A review: a comparison of different adsorbents for removal of Cr (VI), Cd (II) and Ni (II)

Anja PFEIFER∗, Mojca ŠKERGET
Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia

Abstract: A review of the studies dealing with the removal of chromium, cadmium, and nickel ions with different adsorbents published in the literature between 2014 and 2018 is given in tabular form, along with the adsorption conditions, adsorption isotherm, and kinetic models applied by the authors to model the experimental data and adsorption capacities. The review focuses on the efficiency of ion removal.

Key words: Adsorption, chromium, cadmium, nickel, adsorption comparison

1. Introduction
The evolution of civilization has led to the growth and development of all of the necessities that mankind needs for a comfortable life. Various industries have flourished (chemical, metallurgical, food, pharmaceutical, agricultural industry, etc.), which has resulted in environmental pollution.

According to the Reference Document for Common Waste Water and Waste Gas Treatment Data for Europe (EU-27 plus Iceland, Liechtenstein, Norway, and Serbia), water is contaminated annually with 18.53 tons of cadmium, 284.4 tons of chromium, and 324.9 tons of nickel [1]. These metals are problematic because of their toxicity; their emissions must therefore be kept under control.

With growing awareness of the consequences, legislation has become stricter; much effort has been invested in developing procedures for establishing and maintaining a cleaner environment.

The most common procedures for the removal of pollutants from wastewater and industry effluents are ion exchange, membrane separation processes (reverse osmosis, electrolysis), evaporation, chemical precipitation, reduction, coagulation, flocculation, solvent extraction, photo reduction, and adsorption [2,3]. Membrane separation processes and evaporation are quite expensive, as they use much energy. For optimal procedure conditions and for enhancing all of the above-stated operations, many additional reagents are used. Removal procedures usually produce secondary wastes, which are usually quite concentrated and hard to discard or recycle [4].

Many studies focus on adsorption. Commercial adsorbents are available, but most of them are expensive and difficult to regenerate and separate from the rest of the solution; furthermore, they lack selectivity and adsorption capacity. The development of adsorbents is focused now on alternative sources; researchers are focusing on utilizing biomass residue, which is abundantly available throughout the world [5,6].

∗Correspondence: anja.pfeifer@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
1.1. Adsorbents and adsorption

Adsorption is the process wherein components from gas or liquid phases bind to the surface of a solid substance. Binding itself can occur on a physical or chemical basis. Adsorbents are usually porous materials and usually have a large surface area due to their high porosity. Because of porosity, the internal area is generally bigger than the external area [7].

Adsorbents can be divided into 3 groups: natural inorganic, natural organic, and synthetic adsorbents. Natural inorganic adsorbents are clays, minerals (e.g., goethite, hydroxy-apatite, calcite), fly ash, zeolite, calcareous soils, slags, sludges, modified asphaltite, etc. Natural organic adsorbents include sawdust, coconut shell, corn cob waste, tea waste, rice hulls, bark, hazelnut shells, wool, peat, and chitosan; synthetic adsorbents include nano-sized metal oxides, zero-valent iron, modified nano materials, etc. Nanoadsorbents, especially magnetic nanoadsorbents, have enormous industrial potential due to their high reactivity, many active sites, and consequent large surface area. Their shortcomings include instability and consequent aggregation, which diminishes their surface area; as a result, their reactivity is reduced. For prevention of aggregation and dissolution, different additives like clays and polymers are generally used [8,9].

Due to the circular economy, natural organic and inorganic adsorbents have tremendous potential for general use. Many residues and wastes from industrial and agricultural activities are used. In order to optimize their functionality and properties, adsorbents can be modified and improved with different functional groups, which can provide better results in pollutant removal.

Many factors can influence the course of adsorption. For example, pH value has tremendous influence on adsorption’s course, as it affects the chemical state of the solution as well as the chemical state of the adsorbent and its surface [10]. With a pH value of zero-point charge (pHpzc) and with a charge of adsorbate, it is possible to estimate which pH value of the solution would be appropriate for the removal of a particular adsorbate. If the pH value is below the pH value of zero-point charge, the adsorbent surface is positively charged and attracts anions; if the pH value is above pHpzc, the surface has a negative charge and attracts cations [11]. It is therefore necessary to know the chemistry of the adsorbate itself. At specific pH values, precipitation can occur, and the adsorption results may therefore be faulty.

The course of adsorption can also be altered and influenced by changing the initial concentration of adsorbate or by changing the dose of the adsorbent. Both variables can increase or decrease adsorption.

In some cases, a higher initial concentration shows a large increase in adsorption rate, because it creates the necessary driving force to overcome liquid resistance. The rate of adsorption may decrease quickly after initial adsorption, because the active sites that are easily accessible are occupied, causing a slight change in the adsorbent surface’s charge. Because easily accessible places are already occupied, only places that are difficult to access remain. Occupied sites also influence the surface charge, which results in a decrease in the adsorption rate [9,12].

A higher adsorbent dose generates more active sites for binding; thus, adsorption rate usually increases to some extent. If the adsorbent dose is too high, it can diminish adsorption rate, because aggregates are formed and the number of active sites decreases [13].

2. Review of adsorbents for chromium, cadmium, and nickel removal

2.1. Chromium

Chromium is the thirteenth most common element found in the earth’s crust. It is usually found in ore chromate. Chromium and its compounds are used in the manufacture of stainless steel, alloys, metal plating and finishing
solutions, leather tanning, pigment, and wood preservatives; it can be used as a corrosion inhibitor and as a catalyst. It has many oxidation states, but the most toxic form is hexavalent chromium. It causes severe health problems, especially due to its oxidating properties and its high solubility in water, which makes it available for biological uptake [14,15].

Cr (VI) likes to bond with hydroxyl groups; in most studies, the adsorption of Cr (VI) was successful when pH value was rather low, especially if pH value was below pHpzc. With a pH value below pHpzc, Cr (VI) is pulled toward the negatively charged surface of the adsorbent. If the pH value is above pHpzc, chromium ions are repelled by the adsorbent surface and adsorption is decreased. The adsorption selectivity at high and low pH values can be explained by different forms of chromium in the aqueous environment. At pH values below 1, chromium exists as H$_2$CrO$_4$. When the pH value is between 2 and 6.0, the dominant species HCrO$_4^-$ and Cr$_2$O$_7^{2-}$ form; with pH values above 6.0, CrO$_4^{2-}$ is dominant, which is harder to bind [10,15].

Most of the reviewed experiments were conducted at pH value 3. In some studies, experiments were performed at higher pH values primarily to prevent the adsorbent from dissolving. Higher pH values (above 6) will also cause chromium precipitation.

By increasing the initial Cr (VI) concentration and maintaining the adsorbent dose, the percentage of adsorbed Cr (VI) may be lower because the number of active sites is limited; when they are occupied, adsorption is complete. In addition, the reason for lower adsorption may be found in the formation of a film around the adsorbent, which prevents the adsorbate from accessing the surface. At the same time, the adsorbent capacity may be higher, because the higher initial concentration provides the necessary driving force to overcome liquid resistance [8,16].

Depending on the adsorbent, a higher adsorbent dose will increase adsorption because of the higher number of active sites. If the adsorption is slower, the main cause is the aggregation of adsorbent particles, which results in fewer active sites [8].

The overview of the adsorption studies of chromium (VI) is summarized in Table 1.

A review of studies with synthetic adsorbents showed that 100% chromium removal was achieved with the use of magnetic multiwall carbon nanotubes (MWCNT) [17] and nanomagnetite particles, which were synthesized in a low-pressure procedure [18]. The use of BaFe$_{12}$O$_{19}$ magnetic nano powder [19] and ionic liquid functionalized oxidized multiwall carbon nanotubes (IL-oxi-MWCNT) resulted in 99.5% removal [20]. The maximum adsorbent capacity of 293.3 mg/g was determined with the use of a magnetic composite of reduced graphene oxide, polyprrole, and Fe$_3$O$_4$ nanoparticles (Ppy-Fe$_3$O$_4$/rGO) [10]. The surface area of Ppy-Fe$_3$O$_4$/rGO was 80 m2/g. In the same study, the comparison was made with Fe$_3$O$_4$/rGO. The adsorption capacity of Ppy-Fe$_3$O$_4$/rGO was higher, even though the surface area of Fe$_3$O$_4$/rGO was 126.42 m2/g. It was established that the surface area does not represent a decisive parameter in the adsorption process. Ppy-Fe$_3$O$_4$/rGO showed excellent adsorption properties. Chain-like Ppy forms a 3-dimensional network with Fe$_3$O$_4$ nanoparticles and with rGO sheets. The adsorption process happens because of electrostatic attraction, ion exchange, and chemical reduction of Cr (VI) to Cr (III) [10].
Table 1. Chromium (VI) adsorption capacities/parameters.

Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref	
Fe₃O₄-NH₂ (amino functionalized magnetic nanoadsorbent)	D₅₀ = 25 nm, \(\varepsilon = 0.5 \), \(n_{ads} = 5 \) mg/L, \(m_{ads}/V = 0.05 \) g/50 mL	pH = 3, T = 298 K, \(c_0 = 5 \) mg/L, \(m_{ads}/V = 0.05 \) g/50 mL	Langmuir		[2]	
Ppy-Fe₃O₄/rGO (magnetic composite of reduced graphene oxide, polypyrrole and Fe₃O₄ nano particles)	Sₘ = 80.53 m²/g	pH = 3, T = 30 °C	Freundlich			
Magnetite nanoparticles	D₅₀ = 56 nm	pH = 3, T = 30 °C	Langmuir	\(q_m = 236.9 \) mg/g		
EDA-MPMs (ethylenediamine functionalized magnetic polymer microspheres)	Sₘ = 280 m²/g, \(V_p = 0.58 \) cm³/g, \(D_p = 6.8 \) mm	pH = 2, \(c_0 = 2 \), \(q_m, c_0, N, n_{ads}, V = 0.5 \) g/L, \(m_{ads}/V = 0.05 \) g/50 mL				
MWCNT (magnetic multiwall carbon nanotubes)	D₅₀ = 20-40 nm, \(L = 2 \) μm	pH = 4, \(c_0 = 0.1 \), \(q_m, c_0, N, n_{ads}, V = 0.05 \) g/L, \(m_{ads}/V = 100 \) mL, \(t_{cont.} = 1 \) h				
Nanomagnetic particles (low pressure synthetic procedure)	Sₘ = 13 m²/g, \(D = 87 \) nm	pH = 3, \(c_0 = 35 \) mg/L, \(m_{ads}/V = 1.5 \) g/150 mL, \(t_{cont.} = 1 \) h				
BaFe₁₂O₁₉ magnetic nanopowder (sample 4)	Sₘ = 13 m²/g, \(D = 87 \) nm	pH = 5 ± 0.5				

Note: \(q_m \), \(q_e, exp \), and \(q_e, cal \) denote the maximum adsorption capacity, experimental and calculated adsorption capacity, respectively.

R² values indicate the goodness of the fit, with \(R² > 0.95 \) indicating a good fit to the model.

% R denotes the percentage removal of Cr(VI) from the solution.

* Values in italics indicate calculated parameters.
| Adsorbent | Adsorbent characterization | Adsorption conditions | Isotherm and kinetic models with calculated constants and adsorption capacities | Adsorption capacity | Ref | |
|---|---|---|---|---|---|---|
| IL-oxi-MWCNT (ionic liquid functionalized oxidized multiwalled carbon nanotubes) | $S_M = 87.4 \text{ m}^2/\text{g}$, $V_P = 0.82 \text{ cm}^3/\text{g}$, $\text{pH}_{pzc} = 4.2$ | $\text{pH} = 2.5-4$, $c_0 = 20 \text{ mg/L}$, $m_{ads}/V = 0.15 \text{ g/20 mL}$ | Langmuir $R^2 = 0.96$, $q_m = 85.83 \text{ mg/g}$ | $R% = 99.5\%$ $q_{e,exp} = 2.54 \text{ mg/g}$ | [20] |
| Fe$_3$O$_4$ nanoparticles | $S_M = 42.53 \text{ m}^2/\text{g}$, $d_{50} = 15 \text{ nm}$ | $\text{pH} = 3$, $T = 55 \degree \text{C}$, $c_0 = 10 \text{ mg/L}$, $m_{ads} = 0.5 \text{ g/L}$, $t_{cont.} = 90 \text{ min}$ | / / / / | $R% = 88\%$ $q_{e,exp} = 33.45 \text{ mg/g}$ | [37] |
| Fe$_3$O$_4$/CTAB (Fe$_3$O$_4$ nanoparticles caped with cetyltrimethylammonium bromide) | Fe$_3$O$_4$ crystal: $D_{50} = 16.25 \text{ nm}$ | $\text{pH} = 4$, $T = 25 \pm 1 \degree \text{C}$, $c_0 = 100 \text{ mg/L}$, $m_{ads}/V = 12 \text{ mg/mL}$, $t_{cont.} = 12 \text{ h}$ | Langmuir $R^2 = 0.99$, $q_m = 18.5 \text{ mg/g}$ | Pseudo-second $R^2 = 0.99$ | $R% = 95.77\%$ $q_{e,exp} = 10.05 \text{ mg/g}$ | [38] |
| PANISA (Polyaniline nanofibers; PANI; acid treated natural silica) | PANI nanofibers: $D = 30-80 \text{ nm}$ | $\text{pH} = 2$, $T = 25 \degree \text{C}$, $c_0 = 20 \text{ mg/L}$, $m_{ads}/V = 4 \text{ g/L}$, $t_{cont.} = 2 \text{ min}$ | / / / / | $R% = 99.31\%$ | [39] |
| WT (NH$_3$) Magnetic nanocomposite (from waste toner) | $S_M = 42.53 \text{ m}^2/\text{g}$, $D_{50} = 53.5 \text{ nm}$ | $\text{pH} = 2$, $T = 25 \degree \text{C}$, $c_0 = 50 \text{ mg/L}$, $m_{ads}/V = 4 \text{ g/L}$, $t_{cont.} = 2 \text{ min}$ | Langmuir / | Pseudo-second / | $R% = 99\%$ | [40] |
| Core-shelled Fe$_3$O$_4$ hybrid nanoparticle aggregate | $S_M = 238.18 \text{ m}^2/\text{g}$, $D_{50} = 700 \text{ nm}$, $D_{50} = 7.5-9.1 \text{ nm}$ | $\text{pH} = 3$, $c_0 = 10 \text{ mg/L}$, $m_{ads}/V = 20 \text{ mg/50 mL}$ | / / / / | $R% = 94.8\%$ | [41] |
| h.mag-poly (EGDMA-VIM) microbeads | $S_M = 81.4 \text{ m}^2/\text{g}$, $D = 53-211 \mu\text{m}$ | $\text{pH} = 2$, $c_0 = 50 \text{ mg/L}$, $m_{ads}/V = 50 \text{ mg/50 mL}$ | Langmuir $R^2 = 0.995$, $q_m = 174.3 \text{ mg/g}$ | / / | $R% = 32\%$ $q_{e,exp} = 16.2 \text{ mg/g}$ | [42] |
| Natural organic/inorganic adsorbents | | | | | |

Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref					
			Isotherm model	Calculated constants	Kinetic model	Calculated constants	Experimental			
				q_m	R^2	q_e,cal	q_e,exp			
Grape waste	D_{50} = 0.2–0.5 mm	pH = 2, T = 20 °C, c_0 = 120 mg/L, m_{ads}/V = 0.05 g/100 mL	Langmuir	R^2 = 0.9847	q_m = 108.12 mg/g	Pseudo-second	R^2 = 0.997	q_e,exp = 104.3 mg/g	[4]	
FBA-Fe/Ni NP (Fe/Ni nanoparticles supported by a novel fly ash-based porous adsorbent)	S_M = 20.63 m^2/g, D_{50} = 2.89 nm	pH = 1, T = 303 K, c_0 = 1000 mg/L, m_{ads}/V = 0.2 g/100 ml, t_{cont.} = 24 h	/	/	/	/	R% < 6 %	q_e,exp = 25.07 mg/g	[8]	
BCS (biochar from wheat straw)	S_M = 26.3 m^2/g, V_P = 0.026 cm^2/g	pH = 2, T = 25 °C, c_0 = 100 mg/L, m_{ads}/V = 0.2 g/50 mL, t_{cont.} = 24 h	Langmuir	R^2 = 0.990	q_m = 24.6 mg/g	Pseudo-second	R^2 = 0.983	q_e,cal = 14.36 mg/g	q_e,exp = 14.36 mg/g	[14]
BCW (biochar from whicker)	S_M = 11.4 m^2/g, V_P = 0.0061 cm^3/g	pH = 2, T = 25 °C, c_0 = 100 mg/L, m_{ads}/V = 0.2 g/50 mL, t_{cont.} = 18 h	Langmuir	R^2 = 0.978	q_m = 23.6 mg/g	Pseudo-second	R^2 = 0.992	q_e,cal = 10.31 mg/g	q_e,exp = 10.28 mg/g	[14]
Andisols clay-zeolite composite	S_M = 48.61 m^2/g, D_P = 95.9 Å	pH = 4, c_0 = 2 mg/L, m_{ads}/V = 0.1 g/10 mL, t_{cont.} = 60 min	Freundlich	R^2 = 0.963	K_f = 0.17 mg/g	/	/	R% = 76.10 %	q_e,exp = 0.16 mg/g	[16]
Microporous activated carbon from almond shell	S_M = 1223 m^2/g, V_P = 0.326 cm^2/g, D_{50} = 2.39 nm, pH_{pzc} = 5.5	pH = 2, T = 25 °C, c_0 = 100 mg/L, m_{ads}/V = 2.5 g/L, t_{cont.} = 240 min	Langmuir	R^2 = 0.976	q_m = 195.34 mg/g	Pseudo-second	R^2 = 0.999	q_e,cal = 47.6 mg/g	R% = 100 %, q_e,exp = 45.12 mg/g	[21]
FNAC (activated carbon from fox nutshell)	S_M = 2869 m^2/g, V_P = 1.96 cm^3/g	pH = 2, T = 30 °C, c_0 = 10 mg/L, m_{ads}/V = 0.05 g/100 ml, t_{cont.} = 3 h	Langmuir	R^2 = 0.971	q_m = 46.21 mg/g	Pseudo-second	R^2 = 0.999	q_e,cal = 43.99 mg/g	R% = 99.08 %, q_e,exp = 43.45 mg/g	[22]
Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref					
-----------	---------------------------	-----------------------	--	-------------------	-----					
Modified activated carbon	$S_M = 1.4 \text{ m}^2/\text{g}$	pH = 3, $c_0 = 1 \text{ mg/L}$, $m_{ads} = 75 \text{ mg}$, $t_{cont.} = 4 \text{ h}$	Langmuir $R^2 = 0.94$, $q_m = 18.519 \text{ mg/g}$	$R\% = 99 \%$	[23]					
GSC (Graphene sand composite)	$S_M = 157 \text{ m}^2/\text{g}$	pH = 1.5, $c_0 = 20 \text{ mg/L}$	Langmuir $R^2 = 0.99108$, $q_m = 2859.38 \text{ mg/g}$	$R\% = 93 \%$	[24]					
CMAC (Activated carbon from Cucumis melo peel)		pH = 3, $c_0 = 100 \text{ mg/L}$, $m_{ads} = 250 \text{ mg/L}$, $t_{cont.} = 180 \text{ min}$	Elovich $R^2 = 0.978$		[34]					
La-RM (red mud modified by lanthanum)	$D_{50} = 25.6 \text{ nm}$	pH = 7, $T = 25 \degree \text{C}$, $c_0 = 100 \text{ mg/L}$, $m_{ads}/V = 4 \text{ g/L}$	Langmuir $R^2 = 0.9956$, $q_m = 16.581 \text{ mg/g}$	$R\% = 97.95 \%$	[36]					
ACLL (Activated carbon from leucaena leucocep-nala)	$S_M = 1131 \text{ m}^2/\text{g}$, $d_{50} = 250 \mu \text{m}$, $pH_{pzc} = 5.42$	pH = 4, $T = 30 \degree \text{C}$, $c_0 = 100 \text{ mg/L}$, $m_{ads}/V = 300 \text{ mg/50 mL}$, $t_{cont.} = 60 \text{ min}$	Redlich-Peterson $R^2 = 0.994$	$R\% < 80 \%$	[43]					
20 wt% β-FeOOH/SYBK (activated carbon suported β-FeOOH)	$S_M = 670.65 \text{ m}^2/\text{g}$, $D_{350} = 2.66 \text{ nm}$, $V_P = 0.447 \text{ cm}^3/\text{g}$	pH = 2, $c_0 = 49.21 \text{ mg/L}$, $m_{ads}/V = 2 \text{ g/L}$, $t_{cont.} = 60 \text{ min}$	Langmuir $R^2 = 0.9799$, $q_m = 37.096 \text{ g/kg}$	$R\% = 96\%$	[44]					
WPAC (wood based activated carbon)	$S_M > 1000 \text{ m}^2/\text{g}$	pH = 3, $T = 25 \degree \text{C}$, $c_0 = 80 \text{ mg/L}$, $m_{ads}/V = 20 \text{ mg/50 mL}$, $t_{cont.} = 24 \text{ h}$	/	/	[45]					
Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref					
--	----------------------------	---	---	---------------------	-----					
BCP (biochar Onopordom Heteracanthom)	$S_M = 5.73 \text{ m}^2/\text{g}$, $D_p = 1–50 \text{ nm}$, $\text{pH}_{\text{pzc}} = 2$	pH = 2, T = 15 ± 1 °C, $c_0 = 40 \text{ mg/L}$, $m_{\text{ads}}/V = 0.1 \text{ g/100 mL}$	Langmuir $R^2 = 0.9795$, $q_m = 37.28 \text{ mg/g}$, Pseudo-second $R^2 = 0.994$ $q_{e,cal} = 31.08 \text{ mg/g}$	$R\% = 69 \%$	[46]					
Chitosan-magnetite nanocomposite strip	$D_{50} = 15–30 \text{ nm}$	pH = 2–3, $t_{\text{cont.}} = 130 \text{ min}$	/	/	$R\% = 92.33 \%$	[47]				
Algae biomass from C. glomerata		pH = 2, T = 45 °C, $c_0 = 20 \text{ mg/L}$, $m_{\text{ads}}/V = 1 \text{ g/100 mL}$, $t_c = 60 \text{ min}$	Freundlich $R^2 = 0.949$, $K_f = 0.19 \text{ mg/g}$	/	$R\% = 66.6 \%$	[48]				
Kaolin	$S_M = 14.93 \pm 0.32 \text{ m}^2/\text{g}$, $V_P = 0.167 \pm 0.27 \text{ cm}^3/\text{g}$, $D_p = 12.59 \pm 0.49 \text{ nm}$	pH = 4.5, T = 25 ± 1 °C, $c_0 = 200 \text{ mg/L}$, $m_{\text{ads}}/V = 0.5 \text{ g/20 mL}$, $t_{\text{cont.}} = 120 \text{ min}$	Langmuir $R^2 = 0.985$, $q_m = 0.878 \text{ mg/g}$, Pseudo-first $R^2 = 0.993$ $q_{e,cal} = 0.865 \text{ mg/g}$	/	$R\% = 95 \%$	[49]				
MCARM (mechanical-chemical activated red mud)	$S_M = 176 \text{ m}^2/\text{g}$, $D_{50} = 3.83 \mu m$	pH = 2, $c_0 = 400 \text{ mg/L}$, $m_{\text{ads}} = 4.8 \text{ g}$	Langmuir $R^2 = 0.9903$, $q_m = 6.7 \text{ mg/g}$, Pseudo-second $R^2 = 0.999$	$q_{e,exp} = 5.45 \text{ mg/g}$	$R\% = 95 \%$	[50]				
ARM (heat-acid active red mud)	$\text{pH}_{\text{pzc}} = 8.5$	pH = 2, T = 30 °C, $c_0 = 0.08 \text{ mg/L}$, $m_{\text{ads}}/V = 0.5 \text{ g/100 mL}$, $t_c = 120 \text{ min}$	Langmuir $q_m = 0.03 \text{ mg/g}$	/	$R\% = 97.31 \%$	$q_{e,exp} = 0.015 \text{ mg/g}$	[51]			
PPH (powdered Peganum harmalo)	$S_M = 7.8 \text{ m}^2/\text{g}$, $\text{pH}_{\text{pzc}} = 6.4$	pH = 1.5, $c_0 = 100 \text{ mg/L}$, $m_{\text{ads}}/V = 10 \text{ g/L}$, $t_{\text{cont.}} = 80 \text{ min}$	Freundlich $R^2 = 0.986$, Pseudo-second $R^2 = 0.99$ $q_{e,cal} = 10.13 \text{ mg/g}$	$q_{e,exp} = 9.99 \text{ mg/g}$	[52]					
Table 1. (Continued).

Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref	
		pH = 2, T = 27°C, c₀ = 62.5 mg/L, m_{ads}/V = 2 g/L, t_{cont.} = 37.5 min	Langmuir	R² = 0.999		
			qₘ = 71.9 mg/g			
Fungal biomass			Pseudo-second	R > 0.99	R% = 63.82	
					[53]	
		pH = 2, c₀ = 62.5 mg/L, m_{ads}/V = 2 g/L, t_{cont.} = 60 min	Langmuir	R² = 0.991		
			qₘ = 72.46 mg/g			
	Biomass from Cer-		Pseudo-second	R² > 99 %	R% = 68.72	[54]
	atocystis paradoxa MSR2					

D₅₀ – average particle size, pH_{pzc} – point of zero charge, Sₘ – specific surface area in a unit of mass, Vₚ – pore volume, Dₚ – pore size, D – particle size, L – length, D₅₀ – average pore size, c₀ – initial concentration, m_{ads}/V – adsorbent dose per sample volume, t_{cont.} – the time of contact od solution and adsorbent, m_{ads} – adsorbent dose, qₘ – maximum adsorbent capacity (Langmuir), Kₖ – adsorption capacity (Freundlich), q_{e, cal} – calculated adsorption capacity, q_{e, exp} – experimentally determined adsorption capacity, R% – adsorption percent.
Similar adsorption capacities of 236.9 mg/g [15] and 232.51 mg/g [2] were determined with the use of ethylenediamine-functionalized magnetic polymer microspheres (EDA-MPMs) [15] and amino-functionalized magnetic nanoadsorbent (Fe₃O₄-NH₂) [2], respectively. By increasing the temperature to 318 K, the EDA-MPMs achieved a maximum adsorption capacity of 253.2 mg/g. Synthesis of EDA-MPM’s adsorbent starts in the presence of Fe₃O₄ nanoparticles. After polymerization, the particles are modified with ethylenediamine [15]. Through synthesis of Fe₃O₄-NH₂, amino groups were fixed to the surface of Fe₃O₄ nuclei and a core–shell structure was created. The core–shell structure is considered to have unique properties such as stability and chemical capability, which are important properties of the adsorbent [2]. Both adsorption procedures were conducted in an acidic environment and both adsorbents had similar chemistry behind their successful adsorption capacity. Because of the acidic conditions in which both experiments were conducted, the amino groups were protonated to NH³⁺, resulting in an even stronger electrostatic attraction between NH³⁺ and Cr (VI) [2,15]. In the natural organic and inorganic adsorbent section, Cr (VI) removal of 100% [21], 99.08% [22], and 99% [23] was achieved with the use of microporous activated carbon from almond shell [21], activated carbon from fox shell (FNAC) [22], and with modified activated carbon [23]. Among the 3 adsorbents, microporous activated carbon had the highest maximum capacity of 195.34 mg/g [21].

Astonishing results were achieved with the graphene–sand composite (GSC) [24], where the maximum adsorption capacity calculated with the Langmuir model was 2859.38 mg/g. In the study, the high adsorption capacity was attributed to the graphene sheets on the sand surface used for preparation of the composite [24].

For the adsorbents mentioned above with the highest adsorption capacities, we found that the researchers proposed a similar binding mechanism for chromium adsorption. Adsorption is more successful at low pH values, from pH 1 to 4. In this case, there are many H⁺ ions in the solution that protonate the surface of the adsorbent. At low pH levels, the chromium in the solution is in the form of HCrO₄⁻ and Cr₂O₇²⁻ and the attraction between the ionic species and the surface of the adsorbent is large; thus, the adsorption is high. As the pH increases, the adsorption capacity drops as the charge on the surface of the adsorbent changes, and chromium species, which are more difficult to bind, form in the solution.

2.2. Cadmium

It is estimated that only 0.1 ppm of cadmium is present in Earth’s crust. It is usually found near sphalerite as a mineral, greenockite. Cadmium or its compounds are mainly used in battery manufacturing, electroplating, pigments, metal finishing, fertilizers, tanneries, and plastic manufacturing [11,25].

Cadmium, which occurs in industrial effluents, usually accumulates in soil. Soil contamination is also accelerated by the use of artificial phosphate fertilizers. Due to soil contamination, the most common cadmium exposure is through food intake. Inhalation of fine cadmium powder or vapor and ingestion of its soluble compounds is hazardous. Cadmium is toxic and carcinogenic even at low concentrations [11,25].

Cadmium exists in several different states, at pH levels below 7 as Cd²⁺, between pH 7 and 11 as Cd(OH)⁺, and above pH 11 as Cd(OH)₂. Low pH values cause low adsorption of cadmium. If a higher adsorbent dose is added, the adsorption is enhanced because of the higher number of active sites. When the maximum dose of adsorbent is reached, the capacity starts to decrease again. Furthermore, it was observed that temperature also has an impact on adsorption; at higher temperatures, the adsorption of cadmium is reduced. Because copper has similar chemistry to cadmium, the adsorption capacity of cadmium decreased in the presence of copper [11].

Adsorption capacities of different adsorbents for cadmium removal are shown in Table 2.
Table 2. Cadmium (II) adsorption capacities/parameters.

Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref						
			Isotherm model	Calculated constants	Kinetic model	Calculated constants	Experimental				
				R²	qₑ,ₑ₀		R²	qₑ,ₑ₀		R%	qₑ,ₑ₀
Synthetic adsorbents											
CuO NP (copper oxide nanoparticles)	Sₘ = 220 m²/g,	pH = 6, T = 25 ± 0.5 °C, c₀ = 250 mg/L, mₐds/V = 0.4 g/L	Langmuir	R² = 0.9945	qₑ,ₑ₀ = 84.75 mg/g	Pseudo-second	R² = 0.989	qₑ,ₑ₀ = 131.33 mg/g			
Manganese oxide	Sₘ = 84.9 m²/g,	pH = 6, T = 298 K, c₀ = 100 mg/L, mₐds/V = 1 g/L	Langmuir	R² = 0.8889	qₑ,ₑ₀ = 104.17 mg/g	Pseudo-second	R² = 0.9991	qₑ,ₑ₀ = 104.2 mg/g	R% = 98%	qₑ,ₑ₀ = 82.7 mg/g	[26]
FMWCNT (functionalized multiwall carbon nanotube)	Sₘ = 206.45 m²/g,	pH = 5, c₀ = 10 mg/L, mₐds/V = 1.0 g/100 mL, tₑ₀ = 90 min	Langmuir / Freundlich	R² = 0.999	qₑ,ₑ₀ = 83.33 mg/g	Pseudo-second /	/	/	R% = 90 %	[27]	
DWCNT/iron oxide composite	Sₘ = 127 m²/g,	pH = 7, c₀ = 20 mg/L, mₐds/V = 50 mg/50 mL, tₑ₀ = 50 min	/ / /	/ / /	R% = 95 %	qₑ,ₑ₀ = 20.76 mg/g	[55]				
A2/MWCNT (multiwall carbon nano tubes with polyamidoamine dendrimers)	Sₘ = 99.66 m²/g,	pH = 6, c₀ = 0.5 mg/L, mₐds/V = 100 mg/L	Langmuir	R² = 0.991	qₑ,ₑ₀ = 44.18 mg/g	Pseudo-second	R² = 0.993	qₑ,ₑ₀ = 2.338 mg/g	qₑ,ₑ₀ = 44.2 mg/g	[56]	
Carboxyl modified Fe₂O₃@SiO₂ nanoparticles	d = 10–20 nm, L = 1–10 nm	pH = 6, c₀ = 50 mg/L, mₐds/V = 40 mg/20 mL, tₑ₀ = 30 min	Langmuir	R² = 0.999	qₑ,ₑ₀ = 81.627 mg/g	/ / /	R% = 71 %	[57]			
M-CNT (modified carbon nano tubes)	d = 10–20 nm, L = 1–10 nm	pH = 7, c₀ = 1 mg/L, mₐds = 50 mg, tₑ₀ = 2 h	Langmuir	R² = 0.993	qₑ,ₑ₀ = 4.35 mg/g	Pseudo-second	R² = 0.999	R% = 93 %	qₑ,ₑ₀ = 2.02 mg/g	[58]	

Natural organic/inorganic adsorbents
Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref
KPP (Kaniar pod powder from Bauhinia purpurea)	\(S_M = 1.8 \text{ m}^2/\text{g}, \ D_{P50} = 22.6 \text{ nm}, \ V_P = 0.01 \text{ cm}^2/\text{g}, \ \text{pH}_{pzc} = 4 \)	pH = 5, T = 25 °C, \(c_0 = 10 \text{ mg/mL}, \ m_{ads}/V = 1 \text{ g/L} \)	Langmuir \(q_m = 11 \text{ mg/g} \)	R% = 96 %, \(q_{e,exp} = 10.7 \text{ mg/g} \)	[11]
MKPP (Magnetic Kaniar pod powder from Bauhinia purpurea)	\(S_M = 52 \text{ m}^2/\text{g}, \ D_{P50} = 15.3 \text{ nm}, \ V_P = 0.2 \text{ cm}^2/\text{g}, \ \text{pH}_{pzc} = 5 \)	pH = 5, T = 25 °C, \(c_0 = 10 \text{ mg/mL}, \ m_{ads}/V = 2 \text{ g/L} \)	Langmuir \(q_m = 4.8 \text{ mg/g} \)	R% = 79 %, \(q_{e,exp} = 4.47 \text{ mg/g} \)	[11]
CH-FeO nanocomposite (chitosan-iron oxide nanocomposite)	\(D_{50} = 50 \text{ nm} \)	pH = 3, T = 298 K, \(c_0 = 10 \text{ mg/dm}^3, \ m_{ads}/V = 0.05 \text{ g/20 dm}^3, \ t_{cont.} = 30 \text{ min} \)	Langmuir \(R^2 = 0.99 \)	R% = 97.8 %, \(q_{e,exp} = 201.84 \text{ mg/g} \)	[28]
NTAA-LCM (nitrilotriacetic acid anhydride modified ligno cellulosic material)	\(S_M = 1.8006 \text{ m}^2/\text{g}, \ D_P = 8.9278 \text{ nm} \)	pH = 4, T = 298 K, \(c_0 = 200 \text{ mg/mL}, \ m_{ads} = 50 \text{ mg/50 mL} \)	Langmuir \(R^2 = 0.998, \ q_m = 143.4 \text{ mg/g} \)	R% = 98.80 %, \(q_{e,exp} = 98.81 \text{ mg/g} \)	[31]
CMAC (Activated carbon from Cucumis melo peel)	pH = 6, \(c_0 = 100 \text{ mg/L}, \ m_{ads} = 250 \text{ mg/L}, \ t_{cont.} = 180 \text{ min} \)	Elovich \(R^2 = 0.973 \)	Pseudo-first \(R^2 = 0.993 \)	R% = 97.96 %, \(q_{e,exp} = 7.23 \text{ mg/g} \)	[34]
FGCX (aminobezoic grafted cross-linked chitosan)	pH = 6, T = 45 °C, \(c_0 = 0.5 \text{ mmol/L}, \ m_{ads}/V = 6 \text{ g/L}, \ t_{cont.} = 60 \text{ min} \)	Langmuir \(R^2 = 0.99, \ q_m = 1.82 \text{ mg/g} \)	Pseudo-second \(R^2 = 0.99 \)	R% = 97.8 %	[35]
Dry biomass from Spirulina plantensis	pH = 8, T = 26 °C, \(c_0 = 60 \text{ mg/mL}, \ m_{ads}/V = 2 \text{ g/100 mL}, \ t_{cont.} = 90 \text{ min} \)	Langmuir \(R^2 = 0.916 \)		R% = 96.77 %	[59]
Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref
-----------	---------------------------	-----------------------	--	-------------------	-----
ZFA (zeolite fly ash)	$S_M = 8.22 \text{ m}^2/\text{g}$, $D_{P50} = 29 \AA$	pH = 5, $c_0 = 50 \text{ mg/L}$, $m_{ads} = 0.08 \text{ g/25 mL}$, $t_{cont.} = 7 \text{ h}$	Langmuir $R^2 = 0.9919$ $q_m = 26.246 \text{ mg/g}$	$R\% = 96 \%$ $q_{e,exp} = 14.431 \text{ mg/g}$	[60]
Mag-ligand	$d = 30 \text{ nm}$	pH = 7, $c_0 = 10 \text{ mg/L}$, $m_{ads} = 2 \text{ g/L}$	Langmuir $R^2 = 0.951$ $q_m = 79.365 \text{ mg/g}$	$R\% = 97 \%$ $q_{e,exp} = 52.549 \text{ mg/g}$	[61]
Iron oxide nanoparticles with tanerine peel extract	$D_{50} = 50 \text{ nm}$	pH = 4, $m_{ads}/V = 0.4 \text{ g/100 mL}$, $t_{cont.} = 90 \text{ min}$	Freundlich $R^2 = 0.999$, $K_f = 1.789 \text{ mg/g}$	$R\% = 90 \%$ $q_{e,exp} = 10.9 \text{ mg/g}$	[62]
SHC (sunflower head carbon)	$S_M = 2.5577 \text{ m}^2/\text{g}$, $D = 300 \text{ µm}$, $pH_{pzc} = 3.8$	pH = 6, $T = 25 \pm 1 \text{ °C}$, $c_0 = 100 \text{ mg/L}$, $m_{ads}/V = 20 \text{ g/L}$, $t_{cont.} = 120 \text{ min}$	Freundlich $K_f = 1.22 \text{ mg/g}$	$R\% = 84.7 \%$ $q_{e,exp} = 4.3 \text{ mg/g}$	[63]
SSC (sunflower stem carbon)	$S_M = 2.6622 \text{ m}^2/\text{g}$, $D = 300 \text{ µm}$, $pH_{pzc} = 4.2$	pH = 6, $T = 25 \pm 1 \text{ °C}$, $c_0 = 100 \text{ mg/L}$, $m_{ads}/V = 20 \text{ g/L}$, $t_{cont.} = 120 \text{ min}$	Freundlich $K_f = 1.48 \text{ mg/g}$	$R\% = 87.1 \%$ $q_{e,exp} = 4.4 \text{ mg/g}$	[63]
GAC (granulated activated carbon)	$S_M = 750 \text{ m}^2/\text{g}$, $D = 0.3-2.4 \text{ nm}$, $pH_{pzc} = 5.3$	pH = 6.5, $T = 24 \pm 1 \text{ °C}$, $c_0 = 0.11 \text{ mg/L}$, $t_{cont.} = 24 \text{ h}$	Langmuir $R^2 = 0.95$ $q_m = 2 \text{ mg/g}$	$q_{e,exp} = 0.9 \text{ mg/g}$	[64]
CP (Peat moss-derived biochar)	$pH = 5$, $c_0 = 20 \text{ mg/L}$, $m_{ads}/V = 0.2/200 \text{ mL}$	Langmuir $R^2 = 0.977$ $q_m = 39.8 \text{ mg/g}$	Second order $R^2 = 0.999$ $q_{e,cal} = 29.4 \text{ mg/g}$	$q_{e,exp} = 29.4 \text{ mg/g}$	[65]
BC-MnO$_x$ (biochar from rape straw impregnated with KMnO$_4$)	$S_M = 110.68 \text{ m}^2/\text{g}$, $V_P = 0.087 \text{ cm}^3/\text{g}$	pH = 5, $c_0 = 20 \text{ mg/L}$, $m_{ads}/V = 1.25 \text{ g/L}$	Langmuir $R^2 = 0.994$ $q_m = 81.1 \text{ mg/g}$	$q_{e,cal} = 7.288 \text{ mg/g}$	[66]
Table 2. (Continued).

Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref						
			Isotherm model	Calculated constants	Kinetic model	Calculated constants	Experimental				
B700-6 (biochar from orange peel with pyrolysis)	pH_{pzc} = 9.5	pH = 7, \(c_0 = 100\) mg/L, \(m_{ads}/V = 0.1\) g/50 mL	Langmuir	\(R^2 = 0.87\)	\(q_m = 114.69\) mg/g	Pseudo-second	\(R^2 = 0.9996\)	\(q_{e,cal} = 32.68\) mg/g	R\% = 96.9\%	\(q_{e,exp} = 31.5\) mg/g	[67]
Longan hull	\(S_M = 1.6\) m²/g	pH = 5, \(c_0 = 50\) mg/L, \(m_{ads}/V = 1\) g/30 mL	Langmuir	\(R^2 = 0.9954\)	\(q_m = 4.19\) mg/g	Pseudo-second	/	R\% = 93 \%	[68]		
PFP (palm fibers powder)		pH = 5, \(c_0 = 100\) mg/L, \(m_{ads}/V = 1\) g/100 mL, t_{cont.} = 45 min	Freundlich	\(R^2 = 0.990\)	\(K_f = 0.87\) mg/g	Pseudo-second	\(R^2 = 0.998\)	\(q_{e,cal} = 6.430\) mg/g	\(q_{e,exp} = 6.486\) mg/g	[69]	

\(S_M\) – specific surface area in a unit of mass, \(D_{50}\) – average particle size, \(D_{50,50}\) – average pore size, \(V_P\) – pore volume, \(D_P\) – pore size, \(pH_{pzc}\) – point of zero charge, \(d\) – diameter, \(L\) – length, \(D\) – particle size, \(c_0\) – initial concentration, \(m_{ads}/V\) – adsorbent dose per sample volume, t_{cont.} – the time of contact od solution and adsorbent, \(m_{ads}\) – adsorbent dose, \(q_m\) – maximum adsorbent capacity (Langmuir), \(K_f\) – adsorption capacity (Freundlich), \(q_{e,cal}\) – calculated adsorption capacity, \(q_{e,exp}\) – experimentally determined adsorption capacity, R\% – adsorption percent.
The best cadmium removal was achieved with the use of manganese oxide, with 98% cadmium removal [26]. Experimental data showed that the adsorption capacity of manganese oxide was 82.7 mg/g, and the maximum adsorption capacity calculated with the Langmuir model was 104.17 mg/g [26]. Functionalized multiwall carbon nanotubes (FMWCNT) [26] and copper oxide nanoparticles (CuO NP) [3] exhibited similar adsorption capacities, which were 83.33 mg/g [27] and 84.75 mg/g [3], respectively. Both adsorbents had similar surface areas of 206.45 m²/g for FMWCNT [27] and 220 m²/g for CuO NP [3].

With natural organic and inorganic adsorbents, the best experimental results were reached with chitosan–iron oxide nanocomposite (CH-FeO nanocomposite), where the adsorption capacity of 201.84 mg/g was achieved experimentally [28]. This adsorbent was also effective in real wastewater samples, where 99.91% of cadmium was removed [28]. Chitosan consists of amino and hydroxyl groups that can bind heavy metals and form chelates. Chitosan itself is soluble under acidic conditions; with chitosan modification, a wider pH range can be obtained [29]. Furthermore, with modification procedures, adsorption properties and selectivity can be enhanced. The maximum adsorption capacity achieved with modified chitosan was 405 mg/g [30]. This value was attained with chitosan grafted with itaconic acid and crosslinked with glutaraldehyde (CS-g-IA(G). The results are not presented in this study, as Kyzas and Bikiaris have already conducted a detailed analysis in their review [30].

A maximum adsorption capacity of 143.4 mg/g was calculated for nitrilotriacetic acid anhydride-modified lignocellulosic material (NTAA-LCM) [31]. Experimental data showed that cadmium ions reacted with the carboxyl groups of adsorbents. It was established that sodium was exchanged with cadmium after adsorption took place. The adsorption process of cadmium onto NTAA-LCM occurred through surface chelation and ion exchange [31].

In general, it can be concluded that cadmium binding is not very successful at low pH values. The reason is that there are many H⁺ ions present in the aqueous solution which compete with Cd²⁺ for binding to the surface of the adsorbent. The adsorption of cadmium increases with increasing pH (pH from 4 to 8.5) as the surface of the adsorbent deprotonates and begins to attract cadmium ions. In accelerated adsorption, a mechanism of cation exchange has been shown to occur in several cases.

2.3. Nickel

It is estimated that around 10% of the earth’s core is made of nickel. Much nickel is dissolved in water and accumulates in coal and oil. It occurs in millerite with sulphur, and in niccolite with arsenic. It can also be found in ores such as pentlandite. Nickel is a good conductor of heat and electricity. It is mainly used for alloys, as an additive for increasing the hardness of stainless steel, in the production of batteries, porcelain enameling, electroplating, dyeing, and pigments. A large amount of nickel is used in galvanization procedures because of its stability when in contact with atmospheric air [32].

Nickel only occurs in nature in low concentration levels. Nickel began to accumulate in the soil due to industry. Nickel present in soil can adsorb in sediments and become immobilized. In acidic soil nickel becomes mobile, which can result in it dissolving into groundwater. If groundwater is contaminated, exposure can happen with drinking. In addition, plants are subjected to nickel accumulation, exposing animals and humans to nickel through ingestion. It is an essential element in small quantities, but in high quantities, it can cause numerous negative consequences, such as lung, nose, or larynx cancer, lung embolism, asthma, chronic bronchitis, heart disorders, etc. [32,33].

Table 3 summarizes the studies on nickel adsorption. A review of synthetic adsorbents showed that the best nickel adsorption and maximum adsorbent capacity were achieved with amino-functionalized magnetic
The percentage of nickel removed was above 96%, and the maximum capacity was 222.12 mg/g. In the study conducted with this adsorbent, removal of Cr (VI) was examined; high capacities were reached for Cr (VI) removal as well. In both cases, amino groups played a decisive role. The study of kinetic parameters confirmed the theory which suggested that adsorption might be achieved through chemical processes such as sharing or exchange of electrons. The difference between the two ions was in the optimal adsorption pH value. Nickel adsorption was more efficient at higher pH values than Cr (VI) adsorption. By increasing the pH value from 2 to 9, nickel removal increased from 46.21% to 93.03%, although it was also observed that nickel started to precipitate at a pH around 8.5. The study compared the results with other adsorbents such as Fe₃O₄-CNTs, Fe₃O₄, and Fe₃O₄-GS with maximum adsorption capacities of 65.96 mg/g, 38.3 mg/g, and 158.5 mg/g, respectively. According to the comparative results, nanomagnetite functionalized with amino groups achieved the highest maximum adsorption [2].

Furthermore, natural organic and inorganic adsorbents also showed good experimental results. Removal rates of 98.78% [34] and 98.6% [35] were attained with activated carbon from Cucumis melo peel (CMAC) [34] and aminobenzoic grafted crosslinked chitosan (FGCX) [35], respectively.

Activated carbon (AC) is a widely used adsorbent. Its main feature is a porous structure which enables a large surface area. The surface area of AC can range from 300 to 4000 m²/g. Additional surface functional groups can greatly improve adsorption [6]. According to the analysis of the data that was obtained for CMAC, it could be concluded that the adsorption process can be attributed to a chemical reaction with functional groups on the surface [34].

Chitosan itself is a suitable adsorbent because it contains amine and hydroxyl groups [35]. Its disadvantage is that it is soluble at low pH values. Crosslinking helps overcome this disadvantage [29]; however, some studies have noted that crosslinking can reduce the overall adsorption capacity of an adsorbent. Furthermore, grafting allows the formation of functional derivatives with more established adsorption sites, which compensates for possible diminishment in capacity on account of crosslinking. The study of Igerase indicates that the binding of metal ions can occur through chemisorption, electrostatic attraction, or ion exchange [35].

A maximum adsorption capacity of 94.86 mg/g was achieved with lignocellulose/montmorillonite nanocomposite (LNC/MMT) [12]. By analyzing the adsorption procedure, it was shown that the main mechanism of adsorption was chemical adsorption. Additional adsorbent studies showed that hydroxyl and carboxyl groups were involved in adsorption process. Furthermore, in the results of a desorption study, LNC/MMT showed stability after desorption, indicating that the adsorbent is stable and has possible applications in industry [12].

The most successful results for nickel adsorption come from binding to amino groups at pH values between 6 and 8. At lower pH levels, many H⁺ ions that are present in solution are protonating –NH₂ to NH₃⁺. This causes a repulsive force between the positive surface and the nickel ions. When pH is increased, deprotonation of amino groups occurs, thus allowing nickel binding, which is reflected in higher adsorption.
Table 3. Nickel (II) adsorption capacities/parameters.

Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref						
			Isotherm model	Calculated constants	Kinetic model	Calculated constants	Experimental				
Synthetic adsorbents											
Fe₃O₄-NH₂ (amino functionalized magnetic nanoadsorbent)	D₅₀ = 25 nm, pHₚzc = 5.8	pH = 6, T = 298 K, c₀ = 5 mg/L, mₐds/V = 0.05 g/50 mL	Langmuir	qₘ = 222.12 mg/g	Pseudo-second	R² = 0.994	qₑ,cal = 25.97 mg/g	R% > 96 %	qₑ,exp = 25.12 mg/g	[2]	
Carboxyl modified Fe₃O@SiO₂ nanoparticles		pH = 6, c₀ = 50 mg/L, mₐds/V = 50 mg/20 mL, tₜ₉ = 30 min	Langmuir	R² = 0.989	qₘ = 63.995 mg/g			R% = 65 %		[57]	
Activated carbon coated Al₂O₃ nanoparticles	D₅₀ = 50 nm	c₀ = 300 mg/L, mₐds/V = 20 mg/50 mL, tₜ₉ = 180 min	/	/	/	/	R% = 82 %		[70]		
GO (Graphene oxide)	W = 0.77–2.94 nm	pH = 7, c₀ = 25 mg/L, mₐds/V = 20 mg/200 mL, tₜ₉ = 320 min	Langmuir	R² = 0.9993	qₘ = 35.6 mg/g	Pseudo-second	qₑ,cal = 32.4 mg/g	qₑ,exp = 31.7 mg/g		[71]	
Fe@G (magnetic Fe@graphite nanocomposite)	Sₘ = 47 m²/g, Vₚ = 17.7 cm³/g, rₚ = 0.016 nm, pHₚzc = 7.7	pH = 8.2, T = 20 °C, c₀ = 20 mg/L	Langmuir	R² = 0.998	qₘ = 9.2 mg/g	Pseudo-second	R² = 0.999	qₑ,cal = 8.95 mg/g	qₑ,exp = 9.33 mg/g		[72]
Natural organic/inorganic adsorbents											
Fe₃O₄/talc nanocomposite	Sₘ = 37.079 m²/g	pH = 7, c₀ = 92 mg/L, mₐds = 0.12 g, tₜ₉ = 120 s	Langmuir	R² = 0.9772	qₘ = 33.33 mg/g	Pseudo-second	R² = 0.9812	R% = 50.23 %		[9]	
LNC/MMT (Lignocellulose/montmorillonite nanocomposite)		pH = 6.8, T = 70 °C, c₀ = 0.0032 mol/L, mₐds/V = 0.1 g/50 mL, tₜ₉ = 40 min	Langmuir	R² = 0.9989	qₘ = 94.86 mg/g	Pseudo-second	R² = 0.998	qₑ,cal = 87.72 mg/g	qₑ,exp = 94.86 mg/g		[12]
Table 3. (Continued).

Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref	
CH-FeO nanocomposite (chitosan-iron oxide nanocomposite)	D₅₀ = 50 nm	pH = 3, T = 298 K, c₀ = 10 mg/dm³, m_{ads}/V = 0.05 g/20 dm³, t_{cont.} = 1800 s	Langmuir R² = 0.99 q_m = 3.29 mg/g	Pseudo-second R² = 0.99 q_{e,cal} = 3.772 mg/g	q_{e,exp} = 57.86 mg/g	[28]
CMAC (Activated carbon from Cucumis melo peel)	pH = 6, c₀ = 100 mg/L, m_{ads}/V = 250 mg/L, t_{cont.} = 180 min	Elovich R² = 0.976	Pseudo-first R = 0.973 q_{e,exp} = 5.43 mg/g	q_{e,exp} = 98.78%		
FGCX (aminobezoic grafted cross-linked chitosan)	pH = 7, T = 45 °C, c₀ = 0.5 mmol/L, m_{ads}/V = 6 g/L, t_{cont.} = 60 min	Langmuir R² = 0.99 q_m = 2.8 mmol/g	Pseudo-second R² = 1.0 q_{e,cal} = 3.12 mmol/g	R% = 98.6%	[35]	
GAC (granulated activated carbon)	S_M = 750 m²/g D = 0.3–2.4 nm, pH_{zc} = 5.3	pH = 6.5, T = 24 ± 1 °C, c₀ = 0.12 mg/L, t_{cont.} = 24 h	Langmuir R² = 0.98 q_m = 1.8 mg/g	Pseudo-second R% = 90%	q_{e,exp} = 1.3 mg/g	[64]
Longan hull	S_M = 1.6 m²/g	pH = 5, c₀ = 50 mg/L, m_{ads}/V = 1 g/30 mL, t_{contact} = 45 min	Langmuir R² = 0.9696 q_m = 3.96 mg/g	Pseudo-second R% = 90%		
PFP (palm fibers powder)	pH = 5, c₀ = 100 mg/L, m_{ads}/V = 1 g/100 mL, t_{contact} = 45 min	Freundlich R² = 0.937 K_f = 5.058 mg/g	Pseudo-second R² = 0.996 q_{e,cal} = 3.736 mg/g		q_{e,exp} = 3.746 mg/g	[69]
Chitosan	pH = 5, T = 25 ± 1 °C, c₀ = 100 mg/L, m_{ads}/V = 5 g/100 mL	Langmuir R² = 0.997 q_m = 52.6 mg/g	Pseudo-second R² = 0.997 q_{e,cal} = 10.63 mg/g	q_{e,exp} = 9.6 mg/g	[73]	
AC (activated carbon from sewage sludge)	S_M = 132.7 m²/g, V_P = 0.23 cm³/g	pH = 8, T = 55 °C, c₀ = 50 mg/L, m_{ads}/V = 4 g/L	Langmuir R² = 0.9655 q_m = 11.52 mg/g	Pseudo-second R² = 0.999 q_{e,cal} = 9.8078 mg/g	q_{e,exp} = 9.71 mg/g	[74]
Table 3. (Continued).

Adsorbent	Adsorbent characterization	Adsorption conditions	Isotherm and kinetic models with calculated constants and adsorption capacities	Adsorption capacity	Ref						
			Isotherm model	Calculated constants	Kinetic model	Calculated constants	Experimental				
ONF/KOH (old newspaper fibers treated with KOH)	$D_{50} = 53.87 \mu m$	pH = 6, $T = 25 \degree C$, $c_0 = 100$ mg/L, $m_{ads}/V = 4$ g/L	Langmuir	$R^2 = 0.9825$	$q_m = 20.2$ mg/g	Pseudo-second	$R^2 = 0.9998$	$q_{e,cal} = 18.31$ mg/g	$R\% = 88\%$	[75]	
GAC (activated carbon from Gyrididia)	$D = 45–180 \mu m$	pH = 7, $c_0 = 50$ mg/L, $m_{ads}/V = 0.4$ g/100 mL	Langmuir	$R^2 = 0.879$	$q_m = 24.39$ mg/g	/	/	$R\% = 97.3\%$	$q_{e,exp} = 12.1$ mg/g	[76]	
Sawdust		pH = 6, $c_0 = 100$ mg/L, $m_{ads}/V = 1.75$ g/100 mL	Langmuir	$R^2 = 0.982$	$q_m = 12.5$ mg/g	Pseudo-second	$R^2 = 0.942$	$q_{e,cal} = 5.62$ mg/g	$R\% = 94.6\%$	$q_{e,exp} = 5.41$ mg/g	[77]
Chitosan/kenaf fiber bio-composite		pH = 5, $c_0 = 200$ mg/L, $m_{ads}/V = 1$ g/100 mL	Langmuir	$R^2 = 0.8916$	$q_m = 70.55$ mg/g	Pseudo-second	$R^2 = 0.999$	$q_{e,cal} = 10.67$ mg/g	$R\% = 89\%$	[78]	

D_{50} – average particle size, pH$_{pzc}$ – point of zero charge, W – thickness, S_M – specific surface area in a unit of mass, V_P – pore volume, D – particle size, r_p – radius, c_0 – initial concentration, m_{ads}/V – adsorbent dose per sample volume, $t_{cont.}$ - the time of contact od solution and adsorbent, q_m – maximum adsorbent capacity (Langmuir), K_f – adsorption capacity (Freundlich), $q_{e,cal}$ – calculated adsorption capacity, $q_{e,exp}$ – experimentally determined adsorption capacity, $R\%$ – adsorption percent.
3. Discussion
Generally good results for chromium removal were obtained in an acidic environment that extended from pH value 1 to pH value 4. Low pH values can protonate the adsorbent surface. A positively charged surface is optimal for the removal of Cr species present in solution at this pH. The binding expires with electrostatic attraction. Experiments were conducted at pH value 7 in only one study out of all of the studies that we reviewed regarding chromium removal. The adsorbent used at these higher pH values was red mud modified by lanthanum (La-RM) [36]; the experimentally achieved adsorption capacity was 17.35 mg/g. The optimal pH value for Cr (VI) adsorption was adsorbent-dependent. Furthermore, a review of various studies has shown that specific surface area is not a determining factor for the adsorption process. It has also been shown that amino and hydroxyl groups can be strongly involved in the adsorption process and are usually responsible for enhancing chromium adsorption. Furthermore, the results of natural organic and inorganic adsorbents showed the great potential of adsorbents functionalized with amino and hydroxyl groups, and of graphene sand composite.

Cadmium adsorption was achieved with acidic and neutral solutions. The pH values of the various experiments ranged from 3 to 8, although the best results were obtained at slightly higher pH values, e.g., 6. The reason for the better adsorption at higher pHs lies in the deprotonation of the surface of the adsorbent, which in turn allows electrostatic attraction of cadmium. In addition, cadmium removal studies have shown that there is no correlation between specific surface area and adsorption. More accurate information about surface properties (e.g., micropore volume, total pore volume, macropore volume, pore diameter) would be required to properly evaluate the effect of a given surface area on adsorption.

Due to similar properties of heavy metals and similar removal mechanisms, nickel removal studies have shown similar results to those of chromium and cadmium removal. Amino and hydroxyl groups show potential for nickel adsorption. Moreover, chitosan and graphene showed high potential for removal of all examined ions. It was also seen that nickel binding performed more successfully in a less acidic environment between pH values 6 and 8, as the deprotonated surface of the adsorbent is important for electrostatic attraction. As the pH of the solution increased, nickel adsorption increased.

Comparing metal removal, natural adsorbents performed better in all 3 cases.

References
1. Brinkmann T, Santonja GG, Yükseler H, Roudier S, Sancho LP. Best available Techniques (BAT) Reference document for common waste water and waste gas treatment/management systems in the chemical sector. JRC Science for Policy Report. Industrial Emissions Directive 2010/75/EU.
2. Baghani AN, Hossein MA, Gholami M, Rastkari N, Delikhoon M. One-pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr(VI) and Ni(II) ions from aqueous solutions: kinetic, isotherm and thermodynamic studies. Journal of environmental Health Science and Engineering 2016; 11: 1-12. doi: 10.1186/s40201-016-0252-0
3. Taman R, Ossman M, Mansour M, Farag H. Metal oxide nano-particles as an adsorbent for removal of heavy metals. Journal of Advanced Chemical Engineering 2015; 5 (3): 1-8. doi: 10.4172/2090-4568.1000125
4. Kučić D, Simonič M, Furač L. Batch adsorption of Cr(VI) ions on zeolite and agroindustrial waste. Chemical and Biochemical Engineering Quarterly 2017; 31 (4): 497-507. doi: 10.15255/CABEQ.2017.1100
5. Chandraiah MR. Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium. Alexandria Engineering Journal 2016; 55 (1): 619-625. doi: 10.1016/j.aej.2015.12.015
6. Yang RT. Adsorbents: fundamentals and applications. Hoboken, NJ, USA: John Wiley and Sons Inc., 2003.
7. McCabe WL, Smith JC, Harriott P. Unit operations of chemical engineering. New York, NY, USA: McGraw-Hill Inc., 2001.

8. Liu J, Dai M, Song S, Peng C. Removal of Pb(II) and Cr(VI) from aqueous solutions using the prepared porous adsorbent-supported Fe/Ni nanoparticles. RSC Advances 2018; 56 (8): 32063-32072. doi: 10.1039/c8ra04324h

9. Kalantari K, Ahmad MB, Masoumi HRF, Shameli K, Basri M et al. Rapid adsorption of heavy metals by Fe$_3$O$_4$/Talc nanocomposite and optimization study using response surface methodology. International Journal of Molecular Sciences 2014; 15 (7): 12913-12927. doi: 10.3390/ijms150712913

10. Wang H, Yuan X, Wu Y, Chen X, Leng L et al. Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe$_3$O$_4$ magnetic composites and its application for the Cr(VI) removal. Chemical Engineering Journal 2015; 262: 597-606. doi: 10.1016/j.cej.2014.10.020

11. Sharma R, Sarvesw A, Pittman CU, Mohan D. Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. RSC Advances 2017; 7 (14): 8606-8624. doi: 10.1039/c6ra25295h

12. Zhang X, Wang X. Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLOS ONE 2015; 10 (2): 1-21. doi: 10.1371/journal.pone.0117077

13. Padmavathy KS, Madhub G, Haseena PV. A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr(VI)) from wastewater by magnetite nanoparticles. Procedia Technology 2016; 24: 585-594. doi: 10.1016/j.protcy.2016.05.127

14. Tytłak T, Oleszczuk P, Dobrowolski R. Sorption and desorption of Cr(VI) ions from water by biochar in different environmental conditions. Environmental Science and Pollution Research 2015; 22 (8): 5985-5994. doi: 10.1007/s11356-014-3752-4

15. Wang K, Qiu G, Cao H, Jin R. Removal of Chromium(VI) from aqueous solutions using Fe$_3$O$_4$ magnetic polymer microspheres functionalized with amino groups. Materials 2015; 8 (12): 8378-8391. doi: 10.3390/ma8125461

16. Pranoto A, Masvkur Y, Nugroho A. Adsorption effectivity test of Andisols Clay-Zeolite (ACZ) composite as chromium hexavalent (Cr(VI)) ion adsorbent. Science and Engineering 2018; 333: 1-7. doi: 10.1088/1757-899X/333/1/012057

17. Huang Z, Wang X, Yang D. Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water science and Engineering 2015; 8 (3): 226-232. doi: 10.1016/j.wse.2015.01.009

18. Parsons JG, Hernandez J, Gonzales CM, Torresdey GJL. Sorption of Cr(III) and Cr(VI) to high and low pressure synthetic nano-magnetite (Fe$_3$O$_4$) particles. Chemical Engineering Journal 2014; 254: 171-180. doi: 10.1016/j.cej.2014.05.112

19. Mohammad A, Ataie A, Sheibani A. Advanced materials letters chromium(VI) ions adsorption onto barium hexaferite magnetic nano-adsorbent. Advanced Materials Letters 2016; 7 (7): 579-586. doi: 10.5185/amlett.2016.6394

20. Kumar KAS, Jiang SJ, Tseng WL. Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry A 2015; 3: 7044-7057. doi: 10.1039/c4ta06948j

21. Rai M, Giri BS, Nath Y, Singh RP. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: Kinetics, equilibrium and thermodynamics study. Journal of Water Supply: Research and Technology 2018; 67 (8): 724-737. doi: 10.2166/aqua.2018.047

22. Kumar A, Jena HM. Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl$_2$. Process Safety and Environmental Protection 2017; 109: 63-71. doi: 10.1016/j.psep.2017.03.032
23. Al-Khaldi IFA, Abu-Sharkh B, Abulkibash AM, Qureshi MI, Laoui T et al. Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment 2016; 57 (16): 7232-7244. doi: 10.1080/19443994.2015.1021847

24. Dubey R, Bajpai J, Bajpai AK. Green synthesis of graphene sand composite (GSC) as novel adsorbent for efficient removal of Cr(VI) ions from aqueous solution. Journal of Water Process Engineering 2015; 5: 83-94. doi: 10.1016/j.jwpe.2015.01.004

25. Sharma YC, Srivastava V, Singh V, Weng CH. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology 2009; 30 (6): 583-609. doi: 10.1080/09593330902838080

26. Huang X, Chen T, Zou X, Zhu M, Chen D et al. The Adsorption of Cd(II) on manganese oxide investigated by batch and modeling techniques. International Journal of Environmental Research and Public Health 2017; 14 (10): 1145-1156. doi: 10.3390/ijerph14101145

27. Ruthiraan M, Mubarak NM, Thines RK, Abdullah EC, Sahu JN et al. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd$^{2+}$ ions from wastewater. Korean Journal of Chemical Engineering 2015; 32 (3): 446-457. doi: 10.1007/s11814-014-0260-7

28. Keshvardoostchokami M, Babaei L, Zamani AA, Parizanganeh AH, Piri F. Synthesized chitosan/iron oxide nanocomposite and shrimp shell in removal of nickel, cadmium and lead from aqueous solution. Global Journal of Environmental Science and Management 2017; 3 (3): 267-278. doi: 10.22034/gjesm.2017.03.03.004

29. Renu MA, Agarwal M, Singh K. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination 2016; 7 (4): 387-419. doi: 10.2166/wrd.2016.104

30. Kyzas GZ, Bikiaris DN. Recent modifications of chitosan for adsorption applications: a critical and systematic review. Marine Drugs 2015; 13 (1): 312-337. doi: 10.3390/md13010312

31. Huang Y, Yang C, Sun Z, Zengac G, He H. Removal of cadmium and lead from aqueous solutions using nitritotriacetic acid anhydride modified ligno-cellulosic material. RSC Advances 2015; 5 (15): 11475-11484. doi: 10.1039/c4ra14859b

32. IARC working group on the evaluation of carcinogenic risk to humans. Arsenic, metals, fibers and dusts. Lyon, France: International Agency for Research on Cancer, 2012.

33. Yusuf M, Fariduddin Q, Hayat S, Ahmad A. Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology 2011; 86 (1): 1-17. doi: 10.1007/s00128-010-0171-1

34. Manjuladevi M, Anitha R, Manonmani S. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Applied Water Science 2018; 8 (1): 1-8. doi: 10.1007/s13201-018-0674-1

35. Igberase E. The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies. International Journal of Analytical Chemistry 2017; 2017 (2): 1-15. doi: 10.1155/2017/6150209

36. Cui YW, Li1 J, Du ZF, Peng YZ. Cr(VI) adsorption by lanthanum: performance, kinetics and mechanisms. PLOS ONE 2016; 11 (9): 1-16. doi: 10.1371/journal.pone.0161780

37. Çiftçi H, Ersoy B, Evcin A. Synthesis, characterization and Cr(VI) adsorption properties of modified magnetite nanoparticles. Acta Physica Polonica A 2017; 132 (3): 564-569. doi: 10.12693/APhysPolA.132.564

38. Elfeky SA, Mahmoud SE, Youssef AF. Applications of CTAB modified magnetic nanoparticles for removal of chromium(VI) from contaminated water. Journal of Advanced Research 2017; 8 (4): 435-443. doi: 10.1016/j.jare.2017.06.002
39. Najim TS, Salim AJ. Polyaniline nanofibers and nanocomposites: preparation, characterization, and application for Cr(VI) and phosphate ions removal from aqueous solution. Arabian Journal of Chemistry 2017; 10 (2): 3459-3467. doi: 10.1016/j.arabjc.2014.02.008

40. Zhu H, Zhou Y, Wang S, Wu X, Hou J et al. Preparation and application synthesis of magnetic nanocomposite using waste toner for the removal of Cr(VI). RSC Advances 2018; 8 (49): 27654-27660. doi: 10.1039/c8ra05291c

41. Ji S, Miao C, Liu H, Feng L, Yang X et al. A hydrothermal synthesis of Fe₃O₄@C hybrid nanoparticle and magnetic adsorptive performance to remove heavy metal ions in aqueous solution. Nanoscale Research Letters 2018; 13 (1): 178-188. doi: 10.1186/s11671-018-2580-8

42. Kara A, Demirbel E, Sözeri H, Küçük İ, Ovahoglu H. Synthesis and characterization of barium ferrite containing magnetic affinity microbeads and isotherm analysis of Cr(VI) ions adsorption from aqueous solutions. Journal of Biological Chemistry 2014; 42 (3): 299-312.

43. Malwase K, Lataye D, Mhaisalkar V, Kurwadkar S, Ramirez D. Adsorption of hexavalent chromium onto activated carbon derived from Leucaena leucocephala waste sawdust: kinetics, equilibrium and thermodynamics. International Journal of Environmental Science and Technology 2016; 13 (9): 2107-2116. doi: 10.1007/s13762-016-1042-z

44. Yang T, Meng L, Han S, Hou J, Wang S et al. Simultaneous reductive and sorptive removal of Cr(VI) by activated carbon supported b-FeOOH. RSC Advances 2017; 7 (55): 34687-34693. doi: 10.1039/c7ra06440c

45. Chen Y, An D, Sun S, Gao J, Qian L. Reduction and removal of chromium VI in water by powdered activated carbon. Materials 2018; 11 (2): 269-281. doi: 10.3390/ma11020269

46. Khosrowshahi GS, Behnajady MA. Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom Heteracanthom. International Journal of Environmental Science and Technology 2016; 13 (7): 1803-1814. doi: 10.1007/s13762-016-0978-3

47. Sureshkumar V, Kiruba DSCG, Ruckmani K, Sivakumar M. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Applied Nanoscience 2016; 6 (2): 277-285. doi: 10.1007/s13204-015-0429-3

48. Al-Homaidan AA, Hussein S, Al-Qahtani HS, Al-Ghanayem AA, Ameen F et al. Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi Journal of Biological Sciences 2018; 25 (8): 1733-1738. doi: 10.1016/j.sjbs.2018.07.011

49. Liu J, Wu X, Hu Y, Dai C, Peng Q et al. Effects of Cu(II) on the adsorption behaviors of Cr(III) and Cr(VI) onto kaolin. Journal of Chemistry 2016; 1-11. doi: 10.1155/2016/3069754

50. Ghanbarpourabdoli N, Raygan S, Abdizadeh H. Investigating selective removal of Cr(VI) and zinc ions from aqueous media by mechanical-chemical activated red mud. Iranian Journal of Materials Science and Engineering 2016; 13 (4): 20-32. doi: 10.220687ijmse.13.4.20

51. Ma M, Lu Y, Chen R, Ma L, Wang Y. Hexavalent chromium removal from water using heat-acid activated red mud. Open Journal of Applied Sciences 2014; 4 (5): 275-284. doi: 10.4236/ojapps.2014.45027

52. Khosravi R, Fuzlazedehdavil M, Barikbin B, Taghizadeh AA. Removal of hexavalent chromium from aqueous solution by granular and powdered Peganum Harmala. Applied Surface Science 2014; 292: 670-677. doi: 10.1016/j.apsusc.2013.12.031

53. Samuel SM, Abigail MEA, Chidambaram R. Isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology for effective removal of Cr(VI) using fungal biomass. PLOS ONE 2015; 10 (3): 1-15. doi: 10.1371/journal.pone.0116884

54. Samuel SM, Abigail MEA, Chidambaram R. Biosorption of Cr(VI) by ceratocystis paradoxa MSR2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology. PLOS ONE 2015; 10 (3): 1-23. doi: 10.1371/journal.pone.0118999
55. Seffah K, Zafour-Hadj-Ziane A, Achour AT, Guillet JF, Lonchambon P et al. Adsorption of cadmium ions from water on doublewalled carbon nanotubes/iron oxide composite. Chemistry Journal of Moldova, General, Industrial and Ecological Chemistry 2017; 12 (2): 71-78. doi: 10.19261/cjm.2017.412

56. Budimirović D, Veličković ZS, Bajić Z, Milošević DL, Nikolić JB et al. Removal of heavy metals from water using multistage functionalized multivall carbon nanotubes. Journal of the Serbian Chemical Society 2017; 82 (10): 1175-1199. doi: 10.2298/jsc170422066b

57. Ghafoor S, Ata S. Synthesis of carboxyl-modified Fe₃O₄@SiO₂ nanoparticles and their utilization for the remediation of cadmium and nickel from aqueous solution. Journal of the Chilean Chemical Society 2017; 62 (3): 3588-3592. doi: 10.4067/s0717-97072017000303588

58. Ihsanullah FAAK, Abusharkh B, Khaled MA, Nasser MS et al. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. Journal of Molecular Liquids 2015; 204: 255-263. doi: 10.1016/j.molliq.2015.01.033

59. Al-Homaidan AA, Alabdullatif JA, Al-Hazzani AA, Al-Ghanayem AA, Alabbad A. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences 2015; 22 (6): 795-800. doi: 10.1016/j.sjbs.2015.06.010

60. Javadian H, Ghorbani F, Tayebi HA, Asl SMH. Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian Journal of Chemistry 2015; 8 (6): 837-849. doi: 10.1016/j.arabjc.2013.02.018

61. Huang Y, Keller AA. EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Research 2015; 80: 159-168. doi: 10.1016/j.watres.2015.05.011

62. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Heals Science and Engineering 2015; 13 (1): 84-91. doi: 10.1186/s40201-015-0237-4

63. Jain M, Garg VK, Garg UK, Kadirvelu K, Sillanpää M. Cadmium removal from wastewater using carbonaceous adsorbents prepared from sunflower waste. International Journal of Environmental Research 2015; 9 (3): 1079-1088. doi: 10.22059/ijer.2015.995

64. Southerarajah DP, Loganathan P, Kandasamy J, Vigneswaran S. Effects of humic acid and suspended solids on the removal of heavy metals from water by adsorption onto granular activated carbon. International Journal of Environmental Research and Public Health 2015; 12 (9): 10475-10489. doi: 10.3390/ijerph120910475

65. Lee SJ, Park JH, Ahn YT, Chung JW. Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions. Water, Air and Soil Pollution 2015; 226 (2): 1-11. doi: 10.1007/s11270-014-2275-4

66. Li B, Yang L, Wang C, Zhang Q, Liu Q et al. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017; 175: 332-340. doi: 10.1016/j.chemosphere.2017.02.061

67. Tran HN, Chao HP. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Management and Research 2016; 34 (2): 129-138. doi: 10.1177/0734242X15615698

68. Guo X, Tang S, Song Y, Nan J. Adsorptive removal of Ni²⁺ and Cd²⁺ from wastewater using a green longan hull adsorbent. Adsorption Science and Technology 2018; 36 (1): 762-773. doi: 10.1177/0263617417722254

69. Boudaoud A, Djedid M, Benalia M, Ad C, Bouzar N et al. Removal of nickel (II) and cadmium (II) ions from wastewater by palm fibers. Scientific Study and Research Chemistry and Chemical Engineering, Biotechnology, Food Industry 2017; 18 (4): 391-406.
70. Harsha KRS, Murthy M, Udayasimha L, Rangappa D. Synthesis and characterization of activated carbon coated alumina as nano adsorbent. Materials Today 2017; 4 (11): 12321-12327. doi: 10.1016/j.matpr.2017.09.166

71. Konicki W, Aleksandrzak M, Mijowska E. Equilibrium and kinetics studies for the adsorption of Ni$^{2+}$ and Fe$^{3+}$ ions from aqueous solution by graphene oxide. Polish Journal of Chemical Technology 2017; 19 (3): 120-129. doi: 10.1515/pjct-2017-0058

72. Konicki W, Pelka R, Arabczyk W. Adsorption of Ni$^{2+}$ from aqueous solution by magnetic Fe@graphite nanocomposite. Polish Journal of Chemical Technology 2016; 18 (4): 96-103. doi: 10.1515/pjct-2016-0077

73. Sobhanardakani S, Zandipakb R, Mohammadi MJ. Removal of Ni(II) and Zn(II) from aqueous solutions using chitosan. Archives of Hygiene Sciences 2016; 5 (1): 47-55.

74. Khelifi O, Mouna N, Affoune AM. Nickel (II) adsorption from aqueous solutions by physico-chemically modified sewage sludge. Iranian Journal of Chemistry and Chemical Engineering 2018; 37 (1): 73-87. doi: 1021-9986/2018/2/73-87

75. Ossman ME, Abdelfatah M, Kiros Y. Preparation, characterization and adsorption evaluation of old newspaper fibres using basket reactor (nickel removal by adsorption). International Journal of Environmental Research 2016; 10 (1): 119-130. doi: 10.22059/ijer.2016.56894

76. Mustaqeem M, Sharif BM, Patil PR. Adsorption of Ni (II) ion from metal solution using natural adsorbents international. Journal of Emerging Trends in Engineering and Development 2015; 5 (4): 33-43. doi: 10.1007/s10450-012-9464-5

77. Muhaisen LF. Nickel ions removal from aqueous solutions using sawdust as adsorbent: equilibrium, kinetic and thermodynamic studies. Journal of Engineering and sustainable Development 2017; 21 (3): 60-72.

78. Florence JAK, Gomathi T, Thenmozhi N, Sudha PN. Adsorption study: removal of nickel ions using kenaf fiber/chitosan biosorbent. Journal of Chemical and Pharmaceutical Research 2015; 7 (5): 410-422.