We calculate the effect of gravitational wave (gw) back-reaction on realistic neutron stars (NS’s) undergoing torque-free precession. By ‘realistic’ we mean that the NS is treated as a mostly-fluid body with an elastic crust, as opposed to a rigid body. We find that gw’s damp NS wobble on a timescale $\tau_\theta \sim 2 \times 10^5$ yr $[10^{-7}/(\Delta I_d/I_0)]^2$(kHz/$\nu_s$)4, where ν_s is the spin frequency and ΔI_d is the piece of the NS’s inertia tensor that “follows” the crust’s principal axis (as opposed to its spin axis). We give two different derivations of this result: one based solely on energy and angular momentum balance, and another obtained by adding the Burke-Thorne radiation reaction force to the Newtonian equations of motion. This problem was treated long ago by Bertotti and Anile (1973), but their claimed result is wrong. When we convert from their notation to ours, we find that their τ_θ is too short by a factor $\sim 10^5$ for typical cases of interest, and even has the wrong sign for ΔI_d negative. We show where their calculation went astray.
I. INTRODUCTION

This paper calculates the effect of gravitational wave (gw) back-reaction on the torque-free precession, or wobble, of realistic, spinning neutron stars (NS’s). By ‘realistic’ we mean the NS is treated as a mostly-fluid body with an elastic crust, as opposed to a rigid body. (However we do not include any superfluid effects in our analysis.) Freely precessing neutron stars are a possible source for the laser interferometer gw detectors (LIGO, VIRGO and GEO under construction, TAMA already operational); it is the prospect of gravitational wave astronomy that motivated our study. Also, the first clear observation of free precession in a pulsar signal was reported very recently 1, making this investigation all the more timely.

The effect of gw back-reaction on wobbling, axisymmetric rigid bodies was first derived 27 years ago, in an impressively early calculation by Bertotti and Anile 2. They found (correctly) that for rigid bodies, gw backreaction damps wobble on a timescale (for small wobble angle) 10 years.)

erenced by other authors only four times in the last 27

search showed that Bertotti and Anile [2] had been ref-

efficiency–was apparently little known. (A citation index

that in realistic NS’s, gw’s damp wobble with amazing

the fundamental beauty of this probem and its poten-

In

we would then have a damping time of merely

10

years.

timescale (for small wobble angle) 10 years.)

1

10

timescale (for small wobble angle) 10 years.)

1

10

years.

In

the same paper, Bertotti and Anile [2] went on to calculate the effect of gw back-reaction on wobble for the more realistic case of an elastic NS. When cast into our notation, their claimed gw timescale is

5I/2G(2\pi\nu_s)^4\Delta I\Delta I where \Delta I is the asymmetry in the moment of inertia due to centrifugal forces and \Delta I is the asymmetry due to some other mechanism, such as strain in the solid crust. Taking \Delta I to be (roughly) the asymmetry expected for a rotating fluid according to \Delta I/I \approx 0.3(\nu_s/kHz)^2, we would then have a damping time of merely

0.6 yr (kHz/\nu_s)^4(10^{-7}/(\Delta I/I))(10^{45} \text{ g cm}^2/I).

Despite the fundamental beauty of this probem and its potential astrophysical significance, their remarkable claim—that in realistic NS’s, gw’s damp wobble with amazing efficiency—was apparently little known. (A citation index search showed that Bertotti and Anile [2] had been referenced by other authors only four times in the last 27 years.)

We will show that the Bertotti and Anile result for elastic NS’s is very wrong, however. For typical cases of interest, their gw timescale \tau_0 is too short by a factor \sim 10^5! Moreover, their calculation even gives the wrong sign (exponential growth instead of damping) when \Delta I is negative.\footnote{Actually, Bertotti and Anile [2] never claim in words that they find unstable growth of the wobble angle when \Delta I < 0, but that is what is found if one just takes their formulæ and converts from their notation to ours, as above. Moreover we have repeated their (flawed) calculation, includ-}

ing their one crucial error, and seen that it does lead to a prediction of exponential wobble growth for \Delta I negative. The conversion from their notation to ours is simply

(\delta_1 I - \delta_2 I)(\cos^2 \gamma - \frac{1}{2} \sin^2 \gamma) \rightarrow \Delta I d and \delta_2 I \rightarrow \Delta I).
rather similar to the corresponding derivation for rigid bodies. Here we briefly review the solution to the rigid-body problem, as a warm-up for tackling the realistic case.

Consider an axisymmetric rigid body with principal axes \(\hat{x}_1, \hat{x}_2, \hat{x}_3 \) and principal moments of inertia \(I_1 = I_2 \neq I_3 \). Let the body have angular momentum \(\mathbf{J} \), misaligned from \(\hat{x}_3 \). Define the wobble angle \(\theta \) by \(\mathbf{J} \cdot \hat{x}_3 = J \cos \theta \). It is a standard result from classical mechanics that (in the absence of external torques) the body axis \(\hat{x}_3 \) precesses around \(\mathbf{J} \) with (inertial frame) precession frequency \(\phi = J/I_1 \), with \(\theta \) constant. Together, the pair \((\theta, \phi) \) completely specify the free precession (modulo a trivial constant of integration specifying \(\phi \) at \(t = 0 \)). We wish to calculate the evolution of these two parameters using the time-averaged fluxes \((\dot{E}, \dot{J}) \).

Straightforward application of the mass quadrupole formalism gives

\[
\dot{E} = -\frac{2G}{5c^5} \dot{\phi} \Delta I^2 \sin^2 \theta (\cos^2 \theta + 16 \sin^2 \theta),
\]

where \(\Delta I = I_3 - I_1 \), and

\[
J = \dot{E}/\dot{\phi}.
\]

It follows from differentiation of \(\dot{\phi} = J/I_1 \) that

\[
\ddot{\phi} = -\frac{2G}{5c^5} \frac{\Delta I^2}{I_1} \dot{\phi}^2 \sin^2 \theta (16 \sin^2 \theta + \cos^2 \theta).
\]

To calculate the rate of change of the wobble angle, rearrange

\[
\frac{dE}{dt} = \frac{\partial E}{\partial J} \frac{dj}{dt} + \frac{\partial E}{\partial \theta} \frac{\partial \theta}{\partial J} \frac{d\theta}{dt},
\]

to give

\[
\dot{\theta} = \frac{J \dot{\phi} - \frac{\partial E}{\partial J} \dot{J}}{\frac{\partial E}{\partial \theta} \dot{J}},
\]

where Eq. (2.2) has been used. The energy of the body is simply its kinetic energy:

\[
E = \frac{J^2}{2I_1} \left[1 - \cos^2 \theta \frac{\Delta I}{I_3} \right],
\]

and so

\[
\frac{\partial E}{\partial J} \bigg|_\theta = \frac{J}{I_1} \left[1 - \cos^2 \theta \frac{\Delta I}{I_3} \right],
\]

\[
\frac{\partial E}{\partial \theta} \bigg|_J = \frac{J^2}{I_1} \cos \theta \sin \theta \frac{\Delta I}{I_3}.
\]

This gives

\[
\dot{\theta} = \frac{2G}{5c^5} \frac{\Delta I^2}{I_1} \dot{\phi} \cos \theta \sin \theta (16 \sin^2 \theta + \cos^2 \theta).
\]

We can construct timescales on which the spin-down and alignment occur:

\[
\tau^{\text{rigid}}_\phi = -\frac{\dot{\phi}}{\dot{\phi}} = \frac{5c^5}{2G I_1} \frac{I_1}{\Delta I^2} \frac{1}{\sin^2 \theta (16 \sin^2 \theta + \cos^2 \theta)},
\]

\[
(2.10)
\]

\[
\tau^{\text{rigid}}_\theta = -\frac{\sin \theta}{\frac{d}{dt} \sin \theta} = \frac{5c^5}{2G \dot{\phi}^2 \Delta I^2} \cos^2 \theta (16 \sin^2 \theta + \cos^2 \theta).
\]

\[
(2.11)
\]

Radiation reaction causes both \(\dot{\phi} \) and \(\sin \theta \) to decrease, regardless of whether the body is oblate or prolate. Note that in the limit of small wobble angle the inertial precession frequency remains almost constant \((\tau^{\text{rigid}}_\phi \rightarrow \infty) \), while \(\theta \) decreases exponentially on the timescale

\[
\tau^{\text{rigid}}_\theta < 1 = \frac{5c^5}{2G \dot{\phi}^2 \Delta I^2}.
\]

\[
(2.12)
\]

Parameterising:

\[
\tau^{\text{rigid}}_\theta = 1.8 \times 10^6 \text{yr} \left(\frac{10^{-7}}{\Delta I/I_1} \right)^2 \left(\frac{\text{kHz}}{\nu_s} \right)^4 \left(\frac{10^{45} \text{g cm}^2}{I_1} \right).
\]

\[
(2.13)
\]

In the limit of vanishingly small wobble angle the partial derivative on the lhs of Eq. (2.7) becomes what we conventionally call the "spin frequency" \(\Omega \) of the body. Eq. (2.5) then shows that \(\dot{\theta} \) is proportional to the difference between the inertial precession frequency \(\phi \) and the spin frequency \(\Omega \). This difference remains finite as \(\theta \to 0 \) according to \(\phi - \Omega = (\Delta I/I_1) \Omega [1 + O(\theta^2)] \). Thus for a prolate body \((\Delta I < 0) \), such as an American football, the body precesses slower than it spins, while for an oblate body the inertial precession frequency is higher than the spin frequency. Since the denominator in (2.5) is also proportional to \(\Delta I \), the wobble angle decreases regardless of the sign of this factor. This viewpoint will be useful when we consider the radiation reaction problem for an elastic body.

III. Radiation Reaction for Rigid Bodies: Local Force

We will now re-derive the spin-down and alignment timescales by adding the Burke-Thorne local radiation reaction force to the equations of motion.

The Burke-Thorne radiation reaction potential at a point \(x \) is given by

\[
\Phi_{\text{RR}} = \frac{G}{c^3} x^a x^b \frac{d^5 \Phi_{ab}}{dt^5},
\]

\[
(3.1)
\]
where \hat{t}_{ab} denotes the trace-reduced quadrupole moment tensor:

$$\hat{t}_{ab} = \int_V \rho(x_a x_b - \frac{1}{3} \delta_{ab} x^2) \, dV. \quad (3.2)$$

Note that this is related to the moment of inertia tensor according to

$$\hat{t}_{ab} = -I_{ab} - \frac{2}{3} \delta_{ab} \int_V \rho x^2 \, dV, \quad (3.3)$$

with the result that

$$\Delta I \equiv I_3 - I_1 = -\left(\hat{t}_3 - \hat{t}_1\right). \quad (3.4)$$

The radiation reaction force (on a particle of unit mass) is $F^{RR}_a = -\partial \Phi^{RR} / \partial x^a$. The instantaneous (not time-averaged) torque on a body can easily be shown to be

$$T^a = \frac{2G}{c^5} \epsilon^{abc} \frac{\partial}{\partial t} \hat{t}_{dc} \, dV. \quad (3.5)$$

Making use of Eq. (3.4) it is straightforward to calculate this torque for the free precessional motion. We find

$$T = \frac{2G}{c^5} \Delta I^2 \dot{\phi}^5 \sin \theta (16 \sin^2 \theta + \cos^2 \theta) n_{\perp n_d}, \quad (3.6)$$

acting always in the plane containing the angular momentum and the symmetry axis x_3, and perpendicular to n_d, i.e. along the direction of $n_{\perp n_d}$ shown in Fig. 1. We will refer to this plane as the reference plane.

The evolution equations can be calculated without going to the trouble of writing down Euler’s equations. Differentiation of $\dot{\phi} = J/I_1$ gives

$$\ddot{\phi} = \frac{j}{I_1}, \quad (3.7)$$

and so

$$\dot{\phi} = -\frac{T \sin \theta}{I_1}. \quad (3.8)$$

Define $J_{\perp n_d}$ as the component of the angular momentum perpendicular to the symmetry axis. Then differentiation of the trivial relation

$$\sin \theta = \frac{J_{\perp n_d}}{J} \quad (3.9)$$

leads to

$$\dot{\theta} = -\frac{T_{\perp J}}{J} = -\frac{T \cos \theta}{J}, \quad (3.10)$$

where $T_{\perp J}$ is the component of the torque perpendicular to J. Equations (3.8) and (3.10) show that the action of the torque breaks down neatly into two parts. The component along J acts to change the inertial precession frequency ϕ while the component perpendicular to J acts to change θ. Substitution of (3.4) into (3.8) and (3.10) then reproduces the spin-down and alignment of equations (2.3) and (2.4), so the two methods of calculation agree. As this torque formulation makes clear (by combining Eqs. 3.8 and 3.10), the product $\phi \cos \theta$ remains constant, so that if a body is set into free precession described by (θ_0, ϕ_0), it tends to a non-precessing motion about x_3 with (inertial frame) angular velocity $\dot{\phi} = \cos \theta_0 \, \dot{\phi}_0$.

IV. TORQUE-FREE PRECESSION OF ELASTIC BODIES

We now review the theory of the free precession of an elastic body. This problem was first addressed in the context of the Earth’s own motion. A rigorous treatment of the methods employed can be found in Munk and MacDonald [4]. The terrestrial analysis was extended to neutron stars by Pines and Shaham [3]. The energy loss due to gravitational waves was considered by Alpar and Pines [2].

Following the latter authors we will model a star consisting of a centrifugal bulge and a single additional deformation bulge. Alpar and Pines wrote an inertia tensor for the elastic body of the form

$$I = I_{0,3} \delta + \Delta I_{1} (n_\Omega n_\Omega - 1/3 \delta) + \Delta I_d (n_d n_d - 1/3 \delta). \quad (4.1)$$

where δ is the unit tensor $[1,1,1]$, n_Ω is the unit vector along the star’s angular velocity Ω, and n_d is the unit vector...
vector along the body’s principal deformation axis (explained below). The \(I_{0,S} \) and \(\Delta I_d \) pieces of \(\mathbf{I} \) together represent the inertia tensor for the corresponding non-rotating star. The \(\Delta I_d \) term is just the non-spherical piece of this tensor (approximated as axisymmetric). If the star were a perfect fluid, \(\Delta I_d \) would vanish, but in real stars (and the Earth) \(\Delta I_d \) is non-zero due to crustal shear stresses and magnetic fields. The term \(\Delta I_d \) (\(> 0 \) and \(\propto \Omega \) for small \(\Omega \)), represents the increase in the star’s moment of inertia (compared to the non-rotating case) due to centrifugal forces. Since the crust of a rotating NS will tend to “relax” towards its oblate shape, having \(\Delta I_d > 0 \) is surely the typical case in Nature. (E.g., if one could slow the Earth down to zero angular velocity without cracking its crust, it would remain somewhat oblate: the crust’s “relaxed, zero-strain” shape is oblate, and after centrifugal forces are removed, the stresses that build up in the crust will act to push it back towards that relaxed shape.) But a negative \(\Delta I_d \) is also possible in principle. We say the deformation bulge aligned with \(\mathbf{n}_d \) is ‘oblate’ if \(\Delta I_d > 0 \) and ‘prolate’ if \(\Delta I_d < 0 \).

What is a typical magnitude for \(\Delta I_d \) in real, spinning NS’s? Let us assume \(\Delta I_d \) is due primarily to crustal shear stresses (as opposed to stresses in a hypothetical solid core, extremely strong B-fields, or pinned superfluid vortices). Then for a relaxed crust (i.e., a crust whose reference ellipticity is very close to its actual ellipticity), we have \(\Delta I_d = b \Delta I_\Omega \), where Alpar and Pines\,(\text{A})\ estimate \(b \sim 10^{-5} \) for a primordial (cold catalyzed) crust. The maximum value for \(\Delta I_d/I \) is therefore of order \(\sim 10^{-5} \). The parameter \(b \) (which arises from inter-nucleon Coulomb forces) scales like the average \(Z^2/A \) of the crustal nuclei. Since crusts of accreted matter (as in LMXB’s) have smaller-Z nuclei\,(\text{I})\, their \(b \) factor is correspondingly smaller, by a factor \(\sim 2 - 3 \). Using \(\Delta I_\Omega/I \sim 0.3(\nu_s/\text{kHz})^2 \), we would therefore estimate \(\Delta I_d/I \sim 10^{-7} \) for a NS with a relaxed, accreted crust and \(\nu_s \sim 300 \text{ Hz} \), while for the Crab one would expect \(\Delta I_d/I \sim 3 \times 10^{-9} \) (again, assuming its crust is almost relaxed). For the freely precessing pulsar reported in Stairs et al.\,(\text{B})\, where the body-frame precession period is \(\sim 2 \times 10^8 \text{ times the rotation period, Eq. (1.13) below} \) (valid for elastic bodies) yields \(\Delta I_d/I = 5 \times 10^{-9} \). For \(b = 10^{-5} \) this corresponds to a reference oblateness of \(5 \times 10^{-4} \). This is consistent with the star’s crust having solidified when it was spinning at about 40 Hz, assuming that neither glitches nor plastic flow have modified its shape since. (When the effects of crust-core coupling are taken into account, giving Eq. (2.4)\,(\text{C}), this initial frequency reduces to 12 Hz. See Jones\,(\text{D})\, for a review of pulsar free precession observations).

Precession occurs when \(\mathbf{n}_d \) and \(\mathbf{n}_\Omega \) are not aligned. Below we describe the precessional motion when there is no damping. This analysis is quite general: it applies to any star whose inertia tensor is described by Eq. (1.1), independent of what causes the deformation bulge. In the case of several equally important sources of deformation along different axes, extra terms must be added to (1.1) and the analysis would become more complex.

To proceed it is necessary to use equation (1.1) to form the angular momentum \(\mathbf{J} \) of the body. However as we are not modelling a rigid body, we must take care to allow for relative motion of one part with respect to another. Following\,(\text{F})\ we will write the velocity of some point in the body as the sum of a rotational velocity with angular velocity \(\mathbf{\Omega} \) and a small velocity \(\mathbf{u} \) relative to this rotating frame. We will call the frame that rotates at \(\mathbf{\Omega} \) the body frame although it is only in the rigid body limit that the body’s shape is fixed with respect to this frame. In other words the velocity of some particle making up the body is the sum of the body frame velocity \(\mathbf{\Omega} \times \mathbf{r} \) at that point \(\mathbf{r} \) plus the velocity \(\mathbf{u} \) of the point relative to the body frame. Then

\[
J_a = I_{ab} \Omega_b + h_a, \tag{4.2}
\]

where the possibly time-varying moment of inertia is defined in the usual way:

\[
I_{ab} = \int_V \rho(x_c x_c \delta_{ab} - x_a x_b) \, dV, \tag{4.3}
\]

while \(h_a \) is the angular momentum of the body relative to this frame:

\[
h_a = \int_V \rho \epsilon_{abc} x_b u_c \, dV. \tag{4.4}
\]

We will neglect the \(h_i \) term when constructing a free precessional motion, as it can be shown that \(h_i \) is small in a well-defined sense\,(\text{I}). Therefore we will simply write

\[
J_a = I_{ab} \Omega_b \tag{4.5}
\]

Having formulated the problem in this manner it is straightforward to show that the free precession of an elastic body is similar to that of a rigid one. First write down the angular momentum using (1.1) and (1.5). Referring all of our tensors to the body frame, with the 3-axis along \(\mathbf{n}_d \):

\[
\mathbf{J} = (I_{0,S} + 2/3 \Delta I_\Omega - 1/3 \Delta I_d) \mathbf{\Omega} + \Delta I_d \mathbf{\Omega}_3 \mathbf{n}_d. \tag{4.6}
\]

This shows that \(\mathbf{J}, \mathbf{\Omega} \) and \(\mathbf{n}_d \) are coplanar. As the angular momentum is constant this plane must rotate about \(\mathbf{J} \). As in the rigid body case, we will refer to this as the reference plane. See figure\,(\text{E})\, Taking the components of (4.6) we obtain:

\[
J_1 = (I_{0,S} + 2/3 \Delta I_\Omega - 1/3 \Delta I_d) \Omega_1 \equiv I_1 \Omega_1, \tag{4.7}
\]

\[
J_2 = (I_{0,S} + 2/3 \Delta I_\Omega - 1/3 \Delta I_d) \Omega_2 \equiv I_1 \Omega_2, \tag{4.8}
\]

\[
J_3 = (I_{0,S} + 2/3 \Delta I_\Omega + 2/3 \Delta I_d) \Omega_3 \equiv I_3 \Omega_3. \tag{4.9}
\]

These equations show that despite the triaxiality of \(\mathbf{I} \) the angular momentum components themselves are structurally equivalent to those of a rigid symmetric top. The
equations of motion of the body (i.e. Euler’s equations) involve only the components of \mathbf{J} and $\mathbf{\Omega}$. Therefore equations (4.7)—(4.9) show that the free precession of the triaxial body is formally equivalent to that of a rigid symmetric top. We can think of the elastic body as having an effective moment of inertia tensor diag[I_1, I_1, I_3]. Note that the effective oblateness $I_3 - I_1$ is equal to ΔI_d.

Now introduce standard Euler angles to describe the body’s orientation, with the polar axis along \mathbf{J}. Let θ and ϕ denote the polar and azimuthal coordinates of the deformation axis, while ψ represents a rotation about this axis. We refer to θ as the wobble angle. Taking the ratio of components J_1 and J_3 using (4.7) and (4.9) at an instant when $\Omega_2 = 0$ we obtain

$$\tan \gamma = \frac{I_3}{I_1} \tan \theta,$$ (4.10)

where γ denotes the $(\mathbf{\Omega}, \mathbf{n_d})$ angle. See figure 2.

![FIG. 2. This shows the reference plane, which contains the deformation axis $\mathbf{n_d}$, the angular velocity vector $\mathbf{\Omega}$ and the fixed angular momentum \mathbf{J}. The vectors $\mathbf{n_d}$ and $\mathbf{\Omega}$ rotate around \mathbf{J} at the inertial precession frequency $\dot{\phi}$. The terms ‘oblate’ and ‘prolate’ refer to the deformation bulge.](image)

We will label the angle between \mathbf{J} and $\mathbf{\Omega}$ as $\dot{\theta}$:

$$\dot{\theta} = \gamma - \theta.$$ (4.11)

This angle is much smaller than θ, as can seen by linearising (4.10) in ΔI_0 and ΔI_d to give

$$\dot{\theta} = \frac{\Delta I_d}{I_3} \sin \theta \cos \theta.$$ (4.12)

Note that according to our conventions, when the deformation bulge is oblate ΔI_d and $\dot{\theta}$ are positive, but when the deformation bulge is prolate ΔI_d and $\dot{\theta}$ are negative.

We can decompose the angular velocity according to

$$\mathbf{\Omega} = \dot{\phi} \mathbf{n_J} + \psi \mathbf{n_d}.$$ (4.13)

Substituting this into equation (4.6) and resolving along $\mathbf{n_J}$ and $\mathbf{n_d}$ gives

$$J = I_1 \dot{\phi},$$ (4.14)

$$\dot{\psi} = -\frac{\Delta I_d}{I_3} \Omega_3,$$ (4.15)

where J denotes the magnitude of the angular momentum. Note that when $\Delta I_0 = 0$ the above formulae reduce to the familiar rigid body equations.

Thus the motion is simple. As viewed from the inertial frame the deformation axis rotates at a rate $\dot{\phi}$ in a cone of half-angle θ about the angular momentum vector. This angular velocity is sometimes called the inertial precession frequency. The centrifugal bulge rotates around the angular momentum vector also, but—for oblate deformations—on the opposite side of \mathbf{J}, making an angle $\dot{\theta} = \gamma - \theta$ with \mathbf{J}. Superimposed upon this is a rotation about the deformation axis at a rate $\dot{\psi}$, known as the body frame precession frequency or sometimes simply the precession frequency. This frequency is negative for an oblate distortion and positive for a prolate one.

V. RADIATION REACTION FOR AN ELASTIC BODY: ENERGY AND ANGULAR MOMENTUM BALANCE

Here we derive the wobble damping time τ_0 for elastic bodies, based on energy and angular momentum balance. Once fully underway, the derivation is just a couple lines. But to understand it, it is useful to carry along a simple, physical model for the deformed crust. (However our derivation will actually be completely general.) Here is the model: take some non-rotating, spherical NS, and stretch a rubber band around some great circle on the crust. We shall refer to this great circle as the NS’s equator. Obviously the effect of the rubber band is to make the NS slightly prolate (but still axisymmetric). To get an oblate shape, you can instead imagine sewing compressed springs into the surface of the crust at the equator. For definiteness, let the potential energy of the band (or springs) be $V = \frac{1}{2} \epsilon l^2$, where l is its length. So ϵ is positive for the rubber band (prolate deformation, $\Delta I_d < 0$) and negative for the springs (oblate deformation, $\Delta I_d > 0$). Now give the NS angular momentum \mathbf{J} about some axis that is not quite perpendicular to the equator. We now have our deformed, wobbling NS. We consider the equation of state of the star and the value ϵ to be fixed once and for all, and consider how the energy of the system (star + band) varies as a function of its total angular momentum J and the wobble angle θ (the angle between \mathbf{J} and the perpendicular to the equator); i.e., we consider $E(J, \theta)$. We will be concerned with small
wobble angle, so let us expand \(E(J, \theta) \) as a Taylor series in \(J \) and \(\theta \):

\[
E(J, \theta) = E_0 + \frac{1}{2} B J^2 + \frac{1}{24} C J^4 + \frac{1}{2} F \epsilon \theta^2 J^2 + \cdots \quad (5.1)
\]

Here \(E_0 \) is defined to be the energy of the (star + band) at zero \(J \), and \(B, C, \) and \(F \) are some expansion coefficients that in principle depend on the physical properties of the (star + band). Fortunately we will soon see that there are simple relations between \(B, C, \) and \(F \) and previously-defined physical parameters, such as \(\Delta I_d \). Our ultimate goal is to obtain the two partial derivatives on the right-hand side of equation \((2.3)\), where \(E \) now denotes the total energy.

First, to see that no lower order terms (such as \(J, \theta J, \theta^2 \), or \(\theta J^2 \) terms) can appear in the expansion \((2.3)\), note that the \(J = 0 \) configuration corresponds to the minimum of the potential energy of the (star + band) system. Displacements of the (star + band) are first-order in \(J^2 \), so changes in the potential energy of (star + band) are \(\mathcal{O}(J^4) \). Thus terms in \(E(J, \theta) \) that are \(\mathcal{O}(J^4) \) are kinetic energy pieces. These terms with a \(J^2 \) in them are clearly just \(\frac{1}{2} (I_0^{-1})^{ab} J_a J_b \), where \(I_0^{-1} \) is defined to be the inertia tensor of the (star + band) at \(J = 0 \). (Corrections to the star’s \(I^{ab} \) first enter the energy at \(\mathcal{O}(J^4) \).)

We write \(I_0^{ab} \) as

\[
I_0^{ab} = I_{0,S}^{ab} + \Delta I_d \left(n_a n_b - \frac{1}{3} \delta^{ab} \right), \quad (5.2)
\]

where \(I_{0,S} \) represents the ‘spherical part’ of \(I_0^{ab} \). Then

\[
(I_0^{-1})^{ab} = \frac{1}{I_{0,S}} \left[\delta^{ab} - \left(\frac{\Delta I_d}{I_{0,S}} \right) (n_a n_b - \frac{1}{3} \delta^{ab}) \right] \quad (5.3)
\]

where a term of \(\mathcal{O}(\Delta I_d^2) \) has been neglected. The kinetic energy part of \(E \) is [up to terms of \(\mathcal{O}(\Delta I_d^2) \) and \(\mathcal{O}(J^4) \)]

\[
E_{kin} = \frac{J^2}{2 I_{0,S}} \left[1 - \left(\frac{\Delta I_d}{I_{0,S}} \right) \left(\frac{2}{3} - \theta^2 \right) \right], \quad (5.4)
\]

where we have used the small wobble angle result \(J_a n_a = J \left(1 - \frac{1}{3} \theta^2 \right) \). From Eq. \((5.4)\) we immediately read off the values of \(B \) and \(F \epsilon \) in expansion \((5.1)\):

\[
B = I_{0,S}^{-1} \left[1 - \frac{2 \Delta I_d}{3 I_{0,S}} \right], \quad F \epsilon = \Delta I_d / (I_{0,S})^2, \quad (5.5)
\]

and obtain the partial derivative

\[
\frac{\partial E}{\partial \theta} \bigg|_J = J^2 \theta \left(\frac{\Delta I_d}{I_{0,S}} \right), \quad (5.6)
\]

To compute the partial derivative in the numerator of equation \((2.3)\) it is sufficient to consider the \(\theta \to 0 \) limit \(\[\frac{d}{dI} (I_N + \delta I_{BT}) \Omega \right] = T, \quad (6.1)\)
where I_N denotes the Newtonian part of the moment of inertia tensor, δI_{BT} the perturbation in this tensor due to the Burke-Thorne force, and T the Burke-Thorne torque. It was the δI_{BT} terms that were not included by Bertotti and Anile. Fortunately, these can also be calculated explicitly, as we show below.

A. Effect of Φ^{RR} on the NS’s Shape

It is perhaps surprising that one can explicitly determine the effect of Φ^{RR} on the NS’s moment of inertia, since the answer would seem to depend on the NS’s mass and the details of its equation of state; i.e., one might worry that extra parameters must be specified even to make the problem well-defined. However the point is that (from symmetry arguments) the perturbation ΔI_{ij} depends only on a single physical parameter, and this parameter already appears in our Newtonian equations of motion. That parameter is $\Delta I_{0}/\Omega^2$, the amount of oblateness caused “per unit centrifugal force”.

The point is that both the centrifugal and radiation reaction forces have the very special property that they grow linearly with distance from the center of the star. This fact, coupled with symmetry arguments, is enough to determine ΔI_{ij} in terms of $\Delta I_0/\Omega^2$: no new physical parameters have to be introduced.

Let Φ^A be some external potential of the form $\Phi^A = \Lambda^{ab} x_a x_b$, where Λ^{ab} is some trace-free tensor. Allow this potential to act on the non-rotating (and so spherically symmetric) NS; it will induce a perturbation $\Delta \Gamma^{ab}$ in the NS’s inertia tensor. Since the background is spherically symmetric, the only possibility (to first order in the perturbation) is that $\Delta \Gamma^{ab} = C \Lambda^{ab}$, where C is some constant (i.e., independent of Λ^{ab}).

We can determine C as follows. Decompose the centrifugal potential into a spherically symmetric and a trace-free piece:

$$-\frac{1}{2} \Omega^2 (\delta^{ab} - n^a_\Omega n^b_\Omega) x_a x_b = -\frac{1}{3} \Omega^2 x^2 + \Lambda^{ab} x_a x_b,$$

where $\Lambda^{ab} = \frac{1}{2} \Omega^2 (\delta^{ab} - \frac{2}{3} \delta^{ab})$. For small Ω the perturbed inertia tensor is $\Delta I^{ab} = \Delta I_0 (\delta^{ab} - \frac{2}{3} \delta^{ab})$, so the constant C is just $2\Delta I_0/\Omega^2$.

The radiation reaction force for the freely precessing elastic body can be found by substituting the radiation reaction free motion into equation (3.1) to give:

$$\Phi^{RR} = -\frac{G}{5c^5} \phi^5 x^a x^b \left[\Delta I_0 \frac{d\phi}{dt} (n_d a n_d b) + \Delta I_0 \frac{d\phi}{dt} (n_b a n_a b) \right].$$

(6.3)

The first term is the potential caused by the motion of the deformation bulge, the second by the centrifugal bulge. The differentiations of the unit vectors are straightforward. In the case where $\theta \ll 1$ we can approximate $n_d \approx n_J + \theta n_{\perp J}$ and $n_\Omega \approx n_J - \theta n_{\perp J}$, where $n_{\perp J}$ is the unit vector in the reference plane which lies perpendicular to J and points towards n_d. We then find

$$\Phi^{RR} = -\frac{G}{5c^5} \phi^5 x^a x^b [\Delta I_0 \frac{d\phi}{dt} (n_J a n_J b + n_J a n_b) \theta].$$

(6.4)

Here θ denotes a unit vector $n_J \times n_{\perp J}$. Using the prescription described above, these radiation reaction potentials can be converted immediately into perturbations of the moment of inertia tensor:

$$\delta I_{BT} = -\frac{2G}{5c^5} \phi^5 [\Delta I_0 \Delta I_\theta \theta - (\Delta I_\Omega)^2 \theta] (\hat{v} n_J + n_J \hat{v}).$$

(6.5)

B. Adding Φ^{RR} to Equations of Motion

It now remains to compute the torque T using equation (5.3). We obtain four terms, corresponding to the expansion of the product of Φ with its fifth time derivative. Again linearising with respect to θ we obtain

$$T = \frac{2G}{5c^5} \phi^5 [\Delta I_0^2 \theta - \Delta I_0 J_\theta \theta + \Delta I_0 J_\theta \theta - \Delta I_0^2 \theta] n_{\perp J}.$$

(6.6)

Define $\epsilon_\Omega \equiv \Delta I_0/I_{0,S}$ and $\epsilon_d \equiv \Delta I_d/I_{0,S}$. Then the terms on the rhs of (6.6) stand in the ratio $\epsilon_d/\epsilon_\Omega > 1 : \epsilon_\Omega$. We are now in a position to write down the equation for $d(I_N \Omega)/dt$. Using Eq. (6.5) and the Newtonian motion to compute $d(\delta I_{BT})/dt$, and neglecting terms of order θ^2, we find that Eq. (6.6) reduces to

$$\frac{d}{dt} (I_N \Omega) = \frac{2G}{5c^5} \phi^5 [\Delta I_0^2 \theta - \Delta I_0 J_\theta \theta + \Delta I_0 J_\theta \theta - \Delta I_0^2 \theta] n_{\perp J}.$$

(6.7)

We see that the last two terms on the rhs are cancelled by terms on the lhs. This leaves

$$\frac{d}{dt} (I_N \Omega) = \frac{2G}{5c^5} \phi^5 [\Delta I_0^2 \theta - \Delta I_0 J_\theta \theta] n_{\perp J}.$$

(6.8)

The problem has reduced to a rigid-body Newtonian one, with the two torque terms indicated on the right-hand side. The terms stand in the ratio $1 : \epsilon_\Omega$. In fact, the dominant term is the same as that obtained in the rigid body case with the change $\Delta I \rightarrow \Delta I_d$.

2 Note our definition of ϵ_Ω differs by a factor $2/3$ from [9], who set $\epsilon_\Omega \equiv \frac{2}{3} \Delta I_0/I_{0,S}$.

8
We therefore find that the alignment rate as calculated using the local Burke-Thorne formalism agrees with the flux-at-infinity method. The previous force-based calculation of Bertotti and Anile [2] failed to include the deformation δI_{BT}, so that the cancellations in equation (2.7) described above did not occur.

Finally, it is easy to show that even when the approximations $\theta \ll 1$, $\epsilon_d \ll 1$ are not employed, the effective torques due to the δI_{BT} terms are still perpendicular to J, so the spin-down $\dot{\phi}$ using this local formalism is necessarily the same as in the flux-at-infinity method.

VII. ALLOWANCE FOR A LIQUID CORE

We have successfully described the effects of gravitational radiation reaction on an elastic precessing body. We will now briefly describe how to extend this result to the realistic case where the star consists of an elastic shell (the crust) containing a liquid core. The Earth itself is just such a body, and the form of its free precession was considered long ago. We will base our treatment on that of Lamb [12], who considered a rigid shell containing an incompressible liquid of uniform density. To make the problem tractable the motion of the fluid was taken to be one of uniform vorticity. We will assume the ellipticity of the shell, and also the ellipticity of the cavity in which the fluid resides, are small. Then the small angle free precession of the combined system can be found by means of a normal mode analysis of the equations of motion [12].

The key points are as follows: The fluid’s angular velocity vector does not significantly participate in the free precession. Instead it remains pointing along the system’s total angular momentum vector. The shell precesses about this axis in a cone of constant half-angle. The fluid exerts a force on the shell such that the shell’s body frame precession frequency is increased in magnitude, so that:

$$\dot{\psi} = -\phi \frac{\Delta I}{I_{crust}}$$ (7.1)

where ΔI denotes the difference between the 1 and 3 principal moments of inertia of the whole body, not just the shell.

We now wish to calculate the alignment rate of such a body due to gravitational radiation reaction. The averaged energy and angular momentum fluxes, as well as the instantaneous torque, depend only upon the orientation of the mass quadrupole of the body, and so are exactly the same as if the body were rigid, i.e. equations (2.1), (2.2) and (3.0) apply. Equations giving the kinetic energy and angular momentum of the body are given in Lamb [12]. These can be used to obtain the partial derivatives that appear in equation (2.5). Explicitly, we find

$$\frac{\partial E}{\partial J} \bigg|_\theta = \Omega = \dot{\phi} + \dot{\psi}$$ (7.2)

and

$$\frac{\partial E}{\partial \theta} \bigg|_J = \phi^2 \theta \Delta I.$$ (7.3)

(See Jones [11] for a detailed derivation.)

These lead to an alignment timescale that is I_{crust}/I shorter than that of equation (2.13). This result is confirmed using the local torque formulation, where

$$\dot{\theta} = -\frac{T_{\phi}}{I_{crust}}.$$ (7.4)

In the realistic case where both crustal elasticity and core fluidity are taken into account we can combine the above arguments as described by Smith and Dahlen [13], i.e. we can take the rigid result and put $I \to I_{crust}$ and $\Delta I \to \Delta I_d$ to give

$$\dot{\psi} = -\phi \frac{\Delta I_d}{I_{crust}}$$ (7.5)

$$\dot{\theta} = -\frac{2G \Delta I_d}{5c^5} \phi^4 \theta.$$ (7.6)

VIII. CONCLUSIONS

We have shown that the gw damping time for wobble in realistic NS’s has the same form as for rigid bodies, but with the replacement $\Delta I_d^2/I_1 \to \Delta I_d^2/I_{crust}$. This given an alignment timescale of:

$$\tau_\phi = 1.8 \times 10^5 \text{yr} \left(\frac{I_{crust}}{10^{44} \text{g cm}^2} \right) \left(\frac{10^{36} \text{g cm}^2}{\Delta I_d} \right) \left(\frac{\text{kHz}}{\nu_s} \right)^4.$$ (8.1)

For the Crab, taking $\epsilon_d \sim 3 \times 10^{-9}$, this gives $\tau_\phi \sim 5 \times 10^{13} \text{yrs}$—much longer than the age of the universe. For an accreting NS with $\epsilon_d \sim 10^{-7}$ and $\nu_s \sim 300 \text{ kHz}$, we estimate $\tau_\phi \sim 2 \times 10^8 \text{ yrs}$.

Our basic conclusion, then, is that gw backreaction is sufficiently weak that other sources of dissipation probably dominate. Unfortunately, even for the Earth the dissipation mechanisms are not well understood [7]. Early estimates of Chau and Henriksen [14], which considered dissipation within the neutron star crust, suggested that wobble would be damped in around 10^8 free precession periods, i.e. over a time interval of $10^8/(\epsilon_d \nu_s)$. A more recent study of Alpar and Sauls [13] argued that the dominant dissipation mechanism will be due to imperfect coupling between the crust and the superfluid core. They estimate that the free precession will be damped in (at most) 10^4 free precession periods. In contrast, according to equation (8.1), the gw damping time is in excess of $10^8 \left(\frac{\text{kHz}}{\nu_s} \right)^3$ free precession periods. On the basis of these estimates, it seems likely that internal damping will dominate over gravitational radiation reaction in all neutron
stars of interest. Note however, that while internal dissipation damps wobble for oblate deformations, we expect that internal dissipation causes the wobble angle to increase in the prolate ($\Delta I_d < 0$) case.

A study of the gravitational wave detectability of realistic neutron stars undergoing free precession, including a discussion of other astrophysical mechanisms which might affect the evolution of the motion, will be presented elsewhere (Jones, Schutz and Andersson, in preparation).

ACKNOWLEDGMENTS

We thank N. Andersson and B. F. Schutz for discussions. This research was supported by NASA grant NAG5-4093 and PPARC grant PPA/G/1998/00606.

[1] I. H. Stairs, A. G. Lyne and S. L. Shemar, Nature, 406, 484 (2000).
[2] B. Bertotti and A. M. Anile, Astron. & Astrophys 28, 429 (1973).
[3] S. L. Shapiro and S. A. Teukolsky, *Black Holes, White Dwarfs, and Neutron Stars* (Wiley-Interscience, 1983).
[4] L. D. Landau and E. M. Lifshitz, *Mechanics* (Butterworth-Heinemann Ltd. 3rd edition, 1976).
[5] J. Ostriker and J. Gunn, Ap. J. 157, 1395 (1969).
[6] C. W. Misner, K. S. Thorne and J. A. Wheeler, *Gravitation* (Freeman, San Francisco, 1973).
[7] W. H. Munk and G. J. F. MacDonald, *The Rotation of the Earth* (Cambridge University Press, 1960)
[8] D. Pines and J. Shaham, Nature Physical Science 235, 43 (1972); Phys. Earth Planet. Interiors 6, 103 (1972)
[9] A. Alpar and D. Pines, Nature 314, 334 (1985)
[10] G. Ushomirsky, C. Cutler, and L. Bildsten, astro-ph/0001136
[11] D. I. Jones, Ph.D. thesis, University of Wales, Cardiff, 2000
[12] H. Lamb, *Hydrodynamics* (Sixth edition, Cambridge University Press 1952)
[13] M. L. Smith and L. A. Dahlen, Geophys. J. R. Ast. Soc., 64, 223 (1981)
[14] W. Y. Chau and R. N. Henriksen, Astrophysical Letters 8, 49 (1971)
[15] A. Alpar and J. A. Sauls, Ap. J. 327, 723 (1988)