On Relations of Hyperelliptic Weierstrass al Functions

SHIGEKI MATSUTANI

Abstract

We study relations of the Weierstrass’s hyperelliptic al-functions over a non-degenerated hyperelliptic curve $y^2 = f(x)$ of arbitrary genus g as solutions of sine-Gordon equation using Weierstrass’s local parameters, which are characterized by two ramified points. Though the hyperelliptic solutions of the sine-Gordon equation had already obtained, our derivations of them is simple; they need only residual computations over the curve and primitive matrix computations.

2000 MSC: 14H05, 14K20, 33E99, 30F30

Key Words and Phrases: Hyperelliptic Functions, sine-Gordon equation, Weierstrass al Functions

§1. Introduction

The sine-Gordon equation is a famous nonlinear integrable differential equations. For a hyperelliptic curve C_g ($y^2 = f(x) = (x - b_1) \cdots (x - b_{2g+1})$) of genus g, the hyperelliptic solutions of the sine-Gordon equation were formulated in [Mu 3.241] in terms of Riemann theta functions. In [Mu], (U, V, W) representation of symmetric product space of the g curves $\text{Symm}^g C_g$ is defined; especially, U is defined by $U(z) := (x_1 - z) \cdots (x_g - z)$ a for a point $((x_1, y_1), \cdots, (x_g, y_g))$ in $\text{Symm}^g C_g$. (In this article, we will denote U by $F(z)$ on later following the conventions in [Ba1, 2, 3, Ma].) Using the relation between U and the Riemann theta functions in [Mu 3.113], the solutions [Mu 3.241] can be rewritten as,

$$\frac{\partial}{\partial t_P} \frac{\partial}{\partial t_Q} \log([2P - 2Q]) = A([2P - 2Q] - [2Q - 2P]),$$ (1-3)

where P and Q are ramified points of C_g, A is a constant number, $[D]$ is a meromorphic function over $\text{Sym}^g(C_g)$ with a divisor D for each C_g and t_P is a coordinate in the Jacobi
variety such that it is identified with a local parameter at a branch point \(P' \) up to constant. In other words, for a finite branch point \((b_i, 0) \) \(U(b_i) \) is identified with \([2(b_i, 0) - 2\infty] \) up to constant factor.

In the formulations in [Mu], local parameters \(t_P' \) were not concretely treated. In this article, we will give more explicit representations of (1-3) using concrete local parameters \(t_{Ba2, W2, 3} \) and present simpler derivations of (1-3) without using any \(\theta \)-function. This article is an application of a scheme developed in [Ma] to the sine-Gordon equation, which is based upon [Ba3].

In [W1, W2], Weierstrass defined al function by \(\gamma_r \sqrt{U(b_r)} \) using a constant factor \(\gamma_r \). In Theorem 3.1, we will give

\[
\frac{\partial^2}{\partial u_1^{(r)} \partial u_g^{(r)}} \log \text{al}_{r}(u^{(r)}) = \frac{1}{2} \left(\frac{\text{al}_{r}^2(u^{(r)})}{\gamma_r^2} - \frac{f'(b_r) \gamma_r^2}{\text{al}_{r}^2(u^{(r)})} \right),
\]

(1-4)
in terms of a coordinate system \(u^{(r)} \)'s defined in (2-5). \text{al}_{r}(u) \) has the single order zero at \((b_r, 0) \) and a singularity of the single order at \(\infty \) as a function of \(x_i \in C_g \).

Further we give another representation in Theorem 4.1 in terms of \(v \)'s defined in (2-6) \((a_1 := b_r, a_2 := b_s) \) [W2, 3],

\[
\frac{\partial^2}{\partial v_1 \partial v_2} \log \frac{\text{al}_{r}(v)}{\text{al}_{s}(v)} = \frac{1}{2(b_r - b_s)} \left(f'(b_s) \frac{\gamma_s^2 \text{al}_{r}(v)^2}{\gamma_r^2 \text{al}_{s}(v)^2} + f'(b_r) \frac{\gamma_r^2 \text{al}_{s}(v)^2}{\gamma_s^2 \text{al}_{r}(v)^2} \right).
\]

(1-5)

The function \(\text{al}_{s}(v)/\text{al}_{r}(v) \) vanishes with order one when \(x_i \) is at \((b_s, 0) \) whereas it diverges with order one if \(x_i \) approaches to \((b_r, 0) \). As they were discovered by Weierstrass [W2, 3] and they play the essential roles in the investigation in [W2, 3] and in \(\S 4 \). Thus we have called them \textit{Weierstrass parameters}.

In these proofs, we will use only residual computations using the data of curve itself without any \(\theta \) functions as the derivation of hypereilliptic solutions of the modified Korteweg-de Vries equations in [Ma]. The curve is sometimes given by an affine equation with special coefficients. Then it might be important to study the relation between the properties of line-bundle over the curve and these coefficients. As (1-4) and (1-5) can be explicitly expressed by data of curve \(C_g \), the author believes that they have some advantage as relations of special functions.
§2. Differentials of a Hyperelliptic Curve

In this section, we will give the conventions and notations of the hyperelliptic functions in this article. We denote the set of complex numbers by \(\mathbb{C} \) and the set of integers by \(\mathbb{Z} \).

2.1 Hyperelliptic Curve. We deal with a hyperelliptic curve \(C_g \) of genus \(g \) \((g > 0)\) given by the affine equation,

\[
y^2 = f(x) = \lambda_{2g+1}x^{2g+1} + \lambda_{2g}x^{2g} + \cdots + \lambda_2x^2 + \lambda_1x + \lambda_0 = (x - b_r)h_r(x), \tag{2-1}
\]

where \(\lambda_{2g+1} \equiv 1 \) and \(\lambda_j \)'s are complex numbers. We use the expressions,

\[
f(x) := (x - b_1)(x - b_2)\cdots(x - b_{2g})(x - b_{2g+1}) = P(x)Q(x),
\]

\[
P(x) := (x - a_1)(x - a_2)\cdots(x - a_g),
\]

\[
Q(x) := (x - c_1)(x - c_2)\cdots(x - c_g)(x - c), \tag{2-2}
\]

where \(b_j \)'s \((b_i = a_i, b_{g+i} = c_i)\) are complex numbers.

It is noted that the permutation group acts on these \(\{b_r\} \) and \(\{a_r\} \).

2.2 Definition [Ba1, Ba2, W2, 3].

1. For a point \((x_i, y_i) \in C_g\), the unnormalized differentials of the first kind are defined by,

\[
du^{(r,i)}_1 := \frac{dx_i}{2y_i}, \quad du^{(r,i)}_2 := \frac{(x_i - b_r)dx_i}{2y_i}, \quad \cdots, \quad du^{(r,i)}_g := \frac{(x_i - b_r)^{g-1}dx_i}{2y_i}. \tag{2-3}
\]

\[
dv^{(i)}_1 := \frac{P(x_i)dx_i}{2P'(a_1)(x_i - a_1)y_i}, \quad dv^{(i)}_2 := \frac{P(x_i)dx_i}{2P'(a_2)(x_i - a_2)y_i}, \quad \cdots, \quad dv^{(i)}_g := \frac{P(x_i)dx_i}{2P'(a_g)(x_i - a_g)y_i}. \tag{2-4}
\]

2. Let us define the Abel maps for \(g \)-th symmetric product of the curve \(C_g \),

\[
u^{(r)} := (u^{(r)}_1, \cdots, u^{(r)}_g) : \text{Sym}^g(C_g) \rightarrow \mathbb{C}^g,
\]

3
\(u_k^{(r)} ((x_1, y_1), \cdots, (x_g, y_g)) := \sum_{i=1}^{g} \int_{\infty}^{(x_i, y_i)} d u_k^{(r,i)} \), \hspace{1cm} (2-5)

\(v := (v_1, \cdots, v_g) : \text{Sym}^g(C_g) \rightarrow \mathbb{C}^g \),

\(v_k((x_1, y_1), \cdots, (x_g, y_g)) := \sum_{i=1}^{g} \int_{\infty}^{(x_i, y_i)} d v_k^{(i)} \). \hspace{1cm} (2-6)

These coordinates are universal covering of the related Jacobian \(J \). The definition (2-6) [Ba2 p.382] is due to Weierstrass [W2, 3] and we call (2-6) *Weierstrass parameter*, though we choose different constant factor from the original one [W2, 3]. This parameterization is a key of the second solutions mentioned in §4.

2.3 Definition.

1. Hyperelliptic \(\alpha \) function is defined by [Ba2 p.340, W2, 3],

\(\alpha_r(u) := \gamma_r \sqrt{F(b_r)}, \) \hspace{1cm} (2-7)

where \(\gamma_r := \sqrt{-1/P'(b_r)} \) and

\[F(x) := (x - x_1) \cdots (x - x_g) \]

\[= (x - b_r - x_1 + b_r) \cdots (x - b_r - x_g + b_r). \] \hspace{1cm} (2-8)

On the choice of \(\gamma_r \), we will employ the convention of Baker [Ba2] instead of original one [W2, 3]. We note that \(\alpha_r \)'s have mutually algebraic relations.

For later convenience, a polynomial associated with \(F(x) \) is introduced by

\[\pi_i^{(r)}(x) := \frac{F(x)}{x - x_i} = \chi_i^{(r)}(x - b_r)^{g-1} + \chi_{i,g-2}^{(r)}(x - b_r)^{g-2} + \cdots + \chi_{i,1}^{(r)}(x - b_r) + \chi_{i,0}^{(r)}. \]

Then we have \(\chi_{i,g-1}^{(r)} \equiv 1 \) and \(\chi_{i,0}^{(r)} = F(b_r)/(x_i - b_r) \). Further we introduce \(g \times g \)-matrices,

\[\mathcal{W}^{(r)} := \begin{pmatrix} \chi_{1,0}^{(r)} & \chi_{1,1}^{(r)} & \cdots & \chi_{1,g-1}^{(r)} \\ \chi_{2,0}^{(r)} & \chi_{2,1}^{(r)} & \cdots & \chi_{2,g-1}^{(r)} \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{g,0}^{(r)} & \chi_{g,1}^{(r)} & \cdots & \chi_{g,g-1}^{(r)} \end{pmatrix}, \quad \mathcal{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_g \end{pmatrix}, \]
\[
\mathcal{M} := \begin{pmatrix}
1 & 1 & \cdots & 1 \\
x_1 - a_1 & x_2 - a_1 & \cdots & x_g - a_1 \\
x_1 - a_2 & x_2 - a_2 & \cdots & x_g - a_2 \\
\vdots & \vdots & \ddots & \vdots \\
x_1 - a_g & x_2 - a_g & \cdots & x_g - a_g \\
\end{pmatrix},
\]
\[
\mathcal{P} = \begin{pmatrix}
\sqrt{P(x_1)/Q(x_1)} \\
\sqrt{P(x_2)/Q(x_2)} \\
\vdots \\
\sqrt{P(x_g)/Q(x_g)} \\
\end{pmatrix},
\]
\[
\mathcal{A} = \begin{pmatrix}
P'(a_1) \\
P'(a_2) \\
\vdots \\
P'(a_g) \\
\end{pmatrix}, \quad \mathcal{F}' = \begin{pmatrix}
F'(x_1) \\
F'(x_2) \\
\vdots \\
F'(x_g) \\
\end{pmatrix},
\]
where \(F'(x) := dF(x)/dx \).

2.3 Lemma

For these matrices, the following relations hold:

1. The inverse matrix of \(\mathcal{W}^{(r)} \) is given by \(\mathcal{W}^{(r)-1} = \mathcal{F}'^{(r)-1} \mathcal{V}^{(r)} \), where \(\mathcal{V}^{(r)} \) is the Vandermonde matrix,

\[
\mathcal{V}^{(r)} = \begin{pmatrix}
(x_1 - b_r) & (x_1 - b_r)^2 & \cdots & (x_1 - b_r)^{g-1} \\
(x_2 - b_r) & (x_2 - b_r)^2 & \cdots & (x_2 - b_r)^{g-1} \\
\vdots & \vdots & \ddots & \vdots \\
(x_g - b_r) & (x_g - b_r)^2 & \cdots & (x_g - b_r)^{g-1} \\
\end{pmatrix}.
\]

2. The determinant of \(\mathcal{M} \) is given by

\[
\det \mathcal{M} = \frac{(-1)^{g(g-1)/2} P(x_1, \ldots, x_g) P(a_1, \ldots, a_g)}{\prod_{k,l} (x_k - a_l)},
\]
where

\[
P(z_1, \ldots, z_g) := \prod_{i<j} (z_i - z_j).
\]

3. \((\mathcal{M} \mathcal{P})^{-1} \mathcal{A} = \left[\begin{array}{c}
\frac{2y_j F(a_j)}{F'(x_i)(a_j - x_i)} \\
\vdots \\
\frac{2y_j F(a_j)}{F'(x_i)(a_j - x_i)} \\
\end{array} \right] \).
Proof. (1) is obtained by direct computations. (2) is a well-known result [T]. Since the zero and singularity in the left hand side give the right hand side as

\[CP(x_1, \cdots, x_g)P(a_1, \cdots, a_g)/\prod_{k,l}(x_k - a_l), \]

for a certain constant \(C \). In order to determine \(C \), we multiply \(\prod_{k,l}(x_k - a_l) \) both sides and let \(x_1 = a_1, x_2 = a_2, \cdots, \) and \(x_g = a_g \). Then \(C \) is determined as above. (3) is obtained by the Laplace formula using the minor determinant for the inverse matrix.

Then we have following corollary.

2.5 Corollary. Let \(\partial_{u_i}^{(r)} := \partial/\partial u_i^{(r)}, \) \(\partial_{v_i}^{(r)} := \partial/\partial v_i, \) and \(\partial_{x_i} := \partial/\partial x_i. \)

\[
\begin{pmatrix}
\partial_{u_1}^{(r)} \\
\partial_{u_2}^{(r)} \\
\vdots \\
\partial_{u_g}^{(r)}
\end{pmatrix}
= 2\mathcal{F}^{-1} \cdot t\mathcal{W}^{(r)}
\begin{pmatrix}
\partial_{x_1} \\
\partial_{x_2} \\
\vdots \\
\partial_{x_g}
\end{pmatrix},
\begin{pmatrix}
\partial_{v_1} \\
\partial_{v_2} \\
\vdots \\
\partial_{v_g}
\end{pmatrix}
= 2(\mathcal{M}\mathcal{P})^{-1} A
\begin{pmatrix}
\partial_{x_1} \\
\partial_{x_2} \\
\vdots \\
\partial_{x_g}
\end{pmatrix}.
\] (2-10)

§3. Relations between Hyperelliptic al Functions \((b_r, \infty)-\text{type}\)

In this section, we will give the first relation of hyperelliptic al function using the parameters \(u_1^{(r)} \) and \(u_g^{(r)} \) in (2-5).

3.1 Theorem.

\[
\frac{\partial}{\partial u_1^{(r)}} \frac{\partial}{\partial u_g^{(r)}} \log a_{r} = \frac{1}{2} \left(\frac{a_{r}^2}{\gamma_{r}^2} - \frac{f'(b_r)\gamma_{r}^2}{a_{r}^2} \right).
\] (3-1)

Here we will give a comment on Theorem 3.1. Let us fix the parameters \(x_2, \cdots, x_g \) and regard al\(r \) as a function of a parameter related to \(x_1 \) over \(C_g \). Then its divisor is \((a_{r}) = (b_r, 0) - \infty \). Further by letting \(t^2 = (x_i - b_r) \) around \((b_r, 0) \), the definition (2-3) shows,

\[
du_1^{(r, i)}|_{(b_r, 0)} = \frac{2}{\sqrt{f'(b_r)}} dt.
\]
while for $s^2 = 1/x$ around ∞,

$$du_g^{(r,i)}|_{(\infty)} = -2ds.$$

Hence (3-1) can be regarded as an explicit representation of (1-3).

Proof. Instead of (3-1), we will prove following formula (3-2) in remainder in this section.

$$\frac{\partial}{\partial u_1^{(r)}} \frac{\partial}{\partial u_g^{(r)}} \log F(b_r) = F(b_r) - \frac{f'(b_r)}{F(b_r)}.$$ \hspace{1cm} (3-2)

The strategy is essentially the same as [Ba3, Ma]. First we translate the words of the Jacobian into those of the curves; we rewrite the differentials $u^{(r)}$’s in terms of the differentials over curves as in (3-3). We count the residue of an integration and use a combinatorial trick. Then we will obtain (3-2).

From (2-10), we will express $u^{(r)}$’s by the affine coordinates x_i’s,

$$\frac{\partial}{\partial u_g^{(r)}} = \sum_{i=1}^g \frac{2y_i}{F'(x_i)} \frac{\partial}{\partial x_i},$$

$$\frac{\partial}{\partial u_1^{(r)}} = \sum_{i=1}^g 2y_i x_i^{(r)} \frac{\partial}{\partial x_i} = F(b_r) \sum_{i=1}^g \frac{2y_i}{(x_i - b_r)F'(x_i)} \frac{\partial}{\partial x_i}.$$ \hspace{1cm} (3-3)

Hence the right hand side of (3-2) becomes

$$-\frac{\partial^2}{\partial u_1^{(r)} \partial u_g^{(r)}} \log F(b_r) = F(b_r) \sum_{j=1, i=1}^g \frac{2y_j}{(x_i - b_r)^2 F'(x_j)} \frac{\partial}{\partial x_j} \frac{2y_i}{F'(x_i)(x_i - b_r)^2}. \hspace{1cm} (3-4)$$

Here we will note the derivative of $F(x)$, which is shown by direct computations.

$$\frac{\partial}{\partial x_k} \left(\frac{\partial}{\partial x} F(x) \right)_{x=x_k} = \frac{1}{2} \left[\frac{\partial^2}{\partial x^2} F(x) \right]_{x=x_k}.$$

Then (3-4) can be written as,

$$-\frac{\partial}{\partial u_1^{(r)}} \frac{\partial}{\partial u_g^{(r)}} \log F(b_r) = F(b_r) \sum_{i=1}^g \frac{1}{F'(x_i)} \left[\frac{\partial}{\partial x} \left(\frac{f(x)}{(x - b_r)F'(x)} \right) \right]_{x=x_i}$$

$$-F(b_r) \sum_{k, l, k \neq l} \frac{4y_k y_l}{(b_r - x_k)(b_r - x_l)(x_k - x_l)F'(x_k)F'(x_l)}.$$

The proof of Theorem 3.1 finishes due to the following lemma.

7
3.2 Lemma. Following relations hold:

\[
\sum_{k=1}^{g} \frac{1}{F'(x_k)} \left[\frac{\partial}{\partial x} \left(\frac{f(x)}{(x-b_r)^2 F'(x)} \right) \right]_{x=x_k} = 1 - \frac{f'(b_r)}{F(b_r)^2}. \tag{3-5}
\]

\[
\sum_{k,l,k \neq l} \frac{2y_k y_l}{(b_r-x_k) (b_r-x_l) (x_k-x_l) F'(x_k) F'(x_l)} = 0. \tag{3-6}
\]

Proof.: (3-5) will be proved by the following residual computations: Let \(\partial C_g^o \) be the boundary of a polygon representation \(C_g^o \) of \(C_g \),

\[
\oint_{\partial C_g^o} \frac{f(x)}{(x-b_r)^2 F(x)^2} \, dx = 0. \tag{3-7}
\]

The divisor of the integrand of (3-7) is given by,

\[
\left(\frac{f(x)}{(x-b_r)^2 F(x)^2} \right) dx = \frac{f(x)}{(x-b_r)^2 F(x)^2} dx = 2 \sum_{i=1}^{g} (b_i,0) - (b_r,0) - 2 \sum_{i=1}^{g} (x_i,y_i) - 2 \sum_{i=1}^{g} (x_i,-y_i) - \infty.
\]

We check these poles: First we consider the contribution around \(\infty \) point. Noting that the local parameter \(t \) at \(\infty \) is \(x = 1/t^2 \),

\[
\text{res}_{\infty} \frac{f(x)}{(x-b_r)^2 F(x)^2} \, dx = -2.
\]

Since the local parameter \(t \) at \((x_k, \pm y_k)\) is \(t = x - x_k \), we have

\[
\text{res}_{(x_k, \pm y_k)} \frac{f(x)}{(x-b_r)^2 F(x)^2} \, dx = \frac{1}{F'(x_k)} \left[\frac{\partial}{\partial x} \left(\frac{f(x)}{(x-b_r)^2 F'(x)} \right) \right]_{x=x_k}.
\]

For each branch point \((b_r,0)\), the local parameter \(t \) is \(t^2 = x - b_r \) and thus

\[
\text{res}_{(b_r,0)} \frac{f(x)}{(x-b_r)^2 F(x)^2} \, dx = 2 \frac{f'(b_r)}{F(b_r)^2}.
\]

By arranging them, we obtain (3-5).

On the other hand, (3-6) can be proved by using a trick: for \(i \neq j \),

\[
\frac{1}{(b_r-x_k)(b_r-x_l)(x_k-x_l)} = \frac{1}{(x_k-x_l)^2} \left(\frac{1}{(b_r-x_k)} - \frac{1}{(b_r-x_l)} \right).
\]

\[
\frac{1}{(b_r-x_k)(b_r-x_l)(x_k-x_l)} = \frac{1}{(x_k-x_l)^2} \left(\frac{1}{(b_r-x_k)} - \frac{1}{(b_r-x_l)} \right).
\]

\[
\frac{1}{(b_r-x_k)(b_r-x_l)(x_k-x_l)} = \frac{1}{(x_k-x_l)^2} \left(\frac{1}{(b_r-x_k)} - \frac{1}{(b_r-x_l)} \right).
\]
§4. Relations between Hyperelliptic al Functions: \((a_1, a_2)\)-type

In the previous section, we have a solution with a duality between a finite ramified point and \(\infty\)-point. In this section, we will give a relation between hyperelliptic al functions using the Weierstrass parameter (2-6). The relation has a duality between finite ramified points \((a_r, 0)\) and \((a_s, 0)\).

4.1 Theorem. For \(r \neq s\), we obtain

\[
\frac{\partial}{\partial v_r} \frac{\partial}{\partial v_s} \log \frac{a_r}{a_s} = \frac{1}{2(a_r - a_s)} \left(f'(a_r) \frac{\gamma_r^2 a_r^2}{\gamma_s^2 a_s^2} + f'(a_s) \frac{\gamma_s^2 a_s^2}{\gamma_r^2 a_r^2} \right). \tag{4-1}
\]

Before we prove it, we will give some comments: Let us fix the parameter \(x_2, \cdots, x_g\) and regard \(a_r/a_s(\propto \sqrt{F(a_r)/F(a_s)})\) as a function of \(x_1\) over \(C_g\). Then its divisor is \((a_r/a_s) = (a_r, 0) - (a_s, 0)\). By letting \(t_r^2 = (x_1 - a_r)\) around \((a_r, 0)\), infinitesimal value of Weierstrass parameter (2-4) is given,

\[
dv_r^{(i)} \big|_{(a_r, 0)} = \frac{1}{\sqrt{f'(a_r)}} dt_r.
\]

Thus (4-1) is also a concrete expression of (1-3).

Proof. Similar to the proof of Theorem 3.1, let us prove the theorem. Without loss of generality, we will prove the following relation instead of (4-1):

\[
\frac{\partial}{\partial v_1} \frac{\partial}{\partial v_2} \log \frac{F(a_1)}{F(a_2)} = \frac{F(a_1)F(a_2)}{(a_1 - a_2)} \left(\frac{f'(a_1)}{F(a_1)^2} + \frac{f'(a_2)}{F(a_2)^2} \right). \tag{4-2}
\]

From (2-9) and (2-10), the derivative \(v\)'s are expressed by the affine coordinate \(x_i\)'s,

\[
\frac{\partial}{\partial v_r} = F(a_r) \sum_{j=1}^{g} \frac{2y_j}{F'(x_j)(x_j - a_r)} \frac{\partial}{\partial x_j}.
\]

The right hand side of (4-2) becomes,

\[
\frac{\partial^2}{\partial v_1 \partial v_2} \log \frac{F(a_1)}{F(a_2)} = F(a_1) \sum_{j=1}^{g} \frac{2y_j}{(x_i - a_1)F'(x_j)} \frac{\partial}{\partial x_j} F'(x_i) \left(\frac{2y_i F(a_2)}{F'(x_i)(x_i - a_2)} \frac{(a_1 - a_2)}{(x_i - a_1)(x_i - a_2)} \right). \tag{4-3}
\]
The right hand side of (4-3) is

\[
F(a_1)F(a_2) \sum_{i=1}^{g} \frac{1}{F'(x_i)} \left[\frac{\partial}{\partial x} \left(\frac{f(x)(a_2 - a_1)}{(x - a_1)^2(x - a_2)^2F'(x)} \right) \right]_{x=x_i}
\]

\[
-F(a_1)F(a_2) \sum_{k,l,k\neq l} \frac{2y_ky_l(a_2 - a_1)}{F'(x_k)F'(x_l)(x_l - a_1)(x_k - a_2)(x_k - a_1)(x_l - a_2)(x_l - x_k)}.
\]

Then the proof of Theorem 4.1 is completely done due to the following lemma.

4.2 Lemma. Following relations hold:

\[
\sum_{i=1}^{g} \frac{1}{F'(x_i)} \left[\frac{\partial}{\partial x} \left(\frac{f(x)}{(x - a_1)^2(x - a_2)^2F'(x)} \right) \right]_{x=x_i} = \frac{1}{(a_1 - a_2)^2} \left(\frac{f'(a_1)}{F(a_1)^2} - \frac{f'(a_1)}{F(a_1)^2} \right).
\]

\[
\sum_{k,l,k\neq l} \frac{2y_ky_l(a_2 - a_1)}{F'(x_k)F'(x_l)(x_l - a_1)(x_k - a_2)(x_k - a_1)(x_l - a_2)(x_l - x_k)} = 0.
\]

Proof. : Similar to Lemma 3-2, we consider an integral,

\[
\oint_{\partial C_g} \frac{f(x)}{(x - a_1)^2(x - a_2)^2F(x)^2}dx = 0.
\]

As the divisor of the integrand of (4-6) is

\[
\left(\frac{f(x)}{(x - a_1)^2(x - a_2)^2F(x)^2} \right)
\]

\[
= 3 \sum_{i=1}^{2g+1} (b_i,0) - (a_1,0) - (a_2,0) - 2 \sum_{i=1}^{g} (x_i,y_i) - 2 \sum_{i=1}^{g} (x_i,-y_i) + 3\infty,
\]

we count residual contributions from each terms as in the proof of Lemma 3-2 and obtain (4-4). Considering the symmetry, (4-5) is easily obtained.

References

[Ba1] Baker, H. F., Abelian functions – Abel’s theorem and the altered theory including the theory of the theta functions –, Cambridge Univ. Press, 1897, republication 1995.

[Ba2] Baker, H. F., On the hyperelliptic sigma functions, Amer. J. of Math. XX (1898), 301-384.

[Ba3] Baker, H. F., On a system of differential equations leading to periodic functions, Acta math. 27 (1903), 135-156.

[Ma] Matsutani, S., Explicit Hyperelliptic Solutions of Modified Korteweg-de Vries Equation: Essentials of Miura Transformation, J. Phys. A. Math. & Gen. 35 (2002), 4321-4333.

[Mu] Mumford, D., Tata Lectures on Theta, vol II, Birkhäuser, Boston, 1984.
[T] Takagi, T., *Daisuu-Gaku-Kougi (Lecture of Algebra)*, Kyouritsu, Tokyo, 1930. (japanese)

[W1] Weierstrass, K., *Mathematische Werke I*, Mayer und Müller, Berlin, 1894.

[W2] Weierstrass, K., *Beitrage zur Theorie der Abel’schen Functionen*, Beilage zum Jahresbericht über des Gymnasium zu Braunsberg in dem Schuljahre 1848-1849, in [W1] (1849).

[W3] Weierstrass K, *Zur Theorie der Abel’schen Functionen*, in [W1], Aus dem Crelle’schen Journal 47 (1854).

description: 8-21-1 Higashi-Linkan Sagamihara 228-0811 Japan

e-mail: RXB01142@nifty.ne.jp