Medidas caseiras contra baixa umidade do ar amenizam agravos na saúde

Home measures against low air humidity which may alleviate health problems

Larissa Pereira Guerra¹, Larissa Martins Vieira de Andrade¹, Daiany Caroline Joner², Daniel Strozzi¹

¹ Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil.
² Universidade Federal de Goiás, Goiânia, GO, Brasil.

DOI: 10.31744/einstein_journal/2021AO5484

RESUMO

Objetivo: A umidade e a temperatura são fundamentais para o equilíbrio no ciclo da vida dos seres vivos e, consequentemente, para manter o bem-estar da população humana e diminuir a prevalência de doenças infecciosas. Visando mitigar o impacto das alterações climáticas, principalmente no período em que a umidade não é a ideal, é preciso adotar algumas medidas assistencialistas. O presente estudo visa elucidar qual seria a opção mais indicada para melhorar a qualidade de vida do ser humano e esclarecer qual melhor recurso (umidificador de ar, balde com água ou toalha molhada) é eficaz para melhorar a umidade do ar em épocas de seca e baixa umidade. Métodos: Estudo experimental realizado com higrômetros INKBIRD que permitiram a análise da variação da umidade do ar ao longo do dia. Foram estabelecidas três formas de tratamento: umidificador, toalha molhada e balde com água. Em cada quarto, foram colocados dois higrômetros equidistantes do ocupante do quarto e seu respectivo tratamento, que variava entre 1m e 2m de distância da cabeceira da cama dentro de cada cômodo. Além disso, dois ambientes foram utilizados como controle, sendo um externo e outro fechado interno, totalizando cinco cômodos para o estudo. Os cômodos foram monitorados entre o final do mês de julho até final do mês de agosto de 2019 em Goiânia (GO). Resultados: Apesar de as medidas assistencialistas serem utilizadas para melhora significativa da umidade do ar em épocas de extrema seca, há uma diferença significativa entre elas. O umidificador e a toalha molhada possuíram 7,50% e 5,71% a mais de umidade em relação à área externa (controle externo), respectivamente, sendo considerados mais eficientes. Já o balde de água não se diferenciou significativamente (p>0,05), não havendo variação. Conclusão: O umidificador e a toalha foram os tratamentos considerados mais eficientes, com efeito significativo da distância sobre a umidade. Portanto, 1m de distância é mais eficiente no aumento e/ou na manutenção da umidade do ar, induzindo melhorias na saúde da população.

Descritores: Doenças transmissíveis; Mudança climática; Poluição do ar; Umidificadores; Toalha molhada

ABSTRACT

Objective: Humidity and temperature are fundamental for the balance in the life cycle of living beings and, consequently, for maintaining the well-being of the human population and reducing the prevalence of infectious diseases. Thus, in order to mitigate the impact of climate change, especially in the period when humidity is not the ideal, it is necessary to adopt some assistance measures. The present experimental study aims to elucidate what would be the recommended option to improve the quality of life of the human being and to clarify which resources (air humidifier, bucket of water or wet towel) will be effective to improve the humidity of the air in times of drought and low moisture. Methods: The experimental study was carried out with INKBIRD hygrometers allowing the analysis of the variation of air humidity throughout the day. Three forms
of treatment were established: humidifier, wet towel and bucket of water. In each room, two hygrometers were placed equidistant from the occupant of the room and their respective treatment that varied between 1m and 2m away from the headboard indoor each room. In addition, two environments were used as controls, one being an external environment and the other an internal closed environment, totaling five rooms for the study. The rooms were monitored between the end of July and the end of August 2019 in Goiania (GO).

Results: Although assistance measures are used to significantly improve air pollution in times of extreme drought, there was a significant difference between them. The humidifier and a wet towel had 7.50% and 5.71% more humidity in the external relation (external control), respectively, more efficient. The volume of water, however, did not show significant difference (p>0.05) and, therefore, there was no variation. Conclusion: The humidifier and the towel are treatments considered more efficient, and that there was a significant effect of distance on humidity. Therefore, 1m of distance is more efficient in increasing and/or maintaining air humidity, inducing improvements in the populations’ health.

Keywords: Communicable diseases; Climate change; Air pollution; Humidifiers; Wet towel

INTRODUÇÃO

A umidade e a temperatura são fatores abióticos que compõem o clima e fundamentais para o equilíbrio no ciclo de vida dos seres vivos. Entretanto, a urbanização tem gerado mudanças no perfil climático e, consequentemente, agravado ou facilitado o surgimento de doenças na população humana. Para investigar os efeitos das mudanças climáticas sobre a saúde, é importante mensurar como esses fatores variam ao longo do tempo e, assim, permitir a criação de medidas que podem mitigar tais efeitos negativos.(1-4)

Esses efeitos vão desde a interação entre a umidade do ar e a temperatura sobre a poluição atmosférica, a sensação térmica e a precipitação, as quais são responsáveis por regular o metabolismo dos organismos. Na Região Centro-Oeste do Brasil, estado de Goiás, nos meses de julho e agosto, já é possível perceber o impacto das alterações climáticas. Esse são meses de seca e baixa umidade, o que agrava os problemas na saúde.(5-7)

A umidade torna a atmosfera densa, não deixando ocorrer a dissipação dos poluentes, das bactérias e dos vírus, que, no período de baixa umidade, sobrevivem com facilidade. A emissão excessiva de poluentes tem causado vários prejuízos diretos para a saúde pública, como piora dos problemas respiratórios, das alergias respiratórias, oculares e dermatológicas, asma, dores de cabeça e ressecamento de vias aéreas superiores, levando a sangramento nasal, garganta seca e irritada, sensação de areia nos olhos que ficam hiperemizados, ressecamentos de pele e fadiga. Esses problemas de saúde se agravam quando a umidade do ar não está no nível ideal recomendado pela Organização Mundial da Saúde (OMS), o qual deve ser em torno de 40% a 70%. Além desse nível ideal de umidade, também há uma classificação dos estados de criticidade da baixa umidade do ar, de acordo com uma escala psicrométrica: umidade entre 21% e 30% é considerada estado de atenção; entre 12% e 20%, alerta e abaixo de 12%, emergência.(2,8-11)

Enquanto a umidade está abaixo do ideal, é possível e necessária a adoção de medidas assistencialistas, com o objetivo de minimizar os agravos à saúde. Tais medidas envolvem o uso de umidificador de ar, balde com água e toalha molhada. No entanto, não sabemos qual desses recursos possui uma eficácia significante, a fim de reduzir os impactos causados pela baixa umidade do ar, e nem a localização ideal desses dispositivos dentro dos cômodos.

Sabe-se que a umidade do ar é um problema de questão mundial, principalmente em épocas de seca. A baixa umidade causa efeito no bem-estar da população, afetando o crescimento, o desenvolvimento e a qualidade de vida. Além disso, esses níveis desfavoráveis de umidade relativa aumentam a prevalência de doenças infecciosas, comprometendo a população e tornando os patógenos mais contagiosos. Assim, este trabalho visa elucidar qual seria a opção recomendada e qual deve ser a distância do recurso ao indivíduo para melhorar o bem-estar populacional em épocas de seca e baixa umidade.

OBJETIVO

Esclarecer quais recursos são eficazes para melhorar a umidade do ar em época de seca e indicar a melhor distância que esses recursos devem ficar do indivíduo, visando obter o nível da umidade do ar adequado para melhorar a qualidade de vida do ser humano.

MÉTODOS

Definamente amostral

O estudo foi realização no município de Goiânia, estado de Goiás, Brasil. Para avaliar qual o tratamento mais eficaz na regulação da umidade do ar, foram analisados três quartos idênticos de 15m² na mesma casa com acomodações semelhantes dos móveis no ambiente interno de uma edificação residencial, no Bairro Jardins Milão. Os higrômetros INKBIRD foram fixados nessas acomodações, permitindo a análise da variação da umidade do ar ao longo do dia.
Foram estabelecidas três formas de tratamento: umidificador, toalha molhada e balde com água. O umidificador utilizado foi o da marca G-Tech ultrassônico, com sistema de pavio de pano para tirar água do reservatório, que fazia com que o ar absorvesse a umidade, e comportava 3L de água. A toalha era 100% de algodão, da marca Karsten. Media 70cmx140cm, correspondendo ao tamanho de uma toalha de banho, e era molhada, em média, com 1L de água. O balde continha 5L de água.

Em cada quarto, foram colocados dois higrômetros equidistantes do ocupante do quarto e de seu respectivo tratamento, variando entre 1m e 2m de distância da cabeceira da cama dentro de cada cômodo. Além disso, dois ambientes foram utilizados como controle, sendo um externo (próximo à garagem) e outro fechado interno, totalizando cinco cômodos para o estudo. Os cômodos foram monitorados entre o final do mês de julho até final do mês de agosto de 2019.

Análise estatística

Os dados coletados em percentagem de umidade, em cada cômodo, foram divididos em quatro períodos: madrugada, manhã, tarde e noite. Foram, então, calculados valores médios de umidade para cada período. Os horários estabelecidos para realizar os cálculos foram com intervalo de 2 horas, a partir de 1h45 até 23h45. Os horários determinados para os cálculos no período da madrugada foram 1h45, 3h45 e 5h45; pela manhã foram: 7h45, 9h45 e 11h45; pela tarde: 13h45, 15h45 e 17h45, e 19h45, 21h45 e 23h45 pela noite.

Foi determinada a realização da análise de variância (ANOVA) de medidas repetidas para avaliar a diferença entre os tratamentos utilizados (umidificador, toalha molhada e balde de água). Dessa forma, assumiu-se a dependência espacial e temporal coletada nos cinco cômodos. Entretanto, a pré-análise com esse teste indicou a colinearidade entre os fatores monitorados: período do dia (madrugada, manhã, tarde e noite) e tipo tratamento (umidificador, toalha molhada, balde de água, área interna e área externa).

Foi construído um modelo linear misto, utilizando como variável resposta a umidade, e tipo de tratamento e período do dia como variáveis preditoras, sendo considerados os fatores fixos do modelo misto (ver fórmula a seguir). O cômodo foi considerado o fator aleatório da análise, por ter características particulares em cada um dos espaços, as quais poderiam influenciar na umidade observada. Além disso, foi considerado o valor de autocorrelação, já que o experimento foi repetido nos mesmos cômodos ao longo do estudo.

Por último, foi realizada a ANOVA para avaliar se havia efeito da distância dos dois tratamentos mais eficientes na qualidade da umidade do ar. Os tratamentos variaram entre 1m e 2m de distância da cama dentro de cada cômodo. As análises foram realizadas em plataforma R versão 3.6.1 (2019), desenvolvida pelo R Development Core Team e disponível gratuitamente em http://www.r-project.org. Esse software funciona como uma linguagem, na qual os códigos utilizados para as análises estatísticas são abertos e o usuário pode adaptá-los conforme sua necessidade.

RESULTADOS

De forma geral, houve variação dos tratamentos, bem como nos períodos do dia. O menor valor de umidade (27,40%) foi observado na área externa no período da tarde, enquanto o maior valor (82,60%) foi observado utilizando o umidificador no período da manhã (Figura 1). Os períodos da madrugada e da manhã possuíram valores mais semelhantes de umidade.

As estimativas do modelo linear misto, ou seja, os valores preditos, indicaram um valor médio de umidade de 59,35%, com erro padrão de 1,44% (Tabela 1). Ao considerar os tipos de tratamento, o umidificador teve 7,50% a mais de umidade em relação à área externa (controle externo), onde nenhum tratamento foi uti-
Tabela 1. Resultados estimados pelo modelo misto da percentagem de umidade

Variáveis de interesse	Estimativa (%)	Erro padrão	Graus de liberdade	t	Valor de p
Média de umidade estimada*	59.359.45	1.447926	765	40.99619	<0.001
Tipo de tratamento					
Área interna	0.49164	1.972249	3	0.24925	0.8193
Balde	-1.14567	1.73018	3	-0.66217	0.5552
Toalha*	5.71607	1.700381	3	3.36065	<0.05
Umidificador*	7.50219	1.893019	3	3.96308	<0.05
Período do dia					
Manhã*	2.7748	1.023238	765	2.71166	<0.01
Noite*	-9.47327	1.035618	765	-9.14745	<0.001
Tarde*	-21.32938	1.174819	765	-18.1544	<0.001
Interação tratamento e período do dia					
Área interna/manhã	-2.28859	1.392474	765	-1.64354	0.1007
Balde/manhã	-1.51569	1.221903	765	-1.24044	0.2152
Toalha/manhã	-1.30347	1.207068	765	-1.08553	0.278
Umidificador/manhã	-1.84721	1.341647	765	-1.37882	0.169
Área interna/tarde*	17.34471	1.598366	765	10.85153	<0.001
Balde/tarde*	19.25042	1.402671	765	13.72412	<0.001
Toalha/tarde*	16.69063	1.378318	765	12.10935	<0.001
Umidificador/tarde*	12.70819	1.541154	765	8.24589	<0.001
Área interna/noite*	5.5857	1.408104	765	3.96682	<0.05
Balde/noite*	8.90441	1.239974	765	7.12346	<0.001
Toalha/noite*	6.49696	1.214826	765	5.3528	<0.01
Umidificador/noite*	3.12167	1.360835	765	2.29394	<0.05

* Resultados significativos.

lizado. A toalha teve 5,71% a mais de umidade que a área externa. As áreas externa e interna e o balde de água, apesar de possuírem médias diferentes (estimativa %), não se diferenciam significativamente (p>0,05), não havendo variação.

Todos os períodos do dia se diferenciaram significativamente (p<0,05), sendo o período da tarde aquele que registrou menor média de umidade (cerca de 21,32% a menos quando comparado com a madrugada).

A área externa, onde não houve nenhum tipo de tratamento e, possivelmente, o ambiente mais exposto a evapotranspiração, foi a que mais se diferenciou entre os períodos do dia (Figura 2). Já a variação entre os períodos foi menor ao utilizar o balde com água. Os resultados estimaram valores mais altos de umidade com uso do umidificador durante a madrugada e a manhã. Isso é importante, pois, a depender da funcionalidade do quarto (para dormir, por exemplo), o uso do umidificador pode ser o mais indicado.

Se o umidificador e a toalha os tratamentos considerados mais eficientes, a análise de variância não constatou diferença entre os tratamentos (Figura 3), porém houve efeito significativo da distância sobre a umidade (gl=1; F=4.663; p=0.0315). A distância de 1m foi mais eficiente no aumento e/ou manutenção da umidade do ar.

DISCUSSÃO

A escolha dos higrômetros para o estudo experimental se deu por ele ser capaz de fornecer um monitoramento preciso das condições de temperatura e umidade, mantendo na memória os registros das amostras medidas ao longo dos dias, mesmo com distância significativa entre o aparelho e o celular que está conectado com ele via Bluetooth, assegurando, assim, alta especificidade da
amostra. A umidade do ar é uma variável que influencia de maneira multifatorial no equilíbrio do ecossistema e do organismo de todos os seres vivos, logo sua análise seria mais complexa. A segurança técnica de diversas medidas assistencialistas é questionada, pois não se sabe ao certo qual medida é realmente mais eficaz para ser exposta em manchetes e revistas voltadas para a população em geral, a fim de informar o que realmente funciona.

Novos estudos, que avaliem quais medidas adaptativas são realmente mais eficazes, são necessários, pois a qualidade de vida e a saúde da população são dois aspectos da inter-relação entre cidade e meio ambiente raramente abordados, sendo o ser humano o ponto fundamental – mas esquecido da questão ambiental nas grandes metrópoles. É de extrema importância uma devolutiva eficaz sobre métodos de baixo custo para grandes metrópoles. É de extrema importância uma fundamental – mas esquecido da questão ambiental nas raramente abordados, sendo o ser humano o ponto de inter-relação entre cidade e meio ambiente.

O experimento, além de comprovar que o umidificador exerce sua função de aumentar a umidade do ar com maestria, também demonstrou que a toalha molhada é um tratamento eficiente, podendo levar essas duas devolutivas para a população, visto que não houve diferença significativa entre esses tratamentos, de acordo com a análise de variância. O balde com água não impactou a ponto de tornar a umidade mais adequada para o bem-estar populacional.

Os recursos ideais seriam o umidificador ou a toalha molhada. No entanto, existem cuidados básicos a serem adotados em relação ao umidificador. Isso se deve ao acúmulo de umidade e poeira que ocorre em ambientes climatizados, e, portanto, a proliferação de micróbios e bactérias é muito maior do que em ambientes abertos. Medidas cabíveis devem ser adotadas em relação ao umidificador, uma vez que não é recomendado deixá-lo ligado no quarto durante toda a noite, pois, sem a iluminação solar, a umidade do ar já se eleva naturalmente, e o excesso de umidade promovida pelo aparelho torna-se um problema, culminando no aparecimento de mofo e bolor. Dentre os principais sintomas de pessoas ocupantes dos ditos ambientes, destacam-se as infecções, as reações alérgicas e irritantes, as dores de cabeça e articulares, a irritação nos olhos, no nariz e na garganta, a tosse seca, as dermatites, a fadiga, a solonência, a dificuldade de concentração, a sensibilidade a odores, a congestão, a sinusite, a falta de ar, a rinite alérgica, a asma brônquica, entre outros que aumentam mais ainda nessa época de seca. O ideal seria deixá-lo ligado no quarto de 3 a 4 horas seguidas e desligá-lo antes de deitar. Porém, questiona-se como seria possível a pequena elevação na umidade gerada pelo umidificador causar esses problemas, pois a umidade ainda permanece em nível abaixo do recomendado pela OMS. Outra observação em relação ao uso do umidificador seria a necessidade de lavá-lo a cada uso, a fim de evitar que ele seja foco de fungos e outros microrganismos que serão jogados no ar.

É notória a evidente limitação de estudo sobre quais medidas assistencialistas são realmente eficazes e seus impactos na vida da população. No entanto, por meio do conhecimento prévio e da somatória proporcionada pela coleta de dados de acordo com os higrômetros utilizados, foi possível analisar o que realmente funciona e é eficaz. Identificam-se ainda duas possíveis medidas assistencialistas de muita eficácia para população, que podem viabilizar um melhor direcionamento para a estratégia de educação ambiental e métodos de prevenção para população em épocas de seca e baixa umidade, diminuindo, portanto, o impacto de doenças.

CONCLUSÃO
Este trabalho apresentou os resultados de uma avaliação comparativa do desempenho de três medidas assistencialistas para promover a umidificação do ambiente interno de uma edificação residencial em época de baixa umidade entre os meses de julho e agosto de 2019 em Goiânia, Goiás na Região Centro-Oeste. O umidificador e a toalha foram os tratamentos considerados mais eficientes, e houve efeito significativo da distância sobre a umidade. A distância mais eficiente no aumento e/ou manutenção da umidade do ar foi de 1m. Assim, ambientalmente sustentável e economicamente viável, o uso de toalhas molhadas para uma população de classe média baixa pode induzir a melhores noites de sono, mesmo nas condições de baixa umidade e seca no Centro-Oeste brasileiro.

INFORMAÇÃO DOS AUTORES
Guerra LP: http://orcid.org/0000-0002-3521-707X
Andrade LM: http://orcid.org/0000-0003-2484-7321
Joner DC: http://orcid.org/0000-0003-2591-6130
Strozzi D: http://orcid.org/0000-0003-3851-5635

REFERÊNCIAS
1. Souza CL, Andrade CS. Saúde, meio ambiente e território: uma discussão necessária na formação em saúde. Cienc Saude Colet. 2014;19(10):4113-22.
2. Patrício KP, Oliveira TS, Ribeiro JT, Medeiros TM, Cruvinel MC, Miguel MM, et al. Meio ambiente e saúde no Programa PET-Saúde: interfaces na atenção básica. Rev Bras Educ Méd. 2011;35(3):341-9.
3. Patz JA, McGeehin MA, Bernard SM, Ebi KL, Epstein PR, Grambsch A, et al. The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U. S. National Assessment. Environ Health Perspect. 2000;108(4):367-76.

4. Fonseca AF. Ambiente e saúde: visão de profissionais da saúde da família. Ambient Soc. 2012;15(2):133-50.

5. Saldiva P, Ogura AT, Alves Filho AP, Braga AL, Szwarc A, Rutkowski EW, et al. Meio ambiente e saúde: o desafio das metrópoles. São Paulo: Instituto saúde e sustentabilidade; 2010. p. 200.

6. Meyer B. Indoor Air Quality. Boston (MA): Addison-Wesley Pub; 1983.

7. Jornal O Globo. Campinas e região (EPTV). Estudo indica 392 mil fungos e bactérias em climatizadores e 22 mil em umidificadores. Campinas (SP): G1; 2019 [citado 2019 Jun 8]. Disponível em: https://g1.globo.com/sp/campinas-regiao/noticia/2019/06/08/estudo-indica-ate-392-mil-fungos-e-bacterias-em-climatizadores-e-22-mil-em-umidificadores-veja-alerta.ghtml

8. Patz JA, Hahn MB. Climate change and human health: a one health approach. Curr Top Microbiology Immunology. 2013 366:141-71. Review.

9. Centro de Gerenciamento de Emergências Climáticas da Prefeitura de São Paulo (CGE). Umidade do ar. Umidade relativa do ar. São Paulo: CGE; 2019 [citado 2019 Dez 2]. Disponível em: https://www.cgesp.org/v3/umidade-relativa-do-ar.jsp

10. Xiog Y, Meng QS, Gao J, Tang XF, Zhang HF. Effects of relative humidity on Animal health and welfare. J Integr Agric. 2017;16(8):1653-8. Review.

11. Brandão AM, Russo PR. Qualidade do ar e saúde pública: uma contribuição metodológica. In: V Simpósio Brasileiro de Climatologia Geográfica. 1 de janeiro de 2002. Anais... Curitiba: UFPR; 2002.

12. Juras IA, Machado GS. A relação entre a saúde da população e a conservação do meio ambiente. In: Ganem RS. Políticas setoriais e meio ambiente. Brasília (DF): Câmara dos Deputados; 2015. p. 177-210. [Série temas de interesse do Legislativo; n. 28] [citado 2020 Ago 8]. Disponível em: https://www2.camara.leg.br/atividade-legislativa/estudos-e-notas-technicas/publicacoes-da-conselhoria-legislativa/areas-da-conle/tema19/a-relacao-entre-a-saude-da-populacao-e-meio-ambiente_juras-e-machado_politicas-setoriais

13. Laboratório Industrial Brasileiro de Biologia e Síntese (Libbs). Cuidados com o umidificador de ar. São Paulo: Libbs; 2017 [citado 2019 Jan 16]. Disponível em: https://www.libbs.com.br/saude/cuidados-umidificador/

14. McManus N. National Institute for Occupational Safety and Health (NIOSH). Fatality and injury record for cases related to confined spaces (NIOSH Pub. No.10947). San Diego (CA): Safety Sciences; 1978.

15. Gutiérrez C. Pacto Ético Empresarial de Panamá: Instaurar El Actuar Ético Empresarial En Una Forma Sostenible Y Duradera. In: United States International Trade Administration. Ética comercial: manual sobre la administración de una empresa comercial responsable. Washington D.C.: Dept. de Comercio de los Estados Unidos, International Trade Administration; 2007. p. 167-9.