Nuclear Receptor Liver X Receptor Is O-GlcNAc-modified in Response to Glucose*

Received for publication, November 6, 2009. Published, JBC Papers in Press, November 20, 2009, DOI 10.1074/jbc.M109.082685

Elin Holter Anthonisen, Lise Berven, Sverre Holm, Maria Nygård 3, Hilde I. Nebb 2, and Line M. Grønning-Wang 3

From the Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1046, Blindern, 0316 Oslo, Norway

Post-translational modification of nucleocytoplasmic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) has for the last 25 years emerged as an essential glucose-sensing mechanism. The liver X receptors (LXRs) function as nutritional sensors for cholesterol-regulating lipid metabolism, glucose homeostasis, and inflammation. LXRs are shown to be post-translationally modified by phosphorylation, acetylation, and sumoylation, affecting their target gene specificity, stability, and transactivating and transrepressional activity, respectively. In the present study, we show for the first time that LXRα and LXRβ are targets for glucose-hexosamine-derived O-GlcNAc modification in human Huh7 cells. Furthermore, we observed increased hepatic LXRα O-GlcNAcylation in vivo in refed mice and in streptozotocin-induced refeed diabetic mice. Importantly, induction of LXRα O-GlcNAcylation in both mouse models was concomitant with increased expression of the lipogenic gene SREBP-1c (sterol regulatory element-binding protein 1c). Furthermore, glucose increased LXR/retinoic acid receptor-dependent activation of luciferase reporter activity driven by the mouse SREBP-1c promoter via the hexosamine biosynthetic pathway in Huh7 cells. Altogether, our results suggest that O-GlcNAcylation of LXR is a novel mechanism by which LXR acts as a glucose sensor affecting LXR-dependent gene expression, substantiating the crucial role of LXR as a nutritional sensor in lipid and glucose metabolism.

Liver X receptor (LXR)4 α (NR1H3) and LXRβ (NR1H2) are ligand-activated transcription factors belonging to the nuclear receptor family and work as heterodimers with the retinoic X receptor (RXR). LXRα is expressed primarily in liver, macrophages, adipose tissue, and the interstitial epithelium, whereas LXRβ is ubiquitously expressed (1, 2). Both isoforms act as sterol sensors binding endogenous oxysterol ligands (3–5). LXRs are known to play a crucial role in lipid and glucose metabolism, partly through their regulation of sterol regulatory element-binding protein 1c (SREBP-1c), a key regulator of lipogenesis (6, 7). Furthermore, LXRs are reported to be involved in both insulin-mediated activation and lipid-mediated repression of SREBP-1c transcription (8–10), supporting a role of LXRs as nutritional sensors. In addition to the role of LXRs in fatty acid homeostasis, these nuclear receptors are also known to control gene expression linked to cholesterol homeostasis in response to oxidized cholesterol (7). Because LXRs play an important role in both cholesterol efflux from macrophages and act as a modulator of immune responses (11–13), activation of LXR signaling may have beneficial effects on atherosclerosis. However, LXR activation also has proatherogenic capacity by activating SREBP-1c and fatty acid synthase gene expression (6, 14). Whether a net outcome of LXR activation is pro- or antiatherogenic may depend on conditions regulating post-translational modifications on LXRs.

LXRs are shown to be post-translationally modified by phosphorylation (15–17), acetylation (18), and sumoylation (19), affecting their target gene specificity, stability, and transactivating and transrepressional activity, respectively. Recently, Mitro et al. (20) showed that physiological concentrations of glucose were able to activate LXR and induce expression of genes involved in both lipid and cholesterol homeostasis in liver. Moreover, they made the surprising discovery that glucose acts as an endogenous LXR ligand in human HepG2 cells. These findings are somewhat controversial because LXRs are known to be ligand-activated via a hydrophobic pocket in the C-terminal domain (21). This argues against a role for the highly hydrophilic glucose molecule acting as a ligand for LXRs and suggests that glucose exerts its effect on LXR via activation of downstream glucose signaling, potentially the hexosamine biosynthetic pathway involving O-linked glycosylation. Cytoplasmic and nuclear proteins can be dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc) by the enzyme O-GlcNAc transferase using UDP-GlcNAc generated by the hexosamine biosynthetic pathway as substrate (22, 23). O-GlcNAc is attached to specific serine and threonine residues on nuclear and cytoplasmic proteins analogous to phosphorylation (22). 2–5% of glucose entering the cell is diverted into the hexosamine biosynthetic pathway. Because O-GlcNAc levels on proteins appear to be sensitive to flux through this pathway, O-GlcNAc transferase can be considered as a general sensor of glucose availability that modifies proteins according to changes in glucose availability.
O-GlcNAc Modification of Liver X Receptors by Glucose

in levels of UDP-GlcNAc. O-GlcNAcylation has been shown to be an important regulatory mechanism for a number of nutrient- and stress-responsive transcription factors, including p53, NF-κB, and FOXO1 (24–27).

Here, we report for the first time that LXRs are O-GlcNAcylated in human Huh7 liver cells and that in vivo O-GlcNAcylation of hepatic LXRs is induced in refed and streptozotocin (STZ)-induced diabetic mice concomitant with increased SREBP-1c expression. Moreover, we show that glucose increased LXR/RXR-dependent activation of the mouse SREBP-1c promoter in Huh7 cells via the hexosamine biosynthetic pathway. Our findings provide a novel mechanism for direct glucose response of LXRs, crucial for proper regulation of lipid and glucose metabolism.

EXPERIMENTAL PROCEDURES

Reagents—D- (+)-Glucose solution (G8769; Sigma), d- (+)-glucosamine hydrochloride (G4875; Sigma), d- (+)-galactose (G0750; Sigma), 6-diazo-5-oxo-l-norleucine (DON, D2141; Sigma), O- (2-acetamido-2-deoxy- D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAC, A157250; Toronto Chemical), succinylated wheat germ agglutinin (swGA)-agarose (AL-10235; Vector Laboratories), N-acetyl-D-glucosamine (GlcNAc, 01140; Sigma-Aldrich), GlcNAc-thailone (provided by Dr. Spencer Knapp, Rutgers, NJ).

Plasmids—Construction of pFLAG-hLXRα (wild type (WT) (amino acids 1–447), amino acids 166–447, 259–447) and pFLAG-hLXRβ (WT (amino acids 1–461), amino acids 1–157, 157–461, and 273–461) was performed using PCR with human LXR cDNA as a template. The PCR fragments were inserted by direct DNA sequencing. Other plasmids were: pSG5 (Stratagene), pRL (Promega), and pSG5-hRXRα, pcDNA3-hLXRα, and pcDNA3-hLXRβ (provided by Kristor Bamberg, AstraZeneca, Sweden). The following mouse SREBP-1c promoter constructs were obtained by Dr. Nobuhito Yamada, University of Tokyo, Japan: pGL2basic/−550mSREBP1cprom-Luc (pBP1c550-Luc), pGL2prom/mLXREαb-Luc (pLXRE-Luc), pGL2prom/mLXREαm-Luc, pGL2prom/mLXREβm-Luc, and pGL2prom/mLXREβm-Luc (29). The LXR response elements LXREα and LXREβ in the mouse SREBP-1c promoter are highly similar to LXRE1 and LXRE2 in the promoter of human SREBP-1c (30).

Cell Cultures and Transfections—The Huh7 liver hepatoma cell line was maintained in Dulbecco’s modified Eagle’s medium (DMEM) (D6456; Sigma) supplemented with 10% fetal bovine serum (F7524; Sigma), 4 mM l-glutamine (G7513; Sigma), and 1% penicillin-streptomycin (P4458; Sigma). The FLAG-hLXRα-expressing Flp-InTM293 cell line was generated using the Flp-In system (Invitrogen) in accordance with the manufacturer’s instructions. The cells were maintained in DMEM containing 5 mM d-glucose (D6046; Sigma) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin. All cells were kept at 37 °C in a humidified atmosphere containing 5% CO2. Huh7 cells were transfected using Lipofectamine 2000 (Invitrogen) as instructed by the manufacturer with the following details. Cells were seeded in DMEM containing 5 mM d-glucose 1 day before transfection. Transfection was performed in serum-free DMEM containing 1 mM d-glucose. 5 h after transfection, media were changed to serum-free DMEM with different glucose concentrations together with 0.2–5 mM glucosamine, 5 μM DON, 50 μM GlcNAc-thialone, or 50–100 μM PUGNAC for 24 h as specified in each experiment.

Preparation of Protein Extract—Cells were scraped in phosphate-buffered saline and centrifuged for 3500 rpm for 3 min, and pellets were resuspended in radioimmuno precipitation assay buffer (150 mM NaCl, 50 mM Tris-Cl, pH 8, 1% Nonidet P-40, 0.1% SDS, 0.5% sodium deoxycholate, 2 mM EDTA, 2.5 mM sodium pyrophosphate, 1 mM NaF, 1 mM Na3VO4, 1 mM β-glycerophosphate, 1 μM O-GlcNAcase inhibitor GlcNAc-thialone, and CompleteTM protease inhibitors (Roche Applied Science). For preparation of total protein extract from mice liver, ~25 mg of liver tissue was homogenized in 500 μl of lysis buffer (phosphate-buffered saline containing 0.1% Nonidet P-40, 0.1% SDS and CompleteTM protease inhibitor). Tissue and cold lysis buffer were combined in tubes containing ceramic beads (Recellsy CK28; Bertin Technologies) and homogenized in Precellsy®24 homogenizer (Bertin Technologies) 2 × 15 s at 5000 rpm.

Immunoprecipitation and swGA Pulldown—Protein extracts (300–500 μg) were incubated with protein A/G-agarose beads (sc-2003; Santa Cruz Biotechnology) for 1 h at 4 °C to minimize unspecific binding. Extracts were transferred to clean tubes and incubated further with 1 μg of LXR antibody, 2 μg of rabbit FLAG antibody, or IgG control (mouse gamma globulin, 015-000-002; Jackson ImmunoResearch Laboratories) together with protein G-agarose beads (sc-2002; Santa Cruz Biotechnology) overnight at 4 °C. For anti-mouse FLAG immunoprecipitation, EZview Red anti-FLAG M2 affinity gel (F2426; Sigma) was used according to the manufacturer’s manual. Succinylated WGA pulldown was performed as immunoprecipitation except 40 μl of swGA-agarose was added after preincubation with protein A/G-agarose beads.

Western Blotting—O-GlcNAc levels were determined by SDS-PAGE and blotting with mouse monoclonal anti-O-GlcNAc antibodies RL2 (MA1-072, 1:1000; Affinity BioReagents), CTD110.6 (MMS-248R, 1:1000; Covance), or the GlcNAc-binding lectin swGA conjugated to horseradish peroxidase (HRP), swGA-HRP (H-2102-1, 1:10,000; EY Laboratories). Ectopically expressed FLAG-tagged LXRs were detected with mouse monoclonal anti-human LXR antibodies (PP-K8607-00 (LXRα) from R&D Systems or PP-K8917-00 (LXRβ), 1:500) or rabbit polyclonal anti-FLAG antibody (F7425, 1:5000; Sigma), whereas a rabbit polyclonal anti-mouse LXR antibody (1:1000, provided by Knut Steffensen, Karolinska Institutet, Sweden) (31) was used for detecting LXRs in mouse liver. Secondary light chain-specific antibodies from Jackson ImmunoResearch Laboratories were used at 1:10,000 dilutions (anti-mouse, 115-035-174; anti-rabbit, 211-032-171). Anti-mouse IgM (A8786; Sigma) was used at a 1:5000 dilution.

In Vitro Translation and GlcNAcylation of LXRs and LXRβ in Reticulocyte Lysate—35S-Labeled LXRs and LXRβ proteins were in vitro translated from pcDNA3-hLXRα and pcDNA3-hLXRβ or different pFLAG-hLXRα/pFLAG-hLXRβ deletion constructs using the Promega TNT T7 Quick Coupled Transcription-Translation system (Promega, Madison, WI).
and [35S]methionine (PerkinElmer Life Sciences), as instructed by the manufacturer. 40 μl of the reaction mixtures were diluted in 200 μl of 0.5 M HEPES, pH 7.5, containing 0.1 M NaCl and incubated with 50 μl of sWGA-agarose (equilibrated in HEPES-NaCl buffer) overnight at 4 °C. After extensive washing in HEPES-NaCl buffer containing 0.2% Nonidet P-40, GlcNAcylated LXRαs were batch-eluted three times in 200 μl of 0.5 M GlcNAc following elution in 400 μl of 0.5 M galactose. GlcNAc-elicited proteins were subjected to SDS-PAGE together with an aliquot of the TNT reaction mixture. The gel was analyzed by fluorography using En3Hance reagent (PerkinElmer Life Sciences).

Promoter Activity Assays—Huh7 cells were seeded at a density of 8 × 104 cells/well in 24-well plates. The next day, cells were co-transfected with 400 ng of luciferase reporter construct, 20 ng of Renilla luciferase control plasmid, pRL, 100 ng of pSG5-hRXRa with 100 ng of pcDNA3-hLXRα, pcDNA3-hLXRβ, or empty vector pSG5 as control. After 24 h, the cells were harvested in 100 μl of reporter lysis buffer (Promega). Luciferase activities were measured using the Dual-Luciferase reporter assay system (Promega) in 96-well plates on a Synergy 2 Multi-Probe Microplate Reader (BioTek Instruments) according to the manufacturer’s protocol.

Animals—All use of animals was approved and registered by the Norwegian Animal Research Authority and the regional ethical committee for animal experiments in Sweden. The mice (mixed genetic background based on 129/Sv and C57BL/6J strains, backcrossed in C57BL/6J for at least six generations) were housed in a temperature-controlled (22 °C) facility with a strict 12-h light/dark cycle with free access to water during experiments. The mice were killed by cervical dislocation; tissues were excised, rapidly frozen in liquid nitrogen, and stored at −80 °C until further analysis. They were fed an R36 Lactamin diet containing 55.7% carbohydrates, 18.5% protein, and 4% fat (Lactamin AB; Stockholm, Sweden). Mice used in the STZ experiment were of the C57BL/6J strain and fed a diet containing 64% carbohydrates, 31.5% protein, and 4.5% fat (SDS RM no.1 maintenance, Special Diets Services, UK).

Fasting-Refeeding Experiments—Male mice were fasted and refeed for 24 h and 12 h, respectively. All mice were killed at the end of the dark period.

STZ Treatment—Male mice were pretreated with two intraperitoneal injections of STZ (100 mg/kg) (S0130; Sigma) with 1 day between injections. STZ was freshly made in sodium citrate buffer (50 mmol/liter, pH 4.5) immediately before injections. Seven days after the first STZ injection, mice were included in fasting-refeeding experiment as described above.

Quantitative RT-PCR—Total RNA was extracted with TRIzol reagent (Invitrogen). cDNA was synthesized using a High Capacity cDNA Archive Kit (Applied Biosystems). Analysis of mRNA expression was done by quantitative reverse transcription-PCR on 7900HT (Applied Biosystems), and subsequent data analysis was done using SDS 2.3 software. Gene expression was normalized against the expression of the ribosomal protein 36B4. Primer sequences are available upon request.

Statistical Analysis—Data are expressed as mean ± S.D. Statistical significance between groups was assessed by a two-tailed t test, equal variances not assumed.

RESULTS

LXRα and LXRβ Are Modified by O-GlcNAc in Huh7 Cells—To confirm specificity of the LXR antibodies used in this study, FLAG-tagged human LXRαs and LXRβs were transiently transfected into Huh7 liver cells followed by SDS-PAGE and immunoblotting with monoclonal anti-human LXRα, anti-human LXRβ, and anti-FLAG antibodies (Fig. 1A). Additionally, FLAG-tagged mouse LXRα was similarly tested using polyclonal anti-LXR antibody and anti-FLAG antibodies in immunoblotting experiments (data not shown). In agreement with a previous report (15), LXRα migrated as one major and one minor band around 50 kDa, whereas LXRβ migrated as a single band of ~60 kDa. Because of recent reports debating how, and if, LXRαs are glucose-responsive nuclear receptors in liver (20, 32–34) and the fact that O-GlcNAc functions as a nutrient sensor, we investigated whether LXRαs and LXRβs are modified by O-GlcNAc in Huh7 cells cultured under high glucose conditions. Cells transfected with FLAG-tagged LXRαs or LXRβs were immunoprecipitated with antibodies against LXRα (Fig. 1B, left panel) and LXRβ (Fig. 1B, right panel), and immunoblots were incubated with two different anti-O-GlcNAc antibodies (RL2 and CTD110.6) and the terminal GlcNAc-specific lectin, sWGA, which binds to N- and O-GlcNAcylated proteins. Enrichment of GlcNAc-containing glycoproteins using this lectin dramatically enrich for CTD110.6- and RL2-reactive proteins (35) (see Fig. 3A, lower panel). All three detection methods showed O-GlcNAcylation of both LXRαs and LXRβs determined by the observation of RL2-, CTD110.6-, and
GlcNAc Modification of Liver X Receptors by Glucose

FIGURE 2. In vitro GlcNAcylation of LXRα and LXRβ. A, in vitro translated (IVT) 35S-labeled hLXRα or 35S-labeled hLXRβ proteins in rabbit reticulocyte lysate were absorbed on sWGA-agarose beads. Beads were eluted once with 0.5 M galactose (G) followed by three times elution with 0.5 M GlcNAc (E1, E2, E3). In vitro translated lysates (8%) and sWGA eluates (sWGA; E1, E2, E3, G) were subjected to SDS-PAGE and analyzed by fluorescence autoradiography. Schematic figures of the LXR proteins are shown. DBD, DNA-binding domain; LBD, ligand-binding domain.

FIGURE 3. LXR GlcNAcylation is elevated by glucose in Huh7 cells and in stably transfected FLAG-hLXRα Flpin™293 cells. A, GlcNAc-modified proteins from FLAG-hLXRα or FLAG-hLXRβ-overexpressing Huh7 cells (1 mM and 25 mM glucose) were absorbed on sWGA-agarose beads (total amount of proteins loaded onto sWGA beads was the same in all lanes). Input (In, 10%), and sWGA-precipitated proteins (sWGA) were subjected to SDS-PAGE and blotted using anti-LXRα or anti-LXRβ antibodies. Immunoprecipitated LXRα were loaded as size control (C) (upper panel). O-GlcNAc-modified proteins from input (10%, left panel) and sWGA precipitation (right panel) were detected using anti-O-GlcNac (CTD110.6) antibody (lower panel). B, FLAG-hLXRα was immunoprecipitated (IP) from FLAG-hLXRα stably transfected Flpin™293 cells (5 mM glucose, 25 mM glucose, 5 mM glucose + GlcNAc (NAG), 5 mM glucose + glucosamine) using rabbit anti-FLAG antibody. Input (2%) and immunoprecipitated proteins were subjected to SDS-PAGE and blotted with anti-LXRα antibody and sWGA-HRP or anti-O-GlcNAc (CTD110.6) antibody to verify GlcNAc modification.

sWGA-reactive bands of ~50 kDa (LXRα) and 60 kDa (LXRβ). Specificity of LXR O-GlcNAcylation was confirmed by similar RL2 antibody reactivity in anti-FLAG immunoprecipitates, but not in anti-IgG immunoprecipitates and by reduced reactivity in the presence of free GlcNAc (Fig. 1, C and D).

In vitro GlcNAcylaton of LXRα and LXRβ—In vitro translation was used to generate 35S-labeled LXRα and LXRβ in rabbit reticulocyte lysate to test for their ability to bind sWGA-agarose because proteins expressed in rabbit reticulocyte lysate are modified by O-GlcNAc (36). When the translation mixtures were added to sWGA-agarose beads, 35S-labeled LXRα and LXRβ were retained on the lectin beads and eluted with 0.5 M GlcNAc (Fig. 2A). We next performed in vitro translation on deletion constructs of LXRα and LXRβ to elucidate which domain(s) contain O-GlcNAc binding site(s). Fig. 2B shows that sWGA binding of 35S-labeled LXRα and LXRβ depends on the N-terminal region containing the activation function-1 and DNA-binding domains, suggesting that this region contains putative O-GlcNAc binding site(s).

LXR GlcNAcylation Is Elevated by Glucose—To determine the effect of glucose on O-GlcNAcylation of LXRα and LXRβ, LXR-transfected Huh7 cells were grown in serum-free medium containing 1 mM glucose or 25 mM glucose for 24 h. GlcNAcylated proteins were absorbed on sWGA-agarose beads and analyzed by immunoblotting using anti-LXR antibodies (Fig. 3A, upper panel). We observed increased association of LXRα and LXRβ with the beads in high glucose-treated cells and in cells treated with 5 mM glucose (data not shown). This was not seen in cells transfected with empty vector (data not shown). LXRα appears to have weaker affinity for sWGA than LXRβ judged by weaker LXRα immunoreactive bands observed in sWGA eluates and longer exposure time needed for sWGA-retained 35S-labeled LXRα in the in vitro GlcNAcylaton assay (Fig. 2). This can be explained by fewer O-GlcNAcylation sites on LXRα and/or the position of the site(s) because WGA has high affinity for oligomeric and terminal GlcNAc (37). High glucose did not affect the expression level of transfected LXR proteins, suggestive of a glucose-dependent reg-
O-GlcNAc Modification of Liver X Receptors by Glucose

O-GlcNAc Regulation of LXR Activity—To clarify the role of O-GlcNAc on LXR activity, we asked whether glucose could regulate the SREBP-1c promoter through LXRs. Huh7 cells were co-transfected with RXRα and LXRα or LXRβ expression vectors together with a luciferase reporter construct containing 550 bp of the proximal 5’-flanking region of the mouse SREBP-1c promoter (pBP1c550-Luc) (Fig. 5A). In control cells transfected with RXRα and the empty vector pSG5, there were only small effects on luciferase activity possibly because of endogenous LXR in Huh7 cells (white bars). Co-transfection with LXRα/RXRα (black bars) resulted in ~7-fold higher basal luciferase activities (1 mM glucose), and LXRβ/RXRα (gray bars) resulted in 2.5-fold higher luciferase activities compared with RXRα alone, suggesting that LXRα is the major transactivator of SREBP-1c transcription in Huh7 cells. However, glucose-induced luciferase activities increased in a similar manner in LXRα- and LXRβ-transfected cells (40–60%; similar between 5 and 25 mM glucose).

To show that LXR transactivation of the SREBP-1c promoter depends on the two LXRE elements of the promoter, we co-transfected LXRα and RXRα with the pBP1cLXRE-Luc promoter/enhancer construct (LXRELuc) or mutated versions of the LXRE elements (LXRM-Luc, LXREb-M-Luc, and LXREa+b-M-Luc) (29) (Fig. 5B). The glucose responsiveness of the LXRELuc promoter was similar as the endogenous ~550 bp SREBP-1c promoter and relative luciferase activities dropped by ~60% in cells transfected with the LXREaLuc construct in which the upstream LXREa site was mutated. However, glucose responsiveness remained the same, suggesting that the downstream LXREb site is capable of conferring responsiveness to glucose and O-GlcNAcylated LXRα, but that both sites are necessary for maximal responses. Mutation of the downstream LXREb site led to an 85% reduction in relative luciferase activities, and the glucose responsiveness appeared to be lost in cells co-transfected with this construct.

5 S. Holm, S. M. Ulven, K. Bamberg, V. H. Telle-Hansen, C. Bindesboll, K. R. Steffensen, Y. Qin, K. T. Dalen, J.-A. Gustafsson, and N. I. Nebb, unpublished data.
Mutations of both LXREa+b sites resulted in only background luciferase activities.

To confirm that the hexosamine biosynthetic pathway is involved in glucose-mediated induction of the LXREa enhancer, we treated cells co-transfected with LXRa/RXRα with PUGNAc, an inhibitor of O-GlcNAcase (Fig. 5C). PUGNAc treatment (100 μM) resulted in 37% increase in relative luciferase activities driven by the LXREa enhancer. Furthermore, DON treatment reduced LXREa-luciferase activities by 20%, and luciferase activities increased by 26% above basal levels in cells treated with glucosamine and DON (Fig. 5D). In line with these observations, immunoblotting showed increased LXRa O-GlcNAcylation in glucosamine- or PUGNAc-treated cells (Fig. 5E), whereas a decrease in sWGA-precipitated LXRa was seen in cells treated with DON (Fig. 5F).

Because PUGNAc treatment increases protein O-GlcNAcylation and glucosamine feeds into the hexosamine biosynthetic pathway downstream of the rate-limiting enzyme, glutamine:fructose-6-phosphate amidotransferase, these data suggest that the hexosamine pathway via LXR O-GlcNAcylation is involved in glucose-dependent LXRE/SREBP-1c promoter activation.

DISCUSSION

In the present study we demonstrate that LXR is a target for glucose-regulated O-linked GlcNAc modification and that O-GlcNAcylated LXR is involved in activation of SREBP-1c transcription both in vitro and in vivo. Modulation of post-translational modifications of LXR, such as Ser/Thr O-GlcNAcylation and O-phosphorylation may occur in both the absence and presence of natural ligand-tuning LXRs activities in a cell- and gene-specific manner (39), depending on the nutritional stimuli.

LXR is a major regulator of SREBP-1c expression and an insulin-mediating factor in liver (8, 9). Moreover, glucose has been shown to activate the mouse SREBP-1c promoter independently of insulin (5, 7, 29, 40), possibly via a direct activation of LXR by glucose (20). However, LXR acting as a glucose sensor has lately been debated (32–34). With this in mind, it is important to distinguish between the effects seen by insulin and glucose when studying LXR activation of SREBP-1c. From our in vivo STZ studies, we found that hyperglycemia was able to induce the level of SREBP-1c mRNA expression more than 6.5-fold compared with the fasted situation. This induction could not be explained by insulin because the levels of insulin were approximately equal between STZ-treated and fasted control mice. Hasty et al. (40) have previously shown that SREBP-1c is regulated by glucose at the transcriptional level and that the hexosamine biosynthetic pathway may be involved in this process because treatment with azaserine, an inhibitor of glutamine:fructose-6-phosphate amidotransferase, inhibited the glucose-induced up-regulation of both precursor and mature forms of SREBP-1c. Furthermore, the regulation of SREBP-1c expression seen in our mouse models was not seen in LXR α/β double knock-out mice, indicating that the effect of glucose previously reported (5, 7, 29, 40) works through the hexosamine pathway and LXR and is an important contribution to the regulation of SREBP-1c.

Yamamoto et al. (16) recently reported that protein kinase A-induced phosphorylation of LXRa inhibited the expression of SREBP-1c in mice liver via reduced DNA binding and co-activator recruitment. Because glucagon/cAMP/protein kinase A signaling may, at least in part, explain down-regulation of SREBP-1 expression in response to fasting, it is likely that PKA-mediated phosphorylation of LXR contributes to the fasting signal on SREBP-1c. In the present study, we report increased hepatic levels of O-GlcNAcylated LXRa in both refed and STZ-induced diabetic mice concomitant with increased expression of SREBP-1c. Moreover, we show that glucose via the hexosamine biosynthetic pathway increased LXRXRXR-driven SREBP-1c promoter activity in Huh7 cells. We hypothesize that nutrient-activated hexosamine signaling promotes LXR O-GlcNAcylation, contributing to increased SREBP-1c expression in the liver.

Human LXRa has been shown to be phosphorylated on serine 198 (15, 17), affecting transcription in a gene-specific manner in macrophages (17). Because other serine or threonine residues may be phosphorylated upon protein kinase A signaling, it is currently not known whether Ser198 is the site of protein kinase A phosphorylation on human LXR in the liver. In our in vitro studies, we observed only modest LXR/RXR transactivation of the SREBP-1c promoter in high glucose-treated cells. This might be explained by constitutive phosphorylation competing for the same site(s) as GlcNAc on LXRa and/or inhibitory phosphorylation occurring on adjacent GlcNAc sites. Recently, Housley et al. (26) reported elevated O-GlcNAc on FOXO1 by high glucose and a subsequent reduction by insulin. They further showed that O-GlcNAc modification increased substantially on the insulin-insensitive mutant FOXO1 lacking three AKT phosphorylation sites (T24A, S256A, S319A),
resulting in increased FOXO1-dependent luciferase reporter activity. These observations implied overlapping and/or adjacent O-phosphorylation and O-GlcNAc sites on FOXO1, and the authors further identified several O-GlcNAc sites on FOXO1, one of which is adjacent to an AKT phosphorylation site (Thr317). We currently do not know whether mechanisms similar to those for FOXO1 apply to LXR. Because a switch between phosphorylation and glycosylation on LXR may be an important mechanism for nutritional regulation of SREBP-1c transcription, it will be interesting to study whether O-GlcNAc and O-phosphate compete for the same sites or are situated at different serines and/or threonines on LXR. Judging from our in vitro GlcNAcylation results (Fig. 2B), we believe that the major O-GlcNAc site(s) on LXRα and LXRβ resides in the N-terminal region containing the activation function-1 and DNA-binding domains. A more detailed mapping of the GlcNAc sites on LXR and site-directed mutagenesis are subjects for future investigations in our laboratory.

In the present study, our main objective was to examine whether LXR is a target for O-GlcNAcylation in response to glucose independently of ligand. However, we cannot exclude whether LXR is a target for GlcNAc sites on LXR and site-directed mutagenesis are sub-

In conclusion, this present study reports O-GlcNAcylation of LXR in more detail. Future investigations will reveal the functional consequences of this modification on LXR with respect to tissue and target gene specificity.

Acknowledgments—We thank Dr. Knut Steffensen (Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Sweden) for providing the rabbit polyclonal LXR antibody and Dr. Hitoshi Shimano (Department of Internal Medicine, Endocrinology and Metabolism, University of Tsukuba, Japan) for providing the mouse SREBP-1c promoter constructs.

REFERENCES

1. Apfeld, R., Benbrook, D., Lernhardt, E., Ortiz, M. A., Salbert, G., and Pfahl, M. (1994) Mol. Cell. Biol. 14, 7025–7035
2. Teboul, M., Ennark, E., Li, Q., Wikström, A. C., Pelto-Huikko, M., and Gustafsson, J. A. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 2096–2100
3. Peet, D. J., Janowski, B. A., and Mangelsdorf, D. J. (1998) Curr. Opin. Genet. Dev. 8, 571–575
4. Janowski, B. A., Grogan, M. J., Jones, S. A., Wisely, G. B., Kliwer, S. A., Corey, E. J., and Mangelsdorf, D. J. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 266–271
5. Repa, J. J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J. M., Shimomura, I., Shan, B., Brown, M. S., Goldstein, J. L., and Mangelsdorf, D. J. (2000) Genes Dev. 14, 2819–2830
6. Joseph, S. B., Laffitte, B. A., Patel, P. H., Watson, M. A., Matsukuma, K. E., Walczak, R., Collins, J. L., Osborne, T. F., and Tontonoz, P. (2002) J. Biol. Chem. 277, 11019–11025
7. Schultz, J. R., Tu, H., Luk, A., Repa, J. J., Medina, J. C., Li, L., Schwendner, S., Wang, S., Thoollen, M., Mangelsdorff, D. J., Lustig, K. D., and Shan, B. (2000) Genes Dev. 14, 2831–2838
8. Tobin, K. A., Ulven, S. M., Schuster, G. U., Steineger, H. H., Andressen, S. M., Gustafsson, J. A., and Nebb, H. I. (2002) J. Biol. Chem. 277, 10691–10697
9. Chen, G., Liang, G., Ou, J., Goldstein, J. L., and Brown, M. S. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 11245–11250
10. Yoshikawa, T., Shimano, H., Yahagi, N., Ide, T., Amemiya-Kudo, M., Matsuzaka, T., Nakakuki, M., Tomita, S., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Takahashi, A., Sone, H., Osuga, J., Gotoda, T., Ishibashi, S., and Yamada, N. (2002) J. Biol. Chem. 277, 1705–1711
11. Joseph, S. B., Castrillo, A., Laffitte, B. A., Mangel, D. J., and Tontonoz, P. (2003) Nat. Med. 9, 213–219
12. Walcher, D., Kümmel, A., Kehrle, B., Bach, H., Grüb, M., Durst, R., Hombach, V., and Marx, N. (2006) Arterioscler. Thromb. Vasc. Biol. 26, 1022–1028
13. Myhre, A. E., Agen, I., Dahlé, M. K., Tamburstuuen, M. V., Lyngstaad, S. P., Collins, A. J., Foster, S. J., Thiernermann, C., Aasen, A. O., and Wang, J. E. (2008) Shock 29, 468–474
14. Liang, G., Yang, J., Horton, J. D., Hammer, R. E., Goldstein, J. L., and Brown, M. S. (2002) J. Biol. Chem. 277, 9520–9528
15. Chen, M., Bradley, M. N., Beaven, S. W., and Tontonoz, P. (2006) FEBS Lett. 580, 4835–4841
16. Yamamoto, T., Shimano, H., Inoue, N., Nakagawa, Y., Matsuzaka, T., Takahashi, A., Yahagi, N., Sone, H., Suzuki, H., Toyoshima, H., and Yamada, N. (2007) J. Biol. Chem. 282, 11687–11695
17. Torra, I. P., Imaiali, N., Feig, I. E., Xu, C. F., Cavasotto, C., Pancratov, R., Rogatsky, I., Neubert, T. A., Fisher, E. A., and Garabedian, M. J. (2008) Mol. Cell. Biol. 28, 2626–2636
18. Li, X., Zhang, S., Blander, G., Tse, J. G., Krieger, M., and Guarente, L. (2007) Mol. Cell. Biol. 28, 91–106
19. Ghisletti, S., Huang, W., Ogawa, S., Pascual, G., Lin, M. E., Willson, T. M., Rosenfeld, M. G., and Glass, C. K. (2007) Mol. Cell 25, 57–70
20. Mitro, N., Mak, P. A., Vargas, L., Godio, C., Hampton, E., Molteni, V., Kreusch, A., and Saez, E. (2007) Nature 445, 219–223
21. Williams, S., Bledsoe, R. K., Collins, J. L., Bogs, S., Lambert, M. H., Miller, A. B., Moore, J., McKee, D. D., Moore, L., Nichols, J., Parks, D., Watson, M., Wisely, B., and Willson, T. M. (2003) J. Biol. Chem. 278, 21713–21716
22. Hart, G. W., Housley, M. P., and Slawson, C. W. (2005) Nature 446, 1017–1022
23. Love, D. C., and Hanover, J. A. (2005) Sci. STKE 312, re13
24. Yang, W. H., Kim, J. E., Nam, H. M., Ju, J. W., Kim, H. S., Kim, Y. S., and Cho, J. W. (2006) Nat. Cell Biol. 8, 1074–1083
25. Yang, W. H., Park, S. Y., Nam, H. M., Kim, D. H., Kang, J. G., Kang, E. S., Kim, Y. S., Lee, H. C., Kim, K. S., and Cho, J. W. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 17345–17350
26. Houle, S. M., Rodgers, I. T., Udehi, N. D., Kelly, T. J., Shahanowitz, I., Hunt, D. F., Puigserver, P., and Hart, G. W. (2008) J. Biol. Chem. 283, 16283–16292
27. Kuo, M., Zilberfarb, V., Gangneux, N., Christeff, N., and Issad, T. (2008) FEBS Lett. 582, 829–834
28. Bävner, A., Matthews, J., Sanyal, S., Gustafsson, J. A., and Treuter, E. (2005) Nucleic Acids Res. 33, 3561–3569
29. Yoshikawa, T., Shimano, H., Amemiya-Kudo, M., Yahagi, N., Hasty, A. H., Matsuzaka, A., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Osuga, J., Gotoda, T., Kimura, S., Ishibashi, S., and Yamada, N. (2001) Mol. Cell. Biol. 21, 2991–3000
30. Oberkofer, H., Schraml, E., Kremler, F., and Patsch, W. (2004) Biochem. J. 381, 357–363
31. Jakobsson, T., Venteclaf, N., Toresson, G., Damidopoulos, A. E., Eh-

1614 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 285 • NUMBER 3 • JANUARY 15, 2010
lund, A., Lou, X., Sanyal, S., Steffensen, K. R., Gustafsson, J. A., and Treuter, E. (2009) Mol. Cell 34, 510–518
32. Lazar, M. A., and Willson, T. M. (2007) Cell Metab. 5, 159–161
33. Denechaud, P. D., Bossard, P., Lobaccaro, J. M., Millatt, L., Staels, B., Girard, J., and Postic, C. (2008) J. Clin. Invest. 118, 956–964
34. Shiota, M., and Magnuson, M. A. (2008) J. Clin. Invest. 118, 841–844
35. Comer, F. I., Vosseller, K., Wells, L., Accavitti, M. A., and Hart, G. W. (2001) Anal. Biochem. 293, 169–177
36. Starr, C. M., and Hanover, J. A. (1990) J. Biol. Chem. 265, 6868–6873
37. Monsigny, M., Roche, A. C., Sene, C., Maget-Dana, R., and Delmotte, F. (1980) Eur. J. Biochem. 104, 147–153
38. Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Tomita, S., Sekiya, M., Hasty, A., Nakagawa, Y., Sone, H., Toyoshima, H., Ishibashi, S., Osuga, J., and Yamada, N. (2004) Diabetes 53, 560–569
39. Rosenfeld, M. G., Lunyak, V. V., and Glass, C. K. (2006) Genes Dev. 20, 1405–1428
40. Hasty, A. H., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Perrey, S., Yoshikawa, T., Osuga, J., Okazaki, H., Tamura, Y., Iizuka, Y., Shionoiri, F., Ohashi, K., Harada, K., Gotoda, T., Nagai, R., Ishibashi, S., and Yamada, N. (2000) J. Biol. Chem. 275, 31069–31077
41. Issad, T., and Kuo, M. (2008) Trends Endocrinol. Metab. 19, 380–389