cuHARM : a new GPU accelerated GR-MHD code and its application to ADAF disks

D. Bégué †, A. Pe’er ‡, G.-Q. Zhang ‡, B.-B. Zhang ‡, 3 and B. Pevzner †

†Bar Ilan University, Ramat Gan, Israel
‡School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
§Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, China

ABSTRACT

We introduce a new GPU-accelerated general-relativistic magneto-hydrodynamic (GR-MHD) code based on HARM which we call cuHARM. The code is written in CUDA-C and uses OpenMP to parallelize multi-GPU setups. Our code allows us to run high resolution simulations of accretion disks and the formation and structure of jets without the need of multi-node supercomputer infrastructure. A 256^3 simulation is well within the reach of an Nvidia DGX-V100 server, with the computation being a factor about 10 times faster if only the CPU was used. We use this code to examine several disk structures all in the SANE state. We find that: (i) increasing the magnetic field, while in the SANE state does not affect the mass accretion rate; (ii) Simultaneous increase of the disk size and the magnetic field, while keeping the ratio of energies fixed, lead to the destruction of the jet once the magnetic flux through the horizon decrease below a certain limit. This demonstrates that the existence of the jet is not a linear function of the initial magnetic field strength; (iii) the structure of the jet is a weak function of the adiabatic index of the gas, with relativistic gas tend to have a wider jet.

Keywords: Accretion – Magnetohydrodynamics – Black hole physics – Computational methods

1. INTRODUCTION

Accretion disks into compact objects are central to many astronomical objects of interest, including, among others, active galactic nuclei (AGNs), X-ray emitting binaries (XRbs), and even gamma-ray bursts (GRBs). Theoretically, several types of disks have been identified, whose structure mainly depend on (i) the mass accretion rate and the resulting optical depth; and (ii) the configuration of magnetic field inside the disk (for reviews, see, e.g., Narayan & McClintock 2008; Abramowicz & Fragile 2013).

At high accretion rate (close to the Eddington limit, $\dot{M}_{\text{acc}} \lesssim \dot{M}_{\text{Edd}}$), the gas is radiatively efficient, and the disk radiates approximately 10% of the rest mass energy during the accretion process, resulting in a geometrically thin disk (Shakura & Sunyaev 1973; Novikov & Thorne 1973), with height to radius ratio $H/r \ll 0.1$. Such disks are found around all types of black-holes (stellar and supermassive). At lower accretion rate, $\dot{M} \ll \dot{M}_{\text{Edd}}$, the gas is radiatively inefficient, and the accretion flow is underluminous, $L_{\text{disk}} \ll 0.1 \dot{M}_{\text{acc}} c^2$. The resulting disks, termed ADAFs (standing for Advection Dominated Accretion Flow, Narayan & Yi 1994; Abramowicz et al. 1995; Narayan & McClintock 2008), are geometrically thick, $H/r \approx 1$, and are characterized by large radial velocity, implying relatively short accretion time. In ADAF disks, the accreted gas is tenuous and have long radiative cooling time relative to the accretion time, $t_{\text{cool}} \gg t_{\text{acc}}$. Such disks are termed "Radiatively Inefficient Accretion Flow" (RIAF) (Narayan & Yi 1994).

A second defining property of accretion disks is the magnetic field configuration. Seed magnetic fields are amplified by magneto-rotation instability (MRI) as the flow accretes, resulting in a steady configuration that affects the inner radii of the disk structure. Two main types of distinct, steady state configurations were identified in the literature. The first is Magnetically Arrested Disks (MAD; Bisnovatyi-Kogan & Ruzmaikin 1974; Narayan et al. 2003). In the MAD accretion state, magnetic field lines accumulate near the horizon, and the resulting magnetic pressure regulates...
the accretion by delaying or even stopping the in-falling matter \(^2\). As a result, in the inner parts of the disk, the infalling gas accretes in filaments or streams (Foucart et al. 2017; Wong et al. 2021). This configuration is found to be accompanied by ejection of matter into strong relativistic jets, where the jet power only weakly depends on the initial disk setup, and are limited by the magnetic flux threading the horizon (Tchekhovskoy et al. 2014).

The second steady state configuration of the evolving disk is coined "Standard And Normal Evolution" (SANE; Narayan et al. 2012; Sądowski et al. 2013a). In a SANE disk, the magnetic flux threading the horizon is not large, thereby enabling smooth accretion. Magnetic fields mainly contribute to the transport angular momentum to larger radii. In these states as well, relativistic jets were (numerically) observed, although typically these are less powerful than jets created during MAD states.

Indeed, relativistic jets are known to exist in many astrophysical systems, including AGNs, XRBs and GRBs (e.g., Blandford et al. 2019; Romero 2021). The connection between accretion disks and jets had been thoroughly studied by many authors, and is well established both observationally and theoretically (Miller-Jones et al. 2012; Fender & Belloni 2004; Fender et al. 2009; Soleri et al. 2010). Yet, many important unsolved questions remain, such as the mechanisms for powering, launching and collimating jets which are not yet fully specified and understood (e.g. McNamara et al. 2011; Dexter et al. 2014).

While in early days, analytical models of steady state accretion configurations (e.g., Shakura & Sunyaev 1973; Novikov & Thorne 1973; Narayan & Yi 1994) and energy extraction (Blandford & Znajek 1977; Blandford & Payne 1982) were built, in recent years, global numerical simulations became feasible. Such simulations are used for time dependent study of these complex accreting (and ejecting) dynamical systems in full general relativity (e.g., Kerr metric), shading light on the magneto-hydrodynamical processes in the close vicinity of a black-hole (e.g. Mizuno 2022, for a recent review). Over the years, several codes solving the general relativistic magneto-hydrodynamic (hereinafter GRMHD) equations have been developed (see e.g. De Villiers et al. 2003; Gammie et al. 2003; Anninos et al. 2005; Del Zanna et al. 2007; Stone et al. 2008; Etienne et al. 2015; Porth et al. 2017, to name a few).

These codes have been used to numerically study different types of disks. Thanks to the advances of computational facilities over the two last decades, important numerical results were obtained. Thick disks, with \(H/r \sim 1\), were the first types of disk to be studied numerically (e.g. De Villiers et al. 2003; McKinney & Gammie 2004). In particular, GRMHD simulations were used to establish the structure of an accreting system, comprising of a disk, a jet or funnel, and a corona (McKinney & Gammie 2004). In addition, simulations were performed to determine the sensitivity of the initial assumptions on the accretion rate and the morphology of the accreting system. For instance, Beckwith et al. (2008) studied the influence of different assumption for the initial magnetic field, finding that the morphology of the disk is not strongly affected by any choice, but that the presence of a powerful jet is. Another example is the study of tilted disk by Fragile et al. (2007, 2009). Moreover, using 3D numerical simulations, Tchekhovskoy et al. (2011), followed by McKinney et al. (2012), showed that the jet power is larger than the accretion power, thereby demonstrating that part of the jet energy should be extracted from the rotational energy of the spinning black-hole, therefore numerically demonstrating the existence of the Blandford and Znajek (hereinafter BZ) mechanism (Blandford & Znajek 1977). Recently, with the addition of external radiative transfer codes, these simulations were used in extracting physical information on the properties of the BH in M87, as detected by the Event Horizon Telescope (EHT) (Event Horizon Telescope Collaboration et al. 2019, 2021; Yuan et al. 2022).

Thin disks disks were also numerically studied. They are challenging to be numerically resolved and they require cooling functions and specific numerical grids (see e.g. Shafee et al. 2008; Noble et al. 2010; Penna et al. 2010; Kulkarni et al. 2011; Avara et al. 2016; Liska et al. 2019). Numerical simulations in the context of thin disks were used by Shafee et al. (2008) to contrast the specific angular momentum against the analytical solution of Novikov & Thorne (1973). Another example is the study of the radiative efficiency of thin disk by Avara et al. (2016). Finally, more recent simulation of thin disks were aimed at studying the Bardeen-Petterson alignment of tilted accretion disks (Liska et al. 2020).

Clearly, such simulations, despite their great success, are very time consuming and computationally expensive, necessitating access to High-Performance Computing facilities (HPC). Naturally, this provides a physical limitation on the ability to perform such calculations. However, in the past ten years, HPC has seen the development of accelerators (Giles & Reguly 2014; Kindratenko et al. 2010) with the generalisation of Graphical Process Units (hereinafter GPU) on computing nodes. Indeed, in the latest TOP 500 fastest computers list published in November 2021, 7 out of the

\(^2\) In fact, a large magnetic flux threading the horizon is the defining property of a MAD state.
10 first supercomputers have GPU accelerators. Developing applications for GPU accelerators is a challenge for many research fields as it requires a large investment of resources and time (see e.g. Lawrence et al. 2018). Yet, time-explicit grid based MHD simulations can be efficiently run on GPU-accelerators (Vanka et al. 2011; Niemeyer & Sung 2014), with a large time gain (usually > $\times 10$), compared to their CPU counterparts. Although there are a plethora of hydro-dynamical codes and even relativistic codes that have the capability of running on GPU-based systems (see e.g. Schneider & Robertson 2015; Schive et al. 2018), to our knowledge there exist only two general relativistic codes aimed at studying accretion disks with GPU capabilities: grim (Chandra et al. 2017), which uses the library ArrowFire (Yalamanchili et al. 2015), and H-AMR (Liska et al. 2018; Chatterjee et al. 2019) which is based on the hierarchical use of MPI, OpenMP and CUDA. Both codes are not publicly available.

In this work, we present a new GPU-based numerical solver for the GR-MHD equations in Kerr metric. Our code is developed based on the publicly available code HARM (Gammie et al. 2003; Noble et al. 2006), albeit, of course, with many major modifications and improvements, which we therefore simply call cuHARM (cuda-HARM). In its current form, cuHARM is designed to run a single multi-GPU workstation by splitting the volume in equal shares between each GPU. This already allows to run 3D simulations with resolution around $\sim 192^3$, taking about 72 hours to reach $t = 10^4 M$ on a Nvidia DGX-8xV100 server.

In this paper, we first review the equations of GR-MHD and then explain their numerical discretization, emphasizing the GPU implementation in cuHARM. We then present several runs, where we study ADAF disks in the SANE accretion regime. The simulations are designed to compare the influence of different initial conditions on the steady outcome. In particular, we aim at studying the effects of different initial magnetization, different disk size and different gas adiabatic index on the accretion rate and structure of the accretion disk as well as its accompanying magnetized jet. In addition, we present two simulations with initial conditions out of equilibrium to study the disk evolution under these conditions.

The paper is structured as follow. In Sections 2, we review the ideal GRMHD equations and their numerical discretization following the seminal work of Gammie et al. (2003). Section 3 introduce our GPU solver cuHARM. Sections 4 and 5 respectively present our numerical setup and physical models. Our results are presented in Section 6. The conclusion follows in section 7.

2. GR-MHD EQUATIONS AND THEIR NUMERICAL SOLUTION

2.1. Review of GRMHD formulation

In this section, we review the ideal non-resistive GRMHD equations, their numerical discretized version and the numerical techniques applied in cuHARM to evolve them in time. Further details on the GRMHD equations and on their discretization can be found in Anile (1990); Martí & Müller (2003); Font (2008); Rezzolla & Zanotti (2013) and Martí & Müller (2015). This system of equations describes the motion of ideal magnetized plasma in arbitrary fixed space time. They characterise the time and space evolution of the gas properties: density ρ, internal energy density u, 4-velocity u^μ, gas pressure p_g, entropy $S = p_g/\rho \hat{\gamma}^{-1}$ and magnetic field. Here, $\hat{\gamma}$ is the adiabatic index of the gas, whose value we take here to be either $4/3$ or $5/3$.

Let $T^{\mu\nu}$ be the stress energy tensor and $F^{\mu\nu}$ the Faraday tensor. The conservation of mass, energy and momentum conservation as well as the homogeneous Maxwell’s equation are written as

\begin{align}
\nabla_\mu (\rho u^\mu) &= 0 \\
\nabla_\mu (T^{\mu\nu}) &= 0 \\
\nabla_\mu (\ast F^{\mu\nu}) &= 0
\end{align}

where $\ast F^{\mu\nu}$ is the dual of the Faraday tensor $F^{\mu\nu}$. The magnetic field 4-vector is defined as $b^\mu \equiv \ast F^{\mu\nu} u_\nu$ (note that the anti-symmetry of the Faraday tensor ensures that the 4-vector magnetic field b^μ is orthogonal to the 4 velocity u^μ). Under the assumption of ideal MHD, namely $u_\mu F^{\mu\nu} = 0$, the dual of the Faraday tensor can be expressed as (Lichnerowicz 1967)

\begin{equation}
\ast F^{\mu\nu} = b^\mu u^\nu - b^\nu u^\mu,
\end{equation}

and the stress energy tensor is given by

\begin{equation}
T^{\mu\nu} = (h + b^2)u^\mu u^\nu + \left(p_g + \frac{b^2}{2} \right) g^{\mu\nu} - b^\mu b^\nu.
\end{equation}
Here, $\rho = \rho + u + p_g$ is the enthalpy, $b^2 = b^\alpha b_\alpha$, and $\mathcal{g}^{\mu\nu}$ is the metric tensor. The system of equations is closed by the equation of state of an ideal gas, $p_g = (\gamma - 1)u$.

In order to solve the conservation equations (1)-(3) we express the GRMHD equations as follows. Following Komissarov (1999), we write the components of the 4-vector magnetic field b^μ using the 3-vector field, $B^i = *F^{i\mu}$. Using the orthogonality of b^μ and u^μ, as well as $B^i = b^i u^0 - b^0 u^i$ (Equation 4) one obtains $b^i = B^i u^\mu g_{i\mu}$ and $b^0 = (B^i + b^i u^i)/u^t$. The conservation equations (1)-(3) are expressed in conservative form:

$$\frac{\partial}{\partial t} \left(\sqrt{-g} \rho u^\mu \right) = -\frac{\partial}{\partial x^j} \left(\sqrt{-g} T^j \right),$$

$$\frac{\partial}{\partial t} \left(\sqrt{-g} T^i \right) = -\frac{\partial}{\partial x^j} \left(\sqrt{-g} T^{ij} \right) + \sqrt{-g} T^i \Gamma^j_{\lambda \mu} g^{j\lambda},$$

$$\frac{\partial}{\partial t} \left(\sqrt{-g} B^i \right) = -\frac{\partial}{\partial x^j} \left(\sqrt{-g} \left[b^j u^i - b^i u^j \right] \right).$$

where g is the determinant of the metric tensor $g^{\mu\nu}$. The (locally) divergence free condition of the magnetic field, $\nabla \cdot \vec{B} = 0$ is written in the form

$$\frac{\partial}{\partial t} \left(\sqrt{-g} B^i \right) = 0.$$

Following Gammie et al. (2003), we define the following vector of conserved quantities: $U = \sqrt{-g} (\rho u^i, T^i, T^{ij}, B^i)$, as well as a vector of primitive variables, $P = (\rho, u^i, \tilde{u}^i, B^i)$. Following McKinney & Gammie (2004) and Noble et al. (2006), in order to enhance computational stability we use modified velocities \tilde{u}^i. These are obtained from the four velocities u^μ and the shift $\beta^i = g^{ij} \alpha^2$ where $\alpha^2 = -1/g^{tt}$ is the square of the lapse, via

$$\tilde{u}^i \equiv u^i + \frac{\Gamma \beta^i}{\alpha},$$

with $\tilde{u}^0 = 0$. Here, the Lorentz factor is $\Gamma = \sqrt{1 + g_{ij} \tilde{u}^i \tilde{u}^j}$. This change of variable was found to increase numerical stability, since the corresponding 4-velocity u^μ is always a time-like vector. It has therefore now become a usual consideration in GRMHD code.

While equations (6)-(8) augmented with the equation of state form a closed system, we follow Noble et al. (2009); Sądowski et al. (2013b), and we evolve the equation of entropy conservation

$$\nabla_\mu \left(S u^\mu \right) = 0,$$

in addition to the mass, energy and momentum conservation equations. We use this conservation law instead of the energy conservation equation in two cases. First, it is used in highly magnetized regions as the energy equation is prone to numerical errors and failures in case of large magnetic field. And second, it is used as a backup when the numerical scheme fails; see Section 2.3 below for further details.

2.2. Numerical discretization

In order to numerically solve Equations (6)-(8), we follow the finite volume methodology. We first introduce a structured partition of space in some coordinate system (X^1, X^2, X^3), the full details of which will be described below. In three spacial dimensions, each element of the partition is assumed to be a cube, with 6 faces. For each cell, we label the center by integer numbers and the faces by integers plus half, such that (X^1_i, X^2_j, X^3_k) is the center of the cell indexed by (I, J, K), while $(X^1_{i+1/2}, X^2_j, X^3_k)$ is the center of the surface separating cells (I, J, K) and $(I + 1, J, K)$.

Hereinafter, indices I, J and K have their usual meaning, namely index I is always associated to coordinate X^1, J to X^2 and K to X^3.

We integrate Equations 6-8 over the volume of each cell. As an example for the continuity equation (6), after integrating over the volume one obtains

$$\int_V \frac{\partial}{\partial t} \left(\sqrt{-g} \rho u^i \right) dX^1 dX^2 dX^3 = \int_V \frac{\partial}{\partial t} \left(\sqrt{-g} \rho u^i \right) dX^1 dX^2 dX^3$$

As typical for Godunov type method, it is further assumed that the value of each primitive quantity (a component of the vector P) and conserved quantity (a component of the vector U) are uniform within the entire volume of each cell.

3 We use capital Latin letters to describe the cell coordinates, in order to avoid confusion with the [3-d] vector / tensor indices, which are marked with small Latin letters.
cell. This approximation is denoted here as a bared quantity: for instance, the density is written as \(\bar{\rho} \). Using this assumption for the four velocity \(u^\mu = \bar{u}^\mu \) and the density \(\rho = \bar{\rho} \) in Equation 12 and applying the divergence theorem, one finds

\[
\partial_t \left(\sqrt{-g} \bar{\rho} \bar{u}^i \right) \int_V dX^1 dX^2 dX^3 = \bar{F}_{I-\frac{1}{2}} \int_{\partial V_{I-\frac{1}{2}}} dX^2 dX^3 - \bar{F}_{I+\frac{1}{2}} \int_{\partial V_{I+\frac{1}{2}}} dX^2 dX^3 \\
+ \bar{F}_{J-\frac{1}{2}} \int_{\partial V_{J-\frac{1}{2}}} dX^1 dX^3 - \bar{F}_{J+\frac{1}{2}} \int_{\partial V_{J+\frac{1}{2}}} dX^1 dX^3 \\
+ \bar{F}_{K-\frac{1}{2}} \int_{\partial V_{K-\frac{1}{2}}} dX^1 dX^2 - \bar{F}_{K+\frac{1}{2}} \int_{\partial V_{K+\frac{1}{2}}} dX^1 dX^2
\]

(13)

where \(\bar{F}_{M-(1/2)} \) \((M \in I,J,K) \) is an approximation of the flux \(\sqrt{-g} \bar{\rho} \bar{u}^M \) in the \(M \)th direction (see below), calculated at the center of the surface \(\partial V_{M-(1/2)} \) between cells of indices \(M \) and \(M - 1 \). Here and below, for keeping light notations, we absorbed the complete position reference of a cell surface to a single changing index: e.g., \(\bar{F}_{I-(1/2)} \) actually represents \(\bar{F}_{I-(1/2),J,K} \). Furthermore, in the remaining of the manuscript, \(\bar{F} \) represents the fluxes of all conserved variables indistinctively; e.g., when calculating the fluxes of the conserved variables \(U^i \), \(\bar{F}(U^i) \), we omit to write the conserved variable \(U^i \).

The same technique is used for the other conservation equations. It only remains to specify the treatment of the source term due to the appearance of the metric connections in the energy and momentum conservation equation. We use the following approximation

\[
\int_V \sqrt{-g} F^\alpha \Gamma_{\alpha \nu \kappa} dX^1 dX^2 dX^3 \sim (\sqrt{-g} \bar{F}^\alpha \bar{\Gamma}_{\alpha \nu \kappa})_{I,J,K} \int_V dX^1 dX^2 dX^3
\]

(14)

where the metric connection and determinant assume their value at the center of each cell. Note that this discretization is somehow different from that presented in Porth et al. (2017) who keeps the metric terms inside the volume and surface integrals.

The fluxes are obtained as follow. We adopt the original method used in HARM (Gammie et al. 2003) and use a MUSCL scheme to define the numerical fluxes (van Leer 1979). As a first step, the values of the primitive variables are reconstructed at the cell boundaries by the limited piecewise linear interpolation method (hereinafter PLM). This method requires the calculation of the gradient of each variable. The gradient \(dq_I \) in cell \(I \) is computed via the monotized central (MC) limiter, using the values of the primitive variables \(q \) in cells \(I - 1, I \) and \(I + 1 \) :

\[
dq_I = \begin{cases}
0 & \text{if} \quad (q_I - q_{I-1})(q_{I+1} - q_I) < 0 \\
2(q_I - q_{I-1}) & \text{else if} \quad |q_I - q_{I-1}| < |q_{I+1} - q_I| \quad \text{and} \quad 2|q_I - q_{I-1}| < \frac{1}{2}|q_{I+1} - q_{I-1}| \\
2(q_{I+1} - q_I) & \text{else if} \quad 2|q_{I+1} - q_I| < \frac{1}{2}|q_{I+1} - q_{I-1}| \\
\frac{1}{2}|q_{I+1} - q_{I-1}| & \text{otherwise.}
\end{cases}
\]

(15)

This gradient is then used to compute the primitives on the left and right of the cell boundaries as

\[
q_{I+\frac{1}{2}}^l = q_I + \frac{1}{2} dq_I \\
q_{I+\frac{1}{2}}^r = q_{I+1} - \frac{1}{2} dq_{I+1}
\]

where from hereon, the \(l \) and \(r \) superscripts refer to the left and right sides of the boundary \(I + (1/2) \) respectively. It is well-known that piecewise parabolic method (hereinafter PPM, Colella & Woodward 1984; Martí & Müller 1996; Mignone et al. 2005) gives more accurate results and better convergence order than PLM for smooth flows, and we are planning to include it in the next version of our code. Currently, we use the PLM reconstruction for its implementation simplicity, and we discuss below our results in the light of this approximation.

As a second step, the right and left values of the primitive variables at the cell boundaries are used to compute the corresponding conserved variables \(U^r \) and \(U^l \), as well as the fluxes \(F^r \) and \(F^l \) (all these are directly obtained - see
their definitions above). Then, each flux through a given boundary is expressed using the Lax-Friedrichs method:

\[
\bar{F}_{I+\frac{1}{2}} = \frac{1}{2} \left[F^l_{I+1/2} + F^r_{I+1/2} - c_w \left(U^l_{I+1/2} - U^r_{I+1/2} \right) \right].
\] (17)

Here, \(c_w \) is a characteristic wave speed, which is computed following the prescription of Gammie et al. (2003) by solving the dispersion relation. In a relativistic magnetized plasma, the dispersion relation is a quartic equation (Anile 1990), which is numerically expensive and cumbersome to solve. We therefore resort to the simpler dispersion relation given by Equation (28) of Gammie et al. (2003), which is a second order polynomial equation (see further discussion in Porth et al. 2017):

\[
\omega^2 = \left[v_{a1}^2 + c_w^2 \left(1 - v_{a1}^2 \right) \right] k^2
\] (18)

Here, \(v_{a1}^2 = b^2/(b^2 + \rho + u + p_g) \) is the Alfvén speed (normalized to the speed of light, \(c \)) and the sound speed is given by

\[
c_s^2 = \frac{\partial (\rho + u)}{\partial p}^{-1} = \frac{\rho}{\rho + u + p_g}.
\] (19)

The dispersion relation, given by Equation (18) is solved for waves propagating in each direction separately. As an example, in the \(X^1 \) direction the wave-vector takes the form \(k_\mu = (-\omega, k_1, 0, 0) \), where \(\omega \) is the wave frequency and \(k_1 \) is the wave-number of a wave propagating in the \(X^1 \) direction. The wave-speeds in the direction \(X^1 \) are then given by \(\omega/k_1 \), where \(k_1 \) admits up to two values (for the simplified dispersion relation in Equation 18). Writing \(\omega = k_\mu u_\mu \), \(k^2 = k_\mu K^\mu \), where \(K^\mu = (g_{\mu\nu} + u_\mu u_\nu)k^\nu \). Equation (18) can be solved as a quadratic equation in \(\omega/k_1 \), which then posses two solutions: \(c_1 \) and \(c_2 < c_1 \), associated with two wave-speeds. To obtain \(c_w \) in Equation (17), namely, at the boundary between the neighbouring cells, the dispersion relation is solved two times, on the right and left of each boundary, using the values of the primitive variables \(q^l \) and \(q^r \) in the neighbouring cells. Finally, introducing, \(c_{\text{max}} = \| \max(0, c_1, c_2) \| \) and \(c_{\text{min}} = \| \max(0, -c_2, -c_2) \| \), we define \(c_w \equiv \max(c_{\text{max}}, c_{\text{min}}) \) (see van Leer 1979, for further details). Using the simplified dispersion relation in Equation 18 makes the scheme more diffusive at most by a factor 2 than if the accurate dispersion relation was considered (Gammie et al. 2003).

In the current version of the code, we have also implemented the HLL fluxes (Harten et al. 1983)

\[
\bar{F}_{I+\frac{1}{2}} = \frac{c_{\text{max}} F^l_{I+1/2} + c_{\text{min}} F^r_{I+1/2} - c_{\text{min}} c_{\text{max}} (U^r_{I+1/2} - U^l_{I+1/2})}{c_{\text{max}} + c_{\text{min}}},
\] (20)

but it is not used in this study, as we found that the Lax-Friedrichs method provide less numerical failures for the setups we tested (see Section 5 below). The computation of the fluxes is repeated in all three directions, such that all terms in Equation 13 are calculated.

A critical aspect of (GR-)MHD codes is their ability to satisfy the solenoid condition given by Equation (9). The two main methods discussed in the literature are the divergence cleaning (Dedner et al. 2002) and the constrained transport (Evans & Hawley 1988; Tóth 2000). The former involves modifying the Faraday equation such that the divergence errors are transported to the boundaries and eventually damped. The later relies on modification of the fluxes computed as in Equation (17), such that the divergence free condition is exactly satisfied locally. A detailed comparison between the two methods can be found in Balsara & Kim (2004); Zhang & Feng (2016), which conclude in the superiority of the constrained transport scheme. Here, we implemented the constrained transport (CT) algorithm using the ‘flux-CT’ method of Tóth (2000) and Gammie et al. (2003) since it requires only cell centered values of the magnetic field, although we are aware of its limitation (see, e.g., Gardiner & Stone 2005; Del Zanna et al. 2007; Olivares et al. 2019).

The implementation is done by modifying the fluxes in the following way. We introduce the variables \(E^1, E^2 \) and \(E^3 \) representing the components of the electric field at the 12 edges of each cell, e.g., at \((I, J + 1/2, K + 1/2)\). The values of these variables are computed using (i) the definition of the Faraday tensor, and (ii) the conservation Equation (8) integrated over each cell surface. As a first step, we compute the electric fields at each face center, expressed in terms of the fluxes \(\bar{F} = \bar{F}(B^3) \) obtained using Equation 17 above. The face centered values are averaged for all four faces associated to the considered edge. For instance, the electric field \(E^1 \) on the edge \((I, J + 1/2, K + 1/2)\) is given by

\[
E^1_{I,J+1/2,K+1/2} = \frac{1}{4} \left[F^2_{I,J+\frac{1}{2},K+1}(B^3) + F^2_{I,J+\frac{1}{2},K}(B^3) - \bar{F}^3_{I,J+1/2,K+1/2}(B^2) - \bar{F}^3_{I,J,K+1/2}(B^2) \right].
\] (21)
Then, the fluxes of the magnetic field components B^i calculated in Equation 17 above are replaced by

$$
\begin{align*}
\hat{F}_{I+\frac{1}{2},J,K}(B^1) &= 0 \\
\hat{F}_{I+\frac{1}{2},J,K}(B^2) &= \frac{1}{2} \left[E_{I+\frac{1}{2},J+\frac{1}{2},K}^3 + E_{I+\frac{1}{2},J+\frac{1}{2},K}^3 \right] \\
\hat{F}_{I+\frac{1}{2},J,K}(B^3) &= -\frac{1}{2} \left[E_{I+\frac{1}{2},J,K+\frac{1}{2}}^2 + E_{I+\frac{1}{2},J,K+\frac{1}{2}}^2 \right]
\end{align*}
$$

(22)

where it was assumed that the grid has uniform spacing in each direction. Similar formulae are used in calculating the fluxes in the other two directions. This expression of the flux preserves the following numerical approximation of the divergence, to machine accuracy:

$$
(\nabla \cdot B)_{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}} \approx \sum_{l_1,l_2,l_3=0,1} \frac{(-1)^{1+l_1} B_{I+l_1,J+l_2,K+l_3}^1 + (-1)^{1+l_2} B_{I+l_1,J+l_2,K+l_3}^2 + (-1)^{1+l_3} B_{I+l_1,J+l_2,K+l_3}^3}{2\Delta x^1} + \frac{(-1)^{1+l_2} B_{I+l_1,J+l_2,K+l_3}^2}{2\Delta x^2} + \frac{(-1)^{1+l_3} B_{I+l_1,J+l_2,K+l_3}^3}{2\Delta x^3},
$$

(23)

where the Δx^i is the grid spacing in direction i. Note that this formula implicitly assume a uniform grid. A detailed derivation of these expressions and a discussion on non-uniform grid can be found in Appendix C of Porth et al. (2017).

It is well-known that the flux-CT approach used here has several drawbacks, mainly that the stencil is large and that this technique does not reduce to the proper limit in 1D flow calculations. It is also known to lack upwinding.

Although several methods have been developed to overcome those limitations (see, e.g., Gardiner & Stone 2005; Del Zanna et al. 2007; Olives et al. 2019), we have elected to use this method for its simplicity. In a future upgrade, we will consider staggered magnetic field and more advance formulation of the constrained transport algorithm.

Once all the fluxes are computed from the primitive variable, the time evolution can be performed. Introducing the surface area

$$
S_{I-\frac{1}{2}}^1 = \int_{\partial V_{I-\frac{1}{2}}} dX^2 dX^3
$$

(24)

(S^1, S^3 are obtained by permutation of the indices), the conserved quantities \bar{U} are evolved in time by second order time stepping method

$$
\begin{align*}
\hat{U}_{I+\frac{1}{2},J,K}^t &= U_{I+\frac{1}{2},J,K}^t + \frac{\Delta t}{2V_{I+\frac{1}{2},J,K}} \left[S_{I-\frac{1}{2}}^1 \hat{F}_{I-\frac{1}{2}} + S_{I+\frac{1}{2}}^1 \hat{F}_{I+\frac{1}{2}} + S_{J-\frac{1}{2}}^2 \hat{F}_{J-\frac{1}{2}} + S_{J+\frac{1}{2}}^2 \hat{F}_{J+\frac{1}{2}} + S_{K-\frac{1}{2}}^3 \hat{F}_{K-\frac{1}{2}} + S_{K+\frac{1}{2}}^3 \hat{F}_{K+\frac{1}{2}} \right], \\
U_{I+\frac{1}{2},J,K}^{t+\Delta t} &= U_{I+\frac{1}{2},J,K}^t + \frac{\Delta t}{V_{I+\frac{1}{2},J,K}} \left[S_{I-\frac{1}{2}}^1 \hat{F}_{I-\frac{1}{2}} + S_{I+\frac{1}{2}}^1 \hat{F}_{I+\frac{1}{2}} + S_{J-\frac{1}{2}}^2 \hat{F}_{J-\frac{1}{2}} + S_{J+\frac{1}{2}}^2 \hat{F}_{J+\frac{1}{2}} + S_{K-\frac{1}{2}}^3 \hat{F}_{K-\frac{1}{2}} + S_{K+\frac{1}{2}}^3 \hat{F}_{K+\frac{1}{2}} \right]
\end{align*}
$$

(25)

where the terms \hat{F} are computed similarly to \hat{F}, using the values at half time step, $\hat{U}^{t+\Delta t/2}$. In addition, the fluxes of the magnetic fields are replaced by their modified expression for the flux-CT method given by Equations (22). The surface variable $S_{I-\frac{1}{2}}^1$ should not be confused with the entropy S.

In order to maintain the stability of the numerical scheme, the time step Δt is varied at each iterations. We consider the time it takes for a wave propagating at speed c_w to cross a cell of size dx. Therefore, for each cells and a given direction l, we consider the minimum of $dt^l = \min(\xi \Delta x^l / c_w)$ where ξ is a numerical coefficient which we set to $\xi = 0.45$. We found that this value provides good stability for our current setups. The next time step is then obtained as

$$
(\Delta t)^{-1} = \sum (dt^l)^{-1}.
$$

(26)

2.3. Conserved to primitive inversion techniques and fixing strategy

In this section only, we simplify the notations by removing the barred symbol representing the constant approximation of any variable inside a given cell. Once the conserved quantities are advanced in time, the primitive variables need to be recovered. This stage requires the numerical solution of a non-linear system and is central to any numerical code solving the magneto-hydrodynamics equations. In current literature, there exist many methods to perform this inversion (e.g., Noble et al. 2006; Mignone & McKinney 2007; Siegel et al. 2018; Kastaun et al. 2021, for a partial list). Recently, Dieselhorst et al. (2021) used machine learning to speed up the recovery. Here, we use three inversion...
methods: (i) the two dimensional (2D) method solving for \(v^2 \) and the modified enthalpy \(W \equiv \Gamma^2 h = \Gamma^2 (\rho + u + p_g) \); (ii) the one dimensional (1D) method solving for \(W \) only (Noble et al. 2006); and (iii) a 1D method using the entropy equation (11) in place of the energy equation (Noble et al. 2009; Sądowski et al. 2013b). The 2D numerical system is solved by Newton-Raphson, while the 1D equations are solved by the Brent method.

In order to establish the link between primitive and conserved variables we follow Noble et al. (2006). Considering the normal observer’s 4-velocity \(n_\mu = (-\alpha, 0, 0, 0) \), it is convenient to define the following two 4-vectors:

\[
Q_\mu = -n_\nu T^\nu_{\mu},
\]

\[
\tilde{Q}^\mu = j^\mu Q^\nu.
\]

Here, \(j_\mu = h_{\mu\nu} + n_\mu n_\nu \) is projection normal to the normal observer and \(h_{\mu\nu} = g_{\mu\nu} + u_\mu u_\nu \) is a projection normal to the fluid velocity. Since \(T^\mu_\nu \) are conserved variables, \(Q^\mu \) and \(\tilde{Q}^\mu \) can be directly computed. Note that \((\tilde{Q})^2 = \tilde{Q}^\mu \tilde{Q}_\mu\) is independent on \(\tilde{Q}^0 \), and therefore computing its value does not require the use of the energy conservation equation (which is part of Equation 2). Further introducing the 4-vector

\[
\mathfrak{B}^\mu = -n_\nu F^{\mu\nu},
\]

the system of equations linking conservative to primitive variables can be reduced to (Noble et al. 2006):

\[
\tilde{Q}^2 = v^2 (\mathfrak{B}^2 + W^2)^2 - \frac{(Q_\mu \mathfrak{B}^\mu)^2}{W^2} (\mathfrak{B}^2 + 2W),
\]

\[
\mathfrak{Q}_\mu n^\mu = \frac{\mathfrak{B}^2}{2} (1 + v^2) + \frac{(Q_\mu \mathfrak{B}^\mu)^2}{2W^2} - W + p_g(u, \rho),
\]

where \(v^2 \equiv 1 - 1/\Gamma^2 \). In this system of equations, the only two unknowns are \(v^2 < 1 \) and \(W \), as the pressure is calculated using the equation of state,

\[
p_g = \left(\frac{\gamma - 1}{\gamma} \right) \left[W (1 - v^2) - D \sqrt{1 - v^2} \right]
\]

where \(D = \Gamma p = \rho u^t \) is one of the conserved variables. For the 1D and 2D methods, (i) and (ii), equations 29 and 30 are solved to calculate the values of \(v^2 \) and \(W \).

To compute all the terms in Equation 30, one needs to know the evolution of \(T^{\mu 0} \), namely, solve the energy conservation equation (which is part of Equation 2). In the case of inversion failure, or in highly magnetized regions, the energy conservation equation is replaced by the entropy conservation equation (11). In this case, using the definitions of the entropy, \(S \), \(W \) and \(D \), Equation 30 is replaced by

\[
W = \Gamma D + \Gamma \frac{\gamma}{\gamma - 1} \left(\frac{D}{\Gamma} \right)^{\gamma - 1} S
\]

To recover the primitive variables, we proceed as follows. Firstly, Equations (29) and (30) are solved by a Newton-Raphson method to an accuracy of \(10^{-10} \). If the root solver succeeds and if the recovered values are physical (\(\rho, p_g > 0 \), \(v^2 < 1 \)), the results are accepted. If the numerical solution results in non-physical values of the density, pressure or velocity, we implement the entropy fix described below. If the numerical method fails to produce results, we resort to analytically expressing \(v^2 \) from Equation (30), use its expression in Equation (29) which is then numerically solved using the Brent method. If this method succeed, the values are accepted. Otherwise, we use the entropy fix method: the expression of \(W \) given by Equation (32) is directly used in Equation (29), which is solved for \(v^2 \) via the Brent method.

In highly magnetized regions, defined by

\[
\beta = \frac{p_g}{p_b} < 10^{-2},
\]

we apply the entropy fixed method directly (as a first and only choice). Numerically, the gas and magnetic pressures, \(p_g \) and \(p_b = b^2 / 2 \) are computed from the primitive variables at the previous time step. This is similar to the approach used in BHAC (Porth et al. 2017).
There are two main reasons for the inversion to fail in a given cell. First, the conserved variables can be in a non-physical state, with $D < 0$ or $S < 0$, which prevents the use of any of the aforementioned inversion methods. Alternatively, the recovered primitive variables can also obtain non-physical values, namely $\rho < 0$, $u < 0$, $v^2 > 1$ or $v^2 < 0$. In all these cases, we update the failed cells by averaging all the primitive but the components of the magnetic field from the neighbouring cells. We consider two types of averaging procedure:

\[
p_{I,J,K} = \frac{1}{4} \left[p_{(I+1),J,K} + p_{(I-1),J,K} + p_{I,(J+1),K} + p_{I,(J-1),K}\right]
\]

and

\[
p_{I,J,K} = \frac{1}{4} \left[p_{(I+1),(J+1),K} + p_{(I+1),(J-1),K} + p_{(I-1),(J+1),K} + p_{(I-1),(J-1),K}\right]
\]

where the neighbouring cells used in the averaging procedure are cells for which the conserved to primitive inversion was successful or which were already updated by the averaging procedure. We iterate the domain several times until all cells that need fixing are fixed, although in practice the number of failed cells is small and very rarely involved neighboring cells.

2.4. Flooring model

It is well known that grid methods for the solution of GR MHD equations are vulnerable to numerical errors when treating low density medium. Therefore, numerical floors are used for the density and the internal energy density. Many choices of floors have been proposed. For the results presented in this paper, we utilise the density floor suggested in Porth et al. (2019), but use somewhat higher floors for the internal energy density u:

\[
\rho = \max \left(\rho, \ 10^{-20}, \ 10^{-5} r^{-\frac{1}{2}}\right),
\]

\[
u = \max \left(\nu, \ 10^{-20}, \ 10^{-5} \frac{3}{5} r^{-\frac{1}{2}}\right),
\]

where the radius r is normalized to the gravitational radius, r_g. In the highly magnetized region, we also limit the ratio of magnetic energy density to internal energy density and to rest mass energy density by adding mass in the frame of the zero angular momentum observer (e.g. McKinney et al. 2012; Ressler et al. 2017). The considered limits are

\[
b^2 \rho < 50
\]

\[
b^2 \nu < 2.5 \times 10^3
\]

Finally, we also limit the Lorentz factor to be smaller than 50. When the Lorentz factor is larger than 50, the velocities are re-scaled such that the maximum Lorentz factor be equal to $\Gamma_{\text{max}} = 50$. This is required for the stability of our numerical scheme, although for the problems studied here, this situation nearly does not occur. We note that some inversion strategies, e.g., Mignone & McKinney (2007); Kastaun et al. (2021) can overcome this problem but are not necessary for the current setup.

3. CUHARM: NUMERICAL IMPLEMENTATION

State of the art 3D GR-MHD simulations are numerically very expensive. A natural solution to improve wall clock time is to use hardware accelerators such as GPUs. There already exists numerical solvers for the GRMHD equations running on GPUs. For example, Chandra et al. (2017) uses the library ArrowFire to allow the code grim to run on nodes with different architectures. Another code using GPU is H-AMR (Liska et al. 2018), which uses hierarchical cuda, openMP and MPI to achieve computation on NVIDIA GPU accelerators on multiple nodes.

We have designed and implemented a multi-GPU solver for the GRMHD equations based on the numerical scheme from the original HARM code (Gammie et al. 2003; Noble et al. 2006). In our implementation using CUDA-C, nearly all computations are done on the GPUs, with the CPU only dealing with exporting the data when required and the data transfer between GPU devices. In fact, our multi-GPU implementation is simple: each GPU is assigned to a specific openMP thread and computes a pre-determined slice of the total grid (Vanka et al. 2011). Currently, the split is made in the θ direction, such that each GPU deals with the same number of cells.
In its current version, the code can only be ran on a single node with arbitrary number of GPUs. The simulations presented in this paper were made on a Nvidia DGX-V100 server with 8 V100 GPUs, each with dual Nvlink-2 setup, enabling efficient data transfers between neighbouring GPUs without utilizing the host memory as a bridge. We are shortly planning for an extension to allow the code to run on several nodes with accelerators.

The code consists of two main kernels: one computing the fluxes and the second one updating the conserved variables and performing the inversion between them and the primitive variables. A direct and naive implementation of those kernels leads to straightforward compute (\(\sim 70\% \)) and memory (\(\sim 60\% \)) throughput on a RTX gaming GPU. However, the computation and memory efficiencies substantially drop on HPC cards like the V100. Detailed compute and memory profiles show global memory bottlenecks limiting the computation speed and efficiency. This issue is partially solved by mostly using three advance CUDA features. Firstly, large amount of shared memory are used and reused to (i) reduce the number of global memory calls, and (ii) align the memory calls such that shared memory access is coalesced. Secondly, warp-level primitives are used to exchange data between threads in a warp and avoid multiple memory loading when performing flux limiting reconstruction at the cell interfaces. Finally, computations requiring the metric tensor are always performed in the azimuthal direction. Indeed, since the metric tensor does not depend on the azimuth angle \(\phi \), the memory can be loaded one time for all cells with the same \(r \) and \(\theta \) and the values shared by the whole block, thereby reducing the required memory throughput. All in all, those techniques allow to reduce the computation time by a factor \(\sim 4 \) compared to the naive version. However, the computation and memory throughput on HPC cards still remain at the order of \(\sim 10 - 15\% \).

With the modern GPU workstation we used, the memory was not a bottleneck: the largest resolution runs \((256x256x128)\) presented in this paper required \(\sim 35\text{Gb} \) of ram memory, both on the CPU and GPU, while the GPU memory available to us was 260Gb. The runs presented in this paper takes from 2 days to 10 days to complete.

4. NUMERICAL SETUP

In order to i) ensure the reliability of our code and ii) to study the structure of accretion disks in the SANE regime,

4.1. Metric, numerical grid and boundary conditions

The simulations are performed using the modified horizon penetrating Kerr-Schild (KS) coordinate system \((t, r, \theta, \phi)\), which describes the space around a rotating black-hole. Setting the BH mass as well as \(c = G = 1 \), its line element is

\[
ds^2 = -\left(1 - \frac{2r}{\rho^2}\right)dt^2 + \left(\frac{4r}{\rho^2}\right)dr^2 + \left(1 + \frac{2r}{\rho^2}\right)d\theta^2 + \sin^2(\theta) \left[\rho^2 + a^2 \left(1 + \frac{2r}{\rho^2}\right)\sin^2(\theta)\right]d\phi^2
\]

\[-\frac{4ar \sin^2(\theta)}{\rho^2}d\phi dt - 2a \left(1 + \frac{2r}{\rho^2}\right)\sin^2(\theta)drd\phi,
\]

where \(-1 \leq a \leq 1\) is the normalized BH spin, and \(\rho^2 = r^2 + a^2 \cos^2(\theta)\).

In our numerical experiments presented below, we have used the modified KS coordinate system with grid refinement towards the equator (Gammie et al. 2003). The GR-MHD equations are solved on the modified KS coordinate system \((t, X, Y, Z)\) whose spatial coordinates are linked to the spherical coordinates \((r, \theta, \phi)\) by \(^4\)

\[
\begin{align*}
 r &= \begin{cases} R_0 + \exp(X) & X < x_b \\ R_0 + \exp\left(X + (X - x_b)^n\right) & X \geq x_b, \end{cases} \\
 \theta &= \frac{\pi}{2} \left(1 + Y\right) + \frac{1 - h}{2} \sin\left(\frac{\pi(1 + Y)}{2}\right), \\
 \phi &= Z,
\end{align*}
\]

where the numerical values of the parameters for the simulations presented herein are \(h = 0.3, n_X = 4, R_0 = 0\). The parameter \(x_b\) is chosen such that the transition from exponential to hyper-exponential happens at radius \(r = 400M\). For the size of the disk studied here, this is sufficient to ensure that the full disk is properly resolved. The outer grid boundary is at \(r = 5 \times 10^9M\).

\(^4\) https://github.com/atcekho/harmpi
Figure 1. Numerical grid for the computation presented in this paper. Here the resolution has been reduced to $N_r = 128$ and $N_\theta = 32$ for clarity of the figure. The red line represents the outer horizon r_h.

This coordinate system is tailored to resolve the disk by increasing the number of grid cells at the equator. This choice of the angular distribution of cells in θ increases the aspect ratio of cells close to the $\theta = (0, \pi)$ poles, therefore reducing the stability requirement on the time step. Yet, we find that in order to further increase the stability, a second transformation is required. Therefore, the cells closest to the polar boundary are "cylindrified" (Tchekhovskoy et al. 2011). This transformation also allows for a faster computation by reducing the Courant condition on the time-step at the expense of de-resolving the pole closest to the black-hole. An example of grid used in this paper (albeit with a lower resolution, for demonstration purpose) is shown in Figure 1. The concentration of grid cells towards the equator and the "cylindrification" at both poles are clearly visible.

We use inflow boundary conditions in the radial direction, and periodic boundary conditions for the azymuthal boundary (ϕ). For the polar boundary (θ), reflective boundary conditions are used at the pole: the direction of the poloidal component of the velocity and the magnetic field is flipped at the pole ($u^2 \rightarrow -u^2$ and $B^2 \rightarrow -B^2$). Moreover to increase the numerical stability in the polar region, the polar component of the 4-velocity in the two cells closest to the pole is modified, by an interpolation to zero at the pole.

4.2. Physical diagnostics

To ensure that the MRI is properly resolved and that our numerical resolution is adequate, for each run, we first compute the MRI quality factor $Q^{(i)}$ in all three directions $(i = r, \theta, \phi)$. These quality factors are an estimate of the number of cells available to resolve the fastest growing MRI mode. They are given by

$$Q^{(i)} = \frac{\lambda^{(i)}}{\Delta x^{(i)}},$$

where

$$\lambda^{(i)} = \frac{2\pi}{\Omega \sqrt{\rho h + \mu^2} \epsilon_{\mu}^{(i)}},$$

$$\Delta x^{(i)} = \left[\Delta X^{(i)}\right]^{\mu} \epsilon_{\mu}^{(i)}.$$

$$\Omega = \frac{u^\phi}{u^t}.$$
Here, $\Delta X(i = 1) = (0, \Delta r, 0, 0)$, and similarly for $i = 2, 3$. In the definitions of $\Delta X(i)$, Δr, $\Delta \theta$ and $\Delta \phi$ are the local grid spacing. The tetrads $e^{(i)}_{\mu}$ along the locally non-rotating reference frame are given by Equations (11)-(14) of Takahashi (2008). Table 1 gives the quality factor averaged over the disk area and over time, after the initial transition. Specifically, we define

$$
\langle Q^{(i)} \rangle = \int_{t = 10^4 M}^{t = 5 \times 10^3 M} dt \int_{\theta = \pi/3}^{\theta = 2\pi/3} d\theta \int_{\phi = 0}^{2\pi} d\phi \sqrt{-g} Q^{(i)}.
$$

(42)

The integration limits for the polar angle θ are chosen such to include only the disk region. We comment on the values of the MRI quality factor in the discussion.

For each runs, we compute the following diagnostics at the horizon:

- Mass accretion rate
 $$
 \dot{M} = \int_{\theta = 0}^{\pi} \int_{\phi = 0}^{2\pi} \sqrt{-g} \rho \mu' d\theta d\phi.
 $$
 (43)

- Magnetic flux threading the horizon
 $$
 \phi_B = \frac{1}{2} \int_{\theta = 0}^{\pi} \int_{\phi = 0}^{2\pi} \sqrt{-g} \left| F^{rt} \right| d\theta d\phi.
 $$
 (44)

- Rate of accreted angular momentum
 $$
 \dot{L} = \int_{\theta = 0}^{\pi} \int_{\phi = 0}^{2\pi} T^{r\phi} \sqrt{-g} d\theta d\phi.
 $$
 (45)

- Energy flux through the horizon
 $$
 \dot{E} = \int_{\theta = 0}^{\pi} \int_{\phi = 0}^{2\pi} -T^{\phi t} \sqrt{-g} d\theta d\phi.
 $$
 (46)

It is convenient to normalise the angular momentum and the energy flux given by Equations (45) and (46) by the mass accretion rate at the horizon \dot{M}, and to further define the MAD parameter as

$$
\Phi_B \equiv \frac{\phi_B}{\sqrt{|\dot{M}|}}.
$$

(47)

In order to study the disk structure and the accretion mode of our numerical models, we introduce several additional diagnostics.

- The barycentric radius
 $$
 \langle r \rangle(t) = \frac{\int_{0}^{2\pi} \int_{0}^{2\pi/3} \int_{r_H}^{r_{\text{max}}} r \rho \sqrt{-g} dr d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{2\pi/3} \int_{r_H}^{r_{\text{max}}} \rho \sqrt{-g} dr d\theta d\phi},
 $$
 (48)

gives the radius of the center of mass of the disk. Here $r_H = 1 + \sqrt{1 - a^2}$ is the outer horizon radius. The evolution of this radius characterises the spreading of the disk due to viscosity, as well as the contraction and bouncing in non-equilibrium models. The radius r_{max} limits the integration and is taken to be 80 in the figures below. Its exact value does not affect the conclusions, provided it is large enough.

- Disk-averaged quantities (Porth et al. 2019)
 $$
 \langle q \rangle(t, r) = \frac{\int_{0}^{2\pi} \int_{0}^{2\pi/3} q \sqrt{-g} d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{2\pi/3} \sqrt{-g} d\theta d\phi},
 $$
 (49)

where the limits on the integral over angle θ are chosen such that only disk material is considered. The parameter q represents various physical quantities, such as ρ, β, p_g and u^ϕ.

Here, $\Delta X(i = 1) = (0, \Delta r, 0, 0)$, and similarly for $i = 2, 3$. In the definitions of $\Delta X(i)$, Δr, $\Delta \theta$ and $\Delta \phi$ are the local grid spacing. The tetrads $e^{(i)}_{\mu}$ along the locally non-rotating reference frame are given by Equations (11)-(14) of Takahashi (2008). Table 1 gives the quality factor averaged over the disk area and over time, after the initial transition. Specifically, we define

$$
\langle Q^{(i)} \rangle = \int_{t = 10^4 M}^{t = 5 \times 10^3 M} dt \int_{\theta = \pi/3}^{\theta = 2\pi/3} d\theta \int_{\phi = 0}^{2\pi} d\phi \sqrt{-g} Q^{(i)}.
$$

(42)

The integration limits for the polar angle θ are chosen such to include only the disk region. We comment on the values of the MRI quality factor in the discussion. For each runs, we compute the following diagnostics at the horizon:

- Mass accretion rate
 $$
 \dot{M} = \int_{\theta = 0}^{\pi} \int_{\phi = 0}^{2\pi} \sqrt{-g} \rho \mu' d\theta d\phi.
 $$
 (43)

- Magnetic flux threading the horizon
 $$
 \phi_B = \frac{1}{2} \int_{\theta = 0}^{\pi} \int_{\phi = 0}^{2\pi} \sqrt{-g} \left| F^{rt} \right| d\theta d\phi.
 $$
 (44)

- Rate of accreted angular momentum
 $$
 \dot{L} = \int_{\theta = 0}^{\pi} \int_{\phi = 0}^{2\pi} T^{r\phi} \sqrt{-g} d\theta d\phi.
 $$
 (45)

- Energy flux through the horizon
 $$
 \dot{E} = \int_{\theta = 0}^{\pi} \int_{\phi = 0}^{2\pi} -T^{\phi t} \sqrt{-g} d\theta d\phi.
 $$
 (46)

It is convenient to normalise the angular momentum and the energy flux given by Equations (45) and (46) by the mass accretion rate at the horizon \dot{M}, and to further define the MAD parameter as

$$
\Phi_B \equiv \frac{\phi_B}{\sqrt{|\dot{M}|}}.
$$

(47)

In order to study the disk structure and the accretion mode of our numerical models, we introduce several additional diagnostics.

- The barycentric radius
 $$
 \langle r \rangle(t) = \frac{\int_{0}^{2\pi} \int_{0}^{2\pi/3} \int_{r_H}^{r_{\text{max}}} r \rho \sqrt{-g} dr d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{2\pi/3} \int_{r_H}^{r_{\text{max}}} \rho \sqrt{-g} dr d\theta d\phi},
 $$
 (48)

gives the radius of the center of mass of the disk. Here $r_H = 1 + \sqrt{1 - a^2}$ is the outer horizon radius. The evolution of this radius characterises the spreading of the disk due to viscosity, as well as the contraction and bouncing in non-equilibrium models. The radius r_{max} limits the integration and is taken to be 80 in the figures below. Its exact value does not affect the conclusions, provided it is large enough.

- Disk-averaged quantities (Porth et al. 2019)
 $$
 \langle q \rangle(t, r) = \frac{\int_{0}^{2\pi} \int_{0}^{2\pi/3} q \sqrt{-g} d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{2\pi/3} \sqrt{-g} d\theta d\phi},
 $$
 (49)

where the limits on the integral over angle θ are chosen such that only disk material is considered. The parameter q represents various physical quantities, such as ρ, β, p_g and u^ϕ.

Table 1. Initial setup of the simulations and their characteristics. Column (5) indicates if the initial disk is in equilibrium and if not which adiabatic index γ was used to initialise the disk. Column (9) contains the initial disk mass in arbitrary units. Column (10) gives the initial magnetic energy E_B, also in arbitrary units, and column (11) gives the ratio E_B/M. All simulations have spin $a = 0.9375$ and the inner radius of the torus is at $r_{in} = 6M$.

- The disk thickness defined as

$$H(t, r) = \frac{\int_0^{2\pi} \int_0^\pi |\frac{\pi}{2} - \theta| \rho \sqrt{-g} \rho \theta \phi}{\int_0^{2\pi} \int_0^\pi \rho \sqrt{-g} \theta \phi} \quad (50)$$

- The inward and outward angular momentum fluxes, which are used to characterise steady state (Shafee et al. 2008)

$$\dot{i}_{in}(r, t) = \frac{\int_0^{2\pi} \int_0^\pi (\rho + u_g + p_g + b^2)u^u u^\phi \sqrt{-g} \theta \phi \phi}{\int_0^{2\pi} \int_0^\pi \rho u^u \sqrt{-g} \theta \phi \phi} \quad (51)$$

$$\dot{i}_{out}(r, t) = \frac{\int_0^{2\pi} \int_0^\pi b^\phi b^u \sqrt{-g} \theta \phi \phi}{\int_0^{2\pi} \int_0^\pi \rho u^u \sqrt{-g} \theta \phi \phi} \quad (52)$$

Note that the outward flux of the angular momentum is dominated by contribution from the magnetic fields. In a steady state, both $\dot{i}_{in}(r, t)$ and $\dot{i}_{out}(r, t)$ are independent of t and their difference $\dot{i}_{in}(r, t) - \dot{i}_{out}(r, t)$ is independent on radius.

- We also introduce the density-weighted Lorentz factor (Fragile et al. 2012),

$$\langle \Gamma \rangle = \frac{\int \sqrt{-g} \rho \sqrt{-g} u^u u^\phi \theta \phi}{\int \sqrt{-g} \rho \theta \phi} \quad (53)$$

In several sections of the analysis carried below, the angular integration is restricted to specific angles, in which the flow satisfies one or several specified conditions, for example $\sigma \equiv b^2/\rho > 1$.

5. PHYSICAL MODELS

We use our numerical code to study accretion in the SANE regime around a black-hole. In the current work, we only consider BH spin $a = 0.9375$. We first test the reliability of our numerical results by using a similar setup to the one used in the GR MHD code comparison paper (Porth et al. 2019). Then we run several simulations with different initial conditions and typical resolution in the range $(N_r, N_\theta, N_\phi) = (256, 128, 64)$ to $(256, 256, 128)$ (see Table 1). We note that $N_\theta = 128$ was dubbed minimum angular resolution for MRI amplification of the magnetic field to efficiently develop (Porth et al. 2019). Therefore, in all our numerical experiments the number of cells in the θ direction is equal or larger than this value. All simulations are initialised with a torus in hydrostatic equilibrium, following Fishbone & Moncrief (1976). This particular equilibrium solution is described by the inner radius of the torus r_{in} and the radius
Figure 2. Accretion diagnostics at the horizon. Top left - accretion rate \dot{M}, given by Equation (43). Top right - MAD parameter, given by Equation (44). Bottom left - Angular momentum through the horizon, given by Equation (45). Bottom right - energy flux, given by Equation (46). The horizontal line represent the time average for time between 5000M and 10^4M, which value is given in the legend of each plot and with its 2σ variation in Table 2. Runs with different resolutions only, that is to say R1-R2 and R5-R6, are shown on the same sub-figure. We note that the vertical scaling of each sub-figure is changing.

of maximum pressure r_{max}. In this work, we set $r_{in} = 6M$, while r_{max} can be either 12M or 13M, which results in an outer disk boundary location at $\sim 50M$ and $\sim 80M$, respectively. Typically, the disks simulated have height $H/r \lesssim 1$ ("thick disks").

Since the scale of the disk density does not need to be specified in the Fishbone & Moncrief (1976) solution, the density is normalised such that its maximum value in the initial disk is $\rho = 1$ (McKinney & Gammie 2004). The pressure is correspondingly re-normalised. This initial setup is initially axisymmetrically stable. It is completed by
Intermittent magnetic field serves as seed for the development of MRI, thereby enabling transport of angular momentum through the disk and accretion of matter to the black-hole. In order to trigger accretion, the initial disk observed in the simulation between \(t = 5 \times 10^5 \text{M} \) and \(t = 10^6 \text{M} \), intermittent meaning a weak jet that forms and disappear during this period.

In Table 2 the properties of the initial torus and the value of \(\beta_0 \), which ranges from a few tens to a hundred.

\[A_\phi = \max \left(\frac{\rho}{\rho_{\text{max}}} - 0.2, 0 \right) . \]

We further normalise the intensity of the magnetic field such that the maximum value of \(\beta_0 \equiv \frac{p_{\text{g, max}}}{p_{\text{B, max}}} > 1 \). This subdominant magnetic field serves as seed for the development of MRI, thereby enabling transport of angular momentum through the disk and accretion of matter to the black-hole. In order to trigger accretion, a small random perturbation of magnitude 4 percent is added to the gas pressure. For each run, we present in Table 1 the properties of the initial torus and the value of \(\beta_0 \), which ranges from a few tens to a hundred.
Figure 4. Left - Time-averaged mass accretion rate as a function of radius r for different time intervals. Right - Time averaged angular momentum flux as a function of radius. The pink region corresponds to the 2-σ variance during the last time interval, $8000 < t < 10^4 M$. From this figures, it is clear that at the end of our run, quasi steady state up to radius $r = 10 M$ has been reached for R1, R2, R3, R7 and R8 and is only marginally achieved for the remaining runs.

In the next section, we present the analysis of 9 GR-MHD simulations in the SANE regime. Their initial properties, listed in Table 1, are selected such that we can address the following problems. (i) We first want to ensure that our code gives reliable results. Therefore, runs R1 and R2 which only differ by their azimuthal resolution, have the same
initial conditions as the runs studied in the code comparison paper (Porth et al. 2019). The numerical results we obtained are then confronted to those results presented in Porth et al. (2019). We essentially find the same results. (ii) We want to study the effect of the value of the adiabatic index. For this, we run two sets of simulations which differ only by their adiabatic index, being either relativistic \(\hat{\gamma} = 4/3 \) or non-relativistic \(\hat{\gamma} = 5/3 \). Specifically, R2 is compared to R3, while R4 is compared to R9. The two simulation sets differ by \(r_{\text{max}} \) and \(\beta_0 \). (iii) Next, the effect of changing diverse initial conditions are studied. Specifically, R2, R7 and R8 differ only by the initial normalisation of the magnetic field \(\beta_0 \), and R7 and R9 have a different \(r_{\text{max}} \). (iv) We also study an initial situation which is out of equilibrium. This out-of-equilibrium setup is obtained by initialising the torus with the non-relativistic adiabatic index \(\hat{\gamma} = 5/3 \) and compute its evolution by using the relativistic adiabatic index \(\hat{\gamma} = 4/3 \).

For each run and each direction, we compute the MRI quality factor \(Q \), given by Equation (42). This computation is restricted to the disk by limiting the angular integration to \(\pi/3 < \theta < 2\pi/3 \) and a time average is performed with \(t > 5 \times 10^3 M \). The results are given in Table 2 with 2\(\sigma \) variance. These quality factors \(Q \) characterize the number of grid cells necessary to resolve the growth of the fastest MRI mode. Different minimal values have been proposed. The consensus seems to require \(Q^2 \geq 10 \) and \(Q^3 \geq 20 - 25 \) (Hawley et al. 2011, 2013). Lower limits for the quality factor where also given by Sorathia et al. (2012) \((Q^2 \geq 10 - 15 \text{ and } Q^3 \geq 10) \) and Sano et al. (2004) (6 grid zones), while other metrics were proposed considering the coupling between poloidal and toroidal components \(Q^2 Q^3 \geq 25 \) (Narayan et al. 2012; Dhang & Sharma 2019).

The GR-MHD code comparison paper (Porth et al. 2019) underlines how important it is to achieve a resolution sufficient to resolve the MRI growth rate. In particular, it was noticed the appearance of “mini-torus” in low resolution runs of BHAC, while the value of the MAD parameter of all code converges only when the MRI quality factors are large enough. Inspection of Table 2 reveals that all our runs sufficiently resolves the MRI according to the criteria of Sano et al. (2004), while only runs R3, R4, R6, R7, R8 and R9 satisfy or at least marginally satisfy the criteria of (Hawley et al. 2011, 2013). Therefore this discussion prompts caution when discussing the results of R1, R2 and R5.

For the need of the analysis, we also introduce the initial mass and the initial magnetic energy of the accretion disks after the normalisation of the density. They are respectively defined as

\[
M = \int_{\text{disk}} \sqrt{-g} \rho dV \tag{55}
\]

for the initial mass, while the initial magnetic energy is

\[
E_B = \int_{\text{disk}} \sqrt{-g} b^2 dV \tag{56}
\]

where the integral is performed only on the volume of the disk. The value of these two parameters for all simulations are given in Table 2.

6. RESULTS

All our numerical models but R5 and R6 (which are not in equilibrium) present the same time evolution morphology. After an initial highly active period, lasting about \(5 \times 10^3 M \), the disk-jet\(^5\) systems settle in a quasi-steady state. Therefore all time average diagnostics are measured for a time between 5000M and the end of the simulation at \(10^4 M \). Since R5 and R6 are initially out of equilibrium, we discuss their analysis independently in Section 6.6.

6.1. Horizon diagnostics and transport of mass and angular momentum with radius

For all diagnostics, the average values and their standard deviation are given in Table 2 for all runs, while their time variations for the full simulations duration are presented in Figure 2. In details, the diagnostics of R1 and R2 for which only the azimuthal resolution is changed by a factor of 2, are similar. The quasi steady-state accretion rate and the MAD parameter values are consistent for both runs within 2\(\sigma \) variation (e.g., \(\dot{M}(R1) = 0.2 \pm 0.1, \dot{M}(R2) = 0.27 \pm 0.1 \), see Table 2). We find that these values, as well as the values of all other diagnostics we use (magnetic flux, energy flux and angular momentum flux through the horizon, radial disk structure and the existence of jets) are all consistent with the results obtained by several independent numerical codes for the same initial setup, as presented in Porth et al. (2019). This provides us with a stronger confidence in the reliability of our code.

\(^5\) If the jet exists. When it does not exist, the disk is surrounded by magnetized plasma with \(\beta \sim 1 \).
The simulation R3 has the non-relativistic adiabatic index $\dot{\gamma} = 5/3$, which is different than the one used in R1 and R2 ($\dot{\gamma} = 4/3$, see Table 1). The initial burst of accretion due to the establishment of the steady state is followed by another one. Overall, the average accretion rate is $\dot{M}(R3) = 0.62$ with a large variance. This accretion rate is substantially larger than the accretion rate in R1 and R2 which have a relativistic adiabatic index (see further discussion in Section 6.3 below). However, the difference is mostly due to the fact that the disk is initially 2.5 times more massive - for higher adiabatic index, the disk is much thicker; see Table 1. Indeed, the accretion rate in R4, with a larger disk and $\dot{\gamma} = 5/3$, is even larger, as would its initial mass suggest, while the accretion rate of R7 and R8, which have similar disk sizes and adiabatic indices as R1, R2, and differ by the parameter β_0, are comparable to that of R1 and R2 which have a similar initial mass. As the initial setups of these four runs (R1, R2, R7 and R8) only differs by the initial β_0, we conclude that the initial magnetic field only has a minor effect on the accretion rate, seemingly only impacting the resolution with the highest β_0. Finally, R9 has an accretion rate of $\dot{M}(R9) = 0.42$, about 2 times larger than that of R7. The two simulations differ by their initial radius of maximum disk pressure, r_{max}, changing the mass of the disk by a factor ~ 3.

We find that the accretion rate nearly only depends on the initial mass of the disk. We show in Figure 3 the correlation between the initial disk mass and mass accretion rate. An empirical fit gives $\log(\dot{M}) = 0.84 \log(M) - 4.1$, demonstrating that the initial magnetic field or the adiabatic index do not substantially influence the mass accretion rate for the SANE/RIAF disks considered here.

Figure 4 shows the mass accretion rate and the rate of angular momentum change respectively, given by Equations (43), (51) and (52) as functions of radius (for $r < 20 M$), averaged over time intervals of duration $\Delta t = 2 \times 10^3 M$. The pink region corresponds to the 2σ variance of the last time interval $8 \times 10^3 M < t < 5 \times 10^4 M$. In the quasi-steady-state, it is expected that both \dot{M} and $l_{\text{in}} - l_{\text{out}}$ be independent of the radius and of time (Shafee et al. 2008). Indeed, we observe that quasi steady state inflow and outflow is achieved at least up to $r < 15 M$ at $t = 10^5 M$ for R1, R2, R3, R7 and R8. This is supported by the diagnostics at the horizon given in Figure 2, which shows that the various diagnostics reach their quasi steady state values after $t < 5 \times 10^5 M$.

However, the two larger disks R4 and R9 did not reach outflow equilibrium, even after $9 \times 10^5 M$, prompting caution when concluding about those runs. In fact several authors investigated the quasi-state in very long time simulations with $t > 10^5 M$; see e.g. Narayan et al. (2012); Sądowski et al. (2013a); White et al. (2020). This is required for the large disks they used and for studying the quasi-steady shape of the disk until large radii $r \gtrsim 10^5 M$. Yet, since our disks are smaller, our simulations end time are sufficient for reaching inflow equilibrium until past the initial radius of maximum pressure r_{max}.

6.2. Structure of the disk-jet system: temporal and azimuthal average

We now turn to study the quasi steady state structure of our disk-jet system in order to constrain the shapes of both the disk and the jet. The temporal and azimuthal average of the density ρ, the plasma β and σ parameters averaged over the period $5 \times 10^3 < t < 10^4 M$ are displayed in Figures 5 — 9 (Figure 5 for R1 and R2, Figure 6 for R3 and R4, Figure 7 for R5 and R6, Figure 8 for R7 and R8 and Figure 9 for R9). As seen in those figures, in simulations R1, R2, R3, R7 and R8 the quasi steady-state equilibrium is composed of three regions. (i) A highly magnetized region characterised by $\rho \ll 1$, $\beta \ll 1$ and $\sigma \gg 1$- this is the jet. (ii) A weakly magnetized disk ($\rho \sim 1$, $\beta > 1$ and $\sigma \ll 1$). And (iii) an intermediary narrow region where $\rho \ll 1$, $\beta \sim 1$ and $\sigma \sim 1$ (around the thick black line in Figures 5 — 9). Although formally delimited by the Bernoulli parameter $u^t > 1$ (which is close to the $\beta = 1$ surface, see e.g. McKinney & Gammie 2004; Porth et al. 2019), this intermediary region is called the jet sheath (Dexter et al. 2012; Mościbrodzka & Falcke 2013; Mościbrodzka et al. 2016; Davelaar et al. 2019). We note that McKinney & Gammie (2004) also introduced the concept of corona by defining a more extended region around the jet sheath defined by $1 < \beta < 3$ (see also De Villiers et al. 2003).

Runs R4 and R9, which have the largest initial disks and therefore the largest initial mass, do not show the formation of a jet; at best R9 has an intermittent one. This is clearly visible in Figures 6 and 9. The polar region is filled by low to average density plasma with the β parameter in the order of the unity. As shown in Table 2, R4 and R9 are characterized by a small MAD parameter $(\Phi_B)_r < 1.5$, showing that the magnetic flux threading the black-hole is too weak to support the launch of a jet in those simulations. Yet, R4 and R9 are the runs with the largest mass accretion rate (discarding out-of-equilibrium runs R5 and R6).

Some differences in the disk and jet structures between the different runs can be seen from the figures. We describe in the sub-sections below these differences and their origin.
6.3. Adiabatic index: R2 vs R3 and R4 vs R9

In the list of our simulations, there are two sets which vary only by the value of their adiabatic index (relativistic-$\dot{\gamma} = 4/3$ vs. non-relativistic, $\dot{\gamma} = 5/3$). The first set of simulations comprises R2 and R3 and the second one is R4 and R9. The two sets differ by a different value of the radius of maximum pressure, $r_{\text{max}} = 12M$ and $r_{\text{max}} = 13M$, as well as by the initial plasma β parameter with $\beta_0 = 100$ and $\beta_0 = 44$, the smaller initial disks (R2, R3) assume the larger β_0. Both sets of simulations share the same characteristics: 1) both R2 and R3 have a jet, while both R4 and R9 do not; 2) the MAD parameter is consistent being around 2 for R2 ad R3 and being smaller - $\Phi_B \sim 1.4$ for R4 and R9. A noticeable difference is that the jet in R3 is narrower than that of R2, as is clearly seen in Figures 5 and 6.
This difference is further illustrated in Figure 10, where we compare the $\sigma = 1$ surface of runs R2 and R3, both showing jets. In the figure, we show the time average angle at which $\sigma = 1$ as a function of the elevation $z = r \cos(\theta)$. It is clear that R3 has a wider jet than R2, at all altitudes. We explain this result by the fact that a larger adiabatic index results in a higher gas pressure inside the disk, making the resulting jet narrower. Yet we note that we cannot completely exclude the possibility that at least part of this effect is due to the fact that the higher adiabatic index implies that the initial disk in R3 is thicker, and is $\sim 2.5 \times$ more massive than that of R2. This extra mass by itself may affect the resulting jet structure. We believe that this is the main source of the difference in the disk structures seen in the more massive disks comparison (R4 vs. R9), where lower adiabatic index implies less dense inner disk (compare Figures 6 and 9).
Figure 7. Same as Figure 5 for R5 (top) and R6 (bottom). Both runs assume initial disk configuration as expected for adiabatic index $\dot{\gamma} = 5/3$, yet evolve using $\dot{\gamma} = 4/3$. They do not reach a steady state at the end of the simulation time.

Except for the jet opening angle, we do not observe additional substantial differences that can be attributed directly to the adiabatic index. This is consistent with conclusions reached in several past studies (e.g., McKinney & Gammie 2004; Mignone & McKinney 2007). Furthermore, it is currently not clear what observational data could be used to constrain the adiabatic index of the flow. For example, Bollimpalli et al. (2020) studied the variability of the mass accretion rate in very long numerical simulations of accretion disks with relativistic and non-relativistic adiabatic index. They did not find major qualitative differences between their simulations and their post-processed results, specifically for the variability in the mass accretion rate.

6.4. Effect of initial magnetic field parameter, β_0: R1, R2, R7 and R8
We conducted four simulations aimed at exploring the effect of the initial value of the parameter β_0 (maximum value of the initial magnetic field pressure inside the disk, normalized to maximal gas pressure) on the disk and jet structures. These are R1, R2 ($\beta_0 = 100$), R7 ($\beta_0 = 44$) and R8 ($\beta_0 = 20$).

We first validated that the resolution we use is sufficient to ensure full development of the MRI. For that, the first two runs we conducted, R1 and R2 only differ by their azimuthal resolution, with R2 having a two times higher resolution than R1. No major differences between the results of R1 and R2 are found. We therefore conclude that the resolution of R2 ($N_r \times N_\theta \times N_\phi = 256 \times 128 \times 128$) is sufficient to support the conclusion presented herein. We note however that the viscous spreading is sensitive to the angular resolution in the θ direction, and to the reconstruction method (PPM vs PLM) (Kritsuk et al. 2011; Porth et al. 2019). On the other hand, for resolutions higher than 192^3 it was shown by Porth et al. (2019) that the resolution-dependence is weak. Although this is an important limitation of our
Figure 9. Same as Figure 5 for R9). This is a large disk \((R_{\text{max}} = 13\text{M})\) with relativistic adiabatic index \(\dot{\gamma} = 4/3\). The filled region near the polar axis indicates that a relativistic jet is not formed.

Figure 10. Time and azimuthal angle \((\phi)\) average location in the \(z - \theta\) plane of the \(\sigma = 1\) surface (plotted by the thick black line in Figures 5 and 6) for runs R2 and R3. Both runs have a similar initial setup, differing only by the value of the adiabatic index \((\dot{\gamma} = 4/3 \text{ in R2, } \dot{\gamma} = 5/3 \text{ in R3})\). Larger adiabatic index results in higher gas pressure inside the disk, making the resulting jet narrower. The vertical black line marks the outer horizon radius.
numerical models that must be kept in mind, we find that our results are in excellent agreement with the numerical results presented in Porth et al. (2019), and are therefore reliable.

The effect of the initial magnetic field normalisation β_0 is better seen and understood from Figure 11, which shows the temporal evolution of the barycentric radius, given by Equation (48), for the 4 runs. It is clear that the larger the initial β_0, the faster is the spread of the disk. This is to be expected as the Maxwell viscous coefficient scales $\propto b^6 b^0$, namely with the magnetic field components (Krolik et al. 2005; Penna et al. 2013). Although the MRI turbulence should develop independently of the initial condition and drive the viscous spreading, the initial system evolution is driven by the initial value of β_0, with a larger β_0 leading to a slower initial disk spreading.

In Figure 12, we show \dot{M} and Φ_B as a function of β_0. The mass accretion rate is consistent with being the same for all 4 simulations, with a trend towards increase of the accretion rate with β_0. This is in agreement with the results of Beckwith et al. (2008), who found a negligible influence of the magnetic field on the accretion flow. However, we do find a large spreading for the average MAD parameter at the horizon $\langle \Phi_B \rangle$: it is a factor ~ 2 larger for R8 ($\beta_0 = 20$) than for R1, R2 ($\beta_0 = 100$) while the MAD parameter for R7 ($\beta_0 = 44$) is in between those two values. All these four simulations are able to launch jets.

For all four simulations, we show in Figure 13 the jet Lorentz factor (Equation (53)), where the integration is restricted to regions in which $\sigma > 1$. In all cases, the Lorentz factor remains small, around a few, below radius $r \lesssim 30 M$. Above this radius, it starts to increase faster to reach an asymptotic value $\Gamma \sim 20$. This evolution with radius is in qualitative agreement with the results presented in Fragile et al. (2012), see their Figure 7), although the final values are larger than the value of ~ 7 – 10 found by McKinney (2006), Fragile et al. (2012) and Chatterjee et al. (2019). We note however that the initial torus used in the two aforementioned papers are substantially different than the one used in our simulations.

We tentatively explain this difference in Lorentz factor at $r \sim 200 M$ by the fact that our numerical grid is not suitably chosen to study jets at large distances from the black-hole. Indeed, jets from such types of simulations are expected to be closer to parabolic than to a radial geometry (e.g. Tchekhovskoy et al. 2008; Nakamura et al. 2018), numerical codes need a special type of grid that warps towards the pole to resolve the jet all the way to the outer domain boundary (e.g., McKinney et al. 2012; Ressler et al. 2017). The simulations presented here do not use such a grid. The approximate force free solution for the surface $\sigma = 1$ is well approximated by $z \propto R^6$, with $1.3 \leq \nu \leq 2$ (Tchekhovskoy et al. 2008). Here, $R = r \sin \theta$ is the cylindrical radius. Comparing this jet evolution to the angular grid we use here, we find that at radius $r = 200 M$ the jet is resolved by only 3 (7) grid cells in the θ direction for $N_\theta = 128$ ($N_\theta = 256$) respectively. This number of cells between the jet boundary and the pole is clearly insufficient to properly capture the jet dynamics at height $z \gtrsim 200 M$.

6.5. Effect of r_{max} : R7 vs R9

We next examined the effect of the disk size, as is prescribed by the radius of maximum pressure, r_{max}. Simulations R7 and R9 only differ by their initial value of r_{max}, namely $r_{\text{max}}(R7) = 12 M$, and $r_{\text{max}}(R9) = 13 M$. Both have a relativistic adiabatic index and an initial β parameter $\beta_0 = 44$. Increasing the radius of maximum pressure sharply changes the disk morphology. Firstly, the disk of R9, having a larger r_{max}, is more extended than that of R7. Secondly, as a result of the normalisation to the unity of the maximum disk density, the disk mass is larger by a factor ~ 3 (see Table 1).

The jet in R9 seems to be intermittent, with the polar region getting filled by material from the disk. It is interesting to note that this difference is not due to the initial normalisation of the magnetic field, β_0, which is the same in both runs. Indeed, R3 and R4 differ by both r_{max} and β_0, which is scaled such that the ratio of mass to magnetic field energy is constant. The same difference, i.e. the absence of a jet, is observed for that set of simulations. The comparison of R7 and R9 thus shows that the difference in β_0 does not produce the major effect on the ability to launch a jet in the SANE state. Rather, the mass distribution seems to be the dominant factor. Alternatively, the initial magnetic field topology may also have an effect on the ability of the system to launch a jet, but in this current work we limit our simulations to a single initial magnetic field configuration, as is given in Equation 54.

6.6. Out of equilibrium initial condition

Runs R5 and R6 are different from the others as their initial setup is out of equilibrium, with a disk which is not supported by its initial pressure. To obtain this effect, we numerically initialized the disks using a non-relativistic adiabatic index $\dot{\gamma} = 5/3$ (thus, the initial disk is similar to R4), while in calculating their evolution, we assumed $\dot{\gamma} = 4/3$. These two runs are identical except for the grid size, which is larger in R6 by a factor of 2 in the θ direction.
Figure 11. Time evolution of the barycentric radius for the four runs with different initial magnetization $R_1, R_2 (\beta_0 = 100), \ R_7 (\beta_0 = 44)$ and $R_8 (\beta_0 = 20)$. Maximum integration radius $r_{max} = 80$ is taken in all calculations (see Equation 48 and the following discussion). The increase in the barycentric radius is due to viscous spreading. Clearly, the larger the initial magnetic field (the smaller β_0) the faster the disk expands, implying that the initial viscosity is directly related to the initial magnetization, β_0.

Figure 12. Left - Time average mass accretion rate \dot{M} for run R1, R2, R7 and R8 which only differ by their value of β_0. Error bars represent 2σ variance. Right - Same but for the MAD parameter Φ_B.

Initially, the disks contract rather than expand due to the viscous stresses. This is clearly visible in Figure 14 which shows the time evolution of the barycentric radius for both runs. After the initial contraction ($t \lesssim 1000 \text{ M}$), the disks bounce a couple of times, after which the disks start to expand similarly to that of the other simulation. This is also visible in Figure 15 in which the variations of \dot{M} and $l_{in} - l_{out}$ between $8 \times 10^3 < t < 10^4$ are the largest while the average are not yet independent on the radius at any distance from the black-hole. This means that at the end of the simulation, R5 and R6 did not yet reach (quasi) steady-state.

During the initial transition period, the initial MAD parameter reaches a relatively large value of ~ 10. This results in an initially strong jet, lasting during the transition period of $t \sim 3 \times 10^3 \text{M}$. However, after this period ends, the
MAD parameter sharply drops to an average value of $\Phi_B(R6) = 0.96$, which is the smallest average value of all the runs we have. Despite the large mass accretion rate at late times (after the transition period), the jet is not sustained, but rather disappears. This is clearly shown in Figure 7. This result therefore demonstrates the ability of transient systems to produce transient jets.

A more extending magnetized region could have contributed to sustain the magnetic flux threading the horizon and potentially sustain a jet in these configurations as well. This underlines the sensitivity to the initial condition of a jet in the SANE regime.

7. CONCLUSIONS

Using CUDA-C and OpenMP, we wrote a GPU-accelerated code which solves the GR-MHD equations in the context of accretion disk and jet system around a rotating black-hole. The code is currently designed to run on a single multi-GPU workstation. This is currently sufficient to perform simulations of a system composed of a thick accretion disk around a black hole, and the jets resulting from the accretion, with a resolution sufficient for MRI to develop according to the quality factor $Q^{(i)}$ given by Equations 42. In the future, we are planning an extension with MPI to enable the code to run on a multi-node architecture.

This code adds to two existing GR-MHD codes aimed at studying accretion disks that were designed to run on GPUs (Chandra et al. 2017; Liska et al. 2018). In this paper, we detailed some of the strategies we used to increase the compute efficiency of our code. Specifically, the computation along direction ϕ is critical to reduce memory loads of the metric terms and improve the computational speed.

We have used our new numerical code to perform several simulations. We present in this paper the results of 9 such simulations of ADAF disks accreting in the SANE regime. In this first paper we focus on this regime, as it enables a relatively simple comparison of our results with that of previous simulations (Porth et al. 2019) thereby providing confidence in the correctness of our numerical scheme. We then change the initial conditions to study a yet unexplored region. Our disk have different initial parameters, such as r_{max}, β_0 and initial adiabatic indexes. From those simulations, we reach several conclusions.

First, we simulated four disks with different initial magnetic field normalisation in order to study the impact of the initial setup (section 6.4). We found that the mass accretion rate is comparable in all cases, with a slight increase for small β_0 (so a large initial magnetization). The MAD parameter however is different for all four simulations, being
Figure 14. Barycentric radius for the two non-equilibrium simulations. For both simulations, the disk initially contracts, bounces two times and then start expanding similarly to the other disks, which starts from an equilibrium state.

larger for smaller β_0. We thus conclude that while in the SANE state, the mass accretion rate only weakly depends on the initial magnetization, β_0.

Second, interpreting our results for disks with different masses, but with a constant ratio of initial mass to magnetic energy (section 6.5), we find that the accretion rate and the presence of a jets mostly depend on the initial mass distribution rather than on the initial magnetic field, provided that β_0 is large. When the magnetic flux threading the horizon drops, the jet disappears. This result therefore demonstrates that the existence of the jet is not a linear function of the initial magnetic field strength.

Third, the effect of the adiabatic index on the morphology of the accretion system and on the accretion rate is investigated in section 6.3. For the structure of the disk, only small differences were found, in agreements with previous results (McKinney & Gammie 2004; Mignone & McKinney 2007). However, we find that the jet is narrower with non-relativistic adiabatic index $\hat{\gamma} = 5/3$ than it is for relativistic adiabatic index, $\hat{\gamma} = 4/3$, as seen from Figure 10. We thus conclude that the structure of the disk/jet is a weak function of the adiabatic index of the gas, although a relativistic gas tends to result in a wider jet.

We have also presented the results of two simulations with out-of-equilibrium disks. Those two simulations only differ by the angular resolution so their reliability can be checked. We found that (i) those two simulations have the smallest MAD parameter and that they are unable to form a jet, and (ii) that after a transition period a disk similar to the one obtained for the other simulations is obtained, showing that the disk structure seems to be robust to change in the initial configuration but that the existence of the jet in the SANE regime is not.

Overall, our simulations show how sensitive the disk and the accretion properties are to the initial conditions of the simulation in the SANE regime. We found that the disk structure is robust while the presence of a jet is strongly dependent on the initial mass distribution, with large disks only forming transient jets at the onset of the simulations. For small initial r_{max}, the disk and jet structures are independent on the magnetization, while the adiabatic index of the gas only changes the opening angle of the jet.

To conclude, in the context of the results from the EHT collaboration and the imaging of the very center of an accretion system (Event Horizon Telescope Collaboration et al. 2019; Goddi et al. 2021), detailed predictions can now be directly tested. However, producing those predictions requires (i) state of the art GRMHD codes, (ii) radiative transfer codes and (iii) access to HPC facilities, most of which are now equipped with GPU accelerators, to obtain
Figure 15. Same as Figure 4 for R5 and R6. Left - Time-averaged mass accretion rate as a function of radius r for different time intervals. Right - Time averaged angular momentum flux as a function of radius. The pink region corresponds to the 2-σ variance during the last time interval, $8000 < t < 10^4 M$. From this figures, it is clear that at the end of our run, quasi steady state is not achieved.

meaningful results. In this paper, we presented a first step towards the creation of a new GRMHD numerical code with the capability of being accelerated by GPUs.

We thank Oliver Porth for helpful discussions. DB and AP acknowledge support from the European Research Council via the ERC consolidating grant "773062 (acronym O.M.J.). B.-B.Z. acknowledges support by the National Key Research and Development Programs of China (2018YFA0404204), the National Natural Science Foundation of China (Grant Nos. 11833003, U2038105, 12121003, 11922301, 12041306, 12103089), the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B11, the Natural Science Foundation of Jiangsu Province (Grant No. BK20211000), and the Program for Innovative Talents, Jiangsu. This work is performed on a HPC server equipped with 8 Nvidia DGX-V100 GPU modules at Nanjing University. We acknowledge the IT support from the computer lab of School of Astronomy and Space Science at Nanjing University. Guoqiang Zhang also acknowledges support by the China Scholarship Council for 1 year study in Bar-Ilan University.

REFERENCES

Abramowicz, M. A., Chen, X., Kato, S., Lasota, J.-P., & Regev, O. 1995, ApJL, 438, L37, doi: 10.1086/187709

Abramowicz, M. A., Czerny, B., Lasota, J. P., & Szuszkiewicz, E. 1988, ApJ, 332, 646, doi: 10.1086/166683
van Leer, B. 1979, Journal of Computational Physics, 32, 101, doi: 10.1016/0021-9991(79)90145-1
Vanka, S. P., Shinn, A. F., & Sahu, K. C. 2011, in ASME International Mechanical Engineering Congress and Exposition, Vol. 54921, 429–437
White, C. J., Quataert, E., & Gammie, C. F. 2020, ApJ, 891, 63, doi: 10.3847/1538-4357/ab718e
Wong, G. N., Du, Y., Prather, B. S., & Gammie, C. F. 2021, arXiv e-prints, arXiv:2104.07035. https://arxiv.org/abs/2104.07035
Yalamanchili, P., Arshad, U., Mohammed, Z., et al. 2015, ArrayFire - A high performance software library for parallel computing with an easy-to-use API, Atlanta: AccelerEyes. https://github.com/arrayfire/arrayfire
Yuan, F., Wang, H., & Yang, H. 2022, arXiv e-prints, arXiv:2201.00512. https://arxiv.org/abs/2201.00512
Zhang, M., & Feng, X. 2016, Frontiers in Astronomy and Space Sciences, 3, 6, doi: 10.3389/fspas.2016.00006

Sądowski, A., Narayan, R., Tchekhovskoy, A., & Zhu, Y. 2013b, MNRAS, 429, 3533, doi: 10.1093/mnras/sts632
Soleri, P., Fender, R., Tudose, V., et al. 2010, MNRAS, 406, 1471, doi: 10.1111/j.1365-2966.2010.16790.x
Sorathia, K. A., Reynolds, C. S., Stone, J. M., & Beckwith, K. 2012, ApJ, 749, 189, doi: 10.1088/0004-637X/749/2/189
Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B. 2008, ApJS, 178, 137, doi: 10.1086/588755
Takahashi, R. 2008, MNRAS, 383, 1155, doi: 10.1111/j.1365-2966.2007.12612.x
Tchekhovskoy, A., McKinney, J. C., & Narayan, R. 2008, MNRAS, 388, 551, doi: 10.1111/j.1365-2966.2008.13425.x
Tchekhovskoy, A., Metzger, B. D., Giannios, D., & Kelley, L. Z. 2014, MNRAS, 437, 2744, doi: 10.1093/mnras/stt2085
Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2011, MNRAS, 418, L79, doi: 10.1111/j.1745-3933.2011.01147.x
Tóth, G. 2000, Journal of Computational Physics, 161, 605, doi: 10.1006/jcph.2000.6519
A. IMPACT OF RESOLUTION

We have two set of similar simulations which only differ by their θ or ϕ resolution:

- R1 and R2 only differ by the increase in resolution of N_ϕ which is doubled for R2.
- R5 and R6 which only differ by the increase in resolution of N_θ which is doubled for R6.

Figure 16 compares the difference between $\langle \rho \rangle$, $\langle u^\phi \rangle$, $\langle p_g \rangle$, $\langle \beta^{-1} \rangle$ and $\langle H \rangle$ as a function of radius. Only β^{-1} is sharply different between R1 and R2, while all quantities are in good agreement for R5 and R6. Moreover, we checked that the profile for R2 is compatible with the results from Porth et al. (2019). We therefore conclude that a resolution of 256x128x128 is the minimal resolution required to sufficiently resolve our accretion disks.
Figure 16. Comparing the effect of varying the resolution. Left - comparison between R1 and R2. Right - comparison between R5 and R6. From top to bottom: density, poloidal velocity u_φ, gas pressure p_g, plasma β and disk width H. The thick lines are averaged over time such that $5 \times 10^3 < t < 10^4$ and the shaded regions correspond to the maximal variation amplitude for data exported every $\Delta t = 5M$.