RUSCHEWEYH'S UNIVALENCE CRITERION AND QUASICONFORMAL EXTENSIONS

Ikkei Hotta

Abstract

Ruscheweyh extended the work of Becker and Ahlfors on sufficient conditions for a normalized analytic function on the unit disk to be univalent there. In this paper we refine the result to a quasiconformal extension criterion with the help of Becker's method. As an application, a positive answer is given to an open problem proposed by Ruscheweyh.

1. Introduction

Throughout the paper, D denotes the unit disk $\{ |z| < 1 \}$ in the complex plane \mathbb{C} and D^* the exterior domain of D in the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{ \infty \}$.

Let \mathcal{A} be a family of normalized analytic functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ on D. We say that a sense-preserving homeomorphism f of a plane domain $G \subset \mathbb{C}$ is k-quasiconformal if f is absolutely continuous on almost all lines parallel to the coordinate axes and $|f_z| \leq k |f_z|$, almost everywhere G, where $f_z = \partial f / \partial z$ and k is a constant with $0 < k < 1$.

Ahlfors [1] has shown that the following condition is sufficient for quasiconformal extensibility of univalent functions as an extension of Becker's univalence condition [2] (see also [7], p. 175);

Theorem A ([1], [3]). Let $f \in \mathcal{A}$. If there exists a k, $0 \leq k < 1$, such that for a constant $c \in \mathbb{C}$ satisfying $|c| \leq k$ and all $z \in D$

\[
|cz|^2 + (1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \leq k
\]

then f has a k-quasiconformal extension to \mathbb{C}.

The limiting case $k \to 1$ in the above theorem ensures univalence of f in D. Ruscheweyh [8] extended this univalence condition in the following way;

2000 Mathematics Subject Classification. Primary 30C62, Secondary 30C45.

Key words and phrases. Löwner(Loewner) chain, quasiconformal mapping, univalent function.

Received November 19, 2009.
Theorem B ([8]). Let \(s = a + ib, \ a > 0, \ b \in \mathbb{R} \) and \(f \in \mathcal{A} \). Assume that for a constant \(c \in \mathbb{C} \) and all \(z \in \mathbb{D} \)

\[
|cz|^2 + s - a(1 - |z|^2)\left\{ s\left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - s)\frac{zf'(z)}{f(z)} \right\} \leq M
\]

with

\[
M = \begin{cases}
a|s| + (a - 1)|s + c|, & \text{if } 0 < a \leq 1, \\
|s|, & \text{if } 1 < a,
\end{cases}
\]

then \(f \) is univalent in \(\mathbb{D} \).

The case \(s = 1 \) with \(c \) replaced by \(-1 - c\) is the special case of Theorem A.

The purpose of this paper is to refine Ruscheweyh’s univalence condition to a quasiconformal extension criterion which includes Theorem A;

Theorem 1. Let \(s = a + ib, \ a > 0, \ b \in \mathbb{R} \), \(k \in [0, 1) \) and \(f \in \mathcal{A} \). Assume that

\[
|cz|^2 + s - a(1 - |z|^2)\left\{ s\left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - s)\frac{zf'(z)}{f(z)} \right\} \leq M
\]

with

\[
M = \begin{cases}
ak|s| + (a - 1)|s + c|, & \text{if } 0 < a \leq 1, \\
k|s|, & \text{if } 1 < a,
\end{cases}
\]

then \(f \) has an \(l \)-quasiconformal extension to \(\mathbb{C} \), where

\[
l = \frac{2ka + (1 - k^2)|b|}{(1 + k^2)a + (1 - k^2)|s|} < 1.
\]

Remark 1.1. If \(f \in \mathcal{A} \), then it is easy to verify that there exists a sequence \(\{z_n\} \subset \mathbb{D} \) with \(|z_n| \to 1 \) such that for each \(s \in \{z \in \mathbb{C} : \text{Re } z > 0\} \)

\[
\sup_n \left| s\left(1 + \frac{z_n f''(z_n)}{f'(z_n)} \right) + (1 - s)\frac{z_n f'(z_n)}{f(z_n)} \right| < \infty
\]

which shows that (3) implies the inequality

\[
|c + s| \leq M.
\]

This inequality is needed for proving that \(f(z) \) has no zeros in \(0 < |z| < 1 \) (see Lemma 7). In [8], it is mentioned that (3) implies \(f(z) \neq 0, \ 0 < |z| < 1 \), without proof. The part of (5) can be found in [8].

Remark 1.2. A similar argument to Remark 1.1 is also valid for Theorem A. It follows that the assumption \(|c| \leq k \) is embedded in the inequality (1).
The next application follows from Theorem 1. Let $a > 0$ and $b \in \mathbb{R}$. It follows from a result of Sheil-Small [9, Theorem 2] that

$$\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} + (a + i\beta - 1) \frac{zf'(z)}{f(z)} \right\} > 0 \quad (z \in \mathbb{D})$$

is sufficient for $f \in \mathcal{A}$ to be a Bazilevič function of type (α, β) (see also [5]). Here, a function $f \in \mathcal{A}$ is called Bazilevič of type (α, β) if

$$f(z) = \left[(\alpha + i\beta) \int_0^z g(\zeta) h(\zeta) e^{i\beta - 1} d\zeta \right]^{1/(\alpha + i\beta)}$$

for a starlike univalent function $g \in \mathcal{A}$ and an analytic function h with $h(0) = 1$ satisfying $\Re(e^{ih}) > 0$ in \mathbb{D} for some $\lambda \in \mathbb{R}$. Together with this fact, the next theorem follows;

Theorem 2. Let $\alpha > 0$, $\beta \in \mathbb{R}$ and $k \in [0, 1)$. If $f \in \mathcal{A}$ satisfies

$$\left| 1 + \frac{zf''(z)}{f'(z)} + (a + i\beta - 1) \frac{zf'(z)}{f(z)} - \frac{\alpha^2 + \beta^2}{\alpha} \right| \leq M$$

for all $z \in \mathbb{D}$ with

$$M = \begin{cases} k & \text{if } \alpha < \alpha^2 + \beta^2, \\ k(\alpha^2 + \beta^2) \alpha & \text{if } \alpha^2 + \beta^2 \leq \alpha, \end{cases}$$

then f is a Bazilevič function of type (α, β) and can be extended to a \tilde{k}-quasiconformal automorphism of \mathbb{C}, where

$$\tilde{k} = \frac{2k\alpha + (1 - k^2) |\beta|}{(1 + k^2) \alpha + (1 - k^2) \sqrt{\alpha^2 + \beta^2}}.$$

Next, we shall discuss quasiconformal extensibility of functions $g(z) = z + \frac{d}{z} + \cdots$ analytic in \mathbb{D}^*.

Theorem 3. Let $s = a + ib$, $a \geq 1$, $b \in \mathbb{R}$ and $k \in [0, 1)$ which satisfies $|b/s| \leq k$. Let $g(\zeta) = \zeta + \frac{d}{\zeta} + \cdots$ be analytic in \mathbb{D}^* and fulfill

$$\left| ib + (1 - |\zeta|^2)a \left(1 - \frac{\zeta g'(\zeta)}{g(\zeta)} \right) - s \frac{\zeta g''(\zeta)}{g'(\zeta)} \right| \leq ak|s| - |b|(a - 1)$$

The author would like to thank Professor Yong Chan Kim for this remark.
for all $\zeta \in D^*$. Then g can be extended to an l-quasiconformal automorphism of C, where

$$l = \frac{2ka + (1 - k^2)|b|}{(1 + k^2)a + (1 - k^2)|s|}.$$

The case $k \to 1$ corresponds to a univalence criterion which is due to Ruscheweyh [8].

Theorem 3 yields the following corollary which gives a positive answer to an open problem proposed by Ruscheweyh [8], i.e., whether a function $g(\zeta) = \zeta + d/\zeta + \cdots$ with $(|\zeta|^2 - 1)[1 + (\zeta f''(\zeta)/f'(\zeta)) - (\zeta f''(\zeta)/f(\zeta))] \leq k$ for all $\zeta \in D^*$ admits a quasiconformal extension to C;

Corollary 4. Let $g(\zeta) = \zeta + d/\zeta + \cdots$ be analytic in D^*. If there exists $k \in [0, 1)$ such that

$$\left(\frac{|\zeta|^2}{|\zeta|^2 - 1}\right) \left|1 + \frac{\zeta g''(\zeta)}{g'(\zeta)} - \frac{\zeta g'(\zeta)}{g(\zeta)}\right| \leq k$$

for all $\zeta \in D^*$, then g can be extended to a k-quasiconformal automorphism of $C - \{0\}$.

From the above corollary we have another extension criterion for analytic functions on D;

Corollary 5. Let $f \in \mathcal{A}$ with $f''(0) = 0$. If there exists $k \in [0, 1)$ such that

$$\left(1 - |z|^2\right) \left|1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right| \leq k$$

for all $z \in D$, then f can be extended to a k-quasiconformal automorphism of C.

2. Preliminaries

Our investigations are based on the theory of Löwner chains. A function $f_t(z) = f(z, t) = a_1(t)z + \sum_{n=2}^{\infty} a_n(t)z^n$, $a_1(t) \neq 0$, defined on $D \times [0, \infty)$ is called a **Löwner chain** if $f_t(z)$ is holomorphic and univalent in D for each $t \in [0, \infty)$ and satisfies $f_t(D) \subseteq f_s(D)$ and $f(0, s) = f(0, t)$ for $0 \leq s \leq t < \infty$, and if $a_1(t)$ is locally absolutely continuous in $t \in [0, \infty)$ with $\lim_{t \to \infty} |a_1(t)| = \infty$. Then $f(z, t)$ is absolutely continuous in $t \in [0, \infty)$ for each $z \in D$ and satisfies the **Löwner differential equation**

$$\frac{\partial f}{\partial t}(z, t) = h(z, t)zf'(z, t)$$

for $z \in D$ and almost every $t \in [0, \infty)$. Here, $\frac{\partial f}{\partial t}(z, t) = \partial f(z, t)/\partial t$, $f''(z, t) = \partial^2 f(z, t)/\partial z^2$ and $h(z, t)$ is a function measurable on $t \in [0, \infty)$, holomorphic in $|z| < 1$ and $\text{Re} h(z, t) > 0$ ([6]).
An interesting method connecting the theory of quasiconformal extensions with Löwner chains was obtained by Becker;

Theorem C ([2], see also [4]). Suppose that \(f(z, t) \) is a Löwner chain for which \(h(z, t) \) of (9) satisfies the condition
\[
\frac{|h(z, t) - 1|}{|h(z, t) + 1|} \leq k
\]
for all \(z \in \mathbb{D} \) and almost all \(t \in [0, \infty) \). Then \(f_t(z) \) admits a continuous extension to \(\bar{\mathbb{D}} \) for each \(t \geq 0 \) and the map defined by
\[
f(r e^{i\theta}) = \begin{cases}
 f(re^{i\theta}), & \text{if } r < 1, \\
 f(e^{i\theta}, \log r), & \text{if } r \geq 1,
\end{cases}
\]
is a \(k \)-quasiconformal extension of \(f_0 \) to \(\mathbb{C} \).

3. Proof of Theorem 1

The proof is divided into two parts. The first part of the proof is based on [8].

(i) First we assume that \(f(z)/z \neq 0 \) for all \(z \in \mathbb{D} \). Then we can define
\[
f(z, t) = f(e^{-st}z) \left\{ 1 - a \frac{e^{2it}}{c} \frac{e^{-st}zf'(e^{-st}z)}{f(e^{-st}z)} \right\}^s
\]
and let
\[
F(z, t) = f(z, t/|z|).
\]
A straightforward calculation shows
\[
h(z, t) = \frac{F(z, t)}{ZF'(z, t)} = s \frac{1 + P(e^{-st/|z|}z, t/|z|)}{|z|} \frac{1 - P(e^{-st/|z|}z, t/|z|)}{1 - P(e^{-st/|z|}z, t/|z|)},
\]
where
\[
P(z, t) = \frac{c}{a} e^{-2it} + \frac{1 + (e^{-2it} - 1)H_s(z)}{1 + (e^{-2it} - 1)H_s(z)}
\]
and
\[
H_s(z) = s \left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - s) \frac{zf'(z)}{f(z)}.
\]
Since \(h(z, t) \) is holomorphic in \(z \in \mathbb{D} \) and measurable on \(t \in [0, \infty) \), applying Theorem C to (11), we see that the condition
\[
\frac{|s(1 + P(e^{-st/|z|}z, t/|z|))|}{|s(1 - P(e^{-st/|z|}z, t/|z|))|} \leq l
\]
for all \(z \in \mathbb{D} \) and almost all \(t \in [0, \infty) \), applying Theorem C to (11), we see that the condition
\[
\frac{|s(1 + P(e^{-st/|z|}z, t/|z|))|}{|s(1 - P(e^{-st/|z|}z, t/|z|))|} \leq l
\]
implies \(l \)-quasiconformal extensibility of \(f(z) \). This is equivalent to

\[
(12) \quad \left| P + \frac{(1 + l^2)b}{(1 + l^2)a + (1 - l^2)|s|} \right| \leq \frac{2l|s|}{(1 + l^2)a + (1 - l^2)|s|}.
\]

Here, we shall prove the following Lemma;

Lemma 6. Under the assumption of Theorem 1, we have

\[
(13) \quad |aP(e^{-st/|s|}z, t/|s|) + ib| < k|s|
\]

for \(z \in D \) and \(t \in [0, \infty) \).

Proof. We have

\[
|aP + ib| \leq m_1 + m_2
\]

by triangle inequality, where

\[
m_1 = (1 - e^{-2t/|s|}) \left| \frac{ce^{-2at/|s|} + s}{1 - e^{-2at/|s|}} - aH_s(e^{-st/|s|}z) \right|
\]

and

\[
m_2 = \left| (ce^{-2at/|s|} + s) \frac{1 - e^{-2t/|s|}}{1 - e^{-2at/|s|}} - (ce^{-2t/|s|} + s) \right|.
\]

Then it is enough to show that \(m_1 + m_2 < k|s| \). (3) implies

\[
\left| \frac{c|e^{st/|s|}z|^2 + s}{1 - |e^{st/|s|}z|^2} - aH_s(e^{-st/|s|}z) \right| \leq \frac{M}{1 - |e^{st/|s|}z|^2} \leq \frac{M}{1 - e^{-2at/|s|}}
\]

for \(z \in D \). Let \(q(t) = (1 - e^{-2t/|s|})/(1 - e^{-2at/|s|}) \). Applying the maximum modulus principle to the function

\[
\frac{ce^{-2at/|s|} + s}{1 - e^{-2at/|s|}} - aH_s(e^{-st/|s|}z)
\]

we have

\[
m_1 \leq q(t)M.
\]

On the other hand

\[
m_2 \leq |c + s| |1 - q(t)|.
\]

Since \(1 \leq q(t) < 1/a \) if \(0 < a \leq 1 \) and \(1/a < q(t) \leq 1 \) if \(1 < a \) for all \(t \in [0, \infty) \), we conclude that \(m_1 + m_2 < k|s| \) which is our desired inequality.

We now let \(\Delta \) and \(\Delta' \) be disks which are defined by replacing \(P \) in (12) and (13) to a complex variable \(w \). It remains to find the smallest \(l \) so that \(\Delta' \) is
contained by Δ. Note that if $k = l = 1$ then these two disks coincide. The following condition is necessary and sufficient for $\Delta' \subset \Delta$;

\[
(14) \quad \frac{(1 + l^2)b}{(1 + l^2)a + (1 - l^2)|s|} - \frac{b}{a} \leq \frac{2l|s|}{(1 + l^2)a + (1 - l^2)|s|} - \frac{k|s|}{a}.
\]

Then we conclude

\[
l \leq \frac{2ka + (1 - k^2)|b|}{(1 + k^2)a + (1 - k^2)\sqrt{a^2 + b^2}}.
\]

which is suitable for our purpose.

(ii) In order to eliminate the additional assumption that $f(z)/z \neq 0$ in D, we need a sort of stability of the condition (3);

Lemma 7. If $f \in A$ satisfies the assumption of Theorem 1, then so does $f_r(z) = \frac{1}{r} f(rz), \ r \in (0, 1)$.

Proof. It follows from the assumption that $aH_s(rz)$ is contained in the disk

\[
\Delta = \left\{ w \in \mathbb{C} : \left| w - \frac{cr^2|z|^2 + s}{1 - r^2|z|^2} \right| \leq \frac{M}{1 - r^2|z|^2} \right\}.
\]

We want to deduce that $aH_s(rz)$ lies in the disk

\[
\Delta' = \left\{ w \in \mathbb{C} : \left| w - \frac{c|z|^2 + s}{1 - |z|^2} \right| \leq \frac{M}{1 - |z|^2} \right\}.
\]

Therefore it is enough to see that $\Delta \subset \Delta'$, that is,

\[
(15) \quad \left| \frac{c|z|^2 + s}{1 - |z|^2} - \frac{cr^2|z|^2 + s}{1 - r^2|z|^2} \right| \leq \frac{M}{1 - |z|^2} - \frac{M}{1 - r^2|z|^2}.
\]

In view of the identity

\[
\frac{|z|^2}{1 - |z|^2} - \frac{r^2|z|^2}{1 - r^2|z|^2} = \frac{1}{1 - |z|^2} - \frac{1}{1 - r^2|z|^2},
\]

the inequality (15) is equivalent to (5).

Now we shall show that the condition $f(z)/z \neq 0$ in D follows from the assumption of Theorem 1. Suppose, to the contrary, that $f(z_0) = 0$ for some $0 < |z_0| < 1$. We may assume that $f(z) \neq 0$ for $0 < |z| < |z_0|$. Then by Lemma 7 we can apply Theorem 1 to the function $f_{r_0}(z) = f(r_0z)/r_0, \ r_0 = |z_0|$ to conclude that f_{r_0} has a quasiconformal extension to C. In particular, f_{r_0} is injective on D. This, however, contradicts the relation $f_{r_0}(z_0/r_0) = f_{r_0}(0) = 0$. \qed
Remark 3.1. We can replace $|s|$ in (10) to any positive real value and continue our argument. However, it will be found that $|s|$ gives the smallest l by calculations.

Remark 3.2. We have $l \geq k$, where $l = k$ if and only if $b = 0$. Indeed, let $l = l(k)$. Then we have $l'(k) > 0$ and $l''(k) \leq 0$ which imply $l \geq k$. If we suppose $l = k \neq 0$, then the right-hand side of (14) is greater than or equal to 0 only if $b = 0$. In the case $l = k = 0$ we also have $b = 0$ by (14). It easily follows from (4) that $l = k$ if $b = 0$.

4. Proof of Theorem 2

It is easy to see from (6) that f is a Bazilevič function of type (α, β) under our assumption since M is always less than or equal to $(\alpha^2 + \beta^2)/\alpha$.

Let us now prove quasiconformal extensibility of f. Setting $1/s = z + \frac{1}{a}$ which implies $a = \text{Re} \ s = \frac{z}{(\alpha^2 + \beta^2)}$ and $b = \text{Im} \ s = -\frac{\beta}{(\alpha^2 + \beta^2)}$, (7) turns to

$$\left| 1 + \frac{zf''(z)}{f'(z)} + \left(\frac{1}{s} - 1 \right) \frac{zf'(z)}{f(z)} - \frac{1}{a} \right| \leq \begin{cases} 0 < a < 1, \\ k/a, & 1 \leq a. \end{cases}$$

Therefore, Theorem 2 follows from Theorem 1 with $c = -s$. \qed

5. Proof of Theorem 3

First let $s \neq 1$. In that case we may assume $g(\zeta) \neq 0$ for all $\zeta \in \mathbb{D}^*$ because of a similar discussion of the proof of Theorem 1;

Lemma 8. Let $g(\zeta) = \zeta + \frac{d}{\zeta} + \cdots$ be analytic in \mathbb{D}^*. If g satisfies the same assumption of Theorem 3, then so does $g_R(\zeta) = \frac{1}{R} f(R \zeta)$, $R > 1$.

Proof. We need to prove

$$\left| \frac{ib}{|\zeta|^2 - 1} - a G_s(R\zeta) \right| \leq \frac{ak|s| - |b|(a - 1)}{|\zeta|^2 - 1}$$

by using

$$\left| \frac{ib}{R^2|\zeta|^2 - 1} - a G_s(R\zeta) \right| \leq \frac{ak|s| - |b|(a - 1)}{R^2|\zeta|^2 - 1},$$

where

$$G_s(\zeta) = (1 - s) \left(\frac{\zeta g'(\zeta)}{g(\zeta)} - 1 \right) + s \frac{\zeta g''(\zeta)}{g'(\zeta)}.$$
In a similar way to the proof of Lemma 7, it suffices to see that
\[
\left| \frac{ib}{|\zeta|^2 - 1} - \frac{ib}{R^2|\zeta|^2 - 1} \right| \leq \frac{ak|s| - |b|(a - 1)}{|\zeta|^2 - 1} - \frac{ak|s| - |b|(a - 1)}{R^2|\zeta|^2 - 1}.
\]
This is equivalent to \(|b| \leq k|s|\). \(\square\)

Then we let
\[
f(1/\zeta, t) = \frac{1}{g(e^{st}\zeta)} \left\{ 1 - (1 - e^{-2t})e^{st}\zeta \frac{g'(e^{st}\zeta)}{g(e^{st}\zeta)} \right\}^{-\delta}
\]
and
\[
F(1/\zeta, t) = f(1/\zeta, t/|s|).
\]
Since
\[
h(1/\zeta, t) = \frac{\dot{F}(1/\zeta, t)}{(1/\zeta)F(1/\zeta, t)} = \frac{s}{|s|} \cdot \frac{1 + P(e^{st/|s|}\zeta, t/|s|)}{1 - P(e^{st/|s|}\zeta, t/|s|)}
\]
where
\[
P(\zeta, t) = (e^{2t/|s|} - 1)G_{s}(\zeta),
\]
it is sufficient to see that
\[
(16) \quad |aP(e^{st/|s|}\zeta, t/|s|) + ib| < k|s|
\]
for all \(\zeta \in D^*\) and \(t \in [0, \infty)\) under the assumption of the theorem. By triangle inequality we have
\[
|aP + ib| \leq \left| \frac{1 - e^{2t/|s|}}{1 - e^{2at/|s|}} (ib + (1 - e^{2at/|s|})aG_{s}(e^{st/|s|}\zeta)) \right| + \left| ib \left(\frac{1 - e^{2t/|s|}}{1 - e^{2at/|s|}} \right) \right|
\]
for \(\zeta \in D^*\) and \(t \in [0, \infty)\). Following the lines of the proof of Lemma 6, one can obtain that (8) implies (16). Therefore, a similar argument of the proof of Theorem 1 implies our assertion. The case \(s = 1\) follows from a theorem of Becker [2]. \(\square\)

6. Proof of Corollary 4 and 5

Proof of Corollary 4. Let \(R > 1\) be an arbitrary but fixed number. We would like to show that \(g_{R}(\zeta) = g(R\zeta)/R\) can be extended to a \(k\)-quasiconformal mapping of \(\hat{C} - \{0\}\). Since \(g(\zeta) \neq 0\) in \(\zeta \in D^*\) from the assumption, there exists a certain constant \(A\) such that
\[
\left| |\zeta|^2 - 1 \right| \left| 1 - \frac{\zeta g'_{R}(\zeta)}{g_{R}(\zeta)} \right| \leq A < \infty
\]
for all $\zeta \in \overline{D}$. We also have
\[
1 - \frac{\zeta g''_R(\zeta)}{g'_R(\zeta)} + \frac{\zeta g'_R(\zeta)}{g_R(\zeta)} \leq \frac{k}{|\zeta R|^2 - 1}
\]
for $\zeta \in D^*$. Thus we obtain with $s = R^2 A/k(R^2 - 1)$
\[
(|\zeta|^2 - 1) \left| \frac{1}{s} \left(1 - \frac{\zeta g_R(\zeta)}{g_R(\zeta)} \right) - 1 - \frac{\zeta g''_R(\zeta)}{g'_R(\zeta)} + \frac{\zeta g'_R(\zeta)}{g_R(\zeta)} \right| \leq \frac{A}{s} + k \frac{|\zeta|^2 - 1}{|\zeta R|^2 - 1} \leq k
\]
which implies quasiconformal extensibility of g_R by Theorem 3. A limiting procedure proves Corollary 4.

Proof of Corollary 5. Note that the function $1 + (zf''(z)/f'(z)) - (zf'(z)/f(z))$ is analytic in D and has a zero of order 2 at the origin by the condition $f''(0) = 0$. Thus, we obtain from the assumption that
\[
\frac{1}{|z|^2} \left(1 - |z|^2\right) \left| 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right| \leq k
\]
by the maximum modulus principle. Let $g(\zeta)$ be a function defined by
\[
g(\zeta) = \frac{1}{f(z)}
\]
where $\zeta = 1/z$. Then g is analytic in D^* and has the form $g(\zeta) = \zeta + d/\zeta + \cdots$. From the relations
\[
\frac{zf'(z)}{f(z)} = \frac{\zeta g'(\zeta)}{g(\zeta)}
\]
and
\[
1 + \frac{zf''(z)}{f'(z)} = -1 - \frac{\zeta g''(\zeta)}{g'(\zeta)} + 2 \frac{\zeta g'(\zeta)}{g(\zeta)}
\]
we can deduce our assertion by applying Corollary 4.

Acknowledgement. The author expresses his deep gratitude to Professor Toshiyuki Sugawa for many helpful discussions and his continuous encouragement during this work.

REFERENCES

[1] L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Discontinuous groups and Riemann surfaces 79, Princeton Univ. Press, 1974, 23–29.
[2] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23–43.
[3] J. Becker, Über die Lösungsstruktur einer Differentialgleichung in der konformen Abbildung, J. Reine Angew. Math. 285 (1976), 66–74.

[4] J. Becker, Conformal mappings with quasiconformal extensions, Aspects of contemporary complex analysis, Academic Press, London, 1980, 37–77.

[5] Y. C. Kim and T. Sugawa, A note on Bazilevič functions, Taiwanese J. Math. 13 (2009), 1489–1495, MR MR2554472.

[6] Ch. Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159–173.

[7] Ch. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

[8] S. Ruscheweyh, An extension of Becker's univalence condition, Math. Ann. 220 (1976), 285–290.

[9] T. Sheil-Small, On Bazilevič functions, Quart. J. Math. Oxford Ser. (2) 23 (1972), 135–142.

Ikkei Hotta
Division of Mathematics
Graduate School of Information Sciences
Tohoku University
6-3-09 Aramaki-Aza-Aoba
Aoba-ku, Sendai 980-8579
Japan
E-mail: ikkeihotta@gmail.com