Supplemental Online Content

Ossenkoppele R, Singleton EH, Groot C, et al. Research criteria for the behavioral variant of alzheimer disease: a systematic review and meta-analysis. *JAMA Neurol.* Published online December 6, 2021. doi:10.1001/jamaneurol.2021.4417

eTable 1. Full database queries
eTable 2. Selection of frontal regions in autopsy studies
eTable 3. Risk of bias assessment
eTable 4. Characteristics of included studies
eTable 5. Percentage of bvFTD features and NPI items in bvAD, bvFTD and tAD
eTable 6. Functional connectivity and white matter hyperintensities in bvAD
eFigure 1. Funnel plots for behavioral/neuropsychiatric data in meta-analysis
eFigure 2. Funnel plots for cognitive data in meta-analysis
eFigure 3. Funnel plots for neuropathological data in meta-analysis
eFigure 4. Risk of bias assessment summary
eFigure 5. Flow chart of study inclusion
eFigure 6. Results of meta-analysis for behavioral and neuropsychiatric separately
eFigure 7. Meta-analyses for neuropathological data in bvAD vs typical AD

© 2021 Ossenkoppele R et al. *JAMA Neurology*
eFigure 8. Differences and overlap between bvAD and dysexecutive AD

eReferences. Reference list Supplement

This supplemental material has been provided by the authors to give readers additional information about their work.
eTable 1. Full database queries used in the present study

Database	Search no.	Search terms	No. of studies
PubMed/medline	1	(Alzheimer*[Title]) AND (behavio* variant[Title] OR executive variant[Title] OR dysexecutive variant[Title] OR behavio*/dysexecutive AD[Title] OR frontal variant[Title] OR frontal presentation[Title] OR nonamnestic[Title] OR non-amnestic[Title] OR heterogene*[Title] OR atypical[Title])	492
	2	(frontotemporal dementia[Title]) AND (pathology[Title] OR clinicopathologic*[Title])	73
Web of Science	1	TITLE: (Alzheimer*) AND TITLE: (behavio* variant OR executive variant OR dysexecutive variant OR behavio*/dysexecutive AD OR frontal variant OR frontal presentation OR nonamnestic OR non-amnestic OR heterogene* OR atypical)	581
	2	TITLE: (frontotemporal dementia) AND TITLE: (pathology OR clinicopathologic*)	111
eTable 2. Selection of frontal regions in autopsy studies

Autopsy study	Frontal Subregion
Balasa et al. 2011¹	Not specified
Blennerhassett et al. 2014²	Randomly selected strips, perpendicular to the pial surface and spanning the cortical ribbon to the grey-white junction
Phillips et al. 2018³	Middle frontal gyrus
Singleton et al. 2021⁴	Frontal pole
Table 3. Risk of bias assessment per domain according to the ROBINS-I tool per study included in the meta-analyses.

Study	D1 Bias due to confounding	D2 Bias in selection of participants into the study	D3 Bias in classification of interventions	D4 Bias due to deviations from intended interventions	D5 Bias due to missing data	D6 Bias in measurement of outcomes	D7 Bias in selection of the reported result	Overall bias
Woodward et al. 2010⁵	Y	Y	NA	NA	PY	N	N	Serious risk of bias
Balasa et al. 2011¹	PY	PY	NA	NA	N	N	N	Moderate risk of bias
de Souza et al. 2013⁶	Y	PN	NA	NA	N	N	N	Moderate risk of bias
Mendez et al. 2013⁷	Y	PN	NA	NA	N	N	N	Moderate risk of bias
Fernández-Calvo et al. 2013⁸	PY	PY	NA	NA	PY	N	N	Moderate risk of bias
Blennerhassett et al. 2014²	PY	PN	NA	NA	PN	N	N	Moderate risk of bias
Ossenkoppele et al. 2015⁹	PN	PN	NA	NA	PN	N	N	Moderate risk of bias
Phillips et al. 2018³	PN	PY	NA	NA	PN	PY	N	Moderate risk of bias
Sala et al. 2020¹⁰	Y	PN	NA	NA	PY	N	PY	Moderate risk of bias
Therriault et al. 2020¹¹	PN	PY	NA	NA	PY	N	N	Moderate risk of bias
Bergeron et al. 2020¹²	PY	Y	NA	NA	PY	PN	PY	Moderate risk of bias
Singleton et al. 2021⁴	PN	PN	NA	NA	PN	PY	N	Moderate risk of bias
Lehingue et al. 2021¹³	PY	Y	NA	NA	PY	PN	N	Serious risk of bias

Y=yes, N=no, PY=possible yes, PN=possible no.
eTable 4. Characteristics of included studies in chronological order

Study	Design	Country	N	Participants	Controls	Age	Sex	MMSE	Confirmation of AD	Main topic of group study	Type of data in case studies
Brun et al. 1976	Case study	Sweden	5	bvAD	-	56 (5.69)	60	n/a	Autopsy	X	X
Shibayama et al. 1978	Case study	Japan	1	bvAD	-	70	0	n/a	Autopsy	X	X
Shuttleworth 1984	Case study	US	2	bvAD	-	49 (3)	0	n/a	No	X	X
Brun 1987	Case study	Sweden	2	bvAD	-	75 (6)	100	n/a	Autopsy	X	X
Perani et al. 1988	Case study (within a cross-sectional observational study)	Italy	1	bvAD	-	56	100	n/a	No	X	X
Bird et al. 1989	Cross-sectional observational study	US	2	bvAD	-	66 (1)	0	n/a	Autopsy	X	X
Grady et al. 1990	Cross-sectional observational study	US	5	bvAD	Subgroups of AD	71.5	20	8 (7)	No	Neuroimaging	X
Molchan et al. 1990	Case study	US	2	bvAD	-	58 (3)	50	12.5 (0.5)	No	X	X

© 2021 Ossenkoppele R et al. JAMA Neurology
Study	Type	Country	N	Diagnosis	Age (yr)	Sex	Race	Language	Other	Genetic	Autopsy	Neuroimaging	Clinicopathological	Other
Raux et al. 200022	Case series	France	3	bvAD	49.3 (10.4)									
Rippon et al. 200323	Case study	US	2	bvAD	-									
Yokota et al. 200324	Case study	Japan	3	bvAD	33.7 (4.5)						66.7			
Doran & Larner 200425	Case study	US	2	bvAD	49 (0)									
Kertesz et al. 200526	Cross-sectional observational cohort study	Canada	1	bvAD	-									
Shi et al. 200527	Cross-sectional cohort study	China	1	bvAD	-						59			
Forman et al. 200628	Cohorts study	US	19	bvAD	60.3						47	20.1 (2-29)	Clinicopathological	
Larner 200629	Case study	UK	2	bvAD	54 (2)									
Alladi et al. 200730	Cross-sectional observational cohort study	UK	2	bvAD, atypical AD	n/a								Clinicopathological	
Rabinovici et al. 200731	Cross-sectional observational study	US	2	bvAD	54 (1)						50	22.5	Amyloid PET	Neuroimaging
Snowden et al. 200732	Cross-sectional observational cohort study	UK	12	bvAD, atypical AD	49 (8)								Cognitive & Genetic	

© 2021 Ossenkoppele R et al. *JAMA Neurology*
Reference	Study Type	Country	Case	bvAD	N	Gender	Age (±SD)	MMSE	Control	Diagnosis	Imaging Techniques	Other Techniques
Taylor et al. 2008^33	Case study	UK	1	bvAD			66	0	28	Autopsy	X	X
Kile et al. 2009^34	Case study	US	1	bvAD	n/a		0	0	30	Autopsy	X	X
Bigio et al. 2010^35	Cross-sectional observational study	US	10	bvAD	AD & FTD	58 (6.5)	30	n/a	Autopsy	X	X	
Habek et al. 2010^36	Case study	Croatia	1	bvAD	-		56	0	n/a	Biopsy	X	X
Lehman et al. 2010^37	Cross-sectional observational study	UK	2	bvAD	AD & FTD	59 (1.4)	50	9.5 (0.7)	Autopsy	Clinicopathological & Neuroimaging	X	
Piscopo et al. 2010^38	Case study	Italy	1	bvAD	-		63	n/a	11	Genetic	X	X
Woodward et al. 2010^5	Cross-sectional observational cohort study	Canada	18	bvAD	AD & FTD	74.7 (7)	44.4	18.6 5.9	No	Clinical & Genetic		
Balasa et al. 2011^1	Cross-sectional observational cohort study	Spain	7	bvAD	AD & atypical AD	55.6 (3.7)	28.6	n/a	Autopsy	Clinicopathological & Genetic		
Rabinovici et al. 2011^39		US	3	bvAD	AD, FTD & CN	n/a	n/a	n/a	PET	Neuroimaging		
Snowden et al. 2011^40	Cross-sectional observational study	UK	2	bvAD	-		60.5 (6.5)	50	n/a	Autopsy	Clinicopathological	
Study Reference	Study Type	Country	Study Type	Participants	bvAD	AD & CN	bvFTD & CN	bvAD	AD & CN	bvFTD & CN	Genetic & CSF	Neuroimaging
-----------------	------------	---------	------------	--------------	------	---------	------------	------	---------	------------	---------------	--------------
Whitwell et al.	Cross-sectional observational study	US	3	bvAD	AD & CN	58.33 (3.3)	33.3	n/a	Autopsy	Neuroimaging		
Borroni et al.	Case study	Italy	1	bvAD	-	68	0	21	Genetic & CSF			
Duker et al.	Case study	US	1	bvAD	-	58	0	n/a	No	X	X	X
Wallon et al.	Case series	France	8	bvAD	-	n/a	n/a	n/a	Genetic	Genetic		
De Souza et al.	Case series	France	8	bvAD	AD, bvFTD & CN	63.5 (8.9)	12.5	17.6	5.6	CSF	Cognitive & Neuroimaging	
Fernandez-Calvo et al.	Cross-sectional observational study	Spain	13	bvAD	AD & CN	72.8 (7.6)	31	22.5	2.1	No	Cognitive & Neuropsychiatric	
Herrero-San Martin et al.	Case study	Spain	2	bvAD	-	56 (4)	50	n/a	Autopsy	X	X	
Marini et al.	Case study	Italy	1	bvAD	-	59	100	n/a	Genetic			
Mendez et al.	Cross-sectional observational cohort study	US	21	bvAD	FTLD	69.3 (8.3)	14.3	13.3	9.4	Autopsy	Clinicopathological	
Study	Design	Location	Participants	bvAD	bvFTD	AD & bvAD	Autopsy	Pathological Methodality				
------------------------------	-------------------------	----------	--------------	------	-------	-----------	---------	-------------------------				
Blennerhassett et al. 2014	Cross-sectional observational study	Australia	6	bvAD	n/a	68 (14)	n/a	n/a				
Leger et al. 2014	Cross-sectional observational study	US	31	bvAD	n/a	FTLD	n/a	n/a				
Nijgaard et al. 2014	Case study	US	1	bvAD	-	n/a	n/a	30				
Balasa et al. 2015	Cross-sectional observational study	Spain	13	bvAD	n/a	FTLD	n/a	n/a				
Ossenkoppele et al. 2015	Cross-sectional observational study	Netherlands & US	55	bvAD	AD, bvFTD	64.7 (8.8)	27.3	22.5 (5.4)				
Paterson et al. 2015	Cross-sectional observational study	UK	8	bvAD	AD, atypical AD & CN	61.5 (6.4)	62.5	17.4 (6.1)				
Woodward et al. 2015	Cross-sectional observational study	NA	13	bvAD	AD	81.6 (4.1)	38.5	23.9				
Li et al. 2016	Case study	China	1	bvAD	bvFTD	n/a	n/a	n/a				
Ossenkoppele et al. 2016	Cross-sectional observational study	US	1	bvAD	AD, atypical AD & CN	59	0	21				
Scialo et al. 2016	Case study	Italy	1	bvAD	-	68	100	27				

© 2021 Ossenkoppele R et al. JAMA Neurology
Reference	Study type	Country	Case Type	Cases	Age (Mean, SD)	Sex (M/F)	Age at Diagnosis (Mean, SD)	Sex (M/F)	SUVR (Mean, SD)	Sex (M/F)	Imaging Details	
Dickerson et al. 2017	Case series	US	bvAD	1	62	100	n/a	CSF	X X X X X			
Duclos et al. 2017	Case study	France	bvAD-CN	1	60	100	n/a	CSF	X X X X X			
Kawakatsu et al. 2017	Case series	Japan	bvAD	3	57.7 (1.3)	33.3	n/a	Autopsy	X X X X X			
Oboudiat et al. 2017	Cross-sectional observational study	US	bvAD-CN	2	n/a	n/a	n/a	CSF & autopsy	Cerebrospinal fluid			
Perry et al. 2017	Cross-sectional observational study	US	bvAD-FTLD	15	62.8 (43-83)	33.3	19.8 6.9	Autopsy	Clinicopathological & Neuroimaging			
Rawtaer et al. 2017	Case study	Canada	bvAD	1	68	0	11	No	X X X X X			
Sawyer et al. 2017	Case series	US	bvAD	3	76.3 (3.1)	33.3	n/a	Autopsy	X X X X X			
Bagyinsky et al. 2018	Case series	Korea	bvAD	1	41	100	24	Genetic	X X X X X			
Boon et al. 2018	Cross-sectional observational study	Netherlands	bvAD-AD	3	60.7 (1.3)	0	n/a	Autopsy	Pathological			
Phillips et al. 2018	Observational cross-sectional study	US	b/dAD-AD	22	64.3 (8.2)	50	19.6 8.4	CSF/autopsy	Neuroimaging & Pathological			
Study Reference	Study Type	Location	Cases	bvAD/AD & atypical AD	n/a	n/a	n/a	Autopsy	Clinicopathological			
--------------------------	-----------------------------	-------------	-------	-----------------------	-----	-----	-----	---------	-----------------------			
Seo et al. 2018⁶⁴	Retrospective observational study	US	23	bvAD	n/a	n/a	n/a	Autopsy	Clinicopathological			
Whitwell et al. 2018⁶⁵	Cross-sectional observational study	US	6	b/dAD	n/a	n/a	n/a	PET	Neuroimaging			
De Souza et al. 2019⁶⁶	Case study	Brazil	1	bvAD	68	100	29	CSF	X X X X			
Foiani et al. 2019⁶⁷	Cross-sectional observational study	UK	2	bvAD	n/a	n/a	n/a	CSF	Cerebrospinal fluid			
Monacelli et al. 2019⁶⁸	Case study	Italy	1	bvAD	60	100	25	Genetic	X X X X			
Nolan et al. 2019⁶⁹	Cross-sectional observational study	US	5	bvAD	66.2 (4.8)	20	n/a	Autopsy	Pathological			
Pawlowski et al. 2019⁷⁰	Cross-sectional observational study	Germany	8	bvAD	n/a	n/a	n/a	CSF	Clinical & Cerebrospinal fluid			
Phillips et al. 2019⁷¹	Cross-sectional & longitudinal observational study	US	12	b/dAD	63.9 (59.7-69.5)	41.7 (17-26)	23	CSF/autopsy	Neuroimaging			
Pillai et al. 2019⁷²	Cross-sectional observational study	US	4	b/dAD	n/a	n/a	n/a	CSF	Cerebrospinal fluid			
Study	Design	Country	Sample Size	bvAD	AD	AD, atypical AD & CN	b/v (D)	AD, bvFTD & CN	n/a	n/a	n/a	Technique
-----------------------	---------------------------------	-------------	-------------	------	----	---------------------	---------	----------------	-----	-----	-----	----------------------------------
Tan et al. 2019\(^1\)	Cross-sectional observational	Australia	9	bvAD	AD	AD, atypical AD & CN	b/v (D)	AD, bvFTD & CN	n/a	n/a		Autopsy Pathological
Wang et al. 2019\(^2\)	Cross-sectional observational	China	13	b/vDA	AD	AD, atypical AD & CN	b/v (D)	AD, bvFTD & CN	n/a	n/a		PET Neuroimaging
Wong et al. 2019\(^3\)	Case study	Australia	1	bvAD	AD	AD, atypical AD & FTD	b/v (D)	AD, atypical AD & FTD	n/a	n/a		PET
Bergeron et al. 2020\(^4\)	Cross-sectional observational	Canada	8	b/vD	AD	AD & atypical AD, FTD & CN	b/v (D)	AD & atypical AD, FTD & CN	n/a	n/a		CSF/PET Neuroimaging
Cai et al. 2020\(^5\)	Case study	China	1	bvAD	AD	AD, atypical AD & FTD	b/v (D)	AD, atypical AD & FTD	n/a	n/a		Autopsy/CSF Clinicopathological & Cerebrospinal fluid
Cousins et al. 2020\(^6\)	Cross-sectional observational	US	2	bvAD	AD	AD & atypical AD & FTD	b/v (D)	AD & atypical AD & FTD	n/a	n/a		Tau and amyloid PET
Li et al. 2020\(^7\)	Case study	Taiwan	1	bvAD	AD	AD & atypical AD & FTD	b/v (D)	AD & atypical AD & FTD	n/a	n/a		Autopsy/CSF Clinicopathological & Cerebrospinal fluid
Paquin et al. 2020\(^8\)	Case study	Canada	1	bvAD	AD	AD & atypical AD & FTD	b/v (D)	AD & atypical AD & FTD	n/a	n/a		Tau and amyloid PET
Sala et al. 2020\(^9\)	Cross-sectional observational	Italy	15	b/vD	AD	AD & atypical AD & FTD	b/v (D)	AD & atypical AD & FTD	n/a	n/a		CSF Neuroimaging
Scarioni et al. 2020\(^10\)	Cross-sectional observational	Netherlands	35	bvAD	AD	FTLD	b/v (D)	AD, bvFTD & CN	n/a	n/a		Autopsy Clinicopathological
Singleton et al. 2020\(^11\)	Cross-sectional observational	US	29	bvAD	AD	AD, atypical AD & FTD & CN	b/v (D)	AD, atypical AD & FTD & CN	n/a	n/a		CSF/PET/autopsy Neuroimaging
Therriault et al. 2020¹¹	Cross-sectional observational study	Canada	15	b/DA D	AD & CN	65.93 (8.8)	60	19.6 (5.3)	Tau & amyloid PET	Neuroimaging		
---	---	---	---	---	---	---	---	---	---	---		
Bergeron et al. 2021⁸²	Case series	Canada	8	bvAD	AD & bvFTD	59.5 (7.9)	25	22.3 (5.9)	CSF/PET	Cognivite & Neuropsychiatric & Neuroimaging		
Lehingue et al. 2021¹³	Cross-sectional prospective observational study	France	20	bvAD	AD & bvFTD	71.5 (66-76)	35	25 (21-26)	CSF	Cognitive & Neuropsychiatric & Neuroimaging		
Singleton et al. 2021⁴	Cross-sectional observational study	Netherlands, Sweden & US	7 & 8	bvAD	AD	69.1 (8.4) & 66.6 (6.0)	14.3 & 50.0	21.7 (2.8)	CSF/PET and autopsy	Neuroimaging & Pathological		
Zhu et al. 2021⁸³	Case study	China	1	bvAD	-	63	0	3	CSF & PET	X X X X		

Numbers are depicted as mean (sd). CL=clinical, COG=cognition, SOC=social cognition, NI=neuroimaging, PA=pathological, GEN=genetic, CSF=cerebrospinal fluid, PET=positron emission tomography, AD=Alzheimer’s disease, bvAD=behavioral variant of Alzheimer’s disease, bvFTD=behavioral variant frontotemporal dementia.
Table 5. Weighted mean percentage of patients with separate behavioral and neuropsychiatric symptoms in bvAD and bvFTD.

Diagnosis	bvAD	bvFTD	tAD	P-value of χ^2-test bvAD vs bvFTD	P-value of χ^2-test bvAD vs tAD
bvFTD criteria, n□	148†	313*			
Disinhibition	60.80	68.58		0.10	NA
Apathy	68.80	77.37		0.05	NA
Loss of empathy	54.64	53.64		0.83	NA
Compulsiveness	45.00	68.50	<0.00001*	NA	
Hyperorality	35.89	64.11	<0.00001*	NA	
NPI, n◊	52	156	1090▪		
Eating changes	41.33	44.64	31.4	0.57	0.12
Night-time behaviors	39.60	40.73	20.0	0.94	0.0003*
Irritability	50.81	42.15	42.9	0.33	0.32
Euphoria	16.62	27.09	6.0	0.16	0.005*
Anxiety	54.15	43.10	31.6	0.17	0.001*
Depression	34.19	35.10	32.1	0.93	0.78
Agitation	67.85	43.42	16.2	0.003*	<0.00001*
Hallucination	28.23	9.00	4.6	0.0003*	<0.00001*
Delusions	36.62	13.42	9.3	0.0003*	<0.00001*
Motor behavior	50.38	57.10	18.9	0.38	<0.00001*

* bvAD=behavioral variant of Alzheimer’s disease, bvFTD=behavioral variant frontotemporal dementia, tAD=typical Alzheimer’s disease.

† Based on estimates from 7 group studies (de Souza et al. 2013, Mendez et al. 2013, Blennerhassett et al. 2014, Ossenkoppele et al. 2015, Perry et al. 2017, Leger et al. 2014, Phillips et al. 2019).

* Based on estimates from 4 group studies (Mendez et al. 2013, Ossenkoppele et al. 2015, Perry et al. 2017, Leger et al. 2014).

☐ Percentages are based on percentage per symptoms assessed by NPI, clinical evaluation or chart reviews from studies specified above.

◊ Percentages are based on percentage per symptoms assessed by NPI from two studies (Mendez et al. 2013, Leger et al. 2014).

▪ Based on a cohort of Aβ-positive AD dementia patients from the Amsterdam dementia cohort (Eikelboom et al. 2014).
eTable 6. Results of functional connectivity and white matter hyperintensities in bvAD

Study	Subjects	Age	Sex	MMSE	AD confirmation	Contrasts	Modality	Findings
Functional connectivity								
Wang et al. 2019⁷⁴	13 b/dAD	68.0 (3.4)	7	17.0 (5.6)	PiB PET	38 typical AD, 20 CU	FDG-PET	The left executive control network showed the highest goodness-of-fit in both b/dvAD and tAD and no differences in PiB PET uptake in network templates was observed
Phillips et al. 2019⁷¹	12 bvAD	16.0 [13.5, 18.0]	58.3	23.0 [17.0, 26.0]	CSF/autopsy	17 typical AD	Diffusion MRI	Higher node degree predicted greater annualized grey matter volume loss in both bvAD and typical AD groups and bvAD showed a less negative slope of association between node degree and longitudinal atrophy than typical AD
Singleton et al. 2020⁸¹	29 bvAD	64.4 (9.4)	59.0	22.0 (5.9)	CSF/PET/autopsy	28 typical AD, 28 bvFTD, 34 CU	FDG-PET	The anterior default mode network showed highest goodness-of-fit in bvAD (tAD < bvAD = bvFTD), and significantly less metabolic connectivity of the posterior cingulate cortex to the (right) prefrontal cortex was observed in bvAD compared to tAD
White matter hyperintensities								
Singleton et al. 2020⁸¹	29 bvAD	64.4 (9.4)	59.0	22.0 (5.9)	CSF/PET/autopsy	28 typical AD, 28 bvFTD, 34 CU	FLAIR-MRI	In comparison to tAD, bvAD patients showed lower juxtacortical left temporal and subcortical WMHV and higher right temporal juxtacortical WMHV

b/dAD=behavioral/dysexecutive variant of Alzheimer’s disease, bvAD=behavioral variant of Alzheimer’s disease, bvFTD=behavioral variant frontotemporal dementia, tAD=typical Alzheimer’s disease, CU=cognitively unimpaired individuals, CSF=cerebrospinal fluid, PET=positron emission tomography, MRI=magnetic resonance imaging.
Figure 1. Funnel plots of meta-analyses of behavioral/neuropsychiatric data for behavioral variant AD versus typical AD and bvFTD.

Funnel plots displaying the position of individual studies on their standardized mean difference (x-axis) relative to their standard error (y-axis). If no publication bias were present, studies would be aligned symmetrically within the dotted triangles, indicating symmetrical locations surrounding the mean effect size, with smaller studies at the lower ends of the plot and larger studies on the higher end of the plot. The dark blue, medium dark blue and light blue parts represent the locations where the effect of the individual study is significant at p<0.05, p<0.025 and p<0.01 compared to the standardized mean difference at 0, whereas the dotted lines represent the mean effect size of the specific studies included. The current plots suggest a lower symmetrical tendency in bvAD vs tAD contrasts compared to bvAD vs bvFTD contrasts, indicating higher publication bias in the bvAD vs tAD contrasts, although the number of studies and sample sizes were small.
Figure 2. Funnel plots of meta-analyses for behavioral and neuropsychiatric symptom data separately for bvAD vs typical AD and bvFTD.

Funnel plots displaying the position of individual studies on their standardized mean difference (x-axis) relative to their standard error (y-axis). If no publication bias were present, studies would be aligned symmetrically within the dotted triangles, indicating symmetrical locations surrounding the mean effect size, with smaller studies at the lower ends of the plot and larger studies on the higher end of the plot. The dark blue, medium dark blue and light blue parts represent the locations where the effect of the individual study is significant at p<0.05, p<0.025 and p<0.01 compared to the standardized mean difference at 0, whereas the dotted lines represent the mean effect size of the specific studies included. The current plots suggest a higher symmetrical tendency in the MMSE contrasts than in the memory and executive domains, indicating higher publication bias in the memory and executive functioning domains than in the MMSE, although the number of studies and sample sizes were small.
eFigure 3. Funnel plots of meta-analyses of neuropathological data in bvAD versus typical AD and bvFTD.

Funnel plots displaying the position of individual studies on their standardized mean difference (x-axis) relative to their standard error (y-axis). If no publication bias were present, studies would be aligned symmetrically within the dotted triangles, indicating symmetrical locations surrounding the mean effect size, with smaller studies at the lower ends of the plot and larger studies on the higher end of the plot. The dark blue, medium dark blue and light blue parts represent the locations where the effect of the individual study is significant at p<0.05, p<0.025 and p<0.01 compared to the standardized mean difference at 0, whereas the dotted lines represent the mean effect size of the specific studies included. Although few studies were included per plot, the current plots show an overall symmetrical tendency, marking marginal publication bias.
eFigure 4. Summary results of Risk of Bias assessment according to the ROBINS-I tool for studies included in the meta-analyses

The ROBINS-I tool for non-randomized studies (https://www.riskofbias.info/) was applied to assess Risk of Bias across studies. Since the domains ‘Bias in classification of interventions’ and ‘Bias due to deviations from intended interventions’ were not applicable to the currently assessed studies, these were not filled out (NA=not available). See Table S3 for further details.
eFigure 5. Flow chart of study inclusion

AD = Alzheimer’s disease, bvAD = behavioral variant of AD, bvFTD = behavioral variant frontotemporal dementia, CSF = cerebrospinal fluid, PET = positron emission tomography.
eFigure 6. Meta-analyses for behavior and neuropsychiatric symptoms separately in bvAD vs typical AD and bvFTD

Plots showing meta-analysis results for behavior and neuropsychiatric symptoms separately between patient groups. These plots show similar scores in both behavioral as neuropsychiatric scales scores in bvAD versus bvFTD and a similar difference in behavioral and neuropsychiatric scale scores in bvAD versus typical AD. For all meta-analyses, positive standardized mean differences indicate a greater neuropathological burden in bvAD versus typical AD.

Study	n	Measure	Standardized Mean Difference	SMD	95%-CI	Weight
bvAD vs tAD						
Je Souza et al. 2013	9	FAB	1.12	[0.23; 2.02]	23.0%	
Phillips et al. 2018	22	PBAC behavior	2.19	[1.43; 2.95]	25.6%	
Bergeron et al. 2020	6	DCQ behavior	1.98	[0.74; 2.62]	23.0%	
Lelicheche et al. 2021	20	FAB	0.46	[-0.16; 1.10]	27.7%	
Overall effect			1.34	[0.51; 2.17]	100.0%	
Heterogeneity: $I^2 = 77\% (30\%, 82\%); \chi^2 = 5.545, p = 0.01$						
bvAD vs bvFTD						
Woodward et al. 2010	18	NPI	1.28	[0.55; 2.06]	21.1%	
Fernández-Calvo et al. 2013	13	NPI	1.53	[0.98; 2.21]	22.5%	
Ossenkoppele et al. 2015	55	NPI	0.57	[0.20; 0.96]	33.7%	
Therriault et al. 2020	15	Apathy Inventory	0.86	[0.20; 1.55]	22.7%	
Overall effect			1.01	[0.54; 1.47]	100.0%	
Heterogeneity: $I^2 = 89\% (0\%, 88\%); \chi^2 = 0.1301, p = 0.66$						

Neuropsychiatry

- bvAD=behavioral variant of AD, tAD=typical AD, bvFTD=behavioral variant frontotemporal dementia, FAB=Frontal Assessment Battery, PBAC=Philadelphia Brief Assessment of Cognition, DCQ=Dépistage Cognitif de Québec, SMD=standardized mean difference.

© 2021 Ossenkoppele R et al. *JAMA Neurology*
The figure shows results of meta-analyses across frontal (top row), medial temporal (middle row) and occipital (bottom row) regional quantification of postmortem tau (left column) and amyloid-β (right column) pathology in bvAD versus typical AD. Frontal regions included the frontal pole, middle frontal gyrus and randomly selected frontal areas, and was not further specified in one study. For all meta-analyses, positive standardized mean differences indicate a greater neuropathological burden in bvAD versus typical AD.

SMD=standardized mean difference, **S-Q**=semi-quantitative.
Figure 8. Differences and overlap between bvAD and dysexecutive AD

Differences and overlap between the behavioral variant of AD (bvAD) as proposed in the current work and the dysexecutive variant of AD as proposed elsewhere in terms of behavioral features, cognitive performance and confirmation of AD pathology.
REFERENCES:

1. Balasa M, Gelpi E, Antonell A, et al. Clinical features and APOE genotype of pathologically proven early-onset Alzheimer disease. *Neurology.* 2011;76(20):1720-1725.
2. Blennerhassett R, Lillo P, Halliday GM, Hodges JR, Kril JJ. Distribution of pathology in frontal variant Alzheimer's disease. *Journal of Alzheimer's disease: JAD.* 2014;39(1):63-70.
3. Phillips JS, Da Re F, Dratch L, et al. Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer's disease. *Neurobiol Aging.* 2018;63:75-87.
4. Singleton E, Hansson O, Pijnenburg YAL, et al. Heterogeneous distribution of tau pathology in the behavioural variant of Alzheimer’s disease. *Journal of Neurology, Neurosurgery & Psychiatry.* 2021;jnnp-2020-325497.
5. Woodward M, Jacova C, Black SE, et al. Differentiating the frontal variant of Alzheimer’s disease. *International Journal of Geriatric Psychiatry.* 2010;25(7):732-738.
6. de Souza LC, Bertoux M, Funkiewiez A, et al. Frontal presentation of Alzheimer's disease: a series of patients with biological evidence by CSF biomarkers. *Dementia & Neuropsychologia.* 2013;7:66-74.
7. Mendez MF, Joshi A, Tassniyom K, Teng E, Shapira JS. Clinicopathologic differences among patients with behavioral variant frontotemporal dementia. *Neurology.* 2013;80(6):561-568.
8. Fernandez-Calvo B, Ramos F, de Lucena VM. Frontal variant of Alzheimer’s disease and typical Alzheimer’s disease: A comparative study. *Anales De Psicologia.* 2013;29(1):293-300.
9. Ossenkoppele R, Pijnenburg YA, Perry DC, et al. The behavioural/dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features. *Brain: a journal of neurology.* 2015;138(Pt 9):2732-2749.
10. Sala A, Caprioglio C, Santangelo R, et al. Brain metabolic signatures across the Alzheimer’s disease spectrum. *Eur J Nucl Med Mol Imaging.* 2020;47(2):256-269.
11. Therriault J, Pascoal TA, Savard M, et al. Topographical distribution of amyloid-β, tau and atrophy in behavioral / dysexecutive AD patients. *Neurology.* 2020:10.1212/WNL.0000000000011081.
12. Bergeron D, Beauregard JM, Jean G, et al. Posterior Cingulate Cortex Hypometabolism in Non-Amnestic Variants of Alzheimer’s Disease. *Journal of Alzheimer’s Disease.* 2020;79(4):1735-1745.
13. Lehingue E, Gueniat J, Jourdaa S, et al. Improving the Diagnosis of the Frontal Variant of Alzheimer's Disease with the DAPHNE Scale. *Journal of Alzheimer's Disease.* 2021;79(4):1735-1745.
14. Brun A, Gustafson L. Distribution of cerebral degeneration in Alzheimer's disease. A clinicopathological study. *Archiv fur Psychiatrie und Nervenkrankheiten.* 1976;223(1):15-33.
15. Shibayama H, Kitoh J. Electron microscopic structure of the Alzheimer's neurofibrillary changes in case of atypical senile dementia. *Acta Neuropathol.* 1978;41(3):229-234.
16. Shuttleworth EC. Atypical presentations of dementia of the Alzheimer type. *Journal of the American Geriatrics Society.* 1984;32(7):485-490.
17. Brun A. Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. *Archives of gerontology and geriatrics.* 1987;6(3):193-208.
18. Perani D, Di Piero V, Vallar G, et al. Technetium-99m HMPAO-SPECT study of regional cerebral perfusion in early Alzheimer’s disease. *J Nucl Med.* 1988;29(9):1507-1514.
19. Bird TD, Sumi SM, Nemens EJ, et al. Phenotypic heterogeneity in familial alzheimer's disease: A study of 24 kindreds. *Annals of Neurology.* 1989;25(1):12-25.
20. Grady CL, Haxby JV, Schapiro MB, et al. Subgroups in dementia of the Alzheimer type identified using positron emission tomography. *The Journal of neuropsychiatry and clinical neurosciences.* 1990;2(4):373-384.
21. Molchan SE, Martinez RA, Lawlor BA, Grafman JH, Sunderland T. Reflections of the self: atypical misidentification and delusional syndromes in two patients with Alzheimer’s disease. *The British journal of psychiatry: the journal of mental science.* 1990;157:605-608.

© 2021 Ossenkoppele R et al. JAMA Neurology
22. Raux G, Gantier R, Thomas-Anterion C, et al. Dementia with prominent frontotemporal features associated with L113P presenilin 1 mutation. Neurology. 2000;55(10):1577-1578.
23. Rippon GA, Crook R, Baker M, et al. Presenilin 1 mutation in an african american family presenting with atypical Alzheimer dementia. Archives of neurology. 2003;60(6):884-888.
24. Yokota O, Terada S, Ishizu H, et al. Variability and heterogeneity in Alzheimer's disease with cotton wool plaques: a clinicopathological study of four autopsy cases. Acta Neuropathol. 2003;106(4):348-356.
25. Doran M, Larner AJ. Prominent behavioural and psychiatric symptoms in early-onset Alzheimer's disease in a sib pair with the presenilin-1 gene R269G mutation. European archives of psychiatry and clinical neuroscience. 2004;254(3):187-189.
26. Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG. The evolution and pathology of frontotemporal dementia. Brain. 2005;128(Pt 9):1996-2005.
27. Shi J, Shaw CL, Du Plessis D, et al. Histopathological changes underlying frontotemporal lobar degeneration with clinicopathological correlation. Acta Neuropathol. 2005;110(5):501-512.
28. Forman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: Clinicopathological correlations. Annals of Neurology. 2006;59(6):952-962.
29. Larner AJ. "Frontal variant Alzheimer's disease": a reappraisal. Clinical neurology and neurosurgery. 2006;108(7):705-708.
30. Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer's disease. Brain. 2007;130(Pt 10):2636-2645.
31. Rabinovici GD, Furst AJ, Neil JP, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology. 2007;68(15):1205.
32. Snowden JS, Stopford CL, Julien CL, et al. Cognitive phenotypes in Alzheimer's disease and genetic risk. Cortex; a journal devoted to the study of the nervous system and behavior. 2007;43(7):835-845.
33. Taylor KI, Probst A, Miserez AR, Monsch AU, Tolnay M. Clinical course of neuropathologically confirmed frontotemporal variant Alzheimer's disease. Nature clinical practice Neurology. 2008;4(4):226-232.
34. Kile SJ, Ellis WG, Olichney JM, Farias S, DeCarli C. Alzheimer abnormalities of the amygdala with Klüver-Bucy syndrome symptoms: an amygdaloid variant of Alzheimer disease. Archives of neurology. 2009;66(1):125-129.
35. Bigio EH, Mishra M, Hatanpaa KJ, et al. TDP-43 pathology in primary progressive aphasia and frontotemporal dementia with pathologic Alzheimer disease. Acta Neuropathol. 2010;120(1):43-54.
36. Habek M, Hajnsek S, Zarkovic K, Chudy D, Mubrin Z. Frontal Variant of Alzheimer's Disease: Clinico-CSF-Pathological Correlation. Canadian Journal of Neurological Sciences. 2010;37(1):118-120.
37. Lehmann M, Rohrer JD, Clarkson MJ, et al. Reduced cortical thickness in the posterior cingulate gyrus is characteristic of both typical and atypical Alzheimer's disease. Journal of Alzheimer's disease : JAD. 2010;20(2):587-598.
38. Piscopo P, Talarico G, Crestini A, et al. A novel mutation in the predicted TMIII domain of the PSEN2 gene in an Italian pedigree with atypical Alzheimer's disease. Journal of Alzheimer's disease : JAD. 2010;20(1):43-47.
39. Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77(23):2034-2042.
40. Snowden JS, Thompson JC, Stopford CL, et al. The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain. 2011;134(Pt 9):2478-2492.
41. Whitwell JL, Jack CR, Przybelski SA, et al. Temporoparietal atrophy: A marker of AD pathology independent of clinical diagnosis. Neurobiology of Aging. 2011;32(9):1531-1541.
42. Borroni B, Pilotto A, Bonvicini C, et al. Atypical presentation of a novel Presenilin 1 R377W mutation: sporadic, late-onset Alzheimer disease with epilepsy and frontotemporal atrophy.
Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2012;33(2):375-378.

43. Duker AP, Espay AJ, Wszolek ZK, Rademakers R, Dickson DW, Kelley BJ. Atypical motor and behavioral presentations of Alzheimer disease: a case-based approach. The neurologist. 2012;18(5):266-272.

44. Wallon D, Rousseau S, Rovelet-Lecrux A, et al. The French series of autosomal dominant early onset Alzheimer's disease cases: mutation spectrum and cerebrospinal fluid biomarkers. Journal of Alzheimer's disease: JAD. 2012;30(4):847-856.

45. Herrero-San Martin A, Villarejo-Galende A, Rabano-Gutierrez A, Guerrero-Marquez C, Porta-Etessam J, Bermejo-Pareja F. Frontal variant of Alzheimer's disease. Two pathologically confirmed cases and a literature review. Revista De Neurologia. 2013;57(12):542-548.

46. Marini S, Lucidi G, Tedde A, Bessi V, Naamias B. A case of atypical early-onset Alzheimer's disease carrying the missense mutation Thr354Ile in exon 10 of the PSEN1 gene. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2013;34(9):1691-1692.

47. Léger GC, Banks SJ. Neuropsychiatric symptom profile differs based on pathology in patients with clinically diagnosed behavioral variant frontotemporal dementia. Dementia and geriatric cognitive disorders. 2014;37(1-2):104-112.

48. Nygaard HB, Lippa CF, Mehdi D, Baehring JM. A Novel Presenilin 1 Mutation in Early-Onset Alzheimer's Disease With Prominent Frontal Features. American journal of Alzheimer's disease and other dementias. 2014;29(5):433-435.

49. Balasa M, Gelpi E, Martin I, et al. Diagnostic accuracy of behavioral variant frontotemporal dementia consortium criteria (FTDC) in a clinical-pathological cohort. Neuropsychology and applied neurobiology. 2015;41(7):882-892.

50. Paterson RW, Toombs J, Slattery CF, et al. Dissecting IWG-2 typical and atypical Alzheimer's disease: insights from cerebrospinal fluid analysis. J Neurol. 2015;262(12):2722-2730.

51. Woodward MC, Rowe CC, Jones G, Villemagne VL, Varos TA. Differentiating the frontal presentation of Alzheimer's disease with FDG-PET. Journal of Alzheimer's disease: JAD. 2015;44(1):233-242.

52. Li P, Zhou YY, Lu D, Wang Y, Zhang HH. Correlated patterns of neuropsychological and behavioral symptoms in frontal variant of Alzheimer disease and behavioral variant frontotemporal dementia: a comparative case study. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2016;37(5):797-803.

53. Ossenkoppele R, Schonhaut DR, Scholl M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain: a journal of neurology. 2016;139(Pt 5):1551-1567.

54. Scialò C, Ferrara M, Accardo J, et al. Frontal Variant Alzheimer Disease or Frontotemporal Lobe Degeneration With Incidental Amyloidosis? Alzheimer Dis Assoc Disord. 2016;30(2):183-185.

55. Dickerson BC, McGinnis SM, Xia C, et al. Approach to atypical Alzheimer's disease and case studies of the major subtypes. CNS spectrums. 2017;22(6):439-449.

56. Duclos H, de La Sayette V, Bonnet AL, et al. Social Cognition in the Frontal Variant of Alzheimer's Disease: A Case Study. Journal of Alzheimer's disease: JAD. 2017;55(2):459-463.

57. Kawakatsu S, Kobayashi R, Hayashi H. Typical and atypical appearance of early-onset Alzheimer's disease: A clinical, neuroimaging and neuropathological study. Neuropathology: official journal of the Japanese Society of Neuropathology. 2017;37(2):150-173.

58. Oboudiyat C, Gefen T, Varelas E, et al. Cerebrospinal fluid markers detect Alzheimer's disease in nonamnestic dementia. Alzheimers Dement. 2017;13(5):598-601.

59. Perry DC, Brown JA, Possin KL, et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain. 2017;140(12):3329-3345.
60. Rawtaer I, Krishnamoorthy A. Co-occurring frontal variant Alzheimer's dementia and carrier of Huntington's disease allele with reduced penetrance. Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society. 2017;17(6):488-490.

61. Sawyer RP, Rodriguez-Porcel F, Hagen M, Shatz R, Espay AJ. Diagnosing the frontal variant of Alzheimer's disease: a clinician's yellow brick road. Journal of clinical movement disorders. 2017;4:2.

62. Bagyinszky E, Lee HM, Van Giau V, et al. PSEN1 p.Thr116Ile Variant in Two Korean Families with Young Onset Alzheimer's Disease. International journal of molecular sciences. 2018;19(9).

63. Boon BDC, Hoozemans JLM, Lopuhaä B, et al. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer’s disease. Journal of Neuroinflammation. 2018;15(1):170.

64. Seo SW, Thibodeau M-P, Perry DC, et al. Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration. Neurology. 2018;90(12):e1047-e1056.

65. Whitwell JL, Graff-Radford J, Tosakulwong N, et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer's disease. Alzheimers Dement. 2018;14(8):1005-1014.

66. de Souza LC, Mariano LI, de Moraes RF, Caramelli P. Behavioral variant of frontotemporal dementia or frontal variant of Alzheimer's disease? A case study. Dementia & neuropsychologia. 2019;13(3):356-360.

67. Foiani MS, Cicognola C, Ermann N, et al. Searching for novel cerebrospinal fluid biomarkers of tau pathology in frontotemporal dementia: an elusive quest. J Neurol Neurosurg Psychiatry. 2019;90(7):740-746.

68. Monacelli F, Martella L, Parodi MN, Odetti P, Fanelli F, Tabaton M. Frontal Variant of Alzheimer's Disease: A Report of a Novel PSEN1 Mutation. Journal of Alzheimer's disease : JAD. 2019;70(1):11-15.

69. Nolan A, Resende EDF, Petersen C, et al. Astrocytic Tau Deposition Is Frequent in Typical and Atypical Alzheimer Disease Presentations. Journal of Neuropathology and Experimental Neurology. 2019;78(12):1112-1123.

70. Pawlowski M, Joksch V, Wiendl H, Meuth SG, Duning T, Johnen A. Apraxia screening predicts Alzheimer pathology in frontotemporal dementia. J Neurol Neurosurgery Psychiatry. 2019;90(5):562-569.

71. Phillips JS, Da Re F, Irwin DJ, et al. Longitudinal progression of grey matter atrophy in non-amnestic Alzheimer's disease. Brain. 2019;142(6):1701-1722.

72. Pillai JA, Bonner-Jackson A, Bekris LM, Safar J, Bena J, Leverenz JB. Highly Elevated Cerebrospinal Fluid Total Tau Level Reflects Higher Likelihood of Non-Amnestic Subtype of Alzheimer's Disease. Journal of Alzheimer's disease : JAD. 2019;70(4):1051-1058.

73. Tan RH, Yang Y, McCann H, Shepherd C, Halliday GM. Von Economo Neurons in Behavioral Variant Frontotemporal Dementia with Underlying Alzheimer's Disease. Journal of Alzheimer's disease : JAD. 2019;69(4):963-967.

74. Wang Y, Shi Z, Zhang N, et al. Spatial Patterns of Hypometabolism and Amyloid Deposition in Variants of Alzheimer's Disease Corresponding to Brain Networks: a Prospective Cohort Study. Molecular imaging and biology. 2019;21(1):140-148.

75. Wong S, Strudwick J, Devenney E, Hodges JR, Piguet O, Kumfor F. Frontal variant of Alzheimer's disease masquerading as behavioural-variant frontotemporal dementia: a case study comparison. Neurocase. 2019;25(1-2):48-58.

76. Cai H, Ning S, Li W, Li X, Xiao S, Sun L. Patient with frontal-variant syndrome in early-onset Alzheimer’s disease. General psychiatry. 2020;33(2):e100173.

77. Cousins KAQ, Irwin DJ, Wolk DA, et al. ATN status in amnestic and non-amnestic Alzheimer’s disease and frontotemporal lobar degeneration. Brain. 2020;143(7):2295-2311.

78. Li CH, Fan SP, Chen TF, Chiu MJ, Yen RF, Lin CH. Frontal variant of Alzheimer's disease with asymmetric presentation mimicking frontotemporal dementia: Case report and literature review. Brain and behavior. 2020;10(3):e01548.
79. Paquin V, Therriault J, Pascoal TA, Rosa-Neto P, Gauthier S. Frontal Variant of Alzheimer Disease Differentiated From Frontotemporal Dementia Using in Vivo Amyloid and Tau Imaging. *Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.* 2020;33(4):288-293.

80. Scarioni M, Gami-Patel P, Timar Y, et al. Frontotemporal Dementia: Correlations Between Psychiatric Symptoms and Pathology. *Annals of Neurology.* 2020;87(6):950-961.

81. Singleton EH, Pijnenburg YAL, Sudre CH, et al. Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease. *Alzheimers Res Ther.* 2020;12(1):148.

82. Bergeron D, Sellami L, Poulin S, Verret L, Bouchard RW, Laforce R. The Behavioral/Dysexecutive Variant of Alzheimer’s Disease: A Case Series with Clinical, Neuropsychological, and FDG-PET Characterization. *Dementia and Geriatric Cognitive Disorders.* 2021;49(5):518-525.

83. Zhu L, Sun LM, Sun L, Xiao SF. Case of early-onset Alzheimer’s disease with atypical manifestation. *General Psychiatry.* 2021;34(1).

84. Eikelboom WS, van den Berg E, Singleton EH, et al. Neuropsychiatric and Cognitive Symptoms Across the Alzheimer Disease Clinical Spectrum: Cross-sectional and Longitudinal Associations. *Neurology.* 2021.

85. Townley RA, Graff-Radford J, Mantyh WG, et al. Progressive dysexecutive syndrome due to Alzheimer’s disease: a description of 55 cases and comparison to other phenotypes. *Brain Commun.* 2020;2(1):fcaa068.