Leaf oil of *Cinnamomum Subavenium* Attenuates Inflammation Via NF-κB/IκB-α Signaling Pathway

Jing Chen¹, Yongheng Zhao¹,² and Xincai Hao¹,²*

¹Department of Integrated Traditional and Western Medicine of Renmin Hospital, Hubei University of Medicine Shiyan 442000, China

²Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, College of Pharmacy, Hubei University of Medicine, Shiyan 442000, China

Introduction

Inflammation is an initial host immune reaction mediated by a series of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), which are produced by inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), respectively, and some related cytokines, such as tumor necrosis factor-a (TNF-α), interleun-1β (IL-1β), and interleukin-6 (IL-6) [1]. However, excessive or persistent generation of these inflammatory mediators and cytokines may cause diseases including arthritis, diabetes, atherosclerosis and some types of cancer [2]. Thus, properly regulated inflammatory responses are necessary for a healthy immune function.

Nuclear transcription factor kappa-B (NF-κB), an important eukaryotic transcription factor, regulates the expressions of various genes involved in cellular proliferation, inflammatory and immune responses. NF-κB exists mainly as a heterodimer of the Rel family p50 and p65 subunits, which is normally localized in the cytosol as an inactive complex associated with the NF-κB inhibitory protein (IκB) in unstimulated cells [3]. NF-κB binds to the 1κB family in the form of homo- or heterodimers, and the phosphorylated 1κBs are subsequently ubiquitinated and degraded by the proteasome, leaving NF-κB free to translocate to the nucleus [4]. IKK-α and IKK-β, the Kappa kinase (IKK), are responsible for phosphorylating 1κBs. Activation of the inhibitor of IKK complex, results in the breakdown of inhibitor of NF-κB (1κB) following inflammatory stimuli through direct phosphorylation of inhibitor of Kappa Ba (1κBa). NF-κB can be activated by exposure of cells to LPS or inflammatory cytokines such as TNF or IL-1, viral infection or expression of certain viral gene products, UV irradiation, B or T cell activation, and by other physiological and nonphysiological stimuli [5].

Cinnamomum subavenium. Miq, which belongs to the family Lauraceae, is a medium sized evergreen tree, found in central to southern mainland China, Burma, Cambodia, Taiwan, Malaysia and Indonesia. Its peel, fruit, and leaves have been used as folk medicine for the treatment of carcinomatous swelling, stomachache, chest pain, abdominal pain, hernia, diarrhea, rheumatism, nausea and vomiting [6]. Our previous study showed that CS-EO has potent anti-inflammatory effects, which was associated with the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression an [7]. In this study, we investigated whether anti-inflammatory effects of the CS-EO by though NF-κB/IκB-α signaling pathway.

Materials and Methods

Chemicals and Materials

LPS (*Escherichia coli* serotype 0111: B4) was purchased from Sigma-Aldrich Co. (USA). The NF-κB inhibitor BAY 11-7082 was purchased from Beyotime Institute of Biotechnology (China). The p-1κB-α, 1κB-α, IKK-α, IKK-β monoclonal antibodies were purchased from Cell Signaling Technology (USA).

*Corresponding Author: Hao xincai, College of Pharmacy Hubei University of Medicine Shiyan 442000, China, E-Mail: haoxincai@hotmail.com

Sub Date: March 28th, 2019, Acc Date: April 03rd, 2019, Pub Date: April 03rd, 2019

Citation: Hao Xincai, Jing Chen, Yonghen Z (2019) Leaf oil of *Cinnamomum Subavenium* Attenuates Inflammation Via NF-κB/IκB-α Signaling Pathway. BAOJ Pharm Sci 4: 53.

Copyright: © 2019 Hao Xincai. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Preparation of CS-EO

500 g of fresh leaves of *C. subavenium* were hydrodistilled for 4 h using a Clevenger-type apparatus. The collected oils were dried over anhydrous sodium sulfate and stored in amber vials at +4°C prior to analysis.

Cell Culture

RAW 264.7 murine macrophages cell line was obtained from Cell Culture Center of Chinese Academy of Medical Sciences (Beijing, China). RAW 264.7 cells were cultured in DMEM supplemented with 10% FBS, 100 U/mL penicillin and 100 mg/mL streptomycin at 37°C in a humidified atmosphere with 5% CO₂ and were subcultured every 3 days.

Preparation and Western Blot Analysis

The stimulated RAW 264.7 cells were collected and washed with cold PBS, the cells were lysated in a cold lysis buffer [10% glycerol, 1% Triton X-100, 1 mM Na₃VO₄, 1 mM EGTA, 10 mM NaF, 1 mM Na₄P₂O₇, 20 mM Tris buffer (pH 7.9), 100 mM b-glycerophosphate, 137 mM NaCl, 5 mM EDTA, and one protease inhibitor cocktail tablet (Roche, Indianapolis, IN, USA)] and kept on ice for 30 min. Cell debris was removed by centrifugation, and supernatants were rapidly frozen. The protein was detected by BCA method (Pierce, USA). Proteins from treated and untreated cell extracts were separated SDS-polycrylamide gel electrophoresis, and were electro blotted onto a PVDF membrane. The membranes were incubated overnight with locking solution (5% skim milk) at 48°C, followed by incubation for 4 h with a primary antibody. Blots were washed three times with Tween 20/Tris-buffered saline (TTBS) and incubated with a 1:1,000 dilution of horseradish peroxidase-conjugated secondary antibody for 1 h at room temperature. Blots were again washed three times with TTBS, and then developed by enhanced chemiluminescence (Amersham Life Science). The results of Western blot analysis were quantified by measuring the relative intensity compared to the control using Kodak Molecular Imaging Software (Version 4.0.5, Eastman Kodak Company, Rochester, NY) and represented in the relative intensities.

Result

Effects of CS-EO on NF-κB Activity in RAW 264.7 Cells

NF-κB transcription factor has been evidenced to play an important role in LPS-induced expression of inflammatory enzymes and cytokines, such as iNOS, COX-2, TNF-α, IL-1β, and IL-6 [8]. Previous study showed CS-LO had potent anti-inflammatory properties, which was related to inactivation of NF-κB, so now we examined how CS-EO modulated translocation of NF-κB. The effect of CS-EO (2.5, 5, 10, 20, and 40 μg/mL) on the LPS-stimulated degradation of IkB-α in RAW 264.7 cells was analysed by Western blotting with anti-IkB-α antibody. As shows in Figure 1, LPS-induced IkB-α degradation was significantly blocked by CS-EO pretreatment. Furthermore, we

![Figure 1. Effects of CS-EO on LPS-induced degradation of IkB-α, IKK-α, IKK-β and phosphorylation of IkB-α. (RAW 264.7 cells were pre-incubated with indicated concentrations of CS-EO for 2 h and stimulated with LPS (0.2 mg/mL) for 30 min. Total cellular proteins were then prepared and Western blotted for IkB-α, IKK-α, IKK-β and p-IkB-α using specific IkB-α, IKK-α, IKK-β and p-IkB-α antibodies. The β-actin protein was used as internal controls. NF-κB inhibitor of BAY 11-7082 (10 mM) was used as positive control.)](image-url)
determined whether this IkB-α degradation was related to IkB-α phosphorylation by Western blotting. The result showed that CS-EO also significantly reduced LPS-induced IkB-α phosphorylation (Figure 1). IKK-α and -β are upstream kinases of IkB in the NF-κB signal pathway [9], thus, the effects of CS-EO on LPS induced IKK-α, -β activation were examined by immunoblotting using IKK-α, -β antibodies. The result showed CS-EO inhibited the expression of IKK-α and IKK-β (Figure 1). The β-actin protein was used as internal control.

LPS stimulation elicits a cascade leading to the activation of NF-κB. Activated NF-κB regulates the transcription of response gene encoding inflammation associated proinflammatory cytokines and enzymes such as iNOS, COX-2, TNF-α, IL-1β, and IL-6 [10].

Funding Statement

This project was financially supported by Hubei Provincial Outstanding Young and Middle-aged Science and Technology Innovation Team Project (Grant No. T201813).

Discussion

We used GC/MS to identify 39 compounds in CS-EO, which accounts for 36.82% monoterpenes, 45.52% sesquiterpenes, and 15.06% non-terpenoids of the total, which belong to a mixed type because of lack of a dominant compound [7]. The previous study demonstrated that CS-LO not only inhibited iNOS and COX-2 expression and the subsequent production of NO and PGE2 but also reduced the expression of IL-1β, IL-6 and the inhibition of CS-LO was related to inactivation of NF-κB [7]. NF-κB dimmers is associated with cytoplasm IkB-α protein [11]. Once IkB-α is phosphorylated and degraded, NF-κB will be activated, and was followed by gene transcription [12]. In present study, the degradation and phosphorylation of IkB-α were inhibited in cells treated with CS-EO, and the IkB kinases(IIK-α and IKK-β) were also inhibited by CS-EO. IKK-α and IKK-β (known as the IkB kinases) are responsible for phosphorylating IkBs [13]. Our results showed IKK-α and IKK-β were inhibited by CS-EO. On the basis of these findings, we suggest that the inhibition of IKK-α and IKK-β by CS-EO underlies its inhibition of NF-κB activation.

Conclusion

CS-LO attenuated LPS-induced nuclear factor-κB (NF-κB) activation via suppressing the degradation of the inhibitor of κB (IκB) α, inhibitor of NF-κB kinase (IKK) α, and IKK-β and the phosphorylation of IkB-α. Hence, we considered that inhibition of CS-EO on the production of NO, PGE2, TNF-α, IL-1β, and IL-6 probably occurred via the NF-κB signaling pathway.

References

1. Chou S, Lai C, Lin C, Shih Y (2012) Study of the chemical composition, antioxidant activity and anti-inflammatory activity of essential oil from <i>Vetiveria zizanioides</i>. Food Chemistry 134(1): 262-268.

2. Martinez-Cayuela M (1995) Oxygen free radicals and human disease. Biochimie 77(3): 147-161.

3. Kim IT, Ryu S, Shin JS, Choi JH, Park HJ et al. (2012) Euscaphic Acid Isolated From Roots of Inhibits LPS-Induced Inflammatory Responses Via TLR4-Mediated NF- B Inactivation in RAW 264.7 Macrophages. J Cell Biochem 113(6): 1936-1946.

4. Jeong YE, Lee MY (2018) Anti-Inflammatory Activity of Populus deltoides Leaf Extract via Modulating NF-κB and p38/JNK Pathways Int. J. Mol Sci 19(12): E3746.

5. Baldwin AS Jr (1996) The NF-κB and IκB Proteins: New Discoveries and Insights Annu. Rev. Immunol 14: 649-683.

6. Liu C, Chen C, Huang A, Li J (2011) Subamolide A, a component isolated from< i>Cinnamomum subavenium</i>, induces apoptosis mediated by mitochondria-dependent, p53 and ERK1/2 pathways in human urothelial carcinoma cell line NTUB1. Journal of ethnopharmacology 137(1): 503-511.

7. Hao XC, Sun WG, Ke CB, Fuqian Wang, Yongbo Xue et al. (2019) Anti-inflammatory activities of leaf oil from Cinnamomum subavenium in vitro and in vivo. Bio Med Research International 10 pages. 8. Zhou HY, Shin EM, Guo LY, Youn UJ, Bae K, et al. (2008) Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-κB, JNK and p38 MAPK inactivation. European journal of pharmacology 586(1-3): 340-349.

8. Huang SS, Chiu CS, Chen HJ, Hou WC, Sheu MJ, et al. (2011) Antinociceptive activities and the mechanisms of anti-inflammation of asiatic acid in mice. Evidence-Based Complementary and Alternative Medicine.

9. Liou H (2002) Regulation of the immune system by NF-kappaB and IkappaB. Journal of biochemistry and molecular biology 35(6): 537-546.

10. Kim H, Chen F, Wang X, Chung HY, Jin Z (2005) Evaluation of antioxidant activity of vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents. Journal of agricultural and food chemistry 53(20): 7691-7695.
12. Zhou HY, Shin EM, Guo LY, Youn UJ, Bae K, et al. (2008) Anti-inflammatory activity of 4-methoxynonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-κB, JNK and p38 MAPK inactivation. European Journal of Pharmacology 586(1-3): 340-349.

13. Wang QS, Xiang Y, Cui YL, Lin KM, Zhang XF (2012) Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation. PloS one 7(3): e34122.