Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment

Maria Elena Iezzi1, Lucia Policastro1,2, Santiago Werbajh1, Osvaldo Podhajcer1* and Gabriela Alicia Canziani1*

1Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina, 2Laboratorio Nanomedicina, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Comisión Nacional de Energía Atómica, Ciudad Autónoma de Buenos Aires, Argentina

Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs), in particular those engineered from the variable heavy-chain fragment (VHH gene) found in Camelidae heavy-chain antibodies (or IgG2 and IgG3), are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR) fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.

Keywords: camelid heavy-chain antibody, drug-like properties, bioavailability, immunogenicity, broad epitope coverage, poly-specificity

INTRODUCTION

The success of monoclonal antibodies (mAbs) in cancer therapy is driven by the overall efficacy of targeted therapies. The rate of approval of recombinant mAbs continues to outperform that of small molecules in all indications and in particular for the treatment of cancer (1, 2). However, a recent rate of advancement of antitumor candidate leads from preclinical to clinical trial was estimated to be only 20% (3). One approach to improving this success rate is to focus early on a set of characteristics termed “developability” based on high-throughput qualification tests.
applicable to mAb hits for a particular target. Two “developability” issues impacting candidate bioavailability are off-target binding and aggregation that can also result in toxicity and immune-reactivity. A candidate with a favorable profile is more likely to emerge from a large set of hits with a broad epitope coverage, by screening out off-target reactive mAbs (4) and guaranteeing “manufacturability,” or stability and solubility, of the lead candidate early in the pipeline (5–8). Most recombinant, variable heavy-chain (or VH) single domains from homodimeric IgG2 and IgG3 found in cam-elids and VNAR of the so-called Ig new antigen receptor of sharks display higher solubility (above 1 mg/mL) and rapid refolding after temperature or chemical denaturation in comparison with the heterodimeric VL–VH domains in a Fab fragment (Figure 1A) (12, 13). VH3 expression yield, whether in the periplasm of Escherichia coli or the cytoplasm of eukaryotic cells is high. Sequence identity of the VNAR domain with canonical human VH falls as low as 25%, while known cam-eilid VH3 domains are distinctly close to human VH3 germline sequences and a source of easily humanized single-domain antibody (sdAb) drugs (10, 14–16). In addition, services such as Hybridelity, a platform from Hybrigenics for the selection and validation of antibodies derived from a fully synthetic humanized sdAb library displayed on phage, can supply humanized sdAbs to specific targets (Table 1, item 3) (17). The immunogenicity of humanized sdAbs may be erroneously overlooked yet it is tested in phase I clinical trials (18). The antigen-specific combining sites may be immunogenic providing sufficient justification for the early use of immunogenicity-screening platforms (19). The detection of anti-drug antibodies (ADA) using highly sensitive ELISAs at Ablynx revealed the benefit of mutating sdAb residues in hydrophobic patches at the C-terminus of VH of single-chain variable fragment (scFv) and VH3 fragments, shielded by the CH domains in the original structure (20, 21).

The VH3 repertoire is as complex in sequence diversity as is the IgG1 VH camelid counterpart (65– 67). Total peripheral blood lymphocytes and lymph node ribonucleic acid (RNA) from alpaca, llamas, dromedaries, and camels are easily extracted to build recombinant VH3 libraries. Typically, a VH3 phage display library containing 6×10^7 VH3 clones are generated from 200 µg processed RNA and diverse polymerase chain reaction reaction strategies are available to amplify VH3 gene fragments from lymphocyte complementary deoxyribonucleic acid (68, 69). Several reports have confirmed the ease of engineering sdAbs (69, 70) and of selecting specific binders against conformational epitopes in comparison with hit selection of scFv, where library construction shuffles their immune specificity (68, 71, 72).

Two or three VH3s have been combined in a single polypeptide chain to express single, dual, or multimeric specificities without compromising folding or the binding affinities (22, 73). In addition, “self-associating peptide” constructs have been designed to match VH3 pairs (69, 74). Concomitantly, the experience gained in site-specific conjugations, in particular those driven by targeted enzymatic reactions, has ensured the preservation of antigen-binding properties of sdAbs (31, 75). The reported affinities of VH3 fragments fall in the nanomolar to picomolar range, with binding kinetics ensured the preservation of antigen-binding properties of sdAbs (31, 75). The reported affinities of VH3 fragments fall in the nanomolar to picomolar range, with binding kinetics comparable to those of conventional antibodies. Selection of stable antigen complexes is often the result of applying selection pressures, such as stringent washing, that enrich a library in VH3 with slower off-rates while competitive elution was reported in selecting fragments with novel epitope targeting (70, 76–79). VH3 genes are an established source of antibodies, as evidenced by the number of reported co-crystal structures (68, 80–82). Figure 1A highlights hallmark VH3 residues and, when present, an inter-CDR disulfide bond in the VH3 sequence. Around 10% of HcAbs lack these hydrophobic residues mutation but often show longer CDR3 covering putative VL contacts or a hydrophilic substitution of Trp118. Gonzalez-Sapienza et al. suggested a plausible mechanism of selection of HcAb producing B-cells that supports the emergence of independently soluble, VH and VH3 domains (72).
FIGURE 1 | Continued
TABLE 1 | Summarized single-domain antibody (sdAb) research and development in cancer diagnostics and therapy.

Servicesa	Applied technologies	Proposed clinical benefit	Service providerb
1. Customizing sdAb engineering	Immune, naive, and synthetic/humanized libraries phage display, bacterial display, intrabody library services, VHH production (45)	sdAb innovative binder formats, systems biology and target validation tools (46)	GenScript; Creative BioLabs; Lampire Biological Laboratories; Capralogics, Inc.; ProSci, Inc.; Hybrigenics Corporation, Allele Biotechnology and Pharmaceuticals, Inc.; Qoolabs, Inc.; Abcore Inc.; QVQ Holding BV; Rockland Immunochemicals, Inc.
2. Optimizing sdAb lead candidate selection	Epitope binning and optimum epitope coverage antibodies and sdAb, tested in a pairwise combinatorial manner (6)	Multiple epitope bins reflect functional diversity, support oligoclonal therapy or the simultaneous targeting of biological pathways; watch for off-target binding (49)	Cartera, Inc.; Creative BioLabs
3. Humanizing and screening sequences to diminish sdAb immunogenicity	sdAbs humanization (15, 45) and Identification of potential immunogenic sequences (21)	lower sdAb immunogenicity	GlobalBio, Inc.; Creative BioLabs; Hybrigenics Corporation; EpVax, Inc.
4. Tailoring the sdAb in vivo half-life	Half-life optimization in circulation (49); Nanobody®-based half-life extension technology	Ozoralizumab, a next-generation bivalent tumor necrosis factor alpha (TNFa) blocker linked to a low-avidity albumin-binding domain (43)	Ablynx; Eddingpharm

Applicationsc	Targeted tumor antigens	Clinical trials	Developerd
5. Overcoming monoclonal antibody limitations by targeting inaccessible and intracellular tumor antigens	CapG (50), non-endocytic co-transport and cytoplasmic translocating (51), DFRs (52), dynamic transformation (53), Glioblastoma (54), CA9/CAIX activity (55), pS3–HDM2 disruption (56), mesothelin (57)	not initiated or halted	Novartis; ProSci Inc.; Hybrigenics Services; QVQ Holding BV
6. Selecting proficient probes for molecular imaging	123I-SGMIB Anti-HER2 sdAb 6Ga-HER2-sdAb (near infrared) probes in sentinel lymph node detection or residual tumor tissue (58)	Phase I, CAM–VHH1 Study NCT02889083 Phase II PET/CT. Clinical Trial II	Camel–IDS NV, TBM program® (social, non-profit organization), QVQ holding BV
7. Targeting known tumor antigens	Epithelial growth factor receptor (59), carcinoembryonic antigen (60), prostate-specific membrane antigen, anti-VEGF/Ang2 (BT 836880 Nb®), anti-RANKL (ALX-0141 Nb®), TNFα, ADAMTSS	Phase I, Boehringer Ingelheim, anti-VEGF/Ang2 Nb®, safety in cancer patients Phase I, Ablynx (ALX-0141 Nb®) safety and pharmacokinetic study Anti-ADAMTSS, M6496 Nb® Interventional, Merk KGaG in healthy volunteers, NCT023224702	Ablynx/Merk; Boehringer Ingelheim; Eddingpharm, clinical development, registration and commercialization in Greater China of anti-RANKL Nb® and ozoralizumab; Merk KGaA
8. Targeting immune checkpoints	PD-L1 (61), CD47/SIRPα axis (62, 63), glucocorticoid-induced TNFR-related protein	Early Phase I, 131I-labeled anti–PD-L1 sdAb for diagnostic imaging of non-small cell lung cancer. Pending, NCT02978196	Merck & Co.; Merck KGaA; Ablynx

(Continued)
TABLE 1 | Continued

Applicationsa	Targeted tumor antigens	Clinical trials	Developerb
9. Testing molecular mimicry, including anti-idiotypes and abzymes	Ab2 abzymes with allinase activities (6-8), self-diversifying antibody library platform (SDALib)	New drug discovery using Abzyme’s yeast-based camelid single domain VHH antibody library with self-diversifying ability, to generate VHH antibodies against cancer-related target isoforms	Abzyme Therapeutics, LLC and Ibex BioSciences, LLC partnership

DISTINCTIVE PROPERTIES OF sdAbs

The ease of selecting sdAb under denaturing conditions has assisted in the isolation of “superstable” species with improved resistance to proteases that were proposed as antimicrobial therapeutics of oral intake (83, 84). Li et al. have successfully selected VH expression products with a high isoelectric point (pI) that spontaneously crossed the blood–brain barrier (transcytosis) (30). High-pI sdAbs have been found to penetrate cells and bind to intracellular proteins. For instance, a sdAb that bound specifically to the hepatitis C virus (HCV) protease, selected for its ability to penetrate cells (transbodies), interfered with heterologous HCV replication (15). A sdAb-based anti-β-catenin intrabody was expressed and folded in the cytoplasm retaining its ability to bind to β-catenin (85).

The solvent accessible surface (SAS) area of antigen-VHH and VNAR complexes are comparable to antigen–VH–VL complex SAS indicating that complementarity domain region (CDR) loops involved in antigen binding (Figure 1A) contribute similar surface contacts. VHH H1 and H3 loops connecting the β-sheets of the VHH domain are flexible, sometimes longer and packed in a less compact fashion compared to canonical VH of murine and human immunoglobin G (IgGs) (10, 86). Co-crystal structures of enzyme-VHH and -VNAR complexes showed CDRs that often protruded into the active-site cleft and the derived sdAbs were later shown to inhibit catalysis (65, 66, 87, 88). Alternatively, sdAbs have been selected to stabilize “drugable” targets that display multiple conformations (or conformational plasticity) (79, 82). For example, the urok-inase-type plasminogen activator (uPA) from the trypsin-like serine protease family, a target involved in metastasis, is known to adopt high and low activity conformations. Selection of sdAbs against mouse uPA yielded both a catalytic-site inhibitor and an allosteric ligand. Crystal structures of the uPA sdAb complexes revealed high and low activity determinants that provided clues of therapeutic value on the regulatory determinants of uPA and of trypsin-like serine proteases in general (89). Table 1 documents the pharmaceutical relevance of sdAbs through the number of research and development companies involved in novel sdAb generation, available contract services, lead candidates under clinical trial, and examples of the sdAbs more recently generated against cancer targets.

sdAbs IN IMAGING APPLICATIONS FOR CANCER DIAGNOSTICS

Molecular imaging techniques, of widespread use in the clinic, allow the non-invasive quantitation and visualization of tumors in vivo and sdAbs have become promising, small-sized, high-affinity tracers (58, 90–92) (Figure 1B). Nuclear imaging probes associated to sdAbs have been evaluated in both single-photon emission computed tomography (SPECT) and positron emission tomography (PET) (90, 93) (Table 1, item 6). The most advanced sdAb under clinical evaluation is the 68Ga-labeled anti-HER2 sdAb 2Rs15d probe, developed to screen candidates who qualify for treatment with an anti-HER2 therapeutics. A phase 1 study resulted in high-quality images without adverse reactions and retained 10% of injected activity in blood after 1 h (94). A phase II trial was launched to correlate tumor uptake with HER2 levels in biopsies of 160 metastatic breast carcinoma patients (Table 1, item 6). In other studies, 2Rs15d labeled with the prosthetic group N-succinimidyl-4-[18F] fluorobenzoate ([18F]-SFB) was validated in preclinical models to advance PET imaging (95). The specific uptake of the sdAb 2Rs15d probe in HER2-positive tumor xenographs showed high tumor-to-blood and tumor-to-muscle ratios, high contrast PET imaging and fast renal clearance (4% intra auricular/g at 3 h post injection.). The lead candidate MSB0010853, a bifurapartic sdAb labeled with 89Zr bound efficiently to HER3 kinase, a potential clinical target associated with resistance to epithelial growth factor receptor (EGFR) and HER2 targeted therapies (96, 97).

Organometallic radiopharmaceuticals are also widely used in diagnosis with SPECT imaging. sdAbs that target either EGFR (98), VCAM1, an 8-kDa fragment of gelsolin or carcinoembryonic antigen (CEA) have been conjugated with 99mTc (99). Recently, an anti-PD-L1 sdAb labeled with 99mTc discriminated wild type mice from PD-L1 knock-out mice by SPECT/CT imaging (100). sdAbs used as fluorescence-guided near-infrared wavelength range (NIR) probes are also under preclinical studies addressing sentinel lymph node imaging quality and guiding surgical/endoscopic removal of residual tumor tissue (101). NIR probes, IRDye800CW or IRDye680RD, were conjugated either by lysines or C-terminal cysteine to the 7D12 anti-EGFR sdAb. After IR dye conjugation, comparable specificities and affinities of 7D12 and...
the conjugate were measured toward EGFR \textit{in vitro} (58, 102). This study also showed an accumulation of the cysteine-conjugated 7D12 in A431 human tumor xenografts in nude mice or high tumor-to-muscle ratio.

The ultrasound imaging of vessel cell adhesion protein 1 (VCAM1), using specific sdAbs coupled to lipid microbubbles as contrast enhancers, is used to assess potential adhesion sites of melanoma cell extravasation and metastasis (75). Although sdAbs are promising imaging probes renal clearance during clearance and toxicity were reported in preclinical studies. Adverse effects were attributed to the polar residue number favoring the interaction with the megalin/cubilin system in the renal tubuli (103). This issue was overcome by mutating positive residues, facilitating filtration by the negatively charged glomerular membrane (104). Toxicity was also controlled by gelofusine or lysine added to the probe (103, 105).

sdAb AGAINST TUMOR TARGETS FOR CLINICAL USE

Single-domain antibodies that bind either hepatocyte growth factor, EGFR, bone morphogenetic protein (TGFβ superfamily growth factors), HER2, cMET, or VEGFR1, have been shown to efficiently block tumor cell proliferation (81, 106–109). Zhang et al. (61) have recently shown that KN035, an anti-CD16 sdAb, can induce T-cell responses and inhibit tumor growth; the KN035 CDRs structure is remarkably similar to that of the VH of Federal Drug Administration-approved Durvalumab (110). Other sdAbs were developed to target uPA, and chemokine receptors such as CXCR4 and CXCR7 (111). More recently, sdAbs targeting antioxidant enzymes such as membrane catalase and superoxide dismutase were selected for their ability to induce reactive oxygen species-dependent cancer cell apoptosis and found to be synergistic to chemotherapy (112).

Single-domain antibodies modules have been engineered into multivalent structures to overcome fast clearance. The anti-DR5 sdAb tetramer showed excellent pharmacokinetics and efficacy in preclinical models, inducing robust antitumor responses and sustained caspase activation \textit{in vivo}. However, in the phase I trial an unexpected hepatotoxicity which triggered hepatocyte apoptosis, later associated to the immune crosslinking of the tetramer in those patients with pre-existing ADA, prompted its discontinuation (113). A bifunctional sdAb, targeting EGFR and TRAIL, inhibits the growth of different tumor cell types that were not responsive to either EGFR-antagonist or death receptor-agonist monotherapies is a clear step forward of the clinical application of sdAbs modules (23). To improve the efficacy of a bifunctional therapeutic, the MaAbNA-PEG2000-ADM chimera consisting of an anti-EGFR sdAb linked to two anti-HER2 affibodies was conjugated with Adriamycin (114). The bispecific sdAb chimera recognizing CEA and antigen cluster of differentiation 16 (CD16) (NK-cell marker) was linked to a mutated human IgG1 Fc-fragment that equipped the dimer with an effector function (115). The bispecific antibody HER2-S-Fab, an anti-CD16 sdAb that is linked to a anti-trastuzumab Fab, also exhibited a potent tumor growth inhibition in a human tumor xenografts model (29). A multivalent, sdAb-based, in-tandem trimer was capable of simultaneously binding to CEA, EGFR, and green fluorescence protein with high efficacy for inhibition of human epidermoid carcinoma A431 cell proliferation (26).

An interesting approach to increase the half-life of sdAbs without affecting the affinity for its target was the fusion between an anti-TNFα sdAb with an albumin-binding domain derived from \textit{Streptococcus zooepidemicus} (~39-fold half-life increase with respect to the sdAb alone, Table 1, item 4) (28).

Targeting tumors with ionizing radiation is also a promising area for growth for sdAb therapeutics. The most relevant \textit{in vivo} study demonstrated that i.v. administration of the sdAb anti-HER2 labeled with 125Lu, a γ-emission radionuclide, completely prevented tumor growth in mice with small HER2-positive tumors (32). The α-emitting radionuclides 212Bi and 211At coupled to sdAbs are tentatively used to treat minimal residual disease and micro-metastasis and their clinical application is being intensely explored (116).

EMERGING DRUG-DELIVERY STRATEGIES THAT USE sdAbs

To improve solid tumor penetration an EGFR-targeted sdAb was fused to an iRGD, a cyclic domain selective of $\alpha_v\beta_3$ and $\alpha_v\beta_5$ integrins that carries a CendR motif that binds neuropilin 1 (NRP-1) (117). The efficacy of this construct was measured in BGC-823 multicellular spheroids that overexpress EGFR, NRP-1, and integrins. The anti-EGFRsdAb-iRGD showed better performance in reducing spheroid size than anti-EGFRsdAb or cetuximab. \textit{In vivo}, anti-EGFRsdAb-iRGD-FITC was shown to bind to $\alpha_v\beta_3$ and $\alpha_v\beta_5$ expressed in the tumor vessels, malignant cells, and cancer-associated stromal cells, penetrating further than the anti-EGFR-FITC (27). Recently, anti-EGFRsdAb-iRGD was conjugated to silk fibroin nanoparticles loaded with paclitaxel, resulting in a significant anti-neoplastic activity in EGFR-expressing cells \textit{in vitro} and \textit{in vivo} (41).

Single-domain antibody has been successfully used to retarget oncolytic adenovirus to a non-cognate receptor following the incorporation of an anti-CEA sdAb into the adenovirus capsid fiber (Figure 1B). This modification was shown to control viral tropism, entry, and gene transfer specifically in CEA-overexpressing cells (36, 118). sdAb displayed on genetically engineering phage combined with target drugs or imaging probes has recently been proposed for preclinical evaluation (43, 119).

Single-domain antibodies have been used to retarget nanoparticles with particular diagnostic or therapeutic properties (120, 121). Branched gold nanoparticles functionalized with an anti-prostate-specific antigen sdAb were shown to destroy cancer cells in response to laser irradiation in a preclinical model of photothermal therapy (37). Pegylated liposomes, schematized in Figure 1B, may be re-directed away from the reticuloendothelial system by coupled sdAbs and are under preclinical evaluation as drug nanocarriers (39, 40). A novel potent delivery system based on extracellular vesicles (EVs) has recently been described where an anti-EGFR sdAb was anchored on the surface of EVs \textit{via} glycosylphosphatidylinositol signal peptides derived from the decay-accelerating factor significantly improving EV targeting (42).
PLATEFORMS FOR THE GENERATION OF NEW sdAbs

Epitope recognition and coverage appear to be dependent on immune-selection pressure of VH and VHH sequences in vivo and by the library diversity (122, 123). To amplify antigenic epitope coverage, naive and semi-synthetic libraries are being promoted to amplify antigen epitope coverage often limited by B-cell IgG amplification in vivo. Low affinities may be matured or optimized as required. sdAb discovery may now count on high-throughput, high-resolution broad epitope coverage analysis and poly-specificity and affinity screening tools to increase the likelihood of selecting sdAbs with the desired therapeutic functions (Table 1, item 2) as well as to discriminate between functional sdAbs, such as those that can trigger receptor internalization (124) and polyreactive leads (8).

Three novel VHH library presentation and selection platforms have been recently proposed for a high-throughput selection of sdAb to integral membrane tumor antigens, or proteins overexpressed on the surface of whole cells or on virus-like particles (70, 123). Two of the platforms were designed to identify binders to antigen diluted in lysates or in complex mixtures for the discovery of sdAbs that bind critical pathway targets (78, 125). Rosotti et al. reported high throughput, parallel selection and characterization strategies to identify phage-displayed sdAbs against receptors expressed on murine bone marrow-derived dendritic cells (123). As a result of en masse cloning and whole-cell screening, the in vivo biotinylation of selected VHH facilitated the identification of targets. The isolated VHH were effectively mapped, or binned, by epitope, and target coverage was recorded [also see Ref. (126), Table 1, item 2].

Salema and Fernandez optimized the display of VHH on Gram-negative E. coli, and the direct expression of selected VHH clones, by anchoring the expression product on the outer membrane by fusing to the N-terminal, intimin β-domain (Neae) (78, 127, 128). High-affinity clone selection was optimized by magnetic cell sorting on immobilized recombinant biotinylated antigen (MACS) or by flow cytometry on whole cells (Cells) (78).

A third sdAb selection platform was presented by Cavallari using a Gram-positive Staphylococcal (Staphylococcus aureus) display of sdAb (125). Here, VHH clones were engineered with the signal peptide from staphylococcal enterotoxin B, with the sortase A (SrtA) LPXTG motif, to display folded VHH on the surface. Endogenous SrtA covalently, and irreversibly, coupled expressed sdAb on the outer membrane. A nucleophilic attack of the SrtA sdAb-acyl intermediate by polyglycine nucleophile-biotin was used to release and biotinylate selected VHH clones. The major advantages of bacterial display were the efficiency of selection as reflected by a high “hit” frequency, or high frequency of success, in comparison to hit selection by phage display, and minimum avidity. Also attractive is the choice of evaluating selected sdAbs by flow cytometry or in SPR binding assays directly enabling screening sdAbs by epitope and a discrimination of poly-specificity in a high-throughput mode (78, 128).

CONCLUDING REMARKS

Single-domain antibodies are soluble, stable, recombinant proteins that fold independently and display an outstanding versatility. The hardware-building concept of “plug and play” appears as an excellent paradigm in which sdAbs are part of a therapeutics generation tool kit that includes engineered recombinant sdAbs, radionuclides, dyes, peptides, proteins, nanostructures, phage, and virus.

Currently, 20–25% of the mAbs in clinical development for cancer and non-cancer indications are recombinant human antibodies derived from phage display libraries or from transgenic mice. Five antibody “fragments” (scFv) were reported in clinical phase 2/3 this past year. These include a human scFv-doxorubicin loaded liposome; two scFv conjugates, a humanized anti-EpCAM scFv-immunotoxin conjugate; and an anti-fibronectin extra-domain B human scFv for cancer indications.

The unexpected toxicity of the anti-DR5 tetramer, TAS266, opened the question of pre-existing immunity against sdAb. This issue has been addressed by developing sensitive immune serum assays and immunogenicity-screening platforms (Table 1, item 3, EpiVax) to identify the safer lead candidates, helping reduce the risk of clinical trial failure of sdAb-based drugs. The promise of recombinant, engineered, antibody-based building modules with optimal efficacy and bioavailability may soon translate into tangible cancer drugs.

AUTHOR CONTRIBUTIONS

MI, LP, SW, OP, and GC: conception, design, and writing of the review manuscript.

ACKNOWLEDGMENTS

The authors acknowledge Yasmina Abdiche, Ph.D., Ann Rux, Ph.D., and John Rux, Ph.D. for the insightful critique of the manuscript. The authors recognize the assistance of Dr. Monica Perez, Director of the Cardini Library at Fundacion Instituto Leloir for facilitating our searches and in managing our information resources.

FUNDING

MI, LP, OP, and GC are members of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina. This work was supported by grants from CONICET, Fondo Argentino Sectorial (FONARSEC), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Instituto Nacional del Cáncer, Ministerio de Salud de la Nación Argentina (INC-MSal), and Fundación Florencio Fiorini.
REFERENCES

1. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol (2014) 32(1):40–51. doi:10.1038/nbt.2786

2. Reichert JM. Antibodies to watch in 2017. MAbs (2017) 9(2):167–81. doi:10.1080/19420862.2016.1269580

3. Booth B. Human Antibody Discovery: Of Mice and Phage. Forbes (2017). Available from: https://www.forbes.com/sites/brucebooth/2017/05/11/

4. LaBute MX, Zhang X, Lendermann J, Bennion BJ, Wong SE, Lighstone FC. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. PLoS One (2014) 9(9):e106298. doi:10.1371/journal.pone.0106298

5. De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: from structural research tools to therapeutic strategies. Biochem Biophys Acta (2014) 1844(11):1907–19. doi:10.1016/j.bbabio.2014.08.016

6. Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A (2017) 114(5):944–9. doi:10.1073/pnas.1614081114

7. Kaelin WG Jr. Common pitfalls in preclinical cancer target validation. Nat Rev Cancer (2017) 17(7):425–40. doi:10.1038/nrcc.2017.32

8. Sivasubramanian A, Estep P, Lynaugh H, Yu Y, Miles A, Eckman J, et al. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies (2016). Google Patents (2016).

9. Rashidian M, Wang L, Edens JG, Jacobsen JT, Hossain I, Wang Q, et al. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. J Biotechnol (2017) 253:23–33. doi:10.1016/j.jbiotec.2017.05.017

10. Finlay WJ, Almagro JC. Natural and man-made V-gene repertoires for anti-body discovery. Front Immunol (2012) 3:342. doi:10.3389/fimmu.2012.00342

11. Ahmadvand D, Rasaei MJ, Rahbarizadeh F, Kontermann RE, Shiekholeslami F. Cell selection and characterization of a novel human endothelial cell specific nanobody. Mol Immunol (2009) 46(8–9):1814–23. doi:10.1016/j.molimm.2009.01.021

12. Jespers L, Schon O, Famm K, Winter G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol (2007) 24(9):1161–5. doi:10.1038/nbt1000

13. Feige MJ, Grawert MA, Marcinowski M, Hennig J, Behnke J, Auslander D, et al. The structural analysis of shark IgGNAR antibodies reveals evolutionary principles of immunoglobulins. Proc Natl Acad Sci U S A (2014) 111(22):8155–60. doi:10.1073/pnas.1408525111

14. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, De Genst E. Antibody discovery: The sdAb in Cancer Therapy. In: Reference. Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 273

15. Iezzi et al. The sdAb in Cancer Therapy. Mol Immunol (2000) 37(10):579–90. doi:10.1016/S0161-5890(00)00081-X

16. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs (2017) 9(2):182–212. doi:10.1080/19420862.2016.1268307

17. Zhu Y, Bassoff N, Reinshagen C, Bhere D, Nowicki MO, Lawler SE, et al. Bi-specific molecule against EGFR and death receptors simultaneously targets proliferation and death pathways in tumors. Sci Rep (2017) 7(1):2602. doi:10.1038/s41598-017-02483-9

18. Nosenko MA, Atretkhany KN, Mokhonov VV, Efimov GA, Kruglov AA, Tillib SV, et al. VHH-based bispecific antibodies targeting cytokine production. Front Immunol (2017) 8:1073. doi:10.3389/fimmu.2017.01073

19. Zhu Y, Wang L, Liu R, Flutter B, Li S, Ding J, et al. COMBOYE: one-domain antibody multimter with improved avidity. Immunol Cell Biol (2010) 88(6):667–75. doi:10.1038/icb.2010.21

20. Alvarez-Cienfuegos A, Nuñez-Prado N, Compte M, Cuesta AM, Blanco-Toribio A, Harwood SL, et al. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains. Sci Rep (2016) 6:28643. doi:10.1038/srep28643

21. Sha H, Zou Z, Xin K, Bxan X, Cai X, Lu W, et al. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release (2015) 200:188–200. doi:10.1016/j.jconrel.2014.12.039

22. Cantante C, Lourenco S, Morais M, Leandro J, Gano L, Silva N, et al. Albumin-binding domain from Streptococcus zooepidemicus protein Zag as a novel strategy to improve the half-life of therapeutic proteins. J Biotechnol (2016) 220:253–63. doi:10.1016/j.jbiotec.2015.05.017

23. Rashidian M, Wang L, Edens JG, Jacobsen JT, Hossain I, Wang Q, et al. Enzyme-mediated modification of single-domain antibodies for imaging modalities with different characteristics. Angew Chem Int Ed Engl (2016) 55(2):528–33. doi:10.1002/anie.201507596

24. D’Huyvetter M, Vincze C, Xavier C, Aerts P, Impens N, Baatout S, et al. Cell-penetrating anti-GFAP VHH for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing gliomas. Theranostics (2014) 4(7):708–20. doi:10.7150/thno.8156

25. Behdani M, Zeinali S, Karimipour M, Khanahmad H, Schoonooghe S, Aslemarz A, et al. Development of VEGFR2-specific nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. V Nat Biotechnol (2013) 30(6):601–6. doi:10.1038/nbt.2509.002

26. Liu X, Yu X, Yan DB, Xiong YH, He ZY, Wang XX, et al. Development of a nanobody-alanine phosphate fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in cereal. Anal Chem (2015) 87(2):1387–94. doi:10.1021/acsanalchem.1504305z

27. Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat Rev Genet (2007) 8(8):573–87. doi:10.1038/nrg2141

28. Kaliberov SA, Kaliberova LN, Buggio M, Tremblay JM, Shoemaker CB, Tillib SV, et al. VHH-based bispecific antibodies targeting cytokine production. Front Immunol (2017) 8:1073. doi:10.3389/fimmu.2017.01073

29. Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K, Lagae L, et al. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains. Sci Rep (2016) 6:28643. doi:10.1038/srep28643

30. Ha H, Zou Z, Xin K, Bxan X, Cai X, Lu W, et al. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release (2015) 200:188–200. doi:10.1016/j.jconrel.2014.12.039

31. Karimipour M, Khanahmad H, Schoonooghe S, Aslemarz A, et al. Development of VEGFR2-specific nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. V Nat Biotechnol (2013) 30(6):601–6. doi:10.1038/nbt.2509.002

32. Liu X, Yu X, Yan DB, Xiong YH, He ZY, Wang XX, et al. Development of a nanobody-alanine phosphate fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in cereal. Anal Chem (2015) 87(2):1387–94. doi:10.1021/acsanalchem.1504305z

33. Behdani M, Zeinali S, Karimipour M, Khanahmad H, Schoonooghe S, Aslemarz A, et al. Development of VEGFR2-specific nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. V Nat Biotechnol (2013) 30(6):601–6. doi:10.1038/nbt.2509.002
Iezzi et al. The sdAb in Cancer Therapy

52. Huet HA, Growney JD, Johnson JA, Li J, Bilic S, Ostrom L, et al. Multivalent recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency. *Onco Targets Ther* (2016) 9:3153–62. doi:10.2147/OTT.S106678

53. Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM. A robust pipeline for rapid production of versatile nanobody repertoires. *Nat Methods* (2015) 13(4):395–43. doi:10.1038/nmeth.3100

54. Jovcevska I, Zupanec N, Urlep Z, Vranic A, Matos B, Stokin CL, et al. Structural basis of a nanobody-based anti-proteome approach and confirmed by OncoFinder in silico. *Front Immunol* (2017) 8(27):4411–58. doi:10.3389/fimmu.2017.017390

55. van Brussel AS, Adams A, Oliveira S, Dorresteijn B, El Khattabi M, et al. Localized CD47 blockade enhances immunotherapy for murine melanoma. *Proc Natl Acad Sci U S A* (2017) 114(38):10184–89. doi:10.1073/pnas.1710776114

56. Deisen R, Handelberg F, Van Meirhaeghe A, Vynck S, Loris R, Wyns L, et al. Chemical basis for the affinity maturation of a camel single domain antibody. *J Biol Chem* (2017) 292(50):33593–601. doi:10.1074/jbc.M116.797032

57. Zielonka S, Empting M, Grzeschik J, Konning D, Barelle CJ, Kolmar H. Structural insights and biomedical potential of IgNAR scaffolds from sharks. *MAbs* (2015) 7(1):15–25. doi:10.4161/mabs.35378

58. Debye P, Van Quathem J, Hansen I, Bala G, Massa S, Devoogd N, et al. Effect of dye and conjugation chemistry on the biodistribution profile of near-infrared-labeled nanobodies as tracers for image-guided surgery. *Mol Pharm* (2017) 14(4):1145–53. doi:10.1021/acs.molpharmaceut.6b01053

59. van Driel PB, Boonstra MC, Slooter MD, Heukers R, Stammes MA, Snoeks TJ, et al. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. *J Control Release* (2016) 229:93–105. doi:10.1016/j.jconrel.2016.03.014

60. Wang H, Meng AM, Li SH, Zhou XL. A nanobody targeting carcinoembryonic antigen as a promising molecular probe for non-small cell lung cancer. *Mol Med Rep* (2017) 16(1):625–30. doi:10.3892/mmr.2016.6767

61. Zhang F, Wei H, Wang X, Bai Y, Wang P, Wu J, et al. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. *Cell Discov* (2017) 3:17004. doi:10.1038/celldisc.2017.4

62. Ingram JR, Blomberg OS, Sokolosky JT, Ali L, Schmidt FL, Pisheva N, et al. The sdAb in Cancer Therapy
77. Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, et al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EGFR nanobodies. *Cancer Immunol Immunother* (2007) 56(3):303–17. doi:10.1007/s00262-006-0180-4

78. Salema V, Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, et al. Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. *Contrast Media Mol Imaging* (2011) 6(2):85–92. doi:10.1002/cmmi.408

79. Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, et al. Nanobodies to study G protein-coupled receptors. *Biochim Biophys Acta* (2013) 1831(11):2238–45. doi:10.1016/j.bbamem.2013.05.008

80. Griffin L, Lawson A. Antibody fragments as tools in crystallography. *Clin Exp Immunol* (2011) 165(3):285–91. doi:10.1111/j.1365-2241.2011.04427.x

81. Schmitz KR, Bagchi A, Roovers RC, van Bergen en Henegouwen PM, Ferguson KM. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. *Structure* (2013) 21(7):1214–24. doi:10.1016/j.str.2013.05.008

82. Manglik A, Kobilka BK, Steyaert J. Nanobodies to study G protein-coupled receptors and function. *Annu Rev Pharmacol Toxicol* (2017) 57:19–37. doi:10.1146/annurev-pharmtox-010716-104710

83. Harmsen MM, van Colt SB, van Zijlvedel-van Bemmel AM, Niewold TA, van Zijlvedel FG. Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy. *Appl Microbiol Biotechnol* (2006) 72(3):544–51. doi:10.1002/app.20035-005-0300-7

84. Hussak G, Hrama T, Ding W, Mackenzie R, Tanha J. Engineered single-domain antibodies with high protease resistance and thermal stability. *PLoS One* (2011) 6(11):e28218. doi:10.1371/journal.pone.0028218

85. Newnham LE, Wright MJ, Holdsworth G, Kostarelos K, Robinson MK, Wright MJ, et al. Efficient inhibition of EGFR signaling and of tumour growth by technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. *Contrast Media Mol Imaging* (2011) 6(2):85–92. doi:10.1007/cmmi.408

86. D’Huyvetter M, Xavier C, Caveliers V, Lahouitte T, Muyldemans S, Van den Bosch MH, et al. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. *Expert Opin Drug Deliv* (2014) 11(12):1939–54. doi:10.1517/17425247.2014.91803

87. Chatalic KL, Veldhoven-Zweistra J, Valkenstijn M, Hoeven S, Koning GA, Slordahl TS, et al. Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. *OncoTarget* (2017) 8(26):41932–46. doi:10.18632/oncotarget.16708

88. Papadopoulos KP, Isaacs R, Bilic S, Kentsch K, Huet HA, Hofmann M, et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic nanobody (R) targeting the DR5 receptor. *Cancer Chemother Pharmacol* (2015) 75(3):887–95. doi:10.1007/s00280-015-2712-0
114. Ding L, Tian C, Feng S, Fida G, Zhang C, Ma Y, et al. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. *Theranostics* (2015) 5(4):378–98. doi:10.7150/thno.10084

115. Li J, Zhou C, Dong B, Zhong H, Chen S, Li Q, et al. Single domain antibody-based bispecific antibody induces potent specific anti-tumor activity. *Cancer Biol Ther* (2016) 17(12):1231–9. doi:10.18080/15384047.2016.1235659

116. Dekempeneer Y, Keyaerts M, Krasniqi A, Puttemans J, Muyldermans S, Lahoutte T, et al. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. *Expert Opin Biol Ther* (2016) 16(8):1035–47. doi:10.1080/14712598.2016.1185412

117. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. *Proc Natl Acad Sci U S A* (2009) 106(38):16157–62. doi:10.1073/pnas.0908201106

118. van Erp EA, Kaliberova LN, Kaliberov SA, Curiel DT. Retargeted oncolytic adenovirus displaying a single variable domain of camelid heavy-chain-only antibody in a fiber protein. *Mol Ther Oncolytics* (2015) 2:15001. doi:10.1038/mto.2015.1

119. Rita Costa A, Milho C, Azeredo J, Pires DP. Synthetic biology to engineer bacteriophage genomes. *Methods Mol Biol* (2018) 1693:285–300. doi:10.1007/978-1-4939-7395-8_21

120. Hu Y, Liu C, Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. *Front Immunol* (1442) 2017:8.

121. Turner KB, Alves NJ, Medintz IL, Walper SA. Improving the targeting of therapeutics with single-domain antibodies. *Expert Opin Drug Deliv* (2016) 13(4):561–70. doi:10.1517/17425247.2016.1133583

122. Rosotti M, Tabares S, Alfaya L, Leizagoyen C, Moron G, Gonzalez-Sapienza G. Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells. *Biochim Biophys Acta* (2015) 1850(7):1397–404. doi:10.1016/j.bbagen.2015.03.009

123. Cavallari M. Rapid and direct VH and target identification by staphylococcal surface display libraries. *Int J Mol Sci* (2017) 18(7):E1507. doi:10.3390/ijms18071507

124. Abdiche YN, Yeung AY, Ni I, Stone D, Miles A, Morishige W, et al. Antibodies targeting closely adjacent or minimally overlapping epitopes can displace one another. *PLoS One* (2017) 12(1):e0169535. doi:10.1371/journal.pone.0169535

125. Salema V, Fernandez LA. *Escherichia coli* surface display for the selection of nanobodies. *Microb Biotechnol* (2017) 10(6):1468–84. doi:10.1111/1751-7915.12819

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Iezzi, Policastro, Werbajh, Podhajcer and Canziani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.