Interpolation of Nonlinear Maps

T. Kappeler**, A. M. Savchuk***, A. A. Shkalikov****, and P. Topalov*****

1Institut für Mathematik, Universität Zürich, Zürich, Switzerland
2Moscow State University, Moscow, Russia
3Northeastern University, Boston, MA, USA

Received September 9, 2014

Abstract—Let \((X_0, X_1)\) and \((Y_0, Y_1)\) be complex Banach couples and assume that \(X_1 \subseteq X_0\) with norms satisfying \(\|x\|_{X_0} \leq c\|x\|_{X_1}\) for some \(c > 0\). For any \(0 < \theta < 1\), denote by \(X_\theta = [X_0, X_1]_\theta\) and \(Y_\theta = [Y_0, Y_1]_\theta\) the complex interpolation spaces and by \(B(r, X_\theta), 0 \leq \theta \leq 1\), the open ball of radius \(r > 0\) in \(X_\theta\) centered at zero. Then, for any analytic map \(\Phi: B(r, X_\theta) \rightarrow Y_\theta\) such that \(\Phi: B(r, X_0) \rightarrow Y_0\) and \(\Phi: B(c^{-\theta}r, X_1) \rightarrow Y_1\) are continuous and bounded by constants \(M_0\) and \(M_1\), respectively, the restriction of \(\Phi\) to \(B(c^{-\theta}r, X_\theta)\), \(0 < \theta < 1\), is shown to be a map with values in \(Y_\theta\) which is analytic and bounded by \(M_0^{1-\theta}M_1^\theta\).

DOI: 10.1134/S0001434614110339

Keywords: interpolation, nonlinear maps, Banach couple, Hausdorff space.

1. INTRODUCTION

Let us first recall some basic notations and definitions of the interpolation theory for Banach spaces. Following [1], we say that two complex Banach spaces \(X_0\) and \(X_1\) are a complex Banach couple or Banach couple for short, \((X_0, X_1)\), if they are both linearly and continuously embedded into a linear complex Hausdorff space \(\mathcal{X}\), i.e., \(X_0 \subseteq \mathcal{X}\) and \(X_1 \subseteq \mathcal{X}\). The spaces \(X_\cap := X_0 \cap X_1\) and

\[
X_+ := X_0 + X_1 = \{ x \in \mathcal{X} \mid x = x_0 + x_1, \quad x_0 \in X_0, \quad x_1 \in X_1 \}
\]

are also Banach spaces when endowed with the norms

\[
\|x\|_\cap := J(1, x), \quad \text{respectively}, \quad \|x\|_+ := K(1, x),
\]

where, for any \(t \geq 0\),

\[
J(t, x) := \max\{\|x\|_{X_0}, t\|x\|_{X_1}\} \quad \forall x \in X_\cap
\]

and for any \(x \in X_+\)

\[
K(t, x) := \inf\{\|x_0\|_{X_0} + t\|x_1\|_{X_1} \mid x = x_0 + x_1, \quad x_0 \in X_0, \quad x_1 \in X_1\}. \tag{1}
\]

Without loss of generality, we will assume in what follows that \(\mathcal{X} = X_+\). We say that \((X_0, X_1)\) is a regular Banach couple if \(X_1\) is continuously embedded into \(X_0\), i.e., \(X_1 \subseteq X_0\) and there exists \(c > 0\) so that

\[
\|x\|_{X_0} \leq c\|x\|_{X_1} \quad \forall x \in X_1.
\]

There are several methods of constructing, for any given Banach couple \((X_0, X_1)\), interpolation spaces \(X, X_\cap \subseteq X \subseteq X_+\), that satisfy the interpolation property discussed below. The most familiar
interpolation methods are the real and the complex ones. The real method comprises among others the K-method, the L-method, the J-method, the mean-methods, and the trace method (see, e.g., [2], [1]).

Up to equivalent norms, these methods all lead to the same interpolation spaces X_θ,p, where $0 < \theta < 1$ and $1 \leq p \leq \infty$. In particular, for any fixed $1 \leq p < \infty$ and $0 < \theta < 1$, the K-method defines the interpolation spaces $X_{\theta,p} \equiv (X_0, X_1)_{\theta,p}$ as follows

$$X_{\theta,p} := \left\{ x \in X_+ \mid \|x\|_{\theta,p} = \left(\int_0^\infty (t^{-\theta}K(t,x))^p \frac{dt}{t} \right)^{1/p} < \infty \right\},$$

where $K(t,x)$ is defined by (1). If $p = \infty$, the space $(X_0, X_1)_{\theta,\infty}$ consists of the elements $x \in X_+$ with $\|x\|_{\theta,\infty} = \sup_{0 < t < \infty} t^{-\theta}K(t,x) < \infty$.

Now let us turn to the complex method of interpolation. For the notion of an analytic map between complex Banach spaces, we refer the reader, e.g., to [3] or [4, Appendix A]. Following [1], denote by S the vertical strip in the complex plane given by

$$S := \{ z \in \mathbb{C} \mid 0 < \Re z < 1 \},$$

and by \overline{S} its closure. For any given Banach couple (X_0, X_1), we then introduce the complex vector space $\mathcal{H}(X_0, X_1)$ of maps $f : \overline{S} \to X_+$ with the following properties:

- $(\mathcal{H}0)$ $f : \overline{S} \to X_+$ is continuous and bounded;
- $(\mathcal{H}1)$ $f|_S : S \to X_+$ is analytic;
- $(\mathcal{H}2)$ for any $t \in \mathbb{R}$, $f(it) \in X_0$, $f(1+it) \in X_1$, and the maps $\mathbb{R} \to X_0$, $t \mapsto f(it)$, and $\mathbb{R} \to X_1$, $t \mapsto f(1+it)$, are bounded and continuous.

Then

$$\|f\|_{\mathcal{H}} := \max \left\{ \sup_{t \in \mathbb{R}} \|f(it)\|_{X_0}, \sup_{t \in \mathbb{R}} \|f(1+it)\|_{X_1} \right\}$$

defines the norm on $\mathcal{H}(X_0, X_1)$. For any $0 < \theta < 1$, the complex interpolation space $X_\theta := [X_0, X_1]_{\theta}$ is the space

$$X_\theta := \{ x \in X_+ \mid \exists f(z) \in \mathcal{H}(X_0, X_1) \text{ with } f(\theta) = x \}$$

defined with the norm

$$\|x\|_{X_\theta} := \inf_{f \in \mathcal{H}} \{ \|f\|_{\mathcal{H}} \mid f(\theta) = x \}.$$

It is well known that the spaces X_θ (and $X_{\theta,p}$) have the interpolation property: given any two Banach couples (X_0, X_1) and (Y_0, Y_1) and any bounded linear operator $T : X_+ \to Y_+$ such that

$$\|Tx\|_{Y_0} \leq M_0 \|x\|_{X_0} \quad \forall x \in X_0$$
and

$$\|Tx\|_{Y_1} \leq M_1 \|x\|_{X_1} \quad \forall x \in X_1$$
for some $M_0 > 0$ and $M_1 > 0$, it follows that, for any $0 < \theta < 1$, T maps X_θ into Y_θ and

$$\|Tx\|_{Y_\theta} \leq M_0^{1-\theta}M_1^\theta \|x\|_{X_\theta} \quad \forall x \in X_\theta.$$

An important problem is to identify classes of nonlinear maps for which (a version of) the above interpolation property holds. It was investigated by many authors, see, e.g., [5]–[12], as well as the books [10], [1] and references therein for results on nonlinear maps defined on the entire spaces X_0 and X_1. In applications, such an assumption is often too restrictive. The first results for nonlinear maps which are defined only locally were obtained by Tartar [13, Theorem 1]. Using the real interpolation method (constructed with the help of the K-functional (see (2)) and a setup where $X_0 = X_+$ and $Y_0 = Y_+$, Tartar proved the interpolation property for a class of nonlinear maps $\Phi : U \to Y_0$ defined on an open, nonempty subset $U \subset X_0$ with the following properties:

- (T1) Φ is locally α-Hölder continuous for some $0 < \alpha \leq 1$;
and let X for some positive constant $c > 0$ such that
\[
\forall y \in V \cap X_1 \quad \|\Phi(y)\|_{Y_1} \leq c(\|y\|_{X_1}^{\beta} + 1) \quad \text{for some } \beta > 0.
\]

Note that the set $V \cap X_1$ may be of infinite diameter in X_1 even if V is a (small) ball in X_0. Hence in applications, property (T2) is often not satisfied or difficult to verify. It is this fact that motivated our study of nonlinear interpolation in [14], [15], and [16], where applications to inverse problems of spectral theory were considered. Within the setup of the complex method of interpolation, in [14] and [15], we established the interpolation property for a class of nonlinear maps, defined on balls with center at the origin, satisfying assumptions that are rather easy to prove in many applications. In this paper, our aim is to extend the results of [14] and [16] to a more general setup. Results in this direction have been obtained previously by Böhm [17] and Cwikel [18]. For a discussion of these results, we refer the reader to Remark 1 below. To the best of our knowledge, the type of result obtained in Theorem 2 below, is new.

2. MAIN RESULTS

To state our results, we first need to introduce some additional notation and establish some auxiliary results. For any given complex Banach space X, denote by $B(r, X)$ the open ball in X of radius r centered at the origin. Throughout this section, let (X_0, X_1) be a complex Banach couple with $X_1 \subseteq X_0$, and let $X_0 = [X_0, X_1]_\theta, 0 < \theta < 1$, be the complex Banach spaces constructed by the complex method of interpolation. We have the following auxiliary lemma.

Lemma 1. Assume that the norms of the Banach spaces $X_1 \subseteq X_0$ satisfy
\[
\|x\|_{X_0} \leq c\|x\|_{X_1} \quad \forall x \in X_1
\]
for some positive constant $c > 0$. Then, for any $0 < \theta < 1$,
\[
\begin{align*}
(i) & \quad \|x\|_{X_0} \leq c^\theta\|x\|_{X_0} \quad \forall x \in X_0, \\
(ii) & \quad \|x\|_{X_0} \leq c^{1-\theta}\|x\|_{X_1} \quad \forall x \in X_1.
\end{align*}
\]
In particular,
\[
B(c^{-1}r, X_1) \subseteq B(c^{-\theta}r, X_0) \subseteq B(r, X_0).
\]

Proof. Inequality (i) in (5) follows from the interpolation property of linear operators. Indeed, by (4) the identity operators
\[
I: X_1 \to X_0 \quad \text{and} \quad I: X_0 \to X_0
\]
are bounded by c and 1, respectively. Hence,
\[
I: X_0 = [X_0, X_1]_\theta \to [X_0, X_0]_\theta = X_0
\]
is bounded by c^θ. To prove inequality (ii) in (5), consider for any given $x \in X_1$, the analytic function $f: \mathbb{C} \to X_1, f(z) := e^{z-x}$. Clearly, $f \in \mathcal{H}(X_0, X_1)$. Furthermore, in view of the definition of the norms $\|\cdot\|_{X_0}, \|f\|_{\mathcal{H}}$ and of (4), we have
\[
\|x\|_{X_0} \leq \|f\|_{\mathcal{H}} = \max\{c^{-\theta}\|x\|_{X_0}, c^{1-\theta}\|x\|_{X_1}\} \leq c^{1-\theta}\|x\|_{X_1}.
\]

The first main result of this paper is the following.

Theorem 1. Assume that the norms of the Banach spaces $X_1 \subseteq X_0$ satisfy
\[
\|x\|_{X_0} \leq c\|x\|_{X_1} \quad \forall x \in X_1
\]
for some positive constant $c > 0$. Let (Y_0, Y_1) be an arbitrary Banach couple and, for some $r > 0$, let
\[
\Phi: B(r, X_0) \to Y_+\]

MATHEMATICAL NOTES Vol. 96 No. 6 2014
be an analytic map with $\Phi(B(r, X_0)) \subseteq Y_0$ and $\Phi(B(c^{-1}r, X_1)) \subseteq Y_1$, so that

$$\Phi: B(r, X_0) \to Y_0$$

and

$$\Phi|_{B(c^{-1}r, X_1)}: B(c^{-1}r, X_1) \to Y_1$$

are continuous and bounded by the constants M_0 and M_1, respectively,

$$\sup_{x \in B(r, X_0)} \|\Phi(x)\|_{Y_0} \leq M_0 \quad \text{and} \quad \sup_{x \in B(c^{-1}r, X_1)} \|\Phi(x)\|_{Y_1} \leq M_1. \quad (11)$$

Then, for any $0 < \theta < 1$, the inclusions $B(c^{-\theta}r, X_\theta) \subseteq B(r, X_0)$ and $\Phi(B(c^{-\theta}r, X_\theta)) \subseteq Y_\theta$ hold. Furthermore,

$$\Phi|_{B(c^{-\theta}r, X_\theta)}: B(c^{-\theta}r, X_\theta) \to Y_\theta$$

is bounded. More precisely, for any $x \in B(c^{-\theta}r, X_\theta)$

$$\|\Phi(x)\|_{Y_\theta} \leq M_0^{-\theta}M_1^\theta. \quad (13)$$

Remark 1. Theorem 1 is related to [18, Theorem 1.1], where sufficient conditions are provided for nonlinear maps defined on balls to have the interpolation property. Our proof of Theorem 1 is self-contained, making no reference to Theorem 1.1 in [18]. At the same time, it implicitly verifies some conditions which appear in [18]. Theorem 1 is also related to [17, Theorem 1] stating a result comparable to ours. However, condition (P2), assumed in Theorem 1 in [17], is too strong for our purposes: expressed in the setup of our paper, this condition says that the map Φ continuously maps $B(r, X_0) \cap X_1$ into the space Y_1. As already pointed out in our discussion of Tartar’s result of [13], $B(r, X_0) \cap X_1$ may be of infinite diameter in X_1. In comparison, in Theorem 1, it is only assumed that Φ continuously maps $B(c^{-1}r, X_1)$ into Y_1.

Proof of Theorem 1. By Lemma 1, for any $0 < \theta < 1$,

$$B(c^{-\theta}r, X_\theta) \subseteq B(r, X_0).$$

Hence the map Φ is well defined on $B(c^{-\theta}r, X_\theta)$. It remains to prove that $\Phi(B(c^{-\theta}r, X_\theta)) \subseteq Y_\theta$ and that (13) holds. Take an arbitrary $x \in B(c^{-\theta}r, X_\theta)$. By the definition of the norm $\|x\|_\theta$, there exists a function $f \in \mathcal{H}(X_0, X_1)$ such that

$$f(\theta) = x \quad \text{and} \quad \|f\|_\mathcal{H} < c^{-\theta}r.$$

In particular, in view of the definition of the norm $\|f\|_\mathcal{H}$, one has, for any $t \in \mathbb{R}$,

$$\|f(it)\|_{X_0} < c^{-\theta}r \quad \text{and} \quad \|f(1 + it)\|_{X_1} < c^{-\theta}r. \quad (14)$$

Consider the function

$$g: \overline{S} \to X_+, \quad z \mapsto g(z) := e^{\theta-z}f(z).$$

Clearly, $g \in \mathcal{H}(X_0, X_1)$ and $x = g(\theta)$. Since X_0 and X_+ coincide and the norms of X_0 and X_+ are equivalent, it follows that $g: \overline{S} \to X_0$ is continuous and bounded, and $f|_S: S \to X_0$ is analytic. Moreover, in view of (7) and (14), for any $t \in \mathbb{R}$, we have

$$\|g(1 + it)\|_{X_0} = e^{\theta-1}\|f(1 + it)\|_{X_0} \leq e^\theta\|f(1 + it)\|_{X_1} < r \quad (15)$$

and

$$\|g(it)\|_{X_0} \leq e^\theta\|f(it)\|_{X_0} < r. \quad (16)$$

Applying Hadamard’s three line theorem (see, e.g., [2, Lemma 1.1.2]), then yields

$$\|g(z)\|_{X_0} < r \quad \forall z \in \overline{S}. \quad (17)$$

Further, it follows from (14) that

$$\|g(1 + it)\|_{X_1} = e^{\theta-1}\|f(1 + it)\|_{X_1} < c^{-1}r. \quad (18)$$
Using inequality (17), we can define \(F : \mathcal{S} \to Y_+ \) by setting
\[
F(z) := M_0^{z-1}M_1^{-z}\Phi(g(z)).
\]
Since \(g : \mathcal{S} \to B(r, X_0) \subseteq X_0 \) is continuous and, by assumption, \(\Phi : B(r, X_0) \to Y_0 \) is bounded and continuous, we conclude from the continuity of the embedding \(Y_0 \subseteq Y_+ \) that \(F : \mathcal{S} \to Y_+ \) is also continuous and bounded. Similarly, since \(g|_S : S \to B(r, X_0) \subseteq X_0 \) and, by our assumption, \(\Phi : B(r, X_0) \to Y_+ \) are analytic, the function \(F|_S : S \to Y_+ \) is analytic as well. The inequalities (16) and (18), together with the bounds (11), as well as the continuity and the boundedness of the maps \(\Phi : B(r, X_0) \to Y_0 \) and \(\Phi|_{B(c^{-1}r, X_1)} : B(c^{-1}r, X_1) \to Y_1 \), then imply that \(F \in \mathcal{H}(Y_0, Y_1) \) and \(\|F\|_\mathcal{H} \leq 1 \). Further, in view of the equality \(F(\theta) = M_0^{\theta-1}M_1^{-\theta}\Phi(x) \), we conclude that
\[
\|\Phi(x)\|_{Y_0} = M_0^{1-\theta}M_1^\theta\|F(\theta)\|_{Y_0} \leq M_0^{1-\theta}M_1^\theta\|F(z)\|_\mathcal{H} \leq M_0^{1-\theta}M_1^\theta.
\]
This completes the proof of Theorem 1. \(\square \)

If the nonlinear maps \(\Phi : B(r, X_0) \to Y_0 \) and \(\Phi|_{B(c^{-1}r, X_1)} : B(c^{-1}r, X_1) \to Y_1 \) in Theorem 1 admit polynomial bounds of order \(n \) for some \(n \geq 1 \), then it follows from the next statement that the same is true for the maps \(\Phi|_{B(c^{-\theta}r, X_\theta)} : B(c^{-\theta}r, X_\theta) \to Y_\theta \) with arbitrary \(0 < \theta < 1 \). Actually, the following statement generalizes the corresponding result of [16].

Corollary. Assume that all assumptions of Theorem 1 are satisfied except that the boundedness condition (11) is replaced for some integer \(n \geq 0 \) by
\[
\|\Phi(x)\|_{Y_0} \leq M_0\|x\|_{X_0}^n \quad \forall x \in B(r, X_0),
\]
\[
\|\Phi(x)\|_{Y_1} \leq M_1\|x\|_{X_1}^n \quad \forall x \in B(c^{-1}r, X_1).
\]
Then, for any \(0 \leq \theta \leq 1 \) and any \(x \in B(c^{-\theta}r, X_\theta) \),
\[
\|\Phi(x)\|_{Y_\theta} \leq M_0^{1-\theta}M_1^\theta\|x\|_{X_\theta}^n.
\]

Proof of the corollary. Let \(x \in B(c^{-\theta}r, X_\theta) \), and set \(\rho := \|x\|_{X_\theta} \). Choose \(\varepsilon > 0 \) so that
\[
r_1 := c^\theta(\rho + \varepsilon) < r.
\]
Then, by (19),
\[
\|\Phi(y)\|_{Y_0} \leq M_0r_1^n \quad \forall y \in B(r_1, X_0)
\]
and, by (20),
\[
\|\Phi(y)\|_{Y_1} \leq M_1(c^{-1}r_1)^n \quad \forall y \in B(c^{-1}r_1, X_1).
\]
Theorem 1 then implies that, for all \(y \in B(c^{-\theta}r_1, X_\theta) \),
\[
\|\Phi(y)\|_{Y_\theta} \leq M_0^{1-\theta}M_1^\theta(r_1)^n(1-\theta)(c^{-1}r_1)^n = M_0^{1-\theta}M_1^\theta(\rho + \varepsilon)^n.
\]
In particular, the above inequality holds for \(y = x \). Since \(\varepsilon > 0 \) can be chosen arbitrarily small, the corollary follows. \(\square \)

Our second main result says that the map
\[
\Phi|_{B(c^{-\theta}r, X_\theta)} : B(c^{-\theta}r, X_\theta) \to Y_\theta,
\]
in Theorem 1 is analytic.

Theorem 2. The map \(\Phi|_{B(c^{-\theta}r, X_\theta)} : B(c^{-\theta}r, X_\theta) \to Y_\theta \), in Theorem 1 is analytic.
Proof. Inspired by arguments used in [16], we prove the claim by showing that $\Phi|_{B(c^{-\theta}r, X_\theta)}$ is represented by a series of analytic maps and the series converges absolutely and uniformly in Y_θ on any ball $B(c^{-\theta}\rho, X_\theta)$ with $0 < \rho < r$ (see [4, Theorem 2, Appendix A]). First, note that Y_0 and Y_1 are continuously embedded in Y_+, so, by Lemma 2 in the Appendix, the maps

$$\Phi: B(r, X_0) \to Y_0 \quad \text{and} \quad \Phi|_{B(c^{-1}r, X_1)}: B(c^{-1}r, X_1) \to Y_1$$

of (9) and (10) are analytic. Being analytic, the map $\Phi: B(r, X_0) \to Y_0$ is represented by its Taylor’s series at 0 with values in Y_0,

$$\Phi(h) = \Phi(0) + \sum_{n=1}^{\infty} \Phi_n(h), \quad h \in B(r, X_0). \quad (22)$$

Here

$$\Phi(0) \in Y_1 \quad \text{and} \quad \Phi_n(h) = \frac{1}{n!} d^n_0 \Phi(h, \ldots, h), \quad n \geq 1,$$

with $d^n_0 \Phi$ denoting the nth derivative of Φ at 0 (cf. (A4) in Appendix). We remark that, for any $n \geq 1$, $\Phi_n(h)$ is a bounded homogeneous polynomial of degree n in $h \in X_0$ with values in Y_0 and hence is analytic, and that the series in (22) converges absolutely and uniformly in h on any ball $B(\rho, X_0)$ with $0 < \rho < r$. Moreover, in view of Cauchy’s formula (cf. the Appendix), for any $h \in X_0$ with $h \neq 0$,

$$\Phi_n(h) = \frac{1}{2\pi i} \oint_{|z|=\rho} \frac{\Phi(\rho e^{-it}h)}{z^{n+1}} \, dz, \quad (23)$$

where ρ is chosen arbitrarily so that $0 < \rho < r/\|h\|_{X_0}$. Using (23) and the first inequality in (11), we see that, for any $h \in X_0$ with $h \neq 0$,

$$\|\Phi_n(h)\|_{Y_0} \leq \frac{1}{2\pi} \int_0^{2\pi} \|\Phi(\rho e^{-it}h)\|_{X_0} |\rho e^{-it}| dt \leq \frac{M_0}{\rho^n}. \quad (24)$$

Since this inequality holds for any $0 < \rho < r/\|h\|_{X_0}$, it follows that, for any $h \in X_0$ with $h \neq 0$,

$$\|\Phi_n(h)\|_{Y_0} \leq \frac{M_0}{\rho^n} \|h\|_{X_0}. \quad (24)$$

Note that the latter estimate holds trivially for $h = 0$. Applying the arguments above to the analytic map $\Phi|_{B(c^{-1}r, X_1)}: B(c^{-1}r, X_1) \to Y_1$, we see that, for any $h \in B(c^{-1}r, X_1)$, $\Phi_n(h) \in Y_1$ and the series (22) converges in Y_1. Further, by (23), for any $h \in X_1$,

$$\|\Phi_n(h)\|_{Y_1} \leq \frac{M_1}{(c^{-1}r)^n} \|h\|_{X_1}. \quad (25)$$

Applying the corollary to the the map $\Phi_n: X_0 \to Y_0 \subseteq Y_+$, we conclude from (24) and (25) that, for any $h \in X_0$, $\Phi_n(h) \in Y_0$ and

$$\|\Phi_n(h)\|_{Y_0} \leq \left(\frac{M_0}{r^n} \right)^{1-\theta} \left(\frac{M_1}{(c^{-1}r)^n} \right)^{\theta} \|h\|_{X_0} \leq M_0^{1-\theta} M_1^{\theta} \left(\frac{\|h\|_{X_0}}{c^{-\theta}r} \right)^n.$$

This inequality shows that, for any $h \in B(c^{-\theta}r, X_\theta)$, the series in (22) converges in Y_θ and that it converges absolutely and uniformly on any ball $B(c^{-\theta}\rho, X_\theta)$ with $0 < \rho < r$. \hfill \Box

Finally, we remark that Theorem 1, combined with Theorem 2, generalizes Theorem 1.1 in [14] in the context of the setup chosen in this paper.
3. APPENDIX

In this appendix, we review the notion of an analytic map between complex Banach spaces and discuss properties of such maps used in Sec. 2. For more details we refer the reader, e.g., to [3] or [4, Appendix A].

Let X and Y be complex Banach spaces and let $U \subseteq X$ be an open set in X. A map $F: U \to Y$ is said to be analytic if it is Fréchet differentiable over \mathbb{C} at any point $x \in U$. The map $F: U \to Y$ is said to be weakly analytic if for any $x \in U$, $h \in X$, and $f \in Y^*$, the complex-valued function $f(F(x + zh))$ is holomorphic in a small disk in \mathbb{C} centered at zero.

Let us recall the following analyticity criteria (see, e.g., [4, Theorem 1.1, Appendix A]). Assume that X and Y are complex Banach spaces and that $\Phi: U \to Y$ is a map defined on an open subset U of X, $U \subseteq X$. Then the following statements are equivalent:

(A1) $\Phi: U \to Y$ is analytic;

(A2) $\Phi: U \to Y$ is weakly analytic and locally bounded;

(A3) $\Phi: U \to Y$ is continuous and for any $x \in U$ and $h \in X$, there exists a disk $D_r = \{z \in \mathbb{C} \mid |z| < r\}$ such that, for any $0 < \rho < r$, Cauchy’s formula holds

$$F(z) = \frac{1}{2\pi i} \int_{|\xi|=\rho} \frac{\Phi(\xi)}{\xi - z} d\xi \quad \forall |z| < \rho; \quad (26)$$

(A4) $\Phi: U \to Y$ is infinitely differentiable on U and is represented by its Taylor series in a neighborhood of each point of U, i.e., for any $x \in U$,

$$\Phi(x + h) = \Phi(x) + \sum_{n=1}^{\infty} d^n_x \Phi(h, \ldots, h),$$

where $d^n_x \Phi$ denotes the nth derivative of Φ at x and the series converges absolutely and uniformly for any $h \in B(\rho, X)$, with $0 < \rho < r$ so that $B(r, X) \subset U$.

Now let us prove the following lemma.

Lemma 2. Let X, Y, and Y_+ be Banach spaces such that $Y \subseteq Y_+$. Let $U \subseteq X$ be an open set in X and let $\Phi: U \to Y_+$ be analytic, $\Phi(U) \subseteq Y$, and $\Phi: U \to Y$ be continuous. Then $\Phi: U \to Y$ is analytic.

Proof. For any $x \in U$ and $h \in X$, consider the map

$$F: D_r \to Y_+, \quad F(z) := \Phi(x + zh),$$

where the disk $D_r \subseteq \mathbb{C}$ is centered at zero and chosen so that $x + zh \in U$ for any $z \in D_r$. Since, by assumption, $F: D_r \to Y_+$ is analytic in the Y_+-norm, it follows that Cauchy’s formula (26) holds in Y_+ for any given $z \in D$. Furthermore, it follows from the assumptions of the lemma that $F: D_r \to Y$ is continuous with respect to the Y-norm; then the integral on the right-hand side of (26) defines a continuous map $G: D_r \to Y$. In view of the embedding $Y \subseteq Y_+$, one has $G = F$.

ACKNOWLEDGMENTS

The work of the first author was supported by the Swiss National Science Foundation. The work of the second and third authors was supported by the Russian Science Foundation (RSF) (grant no. 14-11-00754). The work of the fourth author was supported by the National Science Foundation (NSF) (grant no. DMS-0901443).
REFERENCES

1. H. Triebel, *Interpolation Theory, Function Spaces, Differential Operators* (North-Holland, Amsterdam, 1978; Mir, Moscow, 1980).
2. J. Bergh and J. Löfström, *Interpolation Spaces: An Introduction* (Springer, Berlin, 1976; Mir, Moscow, 1980).
3. J. Dieudonné, *Foundations of Modern Analysis*, in *Pure Appl. Math.* (Academic Press, New York, 1960), Vol. 10.
4. J. Pöschel and E. Trubowitz, *Inverse Spectral Theory*, in *Pure Appl. Math.* (Academic Press, New York, 1987), Vol. 130.
5. J. Bergh, “A nonlinear complex interpolation result,” in *Lecture Notes in Math.*, Vol. 1070: *Interpolation Spaces and Applied Topics in Analysis* (Springer, Berlin, 1984), pp. 45–47.
6. A. Calderón and A. Zygmund, “A note on the interpolation of sublinear operations,” Amer. J. Math. 78, 282–288 (1956).
7. E. Gagliardo, “Interpolation d’espaces de Banach et applications. III,” C. R. Acad. Sci. Paris 248, 3517–3518 (1959).
8. J. Lions, “Interpolation linéaire et non linéaire et regularité,” Symposia Math. 7, 443–458 (1971).
9. L. Maligranda, “On interpolation of nonlinear operators,” Comment. Math. Prace Mat. 28 (2), 253–275 (1989).
10. L. Maligranda, *A Bibliography on “Interpolation of Operators and Applications“* (1926–1990) (Högskolan i Luleå, Luleå, 1990).
11. L. Maligranda, L. Persson, and J. Wyller, “Interpolation and partial differential equations,” J. Math. Phys. 35 (9), 5035–5046 (1994).
12. J. Peetre, “Interpolation of Lipschitz operators and metric spaces,” Mathematica (Cluj) 12, 325–334 (1970).
13. L. Tartar, “Interpolation non linéaire et régularité,” J. Funct. Anal. 9, 469–489 (1972).
14. T. Kappeler and P. Topalov, “On nonlinear interpolation,” Proc. Amer. Math. Soc. (in press); arXiv: 1306.5721.
15. A. M. Savchuk and A. A. Shkalikov, “On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev space,” Mat. Zametki 80 (6), 864–884 (2006) [Math. Notes 80 (6), 814–832 (2006)].
16. A. M. Savchuk and A. A. Shkalikov, “On the interpolation of analytic mappings,” Mat. Zametki 94 (4), 578–581 (2013) [Math. Notes 94 (4), 547–550 (2013)]; arXiv: 1307.0623.
17. M. Böhm, “Global interpolation estimates for nonlinear operators based on a global and a local estimate in the corner spaces,” C. R. Acad. Sci. Paris Sér. I Math. 318 (9), 821–826 (1994).
18. M. Cwikel, “Complex interpolation of nonlinear operators and Lebedev–Milin inequalities for Taylor coefficients of composed analytic functions,” Math. Nachr. 132, 153–161 (1987).