Review

Chemistry of the Genus *Plectranthus*

M. Abdel-Mogib and H. A. Albar

Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21413, P.O.Box 9028, Saudi Arabia

__

Abstract

This review presents the phytochemical constituents of the genus *Plectranthus* up to 1999. Only a tetrameric derivative of caffeic acid was isolated from *P. japonicus*, but a group of long-chain alkylphenols, of possible taxonomic significance in the genus, was isolated. As a genus of the subfamily Nepetoideae, *Plectranthus* is free from iridoid glycosides and rich in essential oil (i.e. > 0.5% volatile oil on a dry weight basis).

Diterpenoids are the more common secondary metabolites in *Plectranthus*. The majority of them are highly modified abietanoids. It seems to be similar to the pattern of diterpenoids of *Salvia*, but no clerodane diterpenoids were found in *Plectranthus*.

Keywords: Plectranthus, Coleus, Labiatae, phytochemical constituents, abietane diterpenoids.
Introduction

Labiatae is a large family occurs worldwide and has species that are adapted to almost all habitats and altitudes. The genus *Plectranthus* L' He'r. belongs to subfamily Nepetoideae of tribe Ocimeae [1]. It comprizes about eighty species worldwide, as indicated in this review. *Coleus* Lour. is taxonomically the closest to *Plectranthus* [2]. *Coleus* species are now generally accepted as belonging to either *Plectranthus* or to *Solenostemon* Thonn. (eds.) [3]. Many combinations are made between *Plectranthus* and *Coleus* species [4,5].

In *Plectranthus*, the upper lip of the flower is unusually four-lobed and the large shoe-shaped lower lip is formed from a single lobe, while in Labiatae the upper lip often consisting of two lobes and the lower consisting of three [6].

Many *Plectranthus* species are economic and medicinal plants. Several species may be grown as ornamentals; like *P. tenuiflorus* in Saudi Arabia. The tubers of an unidentified *Plectranthus* species are eaten in Swaziland [7]. Livingstone potato tubers, *P. esculentus* is cultivated in tropical Africa for its edible tubers [8,9]. *P. floribundus* is cultivated in Nigeria for its edible tubers; that are also relished in Natal [10,11]. In Polynesia, the seed-oil of *P. amboinicus* is applied to the ear for acute edematous otitis acuta [12]. The leaf extract of *P. tenuiflorus* is used in Saudi Arabia to treat ear infections [13]. The leaves of *P. asirensis* are used as an antiseptic dressing for wounds in Saudi Arabia [13]. The leaves of *P. caninus* are chewed in Africa to relieve toothache [14]. In East Africa the leaves of *P. elegans* are used as a vermicide [14]. *P. vettiveroides* is prescribed in Indian ayurvedic medicine against vomiting and nausea [15]. The East African medicinal plant *P. barbatus* is used as a remedy for stomach-ache and as a purgative, and is also resistant to insect attack, from which an aphid antifeedant diterpene was isolated [16].

The chemistry of *Plectranthus* is still not well known. This is the first review of chemical constituents of *Plectranthus* species.

The main phytochemical constituents of the genus *Plectranthus* are diterpenoids, essential oils and phenolics.
Diterpenoids

About 140 diterpenoids were identified from the colored leaf-glands of *Plectranthus* species. The majority of them are highly modified abietanoids, in addition to some phyllocladanes (structures D140-D146), *ent*-kaurenes (structures D147-D154) and a seco-kaurene (structure D155). Abietanoids could be classified, according to structure variation, into royleanones (structures D1-D37), spirocoleons (structures D38-D66), vinylogous quinones (also named extended quinones) (structures D67-D76), quinone methides (structures D77-D93), acylhydroquinones (structures D94-D117), (4→3) abeo-acylhydroquinones (structures D118, D119), phenolic abietanoids (structures D120-D122), 1,4-phenanthraquinones (structures D123-D127), dimeric abietanoids (structures D128-D136) and seco-abietanoids (structures D137-D139). Names of these diterpenoids are listed in Table 2. Distribution of diterpenoids and other constituents in species of *Plectranthus* is shown by Table 1.

Essential oils

Plectranthus is one of the oil-rich genera belonging to the subfamily Nepetoideae [17]. Table 1 shows *Plectranthus* species that have been investigated for essential oils. The main constituents of essential oils of *Plectranthus* are mono- and sesquiterpenes. As instances, constituents of essential oil of *P. rugosus* [18], as eluted from fused silica capillary column, are α-pinene, camphene, β-pinene, sabinene, 3-carene, myrcene, α-phellandrene, α-terpinene, limonene, β-phellandrene, cis-β-ocimene, γ-terpinene, trans-β-ocimene, *p*-cymene, terpinolene, thujone, 1-nonen-3-ol, α-copane, β-bourbonene, β-cubebene, linalool, caryophyllene, terpinen-4-ol, humulene, γ-muurolene, germacrene D, piperitone epoxide, α-muurolene, bicyclogermacrene, δ-cadinene, γ-cadinene, α-curcumene, caryophyllene oxide, T-cadinol, torreyol and α-cadinol. On the same GC column (fused silica capillary), essential oil of *P. amboinicus* [19] was separated into α-pinene, camphene, 1-octen-3-ol, β-pinene, myrcene, α-phellandrene, Δ-3-carene, α-
terpinene, *p*-cymene, limonene, (Z)-β-ocimene, (E)-β-ocimene, α-phelandrène, γ-terpinene, α-terpinolene, linalool, camphor, 1-terpinen-4-ol, α-terpineol, thymol, carvacrol, α-cubebene, β-cubebene, β-elemene, β-caryophyllene, α-bergamotene, (Z)-β-farnesene, α-humulene, β-guaiene, (-)α-selinene, β-bisabolene, δ-cadinene, caryophyllene oxide, δ-cadinol, α-cadinol, farnesol, calamenol and (-)-4β-7β-aromadendrandiol. Also on fused silica capillary column, essential oil of *P. fruticosus* [20] gave α-thuyene, sabinene, γ-terpinene, β-bourbonene, linalool, terpinen-4-ol, sabinyl acetate, α-humulene, aromadendrene, α-cubebene, β-bisabolene, γ-cadinene, α-elemene, *trans*-farnesol and *trans*-copaene.

Long-chain alkylphenols

A group of long-chain alkylphenols, of possible taxonomic significance in the genus, was isolated [28,29]. From *P. albidus* long-chain alkylphenols **L1-L8, L10-L12** were isolated and showed a significant in vitro antioxidant activity [28]. Antioxidant activity guided fractionation of extracts of *P. sylvestris* [29] and HPLC separation yielded the oxygenated long-chain alkylcatechols **L9, L13-L18**.

Miscellaneous constituents

Only one aristolane sesquiterpene, 1(10)-aristolen-13-al **M1**, was isolated from *P. hereroensis* [30].

Five triterpenoids, named plectranthoic acid, **M2**, acetylplectranthoic acid, **M3**, plectranthadiol, **M4**, plectranthoic acid A, **M5** and plectranthoic acid B, **M6**, in addition to β-sitosterol were isolated from *P. rugosus* [31, 32]. From the same species Misra *et al.* [85] isolated the triterpenoids oleanolic acid **M7**, ursolic acid **M8** and betulin **M9**, in addition to β-sitosterol and hexacosanol.

Flavonoids seem to be rare in *Plectranthus*. Only two flavonoids were identified, 4′,7-dimethoxy-5,6-dihydroxyflavone, **M10** from *P. ambiguus* [33] and chrysosplenetin, **M11** from *P. marruboides* [34].
From *P. mollis* (= *P. incanus*), Mahmoud *et al.* reported the isolation of vernolic and cyclopropenoid fatty acids [35].

From *P. japonicus* (= *Rabdosia japonica*), a tetrameric derivative of caffeic acid was isolated [36].

Conclusion

Although the genus *Plectranthus* comprises many medicinal and economic plants [80], its chemistry remains poorly known. Caffeic acid and its derivatives are of widespread occurrence in the Labiatae family and of particular attention as chemotaxonomic markers. Chlorogenic acid appears to be of almost universal occurrence within this family, whereas rosmarinic acid is restricted to the subfamily Nepetoideae [81]. Only a tetrameric derivative of caffeic acid was isolated from *P. japonicus* [36]. But a group of long-chain alkylphenols, of possible taxonomic significance in the genus, was isolated [28,29]. Generally, the subfamily Lamioideae is rich in iridoid glycosides, whereas they are absent from the Nepetoideae [82]. No iridoid glycosides were isolated from *Plectranthus*.

Generally, *Plectranthus* species are essential-oil-rich (i.e. > 0.5% volatile oil on a dry weight basis), in agreement with the general situation that the Nepetoideae are oil-rich, whilst the Lamioideae are oil-poor [83].

Diterpenoids are the more common secondary metabolites in *Plectranthus*. The majority of them are highly modified abietanoids, in addition to some phyllocladanes and *ent*-kaurenes. It seems to be similar to the pattern of diterpenoids of *Salvia* [84], but no clerodane diterpenoids were found in *Plectranthus*.
References

1. Cantino, P.D.; Harley, R.M.; Wagstaff, S.J. Genera of Labiatae: Status and Classification. In R.M. Harley & T. Reynolds (Editors). Advances in Labiate Science, Royal Botanic Gardens, Kew, 1992, pp. 511.

2. Codd, L.F. Munich. Bot. Staatssamml. Mitt, 1971, 10, 245.

3. Rudall, P.J.; Clark, L. The Megagametophyte in Labiatae. In R.M. Harley & T. Reynolds (Editors). Advances in Labiate Science, Royal Botanic Gardens, Kew, 1992, pp. 65.

4. Morton, J.K. Novon, 1998, 8, 265.

5. Van Jaarsveld, E.J.; Edwards, T.J. Bothalia, 1997, 27, 1.

6. Collenette, S. Flowers of Saudi Arabia, Scorpion Publishing Ltd., London, 1985, pp 266.

7. A-Ogle, B. Mitt. Inst. Allg. Bot. Hamburg, 1990, 23b, 895.

8. Purseglove, J.W. Tropical Crops. Dicotyledons, Longman Scientific & Technical, Burnt Mill, 1987, pp 719.

9. Temple, V.J.; Ojobe, T.O.; Onobun, C.E. J. Sci. Food Agr., 1991, 56, 215.

10. Holland, J.H. The Useful Plants of Nigeria. Bull. Misc. Inform. Kew Addit., 1915, Ser. 9, 527.

11. Perrot, E. Matières Premières Usuelles du Règne Végétal. Tome Second., 1944, 1089-2343 pp. Masson, Paris.

12. Zepernick, B. Arzneipflanzen der Polynesier, Dietrich Reimer, Berlin, 1972, pp 307.

13. Abulfatih, H.A. Medicinal Plants in Southwestern Saudi Arabia, Al Thaghr Press, Khamis, 1987, pp 162.

14. Kokwaro, J.O. Medicinal Plants of East Africa, East African Literature Bureau, Kampala, 1976, pp 384.

15. Dash, V.B.; Kashyap, V.L. Materia Medica of Ayurveda based on Ayurveda Saukhyan of Todarananda, Concept Publishing Company, New Delhi, 1987, pp 711.

16. Kubo, I.; Matsumoto, T.; Tori, M.; Asakawa, Y. Chem. Lett., 1984, 1513.
17. Cantino, P.; Sanders, R. Syst. Bot, 1986, 11, 163.
18. Weyerstahl, P.; Kaul, V.K.; Meier, N.; Weirauch, M.; Marschall, H. Planta Med., 1983, 48, 99.
19. Vera, R.; Mondon, J.M.; Pieribattesti, J.C. Planta Med., 1993, 59, 182
20. Fournier, G.; Paris, M.; Dumitresco, S.M.; Pages, N.; Boudene, C. Planta Med., 1986, 486.
21. Smith, R.M.; Bahaffi, S.O.; Albar, H.A. J. Essent. Oil Res., 1996, 8, 447.
22. Mwangi, J.W.; Lwande, W.; Hassanali, A. Flav. Fragr., 1993, 8, 51.
23. Zollo, P.H.A.; Biyiti, L.; Tchoumbougna, F.; Menut, C.; Lamaty, G.; Bouchet, P. Flav. Fragr., 1998, 13, 107.
24. Ascensao, L.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Schripsem, J.; Deans, S.G.; Scheffer, J.C.J. International J. Plant Sci., 1998, 159, 31.
25. Buchbauer, G.; Jirovetz, L.; Wasicky, M.; Nikiforov, A. J. Essent. Oil Res., 1993, 5, 311.
26. Hari, L.; Bukuru, J.; Pooter, H.L.; Demyttenaere, J.R.; Fierens, H. J. Essent. Oil Res., 1996, 8, 87.
27. Shah, G.C.; Bhandari, R.; Mathela, C.S. J. Essent. Oil Res., 1992, 4, 57.
28. Burgi, C.; Rüedi, P. Helv. Chim. Acta, 1993, 76, 1890.
29. Juch, M.; Rüedi, P. Helv. Chim. Acta, 1997, 80, 436.
30. Rodriguez, B.; Delatorre, M.C.; Simoes, M.F.; Bbatista, O.; Nascimento, J.; Duarte, A.; Mayer, R. Phytochemistry, 1995, 38, 905.
31. Razdan, T.K.; Kachroo, V.; Harkar, S.; Koul, G.L. Tetrahedron, 1982, 38, 991.
32. Razdan, T.K.; Kachroo, V.; Harkar, S.; Koul, G.L.; Dhar, K.L. Phytochemistry, 1982, 21, 409.
33. Liu, G.; Rüedi, P. Phytochemistry, 1996, 41, 1563.
34. Hensch, M.; Eugster, C.H. Helv. Chim. Acta, 1972, 55, 1610.
35. Mahmood, C.; Daulatabad, J.D.; Mirajkar, A.M. J. Chem. Techn. Biotechn., 1989, 45, 143.
36. Agata, I.; Hatano, T.; Nishibe, S.; Okuda, T. Phytochemistry, 1989, 28, 2447.
37. Rüedi, P. *Helv. Chim. Acta*, 1984, 67, 1116.
38. Adler, A.C.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1984, 67, 1523.
39. Rüedi, P. *Helv. Chim. Acta*, 1986, 69, 972.
40. Arihara, S.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1977, 60, 1443.
41. Phadnis, A.P.; Patwardhan, S.A.; Gupta, A.S. *Indian J. Chem. B*, 1987, 26, 15.
42. Phadnis, A.P.; Patwardhan, S.A.; Gupta, A.S.; Dhaneshwar, N.N.; Tavale, S.S.; Gurusow, T.N. *J. Chem. Soc., Perkin Trans. I*, 1986, 655.
43. Huang, H.; Xu, Y.; Sun, H. *Phytochemistry*, 1989, 28, 2753.
44. Künzle, J.M.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1987, 70, 1911.
45. Buchbauer, G.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1978, 61, 1969.
46. Dellar, J.E.; Cole, M.D.; Waterman, P.G. *Phytochemistry*, 1996, 41, 735.
47. Vichkanova, S.A.; Rubinchik, M.A. *Farmacol. Toksikol.*, 1966, 29, 605; CA. 1967, 66, 36350r.
48. Uchida, M.; Miyase, T.; Yoshizaki, F.; Bieri, J.H.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1981, 64, 2227.
49. Teixeira, A.P.; Batista, O.; Simoes, M.F.; Nascimento, J.; Duarte, A.; dela Torre, M.C.; Rodriguez, B. *Phytochemistry*, 1997, 44, 325.
50. Bbatista, O.; Simoes, M.F.; Nascimento, J.; Riberio, S.; Duarte, A.; Rodriguez, B.; dela Torre, M.C. *Phytochemistry*, 1996, 41, 571.
51. Bbatista, O.; Simoes, M.F.; Duarte, A.; Valdeira, M.L.; dela Torre, M.C.; Rodriguez, B. *J. Nat. Prod.*, 1994, 57, 858.
52. Wang, M.T.; Liu, C.J.; Li, J.C. *Phytochemistry*, 1990, 29, 664.
53. Schmidt, J.M.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1982, 65, 2136.
54. Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1978, 61, 709.
55. Katti, S.B.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1982, 65, 2189.
56. Matloubi-Moghadam, F.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1987, 70, 975.
58. Adler, A.C.; Rüedi, P.; Prewo, R.; Bieri, J.H.; Eugster, C.H. Helv. Chim. Acta, 1986, 69, 1395.
59. Adler, A.C.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta, 1984, 67, 1003.
60. Adler, A.C.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta, 1984, 67, 1531.
61. Potgieter, C.J.; Edwards, T.J.; Miller, R.M.; VanStaden, J. Plant Syst. Evol., 1999, 218, 99.
62. VanJaarsveld, E.J.; Edwards, T.J. Bothalia, 1997, 27, 1.
63. Forster, P.I. Haseltonia, 1996, 47.
64. Boudarga, K.; Dexheimer, J. Agronomie (France), 1990, 10, 417.
65. Morton, J.K. Novon, 1998, 8, 265.
66. Sharma, A.D.; Munjal, R.L. Indian J. Mycol. Plant Pathol., 1979, 8, 230.
67. Herppich, W.B.; Herppich, M. Flora Morphol. Geobot. Oekophysiol. Jena, 1996, 191, 401.
68. Uchida, M.; Rüedi, P.; Eugster, C.H. Helv. Chim. Acta, 1980, 63, 225.
69. Kyesmu, P.M.; Akueshi, C.O. Nigerian J. Botany, 1989, 2, 1.
70. Forster, P.I. Haseltonia, 1998, 14.
71. Singh, A.K. Balwant. Vidyapeeth. J. Agric. Sci. Res., 1977, 16, 77.
72. Tanaka, H. J. Jap. Bot., 1972, 47, 250.
73. Stirton, C.H. Bothalia, 1977, 12, 229.
74. Ascensao, L.; Mota, L.; Castro, M.D. Annals Bot., 1999, 84, 437.
75. Brummitt, R.K.; Seyani, J.H. Kew Bull. London, 1987, 42, 687.
76. Thoppil, J.E. Acta Pharm., 1997, 47, 213.
77. Zhang, Y.; Sha, D.; Sha, M.; Yuan, C. Chung. Kuo. Chung. Yao. Tsa. Chih., 1991, 16, 679.
78. Singh, N.P.; Sharma, B.D. J. Bombay Nat. Hist. Soc. Madras, 1982, 79, 712.
79. Shah, V.; Bhat, S.V.; Bajwa, B.S.; Dornauer, H.; de Souza, N.J. Planta Med., 1980, 39, 183.
80. Rivera Nunez, D.; Obon de Castro, C. *The ethnobotany of old world Labiatae* in *Advances in Labiate sciences*, R.M. Harley and T. Reynolds (Editors), Royal Botanic Gardens, Kew, 1992, 455.

81. von Litvienko, V.I.; Popova, T.P.; Simonjan, A.V.; Zoz, I.G.; Sokolov, V.S. *Planta Med*, 1975, 27, 372.

82. Kooiman, P. *Acta Bot. Neerl.*, 1972, 21, 417.

83. Cantino, P.D.; Sanders, R.W. *Syst. Bot.*, 1986, 11, 163.

84. Rodriguez-Hahn, L.; Esquivel, B.; Cardenas, J.; Ramamoorthy, T.P. *The distribution of diterpenoids in Salvia* in *Advances in Labiate sciences*, R.M. Harley and T. Reynolds (Editors), Royal Botanic Gardens, Kew, 1992, 335.

85. Misra, P.S.; Misra, G.; Nigam, S.K.; Mitra, C.R. *Lloydia*, 1971, 34, 265.

86. Arihara, S.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1983, 66, 429.

87. Miyase, T.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1977, 60, 2770.

88. Miyase, T.; Rüedi, P.; Eugster, C.H. *Helv. Chim. Acta*, 1977, 60, 2789.
Table 1: Alphabetical list of *Plectranthus* species and isolated compounds from them.

Plectranthus species	Isolated chemical constituents	References
Abyssinian *P.* sp.	D1, D5, D9, D10, D12-D14, D21, D30	37
P. albidus	L1-L8, L10-L12	28
P. aliciae	—	62
P. alloplectus	—	63
P. ambiguus	D141-D146, flavonoid M10	33
P. amboinicus	Essential oil	19
P. argentatus	D4, D5, D8, D21, D25, D101, D102, D112	38
P. asirensis	—	13
P. australis	—	64
P. barbatus	D29, D65, D75, D76, D115, D117	39
	D65	16
P. burorum	—	65
P. caninus	D108, D109	40
	D59-D64	86
P. ciliatus	—	61
P. coeha	D148	41
	D147	42
P. coesia	—	66
P. coetsoides	D147, D149-D154	43
P. coleoides	Essential oil	25
P. cypriculoides	—	67
P. defoliatus	Essential oil	26
P. ekclosii	D86, M12-M15	68
P. edulis	D17, D18, D21, D22, D23, D24, D38-D48, D50, D55, D56, D66, D67, D69, D70, D94-D100, D106, D107, D118, D119, D137, D138	44
	D118	45
P. elegans	D93, D120	46
P. esculentus	—	69
P. fasciculatos	—	70
P. floribundus	—	11
P. fruticosus	Essential oil	20
P. gandicalyx	—	65
P. garckeanus	—	65
P. geradianus	—	71
P. glandulosus	Essential oil	23
P. glaucocalyx	An antimicrobial diterpenoid	47
P. grandidentatus	D68, D101, D102, D128-D134	48
	D5, D11	49
P. gratus	—	63
P. hadiensis	—	67
P. hereroensis	D9, D35, D36	50
	D37	51
	D9, D16	52
	Sesquiterpene M1	30
P. hilliardiae	—	61
P. incanu (= P. mollis)	Essential oil	27, 79
	Fatty acids	35
P. inflexus	—	72
Species	Code	Additional Information
-------------------------------	------	---
P. japonicus	D155	Caffeic acid derivative
P. japonicus var. glaucoalyx		
P. kapatensis		
P. lanuginosus		
P. lucidus		
P. madagascariensis		Essential oil
P. malvinus		
P. marrubioides		Flavonoid M11
P. melissoides		
P. mollis (= P. incanus)		
P. myrianthus	D128	
P. neochilus		
P. nilgherricus	D82, D83, D139, D140	
P. oribiensis		
P. ornatus		
P. parviflorus	D77, D82-D86	
P. pentheri		
P. porpeodon		
P. pseudobarbatus		
P. puberulentus		
P. purpuratus	D72, D73, D77, D79, D91, D92, D121, D122, D140	56
P. purpuratus subsp. montanus		
P. purpuratus subsp. tongaensis		
P. reflexus		
P. rugosus		Essential oil
Triterpenoids M2-M6 & β-sitosterol	51, 32	
P. saccatus subsp. pongdoensis		
P. saccatus var. longitubus		
P. sanguineus	D3, D4-D7, D9, D15, D21, D25, D26, D68, D99, D102, D128-D131, D139	57
P. schimperi		
P. sp. from the borders of Lake Kiwu, Rwanda	D19-D21, D27-D29, D49, D51, D75, D76, D104, D105, D113-D116, D123-D127	58
P. spectabilis		
P. stenophyllus		
P. stocksii		
P. strigosus	D77, D78, D82-D87	
P. sylvestris	L9, L13-L18	
P. tenuiflorus		Essential oil
P. vestitus		Essential oil
P. vettiveroides		
Species		
--------------------	---	
P. zatarhendi	67	
P. zatarhendi var.	67	
tomentosus	67	
P. zuluensis	61	
Table 2: Names of diterpenoids encountered in *Plectranthus* species.

diterp.	Name of diterpenoid	Diterp.	Name of diterpenoid
D1	Royleanone	D79	(11-Hydroxy-19-isovaleroyloxy-5,7,9(11),13-abietatetraen-12-one)
D2	6β, 7α-Dihydroxy-royleanone	D80	Fuerstione
D3	7-O-Formylhorninone	D81	3β-Acetoxyfuerstione
D4	6β-Hydroxy-7α-formyloxyroyleanone	D82	Parviflorone C
D5	6β-Hydroxy-7α-acetoxyroyleanone	D83	Parviflorone E
D6	6β-Hydroxyroyleanone	D84	Parviflorone B
D7	5,6-Dihydrocoleone U	D85	Parviflorone D
D8	6β-Formyloxy-7α-hydroxyroyleanone	D86	Parviflorone F
D9	Horminone	D87	Parviflorone G
D10	7α-Acetoxyroyleanone	D88	Lanugone M
D11	6β-Hydroxy-7α-acytoxyroyleanone	D89	Lanugone L
D12	Taxoquinone (= 7β-Hydroxyroyleanone)	D90	Lanugone N
D13	7-Oxoroyleanone	D91	6α,11-Dihydroxy-19-isovaleroyloxy-7,9(11),13-abietatrien-12-one
D14	8α,9α-Epoxo-7-Oxoroyleanone	D92	6α,11-Dihydroxy-19-senecioyloxy-7,9(11),13-abietatrien-12-one
D15	6β,7α-Dihydroxy(allyl)royleanone	D93	11-Hydroxy-12-oxo-7,9(11),13-abietatriene
D16	7α,12-Dihydroxy-17(15→16)-abeo-abieta-8,12,16-trien-11,14-dione	D94	(2',1S,3aR,10R)-8-(2'-Acetoxy-1'-methylethyl)-3,3a-dihydro-7,9,10-trihydroxy-3a,10b-dimethyl-1H-phenanthro[10,1-bc]furan-4(2H),6(10bH)-dione
D17	Lanugone A	D95	16-O-Acetylcoleon C
D18	(4bS,7R,8aR)-7-Formyloxy-4b,5,6,7,8,8a-hexahydro-3-hydroxy-4b,8,8-trimethyl-2-(2-propenyl)phenanthren-1,4-dione	D96	Coleon U
D19	Plectranthone F	D97	Coleon C
D20	Plectranthone G	D98	
D21	6β,7α-Dihydroxyroyleanone	D99	16-O-Acetylcoleon D
D22	(4bS,7R,8aR,9S,10S)-7-Formyloxy-	D100	(15S)-Coleon D
D23	4b,5,6,7,8,8a,9,10-octahydro-3,9,10-trihydroxy-4b,8,8-trimethyl-2-(2-propenyl)phenanthren-1,4-dione	D101	Coleon V
------	---	------	----------
D24	(4bS,7R,8aS,9S,10S)-4b,5,6,7,8,8a,9,10-Octahydro-3,9,10-trihydroxy-4b,7-dimethyl-8-methyliden-2-(2-propenyl)phenanthren-1,4-dione	D102	Coleon U
D25	Coleon-U-quinone	D103	(15S)-Coleon C
D26	8α,9α-Epoxy-8,9-dihydrocoleon-U-quinone	D104	(15S)-2α-Acetoxycoleon C
D27	Plectranthone H	D105	(15S)-Coleon H
D28	Plectranthone I	D106	(2′ξ,4aS,10aS)-1,2,3,4,4a,10a-Hexahydro-5,6,8-trihydroxy-7-(2′-hydroxypropyl)-1,1,4a-trimethylphenanthren-9,10-dione
D29	Plectranthone J	D107	(2′ξ,4aR)-2,3,4,4a-Tetrahydro-5,6,8,10-tetrahydroxy-7-(2′-hydroxypropyl)-1,1,4a-trimethylphenanthren-9(1H)-one
D30	6,7-Didehydroroleanone	D108	Coleon T
D31	Lanugone B	D109	Coleon S
D32	Lanugone C	D110	Lanugone R
D33	Lanugone D	D111	Lanugone S
D34	Lanugone E	D112	5,6-Dihydrocoleon U
D35	3β-Acetoxy-6β,7α,12-trihydroxy-17-((15→16);18(4→3)-bisabeo-abieta-4(19),8,12,16-tetraen-11,14-dione	D113	(15S)-2α-Acetoxycoleon D
D36	16-Acetoxyhorminone	D114	(15S)-Coleon I
D37	16-Acetoxy-7α,12-dihydroxy-8,12-abietadien-11,14-dione	D115	Plectrinone B
D38	(2R,2′S,3′R,4bS,7R,8′aS,9′S,10′S)-3′,10′-	D116	(16S)-Plectrinone A
Code	Formula	Description	
------	---------	-------------	
D39	16	Diacetoxy-4,5,6,7,8,8a,9,10'-octahydro-9'-hydroxy-2,4,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione	
D39	16	(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3'-Acetoxy,10'-formyloxy-4,5,6,7,8,8a,9,10'-octahydro-9'-hydroxy-2,4,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione	
D40	16	(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-10'-Acetoxy-4,5,6,7,8,8a,9,10'-octahydro-3',9'-dihydroxy-2,4,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione	
D41	16	(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3'-Acetoxy-4,5,6,7,8,8a,9,10'-octahydro-9',10'-dihydroxy-2,4,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione	
D42	16	(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-10'-Formyloxy-4,5,6,7,8,8a,9,10'-octahydro-3',9'-dihydroxy-2,4,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione	
D43	16	(2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-4,5,6,7,8,8a,9,10'-Octahydro-3',9',10'-trihydroxy-2,4,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione	
D44	16	(2R,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-9'-Acetoxy-7'-formyloxy-4,5,6,7,8,8a,9,10'-octahydro-3',10'-dihydroxy-2,4,8,8'-tetramethylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione	
D45	16	Lanugon G	

Notes:
- **D39** is (16R)-Plectrinone A.
- **D40** is Edulone A.
- **D41** is (1'S,10bS)-7,9,10-Trihydroxy-8-(2'-hydroxy-1'-methylthyl)-3,10b-dimethyl-1H-benzo[g]cyclopenta[de][1]benzopyran-4(2H),6(10bH)-dione.
- **D42** is 7,11-Dihydroxy-12-methoxy-8,11,13-abietatriene.
- **D43** is 11,12-Dihydroxy-19-isovaleroyloxy-8,11,13-abietatrien-7-one.
- **D44** is 11,12-Dihydroxy-19-senecioyloxy-8,11,13-abietatrien-7-one.
- **D45** is Plectranthone B.
| Code | Compounds | Reference | |
|---|---|---|---|
| D46 | (2R,2'S,3'R,4'bS,7'R,8'aR,9'S)-7'-Formyloxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,8',8'-tetramethylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D124 Plectranthone A |
| D47 | Lanugone F | D125 Plectranthone C |
| D48 | (2R,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7',10'-Bisformyloxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,8',8'-tetramethylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D126 Plectranthone D |
| D49 | Plectranthone K | D127 Plectranthone E |
| D50 | (2R,2'S,3'R,4'bS,7'ξ,8'aR,9'S,10'S)-7',10'-Diacetoxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D128 Grandidone A |
| D51 | Plectranthone L | D129 7-Epigrandidone A |
| D52 | Lanugone H | D130 Grandidone B |
| D53 | Lanugone I | D131 7-Epigrandidone B |
| D54 | Lanugone J | D132 Grandidone D |
| D55 | (2S,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7'-Formyloxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-diacetoxy-10'-hydroxy-2,4'b,8',8'-tetramethylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D133 7-Epigrandidone D |
| D56 | (2S,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7',10'-Bisformyloxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,8',8'-tetramethylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D134 Grandidone C |
| D57 | Lanugone K | D135 Nilgherron A |
| D58 | Lanugone K' | D136 Nilgherron B |
| D59 | Coleon R | D137 (3R)-6,9-Dihydroxy-3,4-dimethyl-7-(1-methylethyl)-3-(2-propenyl)naphtho[2,3-b]furan-2-(3H),5,8-trione |
| D60 | Coleon M | D138 | (2''\(\xi\),3R)-7-(2''-Acetoxy-1''-methylethyl)-6,9-dihydroxy-3,4-dimethyl-3-(2''-propenyl)naphtho[2,3-b]furan-2-(3H),5,8-trione |
| D61 | 7,12-Diacetylcoelon J | D139 | Sanguinon A |
| D62 | Coleon N | D140 | (16R)-17,19-Diacetoxy-16-hydroxy-13\(\beta\)-kauran-3-one |
| D63 | Coleon Q | D141 | (16R)-2\(\alpha\)-Senecioyloxy-3\(\alpha\)-acetoxyphyllocladan-16,17-dirol |
| D64 | Coleon P | D142 | (16R)-2\(\alpha\)-Senecioyloxy-3\(\alpha\),17-diacetoxy-16-hydroxyphyllocladane |
| D65 | Plectrin | D143 | (16R)-2\(\alpha\)-Isovaleroyloxy-3\(\alpha\)-acetoxyphyllocladan-16,17-dirol |
| D66 | Coleon Z | D144 | (16R)-2\(\alpha\)-Isovaleroyloxy-3\(\alpha\),17-diacetoxy-16-hydroxyphyllocladane |
| D67 | (15S)-Lanugone O | D145 | (16R)-3\(\alpha\)-Acetoxyphyllocladan-16,17-dirol |
| D68 | 14-Hydroxytaxodione | D146 | (16R)-2\(\alpha\)-Senecioyloxy-16,17-dihydroxyphyllocladan-3-one |
| D69 | (4bS,8aS)-2-(2-Acetoxypropyl)-4b,5,6,7,8,8a-hexahydro-1,4-dihydroxy-4b,8,8-trimethylphenanthren-3,9-dione | D147 | Plecostonol (N coetsidin A) |
| D70 | (2''\(\xi\),4bS,8aS)-4b,5,6,7,8,8a-Hexahydro-1,4-dihydroxy-2-(2''-hydroxypropyl)-4b,8,8-trimethylphenanthren-3,9-dione | D148 | Coestinol |
| D71 | Lanugone P | D149 | Coetsidin B |
| D72 | 19-Isovaleroyloxytaxodione | D150 | Coetsidin C |
| D73 | 19-Senecioyloxytaxodione | D151 | Coetsidin D |
| D74 | Lanugone Q | D152 | Coetsidin E |
| D75 | Coleon F | D153 | Coetsidin F |
| D76 | (16S)-Coleon E | D154 | Coetsidin G |
| D77 | Parviflorone A (= 11-hydroxy-19-senecioyloxy-5,7,9(11),13-abietatetraen-12-one) | D155 | Rabdosin B |
| D78 | Parviflorone H | | |
Diterpenoids isolated from *Plectranthus* Royleanones

D1: \(R^1 = R^2 = H \)
D2: \(R^1 = R^2 = OH \)
D3: \(R^1 = H, R^2 = OCHO \)
D4: \(R^1 = OH, R^2 = OCHO \)
D5: \(R^1 = OH, R^2 = OAc \)
D6: \(R^1 = OH, R^2 = H \)
D7: \(R^1 = OH, R^2 = =O \)
D8: \(R^1 = OCHO, R^2 = OH \)
D9: \(R^1 = H, R^2 = OH \)
D10: \(R^1 = H, R^2 = OAc \)
D11: \(R^1 = OH, R^2 = \text{fatty acid carboxylate} \)

D12: \(R = OH \)
D13: \(R = =O \)
D14: \(R = =O, 8\alpha, 9\alpha\)-epoxide

D15: \(R = OH \)
D16: \(R = H \)

D17: \(R^1 = H, R^2 = CH_2CH=CH_2 \)
D18: \(R^1 = \alphaOCHO, R^2 = CH_2CH=CH_2 \)
D19: \(R^1 = \betaOH, R^2 = CH_2CH=CH_2 \)
D20: \(R^1 = \betaOH, R^2 = CH_2CH(OAc)CH_3 \)

D21: \(R^1 = H, R^2 = CH(CH_3)_2 \)
D22: \(R^1 = OCHO, R^2 = \text{allyl} \)
D23; R = allyl
D24; R = CH$_2$-CH(OH)CH$_3$

D25
D26; 8α, 9α-epoxide

D27; R = H
D28; R = OH

D29

D30

D31; R = H
D32; R = CHO
Spirocoleons

D33: $R^1 = \text{CHO, } R^2 = \text{H}$
D34: $R^1 = \text{H, } R^2 = \text{C}_2\text{H}_5$

D35

D36: $R = \text{Ac}$
D37: $R = \text{CH}_3$

D38: $R^1 = R^2 = \text{Ac}$
D39: $R^1 = \text{CHO, } R^2 = \text{Ac}$
D40: $R^1 = \text{Ac, } R^2 = \text{H}$
D41: $R^1 = \text{H, } R^2 = \text{Ac}$
D42: $R^1 = \text{CHO, } R^2 = \text{H}$
D43: $R^1 = R^2 = \text{H}$

D44: $R^1 = \text{OCHO, } R^2 = \text{OAc, } R^3 = \text{OH}$
D45: $R^1 = \text{H, } R^2 = \text{OH, } R^3 = \text{OCHO}$
D46: $R^1 = \text{OCHO, } R^2 = \text{OH, } R^3 = \text{H}$
D47: $R^1 = \text{H, } R^2 = R^3 = \text{OH}$
D48: $R^1 = R^2 = \text{OCHO, } R^3 = \text{OH}$
D49: $R^1 = \text{H, } R^2 = \text{OH, } R^3 = \text{OAc}$
D50

D51

D52; $R^1 = H$, $R^2 = \text{CHO}$
D53; $R^1 = \text{CHO}$, $R^2 = H$
D54; $R^1 = R^2 = \text{CHO}$
D55; $R^1 = \text{OCHO}$, $R^2 = \text{OAc}$, $R^3 = \text{OH}$
D56; $R^1 = R^3 = \text{OCOH}$, $R^2 = \text{OH}$
D57; $R^1 = H$, $R^2 = \text{OH}$, $R^3 = \text{OAc}$
D58; $R^1 = H$, $R^2 = \text{OH}$, $R^3 = \text{OCHO}$
D59; $R^1 = R^2 = R^3 = \text{OAc}$

D60

D61; αCH_3
D62; βCH_3
Vinylogous quinones

D63

D64

D65

D66

D67; R = OH
D68; R = H

D69; R^1 = H, R^2 = Ac
D70; R^1 = R^2 = H
D71; R^1 = OCHO, R^2 = H
Quinone methides

D72; R = COCH₂CH(CH₃)₂
D73; R = COCH=CH(CH₃)₂

D74

D75; R = CH₂CH=CH₂
D76; R = (S)-CH₂CH(OH)CH₃

D77; R¹ = H, R² = COCH=CH(CH₃)₂
D78; R¹ = OH, R² = COCH=CH(CH₃)₂
D79; R¹ = H, R² = COCH₂CH(CH₃)₂

D80; R = H
D81; R = OAc
D82; R = H
D83; R = OH
D84; R = OCH₃
D85; R = H
D86; R = OH
D87; R = OCH₃

D88; R = CH₂CH=CH₂
D89; R = (S)-CH₂CH(OH)CH₃

D90

D91; R = COCH₂CH(CH₃)₂
D92; R = COCH=CH(CH₃)₂

D93
Acylhydroquinones

D94; R₁= OAc, R₂= H
D95; R₁= OAc, R₂= H
D96; R₁= H, R₂= H
D97; R₁= OH, R₂= H
D98; R₁= OH, R₂= OAc

D99; R= OAc
D100; R= OH
D101; R= H
D102; R₁= R₂= R₃= H
D103; R₁= R₂= H, R₃= OH
D104; R₁= OAc, R₂= H R₃= OH
D105; R₁= H, R₂= OAc, R₃= OH

D106
D107
D108; R = CH_2=CH_2
D109

D110; R = CH_2CH=CH_2
D111; R = CH_2CH(OH)CH_3

D112

D113; R_1 = OAc, R_2 = H
D114; R_1 = H, R_2 = OAc

D115; R = CH_2CH=CH_2
D116; R = (S)-CH_2CH(OH)CH_3
D117; R = (R)-CH_2CH(OH)CH_3
(4→3)abeo-Acylhydroquinones

\[\text{D118; } R = \text{Ac} \]
\[\text{D119; } R = \text{H} \]

Miscellaneous Phenolics

\[\text{D120} \]
\[\text{D121; } R = \text{COCH}_2\text{CH}(_3)_2 \]
\[\text{D122; } \text{COCH}=\text{C}(_3)_2 \]

1,4-Phenanthraquinones

\[\text{D123} \]
\[\text{D124; } R^1 = \text{CH}_3, R^2 = R^3 = \text{H} \]
\[\text{D125; } R^1 = R^2 = R^3 = \text{H} \]
\[\text{D126; } R^1 = R^2 = \text{H}, R^3 = \text{CH}_3 \]
\[\text{D127; } R^1 = R^3 = \text{H}, R^2 = \text{OH} \]
Dimeric abietanoids

\[\text{D128; } \beta-C(7)-O-C(11') } \]
\[\text{D129; } \beta-C(7)-O-C(12') } \]
\[\text{D130; } \beta-C(7)-O-C(11') } \]
\[\text{D131; } \beta-C(7)-O-C(12') } \]
\[\text{D132; } \alpha-C(7)-O-C(14) } \]
\[\text{D133; } \beta-C(7)-O-C(14) } \]
\[\text{D134; } \text{D135; } R= H } \]
\[\text{D136; } R= OAc } \]
Seco-abietanoids

1,10-Seco-abietanoids

\[\text{D137: } R = H \]
\[\text{D138: } R = \text{OAc} \]

6,7- Seco-abietanoids

Phyllocladanes

\[\text{D141: } R^1 = \text{OCOCH}=\text{C(CH}_3\text{)}_2, R^2 = H \]
\[\text{D142: } R^1 = \text{OCOCH}=\text{C(CH}_3\text{)}_2, R^2 = \text{Ac} \]
\[\text{D143: } R^1 = \text{OCOCH}_2\text{CH}(\text{CH}_3)_2, R^2 = H \]
\[\text{D144: } R^1 = \text{OCOCH}_2\text{CH}(\text{CH}_3)_2, R^2 = \text{Ac} \]
\[\text{D145: } R^1 = R^2 = H \]
Ent-kaurenes

D147

D148; $R^1 = \beta$ OH, $R^2 = \alpha$ OH
D149; $R^1 = \alpha$ OH, $R^2 = \beta$ OH

D150; $R^1 = H$, $R^2 = \text{OCH}_3$, $R^3 = H$
D151; $R^1 = \text{OH}$, $R^2 = \text{OCH}_3$, $R^3 = H$
D152; $R^1 = H$, $R^2 = \text{OC}_2\text{H}_5$, $R^3 = H$
D153; $R^1 = R^3 = H$, $R^2 = \text{OH}$
D154; $R^1 = R^2 = H$, $R^3 = \text{OH}$

Seco-kaurenes

D155
Long-chain alkylphenols

L1; \(n = 1 \)
L2; \(n = 3 \)
L3; \(n = 5 \)
L4; \(n = 1 \)
L5; \(n = 3 \)
L6; \(n = 5 \)
L7; \(n = 7 \)
L8; \(n = 9 \)
L9; \(n = 11 \)

L10; \(R = H \)
L11; \(R = \text{OH} \)

L12

L13; \(R = \text{Ac} \)
L14; \(R = H \)

L15; \(R^1 = H, R^2 = \text{Ac} \)
L16; \(R^1 = \text{Ac}, R^2 = H \)
L17; R = OH
L18; R = H

Miscellaneous constituents

M1

M2; R1 = H, R2 = COOH
M3; R1 = Ac, R2 = COOH
M4; R1 = H, R2 = CH\textsubscript{2}OH
M5; R1 = CH\textsubscript{3}, R2 = \(\beta\) COOH
M6; R1 = COOH, R2 = \(\alpha\) CH\textsubscript{3}
M7; oleanolic acid

M8; ursolic acid

M9; betulin

M10

M11
M12; ecklonoquinone A

M13; ecklonoquinone B