Dry-Fog-Dekontamination von mikrobiologischen Sicherheitswerkbänken nach Tätigkeiten mit SARS-CoV-2: Zyklusentwicklung und Prozessvalidierung für die Trockenvernebelung von Peroxyessigsäure

Zusammenfassung

Hintergrund: Zu technischen Schutzmaßnahmen bei Labortätigkeiten mit Biostoffen gehören auch mikrobiologische Sicherheitswerkbänke (MSW), die durch Biostoffe kontaminiert sein können. Dies kann bei diagnostischer Tätigkeit mit SARS-CoV-2 auch solche MSW betreffen, die in der Schutzstufe 2 betrieben werden. Für die technische Freigabe kann eine Dekontamination aller mikrobiologisch belasteten Oberflächen der MSW erforderlich sein. Neben der Begasung mit Wasserstoffperoxid (H₂O₂) stellt die Trockenvernebelung von H₂O₂-stabilisierter Peroxyessigsäure (PES) eine weitere Alternative zur Begasung mit Formalin dar. Um die Wirksamkeit zu belegen, müssen allerdings diese Alternativen an den jeweiligen MSW-Modellen validiert werden.

Methode: Die Validierungsstudie wurde an 4 verschiedenen MSW Klasse II unter Verwendung des „Mini Dry Fog“-Systems durchgeführt.

Ergebnisse: Für die Inaktivierung von SARS-CoV-2 reichte eine Aerosolkonzentration von 0,03% PES und 0,15% H₂O₂ über 30 min Einwirkzeit aus. Zur Dekontamination der mit Sporen von Geobacillus stearothermophilus selber beschickten und an 9 unterschiedlichen Positionen in der MSW ausgebrachten Keimträger waren Wirkkonzentrationen von 1,0% PES und 5% H₂O₂ erforderlich. Kommerziell erhältliche Sporenkeimträger waren um den Faktor 4 empfindlicher, was in allen Positionen einer Reduktion um 10⁶ entsprach.

Schlussfolgerung: Trockenvernebelung von PES ist ein preisgünstiges, robustes und für behüllte Viren wie SARS-CoV-2 hoch wirksames Dekontaminationsverfahren für MSW. Die hohe Materialverträglichkeit, die nicht erforderliche Neutralisation, der niedrige pH, durch den im Vergleich zur H₂O₂-Begasung das Wirkungsspektrum erweitert wird, die deutlich kürzere Prozessdauer und geringere Investitionskosten sprechen für dieses Verfahren.

Schlüsselwörter: Desinfektion, Aerosolisierung, mikrobiologische Sicherheitswerkbank, Biostoff, Arbeitsschutz

Einleitung

Mikrobiologische Sicherheitswerkbänke

Mikrobiologische Sicherheitswerkbänke (MSW) gehören zu den technischen Schutzseinrichtungen in mikrobiologischen Laboratorien, die Nutzerinnen und Nutzer, die Arbeitsumgebung und Umwelt sowie möglicherweise auch die zu behandelnden Produkte vor den schädigenden Wirkungen von Biostoffen bewahren [1]. Basierend auf der DIN EN 12469 (2000) dienen MSW der Klasse II, die typischerweise auch in der mikrobiologischen Diagnostik eingesetzt werden, dem Personen-, Produkt- und Verschleppungsschutz [2]. Bei Tätigkeiten mit Biostoffen ist eine Kontamination des Innenraumes einer MSW nicht auszuschließen. Dies kann sowohl den eigentlichen Arbeitsraum betreffen, aber auch die durch Biostoffe beaufschlagten HEPA-Filter sowie bei nicht bestimmungsgemäßen Betriebszuständen, z.B. Leckage oder nicht gegebenem Dichtsitz der Filter, die zur Erzeugung der Luftströmungen benötigten luftführenden Bauteile, wie Ventilatoren und Strömungskanäle [3]. Für die sachgerechte Nutzung und Gewährleistung der vom Hersteller garantierten Schutzfunktionen sind MSW nicht nur vor der ersten Inbetriebnahme, sondern auch nach jeder wesentlichen, sicherheitsrelevanten Änderung oder Instandhaltungsmaßnahme, wie Umstellen oder Filteraustausch sowie, und das trifft für alle MSW zu, in regelmäßigen, meist jährlichen, Zeitabständen zu prüfen. Hierfür ist es
erforderlich, dass der Betreiber eine Freigabe aufgrund eines validierten Dekontaminationsverfahrens erteilt [1].

Desinfektion und Dekontamination

Vor jeglichen Arbeiten an einer MSW, wie Wartung, Reparatur, Instandhaltung oder der wiedereinnehmenden Prüfung, aber auch bei der Entsorgung von Bauteilen oder der gesamten MSW ist ab der Schutz- und Sicherheitsstufe 3 grundsätzlich eine Dekontamination mit einem dafür geeigneten, von der zuständigen Behörde zugelassenen Biocidprodukt und wirksamen Verfahren durchzuführen [1], [3]. Für den Betreiber und Nutzer ergibt sich dabei bereits im Erlaubnisverfahren gem. § 15 (3) Biostoffverordnung die Frage, ob, wann und wie eine solche Dekontamination erforderlich wird. Insbesondere die nicht gezielten diagnostischen Labortätigkeiten mit SARS-CoV-2, die im Zusammenhang mit dem noch immer andauernden Pandemiegeschehen durchgeführt werden [4], machen es möglicherweise aber auch bereits in der Schutzstufe 2 erforderlich, Dekontaminationsverfahren vor solchen Prüfungen durchzuführen. Deren Wirksamkeit ist sowohl nachzuweisen, als auch vor der Freigabe an das Servicepersonal schriftlich zu dokumentieren [1]. Letztlich ist anhand der Gefährdungsbeurteilung zu ermitteln, ob eine Desinfektion aller mit Biostoffen beaufschlagten Oberflächen innerhalb der MSW notwendig ist und wie ggfs. ein Filterwechsel zu erfolgen hat [3]. Basierend auf den For- derungen der TRBA 100 können derzeit folgende zugelasse- nene Verfahren beim Filterwechsel einer MSW eingesetzt werden: a) Innenraum und HEPA-Filter der MSW werden in situ mit Formaldehyd begast, um die biologische Belas- tung zu reduzieren (Raumdesinfektionsverfahren entsprechend TRGS 522), oder b) Innenraum und HEPA-Filter werden in situ mit einem validierten Begasungsverfahren unter Verwendung von Wasserstoffperoxid dekontaminiert [5]. Nach Formaldehydbegasung müssen die HEPA-Hauptfilter (H14) vor der endgültigen Entsorgung mittels feuchter Hitze inaktiviert werden. Im Unterschied dazu dürfen nach Behandlung mit verdampfтом H₂O₂ die dekontaminierten HEPA-Filter als nicht infektiöser Abfall entsorgt werden [5]. Für die H₂O₂-Begasung der MSW sind exakt vorgegebene Verfahrensparameter, Gasgeneratoren und MSW-Kriterien (Größe, HEPA-Filtermaterial) in der „Liste der vom Robert Koch-Institut geprüften und anerkannten Desinfektionsmittel und -verfahren gemäß § 18 Infektionsschutzgesetz“ aufgeführt, die als Leitlinie auch für den Laborbetrieb herangezogen werden können [6]. Davon abweichende Vorgehensweisen bedürfen stets einer Zyklusentwicklung und Prozessvalidierung des Inak- tivierungsverfahrens [3].

Durch Formaldehydbegasung können zwar nach entsprechender Validierung Anforderungen der Desinfektion er- reicht werden, allerdings darf die Raumdesinfektion durch Formaldehydverdampfung nur von Personen durchgeführt werden, die einen Befähigungsschein und eine Erlaubnis der zuständigen Behörde besitzen (gem. Gefahrstoffver- ordnung und TRGS 522). Formaldehyd hat neben der Notwendigkeit seiner Neutralisierung nach Prozessende weitere noch erheblich negativere Eigenschaften, was seinen Einsatz für diese Desinfektionszwecke in Zukunft immer weiter limitieren wird [1]. Bei der Wahl der Verfahren und Mittel muss der Schutz der Personen und der Umwelt berücksichtigt sowie das jeweils schonendste, gleichwohl wirksamste und verfügbare Biocidprodukt eingesetzt werden. Dabei wird die Bereitstellung und Verwendung von Desinfektionsmitteln als Biocidprodukte grundsätzlich durch die Verordnung (EU) Nr. 528/2012 (Biocid-Verordnung) geregelt.

Neben und in zunehmendem Maße auch als Ersatz von Formaldehydbegasungen und als Alternative zur H₂O₂-Begasung wird das sogenannte „Dry Fog“-Verfahren zur Dekontamination von Räumen einschließlich MSW eingesetzt [7], [8], [9]. Diese Methode beruht auf der Aerosolisierung von Desinfektionsmitteln durch Anwen- dung von Druckluft. Die durch den Venturi-Effekt generier- te ultrafeine Tröpfchengröße von durchschnittlich 7,5 µm führt dazu, dass sich ein „trockener Nebel“ als Aerosol sehr lange in der Schwebephase hält und nur minimal kondensiert. Aufgrund ihrer ausgezeichneten breiten mikrobiziden Eigenschaften, die auch bei niedrigen Temperaturen und äußerst geringen Konzentrationen gegeben sind, eignet sich besonders die Peroxyessigsäure (PES, Peressigsäure, C₃H₄O₄) für dieses Verfahren [1]. Durch Trockenvernebelung werden die korrosiven Effekte der PES weitgehend vermieden. Sowohl in der Reinraumtechnologie, bei der Desinfektion von Operationssälen sowie in hochkomplexen technischen Einrichtungen und Hoch- sicherheitslaboratorien lassen sich in Abhängigkeit der eingesetzten Geräte grundsätzlich Raumvolumina zwischen 1 m³ und 1.000 m³ desinfizieren (Literatur bei [10]). Abhängig von der relativen Luftfeuchtigkeit (rH) und der Temperatur (T) kann unter optimalen Bedingungen mit einer solchen Vernebelung eine Keimreduktion um sechs Zehnerpotenzen (10⁶) für unterschiedliche Viren und Bakterien einschließlich ihrer Sporen und damit eine wirksame Dekontamination erzielt werden [7], [9]. We- sentlicher Vorteil dieser robusten, maßgeblich auf den oxidativen Eigenschaften der durch Wasserstoffperoxid chemisch stabilisierter Peroxyessigsäure basierenden Methode, ist die Kürze der Einwirkzeit, die hohe Material- verträglichkeit bei niedrigen Wirrkonzentrationen gegenüber einem breiten Spektrum an Biostoffen sowie das relativ preiswerte und einfach handhabbare mechanisch- physikalische Equipment zur Durchführung. Validierungsdaten für die Dekontamination von MSW mittels H₂O₂-Begasung in Anlehnung an die Inaktivierung von Abluftfiltern raumluftechnischer Anlagen sind inzwischen gut bekannt [11], [12]. Auch existieren relativ umfangreiche Erkenntnisse für die Dry-Fog-Dekontamina- tion von Laborräumen mit PES, allerdings gibt es nur limi- tierte Erfahrungen für MSW [13].

Aus diesem Grund beschreiben wir im Folgenden die Zy- klusentwicklung und Prozessvalidierung für unterschied- liche MSW am Fallbeispiel SARS-CoV-2 und einem hierfür zum Zwecke der Validierung als Surrogat geeigneten Prüforganismus.
Material und Methoden

Für die Validierungsstudie und Prozessentwicklung standen vier verschiedene MSW Klasse II zur Verfügung: Berner FlowSafe B-[MaxPro]-130, Holten LaminAir Safe 2010 Model 1.5, Tecniplast BS48 und Thermo Electron HERAsafe KS18.

Das für die Dekontamination eingesetzte Trockenvernebelungssystem „Mini Dry Fog“ und zusätzlich benötigtes Equipment ist in Abbildung 1 zusammengefasst. Der Vernebler wurde stets auf der rechten Seite innerhalb des Arbeitsraumes der MSW platziert, seine Düse wurde in einem Winkel von etwa 20° ansteigend zur gegenüberliegenden Seite hin ausgerichtet.

Durch Verdünnung des gelisteten Biozidproduktes [14] „Lerasept Spezial“ (einem Gleichgewichtsgemisch aus Peroxyessigsäure, Essigsäure und Wasserstoffperoxid) in vollentsalztem Wasser wurde eine Arbeits- und Wirkstoffkonzentration von 1,3% PES und 6,8% H₂O₂ hergestellt.

Mittels eines außerhalb der MSW befindlichen ölfreien Luftkompressoren wurden zur Aerosolisierung des Biozidproduktes mind. 0,3 MPa Überdruck bei mind. 70 l/min Luftförderleistung erzeugt. Der Druckluftschlauch wurde vorteilhafterweise durch eine Öffnung in der Seitenwand der MSW geführt, anderenfalls durch die Arbeitsöffnung. In Vorversuchen wurden Inaktivierungskinetiken für SARS-CoV-2 ermittelt [9]. Als Surrogat hierfür wurden aufgrund der festgestellten hohen Tenazität und praktikablen Auswertbarkeit durch selektive Anzüchtung bei 60°C Sporen von Geobacillus stearothermophilus gegenüber Bacillus subtilis bevorzugt ausgewählt [9]. Sowohl kommerziell erhältliche als auch selbst beschichtete Keimträger wurden hierbei verglichen. Dabei zeigte sich, dass für eine erfolgreiche Desinfektion (≥10⁻⁵-fache Reduktion) von SARS-CoV-2 schon eine PES-Konzentration von 0,0313% ausreichend ist. Um eine vergleichbare Desinfektionswirkung der eingesetzten kommerziell erhältlichen Keimträger zu erzielen, war dagegen eine etwa achtfach höhere PES-Konzentration von 0,25% erforderlich. Erstaunlicherweise zeigten diese kommerziellen Keimträger aber eine signifikant höhere Empfindlichkeit gegenüber dem ausgebrachten PES-Aerosol im Vergleich zu den selbst mit Sporen von G. stearothermophilus beschichteten Keimträgern, für die eine wiederum vierfach höhere PES-Konzentration von 1,0% notwendig war [9].

Aus diesem Grund wurden als Surrogat für SARS-CoV-2 für die hier beschriebenen Validierungen, unter Berücksichtigung einer Sicherheitsmarge, die selbstbeschichteten Keimträger mit G. stearothermophilus ausgewählt, welche somit auch gleichzeitig als geeignetes Surrogat ein größeres Erregerspektrum abdecken können. Dazu wurden heißluftsterilisierte 16×60 mm Edelstahlkeimträger entsprechend EN 10088-2 mit 10³/50 µl Sporen von G. stearothermophilus in PBS als definierter Ausstrich (10 µl/cm²) beschichtet und getrocknet. Zusätzlich zu den exponierten Keimträgern wurde ein weiterer Keimträger als Antrocknungskontrolle nicht dem Desinfektionsmittel aerosol ausgesetzt.

Nach Abschluss eines Vernebelungszyklus wurden die behandelten Sporen mit flüssigem Nährmedium von den Keimträgern abgespült, in serieller dekadischer Verdünnungsreihe über 7 Tage bei 60°C bebrütet, und so die verbliebene Menge an vermehrungsfähigen Sporen bestimmt. Im Vergleich mit der nicht behandelten Antrocknungskontrolle wurde die bewirkte Reduktion der Keimzahl berechnet.

Für die drei voneinander unabhängigen Durchgänge der Validierung wurden immer 9 Keimträger und 3 Mess- und Aufzeichnungsgeräte für Temperatur und Luftfeuchtigkeit (Datenlogger) in den jeweiligen MSW angebracht. Diese Messgeräte mit Datenlogger wurden zur drahtlosen Überwachung während der Dekontamination eingesetzt. Um die Keimträger und Datenlogger anbringen zu können, mussten das Abluftplenum der MSW geöffnet und auch die HEPA-Filter kurzzeitig aus ihren Fassungen gelöst werden. Für die Validierungsläufe wurden die Filter wieder befestigt und das Plenum jeweils wieder verschlossen. Im Anschluss an die Validierung wurde jeweils eine Funktionsprüfung der MSW einschließlich einerAbsche-dreg- und Dichtsitzprüfung der HEPA-Filter durchgeführt. Die Positionierung des „Mini Dry Fog“ Geräts, der Keimträger und Datenlogger sind aus der schematischen Abbildung 2 ersichtlich. Die Position „KT9“ aubelfutzelt auf dem Abluftfilter wird als für alle Betriebsbedingungen kritische Stelle angesehen, weil sie erfahrungsgemäß am schwersten für Desinfektionsmittel zu erreichen ist [3].

Folgender Prozesszyklus wurde durchlaufen:

1. **Konditionierungsphase I**: Aerosolisierung von ca. 20 ml/min PES im „Standby“ oder „Nachtbetriebsmodus“; dreiseitig verklebte Haube um rechteckige Auslassöffnung (KT9); in unterster Stellung befindliches Fenster (bauartbedingt konnte die MSW nicht immer bei vollständig geschlossener Scheibe betrieben werden), für 20 min; Anstieg der relativen Luftfeuchte (rH) im Arbeitsraum auf 99,9% (Sättigung).

2. **Konditionierungsphase II**: Ausschalten der MSW sowie vollständige Verklebung der Auslassöffnungen und ggfs. Abdichtung der Frontscheibe mit Industrieklebeband; nach weiteren 2 min Vernebelung Abschalten des Kompressors.

3. **Dekontaminationsphase**: Einwirkung der PES im geschlossenen MSW-Innenraum für 30 min.

4. **Belüftungsphase**: nach dem Öffnen der Auslässe für 60 min bei Vollast-Betriebsstrom und Standard-Fensterarbeitsposition zur Entfernung des ausgebrachten Biozidproduktes. Im Anschluss wurden Keimträger und Funkensensoren zur Auswertung entfernt.

Die wesentlichen Kriterien des Prozesszyklus gehen aus Tabelle 1 hervor.

Tabelle 1

Prozesszyklus	Beschreibung
Konditionierungsphase I	Aerosolisierung von ca. 20 ml/min PES im „Standby“ oder „Nachtbetriebsmodus“; dreiseitig verklebte Haube um rechteckige Auslassöffnung (KT9); in unterster Stellung befindliches Fenster (bauartbedingt konnte die MSW nicht immer bei vollständig geschlossener Scheibe betrieben werden), für 20 min; Anstieg der relativen Luftfeuchte (rH) im Arbeitsraum auf 99,9% (Sättigung).
Konditionierungsphase II	Ausschalten der MSW sowie vollständige Verklebung der Auslassöffnungen und ggfs. Abdichtung der Frontscheibe mit Industrieklebeband; nach weiteren 2 min Vernebelung Abschalten des Kompressors.
Dekontaminationsphase	Einwirkung der PES im geschlossenen MSW-Innenraum für 30 min.
Belüftungsphase	nach dem Öffnen der Auslässe für 60 min bei Vollast-Betriebsstrom und Standard-Fensterarbeitsposition zur Entfernung des ausgebrachten Biozidproduktes. Im Anschluss wurden Keimträger und Funkensensoren zur Auswertung entfernt.

MGS Hygiene and Infection Control 2021, Vol. 16, ISSN 2196-5226
Abbildung 1: Benötigtes Equipment für die PES-Trockenvernebelung einer MSW

(1) Kompressor (Modell C330/03; Gentilin, Trissino, Italien)
(2) Druckluftschauch für die Verbindung zwischen Kompressor und Vernebler
(3) Edelstahlkeimträger (WNr. 1 4301, Qualität 2B; GK Formblech GmbH, Deutschland) beschichtet mit Geobacillus stearothermophilus
(4) Funksteckdose (Modell Primera-Line; Brennenstuhl, Tübingen, Deutschland)
(5) Verlängerungsstromkabel (Modell S2K/A; Elspro, Hilden, Deutschland)
(6) Vernebler (Mini Dry Fog; Mar Cor, Heerlen, Niederlande)
(7) Temperatur- und Feuchtemesssystem (Modell 635-2 mit Funkhandgriffen und Feuchtemodul Compact Professional; Testo, Lenzkirch, Deutschland)
(8) Desinfektionsmittel (Lerasept spezial; Stockmeier Chemie, Ellenburg, Deutschland)

Abbildung 2: Position des „Mini Dry Fog“ Geräts (DF, orange; Pfeil zeigt Sprührichtung der Düse), der Datenlogger (DL 1-3, grün) und Keimträger (KT, blau) in der MSW. KT-Lokalisationen sind: KT-1: unteres Abluftplenum; KT 2: in geschlossener Petrischale in Arbeitsraum; KT 3: Arbeitsraum, linke Seite; KT 4: Arbeitsraum, rechte Seite; KT 5: Anströmseite Umluftfilter; KT 6: Abluftplenum, im Luftstrom; KT 7: Anströmseite Abluftfilter; KT 8: Abluftplenum, „toter Winkel“; KT 9: Abluftseite Abluftfilter.
Ergebnisse

Aus Vorversuchen mit SARS-CoV-2 beschichteten und im Arbeitsraum der MSW ausgebrachten Keimträgern wurde ermittelt, dass für die Inaktivierung eine aerosolierte Konzentration von 0,03% PES und 0,15% H₂O₂ und eine Einwirkzeit von 30 min zur Reduktion der Infektiosität um 4 Zehnerpotenzen hinreichend ist [9]. Zur Dekontamination der als Surrogat „mit Sicherheitsaufschlag“ mit G. stearothermophilus beschickten Keimträger waren allerdings ungefähr achtfach höhere Wirkkonzentrationen von etwa 0,25% PES und 1,25% H₂O₂ für kommerziell erhältliche bzw. von 1,0% PES und 5,0% H₂O₂ für selbst hergestellte Keimträger erforderlich. Grundsätzlich wurde als Akzeptanzschwelle für die Validierung eine Reduktion der Keimzahl auf den selbst beschickten Keimträgern um mindestens den Faktor 10⁴ (d.h. um 99,99%) festgelegt. Dies entspricht aufgrund der Vortestungen mindes tens einer 6 log₁₀-Reduktion kommerziell erhältlicher Keimträger. Die im Einzelnen und für die unterschiedlichen MSW-Typen und Lokalisationen gemessenen Werte für rH und T sowie die erzielten Inaktivierungswerte sind in Abbildung 3 und Tabelle 2 zusammengestellt. Bei allen vier MSW-Typen wurden nach den Validierungsdurchgängen die Filter- und Dichtsitzprüfungen ohne Mängel bestanden.

Diskussion

Dekontaminationsverfahren sollen Oberflächen und Objekte sicher handhabbar machen. Mikrobiologisch geht es also um die Zurückführung von Biostoffen auf die gesundheitlich unbedenkliche Grundbelastung [1]. Je nach Ausgangskontamination einer MSW kann der hierfür zu betreibende Aufwand unterschiedlich groß sein. Während in vielen Fällen die einfache Wischdesinfektion für die Dekontamination von Arbeitsgeräten in der MSW oder des Arbeitsraumes selbst ausreichend ist, kommen bei Räumen und den luftleitenden Systemen sowie Filtereinrichtungen hauptsächlich Begasungsverfahren zum Einsatz [3]. Bereits heute löst die Wasserstoffperoxid-Begasung die bislang übliche Raumdesinfektion durch Formaldehyd ab [1]. Die hohe Praktikabilität der Methode, das insgesamt preisgünstigere Verfahren, der deutlich geringere Zeitauf wand und seine robuster und wirksame Durchführbarkeit machen Trockenvernebelung von PES mittels „Dry Fog“ zu einem ausgesprochen materialverträglichen Dekontamina tionsverfahren [10]. Im Unterschied zur Begasung mit verdampftem Formaldehyd bedarf es keiner Neutralisierung. Die bessere Effizienz als H₂O₂ alleine begründet sich für bestimmte hoch tenazie Biostoffe, beispielsweise MKS-Viren, auch auf dem mitwirkenden sauren pH des Aerosols. Gleichwohl muss vor der Anwendung dieser Methode eine sachgerechte Zyklusentwicklung und Pro zessvalidierung durchgeführt werden. Zu den kritischen, im Prozess zu überwachenden Parametern gehören die relative Luftfeuchte, die Lufttemperatur, die vernebelte Menge des Biozidproduktes in dem entsprechenden Raumvolumen sowie die wirkenden Luftströmungen [3]. Die biologische Wirksamkeit ergibt sich als Funktion von Einwirkzeit und Konzentration des Wirkstoffs. Zu den weiteren kritischen Kontrollwerten zählt die gleichförmige Verteilung des Aerosols. Dies kann entsprechend durch Ausschalten und hermetischen Abschluss des MSW-In nenraumes inkl. HEPA-Filter erfolgen und muss durch Bestimmung der rH- und T-Kinetik an unterschiedlichen Lokalisationen in der MSW im Rahmen der Validierung in Echtzeit erfasst werden. Für den hermetischen Abschluss der MSW während der Dekontaminationsphase und um die PES-haltige Abluft bereits in der Konditionierungsphase I gedämpft abströmen zu lassen und so die Einwirkzeit auf KT9 sicherzustellen, wurde die rechteckige Ausschachtung oder Beschneidung der Arbeitskraft mit einem winddichtes Kunststoffhaube bedeckt. Diese wurde zunächst auf drei Seiten und anschließend allseitig verklebt.

Für den Wirksamkeitsnachweis der Inaktivierungsmetho de müssen geeignete Keimträger Verwendung finden. Geeignet als Surrogat sind solche Biostoffe, deren physikalis-ch-biologische Eigenschaften (z.B. behüllte oder unbehüllte Viren, vegetative oder Dauerformen von Bakterien) am ehesten mit denen übereinstimmen, deren Inak-
Tabelle 2: Inaktivierungsdaten für unterschiedliche MSW-Typen und KT-Lokalisationen; Berechnung der Keimzahlreduktion nach [19]

MSW-Typ:	Berner 130	Holten	Tecniplast	Thermo
Lokalisation:	MW	MW	MW	MW
KT1	6,2±0,0	6,4±0,4	7,1±0,4	6,0±0,9
KT2	6,2±0,0	5,7±0,6	7,1±0,4	6,9±0,0
KT3	6,2±0,0	6,4±0,4	7,1±0,4	6,9±0,0
KT4	6,2±0,0	6,4±0,4	7,1±0,4	6,5±0,4
KT5	5,8±0,4	6,4±0,4	7,1±0,4	6,9±0,0
KT6	6,2±0,0	6,4±0,4	7,1±0,4	5,6±1,4
KT7	5,5±0,7	5,7±0,6	7,1±0,4	6,2±0,8
KT8	5,3±0,9	6,4±0,4	7,1±0,4	6,5±0,4
KT9	5,5±0,7	6,4±0,4	6,2±0,8	6,9±2,8

Abbildung 3: Darstellung der Prozessphasen (I: Konditionierungsphase 1; II: Konditionierungsphase 2; III: Dekontaminationsphase; IV: Lüftungsphase) und der gemessenen relativen Feuchte (rH in%) und Temperatur (T in °C) an drei Positionen von Datenloggern (DL 1-3) am Beispiel der Vernebelung im Holten LaminAir Safe 2010 Modell 1.5.

tivierung nachzuweisen ist. Für die Wirksamkeitstestung von Begasungsverfahren, insbesondere solchen unter Verwendung von Wasserstoffperoxid wird als Prüforganismus G. stearothermophilus herangezogen [6]. Im Unterschied zur nasschemischen Oberflächendesinfektion benötigen trockene Inaktivierungsverfahren vorteilhafterweise aufgrund der nur sehr geringen Restwirkstoffkonzentrationen auf den behandelten Oberflächen keine Zugabe von sogenannten Enthemmern bei der nachfolgenden mikrobiologischen Analyse der Keimträger. Auch ist es im Unterschied zu nasschemischen Desinfektionsverfahren nicht möglich und erforderlich, diese potenziell vorhandenen Restmengen von den Oberflächen zu entfernen.

Noch vor kurzem wurden als Standard 10⁶ Sporen G. stearothermophilus/Filterpapierträgermaterial empfohlen [3]. Insbesondere die vergleichbaren Resistenzeigenschaften des Trägerstoffes sollen eine einfache Übertragbarkeit auf das HEPA-Filtermaterial ermöglichen. Jedoch gibt es Gründe, die gegen eine solche Auswahl...
sprechen [15],[16]. Filterpapier ist nicht ideal, weil es sehr wahrscheinlich das Desinfektionsmittel absorbiert, aufkonzentriert und im Laufe der Zeit freisetzt, was zu falsch-negativen Ergebnissen führt, d. h. falschlich ausbleibendes Wachstum. Auch ist bekannt, dass Zellulose mit gasförmigem H₂O₂ chemisch reagiert, seinen Abbau katalysiert und damit die Raumkonzentration senkt [17], [18]. Absorptive Effekte sind bei Verwendung solcher nicht-porösen Trägermaterialien nicht bekannt, so dass evidenzbasiert nichts gegen ihre Verwendung spricht und in der aktuellen Literatur vorwiegend diese Materialien zum Einsatz kommen. Aus diesen Erwägungen und als einkalkulierter Sicherheitsaufschlag zur Absicherung der Robustheit der Dekontamination, haben wir für diese Validierungen Edelstahlkeimträger eingesetzt, die aus den oben genannten Gründen auch durchaus wesentlich schwieriger zu inaktivieren sind als Papiertträger oder andere poröse und absorbierende Filtermaterialien. Neben der Platzierung innerhalb des Arbeitsraumes und insbesondere an weiteren schwer zugänglichen und von der Luftströmung am schwierigsten zu erreichenen Lokalisationen der MSW sollten Keimträger vor der Behandlung mindestens abluftseitig auf dem Abluftfilter positioniert werden. Diese Position ist erfahrungsgemäß die kritische Stelle der MSW, weil sie am schwierigsten zu erreichen ist [3]. Das zeigte sich auch bei den hier durchgeführten Validierungen, wo es zu der geringsten Reduktion der G. stearothermophilus Sporen zwischen 10⁴,8 und 10⁶,4 gekommen ist. Unter Berücksichtigung des Sicherheitszuschlages für das Surrogat und den bereits validierten Daten für SARS-CoV-2 vs. G. stearothermophilus [9] kann aufgrund dieser Ergebnisse von einer vollständigen Inaktivierung von SARS-CoV-2 ausgegangen werden. Die im Arbeitsraum direkt unter dem Umluftfilter angebrachten Keimträger waren alle ebenfalls um die Größenordnung 10¹⁵ bis 10¹³ inaktiviert, was die hohe und reproduzierbare Wirksamkeit belegt.

Fazit

Zusammengefasst wird unter den vorgestellten Prozess- und Zyklusbedingungen unter optimalen Temperatur- und Luftfeuchtigkeitsparametern innerhalb einer MSW eine Keimreduktion um vier bis sechs Größenordnungen für Viren, vegetative Bakterien und Sporen, insbesondere von G. stearothermophilus erzielt.

Anmerkungen

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Danksagung

Die Autoren danken insbesondere Dr. Bärbel Niederwöhrmeier für ihre kritische Durchsicht und hilfreichen Diskussionsbeiträge.

Finanzierung

Diese Arbeit wurde neben der Grundfinanzierung durch das BMEL unterstützt durch das BMVg, Zuwendungsbescheid: E/E590/FZ005/FF005. Die Autoren versichern, dass sie Daten hierzu auf begründete Nachfrage hin bereitstellen.

Ethische Anerkennung

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Dual Use Research of Concern

Ein DURC-Potenzial der beschriebenen Methode wurde im Biorisk-Ausschuss des FLI am 05. Februar 2018 diskutiert. Es wurden keine sicherheitsrelevanten Bedenken geäußert.

Autorenbeitrag

JPT, SR: Konzeption oder Design der Arbeit
HF, AM, ME: Durchführung der Validierungsstudien
HS, JS, ME, AM, MS, HF: Datenerhebung, -analyse und -interpretation
JPT: Manuskriptentwurf
SR, HS, JS, ME, MS: kritische Revision des Artikels
JPT, HS, JS, ME, AM, MS, HF, SR: endgültige Zustimmung der für die Veröffentlichung vorgesehenen Version

Literatur

1. Berufsgenossenschaft Rohstoffe und chemische Industrie (BGRCI). Biologische Laboratorien – Ausstattung und organisatorische Maßnahmen. Merkblatt B 002. DGUV Information 213-086. Kapitel 5.4 Mikrobiologische Sicherheitswerkbänke (MSW). Heidelberg: BGRCI; 2019 [Accessed 2021 Jun 01]. Available from: https://downloadcenter.bgrci.de/resource/downloadcenter/downloads/B002_Gesamtdokument.pdf
2. DIN EN 12469:2000-09: Biotechnik – Leistungskriterien für mikrobiologische Sicherheitswerkbänke. Deutsche Fassung EN 12469. Berlin: Beuth; 2000. DOI: 10.31030/6934361
3. Ausschuss für Biologische Arbeitsstoffe (ABAS). Beschluss 7/ 2013 des ABAS vom 02.12.2013. Technische Stellungnahme zum Thema „Dekontamination von Mikrobiologischen Sicherheitswerkbänken (BSC) der Klasse I – III mit dem Begasungsmittel Wasserstoffperoxid (H₂O₂)“. Berlin: BauA; 2013 [Accessed 2021 Jul 22]. Available from: https://www.baua.de/DE/Aufgaben/Gesaechtsfuehrung-von-Ausschuessen/ABAS/pdf/Mikrobiologische-Sicherheitswerkbanken-3.pdf?__blob=publicationFile&v=2
4. Ausschuss für Biologische Arbeitsstoffe (ABAS). Beschluss 6/2020 des ABAS vom 08.02.2021. Empfehlung des Ausschusses für Biologische Arbeitsstoffe (ABAS) zu „Arbeitsschutzmaßnahmen bei Probenahme und Diagnostik von SARS-CoV-2“. Berlin: BfArM; 2021 [Accessed 2021 Jul 22]. Available from: https://www.baua.de/DE/Aufgaben/Geschaftsfuehrung-von-Ausschuessen/ABAS/pdf/SARS-CoV-2_6-2020.pdf?

5. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. TRBA 100: Schutzmaßnahmen für Tätigkeiten mit biologischen Arbeitsstoffen in Laboratorien. Berlin: BfArM; 2013 [Accessed 2021 Jul 22]. Available from: https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRBA/pdf/TRBA-100.pdf?

6. Robert Koch-Institut. Liste der vom Robert Koch-Institut geprüften und anerkannten Desinfektionsmittel und -verfahren. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. 2017; 60(11):1274–97. DOI: 10.1007/s00103-017-2634-6

7. Gregersen JP, Roth B. Inactivation of stable viruses in cell culture facilities by peracetic acid fogging. Biologicals. 2012 Jul; 40(4):282-7. DOI: 10.1016/j.biologicals.2012.02.004

8. Krishnan J, Fey G, Stansfield C, Landry L, Nguy H, Klassen S, Robertson C. Evaluation of a dry fogging system for laboratory decontamination. Appl Biosaf. 2012;17(3):132-41. DOI: 10.1177/153567601201700305

9. Schinköthe J, Scheinemann HA, Dieterich S, Freese H, Eschbaumer M, Teifke JP, Reiche S. Airborne Disinfection by Dry Fogging Efficiently Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers. Appl Environ Microbiol. 2021 Aug 25;87(3):e02019-20. DOI: 10.1128/AEM.02019-20

10. Reiche S, Schinköthe J, Dieterich S, Scheinemann H, Eschbaumer M, Freese H, Kluge K, Teifke JP. Trockenvernebelung von Peroxyessigsäure: Ein universelles viruzides, bakterizides und sporeozides Raumdesinfektionsverfahren? Wehrmed Monatschr. 2020;84(10-11):370-5.

11. Reichenbacher D, Thanheiser M, Krüger D. Aktueller Stand zur Raumdekontamination mit gasförmigem Wasserstoffperoxid. Hyg Med. 2010;35(6):204-8.

12. Reichenbacher D, Thanheiser M, Weber UJ, Krüger D. Inaktivierung von Abluftfiltern in gentechnischen Hochsicherheitslaboren: Verfahrensvollständigung der Wasserstoffperoxid-Begasung. Hyg Med. 2013;38(4):147-51.

13. Fey G, Robertson K, Krishnan J. Decontamination validation of a Class II type A2 biosafety cabinet during laboratory fogging. Appl Biosaf. 2020;25(1):48-52. DOI: 10.1177/1535676019890975

14. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Liste der Bioprodukte, die in Deutschland aufgrund eines laufenden Entscheidungsverfahrens auf dem Markt bereitgestellt und verwendet werden dürfen. Berlin: BfArM; 2021 Aug 11 [Accessed 2021 Jun 01]. Available from: https://www.baua.de/DE/Themen/Anwendungssichere-Chemikalien-und-Produkte/Chemikalienrecht/Biozide/pdf/Biozidprodukte-im-Entscheidungsverfahren.pdf?

15. Gordon D, Madden B, Krishnan J, Klassen S, Dalmasso J, Theriault S. Implications of paper vs stainless steel biological indicator substrates for formaldehyde gas decontamination. J Appl Microbiol. 2011;110(2):455-62. DOI: 10.1111/j.1365-2672.2010.04899.x

16. Kümín D, Gsell Albert M, Weber B, Summermatter K. The Hitchhiker's Guide to Hydrogen Peroxide Fumigation, Part 2: Verifying and Validating Hydrogen Peroxide Fumigation Cycles. Appl Biosaf. 2021 Mar 19;26(1):42-51. DOI: 10.1089/apb.21.921099

17. Czarneski MA, Lorchem K. A Discussion of Biological Safety Cabinet Decontamination Methods: Formaldehyde, Chlorine Dioxide, and Vapor Phase Hydrogen Peroxide. Appl Biosaf. 2011 Mar 1;16(1):26-33. DOI: 10.1177/153567601101600104

18. Macellaro A, Karlsson L, Emmoth E, Dergel E, Metrevi G, Allard Bengtsson U, Byström M, Huitén C, Johansson AL. Evaluation of Biological Indicator Spores as Tools for Assessment of Fumigation Decontamination Effectiveness. Appl Biosaf. 2015 Dec 1;20(4):183-91. DOI: 10.1177/153567601502000404

19. Oblinger J, Koburger J. Understanding and teaching the most probable number technique. J Milk Food Technol.1975;38:540-5. DOI: 10.4315/0022-2747-38.9.540

Korrespondenzadresse:
Prof. Dr. Jens Peter Teifke
Abteilung für experimentelle Tierhaltung und Biosicherheit, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Süduder 10, 17493 Greifswald-Insel Riems, Tel: +49 3835 17 1230
jens.teifke@fli.de

Bitte zitieren als
Teifke JP, Scheinemann H, Schinköthe J, Eschbaumer M, Melüh A, Streitz M, Freese H, Reiche S. Dry-Fog-Dekontamination von mikrobiologischen Sicherheitswerkbänken nach Tätigkeiten mit SARS-CoV-2: Zyklusentwicklung und Prozessvalidierung für die Trockenvernebelung von Peroxyessigsäure. GMS Hyg Infect Control. 2021;16:Doc26. DOI: 10.3205/dgkh000397, URN: urn:nbn:de:0183-dgkh0003970

Artikel online frei zugänglich unter
https://www.egms.de/en/journals/dgkh/2021-16/dgkh000397.shtml

Veröffentlicht: 31.08.2021

Copyright
©2021 Teifke et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.
Dry-fog decontamination of microbiological safety cabinets after activities with SARS-CoV-2: cycle development and process validation for dry fogging with peroxycacetic acid

Abstract

Background: Technical protection measures for laboratory activities involving biological agents include biological safety cabinets (BSC) that may be contaminated. In the case of diagnostic activities with SARS-CoV-2, this may also affect BSC that are operated at protection level 2; therefore, decontamination of all contaminated surfaces of the BSC may be required. In addition to fumigation with hydrogen peroxide (H$_2$O$_2$), dry fogging of H$_2$O$_2$-stabilized peroxycacetic acid (PAA) represents another alternative to fumigation with formalin. However, to prove their efficacy, these alternatives need to be validated for each model of BSC.

Methods: The validation study was performed on 4 different BSCs of Class II A2 using the “Mini Dry Fog” system.

Results: An aerosol concentration of 0.03% PAA and 0.15% H$_2$O$_2$ during a 30 min exposure was sufficient to inactivate SARS-CoV-2. Effective concentrations of 1.0% PAA and 5% H$_2$O$_2$ were required to decontaminate the custom-prepared biological indicators loaded with spores of G. stearothermophilus and deployed at 9 different positions in the BSC. Commercial spore carriers were easier to inactivate by a factor of 4, which corresponded to a reduction of 106 in all localizations.

Conclusions: Dry fogging with PAA is an inexpensive, robust, and highly effective decontamination method for BSCs for enveloped viruses such as SARS-CoV-2. The good material compatibility, lack of a requirement for neutralization, low pH – which increases the range of efficacy compared to H$_2$O$_2$ fumigation – the significantly shorter processing time, and the lower costs argue in favor of this method.

Keywords: disinfection, aerosolization, biological safety cabinet, biological agent, occupational safety

Introduction

Biological safety cabinets

Biological safety cabinets (BSC; microbiological safety workbenches, MSW) are among the technical protective measures in microbiological laboratories that protect users, the working area and the environment, as well as the materials being handled from the harmful effects of biological agents [1]. Based on DIN EN 12469:2000-09, Class II A2 BSCs, which are typically also used in microbiological diagnostic laboratories, serve to protect personnel and products and prevent carry-over [2]. During activities involving biological agents, a contamination of the interior of a BSC cannot be ruled out. This can affect not only the actual workspace, but also the HEPA filters exposed to biological agents. In the event of improper operating conditions, e.g., leakage or compromised seal of the filters, the air-handling components required to generate the laminar air flow, such as fans and flow ducts, can also be contaminated [3]. To ensure a safe working environment, BSCs must be inspected not only after installation, but also after each significant, safety-relevant modification or maintenance measure, such as relocation or filter replacement. This applies to all BSCs, at regular (usually annual) intervals. For this purpose, it is necessary that the operator issue a written work authorisation based on a validated decontamination procedure [1].

Disinfection and decontamination

Prior to any work on a BSC, such as periodic inspection, maintenance or repair, but also when disposing of components or of the entire BSC, decontamination with a biocidal product suitable for this purpose and approved by the competent authority is mandatory at protection level 3 (BSL3) and higher. The efficacy of the procedure must be validated [1], [3]. The question of whether, when
and how such decontamination is necessary already arises during the authorisation procedure pursuant to Section 15 (3) of the Biological Agents Ordinance. However, in the context of the ongoing SARS-CoV-2 pandemic, the performance of non-specific diagnostic activities [4] may make it necessary to perform decontamination procedures even at protection level 2 (BSL2). Their effectiveness must be proven and documented before release of the BSC to the service personnel [1]. Finally, it must be determined whether disinfection of all surfaces exposed to biological agents within the BSC is necessary and if and how filters are to be replaced [3]. Based on the requirements of the Technical Rules for Biological Agents (TRBA) 100, the following approved procedures can be used when changing the filter of a BSC: a) the interior of the BSC and the HEPA filter are fumigated in situ with formaldehyde to reduce the biological load (room disinfection procedure according to TRGS 522), or b) the interior and HEPA filter are decontaminated in situ with a validated fumigation procedure using hydrogen peroxide [5]. After formaldehyde fumigation, the HEPA filters must be sterilised using moist heat before final disposal. In contrast, after treatment with vapourised H$_2$O$_2$, the decontaminated HEPA filters may be disposed of as non-infectious waste [5]. For H$_2$O$_2$ fumigation of BSCs, precisely specified process parameters, suitable gas generators and BSC specifications (volume, HEPA filter material) are listed in the “List of disinfectants and disinfection procedures tested and approved by the Robert Koch Institute in accordance with Section 18 of the Infection Protection Act”, which can also be used as a guideline for laboratory operations [6]. Procedures deviating from this standard always require process validation [3].

Formaldehyde fumigation can be used to meet disinfection requirements after appropriate validation, but room disinfection by formaldehyde vaporisation may only be carried out by persons who have a certificate of competence and a permit from the competent authority (in accordance with the Ordinance on Hazardous Substances and TRGS 522). In addition to the need to neutralise it after the process, formaldehyde has other negative properties, which will increasingly limit its use for disinfection purposes in the future [1]. When selecting decontamination processes and disinfectants, the protection of people and the environment must be taken into account, and the most gentle, yet effective, biocidal product available must be used in each case. In this context, the provision and use of disinfectants as biocidal products is fundamentally governed by Regulation (EU) No. 528/2012 (Biocide Regulation). In addition to, and increasingly as a substitute for, formaldehyde fumigation and as an alternative to H$_2$O$_2$ fumigation, the “dry fog” method is used for decontamination of rooms, including BSCs [7], [8], [9]. This method is based on the aerosolisation of disinfectants through the application of compressed air. The ultra-fine droplet size of 7.5 µm on average generated by the “Venturi effect” means that the dry fog remains in suspension as an aerosol for a very long time and condenses only minimally. Due to its excellent, broad microbicidal properties, which are also present at low temperatures and extremely low concentrations, peroxycetic acid (PAA, peracetic acid, C$_2$H$_4$O$_3$) is particularly suitable for this process [1]. Dry fogging largely obviates the corrosive effects of PAA. In cleanroom technology, regarding disinfection of operating theatres, highly complex technical facilities and high-security laboratories, room volumes between 1 m3 and 1,000 m3 can be disinfected, depending on the equipment used (literature in [10]). Under optimal conditions of relative humidity (rH) and temperature (T), such fogging can achieve effective decontamination by reducing the infectivity of viruses and bacteria, including spores, by six powers of ten (106) [7], [9]. The main advantages of this robust method, which is largely based on the oxidative properties of PAA chemically stabilised by hydrogen peroxide, are the short exposure time, the high material compatibility at low effective concentrations for a broad spectrum of biological agents, and the relatively inexpensive and easy-to-handle equipment required. Validation data for the decontamination of BSCs by means of H$_2$O$_2$ fumigation have been previously published [11], [12]. The dry-fog decontamination of laboratory rooms with PAA has been described, but there is only limited experience concerning BSCs [13].

For this reason, we describe the cycle development and process validation for different BSCs, using a previously validated surrogate for SARS-CoV-2.

Materials and methods

Four different BSCs of Class II were available for the validation study and process development: Berner FlowSafe B-[MaxPro]-130, Holten LaminAir Safe 2010 Model 1.5, Tecniplast BS48 and Thermo Electron HERAsafe KS18. The dry fogging system “Mini Dry Fog” used for decontamination and the additionally required equipment are shown in Figure 1. The fogger was always placed on the right side within the workspace of the BSC and its nozzle was pointed towards the left side at an angle of about 20° above horizontal. By diluting the listed [14] biocidal product “Lerasept Spezial” (an equilibrium mixture of PAA, acetic acid and H$_2$O$_2$) in fully demineralised water, a working solution at a concentration of 1.3% PAA and 6.8% H$_2$O$_2$ was obtained. By means of an oil-free air compressor located outside the BSC, at least 0.3 MPa overpressure at an air flow rate of at least 70 l/min was generated for aerosolisation of the biocidal product. The air hose was inserted through an opening in the side wall of the BSC where possible, otherwise through the working openings. Inactivation kinetics for SARS-CoV-2 were determined in previous studies as described [9]. As a surrogate, spores of Geobacillus stearothermophilus were selected in preference to Bacillus subtilis, due to the high tenacity and more practical evaluation by selective cultivation at 60°C [9]. Commercially available and custom-coated spore carriers were compared. It was shown that a PAA
A concentration of 0.0313% was sufficient for successful disinfection ($\geq 10^4$-fold reduction) of SARS-CoV-2. In order to achieve a comparable disinfection effect of the commercially available spore carriers, on the other hand, an approximately eightfold higher PAA concentration of 0.25% was required. At the same time, the commercial germ carriers showed a significantly higher sensitivity to PAA aerosol compared to the germ carriers coated with spores of *Geobacillus stearothermophilus*, which required a PAA concentration of 1.0% [9], approximately 32 times higher than SARS-CoV-2.

For this reason, the custom-prepared germ carriers with *G. stearothermophilus* spores were selected as a surrogate for SARS-CoV-2 for the validations described here, providing a safety margin. Hot-air sterilised 16×60 mm stainless steel strips were coated with 10^6/50 µl spores of *G. stearothermophilus* in PBS as a defined smear (10 µl/cm²) according to EN 10088-2 and dried. In addition to the exposed germ carriers, another germ carrier was not exposed to the disinfectant aerosol and used as a desiccation (negative) control. After completion of a fogging cycle, the treated spores were rinsed from the germ carriers with liquid nutrient medium, and incubated in a serial ten-fold dilution series for 7 days at 60 °C. In this manner, the remaining amount of reproducible spores was determined. The reduction in infectivity was calculated in comparison with the non-treated desiccation control.

For the three independent runs of the validation, 9 germ carriers and 3 measuring and recording devices for temperature and humidity (data loggers) were placed in the respective BSC. Portable *measuring devices with data loggers* were used for wireless monitoring during decontamination. In order to be able to place the germ carriers and data loggers, the exhaust plenum of the BSC had to be opened and the HEPA filters also had to be briefly removed. For the validation runs, the filters were reinserted and the plenum was sealed. Following the validation, a functional test of the BSC was carried out in each case, including a retention efficacy and leak test of the HEPA filters. The positioning of the "Mini Dry Fog" device, the germ carriers and data loggers can be seen in the schematic in Figure 2. The position "KT9" on the down-stream side of the exhaust air filter is considered to be a critical point for all operating conditions, because experience has shown that it is the most difficult for disinfectants to reach [3].

The following process cycle was established and applied:
Table 1: Phases and parameters of the process

Phase	Time	Criteria
I - Conditioning	20 min	• BSC on, reduced flow velocity
• front pane in lowest position or closed		
• exhaust air opening covered, ¾ glued		
II - Conditioning	2 min	• BSC off
• front pane closed or sealed airtight		
• exhaust air opening sealed airtight		
III - Decontamination	30 min	• BSC off
• aerosol generator off		
• front pane closed or sealed airtight		
• exhaust air opening sealed airtight		
IV - Ventilation	60 min	• BSC full load operation
• front pane in standard working position
• exhaust air opening open |

1. **Conditioning phase I**: Aerosolisation of approx. 20 ml/min PAA in “standby” or “night” operation mode; exhaust vent (KT9) covered with plastic sheeting and sealed with tape on three sides; front sash in lowest position (depending on design, not all BSCs could be operated with the sash completely closed), for 20 min; increase in relative humidity (rH) in the work area to 99.9% (saturation).

2. **Conditioning phase II**: Switch off the BSC, completely seal the exhaust vent and, if necessary, seal the front sash with industrial adhesive tape; after a further 2 min of fogging, switch off the compressor.

3. **Decontamination phase**: Exposure to PAA in the closed BSC interior for 30 min.

4. **Ventilation phase**: Uncover the exhaust vent and run the BSC for 60 min at full air flow and standard sash position to remove the biocidal product. Subsequently, germ carriers and radio sensors were removed for evaluation.

The essential parameters of the process cycle are shown in Table 1.

Results

Previous tests with SARS-CoV-2-coated germ carriers applied in the working area of the BSC showed that an aerosolised concentration of 0.03% PAA and 0.15% H$_2$O$_2$ and an exposure time of 30 min are sufficient to reduce infectivity by 4 orders of magnitude [9]. However, for decontamination of the germ carriers loaded with *G. stearothermophilus* as a surrogate “with a safety margin”, approximately eight times higher effective concentrations of about 0.25% PAA and 1.25% H$_2$O$_2$ were required for commercially available germ carriers, or 1.0% PAA and...
Table 2: Inactivation data for different BSC types and biological indicator localisations; calculation of the reduction of infectivity according to [19]

MSW-Typ:	Reduction (log₁₀) (n=3)			
Localisation:	Berner 130	Holten	Tecniplast	Thermo
GC1	6.2±0.0	6.4±0.4	7.1±0.4	6.0±0.9
GC2	6.2±0.0	5.7±0.6	7.1±0.4	6.9±0.0
GC3	6.2±0.0	6.4±0.4	7.1±0.4	6.9±0.0
GC4	6.2±0.0	6.4±0.4	7.1±0.4	6.5±0.4
GC5	5.8±0.4	6.4±0.4	7.1±0.4	6.9±0.0
GC6	6.2±0.0	6.4±0.4	7.1±0.4	5.6±1.4
GC7	5.5±0.7	5.7±0.6	7.1±0.4	6.2±0.8
GC8	5.3±0.9	6.4±0.4	7.1±0.4	6.5±0.4
GC9	5.5±0.7	6.4±0.4	6.2±0.8	6.9±2.8

Figure 3: Illustration of the process phases (I: conditioning phase 1; II: conditioning phase 2; III: decontamination phase; IV: ventilation phase) and the measured relative humidity (rH in %) and temperature (T in °C) at three positions of data loggers (DL 1-3) using the example of fogging in the Holten LaminAir Safe 2010 Model 1.5.

5.0% H₂O₂ for custom-produced germ carriers. In principle, the acceptance threshold for validation was defined as a reduction of the bacterial count on the custom-loaded germ carriers by at least a factor of 10⁴ (i.e., by 99.99%). Based on the pre-tests, this corresponds to at least a 10⁶ reduction of commercially available spore carriers. The values for rH and T measured in detail and for the different BSC types and locations as well as the inactivation data obtained are summarised in Figure 3 and Table 2.

Importantly, for all four BSC types, the filters passed all tests (retention and seal) after the validation runs.

Discussion

Decontamination processes are intended to make surfaces and objects safe to handle. From a microbiological point of view, it is therefore a matter of returning biological substances to the basic contamination level that
carries no health risks [1]. Depending on the initial contamination of a BSC, the effort required for this can vary. While in many cases simple wipe-down disinfection is sufficient for decontaminating work equipment in the BSC or the work surface itself, fumigation methods are mainly used for rooms, air-handling systems, and HEPA filters [3]. Hydrogen peroxide fumigation is already replacing the previously common room disinfection by formaldehyde [1].

The lower cost and time expenditure as well as ease of execution make dry fogging with PAA an extremely material-compatible decontamination procedure [10]. Unlike fumigation with vapourised formaldehyde, it does not require neutralisation. Due to its low pH, it has a higher efficacy than H₂O₂ alone for certain highly tenacious biomaterials, such as foot-and-mouth disease virus. Nevertheless, proper cycle development and process validation must be carried out before using this method. Critical parameters to be monitored in the process include relative humidity, air temperature, the nebulised amount of biocidal product in the corresponding room volume, and the local air currents [3]. The biological efficacy is a function of exposure time and concentration of the active substance. Other critical control values include the uniform distribution of the aerosol. This can be achieved by switching off and hermetically sealing the BSC interior including the HEPA filter. It must be recorded in real time by determining the H and T kinetics at different locations in the BSC as part of the validation.

To control the flow of exhaust air containing PAA during conditioning phase I and to obtain a hermetic seal of the BSC during the decontamination phase, the exhaust vent was covered with plastic sheeting similar to an air vessel. This was first sealed on three sides, and then on all sides using industrial adhesive tape.

For the proof of efficacy of the inactivation method, suitable germ carriers must be used. Suitable surrogates are those biomaterials whose physical-biological properties (e.g., enveloped or non-enveloped viruses, vegetative or permanent forms of bacteria) most closely match those whose inactivation is to be demonstrated. For the efficacy testing of fumigation procedures, especially those using H₂O₂, G. stearothermophilus is used as test organism [6].

In contrast to wet chemical surface disinfection, dry inactivation methods do not require the addition of so-called disinhibitors in the microbiological analysis of the germ carriers due to the very low residual active substance concentrations on the treated surfaces. Also, in contrast to wet chemical disinfection processes, it is not possible or necessary to remove these disinfectant residues from the surfaces.

Only recently, 10⁵ spores of G. stearothermophilus on filter paper carrier material was recommended as the standard [3]. In particular, the comparable properties of the carrier material should allow easy transferability to HEPA filters. However, there are reasons that speak against such a choice [15], [16]. Filter paper is not ideal because it is very likely to absorb the disinfectant, concentrate it and release it over time, leading to false negative results, i.e., spurious inhibition of microbial growth. Also, cellulose is known to chemically react with gaseous H₂O₂, catalysing its degradation and thus lowering the room concentration [17], [18]. Absorptive effects are not seen with non-porous carrier materials, and in the current literature these materials are predominantly used. To ensure the robustness of the decontamination, we used stainless steel germ carriers for these validations, which, for the reasons mentioned above, are considerably more difficult to inactivate than paper carriers or other porous and absorbent filter materials.

In addition to placement within the workspace and especially at other locations of the BSC that are difficult to access and most difficult for the air flow to reach, germ carriers should at least be positioned on the downstream side of the exhaust air filter. Experience has shown that this position is the critical location of the BSC because it is the most difficult to reach [3]. This was also shown in the validation carried out here, with the lowest reduction of G. stearothermophilus infectivity (between 10⁴⁸ and 10⁴⁴) observed at this location.

Taking into account the safety margin for the surrogate and the already validated data for SARS-CoV-2 vs. G. stearothermophilus [9], a complete inactivation of SARS-CoV-2 can be assumed based on these results. The germ carriers placed in the workspace directly under the recirculating air filter were all inactivated on the order of 10⁴⁸ to 10⁴⁴, demonstrating the high, reproducible efficacy.

Conclusions

In summary, the process and cycle conditions presented for the decontamination of biological safety cabinets allow a reduction of infectivity of four to six orders of magnitude for viruses, vegetative bacteria and spores, especially of G. stearothermophilus as biological indicator.

Notes

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors would like to thank in particular Dr Bärbel Niederwöhrmeier for her critical review and helpful contributions to the discussion.

Funding

This work was supported by BMVg, Zuwendungsbescheid E/ES90/FZ005/FF005, in addition to basic funding from BMEL. The authors assure that they will provide data on this upon justified request.
Ethics

This paper does not include studies on humans or animals.

Dual Use Research of Concern (DURC)

The DURC implications of the described methodology were discussed in the Biorisk Committee of the FLI on 05 February 2018. No concerns were expressed.

Authorship

JPT, SR: conception and design of the paper HF, AM, ME, AM, MS, HF: data collection, analysis and interpretation JPT: draft manuscript SR, HS, JS, ME, MS: critical revision of the article JPT, SR: conception and design of the paper

References

1. Berufsverband der Chemischen Industrie (BVCI). 2021. sicher Haut- und Organisationsmaßnahmen. https://www.bvci.de/Service/Technische-Richtlinien/Technische-Richtlinien.pdf?__blob=publicationFile

2. DIN EN 12469:2000-09: Biotechnik–Leistungskriterien für Mikrobiologische Sicherheitswerkbanken. Deutsche Fassung EN 12469, Berlin: Beuth; 2000. DOI: 10.31030/8934361

3. Ausschuss für Biologische Arbeitsstoffe (ABAS). Beschluss 7/ 2013 des ABAS vom 02.12.2013. Technische Stellungnahme zum Thema „Dekontamination von mikrobiologischen Sicherheitswerkbanken (BSC) der Klasse I – III mit dem Begasungsmittel Wasserstoffperoxid (H2O2)“. Berlin: BAuA; 2013 [Accessed 2021 Jun 01]. Available from: https://downloadcenter. baugestaltung.de/downloads/BO02_Gesamtdokument.pdf

4. Ausschuss für Biologische Arbeitsstoffe (ABAS). Beschluss 6/ 2020 des ABAS vom 08.02.2021. Empfehlung des Ausschusses für Biologische Arbeitsstoffe (ABAS) zu „Arbeitsschutzmaßnahmen bei Probenahme und Diagnostik von SARS-CoV-2“. Berlin: BAuA; 2021 Feb 8 [Accessed 2021 Jul 22]. Available from: https://www.baua.de/DE/Aufgaben/Geschaftsfuehrung-von-Ausschussen/ABAS/pdf/Mikrobiologische-Sicherheitswerkbanken-3.pdf?__blob=publicationFile

5. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. TRBA 100: Schutzmaßnahmen für Tätigkeiten mit biologischen Arbeitsstoffen in Laboratorien. Berlin: BAuA; 2013 [Accessed 2021 Jul 22]. Available from: https://www.baua.de/DE/Aufgaben/Geschaftsfuehrung-von-Ausschussen/ABAS/pdf/SARS-CoV-2_6-2020.pdf?__blob=publicationFile

6. Robert Koch-Institut. Liste der von Robert Koch-Institut geprüften und anerkannten Desinfektionsmittel und -verfahren. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2017; 60 (11):1274-97. DOI: 10.1007/s00103-017-2634-6

7. Gregersen JP, Roth B. Inactivation of stable viruses in cell culture facilities by peracetic acid fogging. Biologicals. 2012 Jul;40(4):282-7. DOI: 10.1016/j.biologicals.2012.02.004

8. Krishnan J, Fey G, Stansfield C, Landry L, Nguy H, Klassen S, Robertson C. Evaluation of a dry fogging system for laboratory decontamination. Appl Biosaf. 2012;17(3):132-41. DOI: 10.1177/153567601201700305

9. Schinköthe J, Scheinemann HA, Diederich S, Freese H, Eschbaumer M, Teifke JP, Reiche S. Airborne Disinfection by Dry Fogging Efficiency Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers. Appl Environ Microbiol. 2021 Aug 25;87(3):e02199-20. DOI: 10.1128/AEM.02199-20

10. Reiche S, Schinköthe J, Diederich S, Scheinemann H, Eschbaumer M, Freese H, Kluge K, Teifke JP. Trockenvernebelung von Peroxyessigsäure: Ein universelles viruzides, bakterizides und sporozides Raumdesinfektionsverfahren? Wehrmed Monatschr. 2020;64(10-11):370-5.

11. Reichenbacher D, Thanheiser M, Krüger D. Aktueller Stand zur Raumdekontamination mit gasförmigem Wasserstoffperoxid. Hyg Med. 2010;35(6):204-8.

12. Reichenbacher D, Thanheiser M, Weber UJ, Krüger D. Inaktivierung von Abluftfiltern in gentechnischen Hochschulinnenlaboren: Verfahrensvalidierung der Wasserstoffperoxid-Begasung. Hyg Med. 2013;38(4):147-51.

13. Frey G, Robertson K, Krishnan J. Decontamination validation of a Class II type B2 biosafety cabinet during laboratory fogging. Appl Biosaf. 2020;25(1):48-52. DOI: 10.1177/1535676019890975

14. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Liste der Biozidprodukte, die in Deutschland aufgrund eines laufenden Entscheidungsverfahrens auf dem Markt bereitgestellt und verwendet werden dürfen. Berlin: BAuA; 2021 Aug 11 [Accessed 2021 Jun 01]. Available from: https://www.baua.de/DE/Themen/Anwendungssichere-Chemikalien-und-Produkte/-Chemikalienrecht/Biozide/pdf/Biozidprodukte-im-Entscheidungsverfahrens.pdf?__blob=publicationFile

15. Gordon D, Madden B, Krishnan J, Klassen S, Dalmasso J, Theriault S. Implications of paper vs stainless steel biological indicator substrates for formaldehyde gas decontamination. J Appl Microbiol. 2011;110(2):455-62. DOI: 10.1111/j.1365-2672.2010.04899.x

16. Kümin D, Gsell Albert M, Weber UJ, Krüger D. Inaktivierung von Mikrobiologischen Laborsachen in Form von Abluftfiltern: Ein universelles viruzides, bakterizides und sporozides Raumdesinfektionsverfahren? Wehrmed Monatschr. 2020;64(10-11):370-5.

17. Czarneski MA, Lorcheim K. A Discussion of Biological Safety Cabinet Decontamination Methods: Formaldehyde, Chlorine Dioxide, and Vapor Phase Hydrogen Peroxide. Appl Biosaf. 2011 Mar;11(1):26-33. DOI: 10.1177/1064452710366004

18. Macellaro A, Karlsson L, Emmoth E, Dergel E, Metreveli G, Allard Bengtsson U, Byström M, Hultén C, Johansson AL. Evaluation of Biological Indicator Spores as Tools for Assessment of Fumigation Decontamination Effectiveness. Appl Biosaf. 2020 Dec 1;20(4):183-91. DOI: 10.1177/1535676020934941

19. Oblinger J, Kuburger J. Understanding and teaching the most probable number technique. J Milk Food Technol.1975;38:540-5. DOI: 10.1089/apb.21.921099

20. Teifke et al.: Dry-fog decontamination of microbiological safety ...
Corresponding author:
Prof. Dr. Jens Peter Teifke
Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany, Phone: +49 38351 71230
jens.teifke@fli.de

Please cite as
Teifke JP, Scheinemann H, Schinköthe J, Eschbaumer M, Melüh A, Streitz M, Freese H, Reiche S. Dry-Fog-Dekontamination von mikrobiologischen Sicherheitswerkbänken nach Tätigkeiten mit SARS-CoV-2: Zyklusentwicklung und Prozessvalidierung für die Trockenvernebelung von Peroxyessigsäure; GMS Hyg Infect Control. 2021;16:Doc26.
DOI: 10.3205/dgkh000397, URN: urn:nbn:de:0183-dgkh0003970

This article is freely available from
https://www.egms.de/en/journals/dgkh/2021-16/dgkh000397.shtml

Published: 2021-08-31

Copyright
©2021 Teifke et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.