MADMM: a generic algorithm for non-smooth optimization on manifolds

Abstract
Numerous problems in machine learning are formulated as optimization with manifold constraints. In this paper, we propose the Manifold alternating directions method of multipliers (MADMM), an extension of the classical ADMM scheme for manifold-constrained non-smooth optimization problems and show its application to several challenging problems in dimensionality reduction, data analysis, and manifold learning.

1 Introduction
A wide range of problems in machine learning, pattern recognition, computer vision, and signal processing is formulated as optimization problems where the variables are constrained to lie on some Riemannian manifold. For example, optimization on the Grassman manifold comes up in multi-view clustering [19] and matrix completion [29]. Optimization on the Stiefel manifold arises in a plethora of applications ranging from classical ones such as eigenvalue problems, assignment problems, and Procrustes problems [7], to more recent ones such as 1-bit compressed sensing [9]. Problems involving products of Stiefel manifolds include shape correspondence [33], manifold learning [21], sensor localization [17], structural biology [18], and structure from motion recovery [5]. Optimization on the sphere is used in principle geodesic analysis [48], a generalization of the classical PCA to non-Euclidean domains. Optimization over the manifold of fixed-rank matrices arises in maxcut problems [28], sparse principal component analysis [28], regression [36], matrix completion [10] [45], and image classification [43]. Oblique manifolds are encountered in problems such as independent component analysis and joint diagonalization [2], blind source separation [31], and prediction of stock returns [26].

Though some instances of manifold optimization such as eigenvalues problems have been treated extensively in the distant past, the first general purpose algorithms appeared only in the 1990s [44, 47]. With the emergence of numerous applications during the last decade, especially in the machine learning community, there has been an increased interest in general-purpose optimization on different manifolds [3], leading to several manifold optimization algorithms such as conjugate gradients [20], trust regions [11], and Newton [44, 4]. Boumal et al. [11] released the MATLAB package Manopt, as of today the most complete generic toolbox for smooth optimization on manifolds, including a variety of manifolds and solvers.

In this paper, we are interested in manifold-constrained minimization of non-smooth functions. Recent applications of such problems include several formulations of robust PCA [13], the computation of compressed modes in Euclidean [40] and non-Euclidean [37] spaces, robust Euclidean embedding [15], synchronization of rotation matrices [46], and functional correspondence [27, 32].

Prior work Broadly speaking, optimization methods for non-smooth functions break into three classes of approaches. First, smoothing methods replace the non-differentiable objective function...
with its smooth approximation \[16\]. Such methods typically suffer from a tradeoff between accuracy (how far is the smooth approximation from the original objective) and convergence speed (less smooth functions are usually harder to optimize). A second class of methods use subgradients as a generalization of derivatives of non-differentiable functions. In the context of manifold optimization, several subgradient approaches have been proposed \[22, 35, 31, 8\]. The third class of methods are splitting approaches. Such methods have been studied mostly for problems involving the minimization of matrix functions with orthogonality constraints. Lai and Osher proposed the method of splitting orthogonal constraints (SOC) based on the Bregman iteration \[34\]. Neumann et al. \[37\] used a different splitting scheme for the same class of problems.

Contributions In this paper, we propose Manifold alternating direction method of multipliers (MADMM), an extension of the classical ADMM scheme \[23\] for manifold-constrained non-smooth optimization problems. The core idea is a splitting into a smooth problem with manifold constraints and a non-smooth unconstrained optimization problem. Our method has a number of advantages common to ADMM approaches. First, it is very simple to grasp and implement. Second, it is generic and not limited to a specific manifold, as opposed e.g. to \[24, 37\] developed for the Stiefel manifold, or \[31\] developed for the oblique manifold. Third, it makes very few assumptions about the properties of the objective function. Fourth, in some settings, our method lends itself to parallelization on distributed computational architectures \[12\]. Finally, our method demonstrates faster convergence than previous methods in a broad range of applications.

2 Manifold optimization

The term manifold- or manifold-constrained optimization refers to a class of problems of the form

$$\min_{X \in \mathcal{M}} f(X),$$

(1)

where \(f\) is a smooth real-valued function, \(X\) is an \(m \times n\) real matrix, and \(\mathcal{M}\) is some Riemannian submanifold of \(\mathbb{R}^{m \times n}\). The manifold is not a vector space and has no global system of coordinates, however, locally at point \(X\), the manifold is homeomorphic to a Euclidean space referred to as the tangent space \(T_X \mathcal{M}\).

The main idea of manifold optimization is to treat the objective as a function \(f : \mathcal{M} \to \mathbb{R}\) defined on the manifold, and perform descent on the manifold itself rather than in the ambient Euclidean space. On a manifold, the intrinsic (Riemannian) gradient \(\nabla_{\mathcal{M}} f(X)\) of \(f\) at point \(X\) is a vector in the tangent space \(T_X \mathcal{M}\) that can be obtained by projecting the standard (Euclidean) gradient \(\nabla f(X)\) onto \(T_X \mathcal{M}\) by means of a projection operator \(P_X\) (see an illustration below). A step along the intrinsic gradient direction is performed in the tangent plane. In order to obtain the next iterate, the point in the tangent plane is mapped back to the manifold by means of a retraction operator \(R_X\), which is typically an approximation of the exponential map. For many manifolds, the projection \(P\) and retraction \(R\) operators have a closed form expression.

A conceptual gradient descent-like manifold optimization is presented in Algorithm 1. For a comprehensive introduction to manifold optimization, the reader is referred to \[3\].

![Algorithm 1: Conceptual algorithm for smooth optimization on manifold \(\mathcal{M}\).](image-url)
3 Manifold ADMM

Let us now consider general problems of the form

$$\min_{X \in \mathcal{M}} f(X) + g(A X),$$ \hspace{1cm} (2)$$

where f and g are smooth and non-smooth real-valued functions, respectively, A is a $k \times m$ matrix, and the rest of the notation is as in problem (1). Examples of g often used in machine learning applications are nuclear-, L_1-, or $L_2,1$-norms. Because of non-smoothness of the objective function, Algorithm [1] cannot be used directly to minimize (1).

In this paper, we propose treating this class of problems using the alternating directions method of multipliers (ADMM). The key idea is that problem (2) can be equivalently formulated as

$$\min_{X \in \mathcal{M}, Z \in \mathbb{R}^{k \times n}} f(X) + g(Z) \text{ s.t. } Z = AX$$ \hspace{1cm} (3)$$

by introducing an artificial variable Z and a linear constraint. The method of multipliers [25, 42], applied to only the linear constraints in (3), leads to the minimization problem

$$\min_{X \in \mathcal{M}, Z \in \mathbb{R}^{k \times n}} f(X) + g(Z) + \frac{\rho}{2} \norm{AX - Z + U}_F^2$$ \hspace{1cm} (4)$$

where $\rho > 0$ and $U \in \mathbb{R}^{k \times n}$ have to be chosen and updated appropriately (see below). This formulation now allows splitting the problem into two optimization sub-problems w.r.t. to X and Z, which are solved in an alternating manner, followed by an updating of U and, if necessary, of ρ. Observe that in the first sub-problem w.r.t. X we minimize a smooth function with manifold constraints, and in the second sub-problem w.r.t. Z we minimize a non-smooth function without manifold constraints. Thus, the problem breaks down into two well-known sub-problems. This method, which we call Manifold alternating direction method of multipliers (MADMM), is summarized in Algorithm [2].

\begin{algorithm}
Initialize $k \leftarrow 1$, $X^{(1)} = X^{(1)}$, $U^{(1)} = 0$.
repeat
\begin{itemize}
 \item **X-step**: $X^{(k+1)} = \text{argmin}_{X \in \mathcal{M}} f(X) + \frac{\rho}{2} \norm{AX - Z^{(k)} + U^{(k)}}_F^2$
 \item **Z-step**: $Z^{(k+1)} = \text{argmin}_Z g(Z) + \frac{\rho}{2} \norm{AX^{(k+1)} - Z + U^{(k)}}_F^2$
 \item Update $U^{(k+1)} = U^{(k)} + AX^{(k+1)} - Z^{(k+1)}$ and $k \leftarrow k + 1$
\end{itemize}
until convergence;
Algorithm 2: Generic MADMM method for non-smooth optimization on manifold \mathcal{M}.
\end{algorithm}

Note that MADMM is extremely simple and easy to implement. The X-step is the setting of Algorithm [1] and can be carried out using any standard smooth manifold optimization method. Similarly to common implementation of ADMM algorithms, there is no need to solve the X-step problem exactly; instead, only a few iterations of manifold optimization are done. Furthermore, for some manifolds and some functions f, the X-step has a closed-form solution. The implementation of the Z-step depends on the non-smooth function g, and in many cases has a closed-form expression: for example, when g is the L_{1}-norm, the Z-step boils down to simple shrinkage, and when g is nuclear norm, the Z-step is performed by singular value shrinkage. ρ is the only parameter of the algorithm and its choice is not critical for convergence. In our experiments, we used a rather arbitrary fixed value of ρ, though in the ADMM literature it is common to adapt ρ at each iteration, e.g. using the strategy described in [12].

4 Results and Applications

In this section, we show experimental results providing a numerical evaluation of our approach on several challenging applications from the domains of dimensionality reduction, data analysis, pattern recognition, and manifold learning. All our experiments were implemented in MATLAB; we used the conjugate gradients and trust regions solvers from the Manopt toolbox [11] for the X-step. Time measurements were carried out on a PC with Intel Xeon 2.4 GHz CPU.
4.1 Compressed modes

Problem setting Our first application is the computation of compressed modes, an approach for constructing localized Fourier-like orthonormal bases recently introduced in [40]. Let us be given a manifold \(S \) with a Laplacian \(\Delta \), where in this context, ‘manifold’ can refer to both continuous or discretized manifolds of any dimension, represented as graphs, triangular meshes, etc., and should not be confused with the matrix manifolds we have discussed so far referring to manifold-constrained optimization problems. Here, we assume that the manifold is sampled at \(n \) points and the Laplacian is represented as an \(n \times n \) sparse symmetric matrix. In many machine learning applications such as spectral clustering [38], non-linear dimensionality reduction, and manifold learning [6], one is interested in finding the first \(k \) eigenvectors of the Laplacian \(\Delta \Phi = \Phi \Lambda \), where \(\Phi \) is the \(n \times k \) matrix of the first eigenvectors arranged as columns, and \(\Lambda \) is the diagonal \(k \times k \) matrix of the corresponding eigenvalues.

The first \(k \) eigenvectors of the Laplacian can be computed by minimizing the Dirichlet energy

\[
\min_{\Phi \in \mathbb{R}^{n \times k}} \text{trace}(\Phi^T \Delta \Phi) \quad \text{s.t.} \quad \Phi^T \Phi = I
\]

with orthonormality constraints. Laplacian eigenfunctions form an orthonormal basis on the Hilbert space \(L^2(S) \) with the standard inner product, and are a generalization of the Fourier basis to non-Euclidean domains. The main disadvantage of such bases is that its elements are globally supported. Ozoliš et al. [40] proposed a construction of localized quasi-eigenbases by solving

\[
\min_{\Phi \in \mathbb{R}^{n \times k}} \text{trace}(\Phi^T \Delta \Phi) + \mu \| \Phi \|_1 \quad \text{s.t.} \quad \Phi^T \Phi = I,
\]

where \(\mu > 0 \) is a parameter. The \(L_1 \)-norm (inducing sparsity of the resulting basis) together with the Dirichlet energy (imposing smoothness of the basis functions) lead to orthogonal basis functions, referred to as compressed modes that are localized and approximately diagonalize \(\Delta \). Lai and Osher [34] and Neumann et al. [37] proposed two different splitting methods for solving problem (6). Due to lack of space, the reader is referred to [34, 37] for a detailed description of both methods.

Solution Here, we realize that problem (6) is an instance of manifold optimization on the Stiefel manifold \(\mathbb{S}(n,k) = \{ X \in \mathbb{R}^{n \times k} : X^T X = I \} \) and solve it using MADMM, which assumes in this setting the form of Algorithm 5. The X-step involves optimization of a smooth function on the Stiefel manifold and can be carried out using standard manifold optimization algorithms; we use conjugate gradients and trust regions solvers. The Z-step requires the minimization of the sum of \(L_1 \)- and \(L_2 \)-norms, a standard problem in signal processing that has an explicit solution by means of thresholding (using the shrinking operator). In all our experiments, we used the parameter \(\rho = 2 \) for MADMM. For comparison with the method of [34], we used the code provided by the authors. The method of [37] we implemented ourselves. All the methods were initialized by the same random orthonormal \(n \times k \) matrix.

Algorithm 3: MADMM method for computing compressed modes.

Input	\(n \times n \) Laplacian matrix \(\Delta \), parameter \(\mu > 0 \)		
Output	\(k \) first compressed modes of \(\Delta \)		
Initialize	\(k \leftarrow 1 \), \(\Phi^{(1)} \leftarrow \text{random orthonormal matrix}, Z^{(1)} = \Phi^{(1)}, U^{(1)} = 0 \).		
repeat	\(\Phi^{(k+1)} = \text{argmin}_{\Phi \in \mathbb{S}(n,k)} \text{trace}(\Phi^T \Delta \Phi) + \frac{\rho}{2} \| \Phi - Z^{(k)} + U^{(k)} \|_F^2 \) \|		
	\(Z^{(k+1)} = \text{sign}(\Phi^{(k+1)} + U^{(k)}) \max\{0,	\Phi^{(k+1)} + U^{(k)}	- \frac{\rho}{2} \} \)
	\(U^{(k+1)} = U^{(k)} + \Phi^{(k+1)} - Z^{(k+1)} \) and \(k \leftarrow k + 1 \)		
until convergence;			

Results To study the behavior of ADMM, we used a simple 1D problem with a Euclidean Laplacian constructed on a line graph with \(n \) vertices. Figure 2 (top left) shows the convergence of MADMM with different random initializations. We observe that the method converges globally independently of the initialization. Figure 2 (top right) shows the convergence of MADMM using different solvers and number of iterations in the X-step. We did not observe any significant change in the behavior. Figure 2 (bottom left) studies the scalability of different algorithms, speaking clearly...
Figure 1: The first six compressed modes of a human mesh containing \(n = 8K \) points computed using MADMM. Parameter \(\mu = 10^{-3} \) and three manifold optimization iterations in \(X \)-step were used in this experiment.

Figure 2: Compressed modes problem. Top left: convergence of MADMM on a problem of size \(n = 500, k = 10 \) with different random initialization. Top right: convergence of MADMM using different solvers and number of iterations at \(X \)-step on the same problem. Bottom left: scalability of different methods; shown is time/iteration on a problem of different size (fixed \(k = 10 \) and varying \(n \)). Bottom right: comparison of convergence of different splitting methods and MADMM on a problem of size \(n = 8K \).

in favor of MADMM compared to the methods of [34][37]. Figure 1 shows compressed modes computed on a triangular mesh of a human sampled at 8K vertices, using the cotangent weights formula [41] to discretize the Laplacian. Figure 2 (bottom right) shows the convergence of different methods on this dataset. MADMM shows the best performance among the compared methods.

4.2 Functional correspondence

Problem setting Our second problem is coupled diagonalization, which is used for finding functional correspondence between manifolds [39] and multi-view clustering [21]. Let us consider a collection of \(L \) manifolds \(\{S_i\}_{i=1}^L \), each discretized at \(n_i \) points and equipped with a Laplacian \(\Delta_i \) represented as an \(n_i \times n_i \) matrix. The functional correspondence between manifolds \(S_i \) and \(S_j \) is an \(n_j \times n_i \) matrix \(T_{ij} \) mapping functions from \(L^2(S_i) \) to \(L^2(S_j) \). It can be efficiently approximated using the first \(k \) Laplacian eigenvectors as \(T_{ij} \approx \Phi_j X_{ij} \Phi_i^T \), where \(X_{ij} \) is the \(k \times k \) matrix translating
Fourier coefficients from basis Φ_i to basis Φ_j, represented as $n_i \times k$ and $n_j \times k$ matrices, respectively. Imposing a further assumption that T_{ij} is volume-preserving, X_{ij} must be an orthonormal matrix [39], and thus can be represented as a product of two orthonormal matrices $X_{ij} = X_i X_j^\top$. For each pair of manifolds S_i, S_j, we assume to be given a set of q_{ij} functions in $L^2(S_i)$ arranged as columns of an $n_i \times q_{ij}$ matrix F_{ij} and the corresponding functions in $L^2(S_j)$ represented by the $n_j \times q_{ij}$ matrix G_{ij}. The correspondence between all the manifolds can be established by solving the problem

$$
\min_{X_1, \ldots, X_L} \sum_{i \neq j} \|F_{ij}^\top \Phi_i X_i - G_{ij}^\top \Phi_j X_j\|_{2,1} + \mu \sum_{i=1}^L \text{off}(X_i^\top \Lambda_i X_i) \quad \text{s.t.} \quad X_i^\top X_i = I \quad \forall i = 1, \ldots, L, \tag{7}
$$

where $\text{off}(A) = \sum_{i \neq j} a_{ij}^2$, and the use of the $L_{2,1}$-norm $\|A\|_{2,1} = \sum_j (\sum_i a_{ij}^2)^{1/2}$ allows to cope with outliers in the correspondence data [46, 27]. The problem can be interpreted as simultaneous diagonalization of the Laplacians $\Delta_1, \ldots, \Delta_L$ [21]. As correspondence data F, G, one can use point-wise correspondence between some known 'seeds', or, in computer graphics applications, some shape descriptors [39]. Geometrically, the matrices X_i can be interpreted as rotations of the respective bases, and the problem tries to achieve a coupling between the bases $\hat{\Phi}_i = \Phi_i X_i$ while making sure that they approximately diagonalize the respective Laplacians.

Solution Here, we consider problem (7) as optimization on a product of L Stiefel manifolds, $(X_1, \ldots, X_L) \in S^L(k, k)$ and solve it using the MADMM method. The X-step of MADMM in our experiments was performed using four iterations of the manifold conjugate gradients solver. As in the previous problem, the Z-step boils down to simple shrinkage. We used $\rho = 1$ and initialized all $X_i = I$.

Results We computed functional correspondences between $L = 6$ human 3D shapes from the TOSCA dataset [13] using $k = 25$ basis functions and $q = 25$ seeds as correspondence data, contaminated by 16% outliers. Figure 3(left) analyzes the resulting correspondence quality using the Princeton protocol [30], plotting the percentage of correspondences falling within a geodesic ball of increasing radius w.r.t. the groundtruth correspondence. For comparison, we show the results of a least-squares solution used in [39] (see Figure 4). Figure 3(right) shows the convergence of MADMM in a correspondence problem with $L = 2$ shapes. For comparison, we show the convergence of a smoothed version of the $L_{2,1}$-norm $\|A\|_{2,1} \approx \sum_j (\sum_i a_{ij}^2 + \epsilon)^{1/2}$ in (7) for various values of the smoothing parameter ϵ.

![Figure 3: Functional correspondence problem. Left: evaluation of the functional correspondence obtained using MADMM and least squares. Shown in the percentage of correspondences falling within a geodesic ball of increasing radius w.r.t. the groundtruth correspondence. Right: convergence of MADMM and smoothing method for various values of the smoothing parameter.](image-url)
4.3 Robust Euclidean embedding

Problem setting Our third problem is an L_1 formulation of the multidimensional scaling (MDS) problem treated in [15] under the name robust Euclidean embedding (REE). Let us be given an $n \times n$ matrix D of squared distances. The goal is to find a k-dimensional configuration of points $X \in \mathbb{R}^{n \times k}$ such that the Euclidean distances between them are as close as possible to the given ones. The classical MDS approach employs the duality between Euclidean distance matrices and Gram matrices: a squared Euclidean distance matrix D can be converted into a similarity matrix by means of double-centering $B = -\frac{1}{2} HDH$, where $H = I - \frac{1}{n} 11^\top$. Conversely, the squared distance matrix is obtained from B by $(\text{dist}(B))_{ij} = b_{ii} + b_{jj} - 2b_{ij}$. The similarity matrix corresponding to a Euclidean distance matrix is positive semi-definite and can be represented as a Gram matrix $B = XX^\top$, where X is the desired embedding. In the case when D is not Euclidean, B acts as a low-rank approximation of the similarity matrix (now not necessarily positive semi-definite) associated with D, leading to the problem

$$\min_{X \in \mathbb{R}^{n \times k}} \|HDH - XX^\top\|_F^2$$

known as classical MDS or classical scaling, which has a closed form solution by means of eigen-decomposition of HDH.

The main disadvantage of classical MDS is the fact that noise in a single entry of the distance matrix D is spread over entire column/row by the double centering transformation. To cope with this problem, Cayton and Dasgupta [15] proposed an L_1 version of the problem,

$$\min_{B \in \mathbb{R}^{n \times n}} \|D - \text{dist}(B)\|_1 \quad \text{s.t.} \quad B \succeq 0, \quad \text{rank}(B) \leq k,$$

where the use of the L_1-norm efficiently rejects outliers. The authors proposed two solutions for problem (9): a semi-definite programming (SDP) formulation and a subgradient descent algorithm (the reader is referred to [15] for a detailed description of both methods).

Solution Here, we consider (9) as a non-smooth optimization of the form (2) on the manifold of fixed-rank positive semi-definite matrices and solve it using MADMM. Note that in this case, we have only the non-smooth function g and $f \equiv 0$. The X-step of the MADMM algorithm is manifold optimization of a quadratic function, carried out using two iterations of manifold conjugate gradients solver. The Z-step is performed by shrinkage. In our experiments, all the compared methods were initialized with the classical MDS solution and the value $\rho = 10$ was used for MADMM. SDP approach was implemented using MATLAB CVX toolbox [24].
Figure 5: Embedding of the noisy distances between 500 US cities in the plane using classical MDS (blue) and REE solved using MADMM (red). The distance matrix was contaminated by sparse noise by doubling the distance between some cities. Note how classical MDS is sensitive to outliers.

Figure 6: REE problem. Left: scalability of different algorithms; shown is single iteration complexity as functions of the problem size n using random distance data. SDP did not scale beyond $n = 100$. Right: example of convergence of MADMM and subgradient algorithm of [15] on the US cities problem of size $n = 500$. The subgradient algorithm is very sensitive to the choice of the initial step size c; choosing too large c breaks the convergence.

Results Figure 5 shows an example of 2D Euclidean embedding of the distances between 500 US cities, contaminated by sparse noise (the distance between two cities was doubled, as in a similar experiment in [15]). The robust embedding is insensitive to such outliers, while the classical MDS result is completely ruined. Figure 6 (right) shows an example of convergence of the proposed MADMM method and the subgradient descent of [15] on the same dataset. We observed that our algorithm outperforms the subgradient method in terms of convergence speed. Furthermore, the subgradient method appears to be very sensitive to the initial step size c; choosing too small a step leads to slower convergence, and if the step is too large the algorithm may fail to converge. Figure 6 (left) studies the scalability of the subgradient-, SDP-, and MADMM-based solutions for the REE problem, plotting the complexity of a single iteration as function of the problem size on random data. The typical number of iterations was of the order of 20 for SDP, 50 for MADMM, and 500 for the subgradient method. We see that MADMM scaled better than other approaches, and that SDP is not applicable to large problems.
5 Discussion and Conclusions

We presented MADMM, a generic algorithm for optimization of non-smooth functions with manifold constraints, and showed that it can be efficiently used in many important problems from the domains of machine learning, computer vision and pattern recognition, and data analysis. Among the key advantages of our method is its remarkable simplicity and lack of parameters to tune - in all our experiments, it worked entirely out-of-the-box. We believe that MADMM will be very useful in many other applications in this community. In our experiments, we observed that MADMM converged independently of the initialization; a theoretical study of convergence properties is an important future direction.

Acknowledgement

The work is supported by the ERC Starting grant No. 307047.

References

[1] P-A Absil, Christopher G Baker, and K A Gallivan. Trust-region methods on Riemannian manifolds. Foundations of Computational Mathematics, 7(3):303–330, 2007.
[2] P.-A. Absil and K. A. Gallivan. Joint diagonalization on the oblique manifold for independent component analysis. In Proc. ICASSP, 2006.
[3] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, 2009.
[4] F. Alvarez, J. Bolte, and J. Munier. A unifying local convergence result for Newton’s method in Riemannian manifolds. Foundations of Computational Mathematics, 8(2):197–226, 2008.
[5] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-Shlizerman, A. Singer, and R. Basri. Global motion estimation from point matches. In Proc. 3DIMPVT, 2012.
[6] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proc. NIPS, 2001.
[7] J. M. F. Ten Berge. Orthogonal Procrustes rotation for two or more matrices. Psychometrika, 42(2):267–276, 1977.
[8] P. B. Boreckmans, S. E. Selvan, N. Boumal, and P.-A. Absil. A Riemannian subgradient algorithm for economic dispatch with valve-point effect. J. Comp. Applied Math., 255:848–866, 2014.
[9] P. T. Boufounos and R. G. Baraniuk. 1-bit compressive sensing. In Proc. CISS, 2008.
[10] N. Boumal and P.-A. Absil. RTRMC: A Riemannian trust-region method for low-rank matrix completion. In Proc. NIPS, pages 406–414, 2011.
[11] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization on manifolds. JMLR, 15(1):1455–1459, 2014.
[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1–122, 2010.
[13] A M Bronstein, M M Bronstein, and R Kimmel. Numerical geometry of non-rigid shapes. Springer, 2008.
[14] E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J. ACM, 58(3):11, 2011.
[15] L. Cayton and S. Dasgupta. Robust Euclidean embedding. In Proc. ICML, 2006.
[16] X. Chen. Smoothing methods for nonsmooth, nonconvex minimization. Mathematical Programming, 134(1):71–99, 2012.
[17] M. Cucuringu, Y. Lipman, and A. Singer. Sensor network localization by eigenvector synchronization over the euclidean group. ACM Trans. Sensor Networks, 8(3):19, 2012.
[18] M. Cucuringu, A. Singer, and D. Cowburn. Eigenvector synchronization, graph rigidity and the molecule problem. Information and Inference, 1(1):21–67, 2012.
[19] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov. Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds. Trans. Signal Processing, 62(4):905–918, 2014.
[20] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Analysis and Applications, 20(2):303–353, 1998.
[21] D. Eynard, K. Glashoff, M. M. Bronstein, and A. M. Bronstein. Multimodal diffusion geometry by joint diagonalization of Laplacians. *Trans. PAMI*, 2015.

[22] O. P. Ferreira and P. R. Oliveira. Subgradient algorithm on Riemannian manifolds. *J. Optimization Theory and Applications*, 97(1):93–104, 1998.

[23] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. *Computers & Mathematics with Applications*, 2(1):17–40, 1976.

[24] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, *Recent Advances in Learning and Control*, pages 95–110. Springer, 2008.

[25] M. R. Hestenes. Multiplier and gradient methods. *Journal of Optimization Theory and Applications*, 4(5):303–320, 1969.

[26] N. J. Higham. Computing the nearest correlation matrix – a problem from finance. *IMA J. Numerical Analysis*, 22(3):329–343, 2002.

[27] Q. Huang, F. Wang, and L. Guibas. Functional map networks for analyzing and exploring large shape collections. *ACM Trans. Graphics*, 33(4):36, 2014.

[28] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on the cone of positive semidefinite matrices. *SIAM J. Optimization*, 20(5):2327–2351, 2010.

[29] R. H. Keshavan and S. Oh. A gradient descent algorithm on the Grassman manifold for matrix completion. *arXiv:0910.5260*, 2009.

[30] V G Kim, Y Lipman, and T Funkhouser. Blended intrinsic maps. In *Trans. Graphics*, volume 30, page 79, 2011.

[31] M. Kleinsteuber and H. Shen. Blind source separation with compressively sensed linear mixtures. *Signal Processing Letters*, 19(2):107–110, 2012.

[32] A. Kovnatsky, M. M. Bronstein, X. Bresson, and P. Vandergheynst. Functional correspondence by matrix completion. In *Proc. CVPR*, 2015.

[33] A. Kovnatsky, M. M. Bronstein, A. M. Bronstein, K. Glashoff, and R. Kimmel. Coupled quasi-harmonic bases. *Computer Graphics Forum*, 32(2):439–448, 2013.

[34] R. Lai and S. Osher. A splitting method for orthogonality constrained problems. *J. Scientific Computing*, 58(2):431–449, 2014.

[35] Y. Ledyaev and Q. Zhu. Nonsmooth analysis on smooth manifolds. *Trans. AMS*, 359(8):3687–3732, 2007.

[36] G. Meyer, S. Bonnabel, and R. Sepulchre. Linear regression under fixed-rank constraints: a Riemannian approach. In *Proc. ICML*, 2011.

[37] T. Neumann, K. Varanasi, C. Theobalt, M. Magnor, and M. Wacker. Compressed manifold modes for mesh processing. *Computer Graphics Forum*, 33(5):35–44, 2014.

[38] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In *Proc. NIPS*, 2002.

[39] M Ovsjanikov, M Ben-Chen, J Solomon, A Butscher, and L J Guibas. Functional maps: a flexible representation of maps between shapes. *ACM Trans. Graphics*, 31(4), 2012.

[40] V. Ozolinš, R. Lai, R. Caflisch, and S. Osher. Compressed modes for variational problems in mathematics and physics. *PNAS*, 110(46):18368–18373, 2013.

[41] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. *Experimental mathematics*, 2(1):15–36, 1993.

[42] M. J. D. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher, editor, *Optimization*. Academic Press, 1969.

[43] U. Shalit, D. Weinshall, and G. Chechik. Online learning in the manifold of low-rank matrices. In *Proc. NIPS*, 2010.

[44] S. T. Smith. Optimization techniques on Riemannian manifolds. *Fields Institute Communications*, 3(3):113–135, 1994.

[45] M. Tan, I. W. Tsang, L. Wang, B. Vandereycken, and S. J. Pan. Riemannian pursuit for big matrix recovery. In *Proc. ICML*, 2014.

[46] L. Wang and A. Singer. Exact and stable recovery of rotations for robust synchronization. *Information and Inference*, 2013.

[47] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. *Mathematical Programming*, 142(1-2):397–434, 2013.

[48] M. Zhang and P. T. Fletcher. Probabilistic principal geodesic analysis. In *Proc. NIPS*, 2013.