Molecular and scanning electron microscopy (SEM) associated energy dispersive X-Ray analysis (EDXA) characterization of Euclinostomum heterostomum (Rudolphi, 1809) (Trematoda) from Channa striata (Bloch, 1793)

Pinky Kaur, Anubhuti Minare and BS Mourya

DOI: https://doi.org/10.22271/fish.2020.v8.i5b.2311

Abstract
Euclinostomum heterostomum (Rudolphi, 1809) metacercaria worldwide distributed digenetic trematode parasites distinguish to infect Channidae species. Molecular analysis using partial nuclear ribosomal internal transcribed spacer (ITS rDNA) marker was carried out and resultant 1005 base pairs. Phylogeny analysis showed that the present species claded among Euclinostomum with 100% nodal value and came close to E. heterostomum (KC894799) sequence from Thailand with 99% similarity. Scanning electron microscopy (SEM) was used to document the structural details of the oral and ventral suckers. EDX peaks revealed the presence of sulphur (S), calcium (Ca), and chloride (Cl) micro-elements from the entire tegument.

Keywords: ITS rDNA, EDXA, Euclinostom, channidae, phylogeny

1. Introduction
Energy dispersive X-ray (EDX-SEM) analysis is a nondestructive method for the microanalysis of element composition and is effectively implemented in many research disciplines [1, 2]. This technique is used to detect unique concentrations of chemical elements within living and non-living samples, and involves understanding the complexity of various parasitic species i.e., trematodes, cestodes and acanthocephalans [3, 4], and pathological alterations [5]. In the parasitological field, EDXA has been used for analysis of chemical elements in the body of helminths, especially the anchorage (spines, hooks) structures [6, 7]. Subfamilies Euclinostominiae (Yamaguti, 1958) belongs to the family Clinostomidae (Lühe 1901), with Euclinostomum [8] is the type genus represents as a sole Euclinostomum heterostomum species. Rudolphi [9] was first described as Distoma heterostomum in the oesophagus of Ardea purpurea. Later, Travassos [8] erected Euclinostomum with E. heterostomum. Previous reports have published on the pathological effects on the liver and kidney due to metacercariae of E. heretostomum in the species of the Channidae family [10, 11]. Thus, the present paper is the extensive work to describe the ultrastructural details along with micro-element analysis and molecular characterization of E. heterostomum.

2. Materials and Methods
2.1 Sample collection
The host Channa striatus, were caught from nearby the markets of the Lower Lake. Fishes were euthanized, dissected following standard necropsy procedures, and their internal organs were removed and examined for the presence of encysted trematode parasites under a stereozoom microscope. Parasites collected were kept in normal saline (0.75%) for excystations. The parasites were identified according to the keys given by Jhansilakshmibai and Madhavi [12].

2.2 Scanning Electron Microscopy (SEM)
For scanning electron microscopy (SEM) - buffered glutaraldehyde (pH 7.5) fixed excysted specimens for 24 hrs, followed by three buffer washes and post-fixed in osmium tetroxide.
The samples were dehydrated in ethanol series, dried and gold coated, and observed under a Scanning Electron Microscope coupled with energy-dispersive X-ray spectrometry (SEM-EDX, (Carl Zeiss SEM model No. EVO18)) at 20 kV.

2.3 Molecular analysis
Ethanol-fixed trematode samples were used for the extraction of genomic DNA using a DNA purification kit (HIMEDIA, India), following the manufacturer’s instructions. The partial ITS regions of the ribosomal RNA gene was amplified by PCR using the forward primer (BD1–5’GTGCTAAACAAGGTTCGTA3’) and reverse primer (BD2–5’TATGCTTAATTCAACGGGT3’) [13] with modifications. The thermocycler program included an initial denaturation at 96.0 °C for 3 min, followed by 35 cycles of 95.0 °C for 27 s, 50 °C for 30 s, 72 °C for 40 s and a final elongation of 72 °C for 10 min. PCR products obtained using both primers were resolved on 1.5% agarose gel stained with ethidium bromide. The positive DNA bands were sequenced (Sanger sequencing) through a commercial firm.

2.4 Phylogenetic analysis
Forward and reverse sequences acquired were assembled to generate contigs using BioEdit [14], and the resultant 1005 bp sequences was deposited in NCBI GenBank (Accession numbers- MT785768). NCBI BLAST-N was performed for the phylogenetic analysis carried out for the present sequence along with 8 other closest representatives Euclinostomum species along with 4 sequences of Clinostomum species retrieved. Multiple sequences alignment was done using Clustal W [15] along with sequences of Diplostomum species (Accession no. AY123042; AY123044; AY123043) as an outgroup. For tree construction, multiple sequence alignment of 16 sequences including the sequences of the present study was performed in Mega X [16]. Bayesian and Akaike Information Criteria revealed Kimura 2-parameter model with I value 0.38 as a best-fitting evolutionary model for Maximum Likelihood (ML) analysis, whereas Neighbour Joining (NJ) analysis was carried out using default parameters with 1000 replications.

3. Results and Discussion-
3.1 Scanning electron microscopy
Scanning electron micrographs showed the thick oral sucker with small round opening whereas the ventral sucker appeared with thick collar-like rim and triangular-shaped opening. The rim apparent showed the presence of irregular and uneven protrusions (Fig.1). The ventral sucker opening also exhibited the presence of globule like structure present internally.

3.2 Energy Dispersive X-Ray Microanalysis
The micro-element peaks of sulphur (S), calcium (Ca), and chloride (Cl) were determined for the entire tegument of E. heterostomum. Calcium (5.56%) is the most dominant element followed by chloride (1.39%) and sulphur (1.19%). Gold (Au), Palladium (Pd) and Osmium (Os) peaks are due to specimen preparation (Fig. 2; Table 1).

3.3 Molecular and phylogenetic analysis
Molecular sequencing of the present E. heterostomum involving ITS1- 5.8S and ITS2 rDNA region resultant 1005 bp nucleotide was submitted to GenBank (accession numbers: MT785768). In BLAST N analysis, the present sequences showed maximum identity (99.90%) with Euclinostomum sp. (KC894799). This was followed by E. hereostomum (KP721430) with 98.99% and Clinostomidae (KF757720) with 94.01% identities. NJ and ML trees generated with concatenated ITS region sequences revealed similar clustering without any topological variations. In both the phylogenetic trees, genus Euclinostomum formed a monophyletic clade along with sister clade of Clinostomum sp. under family Clinostomidae (Fig. 3, 4). Sequences of the present parasite (MT785768) grouped with 100% nodal value and phylogeny analysis showed closed resemblance to the E. heterostomum (KC894799) sequence from Thailand. Radwan et al. [17] revealed three chemical elements sulphur, calcium, and phosphorus of tegumental spines of four digenean species by using energy dispersive X-ray microanalysis. Sulphur, calcium, and phosphorus are described as major element in biological molecules in animals. These elements are also known to associate with the development and function of helminths hooks and spines [18, 19, 20]. But, in contrast with the above findings present study showed the presence of chloride (Cl) also whereas phosphorus is absent.

Molecular and phylogenetic results of the present species came close to the finding of Senapin et al. [21] which showed the phylogeny of the genus Euclinostomum from Trichopsis and Betta fish. They also represented a monophyletic clustering of Euclinostomum sp. from Thailand (KC894799) and with European species (KP721439, KP721435, KP721427, KP721430, KP721437, and KP721438) [22] whereas Euclinostomum and Clinostomum forming distinct sister monophyletic genus clade [21].

Table 1: Showing the micro-element (wt %) composition of the E. heterostomum

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	R	A	F
C K	19.30	43.62	1191.73	8.66	0.074	1.2587	0.8342	0.3048	1.0000
O K	25.54	43.33	1540.75	9.59	0.0570	1.2117	0.8567	0.1843	1.0000
S K	1.19	1.01	222.43	10.11	0.0085	1.0973	0.9335	0.6420	1.0099
CI K	1.62	1.39	304.94	8.02	0.0127	1.0457	0.9413	0.6577	1.0144
Pd L	3.60	0.92	303.24	7.55	0.0247	0.6388	1.1237	0.7961	1.0293
Ca A	5.56	3.76	761.81	4.73	0.0476	1.0651	0.9630	0.7819	1.0286
Ost L	10.72	1.53	205.63	11.10	0.0951	0.6764	1.1264	1.0294	1.2754
Au L	32.28	4.45	381.05	8.94	0.2476	0.6000	1.1059	1.0263	1.1328

http://www.fisheriesjournal.com

International Journal of Fisheries and Aquatic Studies
Fig 1: SEM images of *E. heterostomum* a) oral sucker; b) ventral sucker; c) enlarged view of ventral sucker; d) irregular and uneven protrusions of ventral sucker

Fig 2: Energy dispersive X-ray microanalysis (EDXA) of the *E. heterostomum* showing micro elements representing their respective KeV peak and wt %
Fig 3: Phylogenetic analysis for *E. heterostomum* - Neighbour joining (NJ) tree for ITS region, present sequence is marked as ▲.

Fig 4: Phylogenetic analysis for *E. heterostomum* - maximum likelihood (ML) tree for ITS region, present sequence is marked as ▲.
4. Conclusion
The current study elucidates molecularly confirms and assigns the present genus *Euclinostomum* belongs to the single species *E. heterostomum* along with ultra-structural details and micro-element composition using advanced microscopy techniques.

5. Acknowledgments
The authors wish to Thank Mr. M.G. Lanjewar, University Science Instrumentation Centre (USIC), Goa University, for providing necessary facilities for carrying out electron microscopy analysis.

6. References
1. Whallon JH, Flegler SL, Klomparens KL. Energy dispersive microanalysis. Bio Science. 1989; 39:256-259.
2. Sures B. Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitol. 2003; 126:53-60, doi: 10.1017/S003118200300372X.
3. Heckmann RA. Energy dispersive x-ray microanalysis in conjunction with electron optics, a tool for analysing aquatic animal diseases and deaths. Microsc. Anal. 1997; 17:27-29.
4. Heckmann RA, Amin OM. Michael DS. Chemical Analysis of Metals in Acanthocephalans Using Energy Dispersive X-Ray Analysis (EDXA) in Conjunction with a Scanning Electron Microscope (SEM) Comp. Parasit., 2007; 74(2):388-391.
5. Erickson M. Light and Electron Microscopy Including X Ray Microanalysis of Human Prostate Concentrations in Relation to Prostate Cancer. MS Thesis. Brigham Young University, Provo, Utah, 1997, 34.
6. Galagher HC. Chemical composition of hook isolated from hydatid scolices. Exp. Parasitol. 1964; 15:1100-1117.
7. Smith SA, Richards KS. Ultrastructure and microanalyses of the proboscolex hooks of *Echinoeoqueus granulosus*. Parasitology 1991; 103:267-274.
8. Rudolph CA. Entozoorum sive vermium intestinalium historia naturalis. Amstelaedami. 1809; 2(1):457.
9. Kaur P, Qureshi TA, Shrivastav R. Histo-architectural alterations induced by *Euclinostomum heterostomum* (metacercariae) infected liver of *Channa punctata* (BL.). J Parasit. Dis. 2012; 36(2):197-199.
10. Kaur P, Qureshi TA, Shrivastav R. Pathological effect on naturally infected kidneys of freshwater murrels by *Euclinostomum heterostomum* metacercariae. J Parasit. Dis. 2016; 40(1):157-160, DOI 10.1007/s12639-014-0468-9.
11. Jhansilakshmibai K, Madhavi R. *Euclinostomum heterostomum* (Rudolphi, 1809) (Trematoda): Life-cycle, growth and development of the metacercariae and adult. Syst Parasitol 1997; 38:51-64.
12. Kral’ova-Hromadova I, Tietz DF, Shinn AP, Spakulova M. ITS rDNA sequences of *Pomphorhynchus laevis* (Zoega in Muller, 1776) and *P. lucyi* Williams and Rogers, 1984 (Acanthocephala: Palaeacanthocephala). Syst Parasitol 2003; 56:141-145.
13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999; 41:95-98.
14. Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22:4673-4680.
15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K, MEGA X. Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 2018; 35:1547-1549.
16. Radwan NA, Abou Shafeey HE, Khalil AI. Chemical Characterization of Tegmental Spines of Four Digenean Species Using Energy Dispersive X-Ray Microanalysis (EDXA). Int. J Parasitol. Res. 2012; 4(2):100-105.
17. Heckmann RA, Amin OM, Radwan NAE, Standing MD, Eggett DL. Comparative chemical element analysis using energy dispersive X-ray microanalysis (EDXA) for four species of Acanthocephala. Sci. Parasitol. 2012a; 13:27-35.
18. Heckmann RA, Amin OM, Radwan NA, Standing MD, Eggett DL, El Naggar AM. Fine structure and energy dispersive X-ray analysis (EDXA) of the proboscis hooks of *Rhadinorhynchus ornatus* Van Cleave, 1918 (Rhadinorhynchidae: Acanthocephala). Sci. Parasitol. 2012b; 13:37-43.
19. Brázová T, Podubnaya LG, Miss NR, Hanzelová V. Ultrastructure and chemical composition of the proboscis hooks of *Acanthocephalus lucii* Müller, 1776 (Acanthocephala: palaeacanthocephala) using X-ray elemental analysis. Folia Parasit, 2014; 61(6):549-557.
20. Senapin S, Phiw saiya K, Laosinchai P, Kowasupat C, Ruenwongsa P, Panijpan B. Phylogenetic analysis of parasitic trematodes of the genus *Euclinostomum* found in Trichopsis and Betta fish. J Parasitol, 2014; 100(3):368-71. doi: 10.1645/13-285.
21. Caffara M, Locke SA, Cristanini C, Davidovich N, Markovich MP, Fioravanti ML. A Combined Morphometric and Molecular Approach to Identifying Metacercariae of *Euclinostomum heterostomum* (Digenea: Clinostomidae). J Parasitol. 2016; 102(2):239-48. doi: 10.1645/15-823