Diversity and traditional knowledge of medicinal plants in home gardens of Kampung Masjid Ijok, Perak, Malaysia

MOHD RAZNAN RAMLI1*, POZI MILOW1, SORAYYA MALEK2
1Department of Environmental Management, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia. Tel.: +603-79676777, *email: raznan83@gmail.com
2Bioinformatics Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia

Abstract. Ramli MR, Milow P, Malek S. 2021. Diversity and traditional knowledge of medicinal plants in home gardens of Kampung Masjid Ijok, Perak, Malaysia. Biodiversitas 22: 2458-2465. Medicinal plants and associated traditional knowledge are at risk of habitat modification, globalisation, urbanization, and modernization. Though home gardens are recognized as a potential strategy for medicinal plant conservation, at the same time very limited efforts have been made for the documentation of ethnomedicinal plants. We explored and documented the diversity and population status of ethnomedicinal plants in the home gardens of Kampung Masjid Ijok along with its associated traditional knowledge. Field observation and semi-structured interviews were conducted to record for the medicinal uses of the medicinal plants in the home gardens. The information, i.e. local name, parts used, methods of preparation, and type of ailments, were also collected. The total numbers of medicinal plants recorded in the study area were 68 species belonging to 40 families. The families of Zingiberaceae, Asteraceae, Acanthaceae, and Fabaceae were recorded as having the highest number of medicinal plants. Herbs were the main source of medicinal plants in terms of species number followed by shrubs, trees, and climbers. Cocos nucifera L., Carica papaya L., Areca catechu L, and Citrus aurantifolia (Chris. & Panz.) Swin were the most frequent species of medicinal plants. Shannon diversity index of medicinal plant species was 3.7. The most frequently utilized plant parts were the leaves followed by roots, fruits, rhizomes, whole plants, flowers, seeds, and barks. Gastrointestinal disorders including stomach ache, diarrhea, dysentery, indigestion, flatulence, worm infestation in children, and constipation were among the most frequent ailments treated with the medicinal plants. This study revealed that many medicinal plants are still broadly found in home gardens and used for treating various ailments. The information recorded in this study may form the basis for the conservation and sustainable use of ethnomedicinal plants and may also contribute to the preservation of cultural and genetic diversity.

Keywords: Diversity, home gardens, Kampung Masjid Ijok, medicine plants, traditional knowledge

INTRODUCTION

Malaysia's tropical forests are recognized as a hub for biodiversity, where a large number of medicinal plants are recorded which constitute an enormous potential source of plant-derived chemicals that are useful to humans. Almost 15,000 species of flowering plants have already been identified in the rainforests of Malaysia, and many more have not been identified and documented yet (Hussain et al. 2015). About 20 percent of these 15,000 flowering plants were documented as being used as traditional medicines by local communities mainly by the Malays, including the Orang Asli (Hussain et al. 2015). Azliza et al. (2012) reported that the Orang Asli of Ulu Kuang village in the state of Selangor used 49 species of medicinal plants. Zaki et al. (2019) recorded that the Orang Asli community in the state of Kelantan used 18 species of medicinal plants. Mohammad et al. (2012) recorded 39 species of medicinal plants were used for treating various ailments by the Orang Asli in Kampung Ulu Legong in the state of Kedah. Ong et al. (2012) indicated that the Orang Asli community in Kampung Pos Penderas in the state of Pahang used 53 species of medicinal plants. Ong et al. (2011a) recorded 56 medicinal plant used by the Malay community in Kampung Mak Kemas in the state of Terengganu.

Medicinal plants and associated traditional knowledge are at risk of habitat modification, globalisation, urbanization, and modernization. According to Saynes-Vasquez et al. (2013), the main factors leading to the loss of traditional knowledge of medicinal plants were the presence of modern public healthcare, economic development, and current systems of formal education. The study by Hu et al. (2020) among the Mulam community in Guangxi, China indicated that the lack of written records, conservative inheritance patterns, rapid economic development, and low interest in traditional medicinal knowledge among young people were the factors that contributed to the loss on the traditional knowledge. Moreover, some medicinal plants are threatened with extinction from overexploitation and habitat destruction with the increasing human population and plant consumption. According to Pimm et al. (1995), the current loss of plant species is between 100 and 1000 times higher than the expected natural extinction rate, and that the Earth is losing at least one potential major drug source every two years.

Therefore, the role of local communities in the conservation, management, and utilization of medicinal plants should be recognized. A possible strategy for the conservation of medicinal plants is cultivation in the home gardens. Home gardens are less complex agroforests,
almost similar to natural forest ecosystems, and integrated into agricultural management systems located around houses (Mapongmetsem et al. 2012). According to Gao et al. (2012), medicinal plants in the home gardens are either intentionally cultivated or spontaneously grown as wild or weed species. Panyadee et al. (2019) indicated that there were 95 species of medicinal plants recorded in home gardens of four ethnic groups in Thailand. Pala et al. (2019) recorded 53 species of medicinal plants in home gardens of the Eastern Himalaya. Huai et al. (2011) reported that home gardens have been an important site for domestication of medicinal and fruit plants which constitute an important contribution to the conservation of rare, endangered, or over-exploited species. Though home gardens are recognized as a potential strategy for medicinal plant conservation, very limited efforts have been made for the documentation of ethnomedicinal plants. We explored and documented the diversity and population status of ethnomedicinal plants in the home gardens of Kampung Masjid Ijok along with its associated traditional knowledge. The information and data generated in this study may form the basis for the conservation and sustainable use of ethnomedicinal plants and may also contribute to the preservation of cultural and genetic diversity.

MATERIALS AND METHODS

The present study was carried in the village of Kampung Masjid Ijok, Selama district in the state of Perak, Malaysia (Figure 1).
The village is located between 5°7’0”N to 5°8’15” latitude and 100°49’15”E to 100°50’45”E longitude with an average altitude of 50 meters above sea level. Kampung Masjid Ijok is characterized by a tropical climate with temperatures recorded from 28°C to 32°C throughout the year, and 2,000 mm to 2,500 mm of annual precipitation. The population consists of 200 inhabitants belonging to 60 households and is only composed of the Malays. The economy is agriculture-based, rubber tree and palm oil are the major crops. The major occupation of the local people is farming. The villagers also depend heavily on home gardens for their daily needs, especially for day-to-day dietary and health supplements. Field observation in 40 home gardens and semi-structured interviews were used to gather information on traditional knowledge of medicinal plants regarding their uses, parts used, and mode of preparation. Photographs of each medicinal plant were taken for identification purposes and documentation. For each home garden, the numbers of individuals for each medicinal plant were recorded to determine frequency and Shannon-Wiener diversity index. The index is determined using the following formula:

\[
\text{Frequency} = \frac{\text{No. of homegardens in which a species occurs}}{\text{Total no. of homegardens}}
\]

\[
H = \sum_{i=1}^{S} - (P_i \times \ln P_i)
\]

Where:
- \(H\) : the Shannon-Wiener diversity index
- \(P_i\) : fraction of the entire population made up of species \(i\)
- \(S\) : numbers of species encountered
- \(\sum\) : sum from species 1 to species \(S\)

\[
\text{RESULTS AND DISCUSSIONS}
\]

In the present study, a total of 68 plant species were recorded in 40 home gardens of Kampung Masjid Ijok belonging to 65 genera and 40 plant families (Table 1). The total species recorded in this study is higher compared to other Malay villages in Terengganu and Negeri Sembilan. Ong et al. (2011a) and Ong et al. (2011b) noted that the Malay in the Kampung Tanjung Sabtu, Terengganu used 52 species of medicinal plants. Aziz and Zakaria (2013) recorded 50 species of medicinal plants in Lenggong Valley, Perak. Compared to other native communities in Peninsular Malaysia, the overall species recorded in this study are also considered to be higher. Ramli et al. (2021) indicated that the Temuan community of Kampung Orang Asli Donglai Baru, Selangor used 39 species of medicinal plants in the treatment of various ailments. Temuan community in Kampung Ulu Kuang, Selangor used 49 species of medicinal plants (Azliza et al. 2012). In the village of Johor, Sabran et al. (2016) recorded 23 species of medicinal plants used by the Jakun community. Temiar community in the village of Kelantan only used 18 species of medicinal plants (Zaki et al. 2019). Jah Hut community in Kampung Pos Penderas, Pahang used 53 medicinal plants (Ong et al. 2012a). Semai community in Kampung Batu 16, Perak used 37 species of medicinal plants (Ong et al. 2012b). A report by Milow et al. (2013) indicated that 28 species of medicinal plants were recorded in the Orang Asli home gardens in Negeri Sembilan. Mohammad et al. (2012) recorded 35 species of medicinal plants used by the Kensi community in Kampung Lubuk Ulu Legong, Kedah. The high species of medicinal plants recorded in this study demonstrates the importance of home gardens as a repository of ethnomedical knowledge of the Malays community in Kampung Masjid Ijok. The differences in the total of medicinal plants recorded in other studies could be the result of different cultural or environmental factors. According to Quave and Pieroni (2015), the traditional knowledge of medicinal plants from different ethnic groups is restricted by cultural boundaries. Some plants are not only considered to have medicinal value by some ethnic groups, but also considered weeds by other ethnic groups, and vice versa.

The largest proportion of medicinal plants belonged to the families of Zingiberaceae (6 species), followed by Asteraceae (5 species), Acanthaceae (3 species), and Fabaceae (3 species). The present study is in line with other studies in Malays villages. Ong et al. (2011a) indicated that Zingiberaceae, Euphorbiaceae, Acanthaceae, Lamiaceae, Piperaceae, and Poaceae were among the most common plant families in the Kampung Mak Kemas, Terengganu. Ong et al. (2011b) reported that Zingiberaceae and Poaceae were among the most plant families in the Kampung Tanjung Sabtu, Terengganu followed by Acanthaceae, Piperaceae, Rutaceae, and Solanaceae. In comparison to the Orang Asli community, Zingiberaceae is also recorded as the most common plant families. Among the Kensi communities in Kampung Lubuk Ulu Legong, Mohammad et al. (2012) indicated that Zingiberaceae, Asparagaceae, Rubiaceae, and Sapindaceae were among the highest plant families of medicinal plants. The same pattern were also recorded by Ramli et al. (2021), Zaki et al. (2019), and Azliza et al. (2012) who observed that Zingiberaceae was the highest plant family used by Orang Asli in Kampung Donglai Baru Selangor, Kampung Pasik Kelantan, and Kampung Ulu Kuang Selangor respectively. This demonstrates that Zingiberaceae is the most common family of medicinal plants used by the Malays and Orang Asli communities in Peninsular Malaysia. The recognition of the medicinal properties of plants in the Zingiberaceae family is also common among many ethnic groups in other regions. In Thailand, the Karen which is the largest ethnic minority in the country cultivated many medicinal Zingiberaceae in their home gardens (Tangjitman et al. 2015). In Indonesia, Jadid et al. (2020) reported that the Zingiberaceae was the most abundant of plant family used by the Tengger tribe in the Ngadisari village.

Herbs were the main life-form of medicinal plants in terms of number of species (27 species), followed by shrubs (20 species), trees (19 species), and climbers (2
species) as shown in Figure 2. Cocos nucifera L. Carica papaya L, Areca catechu L, and Citrus aurantiifolia (Chris. & Panz.) Swin were the most frequent species. Bhat et al. (2014) also notified that coconut palm is the most dominant species in the home gardens of Karwar, India. According to Cruz-Garcia and Struijk (2015), most of the plant species in home gardens were selected according to their owners’ preferences. In this study, home gardens also function as experimental nurseries for propagating and domesticating some species from nearby forests. The best examples of this are Eurycoma longifolia Jack, Garcinia atroviridis Griff. ex T. Anders, Nepenthes gracilis Korth, Parkia speciosa Hassk, Scorodocarpus borneensis (Baill.) Becc, Vitex pubescens Vahl, and Zingiber aromaticum Vahl, which now, according to the local informants, are very rare in the forest because of land conversion to rubber tree and palm oil plantation. As a result, many villagers began to cultivate them for self-consumption in their home gardens and sometimes sold them to the nearest market as additional income. This finding is also in line with Eyasu et al. (2020) which noted that home gardens were an important reservoir of native plant species that were endangered or over-exploited in the forests near the villages. Some plants grow spontaneously in the home gardens and are not removed but protected by attaching them to a solid structure, or by laying stones around the plants. Such examples include Oxalis barrelieri L., Phyllanthus pulcher Wall. ex Müll. Arg. Stachytarpheta jamaicensis (L.) Vahl, and Taccia integrifolia Ker Gawler.

The total number of medicinal plant species per home garden ranged from 4 to 20 with a mean of 5.4 ± 5.10 with Shannon-Wiener Index 3.7. Shannon-Wiener Index in this present study corresponds with the value recorded in home gardens of Bangladesh (Rahman et al. 2013) and Sri Lanka (Mattsson et al. 2015) with ranges from 3.0 to 4.0. The index value recorded in this study is higher compared to the study in Sudan (Wiehle et al. 2014), and Ethiopia (Abebe et al. 2013) with the values recorded were 1.46 and 1.41 respectively. However, the study is lower compared to the study by Srithi et al. (2012) in home gardens of Northern Thailand with the Shannon-Wiener diversity index varied from 4.56 to 5.06. The finding of this study indicated that the home gardens of Kampung Masjid Ijok is rich with medicinal plant species and need to be considered for in situ conservation. Wezel and Ohl (2005) reported that about 55% of the medicinal plants that were noted in their study in the Amazon region were found in only one single home garden. The difficulty to get modern medicine in rural areas is also a main factor of the home gardens owners to use the plants as an alternative medicine to treat certain ailments. The plant parts used for medicinal preparations were leaves, roots, flowers, fruits, rhizomes, and in some cases the whole plants including the roots. The most frequently plant parts were the leaves (41%), followed by roots (26 %), fruit (15%), rhizome (9%), whole plants (6%), flowers (1%), seed (1%), and bark (1%) as shown in Figure 3. Leaves were the most frequently part plant used in this study which is similar to the report on other villages by Ong et al (2011b). This practice can be a sustainable way to exploit medicinal plants compared to harvesting of other plant parts and helps to reduce the rate of threat on plant species and subsequently conserve the medicinal plants.

Gastrointestinal disorders including stomach ache, diarrhea, dysentery, indigestion, flatulence, worm infestation in children, and constipation are among the most frequent ailments treated with medicinal plants (25% of all remedies). Then, the ailments are followed by respiratory problems, women-related health, hypertension, diabetes, fever, headache, and kidney stones. The most commonly used plant species in the treatment of gastrointestinal disorders include Carica papaya L, Clinacanthus nutans (Burn F.) Lindau, Coleus blumei Benth, Psidium guajava L, Scorodocarpus borneensis (Baill.) Becc, Zingiber officinale Roscoe, and Zingiber aromaticum Vahl. Psidium guajava L was also cited by other ethnobotanical studies in other locations in Malaysia to treat diarrhea and stomach-ache. For example, Ong et al. (2012a) reported the use of Psidium guajava to treat diarrhea and stomach-ache among the Orang Asli community in Kampung Pos Penderas, Pahang. Ramli et al. (2021) also reported that the Orang Asli community in Kampung Donglai Baru, Selangor also used Psidium guajava L to treat the same ailments.

![Figure 2](image1.png) Diversity of life-form of medicinal plants

![Figure 3](image2.png) Parts of medicinal plants used to treat ailments
Species name	Family name	Local name	Habit	Part used	Freq. of occurrence	Use	Preparation/administration
Ageratum conyzoides L.	Asteraceae	Pokok tahi babi	Herb	Leaves	1	Treat colic, colds, and fevers	Infusion/orally
Allium tuberosum Rottler ex Spreng	Amaryllidaceae	Kucai	Herb	Leaves	4	Treating parasites in the intestines	Decoction/orally
Alpinia conchigera Griff	Zingiberaceae	Lengkuas ranting	Herb	Leaves	10	Rheumatism	
Ananas nanus L.B.	Bromeliaceae	Nanas batu	Shrub	Fruits	2	Kidney stones	Infusion/orally
Andrographis paniculata (Burm.f.) Wall. ex Nees	Acanthaceae	Hemptedu bumi	Herb	Whole plants	1	Hypertensions	Decoction/orally
Annona muricata L.	Annonaceae	Durian belanda	Tree	Leaves	8	Fever	Infusion/dressing
Areca catechu L.	Arecaceae	Pinang	Tree	Roots	18	Kidney stone	Decoction/orally
Barringtonia racemosa (L.) Spreng	Lecythidaceae	Putat	Tree	Fruits	3	Cough, asthma	Infusion/orally
Blumea balsamifera (L.) DC.	Arecaceae	Caña	Shrub	Leaves	4	Diarrhea	Infusion/orally
Carica papaya L.	Caricaceae	Betik	Herb	Fruits	26	Constipation	Infusion/orally
Cassia tora (L.) Roxb	Fabaceae	Geleng-gang kecil	Herb	Roots	2	Kidney stones	Decoction/orally
Centella asiatica (L.) Urban	Muntingaceae	Peppagil	Herb	Whole plants	2	Aging	Infusion/orally
Chassalia curviflora (Wallich) Thwaites	Rubiaceae	Bebras	Shrub	Roots	3	Coughs	Decoction/orally
Citrus aurantiifolia (Chris. & Panz.) Swin	Rutaceae	Limau nipsis	Tree	Fruits	15	Dysmenorrhoea	Infusion/orally
Clerodendron paniculatum L.	Lamiaceae	Senduduk babi	Shrub	Roots	7	Poison antidote	Decoction/orally
Clinacanthus nutans (Burn) F. Lindau	Acanthaceae	Belalai gajah	Shrub	Leaves	3	Gastrointestinal disorders	Decoction/orally
Cocos nucifera L.	Arecaceae	Kelapa	Tree	Roots	28	Kidney stone	Decoction/orally
Coleus blumei Benth	Lamiaceae	A-ti	Herb	Leaves	6	Diarrhea	Poultice/dressing
Curcuma aeruginosa Roxb	Zingiberaceae	Kunyit hitam	Herb	Rhizome	2	Cough and asthma	Decoction/orally
Cymbopogon flexuosus (Nees ex Steud.)	Gramineae	Serai hitam	Herb	Roots	1	Indigestion	Decoction/orally
Cyperus alternifolius L.	Cyperaceae	Nering	Shrub	Roots	3	Kidney stones	Decoction/orally
Dioscorea hispida Dbnst.	Dioscoreaceae	Ubi gadut	Herb	Rhizome	1	Sore feet	Poultice/dressing
Elettariopsis slowing (K. & Lim)	Zingiberaceae	Halia kesiing	Herb	Leaves	4	Treat post-partum	Poultice/dressing
Euphorbia hirta L.	Euphorbiaceae	Ara tanah	Herb	Whole plants	1	Gastrointestinal disorders	Decoction/orally
Eurycoma longifolia Jack	Simaroubaceae	Tongkat ali	Tree	Roots	4	Low sexual energy	Decoction/orally
Ficus deltoidea Jack	Moraceae	Mas cotek	Shrub	Leaves	1	Hypertension	Decoction/orally
Ficus nepopyramidata Miq	Moraceae	Kelempung	Tree	Fruits	3	Galactagogue (promotes lactation in human)	Eat raw/orally
Garcinia atroviridis Griff. ex T. Anders	Clusiaceae	Gelugur	Tree	Fruits	4	Hypertension	Decoction/orally
Gynura sarmentosa DC	Gramineae	Sambung nyawa	Herb	Leaves	1	Dysentery	Decoction/orally
Hibiscus rosa-sinensis DC	Malvaceae	Bunga raya	Shrub	Leaves	10	Fever	Infusion/dressing
Kaempferia galanga L	Zingiberaceae	Cekur	Herb	Leaves	2	Womb healing after childbirth	Decoction/orally
Kalanchoe pinnata (Lamk.) Pers	Crassulaceae	Setawar	Herb	Leaves	3	Headache	Poultice/dressing
Leucaena leucocephala (Lamk) De Wit.	Leguminosae	Petai belalang	Tree	Seeds	4	Stomachache, contraception, abortion	Infusion/orally

Table 1. Diversity of plant species obtained in the home gardens of Kampung Masjid Ijok.
Plant Name	Family	Part Used	Use	Preparation
Mallotus barbatus Müll.Arg	Euphorbiaceae	Tree	Gastrointestinal disorders	Decoction/ orally
Mangifera foetida Lour	Anacardiaceae	Tree	Skin complaints	Poultice/ dressing
Maranta arundinacea L.	Marantaceae	Herb	Poison antidote	Decoction/ orally
Melastoma decumiflorum Roxb. ex Jack.	Melastomataceae	Shrub	Kidney stones	Decoction/ orally
Mimosa pudica L	Fabaceae	Herb	Athlete’s foot	Poultice/ dressing
Mikania micrantha Kunth ex H.B.K	Asteraceae	Whole plants	Stop minor external bleeding	Poultice/ dressing
Molineria latifolia (Dryand. ex W.T.Aiton)	Asteraceae	Herb	Menorrhagia	Decoction/ orally
Morinda citrifolia L	Rubiaceae	Tree	Treat post-partum	Poultice/ dressing
Nepenthes gracilis Korth	Nepenthaceae	Herb	Dysentry	Decoction/ orally
Ocimum sanctum L	Lamiaceae	Herb	Coughs	Decoction/ orally
Oroxyllum Indicum Vent.	Bignoniaceae	Tree	Fever	Poultice/ dressing
Orthosiphon aristatus (BL) Miq	Lamiaceae	Shrub	Diabetes	Decoction/ orally
Oxalis barrelieri L.	Oxalidaceae	Herb	Hypertension	Decoction/ orally
Pandanus atrocarpus Griff	Pandanaceae	Shrub	Kidney stones	Decoction/ orally
Parkia speciosa Hassk.	Mimosaceae	Tree	Diabetes	Infusion/ orally
Passiflora edulis Sims	Passifloraceae	flowers	Gastrointestinal disorders	Infusion/ orally
Physalis minima L	Solanaceae	Herb	Head-ache	Poultice/ dressing
Piper betle L.	Piperaceae	Herb	Stop internal bleeding in the nose	Poultice/ dressing
Piper sarmentosum Roxb. Ex hunt	Piperaceae	Herb	Cough, asthma	Decoction/ orally
Psidium guajava L	Myrtaceae	Tree	Diarrhea, stomach-ache	Infusion/ orally
Phyllanthus pulcher Wall. ex Müll. Arg	Euphorbiaceae	Shrub	Boils, carbuncles	Poultice/ dressing
Ricinus communis L	Euphorbiaceae	Shrub	Rhuematism	Poultice/ dressing
Rhinacanthus communis (L.) Kurz	Acanthaceae	Shrub	Skin complaints	Poultice/ dressing
Scorodocarpus borneensis (Baill.) Becc	Olacaceae	Tree	Indigestion	Infusion/ orally
Sida rhombifolia L	Malvaceae	Shrub	Fever	Decoction/ orally
Solanum torvum Swar.	Solanaceae	Shrub	Hypertension	Infusion/ orally
Stachysarpheja jamaicensis (L.) Vahl	Verbenaceae	Shrub	Scabies, abscess	Poultice/ dressing
Tacca integrifolia Ker Gawler	Dioscoreaceae	Shrub	Skin complaints	Poultice/ dressing
Tamarindus Indica L	Fabaceae	Tree	Fever, sore throat	Juice/ orally
Typhonium flagelliforme (Lodd) Blume	Araceae	Herb	Expectorant for respiratory disorders	Infusion/ orally
Vernonia amygdalina Del	Asteraceae	Shrub	Treatment of jaundice, diarrhea	Decoction/ orally
Vitex pubescens Vahl	Verbenaceae	Tree	Womb healing after childbirth	Decoction/ orally
Zingiber officinale Roscooe	Zingiberaceae	Herb	Flatulence	Decoction/ orally
Zingiber aromaticum Vahl	Zingiberaceae	Herb	Worm infestation in children	Decoction/ orally
Similarly, medicinal uses of *Psidium guajava* have also been reported in previous ethnobotanical studies in other countries. For example, Tangjitman et al. (2015) and Jadi et al. (2020) reported the use of *Psidium guajava* to treat diarrhea by the Karen community of Northern Thailand, and the Tengger tribe in Ngadisari village of Indonesia respectively. The main administration routes of the remedies were taken orally (72%) and topical application (28%). The most common methods of preparation were decoction (50%), poultice (25%), and infusion (25%). Oral ingestion through the decoction method is the simplest way to take medicine. This method is applied to treat ailments by the most local community based on the previous ethnobotanical studies such as by the Tengger tribe in Indonesia (Jadi et al. 2020), the Karen tribe in Thailand (Tangjitman et al. 2015), the Jakun tribe in Malaysia (Sabran et al. 2016), and the Mulam tribe in China (Hu et al. 2020). However, there are a few medicine derived from decoction, applied externally by bathing, such as treatment for postpartum among women. Some plant parts were crushed to release active compounds before being applied directly to affected organs to treat wounds or inflammation.

In conclusion, the home gardens of Kampung Masjid Ijok, with their diverse medicinal plant collection, serve as important reservoirs for medicinal plant species and traditional knowledge. The knowledge is still practiced and disseminated among family members, and this makes the home gardens one of the important places to study ethnopharmacology. Medicinal plants in home gardens are used mostly to treat ailments in the categories of gastrointestinal disorders and respiratory issues. These are the most common health issues in rural areas. Thus, the findings of this study can be an important factor in the selection of medicinal plants to be planted and cared for in the home gardens.

AKNOWLEDGEMENTS

We thank the University of Malaya and the Ministry of Education of Malaysia for providing facilities and funds that enable this study to be carried out. This study was funded by PG072-2013A, RF193-12SUS, and LL023-16SUS provided by the University of Malaya, and MyBrain 15 Scholarship provided by the Ministry of Education of Malaysia. This study is also to be a part of a Ph.D. contribution of the first author.

REFERENCES

Abebe T, Sterck FJ, Wiersum KF, Bongers F. 2013. Diversity, composition, and density of trees and shrubs in agroforestry homegardens in Southern Ethiopia. Agrofor Syst 87 (6): 1283-1293. DOI: 10.1007/s10457-013-9637-6

Aziz SHA, Zakaria Z. 2013. The diversity of medicinal plant resources in Kampung Batu Ring-Kampung Beng: a case study of Lenggong Valley, World Heritage Site. In: Mohamed B, Bahaudin A (eds) Building the Future of Tourism: Proceedings of International Conference on Tourism Development, Malaysia.

Aziza M. Ong H, Vikneswary S, Noorilah A, Haron N. 2012. Ethnopharmacological resources used by the Temuan in Ulu Kluang Village. Stud Ethno-Med 6 (1): 17-22. DOI: 10.1007/s00975-010-11886-41

Bhat S, Bhandary MJ, Rajanna L. 2014. Plant diversity in the homegardens of Karwar, Karnataka, India. Biodiversitas 15 (2): 229-235. DOI: 10.13050/biodiv/v15i02/14

Cruz-Garcia GS, Struk PC. 2015. Spatial and seasonal diversity of wild food plants in home gardens of Northeast Thailand. Econ Bot 69 (2): 99-113. DOI: 10.1007/s12231-015-9309-0

Eyasu G, Tolera M, Negash M. 2020. Woody species composition, structure, and diversity of home garden agroforestry systems in southern Tigray, Northern Ethiopia. Heliyon 6 (12): e05500. DOI: 10.1016/j.heliyon.2020.e05500

Gao J, He T, Li QM. 2012. Traditional home-garden conserving genetic diversity: a case study of Acacia pennata in southwest China. Conserv Genet 13 (4): 891-898. DOI: 10.1007/s10592-012-0338-x

Hu R, Lin C, Xu W, Lui Y, Long C. 2020. Ethnobotanical study on medicinal plants used by Mulam people in Guangxi, China. J Ethnobiol Ethnomed 16 (40): 1-50. DOI: 10.1186/s13002-020-00387-z

Hua H, Xu W, Wen G, Bui W. 2011. Comparison of the Homegardens of Eight Cultural Groups in Jinping County, Southwest China. Econ Bot 65 (1): 345-355. DOI: 10.1007/s12231-011-9172-0

Hussain AG, Normah MN, Hussin K. 2015. Nature’s Medicine: A collection of Medicinal Plants from Malaysia’s Rainforest, Volume 1. Landkap Malaysia, Malaysia.

Jadid N, Kurniawan E, Himayani CES, Purwani KI, Muslihatin W, Hidayati D, Tjahjaningrum ITD. 2020. An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village, Indonesia. PLoS One 15 (7). DOI: 10.1371/journal.pone.0235886.

Mapongmetsem PM, Nkongemecke BA, Gubuk H. 2012. Socioeconomic importance of the banana tree (Musa spp.) in the Guinean Highland Savanna agroforest. Sci World J 2012: 350258. DOI: 10.11528/2012/350258.

Mattsson E, Ostwald M, Nissanka SP, Pushpakumara DKNG. 2015. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor Syst 87 (3): 435-445. DOI: 10.1007/s10457-014-9780-8

Milow P, Malek S, Mohammad NS et al. 2013. Diversity of plants tended or cultivated in Orang Asli homegardens in Negeri Sembilan, Peninsular Malaysia. Hum Ecol 41 (2): 325-331. DOI: 10.1007/s10745-012-9555-7

Mohammad NS, Milow P, Ong HC. 2012. Traditional Medicinal Plants Used by the Kensi Tribe of Lubuk Ulu Legong, Kedah, Malaysia. Ethno Med 6 (3): 149-153. DOI: 10.1007/s00975-010-11886-0

Ong HC, Faezah AW, Milow P. 2012a. Medicinal plants used by the Jah Hut Orang Asli at Kampung Pos Penderas, Pahang, Malaysia. Ethno Med 6 (1): 11-15. DOI: 10.1007/s10457-012-11886-41

Ong HC, Lina E, Milow P. 2012b. Traditional knowledge and usage of medicinal plants among the Semai Orang Asli at Kampung Batu 16, Tapah, Perak, Malaysia. Ethno Med 6 (3): 207-211. DOI: 10.1007/s00975-010-11886-40.

Ong HC, Rosainn MZ, Pozi M. 2011a. Traditional Knowledge of Medicinal Plants used by the Malay Villagers in Kampung Mak Kemas, Terengganu, Malaysia. Etho Med 5 (3): 175-185. DOI: 10.1007/s00975-010-11886-07.

Ong HC, Ruzalilah BN, Pozi M. 2011b. Traditional knowledge of medicinal plants among the Malay villagers in Kampung Tanjun Sabra, Terengganu, Malaysia, Indian J Tradit Knowl 10 (3): 460-465. DOI: 10.1007/s00975-010-11886-07.

Pala NA, Sarkar BC, Shukla G, Chettri N, Deb S, Bhat JA, Chakravarty S. 2019. Floristic composition and utilization of ethnobotanical plant species in home gardens of the Eastern Himalaya. J Ethnobiol Ethnomed 15 (1): 1-16. DOI: 10.1186/s13002-019-0293-9

Panyadee P, Balsev H, Wangpakapattanawong P, Inta A. 2019. Medicinal plants in homegardens of four ethnic groups in Thailand. J Ethnopharmacol 239: 111927. DOI: 10.1016/j.jep.2019.111927.

Pimm S, Russell G, Gittleman J, Brooks T. 1995. The future of biodiversity. Science 269 (2): 347-350. DOI: 10.1126/science.269.5227.34.

Quave CL, Pieroni A. 2015. A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans. Nat Plants 1 (2): 1-6. DOI: 10.1038/nplants.2014.21.
Rahman SA, Baldauf C, Mollee EM, Abdullah-Al-Pavel M, Abdullah-Al-Manum Md, Toy MM, Sunderland T. 2013. Cultivated plants in the diversified homegardens of local communities in Ganges Valley, Bangladesh. Sci J Agric Res Manag. DOI: 10.7237/sjarm/197.

Ramli MR, Malek S, Milow P, Aziz NJ. 2021. Traditional knowledge of medicinal plants in Kampung Orang Asli Donglai Baru, Hulu Langat, Malaysia. Biodiversitas 22 (3): 1304-1309. DOI: 10.13057/biodiv/d220329.

Sabran ST, Mohamed M, Bakar MFA. 2016. Ethnomedical knowledge of plants used for the treatment of Tuberculosis in Johor, Malaysia. Evidence-Based Complement Altern Med 2016: 2850845. DOI: 10.1155/2016/2850845.

Saynes-Vásquez A, Caballero J, Meave JA, Chiang F. 2013. Cultural change and loss of ethnoecological knowledge among the Isthmus Zapotecs of Mexico. J Ethnobiol Ethnomed 9 (40): 1-10. DOI: 10.1186/1746-4269-9-40.

Srithi K, Trisonthi C, Wangpakapattanawong P, Srisangka P, Balslev H. 2012. Plant diversity in Hmong and Mien homegardens in northern Thailand. Econ Bot 66 (2): 192-206. DOI: 10.1007/s12231-012-9199-y.

Tangjitman K, Wongsawad C, Kanwong K, Sukkho T, Trisonthi C. 2015. Ethnomedicinal plants used for digestive system disorders by the Karen of Northern Thailand. J Ethnobiol Ethnomed 11 (1): 1-13. DOI: 10.1186/s13002-015-0011-9.

Wezel A, Ohl J. 2005. Does remoteness from urban centres influence plant diversity in homegardens and Swidden fields?: A case study from the Matsiguenga in the Amazonian rain forest of Peru. Agrofor Syst 65 (3): 241-251. DOI: 10.1007/s10457-005-3649-9.

Wehle M, Goenster S, Gebauer J, Mohamed SA, Baerkert A, Kehlenbeck K. 2014. Effects of transformation processes on plant species richness and diversity in homegardens of the Nuba Mountains, Sudan. Agrofor Syst 88 (3): 539-562. DOI: 10.1007/s10457-014-9717-2.

Zaki PH, Gandaseca S, Rashidi NM, Ismail MH. 2019. Traditional usage of medicinal plants by Temiar tribes in the state of Kelantan, Peninsular Malaysia. For Soc 3 (2): 227-234. DOI: 10.24259/fs.v3i2.6424.