Comparison of different cell culture plates for the enrichment of non-adherent human mononuclear cells

ANNETT KLINDER1, JANA MARKHOFF1, ANIKA JONITZ-HEINCKE1, PHILIPP STERNA1, ACHIM SALAMON2 and RAINER BADER1

1Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology; 2Department of Cell Biology, University Medicine Rostock, D-18057 Rostock, Germany

Received March 13, 2018; Accepted December 17, 2018

DOI: 10.3892/etm.2019.7204

Abstract. While tissue-resident monocytes and macrophages are considered to be vital players in the in vivo interaction between biomaterials and surrounding tissue, their isolation is limited. In order to establish in vitro models elucidating implant and tissue interactions, peripheral blood mononuclear cells (PBMCs) represent a viable source for bone marrow-derived monocytes and an alternative to tissue-resident cells. The aim of present study was to analyse different adhesion-preventing tissue culture plates for their potential to facilitate the culture of monocytes without differentiation into macrophages. Freshly isolated PBMCs were seeded into four commercially available tissue culture plates with different adhesive properties and were tested for surface CD14 and CD68 expression using flow cytometry following 7 days in culture. When PBMCs were cultivated in RPMI on Cellstar® Cell culture plates with Cell-Repellent Surface, a significant increase in CD14-positive cells was observed compared with cultivation in standard tissue culture-treated plates. This was accompanied by elevated cytokine production of interleukin-6 (IL6) and interleukin-8 (IL8); however, overall cell growth was not affected. When PBMCs were pre-cultured in cell-repellent plates, there was a higher yield of adherent cells after subsequent transfer into standard tissue culture-treated plates. Cultivation of PBMCs on cell-repellent culture plates favoured a monocytic phenotype and thus, represents an alternative to increase the fraction of monocytes yielded from PBMCs.

Introduction

Monocytes are a multifunctional fraction of peripheral blood mononuclear cells (PBMCs) (1). They originate from clonogenic progenitors in the bone marrow (BM), the so-called macrophage dendritic cell precursors (MDPs) which give rise to common dendritic cell (DC) precursor (CDP), a DC-restricted precursor in the BM, and cMOP (common monocyte progenitor), a monocyte-restricted BM precursor (2). The precursor cMOP in turn gives rise to monocytes. So far three distinct monocyte fractions have been identified: ‘classical’ CD14+CD16−, ‘intermediate’ CD14+CD16+ and ‘non-classical’ CD14−CD16+ monocytes which respective to their functional properties have also been described as ‘phagocytic’, ‘inflammatory’ and ‘patrolling’ (3). For a long time it was thought that adult BM derived monocytes migrate into different tissues, e.g., bone, spleen, the central nervous system, liver, lung and connective tissue as a reaction to local environmental conditions, and differentiate into macrophages (4,5). However, more recent research revealed that not only adult monocyte-derived macrophages but also embryonic macrophages and newborn monocyte-derived macrophages co-exist in adult tissue and function in the induction and regulation of immune responses and tissue healing as well as the regulation of homeostasis (2,5,6).

In orthopaedic research tissue-resident monocytes and macrophages play a central role with regard to the interaction between tissues and artificial materials. Not only are monocytes the first cells to attach to implant surfaces, they are also recruited to the tissue in case of inflammation and participate in the inflammation process either as monocytes directly or differentiated into macrophages. Additionally, when differentiating into osteoclasts they are involved in bone remodelling (7). However, since it is not feasible to isolate tissue-resident monocytes and macrophages to re-enact the interactions in tissue in vivo, the isolation and differentiation of BM derived monocytes from blood provides a viable alternative to obtain sufficient numbers of monocytes and macrophages for in vitro experiments.

Thus, the aim of the present in vitro study was to establish an in vitro system well-suited to culture human monocytic cells and to prevent adhesion-induced differentiation prior to the intended experimental set up. We analysed
the impact of different cell culture plastics materials and, additionally, cell culture media on the behavior of human mononuclear cells, especially on their adhesion behavior and differentiation into macrophages. Hence, peripheral blood mononuclear cells were cultivated on: i) low attachment; ii) cell-repellent and iii) temperature-sensitive culture plates in order to prevent adhesion-induced differentiation but allow cell proliferation. Thereby, we wanted to achieve sufficient numbers of monocytes available for subsequent in vitro investigations, in which we would focus on the activation and differentiation into macrophages under differing conditions.

Materials and methods

Cell isolation. PBMCs were isolated from human buffy coats from blood donations, which were provided by the Institute of Transfusion Medicine, Rostock University Medical Center, anonymously (Local Ethics Committee: Registration number: A2011-140). PBMCs were extracted from prepared buffy coats by means of density gradient centrifugation (Ficoll Hypaque method) on lymphocyte separation medium in blood separation tubes (both from PAA Laboratories GmbH, Coelbe, Germany). The interphase containing lymphocytes and monocytes (density: 1.07 g/ml) was aspirated with a Pasteur pipette, washed twice in PBS and cells were cultivated in different culture plates (temperature sensitive plate, low-attachment plate, cell-repellent plate) using Roswell Park Memorial Institute medium (RPMI) 1640 (PAA Laboratories GmbH, Cölbe, Germany) containing 10% fetal calf serum (FCS), 1% penicillin/streptomycin (all from Gibco; Thermo Fisher Scientific, Inc., Dreieich, Germany) and 2% L-glutamine (PAA Laboratories GmbH), as well as in Dulbecco's modified Eagle's medium Nutrient Mixture F-12 (DMEM-F12) containing 10% FCS, 1% penicillin/streptomycin (all from Gibco; Thermo Fisher Scientific, Inc.) plus 0.5% L-ascorbic acid (50 µg/ml) for comparison. RPMI 1640 was developed for the culture of embryonic cells and semi-adherent and adherent cells such as macrophages. RPMI was determined with (®) plus 0.5% L-ascorbic acid (50 µg/ml) Sigma-Aldrich; Merck KGaA, Darmstadt, Germany). The interphase containing lymphocytes and monocytes was adjusted to 1x10⁶ cells/well in 3 ml) were incubated at 37°C, 5% CO₂, and 21% O₂ in a humidified atmosphere.

Use of modified cell culture plates. Cell cultivation was accomplished in 6-well cell culture plates with different modifications of the plate surfaces in order to cultivate monocytes while preventing adhesion induced differentiation.

Nunc UpCell™ culture plates (Thermo Fisher Scientific, Inc.) exhibit a temperature-sensitive surface coating consisting of a covalently immobilized polymer poly (N-isopropylacrylamid) (PiPPAm) that is slightly hydrophobic at 37°C and enables adherence and cell growth. When the temperature is reduced to less than 32°C the coating evolves very hydrophilic characteristics and is able to bind water (9). At that point, adherent cells and the extracellular matrix detach from the Nunc UpCell™-surface, while viability, antigens and surface receptors are preserved. Thus, the use of enzymatic and mechanical methods for cell detachment can be avoided. The Nunc UpCell™-surface is therefore referred as 'temperature sensitive plate'. The surface of Nunc HydroCell™ (Thermo Fisher Scientific, Inc.) culture plates is coated with a covalent immobilized and extremely hydrophilic polymer that averts cell attachment and prevents adhesion-dependent differentiation. It is called a ‘low attachment plate’ in the following.

Due to chemical modification of the applied plastics, Cellstar® Cell-Repellent Surface culture plates (Greiner Bio-One GmbH, Frickenhausen, Germany) offer a cell-repellent surface. According to the manufacturer's information cell adhesion is inhibited effectively and cultivation of tumor cells, embryonic cells and semi-adherent and adherent cells such as macrophages is enabled. The appellation 'cell-repellent plate' is used below.

For comparison standard tissue culture (TC)-treated polystyrene plates (Corning™ Falcon™ TC-treated multi-well plate; Thermo Fisher Scientific, Inc.) that support cell adhesion were used. TC-treatment involves vacuum gas plasma treatment to permanently modify the plate surface. The incorporation of negatively charged functional groups creates a hydrophilic surface well suited for cell attachment (10,11).

All cultivations were carried out under identical conditions at 37°C, 5% CO₂ and 21% O₂, in a humidified atmosphere.

Fluorescence activated cell sorting (FACS) of monocytes/macrophages. Surface markers of monocytes and macrophages were analysed by staining with antibodies against CD14 [phycoerythrin (PE)-labeled] and CD68 [fluorescein isothiocyanate (FITC)-labeled] (eBioscience; Thermo Fisher Scientific, Inc.). Suspension cells were collected, centrifuged at 118 x g for 8 min, washed with PBS (PAA Laboratories GmbH) containing 1% bovine serum albumin (Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) and centrifuged again before being counted. Adherent cells were washed twice with PBS, trypsinized, centrifuged at 118 x g for 8 min, re-suspended in PBS/BSA (1%) and counted with a Thoma haemocytometer. The cell number was adjusted to 1x10⁷ cells/ml in PBS/BSA (1%). Staining of surface markers was performed by incubating 100 µl cell suspension with 0.1 µg of CD14 and CD68 antibodies for one hour in the dark. Appropriate isotype controls (PE-conjugated IgG1 and FITC-conjugated IgG2b; eBioscience; Thermo Fisher Scientific, Inc.) served as negative controls. After incubation the cells were washed three times in PBS/BSA (1%) in order to remove unbound antibodies. After re-suspension in PBS/BSA (1%). Flow cytometry was performed immediately on a FACS caliber flow cytometer (Becton; BD Biosciences, Franklin Lakes, NJ, USA).

Data were analysed with the FlowJo 10 program (Tree Star, Inc., Ashland, OR, USA). The fraction of cells considered as monocytes (MF) was gated by forward and side scatter. Fluorescence signals of the cell populations were integrated to a histogram with a specific isotype and an unstained control. The number of positive cells was gated against a background of no more than 5% of the isotype control. Results are expressed as percentage of positive cells with regard to total cells and to MF. Additionally, the ratio of the median fluorescence intensity (MFI) was calculated by dividing the MFI of the stained sample by the MFI of the unstained sample.

Cell biological tests. Cell viability was determined with the colorimetric WST-1 assay (Roche, Grenzach-Wyhlen, Germany) as well as live/dead staining (Invitrogen; Thermo Fisher Scientific, Inc.). A cytokine multiplex (IL6, IL8 and...
Monocyte Chemoattractant Protein-1 (MCP-1) (Bio-Rad Laboratories GmbH, München, Germany) was performed to assess immune-stimulatory effects of the plate surfaces. All assays were conducted according to the manufacturer’s instructions.

For the assessment of proliferation, PBMCs were seeded into 6-well plates (either TCPs or cell-repellent plates) at a concentration of 1x10^5 cells per well. Cells were harvested after 24 h, 3 days and 7 days and the number of adherent cells as well as cells in suspension were counted using a Thoma haemocytometer. Viable and dead cells were differentiated by Trypan Blue staining.

Statistical analysis. Statistical analysis was performed by GraphPadPRISM v.7.0 (GraphPad Inc., San Diego, CA, USA). As the number of replicates was small, parametric tests were used for analyses with only three replicates. Normality was assessed using the Shapiro-Wilk test when the number of values was ≥4. Normally distributed data were analysed using parametric tests, while non-parametric tests were applied if data were not normally distributed. The individual tests performed for the results are indicated in the text. All P-values resulted from two-sided statistical tests and P<0.05 was considered to indicate a statistically significant difference.

Results

CD14 and CD68 expression on PBMCs cultured in different culture plates. In order to avoid attachment of blood derived monocytes and subsequent differentiation into macrophages PBMCs from buffy coats were cultured for seven days on three different brands of tissue culture plates that were designed to prevent cell attachment. A normal TC-treated polystyrene plate which encourages cell attachment was used as a control. Adherent and suspension cells were analysed by flow cytometry for the surface expression of the monocyte and macrophage markers CD14 and CD68, respectively (3,5,12). Additionally, forward and side scattering was used to gate the fraction of cells considered to be monocytes (13,14). Nearly all CD14 positive cells were detected in this gated fraction (Fig. 1A). As expected the percentage of the gated monocyte fraction (MF) was higher among adherent cells compared to suspension cells (P<0.001, Two-Way ANOVA, n≥4; Fig. 2). However, post hoc tests showed only significant differences in MF percentage between adherent and suspension cells when cells were cultured in RPMI in cell-repellent plates (P=0.0027, Tukey's multiple comparison test, n≥4; Fig. 3). MCP1 plays an essential in the recruitment of classical and inflammatory monocytes into inflamed tissue and these cells mature into inflammatory M1 macrophages which in turn secret the pro-inflammatory cytokine IL6 (3). The concentrations of IL8 and IL6 were on average approximately five times higher when PBMCs were cultivated in cell-repellent compared to normal TCPs (Fig. 7A and B). However, due to high inter-individual variation between the donors the changes only reached significance for IL8 (paired t-test, P=0.0186 and P=0.3902 for IL6 and IL8, respectively, n=3). There was no difference in the concentration of MCP1 between the plates after 7 days cultivation (paired t-test P=0.5034, n=3; Fig. 7C).

Additionally, the greater abundance of monocyte marker CD14 expressing cells resulted in higher numbers of adherent cells as measured by increased metabolic activity in subsequent cultivation experiments. In these experiments, PBMCs
were initially cultivated in cell-repellent and normal TCPs. The cells in suspension were then transferred to control TCPs for another 72 h. Cells originating from the cell-repellent plate showed significantly increased metabolic activity compared to cells originally from the normal TC plate (paired t-test \(P=0.0008, n=3 \), Fig. 8A). This was probably due to an increased rate of adhesion of the cells originating from the cell-repellent plate as live/dead-staining of the adherent cells indicated higher cell numbers after re-seeding cells from cell-repellent onto normal TC plates. Fig. 8B displays the macroscopic cellular adhesion behavior after transfer from a cell-repellent plate to a TCPs surface.

Discussion

In standard *in vitro* cell cultivation procedures, tissue culture polystyrene dishes are used. Monocytes easily attach to these culture dishes, and immediately become activated. Thereby,
they start to differentiate into macrophages which strongly adhere to TCPs because of the chemical and physical properties (20) and are difficult to detach using current enzymatic or mechanical methods. Surface functionality affects integrin-mediated cell adhesion (21) as well as cell activation and fusion (22). TCPs-promoted cell adhesion induces differentiation of non-adherent monocytes into adherent macrophages (23). Since cell differentiation is induced by the surface functionalities (24-26) cell cultivation in appropriate surface-modified culture plates could be an alternative to prevent this.

Our data indicate that the cultivation of PBMCs on cell-repellent culture plates favoured a monocytic phenotype as judged from the significantly increased CD14 expression. Low surface CD68 expression, especially in the adherent cells, was consistent with previous studies (12,27) and was associated with resting M0 macrophages while activation and differentiation to a M1 phenotype was characterised by increased surface CD68 expression (27). The increased number of CD14 positive cells after seven days cultivation in cell-repellent plates is probably rather due to a selection of a subgroup or an activation of certain cells as overall proliferation did not differ between the culture plates. This notion is supported by the observation, that seven-day but not three-day cultivation in cell-repellent plates led to elevated adherence of monocytes and improved survival of macrophages in subsequent experiments (data not shown), suggesting a differentiation of the cells over time. The elevated cytokine levels measured in cell-repellent plates corroborate the idea. This is in concordance to previous studies which showed that reduced adhesion coincided with an increase in cytokine production (18,28,29). Adhesion is mainly influenced by the surface characteristics of the used materials (25). Physio-chemical properties such as surface roughness, topography and ductility as well as surface charge and chemistry (functional groups like hydroxyl or carboxyl ones) either promote or limit the degree and type
Figure 4. (A-D) CD68 stained cells. Comparisons of CD68-stained cells in different cell culture media [(A and C) DMEM F12 and (B and D) RPMI] between TCPS control plates (C and D) and Repellent plates (A and B) analysed in the gated MF. Stained cells are shown as dark grey line against the background of the light grey shaded isotype control (all suspension cells, donor 14). Measurement was carried out with the BD FACS Calibur Flow Cytometer and data were analysed with the FlowJo 10 program. CD, cluster of differentiation; DMEM F12, Dulbecco's modified Eagle's medium nutrient mixture F-12; RPMI, Roswell Park Memorial Institute Medium; TCPS, tissue culture plates; MF, monocyte fraction; BD, Becton Dickinson; FACS, fluorescence-activated cell sorting.

Figure 5. Percentage of CD68+ cells per total cells as determined by flow cytometry after cultivation in different cell culture plates with (A) DMEM F12 or (B) RPMI. Cells (1x10⁵) were stained with 0.1 µg of CD68 antibodies as well as the isotype control IgG2 and measured with the BD FACS Calibur Flow Cytometer. Data were analysed with the FlowJo 10 program and values are depicted as box plots with minimum, 25th percentile, median, 75th percentile and maximum of CD68 positive cells per total cells for the individual donors and experiments (n≥4). Statistical analysis was performed using Kruskal-Wallis test with Dunn's multiple comparisons test as post hoc test. CD, cluster of differentiation; DMEM F12, Dulbecco's modified Eagle's medium nutrient mixture F-12; RPMI, Roswell Park Memorial Institute Medium; IgG2, immunoglobulin G2; BD, Becton Dickinson; FACS, fluorescence-activated cell sorting; TCPS, tissue culture plates.
of protein adsorption and hence cell adhesion (24,30-35). The process is determined by cell-adhesion-mediating molecules (e.g., vitronectin, fibronectin) and their corresponding receptors (integrins). The resulting strength of adhesion regulates cell differentiation, proliferation and activity (32,34,36). Some studies point out a high adhesion potential for hydrophilic surfaces and a decreased potential for hydrophobic ones for monocytes and macrophages (24,32,35), while others mention an opposite influence (28,31,33,37) or cell apoptosis by hydrophilic surfaces (38). Moreover, monocyte adhesion depends on specific properties of hydrophilic surfaces; for example, reduced carbon content and increased oxygen and nitrogen presence (20) as well as their impact on binding of extracellular matrix proteins. Thus, surface charge and functional groups are the crucial factors for the strength of binding. Additionally, cell adhesion to either hydrophobic or hydrophilic surfaces seem to be dependent on serum content of the used culture medium as proteins present in FCS can influence monocyte adhesion. Some serum proteins such as fibronectin and immunoglobulins seem to promote adhesion while others...
like von Willebrand factor and albumin are thought to inhibit long-term monocyte adhesion (35). The combination of all these factors might explain the different results observed for cultivation of PBMCs in the tested culture plates.

Based on our results cell cultivation with RPMI in adhesion-inhibiting culture plates may present an alternative to increase the fraction of monocytes yielded from PBMCs. While cultivation in cell-repellent plates induced the production of certain cytokines, the effect was still small and subsequent experiments showed that cells transferred from cell-repellent into normal TC-treated culture plates could still be further activated by metal ions, particles or bulk materials in order to mimic in vivo situations such as aseptic loosening or sufficient integration of implants (39-41).

In conclusion, our methodology of using the Cellstar® Cell culture plate with Cell-Repellent Surface combined with RPMI medium is an effective approach to selectively cultivate monocytes by providing inhibition of cell attachment. Improved adhesion and differentiation into macrophages occurred after transfer onto a cell-adherent TCPs surface. Thereby, we were able to increase the number of monocytes for subsequent in vitro investigations focusing on the activation and differentiation into macrophages under different conditions.

Acknowledgements

The authors would like to thank Dr Petra Mueller (Department of Cell Biology, Rostock University Medical Center, Rostock, Germany), as well as Mr. Benjamin Heskamp, Mrs. Doris Hansmann and Ms. Jenny Tillmann (all Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Rostock, Germany) for their technical support.

Funding

No funding was received.

Availability of data and material

All data generated or analysed during the present study are included in this published article.

Authors’ contributions

AK planned and performed the growth experiments, statistically analysed all flow cytometry and cell biology data and drafted the manuscript. JM designed the study, performed the cytokine ELISAs and live/dead staining, analysed the data and was a major contributor in writing the manuscript. AJH planned and designed the study and was a major contributor in writing the manuscript. PS and AS performed the flow cytometry experiments, analysed these data and contributed to the writing. RB planned the study and was involved in the design of the experiments and revised the manuscript.

Ethics approval and consent to participate

PBMCs were isolated from human buffy coats from blood donations which were provided by the Institute of Transfusion Medicine, University Medical Center Rostock anonymously (Local Ethics Committee: Registration number: A2011-140).

Only blood from those volunteers who consented to the use of their donation for research purposes was used.

Patient consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

References

1. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, et al: Nomenclature of monocytes and dendritic cells in blood. Blood 116: e74-e80, 2010.
2. Ginhoux F and Guilliams M: Tissue-resident macrophage ontogeny and homeostasis. Immunity 44: 439-449, 2016.
3. Yang J, Zhang L, Yu C, Yang XF and Wang H: Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2: 1, 2014.
4. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M and Ley K: Development of monocytes, macrophages, and dendritic cells. Science 327: 656-661, 2010.
5. Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: 958-969, 2008.
6. Davies IC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Bronbacher F, Fraser DJ, Allen JE, Jones SA and Taylor PR: Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4: 1886, 2013.
7. Hanssen P and Greter C: Macrophage interactions with modified material surfaces. Curr Opin Solid State Mater Sci 5: 163-176, 2001.
8. Yao T and Asayama Y: Animal-cell culture media: History, characteristics, and current issues. Reprod Med Biol 16: 99-117, 2017.
9. Ding Z, Akiyama Y and Okano T: Recent development of temperature-responsive cell culture surface using poly (N-isopropylacrylamide). J Polym Sci Part B 52: 917-926, 2014.
10. France RM and Short RD: Plasma treatment of polymers: The effects of energy transfer from an Argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study. Langmuir 14: 4827-4835, 1998.
11. Guruvenket S, Mohan Rao G, Komath M and Raichur AM: Plasma surface modification of polystyrene and polyethylene. Appl Surf Sci 236: 278-284, 2004.
12. Kunisch E, Fuhrmann R, Roth A, Winter R, Lungershausen W and Kinne RW: Macrophage specificity of three anti-CD68 monoclonal antibodies (KPI, EBM11, and PGMI) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis 63: 774-784, 2004.
13. Hoffman RA, Kung PC, Hansen WP and Goldstein G: Simple and rapid measurement of human T lymphocytes and their subclasses in peripheral blood. Proc Natl Acad Sci USA 77: 4914-4917, 1980.
14. Terstappen LW, de Grooth BG, Visscher K, van Kouterik FA and Greve J: Four-parameter white blood cell differential counting based on light scattering measurements. Cytometry 9: 39-43, 1988.
15. Williams JM, Abdub-Filho M, Kelley VE and Strom TB: Interleukin-2 apparently upregulates its receptor and induces proliferation of various resting mononuclear leukocytes in the absence of antigen. Cell Immunol 94: 383-393, 1985.
16. Bertolo A, Pavlicek D, Gemperli A, Baur M, Pötzel T and Stoyanov J: Increased motility of mesenchymal stem cells is correlated with inhibition of stimulated peripheral blood mononuclear cells in vitro. J Stem Cells Regen Med 13: 62-74, 2017.
17. Hodge G, Hodge S and Han P: Increased levels of apoptosis of leukocyte subsets in cultured PBMCs compared to whole blood as shown by Annexin V binding: Relevance to cytokine production. Cytokine 12: 1763-1768, 2000.
18. Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T and Anderson JM: Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 83: 585-596, 2007.

19. Schildberger A, Rossmannith E, Eichhorn T, Strassl K and Weber V: Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Mediators Inflamm 2013: 697972, 2013.

20. Shen M and Herbett TA: The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. J Biomed Mater Res 57: 336-345, 2001.

21. Anderson JM, Rodrigues A and Chang DT: Foreign body reaction to biomaterials. Semin Immunol 20: 86-100, 2008.

22. Brodbbeck WG, Shive MS, Colton E, Nakayama Y, Matsuda T and Anderson JM: Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J Biomed Mater Res 55: 661-668, 2001.

23. Dinnes DL, Santerre JP and Labow RS: Influence of biodegradable and non-biodegradable material surfaces on the differentiation of human monocyte-derived macrophages. Differentiation 76: 232-244, 2008.

24. Thevenot P, Hu W and Tang L: Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8: 270-280, 2008.

25. Sheikh Z, Brooks PJ, Barzilay O, Fine N and Glogauer M: Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel) 8: 5671-5701, 2015.

26. Rostam HM, Singh S, Salazar F, Magennis P, Hook A, Singh T, Vrana NE, Alexander MR and Ghaemmaghami AM: The impact of surface chemistry modification on macrophage polarisation. Immunobiology 221: 1237-1246, 2016.

27. Tedesco S, Bolego C, Toniolo A, Nasi A, Fadini GP, Locati M and Cignarella A: Phenotypic activation and pharmacological outcomes of spontaneously differentiated human macrophage-macrophages. Immunobiology 220: 545-554, 2015.

28. Brodbbeck WG, Voskerician G, Ziats NP, Nakayama Y, Matsuda T and Anderson JM: In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. J Biomed Mater Res A 64: 320-329, 2003.

29. Schutte RJ, Parisi-Amon A and Reichert WM: Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries. J Biomed Mater Res A 88: 128-139, 2009.

30. Jenney CR and Anderson JM: Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 49: 435-447, 2000.

31. Ktari N, Ponct P, Sénéchal H, Malaquin L, Kanoufi E and Combellas C: Patterning of polystyrene by scanning electrochemical microscopy. Biological applications to cell adhesion. Langmuir 26: 17348-17356, 2010.

32. Bacakova L, Filova E, Parizek M, Ruml T and Svorcik V: Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29: 739-767, 2011.

33. Harris CA, Resau JH, Hudson EA, West RA, Moon C, Black AD and McAllister JP II: Effects of surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an in vitro model of central nervous system catheter obstruction. J Biomed Mater Res A 97: 433-440, 2011.

34. Battiston KG, Labow RS and Santerre JP: Protein binding mediation of biomaterial-dependent monocyte activation on a degradable polar hydrophobic ionic polyurethane. Biomaterials 33: 8316-8328, 2012.

35. Maciel J, Oliveira MI, Goncalves RM and Barbosa MA: The effect of adsorbed fibronectin and osteopontin on macrophage adhesion and morphology on hydrophilic and hydrophobic model surfaces. Acta Biomater 8: 3669-3677, 2012.

36. McBane JE, Matheson LA, Sharifpoor S, Santerre JP and Labow RS: Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage. Biomaterials 30: 5497-5504, 2009.

37. Collier TO, Anderson JM, Kikuchi A and Okano T: Adhesion behavior of monocytes, macrophages, and foreign body giant cells on poly (N-isopropylacrylamide) temperature-responsive surfaces. J Biomed Mater Res 59: 136-143, 2002.

38. Brodbbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda T, Ziats NP and Anderson JM: Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci USA 99: 10287-10292, 2002.

39. Jonitz-Heincke A, Tillmann J, Klinder A, Krueger S, Kretzer JP, Høl PJ, Paulus AC and Bader R: The impact of metal ion exposure on the cellular behavior of human osteoblasts and PBMCs: In vitro analyses of osteolytic processes. Materials 10: pii: E734, 2017.

40. Klinder A, Seyfarth A, Hansmann D, Bader R and Jonitz-Heincke A: Inflammatory response of human peripheral blood mononuclear cells and osteoblasts incubated with metallic and ceramic submicron particles. Front Immunol 9: 831, 2018.

41. Markhoff J, Krogull M, Schulze C, Rotsch C, Hunger S and Bader R: Biocompatibility and inflammatory potential of titanium alloys cultivated with human osteoblasts, fibroblasts and macrophages. Materials 10: pii: E52, 2017.