Representations of reflection algebras

A. I. Molev and E. Ragoucy

Abstract

We study a class of algebras $B(n, l)$ associated with integrable models with boundaries. These algebras can be identified with coideal subalgebras in the Yangian for $gl(n)$. We construct an analog of the quantum determinant and show that its coefficients generate the center of $B(n, l)$. We develop an analog of Drinfeld’s highest weight theory for these algebras and give a complete description of their finite-dimensional irreducible representations.
1 Introduction

A central role in the theory of integrable models in statistical mechanics is played by the Yang–Baxter equation

\[R_{12}(u - v) R_{13}(u - w) R_{23}(v - w) = R_{23}(v - w) R_{13}(u - w) R_{12}(u - v); \]

(1.1)

see Baxter [1]. Here \(R(u) \) is a linear operator \(R(u) : V \otimes V \to V \otimes V \) on the tensor square of a vector space depending on the spectral parameter \(u \). Both sides of the Yang–Baxter equation are linear operators on the triple tensor product \(V \otimes V \otimes V \) and the indices of \(R(u) \) indicate the copies of \(V \) where \(R(u) \) acts; e.g., \(R_{12}(u) = R(u) \otimes 1 \).

A simplest nontrivial solution of the equation is provided by the Yang \(R \)-matrix

\[R(u) = 1 - Pu^{-1}, \]

(1.2)

where \(P \) is the permutation operator \(P : \xi \otimes \eta \mapsto \eta \otimes \xi \) in the space \(C^n \otimes C^n \). The Yang \(R \)-matrix emerges in the XXX or (six vertex) model [1]. It gives rise to an algebra with the defining relations given by the RTT relation

\[R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v) \]

(1.3)

(we discuss the precise meaning of this relation below in Section 2). The algebraic structures associated with the Yang–Baxter equation were studied in the works of Faddeev’s school in the 70-s and 80-s in relation with the quantum inverse scattering method; see e.g. Takhtajan–Faddeev [30], Kulish–Sklyanin [12]. In particular, a central element called the quantum determinant in the algebra defined by (1.3) was introduced by Izergin and Korepin [10] in the case of two dimensions. The basic ideas and formulas associated with the quantum determinant for an arbitrary \(n \) are given in the paper Kulish–Sklyanin [12]. Tarasov [31, 32] described irreducible representations (monodromy matrices) in the case \(n = 2 \).

In was independently realized by Drinfeld and Jimbo around 1985 that the algebraic structures associated with the quantum inverse scattering method are naturally described by the language of Hopf algebras. This marked the beginning of the theory of quantum groups [8] (a historic background of this theory is given in the book by Chari and Pressley [4]). In his paper [7] Drinfeld introduced a remarkable class of quantum groups called the Yangians. For any simple Lie algebra \(\mathfrak{a} \) the Yangian \(Y(\mathfrak{a}) \) is a canonical deformation of the universal enveloping algebra \(U(\mathfrak{a}[x]) \) for the polynomial current Lie algebra \(\mathfrak{a}[x] \). The Hopf algebra defined by the RTT relation (1.3) with the Yang \(R \)-matrix (1.2) is called the Yangian for the general linear Lie algebra \(\mathfrak{gl}(n) \) and denoted \(Y(\mathfrak{gl}(n)) \) or \(Y(n) \).
The significance of the Yangians was explained by Drinfeld [7] who showed that the rational solutions of the Yang–Baxter equation (1.1) are described by the Yangian representations. The irreducible finite-dimensional representations were classified in his subsequent paper [9]. The results turned out to be parallel to those for the semisimple Lie algebras. Every irreducible finite-dimensional representation of $Y(a)$ is a quotient of the corresponding universal highest weight module where the components of the highest weight satisfy some dominance conditions. Explicit constructions of all such representations for the Yangians $Y(sl(2))$ and $Y(2)$ are given in Tarasov [31, 32] and Chari–Pressley [3]. However, apart from this case, the explicit structure of the Yangian representations remains unknown even in the case of $gl(n)$ (a description of a class of generic and tame representations is given in [19] and [22] via Gelfand–Tsetlin bases).

Sklyanin [29] introduced a class of algebras associated with integrable models with boundaries (we call them the reflection algebras in this paper). His approach was inspired by Cherednik’s scattering theory [6] for factorized particles on the half-line. Instead of the RTT relation the algebras are defined by the reflection equation

$$R(u - v) B_1(u) R(u + v) B_2(v) = B_2(v) R(u + v) B_1(u) R(u - v). \tag{1.4}$$

In [29] commutative subalgebras in the reflection algebras (in the case of two dimensions) were constructed and the algebraic Bethe ansatz was described. Moreover, an analog of the quantum determinant for these algebras was introduced and some properties of the highest weight representations were discussed.

Different versions of (1.4) were employed in the works Reshetikhin–Semenov-Tian-Shansky [28], Olshanski [24] and Noumi [23]. Similar classes of algebras were studied in Kulish–Sklyanin [13], Kuznetsov–Jørgensen–Christiansen [14], Koornwinder and Kuznetsov [11, 15]. Recently, algebras of this kind were discussed in the physics literature in connection with the NLS model, they describe the integrals of motion of the model; see Liguori–Mintchev–Zhao [16], Mintchev–Ragoucy–Sorba [17].

In this paper we consider a family of reflection algebras $B(n,l)$. They are defined as associative algebras whose generators satisfy two types of relations: the reflection equation and the unitary condition; see (2.3) and (2.4) below. The unitary condition allows us to identify $B(n,l)$ with a subalgebra in the $gl(n)$-Yangian $Y(n)$; see Theorem 3.1. This condition was not explicitly used in [29], but it appears e.g. in [14]. If we omit it we get a larger algebra $\tilde{B}(n,l)$ such that $B(n,l)$ is a quotient of $\tilde{B}(n,l)$ by an ideal generated by some central elements. The consequence of this fact is that the finite-dimensional irreducible representations of both algebras $B(n,l)$ and $\tilde{B}(n,l)$ are essentially the same.

On the other hand, the subalgebra $B(n,l)$ turns out to be a (left) coideal in the Hopf algebra $Y(n)$; see Proposition 3.3. This allows us to regard the tensor product
$L \otimes V$ of an $Y(n)$-module L and a $B(n,l)$-module V as a $B(n,l)$-module; cf. [29, Proposition 2].

We show that the center of $B(n,l)$ is generated by the coefficients of an analog of the quantum determinant which we call, following [21], the Sklyanin determinant. We derive a formula which expresses the Sklyanin determinant in terms of the quantum determinant for the Yangian $Y(n)$.

The aforementioned properties of the algebras $B(n,l)$ exhibit much analogy with the twisted Yangians introduced by Olshanski [24]; see also [21] for a detailed exposition. Moreover, in two dimensions the algebras $B(2,0)$ and $B(2,1)$ turn out to be respectively isomorphic to the symplectic and orthogonal twisted Yangians; see Section 1.2. This analogy also extends to the representation theory; cf. [20]. We prove here that, as for the twisted Yangians, the Drinfeld highest weight theory is applicable to the algebras $B(n,l)$. Every finite-dimensional irreducible representation of $B(n,l)$ is highest weight, and given an irreducible highest weight module, we produce necessary and sufficient conditions for it to be finite-dimensional. These conditions are expressed in terms of the Drinfeld polynomials in a way similar to [1] and [20] for the Yangians and twisted Yangians. Note, however, an essential difference: here all Drinfeld polynomials must satisfy a symmetry condition; see Theorem 4.6. In particular, all of them have even degree.

In conclusion, we would like to emphasize the common feature of the three classes of algebras, the Yangian, twisted Yangians and reflection algebras: the defining relations in all the cases can be presented in a special matrix form. This allows special algebraic techniques (the so-called R-matrix formalism) to be used to describe the algebraic structure and study representations of these algebras. On the other hand, the close relationship of these ‘quantum’ algebras with the matrix Lie algebras leads to applications in the classical representation theory; see e.g. [13] and references therein. The Yangian symmetries have been found in various areas of physics including the theory of integrable models in statistical mechanics, conformal field theory, quantum gravity. We note a surprising connection of the Yangian and twisted Yangians with the finite \mathcal{W}-algebras recently discovered in [26, 27, 25]; see also [4].

This work was done during the first author’s visit to the Laboratoire d’Annecy-le-Vieux de Physique Théorique, Annecy, France. He would like to thank the Laboratoire for the warm hospitality.

2 Definitions and preliminaries

Recall first the definition of the $\mathfrak{gl}(n)$-Yangian $Y(n)$; see e.g. [12], [3]. We follow the notation from [21] where a detailed account of the properties of $Y(n)$ is given.
The Yangian $\mathcal{Y}(n)$ is the complex associative algebra with the generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots$ where $1 \leq i, j \leq n$, and the defining relations

$$[t_{ij}(u), t_{rs}(v)] = \frac{1}{u - v} \left(t_{rj}(u)t_{is}(v) - t_{rj}(v)t_{is}(u) \right),$$

where

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \cdots \in \mathcal{Y}(n)[[u^{-1}]]$$

and u is a formal (commutative) variable. Introduce the matrix

$$T(u) = \sum_{i,j=1}^{n} t_{ij}(u) \otimes E_{ij} \in \mathcal{Y}(n)[[u^{-1}]] \otimes \text{End} \mathbb{C}^n,$$

where the E_{ij} are the standard matrix units. Then the relations (2.1) are equivalent to the single RTT relation (1.3). Here $T_1(u)$ and $T_2(u)$ are regarded as elements of $\mathcal{Y}(n)[[u^{-1}]] \otimes \text{End} \mathbb{C}^n \otimes \text{End} \mathbb{C}^n$, the subindex of $T(u)$ indicates to which copy of $\text{End} \mathbb{C}^n$ this matrix corresponds, and

$$R(u) = 1 - Pu^{-1}, \quad P = \sum_{i,j=1}^{n} E_{ij} \otimes E_{ji} \in (\text{End} \mathbb{C}^n)^{\otimes 2}.$$

Now we introduce the reflection algebras. Fix a decomposition of the parameter n into the sum of two nonnegative integers, $n = k + l$. Denote by G the diagonal $n \times n$-matrix

$$G = \text{diag}(\varepsilon_1, \ldots, \varepsilon_n)$$

where $\varepsilon_i = 1$ for $1 \leq i \leq k$, and $\varepsilon_i = -1$ for $k + 1 \leq i \leq n$. The reflection algebra $\mathcal{B}(n, l)$ is a unital associative algebra with the generators $b_{ij}^{(r)}$ where r runs over positive integers and i and j satisfy $1 \leq i, j \leq n$. To write down the defining relations introduce formal series

$$b_{ij}(u) = \sum_{r=0}^{\infty} b_{ij}^{(r)}u^{-r}, \quad b_{ij}^{(0)} = \delta_{ij} \varepsilon_i$$

and combine them into the matrix

$$B(u) = \sum_{i,j=1}^{n} b_{ij}(u) \otimes E_{ij} \in \mathcal{B}(n, l)[[u^{-1}]] \otimes \text{End} \mathbb{C}^n.$$

The defining relations are given by the reflection equation

$$R(u - v) B_1(u) R(u + v) B_2(v) = B_2(v) R(u + v) B_1(u) R(u - v)$$

(2.5)
together with the unitary condition
\[B(u)B(-u) = 1, \tag{2.6} \]
where we have used the notation of (1.3). Rewriting (2.5) and (2.6) in terms of the matrix elements we obtain, respectively,
\[
[b_{ij}(u), b_{rs}(v)] = \frac{1}{u - v} \left(b_{rj}(u)b_{is}(v) - b_{rj}(v)b_{is}(u) \right) \\
+ \frac{1}{u + v} \left(\delta_{ij} \sum_{a=1}^{n} b_{ia}(u)b_{as}(v) - \delta_{is} \sum_{a=1}^{n} b_{ra}(v)b_{aj}(u) \right) \\
- \frac{1}{u^2 - v^2} \delta_{ij} \left(\sum_{a=1}^{n} b_{ra}(u)b_{as}(v) - \sum_{a=1}^{n} b_{ra}(v)b_{as}(u) \right)
\]
and
\[
\sum_{a=1}^{n} b_{ia}(u)b_{aj}(-u) = \delta_{ij}. \tag{2.8} \]

We shall also be using the algebra \(\widetilde{B}(n, l) \) which is defined in the same way as \(B(n, l) \) but with the unitary condition (2.6) dropped. (This corresponds to Sklyanin’s original definition \[29\]). We use the same notation \(b_{ij}^{(r)} \) for the generators of \(\widetilde{B}(n, l) \). As we shall see in the following proposition, the algebra \(B(n, l) \) is isomorphic to a quotient of \(\widetilde{B}(n, l) \) by an ideal whose generators are central elements; see also \[17\].

Proposition 2.1 In the algebra \(\widetilde{B}(n, l) \) the product \(B(u)B(-u) \) is a scalar matrix
\[B(u)B(-u) = f(u) 1, \tag{2.9} \]
where \(f(u) \) is an even series in \(u^{-1} \) whose all coefficients are central in \(\widetilde{B}(n, l) \).

Proof. Multiply both sides of (2.7) by \(u^2 - v^2 \) and put \(v = -u \). We obtain
\[
2u \left(\delta_{rj} \sum_{a=1}^{n} b_{ia}(u)b_{as}(-u) - \delta_{is} \sum_{a=1}^{n} b_{ra}(-u)b_{aj}(u) \right) \\
= \delta_{ij} \left(\sum_{a=1}^{n} b_{ra}(u)b_{as}(-u) - \sum_{a=1}^{n} b_{ra}(-u)b_{as}(u) \right). \tag{2.10} \]
Choosing appropriate indices \(i, j, r, s \), it is easy to see that \(B(u)B(-u) = B(-u)B(u) \) and that this matrix is scalar. Thus, (2.9) holds for an even series \(f(u) \). Now multiply both sides of (2.5) by \(B_2(-v) \) from the right:
\[R(u - v)B_1(u)R(u + v)f(v) = B_2(v)R(u + v)B_1(u)R(u - v)B_2(-v). \tag{2.11} \]
Applying (2.5) to the right hand side we write it as

\[B_2(v)R(u + v)B_1(u)R(u - v)B_2(-v) = B_2(v)B_2(-v)R(u - v)B_1(u)R(u + v) \]

\[= f(v)R(u - v)B_1(u)R(u + v). \]

(2.12)

This shows that \(f(u) \) is central.

We would like to comment on the relevance of the choice of the initial matrix \(G \) in the expansion

\[B(u) = G + \sum_{r=1}^{\infty} B^{(r)} u^{-r}; \]

(2.13)

see also [17]. We could take \(G \) to be an arbitrary nondegenerate matrix. However, as the proof of Proposition 2.1 shows, the reflection equation implies that \(G^2 \) is a scalar matrix. Since \(G \) is nondegenerate, the scalar is nonzero. On the other hand, as can be easily seen, for any constant \(c \) and any nondegenerate matrix \(A \) the transformations

\[B(u) \mapsto c B(u) \quad \text{and} \quad B(u) \mapsto AB(u)A^{-1} \]

(2.14)

preserve the reflection equation. Accordingly, the matrix \(G \) is then transformed as \(G \mapsto cG \) and \(G \mapsto AGA^{-1} \). Therefore, we may assume that \(G^2 = 1 \) and using an appropriate matrix \(A \) we can bring \(G \) to the form (2.3).

Note also that both the reflection equation and unitary condition are preserved by the change of sign \(B(u) \mapsto -B(u) \). This implies that the algebras \(B(n, l) \) and \(B(n, n - l) \) are isomorphic. In what follows we assume that the parameter \(l \) satisfies \(0 \leq l \leq n/2 \).

It is immediate from the definitions of the algebras \(B(n, l) \) and \(\tilde{B}(n, l) \) that given any formal series \(g(u) \in 1 + u^{-1} \mathbb{C}[[u^{-1}]] \) the mapping

\[B(u) \mapsto g(u) B(u) \]

(2.15)

is an automorphism of the algebra \(\tilde{B}(n, l) \). If \(g(u) \) satisfies \(g(u) g(-u) = 1 \) then (2.13) is an automorphism of \(B(n, l) \).

3 Algebraic structure of \(B(n, l) \)

Here we show that each \(\mathcal{B}(n, l) \) can be identified with a coideal subalgebra in the Yangian \(Y(n) \) and prove an analog of the Poincaré–Birkhoff–Witt theorem for the algebra \(\mathcal{B}(n, l) \). Then we describe its center using an analog of the quantum determinant.
3.1 Embedding $B(n, l) \hookrightarrow Y(n)$

Denote by $T^{-1}(u)$ the inverse matrix for $T(u)$; see (2.2). It can be easily seen that the matrix $T^{-1}(-u)$ satisfies the RTT relation (1.3). This implies that the mapping $T(u) \rightarrow T^{-1}(-u)$ defines an algebra automorphism of the Yangian $Y(n)$; cf. [21].

The following connection between $B(n, l)$ and $Y(n)$ was indicated in [29].

Theorem 3.1 The mapping

$$\varphi : B(u) \hookrightarrow T(u) G T^{-1}(-u)$$

(3.1)

defines an embedding of the algebra $B(n, l)$ into the Yangian $Y(n)$.

Proof. First we verify that φ is an algebra homomorphism. Denote the matrix $T(u) G T^{-1}(-u)$ by $\tilde{B}(u)$. We obviously have $\tilde{B}(u) \tilde{B}(-u) = 1$ and so (2.6) is satisfied.

Further, we have

$$R(u-v) \tilde{B}_1(u) R(u+v) \tilde{B}_2(v) = R(u-v) T_1(u) G_1 T_1^{-1}(-u) R(u+v) T_2(v) G_2 T_2^{-1}(-v).$$

(3.2)

We find from the RTT relation (1.3) that

$$T_1^{-1}(-u) R(u+v) T_2(v) = T_2(v) R(u+v) T_1^{-1}(-u).$$

(3.3)

Therefore, since G_i commutes with $T_j(u)$ for $i \neq j$ we bring the expression (3.2) to the form

$$R(u-v) T_1(u) T_2(v) G_1 R(u+v) G_2 T_1^{-1}(-u) T_2^{-1}(-v).$$

(3.4)

One easily verifies that

$$R(u-v) G_1 R(u+v) G_2 = G_2 R(u+v) G_1 R(u-v).$$

(3.5)

Applying (1.3) and (3.3) we write (3.4) as

$$T_2(v) T_1(u) G_2 R(u+v) G_1 T_1^{-1}(-v) T_2^{-1}(-u) R(u-v),$$

(3.6)

which coincides with $\tilde{B}_2(v) R(u+v) \tilde{B}_1(u) R(u-v)$ due to (3.3). Thus, $\tilde{B}(u)$ satisfies the reflection equation (2.5).

We now show that φ has trivial kernel. The Yangian $Y(n)$ admits two natural filtrations; see [21]. Here we use the one defined by setting $\deg t^{(r)}_{ij} = r$. Similarly, we define the filtration on the algebra $B(n, l)$ by $\deg b^{(r)}_{ij} = r$. Let us first verify that
the homomorphism φ is filtration-preserving. By definition, the matrix elements of $\tilde{B}(u)$ are expressed as

$$\tilde{b}_{ij}(u) = \sum_{a=1}^{n} \varepsilon_a t_{ia}(u) t'_{aj}(-u), \quad (3.7)$$

where the $t'_{ij}(u)$ denote the matrix elements of $T^{-1}(u)$. Inverting the matrix $T(u)$ we come to the following expression for $t'_{ij}(u)$:

$$t'_{ij}(u) = \delta_{ij} + \sum_{k=1}^{\infty} (-1)^k \sum_{a_1, \ldots, a_{k-1}=1}^{n} t_{ia_1}^\circ(u) t_{a_1a_2}^\circ(u) \cdots t_{a_{k-1}j}^\circ(u), \quad (3.8)$$

with the last sum taken over positive integers r_i. Therefore, we find from (3.7) that the degree of $\tilde{b}_{ij}^{(r)}$ does not exceed r. Hence, φ is filtration-preserving and it defines a homomorphism of the corresponding graded algebras

$$\text{gr}_1 B(n, l) \rightarrow \text{gr}_1 Y(n). \quad (3.10)$$

Let $\tilde{t}_{ij}^{(r)}$ denote the image of $t_{ij}^{(r)}$ in the r-th component of gr$_1 Y(n)$. The algebra gr$_1 Y(n)$ is obviously commutative, and it was proved in [21, Theorem 1.22] that the elements $\tilde{t}_{ij}^{(r)}$ are its algebraically independent generators.

On the other hand, by the defining relations (2.7), the algebra gr$_1 B(n, l)$ is also commutative. Denote by $\tilde{b}_{ij}^{(r)}$ the image of $b_{ij}^{(r)}$ in the r-th component of gr$_1 B(n, l)$. We find from the unitary condition (2.8) that the elements

$$\begin{align*}
\tilde{b}_{ij}^{(2p-1)}, & \quad 1 \leq i, j \leq k \quad \text{or} \quad k + 1 \leq i, j \leq n, \\
\tilde{b}_{ij}^{(2p)}, & \quad 1 \leq i \leq k < j \leq n \quad \text{or} \quad 1 \leq j \leq k < i \leq n,
\end{align*} \quad (3.11)$$

with p running over positive integers, generate the algebra gr$_1 B(n, l)$. Now, by (3.7), the image of $\tilde{b}_{ij}^{(r)}$ under the homomorphism (3.10) has the form

$$\tilde{b}_{ij}^{(r)} \mapsto (\varepsilon_i (-1)^{r-1} + \varepsilon_j) \tilde{t}_{ij}^{(r)} + (\ldots), \quad (3.12)$$

where (\ldots) indicates a linear combination of monomials in the elements $\tilde{t}_{ij}^{(s)}$ with $s < r$. This implies that the elements (3.11) are algebraically independent which completes the proof.

The proposition implies the following analog of the Poincaré–Birkhoff–Witt theorem for the algebra $B(n, l)$.

9
Corollary 3.2 Given any total ordering on the elements

\[b_{ij}^{(2p-1)}, \quad 1 \leq i, j \leq k \quad \text{or} \quad k + 1 \leq i, j \leq n, \]
\[b_{ij}^{(2p)}, \quad 1 \leq i \leq k < j \leq n \quad \text{or} \quad 1 \leq j \leq k < i \leq n, \]

with \(p = 1, 2, \ldots \), the ordered monomials in these elements constitute a basis of the algebra \(B(n, l) \).

Due to Proposition 3.1, we may regard \(B(n, l) \) as a subalgebra of \(Y(n) \) so that the generators \(b_{ij}(u) \) are identified with the elements \(\tilde{b}_{ij}(u) \) given by (3.7). Recall that the Yangian \(Y(n) \) is a Hopf algebra with the coproduct \(\Delta : Y(n) \to Y(n) \otimes Y(n) \) defined by

\[
\Delta(t_{ij}(u)) = \sum_{a=1}^{n} t_{ia}(u) \otimes t_{aj}(u). \tag{3.13}
\]

Proposition 3.3 The subalgebra \(B(n, l) \) is a left coideal in \(Y(n) \):

\[\Delta(B(n, l)) \subseteq Y(n) \otimes B(n, l). \tag{3.14} \]

Proof. It suffices to show that the images of the generators of \(B(n, l) \) under the coproduct are contained in \(Y(n) \otimes B(n, l) \). Since \(\Delta \) is an algebra homomorphism, the images of the matrix elements \(t'_{ij}(u) \) of \(T^{-1}(u) \) are given by

\[\Delta(t'_{ij}(u)) = \sum_{a=1}^{n} t'_{ia}(u) \otimes t'_{aj}(u). \tag{3.15} \]

Therefore, using (3.7) we calculate that

\[\Delta(b_{ij}(u)) = \sum_{a,c=1}^{n} t_{ia}(u)t'_{cj}(-u) \otimes b_{ac}(u), \tag{3.16} \]

completing the proof.

3.2 Sklyanin determinant

The quantum determinant \(qdet \) \(T(u) \) of the matrix \(T(u) \) is a formal series in \(u^{-1} \),

\[qdet T(u) = 1 + d_1 u^{-1} + d_2 u^{-2} + \cdots, \quad d_i \in Y(n), \tag{3.17} \]
defined by
\[qdet T(u) = \sum_{\pi \in \mathfrak{S}_n} \text{sgn} \cdot t_{p(1)}(u) \cdots t_{p(n)}(u - n + 1); \]
(3.18)
see Izergin–Korepin [10], Kulish–Sklyanin [12]. The elements \(d_1, d_2, \ldots\) are algebraically independent generators of the center of the algebra \(Y(n)\); see e.g. [21] for the proof. The quantum determinant can be equivalently defined in a \(R\)-matrix form [12], [5]; see also [21]. Consider the tensor product
\[Y(n)[[u^{-1}]] \otimes \text{End} \mathbb{C}^n \otimes \cdots \otimes \text{End} \mathbb{C}^n \]
(3.19)
with \(n\) copies of \(\text{End} \mathbb{C}^n\). For complex parameters \(u_1, \ldots, u_n\) set
\[R(u_1, \ldots, u_n) = (R_{n-1,n})(R_{n-2,n}R_{n-2,n-1}) \cdots (R_{1n} \cdots R_{12}), \]
(3.20)
where we abbreviate \(R_{ij} = R_{ij}(u_i - u_j)\), and the subindices enumerate the copies of \(\text{End} \mathbb{C}^n\) in (3.19). If we specialize to
\[u_i = u - i + 1, \quad i = 1, \ldots, n \]
(3.21)
then \(R(u_1, \ldots, u_n)\) becomes the one-dimensional anti-symmetrization operator \(A_n\) in the space \((\text{End} \mathbb{C}^n)^{\otimes n}\). The quantum determinant \(qdet T(u)\) is defined by the relation
\[A_n T_1(u) \cdots T_n(u - n + 1) = A_n \text{qdet} T(u). \]
(3.22)

Now, using (3.23) and the relation
\[R_{ij} R_{ir} R_{jr} = R_{jr} R_{is} R_{ij}, \]
(3.23)
(the Yang–Baxter equation) we derive the following relation for the \(B\)-matrices:
\[R(u_1, \ldots, u_n)B_1(u_1)\tilde{R}_{12} \cdots \tilde{R}_{1n}B_2(u_2)\tilde{R}_{23} \cdots \tilde{R}_{2n}B_3(u_3) \cdots \tilde{R}_{n-1,n}B_n(u_n) = \]
(3.24)
\[B_n(u_n)\tilde{R}_{n-1,n} \cdots B_3(u_3)\tilde{R}_{2n} \cdots \tilde{R}_{23}B_2(u_2)\tilde{R}_{1n} \cdots \tilde{R}_{12}B_1(u_1)R(u_1, \ldots, u_n), \]
where \(\tilde{R}_{ij} = R_{ij}(u_i + u_j)\). When we specialize the parameters \(u_i\) as in (3.21), the element (3.24) will be equal to the product of the anti-symmetrizer \(A_n\) and a series in \(u^{-1}\) with coefficients in \(\mathcal{B}(n, l)\). We call this series the Sklyanin determinant and denote it by \(\text{sdet} B(u)\). That is, \(\text{sdet} B(u)\) is defined by
\[A_n B_1(u)\tilde{R}_{12} \cdots \tilde{R}_{1n}B_2(u - 1) \cdots \tilde{R}_{n-1,n}B_n(u - n + 1) = A_n \text{sdet} B(u). \]
(3.25)
As follows from the definition, the constant term of \(\text{sdet} B(u)\) is \(\det G = (-1)^l\), so
\[\text{sdet} B(u) = (-1)^l + c_1 u^{-1} + c_2 u^{-2} + \cdots, \quad c_i \in \mathcal{B}(n, l). \]
(3.26)

In the next theorem we regard \(\mathcal{B}(n, l)\) as a subalgebra in \(Y(n)\); see Theorem 3.1.
Theorem 3.4 We have the identity
\[\text{sdet } B(u) = \theta(u) \text{qdet } T(u) \left(\text{qdet } T(-u + n - 1)\right)^{-1}, \tag{3.27} \]
where
\[\theta(u) = (-1)^l \prod_{i=1}^{k} (2u - 2n + 2i) \prod_{i=1}^{l} (2u - 2n + 2i) \prod_{i=1}^{n} \frac{1}{2u - 2n + i + 1}. \tag{3.28} \]
In particular, all the coefficients of \(\text{sdet } B(u) \) are central in \(B(n, l) \). Moreover, the odd coefficients \(c_1, c_3, \ldots \) are algebraically independent and generate the center of the algebra \(B(n, l) \).

Proof. Substitute \(B(u) = T(u) G T^{-1}(-u) \) into (3.25). Applying relation (3.3) repeatedly, we bring the left hand side of (3.25) to the form
\[A_n T_1(u) \cdots T_n(u - n + 1) G_1 \tilde{R}_{12} \cdots \tilde{R}_{1n} G_2 \cdots \tilde{R}_{n-1,n} G_n \]
\[\times T_n^{-1}(-u) \cdots T_1^{-1}(-u + n - 1). \tag{3.29} \]
Now use (3.22), and then note that
\[A_n G_1 \tilde{R}_{12} \cdots \tilde{R}_{1n} G_2 \cdots \tilde{R}_{n-1,n} G_n = A_n \theta(u), \tag{3.30} \]
for some scalar function \(\theta(u) \). Indeed, this follows e.g. from (3.24) where we specialize \(u_i \) as in (3.21) and consider the trivial representation of \(B(n, l) \) such that \(B(u) \mapsto G \).
Furthermore, we have
\[A_n T_1^{-1}(-u) \cdots T_n^{-1}(-u + n - 1) = A_n \left(\text{qdet } T(-u + n - 1) \right)^{-1}. \tag{3.31} \]
This follows from (3.22), if we first multiply both sides by \(T_n^{-1}(u - n + 1) \cdots T_1^{-1}(u) \) from the right, replace \(u \) with \(-u + n - 1 \) and then conjugate the left hand side by the permutation of the indices 1, \ldots, \(n \) which sends \(i \) to \(n - i + 1 \).

To complete the proof of (3.27) we need to calculate \(\theta(u) \). It suffices to find a diagonal matrix element of the operator on the left hand side of (3.30) corresponding to the vector \(e_1 \otimes \cdots \otimes e_n \), where the \(e_i \) denote the canonical basis of \(\mathbb{C}^n \). We have \((n - 1)! A_n = A_n A'_{n-1} \), where \(A'_{n-1} \) is the anti-symmetrizer in the tensor product of the copies of \(\text{End } \mathbb{C}^n \) corresponding to the indices 2, \ldots, \(n \). Note that \(A'_{n-1} \) commutes with \(G_1 \). Furthermore, we have the identity
\[A'_{n-1} \tilde{R}_{12} \cdots \tilde{R}_{1n} = \tilde{R}_{1n} \cdots \tilde{R}_{12} A'_{n-1}, \tag{3.32} \]
which easily follows from (3.23). This allows us to use induction on \(n \) to find the matrix element and to perform the calculation of \(\theta(u) \) which is now straightforward.
Using (3.27) we can conclude that all the coefficients of \(s\det B(u) \) belong to the center of the Yangian \(Y(n) \), and hence to the center of its subalgebra \(B(n, l) \).

Furthermore, if we put
\[
c(u) = s\det B\left(u + \frac{n-1}{2}\right) \theta(u + \frac{n-1}{2})^{-1},
\]
then by (3.27) we have the identity
\[
c(u) = d(u) d(-u)^{-1}, \quad d(u) = q\det T\left(u + \frac{n-1}{2}\right).
\]
The coefficients of \(d(u) \) are algebraically independent generators of the center of \(Y(n) \). Since \(c(u) c(-u) = 1 \), repeating the argument of the second part of the proof of Theorem 3.1 for the case of \(B(1, 0) \) we find that all the even coefficients of \(c(u) \) can be expressed in terms of the odd ones, and the latter are algebraically independent.

Since
\[
\theta(u) = s\det B(u) = \theta(u - \frac{n-1}{2}),
\]
the same holds for the coefficients of \(s\det B(u) \).

Finally, let us show that the center of \(B(n, l) \) is generated by the coefficients of \(s\det B(u) \). We use another filtration on \(B(n, l) \) defined by setting \(\deg_2 b_{ij}^{(r)} = r - 1 \). We first verify that the corresponding graded algebra \(\text{gr}_2 B(n, l) \) is isomorphic to the universal enveloping algebra for a twisted polynomial current Lie algebra. Consider the involution \(\sigma \) of the Lie algebra \(\mathfrak{gl}(n) \) given by \(\sigma : E_{ij} \mapsto \varepsilon_i \varepsilon_j E_{ij} \). Denote by \(a_0 \) and \(a_1 \) the eigenspaces of \(\sigma \) corresponding to the eigenvalues 1 and \(-1\), respectively. In particular, \(a_0 \) is a Lie subalgebra of \(\mathfrak{gl}(n) \) isomorphic to \(\mathfrak{gl}(k) \oplus \mathfrak{gl}(l) \). Denote by \(\mathfrak{gl}(n)[x]^\sigma \) the Lie algebra of polynomials in a variable \(x \) of the form
\[
a_0 + a_1 x + a_2 x^2 + \cdots + a_m x^m, \quad a_{2i} \in a_0, \quad a_{2i-1} \in a_1.
\]
We claim that the following is an algebra isomorphism:
\[
\text{gr}_2 B(n, l) \simeq U(\mathfrak{gl}(n)[x]^\sigma).
\]
Indeed, denote by \(\overline{b}_{ij}^{(r)} \) the image of \(b_{ij}^{(r)} \) in the \((r - 1)\)-th component of \(\text{gr}_2 B(n, l) \). Then by the unitary condition we have for \(r \geq 1 \)
\[
(\varepsilon_i + (-1)^r \varepsilon_j) \overline{b}_{ij}^{(r)} = 0,
\]
while the reflection equation gives
\[
[\overline{b}_{ij}^{(r)}, \overline{b}_{kl}^{(s)}] = \delta_{kj} (\varepsilon_i (-1)^{r-1} + \varepsilon_j) \overline{b}_{il}^{(r+s-1)} - \delta_{il} (\varepsilon_i + \varepsilon_j (-1)^{r-1}) \overline{b}_{kj}^{(r+s-1)}.
\]
This shows that the mapping
\[\overline{b}_{ij}^{(r)} \mapsto (\varepsilon_i + (-1)^{r-1} \varepsilon_j) E_{ij} x^{r-1} \] \hspace{1cm} (3.40)
defines an algebra homomorphism \(\text{gr}_2 B(n, l) \rightarrow U(\mathfrak{gl}(n)[x]^\sigma) \). Corollary 3.2 ensures that its kernel is trivial.

Further, it is easily deduced from the definition (3.23) of the Sklyanin determinant that the images of \(\overline{c}_{2m+1} \) under the isomorphism (3.37) are given by
\[\overline{c}_{2m+1} \mapsto (-1)^m 2 (E_{11} + \cdots + E_{nn}) x^{2m}, \quad m \geq 0. \] \hspace{1cm} (3.41)

The theorem will be proved if we show that the center of \(U(\mathfrak{gl}(n)[x]^\sigma) \) is generated by \((E_{11} + \cdots + E_{nn}) x^m \) with \(m \geq 0 \). This is equivalent to the claim that the center of \(U(\mathfrak{sl}(n)[x]^\sigma) \) is trivial. Here \(\mathfrak{sl}(n)[x]^\sigma \) is the Lie algebra of polynomials of the form (3.36) where now \(a_0 = \mathfrak{sl}(n) \cap (\mathfrak{gl}(k) \oplus \mathfrak{gl}(l)) \). However, this follows from a slight modification of a more general result: see [21, Proposition 4.10]. Namely, if \(\mathfrak{a} \) is any Lie algebra and \(\sigma \) is its involution, we define \(\mathfrak{a}[x]^\sigma \) as the Lie algebra of polynomials of type (3.36). Then an argument similar to [21] proves that if the center of \(\mathfrak{a} \) is trivial, and the \(\mathfrak{a}_0 \)-module \(\mathfrak{a}_1 \) has no nontrivial invariant elements then the center of \(U(\mathfrak{a}[x]^\sigma) \) is trivial. \(\square \)

Remarks. (1) The algebra \(B(n, l) \) can also be regarded as a deformation of the universal enveloping algebra \(U(\mathfrak{gl}(n)[x]^\sigma) \). To see this, introduce the deformation parameter \(h \) and rewrite the defining relations for \(B(n, l) \) in terms of the re-scaled generators \(\overline{b}_{ij}^{(r)} = b_{ij}^{(r)} h^{r-1} \). These define a family of algebras \(B(n, l)_h \). If \(h \neq 0 \) the algebra \(B(n, l)_h \) is isomorphic to \(B(n, l) \) while for \(h = 0 \) one obtains the universal enveloping algebra \(U(\mathfrak{gl}(n)[x]^\sigma) \).

(2) It would be interesting to find an explicit formula for \(\text{sdet} B(u) \) in terms of the generators \(b_{ij}(u) \).

Recall that the Yangian \(Y(\mathfrak{sl}(n)) \) for the special linear Lie algebra \(\mathfrak{sl}(n) \) can be defined as the subalgebra of \(Y(n) \) which consists of the elements stable under all automorphisms of the form \(T(u) \mapsto h(u) T(u) \), where \(h(u) \) is a series in \(u^{-1} \) with the constant term 1; see [21]. Then one has the tensor product decomposition
\[Y(n) = Z(n) \otimes Y(\mathfrak{sl}(n)), \] \hspace{1cm} (3.42)
where \(Z(n) \) is the center of \(Y(n) \). Define the special reflection algebra \(S\mathcal{B}(n, l) \) by
\[S\mathcal{B}(n, l) = \mathcal{B}(n, l) \cap Y(\mathfrak{sl}(n)). \] \hspace{1cm} (3.43)
In other words, $SB(n,l)$ consists of the elements of $\mathcal{B}(n,l)$ which are stable under all automorphisms (2.13). It is implied by (3.42) (cf. [21, Proposition 4.14]), that the following decomposition holds

$$\mathcal{B}(n,l) = Z(n,l) \otimes SB(n,l),$$

(3.44)

where $Z(n,l)$ is the center of $\mathcal{B}(n,l)$.

4 Representations of $\mathcal{B}(n,l)$

Here we show that the Drinfeld highest weight theory [9] applies to the representations of the algebras $\mathcal{B}(n,l)$; see also [20] for the case of twisted Yangians. We then give a complete description of the finite-dimensional irreducible representations of $\mathcal{B}(n,l)$.

4.1 Highest weight representations

Recall first Drinfeld’s classification results for representations of the Yangian $Y(n)$ [9]; see also [20]. A representation L of the Yangian $Y(n)$ is called highest weight if there exists a nonzero vector $\xi \in L$ such that L is generated by ξ,

$$t_{ij}(u)\xi = 0 \quad \text{for} \quad 1 \leq i < j \leq n, \quad \text{and}$$
$$t_{ii}(u)\xi = \lambda_i(u)\xi \quad \text{for} \quad 1 \leq i \leq n,$$

(4.1)

for some formal series $\lambda_i(u) \in 1 + u^{-1}\mathbb{C}[[u^{-1}]]$. The vector ξ is called the highest vector of L and the set $\lambda(u) = (\lambda_1(u), \ldots, \lambda_n(u))$ is the highest weight of L.

Let $\lambda(u) = (\lambda_1(u), \ldots, \lambda_n(u))$ be an n-tuple of formal series. Then there exists a unique, up to an isomorphism, irreducible highest weight module $L(\lambda(u))$ with the highest weight $\lambda(u)$. Any finite-dimensional irreducible representation of $Y(n)$ is isomorphic to $L(\lambda(u))$ for some $\lambda(u)$. The representation $L(\lambda(u))$ is finite-dimensional if and only if there exist monic polynomials $Q_1(u), \ldots, Q_{n-1}(u)$ in u such that

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{Q_i(u+1)}{Q_i(u)}, \quad i = 1, \ldots, n-1.$$

(4.2)

These relations are analogs of the dominance conditions in the representation theory of semisimple Lie algebras. Similar relations involving monic polynomials are given by Drinfeld [9] to describe finite-dimensional irreducible representations of the Yangian $Y(\mathfrak{a})$ for any simple Lie algebra \mathfrak{a}. The polynomials $Q_i(u)$ are called the Drinfeld polynomials (usually denoted by $P_i(u)$).
Let us now turn to the reflection algebras. A representation V of the algebra $B(n, l)$ is called highest weight if there exists a nonzero vector $\xi \in V$ such that V is generated by ξ,
\begin{align}
b_{ij}(u) \xi &= 0 \quad \text{for } 1 \leq i < j \leq n, \\
b_{ii}(u) \xi &= \mu_i(u) \xi \quad \text{for } 1 \leq i \leq n,
\end{align}
for some formal series $\mu_i(u) \in \varepsilon_i + u^{-1} \mathbb{C}[[u^{-1}]]$. The vector ξ is called the highest vector of V and the set $\mu(u) = (\mu_1(u), \ldots, \mu_n(u))$ is the highest weight of V.

Theorem 4.1 Every finite-dimensional irreducible representation V of the algebra $B(n, l)$ is a highest weight representation. Moreover, V contains a unique (up to a constant factor) highest vector.

Proof. Our approach is quite standard; cf. [4, Proposition 12.2.3], [20]. Introduce the subspace of V
\begin{equation}
V^0 = \{\eta \in V \mid b_{ij}(u) \eta = 0, \quad 1 \leq i < j \leq n\}.
\end{equation}
We show first that V^0 is nonzero. The defining relations (2.7) give
\begin{equation}
[b_{ij}^{(1)}, b_{rs}(u)] = (\varepsilon_i + \varepsilon_j)(\delta_{rj} b_{is}(u) - \delta_{is} b_{rj}(u)).
\end{equation}
This implies that V^0 can be equivalently defined as
\begin{equation}
V^0 = \{\eta \in V \mid b_{i,i+1}(u) \eta = 0, \quad i = 1, \ldots, n-1\}.
\end{equation}
The operators $\varepsilon_i b_{ii}^{(1)}$ are pairwise commuting and so they have a common eigenvector $\zeta \neq 0$ in V. If we suppose that $V^0 = 0$ then there exists an infinite sequence of nonzero vectors in V,
\begin{equation}
\zeta, \quad b_{11,i+1}^{(r_1)} \zeta, \quad b_{12,i+1}^{(r_2)} b_{11,i+1}^{(r_1)} \zeta, \quad \ldots.
\end{equation}
By (1.5) they all are eigenvectors for the operators $\varepsilon_i b_{ii}^{(1)}$, $i = 1, \ldots, n$ of different weights. Thus, they are linearly independent which contradicts to the assumption $\dim V < \infty$. So, V^0 is nontrivial.

Next, we show that all the operators $b_{rr}(u)$ preserve the subspace V^0. We use a reverse induction on r. For $r = n$ we see from (2.7) that if $i < j < n$ then $b_{ij}(u) b_{nn}(v) \equiv 0$, where the equivalence is modulo the left ideal in $B(n, l)$ generated by the coefficients of $b_{ij}(u)$ with $i < j$. Similarly, if $i < n$ then the assertion follows from the equivalence
\begin{equation}
b_{in}(u) b_{nn}(v) \equiv \frac{1}{u+v} b_{in}(u) b_{nn}(v)
\end{equation}
which is immediate from (2.7). Now let \(r < n \). Note the following obvious consequence of (2.7): if \(i < m \) and \(i \neq j \) then

\[
b_{ij}(u) b_{jm}(v) = \frac{1}{u + v} \sum_{a=m}^{n} b_{ia}(u) b_{am}(v). \tag{4.9}
\]

In particular, the right hand side is independent of \(j \) and so, if \(i < m \) then for any indices \(j, j' \neq i \) we have

\[
b_{ij}(u) b_{jm}(v) = b_{ij'}(u) b_{j'm}(v). \tag{4.10}
\]

If \(i + 1 < r \) then it is immediate from (2.7) that

\[
b_{i,i+1}(u) b_{rr}(v) \equiv 0. \tag{2.7}
\]

Further, using (4.9) we derive from (2.7) that

\[
b_{r-1,r}(u) b_{rr}(v) \equiv \frac{n-r+1}{u+v} b_{r-1,r}(u) b_{rr}(v), \tag{4.11}
\]

which gives \(b_{r-1,r}(u) b_{rr}(v) \equiv 0 \). Next, by (2.7),

\[
b_{r,r+1}(u) b_{rr}(v) \equiv \frac{1}{u-v} \left(b_{r,r+1}(u) b_{rr}(v) - b_{r,r+1}(v) b_{rr}(u) \right)
- \frac{1}{u+v} \sum_{a=r+1}^{n} b_{ra}(v) b_{a,r+1}(u). \tag{4.12}
\]

By (4.11), the second sum here is \(\frac{n-r-1}{u+v} b_{r,r+1}(v) b_{r+1,r+1}(u) \), which is equivalent to zero by the induction hypothesis. So we get

\[
\frac{u-v-1}{u-v} b_{r,r+1}(u) b_{rr}(v) + \frac{1}{u-v} b_{r,r+1}(v) b_{rr}(u) \equiv 0. \tag{4.13}
\]

Swapping \(u \) and \(v \) we obtain

\[
- \frac{1}{u-v} b_{r,r+1}(u) b_{rr}(v) + \frac{u-v+1}{u-v} b_{r,r+1}(v) b_{rr}(u) \equiv 0. \tag{4.14}
\]

The system of linear equations (4.13) and (4.14) has only zero solution which proves the assertion in this case. Finally, for \(i > r \) we get from (2.7)

\[
b_{i,i+1}(u) b_{rr}(v) \equiv \frac{1}{u-v} \left(b_{i,i+1}(u) b_{ir}(v) - b_{i,i+1}(v) b_{ir}(u) \right) \tag{4.15}
\]

and

\[
b_{r,i+1}(u) b_{ir}(v) \equiv \frac{1}{u-v} \left(b_{r,i+1}(u) b_{rr}(v) - b_{r,i+1}(v) b_{rr}(u) \right)
- \frac{1}{u+v} \sum_{a=i+1}^{n} b_{ia}(v) b_{a,i+1}(u). \tag{4.16}
\]
By (1.10), the second sum here is equivalent to \(-\frac{n-i}{u+v} b_{i,i+1}(v) b_{i+1,i+1}(u)\), which is equivalent to zero by the induction hypothesis. Therefore, (4.16) implies that \(b_{r,i+1}(u) b_r(v)\) is symmetric in \(u\) and \(v\) which shows that the left hand side of (1.15) is equivalent to 0.

Our next step is to show that all the operators \(b_{rr}(u)\) on \(V^0\) commute. For any \(1 \leq r \leq n\), the defining relations (2.7) give

\[
(1 - \frac{1}{u+v}) [b_{rr}(u), b_{rr}(v)] \equiv \frac{1}{u+v} \alpha_r(u, v), \quad (4.17)
\]

where

\[
\alpha_r(u, v) = \sum_{a=r+1}^{n} (b_{ra}(u) b_{ar}(v) - b_{ra}(v) b_{ar}(u)). \quad (4.18)
\]

Using (2.7) again we obtain for \(a \geq r + 1\)

\[
b_{ra}(u) b_{ar}(v) - b_{ra}(v) b_{ar}(u) \\
\equiv \frac{1}{u+v} ([b_{rr}(u), b_{rr}(v)] + [b_{aa}(u), b_{aa}(v)] + \alpha_r(u, v) + \alpha_r(u, v)). \quad (4.19)
\]

Taking the sum over \(a\) gives

\[
(u + v - n + r) \alpha_r(u, v) \equiv (n - r)[b_{rr}(u), b_{rr}(v)] + \sum_{a=r+1}^{n} ([b_{aa}(u), b_{aa}(v)] + \alpha_r(u, v)).
\]

(4.20)

Using (4.17) we easily prove by a reverse induction on \(r\) that \([b_{rr}(u), b_{rr}(v)] \equiv 0\) and \(\alpha_r(u, v) \equiv 0\). Finally, if \(i < r\) then by (2.7)

\[
[b_{ii}(u), b_{rr}(v)] \equiv -\frac{1}{u^2 - v^2} ([b_{rr}(u), b_{rr}(v)] + \alpha_r(u, v)), \quad (4.21)
\]

which is equivalent to 0 as was shown above.

We can now conclude that the subspace \(V^0\) contains a common eigenvector \(\xi \neq 0\) for the operators \(b_{rr}(u)\), that is, (4.3) holds for some formal series \(\mu_i(u)\).

Since \(V\) is irreducible, the submodule \(B(n, l)\) \(\xi\) must coincide with \(V\). The uniqueness of \(\xi\) now follows from Corollary 3.2.

Given any \(n\)-tuple \(\mu(u) = (\mu_1(u), \ldots, \mu_n(u))\), where \(\mu_i(u) \in \varepsilon + u^{-1} C[[u^{-1}]]\), we define the Verma module \(M(\mu(u))\) as the quotient of \(B(n, l)\) by the left ideal generated by all the coefficients of the series \(b_{ij}(u)\) with \(1 \leq i < j \leq n\), and \(b_{ij}(u) - \mu_i(u)\) for
However, contrary to the case of the Yangian $Y(n)$ the module $M(\mu(u))$ can be trivial for some $\mu(u)$. If $M(\mu(u))$ is nontrivial we denote by $V(\mu(u))$ its unique irreducible quotient. Any irreducible highest weight module with the highest weight $\mu(u)$ is clearly isomorphic to $V(\mu(u))$.

Theorem 4.2 The Verma module $M(\mu(u))$ is nontrivial (i.e. $V(\mu(u))$ exists) if and only if

$$\mu_n(u) \mu_n(-u) = 1, \quad (4.22)$$

and for each $i = 1, \ldots, n - 1$ the following conditions hold

$$\tilde{\mu}_i(u) \tilde{\mu}_i(-u + n - i) = \tilde{\mu}_{i+1}(u) \tilde{\mu}_{i+1}(-u + n - i), \quad (4.23)$$

where

$$\tilde{\mu}_i(u) = (2u - n + i) \mu_i(u) + \mu_{i+1}(u) + \cdots + \mu_n(u). \quad (4.24)$$

Proof. Suppose first that $V(\mu(u))$ exists. For each $i = 1, \ldots, n$ set

$$\beta_i(u, v) = \sum_{a=i}^{n} b_{ia}(u) b_{ai}(v). \quad (4.25)$$

The highest vector of $V(\mu(u))$ is an eigenvector of $\beta_n(u, v)$ with the eigenvalue $\mu_n(u) \mu_n(v)$. Due to the unitary condition (2.8) this eigenvalue must be equal to 1 if $v = -u$ which proves (4.22). Using the notation of the proof of Theorem 4.1 we derive from (2.7) that

$$\frac{u + v - n + i}{u + v} \beta_i(u, v) \equiv b_{ii}(u) b_{ii}(v) - \frac{1}{u + v} \sum_{a=i+1}^{n} \beta_a(v, u)$$

$$+ \frac{1}{u - v} \sum_{a=i+1}^{n} (b_{aa}(u) b_{ii}(v) - b_{aa}(v) b_{ii}(u)). \quad (4.26)$$

Therefore,

$$\frac{u + v - n + i}{u + v} (\beta_i(u, v) - \beta_i(v, u)) \equiv \frac{1}{u + v} \sum_{a=i+1}^{n} (\beta_a(u, v) - \beta_a(v, u)). \quad (4.27)$$

Since clearly $\beta_n(u, v) \equiv \beta_n(v, u)$, an easy induction implies that $\beta_i(u, v) \equiv \beta_i(v, u)$ for all i. Now consider (4.26) with i replaced by $i + 1$ and subtract this from (4.26).
This gives
\[
\frac{u + v - n + i}{u + v} \left(\beta_i(u, v) - \beta_{i+1}(u, v) \right)
\]
\[= b_{ii}(u) b_{ii}(v) + \frac{1}{u - v} \sum_{a=i+1}^{n} \left(b_{aa}(u) b_{ii}(v) - b_{aa}(v) b_{ii}(u) \right)
\]
\[\quad - b_{i+1,i+1}(u) b_{i+1,i+1}(v) - \frac{1}{u - v} \sum_{a=i+2}^{n} \left(b_{aa}(u) b_{i+1,i+1}(v) - b_{aa}(v) b_{i+1,i+1}(u) \right).
\]
(4.28)

Apply both sides to the highest vector of \(V(\mu(u)) \) and put \(u + v = n - i \). We then get the following condition for the components of \(\mu(u) \),
\[
\mu_i(u) \mu_i(v) + \frac{1}{u - v} \sum_{a=i+1}^{n} \left(\mu_a(u) \mu_i(v) - \mu_a(v) \mu_i(u) \right)
\]
\[= \mu_{i+1}(u) \mu_{i+1}(v) + \frac{1}{u - v} \sum_{a=i+2}^{n} \left(\mu_a(u) \mu_{i+1}(v) - \mu_a(v) \mu_{i+1}(u) \right),
\]
(4.29)
where \(v = -u + n - i \). It is now a straightforward calculation to verify that this condition is equivalent to (4.23).

Conversely, suppose that the conditions (4.22) and (4.23) hold. We shall demonstrate that there exists a highest weight module \(L(\lambda(u)) \) of the Yangian \(Y(n) \) such that \(B(n,l) \)-cyclic span of the highest vector is a \(B(n,l) \)-module with the highest weight \(\mu(u) \). This will prove the existence of \(V(\mu(u)) \).

Suppose first that \(L(\lambda(u)) \) is an arbitrary irreducible highest weight module. The quantum comatrix \(\hat{T}(u) = (\hat{t}_{ij}(u)) \) is defined by
\[
\text{qdet } T(u) = \hat{T}(u) T(u - n + 1).
\]
(4.30)
It can be deduced from (4.22) that the matrix element \(\hat{t}_{ij}(u) \) equals \((-1)^{i+j} \) times the quantum determinant of the submatrix of \(T(u) \) obtained by removing the \(i \)th column and \(j \)th row. Therefore, the matrix element \(t'_{ij}(u) \) of the inverse matrix \(T^{-1}(u) \) can be expressed as
\[
t'_{ij}(u) = (\text{qdet } T(u + n - 1))^{-1} \hat{t}_{ij}(u + n - 1).
\]
(4.31)
This implies that the highest vector \(\xi \) of the \(Y(n) \)-module \(L(\lambda(u)) \) is annihilated by the elements \(t'_{ij}(u) \) with \(i < j \), and that \(\xi \) is an eigenvector for the \(t'_{ii}(u) \). The corresponding eigenvalues are found from the formula (3.18) and given by
\[
t'_{ii}(u) \xi = \frac{\lambda_{i+1}(u + n - i) \cdots \lambda_n(u + 1)}{\lambda_i(u + n - i) \cdots \lambda_n(u)} \xi.
\]
(4.32)
The following relations are easily derived from (1.3); see also [21, Section 7]

\[[t_{ij}(u), t'_{rs}(v)] = \frac{1}{u-v} \left(\delta_{rj} \sum_{a=1}^{n} t_{ia}(u) t'_{as}(v) - \delta_{is} \sum_{a=1}^{n} t'_{ra}(v) t_{aj}(u) \right). \]

(4.33)

Hence modulo the left ideal in \(Y(n) \) generated by the elements \(t_{ij}(u) \) with \(i < j \) we can write for \(a > i \)

\[t_{ia}(u) t'_{ai}(u) \equiv 1. \]

(4.34)

Due to (3.7) this implies that

\[b_{ii}(u) \equiv \varepsilon_{i} t_{ii}(u) t'_{ii}(u) + \frac{1}{2u} \sum_{a=i+1}^{n} \varepsilon_{a} \left(\sum_{c=i}^{n} t_{ic}(u) t'_{ci}(u) - \sum_{c=a}^{n} t'_{ac}(u) t_{ca}(u) \right). \]

(4.35)

Now suppose that \(i \geq k + 1 \) and set

\[f_{ii}(u) = - \sum_{i=1}^{n} t'_{ci}(u) t_{ci}(u). \]

(4.36)

Then (4.35) can be written as

\[\frac{2u-n+i}{2u} b_{ii}(u) \equiv -t_{ii}(u) t'_{ii}(u) - \frac{1}{2u} \sum_{a=i+1}^{n} f_{aa}(u). \]

(4.37)

A similar transformation for \(f_{ii}(u) \) gives

\[\frac{2u-n+i}{2u} f_{ii}(u) \equiv -t'_{ii}(u) t_{ii}(u) - \frac{1}{2u} \sum_{a=i+1}^{n} b_{aa}(u). \]

(4.38)

Since \(b_{nn}(u) \equiv f_{nn}(u) \), an easy induction proves that \(b_{ii}(u) \equiv f_{ii}(u) \) for all \(i = k+1, \ldots, n \). By (4.37), we have for those \(i \),

\[\frac{2u-n+i}{2u} b_{ii}(u) + \frac{1}{2u} \sum_{a=i+1}^{n} b_{aa}(u) \equiv -t_{ii}(u) t'_{ii}(u). \]

(4.39)

In the same way for \(i = 1, \ldots, k \) we get

\[\frac{2u-n+i}{2u-2l} b_{ii}(u) + \frac{1}{2u-2l} \sum_{a=i+1}^{n} b_{aa}(u) \equiv t_{ii}(u) t'_{ii}(u). \]

(4.40)
Now, applying both sides of (4.39) and (4.40) to ξ and using (4.32) we obtain
\[
\mu_n(u) = \begin{cases}
\lambda_n(u)\lambda_n(-u)^{-1} & \text{if } l = 0, \\
-\lambda_n(u)\lambda_n(-u)^{-1} & \text{if } l > 0.
\end{cases}
\]

(4.41)

Moreover,
\[
\frac{\tilde{\mu}_i(u)}{\mu_{i+1}(u)} = \frac{\lambda_i(u)\lambda_{i+1}(-u + n - i)}{\lambda_{i+1}(u)\lambda_i(-u + n - i)},
\]
if $i \neq k$; while
\[
\frac{\tilde{\mu}_k(u)}{\mu_{k+1}(u)} = \frac{l - u}{u} \frac{\lambda_k(u)\lambda_{k+1}(-u + l)}{\lambda_{k+1}(u)\lambda_k(-u + l)}.
\]

(4.42)

The proof of the theorem is now completed as follows. By (4.22) there exists a series $\lambda_n(u) \in 1 + u^{-1}\mathbb{C}[[u^{-1}]]$ such that (4.41) holds. Similarly, (4.23) ensures that there exist series $\lambda_1(u), \ldots, \lambda_{n-1}(u)$ satisfying (4.42) and (4.43). Thus, $V(\mu(u))$ is isomorphic to the irreducible quotient of $B(n, l) \xi$.

\[\square\]

4.2 Representations of $B(2, 0)$ and $B(2, 1)$

The algebras $B(2, 0)$ and $B(2, 1)$ turn out to be isomorphic to the symplectic and orthogonal twisted Yangians $Y^{-}(2)$ and $Y^{+}(2)$, respectively (see the Remark at the end of this section). Thus the representations of $B(2, 0)$ and $B(2, 1)$ can be described by using the results of [20] for the twisted Yangians. In our argument we use the corresponding isomorphisms of the extended algebras (Proposition 4.3). Note also that this similarity between the reflection algebras and the twisted Yangians does not extend to higher dimensions.

Recall (see e.g. [21]) that the twisted Yangian $Y^{\pm}(2)$ is an associative algebra with generators $s_{ij}^{(1)}, s_{ij}^{(2)}, \ldots$, where $i, j \in \{1, 2\}$. Introduce the generating series
\[
s_{ij}(u) = \delta_{ij} + s_{ij}^{(1)}u^{-1} + s_{ij}^{(2)}u^{-2} + \cdots
\]
and combine them into the matrix $S(u) = (s_{ij}(u))$. Then the defining relations have the form of a reflection equation analogous to (2.5),
\[
R(u - v)S_1(u)R^t(-u - v)S_2(v) = S_2(v)R^t(-u - v)S_1(u)R(u - v),
\]

(4.45)
as well as the symmetry relation
\[
S^t(-u) = S(u) \pm \frac{S(u) - S(-u)}{2u}.
\]

(4.46)
Here we have used the notation of Section 2, and
\[R^t(u) = 1 - Qu^{-1}, \quad Q = \sum_{i,j=1}^{2} E_{ij}^t \otimes E_{ji} \in (\text{End} \mathbb{C}^2)^{\otimes 2}, \]
where the matrix transposition is defined by
\[A^t = \begin{pmatrix} a_{22} & a_{12} \\ a_{21} & a_{11} \end{pmatrix} \quad \text{and} \quad A^t = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}, \quad (4.47) \]
for \(Y^+(2) \) and \(Y^-(2) \), respectively.

Another pair of associative algebras \(\tilde{Y}^+(2) \) and \(\tilde{Y}^-(2) \) is defined in the same way as \(Y^\pm(2) \), but with the symmetry relation (4.46) dropped. Then the algebra \(Y^\pm(2) \) is isomorphic to the quotient of \(\tilde{Y}^\pm(2) \) by the ideal generated by all coefficients of the series \(\delta(u) \) defined by the relation
\[\left(1 \mp \frac{1}{2u}\right) \delta(u) Q = Q S_1(u) R(u) S_2^{-1}(-u). \quad (4.48) \]
Moreover, these coefficients belong to the center of \(\tilde{Y}^\pm(2) \); see [21, Theorems 6.3 and 6.4] for the proofs of these assertions. Note also that \(\delta(u) \) satisfies \(\delta(u) \delta(-u) = 1 \) which is easy to deduce from (4.48).

Recall that \(\tilde{B}(n,l) \) is the algebra with the defining relations (2.5); see Section 2. Here we let \(G = \text{diag}(1, -1) \).

Proposition 4.3 The mappings
\[S(u) \mapsto B\left(u + \frac{1}{2}\right) \quad \text{and} \quad S(u) \mapsto B\left(u + \frac{1}{2}\right) G \quad (4.49) \]
define algebra isomorphisms \(\tilde{Y}^-(2) \to \tilde{B}(2, 0) \) and \(\tilde{Y}^+(2) \to \tilde{B}(2, 1) \), respectively.

Proof. We have to show that the matrix \(B\left(u + \frac{1}{2}\right) \) or \(B\left(u + \frac{1}{2}\right) G \), respectively, satisfies the relation (4.45). Note that in the case of \(\tilde{Y}^-(2) \) the operator \(P + Q \) is the identity on \((\text{End} \mathbb{C}^2)^{\otimes 2}\). This implies that
\[R^t(-u - v) = \frac{u + v + 1}{u + v} R(u + v + 1) \quad (4.50) \]
proving the assertion. In the case of \(\tilde{Y}^+(2) \) both \(G_1 Q G_1 + P \) and \(G_2 Q G_2 + P \) are the identity operators which implies that
\[G_1 R^t(-u - v) G_1 = G_2 R^t(-u - v) G_2 = \frac{u + v + 1}{u + v} R(u + v + 1). \quad (4.51) \]
It remains to note that $G_1 G_2$ commutes with $R(u - v)$. \[\]

Suppose now that V is an irreducible finite-dimensional representation of the twisted Yangian $Y^\pm(2)$. Then V is naturally extended to $\tilde{Y}^\pm(2)$ and, by Proposition 4.3, to the algebra $\tilde{B}(2, 0)$ or $\tilde{B}(2, 1)$, respectively. The central element $f(u)$ defined in (2.9) acts in V as a scalar series. Then there exists a series $g(u) \in 1 + u^{-1}C[[u^{-1}]]$ such that $g(u) g(-u) f(u) = 1$ as an operator in V. This means that the composition of V with the corresponding automorphism (2.15) of $\tilde{B}(2, 0)$ or $\tilde{B}(2, 1)$ can be regarded as an irreducible representation of the algebra $\tilde{B}(2, 0)$ or $\tilde{B}(2, 1)$, respectively.

Conversely, any irreducible finite-dimensional representation V of $\mathcal{B}(2, 0)$ or $\mathcal{B}(2, 1)$ is naturally extended to the corresponding algebra $\tilde{B}(2, 0)$ or $\tilde{B}(2, 1)$ and hence to $\tilde{Y}^\pm(2)$. The composition of V with an appropriate automorphism $S(u) \mapsto h(u) S(u)$ can be regarded as an irreducible representation of the twisted Yangian $Y^\pm(2)$. Indeed, the central element $\delta(u)$ defined by (4.48) acts as a scalar series on V, and since $\delta(u) \delta(-u) = 1$, the series $h(u)$ is found from the relation $h(u) h(-u)^{-1} \delta(u) = 1$.

This argument allows us to carry over the description of representations of $Y^\pm(2)$ to the case of the algebras $\mathcal{B}(2, 0)$ or $\mathcal{B}(2, 1)$. The following proposition is easily derived from [20, Theorems 5.4 and 6.4]. Suppose that two formal series $\mu_1(u)$ and $\mu_2(u)$ satisfy the conditions of Theorem 4.2 so that the irreducible highest weight module $V(\mu(u))$ exists.

Proposition 4.4

(i) The $\mathcal{B}(2, 0)$-module $V(\mu(u))$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that $P(-u + 2) = P(u)$ and

\[
\frac{(2u - 1) \mu_1(u) + \mu_2(u)}{2u \mu_2(u)} = \frac{P(u + 1)}{P(u)}.
\] (4.52)

In this case $P(u)$ is unique.

(ii) The $\mathcal{B}(2, 1)$-module $V(\mu(u))$ is finite-dimensional if and only if there exist $\gamma \in \mathbb{C}$ and a monic polynomial $P(u)$ in u such that $P(-u + 2) = P(u)$, $P(\gamma) \neq 0$ and

\[
\frac{(2u - 1) \mu_1(u) + \mu_2(u)}{2u \mu_2(u)} = \frac{P(u + 1)}{P(u)} \cdot \frac{\gamma - u}{\gamma + u - 1}.
\] (4.53)

In this case the pair $(P(u), \gamma)$ is unique. \[\]

Given $\alpha, \beta \in \mathbb{C}$ denote by $L(\alpha, \beta)$ the irreducible $\mathfrak{gl}(2)$-module with the highest weight (α, β). It is well-known that any finite-dimensional irreducible representation
of $Y(2)$ is isomorphic to a tensor product of the form

$$L = L(\alpha_1, \beta_1) \otimes \cdots \otimes L(\alpha_k, \beta_k), \quad (4.54)$$

up to the twisting by an automorphism $T(u) \mapsto h(u) T(u)$ of $Y(2)$, where $h(u)$ is a formal series [32], [3]; see also [20]. The corresponding analogs of this result for the algebras $B(2,0)$ and $B(2,1)$ are also immediate from [20] due to the above argument.

For any $\gamma \in \mathbb{C}$ denote by $V(\gamma)$ the one-dimensional representation of $B(2,1)$ such that the generators act by

$$b_{11}(u) \mapsto \frac{u + \gamma}{u - \gamma}, \quad b_{22}(u) \mapsto -1, \quad b_{12}(u) \mapsto 0, \quad b_{21}(u) \mapsto 0. \quad (4.55)$$

Representations of this kind were constructed in the pioneering paper [3]. Given any $Y(n)$-module L and any $B(n,l)$-module V we shall regard $L \otimes V$ as a $B(n,l)$-module by using Proposition 3.3.

Proposition 4.5 Any finite-dimensional irreducible $B(2,0)$-module is isomorphic to the restriction of a $Y(2)$-module of the form (4.54). Any finite-dimensional irreducible $B(2,1)$-module is isomorphic to the tensor product $L \otimes V(\gamma)$, where L is a $Y(2)$-module of the form (4.54).

Remarks. (1) It is proved in [21, Proposition 4.14] that the twisted Yangian admits the decomposition

$$Y^\pm(2) = Z^\pm \otimes SY^\pm(2), \quad (4.56)$$

where Z^\pm is the center of $Y^\pm(2)$, and $SY^\pm(2)$ is a subalgebra called the *special twisted Yangian*. Using the decomposition (3.44) we conclude from Proposition 4.3 that the algebras $SY^+(2)$ and $SY^-(2)$ are respectively isomorphic to $SB(2,1)$ and $SB(2,0)$. Indeed, each special subalgebra is the quotient of the corresponding algebra $\tilde{Y}^\pm(2)$ or $\tilde{B}(2,l)$ by the ideal generated by the center. On the other hand, both centers Z^\pm and $Z(2,l)$ are polynomial algebras in countably many variables; see Theorem 3.4 above and [21, Theorem 4.11]. This implies the isomorphisms $Y^+(2) \cong B(2,1)$ and $Y^-(2) \cong B(2,0)$.

(2) Criteria of irreducibility of the modules L and $L \otimes V(\gamma)$ (with L given by (4.54)) over the algebras $B(2,0)$ and $B(2,1)$, respectively, can also be obtained from the corresponding results in [20].
4.3 Classification theorem for $\mathcal{B}(n, l)$-modules

Theorem 4.1 together with the following result will complete the description of finite-dimensional irreducible representations of $\mathcal{B}(n, l)$. Let $V(\mu(u))$ be an irreducible highest weight module over the algebra $\mathcal{B}(n, l)$, so that the conditions of Theorem 4.2 for the components $\mu_i(u)$ hold. We shall keep using the notation (4.24).

Theorem 4.6

(i) The $\mathcal{B}(n, 0)$-module $V(\mu(u))$ is finite-dimensional if and only if there exist monic polynomials $P_1(u), \ldots, P_{n-1}(u)$ in u such that $P_i(-u + n - i + 1) = P_i(u)$ and

$$\frac{\tilde{\mu}_i(u)}{\tilde{\mu}_{i+1}(u)} = \frac{P_i(u + 1)}{P_i(u)}, \quad i = 1, \ldots, n - 1. \quad (4.57)$$

(ii) The $\mathcal{B}(n, l)$-module $V(\mu(u))$ (with $l > 0$) is finite-dimensional if and only if there exist an element $\gamma \in \mathbb{C}$ and monic polynomials $P_1(u), \ldots, P_{n-1}(u)$ in u such that $P_i(-u + n - i + 1) = P_i(u)$, $P_k(\gamma) \neq 0$ and

$$\frac{\tilde{\mu}_i(u)}{\tilde{\mu}_{i+1}(u)} = \frac{P_i(u + 1)}{P_i(u)} \cdot \frac{\gamma - u}{\gamma + u - l}, \quad i = 1, \ldots, n - 1, \quad i \neq k, \quad (4.58)$$

while

$$\frac{\tilde{\mu}_k(u)}{\tilde{\mu}_{k+1}(u)} = \frac{P_k(u + 1)}{P_k(u)} \cdot \frac{\gamma - u}{\gamma + u - l}. \quad (4.59)$$

Proof. Set $V = V(\mu(u))$ and suppose first that $\dim V < \infty$. We shall use induction on n. In the case $n = 2$ the result holds by Proposition 4.4. Suppose now that $n \geq 3$ and consider the subspace

$$V_+ = \{ \eta \in V \mid b_{1i}(u) \eta = 0 \quad \text{for} \quad i = 2, \ldots, n \}. \quad (4.60)$$

The calculations similar to those used in the proof of Theorem 4.1 show that V_+ is stable under the operators $b_{ij}(u)$ with $2 \leq i, j \leq n$. Moreover, the operators

$$b_{ij}^\circ(u) = b_{i+1,j+1}(u), \quad i, j = 1, \ldots, n - 1 \quad (4.61)$$

form a representation of the algebra $\mathcal{B}(n-1, l)$ in V_+ (recall that by our assumptions, $l \leq n/2$). The cyclic span $\mathcal{B}(n-1, l) \xi$ of the highest vector $\xi \in V$ is a module with the highest weight $\mu_+(u) = (\mu_2(u), \ldots, \mu_n(u))$. Since this module is finite-dimensional the conditions of the theorem must be satisfied for the components of $\mu_+(u)$.

Similarly, consider the subspace

$$V_- = \{ \eta \in V \mid b_{in}(u) \eta = 0 \quad \text{for} \quad i = 1, \ldots, n - 1 \}. \quad (4.62)$$
Now the operators $b_{nn}(u)$ and $b_{ij}(u)$ with $1 \leq i, j \leq n - 1$ preserve V_-. Moreover, the operators
\[
b_{ij}^\prime(u) = b_{ij}(u + \frac{1}{2}) + \frac{\delta_{ij}}{2u} \cdot b_{nn}(u + \frac{1}{2}), \quad i, j = 1, \ldots, n - 1
\] (4.63)
form a representation of the algebra $B(n - 1, 0)$ or $B(n - 1, l - 1)$ in V_-, respectively for $l = 0$ and $l > 0$. Again, the cyclic span of ξ is a finite-dimensional module over $B(n - 1, 0)$ or $B(n - 1, l - 1)$, respectively, with the highest weight $\mu_-(u) = (\mu_1^\circ(u), \ldots, \mu_{n-1}^\circ(u))$, where
\[
\mu_i^\circ(u) = \mu_i(u + \frac{1}{2}) + \frac{1}{2u} \cdot \mu_n(u + \frac{1}{2}).
\] (4.64)
By the induction hypothesis, the components of $\mu_-(u)$ must satisfy the conditions of the theorem. Rewriting them in terms of the components of $\mu(u)$ we complete the proof of the ‘only if’ part.

Conversely, suppose that the conditions of the theorem hold for the components of the highest weight $\mu(u)$. Since $P_i(u) = P_i(-u + n - i + 1)$ for each i, there exist monic polynomials $Q_i(u)$ in u such that
\[
P_i(u) = (-1)^{\deg Q_i} Q_i(u) Q_i(-u + n - i + 1).
\] (4.65)
Then there exists a representation $L(\lambda(u))$ of the Yangian $Y(n)$ such that the components $\lambda_i(u)$ of $\lambda(u)$ satisfy the conditions (4.12) for the polynomials $Q_i(u)$. The argument of the proof of Theorem 4.2 shows that the $B(n, 0)$-span of the highest vector ξ of $L(\lambda(u))$ is a module with the highest weight $\mu(u)$ such that the relations (4.42) hold. Since $V(\mu(u))$ is isomorphic to the irreducible quotient of this span we conclude that $V(\mu(u))$ is finite-dimensional.

Suppose now that $l > 0$. It is easy to verify that for any $\gamma \in \mathbb{C}$ the assignment
\[
b_{ij}(u) \mapsto \delta_{ij} \frac{u + \gamma}{\varepsilon_i u - \gamma}
\] (4.66)
defines a one-dimensional representation of $B(n, l)$ which we denote by $V(\gamma)$. Now consider the $B(n, l)$-module $L(\lambda(u)) \otimes V(l - \gamma)$; see Proposition 3.3. Let η be a basis vector of $V(l - \gamma)$. Repeating again the calculation of the proof of Theorem 4.2 we find that the $B(n, l)$-span of the vector $\xi \otimes \eta$ is a module with the highest weight $\mu(u)$ such that the relations (4.42) hold for $i \neq k$, while
\[
\frac{\tilde{\mu}_k(u)}{\mu_{k+1}(u)} = \frac{\gamma - u}{\gamma + u - l} \cdot \frac{\lambda_k(u)}{\lambda_{k+1}(u)} \frac{\lambda_{k+1}(-u + l)}{\lambda_k(-u + l)}
\] (4.67)
This implies that $V(\mu(u))$ is finite-dimensional.
Using the decomposition (3.44) we can deduce the following parametrization of the representations of the special reflection algebra $SB(n, l)$.

Corollary 4.7 (i) The finite-dimensional irreducible representations of the special reflection algebra $SB(n, 0)$ are in a one-to-one correspondence with the families of monic polynomials $(P_1(u), \ldots, P_{n-1}(u))$ such that $P_i(-u + n - i + 1) = P_i(u)$.

(ii) The finite-dimensional irreducible representations of the special reflection algebra $SB(n, l)$ with $l > 0$ are in a one-to-one correspondence with the families $(P_1(u), \ldots, P_{n-1}(u), \gamma)$, where $\gamma \in \mathbb{C}$ and the $P_i(u)$ are monic polynomials such that $P_i(-u + n - i + 1) = P_i(u)$ and $P_k(\gamma) \neq 0$.

References

[1] R. J. Baxter, *Exactly solved models in statistical mechanics*, Academic Press, New York, 1982.

[2] C. Briot and E. Ragoucy, *RTT presentation of finite W-algebras*, J. Phys. A 34 (2001), 7287–7310.

[3] V. Chari and A. Pressley, *Yangians and R-matrices*, L’Enseign. Math. 36 (1990), 267–302.

[4] V. Chari and A. Pressley, *A guide to quantum groups*, Cambridge University Press, 1994.

[5] I. V. Cherednik, *Quantum groups as hidden symmetries of classic representation theory*, in ‘Differential Geometric Methods in Physics (A. I. Solomon, Ed.)’, World Scientific, Singapore, 1989, pp. 47–54.

[6] I. V. Cherednik, *Factorizing particles on a half line and root systems*, Theoret. Math. Phys. 61 (1984), 977–983.

[7] V. G. Drinfeld, *Hopf algebras and the quantum Yang–Baxter equation*, Soviet Math. Dokl. 32 (1985), 254–258.

[8] V. G. Drinfeld, *Quantum Groups*, in ‘Proc. Int. Congress Math., Berkeley, 1986’, AMS, Providence RI, 1987, pp. 798–820.

[9] V. G. Drinfeld, *A new realization of Yangians and quantized affine algebras*, Soviet Math. Dokl. 36 (1988), 212–216.

28
[10] A. G. Izergin and V. E. Korepin, *A lattice model related to the nonlinear Schrödinger equation*, Sov. Phys. Dokl. **26** (1981) 653–654.

[11] T. H. Koornwinder and V. B. Kuznetsov, *Gauss hypergeometric function and quadratic R-matrix algebras*, St. Petersburg Math. J. **6** (1994), 161–184.

[12] P. P. Kulish and E. K. Sklyanin, *Quantum spectral transform method: recent developments*, in ‘Integrable Quantum Field Theories’, Lecture Notes in Phys. **151** Springer, Berlin-Heidelberg, 1982, pp. 61–119.

[13] P. P. Kulish and E. K. Sklyanin, *Algebraic structures related to reflection equations*, J. Phys. A **25** (1992), 5963–5975.

[14] V. B. Kuznetsov, M. F. Jørgensen, P. L. Christiansen, *New boundary conditions for integrable lattices*, J. Phys. A **28** (1995), 4639–4654.

[15] V. B. Kuznetsov, *$_3F_2(1)$ hypergeometric function and quadratic R-matrix algebra*, in ‘Symmetries and integrability of difference equations’, CRM Proc. Lecture Notes, 9, Amer. Math. Soc., Providence, RI, 1996, pp. 185–197.

[16] A. Liguori, M. Mintchev and L. Zhao, *Boundary exchange algebras and scattering on the half line*, Comm. Math. Phys. **194** (1998), 569–589.

[17] M. Mintchev, E. Ragoucy and P. Sorba, *Spontaneous symmetry breaking in the $gl(N)$-NLS hierarchy on the half line*, J. Phys. A, to appear.

[18] A. I. Molev, *Yangians and their applications*, in “Handbook of Algebra”, Vol. 3, (M. Hazewinkel, Ed.), Elsevier, to appear.

[19] A. I. Molev, *Gelfand–Tsetlin basis for representations of Yangians*, Lett. Math. Phys. **30** (1994), 53–60.

[20] A. I. Molev, *Finite-dimensional irreducible representations of twisted Yangians*, J. Math. Phys. **39** (1998), 5559–5600.

[21] A. Molev, M. Nazarov and G. Olshanski, *Yangians and classical Lie algebras*, Russian Math. Surveys **51**:2 (1996), 205–282.

[22] M. Nazarov and V. Tarasov, *Representations of Yangians with Gelfand–Zetlin bases*, J. Reine Angew. Math. **496** (1998), 181–212.

[23] M. Noumi, *Macdonald’s symmetric polynomials as zonal spherical functions on quantum homogeneous spaces*, Adv. Math. **123** (1996), 16–77.
[24] G. Olshanski, *Twisted Yangians and infinite-dimensional classical Lie algebras*, in ‘Quantum Groups’ (P. P. Kulish, Ed.), Lecture Notes in Math. **1510**, Springer, Berlin-Heidelberg, 1992, pp. 103–120.

[25] E. Ragoucy, *Twisted Yangians and folded W-algebras*, Intern. J. Mod. Phys. A **16** (2001), 2411–2433.

[26] E. Ragoucy and P. Sorba, *Yangians and finite W-algebras*, Quantum groups and integrable systems (Prague, 1998). Czechoslovak J. Phys. **48** (1998), 1483–1487.

[27] E. Ragoucy and P. Sorba, *Yangian realisations from finite W-algebras*, Comm. Math. Phys. **203** (1999), 551–572.

[28] N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, *Central extensions of quantum current groups*, Lett. Math. Phys., **19** (1990), 133–142.

[29] E. K. Sklyanin, *Boundary conditions for integrable quantum systems*, J. Phys. **A21** (1988), 2375–2389.

[30] L. A. Takhtajan and L. D. Faddeev, *Quantum inverse scattering method and the Heisenberg XYZ-model*, Russian Math. Surv. **34** (1979), no. 5, 11–68.

[31] V. O. Tarasov, *Structure of quantum L-operators for the R-matrix of the XXZ-model*, Theor. Math. Phys. **61** (1984), 1065–1071.

[32] V. O. Tarasov, *Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum Hamiltonians*, Theor. Math. Phys. **63** (1985), 440–454.