Inter-participant variability data in loading applied on osseointegrated implant by transtibial bone-anchored prostheses during daily activities

Laurent Frossard a,*, Barry Leech b, Mark Pitkin c, d

a Queensland University of Technology, Brisbane, Australia
b Barry Leech Prosthetics & Orthotics Pty Ltd, Southport, Australia
c Tufts University, Boston, MA, USA
d Poly-Orth International, Sharon, MA, USA

A B S T R A C T

The data in this paper are related to the research article entitled “Loading applied on osseointegrated implant by transtibial bone-anchored prostheses during daily activities: Preliminary characterization of prosthetic feet” (Frossard et al., 2019: Accepted). This article contains the individual and grouped loading characteristics applied on transtibial osseointegrated implant generated while walking with bone-anchored prostheses including prosthetic feet with different index of anthropomorphism. Inter-participant variability was presented for (A) the spatio-temporal characteristics, (B) the loading boundaries and (C) the loading local extremum during walking, ascending and descending ramp and stairs. These initial inter-participant variability benchmark datasets are critical to improve the efficacy and safety of prosthetic components for transtibial prostheses as well as the design of future automated algorithms and clinical trials. Online repository contains the files: https://doi.org/10.17632/vhc6sf7ngy.1.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Data

Inter-participant variability of alignment and position of the tri-axial transducer (iPecLab, RTC, US) in relation to the ankle joint embedded in the instrumented transtibial bone-anchored prosthesis fitted with Free-Flow Foot is illustrated in Fig. 1.

The individual and grouped spatio-temporal characteristics including cadence, duration of gait cycle and support phase while using usual (i.e., P1: RUSH, P2: Trias, P3: Triton) and Free-Flow (Ohio Willow Wood) feet during walking, ascending and descending ramp and stairs are presented in Tables 1, 4, 7, 10 and 13, respectively.

The individual and grouped loading boundaries including minimum and maximum of magnitude of forces, expressed in %BW and N, and moments, expressed in %BWm and Nm, applied on the anteroposterior, mediolateral and long axes of the implant fitted with usual and Free-Flow feet during walking, ascending and descending ramp and stairs are presented in Tables 2, 5, 8, 11 and 14, respectively.
The individual and grouped mean and standard deviation of individual onset, expressed in percentage of support phase, and magnitude of the local extrema of forces in %BW and moments in %BWm applied on the anteroposterior, mediolateral and long axes of the implant fitted with usual and Free-Flow feet during walking, ascending and descending ramp and stairs are presented in Tables 3, 6, 9, 12 and 15, respectively.

1.1. Alignment

The information about the alignment is provided in Fig. 1.

![Fig. 1. Inter-participant variability of alignment and position of the tri-axial transducer (iPecLab, RTC, US) in relation to the ankle joint embedded in the instrumented transtibial bone-anchored prosthesis fitted with Free-Flow Foot (Ohio Willow Wood).]
1.2. Level walking

The spatio-temporal characteristics, loading boundaries as well as onset and magnitude of up to three local extremum during walking are presented in Tables 1–3.

Table 1
Mean and standard deviation of spatio-temporal characteristics including cadence, duration of gait cycle and support phase while using usual and Free-Flow feet during walking.

	P1	P2	P3	All
Cadence (Strides/min)	46 ± 50	57 ± 57	46 ± 50	50 ± 7
Gait cycle (s)	1.30 ± 0.06	1.05 ± 0.06	1.31 ± 0.07	1.24 ± 0.13
Support (%GC)	61 ± 2	63 ± 4	66 ± 3	64 ± 3

Table 2
Loading boundaries including minimum and maximum magnitude of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet during walking.

	P1	P2	P3	All
Min	Max	Min	Max	All
Min	Max	Min	Max	All

Note: P1, P2, P3: Individual participants, Min: minimum magnitude, Max: maximum magnitude, F: force expressed in %BW and N, M: moments expressed in %BWm and Nm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV.
Table 3
Mean and standard deviation of onset in percentage of support phase and magnitude of up to three local extremum of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet during walking.

	P1	P2	P3	All	
Onset					
USU					
F AP1	9.85 ± 3.67	H 5.42 ± 3.01	H 17.09 ± 5.64	H 12.99 ± 6.97	H
F AP2	84.38 ± 3.57	L 78.63 ± 12.94	L 84.84 ± 3.31	L 83.23 ± 7.42	L
F ML1	64.46 ± 20.35	H 33.32 ± 9.38	H 35.36 ± 6.84	L 39.77 ± 15.47	H
F LG1	31.23 ± 7.88	H 36.84 ± 16.14	H 49.69 ± 19.22	H 43.40 ± 18.57	H
M AP1	91.54 ± 4.35	L 90.37 ± 24.83	H 96.13 ± 3.58	L 93.94 ± 12.79	L
M ML1	12.46 ± 5.43	H 14.47 ± 6.91	H 12.64 ± 2.29	L 13.06 ± 4.43	H
M LG1	83.00 ± 6.35	L 80.00 ± 7.31	L 72.93 ± 4.55	L 76.38 ± 6.99	L
Magnitude					
USU					
F AP1	−7.70 ± 2.17	H −2.42 ± 1.31	H −13.26 ± 1.28	L −9.65 ± 4.85	H
F AP2	28.62 ± 2.49	L 36.70 ± 2.24	L 13.99 ± 1.53	L 22.07 ± 10.15	H
F ML1	12.41 ± 1.16	L 5.16 ± 1.63	H 8.30 ± 0.62	L 8.22 ± 2.53	H
F LG1	96.49 ± 3.90	L 102.04 ± 5.14	L 103.65 ± 2.46	L 102.05 ± 4.36	L
M AP1	0.68 ± 0.12	L 0.02 ± 0.13	H −0.01 ± 0.06	H 0.11 ± 0.27	H
M ML1	−2.05 ± 0.38	L −2.46 ± 0.52	H −1.79 ± 0.35	L −2.00 ± 0.49	H
M LG1	9.25 ± 0.38	L 8.22 ± 0.31	L 7.44 ± 0.41	L 7.94 ± 0.78	L
FFF					
Onset					
F AP1	13.11 ± 7.10	H 3.79 ± 3.31	H 19.92 ± 8.53	H 15.11 ± 9.62	H
F AP2	79.50 ± 5.29	L 78.14 ± 6.50	L 81.46 ± 3.27	L 80.09 ± 5.68	L
F ML1	73.00 ± 6.90	L 36.29 ± 25.20	H 33.56 ± 5.06	L 43.41 ± 20.85	H
F LG1	55.39 ± 24.91	H 45.29 ± 22.11	H 40.52 ± 14.54	H 45.68 ± 19.78	H
M AP1	94.06 ± 4.11	L 45.50 ± 23.49	H 97.42 ± 3.94	L 72.30 ± 20.02	H
M ML1	13.56 ± 3.90	L 9.07 ± 3.05	H 11.56 ± 2.71	H 11.50 ± 3.68	H
M LG1	83.67 ± 5.10	L 74.21 ± 7.78	L 74.76 ± 3.78	L 76.95 ± 7.00	L
Magnitude					
USU					
F AP1	−5.56 ± 1.68	H −1.14 ± 1.36	H −10.65 ± 1.14	L −7.49 ± 3.92	H
F AP2	23.69 ± 3.67	L 38.53 ± 1.31	L 16.68 ± 1.31	L 22.87 ± 8.69	H
F ML1	12.39 ± 1.21	L 3.58 ± 0.78	H 8.31 ± 0.55	L 8.23 ± 3.20	H
F LG1	97.47 ± 2.49	L 94.62 ± 4.97	L 102.68 ± 1.73	L 99.69 ± 4.60	L
M AP1	0.31 ± 0.10	H 0.37 ± 0.20	H −0.04 ± 0.08	H 0.90 ± 0.56	H
M ML1	−1.50 ± 0.27	L −1.76 ± 0.56	H −1.69 ± 0.29	L −1.63 ± 0.37	H
M LG1	6.31 ± 0.34	L 7.62 ± 0.33	L 7.45 ± 0.55	L 7.19 ± 0.70	L

Note: P1, P2, P3: Individual participants, F: force expressed in %BW, M: moments expressed in %BWm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV, AP: Anteroposterior axis, ML: Mediolateral axis, LG: long axis.

Table 4
Mean and standard deviation of spatio-temporal characteristics including cadence, duration of gait cycle and support phase while using usual and Free-Flow feet during ascending ramp. P2 performed only one trial with usual leg and was not reported here.

	P1	P2	P3	All				
USU								
Cadence (Strides/min)	40	−	−	−	30	−	40 ± 10	H
Gait cycle (s)	1.50 ± 0.06	L	−	−	1.99 ± 0.19	L	1.77 ± 0.32	L
Support (%GC)	62 ± 3	L	−	−	69 ± 2	L	66 ± 4	L
FFF								
Cadence (Strides/min)	38	−	46	−	33	−	39 ± 7	L
Gait cycle (s)	1.59 ± 0.12	L	1.29 ± 0.10	L	1.84 ± 0.13	L	1.59 ± 0.25	L
Support (%GC)	62 ± 2	L	66 ± 4	L	69 ± 3	L	65 ± 4	L

Note: P1, P2, P3: Individual participants, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV.
Table 5
Loading boundaries including minimum and maximum magnitude of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet during ascending ramp.

	F AP (%BW)	F ML (%BW)	F LG (%BW)	M AP (%BWm)	M ML (%BWm)	M LG (%BWm)	F AP (N)	F ML (N)	F LG (N)	M AP (Nm)	M ML (Nm)	M LG (Nm)
P1 Min	-0.80	-0.22	-0.22	-0.44	-0.31	-0.31	-8.57	-20.81	-59.06	10.68	-3.36	-2.31
P1 Max	34.94	1.08	1.08	0.44	6.31	1.08	373.98	148.01	1,103.56	75.12	102.87	11.56
P2 Min	-0.16	-0.34	-0.81	0.44	9.61	0.42	38.06	38.06	794.76	746.67	76.85	3.35
P2 Max	48.35	4.67	9.61	0.46	99.41	0.42	386.60	386.60	619.33	109.26	68.13	2.40
P3 Min	-9.53	-2.05	-0.23	-0.09	-0.02	-0.02	-54.04	-17.89	-36.77	-54.04	-11.63	-0.52
P3 Max	16.48	0.34	12.02	0.42	12.02	2.40	93.42	32.83	619.33	110.13	68.13	4.37
All Min	-11.72	-1.18	-0.52	0.24	-0.73	-0.52	-11.72	-11.72	-60.73	-110.13	-6.46	-4.37
All Max	12.36	7.33	2.40	0.73	12.02	4.37	12.36	12.36	624.22	110.13	110.13	11.56

Note: P1, P2, P3: Individual participants, Min: minimum magnitude, Max: maximum magnitude, F: force expressed in %BW and N: moments expressed in %BWm and Nm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV, AP: Anteroposterior axis, ML: Mediolateral axis, LG: long axis.

Table 6
Mean and standard deviation of onset in percentage of support phase and magnitude of up to three local extremum of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet during ascending ramp. H: High PV, L: Low PV. NOTE: P2 performed only one trial with USU leg and was not reported here.

	P1	P2	P3	All				
USU	F AP 58.83 ± 23.02	H	--	84.70 ± 3.30	L	75.12 ± 18.13	H	
	F ML 46.67 ± 18.65	H	--	29.20 ± 11.45	H	35.82 ± 15.94	H	
	F LG 48.00 ± 25.80	H	--	65.20 ± 16.12	H	59.65 ± 20.91	H	
	M AP 81.17 ± 29.46	H	--	73.10 ± 8.28	L	73.82 ± 20.38	H	
Table 6 (continued)	P1	P2	P3	All				
---------------------	----	----	----	-----				
Magnitude								
M ML1	1.33 ± 0.52	H	–	–	4.50 ± 2.32	H	3.24 ± 2.36	H
M ML2	82.17 ± 3.25	L	–	–	69.60 ± 12.01	L	74.29 ± 11.02	L
M LG1	67.40 ± 15.84	H	–	–	63.70 ± 9.71	L	68.82 ± 13.65	L
Note: P1, P2, P3: Individual participants, F: force expressed in %BW, M: moments expressed in %BWm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV, AP: Anteroposterior axis, ML: Mediolateral axis, LG: Long axis.								

Table 7
Mean and standard deviation of spatio-temporal characteristics including cadence, duration of gait cycle and support phase while using usual and Free-Flow feet during descending ramp.

P1	P2	P3	All					
USU								
Cadence (Strides/min)	44	–	52	46	–	47 ± 4	L	
Gait cycle (s)	1.36 ± 0.08	L	1.15 ± 0.04	L	1.32 ± 0.14	L	1.31 ± 0.13	L
Support (%GC)	63 ± 4	L	60 ± 3	L	68 ± 4	L	65 ± 5	L
FFF								
Cadence (Strides/min)	42	–	52	50	–	48 ± 5	L	
Gait cycle (s)	1.43 ± 0.09	L	1.16 ± 0.06	L	1.21 ± 0.07	L	1.26 ± 0.13	L
Support (%GC)	61 ± 3	L	62 ± 3	L	63 ± 3	L	62 ± 3	L
Note: P1, P2, P3: Individual participants, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV.								

Table 8
Loading boundaries including minimum and maximum magnitude of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet during descending ramp.

P1	P2	P3	All					
USU								
F AP (%BW)	–20.05	23.80	–6.23	47.95	–18.74	11.76	–20.05	47.95
F ML (%BW)	–0.93	12.50	–5.88	6.43	–2.59	9.16	–5.88	12.50
Note: P1, P2, P3: Individual participants, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV.								

(continued on next page)
Note: P1, P2, P3: Individual participants, Min: minimum magnitude, Max: maximum magnitude, F: force expressed in %BW and N: moments expressed in %BWm and Nm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV, AP: Anteroposterior axis, ML: Mediolateral axis, LG: long axis.

Table 9
Mean and standard deviation of onset in percentage of support phase and magnitude of up to three local extremum of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet descending ramp.

	P1	P2	P3	All						
	Min	Max								
USU										
Onset										
F AP1	24.89 ± 9.52	H	6.00 ± 3.56	H	39.00 ± 12.08	H	29.04 ± 15.60	H		
F ML1	73.56 ± 10.37	L	60.00 ± 23.15	H	58.00 ± 14.32	H	65.08 ± 15.86	H		
F LG1	49.22 ± 13.22	L	54.50 ± 14.46	H	54.54 ± 14.40	H	52.69 ± 13.68	H		
M AP1	51.89 ± 17.34	H	68.75 ± 34.22	L	60.31 ± 14.23	H	58.69 ± 19.18	H		
M ML1	35.78 ± 12.42	H	19.25 ± 7.68	L	64.46 ± 10.46	L	47.58 ± 20.87	H		
M ML2	89.89 ± 2.76	L	67.00 ± 14.72	H	96.31 ± 2.87	H	89.58 ± 11.73	L		
M LG1	91.22 ± 5.61	L	71.50 ± 34.89	H	89.92 ± 7.22	L	87.54 ± 15.17	L		
Magnitude										
F AP1	–13.36 ± 3.12	H	–2.81 ± 2.49	H	–17.00 ± 1.13	L	–13.56 ± 5.40	H		
F ML1	10.80 ± 1.13	L	4.64 ± 1.44	H	6.84 ± 1.02	L	7.87 ± 2.54	H		
F LG1	103.20 ± 4.96	L	71.50 ± 15.28	H	103.12 ± 2.57	L	98.28 ± 13.22	L		
M AP1	–1.93 ± 0.18	L	–0.33 ± 0.08	H	–1.22 ± 0.17	L	–1.33 ± 0.57	H		
M ML1	–4.04 ± 0.24	L	–2.28 ± 0.21	L	–3.56 ± 0.23	L	–3.33 ± 0.63	L		
M ML2	3.35 ± 0.57	L	4.72 ± 0.43	L	0.06 ± 0.29	H	1.91 ± 1.99	H		
M LG1	0.22 ± 0.12	H	0.34 ± 0.07	H	0.19 ± 0.06	H	0.22 ± 0.10	H		
FFF										
Onset										
F AP1	26.50 ± 16.44	H	6.00 ± 3.56	H	24.20 ± 9.17	H	20.09 ± 13.20	H		
F ML1	70.30 ± 8.00	L	69.00 ± 23.15	H	38.07 ± 9.02	H	61.77 ± 23.19	H		
F LG1	34.80 ± 14.97	L	54.50 ± 14.46	H	45.33 ± 21.36	H	46.43 ± 19.88	H		
M AP1	48.80 ± 16.95	H	68.75 ± 34.22	H	52.67 ± 17.88	H	63.89 ± 25.10	H		
M ML1	25.20 ± 9.41	L	19.25 ± 7.68	H	33.20 ± 10.61	H	26.51 ± 10.93	H		
M ML2	93.40 ± 5.30	L	67.00 ± 14.72	H	96.07 ± 3.17	L	88.17 ± 11.81	L		
Table 9 (continued)

	P1	P2	P3	All	
Magnitude					
F AP1	−9.10 ± 3.02	H −2.81 ± 2.49	H −13.80 ± 0.75	L −9.03 ± 5.34	H
F AP1	−1.19 ± 1.43	L 4.64 ± 1.44	H 6.80 ± 0.56	L 7.09 ± 3.25	H
F LG1	103.82 ± 4.83	L 71.50 ± 15.28	H 103.42 ± 2.45	L 98.26 ± 9.74	L
M AP1	−1.70 ± 0.25	L −0.33 ± 0.08	H −0.72 ± 0.07	L −0.81 ± 0.65	H
M ML1	−2.80 ± 0.84	H −2.28 ± 0.21	L −3.19 ± 0.32	L −2.61 ± 0.88	H
M ML2	1.59 ± 1.51	L 4.72 ± 0.43	L −0.10 ± 0.15	H 1.46 ± 1.82	H
M LG1	0.22 ± 0.19	H 0.34 ± 0.07	H 0.21 ± 0.05	H 0.26 ± 0.14	H

Note: P1, P2, P3: Individual participants, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV.

1.3. Ascending ramp

The spatio-temporal characteristics, loading boundaries as well as onset and magnitude of up to three local extremum during ascending ramp are presented in Tables 4–6.

Table 10

	P1	P2	P3	All		
USU						
Cadence	(Strides/min)	34	42	25	34 ± 9	H
Gait cycle	(s)	1.76 ± 0.11	L 1.42 ± 0.05	L 2.42 ± 0.20	L 1.94 ± 0.44	H
Support	(%GC)	56 ± 3	L 59 ± 1	L 61 ± 3	L 59 ± 3	L
FFF						
Cadence	(Strides/min)	33	44	25	34 ± 9	H
Gait cycle	(s)	1.81 ± 0.06	L 1.36 ± 0.04	L 2.35 ± 0.13	L 1.70 ± 0.43	H
Support	(%GC)	55 ± 2	L 65 ± 5	L 50 ± 8	L 59 ± 8	L

Note: P1, P2, P3: Individual participants, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV.

Table 11

	P1	P2	P3	All				
USU								
F AP (%BW)	−0.26	42.13	−2.88	37.90	−14.95	14.81	−14.95	42.13
F ML (%BW)	−1.12	15.20	−4.85	8.25	−3.22	6.93	−4.85	15.20
F LG (%BW)	−1.34	105.93	−4.28	99.29	−20.92	100.12	−20.92	105.93
M AP (%BWm)	−0.36	0.89	−0.84	0.56	−0.69	1.39	−0.84	1.39
M ML (%BWm)	−0.24	10.46	−0.69	7.29	−0.70	7.45	−0.70	10.46
M LG (%BWm)	−0.25	0.89	−1.01	0.74	−0.55	0.09	−1.01	0.89
F AP (N)	−2.74	450.96	−23.13	303.87	−84.77	83.93	−84.77	450.96
F ML (N)	−12.03	162.73	−38.89	66.12	−18.26	39.29	−38.89	162.73
F LG (N)	−14.32	1,133.99	−34.35	796.14	−118.59	567.52	−118.59	1,133.99
M AP (Nm)	−3.89	9.55	−6.76	4.53	−3.93	7.90	−6.76	9.55
M ML (Nm)	−2.52	111.94	−5.53	58.43	−3.94	42.21	−5.53	111.94
M LG (Nm)	−2.63	9.50	−8.13	5.96	−3.10	0.51	−8.13	9.50
FFF								
F AP (%BW)	−0.74	29.02	−1.50	39.02	−14.21	12.31	−14.21	39.02
F ML (%BW)	−0.04	13.43	−4.58	8.23	−2.78	6.05	−4.58	13.43
F LG (%BW)	−0.45	106.63	−3.49	103.29	−3.04	106.28	−3.49	106.63
M AP (%BWm)	−0.78	0.41	−0.42	1.31	−1.14	1.16	−1.14	1.31
M ML (%BWm)	−0.07	7.59	−0.55	7.58	−0.72	3.51	−0.72	7.59

(continued on next page)
Table 11 (continued)

	P1	P2	P3	All				
	Min	Max	Min	Max	Min	Max	Min	Max
M LG (%BWm)	−0.68	0.38	−0.75	1.19	−0.50	0.17	−0.75	1.19
F AP (N)	−7.97	310.65	−11.99	312.89	−80.55	69.76	−80.55	312.89
F ML (N)	−0.43	143.76	−36.75	65.97	−15.77	34.28	−36.75	143.76
F LG (N)	−4.85	1,141.42	−28.02	828.23	−17.25	602.43	−28.02	1,141.42
M AP (Nm)	−8.37	4.41	−3.34	10.49	−6.44	6.60	−8.37	10.49
M ML (Nm)	−0.71	81.29	−4.39	60.74	−4.10	19.90	−4.39	81.29
M LG (Nm)	−7.32	4.12	−6.04	9.54	−2.84	0.95	−7.32	9.54

Note: P1, P2, P3: Individual participants, Min: minimum magnitude, Max: maximum magnitude, F: force expressed in %BW and N, M: moments expressed in %BWm and Nm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV, AP: Anteroposterior axis, ML: Mediolateral axis, LG: long axis.

Table 12

Mean and standard deviation of onset in percentage of support phase and magnitude of up to three local extremum of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-flow feet during ascending stairs.

	P1	P2	P3	All
	USU Onset	USU Magnitude	FFF Onset	FFF Magnitude
F AP1	72.40 ± 25.13	35.72 ± 4.55	82.25 ± 0.96	26.97 ± 1.49
F ML1	41.80 ± 25.82	13.90 ± 1.51	31.75 ± 12.28	12.93 ± 0.42
F LG1	82.00 ± 4.69	99.33 ± 5.12	69.75 ± 24.51	102.67 ± 3.79
M AP1	72.60 ± 33.32	2.00 ± 0.00	83.40 ± 3.97	8.00 ± 6.00
M ML1	65.33 ± 28.88	6.00 ± 4.00	76.67 ± 11.02	7.33 ± 4.16
M LG1	100.00 ± 0.00	13.20 ± 15.48	81.80 ± 4.09	27.00 ± 7.48
M LG2	5.50 ± 26.29	13.27 ± 1.29	7.33 ± 4.16	27.00 ± 7.48
F LG2	57.20 ± 21.58	36.35 ± 2.60	56.00 ± 12.94	7.33 ± 4.16

Note: P1, P2, P3: Individual participants, F: force expressed in %BW, M: moments expressed in %BWm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV, AP: Anteroposterior axis, ML: Mediolateral axis, LG: long axis.
1.4. Descending ramp

The spatio-temporal characteristics, loading boundaries as well as onset and magnitude of up to three local extremum during descending ramp are presented in Tables 7–9.

1.5. Ascending stairs

Table 13
Mean and standard deviation of spatio-temporal characteristics including cadence, duration of gait cycle and support phase while using usual and Free-Flow feet during descending stairs.

	P1	P2	P3	All
Cadence	20 ± 3	23 ± 2	15 ± 1	19 ± 4 H
Gait cycle	1.53 ± 0.13	1.31 ± 0.02	1.99 ± 0.19	1.78 ± 0.32 L
Support	62 ± 4	54 ± 2	69 ± 2	65 ± 6 L

Table 14
Loading boundaries including minimum and maximum magnitude of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet during descending stairs.

	P1	P2	P3	All
F AP (%BW)	−3.20	29.11	−0.42	32.57
F ML (%BW)	−1.67	16.73	−9.36	5.53
F LG (%BW)	0.00	100.00	−4.70	105.28
M AP (%BWm)	−0.84	0.68	−0.82	0.44
M ML (%BWm)	−0.74	8.03	−0.70	6.88
M LG (%BWm)	−0.53	1.18	−0.76	0.05
F AP (N)	−34.25	311.56	−3.32	260.38
F ML (N)	−17.84	179.10	−74.84	44.24
F LG (N)	0.01	1,070.45	−37.59	841.72
M AP (Nm)	−9.01	7.30	−6.53	3.52
M ML (Nm)	−7.90	85.95	−5.57	54.99
M LG (Nm)	−5.71	12.59	−6.10	4.02

The spatio-temporal characteristics, loading boundaries as well as onset and magnitude of up to three local extremum during ascending stairs are presented in Tables 10–12.
1.6. Descending stairs

The spatio-temporal characteristics, loading boundaries as well as onset and magnitude of up to three local extremum during descending stairs are presented in Tables 13–15.

2. Experimental design, materials, and methods

2.1. Recording of daily activities

Participants fitted with transtibial bone-anchored prostheses including with their own or Free-Flow prosthetic foot performed three and five trials of five standardized daily activities including straight-line level walking (5–10 m walkway), ascending and descending ramp (2.5 m, 13.7 deg incline) and stairs (3 stairs, 20 cm height, 24.5 cm deep, 100 cm wide) following protocol previously used for individuals with transfemoral amputation [1–6]. Participants were instructed to complete each activity at a self-selected comfortable pace as well as to use handrails and take sufficient rest between trials to avoid fatigue if needed.

2.2. Apparatus to measure loading

For each activity, the raw loading data was recorded directly using a state-of-the-art portable kinetic system (iPecsLab, RTC Inc, US) including a tri-axial transducer sending forces and moments data wirelessly data (200 Hz) applied on the implant to a receiver connected to a laptop nearby with an accuracy better than 1 N and 1 Nm, respectively [5–15]. The raw loading datasets were imported into a

Table 15	Mean and standard deviation of onset in percentage of support phase and magnitude of up to three local extremum of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet during descending stairs.							
	P1	P2	P3	All				
Onset								
F_{AP1}	64.60 ± 6.69	L	66.50 ± 3.54	L	87.10 ± 5.20	L	78.06 ± 12.31	L
F_{ML1}	57.80 ± 15.45	H	24.50 ± 2.12	L	55.80 ± 11.17	H	52.71 ± 15.61	H
F_{LG1}	42.40 ± 12.20	H	30.50 ± 28.99	H	42.00 ± 18.18	H	40.76 ± 17.05	H
M_{AP1}	51.80 ± 40.79	L	7.00 ± 0.00	L	10.00 ± 23.22	H	52.65 ± 29.61	H
M_{ML1}	64.80 ± 4.92	L	55.50 ± 4.95	H	81.40 ± 10.62	H	73.47 ± 13.20	L
Magnitude								
F_{AP1}	25.01 ± 2.61	L	30.18 ± 2.85	L	4.90 ± 1.97	L	13.78 ± 11.24	H
F_{ML1}	13.36 ± 4.57	H	4.30 ± 1.75	H	5.88 ± 0.64	L	7.89 ± 3.96	H
F_{LG1}	92.02 ± 6.70	L	95.08 ± 7.25	H	105.46 ± 6.07	L	100.25 ± 8.78	L
M_{AP1}	0.42 ± 0.19	L	0.38 ± 0.08	H	0.12 ± 0.10	H	0.99 ± 0.52	H
M_{ML1}	6.91 ± 0.94	L	6.19 ± 0.97	H	1.51 ± 0.57	L	3.65 ± 2.73	H

Note: P1, P2, P3: Individual participants, F: force expressed in %BW, M: moments expressed in %BWm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV, AP: Anteroposterior axis, ML: Mediolateral axis, LG: long axis.

1.6. Descending stairs

The spatio-temporal characteristics, loading boundaries as well as onset and magnitude of up to three local extremum during descending stairs are presented in Tables 13–15.

2. Experimental design, materials, and methods

2.1. Recording of daily activities

Participants fitted with transtibial bone-anchored prostheses including with their own or Free-Flow prosthetic foot performed three and five trials of five standardized daily activities including straight-line level walking (5–10 m walkway), ascending and descending ramp (2.5 m, 13.7 deg incline) and stairs (3 stairs, 20 cm height, 24.5 cm deep, 100 cm wide) following protocol previously used for individuals with transfemoral amputation [1–6]. Participants were instructed to complete each activity at a self-selected comfortable pace as well as to use handrails and take sufficient rest between trials to avoid fatigue if needed.

2.2. Apparatus to measure loading

For each activity, the raw loading data was recorded directly using a state-of-the-art portable kinetic system (iPecsLab, RTC Inc, US) including a tri-axial transducer sending forces and moments data wirelessly data (200 Hz) applied on the implant to a receiver connected to a laptop nearby with an accuracy better than 1 N and 1 Nm, respectively [5–15]. The raw loading datasets were imported into a

Table 15	Mean and standard deviation of onset in percentage of support phase and magnitude of up to three local extremum of forces and moments applied on the three anatomical axes of the implant fitted prosthesis including usual and Free-Flow feet during descending stairs.							
	P1	P2	P3	All				
Onset								
F_{AP1}	73.67 ± 8.43	L	62.80 ± 10.06	L	85.88 ± 6.29	L	71.00 ± 15.40	H
F_{ML1}	66.83 ± 15.65	H	32.40 ± 18.46	H	51.13 ± 16.61	H	51.16 ± 20.75	H
F_{LG1}	41.00 ± 13.48	H	23.80 ± 18.54	H	54.63 ± 20.44	H	42.21 ± 21.27	H
M_{AP1}	36.00 ± 45.55	H	7.80 ± 1.30	L	18.88 ± 32.89	H	34.21 ± 35.11	H
M_{ML1}	72.67 ± 8.45	L	53.20 ± 5.02	L	80.25 ± 9.63	L	70.74 ± 13.73	L
Magnitude								
F_{AP1}	25.83 ± 3.10	L	32.90 ± 4.97	L	4.88 ± 1.92	H	19.31 ± 12.45	H
F_{ML1}	13.63 ± 2.07	L	3.75 ± 0.71	L	5.86 ± 0.94	L	7.76 ± 4.38	H
F_{LG1}	97.78 ± 3.23	L	91.50 ± 16.43	L	102.20 ± 2.40	L	97.92 ± 9.24	L
M_{AP1}	0.05 ± 0.09	L	1.20 ± 0.21	L	0.13 ± 0.06	H	0.68 ± 0.55	H
M_{ML1}	5.55 ± 0.55	L	5.56 ± 1.03	L	1.82 ± 0.28	L	3.98 ± 1.98	H

Note: P1, P2, P3: Individual participants, F: force expressed in %BW, M: moments expressed in %BWm, USU: usual feet, FFF: Free-Flow feet, H: High PV, L: Low PV, AP: Anteroposterior axis, ML: Mediolateral axis, LG: long axis.
Matlab program and offset according to load yielded during calibration and further expressed in Nm and percentage of bodyweight (%BWm).

2.3. Extraction of loading characteristics

Spatio-temporal characteristics including cadence, duration of gait cycle and support phase were determined after manual detection of heel contacts and toe offs using pattern on the forces applied on anteroposterior and long axes of the implant [12].

All loading characteristics were normalized as percentage of the bodyweight. Onsets of the loading local extremum were reported as percentage of support phase after it was time-normalized from 0 to 100% each gait cycle [12].

The loading boundaries per activity corresponding to magnitude of minimum and maximum of the three components of forces and moments for all gait cycles considered without consideration for the time of occurrence.

The loading local extremum for each of the three components of forces and moments corresponded points of inflection between loading slopes that occur consistently over successive gait cycles for a given activity across all participants. The local extremum were detected semi-automatically using searches of maximum or minimum loading magnitude within a set time window.

2.4. Variability

Individual variability of each loading characteristics was determined using the percentage of variation (PV = absolute [[standard deviation/mean] × 100]). We considered than a PV inferior or superior to 20% indicated a low (L) or high (H) variability, respectively [5].

Acknowledgments

The work solely conducted by L. Frossard was partially supported by the Office of the Assistant Secretary of Defense for Health Affairs, through the Orthotics and Prosthetics Outcomes Research Program – Prosthetics Outcomes Research Award under Award No. W81XWH-16-1-0475. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

The work solely conducted by M. Pitkin was supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number AR43290.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104510.

References

[1] L. Frossard, B. Leech, M. Pitkin, Loading applied on osseointegrated implant by transtibial bone-anchored prostheses during daily activities: preliminary characterization of prosthetic feet, J. Prosthet. Orthot. (2019) vol. In press.
[2] L. Frossard, B. Leech, M. Pitkin, Automated characterization of anthropomorphism of prosthetic feet fitted to bone-anchored transtibial prosthesis, IEEE Trans. Biomed. Eng. (Mar 13, 2019), 1-1.
[3] L. Frossard, B. Leech, M. Pitkin, Inter-participant variability data in characterization of anthropomorphism of prosthetic feet fitted to bone-anchored transtibial prosthesis, Data in Brief 25 (2019) 104195.
[4] W. Lee, L. Frossard, K. Hagberg, et al., Kinetics analysis of transfemoral amputees fitted with osseointegrated fixation performing common activities of daily living, Clin. Biomech. 22 (6) (2007) 665–673.
[5] W. Lee, L. Frossard, K. Hagberg, et al., Magnitude and variability of loading on the osseointegrated implant of transfemoral amputees during walking, Med. Eng. Phys. 30 (7) (Sep, 2008) 825–833.

[6] L. Frossard, E. Hagstrom, K. Hagberg, et al., “Load applied on a bone-anchored transfemoral prosthesis: characterisation of prosthetic components—a case study”, J. Rehabil. Res. Dev. 50 (5) (2013) 619–634.

[7] S.R. Koehler, Y.Y. Dhaher, A.H. Hansen, Cross-validation of a portable, six-degree-of-freedom load cell for use in lower-limb prosthetics research, J. Biomech. 47 (6) (Apr 11, 2014) 1542–1547.

[8] E.S. Neumann, K. Yalamanchili, J. Brink, et al., Transducer-based comparisons of the prosthetic feet used by transtibial amputees for different walking activities: a pilot study, Prosthet. Orthot. Int. 36 (2) (Jun, 2012) 203–216.

[9] W.C. Lee, L.A. Frossard, K. Hagberg, et al., Kinetics of transfemoral amputees with osseointegrated fixation performing common activities of daily living, Clin. Biomech. 22 (6) (Jul, 2007) 665–673.

[10] L. Frossard, J. Beck, M. Dillon, et al., Development and preliminary testing of a device for the direct measurement of forces and moments in the prosthetic limb of transfemoral amputees during activities of daily living, J. Prosthet. Orthot. 15 (4) (2003) 135–142.

[11] L. Frossard, K. Hagberg, E. Haggstrom, et al., Load-relief of walking aids on osseointegrated fixation: instrument for evidence-based practice, IEEE Trans. Neural Syst. Rehabil. Eng. 17 (1) (Feb, 2009) 9–14.

[12] L. Frossard, K. Hagberg, E. Hagstrom, et al., Functional outcome of transfemoral amputees fitted with an osseointegrated fixation: temporal gait characteristics, J. Prosthet. Orthot. 22 (1) (2010) 11–20.

[13] L. Frossard, N. Stevenson, J. Smeathers, et al., Monitoring of the load regime applied on the osseointegrated fixation of a transfemoral amputee: a tool for evidence-based practice, Prosthet. Orthot. Int. 32 (1) (Mar, 2008) 68–78.

[14] L. Frossard, D.L. Gow, K. Hagberg, et al., Apparatus for monitoring load bearing rehabilitation exercises of a transfemoral amputee fitted with an osseointegrated fixation: a proof-of-concept study, Gait Posture 31 (2) (Feb, 2010) 223–228.

[15] L. Frossard, L. Cheze, R. Dumas, Dynamic input to determine hip joint moments, power and work on the prosthetic limb of transfemoral amputees: ground reaction vs knee reaction, Prosthet. Orthot. Int. 35 (2) (Jun, 2011) 140–149.