Research Article

GABA_B Receptors Expressed in Human Aortic Endothelial Cells Mediate Intracellular Calcium Concentration Regulation and Endothelial Nitric Oxide Synthase Translocation

Xu-Ping Wang, 1 Zhen-Ying Cheng, 2 and Katrina L. Schmid 3

1 The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
2 Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
3 School of Optometry and Vision Science, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia

Correspondence should be addressed to Zhen-Ying Cheng; zycheng2008@hotmail.com

Received 17 March 2014; Revised 5 June 2014; Accepted 23 June 2014; Published 9 July 2014

Academic Editor: Eiichi Kumamoto

Copyright © 2014 Xu-Ping Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

GABA_B receptors regulate the intracellular Ca²⁺ concentration ([Ca²⁺]_i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca²⁺]_i is not known. The purpose of this study was to investigate the expression of GABA_B receptors, a subclass of receptors to the inhibitory neurotransmitter 𝛾-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca²⁺]_i and endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABA_{B1} and GABA_{B2} in cultured HAECs. The effects of GABA_B receptors on [Ca²⁺]_i in cultured HAECs were demonstrated using fluo-3. The influence of GABA_B receptors on eNOS translocation was assessed by immunocytochemistry. Both GABA_{B1} and GABA_{B2} mRNA and protein were expressed in cultured HAECs, and the GABA_{B1} and GABA_{B2} proteins were colocalized in the cell membrane and cytoplasm. One hundred μM baclofen caused a transient increase of [Ca²⁺]_i and eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABA_B receptor antagonists CGP46381 and CGP55845. GABA_B receptors are expressed in HAECs and regulate the [Ca²⁺]_i and eNOS translocation. Cultures of HAECs may be a useful <i>in vitro</i> model for the study of GABA_B receptors and vascular biology.

1. Introduction

GABA_B receptors, a distinct subclass of receptors to the inhibitory neurotransmitter 𝛾-aminobutyric acid (GABA), comprised of two principal heterodimeric subunits GABA_{B1} and GABA_{B2} [1–3], are members of the metabotropic receptor family that via Gi/o proteins interact with neuronal inwardly rectifying potassium and voltage-gated calcium channels and when activated mediate slow synaptic inhibition [4]. GABA_B receptors are mainly located within the central nervous system and retina [5, 6] and modulate intracellular calcium concentration ([Ca²⁺]_i) in selected neural cells (e.g., chromaffin cells [7], dopaminergic neurons [8], and cortical neurons [9]). GABA_B receptors have also been detected in peripheral tissues, including human and guinea pig airway epithelium [10], human fallopian tube [11], and human airway smooth muscle [12], and shown to participate in the [Ca²⁺]_i modulation [13].

Vascular endothelial cells are principal cells of blood vessels and play crucial roles within the vasculature. Intracellular Ca²⁺ contributes to vascular endothelium physiology, functions, and disorders such as proliferation [14], apoptosis [15], permeability [16], endothelial nitric oxide synthase (eNOS) activation [17], injury [18], and healing [19].
Other neural-transmitter receptor types that are generally thought of as having primarily central neural system locations and functions have been shown to be present within the peripheral vascular endothelium cells and modify the intracellular \(\text{Ca}^{2+} \). For example, the muscarinic receptor subtypes 1 and 3 were detected in human vascular endothelial cells [20]. Acetylcholine increases the \([\text{Ca}^{2+}]_i\) in primary cultured rabbit aortic endothelial cells, and this can be blocked by the selective muscarinic receptor antagonist atropine [21]. \(\beta_2 \)-adrenoceptors are present in the endothelium of the rabbit coronary artery [22]. Epinephrine induces endothelial \(\text{Ca}^{2+} \) influx and thus increases the \([\text{Ca}^{2+}]_i\) in primary cultured bovine aortic endothelial cells and this can be inhibited by a \(\beta_2 \)-adrenoceptor antagonist ICI-118551 [23]. 5-Hydroxytryptamine (5-HT)1D, 5-HT2B, and 5-HT4 receptors are expressed in human umbilical vein endothelial cells [24, 25]. 5-HT stimulates \(\text{Ca}^{2+} \) uptake and this can be inhibited by 5-HT receptor antagonists [26].

As the major source of nitric oxide (NO) in vascular endothelial cells [27], endothelial nitric oxide synthase (eNOS) plays a crucial role within the cardiovascular system. The subcellular location of eNOS contributes to the enzyme functions [27]. In resting endothelial cells, eNOS is mainly located at the cell membrane and cytoplasm, and when stimulated by agonists, it translocates to structures within the cell cytosol close to the nucleus [27, 28]. eNOS translocation can be induced by a variety of agents, some of which stimulate the \([\text{Ca}^{2+}]_i\) increase in endothelial cells. For example, acetylcholine [21, 29], endothelin-1 [30, 31], platelet-activating factor [29, 32], bradykinin [28], estrogen [33], and epicatechin [34] increase the \([\text{Ca}^{2+}]_i\) in endothelial cells and induce eNOS translocation. Thus, GABA receptor subtypes regulate the \([\text{Ca}^{2+}]_i\) in some neural and nonneural cells [7–9, 13]; whether they are expressed in vascular endothelial cells and regulate the \([\text{Ca}^{2+}]_i\) and eNOS translocation is not clear.

Based on indirect evidence, we hypothesized that GABA receptors would be expressed in human aortic endothelial cells (HAECS). The purpose of this study was to investigate whether GABA receptors are expressed in cultured HAECS and regulate the \([\text{Ca}^{2+}]_i\) and eNOS translocation. If these receptors are present, HAECS could be a useful model for studying the direct role of GABA in vascular regulation.

2. Methods

2.1. Cell Culture. Primary HAECS obtained from the American Type Cell Collection (VA, USA) were cultured in endothelial cell medium (ECM) containing 5% FBS and 1% endothelial cell growth supplement (ScienCell, USA) at 37°C with humidified air and 5% \(\text{CO}_2 \). HAECS of no more than passage 4 were used. The study was carried out in accordance with “The Code of Ethics of the World Medical Association (Declaration of Helsinki)” for experiments involving humans.

2.2. Real-Time PCR. RNA isolation and reverse transcription were performed as previously described [35]. RNA concentration and purity were determined at an optical density ratio of 260:280 using a spectrophotometer. Primers for human GABA\(_{B1}\) and GABA\(_{B2}\) were designed to span a region that includes an intron in the genomic sequence for these genes and ordered from Shanghai Biosune Biotechnology Company (Shanghai, China). The primers for GABA\(_{B1}\) were forward 5'-GCCGCGTGTGCCGAAATCTGCT-3' and reverse 5'-CTGCGGCGCGTTCTGAGTGT-3', and for GABA\(_{B2}\) they were forward 5'-TGGAGGCTGCTGCCATCCGT-3' and reverse 5'-GTCATTGGTCAGCGTGCTGCCC-3'. SYBR Green real-time PCR and quantitative assays were performed by use of a Real-time PCR Detection System, LightCycler (Roche Applied Science, IN, USA). Denaturation was performed for 10s at 95°C, annealing for 10s at 60°C, and extension for 10s at 72°C. cDNA from the human retinal tissue was used as the positive control and the samples without cDNA were used as the negative control. \(\beta_2 \)-Actin was used as the housekeeping gene. Correct product size (228 bp for GABA\(_{B1}\) and 220 bp for GABA\(_{B2}\)) was confirmed by DNA agarose gel, and sequence comparison with target genes was conducted (by Biosune Biotechnology Company, Shanghai). Samples were analyzed in triplicate.

2.3. Immunocytochemistry. Immunocytochemistry was performed as previously described [36]. Briefly, cells were fixed with 4% paraformaldehyde, blocked with 10% normal donkey serum, and incubated with mouse anti-human GABA\(_{B1}\) antibody (1:500; Abcam, USA), goat anti-human GABA\(_{B2}\) antibody (1:100; Santa Cruz, CA, USA), or rabbit anti-human eNOS antibody (1:100; Sigma, USA) overnight at 4°C. Subsequently, the cells were incubated with donkey anti-mouse secondary antibody (Alexa 568 conjugated; 1:1000; Invitrogen, CA, USA), donkey anti-goat secondary antibody (Alexa 488 conjugated; 1:1000; Invitrogen, CA, USA), and donkey anti-rabbit secondary antibody (Alexa 488 conjugated; 1:1000; Invitrogen, CA, USA) for 1h at 37°C. A drop of Prolong Gold anti-fade reagent with DAPI (Invitrogen, CA, USA) was added before cell images were acquired by use of a LSM 710 laser confocal microscope (EC Plan-Neofluar 40x/1.30 Oil objective, N.A. 0.55) equipped with ZEN 2009 Light Edition software (Zeiss, Germany).

2.4. Western Blots. Western blots were performed as previously described [35, 36]. HAECS and human retinal tissue (positive control) protein samples were separated by 75% SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes. After 1h defatted milk block, the membrane was incubated with the anti-GABA\(_{B1}\) antibody (Abcam, 1:1000) and anti-GABA\(_{B2}\) antibody (Santa Cruz; 1:200) and then with horseradish peroxidase- (HPR-) conjugated secondary antibody (1:5000). The bands were visualized by use of Immobilon Western Chemiluminescent HRP Substrate (Millipore, MA, USA).

2.5. Measuring \([\text{Ca}^{2+}]_i\). \([\text{Ca}^{2+}]_i\) was measured as previously described [37] with minor modification. HAECS were cultured on a glass-covered disc with a concentration of 5 × 10^5 cells/mL. Two days later, the cells were incubated with 5 μM fluo-3 AM for 20 min in the dark in normal...
physiological saline solution (N-PSS) that contained (in mM) 140 NaCl, 1 KCl, 1 CaCl₂, 1 MgCl₂, 10 glucose, and 5 HEPES (pH 7.4) at 37°C. After being rinsed twice with N-PSS, cells were kept in N-PSS for another 10 min, and then the circular discs with HAECs attached were placed on the stage of a confocal microscope. While the images were being acquired, 100 µM agonist baclofen was added to the assay disc at the set time points. To determine the impact of the antagonist, cells were preincubated for 10 min with 1 mM of the GABA_B receptor antagonists CGP46381 (Santa Cruz, CA, USA) and CGP55845 (Tocris Bioscience, USA) before 100 µM baclofen (Sigma, MO, USA) was added. Sequences of images were acquired using the laser confocal microscope (LSM 710, Zeiss, Germany) equipped with a 488 nm laser at 5 s intervals. The fluorescence intensity over the HAECs cell body was measured before and after agent application. The fluorescence intensity before addition of agents was considered the baseline fluorescence intensity. The changes of the fluorescence intensity before and after agent application were calculated and analyzed by using ZEN 2009 Light Edition software (Zeiss, Germany). PBS instead of GABA_B agents were used as the control.

2.6. eNOS Translocation. eNOS translocation was investigated using immunofluorescence as previously described [33] with minor modification. To test the effects of the GABA_B receptor agonist on eNOS translocation, cells were treated with 100 µM baclofen for 30 min. To determine the impact of the antagonist, cells were preincubated for 10 min with 1 mM of the GABA_B receptor antagonists CGP46381 and CGP55845 before 100 µM baclofen was added.

2.7. Statistical Analysis. All data were analyzed using SPSS v16.0 (SPSS Inc., Chicago, IL, USA). Data were acquired from at least 3 independent repeats of the experiments and were expressed as mean ± SD.

3. Results

Real-time PCR demonstrated the presence of GABA_B1, GABA_B2, and β-actin mRNA in cultured HAECs and in human retina, but not in the negative control. Results from ethidium bromide-stained agarose gels electrophoresis of the real-time PCR products demonstrated that the specific bands appeared at the position of 228 bp (GABA_B1), 220 bp (GABA_B2), and 302 bp (β-actin), respectively (Figure 1). Nucleotide sequence analysis confirmed that the sequence of the PCR products is corresponding to the targeted sequence of GABA_B1 and GABA_B2 mRNA with the primers.

3.1. GABA_B1 and GABA_B2 Protein Were Detected in Cultured HAECs. Western blots analysis revealed that specific protein bands appeared at approximately 108 kDa (GABA_B1), 130 kDa (GABA_B2), and 43 kDa (β-actin) (Figure 2(a)). Immunoreactivities to antibodies for GABA_B1 and GABA_B2 were observed in cultured HAECs. Immunofluorescence was observed in the cell membrane and cytoplasm but not in the nucleus (Figure 2(b)). These findings suggested that GABA_B receptors are expressed in cultured HAECs and regulate the [Ca²⁺]i in cultured HAECs. PBS did not cause increase in [Ca²⁺]i of the cultured HAECs.

3.2. GABA_B Receptors Regulate [Ca²⁺]i in Cultured HAECs. The GABA_B receptor agonist baclofen (100 µM) induced a rapid and transient rise of [Ca²⁺]i in HAECs. [Ca²⁺]i reached its peak level in 20–40 s and then gradually declined (Figure 3(a)). The increase of [Ca²⁺]i induced by 100 µM baclofen was partly (50%) abolished by preincubation with 1 mM CGP46381 (Figure 3(b)) and was completely inhibited by preincubation with 1 mM CGP55845 (Figure 3(c)). PBS did not cause increase in [Ca²⁺]i of the cultured HAECs.

3.3. GABA_B Receptors Modulate eNOS Translocation in Cultured HAECs. In control HAECs, eNOS immunostaining was predominantly located at the cell membrane and cytoplasm (Figure 4(a)). One hundred µM baclofen incubated HAECs (incubation for 30 min) showed that eNOS immunostaining was changed to intracellular sites close to the nucleus (Figure 4(b)). Preincubation of CGP46381 and CGP55845 for 10 min inhibited 100 µM baclofen induced translocation of eNOS in HAECs (Figures 4(c) and 4(d)).

4. Discussion

In the study we found that GABA_B1 and GABA_B2 mRNA and protein were expressed in cultured HAECs; the two subunits were colocated in the cell membrane and cytoplasm, but neither was located in the nucleus. The GABA_B receptor agonist baclofen induced a transient increase of [Ca²⁺]i and eNOS translocation and the effects were attenuated by the GABA_B receptor antagonists CGP46381 and CGP55845. These findings suggested that GABA_B receptors are expressed in cultured HAECs and regulate the [Ca²⁺]i and eNOS translocation. Muscarinic receptors [20, 21], β-adrenoceptors [22, 23], and 5-HT receptors [24–26] that are primarily located in central neural system are also present within the peripheral...
Figure 2: Expression of GABA_{B1} and GABA_{B2} protein detected by western blots (a) and immunofluorescence (b). (a) Specific bands developed at the approximate location of 108 kD (GABA_{B1}), 130 kD (GABA_{B2}), and 43 kD (β-Actin) in lysates of HAECs and retina (P.C). (b) Representative dual immunofluorescence staining of GABA_{B1} and GABA_{B2} in HAECs. Nuclei were stained by DAPI (blue) (scale bar = 50 μm). HAECs: human aortic endothelial cells; P.C: human retina (positive control).

vascular endothelial cells and modulate the [Ca^{2+}]_i. Here we add GABA_B receptors to the list. Whether GABA_B receptor functions involving intracellular Ca^{2+} are similar to those of other neural-transmitters requires further investigation. Possibilities include proliferation [14], apoptosis [15], permeability [16], and eNOS activation [17].

The [Ca^{2+}]_i changes in vascular endothelial cells have been reported to be involved in eNOS activity, which mainly include eNOS translocation and phosphorylation [17, 27]. eNOS translocation from the plasma membrane to subcellular locations contributes to eNOS functions, such as permeability [27], and the cell membrane-bound and Golgi-bound eNOS are considered to have the ability to release more basal NO than cytosolic eNOS [27]. We found that GABA_B receptors modify the eNOS translocation by moving eNOS from the cell membrane to cytoplasm closer to the nucleus. It is thus possible that GABA_B receptors in HAECs regulate NO production and modify vascular permeability [27].

GABA_B receptors have been reported to be involved in regulating vasculature functions, but the mechanisms are complex. In addition to the central neural system mechanisms [38–40], GABA_B receptors directly regulate the vasculature functions via a peripheral mechanism. The GABA_B receptor agonist, SKF-97541, induces vasodepression in the feline pulmonary vascular bed and these responses are attenuated after the administration of a GABA_B receptor antagonist, saclofen [41]. The GABA_B receptor agonist baclofen causes vasodilation in 50% of vessels in the rat retina; the vasodilation can be blocked by the GABA_B receptor antagonist 2-hydroxysaclofen [42]. Here we verified that GABA_B receptors are expressed and located in cultured HAECs and regulate [Ca^{2+}]_i and eNOS translocation. These suggested that vascular endothelial cells would be the potential targets for GABA_B receptors directly modulating vascular functions.

In summary, GABA_{B1} and GABA_{B2} mRNA and protein were expressed in cultured HAECs and GABA_B receptors modified [Ca^{2+}]_i and eNOS translocation; this suggests a
Figure 3: GABA_B receptors regulate [Ca²⁺]_i in HAECs. (a) 100 μM baclofen caused increase of [Ca²⁺]_i in the cultured HAECs. (b) Pretreatment with 1 mM CGP46381 partly (∼50%) abolished the increase of [Ca²⁺]_i induced by 100 μM baclofen. (c) Pretreatment with 1 mM CGP55845 completely inhibited the increase of [Ca²⁺]_i induced by 100 μM baclofen. (A) Representative images acquired at 5 s, 38.94 s, and 148.96 s, respectively. (B) Fluorescent intensity in the images acquired before and after baclofen application. The red bar represents the time when baclofen was added. FI represents the fluorescence intensity color scale with the direction of the arrow indicating higher intensity.
possible role of GABA_{B} receptors in the mediation of HAECs functions. Further investigation is required regarding which specific HAEC functions (e.g., proliferation, apoptosis, and permeability) GABA_{B} receptors regulate.

Abbreviations

GABA: γ-Aminobutyric acid
GABA_{B1}: γ-Aminobutyric acid B receptor subunit 1
GABA_{B2}: γ-Aminobutyric acid B receptor subunit 2
HAECs: Human aortic endothelial cells
EC: Endothelial cells
eNOS: Endothelial nitric oxide synthase
NO: Nitric oxide
RT-PCR: Real-time polymerase chain reaction.

Conflict of Interests

The authors have no conflict of interests to declare.

Authors’ Contribution

Xu-Ping Wang and Zhen-Ying Cheng made the same contribution to this paper.

Acknowledgments

This work was supported by Grant from the National Natural Science Foundation of China (no. 81271038), Grant from the Department of Science and Technology of Shandong Province of China (no. ZR2012HQ029) to Xu-Ping Wang.

References

[1] J. H. White, A. Wise, M. J. Main et al., “Heterodimerization is required for the formation of a functional GABA(B) receptor,” *Nature*, vol. 396, no. 6712, pp. 679–682, 1998.

[2] K. A. Jones, B. Borowsky, J. A. Tamm et al., “GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2,” *Nature*, vol. 396, no. 6712, pp. 674–679, 1998.

[3] K. Kaupmann, B. Malitschek, V. Schuler et al., “GABA(B)-receptor subtypes assemble into functional heteromeric complexes,” *Nature*, vol. 396, no. 6712, pp. 683–687, 1998.

[4] F. H. Marshall, K. A. Jones, K. Kaupmann, and B. Bettler, “GABA(B) receptors—the first 7TM heterodimers,” *Trends in Pharmacological Sciences*, vol. 20, no. 10, pp. 396–399, 1999.

[5] T. Tabata and M. Kano, “GABAB receptor-mediated modulation of metabotropic glutamate signaling and synaptic plasticity in central neurons,” *Advances in Pharmacology*, vol. 58, pp. 149–173, 2010.

[6] X. Yang, “Characterization of receptors for glutamate and GABA in retinal neurons,” *Progress in Neurobiology*, vol. 73, no. 2, pp. 127–150, 2004.

[7] M. Parramon, M. P. Gonzalez, M. T. Herrero, and M. J. Oset-Gasque, “GABA(B) receptors increase intracellular calcium concentrations in chromaffin cells through two different pathways: Their role in catecholamine secretion,” *Journal of Neuroscience Research*, vol. 41, no. 1, pp. 65–72, 1995.

[8] E. Guatteo, C. P. Bengtson, G. Bernardi, and N. B. Mercuri, “Voltage-gated calcium channels mediate intracellular calcium increase in weaver dopaminergic neurons during stimulation of D2 and GABA B receptors,” *Journal of Neurophysiology*, vol. 92, no. 6, pp. 3368–3374, 2004.
L. Walch, C. Brink, and X. Norel, "The muscarinic receptor in rat cortical neurons and transfected Chinese hamster ovary cells," *Neuroscience*, vol. 137, no. 4, pp. 1347–1358, 2006.

K. Mizuta, Y. Osawa, F. Mizuta, D. Xu, and C. W. Emala, "Functional expression of GABAB receptors in airway epithelium," *The American Journal of Respiratory Cell and Molecular Biology*, vol. 39, no. 3, pp. 296–304, 2008.

Z. Zhou, H. Sun, X. Li et al., "A local GABAergic system is functionally expressed in human fallopian tube," *Biochemical and Biophysical Research Communications*, vol. 398, no. 2, pp. 237–241, 2010.

Y. Osawa, D. Xu, D. Sternberg et al., "Functional expression of the GABAB receptor in human airway smooth muscle," *American Journal of Physiology—Lung Cellular and Molecular Physiology*, vol. 291, no. 5, pp. L923–L931, 2006.

K. Mizuta, F. Mizuta, D. Xu, E. Masaki, R. A. Panettieri Jr., and C. W. Emala, "G(1) coupled η-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle," *The American Journal of Respiratory Cell and Molecular Biology*, vol. 45, no. 6, pp. 1232–1238, 2011.

M. Lee, K. C. Spokes, W. C. Aird, and M. R. Abid, "Intracellular Ca2+ can compensate for the lack of NADPH oxidase-derived ROS in endothelial cells," *FEBS Letters*, vol. 584, no. 14, pp. 3313–3316, 2010.

T. Suriyo, P. Watcharasit, A. Thiantanawat, and J. Satayavivad, "Arsenite promotes apoptosis and dysfunction in microvascular endothelial cells via an alteration of intracellular calcium homeostasis," *Toxicology in Vitro*, vol. 26, no. 3, pp. 386–395, 2012.

C. Tiruppathi, R. D. Minshall, B. C. Paria, S. M. Vogel, and A. B. Malik, "Role of Ca2+ signaling in the regulation of endothelial permeability," *Vascular Pharmacology*, vol. 39, no. 4–5, pp. 173–185, 2002.

I. M. Bird, "Endothelial nitric oxide synthase activation and nitric oxide function: new light through old windows," *Journal of Endocrinology*, vol. 210, no. 3, pp. 239–241, 2011.

R. Berra-Romani, A. Raqeeb, J. Torres-Jacome et al., "The mechanism of injury-induced intracellular calcium concentration oscillations in the endothelium of excised rat aorta," *Journal of Vascular Research*, vol. 49, no. 1, pp. 65–76, 2011.

F. Moccia, F. Tanzi, and L. Munaron, "Endothelial remodelling and intracellular calcium machinery," *Current Molecular Medicine*, vol. 14, pp. 457–480, 2014.

L. Walch, C. Brink, and X. Norel, "The muscarinic receptor subtypes in human blood vessels," *Therapie*, vol. 56, no. 3, pp. 223–226, 2001.

N. R. Danthuluri, M. I. Cybulsky, and T. A. Brock, "ACh-induced calcium transients in primary cultures of rabbit aortic endothelial cells," *The American Journal of Physiology*, vol. 255, no. 6, pp. H1549–H1553, 1988.

Z. Lu, P. Qu, K. Xu, and C. Han, "Beta-adrenoceptors in endothelium of rabbit coronary artery and alteration in atherosclerosis," *Biological Signals*, vol. 4, no. 3, pp. 150–159, 1995.

B. Shen, K. Cheng, Y. Leung et al., "Epinephrine-induced Ca2+ influx in vascular endothelial cells is mediated by CNGA2 channels," *Journal of Molecular and Cellular Cardiology*, vol. 45, no. 3, pp. 437–445, 2008.

P. Schoeffter, C. Ullmer, M. Gutierrez, G. Weitz-Schmidt, and H. Lübbert, "Functional serotonin 5-HT(1D) receptors and 5-HT(1D) receptor mRNA expression in human umbilical vein endothelial cells," *Naunyn-Schmiedebergs Archives of Pharmacology*, vol. 352, no. 5, pp. 580–582, 1995.

C. Ullmer, K. Schmuck, H. O. Kalkman, and H. Lübbert, "Expression of serotonin receptor mRNAs in blood vessels," *The FEBS Letters*, vol. 370, no. 3, pp. 215–221, 1995.

J. K. Gill, G. Stansby, N. Shukla, G. Hamilton, M. A. Barradas, and J. Y. Jeremy, "5-Hydroxytryptamine stimulates 45Ca2+ uptake by human umbilical vein endothelial cells in culture: mediation by 5-HT2 receptor subtypes," *European Journal of Pharmacology*, vol. 214, no. 2–3, pp. 269–272, 1992.

W. N. Durán, J. W. Breslin, and F. A. Sánchez, "The NO cascade, eNOS location, and microvascular permeability," *Cardiovascular Research*, vol. 87, no. 2, pp. 254–261, 2010.

P. Prabhakar, H. S. Thatte, R. M. Goetz, M. R. Cho, D. E. Golan, and T. Michel, "Receptor-regulated translocation of endothelial nitric-oxide synthase," *Journal of Biological Chemistry*, vol. 273, no. 42, pp. 27383–27388, 1998.

F. A. Sánchez, N. B. Savalia, R. G. Durán, B. K. Lal, M. P. Boric, and W. N. Durán, "Functional significance of differential eNOS translocation," *The American Journal of Physiology–Heart and Circulatory Physiology*, vol. 291, no. 3, pp. H1058–H1064, 2006.

X. Sun, S. Kumar, S. Sharma et al., "Endothelin-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the mitochondrial translocation of endothelial NO synthase," *American Journal of Respiratory Cell and Molecular Biology*, 2014.

H. Aoki, S. Kobayashi, J. Nishimura, and H. Kanaide, "Sensitivity of G-protein involved in endothelin-1-induced Ca2+ influx to pertussis toxin in porcine endothelial cells in situ," *British Journal of Pharmacology*, vol. 111, no. 4, pp. 989–996, 1994.

M. Hirafuji, K. Maeyama, T. Watanabe, and Y. Ogura, "Transient increase of cystolic free calcium in cultured human vascular endothelial cells by platelet-activating factor," *Biochemical and Biophysical Research Communications*, vol. 154, no. 3, pp. 910–917, 1988.

R. M. Goetz, H. S. Thatte, P. Prabhakar, M. R. Cho, T. Michel, and D. E. Golan, "Estradiol induces the calcium-dependent translocation of endothelial nitric oxide synthase," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 96, no. 6, pp. 2788–2793, 1999.

I. Ramirez-Sanchez, L. Maya, G. Ceballos, and F. Villarreal, "(-)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells," *The American Journal of Physiology—Cell Physiology*, vol. 300, no. 4, pp. C880–C887, 2011.

Z. Cheng, X. Wang, K. L. Schmid, and L. Liu, "Identification of GABA receptors in chick retinal pigment epithelium," *Neuroscience Letters*, vol. 539, pp. 43–47, 2013.

X. P. Wang, Y. G. Chen, W. D. Qin et al., "Arginase i attenuates inflammatory cytokine secretion induced by lipopolysaccharide in vascular smooth muscle cells," *Arteriosclerosis, Thrombosis, and Vascular Biology*, vol. 31, no. 8, pp. 1853–1860, 2011.

J. S. Ryan, W. H. Baldrige, and M. E. M. Kelly, "Purinergic regulation of cation conductances and intracellular Ca2+ in cultured rat retinal pigment epithelial cells," *Journal of Physiology*, vol. 520, part 3, pp. 745–759, 1999.

D. P. Li and H. L. Pan, "Role of GABAB receptors in autonomic control of systemic blood pressure," *Advances in Pharmacology*, vol. 58, pp. 257–286, 2010.
[39] M. Suzuki, M. Tetsuka, and M. Endo, “GABA(B) receptors in the nucleus tractus solitarii modulate the carotid chemoreceptor reflex in rats,” *Neuroscience Letters*, vol. 260, no. 1, pp. 21–24, 1999.

[40] Y. Hong and J. L. Henry, "Cardiovascular responses to intrathecal administration of L- and D-baclofen in the rat," *European Journal of Pharmacology*, vol. 192, no. 1, pp. 55–62, 1991.

[41] A. D. Kaye, J. M. Hoover, S. R. Baber, I. N. Ibrahim, and A. M. Fields, "Analysis of gamma-aminobutyric acid-mediated responses in the pulmonary vascular bed of the cat," *Anesthesia and Analgesia*, vol. 99, no. 3, pp. 758–763, 2004.

[42] K. Hinds, K. P. Monaghan, B. Frolund, J. G. McGeown, and T. M. Curtis, "GABAergic control of arteriolar diameter in the rat retina," *Investigative Ophthalmology and Visual Science*, vol. 54, no. 10, pp. 6798–6805, 2013.
