Data Article

Data on microsatellite markers in Colletotrichum gloeosporioides s.l., polymorphism levels and diversity range

Laurent Penet*, Sophie Briand, Dalila Petro, François Bussière, Sébastien Guyader

INRA, UR1321, ASTRO Agrosystèmes tropicaux, F-97170, Petit-Bourg (Guadeloupe) France

A R T I C L E I N F O

Article history:
Received 8 March 2017
Received in revised form 12 April 2017
Accepted 4 May 2017
Available online 11 May 2017

Keywords:
Colletotrichum gloeosporioides
Anthracnose disease
Microsatellites
Molecular markers

A B S T R A C T

Colletotrichum gloeosporioides is a species complex of fungi belonging to the Glomerellaceae family (Ascomycota). It has a global worldwide occurrence and while sometimes described as a plant endophytic commensal, it also often demonstrates pathogenicity on crops and is responsible for anthracnose disease in many cultivated species. Thirty-nine polymorphic microsatellites were isolated and their polymorphism levels were determined in 95 strains from Guadeloupe (Lesser Antilles), mostly isolated from Water Yam (Dioscorea alata). The average allele number per polymorphic locus was 12.3 (decreasing to 4.3 at 5% frequency threshold, indicative of dramatic amounts of rare polymorphisms), with a range of 2–29 alleles. The microsatellite markers data will facilitate genetic diversity analyses and population genetics studies for the species complex.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Microsatellite markers data (primers and expected diversity levels)

* Corresponding author.
E-mail address: laurent.penet@inra.fr (L. Penet).

http://dx.doi.org/10.1016/j.dib.2017.05.012
2352-3409 © 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Type of data	Table
How data was acquired | ABI PRISM 3730XL automated sequencer (MACROGEN)
Data format | Raw (primers information) and partially analyzed (diversity indices)
Experimental factors | Genomic DNA
Experimental features | Isolation of microsatellite markers and amplification test
Data source location | Guadeloupe 4°44.0694’ N 53°46.881’ W
Data accessibility | This manuscript (Table 1), primers are also available from probe data bank @ NCBI (www.ncbi.nlm.nih.gov/probe/)

Value of the data

- Large set of potentially polymorphic microsatellite markers in Colletotrichum gloeosporioides.
- Diversity and genetic structure analyses at both fine and broad geographic scales.
- Pathogenic strains genetic profiling.
- Further Colletotrichum gloeosporioides species delineation (complimentary to sequencing data).
- Origin of crop inocula and host origin analyses.

1. Data

This dataset is a list of 39 microsatellite markers from the worldwide pathogenic species complex Colletotrichum gloeosporioides, including primers and basic information relative to diversity levels expected at each locus. Colletotrichum fungi are diversified [1], with species ranging from genuine endophytic commensals to biotrophic parasites or even saprophytic pathogens [2]. Species of this genus are thus often associated with crop diseases, and especially anthracnose in plants [3–5]. Taxonomic studies are currently investigating sequence based delineation of species (DNA barcoding, e.g. [6–8]), but reaching consensus is still undergoing [9]. Defining co-dominant and highly polymorphic molecular markers such as microsatellites available for diversity studies and cross geographical or ecological comparisons would be a valuable tool for the study of this species complex and would allow introducing genetic data complementary to the current genomic approaches [9]. Also, these markers might allow differentiating genetic pools that could reflect host adaptation or even possibly identify new species within strain pools (structuration via reduced gene flow, e.g. [6]). We successfully developed 39 microsatellite markers for this wide geographical and ecological range pathogen (Table 1).

2. Experimental design, materials and methods

Genomic DNA was extracted from seven strains of Colletotrichum gloeosporioides. Six microsatellite-enriched genomic libraries were produced following [10]. DNA was digested with Rsal and fragments of 500 bp were ligated into a pCR 4-TOPO vector. These were then used to transform One Shot TOP10 chemically competent Escherichia coli, producing a total of 1158 positives clones and 128 were sequenced on an ABI PRISM 3730XL automated sequencer, using T3 and T7 primers. Consensus sequences were obtained using ChromasPro 1.34 software [11]. Of these sequences, 21 were of poor quality, 24 did not show microsatellite region, 24 were sister clones, and 59 showed microsatellites (motifs of three repetitions or more). Forty-nine primers pairs were thus designed using Primer-3 [12] and PrimerSelect of DNAStar [13].
Locus name	Probe accession reference (NCBI)	Repeat motif	Forward Primer 5’ → 3	Reverse Primer 5’ → 3	Amplif. Success	Size range	Nei index
Cg12	Pr032825007	tgg	GCAATGGAGCATGCAACTAA	TGGGCTACCTCATAACACGG	76%	150–267	0.77
Cg14	Pr032825015	tgg	TCTATTGGCATCTTACAG	GCTTCTGCGGCTAGTTTCC	37%	156–159	0.31
Cg16	Pr032825021	cac	ACAACAGAGTCTCTGCGTCT	TGATGATGCTGGTAGATCAA	85%	102–276	0.71
Cg19	Pr032825026	gcc	GTCTTGTTGAAGTTTACGGCT	AGTTCTAGGCTGATACCTG	47%	103–224	0.69
Cg37	Pr032825027	gac	TCTCTGAGCAGACTGAGCT	AGTGGTCTGATGTTTGCGG	45%	90–103	0.64
Cg53	Pr032825028	tgg	ACACACGAGAAGAATCTGAAA	GAGACGACGACGAGCACGCA	69%	231–324	0.86
Cg57	Pr032825029	tgg	CGCCTTATTTTTGGAGTCTGA	TGCTATGAGTGGATTTGAAG	100%	197–239	0.88
Cg68	Pr032825030	tcc	TGCTCTGCTCTCAGACTGCT	AGGCAAGAGACCAAGCAAGA	87%	109–325	0.86
Cg71	Pr032825031	aac	TGATGCTGCTGAGATTGACT	GATGATCCTCATAAGGCTC	47%	91–250	0.86
Cg83	Pr032825032	gt	GGATTTGCTCTGCTGCTAT	GAGAAGAAGATAGGACAGCA	45%	122–218	0.85
Cg90	Pr032825033	gt	TACGCTTGGCTGAGACCTT	AGTGAATGCTAGGAAGGGG	74%	176–294	0.83
Cg91	Pr032825034	ga	GTTGGGAGAACAAGAGTCC	GACTGCTGAGAAGAATGCGA	56%	94–136	0.58
Cg92	Pr032825035	tc	CTTTATTTCACGACACCAAC	GCAGCAAGGTGTGAGAAGA	82%	92–250	0.94
Cg93	Pr032825036	tgg	TCTTTGGTTGTGATGAGGAG	GCCGCAAACTTCTCTACTT	45%	86–234	0.82
Cg95	Pr032825037	ca	GAGGGTGTGGTCTATGCTT	GCTGCTTGCTACACACAA	80%	134–192	0.77
Cg96	Pr032825038	ca	AGCGGGCGGGACCTGACAG	GAGTACCAATTTGCTGCTA	92%	102–258	0.70
Cg97	Pr032825039	at	TTGTGTGAAGAAGTAGTTGGA	AATCCACGGAGAATACATG	41%	112–152	0.53
Cg98	Pr032825040	tg	CGAGGAACCTGTCAGACTT	TTGGTCTGCTCTGCTGCTCC	56%	134–396	0.89
Cg100	Pr032825002	ag	GTGCTCTTGGGAGACAC	CAATCTTACCGACACACAT	77%	78–128	0.78
Cg109	Pr032825003	gt	TCAAAAGAAGACCCACCAAG	GACTGATGCTGAGACCTCAC	74%	130–190	0.75
Cg110	Pr032825004	ac	TGATACCTGGATGTCACACTG	GGAAGTGGAGGGACTGACCA	94%	165–252	0.67
Cg115	Pr032825005	cg	CATTGATGAGATAGGGTTCTT	GAAAGTGAGACCAAGAAGAG	89%	92–182	0.67
Cg116	Pr032825006	ca	CATTCTTATCCCCGCTTC	GCGGCGTATGACAGAGA	68%	96–196	0.89
Cg120	Pr032825008	ac	ATGTTCCTGTTGATCAGGGC	GCAGGCAATGACCAAGATG	80%	86–176	0.92
Cg122	Pr032825009	ag	CTTCTGCGCTCAAGTGGTTG	GCTGCTTGCTCAAAATCTCC	73%	78–285	0.87
Cg127	Pr032825010	ag	GTTCTGCTTGGTATACAGGCT	TTGGCTACCTGATCTGCTG	98%	208–268	0.72
Cg131	Pr032825011	ca	GACCTAGCAGCAGCAATAGG	GATGCGCTGTGAGACATG	94%	72–240	0.82
Cg132	Pr032825012	ca	GATGTCGCTGTCGTTTCTCAT	AGGGCTGAGTGTCTCTTCA	83%	92–160	0.75
Cg136	Pr032825013	gt	AATCTCAGGCTGGCTAGTGCTG	TGACTGACCTGACTGCTTCTT	66%	86–194	0.85
Cg137	Pr032825014	ga	GAGCAGCTGCTCAAGTGCGAC	GAGTGGACAGAGTACGCTAG	52%	162–262	0.91
Cg144	Pr032825016	ct	GCTCCACCATCTACTGAGCT	GCAGCTAAGTCCGTAAAGGA	34%	94–112	0.81
Cg149	Pr032825017	ga	ACCAGGAAAGAATACAGGAT	TGCCATCTGCGGTTGATT	78%	86–204	0.89
Cg150	Pr032825018	gt	TACGAGGGTTGCAGACCT	GTCGAGAGAAGATCAGCTG	75%	90–232	0.86
Cg156	Pr032825019	gtt	AGCCGAGGAGTCTGCTGAGG	CAGAGAGTGGGGTCTGAGG	85%	87–285	0.79
Cg159	Pr032825020	ctc	GCTACTTACCCGGCTTCTT	CGGATACACAAAAAAGGATCA	83%	79–91	0.55
Cg161	Pr032825022	tacc	GGAAGAACAGAAAGAGCGTA	GCTGAGGCTGAGGCTAGGAG	88%	87–267	0.69
Cg162	Pr032825023	agtt	GCTTGTGGTTGCTGAGAGTAC	TGGCAGGAGATCAGATCAGA	46%	134–150	0.73
Cg163	Pr032825024	accgc	CAAAGAACAACATACAAAAAC	AGAGTTGCTGAGCAGCTACC	62%	142–163	0.77
Cg164	Pr032825025	ctaca	GAGCGAGGAGGAGGAGGAGC	GACCTGGAAGGCGGTTAAG	49%	283–298	0.66
The primers were optimized for amplification, testing annealing temperature (44.5–64.2 °C), MgCl2 concentration (1–3.5 mM), and polymerase chain reaction cycles (25–35). PCR conditions consisted of a denaturation stage at 95 °C for 5 min followed by 40 cycles at 95 °C for 30 s, 59 °C for 30 s, 72 °C for 30 s. Thirty-nine loci successfully amplified, all within expected sizes. In a further sample of 95 strains, polymorphism was assessed. High variability in alleles and Nei index were observed (Table 1). We report amplification success in single PCR runs, to help researchers chose loci more specifically. Indeed, Colletotrichum gloeosporioides demonstrate high phenotypic plasticity, possibly involving flexible DNA methylation, and amplification might vary depending on methylation state. We thus recommend choosing among these loci with a subsample study first.

In this polymorphism assessment, our strains were sampled from Dioscorea alata in Guadeloupe, where anthracnose is the main threat [14] and impacted agro-diversity [15]. Comparisons at wider geographical scales might enlighten important population processes: local dispersal [16], up to migration at greater scales [17], as well as genetic differentiation levels.

Acknowledgements

We are grateful to Thibaut Malausa, Nicolas Ris and Sylvie Warot (INRA, Institut Sophia Agrobiotech, France) for technical assistance. This work received the financial support of INRA through the Durayam project (No. P10259). The authors declare having no conflict of interests.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.05.012.

References

[1] P.F. Cannon, U. Damm, P.R. Johnston, B.S. Weir, Colletotrichum – current status and future directions, Stud. Mycol. 73 (2012) 181–213.
[2] R. Rodriguez, R. Redman, More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis, J. Exp. Bot. 59 (2008) 1109–1114.
[3] B.S. Weir, P.R. Johnston, U. Damm, The Colletotrichum gloeosporioides species complex, Stud. Mycol. 73 (2012) 115–180.
[4] L. Cai, D. Udayanga, D.S. Manamgoda, S.S.N. Maharachchikumbura, E.H.C. McKenzie, L.D. Guo, X.Z. Liu, A. Bahkali, K.D. Hyde, The need to carry out re-inventory of plant pathogenic fungi, Trop. Plant Pathol. 36 (2011) 205–213.
[5] C. Garrido, M. Carbú, F.J. Fernández-Acero, G. Budge, I. Vallejo, A. Colyer, J.M. Cantoral, Isolation and pathogenicity of Colletotrichum spp. causing anthracnose of strawberry in south west Spain, Eur. J. Plant Pathol. 120 (2008) 409–415.
[6] V.P. Doyle, P.V. Oudemans, S.A. Rehner, A. Litt, Habitat and host indicate lineage identity in Colletotrichum gloeosporioides s.l. from wild and agricultural landscapes in North America, PLoS One 8 (2013) e62394.
[7] D.N. Silva, P. Talhinhas, V. Varzea, L. Cai, O.S. Paulo, D. Batista, Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp.) hosts, Mycologia 104 (2012) 396–409.
[8] M. Du, C.L. Schardl, E.M. Nuckles, L.J. Vaillancourt, Using mating-type gene sequences for improved phylogenetic resolution of Colletotrichum species complexes, Mycologia 97 (2005) 641–658.
[9] P.F. Cannon, U. Damm, P.R. Johnston, B.S. Weir, Colletotrichum – current status and future directions, Stud. Mycol. 73 (2012) 181–213.
[10] T.C. Glenn, N.A. Schable, Isolating microsatellite DNA loci method, Enzymology 395 (2005) 202–222.
[11] C. McCarty, Chromaspro 1.34, Free Softw. (1998).
[12] S. Rozen, H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers, in: S. Misener, S.A. Krawetz (Eds.), Bioinformatics Methods and Protocols, Humana Press, Totowa, NJ, 1999, pp. 365–386.
[13] T.G. Burland, DNASTAR’s Lasergene Sequence Analysis Software, in: S. Misener (Ed.), Bioinformatics Methods and Protocols, Humana Press, Totowa, NJ, 1999, pp. 71–91.
[14] L. Penet, E. Barthe, A. Alleyne, J.M. Blazy, Disease risk perception and diversity of management strategies by farmers: the case of anthracnose caused by Colletotrichum gloeosporioides on water yams (Dioscorea alata) in Guadeloupe, Crop Prot. 88 (2016) 7–17.
[15] L. Penet, D. Cornet, J.M. Blazy, E. Barthe, F. Bussière, S. Guyader, C. Pavis, D. Pétro, Varietal Dynamics and Yam Agro-Diversity Demonstrate Complex Interactions Integrating Farmers’ Strategies, Networks, and Disease Experience, Front. Plant Sci. 7 (2016).
L. Penet, S. Guyader, D. Pétro, M. Salles, F. Bussière, Direct Splash Dispersal Prevails over Indirect and Subsequent Spread during Rains in *Colletotrichum gloeosporioides* Infecting Yams, PLoS One 9 (2014) e115757.

S.N. Rampersad, D. Perez-Brito, C. Torres-Calzada, R. Tapia-Tussell, C.V. Carrington, Genetic structure and demographic history of *Colletotrichum gloeosporioides* sensu lato and *C. truncatum* isolates from Trinidad and Mexico, BMC Evol. Biol. 13 (2013) 1.