The determination of time lags using SOLA

Frank P. Pijpers
Teoretisk Astrofysik Center, Danmarks Grundforskningsfond, Institut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus C, Denmark

ABSTRACT
A common problem in astronomy is the determination of the time shift between two otherwise identical time series of measured flux from a variable source, in short the determination of a time lag. Two examples of where this problem occurs are in the determination of the Hubble constant from multiple images of gravitationally lensed variable quasars and also in the determination of distances to OH/IR stars. It is shown here that this problem can be seen as a restricted inversion problem. It therefore can be solved using the subtractive optimally localized averages (SOLA) method for inversion which has been described elsewhere (Pijpers & Thompson 1992, 1994 ; Pijpers & Wanders 1994).

Key words: methods : data analysis – gravitational lensing – stars : distances – quasars : individual : QSO 0957+561

1 INVERSE PROBLEMS
The problem of determining a time lag between two time series of fluxes is very similar to the problem of reverberation mapping of active galactic nuclei. The difference lies primarily in what is known about the so-called transfer function (cf. Blandford & McKee 1982 ; Peterson 1993). Essentially the problem of reverberation mapping comes from a view of an AGN as gas clouds surrounding a variable continuum source. The gas clouds re-emit the radiation absorbed from the continuum source in spectral lines so that the time lag between the variation of the line emission and the continuum emission is a measure of the difference in path length to the observer and hence of the distance from the central source of the emitting gas clouds. The transfer function is thus related to the distribution of clouds around the nucleus. Mathematically, the concept of reverberation mapping leads to the integral equation

\begin{equation}
L(t) = \int d\tau \Psi(\tau)C(t-\tau).
\end{equation}

Here L and C are the (velocity integrated) line flux of a broad line in the AGN spectrum, and the continuum flux respectively. Hence the problem is reduced to the inversion of the integral equation to obtain the transfer function \(\Psi\). If in equation (1) for \(\Psi(\tau)\) a Dirac delta function is substituted, \(\Psi(\tau) = \delta(\tau - t_0)\), equation (1) reduces to \(L(t) = C(t - t_0)\). Conversely if two light curves are related by a time delay \(t_0\) this is equivalent to equation (1) with a transfer function \(\Psi(\tau) = \delta(\tau - t_0)\). In this paper the transfer function is therefore assumed to be essentially zero everywhere except at the unknown time-lag \(t_0\) : \(\Psi(\tau) = I\delta(\tau - t_0)\) where \(\delta\) is the Dirac delta function.

Contrary to the problem of reverberation mapping where there is an assumed causal relationship between the variations in continuum and line flux, in the problem of time lag determinations the light curves are not distinguishable as driving or responding time series. The inversion method should reflect this lack of knowledge in a symmetric treatment of the two time series. The notation of equation (1) is slightly modified to express this :

\begin{align}
F^{(b)}(t) &= \int_{-\tau_{\text{max}}}^{\tau_{\text{max}}} d\tau I\delta(\tau - t_0)F^{(a)}(t - \tau) \\
F^{(a)}(t) &= \int_{-\tau_{\text{max}}}^{\tau_{\text{max}}} d\tau \frac{1}{I}\delta(\tau + t_0)F^{(b)}(t - \tau)
\end{align}

The two equations both express that there is a time lag \(t_0\) between the two time series \(F^{(a)}\) and \(F^{(b)}\) and therefore seem redundant. However both need to be used to ensure a symmetric treatment of the two time series in the algorithm. \(I\) is a constant to allow for a constant non-unity ratio between the two time series. Note that \(I\) can have any value larger than 0 and that the time-lag \(t_0\) can be either positive or negative, since it is not known a-priori which light curve is leading and which is lagging. Just as in the application of the subtractive optimally localized averages method (SOLA) to reverberation mapping (cf. Pijpers & Wanders, 1994 : hereafter PW) the limits of the integration are set to a finite value. The reason for this is that for any measured time series its total extent is finite and therefore the range over which a time lag can be determined is limited to values within this range.

Equations (1) and (2) are idealized in the sense that
finite sampling rates of the two light curves and finite measurement errors are not yet explicitly accounted for. This is done in the following section. Another problem can be that one or both of the light curves are contaminated by a foreground or background source. This can be dealt with, however, and the procedure is described in the appendix to this paper.

2 A BRIEF DESCRIPTION OF SOLA

The strategy of the SOLA method in general is to find a set of linear coefficients which, when combined with the data, produce the value of the unknown convolved function under the integral sign for given value(s) of the time lag. In order to do this the time series under the integral sign is interpolated. To each measurement of the series outside of the integral sign is assigned a partial time series which is a section of the time series for given value(s) of the time lag. In order to produce the value of the unknown convolved function under the integral sign for given value(s) of the time lag, it is necessary to ensure that one or both of the light curves are contaminated by a foreground or background source. This can be dealt with, however, and the procedure is described in the appendix to this paper.

Figure 1. Example of two time series with 11 measurements. The entire time series under the integral sign is re-plotted 10 times with an arbitrary vertical offset for each of the measurements of the time series outside the integral sign. The horizontal scale is time delay which means that later measurements fall further to the left. The solid part is the part of the time series that is actually measured, the dashed parts fall before the first or after the last of the measurements.

The base functions are used to build a localized averaging kernel using a set of linear coefficients \(\{c_i\} \) determined for this purpose. In other words if \(P_i^{(n)} \) denotes the (interpolated) partial time series \([C(t_i), C(t_{i+n})] \), which is normalized to have an integral of 1, and \(F_i = F(t_i) \) corrected for the normalization of the \(P_i^{(n)} \), then

\[
\sum_i c_i P_i^{(n)} = K(\tau, \tau_0)
\]

\[
\sum_i c_i F_i = \psi(\tau_0)
\]

where \(K \) is an integration kernel that is localized around \(\tau_0 \) and \(\psi(\tau_0) \) is the associated localized average of \(\Psi \) around \(\tau_0 \). The details of this procedure can be found in the papers describing the SOLA method (Pijpers & Thompson 1992, 1994 hereafter PT1 and PT2) and its application to reverberation mapping (PW). In many respects the same technique is followed here. Figure 1 is included to assist in the visualization of this procedure, where the entire time series is plotted as a function of time delay. The entire time series under the integral sign is re-plotted 10 times with an arbitrary vertical offset for each of the measurements of the time series outside the integral sign. The integration limits \(-\tau_{\text{max}}, \tau_{\text{max}}\) are shown as the vertical dash-dotted lines. It is clear that if \(\tau_{\text{max}} \) is set to a value larger than or equal to half the length of the time series no base function will be defined over the entire integration interval, which renders the summation in equation (3) meaningless. Limiting the range of integration to smaller values, and therefore the possible range over which a time lag can be determined, has the result that sections of the time series can be used as base functions. These are the sections between the vertical dash dotted lines in figure 1. The first few and last few measurements then have partial time series associated with them that still do not cover the entire range \([-\tau_{\text{max}}, \tau_{\text{max}}]\) which means that these must be excluded from the analysis. The remaining points have associated partial time series that are defined within the dash-dotted window in figure 1. The total range of integration \([-\tau_{\text{max}}, \tau_{\text{max}}]\) must be strictly smaller than the total length of the measured time series. \(\tau_{\text{max}} \) is a free parameter of the method and since \(t_0 \) is unknown it may well be necessary to explore a range of values for \(\tau_{\text{max}} \) and re-do the inversion for each value. Note that one can increase \(\tau_{\text{max}} \) at the cost of having less base functions, i.e. decrease the height and increase the width of the window, and vice versa. To construct a good approximation to the target form for the integration kernel from the base functions it is desirable to have as many base functions as possible, which implies a small \(\tau_{\text{max}} \). However, to obtain a reliable estimate of the time lag it is necessary to ensure that \(\tau_{\text{max}} \) is larger that the expected \(t_0 \).

The time series is interpolated using Savitzky-Golay interpolation (cf. Press et al., 1992). In a Savitzky-Golay filter a polynomial of fixed degree is fitted to a moving window with a fixed number of measured data points. In this implementation of the SOLA algorithm the data points are chosen symmetrically around the subinterval for which the interpolation is done. The base functions in this implementation of the SOLA method are subsections of the entire time series and are known to within the errors propagated from the measured points by the polynomial fitting algorithm. Contrary to the application of SOLA to reverberation mapping the kernel \(K \) will not be designed to be localized. To obtain an estimate of the parameter \(t_0 \) which is the position of the peak of the very narrow transfer function appropriate for simple time lags it is much better to determine the first moment of the transfer function. It is clear that if the transfer function is narrow compared to the sampling rate or intrinsic time scale of variability of \(F \) one cannot hope to reconstruct its shape in an inversion. The width of the reconstructed transfer function will in this case be almost identical to the resolution given by the sampling of the time series (cf. PW and Pijpers 1994) rather than the real width. For simple time lag determinations this is not important, however, since only the single unknown time lag \(t_0 \) needs
to be determined. To do this most conveniently one should combine the series of partial light curves of the time series under the integral sign into a kernel that is not the usual Gaussian but a linear function of \(\tau \). This means minimizing for two sets of coefficients \(\{ c_i^{(1a)} \} \) and \(\{ c_i^{(1b)} \} \):

\[
\int_{-\tau_{\text{max}}}^{\tau_{\text{max}}} d\tau \left[\sum_i c_i^{(1a)} F^{(a)}(t_i - \tau) - T \right]^2 + \mu_0 \sum_i c_i^{(1a)} c_j^{(1a)} E_{ij} \tag{4}
\]

\[
\int_{-\tau_{\text{max}}}^{\tau_{\text{max}}} d\tau \left[\sum_i c_i^{(1b)} F^{(b)}(t_i - \tau) - T \right]^2 + \mu_0 \sum_i c_i^{(1b)} c_j^{(1b)} E_{ij} \]

In both cases the target function \(T \) for the averaging kernel is linear:

\[
T \equiv \tau \tag{5}
\]

The factor \(\mu_0 \) is a free parameter which can be used to adjust the relative weighting of the errors in the variance-covariance matrix \(E_{ij} \) and the approximation of the target form. The use of this parameter has been described in the papers PT1, PT2 and in PW. Its purpose is to balance a matching of the target kernel function against magnification of the errors which are generally opposing aims. An extra constraint is imposed on the coefficients which is that:

\[
\sum c_i^{(1a)} = 0
\]

\[
\sum c_i^{(1b)} = 0 \tag{6}
\]

Imposing this constraint ensures that the integral of the averaging kernel is equal to 0 just as the integral of the target kernel. In this way any influence of the even-order moments of the transfer function is eliminated. The result of the minimization of (4) is that

\[
\sum c_i^{(1a)} F^{(a)}(t_i - \tau) \approx \tau \\
\sum c_i^{(1b)} F^{(b)}(t_i - \tau) \approx \tau \tag{7}
\]

The superscript for the coefficients \(c_i \) identifies which of the time series \(a \) or \(b \) is under the integral sign, and therefore used to build the kernel, and the 1 signifies that the linear target kernel (5) was used. When (2) and (7) are combined the result is:

\[
\hat{t}_0^{(a)} \equiv \sum c_i^{(1a)} F^{(b)}(t_i - \tau) \\
= \int d\tau I \delta(\tau - t_0) \sum c_i^{(1a)} F^{(a)}(t_i - \tau) \\
\approx \int d\tau I \delta(\tau - t_0) \tau \\
= I t_0
\]

\[
\frac{-\hat{t}_0^{(b)}}{I} \equiv \sum c_i^{(1b)} F^{(a)}(t_i - \tau) \\
= \int d\tau I \delta(\tau + t_0) \sum c_i^{(1b)} F^{(b)}(t_i - \tau) \\
\approx \int d\tau I \delta(\tau + t_0) \tau \\
= -\frac{1}{I} t_0 \tag{8}
\]

where \(\hat{t}_0 \) is the estimated time lag. It is clear that the right-hand sides do indeed give estimates \(\hat{t}_0 \) of the position \(t_0 \) of the delta function. The factor \(I \) can be determined independently by using the SOLA method with a kernel that is constant over the entire range of integration as described in PW; \(I = 1/2\tau_{\text{max}} \) instead of \(T = \tau \). (Note that the constant is chosen to obtain normalization with integral 1 on the interval \([-\tau_{\text{max}}, \tau_{\text{max}}] \). For this target form the associated coefficient sets are \(\{ c_i^{(0a)} \} \) and \(\{ c_i^{(0b)} \} \). For the coefficients \(c_i^{(0a)}, c_i^{(0b)} \) in the constraint (6) the sum should be equal to 1 instead of 0. Note that the normalization of the base functions is assumed to have been carried out before the kernel is constructed in the minimization of (4).

The effect of data-errors in the measurements on the left-hand sides of the equality in equations (2) is taken into account in the usual way (cf. PW). Since the result is a linear combination of the data the resulting error estimate can be computed trivially. The primary reason to prefer the method described here to determining the shape of the transfer function is that the magnification of data errors is expected to be much smaller with the method described here. Low order moments of \(\Psi \) such as the zero order moment \(I \) and the first order moment \(I t_0 \) can be determined with a higher accuracy because there is a roughly inversely proportional relation between the resolution width of the localized kernel \(K \) and the magnification of data errors.

The effect of data errors in the measurements under the integral sign is not quite as straightforward as for the errors outside of the integral sign. The most important point to realize is that the kernel that is constructed will in general not match perfectly the target function. It is for this reason that the third equality in the two equations (8) is only approximate. This means that the estimates \(\hat{t}_0 \) must be corrected for such deviations from the target form, which can be done with the help of the constructed averaging kernel. In practice this means finding at which \(t_0 \) a delta function must be placed to obtain the estimate \(\hat{t}_0 \) given the averaging kernel that was constructed. This is straightforward since it requires only a simple function evaluation with the constructed averaging kernel as the function. For a perfect match between those two functions \(t_0 = \hat{t}_0 \). For real data, with only a limited number of base functions to work with, there is always a small correction \(c \) due to the deviation.
of the constructed kernel from the target form. Except in those sections where the kernels themselves are discussed, from this point the correction e is implicit in the estimates t_0:

$$\hat{t}_0^{(a)} = \frac{\sum c_i^{(1a)} f_i^{(b)}}{\sum c_i^{(0a)} f_i^{(b)}} + e^{(a)}$$

$$\hat{t}_0^{(b)} = \frac{\sum c_i^{(1b)} f_i^{(a)}}{\sum c_i^{(0b)} f_i^{(a)}} + e^{(b)}$$

(9)

For a determination of the time lag that is explicitly symmetric in the treatment of the two time series, the mean of the time lags T_0 from the two alternatives is taken. Half the difference between the two alternatives Z should be equal to zero to within the same errors as apply to T_0.

$$T_0 \equiv \frac{1}{2} \left(\hat{t}_0^{(a)} + \hat{t}_0^{(b)} \right)$$

$$Z \equiv \frac{1}{2} \left| \hat{t}_0^{(a)} - \hat{t}_0^{(b)} \right|$$

(10)

where (9) is used to calculate the \hat{t}_0. It is immediately clear that a time lag T_0 thus determined is invariant under interchange of the two time series. Z can be used as an additional tool to gauge the accuracy with which the lag is determined in the algorithm since it should be equal to 0 to within the errors. If it is not this can be an indication of contamination of the time series by an extraneous source. Its value, together with the difference between the two determinations (from interchanging the time series) of the magnification I, can be used to correct for such contamination as is demonstrated in the appendix.

3 ARTIFICIAL DATA

To assess the influence of data errors on the algorithm and possible systematic effects the method was tried out on a set of artificial data. The light curves with and without errors are shown in figure 2. This light curve is a smoothed version of a continuum light curve reported by Peterson et al. (1994) for the active galaxy NGC 5548. The solid line is the original light curve, the dashed line is the light curve after convolution with a Gaussian with a width of 0.1 d and a central position of 11.3 d. These numbers were chosen arbitrarily but the requirement for this method that the transfer function be sharply peaked is satisfied. Also the central position is chosen not to be commensurate with any sampling interval. The irregular sampling intervals range from a minimum of 1 d to several days. The second panel of figure 2 shows both of the light curves with random noise added drawn from a normal distribution with a sigma of 2 % of the flux. Apart from using error free data (0 %), and 2 % random noise a final case with 5 % random noise added to the ‘fluxes’ is also considered.

It should be noted that although it is usual to measure noise compared to the measured flux, it is actually more appropriate to compare the noise with the amplitude of the actual variations in the light curves. An arbitrary constant multiplication factor between the fluxes of the measured time series contains no information about a time lag. In the artificial case at hand this means that the actual S/N is ~ 25 for the 2 % case and ~ 10 for the 5 % case.

The first reconstruction is done taking $\tau_{\text{max}} = 55 \text{ d}$ which is about 1/5 of the total length of the time series, the second is done taking $\tau_{\text{max}} = 34 \text{ d}$ which is about 1/8 of the total length of the time series, finally a $\tau_{\text{max}} = 28 \text{ d}$ which is about 1/10 of the total length is used. These three choices of τ_{max} were applied to all three pairs of time series contaminated by noise at 0 %, 2 %, and 5 % of the fluxes F_i respectively. In each case τ_{max} is the length of the shortest partial time series $[t_i, t_{i+k}]$ that is longer than the value of τ_{max} chosen as input for the algorithm. Figure 3 shows the constructed averaging kernels for $\tau_{\text{max}} = 28 \text{ d}$. Shown in table 1 are T_0 and Z, the final column shows the error estimates from the propagated data errors. The error estimate is 0.0 for the first 3 entries because for these no noise is added to the time series. For the cases with added noise Z is within 2σ of 0 as would be expected. The only exception is the case for $\tau_{\text{max}} = 55$ where there is a 2.5σ departure from 0. It is clear from the large values of Z for the choice of $\tau_{\text{max}} = 55 \text{ d}$ for the error free data and for the data with random noise added that this value of τ_{max} is still too large to obtain a reliable estimate of the time lag, although for the cases where noise is added the deduced value of T_0 is within 1σ of the true value. There is only marginal reduction of the error estimates when reducing τ_{max} from 34 d to 28 d and at least in this realization of the 5 % noise the estimate of the time lag is less accurate for the $\tau_{\text{max}} = 28 \text{ d}$ case.

In figure 3 plots of kernels constructed from the artificial data of figure 2 are shown. In this figure the estimates...
SOLA time-lag determination

Figure 3. The constructed averaging kernels for $\tau_{\text{max}} = 28$ d. Left-hand panels are for the case without noise, middle panels have 2% noise, right-hand panels have 5% noise. The grey area denotes the extent of the error bar on the constructed kernel for the cases with noise. The dash dotted lines denote a 2σ interval centred at \hat{t}_0. Note that in the lower panels where the role of the time series is reversed with respect to the upper panels, the axes are also reversed to facilitate visual comparison of the time lag $\hat{t}_0 + \varepsilon$ determined for each case.

Table 1. The simulations. Error weighting $\mu_0 = 0.01$

Noise	τ_{max}	T_0	Z	$\sigma(T_0)$
0%	55.0	10.2	1.1	0.0
0%	34.0	10.99	0.26	0.0
0%	28.0	11.27	0.13	0.0
2%	55.0	11.0	4.5	1.7
2%	34.0	11.49	0.78	0.89
2%	28.0	11.37	0.85	0.75
5%	55.0	9.9	6.5	4.4
5%	34.0	11.0	2.6	2.3
5%	28.0	10.1	2.7	2.0

\hat{t}_0 are on the ordinate scale and the values corrected for kernel deviations (cf. equation (9)) are on the abscissa. It can be seen that the kernel suffers somewhat from ‘edge effects’ where the target kernel is only poorly matched. The constructed kernel is flatter than proportional near the edges of the integration range. The effect this has is that at the edges of the interval $[-\tau_{\text{max}}, \tau_{\text{max}}]$ the uncertainty in the time lag determination is larger than indicated by the formal errors. Also, if the real time-lag t_0 is smaller than ~ -20 d it will be overestimated by \hat{t}_0, and if the time-lag t_0 is larger than ~ 20 d it will be underestimated by \hat{t}_0. This result indicates that not only should τ_{max} be chosen significantly less than half the total length of the measured time series, but also significantly larger than the expected time lag. From these simulations it is clear that given a total extent of the artificial time series $T_{\text{tot}} = 267$ d, τ_{max} should be chosen < 55 d.

A ‘safe’ criterion seems to be:

$$\tau_{\text{max}} \lesssim \frac{T_{\text{tot}}}{8}$$

Furthermore because of inevitable ‘edge effects’ in the kernel the true time lag t_0 should be no more than $\sim 0.7-0.8 \times \tau_{\text{max}}$. This implies that if one wishes to measure reliably a time lag using this method the total length of the measured time series should be at least 10–12 times the time lag t_0 that is expected.

4 THE SAMPLING STRATEGY OF THE TIME SERIES OF QSO 0957+561

A crucial aspect of this method and most other methods in use to determine time delays is the interpolation of the time series, which is almost always necessary to estimate time delays. Interpolation schemes are usually very sensitive to the sampling of the time series. Before continuing with SOLA time delay determinations it is useful therefore to
examine in more detail the influence of the sampling on the SOLA method.

4.1 The distribution of measurement points in time

The largest homogeneous data set for the two optical images of the gravitationally lensed QSO 0957+561 is that reported by Schild & Thomson (1995), who also have made available a master set which combines data from other sources. The time series for the former are shown in the two panels of figure 4. The total extent of these time series is 5347 d and so a time lag \(t_0 \) of up to \(\sim 550 \) d can be determined with reasonable accuracy with this method and these time series. Rather than use magnitudes the time series are converted to (arbitrary) flux units. The reason for this is that if there is any contamination present in the time series, due to extraneous factors such as foreground or background sources or micro-lensing, this is additive in flux and not in magnitude. Such contamination can be corrected for to some extent as long as it is additive, as demonstrated in the appendix. The flux is calculated from the magnitudes using:

\[
F_i = 4 \times 10^5 \exp(-m_i/2.5)
\]

Schild and Thomson (1995) note that since the more recent part of their measured data series has sections with sampling rates that are as high as once per day, there should be no lack of high frequency signal in the time series with which to determine a time lag with high accuracy. This is true in principle but it does depend to some extent on the manner in which these sections are distributed within the overall time series. To illustrate this point all those measurement dates were isolated from the time series for which there are also measurements on the previous two days and the following two days. Thus all these points are the middle point of a section of 5 measurements done on consecutive days. In the entire time series there are 366 such quintuplets, many of which partially overlap because for some periods there are even more than 5 consecutive days on which measurements are available. In order to enable using the high frequency signal in these quintuplets when determining the time lag they must overlap with another quintuplet after the time series is shifted by that time lag \(t_0 \). If the time separation between a given pair of quintuplets is the exact time lag between the two quasar images the measured flux in the two images should behave exactly the same (in the absence of measurement errors), so the quintuplets should be exactly the same. If two quintuplets do not overlap after shifting, whatever high frequency signal they contain does not have a measured counterpart in the other time series and is virtually useless. The time separation between the middle points of each of these pairs is the time lag for which that pair can be used optimally to determine whether it is the actual time lag between the two quasar images. The more quintuplets overlap for all possible time lags the better the true time lag can be determined with the measured series. Of course it is quite arbitrary to choose 5 consecutive days. One could as well take any other number or take all weeks for which there are a certain minimum number of measurements done. This will change some of the histograms to be shown in this section but not the essentials of the arguments in favour of carefully designing sampling strategies.

With these \(N = 366 \) quintuplets in the measured time series \(\frac{1}{2}N(N - 1) = 66795 \) distinct pairs of distinct quintuplets can be formed. For each distinct quintuplet pair the time difference between the middle points is calculated and then binned into 5 day bins thus accounting for the fact that even partially overlapping high sampling rate sections are useful. The result is depicted as a histogram of number of pairs per time lag bin. It is clear that if there are many overlapping quintuplets for a given time separation then a time lag in that range can be well determined by the high sampling rate quintuplets, and only poorly if there are very few overlapping quintuplets. For an ideal sampling strategy, without any prior knowledge of the actual time lag, the quintuplet pair separations should cover uniformly the entire range of time lags of interest.

In figure 5 the resulting histogram is shown in the bottom panel. The largest separation between two quintuplets in the measured time series is 3514 d but the plotted histogram is restricted to time lags between 0 and 750 d which covers the range of interest since the method presented here cannot reliably recover time lags outside of this interval for the time series measured for QSO 0957+561. For comparison in the top and middle panels two artificially designed sampling strategies are shown. In the top panel the same number of 366 quintuplets have been distributed uniformly over the time period covering 3514 d. It can be seen from figure 5
Figure 5. Lower panel: A histogram of the time separations of quintuplets of consecutive measured points in the time series of the gravitational lens QSO 0957+561. The upper panel shows what this histogram would be if the quintuplets were uniformly spaced over the same time span as the largest quintuplet separation in the actual time series. The middle panel shows what this histogram would be if the quintuplet separation was designed to cover this time span in a non-redundant fashion.

that this results in a bimodal pattern of separations. For some time lags no quintuplet overlaps with another and for some lags quite a large number overlaps. The few intermediate bins occur because the separation between successive pairs is not an integer multiple of the bin width of 5 d. The second strategy shown in the middle panel of figure 5 does rather better. Here the \(N = 366 \) quintuplets are distributed over the same time period covering 3514 d by putting them at the times \(T_5(i) \) obtained by taking:

\[
T_5(i) = \frac{P_i P_{N+1}}{P_{2N+1-i} P_N} \times 3514 \text{ d} \quad \forall \: i = 1, \ldots, N
\]

(13)

where the \(P_i \) are prime numbers. Of course the resulting measurement times do not fall on integer dates, so each measurement time is rounded to the nearest integer before the separations are calculated and binned. This strategy results in a much more nearly uniform coverage of the range of possible time lags. The actual distribution of quintuplet pair separations shown in the bottom panel of figure 5 is clearly not uniform. There are ‘gaps’ around 150 d and between 200 d and 250 d and between 470 d and 530 d. Annual occultation of the source by the Sun causes large gaps in the time series which come back every year. This can diminish the number of available quintuplet separations between time lags of around the time corresponding to the length of that gap and around 1 yr minus that length. Similar dips in the distribution of quintuplets separations would occur at the delays of these same times with integer numbers of years added. However one can compensate partially for this effect on the distribution of separations by placing the quintuplets more often at the separations that currently seem to be neglected. For a sun constrained measurement gap that lasts less than half a year this is always possible, weather and telescope scheduling permitting.

If the true time lag is between 350 d and 450 d then the actual sampling of the time series appears fortunate, since in this range there are very many pairs that overlap. If the true time lag is between 450 d and 550 d however, the number of overlapping quintuplet pairs decreases to well below what it would be in the nearly uniform case shown in the middle panel of figure 5. Since there are claims in the literature (cf. Press et al., 1992a,b) that the true time lag lies in this range the sampling of this time series seems rather unfortunate, since the time series is not best suited to test the longer lags. However, one must keep in mind that this is only true in so far as the very high sampling rate episodes are concerned. The overall time series can of course be used for time lag determinations. The distribution of the high sampling rate sections does demonstrate that the variations seen in those sections can in general only with difficulty be treated as signal since their counterparts in the time series for the other image are in general not very likely to have been measured as well.

One should not conclude from this discussion that SOLA or any other method is unable to recover a time delay if the sampling times are not distributed uniformly or according to (13). The simulated light curve of section 3 did not follow this sampling and it is clear that a time delay can be recovered. However the most accurate recovery for a given number of samplings and a given photometric accuracy is obtained when the separations in time between each pair of measurement points are designed to be non-redundant. Weather conditions will always prevent the use of a pre-designed strategy but by monitoring the measurement point-pair separations while monitoring and scheduling subsequent measurements to compensate for any dips in the distribution function of these separations it should be possible to obtain a much more nearly uniform distribution.

In the following section the differences between the various strategies is demonstrated using simulated time series.

4.2 Comparing the results for different sampling strategies

To demonstrate the effect of sampling strategies three sampling strategies are used for the same simulated time series. For this simulation the time series for image A is interpolated linearly and resampled uniformly, and also resampled according to (13). The second time series was obtained by shifting the original by 511 days. Finally on all these six time series random numbers drawn from a Gaussian distribution with zero mean and a standard deviation of 1% of the flux were added to mimic measurement errors. This simulation is somewhat more realistic than the first example discussed in section 3 because there is more high frequency signal in the image A (and B) time series.
Figure 6. The constructed kernels for the three different sampling strategies of a simulated time series. The true delay is 299 d. The error weighting $\mu = 10^{-3}$ in all cases. The τ_{max} is 711 for the original sampling of the data, 715 for the uniform sampling and 730 for the prime number sampling. Only the relevant subsection of the kernel is shown in order to demonstrate the differences between kernels.

An inversion is carried out using the procedures outlined before. In all cases the Savitzky-Golay fitting of the time series is done with a window that is three points wide and a constant (0-order polynomial) is fitted to these points. The error weighting $\mu = 10^{-3}$ in all cases. The value of τ_{max} is 711 d for the original sampling of the data, 715 d for the uniform sampling and 730 d for the sampling according to (13). The results are summarized in table 2. The two artificial time lags were chosen to demonstrate the difference between the accuracy for a time lag that should be well sampled even with the original sampling of the A image, and a time lag that should be more difficult to recover. The constructed linear kernels for the case where the true $T_0 = 299$ d are shown in figure 6. The results in table 2 show that there is negligible difference between the uniform and prime number sampling results. From the figure 6 it is clear however that the prime number strategy produces a more uniform kernel. In the kernel for the regularly sampled time series the bimodal pattern of quintuplet separations is reflected in the regular block structure of the error bars on the kernel. An encouraging result is that even for the original sampling the true time lag is quite well recovered. In fact for this realization of the artificial errors the recovery is marginally better for the longer time lag. More worrisome is that the asymmetry in the results when interchanging the role of the time series is quite large for the true sampling. Since the asymmetry is used to determine possible contamination of the time series by extraneous effects one might mistakenly conclude that the time series is contaminated. Subsequently correcting for this non-existent contamination will produce a time lag that is rather less accurate than the formal errors indicate. It is in particular in the differences δI and Z that one can see that a time lag inversion in the region of 500 d is more problematic than one in the region of 300 d.

5 THE TIME LAG FOR QSO 0957+516A,B

5.1 The Schild & Thomson data

SOLA time lag determinations are carried out using various parameter settings and with the time series obtained for the gravitational lens QSO 0957+561 recently reported by Schild and Thomson (1995). Parameters for the inversion are:
- τ_{max}.
- The number of points in the moving window to interpolate the time series under the integral sign N_{win}.
- The degree of the polynomial to fit to these points N_{pol}.
- The error weighting parameter μ.

The parameter settings for 3 cases are summarized in table 3. The output of the SOLA method would then be the zero order moment I, and the asymmetry δI in this when interchanging the role of the time series, and further T_0 and Z. Using the method described in the appendix to correct for
The output is thus four numbers:
- The relative offset y_1.
- The relative drift y_2, assumed to be linear in time.
- The relative magnification I.
- The time-lag T_0.

The results for the three cases considered here are summarized in table 4. Inversions with other parameter settings have been carried out. The sensitivity of the errors to the error weighting is small and no systematic shifts in the results have been found. The value of τ_{max} is quite strongly constrained by the time lag itself and by the total length of the measured time series. Other values did not yield significantly different results and usually had larger associated error estimates. The cases shown here can thus be considered representative of the most reliable determinations done with this method and these data.

It is immediately clear from the asymmetries obtained in both the values of I and of the time lags t_0 when reversing the role of the time series that some contamination of the time series is present. This asymmetry is much larger than in the artificial time series with the same sampling. The cause of the contamination can be found in e.g. inaccurate subtraction of a foreground or background source, or micro-lensing (cf. Schild and Smith 1991, Falco et al. 1991b). Following the procedure outlined in the appendix the asymmetries are used to obtain an estimate of this contamination. As described in the appendix it is impossible to determine from this procedure which time series is contaminated to what extent, since only a differential contamination can be determined. The contamination in each time series is assumed to be of the form $C + L(t - t_1)$. In table 4 the offset $y_1 \equiv C^{(a)} - C^{(b)}/I$ and the drift $y_2 \equiv L^{(a)} - L^{(b)}/I$. The flux units for y_1 and y_2 are the same arbitrary units as used in equation (12). Note that now the asymmetries δI and Z are used in effect to determine y_1 and y_2 so that after the corrections the δI and Z are equal to 0 to within 1σ.

Assuming for convenience that this contamination is entirely contained in the A image the appropriate contribution is subtracted from the time series of image A. Adding a similar contribution to image B instead produces identical results in the subsequent inversions. The resulting time series for case 2 are plotted in figure 7. After this subtraction the inversion yields the relative magnification I and the time delay T_0. The uncertainties quoted in table 4 are 1σ error bars due to the propagation of the measurement errors of the time series. However one should note that the error cross-correlation coefficients for these four numbers are all in excess of 0.8. In terms of a χ^2 measure the iso-χ^2 contours in the 4-dimensional solution space form hyper-ellipsoids with their major axes not aligned with the coordinate axes. Taking this into account the actual uncertainty in for instance the time lag is considerably larger, because an equal χ^2 can be achieved by simultaneously changing the other 3 values. Furthermore one should note that the contamination is assumed to be at most linear in time. As demonstrated by Schild and Smith (1991), and by Falco et al. (1991b) there may well be higher-order terms present due to the effect of micro-lensing. While higher-order contamination will behave more as noise rather than cause systematic shifts in the result, the quoted measurement error is then no longer a good measure of the actual noise in the time series. This effect also increases the uncertainty of the results. The spread of points within quintuplets is roughly a factor of 2 times the quoted error bars. If one assumes that the high frequency micro-

Table 2

case	I	δI	T_0	Z
true	1.0000	0.0000	299	0
original	0.9927 (4)	0.0005 (4)	282 (6)	23 (6)
uniform	0.9990 (3)	0.0003 (3)	295 (4)	8 (6)
prime no.	0.9988 (3)	0.0001 (3)	294 (5)	8 (6)

case	I	δI	T_0	Z
true	1.0000	0.0000	511	0
original	0.9940 (4)	0.0023 (4)	514 (6)	66 (6)
uniform	0.9990 (3)	0.0002 (3)	515 (4)	7 (6)
prime no.	0.9990 (3)	0.0003 (3)	511 (5)	9 (6)

Figure 7. The time series for image A and B of the gravitational lens QSO 0957+561 after removing a linear function of time expressing the offset and linear drift due to extraneous sources (see the appendix). Only the difference in contamination between A and B can be determined so the contamination is arbitrarily subtracted from only the A image time series.
lensing events account for this excess spread one should increase the errors by some amount, keeping in mind that such micro-lensing events do not follow the same statistical distribution as measurement errors.

The contamination, the relative amplification factor and the time lag shown in Table 4 for cases 1, 2 and 3 demonstrate that the inversions are consistent to within the errors. This is what would be expected for an ideal case where the errors are Gaussian and the distribution in time of the sampling points is adequate for a time lag determination. To assess the influence of possible high-frequency contaminating signal from micro-lensing cases 4 and 5 were carried out. In case 4 the interpolating window is set to 11 points to which a quadratic polynomial is fitted. This should smooth out some of the variation within the window but of course the detrimental effect of large gaps in the time series are exacerbated by a wider window. An alternative approach is to isolate the quintuplets of points measured on consecutive days and replace them with their mean on the central day of the quintuplet. This is also a smoothing operation but now carried out only on sections with a high sampling rate. This is done in case 5. Both for case 4 and 5 it is important to realize that this stronger smoothing is not specific. True high frequency variations that are intrinsic to the lensed quasar are removed together with the micro-lensing variations.

As a result of the smoothing one expects that the offset y_1 becomes smaller in absolute value. The relative magnification factor is affected as well however. This can be understood by writing the smoothing in terms of an extra convolution with a smoothing function $S(t)$ that is determined by the choice of window and fitting polynomial. Instead of having a convolution as in equation (1):

$$L(t) = \Psi(t) \ast C(t)$$

the convolution is now:

$$L(t) = \left(\Psi(t) \ast S^{-1}(t)\right) \ast (S(t) \ast C(t))$$

(or the analogous forms for (2)). Here $S^{-1}(t)$ is the inverse of the smoothing operation S. That is to say that because the fit $S(t)$ is used the transfer function Ψ is modified to $\Psi(t) \ast S^{-1}(t)$. When this is used in (2) and the steps outlined before are followed to obtain the relative magnification I it is clear that what is actually obtained is either $IS^{-1}(t_0)$ or $I/S^{-1}(t_0)$. Increasing the smoothing leads to an increasing difference between these two values. This increased asymmetry leads to an overestimate of y_1 and an I that will tend towards 1. In the limit where all variations in the time series are smoothed out one cannot distinguish between the cases of time series that are offset due to contamination and of time series that have a non-unity ratio between the flux levels, which is the ratio between the average flux in either series. The time lag and the drift y_2 should be less affected by the smoothing as long as the smoothing window is symmetric around the point at which the interpolation is evaluated. The error in y_2 and T_0 should increase however because the accuracy with which a lag can be determined depends in part on the intrinsic high frequency signal. The results in Table 4 bear out the expectations in that not only y_1 but also I appear reduced. Because the y_1 is probably overestimated the reduction of the contamination by the smoothing is actually larger than the result shows because it is partially negated. Considering the errors the various effects remain marginal however. It is not clear whether the contamination is entirely due to high frequency variations. The drift y_2 appears to be still present and the effects of the smoothing should play only a minor role here.

The time lag for cases 4 and 5 are consistent with the best determinations but the error is clearly higher for case 4. On the basis of these results it seems that the best determination of the time lag is case 2. An error weighted mean of all 5 time lag determinations yields $T_0 = 441 \pm 9$ d. Considering that these five determinations are not independent because the same data is used it seems preferable to take the best case $T_0 = 425 \pm 17$ d as final result.

5.2 Other data sets

In the literature, there are reported a number of attempts at determining the time lag from optical (Schild & Cholfin 1986, Schild 1990, Pelt et al. (1994, 1996) at R band and B band by Florentin-Nielsen (1984), Vanderriest et al. (1989), Press et al. (1992a) Beskin & Onkyanskij (1992) as well as radio data (Roberts et al 1989, 1992, Press et al 1992b). There is even an attempt using UV data (Gondhalekar et al. 1986). The B band monitoring produces data that is similar to that used here although generally the time series are shorter. Considering only the B band data there appear to be emerging two mutually exclusive time lags, that are obtained from the various analyses. Press et al. analysed a shorter optical time series for QSO 0957+561 (1992a) and also a radio time series (1992b) using a rigorous statistical method developed by them (1992a). They obtain an estimate for the time delay of 536^{+14}_{-12} d as 95 % confidence interval from the optical data and their determination from the radio data is consistent with this value. An analysis by Pelt and coworkers (1994) of the same data yields 415 ± 32 d and their analysis of the radio data is consistent with

Case	τ_{max}	N_{win}	N_{pol}	μ	y_1 [×10^{-3} yr$^{-1}$]	I	T_0 [d]	
1	711	2	1	10^{-3}	0.28 ± 0.02	-5.8 ± 0.3	1.34 ± 0.06	472 ± 73
2	711	3	0	10^{-3}	0.92 ± 0.01	-6.8 ± 0.2	1.55 ± 0.03	425 ± 17
3	711	5	1	10^{-3}	0.28 ± 0.02	-6.8 ± 0.2	1.30 ± 0.05	434 ± 16
4	711	11	2	10^{-3}	0.2 ± 0.1	-12 ± 3	1.2 ± 0.3	377 ± 41
5	711	3	0	10^{-3}	0.21 ± 0.02	-6.8 ± 0.2	1.21 ± 0.05	469 ± 16
their value for the optical time series. The determination reported here appears at face value to be consistent with the determinations of Pelt and coworkers (1994, 1996), and not with that of Press et al. Considering the fact that the SOLA method can only correct for offsets and linear drifts and also that the correlation coefficient between the \(y_1, y_2, I \), and \(T_0 \) are all large means that it is not justified to exclude the estimates of Press et al. out of hand. However Thomson and Schild (1996) argue that the presence of variations due to micro-lensing invalidates some of the assumptions made by Press et al. (1992a, b) concerning the statistical properties of the time series. Thomson and Schild (1996) discuss how the Press et al. method can be corrected for this effect and then obtain a result that is consistent with the shorter time lag found previously by them. Since the study presented here also shows evidence for contamination of the time series, although no specific cause can be identified from the SOLA method itself, there is some support for their hypothesis.

To compare with previous determinations the SOLA method is also applied to the same data (Vanderriest et al., 1989) that the method of Press et al. was applied to. This data set spans a period of a bit over 2900 days which is on the short side for a reliable estimate of a time lag using SOLA, as argued in section 3. Furthermore the errors are larger for this data set than for the Schild and Thomson data which leads to a larger uncertainty in the time delay as well. The same parameter settings are used for the SOLA algorithm as in case 3 for the Schild and Thomson data except that \(t_{\text{max}} \) is reduced to 601 d. The resulting relative magnification is 1.0 ± 0.14 and the time delay is 429 ± 49 d. The asymmetries \(\delta I \) and \(Z \) are on the level of the 1\(\sigma \) errors.

Finally Schild and Thomson (1995) present a master set of data from various sources, including their own. This data set spans about the same time period that Schild & Thomson’s own data do, but the coverage is somewhat better. The SOLA parameter settings are as in case 2 in the previous section. The resulting relative magnification \(I = 1.30 ± 0.03 \), and the time delay \(T_0 = 496±12 \) d. The contamination offset is \(y_1 = 0.26 ± 0.01 \) and the drift \(y_2 = -6.4 ± 0.2 × 10^{-3} \). Although this set contains more measurements than the others considered here one should realize that these data are not homogeneous in quality. If the contamination in the time series is due in part to imperfect data reduction procedures, which differ between the various observers, then it is a very poor approximation to assume that the contamination can be described in terms of a simple offset and drift. Furthermore the merging process itself of combining these different parts of the time series can introduce extra systematic errors. Taking this into account it seems unsurprising to find a difference of some 5 – 7\(\sigma \) between this result and the result when using only the data of Schild and Thomson (1995).

6 **OBTAINING \(H_0 \) FROM THE TIME LAG**

From a careful analysis of the images of QSO 0957+561A, B combined with a tracing of the light deflection through a model potential to fit the positions and magnifications of the images it is possible to determine the gravitational potential of the lensing object. With this potential it is possible to determine the Hubble constant as long as the lensed source is variable. This is essentially a consequence of the light of the two images having traversed a different path through this gravitational potential. By measuring the time delay for a signal propagating at the speed of light an apparent separation of the images can be related to a physical distance which together with a measured redshift yields an estimate of the Hubble constant. Further details can be found in the monograph ‘Gravitational Lenses’ (Scheider et al. 1994)

From modeling of the lensing system Falco et al. (1991a) quote for the value of the Hubble constant:

\[
H_0 = (90 ± 10) \left(\frac{\sigma_v}{390 \text{ km s}^{-1}} \right)^2 \left(\frac{\tau_{AB}}{1 \text{ yr}} \right)^{-1} \tag{16}
\]

The units are km s\(^{-1}\) Mpc\(^{-1}\), and \(\sigma_v \) is the velocity-dispersion of the lensing galaxy. \(\tau_{AB} \) is the time lag between the time series of the images. More recent modeling by Grogin and Narayan (1996) yields the result:

\[
H_0 = (82.5^{+8.7}_{-5.9}) \left(\frac{\sigma_v}{322 \text{ km s}^{-1}} \right)^2 \left(\frac{\tau_{AB}}{1.1 \text{ yr}} \right)^{-1} \tag{17}
\]

Using the value \(\sigma_v = 303 ± 50 \) obtained by Rhee (1991), a time delay of 425 ± 17 d, and using formula (16) yields:

\[
H_0 = 47 ± 16 \text{ km s}^{-1} \text{ Mpc}^{-1} \tag{18}
\]

Using instead (17) yields:

\[
H_0 = 69 ± 24 \text{ km s}^{-1} \text{ Mpc}^{-1} \tag{19}
\]

The largest contribution to the error in these determinations is due to the velocity dispersion. Grogin and Narayan (1996) also quote an equation similar to (17) for an upper limit to the Hubble constant which is independent of the velocity dispersion:

\[
H_0 = (82.5^{+8.7}_{-5.9}) (1 - \kappa) \left(\frac{\tau_{AB}}{1.1 \text{ yr}} \right)^{-1} \text{ km s}^{-1} \text{ Mpc}^{-1} \tag{20}
\]

where \(\kappa \) is the convergence of the quadratic potential with which the cluster surrounding the lensing galaxy is approximated. Since \(\kappa \) must be positive, using the time delay yields an upper limit:

\[
H_0 < 78 ± 7 \text{ km s}^{-1} \text{ Mpc}^{-1} \tag{21}
\]

As Grogin and Narayan (1996) discuss the \(\chi^2 \) of their model for the gravitational potential is somewhat lower than that of Falco et al. (1991a) when using the most recent VLBI data as constraints for the model parameters. For this reason equations (20) and (17) are probably more reliable than the older values of Falco et al. (1991a).

7 **CONCLUSIONS**

The SOLA method for inversion is modified to determine the time lag between two time series, assuming that the width of the transfer function between the two is small compared to the typical sampling time interval. The method is demonstrated to perform well on artificial data. The method is then applied to the measured time series of the gravitational lens QSO 0957+561. Considering the uncertainties in the de-trending the best estimate obtained here gives a value for the time delay of 425 ± 17 d. This leads to a best value for the Hubble constant of \(H_0 = 69 ± 24 \text{ km s}^{-1} \text{ Mpc}^{-1} \).

Considering the primary sources of uncertainty in the determination of the Hubble constant from the time delay...
for QSO 0957+516 it appears highly desirable to obtain a
more accurate determination for the velocity dispersion of the
lensing system. The determination of the time lag itself could be improved upon substantially if an independent
means can be found to determine quantitatively the effects
that contaminate the time series such as micro-lensing but
also the effects of merging data from various sources and observers. The SOLA time lag determinations from Schild & Thomson’s own data, and from their ‘masterset’ differ by
as much as 5 − 7 times the error propagated from the errors
in photometry. It seems that there are systematic errors in
at least one of these two data sets that have not yet been
accounted for. Presumably this would affect any method to
determine time delays and so one should not be surprised to
find a spread in time delay results in the literature that is
larger than the formal errors quoted.

ACKNOWLEDGMENTS

The author thanks V. Oknyanskij and E. van Groningen for
pointing out this problem. R. Schild is thanked for sending
the time series of QSO 0957+516A, B in electronic form,
and for pointing out various factors contaminating the time
series. I. Wanders is thanked for many helpful suggestions
and discussions regarding the testing of the algorithm.

REFERENCES

Beskin G.M., Oknyanskij V.L., 1992, in Hamburg conf. proc.
"Gravitational lenses", lect. notes phys. 406, eds R.Kayser,
T.Schramm, L.Niese, Springer, Berlin, 67
Beskin G.M., Oknyanskij V.L., 1995, A&A 304, 341
Blandford R.D., McKee C.F., 1982, ApJ, 255, 419
Falco E.E., Gorenstein M.V., Shapiro I.I., 1991a, ApJ, 372,364
Falco E.E., Wambsganss J., Schneider P., 1991b, MNRAS, 251,
698
Florentin-Nielsen R., 1984, A&A, 138, L19
Gondhalekar P.M., Wilson R., Dupree A.K., Burke B.F., 1986,
in London conf. proc. "New Insights in Astrophysics : Eight
Years of UV Astronomy with IUE", ESA SP-263, 715
Grogin N.A., Narayan R., 1996, ApJ, 464, 92
Lehar J., Hewitt J.N., Roberts D.H., 1989, in MIT conf. proc.
"Gravitational Lenses", lect. notes phys. 330, eds J.M.Moran,
J.N.Hewitt, K.-Y.Lo, Berlin, Springer, 84
Lehar J., Hewitt J.N., Burke B.F., Roberts D.H., 1992, ApJ 384,
453
Pelt J., Hoff W., Kayser R.,Refsdal S., Schramm T., 1994, A&A,
286, 775
Pelt J., Hoff W., Kayser R.,Refsdal S., Schramm T., 1996, A&A,
305, 97
Peterson B.M., 1993, PASP, 105, 247
Peterson B.M., et al. 1994, ApJ, 425, 622
Pijpers F.P., Thompson M.J., 1992, A&A, 262, L33 (PT1)
Pijpers F.P., Thompson M.J., 1994, A&A, 281, 231 (PT2)
Pijpers F.P., Wanders I., 1994, MNRAS, 271, 183 (PW)
Pijpers F.P., 1994, in P.M. Gondhalekar, K. Horne, and B.M. Pe-
terson, eds, Reverberation Mapping of the Broad-Line Region
of Active Galactic Nuclei, ASP Conf. Ser. 69, San Francisco,
69
Press W.H., Rybicki G.R., Hewitt J.N., 1992a, ApJ, 385, 494
Press W.H., Rybicki G.R., Hewitt J.N., 1992b, ApJ, 385, 416
Press W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.,
1992. “Numerical Recipes : the art of scientific computing”,
2nd Ed.

Rhee, G., 1991, Nature, 350, 211
Roberts D.H., Lehar J., Hewitt J.N., Burke B.F., 1991, Nature
352, 43
Schild R., 1990, AJ 100, 1771
Schild R., Chollin, B., 1986, ApJ, 300, 209
Schild R., Smith R.C., 1991, AJ, 101, 813
Schild R., Thomson D.J., 1995, AJ, 109, 1970
Schneider P., Ehlers J., Falco E.E., “Gravitational Lenses”,
&A Library, Berlin, Springer, 166f., 473f.
Thomson D.J., Schild R., 1996, preprint
Vanderriest C., Schneider J., Herpe G., Chevreton M., Moles M.,
Wl{ê}rick G., 1989, A&A, 215, 1

APPENDIX : CONTAMINATION OF THE TIME
SERIES

The analysis in the main paper is based on the assumption
that the two time series can be measured without any
contamination by foreground sources or instrumental off-
sets or drifts, so that only random (measurement) noise is a
source of errors. If one or both images of the quasar are
contaminated by a foreground source, for instance the lens-
ing object itself, this may influence the time lag determina-
tion. If the foreground source is rapidly varying it can only
give rise to false lags or aliases if that variability is signifi-
cantly correlated with the time series of the lensed quasar.
This is a priori unlikely because there is no causal physical
connection between the two objects. In practice it may
occur if the measured time series is short compared to the
time scales of variability of the lensed quasar and the hy-
pothetical contaminating foreground source or if the phys-
ical mechanisms causing the variability in the lens and the
quasar have matching characteristic time scales. In the ab-

\begin{equation}
\left\{ \begin{array}{l}
\tilde{F}_i^{(a)} \equiv F_i^{(a)} + C_i^{(a)}(t_i - t_1) \\
\tilde{F}_i^{(b)} \equiv F_i^{(b)} + C_i^{(b)}(t_i - t_1)
\end{array} \right.
\end{equation}

in which \(C_i^{(a)}\) and \(C_i^{(b)}\) are the (unknown) constant contam-
inating source(s) and the terms with coefficients \(L\) represent
a possible (linear) drift. With these contaminated time series
the kernels are built, and the inversion is carried out. In the
main paper the normalization of the base functions is taken
implicit for convenience of notation. Here these factors are
be kept separate as coefficients \(\{u_i\}\) or, for the case of the
contaminated series, \(\{\tilde{u}_i\}\) :

\begin{equation}
\tilde{u}_i^{(a)} \equiv \left(\int_{\tau_{\text{max}}}^{\tau_{\text{max}}} \tilde{F}_i^{(a)}(t_1 + \tau) d\tau \right)^{-1} \\
\tilde{u}_i^{(b)} \equiv \left(\int_{\tau_{\text{max}}}^{\tau_{\text{max}}} \tilde{F}_i^{(b)}(t_1 + \tau) d\tau \right)^{-1}
\end{equation}
These normalization factors are calculated at the start of the algorithm and hence are known. For convenience of notation the following linear combinations \(g \) and \(h \) are defined:

\[
\begin{align*}
g^{(0)a} & \equiv \sum c_i^{(0)\tau} u_i^{(a)} \ , \ g^{(1)a} \equiv \sum c_i^{(1)\tau} u_i^{(a)} \\
g^{(0)b} & \equiv \sum c_i^{(0)\tau} u_i^{(b)} \ , \ g^{(1)b} \equiv \sum c_i^{(1)\tau} u_i^{(b)}
\end{align*}
\tag{A3}
\]

Combining (A5) with (A1) yields:

\[
\begin{align*}
h^{(0)a} & \equiv \sum c_i^{(0)\tau} u_i^{(a)} (t_1 - t_1) \\
h^{(1)a} & \equiv \sum c_i^{(1)\tau} u_i^{(a)} (t_1 - t_1) \\
h^{(0)b} & \equiv \sum c_i^{(0)\tau} u_i^{(b)} (t_1 - t_1) \\
h^{(1)b} & \equiv \sum c_i^{(1)\tau} u_i^{(b)} (t_1 - t_1)
\end{align*}
\tag{A4}
\]

For the zero-order moment the following holds:

\[
\sum c_i^{(0)\tau} u_i^{(a)} F_i^{(a)} = \frac{1}{2\tau_{\max}} \sum c_i^{(0)\tau} = 1
\tag{A5}
\]

Combining (A5) with (A1) yields:

\[
\begin{align*}
\sum c_i^{(0)\tau} u_i^{(a)} F_i^{(a)} &= \frac{1}{2\tau_{\max}} - C^{(a)} g^{(0a)} - L^{(a)} h^{(0a)} \\
\sum c_i^{(0)\tau} u_i^{(b)} F_i^{(b)} &= \sum c_i^{(0)\tau} u_i^{(a)} F_i^{(b)} + C^{(b)} g^{(0a)} + L^{(b)} h^{(0a)}
\end{align*}
\tag{A6}
\]

Working through the equivalent of equations (8) it can be seen that instead of determining the constant \(I \) what is determined with the contaminated series is:

\[
\bar{I}^{(a)} = I + 2\tau_{\max} g^{(0a)} \left[C^{(b)} - I C^{(a)} \right]
+ 2\tau_{\max} h^{(0a)} \left[L^{(b)} - L^{(a)} \right]
\]

\[
\frac{1}{\bar{I}^{(b)}} = \frac{1}{I} + 2\tau_{\max} g^{(0b)} \left[C^{(a)} - \frac{1}{I} C^{(b)} \right]
+ 2\tau_{\max} h^{(0b)} \left[L^{(a)} - \frac{1}{I} L^{(b)} \right]
\tag{A7}
\]

For the linear target kernel \(T = \tau \) the coefficients \(c^{(1)a} \) satisfy:

\[
\sum c_i^{(1)\tau} u_i^{(a)} F_i^{(a)} = \tau
\]

\[
\sum c_i^{(1)\tau} = 0
\tag{A8}
\]

Combining (A8) with (A1) yields:

\[
\begin{align*}
\sum c_i^{(1)\tau} u_i^{(a)} F_i^{(a)} &= \tau - C^{(a)} g^{(1a)} - L^{(a)} h^{(1a)} \\
\sum c_i^{(1)\tau} u_i^{(b)} F_i^{(b)} &= \sum c_i^{(1)\tau} u_i^{(a)} F_i^{(b)} + C^{(b)} g^{(1a)} + L^{(b)} h^{(1a)}
\end{align*}
\tag{A9}
\]

The same holds of course when the role of the time series is reversed. The resulting first order moments are:

\[
\begin{align*}
\bar{H}_0^{(a)} &= H_0 + g^{(1a)} \left[C^{(b)} - I C^{(a)} \right]
+ h^{(1a)} \left[L^{(b)} - L^{(a)} \right] \\
\frac{\bar{H}_0}{I^{(b)}} &= \frac{t_0}{I} - g^{(1b)} \left[C^{(a)} - \frac{1}{I} C^{(b)} \right]
- h^{(1a)} \left[L^{(a)} - \frac{1}{I} L^{(b)} \right]
\end{align*}
\tag{A10}
\]

Clearly a systematic deviation is present due to the contaminating source in both the zero order and first order moments. The presence of noise in the measured time series means that the equality in the first of equations (A5) and of (A8) become approximate just as in equations (7). This does not affect the determination in any systematic way.

The equations (A7) and (A10) form a system of four equations in the four unknowns \(I, t_0, y_1 \equiv C^{(a)} - C^{(b)} / I, \) and \(y_2 \equiv L^{(a)} - L^{(b)} / I \). Note that taking \(y_1 \) and \(y_2 \) in this way reflects that with this method it is impossible to tell which of the two time series are contaminated, or to what extent either of them is contaminated.

Since this system of equations is non-linear it is possible that no solution exists or more than one solution. In any case the propagation of the data errors could cause large uncertainties in the parameters. Therefore the procedure that is followed is to solve (A7) and (A10) to determine \(y_1 \) and \(y_2 \). The appropriate contamination is then subtracted from one of the two time series and the inversion procedure is carried out again. For data free of random errors this second iteration should be computation-free. For real data a few iterations can be necessary to reduce the contamination to zero within the measurement errors and an accurate determination of the relative magnification factor \(I \) and the time delay \(t_0 \) is then possible directly from the inversion as outlined in the main part of this paper.

This paper has been produced using the Royal Astronomical Society/Blackwell Science \TeX\ macros.