Herb–drug interactions between the medicinal mushrooms Lingzhi and Yunzhi and cytotoxic anticancer drugs: a systematic review

Chun Sing Lam¹, Lok Pui Cheng¹, Li Min Zhou², Yin Ting Cheung¹ and Zhong Zuo¹*

Abstract
Background: Lingzhi and Yunzhi are medicinal mushrooms commonly used with cytotoxic chemotherapy in cancer patients in Asian countries. The current systematic review aims to identify potential pharmacokinetic or pharmacodynamic interactions from the existing literature to ensure their effective and safe combination usage in cancer patients.

Methods: A systematic search was conducted on nine major Chinese and English databases, including China Journal Net, Allied and Complementary Medicine Database, and Ovid MEDLINE® etc., to identify clinical, animal, and in-vitro studies that evaluate the effect of combined use of Lingzhi or Yunzhi with cytotoxic drugs. The Jadad scale was used to assess the quality of clinical studies.

Results: This search identified 213 studies, including 77 clinical studies that reported on the combined use of cytotoxic drugs with Yunzhi (n = 56) or Lingzhi (n = 21). Majority of these clinical studies demonstrated modest methodological quality. In clinical practice, the most commonly used cytotoxic drugs with Lingzhi were cisplatin, 5-fluorouracil (5-FU) and paclitaxel, whereas Tegafur/uracil (UFT)/Tegafur, 5-FU, and mitomycin were the ones used more often with Yunzhi. Only two clinical pharmacokinetic studies were available showing no significant interactions between Polysaccharide K (PSK) and Tegafur. From the pharmacodynamic interactions perspective, combination uses of Yunzhi/Lingzhi with cytotoxic drugs in clinical practice could lead to improvement in survival (n = 31) and quality of life (n = 17), reduction in tumor lesions (n = 22), immune modulation (n = 38), and alleviation of chemotherapy-related side effects (n = 14) with no reported adverse effects.

Conclusion: Our findings suggest that the clinical combination use of Lingzhi or Yunzhi with cytotoxic drugs could enhance the efficacy and ameliorate the adverse effects of cytotoxic drugs, leading to improved quality of life in cancer patients. More high quality clinical studies including pharmacokinetic herb-drug interactions studies are warranted to verify these observations and mechanisms involved. Based on the high quality clinical data, pharmacoepidemiology methods and bioinformatics or data mining could be adopt for further identification of clinical meaningful herb-drug interactions in cancer therapies.

Keywords: Herb–drug interaction, Lingzhi, Yunzhi, Cytotoxic drugs, Anticancer drugs, Medicinal mushrooms

Background
Although chemotherapy and radiotherapy remain the mainstay of cancer treatment in developed countries, an increasing number of cancer patients are seeking benefits from complementary and alternative
medicine. Surveys in the United States, Canada and Europe revealed that an average rate of 35% of cancer patients have utilized Chinese herbal medicine during their treatment [1]. Such prevalence of Chinese herbal medicine use in cancer patients from Asian countries is expected to be even higher [2, 3].

It is well-known that the concurrent use of Chinese and Western medicines can cause herb-drug interactions that lead to both beneficial and harmful health outcomes. To highlight, herb–drug interactions are not uncommon in cancer treatment and may affect the clinical efficacy or safety of the treatment. One study demonstrated that over half of the patients undergoing chemotherapy took herbal products, of whom 27% were found to be at risk of clinically significant interactions between chemotherapy drug and herbs. In another study, authors detected 120 possible herb–drug interactions in 149 patients who reported concurrent use of Chinese herbs with conventional anti-cancer drugs [4, 5]. As most chemotherapy drugs have a narrow therapeutic index, there is an urgent need for clinicians and scientists to address the potential herb-drug interactions in oncology practice.

Among Chinese herbs, medicinal mushrooms have been used for a long time during the cancer treatment. Lingzhi (Reishi or Mannentake in Japanese) and Yunzhi (commonly known as Turkey tail) are common medicinal mushrooms that are readily available in Asian countries. They are believed to possess medicinal properties to treat cancers or relieve cancer-related symptoms [6]. The two mushrooms both belong to the Polyporaceae family and have similar characteristics based on Traditional Chinese Medicine theory including flavour and nature [7]. Despite their popular use in cancer patients, there are limited reports on the clinical outcomes from their herb-drug interactions during anti-cancer treatment.

Although systematic reviews and meta-analysis of Lingzhi and Yunzhi as an adjunct for cancer treatment have been performed [8–10], these reviews mostly focused on clinical outcomes with no mechanistic explanations for the potential beneficial or harmful interactions. By gathering both clinical and preclinical studies of this subject matter, the current systematic review aimed to evaluate the effects of the co-administration of cytotoxic drugs with the medicinal mushrooms, Lingzhi and Yunzhi. Specifically, we will identify potential pharmacokinetic and pharmacodynamic interactions between these medicinal mushrooms and chemotherapy drugs and discuss the implications of these interactions on the efficacy and safety of cancer treatment.

Methodology

Database search

A comprehensive search was conducted on the following databases: China Journal Net (1915 to June 2020), Wanfang Database (1990 to June 2020), and Chinese Biomedical Literature Database (1878 to June 2020). English databases included Allied and Complementary Medicine (1985 to June 2020), Embase (1910 to June 2020), Ovid MEDLINE® (1946 to June 2020), Ovid Nursing Database (1946 to June 2020), and Natural Medicines Comprehensive Database.

The combination of search terms included keywords for cytotoxic anticancer drugs and medicinal mushrooms as shown in Additional file 1: Table S1. The keywords used for cytotoxic anticancer drugs were based on the Hong Kong Hospital Authority Drug Formulary with no targeted therapy drugs included in the current review. In addition, chemoprotectants such as leucovorin and mesna were included in the current search. Besides the specific names of the cytotoxic drugs, general terms such as “cytotoxic drug” and “antineoplastic drug” were also included in the search to increase the coverage.

For the two medicinal mushrooms, Chinese name, English name, Pinyin and Latin name of them together with the names of their active ingredients were incorporated in the search. For Lingzhi, keywords for search included Reishi, Mannentake, Lingzhi, Ganoderma lucidum, Ganoderma sinense, Ganoderic acid, Polysaccharide, Polysaccharide peptide, 灵芝, 灵芝酸, and 多糖. For Yunzhi, Turkey Tail, Yunzhi, Coriolus versicolor, Trametes versicolor, Polyporus versicolor, Krestin (PSK), Polysaccharide, Polysaccharide peptide (PSP), 雲芝 and 多糖肽. General terms including “medicinal mushroom” was also utilized in the search for more comprehensive coverage.

Inclusion criteria

This review included clinical, animal and in-vitro studies that reported the concurrent use of any cytotoxic drug with the two medicinal mushroom(s). The name of drug used, dosage form and administration route should be specified. The mushroom(s) could exist in any formulation containing a raw or processed form of the mushroom(s) that included the extract of its (their) active phytochemical components. They could be used alone or with other herbs or ingredients in a composite formula. Clinical studies had to involve two groups of patients, a control group that received only the cytotoxic drug or the medicinal mushroom(s) (or the mushroom-containing herbal formula) and a co-administration group that received the cytotoxic drug together with the medicinal mushroom(s). If the control group also received medicinal mushrooms, there should be significant dosage
differences of the mushrooms in the treatment group.
The languages of the included articles were restricted to
English, Chinese and Japanese.

Assessing the quality of clinical studies
The Jadad scale was used to assess the quality of the clini-
cal studies. This is a 5-point scale evaluating randomiza-
tion, blinding, and withdrawals or dropouts of the clinical
trials [11].

Results and discussion

Results of the database search

Figure 1 summarizes the process of database search-
ing and literature selection. The initial search identified
9712 studies. After screening their titles and abstracts,
about 455 studies were included and subjected to fur-
ther full-text inspection and verifications based on the
inclusion criteria. In total, 213 studies were included
in this review with 119 of them focused on Lingzhi, 93
of them on Yunzhi, and 1 on the combination of Ling-
zhi and Yunzhi. Other characteristics of the included
studies including languages used, type of studies, type
of the mushroom preparations, and country of the
origin, type of cancer together with Jadad score of the
included clinical studies were summarized in Addi-
tional file 1: Table S2 and distributions of the included
cytotoxic drugs were shown Additional file 1: Figure S1.
The detailed information on the 77 clinical studies and
137 preclinical studies were listed in Additional file 1:
Tables S3, S4, respectively.

![Fig. 1 PRISMA flow chart of current database search and literature selection](image-url)
Interaction outcome
Pharmacokinetic interactions

In general, evidence on the pharmacokinetic interactions between Lingzhi or Yunzhi and cytotoxic drugs was scarce, except for the clinical pharmacokinetics interaction investigations between PSK and Tegafur as illustrated below.

Clinical studies on pharmacokinetic interaction Of all the 213 studies included in this review, only two studies evaluated the clinical pharmacokinetic interactions between cytotoxic drugs and medicinal mushrooms. Both studies evaluated the interactions between PSK (Yunzhi) and Tegafur (tetrahydrofuryl-5-fluorouracil), the prodrug of cytotoxic drug 5-FU. The conversion of Tegafur to 5-FU is mediated primarily by the CYP2A6 enzyme. Only small or non-significant changes in the blood level of 5-FU and Tegafur was observed in most patients with up to 8–14 months PSK co-administration [12, 13].

Pre-clinical studies on pharmacokinetic interaction Only two in-vitro studies included in the review evaluated the pharmacokinetic interactions between Lingzhi and cytotoxic drugs. Ganoderic polysaccharides were shown to increase the distribution of doxorubicin in drug-resistant cancer cell lines, while Ganoderic acid B was shown to reverse the resistance of hepatocellular carcinoma toward doxorubicin, paclitaxel, and vincristine but not cisplatin [14, 15]. Since doxorubicin, paclitaxel, and vincristine are substrates of P-glycoprotein, Lingzhi or its components were expected to modulate the P-gp mediated efflux of these cytotoxic drugs to increase their cell accumulation and reverse their resistance in the tumor cells [16].

For Yunzhi, consistent with clinical findings, an animal study showed that regardless of the administration route, PSK had no effect on the tissue level of 5-FU or its prodrug Tegafur in tumor-bearing mice [17]. In addition, another animal study showed that PSP could decrease cyclophosphamide clearance and increase the plasma half-life without affecting its distribution or protein binding. It was also found that a dose-dependent relationship existed between the systemic exposure of cyclophosphamide and acute rather than sub-chronic treatment with PSP [18].

Pharmacodynamic interaction

Tables 1 and 2 summarized the clinical and preclinical pharmacodynamic interactions between Lingzhi/Yunzhi and cytotoxic drugs, respectively. Outcomes on survival and quality of life, tumor inhibition and disease control rate, immune system and alleviation of the other adverse effects of cytotoxic drugs were further illustrated as follows.

Effect on survival and quality of life
Clinical evidence
Both Lingzhi and Yunzhi showed survival benefits in clinical studies. In this review, Yunzhi showed more clinical evidence than Lingzhi on increase in the survival rate and prolongation of the survival time. Among the 21 clinical studies on Lingzhi, only three studies measured survival outcomes with two of them reported increase in survival rate [19–21]. The survival rate increased when herbal formulae containing Lingzhi were used together with chemotherapy regimens (including 5-FU, cisplatin, doxorubicin, mitomycin, or vincristine). Notably, 37 of the 56 clinical studies on Yunzhi evaluated survival outcomes, 36 of which used PSK and one used Yunzhi-containing herbal formula. Twenty-nine of the 37 studies showed survival benefits of Yunzhi when co-administered with cytotoxic drugs. Among these Yunzhi–drug combinations, more evidence of survival benefits was reported for combinations with 5-FU, mitomycin, and UFT or Tegafur [22–50], whereas no survival benefits were reported for the combination with leucovorin [51].

Most of the Japanese studies on Yunzhi showed survival benefits of 3 or 5 years in gastric and colorectal cancers, leading to the approval of PSK approved as an adjunct in cancer treatment in Japan.

In terms of quality of life, Lingzhi co-administration with cytotoxic drugs has more clinical evidence than that for Yunzhi. Among the 21 included studies for Lingzhi, 12 of them measured the quality of life of cancer patients, and all of them observed an improvement by the co-administration of Lingzhi with 5-FU, cisplatin, gemcitabine, leucovorin, oxaliplatin, paclitaxel, and vinorelbine. The improvement in the quality of life was mostly observed in lung cancer patients (8 of the 12 studies) [21, 52–59]. Among the included studies, only 5 of the 56 clinical studies on Yunzhi measured the quality of life of cancer patients after the co-administration of Yunzhi with various cytotoxic drugs (5-FU, cisplatin, carboplatin, capcitabine, cyclophosphamide, doxorubicin, etoposide, mitomycin, oxaliplatin, paclitaxel and UFT) and all of them showed improvement [48, 49, 60–62].

Overall, more clinical evidence was reported on the survival benefits for the co-administration of chemotherapy with Yunzhi specifically PSK especially in gastric and colorectal cancer, whereas more evidence was reported on the improvement in the quality of life for the co-administration of chemotherapy with Lingzhi, especially in lung cancer patients.

b. Preclinical evidence
Animal studies on the concurrent use of Lingzhi or Yunzhi with cytotoxic drugs also measured the survival outcomes and substantiated the findings of the above-mentioned clinical studies. With regard to Lingzhi, its survival benefits were also observed in animal studies.
Table 1 Pharmacodynamic interactions between medicinal mushrooms and cytotoxic drugs in clinical studies

Drugs	Interactions with Lingzhi	Interactions with Yunzhi
S-FU	Increase in clinical efficacy [19, 52, 59, 76], survival time [19] and quality of life [52, 59]	Increase in survival [22–30], reduce recurrence [25] and quality of life [60]
	Better symptomatic relief [65, 139], less adverse effects (gastrointestinal, stomatitis) [19, 59]	Less decrease in WBC, hemoglobin, platelets [136–138]
	Less decrease in WBC [19, 52, 59], including T cells (CD4+, CD4+/CD8+ ratio) [76, 134], NK cells [52, 134], platelets [59], hemoglobin [52]	Increase in CD3+, CD4+, CD4+/CD8+, decrease in CD8+ T cells [60, 136, 138–140], increase in NK cell activity [23, 60, 136, 139, 140], LBT [138], IL-2 [136]
	Decrease level of miR-21, endoglin, TGF-β1 and VEGF in tumor tissue [76]	Reduce adverse effects (fatigue, nausea/vomiting) [136]
Capecitabine	Increase in disease control rate and quality of life [53]	Improve disease progression, survival and quality of life [48]
	Less decrease in WBC [53, 132], nausea and vomiting [53]	Increase in efficacy, quality of life [49, 52, 62], and reduce metastasis [49]
Carboplatin	No studies available	Better symptomatic relief [49] and relieve WBC decrease [49, 62]
		Increase in CD3+, CD4+ and decrease in CD8+ T cells [49, 62]
		Reduction in tumor cell markers and invasive cell factors, such as VEGF, MMP-9, CEA, sMICA [62]
Cisplatin	Increase in clinical efficacy [20, 21, 52, 54–56, 76–78], survival [20] and quality of life [21, 52, 54–58]	Increase in clinical efficacy [49, 79], increase in survival and lower metastasis [49]
	Reduce BMS [54, 56, 57, 77, 78] (increase in RBC [54], WBC [21, 52, 54, 56, 57], NK cells [52, 53], hemoglobin [52, 54], platelets [54, 56])	Increase in quality of life [49, 60] and better symptomatic relief [49, 141]
	CD4+/CD8+, less decrease in CD4+ [20, 54, 55, 76, 77, 133]	Elevate CD3+, CD4+, CD4+/CD8+ [49, 60, 141], NK cell activity [60, 141], immunoglobulin production [79], IL-2 production [142]
	Better symptomatic relief [20, 21, 56] and less adverse effects (gastrointestinal, nausea/vomiting, anemia, renal damage, ALT increase) [56, 77, 78]	Reduce side effects (peripheral neuropathy, decrease in WBC) [143]
	Decrease level of miR-21, endoglin, TGF-β1 and VEGF in tumor tissue [76]	Less weight loss [141]
Cyclophosphamide	No studies available	
Doxorubicin	Increase in efficacy and survival time [19]	Increase in clinical efficacy and survival, lower metastasis [49]
	Better symptomatic relief [134], and less adverse effects (nausea, vomiting, diarrhea) [19]	Increase quality of life [49, 60], better symptomatic relief [49], increase appetite [144]
	Less decrease in WBC [19], including T cells and NK cells [134]	Less decrease in WBC, platelets [137, 138, 144], increase CD3+, CD4+, CD4+/CD8+, decrease CD8+ T cells, increase NK cells, LBT [49, 60, 138, 142], IL-2 production [142]
		Reduce sister chromatid exchange frequency [172]
Etoposide	No studies available	Increase in survival [31, 49], efficacy [49, 80], quality of life [49, 60], reduce metastasis [49]
Gemcitabine	Increase in efficacy and quality of life [21, 56]	Better symptomatic relief [49] and increase appetite [144]
	Better symptomatic relief [21, 56] and less adverse effects (anemia, gastrointestinal, nausea/vomiting, increase in ALT, renal damage) [56]	Relieve decrease in WBC (including T cells, NK cells) [50, 80, 144], platelet and hemoglobin [80, 140, 142, 144], Increase in CD3+, CD4+, CD4+/CD8+, and decrease in CD8+ T cells [49, 60, 80, 140], reduce inhibition on IL-2 production [142]
Leucovorin	No studies available	Increase in efficacy [49, 79], survival, quality of life and lower metastasis [49]
		Better symptomatic relief [49]
		Less decrease in WBC (including CD3+ T cells) [49, 68] and increase in immunoglobulin production [79]
		No studies available
		No benefits in survival [51]
Drugs	Interactions with Lingzhi	Interactions with Yunzhi
---------------	--	--
Mercaptopurine	No studies available	Prolongation of complete remission and survival [50]
		Increase cell-mediated immunity [50]
Methotrexate	No studies available	Less decrease in WBC and platelet [137, 138]
		Less decrease in CD3+, CD4+, CD4+/CD8+, and LBT and greater decrease in CD8+ for PSK and selenium Yunzhi formulation, but not PSP [137, 138]
Mitomycin	Increase in efficacy and survival [19, 20]	Increase in survival [24, 28, 31, 33–37], quality of life [60] and better symptomatic relief [141]
	Better symptomatic relief [20, 134] and less adverse effects (nausea/vomiting, diarrhea)	Less decrease in WBC [136, 138], hemoglobin and platelets [138]
	Less decrease in WBC (T cell and NK cell) [19, 20, 134]	Increase in CD3+, CD4+, CD4+/CD8+ ratio, NK cell activity and IL production, decrease in CD8+ T cells [60, 136, 139–141]
		Reduce adverse effects (peripheral neuropathy [143], nausea/vomiting, fatigue [136] and less weight loss [141])
Oxaliplatin	Increase in clinical efficacy [53, 59], quality of life [53, 59] and better symptomatic relief [59]	Improve disease progression, survival and quality of life [48]
	Relieve reduction in WBC [53, 59, 132] and platelets [59]	Reduce adverse effects (BMS, mucositis, hand-foot syndrome, diarrhea [48])
	Reduce side effects (gastrointestinal, nausea/vomiting, stomatitis) [53, 59]	
Paclitaxel	Increase in clinical efficacy [55, 56, 59, 77, 78], quality of life [55, 56, 58, 59]	Increase in efficacy [62] and quality of life [62]
	Reduce BMS (less anemia, reduction in WBC—T cells, NK cells, platelets) [55, 56, 59, 77, 78], increase in CD3+, CD4+, CD4+/CD8+, decrease in CD8+ [55, 77, 78, 133]	Relieve decrease in CD3+, CD4+ T cells and increase in CD8+ T cells [62]
	Better symptomatic relief [56, 59] and reduce side effects (gastrointestinal, nausea/vomiting, stomatitis, renal damage, increase in ALT) [56, 59, 77, 78]	Reduction in tumor cell markers and invasive cell factors, such as VEGF, MMP-9, CEA, sMICA [62]
UFT/Tegafur	No studies available	Increase in survival [23, 27, 29–32, 38–47] and reduce recurrence [38, 42, 44]
		Increase quality of life [61] and better symptomatic relief [32]
		Reduce adverse effects (appendix loss, nausea/vomiting, gastrointestinal) [61]
		Recover immuno suppression [47, 135], increase NK cells [23, 38]
		Decrease in suppressor T cells and increase cytotoxic T cells [38], Reduction in CD57+ T cell [39], Reduce T cell apoptosis and caspase 3 activity through downregulating Bax expression in T cells [170]
Vincristine	Increase in efficacy and survival [20], better symptomatic relief [20]	Better symptomatic relief [141] and increase appetite [144]
	increase in T cells count (CD4, CD4+/CD8) [20]	Less reduction in WBC (CD3+, CD4+ T cells, NK cells) [141, 144], platelets [144]
Vinorelbine	Increase quality of life [57] and reduce BMS (less decrease in WBC) [57]	No studies available
Table 2 Pharmacodynamic interactions between medicinal mushrooms and cytotoxic drugs in preclinical studies

Drugs	Type	Interactions with Lingzhi	Interactions with Yunzhi
5-FU	Animal	Increase in tumor inhibition effect [83, 84, 98] and survival time [63]. Less decrease in WBC [83, 84, 145], platelets [83] and other bone marrow cells [84]. Greater recovery rate from intestinal damage caused by 5-FU [173]. In-vitro: Increase in tumor inhibition and apoptotic rate (dose-related or time-dependent) [98–103], similar effect at lower dose of 5-FU [105]. Induce cell cycle arrest at different phases [99, 101], increase caspase 3 and 8 expression and activity [100]. Increase release of cytochrome C [100, 102] and MMP [102]. Increase level of DNA strand breaks and oxidative damage in cancer cells [98].	Increase in survival [67], cytotoxicity and inhibit metastasis [111]. Reduce immunosuppression (reduce the decrease in phagocytic activity, antibody production [111], delayed hypersensitivity [111, 112]). Enhance 5-FU cytotoxicity [118, 119]. Decrease dihydropyrimidine dehydrogenase mRNA expression, and increase IFN-α mRNA expression [118].
Carboptatin	Animal	Less decrease in WBC [145]. Prolong survival or increase survival rate [63–66], increase [64, 66, 104, 125, 174] or no effect [146, 147, 175–177] on tumor inhibition, inhibit angiogenesis (decrease microvessel density) [104]. Influence on inflammatory cytokines (increase in interferons [146], TGF-β [127], increase or decrease in TNF-α [64, 127, 146, 159], IL-6 [64, 127, 146, 159]) and phagocytic function [159]. Increase in T cells (CD3+, CD4+, CD8+), NK cells and CD11c+ DC cells [65, 66, 125–127, 146]. Increase blood and renocortical SOD, glutathione, GPx and reduce MDA [64, 175–180, 190–192]. Reduces damage to liver (reduce ALT, AST) [66], kidney (reduce Scr, urea, BUN, ALP, urine NAG, toxic accumulation of plasma infiltrate, enhance CAT activity, renal structure) [64–66, 174–180, 192] intestines [173] and relieve nausea/vomiting [147, 183, 184]. Modulate Bax, Bcl-2, caspase 3 [56, 125], aquaporin [125, 126], VEGF, bFGF [104, 127] expression.	Increase in tumor inhibition and reduce death rate [68]. Increase in tumor inhibition [113]. Increase in CD4+, CD4+/CD8+, decrease in CD8+ T cell [113]. Uregulate Fas and caspase 3 expression, downregulate FasL expression [113]. Decrease cisplatin-induced raise in BUN and Scr [166].
Cisplatin	Animal	Less decrease in WBC [145]. Increase in tumor inhibition [104–109], apoptosis [122, 123], inhibit angiogenesis [104]. Enhance drug sensitivity through the JAK–STAT3 pathway [123]. Reverse resistance [106, 109]. Modulate Fas/FasL-mediated apoptosis [107]. Increase tumor growth inhibition [104–109], apoptosis [122, 123], inhibit angiogenesis [104]. Enhance drug sensitivity through the JAK–STAT3 pathway [123]. Reverse resistance [106, 109]. Modulate Fas/FasL-mediated apoptosis [107]. Induce cell cycle arrest by interfering with HER2/Pi3K/Akt pathway [108]. Modification of the expression of TGF-β1 [105], Smad4 [105], VEGF, bFGF [104], HER2 [108], ABCB1 [122], Bax, Bad, Bcl-2, Bcl-xL [107] Akt, p53 [106].	Increase [131] or no effect [119] on tumor cell inhibition. Prevent inhibition on normal cells by cisplatin [131]. Prevent decrease of SOD and increase in lipid peroxide in normal cells, but opposite effect in cancer cells [131].
Table 2 (continued)

Drugs	Type	Interactions with Lingzhi	Interactions with Yunzhi
Cyclophosphamide	Animal	Increase in tumor inhibition [81, 82, 85–94] and apoptosis [81, 89, 91], suppress metastasis [90] (increase TMSG-1 expression) [91], increase in survival time [81, 82, 163]. Relieve B.M.S, including RBC [87, 150, 156, 163, 164], WBC (NK and T cells) [81, 85, 87, 89, 90, 147–156, 158, 163], platelets [150, 153, 163], hemoglobin [163–165], phagocytic activity, [85, 151, 155, 156, 158, 161, 165] cytokines and antibody production [81, 88–90, 149, 150, 152, 153, 160]. Increase antioxidant capacity, SOD, CAT, GPx and reduce MDA to normal level [81, 150]. Induce loss of Bcl-2 and Bax translocation, induce release of cytochrome c, increase caspase 3 and 9 activities [81]. Protect against liver (Less ALT and AST increase) [86, 164, 165] and intestine damage [173]. Inhibit mutation (decrease in micronuclei frequency) [185]. Reduce weight loss [85, 90, 92, 160, 163], fatigue and appetite loss [93, 94, 163, 165].	
			Increase in tumor inhibition [69–71, 112] through enhancement of cytoxicity of lymphokine-activated killer cells and tumor-infiltrating lymphocytes [70]. Decrease metastasis [70, 71] and increase survival [69–71]. Less decrease in WBC (B and T cells, NK cells) [69, 166–168], hemoglobin [69]. Reduce immunosuppression, increase in antibody production [112] and immunoglobulin [167]. Decrease expression of immune negative transcription factors such as Foxp3, PD-1, IL-10 [171], IL-4, GATA-3 and modulate the unbalanced T helper cells [169].
Cytarabine	In-vitro	Increase cytotoxicity to tumor cells and drug sensitivity [103]	Enhance cytotoxicity of drug while itself has no cytotoxic effect [18].
Docetaxel	Animal	No studies available	Increase tumor inhibition [114, 115, 117], apoptosis [114], reduce metastasis [116]. Less decrease in WBC, NK-cell [114], increase CD4+, CD8+ T cells, IL [114]. Suppress induced expression of NF-kB and survivin [117].
	In-vitro	No studies available	Enhance anti-tumor effect (dose-dependent) [115, 117, 119], apoptosis [115, 120] and reduce docetaxel-enhanced invasion [115]. Suppress induced expression of survivin [117], NF-kB [115, 117, 120], MMP-9 [115]. Inhibit expression of cIAP-1, enhance caspase-3 activation [120].
Doxorubicin	Animal	Prolong survival in additive function [63]. Less decrease in WBC and platelet [157]. Relieve myocardial and hepatocellular injury through modulation of enzymes (ALT, AST, LDH, CK) and oxidative stress biomarkers (GST, GPx, SOD, CAT) [157, 181, 182].	Less decrease in CD3+, CD4+ T cells, IL-2 and IL-2R expression [129, 130]. Increase Bax, decrease Bcl-2 and CDK4 [129, 130].
	In-vitro	Synergistic [15, 124] or no effects [14] on tumor inhibition, reverse resistance [14, 15], Increase apoptosis, decrease Ku80 and enhance reactive oxygen species production [124].	Enhance apoptotic effect [128]. Increase expression of Bax, decrease Bcl-xL, Bcl-xL/Bax ratio [128].
Epirubicin	Animal	Less reduction of WBC [145]	No studies available.
Etoposide	Animal	No studies available	Increase tumor inhibition and reduce death rate [68].
	In-vitro	No studies available	Enhance apoptotic effect [128]. Increase Bid, decrease Bcl-xL expression and Bcl-xL/Bax ratio [128].
Gemcitabine	In-vitro	No studies available	Additive effect in tumor growth inhibition [121].
Mercaptopurine	Animal	No studies available	Increase delayed hypersensitivity reaction [112].
Drugs	Type	Interactions with Lingzhi	Interactions with Yunzhi
--------------	-----------------	--	--
Methotrexate	Animal	Prolong survival in additive function [66]	Reduce immunosuppression (increase delayed hypersensitivity reaction) [112]
		Reduce induced small intestinal damage [162]	
		Dose-related increase in immunoglobulin A and modulate change in oxidative stress marker such as SOD and MDA induced by methotrexate [162]	
Mitomycin	Animal	No significant protection against mitomycin-induced mutation [185]	Increase in survival rate or time [72–74], tumor growth inhibition [73]
			Dose-related decrease in frequency of sister chromatid exchanges [188]
			Recover antibody production and delayed-type hypersensitivity [73, 112]
			Decrease incidence of high mobility cells, increase low mobility cells [72]
	In-vitro	Increase in cytotoxicity to tumor cells [103]	Reduce micronuclei formation in dose-related manner [187]
Paclitaxel	Animal	Increase in tumor inhibition [95–97] and efficacy of paclitaxel [95]	No studies available
		Increase let-7 expression [95]	
		Restore antitumorigenic immune cells via inhibiting immune checkpoints [97]	
		Down-regulation of Warburg effect-related proteins to inhibit tumor metabolism [97]	
		Restore gut dysbiosis induced by paclitaxel [97]	
	In-vitro	Enhance tumor growth inhibition [96, 108, 110] and apoptosis [96], reverse resistance [14]	No studies available
		Induce cell cycle arrest by interfering with HER2/P3K/Akt pathway [108], inhibition of HER2 signaling pathway and downregulate expression of HER2 related proteins [96, 108]	
Retinoic acid	Animal	Reduce neural tube defects through up-regulating the transcription of CDK4 mRNA and expression of CDK4 and nestin at neural tube epithelia [186]	No studies available
Thioguanine	Animal	Prolong survival in additive function [63]	No studies available
UFT/Tegafur	Animal	No significant increase in efficacy [147]	Increase in cytotoxicity and inhibit metastasis [111]
		Reduce damage to intestine [173] and less reduction in WBC, but not platelet [147]	Reduce immunosuppression (phagocytic activity, antibody production) [111]
Vincristine	In-vitro	Synergistic [110] or no significant effect [14] in tumor inhibition and reverse resistance [14]	No studies available
when co-administered with 5-FU, carboplatin, cisplatin, and doxorubicin which also shown benefits in clinical studies [63–66]. With regard to Yunzhi, the survival rate or time of animals increased when it was co-administered with 5-FU, cyclophosphamide, etoposide, and mitomycin, which were consistent with the findings from clinical studies [67–74].

Effect on tumor inhibition and disease control rate a. Clinical evidence

Most of the clinical studies identified in our review measured efficacy based on World Health Organization or the Response Evaluation Criteria in Solid Tumor (RECIST) [75]. The co-administration of Lingzhi with various cytotoxic drugs showed an increase in disease control rate or clinical efficacy via the reduction of tumor lesion size; these drugs include 5-FU, capecitabine, cisplatin, doxorubicin, gencitabine, leucovorin, mitomycin, oxaliplatin, paclitaxel, and vincristine [19–21, 52–56, 59, 76–78]. In addition, co-administration of Lingzhi with 5-FU and cisplatin could further reduce the expressions of microRNA-21 (miR-21), endoglin, transforming growth factor (TGF)-β, and vascular endothelial growth factor (VEGF) [76].

The co-administration of Yunzhi with several cytotoxic drugs (carboplatin, capecitabine, cisplatin, cyclophosphamide, doxorubicin, etoposide, mercaptopurine, oxaliplatin and paclitaxel) showed increase in clinical efficacy [49, 62, 79, 80] and improvements in disease progression or control [48, 50]. Some Yunzhi–drug combinations (5-FU, carboplatin, cisplatin, cyclophosphamide, doxorubicin, etoposide and UFT) also reduced tumor recurrence [25, 38, 42, 44] and metastasis [49]. Lower level of markers for tumor cell division, proliferation and invasion were found when paclitaxel and carboplatin were used with PSP [62].

Notably, most studies showed an enhancement in the cytotoxicity toward tumor cells when cytotoxic drug were used with these two medicinal mushrooms, suggesting no disadvantage for the addition of mushrooms in chemotherapy regimens.

b. Preclinical and mechanistic evidence

Our review revealed that the mechanisms of interactions between Lingzhi or Yunzhi and cytotoxic drugs involve multiple targets, including genes, proteins, and signaling pathways, to synergistically increase the tumor-inhibitory effect. Most animal studies support the clinical findings above. For Lingzhi, increase in the tumor inhibition rate was also demonstrated in animal studies [81–98] and in-vitro studies [96–110]. Some animal studies also observed suppression of metastasis by the co-administration of Lingzhi with cyclophosphamide [90, 91]. Regarding Yunzhi, enhancement of the antitumor effects of cytotoxic drugs and reduction in metastasis by Yunzhi have also been demonstrated in animal studies [68–71, 73, 111–117] and in-vitro studies [18, 115, 117–121].

The effects of Lingzhi co-administered with cytotoxic drugs on tumor inhibition were multifaceted in both animal and in-vitro studies. Some combinations exert synergistic effect through induction of cell cycle arrest at different stages or increase the apoptotic rate [81, 89, 91, 96, 99–102, 122–124]. In addition, the enhancement of the antitumor effect was shown to be achieved via the inhibition of tumor cell angiogenesis [104] or increase in the reactive oxygen species production [124]. Various in-vitro studies have shown that Lingzhi could enhance the tumor-inhibitory effect by reversing resistance to cytotoxic drugs [14–16].

Lingzhi co-administration with cytotoxic drugs affects different pathways and cancer targets. In animal and in-vitro studies, various pathways related to cell cycle arrest, apoptosis, and angiogenesis were affected, including the Janus kinase/signal transducer and activator of transcription 3 (JAK–STAT3), the protein kinase B (Akt) [106, 123] and the Human epidermal growth factor receptor 2 (HER2) signaling pathway [96, 108], eventually affecting the apoptotic molecules, for example, by altering B-cell lymphoma (Bcl) and Bcl-2-associated X (Bax) [66, 81, 125], caspase 3 and 8 activation [81, 100, 107, 125], and Fas and Fas Ligand (Fasl) [104]. The expression of other target genes or proteins was also affected, such as aquaporin [125, 126], VEGF and basic fibroblast growth factor (bFGF) [104, 127], and tumor metastasis suppressor gene 1 (TMSG-1) protein [91], all of which increased tumor inhibition. Notably, a recent study found that such synergistic effect may be due to the inhibition of tumor metabolism via down-regulating Warburg-related proteins and restoration of the gut dysbiosis induced by paclitaxel [97]. Regarding the increasing evidence of microbiota involvement in chemotherapy outcomes, it is worth looking into interactions with other cytotoxic drugs on gut microbiome level.

For Yunzhi, both PSK and PSP were reported to further enhance the apoptotic activity when co-administered with docetaxel, doxorubicin and etoposide [114, 115, 120, 128]. Similar to cytotoxic drugs, Yunzhi and its components could also act on the (a) expression of cell cycle arrest and apoptosis related genes and proteins, including Fas and Fasl [113]; Bax, Bcl-2, and BH3 interacting-domain death agonist (Bid) [128–130]; nuclear factor-κB (NF-κB) [115, 117, 120]; cellular inhibitor of apoptosis protein 1 (cIAP-1) [120] and caspase-3 [113, 120] and (b) targets related to angiogenesis and cell invasion, including matrix metallopeptidase 9 (MMP-9) [115], leading to synergistic effect when they are used together.
Yunzhi could also enhance the cytotoxicity of anticancer drugs via other mechanisms, such as direct increase in the activity of cytotoxic and tumor-infiltrating lymphocytes, decrease in the activity of suppressor T cells [38, 70], and decrease and increase in superoxide dismutase (SOD) and lipid peroxide levels, respectively, in cancer cells [131]. In addition, PSK was shown to enhance the antitumor effect of 5-FU and Tegafur by downregulating the expression of dihydropyrimidine dehydrogenase messenger RNA (mRNA) [118], as well as docetaxel via the suppression of survivin expression activated by docetaxel [117].

Interaction on immune system
a. Clinical evidence

In clinical studies, Lingzhi co-administration with cytotoxic drugs generally relieved bone marrow suppression. The combinations alleviated the decrease in white blood cells (WBCs), including lymphocytes and neutrophils, caused by chemotherapy alone (5-FU, capecitabine, cisplatin, doxorubicin, gemcitabine, leucovorin, mitomycin, oxaliplatin, paclitaxel, and vinorelbine). The number of other blood cells, including red blood cells (RBCs), hemoglobin, and platelets was also increased by the combinations compared with chemotherapy alone [19–21, 52–57, 59, 77, 78, 132–134]. Specifically, some combinations alleviated the decrease in or induced an increase in some T cells (CD3+, CD4+, CD8+), CD4+/CD8+ ratio and natural killer (NK) cells [19, 20, 52–55, 59, 76–78, 132–134].

Co-administrations of Yunzhi with various cytotoxic drugs (capecitabine, mercaptopurine, oxaliplatin, and Tegafur) were also shown to reduce immunosuppression in clinical studies [47, 48, 50, 135]. Studies have shown a reversal of the decrease in WBCs, in particular, improvement of the increase in or alleviation of the decrease in T cells (CD3+, CD4+, CD8+), increase in the CD4+/CD8+ ratio, NK cell activity, and subsequent the production of cytokines, including immunoglobulins, interferons, and tumor necrosis factor (TNF), IL, and TGF, were shown to be restored [64, 81, 85, 88–90, 127, 146, 149–151, 153, 155, 156, 158–162, 165].

b. Preclinical and mechanistic studies

Animal studies also showed alleviation in the WBCs decrease with the co-administration of Lingzhi and different cytotoxic drugs, particularly in T cells and NK cells [65, 66, 81, 83–85, 87, 89, 90, 125–127, 145–158, 163]. In addition, phagocytic activity and production of cytokines, including immunoglobulins, interferons (IFN), IL, and TGF, were shown to be restored [64, 81, 85, 88–90, 127, 146, 149–151, 153, 155, 156, 158–162, 165]. Suppression in the number of RBCs, platelets, and in hemoglobin was also found to be alleviated in animal studies [83, 84, 87, 150, 153, 156, 157, 163–165].

The co-administration of Yunzhi with cytotoxic drugs showed similar effects on immune function in animal studies as those observed in clinical studies. Immunosuppression was reduced, including alleviation of the decrease in WBCs, particularly B cell and T cells (CD3+ and CD4+); increase in the CD4+/CD8+ ratio, NK cells and phagocytic activity; and subsequent production of interleukins, immunoglobulins, and antibodies [69, 73, 111–114, 129, 130, 148, 166–168]. Inhibition on other blood cells, including hemoglobin, was also alleviated [69].

A complete understanding of the mechanisms and factors underlying the effects of the interaction of Lingzhi or Yunzhi with cytotoxic drugs on the immune system is still obscure. Multiple mechanisms may be involved, including upregulation of transcription factors such as T-box protein expressed in T cells (T-bet) and GATA-3, which modulate the T helper cell balance [169]; downregulation of Bax expression to reduce caspase 3 activity and T cell apoptosis [170]; and reduction of the expression of negative regulators/transcription factors of immune responses, including Forkhead box protein 3 (Foxp3) and programmed death 1 (PD-1) [171].

Alleviation of the other adverse effects of cytotoxic drugs
a. Clinical evidence

The co-administration of Lingzhi with some cytotoxic drugs (5-FU, capecitabine, cisplatin, doxorubicin, gemcitabine, leucovorin, mitomycin, oxaliplatin, and paclitaxel) was shown to reduce common adverse effects, such as reduction of gastrointestinal discomfort (nausea, vomiting, constipation, and diarrhea) and stomatitis [19, 53, 56, 59, 77, 78]. Specific adverse effect, such as nephrotoxicity [56] was also shown to be ameliorated.

In clinical studies on Yunzhi, the use of PSK and PSP with cytotoxic drugs (5-FU, capecitabine, mitomycin, oxaliplatin, and UFT) ameliorated the general adverse effects, such as gastrointestinal discomfort (nausea and vomiting, diarrhea, and constipation) [48, 61, 136], mucositis [48], and fatigue [136]. Specific adverse effects of cytotoxic drugs, including peripheral neuropathy [143], mutations [172], and hand-foot syndrome [48], were also reduced.

b. Preclinical and mechanistic evidence

The Lingzhi and cytotoxic drug combinations were also found to relieve some adverse effects in animal studies; for example, they reduced damage to different organs, including the intestine [162, 173], the kidney [64–66, 174–180], the liver [66, 86, 157, 164, 165], and the heart [157, 181, 182]; and their adverse effects, such as nausea and vomiting [147, 183, 184], mutation [185], and neural tube defects [186].
Some studies have evaluated the mechanism underlying the protective effects of the mushroom–drug combinations against chemotherapy-induced side effects. For example, the mechanism underlying the reduction of doxorubicin-induced myocardial damage was found to be via the modulation of cardiac enzymes and reduction of the oxidative stress (such as increase in glutathione S-transferase (GST) and glutathione peroxidase (GPx) levels) in myocardial cells by Lingzhi or Ganoderma polysaccharides [181, 182]. Similarly, Lingzhi and its polysaccharides likely increased renal cortical antioxidant levels and relieved the oxidative stress, thereby ameliorating cisplatin-induced renal damage. Furthermore, Lingzhi reduced the occurrence of neural tube defects caused by retinoic acid by upregulating the transcription of cyclin-dependent kinase 4 (CDK4) mRNA and the expression of CDK4 and nestin in neural epithelia [186].

For Yunzhi animal studies, cisplatin-induced renal damage was reduced by decreasing blood urea nitrogen (BUN) and serum creatinine (Scr) levels [166]. In both animal and in-vitro studies, PSK reduced the mutagenicity of mitomycin by decreasing the frequency of sister chromatid exchange and micronuclei formation [187, 188].

In summary, the aforementioned outcomes suggest that medicinal mushrooms have great potential to ameliorate the adverse effects of chemotherapeutic drugs in clinical settings.

Other effects in pre-clinical studies Several chemotherapy drugs are known to cause oxidative stress which damage tumor cells but concomitantly damage normal cells and produce adverse effects [189]. The co-administration of Lingzhi with cytotoxic drugs, including cisplatin, cyclophosphamide, doxorubicin, and methotrexate increased the total antioxidant capacity and levels of different antioxidant enzymes, including superoxide dismutase (SOD), glutathione, GPx, and catalase, and decreased malondialdehyde levels, thereby reducing the oxidative stress [64, 81, 150, 157, 162, 175–182, 190–192]. In an in-vitro study, the co-administration of Yunzhi with cisplatin prevented the decrease in SOD activity by mimicking it to protect normal healthy cells while selectively promoting the decrease in SOD activity and increase in lipid peroxide levels in cancer cells, both of which synergistically increased tumor inhibition while leaving normal cells unaffected [131]. However, these findings have not yet been substantiated in clinical settings.

Undesirable interaction outcome Overall, there is no reported undesirable herb-drug interaction between Lingzhi or Yunzhi and cytotoxic drugs in our included studies. Although interaction between PSP and cyclophosphamide may potentially increase the systemic exposure of cyclophosphamide, it is not known whether it could lead to significant changes in clinical outcomes [193]. Since our findings indicated that Lingzhi/Yunzhi and their components may potentially affect pharmacokinetics of anticancer drug, further clinical pharmacokinetic studies are warranted to investigate the necessity for dose adjustment of anticancer drug in clinical practice.

Quality of clinical studies The clinical studies on the concurrent use of Lingzhi or Yunzhi with cytotoxic drugs were rated using the Jadad scale. Overall, most of the clinical studies on the combined use of mushrooms and cytotoxic drugs were not of high quality, scoring mostly 0–3 points. Most of them did not adopt blinding measures, probably because it is not feasible to blind chemotherapy regimens and complex herbal therapies. In addition, many studies lacked comprehensive description of withdrawal and dropouts. Only half of the randomized studies provided details on their randomization methods. Similar to the findings from others on clinical trials with Chinese medicine [194], the trials involved in the current review were also with poor clinical trial design and insufficient reporting of studies. Although the SPIRIT 2013 and CONSORT 2010 guideline have been published with intent to improve the design and reporting of randomized controlled trials, they may not be completely applied to the trials of Chinese medicine formulas. Thus, a CONSORT 2010 extension and SPIRIT-TCM extension have been established in 2017 and 2018 respectively to meet the unique characteristics of Chinese medicine [195, 196], which could serve as the guidance for future clinical studies involved Chinese medicines.

Conclusion and implication for future study The combination of Lingzhi and Yunzhi with cytotoxic anti-cancer drugs showed great potential in offering beneficial effects in clinical settings with no undesirable interactions reported so far. The survival benefits can be increased, especially for Lingzhi and the quality of life of cancer patients can be enhanced especially for Yunzhi. Both Lingzhi and Yunzhi showed synergistic effect on tumor inhibition with chemotherapy, reducing immunosuppression and alleviating general and specific chemotherapy related side effects.
Despite a relatively large number of clinical studies conducted, the quality of clinical studies included in this review remained not high, especially with lack of blinding and description of all withdrawals and drop-outs. Trials based on guidance from CONSORT 2010 extension and SPIRIT-TCM extension are highly recommended in the future to ensure the higher quality of clinical trial on Chinese medicines. Pharmacokinetic effects of Lingzhi or Yunzhi on cytotoxic drugs were inconclusive. There was currently significantly lack of studies on pharmacokinetic herb-drug interactions as revealed above. Considering the narrow therapeutic index of many cytotoxic drugs, more clinical pharmacokinetic studies are warranted for their safe and effective use.

In recent years, there are revolutionary advancements in the oncology world that sees many new breakthrough treatments, including targeted therapies, immunotherapy as well as gene therapy. Future studies should identify potential synergistic and harmful interaction between Chinese Medicine and these advanced cancer therapies. With increasing number of studies on combined usage of Chinese and western medicine, future studies can harness modern techniques such as bioinformatics and data mining to identify patterns of herb–herb and drug-herb combinations, especially those show the strongest evidence for tumor inhibition. Moreover, considering the large population utilizing Chinese Medicine in Asian countries and increasing prevalence in Europe and US, future pharmacoepidemiology studies can be conducted to observe the clinical impact of integrative medicine among cancer patients in a real word setting, in particular long-term and delayed effect that cannot be revealed in ordinary clinical trial settings.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s13020-020-00356-4.

Additional file 1. Table S1. Keywords for cytotoxic drugs in the current database search. Table S2. Characteristics of included studies. Table S3. Detailed information of the included clinical studies. Table S4. Detailed information of the included pre-clinical studies. Figure S1. Distribution of pre-clinical and clinical studies for combination use of cytotoxic drugs with Lingzhi and Yunzhi.

Abbreviations
S-FU: 5-Fluorouracil; ABCB1: ATP binding cassette subfamily B member 1; Akt: Protein kinase B; ALP: Alkaline phosphatase; ALT: Alanine transaminase; AST: Aspartate aminotransferase; Bcl: B-cell lymphoma; BFGF: Basic fibroblast growth factor; BID: BH3 interacting-domain death agonist; BM5: Bone marrow suppression; BUN: Blood urea nitrogen; CDK4: Cyclin-dependent kinase 4; CEA: Carcinoembryonic antigen; CK: Creatine kinase; CCK: Cholecystokinin; CKS: Cyclin-dependent kinase; cIAP-1: Cellular Inhibitor of Apoptosis Protein 1; CK: Creatine kinase; DC: Dendritic cells; Fasl: Fas ligand; Foxp3: Forkhead box P3; GPx: Glutathione peroxidase; GST: Glutathione S-transferase; HER2: Human epidermal growth factor receptor 2; IFN: Interferon; IL: Interleukin; JAK–STAT3: Janus kinase/signal transducer and activator of transcription 3; LBT: Lymphocyte blastogenic transformation; LDH: Lactate dehydrogenase; MDA: Malondialdehyde; miR-21: microRNA 21; MMP-9: Matrix metalloproteinase 9; mRNA: Messenger RNA; NAG: N-acetyl-beta-D-glucosaminidase; NF-κB: Nuclear factor-kB; PD-1: Programmed death 1; PI3K: Phosphoinositide 3-kinase; PSK: Polysaccharide K; PSP: Polysaccharide peptide; p53: Tumor protein p53; RBC: Red blood cells; Scr: Serum creatinine; Smad4: Mothers against decapentaplegic homolog 4; sMICA: Soluble major histocompatibility complex class I-related chain A; SOD: Superoxide dismutase; T-bet: T-box protein expressed in T cells; TGF: Transforming growth factor; TMSG-1: Tumor metastasis suppressor gene 1; UFT: Tegafur/uracil; VEGF: Vascular endothelial growth factor; WBC: White blood cells.

Acknowledgements

Not applicable.

Authors’ contributions

Conception or design of the work: All authors. Data acquisition from literature search: CSL and LPC. Analysis and interpretation of data: All. Drafting the work: CSL. Revising it critically for important intellectual content: All. Final approval of the version to be published: All. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: All. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People’s Republic of China. 2 School of Chinese Medicine, Hong Kong Baptist University, Kowloon City, Hong Kong, People’s Republic of China.

Received: 20 May 2020 Accepted: 20 July 2020

Published online: 25 July 2020

References

1. Carmady B, Smith CA. Use of Chinese medicine by cancer patients: a review of surveys. Chin Med. 2011;6:22.
2. Lam Y, Cheng C, Peng H, Law C, Huang X, Bian Z. Cancer patients’ attitudes towards Chinese medicine: a Hong Kong survey. Chin Med. 2009;4:25.
3. Yeh Y, Chou Y, Huang N, Pu C, Chou P. The trends of utilization in traditional Chinese medicine in Taiwan from 2000 to 2010: a population-based study. Medicine (Baltimore). 2016;95(27):e4115.
4. Ramos-Esquivel A, Vázquez-Jaikí A, Fernández C. Potential drug-drug and herb-drug interactions in patients with cancer: a prospective study of medication surveillance. J Oncol Pract. 2017;13(7):e613–22.
5. McCune JS, Hattfield AJ, Blackburn AA, Leith PO, Livingston RB, Ellis GK. Potential of chemotherapy-herb interactions in adult cancer patients. Support Care Cancer. 2004;12(6):454–62.
6. Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2(1):1–15.
7. National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China Part 1. 2015.
8. Zhong L, Yan P, Lam WC, et al. Coriolus versicolor and Ganoderma lucidum related natural products as an adjunct therapy for cancers: a
systematic review and meta-analysis of randomized controlled trials. Front Pharmcol. 2019;10:703.

9. Jin X, Ruiz Begueirin J, Sze D, Chan GCF. (Reishi mushroom) for cancer treatment. Cochrane Database Syst Rev. 2016;4:CD007731.

10. Wong LY, Cheng XF, Leung PC. Efficacy of Yun Zhi (Coriolus versicolor) on survival in cancer patients: systematic review and meta-analysis. Recent Pat Inflamm Allergy Drug Discov. 2012;6(1):78–87.

11. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.

12. Anai H, Sakaguchi Y, Emi Y, Kohnoe S, Maehara Y, Sugimachi K. A protein-bound polysaccharide from Coriolus versicolor in patients with gastric cancer. Anticancer Drugs. 1991;2(3):275–8.

13. Maehara Y, Tamada R, Miyahara M, Notsuka T, Kano T, Kumashiro R, Inokuchi K. Influence of PSK on the metabolism of FT-207. Gan To Kagaku Ryoho. 1984;11(9):1843–7.

14. Liu DL, Li YJ, Yang DH, Wang CR, Xu J, Yao N, Zhang XQ, Chen ZS, Ye WC. Reversal effect of polysaccharide peptide (PSP) from Coriolus versicolor, on drug-metabolizing enzymes in sarcoma-180 bearing and normal mice. Jpn J Immunopharmacol. 1988;10(4):445–50.

15. Chain S, Yeung JHK. Effects of polysaccharide peptide (PSP) from Coriolus versicolor on the pharmacokinetics of cyclophosphamide in the rat and cytotoxicity in HepG2 cells. Food Chem Toxicol. 2006;44(5):689–94.

16. Fujita H, Ogawa K, Ikuzawa M, Muto S, Matsuki M, Nakajima S, Shimamura M, Tomiwaga M, Yoshikumi C, Kawai Y. Effect of PSK, a protein-bound polysaccharide from Coriolus versicolor, on drug-metabolizing enzymes in sarcoma-180 bearing and normal mice. Jpn J Immunopharmacol. 1988;10(4):445–50.

17. Zhao DQ. 60 examples of cancer treatment with laugenixuan oral liquids and chemotherapy. Forum Trad Chin Med. 1997;12(2):32.

18. Zhang XY, Chang SC. Observation of curative effect of shenlongjinling pills in treating lung cancer. Chin Trad Patent Med. 2002;24(11):902–4.

19. Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, Nishiyama K, Amano T, Yutaka T, Masayoshi M, Hiroaki N. Preoperative CEA and PPD values of surgical adjuvant immunochemotherapy for cancer of colon and rectum (kanagawa). Dis Colon Rectum. 2007;50(8):1169–81.

20. Ogoshi K, Isono H, Kojima Y, Matsuoka M, Ikuta H, Konishi K. Post-operative long-term prognosis for curatively resected colorectal cancer. Cancer Biother Radiopharm. 2009;24(1):35–40.

21. Sugimachi K, Maehara Y, Ogawa M, Kakegawa T, Tomita M. Dose intensity of uracil and tegafur in postoperative chemotherapy for patients with stage II or III colorectal cancer: analysis of immunological parameters. Oncol Rep. 2006;15(4):861–8.

22. Agaki J, Baba H. PSK may suppress CDS75(+) T cells to improve survival of advanced gastric cancer patients. Int J Clin Oncol. 2010;15(2):145–52.

23. Nimoto M, Hattori T, Tamada R, Sugimachi K, Inokuchi K, Ogawa N. Postoperative adjuvant immunotherapy with mitomycin C, furatuff and PSK for gastric cancer. An analysis of data on 579 patients followed for five years. Jpn J Surg. 1988;18(6):681–6.

24. Namikawa F, Fukudome I, Ogawa M, Munekage E, Munekage M, Shiga M, Maeda H, Kitagawa H, Kobayashi M, Hanazaki K. Clinical efficacy of protein-bound polysaccharide K in patients with gastric cancer undergoing chemotherapy with an oral fluoropyrimidine (S-1). Eur J Surg Oncol. 2015;41(6):795–800.

25. Ohwada S, Ikeya T, Yokomori K, Kusaba T, Roppongi T, Takahashi T, Nakamura S, Kakinuma S, Iwashita S, Ishikawa H, Kawai S, Nakajima T, Morishita Y. Adjuvant immunotherapy with oral tegafur/uracil plus PSK in patients with stage II or III colorectal cancer: a randomised controlled study. Br J Cancer. 2004;90(5):1003–10.

26. Sugimachi K, Maehara Y, Ogawa M, Kakegawa T, Tomita M. Dose intensity of uracil and tegafur in postoperative chemotherapy for patients with poorly differentiated gastric cancer. Cancer Chemother Pharmacol. 1997;40(3):233–8.

27. Yoshitani S, Takashima S. Efficacy of postoperative UFT (tegafur/uracil) plus PSK therapies in elderly patients with resected colorectal cancer. Cancer Biother Radiopharm. 2009;24(1):35–40.

28. Sakai T, Yamashita Y, Makawaka T, Mikami K, Hoshino S, Shikakusa T. Immunotherapy with PSK and fluoropyrimidines improves long-term prognosis for curatively resected colorectal cancer. Cancer Biother Radiopharm. 2008;23(4):461–7.

29. Hattori T, Nimoto M, Koz T, Nakano A, Ordie M, Takayama W, Nishimura K. Post-operative long-term adjuvant immunotherapy with mitomycin-C, PSK and FT-207 in gastric cancer patients. Jpn J Surg. 1979;9(2):110–7.

30. Xu S, Song YH, Li H, Cai HB. Study of efficacy of Yunzhi polysaccharides with XELOX in treatment of late stage colorectal cancer. Acta Universitatis Medicinalis Nanjing. 2008;28(12):1616–8.
50. Nagao T, Komatsuda M, Yamauchi K, Nozaki H, Watanabe K, Arimori S. Clinical observation of Krestin in acute leukemia. Tokai J Exp Clin Med. 1981;6(2):141–6.

51. Ishibashi K, Ishiguro T, Kuwabara K, Ohawa T, Okada N, Miyazaki T, Yokoyama M, Matsu ki M, Ishida H. Administration of polysaccharide K (PSK) for stage III colorectal cancer in clinical practice. Gan To Kagaku Ryoho. 2008;35(12):2283–5.

52. Jing JJ, Zhu XQ, Li BY, Jie Y. Clinical observation comparison of Bailong capsules and oral liquids with chemotherapy in gastrointestinal cancer. Shanxi Med J. 2007;36(13):631–3.

53. Wang YH, Qu ZH, Qin Y. Clinical observation of cracked Lingzhi spore powder with oxaliplatin and capecitabine in treatment of late stage colorectal cancer. China Pract Med. 2014;21:108–11.

54. Li YQ, Zhang HM. S6 clinical case studies of Laojunxian Lingzhi oral liquid with chemotherapy in treatment of intermediate and late stage of non small cell lung cancer. Chin J Cancer Ther. 1997;3:179.

55. Chen WJ, Hua HJ, Lu LS, Ouyang GF. Effect on immune function of Yangzhengxiaoji capsule in late stage non small cell lung cancer. Fujian J TCM. 2015;11:167–70.

56. Zhang X, Ye LH, Peng HY, Zhang YH. Clinical investigation of treating advanced non small cell lung cancer (NSCLC) by tonifying deficiency and resolving toxin prescription combined with chemotherapy. J Liaoning UnivTM. 2010;12(9):23–4.

57. Xu ZY, Jin CJ, Zhou CC, Wang ZQ, Zhou WD, Deng HB, Zhang M, Su W, Cai XY. Treatment of advanced non-small-cell lung cancer with Chinese herbal medicine by stages combined with chemotherapy. J Cancer Res Clin Oncol. 2011;137(7):1117–22.

58. Xie SY. A randomized parallel controlled study on the treatment of elderly patients with lung cancer chemotherapy with modified TP chemotherapy. J Pract Trad Chin Intern Med. 2016;19(2):33–5.

59. Lu M. Clinical research of combination of Chinese and western medicine treatment of middle and advanced gastric cancer. China J Clin Med. 2013;28(8):1094–5.

60. Yan W, Zhu YF, Sun TW. The effect of PSP on immune function and living quality in patients receiving chemotherapy for gynecological malignancies. J Shanghai Teachers Univ (Natural Sciences). 2000;29(2):75–8.

61. Miyake Y, Nishimura J, Kato T, Ikeda M, Tsujie M, Hata T, Takemasa I, Han LC, Zhang LJ, Song L, Chen WQ, Xiu YD. Clinical study on Yunzhi capsules and oral liquids with chemotherapy in gastrointestinal cancer. Drugs Clin. 2019;34(1):3076–81.

62. Mizushima Y, Yuhki N, Hosokawa M, Kobayashi H, Diminution of anticancer drug-induced suppression of antitumor immunity by an immunomodulator PS-K and combined therapeutic effects of PS-K and cyclophosphamide on transplanted tumor in rats. Cancer Res. 1982;42(12):5176–80.

63. Iwaguchi T, Shimizu M, Hayashi H. Analysis of electrophoretic mobility histograms of mouse splenocytes and thymocytes during tumor growth and after combined chemotherapy and immunotherapy. J Biochem Biophys Methods. 1989;18(1):49–53.

64. Huang H, Kataoka T, Tsukagoshi S. Effect of combined use of anti-cancer drugs with a polysaccharide preparation, Krestin, on mouse leukemia P388. GANN Jpn J Cancer Res. 1978;69(2):255–7.

65. Choi JH, Ahn MJ, Rhim HC, Kim JW, Lee GH, Lee YH, Kim IS. Comparison of WHO and RECIST criteria for response in metastatic colorectal carcinoma. Cancer Res Treat. 2005;37(9):290–3.

66. Yan FF. Effect of Ganoderma lucidum on expressions of CD105 protein and miR-21 in cervical cancer tumor tissue associated with HPV infection. Chin J Biochem Pharm. 2017;37(03):131–4.

67. Zhao FY, Wu Q, Li YM, Wang R. Efficacy and effect on immune function of FuFang Lingzhi Baozi capsule with chemotherapy in non small cell lung cancer. Chin J Gerontol. 2013;10:2721–2.

68. Wang J, Chen ZQ, Li Y, Wang XS, Fei CL, Wang SJ. Clinical efficacy and effect on immune function of FuFang Lingzhi Baozi capsule with chemotherapy in non small cell lung cancer. Mod J Integr Trad Chin Western Med. 2016;25(24):2673–5.

69. Wang CJ, Cai SY, Liu JB, Cai K. Observational study of clinical efficacy of PSP capsules with chemotherapy in intermediate and late stages of lung cancer. Anhui Med. 2000;196(8):671–2.

70. Wang B, Jia YQ, Jia YJ, Zhao C, Chen J, Sun YF, Fang WY. Clinical observation of Yuzhujin capsules on increasing efficacy and reducing toxicity in late stage primary hepatic carcinoma. World Chin Med. 2009;4:202–3.

71. Li W, Nie S, Chen Y, Wang Y, Li C, Xie M. Enhancement of cyclophosphamide-induced antitumor effect by a novel polysaccharide from Ganoderma atrum in sarcoma 180-bearing mice. J Agric Food Chem. 2011;59(8):3707–16.

72. Sukegawa Y, Kawamura J, Okuno K. Survival benefit by combined administration of cyclophosphamide, Pentinula edodes mycelia extract(LEM), and Ganoderma lucidum mycelia extract (MAK) in S1018810 tumor-bearing mice. Gan To Kagaku Ryoho. 2017;44(10):896–9.

73. Shen CH, Fang TH, Xu L, Zhou LL, Jia M. Toxic attenuating and efficacy—enhancing effect of compound Lingzhi Baozi oil on S180 tumor-bearing mice after chemotherapy. J Nanjing Univ Trad Chin Med (Natural Sciences). 2008;24(2):127–9.

74. Liu YF, Tang QJ, Zhang JS, Yang Y, Zhou S, Wu D, Jia W, Feng N. Monosaccharide composition analysis of two polysaccharide fractions from Ganoderma lucidum and their effects on inhibiting tumor growth in mice by S-fluracil. Food Sci. 2011;32(11):288–91.

75. Zhang GQ, Zhou XX, Fu R, Zhang D, Zhang XF. Efficiency-enhancing and toxicity-reducing effects of Ganoderma spore oil on cyclophosphamide treatment of mouse HepS. Chin Arch Trad Chin Med. 2014;32(11):2690–3.

76. Ma Zh, Wu Sh, Shi H, Liu H, Wang ZY, Shi YE. Synergy and attenuation of Fuxi Lingzhi on cyclophosphamide. J Hebei Trad Chin Med Pharmacol. 2011;26(1):34–5.

77. Zhang JJ, Liao YY, Weng XC. Efficacy of compound of Ganoderma lucidum and Astragalus extracts on tumor-bearing mice treated by cyclophosphamide. J Shanghai Univ (Natural Sciences). 2012;18(4):425–9.

78. Tang XM, Wu ZX. In-vitro and in vivo anti-tumor effects of Ganoderma compound. J Trad Chin Herbs capsule design. J Trad Chin Med. 2013;34(15):1323–5.
apoptotic pathway related to activation of host immune response. J Cell Biochem. 2011;112(3):860–71.

90. Nonaka Y, Ishibashi H, Nakai M, Shibata H, Kiso Y, Abe S. Effects of the antitumor activity of Ganoderma lucidum on tumor growth and metastasis in cyclophosphamide-treated mice. Biosci Biotechnol Biochem. 2008;72(6):1399–408.

91. Xie M, Tan YL, Ma MB, Zhou Y, Chen XL. Effect of chemotherapy combined with traditional Chinese medicine on the expression of TMSG-1 in transplantation tumor of human breast cancer in nude mice. J Xiangnan Univ (Medical Sciences). 2013;15(4):1–5.

92. Wu XD, Zhang NB, He RK. Study on inhibition effect of vigor on tumor growth in ehrlich ascites carcinoma (EAC) tumor bearing mice. Chin Med Mod Distance Educ China. 2014;10:158–60.

93. Chen XJ, Shi HL, Feng CP. The study of anti-tumor effect by the combination of SGLK and cyclophosphamide. J Mod Oncol. 2005;12(10):158–60.

94. Sun Y, Chen XJ, Wu Q, Gong H. The synergetic anti-tumor effect of the combination of SGLK and cyclophosphamide. J Mod Oncol. 2007;15(5):619–21.

95. Yang C, Ban L, Wang L, Ju YH, Shen LY, Zheng X, Zhao SF. Expression and significance of let-7 during the nude mouse ovarian carcinoma treated by Ganoderma lucidum spore process. J Med Pest Control. 2015;1:52–3.

96. Zhang QZ, Xia L, Xiong XW, Li W, Li P, Xu JH. Enhancement of paclitaxel induced apoptosis in HER-2+ breast cancer cells by the triterpenic component of Ganoderma lucidum. J Fujun Med Univ. 2016;2016:01–5.

97. Su J, Li D, Chen Q, Li M, Li J, Shuai O, Jiao C, Wu X, Qie Y, Zhou X. Anti-breast cancer enhancement of a polysaccharide from spore of Ganoderma lucidum with paclitaxel: suppression on tumor metabolism with gut microbiota reshaping. Front Microbiol. 2018;9:3099.

98. Opattova A, Horak J, Vodenkova S, Kostovcova K, Cumova A, Macinga P, Galanova N, Rejhova A, Vodickova L, Kozics K, Turnovcova K, Hucl T, Silva D, Vodicka P. Ganoderma lucidum induces oxidative DNA damage and enhances the effect of 5-Fluorouracil in colorectal cancer in vitro and in vivo. Mutat Res Genet Toxicol Environ Mutagen. 2019;845:403365.

99. Liang ZEN, Yi YJ, Guo YT, Wang RC, Xiong XY. Effect of combined therapy with protein-bound polysaccharide (PSK, Krestin) and fluorinated pyrimidine derivatives on experimental liver metastases and on the immunologic capacities of the hosts. Oncology. 1991;48(6):498–504.

100. Deng WL, Ye SJ, Wang WL, Liu JY, Xu JH. Studies on the effects of intracellular polysaccharides of Polystictus versicolor (L.) FR. (IPPV) on the specific immunological functions and on the combined immunopharmacological effects of IPPV and immunosuppressants. Kang Shen Su. 1985;10(1):47–52.

101. Guo DM, Tian F, Chen LW, Feng J, He L, Wang L. Study on Fas pathway and immune escape and apoptosis protein caspase-3 by CPVS on the human pulmonary adenocarcinoma A549 xenografts in nude mice. In: Chinese Medicine in Oncology Prevention Annual Conference 2012 Sep 14–16; Shanxi, China. 2012; p. 540–6.

102. Wenner CA, Martzen MR, Liu H, Verneris MR, Wang H, Slaton JW. Polysaccharide-K augments docetaxel-induced tumor suppression and antitumor immune response in an immunocompetent murine model of human prostate cancer. Int J Oncol. 2012;40(4):905–13.

103. Yamakawa A, Shoda M, Iijima H, Nagai S, Wada J, Suzuki H, Chikazawa N, Taiaka T, Kameda C, Tanaka H, Rebe M, Jo E, Sato N, Nakamura M, Sekine F, Morisaki T, Kato M. A protein-bound polysaccharide, PSK, enhances tumor suppression induced by docetaxel in a gastric cancer xenograft model. Anticancer Res. 2009;29(3):843–50.

104. Garrido C, Romero I, Berugueilla E, Cancela B, Algarr A, Collado A, Garcia-Lora A, Garrido F. Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunol Immunother. 2011;60(9):1257–68.

105. Kinoshita J, Fushida S, Harada S, Makino I, Nakamura K, Oyama K, Fujita H, Ninomiya I, Fujimura T, Kayahara M, Ohta T. PSK enhances the efficacy of docetaxel in human gastric cancer cells through inhibition of nuclear factor-kappaB activation and survivin expression. Int J Oncol. 2010;36(3):593–600.

106. Mekata E, Murata S, Sonoda H, Shimizu T, Umeda T, Shiomi H, Nakagawa K, Yamamoto H, Abe H, Edamatsu T, Fujieda A, Fujikoa M, Wada T, Tani T. Protein-bound polysaccharide-K augments the anticancer effect of fluoropyrimidine derivatives possibly by lowering dihydropyrimidine dehydrogenase expression in gastrointestinal cancers. Oncol Rep. 2013;30(6):2845–51.

107. Umehara S, Fujivara H, Suchi K, Okamura S, Okamura H, Todo M, Ikoma H, Kubota T, Nakashiki M, Kikuchi S, Okamoto K. PSK-mediated growth suppression and enhancement of 5-FU/docetaxel-induced cytotoxicity in human esophageal cancer cells line. Gan To Kagaku Ryoho. 2009;36(12):1972–4.

108. Zhang H, Morisaki T, Nakahara C, Matsunaga H, Sato N, Nagumo F, Tanaka Y, Kato T, Kato M, PSK-mediated growth suppression and enhancement of 5-FU/docetaxel-induced cytotoxicity in human esophageal cancer cells line. Gan To Kagaku Ryoho. 2009;36(12):1972–4.

109. Qu HG, Gao L, He D, Liu C, Yan W, Gao H, Wang L. Reversal of cisplatin-induced drug resistance of ovarian cancer cells by Ganoderma lucidum polysaccharides. Chin J Gerontol. 2011;31(5):831–3.

110. Feng P, Liu C, Yuan YS. Inhibition of Lingzhi spore oil on high K+ channel HERG expression tumor cells and synergistic effect with chemotherapeutic agents. In: Proceedings of the 9th Chinese National Medicinal Mushroom Conference. 2009 Oct 23–27; Fujian, China. 2009.p. 79–84.

111. Tsuuru S, Shinomiya N, Katsura T, Gotom T, Ninitekai M, Nomoto K. Effects of combined therapies with protein-bound polysaccharide (PSK, Krestin) and fluorinated pyrimidine derivatives on experimental liver metastases and on the immunologic capacities of the hosts. Oncology. 1991;48(6):498–504.
169. Zhang J, Huang R, Hao YY, Liu Y, Wu C. Influence of polysaccharide-
Kono K, Kawaguchi Y, Mizukami Y, Mimura K, Sugai H, Akaike H, Fujii H.
protein-bound polysaccharide on mRNA expressions of Foxp3, PD-1 and IL-10 in spleen of immunosuppressive mice. Jiangsu Med J. 2015;41(13):1502–4.

171. Wu P, Huang R, Zhang J, Liu R, Xiong YL, Yang CC, Wu C. Influence of
Kashimoto N, Ishii S, Myojin Y, Ushijima M, Hayama M, Watanabe H. A
cancer drugs. Oncol Lett. 2010;1(1):63–8.

173. Wang L, Chen J, Pei R, Yang HM, Chen XL, Gui XF. Experimental
Gui XF, Wang L, Chen XL, Yang YH, Fei R, Ma XF, Yang HM. Experimental study on lucid Ganoderma injection in preventing cis-platinum nephrotoxic. Henan Trad Chin Med. 1998;18(5):281–2.

175. Wang L, Chen J, Yang HM, Pei R, He GZ. Experimental study of treat-
ment with Ganoderma lucidum polysaccharides and cispitant in tumor-bearing mice. China J Chin Mater Med. 2005;30(11):874–5.

177. Wang L, Chen J, Pei R, Yang HM, Chen XL, Gui XF. Effects of Ganoderma lucidum polysaccharide pretreatment on nephrotoxicity induced by cispitant and carcinoma inhibition rate. J Henan Med Coll Staff Work. 2004;16(3):212–4.

179. Liu YX, Yan Y, Wang B, Chen YY, Ji W, Du JR. Antitumor activity of
Cheng CW, Wu TX, Shang HC, Li YP, Altman DG, Moher D, Bian ZX. CONSORT extension for Chinese herbal medicine formulas 2017: recommendations, explanation, and elaboration. Chin J Integr Med. 2019;25(1):71–9.

181. Rajasekaran M, Kalaimagal C. Cardioprotective effect of a medicinal mushroom, Ganoderma lucidum against adriamycin toxicity. Mycosystema. 2009;3:456–62.

183. Lam et al. Chin Med (2020) 15:75 Page 18 of 18

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.