Antidiabetic and Antioxidant Effects of Acteoside from *Jacaranda mimosifolia* Family Biognoniaceae in Streptozotocin–Nicotinamide Induced Diabetes in Rats

Salma A. El-Marasy¹, Siham M. El-Shenawy¹, Fatma A. Moharram², Nagla A. El-Sherbeeny*†

¹Department of Pharmacology, National Research Centre, Giza, Egypt; ²Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Helwan, Egypt; ³Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

Abstract

BACKGROUND: Acteoside is a phenylethanoid compound isolated from *Jacaranda mimosifolia* D. Don leaves with a potential antidiabetic effect.

OBJECTIVES: This study was designed to investigate the antidiabetic and antioxidant effects of acteoside in streptozotocin-nicotinamide (STZ-NA)-induced Type 2 diabetes in rats.

METHODS: Diabetes was induced by intraperitoneal (i.p.) injection of a single dose of STZ (52.5 mg/kg), 15 min following i.p. administration of NA (25 mg/kg). Rats were divided into six groups; Group I: Normal rat group received the vehicle, Group II: Diabetic control group, and Groups III-IV: Diabetic rat groups were treated by either oral acteoside (10, 20, and 40 mg/kg) or pioglitazone (30 mg/kg) for 21 consecutive days. Biochemical parameters were assessed in the serum and liver homogenates. Examination of liver sections for histopathology was also carried out.

RESULTS: Acteoside treated rats showed significant lower levels of blood glucose, glycosylated hemoglobin, total cholesterol, triglycerides, and increased serum insulin compared to control diabetic rats. Furthermore, acteoside treated rats, in comparison to the diabetic control, demonstrated significantly reduced malondialdehyde, increased reduced glutathione liver contents, and attenuated pathological alterations in the liver. These effects were comparable to those caused by the standard antidiabetic drug, pioglitazone. In vitro, acteoside scavenged stable free radical 1,1-diphenyl-2-picrylhydrazyl.

CONCLUSION: Acteoside could be considered as a potential therapeutic agent for type 2 diabetes mellitus. However, studying further mechanisms underlying its antidiabetic effect is recommended.

Introduction

Diabetes mellitus is a chronic metabolic disorder affecting about 450 million adults around the world. The number is expected to reach 629 million by 2045 [1]. The disease is characterized by hyperglycemia induced by diminished insulin output from pancreatic beta cells and/or tissues’ resistance to insulin action. Type 2 diabetes is found in 90–95% of all diabetes cases. Diabetes is associated with high risk of macrovascular and microvascular (nephropathy, neuropathy, and retinopathy) complications [2]. Lifestyle modifications, pharmacological treatments and careful monitoring are the mainstay for diabetes management. Achieving target glycemic control helps preventing or at least can delay diabetes complications [3].

Despite the benefits of current antidiabetic drugs, every class has undesirable adverse effects. Therefore, searching for new treatments for type 2 diabetes is warranted. New drugs should be efficacious with minimal adverse effects and affordable cost. Diabetic patients use natural remedies that are thought to improve glycemic control especially in areas where the cost of drugs imposes a real challenge [4]. The genus *Jacaranda* (Bignoniaceae) is found mainly in tropical and subtropical geographical areas. *J. acaranda* mimosifolia is native to Brazil but is also cultivated as an ornamental tree in Egypt. Acteoside (verbascoside) was isolated from the leaves of the *J. mimosifolia* [5]. A variety of promising activities of acteoside was reported in the previous studies including anti-inflammatory [6], [7], hepatoprotective [8], antioxidant [9], antineoplastic [10], and neuroprotective effects [11].

Previous reports have demonstrated the potential anti-hyperglycemic effect of acteoside. For example, acteoside prevented protein glycation in vitro, an activity that is correlated with antidiabetic drugs [12]. Moreover, plant extracts containing acteoside showed anti-hyperglycemic effects in experimental type 2 diabetes [13]. Furthermore, a more direct testing of the potential hypoglycemic action of acteoside was reported in the study by Morikawa et al. [14]; after 2 weeks of daily oral acteoside given concurrently with a starch load in mice, glucose tolerance was improved without significant change in weight. However, the...
The antidiabetic effect of acteoside has not yet been explored in experimental diabetes models. Therefore, this work aims to investigate the antidiabetic and antioxidant effects of acteoside in a rat model of Type 2 diabetes induced by streptozotocin-nicotinamide (STZ-NA).

Materials and Methods

Animals

Male Wistar albino rats (weight 180–210 g) were used in the current study. Rats were purchased from the Animal House Facility of the National Research Centre (Cairo, Egypt). Animals were housed in standardized conditions and allowed to acclimatize for 7 days in the laboratory before starting the experiment. Rats had free access to a standard food pellets and water ad libitum. The experimental protocol and all animal procedures were approved by the Ethics Committee of the National Research Centre, Egypt (approval number: 18/042). The committee guidelines are in line with the National Institutes of Health guide for the care and use of laboratory animals.

Materials

STZ was procured from Sigma-Aldrich (Missouri, USA), NA from Bayer Schering Pharma (Switzerland, Europe), and Pioglitazone from Amoun Pharmaceutical Industries Co., (Cairo, Egypt). Pure sample of acteoside was provided by the fourth author. Isolation of acteoside from J. mimosifolia leaves was carried out as previously reported by Moharram and Marzouk [5]. All other chemicals and reagents were of analytical grade.

Diabetes induction

After 12 h fasting, diabetes was induced in rats by a single intraperitoneal dose of STZ (52.5 mg/kg) dissolved in 0.1 mol/L citrate buffer (pH 4.5) [15]. STZ was given 15 min after intraperitoneal injection of NA (25 mg/kg) [16]. The next 24 h following STZ injection, a 5% glucose solution was given to rats to overcome the risk of death that may result from hypoglycemic shock. After 48 h of STZ injection, blood glucose levels were estimated in blood samples withdrawn from the tail vein using a portable glucometer. Rats were considered diabetic only if fasting blood glucose was ≥250 mg/dL.

Experimental design

After weighing rats, they were randomly distributed into six groups (six rats per group): Group I: Served as the normal control (given only distilled water); Group II: Diabetic control group; Groups III-V: Diabetic rats treated with oral acteoside for 3 weeks (10, 20, and 40 mg/kg), respectively; and Group IV: Diabetic rats treated with oral pioglitazone (30 mg/kg) for 3 weeks. The vehicle was given to normal and diabetic control rats. Acteoside or pioglitazone treatments were started after confirmation of hyperglycemia, 48 h following STZ injection.

Acteoside and pioglitazone doses were selected according to the previously published data by Liu et al. [17] and by Vidal et al. [18], respectively.

Body weight changes

Initial body weight was determined by weighing each rat before the beginning of the experiment. Furthermore, the final body weight for each rat was estimated 24 h after the last dose of administration of either vehicle or treatment according to the study design. The percent change in body weight was calculated as follow:

\[
\% \text{ Change in body weight} = \left(\frac{\text{Final body weight} - \text{Initial body weight}}{\text{Initial body weight}}\right) \times 100
\]

Biochemical analysis

Glucose level

Glucose level (mg/dl) was measured colorimetrically using kits purchased from (Biodiagnostic, Egypt) based on the method by Trinder [19].

Serum insulin level

Serum insulin level (µIU/ml) was measured by enzyme-linked immunosorbent kit Rat Insulin (INS) ELISA (Cusabio Biotech Co., Ltd., Hubei, China) following the manufacturer’s protocol.

Glycosylated hemoglobin level (HbA1c)

Glycosylated Hb level (ng/ml) was estimated using (Rat [HbA1c] ELISA) purchased from Glory Science, following the manufacturer’s protocol.

Serum triglyceride and total cholesterol levels

Triglycerides level (mg/dl) and total cholesterol level (mg/dl) were determined using enzymatic methods. Diagnostic kits from Biodiagnostic, Egypt, were used following the method of Fossati and Prencipe [20].

Preparation of tissue homogenate

All rats were sacrificed by decapitation under anesthesia, and then their livers were removed. A portion from the liver was homogenized in (20% w/v)
ice cold 0.1 M phosphate buffer (pH 7.4). Then, the homogenate was centrifuged at 4000 rpm for 5 min in a cooling centrifuge (2k15; Sigma/Laborzentrifugen). The supernatant was then used for determining the liver contents of malondialdehyde (MDA) and reduced glutathione (GSH).

Hepatic lipid peroxide content

Hepatic MDA content (nanomoles/gram of liver tissue) was determined colorimetrically, as described by Satoh [21] using a diagnostic kit purchased from BioDiagnostic Co., Egypt.

Hepatic GSH content

Hepatic reduced GSH content (mmol/g liver tissue) was estimated by a colorimetric method according to Beutler et al. [22] using a kit purchased from BioDiagnostic Co., Egypt.

Evaluation of the antioxidant effect (in vitro)

1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was determined following the method described by Peiwu et al. [23]. If the compound is antioxidant that can donate hydrogen, it will react with DPPH. The reaction will induce color change of DPPH from deep violet to yellow. This change in color was measured using a spectrophotometer at 517 nm. Ascorbic acid at 0.1 M concentration was the standard [24]. DPPH radical scavenging activity was calculated according to the equation:

\[
\text{Radical scavenging activity } \% = \frac{(Ac−At)}{Ac} \times 100
\]

Where Ac and At are the absorbance of control (DPPH) and acteoside, respectively.

Histopathological examination

Liver tissues were taken from rats and fixed in 10% formaldehyde for 24 h. Then tissues were processed to obtain 4 µm paraffin embedded sections. The tissue sections were stained by hematoxylin and eosin stain and examined using the light microscope [25].

Statistical analysis

Results are expressed as mean ± SEM for six rats per group. Comparisons between more than two groups were carried out using one-way ANOVA followed by Tukey’s multiple comparisons test. All analyses were done using GraphPad Prism 6.0 statistical package for Windows (GraphPad, San Diego, Calif.). Statistical significance was set at p < 0.05.

Results

Effect of acteoside on body weight

Figure 1 reveals that diabetes induced by a single i.p. dose of STZ (52.5 mg/kg) 15 min after the i.p. injection of NA (25 mg/kg) led to a significant body weight loss of percentage of body weight by 11.86 ± 1.32 after 3 weeks of diabetes induction. Meanwhile, normal rats showed a significant gain in % body weight by 22.74 ± 1.85. Acteoside given orally to diabetic rats in doses of 10, 20, and 40 mg/kg for 21 successive days resulted in significant gain in percentage of body weight by 19.05 ± 1.14, 16.92 ± 1.00, and 22.98 ± 1.21, respectively. Similarly, pioglitazone orally administered at 30 mg/kg showed a significant gain in percentage of body weight by 25.59 ± 2.13.

![Figure 1: Effect of acteoside on body weight changes in diabetic rats. Results are expressed as % change of body weight (n = 6). Statistical analyses were carried out using one-way ANOVA followed by Tukey’s multiple comparison test. *Significant difference from normal group at p < 0.05. †Significant difference from control diabetic group at p < 0.05.](image)

Effect of acteoside on blood glucose, insulin levels, and HbA1c

As demonstrated in Table 1, diabetic rats showed a significant elevation in blood glucose to a level of 318.70 ± 13.8 mg/dl whereas normal rats mean level was 81.51 ± 4.15 mg/dl. Three weeks oral treatment with acteoside (10, 20, and 40 mg/kg) caused a significant reduction of blood glucose to 111.30 ± 0.61, 74.88 ± 3.23, and 75.15 ± 8.45 mg/dl, respectively, versus control value. Furthermore, pioglitazone (30 mg/kg) reduced blood glucose level to 103.00 ± 3.12 mg/dl versus control value of diabetic rats.

Regarding serum insulin levels, control diabetic rats showed a significantly decreased serum insulin level of 1.25 ± 0.07 µIU/ml whereas normal rats mean level was 5.32 ± 0.27 µIU/ml. Oral treatment with acteoside (10 mg/kg) resulted in significant elevation in serum insulin level to be 3.23 ± 0.06 µIU/ml versus control diabetic and normal groups. Acteoside in dose of 20 mg/kg restored serum insulin level to be 5.38 ± 0.21 µIU/ml versus control value of diabetic rats. Oral treatment with acteoside 40 mg/kg significantly increased serum insulin level to be 6.80 ± 0.20 µIU/ml versus control diabetic and normal values. Pioglitazone treatment resulted in significant
increase in serum insulin level to be 8.00 ± 0.16 µIU/ml versus control diabetic and normal values (Table 1).

As depicted in Table 1, control diabetic rats had significantly elevated HbA1c level of 40.30 ± 3.39 ng/ml as compared to mean normal values of 3.36 ± 0.21 ng/ml. Acetoside in doses of 10 and 20 mg/kg showed a significant elevation in HbA1c levels to be 24.12 ± 1.86 ng/ml and 16.72 ± 1.06 ng/ml, respectively, versus values of control diabetic rats and normal rats. Acetoside (40 mg/kg) significantly reduced HbA1c level to be 10.18 ± 0.92 ng/ml versus control diabetic rats. Similarly, pioglitazone significantly reduced HbA1c level to be 6.42 ± 0.29 ng/ml versus values of control diabetic rats.

Effect of acetoside on total cholesterol and triglyceride levels

The effect of acetoside on total cholesterol and triglyceride is shown in Table 2. Control diabetic rats showed a significant increase in total cholesterol to be 139.35 ± 4.28 mg/dl as compared to normal values 94.38 ± 2.38 mg/dl. Oral treatment with acetoside (10, 20, and 40 mg/kg) significantly reduced total cholesterol level to be 96.24 ± 1.08, 90.62 ± 1.60, and 95.14 ± 4.65 mg/dl, respectively, versus control diabetic rats’ values. In the same manner, pioglitazone (30 mg/kg) restored total cholesterol level to be 96.80 ± 4.17 mg/dl versus control value of diabetic rats. Concerning triglyceride levels, control diabetic rats showed a significant elevation in triglycerides level to be 153.90 ± 3.33 mg/dl as compared to normal values 107.80 ± 2.00 mg/dl. Oral treatment with acetoside (10, 20, and 40 mg/kg) restored total cholesterol level to be 118.59 ± 6.46, 100.27 ± 4.19, and 91.89 ± 3.20 mg/dl versus control value of diabetic rats. Furthermore, pioglitazone restored triglyceride level to be 108.98 ± 9.14 mg/dl versus control diabetic rats’ value.

Effect of acetoside on MDA and GSH in liver

Results depicted in Figure 2a show that control diabetic rats significantly elevated hepatic MDA content to be 65.27 ± 2.63 nmol/g as compared to normal rats 38.94 ± 1.57 nmol/g. Oral treatment with acetoside (10, 20, and 40 mg/kg) restored hepatic MDA contents to be 32.63 ± 2.14, 36.14 ± 2.75, and 39.40 ± 1.14 nmol/g, respectively, versus control diabetic rats’ value. Similarly, pioglitazone (30 mg/kg) restored hepatic MDA content to be 39.30 ± 3.49 nmol/g versus control diabetic rats’ value.

Regarding hepatic GSH content, control diabetic rats significantly reduced hepatic GSH content to be 6.61 ± 0.17 mmol/g whereas normal values 8.69 ± 0.16 mmol/g. Acetoside (10, 20, and 40 mg/kg) significantly increased hepatic GSH contents to be 8.99 ± 0.37, 8.30 ± 0.21, and 8.56 ± 0.39 mmol/g versus control diabetic rats’ value. Furthermore, oral treatment with pioglitazone (30 mg/kg) restored hepatic GSH to be 9.00 ± 0.30 mmol/g versus control diabetic rats’ value (Figure 2b).

In vitro antioxidant activity of acetoside

In vitro antioxidant activity of acetoside versus ascorbic acid (0.1 M concentration), using DPPH radical scavenging activity method is depicted in Figure 3. After reaction time of 5 min, different concentrations of acetoside (200, 150, 100, and 50 mg/ml) showed a maximum reactive reaction rates of 74.4, 74, 73, and 72.3%, respectively. In the same manner, the reactive reaction rate of L-ascorbic acid was 82.5%.

Effect of acetoside on histopathologic examination of the liver

In normal rats, no histopathologic alterations were found. Normal histological structure of the central vein and surrounding hepatocytes in the parenchyma was recorded in the normal group (Figure 4a). Pathological changes that recorded in the liver of control diabetic rats were severe dilatation and congestion of the central and portal vein associated with collagen proliferation and few inflammatory cells infiltration in the periductal tissue surrounding the hyperplastic bile ducts in the portal area (Figure 4b and c). Apoptosis was detected in few hepatocytes associated with diffuse kupffer cells proliferation (Figure 4d). Rats that were orally treated with acetoside (10, 20, and 40 mg/kg), respectively, showing marked reduction of the previously mentioned histopathological lesions (Figures 4e, f and 5a-d) that were observed in control diabetic group (Group II). Pioglitazone treated diabetic group (Group IV) showed few inflammatory cells infiltration in the portal area (Figure 5e). Furthermore, there was a diffuse kupffer cells proliferation in between the hepatocytes (Figure 5f).

Table 1: Effect of acetoside on blood glucose, serum insulin, and glycosylated hemoglobin in diabetic rats

Treatment	Parameters	Blood glucose (mg/dl)	Serum insulin (µIU/ml)	Glycated blood glucose (mmol/ml)
Normal		81.51±4.15	5.32±0.27	3.36±0.21
Control diabetic (STZ+Nicotinamide)	318.7±13.8	1.25±0.07	3.23±0.06	24.12±1.88
Diabetic+Acetoside (10 mg/kg)	111.3±0.61	5.38±0.21	7.00±0.16	18.72±1.06
Diabetic+Acetoside (20 mg/kg)	74.88±3.23	8.00±0.16	8.67±0.21	6.42±0.29
Diabetic+Acetoside (40 mg/kg)	75.10±8.45	8.00±0.16	8.00±0.16	8.00±0.16
Diabetic+Pioglitazone (30 mg/kg)	103.07±3.12	8.00±0.16	8.00±0.16	8.00±0.16

Results are expressed as mean±SEM (n=6). Statistical analyses were carried out using one-way ANOVA, followed by Tukey’s multiple comparison test. *Significant difference from normal group at p<0.05. **Significant difference from control diabetic group at p<0.05.
Table 2: Effect of acteoside on total cholesterol and triglycerides in diabetic rats

Treatment	Parameters	Total cholesterol (mg/dl)	TG (mg/dl)
Normal		94.38±2.38	107.3±2.50
Control diabetic (STZ+Nicotinamide)		139.3±4.28	153.9±3.33
Diabetic+Acteoside (10 mg/kg)		96.2±1.08	118.5±6.46
Diabetic+Acteoside (20 mg/kg)		90.6±2.68	100.2±4.19
Diabetic+Acteoside (40 mg/kg)		95.1±4.85	91.89±3.20
Diabetic+Pioglitazone (30 mg/kg)		96.8±4.17	108.9±8.14

Results are expressed as mean±SEM (n=6). Statistical analyses were carried out using one-way ANOVA, followed by Tukey’s multiple comparison test. *Significant difference from normal group at p<0.05. †Significant difference from control diabetic group at p<0.05. TG: Triglyceride.

Discussion

Herbal medicines provide a valuable source of new antidiabetic therapies that could be safe and cost-effective [26]. Acteoside [(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enolate) was isolated from many medicinal plants and is becoming of interest because of its wide range of pharmacological actions [27]. Acteoside utilized in this work was isolated from Jacaranda mimosifolia D. leaves grown in Egypt. Hereby, we explored the antidiabetic effect of acteoside in a rat model of diabetes induced by STZ-NA. This animal model of Type 2 diabetes is considered a well-accepted experimental model that allows for preclinical examination of potential new antidiabetic agents [28]. In this work, pioglitazone was used for comparison. Pioglitazone belongs to the thiazolidinediones (TZDs) group of drugs which are used in the treatment of Type 2 diabetes. TZDs act as insulin sensitizers through activation of peroxisome proliferator-activated receptor-gamma (PPARγ) receptors. Activation of these nuclear receptors affects glucose and lipid metabolism [29].

Results of the current work demonstrated significant antidiabetic and antioxidant effects of acteoside that was comparable to that of pioglitazone. Acteoside or pioglitazone treatment for 3 weeks caused a significant decrease in serum glucose and HbA1c as compared to their levels in control diabetic rats. This was associated with beneficial effect on body weight in contrast to the weight loss demonstrated in diabetic
untreated group. Pioglitazone restored the reductions in rats’ body weight caused by STZ-induced diabetes. This effect is reported by other studies and could be attributed to increased insulin sensitivity which is a part of pioglitazone pharmacological actions [30]. However, in some reports, the drug was found to increase body weight due to increased appetite, lipogenesis, and fluid retention [31]. These different results in the literature could be related to the diabetes model used and the duration of the study. Improvement of body weight caused by acteoside could be related to its ability to reduce hyperglycemia. Other studies reported that acteoside reduces weight due to inhibition of pancreatic lipase [32] as well as improving levels of post prandial glucose in response to a load of starch in mice [14].

Our study demonstrated an antihyperglycemic effect of acteoside in STZ-NA-induced diabetes. Hyperglycemia increases the liability of proteins to glycation resulting in changes in their structure and function. Non-enzymatic glycation of globin fraction of hemoglobin produces HbA1c which is used for reliable monitoring of glycomic control in diabetes [33]. In agreement with the previous reports using STZ-NA model of diabetes; in this investigation, HbA1c was higher in the diabetic model group compared to the control vehicle group [34], [35]. Treatment with either pioglitazone or acteoside improved glycemic control over the study period as indicated by blood glucose and HbA1c levels in the treated groups. Pioglitazone as a PPAR γ agonist improves fasting blood glucose and HA1c through increased insulin sensitivity in liver, muscle, and adipose tissue; effects were repeatedly reported both in experimental and in human diabetes [36], [37]. There was a comparable effect of acteoside on glycemic control in this study. This could be mediated through acteoside ability to scavenge free radicals produced by STZ with improvement of beta cell function and insulin levels or through improving target organ response to insulin. Acteoside successfully prevented in vitro production of advanced glycation end products (AGE) [12]. These products were found to induce resistance to insulin action in adipocytes, muscles, and hepatocytes [38]. In addition, high levels of AGE produced in chronic hyperglycemia bind to cellular membrane receptors to increase free radicals through activating NADPH oxidase [39]. Taking these studies into consideration, acteoside could have exerted its beneficial effect in diabetic rats, at least partly, through improving insulin resistance.

The findings of this study showed that 3 weeks treatment with pioglitazone or acteoside exerted a significant amelioration of total cholesterol and triglyceride (TG) levels, hepatic lipid peroxidation, and GSH. Moreover, it prevented the histopathological changes in liver architecture associated with STZ-NA diabetes. Reactive oxygen species production is augmented in diabetes and prolonged oxidative burden play a part in the development of long-term diabetes-related complications. Antidiabetic agents offering antioxidant action could be effective in preventing, or at least delaying, and progression of diabetes complications [40]. Pioglitazone antioxidant capacity is well documented in STZ models of diabetes and in various tissues including the liver [36], [37]. There was a comparable effect of pioglitazone and HA1c through increased insulin sensitivity as a PPAR γ agonist improves fasting blood glucose and HA1c through increased insulin sensitivity in liver, muscle, and adipose tissue; effects were repeatedly reported both in experimental and in human diabetes [36], [37]. There was a comparable effect of acteoside on glycemic control in this study. This could be mediated through acteoside ability to scavenge free radicals produced by STZ with improvement of beta cell function and insulin levels or through improving target organ response to insulin. Acteoside successfully prevented in vitro production of advanced glycation end products (AGE) [12]. These products were found to induce resistance to insulin action in adipocytes, muscles, and hepatocytes [38]. In addition, high levels of AGE produced in chronic hyperglycemia bind to cellular membrane receptors to increase free radicals through activating NADPH oxidase [39]. Taking these studies into consideration, acteoside could have exerted its beneficial effect in diabetic rats, at least partly, through improving insulin resistance.
ability to scavenge DPPH radicals in a dose-dependent manner [42]. Studies investigating the antioxidant property of various phenylethanoids especially acteoside have demonstrated that these compounds protect cells due to their direct antioxidant and scavenging activity of free radicals. Other reports further explained the antioxidant effect of acteoside at subcellular levels. Acteoside upregulate the endogenous antioxidant-defensive systems [43]. This effect of acteoside could be exerted at the level of post-transitional modification or at gene transcription of redox enzymes. In vitro and in vivo neuroprotective effects of acteoside was found to occur through activation of Nrf2, a transcription factor for genes encoding antioxidant and stress responsive proteins [9], [44].

Liver is one of the major organs affected by impaired insulin levels or action. In diabetes, there is activation of glycogenolysis leading to higher hepatic production of glucose. Furthermore, insulin resistance through changes in lipid metabolism and provision of inflammatory milieu contribute to the development of liver fatty changes. High levels of free fatty acids in insulin-resistance can exert direct toxic effect on hepatocytes and increase pro-inflammatory cytokines release contributing to hepatocellular changes seen in diabetes [45]. In our experiment, diabetic rats demonstrated higher levels of total cholesterol and triglycerides than the levels found in control non-diabetic rats. After 3 weeks daily administration of acteoside or pioglitazone, the levels of total cholesterol and triglycerides were improved in the diabetic group compared to their counterpart levels in diabetic untreated rats. In addition, histopathological examination of livers from diabetic rats showed histopathological changes that were significantly ameliorated by treatment with either pioglitazone or acteoside. This pioglitazone effect is in line with the previous reports. Pioglitazone ameliorated increases in total cholesterol and TG in STZ-induced diabetes; an effect that was accompanied by upregulation of hepatic PPARγ [46]. Regarding the improvement in cholesterol and TG levels after treatment with acteoside it could be explained by its antidiabetic effect which was sustained throughout the study period as indicated by lower levels of HBA1c in treated rats. However, the literature provides evidence linking acteoside to PPAR-alpha (PPAR-α). PPAR-α is expressed in high amounts in liver, muscles, heart, and kidney, and acts chiefly to control genes concerned with lipids and lipoproteins metabolism. In the liver, this transcription factor control genes of proteins and enzymes regulating β-oxidation of fatty acids and lipid transport [47]. In a report by Esposito et al. [48], PPAR-α was linked to the anti-inflammatory effect of acteoside in experimental inflammatory bowel disease model of PPAR-α knock-out mice. Moreover, in a recent review of natural products with potential anti-dyslipidemic effect through targeting PPAR-α, acteoside was considered as one of these products [49]. However, more studies are needed to prove this mechanism of acteoside action.

Conclusion

The evidence from this study suggests that acteoside has antidiabetic and antioxidant effects. In addition, it offered advantages in the control of Type 2 diabetes induced by STZ-NA in rats through ameliorating body weight changes, cholesterol, and TG levels. The antioxidant effects were evidenced by reducing lipid peroxidation, DDPH activity and elevating GSH content as well as ameliorating hepatic histopathological alterations of diabetes. However, more in depth experimental studies of the detailed mechanisms behind these beneficial effects are warranted.

Acknowledgement

The authors are grateful to Prof. Adel Bakeer, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for his assistance in conducting histopathological examination.

References

1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of Type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. https://doi.org/10.1038/nrendo.2017.151
PMid:29219149

2. Krentz AJ, Clough G, Byrne CD. Interactions between microvascular and macrovascular disease in diabetes: Pathophysiology and therapeutic implications. Diabetes Obes Metab. 2007;9(6):781-91. https://doi.org/10.1111/j.1463-1326.2007.00670.x
PMid:17924862

3. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical Review of antidiabetic drugs: Implications for Type 2 diabetes mellitus management. Front Endocrinol (Lausanne). 2017;8:6. https://doi.org/10.3389/fendo.2017.00006
PMid:28167928

4. Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: A review. Planta Med.
5. Fatma AM, Mohamed SM. A novel phenylethanol dimer and flavonoids from J acaranda mimosifolia. Für Naturforschung. 2007;62:1213. https://doi.org/10.1515/znb-2007-0918

6. Potapovich AI, Kostyuk VA, de Luca C, Korkina LG. Effects of pre- and post-treatment with plant polyphenols on human keratinocyte responses to solar UV. Inflamm Res. 2013;62(8):773-80. https://doi.org/10.1007/s00011-013-0634-z

PMid:23689555

7. Seo ES, Oh BK, Pak JH, Yim SH, Gurunathan S, Kim YP, et al. Acteoside improves survival in cecal ligation and puncture-induced septic mice via blocking of high mobility group box 1 release. Mol Cells. 2013;35(4):348-54. https://doi.org/10.1007/s10059-013-0021-1

PMid:23637999

8. Lee KJ, Woo ER, Choi CY, Shin DW, Lee DG, You HJ, et al. Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci. 2004;74(8):1051-64. https://doi.org/10.1016/j.lfs.2003.07.020

PMid:14672760

9. Kostyuk VA, Potapovich AI, Suhun TO, de Luca C, Korkina LG. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Eur J Pharmacol. 2011;658(2-3):248-56. https://doi.org/10.1016/j.ejphar.2011.02.022

PMid:21371465

10. Peerzada KJ, Faridi AH, Sharma L, Bhardwaj SC, Satti NK, Shashi B, et al. Acteoside mediates chemoprevention of experimental liver carcinogenesis through STAT-3 regulated oxidative stress and apoptosis. Environ Toxicol. 2016;31(7):782-98. https://doi.org/10.1002/tox.22089

PMid:26990576

11. Yuan J, Ren J, Wang Y, He X, Zhao Y. Acteoside binds to p53 and exerts neuroprotection in the rotenone rat model of Parkinson’s disease. PLoS One. 2016;11(9):e0162696. https://doi.org/10.1371/journal.pone.0162696

PMid:27623881

12. Liu YH, Lu YL, Han CH, Hou WC. Inhibitory activities of acteoside, isoacteoside, and its structural constituents against protein glycation in vitro. Bot Stud. 2013;54(1):6. https://doi.org/10.1186/1999-3110-54-6

PMid:28510649

13. Xiong WT, Gu L, Wang C, Sun HX, Liu X. Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in Type 2 diabetic ddYdb/db mice. J Ethnopharmacol. 2013;150(3):935-45. https://doi.org/10.1016/j.jep.2013.09.027

PMid:24005831

14. Morikawa T, Ninomiya K, Imamura M, Akai K, Fujikura S, Pan Y, et al. Acylated phenylethanol glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. J Nat Med. 2014;68(3):561-6. https://doi.org/10.1007/s11418-014-0837-9

PMid:24748124

15. El-Marasy SA, Abdallah HM, El-Shenawy SM, El-Khatib AS, El-Shabrawy OA, Kenawy SA. Anti-depressant effect of hesperidin in diabetic rats. Can J Physiol Pharmacol. 2014;92(11):945-52. https://doi.org/10.1139/cjp-2014-0281

PMid:25358020

16. Kröger H, Dietrich A, Ohde M, Lange R, Ehrlich W, Kurpisz M. Protection from acetaminophen-induced liver damage by the synergistic action of low doses of the poly(ADP-ribose) polymerase-inhibitor nicotinamide and the antioxidant N-acetylcycteine or the amino acid L-methionine. Gen Pharmacol. 1997;28(2):257-63. https://doi.org/10.1016/s0306-3623(96)00181-4

PMid:9013204

17. Liu S, Zhang J, Li W, Zhang T, Hu D. Acteoside reduces testosterone by inhibiting cAMP, p505cc, and StAR in rat Leydig cells. Mol Cell Toxicol. 2015;11:11-7. https://doi.org/10.1007/s13273-015-0002-x

18. Vidal R, Valdizán EM, Mostany R, Pazos A, Castro E. Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor dependent signalling and functionality in rat brain. J Neurochem. 2009;110(3):1120-7. https://doi.org/10.1111/j.1471-4149.2009.06210.x

PMid:19522734

19. Trinder P. Determination of blood glucose using 4-amino phenaze as oxygen acceptor. J Clin Pathol. 1969;22(2):246. https://doi.org/10.1136/jcp.22.2.246-b

PMid:5776563

20. Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28(10):2077-80. https://doi.org/10.1093/clinchem/28.10.2077

PMid:6812896

21. Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1979;90(1):37-43. https://doi.org/10.1016/0009-8981(79)90081-5

PMid:719890

22. Beauller E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-8. PMid:13967893

23. Peiwu L, Hopia A, Jari S, Yrijönä T, Vuorela H. TLC Method for Evaluation of Free Radical Scavenging Activity of Rapseed Meal by Video Scanning Technology. In: Proceedings of the 10th International Rapseed Congress; 1999.

24. Govindarajan R, Rastogi S, Vijayakumar M, Shivaikar A, Rawat AK, Mehrotra S, et al. Studies on the antioxidant activities of Desmodium gangeticum. Biol Pharm Bull. 2003;26(10):1424-7. https://doi.org/10.1248/bpb.26.1424

PMid:14519948

25. Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. 6th ed. Edinburgh: Churchill Livingstone; 2008.

26. Tiwari P. Recent trends in therapeutic approaches for diabetes management: A comprehensive update. J Diabetes Res. 2015;2015:340838. PMid:26273667

27. Allipieva K, Korkina L, Orhan IE, Georgiev MI. Verbascoside a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv. 2014;32(6):1065-76. https://doi.org/10.1016/j.biotechadv.2014.07.001

PMid:25048704

28. Szkudelski T. Streptozocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med (Maywood). 2012;237(5):481-90. https://doi.org/10.1258/ebm.2012.011372

PMid:22619373

29. Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in Type 2 diabetes. Cell Metab. 2014;20(4):573-91. https://doi.org/10.1016/j.cmet.2014.08.005

PMid:25242225

30. Staelens B. Metformin and pioglitazone: Effectively treating insulin resistance. Curr Med Res Opin. 2006;22(Suppl 2):S27-37.

PMid:16914073

31. Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005;123(6):993-9. https://doi.org/10.1016/j.cell.2005.05.028

PMid:15934517
32. Han LK, Kimura Y, Kawashima M, Takaku T, Taniyama T, Hayashi T, et al. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int J Obes Relat Metab Disord. 2001;25(10):1459-64. https://doi.org/10.1038/sj.ijo.0801747
PMid:11673766

33. Monnier L, Colette C. Target for glycemic control: Concentrating on glucose. Diabetes Care 2009;32(Suppl 2):S199-204. https://doi.org/10.2337/dc09-s310
PMid:19875552

34. Dhananjayan I, Kathiroli S, Subramani S, Veerasamy V. Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin nicotinamide induced experimental rats. Biomed Pharmacother. 2017;88:1069-79. https://doi.org/10.1016/j.biopha.2017.01.146
PMid:28192880

35. Muruganathan U, Srinivasan S, Vinothkumar V. Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-cell apoptosis in streptozotocin-nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes. Biomed Pharmacother. 2017;92:229-39. https://doi.org/10.1016/j.biopha.2017.05.068
PMid:28549291

36. Chaudhry J, Ghosh NN, Roy K, Chandra R. Antihyperglycemic effect of a new thiazolidinedione analogue and its role in ameliorating oxidative stress in alloxan-induced diabetic rats. Life Sci. 2007;80(12):1135-42. https://doi.org/10.1016/j.lfs.2006.12.004
PMid:17234217

37. Filipova E, Uzunova K, Kalinov K, Vekov T. Effects of pioglitazone therapy on blood parameters, weight and BMI: A meta-analysis. Diabetol Metab Syndr. 2017;9:90. https://doi.org/10.1186/s13098-017-0290-5
PMid:29244961

38. Ottum MS, Mistry AM. Advanced glycation end-products: Modifiable environmental factors profoundly mediate insulin resistance. J Clin Biochem Nutr. 2015;57(1):1-2. https://doi.org/10.3164/jcbn.15-3
PMid:26236094

39. Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies for hyperglycaemia-induced diabetic complications: From animal models to clinical trials. Nat Rev Drug Discov. 2009;8(5):417-29. https://doi.org/10.1038/nrd2476
PMid:19404313

40. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. https://doi.org/10.1161/circresaha.110.223545
PMid:21030723

41. Zaitone SA, Barakat BM, Bilasy SE, Fawzy MS, Abdelaziz EZ, Farag NE. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: Influence on insulin resistance and energy expenditure. Naunyn Schmiedebers Arch Pharmacol. 2015;386(6):587-600. https://doi.org/10.1007/s00210-015-1102-9
PMid:25708949

42. Chiou WF, Lin LC, Chen CF. Antioxidant effects of Acteoside in STZ-NA Diabetes in Rats. https://doi.org/10.1007/s12920-015-1102-9
PMid:25708949

43. Loria P, Lonardo A, Anania F. Liver and diabetes. A vicious circle. Hepatol Res. 2013;43(1):51-64. https://doi.org/10.1111/j.1872-034X.2012.01031.x
PMid:23332087

44. Elaidy SM, Hussain MA, El-Kherbetawy MK. Time-dependent therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced diabetes in rats: Effects on hepatic peroxisome proliferator-activated receptor-gamma receptors. Can J Physiol Pharmacol. 2018;96(5):485-97. https://doi.org/10.1139/cjpp-2017-0533
PMid:29244961

45. Staels B, Fruchtart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460-70. https://doi.org/10.2337/diabetes.54.8.2460
PMid:16046315

46. Esposito E, Mazzon E, Paterniti I, Dal Toso R, Pressi G, Caminiti R, et al. PPAR-alpha contributes to the anti-inflammatory activity of verbascoside in a model of inflammatory bowel disease in mice. PPAR Res. 2010;2010:917312. https://doi.org/10.1155/2010/917312
PMid:20671911

47. Rigano D, Sirignano C, Taglialetela-Scafati O. The potential of natural products for targeting PPARα. Acta Pharm Sin B. 2017;7(4):427-38. https://doi.org/10.1016/j.apsb.2017.05.005
PMid:28752027