THE METAL ABUNDANCE ACROSS COSMIC TIME (MALT) SURVEY II: EVOLUTION OF THE MASS-METALLICITY RELATION OVER 8 BILLION YEARS, USING [O\textsc{iii}]λ4363Å-BASED METALLICITIES

Chun Ly, Matthew A. Malkan, Jane R. Rigby, and Tohru Nagao
Submitted to the Astrophysical Journal on February 1, 2016

ABSTRACT

We present the results of MMT and Keck spectroscopy for a large sample of 0.1 \(\leq z \leq 1 \) emission-line galaxies selected from our narrow-band imaging in the Subaru Deep Field. In total, we have measured the weak [O\textsc{iii}]λ4363 line for 164 galaxies (66 with at least 3σ detections, and 98 with significant upper limits). The strength of this nebular emission line is set by the electron temperature \((T_e) \) for the ionized gas in these galaxies. Since the gas temperature is regulated by the metal content—collisionally-excited metal emission lines enable the gas to cool—an inverse relationship exists between gas-phase oxygen abundance and [O\textsc{iii}]λ4363 line strength. Our \(T_e \)-based metallicity study is the first to span \(\approx 8 \) Gyr of cosmic time and \(\approx 3 \) dex in stellar mass for low-mass galaxies, \(\log (M_*/M_\odot) \approx 6.0-9.0 \). Combined with extensive multi-wavelength photometry, we investigate the evolution of the stellar mass–gas metallicity relation, and its dependence on dust-corrected star formation rate. The latter is obtained from high signal-to-noise Balmer emission-line measurements. Our mass-metallicity relation is consistent with Andrews & Martini at \(z \leq 0.3 \), and evolves toward lower abundances at a given stellar mass, \(\log (O/H) \propto (1 + z)^{-2.32^{+0.53}_{-0.35}} \). We find that galaxies with lower metallicities have higher star formation rates at a given stellar mass and redshift, although the scatter is large (\(\approx 0.3 \) dex) and the trend is weaker than seen in local studies. We also compare our mass–metallicity relation against predictions from high-resolution galaxy formation simulations and find good agreement with models that adopt energy and momentum stellar feedback. In addition, we have identified 16 extremely metal-poor galaxies with abundances less than a tenth of solar; our most metal-poor galaxy at \(z \approx 0.85 \) has an oxygen abundance that is similar to I Zw 18. Our emission-line selected samples have metallicities and ionization parameters similar to \(z \gtrsim 2 \) galaxies. Given these similarities and the advantage that more sensitive spectroscopy can be obtained at \(z \lesssim 1 \) than at \(z \gtrsim 1 \), our metal-poor sample enables detailed studies of the interstellar medium in \(z \gtrsim 2 \) galaxies.

Subject headings: galaxies: abundances — galaxies: distances and redshifts — galaxies: evolution — galaxies: ISM — galaxies: photometry — galaxies: star formation

1. INTRODUCTION

The chemical enrichment of galaxies, driven by star formation and modulated by gas flows from supernova and cosmic accretion, is key for understanding galaxy formation and evolution. The primary method for measuring metal abundances is spectroscopy of nebular emission lines. The strongest lines can be observed in the optical and near-infrared at \(z \lesssim 3 \) from the ground and space.

The most reliable metallicity measurements are based on the flux ratio of the [O\textsc{iii}]λ4363 line against [O\textsc{ii}]λ5007. The technique is called the \(T_e \) method, because it determines the electron temperature \((T_e) \) of the gas, and hence the gas-phase oxygen-to-hydrogen \((O/H) \) abundance (Aller 1984). However, detecting [O\textsc{iii}]λ4363 is difficult, as it is weak, almost undetectable in metal-rich galaxies. For example, only 0.3% of the strongly star-forming galaxies in the Sloan Digital Sky Survey (SDSS) have 2σ or better detections of [O\textsc{iii}]λ4363 (Izotov et al. 2006b; Nagao et al. 2006).

After enormous observational efforts to increase the number of galaxies with \(T_e \)-based metallicities in the local universe (e.g., Brown et al. 2008; Berg et al. 2012; Izotov et al. 2012a), and at \(z \gtrsim 0.2 \) (Hoyos et al. 2005; Kakazu et al. 2007; Hu et al. 2009; Atek et al. 2011; Amorín et al. 2015, 2014; Ly et al. 2014, 2015), the total sample size of \(\gtrsim 3 \) [O\textsc{iii}]λ4363 detections is 174 galaxies.

\(T_e \)-based metallicities are even harder to measure at \(z \gtrsim 0.2 \). Thus the evolution of the stellar mass–gas metallicity \((M_*/Z) \) relation, and its dependence on star formation rate (SFR), has only been studied using empirical or theoretical estimates based on strong nebular emission lines (e.g., [N\textsc{ii}]λ6583, [O\textsc{ii}], H\textalpha, H\beta; Pettini & Pagel 1997; Pagel et al. 2004), which have to be calibrated against \(T_e \)-based metallicities in local galaxies and H II regions (e.g., Kobulnicky & Kewley 2004; Erb et al. 2006; Maiolino et al. 2008; Hainline et al. 2009; Hayashi et al. 2009; Lamareille et al. 2009; Mannucci et al. 2009, 2010; Thuan et al. 2010; Moustakas et al. 2011; Rigby et al. 2011; van der Wel et al. 2011; Zahid et al. 2011, 2012; Hunt et al. 2012; Nakajima et al. 2012; Xia et al. 2012; Yabe et al. 2012; Yates et al. 2012; Belli et al. 2013; Gualtieri et al. 2013; Henry et al. 2013a,b; Momcheva et al. 2013; Pirzkal et al. 2013; Zahid et al. 2013, 2014; Cullen et al. 2014; Ly et al. 2014, 2015; Maier et al. 2014; Salim et al. 2014; Troncoso et al. 2014; Whitaker et al. 2014b; Yabe et al. 2014, 2015; Hayashi et al. 2015;
de los Reyes et al. 2015; Sanders et al. 2015).

However, there are problems with these “strong-line” metallicity calibrations. For example, depending on which one is used, the shape and normalization of the $M_\star - Z$ relation differ significantly at ~ 1 dex (see Figure 2 in Kewley & Ellison 2008). Therefore, studies cannot examine the evolution of the $M_\star - Z$ relation unless they utilize the same metallicity calibration for all galaxies. This method of comparing metallicities on a relative level will only be valid if the physical conditions of the interstellar gas (e.g., gas density, ionization, N/O abundance) do not evolve. Clear evidence now suggests that the physical conditions of the gas in high-z galaxies are significantly different from that in local galaxies. For example, $z \gtrsim 1$ star-forming galaxies are known to be offset on the Baldwin–Phillips–Terlevich (“BPT”) diagnostic diagrams ([O III] $\lambda 5007$/Hβ vs. [N II] $\lambda 6583$/Hα; Baldwin et al. 1981) from local star-forming galaxies (e.g., Shapley et al. 2005; Liu et al. 2008; Finkelstein et al. 2009; Hainline et al. 2009; Bian et al. 2010; Rigby et al. 2011; Kewley et al. 2013b;Steidel et al. 2014; Shapley et al. 2015, and references therein). This offset is seen as a higher [O II]/Hβ ratio at fixed [N II] $\lambda 6583$/Hα. It has been tentatively attributed to a higher ionization parameter, harder ionizing spectrum, and/or higher electron density in star-forming regions at higher redshifts (e.g., Brinchmann et al. 2008; Kewley et al. 2013a). Alternatively, recent studies of strongly star-forming galaxies at $z \approx 0.1–0.35$ and $z \sim 2$ indicate they have enhanced N/O abundance ratios compared to typical galaxies at $z \sim 0.1$ from SDSS, resulting in stronger [N II] $\lambda 6583$ line emission for given strengths of the oxygen forbidden lines (e.g., Amorín et al. 2010; Masters et al. 2014). Depending on the explanation for the higher N/O, results involving commonly-used metallicity estimates from the [N II]/Hα ratio (Pettini & Pagel 2004) will overestimate oxygen abundances by $\approx 0.25–1$ dex.

To address (1) the lack of [O III] $\lambda 4363$ measurements at higher redshifts, and (2) outstanding issues with gas metallicity calibrations for higher redshift galaxies, we have conducted a spectroscopic survey called “Metal Abundances across Cosmic Time” ($M\ACT$; Ly et al. 2016, hereafter Paper I) to obtain deep (2–12 hours) rest-frame optical spectra of $z \lesssim 1$ star-forming galaxies with Keck and MMT. The primary goal of the survey is to obtain reliable measurements of the gas-phase metallicity and other physical properties of the interstellar medium (ISM) in galaxies, such as the SFR, gas density, ionization parameter, dust content, and the source of photoionizing radiation (star formation and/or active galactic nucleus [AGN]). What makes $M\ACT$ unique among previous spectroscopic surveys is that it is the first study to use the T_e method to measure the evolution of the $M_\star - Z$ relation over ≈ 8 billion years. In addition, the galaxy sample of $M\ACT$ encompasses nearly 3 dex in stellar mass, including dwarfs as low as $M_\star \sim 3 \times 10^6 M_\odot$ and $3 \times 10^7 M_\odot$ at $z \sim 0.1$ and $z \sim 1$, respectively. The $M\ACT$ survey targeted $\approx 1,900$ galaxies in the Subaru Deep Field (SDF; Kashikawa et al. 2004) that have excess flux in narrow-band and/or intermediate-band filters, which is now understood to be produced by nebular emission lines from star formation or AGN (e.g., Ly et al. 2007, 2011, and references therein).

In this paper, Paper II, we focus on first results from 66 galaxies with detections of [O III] $\lambda 4363$ at $z = 0.05–0.95$ (average of $z = 0.53 \pm 0.25$; median of 0.48) and robust [O III] $\lambda 4363$ upper limits for 98 galaxies at $z = 0.04–0.96$ (average of $z = 0.52 \pm 0.23$; median of 0.48). We refer to the collective of these galaxies as the “[O III] $\lambda 4363$-detected and [O III] $\lambda 4363$-non-detected samples.” This work expands on our previous sample of spectroscopic detections of [O III] $\lambda 4363$ (Ly et al. 2014) by more than threefold. In a forthcoming paper, we will utilize our sample with [O III] $\lambda 4363$ measurements to re-calibrate the strong-line metallicity diagnostics for these galaxies at $z \approx 0.5$.

We refer readers to Paper I for more details on the $M\ACT$ survey and our primary sample for Paper II. Specifically, Section 2 in Paper I describes the full galaxy sample and optical spectroscopy, Section 3 in Paper I describes the [O III] $\lambda 4363$-detected and [O III] $\lambda 4363$-non-detected sample selection, and Section 4 in Paper I describes the interstellar (i.e., T_e-based metallicity, dust attenuation) and stellar properties (i.e., SFR, stellar mass) of [O III] $\lambda 4363$-detected and [O III] $\lambda 4363$-non-detected galaxies. The outline of this Paper II is as follows.

In Section 2, we discuss the identification of a small number of AGNs or low-ionization nuclear emitting regions (LINERs; Heckman 1980) that contaminate our galaxy sample. In Section 3, we present our five main results: (1) a large sample of extremely metal-poor galaxies at $z \geq 0.1$, (2) comparison of our samples against other star-forming galaxies on the M_\star–SFR projection, (3) the similarity of these metal-poor galaxies to typical star-forming galaxies at high-z, (4) the evolution of the T_e-based $M_\star - Z$ relation, and (5) the secondary dependence of the $M_\star - Z$ relation on SFR. In Section 4, we compare our $M_\star - Z$ relation against predictions from theoretical and numerical simulations, discuss the selection function of our survey, and compare our survey to previous T_e-based studies. We summarize results in Section 5.

Throughout this paper, we adopt a flat cosmology with $\Omega_\Lambda = 0.7, \Omega_M = 0.3$, and $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$. Magnitudes are reported on the AB system (Oke 1974). For reference, we adopt $12 + \log(O/H)_{\odot} = 8.69$ (Allende Prieto et al. 2001) as solar metallicity, Z_{\odot}. Unless otherwise indicated, we report 68% confidence measurement uncertainties, and “[O III]” alone refers to the 5007Å emission line.

2. CONTAMINATION FROM LINERS AND AGNS

A possible concern is whether any of the [O III] $\lambda 4363$-detected and [O III] $\lambda 4363$-non-detected galaxies harbor LINERs, or the narrow-line regions of Seyfert nuclei. When either of these are present, the gas may not be entirely ionized by young stars. A strong [O I] $\lambda 6300$ emission line is a defining characteristic of LINERs, while high [O III] $\lambda 5007$/Hβ, [N II] $\lambda 6583$/Hα, and [S II] $\lambda 6716, 6731$/Hα ratios indicate a Seyfert 2 AGN. We classify each of our galaxies by their location on
Evolution of the Mass-Metallicity Relation

Fig. 1.— BPT line-ratio diagnostics (Baldwin et al. 1981; Veilleux & Osterbrock 1987) and the MEx diagram (Juneau et al. 2014) to distinguish and exclude AGNs and LINERs for our [O\textsc{iii}] λ4363-detected (circles) and [O\textsc{iii}] λ4363-non-detected (triangles) samples. The x-axes show log ([N\textsc{ii}] λ6583/H\textalpha) (a), log ([S\textsc{ii}] λλ 6716, 6731/H\textalpha) (b), log ([O\textsc{i}] λ6300/H\textalpha) (c), and log (M_\star/M⊙) (d; see Section 4.4 of Paper I), while the y-axes show log ([O\textsc{iii}] λ5007/H\beta). The MMT, Keck, and the MMT+Keck samples are shown in light blue, green, and black, respectively. Upper limits (left arrows) on [N\textsc{ii}] and [O\textsc{i}] fluxes are provided at 2σ confidence. For panel (d), grey-filled circles and triangles indicate SDF galaxies that have [N\textsc{ii}] measurements. The Ly et al. (2015) $z \sim 0.8$ DEEP2 [O\textsc{iii}] λ4363 sample is shown as dark blue squares in (d). Dotted lines show the Kewley et al. (2001) criteria that separate AGNs from star-forming galaxies (Equations 1–3). The Kauffmann et al. (2003) criterion is also shown in panel (a) as the dashed line. AGNs and LINERs are indicated by brown crosses in panel (d).

The three standard BPT diagrams (Baldwin et al. 1981; Veilleux & Osterbrock 1987). These are illustrated in Figure 1. For our [O\textsc{iii}] λ4363-detected sample, 32, 16, and 20 galaxies have measurements of [N\textsc{ii}]/Hα, [S\textsc{ii}]/Hα, and [O\textsc{i}]/Hα, respectively. These line ratios are also available for 49, 22, and 25 galaxies from the [O\textsc{iii}] λ4363-non-detected sample, respectively.

We define AGNs as those that meet the Kewley et al. (2001) criteria:

\begin{align*}
y \geq \frac{0.61}{x_1 - 0.47} + 1.19, \\
y \geq \frac{0.72}{x_2 - 0.32} + 1.30, \\
y \geq \frac{0.73}{x_3 + 0.59} + 1.33, \text{ where}
\end{align*}

\begin{align*}
y = \log([O\textsc{iii}]\lambda5007/H\beta), \\
x_1 = \log([N\textsc{ii}]\lambda6583/H\alpha), \\
x_2 = \log([S\textsc{ii}]\lambda\lambda 6716, 6731/H\alpha), \\
x_3 = \log([O\textsc{i}]\lambda6300/H\alpha)
\end{align*}
\[x_2 = \log([\text{S II}] \lambda 6716, 6731/\text{H}\alpha), \]
\[x_3 = \log([\text{O I}] \lambda 6300/\text{H}\alpha). \]
These star formation-AGN boundaries are determined by considering photo-ionization by extremely young stars. These classifications show that the majority of our samples consist of star-forming galaxies. Erring on the side of caution, we consider galaxies that satisfy any of the three BPT criteria as potential AGNs. The possible AGNs in the [O III] \lambda 4363-detected sample are MK01, MK02, MMT07 and MMT11. For the [O III] \lambda 4363-non-detected sample, the possible AGNs are MK10, MMT40, MMT43, MMT62, MMT66, MMT69, MMT76, MMT89, Keck051, Keck063, Keck085, and Keck089. None of our galaxies with [O I] measurements is a LINER.

One limitation of these diagnostics is that they are unavailable in optical spectra for our higher redshift galaxies \((z \gtrsim 0.4)\). To supplement our [O I] measurements, we use a variety of emission-line flux ratios ([O II]/[O III] and [O II]/[Ne III] A3869), to determine if any of our higher redshift galaxies could harbor a LINER. Upon comparing our emission-line fluxes to SDSS DR7 LINERs, we find that MMT03 is arguably a LINER. We also illustrate in Figure 1 the “Mass–Excitation” (MEX) diagram (Juneau et al. 2014), which substitutes stellar mass (see Section 4.4 of Paper I) for [N II] \lambda 6583/\text{H}\alpha. This figure provides further support that the majority of our samples consist of star-forming galaxies. Two galaxies (Keck038 and Keck099) in the [O II] \lambda 4363-non-detected sample might be AGNs. However, the MEX diagnostic is affected by evolution in the \(M_*/Z\) relation (see Section 3.4; Juneau et al. 2014). Thus, we do not consider these sources as likely AGNs. We observe a turnover in the MEX plot at \(M_* \sim 10^8 M_\odot\). This is due to the lower metal abundances \((12 + \log(O/H) \lesssim 8.0)\) in lower stellar mass galaxies.

To summarize, we suspect that 5 of the 66 [O III] \lambda 4363-detected galaxies (8%) and 12 of 98 [O III] \lambda 4363-non-detected galaxies (12%) are LINERs or AGNs. While these AGN/LINER fractions are low, we note that other narrowband studies, such as de los Reyes et al. (2015), have found low AGN/LINER contamination fraction (8%).

3. RESULTS

3.1. Extremely Metal-Poor Galaxies

We have identified a total of 16 extremely metal-poor galaxies with \(12 + \log(O/H) \lesssim 7.69\) (i.e., less than 10% of solar). This is the largest extremely metal-poor galaxy sample at \(z \gtrsim 0.1\). Keck06 is our most metal-poor galaxy with \(12 + \log(O/H) = 7.23^{+0.11}_{-0.14}\) (3% of solar metallicity). This is similar to I Zw 18, the most metal-deficient galaxy known in the local universe. The fraction of our [O III] \lambda 4363-detected galaxies which turn out to be extremely metal-poor galaxies, 24%, is far higher than the fraction of [O III] \lambda 4363-detected galaxies in SDSS which are extremely metal-poor galaxies, 4% (Izotov et al. 2006b). This is presumably attributable to a combination of redshift evolution (lower metallicity toward higher redshift; see Section 3.4) and selection effects such that our sample is focused on lower-mass galaxies (\(\lesssim 10^9 M_\odot\)) that tend to have lower metallicity. If the extremely metal-poor galaxy fraction increases toward even lower masses, it is possible that a substantial minority of local galaxies—by number—are extremely metal-poor galaxies, even though their total mass is only a small fraction of the current total stellar mass in the universe. We suggest that future selections of extremely metal-poor galaxies should either use narrowband imaging or grism spectroscopy. This is more efficient observationally than a brute-force approach within a magnitude-limited survey. For example, the DEEP2 survey (Newman et al. 2013), which targeted \(R_{AB} \lesssim 24\) galaxies, has identified only two extremely metal-poor galaxies at \(z \sim 0.8\) from a sample of 28 [O III] \lambda 4363-detected galaxies (Ly et al. 2015).

3.2. Specific Star Formation Rates and the \(M_*/\text{SFR} \) Relation

In Figure 2, we compare our dust-corrected instantaneous SFRs from H\alpha or H\beta luminosities against stellar masses determined from stellar energy distribution (SED) fitting, to locate our galaxies on the \(M_*/\text{SFR} \) relation and to compare against other star-forming galaxies at \(z \lesssim 1\). While the SFRs for the [O III] \lambda 4363-detected and [O III] \lambda 4363-non-detected galaxies are modest \((\approx 0.1–10 M_\odot \text{yr}^{-1})\), their stellar masses are 1 to 2 dex lower than galaxies generally observed at \(z \sim 1\). Therefore, we find that our emission-line galaxies are all undergoing relatively strong star formation. The specific SFRs (SFR per unit stellar mass, \(\text{SFR}/M_*\); hereafter sSFR) that we measure are between \(10^{-10.8} \text{ yr}^{-1}\) and \(10^{-5.7} \text{ yr}^{-1}\) with an average of \(10^{-8.3} \text{ yr}^{-1}\) for the [O III] \lambda 4363-detected sample, and \(10^{-10.4} \text{ yr}^{-1}\) and \(10^{-6.9} \text{ yr}^{-1}\) with an average of \(10^{-8.8} \text{ yr}^{-1}\) for the [O III] \lambda 4363-non-detected sample. These averages are illustrated in Figure 2 by the dashed black line and dotted black line for the [O III] \lambda 4363-detected and [O III] \lambda 4363-non-detected samples, respectively. The grey shaded regions indicate the 1σ dispersion in sSFR for the samples.

These sSFRs are enhanced by 0.25–4.0 dex above the \(M_*/\text{SFR} \) relation for \(z \sim 0\) SDSS galaxies (Salim et al. 2007). Extrapolating the \(M_*/\text{SFR} \) relation of Whitaker et al. (2014a) and de los Reyes et al. (2015) toward lower stellar mass, we find that the sSFRs of our emission-line galaxies are \(\approx 0.0–3.0\) dex higher than “typical” galaxies at \(z \sim 0.45–0.85\). While our sample is biased toward stronger star formation activity (see Section 4.1), this wide range in sSFRs suggests that the deep spectroscopy of the MACT survey (on average 2 and 4 hours with Keck and MMT, respectively) allows us to even detect or obtain a robust upper limit on [O III] \lambda 4363 for “typical” galaxies at \(z \lesssim 1\). For comparison, our previous [O III] \lambda 4363-detected study (Ly et al. 2014), which had shallower spectroscopy, yielded a significant sSFR offset of \(\approx 1\) dex on the \(M_*/\text{SFR} \) relation from typical star-forming galaxies at \(z \lesssim 1\). The deeper observations of MACT result in a lower sSFR by \(\approx 0.5\) dex. We also illustrate the Ly et al. (2015) [O III] \lambda 4363-selected metal-poor sample from DEEP2 as blue squares and triangles in Figure 2. This DEEP2 sample consists of galaxies with higher SFR activity than our [O III] \lambda 4363-detected and [O III] \lambda 4363-non-detected samples, which is in part due to the shorter integration time of DEEP2 (1 hour) than MACT (2 hours). It can also be seen that the MACT sample extends to lower stellar mass by \(\approx 1\) dex at \(z \sim 1\) than Ly et al. (2015).
Evolution of the Mass-Metallicity Relation

Fig. 2.— Dust-corrected SFR as a function of stellar mass for our SDF galaxies. The stellar masses are obtained from SED fitting (Section 4.4 of Paper I). The SFRs are determined from either Hα or Hβ luminosities (see Tables 13 and 14 of Paper I), which are sensitive to a timescale of $\lesssim 10$ Myr. The circles and triangles show galaxies with [O III] $\lambda 4363$ detections and [O III] $\lambda 4363$ non-detections, respectively. Light blue, green and black points show our SDF galaxies observed with MMT, Keck, and both telescopes. The symbol size increases with redshift. In addition, we overlay the metal-poor DEEP2 galaxies from Ly et al. (2015) as dark blue squares and dark blue triangles. Grey dotted diagonal lines show different timescales of star formation, inverse specific SFR or sSFR -1. The averages of the inverse sSFRs for our [O III] $\lambda 4363$-detected and [O III] $\lambda 4363$-non-detected galaxies are 210 Myr and 610 Myr, shown by the dashed black line and dotted line, respectively. The M_\star–SFR relations of Salim et al. (2007), Whitaker et al. (2014a) and de los Reyes et al. (2015) at $z = 0.1$, $z = 0.5$–1, and $z = 0.8$, are illustrated by the gray, brown and orange bands, respectively, with the dispersion in sSFR illustrated by the shaded regions. Our [O III] $\lambda 4363$-detected galaxies are consistent with the M_\star–SFR relations at similar redshift. While our [O III] $\lambda 4363$-detected galaxies tend to lie about a factor of ≈ 3 above the M_\star–SFR relation, a broad dispersion in sSFR suggests that [O III] $\lambda 4363$ can be detected in “typical” star-forming galaxies at $z \lesssim 1$.

![Graph showing the relationship between stellar mass and SFR with various markers indicating different redshifts and detections](image-url)
3.3. Lower Redshift Analogs to $z \gtrsim 2$ Galaxies

We illustrate in Figure 3 the R_{23} and O_{32} strong-line ratios (Pagel et al. 1979):

$$R_{23} = \frac{[\text{O} \text{ ii}] \lambda \lambda 3726, 3729 + [\text{O} \text{ iii}] \lambda \lambda 4959, 5007}{H\beta}, \quad \text{and (4)}$$

$$O_{32} = \frac{[\text{O} \text{ ii}] \lambda \lambda 4959, 5007}{[\text{O} \text{ ii}] \lambda \lambda 3726, 3729}$$

(5)

We compare our [O ii] λ4363-detected and [O ii] λ4363-non-detected samples to typical $z \sim 2$ star-forming galaxies identified by the “MOSDEF” survey (black diamonds in this figure; Kriek et al. 2015; Shapley et al. 2015). We find that our metal-poor galaxies have similar interstellar properties (low metallicity, high ionization parameter) to the higher redshift galaxy population, suggesting that we have identified low-z analogs to $z \gtrsim 2$ galaxies that we can study in greater detail. Specifically, the depth of the MOSDEF survey corresponds to detecting [O ii] λ5007 at S/N = 100 of $\approx 3 \times 10^{-16}$ erg s$^{-1}$ cm$^{-2}$ or a line luminosity of 4×10^{42} erg s$^{-1}$ at $z = 1.5$, 1.3×10^{43} erg s$^{-1}$ at $z = 2.35$, and 3×10^{44} erg s$^{-1}$ at $z = 3.35$ (Kriek et al. 2015). As illustrated in Figure 24 of Paper I, the average [O ii] luminosity of the [O ii] λ4363-detected sample from MACT is 1.3–2.1 dex lower than the sensitivity of MOSDEF. Thus, the [O ii] λ4363 emission for these galaxies would be undetectable with Keck/MOSFIRE if they were at $z \gtrsim 1.3$.

3.4. The Mass-Metallicity Relation

We illustrate in Figure 4 the dependence of oxygen abundance on stellar mass in three redshift bins, $z \leq 0.3$, $z = 0.3$–0.5, and $z = 0.5$–1. In Figure 5, we compare the [O ii] λ4363-detected and [O ii] λ4363-non-detected samples from this paper and the DEEP2 [O ii] λ4363-detected and [O iii] λ4363-non-detected samples from Ly et al. (2015) against the AM13 $M_\star - Z$ relation of the form:

$$12 + \log(O/H) = 12 + \log(O/H)_{\text{asm}} - \log \left[1 + \left(\frac{M_{\text{TO}}}{M_\star} \right)^\gamma \right],$$

where $12 + \log(O/H)_{\text{asm}}$ is the asymptotic metallicity at the high mass end, M_{TO} is the turnover mass or “knee” in the $M_\star - Z$ relation, and γ is the slope of the low-mass end. This formalism is consistent with Mostakas et al. (2011) in describing the $M_\star - Z$ relation, and provides an intuitive understanding for the shape of the $M_\star - Z$ relation. For $z \sim 0.1$, AM13 find a best fit of $12 + \log(O/H)_{\text{asm}} = 8.798$, $\log(M_{\text{TO}}/M_\odot) = 8.901$, and $\gamma = 0.640$. At a given stellar mass, these emission-line selected samples are (on average) offset in $12 + \log(O/H)$ by $0.13^{+0.06}_{-0.07}$ dex at $z \leq 0.3$, $-0.17^{+0.05}_{-0.03}$ dex at $z = 0.3$–0.5, and $-0.24^{+0.03}_{-0.02}$ dex at $z = 0.5$–1. This demonstrates a moderate evolution in the $M_\star - Z$ relation of:

$$12 + \log(O/H) = Z(M_\star)_{\text{AM13}} = A + B \log(1+z),$$

(7)

where $A = 0.29^{+0.04}_{-0.02}$ and $B = -2.32^{+0.53}_{-0.35}$. To better understand this evolution, we compute the average and median in each stellar mass bin, provided in Table 1, and shown as brown squares (average) and circles (median) in Figure 4. We then fit the averages with Equation 6 using MPFIT (Markwardt 2009). The fitting is repeated 10,000 with each fit using the bootstrap approach to compute the average in each stellar mass bin. The best-fitting results are provided in Table 2 and are illustrated in Figure 6. The confidence contours presented in Figure 6 illustrate the difficulty in constraining these fitting parameters. With only four or five stellar mass bins with small number of galaxies in each bin (\sim10 or less), the best fits in our two lowest redshift bins ($z < 0.5$) are poorly constrained. The fits are further affected by the lack of measurements above $M_\star \sim 10^9 M_\odot$, which is critical for constraining $12 + \log(O/H)_{\text{asm}}$ and M_{TO}. At $z = 0.5$–1, our observations extend to $M_\star \sim 10^{10} M_\odot$ and there is significantly more galaxies to better constrain the shape. Our best-fit $M_\star - Z$ relation at $z = 0.5$–1 indicate that the shape of the $M_\star - Z$ relation remains unchanged at $z \sim 1$ but with lower a $12 + \log(O/H)_{\text{asm}}$ by ≈ 0.35 dex (i.e., a lower metallicity at all stellar masses).

3.5. Dependence on Star Formation Rate

Several observational and theoretical investigations have proposed that the $M_\star - Z$ relation has a secondary dependence on the SFR (see e.g., Ellison et al. 2008; Lara-López et al. 2010; Mannucci et al. 2010; Davé et al. 2011; Lilly et al. 2013; Salim et al. 2014, and references therein). Specifically, the lower abundances at higher redshift may be explained by higher sSFR such
Fig. 4.— O/H abundance as a function of stellar mass for three redshift bins, \(z \leq 0.3 \) (upper left), \(0.3 < z \leq 0.5 \) (upper right), and \(0.5 < z \leq 1 \) (lower right). The light blue, green, and black symbols are SDF galaxies from MMT, Keck, and both, respectively. Circles (triangles) illustrate \([\text{O} \text{III}] \lambda 4363\)-detected (\([\text{O} \text{III}] \lambda 4363\)-non-detected) galaxies. DEEP2 galaxies from Ly et al. (2015) with \([\text{O} \text{III}] \lambda 4363\) detections (\([\text{O} \text{III}] \lambda 4363\) non-detections) are overlaid in the lower left panel as dark blue squares (triangles). Additional samples are shown for comparison, from Lee et al. (2006) (purple asterisks), Berg et al. (2012) (dark gray diamonds), Amorín et al. (2014) and Amorín et al. (2015) (olive diamonds), and Izotov et al. (2014) (olive squares). Large brown symbols show averages (circles) and median (squares) in bins of stellar mass computed from the SDF and DEEP2 samples. For \(z < 0.3 \), we also combine our SDF measurements with Lee et al. (2006), which is shown by the large grey symbols. The averages are fitted with the three-parameter curve (Equation 6), which is shown by the dark brown curves and grey curves for SDF + Lee et al. (2006). We compare our \(M_\star - Z \) relation to SDSS galaxies from AM13, which is shown by a solid gray line, with grey dashed lines enclosing the \(\pm 1\sigma \). Brown crosses indicate SDF galaxies that are possible AGNs and LINERs (see Section 2), which are excluded from average and median measurements. For comparison purposes, the lower right panel illustrates the best fit for each redshift bin.
O/H abundance as function of redshift or look-back time. Here, the abundances are illustrated relative to the local M_\star–Z relation of AM13. The light blue, green, and black symbols are SDF galaxies from MMT, Keck, and both, respectively. Circles (triangles) illustrate galaxies with [O\textsc{iii}] $\lambda 4363$ detections (upper limits). DEEP2 galaxies are overlaid in dark blue with [O\textsc{iii}] $\lambda 4363$ detections (squares) and upper limits (triangles). Large brown symbols show average (circles) and median (squares) computed from the SDF and DEEP2 samples. The best fit to the average measurements is shown by the brown line, which shows a strong redshift dependence, $(1+z)^{-2.32^{\pm0.35}}$. Brown crosses indicate SDF galaxies that are possible AGNs and LINERs (see Section 2), which are excluded from average and median measurements.

that there is a non-evolving relation (i.e., “fundamental”; Lara-López et al. 2010; Mannucci et al. 2010). To test this relation, we adopt a non-parametric method of projecting the M_\star–Z–SFR relation in various two-dimensional spaces.

First, we illustrate in Figure 7 the location on the M_\star–SFR plane (Salim et al. 2007; Noeske et al. 2007) for galaxies in five different metallicity bins. We then compute the average and median sSFR for each bin. These are shown as brown and black solid lines, respectively, in each panel. For simplicity, the lower right panel provides these average and median sSFR. The hypothesis we are testing is whether, for a given stellar mass, galaxies shift toward higher SFRs as metallicity decreases. Our results show that indeed the sSFR is lower for higher values of log(O/H), except at the lowest abundance bin. For our lowest abundance bin, Figure 7 shows a bimodality in sSFR with the [O\textsc{iii}] $\lambda 4363$-detected galaxies having log(sSFR) ≈ -8.0 and the [O\textsc{iii}] $\lambda 4363$-non-detected galaxies having lower sSFR by ≈ 1 dex. This bimodality in sSFR is not seen or is less evident in the higher metallicity bins. For the four highest metallicity bins, the sSFR we measure has a moderately shallower log(sSFR)–log (O/H) slope than AM13, -0.41 vs. -1.80. Specifically, the greatest difference in sSFR of ~ 0.8 dex is at high metallicities. This difference is likely caused by a bias in our survey toward higher SFR since metal-rich galaxies with low SFRs will not have [O\textsc{iii}] $\lambda 4363$ detections and will fall below our flux limit cuts adopted for the [O\textsc{iii}] $\lambda 4363$-non-detected sample. We defer discussion on selection bias to Section 4.1.
Next, we consider a projection first adopted by Salim et al. (2014): O/H as a function of the vertical offset on the M_\star–SFR relation. The offset, defined as $\Delta\text{sSFR}_{\text{MS}}$, measures the excess of star formation relative to “normal” galaxies of the same stellar mass and redshift. To facilitate comparisons with the local results of AM13, we use the Salim et al. (2007) $z \sim 0.1$ M_\star–SFR relation as our reference relation:

$$\log (\text{SFR}/M_\odot \text{ yr}^{-1}) = 0.65 \log (M_\star/M_\odot) - 6.33. \quad (8)$$

This metallicity–$\Delta\text{sSFR}_{\text{MS}}$ comparison is performed in different stellar mass bins and is illustrated in Figure 8. Here, we compare our sample to AM13, which is indicated by filled grey squares. This figure illustrates that our emission-line galaxy samples are qualitatively consistent with AM13; however, the sSFR dependence is weak. Specifically, there is a shallow inverse dependence at intermediate stellar masses ($8.1 \leq \log (M_\star/M_\odot) < 8.6$), but no significant dependence in the remaining stellar mass bins. For these other stellar mass bins, there might be evidence for a positive metallicity–$\Delta\text{sSFR}_{\text{MS}}$ dependence; however, this is weak with substantial dispersion of ≈ 0.3 dex that is larger than measurement uncertainties is seen.

Our last projection that we consider is how the M_\star–Z relation depends on sSFR. This is illustrated in Figure 9 in five different sSFR bins from $\log (\text{sSFR/yr}^{-1}) = -9.8$ to -6.4. Similar to Figures 7 and 8, we overlay the AM13 sample as filled grey squares. The lower right panel of Figure 9 illustrates the median (black points) and average (red points) metallicities relative to the AM13 M_\star–Z relation (see Equation 6). While we find good agreement with AM13 at $-9.00 < \text{sSFR} < -8.25$, our results are broadly inconsistent with AM13. Specifically, we find that the relative offset on the M_\star–Z relation increases with increasing sSFR. However, as discussed earlier, our selection function misses metal-rich galaxies. This effect has the largest impact for the lowest sSFR bin, where it can be seen in the upper left panel of Figure 9 that metal-rich galaxies at $M_\star \gtrsim 10^9 M_\odot$ are not included in our sample. The effect of this selection would shift average and median metallicities lower, possibly producing a false positive dependence. Because of the inability to measure
Fig. 8.— Oxygen abundance as a function of SFR offset from the local star forming M_\star–SFR relation, Δ($sSFR$)$_{MS}$ (Salim et al. 2007). Individual panels show galaxies in six different bins of stellar mass, increasing from smallest dwarfs (upper left) to one-tenth of typical massive galaxies (lower right). The circles show [O III] λ4363-detected galaxies, while the triangles show [O III] λ4363-non-detected galaxies. The light blue points represent MMT observations of SDF galaxies, while the green points represent Keck data. The black points show SDF galaxies observed with both telescopes, and the dark blue squares and triangles are DEEP2 galaxies. Brown crosses indicate SDF galaxies that are possible AGNs and LINERs (see Section 2). For comparison we overlay as filled gray squares the measurements of local galaxies from AM13, who found an inverse correlation in this diagram, where those galaxies with exceptionally strong sSFR’s have lower metallicities. Our average values of abundances and Δ($sSFR$)$_{MS}$ overlap with AM13. Our emission-line galaxies show a large scatter in this diagram, too large to see any significant inverse correlation between sSFR and metallicity as AM13 found.

metallicity in metal-rich galaxies with low star formation activity, the use of spectral stacking (such as AM13) is necessary to obtain average T_e-based abundances.

4. DISCUSSION

4.1. Selection Function of the Survey

One concern with our spectroscopic survey is the selection bias of requiring the detection of [O III] λ4363. Specifically, detection of this line primarily depends on the electron temperature (or gas metallicity), which corresponds to

$$T_e = a (-\log(R) - b)^{-c},$$ \hspace{1cm} (9)

$$R \equiv \frac{F(\lambda4363)}{F(\lambda5007) + F(\lambda4959)}.$$ \hspace{1cm} (10)

$a = 13205$, $b = 0.92506$, and $c = 0.98062$ (Nicholls et al. 2014), and the dust-corrected SFR and redshift, which determine the emission-line fluxes. At high SFRs, the probability of detecting [O III] λ4363 is greater for a wide range of metallicities. This range in metallicity reduces such that only metal-poor galaxies with low SFRs can be detected in an emission-line flux limited survey.

To assess the selection function and completeness of our study, we examine the detectability of [O III] λ4363 with MMT and Keck as a function of redshift, metallicity, Hβ luminosity (i.e., SFR), and dust attenuation. First, to determine the R line ratio, we adopt a relation between T_e and $12 + \log(O/H)$ empirically based on our sample of [O III] λ4363 detections:

$$t_3 = 28.566 - 5.811x + 0.303x^2,$$ \hspace{1cm} (11)

where $t_3 \equiv T_e([\text{O III}])/10^4K$ and $x \equiv 12 + \log(O/H)$. Next, we determine the $[\text{O III}]\lambda5007$/H$\beta$ flux ratio as a function of metallicity by adopting $\log(O^+/O^{++}) = -0.114$ and

$$12 + \log \left(\frac{O^{++}}{H^+} \right) = \log \left(\frac{[\text{O III}]\lambda4959,5007}{H\beta} \right) + (12)$$

$$6.200 + \frac{1.251}{t_3} - 0.55\log t_3 - 0.014t_3.$$ \hspace{1cm} (13)

This value of $\log(O^+/O^{++})$ is the average of our [O III] λ4363-detected sample, which does not appear to be dependent on T_e. The combination of R, $[\text{O III}]\lambda5007$/H$\beta$ flux ratio, Hβ luminosity, and redshift determines the [O III] λ4363 line flux:

$$F([\text{O III}]\lambda4363) = 1.33R \frac{F([\text{O III}]\lambda5007)L(H\beta)}{4\pi d_L^2},$$ \hspace{1cm} (14)
where d_L is the luminosity distance. We illustrate in Figure 10 the average 3σ [O III] λ4363 line sensitivity for the MMT and Keck spectra. Here, the sensitivity is computed from measuring the rms in the continuum of the spectra. We illustrate the effects of dust attenuation on the expected [O III] λ4363 line flux by considering three different $E(B-V)$ values, 0.13 (the average in our [O III] λ4363 sample), and 0.0 and 0.26 (±1σ). The curves of [O III] λ4363 line sensitivity are computed from MMT (Keck) spectra for four (five) average redshifts and overlaid in this figure with different colors. Since the on-source exposure time varies by a factor of few to several, we have normalized all estimates to two hours of integration (t_0). The observed points in Figure 10 account for the individual integration times with an offset to the $H\beta$ luminosity of 0.5 log (t_{int}/t_0). Typically, it can be seen that our [O III] λ4363-detected galaxies lie to the right of our line sensitivities while the [O III] λ4363-non-detected galaxies lie to the left of the line sensitivity.

4.2. Comparison with Previous T_e-based Abundance Studies

Narrowband-selected sample. One of the first studies to use the narrowband imaging technique to select high-EW emission-line galaxies to obtain T_e-based metallicity is Kakazu et al. (2007). They targeted narrowband-excess emitters in the GOODS fields with Keck/DEIMOS and obtained 23 galaxies with $\geq 3\sigma$ detection of [O III] λ4363 (Hu et al. 2009). While our [O III] λ4363-detected sample is similar to theirs, Hu et al. (2009) mostly measure T_e below $12 + \log(O/H) \sim 8.0$, whereas our sample spans a wider range in metallicity at a given stellar mass or M_B.

Magnitude-limited sample. Our SDF [O III] λ4363 sample at $z = 0.2$–1 overlap closely in M_\star–Z plane with those measured by DEEP2 at $z \sim 0.8$ (Ly et al. 2015, see Figure 4). The main apparent difference is that the DEEP2 galaxies are from a magnitude-limited (i.e., M_\star-limited) sample, which selects galaxies above $M_\star \sim 10^{8.5} M_\odot$, and therefore higher metallicity.

In contrast, the Amorín et al. (2014) and Amorín et al. (2015) [O III] λ4363-detected samples from VUDS and zCOSMOS, respectively, are strongly biased to only metal-poor galaxies at all stellar masses. This is well-illustrated in Figure 4 where nearly all of their galaxies are below the median of our galaxies $z = 0.5$–1 (solid brown line in the lower left panel). These surveys obtain spectra at lower resolution ($R \sim 200$), which limits the sensitivity to the detection of weak emission lines, particularly detecting [O III] λ4363 in more metal-rich galaxies. This strong selection explains why galaxies from the Amorín et al. (2014) and Amorín et al. (2015) samples have systematically lower metallicities than galaxies at other samples.

The Izotov et al. (2014) and Berg et al. (2012) samples...
Fig. 10.—Oxygen abundances as a function of observed Hβ luminosity to illustrate the selection function of our spectroscopic survey with MMT (left) and Keck (right). Our [O\textsc{iii}] λ4363-detected (circles) and [O\textsc{iii}] λ4363-non-detected (triangles) samples from MMT (light blue), Keck (green), and both (black) are overlaid. The dotted, solid, and dashed curves correspond to the S/N=3 limit on [O\textsc{iii}] λ4363 for three dust extinction possibilities that span the dispersion seen in our [O\textsc{iii}] λ4363-detected galaxies. We illustrate these curves at different average redshift with the [O\textsc{iii}] λ4363 sensitivity estimated directly from the rms in the continuum of our spectroscopic data. To account of the varying integration time (t_{int}) for each individual source, we normalize sensitivity to $t_0 = 120$ min. See Section 4.1 for further details.
at low redshift also show systematically lower O/H than our SDF galaxies at \(z \leq 0.3 \). Izotov et al. (2014) selected galaxies from SDSS with high Hβ EWs and at \(z \sim 0.2 \). Since SDSS is a shallow magnitude-limited survey, their sample selection biased them toward more massive galaxies \((M_\star \gtrsim 10^9 M_\odot) \) with lower metallicities. Berg et al. (2012) also reported that their sample has lower abundances at a given stellar mass when compared to other local \(M_\star - Z \) studies (Lee et al. 2006). It appears that our \(z \lesssim 0.3 M_\star - Z \) relation is consistent with the \(M_\star - Z \) relation of Lee et al. (2006); however, we find a steeper slope.

4.3. Comparison with Predictions from Galaxy Formation Simulations

As discussed earlier, the shape and evolution of the \(M_\star - Z \) relation are important constraints for galaxy formation models, as the heavy-element abundances are set by enrichment from star formation, with dilution and loss from gas inflows and outflows, respectively (see Somerville & Davé 2015, and references therein). Efforts have been made to predict the \(M_\star - Z \) relation from large cosmological simulations that either (1) hydrodynamically model the baryons in galaxies (e.g., Davé et al. 2011; Vogelsberger et al. 2014; Ma et al. 2015; Schaye et al. 2015) or (2) adopt semi-analytical models with simple prescriptions for the baryonic physics (Gonzalez-Perez et al. 2014; Lu et al. 2014; Porter et al. 2014; Henriques et al. 2015; Croton et al. 2016).

We examine how well these numerical models and simulations predict the \(M_\star - Z \) relation in Figure 11. Here we compare \(z \sim 0 \) predictions against AM13 in the left panel, and compare \(z \sim 1 \) predictions against our sample of \(z = 0.5-1 \) galaxies in the right panel. We note that the normalization of these predictions for the \(M_\star - Z \) relation is dependent on the nucleosynthesis yield, which is only accurately measured to \(\sim 50\% \) (R. Davé and K. Finlator 2015, private communication). Thus, the normalization cannot be used to compare with observations. For this reason, we normalize all \(M_\star - Z \) relation predictions to \(12 + \log(O/H) = 8.5 \) at \(M_\star = 10^9 M_\odot \) (at \(z \sim 0 \); consistent with AM13), and examine relative evolution. For simplicity and consistency, predictions from hydrodynamically-based models are indicated by the dashed lines while semi-analytical model predictions are denoted by the dot-dashed lines.

First, we consider the predictions from Davé et al. (2011)'s \texttt{wzw} simulation that adopts “momentum-conserving” stellar winds. Their result is illustrated in Figure 11 by the grey dashed lines with the grey shaded regions encompassing 16 and 84 percentile. At \(M_\star \sim 10^9 M_\odot \), the slope in their \(M_\star - Z \) relation is consistent with what we and AM13 measure. However, there are two issues with their predictions: (1) the decline in abundances with redshift (from \(z = 0 \) to \(z \sim 1 \)) that they measure (\(\sim 0.1 \) dex; see Figure 2 in Davé et al. 2011) is much lower than what we observe (\(\sim 0.25 \) dex). (2) They predict a steep \(M_\star - Z \) relation at higher stellar masses at all redshifts. This is not seen by us or by AM13. Unfortunately, the Davé et al. (2011) models are unable to probe galaxies below \(M_\star \approx 10^{8.4} M_\odot \), where we see a steepening of the \(M_\star - Z \) slope.

Next, we compare our results against “zoom-in” hydrodynamical simulations from the FIRE (Feedback in
Realistic Environments; Hopkins et al. 2014) project. While these simulations consist of much fewer galaxies than Davé et al. (2011), they provide higher spatial resolution on individual galaxies to resolve the structure of the ISM, star formation, and feedback, and span a wider range in galaxy stellar masses. Their redshift-dependent linear function described in Ma et al. (2015) is illustrated by the red dashed lines in Figure 11 with red stars for individual galaxies.\(^5\) Similar to Davé et al. (2011), Ma et al. (2015) measures a slope that is consistent with our sample and AM13’s results at \(M_{\star} \sim 10^9\ M_\odot\). However, the FIRE simulations find that abundances are lower by \(\approx 0.25\) dex at \(z \sim 0.8\) than at \(z \sim 0\), consistent with our results. Because of the limited sample size of the FIRE simulations, only 24 galaxies at \(z \sim 1\), constraining the shape of the \(M_{\star} - Z\) relation is difficult. Furthermore, the FIRE simulations only have three \(z \sim 1\) dwarf galaxies below \(M_{\star} \sim 10^8\ M_\odot\). These galaxies can provide the strongest constraints on stellar winds from the \(M_{\star} - Z\) relation.

In addition, we also consider the predictions of Vogelsberger et al. (2014) from the Illustris simulations, which are overlaid in Figure 11 as the cyan dashed lines. Similar to Davé et al. (2011) and Ma et al. (2015), they predict a \(M_{\star} - Z\) slope that is consistent with AM13 and our \(z \sim 1\) sample; however, much like Davé et al. (2011), the amount of evolution predicted at \(M_{\star} \sim 10^9\ M_\odot\) is inconsistent with the \(\approx 0.25\) dex evolution that we observe. Also, the steep \(M_{\star} - Z\) slope at the high-mass end that Vogelsberger et al. (2014) predict is inconsistent with our observations and AM13.

Finally, we also overlay the predictions from the EA-

\[\text{GLE} \] hydrodynamical simulations (Crain et al. 2015; Schaye et al. 2015) in Figure 11 as green dashed lines and green shaded regions encompassing 16 and 84 per-
centile. The predictions are obtained from the public catalog (McAlpine et al. 2015).\(^6\) The EAGLE simulation results agree with the observed shape of the \(M_{\star} - Z\) relation at \(M_{\star} \gtrsim 3 \times 10^8\ M_\odot\) for \(z \sim 0\) (AM13) and at \(M_{\star} \gtrsim 3 \times 10^8\ M_\odot\) for \(z \sim 1\). At lower stellar mass, it predicts a shallow \(M_{\star} - Z\) slope, which is inconsistent with observational results at \(z \sim 0\). However, this shallow slope is believed to be caused by poor resolution as the turnover occurs when the number of star particles falls below \(\sim 10^4\) (Schaye et al. 2015). The EAGLE simulation does predict \(\approx 0.2\) dex evolution in the \(M_{\star} - Z\) normalization, consistent with our observed evolution.

For completeness, we also overlay the predictions from several semi-analytical models. These models adopt differ-
ent assumptions and prescriptions. The predictions for Croton et al. (2016)\(^7\) are shown by the dot-dashed orange line and orange diamonds for \(z \sim 0\) and dot-
dashed orange line and orange shaded region for \(z \sim 1\). We also overlay Gonzalez-Perez et al. (2014) as a black dot-dashed line, Henriques et al. (2015) as the olive dot-dashed line with olive shaded region indicating 16 and 84 percentile, Lu et al. (2014) as the purple dot-dashed line with purple shaded region indicating 68\% dispersion, and Porter et al. (2014) as the yellow dot-dashed line with black outlines.

We note that none of these semi-analytical models predict a moderate (\(\approx 0.25\) dex) evolution in the \(M_{\star} - Z\) relation at \(z \lesssim 1\). They either find no evolution or no more than 0.1 dex. Croton et al. (2016), Henriques et al. (2015), and Porter et al. (2014) do predict a \(M_{\star} - Z\) slope at \(M_{\star} \sim 10^9\ M_\odot\) that is consistent with observations at \(z \sim 0\) and \(z \sim 1\). The semi-analytical model that dis-
agrees significantly from observations is Lu et al. (2014). They predict the steepest \(M_{\star} - Z\) slope and higher metal-
licities at a given stellar mass for \(z \sim 1\). Croton et al. (2016) is able to re-produce the shape of the \(M_{\star} - Z\) relation at \(z \sim 0\); however this is not a surprise since the local \(M_{\star} - Z\) relation (Tremonti et al. 2004) is used as a secondary constraint in their model.

Given these comparisons, we find that the only models that can reproduce both the observed evolution in the \(M_{\star} - Z\) relation (\(\approx 0.25\) dex) and the slope at \(M_{\star} \sim 10^9\ M_\odot\) are the FIRE and EAGLE simulations. As discussed above, the FIRE simulations provide the highest spatial resolution to resolve stellar feedback (Hopkins et al. 2014), and the EAGLE simulation with the best agree-
ment with the local \(M_{\star} - Z\) relation has the highest par-
ticle resolution. It may be that resolving the physical processes in the ISM, rather than adopting prescriptions on scales that are unresolvable, is critical for further un-
derstanding the chemical enrichment process in galaxies. We encourage forthcoming models and simulations to (1) improve the particle resolution of large-scale galaxy simulations, (2) consider using the “zoom-in” technique for more detailed studies, and (3) probe galaxies below \(M_{\star} \sim 10^8\ M_\odot\), as this remains an unexplored parameter space where observations find a steep \(M_{\star} - Z\) dependence (see Figure 11).

5. CONCLUSIONS

We have conducted an extensive spectroscopic sur-
vey of \(\approx 1,900\) emission-line galaxies in the SDF with MMT/Hectospec and Keck/DEIMOS. Our spectroscopy detected [O\textsc{iii}] \(\lambda 4363\) in 66 galaxies and provided robust [O\textsc{iii}] \(\lambda 4363\) upper limits for 98 galaxies. These measurements provide us with oxygen abundances from measur-
ing the electron temperature (\(T_e\)), and enable the first systematic study of the evolution of the \(M_{\star} - Z\) relation to \(z \sim 1\) using only the \(T_e\) method. We find that the \(M_{\star} - Z\) relation evolves toward lower metallicity at fixed stellar mass proportional to \((1 + z)^{-2.32^\pm 0.33}\). In addition, we are able to measure the shape of the \(M_{\star} - Z\) relation at \(z \approx 0.5 - 1\). The shape is consistent with the local re-
lation determined by AM13, indicating a steep slope at the low-mass end, a flattening in metallicity at \(M_{\star} \sim 10^9\ M_\odot\), and abundances that is lower by \(\approx 0.25\) dex at all stellar masses. We also examine whether the \(M_{\star} - Z\) re-
lation has a secondary dependence on SFR such that galaxies with higher sSFR have reduced metallicity. Our sample suggests that the SFR dependence is mild, but only a third as strong as seen in local galaxies (AM13).

\(^5\) The metallicity normalization results in a small offset, 0.03 dex.

\(^6\) http://www.eaglesim.org/database.php. We use the simu-
lation with the highest particle resolution, Recal-L025N0752, and require SFR > 0 for two snapshots, \(z = 1\) and \(z = 0\). Different sets of EAGLE simulations yield different results for the \(M_{\star} - Z\) relation (see Figure 13 of Schaye et al. 2015); Recal-L025N0752 provides the best agreement with the \(M_{\star} - Z\) relation.

\(^7\) Their latest results are obtained from the Theoretical Astro-
physical Observatory (https://tao.asvo.org.au/tao/) using the largest simulated area, “COSMOS”.

\(^8\) The sample size is small, so individual galaxies are shown rather than a shaded region for a poorly measured dispersion.
Evolution of the Mass-Metallicity Relation

The weak dependence on SFR may be due to (1) large dispersion (≈ 0.3 dex) which cannot be attributed to measurement uncertainties, and (2) a selection against metal-rich galaxies with low SFR. For the latter, we examine the selection function as a function of metallicity, SFR, dust reddening and redshift. We find that we mitigate the selection bias by including a substantially large sample of reliable non-detections that have lower sSFR by 0.5 dex over a wide range in stellar mass. We also compare our M_*/Z relation results against predictions from semi-analytical and hydrodynamical galaxy formation models. Specifically, we find good agreement on the slope of the M_*/Z relation and its evolution with “zoom-in” simulations from FIRE (Ma et al. 2015) and high resolution cosmological simulations from EAGLE (Schaye et al. 2015). Given these agreements, we suggest the following courses of action for forthcoming theoretical studies on chemical enrichment: (1) improve the particle resolution of large-scale galaxy formation simulations, (2) further use the “zoom-in” technique for detailed examination ISM (e.g., resolving stellar feedback processes), and (3) simulate galaxies below $M_*/10^8 M_\odot$, where observations suggest a steep M_*/Z relation at both $z \approx 0$ and $z \sim 1$. These improvements, combined with observational data of low-mass galaxies, will facilitate a better physical understanding of the baryonic processes occurring within galaxies.

Our \([\text{O}\text{iii}]\) $\lambda 3633$-detected sample includes a large number of extremely metal-poor galaxies ($12 + \log(O/H) \leq 7.69$ or $0.1Z_\odot$); it is the largest sample of extremely metal-poor galaxy sample at $z \geq 0.2$. We argue that local surveys (e.g., SDSS) have not identified many extremely metal-poor galaxies since they are magnitude-limited and generally miss galaxies below $M_*/10^8 M_\odot$. Emission-line surveys that utilize narrow-band imaging or grism spectroscopy are able to increase the efficiency of identifying extremely metal-poor galaxies by detecting the nebular emission. Our most metal-poor galaxy, Keck06, has an oxygen abundance that is similar to I Zw 18. We also find that our high-sSFR galaxies are similar to typical $z \sim 2$ galaxies in terms of gas-phase metallicity and ionization parameter (Shapley et al. 2015). This suggests that a sample of analogs to $z \gtrsim 2$ star-forming galaxies are available at $z \lesssim 1$ for more detailed spectroscopic studies.

The DEIMOS data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration (NASA). The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawai-
ian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Hectospec observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona. A subset of MMT telescope time was granted by NOAO, through the NSF-funded Telescope System Instrumentation Program (TSIP). We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission. This research is supported by the PRACE facility Curie based in France at TGCC, CEA, Bruyères-le-Châtel.

Facilities: Subaru (Suprime-Cam), MMT (Hectospec), Keck:II (DEIMOS), GALEX, Mayall (MOSAIC, NEWFIRM), UKIRT (WFCAM)

REFERENCES

Allende Prieto, C., Lambert, D. L., & Asplund, M. 2001, ApJ, 556, L63
Aller, L. H. 1984, Astrophysics and Space Science Library, (Dordrecht: Reidel)
Amorín, R., Pérez-Montero, E., Contini, T., et al. 2015, A&A, 578, A105
Amorín, R. O., Pérez-Montero, E., & Vilchez, J. M. 2010, ApJ, 715, L128
Amorín, R., Sommariva, V., Castellano, M., et al. 2014, A&A, 568, L8
Andrews, B. H., & Martini, P. 2013, ApJ, 765, 140 [AM13]
Atek, H., Siana, B., Scarlata, C., et al. 2011, ApJ, 743, 121
Baldwin, A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 817
Belli, S., Jones, T., Ellis, R. S., & Richard, J. 2013, ApJ, 772, 141
Berg, D. A., Skillman, E. D., Marble, A. R., et al. 2012, ApJ, 754, 98
Bian, F., Fan, X., Bechtold, J., et al. 2010, ApJ, 725, 1877
Brinchmann, J., Pettini, M., & Charlot, S. 2008, MNRAS, 385, 769
Brown, W. R., Kewley, L. J., & Geller, M. J. 2008, AJ, 135, 92
Chen, R. A., Schaye, J., Bower, R. G., et al. 2012, ApJ, 754, 98
Croton, D. J., Stevens, A. R., Tonini, C., et al. 2016, ApJS, accepted (arXiv:1601.04709)
Cullen, F., Cirasuolo, M., McLure, R. J., Dunlop, J. S., & Bowler, R. A. 2014, MNRAS, 440, 2300
Davé, R., Finlator, K., & Oppenheimer, B. D. 2011, MNRAS, 416, 1354
de los Reyes, M., Ly, C., Lee, J. C., et al. 2015, AJ, 149, 79
Ellison, S. L., Patton, D. R., Simard, L., & McConnachie, A. W. 2008, ApJ, 672, L107
Erb, D. K., Shapley, A. E., Pettini, M., et al. 2006, ApJ, 644, 813
Esteban, C., Peimbert, M., Torres-Peimbert, S., & García-Rojas, J. 1999, Rev. Mexicana Astron. Astrophys., 35, 65
Finkelstein, S. L., Papovich, C., Rudnick, G., et al. 2009, ApJ, 700, 376
Gonzalez-Perez, V., Lacey, C. G., Baugh, C. M., et al. 2014, MNRAS, 439, 264
Guaita, L., Franccke, H., Gawiser, E., et al. 2013, A&A, 551, A93
Hainline, K. N., Shapley, A. E., Kornek, K. A., et al. 2009, ApJ, 701, 52
Hägele, G. F., Pérez-Montero, E., Díaz, Á. I., Terlevich, E., & Terlevich, R. 2006, MNRAS, 372, 293
Hayashi, M., Ly, C., Shimasaku, K., et al. 2015, PASJ, 67, 80
Hayashi, M., Motohara, K., Shimasaku, K., et al. 2009, ApJ, 691, 140
Heckman, T. M. 1980, A&A, 87, 152
Henriques, B. M. B., White, S. D. M., Thomas, P. A., et al. 2015, MNRAS, 451, 2663
Henry, A., Martin, C. L., Finlator, K., & Dressler, A. 2013a, ApJ, 769, 148
Henry, A., Scarlata, C., Domínguez, A., et al. 2013b, ApJ, 776, L27
Hopkins, P. F., Kereš, D., Oñorbe, J., et al. 2014, MNRAS, 445, 381
Hoyos, C., Koo, D. C., Phillips, A. C., Willmer, C. N. A., & Guhathakurta, P. 2005, ApJ, 635, L21
Hunt, L., Magrini, L., Galli, D., et al. 2012, MNRAS, 427, 906
Hu, E. M., Cowie, L. L., Kakazu, Y., & Barger, A. J. 2009, ApJ, 698, 2014
Izotov, Y. I., Guseva, N. G., Fricke, K. J., & Henkel, C. 2014, A&A, 561, A33
Izotov, Y. I., Stasińska, G., Meynet, G., Guseva, N. G., & Thuan, T. X. 2006a, A&A, 448, 955
Izotov, Y. I., Thuan, T. X., & Guseva, N. G. 2012a, A&A, 546, A122
Juneau, S., Bournaud, F., Charlot, S., et al. 2014, ApJ, 788, 88
Kakazu, Y., Cowie, L. L., & Hu, E. M. 2007, ApJ, 668, 853
Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, MNRAS, 346, 1055
Kashikawa, N., Shimasaku, K., Yasuda, N., et al. 2004, PASJ, 56, 1011
Kewley, L. J., Dopita, M. A., Leitherer, C., et al. 2013a, ApJ, 774, 100
Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J. 2001, ApJ, 556, 121
Kewley, L. J., & Ellison, S. L. 2008, ApJ, 681, 1183
Kewley, L. J., Maior, C., Yabe, K., et al. 2013b, ApJ, 774, L10
Kobulnicky, H. A., & Kewley, L. J. 2004, ApJ, 617, 240
Kriek, M., Shapley, A. E., Reddy, N. A., et al. 2015, ApJS, 218, 15
Lamareille, F., Brinchmann, J., Contini, T., et al. 2009, A&A, 495, 53
Lara-López, M. A., Ceapa, J., Bongiovanni, A., et al. 2010, A&A, 521, L53
Lee, H., Skillman, E. D., Cannon, J. M., et al. 2006, ApJ, 647, 970
Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., & Peng, Y. 2013, ApJ, 772, 119
Liu, X., Shapley, A. E., Coil, A. L., Brinchmann, J., & Ma, C.-P. 2008, ApJ, 678, 758
Lu, Y., Wechsler, R. H., Somerville, R. S., et al. 2014, ApJ, 795, 123
Ly, C., Malkan, M. A., Kashikawa, N., et al. 2007, ApJ, 657, 738
Ly, C., Lee, J. C., Dale, D. A., et al. 2011, ApJ, 726, 109
Ly, C., Malkan, M. A., Nagao, T., et al. 2014, ApJ, 780, 122
Ly, C., Malikhotra, S., Malkan, M. A., et al. 2016, ApJS, submitted [Paper I]
McQuinn, K., Maier, C., Lilly, S. J., Ziegler, B. L., et al. 2014, ApJ, 792, 3
Maiolino, R., Nagao, T., Grazian, A., et al. 2008, A&A, 488, 463

Evolution of the Mass-Metallicity Relation

Mannucci, F., Cresci, G., Maiolino, R., et al. 2009, MNRAS, 398, 1915
Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., & Gnerucci, A. 2010, MNRAS, 408, 2115
Markwardt, C. B. 2009, Astronomical Data Analysis Software and Systems XVIII, 411, 251
Masters, D., McCarthy, P., Siana, B., et al. 2014, ApJ, 785, 153
McGaugh, S. S. 1991, ApJ, 380, 140
McAlpine, S., Helly, J. C., Schaller, M., et al. 2015, (arXiv:1510.01530)
Momcheva, I. G., Lee, J. C., Ly, C., et al. 2013, AJ, 145, 47
Moustakas, J., Zaritsky, D., Brown, M., et al. 2011, ApJ, submitted (arXiv:1112.3300)
Nagao, T., Maiolino, R., & Marconi, A. 2006, A&A, 459, 85
Nakajima, K., Ouchi, M., Shimasaku, K., et al. 2012, ApJ, 745, 12
Newman, J. A., Cooper, M. C., Davis, M., et al. 2007, ApJ, 660, L43
Nicholls, D. C., Dopita, M. A., Sutherland, R. S., Jerjen, H., & Kewley, L. J. 2014, ApJ, 790, 75
Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJ, 660, L43
Oke, J. B. 1974, ApJS, 27, 21
Pagel, B. E. J., Edmunds, M. G., Blackwell, D. E., Chun, M. S., & Smith, G. 1979, MNRAS, 189, 95
Pettini, M., & Pagel, B. E. J. 2004, MNRAS, 348, L59
Pirzkal, N., Rothberg, B., Ly, C., et al. 2013, ApJ, 772, 48
Porter, L. A., Somerville, R. S., Primack, J. R., & Johansson, P. H. 2014, MNRAS, 444, 942
Rigby, J. R., Wuyts, E., Gladders, M. D., Sharon, K., & Becker, G. D. 2011, ApJ, 732, 59
Salim, S., Lee, J. C., Ly, C., et al. 2014, ApJ, 797, 126
Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173, 267
Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2015, ApJ, 799, 138
Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521
Seaton, M. J. 1954, MNRAS, 114, 154
Shapley, A. E., Coil, A. L., Ma, C.-P., & Bundy, K. 2005, ApJ, 635, 1006
Shapley, A. E., Reddy, N. A., Kriek, M., et al. 2015, ApJ, 801, 88
Sonnergille, R. S., & Davé, R. 2015, ARAA, 53, 51
Steidel, C. C., Rudie, G. C., Strom, A. L., et al. 2014, ApJ, 795, 165
Thuan, T. X., Pilyugin, L. S., & Zinchenko, I. A. 2010, ApJ, 712, 1029
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898
Troncoso, P., Maiolino, R., Sommariva, V., et al. 2014, A&A, 563, AA58
Veilleux, S., & Osterbrock, D. E. 1987, ApJS, 63, 295
Vogelsberger, M., Genel, S., Springel, V., et al. 2014, Nature, 509, 177
van der Wel, A., Straughn, A. N., Rix, H.-W., et al. 2011, ApJ, 742, 111
Whitaker, K. E., Franx, M., Leja, J., et al. 2014a, ApJ, 795, 104
Whitaker, K. E., Rigby, J. R., Brammer, G. B., et al. 2014b, ApJ, 790, 143
Wuyts, E., Rigby, J. R., Sharon, K., & Gladders, M. D. 2012, ApJ, 755, 73
Xia, L., Malhotra, S., Rhoads, J., et al. 2012, AJ, 144, 28
Yabe, K., Ohta, K., Akiyama, M., et al. 2015, PASJ, 244 (arXiv:1508.01512)
Yabe, K., Ohta, K., Iwamuro, F., et al. 2012, PASJ, 64, 60
Yabe, K., Ohta, K., Iwamuro, F., et al. 2014, MNRAS, 437, 3647
Yates, R. M., Kauffmann, G., & Guo, Q. 2012, MNRAS, 422, 215
Zahid, H. J., Bresolin, F., Kewley, L. J., Coil, A. L., & Davé, R. 2012, ApJ, 750, 120
Zahid, H. J., Geller, M. J., Kewley, L. J., et al. 2013, ApJ, 771, L19
Zahid, H. J., Kashino, D., Silverman, J. D., et al. 2014, ApJ, 792, 75
Zahid, H. J., Kewley, L. J., & Bresolin, F. 2011, ApJ, 730, 137