The Steiner k-eccentricity on trees

Xingfu Lia, Guihai Yua, Sandi Klavžarb,c,d, Jie Hua, Bo Lia

a College of Big Data Statistics, Guizhou University of Finance and Economics
Guizhou, 550025, China
xingfulisdu@qq.com; yuguixiao@mail.gufe.edu.cn
jason.houu@gmail.com; hn.libo@163.com

b Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

c Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

d Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
sandiklavzar@fmf.uni-lj.si

August 19, 2020

Abstract

We study the Steiner k-eccentricity on trees, which generalizes the previous one in the paper [X. Li, G. Yu, S. Klavžar, On the average Steiner 3-eccentricity of trees, arXiv:2005.10319, 2020]. To support the algorithm, we achieve much stronger properties for the Steiner k-ecc tree than that in the previous paper. Based on this, a linear time algorithm is devised to calculate the Steiner k-eccentricity of a vertex in a tree. On the other hand, the lower and upper bounds of the average Steiner k-eccentricity index of a tree on order n are established based on a novel technique which is quite different from that in the previous paper but much easier to follow.

Keywords: Steiner distance, Steiner tree, Steiner eccentricity, graph algorithms

AMS Math. Subj. Class. (2020): 05C12, 05C05, 05C85

1 Introduction

In this paper we consider connected, simple, undirected graphs $G = (V(G), E(G))$. For basic graph notation and terminology we follow the book of West [28], while for algorithmic

∗This work was supported by the National Natural Science Foundation of China (11861019), Guizhou Talent Development Project in Science and Technology (KY[2018]046), Natural Science Foundation of Guizhou ([2019]1047, [2020]1Z001), Foundation of Guizhou University of Finance and Economics(2019XJC04). Sandi Klavžar acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0297 and projects J1-9109, J1-1693, N1-0095, N1-0108.
and computational terminology we use [4, 9].

The standard distance $d_G(u, v)$ between vertices u and v in graph G is the length of a shortest path between u and v in G. If $S \subseteq V(G)$, $|S| \geq 2$, then the Steiner distance $d_G(S)$ is the minimum size among all connected subgraphs of G containing S, that is,

$$d_G(S) = \min\{|E(T)| : T \text{ is a subtree of } G, S \subseteq V(T)\}.$$

Note that if $S = \{u, v\}$, then $d_G(S) = d_G(u, v)$. If $k \geq 1$, then the Steiner k-eccentricity of a vertex v in graph G is

$$\text{ecc}_k(v, G) = \max\{d_G(S) : v \in S \subseteq V(G), |S| = k\}.$$

Note that, by definition, $\text{ecc}_1(v, G) = 0$. $S \subseteq V(G)$ is a Steiner k-ecc v-set if $|S| = k$, $v \in S$, and $d_G(S) = \text{ecc}_k(v, G)$. A corresponding minimum Steiner tree T is called a Steiner k-ecc v-tree (corresponding to the k-set S). We will also shortly say that T is a $\text{MST}(S, G)$. The average Steiner k-eccentricity of a graph G is the mean value of all vertices’ Steiner k-eccentricities in G, that is,

$$\text{aecc}_k(G) = \frac{1}{|V(G)|} \sum_{v \in V(G)} \text{ecc}_k(v, G),$$

which is an extension of the average eccentricity of a graph [7, 8].

The Steiner tree problem is NP-hard on general graphs [9, 16], but it can be solved in polynomial time on trees [2]. The Steiner distance on some special graph classes such as trees, joins, Corona products, threshold and product graphs, has been studied in [1, 3, 11, 23, 26]. The average Steiner k-distance is closely related to the k-th Steiner Wiener index. Both of them were studied on trees, complete graphs, paths, cycles and complete bipartite graphs [6, 12]. The average Steiner distance and the Steiner Wiener index were investigated in [5, 18, 20], while for some work on the Steiner diameter see [23, 26]. The Steiner k-diameter was compared with the Steiner k-radius in [15, 24]. Closely related invariants were also studied, for instance Steiner Gutman index [21], Steiner degree distance [13], Steiner hyper-Wiener index [25], multi-center Wiener indices [14], and Steiner (revised) Szeged index [10]. We especiall point to the substantial survey [22] on the Steiner distance and related results and to the recent investigation of isometric subgraphs for Steiner distance [27].

Very recently, the Steiner 3-eccentricity of trees was investigated in [19]. A linear-time algorithm was developed to calculate the Steiner 3-eccentricity of a vertex in a tree, and lower and upper bounds for the average Steiner 3-eccentricity index on trees were derived. In this paper we extend these results to arbitrary $k \geq 2$. In the next section we propose a linear algorithm to calculate the Steiner k-eccentricity of a vertex in a tree. In Section 3 we establish lower and upper bounds of the average Steiner k-eccentricity on trees. We conclude this paper by presenting several possibilities for future work.
2 Steiner k-eccentricity of vertices in trees

The techniques from [19] that enabled to calculate the Steiner 3-eccentricity in a tree are not suitable for calculating the Steiner k-eccentricity of a vertex in a tree for arbitrary $k \geq 2$. In this section we establish new, stronger structural properties for the Steiner k-ecc v-tree for a vertex v in a tree, and then apply them to devise a linear time algorithm to calculate the Steiner k-eccentricity of a vertex in a tree.

2.1 Two key structural properties

Before stating the two properties, let us introduce some notation and terminology on trees. A vertex of a tree of degree at least 3 is a branching vertex. Let $L(T)$ denote the set of pendent vertices (leaves) of a tree T. If u and v are vertices of a tree T, then we will denote the (unique) $u.v$-path in T by $P(u,v,T)$. Given a vertex $v \in V(T)$ and a leaf $u \in L(T)$, let w be the nearest branching vertex to u on $P(v,u,T)$. If there is no branching vertex on $P(v,u,T)$, we set $w = v$. Then we say that the sub-path $P(w,u,T)$ of $P(v,u,T)$ is a quasi-pendent path (with respect to u and v).

In the rest we will use the following earlier lemma, also without explicitly mentioning it.

Lemma 2.1 [19, Lemmas 2.4, 2.5] If T is a tree and $v \in V(T)$, then the following holds.

(i) If $k > |L(T)|$, then every k-ecc v-set contains all the leaves of T. The same conclusion holds if v is a leaf and $k = |L(T)|$.

(ii) If $2 \leq k \leq |L(T)|$ and S is a k-ecc v-set, then every vertex from $S \setminus \{v\}$ is a leaf of T.

For our first structural result, we need one more lemma.

Lemma 2.2 Let $k \geq 2$, let v be a vertex of a tree T, let T_v^k be a Steiner k-ecc v-tree, and let T_v^{k-1} be a Steiner $(k-1)$-ecc v-tree. Then there exists a leaf $u \in L(T_v^k) \setminus L(T_v^{k-1})$ such that the quasi-pendent path $P(w,u,T_v^k)$ has no common edge with T_v^{k-1}.

Proof. If $k = 2$, then T_v^1 is a tree on a single vertex v, hence the conclusion is clear. Assume in the rest that $k \geq 3$ and suppose on the contrary that every leaf $u \in L(T_v^k) \setminus L(T_v^{k-1})$ satisfies that the quasi-pendant path $P(w,u,T_v^k)$ has common edges with T_v^{k-1}. Then to every leaf $u \in L(T_v^k)$ we can associate its private leaf of $L(T_v^{k-1})$. Hence the number of leaves in T_v^{k-1} is not less than that in T_v^k. This contradicts the fact (by Lemma 2.1) that the Steiner $(k-1)$-ecc v-set corresponding to T_v^{k-1} has one less element than the Steiner k-ecc v-set corresponding to T_v^k.

\[\Box\]
Theorem 2.3 Let $k \geq 2$, and let v be a vertex of a tree T. Then every Steiner k-ecc v-tree contains some Steiner $(k - 1)$-ecc v-tree.

Proof. The case $k = 2$ is trivial, hence assume in the rest that $k \geq 3$. Let T^k_v be a Steiner k-ecc v-tree and suppose on the contrary that it contains no Steiner $(k - 1)$-ecc v-tree. If T^{k-1}_v is an arbitrary Steiner $(k - 1)$-ecc v-tree, then, by Lemma 2.2 we may select a leaf u from T^k_v such that the quasi-pendant path $P(w, u, T^k_v)$ does not have common edges with T^{k-1}_v.

Let S^k_v be the Steiner k-ecc v-set corresponding to T^k_v and set $S_1 = S^k_v \setminus \{u\}$. Then S_1 is a $(k - 1)$-set containing the vertex v. Moreover, the tree $T_1 = T^k_v \setminus (P(w, u, T^k_v) \setminus \{w\})$ is a MST(S_1, T). By the assumption, the size of T_1 is strictly less than that of T^{k-1}_v, that is,

$$|E(T_1)| < |E(T^{k-1}_v)|.$$ (1)

Let $S_2 = S^{k-1}_v \cup \{u\}$, where S^{k-1}_v is the Steiner $(k - 1)$-ecc v-set corresponding to the tree T^{k-1}_v. Then S_2 is a k-set which contains the vertex v. Let T_2 be a MST(S_2, T). In the following we are going to show that the size of T_2 is larger than that of T^k_v.

Since the quasi-pendant path $P(w, u, T^k_v)$ does not share any edge with T^{k-1}_v and must be a sub-path of the quasi-pendant path $P(w', u, T_2)$, the size of T_2 satisfies

$$|E(T_2)| \geq |E(T^{k-1}_v)| + |E(P(w, u, T^k_v))|.$$ (2)

Combining (1) and (2) we obtain that

$$|E(T_2)| \geq |E(T^{k-1}_v)| + |E(P(w, u, T^k_v))|$$
$$> |E(T_1)| + |E(P(w, u, T^k_v))|$$
$$= |E(T^k_v)|.$$ (3)

Hence $|E(T_2)| > |E(T^{k}_v)|$. Since T_2 is a minimum Steiner tree on a k-set containing v, (3) contradicts the fact that T^k_v is a Steiner k-ecc v-tree.

Theorem 2.3 thus asserts that a Steiner k-ecc v-tree contains some Steiner $(k - 1)$-ecc v-tree. The question now is, how to determine such a Steiner $(k - 1)$-ecc v-tree. The message of the next result is that for our purposes, any Steiner $(k - 1)$-ecc v-tree will do. Before stating the theorem, we need some more notation. If H is a subgraph of a graph G, and $v \in V(G)$, then the distance from v to H is $d_G(v, H) = \min\{d_G(v, u) : u \in V(H)\}$. The eccentricity of H in G is $ecc_G(H) = \max\{d_G(v, H) : v \in V(G)\}$.

Theorem 2.4 Let $k \geq 1$, and let v be a vertex of a tree T. If T_1 and T_2 are Steiner k-ecc v-trees of T, then $ecc_T(T_1) = ecc_T(T_2)$.

Proof. There is nothing to be proved if \(T_1 = T_2 \). Hence assume in the rest that \(T_1 \) and \(T_2 \) are different Steiner \(k \)-ecc \(v \)-trees of \(T \). If \(k = 1 \), then a (unique) Steiner 1-ecc\(v \)-tree is induced by the vertex \(v \) itself. Since all longest paths starting from \(v \) have the same length, the assertion of the theorem is clear for \(k = 1 \). Hence we may also assume in the rest of the proof that \(k \geq 2 \).

Let \(P_1 \) and \(P_2 \) be longest paths from vertices of \(V(T) \) to trees \(T_1 \) and \(T_2 \), respectively. Let \(u_1 \) and \(u_2 \) be the two endpoints of \(P_1 \) with \(u_1 \in V(T_1) \), and let \(w_1 \) and \(w_2 \) be the two endpoints of \(P_2 \) with \(w_1 \in V(T_2) \). Set \(T_0 = T_1 \cap T_2 \). To prove the theorem it suffices to prove that \(u_1 \in V(T_0) \) and \(w_1 \in V(T_0) \). By symmetry, it suffices to prove the first assertion, that is, \(u_1 \in V(T_0) \).

Suppose on the contrary that \(u_1 \in V(T_1) \setminus V(T_0) \). Let \(s \) be a leaf of \(T_1 \) such that \(u_1 \) is on the path \(P(v, s, T_1) \). Then there must be a vertex \(w_0 \in V(T_0) \) and a leaf \(t \) of \(T_2 \) such that \(E(P(w_0, s, T_1)) \cap E(P(w_0, t, T_2)) = \emptyset \), see Fig. 1. Note that \(w_0 \) may be the vertex \(v \).

![Figure 1: The configuration of the vertices \(w_0, u_1, u_2, w_1, w_2, s \) and \(t \).](image)

We claim that \(V(P_1) \cap V(T_2) = \emptyset \). Otherwise, let \(x \in V(T_2) \cap V(P_1) \). Then the path \(E(P(x, v, T_1)) \setminus E(P(x, v, T_2)) \neq \emptyset \), since \(E(P(w_0, u_1, T_1)) \neq \emptyset \). So the two paths \(P(x, v, T_1) \) and \(P(x, v, T_2) \) form a cycle in the original graph \(T \). This contradicts to the fact that \(T \) is a tree. In the same way, we obtain that \(V(P_2) \cap V(T_2) = \emptyset \).

Since \(|E(P_1)| = d_T(u_2, T_1) = \text{ecc}_T(T_1) \) and \(|E(P(w_0, t, T_2))| = d_T(t, T_1) \), we have

\[
|E(P_1)| \geq |E(P(w_0, t, T_2))|.
\] (4)

Moreover, since we have assumed that \(u_1 \in V(T_1) \setminus V(T_0) \), we infer that \(|E(P(u_1, w_0, T))| > 0 \). Together with \((4) \) this yields

\[
|E(P(u_2, w_0, T))| = |E(P_1)| + |E(P(u_1, w_0, T))| \\
\geq |E(P(w_0, t, T_2))| + |E(P(u_1, w_0, T))| \\
> |E(P(w_0, t, T_2))|.
\] (5)
Now we pay attention to the tree \(T_2 \). Let \(S \) be the Steiner \(k \)-ecc \(v \)-set corresponding to the tree \(T_2 \). Let \(S' = S \setminus \{ t \} \cup \{ u_2 \} \). Then \(S' \) is a \(k \)-set containing the vertex \(v \). In the following, we will establish a contradiction that the tree \(T'_2 = MST(S', T) \) has more edges than the tree \(T_2 \). Recall that \(T_2 \) is a Steiner \(k \)-ecc \(v \)-tree.

Let \(P(w, t, T_2) \) be the quasi-pendant path with respect to \(v \) in \(T_2 \) and distinguish the following cases.

Case 1: \(w \in V(P(w_0, t, T_2)) \setminus \{ w_0 \} \).
In this case the tree \(T'_2 = MST(S', T) \) can be represented as \(T'_2 = T_2 \setminus P(w, t, T_2) \cup P(w_0, u_2, T) \). Since the path \(P(w, t, T_2) \) is a sub-path of \(P(w_0, t, T_2) \), \(|E(P(w_0, t, T_2))| \geq |E(P(w, t, T_2))| \) holds. Combining this fact with (5) we have:

\[
|E(T'_2)| = |E(T_2)| - |E(P(w, t, T_2))| + |E(P(w_0, u_2, T))| \\
\geq |E(T_2)| - |E(P(w_0, t, T_2))| + |E(P(w, t, T_2))| \\
> |E(T_2)|.
\]

Case 2: \(w \in V(T_0) \).
Now the tree \(T'_2 = MST(S', T) \) can be represented as \(T'_2 = T_2 \setminus P(w, t, T_2) \cup P(w, u_2, T) \). Recall that the path \(P(w, t, T_2) \) is composed of two sub-paths which are \(P(w, w_0, T_2) \) and \(P(w_0, t, T_2) \) respectively. And \(P(w, u_2, T) \) is also composed of two sub-paths which are \(P(w, w_0, T_2) \) and \(P(u_2, w_0, T) \). By (5) we can estimate as follows:

\[
|E(T'_2)| = |E(T_2)| - |E(P(w, t, T_2))| + |E(P(w, u_2, T))| \\
= |E(T_2)| - (|E(P(w, w_0, T_2))| + |E(P(w_0, t, T_2))|) \\
+ (|E(P(w, w_0, T_2))| + |E(P(u_2, w_0, T))|) \\
= |E(T_2)| - |E(P(w_0, t, T_2))| + |E(P(u_2, w_0, T))| \\
> |E(T_2)|.
\]

In both cases we have thus proved that \(|E(T'_2)| > |E(T_2)| \), a contradiction to the fact that \(T_2 \) is a Steiner \(k \)-ecc \(v \)-tree.

\[\qed \]

2.2 A linear time algorithm

By Theorems 2.3 and 2.4, the problem to calculate the Steiner \(k \)-eccentricity of a given vertex of a tree can be reduced to recursively finding a longest path starting at a given
A vertex. This is formally done in Algorithm 1.

Algorithm 1: k-ECC(v, T, k)

Input: A vertex v, a tree T, and an integer k ≥ 2

Output: The Steiner k-eccentricity of v in T

1. if the number of leaves is less than k then
 2. return |V(T)| − 1;

3. end

4. else

5. \(ecc = 0; \)

6. for \(i = 1 \) to \(k - 1 \) do

7. Longest Path(v, T, path);

8. \(ecc = ecc + |E(P)|; \)

9. Path Shrinking(v, T, path);

10. end

11. return ecc

12. end

To explain Steps 1-3 of Algorithm 1, we state the following lemma.

Lemma 2.5 Let \(k \geq 3 \) and let v be a vertex of a tree T. If \(|L(T)| < k \), then the Steiner \(k\)-ecc v-tree is the entire tree T.

Proof. The cardinality of the set \(S = \{v\} \cup L(T) \) is at most k, since \(|L(T)| < k \). Moreover, the \(MST(S, T) \) is the entire tree T. Hence the Steiner \(k\)-ecc v-tree is the entire T.

Steps 1-12 form the recursive reduction which consists of finding \(k - 1 \) times a longest path starting at a vertex. In Step 7 we use the depth-first search (DFS) algorithm to find a longest path starting at a given vertex, the details are present in Algorithm 2. Step 9 shrinks the path obtained in Step 7 into a single vertex for the purpose of the next loop, the details are presented in Algorithm 3. Algorithms 2 and 3 are borrowed from 14 where one can find additional details on them. For the statement of these algorithms we
recall that if v is a vertex of a graph G, then the set of its neighbours is denoted by $N_G(v)$.

Algorithm 2: Longest Path

Input: A vertex v, a tree T rooted at v, and an array named `path` to store a longest path starting at v

Output: the length of a longest path starting at v

1. $max = 0$; $temp = max$
2. for each vertex $u \in N_T(v)$ which has not been visited till now do
3. $temp = \text{Longest Path}(u, T, \text{path})$
4. if $temp > max$ then
5. $\text{path}[v] = u$
6. $max = temp$
7. end
8. end
9. return $max + 1$

Algorithm 3: Path Shrinking

Input: A tree T, a vertex v, and an array named `path` to store a longest path starting at v

Output: A new tree obtained by shrinking the longest path into the single vertex v

1. $w = v$
2. while $\text{path}[w] \neq \emptyset$ do
3. for each vertex $x \in N_T(w)$ do
4. remove the edge (w, x) from T
5. add a new edge between x and v in T
6. end
7. $w = \text{path}[w]$
8. end

Theorem 2.6 Algorithm 1 computes the Steiner k-eccentricity of a vertex in a tree and can be implemented to run in $O(k(n + m))$ time, where n and m are the order and the size of the tree, respectively.

Proof. The correctness of Algorithm 1 is ensured by Theorems 2.3 and 2.4. By Lemma 2.5, the Steiner k-eccentricity of a vertex in a tree is equal to the size of the tree if its number of leaves is less than k. There is a linear-time algorithm to find all leaves of a tree by the depth-first search (DFS) algorithm [4]. Hence Steps 1-3 can be implemented in $O(n + m)$ time. Similarly, each loop in Steps 6-9 can be implemented in $O(n + m)$ time, thus all loops require $O(k(n + m))$ time.

To conclude the section we again point out that the structural properties to support
the algorithm(s) from [19] only ensure calculation of the Steiner 3-eccentricity. Hence we need to develop a new approach that works for general k.

3 Upper and lower bounds

In this section we establish an upper and a lower bound on the average Steiner k-eccentricity index of a tree for $k \geq 3$. These bounds were earlier proved in [19] in the special case $k = 3$. It is appealing that to obtain the bound for the general case, the proof idea is quite different and significantly simpler that the one in [19]. For the new approach, the following construction is essential.

π-transformation: Let T be a tree and let $P = P(u, v, T)$ be a path with at least one edge, such that every internal vertex of P is of degree 2 in T. Let X be the maximal subtree containing u in the tree $T \setminus E(P)$, and Y be the maximal subtree containing v in the graph $T \setminus E(P)$. We may without loss of generality assume that $\text{ecc}_T(u, X) \leq \text{ecc}_T(v, Y)$. Then the π-transformation $\pi(T)$ of T is defined as

$$
T' = \pi(T) = T \setminus \{(u, w) : w \in N_X(u)\} \cup \{(v, w) : w \in N_X(v)\}.
$$

The inverse transformation is is $T = \pi^{-1}(T') = T' \setminus \{(v, w) : w \in N_X(v)\} \cup \{(u, w) : w \in N_X(u)\}$. See Fig. 2

$T' = \pi(T)$ and $T = \pi^{-1}(T')$

Lemma 3.1 Let T, P, u, v, X, Y, and T' be as in the definition of the π-transformation. If $w \in V(P) \cup V(X)$, then in T' there exists a Steiner k-ecc w-set S such that $S \cap (V(Y) \setminus \{v\}) \neq \emptyset$.

Proof. Let S' be a Steiner k-ecc w-set in T' such that $S \cap (V(Y) \setminus \{v\}) = \emptyset$, and set $Q = S' \setminus \{w\}$. Since $k \geq 3$, the cardinality of Q is at least two. Let $v' \in V(Y)$ such that the distance between v and v' is $\text{ecc}_{T'}(v, Y)$. Consider the following two cases.

Case 1: $Q \cap V(X) = \emptyset$.

In this case the vertices of Q are all in P. Let $w' \in Q$ be the nearest vertex to v. Construct a new vertex set $S'' = (S' \setminus \{w'\}) \cup \{v'\}$.
3 UPPER AND LOWER BOUNDS

Case 2: $Q \cap V(X) \neq \emptyset$.

Let $w' \in Q \cap V(X)$. Construct a new vertex set $S'' = (S' \setminus \{w'\}) \cup \{v'\}$.

In each of the two cases, the size of $MST(S'', T')$ is not less than the size of $MST(S', T')$, hence the assertion.

Lemma 3.2 Under the notation of Lemma 3.1, $aecc(T) \geq aecc(T')$.

Proof. If v is a vertex in $V(Y) \setminus \{v\}$, then for any Steiner k-ecc w-set S' in T', the size of a minimum Steiner tree on S' in graph T is not less than that in T'. So the Steiner k-eccentricity of every vertex $w \in V(Y)$ in T is not less than that in T'.

If w is a vertex in $V(P) \cup V(X)$, then by Lemma 3.1 there exists a Steiner k-ecc w-set S' in T', such that $S' \cap (V(Y) \setminus \{v\}) \neq \emptyset$. The size of a minimum Steiner tree on S' in T is not less than that in T'. Therefore the Steiner k-eccentricity of every vertex $w \in V(P) \cup V(X)$ in T is not less than that in T'.

In any case, the Steiner k-eccentricity of every vertex $v \in V(T')$ is not larger than that in T. As the average Steiner k-eccentricity index is the mean value of all vertices' Steiner k-eccentricities, the average Steiner k-eccentricity of T' is not larger than that of T.

If the order of a tree T is not larger than k, then a Steiner k-ecc v-set contains all vertices of T for every $v \in V(T)$. Then every Steiner k-ecc v-tree is the entire tree T for every vertex v. So for a given $k \geq 3$, we just consider the trees where the order of each is more than k.

Theorem 3.3 If $k \geq 3$ is an integer, and T a tree on order $n > k$, then

$$k - \frac{1}{n} \leq aecc_k(T) \leq n - 1.$$

Moreover, the star S_n attains the lower bound, and the path P_n attains the upper bound.

Proof. Repeatedly applying the π-transformation on T until it is possible, we obtain the star S_n. On the other hand, repeatedly applying the π^{-1} transformation on T until it is possible, we obtain the path P_n. By Lemma 3.2 the π-transformation does not increase the average Steiner k-eccentricity of T. Hence the star S_n attains the minimum Steiner k-eccentricity, and the path P_n attains the maximum Steiner k-eccentricity. Finally, we obtain $aecc_k(S_n) = k - \frac{1}{n}$ and $aecc_k(P_n) = n - 1$ by straightforward computation.

In Fig. 3 an example is given in which the process of constructing extremal graphs, that is, a start and a path, by means of the π-transformation and the π^{-1}-transformation.

In [17] the average Steiner 2-eccentricity of trees was investigated. For the sake of our final result, we recall the following result.
4 Conclusions

Figure 3: Constructing extremal graphs using the π transformation and the π^{-1} transformation. Bold edges denote the paths defined in the transformations.

Lemma 3.4 ([17]) Let T be a tree of order n. Then $aecc_2(S_n) \leq aecc_2(T) \leq aecc_2(P_n)$. The left equality holds if and only if $T \cong S_n$, while the right equality holds if and only if $T \cong P_n$.

Combining Theorem 3.3 with Lemma 3.4 we have the following result.

Corollary 3.5 If $k \geq 2$ is an integer, then S_n (resp. P_n) attains the minimum (resp. the maximum) average Steiner k-eccentricity in the class of trees.

4 Conclusion

In this paper we have derived a linear-time algorithm to calculate the Steiner k-eccentricity of a vertex in a tree, and established lower and upper bounds for the average Steiner k-eccentricity of a tree. These results extend those from [19] for the case $k = 3$. It remains open to determine the extremal graphs for the average Steiner k-eccentricity index on trees for $k \geq 2$. Moreover, the general problem to compute the Steiner k-eccentricity of a general graph is widely open, in particular, it is not known whether it is NP-hard.

References

[1] B. S. Anand, M. Changat, S. Klavžar, I. Peterin, Convex sets in lexicographic product of graphs, *Graphs Combin.* 28 (2012) 77–84.

[2] L. W. Beineke, O. R. Oellermann, R. E. Pippert, On the Steiner median of a tree, *Discrete Appl. Math.* 68 (1996) 249–258.

[3] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance in graphs, *Časopis Pěst. Mat.* 114 (1989) 399–410.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms. Second Edition, MIT Press, Cambridge, MA, 2001.

[5] P. Dankelmann, H. C. Swart, O. R. Oellermann, The average Steiner distance of graphs with prescribed properties, *Discrete Appl. Math.* 79 (1997) 91–103.

[6] P. Dankelmann, O. R. Oellermann, H. C. Swart, The average Steiner distance of a graph, *J. Graph Theory* 22 (1996) 15–22.

[7] P. Dankelmann, W. Goddard, C. Swart, The average eccentricity of a graph and its subgraphs, *Util. Math.* 65 (2004) 41–51.

[8] P. Dankelmann, S. Mukwembi, Upper bounds on the average eccentricity, *Discrete Appl. Math.* 167 (2014) 72–79.

[9] M. R. Garey, D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness, Freeman & Company, New York, 1979.

[10] M. Ghorbani, X. Li, H. R. Maimani, Y. Mao, S. Rahmani, M. Rajabi-Parsa, Steiner (revised) Szeged index of graphs, *MATCH Commun. Math. Comput. Chem.* 82 (2019) 733–742.

[11] T. Gologranc, Steiner convex sets and Cartesian product, *Bull. Malays. Math. Sci. Soc.* 41 (2018) 627–636.

[12] I. Gutman, X. Li, Y. Mao, Inverse problem on the Steiner Wiener index, *Discuss. Math. Graph Theory* 38 (2017) 83–95.

[13] I. Gutman, On Steiner degree distance of trees, *Appl. Math. Comput.* 283 (2016) 163–167.

[14] I. Gutman, B. Furtula, X. Li, Multicenter Wiener indices and their applications, *J. Serb. Chem. Soc.* 80 (2015) 1009–1017.

[15] M. A. Henning, O. Oellermann, H. Swart, On the Steiner radius and Steiner diameter of a graph, *Ars Combin.* 29C (1990) 13–19.

[16] F. K. Hwang, D. S. Richards, P. Winter, The Steiner Tree Problem, North-Holland, Amsterdam, 1992.

[17] A. Ilić, On the extremal properties of the average eccentricity, *Comput. Math. Appl.* 64 (2012) 2877–2885.

[18] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, *Discuss. Math. Graph Theory* 36 (2016) 455–465.
REFERENCES

[19] X. Li, G. Yu, S. Klavžar, On the average Steiner 3-eccentricity of trees, arXiv:2005.10319 (20 May 2020).

[20] L. Lu, Q. Huang, J. Hou, X. Chen, A sharp lower bound on the Steiner Wiener index for trees with given diameter, Discrete Math. 341 (2018) 723–731.

[21] Y. Mao, K. C. Das, Steiner Gutman index, MATCH Commun. Math. Comput. Chem. 79 (2018) 779–794.

[22] Y. Mao, Steiner distance in graphs—a survey, arXiv:1708.05779 (18 Aug 2017).

[23] Y. Mao, E. Cheng, Z. Wang, Steiner distance in product networks, Discrete Math. Theor. Comput. Sci. 20 (2018) no. 2, Paper No. 8, 25 pp.

[24] J. Reiswig, The Steiner k-radius and Steiner k-diameter of connected graphs for $k \geq 4$, arXiv:1907.07658v2 (18 Mar 2020).

[25] N. Tratnik, On the Steiner hyper-Wiener index of a graph, Appl. Math. Comput. 337 (2019) 360–371.

[26] Z. Wang, Y. Mao, C. Melekan, E. Cheng, Steiner distance in join, corona, and threshold graphs, in: The 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC), Exeter, 2017, pp. 100–104.

[27] D. Weißauer, Isometric subgraphs for Steiner distance, J. Graph Theory 94 (2020) 597–613.

[28] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.