Thermal Plasticity in Insects’ Response to Climate Change and to Multifactorial Environments

Yara Katia Rodrigues¹* and Patrícia Beldade²,³,⁴*

¹ Porgrama de Pós-Graduação Ciência para o Desenvolvimento (PGCD), Instituto Gulbenkian de Ciência, Oeiras, Portugal, ² Instituto Gulbenkian de Ciência, Oeiras, Portugal, ³ CNRS-UMR 5174, EDB, Université Paul Sabatier, Toulouse, France, ⁴ Faculty of Sciences, CESC: Centre for Ecology, Evolution, and Environmental Changes, University of Lisbon, Lisbon, Portugal

Phenotypic plasticity, the property by which living organisms express different phenotypes depending on environmental conditions, can impact their response to environmental perturbation, including that resulting from climate change. When exposed to altered environmental conditions, phenotypic plasticity might help or might hinder both immediate survival and future adaptation. Because climate change will cause more than a global rise in mean temperatures, it is valuable to consider the combined effects of temperature and other environmental variables on trait expression (thermal plasticity), as well as trait evolution (thermal adaptation). In this review, we focus primarily on thermal developmental plasticity in insects. We discuss the genomics of thermal plasticity and its relationship to thermal adaptation and thermal tolerance, and to climate change and multifactorial environments.

Keywords: developmental plasticity, thermal adaptation, multifactorial environments, environment-by-environment interactions, climate change

The ability of natural populations to react to environmental change will depend on the level and type of perturbation organisms experience, and also on their intrinsic capability to respond to it (Parmesan, 2006; Johnston et al., 2019). Phenotypic plasticity, the property by which living organisms express different phenotypes depending on environmental conditions, can impact their response to environmental perturbation, including that resulting from global climate change (Reed et al., 2011; Chevin et al., 2013; Merilä and Hendry, 2014; Sgrò et al., 2016; Bonamour et al., 2019). Considering thermal plasticity, in addition to thermal tolerance and thermal adaptation, will be crucial to assessing how organisms might cope with climate change. And because climate change is not only about increasing mean ambient temperature, it is also clear that it is important to consider effects of multifactorial environments, combining temperature with other environmental variables, both on trait expression and on trait evolution (Kaunisto et al., 2016; Westneat et al., 2019).

Here, we focus on effects of temperature and its combination with other environmental factors on phenotypic plasticity in terrestrial/flying insects, a taxon of ectothermal animals that includes many compelling examples of thermal plasticity. This is a large and ecologically central group of organisms whose geographic ranges, behaviors, and life histories are very much affected by ambient temperature (Colinet et al., 2015). It is also a group with recent worrying trends: steep global population declines (Sánchez-Bayo and Wyckhuys, 2019; Didham et al., 2020; Wagner, 2020), as well as expansions of agricultural pests and disease vectors (Song et al., 2017; Ryan et al., 2019). We direct our attention primarily toward recent examples, and to studies focused on the genomics of thermal plasticity of potential relevance to responses to climate change.
PHENOTYPIC PLASTICITY AND ENVIRONMENTAL PERTURBATION

Phenotypic diversity, within and across species, is shaped by interactions between organisms and their environment, which occur at different levels and different time scales. Environmental conditions determine cross-generation changes in phenotype frequencies in populations (notably through natural selection), and affect intra-generation phenotype expression of individuals (via phenotypic plasticity). In this section, we will focus on examples of phenotypic plasticity and how it can evolve and impact adaptive evolution, including in the context of climate change.

Ecological Significance and Evolution of Plasticity

The effect of external environmental conditions on phenotype expression can happen at distinct time-scales: (1) change in progeny phenotype that depends on parental environment (trans-generational plasticity; Woestmann and Saastamoinen, 2016; Donelson et al., 2018), (2) change in adult phenotype in response to adult environment, often reversible changes in labile traits, such as behavior, and including what is called acclimation (Stillman, 2003; Sgrò et al., 2016), and (3) change in phenotype that depends on the conditions experienced during development, often leading to irreversible adult phenotypes (the main focus of this review). Indeed, the environmental conditions experienced during development can alter developmental rates and/or trajectories and result in the production of different adult phenotypes from the same genotype, in a phenomenon called developmental plasticity (reviewed in Beldade et al., 2011; Nettle and Bateson, 2015). The study of developmental plasticity, which integrates ecology, evolutionary biology, and developmental biology (eco-evo-devo, Gilbert et al., 2015), is key to understanding how organisms interact with their changing environments.

Plasticity can match organismal phenotypes to their ecological conditions and, as such, be favored by natural selection (Nettle and Bateson, 2015). Plasticity is thought to benefit populations that face distinct challenges imposed by environmental heterogeneity (e.g., Chevin et al., 2010), such as that resulting from alternating seasons (Buckley et al., 2017). Seasonal polyphenism, where alternative seasonal conditions lead to the production of distinct seasonal phenotypes, is common in insects (Nijhout, 2003; Moczek, 2010; Simpson et al., 2011; Yang and Pospisil, 2019). Their relatively short life cycles allow for multiple generations within the year and, consequently, exposure to conditions that can differ substantially between generations. Seasonally variable environmental factors, often temperature, can induce changes in sets of integrated traits associated to distinct strategies for survival and/or reproduction, suited to the respective seasonal conditions. For example, in the butterfly *Bicyclus anynana*, the temperature during development anticipates upcoming seasonal conditions in vegetation cover, and induces changes in various adult traits associated with distinct seasonal strategies for predator avoidance and pace-of-life (Box 1).

Phenotypic Plasticity and Climate Change

Plasticity can be targeted by selection and evolve, and can, in turn, impact adaptive evolution (reviewed in Lafuente and Beldade, 2019). It has been argued that developmental plasticity can help (or hinder; e.g., Cenzer, 2017; Oostra et al., 2018) not only the immediate survival, but also future adaptation of populations facing environmental perturbation (Reed et al., 2011; Bonamour et al., 2019) and colonizing novel environments (Ghalambor et al., 2007; Wang and Althoff, 2019; Bilandžija et al., 2020). In addition, it has been proposed that plasticity can promote phenotypic and taxonomic diversification (Moczek, 2010; Pfennig et al., 2010; Schneider and Meyer, 2017). Whether plasticity can have an impact specifically in responses to climate change has also raised significant attention (Sgrò et al., 2016; Bonamour et al., 2019). Upon change in local environmental conditions, particularly of temperature, organisms that are thermally plastic might display phenotypic change that allows them to rapidly adjust to the new conditions, without genetic change. This type of phenotypic adjustment has been reported for some insect populations, along with other types of population responses to climate change (Figure 1): (1) phenotypic change resulting from genetic change, as populations adapt to new local conditions, (2) shifts in distribution range, as populations track favorable conditions, and (3) population declines that might lead to extinctions. These responses are not mutually exclusive scenarios; they can be combined in different manners (Valladares et al., 2014) and can also be hard to disentangle, as illustrated in the examples below. Shifts in species distributions can result from populations actually migrating to new locations, but can also result from population extinctions on one or multiple distribution edges. Occupation of new locations is generally followed by adaptation to the local conditions (e.g., butterflies that move up along an altitudinal gradient adapted to a host plant in the new habitat; Parmesan et al., 2015). Adaptation to climate change can involve changes in plasticity (e.g., Kingsolver and Buckley, 2018), and plastic responses can facilitate adaptation involving genetic change (e.g., Kelly, 2019) or anticipate extinction (e.g., Manfredini et al., 2019).

Phenotypic plasticity can impact species distribution and vulnerability (Foden et al., 2019), and might also impact (positively or negatively) population persistence and ability to adapt to challenges arising from climate change (Leonard and Lancaster, 2020). If plasticity leads to changes in phenotype expression in a direction that maintains/improves fitness in the new conditions, it can, indeed, allow organisms to keep pace with environmental change, preventing immediate population extinction (Merilä and Hendry, 2014) and effectively “buy time” for adaptation to occur (Chevin et al., 2010; Snell-Rood et al., 2018). While the positive impact of plasticity in a response to climate change might go beyond buying time (Levis and Pfennig, 2016; Fox et al., 2019), it is also apparent that plasticity...
can have a negative impact, both by compromising immediate survival (Ghalambor et al., 2007; Manfredini et al., 2019) or by slowing-down future adaptation (discussed in Beldade et al., 2011). Adaptation will be slower if developmental plasticity somehow shields genetic variation from the action of natural selection, but this can be hard to assess (Fox et al., 2019).
Survival will be compromised when plasticity leads to expression of phenotypes that, while possibly adaptive in the historical context, are maladaptive in the new conditions (Manfredini et al., 2019). For example, under unusually warm conditions, thermal plasticity in developmental rate in the bark beetle *Ips typographus* may result in a second generation of beetles consisting of immature stages that are poorly adapted to winter conditions (Dworschak et al., 2014). Maladaptive plasticity seems more common in new habitats, presumably because there has been no evolutionary adjustment of the link between the environmental cues and physiological responses (Ghalambor et al., 2007; Chevin and Hoffmann, 2017). If the environmental cues that leads to change in phenotype expression no longer accurately predict future selective environment, plasticity actually can result in a mis-match between phenotype and environmental conditions. Climate change-related failure in the accuracy of cue predictions can lead to an aggravation of maladaptive phenotype-environment mismatches (e.g., Ghalambor et al., 2007; Bonamour et al., 2019).

THERMAL DEVELOPMENTAL PLASTICITY

Temperature is a key factor determining the geographical distribution, abundance and physiology of insects (Colinet et al., 2015). As small ectotherms whose body temperature closely matches ambient temperature, insects are particularly susceptible to thermal perturbation. Climate change-related temperature variation has been implicated in altered phenology, distribution range, and population abundance of many insect species around the world (Parmesan, 2006; Buckley et al., 2017; Cohen et al., 2018; Macgregor et al., 2019). In this section, we focus on insects’ capability to tolerate, adjust, and adapt to temperature change, which their response to climate change will greatly depend on. We address the relationship between the processes and between their genomic bases.

Thermal Plasticity, Thermal Adaptation, Thermal Tolerance

Temperature acts both as an agent of natural selection (resulting in thermal adaptation), and as a factor affecting phenotype expression (in cases of thermal plasticity). There are any examples of thermal plasticity in insects, including developmental effects and adult acclimation. Temperature-dependence has been described for many processes and traits, including sex determination (Blackmon et al., 2017), induction of diapause (Saunders, 2014), body pigmentation (Sibilia et al., 2018), behavior (Abram et al., 2017). Likewise, thermal adaptation and thermal tolerance have also been extensively studied in various insect species (Tobler et al., 2015; Mallard et al., 2018; Kellermann and van Heerwaarden, 2019). Thermal tolerance, corresponding to a favorable range of temperatures for performance, can be
assessed by measuring survival and/or recovery from acute or chronic exposure to temperature extremes (e.g., Kingsolver et al., 2016). As it reflects the capability to cope with adverse temperature conditions, thermal tolerance is very obviously and very directly relevant to how organisms respond to climate change. Moreover, thermal tolerance has also been shown to be associated to other fitness related traits (e.g., tolerance of high temperatures affects dispersal in the Glanville fritillary; Saastamoinen and Hanski, 2008; Mattila, 2015), and to vary between populations and between species (e.g., Hamblin et al., 2017; Oyen and Dillon, 2018).

Thermal plasticity, thermal tolerance, and thermal adaptation are very closely intertwined. Thermal tolerance can be thermally plastic (Schou et al., 2017), but it is unclear how much plasticity in thermal tolerance will impact insects’ response to climate change (Mitchell et al., 2011; Gunderson and Stillman, 2015). Thermal plasticity and thermal tolerance can facilitate thermal adaptation (e.g., Mitchell et al., 2011; Noh et al., 2017). Conversely, thermal adaptation can entail changes in thermal plasticity (discussed above), as well as in thermal tolerance. The evolution of thermal tolerance as a result of adaptation to different thermal regimes is compellingly illustrated by differences between populations along climatic clines, including the negative correlation between heat tolerance and both altitude (e.g., in Heliconius butterflies; Montejo-Kovacevich et al., 2020) and latitude (e.g., in Drosophila flies; van Heerwaarden et al., 2014).

Genomics of Thermal Plasticity

Deciphering the genetic basis of thermal plasticity involves asking about the genes involved in regulating the expression of thermally-dependent phenotypes, as well as about the genes contributing to inter-genotype variation in plasticity that can fuel its evolution (Lafuente and Beldade, 2019). Genomic-level studies of different types have made crucial contributions to both ends. First, investigating the genetic basis of the regulation of thermal plasticity requires identifying genes whose expression and/or function depends on temperature, and, among those, the genes that actually account for changes in thermally-sensitive phenotype expression. Transcriptome-profiling studies in a variety of species have documented thermal plasticity in gene expression levels, including assessment of how many and which genes are differentially expressed between temperatures. The important effect of temperature on transcription has been particularly well studied in the genetic model Drosophila melanogaster (e.g., Chen et al., 2015; Sørensen et al., 2016), but also in other insect examples of thermal plasticity (e.g., Oostra et al., 2018). Importantly, while transcriptome-wide scans allow us to identify many genes whose expression depends on temperature, targeted candidate gene analysis facilitates making the connection between differential gene expression and plastic trait development (e.g., thermal plasticity for body pigmentation in D. melanogaster; Gibert et al., 2016). Second, investigating the genetic basis of the variation in thermal plasticity involves identifying genes that harbor allelic variation contributing for differences in plasticity, and, among those, which actually fuel the evolution of plasticity. Differences between genotypes in levels of thermal developmental plastic, which correspond to significant genotype-by-environment interactions, document the existence of genetic variation for plasticity and offer the opportunity to characterize its nature. Here too, candidate gene studies are quickly being replaced by less-biased whole genome analysis, including genome-wide association studies that identify QTLs for inter-genotype differences in thermal plasticity for specific plastic traits (e.g., QTLs for thermal plasticity for body size in D. melanogaster; Lafuente et al., 2018). These loci can provide the raw material for the evolution of plasticity, including level, direction and inducing cues (discussed in Lafuente and Beldade, 2019).

The rapid rate of current global climate change, with strong effects on many species, provides both a unique opportunity and a pressing need to study the genetic bases of adaptation, tolerance, and plasticity in natural populations (Franks and Hoffmann, 2012). The extent to which the same genes are involved in thermal adaptation, thermal plasticity, and thermal tolerance has also been addressed both by focusing on candidate genes and by using genomic-level approaches. Perhaps unsurprisingly, several candidate gene studies have focused on genes encoding heat-shock proteins, which have been shown to be thermally plastic, impact thermal tolerance, and differ between populations from different thermal conditions (e.g., Sørensen et al., 2001, 2019; Mattila, 2015; Liu et al., 2017). Heat-shock genes also come up as significant hits in some (e.g., Wang et al., 2019) but not all (e.g., Mallard et al., 2018) genomic-level searches. Accumulating genomics studies in Drosophila melanogaster, using different natural and experimental populations and different approaches (Klepsatel et al., 2013; Tobler et al., 2014; Gerken et al., 2015; Machado et al., 2016; Porcelli et al., 2016; Fabian et al., 2017; Lafuente et al., 2018; Rolandi et al., 2018; Kapun et al., 2020), are building an unprecedentedly powerful body of data to assess the genomic basis of thermal adaptation, and its repeatability and relationship to thermal plasticity and thermal tolerance. In the future, integration of studies covering different species, different geographical and temporal scales, and different approaches will undoubtedly help shed much needed light onto the genomics of thermal plasticity, as well as its overlap with the genomics of thermal tolerance and thermal adaptation.

MULTIFACTORIAL COMPLEX ENVIRONMENTS

Climate change entails changes in mean global temperature, but also in temperature dynamics and in other environmental variables. As such, to assess the potential impact of climate change on natural populations, it is relevant to consider the combined effects of change in temperature with change in other variables. This section considers effects of temperature and other environmental variables on both plasticity and adaptation.

Phenotypic Plasticity in Complex Environments

As illustrated above, effects of the environment on developmental outcome have been amply documented for various phenotypes and species. Indeed, phenotypic plasticity (phenotypic differences
attributable to environmental variation) and genotype-by-environment interactions (i.e., genetic differences in how organisms respond to environmental conditions) are very common. Unlike what happens for genetic variation, though, where evolutionary biology explicitly considers interaction effects (dominance and epistasis), potential environment-by-environment interactions received considerably less attention. Traditionally, experimental studies of plasticity focused on the analysis of single, isolated environmental factors, held constant during the time it takes organisms to complete their life-cycle. This is in stark contrast with natural situations, where complex environments include variation in multiple and highly dynamic environmental cues. These different variables may act additively on phenotype expression, but may also act redundantly, synergistically, or antagonistically (Piggott et al., 2015; Westneat et al., 2019).

Climate change has brought substantial attention to the analysis of multi-stressor effects in populations (Kaunisto et al., 2016), albeit with the majority of studies focused on plants or aquatic systems (e.g., Byrne and Przeslawski, 2013; Gunderson et al., 2016).

Focusing exclusively on environmental factors considered to be individually (i.e., on their own, independently of other environmental factors) and universally (i.e., always, for all genotypes) stressful fails to acknowledge that what is and is not “stressful” might depend on environmental and genetic context. For example, what is a stressful temperature under some photoperiod (or for some genotype) might not be stressful under another photoperiod (or for another genotype). Studies of thermal plasticity in multifactorial environments are increasing, including for different insect species. These studies search to investigate phenotypic effects when variation in temperature is combined with variation in other environmental variables (Figure 2), including biotic and abiotic factors (Bubliy et al., 2013; Schou et al., 2013; Arambourou and Stoks, 2015; Saeed et al., 2018; Kutz et al., 2019). Some studies extend the analysis of plasticity in multifactorial environments to include: (1) multiple traits and/or to multiple genotypes (e.g., Saastamoinen et al., 2013; Verspagen et al., 2020), (2) three-way environmental interactions (e.g., temperature × humidity × food; Bomble and Nath, 2019), and (3) quantifying underlying changes in gene expression (e.g., candidate genes, Rivas et al., 2018, and whole transcriptome, Koch and Guillaume, 2020).

The results to date paint a complex picture, with distinct types of additive (e.g., Koch and Guillaume, 2020) and non-additive (e.g., Yoshii et al., 2009; Arambourou and Stoks, 2015; Piggott et al., 2015) effects of multifactorial environments, and differences between traits and between genotypes. This is an area that will, undoubtedly, know much progress in the near future.

Adaptation to Complex Environments

Aside effects on phenotype expression, multifactorial environments will obviously also affect adaptive evolution in ways that might be unpredictable based on variation for single environmental factors. Adaptation to novel combinations of
environmental variables might be harder or impossible – for example, if phenotypic change favored by one cue is at odds with that favored in relation to the other cue. Such trade-offs are illustrated by studies where adaptation to specific environments entailed costs in performance in other environments (e.g., Callahan et al., 2008; Nunney, 2016; Fox et al., 2019). In natural populations, different environmental factors act in concert as agents of selection, and can co-occur more or less independently and unpredictably. The fact that associations between environmental variables, as well as their dynamics, are likely to change as a result of climate change further endorses the interest in studying the impact of complex environments on the tempo and mode of adaptive evolution.

Our understanding of the phenotypic and genotypic change that accompanies adaptation of insects to complex environments relies on different types of studies. Studies of natural populations include both “snap-shot” and longitudinal comparisons between populations living in different environments (Reinhardt et al., 2014; Manenti et al., 2017; Lerat et al., 2019; Kapun et al., 2020). While studies of natural populations make it possible to detect genetic and phenotypic differentiation and, sometimes, associate the two, it is generally very difficult to know exactly which environmental variables explain divergence and how. Conversely, in studies of experimental populations forced to evolve in different complex environment (e.g., Tomkins et al., 2011; Tobler et al., 2015; Mallard et al., 2018), we typically know exactly which environmental variables differ between selection lines and can identify genetic differences between those lines, but it is not always easy to know which organismal phenotypes were altered and how. It will be valuable to be able to integrate studies from different types of approaches, and for different species and species groups, to have a better understanding of the mechanisms and limitations of adaptation to complex environments.

OVERVIEW AND PERSPECTIVES

Throughout the review, we highlighted what we believe are some areas of particular interest for our understanding of the relevance of thermal plasticity to climate change biology. In light of the topic of this special issue, we discussed recent studies on the genomics of thermal plasticity, distinguishing between those identifying the genes whose expression depends on temperature (and might underlie temperature-induced change in developmental outcome), and in terms of the genes that harbor allelic variants contributing to inter-genotype variation in plasticity (and can feed the evolution of thermal plasticity) (see Lafuente and Beldade, 2019). As data accumulates for different systems, we can hope to deepen our knowledge about what those genes are and about the overlap between them, as well as the overlap between them and the those underlying thermal tolerance and thermal adaptation. We also emphasized the relevance of focusing on temperature in the context of complex multifactorial environments, and the importance of considering that variation in response to temperature can depend on genetic and environmental context.

We focused on thermal plasticity in insects, its potential role in response to climate change, its genomic basis, and the interactions between temperature and other environmental factors. Each of these issues, along with related topics that we did not cover at all, is attracting substantial research attention and, we expect, will know much progress in the near future. Below we highlight the topics complementary to those we covered that are also relevant for the discussion about the relevance of thermal plasticity to climate change biology.

First, we focused primarily on developmental plasticity, which, especially in holometabolous insects, often leads to fixed adult phenotypes. We paid less attention to effects of temperature directly on adult traits, which often lead to reversible phenotypes. These include phenomena that are key to climate change biology, such as acclimation, through physiological and/or behavioral plasticity (Huey et al., 2003; Stillman, 2003). These can mitigate the immediate effect of variation in thermal environments, but can also constrain adaptation to permanent/directional temperature perturbation.

Second, we focused on effects of climate change and of multifactorial environments on molecular-level processes (e.g., thermal plasticity in gene expression), organismal-level processes (e.g., thermal plasticity in developmental outcomes), and population-level processes (e.g., thermal adaptation in experimental and natural populations). We did not discuss supra-population effects of climate change or of multifactorial environments (Fordyce, 2006), such as effects on the species composition of communities (e.g., Chown et al., 2015; de Vries et al., 2019) and on inter-specific interactions (e.g., Williams et al., 2008; Cornelissen, 2011; Wernegreen, 2012; Cahill et al., 2013), both of which can have substantial ramification effects (Grimm et al., 2013).

Finally, we focused exclusively on insect examples, but effects of climate change and multifactorial environments on phenotype expression and adaptation are also being studied in other groups (e.g., Byrne and Przeslawski, 2013; Gunderson et al., 2016; Lange and Marshall, 2017). It will be crucial to integrate different examples both to uncover unique responses, as well as to derive general principles about biological responses to climate change.

AUTHOR CONTRIBUTIONS

YR researched the literature. YR and PB conceived and wrote the manuscript. Both authors contributed to the article and approved the submitted version.

FUNDING

Financial support for this work was provided by the Portuguese science funding agency, Fundação para a Ciência e Tecnologia, FCT: Ph.D. fellowship to YR (FCT SFRH/BD/114404/2016), and research support to PB ((PTDC/BIA-EVF/0017/2014 and PTDC/BEX-BID/5340/2014).
ACKNOWLEDGMENTS

We wish to thank the issue and journal editors for the invitation and for accommodating delays due to the pandemics, Joana Carvalho (@joana_gcc) for the Bicyclus anynana drawings in Box 1, and various colleagues for discussions who helped shape our ideas on this topic, including Christian Braendle, Roberto Arboe, Elvira Lafuente, and Erik van Bergen.

REFERENCES

Abram, P. K., Boivin, G., Moiroux, J., and Brodeur, J. (2017). Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and developmental biology. Cold Spring Harb. Protoc. 4:pdb.emo122. doi: 10.1101/pdb.emo122

Brakefield, P. M., Kesbeke, F., and Koch, P. B. R. (1998). The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana. Am. Nat. 152, 853–860. doi: 10.1086/286213

Brakefield, P. M., and Reitmsa, N. (1991). Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303. doi: 10.1111/j.1365-2311.1991.tb00220.x

Bubly, O. A., Kristensen, T. N., and Loschke, V. (2013). Stress-induced plastic responses in Drosophila simulans following exposure to combinations of temperature and humidity levels. J. Exp. Biol. 216, 4601–4607. doi: 10.1242/jeb.092502

Buckley, L. B., Arakaki, A. J., Cannistra, A. F., Kharouba, H. M., and Kingsolver, J. G. (2017). Insect development, thermal plasticity and fitness implications in changing, seasonal environments. Integr. Comp. Biol. 57, 988–999. doi: 10.1093/icb/icx032

Byrne, M., and Przeslawski, R. (2013). Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596. doi: 10.1093/icb/icct049

Cahill, A. E., Aiello-Lammens, M. E., Cailltin Fisher-Reid, M., Hua, X., Karanowsky, C. J., Ryu, H. Y., et al. (2013). How does climate change cause extinction? Proc. R. Soc. B Biol. Sci. 280, 890. doi: 10.1098/rspb.2012.1890

Callahan, H. S., Maughan, H., and Steiner, U. K. (2008). Phenotypic plasticity, costs of phenotypes, and costs of plasticity: toward an integrative view. Ann. N. Y. Acad. Sci. 1133, 44–66. doi: 10.1196/annals.1438.008

Cenzer, M. L. (2017). Maladaptive plasticity masks the effects of natural selection in the red-shouldered soapberry bug. Am. Nat. 190, 521–533. doi: 10.1086/693456

Chen, J., Nolte, V., and Schlottterer, C. (2015). Temperature-related reaction norms of gene expression: regulatory architecture and functional implications. Mol. Biol. Evol. 32, 2393–2402. doi: 10.1093/molbev/msv120

Chevin, L. M., Collins, S., and Lefèvre, F. (2013). Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. 27, 967–979. doi: 10.1111/1365-2435.2012.02043.x

Chevin, L. M., and Hoffmann, A. A. (2017). Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. B Biol. Sci. 372:20160138. doi: 10.1098/rstb.2016.0138

Chevin, L. M., Lande, R., and Mace, G. M. (2010). Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8:1000357. doi: 10.1371/journal.pbio.1000357

Chown, S. L., Hodgins, K. A., Griffin, P. C., Oakeshott, J. G., Byrne, M., and Hoffmann, A. A. (2015). Biological invasions, climate change and genomics. Ecol. Appl. 23, 48–46. doi: 10.1111/eva.12334

Cohen, J. M., Lajeunesse, M. J., and Rohr, J. R. (2018). A global synthesis of animal phenological responses to climate change/631/158/2457/631/158/2039/129/141/139 letter. Nat. Clim. Chang. 8, 224–228. doi: 10.1038/s41558-018-0067-63

Colinet, H., Sinclair, B. J., Vernon, P., and Renault, D. (2015). Insects in extreme environments. Annu. Rev. Entomol. 60, 123–140. doi: 10.1146/annurev-ento-010814-021017

Condamin, F. L., and Sperling, F. A. H. (2018). Anthropicogenics to high-altitude pararneter diversity. News Lepid. Soc. 60, 94–99.

Cornelissen, T. (2011). Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163. doi: 10.1590/1519-566X201000200001

de Jong, M. A., Kesbeke, F. M. N. H., Brakefield, P. M., and Zwaan, B. J. (2010). Geographic variation in thermal plasticity of life history and wing pattern in Bicyclus anynana. Clim. Res. 43, 91–102. doi: 10.3354/cr00881

de Vries, J., Kraak, M. H. S., Verdonchot, R. C. M., and Verdonchot, P. F. M. (2019), Quantifying cumulative stress acting on macroinvertebrate assemblages in lowland streams. Sci. Total Environ. 694:133630. doi: 10.1016/j.scitotenv.2019.133630
Lerat, E., Goubert, C., Guirao-Rico, S., Merenciano, M., Dufour, A. B., Vieira, C., et al. (2019). Population-specific dynamics and selection patterns of transposable element insertions in European natural populations. Mol. Ecol. 28, 1506–1522. doi: 10.1111/mec.14963

Levi, N. A., and Pfennig, D. W. (2016). Evaluating “Plasticity-First” evolution in Nature: key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574. doi: 10.1016/j.tree.2016.03.012

Liefing, M., Cosijn, J., and Ellers, J. (2017). Synergistic effect of daily temperature fluctuations and matching light-dark cycle enhances population growth and synchronizes oviposition behavior in a soil arthropod. J. Insect Physiol. 96, 108–114. doi: 10.1016/j.jsip.2016.10.002

Liu, Y., Su, H., Li, R., Li, X., Xu, Y., Dai, X., et al. (2017). Comparative transcriptome analysis of Glyphodes pyloalis walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. BMC Genomics 18:597. doi: 10.1186/s12864-017-4355-4355

Lyttinen, A., Brakefield, P. M., Lindstrom, L., and Mappe, J. (2004). Does predation maintain eye spot plasticity in Bicyclus anynana? Proc. R. Soc. B Biol. Sci. 271, 279–283. doi: 10.1098/rspb.2003.2571

Macgregor, C. J., Thomas, C. D., Roy, D. B., Beaumont, M. A., Bell, J. R., Bretern, T., et al. (2019). Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10:4455. doi: 10.1038/s41467-019-12479-w

Machado, H. E., Bergland, A. O., O’Brien, K. R., Behrman, E. L., Schmidt, P. S., and O’Brien, K. R., et al. (2014). Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve? J. Insect Conserv. 18, 375–385. doi: 10.1007/s10886-013-9608-7

Manfredini, F., Arbetman, M., and Toth, A. L. (2019). A potential role for transposable element insertions in European natural populations. Mol. Ecol. 5, 9–18. doi: 10.1046/j.1525-142X.2003.03003.x

Noh, S., Everman, E. R., Berger, C. M., and Morgan, T. J. (2017). Seasonal variation in basal and plastic cold tolerance: adaptation is influenced by both long- and short-term phenotypic plasticity. Ecol. Evol. 7, 5248–5257. doi: 10.1002/ece3.3112

Nunney, L. (2016). Adapting to a changing environment: modeling the interaction of directional selection and plasticity. J. Hered. 107, 15–24. doi: 10.1093/hered/esw084

Olofsson, M., Vallin, A., Jakobsson, S., and Wiklund, C. (2010). Marginal eye spots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS One 5:10798. doi: 10.1371/journal.pone.0010798

Oostra, V., de Jong, M. A., Invergo, B. M., Kesbeke, F., Wende, F., Brakefield, P. M., et al. (2011). Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polygenic butterfly. Proc. R. Soc. B Biol. Sci. 278, 789–797. doi: 10.1098/rssb.2010.1560

Oostra, V., Mateus, A. R. A., van der Burg, K. R. L., Piessens, T., Eijk, M., Van Brakefield, P. M., et al. (2014). Ecdysteroid hormones link the juvenile environment to alternative adult life histories in a seasonal insect. Am. Nat. 184, E97–E92. doi: 10.1086/677260

Oostra, V., Saastamoinen, M., Zwaan, B. J., and Wheat, C. W. (2018). Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9:1005. doi: 10.1038/s41467-018-03384-3389

Oyen, K. J., and Dillon, M. E. (2018). Critical thermal limits of bumblebees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status. J. Exp. Biol. 221:jeb165589. doi: 10.1242/jeb.165589

Parkash, R., Ramnawas, S., and Kajal, B. (2013). Climate warming mediates range shift of two differentially adapted stenothermal Drosophila species in the Western Himalayas. J. Asia. Pac. Entomol. 16, 147–153. doi: 10.1016/j.jape.2012.12.004

Parnes, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. doi: 10.2307/annurev.ecolsys.37.091305.300002

Parnes, C., Ryholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583. doi: 10.1038/21181

Parnes, C., Williams-Anderson, A., Moskiew, M., Mikheyev, A. S., and Singer, M. C. (2015). Endangered Quino checkerboard butterfly and climate change: short-term success but long-term vulnerability? J. Insect Conserv. 19, 185–204. doi: 10.1007/s10886-014-9743-7

Penfing, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlachting, C. D., and Moczek, A. P. (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467. doi: 10.1016/j.tree.2010.05.006

Piggott, J. T., Townsend, C. R., and Matthaei, C. D. (2015). Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547. doi: 10.1002/ece3.1465

Pippe, J., Fischer, K., Brakefield, P. M., and Zwaan, B. J. (2006). Consequences of artificial selection on pre-adult development for adult lifespan under benign conditions in the butterfly Bicyclus anynana. Mech. Ageing Dev. 127, 802–807. doi: 10.1016/j.mad.2006.07.006

Porcelli, D., Westram, A. M., Pascual, M., Gaston, K. J., Butlin, R. K., and Snook, R. R. (2016). Gene expression clines reveal local adaptation and associated trade-offs at a continental scale. Sci. Rep. 6, 1–12. doi: 10.1038/srep32975

Prudic, K. L., Jeon, C., Hao, H., and Monteiro, A. (2011). Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science 331, 73–75. doi: 10.1126/science.1197114

Prudic, K. L., Stoehr, A. M., Wasik, B. R., and Monteiro, A. (2015). Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B Biol. Sci. 282:1531. doi: 10.1098/rspb.2014.1531

Reed, T. E., Schindler, D. E., and Waples, R. S. (2011). Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25, 56–63. doi: 10.1111/j.1523-1739.2010.01552.x
The image contains a page from a scientific paper titled "Plasticity and Climate Change". The page includes references to various scientific studies and theories related to plasticity and climate change. The references include studies on genetic variation, phenotypic plasticity, and the effects of temperature on various species. The text is written in a scientific format, with authors and titles of the referenced works. The page appears to be a part of a larger document, possibly a journal article or a research paper, focused on the interplay between plasticity and climate change.
Wijngaarden, P. J., and Brakefield, P. M. (2001). Lack of response to artificial selection on the slope of reaction norms for seasonal polyphenism in the butterfly *Bicyclus anynana*. *Heredity* 87, 410–420. doi: 10.1046/j.1365-2540.2001.00933.x

Wijngaarden, P. J., Koch, P. B., and Brakefield, P. M. (2002). Artificial selection on the shape of reaction norms for eyespot size in the butterfly *Bicyclus anynana*: direct and correlated responses. *J. Evol. Biol.* 15, 290–300. doi: 10.1046/j.1420-9101.2002.00380.x

Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A., and Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. *PLoS Biol.* 6:e0060325. doi: 10.1371/journal.pbio.0060325

Windig, J. J., Brakefield, P. M., Reitsma, N., and Wilson, J. G. M. (1994). Seasonal polyphenism in the wild: survey of wing patterns in five species of *Bicyclus* butterflies in Malawi. *Ecol. Entomol.* 19, 285–298. doi: 10.1111/j.1365-2311.1994.tb00420.x

Woestmann, L., and Saastamoinen, M. (2016). The importance of transgenerational effects in lepidoptera. *Curr. Zool.* 62, 489–499. doi: 10.1093/cz/zow029

Yang, C. H., and Pospisilik, J. A. (2019). Polyphenism - A window into gene-environment interactions and phenotypic plasticity. *Front. Genet.* 10:132. doi: 10.3389/fgene.2019.00132

Yoshii, T., Vanin, S., Costa, R., and Helfrich-Förster, C. (2009). Synergic entrainment of *Drosophila*’s circadian clock by light and temperature. *J. Biol. Rhythms* 24, 452–464. doi: 10.1177/0748730409348551

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Rodrigues and Beldade. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.