Glaucoma and Health-Related Traffic Accidents: Evidence and Preventive Measures

Saki Fukumoto1,5, Hiroo Wada1, Kiyohide Tomooka1, Setsuko Sato1, Shiiho Kunimatsu-Sanuki2, Kazuaki Tetsumo3, Yoshimune Hiratsuka4, Akira Murakami4, Takeshi Tanigawa1

1) Department of Public Health, Juntendo University Graduate School of Medicine, Tokyo, Japan
2) Nishikasai Inoue Eye Hospital, Tokyo, Japan
3) Tetsumo Eye Clinic, Kobe, Japan
4) Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
5) Keio University Hospital, Tokyo, Japan

This review addresses the prevalence of glaucoma in Japan, where it affects around 5% for those aged 40 years and over, a large proportion of whom are not aware of their disorder and thus remain untreated. Glaucoma is one of the known causes of “health-related traffic accidents,” and it is important to screen drivers with possible glaucoma who are not aware of their visual field abnormalities. We propose that CLOCK CHART® be employed as a tool that even non-ophthalmologists could use to screen the visual fields of drivers, leading to possible diagnosis and treatment of glaucoma. This will promote safe driving.

Key words: public health, glaucoma, accidents, traffic, prevention & control, sleep apnea syndromes

Introduction

Recently, it has been shown that traffic accidents are in part caused by health issues. We have advocated a concept of “health-related traffic accidents,” which are defined as traffic accidents associated with some disorders such as glaucoma, neurological disorders, cardiovascular disorders, hypoglycemia, hearing loss, adverse effects linked to treatment, sleepiness linked to allergic disorders and sleep-related breathing disorders (SRBD) and so on1,2 (Table 1).

We, herein, describe health-related traffic accidents by focusing on glaucoma, and furthermore, we propose screening using CLOCK CHART®, which is a handy and reliable visual field screening tool that general physicians can apply for non-ophthalmologic patients.

Glaucoma and traffic accidents

Glaucoma is a disease characterized by the loss of retinal ganglion cells, which leads to visual field defects and blindness3, and a leading cause of visual impairment in Japan4. Diagnosis is based on examination of the optic nerve head and retinal nerve fiber layer by ophthalmoscopy or by imaging technique5. Visual field testing and intraocular pressure measurement are also necessary for diagnosis. Treatment options for open-angle glaucoma include pharmaceutical therapy, laser therapy, and surgery which aim to lower intraocular pressure3.

Reportedly, an estimated number of 4.6 million...
people in Japan suffer from glaucoma, and 90% of them are not aware of their condition. Glaucoma affects one in 20 people aged 40 years and over in Japan. The number of patients is thought to increase in this aging society. Previous studies showed that most glaucoma patients were usually unable to detect their own visual field defects until the changes had reached an advanced stage. Glaucomatous visual field defects have been associated with motor vehicle accidents previously. A previous study reported that traffic accidents were 1.65-fold more frequent in drivers with glaucoma. McGwin demonstrated that patients with moderate or severe visual field defects with glaucoma in the worse eye incur a higher risk of traffic accidents than those with no visual field defect. Elsewhere he reported that drivers with glaucoma whose visual fields were impaired as defined by pattern deviation were involved in at-fault traffic accidents twice the frequency of those not severely impaired. Various reports examined the parts of drivers' visual fields in which defects are significantly related to traffic accidents. In addition, drivers with glaucoma had greater impairment in their observation ability, lane positioning and planning approach, and their errors were more common at intersections, both traffic light-controlled and right-of-way-controlled. Older drivers with glaucoma had delayed hazard response times and first fixation on hazards, and therefore they need to improve their rapid eye movements to detect hazards effectively, leading to significant changes in the pattern of eye movements in patients with glaucoma. Screening is important considering the occurrence of serious traffic accidents.

Glaucoma and SRBD

Glaucoma share some common characteristics with SRBD, which is also attracting attention as a cause of traffic accidents. Glaucoma impair night-time sleep quality and quantity, leads to excessive daytime sleepiness, fatigue, inattentiveness resulting in traffic accidents. Obstructive sleep apnea (OSA) was accompanied by a 1.21 to 4.89-fold increase in risk for traffic accidents. Drivers with SRBD who did not adhere to their treatment were involved in five-fold more accidents than those who did. Glaucoma and SRBD are highly prevalent, and thus a strategy should include screening a broader range of the population. They potentially cause serious accidents in the workplace, especially for those working in transportation services. Both glaucoma and SRBD

Table 1 Possible causes of health-related traffic accidents
Ophthalmologic disorders (glaucoma, cataract, etc.)
Sleep-related breathing disorders (SRBD)
Cardiovascular diseases (arrhythmias, infarctions, etc.)
Neurological conditions (stroke, syncope, dementia, epilepsy, seizures, etc.)
Chronic respiratory failure
Otolaryngological disorders (vertigo, hearing loss, etc.)
Hypoglycemia
Allergic disorders
Drug-associated conditions

Table 2 Glaucoma and sleep-related breathing disorders (SRBD) share the common characteristics of high prevalence, unrecognized symptoms and increased involvement of those affected in motor vehicle accidents (MVAs).

	Glaucoma	SRBD
Prevalence	5%	Women in their 50’s just under 10%
		Men in their 50’s: 10–20%
Under-diagnosis	50 ~ 90%	At least 80% of moderate or severe obstructive sleep apnea (OSA) among the middle-aged
		Excessive daytime sleepiness detected by the Epworth sleepiness scale (ESS) may fail to identify those with SRBD
Fold increase in MVAs	At-risk for accidents	OSA: 1.21 ~ 4.89

Further evidence still needs to be established.
are not always symptomatic23,24 and thus subjective assessment may not be trustworthy. In cases of glaucoma, the loss of optic nerve fibers starts not only long before it is sensed, but also before the defects can be detected by perimetry, and visual field defects rarely occur at the same area in both eyes23. Therefore, patients may fail to notice their glaucoma-related visual field defects on their own before progression to a late stage when their central visual fields are affected23.

Considering these common characteristics, general screening using objective assessment is effective and essential in workplaces when there is a high prevalence of the conditions underlying health-related accidents, subjective manifestations are scarce, or the consequences of accidents can be expected to be quite serious.

Our approach to glaucoma to prevent HRTA:

CLOCK CHART®

There are many individuals with latent glaucoma who need screening, appropriate diagnosis and treatment for prevention of traffic accidents. A simple screening method, which even busy generalists can use in their outpatient clinics, is urgently needed. CLOCK CHART® could be a handy visual field screening tool.

CLOCK CHART® as a promising tool for prevention against HRTA

CLOCK CHART® is a self-administered visual field screening tool25. Illustrations of a ladybug, a caterpillar, a butterfly and a cat are depicted on circumferences of eccentricity zones 10°, 15°, 20° and 25° away from the center, respectively (Figure 1), when the examinee stares at the center from 35 cm above25. Then, an examiner can identify visual field defects of examinees by confirming if the illustration remains visible to them as CLOCK CHART® rotates25 (Figure 2).

The sensitivity of visual field screening using CLOCK CHART® was 87\%, 93\%, and 97 \% for the mean defect (MD) value in early, moderate, and severe glaucoma, respectively (early <6 dB, moderate 6 dB≦MD≦12 dB and severe >12 dB), and the specificity was 89 \%. This high efficacy was confirmed by our preliminary study26: the visual fields of 5 individuals with glaucoma were examined using both a Humphrey Field Analyzer and CLOCK CHART®. We divided the visual field of 5 patients into 4 areas, namely the superior and inferior areas of the right and left eyes. Of the 20 areas, the Humphrey Field Analyzer detected visual field defects in 60\% of the areas, while CLOCK CHART® detected defects in 45\%. Their agreement rate was 85\%. CLOCK CHART® binocular...
CLOCK CHART® is useful for accident by detection of visual field defects to prevent traffic accidents. CLOCK CHART® can be used to functionally assess vision. Non-ophthalmology physicians and surgeons should also screen visual fields of patients using CLOCK CHART® to identify those at-risk for the traffic accident by detection of visual field defects to prevent traffic accidents. CLOCK CHART® is useful for boosting awareness of glaucoma, leading to its diagnosis and treatment, and will help keep drivers with glaucoma safe.

Concluding Remarks

Among licensed drivers, glaucoma is distressingly prevalent and correlates with traffic accidents (health-related traffic accidents). General screening with CLOCK CHART® leads to appropriate and early diagnosis and treatment and care for glaucoma, which might promote safe driving.

Acknowledgements

We would like to express our gratitude to Professor Robert F. Whittier and Professor Keiko Asano for their kind assistance. The study was funded by International Association of Traffic and Safety Sciences (IATSS). Dr. Saki Fukumoto presented the part of this study and was awarded with the Kurokawa Prize at the Annual Meeting 2019 of the American College of Physicians (ACP) Japan Chapter in Kyoto, Japan.

References

1) Tanigawa T: “Report on Health-Related Traffic Accidents”. International Association of Traffic and Safety Sciences. https://www.iatss.or.jp/research/project2019.html. (accessed 2021-01-10).
2) Tanigawa T: 健康起因事故防止のための実証的研究と防止対策の普及啓発に関する研究. Report of a project of International Association of Traffic and Safety Sciences (IATSS). https://www.iatss.or.jp/common/pdf/event/list/research2019_6.pdf. (accessed 2021-02-10).
3) Weinreb RN, Aung T, Medeiros FA: The pathophysiology and treatment of glaucoma: a review. JAMA. 2014; 311: 1901–1911.
4) Morizane Y, Morimoto N, Fujiwara A, et al: Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn J Ophthalmol. 2019; 63: 26–33.
5) Iwase A, Suzuki Y, Arai M, et al: The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004; 111: 1641–1648.
6) Yamamoto T, Iwase A, Arai M, et al: The Tajimi Study report 2: prevalence of primary angle closure and secondary glaucoma in a Japanese population. Ophthalmology. 2005; 112: 1661–1669.
7) Crabb DP, Smith ND, Glen FC, Burton R, Garway–Heath DF: How does glaucoma look?: patient perception of visual field loss. Ophthalmology, 2013; 120: 1120–1126.
8) Kwon M, Huisingsh C, Rhodes LA, McGwin G Jr, Wood JM, Owseley C: Association between Glaucoma and At–Fault Motor Vehicle Collision Involvement among Older Drivers: A Population–based Study. Ophthalmology, 2016; 123: 109–116.
9) McGwin G Jr, Xie A, Mays A, et al: Visual field defects and the risk of motor vehicle collisions among patients with glaucoma. Invest Ophthalmol Vis Sci. 2005; 46: 4437–4441.
10) McGwin G Jr, Huisingsh C, Jain SG, Girkin CA, Owseley C: Binocular visual field impairment in glaucoma and at-fault motor vehicle collisions. J Glaucoma, 2015; 24: 138–143.
11) Blane A: Through the Looking Glass: A Review of the Literature Investigating the Impact of Glaucoma on Crash Risk, Driving Performance, and Driver Self–Regulation in Older Drivers. J Glaucoma, 2016; 25: 113–121.
12) Kunimatsu–Sanuki S, Iwase A, Arai M, et al: The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Br J Ophthalmol. 2017; 101: 896–901.
13) Glen FC, Smith ND, Crabb DP: Impact of superior and inferior visual field loss on hazard detection in a computer–based driving test. Br J Ophthalmol. 2015; 99: 613–617.
14) Wood JM, Black AA, Mallon K, Thomas R, Owseley C: Glaucoma and Driving: On–Road Driving Characteristics. PLoS One, 2016; 11: e0158318.
15) Lee SS, Black AA, Wood JM: Effect of glaucoma on eye movement patterns and laboratory–based hazard detection ability. PLoS One. 2017; 12: e0178876.
16) Crabb DP, Smith ND, Rauscher FG, et al: Exploring eye movements in patients with glaucoma when viewing a driving scene. PLoS One, 2010; 5: e9710.
17) Qureshi A, Ballard RD: Obstructive sleep apnea. J Allergy Clin Immunol, 2003; 112: 643–651.
18) Kales SN, Czeisler CA: Obstructive Sleep Apnea and Work Accidents: Time for Action. Sleep, 2016; 39: 1171–1173.
19) Strohl KP, Brown DB, Collop N, et al: An official American Thoracic Society Clinical Practice Guideline: sleep apnea, sleepiness, and driving risk in noncommercial drivers. An update of a 1994 Statement. Am J Respir Crit Care Med, 2015; 191: 735–754.
20) Gongora A, Hoorop S, Malhotra A, et al: A systematic review of the association between sleep apnea and traffic crashes. JAMA Intern Med. doi: 10.1001/jamainternmed.2014.829.
Fukumoto S, et al: Glaucoma and Health-Related Traffic Accidents

Crit Care Med, 2013; 187: 1259–1266.

20) Tregear S, Reston J, Schoelles K, Phillips B: Obstructive sleep apnea and risk of motor vehicle crash: systematic review and meta-analysis. J Clin Sleep Med, 2009; 5: 573–581.

21) Burks SV, Anderson JE, Bombyk M, et al: Nonadherence with Employer-Mandated Sleep Apnea Treatment and Increased Risk of Serious Truck Crashes. Sleep, 2016; 39: 967–975.

22) The Japanese Respiratory Society: Clinical Practice Guidelines for SAS 2020 [Japanese]. Nankodo, 2020: 5–11.

23) Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda–Jonas S: Glaucoma. Lancet, 2017; 390: 2183–2193.

24) Young T, Evans L, Finn L, Palta M: Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep, 1997; 20: 705–706.

25) Matsumoto C, Eura M, Okuyama S, et al: CLOCK CHART®: a novel multi-stimulus self-check visual field screener. Jpn J Ophthalmol, 2015; 59: 187–193.

26) Fukumoto S, Wada H, Kimura M, et al: Unaware of glaucoma and traffic accidents: a proposal to detect visual field defects by CLOCK CHART. Abstract presented at American College of Physicians (ACP) Japan Chapter Annual Meeting 2019 in Kyoto, June 8, 2019; Kyoto, Japan. http://www.acpjinanj.org/acp2019/pdf/poster/acp2019_poster_all_0509_0056_0001.pdf (accessed 2021–02–07).

27) Ishibashi M, Matsumoto C, Hashimoto S, et al: Utility of CLOCK CHART® binocular edition for self-checking the binocular visual field in patients with glaucoma. Br J Ophthalmol, 2019; 103: 1672–1676.