The Structure Fault-Tolerance of Enhanced Hypercube Networks

Dan JIN and Hong-mei LIU
China Three Gorges University, Yichang City, Hubei, China
*Corresponding author

Keywords: Enhanced hypercubes, Structure connectivity, Fault-tolerance.

Abstract. An important indicator of a network’s robustness is the connectivity of the network which is directly related to its reliability and fault tolerability. Let H be a connected subgraph of graph G, the H-structure-connectivity of graph G, denoted by \(\kappa(G, H) \), is the cardinality of a minimal set of subgraphs \(F=\{ J_1, J_2, \ldots, J_m \} \), such that every element of F is isomorphic to H, and \(G-F \) is disconnected. The H-substructure-connectivity of graph G, denoted by \(\kappa^s(G,H) \), is the cardinality of a minimal set of subgraphs \(F=\{ J_1, J_2, \ldots, J_m \} \), such that every is a connected subgraph of H, and \(G-F \) is disconnected. In this paper, the H-structure-connectivity \(\kappa(Q_{n,k}, H) \) and \(\kappa^s(Q_{n,k}, H) \) are considered in enhanced hypercube \(Q_{n,k} \) when \(H\in\{ P_1, P_2 \} \).

Introduction

In parallel and distributed systems, interconnection networks play an important role. An interconnection network topology structure can be modeled by graph \(G=(V, E) \), where \(V \) corresponds the set of processors and, \(E \) corresponds the set of communication links.

The hypercube and its variants, such as folded hypercube ([1]), enhanced hypercube ([2]–[6]), generalized hypercube ([7]), are important interconnection network architectures developed for multiprocessor system and large computation in industrial. This paper focus on the enhanced hypercube.

The connectivity \(\kappa(G) \) of a graph \(G \) is the minimum number of nodes such that \(G-\kappa(G) \) is disconnected. The connectivity is one of the most important measures of the reliability and fault-tolerance of networks. To more accurately measure the fault-tolerance of an interconnection network, [8] proposed the restricted \(h \)-connectivity. [9] introduced the g-extra connectivity. The g-extra connectivity of a graph \(G \), denoted by \(\kappa_g(G) \), is the minimum number of nodes so that \(G-\kappa_g(G) \) is disconnected and each component has more than \(g \) nodes. [10] suggested the structure connectivity and substructure connectivity recently. Let \(H \) be a connected subgraph of \(G \), \(F \) be a set of subgraph of \(G \) such that each element of \(F \) is isomorphic to \(H \). Then \(F \) is called a H-structure–cut if \(G-H \) is disconnected. The H-structure connectivity, \(\kappa(G, H)=\min\{|F|: F \text{ is H-structure–cut}\} \). Similarly, Let \(F \) be a set of subgraph of \(G \) such that every element of \(F \) is isomorphic to a connected subgraph of \(H \). Then \(F \) is called a H-substructure–cut if \(G-H \) is disconnected. The H-substructure connectivity , \(\kappa^s(G,H)=\min\{|F|: F \text{ is H-substructure–cut}\} \). The definition implies \(\kappa^s(G,H) \leq \kappa(G,H) \). Certainly, \(K_1 \)-structure connectivity and \(K_1 \)-substructure connectivity are just the connectivity.

Definitions and Preliminaries

A network is usually modeled by a connected graph \(G=(V; E) \), where \(V \) denotes the set of processors and \(E \) denotes the set of communication links between processors. Two vertices \(x, y \in V \) are adjacent if they are incident with a common edge. The set of vertices \(N_G(v) = \{ u : uv \in E \} \) is called the neighbor set of vertex \(v \) in \(G \). \(d(v) = |N_G(v)| \) is called the degree of vertex \(v \) in \(G \) when no loop occurs. Let \(A \subseteq V \), \(N_G(A) \) denotes the vertex set \(\cup_{v \in A} N_G(v) \setminus A \) and \(N_G[A] = N_G(A) \cup A \). Let \(P_k = v_1v_2 \ldots v_k \) and \(C_k = v_1v_2 \ldots v_k v_1 \) be a path and cycle of \(k \) nodes, respectively. The length of a path \(P \) is defined as the number of edges contained in \(P \). The distance \(d_G(x; y) \) between any two nodes \(x \) and \(y \) is the length of a shortest
path of joining x and y. The length of a shortest cycle is defined as the girth of graph G, denoted by $g(G)$. A graph G is bipartite if the vertex set V can be partitioned into two subsets V_1 and V_2, such that every edge in G joins a vertex in V_1 with a vertex in V_2. A graph G is bipartite if and only if G contains no odd cycle. Two graphs G_1 and G_2 are isomorphic, denoted as $G_1 \cong G_2$, if there is a one to one mapping f from $V(G_1)$ to $V(G_2)$ such that $xy \in E(G_1)$ if and only if $f(x)f(y) \in E(G_2)$.

An n-dimensional hypercube, denoted by Q_n, has 2^n vertices represented by the set $V(Q_n) = \{x_1 x_2 \cdots x_n : x_i = 0 \text{ or } 1; 1 \leq i \leq n\}$, two vertices $x_1 x_2 \cdots x_n$ and $y_1 y_2 \cdots y_n$ are adjacent if and only if $\Sigma_{i=1}^n |x_i - y_i| = 1$. Let $x, y \in Q_n$, the Hamming distance between x and y, denoted by $h(x; y) = \Sigma_{i=1}^n |x_i - y_i|$, is the number of different bits between the corresponding strings of x and y. Obviously, $d_{Q_n}(x; y) = h(x; y)$. The weight of a vertex x is defined as $w(x) = \Sigma_{i=1}^n |x_i|$ (or the number of 1’s in x).

Definition. Enhanced hypercube $Q_{n,k} = (V, E)$ is an undirected simple graph. $V(Q_{n,k}) = \{x_1, x_2, \ldots x_n : x_i \in \{0, 1\} \text{ for } 1 \leq i \leq n\}$. Two vertices $x = (x_1, x_2 \cdots x_n)$ and y are connected by an edge of E if and only if y satisfies one of the following two conditions:

(i) $y = x' = x_1 x_2 \ldots x_{i-1} \bar{x}_i x_{i+1} \ldots x_n, 1 \leq i \leq n$; or
(ii) $y = \bar{x} = x_1 x_2 \ldots x_{i-1} \bar{x}_i x_{i+1} \ldots x_n$.

Hypercube Q_n is a subgraph of enhanced hypercube $Q_{n,k}$, obtained by removing all edges of $\bar{x}x$ called complimentary edges of $Q_{n,k}$. The edges of type $x'x$ are called the i-dimensional edges of $Q_{n,k}$ or $Q_{n,k}$. Let $E_i = \{x' : x \in V(FQ_n)\} (i=1,2,\ldots,n)$, and $E_c = \{\bar{x} : x \in V(FQ_n)\}$.

Main Results

Lemma 1 ([11]). $Q_{n,k}$ is a bipartite graph if and only if n, k have the same parity. When n, k have different parity, $Q_{n,k}$ contains odd cycle, and the smallest odd cycle contains exactly one complementary edge and the length of $n - k + 2$.

Lemma 1 leads to lemma 2.

Lemma 2. The girth of $Q_{n,k}$ is $g(Q_{n,k}) = 4$ for $n \geq 3, 2 \leq k \leq n - 2$, and $g(Q_{n,n-1}) = 3$.

Lemma 3. Let x, y be any two vertices in $Q_{n,k}$ for $n \geq 4$, then one of the following holds.

(i) $x, y \in V(Q_{n,k})$ for $2 \leq k \leq n - 4$, then x and y have exactly two common neighbors if they have.

(ii) $x, y \in V(Q_{n,n-3})$

If $\bar{x} \in N_{Q_{n,n-3}}(x) \cap N_{Q_{n,n-3}}(y)$, then x, y have exactly two common neighbors.

If $x \notin N_{Q_{n,n-3}}(x) \cap N_{Q_{n,n-3}}(y)$, then x and y have exactly two common neighbors if they have.

(iii) $x, y \in V(Q_{n,n-2})$

\[
x = x_1 x_2 \ldots x_{i-1} x_i y_{i+1} \ldots x_n
\]

$y \notin x_1 x_2 \ldots x_{i-1} \bar{y}_i y_{i+1} \ldots x_{n}$

where $\{i,j\} \subseteq \{n-2,n-1\}$, then x and y have exactly two common neighbors if they have.

(iv) $x, y \in V(Q_{n,n-2})$

\[
x = x_1 x_2 \ldots x_{i-1} \bar{y}_i y_{i+1} \ldots x_n
\]

$y = x_1 x_2 \ldots x_{i-1} \bar{x}_i x_{i+1} \ldots y_{n}$

where $\{j,i\} \subseteq \{n-2,n-1\}$, then x and y have exactly two common neighbors if they have.

(v) $x, y \in V(Q_{n,n-1})$

If $y \notin \{x^{n-1}, x^n\}$, then x, y have exactly two common neighbors if they have.

If $y \in \{x^{n-1}, x^n\}$, then x, y have exactly two common neighbors $\{\bar{x}, y\}$.

Proof: Let $x = x_1 x_2 \ldots x_{i-1} x_i x_{i+1} \ldots x_n, y = x_1 x_2 \ldots x_{i-1} \bar{y}_i y_{i+1} \ldots x_{j-1} y_j y_{j+1} \ldots x_n$, then x, y have some common neighbours.

(i) x, y have exactly two common neighbours $x' = x_1 x_2 \ldots x_{i-1} \bar{y}_i x_{i+1} \ldots x_n, y' = x_1 x_2 \ldots x_{j-1} \bar{x}_j y_j x_{j+1} \ldots x_n$.

(ii) $x, y \in V(Q_{n,n-3})$

If $\bar{x} \in N_{Q_{n,n-3}}(x) \cap N_{Q_{n,n-3}}(y)$, then x, y have exactly two common neighbours $\{\bar{x}, y\} = N_{Q_{n,n-3}}(x) \cap N_{Q_{n,n-3}}(y)$.
If \(x \notin N_{Q_{n,k}}(x) \cap N_{Q_{n,k}}(y) \), and \(x, y \) have some common neighbours, then similar to case (i), \(x, y \) have exact two common neighbours.

(iii) The proof is similar to (i).

(iv) \(x, y \in V(Q_{n,n-2}) \), \(x = x_1x_2...x_{j-1}x_{j+1}...x_{n}\), \(y = x_1x_2...x_{j-1}x_{j+1}...x_{n}\), then \(\bar{x} = x_1x_2...x_{j-2}x_{j+2}...x_{n} \), \(\bar{y} = x_1x_2...x_{j-2}x_{j+2}...x_{n} \) and \(x, y \) have exact four common neighbors \(\{x^{n-2}, x^{n-1}, x^n, \bar{x}\} \).

(v) \(x, y \in V(Q_{n,n-1}) \), if \(y \notin \{x^{n-1}, x^n\} \), the proof is similar to (i) and \(x, y \) have exact two common neighbors. If \(y = x^{n-1}, x^n \), then \(x, y \) have exact two common neighbors \(\{ \bar{x}, \bar{y} \} \) because when \(y = x^{n-1} = x_1x_2...x_{n-2} \bar{x}_n...x_n \) (or \(x^n = x_1x_2...x_{n-2} \bar{x}_n...x_n \)), then \(\bar{y} = x^\ell \) (or \(x^n \)). The proof is finished.

The following lemma is benefit for our results.

Lemma 4 ([12]). If \(n \geq 4 \), then

\[
\kappa_s(Q_n) = \begin{cases}
(g+1)n - 2g - \left(\frac{n}{2} \right) & \text{for } 0 \leq g \leq n-4, \\
\frac{n(n-1)}{2} & \text{for } n - 3 \leq g \leq n.
\end{cases}
\]

By definition, \(\kappa(Q_{n,k};P_1) = \kappa'(Q_{n,k};P_1) = \kappa(Q_{n,k}) = n + 1 \) for \(n \geq 4 \).

Lemma 5. \(\kappa(Q_{n,k};P_2) \leq n \) and \(\kappa'(Q_{n,k};P_2) \leq n \) for \(n \geq 4 \).

Proof: Set \(x = 00...0 \) and \(y = x^\ell \) being two adjacent nodes in \(Q_{n,k} \), and let \(S = \{ (x', y') | 2 \leq i \leq n \} \cup \{ x, y \} \). Now \(S \) forms a \(P_2 \)-structure-cut of and \(|S| = n \). Thus, \(\kappa(Q_{n,k};P_2) \leq n \) and certainly \(\kappa'(Q_{n,k};P_2) \leq n \).

Lemma 6. \(\kappa(Q_{n,k};P_2) \geq n \) and \(\kappa'(Q_{n,k};P_2) \geq n \) for \(n \geq 4 \).

Proof: Let \(F = \{ P_1, \ldots, P_i, P_{i+1}, \ldots, P_j \} \) and \(|F| = l + t \leq n - 1 \) for \(l, k \geq 0 \). By contradiction, suppose that \(F \) is a cut of \(Q_{n,k} \), \(Q_{n,k} - F \) is disconnected, \(Q_{n,k} - F \) has at least two components, say, \(W \) is a smallest component of \(Q_{n,k} - F \). We consider the several cases as bollow.

Case 1. \(|V(W)| = 1 \), that is \(W \) is a isolated point, say \(V(W) = \{ u \} \), then the definition means \(|N_{Q_{n,k}}(u)| = n + 1 \). This implies that one has to delete at least \(n + 1 \) nodes to isolate the vertex \(u \), but it is impossible because of \(|F| < n \).

Case 2. \(|V(W)| \geq 2 \). With lemma 4 and \(Q_n \subseteq Q_{n,k} \), we have \(\kappa(Q_{n,k}) \geq \kappa(Q_n) = 2n - 2 \). This means that we have to delete more than \(n - 2 \) nodes to isolate the component \(W \) in \(Q_{n,k} \). But \(|F| < n \). It is a contradiction. Therefore \(\kappa'(Q_{n,k};P_2) \geq n \) and \(\kappa(Q_{n,k};P_2) \geq n \).

Lemma 5 and lemma 6 lead to theorem 7 hold.

Theorem 7. \(\kappa(Q_{n,k};P_2) = n \) and \(\kappa'(Q_{n,k};P_2) = n \) for \(n \geq 4 \).

Acknowledgement

This research is supported by the National Science Foundation of China under the projects of grant number 11371162 and grant number 11771172.

References

[1] H.M. Liu, M.Z. Tang and D. Yuan, Some new results on fault-tolerant cycles embedding in folded hypercubes, J. Combinatorial Mathematics and Combinatorial Computing. 97 (2016) 23-36.
[2] N. F. Tzeng and S. Wei, Enhanced hypercube, IEEE Transactions on Computer. 3 (2091) 284-294.

[3] M. Liu, H.M. Liu, Cycles in conditional faulty enhanced hypercube networks, J. Communications and Networks. No.14, Vol.2 (2012) 213-221.

[4] M. Liu, H.M. Liu, Paths and cycles embedding on faulty enhanced hypercube, Acta Mathematica Scientia. 33B(1) (2013) 227-246.

[5] Y.J. Zhang, H.M. Liu, M. Liu, Vertex-fault-tolerant cycle embedding on enhanced hypercube networks, Acta Mathematica Scientia. 33B(6) (2013) 1579-1588.

[6] Y.J. Zhang, H.M. Liu, Vertex-fault-tolerant cycle embedding on enhanced hypercube networks, Acta Mathematica Scientia. 32B(1) (2016) 187-198.

[7] X. Yang, J. Cao, J. Megson, Minimum neighborhood in a generalized cube, Information Processing Letters. 97(2006) 88-93.

[8] S. Latifi, M. Hegde, M.N. Pour, Conditional connectivity measures for large multiprocessor systems, IEEE Trans. Comput. Sci. 634(C) (1994) 218-222.

[9] J. Fábrega, M.A.Fiol, On the extra-connectivity of graphs, Discrete Math. 155(1-3)(1996) 49-57.

[10] C.K. Lin, L. Zhang, J. Fan, D. Wang, Structure connectivity and substructure connectivity of hypercube, Theoretical Computer Science. 634 (2016) 97-108.

[11] Hongmei Liu, The Structural Features of Enhanced Hypercube Networks, The 5th International Conference on Natural Computation (ICNC'09), 2009,8, Tianjin.

[12] W.H. Yang, J.X. Meng, Extraconnectivity of hypercubes, Appl. Math. Lett. 22 (6) (2009) 887-891.