Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review

Bárbara C. Franco1,2 • Omar Defeo3 • Alberto R. Piola2,4,5 • Marcelo Barreiro6 • Hu Yang7 • Leonardo Ortega8 • Ignacio Gianelli3 • Jorge P. Castello9 • Carolina Vera1,2,5 • Claudio Buratti10,11 • Marcelo Pájaro10 • Luciano P. Pezzi12 • Osmar O. Möller9

Received: 19 November 2019 / Accepted: 25 June 2020 / Published online: 7 July 2020
© Springer Nature B.V. 2020

Abstract
We present an interdisciplinary review of the observed and projected variations in atmospheric and oceanic circulation within the southwestern South Atlantic focused on basin-scale processes driven by climate change, and their potential impact on the regional fisheries. The observed patterns of atmospheric circulation anomalies are consistent with anthropogenic climate change. There is strong scientific evidence suggesting that the Brazil Current is intensifying and shifting southwards during the past decades in response to changes in near-surface wind patterns, leading to intense ocean warming along the path of the Brazil Current, the South Brazil Bight, and in the Río de la Plata. These changes are presumably responsible for the poleward shift of commercially important pelagic species in the region and the long-term shift from cold-water to warm-water species in industrial fisheries of Uruguay. Scientific and traditional knowledge shows that climate change is also affecting small-scale fisheries. Long-term records suggest that mass mortalities decimated harvested clam populations along coastal ecosystems of the region, leading to prolonged shellfishery closures. More frequent and intense harmful algal blooms together with unfavorable environmental conditions driven by climate change stressors affect coastal shellfisheries, impact economic revenues, and damage the livelihood of local communities. We identify future modelling needs to reduce uncertainty in the expected effects of climate change on marine fisheries. However, the paucity of fisheries data prevents a more effective assessment of the impact of climate change on fisheries and hampers the ability of governments and communities to adapt to these changes.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10584-020-02783-6) contains supplementary material, which is available to authorized users.

✉ Bárbara C. Franco
barbara.franco@cima.fcen.uba.ar

Extended author information available on the last page of the article
1 Introduction

Climate impacts marine populations through a variety of ecological processes, including reproduction, growth, migration patterns, recruitment, and phenology (Stenseth et al. 2002; Cochrane et al. 2009; Byrne 2011). Warming, acidification, and deoxygenation are major climatic stressors of ocean ecosystems (Gruber 2011). Climate change could also affect the life cycle, yield, variability, seasonality, and distribution of marine species, which could strain already vulnerable coastal communities (Poloczanska et al. 2016; Pecl et al. 2017). Although ocean warming is inhomogeneous, a redistribution of species associated with warming has been reported (Pecl et al. 2017). Thus, a higher rate of ocean warming could affect the distribution, abundance, and life history traits of fish (Pauly and Cheung 2018) and invertebrates (McLachlan and Defeo 2018).

Fisheries have strong socioeconomic impacts, representing key contributions to food security and to the livelihoods of millions of people. Worldwide, fisheries have supplied food, created employment, and generated income and economic growth through harvesting, processing, and marketing fish. Fish and invertebrates, which represent most of the marine fisheries catches, are strongly dependent on oceanographic conditions (Pauly et al. 2002; Pörtner and Knust 2007). Climate change affects the global productivity of marine fisheries (Free et al. 2019), exacerbating the challenges marine life faces (e.g., overfishing, pollution, and habitat degradation). Warming and other climate change-related stressors alter the distribution, demography, and life history traits of exploited species, with direct fishery implications through changes in the quantity, quality, and prediction of catches (Brander 2007; Stock et al. 2011; Barange et al. 2018; Free et al. 2019), resulting in detrimental socioeconomic impacts (Sumaila et al. 2011; Free et al. 2019).

The southwest South Atlantic Ocean (SWAO) shelf extends from Cabo Frío (~22° S, Brazil) to the tip of Tierra del Fuego (55° S, Argentina) (Fig. 1). This region is one of the most biologically productive areas of the world ocean (Acha et al. 2004; Lutz et al. 2010). Its marine fisheries supply food and livelihoods to millions of people in Brazil, Argentina, and Uruguay. Marine fish landed per year in Argentina, Brazil, and Uruguay reached an average of 956,000 t during 2005–2015 and present an overall decreasing trend (Bertrand et al. 2018). Moreover, the SWAO ranked third in the percentage of unsustainable stocks (59%) among the 16 major statistical areas identified by the FAO (2018). The declining catch pattern, together with the high percentage of stocks fished at biologically unsustainable levels, suggests a worrying scenario that could be associated not only with the fishing process itself but also with environmental fluctuations, which could impact fish stocks. The SWAO presents one of the largest marine warming hotspots worldwide (Hobday and Pecl 2014) and high-resolution models project sea surface temperature (SST) will continue to rise by at least 3 °C by 2099 (Popova et al. 2016).

Climate change has a significant impact on the ocean environment, such as warming (Roemmich et al. 2015), acidification, changes in stratification, circulation, and deoxygenation, among others. These changes impact the global distribution of marine biota, food security, and human wellbeing (Pecl et al. 2017).
Here we review observed and projected impacts of climate change on the atmospheric circulation, ocean, and fisheries of the SWAO. Projections for the regional climate and ocean are also described to discuss how future climate scenarios could impact regional fisheries.

2 The southwest South Atlantic Ocean

The SWAO is one of the most productive areas of the world ocean, mainly localized in the Patagonian continental shelf (Acha et al. 2004) (Fig. 1). The northern shelf is occupied by southward flowing Subtropical Shelf Water (STSW). STSW is composed by modified Tropical Water (TW) diluted by continental runoff from the coast of southern Brazil (e.g., Piola et al. 2000). TW intrusions are also observed in upper layers in the northern continental shelf. TW is part of the southward flowing Brazil Current (BC) along the shelf break, and it is the warmest shallow water in the region (Campos et al. 1995), whereas the South Atlantic Central Water (SACW) is observed below 200-m depth.

The southern shelf is mostly occupied by a relatively cold and fresh variety of northward flowing subantarctic waters, referred to as Subantarctic Shelf Water (SASW). SASW waters are exported offshore mainly near the region of confluence between the intense Brazil and Malvinas currents (Franco et al. 2018), which sweep the offshore edge of the shelf (Fig. 1). The Río de la Plata (RdP) discharge is the major freshwater inflow, with annual averages of ~23,300 m3 s$^{-1}$. The Patos/Mirim Lagoon system (~32° S) also contributes an additional 1500 and 2000 m3 s$^{-1}$ discharge (Möller 1996). Both discharges contribute to the formation of a low-salinity plume referred to as Plata Plume Water (PPW; e.g., Piola et al. 2008a). The PPW spreads along the coastlines of Argentina, Uruguay, and southern Brazil (Piola et al. 2000), and is exported to the deep ocean along the Brazil-Malvinas Confluence (Guerrero et al. 2014; Matano et al. 2014). Temperature and salinity distributions in the region are largely controlled by local atmospheric conditions, and remotely by regional- and global-scale climate variability modes (Barreiro et al. 2018). Large amplitude variations in continental runoff and low-level winds at seasonal and interannual time scales induce significant changes in the distribution of shelf water masses (Piola et al. 2005) and the shelf-deep ocean exchanges (Guerrero et al. 2014). These variations in RdP discharge modulate the input and distribution of freshwater and nutrients, which lead to large changes in water mass properties over the neighboring continental shelf (Ciotti et al. 1995; Piola et al. 2008a) and impact the spawning, recruitment, and feeding of the most abundant pelagic fishes (Acha et al. 2012; Checkley et al. 2017). Thus, continental runoff variability driven by atmospheric surface circulation regulates the recruitment variability in the outer estuary and affects the marine food web and fisheries over the shelf.

3 Climate change impacts on the atmospheric circulation, ocean, and fisheries

3.1 Atmospheric circulation

The atmospheric circulation over the South Atlantic Ocean (SAO) has changed during the past decades (Son et al. 2018; Yang et al. 2020). In austral summer, anthropogenically forced
stratospheric ozone depletion led to the poleward shift of the westerly jet and precipitation bands over the Southern Hemisphere. Moreover, a wider tropical belt and Hadley cell shift in response to increasing atmospheric greenhouse gas concentrations (GHG) have also been observed (Tao et al. 2016). A southward shift of the poleward edge of the Hadley cell during the past 30 years is also observed in control simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5; Kim et al. 2017). Such changes in the Hadley circulation (e.g., width and strength) were not significant in pre-industrial control runs (Hu et al. 2013), suggesting that a substantial part of these changes is anthropogenic. This is also
consistent with the recent report of a poleward shift of the mid-latitude anticyclone in the SAO during the past four decades (Yang et al. 2020), inducing long-term changes in wind stress and wind stress curl over the SAO (Vizy and Cook 2016).

A significant positive trend in rainfall has been detected over the RdIP basin, particularly during summertime (Liebmann et al. 2004), which is partially attributed to human-induced increasing GHG (Vera and Diaz 2015). The increased precipitation leads to increased river runoff, which impacts the stratification (Piola et al. 2000) and circulation (Matano et al. 2014), and modulates the nutrient supply to the coastal ocean (Ciotti et al. 1995). Such changes in atmospheric forcing and river discharge may also have a substantial impact on recruitment of commercially exploited species (e.g., Acha et al. 2012; García-Alonso et al. 2019).

3.2 Ocean

Changes in surface winds and continental discharge are expected to have a strong impact on ocean stratification and circulation patterns, particularly over the shallow continental shelves (Combes and Matano 2018). Therefore, it is critical to understand the ocean response to changes in wind forcing and the variability of the continental discharge.

The sensitivity of the SWAO shelf circulation to changes in wind pattern is highest in the 28° S–35° S latitude band. Analyses of in situ observations (Piola et al. 2000), satellite observations (Piola et al. 2008b; Strub et al. 2015), and numerical models (Palma et al. 2008; Matano et al. 2014) show that seasonal reversals of the shelf circulation occur in this region in response to along-shelf wind reversals, from southwesterly in austral fall-winter to northeasterly in spring-summer. These seasonal reversals in the shelf circulation induce a northeastward extension of the low-salinity/high-nutrient PPW, and its southwestward retreat in spring-summer (Piola et al. 2000; Möller et al. 2008). The wind seasonality decreases south of 40° S, a region dominated by prevailing westerly winds throughout the year (Palma et al. 2008).

The poleward displacement in wind patterns reported during the past decades over the SAO (see Section 3.1) has led to a southward expansion of the subtropical gyre and the southward extension of the BC, leading to a wide region of positive SST trend (Goni et al. 2011; Lumpkin and Garzoli 2011). The BC warming over the past decades (Wu et al. 2012; Yang et al. 2016) created one of the most extensive and intense warming hotspots in the global ocean (Hobday and Pecl 2014) (Fig. 2). This warming region extends along the BC path, the South Brazil Bight (SBB, ~21° S–29° S), and in the RdIP. The latter is a distinct region of intense warming not well detected in global analyses. A detailed view of the temperature distribution trends in the region emerges from the analysis of higher spatial resolution observations (0.25° × 0.25°) from Oliver et al. (2018; their Fig. 1k).

Though the variability of along-shore winds determines the distribution of PPW over the shelf of southern Brazil and Uruguay, the availability of nutrient-rich freshwater is modulated by the variations of RdIP discharge. Positive ENSO phases lead to higher than average precipitation over the RdIP basin (Grimm et al. 2000) and hence a higher discharge (Cavalcanti et al. 2015). However, hydrographic (Piola et al. 2000) and satellite observations (Piola et al. 2008b), and numerical models (Matano et al. 2014) suggest that northeasterly winds prevail during periods of enhanced discharge, preventing the northeastward growth of the PPW.

South of 40° S, the shelf circulation is primarily forced by strong westerly winds, tidal currents, and the influence of the Malvinas Current, which flows northward along the upper
The northern portion of the shelf presents a large seasonal stratification cycle, which decreases further south in response to decreased net heat gain through the surface and increased wind intensity (Rivas and Piola 2002). The few direct current observations available (Rivas 1997; Valla and Piola 2015; Lago et al. 2019) and numerical models (Palma et al. 2008; Combes and Matano 2018) indicate a northeastward mean flow with increasing intensity towards the shelf break. Similar to what is observed further north, the variability in magnitude of the shelf transport south of the RdIP is primarily controlled by variations of along-shore winds (Lago et al. 2019).

Close to the coast, the circulation presents strong semi-diurnal fluctuations associated with the lunar tidal forcing. In agreement with observations, numerical simulations forced with different wind fields show a strong sensitivity of the shelf circulation to wind forcing (Palma et al. 2004; Combes and Matano 2018). Though most of the Patagonia shelf is under the influence of strong westerly winds, variations in the meridional wind stress can modulate the strength of the along-shore transport and the shelf break upwelling (Carranza et al. 2017; 2018).

Fig. 2 Overlap between the distribution of the large SWAO “hotspot” reported by Hobday and Pecl (2014) (data provided by A. Hobday, polygon with blue stippling), representing observed warming from 1950 to 1999, and difference between the mean 2000–2016 SST and 1982–1998 SST (reproduction of Fig. 1k of Oliver et al. 2018). Color shading and color scale at right
Combes and Matano 2018). The detection of these changes requires a robust, purposefully
designed network of in situ and remote observations.

3.3 Fisheries

The anchovy *Engraulis anchoita* is the most abundant forage fish in the SWAO. With a
maximum estimated biomass of 5.4 million t (e.g., Checkley et al. 2017), *E. anchoita* is
distributed from ~22° S to ~47° S (Hansen 2004). Adult stock displacements from
Uruguayan and Argentine shelves to southern Brazil follow diluted subantarctic waters
(Costa et al. 2016). Decreasing trends in egg abundance, a proxy of *E. anchoita*
biomass, are correlated with positive SST anomalies and high salinity conditions in
the northern Argentine shelf (Auad and Martos 2012). Off southern Brazil, egg and
larval abundance of anchovy are also negatively correlated with temperature fluctua-
tions (del Favero et al. 2018). A long-term analysis (1991–2017) also revealed a
declining trend in Argentine anchovy landings (34°–41° S), together with a decrease
in the size and weight at age (Prenski et al. 2016 and references therein). The stock
has been managed sustainably over time, with catches substantially below the total
allowable catch estimated by routine scientific hydroacoustic assessments, and the
fishery has been certified by the Marine Stewardship Council since 2011 (Pérez-
Ramírez et al. 2016). Therefore, climate change drivers influencing the oceanographic
conditions over the SWAO may be a major cause of the long-term trends in anchovy landings
(Supplementary Table S1). Similar trends in small pelagic fishes have been reported in the
northern hemisphere (Van Beveren et al. 2016; Saraux et al. 2019).

The Atlantic chub mackerel (*Scomber colias*) is a middle-size pelagic with a wide range
latitudinal distribution in the western Atlantic (45° N to 45° S; Eschmeyer et al. 2017; Alcaraz
2016). During the past decades (1991–2018), in austral summer, the distribution of this species
has expanded southwards up to 47° 30′ S (C Buratti, personal communication). This poleward
shift could be associated with a similar expansion of feeding grounds of large zooplankton,
mainly calanoid copepods (Cepeda et al. 2018; Supplementary Table S1). Similar poleward
expansions of the congeneric *S. scombrus* and *S. japonicus* have been reported in the Northern
Hemisphere in recent years. These displacements could be driven by shifts in food availability
and distribution, which, in turn, would respond to increased SST (Bruge et al. 2016; Pacariz
et al. 2016; Lee et al. 2018).

Impacts of long-term ocean warming on Uruguayan industrial fisheries have been recently
documented (Gianelli et al. 2019b). The mean temperature of the catch (MTC) over the
Uruguayan shelf, which is useful to assess global warming effects on fisheries (Cheung
et al. 2013), was significantly correlated with SST variability over the region (Gianelli et al.
2019b). The study suggests a shift from cold-water to warm-water species in landing com-
position from 1973 to 2017 (Fig. 3). The analysis also showed that landings of Argentine hake
Merluccius hubbsi strongly modulate the MTC trends. *Merluccius hubbsi* represented the most
important fishery in Uruguay during the past 60 years, and declines in catch per unit of effort
(Lorenzo and Defeo 2015), and landings (Gianelli and Defeo 2017) were observed in the past
25 years. *M. hubbsi* is a cold-water affinity species, and therefore, the systematic increase in
SST reported during the past 30 years over the Uruguayan shelf (Ortega et al. 2012, 2016)
implies a trend towards unfavorable thermal conditions for the species. The reported long-term
warming possibly exacerbated exploitation patterns responsible for the observed landing
trends (Supplementary Table S1). Due to the commercial relevance of the species and current
unfavorable thermal conditions over the Uruguayan shelf, a contraction in the trailing range edge of *M. hubbsi can be expected.

The Brazilian sardine (*Sardinella brasiliensis*), a small pelagic fish with biomass estimates up to 1.2 million t (Checkley et al. 2017), has been the main resource in the southeastern Brazil seine fishery (23°–29° S) during the past several years. At the main fishery ground in the SBB, the Brazilian sardine experienced a considerable decline in the 1980s due to overfishing (Jablonski 2007; Araújo et al. 2018). A poleward displacement of the shoals led to an increase in landings of the southern fleets from 1980 onwards (Jablonski 2007). Gasalla et al. (2017) also suggested that the Brazilian sardine moved to colder and deeper waters, leading to a southward shift in its distribution. The southern edge of the sardine distribution was typically at 29° S (Santa Marta Grande Cape), but the first occurrence of this species in southern Brazilian waters at about 34° S was reported in April–May 1991. More recently (2016–2017), sardine juveniles have been regularly caught on shallow waters (up to 30 m depth) at 31°–33° S during several research surveys (Catalani 2017), suggesting a persistent southward shift of its distribution during the past 20–30 years that may be associated with the intensification and poleward shift of the BC (Supplementary Table S1).

Long-term observations on estuaries and sandy beaches at Sepetiba Bay (~23° S), which serve as rearing grounds for commercially important fishes such as *S. brasiliensis*, suggest that boundaries of fish fauna distribution may have displaced poleward (Araújo et al. 2018), presumably in response to ocean warming (Supplementary Table S1). Changes in the presence and relative abundance of species over four decades (1980–2010) suggest that the region is facing a “tropicalization” of the marine community. Some small pelagic clupeoids (*Sardinella brasiliensis*, *Anchoa lyolepis*, *Anchoa tricolor*, and *Harengula clupeola*) responded to ocean warming with faster population growth rates, whereas others (*Anchoa marinii*, *Anchoviella brewirostris*, *Anchoviella lepidentostole*, and *Lycengraulis grossidens*) disappeared or
drastically decreased their abundance. The plausibility of the “tropicalization” process in the region is in agreement with the poleward expansion of tropical fish (Vergés et al. 2014).

The yellow clam *Mesodesma mactroides* is an intertidal bivalve with cold-water affinities that has been commercially exploited in sandy shores of Argentina, Uruguay, and southern Brazil (McLachlan and Defeo 2018). The yellow clam populations, and associated small-scale fisheries, have been affected by mass mortality events (Defeo et al. 2018), which expanded poleward, occurring first in 1993 in southern Brazil, reaching Uruguay in 1994/1995 and Argentina between 1995 (36° S) and 2002 (40.5° S; Ortega et al. 2016). Mortalities were observed mostly in spring and summer when clams are more susceptible to diseases. A decrease in abundance and individual size, together with a deteriorated body condition, has been documented in the long term and was associated with ocean warming during the past 30 years (Ortega et al. 2012, 2016). The yellow clam fishery has been closed during 14 years in Uruguay and is still closed in Argentina and Brazil, affecting economic incomes and local community livelihoods (Gianelli et al. 2015). Clam populations have not recovered to pre-mass mortality abundance levels, denoting a high sensitivity to warming and a poor adaptive capacity (Schoeman et al. 2014). The increase in frequency and duration of harmful algal blooms (HABs), a climate-driven stressor, adversely affects yellow clam fishing activities. An increasing representation of phytoplankton species with warm-water affinities and closely linked to warming along the Uruguayan coast has been documented (Martínez et al. 2017). The number of yellow clam fishery closures due to HABs increased from 30 days in 2014 to a total closure during the 2017 fishing season. In addition, more intense and frequent onshore southerly winds, another climate-driven stressor, restricted the number of fishable days in recent years (Gianelli et al. 2019a). The increasing adverse effect of red tides and unfavorable environmental conditions strongly impacted the yellow clam fishery, leading to loss of fishers’ revenues and economic uncertainty (Supplementary Table S1; Gianelli et al. 2019a).

Fishers also perceived that climate change in the SWAO affects their fisheries. In the SBB, fishers identified several climate-related signals such as reduced precipitation, increased drought and ocean temperature, calmer sea conditions, and changes in wind intensity and direction (Martins and Gasalla 2018). Many of the perceived changes, which have had overall negative effects on fishing activities, were supported by scientific long-term data (Martins and Gasalla 2018). In Uruguay, yellow clam fishers have expressed their concerns about the increase in HABs and the occurrence of mass mortalities (Pittman et al. 2019). They also perceived a significant reduction of fishable days through time due to unfavorable onshore wind conditions, an observation also scientifically verified (Gianelli et al. 2019a).

4 Projections on climate, ocean, and fisheries

4.1 Climate

Climate projections for the next decades forced by different increasing GHG scenarios suggest further widening of the Hadley circulation and a poleward displacement of the Southern Hemisphere westerlies (Tao et al. 2016). However, the recovery of stratospheric ozone concentration expected by around 2050 will slow down the poleward side of the upper tropospheric jet during summer (Tao et al. 2016). In contrast, some models suggest that ozone recovery will have no impact on surface winds (Karpechko et al. 2010). Trends in the observed zonal near-surface wind during the past 40 years (1979–2018) are consistent with climate
projections for the 21st (CMIP5) (based on Representative Concentration Pathway (RCP) of greenhouse gas emission scenario RCP4.5), suggesting the poleward shift of the subtropical anticyclone of the SAO based on anthropogenic forcing will continue (Fig. 4).

Future changes in precipitation may impact directly on continental discharge and ocean stratification, thus modulating nutrient fluxes into the coastal ocean. Globally, changes in rainfall over the oceans due to anthropogenic forcing follow in general the wet-gets-wetter, dry-gets-drier paradigm, with precipitation increasing in the equatorial regions, decreasing in the subtropics, and increasing again at high latitudes. In the SAO, rainfall is expected to decrease north of 30° S and increase further south, with a maximum in the SWAO. Annual precipitation extremes are expected to increase in subtropical South America and the SWAO (+ 15%). Models tend to agree on a projected summer rainfall increase of ~20–30% over southeastern South America. In winter, projected rainfall increases are ~10–20%, though these projections have large uncertainty (Sánchez et al. 2015).

Temperature projections for 2100 show an overall increase over South America during all seasons, with a 1.5–3 °C warming in the subtropical region (Sánchez et al. 2015). Climate models also project a positive trend in temperature extremes over the SAO (+ 1.0–2.0 °C) and neighboring continents (+ 2.0–4.0 °C) under a 2.0 °C global mean warming (Hoegh-Guldberg et al. 2018).

The SWAO is also affected by ENSO by inducing changes in surface winds, heat fluxes, and river discharges (Piola et al. 2005; Barreiro 2010). In a warming climate, an increased frequency of extreme rainfall events is projected during ENSO, accompanied by a decline in the frequency of weak or moderate daily precipitation, thus having limited impact on

![Observational climatology (contours) and trends (shading) of the zonal component of near-surface winds. Ensemble trends of the zonal near-surface winds are based on the NCEP/NCAR, NCEP/DOE, and ERA-Interim reanalysis datasets covering 1979–2018. Stippling indicates regions where trends exceed the 95% confidence level (Student’s t test).](#)

![Multimodel ensemble climatology (contours) and trends (shading) of the zonal component of near-surface winds. Contours indicate the climatology of zonal near-surface wind during the past 100 years of the pi-control experiment from CMIP5. Shading shows the zonal wind difference between the 2090–2100 RCP4.5 simulations and the past 100 years of the pi-control experiment. The 17 CMIP5 models used in the multimodel ensemble are listed below panel b. Stippling indicates regions where the difference exceeds one standard deviation of the local variations.](#)
seasonal mean rainfall anomalies (Cavalcanti et al. 2015). However, there is large uncertainty about the future characteristics of ENSO in a warmer climate and thus on how it may impact remote areas (IPCC 2013).

Mean circulation changes, like the latitudinal location of the jet stream, will affect the atmospheric teleconnections from the Pacific. Moreover, the climate variability will also change under global warming affecting southeastern South America (Martín-Gómez and Barreiro 2017). The impact of ENSO on southeastern South America is also modulated by the tropical Atlantic SST (Pezzi and Cavalcanti 2001; Barreiro and Tippmann 2008).

4.2 Ocean

Air-sea interactions play a key role in determining the climate and its variability in the SAO, where there is a long-term enhancement and a poleward shift of the subtropical anticyclonic flow (see Section 3.1). Consequently, the meridional shear of zonal wind between mid (south of 20° S) and high latitudes becomes stronger, increasing the wind stress curl and thereby inducing a stronger BC. Projections by 2100 (RCP4.5) based on a multimodel ensemble of 27 (CMIP5) simulations show that the stronger warming trend observed over the BC and its southern extension during the past decades (see Section 3.2) will continue (Yang et al. 2016). Yang et al. (2016) pointed out that changes in BC intensity and location in the twenty-first century will be largely controlled by the opposing effects of ozone recovery, rising GHG, and natural variability.

Anthropogenic changes in ocean circulation have been proposed as an additional stressor of marine ecosystems besides ocean warming or acidification, since large changes in the strength and position of the western boundary currents (i.e., the BC) have already been observed (Van Gennip et al. 2017). Projections by 2099 from a high-resolution global ocean model run under the IPCC strong warming RCP8.5 scenario show a weaker BC, in contrast with results based on lower resolution CMIP5 models (e.g., Yang et al. 2016). A southward displacement of the BC may arguably impact the nutrient supply from the Malvinas Current to the northern Patagonia continental shelf, with yet undetermined impacts on marine productivity and the marine food web, including fish.

To overcome the high uncertainty levels associated with predictions of global models and to gain better understanding of the changes in the circulation over the SWAO shelf, regional coupled ocean-atmosphere models with higher horizontal resolution than CMIP5-class models (1° × 1°) should be developed.

4.3 Fisheries

Projections of changes in fisheries catches under expected future climate change scenarios (based on RCP2.6 and RCP8.5) by 2050 and 2100 relative to 2000 in the EEZs of Argentina, Uruguay, and Brazil have been recently reported in terms of the total maximum catch potential (Cheung et al. 2018). The results based on outputs from the dynamic bioclimate envelope model (DBEM) (Cheung et al. 2016) and the dynamic size-based food web model (Blanchard et al. 2012) are shown in Fig. 5. Both models predict a decrease in overall fisheries catches for the three countries by 2050 and 2100 and for both climate change scenarios. Projections have very large uncertainties, mainly for Uruguay: averaged declines of $-10.43\% \pm 46.02\%$ and $-17.65\% \pm 53.24\%$ are predicted for the dynamic bioclimate envelope model by 2050 and 2100 (RCP8.5), respectively.
In the SWAO, commercially important species could be vulnerable to future climate scenarios (see details in Section 3.3). On global rankings, Argentina, Brazil, and Uruguay exhibited relatively low fishery vulnerability levels to climate change (Blasiak et al. 2017; Ding et al. 2017). Nevertheless, Brazil showed an index of vulnerability 2.5 times higher than Uruguay and Argentina, the latter being among the five least vulnerable countries across different RCPs and timeframes worldwide (Blasiak et al. 2017). Regional heterogeneity concerning vulnerability should be carefully considered. Worldwide, international conflicts between countries have arisen from shifts in fish stock distributions even in the presence of strong regional management governance bodies, suggesting the need for the development of new management tools to manage shifting resources (Pinsky et al. 2018).

Marine ecosystem services, including fisheries, are vulnerable to extreme weather events such as marine heatwaves. To date, the most intense marine heatwave in the SWAO shelf over the past 30 years left tons of dead fish and HABs on the Uruguayan coast during the austral
summer of 2017 (Manta et al. 2018). These events are projected to intensify and to occur more frequently in forthcoming years (Oliver et al. 2018), with a great potential to devastate marine ecosystems and impact the fisheries sector, increasing its vulnerability.

5 Conclusions and perspectives

Climate change has impacted the subtropical anticyclonic gyre over the SAO during the past decades, inducing long-term changes in wind stress and wind stress curl (Vizy and Cook 2016). Climate projections for the twenty-first century over the SAO based on anthropogenic forcing (RCP4.5) predict similar trends as have been observed during the past 40 years, suggesting that the poleward shift of the subtropical anticyclone of the SAO will continue.

Wind stress curl changes over the SAO have led to a BC intensification and poleward shift during the past decades. Consequently, intense ocean warming in the SWAO has been observed along the BC path, over the SBB shelf and in the RdIP. Detection of circulation changes over the SWAO shelf requires a robust, purposefully designed network of in situ and remote observations. Projections of changes in BC intensity and meridional shifts and climate-driven changes in ocean circulation will depend on climate conditions in the next decades (Yang et al. 2016). Higher resolution regional coupled ocean-atmosphere and biogeochemical models are required to unravel the impacts of atmospheric and ocean variability on the marine biota over the continental shelf.

Annual precipitation extremes are expected to increase mainly over subtropical South America and over the SWAO (+15%) (Hoegh-Guldberg et al. 2018). According to this projection, increased RdIP discharge, nutrient availability, and development of the PW can be expected over the inner shelf. These changes may provide more adequate conditions for spawning, recruitment, and feeding of fish in the region (Checkley et al. 2017) but may also be detrimental to species spawning in the outer estuary (e.g., Micropogonias furnieri; Acha et al. 2012). Further research is required to better understand how changes in freshwater input effectively impact regional fisheries.

Changes in fish fauna composition reported in the near-shore region of SE Brazil suggest that this region is facing a “tropicalization” of the marine community (Araújo et al. 2018). Likewise, Uruguayan industrial fisheries landings show a long-term increase in the relative representation of species that inhabit a warmer thermal niche, concurrent with a systematic increase in SST. *M. hubbsi*, a cold-water species that represents the most important fishery in Uruguay and the second most important in Argentina, has also exhibited decreasing landings during the past 25 years (Gianelli et al. 2019b). A poleward shift in the trailing range edge of *M. hubbsi* is expected as a response to warming, deserving urgent research efforts. Likewise, the poleward shift of the BC front may also result in a similar shift of the leading edge for *Sardinella brasiliensis*.

Climate change has also intensified extreme weather and climate events in the SWAO, to which small-scale fisheries are particularly vulnerable. The occurrence of mass mortalities in yellow clam populations and the subsequent lasting decline in abundance have severely affected the livelihoods of local communities along the coastlines of Brazil, Uruguay, and Argentina. In addition, HABs intensification, both in duration and frequency, threatens the economic viability of shellfisheries.

Under projected climate change scenarios RCP2.6 and RCP8.5, fisheries catches for the three countries are predicted to decrease through 2050 and 2100 (Cheung et al. 2018). Regional
projections have a high degree of uncertainty (mainly for Uruguay) and suggest a higher vulnerability for Brazilian fisheries. The alarming lack of long-term information on fisheries has also affected global analyses and predictions. Moreover, small-scale fisheries are not well represented in these global models. Projections of changes in fisheries catches for the SWAO require urgent research efforts based on observations of changes in yield, abundance, distribution, and individual sizes of the main fisheries resources. The impact of such projected changes will depend on how the countries in the region increase their adaptive capacity to climate change.

The evidence presented here unambiguously shows that SWAO fisheries have rarely been addressed from a climate change perspective. Brazil, Uruguay, and Argentina host numerous commercially significant fisheries and the studies summarized in this review represent the current state of the art of the knowledge about fisheries and climate change in the region. Lack of long-term monitoring programs, restricted access to available information, partial data upload to global databases of stock assessments, and institutional indifference to consider environmental shifts in fisheries management have all contributed to a knowledge-poor situation compared with other regions. This asymmetry has (1) proved evident in meta-analysis studies (Poloczanska et al. 2016); (2) influenced global efforts to forecast future impacts of climate change on fish populations (Barange et al. 2018); and (3) hindered the analysis of the historical impact of ocean warming on marine fisheries production (Free et al. 2019). The data scarcity leads to a poor representation of the SWAO in global assessments of the climate impact on fisheries and undermines the adaptive capacity of governments and dependent marine communities. In a region where 59% of assessed stocks are fished at unsustainable levels, improved assessments could set the basis to establish better fisheries management strategies. Rigorous vulnerability assessments of marine fisheries to climate change are needed to minimize socioeconomic risks associated with climate-driven changes in abundance and distribution of marine fish species. By raising awareness of the potential impact of climate change on fisheries, adapting to changes in fisheries yields, and proactively creating effective transboundary institutions, many of the potential detrimental climate change effects on fisheries could be alleviated (Gaines et al. 2018; Pinsky et al. 2018).

Acknowledgments The support of the Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP, Argentina) is acknowledged. Three anonymous referees provided important suggestions that substantially strengthened the manuscript.

Authors’ contributions The review emerged from the collaboration of experts in different disciplines key for the scope of the paper from Argentina, Uruguay, and Brazil. BF conceived and developed the idea and design of the original manuscript; led Sections 1, 2, and 5; helped to connect the various contributions of each discipline; prepared the original manuscript; and critically revised all versions of manuscript. MB and HY led Sections 3.1 and 4.1. AP and BF led Sections 3.2 and 4.2. AP also made substantial contributions and revised critically all versions of manuscript. OD, LO, and IG led Sections 3.3 and 4.3; refined the content and scope of the original manuscript; made substantial contributions; and critically revised all versions of the manuscript. BF adapted Figure 1 and prepared Figure 2, HY developed Figure 4, IG prepared Figures 3 and 5, and OD prepared Supplementary Table S1. All authors contributed according their expertise and approved the final manuscript.

Funding information This research was partially funded by project VOCES from the Inter-American Institute for Global Change Research (CRN3070, which was funded by the US NSF grant GEO-1128040). B.F. was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANCYPT-grant PICT 2015-0508), Argentina. O.D. was also supported by Comisión Sectorial de Investigación Científica (CSIC Grupos ID 32), Uruguay. L.P. was supported by CAPES project 23038.004304/2014-28, CNPq project 443013/2018-7, and fellowship 304009/2016-4, Brazil.
References

Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83–105
Acha EM, Simionato CG, Carozza C, Mianzan H (2012) Climate-induced year-class fluctuations of whitemouth croaker *Micropogonias furnieri* (Pisces, Sciaenidae) in the Río de la Plata estuary, Argentina–Uruguay. Fish Oceanogr 21:58–77
Alcaraz CM (2016) Diversidad genética y estructura poblacional de Caballa (*Scomber colias*, Gmelin, 1789) en aguas del Atlántico y del Mediterráneo. Dissertation, Universidad de Las Palmas de Gran Canaria
Araújo FG, Teixeira TP, Guedes APP et al (2018) Shifts in the abundance and distribution of shallow water fish fauna on the southeast Brazilian coast: a response to climate change. Hydrobiologia 814:205–218
Auad G, Martos P (2012) Climate variability of the northern Argentinean shelf circulation: impact on *Engraulis anchoita*. Int J Ocean Clim Syst 3:17–43
Barange M, Bahri T, Beveridge MCM et al (2018) Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fish Aquac Tech Paper 627. Rome
Barreiro M (2010) Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. Clim Dyn 35:1493–1508
Barreiro M, Tippmann A (2008) Atlantic modulation of El Niño influence on summertime rainfall over Southeastern South America. Geophys Res Lett 35:L16704
Barreiro M, Sitz L, de Mello S et al (2018) Modelling the role of Atlantic air–sea interaction in the impact of Madden-Julian Oscillation on South American climate. Int J Climatol 39:1104–1116
Bertrand A, Vögler R, Defeo O (2018) Climate change impacts, vulnerabilities and adaptations: Southwest Atlantic and Southeast Pacific marine fisheries. FAO Fish Aquac Tech Paper 627. Rome
Blanchard J, Jennings S, Holmes R et al (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos Trans Royal Soc B 367:2979–2989
Blasiak R, Spijkers J, Tokunaga K et al (2017) Climate change and marine fisheries: least developed countries top global index of vulnerability. PLoS One 12:e0179632
Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci U S A 104:19709–19714
Bruge A, Alvarez P, Fontán A et al (2016) Thermal niche tracking and future distribution of Atlantic mackerel spawning in response to ocean warming. Front Mar Sci 3:86
Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol: An Annu Rev 49:1–42
Campos EJD, Gonçalves JE, Ikeda Y (1995) Water mass characteristics and geostrophic circulation in the South Brazil Bight – Summer of 1991. J Geophys Res 100:18537–18550
Carranza MM, Gille ST, Piola AR et al (2017) Wind modulation of upwelling at the shelf-break front off Patagonia: observational evidence. J Geophys Res Oceans 122:2401–2421
Catalani KM (2017) Análise da ocorrência de juvenis de sardinha verdadeira (*Sardinella brasiliensis*, Steindachner, 1879) na região costeira do Rio Grande, RS, no verão de 2016/2017. Dissertation, Universidade Federal do Rio Grande. (http://argo.furg.br/?RG001432709)
Cavalcanti IFA, Carril AF, Penalba OC et al (2015) Precipitation extremes over La Plata Basin – review and new results from observations and climate simulations. J Hydrol 523:211–230
Cepeda GD, Temperoni B, Sabatini ME et al (2018) Zooplankton communities of the argentine continental shelf (SW Atlantic, ca. 34°-55°S), an overview. In: Hoffmeyer M et al (eds) Plankton ecology of the Southwestern Atlantic. Springer, Cham, pp 171–199
Checkley DM Jr, Asch RG, Rykaczewski RR (2017) Climate, anchovy, and sardine. Annu Rev Mar Sci 9:469–493
Cheung WWL, Watson R, Pauly D (2013) Signature of ocean warming in global fisheries catch. Nature 497:365–368
Cheung WWL, Frölicher TL, Asch RG et al (2016) Building confidence in projections of the responses of living marine resources to climate change. ICES J Mar Science 73:1283–1296
Cheung WWL, Bruggeman J, Butenschön M (2018) Projected changes in global and national potential marine fisheries catch under climate change scenarios in the twenty-first century. In: Barange M, Bahri T, Beveridge MCM et al (eds) Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Tech. Paper 627, pp 63–85. Rome, FAO
Ciotti AM, Odebrecht C, Fillmann G, Möller OO (1995) Freshwater outflow and subtropical convergence influence on phytoplankton biomass at the southern Brazilian continental shelf. Cont Shelf Res 15:1737–1756
Cochrane K, De Young C, Soto D, Bahri T (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fish Aquac Tech Paper 530. Rome, FAO

Combes V, Matano RP (2018) The Patagonian shelf circulation: drivers and variability. Progr Oceanogr 167:24–43

Costa PL, Valderrama PRC, Madureira LASP (2016) Relationships between environmental features, distribution and abundance of the Argentine anchovy, *Engraulis anchoita*, on the south west Atlantic continental shelf. Fish Res 173:229–235

Defeo O, Gianelli I, Martínez G et al (2018) Natural, social and governance responses of a small-scale fishery to mass mortalities: the yellow clam *Mesodesma mactroides* in Uruguay. In: Guillotreau P, Bundy A, Perry RI (eds) Global change in marine systems: societal and governing responses. Routledge Studies in Environment, Culture, and Society Series, pp 237-252

del Favero JM, Katsuragawa M, Zani-Teixeira MDL, Turner JT (2018) Modeling long-term fluctuations in the distribution and abundance of *Engraulis anchoita* eggs and larvae in the southeastern Brazilian bight. Mar Ecol Progr Ser 587:159–173

Ding Q, Chen X, Hilborn R, Chen Y (2017) Vulnerability to impacts of climate change on marine fisheries and food security. Mar Policy 83:55–61

Eschmeyer WN, Fricke R, Van der Laan R (2017) Catalog of fishes: genera, species, references. California Academy of Sciences. https://www.calacademy.org/scientists/projects/catalog-of-fishes

FAO (2018) The State of World Fisheries and Aquaculture 2018. Meeting the sustainable development goals. Rome (Licence: CC BY-NC-SA 3.0 IGO)

Franco BC, Palma ED, Combes V et al (2017) Physical processes controlling passive larval transport at the Patagonian Shelf Break Front. J Sea Res 124:17–25

Franco BC, Palma ED, Combes V et al (2018) Modeling the offshore export of Subantarctic Shelf Waters from the Patagonian shelf. J Geophys Res: Oceans 123:4491–4502

Free CM, Thorson JT, Pinsky ML et al (2019) Impacts of historical warming on marine fisheries production. Science 363:979–983

Gaines SD, Costello C, Owashi B (2018) Improved fisheries management could offset many negative effects of climate change. Sci Adv 4:eaa01378

Garcia-Alonso J, Lercari D, Defeo O (2019) Río de la Plata: a neotropical estuarine system. In: Wolanski E, Day JW, Elliott M, Ramesh R (eds) Coasts and estuaries, Elsevier, pp 45–56

Gasalla MA, Abdallah PR, Lemos D (2017) Potential impacts of climate change in Brazilian marine fisheries and aquaculture. In: Phillips BF, Pérez-Ramírez M (eds) Climate change impacts on fisheries and aquaculture: a global analysis, John Wiley & Sons, pp 455-477

Gianelli I, Defeo O (2017) Uruguayan fisheries under an increasingly globalized scenario: long-term landings and bioeconomic trends. Fish Res 190:53–60

Gianelli I, Martínez G, Defeo O (2015) An ecosystem approach to small-scale co-managed fisheries: the yellow clam fishery in Uruguay. Mar Policy 62:196–202

Gianelli I, Ortega L, Defeo O (2019a) Modeling short-term fishing dynamics in a small-scale intertidal shellfishery. Fish Res 209:242–250

Gianelli I, Ortega L, Marín Y, Piola AR, Defeo O (2019b) Evidence of ocean warming in Uruguay’s fisheries landings: the mean temperature of the catch approach. Mar Ecol Prog Ser. https://doi.org/10.3354/meps13035

Goni GJ, Bringas F, DiNezio PN (2011) Observed low frequency variability of the Brazil current front. J Geophys Res 116:C10037. https://doi.org/10.1029/2011JC007198

Grimm AM, Barros VR, Doyle ME (2000) Climate variability in Southern South America associated with El Niño and La Niña events. J Clim 13:35–58

Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos Trans Royal Soc A 369:1980–1996

Guerrero RA, Piola AR, Fenco H et al (2014) The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: satellite observations. J Geophys Res Oceans 119:7794–7810

Hansen JE (2004) Anchoíta (*Engraulis anchoita*). In: Sánchez RP, Bezzi SI (eds) El Mar Argentino y sus recursos pesqueros. Inst Nac Inv Des Pesq, Mar del Plata, pp 101–115

Hobday AJ, Pecl GT (2014) Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fisher 24:415–425

Hoegh-Guldberg O, Jacob D, Taylor M et al (2018) Impacts of 1.5°C global warming on natural and human systems. In: Global warming of 1.5°C, an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change http://report.ipcc.ch/sr15/pdf/sr15_chapter3.pdf. (Accessed October 29, 2018)
Hu Y, Tao L, Liu J (2013) Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv Atmos Sci 30:790–795
IPCC (2013) Intergovernmental Panel on Climate Change Climate Change 2013: the physical science basis, summary for policy makers. WG1 contribution to IPCC AR5 Intergovernmental Panel on Climate Change (2013)
Jablonski S (2007) The Brazilian sardine. Is there any room for modelling? Pan-Am J Aquat Sci 2:86–93
Karpechko AV, Gillet NP, Gray LJ, Dall’Amico M (2010) Influence of ozone recovery and greenhouse gas increases on southern hemisphere circulation. J Geophys Res: Atmospheres 115:D22117
Kim YH, Min SK, Son SW, Choi J (2017) Attribution of the local Hadley cell widening in the Southern Hemisphere. Geophys Res Lett 44:1015–1024
Lago LS, Saraceno M, Martos P et al (2019) On the wind contribution to the variability of ocean currents over wide continental shelves: a case study on the northern Argentine continental shelf. J Geophys Res Oceans 124:7457–7472
Lee D, Son S, Kim W et al (2018) Spatio-temporal variability of the habitat suitability index for chub mackerel (Scomber japonicus) in the East/Japan Sea and the South Sea of South Korea. Remote Sens 10:938
Liebmann B, Vera CS, Carvalho LMV et al (2010) Influence of ozone recovery and greenhouse gases on southern hemisphere circulation. J Geophys Res 115:D22117
Lumpkin R, Garzoli S (2011) Interannual to decadal changes in the western South Atlantic’s surface circulation. J Geophys Res 116:C01014. https://doi.org/10.1029/2010JC006285
Lutz VA, Segura V, Dogliotti AI et al (2010) Primary production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res 32:181–195
Manta G, de Mello S, Trinchin R et al (2018) The 2017 record marine heatwave in the Southwestern Atlantic Shelf. Geophys Res Lett 45:12,449–12,456
Martinez A, Méndez S, Fabre A, Ortega L (2017) Intensificación de floraciones de dinoflagelados marinos en Uruguay. Intensification of marine dinoflagellates blooms in Uruguay. INNOTEC (Uruguay) 13:19–25
Martín-Gómez V, Barreiro M (2017) Effect of future climate change on the coupling between the tropical oceans and precipitation over Southeastern South America. Clim Chang 141:315–329
Martins IM, Gasalla MA (2018) Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim Chang 147:441–456
Matano RP, Palma ED, Piola AR (2010) The influence of the Brazil and Malvinas currents on the Southwestern Atlantic Shelf circulation. Ocean Sci 6:983–995
Matano RP, Combes V, Piola AR et al (2014) The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: numerical simulations. J Geophys Res Oceans 119:7949–7968
Möller OO, Defeo O (2018) The ecology of sandy shores. Elsevier, Academic Press, London 560 pp
Müller OO (1996) Hydrodynamique de La Lagune dos Patos: Mesures et modélisation. Dissertation, Université Bordeaux 1
Möller OO, Piola AR, Freitas AC, Campos EJ (2008) The effects of river discharge and seasonal winds on the shelf off southeastern South America. Cont Shelf Res 28:1607–1624
Oliver EC, Donat MG, Burrows MT et al (2018) Longer and more frequent marine heatwaves over the past century. Nat Commun 9:1324
Ortega L, Castilla JC, Espino M et al (2012) Large-scale and long-term effects of fishing, market price and climate on two South American sandy beach clam species. Mar Ecol Prog Ser 469:71–85
Ortega L, Celentano E, Delgado E et al (2016) Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Mar Ecol Prog Ser 545:203–213
Pacariz SV, Háthin H, Jacobsen JA et al (2016) Nutrient-driven poleward expansion of the Northeast Atlantic mackerel (Scomber scombrus) stock: a new hypothesis. Elem Sci Anthr 4:000105
Palma ED, Matano RP, Piola AR (2004) A numerical study of the Southwestern Atlantic Shelf circulation: barotropic response to tidal and wind forcing. J Geophys Res 109:C08014. https://doi.org/10.1029/2004JC002315
Palma ED, Matano RP, Piola AR (2008) A numerical study of the Southwestern Atlantic Shelf circulation: stratified ocean response to local and offshore forcing. J Geophys Res 113:C11010. https://doi.org/10.1029/2007JC004720
Pauly D, Cheung WWL (2018) Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob Change Biol 24:e15–e26
Pauly D, Christensen V, Guénette S et al (2002) Towards sustainability in world fisheries. Nature 418:689–695
Peel GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaa9214
Pérez-Ramírez M, Castrejón M, Gutiérrez NL, Defeo O (2016) The Marine Stewardship Council certification in Latin America and the Caribbean: a review of experiences, potentials and pitfalls. Fish Res 182:50–58
Pezzi LP, Cvalanciti IFA (2001) The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: a numerical study. Clim Dyn 17:205–212
Pinsky ML, Reygondeau G, Caddell R et al (2018) Preparing ocean governance for species on the move. Science 360:1189–1191
Piola AR, Campos EJ, Möller OO et al (2000) Subtropical shelf front off eastern South America. J Geophys Res Oceans 105:6565–6578
Piola AR, Matano RP, Palma ED et al (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:L01603
Piola AR, Möller OO, Guerrero RA et al (2008a) Variability of the subtropical shelf front off eastern South America: winter 2003 and summer 2004. Cont Shelf Res 28:1639–1648
Piola AR, Romero SI, Zajaczkowski U (2008b) Space-time variability of the Plata plume inferred from ocean color. Cont Shelf Res 28:1556–1567
Pittman J, Gianelli I, Trinchin R et al (2019) Securing sustainable small-scale fisheries through comanagement: the yellow clam fishery in Uruguay. In: Westlund L, Zelasney J (eds) Securing sustainable small-scale fisheries: sharing good practices from around the world. Fisheries and Aquaculture Technical Paper No. 644. Rome, pp 9–37
Poloczanska ES, Burrows MT, Brown CJ et al (2016) Responses of marine organisms to climate change across oceans. Front Mar Sci 3:62
Popova E, Yool A, Byfield V et al (2016) From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Glob Change Biol 22:2038–2053
Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97
Prenski LB, Sesar G, Landa PA, Medina Foucher CA, Laco ML (2016) Public Certification Report. Assessment against MSC Principles and Criteria for: Argentine anchovy (Engraulis anchoita), bonaerense stock, semi-pelagic mid-water trawl net fishery. Organización Internacional Agropecuaria. 234 pp.
Rivas AL (1997) Current meter observations in the Argentine continental shelf. Cont Shelf Res 17:391–406
Rivas AL, Piola AR (2002) Vertical stratification at the shelf off northern Patagonia. Cont Shelf Res 22:1549–1558
Roemmich D, Church J, Gilson J et al (2015) Unabated planetary warming and its ocean structure since 2006. Nat Clim Chang 5:240–245
Sánchez E, Solman S, Remedio ARC et al (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twenty first century projections of regional temperature and precipitation over South America. Clim Dyn 45:2193–2212
Saraux C, van Beveren E, Brosset P et al (2019) Small pelagic fish dynamics: a review of mechanism in the Gulf of Lions. Deep Sea Res II 159:52–61
Schoeman DS, Schlacher TA, Defeo O (2014) Climate-change impacts on sandy-beach biota: crossing a line in the sand. Glob Change Biol 20:2383–2392
Son SW, Han BR, Garfinkel CI et al (2018) Tropospheric jet response to Antarctic ozone depletion: an update with Chemistry-Climate Model Initiative (CCMI) models. Environ Res Lett 13:054024
Stenseth NC, Mysterud A, Ottersen G et al (2002) Ecological effects of climate fluctuations. Science 297:1292–1296
Stock CA, Alexander MA, Bond NA et al (2011) On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog Oceanogr 88:1–27
Strub PT, James C, Combes V et al (2015) Altimeter-derived seasonal circulation on the southwest Atlantic shelf: 27°-43°S. J Geophys Res Oceans 120. https://doi.org/10.1002/2015JC010769
Sumaila UR, Cheung WWL, Lam VWY et al (2011) Climate change impacts on the biophysics and economics of world fisheries. Nature Clim Change 1:449–456
Tao L, Hu Y, Liu J (2016) Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Clim Dyn 46:3337–3350
Valla D, Piola AR (2015) Evidence of upwelling events at the northern Patagonian shelf break. J Geophys Res Oceans 120:7635–7656
Van Beveren E, Fromentin JM, Rouyer T et al (2016) The fisheries history of small pelagics in the Northern Mediterranean. ICES J Mar Sci 73:1474–1484
Van Gennip SJ, Popova EE, Yool A et al (2017) Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob Change Biol 23:2602–2617
Vera CS, Díaz L (2015) Anthropogenic influence on summer precipitation trends over South America in CMIP5 models. Int J Climatol 35:3172–3177
Vergés A, Steinberg PD, Hay ME et al (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc Royal Soc B: Biol Sci 281:20140846. https://doi.org/10.1098/rspb.2014.0846

Vizy EK, Cook KH (2016) Understanding long-term (1982-2013) multidecadal change in the equatorial and subtropical south Atlantic climate. Clim Dyn 46:2087–2113

Wu L, Cai W, Zhang L et al (2012) Enhanced warming over the global subtropical western boundary currents. Nat Clim Chang 2:161–166

Yang H, Lohmann G, Wei W et al (2016) Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res Oceans 121:4928–4945

Yang H, Lohmann G, Krebs-Kanzow U et al (2020) Poleward shift of the major ocean gyres detected in a warming climate. Geophys Res Lett. https://doi.org/10.1029/2019GL085868

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Bárbara C. Franco1,2 • Omar Defeo3 • Alberto R. Piola2,4,5 • Marcelo Barreiro6 • Hu Yang7 • Leonardo Ortega8 • Ignacio Gianelli3 • Jorge P. Castello9 • Carolina Vera1,2,5 • Claudio Buratti10,11 • Marcelo Pájaro10 • Luciano P. Pezzi12 • Osmar O. Möller9

1 Centro de Investigaciones del Mar y la atmósfera (CIMA)/CONICET-UBA, Buenos Aires, Argentina
2 Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (UMI3351-IFAECI)/CNRS, Buenos Aires, Argentina
3 Facultad de Ciencias, UNDECIMAR, Montevideo, Uruguay
4 Departamento Oceanografía, Servicio de Hidrografía Naval (SHN), Buenos Aires, Argentina
5 Departamento de Ciencias de la atmósfera y los océanos, Universidad de Buenos Aires, Buenos Aires, Argentina
6 Departamento de Ciencias de la atmósfera, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
7 Climate Sciences, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
8 Dirección Nacional de Recursos Acuáticos (DINARA), Montevideo, Uruguay
9 Instituto de Oceanografía, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
10 Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata, Argentina
11 Facultad de Ciencias Exactas y Naturales, UNMDP, Mar del Plata, Argentina
12 Coordenação Geral de Observação da Terra (OBT), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil