Supplementary Information

[2]-Ladderanes as Isosteres for Meta-Substituted Aromatic Rings and Rigidified Cyclohexanes

Rachel C. Epplin, Shashwati Paul, Loïc Herter, Christophe Salome, Erin N. Hancock, Jay F. Larrow, Erich W. Baum, David R. Dunstan, Carol Ginsburg-Moraff, Thomas C. Fessard*, M. Kevin Brown*
Table of Contents

Supplementary Methods ... S3
 General Information .. S3
 Reagents and Catalysts .. S3
 Synthesis of Reagents .. S5
 General Procedures .. S9

Characterization Data of Intermediates and Bicyclo[2.2.0] Final Substrates S13
 1. Precursors to Bicyclo[3.2.0]heptanes .. S13
 2. [2+2] Cycloaddition to Bicyclo[3.2.0] Systems ... S16
 3. DMP Oxidations ... S20
 4. Formation of the α-Diazoketones ... S23
 5. Bicyclo[2.2.0]hexane Formation ... S27

Functional Group Manipulations ... S31
 1. Transformations of Cinnamaldehyde-Derived Products ... S31
 2. Transformations of (E,E)-2,4-decadienal-Derived Products ... S36
 3. Decarboxylative Cross Coupling Scope .. S40
 4. Synthesis of Ladder-Mazapertine ... S43

Functional Group Manipulations of endo-[2]-Ladderane .. S46

Synthetic Procedures and Characterization Data of Compounds Submitted for ADME Data.......... S51

ADME Procedures ... S54

Supplementary Discussion .. S55
 Stability Experiments .. S55
 Spectra .. S56

Supplementary References .. S207
Supplementary Methods

General Information
Infrared (IR) spectra were recorded on a Bruker Tensor II FT-IR Spectrometer, ν_{max} in cm$^{-1}$. Bands are characterized as broad (br), strong (s), medium (m), and weak (w). 1H NMR spectra were recorded at room temperature unless otherwise noted on either a Varian 300 MHz, Varian I400 (400 MHz), Varian VX400 (400 MHz), Varian I500 (500 MHz), a Varian I600 (600 MHz), or a Bruker Ascend™ 500 MHz (equipped with cryoprobe) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl_3: δ 7.26 ppm, $\text{C}_3\text{H}_6\text{O}$: δ 2.05 ppm, CH$_3$OH: δ 3.31 ppm, or C$_6H_6$: δ 7.16 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. 13C NMR spectra were recorded on a Varian 300 MHz (75 MHz), I400 (101 MHz), a Varian I500 (126 MHz), or a Bruker Ascend™ 500 MHz (126 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl_3: δ 77.16 ppm, $\text{C}_3\text{H}_6\text{O}$: δ 29.84, CH$_3$OH: δ 49.00 ppm, or C$_6H_6$: δ 128.06 ppm). High-resolution mass spectrometry (HRMS) was performed on either an Agilent 7890B GC with Agilent 7250 QTOF and Gerstel MPS and TDS3 or a Thermo Scientific Finnigan LTQ Orbitrap XL Mass Spectrometer. Unless otherwise noted, all reactions have been carried out with distilled and degassed solvents under an atmosphere of dry N$_2$ in flame-dried glassware with standard vacuum-line. Tetrahydrofuran (THF) and N,N-Dimethylformamide (DMF) were purified under a positive pressure of dry argon by passage through two columns of activated alumina. Toluene was purified under a positive pressure of dry argon by passage through columns of activated alumina and Q5 (Grubbs apparatus). Photo flow reactions were performed using a Vapourtec Easy-Photochem E-series continuous flow reactor. The size of the reactor (tubing being directly irradiated) was 10 mL with tubing made of fluoropolymer and the Bore and Wall 1.3 x 0.15 mm. All work-up and purification procedures were carried out with reagent grade solvents (purchased from Sigma-Aldrich) in air. Standard column chromatography techniques using ZEOprep 60/40-63 μm silica gel or medium pressure liquid chromatography (MPLC) using a CombiFlash NextGen 100 with pre-packed silica cartridges were used for purification.

Reagents and Catalysts

p-Acetamidobenzenesulfonyl azide (p-ABSA) was purchased from TCI and used as received.

Bathophenanthroline (BPhen) was purchased from CombiBlocks and used as received.

rac-BINAP was purchased from CombiBlocks and handled in a nitrogen-atmosphere glovebox.

Biphenyl-3-carboxylic acid was purchased from Oakwood and used as received.

[1,1′-biphenyl]-3-ylmethanol was purchased from Ambeed and used as received.

Borane tetrahydrofuran complex solution, 1.0 M in THF (BH$_3$·THF) was purchased from Sigma Aldrich and used as received.

1-bromo-4-chlorobenzene was purchased from Sigma-Aldrich purified through a short plug of SiO$_2$.

4-bromo-1-butene was purchased from CombiBlocks and used as received.

2-bromophenol was purchased from Oakwood and used as received.

2-bromopropane was purchased from Combi Blocks and purified through a pad of silica.
Carbon tetrabromide (CBr\(_4\)) was purchased from Oakwood. It was purified by dissolving in CH\(_2\)Cl\(_2\) and washing three times with brine. It was dried over MgSO\(_4\), filtered, and concentrated under reduced pressure.

Carbon tetrachloride, anhydrous (CCl\(_4\)) was purchased from Sigma Aldrich and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.

(E)-cinnamaldehyde was purchased from Oakwood and used as received.

Dess-Martin periodinane (DMP) was purchased from Synthonix and used as received.

1,1’-carbonyldiimidazole (CDI) was purchased from Oakwood and used as received.
Nickel(II) chloride hexahydrate (NiCl$_2$·6H$_2$O) was purchased from Alfa Aesar and handled in a nitrogen-atmosphere glovebox.

Ozone was generated using a Polymetrics ozone generator and compressed O$_2$ from Airgas.

Palladium, 5% on activated carbon, 50-70% wetted powder (Pd/C) was purchased from Strem and used as received.

1-Z-piperazine was purchased from ChemImpex and used as received.

Piperidine was purchased from Alfa Aesar and used as received.

3-(piperidine-1-carbonyl)benzoic acid was purchased from Enamine and used as received.

Potassium tert-butoxide (KOT-Bu) was purchased from Strem and handled in a nitrogen-atmosphere glovebox.

Potassium carbonate (K$_2$CO$_3$) was purchased from VWR and used as received.

Pyrrolidine was purchased from Oakwood and used as received.

Ruthenium(III) chloride hydrate (RuCl$_3$·xH$_2$O) was purchased from Sigma-Aldrich and used as received.

Sodium bicarbonate (NaHCO$_3$) was purchased from Macron and used as received.

Sodium borohydride (NaBH$_4$) was purchased from Oakwood and used as received.

Sodium tert-butoxide (NaO$_t$-Bu) was purchased from TCI and handled in a nitrogen-atmosphere glovebox.

Sodium iodide (NaI) was purchased from EMD and used as received.

Triethylamine (Et$_3$N) was purchased from EMD and distilled over CaH$_2$ under N$_2$.

Triiso-propylsilylchloride (TIPSCI) was purchased from Oakwood and used as received.

Triphenylphosphine (PPh$_3$) was purchased from Oakwood and used as received.

Zinc(II) chloride (ZnCl$_2$) was purchased from Alfa Aesar, dried with a heat gun under vacuum, and handled in a nitrogen-atmosphere glovebox.

Synthesis of Reagents

but-3-en-1-ylmagnesium bromide (SI-1): Freshly ground Mg0 turnings (49 g, 2000 mmol, 5 equiv.) were added to a flame-dried 1000 mL three-neck round-bottom flask with stir bar. The middle neck was fitted with a reflux condenser and a glass stopper and septum on the remaining two necks. The reflux apparatus was flame-dried under vacuum and allowed to cool to room temperature before being refilled with N$_2$. A crystal of I$_2$ was added to the flask, and the flask evacuated and refilled with N$_2$ three times. Another septum was fitted to the top of the reflux condenser, and the whole apparatus was put under N$_2$. Et$_2$O (400 mL, 1.0 M) was added via cannula. The Mg0, I$_2$, and Et$_2$O were vigorously stirred until the iodine color disappeared. 4-bromobut-1-ene (40 mL, 400 mmol, 1 equiv.) was added neat dropwise through the
septum on the three-neck flask while keeping a gentle reflux. The reaction was stirred at room temperature for approx. 18 hours and achieved a dark grey to black color. The solution was titrated according to the procedure by Love. Titrations typically produce concentrations between 0.7-0.8 molar. The resulting solution was used immediately in the next reaction.

\[
\begin{align*}
\text{MeMgBr} & \rightarrow \text{ZnCl}_2 \\
& \text{THF, 0 °C to rt, 1 h}
\end{align*}
\]

Dimethylzinc: Procedure was adapted from literature. ZnCl\(_2\) (0.2730 g, 1.000 equiv., 2.000 mmol) was added to a flame-dried scintillation vial with stir bar in a N\(_2\)-atmosphere glovebox. The vial was capped with a septum, sealed with Teflon tape, and removed from the glovebox. Under N\(_2\), THF (4.0 mL, 0.50 molar) was added to the vial, and the resulting solution was cooled to 0 °C in an ice bath. MeMgBr (1.5 mL, 2.7 molar, 2.0 equiv., 4.0 mmol) was added to the mixture, and the resulting solution was stirred for 1 hour. The solids were allowed to settle before the solution was used. The solution was not titrated further.

\[
\begin{align*}
\text{ArMgBr} \rightarrow & \text{ZnCl}_2 \\
i) & \text{Mg}^0, \text{DIBAL-H, LiCl} \rightarrow \text{THF} \\
& \text{ii) ZnCl}_2
\end{align*}
\]

ArylZnCl-LiCl (SI-2): Procedure was adapted from literature. Mg\(^0\) turnings (0.2215 g, 1.519 equiv., 9.111 mmol) were added to a scintillation vial with stir bar. The vial was flame-dried under vacuum, refilled with N\(_2\), and brought into a N\(_2\)-containing glovebox. LiCl (0.3179 g, 1.250 equiv., 7.500 mmol) was added to the vial. The vial was capped with a septum, sealed with Teflon tape, and removed from the glovebox. Under N\(_2\), THF (3.0 mL, 2.0 molar) was added, and the resulting mixture cooled to 0 °C in an ice bath. DIBAL-H (0.06 mL, 1.0 molar in THF, 0.01 equiv., 0.06 mmol) was added dropwise at 0 °C to the mixture. 1-bromo-4-chlorobenzene (1.149 g, 1.000 equiv., 6.000 mmol) was added to a separate flame-dried 1-dram vial. The vial was evacuated and refilled with N\(_2\) three times. 0.5 mL of THF was used to transfer the ArBr to the vial containing Mg\(^0\) turnings. After the initial heat evolution, the reaction mixture was removed from the ice bath and allowed to stir for 1 hour at room temperature. Titration of the mixture with I\(_2\) (0.0125 g, 0.05 mmol) and LiCl (0.25 mmol, 0.0105 g) in THF (1 mL) yielded a concentration of 0.74 molar.

ZnCl\(_2\) (0.2726 g, 1.000 equiv., 2.000 mmol) was added to a third flame-dried vial with stir bar in the glovebox. The vial was capped with a septum, sealed with Teflon tape, and removed from the glovebox. Under N\(_2\), THF (6.0 mL, 0.33 molar) was added to the vial containing ZnCl\(_2\), and the resulting mixture was cooled to 0 °C in an ice bath. The ArMgBr-LiCl solution (2.7 mL, 0.74 molar in THF) was added to the ZnCl\(_2\) mixture, and the resulting solution was removed from the ice bath. The ArylZnCl-LiCl solution stirred at room temperature for 15 min. The ArylZnCl-LiCl was not titrated further, and the solids were allowed to settle before the ArylZnCl-LiCl solution was used.
Ethynylzinc chloride (SI-3): Procedure was adapted from literature.\(^3\) ZnCl\(_2\) (0.1360 g, 1.00 equiv., 1.00 mmol) and LiCl (0.0424 mg, 1.00 equiv., 1.00 mmol) were added to a flame-dried 2-dram vial with stir bar in a N\(_2\)-containing glovebox. The vial was capped with a septum, sealed with Teflon tape, and removed from the glovebox. Under N\(_2\), THF (1.0 mL, 1.0 molar) was added followed by dropwise addition of ethynylmagnesium bromide solution (2.2 mL, 0.45 molar in THF, 1.0 equiv., 1.0 mmol) at room temperature. The resulting solution was stirred at room temperature for 30 min. until it became homogeneous. The solution was not titrated further.

1-bromo-2-isopropoxybenzene (SI-4): 1-bromo-2-isopropoxybenzene was prepared according to literature.\(^5\) K\(_2\)CO\(_3\) (1.73 g, 1.20 equiv., 12.5 mmol) and NaI (47 mg, 0.03 equiv., 0.31 mmol) were added to a 100 mL two-necked flask with stir bar and fitted with a reflux-condenser were added. The reflux apparatus was evacuated and refilled with N\(_2\) three times. The reflux condenser was fitted with a septum and kept under N\(_2\). Via syringe was added abs. EtOH (26 mL) followed by 2-bromophenol (1.1 mL, 10.4 mmol, 1.00 equiv.) and 2-bromopropane (1.2 mL, 12.5 mmol, 1.20 equiv.). The reaction mixture was refluxed for 5 h. It was cooled to room temperature and the solvent removed under reduced pressure. The mixture was redissolved in EtOAc and washed with 1 M NaOH followed by brine. The organic layer was dried over Na\(_2\)SO\(_4\), filtered, and concentrated under reduced pressure to yield a clear, colorless liquid (1.3535 g, 63% yield). It was used without further purification. Characterization data matched that of the literature.\(^5\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 7.53\) (d, \(J = 7.9\) Hz, 1H), 7.23 (t, \(J = 7.8\) Hz, 1H), 6.92 (d, \(J = 8.2\) Hz, 1H), 6.82 (t, \(J = 7.6\) Hz, 1H), 4.55 (hept, \(J = 6.1\) Hz, 1H), 1.38 (d, \(J = 6.1\) Hz, 6H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta 154.74, 133.64, 128.39, 122.06, 116.00, 113.95, 72.29, 22.22.\)
benzyl 4-(2-isopropoxyphenyl)piperazine-1-carboxylate (SI-5): Procedure was adapted from literature.\(^6\) Pd\(_2\)(dba)\(_3\) (0.0183 g, 0.02 mmol, 0.003 equiv.), rac-BINAP (0.0623 g, 0.100 mmol, 0.015 equiv.), NaOt-Bu (0.192 g, 2.00 mmol, 3.00 equiv.) were added to a flame-dried 6 mL screw-cap test tube vial in a N\(_2\)-atmosphere glovebox. The vial was capped with a septum and removed from the glovebox. Under N\(_2\), 1,4-dioxane (6.6 mL, 0.1 molar), aryl bromide SI-4 (0.145 g, 0.674 mmol, 1.00 equiv.), and benzyl piperazine-1-carboxylate (0.3 mL, 1.50 mmol, 2.22 equiv.) were added to the vial. The vial was sealed with a Teflon screwcap and Teflon tape. The resulting solution was stirred at 80 °C in an aluminum block for approx. 18 hours. The reaction mixture was cooled to room temperature, and filtered through a pad of Celite, which was washed twice with CH\(_2\)Cl\(_2\) and then twice with EtOAc. The combined rinses were concentrated under reduced pressure and purified by MPLC to yield a clear, colorless oil (0.1621 g, 68% yield).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.43 – 7.31 (m, 5H), 7.02 – 6.85 (m, 4H), 5.17 (d, \(J = 1.8\) Hz, 2H), 4.59 (p, \(J = 6.2\) Hz, 1H), 3.67 (t, \(J = 5.0\) Hz, 4H), 3.04 (s, 4H), 1.35 (dd, \(J = 6.3, 1.6\) Hz, 6H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 155.53, 150.56, 142.44, 136.91, 128.67, 128.18, 128.09, 123.13, 121.44, 118.80, 115.74, 70.45, 67.31, 50.57, 44.32, 22.44.

FTIR: 2973.11 (w), 2814.92 (w), 1697.89 (s), 1593.83 (w), 1494.77 (m), 1426.28 (m), 1233.01 (s), 1218.23 (s), 1120.19 (s), 952.86 (m), 744.65 (s), 696.52 (s).

HRMS (APCI): Calculated for C\(_{21}\)H\(_{27}\)O\(_3\)N\(_2\) [M+H\(^+\)]: 355.2016, Found: 355.2019.

1-(2-isopropoxyphenyl)piperazine (SI-6): Procedure was adapted from literature.\(^7\) SI-5 (0.0691 g, 0.195 mmol, 1.00 equiv.) was added to a 1-dram vial with stir bar. MeOH (2.0 mL, 0.1 molar) was added to the vial under N\(_2\) followed by addition of Pd/C (207 mg, 0.0975 mmol, 0.5 equiv.). The solution was sparged with N\(_2\) for 5 minutes, and then sparged with a balloon full of H\(_2\) for 5 minutes. The reaction mixture stirred under H\(_2\) for approx. 18 hours before being filtered through a pad of Celite. The pad of Celite was rinsed
twice with EtOAC and then twice with CH₂Cl₂. The combined rinses were concentrated under reduced pressure to yield a light-yellow oil (0.0280 g, 65% yield). Material was used in the next reaction without further purification. Characterization data matched that from the literature.⁷

H NMR (500 MHz, CDCl₃) δ 6.98 – 6.82 (m, 4H), 4.60 (hept, J = 6.0 Hz, 1H), 3.06 (s, 8H), 2.12 (s, 1H), 1.35 (d, J = 6.1 Hz, 6H).

C NMR (126 MHz, CDCl₃) δ 150.41, 143.18, 122.51, 121.44, 118.52, 116.09, 70.28, 51.76, 46.33, 22.32.

General Procedures

General Procedure A: Addition of Grignard to Aldehyde Derivatives:

Aldehyde (1 equiv.) was added to a flame-dried round-bottomed flask with stir bar under N₂. The aldehyde was dissolved in Et₂O (0.8 molar) and cooled to 0 °C in an ice bath. SI-I (1.2 equiv) was added dropwise via syringe. Vigorous stirring was required so that the stir bar did not get stuck in the yellow precipitate that formed during addition. The precipitate dissolved shortly after addition of all the Grignard reagent. After the reaction was complete by TLC analysis (~2.5 h), the reaction was quenched with sat. aq. NH₄Cl at 0 °C. Additional 2M HCl was added to dissolve white precipitate that formed and to adjust the pH to 1-2. The organic layer was separated, and the aqueous layer was extracted with Et₂O twice more. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was used directly in the next step without further purification.

General procedure B: Addition of Grignard to the Cinnamaldehyde Derivatives:

Mg⁰ turnings (5 equiv.) and I₂ (0.20 equiv.) were added to a flame-dried 2-necked round bottom flask equipped with a magnetic stirrer under N₂. Then, the flask was equipped with a condenser and a rubber septum on the two necks. Under N₂, Et₂O (0.5 molar) was added to the flask and the resulting mixture was refluxed for 30 minutes. Then, 4-bromobut-1-ene (2.0 equiv.) dissolved in Et₂O (0.5 molar) was added to the reaction mixture while keeping a gentle reflux. The mixture was stirred for an additional hour at reflux and upon completion of the Grignard reagent formation, the heating and stirring were stopped. Cinnamaldehyde derivative (1.0 equiv.) was dissolved in Et₂O (0.5 molar) under a nitrogen atmosphere in a separate flask. The mixture was cooled to -20 °C, and the solution of freshly prepared Grignard was added. A yellow precipitate formed upon addition, which dissolved after complete addition. After 1 hour of stirring, TLC showed completion of the reaction, which was then quenched by sat. aq. NH₄Cl solution.
The organics were extracted with Et₂O thrice, then the combined organic layers were washed with brine and dried over Na₂SO₄. The dried organic layer was filtered and concentrated under reduced pressure. The crude residue was used directly in the next step without further purification.

General procedure C: [2+2] Photocycloaddition using 2-Isopropylthioxanthone:

```
HO
\[\textbf{MeCN}\]
\[\textbf{h}_V=365\text{ LEDs}\]
\textbf{ITX (2 mol%)}
```

Procedure was adapted from literature. ITX (0.02 equiv.) was weighed out in a flame-dried round-bottomed flask. The flask was capped with a septum and put under a N₂ atmosphere. Crude diene was dissolved in dry MeCN (0.2 molar) under N₂ in a separate flame-dried flask. The solution of diene was degassed with N₂ for 5 minutes and transferred to the flask containing the ITX. The resulting mixture was degassed with N₂ for 15 minutes. Then, the mixture was transferred to a flame-dried Quartz-tube equipped with a septum and a magnetic stirrer. The mixture was irradiated at 365 nm (EvoluChem HCK1012-01-006; 30 W AC200-240V) in an EvoluChem PhotoRedOx Box for 24-48 hours under N₂. Once completed (by TLC analysis), the reaction mixture was concentrated under reduced pressure and used in the next step without further purification.

General procedure D: [2+2] Photocycloaddition using Iridium Photocatalyst:

```
HO
\[\textbf{MeCN}\]
\textbf{Blue LED}
\textbf{(Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (2 mol%)}
```

The crude diene was dissolved in dry MeCN (0.30 molar) in a vial and (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (0.02 equiv.) was added. The resulting solution was degassed with N₂ for 2 minutes before being sealed and irradiated with blue LEDs for 4 hours. TLC analysis showed full conversion and the mixture was evaporated under reduced pressure before being purified by Flash column chromatography (Hexanes:EtOAc 95:5 to 50:50) to yield a mixture of diastereomers as an oil. Crude residue was used directly in the next step without further purification.
General procedure E: [2+2] Photocycloaddition using 2-Isopropylthioxanthone in Flow:

\[
\text{ITX (1 mol%) was added to an oven-dried 2-dram vial in an Ar-atmosphere glovebox. The vial was capped with a septum and removed from the glovebox. The vial was placed under N}_2. \text{ MeCN (0.1 M) was added to a flame-dried 500 mL round-bottomed flask with stir bar under N}_2. \text{ Crude diene (1 equiv.) was added to the flask containing MeCN followed by ITX under N}_2. \text{ Approx. 10 mL more of MeCN was used to help transfer the diene and ITX to the reaction flask. The reaction mixture was sparged with N}_2 \text{ for 30 minutes while stirring.}
\]

\[
\text{The Vapourtec E-Series flow reactor equipped with a UV-150 10 mL photoreactor was pre-equilibrated with anhydrous MeCN. Then, the reaction solution was pumped through the reactor at a rate of 0.222 mL/min (45 min. residence time) while being irradiated at 385 nm using a 60 W LED array. The reaction solution was kept under N}_2. \text{ The temperature in the photoreactor was kept at 20 °C, and the pressure in the coil was kept between 2-5 bar using a back-pressure regulator during the reaction. The solution of product was collected in a round-bottomed flask open to the air. Once the reaction mixture was consumed, anhydrous MeCN was again pumped through the reactor at the same rate of 0.222 mL/min for 45 min. This solution was collected in the same Erlenmeyer. Upon completion, the combined solutions were concentrated under reduced pressure. The crude yellow oil was used in the next reaction without further purification.}
\]

General procedure F: DMP Oxidation of Bicyclo[3.2.0] intermediates:

\[
\text{Dess-Martin Periodinane (1.5 equiv.) was added to a round-bottomed flask with stir bar. It was evacuated and refilled with N}_2 \text{ three times. The flask was capped with a septum and placed under N}_2. \text{ CH}_2\text{Cl}_2 (0.1 M) \text{ was added via cannula followed by addition of DI H}_2\text{O (1.5 equiv.). Crude alcohol was added to the reaction flask, and the reaction stirred for 2 hours at room temperature. The reaction was quenched with a 1:1 sat. aq. Na}_2\text{S}_2\text{O}_3: \text{ sat. aq. NaHCO}_3\text{ solution and stirred until CO}_2 \text{ production ceased. The mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was extracted twice more with CH}_2\text{Cl}_2. \text{ The organic layers were combined and washed with DI H}_2\text{O followed by brine. The combined organic layers were dried over MgSO}_4\text{, filtered, and concentrated under reduced pressure. Material was used in the next reaction without further purification.}
\]
General procedure G: Formation of the Bicyclo[3.2.0] α-Diazoketone:

MeCN (0.1 M) was added to a flame-dried round-bottomed flask with stir bar under N₂. Crude ketone (1 equiv.) was added to the flask. The septum was removed, and p-ABSA (2.5 equiv.) was quickly added. The septum was replaced, and the reaction was flushed with N₂. DBU (5 equiv.) was added in one portion via syringe. The reaction mixture was stirred at room temperature for approx. 18 hours. The reaction was diluted with a 1:1 EtOAc:Hexanes solution while stirring until a viscous brown oil precipitated from the reaction mixture. The mixture was filtered through a fritted funnel filled with silica gel (wetted with Hexanes) under vacuum. The crude material was purified via flash column chromatography.

General Procedure H: Formation of the Bicyclo[2.2.0] Structure in Flow:

α-Diazoketone (3.6 g, 17 mmol, 1 equiv.) was added to a flame-dried round-bottomed flask with stir bar under N₂. LCMS grade MeOH (0.1 M) was added to the flask, and the resulting solution was sparged with N₂ for 30 minutes while stirring.

The Vapourtec E-Series flow reactor equipped with a UV-150 10 mL photoreactor was pre-equilibrated with LCMS grade MeOH. Then, the reaction solution was pumped through the reactor at a rate of 1.25 mL/min (8 min. residence time) while being irradiated at 365 nm using a 150 W LED array. The reaction solution was kept under N₂. The temperature in the photoreactor was kept at 20 °C, and the pressure in the coil was kept between 2-5 bar using a back-pressure regulator during the reaction. The solution of product was collected in a 500 mL Erlenmeyer flask open to the air. Once the reaction mixture was consumed, LCMS grade MeOH was again pumped through the reactor at the same rate of 1.25 mL/min for 8 min. This solution was collected in the same Erlenmeyer. Upon completion, the combined solutions were concentrated under reduced pressure and purified via MPLC.

General Procedure I: Formation of the [2.2.0] Structure in Batch:

α-Diazoketone (1 equiv.) was added to a round-bottomed flask with stir bar under N₂. Dry MeOH (0.1 molar) was added, and the solution was sparged with N₂ for 60 minutes. The mixture was transferred to a flame dried quartz tube under a N₂ atmosphere. The reaction was irradiated at 365 nm for approx. 18
hours in the EvoluChem PhotoRedOx. The reaction mixture was concentrated under reduced pressure and purified via column chromatography.

Characterization Data of Intermediates and Bicyclo[2.2.0] Final Substrates

1. Precursors to Bicyclo[3.2.0]heptanes

(E)-1-phenylepta-1,6-dien-3-ol (SI-7): Following General Procedure A with (E)-cinnamaldehyde (15 mL, 120 mmol), SI-1 and was obtained as a yellow oil (21.9028 g, 97% yield) and used without further purification.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.35 – 7.30 (m, 2H), 7.26 (dd, \(J = 8.5, 6.8 \text{ Hz}, 2\text{H} \)), 7.21 – 7.16 (m, 1H), 6.52 (dd, \(J = 16.0, 1.1 \text{ Hz}, 1\text{H} \)), 6.16 (dd, \(J = 15.9, 6.8 \text{ Hz}, 1\text{H} \)), 5.80 (ddt, \(J = 16.9, 10.2, 6.6 \text{ Hz}, 1\text{H} \)), 5.01 (dq, \(J = 17.1, 1.7 \text{ Hz}, 1\text{H} \)), 4.94 (dd, \(J = 10.2, 2.2, 1.1 \text{ Hz}, 1\text{H} \)), 4.29 – 4.23 (m, 1H), 2.14 (dddt, \(J = 11.5, 8.2, 4.9, 1.6 \text{ Hz}, 2\text{H} \)), 1.75 – 1.60 (m, 3H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 138.35, 136.79, 132.37, 130.57, 128.72, 127.82, 126.60, 115.13, 72.66, 36.46, 29.86.

FTIR: 3333.67 (br), 3025.83 (m), 2922.33 (w), 1639.73 (m), 1493.19 (m), 1448.12 (m), 964.63 (s), 908.99 (s), 746.38 (s), 691.60 (s), 547.98 (w).

HRMS (EI): Calculated for C\(_{13}\)H\(_{16}\)O [M\(^+\)]: 188.1196, Found: 188.1199.

(E)-1-(4-bromophenyl)hepta-1,6-dien-3-ol (SI-8): Following General Procedure B with (E)-3-(4-bromophenyl)acrylaldehyde (350 mg, 1.70 mmol), SI-8 was obtained as a yellow oil (443 mg, quant.) and used without further purification.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.48 – 7.38 (m, 2H), 7.29 – 7.20 (m, 2H), 6.59 – 6.44 (m, 1H), 6.21 (dd, \(J = 15.9, 6.6 \text{ Hz}, 1\text{H} \)), 5.85 (ddt, \(J = 16.9, 10.2, 6.7 \text{ Hz}, 1\text{H} \)), 5.14 – 4.90 (m, 2H), 4.31 (tdd, \(J = 7.0, 5.9, 1.2 \text{ Hz}, 1\text{H} \)), 2.19 (dtdd, \(J = 8.2, 6.6, 3.4, 1.8 \text{ Hz}, 2\text{H} \)), 1.82 – 1.67 (m, 2H), 1.64 (s, 1H).
13C NMR (101 MHz, CDCl$_3$) δ 138.24, 135.78, 133.18, 131.84, 129.30, 128.13, 121.57, 115.26, 72.49, 36.44, 29.85.

(E)-1-(3-chlorophenyl)hepta-1,6-dien-3-ol (SI-9): Following General Procedure B with (E)-3-(3-chlorophenyl)acrylaldehyde (1.0 g, 6.0 mmol), SI-9 was obtained as a yellow oil (1.30 g, quant.) and used without further purification.

1H NMR (400 MHz, CDCl$_3$) δ 7.37 (tt, $J = 1.2$, 0.7 Hz, 1H), 7.26 – 7.19 (m, 3H), 6.52 (dd, $J = 15.9$, 1.2 Hz, 1H), 6.23 (dd, $J = 15.9$, 6.5 Hz, 1H), 5.85 (ddt, $J = 17.0$, 10.2, 6.7 Hz, 1H), 5.07 (dq, $J = 17.1$, 1.7 Hz, 1H), 5.03 – 4.98 (m, 1H), 4.32 (tdd, $J = 7.0$, 6.0, 1.3 Hz, 1H), 2.20 (tddd, $J = 8.3$, 6.8, 2.9, 1.4 Hz, 2H), 1.82 – 1.62 (m, 3H).

(E)-1-(4-fluorophenyl)hepta-1,6-dien-3-ol (SI-10): Following General Procedure B with (E)-3-(4-fluorophenyl)acrylaldehyde (500 mg, 3.33 mmol), SI-10 was obtained as a yellow oil (450 mg, 66% yield) and used without further purification.

1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.28 (m, 2H), 7.08 – 6.94 (m, 2H), 6.54 (dd, $J = 15.9$, 1.1 Hz, 1H), 6.14 (dd, $J = 15.9$, 6.7 Hz, 1H), 5.86 (ddt, $J = 16.9$, 10.2, 6.6 Hz, 1H), 5.13 – 4.94 (m, 2H), 4.31 (tdd, $J = 7.0$, 5.8, 1.2 Hz, 1H), 2.19 (dttd, $J = 9.7$, 6.6, 3.1, 1.5 Hz, 2H), 1.84 – 1.63 (m, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 162.48 (d, $J = 246.9$ Hz), 138.28, 132.96 (d, $J = 3.3$ Hz), 132.10 (d, $J = 2.2$ Hz), 129.38, 128.09 (d, $J = 8.0$ Hz), 115.62 (d, $J = 21.6$ Hz), 115.17, 72.57, 36.48, 29.85.

(E)-1-(4-methoxyphenyl)hepta-1,6-dien-3-ol (SI-11): Following General Procedure B with (E)-3-(4-methoxyphenyl)acrylaldehyde (550 mg, 3.39 mmol), SI-11 was obtained as a yellow oil (740 mg, quant.) and used without further purification.
1H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 2H), 6.91 – 6.82 (m, 2H), 6.51 (d, J = 15.9 Hz, 1H), 6.08 (dd, J = 15.9, 7.0 Hz, 1H), 5.84 (dddt, J = 17.2, 13.3, 10.2, 6.8 Hz, 1H), 5.06 (d, J = 17.1 Hz, 1H), 4.99 (d, J = 10.3 Hz, 1H), 4.33 – 4.23 (m, 1H), 3.81 (s, 3H), 2.18 (dtdd, J = 9.6, 6.6, 3.0, 1.3 Hz, 2H), 1.85 – 1.62 (m, 3H).

(E)-1-(2-methoxyphenyl)hepta-1,6-dien-3-ol (SI-12): Following General Procedure B with (E)-3-(2-methoxyphenyl)acrylaldehyde (550 mg, 3.39 mmol), SI-12 was obtained as a yellow oil (710 mg, 96% yield) and used without further purification.

1H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 5.9 Hz, 1H), 7.26 – 7.20 (m, 1H), 6.98 – 6.84 (m, 3H), 6.23 (dd, J = 16.0, 7.0 Hz, 1H), 5.93 – 5.81 (m, 1H), 5.12 – 4.96 (m, 2H), 4.32 (q, J = 5.9 Hz, 1H), 3.85 (s, 3H), 2.27 – 2.12 (m, 2H), 1.75 (d, J = 8.4 Hz, 3H).

13C NMR (101 MHz, CDCl₃) δ 156.87, 138.47, 133.02, 128.86, 126.99, 125.78, 125.47, 120.77, 114.98, 110.99, 73.14, 55.56, 36.45, 29.91.

(E)-1-(furan-2-yl)hepta-1,6-dien-3-ol (SI-13): Following General Procedure B with (E)-3-(furan-2-yl)acrylaldehyde (1.00 g, 8.20 mmol), SI-13 was obtained as a yellow oil (1.50 g, quant.) and used without further purification.

1H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 1.9 Hz, 1H), 6.41 (dd, J = 15.9, 1.2 Hz, 1H), 6.37 (dd, J = 3.3, 1.8 Hz, 1H), 6.24 (d, J = 3.3 Hz, 1H), 6.17 (dd, J = 15.9, 6.5 Hz, 1H), 5.85 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.06 (dq, J = 17.1, 1.7 Hz, 1H), 5.02 – 4.96 (m, 1H), 4.28 (q, J = 6.4 Hz, 1H), 2.18 (dtdd, J = 8.2, 6.5, 3.3, 1.7 Hz, 2H), 1.78 – 1.68 (m, 3H).

13C NMR (101 MHz, CDCl₃) δ 152.48, 142.09, 138.30, 131.01, 118.75, 115.12, 111.42, 108.17, 72.15, 36.48, 29.81.
(6E,8E)-tetradeca-1,6,8-trien-5-ol (SI-14): Following General procedure A with (2E,4E)-deca-2,4-dienal (1.5220 g, 10.00 mmol), SI-14 was obtained as a yellow oil (2.0128 g, 97% yield) and used without further purification.

1H NMR (500 MHz, CDCl$_3$) δ 6.18 (dd, $J = 15.3, 10.4$ Hz, 1H), 6.02 (dd, $J = 15.1, 10.5$ Hz, 1H), 5.83 (ddt, $J = 16.9, 10.0, 6.6$ Hz, 1H), 5.71 (dt, $J = 14.7, 7.0$ Hz, 1H), 5.57 (dd, $J = 15.2, 7.0$ Hz, 1H), 5.04 (dq, $J = 17.2, 1.9$ Hz, 1H), 4.97 (d, $J = 10.2$ Hz, 1H), 4.15 (q, $J = 6.7$ Hz, 1H), 2.21 – 2.03 (m, 4H), 1.72 – 1.54 (m, 2H), 1.47 (s, 1H), 1.39 (p, $J = 7.4$ Hz, 2H), 1.29 (pd, $J = 8.4, 3.0$ Hz, 4H), 0.89 (t, $J = 6.8$ Hz, 3H).

13C NMR (126 MHz, CDCl$_3$) δ 138.45, 135.95, 133.32, 131.34, 129.48, 114.97, 72.47, 36.45, 32.75, 31.55, 29.88, 29.04, 22.67, 14.18.

FTIR: 3331.28 (br), 2956.47 (m), 2923.92 (m), 2855.16 (m), 1454.06 (w), 1055.59 (w), 985.45 (s), 908.23 (s).

HRMS (EI): Calculated for C$_{14}$H$_{24}$O [M$^+$]: 208.182 2, Found: 208.1818.

2. [2+2] Cycloaddition to Bicyclo[3.2.0] Systems

7-phenylbicyclo[3.2.0]heptan-2-ol (SI-15): Following General procedure E with (E)-1-phenylhepta-1,6-dien-3-ol (30.0 mmol), SI-15 (2:1 dr) was obtained as a light-yellow oil and used without further purification. The efficiency was 1.5 mmol h$^{-1}$.

1H NMR (600 MHz, CDCl$_3$) δ 7.34 – 7.29 (m, 3H), 7.26 (d, $J = 2.4$ Hz, 3H), 7.21 – 7.16 (m, 1.5H), 4.32 (dt, $J = 10.2, 6.7$ Hz, 0.5H), 4.23 (d, $J = 3.9$ Hz, 1H), 3.55 – 3.48 (m, 0.5H), 2.93 (td, $J = 11.8, 7.4$ Hz, 1H), 2.89 – 2.84 (m, 1H), 2.80 (q, $J = 6.7$ Hz, 0.5H), 2.72 (q, $J = 7.1$ Hz, 1.5H), 2.47 (dt, $J = 12.6, 8.4$ Hz, 0.5H), 2.33 (ddd, $J = 12.7, 9.7, 7.4$ Hz, 1H), 2.26 – 2.16 (m, 1H), 2.12 – 1.90 (m, 4.5H), 1.79 – 1.71 (m, 0.5H), 1.62 (td, $J = 13.1, 7.1$ Hz, 1.5H), 1.52 (s, 1.5H).

13C NMR (126 MHz, CDCl$_3$) δ 147.19 (minor), 146.52, 128.52, 128.46 (minor), 126.78 (minor), 126.57, 125.95, 125.70 (minor), 78.33, 75.43 (minor), 54.79, 49.83 (minor), 39.61, 34.44 (minor), 33.84, 33.48, 33.19 (minor), 32.81 (minor), 32.33 (minor), 31.94, 30.31, 29.68 (minor).

FTIR: 3265.79 (br), 2925.64 (m), 1492.57 (m), 1443.98 (m), 1305.95 (m), 1079.94 (m), 986.83 (s), 735.54 (m), 695.39 (s), 525.46 (m).
HRMS (APCI): Calculated for C_{13}H_{15}O [M-H]: 187.1117, Found: 187.1116.

\[\text{HRMS (ESI): Calculated for C}_{13}\text{H}_{15}\text{BrNaO [M+Na]}} \text{: } 289.0198, \text{Found: 289.0205.} \]

\[\text{SI-16} \]

7-(4-bromophenyl)bicyclo[3.2.0]heptan-2-ol (SI-16): Following General Procedure C with crude SI-8 (770 mg, 2.88 mmol), SI-16 was obtained (770 mg, quant., 1.5:1 dr) and used without further purification.

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.44 – 7.39 (m, 3.3H), 7.18 – 7.10 (m, 3.3H), 4.31 (dt, J = 10.1, 6.6 Hz, 0.66H), 4.21 (d, J = 3.8 Hz, 1H), 3.50 – 3.43 (m, 0.66H), 2.96 – 2.87 (m, 1H), 2.85 – 2.78 (m, 1H), 2.76 – 2.64 (m, 2.3H), 2.46 – 2.37 (m, 0.66H), 2.31 – 2.14 (m, 2.3H), 2.11 – 1.88 (m, 5.3H), 1.80 – 1.68 (m, 0.66H), 1.61 (dt, J = 14.3, 7.5 Hz, 2.66H). \]

\[\text{13C NMR (101 MHz, CDCl}_3\text{)} \delta 146.18 (\text{minor}), 145.49, 131.54, 131.44 (\text{minor}), 128.62 (\text{minor}), 128.38, 119.57, 119.31 (\text{minor}), 78.26, 75.33 (\text{minor}), 54.68, 49.90 (\text{minor}), 39.10, 34.01 (\text{minor}), 33.89, 33.46, 33.12 (\text{minor}), 32.62 (\text{minor}), 32.37 (\text{minor}), 31.88, 30.26, 29.66 (\text{minor}). \]

FTIR: 3399, 2933, 2082, 1644, 1600, 1241, 1157, 1114, 1052, 1029 cm\(^{-1}\).

7-(3-chlorophenyl)bicyclo[3.2.0]heptan-2-ol (SI-17): Following General Procedure C with crude SI-9 (1.90 g, 8.53 mmol), SI-17 was obtained (1.90 g, quant., 2:1 dr) as an oil and used without further purification.

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.29 – 7.20 (m, 3H), 7.18 – 7.10 (m, 3H), 4.32 (dt, J = 10.1, 6.7 Hz, 0.5H), 4.22 (d, J = 3.8 Hz, 1H), 3.54 – 3.46 (m, 0.5H), 2.98 – 2.88 (m, 1H), 2.88 – 2.81 (m, 1H), 2.80 – 2.66 (m, 2H), 2.44 (dt, J = 12.7, 8.5 Hz, 0.5H), 2.30 (ddd, J = 12.7, 9.7, 7.3 Hz, 1H), 2.25 – 2.14 (m, 1H), 2.12 – 1.89 (m, 4.5H), 1.81 – 1.69 (m, 0.5H), 1.61 (dt, J = 12.9, 8.1 Hz, 1.5H), 1.45 (s, 1.5H). \]

\[\text{13C NMR (101 MHz, CDCl}_3\text{)} \delta 148.55, 134.37, 129.79, 129.69 (\text{minor}), 127.00 (\text{minor}), 126.83, 126.10, 125.84 (\text{minor}), 125.05 (\text{minor}), 124.78, 78.24, 75.28 (\text{minor}), 54.59, 49.79 (\text{minor}), 39.30, 34.25 (\text{minor}), 33.88, 33.50, 33.16 (\text{minor}), 32.36 (\text{minor}), 31.71, 30.26, 29.65 (\text{minor}). \]

FTIR: 3369, 2933, 2114, 1604, 1508, 1439, 1265, 1222, 1158, 1094, 1054, 1014 cm\(^{-1}\).
LRMS: Calculated for C_{13}H_{16}ClO [M+H^+]: 223.081, Found: 223.1.

![SI-18](image)

7-(4-fluorophenyl)bicyclo[3.2.0]heptan-2-ol (SI-18): Following general procedure C using SI-10 (200 mg, 0.97 mmol) with a 24 hour reaction time, SI-18 was obtained (106 mg, 53% yield, 2:1 dr) after purification of the crude product by Flash Column Chromatography (Hexanes:Ethyl Acetate 1:0 to 6:4).

1H NMR (400 MHz, CDCl$_3$) δ 7.26 – 7.17 (m, 3H), 7.03 – 6.95 (m, 3H), 4.32 (dt, $J = 10.2, 6.7$ Hz, 0.5H), 4.22 (d, $J = 3.8$ Hz, 1H), 3.49 (t, $J = 10.7$ Hz, 0.5H), 2.96 – 2.88 (m, 1H), 2.88 – 2.80 (m, 1H), 2.78 – 2.65 (m, 2H), 2.47 – 2.37 (m, 0.5H), 2.33 – 2.13 (m, 2H), 2.12 – 1.89 (m, 4.5H), 1.80 – 1.69 (m, 0.5H), 1.62 (dd, $J = 12.6, 7.6$ Hz, 1.5H), 1.43 (s, 1.5H).

13C NMR (101 MHz, CDCl$_3$) δ 161.28 (d, $J = 243.6$ Hz), 130.52, 127.94 (d, $J = 7.8$ Hz), 115.21 (d, $J = 21.1$ Hz), 78.29, 59.68 (minor), 54.97, 38.97, 33.92, 33.39, 32.16, 30.27, 27.07 (minor).

FTIR: 3351, 2933, 2114, 1600, 1508, 1491, 1456, 1437, 1305, 1158, 1106, 1049, 1029 cm$^{-1}$.

HRMS (ESI): Calculated for C$_{14}$H$_{16}$FO$_3$ [M+HCOO$^+$]: 251.1106, Found: 251.2361.

![SI-19](image)

7-(4-methoxyphenyl)bicyclo[3.2.0]heptan-2-ol (SI-19): Following general procedure D using crude SI-11 (200 mg, 0.92 mmol) with a reaction time of 3 hours, SI-19 was obtained (180 mg, 90%, 2:1 dr) after purification of the crude product by Flash Column Chromatography (Hexanes:Ethyl Acetate 1:0 to 6:4).

1H NMR (400 MHz, CDCl$_3$) δ 7.25 – 7.14 (m, 3H), 6.90 – 6.81 (m, 3H), 4.30 (dt, $J = 10.0, 6.7$ Hz, 0.5H), 4.20 (d, $J = 3.9$ Hz, 1H), 3.79 (m, 4.5Hz), 3.45 (ddd, $J = 9.8, 7.6, 4.8$ Hz, 0.5H), 2.91 (dt, $J = 13.9, 7.0, 3.9$ Hz, 1H), 2.81 (dt, $J = 9.5, 6.5$ Hz, 1H), 2.76 – 2.64 (m, 2H), 2.47 – 2.37 (m, 0.5H), 2.33 – 2.13 (m, 2.5H), 2.12 – 1.86 (m, 5H), 1.80 – 1.68 (m, 1H), 1.68 – 1.54 (m, 1.5H).

13C NMR (101 MHz, CDCl$_3$) δ 157.87, 157.71 (minor), 139.40 (minor), 138.74, 127.71 (minor), 127.52, 113.93, 113.89 (minor), 78.34, 75.50 (minor), 55.45, 55.09, 50.06 (minor), 38.94, 33.86, 33.75 (minor), 33.35, 33.13 (minor), 33.08 (minor), 32.36 (minor), 32.25, 30.31, 29.69 (minor), 27.06 (minor).

FTIR: 3360, 2929, 1510, 1243, 1176, 1034 cm$^{-1}$.

S18
HRMS (ESI): Calculated for C_{14}H_{18}NaO_{2} [M+Na^+] : 241.1199, Found : 241.1199.

7-(2-methoxyphenyl)bicyclo[3.2.0]heptan-2-ol (SI-20): Following general procedure C using SI-12 (400 mg, 1.83 mmol), SI-20 was obtained as an oil (400 mg, quant., >20:1 dr) and used in the next step without further purification.

^1H NMR (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 1H), 7.18 (td, J = 7.8, 1.7 Hz, 1H), 6.96 (td, J = 7.5, 1.0 Hz, 1H), 6.84 (dd, J = 8.1, 0.9 Hz, 1H), 4.28 (d, J = 3.9 Hz, 1H), 3.81 (m, 4H), 3.17 – 3.07 (m, 1H), 2.91 – 2.82 (m, 1H), 2.68 (t, J = 6.4 Hz, 1H), 2.38 (ddd, J = 12.5, 9.6, 7.9 Hz, 1H), 2.32 – 2.19 (m, 1H), 2.09 – 1.96 (m, 1H), 1.98 – 1.81 (m, 2H), 1.62 (dd, J = 12.7, 7.6 Hz, 1H).

^13C NMR (101 MHz, CDCl₃) δ 157.11, 133.87, 126.96, 126.56, 120.50, 110.31, 78.60, 55.38, 53.99, 34.24, 33.88, 33.38, 30.42, 29.97.

FTIR: 3354, 2927, 2114, 1598, 1490, 1462, 1436, 1288, 1240, 1174, 1106, 1048, 1029 cm⁻¹.

HRMS (ESI): Calculated for C_{14}H_{18}NaO_{2} [M+Na^+] : 241.1199, Found : 241.1199.

7-(furan-2-yl)bicyclo[3.2.0]heptan-2-ol (SI-21): Following general procedure D using SI-13 (210 mg, 1.18 mmol), SI-21 was obtained (210 mg, quant., 2:1 dr) after purification by Flash Column Chromatography (Hexanes:Ethyl Acetate 1:0 to 6:4).

^1H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 1.8, 0.8 Hz, 1H), 6.29 (dd, J = 3.2, 1.9 Hz, 1.5H), 6.02 (td, J = 2.4, 1.2 Hz, 1.5H), 4.34 – 4.25 (m, 0.5H), 4.19 (d, J = 3.9 Hz, 1H), 3.56 – 3.47 (m, 0.5H), 2.96 – 2.79 (m, 2.5H), 2.76 (t, J = 6.1 Hz, 1H), 2.74 – 2.66 (m, 2.5H), 2.49 (dd, J = 12.3, 9.4, 5.8 Hz, 0.5H), 2.37 (ddd, J = 12.6, 9.5, 7.2 Hz, 1H), 2.20 – 1.82 (m, 7H), 1.71 (tt, J = 12.5, 7.2 Hz, 1.5H), 1.58 (dd, J = 12.5, 7.2 Hz, 2.5H).

^13C NMR (101 MHz, CDCl₃) δ 158.96, 141.23, 141.17 (minor), 110.22, 110.20 (minor), 103.84, 103.72 (minor), 77.97, 74.98 (minor), 52.60, 47.58 (minor), 33.59, 33.46 (minor), 32.83, 32.04 (minor), 30.78 (minor), 30.32, 29.73, 29.67 (minor), 27.93 (minor), 27.06.

FTIR: 3363.74, 2930, 2112, 1712, 1640, 1593, 1506, 1442, 1330, 1237, 1148, 1075, 1008 cm⁻¹.

HRMS (ESI): Calculated for C_{11}H_{15}O_{2} [M+H^+] : 179.1067, Found : 179.1062.
7-(hept-1-en-1-yl)bicyclo[3.2.0]heptan-2-ol (SI-22): Following general procedure D using SI-14 (2.5000 g, 12.00 mmol) which was filtered through a short plug of silica with MeCN immediately before use, the desired product SI-22 was obtained as a yellow oil and used without further purification.

1H NMR (500 MHz, CDCl$_3$) δ 5.90 – 5.70 (m, 0.13H), 5.56 (dt, $J = 17.1$, 7.0 Hz, 0.6H), 5.43 – 5.29 (m, 0.54H), 5.24 (dq, $J = 13.4$, 7.0 Hz, 0.25H), 5.08 – 4.92 (m, 0.2H), 4.29 – 4.15 (m, 0.29H), 4.09 (dd, $J = 9.9$, 3.9 Hz, 0.41H), 3.18 – 3.06 (m, 0.12H), 2.88 - 2.42 (m, 1.46H), 2.42 – 2.33 (m, 0.56H), 2.22 (tt, $J = 12.5$, 6.7 Hz, 0.45H), 2.16 – 1.60 (m, 6.02H), 1.60 – 1.41 (m, 1.68H), 1.41 – 1.19 (m, 6.24H), 1.09 (s, 0.58H), 0.88 (td, $J = 7.1$, 2.6 Hz, 3H).

3. DMP Oxidations

7-phenylbicyclo[3.2.0]heptan-2-one (SI-23): Following General procedure F with SI-15 (83 mmol), SI-23 was obtained (>20:1 dr) as a yellow oil and used without further purification.

1H NMR (500 MHz, CDCl$_3$) δ 7.35 – 7.31 (m, 2H), 7.30 – 7.27 (m, 2H), 7.25 – 7.18 (m, 1H), 3.52 (dt, $J = 8.4$, 6.1 Hz, 1H), 3.04 (dp, $J = 12.5$, 4.3 Hz, 1H), 2.89 (ddt, $J = 7.0$, 5.8, 1.2 Hz, 1H), 2.78 (dt, $J = 17.8$, 8.7 Hz, 1H), 2.58 (ddddd, $J = 12.4$, 8.7, 7.1, 1.2 Hz, 1H), 2.47 – 2.22 (m, 3H), 2.01 (ddddd, $J = 13.1$, 9.1, 5.6, 3.3 Hz, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 220.86, 144.26, 128.53, 126.38, 126.33, 52.80, 40.67, 38.07, 33.00, 32.01, 27.88.

FTIR: 2935.17 (w), 1724.36 (s), 1493.29 (w), 1453.80 (w), 1155.22 (m), 746.33 (m), 696.80 (s), 523.29 (w), 443.11 (w).

HRMS (EI): Calculated for C$_{13}$H$_{14}$O [M$^+$]: 186.1038; Found 186.1039.
7-(4-bromophenyl)bicyclo[3.2.0]heptan-2-one (SI-24): Following General Procedure F using crude SI-16 (770 mg, 2.88 mmol), SI-24 was obtained (500 mg, 66% yield, >20:1 dr) as an oil and used without further purification.

\[^1H \text{ NMR (300 MHz, CDCl}_3\] \(\delta \) 7.43 (d, \(J = 8.4 \text{ Hz}, 2H \)), 7.14 (dd, \(J = 8.6, 0.6 \text{ Hz}, 2H \)), 3.53 – 3.39 (m, 1H), 3.02 (ddt, \(J = 12.3, 8.5, 4.2 \text{ Hz}, 1H \)), 2.87 – 2.66 (m, 2H), 2.59 – 2.18 (m, 4H), 2.00 (dddd, \(J = 13.5, 9.4, 5.6, 3.4 \text{ Hz}, 1H \)).

\[^{13}C \text{ NMR (75 MHz, CDCl}_3\] \(\delta \) 220.62, 143.33, 131.67, 128.28, 120.19, 52.77, 40.26, 38.21, 32.99, 32.06, 27.91.

7-(3-chlorophenyl)bicyclo[3.2.0]heptan-2-one (SI-25): Following General Procedure F using crude SI-17 (1.90 g, 8.53 mmol), SI-25 was obtained (1.88 g, quant., >20:1 dr) as an oil and used without further purification.

\[^1H \text{ NMR (300 MHz, CDCl}_3\] \(\delta \) 7.28 – 7.23 (m, 2H), 7.21 – 7.13 (m, 2H), 3.51 – 3.44 (m, 1H), 3.04 (ddt, \(J = 11.6, 7.6, 3.8 \text{ Hz}, 1H \)), 2.86 (dd, \(J = 8.2, 4.6 \text{ Hz}, 1H \)), 2.81 – 2.69 (m, 1H), 2.54 (ddddd, \(J = 12.4, 8.6, 7.1, 1.2 \text{ Hz}, 1H \)), 2.49 – 2.22 (m, 3H), 2.00 (dddd, \(J = 13.3, 9.2, 5.7, 3.5 \text{ Hz}, 1H \)).

\[^{13}C \text{ NMR (75 MHz, CDCl}_3\] \(\delta \) 220.84, 146.34, 134.50, 129.92, 126.64, 124.82, 52.62, 40.41, 38.16, 32.94, 32.10, 27.89.

7-(4-fluorophenyl)bicyclo[3.2.0]heptan-2-one (SI-26): Following general procedure F using SI-18 (200 mg, 0.97 mmol), SI-26 was obtained (198 mg, quant., >20:1 dr) as an oil and used without further purification.
1H NMR (300 MHz, CDCl3) δ 7.27 – 7.17 (m, 2H), 7.00 (t, J = 8.7 Hz, 2H), 3.48 (q, J = 7.1 Hz, 1H), 3.02 (ddq, J = 12.0, 8.3, 4.0 Hz, 1H), 2.87 – 2.80 (m, 1H), 2.80 – 2.67 (m, 1H), 2.58 – 2.20 (m, 4H), 2.00 (dddd, J = 13.5, 9.4, 5.6, 3.5 Hz, 1H).

19F NMR (282 MHz, CDCl3) δ -116.83.

13C NMR (75 MHz, CDCl3) δ 220.77, 161.56 (d, J = 244.4 Hz), 140.01 (d, J = 3.1 Hz), 127.97 (d, J = 7.9 Hz), 115.37 (d, J = 21.3 Hz), 53.07, 40.16, 38.24, 33.26, 31.97, 27.93.

7-(4-methoxyphenyl)bicyclo[3.2.0]heptan-2-one (SI-27): Following general procedure F using SI-19 (180 mg, 0.83 mmol), SI-19 was obtained (178 mg, quant., >20:1 dr) as an oil and used without further purification.

1H NMR (400 MHz, CDCl3) δ 7.22 – 7.16 (m, 2H), 6.89 – 6.83 (m, 2H), 3.79 (s, 3H), 3.50 – 3.42 (m, 1H), 3.02 (qt, J = 8.1, 3.9 Hz, 1H), 2.86 – 2.81 (m, 1H), 2.78 (m, 1H), 2.53 (dddd, J = 12.3, 8.6, 7.1, 1.2 Hz, 1H), 2.45 – 2.20 (m, 3H), 2.00 (dddd, J = 13.1, 9.1, 5.5, 3.4 Hz, 1H).

13C NMR (101 MHz, CDCl3) δ 221.16, 158.25, 136.50, 127.54, 114.05, 55.45, 53.30, 40.27, 38.20, 33.40, 32.02, 28.02.

7-(2-methoxyphenyl)bicyclo[3.2.0]heptan-2-one (SI-28): Following general procedure F using SI-20 (500 mg, 2.29 mmol), SI-28 was obtained (495 mg, quant., >20:1 dr) and used without further purification.

1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 7.5 Hz, 1H), 7.19 (qd, J = 8.5, 1.6 Hz, 1H), 6.95 (tdd, J = 7.5, 3.5, 1.0 Hz, 1H), 6.84 (d, J = 8.1 Hz, 1H), 3.80 (s, 3H), 3.75 (tt, J = 10.7, 4.8 Hz, 1H), 3.00 (ddq, J = 11.6, 7.7, 3.4 Hz, 1H), 2.92 (t, J = 6.4 Hz, 1H), 2.89 – 2.78 (m, 1H), 2.60 – 2.49 (m, 1H), 2.46 – 2.19 (m, 3H), 2.07 – 1.96 (m, 1H).

13C NMR (101 MHz, CDCl3) δ 221.16, 157.21, 131.98, 127.67, 126.73, 120.50, 110.52, 55.41, 51.41, 37.95, 36.10, 32.84, 31.97, 28.01.
7-(furan-2-yl)bicyclo[3.2.0]heptan-2-one (SI-29): Following general procedure F using SI-21 (550 mg, 3.10 mmol), SI-29 was obtained (544 mg, quant., >20:1 dr) and used without further purification.

1H NMR (300 MHz, CDCl$_3$) δ 7.35 (dd, $J = 1.9, 0.8$ Hz, 1H), 6.30 (dd, $J = 3.2, 1.9$ Hz, 1H), 6.08 (dt, $J = 3.2, 0.7$ Hz, 1H), 3.47 – 3.39 (m, 1H), 3.11 (ddt, $J = 9.0, 6.3, 3.5$ Hz, 1H), 2.95 – 2.87 (m, 1H), 2.81 – 2.66 (m, 1H), 2.61 (dddd, $J = 12.4, 8.9, 6.3, 1.7$ Hz, 1H), 2.47 – 2.34 (m, 1H), 2.32 – 2.13 (m, 2H), 1.95 (dddd, $J = 13.8, 9.3, 4.7, 2.8$ Hz, 1H).

13C NMR (75 MHz, CDCl$_3$) δ 220.63, 156.79, 141.84, 110.38, 105.15, 50.92, 37.64, 34.21, 32.66, 31.58, 27.76.

7-(hept-1-en-1-yl)bicyclo[3.2.0]heptan-2-one (SI-30): Following general procedure F using SI-22 (12.00 mmol), SI-30 was obtained and used without further purification.

1H NMR (500 MHz, CDCl$_3$) δ 5.78 (d, $J = 17.4$ Hz, 0.15H), 5.65 – 5.52 (m, 0.7H), 5.49 – 5.30 (m, 0.9H), 5.25 (td, $J = 10.8, 5.9$ Hz, 0.14H), 5.09 – 4.92 (m, 0.27H), 4.09 (dd, $J = 10.0, 3.9$ Hz, 0.13H), 3.25 – 3.15 (m, 0.1H), 3.15 – 3.07 (m, 0.23H), 3.02 – 2.87 (m, 0.66H), 2.86 – 2.63 (m, 1.24H), 2.57 (t, $J = 6.1$ Hz, 0.38H), 2.55 – 2.26 (m, 1.66H), 2.26 – 2.04 (m, 2.21H), 2.04 – 1.81 (m, 3.17H), 1.81 – 1.41 (m, 1.39H), 1.41 – 1.16 (m, 6.28H), 0.97 – 0.81 (m, 3H).

4. Formation of the α-Diazoketones

3-diazo-7-phenylbicyclo[3.2.0]heptan-2-one (SI-31): Following General Procedure G with crude SI-23 (30 mmol), SI-31 was obtained after column chromatography (EtOAc 30% to 40% in Hexanes) as a bright yellow oil (2.7527 g, 43% over 3 steps).
1H NMR (500 MHz, CDCl$_3$) δ 7.36 – 7.27 (m, 4H), 7.24 – 7.19 (m, 1H), 3.69 – 3.61 (m, 1H), 3.35 (dd, J = 13.6, 8.2 Hz, 1H), 3.15 – 3.02 (m, 2H), 2.96 (dd, J = 13.6, 1.9 Hz, 1H), 2.65 – 2.54 (m, 1H), 2.48 – 2.38 (m, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 201.41, 144.12, 128.70, 126.54, 126.50, 59.67, 54.49, 42.74, 34.25, 31.14, 29.70.

FTIR: 2931.43 (w), 2071.88 (s), 1653.72 (s), 1494.06 (m), 1454.26 (m), 1326.87 (s), 1292.09 (m), 1229.69 (s), 1028.09 (m), 935.64 (m), 748.59 (s), 696.97 (s), 639.48 (m), 526.66 (m).

HRMS (EI): Calculated for C$_{13}$H$_{12}$O [M-N$_2$]: 184.0883, Found: 184.0875.

7-{4-bromophenyl}bicyclo[3.2.0]heptan-2-one (SI-32): Following General Procedure G with SI-24 (500 mg, 1.90 mmol), SI-32 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 3:2) as a bright yellow oil (180 mg, 33% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.44 (d, J = 8.4 Hz, 2H), 7.16 (dd, J = 8.6, 0.5 Hz, 2H), 3.58 (ddd, J = 9.1, 6.0, 3.1 Hz, 1H), 3.41 – 3.27 (m, 1H), 3.11 – 3.01 (m, 2H), 2.95 (ddd, J = 14.2, 1.2 Hz, 1H), 2.59 – 2.47 (m, 1H), 2.47 – 2.36 (m, 1H).

13C NMR (75 MHz, CDCl$_3$) δ 200.97, 143.12, 131.74, 128.33, 120.25, 59.73, 54.31, 42.21, 34.11, 31.06, 29.61.

FTIR: 2930, 2077, 1727, 1657, 1510, 1488, 1457, 1328, 1293, 1231, 1175, 1072, 1009 cm$^{-1}$.

HRMS (ESI): Calculated for C$_{13}$H$_{12}$BrN$_2$O [M+H$^+$]: 291.0128, Found: 291.0126.

7-{3-chlorophenyl}-3-diazobicyclo[3.2.0]heptan-2-one (SI-33): Following General Procedure G with SI-25 (1.88 g, 8.52 mmol), SI-33 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 3:2) as a bright yellow oil (510 mg, 24% yield).
1H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.25 – 7.17 (m, 2H), 3.63 (ddd, J = 9.1, 5.9, 3.1 Hz, 1H), 3.42 – 3.32 (m, 1H), 3.16 – 3.05 (m, 2H), 2.98 (dd, J = 14.1, 1.2 Hz, 1H), 2.65 – 2.53 (m, 1H), 2.51 – 2.42 (m, 1H).

FTIR: 2932, 2078, 1727, 1660, 1509, 1468, 1436, 1328, 1292, 1238, 1023 cm⁻¹.

LRMS (ESI): Calculated for C₁₃H₁₁ClN₂O[K⁺]: 265.056, Found: 265.1.

7-(3-chlorophenyl)-3-diazobicyclo[3.2.0]heptan-2-one (SI-34): Following General Procedure G with SI-26 (25 mg, 0.12 mmol), SI-34 was obtained after purification by Flash column chromatography (Hexanes:Ethyl Acetate 1:0 to 6:4) as a bright yellow oil (15 mg, 53% yield).

1H NMR (300 MHz, CDCl₃) δ 7.28 – 7.19 (m, 2H), 7.00 (t, J = 8.7 Hz, 2H), 3.60 (ddd, J = 9.1, 6.0, 3.1 Hz, 1H), 3.40 – 3.28 (m, 1H), 3.12 – 3.01 (m, 2H), 2.95 (dd, J = 14.2, 1.3 Hz, 1H), 2.61 – 2.48 (m, 1H), 2.46 – 2.35 (m, 1H).

13C NMR (75 MHz, CDCl₃) δ 201.20, 161.61 (d, J = 244.5 Hz), 139.81, 128.06 (d, J = 8.0 Hz), 115.48 (d, J = 21.3 Hz), 59.76, 54.64, 42.14, 34.41, 31.12, 29.57.

FTIR: 2934, 2078, 1655, 1602, 1508, 1457, 1329, 1293, 1229, 1157, 1058, 1013 cm⁻¹.

HRMS (ESI): Calculated for C₁₃H₁₁FN₂NaO [M+Na⁺]: 253.0748, Found: 253.0742.

3-diazo-7-(4-methoxyphenyl)bicyclo[3.2.0]heptan-2-one (SI-35): Following General Procedure G with SI-27 (150 mg, 0.69 mmol), SI-35 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 6:4) as a bright yellow oil (35 mg, 18% yield).

1H NMR (400 MHz, CDCl₃) δ 7.23 – 7.18 (m, 2H), 6.90 – 6.84 (m, 2H), 3.80 (s, 3H), 3.59 (ddd, J = 9.1, 5.9, 3.1 Hz, 1H), 3.40 – 3.27 (m, 1H), 3.05 (dt, J = 7.0, 4.6, 1.8 Hz, 2H), 2.95 (dd, J = 14.1, 1.3 Hz, 1H), 2.60 – 2.50 (m, 1H), 2.45 – 2.36 (m, 1H).

13C NMR (101 MHz, CDCl₃) δ 201.56, 158.30, 136.33, 127.60, 114.11, 55.46, 54.87, 42.20, 34.53, 31.18, 29.65.
FTIR: 2933, 2080, 1643, 1606, 1508, 1457, 1330, 1294, 1222, 1176, 1157, 1095, 1031 cm⁻¹.

HRMS (ESI): Calculated for C₁₄H₁₄NaO₂ [M+Na⁺]: 265.0947, Found: 265.0942.

3-diazo-7-(2-methoxyphenyl)bicyclo[3.2.0]heptan-2-one (SI-36): Following General Procedure G with crude SI-28 (495 mg, 2.29 mmol), SI-36 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 6:4) as a bright yellow oil (250 mg, 45% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 1H), 7.24 – 7.17 (m, 1H), 6.95 (tdd, J = 4.4, 1.2 Hz, 1H), 6.84 (ddd, J = 5.2, 1.2 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.81 (d, J = 3.3 Hz, 3H), 3.34 (dd, J = 13.5, 8.6 Hz, 1H), 3.21 (s, 1H), 3.03 (ddddd, J = 8.7, 7.7, 5.3, 2.2, 1.2 Hz, 1H), 2.97 (dd, J = 13.5, 2.1 Hz, 1H), 2.64 (ddd, J = 12.6, 8.9, 6.3, 1.8 Hz, 1H), 2.38 (ddd, J = 11.9, 10.0, 4.7, 3.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 202.00, 157.44, 131.88, 127.78, 126.78, 120.52, 110.63, 59.71, 55.46, 52.82, 38.21, 34.18, 31.16, 29.60.

FTIR: 2933, 2083, 1657, 1599, 1508, 1491, 1457, 1329, 1221, 1157, 1094, 1052, 1029 cm⁻¹.

HRMS (ESI): Calculated for C₁₄H₁₅N₂O₂ [M+H⁺]: 243.1128, Found: 243.1127.

3-diazo-7-(furan-2-yl)bicyclo[3.2.0]heptan-2-one (SI-37): Following General Procedure G with crude SI-29 (100 mg, 0.56 mmol), SI-29 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 6:4) as a bright yellow oil (35 mg, 50% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.34 (dd, J = 1.9, 0.8 Hz, 1H), 6.29 (dd, J = 3.2, 1.9 Hz, 1H), 6.08 (dt, J = 3.2, 0.7 Hz, 1H), 3.57 (ddd, J = 9.1, 5.0, 2.5 Hz, 1H), 3.35 – 3.24 (m, 1H), 3.22 – 3.09 (m, 2H), 2.91 – 2.82 (m, 1H), 2.59 (dddd, J = 11.2, 7.3, 4.8, 3.5 Hz, 1H), 2.41 – 2.28 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 200.80, 156.75, 141.77, 110.36, 105.14, 59.76, 52.69, 36.06, 32.86, 30.93, 30.93.

FTIR: 2934, 2078, 1657, 1599, 1508, 1491, 1457, 1328, 1292, 1230, 1158, 1054, 1029 cm⁻¹.

HRMS (ESI): Calculated for C₁₁H₁₀N₂NaO₂ [M+Na⁺]: 225.0634, Found: 225.0630.
3-diazo-7-(hept-1-en-1-yl)bicyclo[3.2.0]heptan-2-one (SI-38): Following General Procedure G with crude SI-30 (10.00 mmol), an isomeric mixture of products SI-38 was obtained after removal of sulfonamide byproduct via MPLC (gradient: 0% EtOAc in Hexanes to 5% EtOAc over 1 min., 1 min. hold, 5% to 10% over 1 min., 1 min. hold, 10% to 15% over 1 min., 1 min. hold, 15% to 20% over 1 min., 1 min. hold, 20% to 85% over 5.1 min., 100% EtOAc over 16.5 min.) as a bright yellow oil.

1H NMR (500 MHz, CDCl$_3$) δ 5.62 (dd, $J = 13.9, 7.5$ Hz, 0.8H), 5.47 (dq, $J = 16.7, 8.2$ Hz, 0.49H), 5.42 – 5.33 (m, 0.42H), 3.26 (ddd, $J = 13.1, 8.3, 3.7$ Hz, 1.16H), 3.04 – 2.88 (m, 1.26H), 2.83 (dd, $J = 13.6, 2.4$ Hz, 1.33H), 2.77 (dt, $J = 6.8, 2.6$ Hz, 0.46H), 2.29 – 2.11 (m, 1.86H), 1.99 (p, $J = 7.0$ Hz, 1.9H), 1.42 – 1.21 (m, 6H), 0.88 (q, $J = 6.5$ Hz, 3H).

5. Bicyclo[2.2.0]hexane Formation

methyl 6-phenylbicyclo[2.2.0]hexane-2-carboxylate (5a): Following General Procedure H with SI-31 (3.6 g, 17 mmol), 5a was obtained after MPLC (gradient: 0 to 5% EtOAc in Hexanes over 9 min., 3 min. hold, 5 to 100% EtOAc over 2 min., 6 min. hold) to yield a faint yellow oil (2.6119 g, 71% yield, 4:1 dr) with an efficiency of 5 mmol h$^{-1}$.

1H NMR (500 MHz, CDCl$_3$) δ 7.34 – 7.28 (m, 2.5H), 7.25 – 7.15 (m, 3.75H), 3.83 (td, $J = 8.3, 4.0$ Hz, 1H), 3.72 (s, 3H), 3.69 (s, 0.75H), 3.67 – 3.62 (m, 0.25H), 3.56 (ddd, $J = 10.1, 9.0, 7.7$ Hz, 1H), 3.34 (ddd, $J = 8.5, 6.2, 2.5$ Hz, 0.25H), 3.15 (ddddd, $J = 7.8, 5.5, 4.0, 1.3$ Hz, 1H), 3.04 (dtt, $J = 5.0, 2.5, 1.1$ Hz, 0.25H), 2.89 (tdt, $J = 8.0, 5.4, 2.7$ Hz, 0.25H), 2.80 (dddt, $J = 12.6, 7.7, 6.2, 1.3$ Hz, 0.25H), 2.76 – 2.69 (m, 1H), 2.69 – 2.63 (m, 2H), 2.63 – 2.48 (m, 1.5H), 2.46 – 2.39 (m, 1.25H).

13C NMR (126 MHz, CDCl$_3$) δ 176.05 (minor), 174.43, 146.35 (minor), 146.06, 128.59 (minor), 128.47, 126.53 (minor), 126.50, 126.15 (minor), 125.92, 51.91 (minor), 51.56, 46.68, 46.41 (minor), 45.87 (minor), 44.18 (minor), 40.59, 39.66, 36.27 (minor), 35.76, 30.96 (minor), 30.89 (minor), 29.70, 28.82.

FTIR: 2949.40 (m), 1728.20 (s), 1601.88 (w), 1493.99 (m), 1434.21 (m), 1338.47 (m), 1196.14 (s), 1071.00 (m), 1047.94 (m), 836.05 (w), 742.36 (s), 697.53 (s), 520.30 (w).

HRMS (APCI): Calculated for C$_{14}$H$_{17}$O$_2$ [M+H$^+$]: 217.1223, Found: 217.1224.
methyl 6-(4-bromophenyl)bicyclo[2.2.0]hexane-2-carboxylate (8): Following General Procedure I with SI-32 (100 mg, 0.343 mmol), 8 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 9:1) as a faint oil (60 mg, 59% yield, 3:1 dr).

1H NMR (300 MHz, CDCl$_3$) δ 7.45 – 7.37 (m, 2.66H), 7.13 – 7.04 (m, 2.66H), 3.77 (td, $J = 8.3$, 4.0 Hz, 1H), 3.71 (s, 3H), 3.69 (s, 1H), 3.62 – 3.48 (m, 1.33H), 3.32 (ddd, $J = 8.3$, 6.1, 2.4 Hz, 0.33H), 3.09 (ddd, $J = 8.6$, 5.9, 4.1 Hz, 1H), 2.99 (ddt, $J = 5.2$, 2.5, 1.3 Hz, 0.33H), 2.93 – 2.84 (m, 0.33H), 2.82 – 2.36 (m, 6H).

13C NMR (75 MHz, CDCl$_3$) δ 175.88 (minor), 174.30, 145.00 (minor), 144.15, 131.61 (minor), 131.49, 128.32, 120.12 (minor), 119.59, 51.96 (minor), 51.60, 46.59, 46.19 (minor), 45.26 (minor), 44.11 (minor), 40.13, 39.59, 36.18 (minor), 35.63, 30.93 (minor), 30.90 (minor), 29.77, 28.74.

FTIR: 2950, 1728, 1596, 1570, 1477, 1434, 1335, 1197, 1174, 1078, 1051 cm$^{-1}$.

HRMS (ESI): Calculated for C$_{14}$H$_{15}$BrNaO$_2$ [M+Na$^+$]: 317.0148, Found: 317.0138.

methyl 6-(4-fluorophenyl)bicyclo[2.2.0]hexane-2-carboxylate (9): Following General Procedure I with SI-34 (15 mg, 0.065 mmol), 9 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 9:1) as a faint oil (15 mg, 49% yield, 3:1 dr).

1H NMR (400 MHz, CDCl$_3$) δ 7.21 – 7.12 (m, 2.66H), 7.02 – 6.94 (m, 2.66H), 3.79 (td, $J = 8.4$, 4.3 Hz, 1H), 3.72 (s, 3H), 3.69 (s, 1H), 3.64 – 3.50 (m, 1.33H), 3.32 (ddd, $J = 8.4$, 6.2, 2.4 Hz, 0.33H), 3.12 – 3.06 (m, 1H), 2.99 (ddt, $J = 5.1$, 2.5, 1.3 Hz, 0.33H), 2.87 (ddq, $J = 10.5$, 5.3, 2.6 Hz, 0.33H), 2.83 – 2.74 (m, 0.33H), 2.74 – 2.36 (m, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 175.96 (minor), 174.37, 161.27 (d, $J = 243.7$ Hz), 141.67 (d, $J = 3.2$ Hz), 127.89 (d, $J = 7.8$ Hz), 115.28 (d, $J = 21.2$ Hz, minor), 115.16 (d, $J = 21.2$ Hz, minor), 51.95 (minor), 51.59, 46.79, 46.50 (minor), 45.14 (minor), 44.12 (minor), 39.97, 39.60, 36.43 (minor), 35.88, 30.91 (minor), 30.83 (minor), 29.77, 28.66.

FTIR: 2951, 1727, 1602, 1509, 1435, 1341, 1243, 1220, 1197, 1175, 1158, 1071, 1042 cm$^{-1}$.

LRMS (ESI): Calculated for C$_{14}$H$_{15}$FO$_2$ [M-H$^+$]: 233.106, Found: 233.2.
methyl 6-(4-methoxyphenyl)bicyclo[2.2.0]hexane-2-carboxylate (10): Following General Procedure I with SI-35 (35 mg, 0.065 mmol), 10 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 9:1) as a faint oil (30 mg, 45% yield, 3:1 dr).

1H NMR (400 MHz, CDCl₃) δ 7.14 (dd, $J = 15.3, 8.7$ Hz, 2.66H), 6.85 (dt, $J = 9.7, 3.0$ Hz, 2.66H), 3.79 (d, $J = 1.7$ Hz, 4H), 3.78 – 3.72 (m, 1H), 3.68 (s, 1H), 3.61 – 3.50 (m, 1.33H), 3.31 (ddd, $J = 8.3, 6.1, 2.4$ Hz, 0.33H), 3.12 – 3.05 (m, 1H), 3.00 – 2.96 (m, 0.33H), 2.86 (dt, $J = 5.2, 2.6$ Hz, 0.33H), 2.82 – 2.75 (m, 0.33H), 2.75 – 2.35 (m, 6H).

13C NMR (101 MHz, CDCl₃) δ 176.11 (minor), 174.48, 158.00 (minor), 157.87, 138.59 (minor), 138.26, 127.51 (minor), 127.48, 113.98 (minor), 113.89, 55.45, 51.90 (minor), 51.55, 46.88, 46.72 (minor), 45.17 (minor), 44.16 (minor), 39.96, 39.63, 36.48 (minor), 35.99, 30.87 (minor), 30.83 (minor), 29.71, 28.66.

FTIR: 2950, 1727, 1610, 1510, 1435, 1336, 1294, 1242, 1196, 1175, 1071, 1033 cm⁻¹.

HRMS (ESI): Calculated for C₁₅H₁₈NaO₃ [M+Na⁺]: 269.1148, Found: 269.1149.

methyl 6-(2-methoxyphenyl)bicyclo[2.2.0]hexane-2-carboxylate (11): Following General Procedure I with SI-36 (260 mg, 1.1 mmol), 11 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 9:1) as a faint oil (100 mg, 38% yield, 3:1 dr).

1H NMR (400 MHz, CDCl₃) δ 7.28 – 7.13 (m, 2.66H), 6.98 – 6.90 (m, 1.33H), 6.87 – 6.78 (m, 1.33H), 4.13 (td, $J = 8.4, 4.1$ Hz, 1H), 3.94 (td, $J = 7.9, 3.1$ Hz, 0.33H), 3.81 (s, 1H), 3.77 (s, 3H), 3.70 (d, $J = 3.8$ Hz, 4H), 3.53 (dt, $J = 10.4, 8.3$ Hz, 1H), 3.32 (ddd, $J = 7.9, 5.6, 2.1$ Hz, 0.33H), 3.19 – 3.13 (m, 1H), 3.01 (dt, $J = 5.3, 2.5$ Hz, 0.33H), 2.88 – 2.43 (m, 5.65H), 2.38 (ddd, $J = 12.0, 8.3, 1.2$ Hz, 1H).

13C NMR (101 MHz, CDCl₃) δ 176.39 (minor), 174.22, 157.09, 156.98 (minor), 133.77 (minor), 133.71, 127.11 (minor), 126.99, 126.85, 126.45 (minor), 120.51 (minor), 120.42, 110.38 (minor), 110.34, 55.43 (minor), 55.26, 51.83 (minor), 51.47, 45.78 (minor), 45.75, 44.42 (minor), 40.50 (minor), 39.70, 35.21, 34.97, 34.34 (minor), 31.00 (minor), 30.60 (minor), 29.25, 29.16.

FTIR: 2949, 1726, 1599, 1491, 1461, 1434, 1348, 1241, 1194, 1172, 1109, 1070, 1043, 1027 cm⁻¹.

HRMS (ESI): Calculated for C₁₅H₁₈NaO₃ [M+Na⁺]: 269.1148, Found: 269.1148.
methyl 6-(3-chlorophenyl)bicyclo[2.2.0]hexane-2-carboxylate (12): Following General Procedure I with SI-33 (580 mg, 2.35 mmol), 12 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 9:1) as a faint oil (200 mg, 34% yield, 4:1 dr).

1H NMR (400 MHz, CDCl$_3$) δ 7.25 – 7.05 (m, 5H), 3.80 (td, $J = 8.3, 4.0$ Hz, 1H), 3.71 (m, 3.75H), 3.56 (m, 1.25H), 3.32 (ddd, $J = 8.5, 6.2, 2.5$ Hz, 0.25H), 3.12 (dd, $J = 8.1, 5.3, 4.1, 1.3$ Hz, 1H), 3.02 (dtt, $J = 5.0, 2.5, 1.2$ Hz, 0.25H), 2.88 (dtt, $J = 7.9, 5.3, 2.7$ Hz, 0.25H), 2.83 – 2.37 (m, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 174.28, 148.08, 134.34, 129.85 (minor), 129.72, 126.76 (minor), 126.73, 126.30 (minor), 126.08, 124.75 (minor), 124.74, 51.99 (minor), 51.64, 46.50, 46.11 (minor), 45.48 (minor), 44.11 (minor), 40.33, 39.58, 36.09 (minor), 35.57, 30.95 (minor), 30.93 (minor), 29.87 (minor), 29.76, 28.81.

FTIR: 2950, 1727, 1596, 1570, 1477, 1434, 1332, 1197, 1174, 1078, 1051 cm$^{-1}$.

HRMS (ESI): Calculated for C$_{14}$H$_{15}$ClNaO$_2$ [M+Na$^+$]: 273.0653, Found: 273.0653.

methyl 6-(furan-2-yl)bicyclo[2.2.0]hexane-2-carboxylate (13): Following General Procedure I with SI-37 (30 mg, 0.15 mmol), 13 was obtained after column chromatography (Hexanes:Ethyl Acetate 1:0 to 9:1) as a faint oil (10 mg, 33% yield, 2.5:1 dr).

1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.31 (m, 1.4H), 6.28 (dd, $J = 3.2, 1.9$ Hz, 1.4H), 6.14 – 5.98 (m, 1.4H), 3.79 (td, $J = 8.1, 3.8$ Hz, 1H), 3.72 (s, 3H), 3.69 (s, 1.2H), 3.68 – 3.62 (m, 0.4H), 3.58 – 3.49 (m, 1H), 3.31 (ddd, $J = 8.6, 6.3, 2.5$ Hz, 0.4H), 3.16 (ddddd, $J = 6.6, 5.0, 3.8, 1.5$ Hz, 1H), 3.03 (ddt, $J = 5.2, 2.5, 1.3$ Hz, 0.4H), 2.85 (ddq, $J = 10.6, 5.3, 2.7$ Hz, 0.4H), 2.79 – 2.68 (m, 1.4H), 2.67 – 2.54 (m, 3.4H), 2.47 (ddd, $J = 12.6, 8.3, 2.7$ Hz, 0.4H), 2.42 – 2.29 (m, 1.4H).

13C NMR (101 MHz, CDCl$_3$) δ 174.17, 158.55, 141.40 (minor), 141.38, 110.23 (minor), 110.20, 104.20 (minor), 104.14, 51.96 (minor), 51.63, 44.68 (minor), 44.49, 43.72 (minor), 39.26, 38.77 (minor), 34.20, 34.09, 33.50 (minor), 31.23 (minor), 30.87 (minor), 29.50, 29.25.

FTIR: 2951, 1723, 1512, 1491, 1463, 1435, 1350, 1243, 1200, 1176, 1029 cm$^{-1}$.

LRMS (ESI): Calculated for C$_{12}$H$_{15}$O$_3$ [M+H$^+$]: 207.24, Found: 207.1.
1-(6-(hept-1-en-1-yl)bicyclo[2.2.0]hexan-2-yl)ethan-1-one (5b): Following General Procedure H with SI-38 (12.00 mmol), an isomeric mixture of products (5b) was obtained after removal of byproducts via MPLC (gradient: 0% EtOAc in Hexanes to 0.5% over 1 min., 0.5% to 1% over 1 min., 1% to 1.5% over 1 min., 1.5% to 2% over 1 min., 2% to 5% over 8 min., 5% to 100% over 2.7 min., 6.4 min. hold.) as a faint oil.

\[^1\text{H NMR (500 MHz, CDCl}_3\text{)} \delta 5.66 - 5.22 (m, 1.81H), 3.69 (d, \text{J} = 1.7 \text{ Hz}, 2H), 3.67 - 3.53 (m, 0.64H), 3.53 - 2.78 (m, 3.2H), 2.78 - 2.49 (m, 3H), 2.49 - 2.08 (m, 2.32H), 1.97 (qq, \text{J} = 13.4, 7.2 \text{ Hz}, 2.25H), 1.40 - 1.20 (m, 6H), 0.88 (t, \text{J} = 6.8 \text{ Hz}, 3H). \]

Functional Group Manipulations

1. Transformations of Cinnamaldehyde-Derived Products

methyl 6-phenylbicyclo[2.2.0]hexane-2-carboxylate (14): KOT-Bu (1.992 g, 17.8 mmol, 2 equiv.) was added to an oven-dried scintillation vial in a N\textsubscript{2}-atmosphere glovebox. The vial was capped and removed from the glovebox. Ester 5a (1.9196 g, 8.9 mmol, 1 equiv., 4:1 dr) was added to a 200 mL pear-shaped flask with stir bar under N\textsubscript{2}. THF (90 mL, 0.1 M) was added to the pear-shaped flask. The septum of the flask was briefly removed to pour the KOT-Bu into the reaction mixture. The flask was flushed with N\textsubscript{2} before being sealed with a Teflon cap and Teflon tape. The reaction mixture stirred at 40 °C for approx. 18 hours. The reaction was quenched with sat. aq. NH\textsubscript{4}Cl and transferred to a separatory funnel. The aqueous layer was extracted with CH\textsubscript{2}Cl\textsubscript{2} three times. The combined organic layers were dried over MgSO\textsubscript{4}, filtered, and concentrated under reduced pressure. The product was used without further purification to yield a clear, colorless oil (1.5409 g, 78% yield, 6:1 dr).

\[^1\text{H NMR (500 MHz, CDCl}_3\text{)} \delta 7.35 - 7.29 (m, 2.3H), 7.27 - 7.17 (m, 3.45H), 3.94 (td, \text{J} = 8.3, 3.8 \text{ Hz}, 0.15H), 3.68 (td, \text{J} = 7.6, 2.6 \text{ Hz}, 1H), 3.65 - 3.59 (m, 0.15H), 3.37 (ddd, \text{J} = 8.5, 6.0, 2.3 \text{ Hz}, 1H), 3.22 - 3.17 (m, 0.15H), 3.12 - 3.07 (m, 1H), 2.90 (dtt, \text{J} = 8.2, 5.5, 2.7 \text{ Hz}, 1H), 2.86 - 2.78 (m, 1H), 2.73 (q, \text{J} = 6.2 \text{ Hz}, 0.15H), 2.70 - 2.64 (m, 0.3H), 2.64 - 2.42 (m, 3.3H). \]

\[^13\text{C NMR (126 MHz, CDCl}_3\text{)} \delta 181.64, 181.56 (\text{minor}), 146.13, 145.84 (\text{minor}), 128.61, 128.47 (\text{minor}), 126.52, 126.20, 125.94 (\text{minor}), 46.58 (\text{minor}), 46.25, 45.77, 44.10, 40.45 (\text{minor}), 39.58 (\text{minor}), 36.23, 35.63 (\text{minor}), 30.95, 30.86, 29.64 (\text{minor}), 28.77 (\text{minor}). \]
methyl 6-phenylbicyclo[2.2.0]hexane-2-carboxylate (SI-39): Carboxylic acid 14 (0.6068 g, 1.000 equiv., 3.000 mmol, 6:1 dr) was added to a flame-dried 50 mL round-bottomed flask under N₂. DMF (6 mL, 0.5 M) was added, and the solution was cooled to 0 °C in an ice water bath. The septum was removed and K₂CO₃ (0.6219 g, 1.500 equiv., 4.500 mmol,) was added in one portion. The septum was quickly replaced, and the reaction mixture stirred at 0 °C for 15 minutes before MeI (0.56 mL, 3.0 equiv., 9.0 mmol) was added via syringe. After stirring for 2 hours at room temperature, the reaction was quenched with DI H₂O. The reaction mixture was transferred to a separatory funnel and extracted with EtOAc three times. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by MPLC (gradient: 0 to 5% EtOAc in Hexanes over 9 min., 3 min. hold, 5 to 100% EtOAc over 2 min., 6 min. hold) yielded a clear, colorless liquid (0.5454 g, 84% yield, 6:1 dr).

¹H NMR (500 MHz, Acetone-d₆) δ 7.36 – 7.14 (m, 5.75H), 3.78 (td, J = 8.1, 3.8 Hz, 0.15H), 3.73 – 3.66 (m, 1.45H), 3.64 (s, 3H), 3.63 – 3.57 (m, 0.15H), 3.37 (ddd, J = 8.5, 6.1, 2.5 Hz, 1H), 3.08 (ddq, J = 9.4, 5.4, 2.0 Hz, 0.15H), 2.95 (ddq, J = 5.3, 2.5, 1.4 Hz, 1H), 2.85 (tdd, J = 8.1, 5.4, 2.7 Hz, 1H), 2.74 (m, 1H), 2.59 (m, 1.30H), 2.58 – 2.35 (m, 2.45H).

N-(6-phenylbicyclo[2.2.0]hexan-2-yl)pyrrolidine-1-carboxamide (15): Procedure was adapted from literature. Carboxylic acid 14 (101 mg, 1 equiv., 0.500 mmol, 6:1 dr) was added to a flame-dried 2 dram vial with stir bar. The vial was evacuated and refilled with N₂ three times. THF (3 mL, 0.15 molar) was added under N₂ before diphenylphosphoryl azide (0.16 mL, 1.5 equiv., 0.75 mmol) was added followed by Et₃N (0.10 mL, 1.4 equiv., 0.70 mmol). After the reaction was refluxed for 2 hours, the solution was allowed to cool to room temperature and pyrrolidine (0.12 mL, 3.0 equiv., 1.5 mmol) was added. The resulting solution was refluxed for approx. 18 hours. The mixture was cooled to room temperature and concentrated under reduced pressure. Purification via MPLC (0% EtOAc for 0.5 min., 0% to 0.2% EtOAc over 0.5 min., 0.2 to 0.5% EtOAc over 0.5 min., 0.5% to 1% EtOAc over 0.5 min., 1% EtOAc to 2% EtOAc over 0.5 min., 2% EtOAc to 3% over 0.5 min., 3% EtOAc to 5% over 0.5 min., 5% to 10% over 0.5 min.) yielded a white solid (0.0620 g, 46% yield, 6:1 dr).
\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.34 – 7.13 (m, 5.75H), 4.62 (q, \(J = 7.4\) Hz, 0.3H), 4.56 – 4.48 (m, 1H), 4.39 (d, \(J = 6.7\) Hz, 1H), 3.87 (td, \(J = 8.4, 4.3\) Hz, 0.15H), 3.63 (dd, \(J = 8.3, 6.2, 2.4\) Hz, 1H), 3.33 (m, \(J = 5.6\) Hz, 4.6H), 2.94 – 2.86 (m, 0.15H), 2.82 (tdt, \(J = 8.2, 5.5, 2.8\) Hz, 1H), 2.74 – 2.44 (m, 4.3H), 2.35 (dd, \(J = 11.7, 8.0\) Hz, 0.15H), 2.23 (ddd, \(J = 13.4, 7.4, 5.4\) Hz, 1H), 2.11 – 2.05 (m, 0.15H), 1.89 (h, \(J = 3.7\) Hz, 4.6H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 156.16, 146.69, 128.50, 128.48 (minor), 126.62 (minor), 126.59, 125.87, 125.81 (minor), 52.82, 52.27, 49.83 (minor), 45.65, 44.38 (minor), 43.79, 37.59, 36.82 (minor), 36.53 (minor), 36.28 (minor), 35.38, 28.99, 25.74.

FTIR: 3273.74 (w), 2969.29 (w), 2872.44 (w), 1615.58 (m), 1515.03 (m), 1405.03 (m), 1322.14 (m), 1201.64 (m), 746.39 (m), 696.92 (s), 602.61 (m), 579.14 (m).

HRMS (ESI): Calculated for C\(_{22}\)H\(_{22}\)O\(_2\)N\(_2\)Na [M+Na\(^+\)]: 293.1624, Found: 293.1625.

(6-phenylbicyclo[2.2.0]hexan-2-yl)methanol (16): LAH (0.7506 g, 4.000 equiv., 19.78 mmol) was added to a flame-dried scintillation vial with stir bar. The vial was evacuated and backfilled with N\(_2\) three times. THF (4 mL) was added slowly to the vial, and the vial was cooled to 0 °C. Carboxylic acid 14 (1.000 g, 1 equiv., 4.944 mmol, 6:1 dr) was added to a separate flame-dried 1-dram vial. The vial was evacuated and backfilled with N\(_2\) three times. THF (1 mL) was used to transfer carboxylic acid 14 to the vial containing LAH dropwise. The resulting mixture stirred at 0 °C in an ice bath for 2 h. The reaction was quenched with DI \(\text{H}_2\text{O}\) at 0 °C. The layers were separated, and the aqueous layer was extracted twice more with EtOAc. The combined organic layers were dried over MgSO\(_4\), filtered, and concentrated. Purification via MPLC yielded a colorless oil (0.8916 g, 96% yield, 6:1 dr).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.36 – 7.15 (m, 5.75H), 3.99 – 3.90 (m, 0.3H), 3.81 (dd, \(J = 10.8, 6.5\) Hz, 0.15H), 3.65 (dd, \(J = 17.9, 7.6, 3.3\) Hz, 3H), 2.97 (dddt, \(J = 7.8, 5.8, 4.2, 2.0\) Hz, 0.15H), 2.95 – 2.87 (m, 0.15H), 2.84 – 2.76 (m, 1H), 2.74 – 2.68 (m, 0.15H), 2.64 (t, \(J = 5.5\) Hz, 2H), 2.59 – 2.48 (m, 2.3H), 2.36 (ddd, \(J = 12.1, 8.1, 1.6\) Hz, 0.15H), 2.30 (ddd, \(J = 12.4, 7.5, 2.9\) Hz, 1H), 2.13 (ddd, \(J = 13.0, 7.0, 4.7\) Hz, 1H), 1.93 (ddd, \(J = 12.5, 8.5, 4.1\) Hz, 0.15H), 1.59 (s, 0.15H), 1.37 (s, 1H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 147.15, 146.90 (minor), 128.52, 128.50 (minor), 126.61 (minor), 126.59, 125.93, 125.81 (minor), 67.03, 63.29 (minor), 45.90, 45.59 (minor), 45.34, 43.07, 37.36 (minor), 37.25 (minor), 36.78 (minor), 36.69, 30.48, 30.39, 28.74 (minor).

FTIR: 3353.28 (br), 2923.55 (s), 2853.09 (m), 1454.73 (m), 1031.05 (m), 746.41 (m), 698.95 (s).

HRMS (EI): Calculated for C\(_{23}\)H\(_{34}\) [M-H\(_2\text{O}\)^+]: 170.1096, Found: 170.1090.
(6-phenylbicyclo[2.2.0]hexan-2-yl)methyl pyrrolidine-1-carboxylate (17): Procedure was adapted from literature.10 CDI (2.264 g, 3.000 equiv., 13.96 mmol) was added to a flame-dried 100 mL pear-shaped flask with stir bar. The flask was evacuated and refilled with N\textsubscript{2} three times. THF (40 mL) was added followed by alcohol 16 (0.8762 g, 1 equiv., 4.654 mmol, 6:1 dr) at 0 °C. After approx. 18 hours, pyrrolidine (2.3 mL, 6.0 equiv., 28 mmol) was added and stirred for 5 hours. The reaction was concentrated under reduced pressure. Purification via MPLC (0% EtOAc in Hexanes for 0.5 min., 0% to 100% EtOAc over 9 min., 100% EtOAc for 6.2 min.) yielded a clear, colorless oil (1.2183 g, 92% yield, 6:1 dr).

1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.34 – 7.13 (m, 6H), 4.38 – 4.29 (m, 0.16H), 4.18 – 4.08 (m, 2H), 3.96 (td, J = 8.0, 3.9 Hz, 0.16H), 3.65 (td, J = 7.6, 2.8 Hz, 1H), 3.44 – 3.19 (m, 4.6H), 3.08 – 2.98 (m, 0.16H), 2.95 – 2.90 (m, 0.16H), 2.82 – 2.72 (m, 2H), 2.69 (dt, J = 6.4, 2.2 Hz, 1.16H), 2.62 – 2.46 (m, 2.32H), 2.40 – 2.27 (m, 1.16H), 2.24 – 2.15 (m, 1H), 1.99 (ddd, J = 12.6, 8.6, 4.2 Hz, 0.16H), 1.84 (tt, J = 10.3, 5.2 Hz, 4.6H).

13C NMR (126 MHz, CDCl\textsubscript{3}) δ 155.52, 155.36 (minor), 147.09, 146.99 (minor), 128.50, 128.36 (minor), 126.61 (minor), 126.54, 125.87, 125.70 (minor), 68.36, 65.01 (minor), 46.25 (minor), 45.94, 45.83 (minor), 45.22, 40.09, 37.54 (minor), 36.49 (minor), 36.46, 34.21 (minor), 30.48 (minor), 30.44, 30.36, 28.89 (minor), 25.86, 25.10.

FTIR: 2949.00 (m), 1695.85 (s), 1416.03 (s), 1363.61 (m), 1097.74 (s), 745.30 (m), 697.99 (s).

HRMS (ESI): Calculated for C\textsubscript{18}H\textsubscript{23}O\textsubscript{2}NNa [M+Na+]: 308.1621, Found: 308.1622.

6-(methoxycarbonyl)bicyclo[2.2.0]hexane-2-carboxylic acid (6): Procedure was adapted from literature.11 Ester SI-39 (0.5407 g, 2.5 mmol, 1 equiv., 6:1 dr) was added to a 50 mL round-bottomed flask with stir bar. EtOAc (5 mL, 0.5 M), MeCN (5 mL, 0.5 M), and DI H\textsubscript{2}O (7.6 mL, 0.33 M) were added to the flask in that order. Next, NaIO\textsubscript{4} (7.75 g, 36.3 mmol, 14.5 equiv.) was added to the reaction mixture, and the resulting heterogenous mixture was vigorously stirred while RuCl\textsubscript{3}·xH\textsubscript{2}O (0.0114 g, 0.055 mmol, 2.2 mol%) was added. The flask was fitted with a reflux condenser open to air. After approx. 15 min., the reaction mixture starts refluxing and turns to a solid mass. After stirring for approx. 18 hours at room temperature, the reaction was diluted with CH\textsubscript{2}Cl\textsubscript{2} and quenched with 1 M aq. HCl. The layers were separated, and the aqueous layer was extracted four more times with CH\textsubscript{2}Cl\textsubscript{2}. The combined organic layers were dried over MgSO\textsubscript{4}, filtered, and concentrated under reduced pressure to yield a viscous oil (0.2756 g, 60% yield, 5:1 dr).
1H NMR (500 MHz, Acetone-d$_6$) δ 3.65 (d, J = 2.5 Hz, 3.6H), 3.40 – 3.28 (m, 2.2H), 3.27 – 3.20 (m, 0.2H), 3.09 (dtt, J = 5.0, 2.5, 1.2 Hz, 1H), 2.78 – 2.52 (m, 3.8H), 2.45 (td, J = 8.5, 4.1 Hz, 0.2H), 2.35 (ddt, J = 12.5, 8.5, 2.1 Hz, 2H), 2.17 (ddd, J = 12.0, 8.4, 1.3 Hz, 0.2H).

13C NMR (126 MHz, Acetone-d$_6$) δ 176.04 (minor), 176.00, 175.58, 173.91 (minor), 51.92, 51.58 (minor), 43.82, 43.76, 42.94, 42.42 (minor), 39.33 (minor), 39.21 (minor), 32.34 (minor), 31.30, 31.26, 30.34 (minor), 29.93 (minor).

FTIR: 3088.75 (br), 2940.27 (m), 2856.44 (w), 1727.53 (s), 1697.90 (s), 1435.29 (m), 1352.60 (m), 1159.16 (s), 1059.14 (m), 930.62 (w), 791.04 (w), 675.13 (w).

HRMS (APCI): Calculated for C$_9$H$_{13}$O$_4$ [M+H$^+$]: 185.0808, Found: 185.0808.

methyl 6-(piperidine-1-carbonyl)bicyclo[2.2.0]hexane-2-carboxylate (SI-40): EDC (0.8972 g, 1.200 equiv., 5.779 mmol) and DMAP (0.1177 g, 0.2000 equiv., 0.9631 mmol) were added to a flame-dried 100 mL round bottom flask with stir bar. The flask was evacuated and refilled with N$_2$ three times. Carboxylic acid 6 (.8870 g, 1.000 equiv., 4.816 mmol, 5:1 dr) was transferred to the flask using CH$_2$Cl$_2$ (50 mL, 0.10 molar), and the resulting solution was cooled to 0 °C in an ice bath. Piperidine (0.60 mL, 1.2 equiv., 5.8 mmol) was added to the solution under N$_2$, and the reaction was brought to room temperature over approx. 18 hours. The reaction mixture was concentrated and purified by MPLC to yield a clear, colorless oil (0.6991 g, 58% yield, 6:1 dr).

1H NMR (500 MHz, CDCl$_3$) δ 3.69 (d, J = 6.8 Hz, 3.45H), 3.65 – 3.52 (m, 1.3H), 3.48 (ddd, J = 12.5, 6.9, 4.5 Hz, 1.15H), 3.32 (td, J = 7.8, 2.8 Hz, 1.15H), 3.20 (td, J = 11.9, 6.6 Hz, 3.3H), 3.12 – 3.07 (m, 1H), 2.86 (dt, J = 13.3, 7.5 Hz, 1H), 2.80 – 2.71 (m, 2.15H), 2.68 (s, 0.15H), 2.57 (q, J = 10.7 Hz, 0.15H), 2.49 (ddd, J = 12.7, 8.2, 3.9 Hz, 0.15H), 2.32 (dd, J = 10.4, 8.5 Hz, 1H), 2.24 (ddd, J = 12.0, 8.7, 2.0 Hz, 1H), 2.20 – 2.14 (m, 0.15H), 1.69 – 1.45 (m, 7H).

13C NMR (126 MHz, CDCl$_3$) δ 175.47, 174.18 (minor), 172.39 (minor), 171.88, 52.01, 51.57 (minor), 46.14, 45.95 (minor), 43.70, 43.18 (minor), 43.07, 43.00, 42.41, 41.16 (minor), 38.78 (minor), 37.32 (minor), 31.99 (minor), 30.65, 30.42, 30.34, 29.66 (minor), 29.48 (minor), 26.60 (minor), 26.47, 25.70, 24.76.

FTIR: 2933.22 (m), 2853.25 (m), 2728.01 (s), 1633.22 (s), 1432.16 (s), 1349.22 (m), 1252.68 (s), 1217.10 (s), 1016.14 (m), 852.20 (m).

HRMS (ESI): Calculated for C$_{14}$H$_{21}$O$_3$Na [M+Na$^+$]: 274.1414, Found: 274.1415.
2. Transformations of \((E,E)-2,4\)-decalienal-Derived Products

\[\text{MeO} \begin{array}{c} \text{H} \\ \text{H} \end{array} \xrightarrow{i) \text{O}_3, \text{NaHCO}_3, \text{MeOH}} \text{MeO} \begin{array}{c} \text{H} \\ \text{OH} \end{array} \]

\[\text{5b} \]

\[\text{MeO} \begin{array}{c} \text{H} \\ \text{OH} \end{array} \xrightarrow{\text{ii) NaBH}_4} \text{MeO} \begin{array}{c} \text{H} \\ \text{OTIPS} \end{array} \]

\[\text{SI-41} \]

methyl 6-((hydroxymethyl)bicyclo[2.2.0]hexane-2-carboxylate (SI-41): Procedure was adapted from literature.\(^{12}\) Crude ester 5b (10.00 mmol, isomeric mixture), methanol (200 mL, 0.05 molar), \(\text{CH}_2\text{Cl}_2\) (200.0 mL, 0.05 molar), and \(\text{NaHCO}_3\) (0.0840 g, 0.100 equiv., 1.00 mmol) were added to a flame-dried 1000 mL round-bottomed flask with stir bar. The resulting mixture was sparged with Ozone at -78 °C until a blue color persisted (approx. 30 min.). Next, the reaction mixture was sparged with \(\text{N}_2\) while warming to room temperature. Once the blue color disappeared, \(\text{NaBH}_4\) (2.270 g, 6.000 equiv., 60.00 mmol) was added to the reaction. This resulting mixture was stirred at room temperature under air for 2 hours. The reaction was quenched with DI \(\text{H}_2\text{O}\), and the layers were separated. The aqueous layer was extracted with \(\text{CH}_2\text{Cl}_2\) twice more. The combined organic layers were dried over \(\text{MgSO}_4\), filtered, and concentrated under reduced pressure. Purification via MPLC (50% EtOAc in Hexanes to 70% EtOAc over 1 min., 70% to 100% EtOAc over 8.4 min., 100% EtOAc for 2 min.) yielded a clear, colorless oil (0.4822 g, 28% yield over 5 steps, 3:1 dr).

\(^1\text{H} \text{NMR (500 MHz, CDCl}_3\)} \delta 3.73 – 3.67 (m, 4H), 3.64 (dt, \(J = 12.6, 4.5\) Hz, 1.66H), 3.57 (dd, \(J = 10.7, 7.9\) Hz, 1H), 3.49 (dt, \(J = 10.3, 8.1\) Hz, 1H), 3.27 – 3.21 (m, 0.33H), 2.83 (pd, \(J = 4.3, 2.6\) Hz, 1H), 2.77 – 2.54 (m, 4.32H), 2.54 – 2.44 (m, 1H), 2.28 (t, \(J = 9.3\) Hz, 0.33H), 2.22 – 2.15 (m, 0.33H), 2.12 – 1.97 (m, 2.33H), 1.43 (s, 1.33H).

\(^{13}\text{C} \text{NMR (126 MHz, CDCl}_3\)} \delta 176.18 (minor), 174.60, 66.93, 66.69 (minor), 51.92 (minor), 51.65, 43.18 (minor), 42.52 (minor), 41.51 (minor), 41.20, 39.07, 38.40, 31.26 (minor), 31.23 (minor), 30.93, 30.18 (minor), 30.12, 29.40.

\text{FTIR:} 3399.81 (br), 2948.68 (m), 2854.62 (m), 1727.83 (s), 1435.22 (m), 1344.24 (m), 1197.39 (s), 1174.32 (s), 1047.80 (s), 967.65 (m), 762.38 (w), 478.93 (w).

\text{HRMS (ESI):} \text{Calculated for C}_9\text{H}_{14}\text{O}_3\text{Na [M+Na}^+\text{]}: \text{193.0835, Found: 193.0835.}

methyl 6-(((triisopropylsilyl)oxy)methyl)bicyclo[2.2.0]hexane-2-carboxylate (SI-42): Alcohol SI-41 (0.3667 g, 1.00 equiv., 2.154 mmol, 3:1 dr) was added to a flame-dried 1-dram vial with stir bar. The vial was evacuated and refilled with \(\text{N}_2\) three times. \(\text{DMF (1.0 mL, 2.0 molar)}\) was added to the vial under \(\text{N}_2\). The septum was removed and imidazole (0.1540 g, 1.050 equiv., 2.262 mmol) was added to the solution. The septum was quickly replaced, and the reaction mixture was flushed with \(\text{N}_2\) for 5 min. before TIPS-\(\text{Cl}\) (0.50 mL, 1.1 equiv., 2.3 mmol) was added. The reaction mixture stirred at room temperature for approx.
18 hours. The reaction was quenched with DI H₂O and extracted with Et₂O. The layers were separated, and the aqueous layer extracted with Et₂O once more. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification via MPLC (0% to 10% EtOAc in Hexanes over 9 min., 10% to 100% EtOAc over 3 min., 100% EtOAc for 3 min.) yielded a clear, colorless oil (0.5720 g, 81% yield, 3:1 dr).

¹H NMR (500 MHz, CDCl₃) δ 3.66 (h, J = 6.7 Hz, 6.5H), 3.52 – 3.43 (m, 1H), 3.25 – 3.19 (m, 0.33H), 2.88 (dq, J = 8.7, 2.7 Hz, 1H), 2.76 – 2.44 (m, 5.33H), 2.24 (dd, J = 10.7, 8.4 Hz, 0.33H), 2.19 – 2.08 (m, 1.66H), 1.97 (ddd, J = 11.9, 7.8, 1.9 Hz, 1H), 1.05 (q, J = 4.9 Hz, 28H).

¹³C NMR (126 MHz, CDCl₃) δ 176.43 (minor), 174.66, 67.06, 66.85 (minor), 51.81 (minor), 51.45, 43.29 (minor), 42.97 (minor), 41.97 (minor), 41.13, 39.17, 38.35, 31.23 (minor), 31.08 (minor), 30.90, 30.10 (minor), 29.69, 29.62, 18.16, 12.20 (minor), 12.16.

FTIR: 2941.70 (s), 2864.66 (s), 1734.57 (s), 1461.98 (m), 1434.63 (m), 1381.74 (m), 1195.99 (s), 1175.54 (s), 1096.49 (s), 1066.99 (s), 1013.23 (s), 881.23 (s), 679.65 (s), 657.34 (s).

HRMS (ESI): Calculated for C₁₈H₃₄O₃NaSi [M+Na⁺]: 349.2169, Found: 349.2170.

6-(((triisopropylsilyl)oxy)methyl)bicyclo[2.2.0]hexane-2-carboxylic acid (7): KOt-Bu (0.6872 g, 2.000 equiv., 6.125 mmol) was added to a flame-dried scintillation vial in a N₂-atmosphere glovebox. The vial was called and removed from the glovebox. Ester SI-42 (1.000 g, 1.000 equiv., 3.062 mmol, 3:1 dr) was added to a 100 mL round bottom flask. The flask was evacuated and refilled with N₂ three times and capped with a septum. THF (30 mL, 0.1 molar) was added to the flask under N₂. The septum was removed, and the KOt-Bu was added in one portion. The septum was quickly replaced, and the flask was flushed with N₂ at 60 °C for 30 min. The reaction mixture was cooled to room temperature and was quenched with 1M HCl. The layers were separated, and the aqueous layer was extracted twice more with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification via MPLC (0-15% EtOAc in Hexanes over 28.1 min., 15% EtOAc to 16.6% EtOAc over 0.8 min., 16.6% EtOAc to 100% EtOAc over 7.7 min., 100% EtOAc over 8.5 min.) yielded a clear, colorless oil (0.8139 g, 85% yield, 10:1 dr).

¹H NMR (500 MHz, CDCl₃) δ 3.75 – 3.64 (m, 2.2H), 3.58 – 3.51 (m, 0.1H), 3.25 (ddd, J = 8.8, 6.0, 2.5 Hz, 1H), 2.92 (d, J = 6.9 Hz, 0.1H), 2.83 – 2.67 (m, 3.2H), 2.56 (h, J = 7.8 Hz, 1.2H), 2.50 – 2.44 (m, 0.1H), 2.28 (ddd, J = 11.1, 8.5 Hz, 1H), 2.24 – 2.08 (m, 2H), 1.97 (dd, J = 12.1, 7.9 Hz, 0.1H), 1.05 (d, J = 5.8 Hz, 23H).

¹³C NMR (126 MHz, CDCl₃) δ 181.62, 66.91 (minor), 66.78, 43.21, 42.96, 41.84, 41.06 (minor), 39.06 (minor), 38.34 (minor), 31.26, 31.09, 30.82 (minor), 30.12, 29.62 (minor), 29.44 (minor), 29.39 (minor), 18.18, 17.84 (minor), 12.42 (minor), 12.19.

FTIR: 2940.66 (s), 2864.56 (s), 1700.77 (s), 1462.00 (m), 1248.42 (m), 1232.81 (m), 1098.19 (s), 881.05 (s), 679.65 (s), 657.34 (s).
HRMS (ESI): Calculated for C_{17}H_{32}O_{3}NaSi [M+Na^+]: 335.2013, Found: 335.2015.

benzyl (6-((triisopropylsilyl)oxy)methyl)bicyclo[2.2.0]hexan-2-yl)carbamate (18): Procedure was adapted from literature. Carboxylic acid 7 (0.0151 mg, 1.00 equiv., 0.0483 mmol, 10:1 dr) was added to a flame-dried 1-dram vial. CCl₄ (0.3 mL, 0.20 molar) was added followed by DPPA (11 µL, 1.0 equiv., 0.048 mmol) and Et₃N (7 µL, 1.05 equiv., 0.051 mmol). The resulting solution was refluxed for 2 h under N₂. Benzyl alcohol (10 µL, 2 equiv., 0.0966 mmol) was added in one portion, and the reaction continued stirring at 80 °C for approx. 18 hours. After cooling to room temperature, EtOAc and DI H₂O were added to the reaction mixture, and layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. Purification via MPLC (100% Hexanes for 0.7 min., increasing to 100% EtOAc over 13.3 min., 100% EtOAC for 8.2 min.) yielded a yellowish oil (0.0142 g, 70% yield, 10:1 dr).

1H NMR (500 MHz, CDCl₃, 40 °C): δ 7.40 – 7.30 (m, 5.5H), 5.12 (s, 2.3H), 4.94 (s, 1H), 4.29 (s, 1H), 3.78 – 3.64 (m, 2.3H), 3.28 (s, 0.1H), 2.92 – 2.70 (m, 0.4H), 2.65 (dtq, J = 8.1, 5.4, 2.7 Hz, 1H), 2.62 – 2.45 (m, 3H), 2.34 – 2.26 (m, 0.1H), 2.19 (dp, J = 12.9, 6.8 Hz, 2.1H), 2.11 – 2.04 (m, 1H), 1.08 (d, J = 4.7 Hz, 23H).

13C NMR (126 MHz, CDCl₃): δ 155.38, 136.76, 128.66, 128.30, 128.24, 66.66, 52.31, 46.93, 42.97, 40.87, 37.46, 29.72, 29.18, 18.20, 12.19.

FTIR: 3324.99 (br), 2940.65 (s), 2864.24 (s), 1707.41 (s), 1522.76 (m), 1462.04 (m), 1248.34 (s), 1096.70 (s), 881.99 (s), 775.20 (m), 681.29 (s).

HRMS (ESI): Calculated for C_{24}H_{39}O_{3}NNaSi [M+Na^+]: 440.2591, Found: 440.2592.

benzyl (6-(hydroxymethyl)bicyclo[2.2.0]hexan-2-yl)carbamate (SI-43): Carbamate 18 (0.0393 g, 1.00 equiv., 0.0941 mmol, 10:1 dr) and THF (0.2 mL, 0.5 molar) were added to a flame-dried scintillation vial equipped with a stir bar. The resulting solution was cooled to 0 °C in an ice bath and TBAF (0.2 mL, 1 molar in THF, 2 equiv., 0.2 mmol) was added. The reaction mixture was allowed to warm to room temperature over 18 hours. The reaction was quenched with sat. aq. NH₄Cl and extracted with EtOAc. The layers were separated, and the aqueous layer was extracted twice more with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification via MPLC (0%
EtOAc in Hexanes for 0.5 min., 0% to 100% EtOAc over 6 min., 100% EtOAc over 4.6 min.) yielded a yellowish oil (0.0209 g, 85% yield, >20:1 dr).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.40 – 7.30 (m, 5H), 5.09 (s, 2H), 4.97 (s, 1H), 4.29 (s, 1H), 3.65 (d, J = 9.6 Hz, 2H), 2.72 – 2.63 (m, 1H), 2.63 – 2.34 (m, 3H), 2.26 – 2.00 (m, 3H), 1.39 (s, 1H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 155.44, 136.65, 128.68, 128.53, 128.28, 66.78, 66.58, 52.23, 46.82, 40.60, 37.10, 29.73, 29.12.

FTIR: 3317.20 (br), 3033.39 (w), 2925.41 (w), 2853.54 (w), 1693.66 (s), 1530.68 (m), 1260.97 (s), 1039.69 (m), 696.97 (m).

HRMS (ESI): Calculated for C\(_{15}\)H\(_{19}\)O\(_3\)NNa [M+Na\(^+\)]: 284.1257, Found: 284.1258.

benzyl (6-formylbicyclo[2.2.0]hexan-2-yl)carbamate (19): Alcohol SI-44 (0.0143 g, 1.00 equiv., 0.0547 mmol, >20:1 dr) was added to a 1-dram vial with stir bar. The vial was evacuated and refilled with N\(_2\) three times. CH\(_2\)Cl\(_2\) (0.5 mL, 0.1 molar) was added to the vial under N\(_2\). The septum was removed and DMP (27.9 mg, 1.20 Eq, 0.0657 mmol) was added to the solution. The septum was quickly replaced, and the vial was flushed with N\(_2\) for 30 seconds. DI H\(_2\)O (2 \(\mu\)L, 1.2 equiv., 0.0657 mmol). The reaction mixture stirred at room temperature for 3 hours. The reaction was quenched with a 1:1 soln of sat. aq. NaHCO\(_3\) and Na\(_2\)S\(_2\)O\(_3\). Once gas formation ceased, the layers were separated, and the aqueous layer extracted once more with CH\(_2\)Cl\(_2\). The combined organic layers were dried over MgSO\(_4\), filtered, and concentrated under reduced pressure. Purification via MPLC (gradient: 0% EtOAc in Hexanes for 0.9 min., 0% to 100% EtOAc over 9.9 min., 2.5 min. hold) yielded a clear, colorless oil (0.0119 g, 84% yield, >20:1).

\(^1\)H NMR (500 MHz, CDCl\(_3\), 40 \(^\circ\)C) \(\delta\) 9.75 (s, 1H), 7.34 (q, J = 6.4 Hz, 5H), 5.09 (s, 2H), 5.01 (s, 1H), 4.41 (s, 1H), 3.32 (s, 1H), 2.88 (s, 1H), 2.77 – 2.64 (m, 2H), 2.58 (t, J = 10.9 Hz, 1H), 2.29 – 2.21 (m, 1H), 2.16 (t, J = 10.7 Hz, 1H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 200.27, 155.38, 136.49, 128.72, 128.37, 128.32, 66.96, 52.58, 49.40, 44.53, 36.87, 29.29, 26.79.

FTIR: 3324.93 (br), 3033.36 (w), 2930.08 (m), 1698.49 (s), 1525.46 (m), 1342.97 (m), 1254.48 (s), 1072.06 (m), 1015.45 (m), 738.89 (w), 697.61 (m).

HRMS (APCI): Calculated for C\(_{15}\)H\(_{18}\)O\(_3\)N [M+H\(^+\)]: 260.1281, Found: 260.1281.
(6-(((triisopropylsilyl)oxy)methyl)bicyclo[2.2.0]hexan-2-yl)methanol (20): LAH (0.0051 g, 4.0 equiv., 0.13 mmol) was added to a flame-dried 1-dram vial with stir bar. The vial was evacuated and backfilled with N₂ three times. THF (0.3 mL, 0.1 molar) was added slowly to the vial, and the resulting mixture was cooled to 0 °C in an ice bath. Carboxylic acid 7 (0.0105 g, 1.00 equiv., 0.336 mmol, 10:1 dr) was added to a separate flame-dried 0.5-dram vial. The vial containing carboxylic acid 7 was evacuated and backfilled with N₂ three times. Another portion of THF (0.3 mL, 0.1 molar) was used to transfer carboxylic acid 7 to the vial containing LAH dropwise. This resulting mixture was stirred at 0 °C for 2 h. The reaction was quenched with DI H₂O at 0 °C. After gas formation ceased, the aqueous layer was extracted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice more with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification via MPLC (30% EtOAc in Hexanes to 100% EtOAc over 7.5 min., 100% EtOAc over 7.7 min.) yielded a clear, colorless oil (0.0086 g, 86% yield, >20:1).

¹H NMR (500 MHz, CDCl₃) δ 3.74 – 3.57 (m, 4H), 2.61 (tdq, J = 7.8, 5.1, 2.4 Hz, 1H), 2.57 – 2.48 (m, 2H), 2.31 (d, J = 4.9 Hz, 1H), 2.18 – 1.99 (m, 4H), 1.36 – 1.26 (m, 1H), 1.14 – 0.99 (m, 21H).

¹³C NMR (126 MHz, CDCl₃) δ 67.38, 67.36, 42.43, 42.18, 40.92, 30.83, 30.75, 30.64, 18.20, 12.22.

FTIR: 3333.77 (br), 2923.78 (s), 2865.18 (s), 1463.48 (m), 1098.54 (m), 882.38 (m), 681.21 (m).

HRMS (ESI): Calculated for C₁₇H₃₄O₂NaSi [M+Na⁺]: 321.2220, Found: 321.2220.

3. Decarboxylative Cross Coupling Scope

4,5,6,7-tetrachloro-1,3-dioxoisindolin-2-yl 6-(((triisopropylsilyl)oxy)methyl)bicyclo[2.2.0]hexane-2-carboxylate (21): Procedure was adapted from literature. Carboxylic acid 7 (0.0974 g, 1 equiv., 0.312 mmol, 10:1 dr) was added to a flame-dried 2-dram vial with stir bar. The vial was evacuated and refilled with N₂ three times, capped with a septum, and placed under N₂. CH₂Cl₂ (3 mL, 0.1 molar) was added to the vial containing carboxylic acid 7. The septum was removed, and TCNHPI (0.0985 g, 1.05 equiv., 0.327 mmol) and DMAP (0.0076 g, 0.20 equiv., 0.062 mmol) were added to the vial. The septum was quickly replaced, and the reaction mixture was flushed with N₂. DIC (52 µL, 1.05 equiv., 0.327 mmol) was added, and the reaction mixture stirred at room temperature for approx. 18 hours. The reaction mixture was filtered through a pad of Celite, and the pad of Celite was washed with CH₂Cl₂. The combined filtrates were
concentrated under reduced pressure. The crude residue was purified via MPLC (0% EtOAc in Hexanes for 0.5 min., 0% to 100% EtOAc over 5.5 min., 100% EtOAc for 7.6 min.) to yield a white solid (0.1242 g, 67% yield, 10:1 dr).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 3.80 – 3.71 (m, 2.3H), 3.59 (t, \(J = 7.3\) Hz, 1H), 3.14 (m, 0.1H), 3.01 – 2.86 (m, 2.1H), 2.84 – 2.63 (m, 2.2H), 2.58 (t, \(J = 10.0\) Hz, 0.1H), 2.50 – 2.44 (m, 1H), 2.44 – 2.36 (m, 0.1H), 2.29 – 2.14 (m, 2H), 2.06 – 1.97 (m, 0.1H), 1.06 (d, \(J = 5.8\) Hz, 23.1H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 171.42, 157.85, 141.10, 130.58, 124.95, 66.58, 43.04, 41.83, 40.79 (minor), 40.28, 38.09 (minor), 36.49 (minor), 34.28 (minor), 31.64, 31.45, 30.31 (minor), 30.14, 29.87 (minor), 22.49 (minor), 18.19, 14.22 (minor), 12.19.

FTIR: 2941.96 (m), 2865.18 (m), 2864.53 (s), 1462.58 (m), 1379.13 (w), 1247.21 (w), 1099.94 (m), 882.35 (m), 680.81 (m).

triisopropyl([6-methylbicyclo[2.2.0]hexan-2-yl]methoxy)silane (22): Procedure was adapted from literature.\(^2\) 4,4’-di-tert-butyl-2,2’-bipyridine (0.0104 g, 0.400 equiv., 0.0388 mmol) was added to a flame-dried 2-dram vial with stir bar. The vial was evacuated and refilled with \(\text{N}_2\) three times. It was capped loosely and brought into the glovebox. In the glovebox, NiCl\(_2\)-glyme (0.0043 g, 0.20 equiv., 0.019 mmol) was added. The vial was capped with a septum, sealed with Teflon tape, and removed from the glovebox. Redox-active ester 21 (0.0578 g, 1.00 equiv., 0.0971 mmol, 10:1 dr) was added to a separate 1-dram vial. DMF (1.0 mL, 0.10 molar) was used to transfer redox-active ester 21 to the 2-dram vial containing NiCl\(_2\)-glyme. This light blue mixture stirred for 10 min before freshly-made dimethylzinc (0.6 mL, 0.364 molar in THF, 2 equiv., 0.2 mmol) was added. The reaction mixture turned dark red, to dark green, to navy blue. After approx. 18 hours, the reaction was quenched with 1M HCl and extracted twice with \(\text{Et}_2\text{O}\). The combined organic layers were washed with DI H\(_2\)O followed by brine. The organic layer was dried over MgSO\(_4\), filtered, and concentrated under reduced pressure. The crude material was purified via MPLC (0% EtOAc in Hexanes for 3 min., 0% to 5% over 2 min., 5% to 100% EtOAc over 2.5 min., 100% EtOAc for 4 min.) to yield a clear, colorless oil (0.0228 g, 83% yield, >20:1 dr).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 3.65 (dq, \(J = 10.1, 8.1\) Hz, 2H), 2.57 (tdq, \(J = 7.9, 5.2, 2.6\) Hz, 1H), 2.48 – 2.35 (m, 2H), 2.18 (ddt, \(J = 12.1, 7.5, 2.3\) Hz, 1H), 2.11 (dd, \(J = 4.9, 2.4\) Hz, 1H), 2.09 – 1.98 (m, 2H), 1.86 (dt, \(J = 12.9, 6.8\) Hz, 1H), 1.12 – 1.03 (m, 24H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 67.62, 45.93, 42.62, 36.24, 35.00, 30.46, 29.67, 22.75, 18.20, 12.26.

FTIR: 2921.76 (s), 2864.53 (s), 1462.58 (m), 1379.13 (w), 1247.21 (w), 1099.94 (m), 882.35 (m), 680.81 (m).
HRMS (EI): Calculated for C_{14}H_{27}OSi [M-C_{3}H_{7}⁺]: 239.1831, Found: 239.1827.

(6-(4-chlorophenyl)bicyclo[2.2.0]hexan-2-yl)methanol (23): Procedure was adapted from literature.\(^4\) BPhen (19.9 mg, 0.200 equiv., 0.0600 mmol) was added to a flame-dried 2 dram vial. The vial was evacuated and refilled with N\(_2\) three times. The vial was capped loosely with a screw cap and brought into a N\(_2\)-atmosphere glovebox. NiCl\(_2\)-glyme (6.6 mg, 0.10 equiv., 0.030 mmol) was added in the glovebox. The vial was capped with a septum, sealed with Teflon tape, and removed from the glovebox. Redox-active ester 21 (0.1790 g, 1.000 equiv., 0.3000 mmol, 10:1 dr) was added to a separate flame-dried 1 dram vial. The vial was evacuated and refilled with N\(_2\) three times. DMF (2.3 mL, 0.13 mol) was used to transfer redox-active ester 21 to the 2 dram vial containing NiCl\(_2\)-glyme and BPhen. The resulting light blue solution was stirred for 10 min before ArZnCl·LiCl SI-2 (2.6 mL, 0.23 molar in THF, 2.0 equiv., 0.60 mmol) was added. The reaction quickly turned a dark red, to dark green, to navy blue. The reaction stirred for approx. 18 hours before being quenched with 1 M HCl and extracted twice with Et\(_2\)O. The combined organic layers were washed with DI H\(_2\)O and then brine. It was dried over MgSO\(_4\), filtered, and concentrated under reduced pressure.

THF (0.6 mL, 0.5 molar) was added to the flask containing crude material and stir bar. TBAF (0.45 mL, 1.0 molar, 1.5 equiv., 0.45 mmol) was added to the solution, and the reaction mixture stirred at room temperature for approx. 18 hours. The reaction mixture was quenched with sat. aq. NH\(_4\)Cl and extracted with EtOAc. The organic layers were separated, and the aqueous layer was extracted twice more with EtOAc. The combined organic layers were dried over MgSO\(_4\), filtered, and concentrated under reduced pressure. It was purified via MPLC (0% EtOAc in Hexanes for 0.6 min., 0% to 5% EtOAc over 4.4 min., 5% to 10% over 2 min., 10% to 100% EtOAc over 1.5 min., 12.5 min hold) to yield a white solid (0.0279 g, 42% yield over 2 steps, 8:1 dr).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.26 (q, \(J = 3.8 \text{ Hz}, 2.26\text{H}\)), 7.17 (d, \(J = 8.0 \text{ Hz}, 2\text{H}\)), 7.05 (d, \(J = 7.8 \text{ Hz}, 0.26\text{H}\)), 3.94 (q, \(J = 9.3 \text{ Hz}, 0.13\text{H}\)), 3.66 (q, \(J = 9.1 \text{ Hz}, 2\text{H}\)), 3.60 (t, \(J = 7.6 \text{ Hz}, 1\text{H}\)), 3.54 (d, \(J = 8.2 \text{ Hz}, 0.13\text{H}\)), 2.98 – 2.82 (m, 0.26H), 2.78 (ddp, \(J = 7.7, 4.9, 2.9 \text{ Hz}, 1\text{H}\)), 2.72 (m, 0.13H), 2.67 – 2.58 (m, 2H), 2.54 (ddd, \(J = 12.3, 8.2, 2.3 \text{ Hz}, 1\text{H}\)), 2.46 (dt, \(J = 13.5, 7.4 \text{ Hz}, 1\text{H}\)), 2.38 – 2.32 (m, 0.13H), 2.28 (ddd, \(J = 12.6, 7.6, 2.8 \text{ Hz}, 1\text{H}\)), 2.12 (dt, \(J = 13.0, 6.5 \text{ Hz}, 1\text{H}\)), 2.04 (dt, \(J = 13.8, 7.4 \text{ Hz}, 0.13\text{H}\)), 1.87 (dd, \(J = 12.2, 8.0 \text{ Hz}, 0.13\text{H}\)), 1.37 – 1.23 (m, 1.13H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 145.60, 141.86 (minor), 131.50 (minor), 128.57, 128.40, 127.98, 67.30 (minor), 66.96, 45.88, 44.75, 43.01, 42.86 (minor), 38.40 (minor), 36.69, 36.20 (minor), 32.73 (minor), 31.66 (minor), 30.43, 30.34, 28.45 (minor).

FTIR: 3332.81 (br), 2924.36 (s), 2852.83 (m), 1491.44 (s), 1091.79 (m), 1037.53 (m), 1013.84 (m), 819.68 (m), 526.36 (m).
HRMS (EI): Calculated for C_{13}H_{15}ClO [M^+]: 222.0809, Found: 222.0804.

\[
\text{ClZn} \quad \begin{array}{c}
\text{OTIPS}
\end{array} \quad \text{NiCl}_2 \cdot 6\text{H}_2\text{O} \quad \text{di-OMe-bipy} (20 \text{ mol%}) \\
\text{THF/DMF, rt, overnight}
\]

(6-ethynylbicyclo[2.2.0]hexan-2-yl)methoxytriisopropylsilane (24): Procedure was adapted from literature. A flame-dried 2-dram vial with stir bar was added redox-active ester 21 (0.0599 g, 1.00 equiv., 0.101 mmol, 10:1 dr). The vial was evacuated and backfilled with N\textsubscript{2} three times. A solution of NiCl\textsubscript{2}-6H\textsubscript{2}O and di-OMe-bipy (1 mL, 0.02 M in DMF, 20 mol% NiCl\textsubscript{2}-6H\textsubscript{2}O, 20 mol% di-OMe-bipy) and ethynylzinc chloride solution SI-3 (0.80 mL, 0.31 molar in THF, 2.5 equiv., 0.25 mmol) were added in quick succession. The reaction mixture was stirred at room temperature for approx. 18 hours. The reaction was quenched with 1 M HCl, and the aqueous layer was extracted with Et\textsubscript{2}O three times. The combined organic layers were dried over MgSO\textsubscript{4}, filtered, and concentrated under reduced pressure. The crude material was purified via MPLC (0% EtOAc in Hexanes for 1 min., 0% to 5% EtOAc over 1 min., 5% for 1 min., 5% to 10% over 1 min., 1 min. hold, 10% to 20% over 1 min., 1 min. hold, 20% to 100% EtOAc over 0.5 min., 8 min. hold) to yield a light-yellow oil (0.0138 g, 47% yield, >20:1 dr).

1H NMR (500 MHz, CDCl\textsubscript{3}) \delta 3.73 – 3.64 (m, 2H), 3.18 – 3.11 (m, 1H), 2.73 (t, \textit{J} = 7.8, 5.0, 2.7 Hz, 1H), 2.63 (t, \textit{J} = 4.1 Hz, 1H), 2.48 (tt, \textit{J} = 14.0, 6.9 Hz, 2H), 2.39 (ddt, \textit{J} = 12.1, 8.3, 2.0 Hz, 1H), 2.29 (s, \textit{J} = 2.0 Hz, 1H), 2.16 (dt, \textit{J} = 13.0, 6.4 Hz, 1H), 2.12 – 2.03 (m, 1H), 1.06 (m, 21H).

13C NMR (126 MHz, CDCl\textsubscript{3}) \delta 88.98, 70.21, 66.78, 45.49, 43.02, 35.66, 31.11, 30.03, 29.55, 18.20, 12.21.

FTIR: 3312.00 (m), 2925.37 (s), 2864.94 (s), 1462.70 (s), 1381.57 (m), 1248.40 (m), 1101.05 (m), 882.09 (m), 681.28 (m), 623.58 (m).

HRMS (EI): Calculated for C\textsubscript{15}H\textsubscript{25}OSi [M-C\textsubscript{3}H\textsubscript{7}]+: 249.1675, Found: 249.1669.

4. Synthesis of Ladder-Mazapertine

\[
\begin{array}{c}
\text{HO} \\
\text{OTIPS}
\end{array} \quad \text{piperidine, EDC} \\
\text{DMAP (20 mol%)} \\
\text{CH}_2\text{Cl}_2, \text{rt, overnight}
\]

Piperidin-1-yl(6-((triisopropylsilyl)oxy)methyl)bicyclo[2.2.0]hexan-2-yl)methanone (SI-45): Carboxylic acid 7 (0.5761 g, 1.00 equiv., 1.843 mmol, 10:1 dr) was added to a flame-dried 50 mL round bottom flask with stir bar. The flask was evacuated and refilled with N\textsubscript{2} three times. CH\textsubscript{2}Cl\textsubscript{2} (20 mL, 0.10 molar) was added to the flask followed by addition of EDC (0.3434 mg, 1.200 equiv., 2.212 mmol) and DMAP (0.0450...
mg, 0.200 equiv., 0.369 mmol) in quick succession. The reaction mixture was flushed with N₂ before piperidine (0.22 mL, 1.2 equiv., 2.2 mmol) was added. After stirring at room temperature for approx. 18 hours, the reaction mixture was concentrated under reduced pressure. The crude mixture was purified via MPLC (10% EtOAc in Hexanes to 30% over 10 min., 30% to 100% EtOAc over 2.2 min., 8 min. hold) to yield a yellowish oil (0.3982 g, 57% yield, >20:1 dr).

¹H NMR (500 MHz, CDCl₃) δ 3.71 (dd, J = 9.9, 5.9 Hz, 1H), 3.69 – 3.62 (m, 2H), 3.43 (ddd, J = 12.6, 7.0, 4.6 Hz, 1H), 3.31 – 3.19 (m, 2H), 3.14 (ddd, J = 13.0, 7.5, 4.2 Hz, 1H), 2.94 (dt, J = 12.2, 7.5 Hz, 1H), 2.69 – 2.59 (m, 2H), 2.50 (p, J = 7.0 Hz, 1H), 2.19 – 1.99 (m, 3H), 1.68 – 1.42 (m, 6H), 1.05 (d, J = 5.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 172.68, 67.13, 45.94, 43.01, 42.95, 42.37, 42.34, 30.22, 29.90, 29.72, 26.40, 25.61, 24.71, 18.05, 12.02.

FTIR: 2935.07 (m), 2862.63 (m), 1644.32 (s), 1429.56 (m), 1253.32 (m), 1219.18 (m), 1092.81 (m), 881.34 (m), 679.52 (m).

HRMS (EI): Calculated for C₁₉H₃₄NO₂Si [M–C₃H₇]+: 336.2359, Found: 336.2359.

(6-(hydroxymethyl)bicyclo[2.2.0]hexan-2-yl)(piperidin-1-yl)methanone (35): Amide **SI-45** (0.3936 g, 1.000 equiv., 1.037 mmol, >20:1 dr) was added to a flame-dried scintillation vial equipped with a stir bar. THF (5 mL, 0.2 molar) was added to the flask followed by addition of TBAF (1.3 mL, 1.0 molar in THF, 1.3 equiv., 1.3 mmol). The reaction mixture stirred at room temperature for approx. 18 hours. The reaction mixture was quenched with sat. aq. NH₄Cl and the layers were separated. The aqueous layer was extracted four more times with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was purified via MPLC (50% EtOAc in Hexanes hold for 0.5 min., 50% to 100% EtOAc over 6 min., hold 8 min.) to yield a colorless oil (0.2287 g, 99% yield, >20:1 dr).

¹H NMR (500 MHz, CDCl₃) δ 3.72 – 3.56 (m, 3H), 3.49 (dt, J = 12.7, 5.9 Hz, 1H), 3.31 (td, J = 7.8, 2.9 Hz, 1H), 3.21 (q, J = 4.9 Hz, 2H), 2.86 (dt, J = 12.1, 7.6 Hz, 1H), 2.72 (d, J = 4.8 Hz, 1H), 2.66 (dtt, J = 7.9, 5.5, 2.5 Hz, 1H), 2.52 (p, J = 7.1 Hz, 1H), 2.19 (ddddd, J = 14.3, 12.2, 8.0, 2.5 Hz, 2H), 2.05 (dd, J = 13.0, 8.2, 5.6 Hz, 1H), 1.67 – 1.48 (m, 6H), 1.41 (q, J = 4.8 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 172.67, 66.86, 46.05, 43.03, 42.61, 42.39, 41.51, 30.73, 30.21, 30.02, 26.59, 25.74, 24.80.

FTIR: 3386.63 (br), 2923.64 (m), 2852.55 (m), 1612.84 (s), 1438.48 (m), 1252.18 (m), 1221.89 (m), 1045.59 (m), 852.12 (m), 543.70 (w).

HRMS (ESI): Calculated for C₁₃H₂₁O₂NNa [M+Na⁺]: 246.1465, Found: 246.1466.
(6-(bromomethyl)bicyclo[2.2.0]hexan-2-yl)(piperidin-1-yl)methanone (SI-46): Alcohol 35 (0.2500 g, 1.000 equiv., 1.120 mmol, >20:1 dr) was added to a flame-dried scintillation vial with stir bar. The vial was evacuated and refilled with N₂ three times. The vial was fitted with a septum and placed under N₂. CH₂Cl₂ (5.6 mL, 0.20 molar) was added under N₂. The septum was removed, PPh₃ (0.3520 g, 1.200 equiv., 1.340 mmol) and CBr₄ (0.4450 mg, 1.200 equiv., 1.340 mmol) were added, and the septum quickly replaced. The vial was flushed with N₂ before it was stirred at room temperature for approx. 18 hours. The reaction mixture was concentrated and purified via MPLC (0% EtOAc in Hexanes over 0.5 min., 0% to 20% EtOAc over 0.5 min., 2 min. hold, 20% to 100% EtOAc over 3.5 min., 7 min. hold) to yield a white solid (0.2499 g, 78% yield, >20:1 dr).

¹H NMR (500 MHz, CDCl₃) δ 3.65 (dt, J = 12.8, 5.0 Hz, 1H), 3.52 (dd, J = 9.8, 7.0 Hz, 1H), 3.49 – 3.39 (m, 2H), 3.29 – 3.21 (m, 2H), 2.99 – 2.90 (m, 1H), 2.81 – 2.73 (m, 1H), 2.67 (dt, J = 6.4, 3.4 Hz, 2H), 2.29 (ddd, J = 13.1, 7.8, 2.3 Hz, 1H), 2.15 (ddd, J = 12.6, 8.5, 1.9 Hz, 1H), 2.05 (ddd, J = 14.5, 7.2, 4.3 Hz, 1H), 1.70 – 1.47 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 172.16, 46.14, 43.93, 43.21, 43.06, 42.33, 38.48, 33.28, 29.96, 29.00, 26.80, 25.72, 24.77.

FTIR: 2938.87 (m), 2924.55 (m), 2852.23 (m), 1627.39 (s), 1431.17 (s), 1278.52 (m), 1251.92 (m), 597.06 (m).

HRMS (ESI): Calculated for C₁₃H₂₁ONBr [M+H⁺]: 286.0801, Found: 286.0802.

Ladderane-Mazapertine (25): Bromide SI-46 (0.0098 g, 1.0 equiv., 0.034 mmol, >20:1 dr) and piperazine SI-6 (0.0220 mg, 2.9 equiv., 0.10 mmol) were added to a flame-dried screw cap test tube vial with stir bar. The vial was capped with a septum, and the vial was evacuated and refilled with N₂ three times. The vial was placed under N₂, and MeCN (0.34 mL, 0.10 molar) and 1-Pr₂NEt (0.06 mL, 10 equiv., 0.34 mmol) were added. The septum was quickly replaced with a Teflon screwcap and sealed with Teflon tape. The reaction was heated to 100 °C for approx. 18 hours in an aluminum block. The reaction mixture was cooled to room temperature, diluted with 1 M KOH, and extracted with EtOAc. The layers were separated, and the
aqueous layer was extracted twice more with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude material was purified via MPLC (50% EtOAc in Hexanes to 100% EtOAc over 7.5 min., 7.5 min. hold) to yield a yellowish oil (0.0128 g, 88% yield, >20:1 dr).

1H NMR (500 MHz, CDCl₃) δ 6.98 – 6.83 (m, 4H), 4.59 (hept, J = 6.1 Hz, 1H), 3.63 – 3.46 (m, 2H), 3.27 – 2.98 (m, 7H), 2.71 – 2.46 (m, 8H), 2.27 – 2.12 (m, 2H), 2.04 (dt, J = 13.0, 6.5 Hz, 1H), 1.66 – 1.48 (m, 7H), 1.34 (d, J = 6.1 Hz, 6H).

13C NMR (126 MHz, CDCl₃) δ 172.77, 150.45, 143.02, 122.50, 121.59, 118.46, 116.35, 70.41, 64.80, 54.04, 50.55, 46.03, 43.76, 43.00, 42.70, 38.41, 32.55, 30.19, 30.14, 29.85, 26.72, 25.71, 24.80, 22.47, 22.45.

FTIR: 2925.10 (s), 2852.52 (m), 2810.54 (m), 1641.78 (s), 1495.47 (m), 1435.02 (m), 1236.90 (s), 1138.43 (m), 747.49 (m).

HRMS (ESI): Calculated for C₂₆H₄₀O₂N₃ [M+H⁺]: 426.3115, Found: 426.3121.

Functional Group Manipulations of endo-[2]-Ladderane

6-(methoxycarbonyl)bicyclo[2.2.0]hexane-2-carboxylic acid (27): Procedure was adapted from literature. Ester 5a (817 mg, 3.78 mmol, 1 equiv., 4:1 dr) was added to a 100 ml round bottom flask equipped with a stir-bar. MeCN (7.6 ml), EtOAc (7.6 ml), and DI H₂O (11.5 ml) were added to the flask. While the mixture stirred vigorously, NaIO₄ (11.67 g, 54.81 mmol, 14.5 equiv.) was added followed by addition of RuCl₃·xH₂O (16 mg, 0.076 mmol, 0.02 equiv.). The flask was fitted with a reflux condenser, and the reaction stirred vigorously at room temperature open to air. The reaction started refluxing after approx. 15 min., and the reaction occasionally needed the use of spatula to aid stirring due to the amount of white precipitate formed. After approx. 18 hours, the reaction was quenched with water (10 ml). The aqueous layer was extracted with EtOAc five times and TLC of the aqueous layer was taken to ensure complete extraction. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified via flash column chromatography (50-60% EtOAc in Hexane) to yield a viscous oil (497 mg, 54% yield, 6:1 dr).

1H NMR (400 MHz, CD₃OD) δ 3.69 (s, 3.5H), 3.60 (dt, J = 10.3, 8.1 Hz, 1H), 3.39 – 3.33 (m, 1H), 3.24 (dd, J = 7.6, 4.3 Hz, 1.15H), 3.07 (m, 0.15H), 2.76 (m, 0.15H), 2.72 – 2.55 (m, 3.3H), 2.47 (ddd, J = 12.6, 8.4, 3.8 Hz, 1H), 2.36 (t, J = 10.5 Hz, 0.3H), 2.24 – 2.14 (m, 1H).

13C NMR (126 MHz, CD₃OD) δ 178.60, 175.37, 52.35 (minor), 51.99, 44.62 (minor), 44.49 (minor), 43.51 (minor), 43.04, 40.06, 39.93, 32.80, 32.65 (minor), 31.77 (minor), 31.66 (minor), 30.78, 30.26.

FTIR: 3320 (br), 2983 (m), 2950 (m), 1728 (s), 1702 (s), 1473 (m), 1354 (w), 1203 (s).
methyl 6-(naphthalen-2-ylcarbamoyl)bicyclo[2.2.0]hexane-2-carboxylate (28): Procedure was adapted from literature. Carboxylic acid 27 (36 mg, 0.2 mmol, 1 equiv., 6:1 dr) was added to a flame-dried 2-dram vial equipped with a stir bar and capped with a septum. CH₂Cl₂ (2 ml) was added to the vial, and the resulting solution was cooled to -10 °C. Et₃N (0.36 ml, 0.2 mmol, 1.3 equiv.) was added to the solution followed by addition of i-butylchloroformate (0.031 ml, 0.24 mmol, 1.2 equiv.). After stirring at -10 °C for 1.5 hrs., 2-naphthylamine (37 mg, 0.26 mmol, 1.3 equiv.) was added to the reaction mixture. The septum was replaced with a screw cap, and the reaction warmed to room temperature over approx. 18 hours. The reaction mixture was quenched with sat. aq. NH₄Cl, and the aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified via flash column chromatography (30-40% EtOAc in hexane) to yield amide 32 (22 mg, 67% yield, >20:1 dr) as a reddish solid.

¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 2.1 Hz, 1H), 8.16 (s, 1H), 7.82 – 7.74 (m, 3H), 7.50 (dd, J = 8.8, 2.2 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.41 – 7.34 (m, 1H), 3.82 (s, 3H), 3.66 – 3.53 (m, 2H), 3.22 – 3.15 (m, 1H), 2.94 (dt, J = 12.1, 8.3 Hz, 1H), 2.81 (q, J = 11.0 Hz, 1H), 2.70 (p, J = 6.3 Hz, 1H), 2.54 (ddd, J = 12.9, 8.9, 4.5 Hz, 1H), 2.01 (dd, J = 12.1, 7.8 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 175.35, 172.37, 136.19, 134.14, 130.47, 128.77, 127.73, 127.65, 126.51, 124.76, 119.77, 115.75, 52.10, 43.42, 41.77, 39.08, 30.90, 29.04, 29.01.

FTIR: 3324 (br), 2926 (m), 1727 (s), 1695 (s), 1604 (w), 1585 (s), 1433 (m), 1224 (m), 858 (m).

HRMS (ESI): Calculated for C₁₉H₁₉O₃NNa [M+Na⁺]: 332.1257, Found: 332.1259.

6-(hydroxymethyl)-N-(naphthalen-2-yl)bicyclo[2.2.0]hexane-2-carboxamide (31): Ester 28 (31 mg, 0.1 mmol, 1 equiv., >20:1 dr) was added to a flame dried 2-dram vial equipped with a stir bar and capped with a septum. THF (0.3 ml) was added, and the reaction mixture was cooled to 0 °C. The septum was removed, LiBH₄ (8.5 mg, 0.4 mmol, 4 equiv.) was added, and the septum quickly replaced. The reaction was brought
to room temperature and the septum was replaced with a screw cap. The reaction stirred for 2 days at room temperature. After the consumption of the starting material, the reaction mixture was quenched with DI H2O, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over Na2SO4, filtered, concentrated under reduced pressure. The crude material was purified via flash column chromatography (40-50% EtOAc in Hexane) to yield a clear, colorless oil (16 mg, 57% yield, >20:1 dr).

1H NMR (500 MHz, CDCl3) δ 8.22 – 8.12 (m, 2H), 7.77 – 7.70 (m, 3H), 7.41 (dd, J = 8.7, 2.4 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 3.96 – 3.83 (m, 2H), 3.65 (td, J = 8.2, 4.3 Hz, 1H), 3.10 (qd, J = 5.8, 1.9 Hz, 1H), 3.02 – 2.87 (m, 2H), 2.65 (tt, J = 7.7, 4.6 Hz, 1H), 2.51 – 2.30 (m, 2H), 1.99 (dd, J = 12.2, 7.9 Hz, 1H), 1.80 (ddd, J = 12.6, 8.3, 4.3 Hz, 1H).

13C NMR (126 MHz, CDCl3) δ 174.03, 136.17, 134.07, 130.46, 128.72, 127.68, 127.64, 126.51, 124.80, 119.82, 115.95, 62.90, 43.11, 38.09, 35.48, 30.06, 29.97, 29.06.

FTIR: 3293 (br), 3055 (s), 2925 (m), 1662 (s), 1604 (s), 1549 (s), 1470 (w), 1393(w), 887 (m).

HRMS (ESI): Calculated for C118H19O2NNa [M+Na+] : 304.1308, Found: 304.1310.

(6-((naphthalen-2-ylamino)methyl)bicyclo[2.2.0]hexan-2-yl)methanol (32): Ester 28 (31 mg, 0.1 mmol, 1 equiv., >20:1 dr) was added to a flame-dried 2-dram vial equipped with a stir bar. The vial was capped with a septum, and THF (0.3 ml) was added. This resulting solution was cooled down to 0 °C followed by addition of LiAlH4 (12 mg, 0.3 mmol, 3 equiv.). The reaction mixture was brought to room temperature, and the septum was replaced with a screw cap. The reaction was stirred for approx. 18 hours at room temperature. The reaction was quenched with saturated NaOH solution and diluted with ethyl acetate. The organic layer was passed through a pad of celite and concentrated under reduced pressure. The crude material was purified via flash column chromatography (40-70% EtOAc in Hexane) to yield a clear, colorless oil (10 mg, 37% yield, >20:1 dr).

1H NMR (500 MHz, CDCl3) δ 7.70 – 7.57 (m, 3H), 7.35 (t, J = 7.6 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 6.89 – 6.78 (m, 2H), 3.83 (t, J = 10.3 Hz, 1H), 3.72 (dd, J = 10.6, 6.5, 1.6 Hz, 1H), 3.35 (dd, J = 11.5, 6.2 Hz, 1H), 3.24 – 3.14 (m, 1H), 3.03 (q, J = 7.8 Hz, 1H), 2.86 (hept, J = 7.8 Hz, 1H), 2.75 – 2.64 (m, 2H), 2.55 – 2.45 (m, 1H), 2.21 – 2.03 (m, 3H), 1.78 (ddd, J = 12.4, 8.5, 3.1 Hz, 1H).

13C NMR (126 MHz, CDCl3) δ 146.33, 135.42, 129.00, 127.78, 127.56, 126.41, 125.99, 121.94, 118.13, 104.34, 63.09, 49.94, 41.62, 36.11, 33.20, 32.08, 30.53, 29.28.

FTIR: 3355 (br), 2920 (s), 2848 (w), 1628 (s), 1602 (m), 1468 (m), 1398 (w), 1259 (m), 825 (m).

HRMS (ESI): Calculated for C18H22ON [M+H+] : 268.1696, Found: 268.1697.
methyl 6-((hydroxymethyl)bicyclo[2.2.0]hexane-2-carboxylate (30): Carboxylic acid 27 (18.4 mg, 0.1 mmol, 1 equiv., 6:1 dr) was added to a flame-dried 2-dram vial equipped with a stir bar and capped with a septum. THF (0.1 ml) was added, and the resulting solution was cooled to 0 °C in an ice bath. BH₃·THF (0.1 ml, 1 M in THF, 1 equiv.) was added dropwise to the reaction mixture. The reaction was brought to room temperature, the septum replaced with a screw cap, and the reaction stirred for approx. 18 hours at room temperature. The reaction mixture was quenched with DI H₂O, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced vacuum. The crude material was purified via flash column chromatography (30-40% EtOAc in Hexane) to yield a clear, colorless oil (14 mg, 82% yield, 6:1 dr).

¹H NMR (400 MHz, CDCl₃) δ 3.69 (d, J = 4.6 Hz, 3.45 H), 3.67 – 3.53 (m, 2.3H), 3.49 (dt, J = 10.8, 8.0 Hz, 1H), 3.24 (t, J = 8.4 Hz, 0.15H), 2.87 – 2.79 (m, 1H), 2.76 – 2.54 (m, 3.45H), 2.54 – 2.45 (m, 1H), 2.28 (t, J = 9.4 Hz, 0.15H), 2.22 – 2.14 (m, 0.15H), 2.12 – 1.98 (m, 2.3H), 1.44 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 174.59, 66.91, 51.90 (minor), 51.63, 43.19 (minor), 41.20, 39.07, 38.38, 31.26 (minor), 31.22 (minor), 30.93, 30.18 (minor), 30.12, 29.40.

FTIR: 3400 (br), 2949 (m), 2854 (w), 1728 (s), 1436 (m), 1344 (w), 1199 (s), 1052 (m).

HRMS (ESI): Calculated for C₉H₁₄O₃Na [M+Na⁺]: 193.0835, Found: 193.0835.

methyl 6-((methoxycarbonyl)amino)bicyclo[2.2.0]hexane-2-carboxylate (29): Procedure was adapted from literature.³ Carboxylic acid 27 (100 mg, 0.54 mmol, 1 equiv., 6:1 dr) was added to a flame-dried 2-dram vial equipped with a stir bar and capped with a septum. CCl₄ (1 ml) was added to the flask followed by Et₃N (0.08 ml, 0.57 mmol, 1.05 equiv.). The solution was warmed just under reflux and DPPA (0.12 ml, 0.54 mmol, 1 equiv.) was added dropwise. The septum was quickly replaced with a screw cap, and the reaction was refluxed for 2 hrs. The disappearance of the acid was observed by TLC, and the reaction was cooled to room temperature. MeOH (0.026 ml, 0.65 mmol, 1.2 equiv.) was added under N₂, and the reaction was stirred at room temperature for approx. 18 hours. The reaction mixture was evaporated to dryness and diluted with sat. aq. NaHCO₃. The aqueous layer was extracted with Et₂O three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced vacuum. The crude material was purified via flash column chromatography (7-10% EtOAc in Hexane) to yield a clear, colorless oil. (61 mg, 53% yield, 4:1 dr).
1H NMR (500 MHz, CD$_6$D$_6$, 47 °C) δ 4.50 (s, 1H), 4.37 (d, J = 2.9 Hz, 0.25H), 4.32 – 4.16 (s, 1H), 4.10 (s, 0.25H), 3.54 (s, 3H), 3.44 (d, J = 1.6 Hz, 0.75H), 3.42 (d, J = 1.7 Hz, 3.25H), 3.36 (d, J = 2.1 Hz, 0.75H), 3.12 (dd, J = 10.3, 8.0 Hz, 1H), 2.93 (d, J = 7.5 Hz, 0.25H), 2.66 (s, 0.25H), 2.58 (s, 1H), 2.42 (dd, J = 11.2, 7.4 Hz, 1.25H), 2.19 – 2.01 (m, 3.25H), 1.86 (t, J = 10.6 Hz, 0.25H), 1.69 (s, 1H).

13C NMR (126 MHz, CD$_6$D$_6$, 47 °C) δ 172.92, 155.73, 51.58, 51.19, 48.40, 48.10, 47.78 (minor), 42.10 (minor), 38.22, 37.61, 36.70 (minor), 30.58 (minor), 29.73 (minor), 29.03, 27.39.

FTIR: 3329 (w), 2955 (w), 1727 (s), 1546 (m), 1438 (w), 1204 (m).

HRMS (ESI) Calculated for C$_{10}$H$_{15}$O$_4$NNa [M+N$^+$]: 236.0893, Found: 236.0895.

methyl 2-allyl-6-phenylbicyclo[2.2.0]hexane-2-carboxylate (33): Ester 5a (21.6 mg, 0.1 mmol, 1 equiv., 4:1 dr) was added to a flame-dried 2-dram vial equipped with a stir bar and capped with a septum. THF (0.3 ml) was added, and the resulting solution was cooled to -78 °C in a dry ice/acetone bath. Freshly prepared LDA (0.16 ml, 0.75 M in THF, 1.2 equiv.) was added dropwise to the ester 5a solution. The reaction was stirred at -78 °C. After 1 h, allyl bromide (0.013 ml, 0.15 mmol, 1.5 equiv.) was added dropwise to the reaction mixture, and the septum was quickly replaced with a screw cap. The reaction stirred for approx. 18 hours while warming to room temperature. The reaction was quenched with DI H$_2$O, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na$_2$SO$_4$, filtered, and concentrated under reduced vacuum. The crude material was purified via flash column chromatography (2% Ether in Pentane) to yield a clear, colorless oil (22 mg, 85% yield, >20:1 dr).

1H NMR (400 MHz, CDCl$_3$) δ 7.31 (t, J = 7.6 Hz, 2H), 7.24 – 7.15 (m, 3H), 5.74 (ddt, J = 17.3, 10.2, 7.1 Hz, 1H), 5.15 – 5.05 (m, 2H), 3.71 (s, 3H), 3.66 (td, J = 8.3, 4.1 Hz, 1H), 2.82 – 2.70 (m, 2H), 2.68 – 2.49 (m, 3H), 2.46 – 2.30 (m, 3H).

13C NMR (126 MHz, CDCl$_3$) δ 175.98, 145.97, 133.22, 128.48, 126.52, 125.95, 118.18, 52.01, 51.63, 51.58, 49.78, 42.43, 40.92, 34.68, 34.56, 26.50.

FTIR: 3026 (m), 2952 (m), 1727 (s), 1546 (m), 1438 (w), 1204 (m).

HRMS (ESI) Calculated for C$_{17}$H$_{20}$O$_2$Na [M+N$^+$]: 279.1356, Found: 279.1357.
6-(piperidine-1-carbonyl)bicyclo[2.2.0]hexane-2-carboxylic acid (38): Procedure was adapted from literature. Alcohol 35 (0.0860 g, 1.00 equiv., 0.385 mmol) and NMO·H₂O (0.4510 g, 10.00 equiv., 3.850 mmol) were added to a 1-dram vial with stir bar. The 1-dram vial was evacuated and backfilled with N₂ three times. The vial was fitted with a septum and placed under N₂. MeCN (2.0 mL, 0.20 molar) was added, and the solution was allowed to stir for 5 min. The septum was removed and TPAP (0.0135 mg, 0.100 equiv., 0.0385 mmol) was added, the septum replaced, and the vial flushed with N₂ for 2 min. The reaction mixture stirred at room temperature for approx. 18 hours. i-PrOH (0.25 mL) was added to the reaction mixture, and the solution was allowed to stir for 30 minutes. The reaction mixture was concentrated on the rotovap to half volume before adding 1 M HCl and EtOAc. The layers were separated, and the aqueous layer was extracted four more times with EtOAc. The combined organic layers were washed with 1 M HCl until the organic layer was colorless (approx. 5 washes). The organic layer was then washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude material was purified via MPLC (0% EtOAc in Hexanes for 0.7 min., 0% to 100% EtOAc over 5.3 min., 9.2 min. hold) to yield a white solid (0.0566 g, 62% yield, >20:1 dr).

¹H NMR (500 MHz, CDCl₃) δ 3.63 – 3.48 (m, 2H), 3.38 – 3.32 (m, 1H), 3.29 – 3.20 (m, 3H), 3.14 (t, J = 3.5 Hz, 1H), 2.88 (dt, J = 12.5, 6.8 Hz, 1H), 2.77 (t, J = 6.5 Hz, 2H), 2.35 (t, J = 9.4 Hz, 1H), 2.29 – 2.22 (m, 1H), 1.68 – 1.49 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 179.33, 171.92, 46.19, 43.53, 43.16, 43.00, 42.39, 30.65, 30.40, 30.37, 26.47, 25.70, 24.73.

FTIR: 2921.15 (s), 2852.23 (m), 1720.32 (s), 1588.22 (s), 1448.23 (m), 1227.70 (s), 1175.56 (s), 855.84 (w), 687.43 (m).

HRMS (ESI): Calculated for C₁₃H₁₉O₃NNa [M+Na⁺]: 260.1257, Found: 260.1258.

(3-(hydroxymethyl)phenyl)(piperidin-1-yl)methanone (36): 3-(piperidine-1-carbonyl)benzoic acid 39 (0.1000 g, 1.000 equiv., 0.4290 mmol) was added to a flame-dried 1-dram vial with stir bar. The vial was evacuated and refilled with N₂ three times. THF (0.5 mL, 1.0 molar) was added, and the solution was cooled to 0 °C. BH₃·THF (0.90 mL, 1.0 molar, 2.0 equiv., 0.90 mmol) was added was added dropwise via syringe, and the reaction mixture was warmed to room temperature over approx. 18 hours. The solution
was cooled back down to 0 °C before being quenched with DI H₂O. The reaction mixture was diluted with EtOAc, and the layers were separated. The aqueous layer was extracted with EtOAc twice more. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude material was purified via MPLC (50% EtOAc in Hexanes to 100% EtOAc over 5 min., 10.8 min. hold) to yield a colorless oil (0.0159 g, 17% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.35 (m, 3H), 7.29 (dd, J = 6.9, 1.7 Hz, 1H), 4.72 (d, J = 5.9 Hz, 2H), 3.71 (s, 2H), 3.34 (s, 2H), 1.79 (t, J = 5.9 Hz, 1H), 1.68 (d, J = 4.8 Hz, 4H), 1.58 – 1.48 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 170.30, 141.50, 136.99, 128.73, 127.92, 126.02, 125.41, 65.08, 48.93, 43.28, 26.72, 25.78, 24.74.

FTIR: 3385.86 (br), 2929.04 (m), 2855.14 (m), 1613.34 (s), 1445.11 (m), 1286.36 (m), 1208.39 (m), 1027.11 (m), 745.86 (w).

HRMS (ESI): Calculated for C₁₃H₁₈O₂N [M+H⁺]: 220.1332, Found: 220.1332.

methyl 3-(piperidine-1-carbonyl)cyclohexane-1-carboxylate (SI-47): 3-(methoxycarbonyl)cyclohexane-1-carboxylic acid (0.5000 g, 2.685 mmol, 1.000 equiv.) and DMAP (65 mg, 0.54 mmol, 0.20 equiv.) were added to a flame-dried 50 mL round bottom flask with stir bar. It was evacuated and refilled with N₂ three times. Under N₂, CH₂Cl₂ (30 mL, 0.1 M) was added followed by piperidine (0.30 mL, 3.2 mmol, 1.2 equiv.) and stirred at room temperature for approx. 18 hours. The reaction mixture was concentrated under reduced pressure. The crude material was purified via MPLC (50% EtOAc in Hexanes to 100% EtOAc over 6.5 min., 7 min. hold) to yield a clear, colorless oil (0.2010 g, 30% yield).

¹H NMR (500 MHz, CDCl₃) δ 3.66 (s, 3H), 3.54 (t, J = 5.6 Hz, 2H), 3.41 (t, J = 5.4 Hz, 2H), 2.52 (tt, J = 11.9, 3.4 Hz, 1H), 2.34 (tt, J = 12.4, 3.5 Hz, 1H), 2.01 – 1.94 (m, 2H), 1.90 (dp, J = 13.5, 3.2 Hz, 1H), 1.76 – 1.68 (m, 2H), 1.68 – 1.48 (m, 7H), 1.48 – 1.28 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 175.79, 173.32, 51.78, 46.61, 43.05, 42.94, 39.75, 31.73, 25.77, 25.19, 24.81.

FTIR: 2936.96 (m), 2858.44 (m), 1732.35 (s), 1631.30 (s), 1441.38 (s), 1254.02 (s), 1209.24 (m), 1171.05 (w), 984.93 (w).

HRMS (ESI): Calculated for C₁₄H₂₃O₃NNa [M+Na⁺]: 276.1570, Found: 276.1572.
(3-(hydroxymethyl)cyclohexyl)(piperidin-1-yl)methanone (37): LiBH₄ (28.4 mg, 1.30 mmol, 4.00 equiv.) was added to a flame-dried 2 dram vial with stir bar. The vial was evacuated and backfilled with N₂ three times. The LiBH₄ was suspended in 1.5 mL THF and cooled to 0 °C in an ice bath. 2 mL of THF were used to aid transfer of ester SI-47 (0.0825 g, 0.326 mmol, 1.00 equiv.) to the vial containing LiBH₄. Anhydrous methanol (70 µL, 5 M) was added to the reaction vial and was allowed to room temperature for approx. 18 hours. The reaction mixture was quenched with DI H₂O at 0 °C and extracted with EtOAc five times. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude material was purified via MPLC (100% Hexanes over 0.7 min, 0% to 100% EtOAc in Hexanes over 8.1 min., 17 min. hold) to afford a clear, colorless oil (0.0160 g, 22% yield).

¹H NMR (500 MHz, CDCl₃) δ 3.58 – 3.38 (m, 6H), 2.53 (tt, J = 11.8, 3.4 Hz, 1H), 1.86 (dt, J = 13.2, 3.3 Hz, 1H), 1.83 – 1.69 (m, 3H), 1.68 – 1.40 (m, 9H), 1.37 – 1.20 (m, 3H), 1.00 – 0.90 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 174.17, 68.58, 46.60, 42.89, 40.08, 39.94, 32.38, 29.57, 28.97, 27.01, 25.80, 25.38, 24.84.

FTIR: 3395.63 (br), 2928.66 (m), 2853.84 (m), 2362.14 (w), 2160.86 (w), 2017.79 (w), 1614.68 (s), 1443.33 (m), 1226.76 (w), 1015.75 (w).

HRMS (ESI): Calculated for C₁₃H₂₃O₂NNa [M+Na⁺]: 248.1621, Found: 248.1621.

3-(piperidine-1-carbonyl)cyclohexane-1-carboxylic acid (40): A 1-dram vial equipped with a stir bar was flame-dried under vacuum. The 1-dram vial was allowed to cool under vacuum and backfilled with N₂. Alcohol 37 (0.016 g, 0.071 mmol, 1.0 equiv.) and NMO (0.083 g, 0.71 mmol, 10 equiv.) were added to the 1-dram vial. The 1-dram vial was evacuated and backfilled with N₂ three times. MeCN (0.4 mL, 0.2 molar) was added under N₂, and the reaction mixture was allowed to stir for approximately 5 minutes. TPAP (0.0051 mg, 0.014 mmol, 0.2 equiv.) was added to the vial, and the resulting green-black solution was allowed to stir at room temperature for approx. 18 hours. l-PrOH was added to the reaction, and the solution was allowed to stir for 30 minutes. The crude reaction was quenched upon addition of 1 M HCl and EtOAc. The aqueous layer was extracted with EtOAc three times. The combined organic layers were washed with 1 M HCl five times (until the organic layer ran clear), then with brine. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford 40 as an off-white solid (0.0105 g, 62% yield).
1H NMR (500 MHz, CDCl$_3$) δ 3.55 (t, $J = 5.6$ Hz, 2H), 3.42 (t, $J = 5.4$ Hz, 2H), 2.54 (tt, $J = 11.9$, 3.4 Hz, 1H), 2.36 (tt, $J = 12.4$, 3.5 Hz, 1H), 2.05 – 1.98 (m, 2H), 1.91 (dp, $J = 13.3$, 3.2 Hz, 1H), 1.77 – 1.69 (m, 2H), 1.67 – 1.61 (m, 2H), 1.61 – 1.49 (m, 4H), 1.49 – 1.30 (m, 2H).

13C NMR (126 MHz, CDCl$_3$) δ 180.18, 173.40, 46.67, 43.05, 42.69, 39.72, 31.49, 28.72, 28.23, 27.00, 25.76, 25.10, 24.78.

FTIR: 3435.28 (w, br), 2926.55 (s), 2855.84 (m), 1721.66 (s), 1596.65 (s), 1445.29 (s), 1254.25 (m), 1219.00 (m), 1176.72 (m), 1023.45 (w), 853.69 (w), 730.41 (w).

HRMS (ESI): Calculated for C$_{13}$H$_{21}$O$_3$NNa [M+Na$^+$]: 262.1414, Found: 262.1415.

ADME Procedures

Microsomal Clearance:

The following procedure was adapted from the literature.14 The experiment was performed in 96-well plate format with shaking incubation at 37 $^\circ$C and 750 rpm. The compounds in 10 mM DMSO were diluted 1:1000 in 100 mM potassium phosphate (KPi) buffer to 10 µM. 30 µL of the compound solution was added to 120 µL of pretreated microsomal protein for 150 µL enzyme-substrate mixture. Reactions were initiated by addition of 150 µL of cofactor solution (2 mM NADPH, 4 mM MgCl$_2$ in 100 mM KPi). At specific reaction time points (0, 5, 15 and 30 minutes), reaction aliquots (25 µL) were removed and terminated by addition to acetonitrile (150 µL) containing mass spectrometry internal standard (0.4 µM glyburide). The samples were then centrifuged at 500g, and the supernatants analyzed by LC-MS/MS for quantitation of remaining target compound. The percentage of target compound remaining, relative to 0 minutes, was used to estimate in vitro elimination-rate constant (k_{mic}).

High Throughput Equilibrium Solubility:

The following procedure was adapted from the literature.15 Equilibrium solubility was determined using a miniaturized shake flask approach as described in Zhou et al. Aliquots of 10 mM DMSO compound solution were dispensed in triplicate (2.5 µL/sample) in 96-well polypropylene plates using a Labcyte Echo 525 acoustic dispenser. The DMSO was removed using a GeneVac HT4X evaporator for 15 minutes, 35 $^\circ$C and full vacuum. Media (pH 6.8 Di-Sodium Hydrogen Phosphate/Potassium Hydrogen Phosphate) was added to each well to achieve a target concentration of 1 mM. The plate was sealed and shaken for 16 hours, then centrifuged at 1000g for phase separation. An aliquot of supernatant was transferred to a new plate, centrifuged a second time at 100g, and then the final supernatant was further diluted for subsequent analysis. Quantification of solubility was performed using a Sound Analytics LS1 and Sciex 6500+ MS/MS and an 8-point calibration curve.

Permeability (MDCK)

The following procedure was adapted from the literature.16 To determine the apparent permeability (Papp), MDCK knockout (MDCK-KO) cells were seeded on Transwell 96-well plate inserts (Corning, Tewksbury, MA) at a density of 1.5×10^5 cells/cm2 in high glucose DMEM with GlutaMAX containing 10%
v/v heat deactivated FBS and 1% v/v penicillin-streptomycin (all from Gibco) and grown for 4 days at 37 °C in an atmosphere of 5% CO₂ and 95% relative humidity. Stock solutions of the compounds were prepared in dimethyl sulfoxide (DMSO) (10 mM), and each compound was dosed in triplicate at a final concentration of 10 μM in Hanks’ balanced salt solution (HBSS) at pH 7.4 containing 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 0.02% w/v bovine serum albumin (BSA). A solution without the compounds and containing 5% BSA was added to the acceptor. Bafilomycin (100 nM) was added to both compartments. Cells were incubated with the compounds for 2 h at 37 °C, and flux was measured in the apical-to-basolateral direction. Aliquots from the apical, basal and compound dilution plate were sampled and diluted in 90% Methanol 10% Water with 0.1% Formic acid and 0.4 μM glyburide as an analytical standard to precipitate the protein. The solutions as well as the calibration solutions were centrifuged for 30 min at 3000 rpm for protein precipitation. Drug concentrations in the donor and acceptor compartments were measured by liquid chromatography–mass spectrometry (LC-MS/MS).

Log P
The Log P was measured using a Pion SiriusT3 instrument.

Supplementary Discussion

Stability Experiments
To determine the stability of the bicyclo[2.2.0] system, the following experiments were performed:

Aqueous stability at two different pH:
SI-48 was first saponified to avoid the possibility of acid- or base-mediated hydrolysis:

Two solutions of pH = 2 and pH = 10 were prepared with 1M solutions of HCl and NaOH. Then, SI-49 was stirred in two separate solutions (1 mL of each of the aqueous solution and 0.80 mL of MeCN for each). The stability was tested after 3 hours and after 6 days and the substrate showed complete stability on LC/MS for both durations.
Supplementary Figure 1. 1H NMR spectrum of **SI-4** (500 MHz, CDCl₃)
Supplementary Figure 2. 13C NMR spectrum of SI-4 (126 MHz, CDCl$_3$)
Supplementary Figure 3. 1H NMR spectrum of SI-5 (500 MHz, CDCl$_3$)
Supplementary Figure 4. 13C NMR spectrum of SI-5 (126 MHz, CDCl$_3$)
Supplementary Figure 5. 1H NMR spectrum of SI-6 (500 MHz, CDCl$_3$)
Supplementary Figure 6. 13C NMR spectrum of SI-6 (126 MHz, CDCl$_3$)
Supplementary Figure 7. 1H NMR spectrum of SI-7 (500 MHz, CDCl$_3$)
Supplementary Figure 8. 13C NMR spectrum of SI-7 (126 MHz, CDCl$_3$)
Supplementary Figure 9. 1H NMR spectrum of SI-8 (400 MHz, CDCl$_3$)
Supplementary Figure 10. 13C NMR spectrum of SI-8 (101 MHz, CDCl$_3$)

SI-8
Supplementary Figure 11. 1H NMR spectrum of SI-9 (400 MHz, CDCl$_3$)

SI-9
Supplementary Figure 12. 1H NMR spectrum of SI-10 (400 MHz, CDCl$_3$)
Supplementary Figure 13. 13C NMR spectrum of **SI-10** (101 MHz, CDCl$_3$)
Supplementary Figure 14. 1H NMR spectrum of SI-11 (400 MHz, CDCl$_3$)
Supplementary Figure 15. 1H NMR spectrum of **SI-12** (400 MHz, CDCl$_3$)

SI-12
Supplementary Figure 16. 13C NMR spectrum of SI-12 (101 MHz, CDCl$_3$)
Supplementary Figure 17. 1H NMR spectrum of SI-13 (400 MHz, CDCl$_3$)
Supplementary Figure 18. 13C NMR spectrum of **SI-13** (101 MHz, CDCl$_3$)
Supplementary Figure 19. 1H NMR spectrum of SI-14 (500 MHz, CDCl$_3$)
Supplementary Figure 20. 13C NMR spectrum of SI-14 (126 MHz, CDCl$_3$)
Supplementary Figure 21. 1H NMR spectrum of SI-15 (500 MHz, CDCl$_3$)

SI-15 (2:1 dr)
Supplementary Figure 22. 13C NMR spectrum of **SI-15** (126 MHz, CDCl$_3$)
Supplementary Figure 23. 1H NMR spectrum of SI-16 (400 MHz, CDCl$_3$)

SI-16 (1.5:1 dr)
Supplementary Figure 24. ^{13}C NMR spectrum of SI-16 (101 MHz, CDCl$_3$)

SI-16 (1.5:1 dr)
Supplementary Figure 25. 1H NMR spectrum of SI-17 (400 MHz, CDCl$_3$)

SI-17 (2:1 dr)
Supplementary Figure 26. 13C NMR spectrum of SI-17 (101 MHz, CDCl$_3$)

SI-17 (2:1 dr)
Supplementary Figure 27. \(^1\)H NMR spectrum of **SI-18** (400 MHz, CDCl\(_3\))

SI-18 (2:1 dr)
Supplementary Figure 28. 13C NMR spectrum of SI-18 (101 MHz, CDCl$_3$)

SI-18 (2:1 dr)
Supplementary Figure 29. 1H NMR spectrum of SI-19 (400 MHz, CDCl$_3$)

SI-19 (2:1 dr)
Supplementary Figure 30. 13C NMR spectrum of SI-19 (101 MHz, CDCl$_3$)

SI-19 (2:1 dr)
Supplementary Figure 31. 1H NMR spectrum of SI-20 (400 MHz, CDCl$_3$)
Supplementary Figure 32. 13C NMR spectrum of SI-20 (101 MHz, CDCl$_3$)
Supplementary Figure 3. 1H NMR spectrum of SI-21 (400 MHz, CDCl$_3$)

SI-21 (2:1 dr)
Supplementary Figure 34. 13C NMR spectrum of SI-21 (101 MHz, CDCl$_3$)

SI-21 (2:1 dr)
Supplementary Figure 35. 1H NMR spectrum of **SI-22** (500 MHz, CDCl$_3$)

SI-22 (mixture of diastereomers)
Supplementary Figure 36. 1H NMR spectrum of SI-23 (500 MHz, CDCl$_3$)
Supplementary Figure 37. 13C NMR spectrum of SI-23 (126 MHz, CDCl$_3$)
Supplementary Figure 38. 1H NMR spectrum of SI-24 (300 MHz, CDCl$_3$)
Supplementary Figure 39. 13C NMR spectrum of **SI-24** (75 MHz, CDCl$_3$)
Supplementary Figure 40. 1H NMR spectrum of SI-25 (300 MHz, CDCl$_3$)
Supplementary Figure 41. 13C NMR spectrum of **SI-25** (75 MHz, CDCl$_3$)
Supplementary Figure 42. 1H NMR spectrum of SI-26 (300 MHz, CDCl$_3$)

SI-26
Supplementary Figure 43. 19F NMR spectrum of **SI-26** (282 MHz, CDCl$_3$)
Supplementary Figure 44. 13C NMR spectrum of SI-26 (75 MHz, CDCl$_3$)
Supplementary Figure 45. 1H NMR spectrum of SI-27 (400 MHz, CDCl$_3$)

SI-27

1H NMR spectrum of SI-27 (400 MHz, CDCl$_3$)
Supplementary Figure 46. 13C NMR spectrum of SI-27 (101 MHz, CDCl$_3$)
Supplementary Figure 47. 1H NMR spectrum of SI-28 (400 MHz, CDCl$_3$)
Supplementary Figure 48. 13C NMR spectrum of SI-28 (101 MHz, CDCl$_3$)
Supplementary Figure 49. 1H NMR spectrum of SI-29 (300 MHz, CDCl$_3$)
Supplementary Figure 50. 13C NMR spectrum of **SI-29** (75 MHz, CDCl$_3$)

SI-29

![Chemical Structure of SI-29](image)
Supplementary Figure 51. 1H NMR spectrum of SI-30 (500 MHz, CDCl3)

SI-30 (mixture of diastereomers)
Supplementary Figure 52. 1H NMR spectrum of SI-31 (500 MHz, CDCl$_3$)
Supplementary Figure 53. 13C NMR spectrum of **SI-31** (126 MHz, CDCl$_3$)
Supplementary Figure 54. 1H NMR spectrum of SI-32 (300 MHz, CDCl$_3$)
Supplementary Figure 55. 13C NMR spectrum of SI-32 (75 MHz, CDCl$_3$)
Supplementary Figure 56. 1H NMR spectrum of SI-33 (400 MHz, CDCl$_3$)
Supplementary Figure 57. 1H NMR spectrum of SI-34 (300 MHz, CDCl$_3$)
Supplementary Figure 58. 13C NMR spectrum of SI-34 (75 MHz, CDCl$_3$)
Supplementary Figure 59. 1H NMR spectrum of **SI-35** (400 MHz, CDCl$_3$)
Supplementary Figure 60. 13C NMR spectrum of SI-35 (101 MHz, CDCl$_3$)

SI-35
Supplementary Figure 61. 1H NMR spectrum of **SI-36** (400 MHz, CDCl$_3$)

![SI-36](image)
Supplementary Figure 62. 13C NMR spectrum of SI-36 (101 MHz, CDCl$_3$)

SI-36
Supplementary Figure 63. 1H NMR spectrum of **SI-37** (300 MHz, CDCl$_3$)
Supplementary Figure 64. 13C NMR spectrum of SI-37 (75 MHz, CDCl$_3$)
Supplementary Figure 65. 1H NMR spectrum of SI-38 (500 MHz, CDCl$_3$)
Supplementary Figure 66. 1H NMR spectrum of 5a (500 MHz, CDCl$_3$)

MeO

5a (4:1 dr)
Supplementary Figure 67. 13C NMR spectrum of 5a (126 MHz, CDCl$_3$)
Supplementary Figure 68. 1H NMR spectrum of 8 (300 MHz, CDCl$_3$)

1H NMR spectrum of 8 (300 MHz, CDCl$_3$)
Supplementary Figure 69. 13C NMR spectrum of 8 (75 MHz, CDCl$_3$)

8 (3:1 dr)
Supplementary Figure 70. 1H NMR spectrum of 9 (400 MHz, CDCl$_3$)
Supplementary Figure 71. 13C NMR spectrum of 9 (101 MHz, CDCl$_3$)

9 (3:1 dr)
Supplementary Figure 72. 1H NMR spectrum of 10 (400 MHz, CDCl$_3$)
Supplementary Figure 73. 13C NMR spectrum of 10 (101 MHz, CDCl$_3$)

10 (3:1 dr)
Supplementary Figure 74. 1H NMR spectrum of 11 (400 MHz, CDCl$_3$)

11 (3:1 dr)
Supplementary Figure 75. 13C NMR spectrum of 11 (101 MHz, CDCl$_3$)

11 (3:1 dr)
Supplementary Figure 76. 1H NMR spectrum of 12 (400 MHz, CDCl$_3$)

12 (4:1 dr)
Supplementary Figure 77. 13C NMR spectrum of 12 (101 MHz, CDCl$_3$)
Supplementary Figure 78. 1H NMR spectrum of 13 (400 MHz, CDCl$_3$)

13 (2.5:1 dr)
Supplementary Figure 79. 13C NMR spectrum of 13 (101 MHz, CDCl$_3$)
Supplementary Figure 80. 1H NMR spectrum of 5b (500 MHz, CDCl$_3$)

$$\text{H}_3\text{O}$$

5b (mixture of diastereomers)
Supplementary Figure 81. 1H NMR spectrum of 14 (500 MHz, CDCl$_3$)
Supplementary Figure 82. 13C NMR spectrum of 14 (126 MHz, CDCl$_3$)
Supplementary Figure 83. 1H NMR spectrum of **SI-39** (500 MHz, Acetone-\(d_6\))

SI-39 (6:1 dr)
Supplementary Figure 84. 1H NMR spectrum of 15 (500 MHz, CDCl$_3$)

15 (6:1 dr)
Supplementary Figure 85. 13C NMR spectrum of 15 (126 MHz, CDCl$_3$)
Supplementary Figure 86. 1H NMR spectrum of 16 (500 MHz, CDCl$_3$)
Supplementary Figure 87. 13C NMR spectrum of 16 (126 MHz, CDCl$_3$)
Supplementary Figure 88. 1H NMR spectrum of 17 (500 MHz, CDCl$_3$)
Supplementary Figure 89. 13C NMR spectrum of 17 (126 MHz, CDCl$_3$)

17 (6:1 dr)
Supplementary Figure 90. 1H NMR spectrum of 6 (500 MHz, Acetone-d$_6$)
Supplementary Figure 91. ^{13}C NMR spectrum of 6 (126 MHz, Acetone-d$_6$)
Supplementary Figure 92. 1H NMR spectrum of SI-40 (500 MHz, CDCl$_3$)
Supplementary Figure 93. 13C NMR spectrum of SI-40 (126 MHz, CDCl$_3$)

SI-40 (6:1 dr)
Supplementary Figure 94. 1H NMR spectrum of SI-41 (500 MHz, CDCl$_3$)

SI-41 (3:1 dr)
Supplementary Figure 95. 13C NMR spectrum of **SI-41** (126 MHz, CDCl$_3$)
Supplementary Figure 96. 1H NMR spectrum of SI-42 (500 MHz, CDCl$_3$)
Supplementary Figure 97. 13C NMR spectrum of **SI-42** (126 MHz, CDCl$_3$)

SI-42 (3:1 dr)
Supplementary Figure 98. 1H NMR spectrum of 7 (500 MHz, CDCl$_3$)

7 (10:1 dr)
Supplementary Figure 99. 13C NMR spectrum of 7 (126 MHz, CDCl$_3$)
Supplementary Figure 100. COSY NMR spectrum of 7 (500 MHz, CDCl₃)
Supplementary Figure 101. NOESY NMR spectrum of 7 (500 MHz, CDCl$_3$)
Supplementary Figure 102. 1H NMR spectrum of 18 (500 MHz, CDCl$_3$)
Supplementary Figure 103. 13C NMR spectrum of 18 (126 MHz, CDCl$_3$)
Supplementary Figure 104. 1H NMR spectrum of SI-43 (500 MHz, CDCl$_3$)

SI-43
Supplementary Figure 105. 13C NMR spectrum of **SI-43** (126 MHz, CDCl$_3$)

![Supplementary Figure 105. 13C NMR spectrum of **SI-43** (126 MHz, CDCl$_3$)](image-url)
Supplementary Figure 106. 1H NMR spectrum of 19 (500 MHz, CDCl$_3$, 40 °C)
Supplementary Figure 107. 13C NMR spectrum of 19 (126 MHz, CDCl$_3$)
Supplementary Figure 108. 1H NMR spectrum of 20 (500 MHz, CDCl$_3$)
Supplementary Figure 109. 13C NMR spectrum of 20 (126 MHz, CDCl$_3$)
Supplementary Figure 110. 1H NMR spectrum of 21 (500 MHz, CDCl$_3$)
Supplementary Figure 111. 13C NMR spectrum of 21 (126 MHz, CDCl$_3$)
Supplementary Figure 112. 1H NMR spectrum of 22 (500 MHz, CDCl$_3$)
Supplementary Figure 113. 13C NMR spectrum of 22 (126 MHz, CDCl$_3$)
Supplementary Figure 114. 1H NMR spectrum of 23 (500 MHz, CDCl$_3$)
Supplementary Figure 115. 13C NMR spectrum of 23 (126 MHz, CDCl$_3$)
Supplementary Figure 116. 1H NMR spectrum of 24 (500 MHz, CDCl$_3$)
Supplementary Figure 117. 13C NMR spectrum of 24 (126 MHz, CDCl$_3$)
Supplementary Figure 118. COSY NMR spectrum of 24 (500 MHz, CDCl₃)
Supplementary Figure 119. NOESY NMR spectrum of 24 (500 MHz, CDCl₃)
Supplementary Figure 120. 1H NMR spectrum of SI-45 (500 MHz, CDCl$_3$)
Supplementary Figure 121. 13C NMR spectrum of SI-45 (126 MHz, CDCl$_3$)

SI-45
Supplementary Figure 122. 1H NMR spectrum of 35 (500 MHz, CDCl$_3$)
Supplementary Figure 123. 13C NMR spectrum of 35 (126 MHz, CDCl$_3$)
Supplementary Figure 124. 1H NMR spectrum of SI-46 (500 MHz, CDCl$_3$)
Supplementary Figure 125. 13C NMR spectrum of SI-46 (126 MHz, CDCl$_3$)
Supplementary Figure 126. 1H NMR spectrum of 25 (500 MHz, CDCl$_3$)
Supplementary Figure 127. 13C NMR spectrum of 25 (126 MHz, CDCl$_3$)
Supplementary Figure 138. 1H NMR spectrum of 27 (400 MHz, CD$_3$OD)

27 (6:1 dr)
Supplementary Figure 139. 13C NMR spectrum of 27 (126 MHz, CD$_3$OD)
Supplementary Figure 140. 1H NMR spectrum of 28 (500 MHz, CDCl$_3$)
Supplementary Figure 141. 13C NMR spectrum of 28 (126 MHz, CDCl$_3$)
Supplementary Figure 142. 1H NMR spectrum of 31 (500 MHz, CDCl$_3$)
Supplementary Figure 143. 13C NMR spectrum of 31 (126 MHz, CDCl$_3$)
Supplementary Figure 14. 1H NMR spectrum of 32 (500 MHz, CDCl$_3$)
Supplementary Figure 145. 13C NMR spectrum of 32 (126 MHz, CDCl$_3$)
Supplementary Figure 146. 1H NMR spectrum of 30 (400 MHz, CDCl$_3$)

30 (6:1 dr)
Supplementary Figure 147. 13C NMR spectrum of 30 (126 MHz, CDCl$_3$)

30 (6:1 dr)
Supplementary Figure 148. 1H NMR spectrum of 29 (500 MHz, C$_6$D$_6$, 47 °C)

29 (4:1 dr)
Supplementary Figure 149. 13C NMR spectrum of 29 (126 MHz, C$_6$D$_6$, 47 °C)

29 (4:1 dr)
Supplementary Figure 150. 1H NMR spectrum of 33 (400 MHz, CDCl$_3$)
Supplementary Figure 151. 13C NMR spectrum of 33 (126 MHz, CDCl$_3$)
Supplementary Figure 128. 1H NMR spectrum of 38 (500 MHz, CDCl$_3$)
Supplementary Figure 129. 13C NMR spectrum of 38 (126 MHz, CDCl$_3$)
Supplementary Figure 130. 1H NMR spectrum of 36 (500 MHz, CDCl$_3$)

![NMR Spectrum of 36](image)
Supplementary Figure 131. 13C NMR spectrum of 36 (126 MHz, CDCl$_3$)
Supplementary Figure 132. 1H NMR spectrum of SI-47 (500 MHz, CDCl$_3$)
Supplementary Figure 133. 13C NMR spectrum of **SI-47** (126 MHz, CDCl$_3$)

![SI-47](image-url)
Supplementary Figure 134. 1H NMR spectrum of 37 (500 MHz, CDCl$_3$)
Supplementary Figure 135. 13C NMR spectrum of 29 (126 MHz, CDCl$_3$)
Supplementary Figure 136. 1H NMR spectrum of 40 (500 MHz, CDCl$_3$)
Supplementary Figure 137. 13C NMR spectrum of 40 (126 MHz, CDCl$_3$)
Supplementary References

(1) Love, B. E. & Jones, E. G. The use of salicylaldehyde phenylhydrazone as an indicator for the titration of organometallic reagents. *J. Org. Chem.* **64**, 3755–3756 (1999).

(2) Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. *Science* **352**, 801–805 (2016).

(3) Smith, J. M. et al. Decarboxylative alkynylation. *Angew. Chemie Int. Ed.* **56**, 11906–11910 (2017).

(4) Sandfort, F., O’Neill, M. J., Cornella, J., Wimmer, L., & Baran, P. S. Alkyl–(hetero)aryl bond formation via decarboxylative cross-coupling: a systematic analysis. *Angew. Chemie Int. Ed.* **56**, 3319–3323 (2017).

(5) Simonetti, S. O., Larghi, E. L., & Kaufman, T. S. Alternate and step-economic synthesis of the β-methylstyrene chelating pre-ligand of the Hoveyda-Grubbs’ II catalyst. *Organic Preparations and Procedures International* **47**, 227–231 (2015).

(6) Richardson, T. I. et al. Synthesis and structure-activity relationships of novel arylpiperazines as potent and selective agonists of the melanocortin subtype-4 receptor. *J. Med. Chem.* **47**, 744–755 (2004).

(7) Smeenek, L. E. J., Dailly, N., Hiemstra, H., Van Maarseveen, J. H., & Timmerman, P. Synthesis of water-soluble scaffolds for peptide cyclization, labeling, and ligation. *Org. Lett.* **14**, 1194–1197 (2012).

(8) Elliott, L. D., Kayal, S., George, M. W., & Booker-Milburn, K. Rational design of triplet sensitizers for the transfer of excited state photochemistry from UV to visible. *J. Am. Chem. Soc.* **142**, 14947–14956 (2020).

(9) Clark, M. P. et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. *J. Med. Chem.* **57**, 6668–6678 (2014).

(10) Nikiforov, P. O. et al. Fragment-sized EthR inhibitors exhibit exceptionally strong ethionamide boosting effect in whole-cell mycobacterium tuberculosis assays. *ACS Chem. Biol.* **12**, 1390–1396 (2017).

(11) Nunez, M. T. & Martin, V. S. Efficient oxidation of phenyl groups to carboxylic acids with ruthenium tetraoxide. A simple synthesis of (R)-7-caprolactone, the pheromone of trogoderma granarium. *J. Org. Chem.* **55**, 1928–1932 (1990).

(12) Zirimwabagabo, J. O. & Harrity, J. P. A. Pd-catalyzed kinetic resolution of cyclic enol ethers. An enantioselective route to functionalised pyrans. *Chem. Commun.* **50**, 2735–2737 (2014).

(13) Hancock, E. N., Kuker, E. L., Tantillo, D. J., & Brown, M. K. Lessons in strain and stability: enantioselective synthesis of (+)-5-ladderanonic acid. *Angew. Chemie Int. Ed.* **59**, 436–441 (2020).

(14) Fonsi, M., Orsale, M. V., & Monteagudo, E. High-throughput microsomal stability assay for screening new chemical entities in drug discovery. *J. Biomol. Screen.* **13**, 862–869 (2008).

(15) Zhou, L., Yang, L., Tilton, S., & Wang, J. Development of a high throughput equilibrium solubility assay using miniaturized shake-flask method in early drug discovery. *J. Pharm. Sci.* **96**, 3052–3071 (2007).
(16) Huth, F. et. al. Predicting oral absorption for compounds outside the rule of five property space.
J. Pharm. Sci. **110**, 2562–2569 (2021).

(17) Levterov, V. V., Panasyuk, Y., Pivnytska, V. O., & Mykhailiuk, P. K. Water-soluble non-classical
benzene mimetics. _Angew. Chemie Int. Ed._ **59**, 7161–7167 (2020).