Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival

Submitted by Claudia Montero... on Mon, 06/29/2015 - 15:40

Titre Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival
Type de publication Article de revue
Auteur Penna, Claudia [1], Perrelli, Maria-Giulia [2], Karam, Jean-Pierre [3], Angotti, Carmelina [4], Muscari, Claudio [5], Montero-Menei, Claudia [6], Pagliaro, Pasquale [7]
Editeur Wiley Open Access
Type Article scientifique dans une revue à comité de lecture
Année 2013
Langue Anglais
Date 2013 Jan
Pagination 192-204
Volume 17
Titre de la revue J Cell Mol Med
ISSN 1582-4934
Mots-clés Animals [8], Caspase 3 [9], Cell Hypoxia [10], Cell Survival [11], Drug Carriers [12], Drug Compounding [13], Kinetics [14], Lactic Acid [15], Mesenchymal Stromal Cells [16], Microspheres [17], Mitogen-Activated Protein Kinase 1 [18], Mitogen-Activated Protein Kinase 3 [19], Oxygen [20], Polyglycolic Acid [21], Primary Cell Culture [22], Proto-Oncogene Proteins c-akt [23], Rats [24], Rats, Wistar [25], Vascular Endothelial Growth Factor A [26]
Resistance of transplanted mesenchymal stem cells (MSCs) in post-ischemic heart is limited by their poor vitality. Vascular-endothelial-growth-factor-A (VEGF-A) as such or slowly released by fibronectin-coated pharmacologically-active-microcarriers (FN-PAM-VEGF) could differently affect survival kinases and anti-apoptotic mediator (e.g. Bcl-2). Therefore VEGF-A or FN-PAM-VEGF could differently enhance cell proliferation, and/or resistance to hypoxia/reoxygenation (H/R) of MSCs. To test these hypotheses MSCs were incubated for 6-days with VEGF-A alone or with FN-PAM-VEGF. In addition, MSCs pre-treated for 24-hrs with VEGF-A or FN-PAM-VEGF were subsequently exposed to H/R (72-hrs 3% O(2) and 3-hrs of reoxygenation). Cell-proliferation and post-hypoxic vitality were determined. Kinases were studied at 30-min., 1- and 3-days of treatment. Cell-proliferation increased about twofold (P < 0.01) 6-days after VEGF-A treatment, but by a lesser extent (55% increase) with FN-PAM-VEGF (P < 0.05). While MSC pre-treatment with VEGF-A confirmed cell-proliferation, pre-treatment with FN-PAM-VEGF protected MSCs against H/R. In the early phase of treatments, VEGF-A increased phospho-Akt, phospho-ERK-1/2 and phospho-PKC compared to the untreated cells or FN-PAM-VEGF. Afterword, kinase phosphorylations were higher with VGEF, except for ERK-1/2, which was similarly increased by both treatments at 3 days. Only FN-PAM-VEGF significantly increased Bcl-2 levels. After H/R, lactate dehydrogenase release and cleaved Caspase-3 levels were mainly reduced by FN-PAM-VEGF. While VEGF-A enhances MSC proliferation in normoxia, FN-PAM-VEGF mainly hampers post-hypoxic MSC death. These different effects underscore the necessity of approaches suited to the various conditions. The use of FN-PAM-VEGF could be considered as a novel approach for enhancing MSC survival and regeneration in hostile environment of post-ischemic tissues.

URL de la notice http://okina.univ-angers.fr/publications/ua13188 [27]
DOI 10.1111/j.1582-4934.2012.01662.x [28]
Autre titre J. Cell. Mol. Med.
Identifiant (ID) PubMed 23305078 [29]
