SWCNH (Single walled carbon nanohorn) supervises ER (Endoplasmic reticulum) stress through triggering autophagy process of hepatocytes, especially in hepatoma cell line HepG2

Jinling Dong¹, Ying Zhang¹, Zhihong Xie¹, Jie He¹ and Tianjian Wu²∗

¹ Department of Infectious Diseases, The First People’s Hospital Affiliated to Huzhou Normal College, Huzhou 313000, Zhejiang Province, People’s Republic of China
² Department of General Surgery, The First People’s Hospital Affiliated to Huzhou Normal College, Huzhou 313000, Zhejiang Province, People’s Republic of China

* Author to whom any correspondence should be addressed.

E-mail: damon_88v@163.com

Keywords: ER (endoplasmic reticulum) stress, autophagy, SWCNH (single walled carbon nanohorn), hepatocellular carcinoma (HCC), calcium flow

Abstract

Backgrounds. The cellular homeostasis is major maintained by the catabolic pathway of autophagy. Our previous work indicated that SWCNH were associated with endoplasmic reticulum (ER) stress mediated by calcium flow and autophagic response. But, its mechanism was unclear. Methods. The regulation of SWCNH on the calcium flow then autophagy of liver cells were investigated through inducing ER stress with tunicamycin and SWCNH. The calcium flow was determined using Fluo-3, then autophagy was examined with immunofluorescence or western blot for LC3, Beclin-1, ATG-5, and p62. Moreover, the apoptotic protein of Bax and Bcl-2 was detected, too. Results. Tunicamycin-induced ER stress in hepatocytes was related to calcium flow, especially for hepatoma cell line HepG2. Moreover, SWCNH participated in the regulation of endoplasmic reticulum stress-related calcium flow. Besides, SWCNH induced hepatocyte autophagy and inhibited cell apoptosis, then mediated the process of hepatocyte autophagy. Conclusions. Tunicamycin-induced ER stress in hepatocytes was related to calcium flow. Moreover, SWCNH induced hepatocyte autophagy, inhibited cell apoptosis, and participated in the autophagy regulation of hepatocyte, especially for hepatoma cell line.

Introduction

The cellular homeostasis is major maintained by the catabolic pathway of autophagy [1], and plays an important role in many pathologies, such as carcinoma, neurodegeneration, aging, etc [2, 3]. The formation of phagophore is the first step of autophagy [4], the membrane edges of phagophore prolong and then devour cytoplasm portions [5]. Consequently, the completed structure of autophagosome generates after membrane fusion [6]. Furthermore, the formation of autolysosome combined autophagosome with lysosome, then the content of this single membrane vesicle is degraded [7]. But, the recent biogenesis mechanism of autophagosome is unknown.

Whereas, the current studies have confirmed that the plasma membrane of different cellular compartments, including mitochondria, endoplasmic reticulum (ER), and Golgi may be associated with the precursors of autophagosome membrane [8]. Moreover, the autophagic response can be induced by ER stress [9], which is caused by activation of unfolded protein response come from misfolded proteins accumulation in ER [10]. Furthermore, the proteins expressions of recovery process and their chaperones occur [11], meanwhile, the structure of pre-antophagosome assembles after stimulation of ER stress [12].

Some investigators have explored the bio-effect role of single-walled carbon nanohorn (SWCNH) [13] in promising carrier for drug delivery systems based on its specific surface structure and large surface area, especially its affinity for biomolecules [14–16]. Moreover, we found the toxicity of SWCNH itself in hepatocytes,
but the mechanisms remained unclear. Furthermore, The calcium signals in liver carcinoma cells, both calcium entry and calcium liberation from internal pools could be regulated, and the mobilization of calcium appeared to critically contribute to the crucial intracellular pathway for hepatocellular carcinoma progression.

However, the death of cells could be regulated by two processes, included autophagy and apoptosis [17]. The complex interactive regulation of the two process between autophagy and apoptosis can be activated by a variety of regulatory molecules, stimuli of stress, and even calcium signals [18]. Therefore, the roles of SWCNH in ER stress and autophagy associated with intracellular calcium flow was investigated in hepatocytes.

Materials and methods

SWCNH characteristics

SWCNH were synthesized in air by arc discharge method and dried in air at 100 °C for 3 h. C, H, N analysis was performed on the Vario EL III elemental analyzer (The elementar Analysysysteme GmbH). The content of other elements was measured on an S4-Explorer x-ray fluorescence spectrometer (Bruck Company) with 1 kW power and wavelength dispersion mode. The surface area and mesopore size of SWCNH were measured on the ASAP2010 V3.02E surface area analyzer (Micromeritics Instrument Corporation, USA) by the B.E.T method. The particle density of SWCNH was measured on AccuPyc 1330 pycnometer (Micromeritics Instrument Company, USA) using high-pressure He buoyancy effect at 291.3K. The particle size of SWCNH in a 10 μg ml⁻¹ SWCNH aqueous suspension was determined by dynamic light scattering at 298.3K on Zetasizer Nano ZS (Malvern Instrument Ltd).

Preparation and characterization of SWCNH-coated dishes

To prepare the homogeneous SWCNH coating, a dilute solution of SWCNH in ultrapure water (produced with Milli-Q system, Millipro, USA) was dispersed. An aliquot (10 μg ml⁻¹) of the dispersed SWCNH was immediately spotted onto a 60 mm non-treated polystyrene dish (Normal PS), which has a low adhesive surface for suspension culture in order to reduce the influence of the base material layer. The dishes were dried at 60 °C in air for 3 h and sterilized by UV irradiation (DM-5; Daishin Co., Ltd, Osaka, Japan) for 16 h. The SWCNH-coated PS dishes (0.85 μg cm⁻²) with a bottom area of about 1 cm² were prepared for SEM measurements and contact angle determinations. Uncoated PS dishes were used as control. After pretreated by spraying gold on films of samples, SEM measurements were carried out on SIRION field emission scanning electronic microscope (FEI Corporation Ltd) with accelerating voltage of 10.0 kV. Contact angles of water droplets (volumes 2–5 μl) on SWCNH/PS and uncoated PS surfaces were determined on Dataphysics OCA20 Contact Angle Measuring System at 293K.

Cell culture

The immortalized human normal liver cell line L02 was obtained form Peking Union Medical College, and Homo sapiens hepatoma cell line HepG2 (ATCC® HB-8065TM), was purchased from ATCC (American Type Culture Collection). All cell lines were cultured using DMEM medium contained with FBS. The abbreviations (SW10, SW30, and SW50) correspond to the concentrations of SWCNH in each dish: 0.21, 0.64, and 0.96 μg cm⁻², respectively.

Western blot analysis

The proteins electrophoresis were conducted with SDS-PAGE gel. Moreover, blocked membrane transferred with proteins was dealt with skim milk and probed primary antibody. The primary antibodies were utilized in our work: β-actin (13E5) (Cell Signaling, Danvers, MA, USA; CST 4970S, dilution 1: 2000), anti-GRP78/BiP antibody (ab21685, 1:1000; Abcam, Cambridge, MA, USA); anti-CHOP antibody (L63F7, CST2895, 1:800; Cell Signaling, Danvers, MA, USA); anti-LC3 (M152-3; dilution 1:2,000; MBL, USA), anti-Beclin-1 (CST 3495; dilution 1:1,500; Cell Signaling, Danvers, MA, USA); anti-ATG-5 (CST 8540; dilution 1:1,200; Cell Signaling, Danvers, MA, USA); anti-p62 (D5E2, CST 8025: dilution 1:1,500; Cell Signaling, Danvers, MA, USA); anti-Bax (2D2, CST 89477: dilution 1:1,000; Cell Signaling, Danvers, MA, USA); anti-Bcl-2 (124, CST 15071: dilution 1:1,500; Cell Signaling, Danvers, MA, USA). Finally, the chemiluminescence examination was performed based on the secondary HRP antibody using exposed film.

Co-localization

The fixed cells with paraformaldehyde were immunostained using appropriated antibody after staining with 4′,6-diamidino-2-phenylindole. Furthermore, confocal images were obtained with Zeiss 510 META microscope.
Calcium flow

Cells were washed two times and suspended in buffer A (IMDM, which was containing 10 mM Hepes, pH 7.0) at a concentration of $1 \times 10^6 / \text{ml}$. Frua-2 AM and SNARF-1 AM (both from Molecular probes, Eugene, OR) were dissolved in DMSO at a concentration of 1 mM and were added directly to cells suspended in buffer A. Cells were incubated at 37°C for 30 min. Next, an equal volume of buffer B (IMDM, which was containing 10 mM Hepes, pH 7.4, and 5% FBS) was added and the cells were incubated for an additional 10 min at 37°C. Cells were washed two times and resuspended in buffer C (IMDM containing 10 mM Hepes, pH 7.2, 5% FBS, and 10 μg ml⁻¹ DNAse [Sigma]) at a final concentration of $1 \times 10^6 / \text{ml}$.

Cells were dealt with Frua-2 AM for record of Ca²⁺ ions based on the controller of temperature at 37°C utilizing the platform for life imaging service (Efringerstrasse 79, 4057 Basel, Switzerland). After washing with HBSS solution, the intensity and location of intracellular Fluo-3 fluorescence were recorded and monitored at 340–380 nm [19]. The concentration variation of free calcium in cells was represented with the ratio of F340/F380 fluorescence intensity, which was the key factor for the cytosolic changes of Ca²⁺ concentrations [20]. The image and fluorescence were obtained with an fluorescence microscope coupled to camera, then analyzed using Fluorescence Ratio Imaging Software (version 7.0). Total of 50–100 cells were measured individually in each experiment group, and which were repeated three times.

Besides, Fluo-3 AM was used to determine intracellular calcium flux with confocal microscopy.

Statistics

The data were showed as mean ± SD (standard deviation). The differences between the two groups were analyzed with the Student’s t-test. Kruskal-Wallis ANOVA was used to analyzed the abnormally distributed data among groups. SPSS software (version 18.0) was utilized to perform these statistical analyses. $P < 0.05$ was significant statistically.

Results

Characterization of SWCNH

Considering that cellular biological behavior could be affected by the physicochemical characteristics of the material, SWCNH. Its elemental composition, surface adsorptive isotherm, particle density, and particle size distribution were measured. The results showed that the material contained 95.3% C, and the content of each of the transition metals was less than 0.1%, e.g., Fe was 0.0863%, Cr 0.004%, Cu 0.0396% etc, total metal content was about 0.25%. Due to catalyst free preparation method of the material, its metal impurities should be from the graphite raw material. The result for adsorptive isotherm plot of SWCNH showed that B.E.T surface area was 631.55 m² g⁻¹. Single point total pore volume of pores (diameter less than 308.7 nm at P/Po 0.994) was 1.57 cm³ g⁻¹.

Figure 1. Particle sizes (diameter, nm) distribution of SWCNH in aqueous suspension (10 μg ml⁻¹). The result for adsorptive isotherm plot of SWCNH showed that B.E.T surface area was 631.55 m² g⁻¹. Single point total pore volume of pores (diameter less than 308.7 nm at P/Po 0.994) was 1.57 cm³ g⁻¹.
Characterization of SWCNH

The results of SEM images (figure 3) show that on the PS surface, SWCNH were individual spherical particles with diameters of 60–100 nm. After evaporation of water in aqueous SWCNH suspension, the structure of SWCNH aggregates were disintegrated into individual spherical aggregates of SWCNH on PS surface. It was probable that this effect could be explained by stronger π–π stacking interactions between the benzene ring on surface of PS and SWCNH than that between SWCNH aggregates.

Tunicamycin-induced endoplasmic reticulum (ER) stress in hepatocytes was related to calcium flow

We first used tunicamycin to induce endoplasmic reticulum (ER) stress in liver cells [20]. After tunicamycin treatment, L02 (figure 4(A)) and HepG2 (figure 4(B)) cell lines both evoked endoplasmic reticulum (ER) stress. The protein expression of ER stress marker GRP78 showed a dose-dependent increase with the the enhanced tunicamycin concentration, especially in HepG2.

Our experimental data indicated that CHOP [21–23] was a key protein of the ER stress signaling pathway, also increased in a dose-dependent manner with the enhanced tunicamycin concentration, and the expression was more significant in HepG2 (figures 4(A) and (B)).

In addition, the detection experiment of intracellular calcium flow found that with the increase of the tunicamycin concentration, the intracellular calcium flow of hepatocytes showed a dose-dependent increase, and it was more significant in HepG2 (figures 4(C) and (D)). The laser confocal microscope was further used to
detect the intracellular calcium current, and the ER localization protein calreticulin was used as an internal reference [24]. The results indicated that the calcium current in HepG2 was significantly stronger than that of L02 cells, and the calcium current was induced by tunicamycin in the two cell lines were both significantly increased, but the calcium flow of HepG2 was enhanced more significantly (figure 5).

Figure 4. Tunicamycin-induced ER stress in hepatocytes was related to calcium flow. After treatment with tunicamycin, L02 (A) and HepG2 (B) both evoked ER stress. The protein expression of ER stress marker GRP78 showed a dose-dependent increase with the enhanced tunicamycin concentration, especially in HepG2. Moreover, the expression of CHOP also increased in a dose-dependent manner follow with the enhanced tunicamycin concentration, and it was more significant in HepG2 (A) and (B). In addition, with the enhanced tunicamycin concentration, the intracellular calcium flow showed a dose-dependent increase, and it was more significant in HepG2 (C) and (D).
SWCNH participated in the regulation of ER stress-related calcium flow

Furthermore, it was aimed to clear whether SWCNH regulated the process of ER stress in L02 (figure 6(A)) and HepG2 (figure 6(B)). Through examining the expression levels of marker protein of ER stress GRP78, and its key signal transduction pathway protein CHOP [25], we found that the inhibitor of ER stress 4-PBA resulted in a decreased expression levels of GRP78 and CHOP in both the two cell lines, and it was more obviously in HepG2.
cell line. On the contrary, SWCNH (SW50) caused a significant increased expression levels of GRP78 and CHOP in both the two cell lines, and it was more significant in hepatoma cell line HepG2 (figures 6A and B).

Furthermore, through intracellular calcium flow detection experiments, it was found that the inhibitor of ER stress 4-PBA significantly suppressed intracellular calcium flow ($P < 0.01$), especially for the liver cancer cell line HepG2 (C) and (D). On the contrary, SWCNH resulted in a significant promotion of intracellular calcium flow ($P < 0.01$), especially in HepG2 (C) and (D).

SWCNH induced autophagy and inhibited apoptosis of hepatocytes

After treatment with SWCNH, L02 (figure 8(A)) and HepG2 (figure 8(B)) cell lines both evoked autophagy. However, the autophagy marker, LC3-II protein expression [26] increased in a dose-dependent manner with the increase of the SWCNH concentration, and it was more significant in HepG2 (figures 5C and D). At the same time, the expression of autophagy key regulatory proteins Beclin-1 [27], and ATG-5 [28] or autophagy protein p62 [29] all showed a dose-dependent decline with the increase of SWCNH concentration, and the expression of these marker proteins in hepatoma cell line HepG2 were more obviously decreased. On the contrary, the apoptosis-promoting gene Bax of the Bcl-2 family [30], its expression also decreased in a dose-dependent manner follow as the increased SWCNH concentration. In the mean time, the expression of the apoptosis-inhibiting protein Bcl-2 increased significantly, and it was more prominent in the hepatoma cell line HepG2 (figures 8(A) and B).

Further application of laser confocal microscopy to detect the autophagy status of cells, the results suggested that after treatment with SWCNH, autophagy appeared both in L02 and HepG2, and the autophagy status of...
HepG2 was more significant (figure 9). Moreover, SWCNH induced down-regulation expression of calreticulin in both the cell lines (figure 9).

SWCNH participated in the regulation of hepatocyte autophagy

Besides, with the purpose of confirming whether SWCNH regulated the autophagy process of L02 (figure 10(A)) and HepG2 (figure 10(B)), we examined the autophagy marker protein LC-3 and its subtypes LC-3I/LC-3II expression levels, and then found that the inhibitor of ER stress 4-PBA resulted in a decreased expression ratio of the autophagy marker protein LC3-II in both the two cell lines. Moreover, it was more prominent in hepatoma cell line HepG2. On the contrary, SWCNH made for a visible increased expression ratio of the
autophagy marker protein LC3-II in the two cell lines, but it was more significant in normal cell line L02 at this time (figures 10(A)–(D)).

Meanwhile, the inhibitor of ER stress 4-PBA resulted in decreased expression of the key regulatory protein complexes of autophagy Beclin-1 and ATG-5, or autophagy protein p62 in the two cell lines, and this was also more pronounced in HepG2. In addition, SWCNH inhibited the expression level of apoptosis-promoting protein Bax, and promoted the expression of apoptosis-inhibiting protein Bcl-2, besides this was more marked in HepG2 (figures 10(A) and (B)).

Further application of laser confocal microscopy was utilized to detect the autophagy status of cells, and the results suggested that the inhibitor of ER stress 4-PBA restrained the autophagy process of L02 and HepG2, and the autophagy status of HepG2 was more distinct (figure 11). However, SWCNH promoted the autophagy process of both the two cell lines (figure 11).

Discussion

The intracellular calcium signaling pathways are referred to the variety of biological processes in tumor cells, such as growth, apoptosis, differentiation, autophagy and metastasis [31]. Moreover, the in-depth and comprehensive researches involved in the interaction mechanism between apoptosis and autophagy must take breakthroughs on the treatment and cognition of cancers and other diseases [32].
Therefore, we firstly induced endoplasmic reticulum (ER) stress with tunicamycin in hepatocytes, then its relationship between calcium flow regulated by SWCNH was further studied. Our results identified that L02 and HepG2 both evoked endoplasmic reticulum (ER) stress after treatment with tunicamycin. Moreover, the marker of endoplasmic reticulum stress, GRP78 showed a dose-dependent increased expression with the enhanced concentration of tunicamycin, especially in the hepatoma cell line HepG2. Besides, the key protein of the ER stress signaling pathway, CHOP also increased in a dose-dependent manner with the enhanced tunicamycin concentration, and its expression was more significant in HepG2.

CHOP is a homologous protein of the transcription factor C/EBP, and can inhibit the transcription factor C/EBP and LAP [21]. Some cell stress, such as starvation, can induce the expression of CHOP, and CHOP can inhibit cell cycle transition from G1 to S phase [22]. Recent studies have found that the expression level of CHOP

Figure 9. The confocal images indicated that SWCNH induced hepatocyte autophagy. The fluorescence intensity of LC-3 indicated that the degree of autophagy, then the higher brightness of LC-3 corresponded to the stronger autophagy, but the opposite images meant the reverse results. Moreover, the expression of calreticulin demonstrated its cellular location in ER. Further application of laser confocal microscopy was used to detect the autophagy status of cells, the results suggested that after treatment with SWCNH, autophagy appeared both in L02 and HepG2, and the autophagy status of HepG2 was more significant. (Scale bars is 0.25 μm).
is up-regulated under ER stress, CHOP can mediate programmed cell death or apoptosis and the activation of GADD34 during the process of ER stress [23]. The above studies are consistent with the results of our study.

Furthermore, the detection experiments of intracellular calcium flow were conducted, and it confirmed that with the increased tunicamycin concentration, the intrahepatic calcium flow showed a dose-dependent enhance, and it was more significant in hepatoma cell line HepG2. Moreover, our results indicated that the calcium current in HepG2 was significantly stronger than that in L02, and the calcium current was induced by tunicamycin in the two cell lines were both significantly increased, and the calcium flow of HepG2 was enhanced more significantly. In a word, we confirmed that tunicamycin-induced endoplasmic reticulum (ER) stress in hepatocytes was related to calcium flow. Some researchers confirmed that calcium signals was essential for maintaining homeostasis of liver cells. It sustained our results in this paper.

In recent years, we have explored the toxicity of nanomaterials in hepatocytes, and then found that SWCNH regulated the process of ER stress in human liver cell lines. Our results indicated that the inhibitor of ER stress 4-PBA resulted in a decreased expression levels of GRP78 and CHOP in the two cell lines, and the more obvious expression exhibited in HepG2. On the contrary, SWCNH caused a significant enhancement of GRP78 and CHOP expression levels in both the two cell lines, and it was more significant in HepG2. Additionally, through intracellular calcium flow detection experiments, we found the inhibitor of ER stress 4-PBA significantly suppressed intracellular calcium flow, but SWCNH resulted in a significant increase of intracellular calcium flow, especially for the liver cancer cell line HepG2. It validated that SWCNH participated in the regulation of ER stress-related calcium flow.

According to the different regulation methods of apoptosis and autophagy, the interaction can be roughly summarized into three types: cooperative relationship, confrontation relationship and promotion relationship [33–37]. The multiple interaction modes between autophagy and apoptosis must have common signaling pathways and regulatory proteins, which researchers call interaction regulators [38].

Our further work sustained that L02 and HepG2 both evoked autophagy after treatment with SWCNH, and it was more significant in HepG2. At the mean time, SWCNH inhibited apoptosis of hepatocyte, especially in HepG2. These process were all mediated by ER stress. So, we thought that SWCNH participated in the regulation of hepatocyte autophagy. The multiple interaction modes of apoptosis and autophagy in liver cells, especially
for hepatoma cells must have the common signaling pathway and regulatory protein involved in SWCNH, which maybe the key interaction regulator. However, Zhang et al had demonstrated that SWNH particles could penetrate into human liver cells with the different interacted mechanisms on human normal cell lines compared to hepatoma cell lines. They thought that single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines [39]. But, their conclusions were not consistant with our work. Therefore, further research on the mechanisms and application in treatment of hepatocellular carcinoma with SWNHs is needed.

Conclusions

Tunicamycin-induced endoplasmic reticulum (ER) stress in hepatocytes was related to calcium flow. Moreover, SWCNH induced ER stress and inhibited cell apoptosis, then participated in the regulation of hepatocyte autophagy. SWCNH maybe the key interaction regulator of apoptosis and autophagy in liver cells, especially for hepatoma cells.
Acknowledgments

Not applicable.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Funding
This work was supported by grants from the Huzhou Public Welfare Application Project (No. 2020GY24). The study sponsors had no involvement in the work.

Authors’ contributions
JLD, and TTW contributed to the conception of the study; JLD, YZ, and ZHX contributed significantly to performing these experiments; JLD, YZ, ZHX, JH, and TTW performed the data analyses and wrote the manuscript; JLD and TTW helped perform the analysis with constructive discussions.

ORCID iDs
Tiantian Wu @ https://orcid.org/0000-0003-2300-375X

References
[1] Levine B and Kroemer G 2019 Biological functions of autophagy genes: a disease perspective Cell 176 11–42
[2] Kim K H and Lee M S 2014 Autophagy—a key player in cellular and body metabolism Nat. Rev. Endocrinol. 10 322–37
[3] Rubinstein D C, Mariño G and Kroemer G 2011 Autophagy and aging Cell 146 682–95
[4] Scherz-Shouval R and Elazar Z 2007 ROS, mitochondria and the regulation of autophagy Trends Cell Biol 17 422–7
[5] Morelli E, Galluzzi L, Kepp O, Criollo A, Maiuri M C, Tavernarakis N, Madeo F and Kroemer G 2009 Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol Aging 1 961–70
[6] Baba M, Tonomaga S, Suzuki M, Gen M, Takeda E, Matsuura A, Kamada Y and Baba N 2019 A nuclear membrane-derived structure associated with Atg8 is involved in the sequestration of selective cargo, the Cvt complex, during autophagosome formation in yeast Autophagy 15 423–37
[7] Hori I et al 2017 Defects in autophagosome-lysosome fusion underlie Vici syndrome, a neurodevelopmental disorder with multisystem involvement Sci Rep. 7 3552
[8] Moreau K and Rubinstein D C 2012 The plasma membrane as a control center for autophagy Autophagy 8 861–3
[9] Yorimitsu T, Nair U, Yang Z and Klionsky D J 2006 Endoplasmic reticulum stress triggers autophagy J. Biol. Chem. 281 30299–304
[10] Nguyen M T, Csermely P and Sőti C 2013 Hsp90 chaperones PPARgamma and regulates differentiation and survival of 3T3-L1 adipocytes Cell Death Differ. 20 1654–63
[11] Yorimitsu T and Klionsky D J 2007 Endoplasmic reticulum stress: a new pathway to induce autophagy Autophagy 3 160–2
[12] Higgins R et al 2015 The unfolded protein response triggers site-specific regulatory ubiquitylation of 40s ribosomal proteins Mol Cell 59 35–49
[13] Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F and Takahashi K 1999 Nano-aggregates of single-walled graphitic carbon nano-horns Chem. Phys. Lett. 309 165–70
[14] Muracami T, Savada H, Tamura G, Yudasaka M, Iijima S and Tsuchiida K 2008 Water dispersed single wall carbon nanohorns as drug carrier for local cancer chemotherapy Nanomedicine 3 453–63
[15] Aijima K, Murakami T, Mikoguchi Y, Tsuchiida K, Ichihashi T, Iijima S and Yudasaka M 2008 Enhancement of In Vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns ACS Nano 2 2057–64
[16] Moreno-Lanceta A, Medrano-Bosch M and Melgar-Lesmes P 2020 Single-walled carbon nanohorns as promising nanotube-derived delivery systems to treat cancer Pharmaceutica 12 850
[17] Zhong Y, Wang Q J, Li X, Yan Y, Backer J M, Chait B T, Heintz N and Yue Z 2009 Distinct regulation of autophagic activity by Atg14L and rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex Nat. Cell Biol. 11 468–76
[18] Dubois C et al 2020 Co-targeting mitochondrial Ca2+ + homeostasis and autophagy enhances cancer cells’ chemosensitivity iScience 23
[19] Usbio-Fukai M, Yamamoto H, Nishimura J, Hirano K and Kanaide H 2000 The mechanism of the decrease in cytosolic Ca2+ concentrations induced by angiotensin II in the high K+–depolarized rabbit femoral artery Br. J. Pharmacol. 129 437–47
[20] Zhang X et al 2014 Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy Autophagy 10 1801–13
[21] Mihailidou C, Chatzistamou I, Papavassiliou A G and Kiaris H 2015 Improvement of chemotherapeutic drug efficacy by endoplasmic reticulum stress Endocr Relat Cancer. 22 229–38
[22] Lee W K, Chakraborty P K, Roussa E, Wolff N A and Thévenod F 2012 ERK1/2-dependent bestrophin-3 expression prevents ER-stress–induced cell death in renal epithelial cells by reducing CHOP Biochim. Biophys. Acta 1823 1364–76
[23] Liu K et al CHOP mediates ASPP2–induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2 Cell Death Dis 2014 5 e1323
[24] Zhou P, Teruya-Feldstein J, Lu P, Fleisher M, Olshen A and Comenzo R L 2008 Calreticulin expression in the clonal plasma cells of patients with systemic light-chain (AL–) amyloidosis is associated with response to high-dose melphalan Blood 111 549–57
[25] Gaballah H H, Zakaria S S, Elbatsh M M and Tahoon N M 2016 Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease Chem. Biol. Interact. 251 18–6
[26] Giménez-Xavier P, Francisco R, Santidrián A F, Gil J and Ambrosio S 2009 Effects of dopamine on LC3–II activation as a marker of autophagy in a neuroblastoma cell model Neurotoxicology 30 658–65
[27] Sun T et al 2015 Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth Nat. Commun. 6 7215
[28] Liu J, Ren Y, Hou Y, Zhang C, Wang B, Li X, Sun R and Liu J 2019 Dihydroartemisinin induces endothelial cell autophagy through suppression of the Akt/mTOR pathway J. Cancer 10 6057–64
[29] Yao R Q, Ren C, Xia Z F and Yao Y M 2021 Organelle–specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles Autophagy 17 385–401
[30] Adams J M and Cory S 2007 The Bcl-2 apoptotic switch in cancer development and therapy Oncogene 6 1324–37
[31] Uesilamongkol P et al Type 3 inositol 1,4,5-trisphosphate receptor is increased and enhances malignant properties in cholangiocarcinoma Hepatology 2020 71 383–99
[32] Larabi A, Barnich N and Nguyen H T T 2020 New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD Autophagy 16 38–51
[33] Ryter S W, Mizumura K and Choi A M 2014 The impact of autophagy on cell death modalities Int J Cell Biol 2014 502676
[34] Jing K and Lim K 2012 Why is autophagy important in human diseases? Exp Mol Med 44 69–72
[35] Gump J M and Thorburn A 2011 Autophagy and apoptosis—what is the connection? Trends Cell Biol 21 387–92
[36] Su M, Mei Y and Sinha S 2013 Role of therocrosstalk between autophagy and apoptosis in cancer J. Oncol. 2013 1027–35
[37] Marito G et al 2014 Bachrecke Self-consumption: the interplay of autophagy and apoptosis Nat. Rev. Mol. Cell Biol. 15 81–94
[38] Saita S et al 2013 Selective escape of proteins from the mitochondria during mitophagy Nat. Commun. 4 1410
[39] Zhang J, Sun Q, Bo J, Huang R, Zhang M, Xia Z, Ju L and Xiang G 2014 Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines Int J Nanomedicine 9 759–73