Absorption at the Dust Sublimation Radius and the Dichotomy between X-ray and Optical Classification in the Seyfert Galaxy H0557-385

D. Coffey, A. L. Longinotti, A. Rodríguez-Ardila, M. Guainazzi, G. Miniutti, S. Bianchi, I. de la Calle, E. Piconcelli, L. Ballo, M. Linares

Presenting Author

Damien Coffey

School of Physics, Trinity College Dublin
ESAC,ESA

Accepted for Publication in MNRAS
X-ray Absorption Variability in AGN

A significant fraction of local Seyfert galaxies show evidence for continuum absorption in their X-ray spectra.

Measurements of variability timescales can be used to infer the distance to the absorbing medium.

Short timescale variability is often attributed to BLR clouds. (e.g. NGC 1365; Maiolino et al. 2010, Risaliti et al. 2007).

Longer variability timescales are associated with the circumnuclear torus (e.g. NGC 7582; Piconcelli et al. 2007).

Figure: Urry & Padovani 1995 (adapted)
Extensive *XMM-Newton* observation campaigns have revealed extreme X-ray variability on a time scale of several years.

Obs. #	Mission	Date
1	ASCA	1995-03-23
2	BeppoSAX	2001-01-26
3	XMM	2002-04-04
4	XMM	2002-09-17
5	XMM	2006-08-11
6	XMM	2006-11-03
7	XMM	2010-10-15
8	XMM	2010-10-19
9	XMM	2010-10-31

Less dramatic variability observed among the low-state spectra on a time scale of weeks/months.
H0557-385: Previous Work

Ashton et al. (2006)

- Presented the 2002 XMM-Newton observations.
- Investigated the warm absorption present in the soft X-ray spectrum.
- Used a model consisting of a two-phase warm absorber, along with a neutral gas component.

Longinotti et al. (2009)

- Presented the low-state data which showed a drop in flux by a factor of ~ 10.
- Low-state model included a partial covering absorption component.
- Showed that transitions between the two states can be attributed to a neutral absorber attenuating the primary emission.
Designing the Spectral Model

- Intrinsic AGN power law
- Warm absorption (ZXIPCF)
- Compton reflection (PEXMON)
- Collisionally ionised emission (APEC)
- Transition between states due to variable neutral absorber (ZPCFABS)
Results From the Spectral Model

Transition between states require a Compton-thin ($N_H \sim 10^{23} \text{ cm}^{-2}$) neutral absorber covering more than 80% of the X-ray source.
Swift XRT Data

Search for short (days/weeks) timescale variability: *Swift* monitoring, 2010 March - 2011 November.

\[\text{Swift XRT Flux} \ 0.4-5 \text{ keV (cgs)} \]

\[10^{-11} \]

\[10^{-12} \]

\[10^{-13} \]

\[0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600 \]

\[\text{Day from 2010-04-03} \]

H0557-385 is not observed to revert back to its high-state on short timescales
Origin of the X-ray Variability

Multiple observations provide upper limit on variability time scale ΔT.

Cloud velocity estimates;

- Velocity of BLR clouds estimated from FWHM of emission lines.
- Distance to dust sublimation radius: $R_d \propto L^{0.5}$
- Calculate velocity of material at R_d assuming Keplerian motion.
Cloud diameter, \(D_c \), found from

\[
D_c \geq V_c \Delta T + D_s
\]

(Miniutti et al. 2014) where \(D_s \sim 10R_g \) is the X-ray source size.

Cloud number density (\(\text{cm}^{-3} \)) found from cloud column density, \(N_H \),

\[
N_e = \frac{N_H}{D_c}
\]
Properties of the Absorbing Material

Obscuring clouds can be associated with material at the dust sublimation radius, a distance \(R_d \approx 2 \times 10^{18} \) cm from the X-ray source.

Cloud Properties
\(N_H \) (cm\(^{-2}\))
\(V_c \) (km s\(^{-1}\))
\(D_c \) (cm)
\(N_e \) (cm\(^{-3}\))
Optical Spectroscopy Measurements

SOAR/Goodman optical spectroscopic observations, November 2010 - January 2011.

- Optical observations concurrent with 2010 *XMM-Newton* observations.
- Broad emission lines detected during an X-ray absorption event.
Dramatic X-ray variability attributed to absorption by a neutral Compton-thin absorber.

Variability timescales suggest that absorber forms part of the inner torus.

Observation of broad optical emission lines suggests that the absorber must be dust-free.

H0557-385 does not fit in to the traditional Unification Model for AGN.

Unusual, but not unique; X-ray and Optical Classification may give contrasting results for ∼30% of AGN. (Merloni et al. 2014).