Parasitology

Review article

Title

Cryptosporidium species and cryptosporidiosis in Japan: A literature review and insights into the role played by animals in its transmission

Authors El-Sayed El-Alfy1, 2, Yoshifumi Nishikawa1*

RUNNING HEAD: CRYPTOSPORIDIOSIS IN JAPAN

Addresses

1 National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
2 Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt

*Correspondence

Professor Yoshifumi Nishikawa, PhD
Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Tel: +81-155-495642; Fax: +81-155-49643; http://www.obihiro.ac.jp; e-mail: nisikawa@obihiro.ac.jp
Abstract

_Cryptosporidium_ species infect domestic animals, livestock, and humans. These protozoan parasites are frequently reported as major environmental contaminants in many countries despite their differing climatic, socioeconomic, and demographic factors. This review focuses on the research findings that relate to _Cryptosporidium_ epidemiology, genetic diversity, and associated risk factors relating to animals, contaminated water sources, and humans in Japan. Adequate knowledge of these factors is essential for understanding the economic and public health importance of cryptosporidiosis in Japan so that effective control strategies against it are implemented. _Cryptosporidium_ infections are highly prevalent in animals in Japan. Among the different animal species, cattle infections stand out because of their economic importance and zoonotic potential. Living circumstances in Japan restrain _Cryptosporidium_ transmission between humans, but there is evidence to suggest that animals, especially those in close contact with humans, can be potential sources of human infections. Water sampling studies have provided clues about how environmental contamination with _Cryptosporidium_ oocysts can cause infections in livestock and wild animals. There is some evidence of person-to-person transmission of cryptosporidiosis, but only occasionally and under certain circumstances. By identifying the major role played by animals in _Cryptosporidium_ transmission to people in Japan, we highlight the urgent need for disease control against this pathogen.

**Key words:** animal, cryptosporidiosis, _Cryptosporidium_, human, Japan.
1. Introduction

Cryptosporidiosis is considered an important cause of global morbidity and mortality, and concerns about it span both veterinary and public health areas [23, 24]; hence, it is included in the Neglected Diseases Initiative of the World Health Organization (WHO) [143]. *Cryptosporidium*, a ubiquitous parasite, has been recognized as one of the most important human diarrheal pathogens [81, 157]. The transmission cycles that exist for human infections include person-to-person transmission, zoonotic transmission, foodborne transmission, and waterborne transmission [29, 30, 49, 128, 168].

Of the many diagnostic techniques currently used to accurately assess parasite burdens, microscopy, copro-antigen detection (immunoassay, immunofluorescence assay, and immunochromatography tests), serological tests, and nucleic acid amplification methods are commonly used [24]. However, no gold-standard diagnostic tests or immunological tools are currently available for researchers to distinguish oocysts from different species [23]. Nevertheless, serologic assays based on antibody binding to *C. parvum* antigens can detect infections caused by various species and subtypes of this parasite [14, 22, 127]. Encouragingly, the advent of molecular technology is now revolutionizing our understanding of the epidemiology (included speciation and subtyping), biology, and transmission of this parasite [29, 132, 170].

Although much progress has been made in *Cryptosporidium* research in Japan, no retrospective analyses have been done on the epidemiology and diversity of this parasite among humans or other animals in this country (or both). Although generally informative, a generalized review on *Cryptosporidium* infections in Asia lacked many aspects relating to the epidemiology, biology and transmission routes of this parasite [89]. This review aims to explore the current situation for cryptosporidiosis in Japan and to assess the potential risks it poses to human and animal populations, including information gathering about the
environmental factors required to establish efficient control strategies against this parasitic disease.

2. Literature searching strategy and eligibility criteria

PubMed and Scopus databases were searched using only two key words: *Cryptosporidium* AND Japan. There were no restrictions on year, language, host, or study type. The electronic journal platform for science and technology information in Japan (J-STAGE) was searched using the same criteria. The Google Scholar search engine was used to ensure the successful collection of data and the presence of full data for relevant papers where only abstracts were shown. Studies were considered eligible for inclusion if they had identified *Cryptosporidium*-positive samples within Japan. Any further molecular analyses and experimental studies on *Cryptosporidium* isolates from Japan were also included. No restrictions were added to the study population of interest (humans, animals, and environmental sources). Thus, studies that reported on *Cryptosporidium* in other countries were excluded. Studies that reported on pathogens causing diarrhea in Japan other than *Cryptosporidium* were excluded. Included were studies that reported on the relationship between *Cryptosporidium* and other pathogens. Included articles were also screened for additional local data. Time was not specified after retrieving the data from the different databases and all published papers until the year 2020 were permitted.

3. Reported animal cases of cryptosporidiosis, species diversity and perspectives

3.1. Cattle

3.1.1. Epidemiology
Cryptosporidiosis in cattle in Japan was first reported in calves from Okayama, Miyagi, and Hokkaido prefectures [15, 61, 135, 139, 179] according to Kaneta and Nakai [71]. Earlier studies showed that *C. muris* or *C. muris*-like oocysts were present in cattle from Japanese slaughterhouses [82, 118] at infection rates of 4.7% in Miyagi [122], 3.9% in Kanagawa [79], 2.8% in Shizuoka [153], 1.2% in Fukushima [108], 1.2% in Saitama [119], and 3.4% in Tokushima Prefecture [156]. The aforementioned studies were mainly published locally and active surveillance was conducted after the year 2000. Major progress has been made in accurately detecting *Cryptosporidium* among dairy and beef cattle farms in many prefectures (Table 1). Different population sizes were investigated in these studies and the variable prevalence rates reflect the heterogeneity among the studies regarding animal age and the numbers of animals examined. However, although the data we retrieved were quite small in number, they support the notion that cryptosporidiosis is a major disease in the Japanese cattle population.

A significant correlation was found between *Fusobacterium* and *C. parvum* in cases of neonatal calf diarrhea in Okinawa, Kagoshima, Iwate and Hokkaido prefectures, suggesting that *Fusobacterium* may be an important aggravating factor for cryptosporidiosis in calves [52]. Regarding age, the assigned articles identified *C. parvum* as being the most prevalent species among pre-weaned calves that mainly had diarrhea, whereas *C. andersoni* was present in adults, as is similarly reported worldwide [32, 138].

Insufficient attention to the link between production losses and *Cryptosporidium* infections in the cattle industry seems likely. Because cattle livestock in Japan is estimated to include 50,100 beef farms (2,499,000 heads) and 16,400 dairy farms (1,323,000 heads) [149], a nationwide survey on cryptosporidiosis in these animals is worthwhile so as to estimate the disease burdens and the economic impacts on the cattle industry.
3.1.2. *Cryptosporidium* species and population genetics

As mentioned above, *C. muris* or *C. muris*-like oocysts from adult cattle were isolated in different prefectures [82, 118]. *Cryptosporidium andersoni* was initially misidentified as "*C. muris" based on experimental infections in mice, although the species was detected in cattle at Miyagi Prefecture [71]. *Cryptosporidium* isolates were collected from a farm later on and the nucleotide sequences of 18S rDNA, heat-shock protein 70 (HSP70), and the oocyst wall protein (COWP) genes were compared with those from the *C. muris* RN66 isolate, and a novel type of *C. andersoni* (Kawatabi strain) was identified with the ability to infect SCID mice [140]. Similarly, isolates from the same prefecture were also proposed to be the same genotype and not *C. muris* [118], according to their 18s rRNA sequences. This unique genotype was reported in Hokkaido prefecture where it was suggested to be widespread in cattle [82, 97].

Knowledge about the *C. andersoni* Kawatabi strain is mainly based on the morphology of its oocysts, the sequences of its 18S rRNA and other genes, and its infectivity to mice, all of which make it dissimilar to *C. andersoni* isolates from cattle in other countries. This strain appears as the following two forms: type A (which is identical to the *C. andersoni* Kawatabi strain reported previously) and type B (a novel genotype, with a thymine nucleotide insertion in the 18S rRNA gene not present in type A), which has wide-spread transmission among cattle in Japan [55, 102, 115]. The infectivity of this strain has been studied in both immunocompetent and immunodeficient mouse models [100, 116], where knowledge about the minimum number of oocysts needed to reliably establish the infection was gained, thereby providing a mouse model for further investigations. However, one study reported that *C. andersoni* Kawatabi was not infective to normal and immunosuppressed *Cynomolgus* monkeys [96].
With its ability for zoonotic transmission and veterinary importance, *C. parvum* has gained prominence over *C. andersoni*. *Cryptosporidium parvum* was first reported to be present in Hyogo Prefecture, based on the morphology of its oocysts [133, 165]. Later, restriction fragment length polymorphism (PCR-RFLP) analysis of *Cryptosporidium* oocysts from cattle in Hokkaido revealed the presence of infections with *C. parvum* and *C. muris* [136]. *Cryptosporidium parvum* infections were confirmed in 14 naturally infected bovine animals from Hokkaido and Iwate prefectures by PCR-RFLP and sequence analysis [172]. Isolates from three naturally infected calves in Hokkaido and Gifu were characterized as the *C. parvum* IIa subtype [10].

Typing and subtyping analyses identified cattle from different prefectures as being infected with *C. parvum* (IIaA15G2R1), the dominant subtype infecting dairy cattle and humans in industrialized nations [34]. This subtype together with *Giardia intestinalis* assemblage E was shown to cause calf mortalities in Chiba Prefecture [104]. *Cryptosporidium bovis* and *C. ryanae* (previously known as a *Cryptosporidium* deer-like genotype [33]) were also reported in cattle from different prefectures.

*Cryptosporidium parvum, C. andersoni, C. bovis and C. ryanae* are the major species infecting cattle world-wide [33, 138]. Among them, *C. parvum* is the most pathogenic species in both cattle and humans [123], whereas *C. andersoni* and *C. bovis* seem to have caused only a few human cases [132]. The epidemiological and genotyping findings testify the zoonotic importance of *C. parvum* while highlighting the economic losses caused by cryptosporidial infections in the Japanese cattle farming industry. Effective control strategies merit consideration as do careful animal management by farm workers and visitors.

### 3.2. Pigs
Relatively few studies have focused on *Cryptosporidium* infections in pigs in Japan. No *Cryptosporidium* oocysts were detected among examined adult pigs in slaughterhouses in Saitama [119], Fukushima [108], Miyagi [118, 122] and Hokkaido [82]. *Cryptosporidium* infections had a low prevalent among pigs in Aichi prefecture (1.9%) [159]. Nevertheless, four epidemiological studies investigating *Cryptosporidium* infections in pigs from Kanagawa and Saitama prefectures (Table 2) were conducted. In Saitama prefecture, *Cryptosporidium* infections were associated with diarrhea in pigs, whereas the isolates obtained from pigs in Kanagawa Prefecture may have contained a mixture of both *C. suis* and *C. scrofarum* because the oocysts from these species are morphologically similar to *C. parvum* oocysts [68, 184]. Recently, *C. suis* and *C. scrofarum* (previously called pig genotype II [87]) were reported in pigs from Saitama prefecture [182, 184].

Altogether, 4,670 pig farms (9,346,000 heads) were estimated to be present in Japan in a 2017 study [149]. Because previous studies focused on adults, *Cryptosporidium* infections in piglets remain unknown. The findings from previous studies suggest a high prevalence of *Cryptosporidium* infections occur mainly in piglets and young pigs in Japan. *Cryptosporidium suis* and *C. scrofarum* are the main species identified in pigs worldwide, and a few human cases have been reported [29, 132]. Other studies have reported on *C. parvum* occurring occasionally in pigs from other countries [132]. Cryptosporidiosis in pigs is usually subclinical in nature but is sometimes associated with non-hemorrhagic diarrhea [74, 144]. However, piglets experimentally infected with *C. parvum* derived from calves developed moderate to severe mucosal attenuation with lymphoid hyperplasia and severe gastrointestinal disorders [28, 126]. *Cryptosporidium parvum* was identified as a major species infecting cattle and humans, and was also identified in different water samples in Japan. Clearly, further studies are required to estimate the true prevalence and species composition of *Cryptosporidium* infections among piglets and young pigs from different prefectures, to
elucidate the transmission dynamics of *C. parvum* among animals in Japan and the zoonotic importance of any species infecting the pigs.

3.3. Dogs and cats

Pet animals, especially dogs and cats, share close relationships with humans and act as reservoirs of zoonotic pathogens, including *Cryptosporidium* spp. [25, 26]. *Cryptosporidium* infections in cats in Japan that were reported on in early studies showed low prevalence rates in Osaka (38.5%; [58]) and Hyogo Prefectures (3.9%; [164]) [19]. Large-scale surveys were conducted in different prefectures coupled with molecular tools, which enabled the widespread of *C. canis* (previously the dog genotype [31]) and *C. felis* among dogs and cats, respectively, in Japan to be determined (Table 3). This finding may have a zoonotic implication [29, 88, 131, 171]. A raccoon dog had a *Cryptosporidium* infection, the isolate of which was identified as a new *C. parvum* subtype [10, 99, 101].

3.4. Rodents and rabbits

Different *Cryptosporidium* species and genotypes have been identified in rodents in Japan (Table 4). Early studies identified *Cryptosporidium* oocysts in 14.8% of the brown rats captured in Osaka City [59] and 21.3% of the brown rats captured in the cities of Osaka, Tokyo, and Chiba [106, 76]. The oocysts were assumed to be *C. parvum* or *C. muris* based on their morphologies, which may be incorrect taxonomically [76].

In the study by Nakai *et al.* [118], *C. muris* was reported in field mice captured from the pastures of a cattle farm in Miyagi prefecture and, interestingly, this isolate was genetically distinct from the *C. andersoni* Kawatabi strain identified from cattle on this farm. Additionally, a Japanese field mouse (Kawatabi) genotype was proposed to be a novel,
genetically distinct (18s rRNA gene) C. muris genotype that differs from the C. muris and C. andersoni Kawatabi strains; hence, the authors named it “C. muris Japanese field mouse genotype” [47]. Adding another complication, a recent study identified not only C. ubiquitum and C. muris (Kawatabi genotype) in field mice, but also a novel genotype the authors named the “Naruko genotype” [112]. Interestingly, all of these studies were conducted in Miyagi prefecture, and together with the reports of Cryptosporidium in cattle, this raises concerns about the species and genotypes circulating in this area beside the cycles of transmission between different hosts and its zoonotic importance. Clearly, more studies are required to clarify these issues, and multilocus genotyping (sequencing) besides other biological and infection models in mice, will be useful for this.

Cryptosporidium species are incriminated in the morbidity and mortality of pet rodents and rabbits. Cryptosporidium ubiquitum (XIIId) in chinchillas was reportedly associated with a high fatality rate [83]. Similarly, juvenile pet rabbits with diarrhea that died were microscopically identified as having Cryptosporidium infections in Kanagawa Prefecture [145]. The reports included in this section reflect the highly diverse Cryptosporidium population structure in Japan, and the complexity of the transmission cycles.

3.5. Birds

A few cases of cryptosporidiosis have been reported in birds in Japan (Table 5). Cryptosporidium infections in chicken were first reported in 11 flocks on six Japanese poultry farms [60]. Elsewhere, an isolate was assayed for infectivity to turkeys, quails and other experimental animals [36, 37]. The oocyst sizes were estimated in another study to be somewhere between the sizes of C. baileyi and C. meleagris oocysts [103]. This isolate was later molecularly characterized as C. baileyi [75]. To our knowledge, only three studies have been conducted on cryptosporidiosis in poultry in Japan, and the estimated number of farms
was 2,440 for layers and 2,310 for broilers [149]. The causative agents of high morbidity and mortality on a large Japanese quail farm in Chiba Prefecture turned out to be mixed infections of Cryptosporidium with Mycoplasma gallisepticum [109].

Many genotypes have been isolated from other birds investigated for Cryptosporidium (Table 5); they include C. meleagridis, C. baileyi, C. galli, avian genotype III, new avian genotype V (C. avium), and a novel genotype. Among them, C. meleagridis, C. baileyi and C. galli are well known and cause high morbidity and mortality [130]. Cryptosporidium meleagridis is the third most common Cryptosporidium spp. in humans worldwide [130, 169], and may be linked with human infections in Japan. The zoonotic species, C. meleagridis, was identified in a pet cockatiel that shared close contact with humans. Little is known about the pathogenicity of many avian genotypes, but Cryptosporidium avian genotype III causes chronic vomiting in peach-faced lovebirds (Agapornis roseicollis) [90]. Interestingly, Cryptosporidium avian genotype V was first reported in Japanese cockatiels [4] and C. avium was the proposed species later [48]. Lastly, Makino et al. [91] reported the case of a 1-month-old brown wood owlet with severe dehydration and anorexia following a week of vomiting and severe diarrhea attributed to a mixed infection with C. avium and a novel genotype.

### 3.6. Reptiles and wild animals

While wild animals contribute to environmental contamination [18, 128] with Cryptosporidium, pet reptiles may directly contribute to human infections with this parasite. Little is known about cryptosporidiosis in wildlife and reptiles in Japan (Table 6), but among the reported species, horse and skunk genotypes and C. parvum and C. meleagridis are human pathogens, whereas other species have not been reported in humans [185]. This constitutes a public health risk via direct contact or contamination of water sources with infective oocysts,
but further information is needed to clarify the role of wild animals in environmental contamination, especially of water sources.

4. Cryptosporidium contamination of Japanese water sources

Water contamination by Cryptosporidium oocysts is a major source of cryptosporidiosis in humans [128, 129, 148]. There have been three large-scale cryptosporidiosis outbreaks in Japan [27]. Water contamination caused an outbreak of cryptosporidiosis in 1996 in Ogose town, Saitama Prefecture, where approximately 9,140 people were infected and which was attributed to non-complete removal of Cryptosporidium oocysts in the source water during the water treatment process [151, 173]. Tap water samples from different sites, raw-water samples from the water treatment plant, and effluent samples treated by the wastewater treatment plants all contained oocysts during this outbreak [173]. It was assumed that small wastewater treatment plants located upstream of the water source possibly worsened this outbreak [151].

Another report of a water-borne cryptosporidiosis outbreak was in a building in Hiratsuka, Kanagawa Prefecture, at the end of the summer of 1994 [85]. Cryptosporidium oocysts were found in tap water and other water samples from a receiving tank and wastewater pits, the cause of which was attributed to sanitary sewage contamination of the drinking water [85]. A nationwide survey of water source supplies throughout Japan in 1997, which was conducted by the Ministry of Health and Welfare, reported that Cryptosporidium oocysts were identified in 8 (2.9%) of the 277 examined sites in 94 rivers [125, 166].

Water samples collected from rivers, water purification plants, wastewater treatment plants and sewage samples were contaminated with Cryptosporidium oocysts in different Japanese areas (Table 7). Interestingly, the C. parvum identified by PCR-RFLP from the
Obihiro River in Hokkaido was viable and infective to SCID mice, and the pattern of oocyst shedding was similar to that of the inoculated control isolates [162]. An outbreak of cryptosporidiosis, which was attributed to contaminated swimming pools, was reported in a hotel in Nagano Prefecture where many sports participants during swimming training developed diarrhea and other intestinal symptoms [155, 178]. Ten swimming pools belonging to a sports center in Chiba Prefecture were used by the returning participants from this joint training event, and four of the pools were investigated for the presence of *Cryptosporidium* oocysts and two of them tested positive [53].

The species identified from different water samples across prefectures and rivers to date are *C. parvum*, *C. meleagridis*, *C. hominis*, *C. andersoni*, *C. suis*, a snake genotype, pig genotypes, and two new genotypes (Table 7). The wide range of species and genotypes is supported by some studies that show a strong correlation between livestock raising and water contamination [69, 124]. Thus, it can be concluded that livestock and wild animals play key roles in *Cryptosporidium* transmission, as well as in environmental contamination.

Guidelines for controlling *Cryptosporidium* contamination of drinking water were adopted in Japan [105], and the water quality monitors used in water purification plants are assayed to confirm successful *Cryptosporidium* control [80]. An annual *Cryptosporidium* infection risk of approximately $10^{-4}$ or below was estimated for the reuse of treated wastewater during a 2-year survey from two Japanese wastewater treatment plants, suggesting that it is possible to meet the target infection risk [154].

5. Human cases of cryptosporidiosis

A variety of transmission cycles are related to *Cryptosporidium* in nature; they include food, water, pets, and domestic and wildlife animals, and do not require any interaction
between them [49]. Three major outbreaks of cryptosporidiosis occurred in Ogose town (Saitama Prefecture), in Hiratsuka (Kanagawa Prefecture), and in Awaji (Hyogo Prefecture) [27, 85, 173, 176] where a large number of cases with severe diarrhea and acute gastrointestinal illness were reported. Another outbreak occurred in a contaminated swimming pool in a hotel in Nagano Prefecture [53, 155, 178] and a foodborne outbreak was reported in Japan [180]. Other reported cases of cryptosporidiosis in patients examined in Japanese hospitals are included in Table 8.

The first case of *C. meleagridis* was identified from naturally infected human together with both *C. hominis* and *C. parvum* (previously human genotype I and bovine genotype II, respectively, [23]) from different geographic areas based on analysis by PCR-RFLP and 18s rRNA sequencing [172]. A gastroenteritis outbreak from *C. meleagridis* (PCR-sequenced 18s rRNA) was reported among high school students from a dormitory in Ehime [21]. Five new *C. meleagridis* genotypes from humans in Japan (3 isolates, one HIV-positive and 2 HIV-negative) were reported, as based on the sequence analysis of multiple genes that differ genetically from other isolates in other countries [1]. Quite recently, another *C. meleagridis* infection case was identified [70].

*Cryptosporidium parvum* HNJ-1, the cryptosporidial reference strain in Japan, was first isolated from an infected woman [95]. Further molecular studies characterized this isolate using multilocus sequencing including, 18s rRNA [6], thrombospondin-related adhesive protein (TRAPC1, TRAP-C2), HSP70, COWP, beta-tubulin, alpha-tubulin, polythreoneine-region, elongation factor 1 alpha (EF-1 α) [141], transcribed ribosomal region (ITS rRNA), dihydrofolate reductase, and surface glycoprotein 60 genes [17]. This isolate, which was subtyped as IIaA15G2R1, contains extensive polymorphism in the ITS region, as compared with other *C. parvum* isolates. Five other isolates have come from Japanese patients in Tokyo and Osaka who were infected with *C. hominis* (Ie, Ia, Ib) and *C. parvum* (IIc and IIa in HNJ-1.
isolate) [10]. Furthermore, *C. parvum* IIA also caused a foodborne disease outbreak in 2006 [180]. *Cryptosporidium parvum* infections have been detected in cattle, rats and raccoons from different prefectures, while rats, cockatiels and sika deer were reported to be infected with *C. meleagridis*. These findings are indicative of zoonotic transmission as well as environmental contamination.

Person to person is another possible transmission route for human infections in Japan after people are exposed to contaminated swimming pools, contaminated food, or contaminated drinking water. However, living conditions in Japan, particularly the good hygienic measures and health services, along with advances in wastewater treatment should decrease the risk of direct transmission of cryptosporidiosis between humans. Previous recordings of disease were correlated with accidental outbreaks. Moreover, evidence of person-to-person transmission from overseas travelers exists for *C. parvum*, *C. meleagridis* and *C. hominis*, which were recorded in foreign travelers to Japan from different countries (India, Indonesia, and Kenya) [172].

Contrastingly, two molecular studies reported the infection with *C. hominis* among Japanese patients from different geographical area including patients linked to Ogose outbreak in 1996 as well as overseas travelers [10, 172]. Furthermore, it was identified as the cause of outbreak due to contaminated swimming pool in the hotel in Nagano Prefecture [178]. The histories of the samples used in these studies are unclear and while there is no evidence of infections with *C. hominis* in animals in Japan, *C. hominis* oocysts were identified in water samples from the Koyama river and rivers in Hyogo Prefecture [92, 93, 125]. *Cryptosporidium hominis* infects a wide range of livestock species and non-human primates other than humans and water-borne transmission is probably the route of transmission [167]. Consequently, this important species may be transmitted by person-to-person contact or by contaminated water sources. Therefore, the health authorities in Japan are encouraged to
conduct nationwide molecular screening for Cryptosporidium among humans with gastrointestinal symptoms who visit hospitals.

6. Concluding remarks

This review highlights the very high genetic diversity of Cryptosporidium species circling among animals and humans in Japan. Many zoonotic species of Cryptosporidium were reported in animals, suggesting the potential risk to the Japanese population. Our review also highlights the high morbidity and mortality of cryptosporidiosis across different animal species and its consequential economic impacts. Little is known about Cryptosporidium infection in cattle in Japan and continuous monitoring is strongly recommended in order to properly understand its economic and zoonotic impact. The situation of Cryptosporidium infection in the pig and poultry sectors is largely unknown and regional prefectural surveillances are required. Prompt surveillance systems by prefectural governments (Livestock Hygiene Service Centers) tasked with disseminating, analyzing, and publishing the resultant data will be valuable for establishing control strategies. Continuous improvement and maintenance of high-quality standards relating to transmission control against this pathogen are essential, particularly for water sources, to reduce the risk of zoonotic infections.

Conflict of interest

No financial or personal conflicts are declared by the authors that could negatively influence their contributions to this study.

Acknowledgments
This study was conducted under the Egypt–Japan Education Partnership “EJEP” Funding program. We thank Ms. Kingetsu and Ms. Kashiwagi (Obihiro University of Agriculture and Veterinary Medicine) for helping with data extraction from Japanese articles. We thank Dr. Ragab Fereig (Obihiro University of Agriculture and Veterinary Medicine) for active discussion on the Cryptosporidium parasite. We also thank Sandra Cheesman, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

1. Abe, N. 2010. Genotype analysis of Cryptosporidium meleagridis isolates from humans in Japan. Jpn. J. Infect. Dis. 63: 214-215. https://www.niid.go.jp/niid/JJID/63/214.pdf [accessed on October 25, 2019].

2. Abe, N. and Iseki, M. 2003. Identification of genotypes of Cryptosporidium parvum isolates from ferrets in Japan. Parasitol. Res. 89: 422-424.

3. Abe, N. and Iseki, M. 2004. Identification of Cryptosporidium isolates from cockatiels by direct sequencing of the PCR-amplified small subunit ribosomal RNA gene. Parasitol. Res. 92: 523-526.

4. Abe, N. and Makino, I. 2010. Multilocus genotypic analysis of Cryptosporidium isolates from cockatiels, Japan. Parasitol. Res. 106: 1491-1497.

5. Abe, N. and Matsubara, K. 2015. Molecular identification of Cryptosporidium isolates from exotic pet animals in Japan. Vet. Parasitol. 209: 254-257.

6. Abe, N., Kimata, I. and Iseki, M. 2002. Identification of genotypes of Cryptosporidium parvum isolates from a patient and a dog in Japan. J. Vet. Med. Sci. 64: 165-168.

7. Abe, N., Sawano, Y., Yamada, K., Kimata, I. and Iseki, M. 2002. Cryptosporidium infection in dogs in Osaka, Japan. Vet. Parasitol. 108: 185-193.
8. Abe, N., Takami, K., Kimata, I. and Iseki, M. 2004. Molecular characterization of a Cryptosporidium isolate from a banded mongoose Mungos mungo. J. Parasitol. 90: 167-172.

9. Abe, N., Nakamura, S. and Kimata, I. 2005. An imported case of mixed infection by Giardia and Cryptosporidium parasites in Japan. Seikatsu Eisei. 49: 48-51.

10. Abe, N., Matsubayashi, M., Kimata, I. and Iseki, M. 2006. Subgenotype analysis of Cryptosporidium parvum isolates from humans and animals in Japan using the 60-kDa glycoprotein gene sequences. Parasitol. Res. 99: 303-305.

11. Adachi, E., Kido, Y., Ota, Y. and Koibuchi, T. 2016. Immunostaining of Cryptosporidiosis with Human Immunodeficiency Virus Infection. Intern. Med. 55: 3229-3230.

12. Aita, J., Ichikawa-Seki, M., Kinami, A., Yaita, S., Kumagai, Y., Nishikawa, Y. and Itagaki, T. 2015. Molecular characterization of Cryptosporidium parvum detected in Japanese black and holstein calves in Iwate prefecture and Tanegashima island, Kagoshima prefecture, Japan. J. Vet. Med. Sci. 77: 997–999.

13. Aita, J., Ichikawa, S., Fukumoto, N., Asada, M., Nishikawa, Y. and Itagaki, T. 2015. Molecular characterization of Cryptosporidium andersoni isolated from Japanese black calves in Tokachi district, Hokkaido Prefecture, Japan. J. Protozool. Res. 25: 44-47.

14. Ajjampur, S.S.R., Sarkar, R., Allison, G., Banda, K., Kane, A., Muliyil, J., Naumova, E., Ward, H. and Kang, G. 2011. Serum IgG response to Cryptosporidium immunodominant antigen gp15 and polymorphic antigen gp40 in children with cryptosporidiosis in South India. Clin. Vaccine Immunol. 18: 633-639.

15. Akamatsu, L., Shinbo, T., Taniyama, H., Matsu, T., Sarashina, T. and Ono, T. 1987. Occurrence of cryptosporidiosis in a calf in Hokkaido. J. Hokkaido Vet. Med. Assoc. 31: 46-49 (In Japanese).
16. Amer, S., Honma, H., Ikarashi, M., Oishi, R., Endo, M., Otawa, K. and Nakai, Y. 2009. The first detection of Cryptosporidium deer-like genotype in cattle in Japan. Parasitol. Res. 104: 745-752.

17. Amer, S., Matsubara, R., Murakoshi, F. and Nakai, Y. 2010. Molecular analysis of Cryptosporidium parvum HNJ-1 isolated in Japan. J. Vet. Med. Sci. 72: 1647-1649.

18. Appelbee, A.J., Thompson, R.A. and Olson, M.E. 2005. Giardia and Cryptosporidium in mammalian wildlife–current status and future needs. Trends Parasitol. 21: 370-376.

19. Arai, H., Fukuda, Y., Hara, T., Funakoshi, Y., Kaneko, S., Yoshida, T., Asahi, H., Kumada, M., Kato, K. and Koyama, T. 1990. Prevalence of Cryptosporidium infection among domestic cats in the Tokyo metropolitan district, Japan. Jpn. J. Med. Sci. Biol. 43: 7-14.

20. Asano, K., Suzuki, K., Matsumoto, T., Sakai, T. and Asano, R. 2004. Prevalence of dogs with intestinal parasites in Tochigi, Japan in 1979, 1991 and 2002. Vet. Parasitol. 120: 243-248.

21. Asano, Y., Karasudani, T., Okuyama, M., Takami, S., Oseto, M., Inouye, H., Yamamoto, K., Aokage, J., Saiki, N., Fujiwara, M. and Shiraishi, M., Uchida, K., Saiki, H., Suzuki, M., Yamamoto, T., Udaka, M., Kan, K., Matsuura, S. and Kimura, M. 2006. An outbreak of gastroenteritis associated with Cryptosporidium meleagridis among high school students of dormitory in Ehime, Japan. Annual Report of Ehime Prefecture Institute of Public Health and Environmental Science. 9: 21-26 (In Japanese with English abstract). https://www.pref.ehime.jp/h25115/book/documents/2006-021_1.pdf [accessed on October 27, 2019].

22. Borad, A.J., Allison, G.M., Wang, D., Ahmed, S., Karim, M.M., V Kane, A., Moy, J., Hibberd, P.L., Swarna, S., Ajjampur, R., Kang, G., Calderwood, S.B., Ryan, E.T., Naumova, E., Khan, W.A., Ward, H.D. 2012. Systemic antibody responses to the
immunodominant p23 antigen and p23 polymorphisms in children with cryptosporidiosis in Bangladesh. Am. J. Trop. Med. Hyg. 86: 214–222.

23. Chalmers, R.M. and Katzer, F. 2013. Looking for Cryptosporidium: the application of advances in detection and diagnosis. Trends Parasitol. 29: 237-251.

24. Checkley, W., White Jr, A.C., Jaganath, D., Arrowood, M.J., Chalmers, R.M., Chen, X.M., Fayer, R., Griffiths, J.K., Guerrant, R.L., Hedstrom, L. and Huston, C.D. 2015. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis. 15: 85-94.

25. Chomel, B.B. 2014. Emerging and re-emerging zoonoses of dogs and cats. Animals. 4: 434-445.

26. Cui, Z., Dong, H., Wang, R., Jian, F., Zhang, S., Ning, C. and Zhang, L. 2018. A canine model of experimental infection with Cryptosporidium canis. Exp. Parasitol. 195: 19-23.

27. Endo T., and Izumiyama S. 2004. What is learned from cryptosporidiosis outbreak cases in Japan, Proceedings of the 3rd Japan-U.S. governmental conference on drinking water quality management and wastewater control: 107 – 120. http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0264pdf/ks0264002.pdf [accessed on November 7, 2019].

28. Enemark, H.L., Bille-Hansen, V., Lind, P., Heegaard, P.M., Vigre, H., Ahrens, P. and Thamsborg, S.M. 2003. Pathogenicity of Cryptosporidium parvum—evaluation of an animal infection model. Vet. Parasitol. 113: 35-57.

29. Fayer, R. 2010. Taxonomy and species delimitation in Cryptosporidium. Exp. Parasitol. 124: 90-97.

30. Fayer, R., Morgan, U. and Upton, S.J. 2000. Epidemiology of Cryptosporidium: transmission, detection and identification. Int. J. Parasitol. 30: 1305-1322.
31. Fayer, R., Trout, J.M., Xiao, L., Morgan, U.M., Lal, A.A. and Dubey, J.P. 2001. *Cryptosporidium canis* n. sp. from domestic dogs. J. Parasitol. 87: 1415-1423.

32. Fayer, R., Santin, M. and Trout, J.M. 2007. Prevalence of *Cryptosporidium* species and genotypes in mature dairy cattle on farms in eastern United States compared with younger cattle from the same locations. Vet. Parasitol. 145: 260-266.

33. Fayer, R., Santín, M. and Trout, J.M. 2008. *Cryptosporidium ryanae* n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (*Bos taurus*). Vet. Parasitol. 156: 191-198.

34. Feng, Y., Torres, E., Li, N., Wang, L., Bowman, D. and Xiao, L. 2013. Population genetic characterisation of dominant *Cryptosporidium parvum* subtype IIA15G2R1. Int. J. Parasitol. 43: 1141-1147.

35. Fujikawa, H., Miyakawa, H., Iguchi, K., Nishizawa, M., Moro, K., Nagai, K. and Ishibashi, M. 2002. Intestinal cryptosporidiosis as an initial manifestation in a previously healthy Japanese patient with AIDS. J. Gastroenterol. 37: 840-843.

36. Fujino, T. 1997. Infectivity of *Cryptosporidium* sp. Isolated from Chickens in Japan to Turkeys, Bobwhite Quails and Several Kinds of Experimental Animals. Journal of the Kyorin Medical Society. 28: 612-613 (In Japanese).

37. Fujino, T., Matsui, T., Tsutsumi, Y., Saito, Y., Kobayashi, F. and Tsuji, M. 1996. Infectivity and Immunogenicity to Japanese Quails (*Coturnix coturnix japonica*) of *Cryptosporidium* sp. Isolated from Chickens in Japan. Jpn. J. Parasitol. 45: 139-143.

38. Genta, T., Oh, S., Saeki, S., Inada, I., Fukumizu, S., Yamaya, Y., Okahata, K., Kosimae, M., Inamoto, F. and Uga, S. 2001. Epidemiological studies on infection with *Cryptosporidium* spp. of chickens in Hyogo prefecture, Japan. Jpn. J. Vet. Med. Assoc. 54: 297-300 (In Japanese with English abstract).
39. Haramoto, E., Yonashiro, Y., Akiba, M., Hashimoto, A., Morita, S., Asami, M. and Kunikane, S. 2008. Occurrence of Cryptosporidium and Giardia in Tributary Rivers of the Tonegawa River. Environ. Eng. Res. 45: 371-377 (In Japanese with English abstract).

40. Haramoto, E., Kitajima, M., Kishida, N., Katayama, H., Asami, M. and Akiba, M. 2012. Occurrence of viruses and protozoa in drinking water sources of Japan and their relationship to indicator microorganisms. Food Environ. Virol. 4: 93-101.

41. Hashimoto, A. and Hirata, T. 1998. Cryptosporidium oocysts and Giardia cysts in Sagami River and its tributaries. Jpn. Soc. Water Environ. 21: 119–122 (In Japanese with English abstract).

42. Hashimoto, A., Hirata, T. and Kunikane, S. 2001. Occurrence of Cryptosporidium oocysts and Giardia cysts in a conventional water purification plant. Water Sci. Technol. 43: 89-92.

43. Hashimoto, A., Kunikane, S. and Hirata, T. 2002. Prevalence of Cryptosporidium oocysts and Giardia cysts in the drinking water supply in Japan. Water Res. 36: 519-526.

44. Hashimoto, A., Sugimoto, H., Morita, S. and Hirata, T. 2006. Genotyping of single Cryptosporidium oocysts in sewage by semi-nested PCR and direct sequencing. Water Res. 40: 2527-2532.

45. Hata, H., Aosai, F., Norose, K., Kobayashi, M., Mun, H.S., Chen, M., Ito, I., Isegawa, N., Ishikawa, M., Mori, S. and Yano, A. 2000. Prevalence of Toxoplasma gondii and other intestinal parasites in cats in Chiba Prefecture, Japan. Jpn. J. Trop. Med. Hyg. 28: 365-368.

46. Hattori, K., Donomoto, T., Manchanayake, T., Shibahara, T., Sasai, K. and Matsubayashi, M. 2018. First surveillance and molecular identification of the Cryptosporidium skunk genotype and Cryptosporidium parvum in wild raccoons (Procyon lotor) in Osaka, Japan. Parasitol. Res. 117: 3669-3674.
47. Hikosaka, K. and Nakai, Y. 2005. A novel genotype of Cryptosporidium muris from large Japanese field mice, Apodemus speciosus. Parasitol. Res. 97: 373-379.

48. Holubová, N., Sak, B., Horčičková, M., Hlásková, L., Květoňová, D., Menchaca, S., McEvoy, J. and Kváč, M. 2016. Cryptosporidium avium n. sp. (Apicomplexa: Cryptosporidiidae) in birds. Parasitol. Res. 115: 2243-2251.

49. Hunter, P.R. and Thompson, R.A. 2005. The zoonotic transmission of Giardia and Cryptosporidium. Int. J. Parasitol. 35: 1181-1190.

50. Ichikawa-Seki, M., Aita, J., Masatani, T., Suzuki, M., Nitta, Y., Tamayose, G., Iso, T., Suganuma, K., Fujiwara, T., Matsuyama, K., Niikura, T., Yokoyama, N., Suzuki, H., Yamakawa, K., Inokuma, H., Itagaki, T., Zakimi, S. and Nishikawa, Y. 2015. Molecular characterization of Cryptosporidium parvum from two different Japanese prefectures, Okinawa and Hokkaido. Parasitol. Int. 64: 161-166.

51. Ichikawa-Seki, M., Fereig, R.M., Masatani, T., Kinami, A., Takahashi, Y., Kida, K. and Nishikawa, Y. 2019. Development of CpGP15 recombinant antigen of Cryptosporidium parvum for detection of the specific antibodies in cattle. Parasitol. Int. 69: 8-12.

52. Ichikawa-Seki, M., Motooka, D., Kinami, A., Murakoshi, F., Takahashi, Y., Aita, J., Hayashi, K., Tashibu, A., Nakamura, S., Iida, T., Horii, T. and Nishikawa, Y. 2019. Specific increase of Fusobacterium in the faecal microbiota of neonatal calves infected with Cryptosporidium parvum. Scientific reports. 9: 1-8.

53. Ichinohe, S., Fukushima, T., Kishida, K., Sanbe, K., Saika, S. and Ogura, M. 2005. Secondary transmission of cryptosporidiosis associated with swimming pool use. Jpn. J. Infect. Dis. 58: 400-401. https://www0.niid.go.jp/niid/JJID/58/400.pdf [accessed on August 28, 2019].
54. Iijima, Y., Itoh, N., Phrompraphai, T., Ito, Y., Kimura, Y. and Kameshima, S. 2018. Molecular Prevalence of Cryptosporidium spp. among Companion Birds Kept in Pet Shops in Japan. Korean J. Parasitol. 56: 281–285.

55. Ikarashi, M., Fukuda, Y., Honma, H., Kasai, K., Kaneta, Y. and Nakai, Y. 2013. First description of heterogeneity in 18S rRNA genes in the haploid genome of Cryptosporidium andersoni Kawatabi type. Vet. Parasitol. 196: 220-224.

56. Inomata, A., Kishida, N., Momoda, T., Akiba, M., Izumiyama, S., Yagita, K. and Endo, T. 2009. Development and evaluation of a reverse transcription-loop-mediated isothermal amplification assay for rapid and high-sensitive detection of Cryptosporidium in water samples. Water Sci. Technol. 60: 2167-2172.

57. Inomata, A., Momoda, T., Izumiyama, S., Katsuyama, S., Kishida, N., Akiba, M., Endo, T. 2011. Validation for an improved reverse transcription-loop-mediated isothermal amplification assay for detection of Cryptosporidium in water samples. Jpn. J. Water Treat. Biol. 47: 9-18 (In Japanese with English abstract).

58. Iseki, M. 1979. Cryptosporidium felis sp. n. (Protozoa: Eimeriorina) from the domestic cat. Jpn. J. Parasitol. 28: 285-307.

59. Iseki, M. 1986. Two species of Cryptosporidium naturally infecting house rats, Rattus norvegicus. Jpn. J. Parasitol. 35: 521–526.

60. Itakura, C., Goryo, M. and Umemura, T. 1984. Cryptosporidial infection in chickens. Avian Pathology. 13: 487-499.

61. Itakura, C., Fujiwara, M. and Outhc, N. 1985. Cryptosporidiosis in calves—a literature review and first incidence in Japan. J. Jpn. Vet. Med. Assoc. 38: 796-801 (In Japanese with English abstract).
62. Ito, Y., Itoh, N., Kimura, Y. and Kanai, K. 2016. Molecular detection and characterization of Cryptosporidium spp. among breeding cattery cats in Japan. Parasitol. Res. 115: 2121-2123.

63. Ito, Y., Itoh, N., Iijima, Y. and Kimura, Y. 2017. Molecular prevalence of Cryptosporidium species among household cats and pet shop kittens in Japan. J. Feline Med. Surg. Open Reports. 3: 1-4.

64. Itoh, N., Muraoka, N., Kanai, K., Nakao, R., Hori, Y., Hoshi, F., Higuchi, S. 2008. Detection of Cryptosporidium Antigen in Household Dogs and Cats. J. Anim. Clin. Med. 17: 19–23 (In Japanese with English abstract).

65. Itoh, N., Oohashi, Y., Ichikawa-Seki, M., Itagaki, T., Ito, Y., Saeki, H., Kanai, K., Chikazawa, S., Hori, Y., Hoshi, F. and Higuchi, S. 2014. Molecular detection and characterization of Cryptosporidium species in household dogs, pet shop puppies, and dogs kept in a school of veterinary nursing in Japan. Vet. Parasitol. 200: 284-288.

66. Itoh, N., Tanaka, H., Iijima, Y., Kameshima, S. and Kimura, Y. 2019. Molecular Prevalence of Cryptosporidium spp. in Breeding Kennel Dogs. Korean J. Parasitol. 57: 197-200.

67. Iwabuchi, I. and Kirioka, H. 1992. Retrospective examinations on Cryptosporidium in the bursa of fabricius in growing layers. J. Jpn. Vet. Med. Assoc. 45: 317-19 (In Japanese with English abstract).

68. Izumiyama, S., Furukawal, I., Kurokil, T., Ymail, S., Sugiyama, H., Yagita, K. and Endo, T. 2001. Prevalence of Cryptosporidium parvum Infections in Weaned Piglets and fattening porkers in kanagawa prefecture, Japan. Jpn. J. Infect. Dis. 54: 23-26. https://www.niid.go.jp/niid/JJID/OA-20.pdf [accessed on October 28, 2019].

69. Izumiyama, S., Furukawa, I., Kuroki, T., Yagita, K. and Endo, T. 2001. Studies on contamination by Cryptosporidium oocysts and Giardia cysts in two river systems, the
70. Kagawa, K., Fujino, H., Miki, H., Sogabe, K., Takahashi, M., Maruhashi, T., Udaka, K., Iwasa, M., Fujii, S., Nakamura, S. and Abe, M. 2018. Cryptosporidiosis in a transplant recipient with severe intractable diarrhea: Detection of Cryptosporidium oocysts by intestinal biopsies. Transpl. Infect. Dis. 20: p.e12826.

71. Kaneta, Y. and Nakai, Y. 1998. Survey of Cryptosporidium oocysts from adult cattle in a slaughter house. J. Vet. Med. Sci. 60: 585-588.

72. Karanis, P., Eiji, T., Palomino, L., Boonrod, K., Plutzer, J., Ongerth, J. and Igarashi, I. 2010. First description of Cryptosporidium bovis in Japan and diagnosis and genotyping of Cryptosporidium spp. in diarrheic pre-weaned calves in Hokkaido. Vet. Parasitol. 169: 387-390.

73. Kato, S., Yanagawa, Y., Matsuyama, R., Suzuki, M. and Sugimoto, C. 2016. Molecular identification of the Cryptosporidium deer genotype in the Hokkaido sika deer (Cervus nippon yesoensis) in Hokkaido, Japan. Parasitol. Res. 115: 1463-1471.

74. Kaupke, A., Gawor, J., Rzeżutka, A. and Gromadka, R. 2017. Identification of pig-specific Cryptosporidium species in mixed infections using Illumina sequencing technology. Exp. Parasitol. 182: 22-25.

75. Kimura, A., Suzuki, Y. and Matsui, T. 2004. Identification of the Cryptosporidium isolate from chickens in Japan by sequence analyses. J. Vet. Med. Sci. 66: 879-881.

76. Kimura, A., Edagawa, A., Okada, K., Takimoto, A., Yonesho, S. and Karanis, P. 2007. Detection and genotyping of Cryptosporidium from brown rats (Rattus norvegicus) captured in an urban area of Japan. Parasitol. Res. 100: 1417-1420.

77. Kishida, N., Furukawa, I., Kuroki, T., Inomata, A., Izumiyama, S. and Akiba, M. 2010. High-Sensitive quantification of Cryptosporidium in river water samples using a real-time
reverse transcription-polymerase chain reaction. Jpn. J. Water Treat. Biol. 46: 181-189 (In Japanese with English abstract).

78. Kishida, N., Miyata, R., Furuta, A., Izumiyama, S., Tsuneda, S., Sekiguchi, Y., Noda, N. and Akiba, M. 2012. Quantitative detection of Cryptosporidium oocyst in water source based on 18S rRNA by alternately binding probe competitive reverse transcription polymerase chain reaction (ABC-RT-PCR). Water Res. 46: 187-194.

79. Kojima, Y. 1997. Survey of Cryptosporidium in a slaughterhouse. Kanagawa Prefecture Livestock Hygiene Service Center Report. p. 49 (in Japanese).

80. Kosaka, K., Koike, Y., Miyabayashi, Y., Saito, K., Asami, M., Sasaki, M., Sato, S. and Akiba, M. 2019. National survey of utilization of continuous water quality monitors in water supply systems in Japan. Water Supply. 19: 1347-1353.

81. Kotloff, K.L., Nataro, J.P., Blackwelder, W.C., Nasrin, D., Farag, T.H., Panchalingam, S., Wu, Y., Sow, S.O., Sur, D., Breiman, R.F., Faruque, A.S., Zaidi, A.K., Saha, D., Alonso, P.L., Tamboura, B., Sanogo, D., Onwuchekwa, U., Manna, B., Ramamurthy, T., Kanungo, S., Ochieng, J.B., Omore, R., Oundo, J.O., Hossain, A., Das, S.K., Ahmed, S., Qureshi, S., Quadri, F., Adegbola, R.A., Antonio, M., Hossain, M.J., Akinsola, A., Mandomando, I., Nhampossa, T., Acacio, S., Biswas, K., O’Reilly, C.E., Mintz, E.D., Berkeley, L.Y., Muhsen, K., Sommerfelt, H., Robins-Browne, R.M. and Levine, M.M. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 382: 209-222

82. Koyama, Y., Satoh, M., Maekawa, K., Hikosaka, K. and Nakai, Y. 2005. Isolation of Cryptosporidium andersoni Kawatabi type in a slaughterhouse in the northern island of Japan. Vet. Parasitol. 130: 323-326.
83. Kubota, R., Matsubara, K., Tamukai, K., Ike, K. and Tokiwa, T. 2019. Molecular and histopathological features of Cryptosporidium ubiquitum infection in imported chinchillas Chinchilla lanigera in Japan. Parasitol. Int. 68: 9-13.

84. Kubota, R., Tokiwa, T., Matsubara, K., Okamoto, M. and Ike, K. 2020. Detection and molecular characterization of Cryptosporidium species in wild-caught pet spiny-tailed lizards. Int. J. Parasitol. Parasites Wildl. 11: 83-87.

85. Kuroki, T., Watanabe, Y., Asai, Y., Yamai, S., Endo, T., Uni, S., Kimata, I. and Iseki, M. 1996. An outbreak of waterborne cryptosporidiosis in Kanagawa, Japan. Kansenshogaku zasshi. 70: 132-140 (In Japanese with English abstract).

86. Kuroki, T., Izumiyama, S., Yagita, K., Une, Y., Hayashidani, H., Kuro-o, M., Mori, A., Moriguchi, H., Toriba, M., Ishibashi, T. and Endo, T. 2008. Occurrence of Cryptosporidium sp. in snakes in Japan. Parasitol. Res. 103: 801-805.

87. Kváč, M., Kestřánová, M., Pinková, M., Květoňová, D., Kalinová, J., Wagnerová, P., Kotková, M., Vitovec, J., Ditrich, O., McEvoy, J., Stenger, B. and Sak, B. 2013. Cryptosporidium scrofarum n. sp. (Apicomplexa: Cryptosporidiidae) in domestic pigs (Sus scrofa). Vet. Parasitol. 191: 218-227.

88. Lucio-Forster, A., Griffiths, J.K., Cama, V.A., Xiao, L. and Bowman, D.D. 2010. Minimal zoonotic risk of cryptosporidiosis from pet dogs and cats. Trends Parasitol. 26: 174-179.

89. Mahmoudi, M.R., Ongerth, J.E. and Karanis, P. 2017. Cryptosporidium and cryptosporidiosis: the Asian perspective. Int. J. Hyg. Environ. Health. 220: 1098-1109.

90. Makino, I., Abe, N. and Reavill, D.R. 2010. Cryptosporidium avian genotype III as a possible causative agent of chronic vomiting in peach-faced lovebirds (Agapornis roseicollis). Avian Dis. 54: 1102-1107.
91. Makino, I., Inumaru, M., Abe, N. and Sato, Y. 2018. A new avian Cryptosporidium genotype in a 1-month-old caged brown wood owl (Strix leptogrammica) with severe dehydration and diarrhea. Parasitol. Res. 117: 3003-3008.

92. Masago, Y., Oguma, K., Katayama, H. and Ohgaki, S. 2005. Genotyping of Cryptosporidium spp. in water by denaturing gradient gel electrophoresis (DGGE). Environ. Eng. Res. 42: 591-600 (In Japanese with English abstract).

93. Masago, Y., Oguma, K., Katayama, H. and Ohgaki, S. 2006. Quantification and genotyping of Cryptosporidium spp. in river water by quenching probe PCR and denaturing gradient gel electrophoresis. Water Sci. Technol. 54: 119-126.

94. Masatani, T., Fereig, R.M., Otomaru, K., Ishikawa, S., Kojima, I., Hobo, S. and Nishikawa, Y. 2018. Seroprevalence of Cryptosporidium parvum and Neospora caninum in cattle in the southern Kyushu region of Japan. Parasitol. Int. 67: 763-767.

95. Masuda, G., Negishi, M., Ajisawa, A., Yamaguchi, T., Tajima, T., Tamagawa, S., Maeda, Y., Ohtomo, H., Kimata, I. and Uni, S., Iseki, M. and Takada, S. 1991. Cryptosporidium diarrhea developing in two Japanese adults--one in AIDS and the other in a normal host. Research Group for Infectious Enteric Diseases, Japan. Kansenshogaku zasshi. 65: 1614-1619 (In Japanese with English abstract).

96. Masuno, K., Fukuda, Y., Kubo, M., Ikarashi, R., Kuraishi, T., Hattori, S., Kimura, J., Kai, C., Yanai, T. and Nakai, Y. 2014. Infectivity of Cryptosporidium andersoni and Cryptosporidium muris to normal and immunosuppressive cynomolgus monkeys. J. Vet. Med. Sci. 76: 169-172.

97. Matsubayashi, M., Kimata, I., Abe, N., Tani, H. and Sasai, K. 2004. The detection of a novel type of Cryptosporidium andersoni oocyst in cattle in Japan. Parasitol. Res. 93: 504-506.
98. Matsubayashi, M., Abe, N., Kimata, I., Takezawa, Y., Tani, H., Sasai, K. and Baba, E. 2004. Mixed infection of Cryptosporidium and Giardia in a pet dog. J. Jpn. Vet. Med. Assoc. 57: 317-320 (In Japanese with English abstract).

99. Matsubayashi, M., Abe, N., Takami, K., Kimata, I., Iseki, M., Nakanishi, T., Tani, H., Sasai, K. and Baba, E. 2004. First record of Cryptosporidium infection in a raccoon dog (Nyctereutes procyonoides viverrinus). Vet. Parasitol. 120: 171-175.

100. Matsubayashi, M., Kimata, I., Iseki, M., Hajiri, T., Tani, H., Sasai, K. and Baba, E. 2005. Infectivity of a novel type of Cryptosporidium andersoni to laboratory mice. Vet. Parasitol. 129: 165-168.

101. Matsubayashi, M., Takami, K., Kimata, I., Nakanishi, T., Tani, H., Sasai, K. and Baba, E. 2005. Survey of Cryptosporidium spp. and Giardia spp. infections in various animals at a zoo in Japan. J. Zoo. Wildl. Med. 36: 331-336.

102. Matsubayashi, M., Nagano, S., Kita, T., Narushima, T., Kimata, I., Iseki, M., Hajiri, T., Tani, H., Sasai, K. and Baba, E. 2008. Genetical survey of novel type of Cryptosporidium andersoni in cattle in Japan. Vet. Parasitol. 158: 44-50.

103. Matsui, T., Fujino, T., Kobayashi, F., Tsutsumi, Y. and Tsuji, M. 1996. Increase in size of oocysts of Cryptosporidium sp. from chicken and C. muris during patency and during preservation. Jpn. J. Parasitol. 45: 134-138.

104. Matsuura, Y., Matsubayashi, M., Nukata, S., Shibahara, T., Ayukawa, O., Kondo, Y., Matsuo, T., Uni, S., Furuya, M., Tani, H., Tsuji, N. and Sasai, K. 2017. Report of fatal mixed infection with Cryptosporidium parvum and Giardia intestinalis in neonatal calves, Acta parasitol. 62: 214-220.

105. MHLW 2007. Guideline for control of Cryptosporidium in drinking water (in Japanese). https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/ks-0330005.pdf [accessed on November 28, 2019].
106. Miyaji S., Tanikawa T. and Shikata J. 1989. Prevalence of Cryptosporidium in Rattus rattus and R. norvegicus in Japan. Jpn. J. Parasitol. 38: 368–372.

107. Miyaji, S., Sakanashi, Y., Asami, H. and Shikata, J. 1990. Cryptosporidial Infections in Calves in Kanto District, Japan, and Experimental Infections in Mice. Jpn. J. Vet. Sci. 52: 435-437.

108. Miyano, A., Miyazaki, M. and Isokami, S. 1999. Survey of Cryptosporidium in a Slaughterhouse. Fukushima Prefecture Koriyama Livestock Hygiene Service Center Report: 33–37 (in Japanese).

109. Murakami, S., Miyama, M., Ogawa, A., Shimada, J. and Nakane, T. 2002. Occurrence of conjunctivitis, sinusitis and upper region tracheitis in Japanese quail (Coturnix coturnix japonica), possibly caused by Mycoplasma gallisepticum accompanied by Cryptosporidium sp. Infection. Avian Pathol. 31: 363-370.

110. Murakoshi, F., Xiao, L., Matsubara, R., Sato, R., Kato, Y., Sasaki, T., Fukuda, Y., Tada, C. and Nakai, Y. 2012. Molecular characterization of Cryptosporidium spp. in grazing beef cattle in Japan. Vet. Parasitol. 187: 123-128.

111. Murakoshi, F., Tozawa, Y., Inomata, A., Horimoto, T., Wada, Y. and Kato, K. 2013. Molecular characterization of Cryptosporidium isolates from calves in Ishikari District, Hokkaido, Japan. J. Vet. Med. Sci. 75: 837-840.

112. Murakoshi, F., Fukuda, Y., Matsubara, R., Kato, Y., Sato, R., Sasaki, T., Tada, C. and Nakai, Y. 2013. Detection and genotyping of Cryptosporidium spp. in large Japanese field mice, Apodemus speciosus. Vet. Parasitol. 196: 184-188.

113. Murakoshi, F., Ichikawa-Seki, M., Aita, J., Yaita, S., Kinami, A., Fujimoto, K., Nishikawa, Y., Murakami, S., Horimoto, T. and Kato, K. 2016. Molecular epidemiological analyses of Cryptosporidium parvum virus 1 (CSpV1), a symbiotic virus of Cryptosporidium parvum, in Japan. Virus Res. 211: 69-72.
114. Murakoshi, F., Koyama, K., Akasaka, T., Horiuchi, N. and Kato, K. 2018. Molecular and histopathological characterization of Cryptosporidium and Eimeria species in bats in Japan. J. Vet. Med. Sci. 80: 1395-1399.

115. Nagano, S., Matsubayashi, M., Kita, T., Narushima, T., Kimata, I., Iseki, M., Hajiri, T., Tani, H., Sasai, K. and Baba, E. 2007. Detection of a mixed infection of a novel Cryptosporidium andersoni and its subgenotype in Japanese cattle. Vet. parasitol. 149: 213-218.

116. Nagano-Koyashiki, S., Matsubayashi, M., Kimata, I., Furuya, M., Tani, H. and Sasai, K. 2013. Infectivity of Cryptosporidium andersoni Kawatabi type relative to the small number of oocysts in immunodeficient and immunocompetent neonatal and adult mice. Parasitol. Int. 62: 109-111.

117. Nakagun, S., Horiuchi, N., Sugimoto, M., Tomikawa, S., Watanabe, K. and Kobayashi, Y. 2017. Proventriculitis associated with Cryptosporidium baileyi in a snowy owl (Bubo scandiacus) and its epidemiological investigation. J. Parasitol. 103: 451-457.

118. Nakai, Y., Hikosaka, K., Sato, M., Sasaki, T., Kaneta, Y. and Okazaki, N. 2004. Detection of Cryptosporidium muris type oocysts from beef cattle in a farm and from domestic and wild animals in and around the farm. J. Vet. Med. Sci. 66: 983-984.

119. Nakamura, N., Otsuka, T. and Uchiyama, T. 1998. Prevalence of Cryptosporidium from livestock animals in a slaughterhouse in Omiya City. Bulletin of Saitama Prefecture Livestock Hygiene Service Center. p. 46 (in Japanese).

120. Obana, M., Sagara, H., Aoki, T., Kim, R., Takizawa, Y., Tsunoda, T., Irimajiri, S. and Yamashita, K. 2002. The current status of infectious enteritis in Japan--reports of the" Research Group for Infectious Enteric Diseases, Japan" in the last 5 years (1996-2000). Kansenshogaku zasshi. 76: 355-368 (In Japanese with English abstract).
121. Ogata, S., Suganuma, T., Okada, C., Inoue, K., Kinoshita, A. and Sato, K. 2009. A case of sporadic intestinal cryptosporidiosis diagnosed by endoscopic biopsy. Acta Med. Okayama. 63: 287-291. https://core.ac.uk/download/pdf/25770322.pdf [accessed on October 25, 2019].

122. Okazaki, N. 1996. Survey of Cryptosporidium from slaughtered animal and experimental infection, Miyagi Prefecture. Senhoku Livestock Hygiene Service Center Report: 27–29 (in Japanese).

123. Olson, M.E., O'Handley, R.M., Ralston, B.J., McAllister, T.A. and Thompson, R.A. 2004. Update on Cryptosporidium and Giardia infections in cattle. Trends Parasitol. 20:185-191.

124. Ono, K., Tsuji, H., Shimada, K., Masuda, K. and Endo, T. 2001. Isolation and incidence of Cryptosporidium and Giardia from river water. Kansenshogaku zasshi. 75:201-208 (In Japanese with English abstract).

125. Ono, K., Tsuji, H., Rai, S.K., Yamamoto, A., Masuda, K., Endo, T., Hotta, H., Kawamura, T. and Uga, S. 2001. Contamination of River Water by Cryptosporidium parvum oocysts in western Japan. Appl. Environ. Microbiol. 67: 3832-3836.

126. Pereira, S.J., Ramirez, N.E., Xiao, L. and Ward, L.A. 2002. Pathogenesis of human and bovine Cryptosporidium parvum in gnotobiotic pigs. J. Infect. Dis. 186: 715-718.

127. Priest, J.W., Bern, C., Xiao, L., Roberts, J.M., Kwon, J.P., Lescano, A.G., Checkley, W., Cabrera, L., Moss, D.M., Arrowood, M.J., Sterling, C.R., Gilman, R.H. and Lammie, P.J. 2006. Longitudinal analysis of Cryptosporidium species-specific immunoglobulin G antibody responses in Peruvian children. Clin. Vaccine Immunol. 13: 123-131.

128. Ramirez, N.E., Ward, L.A. and Sreevatsan, S. 2004. A review of the biology and epidemiology of cryptosporidiosis in humans and animals. Microb Infect. 6: 773-785.
129. Rose, J.B., Huffman, D.E. and Gennaccaro, A. 2002. Risk and control of waterborne cryptosporidiosis. FEMS Microbiol. Rev. 26: 113-123.

130. Ryan, U. 2010. Cryptosporidium in birds, fish and amphibians. Exp. Parasitol. 124: 113-120.

131. Ryan, U. and Hijjawi, N. 2015. New developments in Cryptosporidium research. Int. J. Parasitol. 45: 367-373.

132. Ryan, U., Fayer, R. and Xiao, L. 2014. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology. 141: 1667-1685.

133. Saeki, S., Inada, I., Fukumizu, S., Yoshioka, K., Okahata, K., Oh, S., Inamoto, F., Takekawa, A. and Uga, S. 2000. Epidemiological studies on Cryptosporidium spp. infection in cattle in Hyogo Prefecture. J. Jpn. Vet. Med. Assoc. 53: 25-29. (In Japanese with English abstract).

134. Saeki, S., Inada, I., Fukumizu, S., Okahata, K., Koshimae, M., Genta, T., Futsuki, Y., Fukunaga, M. and Uga, S. 2002. Cryptosporidium-oocyst contamination of wastewater discharged from livestock and poultry slaughterhouses in Hyogo Prefecture. J. Jpn. Vet. Med. Assoc. 55: 371-374 (In Japanese with English abstract).

135. Saga, N., Asano, D., Murakami, S., Kondou, H., Nishihara, K. and Hirose, K. 1987. The diarrhea of beef cattle with cryptosporidiosis. Abstracts of 35th Livestock Health Hygiene, Hokkaido: 106–111 (in Japanese).

136. Sakai, H., Tsushima, Y., Nagasawa, H., Ducusin, R.J.T., Tanabe, S., Uzuka, Y. and Sarashina, T. 2003. Cryptosporidium infection of cattle in the Tokachi district, Hokkaido. J. Vet. Med. Sci. 65: 125-127.

137. Salama, R.Y., Abdelbaset, A.E., Takeda, Y., Imai, K., Ogawa, H. and Igarashi, M. 2020. Molecular characterization of Cryptosporidium spp. from migratory ducks around Tokachi subprefecture, Hokkaido, Japan. J. Vet. Med. Sci.19-0586.
138. Santín, M., Trout, J.M. and Fayer, R. 2008. A longitudinal study of cryptosporidiosis in dairy cattle from birth to 2 years of age. Vet. Parasitol. 155: 15-23.

139. Sato, S., Minamidate, K., Takahashi, K. and Saito, M. 1987. *Cryptosporidium* infection of neonatal calves affected with diarrhea in Miyagi Prefecture. J. Vet. Clinic. 285: 17-20 (in Japanese).

140. Satoh, M., Hikosaka, K., Sasaki, T., Suyama, Y., Yanai, T., Ohta, M. and Nakai, Y. 2003. Characteristics of a novel type of bovine *Cryptosporidium andersoni*. Appl. Environ. Microbiol. 69: 691-692.

141. Satoh, M., Kimata, I., Iseki, M. and Nakai, Y. 2005. Gene analysis of *Cryptosporidium parvum* HNJ-1 strain isolated in Japan. Parasitol. Res. 97: 452-457.

142. Satoh, M., Matsubara-Nihei, Y., Sasaki, T. and Nakai, Y. 2006. Characterization of *Cryptosporidium canis* isolated in Japan. Parasitol. Res. 99: 746-748.

143. Savioli, L., Smith, H. and Thompson, A. 2006. *Giardia* and *Cryptosporidium* join the ‘neglected diseases initiative. Trends Parasitol. 22: 203-208.

144. Schubnell, F., von Ah, S., Graage, R., Sydler, T., Sidler, X., Hadorn, D. and Basso, W. 2016. Occurrence, clinical involvement and zoonotic potential of endoparasites infecting Swiss pigs. Parasitol. Int. 65: 618-624.

145. Shiibashi, T., Imai, T., Sato, Y., Abe, N., Yukawa, M. and Nogami, S. 2006. *Cryptosporidium* infection in juvenile pet rabbits. J. Vet. Med. Sci. 68: 281-282.

146. Shiota, T., Oda, T. and Arizono, N. 1994. Imported cryptosporidiosis--report of a case in Japan and review of the literature. Kansenshogaku zasshi. 68: 941-945 (In Japanese with English abstract).

147. Shirozu, T., Soga, A., Morishita, Y.K., Seki, N., Ko-ketsu, M. and Fukumoto, S. 2020. Prevalence and phylogenetic analysis of *Cryptosporidium* infections in Yezo sika deer.
(Cervus nippon yesoensis) in the Tokachi sub-prefecture of Hokkaido, Japan. Parasitol. Int. 76: p.102064.

148. Smith, H.V., Cacciò, S.M., Tait, A., McLauchlin, J. and Thompson, R.A. 2006. Tools for investigating the environmental transmission of Cryptosporidium and Giardia infections in humans. Trends Parasitol. 22: 160-167.

149. Statistics on Livestock” by the Statistics Department of MAFF, Feb. 1, 2017. http://www.maff.go.jp/e/data/stat/92nd/index.html#8 [accessed on November 17, 2019].

150. Suwa, M. and Suzuki, Y. 2001. Occurrence of Cryptosporidium in Japan and countermeasures in wastewater treatment plants. Water Sci. Technol. 43: 183-186.

151. Suwa, M. and Suzuki, Y. 2003. Control of Cryptosporidium with wastewater treatment to prevent its proliferation in the water cycle. Water Sci. Technol. 47: 45-49.

152. Suzuki, N., Okamura, Y., Kurashige, T., Kurashige, M., Hamada, G., Koresawa, S. and Saika, K. 1986. Cryptosporidial enteritis in a patient with nephrotic syndrome. Jpn. J. Trop. Med. Hyg. 14: 13-21 (In Japanese with English abstract).

153. Suzuki, S., Sahara, K., Nishina, T., Ikehata, A., Atsumi, M., Honda, H. and Kuroki, T. 1998. Detection of Cryptosporidium muris from the feces of slaughtered cattle. J. Jpn. Vet. Med. Assoc. 51: 163–165 (In Japanese with English abstract).

154. Tajima, A., Sakurai, K. and Minamiyama, M. 2007. Behavior of pathogenic microbes in a treated wastewater reuse system and examination of new standards for the reuse of treated wastewater. Environ. Monit. Assess. 129: 43-51.

155. Takagi, M., Toriumi, H., Endo, T., Yamamoto, N. and Kuroki, T. 2008. An outbreak of cryptosporidiosis associated with swimming pools. Kansenshogaku zasshi. 82: 14-19 (In Japanese with English abstract).
156. Tani, Y., Harada, H., Kasai, M., Watanabe, T., Nakamura, T., Yahata, E., Ominaga, S. and Yamaguchi, G. 1999. Survey of Cryptosporidium muris in a slaughterhouse. Tokushima Prefecture Livestock Hygiene Service Center Report: 39–41 (in Japanese).

157. Troeger, C. and GBD 2016 Diarrhoeal Disease Collaborators 2018. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 18: 1211-1228.

158. Tsai, S.S., Hirai, K. and Itakura, C. 1992. Histopathological survey of protozoa, helminths and acarids of imported and local psittacine and passerine birds in Japan. Jpn. J. Vet. Res. 40: 161-174.

159. Tsubouchi, Y., Yamauchi, S., Hosi, Y., Saitoh, F., Okumura, M., Yamada, Y. and Nakanishi, K. 1999. Cryptosporidium detected from various animals. Aichi Prefecture Livestock Hygiene Service Center Report: 48–49 (in Japanese).

160. Tsushima, Y., Karanis, P., Kamada, T., Nagasawa, H., Xuan, X., Igarashi, I., Fujisaki, K., Takahashi, E. and Mikami, T. 2001. Detection of Cryptosporidium parvum oocysts in environmental water in Hokkaido, Japan. J. Vet. Med. Sci. 63: 233-236.

161. Tsushima, Y., Karanis, P., Kamada, T., Makala, L., Xuan, X., Tohya, Y., Akashi, H. and Nagasawa, H. 2003. Seasonal change in the number of Cryptosporidium parvum oocysts in water samples from the rivers in Hokkaido, Japan, detected by the ferric sulfate flocculation method. J. Vet. Med. Sci. 65: 121-123.

162. Tsushima, Y., Karanis, P., Kamada, T., Xuan, X., Makala, L.H., Tohya, Y., Akashi, H. and Nagasawa, H. 2003. Viability and infectivity of Cryptosporidium parvum oocysts detected in river water in Hokkaido, Japan. J. Vet. Med. Sci. 65: 585-589.
163. Ueki, H., Ikeda, M., Oyamada, T., Yoshikawa, H. and Yoshikawa, T. 2001. Cryptosporidium sp. isolated from an ostrich in Japan. J. Jpn. Vet. Med. Assoc. 54: 9-12 (In Japanese with English abstract).

164. Uga, S., Matsumura, T., Ishibashi, K., Yoda, Y., Yatomi, K. and Takaoka, N. 1989. Cryptosporidiosis in dogs and cats in Hyogo Prefecture, Japan. Jpn. J. Parasitol. 38: 139-143.

165. Uga, S., Matsuo, J., Kono, E., Kimura, K., Inoue, M., Rai, S.K. and Ono, K. 2000. Prevalence of Cryptosporidium parvum infection and pattern of oocyst shedding in calves in Japan. Vet. Parasitol. 94: 27-32.

166. Water Research Center, 1997. Research report on survey of Cryptosporidium and Giardia from source water, Coordinating ed., M. Kaneko, Water Research Center, Tokyo, Japan (In Japanese).

167. Widmer, G., Köster, P.C. and Carmena, D. 2020. Cryptosporidium hominis infections in non-human animal species: revisiting the concept of host specificity. Int. J. Parasitol. 50: 253-262.

168. Xiao, L. 2010. Molecular epidemiology of cryptosporidiosis: an update. Exp. Parasitol. 124: 80-89.

169. Xiao, L. and Fayer, R. 2008. Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int. J. Parasitol. 38: 1239-1255.

170. Xiao, L. and Feng, Y. 2008. Zoonotic cryptosporidiosis. FEMS Immunol. Med. Microbiol. 52: 309-323.

171. Xiao, L., Cama, V.A., Cabrera, L., Ortega, Y., Pearson, J. and Gilman, R.H. 2007. Possible transmission of Cryptosporidium canis among children and a dog in a household. J. Clin. Microbiol. 45: 2014-2016.
172. Yagita, K., Izumiyama, S., Tachibana, H., Masuda, G., Iseki, M., Furuya, K., Kameoka, Y., Kuroki, T., Itagaki, T. and Endo, T. 2001. Molecular characterization of Cryptosporidium isolates obtained from human and bovine infections in Japan. Parasitol. Res. 87: 950-955.

173. Yamamoto, N., Urabe, K.I., Takaoka, M., Nakazawa, K., Gotoh, A., Haga, M., Fuchigami, H., Kimata, I. and Iseki, M. 2000. Outbreak of cryptosporidiosis after contamination of the public water supply in Saitama Prefecture, Japan, in 1996. Kansenshogaku zasshi. 74: 518-526.

174. Yamamoto, N., Kon, M., Saito, T., Maeno, N., Koyama, M., Sunaoshi, K., Yamaguchi, M., Morishima, Y. and Kawanaka, M. 2009. Prevalence of intestinal canine and feline parasites in Saitama Prefecture, Japan. Kansenshogaku zasshi. 83: 223-228 (In Japanese with English abstract).

175. Yamaura, H., Shirasaka, R., Asahi, H., Koyama, T., Motoki, M. and Ito, H. 1990. Prevalence of Cryptosporidium infection among house rats, Rattus rattus and R. norvegicus, in Tokyo, Japan and experimental cryptosporidiosis in roof rats. Jpn. J. Parasitol. 39: 439-444.

176. Yamazaki, T., Sasaki, N., Takahashi, S., Satomi, A., Hashikita, G., Oki, F., Itabashi, A., Hirayama, K. and Hori, E. 1997. Clinical features of Japanese children infected with Cryptosporidium parvum during a massive outbreak caused by contaminated water supply. Kansenshogaku zasshi. 71: 1031-1036 (In Japanese with English abstract).

177. Yamazaki, A., Izumiyama, S., Yagita, K., Kishida, N., Kubosaki, A., Hara-Kudo, Y., Kamata, Y. and Terajima, J. 2018. The Molecular Detection of Cryptosporidium and Giardia in Sika Deer (Cervus Nippon Centralis) in Japan. Food Safety. 6: 88-95.

178. Yokoi, H., Tsuruta, M., Tanaka, T., Tsutake, M., Akiba, Y., Kimura, T., Tokita, Y., Akimoto, T., Mitsui, Y., Ogasawara, Y. and Ikegami, H. 2005. Cryptosporidium outbreak
177. Yokoya, K., Fukumoto, S. and Etani, K. 1988. The survey of cryptosporidiosis in Holstein cattle in Hokkaido. J. Hokkaido Vet. Med. Assoc. 32: 35-36 (In Japanese).

178. Yoshida, H., Matsuo, M., Miyoshi, T., Uchino, K., Nakaguchi, H., Fukumoto, T., Teranaka, Y. and Tanaka, T. 2007. An outbreak of cryptosporidiosis suspected to be related to contaminated food, October 2006, Sakai City, Japan. Jpn. J. Infect. Dis. 60: 405-407. http://www0.nih.go.jp/JJID/60/405.pdf [accessed on October 27, 2019].

179. Yoshiuchi, R., Matsubayashi, M., Kimata, I., Furuya, M., Tani, H. and Sasai, K. 2010. Survey and molecular characterization of Cryptosporidium and Giardia spp. in owned companion animal, dogs and cats, in Japan. Vet. parasitol. 174: 313-316.

180. Yui, T., Shibahara, T., Kohmoto, M., Yamashina, H., Yoshida, T., Fukuda, M., Watanabe, Y. and Kubo, M. 2010. Detection of Cryptosporidium parvum pig genotype II and Cryptosporidium suis from growing-fattening pigs infected with porcine circovirus type 2, and porcine reproductive and respiratory syndrome virus in growing-fattening pigs. J. Jpn. Vet. Med. Assoc. 63: 61-68 (In Japanese with English abstract).

181. Yui, T., Shibahara, T., Kon, M., Yamamoto, N., Kameda, M. and Taniyama, H. 2014. Epidemiological studies on intestinal protozoa in pigs in Saitama, Japan. JARQ. 48: 87-93.

182. Yui, T., Nakajima, T., Yamamoto, N., Kon, M., Abe, N., Matsubayashi, M. and Shibahara, T. 2014. Age-related detection and molecular characterization of Cryptosporidium suis and Cryptosporidium scrofarum in pre-and post-weaned piglets and adult pigs in Japan. Parasitol. Res. 113: 359-365.

183. Zahedi, A., Paparini, A., Jian, F., Robertson, I. and Ryan, U. 2016. Public health significance of zoonotic Cryptosporidium species in wildlife: critical insights into better drinking water management. Int. J. Parasitol. Parasites. Wildl. 5: 88-109.
Table 1. *Cryptosporidium* prevalence and species identification in cattle, Japan.

| Host | Region | Age range | No. tested | No. positive (%) | No. of species | Cryptosporidium genotypes and subtypes / remarks | Reference |
|------|--------|-----------|------------|------------------|---------------|---------------------------------------------|-----------|
| Cattle | Saitama | 2-8 wk | 3 | 1 | 8 (14.8)a | 1 | *C. parvum**. Numbers representing positive samples among two farms in the two prefectures | Miyagi et al., 1990 [107] |
| Chiba | Adult | 500 | 14 (2.8) | 1 | *C. muris* | | Suzuki et al., 1998 [153] |
| Shizuoka | Adult | 512 | 24 (4.7) | 1 | *C. muris* like oocysts | | Kaneta and Nakai 1998 [71] |
| Miyagi | Variable | 582 | 10 (1.7)a | 2 | *C. muris; C. parvum* | | Sacki et al., 2000 [133] |
| Hyogo | D 1 - 30 | 30 | 28 (93)c | 1 | *C. parvum* | | Uga et al. 2000 [165] |
| Miyagi | Adult Calves | 113 | 6 (5.3) | 2 | *C. andersoni* (Kawatabi strain) | | Satoh et al. 2003 [140] |
| Hokkaido | 0-39 mo | 480 | 16 (3.33) | 2 | *C. parvum; C. muris* by PCR-RFLP | | Sakai et al., 2003 [136] |
| Tokachi | 1 mo | 1; Molecular study | 1 | 1 | *C. andersoni* (Kawatabi strain) | | Matsubayashi et al. 2004 [97] |
| Shihoro | NS | 516 beef cattle | 21 (4) | 1 | *C. muris* like oocysts | | Nakai et al., 2004 [118] |
| Miyagi | 2-10 yr | 325 | 5 (1.5)c | 1 | *C. andersoni* (Kawatabi strain) | | Koyama et al. 2005 [82] |
| Saga | 2 yr | 1; Molecular study | 1 | 1 | *C. andersoni* (Kawatabi strain type A, B) | | Nagano et al. 2007 [115] |
| Honshu, Hokkaido, Shikoku, and Kyushu islands | 17.1-37.4 mo | 205 | 12 (5.9) | 1 | *C. andersoni* (Kawatabi strain type A, B) | | Matsubayashi et al. 2008 [102] |
| Miyagi | Osaki | >24 mo | 50 | 5 (10) | 3 | *C. parvum* (IaA15G2R1); *C. andersoni*; *C. deer-like genotype* | | Amer et al. 2009 [16] |
| Hokkaido | 3-45 d | 80 diarrheic samples | 60 (75) | 2 | *C. parvum; C. bovis* | | Karanis et al. 2010 [72] |
| Miyagi | 2 mo-15 | 113 | 23 (20) | 2 | *C. bovis; C. ryanae* | | Murakoshi et al. 2012 |
| Location        | Age        | N Count | Seropositive Rate | Species | Reference |
|-----------------|------------|---------|-------------------|---------|-----------|
| Osaki           | Adult      | 3775    | 171 (4.5)         | C. andersoni (Kawatabi strain type A, B)² | Ikarashi et al. 2013 [55] |
| Tohoku          |            | 310     | 4 (1.3)           |         |           |
| Hokkaido        | 2-120 d    | 107     | 25 (23)³         | C. parvum (IaA15G2R1); C. bovis; C. ryanae | Murakoshi et al. 2013 [111] |
| Ishikari        |            |         |                   |         |           |
| Iwate           | 6–76 d     | 77      | 43 (56)³        | C. parvum (IaA15G2R1) | Aita et al. 2015 [12] |
| Kagoshima       |            |         |                   |         |           |
| Hokkaido        | 5-211 mo   | 94      | 2 (2.1)          | C. andersoni (type A, B) | Aita et al. 2015 [13] |
| Tokachi         |            |         |                   |         |           |
| Okinawa         | 6 - 88 d   | 50      | 25 (50)          | C. parvum (IaA15G2R1) | Ichikawa-Seki et al. 2015 [50] |
| Tokachi         | 4-21 d     | 25      | 25 (100)         |         |           |
| Hokkaido        | calves     | 117     | 4 (3.4)          | C. parvum (IaA15G2R1) | Murakoshi et al. 2016 [113] |
| Hokkaido        | calves     | 4       | 1                 | C. parvum (IaA15G2R1) | Matsuura et al., 2017 [104] |
| Chiba           | calves     | 3       | 1                 |         |           |
| Kyushu Island   | 3 mo - >   | 570     | 549 (96.3)       | Seropositive for C. parvum using CpP23-ELISA | Masatani et al. 2018 [94] |
|                 | 12 mo      | sera    |                   |         |           |
|                 | 33 cattle farms |       |                   |         |           |
|                 | 570 sera   |         |                   |         |           |
|                 | 9 cattle farms |       |                   |         |           |
|                 | Variable   | 344     | 258 (75)         | Two farms suffered from C. parvum infections before (C. parvum-positive farms). The positive rates of antibodies against CpP23 and CpGP15 in the C. parvum-positive farms was 63.0% (n= 133/211). In contrast, 18.8% were positive for the C. parvum-negative farms (n= 25/133). | Ichikawa-Seki et al. 2019 [51] |

* Some positive samples were from diarrheic animals

* Species that may be considered disputable because they were only morphologically identified

¹ It has been proposed that C. andersoni (Kawatabi strain) is the correct genotype, not C. muris

² The C. andersoni Kawatabi strains confirmed in these studies are based on their 18S rRNA gene sequences and other genes, and their infectivity to mice

Abbreviations: C., Cryptosporidium; d, day old; wk, week; mo, month; yr, year; NS, not stated.
Table 2. *Cryptosporidium* prevalence and species identification in pigs, Japan.

| Host | Region | Age range | No. tested | No. positive | No. of species | Cryptosporidium genotypes and subtypes / remarks | Reference |
|------|--------|-----------|------------|--------------|----------------|-----------------------------------------------|-----------|
| Pigs | Kanagawa | 1-3 mo | 232 weaned piglets | 77 (33.2) | 1 | *C. parvum* utilizing immunofluorescent staining of oocysts. | Izumiya *et al.*, 2001 [68] |
| | | 6 mo | 252 fattening porkers | 1 (0.4) | | | |
| | Saitama | 60 d | 4 underdeveloped | 2 | 2 | *C. parvum* pig genotype II or *C. suis*. PCR-RFLP analysis. | Yui *et al.*, 2010 [182] |
| | | 35-60 d | 40 penmates | 30 (75) | | | |
| | | <1 mo | 39 Pre-weaned | 7 (17.9) | NS | Utilizing immunofluorescent staining of oocysts. Totally; out of 334 examined pigs, 79 were infected (23.7 %). | Yui *et al.*, 2014 [183] |
| | | 1–<2 mo | 29 Weaned | 8 (27.6) | | | |
| | | 2-6 mo | 190 finished | 62 (32.6) | | | |
| | | Sows, Sow candidates | 76 | 2 (2.6) | | | |
| | | <1 mo | 55 Pre-weaned | 15 (27.3) | 2 | *C. suis; C. scrofarum* Totally; out of 344 examined pigs, 112 were infected (32.6 %). | Yui *et al.*, 2014 [184] |
| | | 1–2 mo | 65 Weaned | 31 (47.7) | | | |
| | | 2-6 mo | 172 finished | 59 (34.3) | | | |
| | | sows | 36 | 4 (11.1) | | | |
| | | boars | 16 | 3 (18.8) | | | |

* Species proposed by morphology only and may therefore be questionable.

Abbreviations: C., *Cryptosporidium*, d, day old; mo, month; NS, not stated.
### Table 3. Cryptosporidium prevalence and species identification in dogs and cats, Japan.

| Host | Region              | Age range | No. tested | No. positive | No. of species | Cryptosporidium genotypes and subtypes / remarks | Reference                      |
|------|---------------------|-----------|------------|--------------|----------------|-------------------------------------------------|--------------------------------|
| Dog  | Niigata             | 9 wk      | Molecular study | 1 (1)        | 1              | C. parvum dog genotype                           | Abe et al. 2002 [6]           |
| Osaka| adult               | 140 stray dogs  | 13 (9.3)  | 1            | C. canis       |                                                  | Abe et al. 2002 [7]           |
| Tochigi | NS               | 772       | 1          | NS           | Samples were collected in 1979, 1991 and 2001 | Asano et al., 2004 [20]       |
| Osaka| 4 yr                | 1         | 1          | 1            | C. canis mixed with *Giardia* infection          | Matsubayashi et al. 2004 [98] |
| Miyagi| NS                  | 294       | 1 (0.3)   | 1            | C. canis       |                                                  | Satoh et al. 2006 [142]       |
| NS   | 1 mo-16 yr          | 190 household dogs | 12 (6.3) | NS           | Coproantigen detection using commercial ELISA kit | Itoh et al. 2008 [64]         |
| Saitama | Juvenile, adult   | 906       | 8 (0.9)   | 1            | C. canis       |                                                  | Yamamoto et al., 2009 [174]   |
| Osaka| 3 mo-15 yr          | 77        | 3 (3.9)   | 1            | C. canis       |                                                  | Yoshiuchi et al. 2010 [181]   |
| Hokkaido | 2 mo-18 yr       | 529 household dogs | 38 (7.2) | 1            | C. canis       |                                                  | Itoh et al. 2014 [65]         |
| Tohoku | ≤3 mo             | 471 pet shop puppies | 149 (31.6)| 17 (18.4)    |                                                          |                                 |
| Kanto  | 2-11 yr            | 98 veterinary nursing school dogs | 18 (18.4) |                                                          |                                 |
| Kinki  |                     |           |            |              |                                                          |                                 |
| Kyushu |                     |           |            |              |                                                          |                                 |
| Okinawa|                   |           |            |              |                                                          |                                 |
| Miyagi| 2 mo-11 yr         | 314 breeding kennel dogs | 66 (21)  | 1            | C. canis       |                                                  | Itoh et al. 2019 [66]         |
| Niigata|                  |           |            |              |                                                           |                                 |
| Gunma |                     |           |            |              |                                                           |                                 |
| Shizuoka |                |           |            |              |                                                           |                                 |
| Aichi  |                     |           |            |              |                                                           |                                 |
| Osaka  | NS                  | 1 raccoon dog* | 1          | 1            | C. parvum cattle genotype                           | Matsubayashi et al. 2004, 2005 [99, 101] |
|                                                |           |            |              | This study was conducted at Osaka Municipal Tennoji Zoological Gardens |                                 |
| Cat   | Tokyo Metropolitan | Variable | 608        | 23 (3.8)    | NS            | One year survey from February, 1988 to February, 1989 | Arai et al. 1990 [19]         |
| Chiba | NS                  | 326       | 1          | NS           | Sampling from December 1998 to December 1999         | Hata et al., 2000 [45]         |
| NS    | 1 mo-17 yr          | 89 household cats | 9 (10.1)  | NS           | Coproantigen detection using commercial               | Itoh et al. 2008 [64]         |
284 fecal samples were collected from various zoo animals and a raccoon dog was the only *Cryptosporidium*-positive animal.

Abbreviations: C., *Cryptosporidium*, wk, week old; mo, month; yr, year; NS, not stated.

| Location       | Age         | Sample Size | Mean (SD) | Count | ELISA Kit | Reference        |
|----------------|-------------|-------------|-----------|--------|-----------|------------------|
| Saitama        | Juvenile, adult | 1,079       | 30 (2.8)  | 1      | *C. felis* | Yamamoto et al., 2009 [174] |
| Osaka          | 3 mo-15 yr   | 55          | 7 (12.7)  | 1      | *C. felis* | Yoshiuchi et al. 2010 [181] |
| Nagano         | 1 mo-12 yr   | 286         | 4 (1.4)   | 1      | *C. felis* | Ito et al. 2016 [62] |

- **Hokkaido**
  - 1 mo-23 yr: 357 household cats, 7 (2.0) 1 *C. felis* | Ito et al. 2017 [63]
  - 1–3 mo: 329 pet shop kittens, 1 (0.3) 1 *C. felis* | Ito et al. 2017 [63]

* 284 fecal samples were collected from various zoo animals and a raccoon dog was the only *Cryptosporidium*-positive animal.
| Host          | Region               | Age range | No. tested | No. positive (%) | No. of species | Cryptosporidium genotypes and subtypes / remarks | Reference                  |
|--------------|----------------------|-----------|------------|------------------|----------------|-------------------------------------------------|----------------------------|
| Rats         | Tokyo                | NS        | 231 House rats | 32 (13.9) | NS          | *Rattus norvegicus*; *Rattus rattus* and other species were investigated | Yamaura et al., 1990 [175] |
|              | Hyogo Nishinomiya    | NS        | 50 *Rattus norvegicus* | 19 (38)  | 3           | *C. meleagridis*; *C. parvum*; and unknown genotypes. | Kimura et al. 2007 [76]   |
| Mice (Apodemus speciosus) | Miyagi               | NS        | 25         | 2                | 1             | *C. muris*                                      | Nakai et al., 2004 [118]  |
|              | Kawatabi farm        | NS        | 25         | 2 (8)            | 1             | *C. muris* novel genotype (Kawatabi genotype)   | Hikosaka and Nakai 2005 [47] |
|              | Miyagi Osaki         | NS        | 15         | 4 (26.6)         | 2             | *C. ubiquitum*; *C. muris* (Kawatabi genotype) and novel genotype (Naruko genotype) | Murakoshi et al. 2013 [112] |
| Chinchilla   | Examined at Banquet animal Hospital, Tokyo | -         | 13 juveniles | 13               | 1             | *C. ubiquitum* (XIIId). Eight of the cases were fatal. All the 13 positive cases were imported from the Czech Republic, while 50 negatives were from Netherlands and USA | Kubota et al. 2019 [83]    |
| Rabbits      | Kanagwa              | Juvenile  | 66 (diarrheic) | 13 (19.7) | 2           | Two types identified based on microscopic examination. All juveniles were died after diarrhea | Shibashi et al., 2006 [145] |

Abbreviations: C., Cryptosporidium, NS, not stated.
Table 5. *Cryptosporidium* prevalence and species identification in birds, Japan.

| Host                                | Region                      | Age range     | No. tested | No. positive (%) | No. of species | Cryptosporidium genotypes and subtypes / remarks | Reference                                      |
|-------------------------------------|-----------------------------|---------------|------------|------------------|----------------|-----------------------------------------------|-----------------------------------------------|
| psittacine and passerine birds      | Imported and local birds    | NS            | 534        | 5                | NS             | Histopathological observation                 | Tsai et al., 1992 [158]                       |
| Ferrets                            | Kanazawa                    | NS            | 3          | 3                | 1              | ferret genotype of *C. parvum*                 | Abe and Iseki, 2003 [2]                      |
| Cockatiels                          | Kanazawa                    | NS            | 2          | 2                | 2              | *C. meleagridis* and *C. baileyi*              | Abe and Iseki, 2004 [3]                      |
|                                    | Kanagawa                    | NS            | 4          | 4                | 3              | *C. meleagridis*, avian genotype III, and a new avian genotype V. | Abe and Makino 2010 [4]                      |
| Peach-Faced Lovebirds 
(*Agapornis roseicollis*) | Yokohama Bird Clinic        | 3mo-16 yr     | 37         | 100%             | 1              | *C. avian* genotype III                          | Makino et al., 2010 [90]                     |
| Owls                               | Obihiro Zoo                 | 7-wk NS       | 3 snowy owls | 1                | 1              | *C. baileyi*                                     | Nakagun et al. 2017 [117]                    |
| Wood Owl                           | Kanagawa 
Fujisawa Avian Clinic | 1 mo NS     | 1 brown wood owl | 1                | 2              | Mixed *C. avium* and novel genotype               | Makino et al. 2018 [91]                      |
| Psittaciformes                      | Tokyo Saitama Gunma         | NS            | 153        | 10 (6.5)         | 2              | Avian genotype III; *C. galli*                  | Iijima et al. 2018 [54]                      |
| Passeriformes                      | Chiba Chiba                 | NS            | 90         | 13 (14.4)        | 2              | *C. galli*; *C. baileyi*                        |                                              |
| Galliformes                        |                             |               | 22         | 1 (4.5)          | 1              | *C. baileyi*                                     |                                              |
| Ostrich                            | Aomori Chicks               | Chicks        | 20 with diarrhea and mortalities | Only 1 case examined | 1 | *C. parvum* in immunohistochemically stained sections | Ueki et al., 2001 [163]                     |
| Japanese quail                     | Chiba                       | NS            | 17         | 7 (41.2)         | NS             | Histopathological observation.                 | Murakami et al., 2002 [109]                  |
| Chickens                           |                             | NS            | 68 layers 12 broilers | 25 | 4 (36.2) | *C. baileyi* Totally 29/80 positive cases        | Itakura et al., 1984 [60], Kimura et al., 2004* [75] |
|                                    |                             | NS            | 4-6 wk 200 growing layer | 10 (5) | NS | Retrospective histologic examinations were carried out on the bursae of Fabricius | Iwabuchi and Kirioka, 1992 [67] |
Isolates were reexamined by molecular methods at a later date. Proposed species name may be disputable because only morphological characterization was conducted.

Abbreviations: C., *Cryptosporidium*, d, day old; wk, week; mo, month; yr, year; NS, not stated.

| Region          | Species                                      | Collection Period | Fecal and Histological Examinations |
|-----------------|----------------------------------------------|-------------------|------------------------------------|
| Hyogo           | C. bailey<sup>1</sup>                        | 1977-1978         | Genta et al., 2001 [38]           |
| Hokkaido        | C. avian genotype III and C. bailey<sup>1</sup> |                  | Salama et al., 2020 [137]        |

<sup>1</sup> Proposed species name may be disputable because only morphological characterization was conducted.

* Isolates were reexamined by molecular methods at a later date.
Table 6. *Cryptosporidium* prevalence and species identification in reptiles and wild animals, Japan.

| Host | Region | Age range | No. tested | No. positive (%) | No. of species | Cryptosporidium genotypes and subtypes / remarks | Reference |
|------|--------|-----------|------------|------------------|----------------|-----------------------------------------------|-----------|
| Banded Mongoose | Osaka | NS | Molecular study | 1 | 1 | New genotype, closely related to that of bears. *Mungos mungo* was brought from Tanzania to the Osaka Municipal Tennoji Zoological Gardens | Abe *et al.*, 2004 [8] |
| Snakes | Different regions | NS | 469 | 57 (12.1) | 1 | C. snake genotype W11 | Kuroki *et al.*, 2008 [86] |
| Hedgehog | Examined at Banquet animal Hospital, Tokyo | NS | 2 | 2 | 2 | C. varanii; C. serpentis snake genotype | Abe and Matsubara, 2015 [5] |
| Lizards | Spiny-tailed lizards | NS | Case study | 2 | 1 | C. avium (novel variant) | Kubota *et al.*, 2020 [84] |
| Sika deer | Hokkaido Hidaka, Ishikari, Nemuro | Fawns, yearlings and adults | 319 | 25 (7.8) | 1 | C. deer genotype | Kato *et al.*, 2016 [73] |
| Nine prefectures | NS | 271 | 18 (6.6) | 4 | C. ryanae, C. bovis, C. sp. deer genotype; C. meleagridis | Yamazaki *et al.*, 2018 [177] |
| Hokkaido Tokachi | 1 - ≤5 yr or unknown | 137 | 13 (7.5) | 1 | C. deer genotype | Shirozu *et al.*, 2020 [147] |
| Raccoons (Procyon lotor) | Osaka | Adult Young < 6 mo | 116 | 7 (6.03) | 2 | C. skunk genotype (subtype XVIa) and C. parvum | Hattori *et al.*, 2018 [46] |
| Bats (Eptesicus nilssonii) | Hokkaido Tokachi | NS | 3 | 2 | 1 | C. bat genotype XII | Murakoshi *et al.*, 2018 [114] |

Abbreviations: C., *Cryptosporidium*, mo, month; yr, year. NS not stated.
Table 7. *Cryptosporidium* prevalence and species identification in environmental samples, Japan.

| Region         | No. tested/type of samples                                                                                                                                          | No. positive (%) | No. of species | Remarks and species / genotypes identified                                                                 | Reference                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|--------------------------------------------------------------------------------------------------------|-------------------------------|
| Kanagawa       | 16 water samples surveyed in 1996 10 water samples surveyed in 1997 Sagami river and its tributaries                                                              | 13 (81)          | NS             | 9 (75%) of 12 sites examined in 1996 was contaminated. 4 (67%) of the 6 sites examined in 1997 was contaminated. | Hashimoto and Hirata 1998 [41]|
| Kanagawa       | 16 Sagami River water samples 3 Sakawa River water samples                                                                                                       | 12 (63.2)        | NS             | Larger number of oocysts was detected in tributaries of the Sagami river where many stock raising farms are located. Sampling was done at August and December 1998, 1999 and August 2000. | Izumiya et al., 2001 [69]    |
| Hyogo          | 13 rivers 69 points samples in the 13 rivers                                                                                                                      | 9 (69)           | 1              | *C. parvum* (bovine genotype) was detected by PCR-RFLP. Strong correlation between the numbers of raised cattle and rivers contamination. Sampling was from July to October in 1999. | Ono et al. 2001 [124]        |
| Hyogo          | 18 rivers Of which 156 water samples collected                                                                                                                   | 13 (72)          | 2              | *C. parvum* (human and bovine genotypes) was detected by PCR-RFLP. Samples were collected in 1998 and 1999. | Ono et al. 2001 [125]        |
| Nationwide     | 73 raw wastewaters 74 reclaimed wastewaters 48 Tone, Edo and Tama rivers samples 20 Ara river samples 20 Oppe river samples                                                                 | 7 (10)           | NS             | 67 wastewater treatment plants were sampled and IFAT was used for detection in 1996. Water samples were taken from major rivers in the Kanto area which are important water sources for Tokyo and surrounding cities during 1996 and 1997. | Suwa and Suzuki 2001 [150]    |
| Hokkaido       | 10 rivers Of which 28 surface water samples                                                                                                                      | 6 (35)           | 1              | IFAT-DIF kit was used for *C. parvum* detection. Samples were collected in August, September and November 1999. | Tsushima et al. 2001 [160]    |
| Kanagawa       | 13 samples of 50 L river source water 26 samples of 2000 L-filtered water Sagami river                                                                           | 13 (100)         | NS             | A water purification plant was used and sampling was carried out from July 1998 to September 1999.       | Hashimoto et al. 2001, 2002 [42, 43]|
| Hyogo          | 11 livestock slaughterhouse waste water 11 poultry slaughterhouse waste water                                                                                      | 6 (55)           | NS             | *Cryptosporidium* oocysts were detected after waste water treatment in 4 (36) and 5 (45) of livestock and poultry slaughterhouses respectively. Sampling was from August to December 1999. | Saeki et al., 2002 [134]      |
| Hokkaido       | Three rivers were samples                                                                                                                                           | NS               | 1              | *C. parvum* using IFAT and DAPI staining. One-year survey from August 1999 to October 2001 with maximum number of oocysts during late summer to early autumn. | Tsushima et al. 2003 [161]    |
| Tokyo          | 7 Sewage samples                                                                                                                                                  | NS               | 3              | *C. parvum*; *C. meleagridis*; *C. sp. Pig genotype were identified. Sampling was twice a month, from May to August 2003 at a sewage treatment plant. | Hashimoto et al. 2006 [44]    |
| Location                      | Samples                  | Detected Genotypes                                                                 | Method                                                                                       | Reference                                  |
|-------------------------------|--------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|
| **Tokyo metropolitan area**   | 16 water samples         | *C. hominis*, *C. parvum*, *C. andersoni*, Snake genotype (C. sp. 938), *C*. sp. pig genotype II (PG1-26), and two new genotypes. | Using Quenching probe PCR (QProbe PCR) to quantify the 18S rRNA gene and denaturing gradient gel electrophoresis (DGGE) followed by DNA sequencing. | Masago et al., 2005, 2006 [92, 93]          |
| Koyama river                  | 11 (69) 7                |                                                                                    |                                                                                               |                                            |
| Tributary rivers of the Tone river | 23 water samples       | *C. suis*, *C. andersoni*, C. pig genotype II and *C. meleagrisidis*.              | Using a reverse transcription loop-mediated isothermal amplification assay RT-LAMP for detection of Cryptosporidium. | Haramoto et al. 2008 [39]                  |
| Tokyo Metropolitan, Miyagi    | 22 surface water samples | 7 NS                                                                                | Reverse transcription-loop-mediated isothermal amplification assay (RT-LAMP) was used for detection. | Inomata et al., 2009 [56]                  |
| 9 ground water samples        | 0 NS                     |                                                                                    |                                                                                               |                                            |
| Tone river and its tributary rivers | 14 river water samples | 11 (78.6) NS                                                                        | Results representing samples examined using improved RT-LAMP with the highest detection sensitivity. | Kishida et al., 2010 [77]                 |
| Variable regions              | 26 Hog farm drainage effluent and its downstream river water | 20 (76.9) NS                                                                        |                                                                                               | Inomata et al., 2011 [57]                 |
| 50 Surface water             | 12 (24) 0                |                                                                                    |                                                                                               |                                            |
| 27 Finished water, spring water, shallow well water and river-bed water | | |                                                                                               |                                            |
| Hokkaido Kanto Chubu Chugoku Kyushu | 64 surface water samples | 26 (41) NS                                                                          | Samples were collected from 16 drinking water treatment plants in July and December 2008 and 2009. | Haramoto et al. 2012 [40]                  |
| Tokyo metropolitan area       | 14 water samples         | 12 NS                                                                               | Samples were collected from tributary rivers of the Tone river basin from November to December 2009. *Cryptosporidium* were detected and quantified using alternately binding probe competitive PCR (ABC-PCR); Real-time PCR and microscopy | Kishida et al., 2012 [78]                 |

* Proposed species designation is questionable.

Abbreviations: *C.*, *Cryptosporidium*, NS, not stated.
Table 8. Reported cases of human cryptosporidiosis in Japan.

| Region | No. of gastroenteritis patients | No. examined | No. positive (%) | No. of species | Remarks and species / genotypes identified | Reference |
|--------|-------------------------------|--------------|------------------|----------------|--------------------------------------------|-----------|
| Kochi Medical School | 1 | 1 | 1 NS | | A 5-year-old boy with nephrotic syndrome | Suzuki et al., 1986 [152] |
| | 112 | 0 | 0 NS | | 4 months to 86 years inpatients and outpatients during the period from June to July, 1985 | |
| Tokyo Metropolitan Komagome Hospital | 2 | 2 | 2 | 1 | A middle-age homosexual male with AIDS and a 31-year-old female; C. parvum HNJ-1 (IIaA15G2R1) | Masuda et al., 1991 [95] Amer et al., 2010 [17] |
| Kyoto Prefectural University of Medicine | Case report | 1 | 1 NS | | A 24-year-old Japanese male with severe prolonged watery diarrhea after returning from India | Shiota et al., 1994 [146] |
| Kanagawa, Hiratsuka | 461 | 25 | 12 (48) | 1 | 461 patients with cholera-like symptoms among the staff members and customers who visited one of the 10 public houses or a dancing school in a building in Hiratsuka, Kanagawa, at the end of summer in 1994. C. parvum* | Kuroki et al., 1996 [85] |
| Saitama Medical School | 34 | 28 children 6 family members | 10 (36) 5 | 1 | C. parvum*, during Saitama, Ogose water outbreak of cryptosporidiosis in 1996. | Yamazaki et al., 1997 [176] |
| Saitama Institute of Public Health | 8812 citizens 274 visitors 54 employees out of the town | 522 | 125 (23.9) | NS | During Saitama, Ogose water outbreak of cryptosporidiosis in 1996 | Yamamoto et al., 2000 [173] |
| Saitama Tokyo Osaka Kanagawa Hokkaido Iwate overseas | Molecular study | - | 22 | 3 | C. meleagridis; C. hominis and C. parvum. Isolates were from naturally infected 22 human (Immunodeficient and unknown status patients) including cases from Ogose outbreak in 1996. | Yagita et al., 2001 [172] |
| Mizonokuchi Hospital, Kanagawa | Case report | 1 | 1 NS | | C. parvum*, 28-year-old Japanese homosexual man having AIDS | Fujikawa et al., 2002 [35] |
| Different hospitals | 4273 | 4273 | 3 | NS | During 5 years (1996-2000) survey | Obana et al., 2002 [120] |
| Hyogo, Awaji | 129 | - | 126 | NS | High school students and the teaching staff who went to Hokkaido on a school excursion | Endo and Izumiyama 2004 [27] |
Proposed species designation is questionable.

1 Case numbers were reported following assigned criteria including that they had either laboratory confirmed cryptosporidiosis or watery diarrhea (clinical cryptosporidiosis).

a,b,c Cases numbers of patients with symptoms reported by three different studies: a, Yokoi et al., 2005 [178]; b, Ichinohe et al., 2005 [53] and c, Takagi et al., 2008 [155].

Abbreviations: C., Cryptosporidium; NS, not stated.

| Location                | Type          | Numbers | Symptoms | Diagnosis                           | Details                                                                                   | References                |
|-------------------------|---------------|---------|----------|--------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|
| Osaka                   | Case report   | 1, 1, 1 |          | Mixed *Giardia* and *C. parvum* human genotype* in a 25-year-old Japanese male with persistent watery diarrhea, after returning from India | Abe et al., 2005 [9]               |                                         |
| Nagano                  | Case report   | 31, 30, 1 |          | C. *parvum* human genotype*, Outbreak in swimming pool in the hotel in Nagano Prefecture | Yokoi et al., 2005 [178]; Ichinohe et al., 2005 [53]; Takagi et al., 2008 [155]       |
| Chiba                   | Case report   | 48, 6, 2 | NS       | Outbreak due to contaminated swimming pools belonging to the sports center in Chiba prefecture used by the returning participants from the Nagano joint training outbreak | Ichinohe et al., 2005 [53]               |                                         |
| Tokyo Osaka             | Molecular study | 5, 2    |          | *C. hominis* (Ie, Ia, Ib) and *C. parvum* (Iic and Iia) | Abe et al., 2006 [10]               |                                         |
| Ehime                   | Case report   | 19, 19, 3, 1 |          | *C. melegreadis*. Outbreak among high school students in August 2006. | Asano et al., 2006 [21]               |                                         |
| Osaka, Sakai            | Case report   | 4, 4, 3, 1 |          | *C. parvum* Iia; food born outbreak in company workers due to raw meat dish called “Yukke: Korean-style beef tartar” and raw liver at a rotisserie, 2006. | Yoshida et al., 2007 [180]               |                                         |
| JSDF Hospital Kure, Hiroshima | Case report          | 1, 1, NS |          | a 23-year-old Japanese military man | Ogata et al., 2009 [121]               |                                         |
| NS                      | Molecular study | - , 3 isolates, 1 |          | Five new *C. melegreadis* genotypes One HIV-positive and two HIV-negative adults. | Abe 2010 [1]               |                                         |
| IMSUT Hospital of Tokyo University | Case report | 1, 1, NS |          | A 33-year-old man with human immunodeficiency virus (HIV) | Adachi et al., 2016 [11]               |                                         |
| Tokushima University Hospital | Case report          | 1, 1, 1 |          | *C. melegreadis*; 63-year female with persistent diarrhea in Japan after allogeneic cord blood transplantation | Kagawa et al., 2018 [70]               |                                         |

* Proposed species designation is questionable.