Effective Lagrangian approach to the EWSB sector

Juan González Fraile
Universitat de Barcelona

Tyler Corbett, O. J. P. Éboli, J. G–F and M. C. Gonzalez–Garcia

arXiv:1207.1344, 1211.4580, 1304.1151
Effective Lagrangian approach to the EWSB sector

Juan González Fraile

Universitat de Barcelona

I. Brivio, T. Corbett, O. J. P. Éboli, M. B. Gavela, J. G–F, M. C. Gonzalez–Garcia, L. Merlo and S. Rigolin

arXiv:1311.1823
Outline: accessing the EWSB mechanism

- Higgs boson discovery → A particle directly related to the EWSB.
 Its study is an alternative to the direct seek for new resonances.

- Huge variety of data → Higgs analysis, TGV, EWPD...

- Decipher the nature of the EWSB mechanism → deviations, (de)correlations between interactions, special kinematics, new signals
 Studying the Higgs interactions may be the fastest track to understand the origin of EWSB.
Outline: accessing the EWSB mechanism

- Higgs boson discovery \rightarrow A particle directly related to the EWSB.

 Its study is an alternative to the direct seek for new resonances.

- Huge variety of data \rightarrow Higgs analysis, TGV, EWPD...

- Decipher the nature of the EWSB mechanism \rightarrow deviations, (de)correlations between interactions, special kinematics, new signals

 Studying the Higgs interactions may be the fastest track to understand the origin of EWSB.

Indirect approach

Model independent parametrization \rightarrow EFFECTIVE LAGRANGIAN APPROACH!
Outline: accessing the EWSB mechanism

- Higgs boson discovery → A particle directly related to the EWSB.

 Its study is an alternative to the direct seek for new resonances.

- Huge variety of data → Higgs analysis, TGV, EWPD...

- Decipher the nature of the EWSB mechanism → deviations, (de)correlations between interactions, special kinematics, new signals

 Studying the Higgs interactions may be the fastest track to understand the origin of EWSB.

Outline

Indirect approach

Model independent parametrization → EFFECTIVE LAGRANGIAN APPROACH!

→

Linear: TGV ↔ Higgs physics

Non-linear: decorrelation, alternative signals
Effective Lagrangian: the linear realization

Bottom-up model-independent effective Lagrangian approach:

\[\mathcal{L}_{\text{eff}} = \sum_n \frac{f_n}{\Lambda^2} \mathcal{O}_n \]

- **Particle content**: There is no undiscovered low energy particle. Observed state: scalar, SU(2) doublet, CP-even, narrow and no overlapping resonances.

- **Symmetries**: \(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \) SM local symmetry (linearly realized). Global symmetries: lepton and baryon number conservation.

\(^1\) Non-linear CP-odd → arxiv:1406.6367.
Effective Lagrangian for Higgs Interactions

Effective Lagrangian: the linear realization

Bottom-up model-independent effective Lagrangian approach:

\[\mathcal{L}_{\text{eff}} = \sum_n \frac{f_n}{\Lambda^2} \mathcal{O}_n \]

- **Particle content**: There is no undiscovered low energy particle. Observed state: scalar, SU(2) doublet, CP-even, narrow and no overlapping resonances.

- **Symmetries**: \(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \) SM local symmetry (linearly realized). Global symmetries: lepton and baryon number conservation.

59 dimension-6 operators are enough... \hspace{1cm} (Buchmuller et al, Grzadkowski et al)

\(^1\) Non–linear CP–odd \(\rightarrow\) arxiv:1406.6367.
Effective Lagrangian: the linear realization

Bottom-up model-independent effective Lagrangian approach:

\[\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n \]

- **Particle content**: There is no undiscovered low energy particle. Observed state: scalar, SU(2) doublet, CP-even, narrow and no overlapping resonances.

- **Symmetries**: $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ SM local symmetry (linearly realized). Global symmetries: lepton and baryon number conservation.

59 dimension-6 operators are enough... (Buchmuller et al, Grzadkowski et al)

- Reduced set considering only C and P even\(^1\).
- EOM to eliminate/choose the basis.
- Huge variety of data to make the choice and reduce the LHC studied set: DATA–DRIVEN.

\(^1\)Non–linear CP–odd → arxiv:1406.6367.
The right of choice

Higgs interactions with gauge bosons:

\[O_{GG} = \Phi^* \Phi G^a_{\mu\nu} G^{a\mu\nu}, \]
\[O_{WW} = \Phi^* \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \]
\[O_{BB} = \Phi^* \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi, \]
\[O_{\Phi,1} = (D_{\mu} \Phi)^* \Phi^* (D^{\mu} \Phi), \]
\[O_{\Phi,2} = \frac{1}{2} \partial^\mu (\Phi^* \Phi) \partial_\mu (\Phi^* \Phi), \]
\[O_{\Phi,4} = (D_{\mu} \Phi)^* (D^{\mu} \Phi) (\Phi^* \Phi), \]

Higgs interactions with fermions:

\[O_{e\Phi,\mathit{ij}} = (\Phi^* \Phi) (\bar{L}_i \Phi e_{Rj}), \]
\[O_{u\Phi,\mathit{ij}} = (\Phi^* \Phi) (\bar{Q}_i \Phi u_{Rj}), \]
\[O_{d\Phi,\mathit{ij}} = (\Phi^* \Phi) (\bar{Q}_i \Phi d_{Rj}), \]
\[O_{e,\mathit{ij}} = (\Phi^* \Phi) (\bar{e}_{Ri} \gamma^\mu e_{Rj}), \]
\[O_{u,\mathit{ij}} = (\Phi^* \Phi) (\bar{u}_{Ri} \gamma^\mu u_{Rj}), \]
\[O_{d,\mathit{ij}} = (\Phi^* \Phi) (\bar{d}_{Ri} \gamma^\mu d_{Rj}), \]
\[O_{u_d,\mathit{ij}} = \bar{\Phi}^* (iD_{\mu} \Phi) (\bar{u}_{Ri} \gamma^\mu d_{Rj}). \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data.
The right of choice

Higgs interactions with gauge bosons:

\[\mathcal{O}_{GG} = \Phi^\dagger \Phi G^a_{\mu\nu} G^{a\mu\nu}, \quad \mathcal{O}_{WW} = \Phi^\dagger \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \quad \mathcal{O}_{BB} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi, \]
\[\mathcal{O}_{BW} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \quad \mathcal{O}_{W} = (D_{\mu} \Phi)^\dagger \hat{W}^{\mu\nu} (D_{\nu} \Phi), \quad \mathcal{O}_{B} = (D_{\mu} \Phi)^\dagger \hat{B}^{\mu\nu} (D_{\nu} \Phi), \]
\[\mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^\dagger \Phi (D_{\mu} \Phi), \quad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^\mu \left(\Phi^\dagger \Phi \right) \partial_\mu \left(\Phi^\dagger \Phi \right), \quad \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^\dagger (D_{\mu} \Phi) \left(\Phi^\dagger \Phi \right), \]

Higgs interactions with fermions:

\[\mathcal{O}_{e\Phi,ij} = (\Phi^\dagger \Phi) (\bar{L}_i \Phi e_{R_j}), \quad \mathcal{O}_{(1)_{\Phi L,ij}} = \Phi^\dagger (iD_{\mu} \Phi) (\bar{L}_i \gamma^\mu L_j) \]
\[\mathcal{O}_{u\Phi,ij} = (\Phi^\dagger \Phi) (\bar{Q}_i \Phi u_{R_j}), \quad \mathcal{O}_{(1)_{\Phi Q,ij}} = \Phi^\dagger (iD_{\mu} \Phi) (\bar{Q}_i \gamma^\mu Q_j) \]
\[\mathcal{O}_{d\Phi,ij} = (\Phi^\dagger \Phi) (\bar{Q}_i \Phi d_{R_j}), \quad \mathcal{O}_{(1)_{\Phi e,ij}} = \Phi^\dagger (iD_{\mu} \Phi) (\bar{e}_{R_i} \gamma^\mu e_{R_j}) \]
\[\mathcal{O}_{(1)_{\Phi u,ij}} = \Phi^\dagger (iD_{\mu} \Phi) (\bar{u}_{R_i} \gamma^\mu u_{R_j}) \]
\[\mathcal{O}_{(1)_{\Phi d,ij}} = \Phi^\dagger (iD_{\mu} \Phi) (\bar{d}_{R_i} \gamma^\mu d_{R_j}) \]
\[\mathcal{O}_{(1)_{\Phi u d,ij}} = \Phi^\dagger (iD_{\mu} \Phi) (\bar{u}_{R_i} \gamma^\mu d_{R_j}) \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data:

\[2 D_{\mu} \Phi = \left(\partial_{\mu} + i \frac{1}{2} g' B_{\mu} + ig \frac{\sigma^a}{2} W^a_{\mu} \right) \Phi, \quad \hat{B}_{\mu\nu} = i \frac{g'}{2} B_{\mu\nu}, \quad \hat{W}_{\mu\nu} = i \frac{g}{2} \sigma^a W^a_{\mu\nu}. \]
The right of choice

Higgs interactions with gauge bosons:

\[O_{GG} = \Phi^\dagger \Phi G^a_{\mu\nu} G^{\alpha\mu\nu}, \]
\[O_{BW} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{W}^{\mu\nu}\Phi, \]
\[O_{BB} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{B}^{\mu\nu}\Phi, \]
\[O_{WW} = (D_\mu \Phi)^\dagger \hat{W}^{\mu\nu} (D_\nu \Phi), \]
\[O_{B_B} = (D_\mu \Phi)^\dagger (D_\mu \Phi) \left(\Phi^\dagger \Phi \right), \]
\[O_{\Phi,1} = (D_\mu \Phi)^\dagger \Phi \Phi^\dagger (D_\mu \Phi), \]
\[O_{\Phi,2} = \frac{1}{2} \partial_\mu \left(\Phi^\dagger \Phi \right) \partial_\mu \left(\Phi^\dagger \Phi \right), \]
\[O_{\Phi,4} = (D_\mu \Phi)^\dagger (D_\mu \Phi) \left(\Phi^\dagger \Phi \right), \]

Higgs interactions with fermions:

\[O_{e,ij} = (\Phi^\dagger \Phi) (\bar{L}_i \gamma^\mu e_R j) \]
\[O_{u,ij} = (\Phi^\dagger \Phi) (\bar{Q}_i \gamma^\mu u_R j) \]
\[O_{d,ij} = (\Phi^\dagger \Phi) (\bar{Q}_i \gamma^\mu d_R j) \]
\[O_{e,ij} = (\Phi^\dagger \Phi) (\bar{e}_R i \gamma^\mu e_R j) \]
\[O_{u,ij} = (\Phi^\dagger \Phi) (\bar{u}_R i \gamma^\mu u_R j) \]
\[O_{d,ij} = (\Phi^\dagger \Phi) (\bar{d}_R i \gamma^\mu d_R j) \]
\[O_{ud,ij} = (\Phi^\dagger \Phi) (\bar{u}_R i \gamma^\mu d_R j) \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data.

\[2 D_\mu \Phi = \left(\partial_\mu + i \frac{1}{2} g' B_\mu + i g \frac{\sigma^a}{2} W^a_\mu \right) \Phi, \]
\[\hat{B}_{\mu\nu} = \frac{g'}{2} B_{\mu\nu}, \]
\[\hat{W}_{\mu\nu} = \frac{g}{2} \sigma^a W^a_{\mu\nu}. \]
The right of choice

Higgs interactions with gauge bosons:\(^2\):

\[O_{GG} = \Phi^\dagger \Phi G_\mu^a G^{a\mu
u} \],
\[O_{WW} = \Phi^\dagger \hat{W}_\mu \hat{W}^{\mu\nu} \Phi \],
\[O_{BB} = \Phi^\dagger \hat{B}_\mu \hat{B}^{\mu\nu} \Phi \],
\[O_{BW} = \Phi^\dagger \hat{B}_\mu \hat{W}^{\mu\nu} \Phi \],
\[O_{WW} = (D_\mu \Phi)^\dagger \hat{W}^{\mu\nu} (D_\nu \Phi) \],
\[O_B = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi) \],
\[O_{BB} = (D_\mu \Phi)^\dagger (D_\mu \Phi) (\Phi^\dagger \Phi) \],

Higgs interactions with fermions:

\[O_{e \Phi, ij} = (\Phi^\dagger \Phi)(\bar{L}_i \Phi e_{Rj}) \]
\[O_{e \Phi, ij} = (\Phi^\dagger \Phi)(\bar{L}_i \Phi e_{Rj}) \]
\[O_{e \Phi, ij} = (\Phi^\dagger \Phi)(\bar{L}_i \Phi e_{Rj}) \]
\[O_{e \Phi, ij} = (\Phi^\dagger \Phi)(\bar{L}_i \Phi e_{Rj}) \]
\[O_{u \Phi, ij} = (\Phi^\dagger \Phi)(\bar{Q}_i \bar{q} u_{Rj}) \]
\[O_{u \Phi, ij} = (\Phi^\dagger \Phi)(\bar{Q}_i \bar{q} u_{Rj}) \]
\[O_{u \Phi, ij} = (\Phi^\dagger \Phi)(\bar{Q}_i \bar{q} u_{Rj}) \]
\[O_{u \Phi, ij} = (\Phi^\dagger \Phi)(\bar{Q}_i \bar{q} u_{Rj}) \]
\[O_{u \Phi, ij} = (\Phi^\dagger \Phi)(\bar{Q}_i \bar{q} u_{Rj}) \]
\[O_{u \Phi, ij} = (\Phi^\dagger \Phi)(\bar{Q}_i \bar{q} u_{Rj}) \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

\[2D_\mu \Phi = \left(\partial_\mu + \frac{i\gamma^5}{2} g' B_\mu + ig \frac{\sigma_5}{2} W_\mu^a \right) \Phi, \hat{B}_\mu = \frac{g'}{2} B_\mu, \hat{W}_\mu = \frac{g}{2} \sigma_5 W_\mu^a \]
The right of choice

Higgs interactions with gauge bosons:

\[O_{GG} = \Phi^\dagger \Phi G^\alpha_{\mu\nu} G^{a\mu\nu}, \quad O_{WW} = \Phi^\dagger \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \quad O_{BB} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi, \]
\[O_{BW} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \quad O_W = (D_\mu \Phi)^\dagger \hat{W}^{\mu\nu} (D_\nu \Phi), \quad O_B = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi), \]
\[O_{\Phi,1} = (D_\mu \Phi)^\dagger \Phi \Phi^\dagger (D_\mu \Phi), \quad O_{\Phi,2} = \frac{1}{2} \partial_\mu \left(\Phi^\dagger \Phi \right) \partial_\mu \left(\Phi^\dagger \Phi \right), \quad O_{\Phi,4} = (D_\mu \Phi)^\dagger (D_\mu \Phi) \left(\Phi^\dagger \Phi \right), \]

Higgs interactions with fermions:

\[O_{e,ij} = (\Phi^\dagger \Phi) (\bar{L}_i \Phi e_{R_j}) \quad O^{(1)}_{\Phi_L,ij} = \Phi^\dagger (iD_\mu \Phi) (\bar{L}_i \gamma^\mu L_j) \quad O^{(3)}_{\Phi_L,ij} = \Phi^\dagger (iD^a_\mu \Phi) (\bar{L}_i \gamma^\mu \sigma_a L_j) \]
\[O_{u,ij} = (\Phi^\dagger \Phi) (\bar{Q}_i \Phi u_{R_j}) \quad O^{(1)}_{\Phi_Q,ij} = \Phi^\dagger (iD_\mu \Phi) (\bar{Q}_i \gamma^\mu Q_j) \quad O^{(3)}_{\Phi_Q,ij} = \Phi^\dagger (iD^a_\mu \Phi) (\bar{Q}_i \gamma^\mu \sigma_a Q_j) \]
\[O_{d,ij} = (\Phi^\dagger \Phi) (\bar{Q}_i \Phi d_{R_j}) \quad O^{(1)}_{\Phi_{e,ij}} = \Phi^\dagger (iD_\mu \Phi) (\bar{e}_{R_i} \gamma^\mu e_{R_j}) \quad O^{(1)}_{\Phi_{u,ij}} = \Phi^\dagger (iD_\mu \Phi) (\bar{u}_{R_i} \gamma^\mu u_{R_j}) \quad O^{(1)}_{\Phi_{d,ij}} = \Phi^\dagger (iD_\mu \Phi) (\bar{d}_{R_i} \gamma^\mu d_{R_j}) \quad O^{(1)}_{\Phi_{ud,ij}} = \tilde{\Phi}^\dagger (iD_\mu \Phi) (\bar{u}_{R_i} \gamma^\mu d_{R_j}) \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data
The right of choice

Higgs interactions with gauge bosons:

\[\mathcal{O}_{GG} = \Phi^\dagger \Phi G_\mu^a G^a_{\mu\nu}, \quad \mathcal{O}_{WW} = \Phi^\dagger \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \quad \mathcal{O}_{BB} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi, \]

\[\mathcal{O}_{BW} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \quad \mathcal{O}_{WW} = (D_\mu \Phi)^\dagger \hat{W}^{\mu\nu} (D_\nu \Phi), \quad \mathcal{O}_{B} = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi), \]

\[\mathcal{O}_{\Phi,1} = (D_\mu \Phi)^\dagger \Phi^\dagger (D_\mu \Phi), \quad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^\mu (\Phi^\dagger \Phi) \partial_\mu (\Phi^\dagger \Phi), \quad \mathcal{O}_{\Phi,4} = (D_\mu \Phi)^\dagger (D_\mu \Phi) (\Phi^\dagger \Phi), \]

Higgs interactions with fermions:

\[\mathcal{O}_{e\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{L}_i \Phi e_{R_j}) \]

\[\mathcal{O}_{u\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{Q}_i \Phi u_{R_j}) \]

\[\mathcal{O}_{d\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{Q}_i \Phi d_{R_j}) \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data
The right of choice

Higgs interactions with gauge bosons:\(^2\):

\[
\mathcal{O}_{GG} = \Phi^\dagger \Phi G^a_{\mu\nu} G^{a\mu\nu}, \quad \mathcal{O}_{WW} = \Phi^\dagger \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi , \quad \mathcal{O}_{BB} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi ,
\]
\[
\mathcal{O}_{BW} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi , \quad \mathcal{O}_W = (D_\mu \Phi)^\dagger \hat{W}^{\mu\nu} (D_\nu \Phi) , \quad \mathcal{O}_B = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi) ,
\]
\[
\mathcal{O}_{\Phi,1} = (D_\mu \Phi)^\dagger \Phi^\dagger (D^\mu \Phi) , \quad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^\mu \left(\Phi^\dagger \Phi \right) \partial_\mu \left(\Phi^\dagger \Phi \right) , \quad \mathcal{O}_{\Phi,4} = (D_\mu \Phi)^\dagger (D^\mu \Phi) \left(\Phi^\dagger \Phi \right) ,
\]

Higgs interactions with fermions:

\[
\mathcal{O}_{e\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{L}_i \Phi e_{Rj}) \quad \mathcal{O}_{eL,i,j} = \Phi^\dagger (iD_\mu \Phi)(\bar{L}_i \gamma^\mu L_j) \quad \mathcal{O}_{eL,ij} = \Phi^\dagger (iD^a_\mu \Phi)(\bar{L}_i \gamma^\mu \sigma_a L_j)
\]
\[
\mathcal{O}_{u\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{Q}_i \Phi u_{Rj}) \quad \mathcal{O}_{uQ,i,j} = \Phi^\dagger (iD_\mu \Phi)(\bar{Q}_i \gamma^\mu Q_j) \quad \mathcal{O}_{uQ,ij} = \Phi^\dagger (iD^a_\mu \Phi)(\bar{Q}_i \gamma^\mu \sigma_a Q_j)
\]
\[
\mathcal{O}_{d\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{Q}_i \Phi d_{Rj}) \quad \mathcal{O}_{dL,i,j} = \Phi^\dagger (iD_\mu \Phi)(\bar{e}_{Ri} \gamma^\mu e_{Rj}) \quad \mathcal{O}_{dL,ij} = \Phi^\dagger (iD^a_\mu \Phi)(\bar{\bar{e}}_{Ri} \gamma^\mu \sigma_a e_{Rj})
\]
\[
\mathcal{O}_{uL,i,j} = \Phi^\dagger (iD^a_\mu \Phi)(\bar{\bar{\bar{u}}}_{Ri} \gamma^\mu u_{Rj}) \quad \mathcal{O}_{uL,ij} = \Phi^\dagger (iD^a_\mu \Phi)(\bar{\bar{u}}_{Ri} \gamma^\mu \sigma_a u_{Rj})
\]
\[
\mathcal{O}_{dL,i,j} = \Phi^\dagger (iD^a_\mu \Phi)(\bar{\bar{d}}_{Ri} \gamma^\mu d_{Rj}) \quad \mathcal{O}_{dL,ij} = \Phi^\dagger (iD^a_\mu \Phi)(\bar{\bar{d}}_{Ri} \gamma^\mu \sigma_a d_{Rj})
\]
\[
\mathcal{O}_{udL,i,j} = \tilde{\Phi}^\dagger (iD^a_\mu \Phi)(\bar{\bar{u}}_{Ri} \gamma^\mu d_{Rj})
\]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

\[
^2 D_\mu \Phi = \left(\partial_\mu + i \frac{1}{2} g' B_\mu + ig \frac{\sigma_a}{2} W^{\mu}_a \right) \Phi, \quad \hat{B}_{\mu\nu} = i \frac{g'}{2} B_{\mu\nu}, \quad \hat{W}_{\mu\nu} = i \frac{g}{2} \sigma^a W^{\mu\nu}_a
\]
Higgs interactions with gauge bosons:

\[\mathcal{O}_{GG} = \Phi^\dagger \Phi G^a_{\mu \nu} G^{a\mu
u}, \quad \mathcal{O}_{WW} = \Phi^\dagger \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \quad \mathcal{O}_{BB} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi, \]

\[\mathcal{O}_{BW} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi, \quad \mathcal{O}_{WB} = (D_\mu \Phi)^\dagger \hat{W}_{\mu\nu} (D_\nu \Phi), \quad \mathcal{O}_B = (D_\mu \Phi)^\dagger \hat{B}_{\mu\nu} (D_\nu \Phi), \]

\[\mathcal{O}_{\Phi,1} = (D_\mu \Phi)^\dagger \Phi^\dagger (D^\mu \Phi), \quad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial_\mu \left(\Phi^\dagger \Phi \right) \partial_\mu \left(\Phi^\dagger \Phi \right), \quad \mathcal{O}_{\Phi,4} = (D_\mu \Phi)^\dagger (D^\mu \Phi) \left(\Phi^\dagger \Phi \right), \]

Higgs interactions with fermions:

\[\mathcal{O}_{e\Phi,ij} = (\Phi^\dagger \Phi) (\bar{L}_i \Phi e_{R_j}) \quad \mathcal{O}_{(1)_{\Phi L,ij}} = \Phi^\dagger (iD_\mu \Phi) (\bar{L}_i \gamma^\mu L_j) \quad \mathcal{O}_{(3)_{\Phi L,ij}} = \Phi^\dagger (iD^a_\mu \Phi) (\bar{L}_i \gamma^\mu \sigma_a L_j) \]

\[\mathcal{O}_{u\Phi,ij} = (\Phi^\dagger \Phi) (\bar{Q}_i \Phi u_{R_j}) \quad \mathcal{O}_{(1)_{\Phi Q,ij}} = \Phi^\dagger (iD_\mu \Phi) (\bar{Q}_i \gamma^\mu Q_j) \quad \mathcal{O}_{(3)_{\Phi Q,ij}} = \Phi^\dagger (iD^a_\mu \Phi) (\bar{Q}_i \gamma^\mu \sigma_a Q_j) \]

\[\mathcal{O}_{d\Phi,ij} = (\Phi^\dagger \Phi) (\bar{Q}_i \Phi d_{R_j}) \quad \mathcal{O}_{(1)_{\Phi e,ij}} = \Phi^\dagger (iD_\mu \Phi) (\bar{e}_{R_i} \gamma^\mu e_{R_j}) \quad \mathcal{O}_{(1)_{\Phi u,ij}} = \Phi^\dagger (iD_\mu \Phi) (\bar{u}_{R_i} \gamma^\mu u_{R_j}) \]

\[\mathcal{O}_{(1)_{\Phi d,ij}} = \Phi^\dagger (iD_\mu \Phi) (\bar{d}_{R_i} \gamma^\mu d_{R_j}) \quad \mathcal{O}_{(1)_{\Phi ud,ij}} = \tilde{\Phi}^\dagger (iD_\mu \Phi) (\bar{u}_{R_i} \gamma^\mu d_{R_j}) \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data TGV,
The right of choice

Higgs interactions with gauge bosons:

\[O_{GG} = \Phi^\dagger \Phi G^a_{\mu\nu} G^{a\mu\nu} , \quad O_{WW} = \Phi^\dagger \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi , \quad O_{BB} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi , \]

\[O_{BW} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi , \quad O_W = (D_{\mu} \Phi)^\dagger \hat{W}^{\mu\nu} (D_{\nu} \Phi) , \quad O_B = (D_{\mu} \Phi)^\dagger \hat{B}^{\mu\nu} (D_{\nu} \Phi) , \]

\[O_{\Phi,1} = (D_{\mu} \Phi)^\dagger \Phi (D_{\mu} \Phi) , \quad O_{\Phi,2} = \frac{1}{2} \partial_{\mu} \left(\Phi^\dagger \Phi \right) \partial_{\mu} \left(\Phi^\dagger \Phi \right) , \quad O_{\Phi,4} = (D_{\mu} \Phi)^\dagger (D_{\mu} \Phi) \left(\Phi^\dagger \Phi \right) , \]

Higgs interactions with fermions:

\[O_{e\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{L}_i \Phi e_{R_j}) \quad (1) \quad \Phi_L,i_j = \Phi^\dagger (iD_{\mu} \Phi)(\bar{L}_i \gamma^\mu L_j) \quad (3) \quad \Phi_Q,i_j = \Phi^\dagger (iD_{\mu} \Phi)(\bar{Q}_i \gamma^\mu Q_j) \]

\[O_{u\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{Q}_i \Phi u_{R_j}) \quad (1) \quad \Phi_Q,i_j = \Phi^\dagger (iD_{\mu} \Phi)(\bar{Q}_i \gamma^\mu Q_j) \]

\[O_{d\Phi,i,j} = (\Phi^\dagger \Phi)(\bar{Q}_i \Phi d_{R_j}) \quad (1) \quad \Phi_Q,i_j = \Phi^\dagger (iD_{\mu} \Phi)(\bar{Q}_i \gamma^\mu Q_j) \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

TGV, Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and e^+ e^- → f f at LEP2 and tree level contribution to the oblique parameters: must avoid blind directions.
The right of choice

Higgs interactions with gauge bosons:

\[O_{GG} = \Phi^\dagger \Phi G^\alpha_{\mu\nu} G^{\alpha\mu\nu} , \]
\[O_{WW} = \Phi^\dagger \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi , \]
\[O_{BB} = \Phi^\dagger \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi , \]
\[O_{W} = (D_{\mu} \Phi)^\dagger \hat{W}_{\mu\nu} (D_{\nu} \Phi) , \]
\[O_{B} = (D_{\mu} \Phi)^\dagger \hat{B}_{\mu\nu} (D_{\nu} \Phi) , \]
\[O_{\Phi,2} = \frac{1}{2} \partial^\mu \left(\Phi^\dagger \Phi \right) \partial_{\mu} \left(\Phi^\dagger \Phi \right) , \]

Higgs interactions with fermions:

\[O_{e\Phi,33} = (\Phi^\dagger \Phi) (\bar{L}_3 \Phi e_{R3}) \]
\[O_{d\Phi,33} = (\Phi^\dagger \Phi) (\bar{Q}_3 \Phi d_{R3}) \]

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

TGV, Z properties, W decays, low energy \(\nu \) scattering, atomic P, FCNC, Moller scattering \(P \) and \(e^+ e^- \rightarrow f \bar{f} \) at LEP2 and
tree level contribution to the oblique parameters: must avoid blind directions.
Effective Lagrangian for Higgs Interactions

\[\mathcal{L}_{\text{eff}} = - \frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{\Phi,2}}{\Lambda^2} \mathcal{O}_{\Phi,2} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^2} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^2} \mathcal{O}_{W} + \frac{f_{\tau}}{\Lambda^2} \mathcal{O}_{e\Phi,33} + \frac{f_{\text{bot}}}{\Lambda^2} \mathcal{O}_{d\Phi,33} \]

Unitary gauge:

\[\mathcal{L}_{\text{eff}}^{HVV} = g_{Hgg} H G_{\mu \nu}^{a} G^{a \mu \nu} + g_{H \gamma \gamma} H A_{\mu \nu} A^{\mu \nu} + g_{H}^{(1)} H Z_{\gamma} \gamma A_{\mu \nu} Z^{\mu} \partial^{\nu} H + g_{H}^{(2)} H Z_{\gamma} \gamma H A_{\mu \nu} Z^{\mu \nu} \]
\[+ g_{H}^{(1)} H Z_{\mu \nu} Z^{\mu} \partial^{\nu} H + g_{H}^{(2)} H Z_{\mu \nu} Z^{\mu \nu} + g_{H}^{(3)} H Z_{\mu} Z^{\mu} \]
\[+ g_{H}^{(1)} H W W \left(W^{+}_{\mu \nu} W^{- \mu} \partial^{\nu} H + \text{h.c.} \right) + g_{H}^{(2)} H W W \left(W^{+}_{\mu \nu} W^{- \mu \nu} + g_{H}^{(3)} H W W \right) W_{\mu}^{+} W^{- \mu} \]

\[\mathcal{L}_{\text{eff}}^{Hff} = g_{H}^{f} f_{L}^{f'} f_{R}^{'} H + \text{h.c.} \]

\[g_{Hgg} = - \frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2}, \quad g_{H \gamma \gamma} = - \left(\frac{g^2 v s^2}{2\Lambda^2} \right) \frac{f_{WW} + f_{BB}}{2}, \]

\[g_{H}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s(f_{WW} - f_{BB})}{2c}, \quad g_{H}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s[2s^2 f_{BB} - 2c^2 f_{WW}]}{2c}, \]

\[g_{H}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{c^2 f_{WW} + s^2 f_{BB}}{2c^2}, \quad g_{H}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2}, \]

\[g_{H}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{f_{WW}}{2}, \quad g_{H}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{f_{WW}}{2} \]

\[g_{H}^{f} = - \frac{m_{i}^{f}}{v} \delta_{ij} + \frac{v^2}{\sqrt{2\Lambda^2}} f'_{\Phi,ij}, \quad g_{\Phi}^{2} = g_{H}^{SM} \left(1 - \frac{v^2}{2\Lambda^2} \right) \]

Juan González Fraile (UB) | Johns Hopkins 2014 | Heidelberg, July 2014 | 5 / 23
Effective Lagrangian for Higgs Interactions

\[L_{\text{eff}} = -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} O_{GG} + \frac{f_{\Phi,2}}{\Lambda^2} O_{\Phi,2} + \frac{f_{BB}}{\Lambda^2} O_{BB} + \frac{f_{WW}}{\Lambda^2} O_{WW} + \frac{f_B}{\Lambda^2} O_B + \frac{f_W}{\Lambda^2} O_W + \frac{f_\tau}{\Lambda^2} O_{\Phi,33} + \frac{f_{\text{bot}}}{\Lambda^2} O_{d,33} \]

Unitary gauge:

\[L_{\text{eff}}^{HVV} = g_{Hgg} H G_{\mu\nu}^{a} G^{a\mu\nu} + g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g_{H Z Z}^{(1)} H Z_{\mu\nu} Z^{\mu\nu} + g_{H Z Z}^{(2)} H Z_{\mu\nu} Z^{\mu\nu} + g_{H Z Z}^{(3)} H Z_{\mu} Z_{\mu} \]

\[L_{\text{eff}}^{H_{ij}f} = g_{H_{ij}}^{f} f_{L} f_{R} H + \text{h.c.} \]

\[g_{Hgg} = -\frac{\alpha_s f_g v}{8\pi \Lambda^2}, \quad g_{H\gamma\gamma} = - \left(\frac{g^2 v s^2}{2\Lambda^2} \right) \frac{f_{WW} + f_{BB}}{2}, \]

\[g_{H Z Z}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s(f_W - f_B)}{2c}, \quad g_{H Z Z}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s[2s^2 f_{BB} - 2c^2 f_{WW}]}{2c}, \]

\[g_{H Z Z}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{c^2 f_W + s^2 f_B}{2c^2}, \quad g_{H Z Z}^{(2)} = - \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2}, \]

\[g_{H W W}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{f_W}{2}, \quad g_{H W W}^{(2)} = - \left(\frac{g^2 v}{2\Lambda^2} \right) f_{WW}, \]

\[g_{H_{ij}}^{f} = -\frac{m_{i}^{f}}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} f_{f_{i}j}^{f}, \quad g_{\Phi,2}^{H_{xx}} = g_{H_{xx}}^{SM} \left(1 - \frac{v^2}{2} \frac{f_{\Phi,2}}{\Lambda^2} \right). \]
Effective Lagrangian for Higgs Interactions

\[\mathcal{L}_{\text{eff}} = -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{\Phi,2}}{\Lambda^2} \mathcal{O}_{\Phi,2} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^2} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^2} \mathcal{O}_{W} + \frac{f_{\tau}}{\Lambda^2} \mathcal{O}_{e\Phi,33} + \frac{f_{\text{bot}}}{\Lambda^2} \mathcal{O}_{d\Phi,33} \]

Unitary gauge:

\[\mathcal{L}^{HVV}_{\text{eff}} = g_{Hgg} H G_{\mu\nu}^a G^{a\mu\nu} + g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g_{HZZ}^{(1)} A_{\mu\nu} Z^\mu \partial^\nu H + g_{HZZ}^{(2)} A_{\mu\nu} Z^\mu + g_{HZZ}^{(3)} H Z_{\mu\nu} Z^\mu \]

\[+ \ g_{HWW}^{(1)} (W_{\mu\nu}^+ W_{-\mu} H + \text{h.c.}) + g_{HWW}^{(2)} H W_{-\mu} W_{\mu} + g_{HWW}^{(3)} H W_{\mu} W_{\mu} \]

\[\mathcal{L}^{Hff}_{\text{eff}} = g_{Hij}^f \bar{f}_L^f f_R^j H + \text{h.c.} \]

\[g_{Hgg} = -\frac{\alpha_s}{8\pi} \frac{f_g v}{\Lambda^2} \quad , \quad g_{H\gamma\gamma} = -\left(\frac{g^2 v s^2}{2\Lambda^2} \right) \frac{f_{WW} + f_{BB}}{2} \]

\[g_{HZZ}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s (f_W - f_B)}{2c} \quad , \quad g_{HZZ}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{2s^2 f_{BB} - 2c^2 f_{WW}}{2c} \]

\[g_{HZZ}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{c^2 f_W + s^2 f_B}{2c^2} \quad , \quad g_{HZZ}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2} \]

\[g_{HWW}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{f_W}{2} \quad , \quad g_{HWW}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2} \right) f_{WW} \]

\[g_{Hij}^f = -\frac{m_i^f}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} f_{f^f,i}^f \quad , \quad g_{Hxx}^{(1)} = g_{Hxx}^{SM} (1 - \nu^2 \frac{f_{\Phi,2}}{2\Lambda^2}) \]
Effective Lagrangian for Higgs Interactions

\[\mathcal{L}_{\text{eff}} = -\frac{\alpha_s v}{8\pi} \frac{g}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{\Phi,2}}{\Lambda^2} \mathcal{O}_{\Phi,2} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_{\tau}}{\Lambda^2} \mathcal{O}_{\Phi,33} + \frac{f_{\text{bot}}}{\Lambda^2} \mathcal{O}_{d\Phi,33} \]

Unitary gauge:

\[\mathcal{L}_{\text{eff}}^{HVV} = \mathcal{O}_{HVV} \]

\[\mathcal{L}_{\text{eff}}^{Hff} = \mathcal{O}_{Hff} \]

Unitary gauge:

\[g_{Hgg} = -\frac{\alpha_s f g v}{8\pi} \frac{g}{\Lambda^2} \]

\[g_{Hg}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s(fW - f_B)}{2c} \]

\[g_{Hg}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s[2s^2 f_{BB} - 2c^2 f_{WW}]}{2c} \]

\[g_{HZZ}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{c^2 f_W + s^2 f_B}{2c^2} \]

\[g_{HZZ}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2} \]

\[g_{HWW}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{f_W}{2} \]

\[g_{HWW}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2} \right) \frac{f_{WW}}{2} \]

\[g_{Hi}^{f} = -\frac{m_i^f}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} f'_{
u,ij} \]

\[g_{\Phi,2} = g_{\Phi,2}^{SM} \left(1 - \frac{v^2}{2\Lambda^2} f_{\Phi,2} \right) \]
Effective Lagrangian for Higgs Interactions

\[\mathcal{L}_{\text{eff}} = - \frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{\Phi,2}}{\Lambda^2} \mathcal{O}_{\Phi,2} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_\tau}{\Lambda^2} \mathcal{O}_{e\Phi,33} + \frac{f_{\text{bot}}}{\Lambda^2} \mathcal{O}_{d\Phi,33} \]

Unitary gauge:

\[\mathcal{L}_{\text{HVV}}^\text{HVV} = g_{Hgg} H G_{\mu\nu}^a G^{a\mu\nu} + g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g_{H Z \gamma}^{(1)} A_{\mu\nu} Z^\mu \partial^\nu H + g_{H Z \gamma}^{(2)} H A_{\mu\nu} Z^\mu + g_{H Z \gamma}^{(3)} H Z_{\mu\nu} Z^{\mu\nu} + g_{H Z \gamma}^{(4)} H Z_{\mu\nu} H Z^{\mu\nu} \]

\[\mathcal{L}_{\text{Hff}}^\text{Hff} = g_{H\Phi,ij}^f f_L^i f_R^j H + \text{h.c.} \]

\[g_{Hgg} = - \frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \]

\[g_{H\gamma\gamma} = - \left(\frac{g^2 v s^2}{2\Lambda^2} \right) \frac{f_{WW} + f_{BB}}{2} \]

\[g_{H Z \gamma}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s(f_W - f_B)}{2c} \]

\[g_{H Z \gamma}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s[2s^2 f_{BB} - 2c^2 f_{WW}]}{2c} \]

\[g_{H Z \gamma}^{(3)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{c^2 f_W + s^2 f_B}{2c^2} \]

\[g_{H Z \gamma}^{(4)} = - \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2} \]

\[g_{HWW}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{f_W}{2} \]

\[g_{HWW}^{(2)} = - \left(\frac{g^2 v}{2\Lambda^2} \right) f_{WW} \]

\[g_{H\Phi,ij}^f = - \frac{m_f^i}{v} \delta_{ij} + \frac{v^2}{\sqrt{2} \Lambda^2} f'_{\Phi,ij} \]

\[g_{\Phi,2} = g_{H\Phi,2}^\text{SM} \left(1 - \frac{v^2}{2} \frac{f_{\Phi,2}}{\Lambda^2} \right) \]
Effective Lagrangian for Higgs Interactions

\[
\mathcal{L}_{\text{eff}} = -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \mathcal{O}_G + \frac{f_{\Phi,2}}{\Lambda^2} \mathcal{O}_{\Phi,2} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_\tau}{\Lambda^2} \mathcal{O}_{e\Phi,33} + \frac{f_{\text{bot}}}{\Lambda^2} \mathcal{O}_{d\Phi,33}
\]

Unitary gauge:

\[
\mathcal{L}_{\text{eff}}^{HVV} = g_{Hgg} H G_{\mu\nu}^a G^{a\mu\nu} + g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g_{HZZ}^1 H Z_{\mu\nu} Z^{\mu\nu} + g_{HZZ}^2 H Z_{\mu\nu} Z^{\mu\nu} + g_{HZZ}^3 H Z_{\mu} Z_{\mu} + \text{h.c.}
\]

\[
\mathcal{L}_{\text{eff}}^{Hff} = g_{Hij}^f \bar{f}_L \gamma_5 f_R H + \text{h.c.}
\]

\[
g_{Hgg} = -\frac{\alpha_s f_g v}{8\pi} \frac{f_g}{\Lambda^2}, \quad g_{H\gamma\gamma} = -\left(\frac{g^2 v s^2}{2\Lambda^2}\right) \frac{f_{WW}}{2} + \frac{f_{BB}}{2}
\]

\[
g_{HZZ}^1 = \left(\frac{g^2 v}{2\Lambda^2}\right) \left(\frac{s f_W - f_B}{2c}\right), \quad g_{HZZ}^2 = \left(\frac{g^2 v}{2\Lambda^2}\right) \left[\frac{s^2 f_{BB} - 2c^2 f_{WW}}{2c}\right],
\]

\[
g_{HWW}^1 = \left(\frac{g^2 v}{2\Lambda^2}\right) \left(\frac{f_W}{2}\right), \quad g_{HWW}^2 = -\left(\frac{g^2 v}{2\Lambda^2}\right) \frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2},
\]

\[
g_{Hij}^f = -\frac{m_i}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} f_{\Phi,i}^f, \quad g_{Hxx}^\Phi = g_{Hxx}^{SM} \left(1 - \frac{v^2}{2\Lambda^2}\right),
\]
Higgs collider data

\[\chi^2 = \min_{\xi_{\text{pull}}} \sum_j \frac{(\mu_j - \mu_{j,\text{exp}})^2}{\sigma_j^2} + \sum_{\text{pull}} \left(\frac{\xi_{\text{pull}}}{\sigma_{\text{pull}}} \right)^2 \]

Where

\[\mu_F = \frac{\epsilon^F_{gg} \sigma_{gg}^{\text{ano}} + \epsilon^F_{VBF} \sigma_{VBF}^{\text{ano}} + \epsilon^F_{WH} \sigma_{WH}^{\text{ano}} + \epsilon^F_{ZH} \sigma_{ZH}^{\text{ano}} + \epsilon^F_{t\bar{t}H} \sigma_{t\bar{t}H}^{\text{ano}}}{\epsilon^F_{gg} \sigma_{gg}^{\text{SM}} + \epsilon^F_{VBF} \sigma_{VBF}^{\text{SM}} + \epsilon^F_{WH} \sigma_{WH}^{\text{SM}} + \epsilon^F_{ZH} \sigma_{ZH}^{\text{SM}} + \epsilon^F_{t\bar{t}H} \sigma_{t\bar{t}H}^{\text{SM}}} \otimes \frac{\text{BR}^{\text{ano}}[h \to F]}{\text{BR}^{\text{SM}}[h \to F]} \]

where \(\sigma_x^{\text{ano}} = \sigma_x^{\text{ano}}(1 + \xi_x) \).

For the anomalous calculations:

\[\sigma_Y^{\text{ano}} = \frac{\sigma_Y^{\text{ano}}}{\sigma_Y^{\text{SM}}} \bigg|_{\text{tree}} \sigma_Y^{\text{SM}} \bigg|_{\text{soa}} \]

and

\[\Gamma^{\text{ano}}(h \to X) = \frac{\Gamma^{\text{ano}}(h \to X)}{\Gamma^{\text{SM}}(h \to X)} \bigg|_{\text{tree}} \Gamma^{\text{SM}}(h \to X) \bigg|_{\text{soa}} \]
Analysis Framework

Higgs collider data

Juan González Fraile (UB)

Johns Hopkins 2014

Heidelberg, July 2014 7 / 23
TGV and EWPD

TGV:
\[
\mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_1^V \left(W_{\mu \nu}^+ W_{- \mu}^\nu - W_{\mu}^+ V_{\nu} W_{- \mu}^\nu \right) + \kappa V W_{\mu}^+ W_{- \nu}^\nu + \frac{\lambda V m_{WW}}{\Lambda^2} W_{\mu \nu}^+ W_{- \nu}^\mu \right\}
\]

\[
\Delta g_1^Z = g_1^Z - 1 = \frac{g^2 v^2}{8 c^2 \Lambda^2} f_W,
\]

\[
\Delta \kappa_\gamma = \kappa_\gamma - 1 = \frac{g^2 v^2}{8 \Lambda^2} (f_W + f_B), \quad \leftrightarrow \quad g_1^Z = 0.984^{+0.049}_{-0.049} \quad \text{LEP}
\]

\[
\Delta \kappa_Z = \kappa_Z - 1 = \frac{g^2 v^2}{8 c^2 \Lambda^2} (c^2 f_W - s^2 f_B).
\]

EWPD:

\[
\Delta S = 0.00 \pm 0.10 \quad \Delta T = 0.02 \pm 0.11 \quad \Delta U = 0.03 \pm 0.09
\]

\[
\rho = \begin{pmatrix}
1 & 0.89 & -0.55 \\
0.89 & 1 & -0.8 \\
-0.55 & -0.8 & 1
\end{pmatrix}
\]

\(O_{BW}\) and \(O_{\Phi,1}\) can already be neglected for the LHC analysis:

\[
\alpha \Delta S = e^2 \frac{v^2}{\Lambda^2} f_{BW} \quad \text{and} \quad \alpha \Delta T = \frac{1}{2} \frac{v^2}{\Lambda^2} f_{\Phi,1}.
\]

We add the rest of one-loop contributions in parts of the analysis.
\[
\alpha \Delta S - \frac{1}{6} \frac{e^2}{16\pi^2} \left\{ 3(f_W + f_B) \frac{m_H^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_H^2} \right) + \\
+ 2 \left[(5c^2 - 2)f_W - (5c^2 - 3)f_B \right] \frac{m_Z^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) \\
- \left[(22c^2 - 1)f_W - (30c^2 + 1)f_B \right] \frac{m_Z^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) \\
- 24c^2 f_W W \frac{m_Z^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) + 2 f_{\Phi,2} \frac{v^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) \right\},
\]

\[
\alpha \Delta T = \frac{3}{4c^2} \frac{e^2}{16\pi^2} \left\{ f_B \frac{m_H^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_H^2} \right) \\
+ (c^2 f_W + f_B) \frac{m_Z^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) \\
+ \left[2c^2 f_W + (3c^2 - 1)f_B \right] \frac{m_Z^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) - f_{\Phi,2} \frac{v^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) \right\},
\]

\[
\alpha \Delta U = -\frac{1}{3} \frac{e^2 s^2}{16\pi^2} \left\{ (-4f_W + 5f_B) \frac{m_Z^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) \\
+ (2f_W - 5f_B) \frac{m_Z^2}{\Lambda^2} \log \left(\frac{\Lambda^2}{m_Z^2} \right) \right\}
\]
$\Delta \chi^2$ vrs f_X
$\Delta \chi^2 \text{ vrs } f_X$
$\Delta \chi^2$ vrs f_X
2d correlations

Fit with $f_g, f_{WW} = -f_{BB}, f_W, f_B, f_{42}, f_{40}$, $f_z = 0$
Present Status

BRs and production CS

\[\Delta \chi^2 \]

\[\frac{f_{\text{bot}}
eq 0}{f_{\tau}
eq 0} \]

\[\frac{\text{BR}^{\text{ano}}}{\text{BR}^{\text{SM}}} \]

\[\frac{\sigma^{\text{ano}}}{\sigma^{\text{SM}}} \]

Graph showing \(\Delta \chi^2 \) for different processes with significance levels for 68%, 90%, and 95%.
Gauge Invariance → TGV and Higgs couplings related: \mathcal{O}_W and \mathcal{O}_B

Complementarity in experimental searches: Higgs data bounds on

$$f_W \otimes f_B \equiv \Delta \kappa_\gamma \otimes \Delta g_1^Z$$

$$\Delta g_1^Z = g_1^Z - 1 = \frac{g^2 v^2}{8 c^2 \Lambda^2} f_W,$$

$$\Delta \kappa_\gamma = \kappa_\gamma - 1 = \frac{g^2 v^2}{8 \Lambda^2} (f_W + f_B),$$

$$\Delta \kappa_Z = \kappa_Z - 1 = \frac{g^2 v^2}{8 c^2 \Lambda^2} (c^2 f_W - s^2 f_B).$$
Determining TGV from Higgs data

Correlation between TGV and Higgs signals

\[\mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_1^V (W_{\mu\nu}^+ W_{-\mu\nu}^- + \kappa_V W_{\mu\nu}^+ W_{-\mu\nu}^- V_{\mu\nu}) \right\} \]

\[\Delta g_1^Z = \frac{g^2 v^2}{8c^2 \Lambda^2} f_W, \]

\[\Delta \kappa_\gamma = \frac{g^2 v^2}{8\Lambda^2} (f_W + f_B), \]

\[\Delta \kappa_Z = \frac{g^2 v^2}{8c^2 \Lambda^2} (c^2 f_W - s^2 f_B). \]

\[\mathcal{L}_{\text{eff}}^{HWW} = +g_{HWW}^{(1)} (W_{\mu\nu}^+ W_{-\mu\nu}^- \partial^\nu H + \text{h.c.}) + g_{HWW}^{(2)} H W_{\mu\nu}^+ W_{-\mu\nu}^- + g_{HWW}^{(3)} H W_{\mu\nu}^+ W_{-\mu\nu}^- \]

\[g_{HWW}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2} \right) \frac{f_W}{2}, \]

\[g_{HWW}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2} \right) f_{WW}, \]

\[g_{HWW}^{(3)} = g_{HWW}^{SM} \left(1 - \frac{v^2}{2} \frac{f_{\Phi,2}}{\Lambda^2} \right). \]

Assume: LHC see deviation to TGV within 95% CL bound verifying \(\Delta \kappa_\gamma = \Delta \kappa_Z = \cos^2 \theta_W \Delta g_1^Z \)

e. g. \[\frac{f_W}{\Lambda^2} = -6.5 \text{ TeV}^{-2} \]

Leading to the excess

\[\sigma(pp \to WH) = 1.65\sigma_{SM}(pp \to WH) \]

\[\Rightarrow \text{but with a distorted } H p_T \text{ spectrum!} \]
Motivated by composite models → Higgs as a PGB of a global symmetry.

Non-linear or “chiral“ effective Lagrangian expansion including the light Higgs.

\[F_i(h) = 1 + 2a_i \frac{h}{v} + b_i \frac{h^2}{v^2} + \ldots \]

Light Higgs → without a given model treated as generic "singlet" \(h \)

\(h \) is not part of \(\Phi \)

More possible operators

Dimensionless unitary matrix: \(U(x) = e^{i\sigma a \pi^a(x)/v} \)

Relative reshuffling of the order at which operators appear

Bosonic (pure gauge and gauge-\(h \) operators) and Yukawa-like up to four derivatives

\[\mathcal{L}_{\text{chiral}} = \mathcal{L}_0 + \Delta \mathcal{L} \]

Comparison with the linear basis!
The Non-linear Lagrangian

\[\mathcal{L}_{\text{chiral}} = \mathcal{L}_0 + \Delta \mathcal{L} \]

SM Lagrangian\(^3\)

\[\mathcal{L}_0 = \frac{1}{2} (\partial_\mu h)(\partial^\mu h) - \frac{1}{4} W^a_\mu W^{a\mu} - \frac{1}{4} B_\mu B^{\mu} - \frac{1}{4} G^a_\mu G^{a\mu} - V(h) \]

\[-\frac{(v + h)^2}{4} \text{Tr}[V_\mu V^\mu] + i\bar{Q}PQ + i\bar{L}PL \]

\[-\frac{v + s_Y h}{\sqrt{2}} (\bar{Q}L U Y_Q Q_R + \text{h.c.}) - \frac{v + s_Y h}{\sqrt{2}} (\bar{L}_L U Y_L L_R + \text{h.c.}) \]

Restricting to bosonic (pure gauge and gauge-\(h\) operators):

\[\Delta \mathcal{L} = \xi [c_B \mathcal{P}_B(h) + c_W \mathcal{P}_W(h) + c_G \mathcal{P}_G(h) + c_C \mathcal{P}_C(h) + c_T \mathcal{P}_T(h) \]

\[+ c_H \mathcal{P}_H(h) + c_{\Box}H \mathcal{P}_{\Box}H(h)] + \xi \sum_{i=1}^{10} c_i \mathcal{P}_i(h) \]

\[+ \xi^2 \sum_{i=11}^{25} c_i \mathcal{P}_i(h) + \xi^4 c_{26} \mathcal{P}_{26}(h) + \sum_i \xi^{n_i} c^i_{HH} \mathcal{P}^i_{HH}(h) \]

\(^3\) \(D_\mu U(x) \equiv \partial_\mu U(x) + ig W_\mu(x) U(x) - \frac{ig'}{2} B_\mu(x) U(x) \sigma_3 \)

\(Y_Q \equiv \text{diag}(Y_U, Y_D)\), \quad \(Y_L \equiv \text{diag}(Y_\nu, Y_L)\).
Disentangling a dynamical Higgs

The Non-linear Lagrangian

\[\mathcal{P}_C(h) = -\frac{v^2}{4} \text{Tr}(V^\mu V_\mu) \mathcal{F}_C(h) \]

\[\mathcal{P}_T(h) = \frac{v^2}{4} \text{Tr}(TV_\mu) \text{Tr}(TV^\mu) \mathcal{F}_T(h) \]

\[\mathcal{P}_H(h) = \frac{1}{2} (\partial_\mu h)(\partial^\mu h) \mathcal{F}_H(h) \]

\[\mathcal{P}_B(h) = -\frac{g^2}{4} B_{\mu\nu} B^{\mu\nu} \mathcal{F}_B(h) \]

\[\mathcal{P}_W(h) = -\frac{g^2}{4} W^a_{\mu\nu} W^{a\mu\nu} \mathcal{F}_W(h) \]

\[\mathcal{P}_G(h) = -\frac{g^2}{4} G^a_{\mu\nu} G^{a\mu\nu} \mathcal{F}_G(h) \]

\[\mathcal{P}_1(h) = g g' B_{\mu\nu} \text{Tr}(TW^{\mu\nu}) \mathcal{F}_1(h) \]

\[\mathcal{P}_2(h) = ig' B_{\mu\nu} \text{Tr}(T[V^\mu, V^\nu]) \mathcal{F}_2(h) \]

\[\mathcal{P}_3(h) = ig \text{Tr}(W_{\mu\nu}[V^\mu, V^\nu]) \mathcal{F}_3(h) \]

\[\mathcal{P}_4(h) = ig' B_{\mu\nu} \text{Tr}(TV^\mu) \partial^\nu \mathcal{F}_4(h) \]

\[\mathcal{P}_5(h) = ig \text{Tr}(W_{\mu\nu} V^\mu) \partial^\nu \mathcal{F}_5(h) \]

\[\mathcal{P}_6(h) = (\text{Tr}(V^\mu V_\mu))^2 \mathcal{F}_6(h) \]

\[\mathcal{P}_7(h) = \text{Tr}(V^\mu V_\mu) \partial_\nu \partial^\nu \mathcal{F}_7(h) \]

\[\mathcal{P}_8(h) = \text{Tr}(V^\mu V_\nu) \partial^\mu \mathcal{F}_8(h) \partial^\nu \mathcal{F}'_8(h) \]

\[\mathcal{P}_9(h) = \text{Tr}((D_\mu V^\mu)^2) \mathcal{F}_9(h) \]

\[\mathcal{P}_{10}(h) = \text{Tr}(V_\nu D_\mu V^\mu) \partial^\nu \mathcal{F}_{10}(h) \]

\[\mathcal{P}_{\Box H} = \frac{1}{v^2} (\partial_\mu \partial^\mu h)^2 \mathcal{F}_{\Box H}(h) \]
The Non-linear Lagrangian

\[\mathcal{P}_C(h) = -\frac{v^2}{4} \text{Tr}(V^\mu V_\mu)F_C(h) \]

\[\mathcal{P}_T(h) = \frac{v^2}{4} \text{Tr}(TV^\mu)\text{Tr}(TV^\nu)F_T(h) \]

\[\mathcal{P}_H(h) = \frac{1}{2} (\partial_\mu h)(\partial^\mu h)F_H(h) \]

\[\mathcal{P}_B(h) = -\frac{g^2}{4} B_{\mu\nu}B^{\mu\nu}F_B(h) \]

\[\mathcal{P}_W(h) = -\frac{g^2}{4} W^a_{\mu\nu} W^{a\mu\nu}F_W(h) \]

\[\mathcal{P}_G(h) = -\frac{g^2}{4} G^a_{\mu\nu}G^{a\mu\nu}F_G(h) \]

\[\mathcal{P}_1(h) = gg' B_{\mu\nu} \text{Tr}(TW^{\mu\nu})F_1(h) \]

\[\mathcal{P}_2(h) = ig' B_{\mu\nu} \text{Tr}(T[V^\mu, V^\nu])F_2(h) \]

\[\mathcal{P}_3(h) = ig \text{Tr}(W_{\mu\nu}[V^\mu, V^\nu])F_3(h) \]

\[\mathcal{P}_4(h) = ig' B_{\mu\nu} \text{Tr}(TV^\mu)\partial^\nu F_4(h) \]

\[\mathcal{P}_5(h) = ig \text{Tr}(W_{\mu\nu}V^\mu)\partial^\nu F_5(h) \]

\[\mathcal{P}_6(h) = (\text{Tr}(V^\mu V^\nu))^2 F_6(h) \]

\[\mathcal{P}_7(h) = \text{Tr}(V^\mu V^\nu)\partial_\nu \partial^\nu F_7(h) \]

\[\mathcal{P}_8(h) = \text{Tr}(V^\mu V^\nu)\partial^\mu F_8(h)\partial^\nu F_8'(h) \]

\[\mathcal{P}_9(h) = \text{Tr}((D_\mu V^\mu)^2)F_9(h) \]

\[\mathcal{P}_{10}(h) = \text{Tr}(V_\nu D_\mu V^\mu)\partial^\nu F_{10}(h) \]

\[\mathcal{P}_\square H = \frac{1}{v^2} (\partial_\mu \partial^\mu h)^2 F_\square H(h) \]

\[\mathcal{P}_{11}(h) = (\text{Tr}(V^\mu V_\nu))^2 F_{11}(h) \]

\[\mathcal{P}_{12}(h) = g^2 (\text{Tr}(TW_{\mu\nu}))^2 F_{12}(h) \]

\[\mathcal{P}_{13}(h) = ig \text{Tr}(TW_{\mu\nu})\text{Tr}(T[V^\mu, V^\nu])F_{13}(h) \]

\[\mathcal{P}_{14}(h) = g\varepsilon^{\mu\nu\rho\lambda} \text{Tr}(TV^\mu)\text{Tr}(V^\nu W_{\rho\lambda})F_{14}(h) \]

\[\mathcal{P}_{15}(h) = \text{Tr}(TD_\mu V^\mu)\text{Tr}(TD_\nu V^\nu)F_{15}(h) \]

\[\mathcal{P}_{16}(h) = \text{Tr}([T, V_\nu]D_\mu V^\mu)\text{Tr}(TV^\nu)F_{16}(h) \]

\[\mathcal{P}_{17}(h) = ig \text{Tr}(TW_{\mu\nu})\text{Tr}(TV^\mu)\partial^\nu F_{17}(h) \]

\[\mathcal{P}_{18}(h) = \text{Tr}(T[V^\mu, V_\nu])\text{Tr}(TV^\mu)\partial^\nu F_{18}(h) \]

\[\mathcal{P}_{19}(h) = \text{Tr}(TD_\mu V^\mu)\text{Tr}(TV_\nu)\partial^\nu F_{19}(h) \]

\[\mathcal{P}_{20}(h) = \text{Tr}(V^\mu V^\nu)\partial_\nu F_{20}(h)\partial^\nu F_{20}'(h) \]

\[\mathcal{P}_{21}(h) = (\text{Tr}(TV^\mu))^2 \partial_\nu F_{21}(h)\partial^\nu F_{21}'(h) \]

\[\mathcal{P}_{22}(h) = \text{Tr}(TV^\mu)\text{Tr}(TV_\nu)\partial^\mu F_{22}(h)\partial^\nu F_{22}'(h) \]

\[\mathcal{P}_{23}(h) = \text{Tr}(V^\mu V^\nu)(\text{Tr}(TV_\nu))^2 F_{23}(h) \]

\[\mathcal{P}_{24}(h) = \text{Tr}(V^\mu V_\nu)\text{Tr}(TV^\mu)\text{Tr}(TV^\nu)F_{24}(h) \]

\[\mathcal{P}_{25}(h) = (\text{Tr}(TV^\mu))^2 \partial_\nu \partial^\nu F_{25}(h) \]

\[\mathcal{P}_{26}(h) = (\text{Tr}(TV^\mu)\text{Tr}(TV_\nu))^2 F_{26}(h) \]

Juan González Fraile (UB) Johns Hopkins 2014 Heidelberg, July 2014 17 / 23
Disentangling a dynamical Higgs

Decorrelating Higgs and TGV

In the linear case

$$O_B = \frac{ieg^2}{8} A_{\mu \nu} W^{-\mu} W^{+\nu} (v + h)^2 - \frac{ie^2 g}{8 \cos \theta_W} Z_{\mu \nu} W^{-\mu} W^{+\nu} (v + h)^2$$

$$- \frac{eg}{4 \cos \theta_W} A_{\mu \nu} Z^\mu \partial^\nu h (v + h) + \frac{e^2}{4 \cos^2 \theta_W} Z_{\mu \nu} Z^\mu \partial^\nu h (v + h)$$

Higgs-TGV Correlated!

whereas in the non-linear case

$$P_2(h) = 2ieg^2 A_{\mu \nu} W^{-\mu} W^{+\nu} F_2(h) - 2 \frac{ie^2 g}{\cos \theta_W} Z_{\mu \nu} W^{-\mu} W^{+\nu} F_2(h)$$

$$P_4(h) = - \frac{eg}{\cos \theta_W} A_{\mu \nu} Z^\mu \partial^\nu F_4(h) + \frac{e^2}{\cos^2 \theta_W} Z_{\mu \nu} Z^\mu \partial^\nu F_4(h)$$

Higgs-TGV may be decorrelated!

4 Parallel reasoning applies to O_W and $P_3 - P_5$
Disentangling a dynamical Higgs

Decorrelating Higgs and TGV

Analysis using Higgs and TGV data\(^5\) of

\[\mathcal{P}_G, \mathcal{P}_B, \mathcal{P}_W, \mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3, \mathcal{P}_4, \mathcal{P}_5, \mathcal{P}_C, \mathcal{P}_T \text{ and } \mathcal{P}_H, \]

After taking into consideration tree level contributions of \(\mathcal{P}_T\) and \(\mathcal{P}_1\) to EWPD, the relevant parameters for the analysis are\(^6\):

\[a_G, a_B, a_W, c_2, c_3, a_4, a_5, (2a_c - c_C) \text{ and } c_H, \]

But we can rotate instead to:

\[a_G, a_B, a_W, \Sigma_B, \Delta_B, \Sigma_W, \Delta_W, (2a_c - c_C) \text{ and } c_H, \]

where

\[\Sigma_B \equiv 4(2c_2 + a_4), \quad \Sigma_W \equiv 2(2c_3 - a_5), \]

\[\Delta_B \equiv 4(2c_2 - a_4), \quad \Delta_W \equiv 2(2c_3 + a_5), \]

defined such that at order \(d = 6\) of the linear regime \(\Sigma_B = c_B, \Sigma_W = c_W, \text{ while } \Delta_B = \Delta_W = 0.\)

\(^5\)The analysis details as in the linear fit

\(^6\)For simplicity here \(a_i = c_i \ast a_i\)
Disentangling a dynamical Higgs

Decorrelating Higgs and TGV

Left: A BSM sensor irrespective of the type of expansion: constraints from TGV and Higgs data on the combinations $\Sigma_B = 4(2c_2 + a_4)$ and $\Sigma_W = 2(2c_3 - a_5)$, which converge to c_B and c_W in the linear $d = 6$ limit.

Right: A non-linear versus linear discriminator: constraints on the combinations $\Delta_B = 4(2c_2 - a_4)$ and $\Delta_W = 2(2c_3 + a_5)$, which would take zero values in the linear (order $d = 6$) limit (as well as in the SM), indicated by the dot at $(0, 0)$.
Higher order differences

Reshuffling → interactions that are strongly suppressed in one case may be leading corrections in the other.

More on TGV!

- At first order in non-linear expansion (but at dim–8 in the linear one) P_{14} contributes to anomalous TGV: g_5^Z (C- and P-odd but CP even).

$$\mathcal{L}_{WWV} = -ig_5^V \epsilon^{\mu \nu \rho \sigma} \left(W^+_{\mu} \partial_\rho W^-_\nu - W^-_{\nu} \partial_\rho W^+_{\mu} \right) V_\sigma$$

$$\rightarrow -\xi^2 \frac{g^3}{\cos \theta_W} \epsilon^{\mu \nu \rho \lambda} \left[p_+ + p_-\right]$$

- At first order in the linear expansion

$$\mathcal{O}_{WWW} = i \epsilon_{ijk} \hat{W}_{\mu}^{i, \nu} \hat{W}_{\rho}^{j, \nu} \hat{W}_{\rho}^{k, \mu}$$

gives contribution to anomalous TGV λ_V

- Chiral expansion: several operators contribute to QGVs without inducing TGVs → coefficients less constrained at present (larger deviations may be expected).

Linear expansion: modifications of QGVs that do not induce changes to TGVs appear only when $d = 8$.
Relaxing assumptions: \(CP \)–odd

- List & applications of \(CP \)–odd non–linear operators:
 \[
 \mathcal{L}_{\text{chiral}} = \mathcal{L}_{SM} + \Delta \mathcal{L}_{CP},
 \]
 \[
 \Delta \mathcal{L}_{CP} = c_{\tilde{B}} S_{\tilde{B}}(h) + c_{\tilde{W}} S_{\tilde{W}}(h) + c_{\tilde{G}} S_{\tilde{G}}(h) + c_{2D} S_{2D}(h) + \sum_{i=1}^{16} c_i S_i(h).
 \]

- Use \(CP \)–odd sensitive signals
Relaxing assumptions: CP–odd

- List & applications of CP–odd non–linear operators:
 \[
 \mathcal{L}_{\text{chiral}} = \mathcal{L}_{SM} + \Delta \mathcal{L}_{CP},
 \]
 \[
 \Delta \mathcal{L}_{CP} = c_B S_B(h) + c_W S_W(h) + c_G S_G(h) + c_{2D} S_{2D}(h) + \sum_{i=1}^{16} c_i S_i(h).
 \]

- Use CP–odd sensitive signals:

 Fermionic **EDMs** (sensitive to $\bar{\kappa}_\gamma$, $\bar{g}_h h \gamma$)

 ![Diagram](image)
Relaxing assumptions: \(CP\)–odd

List & applications of \(CP\)–odd non–linear operators:

\[
\mathcal{L}_{\text{chiral}} = \mathcal{L}_{SM} + \Delta \mathcal{L}_{CP},
\]

\[
\Delta \mathcal{L}_{CP} = c_{\tilde{B}} S_{\tilde{B}}(h) + c_{\tilde{W}} S_{\tilde{W}}(h) + c_{\tilde{G}} S_{\tilde{G}}(h) + c_{2D} S_{2D}(h) + \sum_{i=1}^{16} c_i S_i(h).
\]

Use \(CP\)–odd sensitive signals:

- Fermionic EDMs (sensitive to \(\tilde{\kappa}_\gamma, \tilde{g}_h\gamma\gamma\))

\[
\begin{align*}
\gamma & \quad q \\
W & \quad p_1 \\
\gamma & \quad W \\
f & \quad p_2
\end{align*}
\]

\(CP\)–violating TGV

\[
\text{at 14 TeV} \quad 300 \text{ fb}^{-1}
\]
Relaxing assumptions

List & applications of CP–odd non–linear operators:

\[\mathcal{L}_{\text{chiral}} = \mathcal{L}_{SM} + \Delta \mathcal{L}_{CP}, \]

\[\Delta \mathcal{L}_{CP} = c_{\tilde{B}} S_{\tilde{B}}(h) + c_{\tilde{W}} S_{\tilde{W}}(h) + c_{\tilde{G}} S_{\tilde{G}}(h) + c_{2D} S_{2D}(h) + \sum_{i=1}^{16} c_i S_i(h). \]

Use CP–odd sensitive signals:

Fermionic EDMs (sensitive to \(\tilde{\kappa}_\gamma, \tilde{g}_h \gamma \gamma \))

\[C_P-\text{violating TGV} \]

\[C_P-\text{violation on Higgs physics: } h \to ZZ, \text{ e. g. } \text{CMS analysis:} \]

\[A(h \to ZZ) = \frac{1}{v} \left(d_1 m_Z^2 \epsilon_1^* \epsilon_2^* + d_2 f_{\mu \nu}^{(1)} f_{\mu \nu}^{* (2)} + d_3 f_{\mu \nu}^{* (1)} \tilde{f}_{\mu \nu}^{* (2)} \right), \]
Conclusions

- **Model independent** analysis where the effects of new physics in the Higgs couplings are parametrized in \mathcal{L}_{eff}. If $SU(2)_L$ doublet $\rightarrow SU(2)_L \times U(1)_Y$ gauge symmetry linearly realized:

$$\mathcal{L}_{\text{eff}} = \sum_n \frac{f_n}{\Lambda^2} \mathcal{O}_n ,$$

- **Power to the data** \rightarrow operators whose coefficients are more easily related to existing data.

 So far \rightarrow Higgs boson SM–like.

- Exploit interesting **complementarity between experimental searches**: TGV and Higgs data.

- Study non–linear or chiral Lagrangian \rightarrow more freedom \rightarrow Testable decorrelations!

- In addition, promising new signals specific for one of the expansions: g_5^Z.

 arXiv:1207.1344, 1211.4580, 1304.1151, 1311.1823

- Study non–linear CP–odd operators \rightarrow Recently finished: arxiv:1406.6367

- Combine the full Higgs and TGV 7+8 TeV sets of data in this framework.

- Jump from signal strengths to exploit the **kinematic** structures
Conclusions

- **Model independent** analysis where the effects of new physics in the Higgs couplings are parametrized in \mathcal{L}_{eff}. If $SU(2)_L$ doublet $\rightarrow SU(2)_L \times U(1)_Y$ gauge symmetry linearly realized:

$$\mathcal{L}_{\text{eff}} = \sum_n \frac{f_n}{\Lambda^2} \mathcal{O}_n$$

- **Power to the data** \rightarrow operators whose coefficients are more easily related to existing data.

 So far \rightarrow Higgs boson SM–like.

- Exploit interesting **complementarity between experimental searches**: TGV and Higgs data.

- Study non–linear or chiral Lagrangian \rightarrow more freedom \rightarrow Testable decorrelations!

- In addition, promising new signals specific for one of the expansions: g_5^Z.

 arXiv:1207.1344, 1211.4580, 1304.1151, 1311.1823

- Study non–linear CP–odd operators \rightarrow Recently finished: arxiv:1406.6367

- Combine the full Higgs and TGV 7+8 TeV sets of data in this framework.

- Jump from signal strengths to exploit the **kinematic** structures