Impact of the COVID-19 pandemic on inflammatory bowel disease patients: A review of the current evidence

Marko Kumric, Tina Ticinovic Kurir, Dinko Martinovic, Piero Marin Zivkovic, Josko Bozic

ORCID number: Marko Kumric 0000-0002-9696-3359; Tina Ticinovic Kurir 0000-0003-1695-9235; Dinko Martinovic 0000-0003-2060-5130; Piero Marin Zivkovic 0000-0001-5649-698X; Josko Bozic 0000-0003-1634-0635.

Author contributions: Kumric M, Ticinovic Kurir T and Bozic J for conceptualization, original draft preparation, and supervision; Kumric M, Martinovic D and Zivkovic PM for review of literature and visualization; all authors contributed to the final draft of the manuscript; all authors have read and agreed to the published version of the manuscript.

Conflict-of-interest statement: We declare no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/License

Abstract

Since the initial coronavirus disease 2019 (COVID-19) outbreak in China in December 2019, the infection has now become the biggest medical issue of modern medicine. Two major contributors that amplified the impact of the disease and subsequently increased the burden on health care systems were high mortality among patients with multiple co-morbidities and overcapacity of intensive care units. Within the gastroenterology-related community, particular concern was raised with respect to patients with inflammatory bowel disease (IBD), as those patients are prone to opportunistic infections mainly owing to their immunosuppressive-based therapies. Hence, we sought to summarize current knowledge regarding COVID-19 infection in patients with IBD. Overall, it seems that IBD is not a comorbidity that poses an increased risk for COVID-19 acquisition, except in patients treated with 5-aminosalicylates. Furthermore, outcomes of the infected patients are largely dependent on therapeutic modality by which they are treated, as some worsen the clinical course of COVID-19 infection, whereas others seem to dampen the detrimental effects of COVID-19. Finally, we discussed the present and the future impact of COVID-19 pandemic and concomitantly increased health care burden on IBD-management.

Key Words: COVID-19; SARS-CoV-2; Inflammatory bowel disease; Crohn’s disease; Ulcerative colitis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

With the immense burden that coronavirus disease 2019 (COVID-19) posed on health care systems and the global economy in general, the disease is unequivocally the biggest medical concern of the 21st century so far[1]. Globally, by January 2021, there have been over 84 million confirmed cases of COVID-19, with more than 1.8 million deaths reported by the World Health Organization (WHO)[2]. The causative agent of the pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belongs to the family of Coronaviridae, a group of viruses which have already been associated with epidemics in the early 2000s, i.e., severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)[3,4]. Similar to its related viruses, SARS-CoV-2 primary pathologic manifestations occur in the respiratory system[5,6]. Initial clinical presentation is usually characterized by fever, cough, shortness of breath and specific loss of smell and taste, whereas in a smaller, yet significant amount of patients, the disease progresses to severe lung injury, resulting in the need for intensive care support and concomitant tertiary care equipment[7,8]. This raises two principal issues surrounding COVID-19 and explains why it has caused such a huge global impact. The issue first is high mortality in those patients and the other is the overcapacity of intensive care units (ICU), subsequently burdening health care systems. In the early phases of the pandemic, based on initial observations and knowledge about communicable diseases, particular concern was raised with respect to patients who were at high risk of acquiring severe illness. High risk patients mainly consist of the elderly, obese and patients with pre-existing comorbidities, especially those who are immunocompromised and immunosuppressed[9-11].

Therefore, within the gastroenterology-related community consisting of both medical staff and patients, inflammatory bowel disease (IBD) emerged as an important concern, mainly owing to the IBD therapeutic approach as opposed to the disease itself. Although IBD pathophysiology includes immune dysregulation, the available data does not support the notion that patients with IBD are at a higher risk of acquiring communicable diseases[12-14]. Nevertheless, the IBD therapeutic approach is mainly based on a palette of immunosuppressants, medications whose role in promoting opportunistic infections has been well-established[15-18]. Hence, major organizations instantly provided recommendations for the management of patients with IBD[19-21]. However, knowledge regarding SARS-CoV-2 evolves on a daily basis, resulting in updates to recommendations in order to reach an optimal approach for patients with IBD. In this review, we sought to address the main concerns regarding the relationship between IBD and COVID-19. Specifically, we summarized the current data and tried to elucidate whether IBD is associated with a higher risk of COVID-19 infection, whether infected patients have worse outcomes than the general population and finally, we discussed how the COVID-19 pandemic and concomitantly increased health care burden influenced IBD-management.
THE RISK OF COVID-19 INFECTION AMONG PATIENTS WITH IBD

Early in the pandemic, a major concern among gastroenterologists was about the occurrence of COVID-19 among patients with IBD for several reasons. SARS-CoV-2 binds to targeted cells via angiotensin-converting enzyme 2 (ACE2), a protein constitutively expressed by epithelial cells of the blood vessels, lung, kidney and especially the intestines, where ACE2 expression is among the highest in humans[22-24]. Moreover, as shown by proteomic tissue analysis, ACE2 gastrointestinal expression is increased in IBD patients, especially among the Crohn’s disease (CD) subgroup, where expression is markedly higher than in ulcerative colitis (UC)[25]. ACE2 has been also implicated in the pathophysiology of IBD, having a dual-role: aggravation of colitis via the classical renin/angiotensin II/aldosterone pathway and amelioration of colitis via the ACE2/MAS-1 receptor pathway[26-29]. Except for ACE2, SARS-CoV-2 pathogenesis depends on the specific “spike” glycoprotein that mediates fusion of the coronavirus envelope with the host cell membrane[30]. This protein is activated through the trypsin-like protease, the transmembrane protease serine 2 (TMPRSS2), the activity of which has been shown to be up-regulated in IBD[31]. Furthermore, in up to 50% of COVID-19 patients, fecal samples were positive for SARS-CoV-2 virus, with more than one-fifth of the samples testing positive even after subjects tested negative from respiratory samples, implicating the fecal route of SARS-CoV-2 transmission[32,33]. This could be even more important, as patients with IBD are more frequently assessed with invasive gastrointestinal procedures such as esophagogastroduodenoscopy and ileocolonoscopy compared with the non-IBD population, subsequently exposing both the patient and the examiner to a higher risk of infection[34]. Finally, the use of IBD immunosuppressive therapies has been associated with an increased risk of infections[35,36]. All of these findings suggest that patients with IBD should be the “perfect” host for SARS-CoV-2 viral infection (Figure 1). However, results from a recent systematic review that comprised 13 cohort studies and 5 single case reports from all around the world suggest that patients with IBD do not seem to have a higher risk of COVID-19 infection with respect to the general population, not even in IBD patients treated with immunosuppressive drugs[37]. Another systematic review and meta-analysis by Singh et al[38] concluded similarly and additionally determined that there was no difference in COVID-19 occurrence between IBD subgroups, i.e., between CD and UC. Regarding the IBD therapeutic strategies, Singh et al[36] demonstrated that no use of therapeutics was associated with an increased risk of COVID-19 acquisition aside from the use of 5-aminosalicylic acid (5-ASA). In fact, Taxonera et al[39] evaluated the age-standardized incidence of COVID-19 in IBD patients, and suggested that COVID-19 incidence might be overestimated in the IBD population. Unfortunately, larger studies did not conduct a comparable evaluation.

Multiple authors struggled to explain the discrepancy between the expected and evidence-based COVID-19 incidence among populations with IBD[36,38]. Firstly, a major determinant to reduced COVID-19 incidence could be the tighter containment of patients with IBD, since people suffering from chronic diseases, especially patients treated with immunosuppressants, were warned by experts to follow strict social distancing measures, known as shielding, from the beginning of the pandemic. Furthermore, ACE2, the above-noted protein that is up-regulated in IBD, has two distinct functional forms. The full-length form of ACE2 possesses an extracellular domain that binds to the SARS-CoV-2 virus and transmembrane domain, which anchors the first domain to the plasma membrane and aids viral entry into the cell[39]. Conversely, the soluble form of ACE2 lacks a transmembrane domain and it is therefore a sort of a decoy receptor for SARS-CoV-2 virus in the blood[40,41]. Notably, the latter form is up-regulated in IBD patients, as a consequence of ACE2 membrane cleavage into the soluble form, in a process regulated by the tumor necrosis factor-alpha (TNF-α) convertase ADAM17 (a disintegrin and metalloproteinase 17), the protease is up-regulated in patients with active IBD[42,43]. Furthermore, although SARS-CoV-2 is detectable in fecal samples and active viral replication in the enterocytes of the small intestine has been reported[35,44], to this day there is no firm evidence to imply that increased SARS-CoV-2 replication in intestines is proportional to intestinal ACE2 expression. This is substantiated by the fact that SARS coronavirus, a SARS-CoV-2 close relative, spreads through the upper respiratory tract (URT) very effectively despite only modest ACE2 expression in the URT[24]. Overall, it seems that SARS-CoV-2 also needs the presence of a co-receptor for host cell infection, similarly to HIV infection[45]. However, the hypothesized co-receptor that synergistically with ACE2 leads to SARS-CoV-2 infection has yet to be determined in future studies. The reasons for the increased risk of COVID-19 acquisition with 5-ASA are still unclear...
Figure 1 Pathogenetic pathway of intestinal severe acute respiratory syndrome coronavirus 2 infection with proposed inflammatory bowel disease effects. The blue lines represent inflammatory bowel disease (IBD)/IBD approach-mediated reduction in either coronavirus disease 2019 (COVID-19) acquisition or poor outcomes of it, whereas the red lines represent IBD/IBD approach-mediated increase in risk for COVID-19 acquisition or poor outcomes. IBD: Inflammatory bowel disease; ADAM17: A disintegrin and metalloproteinase 17; TNF-α: Tumor necrosis factor-alpha; ACE2: Angiotensin-converting enzyme 2; TMPRSS2: Transmembrane protease serine 2; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; IL: Interleukin; G-CSF: Granulocyte-colony stimulating factor; IFN-γ: Interferon-γ.

but, as discussed by Singh et al[36], the observed increase could be related to the fact that 5-ASA use may be a proxy for underlying UC in these circumstances. Namely, patients with UC have higher ACE2 levels (although, as we discussed, this is not a reliable indicator) and a population with UC tends to be older than a CD population [46], hence they are more prone to get tested, as Singh et al[36] argue. Despite the sensitivity of the fecal reverse transcription polymerase chain reaction (RT-PCR) test for the diagnosis of COVID-19, its diagnostic power still needs to be elucidated. D’Amico et al[47] hypothesized that fecal RT-PCR testing may be useful in IBD patients to distinguish disease re-exacerbation from SARS-CoV-2 superinfection, allowing better patient management and targeted therapy.

CLINICAL COURSE OF COVID-19 INFECTION IN PATIENTS WITH IBD

Since the detrimental effects of immunosuppressive agents on the host-cell defense against pathogens have been well-established, particular concern was raised with respect to the clinical course of COVID-19 in patients on various immunosuppressive therapies and ubiquitous therapeutic strategies for patients with IBD[15-17,48]. Furthermore, active IBD itself might worsen COVID-19 outcomes, as those patients are markedly frailer and more prone to adverse outcomes by virtually any infection[49, 50]. Finally, non-IBD patients with COVID-19 have high fecal calprotectin even after diarrhea resolves and COVID-19 patients with ongoing diarrhea have even higher levels in comparison with COVID-19 patients without diarrhea[51,52], suggesting that the presence of SARS-CoV-2 in the gastrointestinal tract is associated with greater intestinal inflammation. This indicates that COVID-19 could exacerbate inflammation and, subsequently, symptoms in IBD patients. However, it is very challenging to assign a symptom to the underlying disease, its exacerbation, or the concomitant infection, making these characteristics difficult to interpret. Of note, in the aforementioned studies[51,52], patients with diarrhea exhibited higher serum interleukin 6 concentrations, raising the possibility of more severe systemic inflammation in this group of patients[53].
Fortunately, an abundance of clinical studies demonstrated that most of the hypothesized adverse outcomes were not observed in IBD patients that acquired COVID-19. Nonetheless, in some cases this comorbidity seems to even dampen the deleterious effects of COVID-19. Considering the differences in the initial clinical presentation, although in concordance with the non-IBD population, fever and cough were the most common clinical findings. Further, COVID-19 positive IBD patients presented with diarrhea significantly more often than the general population[34-57]. This disparity could be associated with the influence of the underlying disease on the number of evacuations, justifying the greater percentage of diarrhea in IBD patients than in the general population. In contrast, the observed difference could also be due to the aforementioned exacerbation of IBD as a result of COVID-19 infection. The risk of severe COVID-19 outcomes, i.e., the need for hospitalization, admission to the ICU, mechanical ventilation or death, were not higher among IBD patients in comparison to the general population, as demonstrated in multiple systematic reviews and meta-analyses[35,36,47]. These results are also in accordance with the latest data from the Surveillance Epidemiology of Coronavirus Under Research Exclusion for Inflammatory Bowel Disease (SECURE-IBD), an international web-based database where physicians are encouraged to report all cases of COVID-19 in patients with IBD[58]. A total of 4038 IBD patients with confirmed COVID-19 were reported in the SECURE-IBD database as of January 6, 2021 with 19% of patients in need of hospitalization, 3% admitted to the ICU, and 3% in need of mechanical ventilation, where the case fatality rate was 2%. Of note, in a study by Lukin et al[59], the authors included a control group consisting of non-IBD patients with COVID-19. Rather interestingly, death and ICU admission were numerically lower in the IBD group than in the control group. Although these results should be taken with caution, it is possible that certain IBD medications led to the blunting of the cytokine release syndrome and subsequently to more favorable outcomes.

The therapeutic choice emerged as a major determinant for COVID-19 prognosis in patients with IBD. Accumulating data implies that the use of systemic corticosteroids is associated with the highest risk of severe COVID-19 outcomes[35,36,47,58]. It is well known that corticosteroids affect the immune system via multiple mechanisms, including the inhibition of adhesion molecules, decreasing the expression of inflammatory cytokines and inducing apoptosis of activated lymphocytes. Moreover, in studies that tested the use of corticosteroids on MERS and SARS patients, authors have demonstrated a delayed viral clearance in patients receiving high-dose corticosteroids[60]. However, the effects of corticosteroid use on COVID-19 adverse outcomes in IBD is not as clear as it may seem. In a report from the large RECOVERY trial, in which the effects of dexamethasone on hospitalized COVID-19 patients were assessed, authors concluded that the use of dexamethasone resulted in lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at the time of randomization but not among those receiving no respiratory support[61]. Furthermore, in a recently published meta-analysis by van Paassen et al[62], which included the largest number of studies and COVID-19 patients, the authors demonstrated the beneficial effects of corticosteroids use on short-term mortality and a reduction in the need for mechanical ventilation. Notably, the authors also found a signal of delayed viral clearance, but data in the studies were too uncertain to reach any firm conclusions. Three other meta-analyses that were conducted on this topic have rather conflicting reports. The WHO Rapid Evidence Appraisal for COVID-19 Therapies Working Group[63] concluded similarly to van Paassen et al[62], reporting that the administration of systemic corticosteroids was associated with lower 28-day all-cause mortality in comparison to placebo or usual care. Tlayjeh et al[64] found no difference in mortality or the necessity for mechanical ventilation, yet similarly to van Paassen et al[62], they observed a prolonged viral clearance time. Sarkar et al[65] demonstrated that in patients with COVID-19, corticosteroids may be associated with a twofold increase in mortality, yet their analysis was based on low-quality evidence with high variability. Considering the beneficial effects of corticosteroid use in COVID-19 patients, doubt was raised with respect to poor outcomes of their use in COVID-19 patients with concomitant IBD. It is possible that the corticosteroid use in these circumstances is merely an indicator from the subset of patients with active IBD who are predisposed to adverse outcomes. In fact, in a retrospective cohort study, Singh et al[66] reported that IBD patients who received corticosteroids up to 3 months before the diagnosis of COVID-19 had a higher risk of severe COVID-19 in comparison to patients who did not receive corticosteroids. Although the authors conducted an unadjusted analysis, because corticosteroid use in IBD is associated to worsening of the disease, these results could imply that in this setting corticosteroids were not the cause, but an indicator of higher risk for a severe COVID-19 clinical course[67].
Apart from corticosteroid use, as shown by multiple studies, the use of 5-ASA has been also associated with more severe COVID-19 outcomes[35,36,47,58,68]. This finding persisted even after controlling for confounding factors such as age, co-morbidities, IBD disease characteristics and corticosteroid use. Since mechanisms by which 5-ASA exerts its anti-inflammatory effect are rather disperse and include peroxisome proliferator-activated receptor-γ up-regulation, cyclooxygenase 2/prostaglandin E2 down-regulation, reactive oxygen species scavenging and many more[69], we could only hypothesize which of these pathways is responsible for more severe COVID-19 outcomes. Primarily, large, well-designed studies should be conducted to confirm that an increased risk really exists in the first place.

Immunomodulators, a group of medications used in IBD treatment that includes azathioprine, 6-mercaptopurine, and methotrexate have been known to inhibit the immune response to viral infections by multiple mechanisms[70,71]. However, the data regarding the role of immunomodulators in COVID-19 is quite reassuring, as conducted studies do not seem to demonstrate any difference in severe outcomes in comparison to the general population[35,36,47,58,68]. Since the effects of immunomodulators and corticosteroids on the suppression of the immune system are in part overlapping[72,73], we hypothesize that this provides further evidence toward the notion that the use of corticosteroids itself does not result in a more severe form of COVID-19. In fact, different results between the use of corticosteroids and immunomodulators from the above-noted studies could be due to the different clinical profiles of patients between the two groups, with corticosteroid use implying poor IBD control.

The most ambiguous results that emerged from observational studies is in relation to the use of biological agents, an immunosuppressive medication group used in the management of IBD which includes infliximab, adalimumab, golimumab, certolizumab pegol, ustekinumab and vedolizumab[74]. Biological agents, particularly TNF-α inhibitors, have been known to mitigate the host immune system response against infectious organisms, especially intracellular pathogens, such as mycobacterial, fungal and viral infections[75,76]. However, aside from the systematic review by Macaluso and Orlando[35] which showed no difference as opposed to the general population, available data suggests that patients treated with biological agents are significantly less prone to develop severe forms of COVID-19, distinctly in terms of mortality[36,58,68]. Accumulating evidence implies that COVID-19 severity is associated with a cytokine storm syndrome, an immune-mediated process characterized by hyperactivation of T cells and massive production of TNF-α, interleukin 2, interleukin 7, granulocyte-colony stimulating factor, interferon-γ (IFN-γ), IFN-γ-inducible protein 10, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1-a [77]. Based on these findings, it is legitimate to hypothesize that the use of biological drugs which selectively inhibit specific cytokines or small molecules that simultaneously block multiple cellular pathways may play a role in the treatment of these patients. Interestingly, in two case reports, the remission of COVID-19 symptoms in IBD patients was achieved after treatment with biological agents[78,79]. This evidence is certainly insufficient to recommend the use of these drugs in COVID-19 management, yet they are reassuring for IBD patients, and shed light on biological agents as feasible therapeutic agents in COVID-19 treatment. In fact, there are several ongoing clinical trials that assess the efficacy and safety of these drugs in this setting (NCT-04344249 and NCT04425538).

Between the IBD subgroups, in all of the aforementioned reports[35,36,47,58,68], patients with UC had markedly worse outcomes than patients with CD. Singh \textit{et al}[36] attribute this risk incrementation to the fact that patients with UC are more likely to be older and undergo different therapeutic modalities between the two groups[36,80]. However, since Singh \textit{et al}[36] did not provide the age-adjusted comparison of outcomes, whether the poor outcomes of UC in contrast to CD are related to old age remains unclear. Regarding the difference in therapeutic modalities, patients with UC are more likely to be treated with 5-ASA, a treatment shown to pose a risk for more severe outcomes, whereas patients with CD are more likely to be treated with biological agents, treatment that seem to have a protective role in COVID-19 infection[81,82]. In addition, it is unclear if the observed disparity is due to the pathobiological differences between the two types of IBD, including the variability in expression of ACE2 and TMPRSS2.
THE IMPACT OF THE COVID-19 PANDEMIC ON IBD MANAGEMENT: PRESENT AND FUTURE PERSPECTIVES

Current guidelines for IBD treatment with respect to COVID-19

Two major organizations that cover the issues regarding IBD, the International Organization for the Study of Inflammatory Bowel Disease (IOIBD) and European Crohn’s and Colitis Organization (ECCO) have partnered and provided a set of guidelines regarding the management of IBD in relation to COVID-19[83]. However, there are two important notions to accentuate regarding the present guidelines. Firstly, as currently there is no adequate evidence-based data, the recommendations are based on a consensus between a group of international IBD and infectious disease experts. Secondly, since the speed of publishing is slower than the amount of emerging data, organizations urged physicians to continue to check the IOIBD or the ECCO websites for the most up-to-date information.

The most important question that was raised in the guidelines concerns the IBD immunosuppressive therapies, i.e., whether the infected patients should discontinue these therapies and if should, for how long. The current consensus is that recommencing these therapies should be influenced by the clinical severity of both IBD and COVID-19. Conceptually speaking, the greater the severity of IBD and the lesser the severity of COVID-19, the discontinuation of therapy should be shorter and vice versa. Experts suggest that for most patients, a symptom-based strategy is suitable [84]. According to this strategy, COVID-19 resolution is evaluated according to symptom onset (≥ 10 d) and clinical improvement. Current expert recommendations regarding immunosuppressive therapies are summarized in Table 1. Other aspects regarding recommendations, such as care for patients with IBD requiring hospitalization, priority for endoscopy, guidance for the infusion centers, management of pregnant IBD patients and a very practical set of ten “Do’s” and “Don’ts” for IBD management during the COVID-19 outbreak were further discussed in the aforementioned IOIBD/ECCO guidelines[85-89]. Following the approval of several COVID-19 vaccines, the IOIBD experts have recently issued a statement regarding vaccination [90]. The expert group advised vaccinating all patients with IBD as soon as they are able to receive a vaccine, regardless of their immune-modifying therapies.

Impact of COVID-19 and lockdown on the management of IBD patients

There is a scarcity of data regarding the post-lockdown phase in terms of health-care procedures[91,92], let alone in the IBD population[93-96]. Early into the pandemic, hospitals were urged to restructure their daily activities to meet the needs of health care practitioners and to provide the facilities to treat COVID-19 patients. The restructuring of the health care system did not circumvent IBD management. Consequently, the risks of secondary harm emerged, as the latter resulted in reduced access to diagnostic endoscopy, lack of face-to-face clinics, difficulties in continuing day-case infusions, issues in performing routine blood and/or stool monitoring as well as patients’ fears which may have reduced their attendance in hospitals[93]. Particular problems emerged in the pediatric population, since a delay in diagnosis and delayed treatment has the potential to result in serious repercussions, such as an impact on children’s growth[97,98]. Recent Italian and Spanish surveys both demonstrated that the management of urgent activities and administration of biological therapies in both the lockdown and post-lockdown periods substantially maintained the pre-pandemic standards of care[95,94]. However, the surveys also highlighted that the reduction in number of visits, endoscopies and gastrointestinal ultrasounds observed in the lockdown but also in the post-lockdown phase could result in worse long-term outcomes[93,94]. A study in the pediatric population had similar conclusions regarding the quality of care[93]. This study accentuated concerns with respect to newly diagnosed IBD patients as this subgroup was diagnosed without a histological confirmation of the disease, which is a controversial exception that had to be adopted given the present special circumstances[93]. These patients were diagnosed via a combination of blood tests, radiological imaging, fecal calprotectin and exclusion of infectious causes, followed by multidisciplinary discussion. The commencement of the systemic immunosuppression in children without endoscopic or histological diagnosis was an additional concern, yet physicians could adapt in the beginning exclusive enteral nutrition as a first-line therapy as an induction strategy with multiple benefits [99]. Although a delay in exposing patients to systemic immunosuppression for 4-8 weeks is beneficial, after this time patients enter a period where immunomodulatory and biological therapy should commence, while simultaneously, the ability to conduct a full disease assessment beforehand may continue to be limited. Overall, experts
Table 1 Latest International Organization for the Study of Inflammatory Bowel Disease/European Crohn’s and Colitis Organization recommendations for coronavirus disease 2019 infected inflammatory bowel disease-patients[101]

COVID-19 symptomatology	SARS-CoV-2 status	Recommendation
Asymptomatic	Non-tested	Do not withhold therapy (reduce corticosteroid use if possible)
Asymptomatic	Positive	Withhold therapy for 10 days¹
Symptomatic	Positive	Withhold therapy until all of the following is fulfilled: (1) At least 10 days has passed since symptoms onset; (2) Improvement in respiratory symptoms; and (3) Days without fever (without the use of antipyretics)

¹If clinical presentations imply that therapy should not be postponed, despite meeting the clinical criteria stated above, guidelines recommend moving ahead with the scheduled treatment. COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

Future perspectives of IBD management

Even though COVID-19 had a range of detrimental effects on health care systems globally, it also opened a space for improvements in clinical practice, which could be used long after the COVID-19 pandemic resolves. One of those is the use of telemedicine, i.e., the implementation of virtual technologies in routine clinical practice. An expansion in technological solutions and loosening restrictions on how telemedicine can be deployed and reimbursed have opened the way for telemedicine to become an integral part of clinical practice both now and in the future. In the IBD population, virtual appointments, multidisciplinary discussions, and improvement of networks by remote collaboration all provide the opportunity for better care within specific situations, with the simultaneous reduction of the transmission of infectious diseases. Today it is COVID-19, but in the future, it could be some other virus, especially as we are now more than ever aware of our susceptibility to a viral pandemic. IOIBD/ECCO issued a summary of the best strategies for IBD management via telemedicine, carefully covering every aspect of the patient-physician relationship [101]. Another very important aspect of telemedicine is its inexpensiveness. As a global economic crisis is imminent, this will actually become the critical reason for widespread implementation of telemedicine. Regarding the disease itself, although for now a lot of data substantiates the fact that COVID-19 does not influence the short-term prognosis for IBD patients, the long-term effects are quite unknown. We believe that poorer long-term outcomes will be mainly due to delayed diagnostic (especially endoscopy) therapeutic procedures and not COVID-19 itself. However, Gower-Rousseau et al.[102] argue that most of the researchers too hastily concluded that the COVID-19 pandemic is relatively safe for IBD patients. They highlighted that the recently published, underpowered studies cannot provide answers for patients with IBD, or other infrequent diseases for that matter. Further, Gower-Rousseau et al. asserted that low-quality studies might even prompt misguided and harmful treatment decisions. On the contrary, they argue that well-grounded answers to these questions require complex epidemiologic risk and benefit analyses with an a priori sample size calculation and a removal of unwanted biases.

CONCLUSION

The initial fear of COVID-19 infection among patients in the IBD community that was based on available knowledge, now seems unnecessary. Accumulating data suggests that IBD is not a comorbidity that poses an increased risk for COVID-19 acquisition, except in patients treated with 5-ASA. Furthermore, although the outcomes of infected patients are largely dependent on the therapeutic modality by which they are treated, overall, IBD patients seem to have COVID-19 outcomes similar to the general population. This is in contrast to those on corticosteroids, as they currently seem to have a less favorable prognosis. Biological agents even dampen the detrimental effects of COVID-19 by inhibiting cytokine storm syndrome, according to the available data. However, preliminary data must be interpreted with caution, as the long-term effects agree that the implementation of a telemedicine approach has played an important role in maintaining the standards of quality of care in IBD management during the pandemic[93,94,100].
of both COVID-19 and IBD management during the COVID-19 outbreak are quite unknown. Finally, the COVID-19 outbreak could also change the future of IBD management, and management of the diseases in general, as telemedicine could dethrone face-to-face examinations in the following years.

ACKNOWLEDGEMENTS

The authors thank D. Behmen and S. Pranic for language proofreading and editing the paper.

REFERENCES

1. Pak A, Adegbeye OA, Adekunle AI, Rahman KM, McBayde ES, Eisen DP. Economic Consequences of the COVID-19 Outbreak: the Need for Epidemic Preparedness. *Front Public Health* 2020; 8: 241 [PMID: 32574307 DOI: 10.3389/fpubh.2020.00241]

2. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report. [cited 5 January 2021]. In: World Health Organization [Internet]. Available from: https://covid19.who.int/

3. Vijayanand P, Wilkins E, Woodhead M. Severe acute respiratory syndrome (SARS): a review. *Clin Med (Lond)* 2004; 4: 152-160 [PMID: 15197336 DOI: 10.7861/clinmedicine.4-2-152]

4. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. *Nat Rev Microbiol* 2016; 14: 523-534 [PMID: 27344059 DOI: 10.1038/nrmicro.2016.81]

5. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu S, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang J, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye C, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med* 2020; 382: 1708-1720 [PMID: 32109013 DOI: 10.1056/NEJMoa2002032]

6. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020; 395: 497-506 [PMID: 31986264 DOI: 10.1016/S0140-6736(20)30183-5]

7. Gibson PG, Qin L, Puah SH. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. *Med J Aust* 2020; 213: 54-56.e1 [PMID: 32572065 DOI: 10.5994/mja2.50674]

8. Armstrong RA, Kane AD, Cook TM. Outcomes from intensive care patients with COVID-19: a systematic review and meta-analysis of observational studies. *Anaesthesia* 2020; 75: 1340-1349 [PMID: 32602561 DOI: 10.1111/anae.15201]

9. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluacello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natalini G, Piatti A, Raineri MV, Scandroglio AM, Storti E, Cecconi M, Pesenti A; COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. *JAMA* 2020; 323: 1574-1581 [PMID: 32250385 DOI: 10.1001/jama.2020.5394]

10. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA* 2020; 323: 1239-1242 [PMID: 32091533 DOI: 10.1001/jama.2020.2668]

11. Fung M, Babik JM. COVID-19 in Immunocompromised Hosts: What We Know So Far. *Clin Infect Dis* 2021; 72: 340-350 [PMID: 33501974 DOI: 10.1093/cid/ciaa863]

12. Rahier JF, Magro F, Abreu C, Armuzzi A, Ben-Horin S, Chowers Y, Cottone M, de Ridder L, Doherty G, Ehehalt R, Esteve M, Katsanos K, Lees CW, Maclachan E, Moreels T, Reinisch W, Tild H, Tremblay L, Veereman-Wauters G, Viget N, Yazdanpanah Y, Elaihim R, Colombel JF; European Crohn's and Colitis Organisation (ECCO). Second European evidence-based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. *J Crohns Colitis* 2014; 8: 443-468 [PMID: 24613021 DOI: 10.1016/j.crohns.2013.12.013]

13. Vrdoljak J, Pilović M, Živković PM, Tadin Hadjina J, Rušić D, Bukič J, Borovac JA, Božić J. Mediterranean Diet: Adherence and Dietary Attitudes in Patients with Inflammatory Bowel Disease. *Nutrients* 2020; 12 [PMID: 33171662 DOI: 10.3390/nu12113429]

14. Brnic D, Martinovic D, Živkovic PM, Tokic D, Vilovic M, Rusic D, Tadin Hadjina I, Libers C, Glumac S, Supe-Domic D, Tonkic A, Bozic J. Inactive matrix Glα protein is elevated in patients with inflammatory bowel disease. *World J Gastroenterol* 2020; 26: 4866-4877 [PMID: 32921963 DOI: 10.3748/wjg.v26.i22.4866]

15. Zabana Y, Rodríguez L, Lobató T, Gordillo J, Montserrat A, Mena R, Beltrán B, Dotti M, Benítez O, Guardiola J, Doménech E, García-Planella E, Calvet X, Piqueras M, Acetino M, Fernández-
Bahares F, Esteve M. Relevant Infections in Inflammatory Bowel Disease, and Their Relationship With Immunosuppressive Therapy and Their Effects on Disease Mortality. *J Crohns Colitis* 2019; 13: 828-837. [PMID: 30668662 DOI: 10.1093/ecco-jcc/jjz013]

Luthra P, Peyrin-Biroulet L, Ford AC. Systematic review and meta-analysis: opportunistic infections and malignancies during treatment with anti-integrin antibodies in inflammatory bowel disease. *Aliment Pharmacol Ther* 2015; 41: 1227-1236. [PMID: 25903741 DOI: 10.1111/apt.13215]

Ford AC, Peyrin-Biroulet L. Opportunistic infections with anti-tumor necrosis factor-α therapy in inflammatory bowel disease: meta-analysis of randomized controlled trials. *Am J Gastroenterol* 2013; 108: 1268-1276. [DOI: 10.1038/ajg.2013.138]

Bonovas S, Fiorino G, Allocca M, Lytras T, Nikolopoulos GK, Peyrin-Biroulet L, Danese S. Biologic Therapies and Risk of Infection and Malignancy in Patients With Inflammatory Bowel Disease: A Systematic Review and Network Meta-analysis. *Clin Gastroenterol Hepatol* 2016; 14: 1385-1397.e10. [PMID: 27189910 DOI: 10.1016/j.cgh.2016.04.039]

Kennedy JA, Jones GR, Lamb CA, Appleby R, Arnott I, Beattie RM, Bloom S, Brooks AJ, Cooney R, Dart RJ, Edwards C, Fraser A, Gayra DR, Ghosh S, Greveson K, Hansen R, Hart A, Hawthorne AB, Hayee B, Limdi JK, Murray CD, Parkes GC, Parkes M, Patel K, Pollok RC, Powell N, Probert CS, Raine T, Sebastian S, Selinger C, Smith PJ, Stansfield C, Younge L, Lindsay JO, Irving PM, Lees CW. British Society of Gastroenterology guidance for management of inflammatory bowel disease during the COVID-19 pandemic. *Gut* 2020; 69: 984-990. [PMID: 32303607 DOI: 10.1136/gutjnl-2020-321244]

D'Amico F, Danese S, Peyrin-Biroulet L; ECCO COVID taskforce. Inflammatory Bowel Disease Management During the Coronavirus-19 Outbreak: A Survey From the European Crohn's and Colitis Organization. *Gastroenterology* 2020; 159: 14-19.e3. [PMID: 32326057 DOI: 10.1053/j.gastro.2020.04.059]

Rubin DT, Abreu MT, Rai V, Siegel CA; International Organization for the Study of Inflammatory Bowel Disease. Management of Patients With Crohn's Disease and Ulcerative Colitis During the Coronavirus Disease-2019 Pandemic: Results of an International Meeting. *Gastroenterology* 2020; 159: 6-13.e6. [PMID: 32272113 DOI: 10.1053/j.gastro.2020.04.002]

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Prostone Inhibitor. *Cell* 2020; 181: 271-280.e8. [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052]

Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE2, a novel homologue of angiotensin converting enzyme. *FEBS Lett* 2002; 532: 107-110. [PMID: 12459472 DOI: 10.1016/s0014-5793(02)03640-2]

Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. *J Pathol* 2004; 203: 631-637. [PMID: 15141377 DOI: 10.1002/path.1570]

Garg M, Royce SG, Tikelis C, Shallue C, Batu D, Velkoska E, Burrell LM, Patel SK, Beswick L, Jackson A, Britto K, Luikes M, Shaka P, Wardan H, Hirokawa Y, Tan CW, Faux M, Burgess AW, Halden K, Monagle S, Thomas M, Gibson PR, Label J. Imbalance of the renin-angiotensin system may contribute to inflammation and fibrosis in IBD: a novel therapeutic target? *Gut* 2020; 69: 841-851. [PMID: 31490960 DOI: 10.1136/gutjnl-2019-318512]

Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Barónes E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. *J Biol Chem* 2002; 277: 14838-14843. [PMID: 11851526 DOI: 10.1074/jbc.M200581200]

Khajah MA, Fateel MM, Ananthalakshmhi KV, Luqmani YA. Anti-Inflammatory Action of Angiotensin-1-7 in Experimental Colitis. *PLoS One* 2016; 11: e0150861. [PMID: 26963721 DOI: 10.1371/journal.pone.0150861]

Cerniello FM, Carretero OA, Longo Carrijaosa NA, Cerrato BD, Santos RA, Grecco HE, Gironacci MM. MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Adrein2-Dependent Pathway. *Hypertension* 2017; 70: 982-989. [PMID: 28874464 DOI: 10.1161/HYPERTENSIONAHA.117.09789]

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. *Intensive Care Med* 2020; 46: 586-590. [PMID: 32125455 DOI: 10.1007/s00134-020-05985-9]

Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. *J Infect* 2020; 80: 554-562. [PMID: 32169481 DOI: 10.1016/j.jinf.2020.02.026]

Jablouz A, Kriaa A, Mkaouar H, Akermi N, Soussou S, Wysocka M, Woloszyn D, Amouri A, Sluka P, Wardan H, Hirokawa Y, Tan CW, Faux M, Burgess AW, Halden K, Monagle S, Thomas M, Gibson PR, Label J. Imbalance of the renin-angiotensin system may contribute to inflammation and fibrosis in IBD: a novel therapeutic target? *Gut* 2020; 69: 841-851. [PMID: 31490960 DOI: 10.1136/gutjnl-2019-318512]

Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Barónes E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. *J Biol Chem* 2002; 277: 14838-14843. [PMID: 11851526 DOI: 10.1074/jbc.M200581200]

Kumric M et al. COVID-19 and IBD

https://www.wjgnet.com

7357 July 7, 2021 | Volume 27 | Issue 25
Kumric M et al. COVID-19 and IBD

10.1053/j.gastro.2020.02.055]

34 Gu J, Han B, Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. *Gastroenterology* 2020; 158: 1518-1519 [PMID: 32142765 DOI: 10.1053/j.gastro.2020.02.054]

35 Macaluso FS, Orlando A. COVID-19 in patients with inflammatory bowel disease: A systematic review of clinical data. *Dig Liver Dis* 2020, 52: 1222-1227 [PMID: 32928672 DOI: 10.1016/j.dld.2020.09.002]

36 Singh AK, Jena A, Kumar-M P, Sharma V, Sebastian S. Risk and outcomes of coronavirus disease (COVID-19) in patients with inflammatory bowel disease: a systematic review and meta-analysis. *United European Gastroenterol J* 2020; 2050640620972602 [PMID: 33210980 DOI: 10.1177/2050640620972602]

37 Taxonera C, Sagasta gotia I, Alba C, Mahas N, Olivares D, Rey E. 2019 novel coronavirus disease (COVID-19) in patients with inflammatory bowel diseases. *Aliment Pharmacol Ther* 2020, 52: 276-283 [PMID: 32359205 DOI: 10.1111/apt.15804]

38 Monteleone G, Ardizzone S. Are Patients with Inflammatory Bowel Disease at Increased Risk for Covid-19 Infection? *J Crohns Colitis* 2020, 14: 1334-1336 [PMID: 32215548 DOI: 10.1093/ecco-jcc/jjaa061]

39 Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. *Nat Rev Microbiol* 2009; 7: 226-236 [PMID: 19198616 DOI: 10.1038/nrmicro2090]

40 Wysocki J, Ye M, Rodriguez E, González-Pacheco FR, Barrios C, Evora K, Schuster M, Loibner H, Brosnihan KB, Ferrario CM, Penninger JM, Batlle D. Targeting the degradation of angiotensin II with recombiant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. *Hypertension* 2010; 55: 90-98 [PMID: 19948988 DOI: 10.1161/HYPERTENSIONAHA.109.138420]

41 Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? *Clin Sci (Lond)* 2020; 134: 543-545 [PMID: 32167153 DOI: 10.1042/CS20200163]

42 Garg M, Burrell LM, Velkoska E, Griggs K, Angus PW, Gibson PR, Lubel JS. Upregulation of circulating components of the alternative renin-angiotensin system in inflammatory bowel disease: A pilot study. *J Renin Angiotensin Aldosterone Syst* 2015; 16: 559-569 [PMID: 24505094 DOI: 10.1177/14703231514521096]

43 Wong E, Cohen T, Romi E, Levin M, Peleg Y, Arad U, Yaron A, Milla ME, Sagi I. Harnessing the natural inhibitory domain to control TNFα Converting Enzyme (TACE) activity in vivo. *Sci Rep* 2016; 6: 35598 [PMID: 27982031 DOI: 10.1038/srep35598]

44 Leung WK, To KF, Chan PK, Chan HL, Wu AK, Lee N, Yuen KY, Sung JJ. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. *Gastroenterology* 2003; 125: 1011-1017 [PMID: 14517783 DOI: 10.1016/s0016-5085(03)01215-0]

45 Zhang L, Huang Y, He T, Cao Y, Ho DD. HIV-1 subtype and second-receptor use. *Nature* 1996; 383: 768 [PMID: 8892988 DOI: 10.1038/383768a0]

46 Windsor JW, Kaplan GG. Evolving Epidemiology of IBD. *Curr Gastroenterol Rep* 2019; 21: 40 [PMID: 31338613 DOI: 10.1007/s11894-019-0705-6]

47 D’Amico F, Danese S, Peyrin-Biroulet L. Systematic Review on Inflammatory Bowel Disease Patients With Coronavirus Disease 2019: It Is Time to Take Stock. *Clin Gastroenterol Hepatol* 2020; 18: 2689-2700 [PMID: 32777550 DOI: 10.1016/j.cgh.2020.08.003]

48 Mazza J, Macaluso FS, Adamoli L, Renna S, Casco A, Orlando A. Diagnostic and vaccine strategies to prevent infections in patients with inflammatory bowel disease. *J Infect* 2017; 74: 433-441 [PMID: 28263759 DOI: 10.1016/j.jinf.2017.02.009]

49 Kochar B, Cai W, Cagan A, Ananthakrishnan AN. Pretreatment Frailty Is Independently Associated With Increased Risk of Infections After Immunosuppression in Patients With Inflammatory Bowel Diseases. *Gastroenterology* 2020; 158: 2104-2111.e2 [PMID: 32107529 DOI: 10.1053/j.gastro.2020.02.032]

50 Kucharzik T, Maaser C. Infections and Chronic Inflammatory Bowel Disease. *Virzeralmedizin* 2014; 30: 326-332 [PMID: 26288602 DOI: 10.1159/000366463]

51 Reeken PA, Wüst M, Löfler B, Bauer M, Stallmach A. Letter: SARS-CoV-2-induced gastrointestinal inflammation. *Aliment Pharmacol Ther* 2020; 52: 1748-1749 [PMID: 33205881]

52 Effenberger M, Grabher F, Mayr L, Schwazerler J, Naizir M, Seifert M, Hilbe R, Seiwald S, Scholl-Buerger S, Fritsche G, Bellmann-Weiler R, Weiss G, Müller T, Adolph TE, Hilg F. Faecal calprotectin indicates intestinal inflammation in COVID-19. *Gut* 2020; 69: 1543-1544 [PMID: 32312790 DOI: 10.1136/gutjnl-2020-321388]

53 Taxonera C, Alba C. Letter: SARS-CoV-2 induced gastrointestinal inflammation-authors’ reply. *Aliment Pharmacol Ther* 2020; 52: 1750-1751 [PMID: 33205880]

54 Gajendran M, Perissetti A, Aziz M, Raghavapuram S, Bansal P, Tharian B, Goyal H. Inflammatory bowel disease amid the COVID-19 pandemic: impact, management strategies, and lessons learned. *Ann Gastroenterol* 2020; 33: 591-602 [PMID: 33162736 DOI: 10.20524/aog.2020.0547]

55 D’Amico F, Baumgart DC, Danese S, Peyrin-Biroullet L. Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management. *Clin Gastroenterol Hepatol* 2020; 18: 1663-1672 [PMID: 32279065 DOI: 10.1016/j.cgh.2020.04.001]

56 Mao R, Qiu Y, He IS, Tan JY, Li XH, Liang J, Shen J, Zhu LR, Chen Y, Iacucci M, Ng SC, Ghosh
S, Chen MH. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. *Lancet Gastroenterol Hepatol* 2020; 5: 667-678 [PMID: 32405603 DOI: 10.1016/S2468-1253(20)30126-6]

57 Parasa S, Desai M, Thoguluru Chandrasekar V, Patel HK, Kennedy KF, Roesch T, Spadaccini M, Colombino M, Gabbriani D, Artifon EL A, Repici A, Sharma P. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. *JAMA Netw Open* 2020; 3: e2011335 [PMID: 32525549 DOI: 10.1001/jamanetworkopen.2020.11335]

58 Brenner EJ, Ungaro RC, Colombel JF, Kappelman MD. Current data. 2020 June 14 [cited 5 January 2021]. In: Secure-IBD Database Public Data [Internet]. Available from: https://covidibd.org/current-data/

59 Lukin DJ, Kumar A, Hajifathalian K, Sharaia RZ, Scheel EJ, Longman RS; Jill Roberts Center Study Group Study Group; Weill Cornell Medicine-Gastrointestinal Study Group. Baseline Disease Activity and Steroid Therapy Stratify Risk of COVID-19 in Patients With Inflammatory Bowel Disease. *Gastroenterology* 2020; 159: 1541-1544.e2 [PMID: 32479824 DOI: 10.1053/j.gastro.2020.05.066]

60 Neurath MF. COVID-19 and immunomodulation in IBD. *Gut* 2020; 69: 1335-1342 [PMID: 32303609 DOI: 10.1136/gutjnl-2020-321269]

61 RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Statkin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Bajolle F, Haynes R, Landray MJ. The effect of dexamethasone in hospitalized patients with Covid-19. *Nature* 2020; 586: 236-242 [PMID: 32677004 DOI: 10.1038/s41586-020-30400-9]

62 van Paassen J, Essers T, Peters MM, Tarbit R, van der Windt DA, van der Tweel I. Corticosteroids, But Not TNF Antagonists, Are Associated With Adverse COVID-19 Outcomes in Patients With Inflammatory Bowel Disease. *Clin Infect Dis* 2020; 70: 1330-1341 [PMID: 32869694 DOI: 10.1097/inf.2020.17023]

63 Tlayjeh H, Mhish OH, Enani MA, Alruwaili A, Tlayjeh R, Thalib L, Arabo YM, Fakhsour T, Tlayjeh IM. Association of corticosteroids use and outcomes in COVID-19 patients: A systematic review and meta-analysis. *J Infect Public Health* 2020; 13: 1562-1563 [PMID: 33008778 DOI: 10.1016/j.jiph.2020.09.008]

64 Sarkar S, Khanna P, Soni KD. Are the steroids a blanket solution for COVID-19? *J Med Virol* 2021; 93: 1535-1547 [PMID: 32881007 DOI: 10.1002/jmv.26483]

65 Singh S, Khan A, Chowdhry M, Bilal M, Kochhar GS, Clarke K. Risk of Severe Coronavirus Disease 2019 in Patients With Inflammatory Bowel Disease in the United States: A Multicenter Research Network Study. *Gastroenterology* 2020; 159: 1575-1578.e4 [PMID: 325252507 DOI: 10.1053/j.gastro.2020.06.003]

66 Waljee AK, Wiitala WL, Giovani S, Stridham R, Saini S, Hou J, Feagins LA, Khan N, Good CB, Vikan S, Higgins PD. Corticosteroid Use and Complications in a US Inflammatory Bowel Disease Cohort. *PLoS One* 2016; 11: e0158017 [PMID: 27336296 DOI: 10.1371/journal.pone.0158017]

67 Brenner EJ, Ungaro RC, Geary RR, Kaplan GG, Kissous-Hunt M, Lewis JD, Ng SC, Rahier JF, Reinsch W, Ruenmele FM, Steinwurz F, Underwood FE, Zhang X, Colombel JF, Kappelman MD. Corticosteroids, But Not TNF Antagonists, Are Associated With Adverse COVID-19 Outcomes in Patients With Inflammatory Bowel Diseases: Results From an International Registry. *Gastroenterology* 2020; 159: 481-491.e3 [PMID: 32425234 DOI: 10.1053.j.gastro.2020.05.032]

68 Perrotta C, Pellegrino P, Moroni E, De Palma C, Cervia D, Danelli P, Clementi E. Five-aminosalicylic Acid: an update for the reappraisal of an old drug. *Gastroenterol Res Pract* 2015; 2015: 456895 [PMID: 25585145 DOI: 10.1155/2015/456895]

69 Bleyer WA. The clinical pharmacology of methotrexate: new applications of an old drug. *Cancer* 1978; 41: 36-51 [PMID: 342086 DOI: 10.1002/1097-0142(19780141)41:3<36::aid-cncr2820410108;3.0.co;2-i] [PMID: 30583473 DOI: 10.3390/jmcs8010015]

70 Ibram M, Ahmed M, Conway R, Carey JJ. Risk of Infection with Methotrexate Therapy in Inflammatory Diseases: A Systematic Review and Meta-Analysis. *J Clin Med* 2018; 8 [PMID: 30583473 DOI: 10.3390/jmcs8010015]

71 Bedouy O, Guillot X, Sélambaram J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P. Methotrexate an Old Drug with New Tricks. *Int J Mol Sci* 2019; 20 [PMID: 31658782 DOI: 10.3390/ijms20250523]

72 Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. *Mol Cell Endocrinol* 2011; 335: 2-13 [PMID: 20398732 DOI: 10.1016/j.mce.2010.04.005]

73 Algood HM, Lin PL, Flynn JL. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. *Clin Infect Dis* 2005; 41 Suppl 3: S189-S193
Kumric M et al. COVID-19 and IBD

[PMID: 15983898 DOI: 10.1086/429994]

75 Kaneko H, Yamada H, Mizuno S, Udagawa T, Kazumi Y, Sekikawa K, Sugawara I. Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest 1999; 79: 379-386 [PMID: 10211990]

76 Murdaca G, Spanò F, Contatore M, Guastalla A, Penza E, Magnani O, Puppo F. Infection risk associated with anti-TNF-a agents: a review. Expert Opin Drug Saf 2015; 14: 571-582 [PMID: 25630559 DOI: 10.1517/14740338.2015.1009636]

77 Chen C, Zhang XR, Ju ZY. Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua Shaoshang Zazhi 2020; 36: E005

78 Dolinger MT, Person H, Smith R, Jarchin L, Pittman N, Dubinsky MC, Lai J. Pediatric Crohn Disease and Multisystem Inflammatory Syndrome in Children (MIS-C) and COVID-19 Treated With Infliximab. J Pediatr Gastroenterol Nutr 2020; 71: 153-155 [PMID: 32452970 DOI: 10.1097/MGP.0000000000002809]

79 Bezzio C, Manes G, Bini F, Pellegrini L, Saibeni S. Infliximab for severe ulcerative colitis and subsequent SARS-CoV-2 pneumonia: a stone for two birds. Gut 2021; 70: 623-624 [PMID: 32554621 DOI: 10.1136/gutjnl-2020-321760]

80 Duricova D, Burisch J, Jess T, Gower-Rousseau C, Lakatos PL; ECCO-EpiCom. Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature. J Crohns Colitis 2014; 8: 1351-1361 [PMID: 24951261 DOI: 10.1016/j.crohns.2014.05.006]

81 Williams C, Panaccione R, Ghosh S, Rioux K. Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease. Therap Adv Gastroenterol 2011; 4: 237-248 [PMID: 21765686 DOI: 10.1177/1756283X11405250]

82 Hanauer SB. The expanding role of biologic therapy for IBD. Nat Rev Gastroenterol Hepatol 2010; 7: 63-64 [PMID: 20134483 DOI: 10.1038/orgastro.2009.238]

83 Abreu MT, Peyrin-Biroulet L. Providing Guidance During a Global Viral Pandemic for the Care of Patients With Inflammatory Bowel Disease. J Crohns Colitis 2020; 14: S767-S768 [PMID: 33085969 DOI: 10.1093/ecco-jcc/jja116]

84 Centers for Disease Control and Prevention. Discontinuation of Transmission-Based Precautions and Disposition of Patients with COVID-19 in Healthcare Settings. [cited 5 January 2021]. In: Centers for Disease Control and Prevention [Internet]. Available from: http://www.cdc.gov/coronavirus/2019-ncov/hcp/disposition-hospitalized-patients.html/

85 Allez M, Fleschner P, Geary R, Lakatos PL, Rubin DT. Care of the Patient With IBD Requiring Hospitalisation During the COVID-19 Pandemic. J Crohns Colitis 2020; 14: S774-S779 [PMID: 32722757 DOI: 10.1093/ecco-jcc/jja150]

86 Ng SC, Mak JWY, Hitz L, Chowers Y, Bernstein CN, Silverberg MS. COVID-19 Pandemic: Which IBD Patients Need to Be Scoped-Who Gets Scoped Now, Who Can Wait, and how to Resume to Normal. J Crohns Colitis 2020; 14: S791-S797 [PMID: 33085973 DOI: 10.1093/ecco-jcc/jja128]

87 De Lima-Karagiannis A, Juillerat P, Sebastian S, Pedersen N, Bar-Gil Shitrit A, van der Woude CJ. Management of Pregnant Inflammatory Bowel Disease Patients During the COVID-19 Pandemic. J Crohns Colitis 2020; 14: S807-S814 [PMID: 33085970 DOI: 10.1093/ecco-jcc/jja129]

88 Magro F, Rahier JF, Abreu C, MacMahon E, Hart A, van der Woude CJ, Gordon H, Adamina M, Vignet N, Vavricka S, Kucharzik T, Leone S, Siegmund B, Danese S, Peyrin-Biroulet L. Inflammatory Bowel Disease Management During the COVID-19 Outbreak: The Ten Do's and Don'ts from the ECCO-COVID Taskforce. J Crohns Colitis 2020; 14: S798-S806 [PMID: 32722754 DOI: 10.1093/ecco-jcc/jja160]

89 Dotan I, Panaccione R, Kaplan GG, O’Morain C, Lindsay JO, Abreu MT. Best Practice Guidance for Adult Infusion Centres during the COVID-19 Pandemic: Report from the COVID-19 International Organization for the Study of IBD (IOIBD) Task Force. J Crohns Colitis 2020; 14: S785-S790 [PMID: 32959882 DOI: 10.1093/ecco-jcc/jja147]

90 Siegel CA, Melmed GY, McGovern DP, Rai V, Krammer F, Rubin DT, Abreu MT, Dubinsky MC; International Organization for the Study of Inflammatory Bowel Disease (IOIBD); International Organization for the Study of Inflammatory Bowel Diseases (IOIBD). SARS-CoV-2 vaccination for patients with inflammatory bowel diseases: recommendations from an international consensus meeting. Gut 2021; 70: 635-640 [PMID: 33472895 DOI: 10.1136/gutjnl-2020-324000]

91 Beddok A, Calugaru V, Minsat M, Dendale R, De Oliveira A, Costa É, Goudijl F, Belshi R, Pierrat N, Rochas C, Gravigny AC, Soisick L, Colella Fleury H, Créhange G. Post-lockdown management of oncological priorities and postponed radiation therapy following the COVID-19 pandemic: Experience of the Institut Curie. Radiother Oncol 2020; 150: 12-14 [PMID: 32510277 DOI: 10.1016/j.radonc.2020.05.045]

92 Bilato C, Roncon L, Anselmi M, Valle R, Perrone C, Mecenero A, Ziuin M, Themistoclakis S; a nome dell’ANMCO Veneto. [Managing cardiac patients post-COVID-19 pandemic: a proposal by the ANMCO Veneto Region]. G Ital Cardiol (Rome) 2020; 21: 408-416 [PMID: 32425183 DOI: 10.1714/3359.33322]

93 Saibeni S, Scucchi L, Dragoni G, Bezzio C, Miranda A, Ribaldone DG, Bertani A, Bossa F, Allocca M, Buda A, Mocci G, Soriano A, Mazzuoli S, Bertani L, Baccini F, Loddo E, Privitera AC, Sartini A, Viscido A, Grossi L, Casini V, Gerardi V, Ascolani M, Ruscio MD, Casella G, Savarino E, Stradella D, Pumpo R, Cortezzoli CC, Daperno M, Ciardo V, Nardone OM, Caprioli F, Vitale G,
Cappello M, Comberlato M, Alvisi P, Festi S, Campigotto M, Bodini G, Balestrieri P, Viola A, Pugliese D, Armuazzi A, Fantini MC, Fiorino G; IG-IBD (Italian Group for the study of Inflammatory Bowel Disease). Activities related to inflammatory bowel disease management during and after the coronavirus disease 2019 Lockdown in Italy: How to maintain standards of care. *United European Gastroenterol J* 2020; 8: 1228-1235 [PMID: 33070758 DOI: 10.1177/2050640620964132]

94 Martin Arranz E, Suarez Ferrer C, Garcia Ramirez L, Raeda Garcia JL, Sanchez-Azofra M, Poza Cordón J, Noci J, Zahana Y, Barreiro-de Acosta M, Martin-Arranz MD. Management of COVID-19 Pandemic in Spanish Inflammatory Bowel Disease Units: Results From a National Survey. *Inflamm Bowel Dis* 2020; 26: 1149-1154 [PMID: 32495826 DOI: 10.1093/ibd/izaa142]

95 Bai X, Yang H, Qian J. COVID-19 Outbreak and Inflammatory Bowel Disease Management: A Questionnaire Survey From Realistic Practice. *J Crohns Colitis* 2020; 14: 1494-1495 [PMID: 32221526 DOI: 10.1093/ecco-jcc/jjaa064]

96 Allocca M, Fiorino G, Furfaro F, Gilardi D, Radice S, D'Amico F, Zilli A, Danese S. Maintaining the Quality Standards of Care for Inflammatory Bowel Disease Patients During the COVID-19 Pandemic. *Clin Gastroenterol Hepatol* 2020; 18: 1882-1883 [PMID: 32304737 DOI: 10.1016/j.cgh.2020.04.028]

97 Ashton JJ, Harden A, Beattie RM. Paediatric inflammatory bowel disease: improving early diagnosis. *Arch Dis Child* 2018; 103: 307-308 [PMID: 29175974 DOI: 10.1136/archdischild-2017-319355]

98 Ricciuto A, Fish JR, Tomalty DE, Carman N, Crowley E, Popalis C, Muise A, Walters TD, Griffiths AM, Church PC. Diagnostic delay in Canadian children with inflammatory bowel disease is more common in Crohn's disease and associated with decreased height. *Arch Dis Child* 2018; 103: 319-326 [PMID: 28794097 DOI: 10.1136/archdischild-2017-313060]

99 Ashton JJ, Gavin J, Beattie RM. Exclusive enteral nutrition in Crohn's disease: Evidence and practicalities. *Clin Nutr* 2019; 38: 80-89 [PMID: 29398336 DOI: 10.1016/j.clnu.2018.01.020]

100 Fiorino G, Lytras T, Younge L, Fidalgo C, Coenen S, Chaparro M, Allocca M, Arnott I, Bossuyt P, Burisch J, Campmans-Kuijpers M, de Ridder L, Dignass A, Drohan C, Feukins R, Gilardi D, Grosek J, Groß E, Hart A, Jäghult S, Katsanos K, Lönnfors S, Panis Y, Perovic M, Pierik M, Rimola J, Tulchinsky H, Gisbert JP. Quality of Care Standards in Inflammatory Bowel Diseases: a European Crohn's and Colitis Organisation [ECCO] Position Paper. *J Crohns Colitis* 2020; 14: 1037-1048 [PMID: 32032423 DOI: 10.1093/ecco-jcc/jjaa023]

101 Lewin S, Lees C, Requeiro M, Hart A, Mahadevan U. International Organization for the Study of Inflammatory Bowel Disease: Global Strategies for Telemedicine and Inflammatory Bowel Diseases. *J Crohns Colitis* 2020; 14: S780-S784 [PMID: 33085971 DOI: 10.1093/ecco-jcc/jjaa140]

102 Gower-Rousseau C, Fumery M, Pariente B; EPI-MAD Registry Group. Inflammatory Bowel Disease and the SARS-CoV-2 Pandemic: More Speed, Less Haste. *Gastroenterology* 2021; 160: 473-474 [PMID: 32389663 DOI: 10.1053/j.gastro.2020.05.013]
