Increased risk of aspirin-induced gastric mucosal erosion in elderly Chinese men harboring SLCO1B1*1b/*1b while using aspirin and an ACEI or ARB concomitantly

Lei Duan 1,2, Yongyi Bai 2, Man Li 1, Huiying Li 1, Yanping Li 1 and Hongbin Liu 1,2*

Abstract
Background: It is well established that long-term use of aspirin can cause gastric mucosal injury. ACEIs and ARBs are inversely related to gastric ulcer development. This study aimed to evaluate the relationship between SLCO1B1 polymorphisms, which can affect ACEI and ARB transport, and gastric mucosal erosion in elderly male Chinese patients with cardiovascular disease who use aspirin.
Methods: Patients taking aspirin and an ACEI or ARB concomitantly who had undergone endoscopic screening for gastric erosion were analyzed for SLCO1B1 polymorphisms by a TaqMan assay.
Results: The frequency of the SLCO1B1*1b/*1b diplotype (42% vs. 24%; p = 0.002) was significantly higher in the gastric mucosal erosion group than in the control group. After adjustment for significant factors, SLCO1B1*1b/*1b (OR, 2.64; 95% CI, 1.59–4.17; p < 0.05) was found to be associated with gastric mucosal erosion in aspirin users.
Conclusions: The presence of the SLCO1B1*1b/*1b diplotype may be a risk factor for aspirin-induced gastric mucosal erosion in elderly Chinese men taking aspirin and an ACEI or ARB concomitantly.
Keywords: Single nucleotide polymorphism, Aspirin, Gastric mucosa erosion, SLCO1B1, Pharmacogenomics

Introduction
Cardiovascular disease is the leading cause of disability and death in elderly Chinese males. Aspirin is a common antiplatelet drug used to prevent and treat ischemic vascular disease. However, antiplatelet therapy results in a higher incidence of gastrointestinal (GI) injury, particularly gastric mucosal ulcers and hemorrhage [1]. GI injury is related to a poor prognosis of cardiovascular disease [2]. Moreover, the mechanisms and genetic influence of antiplatelet-related GI injury remain largely unknown.
It is well established that long-term use of aspirin may result in gastric mucosal injury but that concomitant use of aspirin and an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin II AT-1 receptor blocker (ARB) may attenuate aspirin-induced gastric injury [3]. Their transport from circulating blood to hepatocytes requires the uptake transporter organic anion transporting polypeptide 1B1 (OATP1B1), which is encoded by the solute carrier organic anion transporter 1B1 (SLCO1B1) gene [4].

Elderly patients are the major demographic using aspirin; thus, identifying the risk factors of early-phase gastric mucosal injury such as gastric mucosal erosion, which can evolve into gastric ulcers but is confined to the gastric mucosa (has not reached the mucosal muscularis), is critical for preventing aspirin side effects. The purpose of this study was to explore the genetic and clinical risk factors associated with gastric mucosal erosion in elderly male Chinese patients with cardiovascular disease taking aspirin and an ACEI or ARB concomitantly.

* Correspondence: liuhb301@sina.com
1 Medical School of Chinese PLA, Beijing 100853, China
2 Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Diseases, the Second Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, China

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Materials and methods

Study population

This case–control study analyzed 268 elderly male Chinese patients ≥60 years old who took 100 mg of aspirin daily between 2013 and 2018 for ischemic cardiovascular disease and were undergoing annual upper GI endoscopy persistently, including 143 men in the case group and 125 men in the control group according to the gastroscopy inspection results, at the Second Medical Center of People’s Liberation Army of China (PLA) General Hospital. All participants were also administered ACEIs or ARBs for hypertension. All the endoscopy results of patients were not abnormal prior to 2013, and endoscopy screening findings were stable during antiplatelet therapy. Patients were excluded if they had gastric cancer or other malignant lesions or took other antiplatelet and anticoagulant drugs. This study was approved by the ethics committee of PLA General Hospital. All participants provided written informed consent.

Clinical data collection

Information on the participants was collected from physical examinations and laboratory studies. The physical examination data extracted from the hospital records were age, body mass index, systolic and diastolic blood pressure, current cigarette smoking, alcohol consumption, Helicobacter pylori status, history of gastric ulcer, diabetes mellitus, hyperlipidemia, ischemic cerebrovascular disease, and use of proton-pump inhibitors (PPIs), nonsteroidal anti-inflammatory drugs (NSAIDs), ARBs or ACEIs and statins. H. pylori status was detected using the C13 urea breath test. Diabetes was diagnosed when the subject had a fasting glucose ≥7.0 mmol/L or ≥11.1 mmol/L 2 h after oral glucose challenge. Gastric mucosal erosion was defined as erosion injury visible on endoscopy that was limited to the mucosal layer. Hyperlipidemia was defined as low-density lipoprotein cholesterol (LDL-C) ≥3.64 mmol/L or high-density lipoprotein cholesterol (HDL-C) ≤0.91 mmol/L or total triglyceride (TG) ≥1.7 mmol/L or total cholesterol (TC) ≥5.72 mmol/L. Cerebrovascular disease was defined as a previous ischemic stroke based on hospital records. The clinical data were recorded by physicians at the Department of Geriatric Cardiology of PLA General Hospital who were trained by the research team.

Laboratory measurements

Blood samples were collected in prechilled vacutainers after at least 12 h of overnight fasting. The activated partial thromboplastin time (APTT) was determined using an automatic coagulometer (SYSMAX CA-1500, Sysmex Shanghai Ltd., Japan), the platelet count was determined using an automatic hematology analyzer (Nihon Kohden MEK-7222 K, Japan), and TC, LDL-C, glucose, and serum creatinine (SCr) values were determined using an automatic biochemical analyzer (Hitachi 7400, Japan).

All testing was performed in the same laboratory by trained personnel following the criteria of the World Health Organization Lipid Reference Laboratories. Renal function was assessed by the estimated glomerular filtration rate (eGFR), which was calculated by the following formula: eGFR (ml/min/1.73 m²) = 175 × standard SCr (mg/dl) – 1.234 × age – 0.179. [standard SCr (mg/dl) = SCr (mg/dl) (detected by an enzymatic method) × 0.795 + 0.29] [5, 6].

DNA isolation and genotyping

Two hundred microtubes of venous blood from every patient was extracted and collected into an EDTA anticoagulant tube (Biotend, Shanghai, China). The blood genomic DNA isolation kit (DP318, TIANGEN Biotech, Beijing, China) was used to extract DNA samples, and a Q3000 ultraviolet spectrophotometer (Quawell, San Jose, CA, USA) was employed to detect the concentration of the DNA samples. The genotypes were determined using a TaqMan assay and an ABI Prism Sequence Detector 7000 (Applied Biosystems, Foster City, Calif) according to standard protocols. Genotyping for SLCO1B A388G (rs2306283) (forward primer 5′-TGTTGGTTTATTTGACGGAAGC-3′, reverse primer 5′-CCCCACTATCTCAGGTGATGCTCTA-3′) and SLCO1B T521C (rs4149056) (forward primer 5′-TCAACACTGACCTTATCCACCTTG-3′, reverse primer 5′-CAATGTAAGAAGCCCCCAATGG-3′) was performed for each sample.

Statistical analysis

The distribution of continuous variables was tested for normality using the one-sample Kolmogorov-Smirnov test. Data were presented as numbers and frequencies for categorical variables and as means ± standard deviation (SD) for continuous variables. Baseline characteristics and SNP genotypes were compared with the chi-square test for categorical variables and unpaired Student’s t-test for continuous variables. The odds ratio (OR) and 95% confidence interval (CI) were obtained by Mantel–Haenszel statistics and multiple logistic regression analysis to identify the risk or preventive factors after adjustment for the other significant factors determined by univariate analysis. Differences in the genotype frequencies between the two groups and in Hardy–Weinberg equilibrium of allele frequencies at individual loci by comparing the observed and expected genotype frequencies were assessed using the chi-squared test or Fisher’s exact probability test. All reported p-values were two-tailed, and p < 0.05 was considered statistically significant. Analyses were performed using SPSS software version 19.0 (SPSS IBM Corporation, Armonk, NY, USA).

Results

Subject characteristics

We enrolled 268 male patients (62–89 years old; average age: 75.2 years). Among these patients, 143 had gastric
mucosal erosion, and 125 had normal gastric mucosa. The baseline clinical characteristics according to the endoscopy results are presented in Table 1. Age (78.5 ± 10.1 vs. 71.5 ± 9.6 years, p < 0.001), SCR plasma levels (96 ± 35.3 vs. 88.3 ± 45.8 μmol/L, p < 0.01), history of gastric ulcer (n = 20, 14% vs. n = 7, 5.6%, p = 0.02) and co-existing diabetes (n = 58, 40.6% vs. n = 30, 24%, p < 0.01) were found to be significantly higher in the gastric erosion group than in the control group. However, eGFR (55.8 ± 23.1 vs. 70.9 ± 18.5 ml/min/1.73 m², p > 0.001) were found to be significantly higher in the gastric erosion group than in the control group. These baseline clinical factors contributed to aspirin-induced gastric mucosal erosion to a significantly greater extent in the univariate analysis.

SLCO1B genotype distribution

All subjects were successfully genotyped. The allele frequencies of the polymorphisms did not deviate significantly from those expected under Hardy–Weinberg equilibrium. The frequencies of the T allele (85.7% vs. 72.0%, p < 0.001) and the SLCO1B1 S21TT genotype (77.6% vs. 58.4%, p = 0.001) were significantly higher in the gastric erosion group than in the control group. Accordingly, the frequencies of the SLCO1B1 S21TC genotype (16.1% vs. 27.2%, p = 0.027) and SLCO1B1 S21CC genotype (6.4% vs. 14.4%, p = 0.028) were significantly lower in the gastric erosion group than in the control group (Table 2).

The frequencies of the SLCO1B1*1b haplotype (62.6% vs. 44.8%, p < 0.001) and SLCO1B1*1b/*1b haplotype (42.0% vs. 24.0%, p = 0.002) were significantly higher in the gastric erosion group than in the control group. The frequencies of the SLCO1B1*15 haplotype (11.5% vs. 24.0%, p < 0.001), SLCO1B1*15/*15 haplotype (0.7% vs. 6.4%, p = 0.014) and SLCO1B1*1a/*15 diplotype (3.5% vs. 12.8%, p = 0.005) were significantly lower in the gastric erosion group than in the control group (Tables 3 and 4).

Factors associated with gastric mucosal erosion

After adjusting for significant factors in the univariate analysis, older age (OR 1.33, 95% CI 1.04–2.87, p < 0.05), lower eGFR level (8.04, 3.02–22.6, p < 0.01), history of gastric ulcer (2.41, 1.08–5.01, p < 0.05), decreased use of a PPI (0.18, 0.11–0.31, p < 0.001) and the SLCO1B1*1b/*1b diplotype (2.64, 1.59–4.17, p < 0.05) were significantly associated with gastric mucosal erosion in multiple logistic regression analysis (Table 5).

Discussion

The curative and side effects of aspirin for the prevention and treatment of ischemic cardiovascular diseases are controversial. The ARRIVE trial found that low-risk populations not only benefit from aspirin for the primary prevention of cardiovascular disease but also experience a slightly increased risk of GI bleeding events [7]. The ASCEND study found that the absolute benefit of aspirin in patients with diabetes was largely counterbalanced by the bleeding hazard [8]. Three other articles published in the New England Journal of Medicine suggested that aspirin did not reduce the risk of cardiovascular events in elderly patients but was associated with a higher bleeding risk than placebo [9–11]. To our knowledge, our study is the first to evaluate the relationship between SLCO1B1 polymorphisms affecting the transport of ACEIs or ARBs and aspirin-induced gastric mucosal injury in elderly male Chinese patients. The results showed that the SLCO1B1*1b/*1b diplotype was positively associated with the risk of gastric mucosal erosion in elderly male Chinese patients taking aspirin and an ACEI orARB concomitantly.

Shiotani et al. considered that the SLCO1B1*1b haplotype and ARBs were both associated with aspirin-induced peptic ulcers in the Japanese population but could not
prove the correlation between the SLCO1B1*1b haplotype and ARBs [12]. Additionally, our study emphasized the discovery of early-phase gastric mucosal injury, such as gastric mucosal erosion. The prevention of gastric mucosal erosion is particularly important in the elderly, as it can evolve into a gastric ulcer and even lead to hemorrhage.

Our study also found that the clinical characteristics of increased age, history of gastric ulcers, and no concomitant use of PPIs were risk factors for gastric mucosal erosion. This conclusion is consistent with the finding of another article summarizing the GI bleeding risk factors in aspirin users [13]. Additionally, the level of EGFR decline was found to be associated with gastric mucosal erosion. One possible reason is that aspirin is excreted mainly through the kidneys as a combination of metabolites and free salicylic acid; thus, the degree of gastric mucosal injury may increase as renal function declines. Additionally, the mechanism may be secondary to the local and systemic effects of aspirin [14].

The renin-angiotensin system functions to regulate vasconstriction and vasodilatation, in which angiotensin II plays a critical role. When the body receives external stress, angiotensin II, the effects of which can be inhibited by ACEI, is released into the blood stream and GI tract tissue, decreasing the gastric submucosal blood supply via vasconstriction [15]. The other gastroprotective effects of ACEIs and ARBs might include blocking the sympathetic-adrenergic system-mediated inflammatory cascade of tumor necrosis factor α and intracellular adhesion molecule 1, as well as anti apoptosis and extracellular matrix remodeling by downregulating DDHA/ADMA and EGFR/ERK1/2 signaling [16].

ACEIs and ARBs are generally transported into human hepatocytes from portal blood to be metabolized, predominantly via OATP1B1 [17]. Among the mutations identified in the OATP1B1 coding gene (SLCO1B1), A388G and T521C occur frequently and are common in the Chinese population (allelic frequencies 73 and 14%, respectively) [18]. There are four haplotypes: SLCO1B1*1a (wild type), SLCO1B1*1b, SLCO1B1*5 and SLCO1B1*15, and the SLCO1B1*1b/*1b (GT/GT) and *1a/*1b (AT/GT) diplotypes have been frequently reported in the Chinese population [19, 20]. The T521C single nucleotide polymorphism has been linked to the reduced transport activity of OATP1B1 by affecting the substrate affinity, and the ACEI and ARB concentrations in the blood were reported to be higher in subjects carrying the S21C allele [21]. Although how the protein activity of OATP1B1 is affected by the A388G single nucleotide polymorphism is controversial [22, 23], Mwinyi et al. suggested that the activity of OATP1B1 protein transport was significantly higher in *1b/*1b subjects than in *1a/*1a (AT/AT) subjects in vivo, implying that the blood drug concentrations may be lower in *1b/*1b subjects [24].

Our study found that the SLCO1B1*1b/*1b diplototype is associated with aspirin-induced gastric mucosal erosion in elderly male Chinese patients taking aspirin and

Table 2: Allele and genotype frequencies of SLCO1B1 in patients taking aspirin

Gene	Allele frequencies p† value for HWE	Control n = 250 (%)	Case n = 286 (%)	p	Genotype	Control n = 125 (%)	Case n = 143 (%)	p
SLCO1B1					AA	9 (7.2)	10 (7.0)	0.947
388 A > G		78 (31.2)	74 (25.9)	0.172	AG	60 (48)	54 (37.8)	0.091
rs2306283	T = 0.44	172 (68.8)	212 (74.1)	<0.001	GG	56 (44.8)	79 (55.2)	0.088
SLCO1B1		180 (72.0)	245 (85.7)	<0.001	TT	73 (58.4)	111 (77.6)	0.001
521 T > C	C = 0.21	70 (28.0)	41 (14.3)		TC	34 (27.2)	23 (16.1)	0.027
rs4149056	T = 0.37	180 (72.0)	245 (85.7)		TT	73 (58.4)	111 (77.6)	0.001

p values from the Chi-squared test. †, Hardy–Weinberg equilibrium (HWE) of allele frequencies at individual loci was assessed by comparing the observed and expected genotype frequencies

Table 3: Frequencies of the haplotypes of SLCO1B1 in patients taking aspirin

Haplotype	Allele of 388/521	Control n = 250 (%)	Case n = 286 (%)	p
*1a	AT	68 (27.2)	66 (23.1)	0.271
*1b	GT	112 (44.8)	179 (62.6)	<0.001
5	AC	10 (4.0)	8 (2.8)	0.441
*15	GC	60 (24.0)	33 (11.5)	<0.001

p values from the Chi-squared test

Table 4: Frequencies of the diplotypes of SLCO1B1 in patients taking aspirin

Diplotype	Allele of 388–521	Control n = 125 (%)	Case n = 143 (%)	p
1a/1a	AT/AT	9 (7.2)	10 (7.0)	0.947
1b/1b	GT/GT	30 (24.0)	60 (42.0)	0.002
1a/15	AC/GC	8 (6.4)	1 (0.7)	0.014
1b/15	GT/GT	34 (27.2)	41 (28.7)	0.789
1a/1b	AT/AT	16 (12.8)	5 (3.5)	0.005
1b/15	GC/GT	18 (14.4)	18 (12.6)	0.664
15/15	AC/GC	10 (8)	8 (5.6)	0.433

p values from the Chi-squared test
an ACEI or ARB concomitantly. This may be because the reduction in ACEI and ARB concentrations in the blood in individuals with the $SLCO1B1^{*1b/*1b}$ diplotype weakens their protective effect against the gastric mucosa.

The major limitation of the present study was that we did not measure the blood concentrations of ACEIs and ARBs. Thus, the relationship between the change in the degree of drug absorption and gastric mucosal erosion was not proven directly. Another limitation was the use of drugs in elderly patients was complicated, making it challenging to assess all factors that might affect gastric mucosal injury, for example, hormone treatments or anticoagulant drugs.

Conclusions

The $SLCO1B1^{*1b/*1b}$ diplotype may be a useful genetic predictor for aspirin-induced gastric mucosal erosion in elderly male Chinese patients taking aspirin and an ACEI or ARB concomitantly. Increased age, a history of gastric ulcers, the extent of eGFR decline, and no concomitant use of PPIs are clinical risk factors for gastric mucosal erosion.

Abbreviations

ACEI: Angiotensin-converting enzyme inhibitor; APTT: Activated partial thromboplastin time; ARB: Angiotensin receptor blocker; eGFR: Estimated glomerular filtration rate; GI: Gastrointestinal; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; NSAID: Nonsteroidal anti-inflammatory drug; OATP1B1: Organic anion transporting polypeptide 1B1; PLA: People’s Liberation army; PPI: Proton-pump inhibitor; SCr: Serum creatinine; SD: Standard deviation; SLCO1B1: Solute carrier organic anion transporter 1B1; TC: Total cholesterol; TG: Total triglyceride

Acknowledgments

We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac) and the professional language editing service AJE (F045-BFC9-2959-096C-1187) for editing the English text of a draft of this manuscript.

Authors’ contributions

LD and HbL designed the study; LD, ML, HyL, and YpL participated in acquisition of data and undertook the statistical analysis; LD, YyB and HbL researched and evaluated the literature; LD wrote the first draft of the manuscript. All authors reviewed this manuscript and approved the final version to be published.

Funding

This research was supported by grants from the National Key Research Program of China (2017YFC08040100 and 2017YFC08040103) and the Central Health Care Fund (W2015ZD02). The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate

The study was approved by the ethics committee of the People’s Liberation Army General Hospital, and each subject provided informed written consent.

Consent for publication

Not Applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Hernández C, Barrachina MD, Vallecillo-Hernández J, Álvarez Á, Ortiz-Masía D, Cosín-Roger J, Esplugues JV, Calatayud S. Aspirin-induced gastrointestinal damage is associated with an inhibition of epithelial cell autophagy. J Gastroenterol. 2015;51:691–701.
2. Tozawa K, Osima T, Ogawa T, Ohda Y, Tomita T, Hida N, Futki H, Hori K, Watanari J, Nakamura S, Miwa H. A randomized, double-blind, placebo-controlled study of rebamipide for gastric mucosal injury taking aspirin with or without clopidogrel. Dig Dis Sci. 2014;59:1885–90.
3. Shiotani A, Nishii M, Takanami Y, Noma K, Nakamura M, Kamada T, Sakakibara T, Haruma K. Renin-angiotensin system associated with risk of upper GI mucosal injury induced by low dose aspirin. Dig Dis Sci. 2010;55:6465–71.
4. Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet. 2008;23:223–35.
5. Ma YC, Zuo L, Chen JH, Luo Q, Yu QD, Li Y, Xu JS, Huang SM, Wang LN, Huang W, Xu GB, Wang HY. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol. 2006;17:2937–44.
6. Zhang L, Zuo L, Xu G, Wang F, Wang M, Wang S, Lu J, Liu L, Wang H. Community-based screening for chronic kidney disease among populations older than 40 years in Beijing. Nephrol Dial Transplant. 2007;22:1093–9.
7. Gaziano JM, Brotors C, Coppolecchia R, Crisci C, Darius H, Gorelick PB, Howard G, Pearson TA, Rutherford PM, Ruijpe LM, Tendera M, Tognoni G. ARRIVE Executive Committee. Use of aspirin to reduce risk of initial vascular
events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet. 2018;392:1036–46.

8. Bowman L, Maffham M, Wallendrez K, Stevens W, Buck G, Barton J, Murphy K, Aung T, Haynes R, Cox J, Murovska A, Young A, Lay M, Chen F, Sammons E, Waters E, Adler A, Bodarsky J, Farmer A, McPherson R, Neil A, Simpson D, Petro R, Balgant C, Collins R, Parish S, Armitage J. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med. 2018;379:1529–39.

9. McNeil JJ, Woods RL, Nelson MR, Reid CM, Kirpach B, Wolfe R, Storey E, Shah RC, Lockery JE, Tonkin AM, Newman AB, Williamson JD, Margolis KL, Ernst ME, Abhayaratna WP, Stocks N, Fitzgerald SM, Orchard SG, Trevaks RE, Bellin LJ, Donnann GA, Gibbs P, Johnston CI, Ryan J, Radziszewska B, Gimm R, Murray AM. ASPREE Investigator Group. Effect of aspirin on disability-free survival in the healthy elderly. N Engl J Med. 2018;379:1499–508.

10. JJ MN, Nelson MR, Woods RL, Tonkin AM, Donnann GA, Nelson MR, Reid CM, Lockery JE, Kirpach B, Storey E, Shah RC, Williamson JD, Margolis KL, Ernst ME, Abhayaratna WP, Stocks N, Fitzgerald SM, Orchard SG, Trevaks RE, Bellin LJ, Johnston CI, Ryan J, Radziszewska B, Jellinek M, Malik M, Eaton CB, Brauer D, Cloud G, Wood EM, Mahady SE, Satterfield S, Grimm R, Murray AM. ASPREE Investigator Group. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med. 2018;379:1509–18.

11. McNeil JJ, Nelson MR, Woods RL, Lockery JE, Wolfe R, Reid CM, Kirpach B, Shah RC, Ives DG, Storey E, Ryan J, Tonkin AM, Newman AB, Williamson JD, Margolis KL, Ernst ME, Abhayaratna WP, Stocks N, Fitzgerald SM, Orchard SG, Trevaks RE, Bellin LJ, Donnann GA, Gibbs P, Johnston CI, Radziszewska B, Gimm R, Murray AM. ASPREE Investigator Group. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med. 2018;379:1519–28.

12. Shiotani A, Murao T, Sakakibara T, Tarumi K, Manabe N, Kamada T, Kusunoki H, Haruma K. Association of SLCO1B1 1b with peptic ulcer amongst Japanese patients taking low-dose aspirin. Dig Liver Dis. 2012;44:201–5.

13. Valikoff VE, Steukenboom MC, Kuipers EJ. Risk factors for gastrointestinal bleeding associated with low-dose aspirin. Best Pract Res Clin Gastroenterol. 2011;26:125–40.

14. Yasuda H, Matsuo Y, Sato Y, Ozawa S, Ishigooka S, Yamaishi M, Yamamoto H, Itoh F. Treatment and prevention of gastrointestinal bleeding in patients receiving antplatelet therapy. World J Crit Care Med. 2015;4:40–6.

15. Heinemann A, Sattler V, Jocic M, Wienen W, Holzer P. Effect of angiotensin II receptor antagonist, an angiotensin1 receptor antagonist, on rat gastric mucosal blood flow. Aliment Pharmacol Ther. 1999;13:347–55.

16. Shaheen NN, Abdellatif AE, Safar MM. A novel role of irbesartan in targeting DDAH/ADMA and telmisartan, an angiotensin1 receptor antagonist, on rat gastric mucosal gastroprotection against indomethacin-induced gastric injury in rats: targeting DDAH/ADMA and eGFR/ERK signaling. Sci Rep. 2018;8:4280.

17. Yamada A, Maeda K, Kamiyama E, Sugiyama D, Kondo T, Shiroyanagi Y, Nakazawa H, Okano T, Adachi M, Schuetz JD, Adachi Y, Hu Z, Kusuhara H, Sugiyama Y. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab Dispos. 2007;35:2166–76.

18. Grapić AD, Dimovski AJ, Kapedanovska A, Vavlukis M, Eftimov A, Geshkovska F, Lazarova S, Jakjovski K, Gorani D, Kedev S, Mladenovska K. Frequencies of single-nucleotide polymorphisms and haplotypes of the SLCO1B1 gene in selected populations of the western balkans. Balkan J Med Genet. 2015;18:5–21.

19. Oshiro C, Mangravite L, Klein T, Altman R. PharmGKB very important pharmacogene: SLCO1B1. Pharmacogenet Genomics. 2010;20:211–6.

20. Xu LY, He YJ, Zhang W, Deng S, Li Q, Zhang W, Huang YF, Zhou HH, Sun ZQ. Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients. Acta Pharmacol Sin. 2007;28:1693–7.

21. Goiti Y, Saaavedra N, Zambrano T, Lagos J, Rosales A, Salazar LA. SLCO1B1 c.388A>G polymorphism is associated with HDL-C levels in Chinese patients. Acta Pharmacol Sin. 2007;28:1693–7.

22. Prado Y, Saavedra N, Zambrano T, Lagos J, Rosales A, Salazar LA. SLCO1B1 c.388A>G polymorphism and risk of statin-induced adverse drug reactions: a meta-analysis. Springerplus. 2016;5:1368.

23. Mwinyi J, Johne A, Bauer S, Roots I, Groll T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther. 2004;75:415–21.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.