On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms

V.I. Burenkov and W.D. Evans

February 3, 2022

Abstract

The norm of an integral operator occurring in the partial wave decomposition of an operator B introduced by Brown and Ravenhall in a model for relativistic one-electron atoms is determined. The result implies that B is non-negative and has no eigenvalue at 0 when the nuclear charge does not exceed a specified critical value.

1 Introduction

The operator referred to in the title is defined on $L^2(0, \infty)$ by

$$(T\phi)(x) := \int_0^\infty t(x,y)\phi(y)dy, \quad 0 < x < \infty,$$ \hfill (1.1)

where,

$$t(x,y) = \frac{1}{2} \left\{ \sqrt{\frac{x^2 + 1 + 1}{x^2 + 1}} g_0(x/y) \sqrt{\frac{y^2 + 1 + 1}{y^2 + 1}}
ight.$$ \hfill (1.2)

$$+ \sqrt{\frac{x^2 + 1 - 1}{x^2 + 1}} g_1(x/y) \sqrt{\frac{y^2 + 1 - 1}{y^2 + 1}} \right\}$$

with

$$g_0(u) = \log \left| \frac{u + 1}{u - 1} \right|, \quad g_1(u) = \frac{1}{2} \left(u + \frac{1}{u} \right) \log \left| \frac{u + 1}{u - 1} \right| - 1, \quad u > 0.$$ \hfill (1.2)

To describe its role in relativistic stability, we require some background information. It is well-known that the Dirac operator describing relativistic one-particle
systems is unbounded below, and that problems occur when it is extended as a model for multi-particle systems. The root of the problem is that the Dirac operator describes two different particles, namely electrons and positrons. In the paper [2] Brown and Ravenhall overcame this difficulty by projecting onto the electron subspaces only. Specifically, for a relativistic electron in the field of its nucleus, their operator is

$$B := \Lambda_+(D_0 - \frac{e^2 Z}{|\cdot|})\Lambda_+. \quad (1.3)$$

The notation in (1.3) is as follows:

- D_0 is the free Dirac operator

$$D_0 = c\alpha \cdot \frac{\hbar}{i} \nabla + mc^2\beta \equiv \sum_{j=1}^{3} c\frac{\hbar}{i} \alpha_j \frac{\partial}{\partial x_j} + mc^2\beta$$

where $\alpha := (\alpha_1, \alpha_2, \alpha_3)$ and β are the Dirac matrices given by

$$\alpha_j = \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}, \beta = \begin{pmatrix} 1_2 & 0_2 \\ 0_2 & -1_2 \end{pmatrix}$$

with $0_2, 1_2$ the zero and unit 2×2 matrices respectively, and σ_j the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$$

- Λ_+ denotes the projection of $L^2(\mathbb{R}^3) \otimes \mathbb{C}^4$ onto the positive spectral subspace of D_0, that is $\chi_{(0,\infty)}D_0$. If we set

$$\hat{f}(p) \equiv [\mathcal{F}(f)](p) := \left(\frac{1}{2\pi\hbar}\right)^{3/2} \int_{\mathbb{R}^3} e^{-ip\cdot x/\hbar} f(x) dx$$

for the Fourier transform of f, then it follows that

$$(\Lambda_+ f)(p) = \Lambda_+(p)\hat{f}(p)$$

where

$$\Lambda_+(p) = \frac{1}{2} + \frac{c\alpha \cdot p + mc^2\beta}{2e(p)} e(p) = \sqrt{c^2p^2 + m^2c^4}, \quad (1.4)$$

with $p = |p|$;

- $2\pi\hbar$ is Planck’s constant, c the velocity of light, m the electron mass, $-e$ the electron charge and Z the nuclear charge.
The underlying Hilbert space in which B acts is

$$\mathcal{H} = \Lambda_+(L^2(R^3) \otimes C^4)$$

and when it is bounded below, B generates a self-adjoint operator (also denoted by B) which is the Friedrichs extension of the restriction of B to $\Lambda_+(C^\infty(R^3) \otimes C^4)$.

The operator B was later used by Bethe-Salpeter (see [1]) and is referred to with their name in [3]. In [3] it is proved that B is bounded below if and only if the nuclear charge Z does not exceed the critical value

$$Z_c = \frac{2}{(\frac{\pi}{2} + \frac{2}{\pi})\alpha}, \quad \alpha = \frac{e^2}{\hbar c},$$

where α is Sommerfeld’s fine structure constant; this range of Z covers all natural elements. When $Z = Z_c$, it is proved in [3] that

$$B \geq -\left(\frac{\pi^2}{\pi^2 + 4}\right)mc^2.$$

However, in [4] Hardekopf and Sucher had investigated B numerically and predicted that B is in fact non-negative, and that, as for the Dirac operator, the ground state energy vanishes for $Z = Z_c$, i.e. 0 is an eigenvalue of B. The first part of this prediction of Hardekopf and Sucher has recently been confirmed, but the second part contradicted, by Tix in [5]. Following the basic strategy in [3], but with a better choice of trial functions, Tix obtains a lower bound for B which is shown to be positive for $Z \leq Z_c$, specifically

$$B \geq mc^2(1 - \alpha Z - 0.002 \frac{Z}{Z_c}) > 0;$$

the numerical factor is roughly 0.09 for $Z = Z_c$.

From the partial wave analysis of B, it is shown in [3] that for all $\psi \in \Lambda_+(C^\infty_0(R^3) \otimes C^4)$ and with (\cdot, \cdot) the standard inner product on $L^2(R^3) \otimes C^4$,

$$\begin{align*}
(B\psi, \psi) &= \sum_{(l,m,s) \in I} \left\{ \int_0^\infty e(p)|a_{l,m,s}(p)|^2 dp \\
&\quad - \frac{\alpha c Z}{\pi} \int_0^\infty \int_0^\infty \sigma_{l,m,s}(p')k_{l,s}(p', p)a_{l,m,s}(p)dpdp' \right\}
\end{align*}$$

where I is the index set

$$I = \{(l, m, s) : l \in N_0, \quad m = -l - 1/2, \ldots, l + 1/2, s = 1/2, -1/2, \quad |m| \neq l + 1/2 \text{ when } s = -1/2\},$$
the kernels \(k_{l,s}(p', p) \) are given by

\[
k_{l,s}(p', p) = \left[e(p') + e(0) \right] Q_l \left(\frac{1}{2} \left[\frac{p'}{p} + \frac{p}{p'} \right] \right) + c^2 p' Q_{l+2s} \left(\frac{1}{2} \left[\frac{p}{p'} + \frac{p'}{p} \right] \right) \]

\[
\frac{2e(p)|e(p) + e(0)|^{1/2}(2e(p')|e(p') + e(0)|)^{1/2}}{(2e(p)|e(p) + e(0)|)^{1/2}(2e(p')|e(p') + e(0)|)^{1/2}}
\]

(1.10)

and

\[
\sum_{(l,m,s) \in I} \int_0^\infty |a_{l,m,s}(p)|^2 dp = \| \psi \|_2^2 := \sum_{j=1}^4 \int_{R^3} |\psi_j|^2 dx.
\]

(1.11)

In (1.10) the \(Q_l \) are the Legendre functions of the second kind. The strategy in [3] was based on this decomposition of \(B \) and the observation that

\[
0 \leq k_{l,s}(p', p) \leq k_{0,1/2}(p', p), \quad l \in N_0, s = 1/2, -1/2.
\]

(1.12)

It would follow that \(B \geq 0 \) for \(Z \leq Z_c \) if and only if

\[
\int_0^\infty \int_0^\infty a(p') k_{0,1/2}(p', p) a(p) dp dp' \leq \frac{\pi}{\alpha c Z_c} \int_0^\infty e(p)a(p)^2 dp
\]

(1.13)

for all non-negative measurable functions \(a \). On setting

\[
g_l(u) = Q_l \left(\frac{1}{2} \left[u + \frac{1}{u} \right] \right), \quad l \in N_0
\]

(1.14)

\[
p = mc x, p' = mcy, \phi(x) = \sqrt{e(mc x)} a(mc x),
\]

(1.15)

where \(t(\cdot, \cdot) \) is defined in (1.2). What we prove in this paper is that the constant \(\frac{\pi^2}{4} + 1 \) in the inequality (1.15) is sharp, and there are no extremal functions. Furthermore, we show that these results imply that \(B \geq (1 - \frac{Z}{Z_c})mc^2 \) for \(Z \leq Z_c \) and 0 is not an eigenvalue of \(B \) when \(Z = Z_c \). Much of the analysis continues to be valid for analogous inequalities defined by general kernel functions \(t_{l,s} \) derived from the \(k_{l,s} \).

2 The main results

The operator \(T \) defined on \(L^2(0, \infty) \) by (1.1) is readily seen to be a bounded symmetric operator and so

\[
\sup \left\{ \frac{|(T \phi, \phi)|}{\| \phi \|^2} : \phi \in L^2(0, \infty), \phi \neq 0 \right\} = \| T \|_{L^2(0, \infty) \rightarrow L^2(0, \infty)}.
\]

(2.1)

Our main result is
Theorem 2.1 Let T be defined by (1.1). Then

1. $\|T\|_{L^2(0, \infty) \to L^2(0, \infty)} = \frac{\pi^2}{4} + 1$;

2. the operator T has no extremal functions.

Remark 2.2 We recall that ϕ is an extremal function of a bounded symmetric operator T if $\phi \in L^2(0, \infty), \phi \neq 0$ a.e. and $\|T\|_{L^2(0, \infty) \to L^2(0, \infty)} = |(T\phi, \phi)|/\|\phi\|^2$. Hence Theorem 2.1 means the following: for all non-negative measurable functions $\phi \in L^2(0, \infty)$ with $\phi \neq 0$ a.e.

$$\int_0^\infty \int_0^\infty t(x,y)\phi(x)\phi(y)dx dy < \left(\frac{\pi^2}{4} + 1\right) \int_0^\infty \phi^2(x)dx$$

(2.2)

and the constant $\frac{\pi^2}{4} + 1$ is sharp. In turn, this implies that the inequality (1.13) is valid, the constant $\pi/\alpha c Z_c$ is sharp and there is no function $a \in L^2(0, \infty; e(p)dp)$ which is not null and for which there is equality in (1.13). A consequence of Theorem 2.1 is

Theorem 2.3 Let B be the self-adjoint operator generated in H by (1.3) and let Z_c be given by (1.6). Then

1. if $Z \leq Z_c$, $B \geq (1 - Z/Z_c)mc^2$;

2. if $Z = Z_c$, 0 is not an eigenvalue of B;

3. if $Z > Z_c$, B is unbounded below.

Proof. Part 3 is proved in [3]. From (1.8),(1.10),(1.11) and (1.12) it follows that

$$(B\psi, \psi) \geq \sum_{(l,m,s) \in I} \left\{ \int_0^\infty e(p)|a_{l,m,s}(p)|^2 dp
ight.$$

$$- \frac{\alpha c Z_c}{\pi} \int_0^\infty \int_0^\infty |a_{l,m,s}(p')|k_{0.1/2}(p',p)|a_{l,m,s}(p)|dp dp' \right\}$$

$$\geq \sum_{(l,m,s) \in I} \int_0^\infty \left(1 - \frac{Z}{Z_c}\right) e(p)|a_{l,m,s}(p)|^2 dp$$

$$\geq \left(1 - \frac{Z}{Z_c}\right) mc^2 \|\psi\|^2$$

which establishes part 1. To prove part 2, suppose 0 is an eigenvalue of B with corresponding eigenfunction ψ. By (1.12) and (1.13), all the summands on the right-hand side of (1.8) are non-negative and consequently are zero as now $B\psi = 0$. Also (1.11) implies that at least one of the functions a_{l_0,m_0,s_0} say, is not null. But this would imply that there is equality in (1.13) with the function $a = |a_{l_0,m_0,s_0}|$, contrary to Remark 2.2. Hence the proof is complete.
Remark 2.4 When the mass \(m = 0 \), a proof of Theorem 2.3 is given in [3].
On setting \(p = x, p' = y, \phi(x) = \sqrt{\text{det}}(x) \) in (1.13) when \(m = 0 \) we obtain
\[
\int_0^\infty \int_0^\infty t_0(x,y)\phi(x)\phi(y)dx\,dy \leq \left(\frac{x^2}{4} + 1 \right) \int_0^\infty \phi(x)^2 \, dx \tag{2. 3}
\]
where
\[
t_0(x,y) := \frac{1}{2\sqrt{xy}} \left\{ g_0 \left(\frac{x}{y} \right) + g_1 \left(\frac{x}{y} \right) \right\}. \tag{2. 4}
\]
We shall prove in Section 3 that the integral operator \(T_0 \) with kernel \(t_0 \) satisfies
Theorem 2.1, and thus yields the analogue of Theorem 2.3 in the case \(m = 0 \).

Remark 2.5 Tix’s lower bound (1.7) for \(B \) is an improvement on that in Theorem 2.3(1). If 0 is not in the essential spectrum \(\sigma_{\text{ess}}(B) \) of \(B \) when \(Z = Z_c \), as is the case when \(Z < Z_c \) for \(\sigma_{\text{ess}}(B) = [mc^2, \infty) \) is established in [3, Theorem 2], then Parts 1 and 2 of Theorem 2.3 imply that \(B \) is strictly positive. However, no specific positive lower bound can be deduced from Theorem 2.1 alone.

3 Proof of Theorem 2.1

The starting point is the following simple result (cf[3, Section 2.3]). We shall denote by \((\cdot, \cdot) \) and \(\| \cdot \| \) the standard inner-product and norm respectively in \(L^2(0, \infty) \). It is sufficient to consider only real-valued functions in \(L^2(0, \infty) \) throughout this section.

Lemma 3.1 Let \(f, g, h \) be real-valued, measurable functions on \((0, \infty) \). Moreover, let \(g \) and \(h \) be positive and \(g(1/u) = g(u), \ 0 < u < \infty \). (3. 1)

Then
\[
\int_0^\infty \int_0^\infty f(x)g \left(\frac{x}{y} \right) f(y)dx\,dy \leq \int_0^\infty f(x)^2 \left\{ \int_0^\infty \frac{h(y)}{h(x)} g \left(\frac{y}{x} \right) dy \right\} dx. \tag{3. 2}
\]
Equality holds if and only if \(f(x) = Ah(x) \) a.e. on \((0, \infty) \), where \(A \) is a constant.

Proof. By the Cauchy-Schwarz inequality,
\[
\int_0^\infty \int_0^\infty f(x)g(x/y)f(y)dx\,dy
\leq \left(\int_0^\infty \int_0^\infty f(x)^2 g(x/y)h(y)h(x)dx\,dy \right)^{1/2} \left(\int_0^\infty \int_0^\infty f(y)^2 g(y/x)h(x)h(y)dx\,dy \right)^{1/2}
= \int_0^\infty f(x)^2 \left(\int_0^\infty g(y/x)h(y)h(x)dy \right) dx
\]
Equality holds if and only if, for some constants \(\mu \) and \(\lambda \)
\[
\mu f(x) \sqrt{\frac{g(x/y)}{h(x)}} = \lambda f(y) \sqrt{\frac{g(y/x)}{h(y)}}
\]
a.e. on \((0, \infty) \times (0, \infty)\). This is equivalent to \(f(x) = Ah(x) \) a.e. on \((0, \infty)\), where \(A \) is a constant.

Lemma 3.2 Let \(G \) be the symmetric operator defined on \(L^2(0, \infty) \) by
\[
Gf(x) := \int_0^\infty \frac{g(x/y)}{\sqrt{xy}} f(y) dy, \quad 0 < x < \infty,
\]
where \(g \) is a positive measurable function satisfying (3.1). Then
\[
\|G|L^2(0, \infty) \rightarrow L^2(0, \infty)\| = \int_0^{\infty} g(u) \frac{du}{u}.
\]
Moreover, there are no extremal functions.

Proof. By Lemma 3.1 with \(h(u) = 1/u \) we get
\[
|(Gf, f)| = \left| \int_0^\infty \int_0^\infty \frac{f(x) g(x/y)}{\sqrt{xy}} \frac{f(y)}{\sqrt{y}} dx dy \right|
\leq \int_0^\infty \left(\frac{f(x)}{\sqrt{x}} \right)^2 \left(\int_0^\infty \frac{x g(x/y)}{y} dy \right) dx
= \int_0^\infty g(u) \frac{du}{u} \int_0^\infty f(x)^2 dx.
\]
Hence,
\[
\|G|L^2(0, \infty) \rightarrow L^2(0, \infty)\| \leq \int_0^\infty g(u) \frac{du}{u}.
\]
Furthermore, equality in (3.5) can hold if and only if \(f(x) = A/\sqrt{x} \) a.e. on \((0, \infty)\). Since \(A/\sqrt{x} \notin L^2(0, \infty) \) unless \(A = 0 \), it follows that for all \(f \in L^2(0, \infty) \), \(f \neq 0 \) a.e.,
\[
|(Gf, f)| < \left(\int_0^\infty g(u) \frac{du}{u} \right) \|f\|^2.
\]
In order to establish the inequality converse to (3.5) we take \(f_\delta(x) = \frac{\chi(1, \delta)(x)}{\sqrt{x}} \) as a test function, where \(\chi(1, \delta) \) denotes the characteristic function of \((1, \delta), 1 < \delta < \infty\). By l’Hospital’s Rule, we have as \(\delta \rightarrow \infty \),
\[
\|G|L^2(0, \infty) \rightarrow L^2(0, \infty)\| \geq \lim_{\delta \rightarrow \infty} \frac{(Gf_\delta, f_\delta)}{\|f_\delta\|^2}
\]
7
\[
\begin{align*}
\lim_{\delta \to \infty} \left\{ \left(\ln \delta \right)^{-1} \int_1^\delta \left(\int_1^\delta \frac{g(y/x) \, dy}{y} \right) \frac{dx}{x} \right\} \\
= \lim_{\delta \to \infty} \left\{ \int_1^\delta \frac{g(y/\delta) \, dy}{y} + \int_1^\delta \frac{g(\delta/x) \, dx}{x} \right\} \\
= \lim_{\delta \to \infty} \int_{1/\delta}^\delta g(u) \frac{du}{u} \\
= \int_0^\infty g(u) \frac{du}{u}.
\end{align*}
\]

The equality (3.4) follows from (3.5). From (3.6) it follows that there is no extremal function.

Lemma 3.3 Let \(T_0 \) be the symmetric operator in \(L^2(0, \infty) \) defined by

\[
T_0 f(x) := \int_0^\infty t_0(x, y) f(y) \, dy,
\]

where \(t_0 \) is given by (2.4). Then

1. \(\| T_0 \| \) \(L^2(0, \infty) \to L^2(0, \infty) \) \(= \frac{\pi^2}{4} + 1 \);
2. there are no extremal functions.

Proof. The results follow from Lemma 3.2 since

\[
\int_0^\infty g_0(u) \frac{du}{u} = 2 \int_0^1 g_0(u) \frac{du}{u} \\
= 2 \int_0^1 \log \left| \frac{u + 1}{u - 1} \right| \frac{du}{u} \\
= 4 \int_0^1 \left(\sum_{k=0}^\infty \frac{u^{2k}}{2k+1} \right) \frac{du}{u} \\
= 4 \sum_{k=0}^\infty \frac{1}{(2k+1)^2} \\
= \frac{\pi^2}{2} \quad (3.7)
\]

and

\[
\int_0^\infty g_1(u) \frac{du}{u} = 2 \int_0^1 g_1(u) \frac{du}{u} \\
= 2 \int_0^1 \left(\frac{1}{2} \left[u + \frac{1}{u} \right] \log \left| \frac{u + 1}{u - 1} \right| - 1 \right) \frac{du}{u}
\]

8
Lemma 3.4 The operator T defined in (1.1) satisfies

$$\|T\|_{L^2(0, \infty) \to L^2(0, \infty)} \geq \frac{\pi^2}{4} + 1.$$

Proof. As in Lemma 3.2, we take $f_\delta(x) = \frac{\chi_{(1, \delta)}(x)}{\sqrt{x}}$, $1 < \delta < \infty$, as a test function. By l'Hospital's rule we obtain

$$\|T\|_{L^2(0, \infty) \to L^2(0, \infty)} \geq \lim_{\delta \to \infty} \frac{(Tf_\delta, f_\delta)}{\|f_\delta\|^2}$$

$$= \lim_{\delta \to \infty} \left\{ \frac{1}{(\ln \delta)^{-1}} \int_1^\delta \left(\int_1^\delta t(x, y) \frac{dy}{\sqrt{y}} \right) \frac{dx}{\sqrt{x}} \right\}$$

$$= \lim_{\delta \to \infty} \left\{ \sqrt{\delta} \int_1^\delta t(x, \delta) \frac{dx}{\sqrt{x}} + \sqrt{\delta} \int_1^\delta t(\delta, y) \frac{dy}{\sqrt{y}} \right\}$$

$$= 2 \lim_{\delta \to \infty} \int_{1/\delta}^1 \frac{\delta t(\delta, \delta u)}{\sqrt{u}} \frac{du}{\sqrt{u}}.$$

It is readily seen from (1.2) that for $1 < \delta < \infty$,

$$\frac{\delta t(\delta, \delta u)}{\sqrt{u}} \leq \frac{g_0(u) + g_1(u)}{u} \in L(0, 1)$$

and

$$\lim_{\delta \to \infty} \frac{\delta t(\delta, \delta u)}{\sqrt{u}} = \frac{g_0(u) + g_1(u)}{2u}.$$

Hence, by the Dominated Convergence Theorem, (3.7) and (3.8), we have

$$\|T\|_{L^2(0, \infty) \to L^2(0, \infty)} \geq \int_0^1 \frac{g_0(u) + g_1(u)}{u} \frac{du}{\sqrt{u}} = \frac{\pi^2}{4} + 1.$$

Lemma 3.5 For all functions h_0, h_1 which are positive and measurable on $(0, \infty)$

$$\|T\|_{L^2(0, \infty) \to L^2(0, \infty)} \leq A(h_0, h_1),
\tag{3.9}$$
where
\[
A(h_0, h_1) = \frac{1}{2} \sup_{0 < x < \infty} \left(\frac{\sqrt{x^2 + 1} + 1}{x^2 + 1} \int_0^\infty \frac{h_0(y)}{h_0(x)} g_0(y/x) dy + \frac{\sqrt{x^2 + 1} - 1}{x^2 + 1} \int_0^\infty \frac{h_1(y)}{h_1(x)} g_1(y/x) dy \right).
\]

The operator T has an extremal function ϕ if and only if
\[
\phi(x) = A_0 h_0(x) \sqrt{\frac{x^2 + 1}{x^2 + 1 + 1}} = A_1 h_1(x) \sqrt{\frac{x^2 + 1}{\sqrt{x^2 + 1} - 1}}
\] (3.10)

and
\[
\frac{\sqrt{x^2 + 1} + 1}{x^2 + 1} \int_0^\infty \frac{h_0(y)}{h_0(x)} g_0(y/x) dy + \frac{\sqrt{x^2 + 1} - 1}{x^2 + 1} \int_0^\infty \frac{h_1(y)}{h_1(x)} g_1(y/x) dy = A_3,
\] (3.11)

for some non-zero constants A_1, A_2, A_3.

Proof. By Lemma 3.1,
\[
\int_0^\infty \int_0^\infty t(x, y) \phi(x) \phi(y) dx dy = \frac{1}{2} \left\{ \int_0^\infty \int_0^\infty \sqrt{\frac{x^2 + 1 + 1}{x^2 + 1}} \phi(x) g_0(x/y) \sqrt{\frac{y^2 + 1 + 1}{y^2 + 1}} \phi(y) dx dy \\
+ \int_0^\infty \int_0^\infty \sqrt{\frac{x^2 + 1 - 1}{x^2 + 1}} \phi(x) g_1(x/y) \sqrt{\frac{y^2 + 1 - 1}{y^2 + 1}} \phi(y) dx dy \right\}
\]
\[
\leq \frac{1}{2} \left\{ \int_0^\infty \frac{\sqrt{x^2 + 1 + 1}}{x^2 + 1} \int_0^\infty \frac{h_0(y)}{h_0(x)} g_0(y/x) dy \\
+ \frac{\sqrt{x^2 + 1 - 1}}{x^2 + 1} \int_0^\infty \frac{h_1(y)}{h_1(x)} g_1(y/x) dy \right\} \phi(x)^2 dx
\]
\[
\leq A(h_0, h_1) \|\phi\|^2.
\]

Moreover, the first inequality becomes an equality if and only if
\[
\sqrt{\frac{x^2 + 1 + 1}{x^2 + 1}} \phi(x) = A_0 h_0(x), \quad \sqrt{\frac{x^2 + 1 - 1}{x^2 + 1}} \phi(x) = A_1 h_1(x)
\]
a.e. on $(0, \infty)$, for some constants A_0, A_1. The second inequality becomes an equality if and only if $\phi(x) = 0$ a.e. on the set of all $x \in (0, \infty)$ for which
\[
\frac{\sqrt{x^2 + 1 + 1}}{x^2 + 1} \int_0^\infty \frac{h_0(y)}{h_0(x)} g_0(y/x) dy + \frac{\sqrt{x^2 + 1 - 1}}{x^2 + 1} \int_0^\infty \frac{h_1(y)}{h_1(x)} g_1(y/x) dy < A(h_0, h_1).
Since an extremal function ϕ is not null, this inequality can only be satisfied on a set of zero measure. Consequently, (3.11) holds a.e. for some constant A_3.

Remark 3.6 We note that for all functions h_0, h_1 which are positive and measurable on $(0, \infty)$

$$
\liminf_{x \to \infty} \frac{1}{2} \left(\frac{\sqrt{x^2 + 1} + 1}{x^2 + 1} \int_0^\infty \frac{h_0(y)}{h_0(x)} g_0(y/x) dy \\
+ \frac{\sqrt{x^2 + 1} - 1}{x^2 + 1} \int_0^\infty \frac{h_1(y)}{h_1(x)} g_1(y/x) dy \right)
\geq \frac{\pi^2}{4} + 1.
$$

Indeed, let

$$
\hat{h}_j(\xi) := \liminf_{x \to \infty} \frac{h_j(\xi x)}{h_j(x)}, \quad 0 < \xi < \infty, \ j = 0, 1,
$$

where the lim inf can be finite or infinite. Then

$$
\hat{h}_j(1/\xi) = \liminf_{x \to \infty} \frac{h_j(x/\xi)}{h_j(x)} = \liminf_{\xi \to \infty} \frac{h_j(y)}{h_j(\xi y)} = \frac{1}{\hat{h}_j(\xi)}.
$$

By Fatou’s Theorem

$$
\liminf_{x \to \infty} \frac{1}{2} \left(\frac{\sqrt{x^2 + 1} + 1}{x^2 + 1} \int_0^\infty \frac{h_0(y)}{h_0(x)} g_0(y/x) dy \\
+ \frac{\sqrt{x^2 + 1} - 1}{x^2 + 1} \int_0^\infty \frac{h_1(y)}{h_1(x)} g_1(y/x) dy \right)
= \liminf_{x \to \infty} \frac{1}{2} \left(\frac{\sqrt{x^2 + 1} + 1}{x^2 + 1} \int_0^\infty \frac{h_0(ux)}{h_0(x)} g_0(u) du \\
+ \frac{\sqrt{x^2 + 1} - 1}{x^2 + 1} \int_0^\infty \frac{h_1(ux)}{h_1(x)} g_1(u) du \right)
\geq \frac{1}{2} \left(\int_0^\infty \liminf_{x \to \infty} \left[\frac{h_0(ux)}{h_0(x)} \right] g_0(u) du + \int_0^\infty \liminf_{x \to \infty} \left[\frac{h_1(ux)}{h_1(x)} \right] g_1(u) du \right)
= \frac{1}{2} \left(\int_0^\infty \hat{h}_0(u) g_0(u) du + \int_0^\infty \hat{h}_1(u) g_1(u) du \right).
$$
Furthermore, on substituting \(u = v - \sqrt{v^2 - 1} \) when \(0 < u < 1 \) and \(u = v + \sqrt{v^2 - 1} \) when \(u > 1 \) we have

\[
\int_0^\infty \hat{h}_j(u) g_j(u) du = \int_0^\infty \hat{h}_j(u) Q_j \left(\frac{1}{2} \left[u + \frac{1}{u} \right] \right) du \\
= \int_1^\infty \left\{ \hat{h}_j(v - \sqrt{v^2 - 1})(v - \sqrt{v^2 - 1}) + \hat{h}_j(v + \sqrt{v^2 - 1})(v + \sqrt{v^2 - 1}) \right\} Q_j(v) \frac{dv}{\sqrt{v^2 - 1}} \\
\geq 2 \int_1^\infty Q_j(v) \frac{dv}{\sqrt{v^2 - 1}} \\
= \int_0^\infty Q_j \left(\frac{1}{2} \left[u + \frac{1}{u} \right] \right) \frac{du}{u} \\
= \int_0^\infty g_j(u) \frac{du}{u}.
\]

This verifies the assertion. We also note that equality holds if and only if \(\hat{h}_j(u) = 1/u \) a.e. on \((0, \infty)\). Thus to prove that \(A(h_0, h_1) \leq \frac{\pi^2}{4} + 1 \), and hence complete the proof of Theorem 2.1, we must choose \(h_0 \) and \(h_1 \) in such a way that \(h_0(u) = h_1(u) = 1/u \) a.e. on \((0, \infty)\).

Lemma 3.7 For all \(\phi \in L^2(0, \infty) \), \(\phi(x) \neq 0 \) a.e., we have

\[
\int_0^\infty \int_0^\infty t(x, y) \phi(x) \phi(y) dxdy < C \int_0^\infty \phi(x)^2 dx,
\]

where

\[
C = \sup_{0 < x < \infty} F(x)
\]

and

\[
F(x) = \frac{\pi}{2} \left(\sqrt{x^2 + 1} + 1 \right) \frac{\arctan x}{x} + \frac{\left(\sqrt{x^2 + 1} - 1 \right) x}{x^2 + 1}.
\]

Proof. We apply Lemma 3.5 with the choice (cf[5])

\[
h_0(x) = \frac{x}{x^2 + 1}, \quad h_1(x) = \frac{1}{x}.
\]

From (3.8),

\[
\int_0^\infty h_1(y) g_1(y/x) dy = 2.
\]
Also, on using Cauchy's Residue Theorem, we obtain
\[
\int_0^\infty h_0(y)g_0(y/x)\,dy = \int_0^\infty \frac{y}{y^2 + 1} \log \left| \frac{x+y}{x-y} \right| \,dy
\]
\[
= \frac{1}{2} \int_{-\infty}^\infty \frac{y}{y^2 + 1} \log \left| \frac{x+y}{x-y} \right| \,dy
\]
\[
= \frac{x^2}{2} \int_{-\infty}^\infty \frac{u}{(xu)^2 + 1} \log \frac{1+u}{1-u} \,du
\]
\[
= \frac{x^2}{2} \Re \left[\int_{-\infty}^\infty \frac{u}{(xu)^2 + 1} \log \left(\frac{1+u}{1-u} \right) \,du \right]
\]
\[
= \pi \Re \left[\frac{i}{2} \log \left(\frac{x+i}{x-i} \right) \right]
\]
\[
= \pi \arctan x.
\]
Thus (3.13) is confirmed. Since the equality (3.10) is not satisfied by the choice of \(h_0, h_1 \) in (3.15) for any constants \(A_0, A_1 \), it follows from Lemma 3.5 that there is strict inequality in (3.12).

The final link in the chain of arguments is

Lemma 3.8 The constant \(C \) in (3.13) is given by
\[
C = \frac{\pi^2}{4} + 1. \tag{3.16}
\]

Proof. Since \(\lim_{x\to\infty} F(x) = \frac{\pi^2}{4} + 1 \), we have that \(C \geq \frac{\pi^2}{4} + 1 \). To prove the reverse inequality we start by substituting \(x = \tan 2v \) in \(F(x) \) to obtain
\[
F(\tan 2v) = \frac{\pi v + 4 \sin^4 v}{\tan v}, \quad 0 \leq v \leq \pi/4.
\]
We therefore need to prove that
\[
f(v) := \pi v + 4 \sin^4 v - \left(\frac{\pi^2}{4} + 1 \right) \tan v \leq 0, \quad 0 \leq v \leq \pi/4.
\]
The following identities for the derivatives are easily verified:
\[
f^{(1)}(v) = \pi + 16 \sin^3 v \cos v - \left(\frac{\pi^2}{4} + 1 \right) \sec^2 v,
\]
\[
f^{(2)}(v) = 2 \sin v \sec^3 v g(v),
\]
where
\[
g(v) = 3 \sin 2v + 3 \sin 4v + \sin 6v - \left(\frac{\pi^2}{4} + 1 \right)
\]
and
\[
g^{(1)}(v) = 12 \cos 4v(1 + \cos 2v).
\]
Since $g(0) < 0, g(\pi/8) > 0, g(\pi/4) < 0, g^{(1)}(v) > 0$ on $[0, \pi/8)$ and $g^{(1)}(v) < 0$ on $(\pi/8, \pi/4)$ there exist v_1, v_2 such that $0 < v_1 < v_2 < \pi/4, g(v_1) = g(v_2) = 0, g(v) < 0$ on $[0, v_1)$ and $(v_2, \pi/4]$, and $g(v) > 0$ on (v_1, v_2). Thus $f(0) = 0, f^{(1)}(0) < 0, f^{(2)}(0) = 0, f^{(1)}(\pi/4) > 0, f^{(2)}(\pi/4) < 0$. Moreover, $f^{(2)}$ vanishes at v_1 and v_2, is negative on $(0, v_1)$ and (v_2, π), and positive on (v_1, v_2). In particular, it follows that $f^{(1)}$ is negative on $[0, v_1]$ and positive on $[v_2, \pi/4]$.

Suppose that $f(\xi) = 0$ for some $\xi \in (0, \pi/4)$. From $f(0) = f(\xi) = f(\pi/4) = 0$, and the last sentence of the previous paragraph, it follows that there exist η_1, η_2 such that $f^{(1)}(\eta_1) = f^{(1)}(\eta_2) = 0$ and $v_1 < \eta_1 < \eta_2 < v_2$. Consequently, there exists $v_3 \in (v_1, v_2)$ such that $f^{(2)}(v_3) = 0$ which is contrary to what was established in the previous paragraph. Thus $f(v) \neq 0$ on $(0, \pi/4)$. Since $f(0) = f(\pi/4) = 0$ and $f^{(1)}(0) < 0, f^{(1)}(\pi/4) > 0$, it follows that $f(v) \leq 0$ on $[0, \pi/4]$. The proof is therefore complete.

Proof of Theorem 2.1. Part 1 follows from Lemmas 3.4,3.7 and 3.8, and part 2 from (3.12).

Acknowledgements We are grateful to Christian Tix for sending us a preprint of [5]. We also record our thanks to the European Union for support under the TMR grant FMRX-CT 96-0001.

REFERENCES

1. Hans A.Bethe and Edwin E.Salpeter. Quantum mechanics of one- and two-electron atoms. In S.Flugge, editor, *Handbuch der Physik, XXXV*, pages 88-436. Springer, Berlin, 1st edition 1957.

2. G.E.Brown and D.G.Ravenhall. On the interaction of two electrons. *Proc.Roy.Soc. London A*, 208 (A 1095): 552-559, September 1951

3. William Desmond Evans, Peter Perry and Heinz Siedentop. The spectrum of relativistic one-electron atoms according to Bethe and Salpeter. *Commun. Math. Phys.*, 178(3), 733-746 (1996).

4. G.Hardekopf and J.Sucher. Critical coupling constants for relativistic wave equations and vacuum breakdown in quantum electrodynamics. *Phys. Rev. A* 31(4), 2020-2029 (1985).

5. Christian Tix. Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall. Preprint.

School of Mathematics,
University of Wales, Cardiff,
Senghenydd Road,
Cardiff CF2 4YH.