Review

Guided bone regeneration: materials and biological mechanisms revisited

Ibrahim Elgali, Omar Omar, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 2017; 125: 315–337. © 2017 The Authors. Eur J Oral Sci published by John Wiley & Sons Ltd

Guided bone regeneration (GBR) is commonly used in combination with the installation of titanium implants. The application of a membrane to exclude non-osteogenic tissues from interfering with bone regeneration is a key principle of GBR. Membrane materials possess a number of properties which are amenable to modification. A large number of membranes have been introduced for experimental and clinical verification. This prompts the need for an update on membrane properties and the biological outcomes, as well as a critical assessment of the biological mechanisms governing bone regeneration in defects covered by membranes. The relevant literature for this narrative review was assessed after a MEDLINE/PubMed database search. Experimental data suggest that different modifications of the physico-chemical and mechanical properties of membranes may promote bone regeneration. Nevertheless, the precise role of membrane porosities for the barrier function of GBR membranes still awaits elucidation. Novel experimental findings also suggest an active role of the membrane compartment per se in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. The optimization of membrane materials by systematically addressing both the barrier and the bioactive properties is an important strategy in this field of research.

Rehabilitation of edentulism using osseointegrated implants has revolutionized the field of dentistry and improved patients’ quality of life. Nevertheless, bone loss or insufficiency, as a hallmark of several systemic and periodontal diseases, trauma, and tumors, remains a major challenge for osseointegration. To achieve a good long-term prognosis for osseointegrated implants, a sufficient volume of bone should exist at the sites of implantation. Different strategies, such as bone-grafting techniques, alveolar distraction, and guided bone regeneration (GBR), have been applied to restitute the lost bone to allow the implant to be fully integrated and maintained during functional loading (1–4). Guided bone regeneration is considered as one of the methods most commonly applied to reconstruct alveolar bone and to treat peri-implant bone deficiencies (5–8). Guided bone regeneration has been defined (9) (Fig. 1) as:

...principle of GBR using barrier membranes, either resorbable, to exclude certain cell types such as rapidly proliferating epithelium and connective tissue, thus promoting the growth of slower-growing cells capable of forming bone. GBR is often combined with bone grafting procedures...
membranes. In general, these types of membrane demonstrate biocompatibility and space-making capacity (16). However, non-resorbable membranes need a second surgical intervention for membrane removal. Subsequently, a second generation of membranes made of resorbable materials was developed and became widely used in different clinical situations. Recently, efforts have been made to develop a new generation of membranes by using naturally derived membranes or employing principles of tissue engineering during membrane preparation (17, 18). Furthermore, the use of membranes in the defect, together with bone grafts and substitute materials, is now commonly used to provide structural support to the defect site and to promote the intrinsic regenerative potential of the host tissue.

The major components of the treatment with GBR are the membrane properties and the biological responses (6). Here, many of the future strategies involve modifications of the membrane to promote appropriate responses (e.g. a predictable regeneration of bone, adequate soft-tissue reactions, and efficient handling of microbial adhesion and colonization during GBR treatment). The aims of this review were: (i) to provide a comprehensive overview of attempted modifications of membrane properties and the resulting biological effects; and (ii) to provide a critical assessment of the biological mechanisms governing bone regeneration in defects covered by membranes.

Literature search and inclusion criteria

A survey of the literature, without limitation regarding the year of publication, was conducted using the medical databases MEDLINE/PubMed. The survey was supplemented by cross-checking the bibliographies of relevant review articles. Articles that were published before 16 June 2016 were included. The search strategy was limited to in vitro, in vivo, and human studies that reported data on GBR. Studies using a barrier membrane for treatment of periodontal defects [guided tissue regeneration (GTR)], peri-implantitis, and periapical lesions were excluded.

Clinical applications of GBR

Although this review was not dedicated to the clinical outcomes of different treatment modalities of GBR, there is the need to provide a short background of the major clinical indications for GBR treatment. The reader interested in the details of the clinical applications and results is referred to several comprehensive literature surveys (3, 5, 8, 15, 19). Resorption of alveolar bone jeopardizes the structural, functional, and esthetic outcomes of implant treatment. After loss of dentition, alveolar bone resorption takes place initially in a horizontal direction, within the first 6 months, and later in a vertical direction (20). Several strategies exist to augment alveolar bone deficiencies, including GBR, onlay and inlay grafting, distraction osteogenesis, ridge splitting, free vascularized autografts, and grafting of the maxillary sinus (19). The severity of bone loss and configuration of the bone defects determine the type, extent, and prognosis of the bone-augmentation treatment (8). Although clinical data show a high survival
rate of implants placed in augmented bone (14), several of the techniques lack long-term clinical documentation (19). In addition, it has been indicated that bone augmentation is still challenging in vertical bone defects and advanced horizontal atrophy (8, 21). Guided bone regeneration is a successful, well-documented (19), and widely used (12) procedure for treatment of alveolar bone defects in conjunction with implant treatment. A systematic review reported 95% implant survival after a horizontal or vertical GBR procedure (19).

Currently, GBR implies the use of different types of membrane (resorbable and non-resorbable) in conjunction with different bone-filling materials (10). The choice of materials is largely dependent on the size and configuration of the bone defect. A proposal for clinical classification and recommendation for suitable GBR techniques has been suggested (8).

Clinical studies demonstrate that GBR is predictable and successful for horizontal defect augmentation and in most situations this can be achieved using either non-resorbable or resorbable membranes (10) (Fig. 2). Resorbable membranes have been considered as user-friendly (22). Furthermore, although superior outcome has been revealed using non-resorbable membranes, several reports indicate that such membranes are susceptible to higher complication rates (7, 23). This has mostly been associated with exposure through the soft tissue (7, 23). A plausible explanation for this complication has been the tension in the soft tissue, in combination with lack of vascular supply. However, the exact mechanisms for membrane exposure are still not fully understood (24). In the case of exposure of resorbable membranes, spontaneous healing has often been noted (22), which is possibly a result of the rapid degradation of the membrane rather than regrowth of soft tissue (23).

Although horizontal ridge augmentation has had a more predictable outcome than vertical ridge augmentation, beneficial effects of GBR using non-resorbable e-PTFE membranes for vertical ridge augmentation have been indicated in many reports (2, 4, 25) (Fig. 3). Clinical studies have also used titanium-reinforced e-PTFE membrane, in combination with bone-filling materials, to enhance vertical bone augmentation (26–30). Although non-resorbable membranes have been more commonly used for vertical bone defects, recent clinical studies showed promising results with the use of resorbable collagen-based membranes (31, 32). As mentioned earlier, the major complication related to non-resorbable membranes is exposure through the soft tissue (7, 33). This, in particular, has been more commonly encountered in conjunction with vertical ridge augmentation, in which the lack of soft tissue is

Fig. 2. Horizontal bone augmentation by guided bone regeneration (GBR) in the anterior maxilla. (A) Horizontal bone defect after trauma to the upper jaw. (B) Placement of expanded polytetrafluoroethylene (e-PTFE) barrier membrane after filling the defect with Bio-Oss bone substitute. (C) Insertion of implant in the regenerated bone 7 months after the GBR procedure. (D, E) Photograph and radiograph show the final restoration after 1 yr in function (Courtesy of Drs HATANO & DAHLIN).
clinically considered a limiting factor. In order to improve the GBR outcome, especially in challenging indications, bioactive regenerative approaches have been discussed, such as the application of recombinant growth factors in conjunction with GBR (34, 35). A clinical study indicated that the addition of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone grafting material under resorbable membrane positively influenced soft-tissue healing and provided better preservation of the regenerated bone after 1 yr of implant loading (36). However, solid clinical evidence on the effect of added growth factors is lacking and the development of this field has been somewhat restricted owing to regulatory issues in different parts of the world.

Platelet concentrates, including platelet-rich plasma and platelet-rich fibrin, have been introduced as additional stimuli for bone regeneration (37). Initially, platelet concentrates were used as autologous scaffolds for GBR and other maxillofacial applications (38–42). Platelet concentrates are derived from the patient’s own blood and contain platelets and leukocytes with the potential of secreting different growth factors and cytokines, thereby accelerating wound healing (43–45). Platelet-rich fibrin has been suggested to be a bioactive membrane for GBR but only a few clinical reports on this topic have been published (37, 46–48). Tentatively, the mechanical properties and the degradation of such membranes may be a concern. Recently, KAWASE and coworkers succeeded in reducing the rate of biodegradation of the platelet-rich fibrin membrane using a heat-compression technique which did not sacrifice its biocompatibility (49). Hitherto, the use of platelet-rich fibrin membranes is less well-documented for GBR than for GTR.

Taken together, clinical studies, meta-analyses, and systematic reviews show successful outcomes with GBR procedures for alveolar bone augmentation and implant placement. However, some clinical situations remain challenging, especially in cases of vertical and advanced horizontal alveolar bone atrophy. In most of the clinical studies, non-resorbable e-PTFE-based membranes or resorbable collagen-based membranes were used, and the evolution of these membranes was mainly driven by the sought-for barrier function, the user friendliness, and the ease of handling in different clinical situations, rather than a systematic approach to

Fig. 3. Vertical bone augmentation by guided bone regeneration (GBR) in the posterior mandible. (A–D) The defect is filled with autogenous bone particles and blocks and covered with titanium (Ti)-reinforced expanded polytetrafluoroethylene (e-PTFE) membrane. (E) Surgical re-entry showing the regenerated bone site. (F) The prosthetic construction in place. (G) Panoramic radiograph at the re-entry. Published by permission from the Clin Implant Dent Relat Res (229).
Membrane properties and their modifications

Chemistry

Guided bone regeneration membranes have been manufactured using a variety of materials that can be classified as synthetic polymers, natural polymers, metals, and inorganic compounds (Table 1).

Synthetic polymers: The first reported synthetic polymer used for GBR was e-PTFE; it is considered to be one of the most inert, stable polymers in the biological system. It resists breakdown by host tissues and does not elicit immunological reactions (50). The chemical stability of e-PTFE maintains the structural integrity and the tissue-exclusion function of the membrane. However, exposure of e-PTFE to the oral cavity leads to migration of microorganisms and bacterial infection, which can compromise bone augmentation and osseointegration (16, 51). Aliphatic polyesters is another category of synthetic polymers that have been used for preparation of GBR membrane; these include poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(ε-caprolactone) (PCL), poly (hydroxy valeric acid), poly(hydroxy butyric acid), and their copolymers (52, 53). The main advantages of these types of polymeric membranes are their manageability, processability, tuned biodegradation, and drug-encapsulating ability (52, 54). However, their degradation might elicit a strong inflammatory response, leading to resorption of the regenerated bone (55, 56). Their lack of rigidity and stability may, in some applications, be considered as major disadvantages. The high degradation rate of the aliphatic polyesters reduces the available function time of the barrier membrane and its space-making ability, which may affect the outcome of bone regeneration. Nevertheless, studies have indicated successful use of the polyester-based membranes in preserving and augmenting the alveolar bone after loss of dentition (57, 58). In fact, the resorption rate of these types of membranes is largely dependent on the type of polymer used. For example, PCL is characterized by higher hydrophobicity and lower water-solubility than PLA or PGA. Furthermore, membranes based on copolymers (e.g. lactide, ε-caprolactone, glycolide, and trimethylene carbonate) have been suggested to reduce the resorption rate (52). For example, a commercial product, called Vivosorb (Polyganics, Groningen, the Netherlands), consisting of poly(DL-lactide-ε-caprolactone), originally used as a nerve guide, was considered for GBR because of its low degradation rate and space-maintaining capability (59).

Natural polymers: Collagen-based membranes are the most commonly used naturally derived membranes for GBR. These membranes have received major attention by virtue of collagen being the principal component of connective tissues and having important roles with respect to structural support and being an important component in cell–matrix communication (60). Collagen has a large number of features that render this material interesting for GBR applications (Table 1). Although comparable clinical outcomes between collagen membranes and non-resorbable membranes have been indicated, other studies have suggested that collagen membranes may promote even better wound healing and bone regeneration (61). The main disadvantage of collagen membranes is their lack of rigidity and thereby their use is more applicable to the types of alveolar bone defects, such as bone dehiscence and fenestration, which do not require extra fixation and stability (11, 16, 61). Currently, many types of collagen membranes are commercially available for GBR.

Collagen membranes are derived from different bovine and porcine tissues (e.g. tendon, dermis, and small intestine), and their degradation varies depending on the animal source (61). The rate of degradation of collagen membrane might not meet the duration required for optimal tissue regeneration. A number of different methods of physical/chemical cross-linking have been utilized to enhance the mechanical properties of the collagen membrane and slow their degradation (62, 63). These methods include ultraviolet (UV) radiation, and treatment with chemical solutions such as genipin (Gp), glutaraldehyde, and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) (18). Although chemical cross-linking has resulted in improvement of collagen stability, residues of chemicals (e.g. amides or aldehydes) have been reported to induce severe inflammation at the implantation site (64–66). Therefore, the predictability of the collagen membrane not only depends on the origin of the collagen material but also on the preparation and processing procedures (de-cellularization, sterilization, and method of cross-linking). Natural compounds, such as Gp and D-ribose, have been suggested as safe, nontoxic, non-immunogenic, cross-linking agents to provide collagen membrane with a high mechanical strength and a low degradation rate (17, 66–69).

Collagen-based membranes have also been derived from humans. Acellular dermal matrix (ADM) is derived from human skin after removal of the epidermis and all dermal cells. It has been shown that the structure of collagen and elastin of the extracellular matrix (ECM), as well as the endogenous growth factors, are preserved in ADM after decellularization (70–72). Biomechanical analyses have shown that ADM has better strength and stiffness than cellular dermal membrane (71). Moreover, ADM has been clinically applied for preservation of alveolar ridges and for treatment of peri-implant defects (70, 73–75). Other types of collagen membranes have been derived from human pericardium and dura mater (76, 77). There have also been attempts to use the human amnion membranes for making biocompatible membranes using decellularization and sterilization techniques (78, 79). Lyophilized multilayered
amniotic membrane preserves the structural and mechanical properties of the amnion ECM and has good flexibility in adjusting the thickness and mechanical properties. This particular membrane has been suggested to promote bone growth whilst limiting fibrous tissue invasion (79).

Chitosan is another natural derived polymer used for preparation of GBR membranes. This material is made of copolymers of glucosamine (β-1, 4-linked 2-amino-2-deoxy-D-glucose) and N-acetylg glucosamine (2-acetamido-2-deoxy-D-glucose), and can be derived by partial deacetylation of chitin. The latter material exists in crustacean shells (i.e. that of shrimp and crab) and has a role analogous to that of collagen in higher animals (80). Chitosan possess important material properties, including biocompatibility, biodegradability, low immunogenicity, and a bacteriostatic effect. The degradation rate of chitosan membranes depends on their molecular weight as well as on the preparation methods. As collagen, chitosan can be cross-linked using glutaraldehyde and Gp. However, because of the toxicity of glutaraldehyde and the high cost of Gp, ionic cross-linking using sodium tripolyphosphate (TPP) has been suggested as an alternative cross-linking method (81).

Alginate membranes have also been introduced for GBR. Alginate is a bio compatible, anionic polymer that can be obtained from brown seaweed and achieves a similar structure to extracellular matrices when cross-linked to hydrogels (82). Although there is evidence indicating that both chitosan- and alginate-based membranes promote bone regeneration in experimental bone defects and are suitable materials for GBR (83–92), no papers describing the clinical results were found in the literature.

Metals: Titanium is a commonly used material in dentistry, craniomaxillofacial surgery, and orthopedics (93). Among its properties are biocompatibility, high strength and rigidity, low density and weight, the ability to withstand high temperatures, and resistance to corrosion (93). The use of titanium for GBR was inspired from a successful outcome of using a titanium mesh for reconstruction of maxillofacial defects (94). Several studies have shown that using a titanium mesh alone or with bone substitutes is an effective procedure for localized alveolar ridge augmentation prior to, or simultaneously with, implant placement (95–115). Occlusive titanium and micro-perforated titanium membrane have also been introduced and used for treatment of peri-implant bone defects and ridge augmentation (41, 116–120). The similarities and differences in biocompatibility and tissue performance between commercially pure titanium and the titanium alloys have recently been reviewed (121). Few studies have compared the biocompatibility of titanium with other membrane materials. There is experimental evidence that titanium elicits less persistent inflammation than PTFE (122). Furthermore, cobalt–chromium (CoCr)-based alloy has also been suggested for GBR. Although this alloy is known to be less biocompatible than titanium and titanium alloy, it has superior mechanical properties (e.g. stiffness and toughness). The potential use of CoCr alloy for GBR has been evaluated in a recent animal study but it has not yet been documented in any clinical report. The results show that placement of CoCr membrane on a rabbit tibial defect provides sufficient space and promotes bone regeneration (123).

Inorganic components: Calcium sulfate (CaS) is one of the few inorganic compounds that have been used to make the main bulk of GBR membranes (124–128). It is a biocompatible, osteoconductive, and bioresorbable material. It occurs in the natural environment and can also be produced by different synthetic methods. In brief, CaS-based membranes are made by hydration of CaS-hemihydrate powder (Plaster of Paris), which produces a paste that can be molded and set to a rigid material with relatively stable and less resorbable crystals (126, 129).

Furthermore, hydroxyapatite (HA)-based membrane has also been suggested for GBR. Hydroxyapatite is the calcium phosphate material most widely used for bone applications because of its similarity to the bone mineral, biocompatibility, and osteoconductivity. Furthermore, HA is less resorbable than many other calcium phosphate materials. Although HA is considered a relatively brittle material, it has demonstrated adequate mechanical properties, allowing the membrane to withstand static pressure from the soft tissue and thereby preserving more space for bone regeneration (130).

Hydroxyapatite-incorporated membranes have been shown to promote the functional activity of stromal cells and osteoblast-like cells in vitro (86, 131–133) (Table 2) and induce bone formation in vivo (87, 131, 134), in combination with non-resorbable (Table 3) and resorbable (Table 4) membranes. The HA powder used for preparation of pure ceramic membrane or other types of membrane has also been combined with bioactive ions, including strontium (135, 136), silver (137), and zinc (138) (Table 4), to enhance their biological performance in vivo.

Other ceramic materials, such as beta-tricalcium phosphate (β-TCP), have been incorporated in resorbable membranes and have demonstrated pro-osteogenic effects in vitro and in vivo (139). Moreover, the addition of bioactive glass nanoparticles to bioresorbable membranes has been shown to enhance the cell metabolic activity and mineralization in vitro (140–143). Enhancement of bone regeneration was found with a collagen membrane with bioactive glass in comparison with the native collagen membrane (144), whereas a limited osteopromotive effect was demonstrated with resorbable composite membrane of polyethylene oxide terephthalate and polybutylene terephthalate copolymer (Polyactive 70/30, IsoTis, Bilhaven, the Netherlands) combined with bioactive glass No. 13–93 (Abmin Technologies, Turku, Finland) in a rabbit maxillary alveolar cleft model (145).

Mechanical properties (stiffness and plasticity)

The amount of regenerated bone in the bone defect would be reduced if the membranes collapse into the
Membrane type	Modification	Cell type	Experimental groups (membrane materials)	Main findings	Ref.
Non-resorbable (e-PTFE or PA-66)	Non-expanded (PTFE) with small internodal distances (pores) 0.2 \(\mu \)m	Periodontal pathogenic bacteria	(i) Collagen		
(ii) e-PTFE					
(iii) PTFE	The PTFE and e-PTFE membranes showed comparable bacterial adhesion				
Lower bacterial adhesion on PTFE than collagen membrane	(169)				
			(i) Collagen		
(ii) e-PTFE					
(iii) PTFE	The degree of cell proliferation on the nano-HA-PA-66 membrane was higher than on the control e-PTFE	(131)			
Incorporation of nano-HA			(i) e-PTFE		
(ii) Nano-HA-PA66 composite	The degree of cell proliferation on the nano-HA-PA66 membrane was higher than on the control e-PTFE	(131)			
Resorbable (natural or synthetic polymers)	Membrane surface modification		(i) PHB membrane		
(ii) NaOH-treated PHB membrane	Treating the membrane with NaOH increased osteoblast proliferation and inhibited more than 60% of bacterial growth				
The HA-chitosan membranes with \(\leq 40\% \) HA exhibited a higher level of the osteogenic marker ALP	(230) (86)				
Incorporation of calcium phosphate materials such as HA and \(\beta \)-TCP	Osteoblastic cell line (MC3T3-E1)	Chitosan membrane with different HA ratios (0%, 10%, 20%, 30%, 40%, 50%, and 60%)	(i) PCL/PLGA		
(ii) PCL/PLGA/\(\beta \)-TCP	PCL/PLGA/\(\beta \)-TCP membranes increased adhesion, proliferation, and osteogenic differentiation of ADSC				
Higher level of proliferation and ALP activity on the three-layered membranes and the collagen/HA composite membranes, compared with the pure chitosan membrane	(139) (156)				
ADSCs			(i) Pure chitosan		
(ii) HA-collagen					
(iii) Three-layered membrane (middle chitosan layer)	The inclusion of HA-HA agglomerates in the collagen fibers improved the adhesion and metabolic activity of the cells	(133)			
Osteoblastic cell line (MC3T3-E1)			(i) Poly-D-lysine hydrobromide surface		
(ii) Collagen					
(iii) Nano-HA-collagen	Cells showed higher affinity on the three-layered membrane compared with the PLGA membrane	(231)			
Osteoblastic cell line (MC3T3-E1)			(i) Pure PLGA		
(ii) Three-layered nano-HA/collagen/PLGA	HA in the pure and functionalized membranes increased growth and adhesion of the MSCs				
Higher ALP activity was observed with DMAEA/HA-PCL and MAGMA/HA-PCL compared with pure polymers	(132)				
Human MSCs			(i) PCL		
(ii) HA-PCL					
(iii) PCL functionalized with amine (DMAEA) or anhydride (MAGMA)					
(iv) Functionalized PCL incorporated with HA	Sr-HA membrane exhibited higher elasticity, strength, and cellular ALP activity compared with collagen	(136)			
Rat BMSCs			(i) Collagen		
(ii) Sr-HA in gelatin | | |
defect space. Therefore, the ideal GBR membrane should be sufficiently rigid to withstand the compression of the overlying soft tissue. It should also possess a degree of plasticity in order to be easily contoured and mold to the shape of the defect. A balance between these mechanical properties is required to achieve an adequate space-making capacity. Titanium has excellent mechanical properties compared with other types of materials, such as collagen and e-PTFE. Whereas its rigidity prevents membrane collapse and provides space maintenance, its plasticity permits bending, contouring, and adaptation to the bone defect (6, 114). However, the cut edges of titanium mesh sometimes cause mucosal irritation that leads to exposure of the membrane and possibly infection (6, 118). In a rabbit study, placement of titanium membrane on a maxillary defect induced a higher degree of bone regeneration compared with placement of PTFE membrane on a maxillary defect (116). This was mainly related to the space-maintaining capacity of the titanium membrane. To enhance the rigidity of PTFE membrane, the titanium framework was embedded inside the membrane structure, which provided additional membrane stability during treatment of non-space-maintaining bone defects (146). This modification also allowed shaping of the membrane to fit a variety of defects without rebounding (16, 146). On the other hand, owing to the lack of stiffness, especially in the case of the resorbable membranes, the bone defect is often filled with grafting material to prevent the membrane from collapsing and to maintain the defect space (147). Mini-screws and pins have also been used to stabilize the membrane to the bone surrounding the defect in order to reduce the risk of collapse (148–150). Moreover, a tenting screw approach has been introduced to provide and maintain the required space during augmentation of the atrophic ridge (151).

Calcium phosphates have been incorporated in resorbable membranes to enhance their mechanical properties (152). The incorporation of β-TCP within a polymer membrane made of PCL/poly(lactide-co-glycolide) (PLGA) improved the mechanical stability and enhanced bone regeneration in vivo (139). The mechanical properties of a collagen and poly(vinyl alcohol) matrix have also been shown to be improved after adding β-TCP/chitosan composite and nano-HA, respectively (153, 154). Furthermore, a nanocalcium-deficient HA-multi (amino acid) copolymer composite membrane has demonstrated adequate biomechanical properties for GBR (155). Interestingly, a three-layered membrane has been developed to optimize the mechanical properties of collagen-based membranes. Whereas the top and bottom layers of the membrane are composed of HA-containing collagen for better flexibility and bioactivity, the middle layer is composed of chitosan to ensure high strength and improve the membrane elasticity (156). It has also been shown that the compressive strength of poly-l-lactic acid (PLLA) membranes can be adjusted by changing the molecular weight of the polymer. In comparison with PLLA mw 100,000-based membrane, PLLA mw 380,000-based membrane exhibited a higher compressive strength, equal to that of titanium mesh and judged to be adequate for vertical bone augmentation (157).

Porosity

Porosity is an important property of the GBR membrane. Studies have addressed the role of this property in the biological response in vivo using nonresorbable (Table 3) and resorbable (Table 4) membranes. The pore size of the membrane influences the degree of bone regeneration in the underlying secluded space (116, 158–163). It is considered as being closely related to tissue

Membrane type	Modification	Cell type	Experimental groups (membrane materials)	Main findings	Ref.
Incorporation of BG	Osteoblastic cell line (MC3T3-E1)	(i) PCL; (ii) Nanofibrous BG-incorporated PCL	Presence of BG significantly increased the expression of ALP	(140)	
Human BMSCs	(i) Chitosan; (ii) Chitosan with BG nanoparticles		Addition of BG decreased the mechanical properties, but promoted cell activity and mineralization	(142)	
Human BMSCs	(i) Polystyrene (cell-culture surface); (ii) PDLLA; (iii) BG-PDLLA		Presence of BG in PDLLA increased cell adhesion, proliferation and differentiation, and the production and mineralization of ECM	(143)	
Table 3
Experimental in vivo studies evaluating the performance of non-resorbable membranes after modifications of the physicochemical properties

Membrane type/ modification	Experimental model	Experimental groups (membrane and/or graft materials)	Main findings	Ref.
e-PTFE/embedding of titanium framework in the membrane	Peri-implant defect in mandible (dog)	(i) e-PTFE membrane	Ti reinforcement resulted in: • More rigid and malleable membrane • Large and protected defect space for better stabilization of blood clot and higher bone formation	(146)
		(ii) Ti-reinforced e-PTFE membrane		
e-PTFE or Ti/changing the porosity of the membrane	Denuded calvarial site (rat)	(i) Less porous e-PTFE dome (8 μm ID)	More porous membranes showed: • Better tissue integration and stability • More bone formation after 6 wk	(158)
		(ii) More porous e-PTFE dome (20–25 μm or 100 μm ID)		
	Supra-alveolar defect (dog)	(i) e-PTFE	• Sites receiving the occlusive membrane showed greater bone regeneration compared with sites with a porous membrane	(161)
		(ii) e-PTFE with 300 μm laser-drilled pores		
	Mandibular ramus (rat)	(i) Autogenous bone	• Macroporous membrane facilitated greater bone regeneration compared with microporous and resorbable mesh (membrane)	(162)
		(ii) Resorbable PLDLLA mesh cube + autogenous bone		
		(iii) Microporous Ti mesh cube (0.6 mm pore size) + autogenous bone		
		(iv) Macroporous Ti mesh cube (1.2 mm pore size) + autogenous bone		
	Calvaria (rabbit)	(i) Ti cylinder covered with e-PTFE (semipermeable)	• New bone was observed in both cases. It was suggested that membrane permeability is unnecessary in GBR	(165)
		(ii) Ti cylinder sealed with cast titanium (impermeable)		
	Calvaria (rat)	(i) e-PTFE dome (5 μm ID)	• PTFE with 100–300 μm pores permits soft-tissue invasion, but also allows more bone formation at the healing site	(174)
		(ii) e-PTFE dome (8 μm ID)		
		(iii) e-PTFE dome (100–300 μm ID)		
		(iv) PLGA dome		
	Mandibular ramus (rat)	(i) Permeable PTFE capsule + DBM	• Comparable amount of bone formation was observed in the two groups	(178)
		(ii) Occlusive PTFE capsule + DBM		
PTFE/use of non-expanded material (d-PTFE)	Calvarial defect (rabbit)	(i) Semipermeable e-PTFE	• Whereas the d-PTFE membrane was much easier to detach from the underlying bone, e-PTFE showed faster and higher levels of bone regeneration	(160)
		(ii) d-PTFE		
	Mandibular defect (rat)	(i) Sham	• After 10 wk of healing, whereas very little osseous regeneration was observed in sham sites, complete ossification was observed in the d-PTFE-treated sites	(166)
		(ii) d-PTFE membrane		
occlusivity and has a major influence on the invasion of soft-tissue cells. It has also been reported that membrane pores facilitate the diffusion of fluids, oxygen, nutrients, and bioactive substances for cell growth, which is vital for bone and soft-tissue regeneration (164). However, the presence of large pore sizes may impair the cell occlusive property of the membrane by allowing soft-tissue cells to migrate through the membrane, overpopulate the defect site, and inhibit the infiltration and activity of bone-forming cells (165). Furthermore, it has been reported that the presence of pores with size 5–30 μm in the e-PTFE membrane facilitate bacterial contamination and firm attachment of soft tissue (166). Therefore, high-density (d)-PTFE with a submicron (0.2 μm) pore size was developed to avoid the migration of bacteria into the membrane structure (51, 167, 168). Whereas higher adhesion of Actinobacillus actinomycetemcomitans, Treponema denticola, and Porphyromonas gingivalis was found on collagen membranes than on e-PTFE and d-PTFE, no differences in bacterial adherence were found between the PTFE membranes (169). On the other hand, several reports have indicated that the use of d-PTFE prevents bacterial penetration, reduces infection of the regeneration area, and does not even require primary closure (51, 160, 166, 170, 171). The lower porosity also made the PTFE membranes less liable to soft-tissue attachment and thereby can be removed easily without the need for additional surgical procedures (172, 173). However, the minimal tissue integration to d-PTFE membranes may create potential problems for initial clot formation, wound stabilization, and membrane stability (51). Furthermore, Linde and coworkers indicated that whereas increasing the internodal distance from 8 μm to 100–300 μm in the PTFE domes may permit soft-tissue invasion, more bone formation occurred at the healing site (174). Placement of e-PTFE containing 300 μm pores in association with titanium implants was shown to provide adequate space and significant vertical bone augmentation (175). At both micro- and macroscopic scales, Lundgren and coworkers studied the influence of different porosities on GBR in rat using stiff plastic plate as a solid or occlusive membrane and six polyester meshes with different porosities (10, 25, 50, 75, 100, and 300 μm). A slow rate of bone-tissue augmentation was registered in association with the totally occlusive barrier. In contrast, placement of polyester meshes with perforations exceeding 10 μm resulted in a faster rate of bone augmentation than when meshes with 10 μm pores were used (159). These results paralleled other in vivo findings showing that more porous PTFE dome-shaped membranes (internodal distances of 20–25 or 100 μm) induce more rapid bone regeneration compared with similar membrane made with an internodal distance of 8 μm (158). Moreover, according to data provided by Gutta and coworkers, macro-pores of more than 1 mm in size in the titanium membrane promote better bone regeneration (162). This latter observation is supported by the fact that although titanium mesh has a macroporous structure and tentatively allows migration of non-osteogenic soft tissue to the defect site, it is still one of the most predictable membranes for horizontal and vertical bone augmentation. Furthermore, although less porous polyactide membrane was suggested to preserve the osteogenic components in the defect space (176), in another study, the presence of large openings (800–900 μm) in the membrane was assumed to allow adequate vascularization for bone graft implanted in large bone defects and thereby promoted bone regeneration (177). The previous findings have been contradicted by other animal studies either showing no difference (178) or a larger production of bone volume in association with an occlusive dome-shaped membrane compared with the corresponding porous membrane (130, 161).

Indeed, the pore size and the degree of porosity vary between the available membranes, which range from solid to macroporous, and the optimal membrane porosity has probably not yet been defined. Therefore,
Modification	Experimental model	Experimental groups (membrane and/or graft materials)	Main findings	Ref.	
Increasing molecular weight of the polymer	Calvarial defect (rabbit)	PLLA membrane with different molecular weights (i) mw 100000 (ii) mw 380000	PLLA mw 380000 membrane showed: • Higher compressive strength • Lower amount of deformation and higher bone formation after 4 and 12 wk of healing • Placement of polyester meshes with perforations exceeding 10 μm resulted in faster and higher bone augmentation than did 10 μm pores and stiff polyoxymethylene material • The defect group with stiff barrier did not show ingrowth of suprabony connective tissue as did the porous membrane but the bone augmentation was more evenly distributed in the defect	(157)	
Changing the pore size	Calvarial defect (rat)	(i) Sham (ii) Stiff polyoxymethylene plastic plate (iii) Polyester meshes with different porosities (10, 25, 50, 75, 100, and 300 μm)	• Microporous membrane showed more predictable bone regeneration compared with the membranes with pores of medium and large size (10–20 or 20–200 μm) • Combination of PMi and autogenous bone increased the bone formation compared with other treatment modalities • The use of Mi alone delivered the least bone formation • The bone defect healed only when the laser-perforated membrane was used in combination with the autogenous bone • Use of the internal and external perforated membrane (tube-in-tube implant) with autogenous bone allowed reconstitution of the ‘neocortex’ with well-defined thickness. This was suggested to enhance vascularization of the bone graft from the soft tissue	(159)	
Diaphyseal defect in the radius (rabbit)	PLLA membrane with various pore sizes: microporous (size was not provided), medium (10–20 μm) and large (20–200 μm) pore sizes			(176)	
Segmental defect in mandible (dog)	(i) Sham (ii) Autogenous bone (iii) Mi (iv) PMi (v) Mi + autogenous bone (vi) PMi + autogenous bone			(163)	
Segmental large diaphyseal defect (sheep)	(i) External microporous PLLA membrane (pore size: 50–70 μm) (ii) Internal and external microporous PLLA membrane (iii) External perforated PLLA membrane (pore size 800–900 μm) (iv) External perforated PLLA membrane + autogenous bone (v) Internal and external perforated PLLA membrane (vi) Internal and external perforated PLLA membrane + autogenous bone			(177)	
Increasing thickness of the membrane	Mandibular defect (dog)	(i) RHDM (100 μm thick) (ii) RHDM (200 μm thick)	• The 200-μm-thick membrane showed less soft-tissue ingrowth and better bone formation after 6 months of healing • Placement of double-layer membrane showed less graft resorption and enhanced bone augmentation • Whereas the monolayer membrane was completely degraded by 4 months, the body of the double-layer membrane was retained up to 6 months • Use of a double-layer technique provided a thicker barrier after 4 and 9 wk of healing. The effect on bone regeneration was not studied	(185)	
	Calvarial site with onlay graft (rabbit)	(i) Block bone grafts (ii) Monolayer collagen membrane + block grafts (iii) Double-layer collagen membrane + block grafts			(188)
	Calvarial defect (rat)	(i) Monolayer collagen membrane (ii) Double-layer collagen membrane		(189)	
further systematic investigations are needed to address the following: first, if the GBR membrane really needs to be porous; and, second, the role of membrane porosity and permeability in the mechanism of bone healing in the treated defect.

Membrane architecture and thickness

Collagen membranes have different structures and thicknesses depending on the collagen source, extraction method, and method used to manufacture the membrane. These membranes consist of either a homogenous collagenous matrix or a bilayer structure. Ultrastructural evaluation of these membranes revealed, for example, that Jason membrane (Botiss biomaterials, Zossen, Germany) consists of differently oriented collagen fibers that create a comb-like structure, characterized by strong multidirectional linking (179), whereas DynaMatrix (Keystone Dental, Boston, MA, USA) membrane has discrete layers of collagen solid sheaths (180). Collprotect (Botiss biomaterials) is another collagen membrane that is considered to be semipermeable because of its open porous and three-dimensional structure (181). The bilayered membranes, such as BioGide (Geistlich Pharma, Wolhusen, Switzerland) and Mucograft (Geistlich Pharma), have one compact layer that is able to prevent infiltration of epithelial cells into the bone defect and a second, porous, spongy, layer that allows tissue integration (182). This structure was also mimicked in a synthetic commercial membrane made of

\[\beta\text{-TCP}, \text{beta-tricalcium phosphate; BCP, biphasic calcium phosphate; BG, bioactive glass; DBB, deproteinized bovine bone; HA, hydroxyapatite; Mi, microporous poly-L/DL-lactide membrane; PBT, polybutylene terephthalate; PCL, polycaprolactone; PEOT, polyethylene oxide terephthalate; PLGA, poly(lactide-co-glycolide); PLLA, poly-L-lactic acid; PMi, perforated poly-L/DL-lactide membrane; RHDM, resorbable human demineralized calvarial bone membrane; Sr, strontium.} \]
a copolymer of glycolide (PGA) and trimethylene carbonate (Resolut, Gore-Tex Regenerative Material; W.L. Gore & Associates, Flagstaff, AZ, USA) (52, 183). In another bilayered polymeric membrane (Guidor, Sunstar Sweden, Askim, Sweden), the two layers were designed as a mesh, but with different pore size and geometry (52). Whereas the external layer had large pores (of rectangular shape) to allow integration of the overlying soft tissue and promote tissue integration, the inner layer had small pores (of circular shape) to retard tissue penetration but still allow permeation of nutrients. Interspace was also created between the two layers of this membrane to facilitate tissue integration. In fact, the design and the architecture of the polymeric membranes are suggested to be important factors for determining their biodegradability and osteoinductive effect in vivo (179, 184).

The membranes described above differ not only with respect to their architecture but also in relation to thickness, which may influence their mechanical and space-maintaining properties during implantation. It has been demonstrated that placement of a thicker collagenous membrane permits less soft tissue ingrowth and promotes better bone formation (185). Moreover, in a rat experimental model, it was shown that double-layered porcine collagen membranes promote more bone regeneration than does cross-linked type I collagen membrane when used in combination with a porous titanium membrane or bone graft (186). A trilayered membrane has also been introduced by the addition of a poly乳酸 layer between two layers of collagen in order to prolong the period of membrane degradation and its barrier function (187). Finally, the assembly of two layers of the same type of non-cross-linked collagen membrane reduces the resorption of the bone graft and enhances bone regeneration (188) as well as retaining the membrane body for a longer period of time (189).

Biological mechanisms of GBR

There is ample experimental evidence showing that the application of a membrane promotes bone formation in the underlying defect (89, 127, 163, 183, 187, 190–215). However, the studies on GBR have been traditionally focused on histological assessment of bone formed in membrane-treated defects, whereas studies on the cellular and molecular mechanisms of GBR in vivo are scarce. Although the histological studies have been important as proof of concept, they have not provided explanations on how the presence of a membrane influences the cellular and molecular events during the consecutive phases of bone healing (inflammation, bone formation, and remodeling) in the underlying defect. In fact, the traditionally proposed explanation for how the membrane promotes bone formation is that the membrane acts as a passive barrier for soft-tissue invasion, rather than directly promoting the sequences of biological processes that lead to bone regeneration and filling of the defect with mature, remodeled bone. Relatively few studies have addressed the cellular and molecular events associated with the tissue response and bone formation in conjunction with GBR membranes. On the other hand, the results of these studies have shed important light on the mechanisms whereby GBR membranes exert their bone-promotive functions.

During an experimental GBR procedure in a rat tibia defect, the presence of a synthetic PTFE membrane enhanced an earlier and higher level of cbf-1/Runx2-positive osteoprogenitor cells and stronger expression of the bone-formation marker, osteocalcin, in the underlying defect compared with the untreated sham defect (216). Comparable findings were found during a GTR procedure in a human periodontal bone defect (217). In the latter study, the presence of PTFE membrane stimulated stronger expression of several bone-formation-related genes, including alkaline phosphatase (ALP), osteopontin, and bone sialoprotein, in the underlying defect in comparison with a defect without membrane (217). An important observation in the latter study was that the presence of the PTFE membrane also triggered increased expression of tissue and bone remodeling genes, including receptor activator of nuclear factor kappa-B ligand (RANKL) and matrix metalloproteinases (MMPs) 2 and 9, as well as the inflammatory cytokines, interleukins (ILs) 1 and 6, in the underlying defect (217).

Consistent with the aforementioned findings on non-resorbable, synthetic, PTFE membrane, it has been recently demonstrated that the presence of resorbable, naturally derived, collagen membrane promotes coupled increase in bone formation and bone-remodeling genes (osteocalcin, calcitonin receptor, cathepsin K, and RANKL) in the underlying rat tibia defect, compared with a similar defect without membrane (180) (Fig. 4). Importantly, in the latter study, it was possible to relate the membrane-induced bone-formation and remodeling activities in the defect to the detection of a higher proportion of mature remodeled bone in the membrane group, particularly at the top region of the defect close to the membrane (180). Furthermore, an underpinning molecular finding in the latter study was that the presence of the membrane triggered an early upregulation of two major cell-recruitment factors in the defect: C-X-C chemokine receptor type 4 (CXCR4) and monocyte chemoattractant protein-1 (MCP-1). These two factors are of particular interest as the chemokine receptor CXCR4 plays an important role in the recruitment of mesenchymal stem cells (218–220), which differentiate to osteoblasts, the cells responsible for bone formation, whereas MCP-1 has been described as a major chemokine for recruitment of osteoblast precursors (221, 222), the key cell type for bone remodeling. Collectively, these findings suggest that the membrane promotes an environment for rapid recruitment of different cell types in the defect, including osteoblastic and osteoclastic phenotypes and, more importantly, that the membrane promotes an environment conducive for the molecular cascade of coupled bone formation and remodeling in the underlying defect.
A major scientific query is whether the membrane per se provides an active contribution in addition to the proposed barrier function? The resorbable collagen membrane has been suggested to participate in the bone-regeneration process, supported by findings of immunoreactivity of bone-related proteins (ALP, osteopontin, and osteocalcin) in the lower part of the membrane facing the defect (223). A subsequent in vivo study used another type of collagen membrane predominantly consisting of ECM collagen but also containing inherited growth factor [fibroblast growth factor-2 (FGF-2)] (180). The latter study demonstrated that the membrane per se hosts different cell phenotypes during GBR and that these cells within the membrane progressively express and secrete major bone-related growth factors, including the potent pro-osteogenic factor, bone morphogenetic protein 2 (BMP-2) (180). Strong links between the pro-osteogenic growth factors expressed in the membrane with the bone-formation and bone-remodeling activities within the underlying defect were demonstrated in the correlation analysis (180) (Fig. 4). Taken together, the results provide strong evidence that the membrane directly promotes the healing processes in the underlying defect by activating the host cells that are recruited into and/or become adherent to the membrane, allowing their signals to be communicated to the different cell populations in the underlying defect (Fig. 5).
Hitherto, it is not known whether this bioactive role of the membrane compartment is exclusively restricted to naturally derived collagen membrane. Interestingly, when clinically retrieved PTFE membranes were cultured ex vivo in osteogenic medium, the membrane-adherent cells demonstrated the ability to produce higher levels of ALP osteogenic activity compared with clinically harvested gingival cells (224). These PTFE membrane-adherent cells were also capable of producing mineralized nodules in a similar set-up after a longer period of ex vivo culture in osteogenic medium (225). Moreover, in the latter study, although the phenotypes of the PTFE membrane-adherent cells were not characterized, these cells expressed the inflammatory cytokines, IL-1\(\alpha\) and IL-4, irrespective of whether the membrane was retrieved from GTR or GBR procedures. In addition, it appeared that another inflammatory cytokine, IL-1\(\beta\), was mainly expressed in cells adherent to PTFE membrane retrieved from GTR but not GBR (225). These results indicate that the synthetic PTFE membrane may harbor cells with regenerative potential on its surface, and that the PTFE membrane-adherent cells can at least convey inflammatory signals.

The role of the inflammatory cells for vascularization and degradation of the membrane per se is an interesting and yet incompletely answered issue. The recruitment of cells into the collagenous membranes has been suggested to enhance tissue integration and transmembrane vascularization (62), processes that have been...
suggested to be influenced by the membrane type (226). Furthermore, multinucleated giant cells have been detected in association with different types of membranes and are suggested to have an important role in membrane degradation and vascularization (227). Dense silk fibroin membrane promoted the recruitment of larger numbers of pro-inflammatory cells and multinucleated giant cells compared with non-cross-linked collagen membrane (228). Interestingly, the latter observation was associated with greater transmembrane vascularization and membrane degradation (228). Additional support for a role of multinucleated cells during GBR is the observation of these cells particularly in the zone between the lower surface of the membrane and the upper surface of the newly formed bone (180). At the histological level, these multinucleated osteoclast-like cells appeared to be in a process of active resorption of the underlying bone, but it was not possible to determine whether these cells were also involved in the process of membrane degradation (180).

Collectively, the data published by our colleagues and ourselves provide evidence for an active role of the membrane in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. On the other hand, it is not yet established if different membranes will have different potential to host and activate the membrane-recruited cells, and if this would result in different degrees of bone formation and restitution of the underlying defect. It is extremely important to obtain such information before the development of the next generation of GBR membranes.

Based on the above considerations, we conclude the following:

(i) There is evidence showing that GBR with and without bone graft/substitute is a successful modality for augmentation of alveolar bone defects. However, there are still challenging situations and complications which necessitate future developments of GBR membranes. Such membranes are suggested to have bone-promoting capacity as well as soft-tissue compatibility and antibacterial properties.

(ii) The evolution of GBR membranes has been mainly driven by the sought-for barrier function, the user friendliness, and the clinical handling in the different clinical situations, rather than a systematic approach to improve the biological outcomes. On the other hand, a bulk of experimental data suggests that different modifications of the physicochemical and mechanical properties of membranes may promote bone regeneration. Unfortunately, many membranes have been commercialized for clinical use but still lack proper characterization of the material.

(iii) Despite a large number of studies dedicated to the role of membrane permeability and porosity, contradictory results exist with respect to the role of membrane porosities (ranging from sub-micron to macro scale). This fundamental issue of hindering soft-tissue (cell) invasiveness and promoting bone regeneration, respectively, is a major challenge for the proposed membrane barrier concept.

(iv) Experimental evidence has been provided for an active role of the membrane compartment per se in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. On the other hand, it is not yet established if different membranes will have different potential to host and activate the membrane-recruited cells and if this would result in different degrees of bone formation and restitution of the underlying defect.

Acknowledgements – The authors are indebted to our colleagues in the clinic and the laboratory for participating in fruitful discussions. The study was supported by the BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, the Västra Götaland Region, the Swedish Research Council (K2015-52X-09495-28-4), the LUA/ALF Research Grant ‘Optimization of osseointegration for treatment of transfemoral amputees’ (ALFGBG-448851), the Osteology Foundation (project grants 14-049 and 15-103), the IngaBritt and Arne Lundberg Foundation, the Hjalmar Svensson Foundation, the Vilhelm and Martina Lundgren Vetenskapsfond, and the Area of Advance Materials of Chalmers and GU Biomaterials within the Strategic Research Area initiative launched by the Swedish Government.

Conflicts of interest – No benefit of any kind has been received either directly or indirectly by the authors.

References

1. CHIAPASCO M, ZANIBONI M, BORSO M. Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. Clin Oral Implants Res 2006; 17(Suppl): 136–159.

2. BERNSTEIN S, COOKE J, FOTEK P, WANG HL. Vertical bone augmentation: where are we now? Implant Dent 2006; 15: 219–228.

3. DONOS N, MARAS N, CHADHA V. Clinical outcomes of implants following lateral bone augmentation: systematic assessment of available options (barrier membranes, bone grafts, split osteotomy). J Clin Periodontol 2008; 35: 173–202.

4. ROCCHETTA I, FONTANA F, SIMION M. Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review. J Clin Periodontol 2008; 35: 203–215.

5. HAMMERLE CH, JUNG RE. Bone augmentation by means of barrier membranes. Periodontol 2000 2000; 33: 36–53.

6. RAKHMAHIA YD, AYUKAWA Y, FURUHASHI A, KOYANO K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res 2013; 57: 3–14.

7. CHIAPASCO M, ZANIBONI M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin Oral Implants Res 2009; 20(Suppl): 113–123.

8. BENCIGI, HAMMERLE CH. Horizontal bone augmentation by means of guided bone regeneration. Periodontol 2000 2004; 66: 13–40.

9. LANEY WR. Glossary of oral and maxillofacial implants. Berlin: Quintessence Publishing Co Ltd, 2007: 1–212.

10. ROTZEPH M, DONOS N. Guided Bone Regeneration: biological principle and therapeutic applications. Clin Oral Implants Res 2010; 21: 567–576.

11. DIMITROU R, MALATIOTAKIS GI, CALORI GM, GIANNOUDIS PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 2012; 10: 1–24.
12. Bornstein MM, Halbritter S, Harnisch H, Weber HP, Buser D. A retrospective analysis of patients referred for implant placement to a specialty clinic: indications, surgical procedures, and early failures. Int J Oral Maxillofac Implants 2008; 23: 1109–1116.

13. Clementini M, Moruppi A, Caccillo L, Agrestini C, Barlattani A. Success rate of dental implants inserted in horizontal and vertical guided bone regenerated areas: a systematic review. Int J Oral Maxillofac Surg 2012; 41: 847–852.

14. Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants 2009; 24(Suppl): 218–236.

15. Hammerle CH, Jung RE, Feloutzis A. A systematic review of the survival of implants in bone sites augmented with barrier membranes (.guided bone regeneration) in partially edentulous patients. J Clin Periodontol 2002; 29(Suppl): 226–231; discussion 232–233.

16. Liu J, Kerr DG. Mechanisms of guided bone regeneration: a review. Open Dent J 2014; 8: 56–65.

17. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM. Recent advances in the development of GTR/GR membranes for periodontal regeneration—a materials perspective. Dent Mater 2012; 28: 703–721.

18. Sam G, Pillai BR. Evolution of barrier membranes in periodontal regeneration—"are the third generation membranes really here?". J Clin Diagn Res 2014; 8: Ze14–Ze17.

19. Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants 2007; 22(Suppl): 49–70.

20. Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res 2012; 23(Suppl 4): 1–21.

21. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical bone augmentation procedures for dental implants - a Cochrane systematic review. Eur J Oral Implantol 2009; 2: 167–184.

22. Zitzmann NU, Naef R, Schaper P. Resorbable versus non-resorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 1997; 12: 844–852.

23. McAllister BS, Haghhighat K. Bone augmentation techniques. J Periodontol 2007; 78: 377–396.

24. Chaharsooghi M, Sandin M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin Oral Implants Res 2009; 20(Suppl 4): 113–123.

25. Merli M, Migani M, Bernardelli E, Esposito M. Vertical bone augmentation with dental implant placement: efficacy and complications associated with 2 different techniques. A retrospective cohort study. Int J Oral Maxillofac Implants 2006; 21: 600–606.

26. Simon M, Joyanova SA, Tresi P, Scarano A, Piattelli A. Vertical ridge augmentation around dental implants using a membrane technique and autogenous bone or allografts in humans. Int J Periodontics Restorative Dent 1998; 18: 8–23.

27. Simon M, Fontana F, Rasperini G, Miorana C. Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (Bio Oss). Clin Oral Implants Res 2007; 18: 629–639.

28. Canullo L, Malagoldo VA. Vertical ridge augmentation around implants by e-PTFE titanium-reinforced membrane and bovine bone matrix: a 24- to 54-month study of 10 consecutive cases. Int J Oral Maxillofac Implants 2008; 23: 858–866.

29. Langer B, Langer L, Sullivan RM. Vertical ridge augmentation procedure using guided bone regeneration, demineralized freeze-dried bone allograft, and miniscrews: 4– to 13-year observations on loaded implants. Int J Periodontics Restorative Dent 2010; 30: 227–235.

30. Tinti C, Parma-Benfenati S. Vertical ridge augmentation: surgical protocol and retrospective evaluation of 48 consecutively inserted implants. Int J Periodontics Restorative Dent 1998; 18: 434–443.

31. Keestra JA, Barry O, Jong L, Wahl G. Long-term effects of vertical bone augmentation: a systematic review. J Appl Oral Sci 2016; 24: 3–17.

32. Urban IA, Monje A, Lozada JL, Wang HL. Long-term evaluation of peri-implant bone level after reconstruction of severely atrophic edentulous maxilla via vertical and horizontal guided bone regeneration in combination with sinus augmentation: a case series with 1 to 15 years of loading. Clin Implant Dent Relat Res 2017; 19: 46–55.

33. Soldatos NK, Stylianou P, Kodou VP, Angelov N, Yukna R, Romanos GE. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int 2017; 48: 131–147.

34. Jung RE, Thoma DS, Hammerle CH. Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review. J Clin Periodontol 2008; 35: 255–281.

35. Pilipchuk SP, Ploenka AB, Monje A, Taut AD, Lans J, Kang B, Giannobile W. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015; 31: 317–338.

36. Amorini L, Migliorati M, Signori A, Silverstrini-Biavati A, Benedenicti S. Block allograft technique versus standard guided bone regeneration: a randomized clinical trial. Clin Implant Dent Relat Res 2014; 16: 655–667.

37. Minor RJ, Zucchelli G, Pacos MA, Salama M, Lee S, Guillemette V, Fujioka-Kobayashi M, Bshara M, Zhang Y, Wang HL, Chaudh D, Nacopoulos C, Simonperi A, Aalam AA, Felice P, Sammartino G, Gnahaati S, Hernandez MA, Choukroun J. Use of platelet-rich fibrin in regenerative dentistry: a systematic review. Clin Oral Investig 2017; 21: 1913–1927.

38. Chen TL, Liu HJ, Liu GQ, Tang DH, Zhang XH, Pan ZL, Wang SF, Zhang QF. Effect of autologous platelet-rich plasma in combination with bovine porous bone mineral and bio-guide membrane on bone regeneration in mandible bicortical bone defects. J Craniofac Surg 2014; 25: 215–223.

39. Eskan MA, Greenwell H, Hill M, Morton D, Vidal R, Shumway B, Gibouard ME. Platelet-rich plasma-assisted guided bone regeneration for ridge augmentation: a randomized, controlled clinical trial. J Periodontol 2014; 85: 661–668.

40. Hu L, Lin Y, Hu X, Zhang Y, Wu H. A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 707–713.

41. Ozdemir H, Ezigianli S, Isa Karra M, Mihmanli A, Baris E. Effects of platelet rich fibrin alone used with rigid titanium barrier. Arch Oral Biol 2013; 58: 537–544.

42. Pieri F, Lucarelli E, Corinaldesi G, Fini M, Aldeni NN, Giardino R, Donati D, Marchetti C. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. Int J Oral Maxillofac Surg 2009; 6: 265–272.

43. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg 2014; 7: 189–197.

44. Kang YH, Jeon SH, Park JY, Chung YH, Chung HW, Kim ES, Chung PH. Platelet-rich fibrin is a Bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng Part A 2011; 17: 349–359.

45. Naik B, Karunakar P, Jayadev M, Marshal VR. Role of Platelet rich fibrin in wound healing: A critical review. J Conserv Dent 2013; 16: 284–293.

46. Agarwal A, Gupta ND, Jain A. Platelet rich fibrin combined with decalcified freeze-dried bone allograft for the treatment of human intrabony periodontal defects: a
randomized split mouth clinical trial. Acta Odontol Scand 2016; 74: 36–43.

47. TOFFLER M, TOSCANO N, HOLTZCLAW D. Osseotome-mediated sinus floor elevation using only platelet-rich fibrin: an early report on 110 patients. Implant Dent 2010; 19: 447–456.

48. VIJAYALAKSHMI R, RAJMOHAN CS, DEEPLAKSHMI D, SIVAKUMAR G. Use of platelet rich fibrin in a fenestration defect around an implant. J Indian Soc Periodontol 2012; 16: 108–112.

49. KAWASE T, KAMIYA M, KOBAYASHI M, OKUDA K, WOLFF LF, YOSHIE H. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation. J Biomed Mater Res B Appl Biomater 2015; 103: 825–831.

50. SHERKH Z, ABDALLAH M, HAMDAN N, JAVAID M, KHURSHID Z, MATILINNA K. Barrier membranes for tissue regeneration and bone augmentation techniques in dentistry. In: MATILINNA J, ed. Handbook of oral biomaterials. Singapore: Pan Stanford Publishing, 2014; 605–636.

51. CARBONELL JM, MARTIN IS, SANTOS A, PUJOL A, SANZ-MOLINER JD, NART J. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review. Int J Oral Maxillofac Surg 2014; 43: 75–84.

52. GENTILE P, CHIONO V, TONDA-TURO C, FERREIRA AM, CARRIELLI G. Polymeric membranes for guided bone regeneration. Biotechnol J 2011; 6: 1187–1197.

53. ALI SA, KARTHEGEYAN S, DEVIKUMAR M, KUMAR A. Implant rehabilitation for atrophic maxilla: a review. J Indian Prosthodont Soc 2014; 14: 196–207.

54. HUTMACHER D, HURZELER MB, SCHLIEPHAKE H. A review of material properties of biodegradable and biocompatible polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 1996; 1: 607–678.

55. PIATTELLI A, SCARANO A, CORAGGIO F, MATARRASSO S. Early tissue reactions to polylactic acid resorbable membranes: an experimental study. Clin Oral Implants Res 1997; 9: 323–331.

56. LEIKOVIC V, CAMARGO PM, KLOKKEVOLD PR, WEINLÄNDER M, KENNEY EB, DMITRIJEVIC B, NEDIC M. Preservation of alveolar bone in extraction sockets using bioabsorbable membranes. J Periodontol 1998; 69: 1044–1049.

57. MEING RP. Clinical use of resorbable polymeric membranes in the treatment of bone defects. Orthop Clin North Am 2010; 41: 39–47.

58. HOOGEVEEN EJ, GHEKENS PF, SCHAART JG, JEGTJE H, HULSMANS MC, STEEGenga B, VIVOSORB as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography. Int J Oral Maxillofac Surg 2009; 38: 870–875.

59. LIU SH, YANG RS, AL-SHAIKH R, LANE JM. Collagen in tendon, ligament, and bone healing. A current review. Clin Oral Rehabil 1995; 318: 265–278.

60. BUNYAVARATATI P, WANG H-L. Collagen membranes: a review. J Periodontol 2001; 72: 215–229.

61. ROTHEMAL D, SCHWARZ F, SAGER M, HERTEN M, SCULEAN A, BECKER J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res 2005; 16: 360–379.

62. JORGE-HERRERO E, FERNANDEZ P, TURNAJY J, OLMO N, CALERO P, GARCA R, FREIJE I, CASTILLO-OLIVARES J. Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials 1999; 20: 539–545.

63. SPEER DP, CHIAPEL M, ESSELSON CD, ULBRICH J. Biological effects of treatment with glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 1980; 14: 753–764.

64. ROTHENSI D, SCHWARZ F, SCULEAN A, HERTEN M, SCHELLER M. Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Clin Oral Implants Res 2004; 15: 443–449.

65. TAI H, KOZLOWSKI A, NUMOVSKY C, MOSES O. Biodegradable collagen membranes for guided bone regeneration. In: TAI H, ed. Bone regeneration. Croatia: InTech, 2012; 111–139.

66. ZUBERY Y, NIR E, GOLDLUST A. Ossification of a collagen membrane cross-linked by sugar: a human case series. J Periodontol 2008; 79: 1101–1107.

67. BOTTINO MC, TOMASI V, DEAN DR, JANOWSKI GM. Acellular dura matrix graft: synergistic effect of rehydration and natural crosslinking on mechanical properties. J Biomed Mater Res B Appl Biomater 2010; 95: 276–282.

68. FRIEDMANN A, GISSEL K, SOUDAN M, KLEBER BM, PITARI S, DRIETZ T. Randomized controlled trial on lateral augmentation using two collagen membranes: morphometric results on mineralized tissue compound. J Clin Periodontol 2011; 38: 677–685.

69. FERNANDES PG, NOVAES AB Jr, DE QUEIROZ AC, DE SOUZA SL, TABA M Jr, PALIOTO DB, GRISH MF. Ridge preservation with acellular dura mater and autogenous bone matrix cell- binding peptide P-15 after tooth extraction in humans. J Periodontol 2011; 82: 72–79.

70. BONDOLI E, FINI M, VERONESI F, GIAVARESI G, TSIONCH M, CENACCHI G, CERASOLI S, GIARDINO R, MELANDRI D. Development and evaluation of a decellularized membrane from human dersmis. J Tissue Eng Regen Med 2014; 8: 325–336.

71. WAISNBREITS LF. Use of an acellular allograft dural matrix (AlloDerm) in the management of full-thickness burns. Burns 1995; 21: 243–248.

72. LUCZYNSZYN SM, PAPALEXIOU V, NOVAES AB Jr, GRISH MF, SOUZA SL, TABA M Jr. Acellular dura matrix and hydroxyapatite in prevention of ridge deformities after tooth extraction. Implant Dent 2005; 14: 176–184.

73. FOTER PD, NEVA RF, WANG HL. Comparison of dermal matrix and polytetrafluoroethylene membrane for socket bone augmentation: a clinical and histologic study. J Periodontol 2009; 80: 776–785.

74. PARK SH, LEE KW, OH TJ, MISCH CE, SHOTWELL J, WANG HL. Effect of absorbable membranes on sandwich bone augmentation. Clin Oral Implants Res 2008; 19: 32–41.

75. PIATTELLI M, SCARANO A, PIATTELLI A. Histological evaluation of freeze-dried dura mater (FDDMA) used in guided bone regeneration (GBR): a time course study in man. Biomaterials 1996; 17: 2319–2323.

76. VIDIAKHANAR AK, RAVINDRAN A. Localized ridge defect augmentation using human pericardium membrane and demineralized bone matrix. Indian J Dent Res 2014; 25: 445–448.

77. GOMES MF, DOS ANDOS MJ, NOGUEIRA TO, GUIMARAES SA. Histologic evaluation of the osteoinductive property of autogenous demineralized dentin matrix on surgical bone defects in rabbit skulls using human amniotic membrane for guided bone regeneration. J Internatl Maxillofac Implants 2001; 16: 563–571.

78. LEE YM, KU Y, HYU IC, HAN SB, LEE SJ, CHUNG CP. Acellular dermal matrix graft: synergistic effect of rehydration and natural crosslinking on mechanical properties. J Biomed Mater Res B Appl Biomater 2010; 95: 276–282.
Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol 2005; 76: 1778–1784.
84. KUO SM, CHANG SJ, CHEN TW, KUAN TC. Guided tissue regeneration for using a chitosan membrane: an experimental study in rats. J Biomed Mater Res A 2006; 76: 408–413.
85. LEE EJ, SHIN DS, KIM HE, KIM HW, KOH YH, JANG JH. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials 2009; 30: 743–750.
86. TENG SH, LEE EJ, YOON BH, SHIN DS, KIM HE, OH JS. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A 2009; 88: 569–580.
87. SONG JM, SHIN SH, KIM YD, LEE JY, BAEK YJ, YOON SY, KIM HS. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci 2014; 6: 87–93.
88. ISHIKAWA K, UEYAMA Y, MANO T, KOYAMA T, SUZUKI K, MATSUMURA T. Self-setting barrier membrane for guided tissue regeneration method: initial evaluation of alginate membrane made with sodium alginate and calcium chloride aqueous solutions. J Biomed Mater Res 1999; 47: 111–113.
89. UEYAMA Y, ISHIKAWA K, MANO T, KOYAMA T, NAGATSUKA H, SUZUKI K, RYÖKE K. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials 2002; 23: 2027–2033.
90. UEYAMA Y, KOYAMA T, ISHIKAWA K, MANO T, OGAWA Y, NAGATSUKA H, SUZUKI K. Comparison of ready-made and self-setting alginate membranes used as a barrier membrane for guided bone regeneration. J Mater Sci Mater Med 2006; 17: 281–288.
91. HE H, HUANG J, SHI J, PING F, CHEN G, DONG Y. Haversian remodeling in guided bone regeneration with calcium alginate film in circular bone defect model of rabbit. Artif Cells Blood Substit Immobil Biotechnol 2007; 35: 553–542.
92. HE H, HUANG J, PING F, SUN G, CHEN G. Calcium alginate film used for guided bone regeneration in mandible defects in a rabbit model. J Cranio 2008; 26: 65–70.
93. BRUNETTE DM. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Berlin: Springer, 2001.
94. BOYNE PJ. Restoration of osseous defects in maxillofacial casualties. J Am Dent Assoc 1969; 70: 767–776.
95. ARTZI Z, DAYAN D, ALFERN Y, NEMCOVSKY CE. Vertical ridge augmentation using xenogenic material supported by a configured titanium mesh: clinicohistopathologic and histochernical study. Int J Oral Maxillofac Implants 2003; 18: 440–446.
96. DEGIDI M, SCARANO A, PIATTELLI A. Regeneration of the alveolar crest using titanium micromesh with autologous bone and a resorbable membrane. J Oral Implantol 2003; 29: 86–90.
97. PROUSSEAFS P, LOZADA J, KLEINMAN A, ROHRER MD, McMILLAN PJ. The use of titanium mesh in conjunction with autogenous bone graft and inorganic bovine bone mineral (bio-oss) for localized alveolar ridge augmentation: a human study. Int J Periodontics Restorative Dent 2003; 23: 185–195.
98. ROCUZZO M, RAMIGER G, SPADA MC, BIANCHI SD, BERRONE S. Vertical alveolar ridge augmentation by means of a titanium mesh and autogenous bone grafts. Clin Oral Implants Res 2004; 15: 73–81.
99. PROUSSEAFS P, LOZADA J. Use of titanium mesh for staged localized alveolar ridge augmentation: clinical and histologic-histomorphometric evaluation. J Oral Implantol 2006; 32: 237–247.
100. ROCUZZO M, RAMIGER G, BUNINO M, BERRONE S. Autogenous bone graft alone or associated with titanium mesh for vertical alveolar ridge augmentation: a controlled clinical trial. Clin Oral Implants Res 2007; 18: 286–294.
101. LOUIS PJ, GUPTA R, SAID-AI-NAIF N, BARLOTTI-UC A. Reconstruction of the maxilla and mandible with particulate bone graft and titanium mesh for implant placement. J Oral Maxillofac Surg 2008; 66: 235–245.
102. CORINALDESI G, PIERI F, SAPIGNI L, MARCHETTI C. Evaluation of survival and success rates of dental implants placed at the time of or after alveolar ridge augmentation with an autogenous mandibular bone graft and titanium mesh: a 3- to 5-year retrospective study. Int J Oral Maxillofac Implants 2009; 24: 1119–1128.
103. FUNATO A, ISHIKAWA T, KITAHIMA Y, YAMADA M, MORIO H. A novel combined surgical approach to vertical alveolar ridge augmentation with titanium mesh, resorbable membrane, and rhPDGF-BB: a retrospective consecutive case series. Int J Periodontics Restorative Dent 2013; 33: 437–445.
104. POLI PP, BERETTA M, CICCIO M, MAORANA C. Alveolar ridge augmentation with titanium mesh. A retrospective clinical study. Open Dent J 2014; 8: 148–158.
105. MISCH CM, JENSEN OT, PIKOS MA, MALMQVIST JP. Vertical bone augmentation using recombinant bone morphogenic protein, mineralized bone allograft, and titanium mesh: a retrospective cone beam computed tomography study. Int J Oral Maxillofac Implants 2015; 30: 202–207.
106. VON ARX T, KURT B. Implant placement and simultaneous ridge augmentation using autogenous bone and a micro titanium mesh: a prospective clinical study with 20 implants. Clin Oral Implants Res 2015; 26: 24–33.
107. ASSENZA B, PIATTELLI M, SCARANO A, LEZZI G, PETRONE G, PIATTELLI A. Localized ridge augmentation using titanium micromesh. J Oral Implantol 2001; 27: 287–292.
108. MAORANA C, SANTORO F, RABAGLIATI M, SALINA S. Evaluation of the use of iliac cancellous bone and anorganic bovine bone in the reconstruction of the atrophic maxilla with titanium mesh: a clinical and histologic investigation. Int J Oral Maxillofac Implants 2001; 16: 427–432.
109. MALCHIODI L, SCARANO A, QUARANTA M, PIATTELLI A. Rigid fixation by means of titanium mesh in edentulous ridge expansion for horizontal ridge augmentation in the maxilla. Int J Oral Maxillofac Implants 1998; 13: 701–705.
110. VON ARX T, KURT B. Implant placement and simultaneous peri-implant bone grafting using a micro titanium mesh for graft stabilization. Int J Periodontics Restorative Dent 1998; 18: 117–127.
111. DI STEFANO DA, GRECO GB, CINCI L, PIERI L. Horizontal-guided bone regeneration using a titanium mesh and an equine bone graft. J Contemp Dent Prac 2015; 16: 154–162.
112. VON ARX T, HARDT N, WALKKAMM B. The TIME technique: a new method for localized alveolar ridge augmentation prior to placement of dental implants. Int J Oral Maxillofac Implants 1996; 11: 387–394.
113. TORRES J, TAMMI F, ALKHRAISAT MH, MANCHON A, LINARES R, PRADOS-FRUTOS JC, HERNANDEZ G, LOPEZ-CABARCOS E. Platelet-rich plasma may prevent titanium mesh exposure in alveolar ridge augmentation with autogenic bovine bone. J Clin Periodontol 2010; 37: 943–951.
114. HER S, KANG T, FIEN MJ. Titanium mesh as an alternative to a membrane for ridge augmentation. J Oral Maxillofac Surg 2012; 70: 803–810.
115. RICCI L, PERRONI V, RAVERA L, SCARANO A, PIATTELLI A, LEZZI G. Rehabilitation of deficient alveolar ridges using titanium grids before and simultaneously with implant placement: a systematic review. J Periodontol 2013; 84: 1234–1242.
116. LUNDGREN AK, SINNERBY L, LUNDGREN D. Guided jaw bone regeneration using an experimental rabbit model. Int J Oral Maxillofac Surg 1998; 27: 135–140.
117. GIGGIO A, SCHULTZ G. Titanium foil-guided tissue regeneration in the treatment of periimplant bone defects. Implant Dent 1999; 8: 368–375.
118. WATZINGER F, LUKSJCH J, MILLES W, SCHOPPER C, NEUGEBAUER J, MOSE R, EWERS R. Guided bone regeneration with titanium membranes: a clinical study. Br J Oral Maxillofac Surg 2000; 38: 281–284.
stiff occlusive titanium barrier. Clin Oral Implants Res 2003; 14: 63–71.

120. MOLLY L, QUIRYSSEN M, MIHELCS K, VAN STEENBERGHE D. Comparison between jaw bone augmentation by means of a stiff occlusive titanium membrane or an autologous hip graft: a retrospective clinical assessment. Clin Oral Implants Res 2006; 17: 481–487.

121. SHAH FA, TROBOS M, THOMSEN P, PALMOUZI A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) as bone materials at implanted sites - Is one truly better than the other? Mater Sci Eng C Mater Biol Appl 2016; 62: 900–906.

122. ZHANG TAO, JOHANSSON BR, DANIELSEN N, THOMSEN P, ECCO O, CURA A, BELTRAN V, LUCANO M. Bone healing in surgically created defects treated with either biomaterials, titanium, or an autologous hip bone marrow device. Int J Clin Exp Med 2015; 8: 135–144.

123. DECO O, CURA A, BELTRAN V, LECCANO M. Bone augmentation in rabbit tibia using microfiber coextruded collagen membranes with whole blood, tricalcium phosphate and bone marrow cells. Int J Clin Exp Med 2015; 8: 685–692.

124. PECORA G, ANDREANA S, MARGARONE JE 3rd, CUBANI U, SOTTOSANTI JS. Bone regeneration with a calcium sulfate barrier. Oral Surg Oral Med Oral Pathol Oral Radiol 2000; 90: 581–586.

125. MELO LG, NAGATA MJ, BOSCO AF, RIBEIRO LL, LEITIE CM. Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. A histological and histometric study in rat tibia. Clin Oral Implants Res 2005; 16: 683–691.

126. CAMARGO PM, LOKOVIC V, WEINLEINER M, KLOKVENOLD PR, KENNEY EB, DRITINIVIC B, NEDIC M, JANCOVIC S, ORSINI M. Influence of bioactive glass on changes in alveolar process dimensions after exodontia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 90: 424–429.

127. ANDERUD J, JIMBO R, ABRAHAMSSON P, JONSSON SG, ADLOPFSSON E, MALMSTROM J, KOZAI Y, HALLMER F, WENNERBERG A. Guided bone augmentation using a ceramic space-maintaining device. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2014; 118: 532–538.

128. LI J, MAN Y, WANG Y, ZHANG L, HUANG C, LIU M, LI Y. In vitro and in vivo evaluation of a nHA/PA66 composite membrane for guided bone regeneration. J Biomater Sci Polym Ed 2011; 22: 263–275.

129. BASSE ML, DAVALLA GG, MALONCIC M, LAURENZI P, Coudert J. NOTTELET B, RAGONE FD, OLIVA A. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration. Mater Sci Eng C Mater Biol Appl 2015; 48: 457–468.

130. RIBEIRO N, SOUSA SR, VAN BLITTERSWIJK CA, MORONI L, MONTEIRO FJ. A biocomposite of collagen nanofibers and hydroxyapatite for bone regeneration. Biofabrication 2014; 6: 035015.

131. VERISSIMO DM, LEITAO RF, FIGUEIRO SD, GOES JC, LIMA V, SILVEIRA CO, BRITO GA. Guided bone regeneration produced by new mineralized and reticulated collagen membranes in critical-size rat calvarial defects. Experimental Biology and Medicine 2015; 240: 175–184.

132. KITAYAMA S, WONG LO, MA L, HAO J, KASUGAI S, LANG NP, MATTHEWS N. Regeneration of rabbit calvarial defects using biphasic calcium phosphate and a strontium hydroxyapatite-containing collagen membrane. Clin Oral Implants Res 2016; 27: e206–e214.

133. HAO J, ACHARYA A, CHEN K, CHOU J, KASUGAI S, LANG NP. Novel bioresorbable strontium hydroxyapatite membrane for guided bone regeneration. Clin Oral Implants Res 2015; 26: 1–7.

134. LUT J, ZHOU X, MAN Y, MO A, HUANG C, LIU M, JANSSEN JA, LI Y. Fabrication and biocompatibility of an antimicrobial composite membrane with an asymmetric porous structure. J Biomater Sci Polym Ed 2012; 23: 81–96.

135. CHOU J, KOMURO M, HAO J, KUBODA S, HATTORI Y, BEN NISSAN B, MILTHORPE B, OTSUKA M. Bioresorbable zinc hydroxyapatite guided bone regeneration membrane for bone regeneration. Clin Oral Implants Res 2016; 27: 354–360.

136. SHIM JH, HUH JB, PARK JY, JEON YC, KANG SS, KIM YJ, RHEE JW, CHOU DW. Fabrication of blended polycaprolactone/polylactico-glycolic acid/beta-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration. Tissue Eng Part A 2013; 19: 317–328.

137. KENY J, YU HS, JANG JH, KIM HW. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass. Acta Biomater 2008; 4: 622–629.

138. TIRI T, RICH J, WOLKE J, SEPPAL J, YU-URPO A, NARI TO. Bioactive glass induced in vitro apatite formation on composite GRB membranes. J Mater Sci Mater Med 2008; 19: 2919–2923.

139. MOTA J, YU N, CARIDADE SG, LUZ GM, GOMES ME, REIS RL, JANSSEN JA, WALBOOMERS XF, MANO JF. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater 2012; 8: 4173–4180.

140. MAHL AI, CARIDADE SG, MA J, YU N, GOMES ME, REIS RL, JANSSEN JA, WALBOOMERS XF, MANO JF. Asymmetric PDLLA membranes containing Bioglass(R) for guided tissue regeneration: characterization and in vitro biological behavior. Dent Mater 2013; 29: 427–436.

141. HONG KS, KIM EC, BANG SH, CHUNG CH, LEE YH, HYUN JK, LEE HH, JANG JH, KIM TI, KIM HW. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res A 2010; 94: 1187–1194.

142. PUUMANEN K, KELLOMAKI M, RITSILA V, BOHLING T, TOR MALA P, WARIS T, ASHMAKIN N. A novel bioabsorbable composite membrane of Polyactive 70/30 and bioactive glass number 13–93 in repair of experimental maxillary alveolar cleft defects. J Biomed Mater Res B Appl Biomater 2005; 75: 25–33.

143. JIOVANOVIĆ SA, SCHENK RK, ORSINI M, KENNEY EB. Supra-crestal bone formation around dental implants: an experimental dog study. Int J Oral Maxillofac Implants 1995; 10: 23–31.

144. STRIETZEL FP, HONGKHUNTHAN P, KHATTIA R, PATCHANE P, REICHART PA. Healing pattern of bone defects covered by different membrane types—a histologic study in the porcine mandible. J Biomed Mater Res B Appl Biomater 2006; 78: 35–46.

145. CARPELO L, LOZA L, LYNCH S, GENCIO R. Guided bone regeneration around endosseous implants with anorganic bovine bone mineral. A randomized controlled trial comparing bioabsorbable versus non-resorbable barriers. J Periodontol 2000; 71: 1743–1749.

146. AMANO Y, OTA M, SEKGUUCHI K, SHIBUKAWA Y, YAMADA S. Evaluation of a poly-lactic acid membrane and membrane fixation pin for guided tissue regeneration on bone defects in dogs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 97: 155–163.

147. HAMMERLE CH, JUNG RE, YAMAN D, LANG NP. Ridge augmentation by applying bioresorbable membranes and deproteinized bovine bone mineral: a report of twelve consecutive cases. Clin Oral Implants Res 2008; 19: 19–25.
151. CHIANG TF, DREW HJ. Maintaining space in localized ridge augmentation using guided bone regeneration with tenting screw technology. Quintessence Int 2013; 44: 763–771.

152. LI J, ZHU Y, CHENG X, YANG W, WANG H, LI Y. Preparation and characterization of nano-hydroxyapatite/polymide 66 composite GRB membrane with asymmetric porous structure. J Mater Sci Mater Med 2009; 20: 1031–1038.

153. LEE SB, Kwon JS, Lee YK, Kim KM, Kim KN. Bioactivity and mechanical properties of collagen composite membranes reinforced by chitosan and beta-tricalcium phosphate. J Biomed Mater Res B Appl Biomater 2012; 100: 1715–1722.

154. ZENG S, FU S, GUO G, LIANG H, QIAN Z, TANG X, LUO F. Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol) composite membranes for guided bone regeneration. J Biomed Nanotechnol 2011; 7: 549–557.

155. DUAN H, YANG H, XIONG Y, ZHANG B, REN C, MIN L, ZHANG W, YAN Y, LI H, PR4 F, TURCICHETTI A. Effects of mechanical loading on the degradation and mechanical properties of the nanocalcium-deficient hydroxyapatite-multicomponent (amino acid) copolymer composite membrane tube for guided bone regeneration. Int J Nanomedicine 2013; 8: 2801–2807.

156. TENG SH, LEE JG, WANG P, SHIN DS, KIM HE. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res B Appl Biomater 2008; 87: 132–138.

157. ASANO K, Matsu mounting device placement and cementation using a resorbable copolymer membrane and non-erosible barrier membranes: a preliminary study. Int J Oral Maxillofac Implants 2013; 28: 973–981.

158. ZELLER G, LINDE A. Effect of different osteopromotive membrane porosities on experimental bone neogenesis in rats. Biomaterials 1996; 17: 695–702.

159. LUNDGREN A, LUNDGREN D, TAYLOR A. Influence of barrier implantation with tenting screw technology. J Oral Implantol 1995; 21: 95–104.

160. MAROJ HA, EL-GEAWI EM. Efficacy of high-densities versus semipermeable PTFE membranes in an elderly experimental model. Oral Surg Oral Med Pathol Oral Radiol Endod 2000; 89: 164–170.

161. JALOZZI MC, QIASH M, XU HAO P, ALBANDAR JM, WIKERSUM RO. Prognostic factors for alveolar regeneration: effect of tissue occlusion on alveolar bone regeneration with guided tissue regeneration. J Clin Periodontol 2004; 31: 730–735.

162. GUTTA R, BAKER RA, BARTOucco AA, LOUIS PJ. Barrier membranes used for ridge augmentation: is there an optimal pore size? J Oral Maxillofac Surg 2009; 67: 1218–1225.

163. SVERZUT CE, Faria PE, MAGDALENA CM, TRIVELLATO AE, MELLO-FILHO FV, PACCOCA CA, GOGOLEWSKI S, SALATA LA. Reconstruction of mandibular segmental defects using the guided-bone regeneration technique with polylactide membranes and/or autogenous bone graft: a preliminary study on the influence of membrane permeability. J Oral Maxillofac Surg 2008; 66: 647–656.

164. OH SH, KIM JH, KIM JM, LEE HJ. Asymmetrically porous PLGA/Pluronic F127 membrane for effective guided bone regeneration. J Biomater Sci Polym Ed 2006; 17: 1375–1387.

165. SCHMID J, HAMBERLE CH, OLAIH AJ, LANG NP. Membrane permeability is unnecessary for guided generation of new bone. An experimental study in the rabbit. Clin Oral Implants Res 1994; 5: 125–130.

166. BARTEE BK. The use of high-density polytetrafluoroethylene membrane to treat osseous defects: clinical reports. Implant Dent 1995; 4: 21–26.

167. BARTEE BK. Evaluation of a new polytetrafluoroethylene guided tissue regeneration membrane in healing extraction sites. Compend Contin Educ Dent 1999; 19: 1256–1258, 1260, 1262–1254.

168. BARTEE BK, CARR JA. Evaluation of a high-density polytetrafluoroethylene (n-PTFE) membrane as a barrier material to facilitate guided bone regeneration in the rat mandible. J Oral Implantol 1995; 21: 88–95.

169. SELA MN, STEINBERG D, KLINGER A, KRAUSS AA, KOHAVI D. Adherence of periodontopathic bacteria to bioabsorbable and non-absorbable barrier membranes in vitro. Clin Oral Implants Res 1999; 10: 445–452.

170. BARRER HD, LIGNELLI J, SMITH BM, BARTEE BK. Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. J Oral Maxillofac Surg 2007; 65: 748–752.

171. WAASDORP J, FELDMAN S. Bone regeneration around immediate implants utilizing a dense polytetrafluoroethylene membrane without primary closure: a report of 3 cases. J Oral Implantol 2013; 39: 355–361.

172. DE GRISI SB, RIVERA-HIDALGO F, HARRISON JW, WILLIAMS FE, GUO IV. Influence of three membrane types on healing of bone defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996; 82: 365–374.

173. RONDA M, REBAUDI A, TORELLI L, STACCHI C. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: a prospective randomized controlled clinical trial. J Oral Implantol Res 2014; 25: 859–866.

174. LINDE A, THOREN C, DAHLIN C, SANDBERG E. Creation of new bone by an osteopromotive membrane technique: an experimental study in rats. J Oral Maxillofac Surg 1993; 51: 892–897.

175. WIKESUM UM, QAHSI T, THOMSON RC, CEDER M, WOSZCZYN JM, HARDWICK WR. Space-providing expanded polytetrafluoroethylene devices define alveolar augmentation at dental implants induced by recombinant human bone morphogenetic protein 2 in an absorbable collagen sponge carrier. J Clin Implant Dent Relat Res 2005; 8: 112–123.

176. PINEDA LM, BUSENG M, MEIRING PG, GOGOLEWSKI S. Bone regeneration with resorbable polymeric membranes. III. Effect of poly(L-lactide) membrane pore size on the bone healing process in large defects. J Biomed Mater Res 1996; 31: 385–394.

177. GUGALA Z, GOGOLEWSKI S. Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma 1999; 13: 187–195.

178. MARADAS N, KOSTORPoulos L, STAVROPOULos A, KARRING T. Evaluation of a cellulose membrane for guided tissue regeneration combined with demineralized bone matrix. Clin Oral Implants Res 2003; 14: 812–818.

179. ROTHAMIL D, SCHWARZ F, FINZITZ T, SMETS R, DREISBIEHLER T, RITTO R, HAPPE A, ZOLLER J. Biocompatibility and biomechanical behavior of a native porcine pericardium membrane: results of in vitro and in vivo examinations. Int J Oral Maxillofac Implants 2012; 27: 146–154.

180. TURRI A, ELGALI I, VAZIRIANI F, JOHANSSON A, EMANUELSSON L, DAHLIN C, THOMSEN P, OMR. Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials 2016; 84: 167–183.

181. ORTOLANI E, QUADRI F, BELLISARIO D, SANTOLI L, POLIMENI A, SANTAROMERO A. Mechanical qualification of collagen membranes used in dentistry. Ann Ist Super Sanita 2015; 51: 229–235.

182. WILLERSHAUSEN I, BARBBER M, BOZDI N, SADER R, WILLERSHAUSEN B, KIRKPATRICK CJ, GHANASSI S. Non-cross-linked collagen type I/III materials enhance cell proliferation: in vitro and in vivo evidence. J Appl Oral Sci 2014; 22: 29–37.

183. DONOS N, KOSTORPOLOS L, KARRING T. Alveolar ridge augmentation using a resorbable copolymer membrane and autogenous bone grafts. An experimental study in the rat. Clin Oral Implants Res 2002; 13: 203–213.

184. DE SANTANA RB, DE MAGRIS CM, FRANCESCO CE, VAN DYKIE T. Superficial topography and porosity of an absorbable barrier membrane impacts soft tissue response in guided bone regeneration. J Periodontol 2010; 81: 926–933.

185. BURAKI M, LACZ T, BAXIS S, TATICZ M, MOLNAR R, CURCIN AP, DUHRDEVIC D, LONCAREVIC S. The impact of thickness of resorbable membrane of human origin on the ossification...
of bone defects: a pathohistologic study. Vojnosanit Pregl 2012; 69: 1076–1083.

186. SHIN SI, HERR Y, Kwon YH, CHUNG JH. Effect of a collagen membrane combined with a porous titanium membrane on exophytic new bone formation in a rabbit calvarial model. J Periodontol 2013; 84: 110–116.

187. BUSNELLECHER D, KANTOR M, TANGE S, TOPPER G, ZAERNER W, HAA R. WATZEK G. Alveolar ridge augmentation with a prototype trilayer membrane and various bone grafts: a histomorphometric study in baboons. Clin Oral Implants Res 2005; 16: 220–227.

188. Kim SH, Kim DY, Kim KH, Kyu Y, Ri Yu IC, Lee YM. The efficacy of a double-layer collagen membrane technique for overlaying grafts in a rabbit calvarial model. Clin Oral Implants Res 2009; 20: 1114–1123.

189. KOZLOWSKY A, AbOOSI G, MOSE S, TaL H, ARTZI Z, WEINREB M, NemcoVSKY CE. Bio-degradation of a resorbable collagen membrane (Bio-Gide) applied in a double-layer technique in rats. Clin Oral Implants Res 2009; 20: 1116–1123.

190. KOSTOPOULOS L, KOSTOPOULOS L. Guided bone regeneration in mandibular defects in rats using a bioreversible polymer. Clin Oral Implants Res 1994; 5: 66–74.

191. SCHLEGEL AK, DONATH K, WEIDA S. Histological findings in guided bone regeneration (GBR) around titanium dental implants with autogenous bone chips using a new resorbable membrane. J Long Term Eff Med Implants 1998; 8: 211–224.

192. LUNDGREN D, LUNDGREN AK, SENNERBY L, NYMAN S. Augmentation of intramembranous bone beyond the skeletal envelope using an occlusive titanium barrier. An experimental study in the rabbit. Clin Oral Implants Res 1995; 6: 67–72.

193. ZUBERY Y, GOLDEUST A, ALVES A, NER E. Osseification of a novel cross-linked porcine collagen barrier in guided bone regeneration in dogs. J Periodontol 2007; 78: 112–121.

194. SIMON M, DAHLING C, ROCCICHTA I, STAVROPOULOS A, SANCHEZ R, KARRING T. Vertical ridge augmentation with guided bone regeneration in association with dental implants: an experimental study in dogs. Clin Oral Implants Res 2007; 18: 86–94.

195. AI-HEZAMI K, RUDEK I, AL-HAMDAN KS, JAVED F, NOO H N, WANG HL. Efficacy of using a dual layer of membrane (dPTFE placed over collagen) for ridge preservation in fresh extraction sites: a micro-computed tomographic study in dogs. Clin Oral Implants Res 2013; 24: 1152–1157.

196. BENCIGI, THOMA DS, MUNOZ F, SANZ MARTIN I, JUNG RE, HAMMERLE CH. Guided bone regeneration of peri-implant defects with particulated and block xenogenic bone substitutes. Clin Oral Implants Res 2015; 26: 567–576.

197. DONOS N, GRAZIANI F, MARDA N, KOSTOPOULOS L. The use of human hypophyseal chondrocortyes-derived extracellular matrix for the treatment of critical-size calvarial defects. Clin Oral Implants Res 2011; 22: 1346–1353.

198. JAROJNI MA, DE MARCO AC, LIMA LA. Early healing pattern of autogenous bone grafts with and without e-PTFE membranes: a histomorphometric study in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005; 100: 666–673.

199. QUEIROZ TP, HOCHEL-VIEIRA E, GABRIELLI MA, CANCIAN DC. Use of bone graft and bone membrane in defects surgically created in the cranial vault of rabbits. Histologic comparative analysis. Int J Maxillofac Implants 2006; 21: 29–35.

200. KIM M, KIM JH, Lee JY, Cho K, Kang SS, Kim G, Lee MJ, Choi SH. Effect of bone mineral with or without collagen membrane in ridge dehiscence defects following premolar extraction. In Vivo 2008; 22: 231–236.

201. DONOS N, LANG NP, KAROUSSIS IK, BOSSHARDT D, TONETTI M, KOSTOPOULOS L. Effect of GBR in combination with deproteinized bone mineral and/or enamel matrix proteins on the healing of critical-size defects. Clin Oral Implants Res 2004; 15: 101–111.

202. DE MARCO AC, JARDIN MA, MODOLI F, NUNES FD, DE LIMA LA. Immunolocalization of bone morphogenetic protein 2 during the early healing events after guided bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113: 533–541.

203. RAMALGAM S, AL-RASHEED A, ArrEJAE A, NOO H N, AL-KINDI M, AL-HEZAMI K. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats. Odontology 2016; 104: 199–210.

204. JUNG UW, Lee JS, Lee G, Lee IK, HWANG JW, KIM MS, Choi SH, CHAI JK. Role of collagen membrane in lateral onlay grafting with bovine hydroxyapatite incorporated with collagen matrix in dogs. J Periodontal Implant Sci 2013; 43: 64–71.

205. KROEB D, RISTOW O, WANNHOFF A, KUBER AC, REUTHER T. Expression of growth factors during the healing process of alveolar ridge augmentation procedures using autogenous bone grafts in combination with GTR and an anorganic bovine bone substitute: an immunohistochemical study in the sheep. Clin Oral Investig 2014; 18: 179–188.

206. STITZER K, COOPER G, GASSNER R, KAPUCU R, MUNDELL R, MOONEY MP. Effects of fixation type and guided tissue regeneration on maxillary osteotomy healing in rabbits. J Maxillofac Surg 2002; 60: 427–436; discussion 436–427.

207. TAGA ML, GRANJEIRO JM, CSTARI TM, TAGA R. Healing of critical-size cranial defects in guinea pigs using a bovine bone-derived resorbable collagen membrane. Int J Maxillofac Implants 2008; 23: 427–436.

208. THOMAIDIS V, KAZAKOS K, LYRAS DN, DIMITRAKOPoulos I, Lazaridis N, Karakasis D, Botatis S, Agrogiannis G. Comparative study of 5 different membranes for guided bone regeneration of rabbit mandibular defects beyond critical size. Med Sci Monit 2008; 14: B67–B73.

209. SCHWARZ F, MIHATOVIĆ I, GOLUHOVIĆ V, HEGEWALD A, BECKER J. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs: part I. Augmentation using bone graft substitutes and autogenous bone. Clin Oral Implants Res 2012; 23: 83–89.

210. GI Y, FENG H, WANG L. Application of a novel resorbable membrane in the treatment of calvarial defects in rats. J Biomat Sci Polym Ed 2011: 2247–2429.

211. BERNARDE PF, MEGO LG, CINTRA LT, GOMES-FILHO JE, DEZAN E J, NAGATA MJ. Bone healing in critical-size defects treated with either bone graft, membrane, or a combination of both materials: a histological and histometric study in rat tibiae. Clin Oral Implants Res 2012; 23: 384–388.

212. ASHYS, KIM SG, KIM CS, OH JS, LIM SC. Effect of guided bone regeneration with or without pericardium bioabsorbable membrane on bone formation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2012; 114: S126–S131.

213. GUDA T, WALKER JA, SINGLETON BM, HERNANDEZ JW, SON JS, KIM SG, OH DS, APPLEFORD MR, ONG JL, WENKE JC. Guided bone regeneration in long-bone defects with a structural hydroxyapatite graft and collagen membrane. Tissue Eng Part A 2013; 19: 1879–1889.

214. CHOI KS, CHOI SH, HAN KH, CHAI JK, WIKESJO UM, KIM CK. Alveolar bone formation at dental implant dehiscence defects following guided bone regeneration and xenogeneic freeze-dried demineralized bone matrix. Clin Oral Implants Res 1998; 9: 419–428.

215. WENG D, PHREEHLING S, PIPPING S, BELL M, RICHTER EJ, ZUHR O, HURLZELER MB. The effects of recombinant human growth/differentiation factor-5 (rhGDF-5) on bone regeneration around titanium dental implants in barrier membrane-protected defects: a pilot study in the mandible of beagle dogs. Int J Maxillofac Implants 2009; 24: 31–37.

216. TANAKA S, MATSUZAKA K, SATO D, INOUE T. Characteristics of newly formed bone during guided bone regeneration: analysis of cbfa-1, osteocalcin, and VEGF expression. J Oral Implantol 2007; 33: 321–326.

217. LON BOYLLE, PFEFFER M, KALLMUS EA, CASSATI MZ, NOOTFIJ EF. Guided tissue regeneration may modulate gene expression in periodontal intrabony defects: a human study. J Periodontal Res 2008; 43: 459–64.
218. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. *Nat Med* 2004; **10**: 858–864.

219. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. *Cell Stem Cell* 2009; **4**: 206–216.

220. Kitao T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fuji N, Nagasawa T, Nakamura T. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. *Arthritis Rheum* 2009; **60**: 813–823.

221. Binder NB, Niederreiter B, Hoffmann O, Stange R, Pap T, Stuhlm T, Mack M, Erben RG, Smolen JS, Redlich K. Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclact behavior in osteoporosis. *Nat Med* 2009; **15**: 417–424.

222. Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, Nakamura M, Wu Y, Miclau T, Marcuccio RS. Multiple roles for CCR2 during fracture healing. *Dis Model Mech* 2010; **3**: 451–458.

223. Taguchi Y, Amizuka N, Nakadate M, Omishi H, Fuji N, Oda K, Nomura S, Maeda T. A histological evaluation for guided bone regeneration induced by a collagenous membrane. *Biomaterials* 2005; **26**: 6158–6166.

224. Kuru L, Griffiths GS, Petrie A, Olsen I. Alkaline phosphatase activity is upregulated in regenerating human periodontal cells. *J Periodontal Res* 1999; **34**: 123–127.

225. Wakabayashi RC, Isha DK, Niu JJ, Johnson PW. Cytokine production by cells adherent to regenerative membranes. *J Periodontal Res* 1997; **32**: 215–224.

226. Schwarz F, Rothamel D, Herten M, Sager M, Becker J. Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat. *Clin Oral Implants Res* 2006; **17**: 403–409.

227. Barbeck M, Lorenz J, Holthaus MG, Raetsch N, Kubesch A, Booms P, Sader R, Kirkpatrick CJ, Ghanai S. Porcine dermis and pericardium-based, non-cross-linked materials induce multinucleated giant cells after their in vivo implantation: a physiological reaction? *J Oral Implantol* 2015; **41**: e267–e281.

228. Ghanai S. Non-cross-linked porcine-based collagen I-III membranes do not require high vascularization rates for their integration within the implantation bed: a paradigm shift. *Acta Biomater* 2012; **8**: 3061–3072.

229. Rocchiotta I, Simon M, Hoffmann M, Trisciuoglio D, Benigni M, Dahlin C. Vertical bone augmentation with an Autogenous block or particles in combination with guided bone regeneration: a clinical and histological preliminary study in humans. *Clin Implant Dent Relat Res* 2016; **18**: 19–29.

230. Karahaliloglu Z, Erkan B, Taylor EN, Chung S, Denkbas EB, Webster TJ. Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration. *J Biomed Nanotechnol* 2015; **11**: 2253–2263.

231. Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. *Biomaterials* 2005; **26**: 7564–7571.