Tunicamycin Inhibits Diabetes

Namir Shaabani¹,², Nadine Honke¹,², Philipp A. Lang¹, Boris Görg¹, Peter Proksch³, Nicole Gailus¹,², Tomomi Gotoh⁴, Dieter Häussinger¹ and Karl S. Lang¹,²

¹Department of Gastroenterology, Hepatology and Infectious diseases, University of Düsseldorf, Germany; ²Institute for Immunology, University Medical Center Essen, Germany; ³Institute of Pharmaceutical Biology and Biotechnology, University of Düsseldorf, Germany; ⁴Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Japan

Key Words
Tunicamycin • Endoplasmic reticulum stress • Oxidative stress • Lymphocytic choriomeningitis virus • Diabetes

Abstract
Background: Autoimmune diseases are characterized by a breakdown of immunologic tolerance, and this breakdown can lead to life-threatening or lifelong disorders. Moreover; drugs that are used to treat these diseases are few in number and are associated with many serious adverse effects. Methods: We used the rat insulin promoter-glycoprotein mouse model to analyze the role of tunicamycin in the process of autoimmune diabetes; the P14 mouse model to analyze the effect of tunicamycin on CD8+ T cells; chop knockout mice to analyze the role of tunicamycin on an endoplasmic reticulum stress model; and fluorescence-activated cell sorting, quantitative real-time polymerase chain reaction, and histologic methods. Results: We found that a single dose of tunicamycin reduced the activation and pancreatic infiltration of CD8+ T cells. This activity delayed the incidence of virus-induced diabetes and improved survival rates. Conclusion: Tunicamycin may offer therapeutic opportunities for T cell–mediated autoimmune diseases such as diabetes.

Introduction
Diabetes mellitus is an insulin homeostasis disorder characterized by metabolic abnormalities in carbohydrate and lipid metabolism. Type 1 diabetes is primarily immune-mediated. The loss of beta cells is due to a T cell–mediated autoimmune attack, which results in the failure of the pancreas to produce insulin [1-5].

Tunicamycin is produced by the bacterium Streptomyces lyosuperificus and is a mixture of homologous nucleoside antibiotics that inhibit the enzyme GlcNAc phosphotransferase (GPT). GPT catalyzes the transfer of N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to dolichol phosphate, which blocks the synthesis of asparagine-linked glycoproteins. Tunicamycin inhibits the synthesis of all N-linked glycoproteins (N-glycans) and causes cell cycle arrest in...
the G1 phase. In addition, it is used in biology as an experimental tool that induces an unfolded protein response [6-11].

In this study we analyzed the effects of tunicamycin in suppressing the immune response. We found that a single dose of tunicamycin significantly reduces T-cell proliferation and delays the incidence of diabetes in a model of virus-induced type 1 diabetes.

Materials and Methods

Mice, treatment, viruses

Lymphocytic choriomeningitis virus (LCMV) strain WE was originally obtained from F. Lehmann-Grube (Heinrich Pette Institute, Hamburg, Germany) and was propagated in L929 cells. Virus titers were measured with a focus-forming assay as described previously [12]. All mice used in this study were maintained on the C57BL/6 genetic background. Rat insulin promoter-glycoprotein (RIP-GP) mice, which express the LCMV glycoprotein as a transgene under the rat insulin promoter, were used for analysis of autoimmune diabetes [13]. P14/CD45.1 mice expressing the LCMV GP33 peptide-specific T-cell receptor (TCR) as a transgene were used for T-cell studies [14]. KL25 knockin mice express a LCMV specific B cell receptor [15]. Mice lacking the chop gene were maintained on the C57BL/6 background [16]. Animals were kept in single ventilated cages. Animal experiments were carried out with the authorization of the Veterinäramt of Nordrhein Westfalen, Germany, and in accordance with the German laws for animal protection, the institutional guidelines of the Ontario Cancer Institute, or both. Mice exhibiting symptoms of sickness or showing substantial weight loss during LCMV infection were considered dead for purposes of statistical analysis and were euthanized. Tunicamycin was purchased from Sigma-Aldrich (St. Louis, MO) and was dissolved in dimethyl sulfoxide (DMSO) for intravenous treatment of the animals.

Diabetes measurement

Blood glucose concentrations were measured with an Elite Meter (Bayer, Tarrytown, NY). Mice were considered diabetic if the glucose concentration was higher than 14 mM for 2 consecutive days.

Histology

In virus infection experiments, histologic analyses were performed on snap-frozen tissue [12]. Sections of pancreas were stained with the rat monoclonal antibodies anti-CD8 (BD Pharmingen, San Diego, CA), with anti-major histocompatibility complex I (MHC-I) (eBioscience, San Diego, CA), and with guinea pig anti-insulin (Dako, Carpinteria, CA).

Fluorescence-activated cell sorting analysis

Tetramer staining, surface staining, and intracellular fluorescence-activated cell sorting (FACS) staining were performed as described previously [12]. Briefly, splenocytes or peripheral blood lymphocytes were stained with allophycocyanin (APC)-labeled GP33 MHC class I tetramers (GP33/H-2Db) for 15 minutes at 37°C. They were then stained with anti-CD8 peridinin chlorophyll protein complex (PerCP; BD Biosciences, Franklin Lakes, NJ) for 30 minutes at 4°C. Tetramers were provided by the National Institutes of Health (NIH) Tetramer Facility.

Lymphocyte transfer

Splenocytes from P14/CD45.1 mice were labeled with carboxyfluorescein succinimidyl ester (CFSE) and injected intravenously into 4 groups of mice. On the next day, 2 groups were infected with 2×10⁴ plaque-forming units (PFU) LCMV-WE. After 12 hours, one group of the uninfected and infected mice was given 20 nmol of tunicamycin intravenously; the other mice served as a control group and were left uninfected.

In vitro T-cell proliferation

The proliferation of CD8⁺ T cells in vitro without antigen was performed as described previously [17]. Briefly, T cells were sorted with the MACS Pan T Cell Isolation Kit (130-090-861, Miltenyi Biotec, Bergisch Gladbach) and then labeled with CFSE. T-cell activation was achieved in a 24-well plate coated with anti-CD3 (5 µg/mL; 14-0031-85, eBioscience) with or without soluble anti-CD28 (2 µg/mL; 553294, BD Pharmingen).

Reverse-transcription polymerase chain reaction

Total RNA was extracted from splenocytes with the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNA was quantified with a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Peqlab Biotechnologie GmbH, Erlangen, Germany). The RNA was reverse-transcribed into cDNA by using the Quantitect Reverse Transcription Kit (Qiagen, Hilden, Germany). Gene expression analysis was performed with assays from Applied Biosystems (Carlsbad, CA; glyceraldehyde-3-phosphate dehydrogenase [GAPDH] [4352339E-0806018], Chop [Mm00492097_m1], interferon-gamma [IFN-γ] [Mm99999071_m1], and interleukin-2 [IL-2] [Mm99999222-m1]). Gene expression values were then calculated with the ddCt method; the mean of the control group was used as a calibrator to which all other samples were compared. Relative quantities (RQs) were determined with the equation RQ = 2⁻ⁿᶜᵗ.

In vivo killer assay

C57BL/6 mice were infected with 200 PFU of LCMV-WE. On day 7, CD45.1⁺ splenocytes were labeled either with GP33 peptide or with CFSE and were transferred to the infected mice in a ratio of 1:1. After 30 minutes, the number of GP33-labeled splenocytes was compared to the number of CFSE-labeled peptide-negative splenocytes.

Statistical analysis

Data are expressed as means ± S.E.M. Differences between two groups were analyzed for statistical significance with Student’s t-test. Statistical significance was set at the level of P < 0.05.
Results

Tunicamycin inhibits LCMV-induced diabetes

To analyze the role of tunicamycin in diabetes we used RIP-GP mice, which express a viral antigen (LCMV glycoprotein) under the rat insulin promoter. Priming of CD8+ T cells with LCMV-WE induces the proliferation of β-islet epitope–specific CD8+ T cells; these cells subsequently destroy pancreatic β-islet cells, and this destruction leads to diabetes [13]. To test the effect of tunicamycin in diabetes, we infected RIP-GP mice with 200 PFU LCMV-WE (day 0) and then treated one group of mice additionally with 20 nmol tunicamycin on day 4. Treatment with tunicamycin substantially delayed the onset of diabetes; mice treated with tunicamycin did not show any obvious sign of disease until day 15. In contrast, diabetic mice that were not given tunicamycin exhibited high glucose concentrations beginning on day 10 and died within 40 days (Fig. 1 A, B).

Fig. 1. Tunicamycin inhibits lymphocytic choriomeningitis virus–induced diabetes. A: Rat insulin promoter-glycoprotein (RIP-GP) mice, expressing the lymphocytic choriomeningitis virus (LCMV) glycoprotein under the rat insulin promoter, were infected with 200 plaque-forming units (PFU) LCMV-WE. One group of mice was treated with 20 nmol tunicamycin on day 4 after infection. Induction of diabetes was monitored (n = 6). B: Survival of mice was analyzed (n = 6).

Fig. 2. Tunicamycin reduces the infiltration of CD8+ T cells to the pancreas. Rat insulin promoter-glycoprotein (RIP-GP) mice were infected with 200 PFU LCMV-WE. One group of mice was treated with 20 nmol tunicamycin on day 4 after infection. On day 6, mice were killed, and beta-islet cells were stained with immune fluorescence antibodies (n = 3). Scale bar, 100 µm.

Insulin MHC I CD8 Insulin, MHC I, CD8

Untreated

Tunicamycin

Tunicamycin Inhibits Diabetes

Cell Physiol Biochem 2012;29:595-602
Tunicamycin reduces the infiltration of CD8+ T cells to the pancreas

To investigate the effect of tunicamycin on the infiltration of CD8+ T cells to the pancreas, we used 2 groups of RIP-GP mice that had been infected with LCMV-WE. One group was treated intravenously with 20 nmol tunicamycin on day 4, and the other group was left untreated. After 6 days of infection, mice were killed. Pancreas slices were stained with fluorescence antibodies against β-islet cells, CD8+ T cells, and MHC-I. Treatment with tunicamycin reduced the infiltration of T cells and the expression of MHC-I (Fig. 2).

Tunicamycin induces rapid apoptosis in proliferating T cells

To investigate whether tunicamycin specifically reduces the number of CD8+ T cells and whether its suppressive activity also affects other immune cells, we infected mice with 200 PFU LCMV and administered 20 nmol tunicamycin on day 6. On day 8, mice were killed and immune cells were counted. We found that the administration of tunicamycin primarily reduced the number of CD8+ T cells (Fig. 3 A). The main reduction was in NP396-specific and GP33-specific T cells (Fig. 3 B). Moreover, we analyzed the effect of tunicamycin on the proliferation of specific B cells. We used B cells from the spleens of KL25 mice, which are specific for LCMV-GP. The B cells were labeled with CFSE and incubated with LCMV with or without 10 µM tunicamycin. We did not find obvious effect of tunicamycin on the proliferation of these specific B cells (Fig. 3 C).

Tunicamycin acts directly on T cells

To determine whether the reduction in the number of CD8+ T cells is direct, we transferred CFSE-labeled splenocytes from P14/CD45.1 mice into 4 groups of C57BL/6 mice. One group was infected with 2×10⁴ PFU of LCMV-WE; the second group was also infected (2×10⁴ PFU) and was additionally treated with 20 nmol tunicamycin on day 1; the third group was not infected but was only treated with 20 nmol tunicamycin; and the fourth group served as a control group. The mice were killed on day 3, and the proliferation of the labeled splenocytes was analysed in FACS. The addition of tunicamycin in the absence of T-cell activation had only a mild influence on the survival of CD8+ T cells (Fig. 4A, B). T-cell activation in the absence of tunicamycin led to rapid CFSE dilution and expansion of CD8+ T cells. In the presence of tunicamycin, the number of CD8+ T cells decreased rapidly to a level even lower than the original.
Tunicamycin Inhibits Diabetes

Fig. 4. Tunicamycin acts directly on T cells. A-B: P14/CD45.1 splenocytes were labeled with CFSE and transferred to C57BL/6 mice. Mice were then infected with LCMV-WE or left uninfected in the presence or absence of 20 µmol tunicamycin. The proliferation capability (A) and the number (B) of T cells were determined by FACS (n = 3). C-D: MACS-sorted T cells were labeled with CFSE and stimulated with anti-CD3 and with or without anti-CD28, in the presence or absence of 10µM tunicamycin. After 3 days, the CFSE content (C) and the absolute number of CD8+ T cells (D) determined by FACS (n = 6). E: C57BL/6 mice were treated with 20 µmol tunicamycin or left untreated. P14/CD45.1 splenocytes were labeled with CFSE and transferred to the mice with or without LCMV-WE infection. The proliferation of T cells was determined by FACS (n = 4).

cell count (Fig. 4 A, B). This finding suggests that activated T cells are highly sensitive to treatment with tunicamycin but that non-activated T cells are only slightly sensitive to this treatment.

To eliminate the effect of tunicamycin on the expression of MHC-I, we cultured CFSE-labeled CD8+ T cells in anti-CD3–coated 24-well plates and stimulated them with or without CD28. One group each of the stimulated and unstimulated cells was treated with tunicamycin on day 0. After 3 days, the absolute number of CD8+ T cells and the CFSE content were measured with FACS. Tunicamycin directly inhibited the Proliferation of the CD8+ T cells (Fig. 4 C, D), and this finding excluded the possibility that tunicamycin affects the antigen-presenting pathway.

To restrict the effect of tunicamycin on MHC-I, we treated C57BL/6 mice with tunicamycin. Twelve hours later we injected mice with CFSE-labeled splenocytes from P14/CD45.1 mice. After 48 hours, the proliferation of the transferred CD8+ T cells was measured with FACS and was found to be at a normal level (Fig. 4 E).

Tunicamycin increases the expression of the chop gene in T cells

Tunicamycin has a strong effect on endoplasmic reticulum (ER) stress and specifically on the chop gene; under circumstances of stress this effect can lead to apoptosis [18-20]. Therefore, we next measured the expression of chop mRNA in T cells. We stimulated splenocytes from P14 mice with GP33 and incubated the cells with 10 µM tunicamycin for 48 hours. Tunicamycin increased the expression of chop (Fig. 5 A). To determine whether this enhanced chop expression was the reason for the reduced proliferation of T cells, we injected chop−/− mice

Fig. 5. Tunicamycin induces the expression of chop in T cells. A: P14 splenocytes were activated with GP33 peptide in the presence or absence of 10 µM tunicamycin. After 48 hours, chop gene expression was measured (n = 6). B: Chop knockout mice and C57BL/6 mice were infected with 2×10⁶ PFU LCMV-WE. On day 4, mice were treated with 20 nmol of tunicamycin. CD8+ T cells in the blood were counted on day 8 (n = 3).
with 2×10^6 PFU LCMV-WE, with or without 20 nmol of tunicamycin. We found that chop^+/− mice were also sensitive to tunicamycin, a finding suggesting that factors other than chop contributed to the rapid death of CD8^+ T cells (Fig. 5 B).

Tunicamycin inhibits the production of cytokines by proliferated T cells

T cells begin to produce cytokines after activation. This cytokine production enhances proliferation (IL-2) and is beneficial for controlling the virus (IFN-γ) [21, 22]. We used real-time polymerase chain reaction (RT-PCR) to measure the mRNA expression of IL-2 and IFN-γ by T cells. Splenocytes from P14 mice were stimulated with GP33 peptide and were either treated with 10 µM tunicamycin for 48 hours or left untreated. Tunicamycin reduced gene expression (Fig. 6 A, B), a finding suggesting that cytokine production is also affected by tunicamycin.

Next we measured the cytotoxic activity of CD8^+ T cells after tunicamycin treatment. The cytolytic activity of CD8^+ T cells was significantly reduced when mice were treated with tunicamycin (Fig. 6 C).
Next we compared the immunosuppressive effects of tunicamycin to those of a standard immunosuppressive therapy (dexamethasone). First, we analyzed the ability of both regimens to control the virus and found that both treatments led to the persistence of LCMV (Fig. 7 A). Toxicity studies showed that once the dose was increased, the administration of tunicamycin led to death (Fig. 7 B). This finding suggests that the therapeutic window of tunicamycin is narrow.

Discussion

In this study we found that tunicamycin can prevent type 1 diabetes by reducing the proliferation of T cells, primarily active antigen-specific CD8+ T cells. This strong effect of tunicamycin could also be important for treating other types of diseases that are related to autoimmune responses. However, because of the narrow application window of tunicamycin, specific cell toxicity will probably be required. The results of this study may also suggest a new approach to the treatment of diabetes in humans, once the therapeutic dose, the proper route of administration, and the accompanying adverse effects have been determined.

Acknowledgements

We thank K. Schättel for technical support. The authors also acknowledge the NIH Tetramer Facility for providing the tetromers used in the study. This study was supported by the Sonderforschungsbereich SFB974, Experimentelle Hepatologie (Sprecher: Prof. Dieter Häussinger). K.S.L. was funded by the Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation. In addition, this study was funded by the Deutsche Forschungsgemeinschaft (DFG LA 1419/3-1). This work was also supported by the MOI Manchot Graduate School (Jürgen Manchot Foundation).

K.S.L studied and wrote the manuscript; N.S. performed most of the experiments and prepared the initial manuscript; N.H. performed many experiments; B.G and N.G. performed experiments; P.A.L., P.P., and D.H. analyzed the data; and T.M. helped with experiments regarding chop knockout mice.

References

1. Van den Driessche A, Eenkhoorn V, Van Gaal L, De Block C: Type 1 diabetes and autoimmune polyglandular syndrome: A clinical review. Neth J Med 2009;67:376-387.
2. Pozzilli P, Di Mario U: Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care 2001;24:1460-1467.
3. Pinschewer DD, Ochsenbein AF, Odermatt B, Brinkmann V, Hengartner H, Zinkernagel RM: FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J Immunol 2000;164:5761-5770.
4. Lang PA, Merkler D, Funkner P, Shaabani N, Meryk A, Krings C, Barthuber C, Recher M, Brueck W, Haeusssinger D, Ohashi PS, Lang KS: Oxidized ATP inhibits T-cell-mediated autoimmunity. Eur J Immunol 2010;40:2401-2408.
5. Fairweather D, Rose NR: Type 1 diabetes: virus infection or autoimmune disease? Nat Immunol 2002;3:338-340.
6. Olden K, Pratt RM, Yamada KM: Selective cytotoxicity of tunicamycin for transformed cells. Int J Cancer 1979;24:60-66.
7. Noda I, Fujieda S, Seki M, Tanaka N, Sunaga H, Ohtsubo T, Tsuzuki H, Fan GK, Saito H: Inhibition of N-linked glycosylation by tunicamycin enhances sensitivity to cisplatin in human head-and-neck carcinoma cells. Int J Cancer 1999;80:279-284.
8. Prives J, Bar-Sagi D: Effect of tunicamycin, an inhibitor of protein glycosylation, on the biological properties of acetylcholine receptor in cultured muscle cells. J Biol Chem 1983;258:1775-1780.
9. Watson A, Bach FH: The role of gp70 in the target antigen recognized by murine leukemia virus immune cytotoxic T-lymphocytes. Int J Cancer 1980;26:483-494.
Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H: Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 1991;65:305-317.

Pircher H, Bürki K, Lang R, Hengartner H, Zinkernagel RM: Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 1989;342:559-561.

Hangartner L, Senn BM, Ledermann B, Kalinke U, Seiler P, Bucher E, Zellweger RM, Fink K, Odermatt B, Bürki K, Zinkernagel RM, Hengartner H: Antiviral immune responses in gene-targeted mice expressing the immunoglobulin heavy chain of virus-neutralizing antibodies. Proc Natl Acad Sci USA 2003;100:12883-12888.

Gotoh T, Terada K, Oyadomari S, Mori M: Hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 2004;11:390-402.

Blais ME, Gérard G, Martinic MM, Roy-Proulx G, Zinkernagel RM, Perreault C: Do thymically and strictly extrathymically developing T cells generate similar immune responses? Blood 2004;103:3102-3110.

Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ: Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 2008;118:3378-3389.

Chen G, Fan Z, Wang X, Ma C, Bower KA, Shi X, Ke ZJ, Luo J: Brain-derived neurotrophic factor suppresses tunicamycin-induced upregulation of CHOP in neurons. J Neurosci Res 2007;85:1674-1684.

Vanderford NL: Defining the regulation of IL-1β- and CHOP-mediated β-cell apoptosis. Islets 2010;2:334-336.

Ohteki T, Parsons M, Zakarian A, Jones RG, Nguyen LT, Woodgett JR, Ohashi PS: Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3. J Exp Med 2000;192:99-104.

Schwiebert EM: Underlying purinergic signaling contributes to T lymphocyte activation in tissue repair. Focus on “shockwaves increase the T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation”. Am J Physiol Cell Physiol 2010;298:C446-447.