Soft sediment deformation features in Dauki Fault region: Evidence of paleoearthquakes, Shillong Plateau, NE India

B.V Lakshmi (✉ lakshmi.bv@iigm.res.in)
Indian Institute of Geomagnetism

Praveen B. Gawali
Indian Institute of Geomagnetism

Research Article

Keywords: Earthquake, Dauki fault, soft sediment deformation, micro faulting, 14C AMS dating, Mid-Holocene

Posted Date: July 29th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-267038/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Environmental Earth Sciences on January 20th, 2022. See the published version at https://doi.org/10.1007/s12665-022-10168-4.
Abstract

The northeastern region (NER) of India has a number of complex regional geological structures, out of which the Dauki fault (DF) is a prominent one. The E-W trending reverse DF, which is referred to go through the southern margin of Shillong Plateau (SP), have played major role in the regional deformation of the adjoining areas and was believed to be active during the Late Quaternary time. Previous paleoseismological studies conducted on the eastern and western part of the DF, Bangladesh, revealed that the fault ruptured in AD 849–920 and AD 1548 respectively. However there were no studies on the DF from southern side of the SP, India. For the first time, from Indian side, soft sediment deformation structures (SSDS) are reported from five trenches in and around the DF zone, SP. Close to the Dauki village, five trenches in the eastern part of the DF, SP, show presence of micro faulting, sand dykes, disturbed strata, and water escape structures. The detailed investigation of SSDS indicates that the origin for deformation is seismic trigger. The 14C AMS dating of deformation structures generated coseismically by earthquakes suggest three seismic events occurred between 130 and 920 year BP, 5415 to 9140 year BP, and at about 4285 year BP. This study confirms that DF is indeed active, at least, since the mid-Holocene. More trenching and dating of seismically induced deformation features are needed to accurately calculate the recurrence interval of major earthquakes that can strike the fast-expanding urban areas in India and Bangladesh.

Introduction

Paleoseismology was originated in the late nineteenth century, but the modern paleoseismology formed at the end of the 1970s. The goal of paleoseismological studies is to characterise the location, size, and frequency of strong earthquakes that have occurred in the recent geological past as a way to better understand both short-term and long-term seismic hazards. This geological information also complements historical records of significant seismic events, and offers a more complete picture of seismic hazards and fault behaviour. Studies on geologic evidence of prehistoric earthquakes includes primary and secondary or off-fault. Throughout the world, paleoseismological studies contributed much to understanding of the long term activity of the active faults (McCalpin 1996; Cox et al. 2000; Rockwell et al. 2002; McCalpin and Reicherter 2018; Masana et al. 2018; Manighetti et al. 2020 and references therein) and liquefaction and soft-sediment deformation (Obermeier 1998; Tuttle et al. 2010; Mugnier et al. 2011; Cox et al. 2012; 2014; Tuttle et al. 2019). The information about past seismic activity can be inferred from the soft-sediment deformational structures (SSDS) in the late quaternary geologic record (Allen, 1975). The term SSDS is generally used to denote structures that reflect deformational processes in un lithified sediments (Maltman 1984). Seilacher (1969) proposed the term ‘seismites’ to describe a variety of post-depositional structures in unconsolidated sediments produced by seismic shocks. In seismically active regions, seismites formed during or shortly after deposition are important indicators of paleoseismic activity (Lowe 1975, 1976; Sims 1975; Hempton and Dewey 1983; Owen 1987, 1996; Obermeier 1996a; Calvo et al. 1998; Rossetti 1999; Vanneste et al. 1999; Jones and Omoto 2000; Moretti 2000; Owen 2003; Bowman et al. 2004). There is no standard terminology to describe these
seismites (Lowe 1975). But, different individual studies can be used to infer a formal geometric classification to describe the observed structures. They have been reported in continental environments (Hempton and Dewey 1983; Scott and Price 1988; Karlin and Abella 1992; Alfaro et al. 1997; Jones and Omoto 2000; Rodríguez-Pascua et al. 2000; Neuerth et al. 2006; Koç-Taşgın and Altun 2019), transitional settings (Gibert et al. 2005; Owen and Moretti 2008) and marine successions (Moretti et al. 2001; Rossetti and Santus 2003; Kangi et al. 2010; Mastrogiacomo et al. 2012; Chen and Lee 2013; Yamamoto 2014; Alves 2015; Ortner and Kilian 2016). SSDS have been reported from both recent to ancient depositional environments (e.g. by Sims 1973; Allen 1982, 1985; Mazumder et al. 2006; Owen et al. 2011). The SSDS that form from the escape of pore fluids, usually water, occur commonly in fine to medium grained sand and these structures are a direct response to processes of fluid escape during liquefaction and fluidization (Lowe 1975). The SSDS attributed to seismic activity are (1) ball and pillow structures (Potter and Pettijohn 1963), pseudonodules or cycloids (Hempton and Dewey 1983), pinch and swell bedding and lenticular boudins Potter and Pettijohn, 1963. P.E. Potter and F.J. Pettijohn Palaeocurrents and basin analysis, Springer, Berlin (1963) p. 296., pocket and pillar structures (Postma 1983) and flame-like structures (Visher and Cunningham 1981). Deformation structures linked to seismic shock can play an important role in analyzing the distribution and intensity of ancient tectonic activity (Sims 1973, 1975). A direct relationship between earthquake occurrence and the resulting deformation of the sediments has been invoked by various workers (Sims 1973, 1975; Sieh 1978; Hempton and Dewey 1983; Talwani and Schewer 2001; Jayangondaperumal et al. 2008).

The northeastern region (NER) of India is tectonically active due to the ongoing collision of the Indian plate with the Eurasian plate to the North; and Burmese plate to the East. The northern subduction zone brought the Himalayan mountain ranges into picture while the eastern collision-subduction zone caused the existence of the Indo-Burma ranges as mentioned in Figure 1. The NER of the Indian plate is located in the converging zone of these two mountain ranges. As a result of which the region has a complex tectonic setting with a history of past large to great earthquakes (Ambraseys and Douglas 2004; Oldham 1899; Poddar 1950; Bilham 2004; Kayal 2008; Angelier and Baruah 2009). The NE states of India are seeing a steady rise in population in recent years. This is leading to indiscriminate construction of multi storied buildings for mass habitation. The new constructions may not adhere to seismicity-resistant guidelines while constructing these buildings. In an event of a great earthquake, the loss to life and property will be quite high. The effects of the past sequences were very dramatic, but can pale in significance if a major event were to occur in this region. The concentration of population has increased manifold in this region. The loss to life and property will be immense. Hence, understanding the recurrence interval of major seismic events becomes a necessity that can be comprehended by looking at signatures of the past earthquakes along the seismically active terrain.

Paleoseismic studies in the Himalayan region, based on trenching along primary fault scarp (Kumar et al. 2010; Jayangondaperumal et al. 2011, 2017 and 2018; Philip et al. 2011; Malik et al. 2015; Rajendran et al. 2015; Malik et al. 2017) SSDS due to liquefaction (Mohindra and Bagati 1996; Mohindra and Thakur 1998; Upadhay 2003; Juyal et al. 2004; Kotalia and Rawat 2004; Reddy et al. 2009; Singh and Jain 2007; Jayangondaperumal et al 2008; Binita and Sharma 2009; Rana et al. 2013; Singh et al.2020), and
the historical earthquake catalogues (Bapat et al. 1983; Iyengar et al. 1999; Baro and Kumar 2017) suggest multiple seismic events to have occurred during the last millennium.

Paleoseismological investigations based on liquefied deformed structures along the Shillong plateau (SP) have provided major earthquake recurrence interval to be 500 year (Sukhija et al. 1999) and 1200 year (Rajendran et al. 2004), which is in stark contrast to the speculative interval of 3000 year of Bilham and England (2001). The SP, according to Sukhija et al. (1999), experienced three major earthquakes with a return period of 400-600 years. Morino et al. (2011, 2014) have reported deformation features in the trenches from Gabhrakhari village, Bangladesh (south of Dauki fault), whose ages correspond to AD 840-920, AD 1500-1630 and 1897 seismic events, with a recurrence interval of 350-700 years, which they attribute to the movement along Dauki fault (DF). The DF is a major geotectonic structure along the southern boundary of the SP, which could trigger future destructive seismic hazards, adversely impacting the NER of India and the adjoining areas of Bangladesh (Fig. 1). Constraints on timing and location of the palaeoearthquakes in the SP have also been attempted by studying earthquake induced liquefaction features (Sukhija et al. 1999; Thomas et al. 2007; Reddy et al. 2009; Kumar et al. 2016). In short, the SP and its adjoining areas is prone to seismic activity and the ensuing damages, which in the era of urbanization, can be ruinous.

The instrumented observations of seismic activity, quite obviously, do not go back in time beyond 100-150 years. The general earthquake recurrence times, at least of medium and large size earthquakes, far exceeds this short time interval by an order of magnitude or two, even in seismically active regions of the world. Therefore, effectively precludes the analysis and understanding of the entire earthquake cycle with the help of instrumental records. The tectonics of a region is a complex phenomenon depending on a large array of variables that include the geology, geomorphology and the stress and strain conditions. Despite many geotectonic unknowns it is now widely accepted that 80% of the seismic activity is directly associated with the active fault (Jayangondaperumal et al. 2018).

The article presents the first ever recording of the presence of SSDS and their utility in assessing the paleoseismicity of the region around DF, lying to the south of SP, India. The aim of the study is to locate, characterize and date SSDS and assess their significance as indicators of palaeoseismicity.

SEISMOTECTONICS AND GEOMORPHOLOGY OF THE STUDY AREA

The SP has a complex origin and is bounded by an array of faults like Dauki, Kopili, Oldham (Brahmaputra) and Dhubri (Fig. 1), which are seismogenic (Kayal et al. 2006). According to Panthi and Jyoti (2013), the SP, between 1962 and 2012, experienced 317 seismic events of Ms=≤ 4.4; 187 Ms=≥ 4.5; 58 Ms=≥ 5.0; and only 1 Ms=≥ 6.0 event. Some of the well-known earthquakes (EQs) in the NER include the 1548 EQ (Bilham and Hough 2006), the 1869 Cachar EQ (Mw=7.5), 1897 Assam EQ (Mw=8.1), 1923 Meghalaya EQ (Ms=7.1), 1930 Dhubri EQ (Ms=7.1), 1943 Assam EQ (Ms=7.2), 1947 Arunachal Pradesh EQ (Ms=7.7), 1950 Assam EQ (Mw=8.7), 1988 Manipur EQ (Ms=7.3), 2009 Assam EQ (Mw=5.1) and the very recent 2011 Sikkim EQ (Mw=6.9). The 1869 Cachar EQ (Mw=7.5) and the 1943 Assam EQ (Mw=7.24, Nandy and Dasgupta 1991; Dasgupta et al. 2000; Nandy 2001; Ambraseys and Douglas 2004).
occurred on the N-S trending Kopili fault (KF). This fault lies between the SP and the Mikir hills (Kayal et al. 2006; Kayal 2001). To the south of the SP is the E-W trending DF (Fig. 1) which is responsible for the 1923 Meghalaya EQ (Ms=7.1). Towards west of the SP is the N-S trending Dhubri fault (DHT, Fig. 1) which caused the 1930 Dhubri EQ (Ms=7.1). Among these historic earthquakes, the 1548 EQ, the 1897 EQ and the 1923 EQ could be the manifestation of the DF. However, Duarah and Phukan (2011) are of the opinion that the present area under study is free from seismic activity.

DF is a 300 km long E-W trending prominent structural feature defined by steep scarps, especially at some places in Bangladesh (Das et al. 1995). Hiller and Elahi (1984) suggested Dauki is a south directed normal fault, whereas Johnson and Alam (1991) consider it to be north-directed low angle \((5-10^\circ)\) thrust fault. According to Lohman (1995), this is high-angle reverse-fault at depth and right-lateral strike-slip fault near the surface. However, Alam et al. (2003) consider it to be an upthrust fault. The DF is opined to have undergone horizontal displacement of approximately 250 km, along which tectonic activity of great significance took place in the Pliocene (Evans 1964). According to Chen and Molnar (1990) DF separates the ancient continental crust of the Indian Shield from the Cretaceous ocean floor. The drainage pattern within the SP and its adjoining area is greatly influenced by the tectonics and the physiography of the region, where the lineaments and faults are seen to control the direction of flow.

Dauki River basin occupies parts of Jaintia Hills and East Khasi Hills districts with a catchment area of 872 km\(^2\). Dauki is a 6\(^{th}\)order river and runs for about 102 km to enter the Bangladesh plains. Valley profiles and basin asymmetric factor of Dauki River Basins reveals obvious tilting towards the east. Correspondingly, numerous small channels (3\(^{rd}\) and 4\(^{th}\) order streams) around the central section on the southern periphery of the plateau show right lateral component (deflecting towards the east) in the channels (Watinaro et al. 2016), and this supports the sense of movement suggested by Evans (1964) for the DF. Watinaro et al. (2016) have suggested that entire SP is undergoing tectonic instability while the central segment of the plateau is witnessing accelerated deformation/uplift. Further, their study indicates that the observed deformation in the river basins is associated with the episodic activity along the Dapsi Thrust (DT) and the DF. Structural patterns deciphered from satellite imagery of southern parts of SP reveal N-S trending Umngot lineament, a major 45-50 km long transverse lineament that runs parallel to the Umngot (Dauki) River (Srinivasan 2003; Das 2004; Duarah and Phukan 2011). The trench locations, discussed in the present study, are along the Dauki River (Umngot) near Dauki village (sites 1 and 2, in Fig. 2). Sites 3, 4 and 5 are located near Pyrdiwah village (Fig. 2).

According to Obermeier (1996a) the best sites for trenching for seismites can be found within the meizoseismal areas of large earthquakes. Accordingly, trenching was carried out along the Um Ngot river banks, near the DF, that influenced the 1548, 1897 and 1923 large earthquakes in the area (Fig. 1). Care was taken to break the earth where clay, silt and sand banding was expected. The local geology and geomorphology was closely scrutinized to look for most probable sites for seismitite formations. The rivers in spate spill out through their channels and dump the detrital material along their banks. Formation of levees and low-lying pond sediments are also the most likely candidates to scour for seismites. These virgin deposits are the most likely candidates for developing imprints of the large
earthquakes that they experience during their infancy. Such suitable places were identified to dig out the trenches. The geomorphic indicators like linearity of the river flow was also taken into consideration while identifying a suitable location. The location selected for trenching has the meandering Um Ngot River flowing almost in a straight line near the Dauki village indicating an abrupt change in its course due to a physiographic change over the terrain it is travelling. Also, some of the trenches showed cyclic repetition of structures indicating the seismic origin of the deformations. The field evidence also revealed absence of unequal loading that could have led to some deformational features within the sediments.

The study area has copious stretches of partly consolidated, and mostly unconsolidated, floodplain deposits that are saturated with water for most of its thickness. There also exists grain size contrast as well as density variation within the deposit for the grains to rearrange in the wake of sudden and momentary force applied leading to vertically directed hydraulic force generating seismites. Rapid sedimentation can be a possible process that can lead to deformation of the sediments. The study area lies within the Brahmaputra basin which is prone to flooding during the monsoon months. The rate of sedimentation during such episodes could be quite high. However, the soft sediment deformation structures identified in the excavated trenches are found to be at shallow depths precluding overloading of the sediments. In any case, the study area is away from the intense and flash floods so common in the plains of Assam.

In the field, several trial pits were made in the overbank of Dauki river to search for possible seismites, and subsequently trench was made, for detailed study. The detailed lithology (Figs.3c, 4d, 5d and 6c) of the trenches was prepared in the field and the actual positioning of the deformation features with respect to different layers was understood and fixed. However, the shallow water table, peculiar climatic conditions in the area and the perennial rivers in this NE Himalayan ranges, in some cases, made it difficult to go to the root of the source. Organic material present in the host strata and in the strata subsequently deposited just above the features was collected for dating. Radiocarbon dates from the host strata provide lower bound (maximum age) and the dates of samples collected from the strata just above the feature provide upper bound (minimum age) of that feature. Six samples were collected for 14C dating to ascertain the ages of different events and analyzed from trenches. The results of radiocarbon dating are presented in Table 1. All samples were analyzed by Accelerator Mass Spectrometry (AMS) method (Poznan 14C Laboratory, Poland). Calendar years were calibrated by the calibration curve with data set of IntCal04 (Reimer et al. 2004). The error range of calendar years is 2σ.
Soft sediment deformation structures (SSDS)

Evidence of past earthquakes in the form of seismites is an alternative way to understand the seismicity of a region in a very comprehensive manner that complements the traditional approaches. It can also aid in giving the recurrence interval of large earthquakes in each area. The area from where the samples have been collected is a watershed area of Um Ngot or the Dauki river that has been draining the hinterland and undergoing avulsion from time to time. Sites were selected along the banks of this river such that the sediment section was clearly visible and away from any anthropogenic influence.

Sites 1 and 2

These two sites were located, close to each other, on the west bank of the Dauki river near the Dauki village (Fig. 2) where trenches were excavated. At site 1, a section of 1.5 m deep and 1 m wide was exposed. In this section six visually distinguishable coarse to fine sand beds of varying thickness can be identified and have been designated as Units 1, 2, 3, 4, 5 and 6 from top to bottom (Fig. 3b, c). Unit 1 consists of coarse to fine sand with pinch and swell deformation features (of Unit 2), which are seen to be separated by some distance as well as height. Unit 3 consists of bedded coarse sand which is devoid of any deformational features, and the underlying unit 4 consists of fine sand with a black layer of heavy mineral lensoids. The heavy mineral lensoids are clearly seen to be disturbed. The heavy mineral lenses

Table 1 AMS Radiocarbon Dates of the organic matter from the studied Trench sites

Sample ID	¹⁴C age (yr BP)	Calibrated ages (years AD, 2σ)
DK-1POZ-82946	102.58±0.32	Modern (cal A.D.1675:cal A.D.1777)
		(cal A.D.1799:cal A.D.1894)
		(cal A.D.1905:cal A.D.1941)
		Range: A.D.1675-1940
DK-2 POZ-82942	130±30	
DK-3 POZ-82941	920±30	(cal A.D.1029:cal A.D.1170)
		(cal A.D.1172:cal A.D.1183)
		Range A.D.1030-1180
DK-4 POZ-82943	5415±35	(cal B.C.4344: cal B.C. 4230)
		(cal B.C.4194: cal B.C. 4176)
		Range B.C.4340-4180
DK-5 POZ-82944	9140±50	(cal B.C.8533: cal B.C. 8515)
		(cal B.C.8481: cal B.C. 8270)
		Range: B.C.8530-8270
DK-6 POZ-82945	4285±35	(cal B.C.3011: cal B.C. 2948)
		(cal B.C.2944: cal B.C. 2873)
		Range: B.C.3010-2870

AMS dating of organic samples were conducted at Poznan Radiocarbon Laboratory (Poland). Calendar years were calibrated using the intcal04 data set. [Reimer et al. 2004]. The error range of calendar years is 2σ. Ages are rounded off to the nearest decade. Age ranges are rounded off.
are randomly oriented wherein some are seen to be disturbed from horizontal and some are vertical. Underlying Unit 5 consists of coarse sand and units 4 and 5 are disturbed and displaced by a micro fault with a displacement of 7 cm. Unit 6 consists of coarse to fine sand. At the nearby site 2, just a few meters away from site 1, in the 1 m wide and 1m deep pit, flexuring and intrusion of sand dyke of 3-5 cm in dimension with E-W orientation was observed. The depositional sequence here is constituted by top 50 cm thick silty sandy underlain by fine sand up to a depth of 1 m.

From site 1, plant material was extracted from unit 3, which yielded a “Modern” age. It provides minimum age constraint for the faulting and maximum for the above deformation features. However, no dates are available for site 2.

Site 3

A 1.8 m deep and 1.5 wide trench was excavated at this site near the village of Pyrdiwah, which consists of silty clay, clay and fine gray and brown sand (Fig. 4a). The top 1.0 m sedimentary succession consists of undisturbed clay, wherein at the bottom 0.7 m some deformation features are seen to be present (Fig. 4d). A discontinuity in silty clay layer can be observed at the depth of 1.55 m, where the presence of clasts and individual clay bed deformed by fluid escape dish structures suggests strong, sudden water escape (Fig. 4c). These features are deciphered to have resulted from seismically-induced liquefaction. Radiocarbon ages for the two organic sediments collected above and below the deformation features are 130±30 BP (AD 1675-1940) and 920±30 BP (AD 1030-1180) which respectively provides maximum and minimum age for the event (Fig. 4b).

Site 4

A 1 m deep and ~1 m wide trench, at site 4 was excavated few meters away from site 3. The 1 m trench section consists of fine to coarse white and brown sand, with clay overlying it, and clay silt underlying (Fig. 5d). The top 30 cm consists of clay, underlain by fine sand of 50 cm. In this section one can observe red color stains indicative of oxidation. One of the most conspicuous features observed here is intrusion of fine sand into the host sediment, like tubular feeder dyke, that gets wider towards the upper level (Fig. 5b). The sandy layer consists of clasts of host clay sediment. The sand dykes lateral spread is covered by 10-30 cm thick fine sand and silt, which must have been deposited after the dyke intrusion. Incorporation of clasts derived from the host sediment indicates that these features are consistent with an explosive upwelling from a vent (Obermeier 1996b). The AMS 14C dates of 5415±35 BP (BC 4340-4180) and 9140±50 BP (BC 8530-8270) obtained from the top and bottom of the liquefaction features are the maximum and minimum age for the seismic event.

Site 5

At site 5, few meters away from site 3, a 2.1 m deep and 1 m wide section was exposed consisting of clay and silty sand (Fig. 6). Liquefaction dykes have been observed with conical and tubular shape (Fig. 6b). Branching of liquefaction is also observed and formation of these sand dykes is attributed to the
generation of cyclic shear stresses. The organic sediment collected from within the liquefaction feature provides AMS 14C age of 4285±35 BP (BC 3010-2870) for the seismic event that led to liquefaction (Fig. 6b).

Discussion

Interpretation of soft sediment deformation structures (SSDS)

There are several possible mechanisms that may be involved in SSDS. Such mechanisms include rapid deposition of sand leading to over-pressure in underlying sediments (Lowe and Piccolo, 1974), gravity driven density (Jones and Omoto 2000; Spalluto et al. 2007), and shock from earthquakes (Sims 1975). These SSDS can be the result of liquefaction and fluidization of sands, silts and clays and loss of coherence as a result of increased pore fluid pressures that exceed shear strength. Such overpressures may result from rapid deposition of sand over mud with a high water content (Lowe 1975; Owen 1996; Jones and Omoto 2000), due to the passage of storm waves/currents, the arrival of gravity-driven density currents (Pope et al. 1997; Jones and Omoto 2000) or the passage of a seismic wave (Sims 1975). Seismically induced vibrations destabilize the granular framework causing the granular solid to behave like a fluid (Lowe 1975; Pope et al. 1997). Seismic activity may result in the deformation of unconsolidated sediments leading to liquefaction and fluidization (Obermeier 1996a; Sukhija et al 1999; Guccione 2005). These seismically induced SSDS (Ricci Lucchi 1995) are important indicators of syn-sedimentation earthquake activity and can throw light on the tectonic setting of the depositional basin (Seth et al 1990).

The trenches revealed presence of deformation features such as micro fault, sand intrusion, water escape structures and disturbed beds, besides pinch and swell structures. The sedimentary layer hosting the fault is covered by undeformed sedimentary layers indicating syn-sedimentary origin of the faults. Seilacher (1969) first described such syn-sedimentary faults and also questioned their genetic relation to earthquakes (Seilacher 1984). However, according to Vanneste et al (1999) and Singh and Jain (2007) such faults may develop by earthquake shocks. Faults are a semi-brittle type of soft-sediment deformation formed by an increase in pore pressure in the sediment due to the instantaneous action of stress (Vanneste et al 1999 and references therein). Syn-sedimentary faults and other SSDS are formed as a result of localized stresses induced by seismicity (Anand and Jain 1987; Miyata 1990). Hence faults in soft-sediment cannot be generated from downward slumping alone. The sedimentary faults are localised features. The surface do not have any slickensides on them or crushing adjacent to them. Load features are also absent above the deformed horizon. So this faulting is not due to slope-gravity controlled slumping of the undeformed sediment. Hence a seismic shaking can be envisaged for the development of such soft sediment deformation features (cf. Singh and Jain, 2001). The water escape structures can be directly related to gravitational readjustment (upward-directed movement of underlying light sands), and/or it can be the result of beds with different selective fluidization processes arising from the restoration of grain supported packing after complete liquefaction (Allen 1982; Owen 1987). Sediments can be liquefied by external shocks and then moving up through cracks which may form water
escape structures (Collinson and Thompson 1982). Shear stress may be generated during water escape leading to disruption of overlying lamination; additionally, voids may form during dewatering within the sediment, which influence fluid drag that may balance gravitational forces (Tasgin and Turkmen 2009 and references therein). According to Lowe (1975), gravitational pull or overloading only play a subordinate role in the formation of water escape structures; consequently, seismic shocks are thought to be responsible for their formation (Moretti et al 1999). Hence the water escape structures breaching the sand–clay laminae in the present study can reasonably be interpreted as reflecting seismic shocks. The occurrence of pinch-and-swell structures and dykes suggest that the deformation mechanism reduced the sediment strength and some driving force-induced deformation from the sediment column. The underlying and overlying undeformed beds were deposited before and after the development of SSD structures. This also shows that the deformation was of limited duration producing confined SSD structures. According to Ghosh et al. (2012) when the pore water pressure is greater than the load pressure and less than the confining pressure, antiformal cusps, small-scale folding as well as contorted beds are formed, but when the pore water pressure in the liquefied bed is significantly larger than the confining pressure, dykes are formed.

The observed SSDS are correlated with seismites and are validated in the present study on the basis of field evidence, previous studies together with the important criteria as given by Sim, (1975), are as follows: absence of slump, slope failure or gravity pull; the SSDS are found between sand and clay layers and are invariably separated by the undeformed subhorizontal beds; these are small scale internal structures within deformed zones that suggest liquefaction; different types of structures are present together indicating synchronicity and instantaneity of deformation; the deformed horizon is underlain and overlain by undeformed strata; sedimentation occurs within an active tectonic setting, and similar structures have been described in published literature as seismites (Seilacher 1969; Sims 1975; Jones and Omoto 2000; Bose et al 2001; Wheeler 2002; Rodriguez-Lopez et al 2007; Sarkar et al. 2014; Singh et al. 2020). SSDS and the formation of clastic dikes in the Himalaya have recently been related to in situ deformation during earthquake shaking (Jayangondaperumal et al 2008; Mugneir et al 2011; Rajendran and Rajendran 2011) and are referred as to be seismites.

Age analysis of soft sediment deformation structures

The geological evidence and AMS radiocarbon dates have revealed four palaeoseismic events that occurred between 130-920 BP; between 5420 and 9140 BP; at 4290 BP and Modern. Almost all the deformational features observed in the trenches are confined to specific layers and have undeformed sediments over and below these features. At site 1 (Fig. 3) micro fault, displacement of two layers, unit 4 and 5, by almost 7 cm and pinch swell bedding at the top of the trench is clearly visible. Their formation at different levels suggests these features belong to two distinct seismic events. Unfortunately, the lack of suitable material rendered just one maximum age “Modern” for unit 3. The modern age for Site 1 is a curious finding/feature as it has captured the historical earthquake within the confines of the sediments. It is quite tempting to attribute the deformation features that are present above layer 3 to the 1897 event. The younger formations have developed pinch and swell structures due to intense shaking of the detrital
material. However, the faulting observed at the site is inferred to have been caused by an older seismic event. Units 4 and 5 are highly deformed and even faulting is seen to have occurred between the two. Assuming the rate of deposition of sediments from the thickness of modern sediments is quite brisk, the Unit 4 and 5 sediments could be not more than 200-300 years old than the ‘Modern’ sediments. If this be the case, then the observed faulting could be speculated due to ~1548 AD event as since the upper deformation features are caused by 1897 earthquake. However, such a proposition could be pure speculation since the rate of deposition of sediments is not quite uniform in any fluvial system. It depends largely upon climate and lithology as well as the gradient of the river. There are ‘episodes’ of deposition and erosion which do not seem to be proportional to each other. The episodes of erosion could be far greater in scale than deposition and vice versa. Hence, assigning an age for such sediments could be specious. Be that as it may, the fact that the older sediments contain signatures of multiple earthquakes is an important factor in determining the palaeoseismicity for a region. Based on historical observations and field evidence, evidently, liquefaction is seen to have a strong tendency to recur at the same site (Obermeier 1996b).

The seismic activity captured at trench site 3 (Fig. 4) has provided the lower and upper bound AMS radiocarbon ages within a timeframe spanning between 130 to 920 years BP. The window of possible earthquake (Fig. 5) is quite large at trench site 4, of almost 4000 years (AMS radiocarbon dated for the upper bound 5415 ± 35 years BP and the lower bound to be 9140 ± 35 years BP), indicating a period of long hiatus in deposition. AMS Radiocarbon age for the lone organic sediment sample from the trench site 5 (Fig. 6), within the dyke, is found to be 4284±35 yr BP. This is taken to be the contemporaneous age of the event that caused the deformation. Interestingly, the contemporary age of deformation at trench site 5 can be applied to the deformation event unraveled at site 4. The long gap revealed by the upper and lower bound ages for site 4, can be filled in by the coeval age obtained at site 5. This scenario, though speculative, seems plausible. The generation and compilation of radiometric ages, when seen in consonance with the geological formations, suggests the liquefaction features observed at these trench sites are a result of distinctly different events. The well documented event(s) at sites 4 and 5 belong to mid-Holocene.

Source Characteristics

It must be noted that spatially restricted investigation, based on limited sites along Dauki River, as shown in this study, are insufficient to classify the source characteristics of liquefaction features observed in the trenches. However, paleo-liquefaction studies conducted by Sukhija et al. (1999), Rajendran et al. (2004) and Morino et al. (2011, 2014) in the Indian side of SP offer some benchmark dates to compare our obtained results in the DF region from the present study (Fig. 7). Sukhija et al. (1999) carried out paleo-liquefaction studies along the Krishnai River, on the northern margin of the SP, and suggested that except the 1897 Ms. 8.0 Great Assam earthquake, two other seismic events caused paleo-liquefaction, i.e., the events in 500 ± 150 yrs BP and 1100 ± 150 yrs BP. Rajendran et al. (2004) re-examined the data and modified the radiocarbon ages obtained by Sukhija et al. (1999) to calendar years. This yielded A.D. 1450-1650 and A.D. 700-1050 as the periods of occurrence of these two events. Morino et al. (2011, 2014)
conducted paleoseismic studies in Gabrakhari and Jaflong, along DF, Bangladesh and the seismic events identified correspond to A.D.840-920, A.D.1548 and 1897 (Fig. 6). The radiocarbon ages at sites 4 and 5 from the present study are older than these events in this region.

The 2scalendar ages (Table1) for liquefaction at site 3 are inferred to lie between A.D.1030-1180 and A.D. 1675-1940. The seismic event has occurred after A.D.1030. The 1548, 1897 and 1923 earthquakes are known as large historic earthquakes which have occurred after A.D. 1030. Though the ages obtained from the present effort do not seem consistent with the documented seismic events by Sukhija et al. (1999), Rajendran et al. (2004) and Morino et al. (2011, 2014), they can still find some overlap with the ages of 500 ± 150 yrs BP Sukhija et al. (1999), Rajendran et al. (2004; 1450–1650 AD) and Morino et al. (2011; 1548 AD). According to Rajendran et al. (2004) the A.D. 1450–1650 paleo-liquefaction had a distant source influenced by DF. The present study reveals the north-dipping DF has caused paleo-liquefaction towards north and south of the SP. The 1897 liquefaction on the northern margin of the Shillong Plateau may have also been created by the activity of the DF. Since all the studied sites are very close to the DF and lie in the hinterland or hangingwall of the DF we tentatively assign paleoearthquakes related to this liquefaction to movement along the DF. SSDS can be formed both in the static stress (near the epicentre) and dynamic (away from the epicentre) stress dominated regions (cf. Jayangondaperumal and Thakur, 2008). However, farther earthquake induced by Himalayan structures or other transverse structures can also equally plausible.

However, the formation of these deformation structures (seismites) by earthquakes in far off Himalayan region are plausible, though they can be discounted on account of the evidence that has been listed in the previous sections. In the present case, the earthquake magnitude was large enough to produce a significantly enhanced pore pressure leading to soft sediment deformation. The magnitude of the seismic events can be roughly estimated by examination of trends of liquefaction versus the epicenter distances of modern earthquakes. Liquefaction over a wide area is likely to have been triggered by earthquakes of a magnitude of ≥5.5 or 6 and earthquakes of a higher magnitude (Allen 1985). The type, size, and extent of earthquake-induced SSDS are generally controlled by various factors. Some researchers have suggested that SSDS induced by seismic liquefaction are genetically related to seismic shocks of M>5 (Ambraseys, 1988; McCalpin, 1996). The threshold magnitude for inducing initial liquefaction in sand deposits is about 5.0, whereas the magnitude for gravel deposits is about 7.0 (Obermeier, 1996b). Monecke et al. (2004) suggested that disturbed and convolute structures are generated by earthquakes when M = >5.5. Marco and Agnon (1995) documented that seismically related surface faults could be generated at magnitudes equal to or greater than 5.5. Considering the quantitative analyses of the threshold of liquefaction in terms of the magnitude of palaeo-earthquakes, the SSDS in the study area, likely resulted from earthquakes with M>5.5. Accordingly, liquefaction is not likely to occur more than 70 km from an earthquake epicenter with magnitude M = 7.0. For M=7.5, the liquefaction distance may not exceed 100 km, however, Galli (2000) has showed a 7-magnitude event can led to the formation of seismites even beyond 100 km. Applying Ambraseys (1988) regression of moment magnitude to distance of farthest liquefaction to epicenter, the long-axis radii of the Dauki liquefaction fields (12 km) suggest a local earthquake of ≥ 5.5-6.
Rajendran et al. 2004 suggested that earthquakes of sizes similar to 1897 must have occurred in Assam due to a fault lying below the valley and the recurrence interval (RI) of such earthquakes is approximately 1200 years. Sukhija et al. 1999 concluded from the paleoliquefaction studies that the RI of major earthquake in the SP is 400-600 years and for great earthquakes the RI is 500 years. However, RI cannot be inferred based on liquefaction study provided actual epicenter or causative fault is known. Present study has unfolded at least four major earthquakes in a time span of 9000 years. Since all these earthquakes are local, an average recurrence interval for the Dauki region comes out to be about 2250 years for M 5.5 to 6.5 events. Though there is not enough age data to collate, cursory inspection of Fig. 7 indicates lack of seismic activity for a long period of time from 4000 to 1000 years ago, suggesting temporal clustering of earthquakes and a 3000-year interval between clusters. Alternatively, this hiatus may be an artifact of limited sampling. We also speculate that this hiatus may be due to a low water table and thus reduced liquefaction susceptibility during a drier mid-Holocene climate. However, this could be a very premature inference since few studies are carried out on the mid-Holocene sediments. The limited data from the present study is not sufficient to estimate the recurrence interval of large to great earthquakes in this region. However, the agreement in the ages obtained for the recent sediments with those of other independent workers is a very positive indication for continuing trenching for seismites. Such an approach is most likely to work out the recurrence interval of the devastating earthquakes that visited the SE Shillong plateau. Our preliminary studies in the region have provided a robust time series of earthquakes, which further underlines the need to excavate more trenches in and around Dauki and the Shillong regions.

Conclusions

The following conclusions can be drawn from the present study.

(1) Trenching carried in meizoseismal areas of 1548, 1897 and 1923 large earthquakes occurred in areas contiguous to the DF unraveled seismites at 5 locations wherein the geological and geomorphological terrain is quite complex.

(2) The SSDS features identified in and around DF region contained micro fault, sand dykes, detached blocks suspended in sand, water escape structures and pinch-swell features formed through liquefaction of alluvial sediment during strong ground shaking.

(3) This area is inferred to have experienced 4 episodes of (Modern, 130 and 920 yr BP, 5415 to 9140 yr BP, and at about 4285 yr BP) seismic shocks imprinted in the sediments that contain seismically deformed diagnostic features.

(4) The present study, in unambiguous terms, revealed the north-dipping DF caused paleo liquefaction towards north and south of the SP. The present study provides for the first time the geological evidence of at least 4 distinct major events occurred during the mid-Holocene and recent times indicating DF is active at least since mid-Holocene.
(5) A provisional recurrence interval of ~2250 years for M 5.5 to 6.5 events is inferred for the Dauki region. It experienced 4 major seismic events in a span of 9000 years. However, more trenching and dates are required for arriving at a more realistic recurrence interval.

(6) The Dauki region likely did not experience any seismic activity from 4000 to 1000 years. Clustering of earthquakes is inferred from the present study.

(7) The robust time series of earthquakes provided in the present study can be further refined, which further underlines the need to excavate more trenches in and around DF in particular, and the SP region as a whole.

(8) Close agreement is found in some related studies by other independent workers.

Declarations

Author Information

Affiliations

Indian Institute of Geomagnetism, Navi Mumbai, India

B.V. Lakshmi, Pravin B. Gawali

Corresponding author

Correspondence to B.V. Lakshmi

Declarations

Competing Interests

The authors declare no competing interests

Funding

This is DST-IIG funded CLAIMS project

ACKNOWLEDGEMENTS
The Authors are deeply grateful to Prof. D.S. Ramesh, Director, IIG, for his support, discussions and necessary permission for publishing this paper. We would like to thank the reviewers and editor who made constructive suggestions and contributions, which helped in improving the manuscript. We acknowledge financial support from CLAIMs programme of DST-IIG.

References

Alam M, Alam MM, Cyrrey JR, Chowdhury MLR, Gani MR (2003) An overview of the sedimentary geology of the Bengal Basin relation to the regional tectonic framework and basin-fill history. Sed Geol 155:179–208

Alfaro P, Moretti M, Soria JM (1997) Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix Baza Basin, Central Betic Cordillera). Eclogae Geol Helv 90:531–540

Allen CR (1975) Geological criteria for evaluating seismicity. Geological Society American Bulletin 86:1041–1057

Allen JRL (1982) Sedimentary structures, their characters and physical basis, vol 1. Elsevier, Amsterdam, pp 459–463

Allen JRL (1985) Wrinkle marks: an intertidal sedimentary structure due to aseismic soft sediment loading. Sed Geol 41:75–95

Alves TM (2015) Submarine slide blocks and associated soft-sediment deformation in deep-water basins: a review. Mar Pet Geol 67:262–285

Ambraseys NN (1988) Engineering seismology. Earthquake Eng Struct Dynam 17:1–105

Ambraseys NN, Douglas J (2004) Magnitude calibration of north Indian earthquakes. Geophys J Int 159:165–206

An Y, Dubey CS, Webb AAG, Kelty TK, Grove M, Gehrels GE, Burgess WP (2010) Geologic correlation of the Himalayan orogen and Indian craton: Part 1. Structural geology, U–Pb zircon geochronology and tectonicevolution of the Shillong Plateau and its neighboring regions in NE India. Geol Soc Am Bull 122:336–359

Anand A, Jain AK (1987) Earthquakes and deformational structures (seismites) in Holocene sediments from the Himalayan–Andaman Arc, India. Tectonophysics 133:105–120

Angelier J, Baruah S (2009) Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophys J Int 178:303–326
Bapat A, Kulkarni RC, Guha SK (1983) Catalogue of earthquakes in India and neighbourhood: from historical period up to 1979. Indian Society of Earthquake Technology, Roorkee, 211p

Baro O, Kumar A (2017) Seismic source characterization for the Shillong plateau in Northeast India. J Seismolog 21:1229–1249

Bilham R (2004) Earthquakes in India and the Himalaya: tectonics, geodesy and history. Ann Geophys 47:839–858

Balham R, England P (2001) Plateau 'pop up' in the great 1897 Assam earthquake. Nature 410:806–809

Bilham R, Hough S (2006) Future earthquakes on the Indian subcontinent: inevitable hazard, preventable risk. South Asian Journal 12:1–9

Binita P, Sharma A (2009) Soft-sediment deformation structures in the Late Quaternary sediments of Ladakh: Evidence for multiple phases of seismic tremors in the North western Himalayan Region. J Asian Earth Sci 34:761–770

Biswa S, Greasemann B (2005) Structural modelling of the subsurface geology of the Sylhet trough, Bengal Basin. Bangladesh Geosci J 11:19–33

Bose PK, Sarkar S, Chakraborty S, Banerjee S (2001) Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, central India. Sedi Geol 141:395–419

Bowman D, Korjenkov A, Porat N (2004) Late-Pleistocene seismites from Lake Issyk-Kul, he Tien Shan range, Kyrgyzstan. Sed Geol 163:211–228

Calvo JP, Rodro Aguez-Pascua M, Marto An-Vela Azquez S, Jimenez S, De Vincente G (1998) Microdeformation of lacustrine laminite sequences from Late Miocene formations of SE Spain: an interpretation of loop bedding. Sedimentology 45:279–292

Chen P, Molnar P (1990) Source parameters of earthquakes and interplate deformation beneath the Shillong Plateau and the Northern Indoburman Ranges. J Geophys Res 95:12527–12552

Chen J, Lee HS (2013) Soft-Sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading. Sediment Geol 288:81–94

Collinson JD, Thompson DB (1982) Sedimentary Structures. Allen and Unwin, London, p 194

Cox RT, Van Arsdale RB, Harris JB, Forman SL, Beard W, Galluzzi J (2000) Quaternary faulting in the southern Mississippi Embayment and implications for tectonics and seismicity in an intraplate setting. Geol Soc Am Bull 112:1724–1735. http://doi:10.1130/0016–7606
Cox RT, Harris JB, Forman SL, Brezina T, Gordon J, Gardner C (2012) Holocene faulting on the Saline River fault zone, Arkansas, along the Alabama-Oklahoma transform. In: Cox RT, Tuttle MP, Boyd OS, Locat J (eds) Recent Advances in North American Paleoseismology and Neotectonics East of the Rockies. Geological Society of America Special Paper 493:143–174

Cox RT, Lowe C, Hao Y, Mahan SA (2014) Use of small scale liquefaction features to assess paleoseismicity: an example from the Saline River fault zone, Southeast Arkansas, USA. Frontiers in Earth Science 2:1–17

Das JD (2004) Active tectonics of the Eastern Himalayan foothills region and adjoining Brahmaputra Basin based on satellite images. Int J Remote Sens 25:549–557

Das JD, Saraf AK, Jain AK (1995) Fault tectonics of the Shillong plateau and adjoining regions, north-east India using remote sensing data. Int J Remote Sens 16:1633–1646

Dasgupta S, Pande P, Ganguly D, Iqbal Z, Sanyal K, Venkatraman NV, Sural B, Harendranath L, Mazumdar K, Sanyal S, Roy K, Das LK, Misra PS, Gupta HK (2000) Seismotectonics Atlas of India and its Environments. Geological Survey of India, Calcutta, 87p

Duarah BP, Phukan S (2011) Understanding the tectonic behavior of Shillong Plateau, India using remote sensing data. Geol Soc India 77:105–112

Evans P (1964) The tectonic framework of Assam. Journal of Geological Society of India 5:80–96

Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187

Ghosh SK, Pandey AK, Prabha Pandey P, Ray Y, Sinha S (2012) Soft-sediment deformation structures from the Paleoproterozoic Damtha Group of Garhwal Lesser Himalaya, India. Sed Geol 261:76–89

Gibert L, Sanz de Galdeano C, Alfaro P, Scott G, López Garrido AC (2005) Seismic induced slump in Early Pleistocene deltaic deposits of the Baza Basin (SE Spain). Sediment Geol 179:279–294

Guccione MJ (2005) Late Pleistocene and Holocene paleoseismology of an intraplate seismic zone in a large alluvial valley, the new Madrid seismic zone, Central USA. Tectonophysics 408:237–264

Hempton MR, Dewey JF (1983) Earthquake induced deformational structures in young lacustrine sediments, east Anatolian Fault, southeast Turkey. Tectonophysics 98:T7–T14

Hiller K, Elahi M (1984) Structural development and hydrocarbon entrapment in the Surma Basin, Bangladesh (NW Indo-Burman fold belt), 5th offshore SE Asia Conference, Singapore, p.56–63

Hurst A, Scott A, Vigorito M (2011) Physical characteristics of sand injectites. Earth-Sci Rev 106:215–246
Ishihara K (2006) Liquefaction of sub-surface soils during earthquakes. Journal of Disaster Research 1(2):245–261

Islam MS, Ryuichi Shinjo, Kayal JR (2011) Popup tectonics of the Shillong Plateau in northeastern India: Insight from numerical simulations. Gondwana Res. https://doi.org/10.1016/j.gr.2010.11.007

Iyengar RN, Sharma D, Siddiqui JM (1999) Earthquake History of India in Medieval Times. Indian Journal of History of science 34(3):181–237

Jayangondaperumal R, Thakur VC (2008) Co-seismic secondary surface fractures on southeastward extension of the rupture zone of the 2005 Kashmir earthquake. Tectonophysics 446:61–76

Jayangondaperumal R, Thakur VC, Suresh N (2008) Liquefaction features of the 2005 Muzaffarabad-Kashmir earthquake and evidence of paleoearthquakes near Jammu Kashmir Himalaya. Curr Sci 95:1071–1076

Jayangondaperumal R, Wesnousky SG, Choudhuri BK (2011) Near-surface expression of early to late Holocene displacement along the northeastern Himalayan frontal thrust at Marbang Korong Creek, Arunachal Pradesh, India. Bulletin of Seismological Society of America 101:3060–3066

Jayangondaperumal R, Kumahara Y, Thakur VC, Kumar A, Srivastava P, Shubhanshu D, Joe V, Dubey AK (2017) Great earthquake surface ruptures along back thrust of the Janauri anticline, NW Himalaya. J Asian Earth Sci 133:89–101

Jayangondaperumal R, Thakur VC, Joe V, Priyanka SR, Anil KG (2018) Active tectonics of Kumaun and Garhwal Himalaya, Springer Natural Hazards. ISBN 978-981-10–8242–9

Johnson SY, Alam AMN (1991) Sedimentation and tectonics of the Sylhet trough, Bangaldesh. Geol Soc Am Bull 103:1513–1527

Jones AP, Omoto K (2000) Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: case study of Late Pleistocene lacustrine sands and clays, Onokobe and Nakayamadaira Basins, northeastern Japan. Sedimentology 47:1211–1226

Juyal N, Pant RK, Basavaiah N, Yadava MG, Saini NK, Singhvi AK (2004) Climate and seismicity in the higher Central Himalaya during 20–10 Ka: Evidence from the Garbayang basin, Uttaranchal, India. Palaeogeography, Palaeoclimatology, Palaeoecology 213:315–330

Kangi A, Aryaei AA, Maasoomi A (2010) Synsedimentary deformations in member 2 of the Mila Formation in the Central Alborz Mountains, Northern Iran. Arab J Geosci 3:33–39

Karlin RE, Abella SEB (1992) Paleoeartquakes in the Puget Sound Region recorded in sediments from lake Washington. USA Science 258:1617–1619
Kayal JR (2001) Micro earthquake activity in some parts of the Himalaya and the tectonic model. Tectonophysics 339:331–351

Kayal JR (2008) Microearthquake Seismology and Seismotectonics of South Asia. McGraw Hill Publication, India

Kayal JR, Arefiev SS, Barua S, Hazarika D, Gogoi N, Kumar A, Chowdhury SN, Kalita S (2006) Shillong plateau earthquakes in northeast India region: complex tectonic model. Curr Sci 91:109–114

Koç-Taşgüngör1 C, Altun F (2019) Soft-sediment deformation: deep-water slope deposits of a back-arc basin (middle Eocene-Oligocene Kirkçeşit Formation, Elazığ Basin), Eastern Turkey. Arabian J Geosciences 12(773):1–20

Kotlia BS, Rawat KS (2004) Soft sediment deformation structures in the Garbyang palaeolake: evidence for the past shaking events in the Kumaun Tethys Himalaya. Curr Sci 876:377–379

Kumar S, Wesnousky SG, Jayangondaperumal R, Nakata T, Kumahara Y, Singh V (2010) Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: timing, size, and spatial extent of great earthquakes. J Geophys Res. http://dx.doi.org/10.1029/2009JB006789

Kumar D, Reddy DV, Pandey AK (2016) Paleoseismic investigations in the Kopili fault zone of North East India: Evidences from liquefaction chronology. Tectonophysics. https://doi.org/10.1016/j.tecto.2016.02.016

Kuribayashi E, Tatsuoka F (1975) Brief review of liquefaction during earthquakes in Japan. Soils Foundation 15:81–92

Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22:157–204

Lowe DR (1976) Grain flow and grain flow deposits. J Sed Petrology 46:188–199

Lowe DR, LoPiccolo LD (1974) The characteristics and origins of dish and pillar structures. J Sed Petrology 44:484–501

Malik JN, Sahoo S, Satuluri S, Okumura K (2015) Active Fault and paleoseismic studies in Kangra Valley: evidence of surface rupture of a Great Himalayan 1905 Kangra Earthquake (Mw 7.8), Northwest Himalaya India. Bulletin of Seismological Society of America 105:2325–2342

Malik JN, Naik SP, Sahoo S, Okumura K, Mohanty A (2017) Paleoseismic evidence of the CE 1505 (?) and CE 1803 earthquakes from the foothill zone of the Kumaon Himalaya along the Himalayan Frontal Thrust (HFT) India. Tectonophysics 714:133–145

Maltman A (1984) On the term 'soft-sediment deformation. J Struc Geol 6(5):89–592
Manighetti I, Perrin C, ves Gaudemer Y, Dominguez S, Stewart N, Malavieille J, Garambois S (2020) Repeated giant earthquakes on the Wairarapa fault, New Zealand, revealed by Lidar-based Paleoseismology. Sci Rep 10:2124

Marco S, Agnon A (1995) Prehistoric earthquake deformations near Massada, Dead Sea Graben. Geology 23:695–698

Masana E, Moreno X, Gràcia E, Pallàs R, Ortuño M, López R, Gómeznovell O, Ruano P, Perea H, Stepancikova P, Khazaradze G (2018) First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): Los Trances site. Geologica Acta 16:461–476

Mastrogiacomo G, Moretti M, Owen G, Spalluto L (2012) Tectonic triggering of slump sheets in the Upper Cretaceous carbonate succession of the Porto Selvaggio area (Salento Peninsula, southern Italy): synsedimentary tectonics in the Apulion Carbonate Platform. Sediment Geol 269–270:15–27

Mazumder R, Van Loon AJ, Arima M (2006) Soft-sediment deformation structures in the Earth's oldest seismites. Sed Geol 186:19–26

McCalpin JP (1996) Paleoseismology. Academic Press, San Diego, p 588

McCalpin JP, Reicherter K (2018) Introduction to the special issue: Paleoseismology, active tectonics and archaeoseismology. Geomorphology. 326.https://doi.org/10.1016/j.geomorph.2018.11.001

Miyata T (1990) Slump strain indicative of paleoslope in Cretaceous Izumi sedimentary basin along Median tectonic line, southwest Japan. Geology 18(5):392–394

Mohindra R, Bagati TN (1996) Seismically induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya). Sed Geol 101:69–83

Mohindra R, Thakur VC (1998) Historic large earthquake-induced soft sediment deformation features in the Sub-Himalayan Doon valley. Geological Magazine 135:269–281

Monecke K, Anselmetti FS, Becker A, Sturn M, Giardini D (2004) The record of historic earthquakes in lake sediments of Central Switzerland. Tectonophysics 394(1):21–40

Moretti M (2000) Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sed Geol 135:167–179

Moretti M, Alfaro P, Caselles O, Canas JA (1999) Modelling seismites with a digital shaking table. Tectonophysics 304(4):369–383

Moretti M, Soria JM, Alfaro P, Walsh A (2001) Asymmetrical soft sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (late Miocene, Guadix Basin, southern Spain). Facies 46(47):283–294
Morino M, Kamal ASMM, Muslim D, Ali RMdE, Kamal MA, Rahman MdZ, Kaneko F (2011) Seismic event of the Dauki Fault in 16th Century confirmed by trench investigation at Gabrakhari Village, Haluaghat, Mymensingh, Bangladesh. J Asian Earth Sci 42:492–498

Morino M, Kamal ASMM, Akhter SH, Rahman MdZ, Ali RMdE, Talukder A, Khan MdMH, Matsuo J, Kaneko F (2014) A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture. J Asian Earth Sci 491:218–226

Mugnier JL, Huyghe P, Gajurel A, Upreti B, Jouanne F (2011) Seismities in the Kathmandu basin and seismic hazard. Tectonophysics 509:33–49. http://dx.doi.org/10.1016/j.tecto.2011.05012

Nandy DR (2001) Geodynamics of Northeastern India and the Adjoining Region. ACB Publication, Kolkata, p 209

Nandy DR, Dasgupta S (1991) Seismotectonic domains of northeastern India and adjacent areas Author links open overlay panel. Phys Chem Earth 18:371–384

Neuwerth R, Suter F, Guzman CA, Gorin GE (2006) Soft-sediment deformation in a tectonically active area: the PlioPleistocene Zarzal Formation in the Cauca Valley (Western Colombia). Sediment Geol 186:67–88

Obermeier SF (1996a) Chapter using liquefaction-induced features for paleoseismic analysis. International Geophysics 62:331–396

Obermeier SF (1996b) Use of liquefaction-induced features for paleoseismic analysis: an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44:1–76

Obermeier SF (1998) Liquefaction evidence for strong earthquakes of Holocene and Latest Pleistocene ages in the States of Indiana and Illinois, USA. Eng Geol 50:227–254

Oldham RD (1899) Report on the great earthquake of 12th June, 1897. Memoirs Geological Survey of India 29:1–379

Ortner H, Kilian S (2016) Sediment creep on slopes in pelagic limestones: upper Jurassic of Northern Calcareous Alps, Austria. Sediment Geol 344:350–363

Owen G (1987) Deformation processes in unconsolidated sands; In: Deformation of sediments and sedimentary rocks (eds) Jones M E and Preston R M F, Geol. Soc. London, Spec. Publ. 29:11–24

Owen G (1995) Soft sediments deformation in Upper Proterozoic Torridonian sand-stones (Applecross Formation) at Torridonian, northwest Scotland. Journal of Sedimentary Research A65:495–504
Owen G (1996) Experimental soft-sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43:279–293

Owen G (2003) Load structures: Gravity-driven sediment mobilization in the shallow subsurface; In: Subsurface sediment mobilization (eds) Van Rensbergen P, Hillis RR, Maltman A J and Morley C K, Geol. Soc. London, Spec. Publ. 216:21–34

Owen G, Moretti M (2008) Determining the origin of soft-sediment deformation structures: a case study from Upper Carboniferous delta deposits in south-west Wales, UK. Terra Nova 20:237–245

Owen G, Moretti M, Alfaro P (2011) Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sed Geol 235:133–140

Panthi A, Jyoti B (2013) Seismicity pattern analysis in and around Shillong great earthquake of 1897. The Himalayan Physics 4:36–38

Poddar MC (1950) The Assam earthquake of 15th August 1950. Indian Minerals 4:167–176

Pope MC, Read JF, Hofmann HJ (1997) Late Middle to Late Ordovician seismites of Kentucky, southeast Ohio and Virginia: sedimentary recorders of earthquakes in the Appalachian Basin. Bull Geol Soc Am 109:489–503

Postma G (1983) Water escape structures in the context of a depositional model of a mass flow dominated conglomeratic fan delta. Sedimentology 30:91–103

Potter PE, Pettijohn FJ (1963) Pleocurrents and Basin analysis. Springer-Verlag, Berlin, p 296

Philip G, Suresh N, Bhakuni SS, Gupta V (2011) Paleoseismic investigation along Nalagarh Thrust: Evidence of Late Pleistocene earthquake in Pinjaur Dun, Northwestern sub-Himalaya. J Asian Earth Sci 40:1056–1067

Rajendran K, Rajendran CP (2011) Revisiting the earthquake sources in the Himalaya: Perspectives on past seismicity. Tectonophysics 504:75–88

Rajendran CP, Rajendran K, Duarah BP, Baruah S, Earnest A (2004) Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: Implications for regional tectonism. Tectonics 23(4):1–12

Rajendran CP, John B, Rajendran K (2015) Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust. Journal of Geophysical Research Solid Earth 120:1623–1641

Rana N, Bhattacharya F, Basavaiah N, Pant RK, Juyal N (2013) Soft sediment deformation structures and their implications for Late Quaternary seismicity on the South Tibetan Detachment System, Central Himalaya. Tectonophysics 592:165–174
Reddy DV, Nagabhushanam P, Kumar D, Sukhija BS, Thomas PJ, Pandey AK, Sahoo RN, Ravi Prasad GV, Datta K (2009) The great 1950 Assam Earthquake revisited: Field evidences of liquefaction and search for paleoseismic events. Tectonophysics 474:463–472

Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CW, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

Ricci Lucchi F (1995) Sedimentographica. A photographic atlas of sedimentary structures, 2nd edn. Columbia University Press, New York, p 255

Rockwell TK, Lindvall S, Dawson T, Langridge R, Lettis W, Klinger Y (2002) Lateral offsets on surveyed cultural features resulting from the 1999 İzmit and Düzce earthquakes, Turkey Bulletin of the Seismological Society of America 92(1):79–94. https://doi.org/10.1785/0120000809

Rodríguez-Pascua MA, Calvo JP, De Vicente G, Gomez-Gras D (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sed Geol 135:117–135

Rodríguez-López JP, Meléndez N, Soria AR, Liesa CL, Van Loon AJ (2007) Lateral variability of ancient seismites related to differences in sedimentary facies (the syn-rift Escucha Formation, mid-Cretaceous, eastern Spain). Sedimentary Geology 201:461–484

Rossetti DF (1999) Soft sediment deformation structures in late Albian to Cenomanian deposits, Sao Luis Basin, Northern Brazil: evidence for palaeoseisimity. Sedimentology 46:1065–1081

Rossetti DF, Santos AE (2003) Events of sediment deformation and mass failure in Upper Cretaceous estuarine deposits (Cameta´ Basin, northern Brazil) as evidence for seismic activity. Sediment Geol 161:107–130

Sarkar S, Choudhuri A, Banerjee S, van Loon (Tom) AJ, Bose PK (2014) Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhandar Limestone, central India. Geologos 20(2):89–103 doi: 10.2478/logos-2014-0008

Scott B, Price S (1988) Earthquake-induced structures in young sediments. Tectonophysics 147:165–170

Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13:155–159

Seilacher A (1984) Sedimentary structures tentatively attributed to seismic events. Mar Geol 55:1–12

Seth A, Sarkar S, Bose PK (1990) Synsedimentary seismic activity in an immature passive margin basin (Lower Member of the Katrol Formation, Upper Jurassic, Kutch, India). Sed Geol 68:279–291
Sieh KE (1978) Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallet Creek, California. J Geophys Res 83(B8):3907–3939

Sims JD (1973) Earthquake induced structures in sediments of Van Norman Lake, San Fernando, California. Science 182:161–163

Sims JD (1975) Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:141–152

Singh S, Jain AK (2007) Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: geological evidences of palaeoseismicity along active fault zone. Sed Geol 196:47–57

Singh S, Jain AK (2001) Palaeoseismicity: Geological evidence along the Kaurik Chago fault-zone and other related areas in Lahaul-Spiti and Ladakh Himalaya. In: Varma OP (ed) Research Highlights in Earth System Science, 2. Department of Science and Technology, India, Special Volume, pp 205–225

Singh BP, Mondal K, Singh A, Mittal, Singh RK, Kanhaiya S (2020) Seismic origin of the soft-sediment deformation structures in the upper Palaeo-Mesoproterozoic Semri Group, Vindhyan Supergroup, Central India. Geol J: 1–15. https://doi.org/10.1002/gj.3872

Spalluto L, Moretti M, Festa V, Tropeano M (2007) Seismically-induced slumps in Lower-Maastrichtian peritidal carbonates of the Apulian Platform (southern Italy). Sed Geol 196:81–98

Srinivasan V (2003) Deciphering differential uplift in Shillong Plateau using remote sensing. Journal of Geological Society of India 62:773–777

Sukhija BS, Rao MN, Reddy DV, Nagabhushanam P, Hussain S, Chadha RK, Gupta HK (1999) Paleoliquefaction evidence and periodicity of large prehistoric earthquakes in Shillong Plateau, India. Earth Planetary Science Letters 167:269–282

Talwani P, Schewer WT (2001) Recurrence rates of large earthquakes in the South Carolina Coastal Plain based on paleoliquefaction data. J Geophys Res 106:6621–6642

Tasgin CK, Turkmen I (2009) Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of C,ayba˚gı Formation, Eastern Turkey. Sedi Geo 218:16–30

Thomas PJ, Reddy DV, Kumar D, Nagabhushanam P, Sukhija BS, Sahoo RN (2007) Optical dating of liquefaction features to constrain prehistoric earthquakes in Upper Assam, NE India-some preliminary results. Quat Geochronol 2:278–283

Tuttle MP, Atkinson GM (2010) Localization of large earthquakes in the Charlevoix seismic zone, Quebec Canada, during the past 10,000 years. Seismol Res Lett 81:140–147
Tuttle MP, Wolf LW, Starr ME, Villamor P, Mayne PW, Lafferty RH III, Morrow JE, Scott RJ Jr, Forman SL, Hess K, Tucker K, Dunahue J, Haynes ML (2019) Evidence for large New Madrid earthquakes about AD 0 and BC 1050, Central United States. Seismol Res Lett 90:1393–1406

Upadhyay R (2003) Earthquake-induced soft-sediment deformation in the lower Shyok river valley, northern Ladakh, India. J Asian Earth Sci 21:413–421

Vanneste K, Meghraoui M, Camelbeeck T (1999) Late Quaternary earthquake related soft sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309:57–79

Visher GS, Cunningham RD (1981) Convolute laminations-a theoretical analysis: example of a Pennsylvanian Sandstone. Sed Geol 28:175–188

Vittori E, Labini SS, Serva L (1991) Palaeoseismology, review of the state-of-art. Tectonophysics 193:9–32

Watinaro I, Swapnamita C, Sarat P (2016) Ascertaining neotectonic activities in the southern part of Shillong Plateau through geomorphic parameters and remote sensing data. Curr Sci 110:91–98

Wheeler RL (2002) Distinguishing seismic from nonseismic soft-sediment structures: Criteria from seismic-hazard analysis. In: Ettensohn FR, Rast N, Brett CE (eds), Ancient Seismites. Geol Soc Amer Spec Paper 359:1–11

Yamamoto Y (2014) Dewatering structure and soft-sediment deformation controlled by slope instability: examples from the late Miocene to Pliocene Miura–Boso accretionary prism and trench-slope basin, central Japan. Mar Geol 356:65–70

Yeats RS, Sieh K, Allen CR (1997) The Geology of Earthquakes. Oxford University Press, USA, 568p

Youd TL (1991) Mapping of earthquake-induced liquefaction for seismic zonation in Proceedings of the Fourth International Conference on Seismic Zonation, Stanford, CA,4, 111–147

Figures
Figure 1

Regional tectonic settings of Northeast and Shillong Plateau. MCT: Main Central Thrust, MBT: Main Boundary Thrust, HFT: Himalaya Frontal Thrust, BF: Brahmaputra Fault, JF: Jamuna Fault, KF: Kopili Fault, OF: Oldham Fault, DdF: Dhudnoi Fault, DT: Dapsi Thrust, GF: Guwahati Fault, BTSZ: Badapani Tyrsad Shear Zone, DF: Dauki Fault. Map sources (Biswas and Greasemann 2005; Islam et al. 2011; An et al. 2010)
Figure 2

(a) Regional geology of the study area (b) Location map of trench sites in and around Dauki River, sites 1 and 2 are at Dauki village; 3, 4 and 5 are at Pyrdiawah village
Figure 3

Site 1. (a) Uninterpreted photograph and (b) interpreted photograph of 1.5 m deep trench at site 1 showing pinch-swell structures and micro fault in Units 2, 4 and 5 interpreted to be caused by liquefaction and ground shaking. Unit 1: fine to coarse sand; Unit 2: fine sand with pinch-swell structures; Unit 3: coarse sand; Unit 4: fine sand with faulting; Unit 5: coarse sand with faulting; Unit 6: fine to coarse sand. Solid circle in Unit 3 represents the organic sample collected for radiocarbon dating. The sample (14C date “Modern”) represents the upper bound for the seismic event (possibly 1897) (c) The stratigraphy in the trench is divided into units 1 to 6.
Figure 4

Site 3. Location of (4b) is shown on (4a). (A) The 1.8 m thick sedimentary succession along the Pyrdiwah village containing deformation features embedded in clay and silty clay beds. Top 1.3 m of the section occupied by clay and followed by silty clay and fine grey to brown sand (b) Uninterpreted photograph and (c) interpreted photograph showing disturbed strata and dish structures. Solid circle represents the organic samples collected for 14C dating. The samples collected from the top clay bed and fine brown sand provide upper bound and lower bound respectively for the causative event that occurred during 130-920 years BP. (d) Lithology of the studied trench consists of top clay followed by silty clay and fine gray to silty clay beds
Figure 5

Site 4. (a) Mosaic photograph of ~1 m trench excavated reveals liquefaction features that can be attributed to violent shaking of the earth. (b) Interpreted Mosaic photograph of showing sand dyke is seen to intrude into the upper clay layer and form a sill in the right flank of the trench. The suspended clay blocks might be included in the sand during movement related to liquefaction. Solid circle represents the organic samples collected for 14C dating. The samples collected from the top clay bed and below the sand dyke provide upper bound and lower bound respectively for the causative event that occurred during 5410-9140 years BP. (c) Bottom of the trench section showing clay silt and fine to coarse sand beds (d) Lithology of the studied trench consists of top 30 cm clay followed by fine-coarse sand and clay silt beds.
Figure 6

Site 5. (a) Uninterpreted photograph and (b) interpreted photograph showing liquefied silty sand dyke into the formless host clay. Solid circle represents the organic samples collected for 14C dating. The sample collected from sand dyke provide lower bound and that place maximum age 4290 years BP for the causative event. (c) Lithology of the studied trench consists of top 60 cm silty clay followed by 100 cm of clay and 40 cm of silty sand.
The occurrence of earthquakes depicted in trench sediments unraveled by different workers is stacked up for possible correlation of events. Sukhija et al (1999), Rajendran et al (2004) and Morino (2011, 2014) dated events are compared with our findings. There is some consonance with the younger events. However, the older events are reported for the first time in this study.