Experimental study of bifurcations in a parametrically forced magnetic pendulum

Sang-Yoon Kim, * Seung-Ho Shin, Jaichul Yi, and Chi-Woong Jang

Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea

Abstract

An experimental study of bifurcations associated with stability of stationary points (SP’s) in a parametrically forced magnetic pendulum and a comparison of its results with numerical results are presented. The critical values for which the SP’s lose or gain their stability are experimentally measured by varying the two parameters Ω (the normalized natural frequency) and A (the normalized driving amplitude). It is observed that, when the amplitude A exceeds a critical value, the normal SP with θ = 0 (θ is the angle between the permanent magnet and the magnetic field) becomes unstable either by a period-doubling bifurcation or by a symmetry-breaking pitchfork bifurcation, depending on the values of Ω. However, in contrast with the normal SP the inverted SP with θ = π is observed to become stable as A is increased above a critical value by a pitchfork bifurcation, but it also destabilizes for a higher critical value of A by a period-doubling bifurcation. All of these experimental results agree well with numerical results obtained using the Floquet theory.

PACS numbers: 05.45.+b, 03.20.+i

*Electronic address: sykim@cc.kangwon.ac.kr
I. INTRODUCTION

We consider a permanent magnet of dipole moment \(m \) placed in a spatially uniform magnetic field \(B \). Its motion can be described by a second-order nonautonomous ordinary differential equation,

\[
I \ddot{\theta} + b \dot{\theta} + m(B_{DC} + B_{AC} \sin \omega t) \sin \theta = 0,
\]

where the overdot denotes the differentiation with respect to time, \(\theta \) is the angle between the magnet and the magnetic field, \(I \) is the moment of inertia about a rotation axis, \(b \) is the damping parameter, \(B_{DC} \) is the steady DC component of \(B \), and \(B_{AC} \) and \(\omega \) are the amplitude and frequency of the sinusoidally time-varying AC component of \(B \), respectively.

Making the normalization \(\omega t \rightarrow 2\pi t \) and \(\theta \rightarrow 2\pi x \), we have

\[
\ddot{x} + 2\pi \gamma \dot{x} + 2\pi (\Omega^2 + A \sin 2\pi t) \sin 2\pi x = 0,
\]

where \(\omega_0 = \sqrt{\frac{mB_{DC}}{I}} \), \(\Omega = \frac{\omega_0}{\omega} \), \(\gamma = \frac{b}{I\omega} \), and \(A = \frac{mB_{AC}}{I\omega^2} \). Note that this is just a normalized equation of motion for the parametrically forced gravitational pendulum (GP) with a vertically oscillating support [4–9]. Hence this magnetic system can be taken as a model of the parametrically forced pendulum equation. Hereafter we will call this magnetic oscillator a parametrically forced magnetic pendulum (MP).

The parametrically forced pendulum, albeit simple looking, shows a richness in its dynamical behaviors. As the normalized driving amplitude \(A \) is increased, transitions from periodic attractors to chaotic attractors and vice versa, coexistence of different attractors, transient chaos, multiple period-doubling transitions to chaos, and so on have been numerically found [4–9]. Some of them have also been observed in real experiments on the parametrically forced MP [4–9] and GP [8,9]. However, so far only the case of \(\Omega = 0 \) (i.e., the case \(B_{DC} = 0 \)) has been studied in the experiments on the MP.

In this paper, we study experimentally the bifurcations associated with stability of the SP’s in the parametrically forced MP by varying the normalized natural frequency \(\Omega \) and
the normalized driving amplitude A, and then compare the experimental results with the numerical results obtained using the Floquet theory [10]. We first note that the MP has two SP’s. One is the “normal” SP with $(x, \dot{x}) = (0, 0)$, and the other one is the “inverted” SP with $(x, \dot{x}) = (\frac{1}{2}, 0)$. For the case of the “unforced” simple MP (with $A = 0$), the normal SP is stable, while the inverted SP is unstable. However, as A is increased above a critical value, the normal SP loses its stability. Using the Floquet theory, bifurcations occurring at such critical values have been numerically studied by one of us (Kim) and Lee [7]. In contrast to the normal SP, the inverted SP gains its stability when A exceeds a critical value [11–15]. We also study numerically bifurcations associated with stability of the inverted SP using the Floquet theory for a comparison with the experimental results.

This paper is organized as follows. We first explain the experimental setup for the parametrically forced MP in Sec. II. Bifurcations of the two SP’s are then experimentally investigated in Sec. III. It is observed that as A is increased beyond a critical value, the normal SP loses its stability either by a period-doubling bifurcation or by a symmetry-breaking pitchfork bifurcation, depending on the values of Ω. For the case of the period-doubling bifurcation, a new stable symmetric orbit with period 2 is born, while for the case of the symmetry-breaking pitchfork bifurcation a conjugate pair of new stable asymmetric orbits with period 1 appears. In contrast with the normal SP, the inverted SP is observed to gain its stability when A exceeds a 1st critical value A^*_1 by a pitchfork bifurcation, but it also destabilizes for a higher 2nd critical value A^*_2 of A by a period-doubling bifurcation. Thus the inverted SP becomes stable in the interval between A^*_1 and A^*_2. Our experimental data shows a good agreement between the experimental and numerical results. Finally, Sec. IV gives a summary.

II. EXPERIMENTAL SETUP

An exploded view of the experimental apparatus is shown in Fig. I. The physical MP consists of a permanent bar magnet, an aluminum damping plate, and a code wheel, which
are coaxially attached to a rotation axis. This MP shows rich dynamical behaviors in a spatially uniform magnetic field B, generated by Helmholtz coils. Each component of the apparatus is explained in some details below.

A permanent bar magnet, glued to a rotation axis guided by a small ball in the lowest part and by a tiny pin in the highest part, is placed in the center of two sets of Helmholtz coils, producing the magnetic field B perpendicular to the rotation axis. The number of turns N and the radius R for a large set of Helmholtz coils are $N = 130$ and $R = 10.8$ cm, while they are $N = 144$ and $R = 5.8$ cm for a smaller set of Helmholtz coils. The large set of Helmholtz coils is given a direct current I_{DC} to supply a steady DC component B_{DC} of B. On the other hand, the smaller set of Helmholtz coils, which is nested inside the large set and driven by a Pasco Model CI-6552A AC power amplifier, provides a sinusoidally time-varying AC component of B with amplitude B_{AC} and frequency ω. This amplifier can handle currents up to 1 A. Since higher currents are necessary in some range of Ω, we also use a current booster to increase the current up to 2 A.

We take into account the effect of the normal component $B_{E,n}$ of the Earth’s magnetic field B_E perpendicular to the rotation axis, and align both the DC and AC components of the applied magnetic field B parallel to $B_{E,n}$. The angle of the permanent bar magnet is experimentally measured from this aligned direction (i.e., the direction of $B_{E,n}$). Since the effective DC component B_{eff} of the total magnetic field is given by $B_{eff} = B_{DC} + B_{E,n}$, the natural frequency ω_0 in Eq. (2) becomes $\omega_0 = \sqrt{m/I B_{eff}}$, where $m/I = 2.542$ gauss$^{-1}$ s$^{-2}$ and $B_{E,n} = 0.223$ gauss.

A damping force proportional to the angular velocity can be supplied by an eddy current brake. Such eddy-current damping is adjusted by controlling the separation between the aluminum damping plate and the horseshoe magnet with a micrometer screw. It is also possible to determine a damping parameter k ($\equiv b/2I$) and the natural frequency ω_0 by fitting a sampled time-series $\theta(t)$ for the unforced case of $B_{AC} = 0$ to an equation, $\theta(t) = C e^{-kt} \cos(\sqrt{\omega_0^2 - k^2} t + \delta)$ (C and δ are some constants), which is just the angle in the case of the underdamped motion of the unforced MP for small angular displacements.
For data acquisition and experimental control, we use commercial products, “Rotary Motion Sensor” and “Signal Interface,” manufactured by the Pasco Scientific. A Pasco Model CI-6538 rotary motion sensor set consists of a code wheel with 1440 slots (i.e., a disk with angular code in the form of sectors which are pervious or impervious to light) and an encoder module containing a light-emitting diode (LED) and two photodiodes with signal-processing circuitry. As the code wheel moves, the light signal emitted from the LED is interrupted by the slots and electrically encoded. Thus a code wheel with 1440 slots can generate raw data with a resolution of $\Delta \theta = 0.004$ rad. A personal computer equipped with a Pasco Model CI-6560 signal interface unit analyses the signals from the rotary motion sensor and provides an easy-to-use data set of $(\theta, \dot{\theta})$ at a chosen sampling rate. It also performs a convenient experimental control.

III. BIFURCATIONS OF THE NORMAL AND INVERTED SP’S

In this section we first analyse the bifurcations associated with stability of the SP’s in the parametrically forced MP, using the Floquet theory. The experimental results for the cases of the normal and inverted SP’s are then presented and compared with the numerical results.

A. Bifurcation analysis based on the Floquet theory

The normalized second-order ordinary differential equation (2) is reduced to two first-order ordinary differential equations:

$$\dot{x} = y, \quad (3a)$$

$$\dot{y} = -2\pi \gamma y - 2\pi (\Omega_0^2 + A \sin 2\pi t) \sin 2\pi x. \quad (3b)$$

These equations have an inversion symmetry S, since the transformation

$$S : x \rightarrow -x, \ y \rightarrow -y, \ t \rightarrow t, \quad (4)$$
leaves Eq. (3) invariant. If an orbit $z(t) \equiv (x(t), y(t))$ is invariant under S, it is called a symmetric orbit. Otherwise, it is called an asymmetric orbit and has its “conjugate” orbit $S\hat{z}(t) = (−x(t), −y(t))$.

The Poincaré maps of an initial point $z_0 \equiv (x(0), y(0))$ can be computed by sampling the orbit points z_m at the discrete time $t = m$, where $m = 1, 2, 3, \ldots$. We call the transformation $z_m \rightarrow z_{m+1}$ the Poincaré (time-1) map, and write $z_{m+1} = P(z_m)$. Note that the normal and inverted SP’s of the parametrically forced MP, denoted by $\hat{z}_N \equiv (0, 0)$ and $\hat{z}_I \equiv (\frac{1}{2}, 0)$, respectively, are the fixed points (FP’s) of the Poincaré map P [i.e., $P(\hat{z}) = \hat{z}$ for $(\hat{z} = \hat{z}_N, \hat{z}_I)$] with period 1.

Here we investigate bifurcations associated with stability of the two normal and inverted FP’s of P. The linear stability of an FP is determined from the linearized-map matrix DP of P at \hat{z}. Using the Floquet theory [10], we obtain the matrix DP by integrating the linearized differential equations for small perturbations as follows. Consider an infinitesimal perturbation $[\delta x(t), \delta y(t)]$ to an SP. Linearizing Eq. (3) about the SP, we obtain

$$
\begin{pmatrix}
\delta \dot{x} \\
\delta \dot{y}
\end{pmatrix}
= J(t)
\begin{pmatrix}
\delta x \\
\delta y
\end{pmatrix},
$$

(5)

where

$$
J(t) = \begin{pmatrix}
0 & 1 \\
-4\pi^2(\Omega^2 + A \sin 2\pi t) \cos 2\pi \hat{x} & -2\pi \gamma
\end{pmatrix}.
$$

(6)

Here $\hat{x} = 0$ and $\frac{1}{2}$ for the normal and inverted SP’s, respectively.

Note that J is a 2×2 1-periodic matrix [i.e., $J(t + 1) = J(t)$]. Let $W(t) = [w^1(t), w^2(t)]$ be a fundamental solution matrix with $W(0) = I$. Here $w^1(t)$ and $w^2(t)$ are two independent solutions expressed in column vector forms, and I is the 2×2 unit matrix. Then a general solution of the 1-periodic system has the following form

$$
\begin{pmatrix}
\delta x(t) \\
\delta y(t)
\end{pmatrix}
= W(t)
\begin{pmatrix}
\delta x(0) \\
\delta y(0)
\end{pmatrix}.
$$

(7)

Substitution of Eq. (7) into Eq. (3) leads to an initial-value problem in determining $W(t)$:
\[\dot{W}(t) = J(t)W(t), \quad W(0) = I. \tag{8} \]

It is clear from Eq. (7) that \(W(1) \) is just the linearized-map matrix \(DP \). Hence the matrix \(DP \) can be calculated through integration of Eq. (8) over the period 1.

The characteristic equation of the linearized-map matrix \(M(\equiv DP) \) is

\[\lambda^2 - \text{tr}M \lambda + \det M = 0, \tag{9} \]

where \(\text{tr}M \) and \(\det M \) denote the trace and determinant of \(M \), respectively. The eigenvalues, \(\lambda_1 \) and \(\lambda_2 \), of \(M \) are called the Floquet (stability) multipliers of the FP. As shown in [17], \(\det M \) is calculated from a formula

\[\det M = e^{\int_0^1 \text{tr}J dt}. \tag{10} \]

Substituting the trace of \(J \) (i.e., \(\text{tr}J = -2\pi\gamma \)) into Eq. (10), we obtain

\[\det M = e^{-2\pi\gamma}. \tag{11} \]

Note that \(M \) is just a \(2 \times 2 \) matrix with a constant Jacobian determinant (less than unity). Hence the pair of Floquet multipliers of an FP lies either on the circle of radius \(e^{-\pi\gamma} \) or on the real axis in the complex plane. The FP is stable only when both Floquet multipliers lie inside the unit circle. We first note that they never cross the unit circle except at the real axis (i.e., they never have complex values with moduli larger than unity), and hence Hopf bifurcations do not occur. Consequently, the FP can lose its stability only when a Floquet multiplier \(\lambda \) decreases (increases) through \(-1 \) (1) on the real axis.

When a Floquet multiplier \(\lambda \) decreases through \(-1 \), the FP loses its stability via period-doubling bifurcation, which leads to the birth of a new stable symmetric orbit with period 2. On the other hand, when a Floquet multiplier \(\lambda \) increases through 1, it becomes unstable via pitchfork bifurcation, which results in the birth of a conjugate pair of new stable asymmetric orbits with period 1. Since the newly-born orbits are asymmetric ones, the pitchfork bifurcation is also called a symmetry-breaking bifurcation. For more details on bifurcations, refer to Ref. [18].
The stability boundaries of the normal and inverted SP’s in some ranges of the Ω-A plane are determined through numerical calculations of their Floquet multipliers λ’s. The absolute value of λ at such stability boundaries is one (i.e., $|\lambda| = 1$). If $\lambda = -1$, then the boundary is a period-doubling bifurcation line. Otherwise, it is a symmetry-breaking pitchfork bifurcation line. We also obtain numerically the bifurcation diagrams and the phase-flow and Poincaré-map plots at some chosen parameter values for clear visual representation of the bifurcations. All of these numerical results are given in the next two subsections (see Figs. 2-7) for a comparison with the experimental results.

B. Experimental results for the case of the normal SP

In all the experiments for the normal and inverted SP’s, we fix the driving frequency ω in Eq. (1) and the normalized damping parameter γ in Eq. (2) as $\omega = 2\pi$ and $\gamma = 0.1$, respectively. We then control the normalized natural frequency and driving amplitude, Ω and A, in Eq. (2) by varying B_{DC} and B_{AC}, respectively and study the bifurcations of the two SP’s.

We consider two ranges of Ω for the normal SP, $I : 0.2 \leq \Omega \leq 0.5$ and $II : 0.8 \leq \Omega \leq 1.025$. For each chosen value of Ω, we increase the amplitude A and observe whether the SP is stable or not. In order to experimentally determine the stability of the SP, we release the MP from rest at a small initial angle displaced from the SP. If the SP is stable, then the subsequent motion damps toward the SP. Otherwise, it deviates from the SP. Thus we measure experimentally a critical value A_{exp}^* of A, above which the SP is unstable.

We first study the bifurcations of the normal SP in the 1st range I of Ω. As an example, consider the case of $\Omega = 0.4$. With increasing A, we carry out the experiments, and measure the critical value A_{exp}^*. It is observed that for $A > A_{\text{exp}}^*$, the SP becomes unstable through a period-doubling bifurcation, giving rise to the birth of a new stable symmetric period-doubled orbit. For visual representation of the bifurcation, we obtain the bifurcation diagram and the phase-flow and Poincaré-map plots below.
For phase representation, we acquire a data set of \([\theta(t), \dot{\theta}(t)]\) at a fixed sampling rate 20 Hz and convert it into a normalized set of \((x, y)\). This whole set of the data is used for a phase-flow plot, while a partial set of the data chosen at integral multiples of the external driving period \(T (= 2\pi)\) [i.e., \(t = nT (n = 0, 1, 2, \ldots)\)] is used for a Poincaré-map plot and for a bifurcation diagram.

The bifurcation diagram for \(\Omega = 0.4\) is shown in Fig. 2(a). The data obtained through numerical calculations are also given for a comparison with the experimental results. Note that for the bifurcation diagram, the experimental data represented by the solid circles agree well with the numerical data denoted by the solid lines. For reference, the critical values obtained through experiments and numerical calculations are \(A_{exp}^* = 0.215\) and \(A_{nu}^* = 0.198131\ldots\), respectively. As \(A\) is increased above the critical value \(A^*\), the normal SP loses its stability via period-doubling bifurcation, and a new stable symmetric period-doubled orbit appears. Figure 2(b) shows the phase-flow and Poincaré-map plots of the symmetric period-doubled orbit for \(A = 0.23\). The experimental data for the phase flow are represented by the small solid circles, while the two larger solid circles denote the experimental data for the Poincaré map. These experimental data are also in a good agreement with the numerically-computed data for the phase flow represented by the solid line and for the Poincaré map denoted by the two large circles.

We also perform the above experiments for many other values of \(\Omega\) in the 1st range \(I\) and thus measure the critical values \(A_{exp}^*\)'s. The stability diagram of the normal SP is shown in Fig. 3. The experimental data for \(A_{exp}^*\) are represented by the solid circles, and they seem to lie on a smooth stability boundary curve. For a comparison with the experimental data, the stability boundary of the SP numerically calculated using the Floquet theory is also denoted by the solid line in Fig. 3. This stability boundary is just a period-doubling bifurcation line at which a Floquet multiplier of the SP is \(\lambda = -1\). The period-doubling bifurcation line determined through numerical computations lies a little below that experimentally determined. That is, the value of \(A_{exp}^*\) is somewhat higher than that of \(A_{nu}^*\).
This is what one would expect, because in real experiments there exists a frictional force due to a contact between the rotation axis and its guiders (ball and pin). As previously noted [8,9], one of the main effects of this frictional force is to make the origin of the phase plane (i.e., the normal SP) stable up to higher values of the external driving amplitude than the numerically-calculated critical value A_{nu}^*. We now study the bifurcations of the normal SP in the 2nd range II of Ω (i.e., $0.8 \leq \Omega \leq 1.025$). As in the above 1st range I of Ω, we increase the amplitude A and measure a critical value A_{exp}^*, beyond which the SP becomes unstable, by releasing the MP from rest at a small initial angle displaced from the SP. However, in contrast to the 1st range of Ω the normal SP is observed to lose its stability through a symmetry-breaking pitchfork bifurcation for $A = A_{exp}^*$, which leads to the birth of a conjugate pair of new stable asymmetric orbits with period 1.

As an example, consider the case of $\Omega = 0.95$. The bifurcation diagram for this case is shown in Fig. 4(a). The normal SP denoted by the solid circles is observed to become unstable through a symmetry-breaking pitchfork bifurcation for $A_{exp}^* = 1.25$. For $A > A_{exp}^*$, a pair of stable asymmetric orbits of period 1 appears. One is represented by the solid circles, while its conjugate orbit is denoted by the open circles. Figure 4(b) shows the phase-flow and Poincaré-map plots of a conjugate pair of symmetry-broken orbits of period 1 for $A = 1.4$. The small solid circles denote the phase flow of an asymmetric “heart-shaped” orbit, while the small open circles represent the phase flow of its conjugate “inverted heart-shaped” orbit. The data for the Poincaré maps of the two symmetry-broken orbits are also denoted by the larger solid and open circles, respectively. This symmetry-broken case is in contrast to the symmetry-preserved case [see Fig. 2(b)] in the 1st range of Ω. For a comparison with the experimental results, the data obtained by numerical computations are also given in Fig. 4. As A is increased above a critical value $A_{nu}^* (= 1.174209 \cdots)$, the normal SP denoted by the solid line becomes unstable through a symmetry-breaking pitchfork bifurcation, giving rise to the birth of a conjugate pair of symmetry-broken orbits of period 1. One asymmetric orbit is represented by the solid line, while the other one is denoted by the dotted line.
As in the experimental case, the data for the Poincaré maps of the two asymmetric orbits are denoted by the large solid and open circles, respectively. All of these experimental and numerical results seem to agree well.

We also measure the critical values A^*_{\exp}’s for many other values of Ω in the 2nd range II. Figure 5 shows the stability diagram for this case. The experimental data for A^*_{\exp} are denoted by the solid circles, while the stability boundary numerically computed using the Floquet theory is represented by the solid line. In contrast to the 1st range of Ω, the stability boundary is a symmetry-breaking pitchfork bifurcation line at which a Floquet multiplier of the SP is $\lambda = 1$. We also note that as in the case of the 1st range I, the value of A^*_{\exp} is somewhat higher than that of A^*_{nu} because of the frictional force between the rotation axis and its guiders.

C. Experimental results for the case of the inverted SP

In this subsection, we study the bifurcations associated with stability of the inverted SP by increasing A in a range of $0.2 \leq \Omega \leq 0.5$. In contrast to the normal SP, the inverted SP is observed to gain its stability when a 1st critical value A^*_1 of A is exceeded by a subcritical pitchfork bifurcation. However, as A is further increased, the stabilized inverted SP is also observed to lose its stability for a 2nd critical value A^*_2 of A through a period-doubling bifurcation. Thus the inverted SP becomes stable in the interval between A^*_1 and A^*_2.

As an example, we consider the case of $\Omega = 0.2$. The bifurcation diagram for this case is shown in Fig. 6(a). The unstable inverted SP denoted by the open circles is observed to become stable when A is increased above a 1st critical value $A^*_{\exp,1}$ ($= 0.39$). Using the Floquet theory, the unstable inverted SP denoted by the dashed line is also numerically found to gain its stability for $A > A^*_{nu,1}$ ($= 0.289108 \cdots$) by a subcritical pitchfork bifurcation, giving rise to the birth of a conjugate pair of unstable asymmetric orbits with period 1, denoted by the dashed lines. However, unfortunately the two symmetry-broken orbits born for this subcritical case cannot be experimentally observed, because they are unstable ones.
This is in contrast to the supercritical bifurcations occurring for the normal SP in the 2nd range II of Ω (for a supercritical case, a pair of stable asymmetric orbits is born, which can be experimentally observed as shown in Fig. 4). As A is further increased from $A_{\text{exp},1}^*$, the stabilized inverted SP denoted by the solid circles is observed to lose its stability by a period-doubling bifurcation when a second critical value $A_{\text{exp},2}^*$ ($= 0.567$) is exceeded. For $A > A_{\text{exp},2}^*$, a stable symmetric “butterfly-shaped” orbit of period 2 appears. Small solid circles and the two larger solid circles in Fig. 6(b) represent the phase flow and Poincaré map of the symmetric orbit of period 2 for $A = 0.61$, respectively. It is also numerically found that the stabilized inverted SP denoted by the solid line becomes unstable for a second critical value $A_{\text{nu},2}^*$ ($= 0.529159 \cdots$) through a period-doubling bifurcation, giving rise to the birth of a symmetric orbit of period 2 denoted by the solid line.

We also carry out the above experiments for many other values of Ω, and thus measure the 1st and 2nd critical values, $A_{\text{exp},1}^*$’s and $A_{\text{exp},2}^*$’s. Figure 4 shows the stability diagram of the inverted SP. The experimental data for $A_{\text{exp},1}^*$ and $A_{\text{exp},2}^*$ are represented by the open and solid circles, respectively. The inverted SP is observed to become stable in the interval between $A_{\text{exp},1}^*$ and $A_{\text{exp},2}^*$. Note also that the width of this interval becomes smaller as Ω is increased. Hence the stabilization of the inverted SP can be more easily observed for small values of Ω, compared to the cases of high Ω-values. For a comparison with the experimental results, numerical data obtained using the Floquet theory are also given in Fig. 5. The lower stability boundary $A_{\text{nu},1}^*$ denoted by the dashed line is a subcritical pitchfork bifurcation line, while the upper stability boundary $A_{\text{nu},2}^*$ denoted by the solid line is a period-doubling bifurcation line. We note that the agreement between the experimental and numerical results becomes better as Ω is decreased.

IV. SUMMARY

Bifurcations of the normal and inverted SP’s in the parametrically forced MP are experimentally studied by varying the two parameters Ω and A. As A is increased above a critical
value, the normal SP is observed to become unstable either by a period-doubling bifurcation or by a symmetry-breaking pitchfork bifurcation, depending on the values of \(\Omega \). In the 1st range \(I \) of \(\Omega \) (i.e., \(0.2 \leq \Omega \leq 0.5 \)), a new stable symmetric orbit with period 2 appears via period-doubling bifurcation, while a conjugate pair of new stable asymmetric orbits with period 1 is born via symmetry-breaking pitchfork bifurcation in the 2nd range \(II \) of \(\Omega \) (i.e., \(0.8 \leq \Omega \leq 1.025 \)). However, in contrast to this normal SP, the inverted SP is observed to become stable when \(A \) is increased above a 1st critical value \(A^*_1 \) by a subcritical pitchfork bifurcation. Unfortunately a pair of asymmetric orbits of period 1 born for this subcritical case cannot be experimentally observed, because they are unstable ones. As \(A \) is further increased, the stabilized inverted SP is also observed to lose its stability for a 2nd critical value \(A^*_2 \) by a period-doubling bifurcation, giving rise to the birth of a new stable symmetric period-doubled orbit. Thus the inverted SP becomes stable in the interval between \(A^*_1 \) and \(A^*_2 \). When all of these experimental results for the two SP's are compared with the numerical results obtained using the Floquet theory, they seem to agree well.

ACKNOWLEDGMENTS

This work was supported by the Basic Science Research Institute Program, Ministry of Education, Korea, Project No. BSRI-96-2401.
REFERENCES

[1] V. Croquette and C. Poitou, J. Phys. Lett. 42, 537 (1981).

[2] H. Meissner and G. Schmidt, Am. J. Phys. 54, 800 (1986).

[3] K. Briggs, Am. J. Phys. 55, 1083 (1987).

[4] V.I. Arnold, *Mathematical Methods of Classical Mechanics* (Springer-Verlag, New York, 1978), p. 113.

[5] J.B. McLaughlin, J. Stat. Phys. 24, 375 (1981).

[6] R.W. Leven and B.P. Koch, Phys. Lett. A 86, 71 (1981).

[7] S.-Y. Kim and K. Lee, Phys. Rev. E 53, 1579 (1996).

[8] B.P. Koch, R.W. Leven, B. Pompe and C. Wilke, Phys. Lett. A 96, 219 (1983).

[9] R.W. Leven, B. Pompe, C. Wilke and B.P. Koch, Physica D 16, 371 (1985).

[10] J. Gukenheimer and P. Holmes, *Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields* (Springer-Verlag, New York, 1983), p. 24.

[11] J.J. Stoker, *Nonlinear Vibrations in Mechanical and Electrical Systems* (Interscience Publishers, Inc., New York, 1950), p. 189.

[12] H.C. Corben and P. Stehle, *Classical Mechanics* (Wiley, New York, 1960), 2nd ed., p. 66.

[13] P.L. Kapitza, in *Collected Papers by P.L. Kapitza*, edited by D. Ter Haar (Pergamon, London, 1965) Vol.2, p. 714.

[14] V.I. Arnold, *Mathematical Methods of Classical Mechanics* (Springer-Verlag, New York, 1978), p. 121.

[15] J.A. Blackburn, H.J.T. Smith, and N. Grønbech-Jensen, Am. J. Phys. 60, 903 (1992); H.J.T. Smith and J.A. Blackburn, Am. J. Phys. 60, 909 (1992).
By decreasing the value of B_{DC} from some positive value, we first get a data set of $\omega_0(B_{DC})$ for several values of B_{DC} through the fitting procedure described in the 4th paragraph in Sec. [1]. We can then obtain the values of $B_{E,n}$ and m/I by fitting the experimental data set of $\omega_0(B_{DC})$ to the equation, $\omega_0 = \sqrt{\frac{m}{I}(B_{DC} + B_{E,n})}$.

[16] S. Lefschetz, *Differential Equations: Geometric Theory* (Dover Publications, Inc., New York, 1977), p. 60.

[17] J. Guenheimer and P. Holmes, *Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields* (Springer-Verlag, New York, 1983), Sec. 3.5.
FIGURES

FIG. 1. Exploded view of a parametrically forced MP. Labeled components are the aluminum damping plate (A), the horseshoe magnet controlled by a micrometer (B), the code wheel (C), the encoder module (D), the Helmholtz coil for production of a steady DC component of a spatially uniform magnetic field \(B (E) \), the Helmholtz coil for production of a sinusoidally time-varying AC component of \(B (F) \) and the permanent bar magnet (G).

FIG. 2. Period-doubling bifurcation of the normal SP for \(\Omega = 0.4 \). As shown in the bifurcation diagram (a), the normal SP denoted by the solid circles becomes unstable for a critical value \(A_{\exp}^* (= 0.215) \) by a period-doubling bifurcation, which results in the birth of a symmetric period-doubled orbit denoted by the solid circles. The experimental data for the phase flow for \(A = 0.23 \) are denoted by the small solid circles in (b). Numerical data denoted by the solid lines are also given in both (a) and (b). The data for the Poincaré maps in (b) are represented by the two large solid circles for both the experimental and numerical cases. For more details see the text.

FIG. 3. Stability diagram of the normal SP in the 1st range \(I \) of \(\Omega \) (i.e., \(0.2 \leq \Omega \leq 0.5 \)). The experimental data for the critical values \(A_{\exp}^* \)'s, above which the SP becomes unstable, are represented by the solid circles. The stability boundary numerically determined using the Floquet theory is denoted by the solid line, and it is just a period-doubling bifurcation line.
FIG. 4. Symmetry-breaking pitchfork bifurcation of the normal SP for $\Omega = 0.95$. For a critical value $A_{\text{exp}}^* (= 1.25)$, the normal SP denoted by the solid circles becomes unstable by a symmetry-breaking pitchfork bifurcation, as shown in the bifurcation diagram (a). As a result of the bifurcation, a conjugate pair of asymmetric orbits of period 1 appears; one is denoted by the solid circles, while the other one is represented by the open circles. The experimental data for the phase flow of the two symmetry-broken orbits for $A = 1.4$ are denoted by the small solid and open circles in (b), respectively. Numerical data for the two symmetry-broken orbits are also given in both (a) and (b); one is denoted by the solid line, while the other one is represented by the dotted line. The data for the Poincaré maps in (b) are represented by the large solid and open circles for both the experimental and numerical cases. For more details see the text.

FIG. 5. Stability diagram of the normal SP in the 2nd range II of Ω (i.e., $0.8 \leq \Omega \leq 1.025$). The experimental data for the critical values A_{exp}^*’s, above which the SP becomes unstable, are represented by the solid circles. The stability boundary numerically determined using the Floquet theory is denoted by the solid line, and it is just a symmetry-breaking pitchfork bifurcation line.

FIG. 6. Bifurcations of the inverted SP for $\Omega = 0.2$. The bifurcation diagram for $\Omega = 0.2$ is shown in (a). In contrast to the normal SP, the inverted SP denoted by the open circles is observed to become stable as A is increased above a 1st critical value $A_{\text{exp},1}^* (= 0.39)$. However, as A is further increased, the stabilized inverted SP denoted by the solid circles is also observed to lose its stability for a 2nd critical value $A_{\text{exp},2}^* (= 0.567)$ through a period-doubling bifurcation, giving rise to the birth of a symmetric period-doubled orbit denoted by the solid circles. The experimental data for the phase flow of the period-doubled orbit for $A = 0.61$ are denoted by the small solid circles in (b). Numerical data denoted by the lines are also given in both (a) and (b); a stable orbit is denoted by a solid line, while an unstable orbit is represented by a dashed line. The data for the Poincaré maps in (b) are represented by the two large solid circles for both the experimental and numerical cases. For more details see the text.
FIG. 7. Stability diagram of the inverted SP in the range of $0.2 \leq \Omega \leq 0.5$. The experimental data for the 1st and 2nd critical values, $A_{\text{exp},1}^*$ and $A_{\text{exp},2}^*$, are represented by the open and solid circles, respectively. The lower and upper stability boundaries, numerically computed using the Floquet theory and denoted by the dashed and solid lines, are the symmetry-breaking pitchfork and period-doubling bifurcation lines, respectively.
Fig. 1
(S. -Y. Kim, RR-E)
Fig. 2
(S.-Y. Kim, PR-E)
Fig. 3
(S.-Y. Kim, PR-E)
Fig. 4
(S.-Y. Kim, PR-E)
Fig. 5
(S.-Y. Kim, PR-E)
Fig. 6
(S.-Y. Kim, PR-E)
Fig. 7
(S.-Y. Kim, PR-E)