On the quantum superalgebra $U_q(gl(m, n))$
and its representations at roots of 1

Chaowen Zhang
Department of Mathematics,
China university of Mining and Technology,
Xuzhou, 221116, Jiang Su, P. R. China

Mathematics Subject Classification (2000): 17B37; 17B50.

1 Introduction

Let p be a prime, and let η be a pth root of unity in the complex field \mathbb{C}. Let \mathfrak{g} be the Lie algebra of a semisimple and simply connected algebraic group G defined over \mathbb{F}_p. Lusztig conjectured ([14]) that the representation theory of G and that of $U_\eta(\mathfrak{g})$ are the same under certain range of weights. The conjecture is now known to hold for p larger than certain number (see [1, 6]).

The main purpose of the article is to extend the above conjecture to the super case where \mathfrak{g} is the general linear Lie superalgebra $gl(m, n)$ and G is the linear algebraic supergroup $GL(m, n)$. The definition in [3, 13] states that G is the functor from the category of commutative superalgebras to the category of groups defined on a commutative superalgebra A by letting $G(A)$ be the group of all invertible $(m+n) \times (m+n)$ matrices of the form

$$g = \begin{pmatrix} W & X \\ Y & Z \end{pmatrix}$$

where W is an $m \times m$ matrix with entries in A_0, X is an $m \times n$ matrix with entries in A_1, Y is an $n \times m$ with entries in A_1, and Z is an $n \times n$ matrix with entries in A_0. The relation between the category of G-modules and category of \mathfrak{g}-modules given in [3, 13] is similar to the one between the category of modules for algebraic groups and the category of modules for their Lie algebras [9].

We adopt here the definition of the quantum supergroup $U_q(gl(m, n))$ from [19]. First we prove the PBW theorem, then we give a description of the A-form U_A in terms of generators and relations following [14]. With these results, we propose a conjecture for the super case, and prove that the conjecture follows from the
Lusztig’s conjecture provided that the highest weight is \(p \)-typical (see Sec.2.2 for definition).

The paper is arranged as follows. Sec.2 is the preliminaries. In Sec. 3, we study the algebra \(\tilde{U}_q \). Sec 4 is about the relations in \(U_q(gl(m, n)) \). In Sec. 5, we study the highest weight simple modules for \(U_q(gl(m, n)) \). In Sec. 6, we define the \(\mathcal{A} \)-form \(U_{\mathcal{A}} \) for the quantum supergroup \(U_q(gl(m, n)) \), using which we prove in Sec. 7 the PBW theorem. In Sec.8, we give a description of \(U_{\mathcal{A}} \) in terms of generators and relations. In Sec.9, we extend the Lusztig’s conjecture to the super case and prove that the conjecture follows from the Lusztig’s conjecture in case of a \(p \)-typical weight. In Sec.10, we prove the Lusztig’s tensor product theorem for \(U_q(gl(m, n)) \).

2 Preliminaries

2.1 Notation

Throughout the paper we use the following notation.

\[
\begin{align*}
[1, m + n] &= \{1, 2, \cdots, m + n - 1\}, \\
[1, m + n] &= \{1, 2, \cdots, m + n\}, \\
[0, l] &= \{0, 1, \cdots, l - 1\}, \\
[0, l]^{m+n} &= \text{the set of all } m + n\text{-tuples } z = (z_1 \cdots z_{m+n}) \text{ with } 0 \leq z_i < l \text{ for all } i = 1, \cdots, m+n \\
\mathcal{I}_0 &= \{(i,j) | 1 \leq i < j \leq m \text{ or } m + 1 \leq i < j \leq m + n\} \\
\mathcal{I}_1 &= \{(i,j) | 1 \leq i \leq j \leq m + n\} \\
\mathcal{I} &= \mathcal{I}_0 \cup \mathcal{I}_1 \\
\mathcal{A}^B &= \text{the set of all tuples } \psi = (\psi_{ij})_{(i,j)\in B} \text{ with } \psi_{ij} \in \mathcal{A}, \text{ where } B = \mathcal{I}_0 \text{ or } B = \mathcal{I}_1 \\
\mathcal{A} &= \mathbb{Z}[q, q^{-1}] \text{ where } q \text{ is an indeterminate} \\
\mathcal{A}' &= Q(q) \text{ the quotient field of } \mathcal{A} \\
h(V) &= \text{the set of all homogeneous elements in a } \mathbb{Z}_2\text{-graded vector space} \\
V = V_0 \oplus V_1 &= \text{the universal enveloping superalgebra for the Lie superalgebra } L. \\
\bar{x} &= \text{the parity of the homogeneous element } x \in V = V_0 \oplus V_1. \\
U(L) &= \text{the universal enveloping superalgebra for the Lie superalgebra } L.
\end{align*}
\]

Note: Subalgebras of a superalgebra and modules over a superalgebra will be assumed to be \(\mathbb{Z}_2\)-graded.
2.2 The quantum deformation of $gl(m, n)$

The Lie superalgebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ has a basis $\{e_{ij} \mid 1 \leq i, j \leq m + n\}$. We denote e_{ij} with $i < j$ also by f_{ij}. Then we get $\mathfrak{g}_1 = \mathfrak{g}_{-1} \oplus \mathfrak{g}_1$, where

$$\mathfrak{g}_1 = \langle e_{ij} \mid (i, j) \in \mathcal{I}_1 \rangle, \quad \mathfrak{g}_{-1} = \langle f_{ij} \mid (i, j) \in \mathcal{I}_1 \rangle.$$

Denote by \mathfrak{g}^+ the subalgebra $\mathfrak{g}_0 + \mathfrak{g}_1$ of \mathfrak{g}. Let $H = \langle e_{ii} \mid 1 \leq i \leq m + n \rangle$, and let T be the linear algebraic group consisting of $(m + n) \times (m + n)$ invertible diagonal matrices. Then we have $\text{Lie}(T) = H$. The set of positive roots of \mathfrak{g} relative to T is $\Phi^+ = \Phi^+_0 \cup \Phi^+_1$, where

$$\Phi^+_0 = \{ \epsilon_i - \epsilon_j \mid (i, j) \in \mathcal{I}_0 \}, \quad \Phi^+_1 = \{ \epsilon_i - \epsilon_j \mid (i, j) \in \mathcal{I}_1 \}.$$

Let $\Lambda =: X(T) = \mathbb{Z} e_1 + \mathbb{Z} e_2 + \cdots + \mathbb{Z} e_{m+n}$. Let \check{e}_i be the 1-psg: $G_m \to T$ such that each $t \in G_m$ is mapped into a diagonal matrix with all entries equal to 1 but the ith equal to t if $i \leq m$, and t^{-1} if $i > m$. Then the 1-psg's \check{e}_i form a \mathbb{Z}-basis of $Y(T)$. The nondegenerate paring $X(T) \times Y(T) \to \mathbb{Z}$: $(\lambda, \mu) \mapsto \langle \lambda, \mu \rangle$ induces a symmetric bilinear form on Λ defined by (see [7])

$$(\epsilon_i, \epsilon_j) = \langle \epsilon_i, \check{e}_j \rangle = \begin{cases} \delta_{ij}, & i \leq m \\ -\delta_{ij}, & i > m. \end{cases}$$

Let

$$\rho_0 = 1/2 \sum_{\alpha \in \Phi^+_0} \alpha, \quad \rho_1 = 1/2 \sum_{\alpha \in \Phi^+_1} \alpha,$$

and set $\rho =: \rho_0 - \rho_1 \in \Lambda$. Defining $P(\lambda) = \prod_{\alpha \in \Phi^+_1} (\lambda + \rho, \alpha)$ for $\lambda \in \Lambda$, we have $P(\lambda) \in \mathbb{Z}$ for each $\lambda \in \Lambda$. An element $\lambda \in \Lambda$ is called typical (resp. p-typical) if $P(\lambda) \neq 0$ ($P(\lambda) \notin p\mathbb{Z}$).

Let $\lambda = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_{m+n} e_{m+n} \in \Lambda$. For each $(i, j) \in \mathcal{I}_1$, set $c(i, j) = i + j - 2m - 1$. A direct computation shows that λ is typical if and only if

$$\lambda_i + \lambda_j \neq c(i, j)$$

for all $(i, j) \in \mathcal{I}_1$.

Note: (1) For each $\mu \in \mathbb{Z}^+$, there is a typical weight $\lambda = \sum \lambda_i e_i \in \Lambda$ such that $\lambda_i - \lambda_{i+1} \geq \mu$ for all $i \in [1, m+n) \setminus m$. First, let $\lambda_{m+i} = (n-i)\mu$, for $i = 1, \ldots, n$. To choose λ_i for $i \in [1, m]$, we proceed by induction on i. Let λ_m be such that $\lambda_m + \lambda_{m+i} \neq c(m, m+i)$ for all $i \in [1, n]$. Assume we have chosen λ_i for $1 < i \leq m$. Let λ_{i-1} be such that $\lambda_{i-1} + \lambda_{m+j} \neq c(i-1, m+j)$ for all $j \in [1, n]$ and $\lambda_{i-1} \geq \lambda_i + \mu$. Then we obtain $\lambda \in \Lambda$ as desired.

(2) Assume the Lie superalgebra \mathfrak{g} is defined over a field k. By identifying $H^* \otimes_{\mathbb{Z}} k$, the bilinear form on Λ is extended naturally to H^*. For each $\lambda \in \Lambda$, we denote $\lambda \otimes 1 \in \Lambda \otimes_{\mathbb{Z}} k = H^*$ by $\bar{\lambda}$.

3
Put
\[h_{\alpha_i} = e_{ii} - (-1)^{\delta_{im}} e_{i+1,i+1}, \quad e_{\alpha_i} = e_{i,i+1}, \quad f_{\alpha_i} = e_{i+1,i} \]
for \(i \in [1, m+n] \), as well as \(h_{\alpha_m} = e_{m+n,m+n} \). The Distinguished Cartan matrix (see [5, p.344]) of the Lie superalgebra \(\mathfrak{g} \) is \(A = (a_{ij})_{1 \leq i,j \leq m+n-1} \) with

\[
a_{ij} = \begin{cases}
2, & \text{if } i = j \neq m \\
1, & \text{if } (i, j) = (m, m+1) \\
-1, & \text{if } |i-j| = 1 \text{ and } (i,j) \neq (m, m+1) \\
0, & \text{otherwise.}
\end{cases}
\]

The augmented Cartan matrix, denoted by \(\tilde{A} \), is the \((m+n) \times (m+n-1)\) matrix whose first \(m+n-1 \) rows are the rows of \(A \) and whose last row is \((0, \ldots, 0, -1)\).

Let \(U(\mathfrak{g}) \) be the universal enveloping superalgebra of \(\mathfrak{g} = gl(m,n) \). The Serre-type relations for the universal enveloping superalgebra of the special linear superalgebra \(sl(m,n) \) are given in [17], from which one can easily show that \(U(\mathfrak{g}) \) is generated by the elements \(e_{\alpha_i}, f_{\alpha_i}, h_{\alpha_j}, i \in [1, m+n], j \in [1, m+n] \) and relations

\[
\begin{align*}
(a1) \quad & h_{\alpha_i} h_{\alpha_j} = h_{\alpha_j} h_{\alpha_i} \\
(a2) \quad & h_{\alpha_i} e_{\alpha_j} - e_{\alpha_j} h_{\alpha_i} = a_{ij} e_{\alpha_j}, \quad h_{\alpha_i} f_{\alpha_j} - f_{\alpha_j} h_{\alpha_i} = -a_{ij} f_{\alpha_j}, \\
(a3) \quad & e_{\alpha_i} f_{\alpha_j} - (-1)^{\delta_{im}} f_{\alpha_j} e_{\alpha_i} = \delta_{ij} h_{\alpha_i}, \\
(a4) \quad & e_{\alpha_i} e_{\alpha_j} = e_{\alpha_j} e_{\alpha_i}, \quad f_{\alpha_i} f_{\alpha_j} = f_{\alpha_j} f_{\alpha_i}, \quad \text{if } |i-j| > 1, \\
(a5) \quad & e_{\alpha_i}^2 e_{\alpha_j} - 2 e_{\alpha_i} e_{\alpha_j} e_{\alpha_i} + e_{\alpha_j} e_{\alpha_i}^2 = 0, \text{if } |i-j| = 1, i \neq m, \\
(a6) \quad & f_{\alpha_i}^2 f_{\alpha_j} - 2 f_{\alpha_i} f_{\alpha_j} f_{\alpha_i} + f_{\alpha_j} f_{\alpha_i}^2 = 0, \text{if } |i-j| = 1, i \neq m, \\
(a7) \quad & e_{\alpha_i}^2 = f_{\alpha_i}^2 = 0, \\
(a8) \quad & [e_{\alpha_m}, [e_{\alpha_{m-1}}, e_{\alpha_m}, e_{\alpha_{m+1}}]] = 0, [f_{\alpha_m}, [f_{\alpha_{m-1}}, f_{\alpha_m}, f_{\alpha_{m+1}}]] = 0.
\end{align*}
\]

Let \(M \) be a \(U(\mathfrak{g}_0) \)-module. For \(\mu \in H^* \), define the \(\mu \)-weight space of \(M \) by

\[M_\mu = \{ m \in M \mid h m = \mu(h) m \quad \text{for all}\quad h \in H \}. \]

A nonzero vector \(v^+ \in M_\mu \) is said to be maximal if \(e_{ij} v^+ = 0 \) for all \((i, j) \in I_0 \).

Let \(M(\lambda) \) be a simple \(U(\mathfrak{g}_0) \)-module generated by a maximal vector of weight \(\lambda \in H^* \). We can view \(M_0(\lambda) \) as a \(U(\mathfrak{g}^+) \)-module by letting \(\mathfrak{g}_1 \) act trivially on it. Then the induced \(U(\mathfrak{g}) \)-module

\[\mathcal{K}(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{g}^+)} M_0(\lambda) \]

is called a Kac module. In case \(\mathfrak{g} \) is defined over \(\mathbb{C} \), [10, Prop. 2.9] says that \(\mathcal{K}(\lambda) \) is simple if and only if \(\lambda \) is typical.
Let \mathbb{F} be a field with char. $\mathbb{F} = 0$, and let q be an indeterminate over \mathbb{F}. Then the quantum supergroup $U_q(\mathfrak{g})$ (see [19, p.1237]) is defined to be the $\mathbb{F}(q)$-superalgebra with the generators $K_j, K_j^{-1}, j \in [1, m+n], E_{i,i+1}, F_{i,i+1}, i \in [1, m+n]$, and relations

\begin{align*}
(R1) \quad & K_i K_j = K_j K_i, K_i K_i^{-1} = 1, \\
(R2) \quad & K_i E_{j,j+1} K_i^{-1} = q_i^{(\delta_{ij} - \delta_{i,j+1})} E_{j,j+1}, \quad K_i F_{j,j+1} K_i^{-1} = q_i^{-(\delta_{ij} - \delta_{i,j+1})} F_{j,j+1}, \\
(R3) \quad & [E_{i,i+1}, F_{j,j+1}] = \delta_{ij} \frac{K_i K_i^{-1} - K_i^{-1} K_i}{q_i - q_i^{-1}}, \\
(R4) \quad & E_{m,m+1}^2 = F_{m,m+1}^2 = 0, \\
(R5) \quad & E_{i,i+1} E_{j,j+1} + E_{j,j+1} E_{i,i+1} = F_{j,j+1} F_{i,i+1} + F_{i,i+1} F_{j,j+1}, \quad |i - j| > 1, \\
(R6) \quad & E_{i,i+1}^2 E_{j,j+1} - (q + q^{-1}) E_{i,i+1} E_{j,j+1} E_{i,i+1} + E_{j,j+1} E_{i,i+1}^2 = 0 \quad (|i - j| = 1, i \neq m), \\
(R7) \quad & F_{i,i+1}^2 F_{j,j+1} - (q + q^{-1}) F_{i,i+1} F_{j,j+1} F_{i,i+1} + F_{j,j+1} F_{i,i+1}^2 = 0 \quad (|i - j| = 1, i \neq m), \\
(R8) \quad & [E_{m-1,m+2}, E_{m,m+1}] = [F_{m-1,m+2}, F_{m,m+1}] = 0,
\end{align*}

where

$$q_i = \begin{cases} q, & \text{if } i \leq m \\ q^{-1}, & \text{if } i > m. \end{cases}$$

Most often, we shall use E_{α_i} (resp. $F_{\alpha_i}; K_{\alpha_i}$) to denote $E_{i,i+1}$ (resp. $F_{i,i+1}; K_i K_i^{-1}$) for $\alpha_i = \epsilon_i - \epsilon_{i+1}$.

Remark: (1) For each pair of indices (i, j) with $1 \leq i < j \leq m+n$, the notation E_{ij}, F_{ij} are defined by (see [19])

\begin{align*}
E_{ij} &= E_{ic} E_{cj} - q_c^{-1} E_{cj} E_{ic}, \quad i < c < j, \\
F_{ij} &= -q_c E_{ic} F_{cj} + F_{cj} E_{ic}.
\end{align*}

(2) The parity of the elements $E_{ij}, F_{ij}, K_{s}^{\pm 1}$ is defined by $E_{ij} = F_{ij} = \tilde{e}_{ij} \in \mathbb{Z}_2$, $K_{s}^{\pm 1} = 0$.

(3) The bracket product (denote $[,]$ in [19]) in $U_q(\mathfrak{g})$ is defined by

\begin{equation}
[x, y] = xy - (-1)^{\tilde{e}_{ij}y}yx, \quad x, y \in h(U_q(\mathfrak{g})).
\end{equation}

Therefore the relations (R8) can be written as (see [12])

\begin{align*}
E_{\alpha_{m-1}} E_{\alpha_m} E_{\alpha_{m+1}} E_{\alpha_m} + E_{\alpha_{m+1}} E_{\alpha_m} E_{\alpha_{m+1}} + E_{\alpha_{m-1}} E_{\alpha_m} E_{\alpha_{m+1}} E_{\alpha_m} + E_{\alpha_{m-1}} E_{\alpha_{m+1}} E_{\alpha_m} E_{\alpha_{m+1}} + E_{\alpha_{m+1}} E_{\alpha_m} E_{\alpha_{m+1}} E_{\alpha_m} &= 0, \\
F_{\alpha_{m-1}} F_{\alpha_m} F_{\alpha_{m+1}} F_{\alpha_m} + F_{\alpha_{m+1}} F_{\alpha_m} F_{\alpha_{m+1}} + F_{\alpha_{m-1}} F_{\alpha_m} F_{\alpha_{m+1}} + F_{\alpha_{m+1}} F_{\alpha_m} F_{\alpha_{m+1}} F_{\alpha_m} + F_{\alpha_{m+1}} F_{\alpha_m} F_{\alpha_{m+1}} F_{\alpha_m} &= 0.
\end{align*}

Let $U_q(\mathfrak{g}_{0})$ be the quantum deformation of the Lie algebra \mathfrak{g}_{0} defined by the even generators $E_{\alpha_i}, F_{\alpha_i}, i \in [1, m+n] \setminus m, K_{s}^{\pm 1}, j \in [1, m+n]$ and relations (R1)-(R3), (R5)-(R7) involving only even generators. Then it is easy to see that

$$U_q(\mathfrak{g}_{0}) = U_q(\mathfrak{gl}_m) \otimes U_q(\mathfrak{gl}_n).$$

In the remainder of the paper, we shall abbreviate $U_q(\mathfrak{g})$ to U_q.

5
3 The Hopf superalgebra \hat{U}_q

Let \hat{U}_q be the $\mathbb{F}(q)$-superalgebra defined by the generators $E_{i,i+1}, F_{i,i+1}, K_j, K_j^{-1}$ (for all $i \in [1, m+n], j \in [1, m+n]$) and relations (R1)-(R3). Then U_q is a quotient of \hat{U}_q. Denote by \hat{U}_q^+ (resp. \hat{U}_q^-) the subalgebra of \hat{U}_q generated by the elements $E_{i,i+1}$ (resp. $F_{i,i+1}$; $K_j^\pm 1$), $i \in [1, m+n], j \in [1, m+n]$. We use notation like E_{ij}, F_{ij}, etc, for the corresponding elements in \hat{U}_q and U_q; it will be clear from the context what is meant.

A bijective (even)\mathbb{F}-linear map f from a \mathbb{F}-superalgebra A into itself is called an anti-automorphism (resp. \mathbb{Z}_2-graded anti-automorphism) if $f(xy) = f(y)f(x)$ (resp. $f(xy) = (-1)^{xy} f(y)f(x)$) for any $x, y \in h(A)$.

Remark: (1) Let $A = A_0 \oplus A_1$ be a superalgebra. Then the product in $A \otimes A$ is given by

\[(a \otimes b)(c \otimes d) = (-1)^{bc} ac \otimes bd, a, b, c, d \in h(A).\]

(2) In a Hopf superalgebra $A = A_0 \oplus A_1$, the antipode S is a \mathbb{Z}_2-graded anti-automorphism.

Lemma 3.1. There is on \hat{U}_q a unique structure (Δ, ϵ, S) of a Hopf superalgebra such that for all $i \in [1, m+n], j \in [1, m+n]$

\[
\begin{align*}
\Delta(E_{\alpha_i}) &= E_{\alpha_i} \otimes K_{\alpha_i} + 1 \otimes E_{\alpha_i}, \\
\Delta(F_{\alpha_i}) &= F_{\alpha_i} \otimes 1 + K_{\alpha_i}^{-1} \otimes F_{\alpha_i}, \\
\Delta(K_j) &= K_j \otimes K_j; \\
S(E_{\alpha_i}) &= -E_{\alpha_i}K_{\alpha_i}^{-1}, \\
S(F_{\alpha_i}) &= -K_{\alpha_i}F_{\alpha_i}, \\
S(K_j) &= K_j^{-1}; \\
\epsilon(E_{\alpha_i}) &= \epsilon(F_{\alpha_i}) = 0, \epsilon(K_j) = \epsilon(K_j^{-1}) = 1.
\end{align*}
\]

Proof. To prove the lemma, one needs show that relations (R1)-(R3) are satisfied by the images of the generators under the homomorphisms Δ, ϵ, S. We first prove the case $i = j = m$ in (R3).

We have

\[
\begin{align*}
\Delta([E_{\alpha_m}, F_{\alpha_m}]) &= [E_{\alpha_m} \otimes K_{\alpha_m} + 1 \otimes E_{\alpha_m}, F_{\alpha_m} \otimes 1 + K_{\alpha_m}^{-1} \otimes F_{\alpha_m}] \\
&= [E_{\alpha_m} \otimes K_{\alpha_m}, F_{\alpha_m} \otimes 1] + [1 \otimes E_{\alpha_m}, F_{\alpha_m} \otimes 1] \\
&\quad + [E_{\alpha_m} \otimes K_{\alpha_m}^{-1}, K_{\alpha_m}^{-1} \otimes F_{\alpha_m}] + [1 \otimes E_{\alpha_m}, K_{\alpha_m}^{-1} \otimes F_{\alpha_m}] \\
&= \frac{K_{\alpha_m} - K_{\alpha_m}^{-1}}{q_m - q_m^{-1}} \otimes K_{\alpha_m} + (1 \otimes E_{\alpha_m})(F_{\alpha_m} \otimes 1) + (F_{\alpha_m} \otimes 1)(1 \otimes E_{\alpha_m})
\end{align*}
\]
+E_{\alpha_m}K^{-1}_{\alpha_m} \otimes K_{\alpha_m}F_{\alpha_m} - K^{-1}_{\alpha_m}E_{\alpha_m} \otimes F_{\alpha_m}K_{\alpha_m} + K^{-1}_{\alpha_m} \otimes K_{\alpha_m} - K^{-1}_{\alpha_m}\\
= \frac{K_{\alpha_m} \otimes K_{\alpha_m} - K^{-1}_{\alpha_m} \otimes K^{-1}_{\alpha_m}}{q_m - q_m^{-1}}\\
= \Delta\left(\frac{K_{\alpha_m} - K_{\alpha_m}^{-1}}{q_m - q_m^{-1}}\right)\\
S([E_{\alpha_m}, F_{\alpha_m}]) = -(S(E_{\alpha_m})S(F_{\alpha_m}) + S(F_{\alpha_m})S(E_{\alpha_m}))\\
= -(E_{\alpha_m}F_{\alpha_m} + F_{\alpha_m}E_{\alpha_m})\\
= \frac{K_{\alpha_m} - K_{\alpha_m}^{-1}}{q_m - q_m^{-1}}\\
= S\left(\frac{K_{\alpha_m} - K_{\alpha_m}^{-1}}{q_m - q_m^{-1}}\right)\\
\epsilon([E_{\alpha_m}, F_{\alpha_m}]) = 0 = \epsilon\left(\frac{K_{\alpha_m} - K_{\alpha_m}^{-1}}{q_m - q_m^{-1}}\right).

The remainder of the proof is similar (cf. [8, 4.8]) and is therefore omitted. \qed

It is easy to see that

Lemma 3.2. There are \(\mathbb{Z}_2\)-graded anti-automorphism \(\Psi\) and anti-automorphism \(\Omega\) of \(\tilde{U}_q\) such that

\[
\Psi(E_{\alpha_i}) = E_{\alpha_i}, \quad \Psi(F_{\alpha_i}) = F_{\alpha_i}, \quad \Psi(K_j) = K_j, \quad \Psi(q) = q^{-1},
\]

\[
\Omega(E_{\alpha_i}) = F_{\alpha_i}, \quad \Omega(F_{\alpha_i}) = E_{\alpha_i}, \quad \Omega(K_j) = K_j^{-1}, \quad \Omega(q) = q^{-1},
\]

for all \(i \in [1, m+n], j \in [1, m+n]\).

Lemma 3.3. Let \(\bar{\Omega}\) be the \(\mathbb{F}\)-linear map from the \(\mathbb{F}\)-superalgebra \(\tilde{U}_q \otimes \tilde{U}_q\) into itself defined by

\[
\bar{\Omega}(a \otimes b) = \Omega(b) \otimes \Omega(a).\]

Then we have

(a) \(\bar{\Omega}(u_1u_2) = \bar{\Omega}(u_2)\bar{\Omega}(u_1), u_1, u_2 \in h(\tilde{U}_q \otimes \tilde{U}_q)\),

(b) \(\bar{\Omega}\Delta = \Delta\bar{\Omega}\).

Proof. (a) One can assume \(u_1 = x_1 \otimes x_2, u_2 = y_1 \otimes y_2\), where \(x_1, x_2, y_1, y_2\) are homogeneous elements in \(\tilde{U}_q\). Note that \(\Omega\) is an even map; that is, \(\Omega(x) = \bar{x}\) for any \(x \in h(\tilde{U}_q)\). Then (a) follows from a straightforward computation.

(b) It suffices to show that both functions \(\bar{\Omega}\Delta\) and \(\Delta\bar{\Omega}\) have the same images at the generators of \(\tilde{U}_q\). For \(i \in [1, m+n]\), we have

\[
\bar{\Omega}\Delta(E_{\alpha_i}) = \bar{\Omega}(E_{\alpha_i} \otimes K_{\alpha_i} + 1 \otimes E_{\alpha_i})
\]

\[
= K_{\alpha_i}^{-1} \otimes F_{\alpha_i} + F_{\alpha_i} \otimes 1 = \Delta(F_{\alpha_i}) = \Delta\Omega(E_{\alpha_i}).
\]

Similarly one proves that \(\bar{\Omega}\Delta(F_{\alpha_i}) = \Delta\Omega(F_{\alpha_i})\) and \(\bar{\Omega}\Delta(K_j^{\pm 1}) = \Delta\Omega(K_j^{\pm 1}), j \in [1, m+n]\). \qed
Recall the notation Λ and Φ^+. For each $\mu = l_1 \epsilon_1 + \cdots + l_m \epsilon_m \in \Lambda$, set $K_\mu = \prod_{i=1}^{m+n} K_i^{l_i} \in \bar{U}_q$, so that $K_\nu = \Pi K_i^{k_i}$ for $\nu = \sum k_i \alpha_i \in \mathbb{Z} \Phi^+$. For each finite sequence $I = (\alpha_1, \ldots, \alpha_r)$ of simple roots, we denote

$$E_I =: E_{\alpha_1} \cdots E_{\alpha_r}, F_I = F_{\alpha_1} \cdots F_{\alpha_r}, wtI = \alpha_1 + \cdots + \alpha_r.$$

In particular, we let $E_\emptyset = F_\emptyset = 1$. Clearly the parity of the element E_I (resp. F_I) is $E_I = \sum_{i=1}^r E_{\alpha_i}$ (resp. $F_I = \sum_{i=1}^r F_{\alpha_i}$).

Lemma 3.4. Let I be a sequence as above. We can find elements $C^I_{A,B} \in \mathcal{A}$ indexed by finite sequences of simple roots A and B with $wtI = wtA + wtB$ such that in \bar{U}_q and in U_q

$$\Delta(E_I) = \sum_{A,B} C^I_{A,B}(q) E_A \otimes K_{wtA} E_B,$$

$$\Delta(F_I) = \sum_{A,B} C^I_{A,B}(q^{-1}) F_A K_{wtB}^{-1} \otimes F_B.$$

We have $c_{A,\emptyset} = \delta_{A,I}$ and $c_{\emptyset,B} = \delta_{B,I}$.

Proof. By Lemma 3.3(b), it suffices to prove the first identity. Note that the following identities hold in \bar{U}_q:

$$K_{\alpha_i} E_{\alpha_j} = q^{(\alpha_i, \alpha_j)} E_{\alpha_j} K_{\alpha_i}, K_{\alpha_i} F_{\alpha_j} = q^{-(\alpha_i, \alpha_j)} F_{\alpha_j} K_{\alpha_i},$$

using which one proves the first identity exactly as that in [8, Lemma 4.12]. \qed

Consider for each extension field $k \supset \mathbb{F}(q)$ a unitary free associative k-superalgebra $M_k = (M_k)_0 \oplus (M_k)_1$ with the homogeneous generators ξ_i, $i \in [1, m+n]$, for which the parity is defined by $\tilde{\xi}_i = \tilde{\delta}_{im} \in \mathbb{Z}_2$.

Let k^* be the set of nonzero numbers in the field k.

Lemma 3.5. For each $c = (c_1, c_2, \ldots, c_{m+n}) \in (k^*)^{m+n}$, there is on M_k a structure as a \bar{U}_q-module such that for all $i \in [1, m+n], j \in [1, m+n]$ and all finite product $\xi_{i_1} \cdots \xi_{i_r} \in M_k$

$$F_{\alpha_i} \xi_{i_1} \cdots \xi_{i_r} = \xi_i \xi_{i_1} \cdots \xi_{i_r},$$

$$K_j \xi_{i_1} \cdots \xi_{i_r} = c_j q^{-(\epsilon_j, \alpha_{i_1} + \cdots + \alpha_{i_r})} \xi_{i_1} \cdots \xi_{i_r},$$

$$E_{\alpha_i} \xi_{i_1} \cdots \xi_{i_r} = \sum_{1 \leq s \leq r, i_s = i} (-1)^{s-1} \xi_i \sum_{i=1}^s \xi_{i_s},$$

$$c_i c_{i+1}^{-1} q^{-(\alpha_i, \alpha_{i+1} + \cdots + \alpha_r)} - c_i^{-1} c_{i+1} q^{(\alpha_i, \alpha_{i+1} + \cdots + \alpha_r)} \xi_{i_1} \cdots \xi_{i_r}. $$

Proof. These formulas define endomorphisms f_{α_i}, k_j and e_{α_i} of M_k. It is clear that k_j^{-1} is defined by $k_j^{-1} \xi_{i_1} \cdots \xi_{i_r} = c_j^{-1} q^{(\epsilon_j, \sum_{s=1}^r \alpha_{i_s})} \xi_{i_1} \cdots \xi_{i_r}$. To prove the lemma, we need show that these endomorphisms satisfy the relations (R1)-(R3). The relations (R1) and (R2) follow from a straightforward computation. We are left with (R3).
In case \(i \neq j \), we have
\[
e_{\alpha_i} f_{\alpha_j} \xi_{i_1} \cdots \xi_{i_r} = e_{\alpha_i} \xi_j \xi_{i_1} \cdots \xi_{i_r} = \sum_{1 \leq s \leq r, i_s = i} (-1)^{s} (\xi_{i_1} + \xi_j) E_{\alpha_i} q_{i_s}^{-1} \xi_j \xi_{i_1} \cdots \hat{\xi}_{i_s} \cdots \xi_{i_r}
\]
and
\[
f_{\alpha_j} e_{\alpha_i} \xi_{i_1} \cdots \xi_{i_r} = \sum_{1 \leq s \leq r, i_s = i} (-1)^{s} (\xi_{i_1} + \xi_j) \tilde{E}_{\alpha_i} q_{i_s}^{-1} \xi_j \xi_{i_1} \cdots \hat{\xi}_{i_s} \cdots \xi_{i_r}.
\]
Since \(i \neq j \), either \(\xi_i = \tilde{E}_{\alpha_i} = 0 \) or \(\xi_j = 0 \), so that \(e_{\alpha_i} f_{\alpha_j} = f_{\alpha_j} e_{\alpha_i} \).

In case \(i = j \), we have
\[
e_{\alpha_i} f_{\alpha_i} \xi_{i_1} \cdots \xi_{i_r} = e_{\alpha_i} \xi_i \xi_{i_1} \cdots \xi_{i_r} = \frac{c_i c_{i+1} q^{-(\alpha_i, s_{i+1})} - c_i^{-1} c_{i+1} q^{-(\alpha_i, s_{i+1})}}{q_i - q_i^{-1}} \xi_{i_1} \cdots \hat{\xi}_{i_i} \cdots \xi_{i_r} + (-1)^{r} f_{\alpha_i} e_{\alpha_i} \xi_{i_1} \cdots \xi_{i_r} = \sum_{1 \leq s \leq r, i_s = i} (-1)^{s} (\xi_{i_1} + \xi_j) \tilde{E}_{\alpha_i} q_{i_s}^{-1} \xi_j \xi_{i_1} \cdots \hat{\xi}_{i_s} \cdots \xi_{i_r}.
\]
Thus, the relation (R3) is satisfied.

We denote this module by \(M_k(c) \).

For each \(c \in (k^*)^{m+n} \), one can show similarly that there is on \(M_k \) a unique structure as a \(\tilde{U}_q \)-module such that for all \(i \in [1, m+n] \), \(j \in [1, m+n] \) and all finite product \(\xi_{i_1} \cdots \xi_{i_r} \in M_k \)
\[
E_{\alpha_i} \xi_{i_1} \cdots \xi_{i_r} = \xi_i \xi_{i_1} \cdots \xi_{i_r},
\]
\[
K_j \xi_{i_1} \cdots \xi_{i_r} = c_j q^{(\varepsilon_{j, \alpha_i})} \xi_{i_1} \cdots \xi_{i_r},
\]
\[
F_{\alpha_i} \xi_{i_1} \cdots \xi_{i_r} = \sum_{1 \leq s \leq r, i_s = i} (-1)^{s} c_{i+1} q^{-(\alpha_i, s_{i+1})} \xi_{i_1} \cdots \hat{\xi}_{i_i} \cdots \xi_{i_r}.
\]
We denote this \(\tilde{U}_q \)-module by \(M_k'(c) \).

With Lemma 3.4 and the \(\tilde{U}_q \)-modules \(M_k(c) \), \(M_k'(c) \), Jantzen’s argument ([8, Prop. 4.16]) can be applied almost verbatim to obtain
Proposition 3.6. The elements $F_1K_\mu E_J$ with $\mu \in \Lambda$ and I,J finite sequences of simple roots are a basis of \tilde{U}_q.

It follows that the map

$$\theta : \tilde{U}_q \otimes \tilde{U}_q^0 \otimes \tilde{U}_q^+ \longrightarrow \tilde{U}_q$$

$$u_1 \otimes u_2 \otimes u_3 \mapsto u_1u_2u_3$$

is an isomorphism of $\mathbb{F}(q)$-vector spaces.

In \tilde{U}_q, set $u_{ex}^+ = [E_{m-1,m+2}, E_{m,m+1}]$; given $i, j \in [1, m + n)$, $i \neq j$, set $u_{ij}^+ =$:

$$\begin{cases}
E_{i,i+1}^2E_{j,j+1} - (q + q^{-1})E_{i,i+1}E_{j,j+1}E_{i,i+1} + E_{j,j+1}E_{i,i+1}^2, & \text{if } |i - j| = 1, i \neq m \\
E_{i,i+1}E_{j,j+1} - E_{j,j+1}E_{i,i+1}, & \text{if } |i - j| > 1.
\end{cases}$$

Let $u_{ex}^- = \Omega(u_{ex}^+)$ and let $u_{ij}^- = \Omega(u_{ij}^+)$ for all $i, j \in [1, m + n)$, $i \neq j$.

Lemma 3.7. The following identities hold in \tilde{U}_q.

$$[F_{s,s+1}, u_{ij}^+] = 0, \quad [F_{s,s+1}, E_{m,m+1}^2] = 0,$$

for all $s, i, j \in [1, m + n)$, $i \neq j$.

$$[F_{s,s+1}, u_{ex}^+] = 0 \quad \text{for all} \quad s \in [1, m + n) \setminus m + 1, \quad [F_{m,m+1}, E_{m-1,m+2}] = 0.$$

The proof of the lemma follows from a straightforward computation, we leave it to the interested reader.

Let $\langle E_{m,m+1}^2 \rangle$ be the two-sided ideal of \tilde{U}_q^+ generated by the element $E_{m,m+1}^2$. Using the fact that $q_m = q_{m+1}^{-1}$, one can show that

$$E_{m,m+1}E_{m,m+2} + q_mE_{m,m+2}E_{m,m+1} \in \langle E_{m,m+1}^2 \rangle$$

and

$$E_{m,m+1}E_{m-1,m+1} + q_{m+1}^{-1}E_{m-1,m+1}E_{m,m+1} \in \langle E_{m,m+1}^2 \rangle.$$

Applying these identities, one verifies easily that

Lemma 3.8.

$$[F_{m+1,m+2}, u_{ex}^+] \in \langle E_{m,m+1}^2 \rangle.$$

Let \mathcal{J} (resp. \mathcal{J}^+, \mathcal{J}^-) be the two-sided ideal of \tilde{U}_q (resp. \tilde{U}_q^+, \tilde{U}_q^-) generated by the homogeneous elements

$$u_{ij}^+, E_{m,m+1}^2, u_{ex}^+ \quad \text{resp.} \quad u_{ij}^+, E_{m,m+1}^2, u_{ex}^+, u_{ij}^+, E_{m,m+1}^2, u_{ex}^-,$$

where $i, j \in [1, m + n), i \neq j$.

Lemma 3.9. The two-sided ideal in \tilde{U}_q generated by the elements $u_{ij}^+(i, j \in [1, m + n), i \neq j)$, $E_{m,m+1}^2$, u_{ex}^+ is equal to the image of $\tilde{U}_q^0 \otimes \tilde{U}_q^0 \otimes \mathcal{J}^+$ under the map θ defined above.
Proof. Denote the image of $\tilde{U}_q^- \otimes \tilde{U}_q^0 \otimes \tilde{U}_q^+$ by V. It is contained in the two-sided ideal in \tilde{U}_q generated by all $u_{ij}^+ E_{m,m+1} E_I$, $u_{ex}^+ E_I$. It suffices to show that V is a two-sided ideal of \tilde{U}_q. From the relations (R1)-(R3) we see that V is stable under the left multiplication by the homogeneous element $u \in \tilde{U}_q^- \cup \tilde{U}_q^0 \cup \tilde{U}_q^+$, so that V is a left ideal in \tilde{U}_q.

As a vector space V is spanned by the homogeneous elements

$$uu_{ij}^+ E_I, u E_{m,m+1} E_I, uu_{ex}^+ E_I$$

with $u \in \tilde{U}_q$, with all $i, j \in [1, m + n), i \neq j$, and with all sequences E_I as preceding Lemma 3.4. Then it is clear that the right multiplication of V by the homogeneous elements $u \in \tilde{U}_q^+ \cup \tilde{U}_q^0$ stabilizes V. To complete the proof, we must show that V is stable under the right multiplication by $F_{s,s+1}$ for all $s \in [1, m + n)$.

In fact, we have

$$uu_{ij}^+ E_I F_{s,s+1} = (-1)(E_{I, s+1} u_{ij}^+) F_{s,s+1} u F_{s,s+1} u_{ij}^+ E_I$$

$$+uu_{ij}^+ [E_I, F_{s,s+1}] + (-1) E_{I, s+1} u [u_{ij}^+, F_{s,s+1}] E_I,$$

here the first summand is in V; the commutator $[E_I, F_{s,s+1}]$ is in $\tilde{U}_q^0 \tilde{U}_q^+$ by (R3), so that the second summand is in V; the third term is equal to 0 by Lemma 3.7. Therefore, $uu_{ij}^+ E_I F_{s,s+1} \in V$.

Applying Lemma 3.7 and 3.8, one proves similarly that

$$u E_{m,m+1} E_I F_{s,s+1}, uu_{ex}^+ E_I F_{s,s+1} \in V$$

for all $s \in [1, m + n)$. Therefore V is a two-sided ideal. \qed

By applying Ω, one gets

Lemma 3.10. The two-sided ideal in \tilde{U}_q generated by the elements $u_{ij}^+ (i, j \in [1, m + n), i \neq j)$, $E_{m,m+1}^2, u_{ex}^+$ is equal to the image of $J^- \otimes \tilde{U}_q^0 \otimes \tilde{U}_q^+$ under the map θ.

By Lemma 3.9, 3.10, we get

$$J = \theta(\tilde{U}_q^- \otimes \tilde{U}_q^0 \otimes \tilde{U}_q^+) - \theta(\tilde{U}_q^- \otimes \tilde{U}_q^0 \otimes \tilde{U}_q^+).$$

This gives an induced vector space isomorphism

$$U_q = \tilde{U}_q / J \cong \tilde{U}_q^- / J^- \otimes \tilde{U}_q^- / J^- \otimes \tilde{U}_q^+ / J^+$$

with $U_q^0 \cong \tilde{U}_q^0$. To summarize, one gets

Corollary 3.11. (1) The multiplication map

$$\bar{\theta} : U_q^- \otimes U_q^0 \otimes U_q^+ \rightarrow U_q, u_1 \otimes u_2 \otimes u_3 \mapsto u_1 u_2 u_3$$
is an isomorphism of vector spaces.

(2) U_q^+ is isomorphic to the superalgebra generated by the elements $E_{i,i+1}$, $i \in [1, m+n)$ and relations

$$u_{ij}^+ = 0 (i, j \in [1, m+n], i \neq j), E_{m,m+1}^2 = 0, u_{ex}^+ = 0.$$

(3) U_q^- is isomorphic to the superalgebra generated by the elements $F_{i,i+1}$, $i \in [1, m+n)$ and relations

$$u_{ij}^- = 0 (i, j \in [1, m+n], i \neq j), F_{m,m+1}^2 = 0, u_{ex}^- = 0.$$

(4) The K_μ with $\mu \in \Lambda$ are a basis of U_q^0.

Let $U'_q(\mathfrak{g}_0)$ (resp. $U'_q(\mathfrak{g}_0)^+$; $U'_q(\mathfrak{g}_0)^-$; $U'_q(\mathfrak{g}_0)^0$) be the subalgebra of U_q generated by the even generators

$$E_{i,i+1}, F_{i,i+1}, K_j^{\pm 1} (\text{resp.} E_{i,i+1}, F_{i,i+1}, K_j^{\pm 1}), i \in [1, m+n) \setminus m, j \in [1, m+n].$$

Let $\tilde{U}_q(\mathfrak{g}_0)$ be the algebra generated by the above elements with relations (R1)-(R3) in 2.2. Denote by $\tilde{U}_q(\mathfrak{g}_0)^+$ (resp. $\tilde{U}_q(\mathfrak{g}_0)^-$; $\tilde{U}_q(\mathfrak{g}_0)^0$) the subalgebra of $\tilde{U}_q(\mathfrak{g}_0)$ generated by the elements $E_{i,i+1}$ (resp. $F_{i,i+1}; K_j^{\pm 1}$) for all $i \in [1, m+n) \setminus m, j \in [1, m+n]$.

In the remainder of this subsection, we use [8, 4.16, 4.21] which hold in $U_q(sl_m \oplus sl_n)$ and can be easily generalized to $U_q(\mathfrak{g}_0)$ (see 2.2). By [8, 4.16], there is an isomorphism of $\mathbb{F}(q)$-vector spaces

$$\tilde{U}_q(\mathfrak{g}_0)^- \otimes \tilde{U}_q(\mathfrak{g}_0)^0 \otimes \tilde{U}_q(\mathfrak{g}_0)^+ \longrightarrow \tilde{U}_q(\mathfrak{g}_0).$$

Clearly the quantum group $U_q(\mathfrak{g}_0)$ is a quotient of $\tilde{U}_q(\mathfrak{g}_0)$.

Proposition 3.12. There is an isomorphism of $\mathbb{F}(q)$-algebras: $U_q(\mathfrak{g}_0) \cong U'_q(\mathfrak{g}_0)$.

Proof. Let $\tilde{U}'_q(\mathfrak{g}_0)$ be the subalgebra of \tilde{U}_q generated by the even generators. Then there is an epimorphism of $\mathbb{F}(q)$-algebras $\pi : \tilde{U}_q(\mathfrak{g}_0) \longrightarrow \tilde{U}'_q(\mathfrak{g}_0)$. Using (R1)-(R3), we obtain that $\tilde{U}'_q(\mathfrak{g}_0)$ is spanned by the elements $F_i K_\mu E_J$, with I, J finite sequences of simple even roots, which by Prop. 3.6 becomes a basis of $\tilde{U}'_q(\mathfrak{g}_0)$; while $\tilde{U}_q(\mathfrak{g}_0)$, by [8, 4.16], has an analogous basis, so that π is an isomorphism. Thus, we can identify $\tilde{U}_q(\mathfrak{g}_0)$ with the subalgebra $\tilde{U}'_q(\mathfrak{g}_0)$ of \tilde{U}_q.

Denote by f the canonical epimorphism from \tilde{U}_q into U_q. Then we obtain by Coro. 3.11(4) that f maps $\tilde{U}_q(\mathfrak{g}_0)^0$ isomorphically onto U_q^0. Moreover, we have

$$U'_q(\mathfrak{g}_0)^+ = f(\tilde{U}_q(\mathfrak{g}_0)^+) = (\tilde{U}_q(\mathfrak{g}_0)^+ + \mathcal{J}^+)/\mathcal{J}^+ \cong \tilde{U}_q(\mathfrak{g}_0)^+/(\tilde{U}_q(\mathfrak{g}_0)^+ \cap \mathcal{J}^+).$$
Using Prop. 3.6, we obtain
\[\tilde{U}_q(g_0)^+ \cap J^+ = \sum_{m \notin \{i, j\}} \tilde{U}_q(g_0)^+ u_{ij} \tilde{U}_q(g_0)^+ . \]
Let
\[U_q(g_0) \cong U_q(g_0)^- \otimes U_q^0 \otimes U_q(g_0)^+ \]
be the triangular decomposition of \(U_q(g_0) \). By [8, 4.21(b)],
\[U_q(g_0)^+ \cong \tilde{U}_q(g_0)^+ / \sum_{m \notin \{i, j\}} \tilde{U}_q(g_0)^+ u_{ij} \tilde{U}_q(g_0)^+ \]
\[\cong \tilde{U}_q'(g_0)^+ . \]
Similarly one proves that \(U_q(g_0)^- \cong U_q'(g_0)^- \). This establishes the proposition. \(\square \)

We shall identify \(U_q(g_0) \) with \(U_q'(g_0) \) in the following.

4 The structure of \(U_q \)

4.1 The braid group action on \(U_q \)

For \(i \in [1, m + n) \setminus m \), the automorphism \(T_{\alpha_i} \) of \(U_q \) is defined by (see [19, Appendix A] and also [14, 1.3])
\[
T_{\alpha_i}(E_{\alpha_j}) = \begin{cases}
-F_{\alpha_i}K_{\alpha_i} & \text{if } i = j, \\
E_{\alpha_j} & \text{if } a_{ij} = 0, \\
-E_{\alpha_i}E_{\alpha_j} + q_i^{-1}E_{\alpha_j}E_{\alpha_i} & \text{if } a_{ij} = -1.
\end{cases}
\]
\[
T_{\alpha_i}F_{\alpha_j} = \begin{cases}
-K_{\alpha_i}^{-1}E_{\alpha_i} & \text{if } i = j, \\
F_{\alpha_j} & \text{if } a_{ij} = 0, \\
-F_{\alpha_j}F_{\alpha_i} + q_iF_{\alpha_i}F_{\alpha_j} & \text{if } a_{ij} = -1.
\end{cases}
\]
\[
T_{\alpha_i}K_j = \begin{cases}
K_{i+1} & \text{if } j = i, \\
K_i & \text{if } j = i + 1, \\
K_j & \text{if } j \neq i, i + 1.
\end{cases}
\]
It is pointed out in [19] that each \(T_{\alpha_i} \) is a \(\mathbb{Z}_2 \)-graded automorphism of \(U_q \), which means (see [19, Appendix. A])
\[
T_{\alpha_i}(uv) = (-1)^{\bar{a}_i}T_{\alpha_i}(u)T_{\alpha_i}(v), \quad u, v \in h(U_q).
\]
But a straightforward computation shows that \(T_{\alpha_i} \) is an even automorphism for \(U_q \), that is,
\[
T_{\alpha_i}(uv) = T_{\alpha_i}(u)T_{\alpha_i}(v), \quad \text{for all } \ u, v \in h(U_q).
\]
In fact, one can see this by checking that \(T_\alpha(s \in [1, m + n) \setminus m) \) preserves the relation (R3) in the case \(i = j = m \).

By a straightforward computation ([19, A3]), one obtains for each \(i \in [1, m + n) \setminus m \) the inverse map \(T_\alpha^{-1} \):

\[
T_\alpha^{-1}E_{ij} = \begin{cases}
-K_\alpha^{-1}F_{\alpha_i}, & \text{if } i = j, \\
E_{\alpha_j}, & \text{if } a_{ij} = 0, \\
-E_{\alpha_j}E_{\alpha_i} + q_i^{-1}E_{\alpha_i}E_{\alpha_j}, & \text{if } a_{ij} = -1.
\end{cases}
\]

\[
T_\alpha^{-1}F_{ij} = \begin{cases}
-E_{\alpha_i}K_{\alpha_i}, & \text{if } i = j, \\
F_{\alpha_j}, & \text{if } a_{ij} = 0, \\
-F_{\alpha_i}F_{\alpha_j} + q_iF_{\alpha_j}F_{\alpha_i}, & \text{if } a_{ij} = -1.
\end{cases}
\]

\[
T_\alpha^{-1}K_j = \begin{cases}
K_{i+1}, & \text{if } j = i, \\
K_i, & \text{if } j = i + 1, \\
K_j, & \text{if } j \neq i, i + 1.
\end{cases}
\]

There are \(\mathbb{Z}_{q2} \)-graded algebra automorphism \(\Psi \) and antiautomorphism \(\Omega \) of \(U_q \) inherited from \(\tilde{U}_q \) (see Lemma 3.2). Then according to [19], we have

\[
(*) \quad \Omega T_\alpha = T_\alpha \Omega.
\]

Suppose \(i < k < k + 1 < j \). The following identities, given in [19], can be verified easily by induction:

\[
(b1) \quad E_{i,j} = (-1)^{j-i-1}T_\alpha T_{\alpha_i+1} \cdots T_{\alpha_k-1} T_{\alpha_{j-2}}^{-1} \cdots T_{\alpha_{k+1}}^{-1} E_{k,k+1},
\]

\[
(b2) \quad F_{i,j} = (-1)^{j-i-1}T_\alpha T_{\alpha_i+1} \cdots T_{\alpha_k-1} T_{\alpha_{j-2}}^{-1} \cdots T_{\alpha_{k+1}}^{-1} F_{k,k+1}.
\]

Applying the formula \((*)\) above we get \(\Omega(E_{i,j}) = F_{i,j}((i, j) \in \mathcal{I}) \). It then follows from the formulas \((b1), (b2)\) that \(E_{i,j}^2 = F_{i,j}^2 = 0 \) for \((i, j) \in \mathcal{I}_1\).

4.2 Some formulas in \(U_q \)

In this subsection we give more relations in \(U_q \).

Lemma 4.1. Assume \(i < s < t < j \). Then

\[
(a) \quad [E_{i,j}, E_{s,t}] = 0, \quad (b) \quad [F_{i,j}, F_{s,t}] = 0.
\]

Proof. Note that \((b)\) follows from \((a)\) using the involution \(\Omega \), so it suffices to prove \((a)\). We proceed by induction on \(t - s \). The case \(t - s = 1 \) follows immediately from [19, Lemma 1]. Now assume \(t - s \geq 2 \).

Recall that

\[
E_{s,t} = E_{s,c}E_{c,t} - q_c^{-1}E_{c,t}E_{s,c}, s < c < t.
\]
Using induction hypothesis and the identity $\bar{E}_{s,t} = \bar{E}_{s,c} + \bar{E}_{c,t}$, we get

$$[E_{i,j}, E_{s,t}] = E_{i,j}E_{s,t} - (-1)^{E_{i,j}E_{s,t}}E_{s,t}E_{i,j}$$
$$= [E_{i,j}, E_{s,c}]E_{c,t} - q_{c}^{-1}[E_{i,j}, E_{c,t}]E_{s,c}$$
$$= 0.$$

The following list of formulas will be useful.

Lemma 4.2. [19, p. 1238-1239]

1. $[E_{i,j}, F_{c,c+1}] = \delta_{c+1,i}E_{i,c}K_{c}K_{c+1}^{-1}q_{c}^{-1} - \delta_{i,c}(-1)^{\delta_{c,m}}E_{c+1,j}K_{c}^{-1}K_{c+1},$

 $i < j, i \neq c,$ or $j \neq c + 1.$

2. $E_{a,i}E_{s,j} = (-1)^{E_{a,i}E_{s,j}}q_{a}E_{s,j}E_{a,i}, \quad s < i < j.$

3. $E_{js}E_{is} = (-1)^{E_{js}E_{is}}q_{s}^{-1}E_{is}E_{js}, \quad i < j < s.$

It follows from the formula (1) that $[E_{i,j}, F_{c,c+1}] = 0,$ if $i < c < c + 1 < j.$ Applying a similar proof as that for Lemma 4.1, one gets, for $i < s < t < j,$

4. $[E_{i,j}, F_{s,t}] = 0,$

and hence

5. $[F_{i,j}, E_{s,t}] = 0.$

The formula([19, (i)])

6. $[E_{a,b}, E_{c,d}] = (q_{b} - q_{b}^{-1})E_{a,d}E_{c,b}, \quad a < c < b < d$

can be easily verified by using the formula (2) and the fact $E_{ab} = E_{ac}E_{cb} - q_{c}^{-1}E_{cb}E_{ac}.$ Note that the original assumption in [19] is imprecise.

Set

$S^{+} = \{E_{ij}|(i,j) \in I\}, S_{0}^{+} = \{E_{ij}|(i,j) \in I_{0}\}, S_{1}^{+} = \{E_{ij}|(i,j) \in I_{1}\},$

$\mathcal{H} = \{K_{i}|1 \leq i \leq m + n\}, \quad S^{-} = \Omega(S^{+}), \quad S_{0}^{-} = \Omega(S_{0}^{+}), \quad S_{1}^{-} = \Omega(S_{1}^{+}).$

For $x, y \in S := S^{-} \cup \mathcal{H} \cup S^{+},$ we write $x < y$ if one of the following conditions holds:

(i) $x \in S^{-}, \quad y \in S_{0}^{-} \cup \mathcal{H} \cup S^{+},$

(ii) $x \in S^{-}, \quad y \in \mathcal{H} \cup S^{+},$

(iii) $x \in \mathcal{H}, \quad y \in S^{+},$

(IV) $x \in S_{0}^{+}$ and $y \in S_{1}^{+},$
(V) \(x = E_{i,j} \in S_i^+, y = E_{s,t} \in S_t^+, i \in \{0, 1\}\), where \(i < s\) or, \(i = s\) and \(j < t\).

(VI) \(x, y \in S_i^-\) with \(\Omega(y) < \Omega(x)\).

For \(x, y \in S\), we write \(x \lesssim y\) if \(x < y\) or \(x = y\). The order \(<\) (but not \(\lesssim\)) can be extended naturally to a larger set \(\overline{S} = \{x^n| x \in S, n \in \mathbb{Z}^+\}\) by letting \(x^n < y^m\) if and only if \(x < y\). We call a product \(x_1x_2 \cdots x_n \in U_q(x_i \in S)\) a standard monomial if \(x_i < x_j\) whenever \(i < j\).

Lemma 4.3. Let \(x, y \in S^+\) with \(x \lesssim y\). Then

\[
yx = \sum_{x_i \lesssim y_j} c_i x_i y_i, \quad c_i \in A.
\]

Proof. Let \(x = E_{i,j}, y = E_{s,t}\). Suppose both \(x\) and \(y\) are contained in the same \(S_i^+, i = 0, 1\). In view of the formulas from Lemma 4.1, 4.2, we need only verify the case \(i < s < j < t\). By the formula (6), we get

\[
yx = E_{s,t}E_{i,j} = (-1)^{E_{i,j}E_{s,t}}[E_{i,j}E_{s,t} - (q_j - q_j^{-1})E_{i,t}E_{s,j}].
\]

Since \(E_{i,j} < E_{i,t} < E_{s,j} < E_{s,t}\), the lemma follows immediately.

Suppose \(x \in S_0^+\) and \(y \in S_1^+\). It suffices to verify the cases \(i < s < j \leq m < t\) and \(s < m < i < t < j\). In case \(i < s < j \leq m < t\), we use the identity \((*)\) above. In this case we have \(E_{i,j} < E_{s,j} < E_{i,t} < E_{s,t}\). By Lemma 4.1, we have \(E_{i,t}E_{s,j} = (-1)^{E_{i,t}E_{s,j}}E_{s,j}E_{i,t}\), so that the lemma follows. The case \(s < m < i < t < j\) can be proved similarly.

Let \(E_i^d\) denote the standard monomial \(\Pi_{(i,j) \in I_1} E_{i,j}^{d_{ij}}, d_{ij} \in \{0, 1\}\). Set \(|d| = \sum d_{ij}\). For \(k \geq 0\), let \(\mathcal{N}_1^{(k)} = \{E_i^d||d| = k\}\). Since \(E_{i,j}^2 = 0\) for \((i, j) \in I_1\), we have \(\mathcal{N}_1^{(k)} = 0\) for any \(k > nm = |I_1|\). Set

\[\mathcal{N}_1 = \sum_{k \geq 0} \mathcal{N}_1^{(k)}, \quad \mathcal{N}_1^+ = \sum_{k > 0} \mathcal{N}_1^{(k)}\]

If \(E_{ij} \ll E_{st}\) with \((i, j) \in I_1\), then we get by definition that \((s, t) \in I_1\). From Lemma 4.3, it then follows that \(\mathcal{N}_1^{(i)}\mathcal{N}_1^{(j)} \subseteq \mathcal{N}_1^{(i+j)}\), and hence \((\mathcal{N}_1^+)^{nm+1} = 0\). Let

\[\mathcal{N}_{-1} =: \Omega(\mathcal{N}_1)\]

Using Coro. 3.11(1) and Lemma 4.3, one obtains easily that

\[U_q = \mathcal{N}_{-1}U_q(\mathfrak{g}_0)\mathcal{N}_1\]

Lemma 4.4. Let \(k \geq 0\). Then \(\mathcal{N}_1^{(k)}U_q(\mathfrak{g}_0) \subseteq U_q(\mathfrak{g}_0)^{\mathcal{N}_1^{(k)}}\)

Proof. We proceed with induction on \(k\). The case \(k = 0\) is trivial. Assume \(k > 1\). To apply the induction hypotheses, it is sufficient to show that \(E_{ij}U_q(\mathfrak{g}_0) \subseteq U_q(\mathfrak{g}_0)^{\mathcal{N}_1^{(1)}}\) for any fixed \(E_{ij}\) with \((i, j) \in I_1\). Since \(U_q(\mathfrak{g}_0)\) is generated by the
elements $E_{s,s+1}, F_{s,s+1}, K_t^{\pm 1}, s \in [1, m+n) \setminus m, t \in [1, m+n]$, the proof reduces to showing that $E_{ij}x \in U_q(\mathfrak{g}_0)\mathcal{N}_1^{(1)}$ with x being one of the above generators. The case $x = K_t^{\pm 1}$ is obvious; the case $x = F_{s,s+1}$ follows from Lemma 4.2(1); the case $x = E_{s,s+1}$ is given by Lemma 4.1, Lemma 4.2(2),(3) and the first equation provided by Remark 2.2(1).

From the lemma it follows that $U_q(\mathfrak{g}_0)\mathcal{N}_1^+$ is a nilpotent ideal of the subalgebra $U_q(\mathfrak{g}_0)\mathcal{N}_1$.

5 Highest weight modules for U_q

In this section, we shall construct simple highest weight U_q-modules following the procedure in [16].

Recall the \tilde{U}_q-module $M_k(\mathfrak{c})$. Let $k = \mathbb{F}(q)$ and denote $M_k(\mathfrak{c})$ simply by $M(\mathfrak{c})$. Set

$$\phi_{ij} =:\begin{cases}
\xi^2 \xi_j - (q + q^{-1})\xi_i \xi_j \xi_i + \xi_j \xi_i^2, & \text{if } |i - j| = 1, i \neq m \\
\xi \xi_i - \xi_j \xi_i, & \text{if } |i - j| > 1,
\end{cases}$$

$$\phi_m =: \xi_m^2, \quad \phi_{ex} =: \xi_m - 1 \xi_m \xi_{m+1} + \xi_{m+1} \xi_m - 1 \xi_{m+1} \xi_m + 1 \xi_m \xi_{m-1} \xi_m + 1 \xi_m \xi_{m+1} \xi_m - 1$$

Let $N = N_0 \oplus N_1$ be the two-sided ideal of $M(\mathfrak{c})$ generated by these homogeneous elements. Recall the endomorphisms $E_{\alpha_i}, F_{\alpha_i}, K_j^{\pm 1}, i \in [1, m+n), j \in [1, m+n]$ given in Lemma 3.5.

Lemma 5.1. N is stable under these endomorphisms.

Proof. As a vector space, N is spanned by homogeneous elements of the form $u_1 \phi_{ij} u_2, u_1 \phi_m u_2, u_1 \phi_{ex} u_2, u_1, u_2 \in h(M(\mathfrak{c}))$. It follows immediately from definition that N is stable under all $F_{\alpha_i}(i \in [1, m+n)), K_j^{\pm 1}(j \in [1, m+n])$. We can assume $u_1 = \xi_{i_1} \cdots \xi_{i_k}$. Recall the notion $u_{ij}(1 \leq i \neq j \leq m+n), u_{ex}$. Then we get from Lemma 3.5 that, for all $t \in [1, m+n)$,

$$E_{\alpha_i} u_1 \phi_{ij} u_2 = E_{\alpha_i} \xi_{i_1} \cdots \xi_{i_k} \phi_{ij} u_2$$

$$= E_{\alpha_i} F_{\alpha_{i_1}} \cdots F_{\alpha_{i_k}} u_{ij} u_2$$

$$= (-1)^{E_{\alpha_i}} \sum_{s=1}^k F_{\alpha_{is}} + \bar{u}_{ij}) F_{\alpha_{i_1}} \cdots F_{\alpha_{i_k}} u_{ij} E_{\alpha_i} u_2 + [E_{\alpha_i}, F_{\alpha_{i_1}} \cdots F_{\alpha_{i_k}}] u_{ij} u_2$$

The first summand is obviously contained in N. Since the commutator $[E_{\alpha_i}, F_{\alpha_{i_1}} \cdots F_{\alpha_{i_k}}]$ is contained in $\tilde{U}_q - \tilde{U}_q^0$, the second summand is in N, while Lemma 3.7, applied with Ω, implies that the third summand is equal to zero. So we get $E_{\alpha_i} u_1 \phi_{ij} u_2 \in N$.

Similarly one can show that the endomorphism E_{α_i} maps the elements $u_1 \phi_m u_2, u_1 \phi_{ex} u_2$ into N, and the proof is complete.
Lemma 5.1 immediately yields a \tilde{U}_q-module $\tilde{M}(c) =: M(c)/N$.

Lemma 5.2. The k-linear maps $E_{a_i}, F_{a_i}, K_\pm^1$: $\tilde{M}(c) \rightarrow \tilde{M}(c)$ induced by the analogous maps in Lemma 3.5 satisfy the relations (R4)-(R8) in 2.2, hence define a U_q-module $\tilde{M}(c)$.

Proof. The proof follows from a similar arguments as in non-super case(cf. [8]). To illustrate, we show that the relation (R8) is satisfied by the k-linear maps E_{a_i}, F_{a_i}. By Remark 2.2(3), the relation (R8) can be written as $u_{ex}^\pm = 0$. Note that $u_{ex}^\pm \in (\tilde{U}_q)_0$. Then we have

$$u_{ex}^- \xi_{i_1} \cdots \xi_{i_r} = \phi_{ex} \xi_{i_1} \cdots \xi_{i_r} \in N.$$

$$u_{ex}^+ \xi_{i_1} \cdots \xi_{i_r} = u_{ex}^+ f_{i_1} \cdots f_{i_r} \cdot 1$$

$$= f_{i_1} \cdots f_{i_r} u_{ex}^+ \cdot 1 + [u_{ex}^+, f_{i_1} \cdots f_{i_r}] \cdot 1$$

$$= \sum_{k=1}^r f_{i_1} \cdots [u_{ex}^+, f_{i_k}] \cdots f_{i_r} \cdot 1.$$

Since the commutator $[u_{ex}^+, f_{i_k}]$ is equal to $u_1 \phi_{m} u_2$ with $u_1, u_2 \in M(c)$ by Lemma 3.7, 3.8, the summation above is contained in N. Therefore we have $u_{ex}^\pm = 0$ on $M(c)$. \qed

Let $M = M_0 \oplus M_1$ be a U_q-module. For any $c = (c_1, \ldots, c_{m+n}) \in (k^*)^{m+n}$, set $M_c = \{ x \in M | Kix = c_ix, i = 1, \ldots, m+n \}$ and $(M_c)_j = M_c \cap M_j, \quad j \in \mathbb{Z}_2$. Then it is easy to prove that $M_c = (M_c)_0 \oplus (M_c)_1$ and $\sum_c M_c$ is a direct sum.

For each $\mu = \mu_1 \epsilon_1 + \mu_2 \epsilon_2 + \cdots + \mu_{m+n} \epsilon_{m+n} \in \Lambda$, set $q^\mu = (q^{\mu_1}, \ldots, q^{\mu_{m+n}}) \in (k^*)^{m+n}$.

By the relation (R2) from 2.2, one gets, for all $i \in [1, m+n)$,

$$E_{a_i} M_c \subseteq M_{cq^{a_i}}, \quad F_{a_i} M_c \subseteq M_{cq^{-a_i}}.$$

Let $c_1, c_2 \in (k^*)^{m+n}$. We define $c_2 \leq c_1$ to mean that

$$c_1 c_2^{-1} = q^{\sum l_i a_i}, l_i \in \mathbb{N}.$$

It is easy to see that this is a well defined partial order. A homogeneous nonzero element $x \in M_c$ is called maximal if $E_{a_i} x = 0$ for all $i \in [1, m+n)$. We call $M = M_0 \oplus M_1$ a highest weight module if there is a maximal vector $v^+ \in M_c$ such that $M = U_q v^+$.

Note that any proper \mathbb{Z}_2-graded U_q-submodule of M is contained in the \mathbb{Z}_2-graded subspace $\sum_{c^' \leq c} M_{c'}$, hence M has a unique maximal \mathbb{Z}_2-graded submodule and a unique simple $(\mathbb{Z}_2$-graded) quotient.

For the U_q-module $\tilde{M}(c)$ as above, since the image of $1 \in M(c)$ is nonzero, it is a maximal vector of $\tilde{M}(c)$ which generates $\tilde{M}(c)$ as a U_q-module. Then the unique simple quotient of $\tilde{M}(c)$ is again a highest weight U_q-module of highest weight c.

18
Theorem 5.3. For each \(c \in (k^*)^{m+n} \), there exists a simple \(U_q \)-module of highest weight \(c \). It is unique up to isomorphism and contains a unique maximal vector, up to scalar multiple.

Proof. The existence of the simple module as claimed is given above, and the uniqueness of the maximal vector is proved exactly as in [16, 2.6].

To prove the uniqueness of the simple module, let \(I \) the left ideal of \(U_q \) generated by the elements

\[
E_{i,i+1}, i \in [1, m+n), K_j - c_j, j \in [1, m+n].
\]

By Coro. 3.11(1), we have \(U_q/I \cong U_q^- \). It is clear that \(U_q/I \) is a highest weight \(U_q \)-module of highest weight \(c \). Furthermore, each simple module of highest weight \(c \) is a homomorphic image of \(U_q/I \). Then the uniqueness of the simple quotient of \(U_q/I \) implies that any two simple modules of highest weight \(c \) are isomorphic. \(\blacksquare \)

6 \hspace{1em} The superalgebra \(U_A \)

Recall the notion \(K_{\alpha_i} =: K_iK_i^{-1}, i \in [1, m+n) \). To unify notation, put \(K_{\alpha_{m+n}} =: K_{m+n} \). Set

\[
\left[K_{\alpha_i}; c \right]_t = \prod_{s=1}^{t} \frac{K_{\alpha_i}q_i^{e_s+1} - K_{\alpha_i}^{-1}q_i^{-c+1}}{q_i^s - q_i^{-s}}
\]

for each \(i \in [1, m+n], c \in \mathbb{Z}, t \in \mathbb{N} \). Let \(U_A \) be the \(A \)-subalgebra(with 1) of \(U_q \) generated by the homogeneous elements

\[
E_{\alpha_i}^{(l)} = [l]!^{-1}E_{\alpha_i}^l, F_{\alpha_i}^{(l)} = [l]!^{-1}F_{\alpha_i}^l, K_{\alpha_i}^{\pm 1}, \left[K_{\alpha_i}; c \right]_t,
\]

\(l \in \mathbb{N}, i \in [1, m+n), j \in [1, m+n], s = m, m+n, c \in \mathbb{Z}, t \in \mathbb{N} \). By [16, 4.3.1] we get \(\left[K_{\alpha_i}; c \right]_t \in U_A(i \in [1, m+n) \setminus m, c \in \mathbb{Z}, t \in \mathbb{N}) \), so that \(\left[K_{\alpha_i}; c \right]_t \in U_A \) for all \(i \in [1, m+n], c \in \mathbb{Z}, t \in \mathbb{N} \).

Denote by \(\text{U}_A^+ \) (resp. \(\text{U}_A^-; \text{U}_A^0 \)) the \(A \)-subalgebra of \(U_A \) generated by the elements

\[
E_{\alpha_i}^{(l)} (\text{resp. } F_{\alpha_i}^{(l)}, K_{\alpha_i}^{\pm 1}, \left[K_{\alpha_i}; c \right]_t), i \in [1, m+n), j \in [1, m+n], c \in \mathbb{Z}, t \in \mathbb{N}.
\]

Let \(U_q(\frak{g}_0)_A \) (resp. \((\frak{N}_-)_A; (\frak{N}_1)_A \)) be the \(A \)-subalgebra of \(U_A \) generated by the homogeneous elements

\[
E_{\alpha_i}^{(l)} F_{\alpha_i}^{(l)}, l \in \mathbb{N}, i \in [1, m+n) \setminus m, K_{\alpha_i}^{\pm 1}, \left[K_{\alpha_i}; c \right]_t, j \in [1, m+n], c \in \mathbb{Z}, t \in \mathbb{N}
\]

(resp. \(E_{ij}^{(l)}, l = 0, 1, (i, j) \in \mathbb{Z}_4; F_{ij}^{(l)}, l = 0, 1, (i, j) \in \mathbb{Z}_4 \)).

It is easy to see that

\[
\Omega(U_A) = U_A \hspace{1em} \Omega(U_q(\frak{g}_0)_A) = U_q(\frak{g}_0)_A
\]
\[\Omega(U_\mathcal{A}^\pm) = U_\mathcal{A}^\pm \quad \Omega((\mathcal{N}_1)_\mathcal{A}) = (\mathcal{N}_1)_\mathcal{A} \quad \Omega((\mathcal{N}_{-1})_\mathcal{A}) = (\mathcal{N}_{-1})_\mathcal{A}. \]

Recall the augmented Cartan matrix \(\bar{A} = (a_{ij}) \). By a short computation, we get, for \(l \in \mathbb{N}, i \in [1, m+n] \) and \(j \in [1, m+n] \),

\[
(h1) \quad \left[K_{\alpha_i}; c \right] E_{\alpha_j}^{(l)} = E_{\alpha_j}^{(l)} \left[K_{\alpha_i}; c + l a_{ij} \right].
\]

\[
(h2) \quad \left[K_{\alpha_i}; c \right] E_{\alpha_j}^{(l)} = E_{\alpha_j}^{(l)} \left[K_{\alpha_i}; c - l a_{ij} \right].
\]

Recall that \(E_{ij}^2 = 0 \) in case \(\bar{E}_{i,j} = \bar{1} \). So we denote \(E_{i,j}^{(N)} = [N]^{-1} E_{ij}^N \) only for \(N = 0, 1 \) if \(\bar{E}_{i,j} = \bar{1} \) but for all \(N \in \mathbb{N} \) if \(\bar{E}_{ij} = 0 \).

Lemma 6.1.

\[
\begin{align*}
(e1) & \quad E_{i,j}^{(N)} E_{i,j}^{(M)} = \binom{M + N}{N} E_{i,j}^{(N+M)}; \\
(e2) & \quad E_{i,j}^{(N)} E_{s,t}^{(M)} = (-1)^{N M} E_{i,s}^{(N)} E_{t,j}^{(M)} E_{i,j}^{(N)},
\end{align*}
\]

for \(i < s < t < j \) or \(s < t < i < j \);

\[
\begin{align*}
(e3) & \quad E_{t,a}^{(N)} E_{t,b}^{(M)} = \left((-1)^{\bar{E}_{t,a} \bar{q}_t} E_{t,a}^{(N)} E_{t,b}^{(M)} \right) E_{t,a}^{(N)}, \quad t < a < b; \\
(e4) & \quad E_{b,t}^{(N)} E_{a,t}^{(M)} = \left((-1)^{\bar{E}_{b,t} \bar{q}_t} E_{b,t}^{(N)} E_{a,t}^{(M)} \right) E_{a,t}^{(N)}, \quad a < b < t;
\end{align*}
\]

\[
(e5) \quad E_{i,c}^{(N)} E_{c,j}^{(M)} = \sum_{0 \leq k \leq \min\{N,M\}} q_{c}^{(M-k)(N-k)} E_{c,j}^{(M-k)} E_{i,c}^{(N-k)}, \quad i < c < j;
\]

\[
(e6) \quad E_{c,i+1}^{(M)} E_{j,j+1}^{(N)} = E_{j,j+1}^{(N)} E_{i,i+1}^{(M)} \quad \text{if} \quad i \neq j.
\]

Proof. (e1) is obvious. (e2) follows from induction with Lemma 4.1(a) and the relation (R5). (e3) and (e4) are given by induction with Lemma 4.2(2), (3). (e5) is given by induction on \(N, M \) with the formula from Remark 2.2(1). (e6) is immediate from the relation (R3).

With only minor adjustments of the Kac’s formula in [16, 4.3], one obtains

\[
(e7) \quad E_{\alpha_i}^{(N)} E_{\alpha_i}^{(M)} = \sum_{0 \leq t \leq \min\{M,N\}} (-1)^{\delta_{i,m} N M (t-1)} E_{\alpha_i}^{(M-t)} F_{\alpha_i}^{(N-t)} \left[K_{\alpha_i}; 2t - N - M \right] E_{\alpha_i}^{(N-t)}.
\]

Using the formulas (e6)-(e7) above, together with (h1), (h2), we get \(U_\mathcal{A} = U_\mathcal{A}^- U_\mathcal{A}^0 U_\mathcal{A}^+ \), and which, together with Lemma 4.3, implies that

\[U_\mathcal{A} = (\mathcal{N}_{-1})_\mathcal{A} U_\mathcal{A} (\mathcal{N}_0)_\mathcal{A} (\mathcal{N}_1)_\mathcal{A}. \]
7 The PBW theorem

Assume \((r_1, \ldots, r_{m+n}) \in \mathbb{Z}^{m+n}\) with \(r_i - r_{i+1} \in \mathbb{N}\) for all \(i \in [1, m+n] \setminus m\). Let
\(M = M_0 \oplus M_1\) be a simple \(U_q\)-module with highest weight \(c = (q_1^{r_1}, \ldots, q_{m+n}^{r_{m+n}})\), and
let \(x \in M_c\) be a maximal vector. Set \(M_A = U_A x \subseteq M\). Then by a proof similar to
that of [16, Prop. 4.2], one gets

Lemma 7.1.
(a) \(M_A\) is a \(U_A\)-submodule of \(M\).
(b) \(\mathbb{F}(q) \otimes_A M_A \rightarrow M\) is an (even) isomorphism of \(\mathbb{F}(q)\)-vector spaces.
(c) \(M_A\) is the direct sum of \(M_A \cap M_{c'}\) with each \(M_A \cap M_{c'}\) a finite generated free \(A\)-module of finite rank.

Recall from Sec. 4 that

\[
U_q(\mathfrak{g}_0) \mathcal{N}_1 = U_q(\mathfrak{g}_0) + U_q(\mathfrak{g}_0) \mathcal{N}_1^+
\]
and \(U_q(\mathfrak{g}_0) \mathcal{N}_1^+\) is a nilpotent (\(\mathbb{Z}_2\)-graded) ideal of \(U_q(\mathfrak{g}_0) \mathcal{N}_1\). Since \(U_q(\mathfrak{g}_0)\) contains no zero divisors, the sum is direct. Let \(N = N_0 \oplus N_1\) be a simple \(U_q(\mathfrak{g}_0) \mathcal{N}_1\)-module. Then \(U_q(\mathfrak{g}_0) \mathcal{N}_1^+ N\) is a graded submodule of \(N\) which must be 0 since \(U_q(\mathfrak{g}_0) \mathcal{N}_1^+\) is nilpotent. It follows that \(N\) is also simple as a \(U_q(\mathfrak{g}_0)\)-module, so that \(N = N_0\) or \(N = N_1\). Therefore, each simple \(U_q(\mathfrak{g}_0) \mathcal{N}_1\)-module is a simple \(U_q(\mathfrak{g}_0)\)-module (concentrated in 0 or 1) annihilated by \(U_q(\mathfrak{g}_0) \mathcal{N}_1^+\).

Let \(M_0\) be a simple \(U_q(\mathfrak{g}_0)\)-module of highest weight \(c = (q_1^{r_1}, \ldots, q_{m+n}^{r_{m+n}})\). We view \(M_0\) as a \(U_q(\mathfrak{g}_0) \mathcal{N}_1\)-module annihilated by \(U_q(\mathfrak{g}_0) \mathcal{N}_1^+\). Define the induced \(U_q\)-module

\[
K(c) = U_q \otimes_{U_q(\mathfrak{g}_0) \mathcal{N}_1} M_0.
\]

Now let \(v^+ \in (M_0)_c\) be a maximal vector. We regard \(\mathbb{F}\) as an \(A\)-module by letting \(q\) act as multiplication by 1. Set

\[
K_A = U_A v^+ \subseteq K(c), \quad \bar{K}(c) = \mathbb{F} \otimes_A K_A.
\]

Let \(e_{i,i+1}, f_{i,i+1}, i \in [1, m+n], h_{\alpha_j}, K_j, j \in [1, m+n]\) denote respectively the endomorphisms of \(\bar{K}(c)\) induced by the elements

\[
E_{i,i+1}, F_{i,i+1}, \left[K_{\alpha_j} ; \begin{array}{c} 0 \\ 1 \end{array} \right], K_j.
\]

Then we have

Lemma 7.2.
(1) \(\bar{K}_j = 1\).

(2) The elements \(e_{\alpha_i} = e_{i,i+1}, f_{\alpha_i} = f_{i,i+1}, h_{\alpha_i}\) satisfy the relations for the universal enveloping algebra \(U(\mathfrak{g})\) of the Lie superalgebra \(\mathfrak{g} = gl(m,n)\) (see 2.2).

(3) The element \(h_{\alpha_i}\) acts on \(\bar{K}(c)_c\) as multiplication by

\[
\begin{align*}
 r_i - (-1)^{b_i} r_{i+1}, & \quad i \in [1, m+n] \\
 r_{m+n}, & \quad i = m+n.
\end{align*}
\]
(4) In case of \(\mathbb{F} = \mathbb{C} \), the \(U(\mathfrak{g}) \)-module \(\tilde{K}(c) \) is a homomorphic image of the Kac module \(\mathcal{K}(\lambda) \) (see 2.2) with \(\lambda = \sum_{i=1}^{m+n} r_i \epsilon_i \in \Lambda \).

Proof. (1)-(3). We first verify that \([h_{\alpha_m}, e_{m+1,m+2}] = e_{m+1,m+2} \). Indeed, we have

\[
\frac{K_m K_{m+1}^{-1} - K_m^{-1} K_{m+1}}{q_m - q_m^{-1}} E_{m+1,m+2} - E_{m+1,m+2} \frac{K_m K_{m+1}^{-1} - K_m^{-1} K_{m+1}}{q_m - q_m^{-1}} = E_{m+1,m+2} ((q_m - 1) \frac{K_m K_{m+1}^{-1} - K_m^{-1} K_{m+1}}{q_m - q_m^{-1}} + K_m^{-1} K_{m+1})
\]

in \(U_A \), which gives us

\[
h_{\alpha_m} e_{m+1,m+2} - e_{m+1,m+2} h_{\alpha_m} = e_{m+1,m+2}
\]
on \(\tilde{K}(c) \). The remaining relations can be proved similarly (cf. [16, 4.11]).

(4) Let \(v^+ \in K(c) \) be a maximal vector. Since \(K_A = U_A v^+ = (N_{-1})_A U_q(\mathfrak{g}_0)_A (N_1)_A v^+ = (N_{-1})_A U_q(\mathfrak{g}_0)_A v^+ \), we have

\[
\tilde{K}(c) = U(\mathfrak{g}_-)_A U(\mathfrak{g}_0)_A v^+ = U(\mathfrak{g}_-)_A U(sl_m \oplus sl_n) v^+.
\]

By the assumption on \(c \), the \(U(\mathfrak{g}_0) \)-submodule \(U(\mathfrak{g}_0)_A v^+ \) is integrable. Then it is a semisimple \(U(sl_m \oplus sl_n) \)-module by [11, 10.7]. Since it is generated by a unique maximal vector \(v^+ \), it is a simple \(U(sl_m \oplus sl_n) \)-module, and hence a simple \(U(\mathfrak{g}_0) \)-module. Thus, \(\tilde{K}(c) \) is a homomorphic image of the Kac module \(\mathcal{K}(\lambda) \).

Recall the notion \(E_1^d, d \in \{0,1\}^{\mathbb{Z}_1} \). Denote by \(E_0^\psi \) the standard monomial \(\Pi_{(i,j) \in \mathbb{Z}_0} E_i^\psi_j \) for each \(\psi = (\psi_{ij})_{(i,j) \in \mathbb{Z}_0} \in \mathbb{N}^{\mathbb{Z}_0} \). Set

\[
F_1^d = \Omega(E_1^d), d \in \{0,1\}^{\mathbb{Z}_1}, \quad F_0^\psi = \Omega(E_0^\psi), \psi \in \mathbb{N}^{\mathbb{Z}_0}.
\]

Theorem 7.3. The set of elements

\[B = \{ F_1^d F_0^\psi | d \in \{0,1\}^{\mathbb{Z}_1}, \psi \in \mathbb{N}^{\mathbb{Z}_0} \} \]

is a \(\mathbb{F}(q) \)-basis of the subalgebra \(U_q^- \).

Proof. Let \(B_1 \) be any finite subset of \(B \). It suffices to show that the set \(B_1 \) is linearly independent. It’s no loss of generality to assume \(\mathbb{F} = \mathbb{C} \). Choose an integer \(\mu > 0 \) such that \(\psi_{ij} \leq \mu \) for all \((i,j) \in \mathbb{Z}_0\) and all \(\psi \) with \(F_1^d F_0^\psi \in B_1 \). By the representation theory of \(U(\mathfrak{g}_0) \), there is a finite dimensional simple \(U(\mathfrak{g}_0) \)-module with such a highest weight \(\lambda = \sum_{i=1}^{m+n} r_i \epsilon_i \) that \(\mu \leq r_i - r_{i+1} \) for all \(i \in [1,m+n) \setminus m \). We may also assume \(\lambda \) is typical by the note (1) in Sec. 2.2.

Let \(c = (q_{m+1}^r, \ldots, q_{m+n}^r) \), and let \(\tilde{K}(c) \) be as defined above. According to [10, Prop. 2.9], the \(U(\mathfrak{g}) \)-module \(\mathcal{K}(\lambda) \) is simple. Then Lemma 7.2(4) shows that \(\tilde{K}(c) \cong \mathcal{K}(\lambda) \). Therefore, our assumption implies that the elements in \(B_1 \) induce linearly independent endomorphisms of the Kac module \(\tilde{K}(c) \), so that the set \(B_1 \) is linearly independent. \(\square \)
Corollary 7.4. (PBW theorem) The following elements

\[F_i^d q^\psi F_0^e K_\mu E_0^d E_1^d, \quad d, d' \in \{0, 1\}^I, \psi, \psi' \in N^{\mathbb{T}_0}, \mu \in \Lambda \]

form a \(\mathbb{F}(q) \)-basis of \(U_q \).

Consequently, we get an isomorphism of \(\mathbb{F}(q) \)-vector spaces:

\[\mathcal{N}_{-1} \otimes U_q(\mathfrak{g}_0) \otimes \mathcal{N}_1 \rightarrow U_q, \quad u^- \otimes u_0 \otimes u^+ \rightarrow u^-u_0u^+, \quad u^\pm \in \mathcal{N}_{\pm 1}, u_0 \in U_q(\mathfrak{g}_0). \]

8 Generators and relations of \(U_A \)

In this subsection, we shall give a description of the \(A \)-superalgebra \(U_A \) in terms of generators and relations.

We shall consider the set consisting of the following variables:

\[(a) \quad E_{ij}^{(N)}((i, j) \in \mathcal{I}, N \in \{\mathbb{N}, 0\}, \text{if } (i, j) \in \mathcal{I}_0 \), \]
\[(b) \quad F_{ij}^{(N)}((i, j) \in \mathcal{I}, N \in \{0, 1\}, \text{if } (i, j) \in \mathcal{I}_1 \), \]
\[(c) \quad K_{\alpha_i}, K_{\alpha_i}^{-1}, \left[K_{\alpha_i}; c \right] (i \in [1, m + n], c \in \mathbb{Z}, t \in \mathbb{N}). \]

The parity of the variable is defined naturally. We denote the variable \(E_{i, i+1}^{(N)} \) (resp. \(F_{i, i+1}^{(N)} \)) also by \(E_{ii}^{(N)} \) (resp. \(F_{ii}^{(N)} \), \(i \in [1, m + n] \). The variable \(E_{ij}^{(1)} \) (resp. \(F_{ij}^{(1)} \)), \((i, j) \in \mathcal{I} \) is also denoted by \(E_{ij} \) (resp. \(F_{ij} \)).

Let \(\mathcal{V}^+ \) be the \(A \)-superalgebra defined by the homogeneous generators \((a) \) and relations

\[(e0) \quad E_{ij}^{(0)} = 1, (i, j) \in \mathcal{I}, \quad E_{ij}^{(2)} = 0, (i, j) \in \mathcal{I}_1, \]
\[(e1) - (e5) : \quad (e1)-(e5) \text{ in Lemma 6.1}. \]

Let \(\mathcal{V}^- \) be the \(A \)-superalgebra defined by the homogeneous generators \((b) \) and relations

\[(f0) \quad F_{i,j}^{(0)} = 1, (i, j) \in \mathcal{I}, \quad F_{ij}^{(2)} = 0, (i, j) \in \mathcal{I}_1, \]
\[(f1) \quad F_{ij}^{(N)} F_{ij}^{(M)} = \left[M + N \right]_{F_{ij}^{(N+M)}}, \]
\[(f2) \quad F_{i,j}^{(N)} F_{s,t}^{(M)} = (-1)^{NMF_{ij}F_{st}F_{si}^{(M)}F_{ij}^{(N)}}, \]

for \(i < s < t < j \) or \(s < t < i < j \),

\[(f3) \quad F_{t,a}^{(N)} F_{t,b}^{(M)} = [(-1)^{F_{t,a}q_{dt}}]^{NM} F_{t,b}^{(N)} F_{t,a}^{(M)} , \quad t < a < b, \]
\[(f4) \quad F_{b,t}^{(N)} F_{a,t}^{(M)} = [(-1)^{F_{b,t}q_{dt}^{-1}}]^{NM} F_{a,t}^{(N)} F_{b,t}^{(M)} , \quad a < b < t, \]
\[(f5) \quad F_{i,j}^{(M)} F_{i,c}^{(N)} = \sum_{0 \leq k \leq \min\{N,M\}} d_{c}^{M-k} F_{i,c}^{(N-k)} F_{i,j}^{(k)} F_{i,j}^{(M-k)}, \quad i < c < j. \]
Let \mathcal{V}^0 be the \mathcal{A}-algebra defined by the generators (c) and relations [14, 2.3(g1)-(g5)] with K_{α_i} and q_i in place of K_i and v respectively.

Recall the augmented Cartan matrix \tilde{A}. Let \mathcal{V} be the \mathcal{A}-superalgebra defined by the homogeneous generators (a), (b) and (c) and relations listed above together with relations (h1)-(h6) below:

\[(h1) \quad \left[\frac{K_{\alpha_i}; c}{t} \right] E_{\alpha_j}^{(l)} = E_{\alpha_j}^{(l)} \left[\frac{K_{\alpha_i}; c + la_{ij}}{t} \right] \]
\[(h2) \quad \left[\frac{K_{\alpha_i}; c}{t} \right] F_{\alpha_j}^{(l)} = F_{\alpha_j}^{(l)} \left[\frac{K_{\alpha_i}; c - la_{ij}}{t} \right] \]

for $l \in \mathbb{N}, i \in [1, m + n]$ and $j \in [1, m + n]$.

\[(h3) \quad E_{i,i+1}^{(M)} F_{j,j+1}^{(N)} = F_{j,j+1}^{(N)} E_{i,i+1}^{(M)} \quad \text{if} \quad i \neq j.\]

\[(h4) \quad E_{\alpha_i}^{(N)} F_{\alpha_i}^{(M)} = \sum_{0 \leq t \leq \min(M,N)} (-1)^{\delta_{m,N}(t-1)} F_{\alpha_i}^{(M-t)} \left[\frac{K_{\alpha_i}; 2t - N - M}{t} \right] E_{\alpha_i}^{(N-t)}.\]

\[(h5) \quad K_{\alpha_i}^\epsilon E_{\alpha_j}^{(N)} = q_i^{\epsilon N a_{ij}} E_{\alpha_j}^{(N)} K_{\alpha_i}^\epsilon, \quad \epsilon = \pm 1, a_{ij} \in \tilde{A}.\]

\[(h6) \quad K_{\alpha_i}^\epsilon F_{\alpha_j}^{(N)} = q_i^{\epsilon N a_{ij}} F_{\alpha_j}^{(N)} K_{\alpha_i}^\epsilon.\]

Lemma 8.1. Let $i < c < j$. Then the following identities hold in \mathcal{V}^+.

\[(1) \quad E_{i,c}^{(N)} = \sum_{k=0}^{N} (-1)^{k} q_c^{-k} E_{c,c}^{(k)} E_{i,c} E_{c,j}^{(N-k)}.\]

\[(2) \quad E_{i,c}^{(M)} E_{c,j}^{(M+N)} E_{i,c}^{(N)} = E_{c,j}^{(N)} E_{i,c}^{(M+N)} E_{i,c}^{(M)}.\]

\[(3) \quad E_{i,j}^{(N)} = \sum_{k=0}^{N} (-1)^{k} q_c^{-k} E_{c,c}^{(N-k)} E_{i,j}^{(N)} E_{i,c}^{(k)}.\]

\[(4) \quad E_{c,j}^{(N)} E_{i,c}^{(M)} = \sum_{0 \leq k \leq \min(N,M)} (-1)^{k} q_{c}^{k+(N-k)(M-k)} E_{i,c}^{(M-k)} E_{c,j}^{(N-k)} E_{i,c}^{(k)}.\]

\[(5) \quad [E_{ij}, E_{st}] = (q_j - q_j^{-1}) E_{it} E_{sj}, i < s < j < t.\]

Proof. (1) In the righthand side we substitute $E_{i,c}^{(N)} E_{c,j}^{(N-k)}$ by the expression provided by (e5); applying the formula [8, 0.2 (4)], we get the left-hand side.

(2) Substitute $E_{i,c}^{(M)} E_{c,j}^{(M+N)}$ from the left-hand side and $E_{i,c}^{(M+N)} E_{c,j}^{(M)}$ from the righthand side by the expression provided by (e5), we get equal expressions.

(3) follows immediately from (1) and (2).

(4) If $E_{ic} = E_{ic}^{(N)}$ (resp. $E_{c,j} = E_{c,j}^{(N)}$), then we get $M = 1$ (resp. $N = 1$) by our convention. In the righthand side of (4), we substitute $E_{i,c}^{(M)} E_{c,j}^{(N)}$ by the expressions provided by (e5), then applying (e4)(resp. (e3)), we get the left-hand side of (4). Suppose $E_{ic} = E_{i,c}^{(N)} = 0$. In the righthand side of (4), we apply (e3), then substitute
$E_{ic}^{(M-k)}E_{cj}^{(N-k)}$ by the expression provided by (e5); performing cancelations with the formula $[8, 0.2 (4)]$, we get the left-hand side of (4).

(5) is the formula (6) following Lemma 4.2. From Sec.4 it follows from the identities

$$E_{ij} = E_{ic}E_{cj} - q_c^{-1}E_{cj}E_{ic}, \quad E_{si}E_{sj} = (-1)^{E_{si}q_s}E_{sj}E_{si}, s < i < j$$

of which the first one is given by (e5) with $N = M = 1$, and the second one is given by (e3).

We introduce in \mathcal{V} the products

$$E_0^{(\psi)}E_1^d =: \Pi_{(i,j)\in I_0}E_{i,j}^{(\psi)}\Pi_{(i,j)\in I_1}E_{i,j}^{(d)}, \quad F_0^{(\psi)}F_1^d =: \Pi_{(i,j)\in I_0}F_{i,j}^{(d)}\Pi_{(i,j)\in I_1}F_{i,j}^{(\psi)},$$

$$\psi = (\psi_{ij})(i,j)\in \mathbb{Z}_0, d = (d_{ij})(i,j)\in \mathcal{I}_1 \in \{0, 1\}^{\mathcal{I}_1}$$

in the order given earlier.

Take a product $\xi_1\xi_2\cdots\xi_L$ in \mathcal{V}^+, with each ξ_i in the form $E_{ij}^{(N_{ij})}, N_{ij} \geq 1$. Using (e1), two adjacent elements $\xi_i = E_{ab}^{(M)}, \xi_{i+1} = E_{cd}^{(N)}$ are always assumed to satisfy $(a, b) \neq (c, d)$, so that either $\xi_i \prec \xi_{i+1}$ or $\xi_{i+1} \prec \xi_i$. A product $\xi_1\xi_2\cdots\xi_L$ is said to be in good order if there is $s, 1 \leq s \leq L + 1$, such that $\bar{\xi}_i = 0$ for all $s \leq i \leq L + 1$, where by $s = L + 1$ (resp. $s = 1$) we mean that $\bar{\xi}_1 = \cdots = \bar{\xi}_L = 0$ (resp. $\bar{\xi}_1 = \cdots = \bar{\xi}_L = 1$).

Lemma 8.2. Each $\xi_1\xi_2\cdots\xi_L$ in \mathcal{V}^+ is equal to an A-linear combination of products in good order.

Proof. We first prove the case that $L = 2$, $\bar{\xi}_1 = 1$ and $\bar{\xi}_2 = 0$.

Let $\xi_1 = E_{st}$ with $(s, t) \in \mathcal{I}_1$, and let $\xi_2 = E_{ij}^{(N)}$ with $(i, j) \in \mathcal{I}_0, N \geq 1$. By the relations (e2)-(e4), we need only check the following cases:

(1) $t = i$. We have

$$\xi_1\xi_2 = E_{si}E_{ij}^{(N)}$$

(by (e5)) = $q_i^{-N}E_{ij}^{(N)}E_{si} + E_{ij}^{(N-1)}E_{sj}$,

where $E_{si} = 1$ and hence $E_{sj} = 1$.

(2) $s = j$. Using Lemma 8.1(4), one verifies this case similarly as in (1).
(3) \(s < i < t < j \). In this case we must have \(m < i \), since \(\bar{E}_{ij} = 0 \). Then

\[
\xi_1 \xi_2 = E_{st} E_{ij}^{(N)}
\]

(by Lemma 8.1(1))

\[
(\text{by Case 1}) = \sum_{k=0}^{N} (-1)^k q_t^k E_{st} E_{ij}^{(N)} E_{it}^{(N-k)} E_{tj}^{(N-k)}
\]

\[
(\text{using (e2),(e4)}) = \sum_{k=0}^{N} f_k(q) E_{tj}^{(k)} E_{it}^{(N)} E_{st} E_{tj}^{(N-k)} + \sum_{k=0}^{N} g_k(q) E_{tj}^{(k-1)} E_{it}^{(N)} E_{tj}^{(N-k)} E_{sj},
\]

where \(f_k(q), g_k(q) \in \mathcal{A} \).

From Case 1 we see that the first summation is equal to an \(\mathcal{A} \)-linear combination of elements in the form \(E_{tj}^{(k)} E_{it}^{(N)} E_{st} E_{tj}^{(N-k)} \) and \(E_{tj}^{(k)} E_{it}^{(N)} E_{tj}^{(N-k)} E_{sj} \). Clearly \(\bar{E}_{st} = \bar{E}_{sj} = \bar{1} \), and \(\bar{E}_{ij} = \bar{E}_{it} = 0 \).

(4) \(i < s < j < t \). In this case we must have \(j \leq m \). Using Lemma 8.1(4), the remainder of the proof is similar to that in Case 3 and is therefore omitted.

In summary, \(\xi_1 \xi_2 \) is an \(\mathcal{A} \)-linear combination of the products \(\xi_1 \cdots \xi_k \) such that \(\xi_1 = \cdots = \bar{\xi}_{k-1} = 0, \bar{\xi}_k = \bar{1} \). Then the case \(L > 2 \) follows from induction on the number of \(\xi_k \), \(1 \leq i \leq L \), such that \(\xi_i = \bar{1} \). \(\square \)

Proposition 8.3. (a) \(\mathcal{V}^+ \) is generated as an \(\mathcal{A} \)-superalgebra by the elements \(E_{\alpha_i}^{(N)} = E_{i,i+1}^{(N)} \) \((i \in [1, m+n), N \geq 0) \).

(b) \(\mathcal{V}^+ \) is generated as an \(\mathcal{A} \)-module by the monomials \(E_0^{(\psi)} E_1^d, \psi \in \mathbb{N}^{T_0}, d \in \{0, 1\}^{T_1} \).

Proof. (a) is an immediate consequence of Lemma 8.1(1).

(b) Clearly \(\mathcal{V}^+ \) is spanned as an \(\mathcal{A} \)-module by the products \(\xi_1 \xi_2 \cdots \xi_L \) as above. To prove (b), we must show that each \(\xi_1 \xi_2 \cdots \xi_L \) is an \(\mathcal{A} \)-linear combination of the monomials \(E_0^{(\psi)} E_1^d, \psi \in \mathbb{N}^{T_0}, d \in \{0, 1\}^{T_1} \). By the preceding lemma, we need only consider the following two cases.

Case 1. \(\bar{\xi}_1 = \cdots = \bar{\xi}_L = \bar{0} \). In this case we show that \(\xi_1 \cdots \xi_L \) is equal to an \(\mathcal{A} \)-linear combination of elements \(E_0^{(\psi)} \). With respect to the order given earlier, let \(\xi_l = E_{ij}^{(N)} \) be the minimal in \(\{\xi_1, \ldots, \xi_L\} \) (In case the minimal element is not unique, let \(\xi_l \) be the one with the largest \(l \)). We proceed by induction on the order of \(\xi_l \).

If \(\xi_l \) has the maximal order, say \(\xi_l = E_{m+n-1,m+n}^{(N)} \) for some \(N \geq 1 \) (in case \(n \geq 2 \)), then we must have \(L = 1 \), so that the product is \(\xi_1 \xi_2 \cdots \xi_L \) and already in the form as desired. Assume each product with the minimal elements \(\triangleright E_{ij} \) is equal to an \(\mathcal{A} \)-linear combination of \(E_0^{(\psi)} \)'s. Let \(\xi_1 \cdots \xi_L \) be any fixed product with the minimal element \(\xi_l = E_{ij}^{(N)} \) for some \(N \geq 1 \). We first claim that \(\xi_1 \xi_2 \cdots \xi_L \) is an \(\mathcal{A} \)-linear combination of monomials \(\xi_1^1 \xi_2^2 \cdots \xi_K^K \), each of which satisfies either \(\xi_1^1 = E_{i,j}^{(N')} \)
with \(1 \leq N'\) and \(\xi_j' > \xi_l\) for all \(2 \leq j \leq K\), or \(\xi_j' > \xi_l\) for all \(1 \leq j \leq K\). Once the claim is established, the induction hypotheses leads to (b).

To prove the claim, we proceed by induction on \(l\). The case \(l = 1\) is trivial. Assume \(l > 1\) and assume \(\xi_{l-1} = E_{st}^{(M)}\) with \(M \geq 1\), so that \(\xi_{l-1} > \xi_l\). We have by (e2)-(e4) that

\[
\xi_{l-1}\xi_l = E_{st}^{(M)} E_{ij}^{(N)} = f(q)\xi_l\xi_{l-1}, f(q) \in A
\]

in following cases:

\[
s = i; \quad t = j; \quad i < s < t < j; \quad j < s.
\]

In case \(j = s\), we get by Lemma 8.1(4) that

\[
\xi_{l-1}\xi_l = E_{jt}^{(M)} E_{ij}^{(N)} = \sum_{k \leq N,M} (-1)^k q_j k^{(M-k)(N-k)} E_{ij}^{(N-k)} E_{it}^{(M-k)} E_{jt}^{(M-k)}.
\]

Clearly we have \(\xi_l < E_{it}^{(k)}\), \(\xi_l < E_{jt}^{(M-k)}\) whenever \(k \geq 1\) and \(M - k \geq 1\).

We are left only with the case \(i < s < j < t\), in which we have

\[
\xi_{l-1}\xi_l = E_{st}^{(M)} E_{ij}^{(N)}
\]

(using Lemma 8.1(3) and (e4))

\[
= \sum_{k=0}^N f_k(q) E_{sj}^{(M-k)} E_{jt}^{(M)} E_{ij}^{(N)} E_{st}^{(k)}
\]

(using Lemma 8.1(4))

\[
= \sum_{k,N,M} f_{k,k'}(q) E_{sj}^{(M-k)} E_{ij}^{(N-k)} E_{it}^{(k')} E_{jt}^{(M-k')} E_{sj}^{(k')}
\]

(using (e4))

\[
= \sum f_{\bar{k},\bar{k}'}(q) E_{sj}^{(N-k')} E_{ij}^{(M-k')} E_{it}^{(k')} E_{jt}^{(M-k')} E_{sj}^{(k')},
\]

where \(f_k(q), f_{k,k'}(q), \bar{f}_{k,k'}(q) \in A\). Clearly we have (see Sec. 2)

\[
E_{ij} < E_{sj}, E_{ij} < E_{it}, E_{ij} < E_{jt}.
\]

Substituting \(\xi_{l-1}\xi_l\) in the product \(\xi_1 \cdots \xi_L\) by the expression provided by above formulas, combining adjacent terms using (e1) if necessary, we obtain that \(\xi_1 \cdots \xi_L\) is equal to an \(A\)-linear combination of products \(\xi_1' \cdots \xi_K'\), in each of which the minimal element \(\xi_s'\) either is \(E_{ij}^{(N')}\) for some \(N' \geq 1\) with \(s < l\) or satisfies \(\xi_s' = \xi_l\). Then the claim follows from induction hypotheses on \(l\). This establishes Case 1.

Case 2. \(\bar{\xi}_1 = \cdots = \bar{\xi}_L = 1\). In this case each \(\xi_i\) is equal to \(E_{st}\) for some \((s, t) \in \mathcal{I}_l\), since \(E_{st}^{(2)} = 0\).

Assume \(L = 2\) and \(\xi_2 < \xi_1\). Let \(\xi_1 = E_{st}\) and let \(\xi_2 = E_{ij}\). We show that

\[
(\ast) \quad \xi_1\xi_2 = \sum_{\xi_2 \leq x_i \leq \xi_1, c_i \xi_1 y_i, c_i \in A}
\]
where each \(x_i\) or \(y_i\) is in the form \(E_{ij}, (i, j) \in \mathcal{I}_1\). In view of the proof of Case 1, one needs only verify the case \(i < s < j < t\), in which we have by Lemma 8.1(5) that

\[
\xi_1 \xi_2 = E_{st}E_{ij} = -E_{ij}E_{st} + (q_j - q_j^{-1})E_{it}E_{sj}.
\]

By definition, \(E_{ij} \prec E_{it} \prec E_{sj} \prec E_{st}\), so the formula (*) follows.

Using the formula (*) and applying the induction on the minimal element in a product \(\xi_1 \cdots \xi_L\) as in Case 1, we obtain that \(\xi_1 \cdots \xi_L\) is an \(\mathcal{A}\)-linear combination of \(E^d\), as desired.

Since there is a unique super-ring isomorphism \(\mathcal{V}^- \to (\mathcal{V}^+)^{opp}\) which carries \(F^{(N)}_{ij}\) into \(F^{(N)}_{ij}(i, j) \in \mathcal{I}\) and \(q \to q^{-1}\), we get

Proposition 8.4. (a) \(\mathcal{V}^-\) is generated as an \(\mathcal{A}\)-superalgebra by the elements \(F^{(N)}_{\alpha_i}(i \in [1, m+n], N \geq 0)\).

(b) \(\mathcal{V}^-\) is generated as an \(\mathcal{A}\)-module by the monomials

\[
F^d F_0^{(\psi)} (\psi \in \mathbb{N}^\mathcal{I}, d \in \{0, 1\}^\mathcal{I}).
\]

By [14, 2.14], \(\mathcal{V}^0\) is generated as an \(\mathcal{A}\)-module by the elements

\[
K^\delta_{\alpha_1} \cdots K^\delta_{\alpha_m+n} \left[K_{\alpha_1}; 0 \right] \cdots \left[K_{\alpha_m+n}; 0 \right],
\]

\(\delta_i \in \{0, 1\}, t_i \in \mathbb{N}\).

Clearly we have \(\mathcal{A}\)-superalgebra homomorphisms from \(\mathcal{V}^-, \mathcal{V}^0\), and \(\mathcal{V}^+\) to \(\mathcal{V}\) stabilizing the generators. Then we obtain an \(\mathcal{A}\)-linear map \(\pi: \mathcal{V}^- \otimes \mathcal{A} \mathcal{V}^0 \otimes \mathcal{A} \mathcal{V}^+ \to \mathcal{V}\).

It follows from the defining relations (h1) – (h6) of the \(\mathcal{A}\)-superalgebra \(\mathcal{V}\) that \(\pi\) is surjective.

Proposition 8.5. (a) \(\mathcal{V}\) is generated as an \(\mathcal{A}\)-superalgebra by the homogeneous elements

\[
E^{(N)}_{\alpha_i}, F^{(N)}_{\alpha_i}, K^\pm_{\alpha_j}, \left[K_{\alpha_j}; 0 \right], i \in [1, m+n], j \in [1, m+n], N \geq 0, t \geq 0.
\]

(b) \(\mathcal{V}\) is generated as an \(\mathcal{A}\)-module by the elements

\[
F^d F_0^{(\psi)} \prod_{i=1}^{m+n} (K^\delta_{\alpha_i} \left[K_{\alpha_i}; 0 \right]) E_0^{(\psi')} F^d',
\]

\(d, d' \in \{0, 1\}^\mathcal{I}, \psi, \psi' \in \mathbb{N}^\mathcal{I}, \delta_i \in \{0, 1\}, t_i \geq 0\).

Proof. (b) follows from the surjective map \(\pi\), Prop. 8.3(b) and Prop. 8.4(b).

By Prop. 8.3(a), Prop. 8.4(a) and the definition of \(\mathcal{V}\), \(\mathcal{V}\) is generated as an \(\mathcal{A}\)-superalgebra by the elements

\[
E^{(N)}_{\alpha_i}, F^{(N)}_{\alpha_i}, K^\pm_{\alpha_j}, \left[K_{\alpha_j}; c \right], i \in [1, m+n], j \in [1, m+n], c \in \mathbb{Z}, t \in \mathbb{N}.
\]
To prove (a), one needs only show that, for any $c \in \mathbb{Z}$, $t \in \mathbb{N}$, the element $\left[K_{\alpha_j}^c, t\right]_t$, $1 \leq j \leq m + n$ is generated by the elements $K_{a_i}^{\pm 1} \left[K_{\alpha_j}^0, t\right]_t$, $i \in [1, m + n], t \geq 0$. This is given in [14, 2.17].

We now form the \mathcal{A}'-superalgebras $\mathcal{V}^+_{\mathcal{A}'}$, $\mathcal{V}^-_{\mathcal{A}'}$, and $\mathcal{V}_{\mathcal{A}'}$ by applying $- \otimes \mathcal{A}'$ to \mathcal{V}^+, \mathcal{V}^-, \mathcal{V}_0, and \mathcal{V}. Write $E_{ij}^{(1)} \otimes 1$ and $F_{ij}^{(1)} \otimes 1$ as E_{ij} and F_{ij} respectively.

Proposition 8.6. $\mathcal{V}_{\mathcal{A}'}$ is the \mathcal{A}'-superalgebra defined by the generators $E_{ij}, F_{ij}(i, j) \in \mathcal{I}$, $K_{a_i}^{\pm 1}(s \in [1, m + n])$, and the following relations:

(a1) $E_{ij}^2 = 0$, $(i, j) \in \mathcal{I}_1$,

(a2) $E_{ij}E_{st} = (-1)^{E_{ij}E_{st}E_{ij}}E_{st}E_{ij}$ if $i < s < t < j$ or $s < t < i < j$,

(a3) $E_{ta}E_{tb} = (-1)^{E_{ta}E_{tb}}E_{tb}E_{ta}$, $t < a < b$,

(a4) $E_{bt}E_{at} = (-1)^{E_{bt}E_{at}}E_{at}E_{bt}$, $a < b < t$,

(a5) $E_{ij} = E_{ic}E_{cj} - q_{ij}E_{c}E_{ic}E_{cj}$, $i < c < j$,

(b1) $F_{ij}^2 = 0$, $(i, j) \in \mathcal{I}_1$,

(b2) $F_{ij}F_{st} = (-1)^{F_{ij}F_{st}F_{ij}}F_{st}F_{ij}$ if $i < s < t < j$ or $s < t < i < j$,

(b3) $F_{ta}F_{tb} = (-1)^{F_{ta}F_{tb}}F_{tb}F_{ta}$, $t < a < b$,

(b4) $F_{bt}F_{at} = (-1)^{F_{bt}F_{at}}F_{at}F_{bt}$, $a < b < t$,

(b5) $F_{ij} = -q_{ij}F_{ic}F_{cj} + F_{cj}F_{ic}$, $i < c < j$,

(c1) $K_{a_i}K_{a_j} = K_{a_j}K_{a_i}$,

(c2) $K_{a_i}K_{a_i}^{-1} = 1$,

(d1) $E_{a_i}F_{a_j} - (-1)^{\delta_{a_i}a_j}F_{a_j}E_{a_i} = \delta_{ij}\frac{K_{a_i} - K_{a_i}^{-1}}{q_i - q_i^{-1}}$, $i, j \in [1, m + n)$,

(d2) $K_{a_i}E_{a_j} = q_{a_i}^{-a_j}E_{a_j}K_{a_i}$, $a_{ij} \in \bar{A}$,

Proof. It is clear that all the formulas above follow immediately from the defining relations of \mathcal{V}. To complete the proof, we must show that, conversely, all the defining relations of \mathcal{V} follow from above formulas. This can be verified by induction (see Sec.6).
Similarly one obtains that V^+_A (resp. $V^-_A; V^0_A$) is the A'-superalgebra defined by the generators $E_{ij}((i, j) \in \mathcal{I})$ (resp. $F_{ij}((i, j) \in \mathcal{I}); K^{\pm 1}_{\alpha_i}(s \in [1, m+n])$ and relations (a1)-(a5)(resp. (b1)-(b5); (c1)-(c2)). Since the generators of U^0_A also satisfy the relations (c1), (c2), there is the canonical epimorphism $f : V^0_A \rightarrow U^0_A$ such that

$$f(K_{\alpha_i}) = \begin{cases} K_i K_{i+1}^{-1}, & i \in [1, m+n) \\ K_{m+n}, & i = m+n. \end{cases}$$

Then Coro.3.11(4) implies that f is an isomorphism. By the PBW theorem and [14, 2.21], U_A has the following PBW basis

$$F^d_1 F^\psi_0 \prod_{i=1}^{m+n} (K^{\delta_i}_{\alpha_i} \left[K_{\alpha_i}; 0 \right]) E^{\psi'}_0 E^d_1$$

$$(d, d' \in \{0, 1\}^{I_A}, \delta_i \in \{0, 1\}, \psi, \psi' \in \mathbb{N}^{I_A}, t_i \in \mathbb{N}).$$

Since the relations in Prop. 8.6 are also satisfied by the generators in U_A of the same notion, we get a unique A'-superalgebra epimorphism $\rho : V_A \rightarrow U_A$ such that

$$\rho(E_{ij}) = E_{ij}, \quad \rho(F_{ij}) = F_{ij}, \quad \rho(K_{\alpha_i}) = K_{\alpha_i}.$$

By the definition of U_A, we obtain

$$\rho(V) = U_A, \quad \rho(V^\pm) = U^\pm_A, \quad \rho(V^0) = U^0_A.$$

By Prop. 8.5(b), ρ carries a set of vectors that spans V as an A-module to the PBW-type basis of U_A. It follows that ρ is an A'-superalgebra isomorphism and the set vectors in Prop. 8.5(b) forms an A-basis of V_A (hence an A'-basis of V_A). Then $\rho_V : V \rightarrow U_A$ is an A-superalgebra isomorphism. This implies that $U_A \cong U_A \otimes A$.

By induction, one obtains

$$\Delta(E^{(N)}_{\alpha_i}) = \sum_{j=0}^{N} q_i^{j(N-j)} E^{(j)}_{\alpha_i} \otimes K^{N-j}_{\alpha_i} E^{(N-j)}_{\alpha_i},$$

$$\Delta(F^{(N)}_{\alpha_i}) = \sum_{j=0}^{N} q_i^{j(N-j)} F^{(j)}_{\alpha_i} K^{-j}_{\alpha_i} \otimes F^{(N-j)}_{\alpha_i}.$$

Then the A-superalgebra U_A obtains a unique Hopf superalgebra structure from U_A.

9 The relations with modular representations

Assume \mathbb{F} is a field of characteristic $p > 2$. Let G be the general linear \mathbb{F}-supergroup $GL(m, n)$. In this section we study the relations between quantum supergroups and modular representations of G.

30
9.1 Kostant \mathbb{Z}-forms

Let $U(\mathfrak{g})_Q$ be the universal enveloping superalgebra of the Lie superalgebra $\mathfrak{g} = gl(m,n)$ over Q. Recall the maximal torus H of \mathfrak{g}. Let $U(H)_Q \subseteq U(\mathfrak{g})_Q$ be its universal enveloping algebra. For each $h \in H$ and each $r \in \mathbb{N}$, set

\[
\binom{h}{r} = \frac{1}{r!} h(h-1) \cdots (h-r+1) \in U(H)_Q.
\]

As defined in [3], the Kostant \mathbb{Z}-form $U(\mathfrak{g})_\mathbb{Z}$ is a \mathbb{Z}-sub-superalgebra of $U(\mathfrak{g})_Q$ generated by

\[
e_{ij}^{(r)}(i,j) \in \mathcal{I}, r \geq 0, \left(e_{ss}^{(r)} \right)_r(s \in [1,m+n], r \geq 0).
\]

By [3, 3.1], $U(\mathfrak{g})_\mathbb{Z}$ is a free \mathbb{Z}-module with a basis consisting of all the monomials of the form

\[
\Pi_{(i,j) \in \mathcal{I}} f_{ij}^{d_{ij}} \Pi_{(i,j) \in \mathcal{I}_0} f_{ij}^{(a_{ij})} \Pi_{s=1}^{m+n} \left(e_{ss}^{(r)} \right)_r \Pi_{(i,j) \in \mathcal{I}} e_{ij}^{d_{ij}},
\]

$a_{ij}', a_{ij}, r_s \geq 0, d_{ij}', d_{ij} = 0, 1$, where the product is taken in any fixed order.

Recall the notation $h_{a_i}, i \in [1,m+n]$. Let T be the maximal torus of G such that, for each commutative superalgebra A, $T(A)$ is the subgroup of $G(A)$ consisting of all diagonal matrices. Choose a basis of $\phi_i, \phi_1, \cdots, \phi_{m+n}$ of $Y(T)$ defined by

\[
\phi_i(t) = \begin{cases}
\text{diag}(1 \cdots 1, t, t^{-1}, 1, \cdots, 1) & \text{if } i \in [1,m+n) \setminus m \\
\text{diag}(1, \cdots, 1, t^{(i)}_{(i+1)}, 1, \cdots, 1) & i = m \\
\text{diag}(1, \cdots, 1, t^{(m+n-1)}_{(m+n)}, \cdots, t^{(m+n)}_{(m+n)}) & i = m+n,
\end{cases}
\]

for any $t \in G_m(A)$. Then under the isomorphism from $U_\mathbb{Z} \otimes \mathbb{F}$ into $\text{Dist}(G)$ provided by [3, Th. 3.2], we have $h_{a_i} = (d \phi_i)(1), i \in [1,m+n]$. By [9, II, 1.11], the set of all $\Pi_{i=1}^{m+n} (h_{a_i})^r_i, r_i \geq 0$ is a basis of $\text{Dist}(T_\mathbb{Z})$. By taking a natural basis of $Y(T)$, one gets another basis of $\text{Dist}(T_\mathbb{Z})$ (see [3]) consisting of elements $\Pi_{i=1}^{m+n} (e_i)^r_i, r_i \geq 0$. This gives us

Lemma 9.1. $U(\mathfrak{g})_\mathbb{Z}$ has a \mathbb{Z}-basis consisting of all the monomials

\[
\Pi_{(i,j) \in \mathcal{I}} f_{ij}^{d_{ij}'} \Pi_{(i,j) \in \mathcal{I}_0} f_{ij}^{(a_{ij})} \Pi_{s=1}^{m+n} \left(h_{a_i}^{r_s} \right)_r \Pi_{(i,j) \in \mathcal{I}} e_{ij}^{d_{ij}},
\]

$a_{ij}', a_{ij}, r_s \geq 0, d_{ij}', d_{ij} \in \{0,1\}$, where the product is taken in any fixed order.

Similarly one can describe the Kostant \mathbb{Z}-form $U(\mathfrak{g}_0)_\mathbb{Z}$ and its \mathbb{Z}-bases.

The closed \mathbb{F}-subgroups G_{ev}, P of G are defined in [3] as follows. For each commutative superalgebra A, let $P(A)$ (resp. $G_{ev}(A)$) be the group of all invertible
$(m+n) \times (m+n)$ matrices of the same form as the one in $G(A)$ with the additional condition $Y = 0$ (resp. $Y = 0, X = 0$). Then we have $\text{Lie}(P) = g^+$.

The Kostant \mathbb{Z}-form $U(g^+)_\mathbb{Z}$ is a free \mathbb{Z}-module with a basis being given by the set of all monomials of the form

$$\Pi_{(i,j) \in \mathcal{I}_0} f^{(a_{ij})}_{i,j} \Pi_{1 \leq i \leq m+n} \left(h_{\alpha_i} \right) \Pi_{(i,j) \in \mathcal{I}_0} e^{(a'_{ij})}_{i,j} \Pi_{(i,j) \in \mathcal{I}_1} d_{ij}$$

for all $a_{ij}, a'_{ij}, r_i \in \mathbb{N}$ and $d_{ij} \in \{0, 1\}$, where the product is taken in any fixed order. Then by [3, Th.3.2], we have

$$U(g)_\mathbb{F} = U(g)_\mathbb{Z} \otimes \mathbb{F} \cong \text{Dist}(G), \quad U(g^+)_\mathbb{F} = U(g^+)_\mathbb{Z} \otimes \mathbb{F} \cong \text{Dist}(P).$$

To establish Th. 9.15 later, we introduce two more \mathbb{Z}-subalgebras of $U(g)_\mathbb{Z}$. Let $U(g^-)_\mathbb{Z}$ be the \mathbb{Z}-subalgebra of $U(g)$ generated by the elements $f_{ij}, (i,j) \in \mathcal{I}_1$. Then it is easy to see that $U(g^-)_\mathbb{Z}$ is a free \mathbb{Z}-module with a basis consisting of elements $\Pi_{(i,j) \in \mathcal{I}_1} d_{ij}, d_{ij} \in \{0, 1\}$, where the product is taken in any fixed order. Let $U(g^+_\mathbb{Z})$ be the \mathbb{Z}-submodule of $U(g)_\mathbb{Z}$ spanned by the basis vectors

$$\Pi_{(i,j) \in \mathcal{I}_0} f^{(a_{ij})}_{i,j} \Pi_{1 \leq i \leq m+n} \left(h_{\alpha_i} \right) \Pi_{(i,j) \in \mathcal{I}_0} e^{(a'_{ij})}_{i,j} \Pi_{(i,j) \in \mathcal{I}_1} d_{ij}$$

for all $a_{ij}, a'_{ij}, r_i \in \mathbb{N}$ and $d_{ij} \in \{0, 1\}$ with $\sum_{(i,j) \in \mathcal{I}_1} d_{ij} > 0$. Then it is routine to verify that $U(g^+_\mathbb{Z})$ is a \mathbb{Z}-subalgebra of $U(g)_\mathbb{Z}$. Clearly we have

$$U(g^+)_\mathbb{Z} = U(g_0)_\mathbb{Z} \oplus U(g^+)_\mathbb{Z}. $$

Set

$$U(g_0)_\mathbb{F} = U(g_0)_\mathbb{Z} \otimes \mathbb{F}, \quad U(g^-)_\mathbb{F} = U(g^-)_\mathbb{Z} \otimes \mathbb{F}, U(g^+_\mathbb{F}) = U(g^+_\mathbb{Z}) \otimes \mathbb{Z} \mathbb{F}.$$

Then it is clear that $U(g^-)_\mathbb{F}$ is the universal enveloping superalgebra of g_1 (see 2.2). Let us observe that $U(g^+_\mathbb{F})$ is the two-sided ideal of $U(g)_\mathbb{F}$ generated by the elements $e_{ij}, (i,j) \in \mathcal{I}_1$, and which is easily seen to be nilpotent. Since $U(g^+_\mathbb{F}) = U(g_0)_\mathbb{F} \oplus U(g^+_\mathbb{F})$, it follows that each simple $\text{Dist}(P)$-module is a simple $\text{Dist}(G_{ev})$-module annihilated by $U(g^+_\mathbb{F})$.

In the following, we identify Λ with \mathbb{Z}^{m+n} by mapping each $\lambda \in \Lambda$ into

$$(\lambda(h_{\alpha_1}), \cdots, \lambda(h_{\alpha_{m+n}})) \in \mathbb{Z}^{m+n}. $$

Then each $z = (z_1, \cdots, z_{m+n}) \in \mathbb{Z}^{m+n}$ is equal to $\lambda = \sum_{i=1}^{m+n} \lambda_i e_i \in \Lambda$ such that $z_i = \lambda_i - (-1)^{\delta_{im}} \lambda_{i+1}$, $i \in [1, m+n)$, $z_{m+n} = \lambda_{m+n}$. We say that $z \in \mathbb{Z}^{m+n}$ is p-typical if the corresponding $\lambda \in \Lambda$ is p-typical (see Sec.2).

Let M be a $\text{Dist}(G)$-module. For each $z = (z_1, \cdots, z_{m+n}) \in \mathbb{Z}^{m+n}$, define the z-weight space of M by

$$M_z = \{ m \in M | (h_{\alpha_i})_m = (z_i)_m \text{ for all } i = 1, \cdots, m+n, r \geq 1 \}. $$
For \(i \in [1, m+n] \), \(r \geq 1 \), by the discussion preceding Lemma 9.1 one can write \((e_i)_r \) as a \(\mathbb{Z} \)-linear combination of products \(\Pi_{i,n}(h^0_{ij}, \bar{s}) \) \(U \mathbb{Z} \). This implies that the \(z \)-weight space \(M_z \) is exactly the \(\lambda \)-weight space (see [3, 3.3])

\[
M_\lambda = \{ m \in M | \left(\frac{e_i}{r} \right) m = \left(\frac{\lambda_i}{r} \right) m \text{ for all } i = 1, \ldots, m+n, r \geq 1 \},
\]

where \(\lambda = \sum_{i=1}^{m+n} \lambda_i \epsilon_i \) is the image of \(z \) under the bijective map from \(\mathbb{Z}^{m+n} \) into \(\Lambda \) given above.

Following [3, 13], set

\[
X^+(T) = \{ \sum_{i=1}^{m+n} \lambda_i \epsilon_i | \lambda_1 \geq \cdots \geq \lambda_m, \lambda_{m+1} \geq \cdots \geq \lambda_{m+n} \}
\]

and let

\[
X^+_p(T) := \{ \lambda \in X^+(T) | \lambda_i - \lambda_{i+1} < p \text{ for all } i \in [1, m+n] \setminus m \}.
\]

For each \(\lambda \in X^+(T) \), let \(L(\lambda)(\text{resp. } L_0(\lambda)) \) be a simple \(G \)-module (resp. \(G_{ev} \)-module) with highest weight \(\lambda \). One can view \(L_0(\lambda) \) as a Dist(\(P \))-module on which all \(e_{ij}, (i, j) \in \mathcal{I}_1 \) act trivially. Define the induced \(G \)-module (see [3, p. 11])

\[
\text{Ind}_p^G \lambda =: \text{Dist}(G) \otimes_{\text{Dist}(P)} L_0(\lambda).
\]

A Lie superalgebra \(L = L_0 \oplus L_1 \) is called a *restricted Lie superalgebra* if \(L_0 \) is a restricted Lie algebra and \(L_1 \) is a restricted \(\mathfrak{g}_0 \)-module under the adjoint action. Let \([p]: x \rightarrow x^{[p]} \) be the \(p \)-map in \(L_0 \). The quotient superalgebra of \(U(L) \) by its \(\mathbb{Z}_2 \)-graded ideal generated by the elements \(x^p - x^{[p]}, x \in L_0 \) is called the *reduced enveloping superalgebra* of \(L \), and denoted by \(u(L) \) (see [2]).

Example: The Lie superalgebra \(\mathfrak{g} = \mathfrak{gl}(m, n) \) is a restricted Lie superalgebra with \(p \)-map the \(p \)th power in \(\mathfrak{g} \). The Lie subalgebras \(\mathfrak{g}^+, \mathfrak{g}_0 \) are its restricted subalgebras.

Let us note that, by a similar proof to that for [9, 7.10(1)], the subalgebra of Dist(\(G \)) generated by the elements \(e_{ij}, f_{ij}, h_{\alpha_s}(i, j) \in \mathcal{I}, s \in [1, m+n] \) is isomorphic to \(u(\mathfrak{g}) \), and the subalgebra generated by the elements \(e_{ij}, (i, j) \in \mathcal{I}, f_{ij}, (i, j) \in \mathcal{I}_0, h_{\alpha_s}, s \in [1, m+n] \) is isomorphic to \(u(\mathfrak{g}^+) \). Let \(G_1 \) be the first Frobenius kernel of \(G \) (see [13, Sec.3]). Then we get by [13, 3.1] that \(u(\mathfrak{g}) \cong \text{Dist}(G_1) \).

9.2 Induced modules

Recall that we write \(\lambda \otimes 1 \in H^* \) as \(\bar{\lambda} \) for each \(\lambda \in \Lambda \), there is no confusion to write \(\alpha \otimes 1(\alpha \in \Phi^+) \), \(\rho \otimes 1 \) also as \(\alpha, \rho \) respectively.

Since \(u(\mathfrak{g}^+) \) is a subalgebra of Dist(\(P \)), the simple Dist(\(P \))-module \(L_0(\lambda) \) becomes a \(u(\mathfrak{g}^+) \)-module, and hence a \(U(\mathfrak{g}^+) \)-module by the canonical epimorphism from \(U(\mathfrak{g}^+) \) onto \(u(\mathfrak{g}^+) \). Let \(\lambda = \sum_{i=1}^{m+n} \lambda_i \epsilon_i \) and let \(v^+ \in L_0(\lambda) \) be a maximal vector, unique up to scalar. Then we have \(e_{ii}v^+ = \lambda_i v^+, i \in [1, m+n] \); hence, \(hv^+ = \bar{\lambda}(h)v^+ \) for any \(h \in H \).
Lemma 9.2. Let $\lambda \in \Lambda$.

(1) There is a $u(\mathfrak{g})$-module isomorphism $\phi_1 : u(\mathfrak{g}) \otimes_{u(\mathfrak{g}^+)} L_0(\lambda) \rightarrow Ind_{P}^{G} \lambda$.

(2) There is a $U(\mathfrak{g})$-module isomorphism $\phi_2 : U(\mathfrak{g}) \otimes_{U(\mathfrak{g}^+)} L_0(\lambda) \rightarrow u(\mathfrak{g}) \otimes_{u(\mathfrak{g}^+)} L_0(\lambda)$.

Proof. (1) It is easy to check that the map ϕ_1 from $u(\mathfrak{g}) \otimes_{u(\mathfrak{g}^+)} L_0(\lambda)$ into $Ind_{P}^{G} \lambda$ with

$$\phi_1(x \otimes m) = x \otimes m, \quad x \in u(\mathfrak{g}), \quad m \in L_0(\lambda)$$

is well-defined. Clearly ϕ_1 is a $u(\mathfrak{g})$-module homomorphism. Moreover, ϕ_1 is an epimorphism, since we have by Lemma 9.1 that Dist(G) has a basis consisting of elements $\Pi_{(i,j) \in I \subseteq \Delta} f_{ij} u_k$, where the elements u_k is a basis of Dist(P), so that $Ind_{P}^{G} \lambda$ is spanned by the elements $\Pi_{(i,j) \in I \subseteq \Delta} f_{ij} \otimes m$, $m \in L_0(\lambda)$. According to [9, 2.14(1)], $L_0(\lambda)$ is finite dimensional, so that ϕ_1 is an isomorphism since

$$\dim u(\mathfrak{g}) \otimes_{u(\mathfrak{g}^+)} L_0(\lambda) = \dim Ind_{P}^{G} \lambda.$$

(2) Let π be the canonical epimorphism from $U(\mathfrak{g})$ into $u(\mathfrak{g})$. Then $\pi(U(\mathfrak{g}^+)) = u(\mathfrak{g}^+)$. One verifies easily that the map

$$\phi_2 : U(\mathfrak{g}) \otimes_{U(\mathfrak{g}^+)} L_0(\lambda) \rightarrow u(\mathfrak{g}) \otimes_{u(\mathfrak{g}^+)} L_0(\lambda)$$

such that $\phi_2(x \otimes m) = \pi(x) \otimes m, \quad x \in U(\mathfrak{g}), m \in L_0(\lambda)$ is well-defined. By a similar argument as in (1), one proves that ϕ_2 is a $U(\mathfrak{g})$-module isomorphism. \[\square\]

Recall the notion $K(\mu)(\mu \in H^*)$ in Sec. 2. If $\lambda \in X^+_p(T)$, then $L_0(\lambda)$ is a simple $u(\mathfrak{g}_0)$-module of highest weight λ, so we have by Lemma 9.2 that

$$u(\mathfrak{g}) \otimes_{u(\mathfrak{g}^+)} L_0(\lambda) \cong K(\lambda).$$

Recall the symmetric bilinear form on H^*. Define

$$\tilde{P}(\mu) = \Pi_{x \in \Phi^+_1} (\mu + \rho, x) \mu \in H^*,$$

so that $\tilde{P}(\lambda) = P(\lambda)1_{\mathbf{F}}$ for any $\lambda \in \Lambda$.

Let $v^+ \in L_0(\lambda)$ be a maximal vector. According to [18, Th. 4.2], we have in $K(\lambda)$ that

$$\Pi_{(i,j) \in I \subseteq \Delta} f_{ij} \otimes v^+ = \tilde{P}(\lambda)v^+ = P(\lambda)v^+.$$

By [18, Prop. 3.1], we have

Lemma 9.3. For $\lambda \in \Lambda$, $K(\lambda)$ is simple if and only if λ is p-typical.
9.3 Simple G-modules

In this subsection we determine the simplicity of the $\text{Dist}(G)$-module $\text{Ind}_P^G \lambda$.

Theorem 9.4. Assume \mathbb{F} is algebraically closed. If $\lambda \in X^+(T)$ is p-typical, then

\[\text{Ind}_P^G \lambda \cong L(\lambda). \]

Proof. We split the proof into two cases according to whether $\lambda \in X_p^+(T)$ or not.

Case 1. $\lambda \in X_p^+(T)$. By the discussion above we have $\text{Ind}_P^G \lambda \cong \mathcal{K}(\lambda)$. Since λ is p-typical, we get by Lemma 9.3 that $\text{Ind}_P^G \lambda$ is a simple $U(\mathfrak{g})$-module, and hence a simple $u(\mathfrak{g})$-module. Recall that $u(\mathfrak{g}) \cong \text{Dist}(G_1)$. Then [13, 4.3] shows that $\text{Ind}_P^G \lambda \cong L(\lambda)$.

Case 2. $\lambda \notin X_p^+(T)$. Note that λ can be written uniquely as $\lambda = \lambda' + p\lambda''$ with $\lambda' \in X_p^+(T)$ being p-typical and $\lambda'' \in X^+(T)$. By the Steinberg tensor product theorem([9, Coro. 3.17]), we have an isomorphism of $\text{Dist}(P)$-modules

\[L_0(\lambda) \cong L_0(\lambda') \otimes L_0(\lambda'')^	ext{[1]} . \]

By [13, Th.4.4], The simple G-module $L(\lambda)$ is isomorphic to $L(\lambda') \otimes L_0(\lambda'')^	ext{[1]}$. Since λ' is p-typical, we get $L(\lambda') \cong \text{Ind}_P^G \lambda'$ from Case 1. Clearly, the embedding of the $\text{Dist}(P)$-module $L_0(\lambda') \otimes L_0(\lambda'')^	ext{[1]}$ into $L(\lambda') \otimes L_0(\lambda'')^	ext{[1]}$ induces a nontrivial $\text{Dist}(G)$-module homomorphism f from $\text{Ind}_P^G \lambda$ into $L(\lambda') \otimes L_0(\lambda'')^	ext{[1]}$. Then the simplicity of the latter implies that f is surjective. Note that the codimension of $\text{Dist}(P)$ in $\text{Dist}(G)$ is $2^{|\mathcal{I}_1|} = 2^{nm}$. Hence, f is isomorphic since

\[
\dim \text{Ind}_P^G \lambda = 2^{nm} \dim L_0(\lambda) \\
= 2^{nm} \dim L_0(\lambda') \dim L_0(\lambda'') \\
= \dim \text{Ind}_P^G \lambda' \dim L_0(\lambda'') \\
= \dim L(\lambda') \otimes L_0(\lambda'')^	ext{[1]},
\]

so we get $\text{Ind}_P^G \lambda \cong L(\lambda)$. \qed

Let $U(\mathfrak{g})_{\overline{\mathbb{F}}_p} = U(\mathfrak{g})_\mathbb{Z} \otimes _\mathbb{Z} \overline{\mathbb{F}}_p$ and let $\overline{\mathfrak{u}}$ be the sub-superring of $U(\mathfrak{g})_{\overline{\mathbb{F}}_p}$ generated by the elements $e_{ij}, f_{ij}((i,j) \in \mathcal{I}), e_{m+n,m+n}$. For any field k of characteristic $p > 2$, set

\[\overline{\mathfrak{u}}_k := \overline{\mathfrak{u}} \otimes _{\overline{\mathbb{F}}_p} k. \]

Recall in Sec.9.1 that $\overline{\mathfrak{u}}_k$ is the reduced enveloping algebra of the Lie superalgebra $\mathfrak{g} = \text{gl}(m,n)$ over k; that is, $\overline{\mathfrak{u}}_k = u(\mathfrak{g})$. The following result is due to [13, Prop. 3.4].

Lemma 9.5. Every simple $\overline{\mathfrak{u}}_k$-module contains a unique (up to scalar multiple) homogeneous element $v^+ \neq 0$ such that $e_{ij} v^+ = 0$ for any $(i,j) \in \mathcal{I}$. There exists $z = (z_1, \ldots, z_{m+n}) \in \mathbb{F}_{p^{m+n}}$ such that $e_{ii} v^+ = z_i v^+$ for all $1 \leq i \leq m+n$. Non-isomorphic modules yield distinct weights z. Thus there are totally p^{m+n} isomorphism classes of simple $\overline{\mathfrak{u}}_k$-modules.
The element v^+ as in the lemma is called a maximal vector of weight z.

Definition 9.6. [4, 29.13] Let F be a field and let \mathfrak{A} (resp. $\mathfrak{A} = \mathfrak{A}_0 \oplus \mathfrak{A}_1$) be a F-algebra (resp. F-superalgebra) and M a simple \mathfrak{A}-module. M is called absolutely simple if $M \otimes_F \mathbb{L}$ is also a simple $\mathfrak{A} \otimes_F \mathbb{L}$-module for any extension field $\mathbb{L} \supseteq F$.

Let k be field of characteristic $p > 2$, and let $M(z) = M_0 \oplus M_1$ be a simple \mathfrak{u}_k-module having a maximal vector v^+ of weight z. Let $|\mathfrak{u}_k|$ denote the associate k-algebra \mathfrak{u}_k forgetting its \mathbb{Z}_2-structure. Then the uniqueness of the maximal vector v^+ implies that $M(z)$ contains the unique (up to scalar multiple) maximal vector v^+ even as a $|\mathfrak{u}_k|$-module. Let $f : M(z) \rightarrow M(z)$ be a $|\mathfrak{u}_k|$-module homomorphism. Then we must have $f(v^+) = cv^+$ for some $0 \neq c \in k$, so we get

$$\text{Hom}_{|\mathfrak{u}_k|}(M(z), M(z)) = k.$$

By [4, 29.13], $M(z)$ is a absolutely simple $|\mathfrak{u}_k|$-module. Therefore $M(z) \otimes_k \mathbb{L}$ is a simple $|\mathfrak{u}_l|$-module for any extension field \mathbb{L}. This implies that $M(z) \otimes_k \mathbb{L}$ is also simple as a \mathfrak{u}_l-module, so that $M(z)$ is absolute simple.

Now let \overline{k} be an algebraic closure of k, and let $M(z)_{\overline{k}}$ be a simple $\mathfrak{u}_{\overline{k}}$-module having a unique maximal vector v^+ of weight z. Then we may identify $M(z)$ with the \mathfrak{u}_k-lattice $\mathfrak{u}_k \cdot v^+ \subseteq M(z)_{\overline{k}}$.

Thus, the representation theory of \mathbb{F}_p-superalgebra \mathfrak{u} is completely determined by that of $\mathfrak{u}_{\mathbb{F}_p}$. Let $\lambda \in X^+_p(T)$. Then [13, Lemma 4.3] tells us that $M(\lambda)_{\mathbb{F}_p}$ is isomorphic to $L(\lambda)$ restricted to $\mathfrak{u}_{\mathbb{F}_p}$.

9.4 Lusztig’s finite dimensional Hopf superalgebras

We first fix an integer $l' \geq 1$. Let \mathcal{B} be the quotient ring of \mathcal{A} by the ideal generated by the l'th cyclotomic polynomial $\phi_l \in \mathbb{Z}[q]$. Let $l \geq 1$ be defined by

$$l = \begin{cases} l' & \text{if } l' \text{ is odd} \\ \frac{l'}{2} & \text{if } l' \text{ is even} \end{cases}$$

Define the \mathcal{B}-superalgebras $U^+_\mathcal{B}$, $U^-\mathcal{B}$, $U^0\mathcal{B}$, and $U_{\mathcal{B}}$ by applying $-\otimes_{\mathcal{A}} \mathcal{B}$ to \mathcal{A}-superalgebras $U^+_{\mathcal{A}}$, $U^-_{\mathcal{A}}$, $U^0_{\mathcal{A}}$, and $U_{\mathcal{A}}$. Let \mathfrak{u}^+, \mathfrak{u}^-, \mathfrak{u}^0, and \mathfrak{u} be the \mathcal{B}-sub-superalgebras of $U^+_{\mathcal{B}}$, $U^-_{\mathcal{B}}$, $U^0_{\mathcal{B}}$, and $U_{\mathcal{B}}$ generated respectively by the elements

$$E^{(N)}_{ij}((i, j) \in \mathcal{I}_0, N \in [0, l]), \quad E^{(\sigma)}_{st}((s, t) \in \mathcal{I}_1, \sigma = 0, 1);$$

$$F^{(N)}_{ij}((i, j) \in \mathcal{I}_0, N \in [0, l]), \quad F^{(\sigma)}_{st}((s, t) \in \mathcal{I}_1, \sigma = 0, 1);$$

$$K^{\pm 1}_{\alpha \epsilon}, \left[K^{\alpha \epsilon ; 0}_{t \epsilon} \right] (c \in [1, m + n], t \epsilon \in [0, l]);$$

and

$$E^{(N)}_{ij}, E^{(\sigma)}_{st}, F^{(N)}_{ij}, F^{(\sigma)}_{st}, \left[K^{\alpha \epsilon ; 0}_{t \epsilon} \right], K^{\pm 1}_{\alpha \epsilon}.$$
Let \mathcal{B}' be the quotient field of \mathcal{B}. We form the \mathcal{B}'-superalgebras $'u^+$, $'u^-$, $'u^0$, $'u$ and $U_{\mathcal{B}'}$ by applying $- \otimes_{\mathcal{B}} \mathcal{B}'$ to the \mathcal{B}-superalgebras u^+, u^-, u^0, u and $U_{\mathcal{B}}$ respectively.

Proposition 9.7. (a) u^+ is generated as a \mathcal{B}-superalgebra by the elements

$$E_{\alpha_i}^{(N)}, E_{\alpha_m}^{(\sigma)}(i \in [1, m + n] \setminus m, N \in [0, l], \sigma = 0, 1)$$

and as a free \mathcal{B}-module by the basis $E_{\psi}^{(\sigma)}{E_{i}^{d}}, \psi \in [0, l]^{\mathcal{I}_0}, d \in \{0, 1\}^{\mathcal{I}_1}$.

(b) u^- is generated as a \mathcal{B}-superalgebra by the elements

$$F_{\alpha_i}^{(N)}, F_{\alpha_m}^{(\sigma)}(i \in [1, m + n] \setminus m, N \in [0, l], \sigma = 0, 1)$$

and as a free \mathcal{B}-module by the basis $F_{\psi}^{(\sigma)}{F_{i}^{d}}, \psi \in [0, l]^{\mathcal{I}_0}, d \in \{0, 1\}^{\mathcal{I}_1}$.

(c) u^0 is generated as a free \mathcal{B}-module by the basis

$$\Pi_{i=1}^{m+n}(K_{\alpha_i}^{\delta_i} \left[K_{\alpha_i}^{\delta_i} : 0 \right]), t_i \in [0, l], \delta_i \in \{0, 1\}.$$

(d) u is generated as a \mathcal{B}-superalgebra by the elements $E_{\alpha_i}^{(N)}, E_{\alpha_m}^{(\sigma)}, F_{\alpha_i}^{(\sigma)}, F_{\alpha_m}^{(\sigma)}$ and

$$K_{\alpha_i}^{\pm 1} \left[K_{\alpha_i}^{\delta_i} : 0 \right] (i \in [1, m + n] \setminus m, j \in [1, m + n], t, N \in [0, l], \sigma = 0, 1)$$

and as a free \mathcal{B}-module by the basis

$$F_{1}^{d}E_{0}^{(\psi)}n_{i=1}^{m+n}(K_{\alpha_i}^{\delta_i} \left[K_{\alpha_i}^{\delta_i} : 0 \right])E_{1}^{d'}, \psi, \psi' \in [0, l]^{\mathcal{I}_0}, d, d' \in \{0, 1\}^{\mathcal{I}_1}, \delta_i \in \{0, 1\}, t_i \in [0, l].$$

(e) $'u^+$, $'u^-$, $'u^0$, $'u$ may be viewed as \mathcal{B}'-sub-superalgebras of $U_{\mathcal{B}'}$ having the following bases:

$$'u^+ : E_{0}^{\psi}{E_{1}^{d}}, \psi \in [0, l]^{\mathcal{I}_0}, d \in \{0, 1\}^{\mathcal{I}_1};$$

$$'u^- : F_{1}^{d}E_{0}^{(\psi)} : \psi \in [0, l]^{\mathcal{I}_0}, d \in \{0, 1\}^{\mathcal{I}_1};$$

$$'u^0 : \Pi_{i=1}^{m+n}K_{\alpha_i}^{N_i}, N_i \in [0, 2l);$$

$$'u : F_{1}^{d}F_{0}^{\psi}n_{i=1}^{m+n}K_{\alpha_i}^{N_i}E_{0}^{\psi}{E_{1}^{d'}}, \psi, \psi' \in [0, l]^{\mathcal{I}_0}, N_i \in [0, 2l], d, d' \in \{0, 1\}^{\mathcal{I}_1}. $$

Proof. (a) For any $(i, j) \in \mathcal{I}$, we have $E_{ij}^{(M)}E_{ij}^{(N)} = 0$ if $M \geq 1, N \geq 1$, and $M + N \geq l$. It then follows from Lemma 8.1(1) that u^+ is generated as a \mathcal{B}-superalgebra by the elements $E_{\alpha_i}^{(N)}, E_{\alpha_m}^{(\sigma)}(i \in [1, m + n] \setminus m, N \in [0, l], \sigma = 0, 1)$. In view of the proof of Lemma 8.3(b), we obtain that u^+ is spanned as a \mathcal{B}-module by the elements $E_{0}^{(\psi)}{E_{1}^{d}}, \psi \in [0, l]^{\mathcal{I}_0}, d \in \{0, 1\}^{\mathcal{I}_1}$. By the discussion following Prop. 8.6, $U_{\mathcal{B}'}^{+}$ is a free \mathcal{A}-module having a basis consisting of elements (see Prop. 8.3(b)) $E_{0}^{(\psi)}{E_{1}^{d}}, \psi \in N^{\mathcal{I}_0}, d \in \{0, 1\}^{\mathcal{I}_1}$, so that $U_{\mathcal{B}'}^{+}$ is a free \mathcal{B}-module having an analogous basis. It then follows that u^+ is a free \mathcal{B}-submodule.

(b), (c) and (d) can be proved similarly. (e) follows from (a)-(d). \(\square\)
In the following we assume $l = l'$ is odd. Use Lusztig's notion

$$K_{i,t} = K_{\alpha_i}^{-t} \left[K_{\alpha_i}^{}; 0 \right]_t, i \in [1, m + n], t \geq 0.$$

By [14, Lemma 6.4], the elements $\Pi_{i=1}^{m+n} K_{\alpha_i}^{t_i} \Pi_{i=1}^{m+n} K_{i,t_i} (t_i \geq 0, \delta_i \in \{0, 1\})$ form a B-basis of \tilde{U}_B^\prime.

Let \tilde{U}_B, \tilde{u} (resp. \tilde{U}_B', \tilde{u}') be the quotient of B-superalgebras (resp. B'-superalgebras) U_B, u (resp. U_B', u') by the two-sided ideal generated by the central elements $K_{\alpha_i}^1 - 1, \ldots, K_{\alpha_{m+n}}^1 - 1$.

Then we get:

(a) The elements

$$F_1^d E_0^{(\psi)} \Pi_{i=1}^{m+n} K_{i,t_i} E_0^{(\psi')} E_1^{d'} (\psi, \psi' \in \mathbb{N}^{\mathbb{T}_0}, d, d' \in \{0, 1\}^{\mathbb{T}_1}, t_i \in \mathbb{N})$$

form a B-basis of \tilde{U}_B and B'-basis of \tilde{U}_B'.

(b) The elements

$$F_1^d E_0^{(\psi)} \Pi_{i=1}^{m+n} K_{i,t_i} E_0^{(\psi')} E_1^{d'} (\psi, \psi' \in [0, l]^{\mathbb{T}_0}, d, d' \in \{0, 1\}^{\mathbb{T}_1}, t_i \in [0, l])$$

form a B-basis of \tilde{u} and B'-basis of \tilde{u}'.

Let k be a commutative ring and let η be an invertible element in k. Set

$$U_{\eta,k} = U_A \otimes_A k, \quad U(\mathfrak{g}_0)_{\eta,k} = U_q(\mathfrak{g}_0)_A \otimes_A k,$$

where k is regarded as an A-algebra with q acting as multiplication by η. Similar notation are defined for the A-subalgebras $(N_{\pm 1})_A, U_q(\mathfrak{g}_0)_A(N_i)_A$ of U_A.

Denote by $\tilde{U}_{\eta,k}$ (resp. $\tilde{U}(\mathfrak{g}_0)_{\eta,k}$) the quotient superring of $U_{\eta,k}$ (resp. $U(\mathfrak{g}_0)_{\eta,k}$) by its two-sided ideal generated by the central elements $K_{\alpha_i}^1 - 1, i \in [1, m + n]$.

Proposition 9.8. There is an isomorphism of superalgebras $\phi: U(\mathfrak{g})_Q \rightarrow \tilde{U}_{1,Q}$ such that

$$\phi(e_{ij}) = E_{ij}, \phi(f_{ij}) = F_{ij}, (i, j) \in I, \phi(h_{\alpha_s}) = \left[K_{\alpha_s}; 0 \right]_1, s \in [1, m + n].$$

In particular, we have $\phi(U(\mathfrak{g})_Z) = \tilde{U}_{1,Z}$ and $\phi(U(\mathfrak{g}_0)_Z) = \tilde{U}(\mathfrak{g}_0)_{1,Z}$.

Proof. We must show that ϕ preserves all the relations 2.2(a1)-(a8). Note that by Remark 2.2(3), the relations (a8) are preserved. In view of [14, 6.7(a)], we need only verify the case $i = m, j = m + 1$ in the relation 2.2(a2). By a proof similar to that of Lemma 7.2, we have that the relation 2.2(a2) for $e_{m+1,m+2}$ is preserved; an analogous argument applies to 2.2(a2) for $f_{m+1,m+2}$. Then Lemma 9.1 and the PBW type basis of $\tilde{U}_{1,Q}$ given by the statement (a) above with $l = l' = 1$ ensures that ϕ is an isomorphism.

□
9.5 Representations of the Hopf superalgebra \tilde{u}

In this subsection, we let U_q be the quantum supergroup $U_q(\mathfrak{g})$ over $\mathbb{C}(q)$ (see 2.2).

Let

$$z \in \mathbb{Z}_+^{m+n} = \{(z_1, \ldots, z_m, n) \in \mathbb{Z}^{m+n} | z_i \geq 0, \text{ for all } i \neq m, m + n\}.$$

For each $U_q(\text{resp. } U_q(\mathfrak{g}_0))$-module M. The z-weight space of M is defined to be

$$M_z = \{x \in M | K_{\alpha_i} x = q_i^{z_i} x, i = 1, \ldots, m + n\}.$$

Let $L_0(z)$ be a simple $U_q(\mathfrak{g}_0)$-module of highest weight $z \in \mathbb{Z}_+^{m+n}$. Then $L_0(z)$ is finite dimensional by [16, Th. 4.12], and so is the induced U_q-module

$$K(z) = U_q \otimes_{U_q(\mathfrak{g}_0)} L_0(z).$$

Let $M(z)$ be a simple U_q-module of highest weight z (see Th. 5.3).

Lemma 9.9. $M(z)$ is a homomorphic image of $K(z)$.

Proof. Let $v \in M(z)$ be a maximal vector. We claim that $U_q(\mathfrak{g}_0)\mathcal{N}_1 v \subseteq M(z)$ is a simple $U_q(\mathfrak{g}_0)\mathcal{N}_1$-submodule. Suppose on the contrary that $U_q(\mathfrak{g}_0)\mathcal{N}_1 v$ were not simple. Then it contains a proper simple $U(\mathfrak{g}_0)\mathcal{N}_1$-submodule M'. By the discussion following Lemma 7.1, M' must be a simple $U_q(\mathfrak{g}_0)$-module annihilated by $U_q(\mathfrak{g}_0)\mathcal{N}_1^+$, so that M' contains a unique maximal vector v^+ which by definition is a nonzero weight vector with $E_{\alpha_i} v^+ = 0$ for all $i \in [1, m + n] \setminus m$. Since v^+ is annihilated by $E_{\alpha_m} \in U_q(\mathfrak{g}_0)\mathcal{N}_1^+$, v^+ is also a maximal vector for the U_q-module $M(z)$. By Th. 5.3, we get $v^+ = cv$ for some nonzero $c \in \mathbb{C}(q)$, and hence $M' = U_q(\mathfrak{g}_0)\mathcal{N}_1 v$, a contradiction.

Thus, we have a $U_q(\mathfrak{g}_0)\mathcal{N}_1$-module isomorphism

$$L_0(z) \cong U_q(\mathfrak{g}_0)\mathcal{N}_1 v \subseteq M(z).$$

This induces a U_q-module homomorphism from $K(z)$ into $M(z)$ that must be surjective since the latter is simple. \qed

Assume $l = l'$ is an odd integer ≥ 3, and let η be a primitive lth root of unity. In what follows, we identify B' with the subfield $Q(\eta)$ of \mathbb{C} by identifying q with η. Then we may view $U_{B'}$ as a Hopf B'-sub-superalgebra of $U_{\eta, \mathbb{C}}$ such that $U_{B'} \otimes_{B'} \mathbb{C} \cong U_{\eta, \mathbb{C}}$.

Set

$$\eta_i = \begin{cases} \eta, & \text{if } i \leq m \\ \eta^{-1}, & \text{if } m + 1 \leq i \leq m + n. \end{cases}$$

Let $V = V_0 \oplus V_1$ be a $U_{\eta, \mathbb{C}}$-module (resp. $U_{B'}$-module) of type 1. For each $z = (z_1, \ldots, z_{m+n}) \in \mathbb{Z}^{m+n}$, we define the z-weight space

$$V_z = \{x \in V | K_{\alpha_i} x = \eta_i^{z_i} x, \left[K_{\alpha_i} ; 0 \right] \frac{1}{l} x = \left[\frac{z_i}{l} \right] \eta \} \quad \text{for } 1 \leq i \leq m + n\},$$

39
where \(\begin{bmatrix} z_i \\ l \end{bmatrix} \) denotes \(\begin{bmatrix} z_i \\ l \end{bmatrix} \otimes 1 \in U_q, \mathbb{C} \). Since the parities of \(K_i \) and \(\begin{bmatrix} K_{\alpha_i} \\ l \end{bmatrix} \) are 0, \(V_z \) is \(\mathbb{Z}_2 \)-graded. It is routine to show that \(\sum_z V_z \) is a \(U_q, \mathbb{C} \)-submodule(resp. \(U_{\mathbb{B}^*} \)-submodule) of \(V \) (cf.\cite{15, 5.2}). Also by \cite{15, 3.3(b)}, the sum \(\sum_z V_z \) is direct.

Let \(z \in \mathbb{Z}^{m+n} \). A homogeneous nonzero element \(v^+ \in V_z \) is said to be a maximal vector if

\[
E_{ij} v^+ = 0 \quad \text{for all} \quad (i, j) \in \mathcal{I} \quad \text{and} \quad E_{ij}^{(0)} v^+ = 0 \quad \text{for all} \quad (i, j) \in \mathcal{I}_0.
\]

\(V \) is a highest weight module if it is generated by a maximal vector \(v^+ \) as a \(U_q, \mathbb{C} \)-module. For such a module, we have \(V = \bigoplus_{z' \leq z} V_{z'} \) and \(V_z = \mathbb{C} v^+ \), from which it follows that any proper submodule \(N = N_0 \oplus N_1 \) is equal to \(\sum_{z' \leq z} N \cap V_{z'} \), and hence is contained in \(\sum_{z' < z} V_{z'} \), so that \(V \) has a unique simple quotient.

Definition 9.10. A \(U_q, \mathbb{C} \)-module(resp. \(U_{\mathbb{B}^*} \)-module) \(V = V_0 \oplus V_1 \) of type \(\mathbf{1} \) is called integral if \(V = \sum_{z \in \mathbb{Z}^{m+n}} V_z \).

Note: For \(i \in \{m, m+n\} \), since \(\begin{bmatrix} K_{\alpha_i} \\ l \end{bmatrix} \) does not have the property \cite{15, 5.1(b)}, not every finite dimensional simple \(U_q, \mathbb{C} \)-module(resp. \(U_{\mathbb{B}^*} \)-module) is integral.

We now construct integral simple modules for \(U_q, \mathbb{C} \). Assume \(z \in \mathbb{Z}^{m+n} \). Let \(M(z) \) be a simple \(U_q \)-module of highest weight \(z \), and let \(v^+ \in M(z) \) be a maximal vector. Denote by \(M_A(z) \) the \(U_A \)-invariant \(\mathcal{A} \)-lattice \(U_A v^+ \) of \(M(z) \). Set

\[
M_{\eta, \mathbb{C}}(z) = M_A(z) \otimes_\mathcal{A} \mathbb{C},
\]

where \(\mathbb{C} \) is regarded as an \(\mathcal{A} \)-algebra by letting \(q \) act as multiplication by \(\eta \). Then \(M_{\eta, \mathbb{C}}(z) \) is a highest weight \(U_q, \mathbb{C} \)-module. Let \(L_{\eta, \mathbb{C}}(z) \) be the unique simple quotient of \(M_{\eta, \mathbb{C}}(z) \). Then clearly \(L_{\eta, \mathbb{C}}(z) \) is integral. It follows from Lemma 9.9 that \(L_{\eta, \mathbb{C}}(z) \) is finite dimensional if \(z \in \mathbb{Z}_+^{m+n} \).

In view of the proof for \cite{15, 6.4}, we get

Proposition 9.11. The map \(z \mapsto L_{\eta, \mathbb{C}}(z) \) defines a bijection between \(\mathbb{Z}_+^{m+n} \) and the set of isomorphism classes of integral simple \(U_q, \mathbb{C} \)-modules of type \(\mathbf{1} \), of finite dimension over \(\mathbb{C} \).

Assume \(z \in \mathbb{Z}_+^{m+n} \). By Lemma 9.9, there is an epimorphism of \(U_q \)-modules \(f: K(z) \longrightarrow M(z) \). Since \(\mathcal{L}_0(z) \subseteq K(z) \) is a simple \(U_q(\mathfrak{g}_0) \)-submodule annihilated by \(U_q(\mathfrak{g}_0)N_{\mathcal{L}_0}^+ \), \(f|_{\mathcal{L}_0(z)} \) is a \(U_q(\mathfrak{g}_0) \)-module isomorphism onto its image, denoted also \(\mathcal{L}_0(z) \), which is annihilated also by \(U_q(\mathfrak{g}_0)N_{\mathcal{L}_0}^+ \). Then we have \(M(z) = N_{\mathcal{L}_0} \mathcal{L}_0(z) \), so that

\[
M_A(z) = (N_{\mathcal{L}_0})_A U_q(\mathfrak{g}_0)_A v^+,
\]

where \(v^+ \) is a unique maximal vector in \(\mathcal{L}_0(z) \). Denote the image of \(v^+ \) in \(L_{\eta, \mathbb{C}}(z) \) also by \(v^+ \). It then follows that \(L_{\eta, \mathbb{C}}(z) \) has as a \(U(\mathfrak{g}_0)_\eta, \mathbb{C} \)-submodule \(U(\mathfrak{g}_0)_\eta, \mathbb{C} v^+ \) annihilated by \((U(\mathfrak{g}_0)N_{\mathcal{L}_0}^+)_{\eta, \mathbb{C}} \) and

\[
L_{\eta, \mathbb{C}}(z) = (N_{\mathcal{L}_0})_{\eta, \mathbb{C}} U(\mathfrak{g}_0)_{\eta, \mathbb{C}} v^+.
\]
In the light of the proof of Lemma 9.9, we see that \(U(\mathfrak{g}_0)_{\eta,C}v^+ \subseteq L_{\eta,C}(z) \) is a simple \(U(\mathfrak{g}_0)_{\eta,C} \)-submodule.

Let \(k \) be any intermediate field between \(B' = Q(\eta) \) and \(C \). Set \(\tilde{u}_k = \tilde{u} \otimes_{B'} k \).

We now study the finite dimensional \(\tilde{u}_k \)-modules. Since \(K_{\alpha_i} = 1(i \in [1, m+n]) \) in \(\tilde{u} \), each \(\tilde{u}_k \)-module \(M = M_0 \oplus M_1 \) has a decomposition

\[
M_0 = \oplus_z (M_0)_z, \quad M_1 = \oplus_{z'} (M_1)_{z'},
\]

where \(z, z' \in [0, l]^{m+n} \) and

\[
(M_j)_z = \{ x \in M_j | K_{\alpha_i}x = \eta_i^{z_i}x, 1 \leq i \leq m+n \}, \quad \bar{j} \in \mathbb{Z}_2.
\]

Let

\[
M^0 = \{ x \in h(M)|E_{ij}x = 0, \quad \text{for all} \quad (i, j) \in I \}.
\]

A nonzero vector \(v \in M^0 \cap M_z \) is called a maximal vector of weight \(z \). Then applying verbatim [14, 5.10, 5.11] we get

Proposition 9.12. Each simple \(\tilde{u}_k \)-module \(M = M_0 \oplus M_1 \) contains a unique (up to scalar multiple) maximal vector of weight \(z \in [0, l]^{m+n} \). The correspondence \(M \mapsto z \) defines a bijection between the set of isomorphism classes of simple \(\tilde{u}_k \)-modules and the set \([0, l]^{m+n}\).

Using the fact that each simple \(\tilde{u}_k \)-module \(M \) contains a unique maximal vector, together with a similar discussion as following Definition 9.6, we see that \(M \) is absolutely simple. So we may restrict our attention to just the case \(k = C \). It follows from the description of the bases of superalgebras \(\tilde{U}_B' \) and \(\tilde{u} \) in Sec. 9.4 that \(\tilde{u}_C \) can be viewed as a sub-superalgebra of \(\tilde{U}_{\eta,C} \).

Set

\[
\mathbb{Z}_l^{m+n} =: \{(z_1, \ldots, z_{m+n}) \in \mathbb{Z}_l^{m+n} | 0 \leq z_i \leq l - 1 \quad \text{for all} \quad i \neq m, m+n \}.
\]

The following lemma can be proved by a similar argument as that for [15, 7.1].

Lemma 9.13. Assume \(z \in \mathbb{Z}_l^{m+n} \) and let \(x \) be a maximal vector of \(L_{\eta,C}(z) \). Then

(a) \(F_{\alpha_i}^{(l)}x = 0 \) for \(i \in [1, m+n] \setminus m \).

(b) Let \(\nabla = \{ y \in h(L_{\eta,C}(z)) | E_{ii}y = 0 \quad \text{for all} \quad i \neq m, m+n \} \). Then \(\nabla = C \cdot x \).

(c) Then restriction of \(L_{\eta,C}(z) \) to \(\tilde{u}_C \) is a simple \(\tilde{u}_C \)-module.

(d) \(L_{\eta,C}(z) = \tilde{u}_C \cdot x \).

It then follows that each simple \(\tilde{u}_C \)-module can be lifted to an integral simple \(U_{\eta,C} \)-module of type \(\underline{1} \).
9.6 The extended Lusztig conjecture

In this subsection assume \(l = l' \) is an odd prime \(p \), and assume \(\mathbb{F} \) is an algebraically closed field of characteristic \(p > 2 \). Consider the ring homomorphism \(\mathcal{B} \longrightarrow \mathbb{F}_p \) which maps \(z \in \mathbb{Z} \) into \(z \mod p \in \mathbb{F}_p \) and \(q \) into 1, and let \(\mathfrak{m} \) be its kernel. Then applying a similar argument as that for [14, Th. 6.8], we get

Proposition 9.14. There are isomorphisms of Hopf superalgebras:

\[
\tilde{U}_\mathcal{B}/\mathfrak{m}\tilde{U}_\mathcal{B} \cong U(\mathfrak{g})_{\mathbb{F}_p}, \quad \tilde{\mathfrak{u}}/\mathfrak{m}\tilde{\mathfrak{u}} \cong \tilde{\mathfrak{u}}.
\]

Assume \(\eta \) is a primitive \(p \)th root of unity. By [9, Ch.H], \(\mathbb{Z}[\eta] \) is the ring of all algebraic integers in \(\mathbb{Q}(\eta) \) and \(1 - \eta \) generates the unique maximal ideal \((1 - \eta)\) in \(\mathbb{Z}[\eta] \). Let \(\mathcal{R} \) denote the localization of \(\mathbb{Z}[\eta] \) at \((1 - \eta)\). Then \(\mathcal{R} \) is a discrete valuation ring with residue field \(\mathbb{F}_p \). Regard the field \(\mathbb{F} \) as a \(\mathcal{R} \)-algebra via the embedding of the residue field of \(\mathcal{R} \) into \(\mathbb{F} \). We can identify \(U_{\eta, \mathcal{R}} \otimes_{\mathcal{R}} \mathbb{F} \) with \(U_{1, \mathbb{F}} \) (see Sec. 9.4).

Assume \(z \in \mathbb{Z}_+^{m+n} \). Let \(v^+ \) be a maximal vector of the simple \(U_{\eta, C} \)-module \(L_{\eta, C}(z) \). Then \(L_{\eta, \mathcal{R}}(z) =: U_{\eta, \mathcal{R}}v^+ \) is a \(U_{\eta, \mathcal{R}} \)-invariant \(\mathcal{R} \)-lattice in \(L_{\eta, C}(z) \). Now

\[
L_{\eta, C}(z)_\mathbb{F} = L_{\eta, \mathcal{R}}(z) \otimes_{\mathcal{R}} \mathbb{F}
\]

has a natural structure as a \(U_{1, \mathbb{F}} \)-module. Since each \(K_{\alpha_i} \) acts on \(L_{\eta, C}(z)_\mathbb{F} \) as the identity, \(L_{\eta, C}(z)_\mathbb{F} \) is a \(\tilde{U}_{1, \mathbb{F}} \)-module. Recall the notation \(U(\mathfrak{g})_\mathbb{F} \) in 9.1. By Prop. 9.8, we have

\[
\tilde{U}_{1, \mathbb{F}} = \tilde{U}_{1, \mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{F} \cong U(\mathfrak{g})_\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{F} = U(\mathfrak{g})_\mathbb{F},
\]

so that \(L_{\eta, C}(z)_\mathbb{F} \) is a \(U(\mathfrak{g})_\mathbb{F} \)-module and hence a \(\text{Dist}(G) \)-module. It then follows from [3, Coro. 3.5] that \(L_{\eta, C}(z)_\mathbb{F} \) is a \(G \)-module.

Recall the identification of \(\mathbb{Z}_+^{m+n} \) with \(\Lambda \) in Sec. 9.1. Under this identification we have

\[
\mathbb{Z}_+^{m+n} = X^+(T) \quad \text{and} \quad \mathbb{Z}_p^{m+n} = X^+_p(T),
\]

where

\[
\mathbb{Z}_p^{m+n} = \{(z_1, \ldots, z_{m+n}) \in \mathbb{Z}_+^{m+n} | 0 \leq z_i < p, \text{for all } \ i \neq m, m+n\}.
\]

By the proposition above, each simple \(\tilde{\mathfrak{u}} \)-module corresponds to a simple \(\mathfrak{u} \)-module \(\mathcal{M} \) and has dimension \(\leq \dim \mathcal{M} \). We now extend the Lusztig’s conjecture in [14, 0.3] to the super case as follows.

Conjecture: If \(p \) is sufficiently large and \(z \in \mathbb{Z}_p^{m+n} \), then the inequality above is an equality and \(\tilde{\mathfrak{u}} \) and \(\mathfrak{u} \) have identical representation theories.

The conjecture is supported by the following theorem.

Theorem 9.15. Let \(\mathbb{F} \) be an algebraically closed field of characteristic \(p > 2 \). Assume Lusztig’s conjecture in [14, 0.3]. If \(z \in \mathbb{Z}_p^{m+n} \) is \(p \)-typical, then \(L_{\eta, C}(z)_\mathbb{F} \) is simple as a \(\text{GL}(m, n) \)-module.
Proof. Let v^+ be a maximal vector of $L_{\eta,\mathbb{C}}(z)$. From the discussion following Prop. 9.11, we have

$$L_{\eta,\mathbb{R}}(z) = U_{\eta,\mathbb{R}}v^+ = (\mathcal{N}_-\eta,\mathbb{R}) U(g_0)_{\eta,\mathbb{R}}v^+,$$

where $U(g_0)_{\eta,\mathbb{R}}v^+$ is a $U(g_0)_{\eta,\mathbb{R}}$-invariant lattice of the simple $U(g_0)_{\eta,\mathbb{C}}$-module

$$U(g_0)_{\eta,\mathbb{C}}v^+ \subseteq L_{\eta,\mathbb{C}}(z)$$

which is annihilated by $(U(g_0)\mathcal{N}_1^+)^{-1,\eta,\mathbb{C}}$. Recall the notation $U(g_{-1})_{\mathbb{F}}$, $U(g_0)_{\mathbb{F}}$ and $U(g^+)_{\mathbb{F}}$. Note that

$$(\mathcal{N}_-\eta,\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{F} = U(g_{-1})_{\mathbb{F}}, \quad U(g_0)_{\eta,\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{F} = U(g_0)_{\mathbb{F}}$$

and

$$(U(g_0)\mathcal{N}_1^+)_{\eta,\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{F} = U(g^+)_{\mathbb{F}}.$$

This gives us

$$L_{\eta,\mathbb{C}}(z)_{\mathbb{F}} = U(g_{-1})_{\mathbb{F}}U(g_0)_{\mathbb{F}}v^+,$$

with $U(g_0)_{\mathbb{F}}v^+$ being annihilated by $U(g^+)_{\mathbb{F}}$.

Since $z \in \mathbb{Z}_{p+1}^{m+1}$, the Lusztig conjecture in [14, 0.3] says that $U(g_0)_{\mathbb{F}}v^+$ is a simple $U(g_0)_{\mathbb{F}}$-module of highest weight z. By the discussion in 9.1, we can now express the all weights as a subset of Λ using the identification of \mathbb{Z}_{p+1}^{m+1} with $X_1^+(T)$. Then we have

$$U(g_0)_{\mathbb{F}}v^+ \cong L_0(\lambda).$$

Since $U(g_0)_{\mathbb{F}}v^+$ is annihilated by $U(g^+)_{\mathbb{F}}$, it is a Dist(P)-module. Therefore $L_{\eta,\mathbb{C}}(z)_{\mathbb{F}}$ is a homomorphic image of the Dist(G)-module $\text{Ind}_P^G\lambda$. Since z is p-typical, and hence λ is p-typical, we have by Th. 9.4 that $\text{Ind}_P^G\lambda \cong L(\lambda)$, so that $L_{\eta,\mathbb{C}}(z)_{\mathbb{F}} \cong L(\lambda)$, as desired. \qed

10 Lusztig’s tensor product theorem

The purpose of this section is to establish the tensor product theorem for the quantum supergroup $U_{\eta,\mathbb{C}}$. Assume l is an odd number ≥ 3 and η is a primitive lth root of unity.

Applying a similar argument as that for [15, Lemma 7.2], one obtains

Lemma 10.1. Let \mathfrak{A}_η be the subalgebra of $U_{\eta,\mathbb{C}}$ generated by $E^{(l)}_{\alpha_1}, F^{(l)}_{\alpha_1}, [K_{\alpha_i,m},c]$,

$$\left[\begin{array}{c}K_{\alpha_i,m},c \\ l\end{array}\right], i \in [1,m+n] \setminus m, c \in \mathbb{Z}.$$

Assume $z \in \mathbb{Z}_{p+1}^{m+n}$ with $z = lz'$ for some $z' \in \mathbb{Z}_{p+1}^{m+n}$. Let x be a maximal vector of $L_{\eta,\mathbb{C}}(z)$. Then

(a) $E_{\alpha_i}, F_{\alpha_i}, K_{\alpha_j} - 1$ act as 0 on $L_{\eta,\mathbb{C}}(z)$ ($i \in [1,m+n], j \in [1,m+n]$).

(b) Let $\nabla = \{y \in h(L_{\eta,\mathbb{C}}(z))|E^{(l)}_{\alpha_i}y = 0 \quad \text{for all} \quad i \neq m, m+n\}$. Then $\nabla = \mathbb{C}.x$.

(c) $L_{\eta,\mathbb{C}}(z) = \mathfrak{A}_\eta \cdot x$.

43
Let \(z \in \mathbb{Z}_{m+n}^+ \). We can write uniquely \(z = z' + lz'' \), where \(z' \in \mathbb{Z}_{m+n}^+ \) and \(z'' \in \mathbb{Z}_{m+n}^+ \). Then applying a similar proof as that of [15, 7.4], we get

Theorem 10.2. The \(U_{\eta,C}(z) \) and \(L_{\eta,C}(z') \otimes L_{\eta,C}(lz'') \) are isomorphic.

Let \(U(\mathfrak{g}_0) \) be the universal enveloping algebra of the Lie algebra \(\mathfrak{g}_0 \) over \(\mathbb{C} \). Then we have

Proposition 10.3. For any \(z = (z_1, \cdots, z_{m+n}) \in \mathbb{Z}_{m+n}^+ \), \(L_{\eta,C}(lz) \) is a simple \(U(\mathfrak{g}_0) \)-module with highest weight \(z \).

Proof. Let \(I \) be the two-sided ideal of \(U_{\eta,C} \) generated by \(E_{\alpha_i}, F_{\alpha_i}, K_{\alpha_i} - 1, i \in [1, m + n], j \in [1, m + n] \). In view of the proof of [15, 7.5], we have a unique superalgebra epimorphism \(\phi : U(\mathfrak{g}_0) \rightarrow U_{\eta,C}/I \) such that

\[
\phi(e_{\alpha_i}) = \overline{E_{\alpha_i}}^{(l)}, \quad i \in [1, m + n] \setminus m,
\]
\[
\phi(f_{\alpha_i}) = \overline{F_{\alpha_i}}^{(l)},
\]
\[
\phi(h_{\alpha_i}) = \overline{[K_{\alpha_i}; 0]}^{(l)}, i \in [1, m + n].
\]

Since \(\overline{E_{\alpha_i}}^{(l)}, \overline{F_{\alpha_i}}^{(l)}, \overline{[K_{\alpha_i}; 0]}^{(l)}, \overline{[K_{\alpha_i+n}; 0]}^{(l)} \) generate \(U_{\eta,C}/I \) as an algebra, \(\phi \) is surjective. By Lemma 10.1(a), \(L_{\eta,C}(lz) \) is a simple \(U_{\eta,C}/I \)-module and hence the pull back along \(\phi \) is a simple \(U(\mathfrak{g}_0) \)-module. Now let \(x \) be a maximal vector of \(L_{\eta,C}(lz) \). Then by [15, 3.2(a)], we have \(h_{\alpha_i} \cdot x = z_i x \) for all \(i \in [1, m + n] \).

REFERENCES

[1] H. H. Anderson, J. C. Jantzen and W. Soergel, Representations of quantum groups at a \(p \)-th root of unity and of simisimple groups in characteristic \(p \): Independence of \(p \), *Asterisque* (1994): 220-321.

[2] Y. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky and M. V. Zaicev, Infinite dimensional Lie superalgebras, *De Gruyt. Expo. Math* 7 (1992).

[3] J. Brundan and J. Kujawa, A new proof of the Mullineux conjecture, *J. Alg. Combinatorics* 18 (2003): 13-39.

[4] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, *John Wiley & Sons* (1962).

[5] L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie algebras and superalgebras, *Academic Press* (2000).

[6] Peter Fiebig, Sheaves on affine Schubert varieties, modular representations and Lusztig’s conjecture, *J. AMS* 24 (2011): 133-181.
[7] J. E. Humphreys, Linear algebraic groups, Springer-Verlag GTM 21 (1991).

[8] J. C. Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics 6 AMS. (1995).

[9] J. C. Jantzen, Representations of algebraic groups, Math. Surveys and Monographs 107 AMS. (2003).

[10] V. Kac, Representations of classical Lie superalgebras, Lect. in Math 676 (1978): 597-626.

[11] V. Kac, Infinite dimensional Lie algebras, Cambridge Univ. Press (2003).

[12] J. Kwon, Crystal bases of q-deformed Kac modules over the quantum superalgebra $U_q(gl(m|n))$, arXiv:1203.5590v2.

[13] J. Kujawa, The Steinberg tensor product theorem for $GL(m,n)$, Contemp. Math. 413 (2006): 123-132.

[14] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. AMS 1(3) (1990): 257-296.

[15] G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82 (1989): 59-77.

[16] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988): 237-249.

[17] M. Scheunert, Serre-Type relations for special Linear Lie superalgebras, Lett. Math. Phys. 24 (1992): 173-181.

[18] C. Zhang, On the simplicity of Kac modules for the restricted Lie superalgebra $gl(m,n)$, arXiv:1404.7342.

[19] R. B. Zhang, Finite dimensional irreducible representations of the quantum supergroup $U_q(gl(m,n))$, J. Math. Phys. 34 (3) (1993): 1236-1254.