STERILE NEUTRINO DARK MATTER AND LEPTOGENESIS IN LEFT-RIGHT SYMMETRIC THEORIES

David Dunsky\(^1\),\(^2\)
Lawrence J. Hall\(^1\),\(^2\)
Keisuke Harigaya\(^3\) (speaker)

\(^1\)Department of Physics, University of California, Berkeley, California 94720, USA
\(^2\)Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
\(^3\)School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

Left-Right symmetric theories solve the strong CP problem and explain the small Higgs quartic coupling at high energy scales via the Higgs Parity mechanism, which forces the Higgs quartic coupling to vanish at the Left-Right symmetry breaking scale. They also predict three right-handed neutrinos; one may be stable and provide dark matter, and another may decay and explain the baryon asymmetry of the universe through leptogenesis. For the dark matter abundance to arise from freeze-out, the required range of the Left-Right symmetry breaking scale is \(10^{10}\) to \(10^{13}\) GeV, in remarkable agreement with the energy scale at which the Higgs quartic coupling vanishes. The allowed parameter space can be probed by the warmness of dark matter, precise measurements of the top quark mass and QCD coupling constant by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.

1 Introduction

Left-Right gauge symmetry, \(SU(2)_L \times SU(2)_R\), combined with space-time parity, can solve the strong CP problem.\(^1\),\(^2\) We consider a theory with the minimal Higgs content, where \(SU(2)_{R,L}\) is broken by an \(SU(2)_{R,L}\) doublet Higgs, \(H_{R,L}\). In contrast to theories with triplets and bifundamentals, the theory can solve the strong CP problem without introducing extra symmetries.\(^3\),\(^4\),\(^5\) Furthermore, the Higgs Parity mechanism\(^5\) can force the Standard Model (SM) Higgs quartic coupling to vanish at the Left-Right symmetry breaking scale, explaining the small Higgs quartic coupling at high energy scales.

Left-Right symmetry also predicts three right-handed neutrinos that are produced by gauge boson exchange in the early universe. One right-handed neutrino may be stable enough to be dark matter (DM), and the others may decay and produce the baryon asymmetry via leptogenesis.\(^6\) In this proceeding, we discuss a freeze-out scenario where the right-handed neutrinos are in thermal equilibrium with the SM particles in the early universe and later decouple. Right-handed neutrino DM would be over-produced, but the out-of-equilibrium decay of the other two right-handed neutrinos dilutes the DM.\(^7\),\(^8\),\(^9\),\(^10\) We find that the DM abundance and successful natural leptogenesis require the Left-Right symmetry breaking scale to be in the range \(10^{10}\) to \(10^{13}\) GeV, which agrees with the energy scale at which the Higgs quartic coupling vanishes. The remaining parameter space can be probed by the warmness of DM, precision measurements of the top quark mass and QCD coupling constant by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.
2 Left-Right symmetry and the strong CP problem

Parity symmetry can forbid the QCD θ term. In the SM, parity symmetry is explicitly broken because the W boson couples only to left-handed fermions. To impose a parity symmetry on the theory, one must introduce a new $SU(2)_R$ gauge symmetry under which the right-handed fermions are charged and a Left-Right symmetry under which $SU(2)_L$ and $SU(2)_R$ are exchanged. The resultant gauge symmetry is $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. The correction to θ from the phases of the quark mass matrix may be suppressed since the quark yukawa coupling is Hermitian and hence possesses real eigenvalues. There is a danger, however, of the Higgs fields obtaining complex field values generating a contribution to θ. This is in fact the case if the quark mass is given by the condensation of bi-fundamental scalars, and one must impose extra symmetries to forbid the physical complex field value of the bi-fundamental scalars.

This extra complexity is avoided if $SU(2)_R$ is broken by an $SU(2)_R$ doublet Higgs H_R with $\langle H_R \rangle \equiv v_R$ and $SU(2)_L$ is broken by an $SU(2)_L$ doublet Higgs H_L with $\langle H_L \rangle \equiv v$, and the quark masses are generated by dimension-five operators

$$\frac{c_q^{ij}}{M} q_i \bar{q}_j H_L H_R + \frac{c_q^{ij}}{M} q_i \bar{q}_j H_R \rangle H_R + \text{h.c.},$$

where q_i/\bar{q}_i are the left/right-handed quarks. The parity symmetry forces the coefficients $c_q^{u,d}$ to be Hermitian. The dimension-five operators may be generated by exchange of heavy Dirac fermions; see for possible gauge charges of them. It is also possible that some of the Dirac masses are small so that some of the right-handed SM fermions dominantly come from the Dirac fermions rather than the $SU(2)_R$ doublets. Since the phases of $H_{R,L}$ can be removed by gauge transformations, no θ term is generated from the quark mass matrix. The charged lepton mass is given by similar dimension-five operators.

Note that parity does not forbid phases in the quark mass matrix, and the CKM phase is readily obtained. This is in contrast to the CP solution to the strong CP problem, where the CKM phase is forbidden by the CP symmetry and must arise from spontaneous CP breaking, reintroducing the strong CP problem unless a sophisticated mechanism is introduced.

3 Right-handed neutrino dark matter

Left–Right symmetry requires right-handed partners of the three left-handed neutrinos ν_i, namely, the three right-handed neutrinos, N_i. One of them may be stable enough to be DM. The masses of the left- and right-handed neutrinos are generated by

$$\frac{c_\ell^{ij}}{2M} (\ell_i \bar{\ell}_j H_R H_R + \ell_i \bar{\ell}_j H_L H_L) - \frac{b_{ij}}{M} \ell_i \bar{\ell}_j H_R H_R + \text{h.c.},$$

where $\ell_i/\bar{\ell}_i$ are the left/right-handed leptons. Since $v_R \gg v$, the masses of right-handed neutrinos M_i are dominated by the first term. The left-handed neutrino mass is given by the second term and the combination of the first and the third term,

$$m_{ij} = \delta_{ij} \frac{v^2}{v_R} M_i - y_{ik} v M_k y_{jk} v, \quad y_{ij} \equiv b_{ij} \frac{v_R}{M}. \quad (3)$$

The second term in Eq. (3) is the see-saw contribution.

We identify N_1 with DM. The cosmological production of N_1 is as follows: The right-handed neutrinos are kept in thermal equilibrium with the SM bath at sufficiently high temperatures in the early universe by the $SU(2)_R \times U(1)_{B-L}$ gauge interaction and decouple at lower temperatures. The resultant N_1 abundance is greater than the observed DM abundance unless $M_1 < 100$ eV. Such a mass range is excluded by the Tremaine-Gunn and warmness bounds.
We assume that N_2 is long-lived, dominates the universe, and decays at a temperature T_{RH} to dilute N_1. The N_1 abundance is then

$$\frac{\Omega_{N_1}}{\Omega_{DM}} \simeq \left(\frac{M_1}{10 \text{ keV}} \right) \left(\frac{300 \text{ GeV}}{M_2} \right) \left(\frac{T_{RH}}{10 \text{ MeV}} \right). \quad (4)$$

N_1 must be cosmologically stable and N_2 sufficiently stable to decay while dominating the energy density of the universe, putting upper bounds on y_{1i} and y_{2i}. Moreover, N_1 must be light enough otherwise the required T_{RH} is below the BBN bound of 4 MeV\(^2\). In the green-shaded region, N_1 is too warm. Future observations of 21 cm lines can probe the warmness up to the green dashed line\(^3\). We discuss the red-shaded region and the red dashed line in the next section.

4 Leptogenesis from right-handed neutrinos

The decay of N_2 into ℓH_L can produce the baryon asymmetry through leptogenesis. The CP violation is provided by the interference between the tree and one-loop decay diagrams. Since y_{1i} and y_{2i} are required to be small, the quantum correction to the decay is dominated by y_{33}, and the lepton asymmetry produced per decay of N_2 is proportional to y_{33}^2. This relation provides a strong bound on the range of v_R as we will see.

In Fig. 1, we show the constraints on v_R and M_1.\(^{10}\) In the orange-shaded region, the required T_{RH} is below the BBN bound of 4 MeV. In the blue-shaded region, the decay of N_2 by W_R exchange prevents low enough T_{RH}. In the green-shaded region, N_1 is too warm. Future observations of 21 cm lines can probe the warmness up to the green dashed line. We discuss the red-shaded region and the red dashed line in the next section.
The baryon asymmetry is enhanced when $M_2 \simeq M_3$, leading to a resonance. Such a degeneracy can be explained by an approximate flavor symmetry. The symmetry is necessarily broken by the charged lepton mass, so the maximal natural degeneracy is $y^2/(8\pi^2) \simeq 10^{-6}$. With this maximal natural enhancement, the region in Fig. 1 to the right of the red-shading is consistent with the observed baryon asymmetry.

The baryon asymmetry is also enhanced if a cancellation between the two terms in m_{33} allows a larger g_{33}. Such a cancellation is natural if the dimension-five operators in Eq. (2) result from a heavy singlet fermion S with the following interactions,

$$\lambda \ell_3 S H_L + \lambda \bar{\ell}_3 S H_R + \frac{1}{2} M_S S^2 + h.c. \quad (6)$$

After integrating out S at tree-level, only one linear combination of ν_3 and N_3, which is dominantly N_3, obtains a Majorana mass and hence the SM neutrino remains massless. This can be interpreted as a cancellation between the two terms in m_{33}. The allowed parameter space, however, is not as large as that achieved by $M_2 \simeq M_3^{30}$.

5 Standard Model parameters and the Left-Right symmetry breaking scale

An intriguing feature of the $SU(2)_R \times SU(2)_L$ breaking by H_R and H_L is that the symmetry breaking scale v_R is predicted as a function of the SM parameters including the top quark mass and the QCD coupling 5,30. The scalar potential of H_R and H_L is

$$V(H_R, H_L) = -m^2 \left(|H_R|^2 + |H_L|^2\right) + \frac{\lambda}{2} \left(|H_R|^2 + |H_L|^2\right)^2 + \lambda' |H_R|^2 |H_L|^2. \quad (7)$$

We assume that m^2 is positive and much larger than v. H_R obtains a large vacuum expectation value, $m/\lambda^{1/2}$, and spontaneously breaks the Left-Right symmetry. After integrating out H_R at tree-level around this vacuum, the low energy effective potential of H_L is

$$V_{LE}(H) = \lambda' v'^2 |H_L|^2 - \lambda' \left(1 + \frac{\lambda'}{2\lambda}\right) |H_L|^4. \quad (8)$$

The hierarchy $v \ll v_R$ is obtained only if the quadratic term is small, which requires $|\lambda'| \ll 1$. Then the quartic coupling of H_L is also enforced to be very small at the energy scale v_R. Quantum corrections, dominated by renormalization group running in the SM effective field theory between v_R and v, generate a positive SM Higgs quartic coupling at the weak scale $\lambda_{SM}(v) \simeq 0.1$. From the perspective of running from low to high energy scales, the energy scale at which the SM Higgs quartic coupling nearly vanishes is the scale v_R. We call this the “Higgs Parity mechanism”. Threshold corrections to $\lambda_{SM}(v_R)$ are given in 30,33.

Since the running of λ_{SM} is determined by SM parameters, especially the top quark Yukawa and QCD coupling constants, v_R is predicted as a function of these, and vice versa. In Fig. 2, we recast the constraints of Fig. 1 into those on the top quark mass m_t and the DM mass M_1, for a fixed QCD coupling constant. Remarkably, the allowed range of v_R for N_1 DM and leptogenesis from N_2 is consistent with the observed top quark mass, $m_t = (172.76 \pm 0.30) \text{ GeV}$. The parameter space can be further probed by the warmness of DM, precision measurements of the top quark mass and QCD coupling constant by future colliders 34,35,36,37,38 and lattice computations 39, and measurement of the neutrino mass hierarchy.

6 Discussion

The lightness and stability of N_1 may be disturbed by quantum corrections from the charged fermion Yukawa couplings. These corrections are sufficiently suppressed under certain conditions on the UV completion of the dimension-five operators in Eqs. (1) and (2); see 30 for details.
Figure 2 – Constraints on the top quark mass m_t and the dark matter mass M_1.

For a low enough reheating temperature after inflation, the N_1 abundance is set by freeze-in rather than by freeze-out and dilution by N_2. See 10,30 for the analysis of this scenario in the context of Left-Right symmetry.

The Higgs parity mechanism is applicable to a variety of theories where the SM Higgs has a Z_2 partner. Such theories provide correlations between SM parameters and the proton decay rate33, the DM direct detection rate41, and gravitational waves and dark radiation42.

Acknowledgments

This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contracts DE-AC02-05CH11231 (LJH), by the National Science Foundation under grant PHY-1915314 (LJH), as well as by Friends of the Institute for Advanced Study (KH).

References

1. M. A. B. Beg and H. S. Tsao, Phys. Rev. Lett. **41**, 278 (1978)
2. R. N. Mohapatra and G. Senjanovic, Phys. Lett. B **79**, 283-286 (1978)
3. K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. **62**, 1079 (1989)
4. K. S. Babu and R. N. Mohapatra, Phys. Rev. D **41**, 1286 (1990)
5. L. J. Hall and K. Harigaya, JHEP **10**, 130 (2018) [arXiv:1803.08119 [hep-ph]].
6. M. Fukugita and T. Yanagida, Phys. Lett. B **174**, 45-47 (1986)
7. T. Asaka, M. Shaposhnikov and A. Kusenko, Phys. Lett. B **638**, 401-406 (2006) [arXiv:hep-ph/0602150 [hep-ph]].
8. F. Bezrukov, H. Hettmansperger and M. Lindner, Phys. Rev. D **81**, 085032 (2010) [arXiv:0912.4415 [hep-ph]].
9. M. Nemevsek, G. Senjanovic and Y. Zhang, JCAP **07**, 006 (2012) [arXiv:1205.0844 [hep-ph]].
10. J. A. Dror, D. Dunsky, L. J. Hall and K. Harigaya, JHEP **07**, 168 (2020) [arXiv:2004.09511 [hep-ph]].
11. R. Kuchimanchi, Phys. Rev. Lett. **76**, 3486-3489 (1996) [arXiv:hep-ph/9511376 [hep-ph]].
12. R. N. Mohapatra and A. Rasin, Phys. Rev. Lett. 76, 3490-3493 (1996) [arXiv:hep-ph/9511391 [hep-ph]].
13. A. E. Nelson, Phys. Lett. B 136, 387-391 (1984)
14. S. M. Barr, Phys. Rev. Lett. 53, 329 (1984)
15. L. Bento, G. C. Branco and P. A. Parada, Phys. Lett. B 267, 95-99 (1991)
16. P. Minkowski, Phys. Lett. B 67, 421-428 (1977)
17. T. Yanagida, Conf. Proc. C 7902131, 95-99 (1979) KEK-79-18-95.
18. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)
19. M. Gell-Mann, P. Ramond and R. Slansky, Conf. Proc. C 790927, 315-321 (1979) [arXiv:1306.4669 [hep-th]].
20. S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42, 407-410 (1979)
21. A. Boyarsky, O. Ruchayskiy and D. Iakubovskyi, JCAP 03, 005 (2009) [arXiv:0808.3902 [hep-ph]].
22. D. Gorbunov, A. Khmelnitsky and V. Rubakov, JCAP 10, 041 (2008) [arXiv:0808.3910 [hep-ph]].
23. V. K. Narayanan, D. N. Spergel, R. Dave and C. P. Ma, Astrophys. J. Lett. 543, L103-L106 (2000) [arXiv:astro-ph/0005095 [astro-ph]].
24. U. Seljak, A. Makarov, P. McDonald and H. Trac, Phys. Rev. Lett. 97, 191303 (2006) [arXiv:astro-ph/0602430 [astro-ph]].
25. V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, S. Cristiani, G. Cupani, T. S. Kim, V. D’Odorico, S. López and S. Ellison, et al. Phys. Rev. D 96, no.2, 023522 (2017) [arXiv:1702.01764 [astro-ph.CO]].
26. C. Yèche, N. Palanque-Delabrouille, J. Baur and H. du Mas des Bourboux, JCAP 06, 047 (2017) [arXiv:1702.03314 [astro-ph.CO]].
27. M. Kawasaki, K. Kohri and N. Sugiyama, Phys. Rev. Lett. 82, 4168 (1999) [arXiv:astro-ph/9811437 [astro-ph]].
28. M. Kawasaki, K. Kohri and N. Sugiyama, Phys. Rev. D 62, 023506 (2000) [arXiv:astro-ph/0002127 [astro-ph]].
29. T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S. Hannestad, JCAP 12, 012 (2019) [arXiv:1908.10189 [hep-ph]].
30. D. Dunsky, L. J. Hall and K. Harigaya, JHEP 01, 125 (2021) [arXiv:2007.12711 [hep-ph]].
31. J. B. Muñoz, C. Dvorkin and F. Y. Cyr-Racine, Phys. Rev. D 101, no.6, 063526 (2020) [arXiv:1911.11144 [astro-ph.CO]].
32. M. Flanz, E. A. Paschos and U. Sarkar, Phys. Lett. B 345, 248-252 (1995) [erratum: Phys. Lett. B 384, 487-487 (1996)] [arXiv:hep-ph/9411366 [hep-ph]].
33. L. J. Hall and K. Harigaya, JHEP 11, 033 (2019) [arXiv:1905.12722 [hep-ph]].
34. K. Seidel, F. Simon, M. Tesar and S. Poss, Eur. Phys. J. C 73, no.8, 2530 (2013) [arXiv:1303.3758 [hep-ex]].
35. T. Horiguchi, A. Ishikawa, T. Suchara, K. Fujii, Y. Sumino, Y. Kiyo and H. Yamamoto, [arXiv:1310.0563 [hep-ex]].
36. Y. Kiyo, G. Mishima and Y. Sumino, JHEP 11, 084 (2015) [arXiv:1506.06542 [hep-ph]].
37. M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser, Phys. Rev. Lett. 115, no.19, 192001 (2015) [arXiv:1506.06864 [hep-ph]].
38. M. Bicer et al. [TLEP Design Study Working Group], JHEP 01, 164 (2014) [arXiv:1308.6176 [hep-ex]].
39. G. P. Lepage, P. B. Mackenzie and M. E. Peskin, [arXiv:1404.0319 [hep-ph]].
40. S. Khalil and O. Seto, JCAP 10, 024 (2008) [arXiv:0804.0336 [hep-ph]].
41. D. Dunsky, L. J. Hall and K. Harigaya, JHEP 07, 016 (2019) [arXiv:1902.07726 [hep-ph]].
42. D. Dunsky, L. J. Hall and K. Harigaya, JHEP 02, 078 (2020) [arXiv:1908.02756 [hep-ph]].