Evaluation of containers as a virtualisation alternative for HEP workloads

Gareth Roy¹, Andrew Washbrook², David Crooks¹, Gordon Stewart¹, Gang Qin¹, Samuel Skipsey¹, Dave Britton¹

¹University of Glasgow ²University of Edinburgh
Outline

- What are Containers?
- The Container ecosystem
- Container deployment and management
- HEP benchmarking
- Conclusions
Containerisation is a form of **OS level virtualisation**

- The Linux kernel hosts multiple partitioned user-land instances (Virtual Environments)
- Accomplished through separate namespaces for filesystem mounts, network, processes and users
- Backing storage can be Copy-on-Write or a union filesystem (UnionFS/AUFS)

Linux Container

Containers Timeline

- 1982: BSD Chroot
- 2000: FreeBSD Jails
- 2004: Solaris Zones
- 2005: OpenVZ
- 2006: Process Containers
- 2007: Cgroups
- 2008: LXC
- 2013: Docker
- 2014: LMCTFY
- 2014: Rocket
Comparison with Virtual Machines

Virtual Machine

- **Pros:**
 - OS independent
 - Security Model
 - Live migration
 - Mature ecosystem

- **Cons:**
 - Full system image
 - Slow startup and build
 - Memory consumption
 - Opaque to host

Linux Container

- **Pros:**
 - Low barrier of entry
 - Fast Instantiation
 - Native Performance
 - Deployment Flexibility

- **Cons:**
 - Restricted to Linux
 - Shared Kernel
 - Security Model
 - Young Ecosystem
The Container Ecosystem

- There is a growing ecosystem of tools and services to deploy, manage and orchestrate containers.
- The most popular container application platform is **Docker**.

LXC - tools for container lifecycle management.

Application virtualisation engine based on containers (**LXC, libcontainer**).

Kubernetes - Docker container orchestration system for large scale application deployment.

Open source minimal OS specifically designed to host and cluster application containers.

Core OS

Tools for working with containers focusing on the *Application Container Image* (an open standard for container formats).
Openstack Container Management

- Explored the readiness of OpenStack to natively support the management of containers
- Enables easy integration with cloud infrastructure available in WLCG
- A Docker driver is not in the current Openstack release (Juno)
 - Manually install driver: https://wiki.openstack.org/wiki/Docker

```bash
# docker pull cern/sl6-lite
# docker save cern/sl6-lite | glance image-create --is-public=True --container-format=docker --disk-format=raw --name cern/sl6-lite
```
HEP Containers

Container comparison with CERNVM image

- Pull base CentOS 6 image from Docker registry
- CVMFS mounted as an external volume
- Increase storage in the container for datasets and job output

CVMFS integration

- CVMFS requires root-privileges for FUSE interaction.

 Either run a privileged container and export the CVMFS volume to other containers

 - Security implications

 Or export the CVMFS volume from the host

 - Not a flexible hypervisor solution

 - Can lead to issues with other container management tools (CoreOS, Project Atomic)
HEP Workload Performance Testing

Motivation

- Do containers offer native performance for realistic HEP-based workload?
- What is the performance penalty for using Virtual Machines over bare metal (and containers)?

Workload types

- HEPSPEC benchmark
- Geant4 Monte Carlo Simulation
- Event Reconstruction
- Monte Carlo event generation
HEP Workload Performance Testing (2)

Test Platform

- Run each HEP workload type on two testbed servers; one containing an Intel Xeon processor and the other an Avoton processor
 - **Avoton**: Low power Atom-based 22nm SoC device
- Run each workload type on bare metal, in a virtual machine (KVM) and in a container (Docker)
- Adapted a µCERNVM image for testing purposes
- Tested both a RAW image file and a LVM partition as VM backing storage

Test Patterns

- Run each test multiple times to validate performance and timing consistency
- Run single core and \(N (= \text{number of cores}) \) simultaneous workload instances
Containers are within 1% of “native” HEPSPEC performance

Benchmark score for VMs are 14.7% less for the Xeon and 15.3% less for the Avoton compared to the native HEPSPEC (64-bit) score
MC Simulation Results

- Focus on relative performance in event processing loop
- CPU time/event (as reported by application) is averaged over 40 events

- Containers demonstrate near-native performance
- Single process MC simulation timing performance is 13.4% lower for the Xeon and 26.4% lower for the Avoton
- For 16 (8) simultaneous processes: VM is 24.7% lower for Xeon (32.5% lower for Avoton)
Event Generation and Reconstruction Results

Event Generation

- Measured total time taken to generate large sample of $Z\mu\mu$ events
- VMS lose only 5% performance compared to bare metal and containers

Event Reconstruction

- CPU time/event averaged over 50 events
- VMs show 22.6% performance drop for a single process, 18.8% for 8 simultaneous processes
Conclusions

- Containers are a compelling alternative to whole system virtualisation
- The performance of containers for HEP workloads are similar (if not the same) as native execution
- Virtual Machines observed to give a reduction in performance of 15-20% on HEP workloads
 - Caveat: VMs could be tuned to give better performance

Future Work

- Potential deployment of containers on existing HEP cloud resources
- Does HEP lend itself to the single application model preferred by Docker?
 - Consider: middleware deployment, distributed computing components (e.g pilots)
- Effort has already started (see next presentation!)
Any Questions?