EGG QUALITY OF SELECTED ACEH NATIVE CHICKENS FED ON THE DIETS COMPOSED OF Indigofera sp. MEAL BASED ON FEED FERMENTATION AS PARTLY SUBSTITUTION OF COMMERCIAL DIET

Muhammad Aman Yaman* and Zulfan†

*Department of Animal Husbandry, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
†Corresponding author: amanyaman@unsyiah.ac.id

ABSTRACT

The objective of this study was to determine the effect of inclusion of fermented feed consisted of 15% Indigofera sp. + 40% rice bran + 25% corn bran + 20% soybean meal as partial substitution of commercial diet on the egg quality of selected Aceh native (SAN) chickens. As many as 48 SAN pullets were used in this study. The study was performed in a completely randomized design, consisted of 4 treatments and 4 replications. Each replication was an experimental unit consisted of three chickens. The results of study indicated that inclusion of up to 15% fermented feed which was composed of 15% Indigofera sp. + 40% rice bran + 25% corn bran + 20% soybean meal as substitution of commercial layer diet significantly (P<0.01) improved yolk index without adverse effect on albumen and eggshell quality of SAN chickens. As conclusion, substitution of fermented feed contained 15% indigofera may improve the egg quality of SAN chickens.

Key words: Indigofera sp., fermentation, native chicken, egg production

INTRODUCTION

There are 31 clusters of identified Indonesia native chickens that had been living and breeding under different habitat (Nataamijaya, 2000). Besides more preferable egg and meat taste, native chickens had been thought more resistance to the disease and under extremely high temperature condition (Chen et al., 1993). Many efforts had been performed to upraise the potency of native chickens. Selected Aceh native (SAN) chicken is one of the outcomes of developing the genetic quality of native chickens. These chickens had been resulted through a long process of selection stages of their parents including progeny test at every phase of their chicks in order that achieving the criteria of better production than commonly native chickens (Nataamijaya, 2006).

The most important issue of genetic quality of native chicken is low production and egg quality that possibly caused by improperly nutrient intake (Yaman et al., 2000). Therefore, feeding the hens by commercial laying hen diets would be a better solution. However, the price of commercial diets would not be more economics as native chickens were fed those diets out of genetic respond. The way to solve this problem is by manipulating of their nutrition to maximize the properly nutrient intakes based on their genetic capability with furnishing a cheaper diet. It could be carried out by withdraw partially of commercial diet followed by substitute it with various alternative local feeds such as indigofera leaf.

Indigofera (Indigofera zollingeriana) is the legume belong to the family rosales and subfamily leguminosainosae (Hassen et al., 2006). The plant leaf has rich protein (20.47-27.60%) and potentially served as poultry feedstuff (Abdullah and Suhrilina, 2010). High tolerance to dry season and high salinity makes this legume appropriate planted in Indonesia (Hassen et al., 2006). It was well known that xanthophylls and β-carotene existing in the plant could improve yolk color.

As commonly plant feed sources, high crude fiber contained in indigofera should be the limited factor for include it in to the poultry diets. The content of crude fiber in indigofera was between of 10.97 and 21.40% (Abdullah and Suhrilina, 2010). However, fermentation process can reduce the fiber content and enrich the nutritive value of the plant. The aim of present study was to determine egg quality laid by SAN hens fed the commercial diet substituted with up to 15% of indigofera meal based fermentation-feed.

MATERIALS AND METHODS

The research was conducted at the Field Laboratory of Animal Husbandry, Universitas Syiah Kuala for 3.5 months. As many as 48 SAN pullets developed at the...
The preparation of fermentation feed was run as follow: indigofera leaf was cropped at the 1e Suem Farm Syiah Kuala University, then dried and ground to be a powder form. The indigofera meal then mixed with rice bran, corn bran, soybean meal, and followed by spraying sugar water solution. Probiotic EM4 was poured into the feed then mixed homogenously. Finally, the feed was filled into the plastic bag and kept exposed under room temperature for 48 hours. Afterward, the feed was removed from the plastic bag and kept exposed under room temperature for 5 days. The study was performed into completely randomized design (CRD) consisted of 4 diet treatments and 4 replications. Each replication was a randomized design (CRD) consisting of 4 diet treatments and 4 replications. Each replication was an experimental unit consisted of three SAN chickens.

The experiment used commercial laying hen diet with the code of N524 produced by PT Charoen Pokphand, Medan, Indonesia as base diet (control, diet A). The diet was partly substituted with the level of 5% (diet B), 10% (diet C), and 15% (diet D), respectively of fermentation feed based on mixing 15% indigofera + 40% rice bran + 25% corn bran + 20% soybean meal. The protein content of fermented feed was formulated to be isoprotein and closely meet that of commercial diet. The composition of experimental diets and calculated nutrient contents were given in Table 1.

The averages of egg qualities of (SAN) chickens recorded in this research were shown in Table 2.

RESULTS AND DISCUSSION

The main parameters of yolk quality evaluated in

Table 1. The compositions of experimental diets

Ingredients	Diet	A (%)	B (%)	C (%)	D (%)
Commercial diet (N524)		100	95.00	90.00	85.00
Fermentation feed based on 15% of indigofera		0	5.00	10.00	15.00
Calculated nutrient contents					
Protein (%)		17.00-18.00	16.80-17.75	16.61-17.51	16.42-17.27
Crude fiber (%)		7.00	6.84	6.67	6.51
Ether extract (%)		7.00	7.35	7.70	8.05

Parameter	Diet	A (%)	B (%)	C (%)	D (%)
Yolk quality					
Yolk height (mm)		13.84±0.60	14.58±0.26	14.14±0.61	14.23±0.36
Yolk diameter means (mm)		38.83±1.58	36.66±0.76	36.47±1.35	36.84±0.32
Yolk index		0.36±0.02	0.40±0.01	0.39±0.02	0.39±0.01
Yolk color		4.81±0.24	4.56±0.31	4.69±0.43	4.50±0.20
Albumen quality					
Albumen height (mm)		3.11±0.67	2.83±0.42	2.64±0.17	3.18±0.68
Albumen diameter (mm)		71.14±3.95	68.20±2.42	69.29±4.91	70.07±6.23
Albumen index		0.04±0.03	0.04±0.08	0.08±0.003	0.04±0.008
HU		58.48±8.51	57.48±5.55	56.03±3.45	60.56±5.07
Eggshell					
Eggshell thickness (mm)		0.35±0.04	0.34±0.017	0.33±0.021	0.35±0.036

*Means in the same rows with different superscripts indicated significantly different (P<0.05). A= control diet, B= 95% commercial diet + 5% fermentation feed based on 15% *Indigofera* sp., C= 90% commercial diet + 10% fermentation feed based on 15% *Indigofera* sp., and B= 85% commercial diet + 15% fermentation feed based on 15% *Indigofera* sp.*
Yolk index describes the viscosity of yolk and it was an indicator to the yolk quality. It was known that the higher yolk index, the quality of egg yolk will be better. Results showed that substitution of 15% indigofera meal as partly substitution of commercial diets significantly affected (P<0.05) yolk index of SAN hens. The eggs laid by the hens fed the diets containing the 15% indigofera meal based fermentation-feed (diet B, C, D) had higher yolk index (P<0.05) than those fed on control diet (diet A). The eggs from the treatment diets B, C, and D had significantly (P<0.05) shorter yolk diameter and higher yolk height causing the increasing of yolk index. It was assumed that using 15% indigofera meal based fermentation-feed as a partly substitute of commercial diet increased the quality of yolk.

Yolk indexes of all birds in this research ranged between 0.36 and 0.40 and considered matching to standard value. The eggs measured in this study were fresh eggs, hence they had good viscosity. Fresh eggs had low variation in yolk index (Mountney and Parkhurst, 1995) but not for stored eggs. It was clear that urtritional factor (Tiller, 2001) and various farming systems was pointed to the fact that the particular system used influences the quality of eggs, where alternative systems often tend to produce eggs of lower quality (Ledvinka et al., 2012). Indigofera has rich protein (Hassen et al. 2007) and protein content in the diet affected the yolk viscosity and further affecting the yolk index (Wilson, 1975). Yolk quality is also determined by the availability of types of vitamins and minerals feeding in the long term to the chicken. It was assumed that important role in influencing egg yolk pigmentation is the high content of beta carotene and xanthophyll available compared to other forages.

Yolk Color

Result showed that fed on the 15% indigofera meal based fermentation feed as partly substitution of commercial diets did not significantly affect (P>0.05) the yolk color of SAN hens. This result was contrary to the report of Akbarillah et al. (2008) which observed that inclusion of indigofera meal in the quail feed significantly increased yolk color of quail eggs. Supplementation of Indigofera zollingeriana top leaf meal with a dose of 3-6% in rations increased the color of the yolk in duck dan quail eggs (Yaman et al., 2012).

Yolk color was affected by yellow pigment such as xanthophylls and β-carotene (Damron et al., 1984; Gross, 1991) existing in the feedstuffs. Physiologically, the pigment was absorbed in the small intestine of hens and then transported to the target organs. Fermentation feed caused a retardation of the absorption of pigment due to the increasing of mucosa production in the intestine released from goblet cells due to a high microbe activity in probiotic (Brunner et al., 2010) such as EM4. However, the diet was not the only factor affecting yolk color, but strain, individual variation, and the number of egg production were considered influence it as well (North and Bell, 1990).

Yolk index and yolk color of SAN hens of all treatment diets was shown in Figure 1. Yolk colors of all hens in this study were in the range of 4.50-4.81. Based on Stadellman and Cotteril (1995), good yolk color was in the range of 7-12. Low yolk color in this study was suspected the response of ANS to different diet wa low due to egg was recorded in the early month of egg production stage that enable the pigment has not been completely absorbed.

Albumen Index

Results of analysis of variance showed that inclusion of the 15% indigofera meal based fermentation-feed as partly substitution of commercial diets did not significantly affect (P>0.05) the albumen index of SAN chickens. No significant effects were detected on both albumen diameters and albumen height. Albumen indexes of eggs of all hens in this study were in the range of 0.038-0.045. This value was lower than that of commonly laying hens. The value of albumen index was recommended at the range of 0.09-0.12 (Buckle, 1987). It means the SAN hens fed the diets containing the 15% indigofera meal based fermentation-feed (diet B, C, D) produced the albumen quality relatively equal to those fed 100% commercial diets (diet A). According to Jacob et al. (2011), albumen quality of the egg was not greatly influenced by hen nutrition. A high level of positive correlation
was found between the weight of the egg as a whole and the weights of its constituent parts, in particular the albumen and yolk. The masses of yolk and albumen were greater in heavier eggs compared to smaller ones (Silversides and Scott, 2001).

Haugh Unit

Haugh Unit (HU) describes the relationship between albumen height and egg weight (Stadellman and Cotterill, 1995). The similar result found in the albumen index, the HU of SAN hen was similar to that of commonly laying hens. The HU of all hens in this research were in the range of 56.03-60.56 and matching to B quality. The eggs with HU value in the range of 31-60 and 60-72 are classified into B and A quality, respectively (Nesheim et al., 1979). The substitution of indigofera to 15% in feed did not change the HU of ASN. This proved that the substitution of indigofera leaf reduced the use of commercial rations without affecting HU. According to USDA (2000), good quality of egg has HU more than 72. In this study, ASN response to substitution of indigofera associated with changes in HU was still influenced by the age factor of chickens where young chickens have a low response to feed changes.

Eggshell Thickness

SAN chicken fed on 15% indigofera meal-based fermentation-feed as a partly substitution of commercial diets did not significantly affect (P>0.05) the eggshell thickness. There were no obviously evidences that feeding SAN hens with the diet containing 15% indigofera meal based fermentation-feed deteriorated the eggshell.

The eggs of all chickens in this experiment had the thickness of eggshell in the range of 0.33-0.35 mm. These numbers were exactly the same as reported by Steward and Abott (1987) studying in laying hens. Since the level of calcium in the diet was responsible to the eggshell thickness, substitution of feed fermentation containing 15% indigofera meal up to 30% considerably ensured the sufficiency of calcium availability in the diet.

CONCLUSION

Based on this experiment, it had been concluded that the inclusion of up to 15% fermentation feed which was composed of 15% indigofera + 40% rice bran + 25% corn bran + 20% soybean meal as substitution of commercial layer diet improved yolk index. However, no adverse effect was observed on albumen and shell quality of SAN chickens.

REFERENCES

Abdullah, L. and Suhartina. 2010. Herbage yield and quality of two vegetative parts of Indigofera at different time of first regrowth defoliation. *Med. Pet.* 33(1):44-49.

Akbarallah, T., Kussiyah, D. Kaharuddin, and Hidayat. 2008. Analysis of Indigofera leaf flour as a feed supplement to the production and quality of duck eggs. *Indonesian Livestock J.* 3(1):20-23.

Brunner, M., C.J. Van-Rensburg, and C.A. Moran. 2010. Saccharomyces cerevisiae cell wall products: the effects on gut morphology and performance of broiler. *J. Anim. Sci.* 40(1):14-22.

Buckle, K.1987. *Food Science.* University of Indonesia Press. Jakarta.

Chen, L.F., Y.P. Lee, Z.H. Lee, S.Y. Huang, and H.H. Huang. 1993. Heritability and genetic correlation of egg quality traits in Taiwan,s local chickens. *AJAS Journal.* 6 (3):433-440.

Dameron, B.L., S.R. Goodson, R.K.R. Harms, D.M. Yanky, and H.R. Wilson. 1984. β-carotene supplementation of laying hen diets. *J. Poult. Sci.* 25:349-352.

Gross, J. 1991. *Pigment and Vegetables: Chlorophylls and Carotenoids.* Van Nostrand Reinhold. New York.

Hassen, A., N.F.G Rethman, VanNielkerk, and T.J. Tjelele. 2007. Influence of season/year and species on chemical composition and in vitro digestibility of five Indigofera accessions. *Anim. Feed Sci. Technol.* 136:312-322.

Hassen, A., N.F.G. Rethman, and Z. Apostolides. 2006. Morphological and agronomic characterization of Indigofera species using multivariate analysis. *Trop. Grassl.* 40:45-59.

Jacob, J.P., R.D. Miles, and F.B. Mather. 2011. *Eqq Quality.* Institute of Food and Agricultural Sciences (IFAS), University of Florida, Florida.

Ledvinka, Z., Zita, and L. Kiesak. 2012. Egg quality and some factors influencing it: A review. *Sci. Agric. Bohem.* 43(1):46-52.

Mountney, G.J. and C.R. Parkhurst. 1995. *Poultry Product Technology.* 3rd ed. Food Product Press, New York.

Nataamiyaja, A.G. 2000. The native chickens of Indonesia. *Bulletin Plasma Nutfah.* 6(1):1-6.

Nataamiyaja, A.G. 2006. Egg production and quality of kampung chicken feed rice bran diluted commercial diet and forages supplement. *J. Anim. Prod.* 8(3):206-210.

Nesheim, M.C., R.E. Austic, and L.E. Card. 1979. *Poultry Production.* 12th ed. Lea and Febiger, Philadelphia.

North, M.O. and D.D. Bell. 1990. *Commercial Chicken Production Manual.* AVI Publishing Co. Inc., New York.

Ott, R.L. 1993. *An Introduction to Statistical Methods and Data Analysis.* 4th ed. Duxbury Press, Belmont, California.

Silversides, F.G. and T.A. Scott. 2001. Effect of storage and layer age on quality of eggs from two lines of hens. *Poult. Sci.* 80:1240-1245.

Stadellman, W.J. and J.C. Abott. 1987. *Egg Science and Technology.* 4th ed. Food Product Press. An Imprint of the Haworth Press Inc., New York, London.

Steward, G.F. and J.C. Abott. 1987. *Marketing Eggs and Poultry.* Food Agricultural Organization (FAO). The United Nation, Roma.

Tiller, H. 2001. Nutrition and animal welfare in egg production systems. *Proceedings of 13th European Symposium of Poultry Nutrition, Blankenberge.* Belgium: 226-231.

USDA (United States Department of Agriculture). 2000. *Egg-grading Manual.* Washington: Department of Agriculture. (Agricultural Marketing Service, 75).

Wilson, B.J. 1975. The performance of male ducklings given starter diets with different concentration of energy and protein. *Br. Poultry Sci.* 16:625-657.

Yaman, M.A., K. Kita, and J. Okumura. 2000. Different responses of protein synthesis to refeeding in various muscles of fasted chicks. *Br. Poult. Sci.* 41:224-228.

Yaman, M.A., M. Daud, Zulfan, Y. Jufri, and T.F. Karmil. 2012. Evaluation of viability and nutritive value of Indigofera tinctoria as a potential animal feeding in Aceh Province, Indonesia. *The Proceedings of The 2nd Annual International Conference Syiah Kuala University 2012 & The 8th IMT-GT Uninet Biosciences Conference.* Banda Aceh; 125-128.