A neuron-specific enhancer of the
Drosophila dopa decarboxylase gene

Wayne A. Johnson, Carol Ann McCormick, Sarah J. Bray, and Jay Hirsh

Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts 02115 USA

At least two _cis_-regulatory elements are necessary for correct neuron-specific expression of the _Drosophila melanogaster_ dopa decarboxylase gene, _Ddc_. In addition to a previously described proximal element located ∼60 bp upstream of the mRNA start site, we have now characterized a distal ∼600-bp DNA fragment, extending from −1019 to −1623 bp, which possesses enhancer-like properties and is essential for normal neuron-specific expression. Immunofluorescent labeling of neurons expressing deleted _Ddc_ genes indicates that this region contains both general neuronal regulatory elements and cell-specific elements that selectively affect _Ddc_ expression in either dopaminergic or serotonergic neurons. These selective effects can be correlated with the removal of sequence elements that are protected from DNase digestion by factors present in embryonic nuclear extracts. Several of these elements are also homologous to sequences located upstream of the evolutionarily diverged _Ddc_ gene of _Drosophila virilis_. These results suggest that the neuron-specific expression of _Ddc_ results from the combined action of several factors binding within this distal enhancer region.

[Key Words: DNA binding factors, transcriptional regulation, neurotransmitters]

Received January 12, 1989, revised version accepted March 17, 1989.

The _Drosophila melanogaster_ _Ddc_ gene encodes dopa decarboxylase, the last enzyme in the synthetic pathway leading to synthesis of the neurotransmitters dopamine and serotonin. _Ddc_ is under tight cell-specific regulation, with expression limited to ∼150 neurons in the central nervous system (CNS) (Beall and Hirsh 1987; Konrad and Marsh 1987). In addition, _Ddc_ is expressed in the hypoderm, where the dopamine produced is used in pathways required for cuticular pigmentation and cross-linking (Lunan and Mitchell 1969; Wright 1987a).

The tissue-specific expression of _Ddc_ is regulated both by _cis_-acting transcriptional elements (Scholnick et al. 1986; Bray et al. 1988) and by alternate splicing (Morgan et al. 1986). All _cis_-regulatory elements required to generate the normal pattern of neuronal _Ddc_ expression must be contained within 2200 bp of _Ddc_ 5′-flanking sequences, as this region can direct the expression of a heterologous gene in the normal 1_Ddc_-containing neurons (Bray et al. 1988). The effects of deletions on _Ddc_ expression demonstrate that only 200 bp of 5′-flanking DNA is required for correct temporal and tissue-specific expression in the hypoderm (Scholnick et al. 1986). Expression in the CNS, however, requires additional upstream sequences (Beall and Hirsh 1987). A proximal promoter element, element I, and its associated DNA-binding factor, termed Elf1 (Bray et al. 1988), appear to be essential for CNS expression of _Ddc_, but additional regulatory elements located between 760 and 2200 bp upstream of the mRNA start site are also required for normal neuron-specific expression (Beall and Hirsh 1987). _Ddc_ genes lacking this distal regulatory region show an abnormal pattern of expression in the CNS, with little or no neuronal expression but increased expression in a set of glial cells that normally express _Ddc_ at very low levels.

Here, we report the characterization of this _Ddc_ distal regulatory region that functions as a neuron-specific enhancer. The ∼600-bp distal enhancer fragment contains at least five binding sites for factors present in nuclear embryonic extracts. Progressive deletions of the distal enhancer suggest that some of these factors may differentially regulate _Ddc_ expression in defined subsets of neurons, whereas others may be required for _Ddc_ expression in all _Ddc_-containing neurons.

Results

Definition of a _Ddc_ distal enhancer region

A wild-type third-instar larval CNS labeled by indirect immunofluorescence using a _Ddc_ antiserum (Fig. 1A) shows scattered neuron clusters in the symmetrical brain lobes and a segmental pattern of labeling in the ventral ganglion (Beall and Hirsh 1987; Konrad and Marsh 1987). The stereotypical pattern of expression within the ventral ganglion consists of two symmetrical rows of doublet cells, referred to as the ventrolateral neurons, and a single row of midline cells, the medial neurons. Two additional symmetrical rows of single cells, the dorsolateral neurons, are not visible in this focal plane (for nomenclature, see Beall and Hirsh 1987). Experiments using a monoclonal antibody directed

1_Ddc_ refers to the gene _Ddc_; _Ddc_ refers to the _Ddc_ protein.
Neuron-specific gene enhancer

Figure 1. Labeling of Ddc-expressing neurons in the D. melanogaster larval CNS by indirect immunofluorescence using a Ddc antiserum. (A) Wild-type third-instar larval CNS. Labeled neurons are visible both in the symmetrical brain lobes (top) and the prominent ventral ganglion (bottom). (B) Schematic representation of wild-type larval CNS labeled with Ddc antiserum, adapted from Beall and Hirsh (1987). Segmentally repeated neurons within the ventral ganglion are labeled as DL (dorsolateral), VL (ventrolateral), and M (medial). The DL neurons are located more dorsal than the VL and M neurons and, therefore, are not visible in the focal plane shown in the photomicrographs in A and C. The fused ventral ganglion is also divided into subesophageal (Sb), thoracic (Th), and abdominal (Ab) segments. (C) DdcDIS(-360) larval CNS labeled with Ddc antiserum.

against serotonin (5-HT; 5-hydroxytryptamine) have identified the ventrolateral neurons as serotonergic (Beall and Hirsh 1987), whereas the medial and dorsolateral cells are dopaminergic neurons (Budnik and White 1988). Because Ddc enzyme activity is essential for cuticle formation, the host strain used for P-element transformation with mutant Ddc genes contained a temperature-sensitive Ddc allele, DdcTS2. At nonpermissive temperatures (25°C), the host Ddc gene does not detectably contribute to Ddc immunoreactivity in the CNS, except for a small number of brightly labeled cells in the brain lobes and within the subesophageal ganglion. To avoid any confusion resulting from this background labeling, we have focused our analysis on the thoracic and abdominal segments of the ventral ganglion, which show essentially no background labeling in the DdcTS2 host strain.

Ddc sequences upstream of -2200 bp are not required for normal neuronal expression but deletion to -760 bp causes a near total loss of neuron-specific expression with no effect on Ddc enzyme activity in the hypoderm (Beall and Hirsh 1987). We have established a more precise 5’ limit of the neuron-specific distal regulatory region using transformant strains containing DdcDIS(-760), which lacks all sequences upstream of -1623 bp [Fig. 2a]. Expression of DdcDIS(-760) is normal, which, considered with previous results, identifies an 863-bp fragment extending from -760 to -1623 bp that contains essential distal regulatory elements. Moving the 863-bp fragment to two positions closer to the mRNA start site, as in DdcDIS(-360) and DdcDIS(-209) [Fig. 2b,c], results in a normal expression pattern [data not shown; for comparable phenotype, see Fig. 1C]. In addition to defining an 863-bp distal region, these results indicate that no essential sequences are located between -760 and -209 bp. A gene with the distal fragment inverted at -360 bp, DdcDISinv(-360) [Fig. 2d], also expresses normally [Fig. 1C]. The ability of control elements within the distal fragment to function independently of position and orientation indicates that the region possesses basic enhancer properties.

Evolutionarily conserved sequences within the Ddc distal enhancer

The Ddc proximal promoter has been characterized extensively for sequence elements necessary for the temporal and tissue-specific expression of Ddc. Regulatory elements within the Ddc proximal promoter were identified initially [Bray and Hirsh 1986; Scholnick et al. 1986] as DNA sequences conserved between the D. melanogaster and Drosophila virilis Ddc genes. We have extended the sequence comparison to detect conserved elements located within the distal enhancer region. Figure 3 shows the complete DNA sequence of the D. melanogaster distal enhancer extending from -1640 bp to -760 bp. A comparison of this sequence with DNA sequences located upstream of the D. virilis Ddc gene shows four regions of conservation displayed in boxes in Figure 3 labeled as elements A, B, C, and D. Element A shows the best sequence conservation with ~98% nucleotide sequence identity. Although the element A se-
Figure 2. Structure of Ddc genes used for analysis of distal region enhancer properties. The thick arrow represents the Ddc 5’-flanking Clal–HindIII fragment extending from −1623 bp to −760 bp relative to the mRNA start site. (a) DdcDIS(-760), contains the Ddc Clal–HindIII fragment in its normal orientation and position at −760 bp. (b) DdcDIS(-360), the Ddc Clal–HindIII fragment in its normal orientation moved to −360 bp. (c) DdcDIS(-209), the Ddc Clal–HindIII fragment in its normal orientation moved to −209 bp. (d) DdcDIS(-360), contains the Ddc Clal–HindIII fragment in reverse orientation moved to −360 bp.

Sequence from D. virilis exists as a nearly continuous stretch of 98 nucleotides, the corresponding sequence from D. melanogaster is interrupted by two short regions, suggesting that it may actually represent three smaller elements. This is represented in Figure 3 by labeling these elements in the D. melanogaster sequence as A1, A2, and A3.

Elements B, C, and D show lesser but still significant degrees of conservation. Element B retains 72% nucleotide identity, whereas elements C and D retain 78% and 81%, respectively. Elements B and C are related to the same region of D. virilis sequence, suggesting that they may represent the duplication of a control element present in only one copy in D. virilis. Nonetheless, the four regions of homology show the same order and orientation relative to the mRNA start site, progressing from 5’ to 3’ in the order D-(C-B)-A. This conservation of relative position not only suggests a conservation of individual regulatory elements but also the more complex coordinated interactions between multiple elements. The distal conserved elements are also located at approximately the same distance from the mRNA startpoint in both D. melanogaster and D. virilis. Our analysis detected no recognizable homology between the distal sequence elements and those identified previously in the proximal promoter (Bray and Hirsh 1986).

Multiple factor binding sites within the Ddc distal enhancer

Sequences within the distal enhancer that specifically bind soluble factors were detected using a DNase protection assay. Incubation of single-end-labeled DNA fragments from the distal region with embryonic nuclear extracts reveals at least eight footprints representing discrete regions that are protected from DNase digestion (Fig. 4). Identified DNase footprints are associated with at least three of the four conserved sequence elements (Fig. 4A). Each region of DNase protection within the distal region was labeled according to its associated sequence element.

Conserved element D is associated with a factor, or factors, that weakly protects −15 bp, referred to as binding site Df6, from −1474 to −1490 at the 5’ end of the element. Strong hypersensitive bands are also apparent at either end of the Df6-binding site (Fig. 4B). Element C is bound by a factor that strongly protects sequences from −1382 to −1402 bp, represented by footprint Cf1. Footprint Bf2, a ~23-bp region of very strong protection from −1327 to −1350 bp, is associated with element B (Fig. 4B). At least five footprints were found unassociated with regions of sequence conservation (Fig. 4B,C,D). Footprints Uf3 (−1299 to −1317 bp), Uf7 (−1032 to −1046 bp), Uf8 (−990 to −1020 bp), Uf9 (−890 to −903 bp), and Uf10 (−834 to −846 bp) protect sequences primarily in the 3’ half of the distal enhancer. We were unable to detect comparable regions of DNase protection within element A, the largest conserved region stretching over ~100 bp, although hypersensitive bands and very weak protections were observed over a ~15-bp region from −1207 to −1222 bp [data not shown].

Sequence elements necessary for Ddc expression in dopaminergic medial neurons

The functional significance of the identified factor binding sites was examined by analyzing the expression of Ddc genes containing progressive deletions of the distal enhancer region in P-element transformant strains. Figure 5 schematically depicts the extent of each deletion and the factor binding sites remaining. The 5’
Figure 3. Nucleotide sequence of the Ddc distal enhancer region. The sequence of the D. melanogaster Ddc gene 5'-flanking DNA is shown extending from −1639 to −760 bp, relative to the mRNA start site. Boxed sequences labeled A1–A3, B, C, and D show regions of significant nucleotide conservation with 5'-flanking sequences of the D. virilis Ddc gene. D. virilis sequences are aligned above the D. melanogaster sequences with mismatches marked by an asterisk (*). Complete sequences from both the D. melanogaster and D. virilis distal regions will be submitted to GenBank.

Deletions retain sequences from −1623 to −2200 bp and progressively delete sequences from the 5' end of the distal enhancer region (−1623 bp to −760 bp).

Analysis of mutant phenotypes resulting from deletions of the 5' end of the distal enhancer suggest that the anatomical and pharmacological subsets of Ddc-expressing neurons may be regulated independently by the coordinated interaction of specific binding factors. A gene containing a small deletion of 47 bp, DdcENS's47, expresses normally but results from Ddc genes with more extensive deletions that remove binding sites Df6 and Cfl, DdcENS's199, and DdcENS's2sg, respectively (Fig. 5B), suggest that at least one of these binding sites may specifically regulate Ddc expression in the dopaminergic
medial neurons. Larval CNS from transformant strains of Ddc^{ENS'\Delta199} and Ddc^{ENS'\Delta265} display very similar phenotypes in which Ddc immunoreactivity in the medial neurons is either absent or severely diminished [Fig. 6B]. Genes with very large deletions, Ddc^{ENS'\Delta395} and Ddc^{ENS'\Delta435}, removing 395 and 435 bp, respectively, also lack binding sites Bf2 and Uf3 [Fig. 5B] and result in little, if any, neuronal Ddc expression [data not shown, for comparable phenotype, see Fig. 6C]. Although the results from these deletions imply that sequences essential for neuronal Ddc expression lie between −1364 and −1228 bp, relatively large deletions such as these should be interpreted with caution, because the removal of internal binding sites such as Bf2 and Uf3 occurs in the context of binding sites lying farther upstream also being absent.

Deletion of sequences from the 3' end of the distal enhancer region demonstrates that a number of the bound factors are nonessential for normal Ddc expression and also identifies a more precise 3' limit for the minimally functional enhancer. These deletions were based on the DIS(−360) construct [Fig. 2b], which contains a deletion extending from −760 bp to −360 bp and expresses a wild-type phenotype. Ddc^{ENS'\Delta87} and Ddc^{ENS'\Delta259}, which contain deletions from the 3' end of the distal fragment of 87 and 259 bp, respectively, express in a wild-type pattern. Thus the minimal distal enhancer is contained within, at most −604 bp, extending from −1019 bp to −1623 bp. Further deletion to 371 bp, as in Ddc^{ENS'\Delta371}, causes a complete loss of neuron-specific expression [Fig. 6C], suggesting the presence of essential elements between these deletion end points. The results from 5' and 3' deletions of the distal enhancer show that essential regulatory elements are removed by both of the nonoverlapping deletion series, thereby implying that no individual element alone is sufficient for enhancer function.

A region required for Ddc expression in serotonergic neurons

Data presented above define a minimally functional distal enhancer located between −1623 and −1019 bp. Additional small deletions, however, localize regulatory
Neuron-specific gene enhancer

Figure 5. Deletion analysis of the Ddc distal enhancer. (A) Factor binding sites within the Ddc distal enhancer region. DNase footprints within the distal enhancer region are represented as open shapes labeled as described in the text. The use of similar shapes to indicate two different footprints is not intended to suggest any structural or functional relationships between the various footprints. Slashes denote deviation from scale relative to the distal enhancer region. (B) Ddc genes containing progressive 5' and 3' deletions of the distal enhancer. Sketches of the distal enhancer region show sequences and corresponding factor binding sites retained after 5' deletions initiating from the Clal site at -1623 bp (see Experimental procedures). All 3' deletions also lack sequences between -760 and -360 bp, in addition to the indicated deletions from the distal region. These sequences were shown to be nonessential for normal Ddc expression (see text). (Right) Effects of deletions on in vivo levels of Ddc immunoreactivity. (+) Ddc immunoreactivity present at near wild-type levels (>50%); (−) Ddc immunoreactivity present at <10% wild-type levels; (VL) ventrolateral neurons; (M) medial neurons; (DL) dorsolateral neurons. (C) Deletions with end points used to define serotonergic neuron-specific regulatory elements. Diagonal slashes represent the continuation of sequences extending 3' to include all downstream Ddc sequences and 5' to -2200 bp. The open box labeled XbaI represents an 8-bp XbaI linker sequence inserted by blunt-end ligation to Klenow-repaired fragment ends.

Discussion
The remarkable complexity of the CNS is based on the unique characteristics of individual neurons that may be morphologically similar but anatomically, pharmacologically, and functionally distinct. How this complexity is generated during early development is not well understood but may involve cell–cell interactions (Hafen et

elements near the 5' end of the minimal distal enhancer, which specifically affect Ddc expression in serotonergic neurons. Figure 5C depicts a series of small deletions that remove sequences from a ~60-bp region centered on the 5' end of the identified minimal distal enhancer fragment at −1623 bp. As described above, Ddc(<60) [Fig. 2a], which contains a deletion of all sequences upstream of −1623 bp, expresses normally. In addition, Ddc(<47) [Figs. 5B,C], which lacks sequences from −1623 to −1576 bp while retaining sequences upstream of −1623 bp, also expresses normally (data not shown). However, deletions extending in both directions from −1623 bp, as in Ddc(<1636–1576) and Ddc(<1636–1596), display a phenotype in which Ddc immunoreactivity in the serotonergic ventrolateral neurons is either absent or severely diminished [Fig. 6D]. These results can be explained most simply by the presence of two redundant regulatory elements on either side of −1623 bp, either of which can function to allow Ddc expression in the serotonergic neurons. Transformant strains of Ddc(Δ−1650–1576) and Ddc(Δ−1636–1596), still express normally in the dopaminergic dorsolateral and medial neurons indicating that these small deletions specifically affect Ddc expression in the serotonergic neurons. The insertion of an XbaI linker at −1623 bp, as in Ddc<1636–1623> (Fig. 5C), has no effect on Ddc expression (data not shown), suggesting the presence of two separate but redundant control elements located in the 40-bp region between −1636 and −1596 bp.
Regardless of the actual developmental processes that specify functional and pharmacological identity, the eventual result is a program of temporal and cell-specific gene regulation necessary for proper neuronal differentiation. In other tissues such as the pituitary gland (Bodner et al. 1988; Ingraham et al. 1988), the liver (Courtois et al. 1987), and circulating lymphocytes (Lenardo et al. 1988; Müller et al. 1988; Scheidereit et al. 1988), such regulation has been shown to be mediated by transcription factors that interact with specific DNA sequences as well as with each other to cause transcriptional activation or repression.

Ddc encodes an essential enzyme in the synthesis of the neurotransmitters dopamine and serotonin. As expected, CNS expression of Ddc occurs primarily in serotonergic and dopaminergic neurons. These neurons are distributed in a bilaterally symmetrical pattern that is repeated segmentally in the ventral ganglion. A wild-type CNS labeled by indirect immunofluorescence with Ddc antiserum (Fig. 1A) shows Ddc immunoreactivity in ~150 unique neurons surrounded by 10^6 nonexpressing neurons. Therefore, the in vivo conditions dictating the presence or absence of transcription factors regulating the expression of Ddc are also unique, differing substantially between adjacent neurons. We have defined a distal enhancer region which, in conjunction with the proximally located Element I, appears to interact with a number of specific enhancer-binding factors to regulate the correct neuron-specific expression of Ddc in the Drosophila CNS. Our characterization of the Ddc distal enhancer is based on an analysis of P-element transformant strains expressing Ddc genes containing deletions of the distal enhancer, the results of which are summarized in Figure 7. Progressive deletion of the Ddc distal enhancer reveals two regions (~1364 to ~1228 bp and ~1131 to ~1019 bp), which may contain general regulatory elements necessary for all neuronal Ddc expression (Fig. 7). In addition, we have identified two regions that have selective effects on subsets of Ddc immunoreactive neurons, suggesting that ana-

Figure 6. Effect of progressive deletion of the distal enhancer region on in vivo Ddc expression. Dissected third-instar larval CNS showing high magnification of ventral ganglion labeled by indirect immunofluorescence with Ddc antiserum. Although all Ddc-immunoreactive neurons in whole-mounted CNS are not located in the same focal plane, photomicrographs shown were taken in the same focal plane for purposes of comparison. (A) Wild-type (Canton-S) ventral ganglion shows Ddc immunoreactivity in segmentally patterned neurons within the ventral ganglion (for nomenclature, see Fig. 1 and text). Black arrows identify labeled neurons of a single segment as ventrolateral (vl) and medial (m). (B) Ddc^{SNSA199} mutant ventral ganglion shows severely diminished levels of Ddc immunoreactivity in dopaminergic and serotonergic neurons but near wild-type levels remaining in putative glial cells. Black arrows identify labeled neurons of a single segment as ventrolateral (vl) and medial (m). (C) Ddc^{SNSA277} mutant ventral ganglion shows no neuronal Ddc immunoreactivity but high levels in glial network. (D) Ddc^{A-1636-1596} mutant ventral ganglion shows normal levels of Ddc immunoreactivity in dopaminergic medial neurons but severely diminished levels in serotonergic ventrolateral neurons. Slight alterations in the spatial arrangement of the medial neurons are unique to individual CNS and are not a characteristic of the mutant phenotype.

Figure 7. Neuron-specific regulatory functions within the Ddc distal enhancer region. At least two redundant serotonergic (SHT) neuron-specific regulatory elements are depicted near the 5' end of the minimal Ddc distal enhancer, one of which is just outside but within 13 bp of the minimal enhancer. At least one regulatory element specific for one set of dopaminergic (DA) cells, the medial DA neurons, must lie between ~1576 and ~1364 bp. In addition, results suggest that regulatory elements required for normal expression in all Ddc-expressing neurons are located between ~1364 and ~1228 bp as well as between ~1131 and ~1019 bp.
Functional regulatory elements identified in the transformed enhancer (Beall and Hirsh 1987).

In addition, the 40-bp region contains two redundant control elements, which are retained in the third-instar larval CNS (Budnik and White 1988). However, preliminary results indicate that neuron-specific effects can be duplicated by point mutations within this 40-bp region, and preliminary experiments show, at most, very weak protection from DNase digestion by embryonic nuclear extracts. These experiments reveal at least five footprints within the minimal distal enhancer (Fig. 4). Three of these footprints correspond to sequence elements identified as regions of conservation (Fig. 4A). Our inability to detect more than very weak DNase protection within conserved element A was surprising considering its remarkable degree of sequence conservation. These results, however, may be explained by one of three possibilities. First, element A may not be functionally relevant in vivo. Because element A is located near the center of the minimal distal enhancer, the results of our progressive deletions yield no information concerning its function. Nonetheless, we consider this possibility unlikely. Alternatively, element A may have an important, but as yet uncharacterized, role in Ddc regulation but may function by a mechanism that does not involve the binding of specific DNA-binding factors. The third, and most likely, explanation is that the in vivo function of element A is mediated by the binding of specific protein factors, but these factors are either not detectable in our assay system or are not present in late (10–22 hr) embryos. This potential lack of correlation between in vivo function and in vitro factor binding to element A may result from limitations imposed by our assay system. It has not been feasible to produce active nuclear extracts from larval nuclei, thus necessitating the exclusive use of embryonic nuclear extracts in the in vitro factor binding assay. Yet our in vivo functional analysis has relied on the effect of Ddc mutations on expression in the third-instar larval CNS. The dissection and immunohistochemical labeling of the larval CNS is technically easier, as well as more reliable, than labeling of the embryonic CNS. We feel that our suggestion of relationships between the binding of embryonic DNA-binding factors and larval Ddc expression is nonetheless valid because the fundamental identity of Ddc-containing neurons is established in late embryos and maintained in the larval CNS (Budnik and White 1988). However, regulatory factors displaying unique patterns of temporal expression may not be detected in our system.

Although we have attempted to correlate results from deletion analysis with individual factor binding sites, our results do not allow specific in vivo effects to be attributed conclusively to individual sequence elements. However, preliminary results indicate that neuron-specific effects can be duplicated by point mutations disrupting individual factor binding sites (W. Johnson, in prep.). We conclude that the expression of Ddc in any single neuron requires the interaction of at least three regulatory elements. Element I, located in the proximal promoter, is essential for all neuronal expression, whereas at least two elements within the distal enhancer, ~1000 bp distant, are necessary as well. Which...
elements of the distal enhancer are functional depends on the particular neuron and its spatial location. This requirement for the interaction of at least two enhancer binding motifs in the determination of cell specificity is similar to results reported for the prototype enhancer from SV40 [Fromental et al. 1988].

The regulatory model alluded to here would suggest that the pattern of Ddc CNS expression results from the overlapping patterns of expression of several regulatory factors, a situation not unlike that suggested for the interaction of genes involved in pattern formation during early embryonic development in Drosophila (Ingham 1988). A number of these genes require large regulatory regions to generate a complex pattern of developmental expression (Bender et al. 1983; Laughon et al. 1986; Peifer and Bender 1986). It is clear, however, that the generation of a cell-specific pattern of gene expression does not necessarily require such massive expanses of regulatory DNA. Indeed, the generation of a defined pattern of neuronal Ddc expression would appear to be somewhat analogous to the segmentation gene fushi tarazu (ftz). The segmental pattern of ftz expression is produced by a relatively short 5' flanking sequence of ~6.1 kb (Hiromi et al. 1985; Hiromi and Gehring 1987). These sequences include a much smaller 'neurogenic element' responsible for ftz expression in specific neurons of the ventral nervous system, which is independent of elements necessary for epidermal ftz expression.

The complex neuron-specific regulation of Ddc might be exploited as a means of investigating the neurological functions of the neurotransmitters dopamine and serotonin. The essential metabolic role of the Ddc enzyme presents the possibility that the identification of separable dopaminergic and serotonergic Ddc regulatory elements could be used to regulate independently the levels of each metabolite in the CNS, thus providing a non-pharmacological, nondestructive, but highly specific, alteration of in vivo neurochemistry. The background Ddc^{ts2} allele present in transformant strains described here produces sufficient Ddc enzyme activity, even at nonpermissive temperatures (25°C), to yield relatively high levels of serotonin in CNS neurons [White and Valles 1985; B. Morgan and J. Hirsh, unpubl.). This prevents the direct use of these strains in such experiments until transformed chromosomes have been placed in a Ddc null background.

We have yet to determine with certainty whether all of the detected footprints represent the binding of separate and distinct factors or if multiple sites are present for a single factor, or conversely, multiple factors competing for a single binding site. Purification of individual factors by DNA-affinity chromatography will help to answer these questions, as well as determine whether the cell-specific activity of identified control elements can be correlated with the presence of corresponding binding factors in selected neurons.

Experimental procedures

Sequence analysis

DNA sequences were determined by dideoxy nucleotide sequencing techniques, using modified T7 DNA polymerase [Tabor and Richardson 1987]. Relevant DNA fragments were subcloned from the cloned Ddc gene of the wild-type Canton-S strain of D. melanogaster [Hirsh and Davidson 1981] and from D. viridis [Bray and Hirsh 1986] into M13 vectors for sequencing on both strands. Homology analyses were performed using Intelligenetics, Inc., programs accessed via BIONET. D. melanogaster and D. viridis Ddc 5'-flanking sequences used in the analysis will be submitted to GenBank.

P-element vector construction and transformation

Nucleic acid manipulations were largely as described in Maniatis et al. [1982], except where indicated. Restriction enzymes were purchased from New England Biolabs or Boehringer-Mannheim Biochemicals and used as suggested by the supplier. Progressive 5’ deletions were generated by Bal31 deletion from the unique ClaI site at ~1623 bp, followed by insertion of XbaI linkers. Constructs containing 3’ deletions of the distal region were produced by creating unique BamHI sites in the subcloned ClaI–EcoRI fragment (~1623 to ~360 bp), using oligonucleotide directed in vitro mutagenesis [Taylor et al. 1985; Amsham]. Deleted Ddc genes were cloned into a P-element vector containing the Drosophila Adh^{3D} gene as a selectable marker. Methods for P-element integration were essentially as described previously [Rubin and Spradling 1982; Scholnick et al. 1983]. The host strain was Adh^{34D}Ddc^{ts2}. Transformant flies were identified by screening for wild-type Ddc pupal phenotype at 25°C. Two to five independent transformant strains were established for each transforming vector. Strains were confirmed to contain single-copy inserts of the appropriate P-element vector by Southern blot analysis of genomic DNA.

DNase I footprinting

Nuclear extracts were prepared from 10- to 22-hr embryos and fractionated on heparin–agarose [Heberlein and Tjian 1988]. Footprinting reactions were performed as described previously [Heberlein et al. 1985], using proteins eluted from heparin–agarose between 0.1 and 0.4 M KCl. One microliter of synthetic poly(dI–dC) [Pharmacia, 10 U/ml] was added to each reaction as nonspecific competitor. Probes were end-labeled at a single 5’, end using polynucleotide kinase as indicated in the figure legends. Digest fragments were analyzed on 7% polyacrylamide sequencing gels.

Immunofluorescence

Anti-Ddc antiserum and protocols for labeling of isolated third-instar larval CNS were as described by Beall and Hirsh [1987]. CNS were labeled in groups of four to eight per strain, repeated at least three times with similar results. Although variations in labeling intensity of as much as twofold were observed between transformant strains containing identical mutant Ddc genes, no position effects on overall pattern were observed.

Acknowledgments

We are grateful to B.A. Morgan for his helpful comments during the preparation of this manuscript. We thank S. Tabor for the generous gift of modified T7 DNA polymerase, A. Nussbaum for the synthesis of oligonucleotides, and K. Wepsic for the maintenance of population cages. This work was supported by National Institutes of Health [NIH] grant GM-27318 to J.H. S.J.B. was supported by a postdoctoral fellowship from the Science and Engineering Research Council [UK] and W.A.J. by postdoctoral fellowship GM-10497-03 from NIH. Computer re-
sources used to carry out our studies were provided by the BIONET National Computer Resource for Molecular Biology, which is funded by the Biomedical Research Technology Program, Division of Research Resources, NIH [grant P41RR01685].

References

Beall, C. and J. Hirsh. 1987. Regulation of the Drosophila dopa decarboxylase gene in neuronal and glial Cells. Genes Dev. 1: 510–520.

Bender, W., M. Akam, F. Karch, P.A. Beachy, M. Peifer, P. Spiteri, E.B. Lewis, and D.S. Hogness. 1983. Molecular genetics of the Bithorax complex in Drosophila melanogaster. Science 221: 23–29.

Bodner, M., J.-L. Castrillo, L.E. Theill, T. Deerinck, M. Ellisman, and M. Karin. 1988. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 55: 505–518.

Bray, S.J. and J. Hirsh. 1986. The Drosophila viridis dopa decarboxylase gene is developmentally regulated when integrated into Drosophila melanogaster. EMBO Journal 5: 2305–2311.

Bray, S.J., W.A. Johnson, J. Hirsh, U. Heberlein, and R. Tjian. 1988. A cis-acting element and associated binding factor required for CNS expression of the Drosophila melanogaster dopa decarboxylase gene. EMBO J. 7(1): 177–188.

Budnik, V. and K. White. 1988. Catecholamine-containing neurons in Drosophila melanogaster: Distribution and development. J. Comp. Neurology 268: 400–413.

Courtois, G., J.G. Morgan, L.A. Campbell, G. Fourel, and G.R. Crabtree. 1987. Interaction of a liver-specific nuclear factor with the fibrinogen and alpha-antitrypsin promoters. Science 238: 688–692.

Fromental, C., M. Kanno, H. Nomiyama, and P. Chambon. 1988. Cooperation and hierarchical levels of functional organization in the SV40 enhancer. Cell 54: 943–953.

Furst, A. and A.P. Mahowald. 1985. Cell division cycle of cultured neural precursor cells from Drosophila. Dev. Biol. 112: 467–476.

Hafen, E., K. Baker, J.-E. Edstroem, and G. Rubin. 1987. Sevenless, a cell-specific homolog of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236: 55–63.

Harrelson, A.L. and C.S. Goodman. 1988. Growth cone guidance in insects: Fasciclin II is a member of the immunoglobulin superfamily. Science 242: 700–708.

Heberlein, U. and R. Tjian. 1988. Temporal pattern of alcohol dehydrogenase gene transcription reproduced by Drosophila stage-specific embryonic extracts. Nature 331: 410–415.

Heberlein, U., B. England, and R. Tjian. 1988. –5.

Characterization of Drosophila transcription factors that activate the tandem promoters of the alcohol dehydrogenase gene. Cell 41: 965–977.

Hiromi, Y. and W.J. Gehring. 1987. Regulation and function of the Drosophila segmentation gene fushi tarazu. Cell 50: 963–974.

Hiromi, Y., A. Kuroiwa, and W.J. Gehring. 1985. Control elements of the Drosophila segmentation gene fushi tarazu. Cell 43: 603–613.

Hirsh, J. and N. Davidson. 1981. Isolation and characterization of the Drosophila segmentation gene of Drosophila melanogaster. Mol. Cell. Biol. 1: 475–485.

Hofer, M.M. and Y.-A. Barde. 1988. Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature 331: 261–262.

Ingham, P.W. 1988. The molecular genetics of embryonic pattern formation in Drosophila. Nature 335: 25–34.

Ingraham, H.A., R. Chen, H.J. Mangalam, H.P. Elsholtz, S.E. Flynn, C.R. Lin, D.M. Simmons, L. Swanson, and M.G. Rosenfeld. 1988. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55: 519–529.

Konrad, K.D. and J.L. Marsh. 1987. Developmental expression and spatial distribution of dopa decarboxylase in Drosophila. Dev. Biol. 122: 172–185.

Lauber, R. and J.-P. Changeux. 1987. Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: Possible neurotrophic role for a coexisting neuronal messenger. EMBO J. 6(4): 901–906.

Laughon, A., A.M. Boulet, J.R. Bermingham Jr., R.A. Laymon, and M.P. Scott. 1986. Structure of transcripts from the homoeotic Antennapedia gene of Drosophila melanogaster: Two promoters control the major protein-coding region. Mol. Cell. Biol. 6: 4676–4689.

Lenardo, M., J.W. Pierce, and D. Baltimore. 1987. Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science 236: 1573–1577.

Lunan, K.D. and H.K. Mitchell. 1969. The metabolism of tyrosine-O-phosphate in Drosophila. Arch. Biochem. Biophys. 132: 450–456.

Maniatis, T., E. Fritsch, and J. Sambrook. 1982. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Morgan, B.A., W.A. Johnson, and J. Hirsh. 1986. Regulated splicing produces different forms of dopa decarboxylase in the central nervous system and hypoderm of Drosophila melanogaster. EMBO J. 5: 3335–3342.

Müller, M.M., S. Ruppert, W. Schaffner, and P. Matthias. 1988. A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B Cells. Nature 336: 544–551.

Peifer, M. and W. Bender. 1986. The anterobithorax and bithorax mutations of the bithorax complex. EMBO J. 5: 2293–2303.

Reinke, R. and S.L. Zipursky. 1988. Cell-cell interaction in the Drosophila retina: The bride of sevenless gene is required in photoreceptor cell R8 for R7 cell development. Cell 55: 321–330.

Rubin, G.M. and A.C. Spradling. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218: 348–353.

Scheiderreit, C., J.A. Cromlish, T. Gerster, K. Kawakami, C.-G. Balmaceda, R.A. Currie, and R.G. Roeder. 1988. A human lymphoid-specific transcription factor that activates immunoglobulin genes is a homeobox protein. Nature 336: 551–557.

Scholnick, S., B.A. Morgan, and J. Hirsh. 1983. The cloned dopa decarboxylase gene is developmentally regulated when reintegrated into the Drosophila genome. Cell 34: 37–45.

Scholnick, S., S.J. Bray, B.A. Morgan, C.A. McCormick, and J. Hirsh. 1986. CNS and hypoderm regulatory elements of the Drosophila melanogaster dopa decarboxylase gene. Science 234: 998–1002.

Tabor, S. and C.C. Richardson. 1987. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. 84: 4767–4771.

Taylor, J.W., J. Ott, and F. Eckstein. 1985. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 13: 8765–8785.

Truman, J.W. and M. Bate. 1988. Spatial and temporal patterns
Johnson et al.

of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125: 145–157.

White, K. and A. Valles. 1985. Immunohistochemical and genetic studies of serotonin and neuropeptides in Drosophila In Molecular bases of neural development, (ed. G. Edelman, W. Gall, and M. Cowan), pp. 547–563. Wiley, New York.

Wright, T.R.F. 1987a. The genetics of biogenic alanine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv. Genetics 24: 127–222.

Wright, T.R.F. 1987b. The genetic and molecular organization of the dense cluster of functionally related, vital genes in the DOPA decarboxylase region of the Drosophila melanogaster genome. Results Problems Cell Differ., 14: 95–120.
A neuron-specific enhancer of the Drosophila dopa decarboxylase gene.

W A Johnson, C A McCormick, S J Bray, et al.

Genes Dev. 1989, 3: 676

Access the most recent version at doi:10.1101/gad.3.5.676

References

This article cites 33 articles, 2 of which can be accessed free at:
http://genesdev.cshlp.org/content/3/5/676.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.