Review

Docetaxel induction therapy in locally advanced squamous cell carcinoma of the head and neck

MR Posner*1 and JL Lefebvre2
1Head and Neck Oncology Program, Dana-Farber Cancer Institute, SW430H, 44 Binney street, Boston, MA 02115, USA; 2Oscar Lambret Center, 3 rue Combemale, 59020 Lille, France

Patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) are often treated with induction chemotherapy or chemoradiotherapy, but to date without major impact on survival. The combination of cisplatin – 5-fluorouracil (5-FU) (PF) has been used as standard induction therapy; however, poor patient survival has stimulated investigation into new agents with potential activity in SCCHN. Docetaxel has significant single-agent activity in SCCHN and has been investigated in combination with PF regimens as induction therapy. The results of six phase II studies of docetaxel – PF regimens (TPF) as induction in locally advanced SCCHN patients are reviewed and reported. Consistently, high 2-year survival rates and overall response rates were demonstrated across the phase II trials in the range 42 – 82 and 71 – 100%, respectively. The toxicity profile seen with TPF-based regimens was acceptable. The primary toxicity was neutropenia, which together with gastrointestinal complaints accounted for the majority of adverse events. Given the encouraging phase II experience with TPF-based regimens, two large-scale phase III studies comparing TPF-based regimens with standard PF regimens are underway. The results have significant potential for validating the findings of the phase II studies, demonstrating improved survival and overall response of patients treated with docetaxel-based induction chemotherapy.

Keywords: docetaxel; induction; PF regimens; squamous cell carcinoma of the head and neck

Squamous cell cancer of the head and neck (SCCHN) is a significant international problem. Cancer specific to the mouth and pharynx is the sixth most common cancer worldwide, and the third most common cancer among men in developing countries (Johnson, 2001). Men are at higher risk of developing these cancers and are affected 2 – 3 times as often as women in industrialised countries. There are approximately 400 000 new cases of SCCHN projected annually (Parkin and Muir, 1992). Most SCCHN cases are locally advanced at presentation, with up to 75% of patients having stage III – IV, M0 disease (Dreyfuss et al, 1996; Parker, 1996). Stage of disease at diagnosis is regarded as the single most important prognostic factor (Forastiere, 2000). Stage I – II SCCHN is often curable with either surgery or radiotherapy, but it is generally accepted that treatment of locally advanced SCCHN should involve a combined modality approach (Forastiere, 2000).

Surgery and/or radiotherapy remain cornerstones of therapy in patients with locally advanced SCCHN. However, induction chemotherapy and chemoradiotherapy are now firmly integrated in locoregional care. Controlled studies have established cisplatin and continuous-infusion 5-fluorouracil (5-FU) as the standard induction regimen for unresectable locally advanced SCCHN patients (Paccagnella et al, 1994; Lefebvre et al, 1996; Domenge et al, 2000; Pignon et al, 2000). Up to 40% of chemonaı ¨ve locally advanced SCCHN patients treated with cisplatin – 5-FU (PF) have been reported to achieve a complete response, with an overall response rate (ORR) in the range of 85% (Schantz et al, 2001). The main toxicities associated with PF-induction therapy are haematological, digestive and mucositis with the majority of events being grade I or II (Paccagnella et al, 1994; Domenge et al, 2000). Despite inducing locoregional control, high response rates and a significant improvement in survival, PF induction therapy is associated with a relatively poor absolute rate of patient survival, which is similar to that seen with intensive chemoradiotherapy regimens (Paccagnella et al, 1994; Lefebvre et al, 1996; Domenge et al, 2000; Pignon et al, 2000). The dose-intensive cisplatin – 5-FU – leucovorin (PFL) combination was subsequently developed in an attempt to improve complete response rates to induction chemotherapy and thus survival. The addition of leucovorin resulted in higher complete response rates at the expense of increased toxicity (Vokes et al, 1990; Schneider et al, 1995; Clark et al, 1997).

The need for further improvements in SCCHN care has stimulated intensive investigation into new agents with potential in induction chemotherapy and chemoradiotherapy regimens. New agents such as epidermal growth factor receptor (EGFR) inhibitor ZD1839 (Iressa™), antibody C225 (Cetuximab™), and inhibitor OSI-774 (Tarceva™) and inhibitor OSI-774 (Tarceva™), in addition to farnesyl transferase inhibitors, have shown some promise in early studies. Although they are relatively ineffective as single agents, their combination with other agents (radiation and/or cytotoxic drugs) is under.
evaluation and may be of interest. UFT (a mixed compound of 5-FU and uracil) has shown promising single-agent activity, but combination therapy has yet to be studied. Alpha interferon has been tested as a potentiator of PFL or PF chemotherapy, but a phase III trial has failed to demonstrate any additional advantages from this approach (Vokes et al, 1995; Schrijvers et al, 1998). Perhaps the most promising agents have been the taxanes. In particular, the taxane docetaxel has demonstrated significant single-agent activity in recurrent SCCHN (Catimel et al, 1994; Dreyfuss et al, 1996; Couteau et al, 1999). Docetaxel is similar to paclitaxel with respect to its general mechanism of action (tubulin stabilization and cell cycle arrest), and the two share a number of pharmacological characteristics (Colevas and Posner, 2001). However, docetaxel and paclitaxel have somewhat different pharmacodynamics and toxicities that may be important in combination therapy programmes. Docetaxel, for example, has a greater affinity for tubulin, a longer intracellular half-life, and promotes microtubule stabilization at lower drug concentrations (Lavelle et al, 1995). The major toxicity associated with docetaxel is highly predictable myelotoxicity (Posner, 2001a). More importantly, neuropathy, a dominant side effect of cisplatin, is minimal with docetaxel-containing regimens, but can be significant in paclitaxel-containing regimens (Schrijvers and Vermorken, 2000; Colevas and Posner, 2001; Posner, 2001a). The differing mechanisms of action, and relative nonoverlapping toxicities compared with PF, have prompted interest in the addition of docetaxel to PF regimens.

POTENTIAL OF DOCETAXEL IN SCCHN

In early preclinical studies, docetaxel demonstrated pronounced in vitro and in vivo cytotoxicity against a variety of human cancer cell lines, particularly head and neck cancer (Braakhuis et al, 1994). In fact, docetaxel was more effective than cisplatin in inhibiting the growth of two SCCHN xenograft models (HNX-14C and HNX-22B) (Braakhuis et al, 1994). Further preclinical evidence for docetaxel efficacy has been derived from studies employing a murine model, representative of human head and neck cancer (Sommer et al, 2001). From the drugs investigated (cisplatin, carboplatin, docetaxel, methotrexate, 5-FU), as single agents or in combination, an ifosfamide - docetaxel combination produced the best tumour-free survival.

The clinical efficacy and safety of docetaxel in SCCHN was initially established in patients with metastatic or recurrent/incurable SCCHN. In three phase II studies (Table 1), single-agent docetaxel (100 mg m⁻²) administered on day 1 every 3 weeks produced response rates ranging from 21 to 42% (Catimel et al, 1994; Dreyfuss et al, 1996; Couteau et al, 1999). As expected, grade III - IV neutropenia was the principal toxicity in these studies. These results compare favourably with other single agents in the management of SCCHN (Schoffski et al, 1998; Posner, 2001a).

Study reference	Dose/schedule	N (evaluable patients)	Response rate (%)
Catimel et al (1994)	100 mg m⁻² d1 q3w	37	32
Dreyfuss et al (1996)	100 mg m⁻² d1 q3w	29	42
Couteau et al (1999)	100 mg m⁻² d1 q3w	21	21

Phase I/II studies combining docetaxel with cisplatin and/or 5-FU were undertaken in recurrent or metastatic SCCHN patients to look for improved efficacy and safety. In two trials, docetaxel - 5-FU resulted in ORRs of 24 and 27% (Colevas et al, 2000; Tubiana-Mathieu et al, 2000). Docetaxel - cisplatin appeared to be a more effective combination, with overall response rates ranging from 33 to 76% (Kienzer et al, 1998; Schoffski et al, 1999; Specht et al, 2000; Glisson et al, 2002). In the trial conducted by the European Organisation for the Research and Treatment of Cancer (EORTC), docetaxel (100 mg m⁻²) plus cisplatin (75 mg m⁻²) produced a response rate of 54% (Schoffski et al, 1999). Of the 44 patients enrolled in this trial, 22 were chemotherapy-naive and the response rate in this group was 86%. As with single-agent docetaxel, the main toxicity in each of the combination studies was myelosuppression (Kienzer et al, 1998; Schoffski et al, 1999; Colevas et al, 2000; Specht et al, 2000; Tubiana-Mathieu et al, 2000; Glisson et al, 2002). Mucositis was more commonly seen in the combination studies (particularly docetaxel - 5-FU) than with single-agent docetaxel.

DOCETAXEL INDUCTION THERAPY IN SCCHN: PHASE II RESULTS

The promising response rates and tolerability profiles exhibited in recurrent or metastatic SCCHN patients treated with docetaxel - cisplatin led to the investigation of docetaxel regimens as induction therapy for locally advanced disease. Two phase II induction studies with docetaxel 75 mg m⁻² plus cisplatin 75 or 100 mg m⁻² i.v. every 3 weeks followed by definitive radiotherapy in patients with locally advanced SCCHN have been reported (Mel et al, 2000; Caponigro et al, 2001). In an intention-to-treat analysis, objective responses of 62% and 46% were seen in patients during the induction phase, with corresponding complete response rates of 17% (Mel et al, 2000) and 11% (Caponigro et al, 2001), respectively. Grade III - IV neutropenia was experienced by 74% of patients in one study, although febrile neutropenia affected only 17% of patients (Mel et al, 2000). In the second study, 61% of patients experienced grade III - IV neutropenia, which was complicated by fatal sepsis in 2 (4%) patients (Caponigro et al, 2001). The authors suggest that these toxic deaths might have been related to the higher dose of cisplatin (100 mg m⁻²) used in their study (Caponigro et al, 2001). The incidences of grade III - IV nonhaematological toxicity, including gastrointestinal complications, were relatively low in both studies. These results, in a heterogeneous group of patients with moderate-to-poor performance status, were similar to the data seen with PF. From recurrent patients, these studies demonstrate that the docetaxel – cisplatin combination has interactive efficacy similar to that seen with PF.

Rather than substituting cisplatin or 5-FU with a newer SCCHN-active agent such as docetaxel, in the curative setting, most research is now focused on the addition of docetaxel to PF-based regimens. Studies involving docetaxel – PF-based regimens demonstrate a high likelihood of superior clinical benefit vs current treatment options in terms of response rate and survival.

Docetaxel plus modified PFL regimens

Three trials conducted at the Dana-Farber Cancer Institute administered docetaxel with PFL in SCCHN patients with advanced disease, who were potentially curable (Table 2) (Colevas et al, 1998; 1999; 2002). In the first study, TFPL-5, 23 patients with stage III - IV SCCHN received docetaxel 25 - 60 mg m⁻² d1 (day 1), cisplatin 25 mg m⁻² d1 – 5, 5-FU 700 mg m⁻² (N = 21) or 800 mg m⁻² (N = 2) d2 – 5 and leucovorin 500 mg m⁻² d1 – 5 every 4 weeks for three cycles (Colevas et al, 1998). The ORR prior to definitive, twice daily radiation therapy was 100%, consisting of 14
Table 2 Docetaxel plus modified PFL induction regimens for locally advanced SCCHN

Study reference	Number of patients entered	Patient/disease characteristics	Regimen	OR* (%)	CR* (%)	Grade III–IV toxicities in ≥5% of patients or cycles (%)
Colevas et al (1999)	23	Previously untreated stage III or nonmetastatic stage IV SCCHN	TPFL-5: docetaxel 25 – 60 mg m^-2 i.v. d1; cisplatin 25 mg m^-2 day^-1 CI VI d1 – 5; 5-FU 700 or 800 mg m^-2 day^-1 CI VI d2 – 5; leucovorin 500 mg m^-2 day^-1 CI VI d1 – 5	100	61	% of cycles at the MTD of docetaxel 60 mg m^-2 i.v. (n=45); mucositis (46); neutropenia (22); febrile neutropenia (22); nausea (11); diarrhoea (11); infection (7); renal tubular (7)
ECOG PS ≤ 2	Repeat q4wk for up to three cycles, followed by definitive BID RT					
Colevas et al (1999)	30	Previously untreated stage III or nonmetastatic stage IV SCCHN	TPFL-4: docetaxel 60 mg m^-2 i.v. d1; cisplatin 31.25 mg m^-2 day^-1 CI VI d1 – 4; 5-FU 700 mg m^-2 day^-1 CI VI d1 – 4; leucovorin 100 mg oral LD x 2 (6 and 12 h before docetaxel) then 500 mg m^-2 day^-1 CI VI d1 – 4	93	63	% of TPFL-4 cycles: mucositis (48); nausea/vomiting (15); neutropenia (8); thrombocytopenia (6); anorexia (6); diarrhoea (5); infection (5); renal toxicity (5)
ECOG PS ≤ 2	Repeat q4wk for up to three cycles, followed by definitive BID RT					
Colevas et al (2002)	34	Previously untreated stage III or nonmetastatic stage IV SCCHN	Outpatient TPFL: docetaxel 60 – 95 mg m^-2 day^-1 i.v. d1; cisplatin 100 mg m^-2 day^-1 i.v. d1; 5-FU 700 mg m^-2 day^-1 CI VI d1 – 4; leucovorin 100 mg oral LD x 2 then 500 mg m^-2 day^-1 CI VI d1 – 4	94	44	% of patients at the MTD of docetaxel 90 mg m^-2 i.v. (n=15); neutropenia (67); mucositis (33); nausea (13); anorexia (13); fatigue (13); febrile neutropenia (7); thrombocytopenia (7); diarrhoea (7); hepatotoxicity (7); hypotension (7); pain (7)
ECOG PS 0 or 1	Repeat q3wk for up to three cycles in responders, followed by definitive BID RT					

Abbreviations: SCCHN=squamous cell carcinoma of the head and neck; OR=overall response; CR=complete response; ECOG=Eastern Cooperative Oncology Group; PS=performance status; TPFL=docetaxel/cisplatin/5-fluorouracil/leucovorin; i.v.=intravenously; 5-FU=5-fluorouracil; CIVI=continuous intravenous infusion; LD=loading dose; RT=radiotherapy; MTD=maximum tolerated dose; BID=Twice Daily Hyperfractionated

*For the evaluable population.

complete responses (CRs; 61%) and nine partial responses (PRs; 39%). Updated survival data (median follow-up 43 months) revealed both the 3-year overall survival and disease-free survival rates to be 78% (Posner et al, 2000). Approximately 40% of patients receiving the maximum tolerated dose (MTD) of docetaxel were hospitalised for neutropenia despite administration of granulocyte colony-stimulating factor (G-CSF) d5 – 10 and ciprofloxacin d5 – 15 (Colevas et al, 1998). Mucositis was the most prominent grade III–IV nonhaematological toxicity (46% of cycles), followed by nausea (11% of cycles) and diarrhoea (11% of cycles). In all, 14 patients (61%) developed mild neuropathy 1 – 8 months after the first dose of chemotherapy.

In an attempt to reduce hospitalisation, the TPFL-4 regimen was developed in which G-CSF was started earlier and treatment was compressed into the first 4 days of the 4-week cycle (Colevas et al, 1999). In all, 30 stage III – IV SCCHN patients received two loading doses of oral leucovorin 100 mg followed by docetaxel (60 mg m^-2) d1 and then infusions of cisplatin (31.25 mg m^-2 day^-1), 5-FU (700 mg m^-2 day^-1) and leucovorin (500 mg m^-2 day^-1) over 4 days. G-CSF was given d4 – 10 and ciprofloxacin on d5 – 15. The ORR was 93%, with 63% CRs and 30% PRs. Primary tumour site clinical and pathological responses were 93 and 68%, respectively. The originally reported 2-year overall survival and disease-free survival rates were 87 and 57%, respectively (Colevas et al, 1999). A more recent analysis (median follow-up 30 months) reported the 2-year overall survival and disease-free survival rates as 83 and 53%, respectively (Posner et al, 2000). Haematological toxicity was generally mild, with grade III – IV neutropenia, thrombocytopenia, and anaemia reported during 8, 6 and 2% of cycles, respectively (Colevas et al, 1999). Mucositis was the most prominent nonhaematological grade III–IV event (48% of cycles), followed by nausea/vomiting (15% of cycles). These values represent major reductions in haematological and infectious toxicities compared with patients in TPFL-5. As a result, hospitalization was reduced to approximately 14%, the main cause of which was dehydration.

The op-TPFL trial, an outpatient study, represents a further docetaxel – TPFL regimen modification (Colevas et al, 2002). The objective of the study was to allow stage III – IV SCCHN patients to receive TPFL chemotherapy at home with intensive nursing support. Two doses of leucovorin 100 mg were given as oral loading. This was followed by docetaxel 60 – 95 mg m^-2 d1, cisplatin 100 mg m^-2 d1, 5-FU 700 mg m^-2 d1 – 4 and leucovorin 500 mg m^-2 day 1 – 4 in a 3-week cycle. G-CSF and antibiotics were administered, starting 6 h after the end of chemotherapy. The MTD of docetaxel was 90 mg m^-2 with G-CSF support. The ORR was 94% and the CR 44% in the 34 treated patients. At a median follow-up of 12 months, 27 (79%) patients were alive, with 18 (53%) patients free of disease progression. Neutropenia and mucositis were the most frequently observed toxicities. Of the 15 patient who received 42 cycles administered at the MTD, grade III – IV neutropenia and mucositis were observed in 15 (67%) and 5 (33%) patients, respectively. Febrile neutropenia occurred in

© 2003 Cancer Research UK
British Journal of Cancer (2003) 88(1), 11 – 17
only 1 (7%) patient. These results suggest that home-administered op-TFPL is a viable clinical option.

Docetaxel plus PF regimens

The TPFL regimens are intensive and associated with considerable toxicity. Patients routinely require G-CSF support and a significant proportion are hospitalised either for treatment or for treatment-related toxicity. In many patients age and comorbidities rule out such dose-intensive chemotherapy regimens. Intermediate dose-intensive regimens involving docetaxel in combination with PF may be equally efficacious, providing alternatives in these patient groups. Three trials in which this intermediate-dose approach was investigated are discussed here and summarised in Table 3.

In the TAX 708 study, 43 chemonaı ¨ve patients with locally advanced SCCHN received docetaxel 75 mg m−2 d1, cisplatin 75 mg m−2 (level I; N = 13) or 100 mg m−2 (level II; N = 30) d1 and continuous 5-FU 1000 mg m−2 day−1 d1 – 4 (Posner et al, 2001b). Ciprofloxacin was administered to all patients day 5 – 15 and G-CSF was managed to prevent febrile neutropenia or treatment-delaying myelosuppression. The ORR was 93% and the CR 40%. A complete clinical response was seen in 57% of assessable tumours (Posner et al, 2001b). At a recent follow-up (median 26 months), the 2-year overall survival rate was 82% (Posner et al, 2001c). Of the grade III – IV toxicities, neutropenia affected 95% of patients; however, febrile neutropenia and infection affected only 19% and 2% of patients, respectively (Posner et al, 2001b). Other grade III – IV toxicities include stomatitis (30%), transient renal problems (30%), nausea (19%) and diarrhoea (9%) (Posner et al, 2001b).

In a similar study (TAX 017HN), 48 patients with locally advanced SCCHN received docetaxel 75 mg m−2 and cisplatin 75 mg m−2 (level I) or 100 mg m−2 (level II) d1, followed by continuous infusions of 5-FU 750 mg m−2 day−1 over 5 days (Schrijvers et al, 1999). Owing to infectious complications seen in the first 18 patients, ciprofloxacin was added from d5 to 15. Prior to this, six patients developed infections leading to hospitalisation. Grade III – IV neutropenia was reported in 88 and 63% of patients in the level I and II groups, respectively. An ORR of 71% was observed. At a recent follow-up (median 24 months), the 2-year overall survival rate was 42% (Posner et al, 2001c).

Janinis et al (2001) administered docetaxel 80 mg m−2 d1, cisplatin 40 mg m−2 d2 and d3 and continuous 5-FU 1000 mg m−2 day−1 d1 – 3 every 4 weeks in chemonaı ¨ve patients with locally advanced SCCHN. All patients received G-CSF d4 – 9. A maximum of four chemotherapy cycles were allowed and radiation therapy was planned after completion of chemotherapy. The ORR postchemotherapy was 90% with a CR of 20%. After radiotherapy, the ORR was 95% with a CR that increased to 73%. After a median follow-up of 36 months, median disease-free and overall survival had not been reached. The 2-year survival rate was 60%. Grade III – IV toxicity was limited to leucopenia (25%), febrile neutropenia (10%), grade IV infection (10%) and grade IV diarrhoea (5%). The most common acute nonhaematological toxicities included alopecia, mucositis and peripheral sensory neuropathy. Alopecia was reversible, and mucositis was mild and did not require hospitalisation. Peripheral neuropathy was seen in 25% of patients, but was of mild degree with late occurrence.

ONGOING PHASE III INDUCTION STUDIES INCORPORATING DOCETAXEL

It is apparent that docetaxel, when used in conjunction with standard induction therapy (cisplatin, 5-FU with or without leucovorin), has significant activity in locally advanced SCCHN. Consistently high 2-year survival rates and ORRs have been achieved with cisplatin-based regimens. Ongoing phase III studies incorporating docetaxel are summarised in Table 3.

Table 3: Docetaxel plus PF induction regimens for locally advanced SCCHN

Study	Number of patients entered	Patient/disease characteristics	Regimen	OR (%)	CR (%)	Grade III–IV toxicities in >5% of patients (%)
TAX 708	43	Locally advanced SCCHN	Docetaxel 75 mg m−2 i.v. d1; Cisplatin 75 mg m−2 or 100 mg m−2 i.v. d1; 5-FU 1000 mg m−2 day−1 CIVI d1 – 4	93	40	Neutropenia (95); stomatitis (30); hypomagnesaemia/hypocalcaemia (30); febrile neutropenia (19); nausea (19); diarrhoea (9); vomiting (7); dehydration (7); thrombocytopenia (5); neurological-hearing (5); liver enzyme abnormalities (5)
Schrijvers et al (1999)	48	Locally advanced SCCHN	Docetaxel 80 mg m−2 i.v. d1; Cisplatin 40 mg m−2 i.v. D2,3 5-FU 1000 mg m−2 day−1 CIVI d1 – 3	90	20	Leucopenia (25); febrile neutropenia (10); infection (10); diarrhoea (5)
TAX 017HN	20	WHO PS 0 – 2	Docetaxel 75 mg m−2 i.v. d1; Cisplatin 75 mg m−2 (level I) or 100 mg m−2 (level II) d1; 5-FU 750 mg m−2 day−1 CIVI d1 – 5	71	0	Level I (n=17): neutropenia (76); infection (13); stomatitis (6); diarrhoea (6)
		CT- and RT-naive	Repeat q3wk for up to four cycles, followed by institution-specific definitive therapy			Level II (n=11): neutropenia (63); infection (18); stomatitis (9); nausea (9); vomiting (9)

Abbreviations: SCCHN = squamous cell carcinoma of the head and neck; OR=overall response; CR=complete response; ECOG=Eastern Cooperative Oncology Group; PS=performance status; CT=chemotherapy; RT=radiotherapy; i.v.=intravenously; 5-FU=5-fluorouracil; CIVI=continuous intravenous infusion; WHO=World Health Organization; NR=not reported.

For the intention-to-treat population, †Unpublished data.
observed across phase II studies in the range 42 – 82 and 71 – 100%, respectively (Posner et al, 2001c). Each of the phase II studies discussed has used a slightly different regimen with varying concentrations of chemotherapy in 3- or 4-week cycles. The study results have suggested somewhat different response rates, overall survival rates and toxicity profiles. This may be attributed to factors such as differences in patient selection or subtle differences in schedule-related multidrug interactions.

Given the encouraging phase II experience with docetaxel induction regimens, and the need to further investigate the various regimens in a randomised, controlled setting, phase III studies of two TPF-based regimens vs PF are warranted and are under way (Posner et al, 2000). A phase III trial (TAX 324) is being conducted mainly in the USA, with some centres in Europe and South America. This trial is evaluating three cycles of TPF (docetaxel 75 mg m⁻² d1, cisplatin 100 mg m⁻² d1 and 5-FU 1000 mg m⁻² d1 – 4 every 3 weeks) vs three cycles of PF (cisplatin 100 mg m⁻² d1 and 5-FU 1000 mg m⁻² d1 – 5 every 3 weeks). This trial comprises a sequential therapy design incorporating postinduction chemoradiotherapy. Patients in both arms are treated with definitive chemoradiation, with weekly carboplatin for a maximum of seven doses following induction chemotherapy. A second study conducted by the EORTC (TAX 323) is evaluating four cycles of TPF (docetaxel 75 mg m⁻² d1, cisplatin 75 mg m⁻² d1 and 5-FU 750 mg m⁻² d1 – 5 every 3 weeks) vs four cycles of PF (cisplatin 100 mg m⁻² d1 and 5-FU 1000 mg m⁻² d1 – 5 every 3 weeks). A 7-week course of radiotherapy is to commence within 4 – 7 weeks of completing the last chemotherapy cycle. These ongoing, large-scale, randomised trials are expected to confirm the positive benefits of adding docetaxel to PF-based regimens, as already demonstrated in the phase II setting.

DOCTAXEL-BASED CHEMORADIATION REGIMENS FOR LOCALLY ADVANCED DISEASE

In recent controlled studies, PF-based chemoradiation regimens, used as induction or definitive therapy, have demonstrated improved efficacy compared with conventional or hyperfractionated radiotherapy alone in locally advanced SCCHN (Vokes et al, 1995; Brizel et al, 1998). The activity of docetaxel in SCCHN, coupled with the drug’s in vitro radiosensitizing properties (Creane et al, 1999; Mason et al, 1999; Pradier et al, 2001), provide the basis for clinical trials with docetaxel as a component of concurrent or alternating chemoradiation in locally advanced SCCHN (Kokourakis et al, 1999; Hesse et al, 2000; Tishler et al, 2002).

Docetaxel-based chemoradiation regimens have been shown to be feasible and active as induction and adjuvant therapy. The phase I/II study by Tishler et al (2002) considered daily radiation concurrent with weekly docetaxel in 21 patients with stage III – IV SCCHN, who responded poorly to induction chemotherapy, and demonstrated an ORR of 86% (CR 57%). Radiation was delivered at 2 Gy day⁻¹, to a total dose of 66 – 74 Gy. The MTD of weekly docetaxel in this regimen was 25 mg m⁻². Mucositis was the major acute toxicity, occurring at grade III in all patients receiving docetaxel 25 mg m⁻². Swallowing problems represented the main long-term toxicity, although no patient remained feeding-tube dependent. Three-year survival was > 60% in this poor prognosis group of patients.

Chemoradiation therapies with docetaxel – cisplatin have achieved an ORR as high as 100% (Varveris et al, 1999; Budach et al, 2000). The chemoradiation protocol considered by Budach et al (2000) was devised to reduce oral toxicity. A total of 15 patients with inoperable, recurrent head and neck cancer received three cycles of docetaxel (50 – 60 mg m⁻² d1) and cisplatin (15 mg m⁻² d2 – 5) during weeks 1, 4 and 7 alternating with two courses of radiotherapy (5 × 2 Gy; total dose 40 Gy) in weeks 2 – 3 and 5 – 6. The recommended dose of docetaxel was 50 mg m⁻², as 60 mg m⁻² led to unacceptable systemic toxicity in the first 12 patients treated. An ORR of 92% was achieved, with acceptable levels of oral toxicity.

Varveris et al (1999) demonstrated that the radiosensitizing effect of docetaxel – cisplatin on hyperfractionated radiotherapy enabled an ORR of 100% (CR 59%). Docetaxel and cisplatin were both given at 30 mg m⁻² twice weekly to 54 patients. This dose was reduced to 15 – 20 mg m⁻² because of severe acute toxicity in the first 10 patients. Major toxicities included grade III – IV mucositis (86%), grade I – III hypersensitivity reactions (11%) and grade III myelotoxicity (11%).

Further studies are needed to elucidate the relative efficacy and toxicity of these concurrent radiation regimens vs the traditional sequential approach of induction chemotherapy followed by definitive radiotherapy.

CONCLUSIONS

Unmet needs in SCCHN care have stimulated intensive investigation into new agents with potential in induction chemotherapy and chemoradiotherapy regimens. Docetaxel has emerged as one of the most active agents in SCCHN, and is particularly efficacious as a component of induction therapy in locally advanced disease. The results of phase II studies investigating TPF induction regimens demonstrate consistently high 2-year survival rates and ORRs across all trials, in the range of 42 – 82 and 71 – 100%, respectively (Posner et al, 2001c). An acceptable toxicity profile is seen with TPF-based regimens, with neutropenia and gastrointestinal complaints accounting for the majority of adverse events. The encouraging phase II results are being validated in the ongoing, large-scale, randomised phase III studies comparing TPF with PF regimens.

REFERENCES

Braakhuis BJ, Kegel A, Welters MJ (1994) The growth inhibiting effect of docetaxel (Taxotere) in head and neck squamous cell carcinoma xenografs. Cancer Lett 81: 151 – 154
Brizel DM, Albers ME, Fisher SR, Scher RL, Richtsmeier WJ, Hars V, George SL, Huang AT, Prosnitz LR (1998) Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer. N Engl J Med 338: 1798 – 1804
Budach W, Hehr T, Belka C, Bamberg M (2000) Alternating chemoradiation with docetaxel (D)/cisplatin (C) and involved field radiotherapy for recurrent, inoperable, and previously irradiated head and neck cancer (HNC). Proc Am Soc Clin Oncol 19: 1649
Caponigro F, Massa E, Manzione L, Rosati G, Biglietto M, De Lucia L, Sgotti C, Sganga P, Avallone A, Comella P, Mantovani G, Comella G (2001) Docetaxel and cisplatin in locally advanced or metastatic squamous-cell carcinoma of the head and neck: a phase II trial of the Southern Italy Cooperative Oncology Group (SICOG). Ann Oncol 12: 199 – 202
Catinel G, Verweij J, Mattijsen V, Hanuske A, Piccart M, Wanders J, Franklin H, Le Bail N, Clavel M, Kaye SB (1994) Docetaxel (Taxotere): an active drug for the treatment of patients with advanced squamous cell carcinoma of the head and neck. EORTC Early Clinical Trials Group. Ann Oncol 5: 533 – 537

© 2003 Cancer Research UK

British Journal of Cancer (2003) 88(1), 11 – 17
Docetaxel induction therapy in SCCHN
MR Posner and JL Lefebvre

Clark JR, Busse PM, Norris CM, Andersen JW, Dryfuss AF, Rossi RM, Poulin MD, Colevas AD, Tishler RB, Costello R, Lucarini JW, Lucarini D, Thornhill L, Lackey M, Peters E, Posner MR (1997) Induction chemotherapy with cisplatin, fluorouracil, and high-dose leucovorin for squamous cell carcinoma of the head and neck: long-term results. J Clin Oncol 15: 3100 – 3110.

Colevas AD, Adak S, Amrein PC, Barton JJ, Costello R, Posner MR (2000) A phase II trial of palliative docetaxel plus 5-fluorouracil for squamous-cell cancer of the head and neck. Ann Oncol 11: 535 – 539.

Colevas AD, Busse PM, Norris CM, Fried M, Tishler RB, Poulin M, Fabian RL, Grogan JD, Dryfuss AF, Peters ES, Adak S, Costello R, Barton JJ, Posner MR (1998) Induction chemotherapy with docetaxel, cisplatin, fluorouracil, and leucovorin for squamous cell carcinoma of the head and neck: a phase II/II trial. J Clin Oncol 16: 1331 – 1339.

Colevas AD, Norris CM, Tishler RB, Fried MP, Gomolin HJ, Amrein P, Nixon A, Lamb C, Costello R, Barton J, Read R, Adak S, Posner MR (1999) Phase II trial of docetaxel, cisplatin, fluorouracil, and leucovorin as induction for squamous cell carcinoma of the head and neck. J Clin Oncol 17: 3503 – 3511.

Colevas AD, Norris CM, Tishler RB, Lamb CC, Fried MP, Goguen LA, Gopal HV, Costello R, Read R, Adak A, Posner MR (2002) Phase II/II trial of outpatient docetaxel, cisplatin, 5-fluorouracil, leucovorin (optTPFL) as induction for squamous cell carcinoma of the head and neck (SCCHN). Am J Clin Oncol 25: 153 – 159.

Couteau C, Chouaki N, Leyvraz S, Oulid-Aissa D, Lebecq A, Domenge C, Lefebvre JL, Chevalier D, Luboinski B, Kirkpatrick A, Collette L, Sahmoud A, Forastiere AA (2000) Head and neck cancer: overview of recent developments and future directions. Semin Oncol 27: 731 – 737.

Domengue C, Hill C, Lefebvre JL, De Raucourt D, Rhein B, Wibaut P, Marandas P, Coche-Dequeant B, Stromboni-Luboinski M, Sancho-Garnier H, Luboinski B (2000) Randomized trial of neoadjuvant chemotherapy in oropharyngeal carcinoma. French Group d’Etude des Tumeurs de la Tete et du Cou (GETEC). Br J Cancer 81: 457 – 462.

Creane M, Seymour CB, Colucci S, Mothersill C (1999) Radiobiological effects of docetaxel (Taxotere): a potential radiation sensitizer. Int J Radiat Biol 75: 731 – 737.

Hesse K, Heinrich B, Zimmermann F, Kau R, Sommer G, Achterwath R, Molls M, Feldmann HJ (2000) Combined radiochemotherapy with docetaxel in patients with unresectable locally advanced head and neck tumors. Strahlenther Onkol 176: 67 – 72.

Janinis J, Papadakou M, Panagos G, Panoussis A, Georgoulias V, Hatzidakis D, Lefantzi D, Dokiainakis G (2001) Sequential chemotherapy with docetaxel, cisplatin, and 5-fluorouracil in patients with locally advanced head and neck cancer. J Clin Oncol 19: 227 – 231.

Johnson N (2000) Tobacco use and oral cancer: a global perspective. J Dent Educ 65: 328 – 339.

Kienzer HR, Schweiger J, Baur M, DeSantis M, Poh label R, Gerber E, Soucek B, Schernhammer E, Postner G, Kraus R, Pont J, Schlappack O, Satterthwaite SE, Pichlmeier U, Wicke W, Dittrich C (1998) Docetaxel (d)/cisplatin (C) as induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck. Int J Oncol 13: 1594 – 1598.

Koukourakis MI, Bizakis JG, Skoulakis CE, Kyrmizakis D, Giatromanolaki A, Papadakis CE, Prokopakis E, Amanakis Z, Hellidonis ES (1999) Multicenter phase II study of docetaxel (D) and cisplatin (C) as induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck (SCCHN). Ann Oncol 11: 92.

Lavelle F, Bissery MC, Combeau C, Rico JF, Vignaud P, Andre S (1995) Preclinical evaluation of docetaxel (Taxotere). Semin Oncol 22: 13 – 16.

Lefebvre JL, Chevalier D, Luboinski B, Kirkpatrick A, Collette L, Sahmoud T (1996) Larynx preservation in pyriform sinus cancer: preliminary results. IARC Sci Publ 120: 45 – 173.

Mason KA, Kishi K, Hunter N, Buchmiller L, Akimoto T, Komaki R, Milas L (1999) Effect of docetaxel on the therapeutic ratio of fractionated radiotherapy in vivo. Clin Cancer Res 5: 4191 – 4198.

Mel JR, Rodriguez R, Constena M, Davila A, Fernandez-Piera M (2000) Multicentre phase II study of docetaxel (D) and cisplatin (C) as induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck (SCCHN). J Clin Oncol 18: 626 – 272.

Pignoni JP, Bourhis J, Domenge C, Deslign E (2000) Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analyses of Chemotherapy on Head and Neck Cancer. Lancet 355: 949 – 955.

Posner MR (2001a) Docetaxel in squamous cell cancer of the head and neck. Anticancer Drugs 12(Suppl 1): S21 – S24.

Posner MR, Colevas AD, Tishler RB (2000) The role of induction chemotherapy in the curative treatment of squamous cell cancer of the head and neck. Semin Oncol 27: 13 – 24.

Posner MR, Glisson B, Fretone G, Al Sarraf M, Colevas AD, Norris CM, Seroskie JD, Shin DM, Olivares R, Garay CA (2001b) Multicenter phase I–II trial of docetaxel, cisplatin, and fluorouracil induction chemotherapy in patients with metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 19: 1096–1104.

Posner MR, Vermoken J, Janinis J, Bragas B, Yver A (2001c) Survival analysis of induction therapy with Docetaxel (Taxotere) (T) containing regimens in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN). Proc Am Soc Clin Oncol 20: 256A.

Radler O, Rave-Frank M, Lehmann J, Lucke E, Bogun H, Hess CF, Schmidberger H (2001) Effects of docetaxel in combination with radiation on human head and neck cancer cells (ZMK-1) and cervical squamous cell carcinoma cells (Ca Ski). Int J Cancer 91: 840 – 845.

Schantz SP, Harrison LB, Forastiere AA (2001) Tumors of the nasal cavity and paranasal sinuses, nasopharynx, oral cavity, and oropharynx. In: Cancer: Principles and Practice of Oncology, 6th ed. DeVita VTJ, Hellman S, Rosenberg SA (eds) pp 797 – 860. Philadelphia: Lippincott Williams & Wilkins.

Schneider M, Etienne MC, Milano G, Thys S, Otto J, Dassonneville O, Mobayen H, Saules L, Guillot T, Demard F (1995) Phase II trial of cisplatin, fluorouracil, and pure folic acid for locally advanced head and neck cancer: a pharmacokinetic and clinical survey. J Clin Oncol 13: 1656 – 1662.

Shoffski P, Catimel G, Planting AS, Droz JP, Verweij J, Schrijvers D, Gras L, Schrijvers A, Wanders J, Hansaake AR (1999) Docetaxel and cisplatin: an active regimen in patients with locally advanced, recurrent or metastatic squamous cell carcinoma of the head and neck. A phase II study of the EORTC Early Clinical Studies Group. Ann Oncol 10: 119 – 122.

Shoffski P, Weihipol T, Ganser A (1998) Advanced head and neck cancer and clinical experience of an effective new agent: docetaxel. Anticancer Res 18: 4751 – 4766.

Schrijvers D, Johnson J, Jiminez U, Gore M, Kosmidis P, Szpirtzas H, Robbins K, Oliveira J, Lewensohn R, Schuller J, Riviere A, Arvay C, Langecker P, Jacob H, Cvitkovic E, Vokes E (1998) Phase III trial of modulation of cisplatin/fluorouracil chemotherapy by interferon alfa-2b in patients with recurrent or metastatic head and neck cancer. Head and Neck Interferon Cooperative Study Group. J Clin Oncol 16: 1054 – 1059.

Schrijvers D, Van Herpen C, Kerper J, Joossens E, Le Bauder G, Castelijns J, Vermorken J (1999) Phase I–II study with docetaxel (D), cisplatin (C) and 5-fluorouracil (5-FU) in patients (PTS) with locally advanced inoperable squamous cell carcinoma of the head and neck (SCCHN). Proc Am Soc Clin Oncol 18: 1524.

Schrijvers D, Vermorken JB (2000) Role of taxoids in head and neck cancer. Oncologist 5: 199 – 208.

Sommer K, Peters SO, Robins RH, Raap M, Wiedemann GJ, Remmert S, Sieg P, Bittner G, Fereyand T (2001) A preclinical model for experimental chemotherapy of human head and neck cancer. Int J Oncol 18: 1145 – 1149.
Specht L, Larsen SK, Hansen HS (2000) Phase II study of docetaxel and cisplatin in patients with recurrent or disseminated squamous-cell carcinoma of the head and neck. *Ann Oncol* 11: 845 – 849

Tishler R, Colevas AD, Norris CM, Lamb C, Nixon A, Lake-Willeutt B, Costello R, Case MA, Adak S, Busse PM, Posner MR (2002) A phase I/II trial of concurrent docetaxel and once daily radiation after induction chemotherapy in patients with poor prognosis squamous cell cancer of the head and neck. *Cancer* 95: 1427 – 1481

Tubiana-Mathieu N, Genet D, Cupissol D (2000) Final results of phase II study of patients (pts) with metastatic or recurrent squamous cell carcinoma of the head and neck (SCCHN) treated with docetaxel (D) and 5-fluorouracil (5-FU). *Proc Am Soc Clin Oncol* 19: 1656

Varveris HC, Mazonakis M, Prassopoulos P, Damilakis J, Papadakis H, Skoulakis H, Velegrakis G, Hatziimanolis P, Manios A, Haldeopoulos D, Mavroudakis D, Geogroulias V, Kouroussis G, Vlachonikolis J, Gourtsoiannis N (1999) Concurrent hyperfractionated (b.i.d.) irradiation and docetaxel + cisplatinum chemotherapy for stage II–IV squamous cell carcinoma of the head and neck. *Proc Am Soc Clin Oncol* 18: 1707

Vokes EE, Kies M, Haraf DJ, Mick R, Moran WJ, Kozloff M, Mittal B, Pelzer H, Wenig B, Panje W (1995) Induction chemotherapy followed by concomitant chemoradiotherapy for advanced head and neck cancer: impact on the natural history of the disease. *J Clin Oncol* 13: 876 – 883

Vokes EE, Schilsky RL, Weichselbaum RR, Kozloff MK, Panje WR (1990) Induction chemotherapy with cisplatin, fluorouracil, and high-dose leucovorin for locally advanced head and neck cancer: a clinical and pharmacologic study. *J Clin Oncol* 8: 241 – 247