Title	Antibiotic susceptibility profiles of dairy Leuconostoc, analysis of the genetic basis of atypical resistances and transfer of genes in vitro and in a food matrix
Author(s)	Flórez, Ana Belén; Campedelli, Ilenia; Delgado, Susana; Alegría, Ángel; Salvetti, Elisa; Felis, Giovanna E.; Mayo, Baltasar; Torriani, Sandra
Publication date	2016-01-04
Original citation	Flórez, A. B., Campedelli, I., Delgado, S., Alegría, Á., Salvetti, E., Felis, G. E., Mayo, B. and Torriani, S. (2016) 'Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix', PLOS ONE, 11(1), pp. e0145203. doi:10.1371/journal.pone.0145203
Type of publication	Article (peer-reviewed)
Link to publisher's version	http://dx.doi.org/10.1371/journal.pone.0145203
Rights	© 2016 Flórez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. https://creativecommons.org/licenses/by/4.0/
Item downloaded from	http://hdl.handle.net/10468/3697

Downloaded on 2021-05-10T10:03:02Z
Antibiotic Susceptibility Profiles of Dairy *Leuconostoc*, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes *In Vitro* and in a Food Matrix

Ana Belén Flórez1☯, Ilenia Campedelli2☯, Susana Delgado1, Ángel Alegría1,2, Elisa Salvetti2☯, Giovanna E. Felis2, Baltasar Mayo1, Sandra Torriani2*

1 Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain, 2 Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy

☯ These authors contributed equally to this work.
¤ Current address: Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
* sandra.torriani@univr.it

Abstract
In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of *Leuconostoc* and *Weissella*, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to *Leuconostoc mesenteroides* (18), *Leuconostoc citreum* (11), *Leuconostoc lactis* (2), *Weissella hellenica* (2), and *Leuconostoc carnosum* (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, *L. mesenteroides* subsp. *mesenteroides* LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified *tet*(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, *L. mesenteroides* subsp. *cremoris* LbT16. In *Leuconostoc mesenteroides* subsp. *dextranicum* LbE15, erythromycin and clindamycin resistant, an *erm*(B) gene was amplified. Hybridization experiments proved *erm*(B) and *tet*(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of *erm*(B) and *tet*(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (*aadE*, *aphA*-3, *sat4*) and virginiamycin [vat(E)] resistance were further found. The *erm*(B) gene but not *tet*(S) was transferred from *Leuconostoc* to *Enterococcus faecalis* both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the *Leuconostoc-Weissella* group, provides...
Introduction

Antimicrobial agents represent one of the main therapeutic tools to protect humans and their domesticated animals from a variety of bacterial agents. However, during the last decades, the mishandling and misprescription of antibiotics in human and veterinary medicine, as well as their use as growth promoters in animal husbandry, have created a selective pressure leading to the emergence and spread of bacterial strains that no longer respond to antimicrobial therapy [1–4]. Antibiotic resistant bacteria have been largely found in soil, water, fecal material from animals and humans and in many foods of animal and plant origin, as a result of environmental contamination during processing [5].

Bacteria are said to have “intrinsic resistance” to an antibiotic when their intrinsic properties render them unsusceptible to the antibiotic’s effect. In contrast, normal susceptible bacteria may acquire resistance to an antibiotic by acquiring a new characteristic through mutation of indigenous genes or the acquisition of resistance genes by horizontal gene transfer (HGT), mostly through the transference of mobile genetic elements such as plasmids and transposons [6–8]. Particularly, the transmission of genetic material from one organism to another by HGT can greatly contribute to the dispersal of antibiotic resistances (AR), because it can occur between closely or distantly related species and in diverse environments [9–12]. Three major independent gene transfer mechanisms—namely conjugation, transduction, and transformation—are associated with HGT [13]. Among these mechanisms, conjugation is considered particularly effective at spreading of AR genes among bacteria; though it has been mostly studied under laboratory conditions [12].

While pathogens represent a direct threat to human and animal health due to their difficult eradication when carrying AR determinants, resistant non-pathogenic or opportunistic species constitute an indirect hazard, because HGT events can occur with pathogenic strains [14]. Therefore, it has been speculated that commensal bacteria can act as reservoirs of resistance genes and likely play a key role in the dissemination of AR genes in microbial ecosystems, including foodstuffs [9,15,16]. Thus, addressing the possibility of food-borne commensal bacteria being a potential source for the transfer of antimicrobial resistance genes is one issue of great importance in the field of public health.

Until now, most studies on resistant non-pathogenic species have focused mainly on some groups of lactic acid bacteria (LAB), such as enterococci, lactococci and lactobacilli [14,17]. Very limited information on the antimicrobial susceptibility profiles of Leuconostoc spp. is available, as well as their possible involvement in the dispersal of antimicrobial resistance determinants between bacteria.

Green vegetation and roots are considered the natural niches of Leuconostoc, from which they can easily propagate to the raw materials (vegetables, fruits, cereals, meat and milk) utilized in the production of fermented foods [18]. Therefore, they are frequently found as part of the natural LAB community involved in the manufacture and ripening of several fermented foods and beverages, such as kimchi, olives, meat, cacao beans, wine, pulque, and dairy products [18–20]. In dairy technology, Leuconostoc strains are beneficial for numerous technological aspects linked to their capacity to produce organic acids, carbon dioxide, dextrans and, especially, aromatic compounds, such as diacetyl, acetaldehyde and acetoin [18,21]. For these
characteristics, well-characterized strains are intentionally added as starter or adjunct cultures in many production processes to control the fermentations and contribute to the organoleptic and rheological properties of the final product [22,23].

Leuconostoc strains are also linked to some negative aspects, including spoilage (such in the sugar cane industry and food products by formation of slime) and safety (they have been occasionally identified in human clinical isolates) aspects [24–26]. However, their long history of safe consumption in traditional fermented foods has led to the conclusion that *Leuconostoc* are Generally Regarded As Safe (GRAS) microorganisms. In this sense, the European Food Safety Authority (EFSA) [27] considers *Leuconostoc* to be suitable for the qualified presumption of safety (QPS) approach to their safety assessment, which requires that technological strains intended to be introduced into the food chain should lack acquired or transferable resistance determinants to antimicrobials of clinical and veterinary importance to prevent lateral spread of these [28].

The application of molecular methods, such as various PCR techniques and microarray analysis is being very helpful in determining the genetic basis of the acquired resistance phenotypes. Moreover, the recent improvements in sequencing technologies and the increasing availability of genome sequences can provide unprecedented insights into the makeup and genetic organization of AR genes [29]. To date, the complete genomes of only three antibiotic-resistant *Leuconostoc mesenteroides* strains of dairy origin have been sequenced, representing an important starting point to improve the current knowledge on the molecular basis of AR in this LAB species [30]. Thus, deeper investigations are greatly needed to examine the safety of food-borne *Leuconostoc* strains and their potential involvement in the persistence and dissemination of AR genes.

In this context, the main aims of this study were: i) to determine the antibiotic resistance/susceptibility patterns of 34 LAB strains of the *Leuconostoc-Weissella* group originating from traditional Italian and Spanish cheeses; ii) to identify the genetic basis of potentially atypical resistances encountered, assessing the presence of AR genes and their localization on the *Leuconostoc* genome; and iii) to investigate the horizontal exchange capability of specific AR from selected *Leuconostoc* strains to *Enterococcus faecalis* and *Listeria innocua*; the transferability was studied both under *in vitro* conditions and in a food matrix.

Materials and Methods

Bacterial strains and growth conditions

The 34 LAB analysed in this study were selected from the collections of the Department of Biotechnology of Verona University and that of Microbiology and Biochemistry of IPLA-CSIC; they have previously been identified to the species level as *Leuconostoc mesenteroides* (*n* = 18), *Leuconostoc citreum* (11), *Leuconostoc lactis* (2), *Weissella hellenica* (2), and *Leuconostoc carnosum* (1). Strains originated mainly from the chain production of traditional Italian cheeses (Monte Veronese, Caciotta, and Taleggio) and traditional Spanish (Cabrales, Casín, and Gamonedo) cheeses (for source of the strains see Table A in S1 File). The reference strains *L. citreum* LMG 9849ᵀ, *L. mesenteroides* subsp. *cremoris* LMG 6909ᵀ, *L. mesenteroides* subsp. *dextranicum* NCFB 529ᵀ, *L. mesenteroides* subsp. *mesenteroides* NCFB 523ᵀ were obtained from the BCCM/LMG Bacteria Collection, Ghent, Belgium and NCFB, National Collection of Food Bacteria (now NCIMB). Unless otherwise stated, strains were grown at 30°C in de Man Rogosa and Sharpe (MRS) broth (Fluka, Milan, Italy).

Enterococcus faecalis OG1RF and *Listeria innocua* LMG 11387ᵀ were used as recipients in mating experiments; these were performed as reported previously [31]. The recipients and the strains used as reference for PCR detection of AR genes (see below) were cultivated at 30 or 37°C in Brain Heart Infusion (BHI) medium (Fluka).
Bacteria were kept in liquid cultures with 20% (w/vol) glycerol at -80°C for long term storage.

Determination of phenotypic resistance

The minimum inhibitory concentration (MIC) of several antibiotics were determined according to Alegría et al. [21], using VetMIC (National Veterinary Institute of Sweden, Uppsala, Sweden) plates for LAB, containing serial 2-fold dilutions of 16 antibiotics (ampicillin, ciprofloxacin, clindamycin, chloramphenicol, erythromycin, gentamicin, kanamycin, linezolid, neomycin, penicillin, rifampicin, streptomycin, tetracycline, trimethoprim, vancomycin, and virginiamycin). As the concentration range of erythromycin, clindamycin, and virginiamycin in the VetMIC plates was not sufficient to measure the actual MIC to some strains, these were analysed by microdilution in Elisa plates with 2-fold dilutions of the antibiotics (obtained from Sigma-Adrich, St. Louis, Mo., USA). In addition, a mixed formulation of Iso-Sensitest medium (Oxoid, Basingstoke, United Kingdom) (90%) and MRS (10%), known as LSM [32], was used for testing tetracycline resistance phenotype of some strains.

Briefly, individual LAB colonies grown on Mueller–Hinton agar plates (Oxoid, Basingstoke, Hampshire, UK) were suspended in 2 mL sterile saline solution (Oxoid) to obtain a density corresponding to McFarland standard 1 (approx. 3×10⁸ cfu/mL). This suspension was diluted 1:1,000 in Mueller–Hinton broth (final concentration 3×10⁵ cfu/mL) and then 100 µL of this inoculum was added to each well of the VetMIC plate. Following a 48-h incubation at 30°C, MICs were visually read as the concentration at which inhibition of growth occurred.

In accordance with EFSA [27], a bacterial strain should be considered phenotypically resistant when it is not inhibited at a concentration of a specific antimicrobial equal or higher than the established microbiological breakpoint or epidemiological cut-off (ECOFF) value. However, one or two Log₂ dilution deviations of the MICs from the cut-offs have been reported to be within the normal inter- and intra-laboratory variation in AR analyses [33].

DNA extraction, PCR detection of AR genes and sequencing of amplicons

Total genomic DNA was extracted and purified from 2-mL overnight cultures using the Wizard Genomic DNA purification kit (Promega Corporation, Madison, USA), following the manufacturer’s instructions. Isolation of plasmid DNA was performed following the method of O’Sullivan and Klaenhammer [34] with minor modifications. Instead of the original solutions, the denaturation and neutralization steps were done by using the solutions of the commercial Plasmid Mini Kit (Qiagen, Hilden, Germany). Plasmid profiles were analysed by electrophoresis on 0.7% agarose gels in 1× TAE buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA), stained with ethidium bromide (0.5 mg mL⁻¹), and visualized and photographed under UV light with a G. Box equipment (Syngene, Cambrigde, UK).

The presence of genes associated with resistance to erythromycin [erm(A), erm(B), erm(C), msrA], tetracycline [tet(K), tet(L), tet(M), tet(O), tet(S), tet(W)], and chloramphenicol (cat), was determined in the resistant strains by PCR amplification using the primers and conditions reported by Hummel et al. [35] and Rizzotti et al. [36,37] (Table B in S1 File).

For sequencing, the PCR products were purified with the Wizard SV Gel and PCR Clean-Up system according to the manufacturer’s instructions (Promega Corporation) and sent to GATC Biotech (Costance, Germany). Sequence similarity searches were performed using the BLAST network service (http://blast.ncbi.nlm.nih.gov/).
Identification of the antibiotic resistant strains

Identification of strains at species and subspecies level was carried out using molecular biology based methods and selected phenotypic tests.

Amplification and sequencing of the 16S rRNA gene and three protein-coding genes, i.e. the \(\alpha \)-subunit of ATP synthase (\(atpA \)), RNA polymerase \(\alpha \)-subunit (\(rpoA \)) and phenylalanyl-tRNA synthase \(\alpha \)-subunit (\(pheS \)), were carried out according to the indications of Rizzotti \textit{et al.} \[36\] and De Buyne \textit{et al.} \[38\], respectively. Primer sequences, PCR conditions and sequencing used in each case were those described by the corresponding reference (Table C in S1 File).

The \(atpA \) and \(pheS \) sequences of the isolates and type strains of species within the \textit{Leuconostoc} genus (Table D in S1 File) were used for phylogenetic analyses using MEGA version 6 software \[39\].

\textit{Leuconostoc mesenteroides} strains were tested for their ability to ferment some carbohydrates using the protocol reported by Bjorkroth and Holzapfel \[19\]. Briefly, strains were grown in Basal MRS-medium (pH 6.5) supplemented with a selected carbohydrate to give a concentration of 1%. After incubation at 30°C for 7 days, acid production was indicated by a change from purple to yellow in the colour of the chlorophenol red indicator dye.

DNA hybridization

Total and plasmid DNA from erythromycin and tetracycline resistant strains was independently digested with \(PstI \), \(PstI \) and \(EcoRI \), and \(HindIII \) or \(PstI \), and \(NsiI \) restriction enzymes (Takara, St Germain en Laye, France). After electrophoresis, the DNA was blotted onto Hybond-N nylon membranes (GE Healthcare, Buckinghamshire, UK) using a standard protocol \[40\]. An internal segment of the erythromycin resistance [\(erm(B) \)] and tetracycline resistance [\(tet(S) \)] genes, both amplified by PCR, were used as probes after labelling with Digoxigenin (Roche, Basel, Switzerland). Labelling, hybridization under high-stringency conditions, and detection was performed using the non-radioactive DIG-High Prime DNA Labelling and Detection Starter Kit II (Roche) following the manufacturer’s recommendations. AR genes were detected by chemoluminescence using an ImageQuant 350 Digital Imaging System (GE Healthcare, Pittsburgh, USA).

Bioinformatics analysis

Sequences surrounding the AR genes from the strains \textit{L. mesenteroides} LbE15, LbE16 and LbT16 were analysed by retrieving those contigs carrying antibiotic determinants from the published whole genome sequencing data \[30\]. The GenBank accession numbers for LbE15, LbE16, and LbT16 genomes are LAYN00000000, LAYU00000000, and LAYV00000000, respectively. The Comprehensive Antibiotic Resistance Database (CARD) at http://arpcard.mcmaster.ca/, CLC Bioinformatics Database software package (CLC bio, Aarhus, Denmark), RAST annotation system (http://rast.nmpdr.org/) and Basic Local Search Tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were consulted for detail description of AR determinants and their flanking regions.

Filter mating

Selected strains were included in filter mating experiments with \textit{L. innocua} LMG 11387T and \textit{E. faecalis} OG1RF. The two recipient strains were plasmid-free and susceptible to chloramphenicol, erythromycin, and tetracycline \[31\]. The latter strain was further resistant to rifampicin (50 \(\mu \)g/mL) and fusidic acid (25 \(\mu \)g/mL).
Mating experiments were conducted on 0.45 μm nitrocellulose filters (25 mm diameter) (Millipore, Milan, Italy). After overnight incubation, donor and recipient cultures were mixed at a ratio of 1:10, to obtain 1×10^7 and 1×10^8 CFU/mL, respectively. Aliquots of the mating mixtures were filtered, and then 2 mL sterile peptone physiological solution (PPS; 0.85 g/L NaCl, 1 g/L peptone) was passed through the filter to trap the cells more tightly into the membrane. Filters were incubated over the surface of BHI agar plates without any selective agents for 24 h at 37°C. Afterwards, the filters were washed with 2 mL of PPS and the suspended bacteria were analysed by plate counting. Appropriate culture conditions were applied for separate counting of donor, recipient and transconjugant cells. In short, MRS supplemented with 16 μg/mL tetracycline, or 8 μg/mL chloramphenicol or 4 μg/mL erythromycin was used for counting the different Leuconostoc donors; BHI with 50 μg/mL rifampicin plus 25 μg/mL fusidic acid was used for counting the recipient strain E. faecalis OG1RF; and Listeria Selective Agar (LSA, Oxoid) base was used for enumerating the recipient strain L. innocua LMG 11387T. Transconjugants of E. faecalis and L. innocua were selected on BHI agar supplemented with rifampicin and tetracycline or chloramphenicol or erythromycin, at the same concentrations reported above, or on LSA supplemented with one of the antibiotics, respectively.

Transfer frequency was expressed as the number of transconjugants per recipient.

Food mating

Only donor and recipient strains giving transconjugants in filter mating experiments were used.

All the following procedures were performed using sterile tools under a sterile cabinet. To perform mating trails, Monte Veronese cheese slices (8 cm³ – 40 mm × 20 mm × 10 mm) were placed in Petri dishes and the surface was inoculated with a mixed culture (0.5 mL) of donor and recipient strains. Inoculum was prepared from overnight cultures that were centrifuged at 8000 × g for 5 min. The pellets were washed twice with PPS, suspended in PPS and mixed to obtain 1×10^7 and 1×10^8 CFU/mL of donor and recipient strains, respectively. After incubation at 37°C for 24 h, the cheese slices were washed with 1 mL sterile PPS, and counts of donors, recipients and transconjugants were determined using the culture conditions reported above. Four replicates for experiment were conducted.

Characterization of transconjugants

Presumptive transconjugants were isolated from selective agar plates and grown in BHI broth with appropriate antibiotics. To distinguish them from donor mutants, they were typed with primer Hpy1 (5’-CCGCAGCCAA-3’) using the Random Amplification of Polymorphic DNA (RAPD)-PCR technique as reported by Akopyanz et al. [41]. Then, transconjugants were checked for the presence the AR gene under consideration by specific PCR. Finally, the effect of such transfer on the phenotype was examined by determining the MIC of the specific antibiotic as described above.

Results and Discussion

Determination of phenotypic resistance

The MIC values of several antibiotics encompassing nearly all important pharmacological classes was determined by broth microdilution in VetMIC plates for 34 LAB strains belonging to the genera Leuconostoc (32 strains) and Weissella (two strains) isolated from Italian and Spanish traditional cheeses. The MICs obtained for the 16 different antibiotics and the relative ECOFF values are summarized in Table 1. To distinguish resistant from susceptible strains, the
MICs were compared to the epidemiological cut-off (ECOFF) values reported by Danielsen and Wind [42], Flórez et al. [43], Casado Muñoz et al. [44] and defined according to the Euro- pean Commission SCAN [45] and EFSA [27] for the genera Lactobacillus and Leuconostoc. When not defined, the breakpoint values suggested by the National Committee for Clinical Laboratory Standards [46] and Geenen et al. [47] for staphylococci were considered. As expected, all analyzed strains were insensitive to high concentrations of vancomycin (MIC/C21 128 μg/mL), since this is a common trait for species belonging to the Leuconostoc-Weissella group [24]. Such intrinsic characteristic is linked to the presence of D-Ala-D-Lactate in their peptidoglycan rather than a D-Ala-D-Ala dipeptide [18]. Moreover, they all were resistant to trimethoprim (MICs/C21 8 μg/mL) for the absence of the folic acid synthesis pathway [48]. However, a broad MIC distribution (from 8 to 128 μg/mL) of this antimicrobial was observed.

In contrast, all strains were susceptible to the beta-lactams ampicillin and penicillin G, to gentamycin and linezolid (MICs lower than the microbiological ECOFFs). Some studies have previously shown that Leuconostoc strains isolated from dairy and meat products are susceptible to many of these antibiotics and in particular to the beta-lactams [17,49]. A broad MIC distribution characterized the remaining antibiotics, wherein we can find one or more resistant strains, belonging to different species.

Concerning aminoglycosides, most of the strains (23 out of the 34) exhibited resistance to kanamycin (MICs ≥ 16 μg/mL). The MIC distribution of kanamycin was broad, ranging from 8 to 128 μg/mL with one strain (L. mesenteroides LbE16) being resistant to more than

Table 1. Distribution of MICs of 16 antibiotics for LAB strains belonging to the genera Leuconostoc (32 strains) and Weissella (two strains) originated from Italian and Spanish cheese milk and dairy products.

Antibiotic	<1	1	2	4	8	16	32	64	128	256	512	ECOFF* (μg/mL)
Gentamycin	9	15	10									16
Kanamycin	3	8	6	13	2	1	1				1	16
Streptomycin	2	3	3	22	3	1*						64
Neomycin	8	5	16	3	1							8
Tetracycline	19	13		1	1							8
Erythromycin	31	2		1*								1
Clindamycin	33			1*								1
Chloramphenicol									12	19	1	1
Ampicillin	29	5										2
Penicillin G	34											1
Vancomycin											34*	≥ 32
Virginiamycin	25	8		1								4
Linezolid	2	27	5									≥ 8
Trimethoprim		1	7	4	1	21*						≥ 4
Rifampicin	10	8	13	2	1							≥ 4
Ciprofloxacin	15	16	2		1							>32

*Epidemiological cut off (ECOFF) values for strains were based on those provided by Danielsen and Wind [42], Flórez et al. [43], Casado Muñoz et al. [44], and defined according to EFSA [27], and the European Commission, SCAN [45] for the genera Lactobacillus and Leuconostoc. When not defined, the breakpoint values suggested by the CLSI [46] and Geenen et al. [47] for staphylococci were considered. Resistant strains with a MIC value higher than the ECOFF reported in the table are indicated in bold.

*These were the highest concentrations assayed; MICs of the antibiotics should be read as > the actual figure.

doi:10.1371/journal.pone.0145203.t001
128 μg/mL. Kanamycin resistance was found in *L. mesenteroides* (9 strains), *L. citreum* (11), *L. lactis* (2) and *L. carnosum* (1). This observation corroborates data reported in previous studies, in which the profiles of kanamycin resistance in *Leuconostoc* spp. vary largely among strains [21,50].

MICs of the streptomycin were between 2 and 128 μg/mL, with only one strain (LbE16) being resistant to 128 μg/mL. Although this, the data obtained here suggest that the cut-off of streptomycin and kanamycin for *Leuconostoc* should be updated, for which evaluating MICs in a larger number of strains is encouraged.

MICs of neomycin were lower than the breakpoint (8 μg/mL) for all strains, except *L. mesenteroides* LbE16 and CA5 (32 and 8 μg/mL, respectively).

Concerning ciprofloxacin, a second-generation quinolone that inhibit bacterial nucleic acid synthesis, only a strain of *L. citreum* (CA7) was considered resistant, displaying a MIC value higher than 32 μg/mL. On the contrary, Morandi *et al.* [49] found that 83% of the 35 examined strains belonging to different species of *Leuconostoc* showed phenotypic resistance to such antimicrobial. This discrepancy could be due to the different susceptibility method used in the different antibiotic resistance surveys, disc diffusion in agar [49] versus microdilution (this work).

MICs of rifampicin were between <1 and 8 μg/mL, with three strains (*L. citreum* CA3 and CA6, and *L. lactis* CA33) which could be considered resistant (MICs ≥ 4 μg/mL). Rifampicin is a broad-spectrum antibiotic that inhibits the function of RNA polymerase in eubacteria [55]. Mutations in the gene rpoB encoding the RNA polymerase β-chain have been previously reported to confer resistance to rifampicin in two LAB strains, namely *L. mesenteroides* ATCC 8293 and *O. oeni* PSU-1 [56]. Whether this is the case in our strains has yet to be demonstrated.

As regards the antimicrobials belonging to the macrolide-lincosamide-streptogramin (MLS) family, all strains showed a MIC ≤ 1 μg/mL for virginiamycin, except LbE16 (MIC 128 μg/mL). This streptogramin was used for decades as an animal growth promoter; however it was banned in the European Union (EU) in 1999, because of its structural relatedness to some therapeutic antimicrobial drugs used for humans. Resistance of LAB to streptogramins, including virginiamycin, is considered less common among many other protein synthesis inhibitors [57].

Most strains displayed erythromycin MICs below or equal to the EFSA’s cut-off (1 μg/mL) except for *L. mesenteroides* LbE15 which proved to be resistant to high level of this macrolide antibiotic (MIC >256 μg/mL). All examined strains showed clindamycin MICs lower than the cut-off (1 μg/mL), except again for *L. mesenteroides* LbE15 that was resistant to such antibiotic (MIC >256 μg/mL). As erythromycin, clindamycin belongs to the MLS phenotype, and a
considerable cross-resistance with erythromycin occurs due to the overlapping ribosomal binding sites of these two antibiotics [14]. A phenotypic erythromycin resistant strain of L. mesenteroides/L. pseudomesenteroides isolated from the Spanish traditional blue-veined Cabrales cheese has been already reported [43], however the nature of such resistance was not investigated further. Phenotypic clindamycin resistance in Gram-positive bacteria, such as in staphylococci and enterococci, has been reported to be either constitutive or inducible. Identification of strains carrying the latter resistance type may fail by using a microdilution method [58].

Finally, tetracycline MICs ranged between 2 and 128 μg/mL and two strains (LbE16 and LbT16) grow at ≥ 32 μg/mL of tetracycline. Atypical resistance levels to tetracycline have been reported in several studies for LAB strains isolated from dairy and meat foodstuffs [5,17]. However, only two strains of Leuconostoc spp. with tetracycline resistance were found in independent studies where strains from beef abattoirs [59] and raw pork meat [60] were analyzed. To the best of our knowledge, this is the first report in which Leuconostoc with phenotypic resistance to tetracycline were detected from traditional dairy products.

It is noteworthy that several strains of Leuconostoc with resistance to three or more antimicrobial classes (multi-drug resistant; MDR) were identified in this work. All MDR Leuconostoc showed resistance to at least four antimicrobials (intrinsice and non-intrinsic), and one strain proved to be resistant to nine of them. Particularly, MDR was observed in L. citreum LE46 and in four L. mesenteroides strains, as shown in Table 2. In detail, L. citreum LE46 and L. mesenteroides Zcaf2 showed the higher chloramphenicol MIC value (32 and 16 μg/mL, respectively). L. mesenteroides LbT16 was resistant/insensitive to tetracycline, in addition to chloramphenicol, trimethoprim and vancomycin. The strains LbE15 and LbE16 showed simultaneous resistance/insensitivity to vancomycin, chloramphenicol, erythromycin, kanamycin and trimethoprim, and the first strain was further resistant to clindamycin, and the second to neomycin, streptomycin, tetracycline and virginiamycin. These findings confirmed the data of Rodríguez-Alonso

| Table 2. Antibiotic resistant Leuconostoc strains characterized in this study. |
|-----------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Species | Strain | Source of isolation | Arabinose | Fructose | Sucrose | Trehalose | Phenotypic antibiotic resistance (MIC μg/mL) | Resistance gene(s) |
| L. citreum LE46 | Monte Veronese cheese | nd | nd | nd | nd | | CM (32), KM (128), TM (>64) | - |
| L. mesenteroides subsp. mesenteroides Zcaf2 | Curd of Monte Veronese cheese | + | + | + | + | | CM (16), KM (16), TM (32) | - |
| L. mesenteroides subsp. mesenteroides LbE16 | Taleggio cheese | + | + | + | + | | CM (8), EM (1), KM (512), NM (32), SM (128), TC (>64), TM (32), VI (>8) | aadE, aphA-3, mmmr, sat4, tet(S), vat(E) |
| L. mesenteroides subsp. cremoris LbT16 | Taleggio cheese | - | - | - | - | | CM (4), TC (32), TM (8) | - |
| L. mesenteroides subsp. dextranicum LbE15 | Taleggio cheese | - | + | + | + | | CL (>16), CM (8), EM (>8), KM (32), TM (16) | erm(B) |

a For more details see Table A in S1 File.

b All strains were insensitive to vancomycin (>128 μg/mL).

c All the genes were detected by analysis of the genome sequence, and tet(S) and erm(B) also by PCR

CL: clindamycin; CM: chloramphenicol; EM: erythromycin; KM: kanamycin; NM: neomycin; SM: streptomycin; TC: tetracycline; TM: trimethoprim, VI: virginiamycin.

n.d.: not detected.

doi:10.1371/journal.pone.0145203.t002
et al. [54] and Morandi et al. [49] that have reported the presence of Leuconostoc strains resistant to multiple antibiotics in artisanal raw milk cheeses.

Identification of the MDR leuconostocs
In order to accurately characterize the Leuconostoc strains (LbE15, LbE16, LbT16, LE46, Zcaf2) showing atypical AR a series of further experiments were performed. Firstly, molecular identification at the species level was carried out using amplification and sequence analysis of 16S rRNA gene, to confirm the previous analysis on the identity of the strains. Indeed, the genus Leuconostoc was revised in the last years with the description of novel species and subspecies, such as L. myukkimchi [61], L. mesenteroides subsp. suionicum [62], L. gelidum subsp. gascomitatum [63], and L. rapi [64]. Since 16S rRNA gene sequence data do not allow the discrimination of the four described subspecies of L. mesenteroides (mesenteroides, cremoris, dextranicum, and suionicum), additional analysis were carried out using more divergent protein-coding genes, i.e. atpA, rpoA and pheS [63].

Comparative 16S rRNA gene sequence analysis confirmed that the strain LE46 belonged to the species L. citreum (99.6% sequence identity) and the other four strains to L. mesenteroides (99.9%). This was further confirmed by sequence analysis of pheS (accession number: KT692962). The Neighbour-joining tree of the concatenated atpA and rpoA partial gene sequences revealed low relatedness (91.5–93.6%, respectively) between our L. mesenteroides strains and the same sequences from L. mesenteroides subsp. suionicum LMG 11499T. For Neighbour-joining tree see Figure A in S1 File. Significantly higher values, in the range of 99.0–99.8%, were found with the other three L. mesenteroides subspecies, due to their close phylogenetic relationships. As DNA analysis did not give a conclusive identification, strains were classified at the subspecies level by conventional phenotypic approach based on their different capacity to ferment L-arabinose, fructose, sucrose, and threahose. The carbohydrate fermentation profiles varied among the strains, as shown in Table 2. The strain LbT16 was easily identified as L. mesenteroides subsp. cremoris since members of this subspecies utilize a limited number of carbohydrates [19]. The ability to ferment or not the pentose arabinose allowed the differentiation of the other strains: Zcaf2 and LbE16 were ascribed to L. mesenteroides subsp. mesenteroides, while LbE15, that did not utilize arabinose, was included in L. mesenteroides subsp. dextranicum.

Molecular detection of resistance genes
To detect genetic determinants responsible for the resistance phenotypes observed in the strains LbE15, LbE16, LbT16, LE46, and Zcaf2, the presence of well-known structural genes associated with resistance to antibiotics which inhibit protein synthesis, such as tetracycline [tet(K), tet(L), tet(M), tet(O), tet(S), and tet(W)], erythromycin [erm(A), erm(B), erm(C), and msrA], and chloramphenicol (cat), was investigated by PCR amplification. All positive controls produced an amplicon of the expected size (data not shown). The results are summarized in Table 2.

The erm(B) gene was found only in the strain LbE15, to which it should confer its erythromycin-resistance. This gene has been shown to provide MLS resistance, coding for a methylase enzyme that modifies the 23S rRNA macrolide binding sites [7]. Neither erm(A) and erm(C) genes, coding for rRNA methylases [65], or the efflux gene msrA, coding for an ATP-binding transporter [65], were detected in any of all other tested strains. Among LAB, erm(B) is the best studied and the most widely spread gene conferring erythromycin resistance [14,17,66]. However, to our knowledge, this gene has never been described in Leuconostoc species.
Analysis of the tetracycline-resistant leuconostocs showed that, among the screened genes, only tet(S), coding for a ribosomal protection protein [67], was present in the strain LbE16. The absence of all the tested resistance determinants [tet(M), tet(O), tet(S), tet(W), tet(L) and tet(K)] in L. mesenteroides LbT16 may suggest a new mechanism of resistance which can be due either to acquired genes or to a mutation of indigenous genes [27]. Indeed, the possible presence of a false positive phenotype linked to specific growth requirements of LbT16 can be excluded, since its resistance was confirmed in different media added with tetracycline, i.e. MRS, LSM, and Mueller–Hinton broth.

The tetracycline resistance genes are largely spread among LAB and more than one gene has been reported to be present in some strains [17]. Few data are available on the abundance of tet genes in food-borne Leuconostoc strains. Two previous investigations carried out on a limited number of strains have reported the presence of the gene tet(S) in AR strains belonging to the species L. mesenteroides [59] and L. citreum [60] isolated from meat processing lines. In addition, Morandi et al. [49] found tet determinants in tetracycline-susceptible Leuconostoc strains isolated from dairy products, unveiling tet(M) as the most frequent gene, followed by tet(L) and tet(S). Furthermore, these authors found tet(L) and tet(M) together in two L. citreum strains, and the genes tet(M) and int (the transposon integrase gene of the Tn916/Tn1545 family) in a strain of L. pseudomesenteroides.

As regards chloramphenicol resistance, the cat gene could not be amplified from the genomic DNA of the five resistant strains. Therefore, the genetic basis of chloramphenicol resistance could not be determined and further research will be needed to elucidate the underlying resistance mechanism. The cat gene encodes a chloramphenicol acetyl transferase, and was selected because it is the commonest chloramphenicol resistance gene in LAB [68].

Location of ero(B) and tet(S) in the L. mesenteroides genome

As many other LAB, Leuconostoc species harbour one or several plasmids of various sizes [69,70] without known functions, except for replication (cryptic). Plasmid profiling revealed at least three plasmids in each L. mesenteroides [39] and L. citreum [60] isolated from meat processing lines. In addition, Morandi et al. [49] found tet determinants in tetracycline-susceptible Leuconostoc strains isolated from dairy products, unveiling tet(M) as the most frequent gene, followed by tet(L) and tet(S). Furthermore, these authors found tet(L) and tet(M) together in two L. citreum strains, and the genes tet(M) and int (the transposon integrase gene of the Tn916/Tn1545 family) in a strain of L. pseudomesenteroides.

As regards chloramphenicol resistance, the cat gene could not be amplified from the genomic DNA of the five resistant strains. Therefore, the genetic basis of chloramphenicol resistance could not be determined and further research will be needed to elucidate the underlying resistance mechanism. The cat gene encodes a chloramphenicol acetyl transferase, and was selected because it is the commonest chloramphenicol resistance gene in LAB [68].
this strain may be due to unspecific mechanisms, such as activity of general efflux systems, or caused by a not-yet-reported gene.

The AR genes found in strains LbE15 and LbE16 and their respective flanking regions are schematically depicted in Fig 3.

Only one contig carrying AR genes was detected in the *L. mesenteroides* LbE15 genome. This contig harboured the erythromycin resistance gene *erm*(B) detected in this strain (the *orf* in red in Fig 3A). Downstream of *erm*(B) two *orf*s encoding plasmid-replication proteins were identified; thereby supporting the association of erythromycin resistance with a plasmid, as the
hybridization assays suggested. Moreover, a Type III restriction-modification system was shown to be encoded upstream of the erythromycin resistance determinant. These genes shared the greatest homology (95%) to the corresponding region of the plasmid Lkpl4704 from *Leuconostoc kimchi* [71]. Furthermore, two genes encoding mobile element proteins proved to be identical at nucleotide level to those of pLG1, a plasmid of *Enterococcus faecium* [72]. These two genes shared 99% identity with the Tn\(^{3}\) DDE-transposase of several species of staphylococci, streptococci and enterococci, and the resolvase of *Streptococcus pneumoniae*, respectively [73]. Transposons are involved in the rapid adaptation of bacteria to changing environments, and their frequent location on plasmids may facilitate dissemination [74]. Therefore, the set-up of *erm*(B) flanking regions in LbE15 suggested that erythromycin resistance is an acquired character and it could be transferred among food-borne bacteria via conjugation process.

In contrast to LbE15, three contigs harbouring AR genes were identified in the genome of *L. mesenteroides* LbE16 (Fig 3B). The tetracycline resistance gene *tet*(S) was identified in one of the contigs. Based on the size of the contig harbouring the *tet*(S) gene (171,788 bp), it is expected that the tetracycline resistance gene is located in the bacterial chromosome of LbE16, as suggested by the Southern hybridization analysis. A small contig contained two *orf*s, of which one showed extensive homology to virginiamycin resistance [*vat*(E) in Fig 3B]. Further, a third contig harbouring a cluster of genes involved in AR was identified. These genes showed extensive homology to others involved in resistance to aminoglycosides; namely, *aadE* encoding streptomycin, *sat*4 encoding resistance to streptothricin resistance, *aphA*-3 encoding kanamycin and neomycin resistance and *mmr* encoding methylenomycin A resistance. The *aadE*- *sat*4-*aphA*-3 cluster of LbE16 revealed almost identical nucleotide sequences with a cluster which has been previously detected in staphylococci, campylobacter and enterococci [75]. In this last contig, upstream of the streptogramin/aminoglycosides resistance genes, an *orf* that
could encode a plasmid-associated protein was identified (rep). Moreover, the nucleotide sequence around the rep gene shared a complete identity with those encoded by plasmids pKLC2 [70], LkipL4726 [71] and pLCK1 [76], from *L. carnosum, L. kimchi* and *L. citreum*, respectively. This indicates that these sequences are located on a plasmid in the *LbE16* strain. This cluster has also been detected in naturally occurring mobile genetic elements, such as plasmids and transposons in other bacterial species; thus is supposed to be horizontally transferable between foodborne bacteria [75]. None of the orfs located in the other two contigs showed significant homology to plasmid sequences, suggesting they must be chromosomally encoded. However, sequences surrounding the antibiotic resistance genes showed homology with orfs encoding recombinase/transposase-like proteins (in yellow in Fig 3). In particular, the sequence upstream of tet(S) gene showed, at aminoacidic level, 99% identity with transposase A of *Streptococcus dysgalactiae* subsp. *equisimilis* [77]. As before, these elements may contribute to the horizontal transfer of these antibiotic resistances.

![Diagram showing the genetic organization of DNA contigs around the antibiotic resistance genes identified in the genome of *L. mesenteroides* subsp. *dextranicum* *LbE15* (A) and *L. mesenteroides* subsp. *mesenteroides* *LbE16* (B) strains.](image-url)
Filter mating experiments

To investigate the transferability of AR, filter mating trials were conducted in vitro using the three sequenced AR *Leuconostoc* strains as donors and *E. faecalis* OG1RF and *L. innocua* LMG 11387T as recipients. Both these recipient strains have been shown to be susceptible to erythromycin (MIC 1 μg/mL) and tetracycline (MIC 1 μg/mL) and plasmid free [31]. Further, both recipients have already been used successfully in previous mating studies involving enterococci [31,78].

Transfer of AR genes to *L. innocua* LMG 11387T was never achieved. However, transconjugants were obtained in the conjugation between *L. mesenteroides* subsp. *dextranicum* LbE15 and the recipient *E. faecalis* strain. Transfer was low, but detectable, with an average frequency of 3.2 × 10⁻⁸ transconjugants per recipient. All presumptive transconjugants, grown onto plates containing the selective antibiotics (erythromycin plus rifampicin), were isolated from each mating experiment and subjected to RAPD-PCR fingerprinting using the primer *Hpy*1 to exclude the presence of mutant donors. They displayed the same RAPD-PCR profile as the recipient strain *E. faecalis* OG1RF, thus confirming that they were true transconjugants and not reverted mutants (data not shown). The transconjugants displayed increased average MIC values of > 64 (erythromycin) in comparison to the original recipient MIC of 1 μg/mL. Thereafter, transfer of the genes *erm*(B) to transconjugants was verified by specific PCR, since they were selected during the experiments by their resistance phenotype. Results revealed that this genetic determinant could be PCR amplified from the transconjugants, whereas amplification was negative when DNA from *E. faecalis* OG1RF was used as a template (data not shown). Further, sequence analysis of a *erm*(B) gene fragment (549 pb) from donor and selected transconjugants showed, as expected, 100% identity. These findings demonstrated that transfer of the *erm*(B) gene and its associated phenotype between *L. mesenteroides* and enterococci can occur in laboratory conditions.

Previous studies have reported the in vitro transfer of *erm*(B) from different LAB species, such as *Lactobacillus fermentum*, *Lactococcus lactis*, *Lactobacillus reuteri* and *Lactobacillus salivarius*, to enterococci and lactococci [79–82]. However, until now, no successful conjugal transfer has been described for *Leuconostoc* strains. Indeed, to our knowledge, the only previous study of Toomey et al. [59] did not obtain transconjugants when attempting to transfer tetracycline resistance from *L. mesenteroides* strains harbouring *tet*(S).

Food mating experiments

Since the laboratory transfer assays do not mimic the in vivo conditions, mating trials were also conducted in food using the same donor and recipient strains as above. The mating experiment was done onto the surface of Monte Veronese cheese. Twenty presumptive transconjugants were obtained, which were verified as before. An estimated conjugation frequency of around 2.2 × 10⁻⁷ per recipient was calculated, which was considerably higher (up to ~16,000-fold) than that seen under standard filter mating conditions.

The present study demonstrates that HGT events can be realized in a food matrix, and that *Leuconostoc* strains could represent potential vectors of AR genes in dairy products. The possibility of transfer of AR from commensal food-borne bacteria has been studied extensively in laboratory conditions, but only a limited number of researches have been conducted in real food matrices [12]. Furthermore, almost all these investigations have considered meat-based foods as environmental niches for HGT among bacteria, especially enterococci [31,78,83]. In this context, the results of the present study appear of relevance, as the transmission of AR gene between *Leuconostoc* and *E. faecalis* was shown for the first time in filter mating experiments, under ideal conditions, and in a complex ecosystem, like that of the cheese. In addition, it was observed that the frequency of the transfer events found in Monte Veronese cheese was
higher than those found in laboratory media; these data are in accordance with Davies and Davies [84] who suggested that frequencies of conjugative transmission in nature are probably some orders of magnitude higher than those under laboratory conditions.

Conclusions
Resistance to different antibiotics was detected among strains of the *Leuconostoc-Weissella* group isolated from traditional Italian and Spanish cheeses. Some resistances, such as those to vancomycin, chloramphenicol and trimethoprim are—or can be—indicative of intrinsic nature, suggesting the need of future evaluation of MICs in a larger number of *Leuconostoc* strains. However, resistances of a reasonable acquired origin were also found. As such, a correlation between atypical erythromycin and tetracycline resistance and the presence of *erm*(B) and *tet*(S) genes, respectively, was encountered. The genetic basis and associated resistance mechanisms toward some other antibiotics could not be determined and would require further investigation. The genes *erm*(B) and *tet*(S) were localized on a plasmid and on the chromosome of LbE15 and LbE16, respectively. Further insights on the AR make up and the genetic organization of the AR genes were achieved analyzing the whole genome sequence of three resistant strains (LbE15, LbE16, and LbT16). Genome analysis confirmed the presence of the genes *erm*(B) and *tet*(S) in the strains in which they were previously detected and identified others encoding uncommon AR in LAB. Analysis of the genes and their flanking regions revealed the potential of some determinants to be horizontally transferred. Indeed, the data presented in this paper provide the first evidence of the erythromycin resistance transfer by conjugation between *L. mesenteroides* and *E. faecalis* both *in vitro* and in cheese, supplying novel proof that AR LAB can act as a reservoir of acquired AR genes.

Supporting Information
S1 File. Source of isolation of the *Leuconostoc-Weissella* strains of this study (Table A). Primers and positive control strains used for the detection of antibiotic resistant genes (Table B). Primers and conditions used for the identification of dairy *Leuconostoc-Weissella* (Table C). GenBank accession numbers for nucleotide sequences of the genes *atpA* and *pheS* used for the phylogenetic analyses (Table D). Phylogenetic tree obtained from the concatenated *atpA* and *pheS* gene sequences of the four *Leuconostoc* strains showing atypical AR profiles and 12 *Leuconostoc* type strains with *L. fallax* LMG 13177T as an outgroup. The tree was reconstructed by using maximum composite likelihood method. Bootstrap values (1,000 replicates) are shown as a percentage at the branching points. The scale bar represents the number of nucleotide substitutions per site (Fig A).

(DOCX)

Acknowledgments
We thank Lucia Rizzotti for her technical assistance.

Author Contributions
Conceived and designed the experiments: ABF IC BM ST. Performed the experiments: ABF IC SD AA ES. Analyzed the data: ABF IC GEF SD. Contributed reagents/materials/analysis tools: BM ST. Wrote the paper: ABF IC BM ST.
References

1. Rosenblatt-Farrell N. The landscape of antibiotic resistance. Environ Health Perspect. 2009; 117: A244–A250 PMID: 19590688

2. Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J. Antibiotics and antibiotic resistance: a bitter fight against evolution. Int J Med Microbiol. 2013; 303: 293–297 doi: 10.1016/j.ijmm.2013.02.004 PMID: 23517688

3. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspec Medicin Chemi. 2014; 6: 25–64 doi: 10.4137/PMC.S14459 PMID: 25232278

4. Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist. 2015; 8: 49–61. doi: 10.2147/IDR.S55778 PMID: 25878509

5. Verraes C, Van Boxtstael S, Van Meerwenne E, Van Coillie E, Butaye P, Catry B, et al. Antimicrobial resistance in the food chain: a review. Int J Environ Res Public Health. 2013; 10: 2643–2669. doi: 10.3390/ijerph10072643 PMID: 23812024

6. Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas). 2011; 47: 137–. PMID: 21822035

7. van Hoek A, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011; 2: 1–27. doi: 10.3389/fmicb.2011.00203 PMID: 22046172

8. Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life. Nat Rev Genet. 2015; 16: 472–482. doi: 10.1038/nrg3962 PMID: 26184597

9. Wang HH, Manuzon M, Lehman M, Wan K, Luo H, Wittum TE, et al. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett. 2006; 254: 226–231. doi:10.1111/j.1574-6968.2005.00030.x PMID: 16445749

10. Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011; 2: 1–19. doi: 10.3389/fmicb.2011.00158 PMID: 21845185

11. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014; 7: 167–176. doi: 10.2147/IDR.S48820 PMID: 25018641

12. Rossi F, Rizzotti L, Felis GE, Torriani S. Horizontal gene transfer among microorganisms in food: current knowledge and future perspectives. Food Microbiol. 2014; 42: 232–243. doi: 10.1016/j.fm.2014.04.004 PMID: 24929742

13. Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Front Microbiol. 2011; 2: 1–27. doi: 10.3389/fmicb.2011.00203 PMID: 22046172

14. Devirgiliis C, Zinno P, Perozzi G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol. 2013; 4: 301. doi: 10.3389/fmicb.2013.00301 PMID: 24115946

15. Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004; 12: 412–416. PMID: 15337162

16. Flórez AB, Ammor MS, Mayo B. Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci. Int J Food Microbiol. 2007; 121: 189–194. doi: 10.1016/j.ijfoodmicro.2007.11.029 PMID: 18068255

17. Ammor MS, Flórez B, Mayo B. Antibiotic resistance in nonenterococcal lactoc acid bacteria and bifidobacteria. Food Microbiol. 2007; 24: 559–570. doi: 10.1016/j.fm.2006.11.001 PMID: 17418306

18. Hemme D, Foucaud-Scheunemann C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J. 2004; 14: 467–494. doi: 10.1016/j.idairyj.2003.10.005

19. Björkroth J, Holzapfel W. Genera Leuconostoc, Oenococcus and Weissella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The Prokaryotes: a Handbook on the Biology of Bacteria. 3rd ed. New York: Springer; 2006; 4: 267–319.

20. Riveros-Mckay F, Campos I, Giles-Gómez M, Bolívar F, Escalante A. Draft genome sequence of Leuconostoc mesenteroides P45 isolated from Pulque, a traditional mexican alcoholic fermented beverage. Genome Announc. 2014; 2(6): e01130–14. doi: 10.1128/genomeA.01130-14 PMID: 25377708

21. Alegria A, Delgado S, Flórez AB, Mayo B. Identification, typing, and functional characterization of Leuconostoc spp. strains from traditional, starter-free cheeses. Dairy Sci Technol. 2013; 93: 657–673. doi:10.1007/s13394-013-0128-3

22. McSweeney PLH, Suosa MJ. Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait. 2000; 80: 293–324. doi: 10.1051/lait:2000127

23. Nieto-Árribas P, Seseña S, Poveda JM, Palop L, Cabezas L. Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol. 2010; 27: 85–93. doi: 10.1016/j.fm.2009.08.006 PMID: 19913697
Antibiotic Resistance in Leuconostoc spp.
olives throughout fermentation process. Int J Food Microbiol. 2014; 172: 110–118. doi: 10.1016/j.
ijfoodmicro.2013.11.025 PMID: 24370969

45. European Commission (SCAN). Opinion of the Scientific Committee on a request from EFSA on the
introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected micro-orga-
nisms referred to EFSA. EFSA J. 2007; 587: 1–16.

46. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial suscepti-
Havelaar AH, van de Giessen AW. Risk profile on antimicrobial

47. Geenen PL, Koene MGJ, Blaak H, Havelaar AH, van de Giessen AW. Risk profile on antimicrobial

48. Gevers D, Danielsen M, Huys G, Swings J. Molecular characterization of

49. European Commission (SCAN). Opinion of the Scientific Committee on a request from EFSA on the
introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected micro-orga-
nisms referred to EFSA. EFSA J. 2007; 587: 1–16.

50. Adimpong DB, Nielsen DS, Søndergaard KA, Kruse H, Johnsen G, Herikstad H. Antimicrobial susceptibility of starter culture bacteria used

51. Bryan LE, Kwan S. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative

52. Bryan LE, Kwan S. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative

53. Ammor MS, Flórez AB, van Hoek AH, de Los Reyes-Gavilán CG, Aarts JF, Margolles A, et al. Molecular
characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J Mol Microbiol Biotechnol. 2008; 14: 6–15. doi: 10.1159/000106077 PMID: 17957105

54. Rodríguez-Alonso P, Fernández-Otero C, Centeno JA, Garabal JI. Antibiotic resistance in lactic acid
bacteria and Micrococcaeae. Staphylococcastaceae. BMC Microbiol. 2012; 12: 75. doi: 10.1186/1471-2180-12-75 PMID: 22594449

55. Bryan LE, Kwan S. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative
bacteria grown anaerobically. J Antimicrob Chemother. 1981; 8: SD1–SD8. doi: 10.1093/jac/8.suppl_.

56. Bryan LE, Kwan S. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative
bacteria grown anaerobically. J Antimicrob Chemother. 1981; 8: SD1–SD8. doi: 10.1093/jac/8.suppl_.

57. Bryan LE, Kwan S. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative
bacteria grown anaerobically. J Antimicrob Chemother. 1981; 8: SD1–SD8. doi: 10.1093/jac/8.suppl_.

58. Bryan LE, Kwan S. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative
bacteria grown anaerobically. J Antimicrob Chemother. 1981; 8: SD1–SD8. doi: 10.1093/jac/8.suppl_.

59. Toomey N, Bolton D, Fanning S. Characterisation and transferability of antibiotic resistance genes from

60. Lee SH, Park MS, Jung JY, Jeon CO. Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. Int J System Evol Microbiol. 2012; 62: 1098–1103. doi: 10.1099/ijs.0.032367–0 PMID: 21705411

61. Lee SH, Park MS, Jung JY, Jeon CO. Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. Int J System Evol Microbiol. 2012; 62: 1098–1103. doi: 10.1099/ijs.0.032367–0 PMID: 21705411

62. Gu CT, Wang F, Li CY, Liu F, Hou GC. Leuconostoc mesenteroides subsp. suionicum subsp. nov. Int J Syst Evol Microbiol. 2012; 62: 1548–1551. doi: 10.1099/ijs.0.031203–0 PMID: 21856976

63. Rahkila R, De Bruyne K, Johansson P, Vandamme P, Björkroth J. Reclassification of Leuconostoc gascomitatum as Leuconostoc gelidum subsp. gascomitatum comb. nov., description of Leuconos-
toc gelidum subsp. aenigmaticum subsp. nov., designation of Leuconostoc gelidum subsp. gelidum
subsp. nov. and emended description of Leuconostoc gelidum. Int J System Evol Microbiol. 2014; 64: 1290–1295. doi: 10.1099/ijs.0.058263–0 PMID: 24431060
64. Lyhs U, Sna, U, Pihlajavilla S, Vuyst L, Vandamme P. Leuconostoc rapi sp. nov., isolated from sous-vide cooked rutabaga. Int J Syst Evol Microbiol. 2015; 65: 2586–2590. doi: 10.1099/ijse.0.000305 PMID: 25951860

65. Roberts MC. Update on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett. 2008; 282: 147–159. doi: 10.1111/j.1574-6968.2008.01145.x PMID: 18399991

66. Thumu SC, Halami PM. Acquired resistance to macrolide–lincosamide–streptogramin antibiotics in lactic acid bacteria of food origin. Indian J Microbiol. 2012; 52: 530–537. doi: 10.1007/s12088-012-0296-5 PMID: 24293706

67. Thaker M, Spanogiannopoulos P, Wright GD. The tetracycline resistome. Cell Mol Life Sci. 2010; 67: 419–431. doi: 10.1007/s00018-009-0172-6 PMID: 19862477

68. Hummel AS, Hertel C, Holzapfel WH, Franz CM. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol. 2007; 73: 730–739. PMID: 17122388

69. Makarova K, Slesarev A, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 2006; 103: 15611–15616. PMID: 17030793

70. Jung JY, Lee SH, Jeon CO. Complete genome sequence of Leuconostoc carnosum strain JB16, isolated from Kimchi. J Bacteriol. 2012; 194: 6672–6673. doi: 10.1128/JB.01805-12 PMID: 23144413

71. Oh HM, Cho YJ, Kim BK, Roe JH, Kang SO, Nahm BH, et al. Complete genome sequence analysis of Leuconostoc kimchii IMSNU 11154. J Bacteriol. 2010; 192: 3844–3845. doi: 10.1128/JB.00508-10 PMID: 20494991

72. Laverde Gomez JA, van Schaik W, Freitas AR, Coque TM, Weaver KE, Francia MV, et al. A multiresistance megaplasmid pLG1 bearing a hygErmic island in hospital Enterococcus faecium isolates. Int J Med Microbiol. 2011; 310: 165–175. doi: 10.1016/j.ijmm.2010.08.015 PMID: 20951641

73. Nesmelova IV, Hackett PB. DDE transposases: Structural similarity and diversity. Adv Drug Deliv Rev. 2008; 60: 1187–1195. doi: 10.1016/j.addr.2010.06.006 PMID: 20615441

74. Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in Enterococcus faecalis among mother. 2008; 61: 453–463. PMID: 18063151

75. Qin S, Wang Y, Zhang Q, Chen X, Shen Z, Deng F, et al. Identification of a novel genomic island conferring resistance to multiple aminoglycoside antibiotics in Campylobacter coli. Antimicrob Agents Chemother. 2012; 56: 5332–5339. doi: 10.1128/AAC.00809-12 PMID: 22869568

76. Kim JF, Jeong H, Lee JS, Choi SH, Ha M, Hur CG, et al. Complete genome sequence of Leuconostoc citreum KM20. J Bacteriol. 2008; 190: 3093–3094. doi: 10.1128/JB.01862-07 PMID: 18281406

77. Liu LC, Tsai JC, Hsieh CR, Tseng SP, Hung WC, Shen JH, et al. Identification of tet(S) gene area in tetracycline-resistant Streptococcus dysgalactiae subsp. equisimilis clinical isolates. J Antimicrob Chemother. 2008; 61: 428–435. doi: 10.1093/jac/dkm500 PMID: 18156606

78. Coconcelli PS, Cattivelli D, Gazzola S. Gene transfer of vancomycin and tetracycline resistances among Enterococcus faecalis during cheese and sausage fermentations. Int J Food Microbiol. 2003; 88: 315–323. PMID: 14597004

79. Lampkowska J, Feld L, Monaghan A, Toomey N, Schriemer S, Jacobsen B, et al. A standardized conjugation protocol to assess antibiotic resistance transfer between lactococcal species. Int J Food Microbiol. 2008; 127: 172–175. doi: 10.1016/j.ijfoodmicro.2008.06.017 PMID: 18675485

80. Ouoba Li, Lei Y, Jensen LB. Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol. 2008; 121: 217–224. PMID: 18063151

81. Toomey N, Monaghan A, Fanning S, Bolton DJ. Assessment of horizontal gene transfer in Lactic acid bacteria—a comparison of mating techniques with a view to optimising conjugation conditions. J Microbiol Methods. 2009; 77: 23–28. doi: 10.1016/j.mimet.2008.12.002 PMID: 19135099

82. Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, et al. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol. 2011; 62: 1081–1089. doi: 10.1007/s00284-010-9856-2 PMID: 21212956

83. Gazzola S, Fontana C, Bassi D, Coconcelli PS. Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and independent methods. Food Microbiol. 2012; 30: 348–354. doi: 10.1016/j.fm.2011.12.005 PMID: 22365347

84. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010; 74: 417–433. doi: 10.1128/MMBR.00016-10 PMID: 20805405