INTRODUCTION

Worldwide, meat is the most fundamental component in the diet of consumers; physically and biologically it proved great impact on the individual health, economical system and development. It is an excellent food commodity having more protein, minerals; selenium, phosphorus, iron, zinc and B-complex and D Vitamins (calciferol). Due to higher nutritive food commodity, meat has complete nutritive profile in relation to whole calories to complete each day protein needs (da Silva et al., 2015). Animal origin protein sources have been obtained from domestic and wild animals (Arain et al., 2010). Per capita requirement of protein is 27grams, while people are simply capable to gain only 17grams of protein with shortage of 10grams, this gap of protein supply may possibly be fulfilled by the use of animal protein (meat) (Sohaib & Jamil, 2017).
tering and storage conditions of meat (Hocquette et al., 2012). Buffalo meat is scientifically termed as buffen or Carabeef; it is lean high in protein, minerals; iron, calcium, zinc, saturated lipids, vital amino acids and B complex vitamins. It is similar to red meat gained from additional sources in favor of its essential, dietary, plus organoleptic characteristics and trend of utilization of buffen in modern meat processing is increasing due to its good binding properties and lean quality (Tamburrano et al., 2019; Rey & Povea, 2012). Meat of wild animals is commonly known as game meat and meat of deer technically and scientifically called as venison. Both from cooking and cultural perspectives wild animal’s meat have significant importance for ornamental tradition and linking of animal production with country, which revolved the economy of region (Huerta-Leidenz et al., 2016). Six deer breeds have been documented in the mountainous, desert and irrigated areas of Pakistan, renowned as: Axis deer, Black buck, Indian Gazelle, golden deer, Barking deer and Himalayan Musk (Wild life of Pakistan, 2019-2020). Deer meat (Venison) contains high level of protein, low cholesterol lipids, minerals; zinc, sodium, phosphorus, selenium, calcium, magnesium, iron, copper, potassium and chromium, and valuable A, B, C, D vitamins (Gizejewska et al., 2016). Goat meat (chevon) is a vital resource of essential protein sub units, saturated fatty acids with intramuscular fat and minerals. It deemed as lean meat and its nutritional profile satisfy the consumer due to its palatable attributes compared to cattle meat (Horcada et al., 2012). Instead of having excellent source of vital nutrients of animal origin scarce work has been done before in Sindh, Pakistan. Therefore, current study was done to explore the physico-chemical quality including nutrients profile of buffalo, deer and goat meat (buffen, venison and chevon).

MATERIALS AND METHODS

EXPERIMENTAL DESIGN
All the collected meat samples were replicated for the analysis, a total of six (6) number of buffalo and goat meat samples were purchased from market of Tandojam, and same number of deer meat (venison) samples were obtained from desert part of Tharparkar district of Sindh. Investigational tactic was used to assess the comparative physico-chemical quality and calorific value of buffalo, deer and goat meat samples at analytical laboratory of Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam.

PH VALUE
In a glass beaker 10g of minced meat sample was mixed in 90ml of distilled water and an electrode of pH meter along with probe of temperature was inserted into the homogenized meat sample. Constant end result displayed on the pH meter was recorded as pH value of each meat sample.

WATER HOLDING CAPACITY
The scientific protocol invented by Wardlaw et al. (1973) was used to determine the water holding capacity of all meat samples. Briefly, 8 grams of each minced meat sample was placed in a centrifuge tube, later on each centrifuge tube was filled with 0.6 molar NaCl solution (12ml). After thoroughly mixing all the prepared samples were centrifuged in Backman centrifuge machine at 4ºC for 15 minutes at 10,000 revolutions per minute and at the end of centrifugation, upper most liquid was poured in a measuring cylinder for calculation.

\[\text{WHC (\%)} = \frac{\text{Actual weight} - \text{supematant volume}}{\text{Actual weight}} \times 100 \]

COOKING LOSS
A protocol of Kondaiah et al. (1985) was adopted for the analysis of cooking loss of all meat samples. 20g of meat sample was enclosed in a polyethylene bag and placed in the water bath adjusted to 80ºC (to provide inner hotness of about 72ºC) for 1 hour. Fluid expelled out due to cooking pressure was poured out and the cooked mass with the help of filter paper was properly dried off and then re-weighted. The formula used for cooking loss of meat is given below.

\[\text{Cooking loss (\%)} = \frac{\text{Mass before cooking} - \text{Mass after cooking}}{\text{Mass before cooking}} \times 100 \]

DRIP LOSS
A protocol as illustrated by Sen et al. (2004) was used to analyze the drip loss of all meat samples. 50 grams of meat samples was packed in a polyethylene bag, then kept for 24 hours in refrigerator at 4ºC with seal coat, all the meat samples were taken out from refrigerator after 24 hours, then with the help of filter paper meat sample was soaked and dried off, at the end samples were reweighted and drip loss was calculated by formula given below.

\[\text{Drip loss (\%)} = \frac{\text{Actual weight Weight after refrigeration}}{\text{Actual weight}} \times 100 \]

MOISTURE CONTENT
The scientific approach as mentioned in AOAC (2005) was followed for analysis of moisture content in all of meat samples. In a pre-weighted dehydrated aluminum dish, 5grams of meat sample was taken and placed into a hot air oven (at 100ºC) for 4 hours, then dehydrated meat sample
was kept for one hour in a desiccator, lastly, the aluminum dish having dried meat sample was re-weighed, formula given below was used for moisture content.

\[
\text{Moisture (\%) = \frac{W_2 - W_3}{W_2 - W_1} \times 100}
\]

Protein content

2g meat was assimilated with 0.35g of copper sulphate, 7g of potassium sulphate along with 30ml of sulfuric acid as an oxidizing agent. With 250ml of distilled water completely digested sample was diluted, then in the presence of 40% NaOH solution, 5ml of diluted sample was distilled and the vapors (ammonia) were trapped over 5ml of boric acid (2%) having bromocresol green as an indicator for 4 minutes by using Kjeldhal distillation (AOAC, 2005). Lastly, sample was titrated with 0.1NHCl to determine Nitrogen and nitrogen content was computed by using formula as given below.

\[
\text{Nitrogen (\%) = \frac{1.4 (V_1 - V_2) \times \text{normality of HCl}}{\text{Weight of meat sample taken} \times \text{volume of diluted sample} \times 250}}
\]

Protein content was computed by converting the obtained nitrogen into protein by using conversion factor (CF) \(i.e. 6.25\).

\[
\text{Protein percentage = N\% \times \text{Conversion factor (CF)}}
\]

Fat content

2g of dried meat was taken in grease free thimble, placed in Soxhlet extraction unit, while dehydrated and pre-weighted distillation flask containing petroleum ether (150ml) was assembled with condenser and Soxhlet Extractor, and solvent was boiled by placing on electric heater, distillation flask was removed to cool down and dried in oven and re-weighed after approximately 6 hours of extraction (AOAC, 2005). Fat content of meat was calculated by following formula.

\[
\text{Fat (\%) = \frac{W_2 - W_1}{\text{Sample taken}} \times 100}
\]

Glycogen content

A process invented by Kemp et al. (1953) was used to determine the glycogen content of meat. 0.2g of meat sample was placed with 5ml of de-proteinizing solution in Bacto-men centrifuge tube. In water bath till 15 minutes tube containing samples were boiled, and cooled with running water. Then at 4°C for 5 minutes at 3000rpm samples were centrifuged. After that 1ml of clear supernatant in test tube and 3ml of \(H_2SO_4\) was added, vigorously mixed and heated for six minutes. At wave length of 520\(\mu m\) the strength of color was calculated with the help of spectrophotometer. Results which showed on the screen of spectrophotometer were noted as glycogen level.

Ash content

By using of Gravimetric method as mentioned in AOAC (2005) evaluated the ash content of all meat samples. Taken 5g of meat in empty pre-weighed crucible dish, then in a muffle furnace for 5 hours at 550°C crucible having meat was moved to ignite sample, lastly ashed meat sample transferred in desiccators till 1hour the dish was weighed again. By using formula given below ash content of meat was calculated.

\[
\text{Ash (\%) = \frac{W_3 - W_1}{W_2 - W_1} \times 100}
\]

Calorific/Nutritive value

Calorific values of buffen, venison and chevon meat samples were calculated by using energy conversion factors of major components as reported by Johnson et al. (1995). Like 4 for protein, 9 for fat and also 4 for carbohydrates.

\[
\text{Kcal (per 100g) = \left[(\% \text{ protein}) \times 4 \right] + \left[(\% \text{ fat}) \times 9 \right] + \left[(\% \text{ Carbohydrates}) \times 4 \right]}
\]

Data analysis

By using Excel Microsoft program, primarily data so obtained was gathered, tabulated and analyzed by applying statistical tools; analysis of variance (ANOVA) by using computer software, Student Edition of Statistix (SXW), Version 8.1. Significant variation subsisted between the averages; further averages were computed by LSD test at the level of 5% probability.

RESULT AND DISCUSSION

Physical Characteristics

Results of current investigation described in Table-1 showed that the ultimate pH values was noted relatively (\(P<0.05\)) higher (6.09±0.063) in fresh goat meat (chevon) contrast to buffalo (5.91±0.030) and deer meat (5.71±0.045). Contrast to current results, Fazlani et al. (2019) recorded 6.92 pH values in goat meat; Arain et al. (2010) recorded pH range (6.20 to 6.40) in the chevon of dissimilar age groups of goat; comparatively lower pH (6.00) of buffalo meat was recorded by Naveena et al. (2011), similarly Kandeepan et al. (2009) and Okuskhanova et al. (2017) noted 5.73 final pH in buffalo meat compared to 5.85 pH of venison. In the same way, a group of scientists described 5.5 to 5.90 pH value of deer meat, which parallels to current results (Marcio et al., 2019; Abellan et al., 2018). Mean water hold
Table 1: Physical characteristics of buffen, venison and chevon.

Physical characteristics of meat	Meat of different animals*	LSD (0.05)	SE±		
	Buffen	Venison	Chevon		
pH	5.91±0.030b	5.72±0.046c	6.09±0.060a	0.1784	0.0801
Water holding Capacity (%)	67.69±0.006c	54.30±0.850b	63.58±0.130a	1.5566	0.6986
Cooking loss (%)	32.51±0.300b	27.79±0.340c	36.92±0.270a	0.9600	0.4308
Drip loss (%)	3.42±0.011b	2.90±0.178c	3.81±0.047a	0.3472	0.1558

Superscripts with different letters in same row varied significantly (P< 0.05) with each other. *n=6 for each type of meat

Table 2: Chemical characteristics and calorific/nutritive value of buffen, venison and chevon.

Chemical characteristics of meat	Meat of different animals*	LSD (0.05)	SE±		
	Buffen	Venison	Chevon		
Moisture (%)	73.88±0.040b	71.41±0.105c	76.10±0.020a	0.1900	0.0853
Protein (%)	20.31±0.059c	22.98±0.040b	20.60±0.046b	0.1287	0.0578
Fat (%)	4.18±0.043c	2.54±0.033b	1.90±0.019a	0.1103	0.0495
Ash (%)	1.98±0.059c	3.47±0.102c	3.13±0.038a	0.2650	0.1190
Glycogen (mg/g)	22.71±0.339c	21.80±0.299b	18.45±0.134b	0.9142	0.4103
Calorific/Nutritive value (Kcal/100g)	122.75±0.567c	122.03±0.364a	106.00±0.207b	1.1082	0.4974

Superscripts with different letters in same row varied significantly (P< 0.05) with each other. *n=6 for each type of meat

The average moisture (76.10±0.02%) in chevon noted appreciably (P<0.05) higher, modest in buffen (73.88±0.040%) and lesser in venison (71.41±0.105%) meat samples. Not surprisingly, ultimate muscle pH is a main issue that influences different meat quality characteristics, as well as the water maintenance capacity during cooking, the loss of fluids, exclusion of water, palatability attributes and physical appearance of meat (da Silva et al., 2015).
Results depicted in Table-2 revealed that caloric/nutritive value of buffalo, venison, and chevon due to lower quantity of fat, cholesterol, and saturated fat compared to buffalo and beef, venison possessed organoleptic and palatability characteristics respect to all types of meats (Bures et al., 2015), though it is also a fact that buffalo and goat meat is attributed with higher concentration of fat with lower concentration of saturated fatty acids than venison (Okuskhanova et al., 2017). In the current study comparatively (P<0.05) higher ash (3.47±0.102%) content was evaluated in venison followed by buffalo (1.98±0.059%) contrast to ash content of chevon (1.31±0.038%) samples (Table-2). Alike, in venison 1.5–2.21% ash was noted by Okuskhanova et al. (2017) compared to 1.15% in buffalo and 1.4–1.8% of ash in chevon was cited by Arain et al. (2010), respectively. In addition, contrary to current results, Alamin et al. (2014) found 0.47% of ash content in buffalo and 0.43% in chevon. Glycogen level in buffalo (22.71±0.339mg/g) noticed appreciably (P<0.05) higher, moderate in venison (21.80±0.299mg/g) and lower in chevon (18.45±0.134mg/g) samples (Table-2). In accordance, Fazlani et al. (2019) reported 14.74 to 19.21mg/g of glycogen in chevon, the level of glycogen in buffalo meat noted in the current research is comparable with the results reported by Warriss (2000). He reported 10–20mg/g of glycogen and 5.5–6.0 ultimate pH values in good quality meat. In the present findings better concentrations of glycogen in red deer meat might be due to long muscular activity by distance covered for the searching of fodder by the wild animals in their environment compared to domestic fattened animals fed on stall feeding (Wikhund et al., 2008).

CALORIFIC/NUTRITIVE VALUE OF BUFFEN, VENISON AND CHEVON

In conclusion, among physical attributes, pH, cooking loss and drip loss were found higher in goat meat (chevon), whereas water holding capacity was noticed higher in buffalo and deer meat (venison) followed by goat meat (chevon). Furthermore, the deer (venison) and buffalo meat (buffen) were found to be rich in nutrients, which are quite essential for the nourishment of living beings in contrast to goat (chevon) meat.

AUTHORS CONTRIBUTION

Ghulam Shabir Barham, and Atta Hussain Shah, designed the research experiment for M.Phil degree research. Gul Bahar Khaskheli and Muneer Ahmed formulated the data of research and conducted the statistical analysis. Fariya Sial conducted the research experiment and Paras Siyal helped her during research trial.

REFERENCES

Abellan A, E Salazar, J Vazquez, JM Cayuela, L Tejada (2018). Changes in proteolysis during the dry-cured processing of refrigerated and frozen loin. Food Sci. Tech., 96: 507-52. https://doi.org/10.1016/j.lwt.2018.06.002

Adim IT, O Mahgoub, RW Purchas (2008). A review of the growth and of the carcass and meat quality characteristics of the one-humped camel (Camelus dromedarius). Meat Sci., 80(3): 555-569. https://doi.org/10.1016/j.meatsci.2008.02.010

Alamin SA, DA Ahmed, HE Ahmed (2014). Comparative Study on the Chemical Composition and Cholesterol Content of Fresh Camel, Beef and Goat meat. Sudan J. Sci. Tech., 15(2): 73-80.

Amici A, GF Cifuni, M Conto, L Esposito, S Failla (2015). Hunting area affects chemical and physical characteristics and fatty acid composition of wild boar (Sus scrofa) meat. Rendicon. Lincei., 26(3): 527-534. https://doi.org/10.1007/
Antonius SPS, Gintin A, Elieser S, Tarigan IGS, Solehudin
AOAC (2005). Association of Official Analytical Chemistry
https://doi.org/10.3923/pjn.2010.422.425

Arain MA, M Khaskheli, IR Rajput, S Rao, S Faraz, SA Fazlani,
Awan K, SA Khan, MM Khan, MT Khan (2014). Effect of age
on physico-chemical and sensorial quality of buffalo meat.
https://doi.org/10.1002/jsfa.6950

Cawthorn D, LB Fitzhenry, V Muchenje, D Bures, R Kotrba,
da Silva B, Severino GR, Placido EA, Bento W, da Silva
Gizejewska A, A Nawrocka, J Szkoda, J Zmudzki, J Jaroszewski,
Horcada A, G Ripoll, MJ Alcalde, C Sanudo, A Teixeira, B
Ivanovic SD, ZM Stojanovic, JV Popov-Raljic, MZ Baltic,
BP Pisinov, KD Nesic (2013). Meat quality characteristics of
Duroc Yorkshire, Duroc Yorkshire Wild boar and wild boar.
Hemijska Indust., 67(6): 999-1006. https://doi.org/10.2298/HEMIND121211017F

Johnson DD, JS Eastridge, DR Neubauer, CHM Gowan.

Journal of Animal Health and Production
Effect of sex class on nutrient content of meat from young goat. J. Anim. Sci., (73): 296-301. https://doi.
org/10.2527/1995.731296x

Kandeepan G, ASR Anjaneyula, N Kondaiah, SK Mendiarta
(2009). Quality of buffalo meat keema at different storage
temperature. Afric. J. Food (6): 410-417.

Kemp A, K Van, AJM Heijningen (1953). A calorimetric
micro-method for the determination of glycogen in tissues.
Biochemistry J. Sci., 56, 646. https://doi.org/10.1042/
bj0560646

Kim IS, SK Jin, KH Hah, ST Park, KR Kwak, JK Park, YS Kang
(2006). Physico-chemical, fatty acid composition and sensory
properties of venison from Cervus elaphus and adensis (Elk
Deer). Korean J. Food Sci. Anim. Resour., (26):70-77.

Kondaiah N, A.S.R. Anjaneyula, KV Rao, N Sharna, HB
Joshi (1985). Effect of salt and phosphate on the quality of
buffalo and goat meats. Meat Sci., 15: 183-192. https://
doi.org/10.1016/0309-1740(85)90036-1

Ludwiczak A, M Stanisz, M Bykowski, J Składanowska, P
Slosarz (2016). Effect of storage on quality traits of the
semi membranous muscle of farmed fallow deer (Dama dama)
bucks and does. Anim. Sci. J. 127-132. https://doi.
org/10.1111/ajsi.12732

Marcio VR, R Domungue, M. Pateiro, D. Franco, FJ. Barba,
J.M. Lorenzo. (2019). Chemical and physico-chemical
differences during the dry-cured processing of deer loin. Int. J.
Food Sci. Technol., 1434.

Mello JLM., A.BB. Rodrigues, A.G. Ganeco, F.B. Ferrari,
R.A. Souza, P.A. Souza, H. Borba (2017). Characteristics of
carcasses and meat from fedotol-finished buffalo and bosindicus (Nellore) bulls. Anim. Prod. Sci., 58(7): 1366-
1374. https://doi.org/10.1016/j.meatsci.2010.11.004

Ossipova MO (2013). Research and design of fermented product
from maral meat by accelerating method of production. PhD
thesis submitted to Kemerovo.

Okukshanova F, B Assenova, M Rebezov, K Amirkhanov,
Z. Yessimbekov, F. Smolnikova, A. Nurgazezova G.
Nurymkhanad, M. Stuart (2017). Study of morphology,
chemical, and amino acid composition of red deer meat.
Wetervest., 10(6): 613-629. https://doi.org/10.14202/
vetworld.2017.623-629

Purchas RW, EC Triumf, B Egelandtal (2010). Quality
characteristics and composition of the Longissimus muscle
in the short-loin from male and female farmed red deer
in New Zealand. Meat Sci., 86(2): 505-510. https://doi.
org/10.1016/j.meatsci.2010.04.018

Rail R. (2018). Nutritional values of venison v/s beef. www.
healthyeating.sfgate.com Meat, Poultry & Fish. Assessed
on 12-10-2020.

Rey JF, IE Povea (2012). Water buffalo (Bubalus bubalis) and
their technological advantages for the design in healthy
meat product. J. Buff. Sci., 1(2): 183-187. https://doi.
org/10.6000/1927-52,2010.05.013

Rodrigues L, HC Goncalves, BBL Medeiros, MF Martins,
CM Komiyama, MC Canizares (2011). Effect of genotype,
finishing system, and sex on physico-chemical characteristics
of goat meat. J. Food Sci. Tech., 31(4): 992-997.

Sen AR, A Santra, SA Karim (2004). Carcass yield, composition
and meat quality attributes of sheep and goat under
Shija D, S Mtenga, A Louis, E Kimambo, A Laswai, H Mushi, E Daniel (2013). Preliminary evaluation of slaughter value and carcass composition of indigenous sheep and goats from traditional production system in Tanzania. Asian-Austra. J. Anim. Sci., 26(1):143-150.39. https://doi.org/10.5713/ajas.2012.12431

Sohaib M, F Jamil (2017). An insight of meat industry in Pakistan with special reference to halal meat: A comprehensive review Korean J. Food Sci. Anim. Res., 37(3): 329-341. https://doi.org/10.5851/kosfa.2017.37.3.329

Tamburrano A, B Tavazzi, C.A.M. Calla, A.M. Amorini, G. Lazzarino, S. Vincenti, T. Zottola, M.C. Campagna, U. Moscato, P. Laurenti (2019). Biochemical and nutritional characteristics of buffalo meat and potential implications on human health for a personalized nutrition. Ital. J. Food Saf., 8(83): 174-179. https://doi.org/10.4081/ijfs.2019.8317

Vita Lele., S. Sidlauskiene, D. Klupsaite, V. Buckiuniene, E. Viskontaite, J. Klementaviucute, P. Zavistanaviciute, V. Sakiene, E. Bartkiene (2020). Comparison studies of the chemical, physical, technological, and microbiological characteristics of the European roe deer, boar, red deer, and beaver hunted wild game meat. Japan. Soci. Anim. Sci., 133-146.

Warriss PD (2000). The effect of live animal handling on carcass and meat quality. Hand book of meat science of Vet. Sci. Uni. of Bristol. UK. Pp. 144-146.

Wardlaw FB, L.H. McCaskil, J.C. Action (1973). Effect of postmortem muscle changes on poultry meat loaf properties, J. Food Sci., (38):421-423. https://doi.org/10.1111/j.1365-2621.1973.tb01444.x

Wiklund EG, Finstad L Johansson, G Aguiar, P.J. Bechtel. (2008). Carcass composition and yield of Alaskan reindeer (Rangifer tarandus tarandus) steers and effects of electrical stimulation applied during field slaughter on meat quality. Meat Sci., (78): 185-193. https://doi.org/10.1016/j.meatsci.2007.06.004

Wild life of Pakistan (2019-2020). Antelope, gazelle and deer. www.wildlifeofpakistan. Accessed on Feb. 2020. Accessed on 17-02-2020.