Resolving molecular contributions of ion channel noise to interspike interval variability through stochastic shielding

Shusen Pu1,2 · Peter J. Thomas1,3,4,5,6

Received: 29 October 2020 / Accepted: 4 May 2021 / Published online: 22 May 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021, corrected publication 2021

Abstract
Molecular fluctuations can lead to macroscopically observable effects. The random gating of ion channels in the membrane of a nerve cell provides an important example. The contributions of independent noise sources to the variability of action potential timing have not previously been studied at the level of molecular transitions within a conductance-based model ion-state graph. Here we study a stochastic Langevin model for the Hodgkin–Huxley (HH) system based on a detailed representation of the underlying channel state Markov process, the “14 × 28D model” introduced in (Pu and Thomas in Neural Computation 32(10):1775–1835, 2020). We show how to resolve the individual contributions that each transition in the ion channel graph makes to the variance of the interspike interval (ISI). We extend the mean return time (MRT) phase reduction developed in (Cao et al. in SIAM J Appl Math 80(1):422–447, 2020) to the second moment of the return time from an MRT isochron to itself. Because fixed-voltage spike detection triggers do not correspond to MRT isochrons, the inter-phase interval (IPI) variance only approximates the ISI variance. We find the IPI variance and ISI variance agree to within a few percent when both can be computed. Moreover, we prove rigorously, and show numerically, that our expression for the IPI variance is accurate in the small noise (large system size) regime; our theory is exact in the limit of small noise. By selectively including the noise associated with only those few transitions responsible for most of the ISI variance, our analysis extends the stochastic shielding (SS) paradigm (Schmandt and Galán in Phys Rev Lett 109(11):118101, 2012) from the stationary voltage clamp case to the current clamp case. We show numerically that the SS approximation has a high degree of accuracy even for larger, physiologically relevant noise levels. Finally, we demonstrate that the ISI variance is not an unambiguously defined quantity, but depends on the choice of voltage level set as the spike detection threshold. We find a small but significant increase in ISI variance, the higher the spike detection voltage, both for simulated stochastic HH data and for voltage traces recorded in in vitro experiments. In contrast, the IPI variance is invariant with respect to the choice of isochron used as a trigger for counting “spikes.”

Keywords Channel noise · Stochastic shielding · Phase response curve · Interspike interval · Neural oscillators · Langevin models

1 Introduction
Nerve cells communicate with one another, process sensory information, and control motor systems through transient voltage pulses, or spikes. At the single-cell level, neurons exhibit a combination of deterministic and stochastic behav-

1 Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH, USA
2 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
3 Department of Biology, Case Western Reserve University, Cleveland, OH, USA
4 Department of Cognitive Science, Case Western Reserve University, Cleveland, OH, USA
5 Department of Data and Computer Science, Case Western Reserve University, Cleveland, OH, USA
6 Department of Electrical, Control, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
iors. In the supra-threshold regime, the regular firing of action potentials under steady current drive suggests limit cycle dynamics, with the precise timing of voltage spikes perturbed by noise. Variability of action potential timing persists even under blockade of synaptic connections, consistent with an intrinsically noisy neural dynamics arising from the random gating of ion channel populations, or “channel noise” (White et al. 2000).

Understanding the molecular origins of spike time variability may shed light on several phenomena in which channel noise plays a role. For example, microscopic noise can give rise to a stochastic resonance behavior (Schmid et al. 2001) and can contribute to cellular- and systems-level timing changes in the integrative properties of neurons (Dorval and White 2005). Jitter in spike times under steady drive may be observed in neurons from the auditory system (Gerstner et al. 1996; Goldwyn et al. 2010; Moiseff and Konishi 1981) as well as in the cerebral cortex (Mainen and Sejnowski 1995) and may play a role in both fidelity of sensory information processing and in precision of motor control (Schneidman et al. 1998). As a motivating example for this work, channel noise is thought to underlie jitter in spike timing observed in cerebellar Purkinje cells recorded in vitro from the “leaner mouse,” a P/Q-type calcium channel mutant with profound ataxia (Walter et al. 2006). Purkinje cells fire Na\(^+\) action potentials spontaneously (Llinás and Sugimori 1980a, b), and may do so at a very regular rate (Walter et al. 2006), even in the absence of synaptic input (cf. Fig. 1a, c). Mutations in an homologous human calcium channel gene are associated with episodic ataxia type II, a debilitating form of dyskinesia (Pietrobon 2010; Rajakulendran et al. 2012). Previous work has shown that the “leaner” mutation increases the variability of spontaneous action potential firing in Purkinje cells (Ovsepian and Friel 2008; Walter et al. 2006) (Fig. 1b, d). It has been proposed that increased channel noise akin to that observed in the leaner mutant plays a mechanistic role in this human disease (Walter et al. 2006).

Despite its practical importance, a quantitative understanding of distinct molecular sources of macroscopic timing variability remains elusive. Significant theoretical attention has been paid to the variance of phase response curves and interspike interval (ISI) variability. Most analytical studies are based on the integrate-and-fire model (Brunel and Latham 2003; Lindner 2004; Vilela and Lindner 2009), except (Ermentrout et al. 2011), which perturbs the voltage of a conductance-based model with a white noise current rather than through biophysically based channel noise. Standard models of stochastic ion channel kinetics comprise hybrid stochastic systems. As illustrated in Fig. 2, the membrane potential evolves deterministically, given the transmembrane currents; the currents are determined by the ion channel state; the ion channel states fluctuate stochastically with opening and closing rates that depend on the voltage (Anderson et al. 2015; Bressloff and Newby 2014; Buckwar and Riedler 2011; Pakdaman et al. 2010). This closed-loop nonlinear dynamical stochastic system is difficult to study analytically, because of recurrent statistical dependencies of the variables one with another. An important and well-studied special case is fixed-voltage clamp, which reduces the ion channel subsystem to a time-invariant Markov process (Schmidt and Thomas 2014). Under the more natural current clamp, the ion channel dynamics taken alone are no longer Markovian, as they intertwine with current and voltage. A priori, it is challenging to draw a direct connection between the variability of spike timing and molecular-level stochastic events, such as the opening and closing of specific ion channels, as spike timing is a pathwise property reflecting the effects of fluctuations accumulated around each orbit or cycle.

Schmandt and Galán (2012) introduced stochastic shielding as a fast, accurate approximation scheme for stochastic ion channel models. Rather than simplifying the Markov process by aggregating ion channel states, stochastic shielding reduces the complexity of the underlying sample space by eliminating independent noise sources (corresponding to individual directed edges in the channel state transition graph) that make minimal contributions to ion channel state fluctuations. In addition to providing an efficient numerical procedure, stochastic shielding leads to an edge importance measure (Schmidt and Thomas 2014) that quantifies the contribution of the fluctuations arising along each directed edge to the variance of channel state occupancy (and hence the variance of the transmembrane current). The stochastic shielding method then amounts to simulating a stochastic conductance-based model using only the noise terms from the most important transitions. While the original, heuristic implementation of stochastic shielding considered both current and voltage clamp scenarios (Schmandt and Galán 2012), subsequent mathematical analysis of stochastic shielding considered only the constant voltage clamp case (Schmidt et al. 2018; Schmidt and Thomas 2014).

In our previous work (Pu and Thomas 2020), we numerically estimated the contribution of each directed edge in the transition graph (Fig. 2a, b) to the variance of ISIs. In this paper, we provide, to our knowledge, the first analytical treatment of the variability of spike timing under current clamp arising from the random gating of ion channels with realistic (Hodgkin–Huxley) kinetics. Building on prior work (Cao et al. 2020; Pu and Thomas 2020; Schmandt and Galán 2012; Schmidt et al. 2018; Schmidt and Thomas 2014), we study the variance of the transition times among a family of Poincaré sections, the mean return time (MRT) isochrons investigated by Schwabedal and Pikovsky (2013); Cao et al. (2020) that extend the notion of phase reduction to stochastic limit cycle oscillators. We prove a theorem that gives the form of the
Fig. 1 Somatic voltage recorded in vitro from intact Purkinje cells (cerebellar slice preparation) during spontaneous tonic firing, with synaptic input blocked. Recordings courtesy of Dr. D. Friel. See Sect. D for details. a) Sample voltage recordings from a wild type Purkinje cell showing precise spontaneous firing with interspike interval (ISI) coefficient of variation (CV = standard deviation / mean ISI) of approximately 3.9%. b) Sample recordings from Purkinje cells with leaner mutation in P/Q-type calcium channels showing greater variability in ISI (CV c. 30%). c, d) Histogram of ISI for wild type and leaner mutation, respectively. Bin width = 1 msec for each.

Thus, we are able to pull apart the distinct contribution of each independent source of noise (each directed edge in the ion channel state transition graphs) to the variability of timing. Figures 11 and 12 illustrate the additivity of contributions from separate edges for small noise levels. As a consequence of this linear decomposition, we can extend the stochastic shielding approximation, introduced in Schmandt and Galán (2012) and rigorously analyzed under voltage clamp in (Schmidt and Thomas 2014; Schmidt et al. 2018), to the current clamp case. Our theoretical result guarantees that, for small noise, we can replace a full stochastic simulation with a more efficient simulation driven by noise from only the most “important” transitions with negligible loss of accuracy. We find numerically that the range of validity of the stochastic shielding approximation under current clamp extends beyond the “small noise limit” to include physiologically relevant population sizes, cf. Fig. 12.

The inter-phase interval (IPI) is a mathematical construct closely related to, but distinct from, the interspike interval (ISI). The ISI, determined by the times at which the cell voltage moves upward (say) through a prescribed voltage threshold v_{thresh}, is directly observable from experimental recordings—unlike the IPI. However, we note that both in experimental data and in stochastic numerical simulations,

Thus, we are able to pull apart the distinct contribution of each independent source of noise (each directed edge in the ion channel state transition graphs) to the variability of timing. Figures 11 and 12 illustrate the additivity of contributions from separate edges for small noise levels. As a consequence of this linear decomposition, we can extend the stochastic shielding approximation, introduced in Schmandt and Galán (2012) and rigorously analyzed under voltage clamp in (Schmidt and Thomas 2014; Schmidt et al. 2018), to the current clamp case. Our theoretical result guarantees that, for small noise, we can replace a full stochastic simulation with a more efficient simulation driven by noise from only the most “important” transitions with negligible loss of accuracy. We find numerically that the range of validity of the stochastic shielding approximation under current clamp extends beyond the “small noise limit” to include physiologically relevant population sizes, cf. Fig. 12.

The inter-phase interval (IPI) is a mathematical construct closely related to, but distinct from, the interspike interval (ISI). The ISI, determined by the times at which the cell voltage moves upward (say) through a prescribed voltage threshold v_{thresh}, is directly observable from experimental recordings—unlike the IPI. However, we note that both in experimental data and in stochastic numerical simulations,
Fig. 2 Statistical dependencies among voltage (V_t), ionic currents (I_t), and ion channel state (X_t) form a hybrid, or piecewise deterministic, stochastic model. a, b Molecular sodium (Na$^+$) and potassium (K$^+$) channel states for the Hodgkin–Huxley model. Filled circles mark conducting states N_0 and M_{31}. Per capita transition rates for each directed edge (α_n, β_n, α_m, β_m, α_h, and β_h) are voltage dependent (cf. Appendix A). Directed edges are numbered 1-8 (K$^+$ channel) and 1-20 (Na$^+$-channel), marked in small blue numerals. c Voltage V_t at time t influences current I_t as well as the transition from channel state $X = [M_{00}, M_{10}, \ldots, M_{31}, N_0, N_1, \ldots, N_4]$, at time $t-1$ to time t. (For illustration, we assume discrete sampling at integer multiples of a nominal time step Δt in arbitrary units.) Channel state dictates the subsequent ionic current, which dictates the voltage increment. Arrowheads (→) denote deterministic dependencies. T-connectives (⊥) denote statistical dependencies.

the variance of the ISI is not insensitive to the choice of voltage threshold, but increases monotonically as a function of v_{thresh} (cf. Fig. 9). In contrast, the variance of inter-phase interval times is the same, regardless of which MRT isochron is used to define the intervals. This invariance property gives additional motivation for investigating the variance of the IPI.

The structure of the paper is as follows: In Sect. 2, we review the 14 × 28D Langevin Hodgkin–Huxley model proposed in Pu and Thomas (2020) and provide mathematical definitions of first passage times, interspike intervals, asymptotic phase functions, and iso-phase intervals for the class of model we consider. In Sect. 3, we state the necessary assumptions and prove the small-noise decomposition theorem. In Sect. 4, we compare the contributions of individual transitions to both interspike interval variability and interphase interval variability, predicted from the decomposition theorem, against the results of numerical simulations. Section 5 discusses the theoretical and practical limitations of our results.

A preliminary version of the results reported here formed part of the first author’s doctoral thesis (Pu 2020).

2 Definitions, notation and terminology

In this section, we recall the notation and assumptions of the 14 × 28D Langevin model for the stochastic Hodgkin–Huxley system introduced in Pu and Thomas (2020). In addition, we will present definitions, notations and terminology that are necessary for the main result. We adopt the standard convention that uppercase symbols (e.g., V, M, N) represent random variables, while corresponding lowercase symbols (e.g., v, m, n) represent possible realizations of the random variables. Thus, $P(V \leq v)$ is the probability that the random voltage V does not exceed the value v. We set vectors in bold font and scalars in standard font.
2.1 The Langevin HH model

For the HH kinetic scheme given in Fig. 2a, b (p. 4), we define the eight-component state vector \(\mathbf{M} \) for the Na\(^+\) gates, and the five-component state vector \(\mathbf{N} \) for the K\(^+\) gates, respectively, as

\[
\mathbf{M} = [M_{00}, M_{10}, M_{20}, M_{30}, M_{01}, M_{11}, M_{21}, M_{31}]^T \in [0, 1]^8
\]

\[
\mathbf{N} = [N_0, N_1, N_2, N_3, N_4]^T \in [0, 1]^5,
\]

where \(\sum_{i=0}^{3} \sum_{j=0}^{1} M_{ij} = 1 \) and \(\sum_{i=0}^{4} N_i = 1 \). The fraction of open Na\(^+\) channels is \(M_{31} \), and the fraction of open K\(^+\) channels is \(N_4 \). Using Kurtz’ strong approximation theorem for Markov Chains (Kurtz 1978), one can derive the Langevin equation for the stochastic HH model. Based on Fox and Lu’s framework (Fox 1994), our previous paper (Pu and Thomas 2020) proposed a \(14 \times 28 \) Langevin HH model. Here, we make the dependence of the channel noise on system size (number of channels) explicit, by introducing a small parameter \(\epsilon \propto N^{-1} \). We therefore consider a one-parameter family of Langevin equations

\[
d\mathbf{X} = \mathbf{F}(\mathbf{X}) \, dt + \sqrt{\epsilon} \mathbf{G}(\mathbf{X}) \, d\mathbf{W}(t)
\]

where we define the 14-component vector \(\mathbf{X} = (V; \mathbf{M}; \mathbf{N}) \) and \(d\mathbf{W}(t) \) represents a Wiener (Brownian motion) process. In the governing Langevin equation (3), the stochastic forcing components in \(\sqrt{\epsilon} \mathbf{G}(\mathbf{X}) \) are implicitly scaled by factors proportional to \(\sqrt{\epsilon} \), with effective numbers of \(M_{tot} = M_{ref}/\epsilon \) sodium and \(N_{tot} = N_{ref}/\epsilon \) potassium channels. For comparison, in their study of different Langevin models, Goldwyn and Shea-Brown considered a patch of excitable membrane containing \(M_{ref} = 6000 \) sodium channels and \(N_{ref} = 1800 \) potassium channels (Goldwyn and Shea-Brown 2011). In this paper, we consider \(\epsilon \in [e^{-10}, e^{3}] \), i.e., we consider ion channel populations ranging in number from \(40 \lesssim M_{tot} \lesssim 1.3 \times 10^8 \) for Na\(^+\) and \(12 \lesssim N_{tot} \lesssim 4.0 \times 10^7 \) for K\(^+\) channels (cf. Figs. 11, 12 and Table 1).

The deterministic part of the evolution equation \(\mathbf{F}(\mathbf{X}) = \left[\frac{dV}{dt}, \frac{d\mathbf{M}}{dt}, \frac{d\mathbf{N}}{dt} \right] \) is the same as the mean-field dynamics, given by

\[
C \frac{dV}{dt} = -\bar{g}_{Na} M_{31} (V - V_{Na}) - \bar{g}_{K} N_{4} (V - V_{K}) - g_L (V - V_L) + I_{app},
\]

\[
\frac{d\mathbf{M}}{dt} = A_{Na}(V) \mathbf{M},
\]

\[
\frac{d\mathbf{N}}{dt} = A_{K}(V) \mathbf{N}.
\]

Here, \(C \, (\mu F/cm^2) \) is the capacitance, \(I_{app} \, (nA/cm^2) \) is the applied current, the maximal conductance is \(\bar{g}_{ion} \, (mS/cm^2) \), \(V_{ion} \, (mV) \) is the associated reversal potential, for ion \(\in \{Na, K\} \), and the ohmic leak current is \(g_{leak} (V - V_{leak}) \). The voltage-dependent drift matrices \(A_{Na} \) and \(A_{K} \) are given by

\[
A_{Na}(V) = \begin{bmatrix}
\alpha_{Na}(1) & \beta_n(V) & 0 & 0 & 0 \\
3\alpha_{m} & \alpha_{Na}(2) & 2\beta_m(V) & 0 & 0 \\
0 & 2\alpha_{m} & \alpha_{Na}(3) & 3\beta_m(V) & 0 \\
0 & 0 & \alpha_{m} & \alpha_{Na}(4) & 0 \\
0 & 0 & 0 & \alpha_{m} & \alpha_{Na}(5) \\
0 & 0 & 0 & 3\alpha_{m} & \alpha_{Na}(6) \\
0 & 0 & 0 & 0 & \alpha_{m} \\
0 & 0 & 0 & 0 & \alpha_{m} \\
\end{bmatrix}
\]

\[
A_{K}(V) = \begin{bmatrix}
\alpha_{K}(1) & \beta_n(V) & 0 & 0 & 0 \\
4\alpha_{s}(V) & \alpha_{K}(2) & 2\beta_s(V) & 0 & 0 \\
0 & 0 & \alpha_{s}(V) & \alpha_{K}(3) & 3\beta_s(V) \\
0 & 0 & 2\alpha_{s}(V) & \alpha_{K}(4) & 4\beta_s(V) \\
0 & 0 & 0 & \alpha_{s}(V) & \alpha_{K}(5) \\
\end{bmatrix}
\]

with diagonal elements

\[
A_{ion}(i) = -\sum_{j:j\neq i} A_{ion}(j, i), \text{ for } \text{ion } \in \{Na, K\}.
\]

The state-dependent noise coefficient matrix \(\mathbf{G} \) is \(14 \times 28 \) and can be written as

\[
\mathbf{G} = \begin{bmatrix}
\begin{bmatrix}
0_{1 \times 20} & 0_{1 \times 8}
\end{bmatrix} & \begin{bmatrix}
S_{Na} \\
S_{K}
\end{bmatrix}
\end{bmatrix}.
\]

Note that each column of \(S_{K} \) (respectively, \(S_{Na} \)) is proportional to the stoichiometry vector associated with a single directed edge in the K\(^+\) channel (resp. Na\(^+\) channel) transition graph (cf. Fig. 2). Because channel state transitions preserve the total number of channels, each stoichiometry vector sums to zero. Therefore, the columns of matrix \(\mathbf{G} \) always sum to zero, and thus, the scaled noise model in Eq. (3) ensures that \(\mathbf{M} \) and \(\mathbf{N} \) always remain within the simplex.

When simulating (3), we use free boundary conditions for the gating variables \(M_{ij} \) and \(N_{i} \) (Orio and Soudry 2012; Pezo et al. 2014; Pu and Thomas 2020). With free boundaries, some gating variables may make small, rare excursions into negative values. To avoid inconsistencies, we therefore use the absolute values \(|M_{ij}| \) and \(|N_{i}| \) when calculating the edge fluxes needed to construct the matrix \(\mathbf{G} \). The resulting boundary effects are insignificant for all system sizes considered (Orio and Soudry 2012).

All parameters, transition rates and the coefficient matrices \(S_{K} \) and \(S_{Na} \) are given in Appendix A.
2.2 Stochastic shielding

The stochastic shielding (SS) approximation was first introduced by Schmandt and Galán as an efficient numerical procedure to simulate Markov processes using only those transitions associated with observable states (Schmandt and Galán 2012). Analysis of the SS approximation leads to an edge importance measure (Schmidt and Thomas 2014) that quantifies the contribution of the fluctuations arising along each directed edge to the variance of channel state occupancy (and hence the variance of the transmembrane current) under voltage clamp. The stochastic shielding method then amounts to simulating a stochastic conductance-based model using only the noise terms from the most important transitions. While the original, heuristic implementation of stochastic shielding considered both current and voltage clamp scenarios (Schmandt and Galán 2012), subsequent mathematical analysis of stochastic shielding considered only the constant voltage clamp case (Schmidt et al. 2018; Schmidt and Thomas 2014).

In our previous work (Pu and Thomas 2020), we extended the SS approximation to the current clamp case, where we numerically calculated the edge importance for all transitions in Fig. 2. Given the matrix G and a list of the “most important” noise sources (columns of G), the stochastic shielding approximation amounts to setting the columns excluded from the list equal to zero (Pu and Thomas 2020; Schmidt and Thomas 2014). Within the framework of stochastic shielding, we may ask how each column of S_K and S_Na contributes to the variability of stochastic trajectories generated by Eq. (3).

In this paper, our main theorem gives a semi-analytical foundation for the edge-importance measure under current clamp in terms of contributions to ISI variance. In Sect. 4, we will apply the SS method to numerically test our theorem of the contribution from each edge to the ISI variability under current clamp.

The next section defines first passage times and interspike intervals for general conductance-based models, which are fundamental to our subsequent analysis.

2.3 First passage times and interspike intervals

Reversal potentials V_{ion} for physiological ions are typically confined to the range ±150mV. For the 4-D and the 14-D HH models, the reversal potentials for K^+ and Na^+ are -77mv and $+50$mv, respectively (Ermentrout and Terman 2010). In Lemma 1, we establish that the voltage for conductance-based model in Eq. (3) is bounded. Therefore, we can find a voltage range $[v_{min}, v_{max}]$ that is forward invariant with probability 1, meaning that the probability of any sample path leaving the range $v_{min} \leq V(t) \leq v_{max}$ is zero. At the same time, the channel state distribution for any channel with k states is restricted to a $(k - 1)$-dimensional simplex $\Delta^{k-1} \subset \mathbb{R}^k$, given by $y_1 + \ldots + y_k = 1$, $y_i \geq 0$. Therefore, the phase space of any conductance-based model of the form (3) may be restricted to a compact domain in finite dimensions.

Definition 1 We define the **HH domain** D to be

$$D \equiv [v_{min}, v_{max}] \times \Delta^7 \times \Delta^4$$

where Δ^7 is the simplex occupied by the Na^+channel states and Δ^4 is occupied by the K^+channel states.

We thus represent the “14-D” HH model in a reduced phase space of dimension $1+7+4=12$.

Lemma 1 For a conductance-based model of the form (3), and for any fixed applied current I_{app}, there exist upper and lower bounds v_{max} and v_{min} such that trajectories with initial voltage condition $v \in [v_{min}, v_{max}]$ remain within this interval for all times $t > 0$, with probability 1, regardless of the initial channel state, provided the gating variables satisfy $0 \leq M_{ij} \leq 1$ and $0 \leq N_i \leq 1$.

Proof See App. C. □

Remark 1 Lemma 1 implies that the per capita transition rates along a finite collection of edges, $(\alpha_v(v))^e_{i=1}$, are bounded above by a constant α_{max}, as v ranges over $v_{min} \leq v \leq v_{max}$. This fact will help establish Theorem 1.

Interspike Intervals and First Passage Times

Figure 3 shows a voltage trajectory generated by the 14-D stochastic HH model, under current clamp, with injected current in the range supporting steady firing. The regular periodicity of the deterministic model vanishes in this case. Nevertheless, the voltage generates spikes, which allows us to introduce a well defined series of spike times and interspike intervals (ISIs). For example, we may select a reference voltage such as $v = -20$ mV, with the property that within a neighborhood of this voltage, trajectories have strictly positive or strictly negative derivatives (dV/dt) with high probability.

The authors of (Rowat 2007) suggested that the stochastic (Langevin) 4-D HH model has a unique invariant stationary joint density for the voltage and gating variables, as well as producing a stationary point process of spike times. Here, we follow other authors in assuming the existence of a unique stationary distribution. The ensemble of trajectories may be visualized by aligning the voltage spikes (Fig. 3b) and illustrates that each trace is either rapidly increasing or else rapidly decreasing as it passes $v = -20$ mV.

In order to give a precise definition of the interspike interval, on which we can base a first-passage time analysis, we will consider two types of Poincaré section of the fourteen-dimensional phase space: the “nullcline” surface associated...
with the voltage variable,

\[\mathcal{V}^0 = \{(v, m, n) \in \mathcal{D} \mid f(v, m, n) = 0\}, \tag{10} \]

where the rate of change of voltage is instantaneously zero, and iso-voltage sections of the form

\[\mathcal{S}^u = \{(v, m, n) \in \mathcal{D} \mid v = u\}. \tag{11} \]

(In Sect. 2.6, we will define a third type of Poincaré section, namely isochrons of the mean return time function \(T(v, n) \) (Cao et al. 2020)). Figure 4 illustrates the projection of \(\mathcal{V}^0 \) (green horizontal line) and \(\mathcal{S}^u \) for \(u \in [-40, 10] \) (red vertical lines) onto the \((V, dV/dr)\) plane.

For any voltage \(u \), we can partition the voltage slice \(\mathcal{S}^u \) into three disjoint components \(\mathcal{S}^u = \mathcal{S}^u_0 \cup \mathcal{S}^u_+ \cup \mathcal{S}^u_- \), defined as follows:

Definition 2 Given the stochastic differential equations (3) defined on the HH domain \(\mathcal{D} \), and for a given voltage \(u \), the “null” surface, \(\mathcal{S}^u_0 \) is defined as

\[\mathcal{S}^u_0 \triangleq \mathcal{S}^u \cap \mathcal{V}^0 = \{(v, m, n) \in \mathcal{D} \mid v = u \& f(v, m, n) = 0\}, \]

the “inward current” surface, \(\mathcal{S}^u_+ \), is defined as

\[\mathcal{S}^u_+ \triangleq \{(v, m, n) \in \mathcal{D} \mid v = u \& f(v, m, n) > 0\}, \]

and the “outward current” surface is defined as

\[\mathcal{S}^u_- \triangleq \{(v, m, n) \in \mathcal{D} \mid v = u \& f(v, m, n) < 0\}. \]

Figure 4 plots \(dV/dr \) versus \(V \) for roughly 600 cycles and shows that for certain values of \(v \), the density of trajectories in a neighborhood of \(\mathcal{V}^0 \) is very small for a finite voltage range (here shown as \(-40 \leq v \leq +10 \) mV). Indeed for any \(u \), the intersection of the null set \(\mathcal{S}^u_0 \) has measure zero relative to the uniform measure on \(\mathcal{S}^u \), and the probability of finding a trajectory at precisely \(V = u \) and \(dV/dr = 0 \) is zero. Moreover, \(dV/dr \) is conditionally deterministic, i.e., the voltage increments in our 14-D stochastic HH model are not subject to Langevin-type forcing. Thus, although the gating variable trajectories \(\mathbf{M}(t) \) and \(\mathbf{N}(t) \) are nondifferentiable diffusions, the voltage trajectory \(V(t) \) is continuously differentiable. Thus, given \(m \) and \(n \), by applying the mean value theorem, it follows that a trajectory starting from \(x \in \mathcal{S}^u_0 \) will necessarily cross \(\mathcal{S}^u_- \) before crossing \(\mathcal{S}^u_+ \) again (with probability one).
First-Passage Times Based on this observation, we can give a formal definition of the first passage time as follows.

Definition 3 Given a section $S \subset D$, we define the first passage time (FPT) from a point $x \in D$ to S, for a stochastic conductance-based model as

$$\tau(x, S) \triangleq \inf\{t > 0 : X(t) \in S \& X(0) = x\}. \quad (12)$$

Note that, more generally, we can think of τ as $\tau(x, S, \omega)$, where ω is a sample from the underlying Langevin process sample space, $\omega \in \Omega$.\(^2\) For economy of notation, we usually suppress ω and may also suppress S, or x when these are clear from context.

In the theory of stochastic processes, a *stopping time*, τ, is any random time such that the event $\{\tau \leq t\}$ is part of the σ-algebra generated by the filtration \mathcal{F}_t of the stochastic process from time 0 through time t. That is, one can determine whether the event defining τ has occurred or not by observing the process for times up to and including t (see Øksendal 2007, §7.2, for further details).

Remark 2 Given any set $S \subset D$ and any point $x \in D$, the first passage time $\tau(x, S)$ is a stopping time. This fact will play a critical role in the proof of our main theorem.

As Figure 4 suggests, for $-40 \leq v \leq +10$ mV, the probability of finding trajectories in an open neighborhood of S^v_0 can be made arbitrarily small by making the neighborhood around S^v_0 sufficiently small. This observation has two important consequences. First, because the probability of being near the nullcline S^v_0 is vanishingly small, interspike intervals are well defined (cf. Def. 5, below), even for finite precision numerical simulation and trajectory analysis. In addition, this observation lets us surround the nullcline with a small cylindrical open set, through which trajectories are unlikely to pass. This cylinder-shaped buffer will play a role in defining the mean return time phase in §2.6.

Moreover, as illustrated in Fig. 5, when $V = -40$, the stochastic trajectory x intersects S^{-40} at two points within each full cycle, where one is in S^v_{+40} and one in S^v_{-40}. In addition, the trajectory crosses S^v_{-40} before it crosses S^v_{-40} again. This is a particular feature for conductance-based models in which dV/dt is conditionally deterministic, i.e., the model includes no current noise.\(^3\)

\(^2\) For the 14 × 28D Langevin Hodgkin–Huxley model, Ω may be thought of as the space of continuous vector functions on $[0, \infty)$ with 28 components – one for each independent noise source.

\(^3\) In this paper, we focus on a Langevin equation, rather than models with discrete channel noise. Therefore, our trajectories are diffusions that have continuous sample paths (with probability one). Therefore, the FPT $\tau(x, S)$ is well defined. For discrete channel noise models, a slightly modified definition would be required.
Interspike Intervals Starting from \(x \in S_+^{(0)} \), at time \(t = 0 \), we can identify the sequence of \((\tau, x)\) pairs of crossing times and crossing locations as

\[
(\tau_0^u = 0, x_0^u = x), (\tau_1^u, x_1^u), (\tau_1^d, x_1^d), \ldots, (\tau_k^u, x_k^u), (\tau_k^d, x_k^d), \ldots
\]

with \(0 = \tau_0^u < \tau_1^d < \tau_1^u < \tau_2^d < \tau_2^u < \ldots < \tau_k^d < \tau_k^u \ldots \) (15)

where \(\tau_k^d = \inf \{ t > \tau_k^u \mid x \in S_+^{(0)} \} \) is the \(k \)th down-crossing time, \(x_k^d \in S_+^{(0)} \) is the \(k \)th down-crossing location, \(\tau_k^u = \inf \{ t > \tau_k^d \mid x \in S_+^{(0)} \} \) is the \(k \)th up-crossing time and \(x_k^u \in S_+^{(0)} \) is the \(k \)th up-crossing location, for all \(k \in \mathbb{N}^+ \).

Under constant applied current, the HH system has a unique stationary distribution with respect to which the sequence of crossing times and locations have well-defined probability distributions (Rowat 2007). We define the moments of the interspike interval distribution with respect to this underlying stationary probability distribution.

Definition 5 Given a sequence of up- and down-crossings, relative to a reference voltage \(v_0 \) as above, the \(k \)th interspike interval (ISI), \(I_k \) (in milliseconds), of the stochastic conductance-based model is a random variable that is defined as

\[
I_k \overset{\Delta}{=} \tau_k^u - \tau_k^d
\]

where \(\tau_k^d \) is the \(k \)th up-crossing time. The mean ISI is defined as

\[
l \overset{\Delta}{=} \mathbb{E}[I_k]
\]

and the second moment of the ISI is defined as

\[
H \overset{\Delta}{=} \mathbb{E}[I_k^2]
\]

The variance of the ISI is defined as

\[
\sigma_{\text{ISI}}^2 \overset{\Delta}{=} \mathbb{E}[(I - I_k)^2] \quad \text{for } k = 1, 2, \ldots.
\]

It follows immediately that \(\sigma_{\text{ISI}}^2 = H - l^2 \).

2.4 Asymptotic phase and infinitesimal phase response curve

Given parameters in Appendix A with an applied current \(I_{\text{app}} = 10 \) nA, the deterministic HH model,

\[
\frac{dx}{dt} = F(x),
\]

fires periodically with a period \(T_0 \approx 14.63 \) msec, as shown in Fig. 6. We assume that the deterministic model has an asymptotically stable limit cycle, \(\gamma(t) = \gamma(t + T_0) \). The phase of the model at time \(t \) can be defined as (Schwemmer and Lewis 2012)

\[
\theta(t) = \frac{(t + T_0 \Theta)}{T_0} \mod T_0 \times 2\pi,
\]

where \(\mod \) is the module operation, and \(\theta(t) = 0 \) sets the spike threshold for the model. The constant \(\varphi \in [0, 2\pi] \) is the relative phase determined by the initial condition, and there is a one-to-one map between each point on the limit cycle and the phase. In general, the phase can be scaled to any constant interval; popular choices include \([0, 1]\), \([0, 2\pi]\), and \([0, T]\). Here we take \(\theta \in [0, 2\pi] \) (see Fig. 6).

Winfree and Guckenheimer extended the definition of phase from the limit cycle to the basin of attraction, which laid the foundation for the asymptotic phase function \(\phi(x) \) (Guckenheimer 1975; Winfree 2000, 1974). For the system in Eq. (20), let \(x(0) \) and \(y(0) \) be two initial conditions, one on the limit cycle and one in the basin of attraction, respectively. Denote the phase associated with \(x(0) \) as \(\theta_0(t) \). If the solutions \(x(t) \) and \(y(t) \) satisfy

\[
\lim_{t \to \infty} |x(t) - y(t)| = 0, \text{ i.e., } \lim_{t \to \infty} |\phi(y(t)) - \theta_0(t)| = 0,
\]

then \(y(0) \) has asymptotic phase \(\theta_0 \). The set of all points sharing the same asymptotic phase comprises an isochron, a level set of \(\phi(x) \). We also refer to such a set of points as an iso-phase surface (Schwabedal and Pikovsky 2013). By construction, the asymptotic phase function \(\phi(x) \) coincides
with the oscillator phase \(\theta(t) \) on the limit cycle, i.e., \(\theta(t) = \phi(\gamma(t)) \). We will assume that \(\phi(x) \) is twice-differentiable within the basin of attraction.

The phase response curve (PRC) is defined as the change in phase of an oscillating system in response to a given perturbation. If the original phase is defined as \(\theta_b \) and the phase after perturbation as \(\theta_a \), then the PRC is the shift in phase

\[
\Delta(\theta_b) = \theta_a - \theta_b.
\]

In the limit of small instantaneous perturbations, the PRC may be approximated by the infinitesimal phase response curve (iPRC) (Schwemmer and Lewis 2012; Winfree 2000). For a deterministic limit cycle, the iPRC \(Z(t) \) obeys the adjoint equation (Brown et al. 2004)

\[
\frac{dZ(t)}{dt} = -J(\gamma(t))^T Z(t),
\]

\[
Z(0) = Z(T_0),
\]

\[
Z(0)^TF(\gamma(0)) = 1
\]

where \(T_0 \) is the period of the deterministic limit cycle, \(\gamma(t) \) is the periodic limit cycle trajectory (for the HH equations (20), \(\gamma(t) \in \mathbb{R}^{14} \) and \(J(\gamma(t)) = DF(\gamma(t)) \) is the Jacobian of \(F \) evaluated along the limit cycle. The iPRC \(Z(t) \) is proportional to the gradient of the phase function \(\phi(x) \) evaluated on the limit cycle. For any point \(x \) in the limit cycle’s basin of attraction, we can define a timing sensitivity function

\[
Z(x) = \frac{T_0}{2\pi} \nabla_x \phi(x).
\]

For the limit cycle trajectory \(\gamma(t) \), we have \(Z(t) = \dot{Z}(\gamma(t)) \). The first component of \(Z \), for example, has units of msec/mv, or change in time per change in voltage.

2.5 Small-noise expansions

Given the scaling of the noise coefficients with system size, \(\epsilon \ll 1/\Omega \) (cf. p. 6), the larger the system size, the smaller the effective noise level. For sufficiently small values of \(\epsilon \), the solutions to eq. (3) remain close to the deterministic limit cycle; the (stochastic) interspike intervals will remain close to the deterministic limit cycle period \(T_0 \). If \(X(t) \) is a trajectory of (3), and \(\phi(x) \) is any twice-differentiable function, then Ito’s lemma (Øksendal 2007) gives an expression for the increment of \(\phi \) during a time increment \(dr \), beginning from state \(X \):

\[
d\phi(X(t)) = (\nabla \phi(X)) \cdot dX + \frac{\epsilon}{2} \sum_{ij} \frac{\partial^2 \phi(X)}{\partial x_i \partial x_j} dW_i dW_j
\]

\[
= \left(F(X) \cdot \nabla \phi(X) + \frac{\epsilon}{2} \sum_{ij} \frac{\partial^2 \phi(X)}{\partial x_i \partial x_j} \right) dt + \sqrt{\epsilon} (\nabla \phi(X))^T G(X) dW
\]

This expression is valid for arbitrary \(\epsilon \geq 0 \) and is asymptotically correct up to terms of order \(\epsilon^2 \). The operator \(\mathcal{L}^T \) defined by (25)-(26) is the formal adjoint of the Fokker–Planck or Kolmogorov operator (Risken 1996), also known as the generator of the Markov process (Øksendal 2007), or the Koopman operator (Lasota and Mackey 1994).

Dynkin’s formula, which we will use to prove our main result, is closely related to equation (26). Let \(x \in D \) and let \(\mathbb{E}^x \) denote the probability law for the ensemble of stochastic trajectories beginning at \(x \). Dynkin’s theorem (Øksendal 2007, §7.4) states that if \(\phi \) is a twice-differentiable function on \(D \), and if \(\tau \) is any stopping time (cf. Remark 2) such that \(\mathbb{E}^x[\tau] < \infty \), then

\[
\mathbb{E}^x[\phi(X(\tau))] = \phi(x) + \mathbb{E}^x \left[\int_0^\tau \mathcal{L}^T[\phi(X(s))] ds \right].
\]

2.6 Iso-phase sections

For the deterministic model, the isochrons form a system of Poincaré sections \(S_\varphi \), \(\varphi \in [0, 2\pi] \), each with a constant return time equal to the oscillator period \(T_0 \). When the system is perturbed by noise, \(\epsilon > 0 \), we consider a set of “iso-phase sections” based on a mean return time (MRT) construction, first proposed by Schwabedal and Pikovsky (2013) and rigorously analyzed by Cao et al. (2020). As shown in Cao et al. (2020), the MRT iso-phase surfaces \(S \) are the level sets of a function \(T_\epsilon(x) \) satisfying the MRT property. Namely, if \(S \) is an iso-phase section, then the mean time taken to return to \(S \), starting from any \(x \in S \), after one full rotation, is equal to the mean period, \(T_\epsilon \).

The construction in Cao et al. (2020) requires that the Langevin equation (3) be defined on a domain with the topology of an \(n \)-dimensional cylinder, because finding the MRT function \(T_\epsilon(x) \) involves specifying an arbitrary “cut” from the outer to the inner boundary of the cylinder. Conductance-based models in the steady-firing regime, where the mean-field equations support a stable limit cycle, can be well approximated by cylindrical domains. In particular, their variables are restricted to a compact range, and there is typically a “hole” through the domain in which trajectories are exceedingly unlikely to pass, at least for small noise.

As an example, consider the domain for the 14D HH equations (recall Defs. 1), namely \(D \equiv [v_{\min}, v_{\max}] \times \Delta^2 \times \Delta^4 \). The \(p \)-dimensional simplex \(\Delta^p \) is a bounded set, and, as established by Lemma 1, the trajectories of (3) remain within fixed-voltage bounds with probability 1, so our HH system operates within a bounded subset of \(\mathbb{R}^{14} \). To identify a “hole” through this domain, note that the set

\[
S_0^u \equiv S^u \cap \mathcal{V}^0 = \{(v, m, n) \in D \mid v = u \& f(v, m, n) = 0\},
\]
which is the intersection of the voltage nullcline y^0 with the constant-voltage section S^ϵ, is rarely visited by trajectories under small noise conditions (Fig. 4b).

For $r > 0$, we define the open ball of radius r around S^ϵ_0 as

$$B_r(S^\epsilon_0) \triangleq \left\{ x \in D \left| \min_{y \in S^\epsilon_0} (||x - y||) < r \right. \right\}. \quad (28)$$

For the remainder of the paper, we take the stochastic differential equation (3) to be defined on

$$D_0 = D \setminus B_r(S^\epsilon_0). \quad (29)$$

For sufficiently small $r > 0$, D_0 is a space homeomorphic to a cylinder in \mathbb{R}^{14}. To see this, consider the annulus $\mathcal{A} = I_1 \times B^{13}$, where $I_1 = [0, 2\pi]$ and B^{13} is a simply connected subset of \mathbb{R}^{13}. That space is homotopy equivalent to a circle S^1 by contracting the closed interval parts to a point and contracting the annulus part to its inner circle.

To complete the setup so that we can apply the theory from Cao et al. (2020), we set boundary conditions $\sum_{ij} n_i (G^T)_{ij} T_e = 0$ at reflecting boundaries with outward normal n on both the inner and outer boundaries of the cylinder. In addition, we choose an (arbitrary) section transverse to the cylinder, and impose a jump condition $T_e \rightarrow T_e + \Delta T_e$ across this section, where ΔT_e is the mean oscillator period under noise level ϵ.

As showed in Cao et al. (2020), this construction allows us to establish a well defined MRT function for a given noise level ϵ, $\mathcal{T}_\epsilon(x)$. We then obtain the iso-phase sections as level sets of $\mathcal{T}_\epsilon(x)$. We give a formal definition as follows.

Definition 6 Given a fixed noise level $\epsilon \geq 0$, and an iso-phase surface S for Eq. (3), we define the kth iso-phase interval (IPI) as the random variable

$$\Delta_k \triangleq \mu_k - \mu_{k-1}, \quad (30)$$

where $\{\mu_k\}_{k \in \mathbb{N}^+}$ is a sequence of times at which the trajectory crosses S. The mean IPI is defined as

$$\mathcal{T}_\epsilon \triangleq \mathbb{E}[\Delta_k] \quad (31)$$

and the second moment of the IPI is defined as

$$S^\epsilon \triangleq \mathbb{E}\left[\Delta_k^2\right]. \quad (32)$$

The variance of the IPI is defined as

$$\sigma^2_{\phi} \triangleq \mathbb{E}[(\mathcal{T}_\epsilon - \Delta_k)^2]. \quad (33)$$

The moments (31)-(33) are evaluated under the stationary probability distribution.

It follows immediately that for a given noise level ϵ, we have $\sigma^2_{\phi} = S^\epsilon - \Delta^2_\epsilon$.

Remark 3 Each iso-phase crossing time, $\{\mu_k\}_{k \in \mathbb{N}^+}$, in Definition 6, is a stopping time.

Remark 4 Because (3) is a diffusion with continuous sample paths, it is possible that when $\epsilon > 0$ a stochastic trajectory $X(t)$ may make multiple crossings of an iso-phase section S in quick succession. Should this be the case, we condition the crossing times μ_k on completion of successive circuits around the hole in our cylindrical domain. That is, given μ_k, we take μ_{k+1} to be the first return time to S after having completed at least one half a rotation around the domain.

3 Noise decomposition of the 14-D stochastic HH model

Ermentrout et al. (2011) studied the variance of the infinitesimal phase response curve for a neuronal oscillator driven by a white noise current, using a four-dimensional version of the Hodgkin–Huxley model as an example. As a corollary result, they obtained an expression for the variance of the interspike interval, by setting the size of the perturbing voltage pulse to zero.

Stochastic shielding (Schmandt and Galán 2012) allows one to resolve the molecular contributions (per directed edge in the ion channel state transition graph \mathcal{E}, cf. Fig. 2) to the variance of ion channel currents (Schmidt et al. 2018; Schmidt and Thomas 2014), and provides a numerical method for accurate, efficient simulation of Langevin models using a small subset of the independent noise forcing (only for the “most important edges”) (Pu and Thomas 2020).

Here we combine the stochastic shielding method with Cao et al.’s mean return time phase analysis (Cao et al. 2020) to obtain an analytical decomposition of the molecular sources of timing variability under current clamp.

Prior analysis of stochastic shielding (Schmidt et al. 2018; Schmidt and Thomas 2014) assumed voltage clamp conditions, under which the ion channel state process is a stationary Markov process. Under current clamp, however, fluctuations of channel state determine fluctuations in current, which in turn dictate voltage changes, which then influence channel state transition probabilities, forming a closed loop of statistical interdependence. Therefore, the variance of ISI under current clamp becomes more difficult to analyze. Nevertheless, in this section, we seek a decomposition of the interspike-interval variance into a sum of contributions from each edge $k \in \mathcal{E}$, e.g.,

$$\sigma^2_{\text{ISI}}(\epsilon) = \epsilon \sum_{k \in \mathcal{E}} \sigma^2_{\text{ISI},k} + O(\epsilon^2) \quad (34)$$
We assume the deterministic dynamical system \(\frac{dx}{dt} = F(x) \) has an asymptotically, linearly stable limit cycle \(x = \gamma(t) \) with finite period \(T_0 \), and asymptotic phase function \(\phi(x) \) defined throughout the limit cycle’s basin of attraction such that \(\frac{d\phi(x(t))}{dt} = \frac{2\pi}{T_0} \) along deterministic trajectories, and a well-defined infinitesimal phase response curve (iPRC), \(Z(t) = \nabla\phi(\gamma(t)) \) (Brown et al. 2004; Ermentrout and Terman 2010; Guckenheimer 1975; Guckenheimer and Holmes 1990).

3.1 Assumptions for decomposition of the full noise model

Consider a Langevin model for a single-compartment conductance-based neuron (3). We organize the state vector into the voltage component followed by fractional gating variables as follows:

\[
\mathbf{x} = (v, q_1, q_2, \ldots, q_N)^T. \tag{36}
\]

Here, \(N \) is the number of nodes in the union of the ion channel state graphs. For example, for the HH system, \(N = 13 \), and we would write \(q_1 = m_{00}, q_8 = m_{31} \) for the sodium gating variables, and \(q_9 = n_{00}, q_{13} = n_4 \) for the potassium gating variables. Similarly, we enumerate the \(K \) edges occurring in the union of the ion channel state graphs and write the stoichiometry vector \(\zeta_k \in \mathbb{R}^{N+1} \) for transition \(k \), taking source \(i(k) \) to destination \(j(k) \), in terms of \((N+1) \)-dimensional unit vectors \(\mathbf{e}_i^{N+1} \in \mathbb{R}^{N+1} \) as \(\zeta_k = -\mathbf{e}_{i(k)}^{N+1} + \mathbf{e}_{j(k)}^{N+1} \). In order to study the contributions of individual molecular transitions to spike-time variability, we develop asymptotic expansions of the first and second moments of the distribution of iso-phase surface crossing times (iso-phase interval distribution see Def. 6 above) in the small \(\epsilon \) limit.

Before formally stating the theorem, we make the following assumptions concerning the system (3):

A1 We assume the deterministic dynamical system \(\frac{dx}{dt} = F(x) \) has an asymptotically, linearly stable limit cycle \(x = \gamma(t) \) with finite period \(T_0 \), and asymptotic phase

\[
\sigma^2_{\phi}(\epsilon) = \epsilon \sum_{k \in E} \sigma^2_{\phi,k} + O(\epsilon^2) \tag{35}
\]

to leading order as \(\epsilon \to 0 \).

Theorem 1 gives the detailed form of the decomposition. As preliminary evidence for its plausibility, Fig. 7 shows the coefficient of variation (standard deviation divided by mean) of the ISI under the stochastic shielding approximation for the Langevin model in different scenarios: including noise along a single directed edge at a time (blue bars), or on edges numbered 1 to \(k \) inclusive (numbering follows that in Fig. 2). For large noise (Fig. 7a,c), the effects of noise from different edges combine subadditively. For small noise (Fig. 7b,d), contributions of distinct edges to firing variability combine additively. Edges with small contribution to steady-state occupancy under voltage clamp (edges 1–6 for \(K^+ \), edges 1–18 for \(Na^+ \), cf. Fig. 2) contribute additively even in the large-noise regime. Thus, even in the large-noise regime, stochastic shielding allows accurate simulation of ISI variability using significantly fewer edges for both the sodium and potassium channels.

A2 We assume that the \((N+1) \times K \) matrix \(G \) has the form

\[
G(x) = \sum_{k=1}^K (\zeta_k \mathbf{r}_k) \sqrt{\alpha_k(v) q_{i(k)}} \tag{37}
\]

where \(\mathbf{r}_k = (\mathbf{e}_k^K)^T \) is a \(K \)-dimensional unit row vector with all zero components except in the \(k \)th entry, \(\alpha_k(v) \) is the voltage-dependent per capita transition rate along the \(k \)th directed edge and the \(q_{i(k)} \) denote channel state occupancy probabilities as described above (cf. (36)).

Remark 5 The product \(\zeta_k \mathbf{r}_k \) is a \((N+1) \times K \) sparse matrix, containing zeros everywhere except in the \(k \)th column. Each column conveys the impact of an independent noise source on the state vector (Pu and Thomas 2020). Moreover, as pointed out above (cf. Sect. 2), the construction of \(G \) ensures the \(Na^+ \) and \(K^+ \) gating variables stay in the simplex, because the components of each stoichiometry vector \(\zeta_k \) sum to zero.

A3 We assume that for sufficiently small noise, \(0 < |\epsilon| \ll 1 \), we have a well-defined joint stationary probability distribution in the voltage \(V \) and the gating variables \(Q_1, \ldots, Q_N \) with a well defined mean period \(\overline{T}_e \) and mean return time phase function \(T_e(x) \). Moreover, we assume that the mean period, the MRT function and the second moment function all have well-defined series expansions:

\[
\overline{T}_e = \overline{T}_0 + \epsilon \overline{T}_1 + O(\epsilon^2) \tag{38}
\]

\[
T_e(x) = T_0(x) + \epsilon T_1(x) + O(\epsilon^2) \tag{39}
\]

\[
S_e(x) = S_0(x) + \epsilon S_1(x) + O(\epsilon^2), \tag{40}
\]

as \(\epsilon \to 0 \).

Remark 6 Note that the expansions (38)–(40) may break down in the small-\(\epsilon \) limit for noise-dependent oscillators, such as the heteroclinic oscillator (Thomas and Lindner 2014) or ecological quasi-cycles (McKane and Newman 2005), but should remain valid for finite-period limit cycles such as the Hodgkin–Huxley system in the periodic spiking regime.
3.2 Noise decomposition theorem

Theorem 1 (Noise Decomposition Theorem) Let \(x = (V_0, Q_0) \in S_0 \) be the point on the deterministic limit cycle such that \(\phi(x) = 0 \) (i.e., assigned to “phase zero”), and let \(\mathbb{E}^x \) denote expectation with respect to the law of trajectories with initial condition \(x \), for fixed \(\epsilon \geq 0 \). Under assumptions A1-A3, the variance \(\sigma^2_{\phi} \) of the \(S_0 \)-isochron crossing times (iso-phase intervals, or IPI) for conductance-based Langevin models (Eq. (3)) decomposes into additive contributions from each channel state transition, in the sense that

\[
\sigma^2_{\phi} = \sum_{k \in \text{all edges}} \sigma^2_{\phi,k} \tag{41}
\]

\[
= \epsilon \sum_k \int_0^{T_0} \mathbb{E}^x \left(a_k(V(t))Q_{i(k)}(t) \left(\xi_k^T \tilde{Z}(X(t)) \right)^2 \right) dt + O \left(\epsilon^2 \right), \tag{42}
\]

as \(\epsilon \to 0^+ \). The function \(X(t) = (V(t), Q_1(t), \ldots, Q_N(t))^T \) denotes a stochastic trajectory of (3) with initial condition \(x \).

Remark 7 The theorem holds independently of the choice of the initial point \(x \) on the deterministic limit cycle, in the sense that choosing a different base point would just shift the endpoints of the interval of integration; since the deterministic limit cycle is periodic with period \(T_0 \), the resulting expression for \(\sigma^2_{\phi} \) is the same. See Corollary 1.

Remark 8 The proof relies on Dynkin’s formula, first-passage-time moment calculations, and a small noise expansion. The right-hand side of (41) leads to an approximation method based on sampling stochastic limit cycle trajectories, which we show below gives an accurate estimate for \(\sigma^2_{\phi} \).

Remark 9 Although the interspike intervals (ISI) determined by voltage crossings are not strictly identical to the iso-phase intervals (IPI) defined by level crossings of the function \(T_\epsilon(x) \), we nevertheless expect that the variance of the IPI, and their decomposition, will provide an accurate approximation to the variance of the ISI. In Sect. 4, we show numerically that the decomposition given by (41) predicts the contribution of different directed edges to the voltage-based ISIs with a high degree of accuracy.

Before proving the theorem, we state and prove two ancillary lemmas.

Lemma 2 Fix a cylindrical domain \(D_0 \) (as in equation (29)) and an iso-phase section \(S_0 \) transverse to the vector field \(\mathbf{F} \). If the mean period \(\bar{T}_\epsilon \) and MRT function \(T_\epsilon(x) \) have Taylor expansions (38) and (39), then the unperturbed isochron function \(T_0 \) and the sensitivity of the isochron function to
small noise T_1 satisfy

$$F(x) \cdot \nabla T_0(x) = -1, \quad (43)$$

$$F(x) \cdot \nabla T_1(x) = -\frac{1}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} T_0(x), \quad (44)$$

$$\sum_{ij} n_i (G^G T)_{ij} \partial_j T_1 \bigg|_{\partial \mathcal{D}} = 0, \quad (45)$$

where $T_1 \to T_1 + \overline{T}_1$ and $T_0 \to T_0 + \overline{T}_0$ across \mathcal{S}_0, and \mathbf{n} is the outward normal to the boundary $\partial \mathcal{D}$.

Note that \overline{T}_1, the first-order approximation to the noise-induced shift in the mean period, may be determined from the stationary solution of the forward equation for $0 < \epsilon$, or through Monte Carlo simulations (in some cases $\overline{T}_1 \equiv 0$).

Proof For any noise level $\epsilon \geq 0$, the mean return time function $T_1(x)$ obeys the same partial differential equation as a mean first passage time function (although with an altered boundary condition) (Cao et al. 2020). Therefore, for arbitrary noise level $\epsilon \geq 0$, we see from (Gardiner 2004), that the MRT function $T_1(x)$ satisfies

$$L^\dagger[T_\epsilon] = F \cdot \nabla T_\epsilon + \frac{\epsilon}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} T_\epsilon = -1, \quad (46)$$

together with adjoint reflecting boundary conditions at the edges of the domain \mathcal{D} with outward normal vector \mathbf{n}

$$\sum_{ij} n_i (G^G T)_{ij} \partial_j T_\epsilon \bigg|_{\partial \mathcal{D}} = 0 \quad (47)$$

and the jump condition is specified as follows. When x increases across the reference section \mathcal{S} in the “forward direction”, i.e., in a direction consistent with the mean flow in forwards time, the function $T_1 \to T_\epsilon + \overline{T}_1$. Note that since $T_0 \to T_0 + \overline{T}_0$, we also have $T_1 \to T_1 + \overline{T}_1$ across the same Poincaré section, for consistency.

Substituting the expansion (39) into (46) gives

$$-1 = F \cdot \nabla \left(T_0(x) + \epsilon T_1(x) + O\left(\epsilon^2\right) \right) + \frac{\epsilon}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} \left(T_0(x) + \epsilon T_1(x) + O\left(\epsilon^2\right) \right), \quad (48)$$

$$= F \cdot \nabla T_0(x) + \nabla \left(\epsilon T_1(x) + O\left(\epsilon^2\right) \right) + \frac{\epsilon}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} T_0(x)$$

$$+ \frac{\epsilon}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} \left(T_0(x) + \epsilon T_1(x) + O\left(\epsilon^2\right) \right) \quad (49)$$

Note that, when $\epsilon = 0$

$$F \cdot \nabla T_0(x) = -1, \quad (50)$$

consistent with T_0 being equal to minus the asymptotic phase of the limit cycle (up to an additive constant). On the other hand, for $\epsilon \neq 0$, by comparing the first order term, the sensitivity of the isochron function to small noise T_1 satisfies

$$F \cdot \nabla T_1(x) = -\frac{1}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} T_0, \quad \sum_{ij} n_i (G^G T)_{ij} \partial_j T_1 \bigg|_{\partial \mathcal{D}} = 0, \quad (51)$$

where $T_1 \to T_1 + \overline{T}_1$ across \mathcal{S} and \mathbf{n} is the outward normal to the boundary $\partial \mathcal{D}$; thus, we proved Lemma 2. \qed

Our next lemma concerns the second moment of the first passage time from a point $x \in \mathcal{D}$ to a given iso-phase section \mathcal{S}_0, that is, $\mathcal{S}_1(x) \triangleq E \left[\tau(x, S_0)^2 \right]$, cf. (14).

Lemma 3 Suppose the assumptions of Lemma 2 hold, and assume in addition that S_1 has a Taylor expansion (40) for small ϵ. The second moment, $S_1(x)$, of the first passage time $\tau(X, S)$ from a point x to a given isochron section $\mathcal{S}_0 = \left\{ T_\epsilon(x) = \text{const} \right\}$, and its first order perturbation, $S_1(x)$, satisfy

$$F \cdot \nabla S_0 = -2T_0 \quad (52)$$

$$F \cdot \nabla S_1 + \frac{1}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} S_0 = -2T_1. \quad (53)$$

Proof Continuing to follow the calculations of (Gardiner 2004), the second moment $S_1(x)$ of the first passage time from a point x to a given isochron $T_1(x) = \text{const}$, satisfies

$$L^\dagger[S_\epsilon] := F \cdot \nabla S_\epsilon + \frac{\epsilon}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} S_\epsilon = -2T_\epsilon. \quad (55)$$

Substituting in the Taylor expansions (38)-(40), we have to order $O(\epsilon)$

$$F \cdot \nabla (S_0 + \epsilon S_1) + \frac{\epsilon}{2} \sum_{ij} (G^G T)_{ij} \delta^2_{ij} (S_0 + \epsilon S_1)$$

$$= -2(T_0 + \epsilon T_1) + O(\epsilon^2). \quad (54)$$

4 (Gardiner 2004), §6.6, First Exit Time from a Region (Homogeneous Processes), equation 6.6.8.

5 (Gardiner 2004), Chapter 6.6, First Exit Time from a Region (Homogeneous Processes), equation 6.6.11.
For $\epsilon > 0$, the first order terms yield
\[
\mathbf{F} \cdot \nabla S_1 + \frac{1}{2} \sum_{ij} (G^G^T)_{ij} \partial_{ij}^2 S_0 = -2T_1.
\] (56)

Therefore, we complete the proof of Lemma 3. \(\square\)

3.3 Proof of Theorem 1

Proof We divide the proof of the theorem into three steps.

1. First, we will calculate the infinitesimal generator for the variance of the isochron interval (IPI).

For fixed noise level $\epsilon > 0$, the variance of IPI, σ^2_ϵ is equal to the expected value of $V_\epsilon = S_\epsilon - T_\epsilon^2$, evaluated at the isochron $T = \text{const} + \mathcal{T}$. Note that when $\epsilon = 0$, the system is deterministic and the iso-phase interval has a zero variance, i.e., $V_0 \equiv 0$. Expanding $S_\epsilon = S_0 + \epsilon S_1 + O(\epsilon^2)$ and $V_\epsilon = V_1 + O(\epsilon^2)$ to first order in $\epsilon \ll 1$, then

\[
V_\epsilon = V_0 + \epsilon V_1 + O(\epsilon^2)
\]

\[
= S_\epsilon - T_\epsilon^2
\]

\[
= S_0 + \epsilon S_1 + O(\epsilon^2)
\]

\[
- \left(T_0(x) + \epsilon T_1(x) + O(\epsilon^2) \right)^2
\]

\[
= S_0 - T_0^2 + \epsilon (S_1 - 2T_0 T_1) + O(\epsilon^2);
\] (55)

thus,

\[
S_0 = T_0^2
\]

\[
S_1 = V_1 + 2T_0 T_1.
\] (62)

Plugging the above results into equation (56) (Lemma 3), we can obtain that

\[
\mathbf{F} \cdot \nabla (V_1 + 2T_0 T_1) + \frac{1}{2} \sum_{ij} (G^G^T)_{ij} \partial_{ij}^2 T_0^2 = -2T_1.
\] (63)

By the product rule and equations (50), and (51),

\[
\mathbf{F} \cdot \nabla (2T_0 T_1) = 2T_1 \mathbf{F} \cdot \nabla (T_0) + 2T_0 \mathbf{F} \cdot \nabla (T_1)
\]

\[
= -2T_1 - T_0 \sum_{ij} (G^G^T)_{ij} \partial_{ij}^2 T_0.
\] (64)

Therefore,

\[
\mathbf{F} \cdot \nabla V_1 = 2T_1 - T_0 \sum_{ij} (G^G^T)_{ij} \partial_{ij}^2 T_0.
\] (65)

Since $\partial_{ij}^2 T_0^2 = \partial_i (2T_0 \partial_j T_0) = 2 \partial_i T_0 \partial_j T_0 + 2T_0 \partial_{ij}^2 T_0$, it follows that

\[
\mathbf{F} \cdot \nabla V_1 = T_0 \sum_{ij} (G^G^T)_{ij} \partial_{ij}^2 T_0 = 0
\]

\[
\mathbf{F} \cdot \nabla V_1 = - \sum_{ij} (G^G^T)_{ij} \partial_i T_0 \partial_j T_0
\] (67)

Finally,

\[
L^+[V_1] = L^+[V_0 + \epsilon V_1 + O(\epsilon^2)]
\]

\[
= \epsilon L^+[V_1] + O(\epsilon^2)
\]

\[
= \epsilon \left(\mathbf{F} \cdot \nabla V_1 + \frac{\epsilon}{2} \sum_{ij} (G^G^T)_{ij} \partial_{ij}^2 V_1 \right) + O(\epsilon^2)
\]

\[
= \epsilon (\mathbf{F} \cdot \nabla V_1) + O(\epsilon^2)
\]

\[
= -\epsilon \sum_{ij} (G^G^T)_{ij} \partial_i T_0 \partial_j T_0 + O(\epsilon^2),
\] (72)

where we used $V_0 \equiv 0$ and applied equation (67).

2. Secondly, we will show that for first-order transition networks underlying the molecular ion channel process, the decomposition $\tilde{G}G^T = \sum_{k \in E} G_k G_k^T$ is exact.

To see this, note that \tilde{G} can be written as a sum of 29 sparse matrices with one zero matrix and 28 rank one matrices. The kth rank-one matrix consists of the transition due to the kth edge, and there are 28 edges in the 14-D HH model. The kth column of the kth rank one matrix equals to a stoichiometry vector times the square root of the corresponding state occupancy and zeros otherwise. For example, the kth column of \tilde{G} is given by

\[
G_k = \zeta_k \sqrt{\alpha_k(v)} \mathbf{X}(v(k)).
\]

where ζ_k is the stoichiometry vector, α_k is the voltage-dependent per capita transition rate, and $\mathbf{X}(v(k))$ is the population vector component at the source node $i(k)$ for transition number k.

\[
G_i = \sum_{k=1}^{28} G_k G_k^T
\] (74)

\[
\sum_{ij} (G^T)_{ij} \partial_i T_j T_0 = \sum_{ij} (G^T)_{ij} \tilde{Z}_j \tilde{Z}_i
\]

where (74) holds because \(G_i T_j^T = 0 \) when \(i \neq j \).

Note that \(\partial_i T_0 T_j = 0 = \omega^{-2} \partial_i \phi(x) \partial_j \phi(x) = \tilde{Z}_i(x) \tilde{Z}_j(x) \), with \(\omega \equiv 2\pi/T_0 \), because \(\phi \) is normalized to range from 0 to \(2\pi \), and \(T_0 \) ranges from 0 to \(T_0 \).

Using equations (72), (81) and (82), we obtain

\[
V_e(x) = -\mathbb{E}^x \left(\int_0^\tau L^T \left[V_e(X(s)) \right] ds \right)
\]

\[
= \mathbb{E}^x \left(\int_0^\tau \varepsilon \sum_{ij} (G^T)_{ij} \partial_i T_j T_0 ds \right) + O(\varepsilon^2)
\]

where the integrals are evaluated along a stochastic trajectory \(X(\tau) \) with \(X(0) = x \) and \(X(\tau) \in S_0 \), one rotation later. Holding the deterministic zero-phase isochron \(S_0 \) fixed, and choosing an arbitrary point \(y \in D \), we have, by definition,

\[
\mathbb{E}^y[\tau(y)] = T_0(y) + \varepsilon T_1(y) + O(\varepsilon^2).
\]

Therefore, starting from an initial condition \(x \in S_0 \) one period earlier, we have

\[
\mathbb{E}^x \left(\int_0^\tau \alpha_k(v) X_i(k) \left(\xi_k^T \tilde{Z} \right)^2 ds \right)
\]

\[
= \mathbb{E}^x \left(\int_0^{T_0} \alpha_k(v) X_i(k) \left(\xi_k^T \tilde{Z} \right)^2 ds \right) + O(\varepsilon).
\]

This relation follows immediately from our assumptions, because, for \(x \in S_0 \),

\[
\left| \mathbb{E}^x \left(\int_0^\tau \alpha_k(V(s)) X_i(k(s)) \left(\xi_k^T \tilde{Z}(s) \right)^2 ds \right) \right|
\]

\[
- \mathbb{E}^x \left(\int_0^{T_0} \alpha_k(V(s)) X_i(k(s)) \left(\xi_k^T \tilde{Z}(s) \right)^2 ds \right)
\]

\[
= \left| \mathbb{E}^x \left(\int_0^\tau \alpha_k(V(s)) X_i(k(s)) \left(\xi_k^T \tilde{Z}(s) \right)^2 ds \right) \right|
\]

\[
\leq C_1 \left| \mathbb{E}^x(\tau(x) - T_0) \right| = C_1 \left| \mathbb{E}^x(\tau(x)) - \mathbb{E}^x(T_0) \right|
\]

\[
= C_1 \left| T_\varepsilon - T_0 \right| \quad \varepsilon \in S_0
\]

\[
= \varepsilon C_1 T_1 + O(\varepsilon^2).
\]

Here \(C_1 \) is a positive constant bounding the integrand \(\alpha_k(v(t)) X_i(k(t)) \left(\eta_k^T \tilde{Z}(t) \right)^2 \). From Remark 1, \(\alpha_k \leq \alpha_{\text{max}} \).

By definition, \(0 \leq X_i \leq 1 \) for each \(i \). For each edge \(k \), \(|\xi_k| = \sqrt{2} \). Since \(\tilde{Z} \) is continuous and periodic, \(\left| \tilde{Z} \right| \) is bounded by some constant \(z_{\text{max}} \). Therefore, setting \(C_1 = \sqrt{2} \alpha_{\text{max}} z_{\text{max}} \) satisfies (90).

Because the initial point \(x \in S_0 \) was located at an arbitrary radius along the specified mean return time isochron, the

\[\sum_{k=1}^{28} \alpha_k(v) X_i(k) \xi_k^T \]

where \(i(k) \) and \(j(k) \) are the source and sink nodes for transition number \(k \). Equation (79) holds because the \(k \)th edge only involves two nodes.

3. Finally, we will apply Dynkin’s formula to complete the rest of the proof.

For a stopping time \(\tau(x) \) with \(\mathbb{E}^x(\tau) < \infty \), by Dynkin’s formula (27), the expected IPI variance starting from \(x \) is

\[
\mathbb{E}^x(V_e(X(\tau))) = V_e(x) + \mathbb{E}^x \left(\int_0^\tau L^T [V_e(X(s))] ds \right)
\]

The first return time \(\tau \) is the time at which the trajectory \(X(\tau) \) first returns to the isochron \(S_0 \); therefore, \(X(\tau) \in S_0 \) and the time left to reach \(S_0 \) from the random location \(X(\tau) \) is guaranteed to be zero. That is, \(V_e(X(\tau)) = 0 \) with probability 1. Hence, \(\mathbb{E}^x(V_e(X(\tau))) = 0 \) for all \(x \in S_0 \). Fix a mean return time isochron \(S_0 \), the mean return time from any initial location \(x \in S_0 \) back to \(S_0 \) after completing one rotation is exactly \(T_\varepsilon \), by construction. However, in principle, the variance of the return time might depend on the initial location within the isochron. We next show that, to leading order in \(\varepsilon \), this is not the case, that is, the MRT isochrons have uniform first and second moment properties.
calculation above shows that \(\sigma_{\phi}^2 = \mathbb{E}[V_x(\mathbf{x}) \mid \mathbf{x} \in S_0] \) is uniform across the isochron \(S_0 \), to first order in \(\epsilon \). Thus, for small noise levels, the MRT isochrons enjoy not only a uniform mean return time, but also a uniform variance in the return time, at least in the limit of small noise.

Finally, we note that \(\sigma_{\phi}^2 \) (equivalently, and \(V_x(\mathbf{x}) \)) combine a sum of contributions over a finite number of edges. From equations (85) and (87), the variance of the inter-phase interval is given by

\[
\sigma_{\phi}^2 = \epsilon \sum_{k=1}^{28} \mathbb{E} \left(\int_0^{T_0} \alpha_k(V(s))X_{i(k)}(s) \left(\xi_k^\top \mathbf{Z}(s) \right)^2 \, ds \right) + O(\epsilon^2). \tag{91}
\]

To complete the proof, note that (42) follows from (92) by exchange of expectation \(\mathbb{E}[\cdot] \) with (deterministic) integration \(\int_0^{T_0} \cdot \, dt \). This completes the proof of Theorem (1).

\[\square \]

The choice of the initial reference point \(\mathbf{x} \) or isochron \(S_0 \) in (92) was arbitrary and the variance of IPI is uniform to the first order. Therefore, the inter-phase interval variance may be uniform (to first order) almost everywhere in \(D \). We can then replace the integral around the limit cycle in (92) with an integral over \(D \) with respect to the stationary probability distribution. Thus, we have the following

Corollary 1 Under the assumptions of Theorem 1, the inter-phase interval variance satisfies

\[
\sigma_{\phi}^2 = \epsilon T_0 \sum_{k=1}^{28} \mathbb{E} \left(\alpha_k(V)X_{i(k)} \left(\xi_k^\top \mathbf{Z}(\mathbf{x}) \right)^2 \right) + O(\epsilon^2), \tag{92}
\]

as \(\epsilon \to 0 \), where \(\mathbb{E} \) denotes expectation with respect to the stationary probability density for (3).

Remark 10 Because the variance of the IPI, \(\sigma_{\phi}^2 \), is uniform regardless of the choice of the reference iso-phase section, we will henceforth refer it as \(\sigma_{\text{IPI}}^2 \) throughout the rest of this paper.

Now we have generalized the edge important measure introduced in (Schmidt and Thomas (2014)) for the voltage clamp case to the current clamp case with weak noise. In the next section, we leverage Theorem 1 to estimate the inter-phase interval variance in two different ways: by averaging over one period of the deterministic limit cycle (compare (91)) or by averaging over a long stochastic simulation (compare (92)). As we will see below, both methods give excellent agreement with direct measurement of the inter-phase interval variance.

4 Numerical results

Theorem 1 and Corollary 1 assert that for sufficiently weak levels of channel noise, the contributions to inter-phase interval variance made by each individual edge in the channel state transition graph (cf. Fig. 2) combine additively. Moreover, the relative sizes of these contributions provide a basis for selecting a subset of noise terms to include for running efficient yet accurate Langevin simulations, using the stochastic shielding approximation (Pu and Thomas (2020)). In this chapter, we test and illustrate several aspects of these results numerically.

First, we confront the fact that the inter-phase intervals and the interspike intervals are not equivalent, since iso-voltage surfaces do not generally coincide with isochronal surfaces (Wilson and Ermentrout 2018b). Indeed, upon close examination of the ISI variance in both real and simulated nerve cells, we find that the voltage-based \(\sigma_{\text{ISI}}^2 \) is not constant, as a function of voltage, while the phase-based \(\sigma_{\phi}^2 \) remains the same regardless of the choice of reference isochron. Nevertheless, we show that the voltage-based ISI variance is well approximated—to within a few percent—by the phase-based IPI variance, and therefore, the linear decomposition of Theorem 1 approximately extends to the ISI variance as well.

Second, after showing that the linear decomposition of the ISI variance holds at sufficiently small noise levels, we explore the range of noise levels over which the linear superposition of edge-specific contributions to ISI variance holds. Consistent with the basic stochastic shielding phenomenon, we find that the variability resulting from noise along edges located further from the observable transitions scales linearly with noise intensity, \(\epsilon \), even for moderate noise levels, while the linear scaling of Eq. (91) breaks down sooner with increasing noise for edges closer to observable transitions.

Finally, we explore the accuracy of a reduced representation using only the two most important edges from the \(\text{K}^+ \) channel and the four most important edges from the \(\text{Na}^+ \) channel, over a wide range of noise intensities. Here, we find that removing the noise from all but these six edges still gives an accurate representation of the ISI variance far beyond the weak noise regime, despite the apparent breakdown of linearity.

In this section, the variance of ISIs and IPIs is calculated to compare with the predictions using Theorem 1. First, we numerically show that there is a small-noise region within which Theorem 1 holds, for each individual edge, as well as for the whole Langevin model (cf. (3)). We have two numerical approaches to evaluating the theoretical contributions: the first method involves integrating once around the deterministic limit cycle while evaluating the local contribution to timing variance at each point along the orbit. This approach derives from the theorem, cf. (42) or (91), which we refer as the “limit cycle prediction.” The second approach derives from the corollary, (92): we average the expected local con-
tribution to timing variation over a long stochastic trajectory. More specifically, equation (92) gives a theoretical value of the average leading-order contribution mass function, \(\mathcal{P}_k \), for the \(k \)th edge, as

\[
\mathcal{P}_k := \mathbb{E} \left[\alpha_k(V) X_t(k) \left(\xi_k Z(X) \right)^2 \right],
\]

where \(\mathbb{E}(\cdot) \) is the mean with respect to the stationary probability distribution of the stochastic limit cycle. Given a sample trajectory \(X(t) \), we approximate the iPRC near the limit cycle, \(\tilde{Z}(X(t)) \), by using the phase response curve of the deterministic limit cycle

\[
\tilde{Z}(X(t)) \approx \hat{Z}(X(t)) \quad \Delta \mathcal{Z} \left(\arg\min_k \left| (\gamma(s) - X(t))^T Z(s) \right| \right),
\]

where \(\gamma \) is a point on the deterministic limit cycle and \(Z \) is the infinitesimal phase response curve on the limit cycle (cf. Sect. 2.4). The predicted contribution of the \(k \)th edge to the IPI variance with average period \(T_0 \) is therefore

\[
\sigma_{\text{IPI}}^2 \approx \epsilon \mathbb{E}_0 \sum_k \mathcal{P}_k
\]

We call \(\mathcal{P}_k \) the point mass prediction for the contribution of the \(k \)th edge to the inter-phase interval variance.

For small noise, both approaches give good agreement with the directly measured IPI variance, as shown in Fig. 10.

To numerically calculate the contribution for each directed transition in Fig. 2, we apply the stochastic shielding (SS) technique proposed by Schmandt and Galán (2012), simulating the Langevin process with noise from all but a single edge suppressed. Generally speaking, the SS method approximates the Markov process using fluctuations from only a subset of the transitions, often the observable transitions associated with the opening states. Details about how stochastic shielding can be applied to the \(14 \times 28D \) Langevin model are discussed in our previous paper (Pu and Thomas 2020).

All numerical simulations for the Langevin models use the same set of parameters, which are specified in Table 2 with given noise level \(\epsilon \) in Eq. (3). Table 3 provides a list of common symbols and notations used throughout the paper. We calculate the following quantities: the point mass prediction \(\mathcal{P}_k \), using exact stochastic trajectories (93); the predicted contributions by substituting the stochastic terms in (91) with the deterministic limit cycle; the variance and standard deviation of the interspike intervals (\(\sigma_{\text{ISI}}^2 \)); and the variance and standard deviation of the isophase intervals (\(\sigma_{\text{IPI}}^2 \)).

In addition to numerical simulations, we will also present several observations of experimental recordings. Data in Figs. 8 and 9 were recorded in vitro in Dr. Friel’s laboratory from intact wild type Purkinje cells with synaptic input blocked (see Sect. D for details). We analyzed fourteen different voltage traces from cerebellar Purkinje cells from wild type mice and seventeen from mice with the leaner mutation. The average number of full spike oscillations is roughly 1200 for wild type PCs (fourteen cells) and 900 for leaner mutation (seventeen cells).

4.1 Observations on \(\sigma_{\text{ISI}}^2 \) and \(\sigma_{\text{IPI}}^2 \)

When analyzing voltage recordings from in vitro Purkinje cells (PCs) and from simulation of the stochastic HH model, we have the following observations. First, given a particular (stochastic) voltage trace, the number of interspike intervals (cf. Def. 5) varies along with the change in voltage threshold used for identifying spikes. Second, within a range of voltage thresholds for which the number of ISIs is constant, the variance of the interspike interval distribution, \(\sigma_{\text{ISI}}^2 \) (cf. Def. 5), which is obtained directly from the voltage recordings, nevertheless varies as a function of the threshold used to define the spike times. Thus, the ISI variance, a widely studied quantity in the field of computational neuroscience (Gutkin and Ermentrout 1998; Lindner 2004; Netoff et al. 2012; Shadlen and Newsome 1998; Stein 1965), is not invariant with respect to the choice of voltage threshold. To our knowledge this observation has not been previously reported in the neuroscience literature.6

Figure 8 plots the histogram of voltage from a wild type PC and number of spikes corresponding to voltage threshold (\(V_{\text{th}} \)) in the range of \([−60, −10]\) mV. Setting the threshold excessively low or high obviously will lead to too few (or no) spikes. As the threshold increases from excessively low values, the counts of threshold-crossing increase. For example, when \(V_{\text{th}} \) is in the after hyper-polarization (AHP) range (roughly \(−58 < V_{\text{th}} < −48 \) mV in Fig. 8), the voltage trajectory may cross the threshold multiple times before it finally spikes. As illustrated in Fig. 8, the number of spikes is not a constant as the threshold varies; therefore, the mean and variance of ISI are not well defined in the regions where extra spikes are counted. To make the number of spikes accurately reflect the number of full oscillation cycles, in what follows we will only use thresholds in a voltage interval that induces the correct number of spikes. Note that, for a given voltage trace and duration (\(T_{\text{tot}} \)), if two voltage thresholds generate the same number of spikes (\(N_{\text{spike}} \)), the mean ISI would be almost identical, approximately \(T_{\text{tot}}/N_{\text{spike}} \). This observation holds for both experimental recordings and numerical simulations.

6 Throughout this section, we use the term “threshold” in the data analysis sense of a Schmitt trigger (Schmitt 1938), rather than the physiological sense of a spike generation mechanism.
Next we address the sensitivity of the interspike interval to the voltage threshold, within the range over which the number of ISIs is invariant. (By “threshold,” we refer throughout to the voltage level used to detect the occurrence and measure the timing of an action potential, rather than a physiological threshold associated with a spike-generation mechanism.)

From the earliest days of quantitative neurophysiology, the extraction of spike timing information from voltage traces recorded via microelectrode has relied on setting a fixed-voltage threshold (originally called a Schmitt trigger, after the circuit designed by Schmitt (1938)). To our knowledge, it has invariably been assumed that the choice of the threshold or trigger level was immaterial, provided it was high enough to avoid background noise and low enough to capture every action potential (Gerstein 1960; Mukhametov et al. 1970). This assumption is generally left implicit. Here, we show that, in fact, the choice of the trigger level (the voltage threshold used for identifying spike timing) can cause a change in the variance of the interspike interval for a given spike train by as much as 5%.

Figure 9 provides evidence both from experimental traces recorded in vitro, and from numerical simulations, that σ^2_{ISI} is sensitive to the voltage threshold defining spike times. In Fig. 9a, we superimpose ISI standard deviations from fourteen wild type Purkinje cells, plotted as functions of the trigger voltage V_{th}. We rescale each plot by the standard deviation of the ISI for each cell at $V_{\text{th}} = -20$ mV, which we define as $\bar{\sigma}$. As shown in Fig. 9a, the cells recorded in vitro have a clear variability in the standard deviation as the voltage threshold changes. Specifically, the standard deviation of ISI gradually increases as voltage threshold increases and then remains constant as the threshold approaches the peak of the spikes. Two of the cells have larger variations in the standard deviation, with roughly a 3–4% change; nine of them have a 1% – 3% change; and three of them show 0.1–1% change.

We applied a similar analysis to seventeen PCs with the leaner mutation (Walter et al. 2006). In this case, one cell had a variation of roughly 1% in the standard deviation, five cells with variations around 0.2%, and the remaining without an obvious change (data not shown). This difference between cells derived from wild type and leaner mutant mice is an interesting topic for future study.

We observe a similar variability of σ^2_{ISI} in numerical simulations using our stochastic Langevin HH model (cf. Eq. (3)). Figure 9b, c plots two examples showing the change in σ^2_{ISI} as voltage threshold varies. For a given noise level (ϵ) and a voltage threshold (V_{th}), a single run simulates a total time of 9000 milliseconds (ms), with a time step of 0.008 ms, consisting of at least 600 ISIs, which was collected as one realization for the corresponding $\sigma_{\text{ISI}}(\epsilon, V_{\text{th}})$. The mean and standard deviation of the $\sigma_{\text{ISI}}(\epsilon, V_{\text{th}})$ are calculated for 1,000 realizations of the aforementioned step for each pair of ϵ and V_{th}. The error bars in Fig. 9b, c indicate 95% confidence intervals of the standard deviation. As illustrated in Fig. 9b, c, the standard deviation gradually increases as the trigger threshold increases during the AHP, and this trend is observed for
both small and large noises. When \(\epsilon = 1 \), the noisy system in Eq. (3) is not close to the deterministic limit cycle, and there is not a good approximation for the phase response curve. When \(\sqrt{\epsilon} = 0.028 \), the system Eq. (3) can be considered in the small-noise region, and thus, we can find a corresponding phase on the limit cycle as the asymptotic phase. As shown in Fig. 9c, unlike the variance of ISI, the variance of IPI is invariant with the choice of the phase threshold (\(\phi \)).

4.2 Numerical performance of the decomposition theorem

In this section, we will apply estimation methods based on Theorem 1 and Corollary 1 to the decomposition of variance of interspike intervals (ISIs, \(\sigma_{\text{ISI}}^2 \)) and variance of inter-phase intervals (IPIs, \(\sigma_{\text{IPI}}^2 \)) and numerically test their performance.

Figure 10 presents a detailed comparison of the predicted and measured values of \(\sigma_{\text{ISI}}^2 \) and \(\sigma_{\text{IPI}}^2 \) when the simulations only include noise from the K\(^+\) channels. The channel noise generated by the Na\(^+\) edges is suppressed by applying the stochastic shielding (SS) method to Eq. (3). For each plot in Fig. 10, 1000 repeated trials are collected and each trial simulates a total time of 15,000 milliseconds which generates more than 1000 ISIs or IPIs. Given our previous observation that \(\sigma_{\text{ISI}}^2 \) depends on the choice of voltage threshold, we selected four different voltage thresholds for comparison.

In Fig. 10, red dots in panels A1-A4 mark the ISI variance measured directly from simulated voltage traces, using the indicated \(V_{\text{th}} \) as the trigger voltage. Green stem-and-line marks show the mean and 95% confidence intervals of the direct ISI variance measure, calculated from all 1000 samples. The blue-dotted line shows the ISI variance predicted from the limit cycle based estimate of the IPI variance.
Fig. 10 Variance of ISIs (σ_{ISI}^2) and IPIs (σ_{IPI}^2) with only K$^+$ edges included using the stochastic shielding method. Cyan dots: point mass prediction (cf. Eq. (94)). Solid blue line: limit cycle prediction. 1000 repeated simulations are plotted and for each of the simulation, more than 1000 ISIs (or IPIs) are recorded. Each sample point in the plot represents the variance of ISIs and IPIs for one realization.

(a1-4): Voltage threshold $V_{\text{th}} = -55, -50, -20, 0$ mV, with noise level $\sqrt{\epsilon} = 0.028$ (effective number of K$^+$ channels $N_{\text{tot}} \approx 2.30 \times 10^6$). (b): Iso-phase section is the mean return time isochron intersecting the deterministic limit cycle at $V_{\text{th}} = -50$ mV (colour figure online).

The mean return time isochron intersecting the deterministic limit cycle at V_{th}. As previously observed, the variance of the ISIs is invariant with respect to the choice of the reference iso-phase section. As shown in Fig. 10b, the prediction of variance of IPIs ($\approx 3.83 \times 10^{-3}$ ms2) has a good match with the mean value of numerical simulations ($\approx 3.85 \times 10^{-3}$ ms2). The 95% confidence interval of the IPIs is also plotted in Fig. 10b, which further indicates the reliability of the prediction.

As shown in Fig. 10(a1, a2, a3, a4 and b), the point mass prediction and the LC prediction of the IPI variance give almost the same result. Specifically, the LC prediction $\approx 3.84 \times 10^{-3}$ and the mean of the point mass predictions $\approx 3.83 \times 10^{-3}$ with a variance of $\approx 6.3 \times 10^{-11}$. Therefore, the LC prediction based on Corollary 1 gives a good approximation to the point mass prediction based directly on Theorem 1. For a given edge (or a group of edges), the LC prediction depends linearly on the scaling factor, ϵ, and can be easily calculated for various noise levels. Throughout the rest of this section, we will use the LC prediction as our predicted contribution from the decomposition theorem.

The asymptotic phase is calculated using equation (94) for each point on the stochastic trajectory. For a given voltage threshold, V_{th}, the corresponding iso-phase section is the mean return time isochron intersecting the deterministic limit cycle at V_{th}. As previously observed, the variance of the ISIs is invariant with respect to the choice of the reference iso-phase section. As shown in Fig. 10b, the prediction of variance of IPIs ($\approx 3.83 \times 10^{-3}$ ms2) has a good match with the mean value of numerical simulations ($\approx 3.85 \times 10^{-3}$ ms2). The 95% confidence interval of the IPIs is also plotted in Fig. 10b, which further indicates the reliability of the prediction.

As shown in Fig. 10(a1, a2, a3 and a4, with $V_{\text{th}} \in [-55, 0]$ mV, the numerical realizations of σ_{ISI}^2 are close to the predictions from the main theorem. However, the accuracy depends on the choice of the voltage threshold. As noted above, when the trigger voltage V_{th} is set below -50 mV (for example, -55 mV in Fig. 10a1), the measured variance of ISIs falls below the value predicted from the IPI variance. When $V_{\text{th}} \approx -50$ mV, the empirically observed value of σ_{ISI}^2 gives the best match to the IPI variance (cf. Fig. 9c). When the trigger voltage V_{th} exceeds -50 mV (for example, -20 mV in Fig. 10a3, and 0 mV in Fig. 10a4), the empirically observed variance of the ISIs is consistently higher than the IPI variance. Nevertheless, although the empirically observed numerical values of σ_{ISI}^2 ($\approx 4.00 \times 10^{-3}$ ms2) overestimate the IPI-derived value when $V_{\text{th}} > -50$ mV, they remain close to the IPI value. Figure 10A1–4 shows that even though the IPI-based prediction
of the ISI variance works best when the trigger voltage is set to $V_{\text{th}} \approx -50\text{mV}$, the IPI-based variance falls within the 95% confidence interval of σ^2_{ISI} regardless of the value of V_{th} chosen. Therefore, we can conclude that Theorem 1 and Corollary 1 give a good approximation to the value of σ^2_{ISI}, at least at noise level $\sqrt{\epsilon} = 0.028$.

Practically, the voltage-based intercept interval variance, σ^2_{ISI}, is a more widely used quantity (Gutkin and Ermentrout 1998; Lindner 2004; Netoff et al. 2012; Shadlen and Newsome 1998; Stein 1965) because it can be calculated directly from electrophysiological recordings. The inter-phase interval variance, σ^2_{IPI}, however, cannot be directly measured or calculated. Even given the stochastic model with its realizations, calculating the asymptotic phase and finding the IPIs are numerically expensive. Despite its lack of consistency, as shown in Fig. 10a3, a4, the σ^2_{ISI} can approximately be decomposed using Theorem 1 and Corollary 1, which offer predicted values that fall in the 95% confidence interval of σ^2_{ISI}.

Figure 11 summarizes the overall fit of the decomposition of variance of ISIs to the prediction from Theorem 1 and Corollary 1. We applied the stochastic shielding method by including each directed edge separately in the transition graph (cf. Fig. 2). In Fig. 11b, d, the variance of the ISIs is compared with the value obtained with the limit cycle based prediction from Eq. (91).

Figure 11a, c shows the log–log plot for the ISI variance (σ^2_{ISI}) of each individual edge as a function of the noise level, ϵ, in the range of $[e^{-10}, e^5]$, measured via direct numerical simulation using $V_{\text{th}} = -20\text{mV}$. The color for each edge ranges from red to blue according an ascending order of edge numbers (1–8 for K^+ and 1-20 for Na^+). The total effective number of Na^+ channels is $M_{\text{tot}} = M_{\text{ref}}/\epsilon$ and of K^+ channels is $N_{\text{tot}} = N_{\text{ref}}/\epsilon$, where the reference channel numbers are $M_{\text{ref}} = 6000$ and $N_{\text{ref}} = 1800$ (described in Sect. 2.5). That is, we consider ranges of channel numbers $40 \lesssim M_{\text{tot}} \lesssim 1.3 \times 10^8$ for Na^+ and $12 \lesssim N_{\text{tot}} \lesssim 4.0 \times 10^7$ for K^+. Thus, we cover the entire range of empirically observed single-cell channel populations (cf. Tab. 1).

As shown in Fig. 11a, c, the linear relation between σ^2_{ISI} and ϵ predicted from Theorem 1 is numerically observed for all 28 directed edges in the Na^+ and K^+ transition graphs (cf. 2) for small noise. The same rank order of edge importance discussed in Pu and Thomas (2020) is also observed here in the small noise region. Moreover, the smaller the edge importance measure for an individual edge, the larger the value of ϵ before observing a breakdown of linearity.

Figure 11b, d presents the log–log plot for the ISI variance (σ^2_{ISI}, black solid line) when including noise only from the K^+ edges and Na^+ edges, respectively. As in panels A and C, the noise level, ϵ is in the range of $[e^{-10}, e^5]$. The LC prediction for Eq. (91) from Theorem 1 when including noise from only the K^+ (or Na^+) channels is plotted in dashed blue. For example, the linear noise prediction for the potassium channels alone is

$$\sigma^2_{\text{ISI}} \approx \sum_{k=1}^{E_{K}} \sigma^2_{\text{ISI},k}$$

(96)

where $E_{K} = 8$ (similarly, $E_{Na} = 20$), and $\sigma^2_{\text{ISI},k}$ is the LC prediction for the k^th edge. As shown in Fig. 11b, the linear prediction matches well the numerically calculated σ^2_{ISI} up to $ln(\epsilon) \approx -3.0$ (indicated by the blue arrow) which corresponds to approximately 36,000 K^+ channels. For Na^+, the theorem gives a good prediction of the numerical σ^2_{ISI} up to $ln(\epsilon) \approx -1.9$ (indicated by the blue arrow) which corresponds to approximately 40,000 Na^+ channels. These channel population sizes are consistent with typical single-cell ion channel populations, such as the population of Na^+ channels in the node of Ranvier, or the Na^+ and K^+ channels in models of the soma of a cerebellar Purkinje cell (cf. Tab. 1).

Finally, we apply stochastic shielding (SS) to both the K^+ and Na^+ channels by only including noise from the edges making the largest contributions in Fig. 11a, c. For the K^+ channel, we include edges 7 and 8, and for Na^+, we include edges 17, 18, 19 and 20. As shown in Fig. 11b, d, the SS method (solid red line) gives a good match to the overall
Fig. 12 Numerical performance of the decomposition for the ISI variance of the full system. a Log-log plot of σ_ISI^2 for $\epsilon \in [e^{-10}, e^5]$, ISI variance contribution σ_ISI^2 with noise from all 28 edges included (black line), only from 8 K^+ edges (dashed gray), only from 20 Na^+ edges (solid gray), and SS using noise from six edges (red line, see text for details). The linear prediction from Theorem 1 for the whole system is plotted for comparison (dashed blue line.) b Coefficient of variation (C.V.), or mean ISI divided by $\sqrt{\sigma_\text{ISI}^2}$, vs. log($\epsilon$). Same color scheme as (a). Compare Fig. 1, which shows data from two cerebellar Purkinje cells, a wild-type cell with C.V. ≈ 0.039 and a cell from a leaner mouse with C.V. ≈ 0.30 (colour figure online).

σ_ISI^2 for all noise intensities $\epsilon \in [e^{-10}, e^5]$, with numbers of K^+ channels ≥ 12 and Na^+ channels ≥ 40.

Figure 12 shows the overall performance of the prediction of σ_ISI^2 based on Theorem 1, when noise from all 28 directed edges is included (black line). The theorem is stated as an asymptotic result in the limit of weak noise. The predicted ISI variance using the theorem (dashed blue curve) matches the ISI variance obtained from the full numerical simulation for modest noise levels, up to $\ln(\epsilon) \leq -3.9$, corresponding to $\geq 90,000 K^+$ channels and $\geq 300,000 Na^+$ channels. These population sizes are at the high end of the range of typical numbers of channels neurons (cf. Tab. 1).

For smaller ion channel populations (larger noise levels), the linear approximation breaks down, but the stochastic shielding approximation remains in good agreement with full numerical simulations. Figure 12 shows σ_ISI^2 from simulations using the SS method including only noise from the six most important edges (edges 7–8 in K^+ and 17–20 in Na^+), plotted in solid red. For $\ln(\epsilon) \geq -3.5$, both the full simulation and the SS simulation show a rapid increase in σ_ISI^2 with increasing noise level. This dramatic increase in timing variability results when increasing noise causes the neuron to “miss” spikes, that is, to generate a mixture of regular spiking and small subthreshold oscillations (Rowat and Greenwood 2011). Including noise from all 20 Na^+ channel edges (gray line) or all eight K^+ channel edges (gray dashed line) shows a similar jump, albeit delayed to higher values of ϵ for the Na^+ channel. Note also the Na^+ channel alone has a quantitatively smaller contribution to ISI variability for the stochastic HH model than the K^+ channel for all noise levels in the linear region.

For larger noise levels ($\ln(\epsilon) \geq -2$), all simulations become sufficiently noisy that $\ln(\sigma_\text{ISI}^2)$ collapse to a similar level, approximately 3. As the interspike interval is a non-negative random quantity with a constrained mean (bounded by the reciprocal of the firing rate), once the spike train has maximal variability, further increasing the strength of the channel noise does not drive the ISI variance appreciably higher. However, although the ISI variance appears approximately to saturate with increasing noise, the coefficient of variation (C.V., $\sqrt{\sigma_\text{ISI}^2}/I$) continues to increase (Fig. 12b), because the mean ISI (I) decreases with increasing noise (the firing rate increases with increasing noise, data not shown).

5 Discussion

We prove in Sect. 3 that the numerically calculated edge importance can be quantified from the molecular-level fluctuations of the stochastic Hodgkin–Huxley (HH) kinetics. Specifically, we combine the stochastic shielding approximation with the re-scaled Langevin models (Eq. (3)) of the HH model to derive analytic results for decomposing the variance of the cycle time (the iso-phase intervals) for mean return time isochrons of the stochastic HH models. We prove in theory, and confirm via numerical simulations, that in the limit of small noise, the variance of the iso-phase intervals decomposes linearly into a sum of contributions from each
edge. We show numerically that the same decomposition affords an efficient and accurate estimation procedure for the interspike intervals, which are experimentally observable. Importantly, our results apply to current clamp rather than to voltage clamp conditions. Under current clamp, a stochastic conductance-based model is an example of a piecewise-deterministic Markov process (PDMP). We show in Sect. 4.2 that our theory is exact in the limit of small channel noise (equivalently, large ion channel population size); through numerical simulations, we demonstrate its applicability even in a range of small to medium noise levels, consistent with experimentally inferred single-cell ion channel population sizes. In addition, we present the numerical performance of the SS method under different scenarios and argue that the stochastic shielding approximation together with the 14 × 28D Langevin representation gives an excellent choice of simulation method for ion channel populations spanning the entire physiologically observed range.

Our 14 × 28D Langevin model (Eq. (3)) can be shown to be pathwise equivalent to a class of Langevin models on a 14D state space (Pu and Thomas 2020). The first such model was introduced by Fox (1994) and subsequently investigated by Goldwyn and Shea-Brown (2011). Pathwise equivalence of two models implies that they have the same distribution over sample paths, hence identical moments including moments related to first-passage and return times. One could undertake the same investigation into the variability of spike timing as in this paper using Fox and Lu’s formulation; however, the 14 × 28D representation lends itself to an elegant application of the stochastic shielding approximation (Schmandt and Galán 2012; Schmidt and Thomas 2014; Schmidt et al. 2018) that would be cumbersome to apply to other formulations. Moreover, as shown in Pu and Thomas (2020), the 14 × 28D formulation is at least as fast or faster than its pathwise equivalent alternatives, while having (necessarily) the same accuracy (cf. Fig. 12). Thus, we concur with the assessment of (Orio and Soudry 2012) that the best combination of speed and accuracy for Langevin-type simulation of stochastic conductance based models is given by the diffusion approximation simulations (Orio and Soudry 2012), while we treat each edge as an independent noise source, combined with stochastic shielding.

Table 1 Estimated numbers of Na⁺ and K⁺ channels in different cell types

Ion	Type of cell	Number of channels	References
Na⁺	Chromaffin cells	1800–12,500	Fenwick et al. (1982), T O’Connor et al. (2007)
	Cardiac Purkinje cells	≥325,000	Makielski et al. (1987)
	Node of Ranvier	21,000–42,000	Sigworth (1977)
	Squid axon (1 mm)	≥18,800	Faisal et al. (2005)
	Pyramidal cell	≥17,000	Faisal et al. (2005)
	Purkinje cell	47,000–158,000	Forrest (2015), Shingai and Quandt (1986)
	Pre-BötC neurons	56–5600	Butera et al. (1999), Faisal et al. (2005)
K⁺	Squid axon (1 mm)	≥5600	Faisal et al. (2005)
	Pyramidal cell	≥2000	Faisal et al. (2005)
	Purkinje cell	3000–55,000	Forrest (2015); Shingai and Quandt (1986)
	Pre-BötC neurons	112–2240	Butera et al. (1999), Faisal et al. (2005)

Details of the data sources: (a) Na⁺ density: 1.5–10 channels/μm² (Fenwick et al. 1982), the average diameter of rounded chromaffin cells is 4 ± 20μm, Area=πd² (T O’Connor et al. 2007)
(b) Na⁺ density: 260 channels/μm² (Makielski et al. 1987), and diameter of roughly 20μm (Makielski et al. 1987)
(c) Number of Na⁺ channels in Tab. 1 from Sigworth (1977)
(d) Na⁺ density: 60 channels/μm² in squid axon, and 68 channels/μm² in pyramidal axon (Tab. S1 in Faisal et al. 2005). K⁺ density: 18 channels/μm² in squid axon, and 8 channels/μm² in pyramidal axon (Tab. S1 in Faisal et al. 2005). Membrane area: squid axon: 0.1 μm² diameter and 1 mm length (Fig. S2 in Faisal et al. 2005); pyramidal cell: 0.08μm² diameter with 1 mm length (Fig. S1 in Faisal et al. 2005). Single voltage-gated ion channel conductance is typically in the range of 5–50 pS, and 15–25 pS for Na⁺ (p. 1148 Faisal et al. 2005)
(e) Single K⁺ channel conductance (Shingai and Quandt 1986): inward rectifier in horizontal cells (20–30 pS in 62–125 mM K⁺, 9–14°C); skeletal muscle (10 pS in 155 mM K⁺, 24–26°C); egg cells (≈6 pS for 155 mM K⁺, 14–15°C); heart cells (27 pS for 145 mM K⁺ at 17–23°C; 45 pS for 150 mM K⁺ at 31–36°C)
(f) Single Na⁺ channel conductance is ≈14 pS in squid axon, other measurements under various conditions show results in the range of 2–18 pS (Tab. 1 in Bezaniailla 1987)
(g) Maximal conductance for different K⁺ channels (Tab. 1 in Forrest 2015): SK K⁺ (10 mS/cm²), highly TEA K⁺ (41.6 mS/cm²) sensitive BK K⁺ (72.8 mS/cm²); membrane area (1521 μm²). Maximal conductance for resurgent Na⁺ (156 mS/cm²)
(h) Note that the range of K⁺ channels provided here is for each type of K⁺ channel, not the total number of K⁺ channels
(i) Maximal conductance (gK∞) in pacemaker cells of the pre-Bötzing complex (pre-BötC) (Butera et al. 1999); gK∞ = 28 nS for persistent Na⁺ current, gNa = 28 nS for fast Na⁺ current, and gK ∈ [5.6, 11.2] nS for different types of K⁺ channels (p. 384–385)

(Reproduced with permission from Biological Cybernetics)
Initially, stochastic shielding was introduced for both voltage clamp and current clamp scenarios (Schmandt and Galán 2012), but rigorous investigation of the method (Schmidt and Thomas 2014; Schmidt et al. 2018) was restricted to voltage clamp. Stochastic conductance-based models under current clamp comprise hybrid or piecewise deterministic systems (cf. Fig. 2c), while systems under fixed-voltage clamp correspond to time-invariant discrete-state Markov chains, for which the theory is well established (Schmidt and Thomas 2014).

5.1 Number of channels in different cell types

Channel noise arises from the random opening and closing of finite populations of ion channels embedded in the cell membranes of individual nerve cells, or localized regions of axons or dendrites. Electrophysiological and neuroanatomical measurements do not typically provide direct measures of the sizes of ion channel populations. Rather, the size of ion channel populations must be inferred indirectly from other measurements. Several papers report the density of sodium or potassium channels per area of cell membrane (Faisal et al. 2005; Fenwick et al. 1982; Makielski et al. 1987). Multiplying such a density by an estimate of the total membrane area of a cell gives one estimate for the size of a population of ion channels. Sigworth (1977) pioneered statistical measures of ion channel populations based on the mean and variance of current fluctuations observed in excitable membranes, for instance, in the isolated node of Ranvier in axons of the frog. Single-channel recordings (Neher and Sakmann 1976) allowed direct measurement of the “unitary,” or single–channel conductance, gNa or gK. Most conductance-based, ordinary differential equations models of neural dynamics incorporate maximal conductance parameters (gNa or gK) which nominally represents the conductance that would be present if all channels of a given type were open. The ratio of g to g0 thus gives an indirect estimate of the number of ion channels in a specific cell type. Table 1 summarizes a range of estimates for ion channel populations from several sources in the literature. Individual cells range from 50 to 325,000 channels for each type of ion. In § 4.2 we considered effective channel populations spanning this entire range (cf. Figs. 10, 11).

5.2 Different methods for defining ISIs

There are several different methods for detecting spikes and quantifying interspike intervals (ISIs). In one widely used approach (Gerstein 1960; Gutkin and Ermentrout 1998; Lindner 2004; Mukhametov et al. 1970; Netoff et al. 2012; Shadlen and Newsome 1998; Stein 1965), we can define the threshold as the time of upcrossing a fixed voltage, which is also called a Schmitt trigger (after Schmitt 1938). We primarily use this method in this paper.

As an alternative, the time at which the rate of change of voltage, dV/dt, reaches its maximum value (within a given spike) has also been used as the condition for detecting spikes (Azouz and Gray 2000). However, in contrast with the voltage-based Schmitt trigger, using the maximum of dV/dt to localize the spike does not give a well-defined Poincaré section. To see this, consider that for a system of the form (3) we would have to set

\[
\frac{d^2 V}{dr^2} = \frac{d}{dt} f(V, N)
\]

\[
= f(V, N) \frac{\partial f}{\partial V} (V, N) - \frac{dM_{31}}{dt} g_{Na}(V - V_{Na})
\]

\[
- \frac{dN_4}{dt} g_{K}(V - V_{K})
\]

(97)

equal to zero to find the corresponding section. The difficulty is evident: for the Langevin system the open fraction \(M_{31}\) (resp. \(N_4\)) of sodium (resp. potassium) channels is a diffusion process and is not differentiable, so “dM_{31}/dt” and “dN_4/dt” are not well defined. Moreover, even if we could interpret these expressions, the set of voltages \(V\) and gating variables \(N\) for which (97) equals zero depends on the instantaneous value of the noise forcing, so the corresponding section would not be fixed within the phase space. For a discrete state stochastic channel model, the point of maximum rate of change of voltage could be determined post-hoc from a trajectory, but again depends on the random waiting times between events, and so is not a fixed set of points in phase space. For these reasons, we do not further analyze ISIs based on this method of defining spikes, although we nevertheless include numerical ISI variance based on this method, for comparison (see Fig. 13).

As a third possibility, used, for example, in Gutkin and Ermentrout (1998), one sets the voltage nullcline (dV/dt = 0), at the top of the spike, as the Poincaré section for spike detection. That is, one uses a surface such as \(S_{peak} = \{(v, n) | f(v, n) = 0\} \cap \{v > -40\}\). This condition does correspond to a well-defined Poincaré section, albeit one with a different normal direction than the voltage-based sections.

In contrast with the ISI variance, which depends to some degree on the choice of spike-timing method used, the mean ISI is invariant. Both in numerical simulations and from experimental recordings, the mean interspike interval using any of the three methods above is very stable. But the apparent ISI variance changes, depending on the method chosen.

We observe in both real and simulated voltage traces that the ISI variance, \(\sigma_{ISI}^2\), depends not only on the method for identifying spikes, but also on the voltage used for the Schmitt trigger. To our knowledge, this sensitivity of ISI variance to trigger voltage has not been previously reported. Generally
Fig. 13 Variance of interspike intervals using different threshold conditions. a σ_{ISI}^2 of spikes from a single trace of a wild type Purkinje cells comprising 785 ISIs. $\sigma_{\text{ISI}}^2 = 7.9151$ when setting $dv/dt = 0$ as the threshold (dashed red), and $\sigma_{\text{ISI}}^2 = 7.9146$ when maximum dv/dt is set to be the threshold condition (blue). Different voltage thresholds show increasing σ_{ISI}^2 with voltage (gray). For experimental methods, see Sect. D.

b ISI variance from a Langevin HH (cf. eq. 3) simulation with small noise ($\sqrt{\epsilon} = 0.028$) comprising c. 1000 ISIs. Labels as in (a). The variance of the inter-phase intervals is constant regardless of the particular isochron chosen (black) (colour figure online).

A similar phenomenon occurs for Langevin simulations of the HH model with small noise (Fig. 13b). In this case, the ISI variance based on maximum slope falls slightly below the variance based on the spike peaks; both are similar to the variance obtained with a Schmitt trigger close to -20mV. This similarity at higher trigger voltages probably occurs because the inflection point of each spike occurs at nearly the same voltage (at least, for small noise).

As shown in Sects. 3 and 4.2, the inter-phase interval (IPI, also refered as iso-phase interval), based on the crossing time of iso-phase sections, provides a uniform σ_{IPI}^2 for all choices of reference iso-phase sections (cf. Fig. 10). Figure 13b shows the IPI variance (in black) for different mean return time isochronal sections, each passing through the limit cycle trajectory at the specified voltage.

For experimental voltage recordings, we cannot specify the interphase variables without a measurement or estimate of the entire state vector. Fortunately, the sensitivity of ISI variance to voltage threshold, while statistically significant, is relatively small (a few percent), as voltage is the practical measure available for marking spike times. Moreover, as shown in Sect. 4.2, Theorem 1 and Corollary 1 are well suited to approximating the variance of ISIs (σ_{ISI}^2) despite its threshold-dependence.

For moderate to large noise Langevin model traces ($\epsilon \approx 1$), we also see a systematic shift in σ_{ISI}^2 with increasing Schmitt-trigger voltage. However, the size of the shift is an order of magnitude smaller than the variability of the...
variance across trials. Figure 14 plots σ_{ISI}^2 versus trigger voltage, as well as the ISI variance based on the peak voltage and the maximal slope conditions, for ten different samples of the Langevin HH model with $\epsilon = 1$, each comprising ≥ 1000 interspike intervals. In each case, σ_{ISI}^2 is a smoothly increasing function of the trigger voltage, but the range of the increase in variance is approximately 0.25 ms2, while the sample variance of the ISI variance itself is approximately 3.5 ms2 across the ten trials, an order of magnitude larger. For comparison, the sample variance of σ_{ISI}^2 across c. 4000 trials, cf. Fig. 10, is approximately 3×10^{-7} ms2. The source of the variance for the larger noise value may involve the introduction of extra or missing spikes from the regular spiking pattern, cf. Fig. 12. Thus, although σ_{ISI}^2 based on the standard Schmitt trigger approach is sensitive to the trigger value, the IPI variance estimate given by Theorem 1 lies within the range of this sensitivity, which for realistic noise levels is small compared to the intrinsic variability of the variance across trials.

5.3 Alternative definitions of oscillator phase

Guckenheimer established two ways of defining the “phase” of a stable limit cycle oscillator (Guckenheimer 1975); one method constructs sets of initial conditions that converge together to a unique limit cycle trajectory with identical timing (“isochronal sets”). The other method constructs a system of Poincaré sections with the property that the return time from each section to itself is equal to the oscillator period, independent of starting position along the section. Both of these notions break down when the oscillator dynamics is perturbed by stochastic fluctuations. Schwabedal and Pikovsky introduced a generalization of the uniform return time isochron (Schwabedal and Pikovsky 2013) and sought a family of Poincaré sections with a uniform mean–return time property. Cao et al. (2020) showed this family of isochrons could be obtained as the level sets of a timing function $T(x)$ that solves a partial differential equation related to a first-passage time problem

$$\mathcal{L}^1[T] = -1$$

(cf. (50)) subject to a jump boundary condition. The Schwabedal/Pikovsky/Cao/Lindner/Thomas mean return time phase is the basis of our results in the present paper.

An alternative notion of asymptotic phase for a stochastic oscillator, based on a spectral decomposition of the Markov process generator, was introduced in Thomas and Lindner (2014), prompting discussion of the relative merits of the two notions (Pikovsky 2015; Thomas and Lindner 2015). The spectral asymptotic phase is obtained from the slowest-decaying complex eigenfunction pair of the generator

$$\mathcal{L}^1[Q_{\pm}] = (\mu \pm i\omega)Q$$

(99)

where $\mu < 0$ is the rate of decay and $\omega > 0$ is the frequency of oscillation. Writing the eigenfunction in polar form, $Q(x) = |Q|e^{-i\psi(x)}$, one defines the asymptotic phase function ψ analogous to the deterministic asymptotic phase. This “spectral asymptotic phase” allows one to treat consistently the asymptotic phase of systems both with an underlying limit cycle oscillation as well as fluctuation-dependent systems that would not oscillate in the absence of noise, such as a heteroclinic oscillator (Thomas and Lindner 2014) and a quasicycle oscillator (noisy spiral sink) (Thomas and Lindner 2019).

For deterministic limit cycle oscillators, the two notions of phase established by Guckenheimer are equivalent. For stochastic oscillators, they are generally not equivalent although in many examples they appear numerically quite similar. A detailed analysis is given in Cao (2017), where it is shown that, in the case of planar oscillators, the mean return time phase and the spectral asymptotic phase are equivalent if the eigenfunction Q is complex analytic, that is, if its real and imaginary parts satisfy the Cauchy–Riemann equations. To the best of our knowledge, a generalization of this result to higher dimensional state spaces has not been established, and the relative merits of the two notions of phase remain an open question.

5.4 Relation to other methods

Ermentrout and colleagues (Ermentrout et al. 2011) developed an asymptotic treatment of the interspike interval variance as part of their analysis of the variance of phase response curves; the variance of the phase response in the absence of a perturbing input is simply the ISI variance. Our analysis was inspired in part by the approach of Ermentrout et al. (2011) in that we study the accumulation of variance of the timing variable (the asymptotic phase function for the unperturbed system) over a single period. Our approach differs from that of Ermentrout et al. (2011) in several key respects. While Ermentrout et al. (2011) used an additive Gaussian white noise current to obtain stochastic trajectories, in our model the fluctuations arise from channel noise based on a detailed 14×28 D Langevin description of the Hodgkin–Huxley system. In addition (Ermentrout et al. 2011) truncated the small-ϵ expansion of the phase dynamics at first order, i.e., they neglected terms at $O(\epsilon^2)$ and higher orders. However, their expression for the ISI variance begins with a term that is $O(\epsilon^2)$, suggesting a possibly inconsistency in their result. In contrast, we retain terms through $O(\epsilon^2)$, and demonstrate excellent agreement between full numerical and semi-analytic results in the small-ϵ regime. Finally,
we explicitly construct the ISI variance as a first-passage time problem, allowing us to leverage Dynkin’s theorem, which goes beyond the treatment given in Ermentrout et al. (2011).

There is a rich literature on the variability of interspike intervals in low-dimensional neural models, such as integrate and fire models with or without an adaptation current (Lindner 2004; Schwalger et al. 2010; Shiau et al. 2015; Fisch et al. 2012). In this literature, there is significant interest in serial correlation structure of successive interspike intervals (Chacron et al. 2004; Lindner et al. 2005; Schwalger et al. 2012). However, to our knowledge, the literature since (Ermentrout et al. 2011) has not further addressed analytical treatment of interspike interval variance for higher dimensional models such as the Hodgkin–Huxley system.

Jan-Hendrik Schleimer’s thesis (Schleimer 2013) addresses the moments of the interspike interval through a different approach. In his thesis, Schleimer assumes an a priori reduction from physical coordinates (voltage and gating variables) to a one-dimensional phase description \(\phi \in [0, 1) \). He formulates a stochastic Langevin equation for \(\phi \) using Linaro’s model (Linaro et al. 2011) which is similar (but not pathwise equivalent) to (Fox (1994); Orio and Soudry (2012); Pu and Thomas (2020)) of the form (Eq. (5.1) on page 47)

\[
\frac{d\phi}{dt} = \omega + Z(\phi)^T \sqrt{D(\phi)} \xi(t),
\]

where \(\xi \) is a delta-correlated Gaussian white noise disturbance vector, \(Z \) is the infinitesimal phase response curve of the deterministic limit cycle system, and \(D(\phi) \) is a noise coefficient matrix. If \(Z \) is \(n \)-dimensional then \(\xi(t) \) is assumed to be \(n \)-dimensional as well, and \(D \) is \(n \times n \). Using the Stratonovich interpretation, he derives a local phase-specific increment of the timing variability of the form (Eq. (5.3) on page 47)

\[
\sigma^2(\phi) = Z(\phi)^T D(\phi) Z(\phi).
\]

Implicitly, \(\int_0^1 \sigma^2(\phi) \, d\phi \) gives the ISI variability. To compare our approach with Schleimer’s, we give an explicit expression for \(\sigma^2(\phi) \) as a sum of contributions from each directed edge, at each phase of the limit cycle:

\[
\sigma^2(s) = \left(\sum_k a_k(V(s)) X_{ik}(s) \xi_k Z(s)^T(s) \xi_k \right) \frac{1}{T_0},
\]

where the sum runs over directed edges in the ion channel transition graph(s), and the factor of \(T_0^{-1} \) reflects changing the range of phase from \([0, T_0]\) to \([0, 1]\).

Two other recent papers independently established results distinct from, but related to, the results proved in our main theorem. Giacomin et al. (2018) consider one-parameter family of strong solutions of the (Ito) stochastic differential equation

\[
dx = F(x) \, dt + \sigma G(x) \, dB_t,
\]

where the vector field \(F \) has a limit cycle solution in \(\mathbb{R}^d \). The set up and assumptions are similar to those we make here, except that we scale Brownian motion increments by \(\sqrt{\varepsilon} \) rather than by \(\varepsilon \). The authors show that under a certain time rescaling, the “lift” of the asymptotic phase function \(\tilde{\theta}_s^\varepsilon \) obeys a stochastic differential equation such that

\[
\tilde{\theta}_s^\varepsilon \sim \theta(x_0) - \varepsilon^{-2} t + \sigma W_t + bt.
\]

See Appendix E for details. In (102), \(W_t \) is a standard univariate Brownian motion, and the variance term obeys

\[
\sigma^2 = \frac{1}{T} \int_0^T D(\theta(q_s)) G(q_s) G^T(q_s) (D(\theta(q_s))^T) \, ds,
\]

where \(q_s \) is the \(T \)-periodic deterministic limit cycle solution, and the noise-induced shift in frequency is given by

\[
b = \frac{1}{2T} \int_0^T \text{tr} \left(G(q_s) G^T(q_s) D^2(\theta(q_s)) \right) \, ds,
\]

where \(D^2\theta \) is the Hessian of the asymptotic phase function \(\theta \) of the deterministic limit cycle. As we show in Appendix E, when we substitute \(F \) and \(G \) from a stochastic conductance based model with Langevin channel noise into (103), we obtain an expression identical to our main result. Moreover, the frequency shift given by (104) plays no role in the isophase-interval variance.

Aminzare et al. (2019) consider an autonomous system \(\dot{x} = F(x) \), \(x \in \mathbb{R}^n \), with an asymptotically stable hyperbolic limit cycle \(x'(t) \) with period \(T \) and frequency \(\omega = 2\pi/T \). They incorporate white noise forcing, giving an Ito stochastic differential equation

\[
dx = F(x) \, dt + \sigma B(x) \, dW_t.
\]

Aminzare’s noise parameter \(\sigma \) corresponds to Giacomin’s \(\varepsilon \), which corresponds to our \(\sqrt{\varepsilon} \). Aminzare et al. make the simplifying assumption that the noise coefficient matrix \(B(x) \) is square and diagonal, i.e., that each component of \(x \) is driven by independent white noise. Under these assumptions, Aminzare et al. derive expressions for the first and second moment of the first passage time for the one-dimensional phase variable. Given the first and second moment, calculation of the variance is immediate. As we show in App. E, we obtain equivalent expressions to leading order in the noise parameter, if we adopt the more restrictive assumptions from Aminzare et al. (2019).
5.5 Limitations

Like other approaches in the literature, our calculations are based on a linear approximation to the effects of the noise. However, Ito’s formula (25) includes terms both of order $\sqrt{\epsilon}$ and ϵ. The latter weights the Hessian matrix of the asymptotic phase function, $\partial^2 \phi / \partial \theta^2$. In our main result (41), we neglected the contribution of this higher order term. Similar truncations of either Taylor’s expansion or Ito’s formula are seen throughout the literature, for example Eq. (3.2.8) in Kuramoto (1984), Eq. (120) in Schwemmer and Lewis (2012), and Eq. (2) in Ermentrout et al. (2011). These authors favor an immediate phase reduction when ϵ is small, setting $X(t) \approx X_0(\theta(t))$ and

$$\frac{d\phi}{dt} + \sqrt{\epsilon} (\nabla \phi(X))' \cdot \mathcal{G}(X) \cdot dW(t)$$

(Schwemmer and Lewis 2012; Kuramoto 1984). As in Kuramoto’s original phase reduction approach (Kuramoto 1984), we also evaluate the infinitesimal phase response curve Z on the limit cycle throughout this paper. This omission of the Hessian term could possibly cause additional discrepancies. Recent advances in the theory of nonlinear oscillators have provided means to obtain the asymptotic phase Hessian (Aminzare et al. 2019; Wilson and Ermentrout 2018a, 2019), but we have not attempted to implement these calculations for our 14D HH model.

Acknowledgements The authors thank Dr. David Friel (Case Western Reserve University, School of Medicine) for introducing us to the problem of channel noise and spontaneous spike time variability in the leaker mouse, for providing access to voltage recordings obtained in his laboratory and for many illuminating discussions on mechanisms at work in Purkinje cells. The authors thank Dr. Daniela Calvetti and Dr. Erik Somersalo (Case Western Reserve University, Department of Mathematics, Applied Mathematics and Statistics) for helpful advice and discussion. This work was made possible in part by grants from the National Science Foundation (DMS-2052109, DEB-1654989). PT thanks the Oberlin College Department of Mathematics for research support. This research has been supported in part by the Mathematical Biosciences Institute and the National Science Foundation under grant DMS-1440386. Large-scale simulations made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University.

A Model parameters, common symbols and notations

Subunit kinetics for Hodgkin and Huxley parameters are given by

$$\alpha_n(V) = 0.07 \exp(-V/20)$$ (109)

$$\beta_n(V) = \frac{1}{\exp(3 - 0.1V) + 1}$$ (110)

$$\alpha_m(V) = 0.125 \exp(-V/80)$$ (111)

$$\beta_m(V) = \frac{1}{\exp(3 - 0.1V) + 1}$$ (112)

$$A_{Na} = \begin{bmatrix}
D_2(1) & \beta_m & 0 & 0 & \beta_h & 0 & 0 & 0 \\
5\alpha_m & D_2(2) & 2\beta_m & 0 & 0 & \beta_h & 0 & 0 \\
0 & 2\alpha_m & D_2(3) & 3\beta_m & 0 & 0 & \beta_h & 0 \\
0 & 0 & D_2(4) & 4\beta_m & 0 & 0 & 0 & \beta_h \\
0 & 0 & 0 & D_2(5) & \beta_m & 0 & 0 & \beta_h \\
0 & 0 & 0 & 0 & D_2(6) & 2\beta_m & 0 & 0 \\
0 & 0 & 0 & 0 & 3\alpha_m & D_2(7) & 3\beta_m & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha_m & 0 & \alpha_m \\
0 & 0 & 0 & 0 & 0 & 0 & \alpha_m & \alpha_m
\end{bmatrix}$$ (113)

where the diagonal elements

$$D_k(i) = -\sum_{j \neq i} A_{ion}(j, i), \quad k \in \{1, 2\} \quad \text{ion} \in \{\text{Na}, K\}.$$
Table 3 Table of common symbols and notations

Symbol	Meaning	
$X \& x$	State vector (random variable & realization value)	
$M \& m$	Eight-component state vector for the Na$^+$ gates (random variable & realization value)	
$N \& n$	Five-component state vector for the K$^+$ gates (random variable & realization value)	
C	Membrane capacitance ($1 \mu F/cm^2$)	
I_{app}	Applied current ($10\, nA/cm^2$)	
g_{ion}	Maximal conductance for ion $\in \{Na^+, K^+\}$	
V_{ion}	Reversal potential of ion $\in \{Na^+, K^+\}$	
e_i^{Na} & e_i^K	ith standard unit vector in $\mathbb{R}^8 \& \mathbb{R}^5$	
$\xi_{ion}^k = e_{ion}^k - e_{ion}^j$	Stoichiometry vector for the kth edge, for ion $\in \{Na^+, K^+\}$	
$\alpha_k(v)$	Voltage-dependent per capita transition rate along kth edge, $1 \leq k \leq 28$	
$i(k) \& j(k)$	Source & destination nodes for kth edge	
$M_i(k)$	Fractional occupancy of source node for kth edge	
$F(X) \& f(x)$	Deterministic part of the evolution equation (mean-field)	
$\mathcal{G}, \Sigma_{Na}, S_K$	Noise coefficient matrix for the the 14 \times 28D Langevin model, Na$^+$ gates and K$^+$ gates, resp.	
Δ^K	k-dimensional simplex in \mathbb{R}^{k+1} given by $y_1 + \ldots + y_{k+1} = 1$, $y_i \geq 0$	
\mathcal{D}	Domain of the (stochastic) differential equation	
γ_0	“Nullcline” surface associated with the voltage variable, where $f(v,m,n) = 0$	
S	Arbitrary section transverse to the deterministic limit cycle	
$S^u, S^v, \& S^w$	“null,” “inward current” & “outward current” surface for voltage u and $f(v,m,n) = 0$, $f(v,m,n) > 0$ & $f(v,m,n) < 0$, resp.	
$\tau(x,S)$	First passage time (FPT) from a point $x \in \mathcal{D}$ to section S	
$T(x,S)$	Mean first passage time (MFPT) from point $x \in \mathcal{D}$ to set S	
$\mathcal{S}(x,S)$	The second moment of the FPT from a point $x \in \mathcal{D}$ to section S	
τ^u_k & τ^d_k	kth voltage surface upcrossing & downcrossing time	
I_k	kth interspike interval (ISI), for some reference voltage v_0	
$f, H \& \sigma^2_{ISI}$	Mean, 2nd moment, and variance of ISI	
μ_k	kth iso-phase crossing time	
Δ_k	kth iso-phase interval (IPI), for some reference phase ϕ_0	
$\mathcal{T}_v, \Sigma_v, \sigma^2_{IPI}$	Mean, 2nd moment, variance of iso-phase interval (for noise level ϵ)	
$\sigma^2_{\phi,k}$ & $\sigma^2_{ISI,k}$	Contribution of kth edge to the IPI variance and the ISI variance, resp.	
$\gamma(t)$	Deterministic limit cycle trajectory	
T_0	Period of deterministic limit cycle	
$\phi(x)$	Asymptotic phase function for deterministic limit cycle	
$Z_0(t) = \nabla \phi(\gamma(t))$	Infinitesimal phase response curve (iPRC) for deterministic limit cycle	
T_ϵ	Mean period for noise level set to ϵ	
$\tilde{T}_1 = \left. \frac{\partial T_\epsilon}{\partial \epsilon} \right	_{\epsilon=0}$	Sensitivity of the mean period to increasing noise level, in the small-noise limit
$T_c(x)$	Mean return time (MRT) phase function for noise level set to ϵ	
$T_{1}(x) = \left. \frac{\partial T_c(x)}{\partial \epsilon} \right	_{\epsilon=0}$	Sensitivity of the phase function to noise in the small-noise limit
$T_0(x)$	MRT phase function for $\epsilon = 0$. Note $T_0(x) = \text{const} - \tilde{T}_1 \frac{\partial \phi(x)}{\partial \epsilon}$ for an arbitrary constant	
The matrices S_K and S_{Na} are given by

$$
S_K = \frac{1}{\sqrt{N_{\text{ref}}}} \begin{bmatrix}
-\sqrt{4\alpha_n n_0} & \sqrt{\beta_n n_1} & 0 & 0 \\
\sqrt{4\alpha_n n_0} & -\sqrt{\beta_n n_1} & -\sqrt{3\alpha_n n_1} & \sqrt{2\beta_n n_2} \\
0 & 0 & \sqrt{3\alpha_n n_1} & -\sqrt{2\beta_n n_2} \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \cdots \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

and

$$
S_{\text{Na}} = \frac{1}{\sqrt{M_{\text{ref}}}} \begin{bmatrix}
-\sqrt{\alpha_h m_{00}} & \sqrt{\beta_h m_{01}} & -\sqrt{3\alpha_h m_{00}} & \sqrt{\beta_h m_{01}} & 0 \\
0 & 0 & \sqrt{3\alpha_h m_{00}} & -\sqrt{\beta_h m_{01}} & -\sqrt{\alpha_h m_{00}} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \cdots \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

C Proof of Lemma 1

For the reader’s convenience, we restate

Lemma 1 For a conductance-based model of the form (3), and for any fixed applied current I_{app}, there exist upper and...
lower bounds v_{max} and v_{min} such that trajectories with initial voltage condition $v \in [v_{\text{min}}, v_{\text{max}}]$ remain within this interval for all times $t > 0$, with probability 1, regardless of the initial channel state, provided the gating variables satisfy $0 \leq M_{ij} \leq 1$ and $0 \leq N_i \leq 1$.

Proof Let $V_1 = \min_{\text{ion}} \{ V_{\text{ion}} \} \wedge V_{\text{leak}}$, and $V_2 = \max_{\text{ion}} \{ V_{\text{ion}} \} \vee V_{\text{leak}}$, where ion $\in \{ \text{Na}^+, \text{K}^+ \}$. Note that by assumption, for both the Na$^+$ and K$^+$ channel, $0 \leq M_{31} \leq 1$, $0 \leq N_4 \leq 1$. Moreover, $g_i > 0$, $g_{\text{leak}} > 0$; therefore, when $V \leq V_1$

$$\frac{dV}{dt} = \frac{1}{C} \left[I_{\text{app}}(t) - \tilde{g}_{\text{Na}} M_{31} (V - V_{\text{Na}}) - \tilde{g}_K N_4 (V - V_K) - g_{\text{leak}} (V - V_{\text{leak}}) \right]$$

$$\geq \frac{1}{C} \left[I_{\text{app}}(t) - \tilde{g}_{\text{Na}} M_{31} (V - V_1) - \tilde{g}_K N_4 (V - V_1) - g_{\text{leak}} (V - V_1) \right]$$

Inequality (115) holds with probability 1 because $V_1 = \min_{t \in T} \wedge V_{\text{leak}}$, and inequality (116) follows because $V - V_1 \leq 0$, $g_i > 0$ and $M_{31} \geq 0$, $N_4 \geq 0$. Let $V_{\text{min}} := \min \{ \frac{V_{\text{leak}}}{g_i} + V_1, V_1 \}$. When $V < V_{\text{min}}$, $\frac{dV}{dt} > 0$. Therefore, V will not decrease beyond V_{min}. Similarly, when $V \geq V_2$

$$\frac{dV}{dt} = \frac{1}{C} \left[I_{\text{app}}(t) - \tilde{g}_{\text{Na}} M_{31} (V - V_{\text{Na}}) - \tilde{g}_K N_4 (V - V_K) - g_{\text{leak}} (V - V_{\text{leak}}) \right]$$

$$\geq \frac{1}{C} \left[I_{\text{app}}(t) - \tilde{g}_{\text{Na}} M_{31} (V - V_2) - \tilde{g}_K N_4 (V - V_2) - g_{\text{leak}} (V - V_2) \right]$$

Inequality (119) and inequality (120) hold because $V_2 = \max_{t \in T} \{ V_1 \} \vee V_{\text{leak}}$, $V - V_2 \geq 0$, $g_i > 0$ and $M_{31} \geq 0$, $N_4 \geq 0$. Let $V_{\text{max}} := \max \{ \frac{I_{\text{app}}}{g_{\text{leak}}} + V_2, V_2 \}$. When $V > V_{\text{max}}$, $\frac{dV}{dt} < 0$. Therefore, V will not go beyond V_{max}. We conclude that if V takes an initial condition in the interval $[V_{\text{min}}, V_{\text{max}}]$, and if $0 \leq M_{ij}, N_i \leq 1$ for all time, then $V(t)$ remains within this interval for all $t \geq 0$. Thus, we complete the proof of Lemma 1. \[\square\]

D Experimental methods

Whole-cell current clamp recordings of Purkinje cells from in vitro cerebellar slice preparations taken from wild type and leaker mice were performed in the laboratory of Dr. David Friel (Case Western Reserve University School of Medicine), as described in Ovsepian and Friel (2008). Experimental procedures conformed to guidelines approved by the Institutional Animal Care and Use Committee at Case Western Reserve University. Voltage signals were sampled at a frequency of 20kHz, filtered at 5–10 kHz, digitized at a resolution of 32mV and analyzed using custom software written in IgorPro and MATLAB.

E Comparison of our main theorem with the related literature

E.1 Comparison with Giacomin et al. (2018)

Giacomin et al. (2018) considered a one-parameter family of strong solutions of the (Ito) stochastic differential equation

$$dX_t^\varepsilon = F(X_t^\varepsilon) \, dt + \varepsilon G(X_t^\varepsilon) \, dB_t,$$ \[122\]

where the parameter $\varepsilon > 0$, $F(\cdot)$ is a locally Lipschitz vector field on \mathbb{R}^d, $G(\cdot)$ is a locally Lipschitz function on \mathbb{R}^d with values in the $d \times m$ matrices and B is a standard m dimensional Brownian motion. Note that in our formulation of the Langevin system (3), we use $\sqrt{\varepsilon}$ where Giacomin et al. use ε. Consequently, our expressions involving GG^\top scale as ε, whereas the analogous expressions scale as ε^2 in Giacomin et al. (2018).

If the deterministic asymptotic phase is $\tilde{\theta}(x)$, then evaluated along a trajectory $\tilde{\theta}(X_t^\varepsilon)$ the phase obeys Ito’s formula:

$$d\tilde{\theta}(x) = [F_i(x) \partial_\theta(x) + \frac{\varepsilon^2}{2} D_{ij}(x) \partial_\theta \partial_\theta(x) \partial_\theta(x)] \, dt + \varepsilon (\partial_\theta \partial_\theta(x)) G_{ik}(x) \, dW_k(t),$$ \[123\]

where $D = GG^\top$ and we use Einstein’s summation convention. Given their definition of the asymptotic phase function and their Theorem 2.1 on page 1024, $F_i(x) \partial_\theta(x) = 1$. As a result of their Theorem 2.3 (page 1026 in Giacomin et al. 2018), if ε is small, then over long times, we can establish that (since X_t^ε stays “close to” the deterministic limit cycle solution $q_t = X_t^0$ for times on the order of $1/\varepsilon^2$) approximately

$$d\tilde{\theta} \approx \left(1 + \varepsilon^2 \frac{b}{2}\right) dt + \varepsilon \sigma \, dW_t$$ \[124\]
for some constants a and b that one may calculate in terms of F and G for any particular system. The notation $\tilde{\theta}$ refers to the “lift” of θ from the circle $\theta \in S_T \equiv [0, T)$ to $\tilde{\theta} \in \mathbb{R}$, i.e., the integral of (124) without the jumps induced by taking θ mod the period T. For small noise ϵ, integrating up to time t, we have (provided t is $o(\epsilon^{-2})$, and setting $x_0 \equiv X^t_0$),

\[
\tilde{\theta}(X^t_0) \approx \theta(x_0) + t(1 + \epsilon^2 b) + \epsilon \sigma W_t,
\]

where W_t is now a 1D standard Brownian motion (with \approx signifying convergence in distribution, after rescaling time). Upon rescaling time, the authors establish that

\[
\tilde{\theta}(X^t_{t/\epsilon^2}) \approx \theta(x_0) + \frac{t}{\epsilon^2} + t b + \sigma W_t.
\]

Therefore, the accumulated variance of $\tilde{\theta}(X^t_0)$ during one (deterministic) period T is

\[
\mathcal{V}(\tilde{\theta}(t + T) - \tilde{\theta}(t)) \approx \mathcal{V}\left(T + \epsilon^2 b T + \epsilon \sigma (W_{t+T} - W_t)\right) = \epsilon^2 \sigma^2 T + \epsilon^2 \int_0^T (D\theta(q_t)G(q_t)G'(q_t)D\theta'(q_t)) \, dt.
\]

Equation (128) holds because the variance of the Wiener process increment over time T is exactly T and because the limit cycle period T is a deterministic quantity.\(^7\) Equation (129) holds by virtue of the authors’ formula, Eq. (2.20) on page 1026 in Giacomin et al. (2018).

Finally, we note that, for a conductance-based channel noise model of the type we consider in this paper, the expression $D\theta(q_t)G(q_t)G'(q_t)D\theta'(q_t)$ in Giacomin et al. (2018) corresponds exactly with our expression $\sum_{ij}(GG^\top)_ij \delta_i T_0 \delta_j T_0$ and $\sum_{k=1}^{28} \alpha_k(v)X_i(k) (\xi_k^T \xi_k)^2$, as in our Theorem 1 and Corollary 1. To see the correspondence, note that $D\theta(q_t)$, the gradient of the phase function evaluated along the limit cycle is none other than the infinitesimal phase response curve and is identical to the gradient of the zero-noise timing function ∇T_0; the rest follows from the structure of G as shown in the proof of our main theorem.

\(^7\) Note that the factor b, representing the shift in mean frequency due to noise, does not appear in the expression for the variance of the phase after one period. Similarly, the term T_1 appearing in our assumption A3, Eq. (38), represents the first-order shift in mean period of the stochastic oscillator upon introducing nonzero noise. Observe that T_1 does not appear in our expression for the inter-phase interval variance, consistent with the results in Giacomin et al. (2018).

E.2 Comparison with Aminzare et al. (2019)

In Aminzare et al. (2019), the authors consider the scaled Langevin model (Eq. (10) on page 4718)

\[
dx = F(x) \, dt + \sigma B(x) \, dW(t).
\]

The authors consider the special case in which $B(x) = \text{diag}(\beta_1, \ldots, \beta_n)$. Our corresponding matrix G is not diagonal, due to the biophysical origin of channel noise, so direct comparison of our results is somewhat limited. Nevertheless, the authors consider the moments of the stochastic period, defined as the time to complete one oscillation, and arrive at an expression for the variance of the stochastic period that we can compare with the result of our theorem 1. In particular, in Proposition 3 on page 4721 in Aminzare et al. (2019), the authors calculate the first and second moments of the stochastic return time T for system (130) with $B(x) = \text{diag}(\beta_1, \ldots, \beta_n)$ as

\[
\mathbb{E}[T] = \frac{2\pi}{\omega} - \frac{\sigma^2}{\omega^2} \int_0^{2\pi} \Pi(\alpha) \, d\alpha + o(\sigma^2),
\]

and

\[
\mathbb{E}[T^2] = \frac{4\pi^2}{\omega^2} - \frac{2\sigma^2}{\omega^3} \int_0^{2\pi} (2\pi - \alpha) \Pi(\alpha) \, d\alpha + \frac{2\sigma^2}{\omega^3} \int_0^{2\pi} \xi(\alpha) \, d\alpha
\]

\[
- \frac{2\sigma^2}{\omega^3} \int_0^{2\pi} \int_0^{2\pi} \Pi(\alpha) \, d\alpha \, d\xi + o(\sigma^2),
\]

where

\[
\Pi(\theta_0) = \frac{1}{2} \sum_{i=1}^n \beta_i^2 H_{ii}(\theta_0), \quad \text{and}
\]

\[
\xi(\theta_0) = \frac{1}{2} \sum_{i=1}^n \beta_i^2 Z_i(\theta_0)^2.
\]

$H(\theta)$ is the “second-order” PRC (the Hessian of the asymptotic phase function) and $Z(\theta)$ is the infinitesimal phase response curve. Note that because (Aminzare et al. 2019) scales phase from 0 to 2π, their expression $\xi(\theta_0)$ has units of radians/time. In contrast, our infinitesimal phase response curve $Z(t)$ has units of time; we may convert by multiplying by $T_0/2\pi$ (Sect. 2.4). Although G is not diagonal for conductance-based neural oscillators driven by channel noise (cf. Eq. (3)), we can still express the term $\xi(\theta_0)$ as

\[
\xi(\theta_0) = 2\pi^2 \sum_{ij}(GG^\top)_{ij} \delta_i T_0 \delta_j T_0
\]
Therefore, Eq. (138) reduces to

$$V = 2\pi^2 \sum_{k=1}^{28} \alpha_k(v) X_i(k) \left(\zeta_k^T \bar{Z} \right)^2 .$$

(134)

Given the first and second moments of the time period in Aminzare et al. (2019), the variance is given by

$$V[T] = \mathbb{E}[T^2] - \left(\mathbb{E}[T] \right)^2$$

(135)

$$= \frac{4\pi^2}{\omega^2} - \frac{2\pi^2}{\omega^3} \int_0^{2\pi} (2\pi - \alpha) \Pi(\alpha) d\alpha$$

$$+ \frac{2\pi^2}{\omega^3} \int_0^{2\pi} \frac{2\pi}{\omega^3} \int_0^{2\pi} \Pi(\alpha) d\alpha d\xi$$

$$- \frac{4\pi^2}{\omega^2} + \frac{4\pi^2}{\omega^2} \int_0^{2\pi} \Pi(\alpha) d\alpha + o(\sigma^2)$$

(136)

$$= - \frac{4\pi^2}{\omega^3} \int_0^{2\pi} \Pi(\alpha) d\alpha + \frac{2\pi^2}{\omega^3} \int_0^{2\pi} \alpha \Pi(\alpha) d\alpha$$

$$+ \frac{2\pi^2}{\omega^3} \int_0^{2\pi} \zeta(\alpha) d\alpha$$

$$- \frac{2\pi^2}{\omega^3} \int_0^{2\pi} \Pi(\alpha) d\alpha d\xi$$

$$+ \frac{2\pi^2}{\omega^3} \int_0^{2\pi} \Pi(\alpha) d\alpha + o(\sigma^2)$$

(137)

$$= - \frac{2\pi^2}{\omega^3} \int_0^{2\pi} \alpha \Pi(\alpha) d\alpha + \frac{2\pi^2}{\omega^3} \int_0^{2\pi} \zeta(\alpha) d\alpha$$

$$- \frac{2\pi^2}{\omega^3} \int_0^{2\pi} \Pi(\alpha) d\alpha d\xi .$$

(138)

By Tonelli’s Theorem (Saks 1937),

$$\int_0^{2\pi} \int_0^{2\pi} \Pi(\alpha) d\alpha d\xi$$

(139)

$$\int_{\xi \leq \alpha \leq 2\pi} \Pi(\alpha) d(\alpha, \xi)$$

(140)

$$= \int_{\xi < \alpha < 2\pi} \Pi(\alpha) d(\alpha, \xi)$$

(141)

$$= \int_0^{2\pi} \Pi(\alpha) d\alpha$$

(142)

$$= \int_0^{2\pi} \alpha \Pi(\alpha) d\alpha .$$

(143)

Therefore, Eq. (138) reduces to

$$V[T] = \frac{2\sigma^2}{\omega^3} \int_0^{2\pi} \zeta(\alpha) d\alpha$$

(144)

$$= \frac{2\pi^2}{4\pi^2} \times \frac{\omega^2}{2\pi} \times 2\pi^2 \int_0^{T} \sum_{k=1}^{28} \alpha_k(v) X_i(k) \left(\zeta_k^T \bar{Z} \right)^2 dt$$

(145)

$$= \sigma^2 T \sum_{k=1}^{28} \int_0^{T} \alpha_k(v) X_i(k) \left(\zeta_k^T \bar{Z} \right)^2 dt$$

(146)

which is consistent with our main result, because $\sigma^2 = \epsilon$, $\omega = 2\pi / T$, and $d\alpha \sim \omega dt$.

References

Aminzare Z, Holmes P, Srivastava V (2019) On phase reduction and time period of noisy oscillators. In: 2019 IEEE 58th conference on decision and control (CDC), pp 4717–4722

Anderson DF, Ermentrout B, Thomas PJ (2015) Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics. J Comput Neurosci 38(1):67–82. https://doi.org/10.1007/s10827-014-0528-2

Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci 97(14):8110–8115

Bezanilla F (1987) Single sodium channels from the squid giant axon. Biophys J 52(6):1087–1090

Bressloff PC, Newby JM (2014) Path integrals and large deviations in stochastic hybrid systems. Phys Rev E 89(4):042701

Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comput 16(4):673–715. https://doi.org/10.1162/08997660432286668

Brunel N, Latham PE (2003) Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Comput 15(10):2281–2306

Buckwar E, Riedler MG (2011) An exact stochastic hybrid model of excitatory membranes including spatio-temporal evolution. J Math Biol 63(6):1051–1093

Butera RJ Jr, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82(1):382–397

Cao A, Lindner B, Thomas PJ (2020) A partial differential equation for the mean-return-time phase of planar stochastic oscillators. SIAM J Appl Math 80(1):422–447

Chacron MJ, Lindner B, Longtin A (2004) Noise shaping by interval correlations increases information transfer. Phys Rev Lett 92(8):080601

Dorval AD, White JA (2005) Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci 25(43):10025–10028

Ermentrout GB, Beverlin B 2nd, Troyer T, Netoff TI (2011) The variance of phase-resetting curves. J Comput Neurosci. https://doi.org/10.1007/s10827-010-0305-9

Ermentrout GB, Terman DH (2010) Foundations of mathematical neuroscience. Springer, Berlin

Faisal AA, White JA, Laughlin SB (2005) Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr Biol 15(12):1143–1149

Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol 331(1):599–635

© Springer
Fisch K, Schwalger T, Lindner B, Herz AV, Benda J (2012) Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. J Neurosci 32(48):17332–17344

Forrest MD (2015) Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC Neurosci 16(1):27

Fox Lu (1994) Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(4):3421–3431

Gardiner CW (2004) Handbook of stochastic methods for physics, chemistry, and the natural sciences, 2nd edn. Springer, Berlin

Gerstein GL (1960) Analysis of firing patterns in single neurons. Science 131(3416):1811–1812

Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76–78

Giacomin G, Poquet C, Shapira A (2018) Small noise and long time phase diffusion in stochastic limit cycle oscillators. J Differ Equ 264(2):1019–1049

Goldwyn JH, Shea-Brown E (2011) The what and where of adding channel noise to the Hodgkin–Huxley equations. PLoS Comput Biol 7(11):e1002247. https://doi.org/10.1371/journal.pcbi.1002247

Goldwyn JH, Shea-Brown E, Rubinstein JT (2010) Encoding and decoding amplitude-modulated cochlear implant stimuli: a point process analysis. J Comput Neurosci 28(3):405–424

Guckenheimer J (1975) Isochrones and phaseless sets. J Math Biol 1:259–273. https://doi.org/10.1007/BF01273747

Guckenheimer J, Holmes P (1990) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Applied Mathematical Sciences, vol. 42, 3rd edn. Springer

Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput 10(5):1047–1065

Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, Berlin

Kurtz TG (1978) Strong approximation theorems for density dependent Markov chains. Stoch Process Appl 6(3):223–240

Lasota A, Mackey MC (1994) Chaos, fractals, and noise: stochastic aspects of dynamics, applied mathematical sciences, vol 97. Springer, New York

Linaro D, Storace M, Giugliano M (2011) Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Comput Biol 7(3):e1001102

Lindner B (2004) Interspike interval statistics of neurons driven by colored noise. Phys Rev E 69(2):022901

Lindner B, Chacron MJ, Longtin A (2005) Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. Phys Rev E 72(2):021911

Linás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305(1):197–213

Linás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305(1):171–189

Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268(5216):1503–1506

Makielcki JC, Sheets MF, Hanck DA, January CT, Fozzard HA (1987) Sodium current in voltage clamped internally perfused canine cardiac Purkinje cells. Biophys J 52(1):1–11

McKane AJ, Newman TJ (2005) Predator-prey cycles from resonant amplification of demographic stochasticity. Phys Rev Lett 94(21):218102

Moseiff A, Konishi M (1981) The owl’s interaural pathway is not involved in sound localization. J Comput Physiol 144(3):299–304

Mukhametov L, Rizzolati G, Tradardi V (1970) Spontaneous activity of neurones of nucleus reticularis thalami in freely moving cats. J Physiol 210(3):651–667

Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799

Netoff T, Schwemmer MA, Lewis TJ (2012) Experimentally estimating phase response curves of neurons: theoretical and practical issues. In: Phase Response Curves in neuroscience, pp 95–129. Springer

Oksendal B (2007) Stochastic differential equations: an introduction with applications, 6th edn. Springer, Berlin

Orío P, Soudry D (2012) Simple, fast and accurate implementation of the diffusion approximation algorithm for stochastic ion channels with multiple states. PLoS ONE 7(5):e36670

Ovsepian SV, Friel DD (2008) The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje neurons hyper-excitable and eliminates Ca2+–Na+ spike bursts. Eur J Neurosci 27(1):93–103

Pakdaman K, Thieullen M, Wainrib G (2010) Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv Appl Probab 42(3):761–794

Pezo D, Soudry D, Orío P (2014) Diffusion approximation-based simulation of stochastic ion channels: which method to use? Front Comput Neurosci 8:139

Petrobon D (2010) Ca v 2.1 channelopathies. Pflügers Archiv-Eur J Physiol 460(2):375–393

Pikovsky A (2015) Comment on “asymptotic phase for stochastic oscillators.” Phys. Rev. Lett. 115:069401. https://doi.org/10.1103/PhysRevLett.115.069401

Pu S (2020) Noise decomposition for stochastic Hodgkin-Huxley models. Ph.D. thesis, Case Western Reserve University, Cleveland, Ohio

Pu S, Thomas PJ (2020) Fast and accurate Langevin simulations of stochastic Hodgkin–Huxley dynamics. Neural Comput 32(10):1775–1835

Rajakulendran S, Kaski D, Hanna MG (2012) Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neuroil 8(2):86

Risken H (1996) The Fokker–Planck equation: methods of solution and applications, 2nd edn. Springer, Berlin

Rowat P (2007) Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput 19(3):1215–1250

Rowat PF, Greenwood PE (2011) Identification and continuity of the distributions of burst-length and interspike intervals in the stochastic Morris-Lecar neuron. Neural Comput 23(12):3094–3124

Saks S (1937) Theory of the integral. http://eudml.org/doc/219302

Schleimer JH (2013) Spike statistics and coding properties of phase models. Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I

Schmamt NT, Galán RF (2012) Stochastic-shielding approximation of Markov chains and its application to efficiently simulate random ion-channel gating. Phys Rev Lett 109(11):118101

Schmied G, Goychuk I, Hänggi P (2001) Coherence resonance as a collective property of ion channel assemblies. Europhys Lett 56(1):22

Schmidt DR, Galán RF, Thomas PJ (2018) Stochastic shielding and edge importance for Markov chains with timescale separation. PLoS Comput Biol 14(6):e1006206

Schmidt DR, Thomas PJ (2014) Measuring edge importance: a quantitative analysis of the stochastic shielding approximation for random processes on graphs. J Math Neurosci 4(1):6

Schmitt OH (1938) A thermonic trigger. J Sci Instrum 15(1):24

Schneiderman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput 10(7):1679–1703
Schwabedal J, Pikovsky A (2010) Effective phase dynamics of noise-induced oscillations in excitable systems. Phys Rev E: Stat Nonlinear Soft Matter Phys 81(4 Pt 2):046218
Schwabedal J, Pikovsky A (2013) Phase description of stochastic oscillations. Phys Rev Lett 110:4102
Schwalger T, Fisch K, Benda J, Lindner B (2010) How noisy adaptation of neurons shapes interspike interval histograms and correlations. PLoS Comput Biol 6(12):e1001026
Schwalger T, Tiana-Alsina J, Torrent M, Garcia-Ojalvo J, Lindner B (2012) Interspike-interval correlations induced by two-state switching in an excitable system. Europhys Lett 99(1):10004
Schwenner MA, Lewis TJ (2012) The theory of weakly coupled oscillators. In: Phase response curves in neuroscience, pp 3–31. Springer
Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10):3870–3896
Shiau L, Schwalger T, Lindner B (2015) Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation. J Comput Neurosci 38(3):589–600
Shingo R, Quandt FN (1986) Single inward rectifier channels in horizontal cells. Brain Res 369(1–2):65–74
Sigworth F (1977) Sodium channels in nerve apparently have two conductance states. Nature 270(5634):265–267
Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5(2):173–194
T O’Connor D, Mahata SK, Mahata M, Jiang Q, Hook VY, Taupenot L (2007) Primary culture of bovine chromaffin cells. Nat Protoc 2(5):1248–1253
Thomas PJ, Lindner B (2014) Asymptotic phase for stochastic oscillators. Phys Rev Lett 113(25):254101
Thomas PJ, Lindner B (2015) Thomas and lindner reply. Phys. Rev. Lett. 115.6 (2015): 069402. (A reply to “Comment on Asymptotic Phase for Stochastic Oscillators” by A. Pikovsky, same journal.)
Thomas PJ, Lindner B (2019) Phase descriptions of a multidimensional Ornstein-Uhlenbeck process. Phys Rev E 99(6):062221
Vilela RD, Lindner B (2009) Are the input parameters of white noise driven integrate and fire neurons uniquely determined by rate and CV? J Theor Biol 257(1):90–99
Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9(3):389–397
White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci 23(3):131–137
Wilson D, Ermentrout B (2018) Greater accuracy and broadened applicability of phase reduction using isostable coordinates. J Math Biol 76(1–2):37–66
Wilson D, Ermentrout B (2018) An operational definition of phase characterizes the transient response of perturbed limit cycle oscillators. SIAM J Appl Dyn Syst 17(4):2516–2543
Wilson D, Ermentrout B (2019) Augmented phase reduction of (not so) weakly perturbed coupled oscillators. SIAM Rev 61(2):277–315
Winfree A (2000) The geometry of biological time, 2nd edn. Springer, New York
Winfree AT (1974) Patterns of phase compromise in biological cycles. J Math Biol 1:73–95

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.