ON THE NUMBER OF MAXIMUM INDEPENDENT SETS
IN DOOB GRAPHS

D. S. KROTOV

Abstract. The Doob graph $D(m, n)$ is a distance-regular graph with the same parameters as the Hamming graph $H(2m+n, 4)$. The maximum independent sets in the Doob graphs are analogs of the distance-2 MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in $D(m, n)$ grows as $2^{2m+n-1}(1+o(1))$. The main tool for the upper estimation is constructing an injective map from the class of maximum independent sets in $D(m, n)$ to the class of distance-2 MDS codes in $H(2m+n, 4)$.

Keywords: Doob graph, independent set, MDS code, latin hypercube.

1. Introduction

The Cartesian product $D(m, n) \equiv Sh^m \times K_4^n$ of m copies of the Shrikhande graph Sh (see Figure 1) and n copies of the complete graph K_4 of order $q = 4$ is called a Doob graph if $m > 0$, while $D(0, n)$ is the Hamming graph $H(n, 4)$ (in general $H(n, q) \equiv K_q^n$). The Doob graph $D(m, n)$ is a distance-regular graph with the same parameters as $H(2m+n, 4)$, see e.g. [1, §9.2.B]. It is easy to see that the independence number of this graph is 4^{2m+n-1}. The maximum independent sets in the Hamming graphs are known as the distance-2 MDS codes (below, simply MDS codes), or the latin hypercubes (in the last case, one of the coordinates is usually considered as a function of the others). It is naturally to call the maximum independent sets in Doob graphs by the same notion, the MDS codes. Indeed, the
maximum independent sets in $D(m, n)$ and the MDS codes in $H(2m + n, 4)$ have the same parameters being considered as error-correcting codes (see [5] for the background on error-correcting codes) and as completely regular codes (see e.g. [1, §11.3]). (The concept of the latin hypercubes can also be generalized to $D(m, n)$; however, to do this, we need at least one K_4 coordinate to treat as dependent, i.e., $n > 0$.) There are 4 trivial MDS codes in $D(0, 1)$; 24 equivalent MDS codes in $D(0, 2)$ (16 of them can be found in Figure 2); 16 MDS codes in $D(1, 0)$ (see Figure 2), which form two equivalence classes (with 4 and 12 representatives, respectively).

The main result of the current correspondence is the following.

Theorem 1. The number of the maximum independent sets (distance-2 MDS codes) in the Doob graph $D(m, n)$ grows as $2^{2^m+n-1+o(1)}$ as $(2^m+n) \to \infty$.

The statement of the theorem is straightforward from Corollaries 1 (an upper bound) and 2 (a lower bound) proven in the next two sections.

2. An upper bound

In this section, we describe a rather simple recursive way to map injectively the set $MDS_{m,n}$ of MDS codes in $D(m, n)$ into $MDS_{0,2m+n}$. At first, we define the map ξ from $MDS_{1,0}$ into $MDS_{0,2}$, see Figure 2.

For arbitrary $m, n \geq 0$, the action of $\kappa : MDS_{m+1,n} \to MDS_{m,n+2}$ is defined as follows:

$$\kappa M \overset{\text{def}}{=} \{ (x_1, ..., x_m, z_1, z_2, y_1, ..., y_n) \in D(m, n + 2) \mid \exists M_{x_1,...,x_m,y_1,...,y_n} \}$$

where

$$M_{x_1,...,x_m,y_1,...,y_n} \overset{\text{def}}{=} \{ v \in Sh \mid (x_1, ..., x_m, v, y_1, ..., y_n) \in M \}$$

Lemma 1. For every MDS code in $D(m+1,n)$, the set κM is an MDS code in $D(m, n + 2)$.

Proof. The map ξ has the following important property, which can be checked directly, see Figure 2: two MDS codes M' and M'' in $D(1,0)$ intersect if and only if their images $\xi M'$ and $\xi M''$ intersect. Since M is an independent set, $M_{x_1,...,x_m,y_1,...,y_n}$ and $M_{u_1,...,u_m,w_1,...,w_n}$ (and hence, also $\xi M_{x_1,...,x_m,y_1,...,y_n}$ and $\xi M_{u_1,...,u_m,w_1,...,w_n}$) are disjoint for any two neighbor vertices $(x_1, ..., x_m, y_1, ..., y_n)$ and $(u_1, ..., u_m, w_1, ... , w_n)$.
510 D. S. KROTOV

ξ : \(\cdots, w_n \) \(\rightarrow \) \(\cdots, w_n \) of \(D(m, n) \). It follows that \(\kappa M \) is also an independent set. Moreover, it has the same cardinality as \(M \), i.e., \(4^{2m+n+1} \).

Then, \(\kappa^m \), the \(m \)th iteration of \(\kappa \), maps MDS\(_{m,n} \) into MDS\(_{0,2m+n} \).

Corollary 1. The number of the MDS codes in \(D(m, n) \) does not exceed \(2^{2^{2m+n}+1 (1+o(1))} \).

Proof. Since \(\kappa \) obviously maps different MDS codes to different MDS codes, the statement of the corollary in the general case can be inductively reduced to the partial case \(m = 0 \), which was proven in [8], see also [2].

\(\square \)

3. A lower bound

In this section, we consider a simple way to construct doubly exponential (with respect to the graph diameter \(2m+n \)) number of MDS codes in the Doob graph \(D(m, n) \).

The vertices of \(\text{Sh} \) will be identified with the pairs \(ab \) (considered as a short notation for \((a, b) \)), where \(a, b \in \{0, 1, 2, 3\} \), see Figure 1. The vertices of \(K_4 \) will be identified with the pairs \(ab \), where \(a, b \in \{0, 1\} \). For every function \(\lambda \) from \(\{0, 1, 2, 3\}^m \times \{0, 1\}^n \) to \(\{0, 1\} \), we define the set

\[
M_\lambda \overset{\text{def}}{=} \{(x'_1 x''_1, \ldots, x'_{m+n} x''_{m+n}) \in D(m, n) \mid \sum_{i=1}^{m+n} x'_i \equiv 0 \mod 2, \\
\sum_{i=1}^{m+n} x''_i \equiv \lambda(x'_1, \ldots, x'_{m+n}) \mod 2 \}.
\]

Lemma 2. For any function \(\lambda : \{0, 1, 2, 3\}^m \times \{0, 1\}^n \rightarrow \{0, 1\} \), the set \(M_\lambda \) is an MDS code in \(D(m, n) \).

Proof. It is easy to see that if \(m < i \leq m+n \), then for any values of \(x'_1 x''_1, \\
\ldots, x'_{i-1} x''_{i-1}, x'_{i+1} x''_{i+1}, \ldots, x'_{m+n} x''_{m+n} \), there is a unique pair \(x'_i x''_i \) such that \((x'_1 x''_1, \ldots, x'_{m+n} x''_{m+n}) \in M_\lambda \). If \(1 \leq i \leq m \), then there are four such pairs (two possibilities for \(x'_i \), of the same parity, and for each choice of \(x'_i \), two possibilities for
ON THE NUMBER OF MAXIMUM INDEPENDENT SETS IN DOOB GRAPHS

x''_i), but they correspond to pairwise independent vertices of the Shrikhande graph. Consequently, at first, $|M_\lambda| = 4^{2m+n-1}$, and at second, M_λ is an independent set.

Corollary 2. There are at least $2^{2^{2m+n-1}}$ different MDS codes in $D(m,n)$.

Proof. We will say that two functions from $\{0, 1, 2, 3\}^m \times \{0, 1\}^n$ to $\{0, 1\}$ are essentially different if their values are different in at least one point (x'_1, \ldots, x'_{m+n}) satisfying $x'_1 + \ldots + x'_{m+n} \equiv 0 \mod 2$. The number of essentially different functions is $2^{2^{2m+n-1}}$. Obviously, essentially different functions λ lead to different MDS codes M_λ. □

4. Conclusion

We have established the asymptotics of $\log |\text{MDS}_{m,n}|$, generalizing the similar result for the MDS codes in the Hamming graph $H(n, 4)$ [2], [8]. Note that the case $q = 4$ is the only nontrivial case when the asymptotics of the double logarithm of the number of MDS codes is known ($n \to \infty$, q is fixed). Known bounds for the other cases can be found in [4], [9]; the exact values for small q and n, in [6], [7], [9].

A constructive characterization of the class $\text{MDS}_{0,n}$ can be found in [3]. A possibility to relate the MDS codes (maximum independent sets) in $D(m,n)$ with MDS codes in $D(2m+n, 4)$ using the map κ^m suggests that a similar characterization might be possible for $\text{MDS}_{m,n}$ with arbitrary m. However, it is not completely clear if the map κ^m itself can be helpful for a reasonable proof of such characterization. Since the map κ is not point-to-point, the result of the mth iteration of κ can depend on the order of coordinates. As a result, it is not easy to track which subclass of $\text{MDS}_{0,2m+n}$ we obtain as the image of $\text{MDS}_{m,n}$ under κ^m and to describe this subclass in terms of the known characterization of $\text{MDS}_{0,2m+n}$. In any case, finding a characterization of the class $\text{MDS}_{m,n}$, using κ or not, will be a natural continuation of the current research.

References

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier. Distance-Regu lar Graphs, Springer-Verlag, Berlin, 1989. MR1002568
[2] D. S. Krotov, V. N. Potapov. On the reconstruction of n-quasigroups of order 4 and the upper bounds on their number, in Proc. the Conference Devoted to the 90th Anniversary of Alexei A. Lyapunov, Novosibirsk, Russia, Oct. 2001. 323–327. http://www.sbras.ru/ww/Lyap2001/2363
[3] D. S. Krotov, V. N. Potapov. n-Ary quasigroups of order 4, SIAM J. Discrete Math., 23:2 (2009), 561–570. DOI:10.1137/070697331. MR2496903 arXiv:math/0701519
[4] D. S. Krotov, V. N. Potapov, P. V. Sokolova. On reconstructing reducible n-ary quasigroups and switching subquasigroups. Quasigroups Relat. Syst., 16:1 (2008), 55–67. DOI:10.17686/sced_rusnauka_2008-1040. MR2435527 arXiv:math/0608269
[5] F. J. MacWilliams, N. J. A. Sloane. The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977. MR0465509 MR0465510
[6] B. D. McKay, I. M. Wanless. On the number of Latin squares, Ann. Comb., 9:3 (2005), 335–344. DOI:10.1007/s00026-005-0261-7. MR2176596 arXiv:0909.2101
[7] B. D. McKay, I. M. Wanless. A census of small Latin hypercubes, SIAM J. Discrete Math., 22:2 (2008), 719–736. DOI:10.1137/070693874. MR2399374
[8] V. N. Potapov, D. S. Krotov. Asymptotics for the number of n-quasigroups of order 4, Sib. Math. J., 47:4 (2006), 729–731. DOI:10.1007/s11202-006-0083-9, translated from Sib. Mat. Zh., 47:4 (2006), 873–887. MR2265289 arXiv:math/0605104
[9] V. N. Potapov, D. S. Krotov. *On the number of n-ary quasigroups of finite order*, Discrete Math. Appl., 21:5–6 (2011), 575–585. DOI:10.1515/dma.2011.035, translated from Diskret. Mat., 24:1 (2012), 60–69. MR2963730 arXiv:0912.5453

Denis Stanislavovich Krotov
Sobolev Institute of Mathematics,
pr. Akademika Koptyuga, 4,
630090, Novosibirsk, Russia
E-mail address: krotov@math.nsc.ru

*Further reading:

[10] D. S. Krotov, E. A. Bespalov.
Distance-2 MDS codes and latin colorings in the Doob graphs,
arXiv:1510.01429