 Scalar \(\sigma \) meson via chiral and crossing dynamics

M.D. Scadron*
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3

Abstract

We show that the non-strange scalar \(\sigma \) meson, as now reported in the 1996 PDG tables, is a natural consequence of crossing symmetry as well as chiral dynamics for both strong interaction low energy \(\pi\pi \) scattering and also \(K \to 2\pi \) weak decays.

1 Introduction

The 1996 Particle Data Group (PDG) tables\[1\] now includes a broad non-strange \(I=0 \) scalar \(\sigma \) resonance referred to as \(f_0 \) (400-1200). This is based in part on the Törnqvist-Roos\[2\] re-analysis of low energy \(\pi\pi \) scattering, finding a broad non-strange \(\sigma \) meson in the 400-900 MeV region with pole position \(\sqrt{s_0} = 0.470 - \imath 0.250 \) MeV. Several later comments in PRL\[3-5\] all stress the importance of rejecting\[3\] or confirming\[4,5\] the above Törnqvist-Roos\[2\] \(\sigma \) meson analysis based on (t-channel) crossing symmetry of this \(\pi\pi \) process.

In this brief report we offer such a \(\sigma \) meson-inspired crossing symmetry model in support of Refs. \[2,4,5\] based on chiral dynamics for strong interaction \(\pi\pi \) scattering (Sect. II). This in turn supports the recent \(s \)-wave \(\pi\pi \) phase shift analyses\[6\] in

*Permanent Address: Physics Department, University of Arizona, Tucson, AZ 85721, USA
Sect. III using a negative background phase obtaining a broad σ resonance in the 535-650 MeV mass region. This is more in line with the prior analysis of Ref. [5] and with the dynamically generated quark-level linear σ model (LσM) theory of Ref. [7] predicting $m_\sigma \approx 650$ MeV. Section IV looks instead at processes involving two final-state pions where crossing symmetry plays no role, such as for the DM2 experiment[8] $J/\Psi \to \omega \pi \pi$ and for $\pi N \to \pi \pi N$ polarization measurements[9]. Section V extends the prior crossing-symmetric strong interaction chiral dynamics to the non-leptonic weak interaction $\Delta I = \frac{1}{2}$ decays $K^0 \to 2\pi$. We give our conclusions in Sect. VI.

2 Strong Interactions, Crossing Symmetry and the σ Meson

It has long been understood[10-12] that the non-strange isospin I=0 σ meson is the chiral partner of the I=1 pion. In fact Gell-Mann-Lévy’s[10,11] nucleon-level LσM requires the meson-meson couplings to satisfy (with $f_\pi \approx 93$ MeV)

$$g_{\sigma\pi\pi} = \frac{m_\sigma^2 - m_\pi^2}{2f_\pi} = \lambda f_\pi,$$ \hspace{1cm} (1)

where $g_{\sigma\pi\pi}$ and λ are the cubic and quartic meson couplings respectively. On the other hand, the σ meson pole for the $\pi\pi$ scattering amplitude at the soft point $s = m_\pi^2$ using (1) becomes

$$M^\sigma_{\pi\pi} \rightarrow \frac{2g_{\sigma\pi\pi}}{s - m_\sigma^2} \rightarrow \frac{2g_{\sigma\pi\pi}}{m_\pi^2 - m_\sigma^2} = -\lambda = -M_{\pi\pi}^{contact}. \hspace{1cm} (2)$$

The complete tree-level LσM $\pi\pi$ amplitude is the sum of the quartic contact amplitude λ plus σ poles added in a crossing symmetric fashion from the s, t and u-
channels. Using the chiral symmetry soft-pion limit (2) combined with the (non-soft) Mandelstam relation $s + t + u = 4m_\pi^2$, the lead λ contact $\pi\pi$ amplitude miraculously cancels[11]. Not surprisingly, the resulting net $\pi^a\pi^b \to \pi^c\pi^d$ amplitude in the LσM is the low energy model-independent Weinberg amplitude[13].

\[
M_{\pi\pi} = \frac{s - m_\pi^2}{f_\pi^2} \delta^{ab}\delta^{cd} + \frac{t - m_\pi^2}{f_\pi^2} \delta^{ac}\delta^{bd} + \frac{u - m_\pi^2}{f_\pi^2} \delta^{ad}\delta^{bc},
\]

due to partial conservation of axial currents (PCAC) applied crossing-consistently to all three s, t, u-channels. Recall that the underlying PCAC identity $\partial A^i = f_\pi m_\pi^2 \phi_\pi$, upon which the Weinberg crossing-symmetric PCAC relation (3) is based, was originally obtained from the LσM lagrangian[10,11].

Although the above (LσM) Weinberg PCAC $\pi\pi$ amplitude (3) predicts an s-wave $I=0$ scattering length[13] $a^{(0)}_{\pi\pi} = 7m_\pi/32\pi f_\pi^2 \approx 0.16 m_\pi^{-1}$ which is $\sim 30\%$ less than first obtained from $K_{\ell4}$ data[14], more precise experiments are now under consideration. Moreover a simple chiral-breaking scattering-length correction $\Delta a^{0}_{\pi\pi}$ follows from the LσM using a Weinberg-like crossing-symmetric form[15]

\[
M_{\pi\pi}^{abcd} = A(s, t, u)\delta^{ab}\delta^{cd} + A(t, s, u)\delta^{ac}\delta^{bd} + A(u, t, s)\delta^{ad}\delta^{bc},
\]

\[
A^{L\sigma M}(s, t, u) = -2\lambda \left[1 - \frac{2\lambda f_\pi^2}{m_\sigma^2 - s}\right] = \left(\frac{m_\sigma^2 - m_\pi^2}{m_\sigma^2 - s}\right) \left(\frac{s - m_\pi^2}{f_\pi^2}\right),
\]

where the LσM Eq. (1) has been used to obtain the second form of (5). Then the $I=0$ s-channel amplitude $3A(s, t, u) + A(t, s, u) + A(u, t, s)$ predicts the s-wave scattering length at $s = 4m_\pi^2$, $t = u = 0$ using the LσM amplitude (5) with $\varepsilon = m_\pi^2/m_\sigma^2 \approx 0.046$ for the LσM mass[7] $m_\sigma \approx 650$ MeV:

\[
a^{(0)}_{\pi\pi}|_{L\sigma M} \approx \left(\frac{7 + \varepsilon}{1 - 4\varepsilon}\right) \frac{m_\pi}{32\pi f_\pi^2} \approx (1.23) \frac{7m_\pi}{32\pi f_\pi^2} \approx 0.20 m_\pi^{-1}.
\]
This simple 23% $L\sigma M$ enhancement of the Weinberg PCAC prediction\[13\] agrees in magnitude with the much more complicated one-loop order chiral perturbation theory approach\[16\] which also predicts an s-wave scattering length correction of order $\Delta a_{\pi\pi}^0 \sim 0.04 m$\(\pi\)^{-1}. This indirectly supports a $\sigma(650)$ scalar meson mass scale as used in (6).

The above “miraculous (chiral symmetry) cancellation”, due to Eqs. (1) and (2) has been extended to final-state pionic processes $A_1 \to \pi(\pi\pi)_{s\text{-wave}}$\[17\], $\gamma\gamma \to 2\pi^0$\[18\] and $\pi^- p \to \pi^- \pi^+ n$. In all of these cases the above $L\sigma M$ “miraculous cancellation” is simulated by a (non-strange) quark box – quark triangle cancellation due to the Dirac-matrix identity\[17,18\]

\[
\frac{1}{\gamma.p - m} \frac{2m\gamma_5}{\gamma.p - m} = -\gamma_5 \frac{1}{\gamma.p - m} - \frac{1}{\gamma.p - m} \gamma_5 ,
\]

combined with the quark-level Goldberger relation (GTR) $f_\pi g_{\pi qq} = m_q$ and the $L\sigma M$ meson couplings in (1).

Then the u, d quark box graph in Fig. 1a for $A_1 \to 3\pi$ in the chiral limit (miraculously) cancels the quark triangle graph of Fig. 1b coupled to the σ meson because of the GTR and the $L\sigma M$ chiral meson identity (1) along with the minus signs on the right-hand-side (rhs) of (7):

\[
M_{A_1,3\pi}^{\text{box}} + M_{A_1,3\pi}^{\text{tri}} \to -\frac{1}{f_\pi} M(A_1 \to \sigma\pi) + \frac{1}{f_\pi} M(A_1 \to \sigma\pi) = 0 .
\]

This soft pion theorem\[17\] in (8) is compatible with the PDG tables\[1\] listing the decay rate $\Gamma[A_1 \to \pi(\pi\pi)_{sw}] = 1 \pm 1$ MeV.

Similarly, the $\gamma\gamma \to 2\pi^0$ quark box graph suppresses the quark triangle σ resonance.
graph in the 700 MeV region, also compatible with $\gamma\gamma \rightarrow 2\pi^0$ cross section data[18].

Finally, the peripheral pion in $\pi^- p \rightarrow \pi^- \pi^+ n$ sets up an analogous $\pi\pi$ or quark box – quark triangle s-wave soft pion cancellation which completely suppresses any such σ resonance – also an experimental fact for $\pi^- p \rightarrow \pi^- \pi^+ n$.

3 $\pi\pi$ Phase Shifts

The above miraculous (chiral) cancellation in $\pi\pi \rightarrow \pi\pi, A_1 \rightarrow 3\pi, \gamma\gamma \rightarrow 2\pi^0$ and $\pi^- p \rightarrow \pi^- \pi^+ n$ amplitudes and in data lends indirect support to the analyses of Refs. [2,4,5]. Reference [3] claims instead that the I=0 and I=2 $\pi\pi$ phase shifts require t-channel forces due to “exotic”, crossing-asymmetric resonances in the I=$\frac{3}{2}$ and 2 cross-channels rather than due a broad low-mass scalar σ meson (in the s-channel). We suggest that this latter picture in Ref. [3] does not take account of the crossing-symmetric extent of the chiral $\pi\pi$ forces in all three s, t and u-channels, leading to the above miraculous chiral cancellation.

Specifically the recent $\pi\pi$ phase shift analyses in Refs. [6] use a negative background phase approach compatible with unitarity. This background phase has a hard core of size $r_c \approx 0.63 \text{ fm}$ (the pion charged radius) such that $\delta^{BG} = -p_{\text{CM}}r_c$. Combining this background phase with the observed $\pi\pi$ phase shifts (e.g., of CERN-Munich or Cason et al.), the new I=0 phase shift goes through 90$^\circ$ resonance in the range 535-650 MeV, while the I=2 phase shift does not resonate but remains negative as observed. References [6] justify this background phase approach because of the “compensating $\lambda\phi^4$ contact (LσM) interaction”. From our Sect. II we rephrase this as due
to the crossing symmetric $L\sigma M$ chiral ‘miraculous cancellation’$[11]$ which recovers Weinberg’s$[13]$ PCAC $\pi\pi$ amplitude in our Eq. (3).

Then Refs. $[6]$ choose a slightly model-dependent form factor $F(s)$ (designed to fit the lower energy region below 400 MeV) along with the best-fitted $\sigma \rightarrow \pi\pi$ effective coupling (double the $L\sigma M$ field theory coupling (1)). This gives the resonant σ width$[6]$

$$\Gamma_R(s) = \frac{p^\text{CM}_\pi}{8\pi s} [g_R F(s)]^2 \approx 340 \text{ MeV} \quad \text{at} \quad \sqrt{s}_R \approx 600 \text{ MeV}, \quad g_R \approx 3.6 \text{ GeV}, \quad (9)$$

for $p^\text{CM}_\pi = \sqrt{s/4 - m^2_\pi} \approx 260 \text{ MeV}$. However, the decay width in (9) accounts only for $\sigma \rightarrow \pi^+\pi^-$ decay. To include as well the $\sigma \rightarrow \pi^0\pi^0$ decay mode, one must scale up (9) by a factor of $3/2$:

$$\Gamma_{\sigma \rightarrow 2\pi} = \frac{3}{2} \Gamma_R(s) \approx 510 \text{ MeV}, \quad (10)$$

not incompatible with Refs. $[1,2,5]$ but still slightly below Weinberg’s recent mended chiral symmetry (MCS) prediction$[19]$

$$\Gamma_{\sigma \rightarrow 2\pi}^{\text{MCS}} = \frac{9}{2} \Gamma_\rho \approx 680 \text{ MeV}, \quad (11a)$$

or the $L\sigma M$ decay width$[15]$

$$\Gamma_{L\sigma M}^{\sigma \rightarrow 2\pi} = \frac{3}{2} \frac{p^\text{CM}_\pi}{8\pi} \frac{(2g_{\sigma\pi\pi})^2}{m^2_\sigma} \approx 580 \text{ MeV}, \quad (11b)$$

for $m_\sigma \approx 600 \text{ MeV}$. Note too that the best fit $\sigma \rightarrow \pi^+\pi^-$ effective coupling in Refs. $[6]$ of 3.60 GeV is close to the $L\sigma M$ value in (1) at $m^R_\sigma \approx 600 \text{ MeV}$:

$$g_R \rightarrow 2g_{\sigma\pi\pi} = (m^2_\sigma - m^2_\pi)/f_\pi \approx 3.66 \text{ GeV}. \quad (12)$$
4 Crossing-Asymmetric Determinations of σ (600-750)

With hindsight, the clearest way to measure the $\sigma \rightarrow \pi \pi$ signal is to avoid $\pi \pi \rightarrow \pi \pi, \gamma \gamma \rightarrow 2\pi^0, \pi^- p \rightarrow \pi^- \pi^+ n$ scatterings or $A_1 \rightarrow \pi(\pi \pi)_{sw}$ decay, since these processes are always plagued by the $\pi \pi$ miraculous chiral cancellation in (2) or an underlying quark box – triangle cancellation due to (7) as in (8). First consider the 1989 DM2 experiment\[8] $J/\Psi \rightarrow \omega \pi \pi$. Their Fig. 13 fits of the $\pi^+\pi^-$ and $\pi^0\pi^0$ distributions clearly show the known non-strange narrow $f_2(1270)$ resonance along with a broad $\sigma(500)$ “bump” (both bumps are non-strange and the accompanying ω is 97% non-strange). Moreover, DM2 measured the (low mass) σ width as\[8]

$$\Gamma_{\sigma \rightarrow \pi \pi}^{DM2} = 494 \pm 58 \text{ MeV},$$

very close to the modified Ref. \[6\] σ width fit of 510 MeV in Eq. (10).

Finally, this Fig. 13 of DM2\[8] clearly shows that the nearby $f_0(980)$ bump in the $\pi \pi$ distribution is only a “pimple” by comparison. This suggests that the observed\[1\] $f_0(980) \rightarrow \pi \pi$ decay mode proceeds via a small $\sigma - f_0$ mixing angle and that $f_0(980)$ is primarily an Ωs meson, compatible with the analyses of Refs. \[2,20\]. However, such a conclusion is not compatible with the $qqqq$ or $K\bar{K}$ molecule studies noted in Ref. \[3\].

Lastly, polarization measurements are also immune to the (spinless) miraculous chiral cancellation\[11\] in $\pi \pi \rightarrow \pi \pi$. This detailed polarization analysis of Ref. \[9\] approximately obtains the $\rho (770)$ mass and 150 MeV decay width. While the resulting σ mass of 750 MeV is well within the range reported in the 1996 PDG\[1\] and closer
to the σ mass earlier extracted from $\pi\pi \rightarrow K\bar{K}$ studies in Ref. [21], the inferred σ width of $\Gamma_\sigma \sim 200 - 300$ MeV in Ref. [9] is much narrower than reported in Refs. [1, 2, 8, 21] or in our above analysis.

5 $K^\circ \rightarrow 2\pi$ Weak Decays and the $\sigma(600-700)$ Meson

To show that the $\sigma(600-700)$ scalar meson also arises with chiral crossing-symmetric weak forces, we consider the $\Delta I=1/2$ – dominant $K^\circ \rightarrow 2\pi$ decays. To manifest such a $\Delta I=1/2$ transition, we first consider the virtual $K^\circ I = \frac{1}{2}$ meson t-channel tadpole graph of Fig. 2. Here the weak tadpole transition $< 0|H_w|K^\circ >$ clearly selects out the $\Delta I=1/2$ part of the parity-violating component of H_w, while the adjoining strong interaction $K^\circ K^\circ \rightarrow \pi\pi$ is the kaon analogue of the t-channel $\pi\pi \rightarrow \pi\pi$, with Weinberg-type PCAC[22] amplitude $(t - m_\pi^2)/2f_\pi^2$ for $t = (p_K - 0)^2 = m_K^2$. Then the $\Delta I=1/2$ amplitude magnitude is[23]

$$| < \pi\pi|H_w|K^\circ > | = \frac{| < 0|H_w|K^\circ > |}{2f_\pi^2} (1 - m_\pi^2/m_K^2) . \quad (14)$$

A crossed version of this $\Delta I=1/2$ transition (14) is due to the s-channel $I=0$ σ meson pole graph of Fig. 3 at $s = m_K^2$[24]. This leads to the $\Delta I=1/2$ amplitude magnitude

$$| < \pi\pi|H_w|K^\circ > | = | < \pi\pi|\sigma > \frac{1}{m_K^2 - m_\sigma^2 + im_\sigma\Gamma_\sigma} < \sigma|H_w|K^\circ > | . \quad (15a)$$

Applying chiral symmetry $< \sigma|H_w|K^\circ > = < \pi^\circ|H_w|K^\circ >$ (converting the former parity-violating to the latter parity-conserving transition) along with the LσM values

$$| < \pi\pi|\sigma > |$$

8
\[m_\pi^2 / f_\pi \] from (1) and \(\Gamma_\sigma \approx m_\sigma \) to (15a), one sees that the \(\sigma \) mass scale cancels out of (15a), yielding\[25\]

\[| < \pi \pi | H_w | K^\circ \rangle | \approx | < \pi^0 | H_w | K^\circ \rangle / f_\pi |. \tag{15b} \]

Not only has (15b) been derived by other chiral methods\[26\], but (15b) also is equivalent to (14) in the \(m_\pi = 0 \) chiral limit because weak chirality \([Q, H_w] = -[Q_5, H_w]\) for V-A weak currents and PCAC clearly require \[| < \pi^0 | H_w | K^\circ \rangle | \approx | < 0 | H_w | K^\circ \rangle / 2 f_\pi |, \]
as needed.

Thus, we see that the existence of an \(I=0 \) scalar \(\sigma \) meson below 1 GeV manifests crossing symmetry (from the \(t \) to the \(s \)-channel) for the dominant \(\Delta I=1/2 \) equivalent amplitudes (14) and (15b). Further use of the quark model and the GIM mechanism\[27\] converts the \(K_{2\pi}^0 \) amplitudes in (14) or (15b) to the scale\[23\] \(24 \times 10^{-8} \) GeV, close to the observed \(K_{2\pi}^0 \) amplitudes\[1\].

While the \(\Delta I=1/2 \) \(K^\circ \to 2\pi \) decays are controlled by the tadpole diagram in Fig. 2 (similar to \(\Delta I=1 \) Coleman-Glashow tadpole for electromagnetic (em) mass splittings\[28,29\]), the smaller \(\Delta I=3/2 \) \(K^+ \to 2\pi \) amplitude is in fact suppressed by “exotic” \(I=3/2 \) meson cross-channel Regge trajectories\[30\] (in a manner similar to the \(I=2 \) cross-channel exotic Regge exchange for the \(\pi^+ - \pi^0 \) em mass difference\[31\]).

This latter duality nature of crossing symmetry for exotic \(I=3/2 \) and \(I=2 \) channels was invoked in Ref. [3] to reject the low mass \(\sigma \) meson scheme reported in the 1996 PDG tables [1] based in part on the data analysis of Ref. [2]. That is, for exotic \(I=2 \) and \(I=3/2 \) (t-channel) dual exchanges, the dynamical dispersion relations thus generated are unsubtracted, so that one can then directly estimate the observed \(\Delta I=2 \) em mass
differences[32] and also the $\Delta I=3/2$ weak $K^+_{2\pi}$ decay amplitude[33]. However, for $I=1$ and $I=1/2$ dual exchanges, the resulting dispersion relations are once-subtracted, with subtraction constants corresponding to contact $\Delta I=1$ and $\Delta I=1/2$ tadpole diagrams for em and weak transitions, respectively. Contrary to Ref. [3], we instead suggest that these duality pictures for exotic $I=3/2$ and $I=2$ channels of Refs. [30,31] in fact help support the existence of the $I=0$ chiral σ meson in Refs. [2,4-7].

6 Summary

We have studied both strong and weak interactions involving two final-state pions at low energy, using chiral and crossing symmetry to reaffirm the existence of the low-mass $I=0$ scalar σ meson below 1 GeV. This supports the recent phenomenological data analyses in Refs. [2,4-6] and the quark-level linear σ model [LσM] theory of Ref. [7].

In Sect. II we focussed on $\pi\pi$ scattering and the crossing symmetry miraculous chiral cancellation[11] in the LσM and its extension to the quark box - quark triangle soft pion cancellation[17,18]. Such chiral cancellations in $\pi\pi \rightarrow \pi\pi, A_1 \rightarrow 3\pi, \gamma\gamma \rightarrow 2\pi^0, \pi^-p \rightarrow \pi^-\pi^+n$ in turn suppress the appearance of the $\sigma(600-700)$ meson. Then in Sect. III we supported the recent re-analyses[6] of $\pi\pi$ phase shift data invoking a negative background phase. This led to an $I=0$ σ meson in the 535-650 MeV region, but with a broader width $\Gamma_\sigma \sim 500$ MeV than found in Refs. [6] (but not incompatible with the 1996 PDG σ width[1]).

In Sect. IV we briefly reviewed two different crossing-asymmetric determinations
of the I=0 $\sigma(600-750)$ which circumvent the above crossing-symmetric ‘miraculous’
chiral suppression of the σ meson. Finally, in Sect. V we reviewed how the low mass
I=0 σ meson s-channel pole for $\Delta I=1/2 \ K^0 \rightarrow 2\pi$ decays is needed to cross over to
the t-channel $\Delta I=1/2$ tadpole graph (which in turn fits data). This $\Delta I=1/2$ crossing-
symmetry $K \rightarrow \pi\pi$ picture was also extended by crossing duality to justify why the
(much smaller) $\Delta I=3/2 \ K_2^\pi$ decay is controlled by exotic I=3/2 t-channel Regge
trajectories[30], while the above I=1/2 dispersion relation has a (tadpole) non-exotic
Regge subtraction constant.

7 Acknowledgements

The author is grateful for hospitality and partial support at TRIUMF.
8 References

1. Particle Data Group, R.M. Barnett et al., Phys. Rev. D 54, Part I, 1 (1996).

2. N.A. Törnqvist and M. Roos, Phys. Rev. Lett. 76, 1575 (1996).

3. N. Isgur and J. Speth, Phys. Rev. Lett. 77, 2332 (1996) and references therein.

4. N.A. Törnqvist and M. Roos, Phys. Rev. Lett. 77, 2333 (1996); 78, 1604 (1997).

5. M. Harada, F. Sannio and J. Schechter, Phys. Rev. Lett. 78, 1603 (1997) and references therein.

6. S. Ishida, M.Y. Ishida, H. Takahashi, T. Ishida, K. Takamatsu and T. Tsuru, Prog. Theor. Phys. 95, 745 (1996); S. Ishida, T. Ishida, M. Ishida, K. Takamatsu and T. Tsuru, Prog. Theor. Phys. in press and hep-ph/9610359

7. R. Delbourgo and M.D. Scadron, Mod. Phys. Lett. A 10, 251 (1995).

8. DM2 Collab. J. Augustin et al., Nucl. Phys. B 320, 1 (1989).

9. M. Svec, Phys. Rev. D 53, 2343 (1996).

10. M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).

11. V. De Alfaro, S. Fubini, G. Furlan and C. Rossetti, Currents in Hadron Physics (North Holland, 1973) pp. 324-327.

12. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
13. S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).

14. L. Rosselet et al., Phys. Rev. D 15, 574 (1977); A.A. Belkov and S.A. Bunyatov, Sov. J. Nucl. Phys. 29, 666 (1979); 33, 410 (1981).

15. See e.g., P. Ko and S. Rudaz, Phys. Rev. D 50, 6877 (1994).

16. J. Gasser and H. Leutwyler, Phys. Lett. B 125, 321, 325 (1983).

17. A.N. Ivanov, M. Nagy and M.D. Scadron, Phys. Lett. B 273, 137 (1991).

18. A.N. Ivanov, M. Nagy and N.I. Troitskaya, Mod. Phys. Lett. A 7, 1997 (1992); M.D. Scadron, Phys. At. Nucl. 56, 1595 (1993).

19. S. Weinberg, Phys. Rev. Lett. 65, 1177 (1990).

20. N.A. Törnqvist, Z. Phys. C 68, 647 (1995).

21. P. Estabrooks, Phys. Rev. D 19, 2678 (1979).

22. H. Osborn, Nucl. Phys. B 15, 50 (1970); L.F. Liu and H. Pagels, Phys. Rev. D 5, 1507 (1972).

23. See e.g., S.R. Choudhury and M.D. Scadron, Phys. Rev. D 53, 2421 (1996) app. B.

24. T. Morozumi, C.S. Lim and A.I. Sanda, Phys. Rev. Lett. 65, 404 (1990); U.G. Meissner, Comm. Nucl. Part. Phys. 20, 119 (1991).

25. R.E. Karlsen and M.D. Scadron, Mod. Phys. Lett. A 6, 543 (1991).
26. See e.g., R.E. Karlsen and M.D. Scadron, Phys. Rev. D 45, 4108 (1992).

27. S. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2, 1285 (1970).

28. S. Coleman and S. Glashow, Phys. Rev. 134, B671 (1964).

29. S.A. Coon and M.D. Scadron, Phys. Rev. C 51, 2923 (1995) and references therein.

30. G. Nardulli, G. Preparata and D. Rotondi, Phys. Rev. D 27, 557 (1983).

31. H. Harari, Phys. Rev. Lett. 17, 1303 (1966); M. Elitzur and H. Harari, Ann. Phys. (N.Y.) 56, 81 (1970).

32. See e.g., T. Das, G.S. Guralnik, V.S. Mathur, F.E. Low and J.E. Young, Phys. Rev. Lett. 18, 759 (1967); I.S. Gerstein, B.W. Lee, H.T. Nieh and H.J. Schnitzer, ibid. 19, 1064 (1967).

33. See e.g., M.D. Scadron, Phys. Rev. D 29, 1375 (1984); R.E. Karlsen and M.D. Scadron, ibid. D 44, 2192 (1991).
9 Figure Captions

Fig. 1 Quark box (a) and quark triangle (b) graphs for $A_1 \rightarrow 3\pi$.

Fig. 2 $\Delta I=1/2$ t-channel K° tadpole graph for $K^\circ \rightarrow 2\pi$.

Fig. 3 $\Delta I=1/2$ s-channel σ pole graph for $K^\circ \rightarrow 2\pi$.