Retinal Pigment Epithelium Transplantation: Past, Present, and Future

Ayyad Zartasht Khan1, MD, PhD; Tor Paaske Utheim2,3,4,5,6, MD, PhD; Jon Roger Eidet6, MD, PhD

1Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Nydalen, Oslo, Norway
2Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo, Norway
3Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Kirkeveien 166, Nydalen, Oslo, Norway
4Department of Ophthalmology, Sørlandet Hospital Arendal, Lundsiden, Kristiansand, Norway
5Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
6Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Nydalen, Oslo, Norway

ORCID:
Ayyad Zartasht Khan: https://orcid.org/0000-0002-2048-225X

Abstract
Retinal pigment epithelium (RPE) is a monolayer of cells situated between photoreceptors and the underlying choroid. It is essential for normal retinal function. Damaged RPE is associated with diseases such as age-related macular degeneration, Stargardt’s macular dystrophy, and retinitis pigmentosa. RPE cells can easily be visualized in vivo, sustainable in vitro, and differentiated from stem cells with a relatively straightforward protocol. Due to these properties and the clinical significance of this epithelium in various retinal diseases, RPE transplantation as a treatment modality has gained considerable interest in the last decade. This paper presents the main techniques for RPE transplantation and discusses recent clinically relevant publications.

Keywords: Retinal Pigment Epithelium; Retinal Pigment Epithelium Transplantation; Regenerative Medicine; Vitreoretinal Surgery; Tissue Engineering.

J Ophthalmic Vis Res 2022; 17 (4): 574–580

INTRODUCTION
Retinal pigment epithelium (RPE) is a cell layer sandwiched between photoreceptors apically and Bruch’s membrane basally. RPE cells are cuboidal with apical microvilli gaping photoreceptor outer segments.1 Their cytoplasms contain melanin pigments, lipofuscin granules, melanolipofuscins, and phagosomes.1 These cells adhere to each other via zonula occludentes, creating a mosaic-patterned layer of tightly adjoined hexagonally shaped cells. RPE performs several functions essential for vision, such as adsorption of excessive light, transport of nutrients to and from the neuroretina, protection against photooxidation, regeneration of 11 cis-retinal...

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Khan AZ, Utheim TP, Eidet JR. Retinal Pigment Epithelium Transplantation: Past, Present, and Future. J Ophthalmic Vis Res 2022;17:574–580.
for the visual cycle, and phagocytosis of shed photoreceptor outer segments.[1, 2] It also constitutes the outer part of the blood–retinal barrier.[1]

RPE dysfunction is seen in several retinal disorders, such as age-related macular degeneration (AMD),[3] proliferative vitreoretinopathy (PVR), and retinitis pigmentosa (RP). Regarding AMD, it is still unclear whether drusen formation is a consequence or a cause of RPE dysfunction.[4] However, both are strongly associated with each other.[5] In PVR, RPE cells contribute to the folding of the retina by detaching and translocating from the underlying basement membrane.[6–8] Similarly, RPE disintegration and migration are responsible for the bone-spicule pigmentation that is pathognomonic for RP.[9] Thus, when RPE fails to function correctly, the retina suffers.

Replacing RPE cells is an idea that arose shortly after the characterization of these cells about 40 years ago.[10] Their anatomical accessibility, in vitro resilience, and clinical importance made them attractive for transplantation scientists. The first proof-of-concept study of RPE transplantation was performed in 1984 by Gouras et al in monkeys.[11] Four years later, Li and Turner published a report demonstrating that subretinal injection of RPE cells prevented photoreceptor degeneration in rats.[12] The field has subsequently matured at a rapid pace with not only animal studies[13–15] but also human trials, using RPE of fetal,[16, 17] post-mortem adult,[18–20] autologous,[21–23] induced pluripotent stem cell (iPSC)-derived[24] and embryonic stem cell (ESC)-derived origin.[25–27]

The introduction of iPSC- and ESC-derived RPE have been critical for the advancement of clinical RPE research during the recent years, and has, to a large extent, solved the issue of sourcing RPE donor tissue. While iPSCs offer an unlimited supply of autologous cells and (to some degree) do not require the use of immunosuppressants, they may carry patients' own genetic vulnerabilities contributing to disease processes.[28] This can be avoided by using ESCs. However, ESCs raise ethical concerns[29–31] and are, in contrast to iPSCs, neither autologous nor unlimited in supply. The methods for generating RPE cells from iPSCs[32, 33] and ESCs[34, 35] have been described in detail. As the succeeding paragraphs will demonstrate, ongoing clinical trials employ these two stem cell sources to generate mature, transplantation-ready RPE.

Transplantation Techniques

There are currently three techniques for subretinal RPE transplantation: (1) surgical placement of RPE as an intact cell sheet (with or without scaffold), (2) injection of RPE as a cell suspension, and (3) macular translocation.

Transplantation of RPE as an intact cell sheet was first described in 1991 by Peyman et al, who treated one patient with an autologous pedicle flap and another with an allogeneic graft consisting of RPE with an underlying choroid.[19] Similar procedures have later been performed by others.[24, 26, 36, 37] Delivering RPE as a patch increases the likelihood of correct anatomical placement and the structural integrity of the graft. Major complications associated with this technique are subretinal hemorrhage and proliferative vitreoretinopathy. Delivery by injection is technically easier and probably less traumatizing to the adjacent tissue. However, cell clumping, poor attachment, and disorganization of RPE upon injection[38] are important drawbacks. The third approach, macular translocation, involves rotating the retina away from a subretinal pathology to an area of healthy RPE. This technique is surgically less straightforward and complicated by cataract, retinal detachment, and diplopia.[39]

Current State of the RPE Transplantation

To give the reader an idea of the current state of RPE transplantation, selected recent studies are briefly discussed below.

In a phase 1/2 clinical trial, Schwartz and associates injected human ESC-derived RPE subretinally via a small 38-gauge retinotomy in 18 patients; nine with AMD and nine with Stargardt’s Macular Dystrophy (SMD).[27] Visual acuity improved in the majority of patients. No ocular or systemic safety issues were registered, apart from surgery-associated complications, such as vitreous inflammation, cataract, and endophthalmitis. This study suggested that ESC-derived RPE is a potential and safe source of cells for the treatment of retinal disorders.

While Schwartz et al delivered the cells via injection, Kashani and colleagues described a
Table 1. RPE transplantation trials listed on ClinicalTrials.gov.

No.	Study title	Status	Publications	Conditions	Sponsor/ Collaborators	Phase	Study type	Estimated study start	Estimated study completion	Study location (country)	NCT number	Related projects (NCT numbers)
1	Safety and Tolerability of RPESC-derived RPE Transplantation in Patients with dAMD	Not yet recruiting	No Publications Available	dAMD	Luxa Biotechnology, LLC; NIH; NEI; Regenerative Research Foundation	Phase 1/2	Interventional	February 2022	September 2025	USA	NCT04627428	
2	Treatment of RP and LCA by Primary RPE Transplantation	Unknown status	No Publications Available	LCA; RP	Eyecure Therapeutics Inc.; Beijing Tongren Hospital	Phase 1	Interventional	August 2018	March 2020	China	NCT03566147	
3	Autologous Transplantation of Induced Pluripotent Stem Cell-Derived RPE for Geographic Atrophy Associated with AMD	Recruiting	No Publications Available	AMD	NIH; NEI	Phase 1/2	Interventional	September 2020	May 2029	U.S.A.	NCT04339764	
4	Subretinal Transplantation of RPE in Treatment of AMD	Unknown status	No Publications Available	dAMD	Chinese Academy of Sciences; Beijing Tongren Hospital	Phase 1/2	Interventional	January 2018	December 2020	China	NCT02755428 NCT03944239	
5	Treatment of dAMD with RPE Derived from Human Embryonic Stem Cells	Unknown status	No Publications Available	dAMD	Chinese Academy of Sciences; The First Affiliated Hospital of Zhengzhou University	Phase 1/2	Interventional	September 2017	December 2020	China	NCT03046407	
6	Clinical Study of Subretinal Transplantation of Human Embryo Stem Cell Derived RPE in Treatment of Macular Degeneration Diseases	Unknown status	No Publications Available	AMD; SMD	Southwest Hospital, China	Phase 1/2	Interventional	May 2015	December 2019	China	NCT02749734	
7	Transplantation of Autologous RPE Versus Translocation of Autologous RPE and Choroid in AMD	Completed [42]		AMD	The Ludwig Boltzmann Institute of Retinology and Biomicroscopic Laser Surgery	Not Applicable	Interventional	February 2004	September 2008	Austria	NCT00401713	
No.	Study title	Status	Publications	Conditions	Sponsor/ Collaborators	Phase	Study type	Estimated study start	Estimated study completion	Study location (country)	NCT number	Related projects (NCT numbers)
-----	-------------	--------	--------------	------------	------------------------	-------	------------	----------------------	--------------------------	--------------------------	------------	--------------------------------
8	Safety and Tolerability of Sub-retinal Transplantation of Human Embryonic Stem Cell-Derived RPE in Patients With SMD	Completed	[27, 43]	SMD	Astellas Institute for Regenerative Medicine	Phase 1/2	Interventional	December 13, 2011	September 30, 2015	U.K.	NCT01469832	NCT02941991; NCT01345006; NCT01344993; NCT02445612; NCT02463444; NCT02563782; NCT02122159; NCT01967203
9	Study of Subretinal Implantation of Human Embryonic Stem Cell-Derived RPE Cells in Advanced dAMD	Active, not recruiting	[40, 41]	dAMD	Regenerative Patch Technologies, LLC	Phase 1/2	Interventional	February 2016	June 2023	U.S.A.		
10	RPE Safety Study for Patients in B471001	Active, not recruiting	[26]	AMD	Moorfields Eye Hospital NHS Foundation Trust	Phase 1/2	Interventional	September 2016	October 2020	U.K.	NCT03102138	
11	A Phase I/IIa, Open-Label, Single-Center, Prospective Study to Determine the Safety and Tolerability of Sub-retinal Transplantation of Human Embryonic Stem Cell-Derived RPE (MA09-hRPE) in Patients with Advanced dAMD	Unknown status	No Publications Available	dAMD	CHABiotech CD, Ltd	Phase 1/2	Interventional	September 2012	June 2020	Republic of Korea	NCT01674629; NCT01625559; NCT03305029	
12	Safety and Efficacy Study of OpRegen for Treatment of Advanced Dry-Form Age-Related Macular Degeneration	Active, not recruiting	No Publications Available	AMD	Lineage Cell Therapeutics, Inc.; CellCure Neurosciences Ltd.	Phase 1/2	Interventional	April 2015	December 2024	U.S.A.; Israel	NCT02286089	

NCT, National Clinical Trial; RPESC, retinal pigment epithelial stem cell; dAMD, dry age-related macular degeneration; NIH, National Institutes of Health; NEI, National Eye Institute; RP, retinitis pigmentosa; LCA, Leber congenital amaurosis; RPE, retinal pigment epithelium; AMD, age-related macular degeneration; SMD, Stargardt's macular dystrophy; MMD, myopic macular degeneration.

patch of ESC-derived RPE monolayer attached to a synthetic parylene substrate.[40] The initiative is called California Project to Cure Blindness. They implanted this engineered patch in 16 patients with advanced non-neovascular AMD with a median age of 78 years in a single-arm, open-label, prospective, non-randomized, phase 1/2 study.[41] Critical inclusion criteria were advanced non-neovascular AMD, pseudophakia, and severe vision loss. Mild to moderate subretinal hemorrhages and macular holes were reported as adverse events. One patient developed ischemic colitis, possibly related to immunosuppression.

Employing a similar approach, an initiative called “The London Project to Cure Blindness” published data on a phase 1 trial encompassing...
two patients with severe wet AMD. Their patch was also made of differentiated ESC-derived RPE, but the scaffold was made of polyester membrane coated with human vitronectin. Using purpose-built microsurgical tools, the RPE patches were delivered subretinally to one eye in each of the two patients with severe exudative AMD. They reported successful delivery and survival of the RPE patch and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Importantly, preclinical safety studies did not reveal tumorigenicity or notable proliferative capacity of the ESC-derived RPE cells. Undifferentiated ESCs were not detected in the final differentiated RPE product. Furthermore, investigation of systemic biodistribution 26 weeks after implantation of the RPE grafts in pigs did not provide any evidence of migration of cells distant to the administration site. Although the number of patients included in the study is too low to conclude on the clinical efficiency of the RPE patch, the report provides valuable information about the surgical technique, stability of the transplant, and the safety of the ESC-derived cells.

CONCLUSION

As the aforementioned reports indicate, human RPE transplantation is still in its early days. Significant challenges related to graft composition, graft vehicle, and surgical technique need to be addressed. However, it is encouraging that, despite these challenges, the mentioned studies report positive outcomes following transplantation. Future clinical trials are therefore eagerly awaited. As of this writing, 12 RPE transplantation projects are listed on the clinical trials database ClinicalTrials.gov [Table 1], all being phase 1/2 trials assessing safety, side effects, and dosing. The most frequently occurring indication remains AMD. However, SMD, RP, and Leber congenital amaurosis are other diseases listed as indications for some ongoing trials. The majority of the projects seem to employ RPE cells derived from ESC. Based on this and the aforementioned recent studies, it is the authors’ impression that the current front-line of RPE transplantation is based on cell delivery as a patch using ESC-derived RPE.

Financial Support and Sponsorship

None.

Conflicts of Interest

There are no conflicts of interest.

TPU and JRE hold a patent on the culture of retinal pigment epithelial cells: https://patents.google.com/patent/US20180119097A1/en.

REFERENCES

1. Klettner AK, Dithmar S. Retinal pigment epithelium in health and disease. Springer International Publishing; 2020.
2. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005;85:845–881.
3. Khandhadia S, Cherry J, Lotery AJ. Age-related macular degeneration. In: Ahmad SI, editor. Neurodegenerative diseases [Internet]. New York, NY: Springer; 2012. p. 15–36. https://doi.org/10.1007/978-1-4614-0653-2_2.
4. Spraul CW, Lang GE, Grossniklaus HE, Lang GK. Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol 1999;44:S10–32.
5. Al-Hussaini H, Schneider M, Lundh P, Jeffery G. Drusen are associated with local and distant disruptions to human retinal pigment epithelium cells. Exp Eye Res 2009;88:610–612.
6. Li ZY, Possin DE, Milam AH. Histopathology of bone spicule pigmentation in retinitis pigmentosa. Ophthalmology 1995;102:805–816.
7. Snead DR, James S, Snead MP. Pathological changes in the vitreoretinal junction 1: Epiretinal membrane formation. Eye 2008;22:1310–1317.
8. Machemer R, Laqua H. Pigment epithelium proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 1975;80:1–23.
9. Fahl E, Jaissle GB, May CA. Pavert Svd, Wenzel A, Claes E, et al. Bone spicule formation in retinitis pigmentosa: Insights from a mouse model. Invest Ophthalmol Vis Sci 2008;49:2199–2199.
10. Flood MT, Gouras P, Kjeldbye H. Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci 1980;19:1309–1320.
11. Gouras P, Flood MT, Kjeldbye H. Transplantation of cultured human retinal cells to monkey retina. An Acad Bras Cienc 1984;56:431–443.
12. Li LX, Turner JE. Inherited retinal dystrophy in the RCS rat: Prevention of photoreceptor degeneration by pigment epithelial cell transplantation. Exp Eye Res 1988;47:911–917.
13. Lopez R, Gouras P, Brittis M, Kjeldbye H. Transplantation of cultured rabbit retinal epithelium to rabbit retina using a closed-eye method. Invest Ophthalmol Vis Sci 1987;28:1131–1137.

14. Lopez R, Gouras P, Kjeldbye H, Sullivan B, Reppucci V, Brittis M, et al. Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci 1989;30:586–588.

15. Sheedlo HJ, Li L, Turner JE. Photoreceptor cell rescue in the RCS rat by RPE transplantation: A therapeutic approach in a model of inherited retinal dystrophy. Prog Clin Biol Res 1989;314:645–658.

16. Algvere PV, Berglin L, Gouras P, Sheng Y, Kopp ED. Transplantation of RPE in age-related macular degeneration: Observations in disciform lesions and dry RPE atrophy. Graefes Arch Clin Exp Ophthalmol 1997;235:149–158.

17. Algvere PV, Berglin L, Gouras P, Sheng Y. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol 1994;232:707–716.

18. Del Priore LV, Kaplan HJ, Tezel TH, Hayashi N, Berger AS, Green WR. Retinal pigment epithelial cell transplantation after subfoveal membraneectomy in age-related macular degeneration: Clinopathologic correlation. Am J Ophthalmol 2001;133:472–480.

19. Peyman GA, Blinder KJ, Paris CL, Alturki W, Nelson NC Jr, Desai U. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg 1991;22:102–108.

20. Tezel TH, Del Priore LV, Berger AS, Kaplan HJ. Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol 2007;143:584–595.

21. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadouline A, et al. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: A prospective trial. Invest Ophthalmol Vis Sci 2004;45:4151–4160.

22. Binder S, Stolba U, Krebs I, Kellner L, Jahn C, Feichtinger H, et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: A pilot study. Am J Ophthalmol 2002;133:215–225.

23. Treumper F, Bunse A, Klatt C, Roider J. Autologous retinal pigment epithelium–choroid sheet transplantation in age related macular degeneration: morphological and functional results. Br J Ophthalmol 2007;91:349–353.

24. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 2017;376:1038–1046.

25. Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients. Stem Cell Reports 2015;4:860–872.

26. da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018;36:328–337.

27. Schwartz SD, Regillo CD, Lam BL, Elliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015;385:509–516.

28. Panopoulos AD, Ruiz S, Izpisua Belmonte JC. iPSCs: Induced back to controversy. Cell Stem Cell 2011;8:347–348.

29. Almond B. Using and misusing embryos: The ethical debates. In: King-Tak IP, editor. The bioethics of regenerative medicine. Springer Dordrecht: Springer; 2009. p. 77–92.

30. Blackford R. Stem cell research on other worlds, or why embryos do not have a right to life. J Med Ethics 2006;32:177–180.

31. Mcgee G. Trading lives or changing human nature: The strange dilemma of embryo-based regenerative medicine. In: King-Tak IP, editor. The bioethics of regenerative medicine. Springer Dordrecht: Springer; 2009. p. 93–106.

32. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 2009;27:2427–2434.

33. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 2009;458:126–131.

34. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, et al. Generation of dopaminergic neurons and pigmented epithelium from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA 2002;99:1580–1585.

35. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 2008;26:215–224.

36. van Zeelst EJ, Maaijwee KJ, Missotten TO, Heimann H, van Meurs JC. A free retinal pigment epithelium–choroid graft in patients with exudative age-related macular degeneration: Results up to 7 years. Am J Ophthalmol 2012;153:120–127.e122. https://doi.org/10.1016/j.ajo.2011.06.007
37. van Meurs JC, Van Den Biesen PR. Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: Short-term follow-up. *Am J Ophthalmol* 2003;136:688–695.

38. John S, Natarajan S, Parikumar P, Shanmugam PM, Senthilkumar R, Green DW, et al. Choice of cell source in cell-based therapies for retinal damage due to age-related macular degeneration: A review. *J Ophthalmol* 2013;2013:465169.

39. Stanga PE, Kychenthal A, Fitzke FW, Halfyard AS, Chan R, Bird AC, et al. Retinal pigment epithelium translocation after choroidal neovascular membrane removal in age-related macular degeneration. *Ophthalmology* 2002;109:1492–1498.

40. Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. *Sci Transl Med* 2018;10(435):eaao4097. https://doi.org/10.1126/scitranslmed.aao4097.

41. Kashani AH, Uang J, Mert M, Rahhal F, Chan C, Avery RL, et al. Surgical method for implantation of a biosynthetic retinal pigment epithelium monolayer for geographic atrophy: Experience from a phase 1/2a study. *Ophthalmol Retina* 2020;4:264–273.

42. Falkner-Radler CI, Krebs I, Glittenberg C, Povazay B, Drexler W, Graf A, et al. Human retinal pigment epithelium (RPE) transplantation: Outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. *Br J Ophthalmol* 2011;95:370–375.

43. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. *Lancet* 2012;379:713–720.