A Novel Finite Time Stability Analysis of Nonlinear Fractional-Order Time Delay Systems: A Fixed Point Approach

Abdellatif Ben Makhlouf *

Abstract

In this article, a novel Finite Time Stability (FTS) scheme for Fractional-Order Time Delayed Systems (FOTDSs) is proposed. By exploiting the fixed point approach, sufficient conditions that guarantee the robust FTS of FOTDSs have been established. Finally, two illustrative examples are presented to validate the main result.

Keywords: Nonlinear Systems, delay, fixed-point theory, finite time stability.

1 Introduction

Fractional-Order Systems (FOS) can be defined as nonlinear systems that are modeled by Fractional Differential Equations (FDEs), carried out with non-integer derivatives. Indeed, such system dynamics [19]. Indeed, such system dynamics are described by fractional derivatives. Integrals and derivatives of fractional orders are used to demonstrate objects that can be described by power-law long-range dependence or power-law nonlocality [5] or fractal properties.

Note that, the Fractional Calculus (FC) has been involved in studying and analyzing the system dynamics in many fields like physics, electrochemistry, biology, viscoelasticity, economics, plasma turbulence models, heat conduction and chaotic systems [4, 17, 19, 27]. In a same context, the evolution of engineering and sciences has notably refreshing the use of the FC in numerous areas of the control theory, and this includes FTS [6, 18, 23, 25, 31], asymptotic stability [3, 20, 21, 28], stabilization [22], observer design [14, 22] and fault estimation [13, 15, 16].

The demonstration of FTS of FOTDSs in the literature has been based on different methods and concepts such as the Gronwall inequalities [2, 6, 7, 8, 18, 23, 25, 32, 33] and the Lyapunov functions [29, 30, 31]. As for the first group using the Gronwall
inequalities, the authors in [2] have presented a FTS analysis of the FOTDSs using the Caputo-Katugampola derivative. Furthermore, based on the generalized Gronwall inequality, Naifar et al. in [23] have described a FTS result of the FOTDSs using the Caputo Fractional Derivative (CFD). Authors in [7] have presented a robust FTS approach of FOTDSs. On the other hand, dealing with the second group using the Lyapunov functions, Thanh et al. in [31] have investigated a novel FTS analysis of FOTDSs.

Our work presents a novel methodology to study the FTS of FOTDSs using the fixed point approach. We will exploit a fixed point theorem in order to study finite time stability for FOTDSs. The theoretical findings are confirmed and validated by two illustrative examples.

2 Basic results

In this part, some theorems, lemmas and definitions are given.

Definition 1. [26] Given \(0 < \sigma < 1\). The CFD is defined as,

\[
C_D^\sigma_r \zeta(s) = \frac{1}{\Gamma(1-\sigma)} \frac{d}{ds} \int_r^s (s-\lambda)^{-\sigma} \left(\zeta(\lambda) - \zeta(r) \right) d\lambda.
\] (1)

Definition 2. [26] The Mittag-Leffler Function (MLF) is given by the following expression:

\[
E_\sigma(t) = \sum_{b \geq 0} \frac{t^b}{\Gamma(b\sigma + 1)},
\]

where \(\sigma > 0\), \(t \in \mathbb{C}\).

Remark 1. \(E_\sigma(t)\) is an increasing function on \(\mathbb{R}_+\).

Remark 2. The function \(\psi(s) = E_\sigma(\theta(s-r)^\sigma)\) satisfies \(C_D^\sigma_r \psi(s) = \theta \psi(s)\), and \(\frac{1}{\Gamma(\sigma)} \int_r^s (s-\lambda)^{-\sigma-1} \psi(\lambda) d\lambda = \frac{1}{\theta} (\psi(s) - 1)\), where \(\theta \in \mathbb{R}^*\).

Remark 3. Note that, in order to prove the existence of the global solutions of FDEs and FOTDSs, authors in [9, 11] used MLF.

Theorem 1. [24] (Generalized Taylor’s formula) Let \(0 < \sigma < 1\). Assume that \(C_D^{m\sigma}_{r_1} \vartheta \in C([r_1, r_2])\), for each \(m \in \{0, 1, ..., s\}\), with \(s \in \mathbb{N}^*\), then we have

\[
\vartheta(x) = \sum_{m=0}^{s-1} C_D^{m\sigma}_{r_1} \vartheta(r_1) \frac{(x-r_1)^{m\sigma}}{\Gamma(m\sigma + 1)} + C_D^{s\sigma}_{r_1} \vartheta(c) \frac{(x-r_1)^{s\sigma}}{\Gamma(s\sigma + 1)},
\]

with \(c \in [r_1, x]\), for each \(x \in (r_1, r_2]\).
Lemma 1. For $0 < \sigma < 1$ and $\theta > 0$, we have

$$\frac{t^\sigma}{E_\sigma(\theta t^\sigma)} \leq \frac{\Gamma(\sigma + 1)}{\theta}, \ \forall t \geq 0.$$

Proof. Using Theorem 1 for the function $\vartheta(t) = E_\sigma(\theta t^\sigma)$, we get

$$\vartheta(t) = 1 + \frac{\theta t^\sigma}{\Gamma(\sigma + 1)} + \frac{\theta^2 t^{2\sigma}}{\Gamma(2\sigma + 1)} c,$$

with $c \in [0, t]$, for each $t > 0$.

Therefore

$$\vartheta(t) \geq 1 + \frac{\theta t^\sigma}{\Gamma(\sigma + 1)},$$

for all $t \geq 0$.

Then

$$1 \geq \frac{1}{\vartheta(t)} + \frac{\theta t^\sigma}{\vartheta(t) \Gamma(\sigma + 1)},$$

for all $t \geq 0$.

Hence

$$\frac{t^\sigma}{E_\sigma(\theta t^\sigma)} \leq \frac{\Gamma(\sigma + 1)}{\theta},$$

for all $t \geq 0$.

\[\square\]

Definition 3. A mapping $\varpi : Y \times Y \rightarrow [0, \infty)$ is called a generalized metric on a nonempty set Y if:

K1 $\varpi(\gamma_1, \gamma_2) = 0$ if and only if $\gamma_1 = \gamma_2$;

K2 $\varpi(\gamma_1, \gamma_2) = \varpi(\gamma_2, \gamma_1)$ for all $\gamma_1, \gamma_2 \in Y$;

K3 $\varpi(\gamma_1, \gamma_3) \leq \varpi(\gamma_1, \gamma_2) + \varpi(\gamma_2, \gamma_3)$ for all $\gamma_1, \gamma_2, \gamma_3 \in Y$.

The below theorem describes a basic result of the fixed point theory.

Theorem 2. Suppose that (Y, ϖ) is a generalized complete metric space. Let $\Psi : Y \rightarrow Y$ is a strictly contractive operator with $C < 1$. If one can find a nonnegative integer j_0 such that $\varpi(\Psi^{j_0+1}y_0, \Psi^{j_0}y_0) < \infty$ for some $y_0 \in Y$, then:

(a) $\Psi^n y_0$ converges to a fixed point y_1 of Ψ;

(b) y_1 is the unique fixed point of Ψ in $Y^* := \{y_2 \in Y : \varpi(\Psi^{j_0}y_0, y_2) < \infty\}$;

(c) If $y_2 \in Y^*$, then $\varpi(y_2, y_1) \leq \frac{1}{1-C} \varpi(\Psi y_2, y_2)$.

3
A class of FOS with time delay is considered as follows:

\[C D^\beta_{t_0} x(t) = A_0 x(t) + A_1 x(t - g(t)) + A_2 d(t) + f(t, x(t), x(t - g(t)), d(t)), \quad t \geq t_0, \quad (2) \]

with the initial condition \(x(s) = \nu(s), \quad t_0 - g \leq s \leq t_0, \) with \(0 < \beta < 1, \) \(g(t) \) is continuous, \(0 \leq g(t) \leq g, \) \(d(t) \in \mathbb{R}^p \) is the disturbance, \(\nu \in C([t_0 - g, t_0], \mathbb{R}^n), \quad A_0 \in \mathbb{R}^{n \times n}, \quad A_1 \in \mathbb{R}^{n \times n}, \quad A_2 \in \mathbb{R}^{n \times p}. \)

The function \(f \) is continuous and satisfies:

\[\| f(s, u_1, u_2, u_3) - f(s, w_1, w_2, w_3) \| \leq \kappa(s) (\| u_1 - w_1 \| + \| u_2 - w_2 \| + \| u_3 - w_3 \|), \quad (3) \]

and \(f(s, 0, 0, 0) = 0, \) for all \((s, u_1, u_2, u_3, w_1, w_2, w_3) \in \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^p \)

where \(\kappa \) is a continuous function.

The function \(d \) is continuous and satisfies:

\[\exists \rho > 0 : \quad d^T(t) d(t) \leq \rho^2. \quad (4) \]

Definition 4. [25] The FOS \((2)\) is robustly FTS with respect to \(\{\varepsilon_1, \varepsilon_2, \rho, T\}, \varepsilon_1 < \varepsilon_2 \) if

\[\| \nu \| \leq \varepsilon_1 \]

imply:

\[\| x(t) \| \leq \varepsilon_2, \quad \forall t \in [t_0, T], \]

for all \(d \) satisfying \((4)\).

3 Stability analysis

Let us denote \(a_i = \max_{s \in [t_0, T]} \left(\| A_i \| + \kappa(s) \right) \) for \(i = 0, 1, 2. \)

Theorem 3. The FOS \((2)\) is robustly FTS w.r.t. \(\{\varepsilon_1, \varepsilon_2, \rho, T\}, \varepsilon_1 < \varepsilon_2 \) if there exists \(\eta > 0 \) such that

\[C(\varepsilon_1, \rho) = \left(r_1 E_\beta \left((a_0 + a_1 + \eta)(T - t_0)\beta \right) + 1 \right) \varepsilon_1 + r_2 E_\beta \left((a_0 + a_1 + \eta)(T - t_0)\beta \right) \rho \leq \varepsilon_2, \quad (5) \]

where \(r_1 = \frac{M(a_0 + a_1 + \eta)(a_0 + a_1)}{\eta \Gamma(\beta + 1)}, \quad r_2 = \frac{M(a_0 + a_1 + \eta)a_2}{\eta \Gamma(\beta + 1)}, \quad M = \sup_{s \in [t_0, T]} \left(E_\beta \left((a_0 + a_1 + \eta)(s - t_0)\beta \right) \right). \)

Proof. Let \(\nu \in C([t_0 - g, t_0], \mathbb{R}^n) \) such that \(\| \nu \| \leq \varepsilon_1. \)

Define the metric \(\varpi \) on \(E = C([t_0 - g, T], \mathbb{R}^n) \) by

\[\varpi(x_1, x_2) = \inf \left\{ b \in [0, \infty] : \frac{\| x_1(t) - x_2(t) \|}{h(t)} \leq b, \forall t \in [t_0 - g, T] \right\}, \]

for all \(x_1, x_2 \in E, \) where \(h(t) = E_\beta \left((a_0 + a_1 + \eta)(t - t_0)\beta \right) \) for \(t \geq t_0. \)
where \(h \) is defined by \(h(s) = 1 \), for \(s \in [t_0 - g, t_0] \) and \(h(s) = E_\beta \left((a_0 + a_1 + \eta)(s - t_0)^\beta \right) \) for \(s \in [t_0, T] \).

As the author of [12] did in his theorem 3.1, we get \((E, \varpi)\) is a generalized complete metric space.

Now, define the operator \(V : E \to E \) such that \((V y)(t) = \nu(t), \) for \(t \in [t_0 - g, t_0] \) and

\[
(V y)(t) = \nu(t_0) + \frac{1}{\Gamma(\beta)} \int_{t_0}^{t} (t - s)^{\beta - 1} \left[A_0 y(s) + A_1 y(s - g(s)) \right] ds + A_2 d(s) + f(s, y(s), y(s - g(s)), d(s)) \, ds,
\]

for \(t \in [t_0, T] \).

Note that, for \(y \in E \) we have \(V y \in E \).

It is easy to see that \(\varpi(V u_0, u_0) < \infty \), and \(\{ u_0 \in E : \varpi(u_0, u_1) < \infty \} = E \ \forall u_0 \in E \).

Let \(x_1, x_2 \in E \), we have \((V x_1)(s) - (V x_2)(s) = 0\), for every \(s \in [t_0 - g, t_0] \).

For \(t \in [t_0, T] \), we get

\[
\left\| (V x_1)(t) - (V x_2)(t) \right\| \leq \int_{t_0}^{t} \frac{(t - l)^{\beta - 1}}{\Gamma(\beta)} \left[A_0 (x_1(l) - x_2(l)) + A_1 (x_1(l - g(l)) - x_2(l - g(l))) \right] dl + A_2 d(l) + f(l, x_1(l), x_2(l), d(l)) \, dl.
\]

Since \(h \) is nondecreasing, so

\[
\| (V x_1)(t) - (V x_2)(t) \| \leq \frac{(a_0 + a_1)}{\Gamma(\beta)} \varpi(x_1, x_2) \int_{t_0}^{t} (t - s)^{\beta - 1} h(s) \, ds.
\]

\[
\leq \frac{(a_0 + a_1)}{(a_0 + a_1 + \eta)} h(t) \varpi(x_1, x_2), \text{ for all } t \in [t_0, T].
\]
Then
\[\varpi(\mathcal{V}x_1, \mathcal{V}x_2) \leq \frac{(a_0 + a_1)}{(a_0 + a_1 + \eta)} \varpi(x_1, x_2). \]

Thus, \(\mathcal{V} \) is a strictly contractive operator.

Now, consider the function \(y_0 \) defined by \(y_0(s) = \nu(s) \), for \(s \in [t_0 - g, t_0] \) and \(y_0(s) = \nu(t_0) \) for \(s \in [t_0, T] \).

We have \((\mathcal{V}y_0)(s) - y_0(s) = 0 \), for every \(s \in [t_0 - g, t_0] \).

For \(t \in [t_0, T] \), we get
\[
\| (\mathcal{V}y_0)(t) - y_0(t) \| = \frac{1}{\Gamma(\beta)} \int_{t_0}^{t} (t - \tau)^{\beta - 1} [A_0 y_0(\tau) + A_1 y_0(\tau - g(\tau)) + A_2 d(\tau)] \, d\tau \\
\leq \frac{1}{\Gamma(\beta)} \int_{t_0}^{t} (t - l)^{\beta - 1} [(a_0 + a_1)\|\nu\| + a_2 \rho] \, dl \\
\leq \frac{[\max \{a_0 + a_1\} \|\nu\| + a_2 \rho]}{\Gamma(\beta + 1)}(t - t_0)^\beta.
\]

Therefore,
\[
\frac{\| (\mathcal{V}y_0)(t) - y_0(t) \|}{h(t)} \leq M \frac{[(a_0 + a_1)\|\nu\| + a_2 \rho]}{\Gamma(\beta + 1)},
\]

(8)

then
\[
\varpi(y_0, \mathcal{V}y_0) \leq M \frac{[(a_0 + a_1)\|\nu\| + a_2 \rho]}{\Gamma(\beta + 1)}.
\]

By using Theorem 2, there exists a unique solution \(x \) of (2) with initial condition \(\nu \) such that
\[
\varpi(x, y_0) \leq \frac{(a_0 + a_1 + \eta)}{\eta} \frac{[(a_0 + a_1)\|\nu\| + a_2 \rho]}{\Gamma(\beta + 1)} M \\
\leq r_1 \varepsilon_1 + r_2 \rho.
\]

(10)

Hence
\[
\| x(t) - y_0(t) \| \leq (r_1 \varepsilon_1 + r_2 \rho) h(T),
\]

for every \(t \in [t_0, T] \).

Then
\[
\| x(t) \| \leq \| y_0(t) \| + \| x(t) - y_0(t) \|, \\
\leq (r_1 E_\beta((a_0 + a_1 + \eta)(T - t_0)^\beta) + 1) \varepsilon_1 + r_2 E_\beta((a_0 + a_1 + \eta)(T - t_0)^\beta) \rho,
\]

(11)
for every $t \in [t_0, T]$.

Therefore, if (5) is satisfied then $\|x(t)\| \leq \varepsilon_2$, for all $t \in [t_0, T]$.

Remark 4. Note that, if we use Lemma 1, we get

$$r_1 \leq \frac{(a_0 + a_1)}{\eta}$$

and

$$r_2 \leq \frac{a_2}{\eta}.$$

Thus

$$C(\varepsilon_1, \rho) \leq \left(\frac{(a_0 + a_1)}{\eta} E_\beta((a_0 + a_1 + \eta)(T - t_0)^\beta) + 1\right) \varepsilon_1 + \frac{a_2}{\eta} E_\beta((a_0 + a_1 + \eta)(T - t_0)^\beta)\rho.$$

Then, the assumption (5) can be relaxed by:

$$D(\varepsilon_1, \rho) = \left(\frac{(a_0 + a_1)}{\eta} E_\beta((a_0 + a_1 + \eta)(T - t_0)^\beta) + 1\right) \varepsilon_1 + \frac{a_2}{\eta} E_\beta((a_0 + a_1 + \eta)(T - t_0)^\beta)\rho \leq \varepsilon_2.$$

Remark 5. For the integer-order case, the main result remains the same by changing β by 1 and the MLF by the exponential function.

4 Illustrative examples

Two illustrative examples are considered to show the usefulness and interest of the main result.

Example 1. Consider the FOS (2), with $\rho = 10^{-1}$, $\beta = 0.9$, $t_0 = 0$,

$$g(s) = 0.4 \cos^2(s) \sin^2(s),$$

$$\nu(r) = \begin{pmatrix} 0 & 0.09 \end{pmatrix}^T, \text{ for } r \in [-0.1, 0],$$

$$f(s, x(s), x(s - g(s)), d(s)) = \begin{pmatrix} \sin(0.01x_2(s)), \sin(0.01x_1(s - g(s))) \end{pmatrix}^T,$$

and

$$A_0 = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0 & 3 \\ 0 & 4 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -0.8 \\ 1 & 0 \end{pmatrix}.$$

We get $a_0 = 2.01$, $a_1 = 5.01$, and $a_2 = 1.01$.

For $\eta = 1$, $\varepsilon_1 = 10^{-1}$, $\varepsilon_2 = 50$, and $T = 0.385$, we get $D(\varepsilon_1, \rho) \approx 49 < \varepsilon_2$.

Then the FOS is robustly FTS w.r.t $(10^{-1}, 50, 10^{-1}, 0.385)$.

Example 2. Consider the FOS (2), where $\rho = 10^{-1}$, $t_0 = 0$, $\beta = 0.6$,

$$g(s) = 0.4 \cos^2(s) \sin^2(s),$$

$$\nu(r) = \begin{pmatrix} 0.06 & 0.07 \end{pmatrix}^T, \text{ for } r \in [-0.1, 0],$$

$$A_0 = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0 & 3 \\ 0 & 4 \end{pmatrix},$$

$$A_2 = \begin{pmatrix} 0 & -0.8 \\ 1 & 0 \end{pmatrix}.$$

We get $a_0 = 2.01$, $a_1 = 5.01$, and $a_2 = 1.01$.

For $\eta = 1$, $\varepsilon_1 = 10^{-1}$, $\varepsilon_2 = 50$, and $T = 0.385$, we get $D(\varepsilon_1, \rho) \approx 49 < \varepsilon_2$.

Then the FOS is robustly FTS w.r.t $(10^{-1}, 50, 10^{-1}, 0.385)$.

\[
f(s, x(s), x(s - g(s)), d(s)) = \begin{pmatrix} \sin(0.01x_2(s - g(s))) \\ \sin(0.01x_1(s)) \end{pmatrix}^T,
\]

and
\[
A_0 = \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0.5 & 0 \\ 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 0.4 \\ -1 & 0 \end{pmatrix}.
\]

We get \(a_0 = 2.01, a_1 = 1.01\) and \(a_2 = 1.01\).

For \(\eta = 1, \varepsilon_1 = 10^{-1}, \varepsilon_2 = 100\) and \(T = 0.49\), we get \(D(\varepsilon_1, \rho) \simeq 97 < \varepsilon_2\).

Then the FOS is robustly FTS w.r.t \((10^{-1}, 100, 10^{-1}, 0.49)\).

5 Conclusion

In this work, the robust FTS of FOTDSs with disturbances was studied. By proposing an approach based on the fixed point theory we have obtained a new sufficient condition for the robust FTS of such systems. Finally, two illustrative examples were presented to prove the validity of our result.

References

[1] Ben Makhlouf, A., Stability with respect to part of the variables of nonlinear Caputo fractional differential equations, *Mathematical Communications*, vol. 23, pp. 119–126, 2018.

[2] Ben Makhlouf, A. and Nagy, A. M., Finite-Time Stability of Linear Caputo-Katugampola Fractional-Order Time Delay Systems , *Asian Journal of Control*, vol. 22, pp. 297–306, 2020.

[3] Ben Makhlouf, A., Hammami, M. A. and Sioud, K., Stability of fractional order nonlinear systems depending on a parameter, *Bulletin of the Korean Mathematical Society*, vol. 54, pp. 1309–1321, 2017.

[4] Bohner, M. and Hatipoglu, V. F., Dynamic cobweb models with conformable fractional derivatives, *Nonlinear Analysis: Hybrid Systems*, vol. 32, pp. 157–167, 2019.

[5] Cattani, C., Srivastava, H. M. and Yang, X. J., *Fractional Dynamics*, Walter de Gruyter KG, ISBN 9783110472097., 2015.

[6] Chen, L., Chai, Y., Wu, R., Ma, T., Zhai, H. Dynamic analysis of a class of fractional-order neural networks with delay, *Neurocomputing*, vol. 111, pp. 190-194, 2013.

[7] Chen, L., He, Y., Wu, R., Chai, Y., Yin, L. Robust finite time stability of fractional-order linear delayed systems with nonlinear perturbations, *International Journal of Control, Automation and Systems*, vol. 12 (3), pp. 697-702, 2014.
[8] Chen, L., Pan, W., Wu, R., He, Y. New Result on Finite-Time Stability of Fractional-Order Nonlinear Delayed Systems, *Journal of Computational and Nonlinear Dynamics*, vol. 10 (6), pp. 064504 (5 pages), 2015.

[9] Cong, N. D., Tuan, H. T., Existence, Uniqueness, and Exponential Boundedness of Global Solutions to Delay Fractional Differential Equations, *Mediterranean Journal of Mathematics*, vol. 14, pp. 1-12, 2017.

[10] Diaz, J. B., and Margolis, B., A fixed point theorem of the alternative, for contractions on a generalized complete metric space, *Bulletin of the American Mathematical Society*, vol. 74, pp. 305–309, 1968.

[11] Doan, T. S., and Kloeden, P. E., Semi-dynamical systems generated by autonomous Caputo fractional differential equations, arXiv preprint arXiv:1905.09159.

[12] Jung, S.-M., A Fixed Point Approach to the Stability of Differential Equations $y' = F(x, y)$, *Bulletin of the Malaysian Mathematical Sciences Society*, vol. 33, pp. 47–56, 2010.

[13] Jmal, A., Elloumi, M., Naifar, O., Ben Makhlouf, A. and Hammami, M. A., State estimation for nonlinear conformable fractional order systems: A healthy operating case and a faulty operating case, *Asian Journal of Control*, vol. 22, pp. 1870-1879, 2020.

[14] Jmal, A., Naifar, O., Ben Makhlouf, A., Derbel, N. and Hammami, M. A., On Observer Design for Nonlinear Caputo Fractional Order Systems, *Asian Journal of Control*, vol. 20, pp. 1533-1540, 2017.

[15] Jmal, A., Naifar, O., Ben Makhlouf, A., Derbel, N. and Hammami, M. A., Sensor fault estimation for fractional-order descriptor one-sided Lipschitz systems, *Nonlinear Dynamics*, vol. 91, pp. 1713-1722, 2018.

[16] Jmal, A., Naifar, O., Ben Makhlouf, A., Derbel, N. and Hammami, M. A., Robust sensor fault estimation for fractional-order systems with monotone nonlinearities, *Nonlinear Dynamics*, vol. 90, pp. 2673-2685, 2017.

[17] Lazopoulos, K.A. and Lazopoulos, A. K., Fractional vector calculus and fluid mechanics, *J Mech Behav Mater*, vol. 26, pp. 43-54, 2017.

[18] Lazarevic, M.P. and Spasic, A. M., Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, *Mathematical and Computer Modelling*, vol. 49, pp. 475-481, 2009.

[19] Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D. and Feliu-Batlle, V., *Fractional-Order Systems and Controls: Fundamentals and Applications*, Springer, ISBN 9781849963350, 2010.
[20] Naifar, O., Ben Makhlouf, A. and Hammami, M. A., Comments on “Lyapunov stability theorem about fractional system without and with delay”, Communications in Nonlinear Science and Numerical Simulation, vol. 30, pp. 360-361, 2016.

[21] Naifar, O., Ben Makhlouf, A. and Hammami, M. A., Comments on “Mittag-Leffler stability of fractional order nonlinear dynamic systems”, Automatica, vol. 75, pp. 329, 2017.

[22] Naifar, O., Ben Makhlouf, A., Hammami, M. A. and Chen, L., Global Practical Mittag Leffler Stabilization by Output Feedback for a Class Of Nonlinear Fractional Order Systems, Asian journal of control, vol. 20, pp. 599-607, 2017.

[23] Naifar, O., Nagy, A. M., Ben Makhlouf, A., Kharrat, M., Hammami, M. A., Finite-time stability of linear fractional-order time-delay systems, International Journal of Robust and Nonlinear Control, vol. 29, pp. 180-187, 2019.

[24] Odibat, Z. M. and Shawagfeh N. T., Generalized Taylor’s formula, Applied Mathematics and Computation, vol. 186, pp. 286-293, 2007.

[25] Phat, V. N. and Thanh, N. T., New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality approach, Applied Mathematics Letters, vol. 83, pp. 169-175, 2018.

[26] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego California, 1999.

[27] Povstenko, Y. Z., Fractional Heat Conduction Equation and associated thermal stress, Journal of Thermal Stresses, vol. 28, pp. 83-102, 2004.

[28] Souahi, A., Naifar, O., Ben Makhlouf, A. and Hammami, M. A., Discussion on Barbalat Lemma extensions for conformable fractional integrals, International Journal of Control, vol. 92, pp. 234-241, 2019.

[29] Thanh, N. T. and Phat, V. N., Improved Approach for Finite-Time Stability of Nonlinear Fractional-Order Systems With Interval Time-Varying Delay, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, pp. 1356-1360, 2019.

[30] Thanh, N. T. and Phat, V. N., Switching law design for finite-time stability of singular fractional-order systems with delay, IET Control Theory and Applications, vol. 13, pp. 1367-1373, 2019.

[31] Thanh, N. T., Phat, V. N. and Niamsup, T., New finite-time stability analysis of singular fractional differential equations with time-varying delay, Fractional Calculus and Applied Analysis, vol. 23, pp. 504-519, 2020.

[32] Wu, R., Hei, X., Chen, L. Finite-time stability of fractional-order neural networks with delay, Commun Theor Phys, vol. 60 (2), pp. 189-193, 2013.
[33] Wu, R., Lu, Y., Chen, L., Finite-time stability of fractional delayed neural networks, *Neurocomputing*, vol. 149, pp. 700-707, 2015.