Measurement of the Shared Momentum Fraction z_g using Jet Reconstruction in $p+p$ and Au+Au Collisions with STAR

K. Kauder for the STAR Collaboration
Wayne State University, Detroit, MI-48201, USA

Abstract

One key difference in current energy loss models lies in the treatment of the Altarelli-Parisi, AP, splitting functions. It has been shown that the shared momentum fraction, henceforth called \textit{Jet Splitting Function} z_g as determined by the SoftDrop grooming process can be made a Sudakov-safe measurement of the symmetrized AP functions in $p+p$ collisions. The STAR collaboration presents the first z_g measurements at $\sqrt{s_{NN}} = 200$ GeV in $p+p$ and Au+Au collisions, where in Au+Au we use the specific di-jet selection introduced in our previous momentum imbalance measurement. For a jet resolution parameter of $R = 0.4$, these di-jet pairs were found to be significantly imbalanced with respect to $p+p$, yet regained balance when all soft constituents were included. We find that within uncertainties there are no signs of a modified Jet Splitting Function on trigger or recoil side of this di-jet selection.

Keywords: Quark-gluon plasma, jets, SoftDrop, Shared Momentum Fraction

1. Introduction

Jet reconstruction algorithms and techniques used to correct for the underlying event have been primarily developed by the particle physics community as a robust tool to access parton kinematics from measured final-state hadrons. Modern approaches to extract information from the jet sub-structure pioneered by particle physics applications have recently found their way into the heavy-ion field, where the dramatically larger underlying event poses unique challenges. For an excellent review of the now ubiquitous class of infra-red and collinear safe sequential clustering algorithms (k_T, anti-k_T, Cambridge/Aachen(C/A)) and of the concepts used in this analysis, please refer to M. Cacciari’s presentation at this conference.

Here, the considered observable is the groomed momentum fraction z_g, or \textit{Jet Splitting Function}, that allows a direct measurement of a fundamental building block of pQCD in $p+p$ collisions, the (symmetrized) Altarelli-Parisi splitting functions. It emerges as a “by-product” of the SoftDrop \cite{1} grooming technique used to remove soft wide-angle radiation from a sequentially clustered jet. This is achieved by recursively declustering the jet’s branching history and discarding subjets until the transverse momenta $p_{T,1}, p_{T,2}$ of the current pair of subjets fulfill the SoftDrop condition:

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{cut} \beta,$$

where θ is an additional measure of the relative distance between the two sub-jets. The current analysis disregards θ by setting $\beta = 0$, and we follow the authors’ default choice $z_{cut} = 0.1$. It was shown that for such a choice, and for a C/A clustering, the distribution of the resulting groomed momentum fraction, or \textit{Jet Splitting Function}

$$z_g \equiv \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

converges to the vacuum AP splitting functions for $z > z_{cut}$ in a “Sudakov-safe” manner \cite{2}, i.e. independent of non-perturbative physics in the UV limit and eliminating the $O(\alpha_s)$ order. In A+A collisions, modification of the splitting is a characteristic aspect in some
classes of energy loss models, and the measurement of z_p presented here gives qualitatively new constraints for theoretical treatment. Alternatively, quenching of the sub-jets after a vacuum-like split could also lead to z_g modification.

All jets are found using the anti-k_T algorithm from the FastJet package \cite{3,4} with resolution parameter $R = 0.4$. Data selection and detector setup is identical to Ref. \cite{5}. The data were collected by the STAR detector in $p+p$ and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in 2006 and 2007, respectively. Constituents in the jet finding charged tracks were reconstructed with the Time Projection Chamber (TPC) \cite{6}, and neutral hadrons with transverse energy E_T were measured in the Barrel Electromagnetic Calorimeter (BEMC) \cite{7}, with a so-called full hadronic correction scheme in which the transverse momentum of any charged track that extrapolates to a tower is subtracted from the transverse energy of that tower. Tower energies are not allowed to become negative via this correction. An online High Tower (HT) trigger required $E_T > 5.4$ GeV in at least one BEMC tower.

2. **Pythia Study**

A $p+p$ simulation at $\sqrt{s}=200$ GeV of leading jet z_g was conducted using PYTHIA 6.410 \cite{8} with CTEQ5L pdfs \cite{9} and PYTHIA 8.219 \cite{10} with default settings. As an additional difference, the PYTHIA8 sample only contains stable particles in the final state while the PYTHIA6 sample also comprises short-lived and long-lived particles since the final decay happens at a later stage in the simulation of the STAR detector. Despite the differences, both lead to nearly identical z_g distributions (not shown) and qualitatively good agreement with the analytical solution.

3. **Measurement in p+p HT**

To estimate the effect of a High Tower trigger in $p+p$, the PYTHIA8 simulation was first repeated with the additional requirement of a neutral 5.4 GeV/c particle in the trigger jet. As expected, we found no difference on the recoil side between triggered and untriggered events. The trigger bias in the z_g distributions disappears around $p_T = 20 - 25$ GeV/c. In this analysis, we distinguish between “trigger” and “recoil” jets depending on which jet contains the High Tower that fulfilled the trigger requirement.

An example comparison at the detector level (without efficiency or smearing corrections; p_T^{det}) of trigger jets between measured $p+p$ HT and the above-mentioned PYTHIA6 data after detector simulation is shown in Fig. 1. For both trigger and recoil, and for all shown p_T^{det} bins between 10 and 30 GeV/c, we observe excellent agreement between the measured data and PYTHIA6 when folded by the STAR detector simulation.

It is therefore appropriate to use a bin-by-bin correction as a first approach to correct for detector effects and the HT trigger bias. The corrected distributions are shown in Fig. 2 in p_T^{part} bins, where p_T^{part} refers to the value corrected to particle level. Measurements above 30 GeV/c only have reasonable statistics for trigger jets, and hence are omitted here. The overlaid dashed lines demonstrate the z_g agreement with PYTHIA8 on both trigger and recoil side for jets in $p+p$. The shaded bands in Fig. 2 represent the uncertainty due to the overall jet energy scale uncertainty of 4% \cite{11}. Note that this scale uncertainty when applied to subjects cancels out in the calculation of z_g, hence we only consider p_T^{part} bin migration. Nevertheless, especially at lower jet p_T the presence of a High Tower leads to a significantly different neutral energy fraction in the trigger jet and thus in one of its subjects. An evaluation of the effect of tracking efficiency and tower scale uncertainty on individual sub-jets and their potential (anti-)correlation is underway.

4. **Triggered Di-jets in Au+Au**

For the first z_g measurement in 0-20% central Au+Au collisions, we focus on a di-jet selection very similar to previous A_T measurements \cite{5}. The initial definition of the di-jet pair considers only tracks and towers with $p_T^{\text{cut}} > 2$ GeV/c in the jet reconstruction. Due to the symmetry of a di-jet imbalance measurement, it was
Figure 2: Corrected z_ϕ distributions for trigger (filled symbols) and recoil (open symbols) jets in p+p HT compared to PYTHIA8 (dashed lines), independently binned in p_T^{jet} bins. Shaded bands indicate systematic uncertainty estimate due to the jet energy scale.

5. Summary

We presented the first measurement of z_ϕ in p+p collisions at 200 GeV in a p_T range between 10 and 30 GeV/c. After bin-by-bin correction, the distributions of the trigger jet are consistent with those of recoil jets not previously unnecessary to keep track of the High Tower. As noted above, in this analysis, we consider the two sides of the di-jet pair separately and thus differentiate between trigger and recoil jets. p_T-jets were accepted for trigger jets with $p_T^{\text{Trig}} > 20$ GeV/c and recoil jets with $p_T^{\text{Recoil}} > 10$ GeV/c; a requirement for the trigger jet to be the leading jet was not enforced. Kinematic cuts are made on $p_T^{\text{Trig,Recoil}}$, i.e. only considering the “hard core” above 2 GeV/c. This constituent p_T bias was relaxed in the z_ϕ calculation by using geometrically matched (axes within $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} < R$) di-jet pairs reconstructed with $p_T^{\text{Jet}} > 0.2$ GeV/c. Area-based background subtraction on the matched jets was carried out during the SoftDrop algorithm following the standard FastJet procedure [4], where the event-by-event background energy density ρ is determined with the k_T algorithm with the same R as the median of $p_T^{\text{Jet}}/A^{\text{phys}}$ of all but the two leading jets, and the jet area A^{phys} is found using active ghost particles.

Analogous to the A_T analysis, a reference data set is constructed by embedding p+p HT events into minimum bias Au+Au events in the same centrality class (p+p HT \otimes Au+Au MB). Thus, jets are compared with similar initial parton energies in Au+Au and p+p, and the remaining effect of background fluctuations are accounted for. The jet energies are not corrected back to the original parton energies. During embedding, the differences between Au+Au and p+p in tracking efficiency in the TPC (90% \pm 7%), relative tower efficiency (98% \pm 2%, negligible), and the relative tower energy scale (100% \pm 2%) are applied. Systematic uncertainty on z_ϕ was assessed in this process by varying the relative efficiency and tower scale within their uncertainties and is shown in the p+p HT \otimes Au+Au MB embedding reference as shaded boxes.

The results show within uncertainties no modification in the Jet Splitting Function as measured via SoftDrop for the selected hard core di-jet sample. This finding is highlighted in the ratios shown in Fig. 3 which supplements the data shown in the presentation. We note that toy model calculations suggest that potential anti-correlated systematics not yet considered in this preliminary analysis would disproportionally affect the the right-most bin.
containing an $E_T = 5.4$ GeV High Tower. The z_g measurements over the entire kinematic range are in good agreement with PYTHIA simulations.

In Au+Au collisions, a set of “hard core” di-jets that were previously found to be significantly imbalanced with respect to an embedded p+p reference, was examined with the added requirement of the High Tower being contained in the trigger jet. Within uncertainties, neither trigger nor recoil side z_g measurements displayed modifications compared to the reference.

In a similar study, the CMS collaboration first reported significant modifications of the Jet Splitting Function in central Pb+Pb collisions at 5 TeV [12]. Remarkably, the lowest reported p_T jet bin between 140 and 160 GeV/c displayed the strongest modification while above ca. 200 GeV/c the ratio between Pb+Pb and the p+p reference tapered off to unity.

A possible reason that our di-jet selection does not exhibit such a modification may be that the selection is dominated by unmodified or only mildly modified jets. Another explanation may arise because z_g approximates the earliest or hardest split in the measured kinematic range, which may in fact occur mostly outside of the medium. If that is the case, a measurement of the groomed soft energy may be directly correlated to in-medium gluon radiation. Additional close collaboration with the theory community will be needed to interpret our findings, as well as future precision improvements that utilize the recent high-statistics data sets collected by the STAR experiment.

References

[1] A. J. Larkoski, S. Marzani, G. Soyez, J. Thaler, Soft Drop, JHEP 05 (2014) 146.
[2] A. J. Larkoski, S. Marzani, J. Thaler, Phys. Rev. D91 (11) (2015) 111501.
[3] M. Cacciari, G. P. Salam, G. Soyez, J. High Energy Phys. 04 (2008) 005.
[4] M. Cacciari, G. P. Salam, G. Soyez, Eur. Phys. J. C72 (2012) 1896.
[5] L. Adamczyk, et al., submitted for publication (2016). arXiv:1609.03878.
[6] M. Anderson, et al., Nucl. Instrum. Meth. A 499 (2-3) (2003) 659–678.
[7] M. Beddo, et al., Nucl. Instrum. Meth. A499 (2003) 725–739.
[8] T. Sjostrand, S. Mrenna, P. Z. Skands, JHEP 05 (2006) 026.
[9] H. L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. I. Olness, J. F. Owens, J. Pumplin, W. K. Tung, Eur. Phys. J. C12 (2000) 375–392.
[10] T. Sjostrand, S. Mrenna, P. Z. Skands, Comput. Phys. Commun. 178 (2008) 852–867.
[11] B. I. Abelev, et al., Phys. Rev. Lett. 100 (2008) 232003.
[12] CMS Collaboration, CMS-PAS-HIN-16-006.