HER2 inhibition in gastro-oesophageal cancer: A review drawing on lessons learned from breast cancer

Hazel Lote, Nicola Valeri, Ian Chau

Abstract

Human epidermal growth factor receptor 2 (HER2)-inhibition is an important therapeutic strategy in HER2-amplified gastro-oesophageal cancer (GOC). A significant proportion of GOC patients display HER2 amplification, yet HER2 inhibition in these patients has not displayed the success seen in HER2 amplified breast cancer. Much of the current evidence surrounding HER2 has been obtained from studies in breast cancer, and we are only recently beginning to improve our understanding of HER2-amplified GOC. Whilst there are numerous licensed HER2 inhibitors in breast cancer, trastuzumab remains the only licensed HER2 inhibitor for HER2-amplified GOC. Clinical trials investigating lapatinib, trastuzumab emtansine, pertuzumab and MM-111 in GOC have demonstrated disappointing results and have not yet changed the treatment paradigm. Trastuzumab deruxtecan may hold promise and is currently being investigated in phase II trials. HER2 amplified GOC differs from breast cancer due to inherent differences in the HER2 amino-truncation and mutation rate, loss of HER2 expression, alterations in HER2 signalling pathways and differences in insulin-like growth factor-1 receptor and MET expression. Epigenetic alterations involving different microRNA profiles in GOC as compared to breast cancer and intrinsic differences in the immune environment are likely to play a role. The key to effective treatment of HER2 amplified GOC lies in understanding these mechanisms and tailoring HER2 inhibition for GOC patients in order to improve clinical outcomes.

Key words: Human epidermal growth factor receptor 2; Gastro-oesophageal cancer; Trastuzumab; Resistance; Biomarkers; Breast cancer
Core tip: Human epidermal growth factor receptor 2 (HER2)-inhibition is an important therapeutic strategy in HER2-amplified gastro-oesophageal cancer (GOC). A significant proportion of GOC patients display HER2 amplification, yet HER2 inhibition in these patients has not displayed the success seen in HER2 amplified breast cancer. We evaluate current clinical and laboratory evidence surrounding HER2 inhibition in GOC. Inherent differences in the HER2 receptor, signalling pathways, associated microRNA signature and immune environment may partly explain the disappointing clinical trial outcomes seen in GOC. Only with improved understanding of HER2 inhibition can effective treatment be provided in order to improve clinical outcomes for patients.

INTRODUCTION
Cancer therapy is becoming increasingly personalised and molecularly targeted, using biomarkers to identify patients most likely to respond to therapy. Human epidermal growth factor receptor 2 (HER2)-amplified cancer is defined as cancer with HER2 protein overexpression ± HER2 gene amplification. It represents a molecularly-defined subgroup of malignancy and is known to exist in breast and gastro-oesophageal cancers (GOC), among others. Whereas the treatment for HER2-amplified breast cancer patients has been extremely successful, the treatment for GOC has been less so. In this review, we explore the mechanisms by which HER2 amplification contributes to cancer progression and prognosis, methods of targeting HER2 amplification, mechanisms of resistance to HER2 therapy, strategies to overcome resistance, biomarkers and future directions.

HER2 RECEPTOR AND ITS INTERACTIONS
HER2, encoded by the ERBB2 oncogene on chromosome 17q21, is a member of the epidermal growth factor receptor (EGFR) family associated with tumour cell proliferation, apoptosis, adhesion, migration and differentiation. All studies investigating HER2 receptor interactions have been conducted in breast cancer cells, and a literature search did not reveal any studies of HER2 receptor interactions conducted specifically in GOC. Given the relatively disappointing results seen in GOC, we suggest it may be worthwhile exploring HER2 receptor interactions specifically in GOC, to investigate whether there are any mechanistic differences in HER2 binding and signalling between breast and GOC.

HER2 RECEPTOR OVEREXPRESSION AND ONCOGENIC MECHANISMS IN BREAST AND GOC

In both breast cancer and GOC, HER2 overexpression occurs in approximately 20% . The Gastric Cancer Genome Atlas (part of The Cancer Genome Atlas (TCGA)) recently classified gastric cancer into four subtypes and found that HER2 overexpression occurs only in Epstein-Barr virus (EBV)-positive tumours, genomically-stable (GS) tumours and tumours with chromosomal instability (CIN) but not in microsatellite unstable (MSI-high) tumours . Mechanisms by which HER2 overexpression can be oncogenic are complex, with activation of RAS-MAPK, c-jun and Akt-mTOR pathways (Figure 1). HER2 overexpression may lead to formation of HER2 homodimers and ligand-independent downstream signalling. The majority of studies investigating HER2 overexpression oncogenicity have been conducted in breast cancer, and mechanisms may differ in GOC.

INFLUENCE OF HER2 STATUS ON PROGNOSIS IN BREAST AND GASTRIC CANCER
In contrast to breast cancer, HER2 overexpression does not impact survival in GOC. Large phase III prospective randomised controlled trials such as ToGA, LOGiC and TYTAN demonstrate that patients with HER2 amplified GOC who receive the control arm (chemotherapy alone) have an overall survival (OS) similar to all-comers (Table 1). In the first-line ToGA and LOGiC trials, OS was 11.1 mo and 10.5 mo, respectively, in the control arms, compared to OS in all-comers of 9.9 mo in the Phase III REAL2 trial. In the 2nd-line TYTAN trial, OS was 8.9 mo in the control, which compared favourably to OS in all-comers treated with paclitaxel in the control arms of the RAINBOW (OS 7.4 mo) and GOLD trials (OS 6.9 mo). This cross-trial comparison suggests that HER2 overexpression does not adversely affect GOC prognosis.

HER2 SCORING CRITERIA, DISCORDANCE AND HETEROGENEITY IN GOC AND BREAST CANCER
The HER2 scoring system in breast cancer was developed prior to the scoring system for GOC and was standardised in 2007 following an expert panel forum. Published by Baishideng Publishing Group Inc. All rights reserved.
Table 1 Summary of selected randomized phase III HER2 trials in HER2-amplified gastro-oesophageal cancer and breast cancer

Study title	Setting	n	Treatment arms	Primary endpoint	OS	PFS	HR and P value
Trastuzumab 1st line metastatic	ToGA[19]	594	Trastuzumab + chemotherapy vs chemotherapy alone	OS	Trastuzumab + chemotherapy: 13.8 mo (95% CI: 12-16)	6.7 mo (95% CI: 6-8)	HR = 0.74; 95% CI: 0.60-0.91; P = 0.0046
			Lapatinib + T-DM1	PFS	Lapatinib + chemotherapy: 25.1 mo	7.4 mo	P = 0.046

Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2[20]

| | | | Lapatinib + chemotherapy vs chemotherapy alone | PFS | Lapatinib + chemotherapy: 7.9 mo | 2.7 mo | HR = 1.15; 95% CI: 0.87-1.51; P = 0.86 |

Lapatinib 1st line metastatic

| LOGiC[21] | 1st line metastatic GOC | 545 | Lapatinib + CAPOX vs Placebo + CAPOX | OS | Lapatinib + CAPOX: 26.0 mo (95% CI: 24.2-27.2 mo) | 12.8 mo (95% CI: 11.1-14.7 mo) | HR = 0.91; 95% CI: 0.73-1.12; P value not significant (exact value not given) |

Randomized trial of lapatinib vs placebo added to paclitaxel in the treatment of human epidermal growth factor receptor 2-overexpressing metastatic breast cancer[22]

| Tytan[23] | 2nd line metastatic GOC | 261 | Lapatinib + Paclitaxel vs Placebo + Paclitaxel | OS | Lapatinib + Paclitaxel: 11.0 mo | Paclitaxel alone: 10.9 mo | HR = 0.84; 95% CI: 0.79-0.91; P = 0.014 |

Lapatinib plus capecitabine for HER2-Positive advanced breast cancer[24]

| T-DM1 2nd line metastatic GATSBY[25] | 2nd line metastatic GOC | 345 | T-DM1 vs Paclitaxel | OS | T-DM1: 7.9 mo | Paclitaxel: 8.6 mo | HR = 0.73; 95% CI: 0.60-0.91; P = 0.001 |

GATSBY[26]

| EMILIA[27] | 2nd line metastatic breast cancer | 991 | T-DM1 vs lapatinib + capecitabine | PFS | T-DM1: 27.0 mo | Lapatinib + capecitabine: 25.1 mo | HR = 0.55 to 0.77; P = 0.001 |

T-DM1 2nd line metastatic

			Lapatinib + chemotherapy vs chemotherapy alone	PFS	Lapatinib + chemotherapy: 13.8 mo (95% CI: 12-16)	6.7 mo (95% CI: 6-8)	HR = 0.74; 95% CI: 0.60-0.91; P = 0.0046

HER2: Human epidermal growth factor receptor 2.

The ToGA trial used a new immunohistochemistry (IHC) scoring criteria developed by Hofmann[14] for gastric cancer due to inherent biological differences compared to breast cancers, such as tumour heterogeneity and baso(lateral) membrane staining[15,14]. Some criteria were the same as breast cancer: HER2 positivity was defined as an IHC score of 3+ and/or erbB-2 amplification detected using fluorescent in-situ-hybridisation (FISH)[5,14]. Notably, GOC patients with highly amplified HER2 gene experience better response and survival than patients with lower HER2 gene amplification levels when treated with 1st-line trastuzumab plus chemotherapy for metastatic gastric cancer[15].

HER2 expression in primary and metastatic sites demonstrates heterogeneity more frequently in GOC than in breast cancer[16,17], and discordance between IHC and FISH results occur more frequently in GOC than in breast cancer[18]. This may explain the limited success of targeted anti-HER2 therapy in GOC. If only a small proportion of GOC cells shows HER2 overexpression and if our detection methods are unreliable, GOC cancer cells that do not overexpress HER2 will not be effectively targeted with anti-HER2 therapy, and we may be failing to treat adequately some patients with...
HER2 overexpression.

THERAPEUTIC AGENTS TARGETING THE HER2 SIGNALLING PATHWAY

Trastuzumab

The efficacy of trastuzumab (a monoclonal antibody against HER2) in breast cancer in combination with chemotherapy has been convincingly demonstrated in both metastatic (OS 25.1 mo in patients receiving trastuzumab + chemotherapy vs 20.3 mo in those receiving chemotherapy alone, Table 1) and adjuvant settings. Breast cancer OS is, however, influenced by the greater number of treatment options in the 2nd-line setting and beyond.

In GOC, trastuzumab is the only licensed anti-HER2 treatment, following positive results from the ToGA trial, an open-label, international, phase 3, randomised controlled trial evaluating trastuzumab plus platinum-fluoropyrimidine chemotherapy for 1st-line treatment of HER2 positive GOC (Table 1). Median OS was initially reported as 13.8 mo (95%CI: 12-16) in patients receiving trastuzumab plus chemotherapy vs 11.1 mo (10-13) in patients receiving chemotherapy alone (HR = 0.74; 95%CI: 0.60-0.91; P = 0.0046). This led to trastuzumab plus platinum-fluoropyrimidine chemotherapy followed by trastuzumab maintenance becoming the standard of care in 1st-line metastatic GOC patients. Updated OS (after a further 1 year of follow-up) released by the United States Food and Drug Administration (FDA) in 2016 showed median OS of 13.1 mo (95%CI: 11.9-15.1) in the trastuzumab plus chemotherapy arm and 11.7 mo (95%CI: 10.3-13.0) in the control arm (HR = 0.8, 95%CI: 0.67-0.97).

Subgroup analysis demonstrated that patients with IHC 3+ HER2 expression experienced the greatest benefit from trastuzumab (294 patients, HR = 0.66, 95%CI: 0.5-0.87). Patients with IHC 2+ HER2 expression gained less benefit from the addition of trastuzumab (160 patients, HR = 0.78, 95%CI: 0.55-1.10), and patients with IHC 1 or 1+ gained no benefit (133 patients, HR = 1.33, 95%CI: 0.92-1.92). Recent data on two different doses of trastuzumab in combination with chemotherapy in GOC found that a higher trastuzumab maintenance dose does not convey additional survival benefit (OS 12.5 mo in the 8 mg/kg + 6 mg/kg group vs 10.6 mo in the 8 mg/kg + 10 mg/kg group).

It remains to be seen whether trastuzumab confers a survival benefit in the neo-adjuvant/perioperative/adjuvant setting in combination with chemotherapy + surgery ± radiotherapy, and several phase 2 trials are underway to address this question (UMIN 000016920, NCT01472029, NCT02250209, Table 2). Perioperative trastuzumab appears to be safe and well tolerated.
One Phase II trial evaluating capcitabine + oxaliplatin with trastuzumab three cycles pre-operatively and post-operatively followed by 12 mo adjuvant trastuzumab reported an 18 mo DFS of 71% (95% CI: 53%-83%), a 24 mo DFS of 60% and a median follow-up of 24.1 mo (median DFS and OS not reached). Although a phase III trial evaluating radiotherapy + chemotherapy ± trastuzumab is underway (NCT01196390), it is notable that trastuzumab is not being investigated in phase III trials in the peri-operative GOC setting. This is likely due to the prohibitive number of patients (approximately 10000) that would require screening in order to recruit adequate numbers of patients for a sufficiently powered study, given that HER2 overexpression is around 20%.

Table 2 Selected perioperative (neoadjuvant + adjuvant) clinical trials currently underway targeting HER2 in HER2-amplified localised gastro-oesophageal cancer

Official study title	Stage and study number	Treatment arms	Estimated enrollment	Primary endpoint
Trastuzumab	Phase II UMIN 00016920	Preoperative S-1 + cisplatin + trastuzumab vs S-1 + cisplatin	130	OS
A randomized phase II trial of systemic chemotherapy with and without trastuzumab	Phase II NCT01472029	Pre-operative S-1 + cisplatin + trastuzumab vs S-1 + cisplatin + leucovorin + docetaxel + oxaliplatin (FLOT) + trastuzumab Post-operative trastuzumab monotherapy	53	pCR
followed by surgery in HER2-positive advanced gastric or esophageogastric junction adenocarcinoma with extensive lymph node metastasis: Japan Clinical Oncology Group study (JCOG1301 (Trigger Study))	Phase II NCT02250209	Trastuzumab + capecitabine + oxaliplatin after D2 gastrectomy	40	3-yr DFS
Multicenter, explorative phase II study of perioperative 5-FU, leucovorin, docetaxel, and oxaliplatin (FLOT) in combination with trastuzumab in patients with HER2-positive, locally advanced, resectable adenocarcinoma of the gastroesophageal junction or stomach (HerFLOT)	Phase II NCT01196390	Radiotherapy + paclitaxel + carboplatin + trastuzumab vs Radiotherapy + paclitaxel + carboplatin	591	DFS
Trastuzumab plus XELOX for HER2-positive stage III gastric cancer after D2 gastrectomy: prospective observational Study	Phase II NCT00450203	Epirubicin + cisplatin + capcitabine (ECX) + lapatinib vs ECX	40 (within lapatinib sub-study)	Safety
A phase III trial evaluating the addition of trastuzumab to trimodality treatment of HER2-overexpressing esophageal adenocarcinoma	Phase II NCT0205047	Cisplatin/capcitabine or cisplatin/5-fluorouracil vs cisplatin/capcitabine + trastuzumab or cisplatin/5-fluorouracil + trastuzumab vs cisplatin/capcitabine + trastuzumab + pertuzumab or cisplatin/5-fluorouracil + trastuzumab + pertuzumab + pertuzumab	220	Near complete pathological response rate
Lapatinib	Phase II NCT02581462	5-FU + leucovorin + docetaxel + oxaliplatin (FLOT) vs FLOT + trastuzumab + Pertuzumab	404	pCR
A randomised phase II / III trial of peri-operative chemotherapy with or without bevacizumab in operable oesophageogastric adenocarcinoma and a feasibility study evaluating lapatinib in HER-2 positive oesophageogastric adenocarcinomas and (in selected centres) MRI and PET/CT substudies (STO3 trial)	Phase II NCT02120911	Pertuzumab + trastuzumab + standard chemoradiation with carboplatin and paclitaxel	40	Safety
Pertuzumab + Trastuzumab				
INNegis of trastuzumab, with or without pertuzumab, into perioperativE chemotherApy of HER-2 positive stomach cancer: the INNOVATION-TRIAL				
FLOT vs FLOT/Herceptin/Pertuzumab for perioperative therapy of adenocarcinoma of the stomach and gastroesophageal junction expressing HER-2				
A phase II / III trial of the AIO. (PETRARCA study) Feasibility study of chemoradiation, TRAstuzumab and pertuzumab in resectable HER2+esophageal carcinoma: the TRAP study				

pCR: Pathological complete response; DFS: Disease-free survival.
Table 3 Selected clinical trials currently underway targeting HER2 in advanced and metastatic HER2-amplified gastro-oesophageal cancer

Official study title	Stage and study number	Treatment arms	Estimated enrollment	Primary endpoint
Trastuzumab in combination with targeted therapies	Phase II NCT01359397	Docetaxel, oxaliplatin, capecitabine, bevacizumab (B-DOCT study)	Information not available	PFS
A phase II study of afatinib (BIBW 2992) and trastuzumab in patients with advanced HER2-positive trastuzumab-refractory advanced esophagogastric cancer	Phase II NCT01522768	Afatinib (BIBW 2992) + trastuzumab	40	ORR
A combination study of kadcyla (trastuzumab emtansine, T-DM1) and capecitabine in patients with HER2-positive metastatic breast cancer and patients with HER2-positive locally advanced/metastatic gastric cancer (TRAX-HER2 study)	Phase II NCT01702558	Capecitabine + trastuzumab emtansine (T-DM1)	235	Safety
Phase 1 trial of intraperitoneal ²¹²Pb-TCMC-trastuzumab for HER-2 expressing malignancy	Phase I NCT01384253	²¹²Pb-TCMC-trastuzumab + trastuzumab	36	Safety
A phase 1, two-part, multicenter, non-randomized, open-label, multiple dose first-in-human study of DS-8201A, in subjects with advanced solid malignant tumors	Phase II NCT02564900	Trastuzumab deruxtecan (DS-8201a)	198	Safety
New HER2 inhibitors	Phase II NCT02134258	Lapatinib	25	ORR
A phase Ⅰ-Ⅱ study to assess the safety, efficacy and pharmacokinetic profile of HM781-36B combined with paclitaxel and trastuzumab in patients with HER-2 positive advanced gastric cancer	Phase 1 / II NCT01746771	HM781-36B(Poziotinib) (Other Name: NOV120101)	48	Safety
A phase Ⅰ study of pyrotinib in combination with docetaxel in patients with HER2 positive advanced gastric cancer	Phase Ⅰ NCT02378389	Pyrotinib + docetaxel	28	Safety
A two-part phase Ⅰ, open label, dose escalation study to evaluate the safety, tolerability and pharmacokinetics of pyrotinib in patients whose disease progressed on prior HER2 targeted therapy	Phase Ⅰ NCT02500199	Pyrotinib	70	MTD
An open-label, multicenter, multinational, phase 2 study exploring the efficacy and safety of neratinib therapy in patients with solid tumors with activating HER2, HER3 or EGFR mutations or with EGFR gene amplification	Phase Ⅱ NCT01953926	Neratinib	292	ORR
A phase Ib / Ⅱ study of pembrolizumab and monoclonal antibody therapy in patients with advanced cancer (PembroMab)	Phase Ⅰ / II NCT02318901	Pembrolizumab + trastuzumab	90	Safety and dose-finding
A phase Ⅰ study to evaluate the antitumor activity and safety of DUKE-002-VRP (HUHER2-ECD + TM), an alphavector encoding the HER2 extracellular domain and transmembrane region, in patient with locally advanced or metastatic human epidermal growth factor receptor 2-positive (HER2+) cancers including breast cancer	Phase Ⅰ NCT01526473	Pembrolizumab + cetuximab	12	Safety
Lapatinib

Lapatinib is an oral tyrosine kinase inhibitor targeting EGFR and HER2[7,28]. In breast cancer, lapatinib demonstrated significant clinical benefit and is now a standard line of treatment[10,29,30]. In contrast, in GOC, although it showed promise in preclinical trials, lapatinib failed to translate into clinical benefit in both 1st-line (LOGiC)[7] and 2nd-line settings (TYTAN) (Table 1)[9]. The reasons for the disappointing results seen in GOC as compared to breast cancer may be related to lapatinib dosage, toxicities experienced, or different underlying HER2 signalling mechanisms in GOC and breast cancer.

When lapatinib was combined with paclitaxel in a 1st-line breast cancer study and 2nd line GOC study (TYTAN), rates of AEs were broadly similar: 77% of patients in the lapatinib arm experienced diarrhea in both the breast and TYTAN studies vs 29% of patients in the control arm in the breast study and 22% in the TYTAN study[8,29]. There was, however, a slightly higher rate of treatment discontinuation seen in GOC patients as compared to breast patients, with AEs resulting in treatment discontinuation seen in GOC patients as compared to breast cancer.

In advanced GOC, trastuzumab is being investigated in combination with bevacizumab (NCT01359397, Table 3), afatinib (NCT01522768, Table 3) and via intraperitoneal delivery (NCT01384253, Table 3)[34].

T-DM1

Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that combines the HER2-targeted properties of trastuzumab with the cytotoxic activity of emtansine, enabling selective delivery of chemotherapy to HER2-overexpressing cells[32]. Although T-DM1 demonstrated significant clinical benefit in the EMILIA breast cancer trial in the 2nd-line setting (Table 1)[33], a similar study (GATSBY, Table 1) in GOC failed to meet its primary endpoint or any of its secondary endpoints[34,35]. It is worth noting that nearly half of the patients in the GATSBY trial were from the Asia-Pacific region. These patients are generally fit with a good performance status; and, therefore, it is likely that a significant proportion will have received post-study treatment[35].

T-DM1 monotherapy vs T-DM1 + capecitabine is being investigated in combination with capecitabine chemotherapy in GOC in pretreated patients (NCT01702558, Table 3) and recruitment has been completed[24].

Trastuzumab deruxtecan

Trastuzumab deruxtecan (DS-8201) is an antibody-drug conjugate comprising a humanised antibody against HER2 and a topoisomerase I inhibitor "payload" bound together by an enzyme-cleavable linker[36]. A phase I open label dose escalation study recently presented at ASCO[37] demonstrated an overall response rate (ORR) of 46.7% in HER2+ breast cancer patients pretreated with T-DM1 and pertuzumab and an ORR of 44.4% in gastric cancer patients pretreated with trastuzumab[37]. This high response rate demonstrates that the "payload" bound to the anti-HER2 antibody can make a significant

Table 1: Lapatinib in GOC and breast cancer.

Study	Patients	Treatment	Outcomes
LOGiC	1st-line	Lapatinib	ORR: 13% in GOC, 21% in breast study
TYTAN	2nd-line	Lapatinib	ORR: 13% in GOC, 22% in breast study

ORR: Overall response rate; HER2: Human epidermal growth factor receptor 2.
difference to treatment success. For the first time, similar response rates were seen in both breast and gastric cancers pretreated with HER2 inhibitors, and responses were seen even in low HER2-expressing tumours\(^{30}\). Results of the currently planned phase 2 trials are eagerly awaited (NCT02564900, Table 3)\(^{24}\), and whether these response rates can translate into improved overall survival remains to be seen.

Pertuzumab

Pertuzumab is a humanised monoclonal antibody targeting a different HER2 epitope to trastuzumab\(^{26}\), preventing formation of HER2-HER3 heterodimers\(^{39}\). It can be administered concurrently with trastuzumab\(^{40}\). In theCLEOPATRA breast cancer study, pertuzumab demonstrated significant clinical benefit when added to trastuzumab plus taxane chemotherapy\(^{40}\). Disappointingly, in advanced GOC, the phase III JACOB study of pertuzumab + trastuzumab failed to demonstrate a significant improvement in OS\(^{41}\).

Pertuzumab is currently being explored in combination with trastuzumab and chemotherapy in the perioperative GOC setting in INNOVATION (NCT02205047) and PETRARCA trials (NCT02581462) and with the addition of radiotherapy in the TRAP trial (NCT02120911) (Table 2)\(^{24}\).

Preclinical studies investigating pertuzumab in combination with T-DM1 in GOC cell lines and xenograft models found this combination caused growth inhibition but no tumour shrinkage\(^{42}\). A literature search did not reveal any clinical studies investigating this combination in GOC.

MM-111

MM-111 is a bispecific antibody fusion protein designed by Merrimack to inhibit HER3-ligand binding and signalling in HER2-amplified tumours by preventing formation of HER2-HER3 heterodimers\(^{43,44}\). Preclinical studies showed promise, leading to phase 1 and phase 2 studies in selected tumour types, including HER2-amplified breast and GOC\(^{43,44}\). However, the phase 2 study investigating MM-111 in HER2-amplified GOC patients was terminated early by the independent data monitoring committee when it was found that the addition of MM-111 to chemotherapy + trastuzumab resulted in a significantly poorer PFS and OS\(^{45}\). In light of the disappointing results seen in GOC\(^{46}\), all further studies investigating MM-111 were withdrawn, and Merrimack announced that it does not plan to invest further in MM-111.

New HER2 inhibitors

Poziotinib is an oral pan-HER2 inhibitor whose role in combination with trastuzumab and paclitaxel is currently under investigation in advanced gastric cancer (NCT01746771, Table 3)\(^{24}\). Phase 1 studies in GOC are investigating MGAH22 (Margetuximab) (NCT01148849, Table 3)\(^{24}\), a chimeric anti-HER2 monoclonal antibody similar to trastuzumab but engineered for increased binding\(^{45}\). Medimmune is investigating their HER2 inhibitor, MEDI4276, in a Phase 1 trial (NCT02576548, Table 3) in both breast and gastric cancers\(^{24}\). Pyrotinib is an oral tyrosine kinase inhibitor targeting both HER1 (EGFR) and HER2 and is currently being explored in phase 1 trials in GOC (NCT02378389, NCT02500199, Table 3)\(^{24}\).

MECHANISMS THAT MAY AFFECT HER2 INHIBITION IN GOC

Resistance to HER2 therapy can be one of two types: primary (intrinsic) resistance occurs when there is no response to HER2 inhibitors and secondary (acquired) resistance occurs when there is an initial response followed by cessation of response\(^{46}\). Differentiating between these types of resistance is important, as it dictates the optimal timing of treatment strategies.

Alterations to the HER2 receptor

p95HER2: An aminoterminal form of HER2, known as p95HER2\(^{46}\), lacks the region to which trastuzumab binds and is expressed in 20%-37% of breast cancer patients\(^{47}\) and 60%-77% of GOC patients with HER2 amplified disease\(^{46,49}\). This may partly explain the poorer response to trastuzumab in GOC as compared to breast cancer.

HER2 mutation: Within the TCGA, 15 cases of ERBB2 mutation in GOC were detected using RNA evidence out of 215 non-hypermutated tumours\(^{50}\). Evaluation of HER2 mutation across an array of tumour types revealed HER2 mutations in around 5% of gastric cancer patients\(^{50}\). Neratinib, a pan-HER tyrosine kinase inhibitor, is being explored in HER2-mutated cancer (NCT01953926, Table 3)\(^{24}\).

Loss of HER2 expression

A recent study presented at ASCO found that 35% of GOC treated with trastuzumab lost HER2 positivity\(^{51}\). Similarly, in breast cancer, loss of HER2 positivity has been reported in patients treated with neoadjuvant trastuzumab + chemotherapy or chemotherapy alone, and loss of HER2 positivity was associated with an increased risk of disease relapse\(^{52}\).

Signalling pathways

PIK3CA/PTEN/PI3K/AKT/mTOR pathway: The antitumour activity of HER2 inhibitors requires downstream inhibition of PI3K/AKT\(^{53}\). BOLERO-3 was a randomised, double-blind, placebo-controlled phase 3 trial in HER2 positive, trastuzumab-resistant, advanced previously-treated breast cancer patients that explored whether the mTOR inhibitor everolimus might restore sensitivity to trastuzumab\(^{54}\). It demonstrated significant improvement in PFS with the addition of everolimus (7 mo (95%CI: 6.74-8.18) in the everolimus group vs 5.78 mo (5.49-6.9) in the placebo group)\(^{54}\). The randomised phase 3 BO- LERO-1 trial compared everolimus plus trastuzumab plus paclitaxel to placebo plus trastuzumab plus paclitaxel in order to assess whether addition of everolimus at t-
eatment outset might prevent intrinsic resistance: primary endpoint (PFS) was not met⁶³.

Phase 3 clinical trials have not been conducted specifically in HER2 positive GOC patients⁴⁹. The phase 3 GRANITE trial randomised 656 patients with advanced pretreated gastric cancer to either everolimus or matching placebo⁶⁴. HER2 status was not an inclusion or exclusion criteria, and we do not know the percentage of HER2 positive patients within this trial. The primary endpoint (OS) was not met, and everolimus was associated with significant side-effects: 21.5% of patients receiving everolimus required drug discontinuation and 55.4% required dose adjustments/interruptions⁶⁵. Such high rates of adverse events are concerning in the palliative setting, where quality of life is important.

IGF-1R expression
Insulin-like growth factor-1 receptor (IGF-1R) is involved in acquired resistance to HER2 blockade in breast cancer⁴⁶,⁶⁷ and GOC cells in vitro by forming heterodimers with HER2. Blockade of this heterodimer formation in vitro and in vivo restored sensitivity to HER2⁶⁷, and combination studies of HER2 blockade in combination with IGF-1R inhibitors were more effective than either agent alone⁶⁸. Clinical studies exploring IGF-1R inhibitors in combination with HER2 inhibitors in breast cancer patients found no significant difference in PFS (NCT00684983)⁶⁹; other studies evaluating this strategy were withdrawn, and there are no GOC studies⁶⁹.

MET overexpression
Clinical studies of MET inhibitors as monotherapy in HER2 negative breast cancer patients did not meet their primary endpoint⁴⁹,⁶⁰. In GOC, a randomized double-blind phase 3 clinical trial exploring MET inhibition in HER2 negative, MET positive GOC patients found no benefit from the addition of the MET inhibitor onartuzumab to chemotherapy⁷⁰. Phase 2 results for an alternative MET inhibitor, tivantinib, similarly showed no survival advantage⁷¹. In light of these disappointing results, it is unlikely MET inhibition will be explored in the clinical setting in HER2-overexpressing breast or GOC patients.

HSP90
Combining HER2- and Heat shock protein (HSP90)-inhibition to overcome resistance to HER2 inhibitors showed promise preclinically in cell lines and mouse models in breast and GOC cell lines⁷². However, a phase 2 study in breast cancer has not yet released results⁷³, and a phase 2 study in gastric cancer was terminated (NCT01402401)⁷⁴.

MicroRNA
MicroRNAs (miRs) are small non-coding RNAs that control gene expression through messenger RNA degradation and post-transcriptional inhibition⁷⁵. MiRs are tissue-specific, and different microRNA signatures may occur during resistance to HER2 inhibition in breast and GOC. In HER2 positive breast and gastric cancer cells, miR-21 overexpression leads to PTEN downregulation, suppression of trastuzumab-induced apoptosis and increased trastuzumab resistance⁷⁶,⁷⁷. MiRNA-542-3p downregulation promotes trastuzumab resistance in breast cancer via AKT activation⁷⁸. MiR-7 functions as a suppressor of the oncogenic isoform of HER2, HER2⁶, and reverses HER2⁶-induced trastuzumab resistance in breast cancer⁷⁹. The use of miRs not only as biomarkers but as targets for anticancer therapy may allow new therapeutic miR silencing in the future⁸⁰. Inhibition of certain microRNAs may also enhance the effect of HER2 inhibition⁷¹.

Immune response
Natural killer (NK) cells are required in order to exert trastuzumab's therapeutic effect⁸¹. Mice deficient in NK cells show trastuzumab resistance⁸² and when numbers of innate and adaptive immune cells in the tumour microenvironment increase, there is increased tumour eradication⁸³. Trials studying the immune environment in GOC are underway (NCT02318901, NCT01526473, NCT02276300, Table 3)⁸⁴.

Biomarkers
Specific-uptake positron emission tomography (PET) scans: Targeted PET scans using radiolabelled trastuzumab (89Zr-Trastuzumab) to demonstrate HER2 uptake can give real-time information on HER2 expression levels, visually displaying the development of resistance with the advantage of being relatively non-invasive and, therefore, preferable for patients⁸⁴.

Circulating DNA: Circulating DNA may represent a clinically useful biomarker that reduces the need for invasive biopsies. Plasma DNA digital PCR can detect HER2 status in metastatic breast cancer patients⁷⁵. A systematic review and meta-analysis has suggested that serum HER2 is a potential surrogate for tissue HER2 status in gastric cancer⁷⁶.

CONCLUSION
Despite numerous HER2 inhibitors being investigated in a number of settings, trastuzumab in advanced disease is still the only HER2 inhibitor licensed for clinical use in the treatment of GOC. Even within this setting, the overall survival benefit is far less than that seen in breast cancer. Other HER2 inhibitors that have demonstrated success in breast cancer have failed to reach statistically significant endpoints in GOC clinical trials, and it remains to be seen whether clinical trials currently underway will show improved results. HER2 heterogeneity, amino-truncation loss of HER2 expression and differences in signalling pathways may contribute to the disappointing clinical trial outcomes seen in GOC. Different microRNA signatures and immune environments are also likely to play a role. Development of new HER2 inhibition strategies in conjunction with
further research into how the role of HER2 differs in GOC as compared to breast cancer is required. Clinical trials utilizing biomarkers such as specific uptake PET scans and circulating DNA may provide early insight into whether patients are responding to HER2 inhibition. Only with improved understanding of HER2 inhibition in GOC can effective treatment be provided in order to improve clinical outcomes for patients.

REFERENCES

1. Van M, Schwaederle M, Arguello D, Millis SZ, Gatalica Z, Kurzrock R. HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metastasis Rev 2015; 34: 157-164 [PMID: 25712293 DOI: 10.1007/s10555-015-9552-6]

2. Janjigian YY, Werner D, Paulcig C, Steinmetz K, Kelsen DP, Jäger E, Altmanshberger HM, Robinson E, Tate LF, Tang LH, Shah MA, Al-Batran SE. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol 2012; 23: 2656-2662 [PMID: 22689179 DOI: 10.1093/annonc/mds104]

3. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 2007; 26: 6469-6487 [PMID: 17471238 DOI: 10.1038/sj.onc.1210477]

4. Zhu X, Verna S. Targeted therapy in her2-positive metastatic breast cancer: a review of the literature. Curr Oncol 2015; 22: S19-S28 [PMID: 25848356 DOI: 10.3747/cjo.22.2363]

5. Bang YJ, Van Cutsem E, Ychou M, Pocard M, Allard DC, Cote RJ, Dussaut M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Steuten C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF. American Society of Clinical Oncology; College of American Pathologists; Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007; 25: 118-145 [PMID: 17159189 DOI: 10.1200/JCO.2006.09.2775]

6. Hofmann M, Stoss O, Shi D, Böttner R, van de Vijver M, Kim W, Ochiai A, Rüschhoff J, Henkel T. Assessment of HER2 score for gastric cancer: results from a validation study. Histopathology 2008; 52: 797-805 [PMID: 18422971 DOI: 10.1111/j.1365-2559.2008.03028.x]

7. Tajiri R, Ooi A, Fujimura T, Dobashi Y, Oyama T, Nakamura R, Ikeda H. Intratumoral heterogeneous amplification of ERBB2 and subgenomic diversity in gastric cancers revealed by multiple ligation-dependent probe amplification and fluorescence in situ hybridization. Hum Pathol 2014; 45: 725-734 [PMID: 24493155 DOI: 10.1016/j.humpath.2013.11.004]

8. Seol H, Lee HJ, Choi Y, Lee HE, Kim YJ, Kim JH, Kang E, Kim SW, Park SY. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol 2012; 25: 938-948 [PMID: 22388760 DOI: 10.1038/modpathol.2012.36]

9. Cho EY, Park K, Do J, Cho J, Kim J, Lee J, Kim S, Kang E, Sohn TS, Kang E, Kim S. Heterogeneity of ERBB2 in gastric carcinomas: a study of tissue microarray and matched primary and metastatic carcinomas. Mod Pathol 2013; 26: 677-684 [PMID: 23238628 DOI: 10.1038/modpathol.2012.205]

10. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajajmonde A, Fleming T, Eiermann W, Pegram M, Baselga J, Norten-L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783-792 [PMID: 11248153 DOI: 10.1056/NEJMoa013544101]

11. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jacobi C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Láng I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Rüschhoff J, Suto T, Garetoro C, von Deichgrau C, McFadden E, Dolci MS, Gelber RD. Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353: 1659-1672 [PMID: 16236737 DOI: 10.1056/NEJMoa052306]

12. Food and Drug Administration. Office of Medical Products and Tobacco. Available from: URL: http://www.fda.gov/AboutFDA/Centersoffice/OfficesofMedicalProductsandTobacco

13. Shah MA, Xu RH, Bang YJ, Höff PM, Liu T, Herré Baranda LA, Xia F, Garg A, Shing M, Taberner J. HELIOSE: Phase IIIb
Randomized Multicenter Study Comparing Standard-of-Care and Higher-Dose Trastuzumab Regimens Combined With Chemotherapy as First-Line Therapy in Patients With Human Epidermal Growth Factor Receptor 2-Positive Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma. J Clin Oncol 2017; 35: 2585-2587 [PMID: 28574779 DOI: 10.1200/JCO.2016.71.6852]

Kataoka K, Tokunaga M, Mizusawa J, Machida N, Katayama H, Shitara K, Tomita T, Nakamura K, Boku N, Sano T, Terashima M, Sasaki M; stomach Cancer Study Group/Japan Clinical Oncology Group. A randomized Phase II trial of systemic chemotherapy and with trastuzumab followed by surgery in HER2-positive advanced gastric or esophagogastric junction adenocarcinoma with extensive lymph node metastasis: Japan Clinical Oncology Group study JCOG1301 (Trigger Study). Jpn J Clin Oncol 2015; 45: 1082-1086 [PMID: 26355164 DOI: 10.1093/jjco/hyv314]

Chinese PLA General Hospital. T-XELOX in HER2-positive Stage III Gastric Cancer After D2 Gastrectomy. Available from: https://clinicaltrials.gov/ct2/show/NCT02252009

Abali H, Yalcin S, Oral HC, Dane F, Oksuzoglu B, Ozdemir N, Mertsoylu H, Angelou PM, Gallego J, Limon ML, Alfonso PG, Gallego J, Limon ML, Yalcin S, Onal HC, Dane F, Ozdemir N, Blackwell K; EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367: 1783-1791 [DOI: 10.1056/NEJMoa1209124]

Landman A. 2016 ASCO Gastrointestinal Cancers Symposium. Lancet Oncol 2016; 17: 282 [DOI: 10.1016/S1470-2045(16)30066-5]

Kang YK, Shah M, Oltus A, Van Cutsem E, Arai J, van der Horst T. A randomized, open-label, multicenter, adaptive phase 2/3 study of trastuzumab emtansine (T-DM1) vs a taxane (TAX) in patients (pts) with previously treated HER2-positive locally advanced or metastatic gastric/gastroesophageal junction adenocarcinoma (LA/MGC/GEJC). J Clin Oncol 2016; 34: 5 [DOI: 10.1200/jco.2016.34.4_suppl.5]

Doi T, Shitara K, Naito Y, Shimomura A, Fujisawa Y, Yonemori K, Shimizu C, Shinozaki T, Kabuki Y, Matsubara N, Kizano A, Jikoh T, Lee C, Fujisaki Y, Ogitani Y, Yver A, Tamura K. Safety, pharmacokinetics, and antitumor activity of trastuzumab durvalumab (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol 2017; 18: 1512-1522 [PMID: 29037983 DOI: 10.1016/S1470-2045(17)30664-6]

Doi T, Iwata J, Tsurutani T, Takashashi S, Park H, Redfern CH, Shitara K, Shimizu C, Taniguchi H, Iwasa T, Taira S, Lockhart AC, Fisher JM, Jikoh T, Fujisaki Y, Lee CC, Yver A, Tamura K. Single agent activity of DS-8201a, a HER2-targeting antibody-drug conjugate, in heavily pretreated HER2 expressing solid tumours. J Clin Oncol 2017; 35: 108 [DOI: 10.1200/jco.2017.35.15_suppl.108]

Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004; 5: 317-328 [PMID: 15093539 DOI: 10.1016/S1535-6108(04)00083-2]

Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9: 463-475 [PMID: 19536107 DOI: 10.1038/nrc2656]

Baselga J, Cortés J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pinkowski T, Knott A, Clark E, Benyunes MC, Ross G, Swain SM; CLEOPATRA Study Group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 2016; 374: 109-119 [PMID: 24149875 DOI: 10.1056/NEJMoa1511321]

Tabernero J, Hofmann M, Shen L, Oltus A, Shah MA, Cheng K, Song C, Wu H, Eng-Wong J, Kang Y. Pertuzumab (P) + trastuzumab (H) + chemotherapy (CT) for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (mGC/GEJC): Final analysis of a Phase III study (JACOB). Ann Oncol 2017; 28: v209-v268 [DOI: 10.1093/annonc/mdx369]

Yamashita-Kashima Y, Shu S, Harada N, Fujimoto-Ouchi K. Enhanced antitumor activity of trastuzumab emtansine (T-DM1) in combination with pertuzumab in a HER2-positive gastric cancer model. Oncol Rep 2013; 30: 1087-1093 [PMID: 23738223 DOI: 10.3892/or.2013.2547]

Denlinger C, Maqueda M, Watkins D, Sym S, Bendell J, Park S. Randomized phase 2 study of paclitaxel (PTX), trastuzumab (T) with or without MM-111 in HER2 expressing gastroesophageal cancers. J Clin Oncol Rep 2016; 34: 108 [DOI: 10.1200/jco.2016.34.4_suppl.4043]

Denlinger C, Beeram M, Tolecher A, Goldstein L, Slischenmyer W, Murray J. A phase I/II and pharmacologic study of MM-111 in patients with advanced, refractory HER2-positive (HER2+) cancers. J Clin Oncol 2010; 28: 169 [DOI: 10.1200/jco.2010.28.15_suppl.tps169]

Nordstrom JL, Gorlatov S, Zhang W, Yang Y, Huang L, Burke S, Li H, Ciecarone V, Zhang T, Stavenhagen J, Koening S, Stewart SJ, Moore PA, Johnson S, Bonvini E. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody-cytotoxic drug conjugate. Cancer Res 2008; 68: 9280-9290 [PMID: 19010901 DOI: 10.1158/0008-5472.CAN-08-1776]

Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh D, Díaz-Ortiz V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K; EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367: 1783-1791 [DOI: 10.1056/NEJMoa1209124]

Mai E, Blättler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008; 68: 9280-9290 [PMID: 19010901 DOI: 10.1158/0008-5472.CAN-08-1776]
growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65: 11118-11128 [PMID: 16322262 DOI: 10.1158/0008-5472.CAN-04-3841]

58 Zhang Z, Wang J, Ji D, Wang C, Liu R, Wu Z, Liu L, Zhu D, Chang J, Geng R, Xiong L, Fang Q, Li J. Functional genetic approach identifies MET, HER3, IGFIR, INSR pathways as determinants of lapatinib unresponsiveness in HER2-positive gastric cancer. Clin Cancer Res 2014; 20: 4559-4573 [PMID: 24973425 DOI: 10.1158/1078-0432.CCR-13-3396]

59 Chakraborty AK, Zerillo C, DiGiovanna MP. In vitro and in vivo studies of the combination of IGFIR inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib. Breast Cancer Res Treat 2015; 152: 533-544 [DOI: 10.1007/s10549-015-3504-2]

60 Tolley SM, Tan S, Guo H, Barry W, Van Allen E, Wagle N, Brock J, Larabee K, Pawelecz C, Ivanova E, Janne P, Overmoyer B, Wright JJ, Shapiro GJ, Win E, Krop EI. Phase II study of tivantinib (ARQ 197) in patients with metastatic triple-negative breast cancer. Invest New Drugs 2015; 33: 1108-1114 [PMID: 26129326 DOI: 10.1007/s10637-015-0269-8]

61 Shah M, Bang Y-J, Lordick F, Tabernero J, Chen M, Hack S. METGastric: A phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative (HER2-) and MET-positive (MET+) adenocarcinoma of the stomach or gastroesophageal junction (GEC). J Clin Oncol 2015; 33: 4012 [DOI: 10.1200/jco.2014.53.15_suppl.4012]

62 Pant S, Patel M, Kurkjian C, Hemphill M, Flores M, Thompson D. A phase II study of the c-Met inhibitor tivantinib (tiv) in combination with FOLFIRI for the treatment of patients (pts) with previously untreated metastatic adenocarcinoma of the distal esophagus, gastroesophageal (GE) junction, or stomach. J Clin Oncol 2015; 33: 4065 [DOI: 10.1200/jco.2015.33.15_suppl.4065]

63 Wainberg ZA, Anghel A, Rogers AM, Desai AJ, Kalous O, Arriagada R, König A, van Wijngaarden MB, Arango-Fierro A, Davids JR, Flaherty KT, Zang Z, Dicks L, Jones LA, Hui A, Kariuki M, Deshayes L, Fuhrman B, Viale G, van Krimpen D, Zeh JH, Vivas J, Roche H, Barni S, Rubbia-Brandt L, Smets M, Yeh VN, Hoos A, Delahaye S, Nishimura G, Larrabee K, Paweletz C, Ivanova E, Janne P, Overmoyer B, Wright JJ, Shapiro GJ, Win E, Kurimoto Y, Krop EI. Tivantinib in previously treated advanced gastric cancer (GRANITE-1 study). J Clin Oncol 2015; 33: 3935-3943 [PMID: 24043745 DOI: 10.1200/JCO.2012.48.3552]

64 Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65: 11118-11128 [PMID: 16322262 DOI: 10.1158/0008-5472.CAN-04-3841]

65 Zhang Z, Wang J, Ji D, Wang C, Liu R, Wu Z, Liu L, Zhu D, Chang J, Geng R, Xiong L, Fang Q, Li J. Functional genetic approach identifies MET, HER3, IGFIR, INSR pathways as determinants of lapatinib unresponsiveness in HER2-positive gastric cancer. Clin Cancer Res 2014; 20: 4559-4573 [PMID: 24973425 DOI: 10.1158/1078-0432.CCR-13-3396]

66 Chakraborty AK, Zerillo C, DiGiovanna MP. In vitro and in vivo studies of the combination of IGFIR inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib. Breast Cancer Res Treat 2015; 152: 533-544 [DOI: 10.1007/s10549-015-3504-2]

67 Tolley SM, Tan S, Guo H, Barry W, Van Allen E, Wagle N, Brock J, Larabee K, Pawelecz C, Ivanova E, Janne P, Overmoyer B, Wright JJ, Shapiro GJ, Win E, Krop EI. Phase II study of tivantinib (ARQ 197) in patients with metastatic triple-negative breast cancer. Invest New Drugs 2015; 33: 1108-1114 [PMID: 26129326 DOI: 10.1007/s10637-015-0269-8]

68 Shah M, Bang Y-J, Lordick F, Tabernero J, Chen M, Hack S. METGastric: A phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative (HER2-) and MET-positive (MET+) adenocarcinoma of the stomach or gastroesophageal junction (GEC). J Clin Oncol 2015; 33: 4012 [DOI: 10.1200/jco.2014.53.15_suppl.4012]

69 Pant S, Patel M, Kurkjian C, Hemphill M, Flores M, Thompson D. A phase II study of the c-Met inhibitor tivantinib (tiv) in combination with FOLFIRI for the treatment of patients (pts) with previously untreated metastatic adenocarcinoma of the distal esophagus, gastroesophageal (GE) junction, or stomach. J Clin Oncol 2015; 33: 4065 [DOI: 10.1200/jco.2015.33.15_suppl.4065]

70 Wainberg ZA, Anghel A, Rogers AM, Desai AJ, Kalous O, Arriagada R, König A, van Wijngaarden MB, Arango-Fierro A, Davids JR, Flaherty KT, Zang Z, Dicks L, Jones LA, Hui A, Kariuki M, Deshayes L, Nishimura G, Larrabee K, Paweletz C, Ivanova E, Janne P, Overmoyer B, Wright JJ, Shapiro GJ, Win E, Kurimoto Y, Krop EI. Tivantinib in previously treated advanced gastric cancer (GRANITE-1 study). J Clin Oncol 2015; 33: 3935-3943 [PMID: 24043745 DOI: 10.1200/JCO.2012.48.3552]

71 Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65: 11118-11128 [PMID: 16322262 DOI: 10.1158/0008-5472.CAN-04-3841]

72 Zhang Z, Wang J, Ji D, Wang C, Liu R, Wu Z, Liu L, Zhu D, Chang J, Geng R, Xiong L, Fang Q, Li J. Functional genetic approach identifies MET, HER3, IGFIR, INSR pathways as determinants of lapatinib unresponsiveness in HER2-positive gastric cancer. Clin Cancer Res 2014; 20: 4559-4573 [PMID: 24973425 DOI: 10.1158/1078-0432.CCR-13-3396]

73 Chakraborty AK, Zerillo C, DiGiovanna MP. In vitro and in vivo studies of the combination of IGFIR inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib. Breast Cancer Res Treat 2015; 152: 533-544 [DOI: 10.1007/s10549-015-3504-2]

74 Tolley SM, Tan S, Guo H, Barry W, Van Allen E, Wagle N, Brock J, Larabee K, Pawelecz C, Ivanova E, Janne P, Overmoyer B, Wright JJ, Shapiro GJ, Win E, Krop EI. Phase II study of tivantinib (ARQ 197) in patients with metastatic triple-negative breast cancer. Invest New Drugs 2015; 33: 1108-1114 [PMID: 26129326 DOI: 10.1007/s10637-015-0269-8]
Valeri N. MicroRNAs as biomarkers of resistance to HER2 inhibitors in combination with chemotherapy in gastro-oesophageal cancer cell lines. Ann Oncol 2016; 27: 545-551 [DOI: 10.1093/annonc/mdw393.15]

72 Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000; 6: 443-446 [PMID: 10742152 DOI: 10.1038/74704]

73 Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu YX. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 2010; 18: 160-170 [PMID: 20708157 DOI: 10.1016/j.ccr.2010.06.014]

74 Lordick F, Janjigian YY. Clinical impact of tumour biology in the management of gastrooesophageal cancer. Nat Rev Clin Oncol 2016; 13: 348-360 [PMID: 26925958 DOI: 10.1038/nrclinone.2016.15]

75 Gevensleben H, Garcia-Murillas I, Graeser MK, Schiavon G, Osin P, Parton M, Smith IE, Ashworth A, Turner NC. Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res 2013; 19: 3276-3284 [PMID: 23637122 DOI: 10.1158/1078-0432.CCR-12-3768]

76 Zhang K, Cui J, Xi H, Bian S, Ma L, Shen W, Li J, Wang N, Wei B, Chen L. Serum HER2 Is a Potential Surrogate for Tissue HER2 Status in Gastric Cancer: A Systematic Review and Meta-Analysis. PLoS One 2015; 10: e0136322 [PMID: 26292093 DOI: 10.1371/journal.pone.0136322]

77 European Organisation for Research and Treatment of Cancer - EORTC. Neoadjuvant Study Using Trastuzumab or Trastuzumab With Pertuzumab in Gastric or Gastroesophageal Junction Adenocarcinoma (INNOVATION). Available from: https://clinicaltrials.gov/ct2/show/NCT02205047

78 Gelmon K, Vidal M, Sablin M-P, Serpanchy R, Soberino J, Cortes J. Trastuzumab emtansine (T-DM1) plus capecitabine (X) in patients with HER2-positive MBC: MO28230 TRAX-HER2 phase 1 results. J Clin Oncol 2014; 32: 606 [DOI: 10.1200/jco.2014.32.15_suppl.606]
