Research Article
Componential Profile and Amylase Inhibiting Activity of Phenolic Compounds from Calendula officinalis L. Leaves

Daniil N. Olennikov and Nina I. Kashchenko

Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sukh'yanovoy Street, 6, Ulan-Ude 670047, Russia

Correspondence should be addressed to Daniil N. Olennikov; olennikovdn@mail.ru

Received 15 November 2013; Accepted 22 December 2013; Published 9 February 2014

Academic Editors: V. C. Filho and C. R. Wilson

Copyright © 2014 D. N. Olennikov and N. I. Kashchenko. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6-β-O-vanilloyl-β-d-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-d-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6′′-acetyl)-β-d-glucopyranoside, exhibited potent inhibitory effects on amylase.

1. Introduction
The Compositae annual herbaceous plant, Calendula officinalis L., commonly called marigold, or pot marigold is widely cultivated as an ornamental, culinary and valuable medicinal herb due to its various pharmacological properties: anti-inflammatory, antioxidant, antibacterial, antifungal, and so forth [1]. A number of chemical investigations have revealed the presence of several classes of compounds, with the main ones being terpenes, flavonoids, carotenoids, lipids, and carbohydrates.

Despite the wide use of C. officinalis flowers, leaves of this species have not currently found a practical application. The productivity of the vegetative foliage is much greater than that of the flowers, making it possible to consider the foliage as a new kind of useful plant material. The presence of various classes of compounds in C. officinalis leaves was determined as a result of chemical investigations. Isorhamnetin, isorhamnetin-3-O-β-d-glucopyranoside, and narcissin [2] belong to the phenolic compounds. Previously it has been shown that phenolic compounds are responsible for the presence of antioxidant and anticholinesterase activity in extracts of C. officinalis [3]. Carotenoids represent 12 compounds, dominated by lutein, β-carotene, and violaxanthin; the total carotenoid content in the leaves of C. officinalis growing in Bulgaria reaches 0.85 mg/g [4]. The most investigated groups of compounds found in the leaves of C. officinalis are triterpene glycosides and sterols. In young leaves the presence of cholestanol, campestanol, stigmasastanol, and clerosterol derivatives in free, esterified, and glycosylated forms was revealed [5]. Mono-, di-, tri-, and tetracloseudoses of olenolic acid isolated from C. officinalis leaves growing in Poland demonstrated antibacterial and antiparasitic activity [6]. The essential oil of C. officinalis leaves contains a set of compounds, dominated by sesquiterpenes (τ-muurolol, δ-cadinene) and monoterpenes (α-thujene) [7]. A number of neutral components, phospho-, and glycolipids have also been identified in the lipid complex [8].

In our previous investigation we detected some phenylpropanoids (caffeic acid, mono- and di-O-cafeoylquinic acids) and flavonoids (calendoflavoside, isoqueritrin, quercetin-3-O-(6′′-acetyl)-β-d-glucopyranoside, isorhamnetin-3-O-β-d-glucopyranoside, and isorhamnetin-3-O-(6′′-acetyl)-β-d-glucopyranoside) in C. officinalis leaves [9]. That work was realized just for “Orange Big” variety which is one of the most frequently cultivated double-flowered varieties in Russia. However, a number of C. officinalis varieties cultivated in Russia are much more indicating the necessity in extended chemical surveys.
Early, Yoshikawa et al. revealed a high hypoglycemic activity of the extracts and individual compounds from *C. officinalis* flowers that can be considered marigold as a forthcoming antidiabetic remedy [10]. In the course of our studies on the bioactivity of *C. officinalis* we found that an ethanolic extract from the leaves of this plant species showed inhibitory effect on the amylose. It is known that inhibitors of amylose, a carbohydrate hydrolyzing enzyme in the small intestine, are relevant to type II diabetes [11].

In this study, we present the results of phytochemical investigation of *C. officinalis* leaves from nine double-flowered varieties growing in the Russian Federation. As a result, twenty-five compounds were isolated including a new glycoside, 6′-O-vanilloyl-β-d-glucopyranose. In addition, we describe the inhibitory effects of the isolated compounds on amylose.

2. Materials and Methods

2.1. Plant Material. Plants of *Calendula officinalis* L. in nine double-flowered varieties (“Egypt Sun,” “Flame Dance,” “Geisha,” “Green Heart Orange,” “Indian Prince,” “Radio,” “Red Black Centered,” “Russian Size,” “Touch of Red”) were grown from authenticated seeds obtained from Tsitsin’s Main Botanical Garden of the Russian Academy of Science (Moscow, Russian Federation) by cultivation in the fields of the Botanical Institute of the Institute of General and Experimental Biology (IGEB, Ulan-Ude, Russian Federation). The leaves were collected in the middle of August, 2012, and then dried in *vacuo* at 40 °C (12 h) and stored at 4°C in the IGEB Plant Repository.

2.2. General Experimental Procedures. Elemental composition was determined using a MAT 8200 spectrometer (Thermo Finnigan). UV spectra were recorded using a SF-2000 spectrophotometer (OKB Specter). MS spectra were registered on a LCQ mass spectrometer (Thermo Finnigan). NMR spectra were recorded on a VXR 500S spectrometer (Varian). Chromatography was performed over columns of polyamide (Woelm), octadecyl-functionalized silica gel (RP-SiO₂; Aldrich), and Amberlite XAD7HP (Sigma). TLC was performed on Sorbil-A silica gel TLC plates (layer thickness 2 mm; Imid Ltd.). All chemicals were analytical grade. Alkaline hydrolysis [9], acidic hydrolysis [12], and HPLC analyses of cleavage products [13] were performed as described previously. The Folin method was used to determine total phenolic content (TPC) as described by [14] using chlorogenic acid as a standard compound. Total flavonoid content (TFC) was determined by a spectrophotometric method [15] using isoquercitrin as a standard compound.

2.3. Extraction and Isolation. Air-dried, ground leaves of *C. officinalis* (1.65 kg) were extracted three times with 60% EtOH at 80 °C and the extracts were concentrated under reduced pressure to yield 462.7 g of crude extract. The crude extract was resuspended in water (1:6, v/v) and successively partitioned with hexane, CHCl₃, EtOAc, and n-BuOH.

The organic layers were brought to dryness in *vacuo* to yield 49.5, 79.4, 59.2, and 204.6 g of hexane (F1), CHCl₃ (F2), EtOAc (F3), and n-BuOH fraction (F4) residue, respectively. The F2 fraction (54 g) was chromatographed over a Sephadex LH-20 column (6 × 100 cm) and eluted with CHCl₃-MeOH (100:0 → 0:100) to obtain 10 fractions (frs. F2/1–F2/10). Frs. F2/2–F2/3 were combined and chromatographed on a silica column (3 × 50 cm) eluted with CHCl₃-MeOH (100:0 → 70:30) to obtain 10 fractions (frs. F2/2-3/1–F2/2-3/10), which were separated using pTLC (solvent-toluene-EtOAc-HCOOH 6:3:1) to give umbelliferone (12; 6 mg), aesculetin (13; 14 mg) and scopoletin (16; 5 mg) [16]. Frs. F2/5–F2/7 were combined and chromatographed on a silica column (2.5 × 70 cm) and eluted with CHCl₃-MeOH (100:0 → 70:30) to obtain quercetin (17; 19 mg) and isorhamnetin (21; 9 mg) [17]. Fr. F3 (50 g) was subjected to chromatography on a XAD7HP column (500 g) eluted with H₂O (8 L), 40% EtOH (12 L) and 90% EtOH (10 L). The eluates were brought to dryness in *vacuo* to yield 1.3, 37.9, and 6.4 g of H₂O (F3-1), 40% EtOH (F3-2) and 90% EtOH fraction (F3-3) residue, respectively. Fr. F3-2 was chromatographed on a polyamide column (5 × 12 cm) eluted with H₂O-MeOH (100:0 → 0:100) to obtain 10 fractions (fr. F3-2/I–fr. F3-2/10). Frs. F3-2/2–F3-2/3 were separated on a Sephadex LH-20 column (4 × 140 cm) and eluted with MeOH-H₂O (100:0 → 0:100) to obtain caffeic acid (7; 24 mg) [18], 3,5-di-O-(9; 184 mg), 1,5-di-O-(10; 62 mg) and 4,5-di-O-cafeoylquinic acid (11; 37 mg) [19]. Frs. F3-2/4–F3-2/7 were separated on a RP-SiO₂ column (4 × 140 cm) and eluted with H₂O-MeCN (100:0 → 0:100) to give 3-O-cafeoylquinic acid (II; 215 mg) [18], aesculin (14; 28 mg), cichorin (15; 14 mg) [20], isoquercitrin (18; 182 mg), and isorhamnetin-3-O-β-d-glucopyranoside (22; 63 mg) [21]. Fr. F3-3 was subjected to pHPLC chromatography [Summit HPLC-system with UV-Vis detector (Dionex)] using a LiChrosorb RP-18 column (4.6 × 250 mm, 5 μm, Merck), T 35°C, flow rate 1 mL min⁻¹, solvent a linear gradient of 5–40% MeCN in H₂O for 90 min, the detector at 280 nm; four runs] to give quercetin-3-O-(6′-acetyl)-β-d-glucopyranoside (19; 54 mg) [22] and isorhamnetin-3-O-(6′-acetyl)-β-d-glucopyranoside (23; 25 mg) [9]. Fr. F4 (120 g) was added to a XAD7HP column (800 g) and eluted with H₂O (24 L), 40% EtOH (28 L) and 90% EtOH (5 L). The eluates were brought to dryness in *vacuo* to yield 54.9, 38.4, and 12.5 g of H₂O (F4-1), 40% EtOH (F4-2) and 90% EtOH fraction (F4-3) residue, respectively. Fr. F4-2 was chromatographed on a polyamide column (5 × 120 cm) and eluted with H₂O-MeOH (100:0 → 0:100) to give 10 fractions (F4-2/I–F4-2/10). Frs. F4-2/1–F4-2/2 were separated via pHPLC [Summit HPLC-system with UV-Vis detector (Dionex), LiChrosorb RP-18 column (4.6 × 250 mm, 5 μm, Merck), T 35°C, flow rate 1 mL min⁻¹, solvent a linear gradient of 0–10% MeCN in H₂O for 90 min, the detector at 280 nm; four runs] to give 1′-O-p-hydroxybenzoyl-β-d-glucopyranoside (I; 24 mg) [23], 6′-O-p-hydroxybenzoyl-β-d-glucopyranoside (2; 11 mg), 1′-O-protocatechuyl-β-d-glucopyranoside (3; 18 mg), 6′-O-protocatechuyl-β-d-glucopyranoside (4; 14 mg) [24], 1′-O-vanillyl-β-d-glucopyranoside (5; 18 mg) [25], and compound 6 (27 mg). Frs. F4-2/4–F4-2/6 were separated on
a Sephadex LH-20 column (4 × 140 cm) eluted with MeOH-H$_2$O (100:0 → 0:100) to obtain rutin (20; 34 mg), narcissin (24; 24 mg) [21] and thymepanoside (25; 23 mg) [26].

2.4. 6′-O-Vanillyl-β-d-glucopyranose (6): C$_{14}$H$_{18}$O$_{9}$. UV λ_{max} nm MeOH: 220, 261, 292. HR-ESI-MS, m/z: 353.2764 [M + Na]$^+$ (calcld for C$_{14}$H$_{18}$O$_{9}$Na 353.2840). +FAB-MS, m/z: 331 [M + H]$^+$. 1H-NMR (CD$_3$OD, 500 MHz) and 13C-NMR data (CD$_3$OD, 125 MHz); see Table 2.

2.5. Sample Preparation and Analytical HPLC-UV. The dried and powdered leaves (200 mg) from the different varieties of C. officinalis were extracted with 60% ethanol (5 mL) in an ultrasonic bath for 40 min. The extracted solutions were filtered through a 0.22 μm PTFE syringe filter before injection into the LC system for analysis.

HPLC analysis was performed on a Milichrom A-02 microcolumn chromatograph (Econova) coupled with a UV detector, using a ProntoSIL-120-5-C18 AQ column (2 × 75 mm, 0 5 μm; Metrohm AG). Mobile phase A was 0.2 M LiClO$_4$ in 0.006 M HClO$_4$ and mobile phase B was acetonitrile. The injection volume was 1 μL, and elution was at 150 μL min$^{-1}$ with a gradient program (0–7.5 min 11–18% B, 7.5–13.5 min 18% B, 13.5–15 min 18–20% B, 15–18 min 20–25% B, 18–24 min 25% B, and 24–30 min 25–100% B). The detector wavelength was 270 nm. Reference compounds with purity greater than 96% were used for the establishment of calibration curves. This included 3-O-cafeoylquinic acid, 3,5-di-O-cafeoylquinic acid, 1,5-di-O-cafeoylquinic acid, caffeic acid, isoorientin, and rutin from Sigma-Aldrich (Missouri, USA); Isonorhamnetin-3-O-β-d-glucoside was from Exrasyntese (Lyon, France); 4,5-di-O-cafeoylquinic acid was from ChemFaces (Wuhan, China). Thymepanoside, quercetin-3-O-(6′′-acetyl)-β-d-glucoside, and isorhamnetin-3-O-(6′′′-acetylated)-β-d-glucoside was isolated previously from C. officinalis flowers [9].

2.6. Amylase Inhibition Microplate Assay. Amylase inhibitory activity was measured using a microplate method: 10 μL of a sample solution in DMSO, 30 μL of phosphate buffer (pH 5.0), and 10 μL of amylose from Aspergillus niger (3 μL m$^{-1}$, Sigma) which were incubated for 20 min at 45°C. Then 10 μL of 2% starch solution, 40 μL of phosphate buffer (pH 5.0), and 100 μL of the reagent were added and incubated for 30 min at 50°C. Absorbance was measured at 510 nm. The reagent was a solution of K$_2$HPO$_4$ (0.88 mM), KH$_2$PO$_4$ (0.4 mM), phenol (220 mM), 4-aminoantipyrine (1.5 μM), glucose oxidase from Aspergillus niger (3 U mL$^{-1}$, Sigma), and peroxidase from horseradish (0.3 U mL$^{-1}$) in deionized water. A 2% solution of acarbose was used as a positive control (PC), and water was used as a negative control (NC). The experiment was carried out in triplicate and averaged. The ability to inhibit amylase was calculated using the following equation: inhibitory activity (%) = [(A$_{510}^{NC}$ - A$_{510}^{PC}$) - (A$_{510}^{Sample}$ - A$_{510}^{PC}$)] / (A$_{510}^{NC}$ - A$_{510}^{PC}$) × 100, where A$_{510}^{NC}$ is the absorbance of the negative control, A$_{510}^{PC}$ is the absorbance of the positive control, and A$_{510}^{Sample}$ is the absorbance of the sample solution. The IC$_{50}$ value is the effective concentration at which amylase activity was inhibited by 50%. Values are expressed as mean obtained from 5 independent experiments.

3. Results and Discussion

3.1. Phenolic Compounds Content in Russian Varieties of C. officinalis Leaves. Preliminary chemical research on the composition of C. officinalis leaves was carried out for nine varieties cultivated widely in the territory of Russia. These varieties are characterized by high productivity and simplicity of cultivation. As a result, it was found that flavonoid content in the leaves examined ranged from 8.49 (”Indian Prince”) to 13.08 mg g$^{-1}$ (“Radio”), while the total content of phenolic compounds varied from 29.21 (“Russian Size”) to 50.24 mg g$^{-1}$ (“Radio”) (Figure 1). The maximal content of phenolic compounds was observed for C. officinalis leaves of the “Radio” variety, which were further subjected to detailed chemical study.

3.2. Extraction and Isolation of Phenolic Compounds from C. officinalis Leaves of “Radio” Variety. A 60% ethanolic extract of C. officinalis leaves of “Radio” variety was partitioned with CHCl$_3$, EtOAc, and n-BuOH to yield three fractions. The crude extract was found to exhibit inhibitory activity on an amylase with an inhibitory value (IC$_{50}$) of 38.02 ± 1.29 μg mL$^{-1}$ (Table 1). In the same bioassay, the ethylacetetosoluble fraction still showed potent inhibitory activity with a lower value, 24.52 ± 0.88 μg mL$^{-1}$.

To enhance our knowledge regarding the chemical composition of C. officinalis leaves, all the isolated fractions were separated by chromatographic columns (gel permeation, NP- and RP-SiO$_2$, XAD, and polyamide chromatography), prep. HPLC, and prep. TLC, yielding one new (6) and twenty-four known compounds. The known compounds, including five phenolic acid glucosides [1′-O-p-hydroxybenzoyl-β-d-glucopyranose (1), 6′′′-O-p-hydroxybenzoyl-β-d-glucopyranose (2), 1′-O-protocatechuyl-β-d-glucopyranose (3),
Table 1: Amylase inhibiting activity of C. officinalis extract and fractions.

Sample	IC₅₀ (μg mL⁻¹)
Ethanolic extract	38.02 ± 1.29
CHCl₃ fraction	>100
EtAc fraction	24.52 ± 0.88
BuOH fraction	72.60 ± 2.61
Acarbose⁴	9.54 ± 0.32

Values are expressed as mean ± SD obtained from 5 independent experiments.

⁴Reference compounds.

6'-O-protocatechuoyl-β-D-glucopyranose (4), and 1'-O-vanillyl-β-D-glucopyranose (5), five phenylpropanoids [caffeic acid (7), 3-O- (8), 3,5-di-O- (9), 1,5-di-O- (10), and 4,5-di-O-caffeoylquinic acid (11)], five coumarins [umbelliferone (12), aesculetin (13), aesculin (14), cichorin (15), scopoletin (16)], and nine flavonoids [quercetin (17), isoorientin (18), quercetin-3-O-(6'-acetyl)-β-D-glucopyranoside (19), rutin (20), isorhamnetin (21), isorhamnetin-3-O-β-D-glucopyranoside (22), isorhamnetin-3-O-(6'-acetyl)-β-D-glucopyranoside (23), narcissin (24), and thymophanol (25)], were identified by comparing their UV, MS, and NMR data with those reported in the literature (Figure 2).

Compounds 7, 9, 18, 19, and 21–24 have been previously isolated [2, 9], while compounds 1–5, 8, 10–17, 20, and 25 are detected in C. officinalis leaves for the first time.

3.3. Structure Elucidation of 6'-O-Vanillyl-β-D-glucopyranoside. Compound 6 was isolated as a white amorphous powder. Its molecular formula, C₁₄H₁₈O₉, was deduced from its [M + H]^+ peak at 331 of positive FAB-MS and the 14 carbon signals in its ¹³C-NMR spectrum. In its ¹¹H-NMR spectrum the signals of three aromatic protons were observed at δ 7.63 (1H, d, J = 8.0, 1.9 Hz), 7.52 (1H, d, J = 1.9 Hz), and 6.80 (1H, d, J = 8.0 Hz), which are typical for 1,3,4-trisubstituted benzenes rings (Table 2).

Its ¹³C-NMR spectrum exhibited a carbonyl group at δ 166.7 and a methoxyl group at δ 56.3. In its HMBC spectrum, the carbonyl group (δ 166.7) showed a correlation with the aromatic proton of H-6 at δ 7.63 and the aromatic carbon at δ 147.5 (C-3) correlated with methoxyl protons at δ 3.97 (Figure 3).

Alkaline hydrolysis of 6 with 1 M KOH gave vanillic acid, which was identified by co-HPLC with an authentic sample and ¹³C-NMR. These data suggest the presence of a vanillyl moiety in the structure of 6. The presence of d-glucose was confirmed after acidic hydrolysis followed by HPLC analysis of the hydrolysate. In addition, the remaining 6 carbon signals in its ¹³C-NMR spectrum are in good agreement with
Table 2: 1H-NMR and 13C-NMR data of compound 6.

Atom no.	DEPT	δ_H (mult., J in Hz)	δ_C
1	C	7.52 (1H, d, 1.9)	120.3
2	CH		112.7
3	C	147.5	
4	C	153.4	
5	CH	6.80 (1H, d, 8.0)	115.4
6	CH	7.63 (1H, dd, 8.0, 1.9)	125.6
7	C		166.7
4-OCH$_3$	CH$_3$	3.97 (3H, s)	56.3
1'	CH	4.56 (1H, d, 7.2)	98.3
2'	CH		73.4
3'	CH	3.39–3.62 (4H, m)	78.7
4'	CH		70.3
5'	CH		74.5
6'	CH$_2$	4.37 (1H, dd, 11.9, 2.0)	64.2

Figure 3: Selected 1H-1H COSY (—) correlations in HMBC spectrum (H → C) of 6.

3.4. HPLC-UV Analysis of the Main Phenolic Compounds in C. officinalis Leaves. A quantitative analysis of the main phenolic compounds found in C. officinalis leaves was performed using microcolumn HPLC-UV method which allowed separating 15 components (Figure 4). This method was developed previously for analysis of C. officinalis flowers [9].

According to the HPLC data, isoquercitrin—3.44 (“Indian Prince”)—5.34 mg g$^{-1}$ (“Green Heart Orange”, “Red Black Centered”) was the dominant compound, as well as 3-O-cafeoylquinic acid—6.48 (“Egypt Sun”)—13.25 mg g$^{-1}$ (“Flame Dance”) (Table 3). The total content of phenylpropanoids ranged from 2.58 mg g$^{-1}$ in “Touch of Red” to 20.17 mg g$^{-1}$ in “Flame Dance.” 3-O-cafeoylquinic acid was a major phenylpropanoid component for all species studied. Monocaffeoylquinic acids in all varieties predominated over dicaffeoylquinic acids. The concentration of caffeic acid did not exceed 0.29–1.14 mg g$^{-1}$. The total content of flavonoids varied from 6.11 mg g$^{-1}$ in “Flame Dance” to 15.74 mg g$^{-1}$ in “Touch of Red.”

The content of quercetin derivatives was higher than the content of derivatives ofisorhamnetin, ranging from 1.64 (“Green Heart Orange”) to 4.79-fold (“Radio”). It should be noted that isoquercitrin dominated in almost all species except “Geisha” and “Touch of Red” where quercetin-3-O-(6'-acetyl)-β-d-glycoside prevailed. Thyphaneoside in “Egypt Sun,” “Flame Dance,” “Indian Prince,” “Radio,” “Russian Size,” isorhamnetin-3-O-β-d-glucoside

The moiety of 6 has been detected previously in different compounds like glehlinosides from Glehnia littoralis (Euphorbiaceae) [27], 6'-O-vanilloylsucrose from Saccharum officinarum (Poaceae) [28], 6'-O-vanilloylicaroside B from Baccaurea ramiflora (Euphorbiaceae) [29], amburosides G from Amburana cearensis (Fabaceae) [30], saccharumosides from Acer saccharum (Aceraceae) [31], and 1-O-galloyl-6'-O-vanilloyl-β-d-glucopyranose from Alchornea trewioides (Euphorbiaceae) [32]. This is the first case where 6 has been isolated as a separate compound.
Figure 4: HPLC-UV chromatograms (270 nm) of ethanolic extracts from C. officinalis leaves. Varieties: (a)—“Touch of Red,” (b)—“Green Heart Orange,” (c)—“Russian Size,” (d)—“Indian Prince,” (e)—“Red Black Centered,” (f)—“Radio,” (g)—“Egypt Sun,” (h)—“Geisha,” (i)—“Flame Dance.” Compounds: 1—3-O-caffeoylquinic acid, 2—caffeic acid, 3—thyphaneoside, 4—isoquercitrin, 5—rutin, 6—quercetin-3-O-(6′-acetyl)-β-d-glycoside, 7—3,5-di-O-caffeoylquinic acid, 8—1,5-di-O-caffeoylquinic acid, 9—isorhamnetin-3-O-β-d-glucoside, 10—4,5-di-O-caffeoylquinic acid, and 11—isorhamnetin-3-O-(6′-acetyl)-β-d-glycoside.
Table 3: Content of phenolic compounds in nine varieties of *C. officinalis* leaves, mg g\(^{-1}\) from dry plant weight.

Compound	Variety	"Egypt Sun"	"Flame Dance"	"Geisha"	"Green Heart Orange"	"Indian Prince"	"Radio"	"Red Black Centered"	"Russian Size"	"Touch of Red"
Phenylpropanoids										
Caffeic acid		0.46	1.14	0.31	0.57	0.43	0.64	0.39	0.29	0.20
3-O-Caffeoylquinic acid		6.48	13.25	6.59	2.41	2.35	8.85	2.31	1.95	1.73
3,5-Di-O-caffeoylquinic acid		2.37	4.91	0.80	0.08	1.90	3.90	0.86	0.40	0.23
1,5-Di-O-caffeoylquinic acid		0.46	0.33	0.34	0.10	0.52	1.53	0.24	0.19	0.27
4,5-Di-O-caffeoylquinic acid		0.18	0.54	0.20	0.07	0.39	0.36	0.33	0.12	0.15
Total phenylpropanoids		**9.95**	**20.17**	**8.24**	**3.23**	**5.59**	**15.28**	**4.13**	**2.95**	**2.58**
Flavonoids										
Quercetin derivatives										
Isoquercitrin		3.93	2.73	4.32	5.34	3.44	5.02	5.34	4.59	5.14
Rutin		0.22	0.17	0.92	0.63	0.29	0.27	0.72	0.15	0.17
Quercetin-3-O-(6''-acetyl)-β-d-glucoside		2.50	1.68	4.36	3.14	2.67	4.25	4.30	3.03	6.85
Total quercetin derivatives		**6.65**	**4.58**	**9.60**	**9.11**	**6.40**	**9.54**	**10.36**	**7.77**	**12.16**
Isorhamnetin derivatives										
Thyphaneoside		0.78	0.74	1.01	1.08	0.92	0.97	1.37	2.46	0.73
Isorhamnetin-3-O-β-d-glucoside		0.63	0.44	0.71	2.41	0.88	0.22	2.15	0.36	1.04
Isorhamnetin-3-O-(6''-acetyl)-β-d-glucoside		0.62	0.35	1.21	2.08	0.81	0.80	1.64	0.32	1.81
Total isorhamnetin derivatives		**2.03**	**1.53**	**2.93**	**5.57**	**2.61**	**1.99**	**5.16**	**3.14**	**3.58**
Total flavonoids		**8.68**	**6.11**	**12.53**	**14.68**	**9.01**	**11.53**	**15.52**	**10.91**	**15.74**
Total identified		**18.63**	**26.28**	**20.77**	**17.91**	**14.60**	**26.81**	**19.65**	**13.86**	**18.32**
Quercetin/isorhamnetin ratio		3.28	2.99	3.28	1.64	2.45	4.79	2.01	2.48	3.40
Phenylpropanoid/flavonoid ratio		1.15	3.30	0.66	0.22	0.62	1.33	0.27	0.27	0.16
in “Green Heart Orange” and “Red Black Centered,” and isorhamnetin-3-O-(6′-acetyl)-β-D-glucopyranoside in “Geisha” and “Touch of Red” are all simple derivatives of isorhamnetin.

According to the data on the phenylpropanoids, flavonoid ratio, C. officinalis varieties studied can be divided into three groups:

1. varieties with a predominant content of flavonoids (value < 0.5)—“Touch of Red,” “Green Heart Orange,” “Red Black Centered” and “Russian Size”;

2. varieties with similar contents of phenylpropanoids and flavonoids (value 0.5–1.5)—“Radio,” “Egypt Sun,” “Geisha” and “Indian Prince”;

3. varieties with a predominance of phenylpropanoids (value > 1.5)—“Flame Dance.”

3.5. Amylase Inhibiting Activity of C. officinalis Phenolic Compounds. All substances isolated were tested for their amylase inhibiting activity by the microplate method. Compounds 7, 13, 17, and 21 showed significantly higher inhibitory activity at concentration ranging 1.02–2.64 μg mL⁻¹ comparing with the reference compound acarbose (9.54 μg mL⁻¹) (Table 4). It should be noted that concentrations of the mentioned compounds in C. officinalis leaves are insignificant; therefore, they cannot be considered as an active substances. Comparative analysis of the inhibitory activities of the dominant compounds showed that the actual antiamylase components in the crude extracts were 18 (isoquercitrin; 15.45 μg mL⁻¹), 22 (isorhamnetin-3-O-β-D-glucopyranoside; 23.41 μg mL⁻¹), 9 (3,5-di-O-caffeoylquinic acid; 25.63 μg mL⁻¹), and 19 (quercetin-3-O-(6′-acetyl)-β-D-glucopyranoside; 32.70 μg mL⁻¹).

It is known that the phenolic phytosubstances are the perspective natural compounds which exhibited antidiabetic activity [33]. Flavonoids and phenylpropanoids demonstrate a high inhibitory activity on amylase and glucosidase, the key enzymes of carbohydrates digestion process [34]. Some caffeoylquinic acids (chlorogenic acid, isochlorogenic acid) and derivatives of quercetin and isorhamnetin, such as rutin (quercetin-3-O-rutinoside) and narcissin (isorhamnetin-3-O-rutinoside), have been previously reported as inhibitors of glucosidase [35]. The results of our experiments seemed to agree with this finding, probably due to the presence of large amounts of phenolic compounds in C. officinalis leaves.

The present investigation is the first extended study of the phenolic composition from C. officinalis leaves. As a result, twenty-five compounds were isolated, of which sixteen had not previously been reported in this plant source. The presence of undiscovered benzoic acid glucosides early in the Calendula genus, one of which was novel (6′-O-vanillyl-β-D-glucopyranose), as well as the amylase inhibiting activity of the crude extract and individual compounds, illustrates the need for in-depth research even on very familiar species such as C. officinalis.

Table 4: Amylase inhibiting activity of individual phenolic compounds.

Compound	IC₅₀ (μg mL⁻¹)
1	>100
2	>100
3	62.46
4	66.52
5	73.69
6	79.18
7	2.53
8	65.42
9	25.63
10	37.15
11	26.65
12	>100
13	1.02
14	>100
15	>100
16	~100
17	1.79
18	15.45
19	32.70
20	89.85
21	2.64
22	23.41
23	~100
24	>100
25	>100
Acarbose	9.54

*Reference compounds.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors acknowledge the financial support provided by the Presidium of the Siberian Division of the Russian Academy of Science under the Program “New Medical Technology Centers.”

References

[1] K. A. Khalid and J. A. Teixeira da Silva, “Biology of Calendula officinalis Linn.: focus on pharmacology, biological activities and agronomic practices,” Medicinal and Aromatic Plant Science and Biotechnology, vol. 6, no. 1, pp. 12–27, 2012.

[2] H. Friedrich, “Untersuchungen über die Isorhamnetinglykoside aus den Blüten von Calendula officinalis L.,” Archiv der Pharmazie, vol. 295, no. 6, pp. 464–471, 1962.

[3] T. Ercetin, F. S. Senol, I. Erdogan Orhan, and G. Toker, “Comparative assessment of antioxidant and cholinesterase inhibitory properties of the marigold extracts from Calendula arvensis L. and Calendula officinalis L.,” Industrial Crops and Products, vol. 36, no. 1, pp. 203–208, 2012.
[4] E. Bakó, J. Deli, and G. Tóth, “HPLC study on the carotenoid composition of Calendula products,” Journal of Biochemical and Biophysical Methods, vol. 53, no. 1-3, pp. 241–250, 2002.

[5] G. Adler and Z. Kasprzyk, “Free sterols, sterol esters, glucosides, acylated glucosides and water-soluble complexes in Calendula officinalis,” Phytochemistry, vol. 14, no. 3, pp. 627–631, 1975.

[6] A. Sakizel, D. Ruszkowski, A. Grudniak et al., “Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis),” Planta Medica, vol. 74, no. 14, pp. 1709–1715, 2008.

[7] O. O. Okoh, A. P. Sadimenko, O. T. Asekun, and A. J. Afolayan, “The effects of drying on the chemical components of essential oils of Calendula officinalis L,” African Journal of Biotechnology, vol. 7, no. 10, pp. 1500–1502, 2008.

[8] N. T. Ulchenko, A. I. Glushenko, and K. S. Mukhamedova, “Lipsids of Calendula officinalis,” Chemistry of Natural Compounds, vol. 3, no. 3, pp. 272–274, 1998.

[9] D. N. Olennikov and N. I. Kashchenko, “New isorhamnetin glucosides and other phenolic compounds from Calendula officinalis,” Chemistry of Natural Compounds, vol. 49, no. 5, pp. 717–723, 2013.

[10] M. Yoshikawa, T. Murakami, A. Kishi, T. Kageura, and H. Matsuda, “Medicinal flowers. III. Marigold. (1): Hypoglycemic, gastric emptying inhibitory, and gastroprotective principles and new oleanane-type triterpene oligoglucosides, calendasapinosins A, B, C, and D, from Egyptian Calendula officinalis,” Chemical and Pharmaceutical Bulletin, vol. 49, no. 7, pp. 863–870, 2001.

[11] R. Rahbasa-Lhoret and J. L. Chiasson, “Alpha-glucosidase inhibitors,” in International Textbook of Diabetes Mellitus, R. A. DeFranzo, E. Ferrannini, H. Keen, and P. Zimmet, Eds., vol. 1, John Wiley, UK, 2004.

[12] D. N. Olennikov, A. V. Rohkn, and L. M. Tankhaeva, “Laminaceae carbohydrates. VI. Water-soluble polysaccharides from Lophanthus chinensis,” Chemistry of Natural Compounds, vol. 45, no. 3, pp. 300–303, 2009.

[13] D. N. Olennikov, S. V. Agafonova, A. V. Rohkin, T. A. Penzina, and G. B. Borovskii, “Brachial glucon from the fruiting bodies of Pipturus betulinus (Bull:Fr) Karst,” Applied Biochemistry and Microbiology, vol. 48, no. 1, pp. 65–70, 2012.

[14] K. Shetty, O. F. Curtis, R. E. Levin, R. Witkowski, and W. Ang, “Prevention of vitrification associated with in vitro shoot culture of oregano (Origanum vulgare) by Pseudomonas spp,” Journal of Plant Physiology, vol. 147, no. 3-4, pp. 447–451, 1995.

[15] N. K. Chirikova, D. N. Olennikov, and L. M. Tankhaeva, “Quantitative determination of flavonoid content in the aerial part of Bacalpa scullcap (Scutellaria baicalensis Georgi),” Russian Journal of Biogenic Organic Chemistry, vol. 36, no. 7, pp. 915–922, 2010.

[16] D. N. Olennikov and L. M. Tankhaeva, “Biologically active substances from Calacia hustata leaves. 5. Coumarins and triterpenes,” Chemistry of Natural Compounds, vol. 41, no. 5, pp. 600–601, 2005.

[17] D. N. Olennikov, L. M. Tankhaeva, and S. V. Agafonovna, “Antioxidant components of Laetitos sulphureus (Bull.: Fr.) Murr. fruit bodies,” Applied Biochemistry and Microbiology, vol. 47, no. 4, pp. 419–425, 2011.

[18] D. N. Olennikov, L. M. Tankhaeva, A. V. Stolnikova, and E. V. Petrov, “Phenylpropanoids and polysaccharides from Plantago depressa and P. media growing in Buryatia,” Chemistry of Natural Compounds, vol. 47, no. 2, pp. 165–169, 2011.

[19] T. Satake, K. Kamiya, Y. An, T. Oishi, and J. Yamamoto, “The anti-thrombotic active constituents from Centella asiatica,” Biological and Pharmaceutical Bulletin, vol. 30, no. 5, pp. 935–940, 2007.

[20] V. M. Malikov and A. I. Saudkhodzhaev, “Coumarins: plants, structures, properties,” Chemistry of Natural Compounds, vol. 34, no. 5, pp. 517–548, 1998.

[21] D. N. Olennikov and V. V. Partilkhayev, “Isolation and densitometric HPTLC analysis of rutin, nicositoflorin, and isouceritrin in Caragana spinosa shoots,” Journal of Planar Chromatography, vol. 25, no. 1, pp. 30–35, 2012.

[22] Y. B. Wang, J. X. Pu, H. Y. Ren et al., “New acetylated flavonol glycosides from Knoxia corymbosa,” Chinese Chemical Letters, vol. 14, no. 12, pp. 1268–1270, 2003.

[23] Q. Du, Y. Xu, L. Li, Y. Zhao, G. Jerz, and P. Winterhalter, “Antioxidant constituents in the fruits of Luffa cylindrica (L.) Roem,” Journal of Agricultural and Food Chemistry, vol. 54, no. 12, pp. 4186–4190, 2006.

[24] D. N. Olennikov, I. N. Zilfikarov, and S. E. Khodakova, “Phenolic compounds from Serenoa repens fruit,” Chemistry of Natural Compounds, vol. 49, no. 3, pp. 526–529, 2013.

[25] J. W. Choi, K. H. Kim, I. K. Lee, S. U. Choi, and K. R. Lee, “Phytochemical constituents of Anomum xantidi», Natural Product Sciences, vol. 15, no. 1, pp. 44–49, 2009.

[26] E. Vidal-Ollivier, R. Elias, F. Faure et al., “Flavonol glycosides from Calendula officinalis flowers,” Planta Medica, vol. 59, no. 1, pp. 73–74, 1989.

[27] Z. Yuan, Y. Tezuka, W. Fan, S. Kadota, and X. Li, “ Constituents of the underground parts of Glenia littoralis,” Chemical and Pharmaceutical Bulletin, vol. 50, no. 1, pp. 73–77, 2002.

[28] K. Takara, D. Matsu, K. Wada, T. Ichiba, and Y. Nakasone, “New antioxidative phenolic glycosides isolated from Kokuto non-centrifuged cane sugar,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 1, pp. 29–35, 2002.

[29] X.-W. Yang, H.-P. He, Y.-L. Ma et al., “Three new vanilloid derivatives from the stems of baccaraea ramiflora,” Planta Medica, vol. 76, no. 1, pp. 88–90, 2010.

[30] K. M. Canuto, M. A. S. Lima, and E. R. Silveira, “Amburosides c-h and 6-o-protocatechuyl coumarin from Amburana cearen­sis,” Journal of the Brazilian Chemical Society, vol. 21, no. 9, pp. 1746–1753, 2010.

[31] T. Yuan, C. Wan, A. González-Sarrias, V. Kandhi, N. B. Cech, and N. P. Seeram, “Phenolic glycosides from sugar maple (Acer saccharum) bark,” Journal of Natural Products, vol. 74, no. 11, pp. 2472–2476, 2011.

[32] R. D. Quin, W. Cheng, Q. Y. Zhang, and H. Liang, “Phenolic acid derivatives from Alchornea trewioides,” Acta Pharmaceutica Sinica, vol. 47, no. 7, pp. 926–929, 2012.

[33] J. Xiao, X. Ni, G. Kai, and X. Chen, “A review on structure-activity relationship of dietary polyphenols inhibiting α-amylase,” Critical Reviews in Food Science and Nutrition, vol. 53, no. 5, pp. 497–506, 2013.

[34] Z. Bahadoran, P. Mirmiran, and F. Azizi, “Dietary polyphenols as potential nutraceuticals in management of diabetes: a review,” Journal of Diabetes and Metabolic Disorders, vol. 12, no. 43, 2013.

[35] P. M. de Sales, P. M. de Souza, L. A. Simeoni, P. D. O. Magalhães, and D. Silveira, “α-amylase inhibitors: a review of raw material and isolated compounds from plant source,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 1, pp. 141–183, 2012.