Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Practice Patterns in Surgical Neuro-Oncology Among Low- and Middle-Income Countries During the Coronavirus Disease 2019 Pandemic: A Scoping Review and Situational Report from the Philippines

Juan Silvestre G. Pascual¹, Katrina Hannah D. Ignacio², Michelle Regina L. Castillo³, Kathleen Joy O. Khu⁴

Key words
- LMIC
- Low- and middle-income country
- Neuro-oncology
- Practice patterns
- Surgical neuro-oncology

Abbreviations and Acronyms
- COVID-19: Coronavirus disease 2019
- FTF: Face-to-face
- HIC: High-income country
- HRCT: High-resolution computed tomography
- ICU: Intensive care unit
- LMIC: Low- and middle-income country
- OR: Operating room
- PAPR: Powered air-purifying system
- PPE: Personal protective equipment
- RT: Radiotherapy
- RT-PCR: Reverse transcriptase polymerase chain reaction

From the Divisions of ¹Neurosurgery and ²Adult Neurology, Department of Neurosciences and ³Division of Radiation Oncology, Department of Radiology, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines

To whom correspondence should be addressed: Juan Silvestre G. Pascual, M.D. [E-mail: jgpascual@up.edu.ph]

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has negatively affected the outcomes of surgical neuro-oncology patients worldwide. We aimed to review the practice patterns in surgical neuro-oncology in low- and middle-income countries (LMICs). We also present a situational report from our own country.

METHODS: A scoping review was performed following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines.

RESULTS: Twelve studies were included in the review. Most of the studies were from Asia (India, China, Iran, and Turkey), and 1 was from Brazil. Quantitative reports showed a decrease in the number of surgical neuro-oncology operations between pre-COVID-19 and post-COVID-19 time frames, but similar proportions of neuro-oncology procedures. Qualitative review showed similar practice patterns between LMICs and high-income countries, except for limitations in resources such as negative-pressure operating rooms and intensive care units, and maintenance of face-to-face consults despite the adoption of telemedicine. Limited data on adjuvant therapy were available in LMICs.

CONCLUSIONS: In our review, we found that the practice patterns in surgical neuro-oncology in LMICs during the COVID-19 pandemic are similar to those in high-income countries, except for a few modifications because of resource limitation and patient preferences.
also report on our institutional situation and surgical neuro-oncology practice in the Philippines.

METHODS
We performed a scoping review in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines.17

Criteria for Choosing Studies in the Review
We included studies that described the practice of surgical neuro-oncology in LMICs during the COVID-19 pandemic. The relevant study types were case series, cross-sectional, retrospective, and prospective cohort studies. We also included case reports, letters to the editor, and opinion articles, because there were more of these article types detailing specific strategies to guide practice, especially during the early part of the pandemic. The study populations were exclusively from LMICs or included LMICs in their sample.

Search Methods for Identification of Included Studies
We performed a systematic search of the major scientific databases including PubMed, Scopus, CENTRAL by Cochrane, EBSCOHOST, and Clinicaltrials.gov from December 2019 to September 2021. Gray literature was also searched. The search terms used were “[neuro-oncology” or “neurooncology” or “surgical neuro-oncology” or “brain tumor” or “brain cancer” or “central nervous system cancer” AND [“COVID-19” or “coronavirus disease 2019” or “pandemic”] AND [low- and middle-income country” or “LMIC” or “lower middle income country”]. Individual articles were also hand searched by reviewing the references of identified relevant studies. The available Web sites of neurosurgical and neuro-oncological societies from LMICs were also searched for relevant articles. Please see Supplementary Tables 1–5 for the full search strategy.

Two investigators (J.S.G.P. and K.H.D.I.) independently searched the databases using the search strategy. After removal of duplicates, the titles and abstracts of the remaining articles were then assessed using predetermined eligibility criteria. After screening of the titles and abstracts, the full text of the remaining articles that met the criteria were evaluated. Disagreements were settled by a third author (M.R.L.C.), and all activity was supervised by the senior author (K.J.O.K.). Eligible studies that remained after this screening were included in the final review and analysis.

Data Collection and Analysis
Extracted data from the studies included author, country, and year published; study type; effect on surgical neuro-oncology cases; preoperative, intraoperative, and postoperative considerations; and outpatient and adjuvant treatment practices. These data were consolidated in a summary table (Table 1). An expanded summary of the included studies can be found in Supplementary Table 6.

RESULTS
Included Studies
We identified 125 studies from the electronic database search. We assessed the titles and abstracts of these studies and excluded 77 articles based on predetermined qualification criteria. After the full text of 48 articles was subjected to eligibility criteria, 12 articles were included in the qualitative analysis (Figure 1).

Included studies were from India (n = 6),19-26 China (n = 2),19,20 Brazil (n = 1),18 Iran (n = 1),27 Turkey (n = 1),28 and multiple Asian countries (most from China).24 Study types were case-control (n = 6),20-23,25-27 expert opinion and review (n = 3),18,23,26 cross-sectional survey (n = 1),28 retrospective cohort (n = 1),24 and letter to the editor with case report (n = 1).25

Impact of COVID-19 on Surgical Neuro-Oncology in LMICs
Most of the studies reported a decrease in the number of neuro-oncology cases that were seen during the pandemic (9/12 studies, 75%). Of these studies, 66.7% (6/9) reported decreases in caseloads ranging from 11.2% to 79.3%.20-23,24,25,27 Of the 6 studies, 5 (83.3%) reported on the proportion of surgical neuro-oncologic compared with other types of cases. The proportions remained similar, ranging from 16.1% to 44% before the pandemic and 17.1% to 51.2% during the pandemic. Only 1 study from China reported on the tumor characteristics comparing prepan- demic and postpandemic time frames, wherein larger tumors (mean, 8.7 vs. 4.6 cm3) with greater midline shift (2 vs. 0 cm) were observed during the pandemic.20

Preoperative Considerations
All studies used a triaging system to classify patients requiring surgery according to urgency.16-29 In general, emergent or urgent surgical treatment was recommended for patients with brain tumors with significant size and mass effect, malignant tumors, or those in herniation. Patients with benign asymptomatic tumors were deemed non-elective and had the least priority. Patients between these 2 categories were deemed semielective.14,16,27

All studies recommended COVID-19 screening with reverse transcriptase polymerase chain reaction (RT-PCR) for all patients undergoing surgical neuro-oncology procedures.18-29 Two studies required a pulmonary high-resolution computed tomography (HRCT) scan in addition to the RT-PCR test.16,27 One study recommended the use of a COVID-19 rapid antigen test in patients who needed acute and emergent treatment while waiting for the RT-PCR.24

The personal protective equipment (PPE) classification uniformly used was in accordance with World Health Organization recommendations.30 Level I PPE consisted of disposable surgical cap, surgical mask, latex gloves, and isolation clothing. Level II PPE was level I PPE that used an N95 mask instead of a surgical mask and the addition of goggles. Level III PPE was level II PPE with the addition of a full facial covering (face shield) instead of goggles, with or without the use of a powered air-purifying respirator (PAPR). All studies were consistent in using level I PPE for COVID-19-negative patients and level III PPE for COVID-19-positive patients.15-29

Intraoperative Considerations
Most (11/12, 91.7%) of the studies reported a decrease in OR availability during the pandemic19-29 for the following reasons: ORs being used as ICUs, ORs being used as donning/doffing areas,32 or decreasing OR capacity to increase personnel availability for patients with COVID-19.30 Eight studies21-28 (66.7%) reported...
Study types	Brazil	China	India	Iran	Turkey	Multiple
Study types	Expert review and opinion	Letter to the editor with case report; case-control	Expert review and opinion; case-control (n = 4); retrospective cohort	Case-control	Expert review and opinion	Cross-sectional survey
Reduction in surgical neuro-oncology cases (%)	NR	Yes (NR)	Yes (11.2—79.3)	Yes (46.9)	Yes (NR)	Yes (25—50)
Proportion of surgical neuro-oncology cases (before vs. after pandemic) (%)	NR	NR	22.2—44 versus 22.6—51.2	16.1 versus 17.1	NR	NR
Preoperative considerations						
Patient triage system	Yes	Yes	Yes	Yes	Yes	Yes
Patient screening (type)	Yes (RT-PCR and chest HRCT)	Yes (RT-PCR)	Yes (RT-PCR; 1 study used rapid antigen test)	Yes (RT-PCR and chest HRCT)	Yes (RT-PCR)	Yes (at least RT-PCR)
Intraoperative considerations						
Decrease in OR availability	NR	Yes	Yes	Yes	Yes	Yes
Negative-pressure OR availability	NR	Yes	Yes in only 1 study	Yes	NR	NR
Minimize OR personnel	NR	NR	Yes	Yes	Yes	NR
PPE considerations (level)						
COVID-19—negative	I	I	I	I	I	I
COVID-19—positive	III	III	III; some advocate for PAPR	III; PAPR mandatory	III	III
Anesthetic considerations						
Only anesthesia team inside room during intubation/ extubation	NR	NR	Yes	Yes	Yes	NR
Use of video laryngoscope	NR	NR	Yes	NR	Yes	NR
Use of plexiglass box	NR	NR	Yes	NR	No	NR
Surgical procedural considerations						

NR, not reported; RT-PCR, reverse transcriptase polymerase chain reaction; HRCT, high-resolution computed tomography; PAPR, powered air-purifying respirator; OR, operating room; PPE, personal protective equipment; ICU, intensive care unit; RT, radiotherapy.
	Brazil	China	India	Iran	Turkey	Multiple
Use of endonasal	NR	NR	Avoid	Avoid	Avoid	NR
approaches						
Use of special patient	None	None	Yes in 1 study; no in	None	None	NR
draping			remainder			
Avoidance of sinuses	NR	NR	Yes	Yes	NR	NR
in craniotomy						
Avoidance of excessive	NR	NR	Yes	Yes	Yes	NR
drilling						
Use of special suction	NR	NR	NR	Yes	Yes	NR
for cautery smoke						
Use of awake craniotomy	Avoided	Avoided	Yes in 1 study; avoid in	NR	NR	NR
			remainder			
Use of intraoperative	NR	Limited use (lack of	Avoid intraoperative magnetic	NR	NR	NR
adjuncts		supplies]	resonance imaging			
Postoperative						
considerations						
Decrease in ICU	NR	NR	Yes	Yes	NR	Yes
availability						
Negative-pressure ICU	NR	NR	No	Yes	NR	NR
availability						
Postoperative patient	NR	NR	NR	No	NR	NR
testing						
Need for patient	Yes (2 weeks)	NR	No	No	No	NR
quarantine						
postoperatively						
Routine postoperative	No	NR	Yes in 1 study; no in	No	NR	NR
personnel testing			remainder			
Outpatient						
considerations and						
adjuvant therapy						
Telemedicine use	Yes	Yes	Yes	NR	NR	Yes
Face-to-face consults	No	Yes (in PPE)	Yes (in PPE) in 1	NR	Yes	Yes
Minimize outpatient	NR	Yes	Yes	NR	Yes	Yes
department personnel						
Radiotherapy						
considerations						
COVID-19 screening for	Yes	NR	Yes	NR	NR	Yes
RT						
Continue usual RT	No	No (discontinued)	Yes if malignant and young	NR	NR	NR
protocols						
Hypofractionated RT	Yes	NR	Yes	NR	NR	NR
use						
Outpatient and Adjuvant Therapy Considerations

Most studies (10/12, 83.3%) reported a shift to telemedicine outpatient consults during the pandemic.18,24,26 This strategy meant an online video consult,18-24 a purely telephone consult,25,29 or a combination of both. Face-to-face (FTF) consults were maintained in 4 studies,20,24,28,29 with 2 studies20,24 reporting that it was conducted in full PPE. The number of outpatient personnel was minimized in all studies reporting FTF consults. RT-PCR screening was not required for FTF consults, but all patients were screened using a symptom checklist questionnaire.20,24,28,29 The reasons why FTF consultation was preferred included patient preference and local culture, as well as the lack of patient resources for teleconsults.24

Four studies reported continuing radiotherapy (RT) for neuro-oncology cases during the pandemic, but in a decreased capacity.18,24,25,29 All also required COVID-19 screening before RT. Two studies18,23 recommended the use of hypofractionated RT to reduce hospital visits, and 1 study23 suggested continuing all standard RT protocols for young patients with malignancies. RT and chemotherapy services were reported to be discontinued in 1 study.30

Three studies18,24,29 recommended the continuation of in-hospital chemotherapy during the pandemic. The use of less toxic protocols (e.g., temozolomide over procarbazine-lomustin-vincristine for high-grade glioma) was advocated in 2 studies,18,23 and 1 study18 described the use of home-based chemotherapy regimens. The continuation of standard chemotherapy protocols was recommended by 2 studies,18,23 particularly for young patients with malignant tumors.

DISCUSSION

Multiple neuro-oncology guidelines from high-volume centers in HICs have recommended the following: symptom-based and disease-based patient triaging; patient segregation based on COVID-19 status; PPE based on World Health Organization recommendations with emphasis on PAPR for level III; limiting aerosolizing procedures in the OR; use of negative-pressure ORs for COVID-19—
positive patients; use of negative-pressure ICUs for postoperative patients (in case these patients develop COVID-19 infection); immediate postoperative step-down areas; the use of telemedicine for outpatient consults; the use of hypofractionated RT; and the use of less toxic chemotherapy protocols in managing neuro-oncology patients.1,2,6-11,31-34 Our review has shown that the experience and practice patterns reported in LMICs were generally similar to these recommendations but had some differences attributed to resource availability and patient preferences.

Triage for Surgical Neuro-Oncology Patients in LMICs

During the COVID-19 pandemic, patient triaging has emerged as a key strategy in managing limited resources. There has generally been a consensus regarding which neuro-oncology patients were emergent and which were nonurgent, but there is a gray area of urgent/semiurgent classification that may have different interpretations. This point was shown in some of the articles we reviewed. For example, the case of a patient with an 8-cm frontal meningioma causing a 0.5-cm midline shift with a mild motor deficit may be classified as semiurgent in one study33 and emergent in another.26

Another aspect of triaging is determining the allowable delay in surgery for each patient and establishing the definitions of the common terms used to denote the urgency of the situation. It was generally agreed that emergent patients were those who were immediately admitted and required surgical intervention within 24–48 hours, whereas the timing and allowable delays for urgent, semiurgent, and nonurgent patients were less clear.24,26,28 Triaging systems from HICs were also not unified on the matter, with reports of allowable delays in nonemergency cases ranging from 1 week to 1 month, to postponement of the surgery.35-37 During prepandemic times, the acceptable delay to surgery for patients with brain tumor in LMICs was considered to range from 0 to 14 days.38

Preoperative Patient Screening and OR Considerations from LMICs

In our review, all the studies recommended RT-PCR screening for surgical neuro-oncology patients before surgery. RT-PCR has a reported sensitivity of 90.3%–99.7%, a short turnaround time, and a relatively low cost.39 Chest HRCT, which has a high sensitivity of 89.8%–93.7%, was also used as an additional screening tool for COVID-19 in 2 studies.18,27 Because chest HRCT is more expensive than an RT-PCR test, it was not surprising that the studies that recommended HRCT screening came from Brazil and Iran, which are upper-middle-income and lower-middle-income countries, respectively.41

Regarding ORs, the economic disparity was apparent in that only 3 centers reported having a negative-pressure OR.19,24,27 In lieu of this facility, some investigators have reported the use of multiple directed air-conditioning systems to channel the airflow away from the OR that was in use.26 Unlike HICs, the emphasis was placed on PPE and PAPR use rather than on the OR setup when operating on COVID-19-positive patients in LMICs.31,33,34-37 The same strategy was used in the ICU because only 1 center had a negative-pressure ICU.37

The anesthetic considerations reported were similar to international recommendations,46 except for the use of a plexiglass box reported in 2 studies.24,26 This strategy was also used in other centers during the early phase of the pandemic but has seen decreased use later.43

Operative considerations such as avoidance of sinuses and excessive drilling were also similar to international recommendations.44,45 The latter was based on laboratory studies on aerosolized...
particles, and their real-life efficacy in preventing COVID-19 infections has yet to be elucidated.36 The avoidance of awake craniotomy was also seen in our review, except for 1 study35 that recommended it to avoid aerosolization during intubation. This situation was different from international recommendations to perform awake craniotomy when indicated in COVID-19-negative patients and avoid its use for COVID-19-positive patients. Although our review showed that some LMIC centers suggested avoidance of endonasal procedures, many international studies recommended its continued use, detailing proper patient screening and using PPE with PAPR, as key elements to COVID-19 prevention.37,38

Telemedicine for Outpatient Clinics in LMICs

The advent of the COVID-19 pandemic has seen the increase of telemedicine and its applications.31 This was also the case in LMICs, although some centers continued FTF consults because of patient preference.24 In the care of neuro-oncology patients, a few situations necessitate FTF consultation, such as the removal of staplers or sutures postoperatively.39 Direct meetings can also facilitate more accurate clinical assessment of preoperative patients so that they can be triaged properly and can improve counseling and rapport, particularly for patients facing end-of-life care or those with debilitating signs and symptoms.34,40

Given economic disparities, there may be difficulties conducting telemedicine in LMICs because of the lack of technological resources, digital infrastructure, and Internet speeds.29,30 This limitation was reported in 1 study,18 whereas the others were able to adopt the use of telemedicine for outpatient consults during the pandemic. This situation may be a result of the decreasing prices of electronic equipment (computers and smartphones) and improved Internet services in their locality.51

Need for Adjuvant Therapy Protocols in LMICs

In our review, practices for adjuvant care mirrored those of international recommendations, except for the practice of home care chemotherapy in 1 study32 to limit hospital consultations during the pandemic. Several studies barely reported on adjuvant therapy at all, stating that these were already mostly unavailable even before the pandemic because of lack of health financing.19

Situational Report from a Tertiary Referral Center in the Philippines

Our institution, the Philippine General Hospital, is the largest tertiary referral hospital in the country. Before the pandemic, it catered to 600,000 patients annually, and the neurosurgery service performed 1900–2000 operations yearly.15 When the pandemic started, the Philippine General Hospital became a COVID-19 referral center and continues to function as such, with reallocation of resources and personnel to the COVID-19 efforts of the hospital.

From a census review (unpublished data, 2019 and 2020 annual censuses of the Division of Neurosurgery), the neurosurgery service saw a 49.5% (1804 vs. 911 in 2019 vs. 2020) decrease in the total number of operations performed after the onset of the pandemic. There was also a proportionate reduction in surgical neuro-oncology operations by 52.2% (270 vs. 129) in the same time frame. The proportion of these operations was similar across the 2 time frames (14.9% vs. 14.2%).

We have adopted the recommendations for general neurosurgery proposed by our local neurosurgical society, with some minor institutional modifications.24-34 Surgical neuro-oncology patients were triaged, and only COVID-19-negative patients were scheduled for elective surgery, requiring only 1 negative RT-PCR result within 3 days of surgery. One OR wing was used for COVID-19-negative patients, whereas the other wing was used for COVID-19-positive ones. Level I PPE was recommended for non-COVID ORs, whereas level III PPE with PAPR was recommended for COVID ORs. Anesthetic considerations included the anesthesiology team being the only personnel inside the OR during intubation and extubation, and the use of a video laryngoscope. A waterproof impermeable occlusive dressing over the nose and mouth were also used after intubation.11 Awake craniotomy and endonasal procedures were performed in COVID-19-negative patients only. At the start of the pandemic, a sterile transparent plastic sheet was set up like a tent over the surgical field to serve as a barrier when drilling bone to minimize surgeon exposure to aerosolized particles.13 The neurosurgery ICU was turned into a COVID ICU, and patients were decked to a common 8-bed ICU for the entire hospital; thus, most postoperative neurosurgical patients stayed in the postanesthesia care unit for a few hours before being transferred back to the wards.

For outpatient services, telemedicine comprised 75% of our outpatient consults, and FTF consults were reserved for those requiring suture removal or a more detailed clinical assessment. In our setting, many cranial imaging studies were still printed on photographic paper instead of being available in digital form. Thus, patients should also have high-resolution smartphone cameras, because they are frequently asked to take pictures of imaging plates and send them electronically to the surgical neuro-oncology team for proper assessment.

In our hospital, service patients receive full coverage from the national health insurance system for surgery and partial compensation for RT, but no coverage for chemotherapy.55 This strategy means that surgery is free, RT is subsidized, and chemotherapy is an out-of-pocket expense for neuro-oncology patients.55 Consequently, our rates of adjuvant treatment, especially chemotherapy, were low, similar to other LMICs.52,54,60-63 During the pandemic, our radiation oncology service has seen a further decline of 56.9% in the number of neuro-oncology patients undergoing treatment (93 vs. 40, 2019 vs. 2020). Chemotherapy enrollment also declined from 14 patients in 2019 to 4 in 2020.

Limitations

Our study has several limitations. First, it is a scoping review and is subject to reviewer biases. Second, despite a thorough search, the topic being reviewed is still evolving and likely to produce more information, including gray literature, so our review may be applicable for only a specific period. Third, the studies included were heterogeneous because of the nature of the review. No direct quantitative comparisons were made among the studies.
CONCLUSIONS

In our review, we found that the practice patterns in surgical neuro-oncology in LMICs during the COVID-19 pandemic are similar to those in HICs, except for a few modifications attributed to resource limitation and patient preferences.

REFERENCES

1. Jean WC, Ironside NT, Sack KD, Felbaum DR, Syed HB. The impact of COVID-19 on neurosurgeons and the strategy for triaging non-emergent operations: a global neurosurgery study. Acta Neurochir (Wien). 2020;162:1239-1240.

2. Mragala MM, Ostrom QT, Presley SM, et al. The state of neuro-oncology during the COVID-19 pandemic: a worldwide assessment. Neuro Oncology Adv. 2021;3:11.

3. Fountain DM, Piper RJ, Poon MTC, et al. Covid-19 pandemic: a case-control study. J Neurooncol. 2020;146:20-25.

4. Simonelli M, Franceschi E, Lombardi G. Neuro-oncology during the COVID-19 outbreak: a hopeful perspective at the end of the Italian crisis. Front Med. 2020;7:1-4.

5. De Biase G, Freeman W, Elder B, et al. Path to reopening surgery in the COVID-19 pandemic: neurosurgery experience. Mayo Clin Proc Innov Qual Outcomes. 2020;4:575-584.

6. Ramakrishna R, Zadeh G, Sheehan JP, Aghi MK. Neuro-oncology management during the COVID-19 pandemic: general guidance for neuro-oncology practitioners from the AANS/CNS Tumor Section and Society for Neuro-Oncology. J Neurooncol. 2020;147:255-259.

7. Tartarone A, Lerose R, COVID-19 and cancer care: what do international guidelines say? Med Oncol. 2020;37:1-5.

8. Nimmish AM, Jaishi OB, Na TNG, et al. Urgent considerations for the neuro-oncologic treatment of patients with gliomas during the COVID-19 pandemic. Neuro Oncol. 2020;22:912-927.

9. Denis B, Wolfgang W, Stephanie EW, et al. Neuro-oncology management during the COVID-19 pandemic with a focus on WHO grades III and IV Gliomas. Neuro Oncol. 2020;22:928-935.

10. Luther E, Burks J, Eichberg DG, et al. Neuro-oncology practice guidelines from a high-volume surgeon at the COVID-19 epicenter. J Clin Neurosci. 2021;82:1-5.

11. Anglieri FF, Sabatino G, Cavallo LM, et al. Natural non facit saltus: a phase 2 proposal to manage brain tumors cases from the Neuro-oncology section of the Italian Society of Neurosurgery (SINCh). J Neurosurg Sci. 2021;65:3-7.

12. Jahan Y, Rahman A. COVID-19: Challenges and viewpoints from low-and-middle income Asian countries perspectives. J Saf Sci Resil. 2020;1:70-72.

13. Legaspi G, Omar A, Baticulan R, et al. Letter to the Editor “Service and training during the COVID-19 pandemic: perspectives from a neurosurgical center in the Philippines.”. World Neurosurg. 2020;139:741-743.

14. Low PIH, Mangat MS, Liew DNS, Wong ASH. Neurosurgical services in the Northern Zone of Sarawak in Malaysia: the way forward amid the COVID-19 pandemic. World Neurosurg. 2020;144:2710-2713.

15. Thapa A. COVID-19 and the role of neurosurgeons in Nepal. World Neurosurg. 2020;139:629-631.

16. Sadhasivam S, Avera R, Rekappalli R, et al. A systematic review on the impact of the COVID-19 pandemic on neurosurgical practice and Indian Perspective. Asian J Neurosurg. 2021;6:24.

17. Tricco AC, Lillie E, Zarins W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467-473.

18. Batistella GN de R, Santos AJ, Paiva Neto MA de, et al. Approaching glioblastoma during COVID-19 pandemic: current recommendations and considerations in Brazil. Arq Neuropsiquiatr. 2021;79:167-172.

19. Hu YJ, Zhang JM, Chen ZP. Experiences of practicing surgical neuro-oncology during the COVID-19 pandemic. J Neurolonc. 2020;14:189-200.

20. Zou Y, Zhang J, Zhang T, Feng Y, Xiong Z, Xu C. Characteristics and operation outcomes of neuro-oncology patients after COVID-19 pandemic—a case series. Interdiscip Neurosurg Aids Ther Case Manag. 2021;25:101172.

21. Goyal N, Venkataram S, Singh V, Chaturvedi J. Collateral damage caused by COVID-19: change in volume and spectrum of neurosurgey patients. J Clin Neurol. 2020;80:156-161.

22. Sahoo SK, Dhandapani S, Singh A, et al. COVID-19: Changing patterns among neuro-oncology patients from North India, efficacy of repeat testing, and inpatient prevalence. Neurosurg Focus. 2020;49:1-8.

23. Gupta T, Singh V, Balasubramian A, et al. ISNO position statement on treatment guidance in neuro-oncology during the COVID-19 pandemic. Natl Indi J. 2020;88:769-773.

24. Deora H, Dange P, Patel K, et al. Management of neurosurgical cases in a tertiary care referral hospital during the COVID-19 pandemic: lessons from a middle-income country. World Neurosurg. 2021;149:E207-E208.

25. Sharma R, Garg K, Katiyar V, et al. Analysis of neurosurgical cases before and during the coronavirus disease 2019 pandemic from a tertiary-care centre in India. World Neurosurg. 2021;152:653-654.

26. Sudhan MD, Singh RK, Yadav R, et al. Neurosurgical outcomes, protocols, and resource management during lockdown and early institutional experience from one of the world’s largest COVID-19 hotspots. World Neurosurg. 2021;155:243-246.

27. Tavassai R, Ahmadi P, Yazdani KO, Zali A, Oraee-Yazdani S. The impact of the coronavirus disease 2019 pandemic on neurosurgical practice and feasibility of safe resumption of elective procedures during this era in a large referral center in Tehran, Iran: an unmatched case-control study. World Neurosurg. 2021;142:e730-e736.

28. Ozoner B, Gungor A, Hasanov T, Torktas ZO, Kilic T. Neurosurgical practice during coronavirus disease 2019 (COVID-19) pandemic. World Neurosurg. 2021;140:e196-207.

29. Hameed NUF, Ma Y, Zhen Z, et al. Impact of a pandemic on surgical neuro-oncology—maintaining functionability in the early phase of crisis. BMC Surg. 2021;21:1-11.

30. Tingbo LE. Handbook of COVID-19 Prevention and Treatment. Zhejiang, China: The First Affiliated Hospital, Zhejiang University School of Medicine; 2020.

31. Fonkem E, Gatson NTN, Tadipatri R, et al. Telemedicine review in neuro-oncology: comparative experiential analysis for Barrow Neurological Institute and Geisinger Health during the 2020 COVID-19 pandemic. Neuro-Oncol Pract. 2021;8:109-116.

32. Weller M, Preusser M. How we treat patients with brain tumour during the COVID-19 pandemic. ESMO Open. 2020;5:19:12.

33. Price SJ, Joannides A, Plaha P, et al. Impact of COVID-19 pandemic on surgical neuro-oncology multi-disciplinary team decision making: a national survey (COVID-CNSMDT Study). BMJ Open. 2020;10:e026866.

34. Mallari RJ, Avery MB, Corin A, et al. Streamlining brain tumor surgery care during the COVID-19 pandemic: a case-control study. PLoS One. 2021;16:1-15.

35. Al Saiegh F, Mouchtrous N, Khanna O, et al. Rattle-tested guidelines and operational protocols for neurosurgical practice in times of a pandemic: lessons learned from COVID-19. World Neurosurg. 2021;146:20-25.

36. Germano A, Raffa G, Angileri FF, Cardali SM, Tomasello F. Coronavirus disease 2019 (COVID-19) and neurosurgery: literature and neurosurgical societies recommendations update. World Neurosurg. 2020;139:e682-e687.

37. Fontanella MM, De Maria L, Zanin L, et al. Neurosurgical practice during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic: a worldwide survey. World Neurosurg. 2020;139:e682-e687.

38. Mansouri A, Ku LC, Knu KJ, et al. Exploratory analysis into reasonable timeframes for the progression of neurosurgical care in low-m and middle-income countries. World Neurosurg. 2018;117:679-681.

39. Boger B, Fachi MM, Vilheza RO, Cobre AF, Tonini FS, Pontarolo R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control. 2021;49:21-29.

40. Larici AR, Cicchetti G, Marano R, et al. Multi-modality imaging of COVID-19 pneumonia: from
41. The World Bank Database. Low-and-Middle Income Countries. Available at: https://data.worldbank.org. Accessed October 1, 2021.

42. Flexman AM, Abcejo AS, Avitsian R, et al. Neuroanesthesia practice during the COVID-19 pandemic: recommendations from Society for Neuroscience in Anesthesiology and Critical Care (SNACC). J Neurosurg Anesthesiol. 2020;32:202-209.

43. Gore RK, Saldana C, Wright DW, Klein AM. Intubation containment system for improved protection from aerosolized particles during airway management. IEEE J Transl Eng Heal Med. 2020;8:1-3.

44. Reed LK, Wen J, Liang B, Wang X, Feng D, Huang JH. Intubation containment system for improved protection from aerosolized particles during airway management. IEEE J Transl Eng Heal Med. 2020;8:1-3.

45. Reed LK, Wen J, Liang B, Wang X, Feng D, Huang JH. Intubation containment system for improved protection from aerosolized particles during airway management. IEEE J Transl Eng Heal Med. 2020;8:1-3.

46. Workman AD, Jafari A, Welling DB, et al. Airborne aerosol generation during endonasal procedures in the era of COVID-19: risks and recommendations. Otolaryngol Head Neck Surg. 2020;163:478-483.

47. Thamboo A, Lea J, Sommer DD, et al. Clinical evidence based review and recommendations of aerosol generating medical procedures in otolaryngology—head and neck surgery during the COVID-19 pandemic. J Otolaryngol Head Neck Surg. 2020;49:1-14.

48. Lammers MJW, Lea J, Lea J, Westerberg BD. Guidance for otolaryngology health care workers performing aerosol generating medical procedures during the COVID-19 pandemic. J Otolaryngol Head Neck Surg. 2020;49:1-8.

49. Daggubati LC, Eichberg DG, Ivan ME, et al. Telemedicine for outpatient neurosurgical oncology care: lessons learned for the future during the COVID-19 pandemic. World Neurosurg. 2020;139:e859-e869.

50. Chang JH, Lai J, Gupta A, Nguyen AM, Berry CA, Shelley DR. Rapid transition to telehealth and the digital divide: implications for primary care access and equity in a post-COVID era. Milbank Q. 2021;99:340-368.

51. Saeed SA, Masters RMR. Disparities in health care and the digital divide. Curr Psychiatry Rep. 2021;23:1-6.

52. Academy of Filipino Neurosurgeons. AFNI advisory on performing emergency neurosurgical procedures during the COVID-19 pandemic. Philipp J Surg Subspecialties. 2020;75:30-32.

53. Academy of Filipino Neurosurgeons. AFNI advisory for neurosurgery during the COVID-19 pandemic. Philipp J Surg Subspecialties. 2020;75:33-36.

54. Academy of Filipino Neurosurgeons. AFNI recommendations for reopening of outpatient clinics and elective surgery during the COVID-19 pandemic. Philipp J Surg Subspecialties. 2020;75:37-46.

55. Mondia MWL, Espiritu AI, Batara JMF, Jamiroz RKG. Neuro-oncology in the Philippines: a scoping review on the state of medical practice, deterrents to care and therapeutic gaps. Emirates Journal of Medicine Sciences. 2021;15:1-16.

Conflict of interest statement: The authors declare that the article content was composed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received 25 October 2021; accepted 6 December 2021

Citation: World Neurosurg. (2022) 159:189-197.

Available online: www.sciencedirect.com

1878-8750/$ - see front matter © 2021 Elsevier Inc. All rights reserved.
Supplementary Table 1. Search Terms and Items Found in MEDLINE by PubMed

Search Terms	Items Found
1. Neuro-oncology or “surgical neuro-oncology” or “neurosurgical oncology” or “CNS tumor” or “central nervous system tumor” or “brain tumor” or “brain cancer”	42,366
2. “COVID-19” or “coronavirus disease 2019” or “SARS-COV-2”	182,701
3. 1 and 2	125

Supplementary Table 2. Search Terms and Items Found in Scopus

Search Terms	Items Found
1. Neuro-oncology or “surgical neuro-oncology” or “neurosurgical oncology” or “CNS tumor” or “central nervous system tumor” or “brain tumor” or “brain cancer”	420,162
2. “COVID-19” or “coronavirus disease 2019” or “SARS-COV-2”	298,299
3. “lower income” or “middle income”	158,268
4. 1 and 2 and 3	49
Supplementary Table 3. Search Terms and Items Found in Cochrane

Search Terms	Items Found
1. Neuro-oncology or "surgical neuro-oncology" or "neurosurgical oncology" or "CNS tumor" or "central nervous system tumor" or "brain tumor" or "brain cancer"	2313
2. "COVID-19" or "coronavirus disease 2019" or "SARS-COV-2"	2428
3. 1 and 2	3

Supplementary Table 4. Search Terms and Items Found in EBSCOHOST

Search Terms	Items Found
1. Neuro-oncology or "surgical neuro-oncology" or "neurosurgical oncology" or "CNS tumor" or "central nervous system tumor" or "brain tumor" or "brain cancer"	198,672
2. "COVID-19" or "coronavirus disease 2019" or "SARS-COV-2"	539,966
3. "lower income" or "middle income"	111,543
4. 1 and 2 and 3	1
Search Terms	Items Found
---	-------------
1. (Neuro-oncology or "surgical neuro-oncology" or "neurosurgical oncology" or "CNS tumor" or "central nervous system tumor" or "brain tumor" or "brain cancer") AND ("COVID-19" or "coronavirus disease 2019" or "SARS-COV-2")	0
Supplementary Table 6. Summary of Included Studies in the Review

Reference	Country	Type of Study	Preoperative Consideration	Intraoperative Consideration	Postoperative Consideration	Outpatient Consideration	Outcomes and Other Findings
Batistella et al., 2021	Brazil	Expert opinion and review	All patients screened for COVID-19 (RT-PCR); all patients need Pulmonary CT scan before admission All staff wear PPE, N95, and face shield If COVID-19—positive and stable, wait until COVID-19—negative before performing surgery If life-threatening status, bypass all protocols and treat accordingly	Awake craniotomy not recommended for COVID-19—positive patients If for reoperation, maximize all medical management first	All postoperative patients to stay in home quarantine for 2 weeks Standard adjuvant therapy given; hypofractionated RT offered to reduce hospital visits	Telemedicine used for outpatient If blood tests needed, do so in non-hospital setting	Health care inequity tackled; most centers for adjuvant care are in tertiary centers, cross-contamination is a concern Chemotherapy is not widely available
Hu et al., 2020	China	Letter to the editor with case report	All patients undergo COVID-19 screening (RT-PCR) COVID-19—negative: surgical cap, surgical face mask, protective gown and gloves COVID-19 suspect: surgical cap, N95 face mask, goggles, face shield, full face piece respirator, protective gown, gloves COVID-19—positive: transfer to a COVID-19 center OR is negative pressure for all	OR is negative pressure for all	ICU is negative pressure for all	Triaging in the clinic If benign, operate at a later (safer) time Prioritized malignant tumors in a “timely” manner If in with symptoms of increased intracranial pressure or herniation, admit	Patient with COVID-19—negative swab and unremarkable chest CT, but with symptoms was operated on with COVID-19—positive precautions
Goyal et al., 2020	India	Case-control	All patients screened with COVID-19-RT-PCR If COVID-19—positive, delay surgery if elective If urgent/emergent and COVID-19 status unknown, assume COVID-19—positive Level 1 PPE for COVID-19—negative; level III for COVID-19—positive/unknown	OR staff decreased COVID-19 OR (negative pressure) separate from non-COVID-19 OR Avoidance of endonasal procedures and excessive bone drilling If need to perform endonasal, performed in full level III PPE, negative-pressure OR, and with powered air-purifying system	ICU and floor staff decreased	Elective surgeries canceled to provide beds for COVID-19—positive patients All outpatient consults via telemedicine	Proportion of brain tumor operations similar between pre-COVID-19 and post-COVID-19, but overall numbers decreased Leaves of physicians canceled to prevent COVID-19 spread All conferences online (neuro-oncology MDC)
Reference	Country	Type of Study	Preoperative Consideration	Intraoperative Consideration	Postoperative Consideration	Outpatient Consideration	Outcomes and Other Findings
-------------------	-----------	-------------------------	--	--	--	--------------------------	---
Sahoo et al., 2020	India	Case-control	All patients screened with RT-PCR Single test for urgent/emergent cases, double tests for elective cases FFP1 face mask for COVID-19—negative OR, N95 mask for COVID-19—positive If COVID-19—positive and semiurgent/elective: Patient transferred to designated COVID-19 center and surgery rescheduled if can wait	FFP1 face mask for COVID-19—negative N95 mask for COVID-19 positive	Separate OR for COVID-19—positive and COVID-19—negative	NR	Decreased proportion of supratentorial brain tumor cases during COVID-19 pandemic (more vascular cases); significantly increased proportion of posterior fossa tumor cases treated
Ozoner et al., 2020	Turkey	Expert opinion and review	All patients screened with RT-PCR PPE level 1 if COVID-19—negative PPE Level 3 if COVID-19—positive Continue all surgery for urgent and emergent, postpone if truly elective (low acuity)	Negative-pressure OR for COVID-19—positive Video laryngoscope for intubation Minimal OR staff	NR	NR	In Turkey, because of lack of resources, some ORs converted to ICUs
Gupta et al., 2020	India	Expert opinion and review	All patients need to be screened with RT-PCR Consider use of less invasive procedures (minicraniotomy, burr hole) if possible Consider cerebrospinal fluid diversion first if with hydrocephalus			NR	Still offer standard-of-care as much as possible
Study	Country(s)	Study Design	Methods	Findings			
---------------	-----------------------------	--------------	---	---			
Hameed et al., 2021²⁹	Asian countries (mostly China, 93%; also included India, Japan, and South Korea)	Cross-sectional survey of hospitals	All patients to undergo COVID-19 screening				
Elective surgery for COVID-19							
—negative patients only in 77%							
Elective surgery for COVID-19							
—positive patients in 23%							
If COVID-19—negative, routine gowning in 51%							
If COVID-19—positive, completely enclosed gowns with self-contained breathing apparatus in 70%	NR						
Postponement or cancellation of adjuvant therapy clinics in 36%							
Transferred patients to other hospitals for adjuvant treatment in 24%; home-based adjuvant treatment in 3%							
If asymptomatic and benign, postpone to a safer time							
For malignant tumors, prioritize surgery							
Emergent procedures and patients in extremis, perform immediate surgery							
Telemedicine (online) clinics in 18%, telephone consults in 74%							
NR Postponement or cancellation of adjuvant therapy clinics in 36%							
Transferred patients to other hospitals for adjuvant treatment in 24%; home-based adjuvant treatment in 3%							
If asymptomatic and benign, postpone to a safer time							
For malignant tumors, prioritize surgery							
Emergent procedures and patients in extremis, perform immediate surgery							
Telemedicine (online) clinics in 18%, telephone consults in 74%	Response of the hospital determined by COVID-19 status in the area as well as available PPEs						
Median reduction in surgical neuro-oncologic workload of 25%—50%							
Surgical neuro-oncologic workforce allocated to COVID-19 areas in 63%							
Zou et al., 2021²⁰	China	Case-control	All patients in review were elective and COVID-19—negative				
Standard preoperative imaging and workup for all tumor patients	Intraoperative wake-up technology and Yellow fluorescence not available during COVID-19 pandemic because of limited resources						
NR							
Use video or telephone consultation as much as possible							
PPE warranted in FTF							
Social distancing practice in clinic	Patients presented with larger tumors and more midline shift during pandemic						
Longer waiting times during pandemic							
More gliomas had functional deficit when operated on during pandemic, otherwise outcomes (complications and neurologic status) were similar							
Tavanaei et al., 2021²⁷	Iran	Case-control	COVID-19 RT-PCR and high-resolution CT of the chest required for elective surgery				
Use disposable airway equipment							
Intubation in the OR by anesthesia team only, at least 5 minutes before others enter							
Smoke evacuator used for cautery							
Avoidance of aerosolization (drilling) and endonasal procedures							
For COVID-19—positive OR: powered air-purifying respirators used							
Full PPE by all OR personnel screened after surgery	ICU is negative pressure						
Patients triaged by symptom into emergency and semiurgent/elective	No patient treated as elective tested positive for COVID-19 at 30 days postoperatively, but 16% became COVID-19—positive at 60 days						
Proportion of oncology-type surgeries performed increased compared with other types in the COVID-19 period (but total number decreased)							
Reference	Country	Type of Study	Preoperative Consideration	Intraoperative Consideration	Postoperative Consideration	Outpatient Consideration	Outcomes and Other Findings
--------------------	---------	---------------	-----------------------------	-----------------------------	----------------------------	--------------------------	-----------------------------
Deora et al., 2021	India	Retrospective cohort	Rapid antigen test for emergent procedures RT-PCR for elective procedures	Box intubation used 2 neurosurgeons worked simultaneously for complicated cases to reduce OR time Intraoperative MRI not used	If health care personnel exposed, quarantine for 5 days then perform RT-PCR	Cases triaged according to acuity Telemedicine advocated but FTF pursued; patient can choose how to consult For FTF: limit number of patients; personnel in N95, face shield, gloves Gamma Knife continued during pandemic despite 70% reduction in cases	If delay in surgery was expected to be 3–6 months, routine MRI was performed at 3 months
Sharma et al., 2021	India	Case-control	All patients screened with COVID-19 RT-PCR COVID-19—negative: level I COVID-19—positive: level III	Some ORs repurposed to be donning/doffing areas Surgeons worked in 3-hour to 4-hour shifts then changed teams	Level II PPE in COVID-19—negative ICU; level III in COVID-19—positive Workers in 6-hour shifts	Telemedicine adopted for all consults Gamma Knife continued during pandemic (77% reduction)	Neurosurgeons allocated to COVID-19 areas
Sudhan et al., 2021	India	Case-control	All patients screened with RT-PCR Level III PPE for all types of operations	Intubation with video laryngoscope and plexiglass box No negative-pressure OR available Awake craniotomy used as much as possible Patient placed in a barrier tent Craniotomy plotted to avoid paranasal sinuses	NR	Triaged into: emergency, essential, routine with corresponding timelines	All staff underwent surveillance with enzyme-linked immunosorbent assay IgG and IgM

RT-PCR, reverse transcriptase polymerase chain reaction; CT, computed tomography; PPE, personal protective equipment; RT, radiotherapy; OR, operating room; MRI, magnetic resonance imaging; ICU, intensive care unit; NR, not reported; FTF, face-to-face; MDC, multi-disciplinary conference.