SCHWARTZ-PICK LEMMA FOR HARMONIC FUNCTIONS

CONGWEN LIU

Abstract. Based on the recently proved Khavinson conjecture, we establish an inequality of Schwarz-Pick type for harmonic functions on the unit ball of \mathbb{R}^n.

1. Introduction

This is a sequel to the paper [15]. There we proved the Khavinson conjecture, which says for bounded harmonic functions on the unit ball of \mathbb{R}^n, the sharp constants in the estimates for their radial derivatives and for their gradients coincide. In this paper, we further prove the following

Theorem 1. Let u be a real-valued harmonic function on the unit ball B_n of \mathbb{R}^n and $|u| < 1$ on B_n.

(i) When $n = 2$ or $n \geq 4$, the following sharp inequality holds:

$$|\nabla u(x)| \leq \frac{2m_{n-1}(B_{n-1})}{m_n(B_n)} \frac{1}{1 - |x|^2}, \quad x \in B_n,$$

where m_n denotes the Lebesgue measure on \mathbb{R}^n. Equality holds if and only if $x = 0$ and $u = U \circ T$ for some orthogonal transformation T, where U is the Poisson integral of the function that equals 1 on a hemisphere and -1 on the remaining hemisphere.

(ii) When $n = 3$ we have

$$|\nabla u(x)| < \frac{8}{3\sqrt{3}} \frac{1}{1 - |x|^2}, \quad x \in B_3.$$

The constant $\frac{8}{3\sqrt{3}}$ here is the best possible.

Remark 1. Curiously, the inequality (1) fails when $n = 3$. Note that $\frac{8}{3\sqrt{3}} \approx 1.5396$, while the constant $\frac{2m_{n-1}(B_{n-1})}{m_n(B_n)}$ in (1) equals $\frac{3}{2}$ when $n = 3$. According to [11], given $x_0 \in B_3$, there is a u_0 harmonic in B_3, $|u_0| < 1$, satisfying

$$\left|\frac{\nabla u_0(x)}{|x_0|}\right| = \frac{(9 - |x_0|^2)^2}{3\sqrt{3}(1 - |x_0|^2)(|x_0|^2 + 3)^{3/2} + 3\sqrt{3}(1 - |x_0|^2)}.$$

Since

$$\lim_{t \to 1^-} \frac{(9 - t^2)^2}{3\sqrt{3}(t^2 + 3)^{3/2} + 3\sqrt{3}(1 - t^2)} = \frac{8}{3\sqrt{3}} > \frac{3}{2},$$

2010 Mathematics Subject Classification. Primary 31B05; Secondary 31C05, 30C80.

Key words and phrases. Harmonic functions, Schwarz-Pick lemma, Gegenbauer polynomials.

This work was supported by the National Natural Science Foundation of China grant 11971453.
we see that if \(x_0 \) is sufficiently near the boundary \(S^2 \) then \(|\nabla u_0(x_0)| > \frac{3}{2} \frac{1}{1 - |x_0|^2} \), which contradicts the inequality (1). See Remark 2 in the next section for more explanations.

We refer to Theorem 1 as the Schwarz-Pick lemma for harmonic functions, for (1) it is in analogy to a weaker version of the classical Schwarz-Pick lemma, which states that every holomorphic mapping \(f \) of the unit disk onto itself satisfies the inequality:

\[
|f'(z)| \leq \frac{1}{1 - |z|^2}, \quad |z| < 1;
\]

(2) it is a generalization of the following harmonic Schwarz lemma:

Theorem A ([3, Theorem 6.26]). If \(u \) is a real-valued harmonic function on \(B_n \) and \(|u| < 1 \) on \(B_n \), then

\[
|\nabla u(0)| \leq \frac{2m_{n-1}(B_{n-1})}{m_n(B_n)}.
\]

Equality holds if and only if \(u = U \circ T \) for some orthogonal transformation \(T \), where \(U \) is as in Theorem 1.

Some special cases of Theorem 1 are known. When \(n = 2 \), the inequality (1) reads

\[
|\nabla u(z)| \leq \frac{4 \pi}{1 - |z|^2}, \quad |z| < 1;
\]

which is a reformulation of the Lindelöf inequality in the unit disc (see [5, Theorem 3]). Recently, Kalaj [9] established the inequality (1) for \(n = 4 \). When \(n = 3 \), although not explicitly stated, the inequality (2) is an easy consequence of the main result of [20].

When \(n = 2 \) or \(n \geq 4 \), Theorem 1 can be restated as

\[
|\nabla u(x)| \leq \frac{2m_{n-1}(B_{n-1})}{m_n(B_n)} \frac{1}{1 - |x|^2} \sup_{y \in B_n} |u(y)|
\]

for bounded harmonic functions \(u \) on \(B_n \). This is obviously related to the following classical estimate (see for instance [21, p.139, (6)]

\[
|\nabla u(x)| \leq \frac{m_{n-1}(B_{n-1})}{m_n(B_n)} \frac{1}{d(x)} \text{osc}_\Omega(u)
\]

for harmonic functions \(u \) in \(\Omega \subset \mathbb{R}^n \), where \(\text{osc}_\Omega(u) \) is the oscillation of \(u \) in \(\Omega \) and \(d(x) \) denotes the distance of \(x \in \Omega \) to the boundary \(\partial \Omega \). In particular, if \(\Omega = B_n \) and \(u \) is a harmonic function on \(B_n \) with \(|u| < 1 \), then (5) reads

\[
|\nabla u(x)| \leq \frac{2m_{n-1}(B_{n-1})}{m_n(B_n)} \frac{1}{1 - |x|}.
\]

Compare this with the inequality (1).

It is also interesting to compare the inequality (1) with the following sharp inequality in [13] (see also [14, p.131]):

\[
|\nabla v(x)| \leq \frac{4(n-1)^{\frac{n+1}{n}}}{n^{\frac{n+1}{2}}} \frac{m_{n-1}(B_{n-1})}{m_n(B_n)} \frac{1}{x_n} \sup_{y \in \mathbb{R}^n_+} |v(y)|.
\]

Here, \(v \) is a bounded harmonic function in the half–space \(\mathbb{R}^n_+ := \{(x', x_n) \in \mathbb{R}^n : x_n > 0\} \).
Recently, several versions of Schwarz lemma for harmonic functions or harmonic mappings were established. See [4, 8, 10, 16, 18, 19]. In particular, Kalaj and Vuorinen [10] obtained the following refinement of the inequality (4):

$$|\nabla u(z)| \leq \frac{4}{\pi} \frac{1 - |u(z)|^2}{1 - |z|^2}, \quad |z| < 1.$$

This, together with our Theorem 1, suggests the following

Conjecture. Under the hypotheses of Theorem 1(i), we have

$$|\nabla u(x)| \leq \frac{2^{m_n-1} (B_n-1)}{m_n(B_n)} \frac{1 - |u(x)|^2}{1 - |x|^2}, \quad x \in B_n.$$

We are not able to prove this conjecture and leave it as an open question.

2. OUTLINE OF THE PROOF

Since the cases $n = 2$ and $n = 3$ are known, we shall prove only Theorem 1 for $n \geq 4$.

Recall that we proved in [15] the following

Theorem B ([15, Theorem 2]). Let $n \geq 3$ and let u be a real-valued bounded harmonic function on B_n. We have the following sharp inequality:

$$|\nabla u(x)| \leq C(x) \sup_{y \in B_n} |u(y)|, \quad x \in B_n,$$

with

$$C(x) := \frac{(n-1)m_{n-1}(B_{n-1})}{m_n(B_n)} \frac{1}{\left(1 - \frac{n-2}{n} |x| \left(1 - t^2 \right)^{\frac{n-3}{2}} \frac{1}{1 - 2t|x| + |x|^2} \right) \frac{1}{1 - |x|^2}}.$$

Thus, in order to prove the inequality (1), it suffices to prove the following

Proposition 2. When $n \geq 4$, the function

$$\Phi(\rho) := \frac{1}{\left(1 - \frac{n-2}{n} \rho \left(1 - t^2 \right)^{\frac{n-3}{2}} \frac{1}{1 - 2t\rho + \rho^2} \right) \frac{1}{1 - |x|^2}}$$

is strictly decreasing on $[0, 1]$ and

$$\max_{\rho \in [0,1]} \Phi(\rho) = \Phi(0) = \frac{2}{n-1}.$$

Remark 2. In contrast to the case $n \geq 4$, if $n = 3$ then

$$\Phi(\rho) = \frac{2}{3} \left(1 + \frac{1}{3} \rho^2 \right)^{\frac{1}{2}} - 1 + \rho^2$$

is strictly increasing on $[0, 1]$ and attains its maximum at $\rho = 1$. This explains why the inequality (1) fails when $n = 3$, as well as why, unlike (1), the inequality (2) is sharp but always strict.

Assuming Proposition 2 for the moment, we shall prove the second assertion of Theorem 1(i). In view of Theorem B, it follows from the strict monotonicity of Φ that the equality in (1) takes place if and only if $x = 0$. Then, by Theorem A, u must be of the form $u = U \circ T$, with T an orthogonal transformation and U
the Poisson integral of the function that equals 1 on a hemisphere and −1 on the remaining hemisphere.

We now turn to the proof of Proposition 2. An easy computation leads to \(\Phi'(0) = 0 \). Thus, the problem is further reduced to the following

Theorem 3. If \(n \geq 4 \) then \(\Phi \) is a strictly concave function on the interval \((0,1)\).

We divide the proof of Theorem 3 into the following two propositions.

Proposition 4. We have

\[
\Phi''(\rho) = \frac{2(n-2)}{\rho^2} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \left(1 - \frac{n-4}{n} \rho^2 \right)^{-\frac{2n-3}{n-4}}
\times \frac{1 - \frac{(n-2)(n-3)}{n(n-1)} \rho^2}{1 - \frac{(n-2)^2}{n^2} \rho^2}
\times \frac{1 - \frac{n-2}{n} \rho^2}{1 - \frac{(n-2)(n-3)}{n^2} \rho^2}
\times \frac{1 - \frac{n-2}{n} \rho^2}{1 - \frac{(n-2)(n-3)}{n^2} \rho^2}
\times \left[1 - \frac{1}{n+1} \rho^2 \right]^{n+1} \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(c)_k k!} z^k.
\]

Here and throughout the paper, \(\text{hypergeom}[a, b ; c ; z] \) denotes the Gauss hypergeometric function defined by

\[
\text{hypergeom}[a, b ; c ; z] := \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(c)_k k!} z^k
\]

for \(|z| < 1\), with \((\lambda)_k\) the Pochhammer symbol (or the extended factorial), which is defined by

\[
(\lambda)_0 := 1, \quad (\lambda)_k := \lambda(\lambda + 1) \ldots (\lambda + k - 1) \quad \text{for} \ k \geq 1.
\]

Proposition 5. If \(n \geq 4 \) then

\[
\text{hypergeom}[1, \frac{n}{2} ; \frac{n+1}{2} ; t] > \frac{(1 - \frac{n-4}{n} t) \left[1 - \frac{(n-2)(n-3)}{n^2} t \right]}{(1 - \frac{n-2}{n} t) \left[1 - \frac{(n-2)(n-3)}{n^2} t \right]} \left[1 - \frac{(n-2)(n-3)}{n(n-1)} t \right]
\]

holds for all \(t \in [0,1] \).

Remark 3. As we will see in the proof, if \(n = 3 \) then the inequality in (8) is reversed.

Propositions 4 and 5 will be proved in the next two sections.

3. **The Proof of Proposition 4**

The proof will be divided into three steps.
Step 1. We express the function \(\Phi \) as follows.

\[
\Phi(\rho) = \int_{-1}^{1} \left| t - \frac{n-2}{n} \rho \right| (1 - t^2)^{\frac{n-3}{2}} dt \\
+ (n-2)\rho \int_{-1}^{1} \left| t - \frac{n-2}{n} \rho \right| (1 - t^2)^{\frac{n-1}{2}} dt \\
+ \sum_{k=2}^{\infty} \frac{2n(n-2)}{k(k-1)(k+n-2)(k+n-1)} \\
\times \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right]^{\frac{n+2}{2}} C_{k-2}^{\frac{n}{2}} \left(\frac{n-2}{n} \rho \right) \rho^k,
\]

where \(C_k^{\lambda}(x) \) is the Gegenbauer polynomial (also known as the ultraspherical polynomials) of degree \(k \) associated to \(\lambda \), which is defined by the generating relation

\[
(1 - 2xz + z^2)^{-\lambda} = \sum_{k=0}^{\infty} C_k^{\lambda}(x) z^k, \quad -1 < x < 1, \, |z| < 1.
\]

Using the generating relation (10) and noting that
\(C_{\frac{n-2}{2}}^{\frac{n}{2}}(t) \equiv 1 \) and
\(C_{\frac{n-2}{2}}^{\frac{n}{2}}(t) = (n-2)t \),

we obtain

\[
\Phi(\rho) = \sum_{k=0}^{\infty} \left\{ \int_{-1}^{1} \left| t - \frac{n-2}{n} \rho \right| (1 - t^2)^{\frac{n-3}{2}} C_{k}^{\frac{n}{2}} \left(\frac{n-2}{n} \rho \right) dt \right\} \rho^k
\]

\[
= \int_{-1}^{1} \left| t - \frac{n-2}{n} \rho \right| (1 - t^2)^{\frac{n-3}{2}} dt \\
+ (n-2)\rho \int_{-1}^{1} \left| t - \frac{n-2}{n} \rho \right| (1 - t^2)^{\frac{n-1}{2}} dt \\
+ \sum_{k=2}^{\infty} \left\{ \int_{-1}^{1} \left| t - \frac{n-2}{n} \rho \right| (1 - t^2)^{\frac{n-3}{2}} C_{k-2}^{\frac{n}{2}} \left(\frac{n-2}{n} \rho \right) dt \right\} \rho^k.
\]

Then (9) follows by an application of Lemma 6 below, with \(\lambda = \frac{n-2}{2} \) and \(s = \frac{n-2}{n} \rho \).

Lemma 6 ([15 Lemma 5]). Let \(\lambda > -1/2 \) and \(-1 < s < 1\). Then we have

\[
\int_{-1}^{1} |x-s|(1-x^2)^{\lambda-\frac{1}{2}} C_k^{\lambda}(x) dx
\]

\[
= \frac{8\lambda(\lambda+1)}{k(k-1)(k+2\lambda)(k+2\lambda+1)} (1 - s^2)^{\lambda+\frac{1}{2}} C_{k-2}^{\lambda+2}(s)
\]

for \(k = 2, 3, \ldots \).
Step 2. We claim the formula

\[
\Phi''(\rho) = \frac{2(n-2)^2}{n^2} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=0}^{\infty} C_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right)^k \rho^k
\]

\[
- \frac{4(n-2)^2}{n(n-1)} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=0}^{\infty} (n-1)_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right)^k \rho^k
\]

\[
+ \frac{2(n-2)}{n+1} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=0}^{\infty} (n+2)_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right)^k \rho^k.
\]

The proof is similar to that of Lemma 8 in [15]. In view of (11), we write

\[
\Phi_1(\rho) := \int_{-1}^{1} \left| \frac{n-2}{n} \rho - x \right| (1-x^2)^{\frac{n-4}{2}} dx,
\]

\[
\Phi_2(\rho) := (n-2) \rho \int_{-1}^{1} \left| \frac{n-2}{n} \rho - x \right| (1-x^2)^{\frac{n-4}{2}} x dx,
\]

\[
\Phi_3(\rho) := \sum_{k=2}^{\infty} \frac{2n(n-2)}{k(k-1)(n+2)(k+n-1)} \times \left\{ \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=2}^{\infty} C_{k-2}^{\frac{n+2}{n}} \left(\frac{n-2}{n} \rho \right) \right\} \rho^k.
\]

Straightforward computations yield

\[
\Phi_1''(\rho) = \frac{2(n-2)^2}{n^2} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=0}^{\infty} C_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right)
\]

and

\[
\Phi_2''(\rho) = \frac{2(n-2)^2}{n^2} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=0}^{\infty} C_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right) \rho
\]

\[
- \frac{4(n-2)^2}{n(n-1)} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=1}^{\infty} (n-1)_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right) \rho^k
\]

\[
+ \frac{2(n-2)}{n+1} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=0}^{\infty} (n+2)_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right) \rho^k.
\]

So, it remains to show that

\[
\Phi_3''(\rho) = \frac{2(n-2)^2}{n^2} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=2}^{\infty} C_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right) \rho^k
\]

\[
- \frac{4(n-2)^2}{n(n-1)} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=1}^{\infty} (n-1)_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right) \rho^k
\]

\[
+ \frac{2(n-2)}{n+1} \left[1 - \frac{(n-2)^2}{n^2} \rho^2 \right] \sum_{k=0}^{\infty} (n+2)_k \frac{n-2}{n} \left(\frac{n-2}{n} \rho \right) \rho^k.
\]

We need the following lemma.
Lemma 7 ([15] Lemma 4). If \(\lambda \neq 1 \) then

\[
\frac{d}{dx} \left\{ (1 - x^2)^{\lambda - \frac{1}{2}} C_k(x) \right\} = -(k + 1)(k + 2\lambda - 1) \frac{1}{2(\lambda - 1)} (1 - x^2)^{\lambda - \frac{3}{2}} C_{k+1}(x).
\]

Applying Lemma 7 successively, it follows that

\[
\frac{d}{d\rho} \left\{ \left[1 - \left(\frac{n - 2)^2}{n^2} \rho^2 \right)^{\frac{n+1}{2}} \right] C_k^{\frac{n+2}{2}} \left(\frac{n-2}{n} \rho \right) \right\} = \frac{n-2}{n} \frac{k(k+n-2)(k+n-1)}{n(n-2)} \left[1 - \left(\frac{n - 2)^2}{n^2} \rho^2 \right)^{\frac{n-3}{2}} C_k^{\frac{n+2}{2}} \left(\frac{n-2}{n} \rho \right) \right],
\]

and hence

\[
\Phi_3''(\rho) = \sum_{k=2}^{\infty} \frac{2n(n-2)}{k(k-1)(k+n-2)(k+n-1)} \rho^k
\]

\[
\times \left(\frac{d^2}{d\rho^2} \left\{ \left[1 - \left(\frac{n - 2)^2}{n^2} \rho^2 \right)^{\frac{n+1}{2}} \right] C_k^{\frac{n+2}{2}} \left(\frac{n-2}{n} \rho \right) \right\} \rho^k + 2 \frac{d}{d\rho} \left\{ \left[1 - \left(\frac{n - 2)^2}{n^2} \rho^2 \right)^{\frac{n+1}{2}} \right] C_k^{\frac{n+2}{2}} \left(\frac{n-2}{n} \rho \right) \right\} \frac{d}{d\rho} (\rho^k) + \left[1 - \left(\frac{n - 2)^2}{n^2} \rho^2 \right)^{\frac{n+1}{2}} C_k^{\frac{n+2}{2}} \left(\frac{n-2}{n} \rho \right) \right] \frac{d^2}{d\rho^2} (\rho^k) \right).
\]

This is precisely the desire identity ([13], in view of that

\[
\frac{(n-1)_k}{(n)_k} = \frac{n-1}{n+k-1} \quad \text{and} \quad \frac{(n)_k}{(n+2)_k} = \frac{n(n+1)}{(n+k)(n+k+1)}.
\]
Step 3. We are now ready to conclude the proof of the Proposition 4.

Denote the three terms in the right hand side of (12) by I, II and III respectively. By the generating relation (10), we have

\begin{align}
I &= \frac{2(n-2)^2}{n^2} \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]^{\frac{n+1}{2}} \left[1 - 2 \left(\frac{n-2}{n} \rho + \rho^2 \right)^{-\frac{n+1}{2}} \right. \\
&= \frac{2(n-2)^2}{n^2} \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]^{\frac{n+1}{2}} \left(1 - \frac{n-4}{n} \rho^2 \right)^{\frac{n+1}{2}}.
\end{align}

For II, we shall make use of the following

Lemma 8 ([22] p.279, (8)). Suppose that $\nu, \lambda \in \mathbb{R}$ and $2\lambda \neq 0, -1, -2, \ldots$. Then the identity

\begin{equation}
(1 - xz)^{-\nu} \frac{\Gamma(n+\nu+1)}{\Gamma(\lambda+\frac{1}{2})} \frac{z^2(x^2-1)}{(1-xz)^2} = \sum_{k=0}^{\infty} (\nu)_k C_k^{\lambda}(x) z^k
\end{equation}

holds, whenever both sides make sense.

We apply (15) with $\nu = n-1$ and $\lambda = \frac{\rho}{2}$ to obtain

\begin{align}
II &= -\frac{4(n-2)^2}{n(n-1)} \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]^{\frac{n+1}{2}} \left(1 - \frac{n-2}{n} \rho^2 \right)^{-n+1} \\
&\quad \times \, _2F_1 \left[\frac{n-1}{2}, \frac{n+1}{2}; \frac{n}{2} \frac{(n-2)^2}{n^2 \rho^2} - 1 \right].
\end{align}

On the other hand,

\begin{equation}
\frac{2}{n-2} \frac{\rho^2 \left((a-2)^2 \rho^2 - 1 \right)}{(1 - \frac{n-2}{n} \rho^2)^2}
\end{equation}

which follows from Pfaff's transformation formula ([6] p.105, (4)))

\[_2F_1 \left[\frac{1}{2}, \frac{n+1}{2}; \frac{n}{2} \frac{1 - (n-2)^2 \rho^2}{1 - \frac{n-2}{n} \rho^2} \right]. \]

Substituting (17) into (16) yields

\begin{align}
II &= -\frac{4(n-2)^2}{n(n-1)} \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]^{\frac{n+1}{2}} \left(1 - \frac{n-2}{n} \rho^2 \right) \\
&\quad \times \left(1 - \frac{n-4}{n} \rho^2 \right)^{-\frac{n}{2}} \, _2F_1 \left[\frac{n+1}{2}, \frac{n}{2} \frac{1 - (n-2)^2 \rho^2}{1 - \frac{n-4}{n} \rho^2} \right].
\end{align}
In the same way,

\begin{equation}
III = \frac{2(n-2)}{n+1} \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]^{\frac{n+1}{2}} \left(1 - \frac{n-2}{n \rho^2} \right)^{-n} \\
\times \; _2F\!\!\!_1 \left[\begin{array}{c}
\frac{n}{2}, \frac{n+1}{2} \\
\frac{n+3}{2}
\end{array}; \frac{\rho^2 \left(\frac{(n-2)^2}{n^2 \rho^2} - 1 \right)}{(1 - \frac{n-2}{n \rho^2})^2}\right]
\end{equation}

Applying Gauss’ contiguous relation \([\text{[6, p.103, (38)]})

\begin{equation}
(c-b)z \; _2F\!\!\!_1 \left[\begin{array}{c}
a, b \\
c+1; z\end{array} \right] = c \; _2F\!\!\!_1 \left[\begin{array}{c}
a-1, b \\
c; z\end{array} \right] - c(1-z) \; _2F\!\!\!_1 \left[\begin{array}{c}
a, b \\
c; z\end{array} \right],
\end{equation}

with \(a=1, b=\frac{n}{2}, c=\frac{n+1}{2}\) and

\begin{equation}
z = \frac{\rho^2 \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]}{1 - \frac{n-4}{n \rho^2}},
\end{equation}

we have

\begin{equation}
\; _2F\!\!\!_1 \left[\begin{array}{c}
\frac{n}{2} \\
\frac{n+3}{2}\end{array}; \frac{\rho^2 \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]}{1 - \frac{n-4}{n \rho^2}}\right]
= \frac{n+1}{\rho^2} \left[1 - \frac{n-4}{n \rho^2} \right]^{-\frac{n+1}{2}} \\
- \frac{n+1}{\rho^2} \left[1 - \frac{n-2}{n \rho^2} \right] \; _2F\!\!\!_1 \left[\begin{array}{c}
\frac{n}{2} \\
\frac{n+3}{2}\end{array}; \frac{\rho^2 \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]}{1 - \frac{n-4}{n \rho^2}}\right].
\end{equation}

Substituting this into \((19)\), we obtain

\begin{equation}
III = \frac{2(n-2)}{\rho^2} \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]^{\frac{n+1}{2}} \left(1 - \frac{n-4}{n \rho^2} \right)^{-\frac{n+1}{2}} \\
- \frac{2(n-2)}{\rho^2} \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]^{\frac{n+1}{2}} \left(1 - \frac{n-4}{n \rho^2} \right)^{-\frac{n+1}{2}} \\
\times \left[1 - \frac{n-2}{n \rho^2} \right]^2 \; _2F\!\!\!_1 \left[\begin{array}{c}
\frac{\nu}{2} \\
\frac{n+1}{2}, \frac{n+3}{2}\end{array}; \frac{\rho^2 \left[1 - \frac{(n-2)^2}{n^2 \rho^2} \right]}{1 - \frac{n-4}{n \rho^2}}\right].
\end{equation}

Summing up \((13)\), \((18)\) and \((20)\) leads to the desired equality \((7)\).
4. Proof of Proposition 5

The proof of Proposition 5 is rather lengthy, we only sketch it. Write

\[\varphi(t) := \frac{t \left[1 - \frac{(n-2)^2}{n^2} t \right]}{1 - \frac{n-4}{n} t}, \quad t \in [0, 1]. \]

It is easy to check that the inequality (8) is equivalent to

\[\varphi(t) \left[1 - \varphi(t) \right] \frac{1}{2} \binom{n-3}{n-2} \binom{1-\varphi(t)}{n-1} > \frac{t \left[1 - \frac{(n-2)^2}{n^2} t \right]^{n-3} \left[1 - \frac{(n-2)(n-3)}{n^2} t \right]}{\left(1 - \frac{n-4}{n} t\right)^{n-4} \left[1 - \frac{(n-2)(n-3)}{n(n-1)} t \right]}. \]

So we define

\[\Psi(t) := \varphi(t) \left[1 - \varphi(t) \right] \frac{1}{2} \binom{n-3}{n-2} \binom{1-\varphi(t)}{n-1} \]

and claim that \(\Psi(t) > 0 \) for all \(t \in (0, 1) \). Since \(\Psi(0) = 0 \), it suffices to show that \(\Psi'(t) > 0 \) for all \(t \in (0, 1) \).

Applying the elementary relation ([6, p.102, (23)])

\[\frac{d}{dz} \left\{ \binom{z-a}{c-a} (1-z)^{a+b-c} \binom{a+b-c}{c} \right\} = (c-a) \binom{z-a-1}{c-a} (1-z)^{a+b-c-1} \binom{a-1}{c} \]

and noting that

\[\varphi'(t) = \frac{(1 - \frac{n-2}{n} t) \left[1 - \frac{(n-2)(n-4)}{n^2} t \right]}{(1 - \frac{n-4}{n} t)^2}, \]
we obtain
\[
\frac{d}{dt} \left\{ \varphi(t) \frac{n-1}{2} \left[1 - \varphi(t) \right]^{\frac{1}{2}} \frac{d}{dt} \left[1, \frac{n}{n+1} ; \varphi(t) \right] \right\}
\]
\[
= \frac{n-1}{2} \varphi(t) \frac{n-3}{n} \left[1 - \varphi(t) \right]^{-\frac{1}{2}} \varphi'(t)
\]
\[
= \frac{n-1}{2} t^{\frac{n-3}{n}} \left[1 - \frac{n-4}{n} t \right]^{-\frac{2}{n}} \left[1 - \frac{(n-2)^2}{n^2} t \right]^{\frac{n-3}{n-1}} \left[1 - \frac{(n-2)(n-4)}{n^2} t \right]^{\frac{n-3}{n-3}} \left[1 - \frac{(n-2)(n-3)}{n(n-1)} t \right]^{\frac{n-3}{n-3}} \left[1 - \frac{(n-2)(n-3)}{n(n-1)} t \right]^{-2}
\]
\[
\times \left\{ \frac{n-1}{2} - \frac{12 - 46n + 56n^2 - 26n^3 + 4n^4}{2n^2(n-1)} \right\}
\]

Also, a direct calculation yields
\[
\frac{d}{dt} \left\{ t^{\frac{n-1}{2}} \left[1 - \frac{(n-2)^2}{n^2} t \right]^{\frac{n-3}{n}} \left[1 - \frac{(n-2)(n-3)}{n(n-1)} t \right]^{\frac{n-3}{n-3}} \left[1 - \frac{(n-2)(n-3)}{n(n-1)} t \right]^{-2}
\]
\[
\times \left\{ \frac{n-1}{2} - \frac{10 - 49n + 57n^2 - 26n^3 + 4n^4}{2n^2(n-1)} \right\}
\]

It follows that
\[
\Psi'(t) = \frac{t^{\frac{n-1}{2}}}{2n^5(n-1)} \left(1 - \frac{n-4}{n} t \right)^{-\frac{2}{n}} \left[1 - \frac{(n-2)^2}{n^2} t \right]^{\frac{n-3}{n}} \left[1 - \frac{(n-2)(n-3)}{n(n-1)} t \right]^{\frac{n-3}{n-3}} \left[1 - \frac{(n-2)(n-3)}{n(n-1)} t \right]^{-2}
\]
\[
\times \left\{ \frac{n-1}{2} - \frac{10 - 49n + 57n^2 - 26n^3 + 4n^4}{2n^2(n-1)} \right\}
\]
\[
\times \left\{ n^3(n^2 - 3n - 2) - 2n(n-2)(n-4)(n^2 - 3n + 1) t
\]
\[
+ (n-2)^2(n-3)(n-4)^2 t^2 \right\}.
\]
It is easily seen that, when $n \geq 4$, the quadratic polynomial
\[n^3(n^2 - 3n - 2) - 2n(n - 2)(n - 4)(n^2 - 3n + 1) t + (n - 2)^2(n - 3)(n - 4)^2 t^2 \]
is always positive on the interval $[0,1]$. Consequently $\Psi'(t) > 0$ for all $t \in [0,1]$. This completes the proof.

References

[1] R. Askey, Orthogonal Polynomials and Special Functions, SIAM, Philadelphia, 1975.
[2] G. Andrews, R. Askey and R. Roy, Special Functions, *Encyclopedia of Mathematics and its Applications*, 71, Cambridge University Press, Cambridge, 1999.
[3] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, second edition, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001.
[4] H. Chen, The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings, Sci. China Math., 56(2013), 2327–2334.
[5] F. Colonna, The Bloch constant of bounded harmonic mappings, *Indiana University Math. J.*, 38(1989), 829-840.
[6] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, *Higher Transcendental Functions*, Vol. I. McGraw-Hill, New York, 1953.
[7] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, *Higher Transcendental Functions*, Vol. II. McGraw-Hill, New York, 1953.
[8] D. Kalaj, Heinz-Schwarz inequalities for harmonic mappings in the unit ball. Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 457–464.
[9] D. Kalaj, A proof of Khavinson conjecture in \mathbb{R}^4, *Bull. London Math. Soc.*, 49(4)(2017), 561–570.
[10] D. Kalaj and M. Vuorinen, On harmonic functions and the Schwarz lemma, *Proc. Amer. Math. Soc.*, 140(2012), 161-165.
[11] D. Khavinson, An extremal problem for harmonic functions in the ball, *Canadian Math. Bulletin*, 35(1992), 218–220.
[12] G. Kresin and V. Maz’ya, Sharp pointwise estimates for directional derivatives of harmonic function in a multidimensional ball, *J. Math. Sci.*, 169(2010), 167–187.
[13] G. Kresin and V. Maz’ya, Optimal estimates for the gradient of harmonic functions in the multidimensional half-space, *Discrete Contin. Dyn. Syst.* 28(2010), 425–440.
[14] G. Kresin and V. Maz’ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems Mathematical Surveys and Monographs 183, American Mathematical Society, 2012.
[15] C. Liu, A proof of the Khavinson conjecture. Math. Ann., to appear. (https://doi.org/10.1007/s00208-020-01983-w)
[16] M. Marković, On harmonic functions and the hyperbolic metric, *Indag. Math.* 26(2015), 19-23.
[17] M. Marković, Solution to the Khavinson problem near the boundary of the unit ball, *Constructive Approximation*, 45(2)(2017), 243–271.
[18] M. Mateljević, Schwarz lemma and Kobayashi Metrics for harmonic and holomorphic functions, *J. Math. Anal. Appl.* 464(1)(2018), 78-100.
[19] P. Melentijević, Invariant gradient in refinements of Schwarz and Harnack inequalities, *Ann. Acad. Sci. Fenn. Math.* 43(2018), 391-399.
[20] P. Melentijević, A proof of the Khavinson conjecture in \mathbb{R}^3. *Adv. Math.* 352 (2019), 1044–1065.
[21] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, Berlin-Heidelberg-New York, 1984.
[22] E.D. Rainville, Special Functions. The Macmillan Co. Inc., New York, 1960.