Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium

C. Alisha Quandt1*, Ryan M. Kepler2, Walter Gams3, João P. M. Araújo4, Sayaka Ban5, Harry C. Evans6, David Hughes4,7, Richard Humber6, Nigel Hywel-Jones6, Zengzhi Li18, J. Jennifer Luangsa-ard19, Stephen A. Rehner2, Tatiana Sanjuan20, Hiroki Sato21, Bhushan Shrestha22, Gi-Ho Sung23, Yi-Jian Yao24, Rasoul Zare25, and Joseph W. Spatafora1

1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; corresponding author e-mail: owensbyc@science.oregonstate.edu
2USDA-ARS, Systematic Mycology and Microbiology Laboratory, Beltsville, MD 20705, USA
3Formerly CBS-KNAW, Fungal Biodiversity Centre, Utrecht, The Netherlands
4Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
5Biological Resource Center, National Institute of Technology and Evaluation 2-5-8 Kazusakamamori, Kisarazu, Chiba 292-0818, Japan
6CAB International, E-UK Centre, Egham, Surrey TW20 9TY, UK
7Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, PA 16802, USA
8USDA-ARS Biological Integrated Pest Management Research, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853, USA
9Milton Biotech Ltd, Kratum Rai, Nong Chok, Bangkok 10530, Thailand
10Department of Forestry, Anhui Agricultural University, Hefei, Anhui 230036, China
11Micro Integration Free Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
12Laboratorio de Taxonomía y Ecología de Hongos, Instituto de Biología, Facultad de Ciencias Naturales, Universidad de Antioquia, Medellín, Colombia and Laboratorio de micología y fitopatología, Departamento Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
13Department of Forest Entomology, Forestry and Forest Products Research Institute, 1 Matsumosato, Tsukuba, Ibaraki 305, Japan
14Institute of Life Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Korea
15Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 369-873, Korea
16State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
17Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, Tehran 19395, Iran

Abstract: Ophiocordycipitaceae is a diverse family comprising ecologically, economically, medicinally, and culturally important fungi. The family was recognized due to the polyphyly of the genus Cordyceps and the broad diversity of the mostly arthropod-pathogenic lineages of Hypocreales. The other two cordyceps-like families, Cordycipitaceae and Clavicipitaceae, will be revised taxonomically elsewhere. Historically, many species were placed in Cordyceps, but other genera have been described in this family as well, including several based on anamorphic features. Currently there are 24 generic names in use across both asexual and sexual life stages for species of Ophiocordycipitaceae. To reflect changes in Art. 59 in the International Code of Nomenclature for algae, fungi, and plants (ICN), we propose to protect and to suppress names within Ophiocordycipitaceae, and to present taxonomic revisions in the genus Tolypocladium, based on rigorous and extensively sampled molecular phylogenetic analyses. When approaching this task, we considered the principles of priority, monophyly, minimizing taxonomic revisions, and the practical utility of these fungi within the wider biological research community.

Key words: arthropod-pathogens Article 59 new combinations nomenclature Ophiocordycipitaceae Tolypocladium

Article info: Submitted: 31 March 2014; Accepted: 2 June 2014; Published: 19 June 2014.

BACKGROUND

The revision of Art. 59 in the International Code of Nomenclature for algae, fungi, and plants (ICN; McNeill et al. 2012) has created a major task for mycologists, who must now reconcile under one name various possible names existing for different morphs of the same species offungus (Hibbett & Taylor 2013). Groups have already begun to propose names which should be protected or suppressed within Hypocreales in accordance with the ‘one fungus one name’ policy (Geiser et al. 2013, Rossman et al. 2013, Leuchtmann et al. 2014, Johnston et al. 2014, Kepler et al. 2014) and others are in progress. Here, we seek to retain names in Ophiocordycipitaceae with the goal of harmonizing...
priority, monophyly, simplicity of taxonomic revisions, and minimization of disruption to the research community.

The family Ophiocordycipitaceae was described by Sung et al. (2007) to accommodate species that were determined to be phylogenetically distinct from Cordycipitaceae and Clavicipitaceae s.str. Asexual morphologies in Ophiocordycipitaceae show a tremendous range of variation, some of which are restricted in their phylogenetic distribution while others are often found in disparate lineages. For example, Verticillium is a common asexual morph of many species in several hypocrealean families, including Ophiocordycipitaceae, Cordycipitaceae and Clavicipitaceae (see Zare et al. 2000, Sung et al. 2001, 2007, and Gams & Zare 2001).

Ophiocordyceps is the most speciose genus of the family, and was described originally by Petch (1931a) for species of Cordycyceps that have septate ascospores that do not disarticulate into part-spores at maturity and asci with inconspicuous apical caps (Petch 1931a, 1933). Kobayasi (1941) later used Ophiocordyceps as a subgeneric classification of the genus Cordycyceps, but Sung et al. (2007) restored Ophiocordyceps to the rank of genus to include those Cordycyceps species within Ophiocordycipitaceae forming a sister clade with the genus Elaphocordyceps (see below). The type of the genus is O. blattae, a rarely collected cockroach pathogen for which no culture or molecular data are available.

Asexual generic names associated with Ophiocordyceps include Sorosporrella, the oldest name still in use for species in the clade, Hirustella, Hymenostilbe, Stilbella, Syngiocladium, and Paraisaria. Hirustella species typically produce one to several conidia in a limited mucus droplet borne on basally subulate phialides that taper into slender necks (Gams & Zare 2003). Hymenostilbe was proposed by Petch (1931b), and there is some evidence to support restricting its use within the genus Ophiocordyceps to the 'O. sphecocosphala clade’, most species of which sporulate from adult insects (Sung et al. 2007, Luangsa-ard et al. 2011a). These taxa produce conidia singly from multiple denticles on conidiogenous cells forming a palisade-like layer along the entire outer surface of synnemata (Mains 1950). The Stilbella morphology has been applied broadly among species associated with Ophiocordyceps, as well as to fungi later reclassified in other genera (Seifert 1985, Gräfenhan et al. 2011). Stilbella species often produce aggregate synnemata with a fertile, terminal head of conidia. Syngiocladium spp. often have laterally arising conidiophores similar in morphology to the hypocreacean asexual morph Gliocladium, and they may be either synnematous or mononematous on their arthropod hosts (Petch 1932, Hodge et al. 1998). Sorosporrella, a chlamydospore producing spore state, has been linked as a synasexual morph of Syngiocladium (Speare 1917, 1920), but the two morphologies are not always produced by all species (Hodge et al.1998, Evans & Shah 2002). Species of Paraisaria possess feathery synnemata which fruit from arthropod hosts, and several species have been linked via cultural and molecular data to the O. gracilis clade (Samson & Brady 1983, Sung et al. 2007, Evans et al. 2010). Names of genera associated with Ophiocordyceps whose types are located outside of Hypocreales include Tilachlidiopsis and Podonectria, members of the Agaricomycetes and Dothideomycetes, respectively (Rossman 1978, Stalpers et al.1991, Hughes et al. 2001, Boonmee et al. 2011). Despite the large number of taxa associated with Ophiocordyceps, a lack of support for internal nodes resulting in equivocal topologies has limited inferences about relationships within the genus in previous studies (Sung et al.2007).

The most notable species in the Ophiocordyceps clade is O. sinensis, which is nearly double the price of gold by weight (Stone 2008, Shrestha & Bawa 2013) and the subject of intense research, especially in China (Shrestha et al. 2010, Hu et al. 2013, Ren & Yao 2013, Bushley et al. 2013a, etc.). Almost exclusively found parasitizing the larvae of ghost moths (Hepialidae: Thitarodes) in the alpine and sub-alpine pastures of the Tibetan plateau and the Himalayas, this species is undergoing heavy, possibly unsustainable, and destructive harvesting (Cannon et al. 2009, Shrestha & Bawa 2013).

The recently described genus Elaphocordyceps is typified by E. ophioglossoides, one of the first Cordycyceps species to be described. Species in Elaphocordyceps are mostly parasites of the ectomycorrhizal truffle genus Elaphomyces (Ascomycota, Eurotales). The majority of Elaphocordyceps species have no known asexual morph, but where known they produce ones which are verticillium-like or Tolypocladium (Sung et al. 2007). There are a few Elaphocordyceps species known to be entomopathogens, including three cicada pathogens (E. inegoensis, E. paradoxa, and E. toriharamontana), and one beetle pathogen, E. subsessilis (syn.Tolypocladium inflatum) (Hodge et al. 1996, Sung et al. 2007), Tolypocladium inflatum (a name conserved by the rejection of Pachybasium niveum; Dreyfuss & Gams 1994), is a medicinally important fungus and the subject of much research due to its production of the immunosuppressant drug, cyclosporin A (Surva et al. 2011, Bushley et al. 2013b). The other species of Tolypocladium have no known sexual morphs and have mainly been isolated from soil (Gams 1971, Bissett 1983) or observed parasitizing rotifers or insects (Barron 1980, 1981, 1983, Samson & Soares 1984, Weiser et al. 1991). The asexually typified genus Chaunopycnis is also related to this clade (Bills et al. 2002) and has been isolated mainly from soil samples (Gams 1980, Bills et al. 2002), although one species was isolated from epilithic Antarctic lichens (Möller & Gams 1993). The similarity of conidigenous between Chaunopycnis and Tolypocladium was noted in the original description of Chaunopycnis (Gams 1980), and its phialides often taper in a manner similar to those of Tolypocladium. Interestingly, these two genera have also been linked by their shared production of cyclosporin A (Traber & Dreyfuss 1996). Two of the described Chaunopycnis species produce loosely enclosed conidiomata, a morphology not seen in other members of the clade or within Ophiocordycipitaceae as a whole.

The relationships among the species of the Purpureocillium clade were recently reviewed by Luangsa-ard et al. (2011b). The genus was proposed to encompass taxa closely related to Purpureocillium lilacinum (syn. Paecilomyces lilacinus) and consists of species with purple-hued conidia, including Nomuraea atypicola and Isaria
takamizusanensis. The type of Nomuraea is N. rileyi (syn. N. prasina), which has recently been synonymized with Metarhizium (Kepler et al. 2014). The type of Isaria is a member of Cordycipitaceae (Gams et al. 2005, Hodge et al. 2005, Luangsa-ard et al. 2011b). While N. atypica and I. takamizusanensis have not been addressed taxonomically, other studies found close relationships between these taxa and Purpureocillium (Sung et al.2007, Perdomo et al. 2013). Nomuraea atypica is the asexual morph of C. cylindrica (Hywel-Jones & Sivichai 1995), the only sexual morph described for this clade and one of the “residual” Cordyceps s. lat. left without reassignment to any phylogenetically redefined genus by Sung et al. (2007).

Nematode pathogens have been described in many genera throughout Hypocreales. The largest and oldest of these is the asexually typified genus Harposporium. Most Harposporium species produce crescent-shaped or helicoid conidia that are ingested by their hosts and become lodged in the upper portions of the digestive tract (Barron 1977). Conidia are produced on spherical conidiogenous cells, and several species are known to produce hirsutella-like synasexual morphs (Hodge et al. 1997, Chaverri et al. 2005, Li et al. 2005). While the majority of Harposporium species are known from nematodes, these fungi are common in the soil and several studies have reported an entomopathogenic ecology as well (e.g., Shimazu & Glockling 1997, Evans & Whitehead 2005). In 2005, Chaverri et al. reported the asexual-sexual morph connection between Harposporium and Podocrella, an arthropod-pathogenic genus. Several researchers initially described nematophagous taxa in the originally plant-pathogenic genus Meria (Vuillemin 1896, Drechsler 1941), but this genus was found to be polyphyletic (Gams & Jansson 1985), and for this reason Drechmeria was erected for the nematophagous meria-like taxa in Hypocreales. The type of Drechmeria, D. coniospora, has cone-shaped conidia whose conidiogenous cells are not basally swollen as in Harposporum. One protozoan-infecting species of Drechmeria, D. harposporioide, produces crescent-shaped conidia similar to those of Harposporum (Barron & Szijarto 1982). Haptocilium was erected for asexual nematode pathogens bearing verticillate phialides and whose conidia are not ingested but adhere to the surface of their hosts (Zare & Gams 2001).

Polycephalomyces represents a diverse clade that is currently incertae sedis within Hypocreales, as its placement has lacked support in previous molecular studies (Kepler et al. 2013). Of particular uncertainty was whether Polycephalomyces and its closest related taxon, C. pleuricapitata, formed a sister clade to Ophiocordypitaceae, or if it was more closely related to Clavicipitaceae. Many morphological characters are shared between Ophiocordypitaceae and Polycephalomyces. For example, numerous species in both clades produce hirsutella-like anamorphs with conidia often borne in a slimy mass (Seifert 1985). In addition, sexual sporulating structures of Polycephalomyces often possess a wavy, tough, carbonaceous stipe which is a common morphology of Ophiocordypitaceae (Kepler et al. 2013). Many species within this genus are known mycoparasites of other hypocrealean entomopathogens and myxomycetes, but there are also several species of entomopathogens. Cordyceps pleuricapitata was deemed a residual species of Cordyceps of uncertain placement by Kepler et al. (2013), due to a lack of statistical support joining that species and Polycephalomyces.

In this paper we expand the taxon sampling presented in Sung et al. (2007) by 222 hypocrealean isolates. This includes sexual and asexual states which provide the framework for addressing the nomenclatural issues demanded by changes to the most recent ICN.

MATERIALS AND METHODS

Sequences from five nuclear loci, including the small and large subunits of the rDNA (SSU and LSU), the transcription elongation factor-1α (TEF), and the first and second largest subunits of RNA polymerase II (RPB1 and RPB2) were used for phylogenetic analyses. DNA extraction and PCR amplification were carried out as previously described (Kepler et al. 2013). Sequencing reactions were performed at the University of Washington High-Throughput Genomics Center (Seattle, WA) with the primers used for the initial amplifications. All other sequences were collected from GenBank. Efforts were made for all specimens to have data for at least three of the five genes to be considered in our analyses. However, certain taxa for which only one or two genes were available were included due to the importance in addressing the taxonomic issues at hand (Table 1).

Raw sequences were processed, aligned, and gaps excluded as in Kepler et al. (2013), using the programs MAFFT v. 6 (Katoh et al. 2002, Katoh & Toh 2008), Geneious v. 7.0.6 (Biomatters, available http://www.geneious.com), and Gblocks (Talavera & Castresana 2007). The final alignment length was 4570 nucleotides - 1023 for SSU, 879 for LSU, 987 for TEF, 646 for RPB1, and 1035 for RPB2. RAxML v. 7.6.6 (Stamatakis 2006) was used to perform Maximum likelihood (ML) estimation of the phylogeny with 500 bootstrap replicates on the concatenated dataset using eleven data partitions. These included one each for SSU and LSU, and three for each of the three codon positions of the protein coding genes, TEF, RPB1, and RPB2. The GTR-GAMMA model of nucleotide substitution was used.

RESULTS AND DISCUSSION

Our results are in agreement with the overall phylogenetic structure of the order Hypocreales put forth by Sung et al. (2007). Nomenclatural issues for taxa in the other two families of cordyceps-like organisms, Cordycipitaceae and Clavicipitaceae, will be presented elsewhere or have already been published (Leuchtmann et al. 2014, Kepler et al. 2014).

Based on this exhaustive phylogenetic reconstruction (Fig. 1), we recognize six genera within Ophiocordypitaceae Ophiocordyceps, Tolypocladium, Purpureocillium, Harposporium, Drechmeria, and Polycephalomyces (Table 2). This framework will provide clarity for researchers, ease of communication for instructors, and phylogenetic taxonomy around which to investigate the evolution of life histories (e.g. morphology, ecology).
Fig. 1. ML tree of Ophiocordycipitaceae obtained using RAxML to analyze the concatenated five gene dataset (SSU, LSU, TEF, RPB1, and RPB2). Proposed genus level names to protect are delimited, but names of individual species have not been changed on the leaves of the tree, to demonstrate the diversity of taxa sampled. Values above branches represent MLBP proportions greater than or equal to 70 % from 500 replicates. Inset tree shows the larger phylogeny of Hypocreales.
TAXONOMY

Ophiocordyceps Petch 1931

Ophiocordyceps sensu Sung *et al.* (2007) is resolved as a well-supported (MLBP=77) clade (Fig. 1, Node 3). This clade is speciose, diverse, and almost exclusively comprises insect pathogens. In spite of increased taxon sampling, current reconstructions fail to find strong statistical support at the internal nodes, and therefore we refrain from defining infrageneric groupings (Fig. 1). While *Sorosporella* is the oldest name for any members in this clade, there are only two described species, and Evans & Shah (2002) argued *Sorosporella* should be synonymized with *Syngliocladium* instead of being recognized as an asexual morph, as *Synnematium* was previously treated with respect to *Hirsutella* (Evans & Samson 1982). We propose, therefore, to suppress the use of *Sorosporella* for this clade. *Hirsutella* is the next oldest name, but the type, *H. entomophila*, which was described growing from adult Coleoptera, has not been sampled and no culture of this species is available. Sung *et al.* (2007) argued that the *Hirsutella* morphology was phylogenetically informative for the ‘*O. unilateralis* group’ which they resolved as paraphyletic, a topology recovered in the current analyses as well (Fig 1, Nodes 4 and 5). However, the *Hirsutella* morphology is observed in other clades (e.g. *Harposporium*, *Polycyphalomyces*, *Clavicipitaceae*), and while it is difficult to place the type species based on morphology alone, it appears from its original description to be morphologically and ecologically (as a parasite of adults) similar to species of *Hymenostilbe* found in the ‘*O. sphecocephala* clade’ and not *Hirsutella* of the ‘*O. unilateralis* group’ (Patouillard 1892). Another reason for suppressing the use of *Hirsutella* for this clade is the larger number of new combinations that would have to be made – 178 for *Ophiocordyceps* vs. 77 for *Hirsutella* – as the vast majority of species encompassed here are currently described as *Ophiocordyceps*. Also, preservation of the name “cordyceps” within the name of *O. sinensis* is considered paramount given its economic, medicinal, and cultural importance in addition to being the most widely known and researched species in the clade (Shreshta *et al.* 2010).

At this time, we also propose to suppress the use of the other names proposed for taxa in this clade, including *Hymenostilbe*, *Syngliocladium*, and *Paraisaria*, because these names are younger, and they contain fewer associated taxa than either *Ophiocordyceps* or *Hirsutella*. Our results suggest the restriction of *Hymenostilbe* to the ‘*O. sphecocephala* clade’ (Fig. 1, Node 6) which occupies a long branch and has strong support (MLBP=100), however, because the other internal nodes of the clade do not receive support, we refrain from making this distinction now as it would result in a paraphyletic *Ophiocordyceps*. These analyses place one species of *Stilbella*, *S. buquetii*, in this clade, while other studies (Seifert 1985, Gräfenhan *et al.* 2011) have placed other *Stilbella* species in *Nectriaceae*, *Bionectriaceae*, or *Polycyphalomyces*, and the current placement of *Stilbella* remains *Hypocreales incertae sedis* (Kirk *et al.* 2008). The type of *Stilbella*, a coprophile, has yet to be considered in a phylogenetic context, and for these reasons we do not address that name here, but reject the use of that name for this clade. Therefore, we propose to protect *Ophiocordyceps* as the genus name for the entire clade, while acknowledging that future studies including more data and taxonomic sampling may provide better resolution of the relationships within the genus and a narrower concept of *Ophiocordyceps*.

Tolypocladium W. Gams 1971

Tolypocladium is proposed for protection over the other two generic names in the clade, *Elaphocordycopsis* and *Chaunopsycnis*. The clade itself is well supported (MLBP=97) in this and other published analyses (Sung *et al.* 2007, Kepler *et al.* 2013). However, relationships between species in this clade are very sensitive to taxon sampling, and there is little bootstrap support for internal branches from the current data to justify more than one name for this clade. The asexual-sexual morph connection between *Tolypocladium* and some *Elaphocordycopsis* species has been known for several years (Hodge *et al.* 1996), although where known most *Elaphocordycopsis* spp. do not possess the morphology associated with *Tolypocladium* (Sung *et al.* 2007). While this may cause some short-term confusion, the alternative would be to name the clade *Elaphocordycopsis* (which would cause the fewest name changes, 12 vs. 26 for *Tolypocladium*) and suppress *Tolypocladium*, a much more widely known, medicinally important, and older name, and therefore we find this a poor option. In this analysis the *Chaunopsycnis* species sampled form a monophyletic clade which is the most divergent group within the clade. However, this may be the result of limited taxon and genetic sampling; only small subunit rDNA data for the sampled *Chaunopsycnis* species was available for these analyses.

Here, we present a list of 26 new combinations within the genus *Tolypocladium*, which we emend to include species whose anamorphic forms do not possess inflated phialide bases, but that do form a single monophasic clade encompassing a large number of truffle parasites, several insect pathogens, rotifer pathogens, and several fungi isolated to date only from soil.

Tolypocladium W. Gams, *Persoonia* 6: 185 (1971).

Synonyms: *Chaunopsycnis* W. Gams, *Persoonia* 11: 75 (1980).

Elaphocordycopsis G.H. Sung & Spatafora, *Stud. Mycol.* 57: 36 (2007).

Circumscription: The genus *Tolypocladium* is emended here to apply to all descendants of the node defined in the reference phylogeny (Fig. 1) as the terminal *Tolypocladium* clade. It is the least inclusive clade containing *T. album*, *T. capitatum*, *T. cylindrosporum*, *T. fractum*, *T. inflatum*, *T. japonicum*, *T. longisegmentum*, *T. ophioglossoides*, and *T. pustulatum*. No definitive synapomorphies are known for the clade. Morphologies associated with sexual reproductive states include robust stipitate stroma with clavate to capitate clava (e.g. *T. capitatum*) to highly reduced stroma comprising rhizomorphs and aggregated perithecia (e.g. *T. inflatum*); perithecia may be immersed and ordinal to the long axis of the stroma or superficial and produced on a highly reduced stromatic pad; asci are single-walled, long and cylindrical with a pronounced apical cap; ascospores...
are filiform, approximately as long as asci, septate and typically disarticulate into part-spores. Where known, asexual states include morphologies described as *Tolypocladium sensu* Gams (1970), *Chaunopycnis sensu* Gams (1979), or verticillium-like. Ecologies include parasites and pathogens of insects, rotifers and fungi, as well as, soil-inhabiting.

Type: *Tolypocladium inflatum* W. Gams 1971.

Tolypocladium inflatum W. Gams, *Persoonia* 6: 185 (1971), nom. cons.

Synonyms: *Cordyceps subsessilis* Petch, *Trans. Brit. Mycol. Soc.* 21: 39 (1937).

Elaphocordyceps subsessilis (Petch) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007).

Cordyceps facis Kobayasi & Shimizu, *Trans. Mycol. Soc. Japan* 23: 361 (1982); as ‘*Codyceps*’.

Tolypocladium album (W. Gams) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808698

Basionym: *Chaunopycnis alba* W. Gams, *Persoonia* 11: 75 (1979).

Tolypocladium capitatum (Holmsk. : Fr.) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808699

Basionym: *Clavaria capitata* Holmsk., *Beata Ruris Otia Fung.* *Dan.* 1: 38 (1790).

Synonyms: *Sphaeria capitata* (Holmsk. : Fr.) Pers., *Comm. Fung. Clav.:* 13 (1797); Fr., *Syst. Mycol.* 2: 324 (1822).

Cordyceps capitata (Holmsk.: Fr.) Link, *Handb. Erk. Gew.* 3: 347 (1833).

Torrubia capitata (Holmsk.: Fr.) TuU. & C. TuU., *Sel. Fung.* *Carpos.* 3: 22 (1865).

Elaphocordyceps capitata (Holmsk. : Fr.) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007).

Sphaeria agariciformis Bolton, *Hist. Fung. Halifax* 130 (1789).

Cordyceps agariciformis (Bolton) Seaver, *N. Amer. Fl.* 3: 53 (1910).

Cordyceps canadensis Ellis & Everh., *Bull. Torrey Bot. Club* 25: 501 (1898).

Cordyceps capitata var. *canadensis* (Ellis & Everh.) Lloyd, *Mycol. Writ.* 5: 609 (1916).

Cordyceps nigriceps Peck, *Bull. Torrey Bot. Club* 27: 21 (1900).

Tolypocladium delicatistipitatum (Kobayasi) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808700

Basionym: *Cordyceps delicatistipitata* Kobayasi *Bull. Natn. Sci. Mus., Tokyo* 5 (2, no. 47): 79 (1960); as ‘*delicatistipitata*’.

Synonym: *Elaphocordyceps delicatistipitata* (Kobayasi) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007).

Tolypocladium fractum (Mains) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808701

Basionym: *Cordyceps fracta* Mains, *Bull. Torrey. Bot. Club* 84: 250 (1957).

Synonym: *Elaphocordyceps fracta* (Mains) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007).

Tolypocladium inegoense (Kobayasi) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808702

Basionym: *Cordyceps inegoensis* Kobayasi, *Bull. Natn. Sci. Mus., Tokyo* 6: 292 (1963)

Synonym: *Elaphocordyceps inegoensis* (Kobayasi) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007); as ‘*inegoënsis*’.

Tolypocladium intermedium (S. Imai) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808703

Basionym: *Cordyceps intermedia* S. Imai, *Proc. Imp. Acad. Japan* 10: 677 (1934).

Synonyms: *Elaphocordyceps intermedia* (S. Imai) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007).

Tolypocladium intermedium f. *michinokuense* (Kobayasi & Shimizu) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808704

Basionym: *Cordyceps intermedia f. michinokuensis* Kobayasi & Shimizu, *Bull. Natn. Sci. Mus., Tokyo* B 8: 116 (1982).

Synonym: *Elaphocordyceps intermedia f. michinokuensis* (Kobayasi & Shimizu) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007); as ‘*michinokuënsis*’.

Tolypocladium janicicum (Lloyd) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808705

Basionym: *Cordyceps janicica* Lloyd, *Mycol. Writ.* 6 (Letter 62): 913 (1920).

Synonyms: *Elaphocordyceps janicica* (Lloyd) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007).

Cordyceps umemurae S. Imai, *Trans. Sapporo Nat. Hist. Soc.* 11: 32 (1930) [1929]; as ‘*umemurai*’.

Tolypocladium jezoense (S. Imai) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808706

Basionym: *Cordyceps jezoensis* S. Imai, *Trans. Sapporo Nat. Hist. Soc.* 11: 33 (1930) [1929].

Synonym: *Elaphocordyceps jezoensis* (S. Imai) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007); as ‘*jezoënsis*’.

Tolypocladium longisegmentum (Ginns) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808856

Basionym: *Cordyceps longisegmentis* Ginns, *Mycologia* 80: 219 (1988).

Synonym: *Elaphocordyceps longisegmentis* (Ginns) G.H. Sung et al., *Stud. Mycol.* 57: 37 (2007).
Ophiocordycipitaceae

Tolypocladium minazukiense (Kobayasi & Shimizu) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808857
Basionym: Cordyceps minazukiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus., Tokyo 8: 117 (1982).
Synonym: Elaphocordyceps minazukiensis (Kobayasi & Shimizu) G.H. Sung et al., Stud. Mycol. 57: 37 (1982).

Tolypocladium miomoteanum (Kobayasi & Shimizu) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808858
Basionym: Cordyceps miomoteana Kobayasi & Shimizu, Bull. Natn. Sci. Mus., Tokyo 8: 118 (1982).
Synonym: Elaphocordyceps miomoteana (Kobayasi & Shimizu) G.H. Sung et al., Stud. Mycol. 57: 37 (1982).

Tolypocladium ophioglossoides (Ehrh. ex J.F. Gmel.) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808859
Basionym: Sphaeria ophioglossoides Ehrh. ex J.F. Gmel., Syst. Na., 13th edn 2: 1474 (1792).
Synonyms: Sphaeria ophioglossoides Ehrh., Pl. Crypt. Exs. fasc. 16 no. 160 (1789); nom. inval. (Art. 38.1).
Cordyceps ophioglossoides (Ehrh. ex G.F. Gmel.) Link, Handb. Erk. Gew. 3: 347 (1833) : Fr., Syst. Mycol. 2: 324 (1822).
Torrubia ophioglossoides (Ehrh. ex G.F. Gmel.) Tul. & C. Tul., Sel. Fung. Carp. 3: 20 (1865).
Elaphocordyceps ophioglossoides (Ehrh. ex G.F. Gmel.) G.H. Sung et al., Stud. Mycol. 57: 37 (2007).
Clavaria parasitica Willd., Fl. Berol. Prodr.: 405 (1787).
Cordyceps parasitica (Willd.) Henn., Nerthus 6: 4 (1904).

Tolypocladium ophioglossoides f. album (Kobayasi & Shimizu ex Y.J. Yao) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808860
Basionym: Cordyceps ophioglossoides f. alba Kobayasi & Shimizu ex Y.J. Yao, Acta Mycol. Sin. 14: 257 (1995).
Synonym: Elaphocordyceps ophioglossoides f. alba (Kobayasi & Shimizu ex Y.J. Yao) G.H. Sung et al., Stud. Mycol. 57: 37 (2007).

Tolypocladium ophioglossoides f. cuboides (Kobayasi) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808861
Basionym: Cordyceps ophioglossoides f. cuboides Kobayasi, Bull. Natn. Sci. Mus., Tokyo 5 (2, no. 47): 77 (1960).
Synonym: Elaphocordyceps ophioglossoides f. cuboides (Kobayasi) G.H. Sung et al., Stud. Mycol. 57: 37 (2007).

Tolypocladium ovalisporum (C. Möller & W. Gams) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808862
Basionym: Chaunopycnis ovalispora C. Möller & W. Gams, Mycotaxon 48: 442 (1993).

Tolypocladium paradoxum (Kobayasi) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808863
Basionym: Cordyceps paradoxa Kobayasi, Bulletin of the Biogeogr. Soc. Jap. 9: 156 (1939).
Synonym: Elaphocordyceps paradoxo (Kobayasi) G.H. Sung et al., Stud. Mycol. 57: 37 (2007).

Tolypocladium pustulatum (Bills et al.) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808864
Basionym: Chaunopycnis pustulata Bills et al., Mycol. Progr. 1: 8 (2002).

Tolypocladium ramosum (Teng) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808865
Basionym: Cordyceps ramosa Teng, Sinensia 7: 810 (1936).
Synonym: Elaphocordyceps ramosa (Teng) G.H. Sung et al., Stud. Mycol. 57: 37 (2007).

Tolypocladium rouxii (Cand.) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808866
Basionym: Cordyceps rouxi Cand., Mycotaxon 4: 544 (1976).
Synonym: Elaphocordyceps rouxii (Cand.) G.H. Sung et al., Stud. Mycol. 57: 37 (2007).

Tolypocladium szemaoense (M. Zang) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808867
Basionym: Cordyceps szemaoensis M. Zang, Acta Bot. Yunn. 23: 295 (2001).
Synonym: Elaphocordyceps szemaoensis (M. Zang) G.H. Sung et al., Stud. Mycol. 57: 38 (2007); as ‘szemaoëniss’.

Tolypocladium tenuisporum (Mains) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808868
Basionym: Cordyceps tenuispora Mains, Bull. Torrey Bot. Club 84: 247 (1957).
Synonym: Elaphocordyceps tenuispora (Mains) G.H. Sung et al., Stud. Mycol. 57: 38 (2007).

Tolypocladium toriharamontanum (Kobayasi) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808869
Basionym: Cordyceps toriharamontana Kobayasi, Bull. Natn. Sci. Mus., Tokyo 6: 305 (1963).
Synonym: Elaphocordyceps toriharamontana (Kobayasi) G.H. Sung et al., Stud. Mycol. 57: 38 (2007).

Tolypocladium valliforme (Mains) Quandt, Kepler & Spatafora, **comb. nov.**
MycoBank MB808870
Basionym: Cordyceps valliformis Mains, Bull. Torrey Bot. Club 84: 250 (1957).
Synonym: Elaphocordyceps valliformis (Mains) G.H. Sung et al., Stud. Mycol. 57: 38 (2007).
Toxopcalcadium valvatistipitatum (Kobayasi) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808871
Basionym: *Cordyceps valvatistipitata* Kobayasi, *Bull. Natn. Sci. Mus.*, Tokyo 5(2, no. 47): 81 (1960); as ‘valvatistipitata’.

Synonym: *Elaphocordyceps valvatistipitata* (Kobayasi) G.H. Sung et al., *Stud. Mycol.* 57: 38 (2007).

Toxopcalcadium virens (Kobayasi) Quandt, Kepler & Spatafora, *comb. nov.*

MycoBank MB808872
Basionym: *Cordyceps virens* Kobayasi, *J. Jap. Bot.* 58: 222 (1983).

Synonym: *Elaphocordyceps virens* (Kobayasi) G.H. Sung et al., *Stud. Mycol.* 57: 38 (2007).

Purpureocillium Luangsa-ard et al. 2011

Our findings support those reported by Luangsa-ard et al. (2011b) for the *Purpureocillium* clade, and the change in Art. 59 allows for the inclusion of *N. atypica* (syn. *Cordyceps cylindrica*) and *Isaria takamizusanensis* within this genus. Shared characters for this clade include purple-hued conidia and pathogenesis of arthropods, although *P. lilacinum* and *P. lavendulum* have been cultured from various substrates (Perdomo et al., 2013), and *P. lilacinum* can cause keratitis and other mycoses in humans and other vertebrates (Pastor & Guarro 2006, Rodríguez et al. 2010). Because this genus is well supported (MLBP=76) as sister to the nematode pathogen clade (Fig. 1), it is important to mention that *P. lilacinum* is frequently collected from nematodes (Luangsa-ard et al. 2011b), and has been used in the biocontrol of plant pathogenic nematodes (Kalele et al., 2006, Castillo et al. 2013).

Harposporium Lohde 1874 and Drechmeria W. Gams & H.-B. Jansson 1985

Our analyses reconstruct a well-supported (MLBP=76) monophyletic origin of the mostly nematophagous clade of *Ophiocordycipitaceae* (Fig. 1 Node 2). Within this clade, there is strong phylogenetic support for two clades: one containing *Harposporium* and *Podocrella*, and the other consisting of *Drechmeria*, *Haptocillum*, and *Cordyceps gunnii*. The relationship between *Harposporium* and *Podocrella* has already been described (Chaverri et al. 2005), but the revision of Art. 59 requires that one name be chosen for this genus. *Harposporium* is an older name, and the morphology of at least somewhat crescent-shaped conidia is a shared character for this clade. Suppression of *Podocrella* also requires the fewest taxonomic revisions (3 vs 30). For these reasons, we propose to protect *Harposporium* over *Podocrella* (Table 2).

Within the other nematophagous subclade, *Drechmeria* is an older name than *Haptocillum*, and the isolate included in these analyses is nested within the *Haptocillum* isolates sampled. For this reason, we propose to protect *Drechmeria* over *Haptocillum*. The inclusion of *C. gunnii* in this clade also provides a name for this residual taxon of *Cordyceps*. Most species however, are nematophagous (*C. gunnii* being the exception), and conidia may be cone-shaped, formed on conidiogenous cells in rosettes or verticils, or in the case of *C. gunnii*, paecilomyces-like. We did not have access to molecular data from *D. harpophoroides*, but given our finding that the two nematophagous clades in *Ophiocordycipitaceae* are monophyletic in origin, it will be interesting to see if this species, a protozoan pathogen with helical conidia, is truly a member of the *Drechmeria* clade or in fact a species within *Harposporium* that simply lacks the basally swollen conidiogenous cells.

Polycyphalomyces Kobayasi 1941

This study is the first to have definitive ML support (MLBP=82) for the sister relationship between the *Polycyphalomyces* clade and *Ophiocordycipitaceae* (Fig. 1 Node 1). Support for this relationship remains even with the exclusion of *C. pleuricapitata*, which is on an early-diverging, long branch within the clade. Two options remain to deal with this finding. Either a new family must be erected to account for this clade, or *Polycyphalomyces* and related taxa must be moved into *Ophiocordycipitaceae*. We propose to accept *Polycyphalomyces* and *C. pleuricapitata* in *Ophiocordycipitaceae*, where it will be the earliest diverging lineage of the family. The taxonomy of *C. pleuricapitata* will be addressed elsewhere.

CONCLUSIONS

We present a concise, thorough, phylogenetically relevant, and taxonomically accurate revision of the family *Ophiocordycipitaceae* with the aim of complying with the changes to Art. 59 of the ICN. With the criteria of naming monophyletic taxa, and where possible, of adhering to priority while avoiding changes that would be disruptive to the wider community of researchers, we have proposed to protect six genera within *Ophiocordycipitaceae*, including incorporation of the genus *Polycyphalomyces* within the family. We have also formally revised the genus *Toxopcalcadium*, to reflect the nomenclature suggested by our results.

ACKNOWLEDGEMENTS

We would like to acknowledge the following individuals for their contribution to this manuscript: Priscila Chaverri, Mingjun Chen, Tsuyoshi Hosoya, Jae-Mo Sung, and James White. An NSF Graduate Research Fellowship supported C.A.Q.

REFERENCES

Barron GL (1977) *The Nematode-destroying Fungi*. [Topics in Mycobiology no. 1.] Guelph, ON: Canadian Biological Publications.

Barron GL (1980) Fungal parasites of rotifers: a new *Toxopcalcadium* with underwater conidiation. *Canadian Journal of Botany* 58: 439–442.

Barron GL (1981) Two new fungal parasites of bdelloid rotifers. *Canadian Journal of Botany* 59: 1449–1455.

Barron GL (1983) Structure and biology of a new *Toxopcalcadium* attacking bdelloid rotifers. *Canadian Journal of Botany* 61: 2566–2569.
Gams W, Hodge KT, Samson RA, Korf RP, Seifert KA (2005) (1684) Proposal to conserve the name Isaria (anamorphic fungi) with a conserved type. Taxon 54: 537.

Gams W, Zare R (2001) A revision of Verticillium section Prostrata. Ill. Generic classification. Nova Hedwigia 72: 329–337.

Gams W, Zare R (2003) A taxonomic review of the clavicipitaceae anamorphs parasitizing nematodes and other microinvertebrates. In: Clavicipitaceae Fungi: evolutionary biology, chemistry, bioccontrol and cultural Impacts (White JF jr., Bacon CW, Hywel-Jones NL, Spatafora JW, eds): 17–73. New York: Marcel Dekker.

Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MB, et al. (2013) One Fungus, One Name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103: 400–408.

Gräfenhan T, Schroers H-J, Nirenberg HI, Seifert KA (2011) An overview of the taxonomy, phylogeny, and typification of necotriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Studies in Mycology 68: 79–113.

Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nature Reviews Microbiology 11: 129–133.

Hodge KT, Gams W, Samson RA, Korf RP, Seifert KA (2005) Lectotypification and status of Isaria Pers. : Fr. Taxon 54: 485–489.

Hodge KT, Humber RA, Wozniak CA (1998) Cordyceps variabilis and the genus Sclerotia. Mycologia 90: 743–753.

Hodge KT, Krasnoff SB, Humber RA (1996) Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88: 715–719.

Hodge KT, Viane NM, Gams W (1997) Two Harposporium species with Hirsutella synanamorphs. Mycological Research 101: 1377–1382.

Hu X, Zhang Y, Xiao G, Zheng P, Xia Y, Zhang X, St. Leger RJ, Liu X, Wang C (2013) Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chinese Science Bulletin 58: 2846–2854.

Hughes KW, Petersen RH, Johnson JE, Moncalvo JM, Vilgalys R, Redhead SA, Thomas T, McGhee LL (2001) Infrageneric phylogeny of Collybia s. str. based on sequences of ribosomal ITS and LSU regions. Mycological Research 105: 164–172.

Hywel-Jones NL, Sivichai S (1995) Cordyceps cylindrica and its association with Nomuraea atypica in Thailand. Mycological Research 99: 809–812.

Kalele DN, Affkpon A, Coosemans J (2006) Efficacy of Paecilomyces lilacinus strain 251 against root knot nematodes in tomato under greenhouse conditions. Communications in Agricultural and Applied Biological Sciences 72: 209–213.

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.

Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286–298.

Kepler RM, Ban S, Nakagini A, Bischoff J, Hywel-Jones N, Owensby CA, Spatafora JW (2013) The phylogenetic placement of hypocrealean insect pathogens in the genus Polycartholomyces: an application of One Fungus One Name. Fungal Biology 117: 611–622.

Kepler RM, Humber RA, Bischoff JF, Rehner SA (2014) Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 106: 611–622.
Kirk PM, Cannon PF, Minter DW, Stalpers JA (eds) (2008) Ainsworth & Bisby's Dictionary of the Fungi. 10th edn. Wallingford: CAB International.

Kobayasi Y (1941) The genus Cordyceps and its allies. Science Reports of the Tokyo Bunrika Daigaku, sect. B, 84 (5): 53–260.

Leuchtmann A, Bacon CW, Schardl CL, White JF Jr, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia doi:10.3852/13-251.

Li X, Luo H, Zhang K (2005) A new species of Harposporium parasitic on nematodes. Canadian Journal of Botany 83: 558–562.

Luangsanda JJ, Houbraken J, van Doorn T, Hong S-B, Borman AM, Harposporium. Li X, Luo H, Zhang K (2005) A new species of Harposporium parasitic on nematodes. Canadian Journal of Botany 83: 558–562.

Möller C, Gams W (1993) Two new hyphomycetes isolated from Antarctic lichens. Mycota 48: 441–450.

Pastor FJ, Guarro J (2006) Clinical manifestations, treatment and outcome of Paecilomyces lilacinus infections. Clinical Microbiology and Infection 12: 948–960.

Patouillard NT (1892) Une Clavariée entomogène. Revue Mycologique 14: 67–70.

Perdomo H, Cano J, Gené J, García D, Hernández M, Guarro J (2013) Polyphasic analysis of Purpureocillium lilacinum isolates from different origins and proposal of the new species Purpureocillium lavendulum. Mycologia 105: 151–161.

Petch T (1931a) Notes on entomogenous fungi. Transactions of the British Mycological Society 16: 55–75.

Petch T (1931b) New species of Cordyceps, collected during the Whitby foray. The Naturalist. Hull 1931: 101–103.

Petch T (1932) A list of the entomogenous fungi of Great Britain. Transactions of the British Mycological Society 17: 170–178.

Petch T (1933) Notes on entomogenous fungi. Transactions of the British Mycological Society 18: 48–75.

Ren SY, Yao YJ (2013) Evaluation of nutritional and physical stress conditions during vegetative growth on conidial production and germination in Ophiocordyceps sinensis. FEMS Microbiology Letters 346: 29–35.

Rodríguez MM, Pastor FJ, Serena C, Guarro J (2010) Efficacy of voriconazole in a murine model of invasive aspergillosis. International Journal of Antimicrobial Agents 35: 362–365.

Rossman AY (1978) Podonecctia, a genus in the Pleosporales on scale insects. Mycotaxon 7: 163–182.

Rossman AY, Seiffert KA, Samuels GJ, Minnis AM, Schroers H-J, Lombard L, Crous PW, Pöldmaa K, Cannon PF, Summerbell RC, Geiser DM, Zhuang W, Hirooka Y, Herrera C, Salgado-Salazar C, Chaverri P (2013) Genera in Biotrichaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 4: 41–51.

Samson RA, Brady BL (1983) Parasitaria, a new genus for Isaria dubia, the anamorph of Cordyceps gracilis. Transactions of the British Mycological Society 81: 285–290.

Samson RA, Soares GG Jr (1984) Entomopathogenic species of the hypomycete genus Tolypocladium. Journal of Invertebrate Pathology 43: 133–139.

Seiffert KA (1985) A monograph of Stibella and some allied hypomycetes. Studies in Mycology 27: 1–234.

Shrestha B, Bawa KS (2013) Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biological Conservation 159: 514–520.

Shrestha B, Zhang WM, Zhang YJ, Liu XZ (2010) What is the Chinese caterpillar fungus Ophiocordyceps sinensis (Ophiocordyceps? Mycologia 1: 228–236.

Speare AT (1917) Sorospora uvella and its occurrence in cutworms in America. Journal of Agricultural Research 8: 189–194.

Speare AT (1920) Further studies of Sorospora uvella, a fungous parasite of noctuid larvae. Journal of Agricultural Research 18: 399–439.

Stalpers JA, Seiffert KA, Samson RA (1991) A revision of the genera Antromycopsis, Sclerotistibium, and Tilachlidopsis (hypomycetes). Canadian Journal of Botany 69: 6–15.

Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

Stone R (2008) Last stand for the body snatcher of the Himalayas? Science 322: 1182.

Sung G-H, Spatafora JW, Zare R, Hodge KT, Gams W (2001) A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia 72: 311–328.

Sung G-H, Hywel-Jones NL, Sung J-M, Luangsanda Jr, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59.

Survase SA, Kagiwal LD, Annapure US, Singhal RS (2011) Cyclosporin A - A review on fermentative production, downstream processing and pharmacological applications. Biotechnology Advances 29: 418–435.

Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577.

Traber R, Dreyfuss MM (1996) Occurrence of cyclosporins and cyclosporin-like peptolides in fungi. Journal of Industrial Microbiology 17: 397–401.

Vuillemin P (1896) Les Hypostomacées, nouvelle famille de champignons parasites. Bulletin de la Société des Sciences de Nancy, sér. 2 14: 15–67.

Weiser J, Matha V, Jegorov A (1991) Tolypocladium terricola. Revue Mycologique 18: 465–480.

Zare R, Gams W, Culham A (2000) A revision of Verticillium sect Prostrata. VI. The genus Haplocladium. Nova Hedwigia 73: 271–292.
Species	Voucher Information	SSU	LSU	TEF	RPB1	RPB2
Chaunopycnis alba	MRL GB5502	AF245297				
	MRL MF6799	AF373284				
Chaunopycnis pustulata	MRL GB6597	AF389190				
	MRL MF5368LR	AF373282				
Cordyceps cylindrica	CEM 1185	KJ878907				
		KJ878872				
		KJ878955				
Cordyceps formosana	TNM F13893	KJ878908				
		KJ878956				
Cordyceps gunnii	OSC 76404	AF339522				
		KJ878872				
Cordyceps irangiensis	OSC 128579	EF469123				
		EF469076				
		EF469060				
		EF469089				
		EF469107				
Cordyceps nipponica	BCC 18108	KF049626				
		KF049661				
Cordyceps pleuricapitata	NBRC 100745	KF049606				
		KF049624				
Cordyceps pleuricapitata	NBRC 100746	KF049607				
		KF049625				
Cordyceps sp.	EFCC 12075	KJ878909				
		KJ878873				
		KJ878957				
		KJ878989				
Drechmeria coniospora	CBS 596.92	AF106012				
Elaphocordyceps capitata	OSC 71233	AY489689				
		AY489721				
Elaphocordyceps fracta	OSC 110990	DQ522545				
		DQ518759				
Elaphocordyceps japonica	OSC 110991	DQ522547				
		DQ518761				
Elaphocordyceps longisegments	OSC 110992	EF468816				
Elaphocordyceps ophioglossoides	CBS 10239	KJ878910				
		KJ878874				
		KJ878958				
		KJ878990				
		KJ878944				
Elaphocordyceps subsessilis	OSC 71235	EF469124				
		EF469077				
Haptocladium balanoides	CBS 250.82	AF339588				
		AF339539				
Haptocladium sinense	CBS 567.95	AF339594				
		AF339545				
Haptocladium zeasporum	CBS 335.8	AF339589				
		AF339540				
Harposporium anguillae	ARSEF 5407	KJ878977				
		KJ878991				
		KJ878945				
Harposporium helicoides	ARSEF 5354	AF339577				
		AF339527				
Hirsutella crinalis	TNS F18550	KJ878911				
		KJ878875				
		KJ878959				
Hirsutella sp.	OSC 128575	EF469126				
		EF469079				
Hirsutella sp.	NHJ 12525	EF469125				
		EF469078				
Hymenostilbe aurantiaca	OSC 128578	DQ522556				
		DQ518770				
Hymenostilbe muscaria	OSC 151902	KJ878912				
		KJ878786				
		KJ878991				
Hymenostilbe odonatae	TNS F18563	KJ878877				
		KJ878992				
Isaria takamizuensis	NHJ 3582	EU369097				
		EU369034				
Isaria takamizusanensis	NHJ 3497	EU369096				
		EU369033				
Nomuraea atypica	RCEF 3833	KJ878913				
		KJ878879				
		KJ878960				
		KJ878993				
Ophiocordyceps acicularis	OSC 110987	EF468950				
		EF468805				
		EF468744				
		EF468852				
Ophiocordyceps agriotidis	OSC 128580	DQ522543				
		DQ518757				
Ophiocordyceps annulata	CEM 303	KJ878915				
		KJ878881				
Ophiocordyceps aphidii	ARSEF 5498	DQ522541				
		DQ518755				
Ophiocordyceps brunneipunctata	OSC 128576	DQ522542				
		DQ518756				
Ophiocordyceps clavata	CEM 1762	KJ878916				
		KJ878882				
		KJ878963				
		KJ878996				
		KJ878964				
		KJ878997				
		NBRC 106961	JN941727	JN941414	JN992461	
		NBRC 106962	JN941726	JN941415	JN992460	
Species	Voucher Information	SSU	LSU	TEF	RPB1	RPB2
-------------------------------	---------------------	---------	---------	---------	--------	--------
Ophiocordyceps communis	NHU 12581	EF468973	EF468831	EF468775		
	NHU 12582	EF468975	EF468830	EF468771		
Ophiocordyceps curculonum	OSC 151910	KJ878918	KJ878885		KJ878999	
Ophiocordyceps dipterigena	OSC 151911	KJ878919	KJ878886	KJ878966	KJ879000	
Ophiocordyceps elongata	OSC 110989	EF468808	EF468748	EF468856		
Ophiocordyceps entomorrhiza	KEW 53484	EF468954	EF468809	EF468749	EF468857	
Ophiocordyceps formicarum	TNS F18565	KJ878921	KJ878888	KJ878968	KJ879002	KJ87946
Ophiocordyceps forquignonii	OSC 151908	KJ878922	KJ878889	KJ879003	KJ87947	
Ophiocordyceps gracilis	EFCC 8572	EF468956	EF468811	EF468751	EF468859	
	OSC 151906	KJ878923	KJ878890	KJ878969		
Ophiocordyceps heteropoda	EFCC 10125	EF468957	EF468812	EF468752	EF468860	
Ophiocordyceps irangiensis	OSC 128577	DQ522546	DQ518760	DQ523239	DQ522374	DQ52247
Ophiocordyceps konnoana	EFCC 7295	EF468958				
Ophiocordyceps konnoana	EFCC 7315	EF468959				
Ophiocordyceps lloydii	OSC 151913	KJ878924	KJ878891	KJ878970	KJ879004	KJ87948
Ophiocordyceps longissima	EFCC 6814	EF468817	EF468757	EF468865		
	TNS F18448	KJ878925	KJ878892	KJ878971	KJ879005	
Ophiocordyceps longissima	HMAS_199600	KJ878926	KJ878972	KJ879006	KJ878949	
Ophiocordyceps melolonthae	OSC 110993	DQ522548	DQ518762	DQ523331	DQ522376	
Ophiocordyceps myrmecophila	HMAS_199620	KJ878929	KJ878895	KJ878975	KJ879009	
Ophiocordyceps myrmecophila	CEM 1710	KJ878927	KJ878893	KJ878973	KJ879007	
Ophiocordyceps neovolkiana	OSC 151903	KJ878930	KJ878896	KJ878976	KJ879010	
Ophiocordyceps nigrella	EFCC 9247	EF468963	EF468818	EF468758	EF468866	EF468920
Ophiocordyceps nutans	OSC 110994	DQ522549	DQ518763	DQ523331	DQ522376	
Ophiocordyceps pruinosa	NHU 12994	EU369106	EU369041	EU369024	EU369063	EU369084
Ophiocordyceps pulvinata	TNS-F 30044	GU904208			GU904209	GU904210
Ophiocordyceps purpureostromata	TNS F18430	KJ878931	KJ878897	KJ878977	KJ879011	
Ophiocordyceps ravenelii	OSC 110995	DQ522550	DQ518764	DQ523334	DQ522379	DQ522430
Ophiocordyceps rhizoidea	NHU 12522	EF468970	EF468825	EF468764	EF468873	EF468923
Ophiocordyceps ryogamiensis	NBRG 110751	KF049614	KF049633	KF049688	KF049650	
Ophiocordyceps sinensis	EFCC 7287	EF468971	EF468827	EF468767	EF468874	EF468924
Ophiocordyceps sobolifera	KEW 78842	EF468972	EF468828	EF468875	EF468925	
Ophiocordyceps sp.	TNS F18521	KJ878933	KJ878988	KJ878979	KJ879013	
Ophiocordyceps sp.	TNS F18495	KJ878937	KJ878901	KJ879017		
Ophiocordyceps sp.	OSC 110997	EF468976			EF468774	EF468879
Ophiocordyceps sp.	OSC 151904	KJ878934	KJ878999	KJ878960	KJ879014	
Ophiocordyceps sp.	OSC 151905	KJ878935	KJ878981	KJ879015	KJ878951	
Ophiocordyceps sp.	OSC 151909	KJ878936	KJ878900	KJ878982	KJ879016	KJ878952
Ophiocordyceps sp.	OSC 110998	DQ522551	DQ518765	DQ522336	DQ522381	DQ522432
Ophiocordyceps sp.	OSC 110999	EF468892	EF468837	EF468777	EF468882	EF468931
Ophiocordyceps sp.	OSC 111000	DQ522552	DQ518766	DQ522337	DQ522382	DQ522432
Ophiocordyceps sp.	CEM 160	AB027330	AB027376			
Ophiocordyceps unilateralis	OSC 128574	DQ522554	DQ518768	DQ522339	DQ522385	DQ522436
Table 1. (Continued).

Species	Voucher Information	SSU	LSU	TEF	RPB1	RPB2
Ophiocordyces variabilis	OSC 111003	EF468985	EF468839	EF468779	EF468885	EF468933
	ARSEF 5365	DQ522555	DQ518769	DQ522340	DQ522386	DQ522437
Ophiocordyces yaksimensis	HMAS_199604	KJ878938	KJ878902	KJ879018	KJ879553	
Paecilomyces lilacinus	ARSEF 2181	AF339583	AF339534	EF468790	EF468896	
	CBS 431.87	AY624188	EF468844	EF468791	EF468897	EF468940
	CBS 284.36	AY624189	AY624227	EF468792	EF468898	EF468941
Podocrella harposporifera	ARSEF 5472	AF339569	AF339519	DJ118747	DJ127238	
Podonectria citrina	TNS F18537	KJ878903	KJ878983	KJ87954		
Polycephalomyces cuboideus	TNS F18487	KF049609	KF049628	KF049683		
Polycephalomyces cuboideus	ARSEF 101740	KF049610	KF049629	KF049684	KF049646	
Polycephalomyces formosus	BCC 1881	KF049615	AY259544	DJ118754	DJ127245	KF049671
	BCC 1682	KF049620	KF049638	KF049694		
	NHJ4286	KF049621	KF049639	KF049695	KF049654	KF049676
	BCC2325	KF049622	KF049640	KF049696	KF049655	KF049677
Polycephalomyces paracuboideus	ARSEF 101742	KF049611	KF049630	KF049685	KF049647	KF049669
Polycephalomyces prolificus	TNS F18481	KF049612	KF049631	KF049686	KF049648	
	TNS F18547	KF049613	KF049632	KF049687	KF049649	KF049670
Polycephalomyces ramosopulvinatus	SU-65	DQ118742	DQ118753	DQ127244		
	EFCC 5566	KF049627	KF049682	KF049645		
Polycephalomyces sp.	JB07.08.16_08	KF049616	KF049635	KF049690	KF049652	KF049672
	JB07.08.17_07b	KF049617	KF049691	KF049653	KF049673	
Polycephalomyces sp.	BBC 2637	KF049619	KF049637	KF049693	KF049675	
Polycephalomyces tomentosus	BL4	KF049623	AY259545	KF049697	KF049656	KF049678
Stilbella buquetii	HMAS_199613	KJ878939	KJ878904	KJ879019		
	HMAS_199617	KJ878940	KJ878905	KJ878985	KJ879020	
	TNS 16252	KJ878941	KJ878906	KJ878986		
	TNS 16250	KJ878942	KJ878987	KJ879021		
Tolypocladium cylindrosporum	NRRL 28025	AF049153	AF049173			

Table 2. Proposed list of generic names in *Ophiocordycipitaceae* to be protected and their competing synonyms. Names to be protected are in bold type, and names previously synonymized are in blue.

Proposed to protect	Proposed to suppress
Ophiocordyces Petch, *Trans. Br. Mycol. Soc.* **16**: 74 (1931). Type: *O. blattae* Petch 1931.	*Sorosporella* Sorokin *Zentbl. Bakt. ParasitKde.*, Abt. II **4**: 644 (1888). Type: *S. agrotidis* Sorokin 1888.
	Hirsutella Pat., *Revue Mycol.* **14**: 67 (1892). Type: *H. entomophila* Pat. 1892.
	Didymobotryopsis Henn., *Hedwigia* **41**: 149 (1902). Type: *D. parasitica* Henn. 1902.
	Mahevia Lagarde, *Archs Zool. Exp. Gen.* **56**: 292 (1917). Type: *M. guignardii* (Maheu) Lagarde 1917.
	Synnematium Speare, *Mycologia* **12**: 74 (1920). Type: *S. jonesii* Speare 1920.
Table 2. (Continued).

Proposed to protect	Proposed to suppress
Trichosterigma Petch, *Trans. Br. Mycol. Soc.* **8**: 215 (1923).	
Type: *T. clavisporum* Petch 1923.	
Didymobrytys Clem. & Shear, *Gen. Fungi* **228** (1931).	
Type: *D. parasitica* (Henn.) Clem. & Shear 1931.	
Troglobiomyces Pacioni, *Trans. Br. Mycol. Soc.* **74**: 244 (1980).	
Type: *T. guignardii* (Maheu) Pacioni 1980.	
Hymenostilbe Petch, *Naturalist (Hull)*, ser. **3**, **101** (1931).	
Type: *H. muscaria* Petch 1931.	
Syngliocladium Petch, *Trans. Br. Mycol. Soc.* **17**: 177 (1932).	
Type: *S. aranearum* Petch 1932.	
Cordycepioideus Stifler, *Mycologia* **33**: 83 (1941).	
Type: *C. bisporus* Stifler 1941.	
Paraisaria Samson & B.L. Brady, *Trans. Br. Mycol. Soc.* **81**: 285 (1983).	
Type: *P. dubia* (Delacr.) Samson & B.L. Brady 1983.	

Purpureocillium Luangsa-ard et al., *FEMS Microbiol Lett* **321**: 144 (2011).
Type: *P. lilacinum* (Thom) Luangsa-ard et al. 2011 (syn. *Penicillium lilacinum* Thom 1920).

Tolypocladium W. Gams, *Persoonia* **6**: 185 (1971).
Type: *T. inflatum* W. Gams 1971.

Chaunopycnis W. Gams, *Persoonia* **11**: 75 (1980).
Type: *C. alba* W. Gams 1980.

Elaphocordyceps G.H. Sung & Spatafora, *Stud. Mycol.* **57**: 36 (2007).
Type: *E. ophioglossoides* (Ehrh. ex J.F. Gmel. : Fr.) G.H. Sung et al. 2007.

Harposporium Lohde, *Tagbl. Versamml. Ges. Deutsch. Naturf.* **47**: 206 (1874).
Type: *H. anguillulae* Lohde 1874.

Polyrhina Sorokin, *Annls Sci. Nat.*, *Bot.*, *sér* **6**, **4**: 65 (1876).
Type: *P. multiformis* Sorokin 1876.

Podocrella Seaver, *Mycologia* **20**: 57 (1928).
Type: *P. poronioides* Seaver 1928.

Atricordyceps Samuels, *N.Z. Jl. Bot.* **21**: 174 (1983).
Type: *A. harposporifera* Samuels 1983.

Drechmeria W. Gams & H.-B. Jansson, *Mycotaxon* **22**: 36 (1985).
Type: *D. coniospora* (Drechsler) W. Gams & H.-B. Jansson 1985 (syn. *Meria coniospora* Drechsler 1941).

Haptocillium W. Gams & H.-B. Jansson, *Mycotaxon* **22**: 36 (1985).
Type: *H. balanoides* (Drechsler) Zare & W. Gams 2001.

Blistum B. Sutton, *Mycol. Pap.* **132**: 16 (1973).
Type: *B. tomentosum* (Schrad.) B. Sutton 1973.