Draft Genome Sequence of Azole-Resistant *Aspergillus thermomutatus* (*Neosartorya pseudofischeri*) Strain HMR-AF-39, Isolated from a Human Nasal Septum Abscess Aspirate

Maxime Parent-Michaud,a Philippe J. Dufresne,b Éric Fournier,b Christine Martineau,b Sandrine Moreira,b Vincent Perkins,c Louis de Repentigny,a Simon F. Dufresnea,d

aDepartment of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montréal, Québec, Canada
bLaboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
cDepartment of Food Sciences and Nutrition, Université Laval, Québec City, Québec, Canada
dDivision of Infectious Diseases and Clinical Microbiology, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada

ABSTRACT Here, we present the draft genome sequence of *Aspergillus thermomutatus* (formerly known as *Neosartorya pseudofischeri*; strain HMR-AF-39/LSPQ-01276), a cryptic species of *Aspergillus* section *Fumigati*. This species is intrinsically resistant to antifungal azoles and is recognized as an agent of invasive aspergillosis among immunocompromised hosts.

Invasive aspergillosis is a life-threatening fungal infection in immunocompromised patients (1–4). In 2005, the genome of *Aspergillus fumigatus*, the most frequent species causing aspergillosis, was sequenced and published (5, 6). *Aspergillus* section *Fumigati* includes multiple closely related species that are frequently misidentified as *A. fumigatus* (7–10). Within this group, *Aspergillus thermomutatus* is a known human pathogen (7, 11–19). It is considered intrinsically resistant to antifungal azoles, displaying higher MICs to members of this class than *A. fumigatus* (16, 20, 21).

At Maisonneuve-Rosemont Hospital, 1,186 clinical isolates of presumed *A. fumigatus* were collected from 2000 to 2013. *A. thermomutatus* strain HMR-AF-39/LSPQ-01276 was isolated in 2000 from a pus aspirate, collected from a hematopoietic stem cell transplant recipient with nasal septum abscess. broth microdilution antifungal susceptibility testing was conducted using the reference CLSI methodology (22) and revealed elevated MICs to itraconazole (2 μg/ml), voriconazole (2 μg/ml), and posaconazole (1 μg/ml), compared with wild-type *A. fumigatus sensu stricto* (23). To gain insight on potential genetic differences which may explain *A. thermomutatus* azole resistance, we sequenced the whole genome of this clinically significant isolate.

Whole-genome sequencing was performed at the provincial public health laboratory. Conidia harvested from a freshly grown culture (in potato dextrose agar at 30°C for 5 days) were subjected to DNA extraction using the ZR fungal/bacterial DNA miniprep kit (Zymo Research Corp.). Libraries of the genome of HMR-AF-39/LSPQ-01276 were prepared with the Nextera XT kit (Illumina, Inc.). Paired-end sequencing was performed using a MiSeq sequencing kit V3 600 cycles in pair mode (2 × 300 bp) on a MiSeq sequencing system (Illumina, Inc.). A total of 19,175,446 raw reads were generated. A qualitative and quantitative control was made on the resulting reads using FastQC (version 0.11.5; default parameters). First, raw reads were cleaned using Trimmomatic (version 0.36; with parameters leading, 20; trailing, 20; slidingwindow, 4:20; minlen, 50; and illuminaclip, NexteraPE-PE.fa:2:30:10) (24). Then, pairs of cleaned reads mapping onto the *Aspergillus fumigatus* mitochondrial genome were discarded. SPAdes (version 3.7.0; parameters, -k 77,99,127) (25) was used to assemble the nuclear reads into contigs on Calcul Québec servers (http://www.calculquebec.ca/). The result-
ing assemblies were filtered by an in-house Python script to remove weakly supported contigs with coverage less than 5× and length below 2 kb (https://github.com/EricFournier3/PythonGenomicTools). The absence of duplicated contigs was assessed by running dedup.sh (https://jgi.doe.gov/data-and-tools/bbtools/), and the absence of Illumina adapters was checked using the linux grep command. A second quality control on contigs was made using QUAST version 4.1, (26) which computes assembly metrics and detects possible misassemblies. Specifically, we compared the total length of contigs with that of A. fumigatus as the closest reference genome and ensured an N50 value greater than a preestablished cutoff of 70 kb. The final assembly contained a total of 647 contigs (N50, 93,306 kb) for a genome size of 30,945,974 bp and a G+C content of 48%.

The annotation was performed using pipeline funannotate version 1.4.2. First, funannotate removed repetitive contigs (with option <clean>) and masked repetitive elements (using option <mask> combined with the parameter -repeatmasker_species fungi). Then, it predicted genes using the Aspergillus fumigatus pretrained gene model from Augustus (27) (option <predict> with parameters –busco_seed_species aspergillus_fumigatus and –augustus_species aspergillus_fumigatus) and performed functional annotation on them using the InterProScan5 pipeline (option <iprscan> combined with parameter –m docker to run in a InterProScan docker version 5.31 to 70.0). It resulted in 9,702 predicted genes, from which 1,363 have functional annotation. The completeness of this annotation was assessed by running Busco (version 2.0; Dikarya data set) (28). Our annotation of A. thermomutatus was able to retrieve 1,220 proteins among Dikarya-conserved orthologs (93%), only 47 proteins less than A. fumigatus, the closest reference species.

This is the first report of the whole-genome sequence of Aspergillus thermomutatus. These data will prove useful in gaining a better understanding of virulence factors and genetic mechanisms of antifungal resistance of this species as well as other related clinically relevant species.

Data availability. This whole-genome shotgun project has been deposited at GenBank under the accession number NKHU00000000. The version described in this paper is the second version, NKHU02000000. Raw sequence data can be accessed using the SRA run number SRR8165488.

ACKNOWLEDGMENT
M.P.-M. received the Gabriel-Marquis scholarship from the University of Montreal.

REFERENCES
1. Neofytos D, Horn D, Anaisse E, Steinbach W, Olyaei A, Fishman J, Pfaffer M, Chang C, Webster K, Marr K. 2009. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis 48:265–273. https://doi.org/10.1086/595846.
2. Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld AC, Anaisse EJ, Brumble LM, Herwaldt L, Ito J, Kontoyiannis DP, Lyon GM, Carr MA, Morrison VA, Park BJ, Patterson TF, Perl TM, Oster RA, Schuster MG, Walker R, Walsh TJ, Wannemuehler KA, Chiller TM. 2010. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis 50:1101–1111. https://doi.org/10.1086/651262.
3. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaisse EJ, Walsh TJ, Ito J, Andes DR, Baddeley JW, Brown JM, Brumble LM, Freifeld AG, Hadley S, Herwaldt LA, Kauffman CA, Knapp K, Lyon GM, Morrison VA, Papanicolau G, Patterson TF, Perl TM, Schuster MG, Walker R, Wannemuehler KA, Wingard JR, Chiller TM, Pappas PG. 2010. Progressive surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database. Clin Infect Dis 50:1091–1100. https://doi.org/10.1086/651263.
4. Steinbach WJ, Marr KA, Anaisse EJ, Azie N, Quan SP, Meier-Kriesche HU, Apewokin S, Horn DL. 2012. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect Dis 65: 453–464. https://doi.org/10.1016/j.ijid.2012.08.003.
5. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coursen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Golbe A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuichi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kimoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Lafton A, Latgé J-P, Li W, Lord A, et al. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156. https://doi.org/10.1038/nature04332.
6. Nierman WC, May G, Kim HS, Anderson MJ, Chen D, Denning DW. 2005. What the Aspergillus genomes have told us. Med Mycol 43:3–S5. https://doi.org/10.1080/13693780400029049.
7. Balajee SA, Gribskov J, Brandt M, Ito J, Fothergill A, Marr KA. 2005. Mistaken identity: Neosartorya pseudofischeri and its anamorph masquerading as Aspergillus fumigatus. J Clin Microbiol 43:5996–5999. https://doi.org/10.1128/JCM.43.12.5996-5999.2005.
8. Balajee SA, Nickle D, Varga J, Marr KA. 2006. Molecular studies reveal invasive aspergillosis from the PATH Alliance registry. J Infect Dis 194:1705–1712. https://doi.org/10.1093/infdis/ji0162-06.
9. Balajee SA, Kano R, Baddeley JW, Moser SA, Marr KA, Alexander BD, Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG, Chiller
10. Katz ME, Dougall AM, Weeks K, Cheetham BF. 2005. Multiple genetically distinct groups revealed among clinical isolates identified as atypical Aspergillus fumigatus. J Clin Microbiol 43:551–555. https://doi.org/10.1128/JCM.43.2.551-555.2005.

11. Padhye AA, Godfrey JH, Chandler FW, Peterson SW. 1994. Osteomyelitis caused by Neosartorya pseudofischeri. J Clin Microbiol 32:2832–2836.

12. Jarv H, Lehtmaa J, Summerbell RC, Hoekstra ES, Samson RA, Naaber P. 2004. Isolation of Neosartorya pseudofischeri from blood: first hint of pulmonary Aspergillosis. J Clin Microbiol 42:925–928. https://doi.org/10.1128/JCM.42.2.925-928.2004.

13. Ghebremedhin B, Bluemel A, Neumann KH, Koenig B, Koenig W. 2009. Unusual Aspergillus species in patients with cystic fibrosis. Med Mycol 47:3138–3141. https://doi.org/10.1111/myc.12038

14. Symoens F, Haase G, Carrere J, Beguin H, Degand N, Mely L, Bouchara JP. 2010. Unusual Aspergillus species in an elderly patient undergoing peritoneal dialysis successfully treated with voriconazole. J Clin Microbiol 52:1244–1251. https://doi.org/10.3109/13693786.2010.501345.

15. Toskova M, Palousova D, Kocmanova I, Pavlovsky Z, Timilsina S, Lengerova M, Mayer J, Racil Z. 2013. Invasive mould disease involving the gastrointestinal tract caused by Neosartorya pseudofischeri in a haematological patient. Mycoses 56:385–388. https://doi.org/10.1111/myc.12038.

16. Howard SJ. 2014. Multi-resistant aspergillosis due to cryptic species. Mycoses 57:615–619. https://doi.org/10.1111/myc.12140

17. Khare R, Gupta S, Arif S, Jentoft ME, Deziel PJ, Roden AC, Wilhelm MP, Razonable RR, Wengenack NL. 2014. Misidentification of Neosartorya pseudofischeri as Aspergillus fumigatus in a lung transplant patient. J Clin Microbiol 52:2722–2725. https://doi.org/10.1128/JCM.00216-14.

18. Ma YJ, Shen CF, Wang SM, Liu CC. 2015. Neosartorya pseudofischeri cellulitis in an extremely low birth weight preterm baby. J Formos Med Assoc 114:1013–1014. https://doi.org/10.1016/j.jfma.2014.07.009.

19. Lamoth F. 2016. Aspergillus fumigatus-related species in clinical practice. Front Microbiol 7:683. https://doi.org/10.3389/fmicb.2016.00683.

20. Garcia-Martos P, Garcia-Aguado L, Gutierrez-Calzada J, Ruiz-Aragon J, Saldarreaga A, Marin P. 2005. In vitro activity of amphotericin B, itraconazole and voriconazole against 20 species of Aspergillus using the Sensitive microdilution method]. Enferm Infecc Microbiol Clin 23:15–18. https://doi.org/10.11157/13070403.

21. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. 2008. Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother 52:1244–1251. https://doi.org/10.1128/AAC.00942-07.

22. Clinical and Laboratory Standard Institute. 2008. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 2nd ed. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA.

23. Espinel-Ingroff A, Diekema DJ, Fothergill A, Johnson E, Pelaez T, Pfaffer MA, Rinaldi MG, Canton E, Turnidge J. 2010. Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document); J Clin Microbiol 48:3251–3257. https://doi.org/10.1128/JCM.00536-10.

24. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

25. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Prjibelsky A, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, McLean J, Lasken R, Czupalla I, Nierhaus T, Ovchinnikov S,右侧ortion the 2014. Kmer assembly and mini-metagenomes from highly chimera reads, p 158 –170. In Deng M, Jiang R, Sun F, Zhang X (ed), Research in computational molecular biology: 17th Annual International Conference, RECOMB 2013, Beijing, China, April 7–10, 2013 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany.

26. Gurevich A, Saveliev V, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2013. Assembling genomes and mini-metagenomes from highly chimeric reads, p 158–170. In Deng M, Jiang R, Sun F, Zhang X (ed), Research in computational molecular biology: 17th Annual International Conference, RECOMB 2013, Beijing, China, April 7–10, 2013 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany.

27. Stanke M, Schoeffmann O, Morgenstern B, Waack S. 2006. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7:62. https://doi.org/10.1186/1471-2105-7-62.

28. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351.