REV-ERBα and REV-ERBβ function as key factors regulating Mammalian Circadian Output

Ryosuke Ikeda1,2, Yoshiki Tsuchiya3, Nobuya Koike1, Yasuhiro Umemura1, Hitoshi Inokawa1, Ryutaro Ono1, Maho Inoue1, Yuh Sasawaki1, Tess Grieten3, Naoki Okubo2, Kazuya Ikoma2, Hiroyoshi Fujiwara2, Toshikazu Kubo2 & Kazuhiro Yagita1

The circadian clock regulates behavioural and physiological processes in a 24-h cycle. The nuclear receptors REV-ERBα and REV-ERBβ are involved in the cell-autonomous circadian transcriptional/translational feedback loops as transcriptional repressors. A number of studies have also demonstrated a pivotal role of REV-ERBs in regulation of metabolic, neuronal, and inflammatory functions including bile acid metabolism, lipid metabolism, and production of inflammatory cytokines. Given the multifunctional role of REV-ERBs, it is important to elucidate the mechanism through which REV-ERBs exert their functions. To this end, we established a Rev-erbα/Rev-erbβ double-knockout mouse embryonic stem (ES) cell model and analyzed the circadian clock and clock-controlled output gene expressions. A comprehensive mRNA-seq analysis revealed that the double knockout of both Rev-erbα and Rev-erbβ does not abrogate expression rhythms of E-box-regulated core clock genes but drastically changes a diverse set of other rhythmically-expressed output genes. Of note, REV-ERBα/β deficiency does not compromise circadian expression rhythms of PER2, while REV-ERB target genes, Bmal1 and Npas2, are significantly upregulated. This study highlight the relevance of REV-ERBs as pivotal output mediators of the mammalian circadian clock.

The circadian clock is an endogenous biological clock with a period of about 24 h and regulates diverse behavioral and physiological functions. In mammals, the master circadian pacemaker resides in the suprachiasmatic nucleus (SCN) of the hypothalamus and coordinates other circadian oscillators that exist in most peripheral tissues throughout the body1–3. It is widely accepted that a set of transcription factors comprise cell-autonomous transcriptional and translational feedback loops that enable circadian oscillation of gene expression4–10. In the primary loop, transcription factors BMAL1 and CLOCK heterodimerize and promote transcription of Period genes (Per1, Per2, Per3) and Cryptochrome genes (Cry1 and Cry2). The PER and CRY proteins translocate into the nucleus and inhibit transcriptional activity of CLOCK/BMAL1 heterodimer and thereby repress their own expression. In addition, Bmal1 expression is regulated by the secondary feedback loop, in which CLOCK and BMAL1 induce Rev-erba (Nr1d1) and Rev-erbβ (Nr1d2) expression and then REV-ERBα/REV-ERBβ proteins repress Bmal1 (Arntl) expression by competing bindings of transcriptional activators, RORα and RORγ, to the ROR-response element (RRE) in the Bmal1 promoter. Thus, REV-ERBs are thought to be key regulators of the RRE-mediated transcriptional oscillation8,9. It has been reported that Rev-erba knockout in mouse results in a relatively mild effect on circadian behavioral rhythms8. It has also been reported that liver-specific deficiency and the induced deficiency of both Rev-erba and Rev-erbβ in adult mice results in altered circadian gene expressions and disrupted behavioral rhythms, respectively5. These observations suggest the redundant and essential role of REV-ERBα and REV-ERBβ in circadian clock regulation. However, the lacking conventional double knockout of Rev-erba/β due to the lethality during development makes it difficult to know whether REV-ERBs are necessary and universal factors for ticking of the cell-autonomous circadian clockwork. REV-ERBs are also known to regulate the expression of multiple downstream genes involved in diverse cellular functions including metabolism and inflammation10–14. In liver, REV-ERBs regulate a number of genes involved in metabolic pathways in

1Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan. 2Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan. Ryosuke Ikeda, Yoshiki Tsuchiya and Nobuya Koike contributed equally. Correspondence and requests for materials should be addressed to Y.T. (email: ytsuchiy@koto.kpu-m.ac.jp) or K.Y. (email: kyagita@koto.kpu-m.ac.jp)
previously reported REV-ERB-target genes such as E4bp4 of differentiation of Rev-erb derm, endoderm, and mesoderm were not drastically changed between WT and KO cells, suggesting that overall parable and most of them overlapped (Fig. 2a). Expression levels of several differentiation marker genes for ectoderm (KO) were analyzed by polyA-selected RNA-seq. The number of expressed genes in WT and KO cells were comparable and most of them overlapped (Fig. 2a). Expression levels of several differentiation marker genes for ectoderm (KO) were analyzed by polyA-selected RNA-seq. The number of expressed genes in WT and KO cells were comparable and most of them overlapped (Fig. 2a). Expression levels of several differentiation marker genes for ecto-

Results

Establishment of REV-ERBα/β-deficient mES cells. To investigate the role of REV-ERBs in the cell-autonomous circadian gene expression, we employed the ES cell-differentiation assay that enables reproducible formation of the circadian rhythms of clock gene expression17,18. We utilized Per2::Luciferase (Per2 Lum) knock-in mES cells19-21 and introduced the targeted deletions of exons of Rev-erbα and Rev-erbβ genes by using CRISPR/Cas9 systems (Fig. 1a). In knockout cells, translational frameshifts were confirmed by sequencing of cDNA (Supplementary Fig. S1) and mRNAs including the CRISPR-targeted exon were not detected by quantitative PCR. The values were normalized to 18S rRNA and presented as means ± SD (n = 3; *p < 0.001).

collaboration with HNF615. In macrophages, REV-ERBs regulate downstream genes including Cx3cr1 and Mmp9 by repressing enhancer RNA expression16. While accumulating evidence suggests the importance of REV-ERBs in regulation of a wide range of cellular physiology, it still remains to be elucidated how REV-ERBs regulate a different set of downstream genes in a cell type-specific manner. In this study, we established the Rev-erbα/Rev-erbβ double knockout mouse embryonic stem (mES) cell line and examined the effect of REV-ERBs deficiency on the cell-autonomous circadian clockwork as well as global changes of circadian gene expression rhythms. These analyses emphasize REV-ERBs function to form an essential link between the circadian clock and a wide variety of output gene expression rhythms.

Global gene expression analysis in differentiated REV-ERBα/β-deficient mES cells. To evaluate the impact of REV-ERBs deficiency on global gene expression, the cells were differentiated with the embryoid body (EB) formation method and temporal RNA sequencing (RNA-seq) analysis with RNA samples at 4-h intervals over 2 days were performed. RNA samples from control Per2 Lum cells (WT) and Rev-erbβ-deficient cells (KO) were analyzed by polyA-selected RNA-seq. The number of expressed genes in WT and KO cells were comparable and most of them overlapped (Fig. 2a). Expression levels of several differentiation marker genes for ectoderm, endoderm, and mesoderm were not drastically changed between WT and KO cells, suggesting that overall differentiation of Rev-erbα/β-deficient cells is likely to be comparable to that of WT cells (Fig. 2b). We evaluated the mRNA expression of core clock genes and found that expression levels of Per1, Per2, Per3, Cry1, Cry2, and Clock in Rev-erbα/β-deficient cells were comparable to those in WT (Fig. 2c). In contrast, the expression levels of Bmal1 and Npas2, the direct targets of REV-ERBα/β, were significantly upregulated (Fig. 2c). Furthermore, previously reported REV-ERB-target genes such as E4bp4 (Nrl3), Dec1 (bhlh40), and p21 (Cdkn1a)15-24 were also upregulated (Fig. 2d). These results indicate that REV-ERBα/β deficiency in differentiated mES cells affects their target gene expression in a manner consistent with REV-ERBs function as transcriptional repressors.

REV-ERB deficiency alters diverse gene expression rhythms in differentiated mES cells. To evaluate the impact of REV-ERBs deficiency on global gene expression rhythms, we performed a periodicity analysis on the time-course RNA-seq dataset. The number of cycling genes were 173 (1.2% of expressed genes) and 235
(1.6% of expressed genes) in WT and KO, respectively, and only 15 genes exhibited circadian oscillation of expression in both WT and KO cells. To our surprise, well-known circadian clock and clock-controlled genes (Per2, Per3, Cry1, Rev-erbα, Rev-erbβ, Rorc, Dbp, Tef, Hlf) were cycling in KO cells as well as WT cells. Furthermore, most of cycling genes were not common between WT and KO cells. This result indicates diverse changes in regulation of circadian output gene expression rhythms in KO cells, although the diverse phase distribution of cycling genes are similar in WT and KO cells with peaking around circadian time (CT) 18 (Fig. 3b,c). Transcription factor-binding motifs enrichment analysis revealed that HNF1 and NF-Y were enriched in the promoter of cycling genes in WT but not in KO (Fig. 3d, Supplementary Table S2), suggesting that HNF1 and NF-Y might be involved in the regulation of REV-ERB-dependent circadian output. This was supported by the results that Hnf1b was identified as a cycling gene only in WT cells (Supplementary Fig. S2), and that REV-ERBs bind to NF-Y and regulate target gene expression via the NF-Y-binding CCAAT motif in differentiating myoblasts25. Intriguingly, expression pattern of core clock and clock-controlled genes including Per2, Per3, Cry1, Rev-erbα, and Rev-erbβ was also observed in WT cells, suggesting a role of these genes in regulating circadian output in WT cells. These results indicate that REV-ERBα/β deficiency affects the regulation of core clock and clock-controlled genes in differentiated mES cells.

Figure 2. REV-ERBα/β deficiency affects their target gene expression in differentiated mES cells. (a) Venn diagram of expressed genes in WT and KO cells. (b) Expression of specific differentiation markers of the three germ layers. RPKM values from 12 time points are shown in bee swarm box plots. (c) Expression of core clock genes (n = 12; *p < 0.01). (d) Expression of known target genes of REV-ERBα/β (n = 12; *p < 0.01).
Figure 3. Comprehensive analysis of circadian gene expression in Rev-erbα/β-deficient cells. (a) Venn diagram of cycling genes in WT and KO cells. (b) Heatmap view of cycling genes. Each gene is represented as a horizontal line ordered vertically by phase as determined by MetaCycle. (c) The phase distribution of cycling genes. (d) Homer known motif enrichment analysis reveals HNF1b and NF-Y binding motifs are enriched in promoter region of cycling genes in WT cells but not in KO cells. (e) Expression of circadian clock genes cycling in both WT and KO cells. mRNA expression levels in WT and KO cells are plotted with blue and red lines, respectively. (f) Expression levels of Bmal1 and Npas2 in WT and KO cells are plotted with blue and red lines, respectively. (g) Cyclic expression of Per2, Cry1, Bmal1, and Npas2 is analyzed by quantitative PCR. mRNA expression levels in WT and KO cells are plotted with black and red lines, respectively. The values were normalized to 18S rRNA and presented as means ± SD (n = 3).
and Hlf were very similar between WT and KO cells (Fig. 3e). Peak expression levels of Rev-erba, Rev-erbβ, and Dmp expression rhythms were elevated, while the basal expression of Rorc was reduced (Fig. 3e). In contrast to these sustained rhythms, Bmal1 and Npas2 expression rhythms are abrogated and constantly upregulated (Fig. 3f). The sustained rhythm of Per2 and Cry1 and constant upregulation of Bmal1 and Npas2 were confirmed by quantitative PCR analysis (Fig. 3g). Collectively, these results demonstrate that REV-ERBs repress Bmal1 and Npas2 mRNA expression but have only minor influence on mRNA expression rhythms of other core clock genes including Per2. These data suggest that REV-ERBs are not necessary for the circadian core clock gene expression rhythms but play an important role in regulation of circadian genetic program linking the circadian clock and output gene expression. Further analysis of the temporal expression profile of PER2Luc bioluminescence in differentiated mES cells revealed that PER2Luc bioluminescence rhythm in KO cells was as robust as that in WT cells (Fig. 4a). Both period length and amplitude were comparable between WT and KO cells (Fig. 4b). These results emphasize the importance of REV-ERBs as circadian clock mediators that regulate output gene expression rhythms (Fig. 4c).

Discussion

In this study, we revealed that Rev-erba/β deficiency results in a drastic change in differentiation coupled formation of circadian network of gene expression, keeping core clock gene expression oscillating robustly. Accumulating evidence suggests that REV-ERBs regulate diverse physiological functions in cooperation with a variety of transcription factors in a context-dependent manner. It has been reported that REV-ERBs control expression of downstream genes involved in hepatic lipid metabolism via interaction with HNF615,20, and that REV-ERBs regulate glucocorticoid action by binding to glucocorticoid receptor in liver17,28. A previous study has also demonstrated that REV-ERBα binds to NF-Y and regulates downstream gene expression via the CCAAT motif25. The cooperative transcriptional regulation by REV-ERBs and NF-Y may explain that CCAAT motif are enriched in promoter regions of cycling genes in WT cells but not in Rev-erba/βKO cells. Also, REV-ERB-dependent circadian expression of Hnf1b, which was observed only in WT cells, is a possible mechanism describing the differential regulation of gene expression between WT and Rev-erba/βKO cells. Such a drastic difference of cycling genes observed in the present study may suggest diverse regulation of circadian gene expression by REV-ERBs and co-regulating transcription factors. It has been demonstrated that different sets of genes are rhythmic in different tissues and/or cell types7,29–31. Thus, difference in cycling genes between WT and Rev-erba/βKO cells may also reflect, at least in part, difference in cell types included in each cell population, although both WT and Rev-erba/βKO mES cells differentiate into three germ layers. A heterogeneity of differentiated ES cell population can complicate the functional evaluation of changes in global gene expression rhythms. Given the pluriotency of ES cells, directed differentiation of ES cells into specific types of cells should help more systemized cell-based analysis of a wide range of tissue-specific REV-ERB functions. Taking into consideration the difficulties in analysis of mice with global knockout of both Rev-erba and Rev-erbβ3, Rev-erba/β double knockout ES cell model may provide a gateway to understand their in vivo circadian and physiological functions and to dissect their essential roles in both central and peripheral tissues. As a future theme, it is also intriguing to know the extent of functional redundancy and target gene specificity of REV-ERBs3, Rev-erbβ3 single knockout cells.

Our results indicate that REV-ERBs are not essential for robust oscillation of core clock gene expression including Per2, while expression rhythms of the RORE-regulated genes such as Bmal1 and Npas2 were influenced by REV-ERBs. These data are consistent with the findings that Bmal1 expression rhythms are not required for Per2 expression rhythms. Previous studies have demonstrated that Bmal1 but not Per2 expression rhythms were disrupted on REV-ERBα and/or REV-ERBβ deficiency and that constitutive expression of Bmal1 in Bmal1-deficient fibroblasts can restore Per2 expression rhythms6,32,33. On the other hand, in Rev-erba/β3 double conditional double knockout mouse, severe defects were observed in both hepatic circadian gene expression and behavioral rhythms8. It has also been shown that REV-ERBs bind to core clock gene loci including Per2 and Cry1, suggesting direct regulation of these genes by REV-ERBs9. Given that REV-ERBs collaborate with various tissue-specific transcription factors and REV-ERB cistrome differs among tissues15, the extent to which REV-ERBs contribute to the core clock ticking may also be cell-type and context dependent. Nevertheless, our results indicate that REV-ERBs are not always essential for keeping the core circadian transcriptional/translational feedback loop.

In conclusion, we have established Rev-erba and Rev-erbβ double knockout mES cells that develop the cell-autonomous circadian clock upon in vitro differentiation. The robust rhythms of PER2 expression and drastic change in a circadian gene expression network in differentiated Rev-erbβ3 double-knockout ES cells suggest cell-autonomous functions of REV-ERBs as key factors of circadian output regulation. The established REV-ERBs/β3 deficient mES cell model provide a useful tool for examining REV-ERB-mediated circadian physiology in a cell-based assay system.

Methods

Cell culture. Mouse ES cells derived from PER2Luc knock-in mice are described previously19–21. ES cells were maintained on MEF feeder cells in an ES medium (Glasgow Minimum essential Medium supplemented with 15% FBS (Hyclone), 0.1 mM MEM nonessential amino acids, 0.1 mM 2-mercaptoethanol, 1,000 U/mL of Leukemia inhibitory factor (LIF), and 100 U/mL penicillin-streptomycin).

Plasmids. Human codon-optimized Cas9 expression vectors and sgRNA vectors were described previously34. A pair of oligos for the sgRNA targeting site was annealed and ligated into the sgRNA plasmid. The sgRNA target sites in introns adjacent to the targeted exon were determined by using CRISPRDirect15. The CRISPR-targeted sequences are as follows: Rev-erba-T1, 5′-CCAGAGGTAGTTGATAGT-T3′; Rev-erba-T2, 5′-TGCAAGGGGTAGTTGATAGT-T3′; Rev-erbβ-T1, 5′-CTACAGGTAGTTGATAGT-T3′; Rev-erbβ-T2, 5′-GGTTTAAACTCATGAGTG-T3′. Underlines indicate protospacer adjacent motif (PAM) sequences.
Establishment of Rev-erbα/Rev-erbβ double-knockout mES cells. Mouse ESCs were co-transfected with an hCas9 expression vector, two sgRNA expression vectors targeting Rev-erbβ, and a plasmid with a puromycin selection marker using FuGENE HD (Promega). The cells were selected with 2 μg/mL of puromycin for
two days and then passaged for mutant cloning. ESC colonies were picked and cultured to establish mutant cell lines. Rev-erbα was targeted in established Rev-erbβ-deficient mES cells. The genomic deletion and the exon skipping in mRNA were confirmed by sequencing analysis of genomic DNA and cDNA, respectively.

Sequence analysis of genomic DNA and cDNA. Genomic DNA samples were extracted from mouse ESCs grown under feeder-free conditions. cDNA samples were synthesized using Moloney murine leukemia virus (M-MLV) reverse transcriptase (Invitrogen) from total RNA extracted from mES cells using the RNeasy Mini kit (Qiagen) according to the manufacturer’s instructions. PCR was performed with PrimeSTAR MAX DNA Polymerase (TAKARA) under the following conditions: 98 °C for 1 min; 35 cycles of 98 °C for 10 sec, 60 °C for 5 sec, 72 °C for 10 sec; 72 °C for 20 sec; hold at 4 °C. PCR products were treated with Exonuclease I (New England Biolabs) and shrimp alkaline phosphatase and then visualized on 2% agarose gel.

In vitro differentiation of mouse ESCs. The in vitro differentiation of ESCs was performed as described previously. Briefly, in order to form embryoid bodies (EBs), 2 × 10^3 of the dissociated ESCs were seeded in low-attachment 96-well plates in a differentiation medium (DMEM supplemented with 10% FBS, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, GlutaMax-I (Invitrogen), 0.1 mM 2-mercaptoethanol, and 100 U/mL penicillin-streptomycin). Two days later, the EBs were plated onto gelatin-coated 24-well plates and cultured for 26 days in a differentiation medium, which was exchanged every other day.

Real-time quantitative PCR. Total RNA was extracted from cells with the RNeasy Mini kit (Qiagen) according to the manufacturer’s instructions and subjected to cDNA synthesis with random hexamer primers and M-MLV reverse transcriptase (Invitrogen) according to the manufacturer’s instructions. Real-time quantitative PCR was performed with iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories) and StepOnePlus real-time PCR system (Applied Biosystems). The PCR primers for quantitative PCR are listed in Supplementary Table S3. Of note, primers for Rev-erbα and Rev-erbβ were designed in the CRISPR-targeted exons to evaluate the successful deletion.

Bioluminescence recording. For bioluminescence recording, the medium was replaced with a differentiation medium containing 0.2 mM luciferin and 100 nM dexamethasone. Bioluminescence was measured and integrated for one min at 20 min intervals with PMT-based equipment.

Period and amplitude analysis. The bioluminescence data recorded by PMT were analyzed using a sine wave fitting. A linear baseline was subtracted from the raw data. The detrended data from between 36–108 hours was then used for analysis. Sine wave fitting was performed using the following equation:

\[y(t) = Ae^{-kt} \sin \left(\frac{2\pi(t - \varphi)}{\tau} \right) \]

where A = amplitude, k = damping constant, t = time, \(\tau = \) period, and \(\varphi = \) phase.

Statistical analysis. For statistical analyses, two-tailed Student’s t tests were performed unless otherwise described.

Data Availability. The RNA-seq data has been deposited in the NCBI Gene Expression Omnibus (GEO) with the accession number GSE125696.
References

1. Schibye, U. et al. Clock Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals. *Cold Spring Harb. Symp. Quant. Biol.* **80**, 223–232, https://doi.org/10.1101/sqb.2015.80.027490 (2015).

2. Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. *Science* **354**, 994–999, https://doi.org/10.1126/science.aab4965 (2016).

3. Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. *Nat. Rev. Neurosci.* **19**, 453–469, https://doi.org/10.1038/nrn5183-018-0026-e (2018).

4. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. *Nature* **418**, 935–941, https://doi.org/10.1038/350966 (2002).

5. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. *Nature reviews. Genetics* **18**, 164–179, https://doi.org/10.1038/nrg.2016.150 (2017).

6. Bittner, N. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. *Cell* **110**, 251–260 (2002).

7. Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. *Nature* **418**, 534–539, https://doi.org/10.1038/350966 (2002).

8. Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. *Nature* **485**, 123–127, https://doi.org/10.1038/nature11048 (2012).

9. Le Martelot, G. et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. *PLoS Biol.* **7**, e1000181, https://doi.org/10.1371/journal.pbio.1000181 (2009).

10. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. *Science* **331**, 1315–1319, https://doi.org/10.1126/science.11868811.112 (2012).

11. So, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. *Nature* **485**, 62–68, https://doi.org/10.1038/350966 (2002).

12. Yagita, K. et al. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. *Proc. Natl. Acad. Sci. USA* **107**, 3846–3851, https://doi.org/10.1073/pnas.0913256107 (2010).

13. Uemura, Y. et al. An in vitro ES cell-based clock recapitulation assay model identifies CK2alpha as an endogenous clock regulator. *PLoS One* **8**, e67241, https://doi.org/10.1371/journal.pone.0067241 (2013).

14. Yoo, S. H. et al. PERIOD2–LUCIFERASE real-time reporting of circadian dynamic reveals persistent circadian oscillations in mouse peripheral tissues. *Proc. Natl. Acad. Sci. USA* **101**, 5339–5346, https://doi.org/10.1073/pnas.0308790101 (2004).

15. Uemura, Y. et al. Transcriptional program of Kpna2/Importin-alpha2 regulates cellular differentiation-coupled circadian clock development in mammalian cells. *Proc. Natl. Acad. Sci. USA* **111**, E5039–5048, https://doi.org/10.1073/pnas.1419272111 (2014).

16. Yoo, S. H. et al. Period2 3′-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. *Proc. Natl. Acad. Sci. USA* **114**, E8855–E8864, https://doi.org/10.1073/pnas.1706611114 (2017).

17. Duez, H. et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbsalpha. *Gastroenterology* **135**, 689–698, https://doi.org/10.1053/j.gastro.2008.05.035 (2008).

18. Zhu, B. et al. Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading. *Mol. Cell* **60**, 769–783, https://doi.org/10.1016/j.molcel.2015.10.024 (2015).

19. Grechko-Cassiau, A., Rayet, B., Gillaumont, M., Debart, F. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. *Mol. Cell* **705576200** (2008).

20. Welch, R. D. et al. Rev-Erb co-regulates muscle regeneration via tethered interaction with the NF-Y coactivator. *Molecular metabolism* **6**, 705–714, https://doi.org/10.1016/j.molme.2017.05.001 (2017).

21. Zhang, Y. et al. BMAL1 and Rev-erbsalpha integrate hepatic lipid metabolism by overlapping and distinct transcriptional mechanisms. *Genes Dev.* **30**, 1636–1644, https://doi.org/10.1101/gad.281972.116 (2016).

22. Okabe, T. et al. REV-ERBalpha influences the stability and nuclear localization of the glucocorticoid receptor. *J. Cell Sci.* **129**, 4143–4154, https://doi.org/10.1242/jcs.190959 (2016).

23. Caratti, G. et al. REV-ERBalpha couples the circadian clock to hepatic glucocorticoid action. *J. Clin. Invest.* **128**, 4454–4471, https://doi.org/10.1172/JCI96138 (2018).

24. Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. *Nature* **417**, 78–83, https://doi.org/10.1038/350966 (2002).

25. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. *Proc. Natl. Acad. Sci. USA* **111**, 16219–16224, https://doi.org/10.1073/pnas.1408886111 (2014).

26. Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. *Science* **359**, https://doi.org/10.1126/science.aao3018 (2018).

27. Delezie, J. et al. Rev-erbsalpha in the brain is essential for circadian food entrainment. *Sci. Rep.* **6**, 29386, https://doi.org/10.1038/srep29386 (2016).

28. Liu, A. C. et al. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. *PLoS genetics* **4**, e1000023, https://doi.org/10.1371/journal.pgen.10000023 (2008).

29. Tsuchiya, Y. et al. Effect of Multiple Clock Gene Ablations on the Circadian Period Length and Temperature Compensation in Mammalian Cells. *J. Biol. Rhythms* **31**, 48–56, https://doi.org/10.1177/07487304156299 (2016).

30. Naito, Y. et al. Regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. *Mol. Cell Bioinformatics* **39**, 801–807, https://doi.org/10.1093/molbiol/btp242 (2017).

31. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2144–2140, https://doi.org/10.1093/bioinformatics/btu170 (2014).

32. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21, https://doi.org/10.1093/bioinformatics/bts635 (2013).

33. Li, H. et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).

34. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol. Cell* **38**, 576–589, https://doi.org/10.1016/j.molcel.2010.05.004 (2010).
40. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. *Science* **338**, 349–354, https://doi.org/10.1126/science.1226339 (2012).
41. Wu, G., Anafi, R. C., Hughes, M. E., Kornacker, K. & Hogenesch, J. B. MetaCycle: an integrated R package to evaluate periodicity in large scale data. *Bioinformatics* **32**, 3351–3353, https://doi.org/10.1093/bioinformatics/btw405 (2016).

Acknowledgements
This work was supported in part by grants-in-aid for scientific research from the Japan Society for the Promotion of Science (grant numbers 18H02600 (K.Y.), 16KT0175 (Y.T.), 18K06338 (Y.T.), 18K09040 (H.F.), and 18K16629 (N.O.)).

Author Contributions
K.Y. and Y.T. conceived and designed the experiments; R.I., Y.T., T.G. performed the experiments; K.Y., R.I., Y.T., N.K., H.I., R.O., M.I., T.G., N.O., K.I., H.F. and T.K. analyzed the data; Y.T., K.Y., R.I. and N.K. wrote the paper. All the authors approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-46656-0.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019