Single crystal growth and structure analysis of type-I (Na/Sr)–(Ga/Si) quaternary clathrates†

Hironao Urushiyama,a Haruhiko Morito and Hisanori Yamanea

Single crystals of (Na/Sr)–(Ga/Si) quaternary type-I clathrates, Na$_8$–Sr$_x$Ga$_y$Si$_{38}$, were synthesized by evaporating Na from a mixture of Na–Sr–Ga–Si–Sn in a 6 : 0.5 : 1 : 2 : 1 molar ratio at 773 K for 12 h in an Ar atmosphere. Electron-probe microanalysis and single-crystal X-ray diffraction revealed that three crystals from the same product were Na$_8$–Sr$_x$Ga$_y$Si$_{38}$ with x and y values of 7.6, 2.96; 8.4, 3.80; and 9.1, 4.08. It was also shown that increasing the Sr and Ga contents increased the electrical resistivity of the crystal from 0.34 to 1.05 mΩ cm at 300 K.

1. Introduction

Silicon (Si) clathrate compounds are composed of host Si atoms organized in three-dimensional frameworks and guest atoms enclosed in the Si cages of the frameworks. Kasper et al. first synthesized binary Si clathrate, Na$_8$Si$_{46}$, in 1965. Since then, many researchers have studied Si clathrate compounds, altering their physical properties by partial or full substitution of different elements for the host and guest atoms. Kawaji et al. synthesized a type-I clathrate, (Na$_2$Ga)$_8$Si$_{38}$; this compound was the first Si clathrate superconductor with a T_c value of 4 K derived from the partial substitution of Ba for Na in the Na$_8$Si$_{36}$ cages. Another Si clathrate, Ba$_8$Si$_{46}$, which was synthesized at high pressure (3 GPa) and 1073 K, exhibited the highest T_c value 8 K among the various Si clathrate compounds. The framework Si atoms can also be partially replaced by Ga atoms in some type-I clathrate compounds, such as A_xGa$_y$Si$_{38}$ (A = K, Rb, Cs), as described by Sui et al. A$_2$Ga$_8$Si$_{38}$ powder was sintered by spark plasma sintering to obtain bulk polycrystalline samples, which exhibited band gaps in the range of 1.14–1.18 eV. Another clathrate composed of Ga/Si cages and Ba atoms, Ba$_7$Ga$_9$Si$_{16}$, was shown to have a relatively high thermoelectric dimensionless figure of merit, ZT, of 0.87 at 870 K.5–7 Sr$_8$Ga$_{11}$Si$_{13}$ and Sr$_7$Ga$_{13.6}$Si$_{32.4}$, which contain Sr guest atoms in Ga/Si cages, exhibit electrical resistivities of approximately 0.2 and 0.26 mΩ cm, respectively, at 280 K.

Some ternary silicon clathrates could be synthesized via solid-state reactions between each element at high temperature8 or melting method. However, the silicon clathrates containing a Na atom could not be synthesized by simple reaction because these clathrates have been regarded as metastable or intermediate phases. These clathrates were generally prepared by thermal decomposition of the precursor compounds. For example, the binary silicon clathrates containing Na, Na$_8$Si$_{46}$ and Na$_2$Si$_{136}$ were synthesized by thermal decomposition of Na$_4$Si$_4$Zintl compound.13 The clathrate samples obtained by this method were powdery due to the solid state of the precursor compounds. Therefore, it is difficult to prepare the bulk crystal of the silicon clathrates containing Na. In our previous study, the single crystals of the Na–Si binary clathrate were successfully grown by using Sn flux.10–12 Single crystals of type-I Na$_8$Si$_{46}$ and type-II Na$_2$Si$_{136}$ clathrates were selectively grown in Na–Sn rich Na–Sn–Si ternary melt by Na vaporization.13 Single crystals of a ternary type-I clathrate, Na$_x$Ga$_5$Zn$_{10}$Si$_{10}$, could also be prepared by a self-flux method using Ga as a flux.12 Furthermore, the crystal growth of Na$_x$Ga$_5$Zn$_{10}$Si$_{10}$–y (x = 4.94–5.52) clathrates was achieved by adding a Sn flux to the starting melt. We could measure the electrical resistivity of the single crystals for these clathrates containing Na. The clathrates exhibited metallic conduction, and their electrical resistivity decreased as the Ga content decreased (e.g., the resistivities of Na$_x$Ga$_5$Zn$_{10}$Si$_{10}$ and Na$_x$Ga$_4$Zn$_{1.0}$Si$_{11.06}$ were 1.40 and 0.72 mΩ cm, respectively, at 300 K).

To extend the variation of clathrate compounds and their field of properties and applications, doping or partial substitution of other atoms at the Na atom site is also designed. Recently, quaternary Ga/Si and Zn/Si clathrates having Na and Rb or Cs guest atoms, such as C$_8$Na$_4$Ga$_8$Zn$_{12}$Si$_{31.75}$, Rb$_6$Si$_{34}$Na$_{1.66}$Ga$_{0.02}$Si$_{37.98}$, and Rb$_4$Na$_{12}$Zn$_{4}$Si$_{127.6}$, have been synthesized using a Ga or Zn flux.13 However, the typical size of the single crystals was below 0.1 mm, and the properties of the crystals could not be characterized. So, synthesis of quaternary Na and Si based clathrate single crystals with a size enough for...
characterization is still challenging. In the present study, we succeeded in growing the single crystals of quaternary Ga–Si cage clathrate compounds encapsulating Na and Sr guest atoms by the Sn flux method. The compounds are the first examples of the Ga/Si clathrates containing Na (1+) and other guest cations with a different formal ionic charge (2+). The crystal structures and electrical properties were investigated for the single crystals of the new clathrates.

2. Experimental methods

The experiments were conducted as described in the previous studies.10–12 Metal Na pieces (Nippon Soda Co. Ltd., 99.95%), Si powder (Kojundo Chemical Laboratory Co. Ltd., 4N), Ga grains (Dowa Electronics Co. Ltd., 6N), and Sn granules (Mitsuwa Chemicals Co. Ltd., 5N) were combined by weight at a Na : Ga : Si : Sn molar ratio of 6 : 1 : 2 : 1 (total 8.70 mmol) in a glove box with an Ar atmosphere. The raw material mixture was then put in a boron nitride (BN) crucible (Showa Denko KK; inner diameter of 6.5 mm and depth of 18 mm) and sealed in a stainless steel (SUS) container (SUS316, outer diameter of 12.7 mm, inner diameter of 10.7 mm, and height of 80 mm) with Ar gas. The SUS container was heated in an electric furnace at 1173 K for 12 h then the furnace was cooled to room temperature. The BN crucible was then taken from the SUS container in the glove box, and Sr grains (Alfa Aesar, 4N) were added to the Na–Ga–Si–Sn mixture in the BN crucible to make the Na : Sr : Ga : Si : Sn molar ratio 6 : 0.5 : 1 : 2 : 1. Next, the BN crucible was sealed in the upper part of another long SUS container (outer diameter of 12.7 mm, inner diameter of 10.7 mm, and height of 300 mm) with Ar gas. The upper part of the container was heated at 773 K for 12 h, and the lower part was cooled using a fan to keep the temperature almost the same with the room temperature. By generating a temperature gradient in the container, the Na was evaporated from the mixture in the crucible, and condensed on the inner wall in the lower cooler part of the container.

After heating, the crucible was taken out in the glove box, and the weight loss from the sample was measured to calculate the amount of evaporated Na against the amount of Na in the starting mixture. The sample in the crucible was subjected to an alcohol treatment by which any excess Na and Na of Na\textsubscript{12}H\textsubscript{12}Cl\textsubscript{2} were removed from the samples by washing with water. A mixture of Ga and Sn remained after the decomposition of Na–Sn and Na–Ga compounds in the sample were completely reacted with 2-propanol followed by ethanol, and the reaction products of Na were removed from the samples by washing with water. A mixture of Ga and Sn remained after the decomposition of Na–Sn and Na–Ga compounds by the alcohol treatment and a Sr–Ga–Si ternary compound in the sample were then subjected to a hydrochloric acid treatment by dissolving in an aqueous hydrochloric acid (35.0–37.0 mass% HCl) and rinsing the residue with water.

The morphologies of the obtained single crystals were observed with an optical microscope (Olympus, SZX16) and a scanning electron microscope (SEM; JEOL, JXA-8200) at an accelerating voltage of 15 kV. The single crystals were cut to about 100–150 μm in size and subjected to X-ray diffraction (XRD) measurements (Bruker, D8 QUEST). APEX3 14 was used to collect the diffraction data and refine the unit cells. X-ray absorption correction was performed by SADABS installed in SHEXL-97 software15 was used to refine the occupancies, coordinates, and displacement parameters of the atoms. The crystal structure was drawn by VESTA.16 The compositions of the obtained single crystals were analyzed with an electron-probe microanalyzer (EPMA, JEOL, JXA-8200). The electrical characteristics of the single crystals were measured in the range of 8–300 K by the four-terminal method using Ag paste as electrodes.

3. Results and discussion

When Sr was heated with other starting materials, at 1173 K for 12 h, a SrGaSi ternary compound was crystallized.17 Once this compound was formed, it did not melt or dissolve into a liquid phase at 773 K and Sr was not provided to the crystal growth of clathrate. Thus, Sr was added to the Na–Ga–Si–Sn mixture prepared in advance. By heating the Na–Ga–Si–Sn mixture and Sr at 773 K for 12 h, 46% of Na was evaporated. The residual excess Na and Na of Na–Sn and Na–Ga compounds in the sample were removed by the alcohol treatment. After hydrochloric acid treatment for removal of Sn and Ga by decomposition of the Na–Sn and Na–Ga compounds and a SrGaSi compound contained in the product, the black single crystals of

![Fig. 1 Optical micrograph of the sample after the hydrochloric acid treatment (a) and an SEM image of a Na–Sr–Ga–Si quaternary type-I clathrate single crystal (b).](image-url)
clathrate were clearly separated. Fig. 1 shows optical and SEM micrographs of the crystals picked up from the obtained sample. Quantitative EPMA analyses were performed on the flat surfaces of the three black single crystals with sizes of 0.96 mm (crystal 1), 0.93 mm (crystal 2), and 0.83 mm (crystal 3) which were taken from the same sample. The Na, Sr, Ga, and Si contents of crystals 1, 2, and 3 are summarized in Table 1. The chemical formulas of crystals 1, 2, and 3 were calculated by setting the total number of Si and Ga atoms to 46 (based on the general formula of the type-I clathrate, Na8ySr5GaSi46–x) as Na4.9(2)Sr3.3(2)Ga7.6(2)Si38.4(2), Na3.8(5)Sr4.0(3)Ga8.4(2)Si37.3(2), and Na3.2(3)Sr4.8(1)Ga9.1(1)Si36.9(2), respectively. The sum of the Na and Sr numbers was close to 8. As shown in Fig. 2, the Sr content, y, linearly increased as the Ga content, x, increased. The largest crystal, crystal 1, had the smallest Sr and Ga contents among the three crystals.

In addition, cross sections of the crystals were also analyzed by EPMA; the results are shown in Fig. S1.† In crystals 2 and 3, Na, Sr, Ga, and Si were homogeneously distributed. In contrast, in crystal 1, the surface was Na4.9(2)Sr3.3(2)Ga7.6(2)Si38.4(2), but its Na, Sr, Ga, and Si were homogeneously distributed. In the present study, Sr atom preferred to occupy the 2a sites in the smaller [Si/Ga]20 cages (0.291(3)–0.734(3)) were larger than those for the Na/Sr1(6d) sites in the [Si/Ga]24 cages despite the atomic size of Sr larger than that of Na. This result suggests that the cation size is not related to the site preference in the Na8y–Sr5GaSi46–x clathrate. Since the electronegativities (Pauling scale) of Rb (xRb = 0.82) and Cs (xCs = 0.79) were smaller than that of Na (xNa = 0.93), the outermost electrons of Rb and Cs atoms could effectively be transferred to the

Table 1 Results of the EPMA analysis for crystals 1, 2, and 3

Crystal	Na (at%)	Sr (at%)	Ga (at%)	Si (at%)	Chemical formula (Ga + Si = 46)
1	9.08(44)	6.06(33)	14.01(45)	70.85(31)	Na4.0(3)Sr3.6(2)Ga4.2(2)Si38.4(2)
2	7.03(91)	7.48(47)	15.66(32)	69.83(32)	Na3.8(5)Sr4.0(3)Ga4.4(1)Si37.6(2)
3	5.88(3)	8.89(13)	16.93(18)	68.30(27)	Na3.2(3)Sr4.8(1)Ga4.1(3)Si36.9(2)

Fig. 2 Sr content (y) versus Ga content (x) of Na8y−xSr5GaSi46–x.
more electronegative Ga atoms \((\chi_{Ga} = 1.81)\). In the case of Na\(_{8-\gamma}\)Sr\(_{\gamma}\)Ga\(_{7-\gamma}\)Si\(_{46-\gamma}\), the electronegativities of Sr \((\chi_{Sr} = 0.95)\) and Na \((\chi_{Na} = 0.93)\) were similar, but the first ionization energy of Na \((5.139 \text{ eV})\) was smaller than that of Sr \((5.695 \text{ eV})\). Thus, Na atoms may preferentially occupy the Ga-rich [Si/Ga]\(_{24}\) cages of Na\(_{8-\gamma}\)Sr\(_{\gamma}\)Ga\(_{7-\gamma}\)Si\(_{46-\gamma}\) clathrates.

The crystal structure of Na\(_{3.92}\)Sr\(_{4.08}\)Ga\(_{9.5}\)Si\(_{36.9}\) (crystal 3) is drawn with displacement ellipsoids representing the 99\% probability region in Fig. S2.\(^\dagger\) The \(U_{eq}\) parameters of the Na/Sr(6d) sites in crystals 1, 2, and 3 were 0.0508(4), 0.0524(5), and 0.0512(5) \(\text{Å}^2\), respectively, which were larger than the atomic displacement parameters of \(U_{eq}(1)\) (0.0272(5), 0.0244(5),

Table 2 Crystal data, data collection, and refinement for the XRD analysis of Na–Sr–Ga–Si quaternary single crystals

Crystal	Chemical formula	Formula weight, \(M_r\) (g mol\(^{-1}\))	Z	Temperature, \(T\) (K)	Crystal system, space group	Unit-cell dimension, \(a\) (Å)	Unit-cell volume, \(V\) (Å\(^3\))	Calculated density, \(D_{cal}\) (Mg m\(^{-3}\))	Radiation wavelength, \(\lambda\) (Å)	Size (mm\(^2\))
Crystal 1	Na\(_{8-\gamma}\)Sr\(_{\gamma}\)Ga\(_{7-\gamma}\)Si\(_{46-\gamma}\)	1983.75, 1	302(2)	Cubic, \(Pm_3n\)	10.3645(3)	1113.38(10)	2.958(5)	0.71073	0.216 × 0.160 × 0.152	0.141 × 0.174 × 0.183
Crystal 2	Na\(_{8.04}\)Sr\(_{3.90}\)Ga\(_{8.3}\)Si\(_{17.6}\)	2071.35, 1	302(2)	Cubic, \(Pm_3n\)	10.3747(3)	1116.67(10)	3.080(6)	0.71073	0.149	0.142 × 0.152
Crystal 3	Na\(_{8.30}\)Sr\(_{4.08}\)Ga\(_{9.5}\)Si\(_{36.9}\)	2118.58, 1	302(2)	Cubic, \(Pm_3n\)	10.3804(4)	1118.52(13)	3.146(6)	0.71073	0.216 × 0.160 × 0.152	0.141 × 0.174 × 0.183

Table 3 Atomic coordinates and equivalent isotropic displacement parameters \((U_{eq}/\text{Å}^2)\) of crystals 1, 2, and 3

Atom	Site	Occupancy	\(x\)	\(y\)	\(z\)	\(U_{eq}\)
Na/Sr 1 (Na\(_{8.04}\)Sr\(_{3.90}\)Ga\(_{8.3}\)Si\(_{17.6}\))	6d	0.709/0.291(3)	1/4	1/2	0	0.0440(4)
Na/Sr 2	2a	0.395/0.605(3)	0	0	0	0.0113(2)
Si/Ga 1	24k	0.8995/0.1005(7)	0	0.30576(3)	0.11653(3)	0.00852(12)
Si/Ga 2	16i	0.9656/0.0344(10)	0.18442(3)	\(x\)	\(x\)	0.00811(15)
Si/Ga 3	6c	0.227/0.773(2)	1/4	0	1/2	0.00876(13)

Na/Sr 1 (Na\(_{8.04}\)Sr\(_{3.90}\)Ga\(_{8.3}\)Si\(_{17.6}\))	6d	0.600/0.400(3)	1/4	1/2	0	0.0420(4)
Na/Sr 2	2a	0.300/0.700(4)	0	0	0	0.0104(2)
Si/Ga 1	24k	0.8775/0.1225(7)	0	0.30587(3)	0.11661(3)	0.00834(13)
Si/Ga 2	16i	0.9521/0.0479(10)	0.18454(3)	\(x\)	\(x\)	0.00800(16)
Si/Ga 3	6c	0.218/0.782(2)	1/4	0	1/2	0.00853(15)

Na/Sr 1 (Na\(_{8.30}\)Sr\(_{4.08}\)Ga\(_{9.5}\)Si\(_{36.9}\))	6d	0.565/0.435(3)	1/4	1/2	0	0.0423(4)
Na/Sr 2	2a	0.266/0.734(3)	0	0	0	0.0114(2)
Si/Ga 1	24k	0.8613/0.3387(8)	0	0.30578(4)	0.11662(4)	0.00884(14)
Si/Ga 2	16i	0.9387/0.0613(11)	0.18452(3)	\(x\)	\(x\)	0.00853(17)
Si/Ga 3	6c	0.202/0.798(2)	1/4	0	1/2	0.00879(15)
and 0.0244(5) \(\text{Å}^2 \) and much larger than those of \(U_{ij} \) at other sites (\(\leq 0.0114(2) \text{Å}^2 \)) (Table 4). This probably corresponds to the large, distorted shape of the [Si/Ga]\(_{24}\) cages. Such large anisotropic atomic displacement parameters of \(U_{22} = U_{33} \) for the 6d sites in [Si/Ga]\(_{24}\) cages have similarly been reported for other type-I clathrates including \(\text{Na}_8\text{Ga}_{x}\text{Si}_{46} \) (\(x = 4.94(6) \leq x \leq 5.70(7) \)), \(\text{A}_8\text{Ga}_{2x-8}\text{Si}_{38} \) (\(A = \text{K, Rb, Cs} \)), \(\text{Rb}_{6.3}\text{Na}_{4.66(2)}\text{Ga}_{8.02-}\text{Si}_{37.99(3)} \), and \(\text{Cs}_{6}\text{Na}_{4.2}\text{Ga}_{8.25-}\text{Si}_{37.75(3)} \).

Fig. 4 shows the temperature dependence of electrical resistivity, \(\rho \), measured for the three crystals and the type-I clathrate single crystal, \(\text{Na}_8\text{Ga}_{5.7}\text{Si}_{40.3} \), synthesized by our group in a previous study.\(^{12}\) The \(\rho \) values for crystals 1, 2, and 3 increased with increasing temperature, reaching 0.34, 0.55, and 1.05 m\(\Omega \) cm, respectively, at room temperature (300 K). The previously reported electrical resistivities at 280–300 K for other type-I clathrates, \(\text{Na}_8\text{Si}_{16-x} \), \(\text{Na}_8\text{Ga}_{46-x} \), and \(\text{Sr}_8\text{Ga}_{46-x} \)\(^{8,9}\) are compared to those in the \(\text{Na}_{8-x}\text{Sr}_x\text{Ga}_{46-x} \) sample (crystal 1: \(\text{Na}_{5.0}\text{Sr}_{3.0}\text{Ga}_{7.6}\text{Si}_{38.4} \), crystal 2: \(\text{Na}_{4.2}\text{Sr}_{3.8}\text{Ga}_{8.4}\text{Si}_{37.6} \), and crystal 3: \(\text{Na}_{3.9}\text{Sr}_{4.1}\text{Ga}_{9.1}\text{Si}_{36.9} \) with respect to their respective Ga contents, \(x \), in Fig. 5. The electrical resistivity of crystal 1 was plotted at \(x = 7.6 \) in Fig. 5 even though one region in the \(\text{Na}_{4.9(2)}\text{Sr}_{3.3(2)}\text{Ga}_{7.6(2)}\text{Si}_{38.4(2)} \) crystal had a composition of \(\text{Na}_{8.3(2)}\text{Ga}_{4.3(2)}\text{Si}_{41.7(2)} \) (as shown in Fig. S1†).

The resistivity of \(\text{Na}_8\text{Ga}_{x}\text{Si}_{46-x} \) was greater than that of \(\text{Na}_8\text{Si}_{46} \) (0.098 m\(\Omega \) cm) as measured previously by Stefanoski at 300 K\(^{20}\) and increased with increasing \(x \).\(^{12}\) Eight electrons are formally transferred from Na to the Si framework to form \(\text{Na}_8\text{Si}_{46} \); these electrons enter into the conduction band.
of the electrons (or carriers) in the conduction band should decrease with increasing Ga content in the [Si/Ga] framework, thus reducing the conductivities and changing the structure to a semiconducting Zintl clathrate with $\text{Ga}_{7.6}\text{Si}_{38.4}$ (crystal 1), $\text{Na}_{4.20}\text{Sr}_{3.80}(3)\text{Ga}_{8.4}\text{Si}_{37.6}$ (crystal 2), and $\text{Na}_{3.92}\text{Sr}_{4.08}(2)\text{Ga}_{9.1}\text{Si}_{36.9}$ (crystal 3) have valence electron numbers of 3.36, 3.40, and 2.98, respectively, and crystal 3 exhibited the highest resistivity among $\text{Na}_{8-x}\text{Sr}_{x}\text{Ga}_{8}\text{Si}_{46-x}$. The resistivity of crystal 2 is higher than crystal 1 although the numbers are almost the same. The resistivity may also be related to the content of Ga atoms which scatter conduction carrier electrons and holes on the clathrate frame. The Ga content of crystal 2 ($x = 8.40$) is higher than crystal 1 ($x = 7.6$).

4. Summary

Here, single crystals of quaternary type-I clathrates, $\text{Na}_{8-x}\text{Sr}_{x}\text{Ga}_{x}\text{Si}_{46-x}$, were grown by heating a Na–Sr–Ga–Si melt at 773 K and evaporating the Na from the melt in an Ar atmosphere. The compositions and crystal structures of the single crystals were analyzed by EPMA and XRD. The Ga and Sr contents (x and y) of the obtained crystals were 7.6–9.1 and 2.96(2)–4.08(2), respectively. Na atoms preferentially occupied the Na/Si(6d) sites, whereas Ga atoms preferentially occupied the Si/Ga(3c) sites in the [Si/Ga]$_{34}$ cages. The electrical resistivities of the $\text{Na}_{8-x}\text{Sr}_{x}\text{Ga}_{x}\text{Si}_{46-x}$ single crystals were found to increase from 0.34 to 1.05 mΩ cm with increasing x and y at 300 K.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors would like to thank T. Kamaya for the EPMA analysis. This work was supported by JSPS KAKENHI grants (JP16H06123 and JP18H01887).

References

1. J. S. Kasper, P. Hagenmuller, M. Pouchard and C. Cros, *Science*, 1965, 150, 1713.
2. C. Cros and M. Pouchard, *C. R. Chim.*, 2009, 12, 1014.
3. H. Kawaji, H. Horie, S. Yamanaka and M. Ishikawa, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, 74, 8.
4. S. Yamanaka, E. Enishi, H. Fukuoka and M. Yasukawa, *Inorg. Chem.*, 2000, 39, 56.
5. F. Sui, H. He, S. Bobev, J. Zhao, F. E. Osterloh and S. M. Kauzlarich, *Chem. Mater.*, 2015, 27, 2812.
6. J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf and G. A. Slack, *Phys. Rev. Lett.*, 1999, 82, 779.
7. V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin and D. M. Rowe, *J. Appl. Phys.*, 2000, 87, 7871.
8. M. Imai, K. Nishida, T. Kimura and K. Yamada, *J. Alloys Compd.*, 2002, 335, 270.
9. K. Suekuni, M. A. Avila, K. Umeo and T. Takabatake, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2007, 78, 195210.
10. H. Morito, M. Shimoda and H. Yamane, *J. Cryst. Growth*, 2016, 450, 164.
11. H. Morito, M. Shimoda, H. Yamane and K. Fujiwara, *Cryst. Growth Des.*, 2018, 18, 351.
12. H. Urushiyama, M. Morito, H. Yamane and M. Terauchi, *RSC Adv.*, 2018, 8, 40505.
13. M. C. Schäfer and S. Bobev, *Inorganics*, 2014, 2, 79.
14. Bruker AXS, *Instrument Service v6.2.3, APEX3 v2016.9.0, SADABS, SAINT v8.37A, XT v2014/5*, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
15. G. M. Sheldrick, *Acta Crystallogr.*, 2015, C71, 3.
16. K. Momma and F. Izumi, *J. Appl. Crystallogr.*, 2011, 44, 1272.
17. R. L. Meng, B. Lorenz, Y. S. Wang, J. Cmaidalka, Y. Y. Sun, Y. Y. Xue, J. K. Meen and C. W. Chu, *Physica C*, 2002, 382, 113.
18. L. Pauling, *Nature of the Chemical Bond*, Cornell University Press, 1960, pp. 88–107.
19. CRC Handbook Chemistry and Physics, ed. W. M. Haynes, CRC Press, 97th edn, 2016–2017, pp. 10–204.
20. S. Stefanoski, J. Martin and G. S. Nolas, *J. Phys.: Condens. Matter*, 2010, 22, 485404.