A nonlinear Schrödinger equation with two symmetric point interactions in one dimension

Hynek Kovařík and Andrea Sacchetti

1 Dipartimento di Matematica, Politecnico di Torino, Torino, Italy
2 Facoltà di Scienze, Università di Modena e Reggio Emilia, Modena, Italy

E-mail: Hynek.Kovarik@polito.it and Andrea.Sacchetti@unimore.it

Received 22 October 2009, in final form 24 February 2010
Published 25 March 2010
Online at stacks.iop.org/JPhysA/43/155205

Abstract
We consider a time-dependent one-dimensional nonlinear Schrödinger equation with a symmetric double-well potential represented by two Dirac’s δ. Among our results we give an explicit formula for the integral kernel of the unitary semigroup associated with the linear part of the Hamiltonian. Then we establish the corresponding Strichartz-type estimate and we prove local existence and uniqueness of the solution to the original nonlinear problem.

PACS numbers: 03.65.-w, 03.65.Nk, 05.45.-a
Mathematics Subject Classification: 35Q55, 35B40, 81Q05

1. Introduction

The presence of a certain symmetry in various physical systems is often linked to some symmetric double-well potential. Models with such kind of potentials are therefore of interest in many fields of research. One of the most important phenomena observed in these situations is the spontaneous symmetry breaking, which arises in a wide range of physical systems modelled by nonlinear equations with a double-well potential. For instance, in classical physics, it has been experimentally observed for laser beams in Kerr media and focusing nonlinearity [9, 19]. A spontaneous symmetry-breaking phenomenon may also arise in the so-called Bose Einstein condensates, where the effective double-well potential is formed by the combined effect of a parabolic-like trap and a periodic optical lattice [6, 14, 25]. From a theoretical point of view, nonlinear systems with a double-well potential have been recently studied in the semiclassical limit [7, 28] or in the limit of large distance between the two wells [23, 27].

In order to introduce a simplified model of nonlinear Schrödinger equations describing the basic features of systems with double-well potentials, we consider in this paper a
one-dimensional system where the two wells are represented by two Dirac’s δ potentials.

In other words, we will deal with the nonlinear time-dependent Schrödinger equation

\[
\begin{aligned}
 i \partial_t \psi(t) &= H_\alpha \psi(t) + \nu |\psi(t)|^2 \mu \psi(t), \\
 \psi(t)|_{t=0} &= \psi_0(x),
\end{aligned}
\]

(1.1)

where \(\psi_0\) is the initial data, \(\mu, \nu\) are positive numbers and \(H_\alpha, \alpha \in \mathbb{R}\) denotes a one-dimensional Schrödinger operator with symmetric delta interactions of strength \(\alpha\) and placed at the points \(x = \pm a\), see section 2 below for a precise definition of \(H_\alpha\). Although the stationary states of the symmetry breaking bifurcation for equation (1.1) with cubic nonlinearity have been studied already by Jackson and Weinstein [22], much less is known about the time behaviour of the wavefunction for the fixed distance between the two wells.

The evolution equation (1.1) with one delta interaction has been considered by several authors [2, 15, 16, 18, 20, 21, 29, 33]. In [2], among other things, local existence and uniqueness of the solution of the associated nonlinear evolution equation is proved. The key point in the analysis of the corresponding nonlinear problem in [2] is a Strichartz-type estimate for the time propagator of the free Laplacian with one delta interaction restricted to the absolutely continuous part of the spectrum. Such a Strichartz-type inequality follows, in the model with one delta interaction, easily from the (quasi)explicit formula for the time propagator previously given by [3, 4, 17, 31].

Here we will deal with the situation when we have two delta interactions of the same strength. As in [2] the crucial ingredient is again a suitable Strichartz-type estimate. The main technical difficulty with respect to the case treated in [2] is the fact that we do not have an explicit expression for the associated time propagator at hand. Therefore, as a first step in the analysis of equation (1.1), we derive a formula for the integral kernel of the time propagator of \(H_\alpha\) in the form of a series of certain special functions (see theorem 3.1). In the next step we establish the corresponding Strichartz-type estimate (theorem 3.5). With the help of this Strichartz estimate and standard tools of the analysis of nonlinear Schrödinger equations [8], we then prove the local existence and uniqueness of a solution of (1.1).

We would like to point out that our motivation was not only to obtain the decay estimate (3.3) for the evolution operator but also to give an explicit expression for the integral kernel of the evolution operator, which can be used for numerical simulations of equation (1.1) based on spectral splitting methods, see e.g. [29] for the numerical analysis of equation (1.1) with one single Dirac’s δ.

The text is organized as follows. After the preliminary section 2, where we briefly recall some basic properties of the operator \(H_\alpha\), we announce the main results of our paper (see section 3). Most of the proofs are presented in section 4. Some lengthy technical proofs are postponed to the appendices. Concerning the notation, we denote by \(\|u\|_p\) the norm of a function \(u\) in \(L^p(\mathbb{R})\). In the case \(p = 2\) we will sometimes write \(\|u\|\) instead of \(\|u\|_2\).

2. Preliminaries

The operator \(H_\alpha\) in \(L^2(\mathbb{R})\) is associated with the closed quadratic form

\[
Q[\psi] = \|\psi\|^2 + \alpha (|\psi(a)|^2 + |\psi(-a)|^2), \quad \psi \in D(Q) = H^1(\mathbb{R}).
\]

(2.1)

It is well known, see e.g. [5], that the functions from the domain of \(H_\alpha\) satisfy the boundary conditions

\[
\begin{aligned}
 \psi(\pm a + 0) &= \psi(\pm a - 0), \\
 \alpha \psi(\pm a + 0) &= \psi'(\pm a + 0) - \psi'(\pm a - 0).
\end{aligned}
\]

(2.2)

(2.3)
Then H_α acts on its domain $D(H_\alpha)$ as
$H_\alpha \psi = -\psi''$, \quad $D(H_\alpha) = \{ \psi \in H^2(\mathbb{R}\setminus \{\pm \alpha\}) : \psi$ satisfies (2.2) and (2.3)\}.

Note that, due to (2.2), the function $\psi \in D(H_\alpha)$ is continuous at $x = \pm \alpha$ and therefore $D(H_\alpha)$ is a subspace of $H^1(\mathbb{R})$. Thus, in the following we denote by $\psi(\pm \alpha)$ the limit (2.2). It is useful to recall some basic properties of the spectrum of H_α. The essential spectrum of H_α is purely absolutely continuous and coincides with the positive real axis:
$\sigma_{\text{ess}}(H_\alpha) = \sigma_{\text{ac}}(H_\alpha) = [0, +\infty)$.

From the explicit form of the resolvent operator $(H_\alpha - z)^{-1}$, see [5, chapter II.2], it is straightforward to determine the discrete spectrum of H_α: if $\alpha > 0$, then the discrete spectrum of H_α is empty. For $\alpha < 0$ the discrete spectrum consists of negative eigenvalues E given by the implicit equation
$$(-2k + \alpha)^2 = \alpha^2 e^{4ka}, \quad k = \sqrt{E}, \quad \exists k \geq 0.$$

In particular, if $\alpha \leq -\frac{1}{a}$, then the discrete spectrum of H_α consists of only one eigenvalue $E_1(\alpha, \alpha)$ defined by
$$E_1(\alpha, \alpha) = -\frac{1}{4a^2} [W(-\alpha e^{\alpha}) - \alpha a]^2,$$
where $W(\cdot)$ is Lambert’s special function defined by the equation $W(x) e^{W(x)} = x$, [10]. If $\alpha > -\frac{1}{a}$, then the discrete spectrum of H_α consists of two eigenvalues: $E_1(\alpha, \alpha)$ and
$$E_2(\alpha, \alpha) = -\frac{1}{4a^2} [W(+\alpha e^\alpha) - \alpha a]^2.$$

3. Main results

We first state a result which gives an explicit formula for the evolution operator associated with H_α in terms of a series of parabolic cylinder functions. We then make use of this formula to study the local existence and uniqueness of the nonlinear problem (1.1). In order to formulate our results we need to introduce some notation. Let P_α be the spectral projector of H_α on its absolute continuous spectrum. Moreover, define
$$z_n := z_n(x, y) = 4an + |x + a| + |y + a|$$
$$a_n := a_n(x, y, t) = \frac{z_n}{4\sqrt{t}} - \frac{\alpha \sqrt{t}}{4}, \quad b_n := b_n(x, y, t) = \frac{z_n}{4\sqrt{t}} + \frac{\alpha \sqrt{t}}{4}.$$

Theorem 3.1. Let $t > 0$ and assume that $\alpha a \neq -1$. Then the integral kernel of the operator $\exp(-it H_\alpha) P_\alpha$ is given by
$$U_\alpha(t; x, y) = \frac{1}{\sqrt{4\pi it}} e^{i(x-y)^2/4t} - \frac{1}{2\pi} \sum_{n=0}^{\infty} \left[p_m(t; x, y) + p_m(t; -x, -y) \right],$$
where
$$p_m(t; x, y) = (-1)^m r_m(t; x, (-1)^m y),$$
$$r_m(t; x, y) = \text{sign}(\alpha) \sqrt{\frac{\pi}{2}|\alpha|^{2m+1}} \left(\frac{\pi}{2} \right)^{m} e^{i(ma/\sqrt{t})^2} D[-2m - 1, -\text{sign}(\alpha)2i(a_n + ib_n)].$$
and $D[n, z]$ denotes the parabolic cylinder function. Moreover, the series on the right-hand side of (3.1) converges for any $t > 0$ uniformly with respect to x and y.

Remark 3.2. Here we assume \(aa \neq -1 \) for technical reasons. Note that for \(aa = -1 \) the second eigenvalue \(E_2 \) of \(H_a \) emerges from the continuous spectrum.

Remark 3.3. The evolution operator \(e^{-itH_a} \) then has the kernel
\[
V_a(t; x, y) = \Theta(\alpha) e^{-itE_1} \varphi_1(y)\varphi_1(x) + \Theta(-1 - aa) e^{-itE_2} \varphi_2(y)\varphi_2(x) + U_a(t; x, y),
\]
where \(\varphi_1 \) and \(\varphi_2 \) are the normalized eigenfunctions associated with the eigenvalues \(E_1 \) and \(E_2 \) and \(\Theta(\cdot) \) denotes the Heaviside function.

Remark 3.4. Time evolution in the models involving one or more delta interactions similar to ours has been studied, apart from [2], in many other works (see e.g. [11–13]). For example in [11] a model of ionization is considered in which to the unperturbed Hamiltonian \(-\frac{d^2}{dx^2} + g\delta(x), \) with \(g > 0, \) a perturbing time-dependent potential of the form \(-g\eta(t)\delta(x) \), where \(\eta(t) \) is a periodic function of time, is applied. It is then shown that the survival probability of the bound states of the unperturbed Hamiltonian tends to zero as \(t \to \infty \) and the nature of this decay is discussed in detail. Similar survival probability is studied in [12] for a model where the perturbing potential is of the form \(\eta(t)(\delta(x+a) - \delta(x-a)) \) with \(\eta(t) = r \sin(\omega t) \).

In our model the linear part of the Schrödinger equation corresponds to the Hamiltonian \(H_a \) with a time-independent potential represented by two symmetric delta interactions. Therefore, instead of looking at the time evolution of the (possible) bound states, we focus on the time evolution of the ‘continuous part’ of the operator, i.e. on the evolution operator restricted to the absolutely continuous part of the spectrum.

As a consequence of theorem 3.1, we obtain the following dispersion estimate.

Corollary 3.5. Assume that \(aa \neq -1 \). Then there exists a constant \(C \) such that for any \(u \in L^1(\mathbb{R}) \) and any \(t > 0 \) it holds that
\[
\| e^{-itH_a} P_c u \|_{\infty} \leq Ct^{-1/2} \| u \|_1. \tag{3.3}
\]

Remark 3.6. The same decay behaviour for the model with one \(\delta \) interaction was obtained in [2]. Dispersion estimates for Schrödinger operators with regular potentials have been well studied in the literature (see for example [24, 32]). In [32] it was shown, under certain regularity assumptions on the corresponding potential, that the decay rate \(t^{-1/2} \) of the unitary group \(e^{-itH} \) as an operator from \(L^1(\mathbb{R}) \) to \(L^\infty(\mathbb{R}) \) is typical for one-dimensional Schrödinger operators.

Although the assumptions of [24, 32] do not allow us to include directly the situation treated in our model, it is reasonable to expect that the dispersion estimate (3.3) could also be obtained by approximating the delta interactions by suitable sequences of regular potentials and applying the results of [32].

Our main result concerning the evolution problem (1.1) reads as follows.

Theorem 3.7. Suppose that the assumptions of theorem 3.1 are satisfied. If \(\psi_0 \in H^1(\mathbb{R}) \), then the problem (1.1) admits a unique local solution
\[
\psi_t \in C((0, T), H^1(\mathbb{R})) \cap C^1((0, T), H^{-1}(\mathbb{R})) \tag{3.4}
\]
for some \(T > 0 \). Moreover, if \(\psi_t \) is a solution of (1.1), then
\[
\| \psi_t \| = \| \psi_0 \|, \quad \mathcal{E}[\psi_t] = \mathcal{E}[\psi_0] \quad t \in (0, T), \tag{3.5}
\]
where \(\mathcal{E} \) is the energy functional on \(H^1(\mathbb{R}) \) given by
\[
\mathcal{E}[\psi] = \| \partial_x \psi \|^2 + \alpha(\mu_1^2 + 1) \| \psi(a) \|^2 + \| \psi(-a) \|^2 + \frac{V}{\mu + 1} \| \psi \|_{2\mu+2}^{\mu+2}. \tag{3.6}
\]
4. Proofs of the main results

We will need the explicit form of the integral kernel of the resolvent of \(H_\alpha \). According to [5, chapter II.2], we have

\[
(H_\alpha - k^2)^{-1} \phi(x) = \int_\mathbb{R} K_\alpha(x, y; k) \phi(y) \, dy, \quad \phi \in L^2(\mathbb{R}), \quad \Im k \geq 0,
\]

where the integral kernel \(K_\alpha \) is given by

\[
K_\alpha(x, y; k) = K_0(x, y; k) + \sum_{j=1}^4 K^j_\alpha(x, y; k)
\]

with

\[
K^j_\alpha(x, y; k) = -(2k(2k + i\alpha)^2 + \alpha^2 e^{i4ka})^{-1} L^j_\alpha(x, y; k), \quad K_0(x, y; k) = \frac{i}{2k} e^{i|x-y|}
\]

and

\[
L^j_\alpha(x, y; k) = -\alpha(2k + i\alpha) e^{ik|x-y|/2} e^{i2ka}, \quad L^j_\alpha(-x, -y; k) = L^j_\alpha(x, y; k), \quad L^j_\alpha(x, y; k) = L^j_\alpha(-x, -y; k).
\]

4.1. Evolution operator of the linear equation

We split the proof of theorem 3.1 into several lemmata. We start by studying the properties of the function \(U_\alpha(t; x, y) \) defined by

\[
U_\alpha(t; x, y) = -\frac{i}{\pi} \int_\mathbb{R} k e^{-ik^2t} K_\alpha(x, y; k) \, dk.
\]

Note that

\[
U_\alpha(t; x, y) = U_0(t; x, y) + \frac{i}{2\pi} \int_\mathbb{R} e^{-ik^2t} f_\alpha(x, y; k) \frac{e^{i(2k + i\alpha)x} - e^{i(2k + i\alpha)y}}{(2k + i\alpha)^2 + \alpha^2 e^{i4ka}} \, dk.
\]

with

\[
f_\alpha(x, y; k) = \sum_{j=1}^4 L^j_\alpha(x, y; k), \quad U_0(t; x, y) = \frac{1}{\sqrt{4\pi i t}} e^{i|x-y|^2/4t}.
\]

Lemma 4.1. For any \(t > 0 \) it holds that

\[
U_\alpha(t; x, y) = U_0(t; x, y) - \frac{1}{2\pi} \sum_{j=1}^4 U_j(t; x, y),
\]

where

\[
U_j(t; x, y) = -\frac{i}{\pi} \sum_{n=0}^\infty \int_\mathbb{R} e^{-ik^2t} L^j_\alpha(x, y; k) \left(-\frac{\alpha^2 e^{i4ka}}{(2k + i\alpha)^2} \right)^n \, dk.
\]

Proof. By (4.5) we have

\[
U_\alpha(t; x, y) - U_0(t; x, y) = \frac{i}{2\pi} \int_\mathbb{R} e^{-ik^2t} f_\alpha(x, y; k) \frac{e^{i(2k + i\alpha)x} - e^{i(2k + i\alpha)y}}{(2k + i\alpha)^2 + \alpha^2 e^{i4ka}} \, dk
\]

\[
= \frac{i}{2\pi} \int_\mathbb{R} e^{-ik^2t} \sum_{n=0}^\infty f_\alpha(x, y; k) \left(-\frac{\alpha^2 e^{i4ka}}{(2k + i\alpha)^2} \right)^n \, dk.
\]
Since
\[f_n(x, y; k) = O(k) \quad k \to 0, \]
for each \(x, y \) the series on the right-hand side of (4.8) converges uniformly with respect to \(k \) on \(\mathbb{R} \). We can thus interchange the summation and the integration to get (4.7). \(\square \)

Lemma 4.2. For \(t > 0 \) and \(a \alpha \neq -1 \) we have
\[U_1(t; x, y) = \sum_{n=0}^{\infty} r_n(t; x, y), \quad U_2(t; x, y) = \sum_{n=0}^{\infty} \hat{r}_{n+\frac{1}{2}}(t; x, y), \]
\[\hat{r}_n(t; x, y) = -r_n(t; x, -y). \]

Proof. By lemma 4.1
\[U_1(t; x, y) = \sum_{n=0}^{\infty} i^{2n+1} \alpha^{2n+1} \int_{\mathbb{R}} e^{-ik^2t} \frac{e^{i\alpha k x} e^{i\sqrt{\alpha} k y}}{(2k+i\alpha)^{2n+1}} \, dk \]
\[= \sum_{n=0}^{\infty} i^{2n+1} \alpha^{2n+1} e^{\frac{i t}{2} 2^{-2n+1} n} \int_{\mathbb{R}} e^{-ir^2} \left(r + \frac{z_n}{2\sqrt{t}} + \frac{i\alpha \sqrt{t}}{2} \right)^{-2n+1} \, dr \]
\[= \sum_{n=0}^{\infty} i^{2n+1} \alpha^{2n+1} e^{\frac{i t}{2} 2^{-2n+1} n} A_{2n+1} \left(\frac{z_n}{2\sqrt{t}}, \frac{\alpha \sqrt{t}}{2} \right) \]
\[= \sum_{n=0}^{\infty} \text{sign}(\alpha) \sqrt{\frac{\pi}{2} \alpha^{2n+1}} \left(\frac{i t}{2} \right)^n e^{\frac{i t}{2} 2^{-2n+1} n} e^{-i(a_n+ib_n)^2} D[-2n - 1, -\text{sign}(\alpha)2i(a_n+ib_n)], \]
(4.9)
where we apply formula (A.6) (see appendix A). The calculation of \(U_2(t; x, y) \) follows the same line. Let \(\tilde{z}_n := \tilde{z}_n(x, y) = z_n(x, -y) \) and define
\[\hat{a}_n := \tilde{a}_n(x, y, t) = \frac{z_n}{4\sqrt{t}} - \frac{\alpha \sqrt{t}}{4} \quad \text{and} \quad \hat{b}_n := \tilde{b}_n(x, y, t) = \frac{z_n}{4\sqrt{t}} + \frac{\alpha \sqrt{t}}{4}. \]
As above we obtain
\[U_2(t; x, y) = -\sum_{n=0}^{\infty} i^{2n+2} \alpha^{2n+2} \exp \left(i \left(\frac{\tilde{z}_n+\frac{1}{2}}{2} \right)^2 / 4t \right) A_{2n+2} \left(\frac{\tilde{z}_n+\frac{1}{2}}{2\sqrt{t}}, \frac{\alpha \sqrt{t}}{2} \right) \]
\[= -\sum_{n=0}^{\infty} \text{sign}(\alpha) \sqrt{\frac{\pi}{2} \alpha^{2n+2}} \left(\frac{i t}{2} \right)^n e^{\frac{i t}{2} 2^{-2n+1} n} \exp \left(i \left(\frac{\tilde{z}_n+\frac{1}{2}}{2} \right)^2 / 4t \right) e^{-i(a_n+ib_n)^2} \]
\[\times D[-2n - 2, -\text{sign}(\alpha)2i(a_n+ib_n)], \]
where we again applied formula (A.6). \(\square \)

We will also need a uniform estimate on the sequence \(r_n(t; x, y) \) defined in (3.2).

Lemma 4.3. Let \(t > 0 \) be fixed and assume that \(a \alpha \neq -1 \). Then there exists a constant \(C \) independent of \(t, x \) and \(y \), such that for all \(n \geq 1 \) we have
\[|r_n(t; x, y)|, |r_{n+\frac{1}{2}}(t; x, y)| \leq C^\prime t^\frac{1}{2} \left(1 + |x+a| + |y+a| \right)^{2n}. \]
(4.10)
\textbf{Proof.} From the definition of \(a_n, b_n\), lemma A.1, appendix A, and lemma 4.2, we get
\begin{equation}
|r_n(t; x, y)| \leq \sqrt{\frac{\pi}{2}} |\alpha|^{2n+1} \left(\frac{t}{2} \right)^n |I_n(t; x, y)|,
\end{equation}
where
\[I_n(t; x, y) = \int_{\mathbb{R}} e^{-s^2} (s + \sqrt{2a_n} + i\sqrt{2b_n})^{-2n-1} ds\]
Hence
\[|I_n(t; x, y)| \leq \sqrt{\pi} |\sqrt{2b_n}|^{-2n-1} \leq C \left(\frac{1}{z_n} \right)^n,
\]
which implies (4.10). The estimate for \(|r_{n+\frac{1}{2}}(t; x, y)|\) is completely analogous. \(\square\)

Next we show that \(U_a(t; x, y)\) defines the kernel of the evolution operator associated with \(H_a\).

\textbf{Lemma 4.4.} Let \(K_a(x, y; k)\) be the kernel of the resolvent operator of \(H_a\) and let \(P_c\) be the spectral projection of \(H_a\) on \([0, \infty)\). Then for any test function \(\phi \in C_0^\infty (\mathbb{R})\) we have
\begin{equation}
(e^{-itH_a} P_c \phi)(x) = \int_{\mathbb{R}} U_a(t; x, y)\phi(y) dy.
\end{equation}

\textbf{Proof.} Fix \(\phi \in C_0^\infty (\mathbb{R})\). By [30, theorem 3.1] it holds that
\begin{equation}
\lim_{\epsilon \to 0} e^{-itH_a} \phi = e^{-itH_a} \phi.
\end{equation}
Since the absolute continuous spectrum of \(H_a\) is the interval \([0, \infty)\), the spectral theorem gives
\[e^{-itH_a} P_c = \int_0^\infty e^{-(it+k)^2} dk P_c,
\]
where \(P_c \) is the spectral projector of \(H_a\) on the interval \([0, \lambda]\). By Stone’s formula, see e.g. [26, theorem VII.13], we have that for any \(\lambda \geq 0\)
\[P([0, \lambda]) = \lim_{\delta \to 0^+} \frac{1}{2\pi i} \int_0^\lambda ([H_a - (z + i\delta)]^{-1} - [H_a - (z - i\delta)]^{-1}) \, dz.
\]
Hence
\begin{equation}
e^{-itH_a} P_c \phi = \frac{1}{2\pi i} \int_0^\lambda \int_0^\infty e^{-it(s+ik)} \lim_{\delta \to 0^+} \left(K_a(x, y; \sqrt{s+ik}) - K_a(x, y; \sqrt{s-ik}) \right) \phi(y) \, dy \, dz
\end{equation}
\[= \frac{1}{2\pi i} \int_0^\infty \int_0^\lambda e^{-it(s+ik)} \lim_{\delta \to 0^+} k K_a(x, y; \sqrt{k^2+ik} - i\delta) \phi(y) \, dy \, dk
\]
\[+ \frac{1}{2\pi i} \int_0^\infty \int_0^\lambda e^{-it(s+ik)} \lim_{\delta \to 0^+} k K_a(x, y; \sqrt{k^2+ik} + i\delta) \phi(y) \, dy \, dk,
\]
where we have substituted \(k = \sqrt{s}\) in the integral containing the kernel \(K_a(x, y; \sqrt{s+ik})\) and \(k = -\sqrt{s}\) in the integral containing the kernel \(K_a(x, y; \sqrt{s-ik})\). Since \(\phi \in C_0^\infty (\mathbb{R})\) and \(|k K_a(x, y; \sqrt{k^2+ik})|\) is uniformly bounded for \(\delta \geq 0\) small enough, we can exchange the limit and integration in (4.14). Note also that
\[\lim_{\delta \to 0^+} k K_a(x, y; \sqrt{k^2 \pm i\delta}) = k K_a(x, y; \pm|k|) \quad \forall k \neq 0\]
and that \(kK_\alpha(x, y; k) = \mathcal{O}(1) \) as \(k \to 0 \). From the Fubini theorem we then obtain

\[
(e^{-i(t + \epsilon)H_\alpha} U_\alpha(x) \phi)(y) = \lim_{\epsilon \to 0^+} \int_{\mathbb{R}} U_\alpha(t - i\epsilon; x, y) \phi(y) \, dy.
\]

Passing to the limit \(\epsilon \to 0^+ \) in (4.15) gives

\[
(e^{-i H_\alpha} U_\alpha(x) \phi)(y) = \lim_{\epsilon \to 0^+} \int_{\mathbb{R}} U_\alpha(t - i\epsilon; x, y) \phi(y) \, dy.
\]

(4.16)

(see (4.13)). By (4.5) it can be directly verified that for any \(x, y \in \mathbb{R} \) it holds that

\[
\lim_{\epsilon \to 0^+} U_\alpha(t - i\epsilon; x, y) = U_\alpha(t; x, y).
\]

(4.17)

Indeed, since \(U_0(t; x, y) \) is continuous in \(t \in \mathbb{C} \setminus \{0\} \), it follows that

\[
U_\alpha(t; x, y) - U_\alpha(t - i\epsilon; x, y) = -\frac{i}{\pi} \int_{\mathbb{R}} e^{-ik^2} f_\alpha(x, y; k)(1 - e^{-\epsilon k^2}) \frac{1}{(2k + i\alpha)^2 + \alpha^2 e^{i\alpha k}} \, dk + o(1)
\]

as \(\epsilon \to 0^+ \). To show that the first term on the right-hand side of (4.18) converges to zero, we observe that

\[
\lim_{\epsilon \to 0^+} \int_{-R}^R e^{-ik^2} f_\alpha(x, y; k)(1 - e^{-\epsilon k^2}) \frac{1}{(2k + i\alpha)^2 + \alpha^2 e^{i\alpha k}} \, dk = 0
\]

for any \(R > 0 \). On the other hand, a direct calculation shows that

\[
\frac{f_\alpha(x, y; k)}{(2k + i\alpha)^2 + \alpha^2 e^{i\alpha k}} = \frac{\alpha}{2k}(e^{ik|x+y|} e^{ik|y|} + e^{ik|x-a|} e^{ik|y-a|}) + \mathcal{O}(k^{-2}),
\]

where the term \(\mathcal{O}(k^{-2}) \) depends also on \(x, y \) and \(\alpha \). From the asymptotic relation

\[
\int_R^\infty e^{-z^2} \frac{1}{z} \, dz = \mathcal{O}\left(\frac{e^{-zR^2}}{zR^2}\right), \quad R \to \infty, \quad |\arg z| < \pi
\]

(see e.g. [1, chapter 5]), we thus deduce that

\[
\int_R^\infty e^{-z^2} f_\alpha(x, y; k)(1 - e^{-\epsilon k^2}) \frac{1}{(2k + i\alpha)^2 + \alpha^2 e^{i\alpha k}} = \mathcal{O}(R^{-2}), \quad R \to \infty,
\]

uniformly with respect to \(\epsilon \geq 0 \). The integral corresponding to \(k \in (-\infty, -R) \) is treated in the same way. This together with (4.19) implies (4.17). It follows that for any \(x, y \in \mathbb{R} \) the function \(|U_\alpha(t - i\epsilon; x, y)| \) is uniformly bounded for \(\epsilon \) nonnegative and small enough and \(y \) on compact subsets of \(\mathbb{R} \). Hence we can interchange the limit with the integral in (4.16) to conclude the proof.

Proof of theorem 3.1. Since

\[
U_3(t; x, y) = U_2(t; -x, -y), \quad U_4(t; x, y) = U_1(t; -x, -y),
\]

(4.20)

the statement of the theorem follows from lemmata 4.1, 4.2, 4.3 and 4.4.
4.2. Proof of corollary 3.5

We need two auxiliary lemmata.

Lemma 4.5. Let $\alpha \neq -1$. For any $T > 0$, there exists a constant C_T such that
\[
\sup_{x,y \in \mathbb{R}} |U_\alpha(t; x, y)| \leq C_T t^{-\frac{1}{2}}, \quad t \in [0, T].
\]

Proof. Clearly
\[
|U_0(t; x, y)| \leq \frac{1}{\sqrt{4\pi t}}.
\]
It thus remains to estimate $U_j(t; x, y)$, $j = 1, 2, 3, 4$. By (4.10) we have
\[
\left| \sum_{n=1}^{\infty} r_{nj}^2(t; x, y) \right| \leq C' t^{\frac{1}{2}}, \quad t \in [0, T],
\]
where the constant C' depends only on T. On the other hand, for $n = 0$, it follows directly from the definition that
\[
|r_0(t; x, y)|, |r_1^2(t; x, y)| \leq C,
\]
where C is a real number. □

An analogous upper bound on $U_\alpha(x, y; t)$ for large t is given in the following lemma whose proof we postpone to appendix B.

Lemma 4.6. There exists a constant C such that for all t large enough, it holds that
\[
\sup_{x,y \in \mathbb{R}} |\sqrt{t}U_\alpha(x, y; t)| \leq C.
\]

Proof of corollary 3.5. By lemmata 4.5 and 4.6, we have
\[
\sup_{x,y \in \mathbb{R}} |U_\alpha(t; x, y)| \leq Ct^{-\frac{1}{2}}
\]
for all $t > 0$ and some constant C independent of t. Hence
\[
\|e^{-itH_\alpha} P_c \phi\|_{\infty} \leq Ct^{-\frac{1}{2}} \|\phi\|_{1}, \quad \forall \phi \in C_0^{\infty}(\mathbb{R}).
\]
By density, this inequality extends to all $u \in L^1(\mathbb{R})$. □

As a consequence we obtain the following Strichartz-type estimate.

Corollary 4.7. Let $r \geq 2$ and $q = \frac{4}{r-2}$. Then for any $T > 0$ there exists a constant C such that
\[
\|e^{-itH_\alpha} P_c u\|_{L^r([0,T), L^q(\mathbb{R}))} \leq C \|u\|_2 \quad \forall u \in L^2(\mathbb{R}).
\]

Proof. Let $0 < t < T$. In view of (3.3) and the obvious inequality
\[
\|e^{-itH_\alpha} P_c u\|_2 \leq \|u\|_2,
\]
the Riesz–Thorin interpolation theorem implies that
\[
\|e^{-itH_\alpha} P_c u\|_p \leq Ct^{\frac{1}{2}} \|u\|_r, \quad \frac{1}{p} + \frac{1}{r} = 1
\]
for some C and $p \in [2, \infty]$. Since H_α is a self-adjoint, (4.22) follows from (4.23) and [8, theorem 2.7.1]. □
4.3. Proof of theorem 3.7

In order to study the well posedness of the nonlinear equation (1.1), we follow the strategy adopted in [2]. To this end we define the operator

\[
T_\alpha = \begin{cases} H_\alpha & \alpha \geq 0 \\ H_\alpha - E_1(\alpha, \alpha) & \alpha < 0. \end{cases}
\]

The key point, apart from the Strichartz estimate, is to prove the following technical result (see also [8, section 3.7]).

Proposition 4.8. Let \(p \in [2, \infty] \). Then the domain \(D(T_\alpha) \) of \(T_\alpha \) is embedded in \(L^p(\mathbb{R}) \). Moreover, there exists a constant \(C \) such that for any \(\varepsilon < 0 \) and any \(u \in L^p(\mathbb{R}) \) it holds that

\[
\| (\varepsilon T_\alpha - 1)^{-1} u \|_p \leq C \| u \|_p.
\]

Proof. Consider first the case \(\alpha > 0 \). Since \(H^1(\mathbb{R}) \) is continuously embedded in \(L^p(\mathbb{R}) \) for any \(p \in [2, \infty] \), the embedding \(D(T_\alpha) = D(H_\alpha) \hookrightarrow L^p(\mathbb{R}) \) follows in view of the fact that \(D(H_\alpha) \) is a subspace of \(H^1(\mathbb{R}) \). To prove (4.24) we note that \((\varepsilon T_\alpha - 1)^{-1} = (\varepsilon H_\alpha - 1)^{-1}\) is an integral operator with the kernel

\[
\varepsilon^{-1} K_\alpha(x; y; \varepsilon) = \varepsilon^{-1} K_0(x; y; \varepsilon) + \varepsilon^{-1} \sum_{j=1}^4 K_j^\lambda(x; y; \varepsilon), \quad \lambda = -\varepsilon^{-1} > 0.
\]

First we observe that

\[
\varepsilon^{-1} \int_\mathbb{R} K_0(x; y; \varepsilon) u(y) \, dy = \frac{1}{2\varepsilon} (e^{-\varepsilon^2|\cdot|^2} * u)(x).
\]

By the Young inequality we thus get

\[
\left\| \varepsilon^{-1} \int_\mathbb{R} K_0(x; y; \varepsilon) u(y) \, dy \right\|_p \leq \frac{1}{2\varepsilon |\varepsilon|} \| e^{-\varepsilon^2|\cdot|^2} \|_1 \| u \|_p = \| u \|_p.
\]

To control the other terms in \(K_\alpha(x; y; \varepsilon) \), we write

\[
K_j^\lambda(x; y; \varepsilon) + K_j^\varepsilon(x; y; \varepsilon) = \frac{-\alpha}{(2\lambda + \alpha)^2} \int_{\mathbb{R}} \frac{2\lambda e^{-\lambda |y+a|} e^{-\lambda |y-a|}}{2\lambda(2\lambda + \alpha)^2 - \alpha^2 e^{-4\lambda a}} \, dy,
\]

(see equation (4.3)). It is easily seen that the function \(\lambda/(2\lambda + \alpha)^2 - \alpha^2 e^{-4\lambda a} \) is bounded for \(\lambda \in (0, \infty) \). On the other hand, for \(y < 0 \) we have \(0 \leq |y - a| - |y + a| \leq 2a \). Hence for some constant \(C > 0 \), independent of \(y < 0 \), it holds that

\[
\sup_{\lambda > 0} \frac{1 - e^{-2\lambda a} e^{-\lambda |y-a|} - e^{-\lambda |y+a|}}{(2\lambda + \alpha)^2 - \alpha^2 e^{-4\lambda a}} \leq \sup_{\lambda > 0} \frac{1 - e^{-4\lambda a}}{(2\lambda + \alpha)^2 - \alpha^2 e^{-4\lambda a}} \leq C.
\]

The last term in (4.25), which corresponds to \(y \geq 0 \), is estimated in the same way. We can thus conclude that there exists a constant \(C_{\alpha, \varepsilon} \), independent of \(x, y \) and \(\lambda \), such that

\[
|K_j^\lambda(x; y; \varepsilon) + K_j^\varepsilon(x; y; \varepsilon)| \leq C_{\alpha, \varepsilon} \lambda e^{-\lambda |x+a|} e^{-\lambda |y+a|} + e^{-\lambda |y-a|}.
\]

(4.26)
From the Hölder and Minkowski inequality we then get
\[
\left\| \int_{\mathbb{R}} \left(K_{\alpha}^1(x, y; i\lambda) + K_{\alpha}^2(x, y; i\lambda) \right) u(y) \, dy \right\|_p \leq \frac{C_{\alpha,a}}{\lambda^2} \left\| e^{-\lambda|x+y|} + e^{-\lambda|x-y|} \right\|_p \left\| u \right\|_p
\]
\[
\leq \frac{C_{\alpha,a}}{\lambda^2} e^{\lambda|x+y|} \left\| e^{-\lambda|x|} + e^{-\lambda|y|} \right\|_p \left\| u \right\|_p
\]
\[
\leq \frac{C_{\alpha,a}}{\lambda^2} e^{2\lambda r} \left\| e^{-\lambda x} \right\|_p \left\| u \right\|_p,
\]
where \(\frac{1}{p} + \frac{1}{r} = 1 \). Since \(K_{\alpha}^3(x, y; i\lambda) + K_{\alpha}^4(x, y; i\lambda) = K_{\alpha}^1(-x, -y; i\lambda) + K_{\alpha}^2(-x, -y; i\lambda) \), we arrive at
\[
\frac{1}{|\varepsilon|} \sum_{j=1}^{4} \left\| \int_{\mathbb{R}} K_{\alpha}^{j}(x, y; i\lambda) u(y) \, dy \right\|_p \leq \text{const} \left\| u \right\|_p.
\]
This completes the proof in the case \(\alpha > 0 \).

For \(\alpha \leq 0 \) we redefine the parameter \(\lambda \) in the following way:
\[
\lambda = -i \sqrt{\varepsilon^{-1} + E_1(a, \alpha)}, \quad \lambda > \sqrt{|E_1(a, \alpha)|},
\]
where \(E_1(a, \alpha) < 0 \) is the lowest eigenvalue of \(H_\alpha \) defined in (2.4). Then the integral kernel \((\varepsilon T_\alpha - 1)^{-1} \) is again equal to \(\varepsilon^{-1} K_{\alpha}(x, y; i\lambda) \). Moreover, there exists a constant \(C_{\alpha,a} \), such that
\[
\left| \varepsilon^{-1} K_{\alpha}^{1}(x, y; i\lambda) \right| \leq \frac{C_{\alpha,a}}{\lambda |\varepsilon| |\lambda - \sqrt{|E_1(a, \alpha)|}|} e^{-\lambda|x+y|},
\]
and similarly for \(K_{\alpha}^{j}(x, y; i\lambda) \), \(j = 2, 3, 4 \). The Hölder inequality applied in the same way as in (4.27) then gives
\[
\frac{1}{|\varepsilon|} \sum_{j=1}^{4} \left\| \int_{\mathbb{R}} K_{\alpha}^{j}(x, y; i\lambda) u(y) \, dy \right\|_p \leq \text{const} \lambda^{2} |\varepsilon| |\lambda - \sqrt{|E_1(a, \alpha)|}| \left\| u \right\|_p.
\]
Since
\[
\lambda^{2} |\varepsilon| |\lambda - \sqrt{|E_1(a, \alpha)|}| \geq \sqrt{|E_1(a, \alpha)|} \quad \forall \lambda > \sqrt{|E_1(a, \alpha)|},
\]
the proof is completed. \(\square \)

Proof of theorem 3.7. The Strichartz estimate (4.22) and a straightforward application of the proof of [8, proposition 4.2.1] imply the uniqueness, in \(H^1(\mathbb{R}) \), of a solution to the integral equation
\[
\psi_t = e^{-i\varepsilon \mathcal{T}^\alpha} \psi_0 - i \varepsilon \int_0^t e^{i(s-t)\mathcal{T}^\alpha} |\psi_\alpha|^2 \psi_\alpha \, ds.
\]
Moreover, by proposition 4.8 and [8, theorems 3.7.1], we get the local existence of the solution to (4.29) and the conservation of energy and charge associated with this equation:
\[
\mathcal{E}[\psi_t] + \mathcal{E}(-\varepsilon E_1(a, \alpha)) |\psi_t|^2 = \mathcal{E}[\psi_0] + \mathcal{E}(-\varepsilon E_1(a, \alpha)) |\psi_0|^2, \quad \|\psi_t\|^2 = \|\psi_0\|^2
\]
for \(t \in (0, T) \). This immediately implies the local existence and uniqueness of the solution of
\[
\psi_t = e^{-i\varepsilon H_\alpha} \psi_0 - i \varepsilon \int_0^t e^{i(s-t)H_\alpha} |\psi_s|^2 \psi_s \, ds
\]
by setting \(\psi_0 = e^{iE_1(a, \alpha)} \psi_0 \) if \(\alpha < 0 \) and \(\psi_t = \psi_0 \) otherwise. Since (4.31) is equivalent to (1.1), this proves the first part of the statement. The conservation of the charge and energy, equation (3.5), is a direct consequence of (4.30). \(\square \)
Acknowledgments

AS is grateful to R Adami for useful discussions. HK was supported by the German Research Foundation (DFG) under Grant KO 3636/1-1.

Appendix A.

Lemma A.1. Let $n \in \mathbb{N}$, $\gamma > 0$, $\delta \neq 0$, and consider the following integral:

$$A_{2n+1}(\gamma', \delta) = \int_{\mathbb{R}} e^{-ir^2} (r + \gamma + i\delta)^{-2n-1} dr.$$ \hspace{1cm} (A.1)

(i) If $\delta > 0$:

$$A_{2n+1} = -i(-2i)^n \sqrt{2\pi} e^{-i(\gamma+i\delta)^2/2} D[-2n - 1, (1 - i)(\gamma + i\delta)]. \hspace{1cm} (A.2)$$

(ii) If $\delta < 0$:

$$A_{2n+1} = -i(-2i)^n \sqrt{2\pi} e^{-i(\gamma+i\delta)^2/2} D[-2n - 1, (1 - i)(\gamma + i\delta)]$$

$$+ i\pi 2^{2n} 2n! e^{-i(\gamma+i\delta)^2} H_{2n}(-\sqrt{i}(\gamma + i\delta)), \hspace{1cm} (A.3)$$

where $D(n, \ell)$ is the parabolic cylinder function and where H_m is the Hermite’s polynomial of degree m.

Proof. Let $a = -\gamma - i\delta$, where $\delta > 0$ and $z = r - a$, then the integral (A.1) takes the form

$$A_{2n+1} = e^{-ia^2} \int_{\mathbb{R}+i\delta} e^{-i\zeta^2 - 2ia\zeta} \zeta^{-2n-1} d\zeta. \hspace{1cm} (A.4)$$

By means of the change of variable $s = e^{-i\pi/4} \zeta$ and by the Cauchy theorem we then get

$$A_{2n+1} = e^{-ian} e^{-i\pi/2} \int_{(\ell)} e^{z^2 - 2iae\zeta^2} \zeta^{-2n-1} d\zeta = e^{-ia^2} e^{-i\pi/2} \int_{(-\epsilon)} e^{z^2 - 2iae\zeta^2} \zeta^{-2n-1} ds,$$

where (ℓ) is the complex path $\{\zeta \in \mathbb{C} : \zeta = (x + i\delta) e^{-i\pi/4}, x \in \mathbb{R}\}$ and where (ϵ) is the complex path defined in figure 19.3 in [1]. Finally, we set $q = \sqrt{2}s$ and apply formula (19.5.4) by [1] to obtain

$$A_{2n+1} = -e^{-ia^2} (-2i)^n 2n! \int_{(-\epsilon)} e^{q^2 / 2 - (\sqrt{2i}\pi/4)q} q^{-2n-1} dq$$

$$= -e^{-ia^2} (-2i)^n \sqrt{2\pi} i e^{-(\sqrt{2i}\pi/4)^2} D[-2n - 1, \sqrt{2i} e^{i\pi/4}].$$

In the case $\delta < 0$ the integral (A.4) can be written as

$$A_{2n+1} = e^{-ia^2} \int_{R-i\delta} e^{-iz^2 - 2i\alpha\zeta} \zeta^{-2n-1} d\zeta$$

$$= e^{-ia^2} \int_{R+i\delta} e^{-iz^2 - 2i\alpha\zeta} \zeta^{-2n-1} d\zeta + 2\pi i e^{-ia^2} \text{Res}[e^{-iz^2 - 2i\alpha\zeta} \zeta^{-2n-1}, z = 0],$$

where the integral is computed as the case of $\delta > 0$ and where the residue is equal to

$$\text{Res}[e^{-ir^2} (r - a)^{-2n-1}, r = a] = \frac{1}{(2n)!} \frac{d^{2n}}{dr^{2n}} \left(e^{-ir^2} \right)_{r=a} = \frac{i^n}{(2n)!} \frac{d^{2n}}{ds^{2n}} \left(e^{-is^2} \right)_{s=\sqrt{i}a}$$

$$= \frac{i^n}{(2n)!} e^{-ia^2} H_{2n}(\sqrt{i}a).$$

\[\square\]
Remark A.2. By formulae (19.4.6) and (19.13.1) of [1] equations (A.2) and (A.3) can be written as

\[A_{2n+1} = -\text{sign}(\delta)i(-2i)^n \sqrt{2\pi} e^{-i(y+\bar{a})^2/2} D[-2n-1, \text{sign}(\delta)(1-i)(y+i\bar{a})]. \] (A.5)

Remark A.3. If we set

\[\chi = \frac{\gamma - \delta}{2} \quad \text{and} \quad \eta = \frac{\gamma + \delta}{2}, \]

then

\[A_{2n+1} = -\text{sign}(\delta)i(-2i)^n \sqrt{2\pi} e^{-(\chi+i\eta)^2} D[-2n-1, -\text{sign}(\delta)2i(\chi+i\eta)]. \] (A.6)

Appendix B. Proof of lemma 4.6

Since \(|U_0(t; x, y)| = 1/2\sqrt{\pi t}\), it suffices to consider \(U_j(t; x, y), j = 1, \ldots, 4\). Let

\[f_\alpha(x, y; k) = \sum_{j=1}^{4} L^j_\alpha(x, y; k) = 2\alpha q(x, y; k) + i\alpha^2 p(x, y; k), \]

with

\[q(x, y; k) = -e^{ik|x+a|} e^{ik|y+a|} + e^{ik|x-a|} e^{ik|y-a|}, \quad p(x, y; k) = h(x, y; k) + h(-x, -y; k), \]

and define

\[r_\alpha(k) = \left(1 + \alpha e^{i\alpha k} - \frac{1}{4ik}\right) 4i\alpha + 4k. \]

With this notation the statement of the lemma will follow, if we prove

Lemma B.1. Let

\[V'_\alpha(x, y) = \int_{\mathbb{R}} e^{-ik|z|^2/2} \alpha q(x, y; k) \frac{1}{r_\alpha(k)} dk, \quad W'_\alpha(x, y) = \int_{\mathbb{R}} e^{-ik|z|^2/2} \alpha p(x, y; k) \frac{1}{kr_\alpha(k)} dk. \]

Then there exists a constant \(C\) such that for \(t\) large enough

\[\sup_{x,y} |V'_\alpha(x, y) + W'_\alpha(x, y)| \leq Ct^{-1/2}. \] (B.1)

Proof. By means of the change of variable

\[\zeta = k\sqrt{t} - \frac{z}{2\sqrt{t}}, \quad \eta = |x+a| + |y+a|, \]

we get

\[|V'_\alpha(x, y)| \leq C \left| \int_{\mathbb{R}} e^{-i\zeta^2} \frac{1}{r_\alpha(\zeta/\sqrt{t} + \eta/2t)} d\zeta \right|. \]

We can estimate the above integral with the help of the Cauchy theorem for analytic functions replacing the domain of integration with the path

\[\gamma = \left\{ w \in \mathbb{C} : w = \zeta - \delta \frac{iz}{\sqrt{1+\zeta^2}}, \delta > 0, \zeta \in \mathbb{R} \right\}. \]

Since the function \(r_\alpha(k)\) has at most two zeros, both of them having the imaginary part strictly positive, it follows that for \(t\) large enough \(|r_\alpha(w)|\) is bounded from below by some positive
constant in the strip $|\Im w| \leq \delta$. A direct calculation shows that for t large enough and some $C_\delta < \infty$ we have

$$\left| \int_{\mathbb{R}} e^{-\xi^2} \frac{1}{r_a(\xi/\sqrt{t} + z/2t)} \, d\xi \right| \leq C \int_{\mathbb{R}} e^{-2\xi^2/\sqrt{t}} \, d\xi \leq C_\delta,$$

which yields the desired estimate for V_t^α:

$$\sup_{x,y} |V_t^\alpha(x, y)| \leq C t^{-1/2}. \quad \text{(B.2)}$$

To prove the analogue of (B.2) for W_t^α, we first observe that

$$h(x, y; k) = 0 \quad \text{if} \quad y \geq a.$$

We therefore define

$$h_1(x, y; k) = h(x, y; k) = e^{ik|x+a|} e^{ik|y-a|} 2i \sin(2ka) \quad \text{if} \quad y \leq -a$$

$$h_2(x, y; k) = h(x, y; k) = e^{ik|x+a|} [e^{ik|y-a|} - e^{ik|y+a|}] = k e^{ik|x+a|} S(y; k) \quad \text{if} \quad |y| \leq a,$$

and consider separately the integrals

$$I_j(x, y, t) = \int_{\mathbb{R}} e^{-ik^2} h_j(x, y; k) \frac{k r_a(k)}{kr_a(k)} \, dk, \quad j = 1, 2.$$

For the first integral we have

$$I_1(x, y, t) = \int_{\mathbb{R}} e^{-ik^2} h_2(x, y; k) \frac{k r_a(k)}{kr_a(k)} \, dk = \int_{\mathbb{R}} e^{-ik^2} e^{ik2a} \sin(2ka) \frac{k r_a(k)}{kr_a(k)} \, dk$$

$$= \frac{4ia}{\sqrt{t}} e^{iz/4t} \int_{\mathbb{R}} e^{ikz} \sin[2a(\xi/\sqrt{t} + z/2t)] \frac{2a(\xi/\sqrt{t} + z/2t)}{r_a(\xi/\sqrt{t} + z/2t)} \, d\xi,$$

where $z = |x+a| + |y-a|$. Note that for any $\delta > 0$ there exists a constant C_δ such that

$$\left| \frac{\sin[2a(\xi/\sqrt{t} + z/2t)]}{2a(\xi/\sqrt{t} + z/2t)} \right| \leq C_\delta \quad |\Im \xi| \leq \delta.$$

We can thus mimic the argument of the proof of lemma B.1 to arrive at the estimate

$$|I_1(x, y, t)| \leq C/\sqrt{t},$$

which holds for all t large enough uniformly in x and y. The same arguments apply to the integral

$$I_2(x, y, t) = \int_{\mathbb{R}} e^{-ik^2} h_2(x, y; k) \frac{k r_a(k)}{kr_a(k)} \, dk = \int_{\mathbb{R}} e^{-ik^2} e^{ik|x+a|} S(y; k) \frac{k r_a(k)}{kr_a(k)} \, dk$$

$$= \frac{1}{\sqrt{t}} e^{i|x+a|/4t} \int_{\mathbb{R}} e^{ikz} S(y; \xi/\sqrt{t} + |x+a|/2t) \frac{k r_a(\xi/\sqrt{t} + |x+a|/2t)}{r_a(\xi/\sqrt{t} + |x+a|/2t)} \, d\xi,$$

since

$$|S(y; \omega)| \leq C, \quad \forall \, y \in [-a, a], \quad |\Im \omega| \leq \delta.$$

Hence we can conclude that for t large enough

$$\sup_{x,y} |W_t^\alpha(x, y)| \leq C t^{-1/2}. \quad \text{(B.3)}$$
References

[1] Abramowitz M and Stegun I 1964 Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (New York: Dover)
[2] Adami R and Sacchetti A 2005 The transition from diffusion to blow-up for a nonlinear Schrödinger equation in dimension 1 J. Phys. A: Math. Gen. 38 8379–92
[3] Albeverio S, Brzeźniak Z and Dębrowski L 1994 Time-dependent propagator with point interaction J. Phys. A: Math. Gen. 27 4933–43
[4] Albeverio S, Brzeźniak Z and Dębrowski L 1995 Fundamental solution of the heat and Schrödinger equations with point interaction J. Funct. Anal. 130 220–54
[5] Albeverio S, Gesztesy F, Hoegh-Krohn R and Holden H 1988 Solvable Models in Quantum Mechanics (Berlin: Springer)
[6] Albiez M et al 2005 Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction Phys. Rev. Lett. 95 010402
[7] Bambusi D and Sacchetti A 2007 Exponential times in the one-dimensional Gross–Pitaevskii equation with multiple well potential Commun. Math. Phys. 275 1–36
[8] Cazenave T 2003 Semilinear Schrödinger Equations (Courant Lecture Notes in Mathematics) (New York: AMS)
[9] Cambournac C et al 2002 Symmetry-breaking instability of multimode vector solitons Phys. Rev. Lett. 89 083901
[10] Corless R M et al 1996 On the lambert W function Adv. Comput. Math. 5 329–59
[11] Costin O, Lebowitz J L and Rokhlenko A 2000 Exact results for the ionization of a model quantum system J. Phys. A: Math. Gen. 33 6311–9
[12] Costin O, Lebowitz J L and Rokhlenko A 2002 Decay versus survival of a localized state subject to harmonic forcing: exact results J. Phys. A: Math. Gen. 35 8943–51
[13] Costin O, Lebowitz J L and Stucchio C 2007 Ionization of a 1-dimensional dipole model arXiv:math-ph/0609069v2
[14] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Theory of Bose–Einstein condensation in trapped gases Rev. Mod. Phys. 71 463–512
[15] Della Casa F F and Sacchetti A 2006 Stationary states for non linear one-dimensional Schrödinger equations with singular potential Physica D 219 60–8
[16] Fukuizumi R, Ohta M and Ozawa T 2008 Nonlinear Schrödinger equation with a point defect Ann. I. H. Poincaré (C) 25 837–45
[17] Gaveau B and Schulman L 1986 Explicit time-dependent propagators J. Phys. A: Math. Gen. 19 1833–46
[18] Goodman R H, Holmes P J and Weinstein M I 2004 Strong NLS soliton-defect interactions Physica D 192 215–48
[19] Hayata K and Koshiba M 1992 Self-localization and spontaneous symmetry breaking of optical fields propagating in strongly nonlinear channel waveguides: limitations of the scalar field approximation J. Opt. Soc. Am. B 9 1362–8
[20] Holmer J, Marzuola J and Zworski M 2007 Soliton splitting by external delta potential J. Nonlinear Sci. 17 349–67
[21] Holmer J, Marzuola J and Zworski M 2007 Fast soliton scattering by delta impurities Commun. Math. Phys. 274 187–216
[22] Jackson R K and Weinstein M I 2004 Geometric analysis of bifurcation and symmetry breaking in a Gross–Pitaevskii equation J. Stat. Phys. 116 881–905
[23] Kirr E W, Kevrekidis P G, Shlizerman E and Weinstein M I 2008 Symmetry breaking bifurcation in nonlinear Schrödinger/Gross–Pitaevskii equations SIAM J. Math. Anal. 40 566–604
[24] Nier F and Soffer A 2003 Dispersion and Strichartz estimates for some finite rank perturbations of the Laplace operator J. Funct. Anal. 198 511–35
[25] Raghavan S, Smerzi A, Fantoni S and Shenoy S R 1999 Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, oscillations, and macroscopic quantum self-trapping Phys. A 59 620–33
[26] Reed M and Simon B 1980 Methods of Modern Mathematical Physics, vol. I. Functional Analyses (New York: Academic)
[27] Sacchetti A 2004 Nonlinear time-dependent Schroedinger equations: the Gross–Pitaevskii equation with double-well potential J. Evol. Eq. 4 345–69
[28] Sacchetti A 2005 Nonlinear double-well Schrodinger equations in the semiclassical limit J. Stat. Phys. 119 1347–62
[29] Sacchetti A 2008 Spectral Splitting method for nonlinear Schrödinger equations with singular potential J. Comput. Phys. 227 1483–99
[30] Teschl G 2009 Mathematical Methods in Quantum Mechanics (Providence, RI: American Mathematical Society)
[31] Schulman L S 1986 Application of the propagator for the delta function potential Path Integrals from meV to MeV ed M C Gutzwiller, A Ioumata, J K Klauder and L Streit (Singapore: World Scientific) pp 302–11
[32] Weder R 2000 L^p–$L^{p'}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential J. Funct. Anal. 170 37–68
[33] Witthaut D, Mossmann S and Korsch H J 2005 Bound and resonance states of the nonlinear Schrödinger equation in simple model systems J. Phys. A: Math. Gen. 38 1777–92