Strong fractional choice number of series-parallel graphs

Xuer Li ∗ Xuding Zhu†

October 29, 2019

Abstract

The strong fractional choice number of a graph G is the infimum of those real numbers r such that G is $(\lceil rm \rceil, m)$-choosable for every positive integer m. The strong fractional choice number of a family \mathcal{G} of graphs is the supremum of the strong fractional choice number of graphs in \mathcal{G}. We denote by Q_k the class of series-parallel graphs with girth at least k. This paper proves that for $k = 4q - 1, 4q, 4q + 1, 4q + 2$, the strong fractional number of Q_k is exactly $2 + \frac{1}{q}$.

Keywords: strong fractional choice number; series-parallel graph

1 Introduction

A b-fold colouring of a graph G is a mapping ϕ which assigns to each vertex v of G a set $\phi(v)$ of b colours so that adjacent vertices receive disjoint colour sets. An (a, b)-colouring of G is a b-fold colouring ϕ of G such that $\phi(v) \subseteq \{1, 2, \cdots, a\}$ for each vertex v. The fractional chromatic number of G is

$$\chi_f(G) = \inf\{\frac{a}{b} : G \text{ is } (a,b)\text{-colourable}\}.$$

An a-list assignment of G is a mapping L which assigns to each vertex v a set $L(v)$ of a permissible colours. A b-fold L-colouring of G is a b-fold colouring ϕ of G such that $\phi(v) \subseteq L(v)$ for each vertex v. We say G is (a,b)-choosable if for any a-list assignment L of G, there is a b-fold L-colouring of G. The fractional choice number of G is

$$ch_f(G) = \inf\{\frac{a}{b} : G \text{ is } (a,b)\text{-choosable}\}.$$

∗Department of Mathematics, Zhejiang Normal University, China.
†Department of Mathematics, Zhejiang Normal University, China. E-mail: xdzhu@zjnu.edu.cn.
Grant Numbers: NSFC 11971438 and 111 project of Ministry of Education of China.
It was proved by Alon, Tuza and Voigt \cite{1} that for any finite graph G, $\chi_f(G) = \text{ch}_f(G)$ and moreover the infimum in the definition of $\text{ch}_f(G)$ is attained and hence can be replaced by minimum. This implies that if G is (a,b)-colourable, then for some integer m, G is (am,bm)-choosable. The integer m depends on G and is usually a large integer. A natural question is for which (a,b), G is (am,bm)-choosable for any positive integer m. This motivated the definition of strong fractional choice number of a graph \cite{5}.

Definition 1 Assume G is a graph and r is a real number. We say G is strongly fractional r-choosable if for any positive integer m, G is $([rm],m)$-choosable. The strong fractional choice number of G is

$$\text{ch}_f^*(G) = \inf\{r : G \text{ is strongly fractional } r\text{-choosable}\}.$$

The strong fractional choice number of a class \mathcal{G} of graphs is

$$\text{ch}_f^*(\mathcal{G}) = \sup\{\text{ch}_f^*(G) : G \in \mathcal{G}\}.$$

It follows from the definition that for any graph G, $\text{ch}_f^*(G) \geq \text{ch}(G) - 1$. The variant $\text{ch}_f^*(G)$ is intended to be a refinement for $\text{ch}(G)$. However, currently we do not have a good upper bound for $\text{ch}_f^*(G)$ in terms of $\text{ch}(G)$. It was conjectured by Erdős, Rubin and Taylor \cite{3} that if G is k-choosable, then G is (km,m)-choosable for any positive integer m. If this conjecture were true, then we would have $\text{ch}_f^*(G) \leq \text{ch}(G)$. But this conjecture is refuted recently by Dvořák, Hu and Sereni in \cite{2}. Nevertheless, it is possible that for any k-choosable graph G, for any positive integer m, G is $(km+1,m)$-choosable. If this is true, we also have $\text{ch}_f^*(G) \leq \text{ch}(G)$. In any case, $\text{ch}_f^*(G)$ is an interesting graph invariant and there are many challenging problems concerning this parameter. The strong fractional choice number of planar graphs were studied in \cite{5} and \cite{4}. Let \mathcal{P} denote the family of planar graphs and for a positive integer k, let \mathcal{P}_k be the family of planar graphs containing no cycles of length k. It was proved in \cite{5} that $5 \geq \text{ch}_f^*(\mathcal{P}) \geq 4 + 4/9$ and prove in \cite{4} that $4 \geq \text{ch}_f^*(\mathcal{P}_3) \geq 3 + 1/17$.

In this paper, we consider the strong fractional choice number of series-parallel graphs. For a positive integer k, let

$$\mathcal{Q}_k = \{G : G \text{ is a series-parallel graph with girth at least } k\}.$$

This paper proves the following result.

Theorem 1 Assume q is a positive integer. For $k \in \{4q-1, 4q, 4q+1, 4q+2\}$, $\text{ch}_f^*(\mathcal{Q}_k) = 2 + \frac{1}{q}$.

2 The proof of Theorem \cite{1}

Series-parallel graphs is a well studied family of graphs and there are many equivalent definitions for this class of graphs. For the purpose of using induction, we adopt the definition that recursively construct series-parallel graphs from K_2 by series parallel constructions.
Definition 2 A two-terminal series-parallel graph \((G; x, y)\) is defined recursively as follows:

- Let \(V(K_2) = \{0, 1\}\). Then \((K_2; 0, 1)\) is a two-terminal series-parallel graph.
- (The parallel construction) Let \((G; x, y)\) and \((G'; x', y')\) be two vertex disjoint two-terminal series-parallel graphs. Define \(G''\) to be the graph obtained from the union of \(G\) and \(G'\) by identifying \(x\) and \(x'\) into a single vertex \(x''\), and identifying \(y\) and \(y'\) into a single vertex \(y''\). Then \((G''; x'', y'')\) is a two-terminal series-parallel graph.
- (The series construction) Let again \((G; x, y)\) and \((G'; x', y')\) be two vertex disjoint two-terminal series-parallel graphs. Define \(G''\) to be the graph obtained from the union of \(G\) and \(G'\) by identifying \(y\) and \(x'\) into a single vertex \(x''\). Then \((G''; x, y')\) is a two-terminal series-parallel graph.

A graph is a series-parallel graph if there exist some two vertices \(x, y\) such that \((G; x, y)\) is a two-terminal series-parallel graph.

Lemma 1 Assume \(m, l\) are positive integers, \(\epsilon > 0\) is a real number, \(P_t = (v_0, v_1, ..., v_t)\) is a path and \(L\) is a list assignment of path \(P_t\) with \(|L(v_0)| = m, |L(v_t)| = 2m + \epsilon m\) \((1 \leq i \leq l)\). For \(0 \leq j \leq l\), there is a subset \(T_j\) of \(L(v_j)\), for which the following holds:

- If \(j = 2t + 1\) is odd, then \(|T_j| = m + \epsilon m\); If \(j = 2t\) is even, then \(|T_j| = m\).
- For any \(m\)-subset \(B_j\) of \(L(v_j)\) for which \(|B_j \cap T_j| \geq (1 - \epsilon t)m\), there exists an \(m\)-fold \(L\)-colouring \(\phi\) for \(P_j = (v_0, v_1, ..., v_j)\) such that \(\phi(v_j) = B_j\).

Proof. By induction on \(j\). If \(j = 0\), then let \(T_0 = L(v_0)\); if \(j = 1\), then let \(T_1 = L(v_1) - T_0\). The conclusion is obviously true.

Assume \(j \geq 2\) and the lemma holds for \(j' < j\).

Case 1 \(j = 2t\) is even.

By induction hypothesis, there is an \((m + \epsilon m)\)-subset \(T_{2t-1}\) of \(L(v_{2t-1})\), such that for any \(m\)-subset \(B_{2t-1}\) of \(L(v_{2t-1})\) for which \(|B_{2t-1} \cap T_{2t-1}| \geq (1 - (t - 1)\epsilon)m\), there exists an \(m\)-fold \(L\)-colouring \(\phi\) for \(P_{2t-1}\) such that \(\phi(v_{2t-1}) = B_{2t-1}\).

As \(|L(v_{2t})| = (2 + \epsilon)m\), we have \(|L(v_{2t}) - T_{2t-1}| \geq m\). Let \(T_{2t}\) be any \(m\)-subset of \(L(v_{2t}) - T_{2t-1}\). Assume \(B_{2t}\) is an \(m\)-subset of \(L(v_{2t})\) with \(|B_{2t} \cap T_{2t}| \geq (1 - \epsilon t)m\). We shall show that there exists an \(m\)-fold \(L\)-colouring \(\phi\) for \(P_{2t}\) such that \(\phi(v_{2t}) = B_{2t}\).

Note that \(|B_{2t} \cap T_{2t-1}| \leq m - (1 - \epsilon t)m = \epsilon m t\). So \(|T_{2t-1} - B_{2t}| \geq (1 - (t - 1)\epsilon)m\). Let \(B_{2t-1}\) be an \(m\)-subset of \(L(v_{2t-1}) - B_{2t}\) containing at least \((1 - (t - 1)\epsilon)m\) colours from \(T_{2t-1}\). By induction hypothesis, there exists an \(m\)-fold \(L\)-colouring \(\phi\) of \(P_{2t-1}\) with \(\phi(v_{2t-1}) = B_{2t-1}\). Now \(\phi\) extends to an \(m\)-fold \(L\)-colouring \(\phi\) of \(P_{2t}\) with \(\phi(v_{2t}) = B_{2t}\).

Case 2 \(j = 2t + 1\) is odd.
By induction hypothesis, there is an \(m \)-subset \(T_{2t} \) of \(L(v_{2t}) \), such that for any \(m \)-subset \(B_{2t} \) of \(L(v_{2t}) \) for which \(|B_{2t} \cap T_{2t}| \geq (1 - t\epsilon)m \), there exists an \(m \)-fold \(L \)-colouring \(\phi \) for \(P_{2t} \) such that \(\phi(v_{2t}) = B_{2t} \).

As \(|L(v_{2t+1})| = (2 + \epsilon)m \), we have \(|L(v_{2t+1}) - T_{2t}| \geq (1 + \epsilon)m \). Let \(T_{2t+1} \) be any \((1 + \epsilon)m\)-subset of \(L(v_{2t+1}) - T_{2t} \). Assume \(B_{2t+1} \) is an \(m \)-subset of \(L(v_{2t+1}) \) with \(|B_{2t+1} \cap T_{2t+1}| \geq (1 - t\epsilon)m \). We shall show that there exists an \(m \)-fold \(L \)-colouring \(\phi \) for \(P_{2t+1} \) such that \(\phi(v_{2t+1}) = B_{2t+1} \).

Note that \(|B_{2t+1} \cap T_{2t}| \leq m - (1 - t\epsilon)m = tem \). So \(|T_{2t} - B_{2t+1}| \geq (1 - t\epsilon)m \). Let \(B_{2t} \) be an \(m \)-subset of \(L(v_{2t}) - B_{2t+1} \) containing at least \((1 - t\epsilon)m \) colours from \(T_{2t} \). By induction hypothesis, there exists an \(m \)-fold \(L \)-colouring \(\phi \) of \(P_{2t} \) with \(\phi(v_{2t}) = B_{2t} \). Now \(\phi \) extends to an \(m \)-fold \(L \)-colouring \(\phi \) of \(P_{2t+1} \) with \(\phi(v_{2t+1}) = B_{2t+1} \).

Corollary 1 Assume \(m \), \(l \) are positive integers. Let

\[
\epsilon = \begin{cases}
\frac{2}{l-1}, & \text{if } l \text{ is odd} \\
\frac{2}{l}, & \text{if } l \text{ is even.}
\end{cases}
\]

If \(P_l = (v_0, v_1, \ldots, v_l) \) is a path of length \(l \) and \(L \) is a list assignment of path \(P_l \) with \(|L(v_0)| = |L(v_l)| = m \), \(|L(v_i)| = 2m + em \) for \(1 \leq i \leq l - 1 \), then there is an \(m \)-fold \(L \)-colouring of \(P_l \).

Proof. We divide the proof into two cases.

Case 1 \(l = 2t \) is even.

By Lemma 1, there is an \((m + em)\)-subset \(T_{l-1} \) of \(L(v_{l-1}) \), such that for any \(m \)-subset \(B_{l-1} \) of \(L(v_{l-1}) \), for which \(|B_{l-1} \cap T_{l-1}| \geq (1 - (t - 1)\epsilon)m \), there exists an \(m \)-fold \(L \)-colouring \(\phi \) for \(P_{l-1} = (v_0, v_1, ..., v_{l-1}) \), such that \(\phi(v_{l-1}) = B_{l-1} \).

As \(tem = m \), we have \(|T_{l-1} - L(v_l)| \geq em = (1 - (t - 1)\epsilon)m \). So there is an \(m \)-subset \(B_{l-1} \) of \(L(v_{l-1}) - L(v_l) \) containing at least \((1 - (t - 1)\epsilon)m \) colours from \(T_{l-1} \). By Lemma 1 there exists an \(m \)-fold \(L \)-colouring \(\phi \) of \(P_{l-1} \) with \(\phi(v_{l-1}) = B_{l-1} \). Now \(\phi \) can be extended to an \(m \)-fold \(L \)-colouring \(\phi \) of \(P_l \) with \(\phi(v_l) = L(v_l) \).

Case 2 \(l = 2t + 1 \) is odd.

Let \(B \) be an \(m \)-subset of \(L(v_{l-1}) - L(v_l) \). Let \(L'(v_i) = L(v_i) \) for \(1 \leq i \leq l-2 \) and \(L'(v_{l-1}) = B \). By Case 1, \(P_{l-1} = (v_0, v_1, ..., v_{l-1}) \) has an \(m \)-fold \(L' \)-colouring \(\phi \) with \(\phi(v_{l-1}) = B \). Now \(\phi \) can be extended to an \(m \)-fold \(L \)-colouring \(\phi \) of \(P_l \) with \(\phi(v_l) = L(v_l) \).

Lemma 2 If \((G; x, y)\) is a series-parallel graph of girth \(k \) and \(l = \lceil k/2 \rceil \), then either \(G \) itself is a path or \(G \) contains a path \(P = (v_0, v_1, \ldots, v_l) \) of length \(l \) such that all the vertices \(v_1, v_2, \ldots, v_{l-1} \) are degree 2 vertices of \(G \), and none of them is a terminal vertex \(x \) or \(y \).
Lemma 2. If \(G \) contains a cycle \(C \), then the conclusion is true as \(C \) has length at least \(k \). Otherwise, \((G;x,y) \) is obtained from \((G_1;x_1,y_1)\) and \((G_2;x_2,y_2)\) by a series construction or a parallel construction. If one of \((G_1;x_1,y_1)\) and \((G_2;x_2,y_2)\) contains a cycle, then \(G_1 \) or \(G_2 \) contains a required path. Otherwise, since \(G \) contains a cycle, we conclude that \((G;x,y) \) is obtained from \((G_1;x_1,y_1)\) and \((G_2;x_2,y_2)\) by a parallel construction, and for \(i = 1, 2 \), \(G_i \) is a path connecting \(x_i \) and \(y_i \). Then \(G \) is a cycle, and the conclusion holds. \(\blacksquare \)

Theorem 2. Assume \(q, m \) are positive integers, for any series-parallel graph \(G \) with girth at least \(k \), where \(k \in \{4q-1, 4q, 4q+1, 4q+2\} \), \(G \) is \((\lceil 2 + \frac{k}{q} \rceil m)\)-choosable.

Proof. Assume \(L \) is \((\lceil (2 + \frac{1}{q})m \rceil)\)-list assignment of \(G \). We need to show that \(G \) has an \(m \)-fold \(L \)-colouring. The proof is by induction on the number of vertices of \(G \). If \(G \) is a path, then \(G \) is \((2m, m)\)-choosable, and we are done. Assume \(G \) is not a path. By Lemma 2, \(G \) has a path \(P = \{v_0, v_1, \ldots, v_l\} \) of length \(l \) (where \(l = 2q \) when \(k \in \{4q-1, 4q\} \); \(l = 2q+1 \) when \(k \in \{4q+1, 4q+2\} \)), such that all the vertices \(v_1, v_2, \ldots, v_{l-1} \) are degree 2 vertices of \(G \). Let \(G' = G - \{v_1, v_2, \ldots, v_{l-1}\} \). Then \(G' \) is also a series-parallel graph of girth at least \(4q-1 \) or \(G' \) is a path. If \(G' \) is a series-parallel graph of girth at least \(4q-1 \), then by induction hypothesis, \(G' \) has an \(m \)-fold \(L \)-colouring \(\phi \); if \(G' \) is a path, as path is \((2m, m)\)-choosable, so \(G' \) also has an \(m \)-fold \(L \)-colouring \(\phi \). Let \(L' \) be the list assignment of the path \(P = \{v_0, v_1, \ldots, v_l\} \) with \(L'(v_0) = \phi(v_0), L'(v_l) = \phi(v_l) \) and \(L'(v_i) = L(v_i) \) for \(1 \leq i \leq l-1 \). By Corollary \(\#1 \) \(P \) has an \(m \)-fold \(L' \)-colouring \(\psi \). Then the union of \(\phi \) and \(\psi \) is an \(m \)-fold \(L \)-colouring of \(G \). \(\blacksquare \)

By Theorem 2, for \(k \in \{4q-1, 4q, 4q+1, 4q+2\} \), the strong fractional choice number of \(Q_k \) is at most \(2 + \frac{1}{q} \). In order to show that equality holds, we need to construct, for each positive integer \(m \), a graph belongs to \(Q_k \), which is not \((\lceil (2 + \frac{1}{q})m - 1 \rceil, m)\)-choosable.

Lemma 3. Assume \(m, l \) are positive integers and assume that \(\epsilon \) is a positive real number such that \(em \) is an integer and

\[
\epsilon < \begin{cases} \frac{2}{l-1}, & \text{if } l \text{ is odd} \\ \frac{2}{2}, & \text{if } l \text{ is even}. \end{cases}
\]

Let \(P_l = \{v_0, v_1, \ldots, v_l\} \) be a path. Let \(M_1, M_2 \) be \(m \)-sets. Then there exists a list assignment \(L \) of \(P_l \) for which the following holds:

- \(L(v_0) = M_1 \) and \(L(v_l) = M_2 \).
- \(|L(v_i)| = 2m + \epsilon m \) for \(1 \leq i \leq l-1 \),
- there is no \(m \)-fold \(L \)-colouring of \(P_l \).
Proof. Let A_r (for $r = 1, 3, 5, \ldots, 2q - 3$), B_s (for $s = 2, 4, 6, \ldots, 2q - 2$), Z_t (for $t = 1, 3, 5, \ldots, 2q - 1$) be disjoint colour sets, where $|A_r| = |B_s| = m$, $|Z_t| = \epsilon m$. Let L be the list assignment of P_t defined as follows:

- $L(v_0) = M_1$, $L(v_i) = M_2$, $L(v_1) = M_1 \cup A_1 \cup Z_1$.
- $|L(v_{2i+1})| = B_{2i} \cup A_{2i+1} \cup Z_{2i+1}$, for $i = 1, 2, 3, \ldots, q - 2$.
- $|L(v_{2j})| = B_{2j} \cup A_{2j-1} \cup Z_{2j-1}$, for $j = 1, 2, 3, \ldots, q - 1$.
- If $l = 2q$, then $L(v_{2q-1}) = M_2 \cup B_{2q-2} \cup Z_{2q-1}$; if $l = 2q + 1$, then $L(v_{2q}) = M_2 \cup A_{2q-1} \cup Z_{2q-1}$.

We shall show that P_t is not L-colourable.

Claim 1 For any $j \in \{2, 3, 4, \ldots, q\}$, if ϕ is an m-fold L-colouring of P_{2j-2}, then $|\phi(v_{2j-2}) \cap B_{2j-2}| \geq m - (j - 1)\epsilon m$.

Proof. We shall prove the claim by induction on the index j. Assume $j = 2$ and ϕ is an m-fold L-colouring of P_2. As $\phi(v_0) = M_1$, we conclude that $\phi(v_1) \subseteq A_1 \cup Z_1$. Therefore $|\phi(v_2) \cap (A_1 \cup Z_1)| \leq \epsilon m$. Hence $|\phi(v_2) \cap B_2| \geq m - \epsilon m$.

Assume $j \geq 3$ and the claim holds for $j' < j$ and ϕ is an m-fold L-colouring of P_{2j-2}. Apply induction hypothesis to the restriction of ϕ to P_{2j-4}, we conclude that

$$|\phi(v_{2j-4}) \cap B_{2j-4}| \geq m - (j - 2)\epsilon m.$$

Hence $|\phi(v_{2j-3}) \cap B_{2j-4}| \leq (j - 2)\epsilon m$. This implies that

$$|\phi(v_{2j-3}) \cap (A_{2j-3} \cup Z_{2j-3})| \geq m - (j - 2)\epsilon m.$$

Hence

$$|\phi(v_{2j-2}) \cap (A_{2j-3} \cup Z_{2j-3})| \leq (j - 1)\epsilon m.$$

So $|\phi(v_{2j-2}) \cap B_{2j-2}| \geq m - (j - 1)\epsilon m$. \blacksquare

Assume $l = 2q$ is even and ϕ is an m-fold L-colouring of P_{2q}. Then $|\phi(v_{2q-2}) \cap B_{2q-2}| \geq m - (q - 1)\epsilon m$. As $\phi(v_{2q}) = M_2$, we conclude that $\phi(v_{2q-1}) \subseteq (B_{2q-2} - \phi(v_{2q-2})) \cup Z_{2q-1}$. But $|B_{2q-2} - \phi(v_{2q-2}) \cup Z_{2q-1}| \leq (q - 1)\epsilon m + \epsilon m = q\epsilon m < m$, a contradiction.

Assume $l = 2q + 1$ is odd and ϕ is an m-fold L-colouring of P_{2q+1}. By claim 1, $|\phi(v_{2q-2}) \cap B_{2q-2}| \geq m - (q - 1)\epsilon m$. Hence $|\phi(v_{2q-1}) \cap B_{2q-2}| \leq (q - 1)\epsilon m$. This implies that $|\phi(v_{2q-1}) \cap (A_{2q-1} \cup Z_{2q-1})| \geq m - (q - 1)\epsilon m$. As $\phi(v_{2q-1}) = M_2$, we conclude that $\phi(v_{2q}) \subseteq (A_{2q-1} \cup Z_{2q-1}) - \phi(v_{2q-1})$. But $|(A_{2q-1} \cup Z_{2q-1}) - \phi(v_{2q-1})| \leq m + \epsilon m - (m - (q - 1)\epsilon m) = q\epsilon m < m$, a contradiction. \blacksquare

For disjoint two-terminal series-parallel graphs $(G_1; l_1, r_1)$ and $(G_2; l_2, r_2)$, we use $G_1 \parallel G_2$ to denote the parallel composition of G_1 and G_2 and $G_1 \bullet G_2$ to denote the series composition of G_1 and G_2, respectively. For a two-terminal series-parallel graph G, we let G^\times^n denote the series composition of n copies of G, and let G_{\parallel^n} denote the parallel composition of n copies of G.

6
Theorem 3 Assume \(m, q \) are positive integers and assume that \(\epsilon \) is a positive real number such that \(\epsilon m \) is an integer and \(\epsilon < \frac{1}{q} \). For \(k \in \{4q - 1, 4q, 4q + 1, 4q + 2\} \), there exists a graph \(G \in Q_k \), such that \(G \) is not \(((2 + \epsilon)m, m)\)-choosable.

Proof. Let \(p = \left(\frac{(2 + \epsilon)m}{m} \right)^2 \).

Let graph \(G \) be obtained by making parallel composition of \(p \) paths with length \(\left\lfloor \frac{k}{2} \right\rfloor \). Denote the two terminals by \(x \) and \(y \). Then \(G \in Q_k \).

We shall show that \(G \) is not \(((2 + \epsilon)m, m)\)-choosable. Let \(X \) and \(Y \) be two \((2m + \epsilon m)\)-sets. Let \(L(x) = X \) and \(L(y) = Y \). There are \(p \) possible \(m \)-fold \(L \)-colourings of \(x \) and \(y \). Each such a colouring \(\phi \) corresponds to one path with length \(\left\lfloor \frac{k}{2} \right\rfloor \). In that path, define the list assignment \(L \) as in the proof of Lemma 3, by replacing \(M_1 \) with \(\phi(x) \) and \(M_2 \) with \(\phi(y) \). Then Lemma 3 implies that no \(m \)-fold \(L \)-colouring of \(x \) and \(y \) can be extended to \(G \).

By theorem 3 for \(k \in \{4q - 1, 4q, 4q + 1, 4q + 2\} \), the strong fractional choice number of \(Q_k \) is at least \(2 + \frac{1}{q} \). Combining with theorem 2 this completes the proof of theorem 1.

References

[1] N. Alon, Zs. Tuza and M. Voigt, Choosability and fractional chromatic numbers, Discrete Mathematics 165/166 (1997) 31 – 38.

[2] Z. Dvořák, X. Hu, and J. Sereni, A 4-choosable graph that is not (8:2)-choosable, https://arxiv.org/abs/1806.03880.

[3] P. Erdős, A. L. Rubin, and H. Taylor, Choosability in graphs, Congress. Number. 26 (1979) 125 – 157.

[4] Y. Jiang, and X. Zhu, Multiple list colouring triangle free planar graphs, J. Combin. Theory Ser. B 137 (2019) 112 – 117.

[5] X. Zhu, Multiple list colouring of planar graphs, J. Combin. Theory Ser. B 122 (2017) 794 – 799.