Supersolvable Frobenius groups with nilpotent centralizers

Jhone Caldeira and Emerson de Melo

Abstract. Let FH be a supersolvable Frobenius group with kernel F and complement H. Suppose that a finite group G admits FH as a group of automorphisms in such a manner that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class c. We show that G is nilpotent of $(c, |FH|)$-bounded class.

1. Introduction

Let a group A act by automorphisms on a group G. We denote by $C_G(A)$ the set $C_G(A) = \{x \in G; \ x^a = x \text{ for all } a \in A\}$, the centralizer of A in G (the fixed-point subgroup). Very often the structure of $C_G(A)$ has strong influence over the structure of G. Recently, prompted by Mazurov’s problem 17.72 in the Kourovka Notebook [8], some attention was given to the situation where a Frobenius group FH acts by automorphisms on a finite group G. Recall that a Frobenius group FH with kernel F and complement H can be characterized as a finite group that is a semidirect product of a normal subgroup F by H such that $C_F(h) = 1$ for every $h \in H \setminus \{1\}$. By Thompson’s theorem [11] the kernel F is nilpotent, and by Higman’s theorem [4] the nilpotency class of F is bounded in terms of the least prime divisor of $|H|$.

In the case where the kernel F acts fixed-point-freely on G, some results on the structure of G were obtained by Khukhro, Makarenko and Shumyatsky in [7]. The authors prove that various properties of G are in a certain sense close to the corresponding properties of its subgroup $C_G(H)$, possibly also depending on H. In particular, they proved the following result.

2010 Mathematics Subject Classification. Primary 20D45; secondary 17B70, 20D15, 20F40.

Key words and phrases. Frobenius groups of automorphisms; fixed-point-free; nilpotency class.
Theorem 1.1 ([7], Theorem 2.7 (c)). Suppose that a finite group G admits a Frobenius group of automorphisms FH with kernel F and complement H such that $C_G(F) = 1$ and $C_G(H)$ is nilpotent. Then G is nilpotent.

Under the additional assumption that the Frobenius group of automorphisms FH is metacyclic, that is, supposing that the kernel F is cyclic, the authors use some Lie ring methods to obtain upper bounds for the nilpotency class of G. They proved that if $C_G(H)$ is nilpotent of class c, then the nilpotency class of G is bounded in terms of c and $|H|$. In the case when GF is also a Frobenius group with kernel G and complement F (so that GFH is a double Frobenius group) the latter result was obtained earlier in [10]. Examples in [7] show that the result on the nilpotency class of G is no longer true in the case of non-metacyclic Frobenius groups.

Recall that a group N is supersolvable if N possesses a normal series with cyclic factors such that each term is normal in N. It is easy to see that a supersolvable group possesses a chief series whose factors have prime order.

Throughout the paper we use the expression “(a, b, \ldots)-bounded” to mean “bounded from above in terms of a, b, \ldots only”. In the present paper we consider the situation in which a not necessarily metacyclic Frobenius group acts by automorphisms on a finite group. More precisely, we prove the following theorem.

Theorem 1.2. Let FH be a supersolvable Frobenius group with kernel F and complement H. Suppose that FH acts on a finite group G in such a way that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class c. Then G is nilpotent of $(c, |FH|)$-bounded class.

Note that G in Theorem 1.2 is nilpotent by Theorem 1.1. We wish to show that the nilpotency class of G is $(c, |FH|)$-bounded. It should be mentioned that in the case of metacyclic FH, Khukhro, Makarenko and Shumyatsky in [7, Theorem 5.1] give a bound independent of the order $|F|$. At present it is unclear if in Theorem 1.2 the bound can be made independent of $|F|$. The proof is based on an analogous result on Lie algebras.

In [11, 6] we can find some other results bounding the nilpotency class for groups acted on by Frobenius groups of automorphisms with non-cyclic kernels.
2. Some results on graded Lie algebras

Let A be an additively written abelian group and L an A-graded Lie algebra:

$$L = \bigoplus_{a \in A} L_a, \quad [L_a, L_b] \subseteq L_{a+b}.$$

The particular case of $\mathbb{Z}/n\mathbb{Z}$-graded Lie algebras arises naturally in the study of Lie algebras admitting an automorphism φ of order n. This is due to the fact that, after the ground field is extended by a primitive nth root of unity ω, the eigenspaces $L_i = \{x \in L \mid x^\varphi = \omega^ix\}$ behave like the components of a $\mathbb{Z}/n\mathbb{Z}$-grading. For example, the proof of a well-known theorem of Kreknin [9] stating that a Lie ring L admitting a fixed-point-free automorphism of finite order n is soluble with derived length bounded by a function of n, is reduced to proving the solvability of a $\mathbb{Z}/n\mathbb{Z}$-graded Lie ring with $L_0 = 0$.

Theorem 2.1. Let n be a positive integer and L be a $\mathbb{Z}/n\mathbb{Z}$-graded Lie algebra. If $L_0 = 0$, then L is solvable of n-bounded derived length.

In the special case where n is a prime we have the following well-known result proved by Higman.

Theorem 2.2. [4] Let p be a prime number and L be a $\mathbb{Z}/p\mathbb{Z}$-graded Lie algebra. If $L_0 = 0$, then L is nilpotent of p-bounded class.

If J, Y, J_1, \ldots, J_s are subsets of L we use $[J, Y]$ to denote the subspace of L spanned by the set $\{[j, y] \mid j \in J, y \in Y\}$ and for $i \geq 2$ we write $[J_1, \ldots, J_i]$ for $[[J_1, \ldots, J_{i-1}], J_i]$.

The next two results are also criteria for solvability and nilpotency of graded Lie algebra, respectively.

Theorem 2.3. [5] Theorem 1] Let n be a positive integer and L be a $\mathbb{Z}/n\mathbb{Z}$-graded Lie algebra. Suppose that $[L, L_0, \ldots, L_0]_m = 0$. Then, L is solvable of (n,m)-bounded derived length.

Theorem 2.4. [6] Proposition 2] Let A be an additively written abelian group and L an A-graded Lie algebra. Suppose that there are at most d nontrivial grading components among the L_a. If $[L, L_a, \ldots, L_a]_m = 0$ for all $a \in A$, then L is nilpotent of (d,m)-bounded class.
Now, let \(p \) be a prime number and \(L \) be a \(\mathbb{Z}/p\mathbb{Z} \)-graded Lie algebra. Assume that there exist non-negative integers \(u \) and \(v \) such that
\[
(1) \quad [L, L_0, \ldots, L_0] = 0
\]
and
\[
(2) \quad [[L, L] \cap L_0, L_a, \ldots, L_a] = 0, \quad \text{for all } a \in \mathbb{Z}/p\mathbb{Z}.
\]

We finish this section showing that conditions (1) and (2) together are sufficient to conclude that \(L \) is nilpotent of \((p, u, v)\)-bounded class.

By Theorem 2.3, condition (1) implies that \(L \) is solvable with \((p, u)\)-bounded derived length. Thus, we can use induction on the derived length of \(L \). If \(L \) is abelian, there is nothing to prove. Assume that \(L \) is metabelian. In this case, \([x, y, z] = [x, z, y] \), for every \(x \in [L, L] \) and \(y, z \in L \).

For each \(b \in \mathbb{Z}/p\mathbb{Z} \) we denote \([L, L] \cap L_0, L_a, \ldots, L_a\) by \(L'_b \). By Theorem 2.3 it is sufficient to prove that there exists a \((p, u, v)\)-bounded number \(t \) such that
\[
[L'_b, L_a, \ldots, L_a] = 0, \quad \text{for all } a, b \in \mathbb{Z}/p\mathbb{Z}.
\]

If \(b = 0 \), this follows from (2) with \(t = v \). Suppose that \(b \neq 0 \). If \(a = 0 \), the commutator is zero from (1) with \(t = u \). In the case where \(a \neq 0 \) we can find a positive integer \(s < p \) such that \(b + sa = 0 \) (mod \(p \)). Therefore, we have \([L'_b, L_a, \ldots, L_a] \subseteq [L'_0, L_a, \ldots, L_a] \). We know that the latter commutator is 0 by (2).

These previous ideas were applied in a similar way in [3] and [2].

3. Bounding nilpotency class of Lie algebras

In this section \(FH \) denotes a finite supersolvable Frobenius group with kernel \(F \) and complement \(H \).

Let \(R \) be an associative ring with unity. Assume that the characteristic of \(R \) is coprime with \(|F| \) and the additive group of \(R \) is finite (or locally finite). Let \(L \) be a Lie algebra over \(R \). The main goal of this section is to prove the following theorem.

Theorem 3.1. Suppose that \(FH \) acts by automorphisms on \(L \) in such a way that \(C_L(F) = 0 \) and \(C_L(H) \) is nilpotent of class \(c \). Then \(L \) is nilpotent of \((c, |FH|)\)-bounded class.
If F is cyclic, then L is nilpotent of $(c, |H|)$-bounded class by [7] Theorem 5.1. Therefore without loss of generality we may assume that F is not a cyclic group.

Let Z be a subgroup of prime order p of $Z(F)$ such that $Z \triangleleft FH$ and let φ be a generator of Z.

Now, let ω be a primitive pth root of unity. We extend the ground ring of L by ω and denote by \tilde{L} the algebra $L \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$. The action of FH on L extends naturally to \tilde{L}. Note that $C_{\tilde{L}}(F) = 0$ and $C_{\tilde{L}}(H)$ is nilpotent of class c. Since L and \tilde{L} have the same nilpotency class, it is sufficient to bound the class of \tilde{L}. Hence, without loss of generality it will be assumed that the ground ring contains ω so that we will work with L rather than \tilde{L}.

For each $i = 0, \ldots, p - 1$ we denote by L_i the φ-eigenspace corresponding to eigenvalue ω^i, that is, $L_i = \{x \in L ; x^{\varphi} = \omega^ix\}$. We have

$$L = \bigoplus_{i=0}^{p-1} L_i \quad \text{and} \quad [L_i, L_j] \subseteq L_{i+j \pmod{p}}.$$

Note that $L_0 = C_L(Z)$. It is easy to see that FH/Z acts on L_0 in such a manner that $C_{L_0}(F/Z) = 0$. Thus, by induction on $|FH|$ we conclude that L_0 is nilpotent of $(c, |FH|)$-bounded class.

A proof of the next lemma can be found in [7] Lemma 2.4. It will be useful to decompose the subalgebra L_0 into the fixed-points of the subgroups H^f, $f \in F$.

Lemma 3.2. Suppose that a finite group N admits a Frobenius group of automorphisms KB with kernel K and complement B such that $C_N(K) = 1$. Then $N = \langle C_N(B^y); y \in K \rangle$.

In the above lemma we can write $N = \langle C_N(B^y); y \in K \rangle$, since $C_N(B^y) = C_N(B^y)$.

For any $f \in F$ we denote by V_f the subalgebra $C_L(ZH^f) \subseteq L_0$. Note that ZH^f is also a Frobenius group and that $ZH^f = ZH$ whenever $f \in Z$.

Lemma 3.3. We have $L_0 = \sum_{f \in F} V_f$.

Proof. The subalgebra L_0 is FH-invariant and so it admits the natural action by the group FH/Z. Moreover, F/Z acts fixed-point-freely on L_0. Since the additive group of L is finite, it is immediate from Lemma 3.2 that $L_0 = \langle C_{L_0}(H^f); \bar{f} \in F/Z \rangle$. As a consequence we have that $L_0 = \langle C_L(ZH^f); f \in F \rangle$.

It is clear that any conjugated H^f of H can be considered as a Frobenius complement of FH. Now we describe the action H^f on
the homogeneous components \(L_i \). Since \(H \) is cyclic, we can choose a generator \(h \) of \(H \) and \(r \in \{1, 2, \ldots, p - 1\} \) such that \(\varphi^{h^{-1}} = \varphi^r \). Then \(r \) is a primitive \(q \)-th root of 1 in \(\mathbb{Z}/p\mathbb{Z} \). The group \(H \) permutes the homogeneous components \(L_i \) as follows: \(L_i^h = L_{ri} \) for all \(i \in \mathbb{Z}/p\mathbb{Z} \). Indeed, if \(x_i \in L_i \), then \((x_i^h)^\varphi = x_i^{h \varphi^{h^{-1}} h} = (x_i^\varphi)^h = \omega^r x_i^h \). On the other hand, since \(F \) commutes with \(\varphi \), we also have \(L_i^h = L_{ri} \) for all \(i \in \mathbb{Z}/p\mathbb{Z} \) (because if \(x_i \in L_i \), then \((x_i^h)^\varphi = \omega^r x_i^h \)). Thus, the action of \(H^f \) on the components \(L_i \) coincides with the action of \(H \).

To lighten the notation we establish the following convention.

Remark 3.4 (Index Convention). In what follows, for a given \(u_s \in L_s \) we denote both \(u_s^h \) and \(u_s^{(h_f)^r} \) by \(u_{r_i,s} \), since \(L_s^h = L_s^{(h_f)^r} = L_{ri,s} \). Therefore, we can write \(u_s + u_{r_1,s} + \cdots + u_{r_{q-1},s} \) to mean a fixed-point of \(H^f \) for any \(f \in F \).

Lemma 3.5. There exists a \((c, |FH|)\)-bounded number \(u \) such that \(\left[\underbrace{L, L_0, \ldots, L_0} \right] = 0 \).

Proof. It suffices to prove that \(\left[\underbrace{L_b, L_0, \ldots, L_0} \right] = 0 \) for any \(b \in \{0, 1, \ldots, p - 1\} \).

Taking into account that \(L_0 \) is nilpotent of \((c, |FH|)\)-bounded class, we may assume \(b \neq 0 \).

By Lemma 3.3 \(L_0 = \sum_f V_f \). Let \(u_b \in L_b \). Since \(u_b + u_{rb} + \cdots + u_{r^{q-1}b} \in C_L(H^f) \) and \(V_f \subseteq C_L(H^f) \), we have
\[
\left[u_b + u_{rb} + \cdots + u_{r^{q-1}b}, V_f, \ldots, V_f \right] = 0.
\]
Thus, \(\sum_{i=0}^{q-1} [u_{r^ib}, V_f, \ldots, V_f] = 0 \). On the other hand, \([u_{r^ib}, \underbrace{V_f, \ldots, V_f}_c] \in L_{r^ib} \) and \(L_{r^ib} \neq L_{r^jb} \) whenever \(i \neq j \). Therefore, we obtain \(\left[\underbrace{L_b, V_f, \ldots, V_f}_c \right] = 0 \).

Let \(S \) be an \(FH \)-invariant subalgebra of \(L_0 \) and let \(S_f = S \cap V_f \) for \(f \in F \). It follows that \(S = \sum_f S_f \). Now, we will show that there exists a \((c, |FH|)\)-bounded number \(u \) such that \(\left[\underbrace{L_b, S, \ldots, S}_u \right] = 0 \) using induction on the nilpotency class of \(S \). Since \([S, S]_u \) is nilpotent of smaller class, there exists a \((c, |FH|)\)-bounded number \(u_1 \) such that \(\left[\underbrace{L_b, [S, S], \ldots, [S, S]}_{u_1} \right] = 0 \).
Now, set \(l = (c-1)|F|+1 \) and \(W = [L_b, S_{i_1}, \ldots, S_{i_l}] \) for some choice of \(S_{i_j} \) in \(\{S_f; f \in F\} \). It is clear that for any permutation \(\pi \) of the symbols \(i_1, \ldots, i_l \) we have \(W \leq [L_b, S_{\pi(i_1)}, \ldots, S_{\pi(i_l)}] + [L_b, [S, S]] \). Also, note that the number \(l \) is big enough to ensure that some \(S_{i_j} \) occurs in the list \(S_{i_1}, \ldots, S_{i_l} \) at least \(c \) times. Thus, we deduce that \(W \leq \sum_{c}^{l} [L_b, S_{i_j}, \ldots, S_{i_l}], \ldots, S_{i_l}] + [L_b, [S, S]] \), where the asterisks denote some of the subalgebras \(S_j \) which, in view of the fact that \([L_b, S_{i_1}, \ldots, S_{i_l}] = 0 \), are of no consequence. Hence, \(W \leq [L_b, [S, S]] \).

Further, for any choice of \(S_{i_1}, \ldots, S_{i_l} \in \{S_f; f \in F\} \) the same argument shows that
\[
[W, S_{i_1}, \ldots, S_{i_l}] \leq [W, [S, S]] \leq [L_b, [S, S], [S, S]].
\]

More generally, for any \(m \) and any \(S_{i_1}, \ldots, S_{i_{ml}} \in \{S_f; f \in F\} \) we have
\[
[L_b, S_{i_1}, \ldots, S_{i_{ml}}] \leq [L_b, [S, S], \ldots, [S, S]].
\]

Put \(u = u_{i_1} \). The above shows that
\[
[L_b, S_{i_1}, \ldots, S_{i_{iu}}] \leq [L_b, [S, S], \ldots, [S, S]] = 0.
\]

Of course, this implies that \([L_b, S_{i_1}, \ldots, S_{i_{iu}}] = 0 \). The lemma is now straightforward from the case where \(\bar{S} = L_0 \). \(\square \)

Proof of Theorem 3.1

In view of Lemma 3.5, applying the arguments of Section 2, Theorem 3.1 holds if we show the following:

Lemma 3.6. Let \(L \) be metabelian. There exists a \((c, |FH|)-bounded\) number \(v \) such that \([L, L] \cap L_0, L_{a_1}, \ldots, L_{a_v} = 0\), for all \(a \in \mathbb{Z}/p\mathbb{Z} \).

Proof. Recall that \([L, L] \cap L_0 = \sum_f [L, L] \cap V_f \) where \(V_f = C_L(ZH^f) \). Set \(V = C_L(ZH) \) and \(V' = [L, L] \cap V \). First we prove that \([V', L_{a_1}, \ldots, L_{a_v} = 0\) for any \(a \in \mathbb{Z}/p\mathbb{Z} \).

For any \(u_a \in L_a \) we have \(u_a + u_{ra} + \cdots + u_{r^{a-1}} \in C_L(H) \) (under Index Convention). Thus,
\[
[V', u_a + u_{ra} + \cdots + u_{r^{a-1}}, \ldots, v_a + v_{ra} + \cdots + v_{r^{a-1}}] = 0
\]
for any c elements $u_a, \ldots, v_a \in L_a$.

Let T denote the span of all the sums $x_a + x_{ra} + \cdots + x_{r^{q-1}a}$ over $x_a \in L_a$ (in fact, T is the fixed-point subspace of H on $\bigoplus_{i=0}^{q-1} L_{r^i a}$). Then the latter equality means that

$$[V', \overbrace{T, \ldots, T}^c] = 0.$$

Applying φ^j we also obtain

$$[V', \overbrace{T\varphi^j, \ldots, T\varphi^j}^c] = [(V')\varphi^j, \overbrace{T\varphi^j, \ldots, T\varphi^j}^c] = 0.$$

A Vandermonde-type linear algebra argument shows that $L_a \subseteq \sum_{j=0}^{q-1} T\varphi^j$. Actually this fact is a consequence of the following result:

Lemma 3.7. [7] Lemma 5.3 Let $\langle \alpha \rangle$ be a cyclic group of order n, and ω a primitive nth root of unity. Suppose that M is a $\mathbb{Z}[\omega] \langle \alpha \rangle$-module such that $M = \sum_{i=1}^m M_{t_i}$, where $x\alpha = \omega^{t_i} x$ for $x \in M_{t_i}$ and $0 \leq t_1 < t_2 < \cdots < t_m < n$. If $z = y_{t_1} + y_{t_2} + \cdots + y_{t_m}$ for $y_{t_i} \in M_{t_i}$, then for some m-bounded number d_0 every element $n^{d_0} y_{t_s}$ is a $\mathbb{Z}[\omega]$-linear combination of the elements $z, z\alpha, \ldots, z\alpha^{m-1}$.

Now we can apply Lemma 3.7 with $\alpha = \varphi$, $M = L_a + L_{ra} + \cdots + L_{r^{q-1}a}$ and $m = q$ to $w = u_a + u_{ra} + \cdots + u_{r^{q-1}a} \in T$ for any $u_a \in L_a$, because here the indices r^ia can be regarded as pairwise distinct residues modulo p (r is a primitive qth root of 1 modulo p). Since p is invertible in our ground ring, follows that $L_a \subseteq \sum_{j=0}^{q-1} T\varphi^j$.

Set $v = (c-1)q+1$. We now claim that $[V', \overbrace{L_a, \ldots, L_a}^v] = 0$. Indeed, after replacing L_a with $\sum_{j=0}^{q-1} T\varphi^j$ and expanding the sums, in each commutator of the resulting linear combination we can freely permute the entries $T\varphi^j$, since L is metabelian. Since there are sufficiently many of them, we can place at least c of the same $T\varphi^j$ for some j_0 right after V' at the beginning, which gives 0.

Note that in the case where $f \in F \setminus Z$ we can consider the Frobenius group ZH^f and conclude in a similar way that

$$[[L, L] \cap V_f, \overbrace{u_a, \ldots, v_a}^v] = 0$$

for any v elements $u_a, \ldots, v_a \in L_a$. □
4. Proof of Theorem 1.2

We will use the following results.

Lemma 4.1. Let G be a finite p-group admitting a nilpotent group of automorphisms F such that $C_G(F) = 1$. Let $F_{p'}$ be the Hall p'-subgroup of F. Then $C_G(F_{p'}) = 1$.

Proof. The subgroup $C_G(F_{p'})$ is F-invariant, and so, it admits the natural action by the p-group $F/F_{p'}$. Since a finite p-group cannot act without nontrivial fixed points on another p-group, we must have $C_G(F_{p'}) = 1$. □

Lemma 4.2. [7, Lemma 2.2] Let G be a finite group admitting a nilpotent group of automorphisms F such that $C_G(F) = 1$. If N is an F-invariant normal subgroup of G, then $C_{G/N}(F) = 1$.

Lemma 4.3. [7, Theorem 2.3] Suppose that a finite group G admits a Frobenius group of automorphisms FH with kernel F and complement H. If N is an FH-invariant normal subgroup of G such that $C_N(F) = 1$, then $C_{G/N}(H) = C_G(H)N/N$.

We know that G in Theorem 1.2 is nilpotent. We wish to show that the nilpotency class of G is $(c, |FH|)$-bounded. It is easy to see that without loss of generality we may assume that G is a p-group. Moreover, by Lemma 4.1 we also may assume that $(|G|, |F|) = 1$.

Consider the associated Lie ring of the group G

$$L(G) = \bigoplus_{i=1}^{n} \gamma_i/\gamma_{i+1},$$

where n is the nilpotency class of G and γ_i are the terms of the lower central series of G. The nilpotency class of G coincides with the nilpotency class of $L(G)$. The action of the group FH on G induces naturally an action of FH on $L(G)$. Since F acts fixed-point-freely on every quotient γ_i/γ_{i+1}, it follows by Lemma 4.2 that $C_{L(G)}(F) = 0$. We observe that the subring $C_{L(G)}(H)$ is nilpotent of class at most c by Lemma 4.3. Theorem 3.1 now tells us that $L(G)$ is nilpotent of $(c, |FH|)$-bounded class. The proof is complete.

References

[1] J. Caldeira, E. de Melo, P. Shumyatsky, On groups and Lie algebras admitting a Frobenius group of automorphisms, *Journal of Pure and Applied Algebra*, 216 (2012), 2730-2736.

[2] E. de Melo, J. Caldeira, On finite groups admitting automorphisms with nilpotent centralizers. *J. Algebra* To appear.
[3] E. de Melo, P. Shumyatsky, Finite groups and their coprime automorphisms, *Proc. Amer. Math. Soc.*, 145 (2017), 3755-3760.

[4] G. Higman, Groups and rings which have automorphisms without non-trivial fixed elements, *J. London Math. Soc.*, 32 (1957), 321-334.

[5] E. I. Khukhro, On solvability of Lie rings with an automorphism of finite order, *Siberian Math. J.*, 42 (2001), 996-1000.

[6] E. I. Khukhro, P. Shumyatsky, Nilpotency of finite groups with Frobenius groups of automorphisms, *Monatsh. Math.*, 163 (2011), 461-470.

[7] E. I. Khukhro, N. Y. Makarenko, P. Shumyatsky, Frobenius groups of automorphisms and their fixed points, *Forum Math.*, 26 (2014), 73-112.

[8] E. I. Khukhro, V. D. Mazurov (Eds), Unsolved Problems in Group Theory. The Kourovka Notebook, 18th edition, *Institute of Mathematics, Novosibirsk*, (2014).

[9] V. A. Kreknin, The solubility of Lie algebras with regular automorphisms of finite period, *Math. USSR Doklady*, 4 (1963), 355-358.

[10] N.Y. Makarenko, P. Shumyatsky, Frobenius groups as groups of automorphisms, *Proc. Amer. Math. Soc.*, 138 (2010), 3425-3436.

[11] J. G. Thompson, Finite groups with fixed-point-free automorphisms of prime order, *Proc. Nat. Acad. Sci. USA* 45 (1959), 578-581.

Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia-GO, 74690-900 Brazil

_E-mail address: _jhone@ufg.br

Department of Mathematics, Universidade de Brasília, Brasília-DF, 70910-900 Brazil

_E-mail address: _emerson@mat.unb.br_