ON THE 2-DIVISIBILITY OF CERTAIN HEENGER POINTS

CARLOS CASTAÑO-BERNARD

Abstract. Let E be an elliptic curve defined over the rationals and let N be its conductor. Assume N is prime. In this paper we give numerical evidence that suggests some conjectures on the 2-divisibility of certain sums of Heeneger points of discriminant D dividing $4N$ on the elliptic curve E. One of these conjectures suggests a possible link between the parity of the eigenvalue $a_A(2)$ and the parity of the Šafarevič-Tate group $\Sha(A)$ of certain elliptic curves A of square conductor.

Contents

1. Preliminaries 1
2. The conjectures 3
3. Further remarks 8
References 10

1. Preliminaries

Let E is an elliptic curve over \mathbb{Q}. Using Tate’s algorithm [12] we may compute a global minimal Weierstraß equation

$$Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6$$

the conductor N_E of E, the local Tamagawa numbers c_p for $p|N$, and the minimal discriminant Δ_E. We assume N_E odd to simplify the discussion. The L-function of E is given by

$$L(E, s) = \sum_{n=1}^{\infty} a_E(n)n^{-s} = \prod_{p \text{ prime}} (1 - a_E(p)p^{-s} + \delta_p p^{1-2s})^{-1},$$
where \(a_E(p) = p + \delta_p - \#(E_p) \), with \(\delta_p = 0 \) if \(E \) has bad reduction at \(p \) and 1 otherwise. By the work of Wiles [13] and Breuil-Conrad-Diamond-Taylor [3] we know that

\[
(1.2) \quad f(\tau) = \sum_{n=1}^{\infty} a_E(n)q^n \quad (q = e^{2\pi \tau})
\]

is a normalized newform of weight 2 and level \(N_E \). Let \(E_f \) be the elliptic curve over the field of complex number \(\mathbb{C} \) determined by the periods of

\[
(1.3) \quad \omega_f = 2\pi if(\tau)d\tau,
\]

regarding \(\omega_f \) as a (holomorphic) differential on the modular curve \(X_0(N) \). By the work of Mazur and Swinnerton-Dyer [11] we know that \(E_f \) may be provided with a \(\mathbb{Q} \)-structure such that \(L(E_f, s) = L(f, s) \) and such that the natural map from \(X_0(N) \) to \(E_f \) sending \(\infty \) to the identity element \(O \) of \(E_f \) is defined over \(\mathbb{Q} \). In particular, by Faltings’ isogeny theorem [5] the curves \(E \) and \(E_f \) are isogenous over \(\mathbb{Q} \). Thus there is a non-constant morphism

\[
(1.4) \quad \varphi : X_0(N) \longrightarrow E.
\]

defined over \(\mathbb{Q} \). Unless otherwise stated, let us assume the sign in the functional equation \(\Lambda(E, s) = \pm \Lambda(E, 2 - s) \) is “-”, where

\[
(1.5) \quad \Lambda(E, s) = N_E^{\frac{s}{2}}(2\pi)^{-s}\Gamma(s)L(E, s).
\]

In other words \(\varphi \) factors through the Atkin-Lehner quotient \(X_0^+(N) \) defined as \(X_0(N) \) modulo the involution \(w_N \). Now suppose we have a pair \((D, r)\) that satisfies the so-called Heegner condition\(^1\) i.e. \(D \) is the discriminant of an imaginary quadratic order \(\mathcal{O}_D \) of conductor \(f \) such that \(\gcd(N, f) = 1 \) and \(r \in \mathbb{Z} \) is such that

\[
(1.6) \quad D \equiv r^2 \pmod{4N}.
\]

So we have a proper \(\mathcal{O}_D \)-ideal \(\mathfrak{A} = \mathbb{Z}N + \mathbb{Z}\frac{-r + \sqrt{D}}{2} \subset \mathcal{O}_D \) and \(\mathcal{O}_D/\mathfrak{A} \cong \mathbb{Z}/N\mathbb{Z} \). Using Gross’s notation as in [6], for each proper \(\mathcal{O}_D \)-ideal \(\mathfrak{A} \) consider the Heegner point \(x = (\mathcal{O}_D, \mathfrak{A}, [\mathfrak{A}]) \), which lies in \(X_0(N)_H \), where \(H \) is the ring class field attached to \(\mathcal{O}_D \), and \([\mathfrak{A}] \) denotes the class of \(\mathfrak{A} \) in \(\text{Pic}(\mathcal{O}_D) \). To simplify our exposition let us assume \(E_{\mathbb{Q}} \cong \mathbb{Z} \). Define the weighted

\(^1\)This condition was introduced by Birch [2].
trace $t_{D,r,x}$ of $\varphi(x)$ on E by the equation

\begin{equation}
 u_D t_{D,r,x} = \sum_{\sigma \in \text{Gal}(H/K)} \varphi(x^\sigma) \in E_Q,
\end{equation}

where

\[u_D = \begin{cases}
\frac{1}{2} \#(O_D^x), & \text{if } \#(O_D^x) > 2, \\
2, & \text{if } \#(O_D^x) = 2 \text{ and } N|D, \\
1, & \text{otherwise.}
\end{cases} \]

and $K = \mathbb{Q}(\sqrt{D})$. Now define the generalized trace $y_{D,r,x} \in E_Q$ as the sum

\begin{equation}
 y_{D,r,x} = \sum_{e|D} t_{D,e} x^e
\end{equation}

where we define $t_{D,e} x^e = O_E$ if (D,e,x) does not satisfy the Heegner condition. Assume further that the derivative $L'(E,1) \neq 0$, so that E has analytic 1. By the work of Kolyvagin [10] we know that the rank of E is 1. To simplify the exposition assume E_Q is torsion free. Fix a generator g_E of the Mordell-Weil group E_Q of E over Q. Define $\beta_{D,r} \in \mathbb{Z}$ by the equation

\[(y_{D,r}^+)_f = \beta_{D,r} g_E, \]

where $(y_{D,r}^+)_f$ denotes the f-eigencomponent of $y_{D,r}^+$, and $y_{D,r}^+$ denotes the image of $y_{D,r}$ in the Jacobian $J_0^+(N)$ as in Gross, Kohnen and Zagier [8]. Since w_N acts as complex conjugation on $y_{D,r}$, we see $y_{D,r}^+$ is defined over Q, and the definition of $\beta_{D,r}$ makes sense. To ease notation we write β_D instead of $\beta_{D,r}$ if there is no risk of confusion.

2. The conjectures

Suppose N divides D. So taking the weighted trace associated to D involves dividing by 2 a sum over a Galois orbit over Q of points on E obtained as images of the Heegner points of discriminant D. Now consider in particular the discriminant $D = -4N$ and assume from now on that N is prime. Numerical evidence shown below strongly suggests that (at least) the f-eigencomponents $(y_{D,r}^+)_f$ of the generalised trace y_D may be further divided by 2 in $E(Q)$, provided N satisfies a certain congruence condition.\footnote{A consequence of Proposition 3.1 (p. 347) of Gross [7] is that the Heegner points involved in the generalised trace of discriminant $D = -4N$ are precisely the fixed points of the Fricke involution w_N. But we do not use this fact here.} But we shall find convenient to state a slightly stronger conjecture first.
Table 1. $\beta_{-N,E}$ such that $a_E(2) \in 2\mathbb{Z}$ and $N \equiv 3 \pmod{4}$ prime.

E	$a_E(2)$	β_{-N}	E	$a_E(2)$	β_{-N}
43A	-2	2	8419A	2	0
131A	0	0	8747A	0	-4
163A	0	-2	8803A	0	-2
347A	-2	-2	9539A	2	0
443A	0	-2	9587A	2	-2
467A	0	0	9811A	0	-4
811A	0	2	10859A	0	4
827A	0	2	10859B	-2	4
1019A	0	0	10987A	0	0
1019B	-2	-4	11867A	-2	6
1051A	0	0	11923A	0	-4
1259A	0	-2	11939A	0	-2
1747A	2	2	11939B	2	0
1811A	0	-2	12163A	2	4
1987A	0	-2	12619A	-2	-6
2539A	-2	4	13043A	0	0
2699A	0	0	13523A	2	0
3251A	0	2	15083A	-2	6
3259A	-2	-4	15091A	2	2
3259B	-2	-10	15131A	0	4
3347A	2	0	15227A	0	-2
3547A	0	-2	15971A	2	2
3851A	-2	0	16883A	0	2
3931A	0	-2	16963A	2	10
3947A	0	0	17387A	0	0
4051A	0	4	17387B	-2	-8
4507A	-2	-6	17483A	-2	6
4603A	-2	-2	17747A	2	2
5443A	2	0	17827A	0	4
5563A	0	4	18059A	0	0
6131A	2	0	18251A	-2	8
6691A	0	-8	18859A	-2	-2
7019A	-2	-2	19387A	0	-4
7187A	2	2	19387B	0	-6
7283A	0	0			
Conjecture 2.1. Assume that E is such that $N_E \equiv 3 \pmod{4}$. If $a_E(2)$ is even then β_{-N} is even. (See Table 1, below.)

By the work of Gross-Kohnen-Zagier [8] we know that for each prime p such that $\gcd(p, N) = 1$ we have

$$\beta_{p^2D,pr,\varphi} + \left(\frac{D}{p}\right) \beta_{D,r,\varphi} = a_E(p)\beta_{D,r,\varphi},$$

provided D is fundamental. So clearly Equation 2.1, with $p = 2$ and $D = -N$ together with Conjecture 2.1 imply the following.

Conjecture 2.2. Assume that E is such that $N_E \equiv 3 \pmod{4}$. Then the integer β_{-4N} is even.

Example 2.3. Suppose E is elliptic curve 43A1 of Cremona’s Tables [4]. So E is an elliptic curve with minimal Weierstrass equation

$$Y^2 + Y = X^3 + X^2,$$

$E_{\mathbb{Q}} = \mathbb{Z}g_E$, where $g_E = (0,0)$, and the eigenvalue $a_E(2) = -2$. Note that the pair $(-43, 129)$ satisfies the Heegner condition. We may find $\beta_{-43,129} = (-1, -1) \in E(\mathbb{Q})$. So $y_{-N} = 2g_E$, and thus $\beta_{-N} = 2$, which is even. So Conjecture 2.1 holds for curve 43A1. Now using Equation 2.1 we have $\beta_{-43} = (a_E(2) - \left(\frac{-43}{2}\right)) \beta_{-43}$. So $\beta_{-43} = (-2 + 1)\beta_{-43} = -\beta_{-43} = -2g_E$. In other words $\beta_{-43} = -2$ and Conjecture 2.2 holds for curve 43A1.

Using the following lemma we will actually prove part of Conjecture 2.2.

Lemma 2.4. Let E be an elliptic curve of prime conductor N. If $N \equiv 7 \pmod{8}$, then $a(2) = \pm 1$.
Proof. By brute force it may be found the list of the reduction modulo \(p = 2 \) of all possible Weierstraß models of \(E \) over \(\mathbb{Z} \) together with the corresponding eigenvalue \(a(p) \):

\(a_1 \)	\(a_2 \)	\(a_3 \)	\(a_4 \)	\(a_6 \)	\(a(2) \)	\(a_1 \)	\(a_2 \)	\(a_3 \)	\(a_4 \)	\(a_6 \)	\(a(2) \)
0	0	1	0	0	0	1	0	0	0	1	-1
0	0	1	0	1	0	1	0	0	1	0	-1
0	0	1	1	0	-2	1	0	1	0	1	1
0	0	1	1	1	2	1	0	1	1	1	1
0	1	1	0	0	-2	1	1	0	0	1	1
0	1	1	0	1	2	1	1	0	1	0	1
0	1	1	1	0	0	1	1	1	0	0	-1
0	1	1	1	1	0	1	1	1	1	0	-1

By inspection we may see that \(a(2) \in 2\mathbb{Z} \) implies \(a_1 \in 2\mathbb{Z} \). Now suppose \((a_1, a_2, a_3, a_4, a_6)\) is a global minimal Weierstraß equation of \(E \) over \(\mathbb{Q} \), normalised so that \(|a_3| \leq 1\). A straightforward computation shows that

\[
\Delta \equiv 7a_6a_1^6 + a_4a_3^5a_1 + 7a_3^2a_2a_4^4 + 4a_6a_2a_4^4 + a_7^2a_4^4 + a_3^3a_1^3 + 4a_6a_3^3a_1^3 + 2a_4a_3^2a_2^2 + 4a_3^2a_2a_1^2 + 5a_3^4 \quad (\text{mod} \ 8),
\]

where \(\Delta \) is the discriminant of the Weierstraß equation. So \(a_1 \in 2\mathbb{Z} \) implies \(\Delta \equiv 5a_3^4 \) (mod 8). But we assumed \(N \) prime. Therefore \(\Delta = \pm N \) and \(a_3 = \pm 1 \). Thus \(N \equiv \pm 5 \) (mod 8), i.e. \(N \not\equiv 7 \) (mod 8) and \(a(2) \) is odd. In other words \(a(2) = \pm 1 \) and the proof of the lemma is now complete. \(\square \)

Theorem 2.5. If \(E \) is such that \(N \equiv 7 \) (mod 8), then \(\beta_{-AN} \) is even.

Proof. Since \(N \) is prime and \(N \equiv 7 \) (mod 8), Lemma 2.4 implies \(a_E(2) \) is odd. So if we set \(p = 2 \) and \(D = -N \) in Equation 2.1 we see \(\beta_{-AN,E} \) is even. \(\square \)

Remark 2.6. The entries of Table 2 are again the numbers \(\beta_{-N} \), for prime \(N \leq 20000 \) such that \(N \equiv 3 \) (mod 4), now with \(a_E(2) \) odd. In sharp contrast with Table 1, in Table 2 we may see examples of both, even \(\beta_{-N} \) and odd \(\beta_{-N} \). There are 25 even \(\beta_{-N} \) and 33 odd \(\beta_{-N} \).

Let \(\text{III}(E) \) be the Šafarević-Tate group of \(E \) over \(\mathbb{Q} \) and let \(E^D \) be the twist of the elliptic curve \(E \) associated to a fundamental discriminant \(D \). Conjecture 2.1 suggests the following.
Table 2. \(\beta_{-N,E} \) such that \(a_E(2) = \pm 1 \) and \(N \equiv 3 \pmod{4} \) prime.

\(E \)	\(a_E(2) \)	\(\beta_N \)	\(E \)	\(a_E(2) \)	\(\beta_N \)
79A	-1	1	7723A	1	5
83A	-1	1	8167A	1	-1
331A	-1	4	8623A	1	3
359A	1	2	9127A	-1	-4
359B	-1	0	9491A	-1	4
431A	-1	1	9811B	-1	-1
443B	-1	1	10163A	1	0
503A	1	1	10567A	1	-3
659A	1	1	10799A	1	5
1091A	-1	-3	11119A	1	-1
1439A	1	1	12007A	1	13
1607A	-1	-1	12227A	1	-5
3023A	-1	1	12547A	1	-2
3163A	1	-4	13451A	-1	-7
3391A	-1	1	13619A	-1	-2
3803A	1	3	13723A	-1	10
4159A	1	0	13723B	-1	4
4159B	1	-6	15551A	1	1
4799A	-1	2	15859A	-1	1
4799B	-1	6	16411A	1	4
5503A	-1	-3	17299A	-1	-6
5867A	1	0	18059B	1	2
5987A	1	2	18127A	1	-8
6011A	1	1	18523A	-1	-7
6199A	-1	-4	18899A	1	-5
6427A	1	1	19211A	1	-6
6823A	-1	-1	19583A	-1	-1
6967A	1	0	19927A	1	-3
7219A	-1	-1			
7699A	1	2			

Conjecture 2.7. Let \(E \) be as above and assume \(N \equiv 3 \pmod{4} \), with \(N \) prime such that \(\beta_{-N} \neq 0 \). If \(a_E(2) \) is even then \(|\text{III}(E^{-N})|\) is even.
Recall that for each fundamental discriminant D and each prime p
\begin{equation}
a_A(p) = \chi(p)a_E(p),
\end{equation}
where χ is the quadratic character attached to $\mathbb{Q}(\sqrt{D})$ and $A = E^D$. In particular, by putting $p = 2$ and $D = -N$ in Equation 2.2 (and noting $\chi(2) \neq 0$) we may see $a_A(2)$ and $a_E(2)$ have the same parity. Also note $N_A = N_E^2$, where N_A denotes the conductor of A. So Conjecture 2.7 suggests a possible link between the parity of $a_A(2)$ and the parity of $|\text{III}(A)|$, for certain elliptic curves A such that N_A is square.

Example 2.8. Suppose E is curve 43A1. (See Example 2.3, above.) With the help of Tate’s algorithm [12] it is easy to find a global minimal model for $A = E^D$ of conductor $N_A = 43$. Then using Cremona’s Tables [4] it may be found that A is in fact curve 1849D1 of conductor $N_A = 43^2$. A short calculation shows that the eigenvalue $a_A(2) = 2$. This is consistent with the (refined version of the) Birch and Swinnerton-Dyer conjecture, which predicts that $|\text{III}(A)| = 4$.

We have a further conjecture. Table 3 suggests the following.

Conjecture 2.9. If $N \equiv 1 \pmod{4}$ then the integers β_{-4N} and β_{-4} have the same parity. (See Table 3, below.)

3. Further remarks

A well-known result of Gross, Kohnen, and Zagier [8] implies that the integers β_D for $D = -3, -4, \ldots$ are the coefficients of the newform g of weight $\frac{3}{2}$, that corresponds (modulo multiplication by a scalar) to the newform f of weight 2 via the Shimura correspondence.\(^3\) Perhaps a divisibility theory of (suitably normalised) half-integral weight modular forms analogous to the divisibility theory of integral weight modular forms might lead to a proof of the conjectures stated above. However, not much is known about divisibility properties of modular forms of half-integral weight, apart from the work of Koblitz [9], and the work of Balog, Darmon, and Ono [1], which is about modular forms of half-integral weight and level $N = 4$. For example, by the work of Koblitz [9] we know that Ramanujan’s famous congruence
\[
\tau(n) \equiv \sigma_{11}(n) \pmod{691},
\]
\(^3\)Recall we assumed N prime; for N composite we would need to consider instead of newforms g of weight $\frac{3}{2}$, Jacobi newforms of weight 2 and index N.\)
Table 3. $\beta_{-4N,E}$ and β_{-4} with $N \equiv 1 \pmod{4}$ prime.

E	β_{-4}	β_{-4N}	E	β_{-4}	b_{-4N}	E	β_{-4}	b_{-4N}
37A	-1	3	3853A	1	3	11353A	1	-5
53A	-1	1	3877A	1	5	11789A	0	10
61A	1	1	4021A	1	-1	12097A	-1	1
89A	1	-1	4481A	-2	-10	12277A	-1	-1
101A	-1	1	4481B	0	4	12289A	-1	-7
197A	-1	-5	4493A	-2	4	12413A	1	3
229A	0	-2	5237A	-1	5	13093A	0	-6
269A	-1	3	5309A	-1	7	13537A	2	14
277A	-1	3	5417A	1	3	13789A	2	14
373A	1	1	5417B	4	-8	14173A	-1	1
557A	1	1	5417C	0	-4	14461A	0	-8
593A	1	-5	5653A	0	2	15013A	-1	9
677A	-1	-1	5717A	0	-2	15101A	-1	15
797A	0	0	6373A	-2	10	15349A	0	-2
829A	-1	-9	6689A	1	-5	15641A	1	-5
997A	0	8	7109A	1	-1	15661A	1	-31
1549A	1	5	7109B	1	3	15661B	1	-5
1949A	1	3	7213A	1	15	15773A	0	-6
1973A	1	1	7757A	1	3	15889A	-1	5
2017A	1	5	8069A	0	-4	16061A	-1	1
2089A	0	8	8101A	-3	-19	16189A	-1	-11
2141A	-1	-3	8597A	0	-4	16369A	0	-8
2161A	1	1	8929A	1	7	16649A	0	4
2221A	1	1	9109A	1	3	16649B	0	-4
2269A	1	-3	9413A	0	-10	16889A	-1	5
2341A	-1	1	9829A	-4	-4	16937A	1	3
2357A	1	-1	9941A	-1	-1	17093A	1	-5
2557A	0	2	10061A	-1	-3	17573A	0	12
2609A	1	1	10333A	1	-5	17837A	-1	9
2749A	1	-5	10333B	1	7	18097A	0	12
3109A	1	7	10733A	0	-2	18269A	0	-2
3229A	0	6	10789A	-1	-1	18397A	0	12
3313A	-1	3	10949A	2	-4	19469A	2	-4
3469A	-1	-7	11321A	1	-1			
3797A	-2	-10	11321B	0	-4			
where
\[\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n)q^n \]
and \(\sigma_k(n) = \sum_{d|n} d^k \) descends via the Shimura correspondence to the congruence
\[\alpha(n) \equiv -252c(n) \pmod{691}, \]
where \(\delta = \sum_{n=1}^{\infty} \alpha(n)q^n \) is the cusp form of weight \(\frac{13}{2} \) for \(\Gamma_0(4) \) that corresponds to \(\Delta \) under the Shimura lift, normalised so that \(\alpha(1) = 1 \) and \(c(n) \) is the coefficient of \(q^n \) in H. Cohen’s generalised class number Eisenstein series \(H_{13/2} = \sum_{n=1}^{\infty} c(n)q^n \).

References
1. A. Balog, H. Darmon, and K. Ono, Congruence for Fourier coefficients of half-integral weight modular forms and special values of L-functions, Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), Progr. Math., vol. 138, Birkhäuser Boston, Boston, MA, 1996, pp. 105–128.
2. B. J. Birch, Heegner points of elliptic curves, Symp. Mat., Ist. di Alta Mat., vol. 15, Academic Press, London, 1975, pp. 411–445.
3. C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over \(\mathbb{Q} \): wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic).
4. J. E. Cremona, Elliptic curves of conductor \(\leq 20,000 \),
http://www.maths.nott.ac.uk/personal/jec/ftp/data/.
5. G. Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (Storrs, Conn., 1984), Springer-Verlag, New York, 1986, pp. 9–27.
6. B. H. Gross, Heegner points on \(X_0(N) \), Modular forms (Durham, 1983), Horwood, Chichester, 1984, pp. 87–105.
7. Heegner points and the modular curve of prime level, J. Math. Soc. Japan 39 (1987), no. 2, 345–362.
8. B. H. Gross, W. Kohnen, and D. B. Zagier, Heegner points and derivatives of L-series. II, Math. Ann. 278 (1987), no. 1–4, 497–562.
9. N. Koblitz, p-adic congruences and modular forms of half integer weight, Math. Ann. 274 (1986), no. 2, 199–220.
10. V. A. Kolyvagin, On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (Tokyo), Math. Soc. Japan, 1991, pp. 429–436.
11. B. Mazur and H. P. F. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.
12. J. T. Tate, *Algorithm for determining the type of a singular fiber in an elliptic pencil*, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1975, pp. 33–52. Lecture Notes in Math., Vol. 476.

13. A. Wiles, *Modular elliptic curves and Fermat’s last theorem*, Ann. of Math. 141 (1995), no. 3, 443–551.

E-mail address: ccb1002@dpmms.cam.ac.uk