First wave COVID-19 pandemic in Senegal: Epidemiological and clinical characteristics

Maryam Diarra1,*, Aliou Barry1, Ndongo Dia2, Mamadou Diop1, Ibrahima Sonko3, Samba Sagne1, Fatoumata Diene Sarr1, Cheikh Talla1, Adama Tall1, Joseph Faye1, Boly Diop4, Cheikh Tidiane Diagne5, Aboubacry Gaye1, Amadou Diallo6, Rose Mbaye7, Mamadou Cisse3, Fabien Taieb1, Oumar Faye8, Ndeye Aissatou Lakhe6, Ba Papa Samba7, Khadiata Diallo4, Ndye Maquette Fall6, Aboubakar Sadikh Badiane6, Louise Fortes8, Moustapha Diop7, Daouda Thioub6, Alioune Badara Ly3, Ousmane Faye2, Moussa Seydi6, Abdoulaye Bousso3, Amadou A. Sall2, Cheikh Loucoubar1, Senegalese District Medical Officers

1 Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal, 2 Virology Department, Institut Pasteur de Dakar, Dakar, Senegal, 3 Centre des Opérations d’Urgence Sanitaire (COUS), Ministry of Health, Dakar, Senegal, 4 Division Surveillance Epidémio-logique, Direction de la Prévention, Ministry of Health, Dakar, Senegal, 5 Diatropix Unit, Institut Pasteur de Dakar, Dakar, Senegal, 6 Service des Maladies Infectieuses, Fann Hospital, Dakar, Senegal, 7 Hospital Militar Principal, Dakar, Senegal, 8 Hospital Dalal Jam, Dakar, Senegal

¶ Membership of the Senegalese District Medical Officers group is provided in Supporting Information

* maryam.diarra@pasteur.sn

Abstract

Background

The novel coronavirus disease 2019 (COVID-19) pandemic has spread from China to the rest of the world. Africa seems less impacted with lower number of cases and deaths than other continents. Senegal recorded its first case on March 2, 2020. We present here data collected from March 2 to October 31, 2020 in Senegal.

Methods

Socio-demographic, epidemiological, clinical and virological information were collected on suspected cases. To determine factors associated with diagnosed infection, symptomatic disease and death, multivariable binary logistic regression and log binomial models were used. Epidemiological parameters such as the reproduction number and growth rate were estimated.

Results

67,608 suspected cases were tested by the IPD laboratories (13,031 positive and 54,577 negative). All age categories were associated with SARS-CoV-2 infection, but also patients having diabetes or hypertension or other cardiovascular diseases. With diagnosed infection, patients over 65 years and those with hypertension and cardiovascular disease and diabetes were highly associated with death. Patients with co-morbidities were associated with symptomatic disease, but only the under 15 years were not associated with. Among infected, 27.67% were asymptomatic (40.9% when contacts were systematically tested; 12.11% when only symptomatic or high-risk contacts were tested). Less than 15 years-old
were mostly asymptomatic (63.2%). Dakar accounted for 81.4% of confirmed cases. The estimated mean serial interval was 5.57 (± 5.14) days. The average reproduction number was estimated at 1.161 (95%CI: 1.159–1.162), the growth rate was 0.031 (95%CI: 0.028–0.034) per day.

Conclusions
Our findings indicated that factors associated with symptomatic COVID-19 and death are advanced age (over 65 years-old) and comorbidities such as diabetes and hypertension and cardiovascular disease.

Introduction
Since December 31, 2019, the world has been affected by an unprecedented Coronavirus disease (COVID-19) pandemic. As of January 30, 2020, the World Health Organization (WHO) declared the pandemic a public health emergency of international concern [1]. Transmission of COVID-19 is known to mostly occur through direct contact with infected individuals or contaminated objects [2]. COVID-19 can also be spread by close contact with symptomatic patients via airborne microdroplets [3]. For more than 2 years, the COVID-19 pandemic has been ongoing and quickly spreading worldwide. As of February 15, 2022, and based on the WHO COVID-19 Dashboard, 410,565,868 confirmed cases and 5,810,880 deaths, with a global death-to-case ratio of 1.41% were reported worldwide [4]. Compared to the rest of the world, Africa remains the continent least affected with 11,041,815 confirmed cases and 244,440 deaths (death-to-case ratio of 2.21%) [5].

Among African countries, South Africa is the most affected with 3,641,811 confirmed cases and 96,993 deaths [5]. Senegal reported its first case on March 2, 2020; the 4 first cases recorded were imported from France and Italy [6]. Since then, the epidemic continues spreading across the country. As of February 15, 2022, the Senegalese Ministry of Health reported 85,412 confirmed cases and 1,957 deaths, with a death-to-case ratio of 2.29% [7]. In response to the COVID-19 pandemic, the Senegalese government implemented several measures since the first 14 confirmed cases. Chronologically, public gatherings including religious and cultural events were banned, Universities and schools were closed, international and commercial flights were stopped, inter-city transport was restricted, a state of health emergency was declared, and wearing a mask became mandatory. From March 2 to October 31, 2020, the Senegalese Ministry of Health adopted two different testing strategies. For the first period (from March 2 to the end of June 2020), all suspected cases and their contacts were systematically tested. For the second period (from the end of June to October 31, 2020), only suspected cases and their contacts with symptoms or co-morbidities were tested.

To better understand the epidemiological characteristics and the dynamics of the COVID-19 pandemic in Senegal, this study reports the results of a descriptive analysis from March 2 to October 31, 2020 of the pandemic surveillance.

Materials and methods
Field investigation method
This is a prospective case-ascertained study of COVID-19 suspected cases and their contacts between March 2 and October 31, 2020. Suspected cases were identified through an alert
system set up by the Ministry of Health or from physicians at health care centers according to the Senegalese surveillance protocol. SARS-CoV-2 positive patients were notified by the laboratory to their home health district, which took charge of their medical follow-up. Medical care was administered at treatment centers or patients’ domicile depending on the severity of the infection.

Case definitions and inclusion criteria

We used WHO case definitions [8] for suspected, confirmed and contact cases.

Data collection method

Data were obtained through face-to-face interviews of the case (or family members if the case was too ill to be interviewed). Information was recorded on standardized investigation forms with a case identifier and sent to Institut Pasteur de Dakar (IPD) with the biological sample for testing. Collected information were: socio-demographic (age, sex, occupation, location), epidemiological (sampling date, geographical district, date of onset of symptoms, potential sources of infection (exposure), travel history, number of close contacts), clinical (body temperature, symptoms including cough, sore throat, headache, arthralgia, myalgia, nasal discharge, nasal congestion, anosmia, ageusia, difficulty of breathing, nausea/vomiting, diarrhea) and presence of comorbidity (Diabetes, asthma, hypertension and cardiovascular diseases). Field investigation forms were then checked before data entry and storage into an electronic central MySQL database. In this study, the deaths recorded are patients who were diagnosed at the Pasteur Institute de Dakar, hospitalized in health centres and whose death was documented by the Ministry of Health. For hospitalized patients, we defined the duration of SARS-CoV-2 carriage as the time in days between the first and last positive SARS-CoV-2 PCR test. Delay to consultation is defined as the time in days between the date of symptoms onset and date of first positive SARS-CoV-2 PCR test.

Laboratory tests techniques

Oro and/or nasopharyngeal swabs specimens were collected from suspected patients or persons in contact with confirmed cases and placed in a universal viral transport medium, stored at 4–8˚C and transported to IPD within 24 hours of collection for testing. Once in the laboratory, specimens were immediately processed for SAR-SCoV-2-specific real-time RT-PCR for viral nucleic acid detection. At least two aliquots of each sample were also stored at −80˚C for biobanking or additional analysis.

Disease outcomes (patients’ status)

Patients were classified according to “uninfected/infected” status and “asymptomatic/symptomatic” as well as “survival/dead” status among infected. Patients’ data were analyzed in detail and risk factor analysis was performed to identify determinants of infection, asymptomatic infection and death.

Statistical analysis

The epidemic curve was established based on daily incidence. We evaluated potential risk factors for COVID-19 illness, including sex, age group ([0–15], [15–45], [45–65], [65–100] years-old), period of testing strategy, occupation (public transportation drivers, health care workers, students and/or teachers, traders as well as other non-listed occupations) and presence of comorbidity (Diabetes, hypertension and cardiovascular diseases, asthma). The normality test
for age distribution was performed using Anderson-Darling test with the R software “nortest” package [9]. For non-normal data, a non-parametric Mann Whitney U test was used to compare the average age between the first and second period of testing strategy. The Fisher exact test was used to compare the categorical variables between the two periods. In this study we have two types of data: i) a surveillance data (a sample of people undergoing diagnostic testing—and this has a mix of symptomatic individuals being investigated, and contacts of diagnosed cases) and ii) a cohort data (a follow-up of hospitalised patients to assess their outcome). For “uninfected/infected” and “asymptomatic/symptomatic” status from surveillance data, statistical analysis were performed using univariate binary logistic regression models. Crude results from univariate models are provided in forest plots and tables. Significant variables from the univariate analysis were included to the multivariable binary logistic regression analysis to assess a statistically significant association between the independent variables and the response variable using Adjusted Odd Ratio (AOR), 95% CIs for AOR and p-values. A backward procedure was applied to select the variables that remained significant with a p-value < 0.05 in the final model. For the cohort data, the same statistical analysis procedure was applied as before using a log binomial model on the response variable "survival/dead". Adjusted Relative Risk (ARR), 95% CIs for ARR and p-values were used for testing significance and interpretation of results.

We estimated the serial interval from groups of infected individuals in chains of transmission for whom information on the date of symptom onset was available. Based on the estimates of the serial interval, we calculated the reproduction number (R₀), which is the average number of secondary cases that arise when one primary case is introduced into the population. If the value of R₀ is greater than 1, the infection may spread in the population. The time required for the incidence to double, namely the doubling time was computed based on the parameters of a log-linear model fitted to the growth phase of the epidemic. R₀, the instantaneous effective reproduction number, represents the expected number of secondary cases arising from a primary case infected at time t. It is an important parameter to assess the effectiveness of public health interventions [10,11]. R₀ was estimated according to incidence data and serial interval parameters using the R software EpiEstim package [12].

Statistical analysis and mapping were performed using the R4.0.1 statistical language environment [13].

Ethics statement
As part of the national COVID-19 pandemic surveillance in Senegal, there is no need for approval by the National Ethics Committee of the Ministry of Health. Data were collected in an objective of surveillance and are anonymous. Consent was informed for their data to be used for surveillance and/or research purposes. Verbal consent was obtained from the patient prior to taking an oro/nasopharyngeal swab sample. Throughout the surveillance, the generated database in Institut Pasteur de Dakar was shared with the Senegalese Ministry of Health and Social Action.

Results
Descriptive analysis
We present here Senegalese COVID-19 epidemic data collected from March 2 to October 31, 2020. The first positive case was confirmed on March 2, 2020, and was a traveler from France. We analyzed data related to patients tested in the IPD laboratories, which were the main national laboratory covering up to 80% of total samples collected from the whole country.
There were 67,608 COVID-19 suspected individuals investigated with 13,031 (19.27%) confirmed cases among them.

During these first 8 months of the COVID-19 outbreak in Senegal, the epidemic curve showed a low incidence at the beginning, a considerable increase by mid-April and a decrease from mid-August until October 31, 2020. The number of new cases per day ranged from 0 to 32 (mean = 9.2(± 8.1)) from the beginning of the outbreak to April 14, between 37 and 134 (mean = 88.5(±15.4)) from April 15 to August 14 and from 89 to 0 (mean = 22.2(±20.7)) from August 15 to October 31 (Fig 1).

Among these 13,031 confirmed cases, 1,352 (10.38%) had an international travel history within 14 days preceding the onset of illness. Fig 2A shows that the proportion of confirmed cases having an international travel history was higher at the beginning of the epidemic and were mostly from Europe, France in particular. For the overall study period, the most frequent sources of the imported infections are France (53 cases), Mauritania (16), USA (11), The Gambia (11) and Guinea (11) (Fig 2B). Other countries have less than 10 imported cases (Fig 2B). For the reported period, one index case had an average of 12.6 contacts (min-max: 1–313) and an average of 2 secondary cases (min-max: 0–52) arise among these contacts.

Overall, the male/female sex ratio in suspected cases was 1.21 but was similar in confirmed (1.22) and negative cases (1.20), suggesting an absence of gender effect on the infection risk. The mean age of infected patients was 41.2 (±19.5) years. Among the most reported occupations (public transportation drivers, healthcare workers, students and teachers, traders), traders were the most affected (24.3%) category while students and teachers the least (17.5%) (Table 1).
Among the 13,031 positives cases, there were 3,606 asymptomatic infections (27.7%). Among infected children (less than 15 years old), 63.2% were asymptomatic. (Table 2).

From symptomatic infections, the most common symptoms reported were: headache (66.4%), fever (63.5%), cough (59.9%), sore throat (32.7%) and nasal discharge (20.3%), anosmia (17.4%) and ageusia (15.4%) (Fig 3A). The frequency of fever, cough and sore throat was higher in patients over 45 years compared to others (Fig 3B).

Spatial distribution of COVID-19 cases through the country
The spatial distribution of confirmed cases (Fig 4) showed that all 14 regions in Senegal were affected chronologically (Dakar, Diourbel, Thies, Saint-Louis, Ziguinchor, Fatick, Kolda, Tambacounda, Louga, Kaolack, Sedhiou, Kedougou, Kaffrine and Matam). On March 2, 2020, the first case occurred in Dakar Ouest health district, in Dakar region. On March 11th, Touba health district (in Diourbel region) reported its first case. During March, the epidemic expanded to the neighboring districts of Dakar and spread to all other regions in Senegal. Up to October 31, 2020, Dakar remained the most affected region by COVID-19 accounting for 81.4% of confirmed infections. The cumulative number of confirmed cases for each region shows that Dakar was the epicenter of the epidemic followed by Diourbel region (S1 Fig). 61 health districts (out of 79) were affected (Table 4). The most affected districts were all from Dakar region, one from Diourbel region (the district of Touba) and those situated on the border with other countries (Saint-Louis and Richard-Toll in the North, Matam and Goudiry in the East and almost all health districts in the South) (Fig 4). The highest attack rates observed concerned several health districts in Dakar (Dakar Sud, Dakar Centre, Dakar Ouest, Dakar...
Table 1. Univariate and multivariable factors analysis according to "uninfected/infected" status.

Variables	Labels	Number of suspected cases (%)	Number of positive cases	Proportion of positive cases (%)	Univariate Logistic Regression	Multivariable Logistic Regression
					Crude OR 95CI p-value	Adjusted OR 95CI Adjusted p-value
Sex	Female	30264 (44.8)	5847	19.3	1	-
	Male	36513 (54)	7110	19.5	1.01 (0.97–1.05) < 0.001	-
	Missing Sex	831 (1.2)	74	8.9	-	-
Age groups	[0–15]	7878 (11.7)	935	11.9	1	-
	[15–45]	38293 (56.6)	6861	17.9	1.62 (1.51–1.74) < 0.001	1.18 (1.03–1.36) 0.01
	[45–65]	14220 (21)	3233	22.7	2.19 (2.02–2.36) < 0.001	1.59 (1.38–1.85) < 0.001
	[65–100]	6286 (9.3)	1915	30.5	3.25 (2.98–3.55) < 0.001	2.06 (1.75–2.41) < 0.001
	Missing Age	931 (1.4)	87	9.3	-	-
Period of testing strategy	First_period	44154 (65.3)	7044	16	-	-
	Second_period	23454 (34.7)	5987	25.5	1.81 (1.74–1.88) < 0.001	1.08 (1.02–1.14) 0.007
Occupation	Others	26761 (39.6)	6094	22.8	-	-
	Drivers	1037 (1.5)	183	17.6	0.73 (0.62–0.85) < 0.001	0.87 (0.71–1.06) 0.134
	Medical_staff	3982 (5.9)	719	18.1	0.75 (0.69–0.81) < 0.001	0.87 (0.78–0.96) 0.004
	Students_teachers	6663 (9.9)	1164	17.5	0.72 (0.67–0.77) < 0.001	0.98 (0.9–1.08) 0.627
	Traders	3072 (4.5)	747	24.3	1.09 (1.00–1.19) 0.054	1.23 (1.11–1.37) < 0.001
	Missing Occupation	26093 (38.6)	4124	15.8	-	-
Diabetes	No	37741 (55.8)	10020	26.5	1	-
	Yes	753 (1.1)	288	38.2	1.71 (1.48–1.99) < 0.001	-
	Missing Diabetes	29114 (43.1)	2723	9.4	-	-
Hypertension Cardiovascular disease	No	38189 (56.5)	10143	26.6	1	-
	Yes	312 (0.5)	172	55.1	3.4 (2.71–4.25) < 0.001	2.34 (1.75–3.12) < 0.001
	Missing HCD	29107 (43.1)	2716	9.3	-	-
Asthma	No	37992 (56.2)	10176	26.8	-	-
	Yes	486 (0.7)	116	23.9	0.86 (0.69–1.06) 0.149	-
	Missing Asthma	29130 (43.1)	2739	9.4	-	-

OR = Odds Ratio; 95CI = 95% Confidence Interval.
HCD = Hypertension Cardiovascular disease.

https://doi.org/10.1371/journal.pone.0274783.t001

Multivariable risk factors analysis for "uninfected/infected" status

Table 1 provides information on comorbidities and socio-demographic characteristics from suspected and confirmed COVID-19 cases and shows that gender, age group and some occupations are significant factors associated with SARS-CoV-2 infection. For the whole study period, compared to the under 15 years, the odds for being infected by COVID-19 were more likely among patients other 15 years old (AOR = 1.18, 95%CI = 1.03–1.36, p-value = 0.01 for 15–44 years; AOR = 1.59, 95%CI = 1.38–1.85, p-value < 0.001 for 45–64 years and AOR = 2.06, 95%CI = 1.75–2.41, p-value < 0.001 for over 65 years) (Table 1). Regarding the period of testing strategy, the odds for being infected during the second period was 1.08 times than in the first period (AOR = 1.08, 95%CI = 1.02–1.14, p-value < 0.007). Factors such as occupation showed significant associations with COVID-19 infection risk (Fig 5A). The odds

Nord, Guediawaye, Diamniadio, Mbao and Sangalkam), Ziguinchor and Kedougou districts (S6 Table).
for being infected among traders was 1.23 times than other occupation (AOR = 1.23, 95% CI = 1.11–1.37, p-value < 0.001). Compared to all other occupations, health care workers were weakly associated with infection (AOR = 0.87; 95%CI 0.78–0.96; p-value = 0.004). The odds for being infected among patients with hypertension and cardiovascular disease was 2.34 times compared to patients with other declared comorbidities (AOR = 2.34, 95%CI = 1.75–3.12, p-value < 0.001).

Factors found associated with SARS-CoV-2 infection during the first period (from March 2 to June 25, 2020) and second period (from June 26 to October 31, 2020) are similar for those on the entire study period. Regarding age group, the odds are higher in the second period (AOR = 1.84 for 15–44 years, AOR = 2.52 for 45–64 years, AOR = 2.78 for >65 years (S2 Table)) than in the first period (AOR = 1.04 for 15–44 years, AOR = 1.35 for 45–64 years, AOR = 2.28 for >65 years (S1 Table)). However, regarding comorbidities, the odds for being infected was higher in the first period (AOR = 3.2 (S1 Table)) than the second period (AOR = 1.89 (S2 Table)).

Multivariable risk factors analysis for "symptomatic/asymptomatic" status

On the entire study period, the proportions of symptomatic cases increase with age (Fig 5B): 36.8% for patients less than 15 years old, 70.5% for 15–44 years, 80% for 45–64 years and 84.4% for patients more than 65 years. The odds of developing symptomatic disease were more likely among patients over 15 years (AOR = 4.21, 95%CI = 3.35–5.06, p-value < 0.001 for 15–44 years; AOR = 6.07, 95%CI = 4.96–7.44, p-value < 0.001 for 45–64 years and AOR = 6.77, 95%CI = 5.38–8.52, p-value < 0.001 for ≥65 years). During the second period of testing strategy, patients were 4.19 times more likely to be symptomatic than in the first period (AOR = 4.19, 95%CI = 3.75–4.68, p-value < 0.001). Furthermore, regarding comorbidities, the odds of developing symptomatic COVID-19 was 3.26 times among patients with hypertension and cardiovascular disease compared to patients with no such illness (AOR = 3.26, 95% CI = 1.67–6.34, p-value < 0.001) (Table 2).

In the first study period, the factors associated with symptomatic COVID-19 are similar to the whole study period (S3 Table). There were 22.5% of asymptomatic children. However, the odds of developing symptomatic disease were lower in the second period (AOR = 2.14, 95%CI = 1.38–3.31, p-value < 0.001 for 15–44 years; AOR = 2.35, 95%CI = 1.49–3.7, p-value < 0.001 for 45–64 years and AOR = 1.99, 95%CI = 1.25–3.18, p-value = 0.004 for ≥65 years) (S4 Table).

Multivariable risk factors analysis for "survival/dead" status

Fig 5C shows that age is an associated factor for death. Table 3 shows that sex, age groups, some comorbidities and the duration of coronavirus carriage were significantly associated with mortality in confirmed infections. Coronavirus mortality was 1.45 times higher in men than women (p-value = 0.046). There was no mortality recorded for patients less than 15 years old. Among declared comorbidities, the relative risk for COVID-19 mortality is higher for patients with hypertension and cardiovascular disease (ARR = 20.23, 95%CI = 11.68–35.04, p < 0.001), followed by patients having diabetes (ARR = 1.31, 95%CI = 0.77–2.23, p-value < 0.001). The average duration of coronavirus carriage in infected patients was 4.93(±5.77) days and 2.4 (±5.77) days for infections leading to death.

Modelling

The estimated mean serial interval for COVID-19 infection in Senegal was 5.57 (±5.14) days (S2 Fig). The reproduction number over time (Rt) was estimated for each day of the outbreak.
During the course of the 8 months of the epidemic, R_0 started with the maximum value of 1.75 (95%CI 1.16–2.56). R_0 decreased until the end of March with the five series of measures (banning public gathering, closing schools and universities, suspending commercial flights, travel restrictions and health emergency), then increased again before decreasing after mid-April with obligatory mask-wearing. (Fig 6). The estimated basic reproduction number over the study period was 1.161 (95%CI = 1.159–1.162). During this period, the epidemiological parameters of the epidemic in Senegal were similar to those in Dakar region. A slow growth rate (0.031 per day, 95%CI = 0.028–0.034) of the epidemic in Senegal was observed, with a similar rate for Dakar (0.033 per day, 95%CI = 0.030–0.037). As of October 31, 2020, the doubling time of the epidemic in Senegal was 22 days (95%CI = 20–25 days), 20 days (19–23) in Dakar (S5 Table).

Variables	Labels	Number of positive cases (%)	Number of Symptomatic cases	Proportion of Symptomatic (%)	Univariate Logistic Regression	Multivariate Logistic Regression				
					Crude OR	Adjusted OR				
					95CI	p-value	Adjusted OR	95CI	p-value	
Sex	Female	5847 (44.87)	4237	72.5	-	-				
	Male	7110 (54.56)	5136	72.2	1.01	(0.93–1.1)	0.814			
	Missing Sex	74 (0.57)	52	70.3	-	-				
Age groups	[0–15]	935 (7.18)	344	36.8	-	-				
	[15–45]	6861 (52.65)	4840	70.5	4.28	(3.7–4.96)	< 0.001	4.21	(3.5–5.06)	< 0.001
	[45–65]	3233 (24.81)	2587	80	7.28	(6.18–8.57)	< 0.001	6.07	(4.96–7.44)	< 0.001
	[65–100]	1915 (14.7)	1616	84.4	10.13	(8.38–12.25)	< 0.001	6.77	(5.38–8.52)	< 0.001
	Missing Age	87 (0.67)	38	43.7	-	-				
Period of testing strategy	First_period	7044 (54.06)	4163	59.1	-	-				
	Second_period	5987 (45.94)	5262	87.9	5.53	(5.01–6.1)	< 0.001	4.19	(3.75–4.68)	< 0.001
Diabetes	No	10020 (76.89)	7810	77.9	-	-				
	Yes	288 (2.21)	255	88.5	2.41	(1.64–3.52)	< 0.001			
	Missing Diabetes	2723 (20.9)	1360	49.9	-	-				
Hypertension Cardiovascular disease	No	10143 (77.84)	7915	78	-	-				
	Yes	172 (1.32)	158	91.9	3.71	(2.06–6.67)	< 0.001	3.26	(1.67–6.34)	< 0.001
	Missing HCD	2716 (20.84)	1352	49.8	-	-				
Asthma	No	10176 (78.09)	7953	78.2	-	-				
	Yes	116 (0.89)	101	87.1	1.88	(1.09–3.24)	0.023			
	Missing Asthma	2739 (21.02)	1371	50.1	-	-				

OR = Odds Ratio; 95CI = 95% Confidence Interval.
HCD = Hypertension Cardiovascular disease.
The proportion of SARS-CoV-2 infected patients are higher in the second period (25.5%) than in the first (16%), Fisher-Exact test p-value < 0.001. Among the SARS-CoV-2 infected patients, there were globally 27.7% asymptomatic patients: 41% in the first period and 12.1% in the second period. The reproduction number on the overall period is similar to the one on the first period. For the second period, the reproduction number was around 1 corresponding to the moment when the epidemic was stable.

Discussion

This study gives important insight into the pandemic in West Africa as there has been a relative paucity of clinical and epidemiological data from this region. In addition to the study conducted by Lawson and colleagues [14] in Thiès region (1 out of the 14 regions) in Senegal, this study reinforces the socio-demographic and epidemiological information on COVID-19 by extending to all other regions in the country. During the first weeks of the epidemic, almost all confirmed cases were imported from Europe, specially from France. Among the symptomatic infections, the most important signs and symptoms associated with COVID-19 reported in this study (headache, fever, cough, sore throat and nasal discharge among others) were similar to those reported elsewhere [15,16]. The index case giving the most secondary cases had 167 contacts and infected 52 of them. This super-spreader was a religious teacher with about several hundred disciples in his school (as named "daarah") located in the southern region of the country.

The proportion of infected health care workers is relatively low due to higher awareness of set protective measures. In contrast, this study shows that traders are at high risk of being...
infected by SARS-CoV-2. Closing shops was not part of the protective measures taken by the government. Given that the shops are usually hubs, traders were most exposed as they receive considerable flux of customers from unknown sources daily.

Regarding age groups, they are all susceptible to having SARS-CoV-2 infection, particularly older people were more associated to infection. Furthermore, after adjustment on sex, age group and occupation, patients having hypertension and cardiovascular disease are more highly associated with SARS-CoV-2 infection. Among infected, the two youngest age groups represent 60% of this study cohort and were mostly asymptomatic. They are known to be generally more active than the remaining age groups with more mobility. They coughed less and had fewer sore throats and fevers than older people. Coughing is one of the symptoms contributing most to the spread of the virus due to the projected microdroplets. This could explain why the transmission of the virus is relatively slow in Senegal.

Our results show that men are twice more likely to die from COVID-19, but also advanced age (over 65 years old) and the presence of comorbidities such as diabetes and hypertension and cardiovascular diseases are associated factors for COVID-19 death. This is was not surprising and is consistent with what has been observed not only in Africa [14,17–22] but in other countries of the world [23–26]. Indeed, studies conducted in Spain by Pastor-Barriuso and colleagues [25] showed that older men are more exposed to coronavirus mortality. Pantea Stoian and colleagues [24] confirmed also that males, diabetes and hypertension are associated factors for coronavirus mortality.

The highest SARS-CoV-2 infection’s cases noted in Dakar (the capital of Senegal) may be related to its high population size and high inter-urban mobility as reported by the national agency of statistic and demography of Senegal (http://www.ansd.sn/). This is concordant to the trend of the other countries where COVID-19 epicenters were noticed into their largest
This study, based on surveillance data, confirms the trends in the spatial distribution of COVID-19 observed cases in the national seroprevalence survey. Indeed, the most affected regions described in our study were confirmed by the seroprevalence survey with the exception of the Thies region. In fact, the IPD laboratory had data from the Thies region for only the 2 first months of the pandemic. Compared to the seroprevalence data, our study demonstrated that the surveillance data is only a small part of the iceberg and does not really reveal the real number of COVID-19 infected people during the first wave.

The trend of our estimates on the instantaneous reproduction number R_t may suggest that the first couple of control measures that the Senegalese government has taken were effective for about the 2 first weeks slowing down this parameter below 1. However, the rise of the R_t noticed after the 2 first weeks, could suggest that those measures were no longer effective or there has been laxity on restriction’s measures upon population. As of April 19, 2020, the government imposed wearing masks. Since then, R_t decreased and remains below 1 until October 31, 2020.

Our estimates of serial interval and reproduction number are similar to other reports. The mean reproduction number found in Senegal was relatively small (1.138 (1.136–
and the epidemic trajectory slow compared to many others countries. As of April 11, 2020, studies conducted in Nigeria [30] estimated a reproduction number of 1.42 (95% CI 1.26–1.58). However, these reproduction numbers found in Africa are very low compared to those noted elsewhere. Indeed, reproduction number was 2.2 (95% CI 1.4–3.9) in China [3,31], 3.27 (95% CI 3.17–3.38) for Italy, 6.32 (95% CI 5.72–6.99) for France, 6.07 (95% CI 5.51–6.69) for Germany, and 5.08 (95% CI 4.51–5.74) for Spain with an exponential growth method [32] and 5.30 ± 0.95 in the United States of America [33]. This low reproduction number found in Senegal could be explained by the early implementation of public health interventions from the first case detection. Indeed, African countries have been very early warned of the risks of COVID-19 importations [34].

Conclusions

During the eight months of COVID-19 pandemic in Senegal, the virus spread all around the 14 regions but the incidence curve is very flat. We found a slow growth rate and noticed that the number of cases doubled in size approximately every 22 days. Imposing mask-wearing

Variables	Labels	Number of positive cases (%)	Number of Deaths	Death-to-case ratio (%)	Univariate log binomial model	Multivariate log binomial model	
Sex	Female	5847 (44.9)	44	0.8	2.13 (1.51–3.01)	< 0.001	
	Male	7110 (54.6)	114	1.6		1.45 (0.84–2.5)	
	Missing Sex	74 (0.6)	1	1.4		1.046	
Age groups	[0–15]	935 (7.2)	0	0	-	-	
	[15–45]	6661 (52.7)	12	0.2	7.43 (3.92–14.09)	< 0.001	
	[45–65]	3233 (24.8)	42	1.3	31.35 (17.29–56.84)	< 0.001	
	[65–100]	1913 (14.7)	105	5.5		21.3 (5.05–89.24)	< 0.001
	Missing Age	87 (0.7)	0	0	-	-	
Period of testing strategy	First_period	7044 (54.1)	100	1.4	-	-	
	Second_period	5987 (45.9)	59	1	0.69 (0.5–0.96)	0.025	
Diabetes	No	10020 (76.9)	75	0.7	23.19 (16.54–32.53)	< 0.001	
	Yes	288 (2.2)	50	17.4		1.31 (0.77–2.23)	< 0.001
	Missing Diabetes	2723 (20.9)	34	1.2	-	-	
Hypertension	No	10143 (77.9)	59	0.6	23.19 (16.54–32.53)	< 0.001	
Cardiovascular disease	Yes	172 (1.3)	70	40.7	69.97 (51.22–95.57)	< 0.001	
	Missing HCD	2716 (20.8)	30	1.1	-	-	
Asthma	No	10176 (78.1)	108	1.1	1.62 (0.41–6.5)	0.493	
	Yes	116 (0.9)	2	1.7			
	Missing Asthma	2739 (21)	49	1.8	-	-	
Delay to consultation	mean(sd)	4.59 (3.6)	mean(sd) in deaths	1.02 (0.98–1.06)	0.266		
Duration of virus portage	4.93 (5.77)	2.4 (5.77)	-	0.89 (0.85–0.93)	< 0.001		

RR = Relative Risk; 95 CI = 95% Confidence Interval.
HCD = Hypertension Cardiovascular disease.

https://doi.org/10.1371/journal.pone.0274783.t003
Table 4. Epidemiological parameters comparison according to different periods.

Epidemiological parameters	Period 1	Period 2	Global
Number of suspected cases tested	44154	23454	67608
Number of Sars-Cov-2 confirmed cases (%)	7044 (16%)	5987 (25.53%)	13031 (19.27%)
Mean age in years (min—max)	33.3 (0–100)	42.5 (0–100)	36.5 (0–100)
Sex ratio (male/female)	1.26	1.1	1.21
% of asymptomatic among all tested individuals	70.43	19.05	52.6
% of asymptomatic among Sars-Cov-2 confirmed individuals	40.9	12.11	27.67
Estimated Reproduction Number (95CI)	1.17 (1.16–1.18)	1.038 (1.036–1.040)	1.161 (1.159–1.162)
Average number of contacts tested per index	16	6	12
Average number of secondary cases per index	2.4	1.9	2
Number of sanitary districts affected	53	58	61

Fig 6. Evolution of the reproduction number across time. Y-axis gives the estimated reproduction number and X-axis the dates. The curve in solid line shows the dynamic of reproduction number. The shaded region around the curve represents the 95% confidence interval. Vertical arrows indicate official dates of the intervention measures taken the Senegalese government.

https://doi.org/10.1371/journal.pone.0274783.g006

https://doi.org/10.1371/journal.pone.0274783.t004
seems to be one of the most effective control measures. Our findings indicated that older men, diabetes and hypertension are associated factors for coronavirus mortality and provide important parameters for further analyses such as the evaluation of the impact of control measures, and the chains of transmission on COVID-19 disease in Senegal. This work is also an important pre-requisite for future analysis about the particularities of each wave through a comparative study of the different waves of COVID-19 in Senegal.

Supporting information

S1 Fig. Cumulative incidence of COVID19 in Senegal by region.
(DOCX)

S2 Fig. Distribution of serial interval.
(DOCX)

S1 Table. Univariate and multivariate risk factors analysis according to "uninfected/infected" status for Period 1 (from March 2 to June 25,2020).
(DOCX)

S2 Table. Univariate and multivariate risk factors analysis according to "uninfected/infected" status for Period 2 (from June 26 to October 31st,2020).
(DOCX)

S3 Table. Univariate and multivariate risk factors analysis according to "symptomatic/asymptomatic" status for Period 1 (from March 2 to June 25,2020).
(DOCX)

S4 Table. Univariate and multivariate risk factors analysis according to "symptomatic/asymptomatic" status for Period 2 (from June 26 to October 31st, 2020).
(DOCX)

S5 Table. Estimates of epidemiological parameters of COVID-19 outbreak in Senegal and the 3 most affected regions.
(DOCX)

S6 Table. COVID-19 Attack rate per 100,000 inhabitants (hbts) by gender and health district.
(DOCX)

S1 File.
(DOCX)

S2 File.
(ZIP)

Acknowledgments

The authors thank the Senegalese Ministry of Health and all its staff. They also thank Dr. Richard Paul (Functional Genetics of Infectious Diseases Laboratory, Institut Pasteur, Paris, France) for helpful advice. The authors particularly thank all other field investigators for their outstanding efforts in collecting quality data.

Author Contributions

Conceptualization: Maryam Diarra, Daouda Thioub, Amadou A. Sall, Cheikh Loucoubar.
Data curation: Maryam Diarra, Ibrahima Sonko, Adama Tall, Joseph Faye.

Formal analysis: Maryam Diarra, Cheikh Talla, Aboubacry Gaye, Cheikh Loucoubar.

Investigation: Aliou Barry, Samba Sagne, Fatoumata Diene Sarr, Oumar Faye, Ndeye Aissatou Lakhe, Ba Papa Samba, Khadiata Diallo, Ndeye Maguette Fall, Aboubakar Sadikh Badiane, Louise Fortes, Moustapha Diop, Daouda Thioub, Senegalese District Medical Officers.

Methodology: Maryam Diarra, Fatoumata Diene Sarr, Cheikh Loucoubar.

Project administration: Boly Diop.

Resources: Daouda Thioub, Alioune Badara Ly, Ousmane Faye, Moussa Seydi, Abdoulaye Bousso.

Software: Mamadou Diop, Mamadou Cisse.

Supervision: Cheikh Talla, Alioune Badara Ly, Ousmane Faye, Abdoulaye Bousso, Amadou A. Sall, Cheikh Loucoubar.

Validation: Maryam Diarra, Cheikh Talla, Amadou A. Sall, Cheikh Loucoubar.

Visualization: Maryam Diarra, Adama Tall, Cheikh Loucoubar.

Writing – original draft: Maryam Diarra.

Writing – review & editing: Aliou Barry, Ndongo Dia, Mamadou Diop, Ibrahima Sonko, Samba Sagne, Fatoumata Diene Sarr, Cheikh Talla, Adama Tall, Joseph Faye, Boly Diop, Cheikh Tidiane Diagne, Aboubacry Gaye, Amadou Diallo, Rose Mbaye, Mamadou Cisse, Fabien Taieb, Oumar Faye, Ndeye Aissatou Lakhe, Ba Papa Samba, Khadiata Diallo, Ndeye Maguette Fall, Aboubakar Sadikh Badiane, Louise Fortes, Moustapha Diop, Daouda Thioub, Alioune Badara Ly, Moussa Seydi, Abdoulaye Bousso, Amadou A. Sall, Cheikh Loucoubar, Senegalese District Medical Officers.

References

1. World Health Organization. Statement on the meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus 2019 (n-CoV) on 23 January 2020. [cited 2020 Jul 15]; https://www.who.int/news-room/detail/23-01-2020-statement-on-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov).

2. Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet. 2020 Feb 15; 395(10223):514–23.

3. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine. 2020 Mar 26; 382(13):1199–207. https://doi.org/10.1056/NEJMoa2001316 PMID: 31995857

4. Johns Hopkins University. Coronavirus COVID-19 (2019-nCoV): COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). [cited 2020 Oct 29]; https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.

5. Africa CDC. Coronavirus Disease 2019 (COVID-19)- Africa CDC Dashboard. [cited 2022 Feb 15]; https://africacdc.org/covid-19/.

6. Dia N, Lakh NA, Diagne MM, Mbaye KD, Taieb F, Fall NM, et al. COVID-19 Outbreak, Senegal, 2020. Emerg Infect Dis. 2020 Nov; 26(11):2772–4. https://doi.org/10.3201/eid2611.200215 PMID: 33054907

7. Senegalese Ministry of Health. Real time Covid-19 tracking in Senegal. [cited 2020 Nov 5]; https://cartosantesen.maps.arcgis.com/apps/opsdashboard/index.html#/260c7842a77a48c191bf51c8b0a1d3f6.
8. World Health Organization. Global Surveillance for human infection with coronavirus disease (COVID-19). [cited 2020 Jul 9]; https://www.who.int/publications-detail-redirect/global-surveillance-for-human-infection-with-novel-coronavirus-(2019-ncov).

9. Gross J, Ligges U. nortest: Tests for Normality, R package version 1.0–4. 2015; URL: http://CRAN.R-project.org/package=nortest.

10. Wallinga J, Teunis P. Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures. Am J Epidemiol. 2004 Sep 15; 160(6):509–16. https://doi.org/10.1093/aje/kwh255 PMID: 15353409

11. Cori A, Ferguson NM, Fraser C, Cauchemez S. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. Am J Epidemiol. 2013 Nov 1; 178(9):1505–12. https://doi.org/10.1093/aje/kwt133 PMID: 24043437

12. Thompson RN, Stockwin JE, van Gaalen RD, Polonsky JA, Kamvar ZN, Demarsh PA, et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics. 2019 Dec 1; 29:100356. https://doi.org/10.1016/j.epidem.2019.100356 PMID: 31624039

13. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.

14. Lawson ATDD, Dieng M, Faye FA, Diaw PA, Kempf C, Berthe A, et al. Demographics and outcomes of laboratory-confirmed COVID-19 cases during the first epidemic wave in Senegal. Infectious Diseases Now. 2022 Feb 1; 52(1):44–6. https://doi.org/10.1016/j.idnow.2021.10.003 PMID: 34634483

15. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020; 87(4):281–6.

16. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapy of severe COVID-19 patients at millennium COVID-19 care center in Ethiopia: a case-control study. Pan Afr Med J. 2021; 38:351. https://doi.org/10.4314/pamj.v38i1.28831 PMID: 34367430

17. Leulseged TW, Hassen IS, Maru EH, Zewsde WC, Chamiso NW, Bayisa AB, et al. Characteristics and outcome profile of hospitalized African patients with COVID-19: The Ethiopian context. PLoS One. 2021; 16(11):e0259454. https://doi.org/10.1371/journal.pone.0259454 PMID: 34752481

18. Leulseged TW, Alemahu DG, Hassen IS, Maru EH, Zews WC, Chamiso NW, et al. Factors associated with development of symptomatic disease in Ethiopian COVID-19 patients: a case-control study. BMC Infect Dis. 2021 Aug 5; 21(1):759. https://doi.org/10.1186/s12879-021-06465-1 PMID: 34353283

19. Leulseged TW, Maru EH, Hassen IS, Zews WC, Chamiso NW, Abebe DS, et al. Predictors of death in severe COVID-19 patients at millennium COVID-19 care center in Ethiopia: a case-control study. Pan Afr Med J. 2021; 38:351. https://doi.org/10.11604/pamj.2021.38.351.28831 PMID: 34367430

20. Leulseged TW, Hassen IS, Edo MG, Abebe DS, Maru EH, Zews WC, et al. Duration of Supplemental Oxygen Requirement and Predictors in Severe COVID-19 Patients in Ethiopia: A Survival Analysis. Ethiop J Health Sci. 2021 Jul; 31(4):699–708. https://doi.org/10.4314/ejhs.v31i4.3 PMID: 34703168

21. Leulseged TW, Hassen IS, Ayele BT, Tsegay YG, Abebe DS, Edo MG, et al. Laboratory biomarkers of COVID-19 disease severity and outcome: Findings from a developing country. PLoS One. 2021; 16(3):e0246087. https://doi.org/10.1371/journal.pone.0246087 PMID: 33720944

22. Talla C, Loucoubar C, Roka JL, Barry MA, Ndiaye S, Diarra M, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in Senegal: a national population-based cross-sectional survey, between October and November 2020. IJID Regions [Internet]. 2022 Mar 5 [cited 2022 Mar 9]; https://www.sciencedirect.com/science/article/pii/S277270762200025X.

23. Perez-Saez J, Lauer SA, Kaiser L, Regard S, Delaporte E, Guessous I, et al. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. The Lancet Infectious Diseases [Internet]. 2020 Jul 14 [cited 2021 Jan 7]; 0(0). Available from: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30584-3/abstract. https://doi.org/10.1016/S1473-3099(20)30584-3 PMID: 32679085

24. Pantea Stoian A, Pricop-Jeckstadt M, Pana A, Ileanu BV, Schitea R, Geanta M, et al. Death by SARS-CoV-2: a Romanian COVID-19 multi-centre comorbidity study. Scientific Reports. 2020 Dec 10; 10 (1):21613. https://doi.org/10.1038/s41598-020-78575-w PMID: 33303885

25. Pastor-Barriuso R, Pérez-Gómez B, Hernán MA, Pérez-Olmeda M, Yotti R, Oteo-Iglesias J, et al. Infection fatality risk for SARS-CoV-2 in community dwelling population of Spain: nationwide seroepidemiological study. BMJ. 2020 Nov 27; 371:m4509. https://doi.org/10.1136/bmj.m4509 PMID: 33246972

26. Malikapati S. The coronavirus is most deadly if you are older and male—new data reveal the risks. Nature. 2020 Aug 28; 585(7823):16–7. https://doi.org/10.1038/s41586-020-02483-2 PMID: 32860026

27. Worldometers. Coronavirus Update: Reported Cases and Deaths by Country, Territory, or Conveyance. [cited 2020 Nov 5]; https://www.worldometers.info/coronavirus/#countries.
28. Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020 Apr; 93:284–6. https://doi.org/10.1016/j.ijid.2020.02.060 PMID: 32145466

29. Du Zhanwei, Xu Xiaoke, Wu Ye, Wang Lin, Cowling Benjamin J., Lauren Ancel Meyers. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerging Infectious Disease journal. 2020; 26(6):1341.

30. Adegboye OA, Adekunle AI, Gayawan E. Early Transmission Dynamics of Novel Coronavirus (COVID-19) in Nigeria. International Journal of Environmental Research and Public Health. 2020 Jan; 17(9): 3054. https://doi.org/10.3390/ijerph17093054 PMID: 32353991

31. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. 2020 Feb 29; 395(10225):689–97. https://doi.org/10.1016/S0140-6736(20)30260-9 PMID: 32014114

32. Yuan J, Li M, Lv G, Lu ZK. Monitoring transmissibility and mortality of COVID-19 in Europe. International Journal of Infectious Diseases. 2020 Jun 1; 95:311–5. https://doi.org/10.1016/j.ijid.2020.03.050 PMID: 32234343

33. Peirlinck M, Linka K, Sahli Costabal F, Kuhl E. Outbreak dynamics of COVID-19 in China and the United States. Biomech Model Mechanobiol. 2020 Apr 27; https://doi.org/10.1007/s10237-020-01332-5 PMID: 32342242

34. Gilbert M, Pullano G, Pinotti F, Valdano E, Poletto C, Boelle PY, et al. Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. The Lancet. 2020 Feb; S0140673620304116. https://doi.org/10.1016/S0140-6736(20)30411-6 PMID: 32087820