Computed tomography perfusion imaging as a potential imaging biomarker of colorectal cancer

Koichi Hayano, Takeshi Fujishiro, Dushyant V Sahani, Asami Satoh, Tomoyoshi Aoyagi, Gaku Ohira, Toru Tochigi, Hisahiro Matsubara, Kiyohiko Shuto

INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of cancer death in the United States[1]. About 70% of patients are operated with curative intent; however, up to 30% of these patients will relapse subsequently, usually within 2-3 years[2,3].

In CRC, neovascularization was reported to arise early in the adenoma-carcinoma sequence[4]. Angiogenesis is an essential process of CRC, and plays an important role in the process of growth and metastasis[5-7]. Previous studies reported that angiogenesis could be a useful prognostic marker in almost all carcinomas, including CRC[8,9]. However, currently, the methods for assessing angiogenesis in...
clinical practice have relied mainly on immunohistological analysis of postoperative specimens such as microvessel density (MVD) counting. The disadvantage of this analysis is that they assess anatomical data only, and can be used only for postoperative specimens. Therefore, the methods, which enable quantitative measure of angiogenesis in vivo, are highly expected to be a robust biomarker for the management of CRC patients in clinical practice.

Compared to standard CT and MRI, which assess the tumor extent, CTP offers the unique potential to evaluate the tumor vascularity. Various perfusion imaging techniques have been reported to quantify the tissue vascular physiology and tumor biology, which has emerged as an important imaging biomarker to evaluate tumor vascularity and tumor biology. It can be used only for postoperative specimens. Therefore, the methods, which enable quantitative measure of angiogenesis in vivo, are highly expected to be a robust biomarker for the management of CRC patients in clinical practice.

Computed tomography perfusion (CTP), which can quantify tumor vascularity by measuring the temporal changes in tissue attenuation following intravenous contrast administration, is readily incorporated into the existing CT protocol, and enables evaluation of hemodynamics of tissue in vivo by modeling tracer kinetics. Generally, a small volume of contrast material (40-70 mL depending on concentration) is injected at high flow injection rate (>4 mL/s), and followed by 20-40 mL of saline flush at a similar flow rate to obtain a narrow bolus for optimal CTP analysis. Both tissue and vascular enhancement by contrast material can be measured and traced over time (45-120 s depending on kinetic model and parameter), and mathematic models such as compartmental or deconvolution analysis for contrast material exchange have been applied to quantify the tissue vascular physiology. Perfusion parameters are dependent on the scan protocol and the kinetic model for perfusion analysis, but the common CTP parameters were blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface area product (PS). CTP has emerged as an important imaging biomarker to evaluate tissue vascular physiology and tumor biology, which has been reported to be associated with tumor characterization, survival, and therapy response in CRC. Furthermore, with the increasing use of the neoadjuvant chemoradiation therapy (CRT) for rectal cancer and the targeted therapy including antiangiogenic therapy in recent various oncology trials, there is a renewed interest in the use of CTP as a surrogate endpoint for monitoring early therapeutic response or predicting treatment outcome. Although still considered a research tool in the realm of oncology, CTP offers several potential clinical applications; and therefore, its integration into routine clinical practice is a distinct possibility because most CT scanners now come equipped with sophisticated hardware platforms coupled with powerful and user-friendly software packages for tissue perfusion analysis.

Needless to say, imaging plays an important role in the management of patients with CRC. And CT has become the main diagnostic tool in tumor evaluation, including diagnosis, staging, or monitoring of anticancer therapies because of the relatively low cost and wide availability. In this review, we discuss how CTP can be applied to the management of CRC as an imaging biomarker, reviewing novel clinical approaches of CTP in assessing response to the treatment or predicting survival in CRC patients.

Table 1 Summary of previous reports on computed tomography perfusion and chemoradiation therapy in rectal cancer

Ref.	Year	Number of patients	Parameter changes	Response Prediction
Sahani et al.[12]	2005	15	BF/decrease; MTT/increase	High baseline BF and low MTT associated with poor response (12 responders vs 3 non-responders)
Bellomi et al.[9]	2007	20	BF, BV, PS/decrease	High baseline BF and BV associated with good response (17 responders vs 7 non-responders)
Curvo-Semedo et al.[6]	2012	25	BF, BV, PS/decrease; MTT/increase	High baseline BF and low MTT associated with poor response (5 responders vs 15 non-responders)

BF: Blood flow; BV: Blood volume; MTT: Mean transit time; PS: Permeability surface area product.

CTP FOR MONITORING AND PREDICTING THE RESPONSE TO THE CHEMORADIATION THERAPY

In patients with a locally advanced rectal cancer, neoadjuvant CRT has been recommended, and such neoadjuvant therapy is useful for decreasing the tumor stage to facilitate curative resection and to decrease the rate of recurrence. Thus, it is highly desirable and beneficial to develop the noninvasive diagnostic tool to monitor or predict the response to CRT.

There are several CTP studies reporting perfusion changes of rectal cancer during CRT (Table 1). These previous reports demonstrated that BF and BV decreased, whereas MTT increased after CRT (Figure 1). Similar perfusion changes were also reported in CTP studies of head and neck cancer and esophageal cancer treated with CRT. These changes may reflect the fibrosis induced by CRT. The tissue fibrosis leads directly to compression of tumor capillaries and increased flow resistance, which leads to decrease in BF and BV, and increase in MTT. Another assumption is that these perfusion changes may reflect reduction in MVD. Johansson et al.[26] showed that irradiation caused decrease in MVD in a rat glioma model.

Previous papers also reported that baseline perfusion values could predict the response to the CRT. However, their results are controversial. Bellomi et al.[25] showed baseline BF and BV in non-responders to be significantly lower and MTT significantly higher than in responders, while Curvo-Semedo et al.[26] showed baseline BF in non-responder to be significantly higher and MTT significantly lower than in responders. The reasons for these discrepancies might be because they used different reference standards to assess response, different patient selection criteria and different kinetic models. The small
sample size of these studies also might affect their results. It is highly beneficial to predict the response to CRT so that non-responders could avoid the side effects associated with intensive therapeutic regimens, and therefore, predictive value of CTP in the response to CRT should be evaluated in a prospective study with a larger sample size.

CTP AND ANTIANGIOGENIC THERAPY

Tumor angiogenesis provides an attractive target for anticancer therapy. Previous clinical trials have established that the addition of antiangiogenic agents to chemotherapy significantly improves survival compared with chemotherapy alone in first-line and second-line treatment of metastatic CRC. These studies have shown followings: (1) in the treatment of metastatic CRC, the addition of the VEGF-directed antibody, bevacizumab, to chemotherapy significantly improve outcome in comparison with chemotherapy alone; and (2) bevacizumab has minimum activity as a single agent. Based on these findings, further understanding of the mechanism of the interaction between antiangiogenic agents and chemotherapy is highly beneficial for the personalized therapy in CRC. In addition, the morphologic assessment has a difficulty in distinguishing viable tumor from necrotic or fibrotic tissue because molecular targeted agents suppress tumor growth by downregulating angiogenesis without causing much morphologic change. Thus, there is an increasing interest in the in vivo quantification of angiogenesis based on images such as CTP. A few CTP papers concerning antiangiogenic therapy have been published in CRC (Table 2). Willett et al. reported that tumor BF and BV decreased within two weeks of the initiation of bevacizumab alone, which is a monoclonal antibody that targets VEGF, and they also reported reduction in MVD after the administration of bevacizumab (Figure 2). Anzidei et al. reported a CTP study of liver metastases in CRC treated with chemotherapy and bevacizumab. Their study showed reduction in BF and PS after the therapy, but this tendency was not statistically significant. It is assumed that these perfusion changes may reflect the change of MVD, because several previous reports demonstrated positive correlations of BF, BV and PS with MVD. However, exploitation of the ability of this technique in predicting response to antiangiogenic therapy is still in

Table 2 Summary of previous reports on computed tomography perfusion and antiangiogenic therapy in colorectal cancer

Ref.	Year	Number of patients	Time of CTP after the treatment	Parameter changes
Willett et al.	2004	6 (primary)	After 12 d of administration of bevacizumab	BF, BV/decrease
Willett et al.	2009	32 (primary)	After 12 d of administration of bevacizumab	BF, PS/decrease
Anzidei et al.	2011	18 (liver metastases)	After 181 d of the treatment (including bevacizumab)	BF, BV/slightly decrease (not significant)

CTP: Computed tomography perfusion; BF: Blood flow; BV: Blood volume; PS: Permeability surface area product.

Figure 1 Perfusion change after chemoradiation therapy. Contrast enhanced CT images at baseline (A) and post-CRT (B). BF maps at baseline (C) and post-CRT (D). After CRT, tumor showed significant decrease in BF (arrows). CRT: Chemoradiation therapy; CT: Computed tomography; BF: Blood flow.
study demonstrated that rectal cancer with low BF, which tended to be accompanied by synchronous metastatic lymphnodes or distant metastases (Figure 3), associated with poor overall survival[14]. These authors hypothesized that reduced BF are related to increasing interstitial fluid pressure and hypoxia in tumor tissue[14,16]. Accumulation of excess fluid in the interstitium of tumor and excessive tumor growth in a confined space also leads to increased solid tissue pressure and elevated interstitial fluid pressure, which in turn cause capillary compression, and may reduce blood flow[36,37]. Regarding to relationship between CTP and tissue oxygenation, Haider et al[16] reported that the tumor blood flow on CTP correlated positively with tumor oxygenation in cervical cancer. Hypoxic environ-

early stages of development.

CTP AND SURVIVAL IN CRC PATIENTS

Angiogenesis plays an important role in cancer progression, and could be a useful prognostic marker in almost all carcinomas, including CRC[5-7]. Thus, CTP that can assesses angiogenesis of the tumor in vivo, is highly expected to be an imaging biomarker that can reflect clinical outcome of CRC. CTP has been reported to be a sensitive marker for predicting recurrence or outcome in CRC[14,16]. Goh et al[16] reported that tumor BF measured by perfusion CT was significantly lower in CRC patients who ultimately developed metastatic disease. Our previous CTP study demonstrated that rectal cancer with low BF, which tended to be accompanied by synchronous metastatic lymphnodes or distant metastases (Figure 3), associated with poor overall survival[14]. These authors hypothesized that reduced BF are related to increasing interstitial fluid pressure and hypoxia in tumor tissue[14,16]. Accumulation of excess fluid in the interstitium of tumor and excessive tumor growth in a confined space also leads to increased solid tissue pressure and elevated interstitial fluid pressure, which in turn cause capillary compression, and may reduce blood flow[36,37]. Regarding to relationship between CTP and tissue oxygenation, Haider et al[16] reported that the tumor blood flow on CTP correlated positively with tumor oxygenation in cervical cancer. Hypoxic environ-

Figure 2 Perfusion change after antiangiogenic therapy. After 2 wk of antiangiogenic therapy (bevacizumab), tumor BF decreased significantly (arrows). A: Baseline; and B: Post-therapy BF map. BF: Blood flow.

Figure 3 Tumor perfusion and distant metastases. A-C: Rectal cancer patient with synchronous multiple liver metastases; D: Computed tomography perfusion demonstrated low tumor BF (35.3 mL/100 g per minute) (arrow). BF: Blood flow.
ment plays an important role in cancer progression with promoting oncogenic mutations, cell survival, and more aggressive behavior in tumors[9]. Therefore, low BF tumor may correlate with poor survival. But we have to say that CTP measurements to clinical outcomes remain limited. These reports are based on small and single center studies. Therefore, we need to confirm these results with larger multicenter trials.

LIVER PERFUSION AND METASTASES

Several studies have suggested the relationship between tumor progression and hemodynamic changes in the liver. In 1983, Leveson et al[41] reported that gastrointestinal cancer patients with simultaneous liver metastasis exhibited a higher hepatic arterial blood flow measured with scintigraphy. In CRC with simultaneous liver metastasis, Leen et al[6] demonstrated a significant increase in the hepatic arterial blood flow and a significant decrease in the portal blood flow compared with those observed in healthy volunteers using doppler ultrasonography study. The CTP technique was also applied to this investigation of the relationship between tumor progression and hemodynamic changes in the liver. In liver CTP studies of patients with known metastatic disease, increased arterial perfusion has been shown by Miles et al[43] and Blomley et al[44]. Cuenod et al[45] reported that hemodynamic changes, including decrease in the portal blood flow and increase in the mean transit time, could be detected using CTP in the rats with occult liver metastases. In CRC with simultaneous liver metastases, Leggett et al[46] reported that the hepatic arterial blood flow significantly increased and the portal blood flow decreased by using CTP. In CTP study of esophageal cancer, Fujishiro et al[47] reported that the preoperative hepatic arterial blood flow might be a useful predictive marker for the future metastases. Therefore, CTP derived hemodynamic change in the hepatic blood flow has a potential to become a novel imaging biomarker to predict recurrence or metastases in CRC patients (Figure 4). A tumor-related circulating vasoactive mediator may contribute to this global perfusion change[48], and further supportive work is necessary[49].

CONCLUSION

Data relating CTP to clinical outcomes in CRC still remain limited. Relatively small, single center studies have suggested that CTP parameters may reflect clinical outcome in CRC[14,16,40,41,42]. Thus, there is a need to confirm these results with prospective and larger multicenter trials. As CT technology has reached maturity, further consideration has to be given to the direction of CTP research. As an imaging biomarker, CTP certainly fulfills the criteria necessary for prospective validation as a clinical trial end point, because CT is a stable platform, widely available, and non-invasive. Therefore, we believe that CTP technique will play an important role in the management of patients with CRC as a key imaging technique in clinical practice, providing patients more personalized treatment.

REFERENCES

1 Siege R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11-30 [PMID: 23353087 DOI: 10.3322/caac.21166]

2 Sargent DJ, Wieand HS, Haller DG, Gray R, Benedetti JK, Buyse M, Labianca R, Seitz JF, O’Callaghan CJ, Francini G, Grothey A, O’Connell M, Catalano PJ, Blanke CD, Kerr D, Green E, Wolmark N, Andre T, Goldberg RM, De Gramont A. Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 2005; 23: 8664-8670 [PMID: 16260700 DOI: 10.1200/JCO.2005.01.6071]

3 Sargent DJ, Patiyl S, Yothers G, Haller DG, Gray R, Benedetti J, Buyse M, Labianca R, Seitz JF, O’Callaghan CJ, Francini G, Grotthey A, O’Connell M, Catalano PJ, Kerr D, Green E, Wieand HS, Goldberg RM, de Gramont A. End points for colon cancer adjuvant trials: observations and recommendations based on individual patient data from 20,898 patients enrolled onto 18 randomized trials from the ACCENT Group. J Clin Oncol 2007; 25: 4569-4574 [PMID: 17876008 DOI: 10.1200/JCO.2006.10.4232]

4 Rak J, Mitsubishi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T, Kerbel RS. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of
tumor angiogenesis. *Cancer Res* 1995; 55: 4575-4580 [PMID: 7553632]

5 Des Guetz G, Uzzan B, Nicolas P, Cucharat M, Moreere JF, Benamouzig R, Breau JL, Perret GV. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. *Br J Cancer* 2006; 94: 1823-1832 [PMID: 16773076 DOI: 10.1038/sj.bjc.6603176]

6 Carmelletti P, Jain RK. Angiogenesis in cancer and other diseases. *Nature* 2000; 407: 249-257 [PMID: 11001068 DOI: 10.1038/3502250]

7 Jain RK, Carmelletti P. SnapShot: Tumor angiogenesis. *Cell* 2012; 149: 1408-1409.e1 [PMID: 22682256 DOI: 10.1016/j.cell.2012.05.025]

8 Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. *Radiology* 1980; 137: 679-686 [PMID: 7003648]

9 Miles KA, Hayball M, Dixon AK. Colour perfusion imaging: a new application of computed tomography. *Lancet* 1991; 337: 643-645 [PMID: 1671994]

10 Garcia-Figueiras R, Goh VJ, Padhani AR, Baleato-Gonzalez S, Garrido M, Leon L, Gomez-Caamaño A. CT perfusion in oncologic imaging: a useful tool? *AJR Am J Roentgenol* 2013; 200: 8-19 [PMID: 23255736 DOI: 10.2214/AJR.11.8476]

11 Kambadakone AR, Sahani DV. Body perfusion CT: technique, clinical applications, and advances. *Radiol Clin North Am* 2009; 47: 161-178 [PMID: 19195541 DOI: 10.1016/j.rcl.2008.11.003]

12 Kambadakone AR, Sharma A, Catalano OA, Hahn PF, Sahani DV. Protocol modifications for CT perfusion (CTp) examinations of abdominal-pelvic tumors: impact on radiation dose and data processing time. *Eur Radiol* 2011; 21: 1293-1300 [PMID: 21246200 DOI: 10.1007/s00330-010-2048-4]

13 Sahani DV, Kalva SP, Hamberg LM, Hahn PF, Willett CG, Saini S, Mueller PR, Lee TY. Assessing tumor perfusion and treatment response in rectal cancer with multisect CT: initial observations. *Radiology* 2005; 234: 785-792 [PMID: 15734834 DOI: 10.1148/radiol.234304286]

14 Hayano K, Shuto K, Koda K, Yanagawa N, Okazumi S, Matsubara H. Quantitative measurement of blood flow using perfusion CT for assessing clinicopathologic features and prognosis in patients with rectal cancer. *Dis Colon Rectum* 2009; 52: 1624-1629 [PMID: 19690492 DOI: 10.1007/DCR.0b013e3181f3bf79]

15 Goh V, Halligan S, Daley F, Wellsted DM, Guenther T, Bartram CI. Colorectal tumor vascularity: quantitative assessment with multidetector CT-dose perfusion measurements reflect angiogenesis? *Radiology* 2008; 249: 510-517 [PMID: 18812560 DOI: 10.1148/radiol.2492071365]

16 Goh V, Halligan S, Wellsted DM, Bartram CI. Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease? A pilot study. *Eur Radiol* 2009; 19: 79-89 [PMID: 18704434 DOI: 10.1007/s00330-008-1128-1]

17 Goh V, Halligan S, Hugill JA, Gartner L, Bartram CI. Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography: effect of acquisition time and implications for protocols. *J Comput Assist Tomogr* 2005; 29: 59-63 [PMID: 15665684]

18 Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong KT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen S, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Sheltito PC, Lauwers GY, Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has an antivascular effects in human rectal cancer. *Nat Med* 2004; 10: 145-147 [PMID: 14745444 DOI: 10.1038/nn988]

19 Koukourakis MI, Mavanis I, Kouklakis G, Pitiakoudis M, Minopoulos G, Manolas C, Simopoulos C. Early antivascular effects of bevacizumab anti-VEGF monoclonal antibody on colorectal carcinomas assessed with functional CT imaging. *Am J Clin Oncol* 2007; 30: 315-318 [PMID: 17551312 DOI: 10.1097/1.coc.0b013e318199305a]

20 Tai JH, Tessier J, Ryan AJ, Hoffman L, Chen X, Lee TY. Assessment of adverse antivascular effects of vandetanib with high-resolution dynamic contrast-enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat. *Neoplasia* 2010; 12: 697-707 [PMID: 20824046]

21 Benamouzig R, Breau JL, Perret GV. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. *Br J Cancer* 2006; 94: 1823-1832 [PMID: 16773076 DOI: 10.1038/sj.bjc.6603176]

22 Sahani DV, Kalva SP, Hamberg LM, Hahn PF, Willett CG, Saini S, Mueller PR, Lee TY. Assessing tumor perfusion and treatment response in rectal cancer with multisect CT: initial observations. *Radiology* 2005; 234: 785-792 [PMID: 15734834 DOI: 10.1148/radiol.234304286]

23 Hayano K, Shuto K, Koda K, Yanagawa N, Okazumi S, Matsubara H. Quantitative measurement of blood flow using perfusion CT for assessing clinicopathologic features and prognosis in patients with rectal cancer. *Dis Colon Rectum* 2009; 52: 1624-1629 [PMID: 19690492 DOI: 10.1007/DCR.0b013e3181f3bf79]

24 Goh V, Halligan S, Daley F, Wellsted DM, Guenther T, Bartram CI. Colorectal tumor vascularity: quantitative assessment with multidetector CT-dose perfusion measurements reflect angiogenesis? *Radiology* 2008; 249: 510-517 [PMID: 18812560 DOI: 10.1148/radiol.2492071365]

25 Goh V, Halligan S, Wellsted DM, Bartram CI. Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease? A pilot study. *Eur Radiol* 2009; 19: 79-89 [PMID: 18704434 DOI: 10.1007/s00330-008-1128-1]

26 Goh V, Halligan S, Hugill JA, Gartner L, Bartram CI. Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography: effect of acquisition time and implications for protocols. *J Comput Assist Tomogr* 2005; 29: 59-63 [PMID: 15665684]

27 Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong KT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen S, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Sheltito PC, Lauwers GY, Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has an antivascular effects in human rectal cancer. *Nat Med* 2004; 10: 145-147 [PMID: 14745444 DOI: 10.1038/nn988]

28 Koukourakis MI, Mavanis I, Kouklakis G, Pitiakoudis M, Minopoulos G, Manolas C, Simopoulos C. Early antivascular effects of bevacizumab anti-VEGF monoclonal antibody on colorectal carcinomas assessed with functional CT imaging. *Am J Clin Oncol* 2007; 30: 315-318 [PMID: 17551312 DOI: 10.1097/1.coc.0b013e318199305a]
32 Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukie-wicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, Shellito P, Czito BG, Wong TZ, Paulson E, Poleski M, Vujakovic Z, Bentley R, Chen HX, Clark JW, Jain RK. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 2009; 27: 3020-3026 [PMID: 19470921 DOI: 10.1200/JCO.2008.21.1771]

33 Anzidei M, Napoli A, Zaccagna F, Cartocci G, Saba L, Menichini G, Cavallo Marincola B, Marotta E, Di Mare L, Catalano C, Passariello R. Liver metastases from colorectal cancer treated with conventional and antiangiogenic chemotherapy: evaluation with liver computed tomography perfusion and magnetic resonance diffusion-weighted imaging. J Comput Assist Tomogr 2011; 35: 690-696 [PMID: 22082538 DOI: 10.1097/RCT.0b013e318230d905]

34 d’Assignies G, Couvelard A, Bahrami S, Vuillermie MP, Hammel P, Hentic O, Sauvanet A, Bedossa P, Ruszniewski P, Vilgrain V. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology 2009; 250: 407-416 [PMID: 19095784 DOI: 10.1148/radiol.2501080291]

35 Chen Y, Zhang J, Dai J, Feng X, Lu H, Zhou C. Angiogenesis of renal cell carcinoma: perfusion CT findings. Abdom Imaging 2010; 35: 622-628 [PMID: 19763683 DOI: 10.1007/s00261-009-9565-0]

36 Helmlinger G, Netti PA, Lichtenden HC, Melder RJ, Jain RK. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 1997; 15: 778-783 [PMID: 9255794 DOI: 10.1038/nbt0897-778]

37 Griffon-Etienne G, Boucher Y, Brekken C, Sut HD, Jain RK. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res 1999; 59: 3776-3782 [PMID: 10446995]

38 Haider MA, Milosevic M, Fyles A, Sitarchouk I, Yeung I, Henderson E, Lockwood G, Lee TY, Roberts TP. Assessment of the tumor microenvironment in cervix cancer using dynamic contrast enhanced CT, interstitial fluid pressure and oxygen measurements. Int J Radiat Oncol Biol Phys 2005; 62: 1100-1107 [PMID: 15990015 DOI: 10.1016/j.ijrobp.2004.12.064]

39 Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11: 393-410 [PMID: 21606941 DOI: 10.1038/nrc3064]

40 Leveson SH, Wiggins PA, Nasiru TA, Giles GR, Robinson PJ, Parkin A. Improving the detection of hepatic metastases by the use of dynamic flow scintigraphy. Br J Cancer 1983; 47: 719-721 [PMID: 6849806]

41 Leveson SH, Wiggins PA, Giles GR, Parkin A, Robinson PJ. Deranged liver blood flow patterns in the detection of liver metastases. Br J Surg 1985; 72: 128-130 [PMID: 3971119]

42 Leen E, Goldberg JA, Robertson J, Sutherland GR, McArkle CS. The use of duplex sonography in the detection of colorectal hepatic metastases. Br J Cancer 1991; 63: 323-325 [PMID: 1997115]

43 Miles KA, Hayball MP, Dixon AK. Functional images of hepatic perfusion obtained with dynamic CT. Radiology 1993; 188: 405-411 [PMID: 8327686 DOI: 10.1148/radiology.188.2.8327686]

44 Blomley MJ, Coulson R, Dawson P, Kormano M, Donlan P, Buftin C, Lipton MJ. Liver perfusion studied with ultra-fast CT. J Comput Assist Tomogr 1995; 19: 424-433 [PMID: 779053]

45 Cuencod E, Lecomte I, Siauve N, Resten A, Dromain C, Poulet B, Frouin F, Clement O, Frija G. Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 2001; 218: 556-561 [PMID: 11161178 DOI: 10.1148/radiology.218.2.r01fe10556]

46 Leggett DA, Kelley BB, Bunce IH, Miles KA. Colorectal cancer: diagnostic potential of CT measurements of hepatic perfusion and implications for contrast enhancement protocols. Radiology 1997; 205: 716-720 [PMID: 9393526 DOI: 10.1148/radiology.205.3.9393526]

47 Fujishiro T, Shuto K, Hayano K, Satoh A, Kono T, Ohira G, Tohma T, Gunji H, Narushima K, Tochigi T, Hanaoka T, Ishii S, Yanagawa N, Matsubara H. Preoperative hepatic CT perfusion as an early predictor for the recurrence of esophageal squamous cell carcinoma: initial clinical results. Oncol Rep 2014; 31: 1083-1088 [PMID: 24452736 DOI: 10.3892/or.2014.2992]

48 Carter R, Anderson JH, Cooke TG, Baxter JN, Angerson WJ. Splanchnic blood flow changes in the presence of hepatic tumour: evidence of a humoral mediator. Br J Cancer 1994; 69: 1025-1026 [PMID: 8198964]

49 Pandharipande PV, Krinsky GA, Rusinek H, Lee VS. Perfusion imaging of the liver: current challenges and future goals. Radiology 2005; 234: 661-673 [PMID: 15734925 DOI: 10.1148/radiology.2343051362]
