Véchambre, Grégoire
General self-similarity properties for Markov processes and exponential functionals of Lévy processes. (English) J. Theor. Probab. 35, No. 4, 2083-2144 (2022)

Summary: Positive self-similar Markov processes are positive Markov processes that satisfy the scaling property and it is known that they can be represented as the exponential of a time-changed Lévy process via Lamperti representation. In this work, we are interested in what happens if we consider Markov processes in dimension 1 or 2 that satisfy self-similarity properties of a more general form than a scaling property. We characterize them by proving a generalized Lamperti representation. Our results show that, in dimension 1, the classical Lamperti representation only needs to be slightly generalized. However, in dimension 2, our generalized Lamperti representation is much more different and involves the exponential functional of a bivariate Lévy process. We briefly discuss the complications that occur in higher dimensions. We present examples in dimensions 1, 2 and 3 that are built from growth-fragmentation, self-similar fragmentation and Continuous-state Branching processes in Random Environment. Some of our arguments apply in the context of a general state space and show that we can exhibit a topological group structure on the state space of a Markov process that satisfies general self-similarity properties, which allows to write a Lamperti-type representation for this process in terms of a Lévy process on the group.

MSC:
60G18 Self-similar stochastic processes
60G51 Processes with independent increments; Lévy processes
60J25 Continuous-time Markov processes on general state spaces

Keywords: self-similar Markovian processes; Lévy processes; Lamperti representation; Lévy processes on Lie groups; exponential functionals of Lévy processes

Full Text: DOI arXiv

References:
[1] Alili, L.; Chaumont, L.; Graczyk, P.; Zak, T., Inversion, duality and doob \(\tilde{h} \)-transforms for self-similar Markov processes, Electron. J. Probab., 22, 18 (2017) · Zbl 1357.60079 · doi:10.1214/17-EJP33
[2] Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 edition (2009) · Zbl 1200.60001
[3] Applebaum, D., Probability on Compact Lie Groups (2014), Berlin: Springer, Berlin · Zbl 1302.60007 · doi:10.1007/978-3-319-07842-7
[4] Bertoin, J.: Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2006) · Zbl 1107.60002
[5] Bertoin, J.; Caballero, ME, Entrance from 0+ for increasing semi-stable Markov processes, Bernoulli, 8, 2, 195-205, 04 (2002) · Zbl 1098.60038 · doi:10.1214/009117905000000611
[6] Chaumont, L.; Kyprianou, A.; Pardo, JC; Rivero, V., Fluctuation theory and exit systems for positive self-similar markov processes, Ann. Probab., 40, 4, 1553-1584, 04 (2012) · Zbl 1241.60019 · doi:10.1214/10-AOP612
[7] Chaumont, L.; Panti, H.; Rivero, V., The Lamperti representation of real-valued self-similar Markov processes, Bernoulli, 19,
[12] Fitzsimmons, P., On the existence of recurrent extensions of self-similar Markov processes, Electron. Commun. Probab., 11, 230-241 (2006) · Zbl 1110.60036 · doi:10.1214/ECP.v11-1222

[13] Graversen, S.E., Vuolle-Apiala, J.: \((\alpha)\)-self-similar Markov processes. Probability Theory and Related Fields (1986) · Zbl 0561.60085

[14] He, H.; Li, Z.; Xu, W., Continuous-state branching processes in Lévy random environments, J. Theor. Probab., 31, 1952-1974 (2018) · Zbl 1428.60125 · doi:10.1007/s10959-017-0765-1

[15] Kiu, S-W, Semi-stable Markov processes in \(\mathbb{R}_n\), Stoch. Process. Appl., 10, 2, 183-191 (1980) · Zbl 0436.60054 · doi:10.1016/0304-4149(80)90020-4

[16] Kyprianou, A.: Stable processes, self-similarity and the unit ball. ArXiv e-prints (2017)

[17] Lamperti, J., Semi-stable stochastic processes, Trans. Am. Math. Soc., 104, 62-78 (1962) · Zbl 0286.60017 · doi:10.1090/S0002-9947-1962-0138128-7

[18] Lamperti, J., Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22, 205-225 (1972) · Zbl 0274.60052 · doi:10.1007/BF00536091

[19] Palau, S.; Pardo, JC, Branching processes in a Lévy random environment, Acta Appl. Math., 153, 55-79 (2018) · Zbl 1380.60043 · doi:10.1007/s10440-017-0120-7

[20] Pardo, J.C., Rivero, V.: Self-similar Markov processes. Boletin de la Sociedad Matematica Mexicana

[21] Perthame, B., Transport Equations in Biology (2007), Birkhauser: Frontiers in Mathematics, Birkhauser · Zbl 1185.92006 · doi:10.1007/978-3-7643-7842-4

[22] Protter, P., Stochastic Integration and Differential Equations (2005), Berlin Heidelberg: Springer-Verlag. Berlin Heidelberg: doi:10.1007/978-3-662-10061-5

[23] Rivero, V., Recurrent extensions of self-similar Markov processes and Cranér’s condition, Bernoulli, 11, 3, 471-509 (2005) · Zbl 1077.60055 · doi:10.3150/bj/1120511885

[24] Rivero, V., Recurrent extensions of self-similar Markov processes and Cranér’s condition II, Bernoulli, 13, 4, 1053-1070 (2007) · Zbl 1132.60056 · doi:10.3150/07-BEJ16082

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.