \subseteq \mathcal{M}_\infty.$$

Now the result follows from Lemma 5.5. QED

Theorem 5.12. (Asymptotic Müntz-Szász Theorem) Let $S_n = \{n, n+1, \ldots, n+N_n\}$, let $\mathcal{M}_n = \text{span} \{x^n, x^{n+1}, \ldots, x^{n+N_n}\}$, and let $\rho_n = \frac{n}{n+N_n+1}$. If

$$\lim_{n \to \infty} \rho_n = \rho,$$

then

$$\mathcal{M}_\infty = L^2([\rho^2, 1]).$$

Proof. By Lemma 5.11 there exists $s \in [0, 1]$ such that

$$\mathcal{M}_\infty = L^2([s, 1]).$$

Noting that

$$\text{dist}(1, L^2([s, 1])) = \sqrt{s},$$

we see that the theorem will follow if we can show that

$$\text{dist}(1, \mathcal{M}_\infty) = \rho,$$

or equivalently that

$$\lim_{n \to \infty} \text{dist}(1, \mathcal{M}_n) = \rho.$$ \hspace{1cm} (5.13)

Now fix $N + 1$ distinct real numbers $\alpha_0, \alpha_1, \ldots, \alpha_N \in (-\frac{1}{2}, \infty)$. In Theorem 5.4 if for $i, j = 1, 2, \ldots, N$ we let $x_i = \alpha_i + \frac{1}{2}$ and $y_j = -(\alpha_j + \frac{1}{2})$ we obtain that

$$\det G(x^{\alpha_1}, \ldots, x^{\alpha_N}) = \prod_{1 \leq i < j \leq N} (\alpha_i - \alpha_j)^2 \prod_{1 \leq i, j \leq N} (\alpha_i + \alpha_j + 1),$$

Likewise,

$$\det G(x^{\alpha_0}, x^{\alpha_1}, \ldots, x^{\alpha_N}) = \prod_{0 \leq j < i \leq N} (\alpha_i - \alpha_j)^2 \prod_{0 \leq i, j \leq N} (\alpha_i + \alpha_j + 1).$$
Therefore,
\[
\frac{\det G(x^{\alpha_0}, x^{\alpha_1}, \ldots, x^{\alpha_N})}{\det G(x^{\alpha_1}, \ldots, x^{\alpha_N})} = \frac{1}{2\alpha_0 + 1} \frac{\prod_{i=1}^N (\alpha_i - \alpha_0)^2}{\prod_{i=1}^N (\alpha_i + \alpha_0 + 1)^2}
\]
Hence, using Theorem 3.1 we get
\[
dist(1, \mathcal{M}_n)^2 = \frac{\det G(x^0, x^n, \ldots, x^{n+N_n})}{\det G(x^n, \ldots, x^{n+N_n})} = \prod_{i=0}^{N_n} (n + i)^2 \prod_{i=0}^{N_n} (n + i + 1)^2 = (n + N_n + 1)^2 = \rho_n^2.
\]
Equation (5.13) now follows. QED

6 The Bernstein Conundrum: Asymptotic Müntz-Szász Theorem for $C[0,1]$

The $C[0,1]$ Müntz-Szász Theorem can be deduced from the L^2 version. What about the asymptotic version? Let \mathcal{M}_n be as in Section 5, and let $\mathcal{M}_{\infty}^{\text{unif}}$ be
\[
\mathcal{M}_{\infty}^{\text{unif}} = \{ f \in C[0,1] \mid \lim_{n \to \infty} \text{dist}(f, \mathcal{M}_n) = 0 \}, \tag{6.1}
\]
where in this section all distances are with respect to the supremum norm\(^3\).

One way to prove the Weierstraß approximation theorem is to use the Bernstein polynomials. For each n, these are the $n + 1$ polynomials defined by
\[
b_{k,n}(x) = \binom{n}{k} x^k (1 - x)^{n-k}.
\]
Bernstein proved in 1912 [1] that for every continuous function $f \in C[0,1]$, the polynomials
\[
p_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) b_{k,n}(x) \tag{6.2}
\]
converge uniformly on $[0,1]$ to f.

As the lowest order term in $b_{k,n}$ is x^k, if f vanished on $[0, \rho_n]$ and one used the Bernstein formula (6.2) to approximate it, the corresponding polynomial p_{n+N_n+1} would lie in the span of $\{x^{n+1}, \ldots, x^{n+N_n+1}\}$ which is in $x\mathcal{M}_n \subseteq \mathcal{M}_{n+1}$. So one immediately gets that $\mathcal{M}_{\infty}^{\text{unif}}$ contains all the continuous functions that vanish on $[0, \rho]$.

This construction seems natural, and could lead one to suspect that $\mathcal{M}_{\infty}^{\text{unif}}$ should be the functions that vanish on $[0, \rho]$. However, Theorem 6.3 shows this is incorrect.

\(^3\)This means $\|f\|_{C[0,1]} = \sup_{0 \leq x \leq 1} |f(x)|$. 8
Theorem 6.3. (Asymptotic Müntz-Szász Theorem, Continuous Case) If \(\lim_{n \to \infty} \rho_n = \rho \), then
\[
\mathcal{M}_{\infty}^{\text{unif}} = \{ f \in C[0, 1] | f = 0 \text{ on } [0, \rho^2] \}.
\]

Proof. As the supremum norm is larger than the \(L^2 \) norm, we have
\[
\mathcal{M}_{\infty}^{\text{unif}} \subseteq \mathcal{M}_\infty \cap C[0, 1] = \{ f \in C[0, 1] | f = 0 \text{ on } [0, \rho^2] \}.
\]

For the reverse inclusion, notice that it follows from Cauchy-Schwarz that the Volterra operator is a bounded linear map from \(L^2[0, 1] \) into \(C[0, 1] \). (Indeed, if \(g \in L^2[0, 1] \), we get that \(Vg \) satisfies a Hölder continuity condition of order \(\frac{1}{2} \).)

Let \(f \) be a \(C^1 \) function that vanishes on \([0, \rho^2] \). Then \(f = Vg \), where \(g = f' \). By Theorem 5.12, there are polynomials \(p_n \in \mathcal{M}_n \) that converge in \(L^2 \) to \(g \). Then \(Vp_n \) converges in \(C[0, 1] \) to \(f \), so \(f \) is in \(\mathcal{M}_\infty^{\text{unif}} \). As \(\mathcal{M}_{\infty}^{\text{unif}} \) is closed, and the \(C^1 \) functions that vanish on \([0, \rho^2] \) are dense in the continuous ones, we get
\[
\{ f \in C[0, 1] | f = 0 \text{ on } [0, \rho^2] \} \subseteq \mathcal{M}_{\infty}^{\text{unif}}.
\]

QED

Question 6.4. Can one prove Theorem 6.3 directly using Bernstein approximation?

7 Proof of Theorem 1.5

Proof. Assume that \(T \) is a monomial operator of order \(m \), let \(s \in (0, 1) \), and fix \(f \in L^2([s, 1]) \). We wish to prove that \(Tf \in L^2([s, 1]) \).

Choose an increasing sequence of natural numbers \(\{N_n\} \) such that
\[
\lim_{n \to \infty} \frac{n}{n + N_n} = \sqrt{s}.
\]

By Theorem 5.12, there exists a sequence of polynomials \(\{p_n\} \) where for each \(n \), \(p_n \) has the form
\[
p_n(x) = \sum_{k=n}^{n+N_n} c_k x^k
\]
and such that
\[
p_n \to f \text{ in } L^2([0, 1]).
\]

As \(T \) is bounded,
\[
Tp_n \to Tf \text{ in } L^2([0, 1]).
\]

Also, as \(T \) is a monomial operator of order \(m \), for each \(n \), \(Tp_n \) has the form
\[
Tp_n(x) = x^m \sum_{k=n}^{n+N_n} d_k x^k.
\]
For any $s > 0$, multiplication by x^m is a bounded invertible map from $L^2([s,1])$ to itself. Therefore
\[\sum_{k=n}^{n+N_n} d_k x^k \]
converges, as $n \to \infty$, to some function $g(x)$, which by Theorem 5.12 is in $L^2([s,1])$. So $Tf = x^m g(x)$, and lies in $L^2([s,1])$. QED

References

[1] Serge Bernstein. Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. *Comm. Kharkov Math. Soc*, 13:1–2, 1912.

[2] M. S. Brodskii. On a problem of I. M. Gelfand. *Uspehi Mat. Nauk (N.S.)*, 12(2(74)):129–132, 1957.

[3] Augustin Louis Cauchy. *Exercices d’analyse et de physique mathématique. Vol. 2*. Bachelier, Paris, 1841.

[4] W. F. Donoghue, Jr. The lattice of invariant subspaces of a completely continuous quasinilpotent transformation. *Pacific J. Math.*, 7:1031–1035, 1957.

[5] G. H. Hardy. Note on a theorem of Hilbert. *Math. Z.*, 6(3-4):314–317, 1920.

[6] Chaim Herman Müntz. Über den Approximationssatz von Weierstrass. In *H.A. Schwartz Festschrift*, pages 303–312. Berlin, 1914.

[7] Otto Szász. Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen. *Math. Ann.*, 77(4):482–496, 1916.