A random search method for finding ‘$K \geq 2$’ number of ranked optimal solution to an assignment problem

Santosh Kumar1,2 · Ali Al-Hasani1,3 ·
Masar Al-Rabeeah1,3 ·
Andrew Eberhard1

Received: date / Accepted: date

Abstract A need for an optimal solution for a given mathematical model is well known and many solution approaches have been developed to identify efficiently an optimal solution in a given situation. For example, one such class of mathematical models with industrial applications have been classified as mathematical programming models (MPM). The main idea behind these models is to find the optimal solution described by those models. However, the same is not true for a ‘K’number of ranked optimal solutions, where $K \geq 2$. Mathematically, the K^{th} best solution, $K \geq 2$, deals with determination of the 2nd, 3rd, 4th or in general the K^{th} best solution. This K^{th} best solution $K \geq 2$, suddenly becomes much more demanding with respect to computational requirements, which increases with the increase in the value of K. This paper first identifies difficulties associated with determination of ranked solutions and later develops a random search method to find ranked optimal solutions in the case of an assignment problem. We test the efficiency of the proposed approach by executing the random search method on a number of different size assignment problems.

Keywords Assignment model; K^{th} best solution, $K \geq 2$; Random search method.

Mathematics Subject Classification (2010) 90C10 · 90C27 · 65K05

Santosh Kumar
Department of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
Tel.: +61411136612
E-mail: santosh.kumarau@gmail.com

Ali Al-Hasani
School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia.

1School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia.
2Department of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
3Department of Mathematics, College of Sciences, University of Basrah, Al- Basrah, Iraq.
1 Introduction

Usually, determination of the best solution is relatively an easy problem when one can identify optimality of a solution with the help of a few associated conditions. These conditions establish the optimality of the given solution in a given environment. However, for a K ranked solution, $K \geq 2$ the same is not true as their ranked optimality can be linked with the previous $(K - 1)$ ranked optimal solutions. Thus computational requirement suddenly increases. A need for ranked optimal solution for a linear programming model was identified for solving an extreme point mathematical programming model [3, 9, 10, 15].

A large literature exist in OR books, where real life situations have been described by mathematical models and methods for their solution procedures have been described see Taha [23] and Kumar at el. [17]. Mathematical background, related difficulties and a characteristic equation for integer programming models have been presented in Section 2. In the case of an assignment problem, the characteristic equation that was established by Kumar, Munapo and Jones [12] for a pure integer programming model to find ranked optimal integer solutions is no longer of help as assignment models are free of fractional values. In Section 3 we develop a random search method for the assignment problem and find $K \geq 2$ number of ranked optimal solutions. Numerical illustrations and computational experiments have been presented in Section 4 and finally the paper is concluded in Section 5.

2 Mathematical background and difficulties associated with determination of ranked optimal solutions

2.1 What is a ranked optimal solution and why it is difficult to find?

Consider a typical linear programming (LP) model given by:

Maximize $Z = CX$

Subject to $AX \leq b; \quad X \geq 0.$

Many approaches exist to find an optimal solution to a given LP, which is an extreme point of the convex set generated by the given constraint set $AX \leq b,$ $X \geq 0.$ Let such an optimal solution be denoted by $X_0 \geq 0.$ However, if the solution vector $X_0 \geq 0$ is not acceptable for some other practical reasons, one may be interested to search for the 2nd best extreme point of the convex set $AX \leq b, X \geq 0,$ thus the 2nd best solution becomes of interest, which may be defined as the best solution among all possible solutions after excluding the best one. In general, the $(K + 1)^{th}$ best extreme point solution to a given LP model will be the best solution after excluding K best extreme point solutions, $K = 1, 2, \ldots$ This seemingly simple problem can be computationally demanding and difficult. For example, if we are required to find the 2nd best extreme point of the convex set generated by set $AX \leq b, X \geq 0,$ we have
A random search method for finding ‘$K \geq 2$’ number of ranked optimal solutions will be the point which leads to minimum reduction in the total value of the objective compared to the best. The order of difficulty starts to increase when we are required to find the K^{th} best, $K = 3, 4, \ldots$ as the K^{th} best extreme point can be an extreme point that can be reached from the best (optimal) or the 2nd best and in general from the $(K - 1)^{th}$ best extreme point solutions of that given LP. Thus optimality of a solution to be graded as best is relatively an easy problem, as the required solution can be identified with the help from some local conditions of optimality. For example, for the LP model local conditions are non-negative requirement on values in the objective raw, when simplex method is used. However, ranked solution does not have any such local properties that can guarantee its ranked optimality. In other words, we may be at the required point but we have no clear means to identify and recognize its ranked optimality. Thus computational complexity start to rise when one is required to find the K^{th} best, $K \geq 3$.

2.2 Need for a ranked optimal solution

A need for a ranked optimal solution for a linear programming can be realized by the extreme point mathematical programming model discussed by Kirby et al. [9, 10], Puri and Swarup [21] and Sherali and Dickey [22]. A mathematical model of an extreme point mathematical programming is given by:

Maximize $Z = CX$ \hspace{1cm} (2)

subject to

$AX \leq b; \quad b \geq 0, \quad X \geq 0$

and X must be an extreme point of another set of linear constraints

$DX \leq d, \quad d \geq 0$.

For an application of the extreme point mathematical programming model (2), see, Chandrasakeran, Kumar and Wagner [3], and for linear programming based solution procedures, see Kumar and Wagner [15] and random search method was applied by Huynh and Kumar [7].

2.3 The k^{th} best integer solution for an integer programming model

The model (1) becomes a pure integer programming model when the condition $X \geq 0$ is replaced by $X \geq 0$ and integer. In the case of such a pure integer programming model, even the optimal solution does not satisfy local optimality conditions similar to the LP model. Thus alternative approaches were developed to create an environment similar to a LP, i.e. the local optimality conditions become applicable even when all variables are restricted as $X \geq 0$ and integer. This object was achieved with the help of cuts, which
were developed to refine the LP convex space in such a way that the modified convex space resulted in an integer extreme point, where the local optimality conditions can once again establish the optimality of the solution. The convex space generated by the set of given constraints set \(AX \leq b, X \geq 0 \) was modified by the additional cut constraints to reduce the feasible space to converge to an integer extreme point to be identified by the LP local conditions. The process to deal with cuts was identified as slow and cuts also increase the size of the original model. Every cut adds an extra row and an extra variable to the original LP model. To overcome this difficulty, an alternative approach for a pure integer programming model (PIP) was suggested by Kumar, Munapo and Jones [12]. They developed a linear relation and called it a **descending hyper-plane**. Later it was renamed as a **characteristic equation** by Kumar, Munapo and Jones [13] and Kumar and Munapo [11]. The linear relation was derived from the LP output of the final simplex tableau. The characteristic equation they developed is a necessary but not a sufficient condition for the ranked integer solutions of a given integer program.

Murty [20] developed a solution method for finding the \(K \)th best solution of assignment problem \(K \geq 2 \). Murty’s approach was based on blocking, one at a time, the optimal assignment that is if \(i \)th job was assigned to \(j \)th person, i.e., he set \(c_{ij} = \infty \). The \(K \)th best solution has been discussed in context of the shortest route by Lawler [18]. An application of the kth best path in a graph has been attempted by Ishii [8]. Chen, McPhee and Kumar [4] have approach the \(K \)th best solution of assignment problem by developing some bounds with the help of the optimal solution. The \(K \)th best solution for a one-dimensional knapsack model has been presented by Yanasse, Soma and Maculan [24]. Lu and Rosenbaum [19] developed the method for ranking assignment solutions.

2.4 The characteristic equation of a pure integer program

Consider a pure integer programming (PIP) model given by relations (3).

\[
\begin{align*}
\text{Maximize } Z &= CX \\
\text{Subject to } AX &\leq b; \\
X &\geq 0 \quad \text{and integer.}
\end{align*}
\]

Assume (3) is a ‘\(m \)’ constraints and ‘\(n \)’ variable problem with all constraints inequalities of the form \(\leq \) type and all RHS elements of the vector \(b \geq 0 \). Ignoring the integer restriction on the variables, if the LP relaxation of (3) is solved using any available LP package by the usual simplex method, the final simplex tableau giving the optimal solution will look like, as illustrated in Table 1. The number of basic variables will be ‘\(m \)’and the number of non-basic will be ‘\(n \)’, after introducing ‘\(m \)’number of slack variables. Here without any loss of generality we have displayed basic variables in the first ‘\(m \)’columns and the non-basic variables as the remaining ‘\(n \)’columns.

Since this is an optimal solution, all elements in the RHS column and the objective row are non-negative and may be fractional or integer values, hence
A random search method for finding \(K \geq 2 \) number of ranked optimal

Table 1 A typical LP optimal solution output

Variables	\(x_{B1} \)	\(x_{B2} \)	\ldots	\(x_{Bm} \)	\(x_{BN1} \)	\(x_{BN2} \)	\ldots	\(x_{BNn} \)	RHS
\(x_{B1} \)	1	0	\ldots	0	\(a_{b1,NB1} \)	\(a_{b1,NB2} \)	\ldots	\(a_{b1,NNn} \)	\(\beta_1 \)
\(x_{B2} \)	0	1	\ldots	0	\(a_{b2,NB1} \)	\(a_{b2,NB2} \)	\ldots	\(a_{b2,NNn} \)	\(\beta_2 \)
\ldots									
\(x_{Bm} \)	0	0	\ldots	0	\(a_{bm,NB1} \)	\(a_{bm,NB2} \)	\ldots	\(a_{bm,NNn} \)	\(\beta_m \)
\(Z_j - C_j \)	0	0	\ldots	0	\(Y_{NB1} \)	\(Y_{NB2} \)	\ldots	\(Y_{NNn} \)	\(Y_{LP opt} \)

may not form an acceptable solution to the PIP given by the model (3). Since the integer feasible points are within the feasible region, the non-basic variables values for LP solution, which are zero, have to be increased. This is the basic concept behind the characteristic equation and how to control the increase in values of these non-basic values is the second important concept. These two guiding factors are displayed by the characteristic equation obtained by using the elements in the last row of Table 1. One can develop the following equation:

\[
Z + Y_{NB1}x_{NB1} + Y_{NB2}x_{NB2} + \cdots + Y_{NNn}x_{NNn} = Y_{LP opt} \quad (4)
\]

As all elements in the LHS of the equation (4) are zero as non-basic variables, resulting in the RHS as the value of \(Z \), the objective function value. Rewrite (4) by taking the lowest common factor and remove all fractions, as shown in equation (5). Let the lowest common factor be denoted \(C \), then one can write (4) as:

\[
\left(\frac{C}{C} \right) Z + \left(\frac{\gamma_{NB1}x_{NB1} + \gamma_{NB2}x_{NB2} + \cdots + \gamma_{NNn}x_{NNn}}{C} \right) = R + iC \quad (5)
\]

The characteristic equation is given by:

\[
\gamma_{NB1}x_{NB1} + \gamma_{NB2}x_{NB2} + \cdots + \gamma_{NNn}x_{NNn} = R + iC \quad (6)
\]

Where \(i = 0, 1, 2, \ldots \) Note \(R \) is the remainder and \(C \) is the lowest common factor.

For better understanding, here is a simple numerical illustration of a characteristic equation. Consider the pure integer programming problem:

\[
\text{Max } Z = 8x_1 + 4x_2,
\]

subject to

\[
x_1 + x_2 \leq 5, \quad 9x_1 + 4x_2 \leq 40, \quad x_1, x_2 \geq 0 \text{ and integers.}
\]

The LP relaxed solution for the non-negative \(x_j \) is given in Table 2.
Table 2 LP relaxed solution

Z	x_1	x_2	S_1	S_2	RHS
1	0	0	4/5	4/5	196/5
0	0	1	9/5	−1/5	21/5
0	1	0	−4/5	1/5	14/5

The LP solution $x_2 = 21/5$, $x_1 = 14/5$ and $Z = 196/5$ is not an acceptable solution to PIP, hence there is a need for the characteristic equation. From Table 2, it is given by:

$$4s_1 + 4s_2 = 1 + 5i, \quad i = 0, 1, 2, \ldots, 39.$$

Note the residue is 1 and the lowest common factor is 5 and s_1, s_2 are also integer restricted values for non-basic variables in the PIP model. This characteristic equation does not have integer solution for s_1 and s_2 for $i = 0, 1$ and 2. However, for $i = 3$, there are many solutions like $s_1 = 4$, $s_2 = 0$ or $s_1 = 2$, $s_2 = 2$ or $s_1 = 1$, $s_2 = 3$ or $s_1 = 3$, $s_2 = 1$. From all these possibilities, only the solution $s_1 = 2$, $s_2 = 2$ results in $x_1 = 4$, $x_2 = 1$ and $Z = 36$.

It may be noted that effectiveness of the characteristic equation is a function of the value of C, the lowest common factor, which in the above example was 5 and the remainder value was 1. Thus we investigated the characteristic equation for RHS values of 1 for $i = 0, 6$ for $i = 1, 11$ for $i = 2$ and finally we found an integer solutions for non-basic variables when RHS value is 16 for $i = 3$. Note that the characteristic equation will not be effective when the lowest common factor (LCF) is very small quantity and remainder is zero.

For an assignment problem $R = 0$ and LCF = 1; hence CE approach is no longer going to help for finding the ranked optimal solution for an assigning problem. The assignment is essentially an integer programming problem, which generally has been classified as difficult problem. For more ideas, see Kumar et.al [16].

3 Random search method to find the ranked optimal solution for an assignment model

3.1 The Random search method

The random search method is intended to approximately estimate a near optimal solution for multidimensional function when it is difficult to establish optimality for a solution. It was first applied in the area of experimental design; the motivating factor was to find solutions to problems where traditional approach become intractable. Random search method has been described by Brooks [2] and its characteristics have been studied by Kumar and Scramozzino [14]. Random search method has been applied by Huynh and Kumar [7]. Essential elements for an application of a random search method are:
1. An estimate on the number of possible solutions for estimating the probability of a successful solution in the feasible domain, which in the case of an n by n assignment is given by $n(n-1)$ for finding the second best solution. Here successful solution means that a solution picked up randomly may be the required ranked solution with a given probability $p = \frac{1}{n(n-1)}$. For the K^{th} best this value will be $p = \frac{1}{(k-1)(n(n-1))}$.

2. The value of assurance factor denoted by (PR), is a given probability associated with the obtained solution. Here, it has been taken as 0.80 in Section 4. Computational load will increase for higher value of this assurance factor (PR).

3. Some rule to stop the search, which is given by the value of number of searches (NS), as a function of PR and p. NS can be calculated by

$$NS = \frac{\ln(1 - PR)}{\ln \left(1 - \frac{1}{(k-1)(n(n-1))}\right)}$$

Dantzig[6] has discussed the case of a 70 by 70 assignment model and emphasized that the number of possible solutions for that assignment problem is given by 70!, which is a large number that can easily become beyond capabilities of the modern computers. Thus mathematical methods that can provide to real life problems in realistic time-frame, some real solutions for benefit of the mankind play very important role.

3.2 Pseudo-code for the random search method

In this section, we present an algorithm to find ranked optimal solutions for an assignment model by using the random search method. This approach has been labelled as Algorithm[4]
Algorithm 1 A random search method for finding "K^{th}" number of ranked optimal solutions

Step 1.
1.1 Find the optimal solution Z_{opt}.
1.2 Z_{ranked} is a set of the value of K^{th} best solution;
 initially $Z_{\text{ranked}} = \{Z_{\text{opt}}\}$.

Step 2:
2.1 Number of ranked solution required, say ‘$L \geq 2$’ such that L
 is a given integer value.
2.2 Assign an integral value to the number of points in the feasible domain,
 which for the $(n \times n)$ assignment problem is $n(n-1)$ and therefore
 $p = \frac{1}{n(n-1)}$.
2.3 The value of PR, the probability of assurance associated with
 the ranked optimal solutions; $0 < PR < 1$. It is a given value.
2.4 $S = 0$; counter.
2.5 $K = 2$; 2nd best solution

Step 3.
Find the K^{th} best solution.

Step 4.
$Z^* = \emptyset$ (Z^* is a set of Z_S values).

Step 5.
5.1 Find number of random searches (NS) from the equation:
 $$NS = \frac{\ln(1 - PR)}{\ln\left(1 - \frac{p}{(k-1)}\right)};$$
 NS is an integer number.
5.2 Let $X_{\text{rand}} = \emptyset$ (X_{rand} is a set of x_{ij}).

Step 6.
Search NS time to find other solution by random search method:
6.1 Do $S = S + 1$
6.2 Chose rand(x_{ij})$_S$.
6.3 If $x_{ij} \in X_{\text{rand}}$ then ignore rand(x_{ij})$_S$ GoTo Step 6.2, else continue
6.4 Add $x_{ij} \rightarrow X_{\text{rand}}$
6.5 rand(x_{ij})$_S \rightarrow x_{ij}^*$; (x_{ij}^*) is optimal solution.
6.6 Find Z_S; Add $Z_S \rightarrow Z^*$
6.7 If $S = (NS + 1)$ GoTo 7. Else GoTo Step 6.

Step 7.
Rank Z^* to find the best Z^K; add $Z^K \rightarrow Z_{\text{ranked}}$.

Step 8.
If $K = L$ GoTo Step 9. Else $K = K + 1$ Goto Step 3

Step 9.
Rank Z_{ranked}

Step 10. stop

4 Numerical illustrations and computational study

In this section, a numerical illustration has been discussed and the proposed
algorithm has been implemented to find the K-number of ranked optimal
solutions on several assignment problems, which were generated randomly in
different sizes.

4.1 An illustrative example

Consider an assignment problem

$$\min Z = \sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij}x_{ij} \quad (8)$$
A random search method for finding \(K \geq 2 \) number of ranked optimal

Subject to

\[
\sum_{i=1}^{4} x_{ij} = 1; \quad j = 1, 2, \ldots, 4
\]
\[
\sum_{j=1}^{4} x_{ij} = 1; \quad i = 1, 2, \ldots, 4
\]

All \(x_{ij} = 0 \) or 1. \(j = 1, 2, \ldots, 4 \) and \(i = 1, 2, \ldots, 4 \).

Such that:

\[
C_{ij} = \begin{bmatrix}
5 & 2 & 9 & 6 \\
1 & 10 & 8 & 2 \\
2 & 3 & 8 & 9 \\
5 & 7 & 3 & 1
\end{bmatrix}
\]

We arbitrarily take \(PR = 0.80; \ K = 2 \) and find

\[
p = \frac{1}{(K-1)n(n-1)} = \frac{1}{12}.
\]

Then, the number of searches \(NS \) is obtained from the equation:

\[
NS = \left\lfloor \frac{\ln(1 - PR)}{\ln(1 - p)} \right\rfloor = \left\lfloor \frac{\ln(1 - 0.8)}{\ln \left(1 - \frac{1}{12} \right)} \right\rfloor = 18;
\]

where \(\lfloor \cdot \rfloor \) is nearest integer function.

Step 1. The optimal solution of assignment problem is:

	J1	J2	J3	J4
S1	4	0	0	4
S2	0	8	4	0
S3	0	0	3	6
S4	5	6	0	0

Step 2. The first random search selects a random number which represent the variable \(x_{14} \) excluding the optimal allocations \(x_{12}, x_{24}, x_{31} \) and \(x_{43} \). Shown in red. A feasible allocation in the cell \(x_{14} \) will also require a change in \(x_{24} \). The
new allocation will be \(x_{14}, x_{22}, x_{31}\) and \(x_{43}\) which is shown in next table.

\[
\begin{array}{cccc}
 & J1 & J2 & J3 & J4 \\
 S1 & 4 & 8 & 0 & 0 \\
 S2 & 0 & 0 & 4 & 4 \\
 S3 & 0 & 0 & 3 & 6 \\
 S4 & 5 & 6 & 0 & 0 \\
\end{array}
\]

The solution and \(Z\) from above table is: \(X = x_{14}, x_{22}, x_{31}, x_{43}, Z_{1,2} = 21\)

We continue this process for NS number of times to compute \(Z_{1,3}, Z_{1,4}, \ldots, Z_{1,18}\).

Step 3. Then, we arrange the \(Z_{1,2}, Z_{1,3}, Z_{1,4}, \ldots, Z_{1,18}\) in increasing order and find the 2\(^{nd}\) best solution. Select the solution which corresponds to minimum \(Z_{1,2}, Z_{1,3}, \ldots, Z_{1,18}\) and label that solution as the second best. This solution was \(Z_{13} = 13\) at \(x_{11} = x_{24} = x_{32} = x_{43} = 1\). Thus we have \(Z_{\text{opt}} = 9\) at \(x_{12} = x_{24} = x_{31} = x_{43} = 1\) and second best is \(Z_{13} = 13\) at \(x_{11} = x_{24} = x_{32} = x_{43} = 1\). A summary of these 18 search of random searches is given in Table 3.

Table 3 Ranked optimal solution for illustrative example

\(Z\)	\(X\)
\(Z^* = 9\)	\(x_{12}, x_{24}, x_{31}, x_{43}\)
\(Z_{13} = 13\)	\(x_{11}, x_{24}, x_{32}, x_{43}\)
\(Z_{15} = 13\)	\(x_{12}, x_{23}, x_{31}, x_{44}\)
\(Z_{14} = 15\)	\(x_{12}, x_{24}, x_{31}, x_{43}\)
\(Z_{17} = 15\)	\(x_{13}, x_{24}, x_{31}, x_{42}\)
\(Z_{16} = 17\)	\(x_{12}, x_{24}, x_{33}, x_{41}\)
\(Z_{12} = 21\)	\(x_{14}, x_{22}, x_{31}, x_{43}\)

Step 4. We chose \(Z_{13}\) as a second best, then return to steps 2 and 3 again to find the 3\(^{rd}\) best optimal solution. Thus we continue and find five ranked solution as given in Table 4.
A random search method for finding \(K \geq 2 \) number of ranked optimal solutions

Table 4: Optimal solution for the illustrative example

\(Z^K_{th} \)	\(X \)
\(Z^9 \) = 9	\(x_{12}, x_{24}, x_{31}, x_{43} \)
\(Z^{12} \) = 12	\(x_{12}, x_{21}, x_{33}, x_{44} \)
\(Z^{13} \) = 13	\(x_{14}, x_{21}, x_{31}, x_{43} \) or \(x_{12}, x_{23}, x_{33}, x_{44} \) or \(x_{11}, x_{24}, x_{32}, x_{43} \)
\(Z^{14} \) = 14	\(x_{13}, x_{21}, x_{32}, x_{44} \)
\(Z^{15} \) = 15	\(x_{12}, x_{21}, x_{34}, x_{43} \)

4.2 Computational study

As an effective algorithm, we generated 60 assignment problems of different sizes: 4 \(\times \) 4, 5 \(\times \) 5, 6 \(\times \) 6, 7 \(\times \) 7, 8 \(\times \) 8, 9 \(\times \) 9, 10 \(\times \) 10, 15 \(\times \) 15, 20 \(\times \) 20, 30 \(\times \) 30, 40 \(\times \) 40 and 50 \(\times \) 50, all values of the coefficient of the objective function were randomly generated between [20, 2500]. We assumed the assurance probability as 0.80. The proposed algorithm was implemented in C, using Cplex 12.6 to read lp files, which represents the assignment models, and run on HP laptop Via VMware Workstation 14 player (Lubuntu 16.04 LTS x64) with 1 GB of RAM memory. A summary of these experiments is presented in Tables 5, 6, 7, 8.

Table 5: Test instances size 16, 25 and 36

Class	\(Z_{opt} \)	2nd best	NS.	3rd best	NS.	4th best	NS.	5th best	NS.	CPU time (Sec.)
ASSP4-01	2093	2595	18	3574	37	3588	57	3893	76	0.0077
ASSP4-02	2521	3550	18	3711	37	3736	57	4521	76	0.0071
ASSP4-03	3216	3715	18	3817	37	3864	57	3951	76	0.0094
ASSP4-04	4101	4566	18	4621	37	4637	57	4916	76	0.0091
ASSP4-05	1332	1844	18	1961	37	2330	57	2400	76	0.0068
ASSP5-01	3895	4177	31	4235	63	4406	95	4555	127	0.0104
ASSP5-02	2944	3222	31	4198	63	4312	95	4368	127	0.0081
ASSP5-03	3324	4011	31	4248	63	4338	95	4660	127	0.0100
ASSP5-04	1881	1920	31	2523	63	2858	95	2888	127	0.0123
ASSP5-05	2931	3152	31	3472	63	3799	95	3824	127	0.0119
ASSP6-01	2127	2493	47	2510	95	3192	144	3447	192	0.0135
ASSP6-02	2679	3079	47	3223	95	3747	144	3872	192	0.0128
ASSP6-03	2874	3467	47	3597	95	3599	144	3726	192	0.0070
ASSP6-04	3110	3514	47	3514	95	3848	144	3907	192	0.0193
ASSP6-05	3706	3783	47	3800	95	4003	144	4017	192	0.0087
Table 6 Test instances size 49, 64 and 81

Class	Z_{Opt}	2nd best	NS.	3rd best	NS.	4th best	NS.	5th best	NS.	CPU time (Sec.)
ASSP7_7-1	1407	1632	66	1711	134	1755	201	1913	269	0.0091
ASSP7_7-2	2538	2674	66	2835	134	2960	201	3257	269	0.0117
ASSP7_7-3	3026	3289	66	3464	134	3700	201	3704	269	0.0108
ASSP7_7-4	2698	3180	66	3371	134	3428	201	3849	269	0.0068
ASSP7_7-5	4030	4314	66	4366	134	4479	201	4815	269	0.0057
ASSP8_7-1	2261	2267	89	2280	179	2286	269	2387	359	0.0096
ASSP8_7-2	2297	2485	89	2516	179	2653	269	2684	359	0.0114
ASSP8_7-3	2754	2760	89	2962	179	3208	269	3253	359	0.0079
ASSP8_7-4	2983	3193	89	3113	179	3475	269	3542	359	0.0077
ASSP8_7-5	2983	3193	89	3113	179	3475	269	3542	359	0.0116
ASSP9_7-1	2822	3158	115	3214	236	3299	346	3317	462	0.0112
ASSP9_7-2	4565	4653	115	4675	236	4729	346	4735	462	0.0125
ASSP9_7-3	2967	3056	115	3172	179	3207	346	3456	462	0.0114
ASSP9_7-4	2983	3193	115	3113	179	3475	269	3542	359	0.0077
ASSP9_7-5	3608	3943	115	3970	236	3977	346	3978	462	0.0120

Table 7 Test instances size 100, 225 and 400

Class	Z_{Opt}	2nd best	NS.	3rd best	NS.	4th best	NS.	5th best	NS.	CPU time (Sec.)
ASSP10_10-1	3351	3408	144	3431	288	3452	433	3509	578	0.0079
ASSP10_10-2	4754	4960	144	4998	288	5048	433	5155	578	0.0078
ASSP10_10-3	3912	3949	144	4106	288	4251	433	4292	578	0.0226
ASSP10_10-4	3212	3214	144	3317	288	3349	433	3380	578	0.0076
ASSP10_10-5	4887	5243	144	5363	288	5370	433	5523	578	0.0093
ASSP15_15-1	4583	4666	337	4675	675	4693	1013	4696	1351	0.0095
ASSP15_15-2	4086	4369	337	4414	675	4510	1013	4538	1351	0.0144
ASSP15_15-3	4624	4884	337	4911	675	5002	1013	5016	1351	0.0165
ASSP15_15-4	4165	4241	337	4322	675	4398	1013	4516	1351	0.0208
ASSP15_15-5	4562	4565	337	4639	675	4662	1013	4712	1351	0.0150
ASSP20_20-1	4500	4553	610	4556	1222	4609	1833	4631	2445	0.0256
ASSP20_20-2	3280	3386	610	3394	1222	3423	1833	3439	2445	0.0219
ASSP20_20-3	4459	4561	610	4624	1222	4664	1833	4732	2445	0.0143
ASSP20_20-4	4862	4863	610	4960	1222	5011	1833	5012	2445	0.0290
ASSP20_20-5	4924	4976	610	5103	1222	5149	1833	5189	2445	0.0164
A random search method for finding \(K \geq 2 \) number of ranked optimal

Table 8 Test instances size 900, 1600 and 2500

Class	\(Z_{opt} \)	2nd best	NS.	3rd best	NS.	4th best	NS.	5th best	NS.	CPU time (Sec.)
ASSP30_30-1	3276	3319	1399	3353	2799	3363	4199	3396	5600	0.0311
ASSP30_30-2	4610	4680	1399	4684	2799	4685	4199	4754	5600	0.0377
ASSP30_30-3	4117	4161	1399	4203	2799	4213	4199	4216	5600	0.0493
ASSP30_30-4	4947	5027	1399	5050	2799	5070	4199	5130	5600	0.0248
ASSP30_30-5	4680	4747	1399	4752	2799	4813	4199	4880	5600	0.0238
ASSP40_40-1	4852	4901	2509	4904	5020	4940	7531	4983	10042	0.0470
ASSP40_40-2	4621	4692	2509	4699	5020	4711	7531	4724	10042	0.0476
ASSP40_40-3	3744	3757	2509	3770	5020	3803	7531	3804	10042	0.0418
ASSP40_40-4	4682	4688	2509	4726	5020	4732	7531	4749	10042	0.0457
ASSP40_40-5	4601	4668	2509	4732	5020	4766	7531	4788	10042	0.0534
ASSP50_50-1	4984	4997	3942	5005	7885	5018	11828	5055	15771	0.0509
ASSP50_50-2	5168	5206	3942	5294	7885	5297	11828	5326	15771	0.0556
ASSP50_50-3	5203	5213	3942	5226	7885	5236	11828	5251	15771	0.0513
ASSP50_50-4	4402	4488	3942	4541	7885	4558	11828	4625	15771	0.0512
ASSP50_50-5	5033	5099	3942	5111	7885	5116	11828	5133	15771	0.0666

5 Concluding remarks

In this paper, a random search methods to find ranked optimal solution for assignment problem has been established. Necessary code has been developed and implemented to test the proposed method on several instances. It may be noted that:

1. The characteristic equation for the general PIP is not applicable for this uni-model assignment problem.
2. Computational complexity of the proposed approach with existing methods [4, 20] is not possible as these authors have not provided computational results.
3. The CPU time of proposed algorithm is insignificantly low for identifying the ranked solutions.

Future studies will be to extend the random search method to find all non-dominated points for bi-objective integer programming problems [1], and also apply the random search method for solving other uni-modular problems.

References

[1] Al-Hasani, Ali, Al-Rabeeah, Masar, Kumar, Santosh, and Eberhard, Andrew. “Finding all non-dominated points for a bi-objective generalized assignment problem”. In: The International Conference on Mathematics: Pure, Applied and Computation (ICoMPAC 2018). 2018.
[2] Brooks, Samuel H. “A discussion of random methods for seeking maxima”. In: Operations Research 6.2 (1958), pp. 244–251.

[3] Chandrasekaran, R, Kumar, S, and Wagner, D. “Critical Path Problem under Assignment Constraint: An Application of an Extreme Point Mathematical Programming Problem”. In: Journal of Information and Optimization Sciences 1.1 (1980), pp. 41–51.

[4] Chen, S, McPhee, J, and Kumar, S. “Optimization Techniques and Applications”. In: Optimization Techniques and Applications. Ed. by K.H. Phua, C.M. Wang, W.Y. Yeong, T.Y. Leong, H.T. Loh, K.C. Tan, and F.S. Chou. World Scientific, 1992. Chap. Determination of kth best in an assignment problem, pp. 1110–1118.

[5] CPLEX, IBM ILOG. “12.6”. In: CPLEX Users Manual (2014).

[6] Dantzig, George B. “Linear programming”. In: Operations Research 50.1 (2002), pp. 42–47.

[7] Huynh, H-N and Kumar, Santosh. “A random search method for extreme point mathematical programming.” In: Asia-Pacific Journal of Operational Research 7.1 (1990), pp. 30–45.

[8] Ishii, Hiroaki. “A new method finding the k-th best path in a graph”. In: Journal of the Operations Research Society of Japan 21.4 (1978), pp. 469–476. doi: 10.15807/jorsj.21.469.

[9] Kirby, MJL, Love, HR, and Swarup, Kanti. “Extreme point mathematical programming”. In: Management Science 18.9 (1972), pp. 540–549.

[10] Kirby, MJL, Love, HR, and Swarup, Kanti. “Extreme point programming with nonlinear constraints”. In: Discrete Mathematics 5.4 (1973), pp. 345–365.

[11] Kumar, S and Munapo, E. “Some Lateral Ideas and their applications for developing new solution procedures for a pure integer programming model, Keynote address”. In: Proc. of Herbal International Conference on Applications of Mathematics and Statistics for Intelligent solutions through Mathematics and Statistics, Edited by Marriappan, Srinivasan and Amritraj, Excell India Publisher. 2012, pp. 13–21.

[12] Kumar, S, Munapo, E, and Jones, BC. “An integer equation controlled descending path to a protean pure integer program”. In: Indian Journal of Mathematics 49.2 (2007), pp. 211–237.

[13] Kumar, S, Munapo, E, and Jones, BC. “Descending Hyper-Plane Approach for Solving A Binary Integer Program”. In: International Journal of Mathematical Modeling, Simulation and Applications 2.1 (2009), pp. 53–62.

[14] Kumar, S. and Scarmozzino, F. “Characteristics and applications of random search method for mathematical programming”. In: Investigação Operacional 18 (1998), pp. 167–181.

[15] Kumar, S and Wagner, D. “Some algorithms for solving extreme point mathematical programming problems”. In: New Zealand Journal of Operational Research 7.2 (1979), pp. 127–149.
A random search method for finding \(K \geq 2 \) number of ranked optimal

[16] Kumar, S, Luhandjula, M, Munapo, E, and Jones, B. “Fifty years of integer programming: a review of the solution approaches”. In: Asia Pacific Business Review 6.3 (2010), pp. 5–15.

[17] Kumar, Santosh, Munapo, E, Lesaoana, M, and P, Nyamugure. Some Innovations in OR Methodology: linear Optimization. Lambert Academic Publishing, 2018.

[18] Lawler, Eugene L. “A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem”. In: Management science 18.7 (1972), pp. 401–405.

[19] Lu, B and Rosenbaum, PR. “An Algorithm for Ranking all the Assignments in Order of Increasing Cost”. In: Journal of Computational and Graphical Statistics 13.2 (2004), pp. 422–434.

[20] Murty, Katta G. “Letter to the editor: An algorithm for ranking all the assignments in order of increasing cost”. In: Operations research 16.3 (1968), pp. 682–687.

[21] Puri, MC and Swarup, Kanti. “Strong-cut enumerative procedure for extreme point mathematical programming problems”. In: Mathematical Methods of Operations Research 17.3 (1973), pp. 97–105.

[22] Sherali, Hanif D and Dickey, S Elizabeth. “An extreme-point-ranking algorithm for the extreme-point mathematical programming problem”. In: Computers & operations research 13.4 (1986), pp. 465–475.

[23] Taha, Hamdy A. Operations research: An introduction (for VTU). Pearson Education India, 2005.

[24] Yanasse, Horacio Hideki, Soma, Nei Yoshihiro, and Maculan, Nelson. “An algorithm for determining the k-best solutions of the one-dimensional knapsack problem”. In: Pesquisa Operacional 20.1 (2000), pp. 117–134.