$K \rightarrow \pi \ell^+\ell^-$: Status and update

Jorge Portolés
IFIC, Universitat de València – CSIC, Apt. Correus 22085, E-46071 València, Spain
E-mail: Jorge.Portoles@ific.uv.es

Abstract. $K \rightarrow \pi \ell^+\ell^-$ decays, $\ell = e, \mu$, will be one of the goals of future kaon facilities, like NA62 (CERN) and K^0TO (J-PARC). We review briefly the theoretical status of those processes.

1. Introduction

Suppressed (rare) kaon decays in the Standard Model (SM) constitute an interesting benchmark where to look for New Physics. Common sense and logic tell us that, in any observable, in order to look for physics beyond the SM one needs to have a reliable SM prediction and this is not obvious in many kaon decays. Indeed low-energy strong interacting effects, of difficult implementation, may be involved in those determinations [1].

$K \rightarrow \pi \nu\nu$ are atypical, poorly measured, decays that are dominated by short-distance interactions [2, 3] and, accordingly, have a very accurate prediction within the SM. This is the reason why they are the main goal of present dedicated facilities: $K^+ \rightarrow \pi^+\nu\overline{\nu}$ at NA62 (CERN) and $K_L \rightarrow \pi^0\nu\overline{\nu}$ at K^0TO (J-PARC) [4]. These devices should be able, in addition, to get samples of other related processes like $K^+ \rightarrow \pi^+\ell^+\ell^-$ ($\ell = e, \mu$) at NA62 or $K_L \rightarrow \pi^0\gamma\gamma$ at K^0TO (as we will comment the latter is relevant to determine the CP-conserving contribution to $K_L \rightarrow \pi^0\ell^+\ell^-$).

In this note we summarize the theoretical status of the $K \rightarrow \pi \ell^+\ell^-$ decays. These are $\Delta S = 1$ weak neutral current transitions in the SM and, hence, very suppressed. Contrarily to the case above, these decays are fairly dominated by strongly interacting low-energy dynamics which is always harder to determine. As in many other processes of analogous features, Chiral Perturbation Theory (ChPT) is the appropriate tool to handle these decays [5, 6]. They were first studied within this framework by Ecker, Pich and De Rafael [7, 8] when they computed the dominant octet ($\Delta I = 1/2$) contributions at the leading $O(p^4)$ in ChPT. This set up a systematic approach that would pave the way for later improvements, as we will see. The subdominant contributions of $SU(3)$ 27-representation operators, at $O(p^4)$, have been carried out in Ref. [9].

$K^+,K_S \rightarrow \pi \ell^+\ell^-$ decays are dominated by single virtual-photon exchange, $K \rightarrow \pi\gamma^*$. However this contribution is CP violating for $K_L \rightarrow \pi^0\ell^+\ell^-$ and, consequently, the latter is driven by substantially different dynamics. The theoretical status of the first processes will be set forth in Section 1. Meanwhile Section 2 will be dedicated to the description of the K_L decay.

A more detailed account of $K \rightarrow \pi \ell^+\ell^-$ decays and their corresponding bibliography can be looked up in Ref. [1].
2. \(K^+, K_S \rightarrow \pi \ell^+ \ell^- \)

CP allowed \(K(k) \rightarrow \pi(p) \ell^+ \ell^- \), \(\ell = e, \mu \), decays are dominated by single virtual photon exchange \(K \rightarrow \pi \gamma^* \). This is the case for \(K^+ \) and \(K_S \) decays. Hence the amplitude is determined by one electromagnetic transition form factor in the presence of nonleptonic weak interactions \([7, 10]\):

\[
i \int d^4x \, e^{i q \cdot x} \langle \pi(p) | T \{ \mathcal{J}_{em}^\mu(x) \mathcal{L}_{\Delta S=1}(0) \} | K_j(k) \rangle = \frac{G_F M_K^2}{(4\pi)^2} V_j(z) [z(k+p)^\mu - (1 - r_\pi^2)q^\mu],
\]

with \(j = +, S \), to distinguish both decays, and \(q = k - p \), \(z = q^2/M_K^2 \), \(r_P = M_P/M_K \). Here \(\mathcal{J}_{em}^\mu \) is the electromagnetic current and \(\mathcal{L}_{\Delta S=1} \) the strangeness changing nonleptonic weak Lagrangian. The spectrum in the dilepton invariant mass is then given by:

\[
d\Gamma_j/dz = \frac{G_F^2 \alpha^2 M_K^5}{12\pi(4\pi)^4} \lambda^{3/2}(1, z, r_\pi^2) \sqrt{1 - 4 r_\pi^2/z} \left[1 + 2 \frac{r_\pi^2}{z} \right] |V_j(z)|^2,
\]

with \(\lambda(a, b, c) = (a + b - c)^2 - 4ab \) and \(4r_\pi^2 \leq z \leq (1 - r_\pi^2)^2 \).

The \(V_j(z) \) form factor can be determined within the ChPT framework, i.e. in a model-independent way. Because gauge invariance, \(V_j(z) = 0 \) at \(O(p^2) \) in the chiral expansion. Hence the leading contribution is \(O(p^4) \) that was computed in Ref. \([7]\). Although a complete study to next-to-leading \(O(p^6) \) has not been performed yet, the dominant unitarity corrections from \(K \rightarrow \pi \pi \pi \), shown in Fig. 1, were studied in Ref. \([10]\), that constitute the present state-of-the-art (there is also a tiny contribution from a kaon running in the loop, that obviously has no absorptive part). The full result can be decomposed in a polynomial contribution (linear in \(z \) up to this order) plus a unitarity loop correction:

\[
V_j(z) = a_j + b_j z + V_j^{\pi\pi}(z), \quad (j = +, S).
\]

The polynomial part is, unfortunately, not fully given by chiral symmetry. It translates, mainly, into the Low Energy Couplings (LECs) of the ChPT framework, and it encodes contributions from higher energy spectra that have been integrated out in the process to reach the low-energy effective theory. \(a_j \) gets contributions starting at \(O(p^6) \) while \(b_j \), but for a tiny \(O(p^4) \) kaon loop input in Fig. 1, starts at \(O(p^6) \). As we will comment we have, up to now, only model-dependent theoretical predictions for these parameters.

The unitarity corrections in \(V_j(z) \) are given by:

\[
V_j^{\pi\pi}(z) = \frac{a_j + \beta_j (z - z_0) r_\pi^2}{G_F M_K^2 r_\pi^2} \left[\frac{4}{9} - \frac{4}{3z} + \frac{4}{3z} \left(1 - \frac{z}{9} \right) G(z) \right] \left[1 + \frac{z}{r_\rho^2} \right],
\]

where \(z_0 = r_\pi^2 + 1/3 \). We now explain the structure of the unitarity corrections:

![Figure 1. \(K \rightarrow \pi \pi \pi \) contribution to \(K^+, K_S \rightarrow \pi \gamma^* \).](image-url)
• The interaction of the vertex $K \to \pi\pi\pi$ in Fig. 1 is driven by the α_j and β_j constants that are expressed in terms of the parameterizations of Ref. [11]:

$$
\alpha_+ = \beta_1 - \frac{1}{2} \beta_3 + \sqrt{3} \gamma_3, \quad \beta_+ = 2(\zeta_1 + \zeta_3 - \xi_3')
$$

$$
\alpha_S = -\frac{4}{\sqrt{3}} \gamma_3, \quad \beta_S = \frac{8}{3} \xi_3.
$$

(5)

It can be noticed that α_+, β_+ are given by both $\Delta I = 1/2, 3/2$ transitions, while α_S, β_S come only from $\Delta I = 3/2$ transitions, because these are the only ones that drive the CP conserving contribution to $K_S \to \pi^0 \pi^+ \pi^-$. As a consequence $V_S^{\pi\pi}(z)$ is fairly suppressed in comparison with $V_+^{\pi\pi}(z)$.

• The 1-loop function $G(z)$ is given in Ref. [1].

• The $\pi^+ \pi^- \gamma^*$ vertex in the one-loop diagram is dressed through the vector form factor in the Resonance Chiral Theory framework [12]:

$$
F_V(z) = \frac{M_\rho^2}{M_\rho^2 - M_K^2} z \simeq 1 + \frac{z}{r_\rho^2},
$$

(6)

If, as expected, $a_j, b_j \sim \mathcal{O}(1)$, the polynomial contribution fairly dominates over the unitarity-cut loop corrections given by $V_+^{\pi\pi}(z)$. Hence these decays are very sensitive to the chiral LECs. Several models have been considered for their computation. One of them comes to mind immediately from the comparison of the electromagnetic form factor in Eq. (6) and the weak polynomial term in $V_j(z)$ (3). One may consider that this later term could also be dominated by a resonance transition (VMD). This would predict:

$$
\left\{ \left. \begin{array}{l} a_j b_j > 0, \\
\frac{b_j}{a_j} = \frac{M_K^2}{M_\rho^2} \simeq 0.4 \end{array} \right\} \right. \text{VMD model}.
$$

(7)

Other models have also been employed: weak deformation model [13], minimal hadronic approximation [14], Padé type [15] or large-N_C considerations [16]. Recently RCB and UKQCD collaborations [17, 18] have studied these decays within lattice QCD and have produced:

$$
a_+ = 1.4 \pm 0.7, \quad b_+ = 0.7 \pm 0.8,
$$

(8)

that are in good agreement with the VMD model prediction (7). It has to be noted that this is a first try in the lattice. They are working with unphysically heavy pion and kaon masses and, accordingly, an extrapolation to the physical point is needed. We should expect an improvement from the lattice in the near future.

The values of a_j, b_j, can be extracted from the experimental data by using our model-independent description of $V_j(z)$ in Eq. (3) as they are the only unknowns. The present situation, given by NA48/1 and NA48/2 is depicted in Table 1. While in K^+ decay both, branching and spectrum, have been determined, in the K_S decay we only have the branching ratio. As a result only the a_S parameter has been resolved in the neutral decay, while we have results for both a_+ and b_+. By comparing the prediction of the VMD model in Eq. (7) with the phenomenological results for a_+ and b_+ in Table 1 we notice that the only agreement is in the common sign of both parameters but not in their ratio. Hence one could consider either that the model is not correct or that higher order chiral corrections are not negligible. This later hypothesis would be rather unexpected.

The spectra of $K^+ \to \pi^+ e^+ e^-$ decay is shown in Figure 2 while the one of $K^+ \to \pi^+ \mu^+ \mu^-$ is shown in Figure 3. In those figures we also show the theoretical prediction as given by the
The decay $K_L \to \pi^0 e^+ e^-$ is CP violating. As a consequence the dynamics of the $K_L \to \pi^0 e^+ e^-$ decay is more involved than the processes above. Indeed both long-distance and short-distance
Figure 4. ChPT predictions for the unintegrated charge asymmetry for the process $K^+ \rightarrow \pi^+ e^+e^-$ in the z variable.

contributions drive their observables. The structure of the amplitude includes, in addition to the vector form factor $V_L(z)$, other form factors, namely scalar, pseudoscalar and axial-vector, may contribute to this decay [24].

There are three dominating contributions:

- An indirect CP-violating transition due to the $K^0\bar{K}^0$ mixing, proportional to $V_S(z)$ in Eq. (3):
 \[V_L^{\text{ind}}(z) = \pm \varepsilon V_S(z). \]

- A direct CP-violating contribution arising from the four-fermion effective operators Q_{7V} and Q_{7A} given in [1]. The contributions to the form factors are proportional to $\text{Im}\lambda_t$ and the semileptonic form factors of $\langle \pi(p_{\pi})|\pi\gamma\mu|K(p_K)\rangle$ [24].

- A CP-conserving contribution from $K_L \rightarrow \pi^0\gamma\gamma \rightarrow \pi^0\ell^+\ell^-$ [25], as given by the Feynman diagram in Figure 5.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{CP-conserving contribution to $K_L \rightarrow \pi^0\ell^+\ell^-$.}
\end{figure}

The addition of both CP-violating contributions gives (using the VMD model to eliminate b_S):

\begin{align}
10^{12} \times \text{BR}(K_L \rightarrow \pi^0 e^+e^-)\Big|_{\text{CPV}} &= 15.7 |a_S|^2 \pm 6.2 |a_S| \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right) + 2.4 \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right)^2, \\
10^{12} \times \text{BR}(K_L \rightarrow \pi^0 \mu^+\mu^-)\Big|_{\text{CPV}} &= 3.7 |a_S|^2 \pm 1.6 |a_S| \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right) + 1.0 \left(\frac{\text{Im}\lambda_t}{10^{-4}} \right)^2. \end{align}

(12)
Process	Theory CP-violating	Theory CP-conserving	Experiment (90% C. L.)
$K_L \to \pi^0 e^+ e^-$	3.1 ± 0.9	~ 0	$< 28 \ [26]$
$K_L \to \pi^0 \mu^+ \mu^-$	1.4 ± 0.5	0.52 ± 0.16	$< 38 \ [27]$

Table 2. Comparison between theoretical and experimental results for $\text{BR}(K_L \to \pi^0 \ell^+ \ell^-)$. The numbers correspond to $\text{BR} \times 10^{11}$. We assume positive interference between both CP-violating contributions (theoretically preferred [28]).

It can be seen that for $|a_S| \sim 1$ (as the phenomenological results of Table 1 suggest) the indirect CP-violating contribution should be dominating in the electronic case while for the muon both are alike.

In Table 2 we compare the present experimental bounds with both CP-violating and CP-conserving pieces. The dominating contribution to the latter is helicity suppressed ($\propto M_{\ell}$) and, therefore, it is negligible in the electron case. However, although smaller than the CP-violating, the CP-conserving contribution is not tiny in $K_L \to \pi^0 \mu^+ \mu^-$. It is interesting to note how close to the present experimental bounds are the SM predictions. We are almost there.

Acknowledgments

This work has been partially supported by MEC (Spain) under grant FPA2014-53631-C2-1-P, by the Spanish Centro de Excelencia Severo Ochoa Programme [SEV-2014-0398] and by the Generalitat Valenciana [PrometeoII/2013/007].

References

[1] Cirigliano V, Ecker G, Neufeld H, Pich A and Portolés J 2012 Rev. Mod. Phys. 84 399 (Preprint 1107.6001)
[2] Buchalla G and Buras A J 1994 Nucl. Phys. B412 106–142 (Preprint hep-ph/9308272)
[3] Buras A J, Gorbahn M, Haisch U and Nierste U 2005 Phys. Rev. Lett. 95 261805 (Preprint hep-ph/0508165)
[4] Komatsubara T K 2012 Prog. Part. Nucl. Phys. 67 995–1018 (Preprint 1203.6437)
[5] Gasser J and Leutwyler H 1984 Ann. Phys. 158 142
[6] Gasser J and Leutwyler H 1985 Nucl. Phys. B250 465
[7] Ecker G, Pich A and de Rafael E 1987 Nucl. Phys. B291 692
[8] Ecker G, Pich A and de Rafael E 1988 Nucl. Phys. B303 665
[9] Ananthanarayan B and Sentitemsu Insong I 2012 J. Phys. G39 095002 (Preprint 1207.0567)
[10] D’Ambrosio G, Ecker G, Isidori G and Portolés J 1998 JHEP 08 004 (Preprint hep-ph/9808289)
[11] Kambor J, Missimer J H and Wyler D 1991 Phys. Lett. B261 496–503
[12] Ecker G, Gasser J, Leutwyler H, Pich A and de Rafael E 1989 Phys. Lett. B223 425
[13] Ecker G, Pich A and de Rafael E 1990 Phys. Lett. B237 481
[14] Friot S, Grey nat D and de Rafael E 2004 Phys. Lett. B595 301–308 (Preprint hep-ph/0404136)
[15] Dubi nić ková A Z, Dubi nić ková S, Goud zovski E, Pervush v V and Se čanskiy M 2008 Phys. Part. Nucl. Lett. 5 76–84 (Preprint hep-ph/0611175)
[16] Coluccio Leskow E, D’Ambrosio G, Grey nat D and Nath A 2016 Phys. Rev. D93 094031 (Preprint 1603.09721)
[17] Christ N H, Feng X, Portelli A and Sachrajda C T (RBC, UKQCD) 2015 Phys. Rev. D92 094512 (Preprint 1507.03094)
[18] Christ N H, Feng X, Juttner A, Lawson A, Portelli A and Sachrajda C T 2016 (Preprint 1608.07585)
[19] Batley J R et al. (NA48/2) 2009 Phys. Lett. B677 246–254 (Preprint 0903.3130)
[20] Batley J R et al. (NA48/2) 2011 Phys. Lett. B697 107–115 (Preprint 1011.4817)
[21] Batley J R et al. (NA48/1) 2003 Phys. Lett. B576 43–54 (Preprint hep-ex/0309075)
[22] Batley J R et al. (NA48/1) 2004 Phys. Lett. B599 197–211 (Preprint hep-ex/0409011)
[23] D’Ambrosio G and Gao D N 2002 JHEP 0207 068 (Preprint hep-ph/0203087)
[24] Isidori G, Smith C and Unter dofer R 2004 Eur. Phys. J. C36 57–66 (Preprint hep-ph/0404127)
[25] Helliger P and Sehgal L M 1993 Phys. Rev. D47 4920–4938
[26] Alavi-Harati A et al. (KTeV) 2004 Phys. Rev. Lett. 93 021805 (Preprint hep-ex/0309072)
[27] Alavi-Harati A et al. (KTeV) 2000 Phys. Rev. Lett. 84 5279–5282 (Preprint hep-ex/0001006)
[28] Buchalla G, D’Ambrosio G and Isidori G 2003 Nucl. Phys. B672 387–408 (Preprint hep-ph/0308008)