Review

Updated Information on Antimicrobial Activity of Hydrazide–Hydrazones

Łukasz Popiolek

Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodžki Street, 20-093 Lublin, Poland; lukasz.popiolek@umlub.pl; Tel.: +48-81-448-72-43

Abstract: Hydrazide–hydrazones possess a wide spectrum of bioactivity, including antibacterial, antitubercular, antifungal, anticancer, anti-inflammatory, anticonvulsant, antidepressant, antiviral, and antiprotozoal properties. This review is focused on the latest scientific reports regarding antibacterial, antitubercular, and antifungal activities of hydrazide–hydrazones published between 2017 and 2021. The molecules and their chemical structures presented in this article are the most active derivatives, with discussed activities having a hydrazide–hydrazone moiety as the main scaffold or as a side chain. Presented information constitute a concise summary, which may be used as a practical guide for further design of new molecules with antimicrobial activity.

Keywords: hydrazide–hydrazone; biological activity; antibacterial activity; antitubercular activity; antifungal activity

1. Introduction

In the field of medicinal chemistry, hydrazide–hydrazones are still in continuous interest due to their diverse and wide spectrum of biological properties [1–4]. Additionally, hydrazide–hydrazones are versatile compounds for the synthesis of heterocyclic systems [1,3,5,6], preparing metal complexes and are used as ligands in coordination chemistry [7–10].

Among bioactivity profiles of hydrazide–hydrazones, antimicrobial properties are the most common in the scientific literature [11–46]. This is especially important due to the fact that bacterial and fungal infections became more and more difficult and sometimes impossible to treat as a result of the increase of antibiotic and chemotherapeutic resistant strains [47]. It is worth mentioning that hydrazide–hydrazone moiety is also present in the chemical structure of medicines with antimicrobial activity, such as nitrofurazone, furazolidone, or nitrofurantoin [3].

This review is an update and continuation of the review, which was previously published in 2017 [3], and focuses on the most recently described (2017–2021) potent hydrazide–hydrazones with applications as antibacterial, antitubercular, and antifungal agents.

2. Antimicrobial Activity

2.1. Antibacterial Activity

The most frequently encountered in the scientific literature are hydrazide–hydrazones which possess antibacterial activity. Searching for such compounds among this group seems reasonable due to the fact that many derivatives of this class are highly active even against resistant strains; this is especially important nowadays when many bacteria become resistant to commonly used medicines [11–42].
Noshiranzadeh et al. conducted the synthesis of a series of new hydrazide–hydrazones of lactic acid and evaluated their antibacterial activity against four bacterial strains (S. aureus, S. pneumoniae, E. coli, and P. aeruginosa) using the broth microdilution method. Compounds 1 and 2 showed higher antibacterial activity (Minimal inhibitory concentration MIC = 64–128 µg/mL) than the other compounds but lower than gentamicin used as a reference substance (Figure 1). The high antibacterial activity of compound 1 is possibly attributed to the presence of an electronegative NO₂ substituent. The authors concluded that the compounds with electron-withdrawing groups like I, Br, or NO₂ generally showed better antibacterial activity in comparison with the compounds containing electron-donating OCH₃ or OH groups [11].

Figure 1. New hydrazide–hydrazones of lactic acid with antibacterial activity.

Heidari et al. published the study which aimed to investigate the effects of sub-minimum inhibitory concentrations of compound 1 against Pseudomonas aeruginosa PAO1 quorum sensing related virulence factors (Figure 1). Treated PAO1 cultures in the presence of this hydrazide–hydrazone at subinhibitory concentrations showed significant inhibition of virulence factors, including motility, biofilm formation, alginate and pyocyanin production, and susceptibility to H₂O₂ (p <0.001). The authors suggested that such action may be the mechanism of activity of this compound against Pseudomonas aeruginosa PAO1 [12].

Olayinka et al. synthesized a series of new hydrazide–hydrazones of 2-propylquinoline-4-carboxylic acid and carried out antibacterial activity screening towards six bacterial strains (P. aeruginosa, S. aureus, E. coli, Proteus vulgaris, Bacillus licheniformis, and Micrococcus varians) using the agar diffusion method. Compound 3 was the hydrazide–hydrazone with the lowest MIC value in the range of 0.39 ± 0.02–1.56 ± 0.02 µg/mL across all the microorganisms screened (Table 1, Figure 2). Authors proved that the presence of electron-donating group (EDG) at position 4 and electron-withdrawing group (EWG) at position 2 in the phenyl ring had a crucial effect on the antibacterial activity [13].

Figure 2. Quinoline derivative with significant antibacterial properties.

Compound	Minimal Inhibitory Concentration (MIC) (µg/mL)					
	P. aeruginosa	S. aureus	E. coli	B. licheniformis	P. vulgaris	M. varians
3	1.56 ± 0.02	0.39 ± 0.02	0.78 ± 0.02	1.56 ± 0.02	0.39 ± 0.02	0.78 ± 0.02

Krátký et al. synthesized a series of new hydrazide–hydrazones of 4-trifluoromethylbenzoic acid and evaluated them as possible antibacterial agents. The majority of obtained hydrazide–hydrazones were only slightly active. The highest activity superior
to bacitracin (BAC), used as a reference substance, was shown by compound 4 (Table 2, Figure 3). This substance did not show cytotoxicity towards HepG2 cells (hepatocellular carcinoma cells) and BMMΦ (murine bone marrow culture-derived macrophages) (IC₅₀ >100 µM) [14].

![Figure 3. Hydrazide–hydrazone of 4-trifluoromethylbenzoic acid with high antibacterial activity.](image)

Table 2. The antibacterial activity values of compound 4.

Compound	Minimal Inhibitory Concentration (MIC) [µM]									
	SA	MRSA	SE	EF	EC					
	24 h	48 h								
4	1.98	1.98	1.98	1.98	3.9	3.9	1.98	3.9	250	250
BAC	7.81	15.62	15.62	15.62	31.25	15.62	62.5	>500	>500	

BAC—bacitracin; Bacteria: SA—*Staphylococcus aureus* CCM 4516/08; MRSA—methicillin-resistant *Staphylococcus aureus* H 5996/08; SE—*Staphylococcus epidermidis* H 6966/08; EF—*Enterococcus faecalis* J 14365/08; EC—*Escherichia coli* CCM 4517.

Abdelrahman et al. synthesized novel hydrazide–hydrazones and evaluated in vitro their antibacterial properties against two Gram-positive bacteria: *Streptococcus pneumoniae* RCMB 010010, *S. aureus* RCMB 010028 and two Gram-negative bacteria: *P. aeruginosa* RCMB 010043, *E. coli* RCMB 010052. Compounds 5 and 6 displayed significant and higher antibacterial activity when compared with ampicillin and ciprofloxacin, respectively (Figure 4). Compounds 5 and 6 showed two-fold increased inhibition against *S. pneumoniae* with MIC = 0.49 µg/mL, compared to ampicillin (MIC = 0.98 µg/mL). The authors proved that compounds bearing electron-donating groups showed better activities than the electron-withdrawing ones. Regarding Gram-negative bacteria, remarkable activity was elicited by the derivatives 5 and 6 against *E. coli* (MIC = 0.49 µg/mL), showing two-fold the potency of the standard ciprofloxacin (MIC = 0.98 µg/mL). The authors tested synthesized compounds for cytotoxic activities against human lung fibroblast normal cells (WI-38). Hydrazide–hydrazones 5 and 6 showed no cytotoxic activity at 0–500 µg/mL concentrations [15].

![Figure 4. Hydrazide–hydrazones active against *S. pneumoniae* and *E. coli.*](image)

Analysis of the values of the zone of inhibition growth of compounds synthesized by Manikandan et al. revealed that among obtained hydrazide–hydrazones, only derivative with 4-fluorophenyl substituent 7 had shown satisfactory antibacterial sensitivity in comparison with ciprofloxacin (Figure 5, Table 3) [16].
Figure 5. Hydrazide–hydrazone 7 with antibacterial properties.

Table 3. Antibacterial activities of N-(4-fluorobenzylidene)benzohydrazide.

Compound	Diameter (mm) of Zone of Inhibition Growth	SA	ML	BS	KP	VP	PM	EC	PA
7		6	8	6	6	8	6	7	6
Ciprofloxacin		10	9	12	9	8	10	9	8

SA—Staphylococcus aureus; ML—Micrococcus luteus; BS—Bacillus subtilis; KP—Klebsiella pneumoniae; VP—Vibrio parahaemolyticus; PM—Proteus mirabilis; EC—Escherichia coli; PA—Pseudomonas aeruginosa.

The results of the study by Popiołek and Biernasiuk indicated that synthesized and in vitro examined hydrazide–hydrazones exhibited a wide spectrum of antibacterial activity against tested reference bacteria. Substances 8, 9, and 10 were especially potent (MIC = 0.002–0.98 µg/mL) against Gram-positive bacteria (Figure 6). Staphylococcus epidermidis ATCC 12228 was the most sensitive to all synthesized compounds, while Micrococcus luteus ATCC 10240 was the least susceptible. Compounds 8 and 9 showed almost two thousand times higher activity (MIC < 1 µg/mL) than nitrofurantoin (MIC = 3.91 µg/mL) against B. subtilis ATCC 6633 and S. epidermidis ATCC 12228, respectively. The MIC value of compound 9 (MIC = 0.002 µg/mL) was sixty-one times lower than the MIC of ciprofloxacin (MIC = 0.122 µg/mL) against S. epidermidis ATCC 12228. Compound 8 had MIC value (MIC = 0.002 µg/mL) against B. subtilis ATCC 6633, which was almost eight thousand times lower than the MIC of cefuroxime (MIC = 15.63 µg/mL) [17].

Figure 6. Nitrofurazone analogues with significant antibacterial activity.

Yadav et al. synthesized novel hydrazide–hydrazones as a derivative of benzimidazole and evaluated their potency against bacterial strains. Among obtained molecules, compound 11 displayed far better antibacterial activity against S. aureus, B. subtilis, and E. coli (MIC = 0.032 µM) in comparison with cefadroxil used as a reference substance (MIC = 0.345 µM) (Figure 7) [18].

Figure 7. Benzimidazole derivative active against bacterial strains.
Hydrazide–hydrazones obtained by El-Sayed et al. showed good or moderate activity against Gram-positive bacteria: *B. subtilis*, *B. cereus*, and gram-negative bacteria: *P. aeruginosa*, *E. coli*. Compounds 12 and 13 displayed higher activity against Gram-positive *B. subtilis* in comparison with cefotaxime used as positive control (Figure 8, Table 4) [19].

![Figure 8. 2-Oxonicotinonitrile derivatives with antibacterial properties.](image)

Table 4. Antibacterial activity of compounds 12 and 13.

Compound	Diameter (mm) of Zone of Inhibition Growth			
	Gram-Positive Bacteria	Gram-Negative Bacteria		
	B. subtilis	*B. cereus*	*P. aeruginosa*	*E. coli*
12	33	15	16	21
13	46	18	22	19
Cefotaxime	32	28	32	34

Hydrazide–hydrazones synthesized by Chennapragada et al. were screened against *E. coli* MTCC 443, *P. aeruginosa* MTCC 2453, *S. aureus* MTCC 3160, and *B. cereus* MTCC 1305. Antibacterial activity was assessed on the basis of the measurement of the diameter of the zone of inhibition growth (ZOI). Compound 14 exhibited significant antibacterial activity at all concentrations in comparison with streptomycin used as positive control (Figure 9) [20].

![Figure 9. Pyrazole derivative with antibacterial properties.](image)

In 2018, Popiolek et al. published an article in which they described the synthesis and antibacterial activity analysis of new hydrazide–hydrazones of isonicotinic acid. The most significant activity among obtained compounds was displayed by substances 15 and 16. Hydrazide–hydrazone 15 exhibited very strong activity towards all tested Gram-positive bacteria (MIC = 1.95–7.81 µg/mL, MBC = 3.91–125 µg/mL). This substance showed bactericidal action against *S. aureus* ATCC 6538, *S. epidermidis* ATCC 12228, and *B. subtilis* ATCC 6633 (MBC/MIC = 2–4) and bacteriostatic effect against other bacteria (MBC/MIC = 8–32). The compound 16 also showed very strong activity towards Gram-positive bacteria (MIC...
= MBC = 3.91–7.81 µg/mL, MBC/MIC = 1–2). Its activity against S. aureus ATCC 25923 and S. aureus ATCC 6538 (MIC = 3.91 µg/mL) was four times higher than the activity of nitrofurantoin (MIC = 15.62 µg/mL) with bactericidal effect (Figure 10) [21].

Similarly, Polović et al., in 2019, synthesized novel series of hydrazide–hydrazones of nicotinic acid and assessed their antibacterial activity. Antibacterial assays performed in this study showed that compound 17 with nitro group displayed good inhibition of bacterial growth, whereas the compounds without an electron-withdrawing group (chloro- and nitro-) showed weak antibacterial activity (Figure 11, Table 5). According to the authors, this may be due to the fact that electron-withdrawing substituents increase the lipophilicity of the compounds, which leads to higher partitioning of such compounds into the lipophilic phase of a microbial membrane [22].

All the newly synthesized hydrazide–hydrazones by Shaaban et al. were evaluated for their in vitro antibacterial activity against S. aureus RCMB 0100183, B. subtilis RCMB 0100162, S. epidermidis RCMB 0100183, P. aeruginosa RCMB 0100243, P. vulgaris RCMB 010085, and E. coli RCMB 010052. Ampicillin and levofloxacin were used as reference standard antibacterial agents. Compound 18 exhibited moderate activity against Gram-positive and Gram-negative bacteria (Table 6, Figure 12) [23].

![Figure 10. Hydrazide–hydrazones of isonicotinic acid with significant antibacterial activity.](image1)

![Figure 11. Hydrazide–hydrazone of nicotinic acid with good inhibition of bacterial growth.](image2)

Compound	MIC (µmol/mL)	S. aureus ATCC 6538	E. coli ATCC 10536	MRSA MFBF 10679	ESBL+ E. coli MFBF 12794		
	IC₅₀	IC₉₀	IC₅₀	IC₉₀	IC₅₀	IC₉₀	
17	0.12	4.7 × 10⁻²	0.37	2.10 × 10⁻²	0.35	2.30 × 10⁻²	0.36
Gentamicin Sulphate	1.35 × 10⁻⁴	>3.35 × 10⁻²	2.97 × 10⁻⁴	>3.35 × 10⁻²	>3.35 × 10⁻²	>3.35 × 10⁻²	
Norfloxacin	>2.16 × 10⁻²						
Colistin	>2.16 × 10⁻²						

ESBL+ E. coli—extended-spectrum beta-lactamase-positive E. coli.
Figure 12. Pyrimidine derivative with antibacterial properties.

Table 6. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of compound 18.

Compound	Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) in µg/mL							
	Gram-Positive Bacteria	Gram-Negative Bacteria						
	S. aureus	S. epidermidis	B. subtilis	P. aeruginosa	E. coli	P. vulgaris		
	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
18	50	50	25	25	50	100	100	100
Ampicillin	6.25	12.5	12.5	-	-	-	-	-
Levofoxacin	-	-	-	-	12.5	6.25	12.5	12.5

Hydrazide–hydrazones obtained by Haiba et al. exhibited promising antibacterial activity against bacterial strains. Compound 19 showed two-fold higher antibacterial activity against E. coli (MIC = 12.5 µg/mL) and S. aureus (MIC = 6.25 µg/mL) than ampicillin (MIC = 25 and 12.5 µg/mL, respectively) (Figure 13). Additionally, compound 19 also showed significant antibacterial activity against MDR clinical isolates of K. pneumoniae (MIC = 12.5 µg/mL) and methicillin-resistant S. aureus MRSA1 (MIC = 3.125 µg/mL). The cytotoxicity of hydrazide–hydrazone 19 was tested in a VERO (African green monkey kidney) cell line. The performed test revealed that 50% cytotoxic concentration value CC50 equals 125, which, according to the authors, corresponds to good safety profile of this substance. The authors also performed a molecular docking study to find potential mechanism of antibacterial action of synthesized compounds. As a result, it occurred that the antibacterial potency of obtained hydrazide–hydrazones may be connected with strong binding interactions in the DNA gyrase active site [24].

Figure 13. s-Triazine derivative active against E. coli and S. aureus.

The results of antimicrobial activity testing of compounds synthesized by Phan et al. showed that all newly synthesized hydrazide–hydrazones possessed various inhibition
effects on the tested Gram-positive bacteria. Strong antibacterial activity was found for compound 20 in comparison with streptomycin (Figure 14, Table 7) [25].

![Adamantane derivative with antibacterial activity.](image1)

Figure 14. Adamantane derivative with antibacterial activity.

Table 7. Minimal inhibitory concentration (MIC) of hydrazide–hydrazone 20.

Compound	MIC (µM)		
	Gram-Positive Bacteria		
	E. faecalis ATCC 13124	*S. aureus* ATCC 25923	*B. cereus* ATCC 13245
20	12.5	12.5	12.5
Streptomycin	350	350	175

The most active compound among indol-2-one derivatives synthesized by Salem et al. was 21. It showed higher antibacterial activity than tetracycline against *B. subtilis*, *S. aureus*, and *E. coli* (Figure 15, Table 8). In order to determine the possible mechanism of action of synthesized compounds, the authors performed the inhibitory activity assay against DNA gyrase isolated from *S. aureus*. Hydrazide–hydrazone 21 showed strong inhibition of gyrase (IC₅₀ = 19.32 ± 0.99 µM) when compared to ciprofloxacin (IC₅₀ = 26.43 ± 0.64 µM) [26].

![Indol-2-one derivative with antibacterial activity.](image2)

Figure 15. Indol-2-one derivative with antibacterial activity.

Table 8. In vitro antimicrobial activity values (MIC, µg/mL) for compound 21.

Compound	Minimal Inhibitory Concentration (MIC) (µg/mL)			
	Gram-Positive Bacteria	Gram-Negative Bacteria		
	B. subtilis	*S. aureus*	*E. coli*	*P. aeruginosa*
21	15.62	55.5	7.81	83.33
Tetracycline	31.25	62.5	15.62	62.5

The results of antibacterial activity screening of hydrazide–hydrazones synthesized by Tiwari et al. indicated that the compounds were active against Gram-positive bacteria. The highest activity was shown by compound 22 (Figure 16, Table 9) [27].
Table 9. The IC₅₀ values for compound 22.

Compound	E. coli MTCC 433	P. putida MTCC 1237	B. subtilis MTCC 1427
22	0.19 ± 0.06	0.45 ± 0.18	0.14 ± 0.02
Chloramphenicol	0.23 ± 0.05	0.25 ± 0.02	0.21 ± 0.06

The hydrazide–hydrazone 23 obtained by Ewies et al. exhibited promising antibacterial activity against *S. aureus*, *S. typhimurium*, and *P. aeruginosa* (Figure 17, Table 10) [28].

Table 10. Diameter of zone of inhibition growth for substance 23.

Compound	B. cereus ATCC 11778	S. aureus ATCC 29213	S. typhimurium ATCC 14028	E. coli ATCC 25922	P. aeruginosa ATCC 27953
23	10	30	30	10	30
Penicillin	25	32	40	15	-
Nizo-arm	-	-	-	-	45

In 2020, Popiołek et al. reported the synthesis and antimicrobial activity potential of hydrazide–hyrazones of 5-nitrofuran-2-carboxylic acid. Majority of obtained substances showed high antibacterial activity with bactericidal effect against tested microorganisms (MIC = 0.48–15.62 µg/mL, MBC = 0.98–62.5 µg/mL, MBC/MIC = 1–4). The most sensitive for tested hydrazide–hyrazones were *S. epidermidis* ATCC 12228, *S. aureus* ATCC 43300,
S. aureus ATCC 6538, B. subtilis ATCC 6633, and B. cereus ATCC 10876. The highest antibacterial activity among synthesized derivatives was shown by compounds 24, 25, and 26 (Figure 18) [29].

![Figure 18. Novel derivatives of 5-nitrofuran-2-carboxylic acid with antibacterial activity.]

In 2021, El-Etrawy et al. synthesized novel series of 2-thiouracil derivatives and evaluated their in vitro antibacterial properties. Compound 27 was found to possess the highest antibacterial activity on the basis of the measurement of the zone of inhibition growth (Figure 19, Table 11) [30].

![Figure 19. N-(2-Thiouracil-5-oyl)hydrazone derivative with antibacterial activity.]

Table 11. Antibacterial properties of compound 27.

Compound	Diameter (mm) of Zone of Inhibition Growth at 50 µg/mL	
	Gram-Negative Bacteria	Gram-Positive Bacteria
	E. coli P. aeruginosa	S. aureus
27	40 28 25	25
Ciprofloxacin	40 50	35

Novel derivatives of 1,2,3-thiadiazole synthesized by Paruch et al. displayed interesting antibacterial properties. Hydrazide–hydrazone 28 showed a bactericidal effect among almost all tested strains (Figure 20). The MIC values of this substance, which inhibited bacterial growth, ranged from 1.95 µg/mL (for Staphylococcus spp.) to 15.62 µg/mL (for E. faecalis ATCC 29212). The activity of this derivative against S. aureus ATCC 25923 and ATCC 43300 was two-fold greater than for nitrofurantoin. Towards S. aureus ATCC 6538 strain was seven times higher than for nitrofurantoin. This compound also possessed good activity against S. epidermidis ATCC 12228 and M. luteus ATCC 10240, two and eight times higher, respectively, in comparison with nitrofurantoin [31].
Figure 20. 4-Methyl-1,2,3-thiadiazole-carboxylic acid hydrazide derivative active against a panel of bacterial strains.

2.2. Antimycobacterial Activity

On the basis of the survey of scientific literature, it can be concluded that hydrazide–hydrazones may also be regarded as promising antitubercular agents, which is especially important when tuberculosis is still a serious threat for people [32].

The study performed by Abdelrahman et al. revealed that compound 6 also possessed superior activity against *M. tuberculosis* with MIC = 0.39 µg/mL, two-fold higher activity than that of isoniazid (MIC = 0.75 µg/mL) (Figure 4) [15].

Among hydrazide–hydrazones of 4-trifluoromethylbenzoic acid synthesized by Krátký et al., compound 29 showed high antitubercular activity comparable to isoniazid against the clinical isolate of *Mycobacterium kansasii* 6509/96 (Figure 21, Table 12) [14].

Figure 21. Hydrazide–hydrazone of 4-trifluoromethylbenzoic acid with antimycobacterial activity.

Table 12. Antitubercular properties of compound 29.

Compound	MIC [µM]	*M. tuberculosis* 331/88	14 day	21 day	*M. avium* 330/88	14 day	21 day	*M. kansasii* 235/80	7 day	14 day	21 day	*M. kansasii* 6509/96	7 day	14 day	21 day
29		16	16	>125	16	16	16	16	16	16	16	16	16	16	16
Isoniazid	0.5	1	>250	>250	>250	>250	>250	>250	8	8	8	8	8	8	8

In the study performed by Angelova et al., synthesized hydrazide–hydrazones with 2H-chromene and coumarin scaffold were evaluated in vitro against *M. tuberculosis* H37Rv. Compound 30 proved to be the most active against tested strain (MIC = 0.13 µM) (Figure 22). Isoniazid and ethambutol showed higher values of MIC 1.45 and 7.64 µM, respectively. Hydrazide–hydrazone 30 showed low cytotoxicity against human embryonal kidney cell line HEK-293T (IC50 = 90.66 µM) and displayed a favorable selectivity index (SI = 697.38). Authors suggested that this class of hydrazide–hydrazones may be regarded as a promising new candidate for further investigations as an antitubercular agent [33].

Figure 22. 2H-Chromene derivative active against *M. tuberculosis* H37Rv.
In 2017, Angelova et al. published a similar study that concerned the in vitro antitycobacterial activity of benzopyran derivatives against the reference strain of *M. tuberculosis* H37Rv. The most active was compound 31 (MIC = 0.28 µM) with *p*-methoxyphenyl substituent (Figure 23). Its activity was higher than that of isoniazid (MIC = 0.79 µM) and ethambutol (MIC = 1.46 µM). The authors observed that the presence of OH, OCH$_3$, and N(CH)$_3$ functional groups at four position in the phenyl ring enhanced the antitycobacterial activity. This compound was also tested for cytotoxicity against the human embryonic kidney cell line HEK-293T. According to the authors, it showed minimal cytotoxicity (IC$_{50}$ = 112.9 µM) and a high value of selectivity index (SI = 403). In order to discover the potential mechanism of antitycobacterial activity of synthesized compounds, the authors performed molecular docking studies and investigated binding to the 2-trans-enoyl-ACP reductase (InhA) enzyme involved in *M. tuberculosis* cell wall biogenesis. On the basis of obtained results, the authors suggested that the activity of synthesized molecules may be connected with interactions with the inhibitor binding cavity of *M. tuberculosis* enoyl-ACP reductase and/or related to the ability of the tested compounds to penetrate mycobacterial cells [34].

![Figure 23. Hydrazide–hydrazone with significant antitubercular activity.](image)

Hydrazide–hydrzones synthesized and tested for potential antitycobacterial activity by Atta et al. displayed high potency against *M. tuberculosis* H37Rv. Compound 32 showed the highest activity with MIC = 7.30 µM and was equipotent to ethambutol (MIC = 7.64 µM) and seven times more active than pyrazinamide (MIC = 50.77 µM), which were used as reference compounds (Figure 24). Substance 32 was also examined for cytotoxicity in human embryonic kidney (HEK 293) cell line at the concentration of 50 µg/mL with the use of MTT assay. It showed a lower cytotoxic effect (20.08% inhibition) than standard antitycobacterial medicine—isoniazid (35.60% inhibition) [35].

![Figure 24. Chemical structure of compound 32 with antitycobacterial activity.](image)

Among hydrazide–hydrzones obtained by Mandewale et al., compound 33 showed the highest antitubercular activity against *M. tuberculosis* H37Rv ATCC 27294 (MIC = 32.55 µM) but lower than reference substance pyrazinamide (MIC = 25.54 µM) (Figure 25) [36].
Derivatives of benzimidazole synthesized by Yadav et al. were also evaluated for potential antimycobacterial activity. The activity equal to the activity of streptomycin was shown by compound 34 (MIC = 12.5 µg/mL) against *M. tuberculosis* H37Rv (Figure 26) [18].

The structure–activity relationship study of indole derivatives synthesized by Angelova et al. with respect to their antitubercular activity revealed that compounds with 5-methoxysubstituted indole scaffold were found to be the most potent molecules with MIC values in the 0.39–0.77 µM range against *M. tuberculosis* H37Rv. Among the tested compounds, the highest antimycobacterial activity, selectivity (SI > 1978.83), and low toxicity were found for compound 35 (MIC = 0.3969 µM). Ethambutol and isoniazid showed higher values in this study (MIC = 1.6996 and 0.9115 µM, respectively) (Figure 27) [37].

In 2019, Beteck et al. published an article that concerned the synthesis and antitubercular activity against *M. tuberculosis* H37Rv of quinolone–isoniazid hybrids. The antimycobacterial activities were reported as minimal inhibitory concentration (MIC90) required to inhibit 90% of mycobacterial growth. All of the obtained compounds exhibited antimycobacterial activity. Many of them had MIC90 values less than 3 µM. The highest activity was shown by compound 36 (MIC = 0.2 µM) (Figure 28). The activity of this compound was equal to the activity of isoniazid [38].
Hassan et al. synthesized novel pyrazine derivatives with hydrazide–hydrazone moiety, which appeared to be effective inhibitors of the growth of *M. tuberculosis* H37Rv ATCC 27294. The highest potency was shown by compound 37, which displayed significant anti-TB activity with MIC value of 0.78 µg/mL, which equals two times the activity of ethambutol (MIC = 1.56 µg/mL) and eight times the activity of pyrazinamide (MIC = 6.25 µg/mL) (Figure 29). In the in vitro cytotoxicity assay against PBMC (peripheral blood mononuclear cells) normal cell line, this hydrazide–hydrazone showed no cytotoxicity (IC50 = 846.9 µg/mL) and very high selectivity index (SI = 1085.7). To find a possible mechanism of activity of obtained hydrazide–hydrazones, the authors processed a docking study into the active site of the pantothenate synthetase enzyme. Substance 37 revealed to have favorable binding modes and interaction patterns with the active site of the enzyme [39].

Novel hydrazide–hydrazones synthesized from eugenol were tested for antimycobacterial potential. Among synthesized derivatives, compound 38 possessed the highest sensitivity against *M. tuberculosis* H37Rv at 25 µg/mL level (Figure 30) [40].

Gürsoy et al., in 2020, obtained novel thiazole derivatives with antitubercular activity. Hydrazide–hydrazone 39 was found to be most active against *M. tuberculosis* H37Rv...
(MIC = 16.252 µg/mL) and had no cytotoxicity towards CRFK (Crandell Rees feline kidney) cells (CC50 > 100 µg/mL). However, its activity was lower than for rifampicin, which was used as a reference substance (MIC = 0.125 µg/mL) (Figure 31) [41].

New 1,3-oxazole-isoniazid hybrids synthesized by Shah et al. were evaluated for their antitubercular activity against M. tuberculosis H37Rv strain. Among all tested compounds, derivatives 40 and 41 displayed activity with MIC value of 1.56 µg/mL, which was higher when compared with ethambutol (MIC = 3.13 µg/mL). The authors discovered that compounds bearing methoxy groups in the phenyl ring attached to the 1,3-oxazole scaffold displayed better activity compared to the other compounds (Figure 32). Synthesized substances (40, 41) were tested in vitro for cytotoxicity in human embryonic kidney (HEK-293T) cells and did not display changes in cytotoxicity as compared with vehicle (DMSO) [42].

2.3. Antifungal Activity

Treatment of fungal infections is very challenging even though we can use many medicines [43,44]. Due to this, searching for novel effective and non-toxic antifungal agents is necessary [43,44]. Many hydrazide–hydrazones beside antibacterial activity also possess interesting antifungal properties [14–19,21,23,26,29,45,46].

Krátký et al. evaluated hydrazide–hydrazones of 4-trifluoromethylbenzoic acid also as possible antifungal agents. The most active against a panel of fungi was, similarly as against bacterial strains, the hydrazide–hydrazone numbered as 4 (Figure 3, Table 13). The activity of this molecule (MIC = 1.98 µM) was four times higher than for fluconazole (MIC = 7.81 µM) against Trichophyton mentagrophytes 445 [14].
Table 13. Antifungal properties of compound 4.

Compound	MIC [µM]							
	CT 24 h	48 h	CK 24 h	48 h	CG 24 h	48 h	TM 24 h	48 h
4	>125	>125	>125	>125	≤0.49	0.98	1.98	3.9
Fluconazole	>500	>500	125	250	31.25	500	7.81	125

Fungi: CT—Candida tropicalis 156; CK—Candida krusei E28; CG—Candida glabrata 20/I; TM—Trichophyton mentagrophytes 445.

Compounds 5 and 6 synthesized by Abdelrahman et al. displayed antifungal activity (Figure 4). Their activity against tested fungi was higher or equal to the activity of Amphotericin B (Table 14) [15].

Table 14. Antifungal activity displayed as MIC values (µg/mL) of tested standard and compounds 5 and 6.

Compound	MIC (µg/mL)	
	A. fumigatus	C. albicans
	RCMB 02568	RCMB 05036
5	0.98	0.49
6	0.98	0.98
Amphotericin B	1.95	0.98

Analysis of the diameter of zone of inhibition growth (mm) of compounds obtained by Manikandan et al. revealed that only hydrazide–hydrazone 42 had shown good antifungal sensitivity against three species of fungi (Figure 33, Table 15) [16].

Figure 33. Hydrazide–hydrazone with antifungal activity.

Table 15. Antifungal activity of N-(3-hydroxybenzylidene)benzohydrazide.

Compound	Diameter of Zone of Inhibition Growth (mm)		
	A. niger	Mucor spp.	Trichoderma viride
42	6	6	7
Miconazole	7	8	10

Nitrofurazone analogues synthesized by Popiołek and Biernasiuk also showed interesting antifungal activity. Compounds 43, 44, and 45 displayed good fungicidal or fungistatic properties against Candida spp. ATCC (MIC = 31.25–125 µg/mL, MFC = 125–1000 µg/mL) but they were less active than fluconazole, which was used as a reference substance (Figure 34) [17].

Figure 34. Nitrofurazone analogues with antifungal properties.
Benzimidazole derivatives synthesized by Yadav et al. were also tested for their antifungal activity. The best results showed compound 11 (Figure 7). Its activity against C. albicans (MIC = 0.016 µM) and A. niger (MIC = 0.032 µM) was higher than that of fluconazole (MIC = 0.40 and 0.82 µM, respectively) [18].

Molecules synthesized by El-Sayed et al. possessed interesting antifungal activity. Especially compounds 12 and 13 showed good effects against Aspergillus niger (diameter of zone of inhibition growth ZOI = 16 and 19 mm, respectively) in comparison with nystatin (ZOI = 20 mm) (Figure 8) [19].

All yeasts belonging to Candida spp. ATCC were sensitive to hydrazide–hydrazones of isonicotinic acid synthesized by Popiołek et al. Compound 15 had moderate fungicidal activity against C. albicans ATCC 2091 (MIC = 250 μg/mL, MFC/MIC = 4) and good fungistatic properties towards other Candida spp. (MIC = 62.5–125 μg/mL, MFC/MIC = 8–16) (Figure 10) [21].

Novel pyrimidine derivatives obtained by Shaaban et al. were tested in in vitro conditions for potential antifungal activity against A. fumigatus, C. albicans, and Rhizopus oryzae. The most active compound was 46, which displayed half the activity (MIC = 25 μg/mL) of the reference clotrimazole (MIC = 12.5 μg/mL) against C. albicans and double the activity of clotrimazole against A. fumigatus with MIC = 50 μg/mL (Figure 35) [23].

The antifungal activity of the new hydrazide–hydrazones synthesized by Guilherme et al. was evaluated against different strains of fungi. The compound 47 showed moderate antifungal activity (IC₅₀ = 907.1 µM against C. krusei ATCC 6258 and IC₅₀ = 226.8 µM against C. parapsilosis ATCC 22019) (Figure 36). This hydrazide–hydrazone displayed no cytotoxicity against kidney cell Vero line (ATCC CCL-81) CC₅₀ > 181.4 µM and normal human lung fibroblast cell line MRC-5 (ATCC CCL-117) CC₅₀ = 104.3 ± 2.4 µM [45].

Among novel indol-2-one derivatives with hydrazide–hydrazone moiety compound, 21 was found to have the most potent antifungal properties, even though its activity against C. albicans (MIC = 31.25 µg/mL) was two times and for F. oxysporum (MIC = 125 µg/mL) four times lower than for amphotericin B (MIC = 15.62 and 31.25 µg/mL, respectively) (Figure 15) [26].
New hydrazide–hydrazones of 5-nitrofuran-2-carboxylic acid obtained by Popioleik et al. also indicated significant anticandidal activity. The values of MIC of compound 26, which contained the 2-iodophenyl substituent, were the lowest (from 7.81 to 15.62 µg/mL), indicating its strong or very strong activity against all reference Candida spp. (Figure 18) [29].

Among novel derivatives of 5-pyrrolidin-2-one, synthesized by Dascalu et al., compounds 48 and 49 with chloride and bromine atom at position 4 in the phenyl ring showed a broad spectrum of antifungal activity (Figure 37, Table 16) [46].

![Figure 37. 5-Pyrrolidin-2-one derivatives 48 and 49 with antifungal properties.](image)

Table 16. The MIC₅₀ values of compounds 48 and 49 against fungal strains.

Compound	Fusarium solani	Penicillium ochrochloron	Cladosporium cladosporioides	Geotrichum candidum	Candida tropicalis
48	-	15.4	23.9	1.8	-
49	6.5	5.3	53.0	5.9	>75
Ketoconazole	-	-	-	1.5	15.9
Hymexazol	15.6	62.2	28.9	>50	-
Fluconazole	-	-	-	1.6	-

3. Conclusions

In conclusion, this article gives an overview of the antibacterial, antitubercular, and antifungal properties of hydrazide–hydrazones published since 2017. As presented in this study, the hydrazide–hydrazone moiety may be found and incorporated in various bioactive molecules. Thus, this review appears to be important for further development of hydrazide–hydrazones as potential antimicrobial agents.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Rollas, S.; Küçükgüzel, Ş.G. Biological Activities of Hydrazone Derivatives. *Molecules* 2007, 12, 1910–1939.
2. Angelova, V.; Karabeliov, V.; Andreeva-Gateva, P.A.; Tchekalarova, J. Recent Developments of Hydrazide/Hydrazone Derivatives and Their Analogs as Anticonvulsant Agents in Animal Models. *Drug Dev. Res.* 2016, 77, 379–392, doi:10.1002/ddr.21329.
3. Popioleik, Ł. Hydrazide–hydrazones as potential antimicrobial agents: Overview of the literature since 2010. *Med. Chem. Res.* 2017, 26, 287–301, doi:10.1007/s00044-016-1756-y.
4. Sharma, P.C.; Sharma, D.; Sharma, A.; Saini, N.; Goyal, R.; Ola, M.; Chawla, R.; Thakur, V.K. Hydrazone comprising compounds as promising anti-infective agents: Chemistry and structure-property relationship. *Mater. Today Chem.* 2020, 18, 100349, https://doi.org/10.1016/j.mtchem.2020.100349.
5. Popioleik, Ł.; Biernasiuk, A.; Malm, A. Design, Synthesis, and in vitro Antimicrobial Activity of New Furan Thiophene-1,3-Benzothiazin-4-one Hybrids. *J. Heterocycl. Chem.* 2016, 53, 479–486, doi:10.1002/jhet.2429.
6. Popiolek, Ł.; Piątkowska-Chmiel, I; Gawrońska-Grzywacz, M.; Biernasiuk, A.; Izdebka, M.; Herbet, M.; Sysa, M.; Malm, A.; Dudka, J.; Wujec, M. New hydrazide-hydrazone and 1,3-thiazolidin-4-ones with 3-hydroxy-2-naphthoic moiety: Synthesis, in vitro and in vivo studies. *Biomed. Pharmacother.* 2018, 103, 1337–1347, doi:10.1016/j.biopha.2018.04.163.

7. He, L.-Y.; Qu, X.-Y.; Cheng, J.-Y.; Liu, S.-J.; Wu, S.-M. Synthesis, characterization and crystal structures of vanadium(V) complexes derived from halido-substituted tridentate hydrazono compounds with antimicrobial activity. *Polyhedron* 2018, 156, 105–110, https://doi.org/10.1016/j.poly.2018.08.017.

8. Rocha, C.S.; Bomfim Filho, L.F.O.; de Souza, A.E.; Diniz, R.; Denadai, Â.M.L.; Beraldo, H.; Teixeira, L.R. Structural studies and investigation on the antifungal activity of silver(I) complexes with 5-nitrofuran-derived hydrazones. *In vitro and in vivo studies.* *J. Mol. Struct.* 2020, 1207, 127783, https://doi.org/10.1016/j.molstruc.2020.127783.

9. Kendel, A.; Miljancic, S.; Kontrec, D.; Soldin, Z.; Galic, N. Copper(II) complexes of arylhydrazones: Preparation and structural characterization. *J. Mol. Struct.* 2020, 110, 127783, https://doi.org/10.1016/j.molstruc.2019.06.033.

10. Neethu, K.S.; Sivaselvam, S.; Theetharappan, M.; Ranjitha, J.; Bhuvanes, N.S.P.; Ponpondian, N.; Neelakanth, M.A.; Kaveri, M.V. In vitro evaluations of biomolecular interactions, antioxidant and anticancer activities of Nickel(II) and Copper(II) complexes with 1:2 coordination of anthracenyl hydrazone ligands. *Inorg. Chem. Acta* 2021, 524, 120419, https://doi.org/10.1016/j.ica.2021.120419.

11. Noshiranzadeh, N.; Heidari, A.; Haghi, F.; Bikas, R.; Lis, T. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies. *J. Mol. Struct.* 2017, 1128, 391–399, doi:10.1016/j.molstruc.2016.09.006.

12. Heidari, A.; Haghi, F.; Noshiranzadeh, N.; Bikas, R. (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propane hydrazide as a quorum sensing inhibitor of Pseudomonas aeruginosa. *Med. Chem. Res.* 2017, 26, 947–955, doi:10.1007/s00044-017-1908-8.

13. Ajani, O.O.; Iyaye, K.T.; Aderohunmu, D.V.; Olanrewaju, D.O.; Herr, M.W.; Olorunshola, S.J.; Bello, B.L. Microwave-assisted synthesis and antibacterial activity of N′-s-benzylidene-2-propylquinoline-4-carboxyhydrazide and N′-((4-H-1-pyrrol-2-yl) methylene)-2-propylquinoline-4-carboxyhydrazide motifs. *Arab. J. Chem.* 2013, 18, 1809–1820, doi:10.1016/j.arabjc.2018.01.015.

14. Krátký, M.; Böse, S.; Baranyai, J.; Záboř, J.; Višňová, J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. *Biores. Med. Chem. Lett.* 2017, 27, 5185–5189, https://doi.org/10.1016/j.bjlmc.2017.10.050.

15. Abdelrahman, M.A.; Salama, I.; Gomaa, M.S.; Elaasser, M.M.; Abdel-Aziz, M.M.; Soliman, D.H. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazide derivatives as potential antimicrobial and antitubercular agents. *Eur. J. Med. Chem.* 2017, 138, 698–707, doi:10.1016/j.ejmech.2017.07.004.

16. Manikandan, V.; Balaji, S.; Senbagam, R.; Vijayakumar, R.; Rajarajan, M.; Vanangamudi, G.; Arulkumaran, R.; Sundararajan, R.; Thirunarayanan, G. Synthesis and antimicrobial activities of some (E)-N′-(substituted benzylidene)benzohydrazides. *Inter. J. Adv. Chem.* 2017, 5, 17–24, doi:10.14419/ijac.v5i1.7155.

17. Popiolek, Ł.; Biernasiuk, A. Synthesis and investigation of antimicrobial activities of nitrofuran analogues containing hydrazide-hydrazone moiety. *Saudi Pharm. J.* 2017, 25, 1097–1102, doi:10.1016/j.sjps.2017.05.006.

18. Yadav, S.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Mathur, A. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. *Egyipt. J. Basic Appl. Sci.* 2018, 5, 100–109, doi:10.1016/j.ejbas.2017.11.001.

19. El-Sayed, H.A.; Moustafa, A.H.; El-Moneim, M.A.; Awad, H.M.; Esmat, A. Design and Synthesis of Hydrazide-Hydrzones Based 2-Oxonicotinonitrile Derivatives as Potential Antimicrobial Agents. *J. Pharm. Appl. Chem.* 2018, 4, 125–131, doi:10.18576/jpac/040207.

20. Chemnapragada, K.P.; Palagummi, V.S.M. Synthesis and Characterization of 2-phenyl-5-(1-phenyl-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole Scaffolds for Assessing Their Medicinal Potentials. *Indian J. Pharm. Educ. Res.* 2018, 52, 135–145, doi:10.5530/ijper.52.1.15.

21. Popiolek, Ł.; Biernasiuk, A.; Berecka, A.; Gumieniczek, A.; Malm, A.; Wujec, M. New hydrazide–hydrazones of isonicotinic acid: Synthesis, lipophilicity and in vitro antimicrobial screening. *Chem. Biol. Drug. Des.* 2018, 91, 915–923, doi:10.1111/cbdd.13158.

22. Polović, S.; Bilić, V.L.; Budimir, A.; Kontrec, D.; Galić, N.; Kosalec, I. Antimicrobial assessment of arylhydrazine derivatives in vitro. *Acta Pharm.* 2019, 69, 277–285, doi:10.2478/aphc-2019-0020.

23. Shaaban, O.G.; Issa, D.E.A.; El-Tombarry, A.A.; El Wahab, M.S.A.; Wahab, A.E.A.; Abdelwahab, I.A. Synthesis and molecular docking study of some 3,4-dihydrothiochelone[2,3-d]pyrimidine derivatives as potential antimicrobial agents. *Bioorg. Chem.* 2019, 88, 102934, doi:10.1016/j.bioorg.2019.102934.

24. Haiba, N.S.; Khalil, H.H.; Moniem, M.A.; El-Wakil, M.H.; Bekhit, A.A.; Khattab, S.N. Design, synthesis and molecular modeling studies of new series of s-triazine derivatives as antimicrobial agents against multi-drug resistant clinical isolates. *Bioorg. Chem.* 2019, 89, 103013, doi:10.1016/j.bioorg.2019.103013.

25. Pham, V.H.; Phan, T.P.D.; Phan, D.C.; Vu, B.D. Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carboxyl Moiety. *Molecules* 2019, 24, 4000, doi:10.3390/molecules24214000.

26. Salem, M.A.; Ragab, A.; El-Khalafawy, A.; Makhlouf, A.H.; Askar, A.A.; Ammar, Y.A. Design, synthesis, in vitro antimicrobial evaluation and molecular docking studies of indol-2-one tagged with morpholinosulfonfyl moiety as DNA gyrase inhibitors. *Bioorg. Chem.* 2020, 96, 103619, doi:10.1016/j.bioorg.2020.103619.
27. Tiwari, S.; Kirar, S.; Banerjee, U.C.; Neerupudi, K.B.; Singh, S.; Wani, A.A.; Bharatam, P.V.; Singh, I.P. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents. *Bioorg. Chem.* 2020, 99, 103787, https://doi.org/10.1016/j.bioorg.2020.103787.

28. Ewies, E.F.; El-Hag, F.A.A. Synthesis, reactions, and antimicrobial evaluations of new benzo[el,1,3]thiazole derivatives. *J. Het. Chem.* 2020, 57, 163, doi:10.1002/jhet.3759.

29. Popiolek, Ł.; Rysz, B.; Biernasiku, A.; Wujec, M.; Synthesis of promising antimicrobial agents: Hydrazide-hydrazones of 5-nitrofuran-2-carboxylic acid. *Chem. Biol. Drug. Des.* 2020, 95, 260–269, doi:10.1111/cbd.13639.

30. El-Etrawy, A.-A.; Sherbiny, F.F. Design, synthesis, biological evaluation and molecular modeling investigation of new N′-(2-Thiouaricil-5-oyl) hydrazide derivatives as potential anti-breast cancer and anti-bacterial agents. *J. Mol. Struct.* 2021, 1232, 129993, doi:10.1016/j.molstruc.2021.129993.

31. Paruch, K.; Popiolek, Ł.; Biernasiku, A.; Berecka-Ryzerz, A.; Malm, A.; Gumieniczek, A.; Wujec, M. Novel Derivatives of 4-Methyl-1,2,3-Thiadiazole-5-Carboxylic Acid Hydrazide: Synthesis, Lipophilicity, and In Vitro Anti Microbial Activity Screening. *Appl. Sci.* 2021, 11, 1180, https://doi.org/10.3390/app11031180.

32. WHO. *Global Tuberculosis Report 2020*; World Health Organization: Geneva, Switzerland, 2020.

33. Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momkove, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. Antimycobacterial activity of novel hydrazide-hydrazones derivatives with 2H-chromene and coumarin scaffold. *Bioorg. Med. Chem. Lett.* 2017, 27, 223–227, doi:10.1016/j.bmcl.2016.11.071.

34. Angelova, V.T.; Valcheva, V.; Pencheva, T.; Voynikov, Y.; Vassilev, N.; Mihaylova, R.; Momkove, G.; Shivachev, B. Synthesis, antimycobacterial activity and docking study of 2-aryl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives and related hydrazide-hydrazones. *Bioorg. Med. Chem. Lett.* 2017, 27, 2996–3002, doi:10.1016/j.bmcl.2017.05.011.

35. Atta, A.; Fahmy, S.; Rizk, O.; Sirram, D.; Mahran, M.A.; Labouta, I.M. Structure-based design of some isonicotinic acid hydrazide analogues as potential antitubercular agents. *Bioorg. Chem.* 2018, 80, 721–732, https://doi.org/10.1016/j.bioorg.2018.07.028.

36. Mandewale, M.C.; Thorat, B.; Nivid, Y.; Jadhav, R.; Nagarsekar, A.; Yamgar, R. Synthesis, structural studies and antituberculosis evaluation of new hydrazide-hydrazone derivatives of quinoline and their Zn(II) complexes. *Molecules* 2017, 22, 218–228, doi:10.3390/molecules2201004.033.

37. Angelova, V.T.; Pencheva, T.; Vassilev, N.; Simeonova, R.; Momkove, G.; Valcheva, V. New indole and indazole derivatives as potential antimycobacterial agents. *Med. Chem. Res.* 2019, 28, 485–497, https://doi.org/10.1007/s00044-019-02293-w.

38. Betcke, R.M.; Seldon, R.; Jordaan, A.; Warner, D.F.; Hoppe, H.C.; Laming, D.; Legobie, L.J.; Khanye, S.D. Quinolone-isoniazid hybrids: Synthesis and preliminary in vitro cytotoxicity and anti-tuberculosis evaluation. *Med. Chem. Commun.* 2019, 10, 326, doi:10.1039/c8md00480c.

39. Hassan, N.W.; Saudi, M.N.; Abdel-Ghany, Y.S.; Ismail, A.; Elzahhar, P.A.; Sirram, D.; Nassra, R.; Abdel-Aziz, M.M.; El-Hawash, S.A. Novel pyrazine based anti-tubercular agents: Design, synthesis, biological evaluation and in silico studies. *Bioorg. Chem.* 2020, 96, 103610,https://doi.org/10.1016/j.bioorg.2020.103610.

40. Rohane, S.H.; Chauhan, A.J.; Fuloria, N.K.; Fuloria, S. Synthesis and in vitro antimycobacterial potential of novel hydrazones of eugenol. *Arab. J. Chem.* 2020, 13, 4495–4504, doi:10.1016/j.arabjc.2019.09.004.

41. Gürsoy, E.; Dincel, E.D.; Naesens, L.; Güzeldemirci, N.U. Design and synthesis of novel imidazo[2,1-b]thiazole derivatives as potent antiviral and antimycobacterial agents. *Bioorg. Med. Chem.* 2020, 95, 103496, https://doi.org/10.1016/j.bioorg.2019.103496.

42. Shah, S.R.; Katariya, K.D. 1,3-Oxazole-isoniazid hybrids: Synthesis, antitubercular activity, and their docking studies. *J. Heterocycl. Chem.* 2020, 57, 1682–1691, doi:10.1002/jhet.3893.

43. Liu, N.; Tu, J.; Dong, G.; Wang, Y.; Sheng, C. Emerging New Targets for the Treatment of Resistant Fungal Infections. *J. Med. Chem.* 2018, 61, 5484–5511, https://doi.org/10.1021/acs.jmedchem.7b01413.

44. Geddes-McAllister, J.; Shaprio, R.S. New pathogens, new tricks: Emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. *Ann. N. Y. Acad. Sci.* 2019, 1435, 57–78, doi:10.1111/nyas.13739.

45. Guilherme, F.D.; Simonetti, J.E.; Folquinto, L.R.S.; Reis, A.C.C.; Oliver, J.C.; Dias, A.L.T.; Dias, D.F.; Carvalho, D.T.; Brandão, G.C.; de Souza, T.B. Synthesis, chemical characterization and antimicrobial activity of new acylhydrazones derived from carbocyclizones. *J. Mol. Struct.* 2019, 1184, 349–356, doi:10.1016/j.molstruc.2019.02.045.

46. Dascalu, A.-E.; Ghinet, A.; Lipka, E.; Furman, C.; Rigo, B.; Fayeulle, A.; Billamboz, M. Design, synthesis and evaluation of hydrazide and acyl hydrazide derivatives of 5-pyroridin-2-one as antifungal agents. *Bioorg. Med. Chem. Lett.* 2020, 30, 127220, https://doi.org/10.1016/j.bmcl.2020.127220.

47. Morehead, M.S.; Scarbrough, C. Emergence of Global Antibiotic Resistance. *Prim. Care Clin. Off. Pract.* 2018, 45, 467–484, doi:10.1016/j.pop.2018.05.006.