A novel role for poly(C) binding proteins in programmed ribosomal frameshifting

Sawsan Napthine, Emmely E. Treffers, Susanne Bell, Ian Goodfellow, Ying Fang, Andrew E. Firth, Eric J. Snijder, and Ian Brierley

Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK, Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands and College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5705, USA

Received April 26, 2016; Revised May 17, 2016; Accepted May 18, 2016

ABSTRACT

Translational control through programmed ribosomal frameshifting (PRF) is exploited widely by viruses and increasingly documented in cellular genes. Frameshifting is induced by mRNA secondary structures that compromise ribosome fidelity during decoding of a heptanucleotide ‘slippery’ sequence. The nsp2 PRF signal of porcine reproductive and respiratory syndrome virus is distinctive in directing both −2 and −1 PRF and in its requirement for a trans-acting protein factor, the viral replicase subunit nsp1/β. Here we show that the the trans-activation of frameshifting is carried out by a protein complex composed of nsp1/β and a cellular poly(C) binding protein (PCBP). From the results of in vitro translation and electrophoretic mobility shift assays, we demonstrate that a PCBP/nsp1/β complex binds to a C-rich sequence downstream of the slippery sequence and here mimics the activity of a structured mRNA stimulator of PRF. This is the first description of a role for a trans-acting cellular protein in PRF. The discovery broadens the repertoire of activities associated with poly(C) binding proteins and prototypes a new class of virus–host interactions.

INTRODUCTION

In programmed −1 ribosomal frameshifting (−1 PRF), mRNA signals induce a proportion of translating ribosomes to slip back by 1 nucleotide (nt) into an overlapping open reading frame (ORF) and to continue translation, allowing the coordinated expression of two or more proteins from a single mRNA (1–3). First described as the mechanism by which the Gag-Pol polyprotein of the retrovirus Rous sarcoma virus (RSV) is expressed from overlapping gag and pol ORFs (4), related −1 PRF signals have been documented in many other viruses of clinical, veterinary and agricultural importance (reviewed in Ref. 5). PRF has also been increasingly recognized in conventional cellular genes of both prokaryotes and eukaryotes as well as in other replicating elements, such as insertion sequences and transposons (6,7).

Recently, we identified a novel, highly efficient −2/−1 PRF event that functions without a recognizable stimulatory RNA secondary structure (18,19). This signal operates during translation of the genome of porcine reproductive and respiratory syndrome virus (PRRSV), a member of the family Arteriviridae in the order Nidovirales (20). The PRRSV genome (Figure 1), a positive-sense RNA molecule some 15 kb in length, harbours two PRF signals. A ‘canonical’ −1 PRF element, including a stimulatory RNA pseudo-
Figure 1. Stimulation of PRRSV−2/−1 PRF in vitro in RRL. (A) The ∼15-kb PRRSV genome has two long 5′ ORFs, 1a and 1b encoding non-structural polyproteins (nsp2s) and at least eight shorter 3′ ORFs (2a-7) encoding structural proteins. ORF1a and ORF1b are translated from the genomic RNA, with translation of ORF1b depending on −1 PRF at the end of ORF1a. The TF ORF overlaps the central ORF1a region in the −2 reading frame and is accessed via −2 PRF (18). A −1 frameshift at the same site generates the nsp2N product. Shown below is the sequence of the SD01-08 RNA in the region of the −2/−1 PRF signal, with the slippery sequence (purple) and C-rich motif (red) highlighted. The −1 reading frame stop codon is underlined and codons for each of the reading frames are indicated. (B) Crystal structure of the PRRSV nsp1β dimer (32). The putative RNA binding domain is in orange (see text). (C) RNAs derived from FspI-cut pDluc PRRSV/wt, or a variant with the −1 frame stop codon (panel A) changed to UUA (PRRSV/stop), were translated in RRL in the presence of the indicated concentrations of His-tagged nsp1/β (H9252, H9262) or nsp1/β dilution buffer (DB). The products were resolved by 12% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and visualized by autoradiography. 14C molecular size markers were also run on the gel (M). Products generated by ribosomes that do not frameshift (stop) or that enter the −1 or −2 frames are indicated. The asterisk indicates the −1 PRF product of the PRRSV/wt construct. (D) In vitro translation of pDluc PRRSV/wt mRNA in the presence of 1 μM GST-nsp1/β or mutant derivatives (PR, RBM; see text). Control translations were supplemented with an equivalent concentration of expressed GST or DB alone. Translation products were analysed and quantified as above (C).
inhibit frameshifting, consistent with the presence of a 3’ stimulatory element of some form (18). A further novelty of the PRRSV −2/−1 PRF signal is an essential role for the 25-kDa viral replicase subunit nsp1β, which functions as a trans-activator of both −2 and −1 PRF (Figure 1B) (19). Nsp1β is one of the 14 subunits produced from the PRRSV replicase polypeptides. How it acts in PRF is unclear but replacement of basic residues within a highly conserved putative RNA-binding motif located in the papain-like autoproteinase (PLP) domain of nsp1β have a detrimental effect on frameshifting (19).

Through reconstitution of the PRRSV −2/−1 PRF signal in vitro, we show here that in addition to the viral trans-activator nsp1β, efficient frameshifting requires the participation of cellular poly(C) binding proteins (PCBPs). In mammalian cells, two PCBP subsets have been described, hnRNPs K/J (21) and the αCP proteins αCP1 and αCP2, often referred to as PCBP1 and PCBP2 (22, 23). The latter group also includes the more recently described paralogues PCBP3 and PCBP4 (24). PCBPs are members of the KH domain superfamily of nucleic acid binding proteins, and have a wide spectrum of biological activities, including the regulation of RNA splicing, the stabilization of cellular and viral mRNAs, transcriptional activation and inhibition, and translational silencing and enhancement (reviewed in Refs. 25, 26). Using in vitro translation and RNA binding assays, we demonstrate that a complex of nsp1β and PCBP binds to the RNA downstream of the slippery sequence and mimics the action of the more typical RNA pseudoknot stimulators of programmed frameshifting. This unprecedented frameshift-stimulatory signal provides new insights as to how the ribosomal elongation cycle can be modified by trans-acting protein factors. Further, it broadens the repertoire of activities associated with poly(C) binding proteins and prototypes a new class of virus–host interactions.

MATERIALS AND METHODS

Plasmids

Assessment of in vitro frameshift efficiencies employed pDLuc/PRRSV wt and mutant derivatives. This vector contains the GG/GGUU/UUUU shift site, 5 upstream nucleotides (nt) and 66 downstream nt (79 nt in total) inserted between *Renilla* and firefly luciferase reporter genes (PCBP5). In mammalian cells, two PCBP subsets have been described, hnRNPs K/J (21) and the αCP proteins αCP1 and αCP2, often referred to as PCBP1 and PCBP2 (22, 23). The latter group also includes the more recently described paralogues PCBP3 and PCBP4 (24). PCBPs are members of the KH domain superfamily of nucleic acid binding proteins, and have a wide spectrum of biological activities, including the regulation of RNA splicing, the stabilization of cellular and viral mRNAs, transcriptional activation and inhibition, and translational silencing and enhancement (reviewed in Refs. 25, 26). Using in vitro translation and RNA binding assays, we demonstrate that a complex of nsp1β and PCBP binds to the RNA downstream of the slippery sequence and mimics the action of the more typical RNA pseudoknot stimulators of programmed frameshifting. This unprecedented frameshift-stimulatory signal provides new insights as to how the ribosomal elongation cycle can be modified by trans-acting protein factors. Further, it broadens the repertoire of activities associated with poly(C) binding proteins and prototypes a new class of virus–host interactions.

In vitro translation

Frameshift reporter plasmids were linearized with Fsp1 and capped run-off transcripts generated using T7 RNA polymerase as described (31). Messenger RNAs were transcribed in nuclease-treated rabbit reticulocyte lysate (RRL) or wheat germ (WG) extracts (Promega) programmed with ~50 μg/ml template mRNA. Typical reactions were of 10 μl volume and composed of 90% (v/v) RRL, 20 μM amino acids (lacking methionine) and 0.2 MBq [35S]-methionine. Reactions were incubated for 1 h at 30°C and stopped by the addition of an equal volume of 10 mM EDTA, 100 μg/ml RNase A followed by incubation at room temperature for 20 min. Samples were prepared for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) by the addition of 10 volumes of 2× Laemmli’s sample buffer, boiled for 4 min and resolved by SDS-PAGE. Dried gels were exposed to a Cyclone Plus Storage Phosphor Screen (PerkinElmer), the screen scanned using a Typhoon Trio Variable Mode Imager (GE Healthcare) in storage phosphor autoradiography mode and bands were quantified using ImageQuant™TL software (GE Healthcare). The calculations of frameshifting efficiency (%FS)
took into account the differential methionine content of the various products and %FS was calculated as % −IFS = 100 × [IFS1/MetFS1] / [IS/MetS + IFS1/MetFS1] + IFS2/MetFS2] and similarly for % −2FS. In the formula, the number of methionines in the stop, −IFS and −2FS products are denoted by MetS, MetFS1 and MetFS2 respectively; while the densitometry values for the same products are denoted by IS, IFS1 and IFS2, respectively. All frameshift assays were carried out a minimum of three times and the measured frameshift efficiencies (±SEM) are provided in the Supplementary Data.

Ribosome pausing assays

WG in vitro translation reactions (30 μl) were supplemented with 1 μM nsp1β, PCBP2 (or KH mutant derivative) or both proteins and programmed with mRNAs derived from AaV1-cut pPS0/PRRSV WT or pPS0/PRRSV CC2. Reactions were incubated at 18°C for 5 min prior to addition of edeine to 5 μM. Aliquots (1.5 μl) were subsequently withdrawn at intervals post-edeine addition, mixed with an equal volume of 10mM EDTA, 100 μg/ml RNase A and placed on ice. At the end of the time-course, samples were analysed by SDS-PAGE.

Electrophoretic mobility shift assay (EMSA)

Short, 32P-labelled template RNAs (58 nt) containing the PRRSV PRF region (with slippery sequence precisely at the 5’ end and C-rich region towards the centre) were prepared by T7 transcription of a PCR product generated using primers flanking the frameshift region, with the 5’ primer containing the T7 polymerase promoter sequence. Test proteins were diluted where necessary in dilution buffer (DB) (5 mM Tris pH 7.5, 100 mM KCl, 1 mM DTT, 0.05 mM EDTA, 5% glycerol) and added to reactions (10 μl final volume) alongside electrophoretic mobility shift assay (EMSA) buffer (10 mM Hepes pH 7.6, 150 mM KCl, 2 mM MgCl₂, 1 mM DTT, 0.5 mM adenosine triphosphate, 5% glycerol, 100 μg/ml porcine tRNA, 10U RNase inhibitor per ml), after which the radiolabelled probe was introduced. After incubation at 30°C for 10 min, samples were loaded promptly onto 4% acrylamide non-denaturing gels (acrylamide:bisacrylamide ratio 10:1) and run at 175V at room temperature until free and bound RNA species were resolved. Gels were fixed for 15 min in 10% acetic acid, 10% methanol, dried and exposed to X-ray film.

Pull down assays

For each protein tested, 40 μl of a 50% suspension of glutathione-agarose beads was centrifuged (500 g, 5 min), the supernatant removed and the beads washed sequentially with 200 μl water and thrice with GST wash buffer (50 mM Tris pH 7.6, 100 mM KCl, 5 mM MgCl₂, 1 mM DTT). Following incubation with nsp1β (6 μg) for 1 h at 4°C on a rotating wheel, the protein was removed and the beads washed three times with GST wash buffer. Test protein (2 μg) was added to the beads and the incubation and washing steps repeated, with the GST wash buffer supplemented with 0.1% NP-40. After removal of the final wash, 25 μl 4 × Laemmli’s sample buffer was added, the beads boiled for 5 min and supernatants analysed by SDS-PAGE.

siRNA-mediated knockdown

Details are provided in Supplementary Data.

RESULTS

Reconstitution of the PRRSV −2/−1 PRF signal in vitro

Trans-activation of PRRSV −2/−1 PRF by nsp1β was previously demonstrated by co-expression of nsp1β and nsp2 in cultured cells and by site-directed mutagenesis of the viral genome (18,19). To study the phenomenon in vitro, a 79-bp fragment encompassing the slippery sequence and C-rich region was subcloned between the Renilla and firefly luciferase genes of a frameshift-reporter plasmid (pDluc) such that expression of the downstream cistron (fluc) was dependent upon −2 PRF within the inserted PRRSV sequences. In RRL in vitro translations, mRNAs transcribed from pDluc/PRRSV specified the synthesis of only the product of the 5’ cistron of the reporter mRNA (Rluc) and no frameshifting was evident (Figure 1C). However, supplementation with recombinant, purified His-tagged nsp1β yielded two additional proteins, the most abundant corresponding to the product of −2 PRF. The second protein migrated more rapidly than that of Rluc and we surmised that this protein corresponded to the product of a −1 PRF, as a −1 frame stop codon is present immediately downstream of the slippery sequence (underlined in Figure 1A). To confirm this, the −1 frame stop codon (UGA) was changed to UUA, which extends the −1 reading frame by 56 codons and simultaneously introduces a 0-frame stop codon UAA thus shortening the Rluc gene. As expected, this point mutation increased the size of the predicted −1 PRF product, and slightly reduced the size of the Rluc protein (stop). These experiments indicate that the 79-nt region cloned into pDluc likely contains all of the cis-acting elements required for PRRSV −2/−1 frameshifting and that supplementation of the RRL translations with nsp1β alone is sufficient to trans-activate frameshifting to levels similar to those seen in infected cells (−2 PRF, 17%; −1 PRF, 7%; see Supplementary Table). The stimulation of PRF by nsp1β was specific to the PRRSV signal in that the protein had no effect on frameshifting at a variety of well-established sites of viral −1 PRF (Supplementary Figure S1). Furthermore, the protein was unable to promote stop codon readthrough at variants of the PRRSV signal with an in-frame stop codon placed within the slippery sequence at the position that would be decoded in the peptidyl- (P) or aminoacyl- (A) site of the ribosome (Supplementary Figure S1).

The crystal structure of nsp1β (Figure 1B) reveals an overall ellipsoidal structure consisting of six α-helices and seven β-strands with two major domains, a 48-amino-acid N-terminal domain (NTD) and a C-terminal papain-like cysteine protease (PLP1β) domain (32). Within the latter domain, we previously identified a conserved motif 12GKYLQRRLQ131 (19) as a potential RNA binding motif (RBM) that forms one of three α helices in the region between the catalytic residues of PLP1β (C96 and H165; Ref. 19). To investigate the importance of these activities to
trans-activation of PRF, amino acid substitutions were introduced into the protease active site (C96S; PR) or within the putative nsp1β RBM (K124A/R125A, mutant RBM; previously described as mutant 1βKO (Li et al., (19)) and the expressed variants tested in RRL (Figure 1D). In this experiment, the protease-defective variant retained full activity, ruling out the involvement of the protease activity of nsp1β in the stimulation of PRF. In contrast, the RBM mutation prevented frameshifting, supporting a role for RNA binding by nsp1β.

A requirement for Poly(C) binding proteins in PRRSV −2/−1 PRF

To assess the role in PRF of sequences 3′ of the slippery sequence, a series of in-frame deletions were introduced into pDLuc/PRRSV, starting from the 3′ end of the inserted PRRSV sequence. RNAs transcribed from these plasmids were translated in RRL in the presence of nsp1β (Figure 2A). PRF was found to be unaffected until the length of the PRRSV sequence downstream of the slippery sequence fell below 21 nt, at which point PRF was reduced (18 nt) or abolished (15 or 9 nt). In the latter constructs, the C-rich region is compromised, consistent with an important role in PRF. Similar results were previously observed in transfected cultured cells (Li et al., (19)). To investigate the function of the C-rich region specifically, we prepared a library of individual point mutations within, and flanking, the C-rich region of PRRSV, starting from the 3′ end of the conserved sequence (C13,3′ of the conserved sequence), where the effect was more modest. As an explanation for these observations, we speculated that the RNA downstream of the slippery sequence may interact with PCBP's. The ‘minimal’ region of PRRSV RNA required for full activity in PRF (21 nt) has only two C-rich patches, whereas previously established PCBP-binding consensus sequences more commonly have three (or more) C-triplets, potentially with each triplet binding one KH domain ((13); see below). However, PCBP1 and PCBP2 are amongst several candidates reported to associate with GST-tagged nsp1β in association screens, and a direct physical interaction between the two has been shown (34,35). PCBP's could therefore bind to the PRRSV mRNA by virtue of an association with nsp1β.

To explore the potential role of PCBP's in PRRSV PRF, we translated the pDLuc/PRRSV mRNA in RRL reactions supplemented with nsp1β, His-tagged human PCBP2, or both proteins (Figure 3A). We found that PCBP2 alone did not affect PRF (right hand lane), but when added together with nsp1β, synthesis of the –1 PRF product was stimulated some 3-fold (see Supplementary Table). We reasoned that if the ‘active’ trans-activating stimulator of PRF in PRRSV is a complex of nsp1β and PCBP, the RRL system may already contain an abundant form of PCBP, but one which would, in complex with nsp1β, preferentially induce –2 PRF. In this experiment, supplementation with PCBP2 may have generated nsp1β–PCBP2 complexes that could preferentially promote –1 PRF. We therefore translated the PRRSV frameshift reporter mRNA in the WG in vitro translation system on the basis that this lysate might contain fewer endogenous PCBP's, or PCBP's of sufficient evolutionary divergence to preclude any interactions with nsp1β. Consistent with our hypothesis, PRF at the PRRSV signal in WG was found to be completely dependent upon the addition of both nsp1β and PCBP2, with neither protein alone having any frameshift-stimulatory activity in this system (Figure 3B). Further, supplementation of WG translations with PCBP2 led preferentially to a –1 PRF, whereas with human PCBP1, –2 PRF was most evident (Figure 3C), suggesting that the abundant form in RRL is PCBP1. We also tested mouse PCBP3, human PCBP4 and mouse hnRNPK/J in WG translations (Figure 3C and D). Of these three proteins, only PCBP3 was able to promote frameshifting, with both –2 and –1 PRF products observed at similar levels (Figure 3C). We confirmed the involvement of PCBP1 and 2 in frameshifting in cultured cells using siRNAs (Supplementary Figure S2). Knockdown of PCBP's individually or together substantially reduced PRF, with PCBP1 noticeably affecting –2 PRF, and PCBP2, –1 PRF, consistent with the results of the WG assays above. No effect on PRF was seen with siRNAs targeting PCBP3, PCBP4 or hnRNPK/J, although we could not verify knockdown of PCBP3 due to lack of a reactive antibody.

Synergistic binding of nsp1β and PCBP to the PRRSV −2/−1 PRF signal

RNA binding by the PRRSV PRF trans-activators was investigated using EMSAs. A short (58 nt) 32P-labelled transcript encompassing the minimal PRRSV frameshift-stimulatory region was incubated with nsp1β, PCBP1 (or PCBP2) or both proteins, prior to electrophoresis on a 4% non-denaturing polyacrylamide gel. As shown in Figure 4A, a single RNA–protein complex was observed, the formation of which required both nsp1β and PCBP1 (or PCBP2). Using a broader range of PCBP2 concentrations at saturating levels of nsp1β, the estimated Kd of the interaction was found to be 130 nM (Supplementary Figure S3). In the presence of PCBP2, the PR mutant of nsp1β was able to bind the target RNA indistinguishably from the WT protein, but the RBM mutant gave a smeary pattern, indicative of weak, non-specific, RNA binding (Supplementary Figure S3). As a control, a version of the RNA probe mutated in the C-rich region (CC2, Ref. 18) was also tested, and no nsp1β/PCBP2 binding was evident (Supplementary Figure S3). A supershift assay was carried out to confirm nsp1β and PCBP association with the RNA in the complex. The PRRSV RNA was incubated with nsp1β and PCBP2 and subsequently with specific antibodies targeting either protein prior to EMSA. As shown in Figure 4B, in lanes from reactions with an added anti-PCBP2 monoclonal antibody, an additional band of slower mobility was seen consistent with the presence of PCBP2 in the RNA/protein complex. A monoclonal antibody targeting the NTD of nsp1β did not yield a novel EMSA product, but a more slowly migrating species was observable with a polyclonal anti-nsp1β serum. These observations support the view that the RNA/protein complex seen contains both proteins.

We carried out competition experiments to assess whether the WT PRRSV mRNA, the PR-defective CC2 variant or a known PCBP2-binding RNA from poliovirus...
Figure 2. The C-rich region is essential for PRF. (A) A series of 3′ deletions were engineered into pDluc PRRSV/wt and transcribed mRNAs translated in RRL in the presence of added nsp1β (1 μM). Products were analysed by SDS-PAGE as detailed in the legend to Figure 1. The number below each lane represents the length of the PRRSV-specific RNA sequence remaining downstream of the slippery sequence, of which 21 nt were sufficient for efficient −2/−1 PRF in this assay. (B) Individual point mutations were introduced in and around the C-rich region (red) within pDluc PRRSV/wt and transcribed mRNAs translated and analysed as above. The effect of each mutation on PRF is illustrated on the sequence below the gel, with a larger font size reflecting a greater inhibition of PRF.

Differential contribution of PCBP KH domains in PRF
PCBP family members have three KH domains, an adjacent pair (KH1 and KH2) close to the N-terminus and a third (KH3) towards the C-terminus, separated from KH1 and KH2 by an intervening sequence of variable length (Figure 3D). To test the involvement of individual KH domains in PRF, amino acid substitutions (to GDDG) were introduced within the conserved, hallmark GxxG loop in each domain, which forms part of the RNA binding domain. These mutations have been shown previously to abolish RNA bind-
Figure 3. A requirement for poly(C) binding proteins in PRRSV −2/−1 PRF. (A) In vitro translation of pDluc PRRSVwt mRNA in RRL alone (wt), or in the presence of PCBP2 alone (0.7 μM), nsp1 (from 0.1 to 1 μM) or both proteins (PCBP2, 0.7 μM; nsp1 from 0.1 to 1 μM). A control translation was supplemented with PCBP2 dilution buffer (DB). (B) In vitro translation of pDluc PRRSVwt mRNA in WG extract in the presence of the indicated concentrations of nsp1 (μM), PCBP2 (μM) or both proteins (PCBP2, from 0.5 to 1.5 μM; nsp1β, 1 μM). A control translation of pDluc PRRSVwt mRNA in RRL is also shown. (C) In vitro translation in WG extract of pDluc PRRSVwt mRNA in the presence of nsp1β (1 μM) with added PCBP1, 2, 3 or 4 (at 0.5 and 1 μM), hnRNPK (1 μM) or DB. Note PCBP3s were of mouse origin, with PCBP3 corresponding to accession number NM_021568.2 and PCBP3* to XM_006513919.2. (D) Multidomain structure of the PCBP family showing location of KH domains (numbered with respect to human sequence) and secondary structure of individual KH domains. Adapted from Refs. (25 and 26).

The synergistic binding of nsp1β/PCBP to the PRRSV mRNA. (A) EMSA analysis of binding of nsp1β, PCBP1 or PCBP2 (alone or in combination) to a short (58 nt) 32P-labelled in vitro transcript containing the PRRSV PRF signal. After incubation at 30 °C for 10 min, reactions were loaded onto a 4% non-denaturing polyacrylamide gel and, following electrophoresis, the gel was fixed, dried and subjected to autoradiography. Numbers below lanes show fold molar excess of protein(s) with respect to the radiolabelled RNA (10 nM). In lanes BSB, DB and W, RNA was incubated alone with band-shift buffer, protein dilution buffer or water, respectively (see ‘Materials and Methods’ section). (B) The composition of RNA–protein complexes was investigated by supershift assay. Complexes were prepared with 10 nM RNA and a 50-fold molar excess of nsp1β (N) and PCBP2 (P2) and subjected to EMSA directly (N, P2, NP2), or after incubation with monoclonal (mono) or polyclonal (poly) antisera raised against PCBP2 (αP2, mono) or nsp1β (αN, mono or poly). As controls, the radiolabelled RNA probe was incubated with either DB, the αP2 mono or the αN poly.

From the lack of effect of the KH2 mutation on PRF, we conclude that interaction of this domain with RNA does not occur (or is unnecessary for PRF) and that mutations within the GxxG loop of KH2 do not compromise the specific interaction with nsp1β. However, the KH1 and KH3 mutations likely modify the interaction of the protein with RNA, and conceivably, with nsp1β. EMSA analysis confirmed the predicted effects on RNA binding, which was reduced in the case of PCBP2KH3m, abolished with PCBP2KH1m and largely unaffected for PCBP2KH2 (Figure 5E). Similar results were seen with PCBP1 (Supplementary Figure S5). To assess the capacity of the various PCBP to bind nsp1β independently of RNA, a pull-down assay was utilized (Supplementary Figure S6). Here, immobilized GST-nsp1β was incubated with individual His-
Figure 5. Role of PCBP1/2 KH domains in PRRSV PRF. (A) In vitro translation in WG extract of pDlac PRRSV/wt mRNA in the presence of nsp1β (1 μM) and PCBP1, PCBP2 or PCBP1 KH domain mutants (P1 KH1-3m; 1 μM). DB is dilution buffer. (B) Analysis of PCBP2 KH domain mutants, details as in panel (A). (C) Compensatory effect on −2/−1 PRF of supplementing a WG translation with both PCBP1 KH1m and PCBP1 KH3m, details as in panel (A). (D) Individual PCBP1/2 KH domain mutants do not stimulate PRF in the absence of nsp1β, details as in panel (A). (E) EMSA analysis of PCBP2 KH domain mutants. Binding of the KH domain mutants to the PRRSV RNA (10 nM; details in Figure 4) was investigated in the absence or presence of added nsp1β (1 μM).
the ribosome appropriately at the slip-site (38,39). The im-
tween slippery sequence and stimulatory RNA to position
Spacing. A hallmark of RNA structure-dependent PRF
frameshifting

Mechanistic insights into protein-stimulated ribosomal
frameshifting

Spacing. A hallmark of RNA structure-dependent PRF
signals is the necessity to maintain a precise spacing be-
tween slippery sequence and stimulatory RNA to position
the ribosome appropriately at the slip-site (38,39). The im-
portance of spacing in PRRSV frameshifting was assessed
in WG translations programmed with reporter mRNAs
including the capacity to induce a ribosomal pause and the
necessity for maintaining a precise distance between slip-
pery sequence and stimulatory element. In RNA structure-
dependent PRF, interaction of the stimulatory RNA with
suggests that the nsp1β/PCBP complex functionally mim-
es such RNAs. The optimal spacer length was subtly differ-
ent for the two PCBPs, with maximal PRF (−2 and −1) seen
at longer spacer lengths for added PCBP1 compared with
PCBP2. Thus the capacity of the various PCPBs to promote
frameshifting into a particular reading frame is likely set by
the position and/or conformation of the protein complex
on the template, affected by subtle differences in the position
of KH domains within the proteins which influences ‘effective’ spacer length.

Pausing. Ribosome pausing at structured RNA stimula-
tors of PRF has been widely documented and may play a
mechanistic role (2). We tested whether the nsp1β/PCBP2
complex could also induce pausing by cloning the PRRSV
signal (with a defective slippery sequence) in-frame within
a reporter gene and translating in vitro derived mRNAs in
the WG system. The extent of pausing was estimated by
comparing the levels of a translational intermediate cor-
responding to pausing at a bound nsp1β/PCBP2 complex
with that of the full-length polypeptide produced during a
time course in which translation was synchronized by the
addition of edeine, a potent inhibitor of initiation, 5 min af-
fter the start of the reaction. A control mRNA was prepared
from plasmid template linearized at the position of the in-
serted PRRSV signal to serve as a pause marker. As can be
seen in Figure 7, pausing was clearly evident in the presence
of nsp1β/PCBP2, but far less so with either protein alone,
or on an mRNA lacking the C-rich region. The appearance
of the pause product was transient (albeit visible over sev-
eral minutes), consistent with its identity as a genuine in-
termediate rather than a dead-end product. In Figure 7C,
further pausing assays were carried out to examine the ac-
tivity of the PCBP2 KH domain mutants (in the presence of
nsp1β). We found a positive correlation between the extent
of pausing observed and the activity of the three mutants
in specific RNA binding, namely a little for PCBP2KH1m,
close to WT levels for PCBP2KH2m and much less pausing
for PCBP2KH3m.

DISCUSSION

A role for PRRSV nsp1β protein in PRF was the first de-
scription of a protein trans-activator of this process (19).
Here, we show that the active frameshift-stimulatory ele-
ment in fact comprises a complex of viral nsp1β and a cellu-
lar poly(C) binding protein. PCPBs have been shown to regu-
late gene expression at multiple levels, including transcrip-
tion, mRNA processing, mRNA stabilization and transla-
tion (reviewed in Refs. 25, 26). Hitherto, a role for PCPBs
in protein synthesis has been limited to translation initia-
tion, mostly in the recruitment of ribosomes to viral IRESes
(see Ref. 40). Their activity in stimulating PRF in PRRSV
is the first example of a role for PCPBs in modulating trans-
lational elongation.

The induction of PRF by the nsp1β–PCBP complex has
clear parallels with cis-acting structured RNA stimulators,
including the capacity to induce a ribosomal pause and the
necessity for maintaining a precise distance between slip-
pery sequence and stimulatory element. In RNA structure-
dependent PRF, interaction of the stimulatory RNA with

Figure 6. Spacer length is critical to PRRSV PRF magnitude and direction. (A) The spacer sequence separating slippery sequence and C-rich region of pDlac PRRSV/ wt mRNA (underlined in blue) was varied from 4 to 13 nt (from WT [wt] of 10 nt, asterisked) as indicated. Where necessary, the Fluc reading frame reporting −2 PRF was maintained by in-
serting one or two additional nucleotides immediately downstream of the inserted PRRSV sequences in pDlac. (B) RNAs were translated in WG in the presence of nsp1β (1 μM) and PCBP1 or PCBP2 (1 μM). Products were analysed as in Figure 1.
Figure 7. Ribosomal pausing at the PRRSV −2/−1 PRF signal. (A) The PRRSV WT (WT) C-rich region with a mutated slippery sequence (as indicated) was cloned into plasmid pPS0 (28) to generate plasmid pPS0/WT. A control plasmid (pPS0/CC2) additionally contained mutations in the C-rich region (see text). (B) RNAs derived from AvaII-cut pPS0/WT or pPS0/CC2 were translated in WG extract at 18°C for 5 min prior to addition of edeine to 5 μM. Aliquots were removed at various times post-edeine addition, translation stopped and products resolved by 12% SDS-PAGE. The expected size of the ribosomal pause product (pause) was marked by translating an mRNA produced from XhoI-cleaved pPS0. Translations were supplemented with 1 μM nsp1β, PCBP2 or both proteins as indicated. (C) Ribosomal pausing assays were carried out as described in panel (B) above. Here, AvaII-cut pPS0/WT mRNA was translated in WG extract supplemented with 1 μM nsp1β and the KH domain mutants of PCBP2, as indicated.
the ribosome impairs movement of the small subunit head during translocation, destabilizing the hybrid state and elevating energy barriers corresponding to subsequent sub-steps of translocation (15–17). Completion of translocation is accelerated by slippage of tRNAs into the −1 frame, thus promoting PRF. At the PRRSV signal, the bound nsp1β–PCBP complex would also be in close proximity to a ribosome actively decoding the slippery sequence, facilitating interactions between them. In this light, it may be significant that in pull down assays, nsp1β has been shown to interact with rpS14 (34), a protein immediately adjacent to a component (rpS3) of the putative ribosome-associated mRNA unwinding activity (13) and PCBP1 is known to interact with RACK1 (41), a ribosome-associated protein located close to the mRNA entry channel. Details of the molecular interactions that take place upon encounter of elongating ribosomes remain to be determined.

The geometry and stoichiometry of the nsp1β–PCBP complex on the PRRSV mRNA is uncertain and difficult to predict. Nsp1β exists as a dimer in solution (32), PCBPs have been shown to be capable of homo- and hetero-multimerization and RNA binding by PCBPs could reflect interaction with single or multiple KH domains (42–44). Binding assays with optimized RNA targets generated by in vitro SELEX have revealed that a tandem array of three C-patches maximizes PCBP2 binding to its RNA target (45) and several established PCBP binding sites contain three or more C-patches (33,46). However, the sequence motifs implicated in PCBP binding from gene expression analysis of human cells (47,48) and Caenorhabditis elegans (49) comprise predominantly two adjacent C-rich patches, although it is not known how strongly PCBPs bind to these targets, nor whether any other cellular proteins participate in the interactions. The EMSA data presented here reveal that alone, PCBP1 and PCBP2 bind weakly to the PRRSV C-rich region (which has two C-patches), requiring nsp1β for stable binding. Similarly, nsp1β binds RNA very weakly, but is evident in complexes (with PCBPs) from supershift assays. Stable complex formation on the mRNA thus likely depends upon conformational changes in one or both molecular partners and potentially, direct contact between nsp1β and mRNA. In support of the latter, we found that amino acid substitutions in the putative RBM) of nsp1β greatly weakened the association of the complex with RNA, without apparent effect on the interaction with PCBP2. Yeast two-hybrid studies (35) have shown that the reciprocal interaction of nsp1β and PCBP2 requires the C-terminus of nsp1β, including the protease domain (PLP1β) and C-terminal extension, and the KH2 domain of PCBP2. In light of this, we hypothesize that the association of nsp1β with KH2 would not preclude binding of nsp1β to RNA. An alternative interpretation is that nsp1β RBM fails to induce a conformational change in PCBP2 necessary for stable RNA association.

Our model for PRRSV −2/−1 PRF is that PCBPs interact with the PRRSV mRNA through KH1 and KH3, with each domain contacting one of the two C-patches (CCCA and CUCC) within the C-rich region. The KH2 domain itself is not associated with the RNA, serving rather to bind nsp1β, with the complex poised to subvert the elongating ribosome. In its capacity to stall ribosomes, the nsp1β–PCBP complex joins a growing list of proteins that have been shown to modulate the elongation step of protein synthesis. These include Stm1 of Saccharomyces cerevisiae, which inhibits translation after 80S formation (50), the fragile X mental retardation protein, which reversibly stalls ribosomes on its target mRNAs (51) by binding directly to the ribosome (52), the H1F-1o mRNA-associated cytoplasmic polyadenylation element binding protein 2, which binds eEF2 and slows elongation (53) and the PUF-Ago-eEF1A complex that attenuates elongation after the nascent peptide emerges from the ribosomal exit tunnel (54). Stalling of ribosomes by the nsp1β–PCBP complex, perhaps as a consequence of a direct interaction with the unwinding centre of the small subunit, could promote PRF in a manner similar to that described for structured RNA stimulators.

Not all PCBPs were capable of stimulating PRF. The lack of activity of PCBP4 and hnRNP K/J is potentially a consequence of differences in overall size and domain organization. PCBP1, 2 and 3 are globally similar, with KH domains located at analogous positions in the protein, whereas the linker separating KH2 and KH3 is shorter in PCBP4 and much longer in hnRNP K/J (Figure 3D). These differences did not affect association of PCBP4 with nsp1β, but could affect the strength of binding of individual KH domains to RNA or alternatively, preclude generation of a correctly oriented or positioned complex on the mRNA. With the KH domain mutants of PCBP1 and PCBP2, we largely observed an excellent correlation between activity in RNA binding, ribosomal pausing and the capacity to induce PRF. However, we saw differential activity in PRF of the KH1 domain mutants of PCBP1 and PCBP2, with the former barely active yet the latter retaining function in promoting −1 PRF, but with reduced −2 PRF. When RNA association was examined by EMSA, PCBP1KH1m and PCBP2KH1m bound to the PRRSV RNA with similar affinity and in an nsp1β-dependent manner, although binding was noticeably reduced in comparison to the WT proteins. This suggests that PCBP1KH1m and PCBP2KH1m still associate with the RNA, but the stability, conformation or position of the complex may be changed such that only in the case of PCBP2KH1m is PRF possible, and only −1 PRF (which is the predominant frameshift event for WT PCBP2 at the natural spacing distance). As noted in the ‘Results’ section, compensatory activity in PRF was detected upon mixing the individually inactive PCBP1KH1m and PCBP1KH3m, suggesting that two (or more) PCBPs can cooperate to stimulate frameshifting. The differential activity of PCBP1KH1m and PCBP2KH1m could reflect an altered capacity to homo-oligomerize.

The trans-activation of −2/−1 PRF by nsp1β/PCBP has intriguing parallels with a recently described translational readthrough event in human vascular endothelial growth factor A (VEGFA) mRNA (55). Here, low-frequency stop codon readthrough at the end of the pro-angiogenic VEGFA coding sequence appends an additional 22 amino acids to the C-terminus, generating the VEGF-Ax isoform which possesses anti-angiogenic activity. The readthrough event is promoted by the binding of hnRNP A2/B1 to a recognition element 10 nt downstream of the recoded VEGFA stop codon. Similar to PCBPs, hnRNP A2/B1 is known to associate with nascent cellular RNAs
and influence their localization, maturation and function (56). How it acts to stimulate readthrough is unknown, but it is striking that both hnRNP A2/B1 and the nsp1β/PCBP complex promote their respective recoding events from a similar distance 3′ of the ribosome, suggesting that they may contact the ribosome directly. How they subvert translation likely differs in each case as we were unable to uncover any stop codon readthrough activity of the nsp1β/PCBP2 complex (Supplementary Figure S1).

Our description of a role for PCBPs in ribosomal frameshifting adds to a growing number of examples of viral subversion of PCBP function. In the best characterized system, poiviruses, the capacity of PCBPs to associate with two discrete genomic RNA locations and in concert with different protein partners is critical to almost all aspects of the virus replication cycle (reviewed in Ref. 57). Whether such complex regulatory circuits operate during PRRSV replication and transcription remains to be determined. PCBP2 has been shown to associate with the 5′ untranslated region of the PRRSV genome and may be involved in genome replication or translation initiation (34,35). Furthermore, the relative abundance and location of PCBPs in the cytoplasm of infected cells could be important in determining the precise ratio of non-frameshifted (full-length nsp2) and trans-frame (nsp2TF, nsp2N) products at various stages of the replication cycle.

Presently, stop codon readthrough in VEGFA (55) and PRF in PRRSV (19, this work) represent the only two examples of specific modulation of translational decoding (recoding) mediated by proteins. The participation of hnRNPs in each case may reflect the versatility of these proteins in linking sequence-specific nucleic acid binding with specific protein–protein interactions and serving as a fulcrum for linking sequence-specific nucleic acid binding with specific protein–protein interactions and serving as a fulcrum for multilateral molecular cross-talk (58). It seems highly unlikely that protein-mediated recoding will be restricted to the two present examples, given the plethora of hnRNPs and other RNA binding proteins present in host and viral proteomes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We thank Trevor Sweeney for reading the manuscript and Ali Tas for technical assistance.

FUNDING

BBSRC UK [BB/L000334/1 to I.B.]; Wellcome Trust [088789, 106207 to A.E.F.]; Netherlands Organisation for Scientific Research (NWO-CW ECHO grant) [711.014.004 to E.J.S.]; U.S. Department of Agriculture National Institute of Food and Agriculture [2015-67015-22969 to Y.F.]; Wellcome Senior Fellowship [097997/Z/11/Z to I.G.]. Funding for open access charge: BBSRC UK [BB/L000334/1].

Conflict of interest statement. None declared.

REFERENCES

1. Giedroc,D.P. and Cornish,P.V. (2009) Frameshifting RNA pseudoknots: structure and mechanism. Virus Res., 139, 193–208.
2. Brierley,L., Gilbert,R.J.C. and Pennell,S. (2010) Pseudoknot-dependent -1 ribosomal frameshifting: structures, mechanisms and models. In: Atkins,J.F and Gesteland,R.F (eds). Recoding: Expansion of Decoding Rules Enriches Gene Expression. Springer, NY, pp. 149–174.
3. Dimm, J.D. (2012) Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip. Rev. RNA, 3, 661–673.
4. Jacks,T. and Varms,H.E. (1985) Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science, 230, 1237–1242.
5. Firth,A.E. and Brierley,L. (2012) Non-canonical translation in RNA viruses. J. Gen. Virol., 93, 1385–1409.
6. Fayet,O. and Prêre,M.-F. (2010) Programmed ribosomal -1 frameshifting as a tradition; the bacterial transposable elements of the IS3 family. In: Atkins,J.F and Gesteland,R.F (eds). Recoding: Expansion of Decoding Rules Enriches Gene Expression. Springer, NY, pp. 259–280.
7. Belew,A.T. and Dimm, J.D. (2015) Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle, 14, 172–178.
8. Plant,E.P., Jacobs,K.L., Harger,J.W., Meskauskas,A., Jacobs,J.L., Baxter,J.L., Petrov,A.N. and Dimm, J.D. (2003) The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. RNA, 9, 168–174.
9. Plant,E.P. and Dimm, J.D. (2005) Torsional restraint: a new twist on frameshifting pseudoknots. Nucleic Acids Res., 33, 1825–1833.
10. Namy,O., Moran,S.I., Stuart,D.I., Gilbert,R.J.C. and Brierley,L. (2006) A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 441, 244–247.
11. Belew,A.T., Meskauskas,A., Musalgaonkar,S., Advani,V.M., Sulina,S.O., Kasprzak,W.K., Shapiro,B.A. and Dimm, J.D. (2014) Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature, 512, 265–269.
12. Yusupova,G.Z., Yusupov,M.M., Cate,J.H. and Noller,H.F. (2001) The path of messenger RNA through the ribosome. Cell, 106, 233–241.
13. Takyar,S., Hickerson,R.P. and Noller,H.F. (2005) mRNA helicase activity of the ribosome. Cell, 120, 49–58.
14. Qu,X., Wen,J.D., Lancaster,L., Noller,H.F., Bustamante,C. and Tinoco,I. Jr (2011) The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature, 475, 118–121.
15. Calisima,N., Katunin,V.I., Belardelli,R., Peske,F. and Rodnina,M.V. (2014) Programmed -1 frameshifting by kinetic partitioning during impeded transllocation. Cell, 157, 1619–1631.
16. Chen,J., Petrov,A., Johansson,M., Tsai,A., O’Leary,S.E. and Puglis,J.D. (2014a) Dynamic pathways of -1 translational frameshifting. Nature, 512, 328–332.
17. Kim,H.K., Liu,F., Fei,J., Bustamante,C., Gonzalez,R.L. Jr and Tinoco,I. Jr (2014) A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal transllocation. Proc. Natl. Acad. Sci. U.S.A., 111, 5538–5543.
18. Fang,Y., Treffers,E.E., Li,Y., Tas,A., Sun,Z., van der Meer,Y., de Ru,A.H., van Veelen,P.A., Atkins,J.F., Snijder,E.J. et al. (2012) Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. U.S.A., 109, E2920–E2928.
19. Li,Y., Treffers,E.E., Napthine,S., Tas,A., Zhu,L., Sun,Z., Bell,S., Mark,B.L., van Veelen,P.A., van Hemert,M. et al. (2014) Transactivation of programmed ribosomal frameshifting by a viral protein. Proc. Natl. Acad. Sci. U.S.A., 111, E2172–E2181.
20. Snijder,E.J., Kikkert,M. and Fang,Y. (2013) Arterivirus molecular biology and pathogenesis. J. Gen. Virol., 94, 2141–2163.
21. Matunis,M.J., Michael,W.M. and Dreyfuss,G (1992) Characterization and primary structure of the poly(C)-binding heterogeneous nuclear ribonucleoprotein complex K protein. Mol. Cell Biol., 12, 164–171.
22. Leffers,H., Dejgaard,K. and Celis,J.E. (1995) Characterization of two major cellular poly(rC)-binding human proteins each containing three K-homologous (KH) domains. Eur. J. Biochem., 230, 447–453.
23. Kiledjian, M., Wang, X. and Liebhaber, S.A. (1995) Identification of two KH domain proteins in the alpha-globin mRNP stability complex. *EMBO J.*, 14, 4357–4364.

24. Makeyev, A.V. and Liebhaber, S.A. (2000) Identification of two novel mammalian genes establishes a subfamily of KH-domain RNA-binding proteins. *Genomics*, 67, 301–316.

25. Makeyev, A.V. and Liebhaber, S.A. (2002) The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. *RNA*, 8, 265–278.

26. Choi, H.S., Hwang, C.K., Song, K.Y., Law, P.Y., Wei, L.N. and Loh, H.H. (2009) Poly(C)-binding proteins as transcriptional regulators of gene expression. *Biochem. Biophys. Res. Commun.*, 380, 431–436.

27. Fixsen, S.M. and Howard, M.T. (2010) Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins. *J. Mol. Biol.*, 399, 385–396.

28. Somogyi, P., Jenner, A.J., Brierley, I. and Inglis, S.C. (1993) Ribosomal pausing during translation of an RNA pseudoknot. *Mol. Cell. Biol.*, 13, 6931–6940.

29. Bornhorst, J.A. and Falke, J.J. (2000) Purification of proteins using polyhistidine affinity tags. *Methods Enzymol.*, 326, 245–254.

30. Harper, S. and Speicher, D.W. (2011) Purification of proteins fused to glutathione S-transferase. *Methods Mol. Biol.*, 681, 259–280.

31. Powell, M.L., Naphcine, S., Jackson, R.J., Brierley, I. and Brown, T.D. (2008) Characterization of the termination-reinitiation strategy employed in the expression of influenza virus BM2 protein. *RNA*, 14, 2394–2406.

32. Xue, F., Sun, Y., Yan, L., Zhao, C., Chen, J., Bartlam, M., Li, X., Lou, Z. and Rao, Z. (2010) The crystal structure of porcine reproductive and respiratory syndrome virus nonstructural protein Nsp1beta reveals a novel metal-dependent nuclease. *J. Virol.*, 84, 6461–6471.

33. Holcik, M. and Liebhaber, S.A. (1997) Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA-protein complexes sharing cis and trans components. *Proc. Natl. Acad. Sci. U.S.A.*, 94, 2410–2414.

34. Beura, L.K., Dinh, P.X., Osorio, F.A. and Pattanaik, A.K. (2011) Cellular poly(C) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1B and support viral replication. *J. Virol.*, 85, 12939–12949.

35. Wang, L., He, Q., Gao, Y., Guo, X., Ge, X., Zhou, L. and Yang, H. (2012) Interaction of cellular poly(C)-binding protein 2 with nonstructural protein 1B is beneficial to Chinese highly pathogenic porcine reproductive and respiratory syndrome virus replication. *Virus Res.*, 169, 222–230.

36. Gamarnik, A.V. and Andino, R. (1997) Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. *RNA*, 3, 882–892.

37. Hollingworth, D., Candel, A.M., Nicastro, G., Martin, S.R., Briata, P., Gherzi, R. and Ramos, A. (2012) KH domains with impaired nucleic acid binding as a tool for functional analysis. *Nucleic Acids Res.*, 40, 6873–6886.

38. Brierley, I., Digard, P. and Inglis, S.C. (1989) Characterisation of an RNA pseudoknot. *Cell*, 57, 537–547.

39. Lin, Z., Gilbert, R.J. and Brierley, I. (2012) Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting. *Nucleic Acids Res.*, 40, 8674–8689.

40. Sweeney, T.R., Abaraa, I.S., Pestova, T.V. and Hellen, C.U. (2014) The mechanism of translation initiation on Type 1 picornavirus IRESs. *EMBO J.*, 33, 76–92.

41. Nahar-Gohad, P., Sultan, H., Esteban, Y., Stabile, A. and Ko, J.L. (2013) RACK1 identified as the PCBP1-interacting protein with a novel functional role on the regulation of human MOR gene expression. *J. Neurochem.*, 124, 466–477.

42. Bedard, K.M., Walter, B.L. and Semler, B.L. (2004) Multimerization of poly(rC) binding protein 2 is required for translation initiation mediated by a viral IRES. *RNA*, 10, 1266–1276.

43. Du, Z., Fenn, S., Tjhen, R. and James, T.L. (2008) Structure of a construct of a human poly(rC)-binding protein containing the first and second KH domains reveals insights into its regulatory mechanisms. *J. Biol. Chem.*, 283, 28757–28766.

44. Yoga, Y.M., Traore, D.A., Sidiqi, M., Szeto, C., Pendini, N.R., Barker, A., Leedman, P.J., Wilce, J.A. and Wilce, M.C. (2012) Contribution of the first K-homology domain of poly(rC)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides. *Nucleic Acids Res.*, 40, 5101–5114.

45. Thisted, T., Lyakhov, D.L. and Liebhaber, S.A. (2001) Optimized RNA targets of two closely related triple KH domain proteins heterogeneous nuclear ribonucleoprotein K and alphaCP-2KL suggest distinct modes of RNA recognition. *J. Biol. Chem.*, 276, 17484–17496.

46. Reimann, I., Huth, A., Thiele, H. and Thiele, B.L. (2002) Suppression of 15-lipoxygenase synthesis by hnRNP E1 is dependent on repetitive nature of LOX mRNA 3′-UTR control element DICE. *J. Mol. Biol.*, 315, 965–974.

47. Ji, X., Wan, J., Vishnu, M., Xing, Y. and Liebhaber, S.A. (2013) αCP Poly(C) binding proteins act as global regulators of alternative polyadenylation. *Mol. Cell. Biol.*, 33, 2560–2573.

48. Flynn, R.A., Martin, L., Spitalic, R.C., Do, B.T., Sagan, S.M., Zarnegar, B., Xu, K., Khavari, P.A., Quake, S.R., Sarnow, P. and Chang, H.Y. (2015) Dissecting noncoding and pathogen RNA-protein interactomes. *RNA*, 21, 135–143.

49. Stoeckius, M., Grün, D., Kirchner, M., Ayoub, S., Torti, F., Piano, F., Herzog, M., Selbach, M. and Rajewsky, N. (2014) Global characterization of the oocyte-to-embryo transition in *Caenorhabditis elegans* uncovers a novel mRNA cleavage mechanism. *EMBO J.*, 33, 1751–1766.

50. Balagopal, V. and Parker, R. (2011) Stm1 modulates translation after 80S formation in *Saccharomyces cerevisiae*. *RNA*, 17, 835–842.

51. Darnell, J.C., Van Driessen, S.J., Zhang, C., Hung, K.Y., Mele, A., Fraser, C.E., Stone, E.F., Chen, C., Fah,J.J., Chi, S.W. et al. (2014) FMRP stalls ribosomal translation on mRNAs linked to synaptic function and autism. *Cell*, 146, 247–261.

52. Chen, E., Sharma, M.R., Shi, X., Agrawal, R.K. and Joseph, S.S. (2016) Fragile X mental retardation protein regulates translation by binding directly to the ribosome. *Mol. Cell*, 54, 407–417.

53. Chen, P.J. and Huang, Y.S. (2012) CPEB2-εEF2 interaction impedes HIF-1α RNA translation. *EMBO J.*, 31, 959–971.

54. Friend, K., Campbell, Z.T., Cooke, A., Kroll-Conner, P., Wikins, M.P. and Kimble, J. (2012) A conserved PUF-Ago-εEF1A complex attenuates translation elongation. *Nat. Struct. Mol. Biol.*, 19, 176–183.

55. Eswarappa, S.M., Potdar, A.A., Koch, W.J., Fan, Y., Vasu, K., Lindner, D., Willard, B., Graham, L.M., DiCorleto, P.E. and Fox, P.L. (2014) Programmed translational readthrough generates antiangiogenic VEGF-A. *Cell*, 157, 1605–1618.

56. Jean-Philippe, P., Paz, S. and Caputi, M. (2013) hnRNP A1: the Swiss army knife of gene expression. *Int. J. Mol. Sci.*, 14, 18999–19024.

57. Chase, A.J. and Semler, B.L. (2012) Viral subversion of host functions for picornavirus translation and RNA replication. *Future Virol.*, 7, 179–191.

58. Bomsztyń, K., Van Seuningen, I., Suzuki, H., Denisenko, O. and Ostrowski, J. (1997) Diverse molecular interactions of the hnRNP K protein. *FEBS Lett.*, 403, 113–115.