Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes

C P Kratz*,1, L Franke2, H Peters3, N Kohlschmidt4, B Kazmierczak5, U Finckh6, A Bier7, B Eichhorn8, C Blank9, C Kraus10, J Kohlhase11, S Paul12, G Wildhardt13, K Kutsche14, B Auber15,19, A Christmann16, N Bachmann17, D Mitter18, F W Cremer19, K Mayer20, C Daumer-Haas21, C Nevinny-Stickel-Hinzpeter22, F Oeffner23, G Schlüter24, M Gencik25, B Überlacker26, C Lissewski2, I Schanze2, M H Greene27, C Spix28,30 and M Zenker2,30

1Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Carl-Neuberg-Str. 1, Hannover 30625, Germany; 2Institute of Human Genetics, University Hospital Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany; 3Institute of Medical and Human Genetics, Charité, Campus Virchow Klinikum, Augustenburger Platz 1, Berlin 13353, Germany; 4Institut für Klinische Genetik, Maximilianstr. 28D, Bonn 53111, Germany; 5Praxis für Humangenetik, Schwachhauser Heerstr. 50 a-c, Bremen 28209, Germany; 6ÚBAG Medizinisches Versorgungszentrum Dr. Eberhard & Partner, Brauhausstraße 4 44137, Dortmund, Germany; 7Gemeinschaftspraxis für Humangenetik, Gutenbergstraße 5, Dresden 01307, Germany; 8Mitteldeutscher Praxisverband Humangenetik, Friedrichstraße 34, Dresden 01067, Germany; 9Prenatal-Medizin, Graf-Adolf-Str. 35–37, Düsseldorf 40210, Germany; 10Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, Erlangen 91054, Germany; 11Center for Human Genetics Freiburg, Heinrich-von-Stephan-Str. 5, Freiburg 79100, Germany; 12Institute of Human Genetics, University of Göttingen, Heinrich-Düker-Weg 12, Göttingen 37073, Germany; 13bio.logis, Zentrum für Humangenetik, Aaltenföhrallee 3, Frankfurt 60438, Germany; 14Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany; 15MVZ genteQ, Falkenried 88, Hamburg D-20251, Germany; 16Praxis für Humangenetik, Kardinal-Wendel-Str. 14, 66424 Homburg/Saar, Germany; 17Zentrum für Humangenetik, Bioscientia Ingelheim, Konrad-Adenauer-Straße 17, Ingelheim 55218, Germany; 18Institute of Human Genetics, University Hospital Leipzig, Philipp-Rosenthal-Str. 55, Leipzig 04103, Germany; 19Zentrum für Humangenetik Mannheim, Harrlachweg 1, Mannheim 68163, Germany; 20Zentrum für Humangenetik und Laboratoriumsdagnostik (MVZ), Lochhamer Straße 29, Martinsried 82152, Germany; 21Pränatal-Medizin München, Lachnerstraße 20, München 80639, Germany; 22Praxis für Humangenetik München, Synlab Medizinisches Versorgungszentrum Human Genetik, Lindwurmstraße 23, München 80337, Germany; 23Genetikum Neu-Ulm, Wegenerstr. 15, Neu-Ulm 89231, Germany; 24Pränatalmedizin und Genetik, MVZ, Bankgasse 3, Nürnberg 90402, Germany; 25Diagenos, Caprivistr. 30, Osnabrück 49076, Germany; 26Institut für Medizinische Genetik und Molekulare Medizin, Paul-Schallücker-Str. 8, Köln 50939, Germany; 27Clinical Genetics Branch, National Cancer Institute, NCI Shady Grove Room 6E456, Bethesda, MD 20850-9772, USA and 28German Childhood Cancer Registry, Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Obere Zahlbacher Straße 69, Mainz 55131, Germany

*Correspondence: Professor CP Kratz; E-mail: kratz.christian@mh-hannover.de

29Current address: Institute of Cell- and Molecularpathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany

30These authors contributed equally to this work.

Received 24 October 2014; revised 15 January 2015; accepted 27 January 2015; published online 5 March 2015

© 2015 Cancer Research UK. All rights reserved 0007 – 0920/15
Background: Somatic mutations affecting components of the Ras-MAPK pathway are a common feature of cancer, whereas germline Ras pathway mutations cause developmental disorders including Noonan, Costello, and cardio-facio-cutaneous syndromes. These ‘RASopathies’ also represent cancer-prone syndromes, but the quantitative cancer risks remain unknown.

Methods: We investigated the occurrence of childhood cancer including benign and malignant tumours of the central nervous system in a group of 735 individuals with germline mutations in Ras signalling pathway genes by matching their information with the German Childhood Cancer Registry.

Results: We observed 12 cases of cancer in the entire RASopathy cohort vs 1.12 expected (based on German population-based incidence rates). This corresponds to a 10.5-fold increased risk of all childhood cancers combined (standardised incidence ratio (SIR) = 10.5, 95% confidence interval = 5.4–18.3). The specific cancers included juvenile myelomonocytic leukaemia = 4; brain tumour = 3; acute lymphoblastic leukaemia = 2; rhabdomyosarcoma = 2; and neuroblastoma = 1. The childhood cancer SIR in Noonan syndrome patients was 8.1, whereas that for Costello syndrome patients was 42.4.

Conclusions: These data comprise the first quantitative evidence documenting that the germline mutations in Ras signalling pathway genes are associated with increased risks of both childhood leukaemia and solid tumours.

We identified 784 individuals with a mutation-positive RASopathy, of whom 28 were born before 1965 and not in the 0–14 year age range between 1980 and 2012. Hence, their childhood period did not overlap with the activity of the GCCR. Twenty-one additional individuals, who were clearly close relatives, parents or twins of the index person, were also excluded from the analysis. Seven hundred and thirty-five presumably unrelated individuals with a disease-related mutation in one of the Ras pathway genes and whose childhood period overlapped with the activity of the GCCR remained. Testing was performed between 2002 and 2012. The observed distribution of mutated genes in this study population deviates from the true distribution of mutated genes in all RASopathy patients because it is influenced by multiple factors, such as (1) several new genes have been discovered during the observation period 2002–2012 potentially leading to an under-representation of newer genes; (2) patients with mutations in genes giving rise to mild RASopathy phenotypes were less likely to be tested when compared with patients with mutations leading to obvious RASopathy phenotypes. Pathologic germline mutations were detected in PTPN11 (n = 481), SOS1 (n = 81), RAF1 (n = 50), BRAF (n = 41), HRAS (n = 32), Kras (n = 17), SHOC2 (n = 17), MEK1 (n = 8), MEK2 (n = 4), NRAS (n = 3), and CBL (n = 1). As
the clinical syndrome diagnosis was not available for all patients, we used the genetic test results to categorise patients into different syndrome groups (Table 1). Using this strategy, we classified 632 patients with germline mutations of PTEN11, NRAS, SOS1, RAF1, or SHOC2 as having NS. Forty-four of these subjects harboured one of the known recurrent PTEN11 mutations (p.Y279C; p.T468M) that are typically associated with NS with multiple lentigines (LEOPARD syndrome; OMIM 151100), and 17 had a SHOC2 mutation, which causes a clinical variant of NS termed ‘NS-like disorder with loose anagen hair’ (OMIM 607721). Thirty-two patients had CS defined by the presence of a germline KRAS mutation, which causes a clinical variant of NS termed ‘NS-like disorder with loose anagen hair’ (OMIM 607721), and 17 had a SHOC2 mutation, which causes a clinical variant of NS syndrome and CBL syndrome after taking into account the known variability of syndrome groups (Table 1). Using this strategy, we classified 632 patients with germline mutations of CBL as having NS. Forty-four of these subjects harboured one of the known recurrent PTEN11 mutations (p.Y279C; p.T468M) that are typically associated with NS with multiple lentigines (LEOPARD syndrome; OMIM 151100), and 17 had a SHOC2 mutation, which causes a clinical variant of NS syndrome and CBL syndrome after taking into account the known variability of the KRAS mutation-associated phenotypes and the sometimes mild NS-like phenotype associated with CBL mutations (Table 1) (Zenker et al., 2007; Martinelli et al., 2010; Niemeyer et al., 2010).

The 735 individuals included in the final analytic data file contributed 7489.9 person-years of observation. Birth years ranged from 1965 to 2012. Age at genetic testing ranged from 0 to 45 years. The male-to-female ratio was 0.98. Twelve patients with cancer, diagnosed between 2002 and 2012 and diagnosed with a mutation in the years 2003–2012 were identified in this laboratory population (Table 2). To our knowledge, patient 4 is the only patient included in a previous report (Laux et al., 2008).

On the basis of all person-years and the age distribution of the studied population, 1.14 cases of childhood cancer, all sites combined, would be expected vs 12 observed, a 10.5-fold increase (SIR = 10.5, 95% CI = 5.4–18.3) (Table 1). The childhood cancer risk in patients with NS was 8.1-fold increased (95% CI = 3.5–16.0), whereas patients with CS had a 42.4-fold (95% CI = 5.1–153.2) increased risk. A sensitivity analysis, excluding seven cases in whom the cancer and the syndrome diagnosis were made within 1 year of one another demonstrated a cancer risk of SIR 4.4 (SIR = 4.4, 95% CI = 1.4–10.2) for all RASopathies combined. The 17 KRAS syndrome subjects developed two cancers (SIR = 75.8, 95% CI = 9–273.7). There were no cancers observed either among the 53 CFCS patients (495.9 pyo; 0.08 cases expected) or the one patient with CBL syndrome.

SIRs of selected cancers in individuals with NS, CS, and patients with a germline KRAS mutation by cancer type are given in Table 3. High SIRs were observed for JMML in patients with NS (SIR = 717, 95% CI = 148–2094) and in patients with a RASopathy.

Table 1. Genotype-dependent categorisation of RASopathies identified in 25 genetic laboratories in Germany in 2002–2012

Syndrome	Mutated gene (n)	n	Observed	Expected	PY	SIR, 95% CI	
All RASopathies combined	12 (KRAS)	12	1.14	0.00	12	10.5 (5.4–18.3)	
NS, all subtypes combined	632	8	0.99	0.02	50	8.1 (3.5–16.0)	
Classic NS	PTPN11 (437), NRAS (3), SOS1 (81), RAF1 (50)	57	7	0.89	0.02	138.9	7.9 (3.2–16.2)
NSLAH	SHOC2 (17)	17	0	0.02	0.00	0.0 (0.0–159.0)	
NSML	PTPN11 (44)	44	1	0.08	0.00	496.2	13.1 (0.3–72.9)
CS	HRAS (32)	32	2	0.05	0.00	278.2	42.4 (5.1–153.2)
CFCS	BRAF (41), MEK1 (8), MEK2 (4)	53	0	0.08	0.00	495.9	0.0 (0.0–45.3)
KRAS^b	KRAS (17)	17	0	0.03	0.00	175.2	75.8 (9.2–273.7)
CBL^c	CBL (1)	1	0	0	0	–	–

Abbreviations: NS = Noonan Syndrome; CS = Costello Syndrome; CFCS = cardio-facio-cutaneous syndrome; CI = confidence interval; KRAS = RASopathy with a germline mutation of KRAS; NS = Noonan Syndrome; NSML = NS with multiple lentigines; PY = person-years; SIR = standardised incidence ratio.

^aData from the German Childhood Cancer Registry (see Materials and Methods for details).

^bRASopathy with a germline mutation of KRAS.

^cRASopathy with a germline mutation of CBL.

Table 2. Description of 12 individuals with a RASopathy who developed cancer

Patient (syndrome)	Sex	Age (years) at genetic testing	Amino-acid change (number of cases with this specific mutation in entire cohort)	Neoplasm (age in years)	Mutation previously associated with cancer
PTPN11					
1 (NS)	F	0.2	A2G (8)	JMML (0.1)	(Strullu et al., 2014)
2 (NS)	M	0.4	G503R (15)	JMML (0.2)	(Strullu et al., 2014)
3 (NS)	M	0.4	E139D (20)	JMML (0.3)	(Strullu et al., 2014)
4 (NSML)	F	4	Y279C (17)	ALL (8)	(Ucar et al, 2006)
5 (NS)	M	0.8	M504V (25)	ALL (4)	(Karow et al, 2007)
6 (NS)	F	13	G60A (9)	Pilocytic astrocytoma (7)	(Strullu et al, 2014)
7 (NS)	F	–	N380D (107)	Dysembryoplastic neuroependothelial tumour (6)	(Strullu et al, 2014)
8 (NS)	F	3	I282M (1)	NBL (3)	(Cosmic database)
HRAS					
9 (CS)	M	1	G12S (24)	ERMS (1)	(Kerr et al, 2006)
10 (CS)	F	0.5	G12C (2)	ERMS (3)	(Kerr et al, 2006)
KRAS					
11 (KRAS)	M	2	D153V (4)	Astrocytoma (2)	(Schubbett et al, 2006)
12 (KRAS)	F	1	T581 (1)	JMML (0.5)	–

Abbreviations: ALL = acute lymphoblastic leukaemia; CS = Costello syndrome; ERMS = embryonal rhabdomyosarcoma; F = female; JMML = juvenile myelomonocytic leukaemia; KRAS = RASopathy with a germline mutation of KRAS; NBL = neuroblastoma; M = male; NS = Noonan Syndrome; NSML = NS with multiple lentigines.
of 641 patients with germline RASopathies, as recently documented in an extensive descriptive literature review (Kratz et al, 2011), few epidemiologic studies have investigated this question quantitatively. A recent French study reported the association between JMML and NS in a large cohort of 641 patients with germline PTPN11 mutations. Twenty patients developed JMML and these patients carried specific germline mutation (Selter et al, 2010; Jongmans et al, 2011), suggesting that these tumours are associated with NS. At last, 2 of our 32 patients with a germline HRAS mutation developed ERMS (SIR = 1630, 95% CI = 197–5887), confirming the strong association between CS and ERMS (Gripp, 2005).

Our study has several limitations. (1) We were unable to ascertain cancers in patients older than 14 years, as the case-identifying resource was a childhood cancer registry. Germany does not have an equivalent cancer registry for adults. Thus, the risk of adult-onset cancers in NS, CS, and CFCS cannot be defined completely with the NS-associated JMML literature (Schubbert et al, 2006; Strullu et al, 2014). We detected no novel mutations in our series, confirming earlier conclusions that specific mutations tend to be associated with JMML, that is, that there is a strong correlation between genotype and phenotype in this group of patients. We also confirmed the previously described association between JMML and the rare KRAS p.T58I germline mutation (Schubbert et al, 2006) by identifying another patient with this mutation and JMML among our 17 KRAS subjects, an excess that is statistically significant despite the very small numbers (SIR = 10172; 95% CI = 258–56672) (Table 2).

In agreement with previous case reports, our data suggested an association between PTPN11 germline mutations and ALL (Observed = 2, SIR = 7.1, 95% CI = 0.9–25.6), which did not reach statistical significance. Interestingly, we have previously described another patient from Switzerland with NS and ALL (not included in the current case series) who carried the same PTPN11 M504V germline mutation (Karow et al, 2007) that was also present in one of our two NS/ALL patients (Table 2).

We found three patients with brain tumours in our cohort, consistent with prior reports of somatic mutations in Ras pathway genes in glioma tumour tissue. One patient had a dysmyeloblastic neuroepithelial tumour, a rare central nervous system neoplasm that has previously been described in several other patients with a PTPN11 mutation (Selter et al, 2010; Jongmans et al, 2011), suggesting that these tumours are associated with NS. At last, 2 of our 32 patients with a germline HRAS mutation developed ERMS (SIR = 1630, 95% CI = 197–5887), confirming the strong association between CS and ERMS (Gripp, 2005).

DISCUSSION

Our study is the first to quantify cancer risk in children with NS, CS, and CFCS. In this population-based study, we observed a significant excess risk for all childhood cancers combined compared with the general population. The elevated overall cancer risk was primarily due to significant site-specific excesses of JMML, ERMS, and brain tumours.

The Ras signalling pathway is frequently activated somatically in a broad spectrum of malignancies (Schubbert et al, 2007). Therefore, it is biologically plausible that individuals with RASopathies who display germline mutations in various Ras pathway genes might be at increased risk of developing cancer. Although a number of case reports and case series have qualitatively suggested an important link between cancer and RASopathies, as recently documented in an extensive descriptive literature review (Kratz et al, 2011), few epidemiologic studies have investigated this question quantitatively. A recent French study addressed the association between JMML and NS in a large cohort of 641 patients with germline PTPN11 mutations. Twenty patients developed JMML and these patients carried specific PTPN11 alleles, suggesting a genotype/phenotype correlation (Strullu et al, 2014). However, these authors included patients that were referred because of the presence of JMML. This approach differed from ours, owing to our efforts aimed at minimising selection bias. Another report from the Netherlands found a 3.5-fold increased risk of all cancers combined in a cohort of 297 individuals with germline PTPN11 mutations (Jongmans et al, 2011). This study that also included adult cancer cases is quantitatively limited by having estimated only risk information for all cancers combined. In addition, this patient series only included patients with a mutation in PTPN11.

We observed three cases of JMML among 519 patients with a germline PTPN11 mutation and one case among 17 patients with a KRAS germline mutation. We observed considerably fewer JMML cases than that observed in the recent French study that reported 20 JMML cases among 641 patients with a PTPN11 mutation (Strullu et al, 2014). However, important methodological differences in study design prevent a direct comparison of these two studies. To reduce the possibility of including individuals with a RASopathy who were diagnosed because of their malignancy, we purposefully excluded one paediatric hematology/oncology laboratory in Germany that focuses specifically on and collects specimens from patients with NS-associated and non-syndromic JMML. This strategy may explain the fact that we found 11 additional cases of NS-associated JMML registered at the GCCR 2002–2012 that were not ascertained in our study population; most of the cases missing from our series were diagnosed by the aforementioned specialised laboratory. Consequently, our JMML-related SIR, while statistically significant, clearly underestimates the actual JMML risk in our population, although it nonetheless provides statistically significant evidence in support of the JMML-RASopathy association.

The mutation spectrum that we identified in the four RASopathy-associated JMML patients (Table 2) overlapped completely with the NS-associated JMML literature (Schubbert et al, 2006; Strullu et al, 2014). We detected no novel mutations in our series, confirming earlier conclusions that specific mutations tend to be associated with JMML, that is, that there is a strong correlation between genotype and phenotype in this group of patients. We also confirmed the previously described association between JMML and the rare KRAS p.T58I germline mutation (Schubbert et al, 2006) by identifying another patient with this mutation and JMML among our 17 KRAS subjects, an excess that is statistically significant despite the very small numbers (SIR = 10172; 95% CI = 258–56672) (Table 2).

The observed excess of JMML risk was primarily due to significant site-specific excesses of JMML, ERMS, and brain tumours. In agreement with previous case reports, our data suggested an association between PTPN11 germline mutations and all cancers (Observed = 2, SIR = 7.1, 95% CI = 0.9–25.6), which did not reach statistical significance. Interestingly, we have previously described another patient from Switzerland with NS and ALL (not included in the current case series) who carried the same PTPN11 M504V germline mutation (Karow et al, 2007) that was also present in one of our two NS/ALL patients (Table 2).

We found three patients with brain tumours in our cohort, consistent with prior reports of somatic mutations in Ras pathway genes in glioma tumour tissue. One patient had a dysmyeloblastic neuroepithelial tumour, a rare central nervous system neoplasm that has previously been described in several other patients with a PTPN11 mutation (Selter et al, 2010; Jongmans et al, 2011), suggesting that these tumours are associated with NS. At last, 2 of our 32 patients with a germline HRAS mutation developed ERMS (SIR = 1630, 95% CI = 197–5887), confirming the strong association between CS and ERMS (Gripp, 2005).
before disease diagnosis. In the case of genetic diseases, it is a reasonable analytic option to begin observation at birth, as affected individuals are truly at risk of disease-related complications before the diagnosis is appreciated. It is likely that, in some instances, the RASopathy diagnosis was prompted by the development of an unusual childhood disease, particularly for JMML, which is widely understood to be an important RASopathy syndrome manifestation. Of note, in seven patients, the cancer and the RASopathy were understood to be an important RASopathy syndrome manifestation. There is no way to evaluate the impact of this subgroup’s absence on our analysis. (5) We excluded the major JMML reference laboratory from this study because it receives samples from children with suspected JMML and did not routinely provide comprehensive RASopathy gene mutation testing, for example, it is likely that the 11 JMML cases identified from the GCCR with a concurrent RASopathy syndrome diagnosis, which did not appear in our cohort, were gene-tested at that institution. Excluding them from our analysis results in a significant underestimate of the JMML risk in this analysis, as noted above. (6) The observed frequency of mutations in the various genes does not represent the true distribution of mutated genes. The observed distribution is influenced by the year of gene discovery.

RASopathies represent monogenic traits, and the underlying rare disease-causing mutations have a high penetrance for the syndrome-defining phenotypic features. However, our data suggest that cancer risks are not markedly elevated in these syndromes. Rather, germline Ras pathway mutations are associated with risks that are significantly greater than those observed in the general population, but which are meaningfully lower than those seen in the more familiar adult-onset cancer susceptibility disorders such as hereditary breast/ovarian cancer and hereditary colorectal cancer. Thus, it appears that germline Ras pathway mutations represent intermediate cancer risk variants, leading to significantly but moderately increased cancer risk. Such rare, intermediate-risk variants are likely to contribute to leukaemogenesis.

ACKNOWLEDGEMENTS

This work was supported by the Intramural Research Program of the National Institutes of Health and the National Cancer Institute. The technical procedures ensuring encrypted matching were facilitated by Thomas Ziegler and Claudia Bremensdorfer (both GCCR). CPK is supported by the Verein für krebskranke Kinder Hannover e.V.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Aoki Y, Niñori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, Hoshika T, Barnett C, Ohashi H, Kawame H, Hasegawa T, Okutani T, Nagashima T, Hasegawa S, Funayama R, Nagashima T, Nakayama K, Inoue S, Watanabe Y, Ogura T, Matsubara Y (2013) Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 93(1): 173–180.

Flex E, Jaiswal M, Pantaleoni F, Martinelli S, Strullu M, Fansa EK, Caye A, De Leuca A, Lepri F, Dvorsky R, Pannone L, Paolacci S, Zhang SC, Fodale V, Bocchini-Gufo G, Rossi C, Barletti E, Ferrarti A, Stellacci E, Ceccotti S, Ferese R, Bottero I, Castro S, Feneuette O, Bresson B, Sanchez M, Roberts AE, Yntema HG, Van Der Burgt I, Cianci P, Bondeson ML, Cristina D, Camino M, Gobino G, Kerr B, Aoki Y, Loh ML, Pallieschi A, Di Schiavi E, Care A, Selicorni A, Dalpapiccola B, Cirstea IC, Stella L, Zenker M, Gelb BD, Cavel H, Ahmadian MR, Tartaglia M (2014) Activating mutations in NRAS underlie a phenotype within the RASopathy spectrum and contribute to leukemogenesis. Hum Mol Genet 23(16): 4315–4327.

Gripp KW (2005) Tumor predisposition in Costello syndrome. Am J Med Genet C Semin Med Genet 137C(1): 72–77.

Hammel GP, Seidenbusch MC, Schneider K, Regulla DF, Zeeh H, Spix C, Blettner M (2009) A cohort study of childhood cancer incidence after postnatal diagnostic X-ray exposure. Radiat Res 171(4): 504–512.

Jongmans MC, van der Burgt I, Hoogerbrugge PM, Noordam K, Yntema HG, Nillesen WM, Kuiper RP, Ligtenberg MJ, van Kessel AG, van Krieken JH, Kienemen LA, Hoogerbrugge N (2011) Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation. Eur J Hum Genet 19(8): 870–874.

Kaatsh P (2004) [German Childhood Cancer Registry and its favorable setting]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 47(5): 437–443.

Karow A, Steinemann D, Gohring G, Hasle H, Greiner J, Harila-Saari A, Florio C, Zenker M, Schlegelberger B, Niemeyer CM, Kratz CP (2007) Clonal duplication of a germline PTPN11 mutation due to acquired uniparental disomy in acute lymphoblastic leukemia blasts from a patient with Noonan syndrome. Leukemia 21(6): 1303–1305.

Kerr B, Delreu MA, Sigaudy S, Perreven R, Marche M, Burgelin I, Stef M, Tang B, Eden OB, O’Sullivan J, De Sandro-Giovannoli A, Reardon W, Brewer C, Bennett C, Quarell O, McCann E, Donnai D, Stewart F, Henneman K, Cave H, Verloes A, Philip N, Lacombe D, Levy N, Arveiler B, Black G (2006) Genotype-phenotype correlation in Costello syndrome: HRAS mutation analysis in 42 cases. Am J Med Genet C Semin Med Genet 137C(1): 173–180.

Krantz CP, Niemeyer CM, Castleberry RP, Cetin M, Bergstrasser E, Emanuel PD, Hasle H, Kardos G, Klein C, Kojima S, Stary J, Trebo M, Zecca M, Gelb BD, Tartaglia M, Lo H (2005) The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 106(6): 2183–2185.

Krantz CP, Rapisuwon S, Reed H, Hasle H, Rosenberg PS (2011) Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am J Med Genet C Semin Med Genet 157C(2): 83–89.

Laux D, Kratz C, Sauerbrei W (2008) Common acute lymphoblastic leukemia in a girl with genetically confirmed LEOPARD syndrome. J Pediatr Hematol Oncol 30(8): 602–604.

Martinelli S, De Leuca A, Stellacci E, Rossi C, Chequerlo S, Lepri F, Caputo V, Silvano M, Buscherini F, Consoli F, Ferrara G, Digilio MC, Cavaliere ML, van Hagen JM, Zampino G, van der Burgt I, Ferrero GB, Mazzanti I, Sprenti I, Yntema HG, Nillesen WM, Savarirany R, Zenker M, Dalpapiccola B, Gelb BD, Tartaglia M (2010) Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 87(2): 250–257.
Niemeyer CM, Kang MW, Shin DH, Furlan I, Eslacher M, Bunin NJ, Bunda S, Finklestein JZ, Sakamoto KM, Gorry TA, Mehta P, Schmid I, Kropshofer G, Corbacioglu S, Lang PF, Klein C, Schlegel PG, Heinzmann A, Schneider M, Stary I, van den Heuvel-Eibrink MM, Hasle H, Locatelli F, Sakai D, Archambeault S, Chen L, Russell RC, Sybingco SS, Ohm M, Braun BS, Flotho C, Loh ML (2010) Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 42(9): 794–800.

Roberts AE, Allanson JE, Tartaglia M, Gelb BD (2013) Noonan syndrome. Lancet 381(9865): 333–342.

Saint Pierre A, Genin E (2014) How important are rare variants in common disease? Brief Funct Genomics 13(5): 353–361.

Schubbert S, Shonnong K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7(4): 295–308.

Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE, Nguyen H, West B, Zhang KY, Sistermans E, Rauch A, Niemeyer CM, Shannon K, Kratz CP (2006) Germline KRAS mutations cause Noonan syndrome. Nat Genet 38(3): 331–336.

Selter M, Dresel R, Althaus J, Baz Bartels M, Dittrich S, Geb S, Hoche F, Qirshi M, Vlaho S, Zielen S, Keanich M (2010) Dysembryoplastic neuroepithelial tumor (DNET) in a patient with Noonan syndrome. Neuropediatrics 41: P1356.

Stellarova-Foucher E, Stiller C, Lacour B, Kaatsch P (2005) International Classification of Childhood Cancer, third edition. Cancer 103(7): 1457–1467.

Strullu M, Caye A, Lachenaud J, Cassinat B, Gazal S, Fenneteau O, Pourreau N, Pereira S, Baumann C, Contet A, Servent N, Mechinaud F, Guellic I, Adjaoud D, Paillard C, Alberti C, Zenker M, Chomienne C, Bertrand Y, Baruchel A, Verloes A, Cave H (2014) Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet 51(10): 689–697.

Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hahlen K, Hasle H, Licht JD, Gelb BD (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34(2): 148–150.

Ucar C, Calyskan U, Martini S, Heinritz W (2006) Acute myelomonocytic leukemia in a boy with LEOPARD syndrome (PTPN11 gene mutation positive). J Pediatr Hematol Oncol 28(3): 123–125.

Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V, Gartsüde M, Cust AE, Haq R, Harland M, Taylor JC, Duffy DL, Holohan K, Dutton-Regester K, Palmer JM, Bonazzi V, Stark MS, Symmons J, Law MH, Schmidt C, Lanagan C, O'Connor L, Holland EA, Schmid H, Maskiell JA, Jetann J, Ferguson M, Jenkins MA, Keeford RF, Giles GG, Armstrong BK, Aitken JF, Hopper JL, Whiteman DC, Pharoah PD, Easton DF, Newton-Bishop JA, Montgomery GW, Martin NG, Mann GJ, Bishop DT, Tsao H, Trent JM, Fisher DE, Hayward NK, Brown KM (2011) A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480(7375): 99–103.

Zenker M, Lehmann K, Schulz AL, Barth H, Hansmann D, Koenig R, Korfinnenberg R, Kreiess-Nachtsheim M, Meinecke P, Morlot S, Mundlos S, Quante AS, Raskin S, Schnabel D, Wehner LE, Kratz CP, Horn D, Kutsche K (2007) Expansion of the genotypic and phenotypic spectrum in patients with KRAS germline mutations. J Med Genet 44(2): 131–135.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.