A review on quantum information processing in cavities

Nilakantha Meher1,a, S. Sivakumar2,b

1 Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
2 Division of Sciences, Krea University, Sricity, Andhra Pradesh 517646, India

Received: 16 May 2022 / Accepted: 9 August 2022
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022, Springer Nature

Abstract The processing of information and computation is undergoing a paradigmatic shift since the realization of the enormous potential of quantum features to perform these tasks. Coupled cavity array is one of the well-studied systems to carry out these tasks. It is a versatile platform for quantum networks for distributed information processing and communication. Cavities have the salient feature of retaining photons for longer durations, thereby enabling them to travel coherently through the array without losing them in dissipation. Many quantum information protocols have been implemented in arrays of coupled cavities. These advancements promise the suitability of cavity arrays for large-scale quantum communications and computations. This article reviews a few theoretical proposals and experimental realizations of quantum information tasks in cavities.

1 Introduction

Quantum theory was formulated in response to the failure of classical physics to explain observed phenomena such as the black-body radiation, specific heat at low temperatures, and diffraction pattern due to cathode rays. The domain of its applicability expanded from atoms and molecules to matter in bulk, and beyond including cosmic scale objects. Within a short span of time, physicists realized that the framework raises very deep questions about our conception of nature. Some of the fundamental issues are related to the idea of locality [1, 2]. It requires fine experiments to settle the issues arising out of the framework. Testing of Bell’s inequality using polarization entangled photons is one of the examples of such attempts [3]. An achievement of such fundamental studies is the emergence of quantum information as a discipline [4–7]. This is a generic term to indicate processes that make explicit use of quantum principles to overcome the limitations arising out of the classical framework. Protocols for teleportation [8], quantum state transfer [9, 10], dense coding [11], quantum cryptography [12] are some of the fine achievements of these studies. A definite requirement for the realization of such protocols is the ability to manipulate and transfer quantum bits (qubit, in short). A qubit is an arbitrary superposition of two classical bits \(|0\rangle\) and \(|1\rangle\) that can carry information [13–15]. Two orthogonal states of a quantum system, for example, two chosen energy levels of an atom [16, 17], polarization states of photons [18], spin states of electrons [19], etc., are being used as qubits for realizing quantum information protocols. Among them, photons are the excellent carrier of quantum information as they do not interact with each other and propagate over large distances [20]. They are being used as flying qubits for quantum communication in free space [21–25].

Recently, realizing quantum information protocols using photons as the information carrier in coupled cavity arrays has received a lot of attention [26–42]. This is because a coupled cavity array allows a high degree of controllability and scalability [43]. Importantly, each cavity of the array is addressable and the state of a selected cavity can be manipulated. A cavity consists of two highly reflecting mirrors that trap the photons for a fraction of a second [44–48]. The lifetime of photons inside the cavity is proportional to the quality factor (Q factor) of the cavity [49], that is, \(\tau \sim \frac{Q}{\omega}\), where \(\omega\) is the resonance frequency of the cavity. A cavity with large Q factor stores photons for a long time. With the current technology, high values of Q are achievable in photonic crystal cavities [50–56], Fabry–Perot cavities [48, 57, 58], superconducting resonators [59, 60], toroidal microdisks [61, 62], whispering gallery modes of silica and quartz microspheres [63–66], etc. Reported experimental values of Q in such cavities are listed in Table 1. The details on fabrication of various type of cavities can be found in Refs. [44, 67, 68].

The field in a cavity couples to the field in a nearby cavity, for example, due to evanescent fields [69, 70]. The coupling strength between the cavities, denoted by \(J\), depends on the distance between the cavities through \(J \propto e^{-d/k}\) [27, 71, 72], where \(d\) is the distance of separation between the cavities and \(k\) is a constant. Because of the coupling, the cavities exchange photons with each other. A series of cavities arranged in close proximity so as to exchange photons among them forms a cavity array. In fact, Notomi et al. [43] reported an array of about 100 cavities each of the size of the wavelength of the field. High-Q cavities are essential not
only for fundamental studies [73–81] but also for many applications such as imaging of atoms beyond diffraction limit [82, 83], atom–cavity microscope [84], controlling light pulse propagation [85], bio-sensor [86, 87], optical sensor [88–90], quantum heat engine [91–98], photonic transistor [99, 100], quantum memory [101, 102], quantum cloning machine [103, 104], entanglement detection [105–107], etc.

In recent years, extensive studies have looked at employing cavities to investigate fundamentals of physics as well as to implement some of the quantum mechanical applications. Many exciting features of coupled cavity arrays have been explored theoretically as well as experimentally. In this review, we mostly focus on the implementation of various quantum information protocols in cavity arrays [30–42]. In particular, we discuss the possibility of quantum state transfer through the array, generation of various entangled states between the cavities, demonstration of quantum gates, realization of quantum teleportation and quantum dense coding between distant cavities. Quantum state transfer, teleportation and dense coding are essential to realize quantum communication, whereas quantum gates are the basic elements for quantum computation.

2 Single cavity

2.1 Quantization of electromagnetic field inside a cavity

Many experiments in optics are explainable by treating the electromagnetic field classically [111]. However, quantization of the electromagnetic field is essential to explain a few notable experimental outcomes, such as the black-body spectrum, spontaneous emission, Lamb shift, resonance fluorescence, squeezed light, etc. [112]. Here, we briefly discuss the quantization of electromagnetic field in a cavity.

The space-time evolution of the electromagnetic field in vacuum is described by the Maxwell’s equations, which are

\[\nabla \cdot \vec{E}(\vec{r}, t) = 0, \quad (1a) \]
\[\nabla \cdot \vec{B}(\vec{r}, t) = 0, \quad (1b) \]
\[\nabla \times \vec{E}(\vec{r}, t) = -\frac{\partial}{\partial t} \vec{B}(\vec{r}, t), \quad (1c) \]
\[\text{and} \quad \nabla \times \vec{B}(\vec{r}, t) = \mu_0 \epsilon_0 \frac{\partial}{\partial t} \vec{E}(\vec{r}, t), \quad (1d) \]

where \(\mu_0 \) and \(\epsilon_0 \) are, respectively, the permeability and permittivity of the free space. A consequence of these equations is that the electric and magnetic fields satisfy

\[\nabla^2 \vec{X}(\vec{r}, t) = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{X}(\vec{r}, t), \quad (2) \]

so-called wave equation, where \(\vec{X}(\vec{r}, t) \) is \(\vec{E}(\vec{r}, t) \) or \(\vec{B}(\vec{r}, t) \). These equations imply that the electromagnetic wave propagates in free space with speed \(c \). Another consequence of Eqs. (1a)–(1d) is that the fields \(\vec{E} \) and \(\vec{B} \) are transverse, i.e., \(\vec{E} \parallel \vec{B} \) and the direction of propagation is mutually perpendicular to each other. These equations can be modified to include charges and currents as well. If boundary conditions are imposed on the fields, these equations can describe the fields in a confined geometry.

Consider the electromagnetic field between two perfectly conducting plates separated by a length \(L \) (cavity) as shown in Fig. 1. In the limit of large \(L \), the field corresponds to the electromagnetic field in free space. The field is assumed to be propagating along \(z \)-direction and the electric field is polarized in \(x \)-direction, i.e., \(E(r, t) = \hat{\epsilon}_x \) \(E_x(z, t) \), where \(\hat{\epsilon}_x \) is the polarization direction. As the walls are perfectly conducting, the electric field vanishes at the boundaries at \(z = 0 \) and \(z = L \). In order to write the explicit form of \(\vec{E} \) for the cavity field, consider the fundamental modes of the electromagnetic field, which are the eigenfunctions of the spatial part of the wave equation. Any arbitrary distribution of the electric field inside the cavity can be expressed as a linear combination of these fundamental modes [112],

\[E_x(z, t) = \sum_{j=1}^{\infty} A_j q_j(t) \sin(k_j z), \quad (3) \]
Fig. 1 A schematic of a cavity which is a pair of two mirrors M_1 and M_2 separated by a distance L. Field is propagating along z-direction and electric field is oscillating along x-direction where q_j is the amplitude of the jth fundamental mode with the dimension of length and $k_j = j \pi / L$ is the magnitude of the wave vector. The amplitude q_j plays the role of the canonical position for an oscillator. The expansion coefficient $A_j = \left(\frac{2 \omega_j}{\sqrt{V}} \right)^{1/2}$ where ω_j is the frequency of jth fundamental mode and V is the modal volume. These modes satisfy the orthogonality relation
\[
\int_0^L \sin(k_n z) \sin(k_m z) dz = \frac{L}{2} \delta_{nm}.
\] (4)

Boundary conditions on the electric field restrict the possible frequencies to $\omega_j = \frac{j \pi c}{L}$. (5)

These are the resonance frequencies of the cavity. The separation between two successive resonance frequencies is $\frac{\pi c}{L}$, which is negligible if L is large.

Similarly, the magnetic field inside the cavity is
\[
B_y(z, t) = \sum_j A_j \left(p_j(t) \frac{\epsilon_0 \mu_0}{k_j} \omega_j \right) \cos(k_j z).
\] (6)

Here $p_j(t) = \dot{q}_j(t)$ is analogous to the canonical momentum for a particle in the Hamiltonian dynamics. The Hamiltonian for the electromagnetic field is
\[
H = \frac{1}{2} \int dV \left[\epsilon_0 E_x^2(z, t) + \frac{1}{\mu_0} B_y^2(z, t) \right].
\] (7)

Using the expressions for E_x and B_y, respectively, from Eqs. (3) to (6), the total Hamiltonian becomes
\[
H = \frac{1}{2} \sum_j \left(p_j^2(t) + \omega_j^2 q_j^2(t) \right),
\] (8)

which has the same structure as that for a set of independent harmonic oscillators. In essence, each fundamental mode of the electromagnetic field is equivalent to an oscillator. The electric field and the magnetic field are equivalent to the position and the momentum of the oscillator, respectively.

Now, the quantization of the electromagnetic field becomes straightforward. Quantization provides an elegant way of understanding the classical wave picture of the field in terms of quantum picture. It can be inferred from the wave equation given in Eq. (2) that the respective amplitudes, namely q and p, of the electric and magnetic fields obey the classical equations of motion of a harmonic oscillator. The canonical variables $q(t)$ and $p(t)$ are represented by self-adjoint operators \hat{q} and \hat{p} which satisfy the commutation relation $[\hat{q}, \hat{p}] = i \hbar \hat{I}$. For further analysis, it is advantageous to define
\[
\hat{a}_j = \frac{1}{\sqrt{2 \hbar \omega_j}} (\omega_j \hat{q}_j + i \hat{p}_j),
\]
\[
\hat{a}_j^\dagger = \frac{1}{\sqrt{2 \hbar \omega_j}} (\omega_j \hat{q}_j - i \hat{p}_j),
\] (9)

which satisfy $[\hat{a}_j, \hat{a}_k^\dagger] = \hat{I} \delta_{j,k}$. The operators \hat{a}_j and \hat{a}_j^\dagger are called the creation and annihilation operators, respectively, and \hat{I} is the identity operator. In terms of these operators, the Hamiltonian for the quantized electromagnetic field is
\[
\hat{H} = \sum_j \hbar \omega_j \left(\hat{a}_j^\dagger \hat{a}_j + \frac{1}{2} \right).
\] (10)

The term $\hbar \omega_j / 2$ corresponds to the energy of the vacuum field of the jth mode. The term $\hat{a}_j^\dagger \hat{a}_j$ represents the number operator for jth mode.
2.2 Single-mode field in a cavity

As noted in the previous subsection, each mode of the electromagnetic field inside a cavity is equivalent to a harmonic oscillator. These independent modes are described in their respective Hilbert spaces. A single-mode electromagnetic field has a specific spatial distribution of the electric field decided by the geometry of the cavity and the boundary conditions. The Hamiltonian for a single-mode field is

\[\hat{H} = \hbar \omega \left(\hat{a}^\dagger \hat{a} + \frac{1}{2} \right). \]

(11)

The eigenvectors of this Hamiltonian are \(|n\rangle\) with corresponding energy eigenvalues \(E_n = (n + 1/2)\hbar \omega\). These eigenstates are called the number states or Fock states, the most fundamental quantum states of a single-mode electromagnetic field. The state \(|n\rangle\) represents the electromagnetic field having \(n\) photons. A consequence of the quantization of electromagnetic field is that the vacuum state has nonzero energy, a feature which has no classical counterpart. The state \(|0\rangle\) represents the vacuum state with energy \(E_0 = 1/2\hbar \omega\). Being the eigenstates of the self-adjoint operator \(\hat{H}\), the number states \(|n\rangle\) form a complete basis for the Hilbert space associated with the single-mode field. Hence, any state of that single-mode field can be expressed as a superposition of the number states. Suitable superpositions of these number states generate many important quantum states such as the coherent states \([113, 114]\), Schrödinger-cat states \([115]\), squeezed states \([116, 117]\), photon-added coherent states \([118]\), displaced number states \([119]\), number state filtered coherent states \([120, 121]\), nonlinear coherent states \([122–125]\), etc. Preparation of these nonclassical states in cavities is of current interest because of their usefulness in basic studies, quantum information applications \([126–128]\) and quantum metrology \([121, 129–131]\). Many theoretical proposals have been suggested to generate Fock states with arbitrary number of photons \([132–146]\). Fock states with photon number up to \(n = 1\) \([147]\), \(2\) \([148–150]\), \(7\) \([151]\) and \(15\) \([152]\) have been reported to have been realized in cavity experiments. Some of the theoretical proposals include generation of squeezed states \([153–156]\), superposition of coherent states \([157–161]\), arbitrary superposition of number states \([162–169]\), number state filtered coherent state \([120]\), etc., in cavities. However, experimental generation of few of these states such as squeezed states \([170]\) and superposition of coherent states \([109, 171, 172]\) in cavities have been reported. An experimental challenge is to retain the states for long time, made difficult due to the finite lifetime of photons inside the cavity, and hence, a feedback mechanism is necessary to retain the nonclassical states for a long time \([148, 173, 174]\).

2.3 Cavity quantum electrodynamics (QED)

A single atom in free space interacts with a continuum of modes of electromagnetic field. If the atomic and field frequencies match, then there is a high probability of photon absorption by the atom. On de-excitation from a higher energy level to a lower energy level, the atom emits a photon. This is an irreversible process in free space. The rate of emission is decided by the density of modes \(T\). In three dimensions, the density of modes is proportional to \(\omega^2\), where \(\omega\) is the frequency of electromagnetic field mode \([49]\). Interaction between the atom and the field can be tailored by modifying the mode density, which is possible by placing the raising and lowering operators of the atom. \(g\) is the atom–field coupling strength. The states \(|e\rangle\) and \(|g\rangle\) represent the excited and ground states of the atom, respectively. The Hamiltonian that describes the interaction of an atom with a single-mode cavity field is \([212, 213]\)

\[\hat{H}_R = \frac{1}{2} \hbar \omega_0 \hat{\sigma}_z + \hbar g (\hat{\sigma}_+ \hat{a} + \hat{\sigma}_- \hat{a}^\dagger). \]

(12)

called the Rabi Hamiltonian. Here, \(\hat{\sigma}_z = |e\rangle\langle e| - |g\rangle\langle g|\) is the atomic energy operator, \(\hat{\sigma}_+ = |e\rangle\langle g|\) and \(\hat{\sigma}_- = |g\rangle\langle e|\) are, respectively, the raising and lowering operators of the atom, \(g\) is the atom–field coupling strength. The states \(|e\rangle\) and \(|g\rangle\) represent the excited and ground states of the atom, respectively. This Hamiltonian contains the fast-oscillating terms \(\hat{\sigma}_+ \hat{a}^\dagger\) and \(\hat{\sigma}_- \hat{a}\). In the interaction picture, these terms exhibit a very fast oscillation \(\sim e^{i(\omega_0 + \omega)t}\) compared to \(\hat{\sigma}_+ \hat{a}^\dagger\) and \(\hat{\sigma}_- \hat{a}\) which oscillate like \(\sim e^{i(\omega_0 - \omega)t}\). Hence, under resonance (\(\omega_0 = \omega\)) and small coupling strength (\(g << \omega, \omega_0\)), the fast-oscillating terms can be neglected from the
Hamiltonian. This approximation is called rotating-wave approximation (RWA). Therefore, the Hamiltonian, given in Eq. (12), in the weak coupling limit becomes

$$\hat{H}_{JC} = \frac{1}{2} \hbar \omega_0 \sigma_z + \hbar \omega \hat{a}^\dagger \hat{a} + \hbar \sigma_x \hat{a} + \sigma_- \hat{a}^\dagger,$$

(13)
called the Jaynes–Cummings Hamiltonian [214]. On resonance, that is, \(\omega_0 = \omega\) and for a given photon number \(n\), the energy eigenvalues of \(\hat{H}_{JC}\) are

$$E_\pm(n) = \left(n + \frac{1}{2}\right) \hbar \omega \pm \hbar \sqrt{n + 1},$$

(14)
and their corresponding eigenvectors are

$$|\Psi_\pm_n\rangle = \frac{1}{\sqrt{2}} (|e, n\rangle \pm |g, n + 1\rangle).$$

(15)

There are many experimental observations of the emergence of these states in a coupled atom–cavity system [215–218]. As can be seen from Eq. (14) and Fig. 3, eigenvalues are not equally spaced and they have \(\sqrt{n}\) dependent scaling which gives rise to a strong nonlinearity in the system. The \(\sqrt{n}\) scaling of the eigenvalues experimentally has been observed [219]. According to Eq. (15), if the atom–cavity system is initially in the state \(|e, n\rangle\), it oscillates in time between the states \(|e, n\rangle\) and \(|g, n + 1\rangle\) with at frequency \(2g \sqrt{n + 1}\) which is the \(n\)-photon Rabi frequency [220]. Rabi oscillation of an atom inside a cavity is observed experimentally by several groups [148, 221, 222]. If the initial state of the cavity field is a coherent state \(|\alpha\rangle\), then the atomic population inversion shows collapses and revivals [223, 224]. The existence of these revivals provides direct evidence for the quantum nature of the field [225–228]. Some other interesting phenomena such as the vacuum-Rabi splitting [229–235], photon blockade [190, 210, 236–240], photon bunching and anti-bunching [191, 191, 241, 241–245], sub-Poissonian and super-Poissonian photon statistics [246–248], etc., could be realized by driving the atom–cavity system. Such system allows to engineer various quantum states of the electromagnetic field in a cavity [73, 109, 120, 132, 137, 139–145, 153–161, 249–252]. However, some of the aforementioned phenomena require ultra-strong coupling between the atom and cavity [253]. Reported experimental values of atom–cavity coupling strength are given in Table 2. For more information on cavity QED, many excellent reviews are available [246, 254, 255].

Another regime of coupling that is important in cavity QED is dispersive coupling in which the nonresonant, rather than the resonant, interactions with the field are required. In the dispersive limit, i.e., \((\omega_0 - \omega) \gg g\), the Jaynes–Cummings Hamiltonian becomes [171]

$$\hat{H}_{Disp} = \frac{\hbar \omega_0}{2} \sigma_z + \hbar \omega \hat{a}^\dagger \hat{a} + \hbar \chi (\hat{a} \sigma_x + \sigma_- \hat{a}^\dagger),$$

(16)
where \(\chi = g^2 / (\omega_0 - \omega)\) is the dispersive coupling strength. The reported experimental values of \(\chi\) are given in Table 3. Due to the large detuning, the atom and the field do not exchange energy. However, this interaction produces state-dependent shift in the frequency of the atom or cavity [171, 172]. There are several advantages of nonresonant atom–field interactions than the resonant one. For example, generation of cat states [171, 172] and superposition of number states [144], nondemolition measurement of photon number [171], atomic entanglement measurement [256], realization of quantum phase gate [257, 258], generation of optical nonlinearity [259], control of heat transfer [260], generation of highly bunched photons [261], reading single-qubit states [262], demonstration of universal quantum copying machine [263], etc., are possible with nonresonant interaction.

Fig. 3 Few lowest energy levels of atom–cavity system for \(g = 0\) (left) and \(g \neq 0\) (right) with zero detuning
Table 2: Reported experimental parameters in atom–cavity system

References	Atom–cavity coupling strength (g/2π)	Atomic decay rate (γ/2π)	Cavity decay rate (κ/2π)
Turchette et al. [188]	20 MHz	2.5 MHz	75 MHz
McKeever et al. [189]	16 MHz	2.6 MHz	4.2 MHz
Birnbaum et al. [190]	34 MHz	2.6 MHz	4.1 MHz
Henrich et al. [191]	2.5 MHz	3 MHz	1.25 MHz
Boozer et al. [192]	34 MHz	2.6 MHz	4.1 MHz
Aoki et al. [193]	50 MHz	2.6 MHz	17.9 MHz
Hijlkema et al. [194]	5 MHz	3 MHz	5 MHz
Fortier et al. [195]	17 MHz	6 MHz	7 MHz
Dayan et al. [196]	70 MHz	2.6 MHz	165 MHz
Terraciano et al. [197]	1.5 MHz	6 MHz	3.2 MHz
Mucke et al. [198]	4.5 MHz	3 MHz	2.9 MHz
Specht et al. [199]	5 MHz	3 MHz	2.5 MHz
Koch et al. [200]	16 MHz	3 MHz	1.5 MHz
Zhang et al. [201]	23.9 MHz	2.6 MHz	2.6 MHz
Ritter et al. [202]	5 MHz	3 MHz	3 MHz
Reiserer et al. [203]	6.7 MHz	3 MHz	2.5 MHz
Tiecke et al. [204]	0.5 GHz	6 MHz	25 GHz
Mlynek et al. [205]	3.7 MHz	0.27 MHz	43 MHz
Hacker et al. [206, 207]	7.8 MHz	3 MHz	2.5 MHz
Yang et al. [208, 209]	5.5 MHz	2.6 MHz	3.7 MHz
Hansen et al. [210]	20 MHz	3 MHz	2 MHz
Muniz et al. [211]	10.9 kHz	7.5 kHz	153 kHz

Table 3: Reported values of dispersive coupling strengths in experiments

References	System	Dispersive coupling strengths (χ/2π)
Kirchmair et al. [264]	Superconducting cavity- transmon qubit	9.4 MHz
Heeres et al. [257]	Superconducting cavity- transmon qubit	8.28 MHz
Inomata et al. [265]	Waveguide resonator-superconducting flux qubit	40 MHz
Mallet et al. [266]	Coplanar resonator-transmon qubit	2.175 MHz
Schuster et al. [267]	Coplanar waveguide cavity- Cooper pair box	8.5 MHz
Kono et al. [268]	3D superconducting cavity- transmon qubit	1.50 MHz
Vlastakis et al. [172]	Waveguide cavity resonator- transmon qubit	2.4 MHz
Mirhosseini et al. [269]	Waveguide cavity resonator- transmon qubit	2.05 MHz

2.4 Kerr medium inside a cavity

Energy levels of the quantized electromagnetic field in an empty cavity are equispaced. Unequal differences between successive levels or anharmonicity arise on incorporating a nonlinear medium, especially, Kerr medium inside the cavity. The cavity with Kerr nonlinearity is referred as ‘Kerr cavity’ in subsequent discussions. Consider a driven cavity containing a nonlinear dispersive medium. Polarization of the medium is [270]

\[
P = \chi^{(1)}E + \chi^{(2)}EE + \chi^{(3)}EEE + \cdots,\tag{17}
\]

where \(\chi^{(n)}\) is \((n + 1)\)th rank susceptibility tensor. The energy of the electromagnetic field inside the cavity is

\[
H = \int_V d^3r \frac{1}{2} (\vec{D} \cdot \vec{E} + \vec{H} \cdot \vec{B}),\tag{18}
\]
where V is the modal volume, $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ and $\vec{H} = 1/\mu_0 \vec{B}$. If the field is propagating along z-direction and polarization is along the x-direction, then $\vec{E} = (E(z, t), 0, 0)$, $\vec{B} = (0, B(z, t), 0)$, $\vec{H} = (0, 1/\mu_0 B(z, t), 0)$ and the electric flux density $\vec{D} = (\epsilon_0 E + P, 0, 0)$. If the medium is centrosymmetric and the driving is intense, then the third-order nonlinearity $\chi^{(3)}$ is larger than the linear susceptibility $\chi^{(1)}$ and second-order susceptibility $\chi^{(2)}$. With this assumption, the Hamiltonian given in Eq. (18) can be written as [271]

$$H = \int_V d^3r \frac{1}{2} \left[\left(\epsilon E^2 + \frac{1}{\mu_0} B^2 \right) + \chi^{(3)} E^4 \right].$$

(19)

Under RWA, the above Hamiltonian becomes [272]

$$\hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a} + \hbar \chi \hat{a}^{\dagger 2} \hat{a}^2,$$

(20)

where

$$\chi = \frac{3\hbar \omega^2}{8\epsilon_0^2} \int \chi^{(3)} |u(r)|^4 d^3r = \frac{3\hbar \omega^2 \chi^{(3)}}{4\epsilon_0 V_{\text{eff}} \epsilon_r^2},$$

(21)

is the strength of Kerr nonlinearity. The mode function $u(r)$ satisfies $\int [u^*(r)(1 + \chi^{(3)}/\epsilon) u(r)] d^3r = 1$. Experimentally reported values of $\chi^{(3)}$ and χ are listed in Tables 4 and 5. Few more values of $\chi^{(3)}$ of various materials can be found in Ref. [273, 274].

The energy of n photons in the presence of Kerr nonlinearity is $\langle n | H | n \rangle = n \hbar \omega + n(n - 1) \hbar \chi$. As can be seen from Fig. 4, the energy of the electromagnetic field in a Kerr cavity is proportional to the square of number of photons and the energy level becomes anharmonic [259, 275, 279, 280]. Anharmonicity in the energy levels results in strong photon–photon interaction that gives rise to various interesting phenomena such as the photon blockade [190, 236, 259, 281–285], bunching and antibunching of photons [245, 286], slow light propagation [287], etc. The anharmonicity in the energy levels is used for demonstrating quantum gates [271, 288], engineering quantum states [289], processing quantum information [290] and the realization of strongly correlated states of light and matter [291, 292], etc.

Table 4 Reported values of Kerr coefficients $\chi^{(3)}$

References	System	Nonlinear strength (m^2/V^2)
Fushman et al.	InAs quantum dot in photonic crystal	2.4×10^{-10}
Wang et al.	J-aggregate cyanine molecules in Fabry–Perot cavity	0.747×10^{-17}
Woodward et al.	Monolayer MoS$_2$	2.4×10^{-19}
Youngblood et al.	Black Phosphorus	1.4×10^{-19}

Table 5 Reported values of Kerr nonlinearity strength (χ)

References	System	Nonlinear strength $(\chi/2\pi)$
Kirchmair et al.	Superconducting cavity- transmon qubit	0.32 MHz
Heeres et al.	Superconducting cavity- transmon qubit	0.1 MHz
Vrajitoarea et al.	Superconducting microwave cavities	12.5 MHz

Fig. 4 Few lowest energy levels of the field in a Kerr cavity for $\chi = 0$ (left) and $\chi \neq 0$ (right)
2.5 Circuit quantum electrodynamics (CQED)

A brief mention of circuit quantum electrodynamics (CQED) is apt here as there are many commonalities between CQED and cavity QED. Some obvious advantages are the possibility of tunability and higher strength of qubit-field interaction compared to atom–cavity systems [59]. In its basic form, a circuit QED configuration (Fig. 5) is a Cooper-pair box (CPB) enclosed in a coplanar waveguide resonator that supports a microwave field. Here, CPB is the “artificial atom”, as it plays the role analogous to that of the atom in a cavity QED setup. The Hamiltonian for the system is [293]

\[\hat{H}_{\text{CQED}} = 4E_c \hat{N}^2 - E_J \cos \hat{\phi} - \hbar \omega \hat{a} \hat{a}^\dagger. \]

(22)

The first term corresponds to the square of the number of charges in CPB. This term arises as the energy associated with a capacitor is proportional to the square of the charge on the capacitor. The second term whose strength is \(E_J \) is the Josephson junction energy, and \(\hat{\phi} \) is the operator corresponding to the phase difference across the junction. The last term in the Hamiltonian is to account for field mode.

Writing the operators \(\hat{\phi} \) and \(\hat{N} \) in terms of creation and annihilation operators

\[\hat{\phi} = \left(\frac{2E_c}{E_J} \right) \left(\hat{b}^\dagger + \hat{b} \right), \]

(23)

\[\hat{N} = \frac{i}{2} \left(\frac{E_J}{2E_c} \right) \left(\hat{b}^\dagger - \hat{b} \right), \]

(24)

and invoking rotating-wave approximation, one can recast Eq. (22) to [294]

\[\hat{H}_{\text{CQED}} \approx \hbar \omega \hat{a} \hat{a}^\dagger + \hbar \omega \hat{a} \hat{a} + \hbar g (\hat{b}^\dagger \hat{a} + \hat{b} \hat{a}^\dagger). \]

(25)

This Hamiltonian is analogous to the Hamiltonian for two coupled cavities in which one of the cavities contains a Kerr medium.

To make the above Hamiltonian analogy with cavity QED Hamiltonian, we need to restrict the description of the transmon to its first two levels. Hence, replacing \(\hat{b} \rightarrow \hat{\sigma}_- = |g\rangle \langle e| \) and \(\hat{b}^\dagger \rightarrow \hat{\sigma}_+ = |e\rangle \langle g| \), we get the Jaynes–Cummings Hamiltonian [294]

\[\hat{H}_{\text{JC}} = \frac{1}{2} \hbar \omega_q \hat{\sigma}_z + \hbar \omega \hat{a} \hat{a}^\dagger + \hbar g (\hat{\sigma}_+ \hat{a} + \hat{\sigma}_- \hat{a}^\dagger). \]

(26)

where \(g \) is the coupling strength between the oscillator and transmon. Detailed review on circuit QED can be found in Refs. [59, 293–295].

3 Two coupled cavities

Technological progress in the fabrication of high-\(Q \) cavities has rendered it possible to couple several cavities to build an extended quantum network [43, 54, 56, 296, 297]. The coupling between two distant cavities is important for building photonic integrated circuits [298]. A simple coupled system is a two coupled cavities [299–304], as can be seen in Fig. 6. The two cavities must be placed very close to each other (within a few wavelengths) such that the evanescent fields of photons of both the cavities overlap.

![Fig. 5 Schematic of superconducting coplanar waveguide capacitively coupled to a Cooper-pair box qubit. The figure is reproduced from Ref. [60] with permission from American Physical Society](image)
Fig. 6 Two cavities are arranged in close proximity so as to exchange photons among them is possible. The coupling strengths are J.

Table 6 Reported experimental values of parameters in coupled cavities

References	System	Resonance frequencies (Hz)	Coupling strengths (Hz)
Sato et al. [298]	Silicon-based photonic crystal cavities	1.93×10^{14}	5.8×10^{10}
Majumdar et al. [56]	GaAs photonic crystal cavities	3.33×10^{14}	1.3×10^{12}
Majumdar et al. [108]	GaAs photonic crystal cavities	1.169×10^{14}	11×10^{10}
Cai et al. [309]	GaAs photonic crystal cavities	3.15×10^{14}	18×10^{9}
Konoike et al. [310–312]	Si photonic crystal nanocavities	1.9×10^{14}	25×10^{9}
Du et al. [313]	Silicon-on-insulator nanobeam photonic molecule	1.9×10^{14}	1.9×10^{12}

The rate of exchange of energy depends on the coupling strength (J) which, in turn, depends on the overlap of the spatial profiles of resonant modes [70, 306]. The interaction Hamiltonian for the cavities coupled via evanescent waves is [307, 308]

$$H_{int} = \int \epsilon E_1 E_2^\dagger dV,$$ \hspace{1cm} (27)

where ϵ is the relative permittivity profile for the coupled cavities, and E_1 and E_2 represent the electric fields of these cavities. The range of integration extends over the volume of the coupled cavities. The two cavities are considered to be nonideal in a sense their electric field distributions extend beyond the cavity boundaries. If the cavities are ideal, then the electric fields are confined within the respective cavities and the interaction energy vanishes. Using the expression of single-mode electric field of the individual cavities $\hat{E}_j = \sqrt{\frac{\hbar \omega_1 \omega_2 \epsilon}{2\epsilon_0 \epsilon_1 \epsilon_2 V_j}} (\hat{a}_j + \hat{a}_j^\dagger) u_j(z)$, the interaction Hamiltonian given in Eq. (27) can be written as:

$$\hat{H}_{int} = \sqrt{\frac{\hbar^2 \omega_1 \omega_2 \epsilon}{4\epsilon_0 \epsilon_1 \epsilon_2 V_1 V_2}} \int (\hat{a}_1 + \hat{a}_1^\dagger)(\hat{a}_2 + \hat{a}_2^\dagger) u_1(z) u_2^\dagger(z) dV,$$

$$= hJ(\hat{a}_1 + \hat{a}_1^\dagger)(\hat{a}_2 + \hat{a}_2^\dagger),$$ \hspace{1cm} (28)

where

$$J = \sqrt{\frac{\omega_1}{2\epsilon_0 \epsilon_1 V_1}} \sqrt{\frac{\omega_2}{2\epsilon_0 \epsilon_2 V_2}} \int \epsilon u_1(z) u_2^\dagger(z) dV,$$ \hspace{1cm} (29)

is the coupling strength between the cavities. Here, $u_j(z)$ is the mode function of the jth cavity in the absence of other cavity, ϵ_j is the relative permittivity of the medium present and V_j is the mode volume of the jth cavity, respectively. Reported experimentally achievable values of J in various coupled-cavity configurations are given in Table 6.

Coupling between cavities is also possible through inductive coupling, capacitative coupling [314], waveguide coupling [298], etc., and also through various other mechanisms [56, 305, 309, 313]. However, to build a large-scale array, coupling between two distant cavities is essential which is possible through the waveguide coupling. But to realize strong coupling between the cavities, it is necessary to choose the cavity and waveguide parameters such that they satisfy mode-mismatch conditions $\delta_m \ll \Delta_{FP}$ and $2\theta_e \approx (2m + 1)\pi$ [298], where δ_m is the coupling bandwidth which decides the decay rate of photons from the cavity to the waveguide, Δ_{FP} is the free spectral range and θ_e represents the propagation phase of the waveguide. When these two conditions are satisfied, photons from the cavity hardly leak out to the waveguide. But the two cavities are still be coupled indirectly through a forced oscillation of the waveguide modes [298]. Essentially, photons from one cavity flow to the other cavity without populating the waveguide mode. Recently, strong coupling between two cavities has been demonstrated experimentally even though the distance between them exceeded 100 wavelengths [298].
The total Hamiltonian for the coupled cavities is

\[\hat{H} = \hbar \omega_1 \hat{a}_1^\dagger \hat{a}_1 + \hbar \omega_2 \hat{a}_2^\dagger \hat{a}_2 + \hbar J (\hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_1). \]

(30)

where \(\omega_1 \) and \(\omega_2 \) are the resonance frequencies of the first and second cavities, respectively. Under RWA, the above Hamiltonian reduces to [315, 316]

\[\hat{H} = \hbar \omega_1 \hat{a}_1^\dagger \hat{a}_1 + \hbar \omega_2 \hat{a}_2^\dagger \hat{a}_2 + \hbar J (\hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_1). \]

(31)

For this Hamiltonian, the excitation number operator \(\hat{N} = \hat{a}_1^\dagger \hat{a}_1 + \hat{a}_2^\dagger \hat{a}_2 \) is a conserved quantity, i.e., \([\hat{H}, \hat{N}] = 0\). The unitary dynamics due to \(\hat{H} \) is restricted to respective invariant subspaces corresponding to the photon numbers.

Under resonance condition \((\omega_1 = \omega_2 = \omega) \), the equations of motion of annihilation operators of the respective cavities are

\[\dot{\hat{a}}_1 = -i \omega \hat{a}_1 - i J \hat{a}_2, \]

(32)

\[\dot{\hat{a}}_2 = -i \omega \hat{a}_2 - i J \hat{a}_1. \]

(33)

By solving these two coupled differential equations, we get the time dynamics of the number operators for individual cavities to be

\[\langle \hat{a}_1^\dagger \hat{a}_1(t) \rangle = \cos J t \langle \hat{a}_1^\dagger \hat{a}_1(0) \rangle - i \sin J t \langle \hat{a}_2^\dagger \hat{a}_2(0) \rangle, \]

(34)

\[\langle \hat{a}_2^\dagger \hat{a}_2(t) \rangle = \cos J t \langle \hat{a}_2^\dagger \hat{a}_2(0) \rangle - i \sin J t \langle \hat{a}_1^\dagger \hat{a}_1(0) \rangle. \]

(35)

Hence, a field whose average number of photons is \(n \) initially in the first cavity will evolve so that the photons are completely transferred to the second cavity at time \(t = \pi/2 J \) and again return to the first cavity at time \(t = \pi/ J \). The oscillation of the field between the cavities is called Rabi oscillation. For coupled cavities, the Rabi oscillation frequency is \(2J \). Recently, Rabi oscillation with a period of 54 ps between two photonic crystal cavities has been observed experimentally [298].

If the cavities are not resonant \((\omega_1 = \omega_2 \neq \omega) \), then the complete transfer of the photons does not occur. For large detuning \((\Delta = \omega_1 - \omega_2 \gg J) \), all the photons will get localized in its initial cavity and the transfer of photons to the other cavity does not happen [298]. Hence, detuning allows controlled transfer of photons between the cavities, which is experimentally demonstrated by Sato et al. [298]. Thus, the tuning of resonance frequencies enables remote control of photon transfer. There exist many ways of tuning the resonance frequencies such as nanofluidic tuning [317, 318], nonlinear optical tuning [319], thermo-optic tuning [320], nano-mechanical tuning [321], and photochromic tuning [309]. However, controlled transfer photons between two nonresonant cavities are possible by suitably choosing the values of detuning and coupling strength \(J \) or including Kerr nonlinearity [40, 79]. And, recently, Konoike et al. have been experimentally demonstrated the adiabatic transfer of photons between two nonresonant cavities by adding one intermediate cavity [311, 322].

4 Coupled cavity array

The Hamiltonian given in Eq. (31) can be extended to describe an array with a large number of cavities. Consider a system \(N \) linearly coupled cavities. The Hamiltonian for the system is \((\hbar = 1)\)

\[\hat{H} = \sum_{l=1}^{N} \omega_l \hat{a}_l^\dagger \hat{a}_l + \sum_{l=1}^{N-1} J_l (\hat{a}_l^\dagger \hat{a}_{l+1} + \hat{a}_{l+1}^\dagger \hat{a}_l), \]

(36)

where \(\hat{a}_l \) and \(\hat{a}_l^\dagger \) are, respectively, the annihilation and creation operators, and \(\omega_l \) is the resonance frequency of the \(l \)th cavity. The coupling strength between the \(l \)th and \((l + 1) \)th cavities is \(J_l \).

4.1 Transfer of photons

Perfect transfer of photons in a cavity array is essential for quantum state transfer and entanglement generation. In this subsection, we discuss the possibility of perfect transfer of photons through the array. The transfer is said to be perfect if the probability of transfer to the target cavity is unity.

Consider the simplest situation where all the coupling strengths \(J_l \) are equal \((= J)\) and all the resonance frequencies are equal \((= \omega)\), then the Hamiltonian given in Eq. (36) becomes:

\[\hat{H} = \omega \sum_{l=1}^{N} \hat{a}_l^\dagger \hat{a}_l + J \sum_{l=1}^{N-1} (\hat{a}_l^\dagger \hat{a}_{l+1} + \hat{a}_{l+1}^\dagger \hat{a}_l). \]

(37)
This Hamiltonian conserves the number of excitations as $\{\hat{H}, \sum_{j=1}^{N} \hat{a}_j^\dagger \hat{a}_j\} = 0$ and hence, the Hamiltonian can be diagonalized in the subspace corresponding to a given excitation number. Defining normal mode operators for the cavity array

$$\hat{c}_k(t) = \sum_{j=1}^{N} \hat{a}_j(t)S(j, k),$$

(38)

the inverse transformation is

$$\hat{a}_j(t) = \sum_{k=1}^{N} \hat{c}_k(t)S(j, k).$$

(39)

The transformation matrix $S(j, k)$ is

$$S(j, k) = \sqrt{\frac{2}{N+1}} \sin\left(\frac{j\pi k}{N+1}\right).$$

(40)

Using the orthogonality relation

$$\sum_{j=1}^{N} \sin\left(\frac{j\pi k}{N+1}\right) \sin\left(\frac{j\pi m}{N+1}\right) = \frac{N+1}{2} \delta_{km},$$

(41)

we write the Hamiltonian given in Eq. (37) to be

$$\hat{H} = \sum_{k=1}^{N} \Omega_k \hat{c}_k^\dagger \hat{c}_k,$$

(42)

where \hat{c}_k and \hat{c}_k^\dagger are the creation and annihilation operators for the kth normal mode. The Hamiltonian in the normal mode coordinates corresponds to a collection of independent oscillators. The normal mode frequencies are

$$\Omega_k = \left(\omega + 2J \cos\frac{\pi k}{N+1}\right), \quad k = 1, 2, 3, \ldots, N.$$

(43)

The evolution equation for kth normal mode operator is:

$$\frac{d}{dt} \hat{c}_k = i[H, \hat{c}_k] = i\left[\sum_{n=1}^{N} \Omega_n \hat{c}_n^\dagger \hat{c}_n, \hat{c}_k\right] = -i\Omega_k \hat{c}_k.$$

(44)

The solution of the above equation is:

$$\hat{c}_k(t) = e^{-i\Omega_k t} \hat{c}_k(0).$$

(45)

Using the inverse transformation given in Eq. (39), the annihilation operator for the jth mode is

$$\hat{a}_j(t) = \sum_{l=1}^{N} \sum_{k=1}^{N} e^{-i\Omega_k t} \hat{a}_l(0)S(l, k)S(j, k).$$

(46)

The average number of photons in the jth cavity at time t is given by:

$$\langle n_j(t) \rangle = \langle \hat{a}_j^\dagger \hat{a}_j(t) \rangle = \sum_{l=1}^{N} |G_{jl}|^2 \langle \hat{a}_l^\dagger(0) \hat{a}_l(0) \rangle,$$

(47)

where

$$G_{jl} = \frac{2}{N+1} \sum_{k=1}^{N} e^{-i\Omega_k t} \sin\left(\frac{j\pi k}{N+1}\right) \sin\left(\frac{l\pi k}{N+1}\right).$$

(48)

Consider a single photon in the first cavity, that is, $\langle \hat{a}_1^\dagger \hat{a}_1(0) \rangle = \delta_{1,1}$. Then, the average photon number in the last cavity is

$$\langle n_N(t) \rangle = \langle \hat{a}_N^\dagger \hat{a}_N(t) \rangle = |G_{N1}|^2$$

$$= \left| \frac{2}{N+1} \sum_{k=1}^{N} e^{-i\Omega_k t} \sin\left(\frac{N\pi k}{N+1}\right) \sin\left(\frac{\pi k}{N+1}\right) \right|^2.$$

(49)

Time evolution $\langle n_N \rangle$ for arrays with $N = 3, 4, 5$ and 10 cavities, respectively, are shown in Fig. 7. From the figure, it is clear that complete transfer, that is, $\max\{\langle n_N(t) \rangle\} = 1$ occurs if the array has three cavities [40, 323–326]. Maximum of $|G_{N1}|^2$ decreases
Fig. 7 Average number of photon in the end cavity as a function of ωt in a resonantly coupled cavities with equal coupling strengths. The array contains N number of cavities with $N=3$ (solid line), 4 (dashed), 5 (dotted) and 10 (dot-dashed). We set $J/\omega = 0.01$.

Fig. 8 Normal mode frequencies for $N=2$, 3, 4 and 10. We set $J/\omega = 0.01$.

with increasing number of cavities. This is inferred from Eq. (48) on noting that for large N, $\sin(Nk\pi/N + 1) \approx \sin(k\pi) = 0$ and G_{N1} tends to zero. What happens in the limit of large N is that during the time evolution a single photon is shared by all the cavities. Hence, detecting the photon in any of the cavities with unit probability is not possible. In order to understand the transfer behavior of the array, the normal mode frequencies Ω_k given in Eq. (43) are plotted in Fig. 8. For two cavities, the normal mode frequencies are $\Omega_1 = \omega + J$ and $\Omega_2 = \omega - J$ which lie on a straight line. Similarly, the normal mode frequencies for three cavities are $\Omega_1 = \omega + \sqrt{2} J$, $\Omega_2 = \omega$, and $\Omega_3 = \omega - \sqrt{2} J$. These are also collinear. However, for $N \geq 4$, the dispersion relation becomes nonlinear. Due to this nonlinear dispersion relation, propagation of photons suffers dispersion and the complete transfer does not occur for $N > 3$ (refer Fig. 7). Thus, homogeneous coupling does not provide perfect transfer of a photon in the array having more than three cavities.

Perfect transfer of photons demands a correct combination of the coupling strengths in the array. A form of site-dependent coupling strengths that provide perfect transfer of photons is [27–29, 39, 40, 71, 327]

$$J_l = \sqrt{l(N-l)} J,$$

where J is a constant and N is the number of cavities in the array. This form of coupling strength has been considered in the context of transferring quantum states in spin chain [324]. However, it is also possible to derive the above coupling strengths from a duality relation between “$N-1$ photons in two coupled cavities” and “single photon in N cavities” [40]. The Hamiltonian given in Eq. (36) becomes

$$\hat{H} = \sum_{l=1}^{N} \omega_l \hat{a}_l^{\dagger} \hat{a}_l + \sum_{l=1}^{N-1} \sqrt{l(N-l)} J (\hat{a}_l^{\dagger} \hat{a}_{l+1} + \hat{a}_l \hat{a}_{l+1}^{\dagger}).$$
If the cavities are resonant, the eigenvectors of the Hamiltonian in single-photon subspace are [40]

\[|X_{n+1}⟩ = \frac{1}{\sqrt{2N-1}} \sum_{k=0}^{N-1-n} \sum_{k’=0}^{n} (-1)^{k} N^{-1-n} C_k \times n C_{k’} √ \frac{N-1}{2} C_{r} (r+1), \]

(52)

with eigenvalues \(E_{n+1} = (N - 1)ω + (N - 1 - 2n)J \), where \(r = n + k - k’ \) and \(n = 0, 1, \ldots, N - 1 \). Here, the state \(|r+1⟩ \) represents the state to having a single photon in the \((r+1)\)th cavity and other cavities are in their respective vacua. Now, consider a photon in the first cavity and the other cavities in vacuum as the initial state, then the initial state is \(|1⟩|0⟩\ldots|0⟩ \). The state at later times is

\[e^{-iHt}|1⟩ = e^{-iHt}|0⟩\ldots|0⟩ = e^{-i\omega t} \sum_{k=0}^{N-1} \left(\frac{N-1}{k} \right) (\cos Jt)^{N-1-k} (-i \sin Jt)^{k+1} |k⟩. \]

(53)

The probability of finding the photon at the end of the array, that is, in \(N \)th cavity is

\[P = |⟨⟨N|e^{-iHt}|1⟩|\rangle|^2 = (\sin^2 Jt)^{N-1}. \]

(54)

It is to be noted that the probability \(P \) becomes unity at \(t = π/2J \), which corresponds to the perfect transfer of the photon from the first cavity to the last cavity. Hence, the choice of coupling strengths given in Eq. (50) allows the perfect transfer of a photon through the cavity. This comes from the fact that, in contrast to the homogeneous coupling, the site-dependent couplings make the Rabi oscillation between the cavities \((0th \) cavity) and \((N-1)th \) cavity). Cavities were fabricated in a two-dimensional photonic crystal. The coupling strength between the cavities \(A \) and \(C \) was \(25 \) GHz and between \(B \) and \(C \) was \(16 \) GHz. If the resonance frequencies of the cavities satisfy \(ω_C < ω_A < ω_B \), then the Rabi oscillation between the cavities \(A \) and \(B \) is suppressed. Under these conditions, if the photons are initially in cavity \(A \), they remain in cavity \(A \). Now, increasing the resonance frequency of cavity \(C \), slow enough in time to be adiabatic, the photons from cavity \(A \) transferred to cavity \(B \). In the experiment, the maximum transfer efficiency was 90%.

In an infinite array, tuning the resonance frequency of one of the cavities in the array, the reflection (transmission) of a photon between two end cavities, but also allow perfect transfer between two symmetrically located cavities in the array, that is, from \(lth \) cavity to \((N - 1 - l)th \) cavity [27, 40, 71]. Interestingly, transfer of a photon is controllable between any two arbitrary cavities if Kerr nonlinearity is included in the cavities [40].

4.2 Controllable photon transfer

Controlled transfer of photons is essential for transferring information between selected nodes in a quantum network. To control the transfer, one may require to tune the resonance frequencies [328, 329] or coupling strengths [330, 331] of the array, or embedding material medium such as atoms [332–345] or Kerr nonlinearity [37, 40, 79, 259, 271, 279, 291, 292, 346–351] in the array.

Recently, Konoike et al. have experimentally demonstrated the controlled transfer of photons from one cavity (\(A \)) to another cavity (\(B \)) by introducing an additional cavity (\(C \)) in the middle [311]. Cavities were fabricated in a two-dimensional photonic crystal. The coupling strength between the cavities \(A \) and \(C \) was \(25 \) GHz and between \(B \) and \(C \) was \(16 \) GHz. If the resonance frequencies of the cavities satisfy \(ω_C < ω_A < ω_B \), then the Rabi oscillation between the cavities \(A \) and \(B \) is suppressed. Under these conditions, if the photons are initially in cavity \(A \), they remain in cavity \(A \). Now, increasing the resonance frequency of cavity \(C \), slow enough in time to be adiabatic, the photons from cavity \(A \) transferred to cavity \(B \). In the experiment, the maximum transfer efficiency was 90%.

In an infinite array, tuning the resonance frequency of one of the cavities in the array, the reflection (transmission) of a photon towards the left (right) in the array can be controlled. The Hamiltonian of the array shown in Fig. 9(a) can be written as:

\[\hat{H} = ω \sum_j \hat{a}_j^† \hat{a}_j + λω \hat{a}_0^† \hat{a}_0 + J \sum_j (\hat{a}_j^† \hat{a}_{j+1} + \hat{a}_j \hat{a}_{j+1}^†). \]

(55)

The frequency of the middle cavity is detuned by an amount \(λω \). Using the discrete scattering method [332], one can derive the single-photon reflection coefficient to be [328]

\[R = \frac{(λω)^2}{4J^2 \sin^2 k + (λω)^2}, \]

(56)

where \(k \) is the wave vector of the incident photon. As can be seen from the above equation, if there is no detuning (\(λ = 0 \)), then the reflection coefficient \(R \) becomes zero and the photon is completely transmitted from one end to the other end. However, the reflection probability is controllable by tuning the parameter \(λ \), essentially the resonance frequency of the tuned cavity (0th cavity). In the same setup, if two cavities of the array are tuned, a supercavity is prepared that traps the photons in between the tuned cavities [328].

Similarly, instead of tuning the resonance frequency, tuning any one of the coupling strengths in a homogeneously coupled cavity array, one can control the transfer of a photon [352]. Let the Hamiltonian for the array shown in Fig. 9(b) be

\[\hat{H} = ω \sum_j \hat{a}_j^† \hat{a}_j + J \sum_j (\hat{a}_j^† \hat{a}_{j+1} + \hat{a}_j \hat{a}_{j+1}^†). \]
Fig. 9 Schematic of various array configurations for controlling photon transfer. (a) Middle cavity (0th cavity) of the homogeneously coupled cavity array is detuned from rest of the cavities by an amount of $\lambda \omega$. (b) The coupling strength between 0th cavity and 1st cavity is $J' = J + \lambda J$, while other cavities are coupled with their nearest cavities with the strength J. All the resonance frequencies of the cavities are equal. (c) The middle cavity of the homogeneously coupled cavity array is interacting with a two-level atom with the strength g. All the resonance frequencies of the cavities are equal $+$ $\lambda J(\hat{a}_0^\dagger \hat{a}_1 + \hat{a}_1 \hat{a}_0^\dagger)$.

As can be seen, the coupling strength between 0th cavity and 1st cavity is $J' = J + \lambda J$, which can be tuned by changing the value of λ. Thus, $\lambda = (J' - J)/J$. Using the scattering method, the reflection coefficient calculated to be [352]

$$R = \frac{\lambda^2(\lambda + 2)^2}{\lambda^2(\lambda + 2)^2 + 4(\lambda + 1)^2 \sin^2 k}.$$

Note that, R is unity for $\lambda = -1$, indicating perfect reflection and zero transmission. In this case, the tuned coupling strength becomes zero and the cavity array becomes two separated arrays, and therefore, no transfer is possible. For $\lambda = 0$, R becomes zero and complete transmission occurs ($T = 1 - R = 1$). Hence, the reflection coefficient R can be tuned from 0 to 1 by tuning the coupling strength through λ.

It is also possible to control the transfer of photons by placing an atom in any one of the cavities in the array [336, 353–363]. The presence of an atom in the array either reflects or transmits the photon depending on the detuning between the atom and cavity [332, 364, 365]. Thus, the atom acts as a switch. Consider an array of cavities in which the middle cavity (0th cavity) contains a two-level atom, as can be seen in Fig. 9c. The Hamiltonian for this configuration is:

$$\hat{H} = \omega \sum_j \hat{a}_j^\dagger \hat{a}_j + J \sum_j (\hat{a}_j \hat{a}_{j+1}^\dagger + \hat{a}_{j+1} \hat{a}_j^\dagger)$$

$$+ \omega_0 |e\rangle\langle e| + g(\hat{a}_0^\dagger |g\rangle\langle e| + \hat{a}_0 |e\rangle\langle g|).$$

The single-photon reflection coefficient is [332]

$$R = \frac{g^4}{4 J^2 \Delta^2 \sin^2 k + g^4},$$

where $\Delta = \omega - \omega_0 - 2J \cos k$ is the effective detuning and g is the atom–cavity coupling strength. For $\Delta = 0$, photon is completely reflected and the two-level atom behaves as a perfect mirror. The reflection coefficient can be controlled by tuning Δ. Therefore, the two-level system can be used as a quantum switch to control the coherent transport of photons. On the other hand, if the atom is strongly coupled to the middle cavity of the array in which the RWA picture breaks down; then, the transport property becomes quite different than that of the weak coupling case [326, 366, 367]. In the ultra-strong coupling regime, an incident photon deposits energy into the atom and escapes with a lower frequency [366]. The efficiency of this nonlinear process is 50%.

If the atom simultaneously interacts with two nearest cavities resonantly, then the array acts like a Mach–Zehnder interferometer [368]. As a result, the transmission and reflection spectra show interference pattern due to the lack of path information upon photon transfer. However, if the coupling between the atom and the two cavities is dispersive, then the reflection coefficient depends on the state of the atom [369]. For instance, if the atom is in its excited state, then the photon gets completely reflected, whereas the photon gets transmitted if the atom is in its ground state.
Extending the ideas of controlling the reflection and transmission of a photon by an atom in an array, quantum routers [370–383] are proposed by coupling two different cavity arrays in X-shape [384], T-shape [385–387], T-bulge-shape [388, 389], Π-shape [390], etc. Routing of photons allows to connect several quantum nodes to build a quantum network. Schematic of X-shape and T-shape quantum routers are shown in Fig. 10. The X-shape quantum router, proposed in Ref. [384], consists of two infinite-dimensional cavity arrays, and the middle cavities of both the array are simultaneously coupled to a cyclic three-level atom (Δ-type), which is driven by a classical laser field. Consider a wave with energy \(E \) is incident from one side of the array \(a \). Using the scattering approach, one gets the transmittance to the array \(b \) to be [384]

\[
T_b = \left| \frac{2iJ_a \sin k_a G}{[2iJ_a \sin k_a - V_a][2iJ_b \sin k_b - V_b] - G^2} \right|^2,
\]

where \(J_a \) and \(J_b \) are the coupling strengths between the cavities in the arrays \(a \) and \(b \), respectively. Also, \(V_a = Eg_a^2/(E^2 - \Omega^2) \), \(V_b = Eg_b^2/(E^2 - \Omega^2) \) and \(G = \Omega g_a g_b/(E^2 - \Omega^2) \), where \(g_a, g_b \) are the coupling strengths between the atom and the corresponding cavity of the arrays \(a \) and \(b \), respectively. \(\Omega \) is the driving strength of the laser field. As can be seen, in the absence of driving (\(\Omega = 0 \)), the transmittance \(T_b \) becomes zero. This indicates that the photon from the array \(a \) cannot flow to the array \(b \). However, in the presence of driving, the nonzero value of \(T_b \) indicates the photon routing from one array to the other array. Hence, the classical field redirects the photon into another channel. But one can see that the maximum rate of transfer does not exceed 0.5, which may limit the complete transfer of quantum information from a sender to a receiver. In order to enhance the transfer rate, T-shape [385–387] quantum router is proposed. In T-shape quantum router [385], one of the arrays is infinite-dimensional and other is semi-infinite (refer Fig. 10). The end cavity of the semi-infinite array and the middle cavity of the infinite array couple to a two-level atom. If a photon is incident to the array \(a \), then the transmittance to the array \(b \) is [385]

\[
T_b = \left| \frac{-2g_a g_b \sin k}{2J \sin k(E - \omega_0) + g_b^2 \sin 2k + i(g_a^2 + 2g_b^2 \sin^2 k)} \right|^2,
\]

which gives the maximum rate of transfer is 0.5. Here \(k = k_a = k_b \), and \(\omega_0 \) is the atomic transition frequency. However, when the photon is incident to the semi-infinite array \(b \), then the transmittance to the array \(a \) is [385]

\[
T_a = 2 \left| \frac{-2g_a g_b \sin k}{2J \sin k(E - \omega_0) + g_b^2 \sin 2k + i(g_a^2 + 2g_b^2 \sin^2 k)} \right|^2,
\]

In this case, \(T_b \) becomes unity indicating complete routing of photon from semi-infinite array to the infinite array. Hence, unidirectional high transfer probability of the incident photons is achieved from the semi-infinite channel to the infinite channel. But, the opposite direction transfer remains to be less than 0.5. There are other type quantum routers such as multi-T-shape [375, 391], Π-shape [390], T-bulge-shape [388, 389], six-port quantum router [392], asymmetrically coupled-cavities four-port quantum router [393], etc., are proposed for increasing the transfer rate to both sides.

The transport properties of photons in a finite number of cavities containing Kerr nonlinearity are also investigated for understanding the dynamics of strongly correlated photons [348, 349, 394]. The transfer of photons in such arrays can be controlled by manipulating the coupling strengths [347] or phase of the coupling strengths [282]. By suitably choosing the Kerr strengths, a single photon can be transferred between any two cavities in the array without populating the intermediate cavities [40].

5 Quantum information processing in cavities

Processing of quantum information can be realized in various physical systems such as spin chains, cavity array, and array of trapped ions [4, 10, 14, 16, 26, 59, 194, 323, 395–398]. Among them, coupled cavity array provides an excellent setup for distributed quantum information processing and quantum communication, as it can be arranged in various locations and linked via optical fibers to form...
a quantum network (see Fig. 11). A quantum network must be capable of sending and receiving information, creating entanglement, and performing quantum gate operations [9, 38, 254, 399]. This section reviews a few important theoretical proposals for quantum information tasks and their experimental demonstrations in cavities.

5.1 Quantum state transfer

Quantum state transfer is essential for transferring information encoded in a quantum state from sender to a receiver via a quantum channel. The sender prepares a quantum state $|\psi\rangle$ which encodes the information to be communicated to the receiver. The state $|\psi\rangle$ can be realized as the state of a qubit or a qudit (d-dimensional state). The receiver, after receiving the state $|\psi\rangle$, reads out the state for the information.

Let the sender wants to send a state $|\psi\rangle$ from the first cavity to the receiver, which is located at the end cavity of the array. Then, we can write the initial state of the array to be

$$|\Psi\rangle = |\psi\rangle_S |0\rangle \otimes |0\rangle_R.$$ \hfill (63)

Here ‘S’ stands for sender and ‘R’ stands for receiver. If the state of the array after time ‘T’ becomes

$$|\Psi(T)\rangle = |0\rangle_S |\psi\rangle |0\rangle \otimes |0\rangle_R,$$ \hfill (64)

then the perfect quantum state transfer is realized.

Suppose, the sender wants to send a qubit state $|\psi\rangle = \cos \theta |0\rangle + e^{i\phi} \sin \frac{\theta}{2} |1\rangle$ and the receiver wants to retrieve this state, or a state as close to it as possible, from the end cavity. Here, $|0\rangle$ represents the vacuum state and $|1\rangle$ is the single-photon state. Then, we write the initial state to be

$$|\Psi(0)\rangle = \cos \frac{\theta}{2} |\text{vac}\rangle + e^{i\phi} \sin \frac{\theta}{2} |1\rangle.$$ \hfill (65)

where $|\text{vac}\rangle = |0\rangle |0\rangle \otimes |0\rangle$ and $|1\rangle = |1\rangle |0\rangle \otimes |0\rangle$. After evolving this state under the Hamiltonian given in Eq. (36), the state at a later time ‘t’ is

$$|\Psi(t)\rangle = \cos \frac{\theta}{2} |\text{vac}\rangle + e^{i\phi} \sin \frac{\theta}{2} \sum_{j=1}^{N} C_{j1} |j\rangle,$$ \hfill (66)

where $C_{j1} = \langle j | e^{-i\hat{H}t} |1\rangle$ is the single-photon transfer amplitude between 1st cavity and jth cavity. Here, $|j\rangle$ is the state representing single photon in jth cavity and the other cavities in their respective vacuum. The state of the receiver cavity (end cavity) is calculated by tracing over the states of all the other cavities, which yields [323]

$$\rho_N(t) = P(t) |\psi'\rangle \langle \psi'| + (1 - P(t)) |0\rangle \langle 0|,$$ \hfill (67)

where $|\psi'\rangle = \frac{1}{\sqrt{P(t)}} \left(\cos \frac{\theta}{2} |0\rangle + e^{i\phi} \sin \frac{\theta}{2} C_{N1} |1\rangle \right)$ and $P(t) = \cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} C_{N1}^2$. The term $C_{N1} = \langle N | e^{-i\hat{H}t} |1\rangle$ is the transfer amplitude of single photon from the first cavity to Nth cavity. The fidelity of quantum state transfer is calculated by averaging over all the pure initial states $|\psi\rangle$ in the Bloch sphere [323]. Therefore,

$$F(t) = \frac{1}{4\pi} \int |\langle \psi | \rho_N(t) |\psi\rangle | d\Omega,$$

\begin{align*}
&= \frac{1}{2} + \frac{|C_{N1}(t)| \cos \gamma}{3} + \frac{|C_{N1}(t)|^2}{6},
&= \frac{1}{2} + \frac{|C_{N1}(t)| \cos \gamma}{3} + \frac{|C_{N1}(t)|^2}{6},
&= \frac{1}{2} + \frac{|C_{N1}(t)| \cos \gamma}{3} + \frac{|C_{N1}(t)|^2}{6},
\end{align*}

Fig. 11 Schematic of a cavity-based quantum network. Quantum nodes (cavity with atom) are spatially separated and connected by optical fibers.
where \(\gamma = \arg[C_{N1}(t)] \) which can be a multiple of \(2\pi \) if the resonance frequencies and coupling strengths are properly chosen. This result can be generalized by replacing \(C_{N1} \) by \(C_{rs} = \langle r | e^{-i\hat{H}t} | s \rangle \) in the context of transferring a quantum state from \(s \)th cavity to \(r \)th cavity in the array [323].

Ideally, the transfer of a quantum state in an array of two cavities is possible with unit fidelity as \(|C_{N1}| \) (here \(N = 2 \)) becomes unity [40, 400]. However, dissipation and decoherence of the quantum states, which are not avoidable in experiments, limit the transfer fidelity. Recently, Axline et al. [401] experimentally demonstrated a quantum state transfer protocol, based on a protocol proposed in Ref. [9], between two superconducting microwave cavities connected by a transmission line. The sender cavity emits the state as a wavepacket with a specified temporal profile into the transmission line, and the receiver cavity absorbs this wavepacket to get the state. They could transfer a single-photon state and a coherent state of small amplitude between two cavities with a fidelity of \(0.87 \pm 0.04 \) [401].

If we include more cavities in the array, the transfer fidelity depends on the choices of coupling strengths. For an array of \(N \) homogeneously coupled cavities described by the Hamiltonian given in Eq. (37), the single-photon transfer amplitude from Eq. (49) is

\[
C_{N1}(t) = \frac{2}{N+1} \sum_{k=1}^{N} e^{-i\Omega_k t} \sin \left(\frac{N\pi k}{N+1} \right) \sin \left(\frac{\pi k}{N+1} \right),
\]

where \(\Omega_k = \omega + 2J \cos \left(\frac{\pi k}{N+1} \right) \) is the normal mode frequency. Using Eq. (68), the average fidelity is calculated as a function of time and the peak value of fidelity (denoted by \(F_{\text{max}} \)) during a time interval from 0 to 20000\(/J \) is shown in Fig. 12. For \(N = 2 \) and 3, the peak value is unity, and very close to unity for \(N = 4 \) to 7, and it decreases as the number of cavities in the array increases. This indicates that the perfect transfer of a single-photon state does not occur if the array contains more than three cavities in a homogeneously coupled cavity array [40, 324, 325].

Although the homogeneously coupled cavity array does not provide perfect state transfer, the array permits pretty good state transfer. For instance, if the two end cavities are loosely coupled to the array [39, 403], modelled by setting \(J_1 = J_{N-1} \ll J_l \) for \(l \neq 1, N-1 \) in Eq. (36), the transfer fidelity of a quantum state becomes close to unity. But the time of perfect state transfer becomes arbitrarily large [39]. Pretty good state transfer is also possible in Glauber–Fock cavity array [402], whose coupling strengths satisfy a square-root law \(J_l = \sqrt{l}J \ [404–407] \). The interaction term of the Hamiltonian given in Eq. (36) becomes \(\hat{H}_{\text{int}} = \sum_{l=1}^{N-1} \sqrt{l}J (\hat{a}_l \hat{a}_{l+1} + \hat{a}_l^\dagger \hat{a}_{l+1}^\dagger) \). By properly choosing the resonance frequencies, the single-photon transfer amplitude can be calculated to be [402]

\[
C_{N1} \approx -i \sin \theta t,
\]

where \(\theta \) depends on the resonance frequencies and coupling strengths and becomes small for large \(N \) [402]. The time of transfer becomes large if the number of cavities in the array is large. The average fidelity becomes independent of the number of cavities in a staggered coupled cavity array [34], whose alternate coupling strengths are \(J_{1,3,5,\ldots} = (1 + \eta)J \) and \(J_{2,4,6,\ldots} = (1 - \eta)J \) in Eq. (36). For \(J_{1,3,5,\ldots} \ll J_{2,4,6,\ldots} \), the single-photon transfer amplitude becomes [34]

\[
|C_{N1}| \approx \sin \left(\frac{\delta\omega}{2} t \right),
\]

where \(\delta\omega \) is the energy gap between the localized bound states. Although this configuration does not provide perfect state transfer, the fidelity of state transfer is close to unity.
It is to be noted that all the aforementioned choices of coupling strengths do not allow perfect transfer of a photon as the transfer probability amplitude $|C_{N1}|$ given in Eq. (68) does not become unity. However, the coupling strengths given in Eq. (50), that is, $J_t = \sqrt{N - J_t J}$, give [27, 40]

$$C_{N1} = \sin^{N-1} J_t,$$

which becomes unity when time $t = \pi/2J$ for an arbitrary array length [39, 40]. Hence, this particular array provides a perfect state transfer between two end cavities. It is also noted that the perfect state transfer is possible between two symmetrically located cavities [27, 40]. Such an inhomogeneous coupling has been achieved in arrays containing a few cavities and a single-photon qubit state is transferred from rth to $(N - n + 1)$th cavities [27, 28, 71]. In Ref. [71], the reported fidelity is 0.65 with nine cavities. Higher fidelity of 0.84 has been reported in arrays with nineteen cavities [27, 28]. In such experiments, the information can be encoded in a superposition of vacuum and single-photon states. By implementing similar choice of coupling strengths in an array of 11 waveguides, polarization states of photons are transferred between two symmetrically located waveguides with a fidelity of 0.976±0.006 [29]. This form of coupling strengths also allow for perfect transfer of entangled states [28, 29].

Quantum information can be encoded in a superposition of atomic states of the form $|\alpha e + \beta g\rangle$ and can be preserved for a long time by placing the atom in a cavity. The atom–cavity system forms a quantum node, and linking many quantum nodes using optical fibers forms a quantum network (see Fig. 11). Hence, transferring an atomic qubit state between two nodes is essential for large-scale quantum communication. The atom whose state is to be transferred is called as sender and the atom that receives the state is referred to as receiver. Initially, the sender atom will be prepared in a qubit state $|\alpha e + \beta g\rangle$ and will be allowed to interact with a cavity which is in vacuum $|0\rangle$. The evolved state of the atom–cavity system after a time t becomes $|g\rangle(\alpha|0\rangle + \beta|1\rangle)$, that is, the state of the atom gets mapped to the cavity field state. Now, if we send another atom which is in the ground state through the cavity and properly choose the time of interaction, then the state of the atom after a time t becomes $|\alpha e + \beta g\rangle$. Maitre et al. experimentally demonstrated this state transfer protocol with a fidelity of 0.74 [101]. Essentially, this experiment shows that a cavity can serve as a mediator to transfer quantum information between two atoms. However, this scheme is not suitable for distance communication that requires the nodes to be spatially separated. Cirac et al. proposed a scheme to transfer a quantum state between two separated nodes through an optical fiber [9]. This scheme uses special laser pulses that excite the sender atom so that its state is mapped into a time-symmetric photon wave packet that will enter to another cavity and to be absorbed by the receiver atom.

Higher fidelity of 0.84 has been reported in arrays with nineteen cavities [27, 28, 71]. In Ref. [71], the reported fidelity is 0.65 with nine cavities. In another experiment, Ritter et al. [202] demonstrated the quantum state transfer between two distant nodes separated by a distance of 21 m and connected by an optical fiber of 60 m length. Here, the state of the sender atom initially gets mapped to the polarization state of a photon $|\alpha L + \beta R\rangle$. The states $|L\rangle$ and $|R\rangle$ represent the left and right circular polarization states of the photon. Then, the photon is transferred to another cavity through the fiber. The receiver atom receives the information from the photon by absorbing it. The fidelity of state transfer was 0.84. Importantly, these schemes are scalable to arbitrary network configurations of multiple atom–cavity systems; hence, large-scale quantum communication is possible. Several schemes for quantum state transfer between two distant atoms are theoretical proposals by several researchers, and details can be found in Refs. [30, 33–35, 41, 349, 409–415]. In some of these protocols, information is encoded in the combined states of the atom and photon, so-called polaritonic state. In such cases, the interaction between the atoms and cavities is considered to be resonant. However, there are a few schemes that use the non-resonant coupling between the atoms and cavities to transfer a quantum state between the atoms [416–418]. This state transfer is effected without populating the intermediate cavities. These schemes have the advantage that cavity decay can be avoided. However, a consequence of this non-resonant interaction is that the time of transfer is large and the transfer protocol may not be suitable for distant communication because of the unavoidable effect of atomic dissipation and decoherence.

5.2 Entanglement generation

Quantum entanglement in the context of pure states is defined as a state of two or more quantum systems that cannot be expressed as a tensor product of the states of individual systems. When two systems are entangled, each of them can reveal information about the other. Entanglement is essential for teleportation [8], dense coding [419], cryptographic key distribution [12, 420], etc. Quantum teleportation uses the non-local features of the entangled states to transmit a quantum state of a particle to another particle, whereas dense coding uses the entanglement correlation property to encode more information. Much effort has gone into generating entanglement in atom–cavity [255, 421–425], atom–atom [202, 255, 421, 426–433], cavity–cavity [37, 434–441], etc.

There are entangled states that can be prepared in two cavities by sharing a single photon between them. These states are of the form

$$|\psi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|1, 0\rangle \pm |0, 1\rangle),$$

which are the Bell states [2] having maximum entanglement. To prepare these states in two cavities, one needs to couple a cavity being in a single-photon state $|1\rangle$ to another cavity which is in vacuum $|0\rangle$. By making the coupling strength to be complex, such
that the interaction Hamiltonian is \(\hat{H}_{\text{int}} = J(e^{i\eta\hat{a}_1^\dagger\hat{a}_2} + e^{-i\eta\hat{a}_1^\dagger\hat{a}_2}) \) [40], the evolved state of the coupled cavities becomes \(\cos J t |1, 0\rangle - i e^{-i\eta} \sin J t |0, 1\rangle \). At time \(t = \pi/4J \), the evolved state is the entangled state in Eq. (73) for \(\eta = \pm \pi/2 \). In general, one can generate entangled states of the form \(e^{i\theta}|1, 0\rangle + e^{i\phi} \sin \theta |0, 1\rangle \). There are also other methods to prepare the Bell states given in Eq. (73). For instance, recently, Axline et al. [401] experimentally generated the state \(|\psi_+\rangle \) between two distant cavities by sending a single-photon wavepacket through them. The wavepacket releases half of its stored energy in the first cavity, as a result, the emitted wavepacket and the first cavity get entangled. Then, the subsequent absorption of the emitted wavepacket by the other cavity generates the desired entangled state between the cavities. The fidelity of generating the state \(|\psi_+\rangle \) was 0.77 [401]. In another scheme, instead of sending a single-photon wavepacket, a two-level atom being in the excited state is sent through the cavities to prepare the above entangled states [442, 443]. By detecting the atom in its ground state after interaction with the cavities, the desired entangled state is generated in the cavities. But this scheme is probabilistic because it fails if the atom is detected in its excited state [444]. The states \(|\psi_\pm\rangle \) can also be prepared in two cavities by sending a three-level atom through the cavities [445].

If there are total \(N \) photons in two cavities, a possible entangled state is of the form

\[
|\psi\rangle = \sum_{k=0}^{N} c_k |k, N-k\rangle. \tag{74}
\]

Essentially, \(N \) photons are distributed between the cavities, and the probability of detecting \(k \) photons in the first cavity and the remaining photons in the second cavity is \(|c_k|^2 \). Theoretical proposals for generating such entangled states are given in Refs. [436, 446]. According to these schemes, one needs to send \(N \) number of excited two-level atoms through two cavities to generate this state. The interaction between the atom and cavity is the resonant Jaynes–Cummings interaction. By controlling the atom–cavity interaction times, one can generate the entangled state given in Eq. (74). In this scheme, one needs to suitably choose \(2N \) parameters (two parameters for each atom) such that all the atoms are found to be in their ground states after crossing the cavities. If any one of the \(N \) atoms is detected to be in excited state, then the scheme fails. Hence, this scheme is good for generating entangled state with a small number of photons such that the detection of atoms in excited state can be avoided. A special case of the state given in Eq. (74) is

\[
|\Psi\rangle = \cos \theta |m, n\rangle + e^{i\phi} \sin \theta |p, q\rangle, \tag{75}
\]

where \(m+n=p+q=N \). This state can be prepared by including Kerr nonlinearity in two coupled cavities [40] by choosing the resonance frequencies of the cavities and Kerr nonlinearity strengths suitably. For \(n=q=N, m=p=0, \theta = \pi/4 \) and \(\phi = 0 \), the above state becomes the NOON state

\[
|\text{NOON}\rangle = \frac{1}{\sqrt{2}}(|N, 0\rangle + |0, N\rangle). \tag{76}
\]

These states are special since the Heisenberg limit is achievable in phase sensitivity [447]. Wang et al. have experimentally demonstrated the generation of NOON states in two cavities [448]. In their experiment, two superconducting phase qubits and three microwave cavities are used. One of the cavities is used for coupling both the qubits and other two cavities are used for state storage. According to their experimental scheme, to generate the NOON state with \(N=1 \), which is the Bell state given in Eq. (73), one needs to swap the qubit Bell state \(|eg\rangle + |ge\rangle \) with the storage cavities, that is, \(|eg\rangle + |ge\rangle|00\rangle \rightarrow |gg\rangle(|10\rangle + |01\rangle) \). To generate higher-order NOON states, we need another higher excited atomic level \(|f\rangle \) and prepare the entangled state \(|fg\rangle + |gf\rangle \). The transition from \(|f\rangle \rightarrow |e\rangle \) generates the atom–cavity entangled state \(|eg\rangle|10\rangle + |ge\rangle|01\rangle \). The qubits are excited to their \(|f\rangle \) states again, and the transition \(|f\rangle \rightarrow |e\rangle \) prepares the state \(|eg\rangle|20\rangle + |ge\rangle|02\rangle \). Following the same procedure, one can generate the state up to \((N-1) \) photons, that is, \(|eg\rangle(N-1)|0\rangle + |ge\rangle|0(N-1)\rangle \). At the final step, \(|e\rangle \rightarrow |g\rangle \) transition of both the qubits generates the state \(|gg\rangle|N0\rangle + |gg\rangle|0N\rangle \), which is the NOON state in the cavity modes while both the qubits are in their ground states. NOON states up to three photons were generated with fidelities 0.76±0.02 (\(N=1 \)), 0.50±0.02 (\(N=2 \)) and 0.33±0.02 (\(N=3 \)). The fidelity degrades rapidly as the number of photons increases because of the dissipation and experimental difficulties. There are also theoretical proposals for generating NOON states of higher values of \(N \) with high fidelities in cavities [40, 449–452].

In all the entangled states in the previous discussions, the number of photons distributed between two cavities is fixed. However, there are entangled states in which the number of photons to be distributed between two cavities is not fixed. For example, the number of photons increases because of the dissipation and experimental difficulties. There are also theoretical proposals for preparing the above entangled states [442, 443]. By detecting the atom in its ground state after interaction with the cavities, the desired entangled state is generated in the cavities.

\[
|\phi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|0, 0\rangle \pm |1, 1\rangle), \tag{77}
\]

which are also Bell states [2]. We will get either no photons or one photon in each cavity on measurement and hence, this state cannot be generated by distributing a fixed number of photons between two cavities. Ikram et al. [445] theoretically suggested that the state \(|\phi_{\pm}\rangle \) can be generated by sending a three-level atom (V-type atom with two excited states \(|a\rangle, |b\rangle \) and a ground state \(|c\rangle \)) through two cavities. The first cavity is resonant with \(|a\rangle \leftrightarrow |c\rangle \) transition and the second cavity is resonant with \(|b\rangle \leftrightarrow |c\rangle \) transition. The initial state of the system is \(|a, 0, 0\rangle \): the atom is in the state \(|a\rangle \) and the two cavities are in vacuum. After resonant interaction between the atom and first cavity, the evolved state at a particular time will be \(\frac{1}{\sqrt{2}}(|a, 0, 0\rangle \pm |c, 1, 0\rangle) \). Now, before entering to the second cavity, the atom is driven by a laser pulse for the transition \(|c\rangle \rightarrow |b\rangle \). The state of the system becomes \(\frac{1}{\sqrt{2}}(|a, 0, 0\rangle \pm |b, 1, 0\rangle) \). Then the
atom enters to the second cavity and the transition $|b\rangle \leftrightarrow |c\rangle$ produces the state $\frac{1}{\sqrt{2}}(|a, 0, 0\rangle + |c, 1, 1\rangle)$. As can be seen, this is an entangled state between the atom and two cavities. However, for a time larger than the lifetime of the atom, the state collapses to the entangled state given in Eq. (77). The state $|\phi_-(\lambda)\rangle$ can be generated if the relative difference of interaction times of atoms with the two cavities is π [445].

A more general entangled state in $|0\rangle, |1\rangle$ basis is

$$|\psi\rangle = c_{00}|0, 0\rangle + c_{01}|0, 1\rangle + c_{10}|1, 0\rangle + c_{11}|1, 1\rangle. \quad (78)$$

All the Bell states can be realized by suitably choosing the superposition coefficients. This state can be entangled or not depending on the superposition coefficients [14]. This class of states can be prepared in two cavities using a single two-level atom interacting with two auxiliary classical fields [453]. After a conditional measurement on the atom, the cavity fields collapse to the desired entangled state. Though the fidelity for preparing this state is unity, the scheme is probabilistic because of the conditional measurement.

Some of the higher-dimensional bi-partite entangled states are also relevant for performing quantum information tasks. Among them, an important class of states is the entangled coherent states which is important for teleporting higher-dimensional states [454]. The form of entangled coherent states is [455, 456]

$$|\psi(\alpha, \beta)\rangle = \frac{1}{\sqrt{N}}(|\alpha\rangle|\beta\rangle \pm |\alpha\rangle|\beta\rangle \pm |\alpha\rangle|\beta\rangle \pm |\alpha\rangle|\beta\rangle), \quad (79)$$

where α and β are two complex amplitudes and N is the normalization constant. These states can be prepared in two cavities by simultaneously interacting with a driven atom [423]. In general, by sending sequence of atoms through two cavities containing two equal amplitude coherent states [457], one can generate multi-dimensional entangled coherent states

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} C_j \left[e^{-i2\pi/N} \right]^{j} \left[e^{i2\pi/N} \right] \left[e^{-i2\pi/N} \right] \left[e^{i2\pi/N} \right]. \quad (80)$$

These states are more entangled than entangled coherent states and can be used for quantum teleportation [454]. These superposition states can approximate pair coherent states [458] and superposition of pair coherent states [459].

Multi-partite entangled states are relevant for processing more amount of quantum information. Two important classes of multi-partite entangled states are W states and Greenberger–Horne–Zeilinger (GHZ) states. The form of W state is

$$|\psi_W\rangle = \frac{1}{\sqrt{3}}(|1, 0, 0\rangle + |0, 1, 0\rangle + |0, 0, 1\rangle). \quad (81)$$

This state is robust against qubit loss. As can be seen, if one qubit is lost, the state of the remaining qubits is still entangled. On the other hand, a multi-qubit W state exhibits stronger nonclassical behavior than a GHZ state [460], and hence, it is an ideal resource for communication based on multinodal networks [461], teleportation and dense coding [462] and optimal universal quantum cloning [463]. As can be seen, the W state can be prepared by sharing a photon in three cavities. It is theoretically suggested that the W state can be prepared by sending an excited two-level atom through three identical cavities [464–466]. Detecting the atom in its ground state, the desired entangled states is produced in the cavity and the scheme fails if the atom is detected in the excited state. The N-party W state can also be prepared in a similar manner where one needs to send an excited atom through N cavities [467]. Lee et al. proposed a scheme to prepare the W state in cavities by swapping the atomic W state [468].

Another multi-partite entangled state is the GHZ state, which is a maximally entangled state, of the form

$$|\psi_{GHZ}\rangle = \frac{1}{\sqrt{2}}(|0, 0, 0\rangle + |1, 1, 1\rangle). \quad (82)$$

Entanglement in the state will be destroyed upon qubit loss. On measurement, either we do not get photons in any of the cavities or we get one photon in each cavity. Using Jaynes–Cummings and anti-Jaynes–Cummings interactions between atoms and cavities, Mity et al. have shown the possibility of generating the GHZ state in three and four cavities [466]. However, in a simpler way, Farook et al. [464] theoretically showed that this state can be prepared by sending two-level atoms through three cavities among which the first cavity should be initiated in the state $\frac{1}{\sqrt{2}}(|0\rangle + |3\rangle)$. This scheme can be extended to prepare N partite GHZ state by considering the first cavity to be in the state $\frac{1}{\sqrt{2}}(|0\rangle + |N\rangle)$ [467].

5.3 Realization of quantum gates

Quantum gates are the basic ingredients for building a quantum computer [4–6, 469–472]. Deutsch and Josza showed that a quantum computer could solve some classes of computational problems much faster than a classical computer [473]. To solve a desired problem in a quantum computer, one needs to build a quantum circuit by suitably arranging various quantum gates [474–477]. However, if one identifies a set of universal quantum gates, a minimal set of gates can be used for constructing the same circuit. A set of gates are said to be universal if any gates can be constructed using the set [4, 14, 469, 475–482]. For instance, few single-qubit gates with controlled-NOT (CNOT) gate, i.e., [CNOT, Hadamard, phase and $\pi/8(T)$], collectively forms a universal set.
Table 7

Reported quantum gate fidelities in experiments

References	Gates	Fidelity
Kandala et al. [483]	CNOT gate	99.77%
Rosenblum et al. [484]	CNOT gate	(90 ± 2)%
Premaratne et al. [485]	CNOT gate	84%
Reiserer et al. [486]	CNOT gate	80.7%
Welte et al. [487]	CNOT gate	74.1%
Hacker et al. [207]	CNOT gate	(76.9 ± 1.5)%
Hacker et al. [207]	Controlled phase-flip gate	(76.2 ± 3.6)%
Sung et al. [488]	iSWAP gate	(99.87 ± 0.23)%
Sung et al. [488]	CZ gate	(99.76 ± 0.07)%
Li et al. [489]	CZ gate	(99.54 ± 0.08)%
Li et al. [489]	CCZ gate	93.3%

As the qubits are represented by an arbitrary superposition of $|0⟩$ and $|1⟩$, the single-qubit gate operation is represented by a 2×2 matrix. The unitary operator for a general single-qubit gate is of the form [14, 475–482]

$$U(\theta, \phi, \lambda) = \begin{pmatrix} \cos(\frac{\theta}{2}) & -e^{i\phi} \sin(\frac{\theta}{2}) \\ e^{i\phi} \sin(\frac{\theta}{2}) & e^{i\phi+\lambda} \cos(\frac{\theta}{2}) \end{pmatrix},$$

called the U-gate. One can get various important single-qubit gates like the Hadamard gate

$$H = U(\pi/2, 0, \pi) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$$

X-gate

$$X = U(\pi, 0, \pi) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

phase-flip gate

$$Z = U(0, \pi/2, \pi/2) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

phase gate

$$S = U(0, \pi/4, \pi/4) = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix},$$

and $\pi/8$ gate

$$T = U(0, \pi/8, \pi/8) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix},$$

by suitably choosing the parameters θ, ϕ and λ.

Single-qubit gates are easy to implement in a two-level atom by applying suitable Rabi pulses [478, 490–492]. But it is not so easy in cavity field modes because they have infinite energy levels. However, there are a few schemes for realizing single-qubit gates in cavities by sending atoms through the cavity and applying additional electromagnetic pulses for suitable atomic transitions [490]. By suitably choosing the interaction time, single-qubit gates such as the X-gate and Hadamard gate can be realized. The X-gate and phase gate can also be realized by controlling frequency, phase and amplitude of the drive to the cavity in an atom–cavity system [493]. If coherent states are considered as qubits, Kerr nonlinearity in the cavity is required to realize quantum gates [494].

A collection of single-qubit gates cannot form a universal set to build any desired quantum circuit. Two-qubit gates are essential for building a universal set [14, 16, 475–482]. Therefore, any operation on qubits can be broken up into a concatenation of two-qubit operations accompanied by single-qubit operations [476]. Some important two-qubit gates are the CNOT gate, quantum phase gate, SWAP gate, etc., to mention a few. In a two-qubit operation, one of the qubits is considered as the control bit and the other is the target bit. If a two-qubit gate operates on a two-qubit state, the state of the target qubit changes depending on the state of the control bit. These gates are represented by 4×4 matrices.

CNOT gate coherently operates on a two-qubit state of the form $c_{00}|00⟩ + c_{01}|01⟩ + c_{10}|10⟩ + c_{11}|11⟩$. The result of CNOT gate operation is $|a⟩|b⟩ \rightarrow |a⟩|a \oplus b⟩$, with $a, b \in \{0, 1\}$ and \oplus represents the addition modulo 2. Here, the state $|a⟩$ is considered as the control bit and $|b⟩$ is the target bit. In CNOT operation, if the state of the control bit is $|0⟩$, then the state of the target bit remains

$$a \oplus b = \begin{cases} 0 & \text{if } a = 0 \text{ and } b = 0 \\ 1 & \text{if } a \neq 0 \text{ and } b = 0 \\ a & \text{if } a = 0 \text{ and } b \neq 0 \\ a \oplus b & \text{if } a \neq 0 \text{ and } b \neq 0. \end{cases}$$

The state $|a \oplus b⟩$ is the state of the target bit after the CNOT gate operation.
the same. Flipping occurs between $|0\rangle$ and $|1\rangle$ of the target bit if the state of the control bit is $|1\rangle$. Hence, the unitary operator for the CNOT gate in the basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ is

$$U_{\text{CNOT}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}. \quad (89)$$

This gate has several properties and applications, as discussed in Ref. [495]. For example, the CNOT gate transforms some superpositions into entangled states, and thus, it acts as a measurement gate. This gate can also be used to implement Bell measurement and swapping operation. The CNOT gate is not a universal gate by itself. Together with a few single-qubit gates, it forms a universal set [14, 506]. Turchette et al. have experimentally demonstrated the quantum phase gate with single-qubit gates forms a universal set [14, 506].

The CNOT gate has been realized in many physical systems experimentally. In the atom–cavity system, there are a few notable experimental realizations of CNOT gate that we discuss here [207, 483, 484, 486, 487]. An advantage of realizing quantum gates in an atom–cavity system is the freedom in choosing the control bit and target bit. For instance, Rosenblum et al. [484] demonstrated the CNOT gate operation by encoding qubits in the high-dimensional space of the cavity field. The controlled qubits are

$$|0\rangle_C = |0\rangle, |1\rangle_C = |2\rangle_C, \quad (90)$$

which are even-parity Fock states and the target qubits are

$$|0/1\rangle_T = \frac{1}{\sqrt{2}} \left(|0\rangle_T + |4\rangle_T \right) \pm |2\rangle_T. \quad (91)$$

the Schrödinger kitten states [484, 496]. These qubits are robust against photon loss and they allow for error correction in the target cavity. A basic requirement for realizing this gate in their setup is the nonlinear interaction between the cavities, which is achieved by making the cavities to interact sequentially with a transmon qubit. In the experiment, the CNOT gate was applied on the state ($|0\rangle_C + |1\rangle_C |0\rangle_T$. The output was the Bell state $|0\rangle_C |0\rangle_T + |1\rangle_C |1\rangle_T$ generated with a fidelity about $(90 \pm 2)\%$. The gate time in their experiment was 190 ns. Similarly, Hacker et al. [207] also considered the photonic states as the qubits and encoded the information in polarization states of photons, and demonstrated the CNOT gate operation in a one-sided optical cavity containing a Rubidium atom. The gate fidelity was $(76.9 \pm 1.5)\%$. The scheme requires one of the photons to be circularly polarized (control bit) and the other linearly polarized (target bit). On the other hand, Welte et al. [487] and Premaratne et al. [485] realized CNOT gate between two atoms, by encoding the qubit states in the atomic states, with a fidelity of 74.1% and 84%, respectively. The gate time for the former experiment was 2 μs and the latter was 907 ns. It is also advantageous to choose both atomic and photonic states as the qubits. For instance, Reiserer et al. [486] used the spin states of the atom as the control bit and polarization states of the photon as the target bit and demonstrated the CNOT gate experimentally with a fidelity of 80.7%. This scheme is deterministic and robust and applies to almost any matter qubit. The reported values of fidelities of CNOT gate in various experiments are listed in Table 7.

There are many theoretical proposals to realize the CNOT gate operations in cavities [288, 478, 490, 497–499] involving nonlinear mechanical interaction [288], adiabatic passage [500, 501], atom–cavity dressed states [497], ion–cavity interaction [502], non-local transformations [503], non-resonant interaction of atom–cavity [504, 505], etc.

Some of the quantum algorithms require changing the phase of the target bit depending on the state of the control bit. A gate that performs the conditional phase shift is a quantum phase gate. The operation is represented by [188, 506]

$$|a, b\rangle \rightarrow \exp(-i\phi \delta_{a,1} \delta_{b,1})|a, b\rangle, \quad (92)$$

where $\delta_{a,1}$ and $\delta_{b,1}$ are Kronecker delta symbols and $a, b \in \{0, 1\}$. Hence, the phase of the target bit changes by phase ϕ if the states of both control and target bits are $|1\rangle$. The unitary matrix for the quantum phase gate in the basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ is

$$U_{\text{QPG}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{-i\phi} \end{pmatrix}. \quad (93)$$

The quantum phase gate with single-qubit gates forms a universal set [14, 506]. Turchette et al. have experimentally demonstrated the quantum phase gate by exploiting the nonlinear character of atom–cavity interaction [188]. The phase shift between circular polarization states of atoms depends on the intensity of a pump beam via a Kerr-type nonlinear interaction. The conditional phase shift was nearly 16° per intracavity photon, and the range of phase shift was -30^0 to 30^0. The range of the phase shift is further increased between 540 and 2730 in the experiment by Rauschenbeutel et al. [506], wherein the qubits were represented by atomic states and cavity field states, and the atom–cavity dispersive interaction performs the quantum phase gate operation. In addition, there are proposals that use the idea of Stark-shifted Raman transitions [498], photon-number Stark-shift [507], adiabatic passage [491], resonant interaction [508], dispersive interaction [258], Kerr interaction [271, 288, 509], multi-level interaction [510], etc., for shifting the phase, thereby enabling the construction of quantum phase gate.
A schematic of the experimental setup for teleportation protocol by Nolleke et al. [545]. Atom 1 and Atom 2 are trapped in two distant cavities separated by 21 m. A joint Bell state measurement (BSM) is performed on photons emitted from two nodes (atom–cavity). Teleportation is complete upon detection of $|\psi^-\rangle_{12}$ state.

The quantum phase gate with $\phi = \pi$ is called controlled phase-flip gate or controlled-Z gate. The corresponding unitary representation is

$$U_{CZ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}. \quad (94)$$

This gate is important because a CNOT gate can be constructed from one controlled phase-flip gate and two Hadamard gates [14]. Hacker et al. [207] experimentally demonstrated this gate in a one-sided high-finesse optical cavity containing a Rubidium atom. The atom acts as an ancilla qubit and the polarization states $|L\rangle$ (left circularly polarized) and $|R\rangle$ (right circularly polarized) of both the photons are used as control bit and target bit. This experimental realization was based on the proposal by Duan and Kimble [511]. In the experiment, the gate transformed $|RR\rangle \rightarrow |RR\rangle$, $|LR\rangle \rightarrow -|LR\rangle$, $|RL\rangle \rightarrow |RL\rangle$, $|LL\rangle \rightarrow |LL\rangle$, that is, introduced a phase π if the control photonic bit is in the state $|R\rangle$ and target photonic bit is in $|L\rangle$. The average fidelity of the gate operation was $(76.2 \pm 3.6)\%$. There are a few theoretical proposals to realize controlled phase-flip gates in atom–cavity system [512, 513] and ion–cavity system [514, 515].

There are other important quantum gates such as the SWAP gate [33, 488, 498, 512, 516–523], \sqrt{SWAP} gate [524, 525], entangling gates [33, 512, 516], geometric phase gate [526–528], which can be prepared in atom–cavity system, are important for building quantum circuits. However, to scale up the quantum computation and process more information, multi-qubit gates are better choices. Using the quantum nonlinear interaction between atom and cavity, Toffoli gate [490, 529–532], Fredkin gate [533–535], multi-qubit quantum phase gates [507, 536–544], etc., are proposed in cavity QED setup.

5.4 Quantum teleportation

Bennet et al. showed that an arbitrary unknown one-qubit state could be transferred from one party to another distant party using a maximally entangled state as a channel. This process of information transfer is named as quantum teleportation. The teleportation protocol is as follows. Consider three particles A, B and C, out of which the sender has two particles A and B, and the receiver has C. Sender prepares particle A, whose state is to be teleported, in an unknown quantum state $|\psi\rangle$. The other two particles, namely B and C, are maximally entangled. Sender performs a joint measurement on particles A and B and communicates the result to the receiver through classical communication. After receiving this measurement result, the receiver applies an appropriate rotation to particle C. Following this rotation, the state of particle C becomes $|\psi\rangle$.

Teleportation experiments have been performed between two photonic qubits [21, 546–550], photonic and atomic qubits [443, 551–553], and two atomic qubits [554–556]. In cavity QED setup, Nolleke et al. [545] have demonstrated the quantum teleportation experiment between two atoms trapped in two widely separated cavities. A schematic of their experimental setup is shown in Fig. 13. Sender prepares Atom 1 in an unknown state $|\phi\rangle_1 = \alpha|e\rangle + \beta|g\rangle$ and mapped this state to Photon 1. The receiver prepares an entangled state $|\Psi^-\rangle_{22} = \frac{1}{\sqrt{2}}(|g\rangle|R\rangle - |e\rangle|L\rangle)$ between Atom 2 and Photon 2 (emitted from cavity 2). The combined state of Photon 1, Photon 2 and Atom 2 is [545]

$$|\phi\rangle_1 |\psi^-\rangle_{22} = \frac{1}{2}(|\Phi^+\rangle_{12} \hat{a}_z \hat{a}_z \hat{a}_z \phi_2 - |\Phi^-\rangle_{12} \hat{a}_z \hat{a}_z \phi_2$$
Quantum dense coding protocol allows a sender to transmit two bits of classical information by sending only one qubit to the receiver [419]. However, entanglement is essential for dense coding. The procedure is as follows. Initially, the sender and receiver share a maximally entangled state. Let the shared entangled state be \(|\psi_{\text{ent}}\rangle = \frac{1}{\sqrt{2}} (|0, 0\rangle - |0, 1\rangle - |1, 0\rangle + |1, 1\rangle) \). Then, the sender applies one of the transformations from the set \(\{ \hat{I}, \hat{\sigma}_x, i\hat{\sigma}_y, \hat{\sigma}_z \} \) on the entangled state to encode the corresponding two bits of classical information (0, 0), (0, 1), (1, 0) and (1, 1). After the transformation, the resultant states are

\[
\hat{I} |\psi_{-}\rangle = |\psi_{-}\rangle,
\]

\[
\hat{\sigma}_x |\psi_{-}\rangle = |\psi_{+}\rangle,
\]

\[
\hat{\sigma}_y |\psi_{-}\rangle = i|\psi_{+}\rangle,
\]

\[
\hat{\sigma}_z |\psi_{-}\rangle = |\psi_{-}\rangle.
\]

For two-qubit states, the Bell state measurement (BSM) is performed on Photon 1 and Photon 2. The teleportation is completed after detecting the state \(|\psi_{\text{BSM}}\rangle \). In their experiment, the fidelity of teleportation was 88.0\(\pm \)1.5\%. Otherwise, one needs to apply a suitable rotation operation on atom. Very recently, Langenfeld et al. [557] also experimentally demonstrated a teleportation protocol between two atoms (separated by 60 m) with a fidelity of (88.3\(\pm \)1.3\%).

In the literature, there are theoretical proposals to teleport a state between two atoms using atom–field entanglement [558–561] or atom–atom entanglement as the teleportation channels [430, 562–567]. Also, there are few schemes that consider the teleportation of an atomic state to a cavity field state [443] or teleportation between two cavities [568, 569]. For instance, Davidovich et al. [443] used the original idea by Bennet et al. and proposed an experimentally feasible scheme to teleport an atomic qubit state to a cavity field state by using the Bell state of two cavities as the teleportation channel. Most of these schemes involve Bell state measurement as in the original scheme proposed by Bennet et al. [8]. However, there are proposals, for instance, by Zheng [559] and Yang [570], that do not involve Bell state measurement. Zheng [559] showed that by sending two atoms through a single cavity, it is possible to teleport a state of one atom to another atom, but with a fidelity of less than unity. This scheme uses the time-dependent resonant interaction between the atoms and cavity. In the scheme by Yang [570], the atomic state can be teleported to another atom via resonant interaction between two atoms with two cavities. This scheme allows unit fidelity, but the success probability of the protocol is 1/4. Other issues that affect the fidelity of teleportation in the atom–cavity system are dissipation and decoherence of the atomic and cavity field states. To minimize the effect of dissipation and decoherence [560, 564, 571–575], atom–cavity dispersive interaction [430, 563, 565, 566] or detection of cavity decay photons [558, 571, 572, 576] can be exploited. The schemes involving dispersive atom–cavity coupling, in which the cavity is only virtually excited, become insensitive to cavity decay and therefore, maximize the teleportation fidelity [565]. However, the scheme by Bose et al. [558] is based on the detection of the leakage photons from the cavity. Here the decay mechanism plays a constructive role and increases the teleportation fidelity. Cirac et al. [562] also proposed a teleportation protocol that has the advantage of minimizing dissipation in the optical regime, that is, in teleportation procedure, only ground state of atoms are ever populated. As a result, the spontaneous decay of the atoms is absent.

Information can also be encoded in higher-dimensional states (qudits), and hence, the teleportation of a higher-dimensional state is essential [578–580]. Moussa et al. proposed a scheme to teleport a cavity field state \(c_n |0\rangle + c_1 |1\rangle + c_2 |2\rangle \) from one cavity to another cavity using two pairs of non-maximally entangled states [568]. In general, superposition of \(N \) Fock states \(\sum_{k=0}^{N-1} c_k |k\rangle \) can be teleported using \(N \) pairs of two-level atoms [568]. However, as the scheme does not involve maximally entangled state, the maximum probability for completing the teleportation process is 0.5. Zubairy showed that the state \(\sum_{k=0}^{N-1} c_k |k\rangle \) can be teleported by using the following entangled field state [581]

\[
|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} (N - 1 - k) |k\rangle,
\]

as a quantum channel with unit fidelity. But this method is valid only if \(N = 2^n \) (\(n \) is an integer).

To send more information, the sender needs to teleport multi-partite states. Proposals have been made to teleport multi-qubit states such as the Dicke states [582], atomic entangled states [583–585], and entangled field states [586–591]. These schemes require multi-qubit entangled states such as the GHZ state [592, 593] or W state [594, 595] as quantum channels.

5.5 Quantum dense coding

Quantum dense coding protocol allows a sender to transmit two bits of classical information by sending only one qubit to the receiver [419]. However, entanglement is essential for dense coding. The procedure is as follows. Initially, the sender and receiver share a maximally entangled state. Let the shared entangled state be \(|\psi_{-}\rangle = \frac{1}{\sqrt{2}} (|0, 0\rangle - |0, 1\rangle - |1, 0\rangle + |1, 1\rangle) \). Then, the sender applies one of the transformations from the set \(\{ \hat{I}, \hat{\sigma}_x, i\hat{\sigma}_y, \hat{\sigma}_z \} \) on the entangled state to encode the corresponding two bits of classical information (0, 0), (0, 1), (1, 0) and (1, 1). After the transformation, the resultant states are

\[
\hat{I} |\psi_{-}\rangle = |\psi_{-}\rangle,
\]

\[
\hat{\sigma}_x |\psi_{-}\rangle = |\psi_{+}\rangle,
\]

\[
\hat{\sigma}_y |\psi_{-}\rangle = i|\psi_{+}\rangle,
\]

\[
\hat{\sigma}_z |\psi_{-}\rangle = |\psi_{-}\rangle.
\]
\[
\hat{\sigma}_x |\psi_-\rangle = |\phi_+\rangle, \quad \text{ (98)}
\]
\[
\hat{\sigma}_y |\psi_-\rangle = |\phi_+\rangle, \quad \text{ (99)}
\]
\[
\hat{\sigma}_z |\psi_-\rangle = |\psi_+\rangle. \quad \text{ (100)}
\]

Then the sender sends its particle to the receiver, and the receiver performs a Bell state measurement. From the measurement outcome, the receiver can discriminate the operation sender has applied on his qubit and decode the classical information.

Dense coding has been demonstrated experimentally in nuclear magnetic resonance [596], optical systems [597, 598], etc. There are theoretical proposals to realize dense coding in other physical systems as well. However, a few experimentally feasible schemes have been proposed in the context of atom–cavity system, which either uses the Bell states [577, 599, 600] or multi-partite entangled states [601–603] such as the GHZ states [604–609], W-state [605, 610–612], and cluster states [613, 614]. For example, Ye et al. [600] showed the protocol using two atoms dispersively interacting with a cavity. Initially, the sender and receiver shared the entangled state \(\sqrt{\frac{1}{2}}(|g, e\rangle - i|e, g\rangle)\). After applying one of the transformations from \([\hat{I}, \hat{\sigma}_x, i\hat{\sigma}_y, \hat{\sigma}_z]\), the sender sends the atom to the receiver. The receiver lets both the atoms simultaneously interact with another cavity and also, the two atoms are driven by a classical field. By properly choosing the interaction time, the resultant state allows the receiver to discriminate the operation that the sender applied. The success probability of this scheme is unity. Also, the scheme is insensitive to the thermal field and cavity decay as it involves dispersive interaction between the atoms and cavity. There are a few proposals of quantum dense coding which also use the idea of dispersive interaction between the atom and cavity to suppress the decay of cavity [599, 615]. However, the detrimental effect like spontaneous emission of the atoms cannot be avoided in such schemes. Yu et al. [616] have proposed a scheme based on the adiabatic passage and photonic interference, which makes the scheme more robust against certain types of noises such as atomic spontaneous emission, output coupling and inefficient photon detection.

In all the aforementioned schemes, the sender needs to send the atom to the receiver and hence, atoms are used as flying qubits. This may limit the transfer of information to a distant receiver. However, a scheme of quantum dense coding is proposed wherein the atoms can be used as stationary qubits and photons as the information carrier through a cavity array [577]. The schematic of the proposed setup is given in Fig. 14. The sender has a single atom \(q_1\) and the receiver has two atoms \(q_2\) and \(q_3\). The atom \(q_1\) is entangled with the atom \(q_2\) in the state \(\sqrt{\frac{1}{2}}(|e_1, e_3\rangle + |g_1, g_3\rangle)\), where \(|g_i\rangle\) and \(|e_i\rangle\) refer to the ground and excited states, respectively, of the atom \(q_i\). The sender applies a unitary operation on \(q_1\) depending on the choice of the classical bits to encode. After the operation, the sender allows the atom \(q_1\) to interact resonantly with the first cavity of the array. Due to the interaction, the state of \(q_1\) is transferred to \(q_2\) through the cavity array, resulting in entanglement between the atoms \(q_2\) and \(q_3\). Now, the receiver discriminates the unitary operation applied by the sender upon a Bell measurement on \(q_2\) and \(q_3\).

6 Summary

Quantum information processing requires physical systems wherein quantum features are created, sustained and manipulated to perform computational tasks [617]. A physical architecture to perform these tasks is composed of some basic units such as cavities [202, 617], trapped ions [618], and superconducting qubits [619]. Among them, cavities have the potential to store multiple excitations of electromagnetic field and retain their coherence, and therefore, they facilitate the generation and manipulation of complex multiphoton states [172]. These multiphoton states are resilient despite decoherence making them resources for quantum information processing [172], quantum metrology [620] and quantum computation [484]. A “good” cavity or high-Q cavity retains photons for a long time \(\sim 1\) ms [255]. Recent technological progress in the fabrication of high-Q cavities has rendered it possible to couple many cavities to build photonic integrated circuits on chips [298]. Manipulation of trapped photons on the chip can be used to implement quantum protocols at a miniaturized scale, i.e., a huge number of components can be packed in a small spatial region. Such integrated photonic circuits have also wider applications such as creating slow light and buffering and switching of photons [298].

In the context of long-distance communication, a large-scale network of cavities is required. An advantage of cavity-based architecture is that the coupling between distant cavities can be established via optical fibers, a well-established technology developed for the conventional communication systems. Coupling between the cavities allows to transfer quantum states between them with high fidelities and distribute entanglement across the entire network. This, in turn, enables distributed quantum information processing and communication. In addition, if a network contains an atom or nonlinear media in each of the cavities, controlled transfer of photons between a source cavity and target cavity is feasible due to this in-cavity nonlinearity. The in-cavity nonlinearity also allows for manipulation of cavity field states, generation of single photons, creation of entanglement among the fields in the cavities, etc. These physical processes provide scope for creating quantum gates, teleportation and dense coding in cavities. Therefore, a distributed quantum communication architecture is achievable in cavity networks which in all likelihood will be a suitable candidate for realizing quantum internet in near future [617].

Even though cavity networks are viable systems to carry out quantum information processing and computation, there are issues to be sorted out which limit their efficiency. At a practical level, making nearly identical cavities having suitable resonance frequencies,
which are essential for strong coupling between the cavities, is a difficult task. However, tuning of resonance frequencies over a wide range is possible through various techniques [309, 317–321]. Like any other physical system, cavities also suffer from dissipation which may lead to destruction of quantum coherence and thereby inhibit the transfer of states between the cavities. To sustain a quantum state in the cavity for a long time, feedback mechanisms are necessary [174]. The loss of photons and accumulation of errors due to change of state of photons while passing through optical fibers are other factors that affect the efficiency of transferring information in a network. It is, however, possible to circumvent this deficiency by incorporating quantum repeaters in conjunction with atom-based quantum memories in the network [621, 622] which guarantees high fidelity transfer of quantum states between the sender and the receiver over long, lossy channels. There are also smart algorithms such as the quantum error correction [623] to identify errors gathered in the quantum state of photons while passing through noisy channels and rectify the errors. These techniques are robust enough to perform highly reliable computations and long-distance quantum communications.

Although we have restricted our review to the relevance of cavities containing atoms or nonlinear medium for quantum information processing and computation, thermal diodes [260, 624] and thermal transistors [625] can be realized using cavities as conduits to transfer energy between two thermal baths. A related physical system is an optomechanical device that has one or more cavities interacting with mechanical oscillators. These are also suitable for studying the fundamentals of light-matter interaction and implementing quantum protocols [626, 627]. In optomechanical systems, photons and phonons are used as qubits to encode information. Both these platforms, the coupled cavities and the optomechanical systems are reliable for experimentally verifying ideas in quantum information processing, quantum thermodynamics [94, 95, 628], and quantum chemistry [629]. However, it is beyond the scope of this review to present optomechanics and quantum thermodynamics.

Data Availability Statement No data associated in the manuscript.

References

1. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777
2. J.S. Bell, On the einstein podolsky rosen paradox, Phys. Phys. Fizika 1, 195–200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
3. A. Aspect, P. Grangier, G. Roger, Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982). https://doi.org/10.1103/PhysRevLett.49.91
4. D.P. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48(9–11), 771–783 (2000)
5. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982). https://doi.org/10.1007/BF02650179
6. P. Benioff, The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980). https://doi.org/10.1007/BF01011339
7. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464(7285), 45–53 (2010). https://doi.org/10.1038/nature08812
8. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wooters, Teleporting an unknown quantum state via dual classical and einstein–podolsky–rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895
9. J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997). https://doi.org/10.1103/PhysRevLett.78.3221
10. J.I. Cirac, S.J. van Enk, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum communication in a quantum network. Phys. Scr. T76(1), 223 (1998). https://doi.org/10.1238/physica.topical.076a00223
11. C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle objects in einstein–podolsky–rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). https://doi.org/10.1103/PhysRevLett.69.2881
12. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992). https://doi.org/10.1007/BF00191318
13. B. Schumacher, Quantum coding. Phys. Rev. A 51, 2738–2747 (1995). https://doi.org/10.1103/PhysRevA.51.2738
14. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010)
15. A. Pathak, Elements of Quantum Computation and Quantum Communication (CRC Press, 2013)
16. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010). https://doi.org/10.1103/RevModPhys.82.2313
17. M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B Atomic, Molecular Opt. Phys. 49(20), 202001 (2016). https://doi.org/10.1088/0953-4075/49/20/202001
18. P. Törnä, S. Stenholm, Quantum logic using polarized photons. Phys. Rev. A 54, 4701–4706 (1996). https://doi.org/10.1103/PhysRevA.54.4701
19. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). https://doi.org/10.1103/PhysRevA.57.120
20. M.R. Delbecq, L.E. Bruhat, J.J. Viennot, S. Datta, A. Cottet, T. Kontos, Photon-mediated interaction between distant quantum dot circuits. Nature Commun. 4, 1400 (2013)
21. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390(6660), 575–579 (1997). https://doi.org/10.1038/37539
22. D.S. Naik, C.G. Peterson, A.G. White, A.J. Berglund, P.G. Kwiat, Entangled state quantum cryptography: Eavesdropping on the Ekert protocol. Phys. Rev. Lett. 84, 4733–4736 (2000). https://doi.org/10.1103/PhysRevLett.84.4733
23. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Quantum cryptography using entangled photons in energy-time bell states. Phys. Rev. Lett. 84, 4737–4740 (2000). https://doi.org/10.1103/PhysRevLett.84.4737
24. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001). https://doi.org/10.1038/35106500
25. S.-K. Liao, H.-L. Yong, C. Liu, G.-L. Shentu, D.-D. Li, J. Lin, H. Dai, S.-Q. Zhao, B. Li, J.-Y. Guan, W. Chen, Y.-H. Gong, Y. Li, Z.-H. Lin, G.-S. Pan, J.S. Pelc, M.M. Fejer, W.-Z. Zhang, W.-Y. Liu, J. Yin, J.-G. Ren, X.-B. Wang, Q. Zhang, C.-Z. Peng, J.-W. Pan, Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photonics 11(8), 509–513 (2017). https://doi.org/10.1038/nphoton.2017.116

26. T.E. Northup, R. Blatt, Quantum information transfer using photons. Nat. Photonics 8, 356 (2014)

27. A. Perez-Leija, R. Keil, A. Kay, H. Moya-Cessa, S. Nolte, L.-C. Kwek, B.M. Rodríguez-Lara, A. Szameit, D.N. Christodoulides, Coherent quantum transport in photonic lattices. Phys. Rev. A 87, 012309 (2013). https://doi.org/10.1103/PhysRevA.87.012309

28. A. Perez-Leija, R. Keil, H. Moya-Cessa, A. Szameit, D.N. Christodoulides, Perfect transfer of path-entangled photons in 1D photonic lattices. Phys. Rev. A 87, 023824 (2013). https://doi.org/10.1103/PhysRevA.87.023824

29. M. Benyoucef, S. Kiravittaya, Y.F. Mei, A. Rastelli, O.G. Schmidt, Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Phys. Rev. B 77, 035108 (2008). https://doi.org/10.1103/PhysRevB.77.035108

30. M.L. Gorodetsky, A.A. Savchenkov, V.S. Ilchenko, Ultimate q of optical microsphere resonators. Opt. Lett. 22, 453–455 (1996)

31. D.W. Vernooy, A. Furusawa, N.P. Georgiades, V.S. Ilchenko, H.J. Kimble, Cavity qed with high-q whispering gallery modes. Phys. Rev. A 57, 2293–2296 (1998). https://doi.org/10.1103/PhysRevA.57.R2293
219. J.M. Fink, M. Göppl, M. Baur, R. Bianchetti, P.J. Leek, A. Blais, A. Wallraff, Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system. Phys. Rev. Lett. 115, 137002 (2020).

220. G.S. Agarwal, Quantum Optics (Cambridge University Press, 2013).

221. D. Meschede, H. Walther, G. Müller, One-atom maser. Phys. Rev. Lett. 54, 551–554 (1985). https://doi.org/10.1103/PhysRevLett.54.551

222. S. Haroche, M. Brune, J.M. Raimond, Trapping atoms by the vacuum field in a cavity. Europhys. Lett. (EPL) 14(1), 19–24 (1991). https://doi.org/10.1209/0295-5075/14/1004

223. J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44, 1325–1326 (1980). https://doi.org/10.1103/PhysRevLett.44.1325

224. G. Rempe, H. Walther, Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987). https://doi.org/10.1103/PhysRevLett.58.353

225. B.W. Shore, P.L. Knight, The Jaynes–Cummings model. J. Mod. Opt. 40(7), 1195–1238 (1993). https://doi.org/10.1080/09500349315451321

226. P. Filipowicz, J. Javanainen, P. Meystre, Theory of a microscopic maser. Phys. Rev. A 34, 3077–3087 (1986). https://doi.org/10.1103/PhysRevA.34.3077

227. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche, Quantum rabi oscillation: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996). https://doi.org/10.1103/PhysRevLett.76.1800

228. T. Meunier, S. Gleyzes, P. Maitol, A. Auffeves, G. Nogues, M. Brune, J.M. Raimond, S. Haroche, Rabi oscillations revival induced by time reversal: A test of mesoscopic quantum coherence. Phys. Rev. Lett. 94, 010401 (2005). https://doi.org/10.1103/PhysRevLett.94.010401

229. G.S. Agarwal, Vacuum-field rabi splittings in microwave absorption by rydberg atoms in a cavity. Phys. Rev. Lett. 53, 1732–1734 (1984). https://doi.org/10.1103/PhysRevLett.53.1732

230. G.S. Agarwal, Vacuum-field rabi oscillations of atoms in a cavity. J. Opt. Soc. Am. B 2(3), 480–485 (1985). https://doi.org/10.1364/JOSAB.2.000480

231. M.G. Raizen, R.J. Thompson, R.J. Brecha, H.J. Kimble, H.J. Carmichael, Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Phys. Rev. Lett. 63, 240–243 (1989). https://doi.org/10.1103/PhysRevLett.63.240

232. C.J. Hood, M.S. Chapman, T.W. Lynn, H.J. Kimble, Real-time cavity qed with single atoms. Phys. Rev. Lett. 80, 4157–4160 (1998). https://doi.org/10.1103/PhysRevLett.80.4157

233. R.J. Thompson, G. Rempe, H.J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992). https://doi.org/10.1103/PhysRevLett.68.1132

234. P. Alsing, D.-S. Guo, H.J. Carmichael, Dynamic stark effect for the jaynes-cummings system. Phys. Rev. A 45, 5135–5143 (1992). https://doi.org/10.1103/PhysRevA.45.5135

235. A. Boca, R. Miller, K.M. Birnbaum, A.D. Boozer, J. McKeever, H.J. Kimble, Observation of the vacuum rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004). https://doi.org/10.1103/PhysRevLett.93.233603

236. J. Tang, W. Geng, X. Xu, Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep. 5, 9252 (2015).

237. W.-W. Deng, G.-X. Li, H. Qin, Photon blockade via quantum interference in a strong coupling qubit-cavity system. Opt. Express 25(6), 6767–6783 (2017). https://doi.org/10.1364/OE.25.006767

238. R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing, Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2018). https://doi.org/10.1103/PhysRevLett.121.153601

239. M.-C. Li, A.-X. Chen, A photon blockade in a coupled cavity system mediated by an atom. Appl. Sci. 9(5) (2019)

240. L. Davidovich, Sub-poisonous processes in quantum optics. Rev. Mod. Phys. 68, 127–173 (1996). https://doi.org/10.1103/RevModPhys.68.127

241. G. Rempe, F. Schmidt-Kaler, H. Walther, Observation of sub-poisonous photon statistics in a micromaser. Phys. Rev. Lett. 64, 2783–2786 (1990). https://doi.org/10.1103/PhysRevLett.64.2783

242. H.J. Kimble, Photon antibunching and squeezing for a single atom in a cavity. Phys. Rev. Lett. 56, 539–539 (1986). https://doi.org/10.1103/PhysRevLett.56.539.2

243. C. Gies, F. Jahneke, W.W. Chow, Photon antibunching from few quantum dots in a cavity. Phys. Rev. A 91, 061804 (2015). https://doi.org/10.1103/PhysRevA.91.061804

244. H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Cavity quantum electrodynamics. Rep. Prog. Phys. 69(5), 1325–1382 (2006). https://doi.org/10.1088/0034-4885/69/5/002

245. L. Davidovich, Sub-poisonous processes in quantum optics. Rev. Mod. Phys. 68, 127–173 (1996). https://doi.org/10.1103/RevModPhys.68.127

246. B. Bassel, J.M.C. Malboison, Hole burning in the J=0 state: from single to several holes. Chin. Phys. Lett. 18(11), 1467–1469 (2001). https://doi.org/10.1088/0256-3071/18/11/131

247. A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, F. Nori, Ultrastrong coupling between light and matter. Nature Rev. Phys. 1(1), 19–40 (2019). https://doi.org/10.1038/s42254-018-0006-2

248. A. Reiserer, G. Rempe, Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015). https://doi.org/10.1103/RevModPhys.87.1379

249. J.M. Raimond, M. Brune, S. Haroche, Manipulating quantum entanglement with atoms and photons. Rev. Mod. Phys. 73, 565–582 (2001). https://doi.org/10.1103/RevModPhys.73.565

250. N. Meher, M. Bhattacharya, A.K. Jha, Direct measurement of atomic entanglement via cavity photon statistics. Annalen der Physik 534(6), 2100395 (2022). https://doi.org/10.1002/andp.202100395

251. R.W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V.V. Albert, L. Frunzio, L. Jiang, R.J. Schoelkopf, Cavity state manipulation using photon-number selective phase gates. Phys. Rev. Lett. 115, 137002 (2015)
318. S. Vignolini, F. Riboli, F. Intonti, D.S. Wiersma, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, Mode hybridization in photonic crystal nanocavities. Phys. Rev. Lett. 104, 183601 (2010). https://doi.org/10.1103/PhysRevLett.104.183601

319. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, J. Vuˇckovi´c, Ultrafast nonlinear optical tuning of photonic crystal cavities. Appl. Phys. Lett. 81, 2582–2585 (1998). https://doi.org/10.1063/1.121528

320. M. A. Dundar, J. A. M. Voorbraak, R. Nötzel, A. Fiore, R. W. van der Heijden, Multimodal strong coupling of photonic crystal cavities of dissimilar size. Phys. Rev. Lett. 81, 2582–2585 (1998). https://doi.org/10.1103/PhysRevLett.81.2582

321. W. C. L. Hopman, A. J. F. Hollink, R. M. de Ridder, K. O. van der Werf, V. Subramaniam, W. Bogaerts, Nano-mechanical tuning and imaging of a photonic crystal nanocavity. Nat. Photonics 6, 56 (2011)

322. R. Konoike, Y. Sato, Y. Tanaka, T. Asano, S. Noda, Adiabatic transfer scheme of light between strongly coupled photonic crystal nanocavities. Phys. Rev. B 81, 207901 (2010). https://doi.org/10.1103/PhysRevB.81.207901

323. S. Bose, Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003). https://doi.org/10.1103/PhysRevLett.91.207901

324. M. Christandl, N. Datta, A. Ekert, A. J. Landahl, Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 91, 187902 (2004). https://doi.org/10.1103/PhysRevLett.91.187902

325. C. Godsil, S. Kirkland, S. Severini, J. Smith, Number-theoretic nature of communication in quantum spin systems. Phys. Rev. Lett. 109, 050502 (2012). https://doi.org/10.1103/PhysRevLett.109.050502

326. Y. N. Joglekar, C. Thompson, D. D. Scott, G. Vemuri, Optical waveguide arrays: quantum effects and PT symmetry breaking. Eur. Phys. J. Appl. Phys. 56 (2011) 1–102

327. M. Cryan, H. P. Seigneur, M. N. Leuenberger, W. V. Schoenfeld, Controlled on-chip single-photon transfer using photonic crystal coupled-dipole modes. Adv. OptoElectron. 2011, 893086 (2011). https://doi.org/10.1155/2011/893086

328. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, F. Nori, Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008). https://doi.org/10.1103/PhysRevLett.101.100501
369. X.-K. Qin, Quantum switch in coupled-resonator array: Controlling single-photon transport by the state of two-level system. Int. J. Mod. Phys. B 20(3), 1550262 (2016). https://doi.org/10.1142/S0217979215502628

370. T. Aoki, A.S. Parkins, D.J. Alton, C.A. Regal, B. Dayan, E. Ostby, K.J. Vahala, H.J. Kimble, Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2019). https://doi.org/10.1103/PhysRevLett.102.083601

371. J. Lu, L. Zhou, L.-M. Kuang, F. Nori, Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)

372. I.-C. Hoi, C.M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing, Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011). https://doi.org/10.1103/PhysRevLett.107.073601

373. G.-A. Yan, Q.-Y. Cai, A.-X. Chen, Information-holding quantum router of single photons using natural atom. European Phys. J. D 70(4), 93 (2016). https://doi.org/10.1140/epjd/e2016-60724-4

374. M. Ahumada, P.A. Orellana, F. Domínguez-Adame, A.V. Malyshev, Tunable single-photon quantum router. Phys. Rev. A 99, 033827 (2019). https://doi.org/10.1103/PhysRevA.99.033827

375. J.-S. Huang, J.-W. Wang, Y. Wang, Y.-L. Li, Y.-W. Huang, Control of single-photon routing in a t-shaped waveguide by another atom. Quantum Inf. Process. 17(4), 78 (2018). https://doi.org/10.1007/s11128-018-1850-9

376. X.-K. Qin, Quantum switch in coupled-resonator array: Controlling single-photon transport by two emitters in one two-dimensional coupled cavity arrays. Optics Commun. 431, 73–80 (2019). https://doi.org/10.1016/j.optcom.2018.09.010

377. L. Liu, J.H. Zhang, L. Jin, L. Zhou, Transport properties of the non-hermitian t-shaped quantum router. Opt. Express 27(10), 13694–13705 (2019).

378. L. Liu, J. Lu, T-bulge-shaped quantum router. Quantum Inf. Process. 16(1), 29 (2016). https://doi.org/10.1007/s11128-016-1479-5

379. J.-H. Zhang, D.-Y. He, G.-Y. Luo, B.-D. Wang, J.-S. Huang, Bidirectional highly-efficient quantum routing in a t-bulge-shaped waveguide. Chin. Phys. B 30(3), 034204 (2021). https://doi.org/10.1088/1674-1056/abdf38

380. M.-M. Zhang, J.-J. Hou, C. Wu, X. Yang, Quantum routing on single photons with t-shaped channels. Int. J. Theor. Phys. 58(6), 1711–1720 (2019). https://doi.org/10.1007/s10773-019-04042-6

381. J.-S. Huang, J.-W. Wang, Y. Wang, Z.-H. Xu, Y.-W. Zhong, Single-photon routing in a multi-t-shaped waveguide. J. Phys. B: At. Mol. Opt. Phys. 52(1), 015502 (2018). https://doi.org/10.1088/1361-6455/aa93f4

382. T. Tian, L.J. Song, High efficient single-photon router with six ports. Optics Commun. 402, 557–560 (2017). https://doi.org/10.1016/j.optcom.2017.06.081

383. T. Aoki, A.S. Parkins, H.J. Kimble, H. Mabuchi, Quantum information processing in cavity-qed. Quantum Inf. Process. 10(1), 610 (1999)

384. J. Zhang, G.L. Long, W. Zhang, Z. Deng, W. Liu, Z. Lu, Simulation of heisenberg \(XY\) interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance. Phys. Rev. A 72, 012331 (2005). https://doi.org/10.1103/PhysRevA.72.012331

385. D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, J. Schmiedmayer, Reversible state transfer between superconducting qubits and atomic ensembles. Phys. Rev. A 79, 040304 (2009). https://doi.org/10.1103/PhysRevA.79.040304

386. Y. Zhen-Biao, S. Wan-Jun, An alternative scheme for transferring quantum states and preparing a quantum network in cavity QED. Commun. Theor. Phys. 47(6), 1037–1040 (2007). https://doi.org/10.1088/0253-6102/47/6/014

387. M.C. de Oliveira, S.S. Mizrahi, V.V. Dodonov, Information transfer in the course of a quantum interaction. J. Opt. B: Quantum Semiclassical Opt. 1(5), 610 (1999)

388. N. Meher, B.K. Behera, P.K. Panigrahi, Simulation of single photon dynamics in coupled cavities through ibm quantum computer. (2020) arXiv:2003.09910

389. C.J. Axline, L.D. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold, L. Fruenzio, S.M. Girvin, L. Jiang, M.H. Devoret, R.J. Schoelkopf, On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14(7), 705–710 (2018). https://doi.org/10.1038/s41567-018-0115-y

390. N. Meher, Perfect quantum state transfer in glauber-fock cavity array. Int. J. Theor. Phys. 59(1), 218–228 (2020). https://doi.org/10.1007/s10773-019-04314-1

391. N.Y. Yao, L. Jiang, A.V. Gorshkov, Z.-X. Gong, A. Zhai, L.-M. Duan, M.D. Lukin, Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011). https://doi.org/10.1103/PhysRevLett.106.040505

392. A. Perez-Leija, H. Moya-Cessa, A. Szameit, D.N. Christodoulides, Glauber–fock photonic lattices. Opt. Lett. 35(14), 2409–2411 (2010). https://doi.org/10.1364/OL.35.02409
428. M. Freyberger, Simple example of nonlocality: Atoms interacting with correlated quantized fields. Phys. Rev. A 51(4), 3347–3350 (1995). https://doi.org/10.1103/PhysRevA.51.3347

429. C.-S. Yu, X.X. Yi, H.-S. Song, D. Mei, Preparation of a stable and maximally entangled state of two distant qutrits trapped in separate cavities. European Phys. J. D 90, 035603 (2012). https://doi.org/10.1103/PhysRevLett.87.037902

430. S.-B. Zheng, G.-C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity qed. Phys. Rev. Lett. 73, 2881–2884 (1994). https://doi.org/10.1103/PhysRevA.53.4583

431. C. Degen, P. Zoller, Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 50, 2799–2802 (1994). https://doi.org/10.1103/PhysRevA.50.28799

432. J.I. Cirac, P. Zoller, Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 50, 2799–2802 (1994). https://doi.org/10.1103/PhysRevA.50.28799

433. C.-S. Yu, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang, J.-G. Ren, W.-Y. Liu, S.-L. Li, R. Shu, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, X.-B. Wang, F. Xu, J.-Y. Wang, C.-Z. Peng, A.K. Ekert, J.-W. Pan, Entanglement-based secure quantum cryptography over 1.120 kilometres. Nature 582(7813), 501–505 (2020). https://doi.org/10.1038/s41586-020-2401-y

434. A. Derfous, M. Suhail Zubairy, Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and bell’s non-locality. Quantum Inf. Process. 15, 2181–2191 (2016). https://doi.org/10.1007/s11128-016-1262-7

435. M.M. Rahman, P.K. Choudhury, Cavity quantum electrodynamics for photon mediated transfer of quantum states. J. Appl. Phys. 109(11), 113110 (2011)

436. M.F.C. Yabu-uti, J.A. Roversi, High fidelity and flexible quantum state transfer in the atom-coupled cavity hybrid system. Quantum Inf. Process. 12(1), 189–204 (2013). https://doi.org/10.1007/s11128-012-0366-y

437. F. Badshah, G.-Q. Ge, M. Paternostro, S. Qamar, Non-resonant interactions and multipartite entanglement in a system of coupled cavities. J. Opt. Soc. Am. B 37(4), 949–955 (2020). https://doi.org/10.1103/JO S A B.381215

438. A. Napoli, A. Messina, Local entanglement in a bimodal high-q cavity: Production and utilization. J. Mod. Opt. 49(7), 1095–1101 (2002). https://doi.org/10.1080/09500340010040004

439. A.-B.A. Mohamed, Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and bell’s non-locality. Quantum Inf. Process. 17(4), 96 (2018). https://doi.org/10.1007/s11128-018-1865-2

440. A.-B.A. Mohamed, Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and bell’s non-locality. Quantum Inf. Process. 17(4), 96 (2018). https://doi.org/10.1007/s11128-018-1865-2
483. A. Kandala, K.X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G.A. Keefe, D. Klaus, O. Dial, D.C. McKay. Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered zz suppression. Phys. Rev. Lett. 127, 130501 (2021). https://doi.org/10.1103/PhysRevLett.127.130501

484. S. Rosenblum, Y.Y. Gao, P. Reinhold, C. Wang, C.J. Axline, L. Fruzio, S.M. Girvin, L. Jiang, M. Mirrahimi, M.H. Devoret, R.J. Schoelkopf. A cnot gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9(1), 652 (2018). https://doi.org/10.1038/s41467-018-03059-5

485. S.P. Premaratne, J.-H. Yeh, F.C. Wellstood, B.S. Palmer. Scalable quantum computation with cavity qed systems. Phys. Rev. A 92, 052306 (2015). https://doi.org/10.1103/PhysRevA.92.052306

486. M. Heuck, K. Jacobs, D.R. Englund. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 117, 010503 (2016). https://doi.org/10.1103/PhysRevLett.117.010503

487. V. Giovannetti, D. Vitali, P. Tombesi, A. Ekert. Scalable quantum computation with cavity qed systems. Phys. Rev. A 70, 052306 (2004). https://doi.org/10.1103/PhysRevA.70.052306

488. H. Goto, K. Ichimura. Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 062306 (2004). https://doi.org/10.1103/PhysRevA.70.062306

489. L.-M. Duan, H.J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 94, 120503 (2005). https://doi.org/10.1103/PhysRevLett.94.120503

490. T. Shi-Qing, Z. Deng-Yu, X. Li-Jun, Z. Xiao-Gui, G. Feng. Selective atom-cavity interaction scheme for quantum controlled-NOT gate using four-level atoms. Phys. Rev. A 83, 032309 (2011). https://doi.org/10.1103/PhysRevA.83.032309

491. A. Reihani, C. Rempe. Simple cavity-qed two-bit universal quantum logic gate: The principle and expected performances. Phys. Rev. A 52, 3544–3559 (1995). https://doi.org/10.1103/PhysRevA.52.3554

492. M. Feng, X. Wang. Implementation of quantum gates and preparation of entangled states in cavity QED with cold trapped ions. J. Opt. B: Quantum Semiclass. Opt. 5(5), 283–288 (2003). https://doi.org/10.1088/1464-4266/5/5/309

493. M. Paternostro, M.S. Kim, G.M. Palma. Non-local quantum gates: A cavity-quantum-electrodynamics implementation. J. Mod. Opt. 50(13), 2075–2094 (2003). https://doi.org/10.1080/095003403088222529

494. A. Kandala, K.X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G.A. Keefe, D. Klaus, O. Dial, D.C. McKay. Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered zz suppression. Phys. Rev. Lett. 127, 130501 (2021). https://doi.org/10.1103/PhysRevLett.127.130501

495. M. Heuck, K. Jacobs, D.R. Englund. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 117, 010503 (2016). https://doi.org/10.1103/PhysRevLett.117.010503

496. V. Giovannetti, D. Vitali, P. Tombesi, A. Ekert. Scalable quantum computation with cavity qed systems. Phys. Rev. A 70, 062306 (2004). https://doi.org/10.1103/PhysRevA.70.062306

497. L.-M. Duan, H.J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 94, 120503 (2005). https://doi.org/10.1103/PhysRevLett.94.120503

498. A. Reihani, C. Rempe. Simple cavity-qed two-bit universal quantum logic gate: The principle and expected performances. Phys. Rev. A 52, 3544–3559 (1995). https://doi.org/10.1103/PhysRevA.52.3554

499. M. Paternostro, M.S. Kim, G.M. Palma. Non-local quantum gates: A cavity-quantum-electrodynamics implementation. J. Mod. Opt. 50(13), 2075–2094 (2003). https://doi.org/10.1080/095003403088222529

500. A. Biswas, G.S. Agarwal. Quantum logic gates using stark-shifted raman transitions in a cavity. Phys. Rev. A 69, 062306 (2004). https://doi.org/10.1103/PhysRevA.69.062306

501. M. Feng, X. Wang. Implementation of quantum gates and preparation of entangled states in cavity QED with cold trapped ions. J. Opt. B: Quantum Semiclass. Opt. 5(5), 283–288 (2003). https://doi.org/10.1088/1464-4266/5/5/309

502. A. Kandala, K.X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G.A. Keefe, D. Klaus, O. Dial, D.C. McKay. Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered zz suppression. Phys. Rev. Lett. 127, 130501 (2021). https://doi.org/10.1103/PhysRevLett.127.130501

503. M. Heuck, K. Jacobs, D.R. Englund. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 117, 010503 (2016). https://doi.org/10.1103/PhysRevLett.117.010503

504. V. Giovannetti, D. Vitali, P. Tombesi, A. Ekert. Scalable quantum computation with cavity qed systems. Phys. Rev. A 70, 062306 (2004). https://doi.org/10.1103/PhysRevA.70.062306

505. M. Heuck, K. Jacobs, D.R. Englund. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 117, 010503 (2016). https://doi.org/10.1103/PhysRevLett.117.010503

506. V. Giovannetti, D. Vitali, P. Tombesi, A. Ekert. Scalable quantum computation with cavity qed systems. Phys. Rev. A 70, 062306 (2004). https://doi.org/10.1103/PhysRevA.70.062306

507. M. Heuck, K. Jacobs, D.R. Englund. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 117, 010503 (2016). https://doi.org/10.1103/PhysRevLett.117.010503

508. Y. Seng, Z.-L. Caderilla-Barranco, J.A. Roversi. A proposal of quantum logic gates using cold trapped ions in a cavity. Phys. Lett. A 299(5), 423–426 (2002). https://doi.org/10.1016/S0375-9601(02)00734-X

509. A. Serafini, S. Mancini, S. Bose. Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006). https://doi.org/10.1103/PhysRevLett.96.010503

510. G.-W. Lin, X.-B. Zou, M.-Y. Ye, X.-M. Lin, G.-C. Guo. Quantum swap gate in an optical cavity with an atomic cloud. Phys. Rev. A 77, 064301 (2008). https://doi.org/10.1103/PhysRevA.77.064301
518. K.-H. Song, Y.-J. Zhao, Z.-G. Shi, S.-H. Xiang, X.-W. Chen, Simultaneous implementation of n swap gates using superconducting charge qubits coupled to a cavity. Optics Commun. 283(3), 506–508 (2010). https://doi.org/10.1016/j.optcom.2009.10.069

519. J. Chun-Wei, F. Mao-Fa, H. Yao-Hua, Efficient scheme of quantum SWAP gate and multi-atom cluster state via cavity QED. Chin. Phys. B 17(1), 190–193 (2008). https://doi.org/10.1088/1674-1056/17/1/033

520. X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, Swap gate and controlled swap gate based on a single resonant interaction with cavity quantum electrodynamics. Phys. Scr. 79(6), 065004 (2009). https://doi.org/10.1088/0031-8949/79/06/065004

521. D.-Y. Zhang, S.-Q. Tang, X.-W. Wang, L.-J. Xie, F. Gao, Feasible schemes for quantum swap gates of optical qubits via cavity QED. Chin. Phys. B 20(4), 040308 (2011). https://doi.org/10.1088/1674-1056/20/4/040308

522. G.-A. Yan, H.-X. Qiao, H. Lu, Quantum swap gate in optical cavities with a cyclic three-level system. Quantum Inf. Process. 17(4), 71 (2018). https://doi.org/10.1007/s11128-018-1836-7

523. X. Zhang, X. Ding, X. Ge, Swap gate on two modes of an optical cavity mediated by a laser-dressed v-type atom. Quantum Inf. Process. 19(2), 59 (2020). https://doi.org/10.1007/s11128-019-2556-3

524. K. Koshino, S. Ishizaka, Y. Nakamura, Deterministic photon-photon swap gate using a Λ system. Phys. Rev. A 82, 010301 (2010). https://doi.org/10.1103/PhysRevA.82.010301

525. J.-T. Chang, M.S. Zubairy, Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 73, 032344 (2006). https://doi.org/10.1103/PhysRevA.73.032344

526. X.-L. Feng, Z. Wang, C. Wu, L.C. Kwek, C.H. Oh, Scheme for unconventional geometric quantum computation in cavity qed. Phys. Rev. A 78, 052312 (2008). https://doi.org/10.1103/PhysRevA.78.052312

527. C.-Y. Chen, M. Feng, K.-L. Gao, Toffoli gate originating from a single resonant interaction with cavity qed. Phys. Rev. A 73, 064304 (2006). https://doi.org/10.1103/PhysRevA.73.064304

528. T. Shi-Qing, Z. Deng-Yu, X. Li-Jun, Z. Xiao-Gui, G. Feng, Realization of toffoli gate operation using four-level atoms in cavity QED system. Chin. Phys. B 18(1), 56–61 (2009). https://doi.org/10.1088/1674-1056/18/1/010

529. S. Xiao-Qiang, C. Li, Z. Shou, Two simple schemes for implementing toffoli gate via atom–cavity field interaction in cavity quantum electrodynamics. Chin. Phys. B 18(2), 440–445 (2009). https://doi.org/10.1088/1674-1056/18/2/011

530. M.-F. Chen, L.-T. Shen, Z.-B. Yang, Implementation of distributed toffoli gates in separate cavities through virtual excitation processes. J. Opt. Soc. Am. B 31(4), 697–703 (2014). https://doi.org/10.1364/JOSAB.31.00697

531. L.-C. Song, Y. Xia, J. Song, Experimentally optimized implementation of the fredkin gate with atoms in cavity QED. Phys. Scr. 80(3), 034205 (2010). https://doi.org/10.1088/0256-307x/27/3/034205

532. Y.-F. Xiao, X. B. Zou, G.-C. Guo, One-step implementation of an n-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007). https://doi.org/10.1103/PhysRevA.75.054303

533. J.-T. Chang, M.S. Zubairy, Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 77, 012329 (2008). https://doi.org/10.1103/PhysRevA.77.012329

534. C.-P. Yang, A scheme for realizing n-qubit controlled-phase gates with atoms in cavity qed. Phys. Lett. A 372(16), 2782–2786 (2008). https://doi.org/10.1016/j.physleta.2007.12.048

535. X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, K.-H. Yeon, Three-qubit phase gate on three modes of a cavity. Optics Commun. 282(23), 4436–4451 (2009). https://doi.org/10.1016/j.optcom.2009.08.051

536. T. Shi-Qing, Z. Deng-Yu, X. Li-Jun, Z. Xiao-Gui, G. Feng, Realization of three-qubit controlled-phase gate operation with atoms in cavity QED system. Chin. Phys. Lett. 26(2), 020310 (2009). https://doi.org/10.1088/0256-307x/26/2/020310

537. L. Pei-Min, S. Jie, X. Yan, Implementing a multi-qubit quantum phase gate encoded by photonic qubit. Chin. Phys. Lett. 27(3), 030302 (2010). https://doi.org/10.1088/0256-307x/27/3/030302

538. L. Hui-Yan, Y. Ya-Fei, Z. Zhi-Ming, One-step implementation of an n-qubit quantum phase gate through a double ramen passage. Chin. Phys. B 19(3), 034205 (2010). https://doi.org/10.1088/1674-1056/19/3/034205

539. G.-W. Lin, X.-B. Zou, X.-M. Lin, G.-C. Guo, Robust and fast geometric quantum computation with multiqubit gates in cavity qed. Phys. Rev. A 79, 064303 (2009). https://doi.org/10.1103/PhysRevA.79.064303

540. F. Qiu-Bo, One-step implementation of multijubit quantum phase gate in a cavity QED system. Chin. Phys. Lett. 25(2), 379–382 (2008). https://doi.org/10.1088/0256-307x/25/2/008

541. C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, S. Ritter, Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013). https://doi.org/10.1103/PhysRevLett.110.140403

542. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998). https://doi.org/10.1103/PhysRevLett.80.1121

543. Y.-J. Kim, S.P. Kulik, Y. Shih, Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001). https://doi.org/10.1103/PhysRevLett.86.1370

544. J.-W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, A. Zeilinger, Experimental realization of freely propagating teleportated qubits. Nature 421(6924), 721–725 (2003). https://doi.org/10.1038/nature01412

545. E. Lombardi, F. Sciarrino, S. Popescu, F. De Martini, Teleportation of a vacuum-one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002). https://doi.org/10.1103/PhysRevLett.88.070402

546. S. Takeda, T. Mizuta, M. Iwasa, P. van Loock, A. Furusawa, Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nat. Phys. 4(3), 315–318 (2008). https://doi.org/10.1038/nphys1236

547. J.F. Sherson, H. Krauter, R.K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, E.S. Polzik, Quantum teleportation between light and matter. Nature 443(7111), 557–560 (2006). https://doi.org/10.1038/nature05136

548. Y.-A. Chen, S. Chen, Z.-S. Yuan, B. Zhao, C.-S. Chuu, J. Schmiedmayer, J.-W. Pan, Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4(2), 103–107 (2008). https://doi.org/10.1038/nphys382
625. B. Xiong, X. Li, S.-L. Chao, L. Zhou, Quantum transistor with a double-cavity optomechanical system. EPL (Europhysics Letters) 122(6), 64002 (2018). https://doi.org/10.1209/0295-5075/122/64002
626. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). https://doi.org/10.1103/RevModPhys.86.1391
627. K. Stannigel, P. Komar, S.J.M. Habraken, S.D. Bennett, M.D. Lukin, P. Zoller, P. Rabl, Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012). https://doi.org/10.1103/PhysRevLett.109.013603
628. L. Villa, G. De Chiara, Cavity assisted measurements of heat and work in optical lattices. Quantum 2, 42 (2018). https://doi.org/10.22331/q-2018-01-04-42
629. D. Sidler, M. Ruggenthaler, H. Appel, A. Rubio, Chemistry in quantum cavities: Exact results, the impact of thermal velocities, and modified dissociation. J. Phys. Chem. Lett. 11(18), 7525–7530 (2020). https://doi.org/10.1021/acs.jpclett.0c01556

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.