Development of silicon nitride ceramic for CAD/CAM restoration

Nantawan KRAJANGTA¹, Lertrit SARINNAPHAKORN², Pavinee Padipatvuthikul DIDRON³ and Thanakorn WASANAPIARNPONG⁴

¹ Department of Operative Dentistry, Faculty of Dentistry, Thammasat University, 99, m.18, Phaholyothin Road, Klong Nueng, Khlong Luang, Pathumthani, Thailand
² Department of Prosthodontic, Faculty of Dentistry, Thammasat University, 99, m.18, Phaholyothin Road, Klong Nueng, Khlong Luang, Pathumthani, Thailand
³ Department of General Dentistry, Faculty of Dentistry, Srinakharinwirot University, 114, Khlong Toei Nuea, Watthana, Bangkok, Thailand
⁴ Department of Materials Science, Faculty of Science, Chulalongkorn University, 254, Wang Mai, Pathumwan, Bangkok, Thailand

Corresponding author, Nantawan KRAJANGTA; E-mail: knantawa@gmail.com

White silicon nitride (Si₃N₄) ceramic has unique characteristics. Because of its high fracture toughness, strength, and biocompatibility, it can therefore be used to fabricate dental restorations. The purpose of this study was to produce partially-sintered block of Si₃N₄ for fabrication of CAD/CAM dental restorations. The related properties of this novel Si₃N₄ were evaluated including sintered shrinkage, flexural strength and fracture toughness. Partially sintered Si₃N₄ ceramic blocks were prepared by heating at 1,400°C for 2 h under N₂ gas. After full sintering at 1,650°C for 2 h, the linear shrinkage value was recorded at 19.88±0.56%. The flexural strength and fracture toughness were measured, the results were 891.21±37.25 MPa and 6.33±0.30 MPa•m⁰.₅ respectively. These results showed that flexural strength and fracture toughness of Si₃N₄ were more than 800 MPa and 5 MPa•m⁰.₅, the white Si₃N₄ developed in this study can be used to fabricate multi-unit dental restorations According to ISO 6872.

Keywords: Silicon nitride, CAD/CAM, Linear Shrinkage, Flexural strength, Fracture toughness

INTRODUCTION

In dentistry, ceramic is currently widely used as restorative material because of its outstanding properties of biocompatibility and esthetics¹-⁴. One of the most common ceramic core materials used in all ceramic restoration is yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) because of its high fracture toughness and strength. However, there are reports showing that Y-TZP can exhibit a progressive aging degradation, which limits its long-term stability⁵-⁹. A number of reports indicated that aging occurs by a progressive tetragonal to monoclinic transformation at the surface triggered by water molecules penetrate the interior zirconia lattice, which can result in surface roughening and microcracking⁹-¹⁰. These underlying problems led us to investigate and develop other alternative materials to replace zirconia.

Silicon nitride (Si₃N₄) ceramic is more reliable than zirconia in term of its structure and thus it is a preferred candidate for many applications in industrial engineering and orthopedic implants⁶-¹⁵. As an alternative to zirconia, Si₃N₄ ceramic has a potential because of its high fracture toughness and strength, wear resistance, antimicrobial and non-cytotoxicity⁶-¹⁰. Therefore Si₃N₄ ceramic is a suitable material that can be used to produce a core structure for dental crowns or bridges. However, only few studies in Si₃N₄ ceramic for dental application were done in the past 10 years. The main reason was that the obtained products are rather dark or grayish in color. Currently, the white color and high density Si₃N₄ ceramic can be prepared by pressureless sintering at 1,650°C in nitrogen atmosphere¹⁴. Moreover, the result of the study by Wananuruksawong et al. had showed that Si₃N₄ ceramic core material with borosilicate glass veneering ceramic can be used to produce dental restorations in term of strength and biocompatibility¹⁴,¹⁶.

The purpose of this study was to produce partially-sintered block of Si₃N₄ for fabrication of dental restorations using commercial dental computer-aided design (CAD) and computer-aided manufacturing (CAM) software and milling system. This study focuses on the application of Si₃N₄ ceramic as a core structure for dental crowns and bridges. The related material properties (sintering shrinkage, flexural strength and fracture toughness) were measured and compared to those of commercial dental zirconia as a control.

MATERIALS AND METHODS

Si₃N₄ ceramic was developed and evaluated, comparing to a commercial zirconia (inCoris ZI 40/19, Lot no. 2011482375, Dentsply Sirona, USA)

Partially-sintered Si₃N₄ ceramic blocks preparation

Partially-sintered Si₃N₄ ceramic blocks (Fig. 1, 39x19x15.5 mm) were prepared according to Wananuruksawong et al., 2011¹⁴. The raw materials consist of high purity α-Si₃N₄ powders (particle size 0.8 μm, SN E-10 grade, Ube Industries, Tokyo, Japan) with Y₂O₃ (RU, Shin-Etsu Chemical, Tokyo, Japan), SiO₂ (KE-P30, Nippon Shokubai, Osaka, Japan), and MgO (MJ-30, surface area 31.7 m²/g, Iwatani, Tokyo, Japan) as sintering aids with the weight ratio of silica:magnesia:yttria at 3:3:5,
respectively. The powders were mixed by ball milling in a polyethylene bottle with Si₃N₄ balls in ethanol for 24 h. Subsequently, the mixture was added in Polyvinyl butyral (PVB 630, mineral 75% and viscosity 50–70 cP) by 1 wt%. The homogenized mixture was dried at 60°C in rotary evaporator and screening through a 100-mesh sieve. The mixed powder was formed by hydraulic pressing at 50 MPa and binder burnout at 600°C for 1 h in air. Specimens were pre-sintered in a crucible by varying temperatures (1,400, 1,450 and 1,500°C) for 2 h under 1 atm of N₂ gas flow.

Sintering shrinkage evaluation
This study was designed in order to investigate the effect of pre-sintering temperature (1,400, 1,450 and 1,500°C) to linear sintering shrinkage of fully crystallized Si₃N₄ ceramic comparing that of a commercial zirconia ceramic (inCoris ZI 40/19, Dentsply Sirona). To determine the linear sintering shrinkage, pre-sintered Si₃N₄ ceramic and commercial zirconia rectangular bar specimens (n=10 for each sintering temperature level) were produced by using a high-speed cutting machine with 5×7×39 mm in dimension. Then, fully crystallizing Si₃N₄ bar specimens using sintering temperature at 1,650°C for 2 h in N₂ atmosphere. Fully crystallized commercial zirconias (inCoris ZI) were prepared by sintering process according to manufacturer's instruction by choosing program inCoris ZI (Dentsply Sirona inFire HTC furnace) (Table 1).

The linear sintering shrinkage (%) was calculated from the difference in length, width and height between before and after sintering (measured with Mitutoyo calipers with a resolution of 0.05 mm) as following equation;

\[
\Delta L = \frac{|L_{0} - L|}{L_{0}} \times 100 \\
\Delta W = \frac{|W_{0} - W|}{W_{0}} \times 100 \\
\Delta H = \frac{|H_{0} - H|}{H_{0}} \times 100
\]

where \(\Delta L\), \(\Delta W\), \(\Delta H\): linear sintering shrinkage (%)
\(L_{0}\), \(W_{0}\), \(H_{0}\): the length, width and height of the specimen before sintering
\(L\), \(W\), \(H\): the length, width and height of the specimen after sintering

Flexural strength and fracture toughness specimens preparation
To determine the flexural strength and fracture toughness, pre-sinter Si₃N₄ ceramic (partially sintered at 1,400°C) and commercial zirconia rectangular bar-shaped specimens (n=10 for each group) were produced using high-speed cutting machine (5×7×39 mm in dimension). All specimens were ground using 1 micron diamond slurry. The edges were chamfered according to ISO 6872(2015)17). Then, fully crystallizing Si₃N₄ ceramic using sintering temperature of 1,650°C for 2 h in N₂ atmosphere. Fully crystallized commercial zirconias (inCoris ZI) were prepared by sintering process according to manufacturer's instruction.

Flexural strength evaluation
The three-point bending flexural strength tests were done under displacement control (crosshead speed 0.5 mm/min), using an Instron universal testing machine with a 5kN load cell. The flexural strength values were calculated using an equation described by the ISO 6872(2015)17).

\[\sigma = \frac{3FL}{2wh^2}\]

where \(\sigma\) is modulus of rupture or flexural strength (MPa)
\(F\) is force (N)
\(L\) is length of the span (mm)
\(w\) is width of the specimen (mm)
\(h\) is height (thickness) of the specimen (mm)

Fracture toughness evaluation
The specimens were tested for fracture toughness using

Heating rate (°C/min)	Holding temperature (°C)	Holding time (min)
25	800	0
15	1,510	120
30	200	0
single edge "V" notch beam method. The V-notch of the specimens \((n=10)\) were created using diamond saw disc. Specimen were positioned with the V-notched centered on the supporting rollers of the four-point bending apparatus following the recommendations of the ISO 6872(2015)\(^7\) consisted of four 5 mm diameter stainless steel rollers. The supported roller were placed 24 mm apart and the loading rollers were positioned 12 mm apart on the top of the specimen. (Fig. 2) The specimen was loaded to failure with a crosshead speed of 0.5 mm/min. The fracture load was recorded using an Instron universal testing machine. The specimens were evaluated under 10x magnification using a stereomicroscope to assure that the fracture started at the bottom of the notch and continued over its entire length (if this was not the case the specimen had to be discarded). The depth of notch was measured under SEM at 50× magnification (3 times per specimen). A fracture surface were randomly observed under SEM at 30000x magnification. The fracture toughness were calculated according to the equation described by the ISO 6872(2015).\(^{17}\)

\[
K_{IC} = \frac{\sigma \sqrt{\pi \alpha}}{\beta_{NW}} \times \frac{S_1 - S_2}{w} \times \frac{3 \sqrt{a}}{2(1 - \alpha^2)} \times Y
\]

\(\alpha = a/w\)

Where \(K_{IC}\) is the fracture toughness in megapascals by square for meter

\(\sigma\) is the fracture toughness in megapascals

\(P\) is the fracture load in meganewton

\(b, w\) is the specimen’s thickness and width in meters

\(S_1, S_2\) are the support span \((S_1>S_2)\) in meter

\(Y\) is the stress intensity shape factor

\(a\) is the average notch depth in meters

\(\alpha\) is the relative notch depth

Statistical analysis

For shrinkage statistical analysis, Shapiro-Wilk normality test showed that shrinkage data of at least one group was not normally distributed. Therefore, non-parametric one-way ANOVA (Kruskal-Wallis) test was used for statistically analysis of the linear shrinkage between experimental groups. All tests were conducted at a 95% level of confidence.

For flexural strength and fracture toughness statistical analysis, Shapiro-Wilk normality test showed that flexural strength data and fracture toughness of all groups are normally distributed. An independent \(T\)-test was used to compare the flexural strengths and fracture toughness between Si₃N₄ and inCoris ZI. All tests were conducted at a 95% level of confidence.

Table 2: Linear sintering shrinkage (%) values of Si₃N₄ at three difference partially sintered temperature \((1,400, 1,450\) and \(1,500^\circ\)C) comparing to commercial zirconia \((\text{inCoris ZI}; \text{as control group})\) by Kruskal-Wallis test

No	Si₃N₄ at 1,400°C	Si₃N₄ at 1,450°C	Si₃N₄ at 1,500°C	inCoris ZI					
	\(\Delta L\)	\(\Delta W\)	\(\Delta H\)	\(\Delta L\)	\(\Delta W\)	\(\Delta H\)	\(\Delta L\)	\(\Delta W\)	\(\Delta H\)
1	20.13	19.27	20.51	16.96	17.29	16.83	6.62	5.65	6.48
2	19.79	18.27	20.49	16.98	15.24	17.92	6.37	5.46	7.24
3	19.82	19.57	20.22	16.95	15.56	17.78	6.82	5.84	7.40
4	20.04	19.00	21.21	16.88	14.95	18.53	6.71	6.72	7.54
5	19.75	20.56	19.67	16.95	17.97	17.18	6.91	6.82	7.23
6	19.71	19.57	20.24	16.96	16.92	16.93	6.82	7.44	6.62
7	20.03	19.60	19.35	16.69	15.75	15.95	7.09	7.65	7.84
8	19.73	19.17	19.86	16.97	16.67	15.79	6.93	6.91	7.51
9	20.20	20.26	19.78	16.91	17.49	16.14	6.95	7.78	7.85
10	19.83	20.39	20.30	16.72	17.97	16.69	6.65	8.33	6.80
Mean (SD)	19.88 (0.56)\(^a\)	16.82 (0.86)\(^b\)	6.97 (0.65)\(^c\)	20.41 (0.39)\(^a\)					

SD=Standard deviation.

Different superscript uppercase letters show linear shrinkage with statistically significant difference \((p>0.05)\) according to Kruskal-Wallis.
RESULTS

Sintering shrinkage evaluation
The results of linear sintering shrinkage percentage of Si₃N₄ at three difference partially sintered temperatures (1,400, 1,450 and 1,500°C) comparing to commercial zirconia (inCoris ZI; as control group) were listed in Table 2. The pre-sintered temperature of Si₃N₄ increasing from 1,400, 1,450 and 1,500°C, led to decreasing linear shrinkage (%) from 19.88±0.56, 16.82±0.86 and 6.97±0.65 respectively. According the result of this study was supported that statistically not different of linear sintering shrinkage (%) between Si₃N₄ (Presinter at 1,400°C) and Incoris ZI.

Flexural strength and fracture toughness
The results of flexural strength values (MPa) and fracture toughness KIC (MPa•m⁰.⁵) for each group were presented in Table 3. The study found that fully sintered Si₃N₄ has average flexural strength of 891.21±37.52 MPa and average fracture toughness of 6.33±0.30 MPa•m⁰.⁵, while fully sintered zirconia has average flexural strength of 960.34±25.97 MPa and average fracture toughness of 5.94±0.32 MPa•m⁰.⁵. The SEM image of fully sintered Si₃N₄ and zirconia ceramic structure are shown in Figs. 3 and 4, respectively. Figure 3 shows dark gray of Si₃N₄ rod-like interlocked grains glued to each other by partially crystalline grains and a lighter gray of grain-boundary glassy phase. Figure 4 shows gray of fine tetragonal zirconia polycrystalline grains and the grain size was not uniform. Pores appear black from grains-pull out were observed.

DISCUSSION

Sintering shrinkage evaluation
Fully-sintered Si₃N₄ is too hard to mill and may easily damage the milling burs. Instead, the fabrication of Si₃N₄ should be machined by CAD/CAM system in a partially-sintered (presinter) block. The pre-sinter temperature of partially crystalized ceramic may have an effect to linear shrinkage and fit of the final restorations. Thus, the suitable pre-sinter temperature that was used to prepare CAD/CAM Si₃N₄ block should also be considered. The results from this study reveal that the most suitable pre-sintering temperature for preparing Si₃N₄ blocks is 1,400°C where the linear shrinkage (19.88±0.56%) is most comparable to that of commercial CAD/CAM blocks.

Table 3 Mean (SD) of flexural strength and fracture toughness of Si₃N₄ comparing to commercial zirconia (inCoris ZI; as control group) by independent T-test

	Mean (SD)	
	Flexural strength (MPa)	Fracture toughness, KIC (MPa•m⁰.⁵)
Si₃N₄ (n=10)	891.21 (37.25)ᵃ	6.33 (0.30)ᵃ
inCoris ZI (n=10)	960.34 (25.97)ᵇ	5.94 (0.32)ᵇ

SD=Standard deviation.
Different superscript capital letters show mean values of flexural strength with statistically significant difference (p>0.05) according to independent T-test.
Different superscript lowercase letters show mean values of fracture toughness with statistically significant difference (p>0.05) according to independent T-test.
Flexural strength and fracture toughness

The strength of Si₃N₄ ceramic was evaluated in this study, comparing to that of commercial zirconia. Si₃N₄ has significantly lower flexural strength but higher fracture toughness than that of commercial zirconia. However, flexural strength and fracture toughness of both Si₃N₄ and commercial zirconia were more than 800 MPa and 5 MPa·m⁰.² means that both materials can be used to fabricate four or more units dental bridges (according to ISO 6872, 2015)¹⁷. As a result, Si₃N₄ ceramic can be used for fabrication of dental core for posterior molar crown or bridges.

In the present study, flexural strength and fracture toughness from different materials differed significantly, this may due to the difference in microstructures¹⁸. Si₃N₄ derives its strength and toughness from its microstructure, which is composed of asymmetric β-Si₃N₄ rod-like interlocked grains (crystals) glued to each other by partially crystalline (crystals) grain boundary phase or grain-boundary glassy (amorphous) phase (Fig. 3)¹⁹. Unlike zirconia, no phase transformation is involved, Si₃N₄ exists as an irreversibly stable phase at room temperature, but an advancing crack must navigate a high energy path through the ceramic, and bridging grains within the crack wake restrict its continued propagation¹⁴. While, the toughness of Y-TZP is dependent on the phase transformation-toughening ability. The tetragonal grains (Fig. 4) can expand at the crack tip and transform into a monoclinic, stable phase and prevent cracks from developing²,³.

Flexural strength and fracture toughness test with bar-shape specimens were basic methods for predicting performance of dental ceramic. However, clinically crown-shape restoration may show different behavior than bar-shape specimen due to their complex geometry. The fracture toughness also depends on test method that make some inconsistency of fracture toughness of the same material from difference studies²⁰. In this study, the determination of fracture toughness by single edge notched beam method with high sensitivity in sharpening notch for tough zirconia²⁰. Therefore, the data obtained from this study must be limited in comparison only in this study. Further studies should therefore be investigated to confirm the strength and minimal thickness requirement for the CAD/CAM Si₃N₄ crown restoration. In addition, machinability of new CAD/CAM material is a very important. The mechanical tests related to machinability, such as brittleness index and hardness, necessary to considered of patially-sintered CAD/CAM Si₃N₄ block²¹.

CONCLUSION

This in vitro study revealed that white pre-sintered Si₃N₄ ceramic at 1,400°C can be used as an alternative material for fabrication of a core structure for dental restorations when using CAD/CAM system. Nevertheless, there are many factors that could affect the quality of dental restoration such as marginal and internal gap, surface wear, tooth antagonist wear, esthetic, adhesive bonding material and procedures. Therefore, further pre-clinical and clinical studies are needed in order to finalize the properties of this new material before this new material could be launched into the market for clinical use.

ACKNOWLEDGMENTS

This study is supported by the Dental material laboratory at The Department of Materials Science, Faculty of Science, Chulalongkorn University and Faculty of Dentistry, Thammasat University. Financial supports provided by the Post-graduated grant of Faculty of Dentistry, Thammasat University.

CONFLICT OF INTEREST

On behalf of all authors, the corresponding author declare no conflicts of interest.

REFERENCES

1) Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006; 27: 535-543.
2) Derry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008; 24: 299-307.
3) Takeichi T, Miura S, Kasahara S, Eguas H, Haru M, Sato T, et al. Update zirconia restorations. J Prosthodont Res 2015; 59: 81-83.
4) Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013; 57: 236-261.
5) Lugi V, Sero V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 2010; 26: 807-820.
6) Kim JW, Covel NS, Guess PC, Rekow ED, Zhang Y. Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res 2010; 89: 91-95.
7) Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, et al. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater 2012; 8: 1213-1220.
8) Chevalier J, Gremlillard L. Ceramics for medical applications: A picture for the next 20 years. J Eur Ceram Soc 2009; 29-30: 1245-1255.
9) Bock RM, McIntire BJ, Maha KM, Raham MN, Boello M, Pezzotti G. Surface modulation of silicon nitride ceramics for orthopaedic applications. Acta Biomaterial 2015; 26: 318-330.
10) Massocchi M, Bellosi A. On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity. J Mater Sci Mater Med 2008; 19: 2881-2887.
11) Massocchi M, Gardini D, Traverso PL, Faga MG, Bellosi A. On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part II: chemical stability and wear resistance in body environment. J Mater Sci Mater Med 2008; 19: 2889-2901.
12) Webster TJ, Patel AA, Raham MN, Sonny B. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. Acta Biomaterial 2012; 8: 4447-4454.
13) Badran Z, Struillou X, Hughes FJ, Soueidan A, Hoornaert A, Ida M. Silicon nitride (Si3N4) implants: The future of dental implantology? J Oral Implantol 2017; 43: 240-244.
14) Wananuraksawong R, Jinnath S, Padiatpavuthikul P,
Wasanapiarnpong T. Fabrication of silicon nitride dental core ceramics with borosilicate veneering material. IOP Conf Ser Mater Sci 2011; 18: 192010.

15) Rahaman M, Xiao W. Silicon nitride bioceramics in healthcare. Inter J Appl Ceram 2018; 15: 861-872.

16) Wananuruksawong R, Wasanapiarnpong T, Dhanesuan N, Didron PP. Microhardness and biocompatibility of silicon nitride ceramic developed for dental applications. MSA 2014; 5: 1034-1039.

17) Dentistry-Ceramic materials. The International Standards Organization for Standardization (ISO) 6872, 2015.

18) Borba M, de Araujo MD, Fukushima KA, Yoshimura HN, Cesar PF, Griggs JA, et al. Effect of the microstructure on the lifetime of dental ceramics. Dent Mater 2011; 27: 710-721.

19) Roehben G, Sarbu C, Lube T, Van der Biest O. Quantitative determination of the volume fraction of intergranular amorphous phase in sintered silicon nitride. Mater Sci Eng A Struct Mater 2004; 370: 453-458.

20) Cesar PF, Della Bona A, Scherrer SS, Tholey M, van Noort R, Vichi A, et al. ADM guidance-Ceramics: Fracture toughness testing and method selection. Dent Mater 2017; 33: 575-584.

21) Porto TS, Roperto RC, Teich ST, Faddoul FF, Rizzante FAP, Porto-Neto ST, et al. Britteness index and its relationship with materials mechanical properties: Influence on the machinability of CAD/CAM materials. Braz Oral Res 2019; 33: e026.