The prevalence of low health literacy and its socio-demographic risk factors in Hebei: a provincially cross-sectional survey

Qiuxia Yang
Xingtai Medical College

Shuli Yu
Xingtai Medical College

Changhong Wang
Xingtai Medical College
https://orcid.org/0000-0003-3020-0444

Guoxiao Gu
Xingtai Medical College

Ziwen Yang
Beijing Language and Culture University

Huihui Liu
People's Hospital of Xingtai Country

Linghui Lin
Xingtai Medical College

Yu Qiao
Xingtai Medical College

Lijing Yu
Xingtai Medical College

Qiang Feng
Handan Central Hospital

Guangxu Niu
Handan Central Hospital

Research article

Keywords: Health literacy; Hebei Province; socio-demographic; risk factors; China

DOI: https://doi.org/10.21203/rs.3.rs-44255/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: This study aimed to evaluate the prevalence of low health literacy in Hebei Province of China, and to investigate its socio-demographic risk factors.

Methods: This study was a community-based, cross-sectional questionnaire survey with a multiple-stage randomization design and a sample size of 10560. Participants’ health literacy status was evaluated by a questionnaire based on the 2012 Chinese Resident Health Literacy Scale. Meanwhile, participants’ socio-demographic characteristics were also collected by the questionnaire.

Results: A total of 9952 participants provided valid questionnaires and were included in the final analyses. The mean health literacy score was 63.1±17.1 points; for its subscales, the mean basic knowledge and concepts score, lifestyle score, health-related skills score were 31.7±9.0, 17.2±4.8, 14.3±4.1, respectively. Meanwhile, low health literacy prevalence was 81.0%; for its subscales, low basic knowledge and concepts prevalence (70.6%) was numerically reduced compared to low lifestyle prevalence (87.4%) and low health-related skills prevalence (86.1%). Further analyses showed that age, male and rural area were positively associated, but education level and annual household income were negatively associated with low health literacy prevalence. Further multivariate logistic regression analyses showed that higher age, male, lower education level, lower annual household income and rural area were closely correlated with the risks of low total health literacy or low health literacy in subscales in Hebei Province.

Conclusion: The prevalence of low health literacy is 81.0% in Hebei Province. Meanwhile, higher age, male, lower education level, lower annual household income and rural area closely associate with low health literacy risk.

Background

Health literacy is an emerging concept defined as “the cognitive and social skills which determine the motivation and ability of individuals to gain access to, understand and use information in ways which promote and maintain good health” by the World Health Organization [1]. According to previous studies, low health literacy is closely correlated with an individual’s worse self-management, inferior health status, more hospitalization and medical costs, which greatly influences his/her quality of life [2, 3]. Moreover, since health literacy clearly reflects public health education and deeply affects health resource utilization, it has become a crucial public health concern and has raised extensive attention in the past few years [4, 5].

Although health literacy overview in several western countries has been reported by previous studies, the health literacy status among Chinese citizens is still far from clear [6, 7]. According to the latest national survey of health literacy status among Chinese citizens in 2012, 91.2% of Chinese residents are of low health literacy [8]. However, given the imbalanced development among different regions of China, local health literacy status in different regions could vary greatly [9, 10]. Indeed, one previous study illustrates
that the prevalence of low health literacy status in Jiangsu Province is 47.5%, and another study reveals that the prevalence of inadequate health literacy status in Beijing is 59%; however, the cut-off of low health literacy differed a lot among different studies [11, 12].

The information on local low health literacy prevalence is critical for local government to formulate policy and to allocate resources [5]. As to Hebei Province, a big inland province located in north China with a permanent resident population of 75.92 million, local low health literacy prevalence is not clear. Therefore, the aim of this study was to investigate low health literacy prevalence in Hebei Province, and to explore its socio-demographic risk factors.

Methods

Study population

This study was carried out in Hebei Province of China, where there were 75.92 million permanent residents in 2019. The study was conducted between January 2019 and December 2019, and a total of 10560 residents in Hebei Province participated in this cross-sectional survey. All study populations were permanent residents with age between 16 and 75 years in Hebei Province, where the permanent resident was defined as the resident who had lived in the Hebei Province for more than 12 months, regardless of whether they had a local household registration or not. While the residents who collectively resided in military bases, hospitals, prisons, nursing homes, or dormitories, were not included in the study. This study was approved by the Research Ethics Committee of Hebei Provincial Centers for Disease Control and Prevention. All participants signed informed consents.

Sample Size Estimation

A multistage, stratified sampling method was used to select the study population. The core stratification factors included area (urban and rural), age (16 ~ 35 years, 36 ~ 55 years, 56 ~ 75 years) and gender (male and female). In each stratification, the sample size was calculated estimated using the formula [13]:

\[
N = \frac{Z_{1-\alpha/2}^2 \cdot p \cdot (1 - p)}{\delta^2 \cdot deff},
\]

where the parameters were set as follows: prevalence \(p = 0.89 \) (based on national health literacy survey results, available at: http://www.nhc.gov.cn/), maximum permissible error \(\delta = 0.1p \), significance level \(\alpha = 0.05 \), \(Z_{1-\alpha/2} = 1.96 \), the design effect of complex sampling \(deff = 1.5 \), the required sample size in each stratification was \(N = 71.22 \). Considering a refusal rate of 10%, the actual sample size was increased to 71.22/0.9 = 79.13, rounded to 80. There were 11 province-governed municipalities in Hebei Province, as a result, the total sample size of this study was calculated as: \(N = 80 \times 11 \) (municipalities) x 2 (area stratifications) x 3 (age stratifications) x 2 (gender stratifications) = 10560.

Sampling Procedures
As shown in Fig. 1, 2 urban areas and 2 rural areas in each province-governed municipality were randomly selected using Probability Proportionate to Size (PPS) sampling. In each chosen urban area, 2 districts were randomly selected with PPS sampling, then 2 communities were randomly selected with PPS sampling from each chosen district; next, 60 registered households were randomly selected from each chosen community using random number table, and one resident was selected from each chosen household with the use of Kish method. In each chosen rural area, 2 towns were randomly selected with PPS sampling, then 2 villages were randomly selected with PPS sampling from each chosen town; next, 60 registered households were randomly selected from each chosen village using random number table, and one resident was selected from each chosen household with the use of Kish method. As a result, 960 residents in each province-governed municipality were selected, and there were 11 province-governed municipalities in Hebei, resulting in total 10560 residents were sampled. Finally, 608 participants were excluded from analysis because they provided invalid questionnaires due to incorrect filling, then 9952 participants (94.2%) provided valid questionnaires and were included in analysis.

Data Collection

A questionnaire was created for this study, and it consisted of two parts: part 1 was designed to collect participants’ socio-demographic characteristics including age, gender, education level, annual household income and location; part 2 was the 2012 Chinese Resident Health Literacy Scale derived from the manual of “Chinese Resident Health Literacy-Basic Knowledge and Skills (trial edition)” published by the Chinese Ministry of Health in 2008 [14]. The questionnaire was completed by the participants themselves. If the participants were unable to fulfill the questionnaire independently due to low literacy level, the face-to-face interview method was adopted, during which the investigators were allowed to make appropriate explanations without the use of inductive or suggestive expression.

Health Literacy Evaluation

The 2012 Chinese Resident Health Literacy Scale comprised of 80 questions including 38 questions about basic knowledge and concepts, 22 questions about lifestyle, and 20 questions about health-related skills [8]. There were 4 types of questions in the scale: 15 true-or-false questions, 40 single-answer questions, 18 multiple-answer questions and 7 situation questions (including 5 single-answer questions and 2 multiple-answer questions). For true-or-false and single-answer questions, 1 point was assigned for a correct answer, and 0 points were assigned for an incorrect answer. For multiple-answer questions, 2 points were assigned if the response contained all correct answers without the wrong ones, and 0 points were given to wrong or omitted answers. The total basic knowledge and concepts score was 47 points, the total lifestyle score was 28 points, and the total health-related skills score was 25 points. The total health literacy score was the sum of the 3 scores, which was ranging from 0 to 100 points. Low health literacy was defined as the total health literacy score < 80 points (which was 80% of total health literacy score) [8, 13]. Low health literacy of basic knowledge and concepts was defined as the total basic
knowledge and concepts score < 38 points (which was 80% of total basic knowledge and concepts score). Low health literacy of lifestyle was defined as the total lifestyle score < 23 points (which was 80% of total lifestyle score). Low health literacy of health-related skills was defined as the total health-related skills score < 20 points (which was 80% of health-related skills score).

Statistical analysis

All statistical analyses were carried out using SPSS 24.0 (IBM, Chicago, IL, USA), and figures were plotted using GraphPad Prism 8.01 (GraphPad Software Inc., San Diego, CA, USA). Socio-demographic characteristics and low health literacy prevalence were described as number and percentage. The distribution of total health literacy score was displayed by histogram, and the detailed scores including total health literacy score, basic knowledge and concepts score, lifestyle score, and health-related skills score, were described by mean with standard deviation (SD). Comparison of health literacy scores among subjects with different characteristics was determined by one-way analysis of variance (ANOVA) or Student's t-test. Comparison of low health literacy prevalence among subjects with different characteristics was determined by the Chi-square test. Factors related to low health literacy risk were analyzed by the univariate and forward stepwise multivariate logistic regression model. \(P \) value < 0.05 was considered significant.

Results

Description of the participants’ characteristics

Among the 9952 analyzed participants, 3329 (33.5%) of them were 16–35 years old, 3327 (33.4%) of them were 36–55 years old, and 3296 (33.1%) of them were 56–75 years old. Meanwhile, there were 4887 (49.1%) females and 5056 (50.9%) males. As to education level, 2641 (26.5%) participants had primary school education level or below, 4011 (40.3%) participants had junior high school education level, 2180 (21.9%) participants had high school education level, and 1120 (11.3%) participants had university education level or above. Regarding annual household income, 818 (8.2%) participants had income below ¥10000, 5085 (51.1%) participants had income between ¥10000-¥29999, 2470 (24.8%) participants had income between ¥30000-¥49999, and 1579 (15.9%) participants had income equal to or greater than ¥50000. As to resident location, 4883 (49.1%) participants were from rural area and 5069 (50.9%) participants were from urban area (Table 1).
Table 1
Characteristics.

Characteristics	Participants (N = 9952)
Age, No. (%)	
16–35 years	3329 (33.5)
36–55 years	3327 (33.4)
56–75 years	3296 (33.1)
Gender, No. (%)	
Female	4887 (49.1)
Male	5056 (50.9)
Education level, No. (%)	
Primary school or below	2641 (26.5)
Junior high school	4011 (40.3)
High school	2180 (21.9)
University or above	1120 (11.3)
Annual household income, No. (%)	
<¥10000	818 (8.2)
¥10000-¥29999	5085 (51.1)
¥30000-¥49999	2470 (24.8)
≥¥50000	1579 (15.9)
Location, No. (%)	
Rural	4883 (49.1)
Urban	5069 (50.9)

Health Literacy Status

The health literacy score distribution of all participants was shown in Fig. 2A. Specifically, there were 58 (0.6%) patients with score 10–20, 346 (3.5%) participants with score 21–30, 668 (6.7%) participants with score 31–40, 1287 (12.9%) participants with score 41–50, 1754 (17.6%) participants with score 51–60, 2154 (21.7%) participants with score 61–70, 1935 (19.4%) participants with score 71–80, 1474 (14.8%) participants with score 81–90, and 276 (2.8%) participants with score 91–100 (Fig. 2A).
Meanwhile, the mean total health literacy score was 63.1 ± 17.1 points. As to subscales, the mean basic knowledge and concepts score was 31.7 ± 9.0 points, the mean lifestyle score was 17.2 ± 4.8 points, and the mean health-related skills score was 14.3 ± 4.1 points (Fig. 2B). Besides, the prevalence of total low health literacy was 81.0% (95% confidence interval (CI): 80.1%-81.6%). The subscale analyses further revealed that the prevalence of low basic knowledge and concepts was 70.6% (95% CI: 69.5%-71.7%), the prevalence of low lifestyle was 87.4% (95% CI: 86.7%-88.1%), and the prevalence of low health-related skills was 86.1% (95% CI: 85.4%-86.8%) (Fig. 2C).

Correlation Analysis Between Participants’ Characteristics And Low Health Literacy

As respect to health literacy score, age was negatively correlated, while female, education level, annual household income and resident in urban area were positively correlated with total health literacy score, as well as its subscales including basic knowledge and concepts score, lifestyle score and health-related skills score (all $P< 0.001$) (Table 2).
Table 2
Correlation of participants’ characteristics with health literacy score.

Characteristics	Total health literacy score	Basic knowledge and concepts score	Lifestyle score	Health-related skills score		
	Mean ± SD	P value	Mean ± SD	P value	Mean ± SD	P value
Age						
16–35 years	66.6 ± 16.1	< 0.001	33.3 ± 8.4	< 0.001	18.1 ± 4.6	< 0.001
36–55 years	63.4 ± 16.9		31.9 ± 8.8		17.2 ± 4.7	
56–75 years	59.4 ± 17.6		29.8 ± 9.3		16.1 ± 4.9	
Gender						
Female	66.2 ± 15.9	< 0.001	33.2 ± 8.3	< 0.001	18.0 ± 4.5	< 0.001
Male	60.2 ± 17.7		30.2 ± 9.3		16.3 ± 4.9	
Education level						
Primary school or below	54.0 ± 17.8	< 0.001	27.1 ± 9.4	< 0.001	14.7 ± 4.9	< 0.001
Junior high school	63.0 ± 16.2		31.6 ± 8.5		17.1 ± 4.6	
High school	69.2 ± 14.2		34.7 ± 7.5		18.8 ± 4.1	
University or above	73.1 ± 12.9		36.7 ± 6.7		19.8 ± 3.7	
Annual household income						
<¥10000	52.6 ± 17.6	< 0.001	26.3 ± 9.2	< 0.001	14.3 ± 5.0	< 0.001
¥10000-¥29999	59.9 ± 17.2		30.0 ± 9.0		16.3 ± 4.8	

SD, standard deviation; ¥, RMB.
Characteristics	Total health literacy score	Basic knowledge and concepts score	Lifestyle score	Health-related skills score				
	Mean ± SD	P value						
¥30000-¥49999	67.6 ± 15.2		34.0 ± 8.0		18.3 ± 4.4		15.3 ± 3.7	
≥¥50000	71.8 ± 13.1		36.1 ± 6.8		19.5 ± 3.8		16.3 ± 3.5	
Location		< 0.001	< 0.001	< 0.001	< 0.001			
Rural	58.3 ± 17.5		29.2 ± 9.2		15.9 ± 4.9		13.2 ± 4.1	
Urban	67.7 ± 15.4		34.0 ± 8.1		18.4 ± 4.4		15.4 ± 3.8	

SD, standard deviation; ¥, RMB.

Regarding low health literacy prevalence, age was positively associated, but female, education level, annual household income and resident in urban area were negatively associated with low total health literacy prevalence, as well as its subscales low basic knowledge and concepts prevalence, low lifestyle prevalence and low health-related skills prevalence (all \(P < 0.001 \)) (Table 3).
Table 3
Correlation of participants’ characteristics with low health literacy prevalence.

Characteristics	Low health literacy							
	Total	P value	Basic knowledge and concepts	P value	Lifestyle	P value	Health-related skills	P value
Age, No. (%)								
16–35 years	2507	< 0.001	2140 (64.3)	< 0.001	2776	< 0.001	2716	< 0.001
36–55 years	2694	(81.0)	2336 (70.2)	< 0.001	2907	(87.4)	2848	(85.6)
56–75 years	2863	(86.9)	2546 (77.2)	< 0.001	3016	(91.5)	3004	(91.1)
Gender, No. (%)		< 0.001		< 0.001		< 0.001		
Female	3836	(78.5)	3199 (65.5)	< 0.001	4160	(85.1)	4082	(83.5)
Male	4228	(83.5)	3823 (75.5)	< 0.001	4539	(89.6)	4486	(88.6)
Education level, No. (%)		< 0.001		< 0.001		< 0.001		
Primary school or below	2395	(90.7)	2278 (86.3)	< 0.001	2502	(94.7)	2499	(94.6)
Junior high school	3311	(82.5)	2843 (70.9)	< 0.001	3535	(88.1)	3478	(86.7)
High school	1592	(73.0)	1313 (60.2)	< 0.001	1803	(82.7)	1772	(81.3)
University or above	766	(68.4)	588 (52.5)	< 0.001	859	(76.7)	819	(73.1)
Annual household income, No. (%)		< 0.001		< 0.001		< 0.001		
<¥10000	752	(91.9)	723 (88.4)	< 0.001	768	(93.9)	784	(95.8)
¥10000–¥29999	4355	(85.6)	3917 (77.0)	< 0.001	4615	(90.8)	4553	(89.5)

¥, RMB.
Characteristics

Characteristics	Low health literacy							
	Total	P value	Basic knowledge and concepts	P value	Lifestyle	P value	Health-related skills	P value
¥30000-¥49999	1827 (74.0)		1503 (60.9)		2065 (83.6)		2025 (82.0)	
≥¥50000	1130 (71.6)		879 (55.7)		1251 (79.2)		1206 (76.4)	

Location, No. (%)	< 0.001	< 0.001	< 0.001	< 0.001
Rural	4248 (87.0)	3882 (79.5)	4464 (91.4)	4446 (91.1)
Urban	3816 (75.3)	3140 (61.9)	4235 (83.5)	4122 (81.3)

¥, RMB.

Risk Factors Related To Low Health Literacy

Higher age (36–55 years vs. 16–35 years, $P < 0.001$; 56–75 years vs. 16–35 years, $P < 0.001$), male (male vs. female, $P < 0.001$), lower education level (high school vs. university or above, $P = 0.005$; junior high school vs. university or above, $P < 0.001$; primary school or below vs. university or above, $P < 0.001$), lower annual household income (¥30000-¥49999 vs. ≥¥50000, $P = 0.093$; ¥10000-¥29999 vs. ≥¥50000, $P < 0.001$; <¥10000 vs. ≥¥50000, $P < 0.001$) and rural location (rural vs. urban, $P < 0.001$) were risk factors for low health literacy. Further multivariate logistic regression showed that higher age (36–55 years vs. 16–35 years, $P < 0.001$; 56–75 years vs. 16–35 years, $P < 0.001$), lower annual household income (¥30000-¥49999 vs. ≥¥50000, $P = 0.089$; ¥10000-¥29999 vs. ≥¥50000, $P < 0.001$; <¥10000 vs. ≥¥50000, $P < 0.001$) and rural location (rural vs. urban, $P < 0.001$) were independent risk factors for low health literacy (Table 4).
Table 4
Factors related to low health literacy risk.

Items	Logistic regression model			
	P value	OR	95%CI	
Lower	Higher			
Univariate logistic regression				
Age				
16–35 years	Reference	-	-	
36–55 years	< 0.001	1.395	1.241	1.569
56–75 years	< 0.001	2.168	1.907	2.464
Gender				
Female	Reference	-	-	
Male	< 0.001	1.384	1.251	1.531
Education level				
University or above	Reference	-	-	
High school	0.005	1.251	1.069	1.465
Junior high school	< 0.001	2.186	1.881	2.540
Primary school or below	< 0.001	4.499	3.751	5.397
Annual household income				
≥ ¥50000	Reference	-	-	
¥30000-¥49999	0.093	1.129	0.980	1.301
¥10000-¥29999	< 0.001	2.370	2.072	2.712
< ¥10000	< 0.001	4.527	3.441	5.956
Location				
Urban	Reference	-	-	
Rural	< 0.001	2.197	1.978	2.440
Forward stepwise multivariate logistic regression				
Age				
16–35 years	Reference	-	-	

OR, odds ratio; CI, confidence interval; ¥, RMB.
Analyses of risk factors for low health literacy in basic knowledge and concepts, health lifestyle and health-related skills

Additionally, we had investigated the independent risk factors for low health literacy in subscales, which was shown in Table 5. Briefly, higher age, male, lower education level, lower annual household income and rural area were independent risk factors for low basic knowledge and concepts (all $P < 0.05$). Meanwhile, higher age, lower education level and rural area were independent risk factors for low lifestyle (all $P < 0.05$). Furthermore, higher age, lower education level, lower annual household income and rural area were independent risk factors for low health-related skills (all $P < 0.05$) (Table 5).

Items	Logistic regression model	P value	OR	95% CI	
36–55 years		< 0.001	1.442	1.279	1.625
56–75 years		< 0.001	2.373	2.082	2.706
Annual household income					
≥¥50000		Reference		-	-
¥30000–¥49999		0.089	1.132	0.981	1.307
¥10000–¥29999		< 0.001	2.066	1.722	2.480
<¥10000		< 0.001	4.768	3.458	6.574
Location					
Urban		Reference		-	-
Rural		0.043	1.187	1.005	1.402

OR, odds ratio; CI, confidence interval; ¥, RMB.
Table 5
Independent factors related to the risk of low health literacy in basic knowledge and concepts, health lifestyle and health-related skills.

Items	Forward stepwise multivariate logistic regression		
	\(P \) value	OR	95% CI
Lower	Higher		

Low health literacy of basic knowledge and concepts

Age	Reference	16–35 years	36–55 years	56–75 years	16–35 years	36–55 years	56–75 years
16–35 years	Reference	-	-	-	-	-	-
36–55 years	< 0.001	1.304	1.165	1.460	-	-	-
56–75 years	< 0.001	1.809	1.552	2.107	-	-	-

Gender

Gender	Reference	Female	Male	16–35 years	36–55 years	56–75 years	16–35 years	36–55 years	56–75 years
Female	Reference	-	-	-	-	-	-	-	-
Male	0.004	1.186	1.054	1.335	-	-	-	-	-

Education level

Education level	Reference	University or above	High school	Junior high school	Primary school or below	16–35 years	36–55 years	56–75 years	16–35 years	36–55 years	56–75 years
University or above	Reference	-	-	-	-	-	-	-	-	-	-
High school	0.697	1.047	0.830	1.322	-	-	-	-	-	-	-
Junior high school	0.634	1.076	0.796	1.453	-	-	-	-	-	-	-
Primary school or below	0.021	1.583	1.072	2.336	-	-	-	-	-	-	-

Annual household income

Annual household income	Reference	¥≥50000	¥30000–¥49999	¥10000–¥29999	<¥10000	16–35 years	36–55 years	56–75 years	16–35 years	36–55 years	56–75 years
¥≥50000	Reference	-	-	-	-	-	-	-	-	-	-
¥30000–¥49999	0.449	1.090	0.872	1.364	-	-	-	-	-	-	-
¥10000–¥29999	0.001	1.658	1.232	2.232	-	-	-	-	-	-	-
<¥10000	< 0.001	2.913	1.856	4.570	-	-	-	-	-	-	-

Location

Location	Reference	Urban	Rural	16–35 years	36–55 years	56–75 years	16–35 years	36–55 years	56–75 years
Urban	Reference	-	-	-	-	-	-	-	-
Rural	< 0.001	1.356	1.164	1.581	-	-	-	-	-

Low health literacy of lifestyle

Age

OR, odds ratio; CI, confidence interval; ¥, RMB.
Items	Forward stepwise multivariate logistic regression			
	P value	OR	95%CI	
16–35 years	Reference	-	-	
36–55 years	0.001	1.260	1.094	1.451
56–75 years	< 0.001	1.592	1.350	1.877
Education level				
University or above	Reference	-	-	-
High school	0.001	1.345	1.122	1.614
Junior high school	< 0.001	1.776	1.472	2.142
Primary school or below	< 0.001	3.559	2.729	4.641
Location				
Urban	Reference	-	-	-
Rural	< 0.001	1.376	1.184	1.601
Low health literacy of health-related skills				
Age				
16–35 years	Reference	-	-	-
36–55 years	< 0.001	1.320	1.148	1.519
56–75 years	< 0.001	2.196	1.799	2.681
Education level				
University or above	Reference	-	-	-
High school	0.383	1.140	0.850	1.528
Junior high school	0.419	1.165	0.805	1.686
Primary school or below	0.023	1.746	1.081	2.821
Annual household income				
≥¥50000	Reference	-	-	-
¥30000-¥49999	0.101	1.274	0.954	1.700
¥10000-¥29999	0.005	1.735	1.180	2.552
<¥10000	< 0.001	3.997	2.138	7.473

OR, odds ratio; CI, confidence interval; ¥, RMB.
Items	Forward stepwise multivariate logistic regression			
	P value	OR	95%CI	
Location				
Urban	Reference	-	-	
Rural	0.007	1.299	1.073	1.571

OR, odds ratio; CI, confidence interval; ¥, RMB.

Discussion

This study was the first to explore the low health literacy prevalence and its socio-demographic risk factors in Hebei Province, China to the best of our knowledge. Meanwhile, this study was province-based and had a relatively large sample size, which might assist the local health care workers and government to better understand the health literacy status in Hebei Province. In this study, we found that the mean total health literacy score was 63.1 ± 17.1 points, and the prevalence of low health literacy was 81.0%. Meanwhile, higher age, male, lower annual household income, lower education level and rural area were closely correlated with low health literacy or its subscales.

Health literacy critically reflects an individual’s comprehensive ability in coping with health problems under different circumstances [2]. Previous studies showed that patients with low health literacy have worse outcomes and occupy more public health resource; they might have poor health status and are more likely to be hospitalized [9, 10]; meanwhile, they may not fully understand the medical system and treatment strategies, and might be unable to follow the instructions to take medicines appropriately, which often leads to the increased occupation of public health resource [15]. Therefore, understanding the prevalence of local low health literacy could enable local government to make policies and allocate resources [4, 5].

Due to the differences in the cut-off of low health literacy, the prevalence of low health literacy varies in different studies [11–13]. In order to achieve a comprehensive evaluation, we adopted the standard of low health literacy published by the Chinese Ministry of Health in 2012 [8]. In the present study, we found that the mean total health literacy score was 63.1 ± 17.1 points. Meanwhile, the prevalence of low health literacy was 81.0% in Hebei Province, which was numerically lower than the prevalence of low health literacy in China in 2012 [8]. The difference in the prevalence of low health literacy between Hebei Province and China could be explained by the that: Hubei Province is more developed compared to other inland provinces, meanwhile, several developed areas are located beside Hebei Province, such as Beijing; thus, the average annual household income and education level of residents in Hebei Province might be higher than that of Chinese residents, which resulted in a lower prevalence of low health literacy in Hebei Province. However, our data indicated that low health literacy was still widely prevalent in Hebei Province and specific strategies should be made to ameliorate its prevalence.
Recognizing risk factors for low health literacy prevalence is critical for the government to modulate policies and strategies to improve local health literacy [16]. According to previous studies, the risk factors for low health literacy include race, resident area (rural or urban), the number of individuals in a household, age, physical exercise, education level, occupation, household income, health information access, etc. [11, 17, 18]. In the present study, we found that increased age, male, decreased education level, reduced annual household income and resident in rural area were correlated with lower health literacy score, and higher prevalence of inadequate health literacy. Further logistic regression analyses revealed that age, gender, education level, annual household income and resident area were closely correlated with low health literacy. Possible explanations might be that: (1) as the age increased, the eyesight and hearing of an individual might get worse, which might hinder his/her ability in receiving and utilizing information to promote and maintain good health [19]. Meanwhile, in China, people with higher age might have fewer chances to get literate due to historical reasons; (2) according to a previous study, male face with higher occupational stress compared to female [20], which might limit their time on absorbing key information on promoting health status; (3) people with lower education level might have worse ability in utilizing relevant information to keep them in health; (4) people with lower annual household income might have more stressful lives, which limited their time on considering about critical factors for health status; (5) people in rural areas might have fewer chances to receive information about promoting and maintaining good health. Therefore, these factors were closely associated with low health literacy risk, which was consistent with the results of several previous studies [11, 12, 18].

There were several limitations in this study. First of all, this study was based on the questionnaire, which might exist bias in the evaluation of the health literacy status of an individual. Therefore, developing more objective evaluation methods might eliminate this bias. Secondly, in order to achieve higher visualization of the data, some of the continuous variables were converted into categorized variables for statistical analyses, which might cause information loss. Finally, this study was based on a cross-sectional survey, thus, the direct casual inferences and the direction of casualty could not be determined.

Conclusion

Collectively, low health literacy is still commonly prevalent in Hebei Province; meanwhile, higher age, male, lower education level, lower annual household income and rural area closely associate with the risk of low health literacy.

Abbreviations

PPS: Probability Proportionate to Size; SD: standard deviation

Declarations

Acknowledgments
Not applicable.

Authors’ contributions

QX Y, SL Y and CH W conceived and designed the study. GX G, ZW Y, HH L, and LH L performed the literature research/quality evaluation/statistical analysis. Y Q, LJ Y, Q F, and GX N contributed to the writing, and QX Y, SL Y and CH W contributed to the revising of the manuscript. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Ethics approval and consent to participate

This study was approved by the Research Ethics Committee of Hebei Provincial Centers for Disease Control and Prevention. All participants signed informed consents.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Marmot M, Commission on Social Determinants of H: Achieving health equity: from root causes to fair outcomes. Lancet. 2007; 370(9593):1153-63.
2. Nutbeam D: The evolving concept of health literacy. Soc Sci Med. 2008; 67(12):2072-8.
3. Sorensen K, Van den Broucke S, Fullam J, Doyle G, Pelikan J, Slonska Z et al: Health literacy and public health: a systematic review and integration of definitions and models. BMC Public Health. 2012; 12:80.
4. Bailey SC, Brega AG, Crutchfield TM, Elasy T, Herr H, Kaphingst K et al: Update on health literacy and diabetes. Diabetes Educ. 2014; 40(5):581-604.
5. Eichler K, Wieser S, Brugger U: The costs of limited health literacy: a systematic review. Int J Public Health. 2009; 54(5):313-24.
6. Magnani JW, Mujahid MS, Aronow HD, Cene CW, Dickson VV, Havranek E et al: Health Literacy and Cardiovascular Disease: Fundamental Relevance to Primary and Secondary Prevention: A Scientific Statement From the American Heart Association. Circulation. 2018; 138(2):e48-e74.

7. Taylor DM, Fraser S, Dudley C, Oniscu GC, Tomson C, Ravan R et al: Health literacy and patient outcomes in chronic kidney disease: a systematic review. Nephrol Dial Transplant. 2018; 33(9):1545-58.

8. Nie X. Q., Li Y. H., L. L: Statistic analysis of 2012 Chinese residents health literacy monitoring. Chinese Journal of Health Education. 2014; 30(2):178-81.

9. Wang C, Lang J, Xuan L, Li X, Zhang L: The effect of health literacy and self-management efficacy on the health-related quality of life of hypertensive patients in a western rural area of China: a cross-sectional study. Int J Equity Health. 2017; 16(1):58.

10. Zheng M, Jin H, Shi N, Duan C, Wang D, Yu X et al: The relationship between health literacy and quality of life: a systematic review and meta-analysis. Health Qual Life Outcomes. 2018; 16(1):201.

11. Wang X, Guo H, Wang L, Li X, Huang M, Liu Z et al: Investigation of residents' health literacy status and its risk factors in Jiangsu Province of China. Asia Pac J Public Health. 2015; 27(2):NP2764-72.

12. Zhang D, Wu S, Zhang Y, Yang P, MacIntyre CR, Seale H et al: Health literacy in Beijing: an assessment of adults' knowledge and skills regarding communicable diseases. BMC Public Health. 2015; 15:799.

13. Wu Y, Wang L, Cai Z, Bao L, Ai P, Ai Z: Prevalence and Risk Factors of Low Health Literacy: A Community-Based Study in Shanghai, China. Int J Environ Res Public Health. 2017; 14(6).

14. H. LY: Introduction of 2012 Chinese residents health literacy monitoring program. Chinese Journal of Health Education. 2014; 30(6):563-5.

15. Samerski S: Health literacy as a social practice: Social and empirical dimensions of knowledge on health and healthcare. Soc Sci Med. 2019; 226:1-8.

16. Smith SG, Jackson SE, Kobayashi LC, Steptoe A: Social isolation, health literacy, and mortality risk: Findings from the English Longitudinal Study of Ageing. Health Psychol. 2018; 37(2):160-9.

17. Liu YB, Liu L, Li YF, Chen YL: Relationship between Health Literacy, Health-Related Behaviors and Health Status: A Survey of Elderly Chinese. Int J Environ Res Public Health. 2015; 12(8):9714-25.

18. Hosking SM, Brennan-Olsen SL, Beauchamp A, Buchbinder R, Williams LJ, Pasco JA: Health literacy in a population-based sample of Australian women: a cross-sectional profile of the Geelong Osteoporosis Study. BMC Public Health. 2018; 18(1):876.

19. Liu YB, Chen YL, Xue HP, Hou P: Health Literacy Risk in Older Adults With and Without Mild Cognitive Impairment. Nurs Res. 2019; 68(6):433-8.

20. Yang XW, Wang ZM, Jin TY: [Appraisal of occupational stress in different gender, age, work duration, educational level and marital status groups]. Wei Sheng Yan Jiu. 2006; 35(3):268-71.
Study sampling process.

Figure 1

Hebei Province

11 province-governed municipalities

2 urban areas in each province-governed municipality

2 districts in the selected urban area

2 communities in each selected district

60 households in each selected community

1 resident in each selected household

2 rural areas in each province-governed municipality

2 towns in the selected rural area

2 villages in each selected town

60 households in each selected village

1 resident in each selected household

Total participants N=10560

608 participants were excluded because they provided invalid questionnaire due to incorrect filling

9952 participants (94.2%) provided valid questionnaire and were included in the analysis
Figure 1

Study sampling process.
Figure 2

Health literacy status in Hebei Province. A: The health literacy score distribution of all participants; B: The mean total health literacy score, basic knowledge and concepts score, lifestyle score, and health-related skills score; C: The prevalence of participants with low health literacy, as well as low health literacy in basic knowledge and concepts, health lifestyle and health-related skills.