Leprosy as immune reconstitution inflammatory syndrome in patients living with HIV: Description of French Guiana’s cases over 20 years and systematic review of the literature

Alice Mouchard, Romain Blaizot, Jenna Graille, Pierre Couppié, Chloé Bertin

1 Service de Dermatologie, Centre hospitalier de Cayenne, Cayenne, French Guiana, 2 Tropical Biome and Immunophysiology (TBIP), Université de Lille, CNRS, INSERM, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Centre Hospitalier de Cayenne, Université de Guyane, Cayenne, French Guiana

* aae.mouchard@gmail.com

Abstract

Background

HIV infection is highly prevalent in French Guiana, a territory where leprosy is also endemic. Since the introduction of Highly Active Antiretroviral Treatment (HAART) in the management of HIV, leprosy has been reported as part of the immune reconstitution inflammatory syndrome (IRIS).

Methodology/Principal findings

We aimed to present a general description of these forms of leprosy as IRIS, highlighting clinical and therapeutic specificities. A retrospective study was conducted in French Guiana, including patients living with HIV (PLHIV) with advanced infection (CD4 < 200/mm³) and developing leprosy or a leprosy reaction within six months of HAART initiation, from 2000 to 2020. Clinical, histological and biological data were collected for all these patients. Six patients were reported in French Guiana. A systematic review of the literature was conducted, and its results were added to an overall analysis. Overall, seventy-three PLHIV were included. They were mainly men (74%), aged 22–54 years (median 36 years), mainly from Brazil (46.5%) and India (32.8%). Most leprosy cases (56.2%) were borderline tuberculoid (BT). Leprosy reactions were frequent (74%), mainly type 1 reaction (T1R) (68.5%), sometimes intense with ulceration of skin lesions (22%). Neuritis was observed in 30.1% of patients. The outcome was always favorable under multidrug therapy (MDT), continuation of HAART and additional corticosteroid therapy in case of neuritis or ulceration. There was no relapse.

Conclusion

Leprosy as IRIS in PLHIV mainly presents as a BT leprosy in a T1R state, sometimes with ulcerated skin lesions. Response to MDT is usually good. Systemic corticosteroids are necessary and efficient in case of neuritis.
Leprosy is an infection caused by *Mycobacterium leprae* characterized by skin and nerve lesions. Leprosy reactions can be observed, depending on variations in host-specific cellular immunity. Leprosy is described after antiretroviral therapy (HAART) initiation in immunocompromised PLHIV from countries where leprosy and HIV infections are endemic. This is known as immune restoration inflammatory syndrome (IRIS), a brutal inflammatory response directed against a latent or quiescent pathogen. In this study, we searched for cases of leprosy as IRIS in French Guiana and those published in the literature in order to describe their clinical characteristics. Overall, our results show that these cases are mostly observed as borderline tuberculoid leprosy, associated with or quickly followed by a type 1 leprosy reaction, sometimes with neuritis and/or ulceration of lesions. The outcome is favorable under standard leprosy treatment with HAART maintenance.

Introduction

Leprosy is a chronic infection that is far from being eliminated with more than 200,000 new cases per year reported worldwide in 2019. It remains a major public health problem in terms of physical and social disability, particularly in South America, South East Asia and Africa [1]. In many of these countries, leprosy is endemic, and HIV infection is highly prevalent. However, there are few epidemiological data on leprosy-HIV co-infection. Studies conducted in the early-to-mid-1990s suggested that co-infection with HIV did not alter the incidence and clinical spectrum of leprosy and that each disease progressed independently [2]. Since the introduction of Highly active antiretroviral treatment (HAART) in HIV management, leprosy has been reported as part of the immune restoration inflammatory syndrome (IRIS) in areas where the two diseases overlap. The first case reported in 2003 [3]. IRIS is an inappropriate inflammatory response to an infection that occurs in severely immunocompromised PLHIV (CD4 cell count < 200/mm3) within the first six months of HAART initiation. In 2008, Deps and Lockwood [4] proposed a definition of leprosy as an IRIS to facilitate its identification and recognition: (1) leprosy and/or leprosy reaction presenting within the six months of starting HAART; (2) advanced HIV infection; (3) low CD4+ T lymphocyte (CD4) count before starting HAART; (4) CD4 count increase after HAART initiation. In 2020, among 37.7 million PLHIV across the world, 73% had access to antiretroviral treatment [5]. With the widespread availability of HAART worldwide, it was expected that leprosy as an IRIS would be increasingly reported. However, this assumption has yet to be confirmed.

French Guiana is a South American territory of almost 300,000 inhabitants of diverse origins who were leprosy as a re-emerging public health problem, with a prevalence rate of 1 / 10,000 inhabitants from 2007 to 2014 [6]. HIV prevalence is also high, affecting about 1% of the population [7]. The occurrence of leprosy as IRIS has not been studied in this territory.

Our aim was to provide a general description of leprosy as IRIS among PLHIV, highlighting their clinical features and treatment modalities. In the following article, we first report all cases of IRIS leprosy that occurred in PLHIV in French Guiana between 2000 and 2020. As the most recent review of the world literature on the subject was conducted a decade ago by Deps and Lockwood [8], we also present an updated systematic review of the literature.
Materials and methods
Retrospective study in French Guiana

The Dermatology Department of the Cayenne Hospital Center (Andrée Rosemon) is the only structure for diagnosis and monitoring of patients with leprosy in French Guiana. Patients are followed up in Cayenne, or during missions conducted by the dermatology team in remote health centers (Saint-Laurent du Maroni, Saint-Georges de l’Oyapock, Maripasoula). These on-field missions allow us to manage patients living in the rainforest hinterland of French Guiana. We searched the files of all patients followed for leprosy in the Dermatology Department and extracted all files of HIV infected patients meeting the criteria defined by Deps and Lockwood[4]. Patients with leprosy and/or leprosy reactions occurring before HAART initiation or more than six months later were excluded. Collected data included CD4 cell count, HIV viral load (before and after HAART), history of opportunistic infections, country of birth. Leprosy and leprosy reaction treatment were collected as well as efficacy and tolerance during follow-up.

Diagnosis of leprosy was based on clinical signs and histopathology. Leprosy forms were classified according to the clinical and pathological Ridley-Jopling scale [8] and classified as paucibacillary (PB) or multibacillary (MB) according to the WHO classification based on the number of lesions and the presence or absence of Acid Fast Bacilli (AFB) at skin smear examination [9]. Leprosy as IRIS was classified according to Deps and Lockwood’s classification based on the time when the phenomenon takes place regarding HAART and MDT initiations [8].

Data were analyzed with EXCEL. This project was authorized under the CNIL registration number 2215827 and fully complied with the French legal ethics requirements.

Systematic review: Data sources, search strategy and selection process
We conducted a search of PubMed and EMBASE to identify all published cases of IRIS as leprosy with no time limit. The search had no language restrictions. The key search terms used were “leprosy” and “HIV/AIDS” or “immune reconstitution inflammatory syndrome” using Medical Subject Headings (MeSH). Bibliographic references of selected articles and grey literature (Google Scholar) were used for non-indexed journal articles. This systematic review has been registered in the international prospective register of systematic review (PROSPERO) under the registration number: CRD4 CRD42021267703. The cases that met the definition of Deps and Lockwood mentioned above were selected. The absence of CD4 cell data or a CD4 cell count > 200 cells/mm³ was not an exclusion criterion if clinical and chronological data were met. Nevertheless, we did not include patients when the delay between HAART initiation and the occurrence of IRIS was not mentioned or when clinical information was insufficient. Collected data included CD4 cell count, HIV viral load (before and after HAART), history of opportunistic infections, country of birth. Two researchers (AM, CB) independently screened, retrieved and analyzed each report. In case of disagreement, consensus was reached by discussion.

Results
Retrospective study in French Guiana

Patients characteristics and treatment. From January 1st 2000 to June 1st 2020 246 patients were followed for leprosy in French Guiana. Twenty-two were PLHIV and six met the criteria of leprosy as IRIS (Fig 1). Six male patients aged 24 to 54 (mean 42 years) were included (Table 1). One patient was born in French Guiana, two were from Haiti and three
Table 1. Epidemiological, clinical and biological characteristics of the 6 patients included in the retrospective study diagnosed with leprosy as IRIS in French Guiana between 2000 and 2020. M: male; RNA: ribonucleic acid; SL: skin lesion(s); T1R: type 1 reaction; U: ulceration; NT: neuritis; NFI: nerve function impairment; Se: sensitive; Mo: motor; 1: before MDT introduction; 2: after MDT introduction; TT: polar tuberculoid; BT: borderline tuberculoid; BB: borderline borderline; PB: paucibacillary; MB: multibacillary.

Patient	Origin	Sex	Age	Delay between HAART and IRIS (weeks)	CD4 at initiation of HAART (cells/mm³)	CD4 at the onset of IRIS (cells/mm³)	Fold increase of CD4	Plasma HIV RNA level at initiation of HAART (copies/ml)	Plasma HIV RNA level at the onset of IRIS (copies/ml)	Clinical manifestations	Ridley-Jopling	IRIS classification	MDT duration (months)	Additional treatment
1	Haiti	M	54	6	87	257	3.0	19000	650	SL/T1R¹/ U²	BB¹/ BT²	1	6	No
2	French	M	40	14	130	278	2.1	40701	68	SL/T1R¹/ U¹/ NT + NFI Se¹	TT	1	6	Prednisone
3	Haiti	M	44	24	105	268	2.6	159000	<50	SL	TT	1	18	No
4	Brazil	M	24	1	28	50	1.8	297000	6000	SL	BT	1	12	No
5	Brazil	M	47	4	5	135	27.0	8300	1400	SL/T1R²/ NT + NFI Se/Mo²	BT	4	6°	Prednisone
6	Brazil	M	46	10	25	96	3.8	59912	<50	SL/T1R¹/ U²	BT	1	18	No

*: Patient 5 was lost to follow-up after this period of time

https://doi.org/10.1371/journal.pntd.0010239.t001
from Brazil. None of them had a history of leprosy before IRIS. Leprosy lesions were observed on average 10 weeks (1–24) after HAART initiation. All patients had a CD4 cell count < 200 / mm3 before HAART. Median CD4 cell count before HAART initiation and at the onset of IRIS were respectively 72 and 210/mm3. The median fold increase of CD4 before and after initiation of HAART was 2.8. The HIV viral load decreased by at least 1 log between HIV diagnosis and IRIS onset. The aspect of lesions at diagnosis was polymorphic, with discrepancies between clinical and pathological findings in some patients (Figs 2–5). The mean duration of MDT was 11 months. There was no relapse recorded. We recorded no drug interactions between MDT and HAART and no adverse effects of corticosteroid therapy.

Systematic review

The first published case of leprosy as IRIS after HAART initiation was a BT leprosy in a type 1 reaction state in a man from Uganda, reported in 2003 by Lawn et al.\[3\]. Since then, as HAART has become more readily available in countries were HIV and leprosy overlap, 70 cases of leprosy as IRIS have been published up to date in 40 publications [3,10–48] (Fig 6). Among the six cases described in our report, three were previously reported by our dermatology team: patients 1 and 2 by Couppie et al. in 2004 \[10\] and patient 3 by Sarazin et al. in 2005 \[14\]. In total 73 patients were analyzed.

Patients characteristics (Tables 2 and S1)

Among the 73 patients analyzed, 54 (74%) were men with a mean age of 36 years, (range 22–54 years). Thirty-four patients (46.5%) were from Brazil, 24 (32.8%) from India, three (4.1%) from Haiti, two from Mexico (2.7%), two from Mali (2.7%) and the other seven patients were from the following countries: French Guiana, Venezuela, Angola, Senegal, Ivory Coast, Uganda, USA, and Philippines (1.4% for each).

At the time of leprosy diagnosis, 41 (56.2%) patients had a histopathological diagnosis of BT leprosy. Five patients initially presented with BL [25,32] or BB \[10\] leprosy, which then developed into BT leprosy after a few weeks of adding MDT to HAART. According to Deps et Lockwood \[49\], all these patients were classified as BT leprosy. Regarding the other patients: ten patients (13.7%) had a diagnosis of BL leprosy, eight (10.9%) of TT leprosy, seven (9.6%) of...
BB leprosy, one (1.4%) of LL and one (1.4%) of neural leprosy. Data were not available for five patients (6.8%). According to the WHO classification, 39 (53.4%) patients had a PB leprosy and 34 (46.6%) had MB leprosy.

Fig 3. IRIS type 1 after introduction of HAART in patient 4: BT leprosy on the left ear and cheek with hypertrophy of the great auricular nerve.

https://doi.org/10.1371/journal.pntd.0010239.g003

BB leprosy, one (1.4%) of LL and one (1.4%) of neural leprosy. Data were not available for five patients (6.8%). According to the WHO classification, 39 (53.4%) patients had a PB leprosy and 34 (46.6%) had MB leprosy.
Four patients had a clinical history suggestive of leprosy prior to HAART initiation, but the diagnosis was not made at that time. In these four patients, initial leprosy was diagnosed in the context of a T1R \[12,23,28,42\]. Two patients already had leprosy or a history of leprosy: one had BL leprosy with a T2R treated before HAART initiation, followed by the development of T1R on HAART [17]; another patient had BL leprosy treated several years earlier, and presented a BT leprosy in a reactive state at the time of HAART initiation [21]. The remaining 67 patients (92%) had no lesions suggestive of leprosy prior to HAART initiation. There was no mention of possible contact with leprosy index cases.

Skin lesions of leprosy in these PLHIV were typical except for two patients who presented diffuse eczematous papules hardly suggestive of leprosy [32]. Patient 6's lesions were suggestive of cutaneous leishmaniasis (Fig 5). For many patients, clinical distinction between the different forms of leprosy was difficult, and the diagnosis was possible only with histopathology.

The majority of patients presented leprosy reactions (54 patients, 74%). Among them 50 patients (68.5%) had T1R. The majority (36/50) of T1R occurred at the time of IRIS diagnosis, 6/50 occurred after MDT initiation and in 8/50 cases the time of onset was not specified. Four patients (5.5%) developed T2R: two cases occurred at the time of IRIS diagnosis and time of onset was not specified for the two others.
A third of patients (22 patients, 30.1%) had neuritis (NT) associated with leprosy reaction. Among them 11 patients had sensitive and/or motor nerve function impairment (NFI). One patient presented a severe neuritis complicated with ulnar nerve abscess [44].

Sixteen patients (22%) had ulcerated/necrotic lesions. Pathological examinations were available for only three of them, showing a polymorphic inflammatory infiltrate and focal necrosis [12,19].

Evidence of immune restoration and timing of onset

As described in our cases from French Guiana, immune restoration was constant after HAART initiation with a median fold increase of CD4 of 3.0. In one patient reported by Batista et al., immune reconstitution was histologically proven with increased granulomatous reaction and CD4-cell infiltrate before and after IRIS [23]. Mean time between HAART initiation and IRIS was 2.5 months (median 2 months, range 0.25–6) (Fig 7). IRIS associated with leprosy reaction (T1R or T2R) occurred 2 weeks earlier than non-reactive leprosy (8 weeks versus 10 weeks), probably as part of a stronger immune response reflected by a greater increase in CD4 count (median fold increase: +0.7).

According to Deps and Lockwood classification [49], most patients (46 patients or 67.1%) had IRIS type 1, i.e. an inflammatory syndrome unmasking previously untreated unknown leprosy. Two patients (2.7%) had IRIS type 2, two patients (2.7%) had IRIS type 3, and six patients (4.2%) had IRIS type 4. Information was not analyzable for 17 patients (23.4%) because of missing information on the prior presence of lesions suggestive of leprosy (Table 2).
Outcome

Due to the recurrent lack of information in the published cases on the modalities and duration of MDT treatment, we assumed that the authors were following the WHO recommendations in force at the time. MDT treatment was mentioned for 64 patients (87.7%). The evolution of leprosy lesions under MDT was favorable for all patients treated (Table 2). Thirty-three patients (45%) received with systemic corticosteroids, mainly because of leprosy reactions and neuritis, with a favorable outcome in most cases. Prolonged corticosteroid therapy was needed in several patients from the same paper [32]. In two cases, the addition of azathioprine [3] because of steroid dependence or thalidomide [24] was necessary, with a favorable outcome. Corticosteroids were efficient in treatment of neuritis, excepting one patient with long-lasting nerve damage of a foot levator [17]. Of the 16 patients who developed ulcerated lesions, four patients (including two in our case series) had spontaneous healing without the need for anti-inflammatory treatment. The other 12 were started on corticosteroid therapy as soon as ulcerations were noticed [10,12,20]. There were no reports of side effects of corticosteroids in
patients, apart from one case of staphylococcal sepsis following intravenous corticosteroid courses [32].

Discussion

In PLHIV from countries where leprosy is endemic, initiation of HAART may unfold leprosy. These cases of leprosy will most often present as paucibacillary BT forms, associated with or or quickly followed by a T1R, sometimes with severe ulcerated skin lesions. Seventy-three cases of leprosy presenting as IRIS in PLHIV were described since the first case was published in 2003, including the six cases from our retrospective study in French Guiana. This number may seem low, but it is likely that many cases remain unpublished, and several cases reported were not relevant as they were occurring more than six months after HAART initiation [49].
most patients (92%), HAART’s initiation revealed previously unknown leprosy, mainly of the BT form (56.2%), associated with or quickly followed by a T1R (68.5%). These findings are in line with other reviews of PLHIV and leprosy [49,50]. The average time of 2.5 months for IRIS onset after HAART initiation is consistent with the data of Couppié et al. in French Guiana and with the global definition of IRIS [51]. This delay in onset is close to the three months delay classically reported for IRIS associated with other mycobacteria, notably tuberculosis [52,53].

Most patients in the systematic review were reported in Brazil and India, two highly populated countries with high incident rates for leprosy and HIV. As described in the literature, most of the reported patients are young males (average age of 36 years), raising concerns about underdiagnosis of leprosy among women for socio-cultural reasons [1,32,50,54,55,56].

One possible explanation for the low incidence of leprosy in PLHIV is that *M. leprae* is susceptible to antibiotics used in the prevention or treatment of opportunistic infections: dapsone for pneumocystis and toxoplasmosis, rifampicin for tuberculosis, clarithromycin for *Mycobacterium avium complex* (MAC) infections [57,58]. On the other hand, one can argue that giving these antibiotics to patients with quiescent sub-clinical leprosy may lead to the release of *M. leprae* antigens and trigger a leprosy reaction [18]. The effects of drug interactions between HAART and MDT are probably limited by the fact that rifampicin, a potent inducer of cytochrome P450-314, is taken only once a month.

The predominance of BT and TT leprosy and the presence of T1R in two thirds of the cases suggest a strong cellular immune response. These findings are consistent with the increase in CD4 count and decrease in viral load under HAART. Most patients had IRIS type 1:
unmasking leprosy from a subclinical *M. leprae* infection. Since leprosy has a long incubation period, HAART, could act as an immunological trigger for a "premature" presentation of leprosy by improving both innate and cellular immune responses. This would explain the frequency of T1R due to an excess of pro-inflammatory response, predominantly Th1 [2].

Regarding leprosy reactions, the majority of the patients developed T1R, which is expected since borderline forms are immunologically unstable. Interestingly, one third of these patients with T1R had ulcerated lesions. No epidemiological data on this phenomenon in leprosy are available in the literature. Secondary ulceration is caused by a dermal edema following an excessive immune response against *M. leprae* [55,59]. De Oliveira *et al.* observed that during an episode of T1R, the number of activated CD8+ T lymphocytes (CD8) as well as perforin/granzyme B production were higher in the skin lesions of PLHIV on HAART co-infected patients than in those of mono-infected leprosy patients [60]. This could explain the intensity of inflammation in leprosy reactions associated with IRIS. IRIS is probably related to an early restoration of memory T-cell activity leading to an excessive inflammatory response in the presence of a latent infectious agent [61].

Systemic corticosteroid therapy in leprosy reactions is the treatment of choice to avoid neural damage [55,62,63]. According to WHO guidelines, ulceration classifies a leprosy reaction as severe, warranting the introduction of systemic corticosteroid therapy[62]. Nevertheless, spontaneous healing without corticosteroids was observed in four patients (4/16 or 25%), which could lead to propose therapeutic abstention for isolated ulcerations without neuritis. Xavier *et al.* observed a faster regression of neuritis under corticosteroids in PLHIV patients than in other leprosy cases [64]. Pires *et al.* found that PLHIV on HAART often had shorter leprosy reactions compared to non-HIV patients possibly due to improved cellular immunity [55].

Studies that have examined histologic and immunological parameters in small cohorts of leprosy–HIV co-infected patients have yielded conflicting results, making it impossible to draw definitive conclusions, although some authors have suggested an increase in the CD8 pathway [60,65,66,67,68]. It is important to note that cells present in peripheral blood do not necessarily reflect the number or function of these cells at the sites of infection, and that skin and/or nerve immunological investigations are essential. Infectious side effects from systemic corticosteroids are scarce probably because of short treatment durations (maximum three months in PB leprosy) and an improved cellular immunity with HAART.

Conclusion

Seventy-three cases of leprosy as IRIS in PLHIV on HAART were reported since 2003. This clinical presentation seems rare but is probably underdiagnosed and underpublished but should be known by specialists involved in management of HIV and/or leprosy. For the vast majority of these immunocompromised PLHIV, initiation of HAART reveals paucibacillary BT leprosy associated with or quickly followed by a T1R. T1R is sometimes intense with several cases of ulcerated skin lesions. The response to MDT is good, as well as to systemic corticosteroids in case of neuritis, which does not seem to be more severe than in non-IRIS cases. Isolated ulcerated lesions might heal spontaneously, allowing therapeutic abstention in some cases. Physicians need to be widely informed about the possibility of unmasking leprosy infection after HAART initiation, mainly because of the risk of irreversible nerve damage. Current recommendations are to treat these patients with MDT possibly combined with corticosteroids. Large prospective studies are needed to better assess the time course of skin damage, neuritis, response to MDT, possible relapses and the long-term effects of corticosteroids. The pathophysiology of leprosy as an IRIS is still hypothetical and requires immunological
investigations assessing cellular, cytokines and molecular players within the skin and nerves. These studies will provide a better understanding of the interactions between leprosy and HIV in context of HAART, and eventually lead to the development of specific management and monitoring guidelines in these co-infected patients.

Supporting information
S1 Prisma Checklist. For systematic review.
(DOCX)
S1 Table. Epidemiological, clinical and biological characteristics of the 73 patients diagnosed with leprosy as IRIS included in the systematic review. Legend: F: female; M: male; MtF: male-to-female; SL: skin lesion(s); T1R: type 1 reaction state; T2R: type 2 reaction state; U: ulceration; NT: neuritis; NFI: nerve function impairment; Se: sensitive; Mo: motor; ¹: before MDT introduction; ²: after MDT introduction; ?: doubt about the classification; NA: missing information.
(XLSX)

Author Contributions
Conceptualization: Alice Mouchard, Pierre Couppié, Chloé Bertin.
Investigation: Alice Mouchard, Pierre Couppié.
Methodology: Alice Mouchard, Pierre Couppié, Chloé Bertin.
Resources: Jenna Graille.
Supervision: Romain Blaizot, Pierre Couppié, Chloé Bertin.
Validation: Romain Blaizot, Pierre Couppié.
Writing – original draft: Alice Mouchard, Romain Blaizot, Chloé Bertin.
Writing – review & editing: Alice Mouchard, Romain Blaizot, Chloé Bertin.

References

1. Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiatives. [cited 7 Mar 2021]. Available: https://www.who.int/publications/tb/item/who-wer9536

2. Ustianowski AP, Lawn SD, Lockwood DN. Interactions between HIV infection and leprosy: a paradox. The Lancet Infectious Diseases. 2006; 6: 350–360. https://doi.org/10.1016/S1473-3099(06)70493-5 PMID: 16728321

3. Lawn SD, Wood C, Lockwood DN. Borderline tuberculoid leprosy: an immune reconstitution phenomenon in a human immunodeficiency virus-infected person. Clin Infect Dis. 2003; 36: e5–6. https://doi.org/10.1086/344446 PMID: 12491222

4. Deps PD, Lockwood DNJ. Leprosy occurring as immune reconstitution syndrome. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2008; 102: 966–968. https://doi.org/10.1016/j.trstmh.2008.06.008 PMID: 18639911

5. UNAIDS leads the world’s most extensive data collection on HIV epidemiology, programme coverage and finance | UNAIDS. [cited 11 Aug 2021]. Available: https://www.unaids.org/en/topic/data

6. Graille J, Blaizot R, Darrigade AS, Sainte-Marie D, Nacher M, Schaub R, et al. Leprosy in French Guiana 2007–2014: a re-emerging public health problem. Br J Dermatol. 2020; 182: 237–239. https://doi.org/10.1111/bjd.18334 PMID: 31286485

7. Nacher M, Adriouch L, Huber F, Vantilcke V, Djossou F, Elenga N, et al. Modeling of the HIV epidemic and continuum of care in French Guiana. PLOS ONE. 2018; 13: e0197990. https://doi.org/10.1371/journal.pone.0197990

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010239 March 4, 2022 13 / 17
8. Ridley DS, Jopling WH. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966; 34: 255–273. PMID: 5950347
9. Asia RO for S-E, Organization WH. Global Leprosy Strategy 2016–2020. Accelerating towards a leprosy-free world. Monitoring and Evaluation Guide. World Health Organization. Regional Office for South-East Asia; 2017. Available: https://apps.who.int/iris/handle/10665/254907
10. Couppié P, Abel S, Voichet H, Roussel M, Héliénon R, Huerre M, et al. Immune reconstitution inflammatory syndrome associated with HIV and leprosy. Arch Dermatol. 2004; 140: 997–1000. https://doi.org/10.1001/archderm.140.8.997 PMID: 15313818
11. Pereira GAS, Stefani MMA, Araújo Filho JA, Souza LCS, Stefani GP, Martelli CMT. Human immunodeficiency virus type 1 (HIV-1) and Mycobacterium leprae co-infection: HIV-1 subtypes and clinical, immunologic, and histopathologic profiles in a Brazilian cohort. Am J Trop Med Hyg. 2004; 71: 679–684. PMID: 15569804
12. Pignataro P, Rocha A da S, Nery J a. C, Miranda A, Sales AM, Ferreira H, et al. Leprosy and AIDS: two cases of increasing immunological reactions at the start of highly active antiretroviral therapy. Eur J Clin Microbiol Infect Dis. 2004; 23: 408–411. https://doi.org/10.1007/s10096-004-1131-7 PMID: 15112073
13. Visco-Comandini U, Longo B, Cuzzi T, Paglia MG, Antonucci G. Tuberculoid leprosy in a patient with AIDS: a manifestation of immune restoration syndrome. Scand J Infect Dis. 2004; 36: 881–883. https://doi.org/10.1080/0365540410025357 PMID: 15764179
14. Sarazin E, Nacher M, Toure Y, Clyt E, El Guedj M, Aznar C, et al. [Dermatologic manifestations associated with immune reconstitution syndrome in HIV+ patients starting HAART: a retrospective study in French Guiana]. Bull Soc PatholExot. 2005; 98: 187–192.
15. Narang T, Dogra S, Kaur I. Borderline tuberculoid leprosy with type 1 reaction in an HIV patient—a phenomenon of immune reconstitution. Int J Lepr Other Mycobact Dis. 2005; 73: 203–205. PMID: 16830642
16. Lara FS, Olivera RMP, Trujillo AB, Pérez PM, Cano AS. Sindromeinflamatorio de reconstituciòn immunotaria. Comunicacione un caso de coinfecciónlepratuberculoe-VIH/SIDA. DermatolRevMex. 2006; 50: 105–108.
17. Singal A, Mehta S, Pandhi D. Immune reconstitution inflammatory syndrome in an HIV seropositiveleprosy patient. LeprRev. 2006; 77: 76–80.
18. Mukhopadhyay P, Pal S, Mallik S, Biswas S, Saha B. Borderline tuberculoid leprosy: A manifestation of immune reconstitution inflammatory syndrome in a human immunodeficiency virus infected person. Indian Journal of Dermatology. 2006; 51: 278. https://doi.org/10.4103/0019-5154.30295
19. Caruso R de L, Fernandes RM, Serra MS, Lima RB, Martins CJ. Reaçãoreversa atipoicaem paciente com hanseniasedimorfoa co-infectado HIV. An Bras Dermatol. 2007; 82: 553–557. https://doi.org/10.1590/S0365-05962007000600009
20. Kharkar V, Bhor UH, Mahajan S, Khopkar U. Type I lepra reaction presenting as immune reconstitution inflammatory syndrome. Indian J Dermatol VenereolLeprol. 2007; 73: 253–256. https://doi.org/10.4103/0378-6323.33637 PMID: 1765735
21. Talhari C, Machado PRL, Ferreira LC, Talhari S. Shifting of the clinical spectrum of leprosy in an HIV-positive patient: a manifestation of immune reconstitution inflammatory syndrome? Lepr Rev. 2007; 78: 151–154. PMID: 17824486
22. Deps PD, Gripp CG, Madureira BPR, Lucas EA. Immune reconstitution syndrome associated with leprosy: two cases. Int J STD AIDS. 2008; 19: 135–136. https://doi.org/10.1258/ijsa.2007.007163 PMID: 18334074
23. Batista MD, Porro AM, Maeda SM, Gomes EE, Yoshioka MCN, Enokiwara MMSS, et al. Leprosy reversal reaction as immune reconstitution inflammatory syndrome in patients with AIDS. Clin Infect Dis. 2008; 46: e56–60. https://doi.org/10.1086/528864 PMID: 18269334
24. Trope BM, Lenzi MER, Maceja JP, Barroso PF, Oliveira MLW de. Leprosyreaction and immune reconstitution Syndrome in AIDS. Hansenologialnternationalis (Online). 2008; 33: 25–33.
25. Talhari C, Ferreira LC de L, Araújo JR, Talhari AC, Talhari S. Immune reconstitution inflammatory syndrome or upgrading type 1 reaction?Report of two AIDS patients presenting a shifting from borderline lepromatous leprosy to borderline tuberculoid leprosy. Lepr Rev. 2008; 79: 429–435. PMID: 19274990
26. Mehta S, Padhiar B, Shah B. Leprosy presenting as immune reconstitution Inflammatory Syndrome. Indian Journal of Sexually Transmitted Diseases and AIDS. 2008; 29: 96. https://doi.org/10.4103/0253-7184.48734
27. Kar HK, Sharma P, Bhardwaj M. Borderline tuberculoid leprosy with upgrading Type 1 reaction in a HIV seropositive patient, after antiretroviral therapy: an immune reconstitution inflammatory syndrome. Lepr Rev. 2009; 80: 85–88. PMID: 19472856
Kumar S, Ghosh MK, Sarkar S, Mallik S, Biswas PN, Saha B. Tuberculoid leprosy and cytomegalovirus.

Ríos Gil KR. Immuné inflammatory reconstitution syndrome in Hansen disease. Journal of the American Academy of Dermatology. 2009; 61: 516–518. https://doi.org/10.1016/j.jaad.2008.11.885 PMID: 19589618

Medeiros S, Coelho R, Fernandes C, Catarino MC, Afonso A, Vieira R, et al. Leprosy and Kaposi sarcoma presenting as an immune reconstitution inflammatory syndrome in a patient with AIDS. J Am Acad Dermatol. 2009; 61: 516–518. https://doi.org/10.1016/j.jaad.2008.11.885 PMID: 19589618

Vinay K, Smita J, Nikhil G, Neeta G. Human Immunodeficiency Virus and Leprosy Coinfection in Pune, India. J Clin Microbiol. 2009; 47: 2998–2999. https://doi.org/10.1128/JCM.00876-09 PMID: 19625472

Talhari C, Mira MT, Massone C, Braga A, Chrusciak-Talhari A, Santos M, et al. Leprosy and HIV coinfection: a clinical, pathological, immunological, and therapeutic study of a cohort from a Brazilian referral center for infectious diseases. J Infect Dis. 2010; 202: 345–354. https://doi.org/10.1086/653839 PMID: 20565258

Bussone G, Charlier C, Bille E, Caux F, Lévy A, Viard J-P, et al. Unmasking Leprosy: An Unusual Immune Reconstitution Inflammatory Syndrome in a Patient infected with Human Immunodeficiency Virus. Am J Trop Med Hyg. 2010; 83: 13–14. https://doi.org/10.4269/ajtmh.2010.10-0071 PMID: 20595470

Swaminathan S. Immune reconstitution syndrome with Hansen’s disease in a patient with AIDS. In: American Journal of Tropical Medicine and Hygiene 2010 83: 5 SUPPL. 1 (202) [Internet], [cited 30 Jun 2021]. Available: https://www.abstractsonline.com/Plan/ViewAbstract.aspx?k=c60e468d-a18f-4b17-ac45-6c2cb6265b5d&Key=004f1f18-2a9d-4872-b2b9-39d04e00994d&mk%7bCCE7EA-36CD-4B75-B934-E799DC76F535%7d

Anubhav G, Kamath NK. Immune reconstitution inflammatory syndrome in a unique clinical scenario. Indian Journal of Sexually Transmitted Diseases and AIDS. 2010; 31: 128. https://doi.org/10.4103/0956-4624.1016/j.medical.2011.02.012 PMID: 21458936

Manga NM, Poda A, Bazolo N, Sané O, Batista G, Guéye NF, et al. [Immune reconstitution inflammatory syndrome and leprosy HIV co-infection]. Med Mal Infect. 2011; 41: 390–391. https://doi.org/10.1016/j.medmal.2011.02.012 PMID: 21458936

Sopirala MM, Wininger DA, Ayers LW. Acute leprosy in Ohio during treatment of HIV-AIDS. N Engl J Med. 2011; 365: 1549–1551. https://doi.org/10.1056/NEJMc1108255 PMID: 22010934

Kumar S, Ghosh MK, Sarkar S, Mallik S, Biswas PN, Saha B. Tuberculoid leprosy and cytomegalovirus retinitis as immune restoration disease in a patient with AIDS. Int J Infect Dis. 2012; 16: e146–148. https://doi.org/10.1016/j.ijid.2011.10.006 PMID: 22169463

Bhat R, Pinto M, Dandakeri S, Kambil S. Ulcerating type 1 lepra reaction mimicking lazarine leprosy: an unusual presentation of immune reconstitution inflammatory syndrome in an HIV-infected patient. Int J STD AIDS. 2013; 24: 992–994. https://doi.org/10.1177/0956462413490144 PMID: 24216029

Arakkal GK, Damarla SV, Chanda GM. Immune Reconstitution Inflammatory Syndrome Unmasking Erythema Nodosum Leprosum: A Rare Case Report. Indian J Dermatol. 2015; 60: 106. https://doi.org/10.4103/0019-5154.147883 PMID: 25657440

Rios Gil KR. Immune inflammatory reconstitution syndrome in Hansen disease. Journal of the American Academy of Dermatology. 2015; 72: AB126. https://doi.org/10.1016/j.jaad.2015.02.523

George A, Vidyadharan S. Hansen's disease in association with immune reconstitution inflammatory syndrome. Indian Dermatol Online J. 2016; 7: 29–31. https://doi.org/10.4103/2229-5178.174305 PMID: 26955584

Ali NM, Nayak K, Kumar P. Nerve abscess in Hansen's disease as part of immune reconstitution inflammatory syndrome: a case report. Int J STD AIDS. 2017; 28: 196–198. https://doi.org/10.1177/0956462416654069 PMID: 27270897

Faye O, Fomba A, Dicko A, Berthé S, Traoré B, Cissé L, et al. Borderline leprosy presenting as immune reconstitution inflammatory syndrome: Two cases. Leprosy Review. 2017; 88: 441–447. https://doi.org/10.47276/lr.88.3.441

García-Galaviz R, Domínguez-Cherit J, Díaz-González JM, Yann C-J, Navarrete-Franco G. Borderline lepromatous leprosy in the setting of immune reconstitution inflammatory syndrome (IRIS). Journal of the American Academy of Dermatology. 2017; 76: AB57. https://doi.org/10.1016/j.jaad.2017.04.241
47. Bachaspatimayum R, Hafi B. A case of HIV, leprosy co-infection—presenting as immune reconstitution inflammatory syndrome. [cited 30 Jun 2021]. Available: http://www.odermatol.com/issue-in-html/2018-3-9-hiv/

48. Balita-Crisostomo CLA, Doftas BL. Atypical solitary plaque multibacillary leprosy in an hiv patient presenting as immune reconstitution inflammatory syndrome. J Dermatol Nurses’ Assoc. 2019.

49. Deps P, Lockwood DNJ. Leprosy presenting as immune reconstitution inflammatory syndrome: proposed definitions and classification. Lepr Rev. 2010; 81: 59–68. PMID: 20496570

50. Sarno EN, Ilirramendi X, Nery JAC, Sales AM, Gutierrez-Galhardo MC, Penna MLF, et al. HIV-M. lepaeae interaction: can HAART modify the course of leprosy? Public Health Rep. 2008; 123: 206–212. https://doi.org/10.1177/003335490812300213 PMID: 18457073

51. Coupie P, Domezque V, Clyt E, El Guedj M, Vaz T, Sainte-Marie D, et al. Increased incidence of leprosy following HAART initiation: a manifestation of the immune reconstitution disease. AIDS. 2009; 23: 1599–1600. https://doi.org/10.1097/QAD.0b013e32832bb5b7 PMID: 19487911

52. Meintjes G, Lawn SD, Bekker L-G, Miller RF. Immune reconstitution disease associated with mycobacterial infections in HIV-infected individuals receiving antiretrovirals. Lancet Infect Dis. 2005; 5: 361–373. https://doi.org/10.1016/S1473-3099(05)70140-7 PMID: 15919622

53. Lawn SD, Bekker L-G, Miller RF. Immune reconstitution disease associated with mycobacterial infections in HIV-infected individuals receiving antiretrovirals. Lancet Infect Dis. 2005; 5: 361–373. https://doi.org/10.1016/S1473-3099(05)70140-7 PMID: 15919622

54. Menezes VM, Nery JAC, Sales AM, Miranda A, Galhardo MCG, Bastos FI, et al. Epidemiological and clinical patterns of 92 patients co-infected with HIV and Mycobacterium lepaeae from Rio de Janeiro State, Brazil. Trans R Soc Trop Med Hyg. 2014; 108: 63–70. https://doi.org/10.1093/trstmh/trt113 PMID: 24361943

55. Pires CAA, Jucá Neto FOM, de Albuquerque NC, Macedo GMM, Batista K de NM, Xavier MB. Leprosy Reactions in Patients Coinfected with HIV: Clinical Aspects and Outcomes in Two Comparative Cohorts in the Amazon Region, Brazil. PLoS Negl Trop Dis. 2015; 9. https://doi.org/10.1371/journal.pnld.0003818 PMID: 30020931

56. Tackling the discrimination facing girls and women with leprosy—Gender inequality in leprosy: a triple jeopardy. | Infotep. [cited 16 Aug 2021]. Available: https://www.leprosy-information.org/resource/tackling-discrimination-facing-girls-and-women-leprosy-gender-inequality-leprosy-triple

57. Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev. 2006; 19: 338–381. https://doi.org/10.1128/CMR.19.2.338-381.2006 PMID: 16614253

58. Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H, et al. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep. 2009; 58: 1–207; quiz CE1-4.

59. Ridley DS. Reactions in leprosy. Lepr Rev. 1969; 40: 77–81. https://doi.org/10.1111/ced.12028 PMID: 23678890
66. Massone C, Talhari C, Talhari S, Brunasso AMG, Campbell TM, Curcic P, et al. Immunophenotype of skin lymphocytic infiltrate in patients co-infected with Mycobacterium leprae and human immunodeficiency virus: a scenario dependent on CD8+ and/or CD20+ cells. Br J Dermatol. 2011; 165: 321–328. doi:10.1111/j.1365-2133.2011.10412.x PMID: 21574977

67. Carvalho KI, Maeda S, Marti L, Yamashita J, Haslett PAJ, Kallas EG. Immune cellular parameters of leprosy and human immunodeficiency virus-1 co-infected subjects. Immunology. 2008; 124: 206–214. doi:10.1111/j.1365-2567.2007.02756.x PMID: 18284466

68. Giacoia-Gripp CBW, Sales AM, Nery JA da C, Santos-Oliveira JR, de Oliveira AL, Sarno EN, et al. Evaluation of cellular phenotypes implicated in immunopathogenesis and monitoring immune reconstitution inflammatory syndrome in HIV/leprosy cases. PLoS One. 2011; 6: e28735. doi:10.1371/journal.pone.0028735 PMID: 22205964