Changes of the sea ice and snow cover extent associated with temperature changes in the Northern and Southern Hemispheres in recent decades

I I Mokhov1,2, M R Parfenova1

1A.M. Obukhov Institute of Atmospheric Physics RAS, 119017, Moscow, Russia
2M.V. Lomonosov Moscow State University, 119991, Moscow, Russia

Abstract. Changes in snow cover and sea ice extents associated with temperature changes in the Northern and Southern Hemispheres for the period 1979-2020 are analysed using monthly-mean satellite and reanalysis data. Quantitative estimates of the relationship between the Antarctic and Arctic sea ice and changes in the surface air temperature were obtained. Overall increase of the Antarctic sea ice extent is associated with the regional manifestation of natural multidecadal climate modes with periods of up to several decades (against the background of global warming and a rapid decrease in the extent of sea ice in the Arctic). The results of correlation and cross-wavelet analyses show significant coherence and negative correlation of the surface air temperature in both Arctic and Antarctic with the respective sea ice extent in recent decades. Seasonal and regional features of the snow cover sensitivity to changes in the temperature regime in the Northern Hemisphere for the past four decades are noted. The features of snow cover variability in Eurasia and North America are presented.

1. Introduction
The snow-ice cover plays a crucial role in the formation of regional and global climatic regimes [1]. On time scales from seasons to millions of years, the most noticeable and extensive changes in the Earth's surface properties have been associated with changes in the snow-ice cover extent [2]. A decrease in snow-ice cover area (and a corresponding decrease in surface albedo) under the temperature rise contributes to an increased absorption of solar radiation and thereby to a further temperature growth. This process is associated with the strongest positive climatic feedback, which increases the sensitivity of the temperature regimes to external influences – both natural and anthropogenic ones.

The most rapid climatic changes of recent decades have been observed in Arctic latitudes – clearly manifested in a sharp decrease in the total extent of Arctic sea ice [1,3,4]. At the same time, the total Antarctic sea ice extent has been statistically insignificantly growing since the late 1970s, according to satellite data. By 2014, its average annual area reached a record high of about 13 million km², and since 2016 there has been a sharp decrease with reaching the record low since the end of the 1970s.

Multiple studies have been devoted to understanding the Arctic and Antarctic sea ice extent variability [1,3-28]. The peculiarities of Antarctic sea ice variability are attributed to various causes, such as oceanic processes and atmospheric circulation features in the Southern Hemisphere. In particular, [8] the influence of different climatic variability modes, including El Niño and the Antarctic Oscillation, on the Antarctic sea ice extent has been analyzed. In [12], the features of climatic changes in the Antarctic latitudes are associated with the features of oceanic circulation in the Southern Ocean,
more precisely, in the Antarctic latitudes. The connection between the Antarctic sea ice extent and the interannual Pacific Ocean oscillation is revealed in [13]. In [20], features of the relationship between Antarctic sea ice extent and the position of the Antarctic polar front were noted.

According to satellite data since the late 1970s, the maximum of sea ice extent in the Arctic reached 16 million km2, in the Antarctic – about 20 million km2. Variations in the annual extent of snow cover are substantially greater – in the Northern Hemisphere their range reaches 50 million km2. As for the changes in snow cover, both increases and decreases are manifested at the regional level during the warming. Increased precipitation (including solid precipitation during the cold months) due to atmospheric moisture capacity increase contributes to the growth in snow cover extent with warming. Many studies have been dedicated to estimating the current trends of snow cover changes for various regions [1,2,9-48].

This paper presents the results of analysis of the Arctic and Antarctic sea ice extent changes, as well as Northern Hemisphere snow cover changes (including Eurasia and North America), in relation to the surface air temperature variations for recent decades.

2. Data and methods

Changes in the extent of snow cover and sea ice associated with temperature changes in the Northern and Southern Hemispheres are analyzed by using monthly-mean NSIDC (https://www.ncdc.noaa.gov/) and GSL (https://climate.rutgers.edu/) data, as well as ERA5 reanalysis data (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) for the period 1979-2020 [49].

3. Results and discussion

Figure 1 (a, b) presents the dependences of the total extent of sea ice S_i in the Arctic (a) and Antarctic (b) (according to satellite data) on the surface air temperature T_H in the Northern (a) and Southern (b) Hemispheres (according to the ERA5 reanalysis data) for the months of the period 1979-2020. Considering strong variations in the surface air temperature and the sea ice extent in annual cycle, the corresponding variations in the interannual variability are noted for each month. Figure 1a shows negative correlation of surface air temperature variations and the sea ice extent S_i in the Arctic for each month more clearly.

![Figure 1](image)

Figure 1. The extent of sea ice (mln km2) in the Arctic (a) and Antarctic (b) for different months (1–12) depending on the surface temperature (K) in the Northern (a) and Southern (b) hemispheres according to data for the period 1979-2020.

Table 1 presents quantitative estimates of the sensitivity of the total extent of Arctic and Antarctic sea ice S_i [mln km2] to the changes in the surface air temperature T_P [K] in the Arctic and Antarctic for different months in interannual variability for the period 1980-2019. The parameters of sensitivity, estimated by the coefficients of the corresponding linear regressions, are significant within two standard deviations, as well as the corresponding correlation coefficients highlighted. In the Northern
Hemisphere, the estimates are statistically significant for all months. In the Southern Hemisphere, significant estimates (within two standard deviation) were obtained for most of the months.

Table 1. Estimates of the sensitivity of the total extent S_I of the Arctic and Antarctic sea ice to changes in the surface temperature T_s in the Arctic and Antarctic for different months by monthly-mean data in interannual variability (1980–2019).

Months	dS_I/dT_s mln km2 / K 1980–2019	Arctic	Antarctic
January	-0.28(±0.05)	-0.54(±0.27)	
February	-0.25(±0.06)	-0.19(±0.14)	
March	-0.28(±0.06)	-0.69(±0.12)	
April	-0.31(±0.05)	-0.57(±0.12)	
May	-0.47(±0.08)	-0.34(±0.10)	
June	-0.90(±0.09)	-0.34(±0.11)	
July	-1.58(±0.22)	-0.23(±0.06)	
August	-1.63(±0.17)	-0.03(±0.08)	
September	-1.17(±0.11)	0.08(±0.10)	
October	-0.77(±0.05)	-0.08(±0.12)	
November	-0.41(±0.04)	-0.45(±0.14)	
December	-0.37(±0.05)	-0.80(±0.24)	

The highest (absolute) values of the sensitivity parameter dS_I/dT_s for Arctic sea ice were estimated for the summer months (July and August) – up to -1.6 million km2 with 1 K warming. The highest (absolute) value of the sensitivity parameter dS_I/dT_s for Antarctic sea ice was also obtained for the summer season: -0.8 million km2 with 1 K warming in December.

According to the data for recent decades, the negative correlation of the total Antarctic sea ice extent with the Antarctic surface air temperature is more significantly manifested, rather than with the surface air temperature of the Southern Hemisphere as a whole [27]. At the same time, the relationship between the interannual variations of sea ice extent and the surface air temperature for Antarctic region is more statistically significant, than for the whole Southern Hemisphere air temperature. Simultaneously, the relation of the interannual variations in Arctic sea ice extent to the hemispheric surface temperature is stronger than its relation to the regional temperature for most months of the year.

Figure 2 shows the dependence of the total extent of snow cover S_S in the Northern Hemisphere for different months based on satellite data for the period 1979-2020 on the corresponding surface air temperature T_S in the whole Northern Hemisphere based on the ERA5 reanalysis data. Considering stronger variations in the surface air temperature and the snow cover extent within the annual cycle, the corresponding interannual variations also appear in each different month. The sensitivity of the Northern Hemisphere snow cover S_S to the changes in the Northern Hemisphere surface air temperature T_S is determined by the coefficient of the corresponding linear regression. It is characterized by the straight line in Figure 2, and is estimated to be -3.6 million km2 / K.
Figure 2. Dependence of the monthly mean total snow extent (S_S) in the Northern Hemisphere on the hemispheric-mean surface temperature (T) for the time interval 1979–2020.

Table 2 presents quantitative estimates of the sensitivity of the total snow cover extent S_S [mln km2] in Eurasia and North America to changes in the surface air temperature T_C [K], respectively, in Eurasia and North America for different months in interannual variability for the period 1980–2019. The sensitivity parameters are estimated by the coefficients of the corresponding linear regressions that are significant within two standard deviations. The corresponding correlation coefficients are highlighted. A significant negative correlation between S_S and T_C is present for most of the month for Eurasia and North America.

Table 2. Estimates of the sensitivity of the total snow cover extent S_S in Eurasia and North America to the corresponding changes of the surface temperature T_C in Eurasia and North America by monthly-mean data for different months, 1980–2019.

Months	dS_S/dT_C, mln km2 / K	Eurasia	North America
January	-0.52 ($±0.21$)	-0.14 ($±0.07$)	
February	-0.84 ($±0.13$)	-0.25 ($±0.08$)	
March	-0.95 ($±0.15$)	-0.34 ($±0.09$)	
April	-0.82 ($±0.23$)	-0.83 ($±0.11$)	
May	-1.66 ($±0.24$)	-0.67 ($±0.15$)	
June	-1.56 ($±0.27$)	-1.07 ($±0.18$)	
July	-0.64 ($±0.12$)	-0.40 ($±0.13$)	
August	-0.19 ($±0.07$)	-0.08 ($±0.10$)	
The highest absolute value of the sensitivity parameter dS/dT_c for Eurasia was obtained for May, which is -1.7 million km2 for the increase in the surface air temperature in Eurasia by 1 K. The highest absolute value of the sensitivity parameter dS/dT_c for North America was obtained for June, which is about -1.1 million km2 for the increase in the surface air temperature in North America by 1 K.

In [50], based on the data on the annual variation for Northern Hemisphere, the sensitivity of the total extent of the snow-ice cover to changes in the surface air temperature was estimated in the range of 3.5 ± 5.1 million km2 / K. In this paper, the sensitivity of the total snow-ice cover extent of the Northern Hemisphere to changes in the hemispheric surface air temperature based on monthly average data for the same period is estimated equal to -4.1 million km2 / K. At the same time, the sensitivity of the snow cover extent of the Northern Hemisphere to changes in the hemispheric near-surface temperature is estimated as -3.6 million km2 / K for the period 1980–2019 (-3.5 million km2 / K for the period 1980–1999 and -3.7 million km2 / K for the period 2000–2019). The sensitivity of the extent of the Arctic sea ice to changes in the hemispheric surface air temperature was calculated at about -0.7 million km2 / K for the period 1979–2020. This estimate was obtained under the condition of maximum correlation between the extent of the Arctic sea ice and hemispheric near-surface temperature variations. The lag of 1 month of the ice regime in the annual cycle relative to the temperature regime has been considered.

4. Conclusions

Interannual variations in the total extent of sea ice in the Arctic are statistically significantly associated with interannual variations in surface air temperatures both in the Arctic region and for the whole Northern Hemisphere in recent decades. At the same time, for most months of the year, the connection with hemispheric air temperature is manifested even more significant than a connection with regional temperature. Simultaneously, interannual variations in the total extent of sea ice in Antarctica are more statistically significantly associated with interannual variations in surface air temperature for Antarctic region than for the whole Southern Hemisphere.

For variations in the of snow cover extent in the Northern Hemisphere in recent decades, including Eurasia and North America, for most months, a significant negative correlation was noted with the corresponding interannual variations in surface air temperature. The negative correlation of the total snow cover extent on the continents of the Northern Hemisphere for most months is generally more significant with the continental surface temperature (for Eurasia and North America) than with the surface temperature for the Arctic latitudes and the whole Northern Hemisphere. At the same time, a more significant relationship between the total extent of the snow cover and the temperature in the corresponding Arctic sector is noted by the late spring – early summer. The weakening of statistically insignificant large-scale correlation between the snow cover and the temperature regime is manifested during the transition to the autumn season. At the same time, a statistically significant negative correlation of snow cover and the temperature in October-November was observed for the last two decades in the autumn months, particularly for Eurasia.

Acknowledgements

The work was carried out within the framework of project 19-17-00240 of the Russian Science Foundation using results of the satellite data analysis, obtained in accordance with the grant agreement No. 075-15-2020-776 with the Ministry of Science and Higher Education of the Russian Federation.
Regional features of snow variability were carried out within the framework of the Russian Foundation for Basic Research, project no. 19-35-90118.

References

[1] Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed T Stocker et al (New York: Cambridge University Press) pp 1535

[2] Mokhov I I 1993 Diagnostics of the Climatic System Structure (Saint Petersburg: Gidrometeoizdat) 271 pp (In Russian)

[3] Mokhov I I 2015 Contemporary climate changes in the Arctic Herald Russ. Acad. Sci. 85 265–271

[4] Alekseev G V, Aleksandrov E I, Glok N I, Ivanov N E, Smolyanitsky V M, Kharlanenkova N E and Yulin A V 2015 Arctic sea ice cover in connection with climate change Izvestiya, Atmos. Oceanic Phys. 51 (9) 889–902

[5] Mokhov I I 2019 Contemporary climate changes: Anomalies and trends IOP Conf. Series: Earth and Environ. Sci. 231 012037

[6] Liu J, Curry J A, Martinson D G 2004 Interpretation of recent Antarctic sea ice variability Geophys. Res. Lett. 31 L02205

[7] Stammerjohn S E, Martinson D G, Smith R C, Yuan X and Rind D 2008 Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability J. Geophys. Res. 113 C03S90

[8] Yuan X, Li C 2008 Climatic modes in southern high latitudes and their impacts on Antarctic sea ice J. Geophys. Res. 113 C06S91. 8

[9] Parkinson C L, Cavalieri D J 2012 Antarctic sea ice variability and trends, 1979-2010 The Cryosphere 6 871-880.

[10] Stammerjohn S, Massom R, Rind D and Martinson D 2012 Regions of rapid sea ice change: An inter-hemispheric seasonal comparison Geophys. Res. Lett. 39 L06501.

[11] Simmonds I 2015 Comparing and contrasting the behavior of Arctic and Antarctica sea ice over the 35-year period 1979-2013 Ann. Glaciol. 56 18-28

[12] Armour K C, Marshall J, Scott J R, Donohoe A and Newsom E R 2016 Southern Ocean warming delayed by circumpolar upwelling and equatorward transport Nat. Geosci. 9 549-554

[13] Meehl G A, Arblaster J M, Bitz C M, Chung C T Y and Teng H 2016 Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability Nature Geosci. 9 590-595

[14] Doddridge E W and Marshall J 2017 Modulation of the seasonal cycle of Antarctic sea ice extent related to the Southern Annual Mode Geophys. Res. Lett. 44 9761-9768

[15] Schroeter S, Hobbs W and Bindoff N L 2017 Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models The Cryosphere 11 789-803

[16] Stuecker M F, Bitz C M and Armour K C 2017 Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season Geophys. Res. Lett. 44 9008-9019

[17] Turner J, Phillips T, Marshall G J, Hosking J S, Pope J O, Bracegirdle T J and Deb P 2017 Unprecedented springtime retreat of Antarctic sea ice in 2016 Geophys. Res. Lett. 44 6868-6875

[18] Schlosser E, Haumann F A and Raphael M N 2018 Atmospheric influences of the anomalous 2016 Antarctic sea ice decay The Cryosphere 12 1103-1119

[19] Screen J A, Bracegirdle T J and Simmonds I 2018 Polar climate change as manifest in atmospheric circulation Curri. Clim. Change Rep. 4 383-395
[20] Alekseev G V, Glok N I, Vyasilova A E, Ivanov N E, Kharlanenkova N E and Smirnov A V 2019 Influence of sea surface temperature in the tropics on the Antarctic sea ice under global warming *Ice and Snow* **59** (2) 213-221 (In Russian)

[21] Meehl G A, Arblaster J M, Chung C T Y, Holland M M, DuVivier A, Thompson L A, Yang D and Bitz C M 2019 Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016 *Nature Comm.* **10** Art. Number. 14.

[22] Parkinson C L 2019 A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic *PNAS* **116** (29) 14414-14423

[23] Wang G, Hendon H H, Arblaster J M, Lim E-P, Abhik S and van Rensch P 2019 Compounding tropical and stratospheric forcing of record low Antarctic sea-ice in 2016 // *Nature Comm.* **10** (13) 9 p.

[24] Wang Z, Turner J, Wu Y and Liu C 2019 Rapid decline of total Antarctic sea ice extent during 2014-16 controlled by driven-door sea ice drift *J. Clim.* **32** 5381-5395

[25] Mokhov I I 2020 Rapid climate change in the Arctic and their regional and large-scale impacts *Arctic and Antarctic Research* **66** (3) 446–462 (In Russian)

[26] Mokhov I I 2020 Russian Climate Research in 2015–2018 Izvestiya, Atmos. Oceanic Phys. **56** (4) 325–343

[27] Mokhov I I, Parfenova M P 2020 Features of variability of the Arctic and Antarctic sea ice in recent decades against the background of global and regional climatic changes *Problems of Geography* **150** (Exploration of Antarctica) 304–319 (In Russian)

[28] Mokhov I I, Parfenova M R 2021 Relationship of the Extent of Antarctic and Arctic Ice with Temperature Changes, 1979–2020 *Doklady Earth Sci.* **496** (1) 66–71

[29] Foster J, Owe M and Rango A 1983 Snow cover and temperature relationships in North America and Eurasia // *J. Clim/Appl. Meteorol.* **22** 460-469

[30] Robinson D A, Dewey K F and Heim R R Jr 1993 Global snow cover monitoring: an update *Bull. Am. Meteorol. Soc.* **74** 1689–1696

[31] Brown R D and Mote P W 2009 The response of Northern Hemisphere snow cover to a changing climate *J. Clim.* **22** 2124-2145

[32] Bulygina O N, Groisman P Ya, Razuvaev V N and Korshunova N N 2011 Changes in snow cover characteristics over Northern Eurasia since 1966 *Environ. Res. Lett.* **6** 045204 (10 pp)

[33] Callaghan T V, Johansson M, Brown R D, Groisman P Ya, Labba N and Radionov V and Contributors 2011 *Snow, Water, Ice and Permafrost in the Arctic (SWIAPA), AMAP Report to the Arctic Council* chapter 4 (Changing snow cover and its impacts) 59 pp (http://amap.no/swipa/)

[34] Cohen J L, Furtado J, Barlow M A, Alexeev V A and Cherry J E 2012 Arctic warming, increasing snow cover and widespread boreal winter cooling *Environ. Res. Lett.* **7** 014007

[35] Robinson D A, Estilow T W and NOAA CDR Program 2012 *NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1. [indicate subset used]. NOAA Nat. Centers for Environ.* Inform. doi: 10.7289/V5N014G9

[36] Brown R D and Derksen C 2013 Is Eurasian October snow cover extent increasing? *Environ. Res. Lett.* **8** 024006 (7 pp)

[37] Mudruk L R, Kushner P J and Derksen C 2014 Interpreting observed northern hemisphere snow trends with large ensembles of climate simulations *Clim. Dyn.* **43** 345-359

[38] Estilow T W, Young A H and Robinson D A 2015 A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring *Earth Syst. Sci. Data* **7** 137–142

[39] Hernandez-Henriquez M A, Dery S J and Derksen C 2015 Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014 *Environ. Res. Lett.* **10** 044010

[40] Mankin J S, Diffenbaugh N S 2015 Influence of temperature and precipitation variability on near-term snow trends *Clim. Dyn.* **45** (3) 1099–1116
[41] Najafi M R, Zwiers F W, Gillett N P 2016 Attribution of the spring snow cover extent decline in the Northern Hemisphere, Eurasia and North America to anthropogenic influence Clim. Change 136 571-586
[42] Lin Y and Jiang M 2017 Maximum temperature drove snow cover expansion from the Arctic, 2000-2008 Sci. Rep. 7 15090
[43] Mudruk L R, Kushner P J, Derksen C and Thackeray C 2017 Snow cover response to temperature in observational and climate model ensembles Geophys. Res. Lett. 44 919-926
[44] Popova V V, Shiryaeva A V and Morozova P A 2018 Changes in the snow depth characteristics in the territory of Russia in 1950-2013: The regional features and connection with the global warming Kriosfera Zemli XXII (4) 58–67
[45] Connolly R, Connolly M, Soon W, Legates D R, Cionco R G and Herrera V M V 2019 Northern Hemisphere snow-cover trends (1967-2018): A comparison between climate models and observations Geosci. 9 135 (23 pp)
[46] Thackeray C W, Derksen C, Fletcher C G and Hall A 2019 Snow and climate: Feedbacks, drivers, and indices of change Curr. Cli. Change Rep. 5 322-333
[47] Mudruk L R, Santolaria-Otin M, Krinner G, Menegoz M, Derksen C, Brutel-Vuilmet C, Brady M and Essery R 2020 Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble The Cryosphere 14 2495-2514
[48] Santolaria-Otin M and Zolina O 2020 Evaluation of snow cover and snow water equivalent in the continental Arctic in CMIP5 models Clim. Dyn. 55 2993-3016
[49] Hersbach H, Bell B, Berrisford P et al. 2020 The ERA5 global reanalysis. Q J R Meteorol Soc. 146 1999–2049
[50] Mokhov I I 1984 The temperature sensitivity of cryosphere area of Northern Hemisphere Izvestiya, Atmos. Oceanic Phys. 20 (2)