Clinical Medicine Insights: Cardiology

CASE REPORT

Subendocardial Fibrosis in Left Ventricular Hypertrabeculation-Cause or Consequence?

J. Ker¹, L. Du Toit-Prinsloo², W.F.P. Van Heerden³ and G. Saayman²

¹Department of Physiology, University of Pretoria, Pretoria, South Africa. ²Department of Forensic Medicine, University of Pretoria, Pretoria, South Africa. ³Department of Oral Pathology and Oral Biology, University of Pretoria, Pretoria, South Africa. Corresponding author email: jker@wol.co.za

Abstract: Left ventricular noncompaction has been classified as a primary cardiomyopathy with a genetic origin. This condition is morphologically characterized by a thickened, two-layered myocardium with numerous prominent trabeculations and deep, intertrabecular recesses. Recently, it has become clear that these pathological characteristics extend across a continuum with left ventricular hypertrabeculation at one end of the spectrum.

The histological findings include areas of interstitial fibrosis. We present a case of left ventricular hypertrabeculation which presented as sudden infant death syndrome. Histologically areas of subendocardial fibrosis was prominent and we propose that this entity may be a hidden cause of arrhythmic death in some infants presenting as sudden infant death syndrome, with areas of subendocardial fibrosis as possible arrhythmogenic foci.

Keywords: sudden infant death syndrome, hypertrabeculation, noncompaction, fibrosis

Clinical Medicine Insights: Cardiology 2011:5 13–16

doi: 10.4137/CMC.S6507

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.
Introduction
Left ventricular noncompaction has been classified as a primary cardiomyopathy with a genetic origin. Morphologically, this condition is characterized by a thickened, two-layered myocardium with numerous and prominent trabeculations and deep, intertrabecular recesses. Left ventricular noncompaction may be an isolated finding or it may be associated with a variety of other congenital heart defects. Left ventricular noncompaction is associated with numerous sarcomere mutations and this fact created the view that there is a spectrum spanning hypertrophic cardiomyopathy (especially apical HCM), dilated cardiomyopathy and left ventricular noncompaction.

Current diagnostic criteria for left ventricular noncompaction require the visualization of two distinct myocardial layers. The work of Stöllberger departs from this stipulation and he coined the term “left ventricular hypertrabeculation”. This entity, which can be viewed as a less severe form of noncompaction, is characterized by the presence of more than three trabeculations located apically to the papillary muscles.

Case Report and Discussion
We present a case report of a three month old male infant who presented with sudden infant death syndrome. The macroscopical characteristics of this case was reported before. This three month old non-caucasian died suddenly and unexpectedly at his day care centre. He did not have any known medical problems and no surgical procedures were ever performed. No known allergies were present and no known family history of sudden, unexpected death were present. Unfortunately the family members were lost to follow up, before electrocardiographic and echocardiographic screening could be performed to assess their risk for sudden unexpected death.

Postmortem examination of the heart revealed numerous apical trabeculations of the left ventricle (see Fig. 1). The right ventricle appeared perfectly normal. The left ventricular wall thickness measured 1 cm. No abnormalities were detected in any other organs during the postmortem examination and no thrombi were detected in the arterial system or the left ventricle.

Figure 1 clearly demonstrates more than three trabeculations in the left ventricle in a location apical to the papillary muscles. According to Stöllberger, this case which presented as a sudden infant death syndrome thus fulfills the criterion for left ventricular hypertrabeculation. Histological assessment of sections underlying the left ventricular trabeculae revealed prominent areas of subendocardial fibrosis (see Figs. 2, 3 and 4).

Figure 5 is a histological section of the apex of the left ventricle of a three month old male infant who also presented as a sudden infant death syndrome, but without left ventricular hypertrabeculation to serve as a control.
Subendocardial fibrosis in left ventricular hypertrabeculation

Endocardial fibrosis with prominent elastin deposition have been described in cases of left ventricular noncompaction.5,9,10 Currently, it is thought that ischaemia may play a major role in the pathogenesis of left ventricular noncompaction: MRI and thallium-201 scintigraphy has shown subendocardial and transmural perfusion defects which corresponds to areas of noncompacted myocardium.5,11–14 Reduced coronary flow reserve, indicating microvascular dysfunction has also been shown to be present in isolated ventricular noncompaction by PET.12 Currently, a “chicken and egg” dilemma exists regarding the pathogenesis of isolated ventricular noncompaction: either an impairment in the development of the myocardial microcirculation impairs the normal compaction process of the myocardium or vice versa.

In this case report we describe subendocardial fibrosis in a three month old infant with left ventricular hypertrabeculation. Current literature notes the presence of fibrosis in cases of ventricular noncompaction, this is the first case describing fibrosis in ventricular hypertrabeculation—the less severe form of noncompaction. Secondly, the presence of such striking subendocardial fibrosis implies that the involved areas in the left ventricle must experience ischaemia already in utero. Lastly, we propose that these fibrotic areas may act as the foci of ventricular arrhythmia as the underlying cause of death.

Contribution from Different Authors

J Ker did the literature review and writing. L Du-Toit-Prinsloo, WFP Van Heerden and G Saayman did the post-mortem analysis and histological assessment.

Disclosure

This manuscript has been read and approved by all authors. This paper is unique and is not under consideration by any other publication and has not been published elsewhere. The authors and peer reviewers of this paper report no conflicts of interest. The authors confirm that they have permission to reproduce any copyrighted material. Written consent was obtained from the patient or relative for publication of this study.
References

1. Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation. 2008;117:2893–901.
2. Jenni R, Rojas J, Oechslin E. Isolated noncompaction of the myocardium. N Engl J Med. 1999;340:966–7.
3. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36:493–500.
4. McNally E, Dellefave L. Sarcomere mutations in cardiogenesis and ventricular noncompaction. Trends Cardiovasc Med. 2009;19:17–21.
5. Sen-Chowdhry S, McKenna WJ. Left ventricular noncompaction and cardiomyopathy: cause, contributor or epiphenomenon? Curr Opin Cardiol. 2008;23:171–5.
6. Ker J, Du-Toit-Prinsloo L, van Heerden WFP, Saayman G. Sudden infant death syndrome and left ventricular hypertroebeculation—hidden arrhythmogenic entity? Clinical Medicine Insights. Cardiology. 2010;4:85–7.
7. Stölzberger C, Finsterer J, Blazek G. Left ventricular hypertroebeculation, noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol. 2002;90:899–902.
8. Finsterer J, Stöllberger C. Definite, probable, or possible left ventricular hypertroebeculation/noncompaction. Int J Cardiol. 2008;123:175–6.
9. Burke A, Mont E, Kutys R, Virmani R. Left ventricular noncompaction: a pathological study of 14 cases. Human Pathol. 2005;36:403–11.
10. Bleyl SB, Mumford BR, Brown-Harrison MC. Xq28-linked noncompaction of the ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet. 1997;72:257–65.
11. Soler R, Rodriguez E, Monserrat L, Alvarez N. MRI of subendocardial perfusion deficits in isolated left ventricular noncompaction. J Comput Assist Tomogr. 2002;26:373–5.
12. Jenni R, Wyss CA, Oechslin EN, Kaufmann PA. Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J Am Coll Cardiol. 2002;39:450–4.
13. Junga G, Kneifel S, von Smekal A. Myocardial ischemia in children with isolated ventricular noncompaction. Eur Heart J. 1999;20:910–6.
14. Hamamichi Y, Ichida F, Hashimoto I. Isolated noncompaction of the ventricular myocardium: ultrafast computer tomography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2001;17:305–14.

Publish with Libertas Academica and every scientist working in your field can read your article

“I would like to say that this is the most author-friendly editing process I have experienced in over 150 publications. Thank you most sincerely.”

“The communication between your staff and me has been terrific. Whenever progress is made with the manuscript, I receive notice. Quite honestly, I’ve never had such complete communication with a journal.”

“LA is different, and hopefully represents a kind of scientific publication machinery that removes the hurdles from free flow of scientific thought.”

Your paper will be:
- Available to your entire community free of charge
- Fairly and quickly peer reviewed
- Yours! You retain copyright

http://www.la-press.com