Secondary Primary Malignancy Risk in Patients With Ovarian Cancer in Taiwan

A Nationwide Population-Based Study

Yi-Ping Hung, MD, Chia-Jen Liu, MD, Yu-Wen Hu, MD, Min-Huang Chen, PhD, Chun-Pin Li, PhD, Chiu-Mei Yeh, Tzeon-Jye Chiou, MD, Tseng-Ji Chen, PhD, Muh-Hwa Yang, PhD, and Yee Chao, PhD

Abstract: To evaluate the incidence of secondary primary malignancy (SPM) in patients with ovarian cancer using a nationwide retrospective population-based dataset.

Patients newly diagnosed with ovarian cancer between 1997 and 2010 were identified using Taiwan’s National Health Insurance database. Patients with antecedent malignancies were excluded. Standardized incidence ratios (SIRs) for SPM were calculated and compared with the cancer incidence in the general population. Risk factors for cancer development were analyzed using Cox proportional hazard models. Effects of surgery, chemotherapy, and radiotherapy after ovarian cancer diagnosis were regarded as time-dependent variables to prevent immortal time bias.

During the 14-year study period (follow-up of 56,214 person-years), 707 cancers developed in 12,127 patients with ovarian cancer. The SIR for all cancers was 2.78 (95% confidence interval 2.58–3.00). SIRs for follow-up periods of >5, 1–5, and <1 year were 1.87, 2.04, and 6.40, respectively. After the exclusion of SPM occurring within 1 year of ovarian cancer diagnosis, SIRs were significantly higher for cancers of the colon, rectum, and anus (2.14); lung and mediastium (1.58); breast (1.68); cervix (1.65); uterus (7.96); bladder (3.17), and thyroid (2.23); as well as for leukemia (3.98) and others (3.83). Multivariate analysis showed that age ≥50 years was a significant SPM risk factor (hazard ratio [HR] 1.60). Different treatments for ovarian cancer, including radiotherapy (HR 2.07) and chemotherapy (HR 1.27), had different impacts on SPM risk.

Patients with ovarian cancer are at increased risk of SPM development. Age ≥50 years, radiotherapy, and chemotherapy are independent risk factors. Close surveillance of patients at high risk should be considered for the early detection of SPM.

INTRODUCTION

Ovarian cancer is the seventh most common cancer in women worldwide, with about 239,000 new cases diagnosed in 2012.1 The 5-year survival rate ranges approximately from 30% to 50%.1 Advances in screening, surgery technique, and chemotherapy have improved survival in recent years. However, subsequent cancer risk is a concern because secondary primary malignancy (SPM) impacts patient survival.2–4 Several studies have reported SPMs in patients with ovarian cancer. A case-control study conducted in Germany determined that the risk of leukemia was increased 10-fold in patients with ovarian cancer who had undergone chemotherapy.5 A Canadian cohort of patients with early ovarian cancer also showed a significant increase in SPM occurrence.6 A population-based study that assessed 11,802 patients with ovarian cancer in the UK during 1961–1980 revealed a small increase in the rate of secondary malignancy.7 A population-based study in Switzerland showed a marginally increased standardized incidence ratio (SIR) for SPM after exclusion of synchronous cases.8 However, a Swedish group suggested that these increased risks reflect overestimation.9 Due to the inconsistency of results and the lack of data from Asia, we conducted a retrospective population-based study examining SPM after the occurrence of ovarian cancer in Taiwan.

The National Health Insurance Research Dataset (NHIRD) in Taiwan provides nationwide population data to investigators for health research. As all patients with cancers are registered precisely, the NHIRD is suitable for the analysis of SPM. In addition to patients’ age and sex, the NHIRD provides information about major surgeries, chemotherapy, radiotherapy, and comorbidities, which were not gathered and analyzed in most previous studies of ovarian cancer. The aim of this study was to
compare the overall incidence of SPM among patients with ovarian cancer with the expected incidence in the general population within the same age, sex, and calendar year using the NHIRD. In addition, we investigated the potential predisposition of patients with ovarian cancer to SPM with respect to chemotherapy, radiotherapy, and comorbidities.

METHODS

Data Sources
Taiwan’s mandatory and universal National Health Insurance (NHI) program was initiated in 1995. The program covers more than 99% residents in Taiwan with comprehensive medical care.1 It provides coverage for outpatient, emergency, inpatient, dental, and traditional Chinese medicine services, as well as prescription drugs.

Our study was based on data from the NHIRD, which is managed and made available publicly by the National Health Research Institute of Taiwan. We utilized the NHIRD’s Registry of Catastrophic Illness, which provides comprehensive information on NHI enrollment and health care resource provision for all patients with severe diseases who receive copayment exemptions under the NHI program. It integrates several NHI databases, including claims data, NHI enrollment files, and the drug prescription registry. Ovarian cancer and all other types of malignancy are categorized as catastrophic illnesses. All information that would potentially enable the identification of individual patients is encrypted. These data are confidential, as mandated by the Bureau of NHI and the National Health Research Institute of Taiwan. Because the NHI dataset contains unidentifiable secondary data for research purposes, the institutional review board of Taipei Veterans General Hospital exempted this study from full review (2013-10-002CE).

Study Population
For this nationwide population-based cohort study, patients with newly diagnosed ovarian cancer (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] code 183) in the period January 1, 1997 to December 31, 2010 were identified from the Registry of Catastrophic Illness. Patients diagnosed with ovarian cancer before January 1, 1997 were excluded. Patients who were younger than 20 years at the time of diagnosis and those who had antecedent malignancies were excluded. The main outcome we are willing to observe was development of SPM. For subjects identified by the Registry of Catastrophic Illness, the malignant diagnosis needs to be confirmed by histological evidence. Every patient was followed until the end of the study, occurrence of SPM, death, or dropout from the NHI program. The treatment modalities, such as surgery, radiation, and chemotherapy, and the medical comorbidities of these patients were collected for further analysis.

Statistical Analyses
The SIR, defined as the observed number of target event occurrences divided by the expected ones, was used to determine the risk of SPM in our study cohort. The expected number of cancer occurrences was obtained by multiplying the cancer incidence in the general population (retrieved from Taiwan’s National Cancer Registry) by patient number in the corresponding age group in the study cohort. Assuming that the cancer occurrence followed a Poisson probability distribution, 95% confidence intervals (CIs) of SIRs were estimated. The study cohort was stratified by age and the period of SPM development. Further subgroup analysis was performed. SIRs for different types of cancer were estimated by excluding SPMs occurring within 1 year after the diagnosis of ovarian cancer to exclude surveillance bias. Univariate and multivariate Cox proportional hazard regression analysis was performed to find out risk factors for SPM development among patients with ovarian cancer. These factors included not only age and comorbidities, but also surgery, chemotherapy, and radiotherapy. To avoid immortal time bias, each treatment modality (eg, surgery, chemotherapy, radiotherapy) after ovarian cancer diagnosis was treated as a time-dependent variable. Multivariate analysis was performed in factors with P values < 0.1 in univariate analyses.

The data in this study were processed and computed by the Perl programming language (version 5.12.2; Perl Foundation, Walnut, CA). Data linkage and sampling were accomplished by Microsoft SQL Server 2012 (Microsoft Corporation, Redmond, WA). The statistical analysis was managed by SAS software (version 9.2; SAS Institute Inc, Cary, NC). Statistical significance was defined when P < 0.05.

RESULTS

Characteristics of the Study Population
We identified 13,492 patients diagnosed with ovarian cancer between 1997 and 2010 in the NHIRD’s catastrophic illness registry. Of these patients, 406 patients were misclassified, 357 patients were aged <20 years, and 599 patients had antecedent malignancies; follow-up data were not available for 3 patients. Thus, the final sample consisted of 12,127 patients, with a median age of 50 (interquartile range, 42–61) years at diagnosis. From 1997 to 2011, 56,214 person-years were observed in this cohort. The baseline characteristics of the study cohort are described in Table 1.

TABLE 1. Characteristics of Patients With Ovarian Cancer

Characteristic	Total
No. of patients	12,127
Person-years at risk	56,214
Median follow-up, yr (interquartile range)	3.48 (1.54–7.00)
Median age, yr (interquartile range)	50 (42–61)
Treatment	
Surgery	8221 (67.8%)
Chemotherapy	8935 (73.7%)
Radiotherapy	1508 (12.4%)
Chemotherapy and radiotherapy	1414 (11.7%)
Age at diagnosis, yr	
20–39	2619 (21.6%)
40–59	6312 (52.0%)
60–79	2836 (23.4%)
≥80	360 (3.0%)
Chemotherapy agents	
Cyclophosphamide	3454 (28.5%)
Gemcitabine	726 (6.0%)
Fluorouracil	557 (4.6%)
Platinum	8536 (70.4%)
Anthracyclines*	2749 (22.7%)
Taxanes†	5580 (46.0%)

* Anthracyclines include doxorubicin and epirubicin.
† Taxanes include paclitaxel and docetaxel.
TABLE 2. Standardized Incidence Ratios According to Age at Diagnosis and Duration of Ovarian Cancer

Characteristics	Observed	Expected	SIR (95% CI)
All cancers	707	253.94	2.78 (2.58–3.00)
Age at diagnosis, yr			
20–39	88	10.82	8.13 (6.52–10.02)
40–59	387	116.99	3.31 (2.99–3.65)
60–79	213	108.66	1.96 (1.71–2.24)
≥80	19	17.48	1.09 (0.65–1.70)
Follow-up time after ovarian cancer, yr			
0–1	300	46.89	6.40 (5.69–7.16)
1–5	245	120.31	2.04 (1.79–2.31)
≥5	162	86.75	1.87 (1.59–2.18)

CI = confidence interval; SIR = standardized incidence ratio.

All Cancers
During the follow-up period, 707 cancers developed. A significantly increased risk of all cancers (SIR 2.78, 95% CI 2.58–3.00, P < 0.001) was found in ovarian cancer patients. Subgroup analysis showed that SIRs for all cancers were highest among patients aged 20–39 years at the time of diagnosis (SIR 8.13, 95% CI 6.52–10.02). Subgroup analysis based on the period of SPM development (0–1, 1–5, and ≥5 years) after ovarian cancer diagnosis yielded SIRs of 6.40 (95% CI 5.69–7.16, P < 0.001), 2.04 (95% CI 1.79–2.31, P < 0.001), and 1.87 (95% CI 1.59–2.18, P < 0.001), respectively. The results of these subgroup analyses are summarized in Table 2.

Specific Cancer Types
To avoid surveillance bias, SPMs developed within 1 year after the diagnosis of ovarian cancer was excluded. Significantly higher SIRs were observed for cancers of the colon and rectum (2.14, 95% CI 1.65–2.72), lung and mediastinum (1.58, 95% CI 1.09–2.22), breast (1.68, 95% CI 1.36–2.06), cervix (1.65, 95% CI 1.05–2.48), uterus (7.96, 95% CI 6.18–10.09), bladder (3.17, 95% CI 1.73–5.32), and thyroid (2.23, 95% CI 1.34–3.48), as well as leukemia (3.98, 95% CI 1.99–7.12). SIRs for specific cancer types are shown in Table 3.

Predictors of Cancer Risk
Univariate Cox proportional hazard analysis showed that age ≥50 years, diabetes mellitus, and dyslipidemia were associated significantly with a higher risk of cancer development. Multivariate analysis showed that age ≥50 years (hazard ratio [HR] 1.60, 95% CI 1.31–1.96, P < 0.001) remained an independent predictor of SPM development. SPM risk differed according to ovarian cancer treatment (radiotherapy: HR 2.07, 95% CI 1.51–2.85, P < 0.001; chemotherapy: HR 1.27, 95% CI 1.02–1.59, P = 0.033). Among chemotherapy agents, fluorouracil was associated with a significantly increased risk of SPM development (HR 5.18, 95% CI 3.66–7.33, P < 0.001). These results are itemized in Tables 4 and 5.

DISCUSSION
This present study is the first to distinctly demonstrate a significantly increased SIR for metachronous SPM among ovarian cancer patients in Asia. Our main findings were: patients with ovarian cancer have significantly increased risk of SPM in the colon and rectum, breast, cervix, uterus, bladder, and thyroid, as well as leukemia; age ≥50 years, radiotherapy, and chemotherapy were independent risk factors for SPM; and among chemotherapeutic agents, fluorouracil significantly increased the risk of SPM.

Several studies have focused on the issue of SPM after ovarian cancer.5–9,11–21 Most of these studies demonstrated an increased risk of SPM,5,8,12,14,15,17,18,20 but others did not.9,11,13 Bergfeldt et al14 proposed that findings of increased occurrence of secondary primary cancer in patients with ovarian cancer have been biased by misclassification. A study conducted in the UK confirmed the high incidence of synchronous cancer in patients with ovarian cancer, which may also bias estimates of SPM incidence.14 In addition, most previous studies were single-institute case series; few nationwide or multiple-institute cohort studies have been conducted with reference groups to examine the SIR or relative risk of SPM. Furthermore, recent changes in chemotherapy regimens may also influence the risk of SPM. To avoid surveillance bias, we strictly excluded SPMs occurring within 1 year after ovarian cancer diagnosis. This exclusion may have resulted in bias toward the null, increasing the likelihood that SIRs are insignificant. Nevertheless, the SIR remained significantly higher (1.30, 95% CI 1.23–1.37). Our results are highly credible because our cohort consisted of patients identified by unbiased nationwide selection and reliable diagnostic criteria supported by histological evidence.
Using the NHI’s comprehensive database, we were able to follow almost all patients diagnosed with ovarian cancer in Taiwan during the study period. The present study was the first to show that the SIR for SPM was highest at 0–1 year (these cases were subsequently excluded to avoid surveillance bias), followed by 1–5 and ≥5 years. In a subgroup analysis, we confirmed that patients aged 20–39 years at diagnosis had the highest risk of SPM. This finding implies that thorough examination to detect synchronous cancer should be performed at the time of ovarian cancer diagnosis. Circumspective follow-up is also necessary, especially in young patients.

Our finding of an increased SIR for SPM in this cohort is similar to those of Swiss and UK registry studies. An increased risk of colorectal cancer was also reported in a previous study. Several possible explanations may be offered for the increased risk of SPM after ovarian cancer. First, an inherent or acquired defect of tumor suppressor genes or DNA repair genes may induce such cancers. Second, these cancers may share underlying lifestyle-related risk factors. Third, chemotherapy regimens may be carcinogenic. The occurrence of bladder cancer and leukemia has been attributed to ovarian cancer treatment. Further research is warranted to determine the exact relationships between these factors and the underlying mechanisms.

Our finding that older age was an independent risk factor for SPM after ovarian cancer diagnosis is consistent with the previous findings. Among all comorbidities for which information was available in our database, diabetes mellitus, and dyslipidemia were risk factors in univariate analysis; however, they were not found to be significant in multivariate analysis. In the general population, the overall risks of cancer in patients with diabetes, nonliver malignancies in patients with cirrhosis, and nonpulmonary malignancies in patients with chronic obstructive pulmonary disease (COPD) are higher. Follow-up and clinical decision making should be more aggressive in patients with these risk factors.

TABLE 4. Risk Factors for Cancer Development in Patients With Ovarian Cancer (Follow-Up > 1 Yr; n = 10,240)

Variable	Univariate Analysis	Multivariate Analysis a		
	HR (95% CI)	P Value	HR (95% CI)	P Value
Age ≥ 50 yr	1.74 (1.43–2.12)	<0.001	1.60 (1.31–1.96)	<0.001
Comorbidities				
Diabetes mellitus	1.42 (1.08–1.87)	0.014	1.14 (0.85–1.52)	0.374
COPD	1.00 (0.72–1.40)	0.988		
Liver cirrhosis	1.14 (0.59–2.21)	0.701		
Autoimmune diseases	0.96 (0.60–1.55)	0.881		
Dyslipidemia	1.44 (1.09–1.89)	0.010	1.25 (0.95–1.66)	0.115
Chronic kidney disease	1.32 (0.90–1.94)	0.161		
Treatment b				
Chemotherapy	1.42 (1.15–1.77)	0.002	1.27 (1.02–1.59)	0.033
Radiotherapy	2.33 (1.71–3.19)	<0.001	2.07 (1.51–2.85)	<0.001
Surgery	1.12 (0.83–1.49)	0.462		

CI = confidence interval; COPD = chronic obstructive pulmonary disease; HR = hazard ratio.

a All factors with $P < 0.1$ in univariate analyses were included in the Cox multivariate analysis.

b Treatment was analyzed as a time-dependent covariate in the Cox regression model.

c CI = confidence interval; HR = hazard ratio.

TABLE 5. Risk Factors for Cancer Development in Patients With Ovarian Cancer (Follow-Up > 1 yr; n = 10,240)

Chemotherapy	Univariate Analysis	Multivariate Analysis a		
	HR (95% CI)	P Value	HR (95% CI)	P Value
Treatment b				
Cyclophosphamide	1.08 (0.88–1.33)	0.454		
Gemcitabine	2.20 (1.33–3.64)	0.002		
Fluorouracil	6.74 (4.87–9.31)	<0.001		
Platinum	1.20 (0.98–1.48)	0.085		
Anthracyclines b	1.62 (1.26–2.07)	0.000		
Taxanes c	1.16 (0.94–1.43)	0.179		

CI = confidence interval; HR = hazard ratio.

a Adjusted for age, diabetes mellitus, dyslipidemia, and radiotherapy.

b Treatment was analyzed as a time-dependent covariate in the Cox regression model.

c Anthracyclines include doxorubicin and epirubicin.

d Taxanes include paclitaxel and docetaxel.
We found that chemotherapy and radiotherapy, considered to be time-dependent variables, increased the risk of SPM. In 1978, Reimer et al. proposed that chemotherapy and radiotherapy induced SPMs following ovarian cancer, but treatment regimens and guidelines have changed in the past decades. In the present study, cyclophosphamide, gemcitabine, fluorouracil, and anthracyclines were risk factors for SPM after ovarian cancer. Among them, only fluorouracil was an independent risk factor for SPM in multivariate analysis. Fluorouracil was found to be carcinogenic in mice, but evidence for any similar effect in humans is inadequate. 5-fluorouracil (5-FU) is not a global standard chemotherapeutic agent for ovarian cancer. For financial reasons, Taiwan’s NHI reimbursement regulations do not necessarily follow global guidelines; 5-FU and its derivatives are considered to be reasonable regimens after recurrence, although a minority of patients (4.6%) receive these regimens. The events were rare but significant. To our knowledge, this study is the first to compare SPM risk among patients receiving different chemotherapy regimens. Further large-scale studies should be conducted to clarify this finding.

This retrospective study has several limitations. First, family history and lifestyle factors, such as exercise, obesity, tobacco use, and alcohol consumption, which were not recorded in the NHI database, are potential confounders. However, some comorbidities potentially associated with such lifestyle factors were found to be independent risk factors for SPM. Second, the disease stage and microscopic features (ie, grade) of ovarian cancer were not documented in the NHI database. Levi et al. proposed that the risk of subsequent cancer was higher in patients with invasive ovarian cancer than in those with borderline-line characteristics. According to treatment consensus in Taiwan, only patients with invasive ovarian cancer received chemotherapy. Most (73.7%) patients in our cohort received chemotherapy, and these cases tended to be invasive. Third, information on histological subtype and genetic mutations, such as the BRCA mutation, was not available in our database. Previous studies have found associations between this mutation and several cancer types. Finally, information on clinical symptoms and detailed laboratory data were not available, preventing determination of the predictive value of specific clinical situations.

In conclusion, our results demonstrate that the risk of SPM is significantly higher among patients with ovarian cancer. Age, chemotherapy, and radiotherapy are independent risk factors for SPM in this population. Among all chemotherapy regimens, fluorouracil-based regimens were independent risk factors. Post-chemotherapy/radiotherapy surveillance, especially of older patients and those who have received fluorouracil regimens, may be crucial for the early detection of SPM.

REFERENCES
1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN, 2012. Int J Cancer. 2015;136:E359–386.
2. Kim JY, Jang WY, Heo MH, et al. Metachronous double primary cancer after diagnosis of gastric cancer. Cancer Res Treat. 2012;44:173–178.
3. Yoshino K, Asanuma F, Hanatani Y, et al. Multiple primary cancers in the stomach and another organ: frequency and the effects on prognosis. Jpn J Clin Oncol. 1985;15(Suppl 1):183–190.
4. Kim C, Chon HJ, Kang B, et al. Prediction of metachronous multiple primary cancers following the curative resection of gastric cancer. BMC Cancer. 2013;13:394.
5. Mehnert WH, Haas JF, Kittelmann B, et al. A case-control study of leukaemia as a second primary malignancy following ovarian and breast neoplasms. IARC Sci Publications. 1986;78:203–221.
6. Dent SF, Klaassen D, Pater JL, et al. Second primary malignancies following the treatment of early stage ovarian cancer: update of a study by the National Cancer Institute of Canada–Clinical Trials Group (NCIC-CTG). Ann Oncol. 2000;11:65–68.
7. Coleman MP, Bell CM, Fraser P. Second primary malignancy after Hodgkin’s disease, ovarian cancer and cancer of the tests: a population-based cohort study. Br J Cancer. 1987;56:349–355.
8. Levi F, Randimbison L, Blanc-Moya R, et al. Second neoplasms after invasive and borderline ovarian cancer. Eur J Cancer Prev. 2009;18:216–219.
9. Bergfeldt K, Silfversward C, Einhorn S, et al. Overestimated risk of second primary malignancies in ovarian cancer patients. Eur J Cancer. 2000;36:100–105.
10. Cheng TM. Taiwan’s new national health insurance program: genesis and experience so far. Health Aff (Millwood). 2003;22:61–76.
11. Sanci M, Gultekin E, Cingiliovlu B, et al. Second primary cancers following borderline ovarian tumors. Arch Gynecol Obstet. 2011;283:1391–1396.
12. Bouchardy C, Fernandez S, Merglen A, et al. Increased risk of second cancer among patients with ovarian borderline tumors. Gynecol Oncol. 2008;109:210–214.
13. Hunter MI, Ziogas A, Flores F, et al. Epithelial ovarian cancer and low malignant potential (LMP) tumors associated with a lower incidence of second primary breast cancer. Am J Clin Oncol. 2007;30:1–7.
14. Kehoe S, Powell JE. Prior, synchronous and secondary malignancies in women with ovarian cancer. Int J Gynaecol Obstet. 2001;73:265–267.
15. Levi F, La Vecchia C, Randimbison L, et al. Borderline ovarian tumours in Vaud, Switzerland: incidence, survival and second neoplasms. Br J Cancer. 1999;79:4–6.
16. Fishman A, Aviram R, Beyth Y, et al. A second primary malignancy in a cohort of patients with epithelial ovarian cancer: characteristics of diagnosis. Eur J Gynaecol Oncol. 1998;19:280–283.
17. Shiromizu K, Araki J, Onda T, et al. Familial risk factors for a second primary malignancy in endometrial or ovarian carcinoma. J Obstet Gynaecol Tokyo (1995). 1995;21:269–272.
18. Kaldor JM, Day NE, Band P, et al. Second malignancies following testicular cancer, ovarian cancer and Hodgkin’s disease: an international collaborative study among cancer registries. Int J Cancer. 1987;39:571–585.
19. Kagan AR, Ryoo MC, Tawa K, et al. Secondary neoplasms in treated ovarian cancer. Gynecologic Oncol. 1982;13:356–364.
20. Reimer RR, Hoover R, Fraumeni Jr FR et al. Second primary neoplasms following ovarian cancer. J Natl Cancer Inst. 1978;61:1195–1197.
21. Masterson BJ, Snyder TE. Multiple threat: second primary malignancies in patients with ovarian carcinoma treated with radiation and chemotherapy. J Kansas Med Soc. 1977;78:283–285.
22. Petruccelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12:245–259.
23. Bonadona V, Bonatti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305:2304–2310.
24. Mavaddat N, Peock S, Frost D, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105:812–822.
25. Daniels MS, Babb SA, King RH, et al. Underestimation of risk of a BRCA1 or BRCA2 mutation in women with high-grade serous ovarian cancer by BRCAPRO: a multi-institution study. *J Clin Oncol.* 2014;32:1249–1255.

26. Friebel TM, Domchek SM, Rebbeck TR. Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. *J National Cancer Instit.* 2014;106:dju091.

27. Lucas AL, Frado LE, Hwang C, et al. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. *Cancer.* 2014;120:1960–1967.

28. Tsilidis KK, Allen NE, Key TJ, et al. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. *Cancer.* 2014;120:1960–1967.

29. Pieta B, Chmaj-Wierzchowska K, Opala T. Life style and risk of development of breast and ovarian cancer in the European Prospective Investigation into Cancer and Nutrition. *Br J Cancer.* 2011;105:1436–1442.

30. Haas JF, Kittelmann B, Mehnert WH, et al. Risk of leukaemia in ovarian tumour and breast cancer patients following treatment by cyclophosphamide. *Br J Cancer.* 1987;55:213–218.

31. Lo SF, Chang SN, Muo CH, et al. Modest increase in risk of specific types of cancer types in type 2 diabetes mellitus patients. *Int J Cancer.* 2013;132:182–188.

32. Kalaitzakis E, Gunnarsdottir SA, Josefsson A, et al. Increased risk for malignant neoplasms among patients with cirrhosis. *Clin Gastroenterol Hepatol.* 2011;9:168–174.

33. Kornum JB, Svaerke C, Thomesen RW, et al. Chronic obstructive pulmonary disease and cancer risk: a Danish nationwide cohort study. *Respir Med.* 2012;106:845–852.

34. Cavaliere A, Alberti PF, Vitali R. 5-Fluorouracil carcinogenesis in BALB/c mice. *Tumori.* 1990;76:179–181.

35. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man: general remarks on the substances considered. *IARC Monogr Eval Carcinog Risk Chem Man.* 1978;16:25–37.

36. Drucker L, Stackievitz R, Shpitz B, et al. Incidence of BRCA1 and BRCA2 mutations in Ashkenazi colorectal cancer patients: preliminary study. *Anticancer Res.* 2000;20:559–561.

37. Kirchhoff T, Satagopan JM, Kauff ND, et al. Frequency of BRCA1 and BRCA2 mutations in unselected Ashkenazi Jewish patients with colorectal cancer. *J Natl Cancer Instit.* 2004;96:68–70.

38. Niell BL, Rennert G, Bonner JD, et al. BRCA1 and BRCA2 founder mutations and the risk of colorectal cancer. *J Natl Cancer Inst.* 2004;96:15–21.

39. Rudnicka H, Debnicki T, Cybulski C, et al. Large BRCA1 and BRCA2 genomic rearrangements in Polish high-risk breast and ovarian cancer families. *Mol Biol Rep.* 2013;40:6619–6623.