Supplementary information for the paper

Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N₂O emissions from nitrogen inputs to managed soils

Kristell Hergoualc’h¹*, Nathan Mueller²,³, Martial Bernoux⁴, Åsa Kasimir⁵, Tony J. van der Weerden⁶, Stephen M. Ogle²,⁷

¹ Center for International Forestry Research (CIFOR), Lima, Peru
² Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
³ Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
⁴ Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
⁵ University of Gothenburg
⁶ AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
⁷ Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA

* Corresponding author. Kristell Hergoualc’h, Center for International Forestry Research (CIFOR) c/o Centro Internacional de la Papa (CIP), Av. La Molina 1895, La Molina, Apdo Postal 1558, 15024 Lima, Peru. Email: k.hergoualch@cgiar.org
TABLE S1 Sample size, mean, and uncertainty range of the EF1 as influenced by climate, fertilizer form, land cover, and topsoil texture class, and C content. A and B indicate a significant difference between means for a given factor based on LSD Fisher test.

Factor	Class	n	Mean	95% C.I.
Climate	Temperate/boreal wet	524	0.014	B 0.008 – 0.020
	Temperate/boreal dry	121	0.007	AB -0.002 – 0.015
	Tropical wet	117	0.015	AB 0.011 – 0.018
	Tropical dry	86	0.004	A -0.004 – 0.013
Fertilizer form	Synthetic	602	0.014	B 0.007 – 0.020
	Mixed synthetic and organic	48	0.014	AB 0.011 – 0.017
	Organic	162	0.007	A 0.003 – 0.012
Land cover	Annual croplands	543	0.014	B 0.011 – 0.018
	Bare soils	74	0.012	AB 0.004 – 0.019
	Perennial systems	231	0.009	A 0.005 – 0.013
Texture class	Fine	131	0.023	B 0.018 – 0.028
	Medium	571	0.010	A 0.007 – 0.013
	Coarse	30	0.006	A -0.005 – 0.016
Soil C content	High (≥ 2%)	265	0.015	B 0.012 – 0.019
	Medium (1-2%)	241	0.007	A 0.003 – 0.010
	Low (< 1%)	159	0.009	A 0.004 – 0.013
TABLE S2 Global agricultural fertilizer N consumption, and also countries with the largest inputs of fertilizer N to croplands (synthetic – manure). The dataset combines synthetic N application rates by Mueller *et al.* (2012) and manure N application rates by West *et al.* (2014) from circa 2000

Fertilizer N application (Gg N)	Total Fertilizer	Synthetic Fertilizer	Manure Fertilizer
Global Agriculture	103,499.3	69,624.3	33,875.0
China	26,183.5	19,927.8	6,255.7
India	15,059.2	9,312.9	5,746.3
United States	13,515.6	9,521.7	3,993.9
Brazil	2,948.0	1,517.7	1,430.3
Pakistan	2,754.2	2,067.4	686.8
Indonesia	2,331.3	1,647.4	683.9
France	2,206.7	1,707.5	499.2
Mexico	2,087.3	1,167.5	919.8
Canada	1,971.8	1,564.2	407.6
Germany	1,865.1	1,372.4	492.7
FIGURE S1 Direct soil N$_2$O emissions from global agricultural croplands using the Tier 1 method from the 2019 IPCC Methods Refinement to the 2006 IPCC National GHG Inventories Guidelines (2019 IPCC MR) (a) and the 2006 IPCC National GHG Inventories Guidelines (2006 IPCC GL) (b). The top Figures display emissions from both synthetic and manure application (total), the middle and bottom Figures refer to synthetic and manure application separately.