Conditioned fear associated phenotypes as robust, translational indices of trauma-, stressor-, and anxiety-related behaviors

Maria Anne Briscione1,2, Tanja Jovanovic2 and Seth Davin Norrholm1,2*

1 Trauma Recovery Program, Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
2 Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA

Post-traumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). It is characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the development and maintenance of PTSD. Fear conditioning is a robust, translational experimental paradigm that can be employed to elucidate these mechanisms by allowing for the study of fear-related dimensions of PTSD (e.g., fear extinction, fear inhibition, and generalization of fear) across multiple units of analysis. Fear conditioning experiments have identified varying trajectories of the dimensions described, highlighting exciting new avenues of targeted, focused study. Additionally, fear conditioning studies provide a translational platform to develop novel interventions. The current review highlights the versatility of fear conditioning paradigms, the implications for pharmacological and non-pharmacological treatments, the robustness of these paradigms to span an array of neuroscientific measures (e.g., genetic studies), and finally the need to understand the boundary conditions under which these paradigms are effective. Further understanding these paradigms will ultimately allow for optimization of fear conditioning paradigms, a necessary step towards the advancement of PTSD treatment methods.

Keywords: fear learning, startle reaction, anxiety disorders, traumatology, translational medical research

INTRODUCTION

Post-traumatic stress disorder (PTSD) affects 8% of the general population and occurs at a much higher percentage in populations at risk of experiencing trauma; this includes military personnel and individuals living in low-socioeconomic urban environments (1, 2). The incidence of combat-related PTSD is expected to rise given the number of veterans returning from theaters of conflict in Iraq and Afghanistan. According to early reports, approximately 20% of Operation Iraqi Freedom and Operation Enduring Freedom (OEF and OIF, respectively) veterans presented with PTSD symptoms upon their return from combat (3). While these recent conflicts have generated new cases of PTSD, there remain a significant number of Vietnam veterans who have been experiencing persistent PTSD symptoms for as long as 40 years (4). Based on earlier work from our group, PTSD is equally as pervasive in low-socioeconomic urban environments including Atlanta, GA, USA (5, 6).

Post-traumatic stress disorder is the fifth most common psychiatric diagnosis and is not limited to the aforementioned groups (2, 7). Unfortunately, many of the traumatic events that precede the development of PTSD are not preventable, and we can expect new cases to develop as a result of...
widespread trauma across military and civilian populations. For example, returning veterans from the most recent combat theaters have been exposed to the unpredictable nature of urban warfare, which includes suicide bombings and improvised explosive devices (IEDs). In civilian populations from low-socioeconomic urban environments, there is risk of interpersonal violence and sexual assault. Further, victims of natural disasters, who can number in the thousands, can develop PTSD symptoms in the wake of unforeseen devastation to person and property (8). It is becoming increasingly clear that one’s individual risk for developing PTSD following exposure to a traumatic event is influenced by both intrinsic (e.g., genomic) and extrinsic (e.g., social support network) factors.

Post-traumatic stress disorder is a heterogeneous disorder in which symptoms span four primary symptom clusters according to the recent Diagnostic and Statistical Manual of Mental Disorders, 5th edition [DSM-5; (9)]. The DSM-5 PTSD symptoms clusters include: (1) re-experiencing, such as flashbacks and recurrent nightmares, (2) avoidance, which includes circumventing thoughts and feelings associated with the traumatic event, (3) negative cognitions and mood, which encompasses detachment from others and a loss of interest in activities, and (4) hyperarousal, which can manifest itself as difficulty sleeping and feeling overly alert.

This heterogeneity implies the involvement of multiple neurobiological mechanisms, which underlie the development and maintenance of PTSD [for a comprehensive review, see (10)]. The classification of PTSD symptoms according to clusters provides some utility in the clinic; however, there is a movement in the field to adopt a new strategy focused on the study of neurobiological mechanisms that “cut across” mental disorders and underlie multiple psychiatric disease states [Research Domain Criteria; RDoC; (11)]. A central tenet of the RDoC framework is “classifying psychopathology based on dimensions of observable behavioral and neurobiological measures.” RDoC focuses on several different systems, including the Negative Valence System; the construct matrix for this system includes acute threat or fear, which can be measured across several units of analysis. The focus of this review is on fear-conditioning studies that are defined under this construct.

Fear conditioning paradigms provide a compelling translational platform for investigating the neural underpinnings of trauma- and stressor-related disorders, such as PTSD and anxiety disorders such as panic and specific phobia. Interestingly, the DSM-5 no longer includes Criterion A2, or the presence of fear, helplessness, or horror in response to a traumatic event, in the diagnostic criteria that must be endorsed for a clinical diagnosis of PTSD; however, dysregulation of fear conditioning-related phenotypes remains a central feature of this disorder (12). As described in a recent review by Weston (13), neural circuitry that includes the amygdaloid complex can be associated with at least 14 symptoms of PTSD and, as such, there remains compelling interest in developing and utilizing translational paradigms that index these circuits, including fear inhibition (14), fear extinction (15), and stimulus generalization (16). In translational experimental paradigms, the general term extinction can refer to the learning process that occurs during the non-reinforced presentation of a previously reinforced CS (termed extinction training) as well as the retention of extinction learning after a period of time has elapsed since extinction training [termed extinction recall; (17)].

KEY CONCEPT 1 | Fear conditioning
A paradigm where a neutral stimulus is paired with an unpleasant/aversive event to conceptually and objectively study a traumatic event according to the principles of Pavlovian conditioning such that the unconditioned fear responses are similar to those experienced at the time of trauma that become elicited by stimuli similar to those present at the time of the trauma.

KEY CONCEPT 2 | Fear inhibition
Fear inhibition refers to the ability to inhibit a fear response in the presence of a safety signal and can be observed experimentally when a previously reinforced CS+ is presented in compound with a neutral, safe stimulus.

KEY CONCEPT 3 | Fear extinction
Fear extinction is a form of new learning that occurs when the previously reinforced CS+ is repeatedly presented in the absence of the aversive US. It is a translational tool, such that it is experimentally homologous to exposure therapy. Dysregulated fear extinction in patients with PTSD appears to manifest itself in at least three ways that may not be mutually exclusive.

FEAR CONDITIONING
Self-report measures of PTSD can often be subjective and unreliable. The high comorbidity of PTSD and depression highlights this problem; specifically, measures of PTSD and depression [as indexed by the Clinician Administered PTSD Scale (CAPS) and the Beck Depression Index (BDI), respectively] may reflect overlapping symptoms of negative affect (18, 19). Similarly, the symptom dimensions used for a diagnosis may reflect complex sequelae resulting from an overlap in symptom presentation of multiple disorders (20). Fear conditioning allows the use of quantitative objective measures to identify and differentiate components of PTSD, most notably those related to the dysregulation of fear processing.

Fear conditioning utilizes Pavlovian conditioning and involves the association of previously neutral stimuli with unpleasant or aversive events. Experimentally, a neutral stimulus (i.e., shape or sound) is spatially or temporally paired with an aversive unconditioned stimulus (US), typically a blast of air or a mild electric shock. Previously, the neutral stimulus comes to evoke the same response as the US, even in the absence of the US, and is termed the reinforced conditioned stimulus [CS+, Ref. (21)]. When conceptualizing a traumatic experience according to the principles of fear conditioning, unconditioned fear responses (UCR) similar to those experienced at the time of trauma can subsequently be elicited by stimuli (termed conditioned stimuli or CSs) similar to those present at the time of the trauma (e.g., sights, sounds, smells, context).

Conditioned fear responses can be quantified experimentally in a variety of ways. Fear potentiation of the acoustic startle response is a commonly employed translational methodology for indexing learned fear. The acoustic startle response (“startle”) is characterized by an integrative reflex contraction of the skeletal musculature in response to a strong stimulus (e.g., loud noise) and is an ideal model for studying fear conditioning since the amygdala is directly interconnected with the startle circuit (22–24). Fear-potentiated startle is defined as an increase in the magnitude of the startle response when it is elicited in the presence of a CS+ that has been repeatedly paired with an aversive US; this methodology inherently includes a within-subject non-zero baseline measure of an
individual’s acoustic startle response (25, 26). Fear-potentiated startle is observed across species and is ideal for studying translational models of fear-related phenotypes (27).

In typical human fear-conditioning approaches, an acquisition phase is presented in which a previously neutral CS is paired with an aversive US such that the CS comes to predict the US and, as such, a fear response of interest is elicited (potentiation of startle as compared to baseline or increase in skin conductance in the presence of the CS+ as opposed to a non-reinforced CS−). In addition, many paradigms will include a real-time measure of US-expectancy such that participants report their prediction of the presence or absence of a CS on a trial-by-trial basis. This allows investigators to determine whether participants can accurately discriminate between danger cues (CS+) and safety cues (CS). These measures further allow investigators to discern a psychophysiological, but not a cognitive, response consistent with a dysregulated system. For example, PTSD patients have shown increased fear responses to cues that they subjectively report as safe (28).

Following an Acquisition phase, translational studies of conditioned fear will often employ one of three procedures for measuring the expression and/or inhibition of the newly acquired fear: (1) fear extinction, (2) fear inhibition, or (3) generalization of fear. Alterations in fear extinction, fear inhibition, and stimulus generalization have all been reported, using fear-potentiated startle methods, in populations with trauma- and stressor-related as well as anxiety disorders [see Figure 1; (16, 29–31)]. Fear extinction is a form of new learning that occurs when the previously reinforced CS+ is repeatedly presented in the absence of the aversive US [e.g., Ref. (17)]. Despite some recent reports to the contrary fearful memories are initially labile and are consolidated to a more permanent state, hours to days, after the initial event. Modeling the process of consolidation and reconsolidation with fear-conditioning techniques provides an avenue to study potential pharmacological and non-pharmacological interventions [e.g., Ref. (33, 37)]. Clinically, individuals with PTSD have been show to have alterations in stimulus generalization (16), fear inhibition (29), discrimination, and fear extinction (38). In addition to complementary psychophysiological methods [e.g., skin conductance, reaction time], fear-potentiated startle methods have proven to be quite useful for the study and/or manipulation of these targets to better understand and treat stressor-, trauma-, and anxiety-related disorders. Figure adapted from Jovanovic and Ressler (39).
Many translational studies have employed fear-conditioning paradigms to better identify more basic dimensions and phenotypes associated with these diagnostic criteria. For example, previous work has shown that subjects with high hyperarousal symptoms show the greatest difficulty inhibiting a fear response to safety cues (45). In addition, during extinction learning, increased fear-potentiated startle was associated with re-experiencing symptoms of PTSD (15). The same study showed a more robust fear response to both the CS+ (danger cue) and the CS− (safety cue) during acquisition that was associated with higher re-experiencing and hyperarousal symptoms.

Research has indicated that fear conditioning and cognitive biases share a common underlying neural mechanism, amygdala-prefrontal circuitry (46). One aspect of cognitive bias, attention bias, or the facilitated orientation toward, or avoidance of, specific cues, has been shown to be a useful index of anxiety-related disorders (46). This proposed connection between attention bias and fear conditioning has been explicitly examined. Fani et al. (47) showed that attention bias toward threat is associated with over-expression of fear during early extinction, referred to as “fear load.” This study further demonstrates the utility of intermediate phenotypes to enhance our understanding of underlying neural circuitry and corresponding behavioral responses.

Further, PTSD has long been associated with intrinsic [e.g., age and gender (48, 49)], environmental (e.g., exposure to trauma, rearment environment, degree of social support), and genetic factors (50–52). The dysregulated fear learning observed in subjects with PTSD likely reflects the complexity of these interactions. Specifically, several candidate gene studies have identified genetic differences and specific gene pathways involved in PTSD (for a review, see (53]).
When conducting both candidate gene studies and genome-wide association studies (GWAS), it is common for the resulting genetic findings to associate with many disorders or only to distinct phenotypes of broader disorders, a central concern outlined in RDoC. It is useful to instead study intermediate phenotypes or specific components of disorders. For example, we recently showed that increased “fear load,” as measured by fear-potentiated startle was related to the catechol-O-methyl-transferase (COMT) Val66Met polymorphism and a diagnosis of PTSD (36). More recently, GWAS data, which is obtained when expression levels of the whole genome are analyzed in the context of PTSD, have been used to identify novel gene pathways involved in the mechanisms underlying complex disorders such as PTSD [see Ref. (54) for a review]. The use of these intermediate phenotypes not only enhances the ability to identify complex gene interactions but also allows for these gene pathways to be more readily studied. Fear conditioning provides a potential framework for studying these phenotypes [see Ref. (55, 56)].

VERSATILITY

Fear-potentiated startle can be used in several mammalian species (57); however, in animal models the CSs are typically auditory, whereas visual CSs are used in human studies. In order to bridge this gap, Norrholm and colleagues examined the use of auditory and visual CSs in fear conditioning of healthy participants (58). Briefly, healthy participants acquired fear to auditory stimuli comparable to the participants who were fear conditioned with visual stimuli. Both groups also discriminated between the CS+ and CS−; however, the auditory group exhibited discrimination on blocks 1, 2, and 3 of fear acquisition, while the visual CS+ group exhibited discrimination on blocks 2 and 3 of fear acquisition. Ten minutes after this initial assessment, these groups were shown to also extinguish fear; however, the auditory group displayed a steeper slope of extinction, due in part to an initial increase in fear during extinction, than the visual group. Twenty-four hours later an extinction test was performed. This test showed that spontaneous recovery occurred in both groups and US-expectancy ratings increased in both groups regardless of modality as well (58). The advantage of this versatility is that it can be used in patients with visual impairment with equivalent results and also lends itself to the use of “cross-over” longitudinal studies in which practice effects can be minimized.

TREATMENT

Not surprisingly, treatment approaches aimed at reducing the fear-related symptoms of PTSD (e.g., re-experiencing and intrusive memories) have focused on the disruption of fear memory consolidation/reconsolidation, facilitation of extinction learning, and the prevention of the return of fear. Several recent translational studies have explored both pharmacological as well as non-pharmacological means of enhancing extinction of fear and preventing its re-emergence. Memory consolidation refers to the process of transforming a memory (e.g., fear memory) from a labile state immediately after acquisition to a more permanent state that occurs after sometime. This process has been the target for non-pharmacological attempts to facilitate fear extinction and prevent the return of conditioned fear in humans.

KEY CONCEPT 7 | Memory consolidation

Memory consolidation is the process of transforming a memory (e.g., fear memory) from a labile state immediately after acquisition to a more permanent state that occurs after sometime. This process has been the target for non-pharmacological attempts to facilitate fear extinction and prevent the return of conditioned fear in humans.

At present, the effectiveness of DCS in facilitating exposure therapy (i.e., extinction learning) for PTSD is unclear due to mixed reports in the extant literature. DCS has been shown to be effective under specific clinical conditions. For example, de Kleine and colleagues reported increased improvement in the symptom ratings of patients who were administered DCS and initially reported more severe symptom severity (74). Initial reports by Litz et al. (75) suggested that DCS + exposure therapy was not as effective as placebo + exposure in a population of combat veterans with PTSD (75). However, more recent reports from the latter group suggest that the effectiveness of DCS as an adjunct therapy may be related to the degree of fear reduction observed during individual exposure therapy sessions (76, 77). Additionally, a recent study used DCS in addition to virtual reality exposure therapy in patients suffering PTSD as a result of the 9/11 attacks and found significant clinical advantages of DCS compared to placebo (78). Specifically, when DCS was administered prior to virtual reality exposure therapy subjects showed earlier, enhanced symptom reduction and greater PTSD remission rates (78). Finally, trauma imagery-potentiated startle responses in recently returned combat veterans from Iraq and Afghanistan were significantly reduced in individuals who previously received DCS before each of five sessions of virtual reality exposure therapy for PTSD (38).

In addition to agents that act on glutamatergic systems, other pharmacological approaches have been examined as possible therapies for fear- and anxiety-related disorders because of their potential to facilitate extinction learning and/or prevent the return of fear.
Pre-clinical rodent studies have shown that monoaminergic specific antidepressants such as venlafaxine (serotonin–norepinephrine reuptake inhibitor; SNRI) and fluoxetine (serotonin specific reuptake inhibitor; SSRI) can facilitate between-session extinction (79, 80) and prevent reinstatement of conditioned fear (80, 81). Although the use of antidepressants has not been widely studied in extinction of fear-potentiated startle studies, there is some evidence from skin conductance-based investigations suggesting a facilitatory role of these drugs in fear extinction learning (82).

The endocannabinoid system has also been implicated in conditioned fear extinction and represents an additional area of exploration for facilitating extinction and prevention of fear return. Chhatwal et al. (83) showed that enhanced cannabinoid receptor CB1 activation (via administration of AM404, an agent that prevents endocannabinoid degradation and reuptake) facilitated within-session and between-session extinction of fear-potentiated startle as well as reinstatement in mice (83). This work was furthered by Gunduz-Cinar et al. (84, 85) who showed that inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes the endogenous cannabinoid anandamide, enhances extinction learning in rodents and could represent a risk variant for stressor-related psychiatric disorders (84, 85).

New avenues for exploration continue to emerge and represent expanding opportunities to apply the fear conditioning and extinction procedures described herein. For example, Acheson and colleagues showed that the extinction of fear-potentiated startle in healthy humans could be enhanced with the intranasal administration of oxytocin (86). In addition, recent evidence from mouse studies implicates the renin–angiotensin system in the regulation of fear and anxiety responses as angiotensin receptor AT1 antagonism with the anti-hypertension drug losartan has been shown to enhance fear extinction learning [extinction recall; (87)].

Non-pharmacological attempts to facilitate fear extinction and prevent the return of conditioned fear in humans have focused on the disruption of the original fear memory trace (CS–US association) by interfering with consolidation or reconsolidation following retrieval of a previously stored fear memory. One approach for disrupting consolidation of fear memories (CS–US association) that has been explored is immediate versus delayed extinction training. Myers et al. (32) showed that extinction training initiated immediately after (10 min) fear acquisition prevented the return of learned fear via reinstatement, renewal, or spontaneous recovery. It was believed that extinction training, while the CS–US association was still labile, provided updated information regarding the association between the CS and US before the original association had been consolidated. This finding was not well replicated in rodents [see Ref. (88, 89)] and was only weakly observed in humans [see Ref. (90)].

More recently, Monfils et al. (33) developed a paradigm termed retrieval + extinction in which a single CS+ trial is presented without the US to open a reconsolidation window in which the original fear memory is returned to a labile state. Extinction training is then administered within this reconsolidation window (e.g., 1 h) in an effort to disrupt reconsolidation of the original fear memory. Monfils and colleagues showed that retrieval + extinction effectively attenuated the return of fear through renewal or reinstatement (33). Following this work, Schiller et al. (59), using skin conductance measures, showed that retrieval + extinction (with 10 min but not 6 h between sessions) attenuated spontaneous recovery and reinstatement of fear in human subjects, an effect that was evident a year after the original acquisition of fear.

Similar to the aforementioned studies using immediate versus delayed extinction, attempts to replicate the retrieval + extinction effects reported by the Monfils et al. (33) and Schiller et al. (59) groups have yielded mixed results in human studies. It has become apparent that there are specific boundary conditions under which retrieval + extinction is effective. These conditions include, but are not limited to, the type of psychophysiological measure employed (e.g., skin conductance), the schedule of reinforcement used during acquisition, and the strength of the fear memory following acquisition.

KEY CONCEPT 8 | Boundary conditions

Boundary conditions are the conditions under which fear conditioning paradigms (e.g., retrieval + extinction) are effective. For example, these conditions include, but are not limited to, the type of psychophysiological measure employed (e.g., skin conductance), the schedule of reinforcement used during acquisition, and the presence or absence of on-line measures of expectancy or fear ratings [see Ref. (37, 91–93)].

CONCLUSION

The utility of fear conditioning-related intermediate phenotypes can be observed across multiple units of analysis. Understanding these phenotypes (i.e., fear inhibition, high fear load, fear generalization, etc.) and the divergent manifestations of these responses in the context of a broader etiology (i.e., genetic, behavioral, symptomatic, and clinical studies) may lead to more effective treatment and preventative strategies for PTSD and other trauma-, stressor-, and anxiety-related disorders.

While the present review summarized the current progress of interfacing fear conditioning-related intermediate phenotypes and genetic (54), behavioral (47), symptomatic (15, 45), and clinical studies (78), further characterization of these intermediate phenotypes will enhance the utility of fear-conditioning studies. For example, PTSD is known to affect women more commonly than men (1, 94), and fear-conditioning paradigms are useful for characterizing the sex differences underlying different neuronal, endocrine, and behavioral responses to trauma and other stressors. For example, a polymorphism in the pituitary adenylate cyclase-activating polypeptide receptor gene (ADCYAP1R1) is associated with decreased fear discrimination in females but not males (95). These findings illustrate the association between genetic risk, brain–behavior interactions, and intermediate phenotypes.

Ultimately, potential breakthroughs will increase the utility of fear-conditioning studies as a translational platform for studying the intermediate phenotypes underlying dysregulated fear learning, a central tenant of trauma-, stressor-, and anxiety-related disorders. This is especially useful due to the high comorbidity of PTSD and other disorders including depression and substance abuse. By identifying these intermediate phenotypes, we can create specific testable measures, which can then be used to examine the effectiveness of treatment interventions.
Conditioned fear associated phenotypes

40. Norrholm SD, Jovanovic T. Translational fear inhibition models as indices of trauma-related psychopathology. *Carr Psychiatry Rev* (2011) 7:194–204. doi: 10.2174/157340111797183193.

41. Milad MR, Orr SP, Lasko NB, Chang Y, Rauch SL, Pitman RK. Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. *J Psychiatr Res* (2008) 42:515–20. doi: 10.1016/j.jpsychires.2008.01.017.

42. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. *Bio Psychol* (2009) 66:1075–82. doi: 10.1016/j.biopsycho.2009.06.026.

43. Galatzer-Levy IR, Bonanno GA, Bush DE, Ledoux JE. Heterogeneity in threat extinction learning: substantive and methodological considerations for identifying individual difference in response to stress. *Front Behav Neurosci* (2013) 7:55. doi: 10.3389/fnbeh.2013.00555.

44. Galatzer-Levy IR, Aziki Y, Freedman S, Israeli-Shalev Y, Roitman P, Gilad M, et al. Early PTSD symptom trajectories: persistence, recovery, and response to treatment: results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS). *PLoS One* (2013) 8:e70084. doi: 10.1371/journal.pone.0070084.

45. Jovanovic T, Norrholm SD, Blanding NQ, Davis M, Duncan E, Bradley B, et al. Impaired fear inhibition is a biomarker of PTSD but not depression. *Depress Anxiety* (2010) 27:244–51. doi: 10.1002/da.20663.

46. Bishop SJ. Neurocognitive mechanisms of anxiety: an integrative account. *Trends Cogn Sci* (2007) 11:307–16. doi: 10.1016/j.tics.2007.05.008.

47. Fani N, Tone ER, Pfifer J, Norrholm SD, Bradley B, Resler KJ, et al. Attention bias toward threatening faces is associated with exaggerated fear expression and impaired extinction in PTSD. *Psychol Med* (2012) 42:533–43. doi: 10.1017/s0033291711011565.

48. Bokszczanin A. PTSD symptoms in children and adolescents 28 months after a flood: age and gender differences. *J Trauma Stress* (2007) 20:347–51. doi: 10.1002/jts.20220.

49. Iwadare Y, Usami M, Suzuki Y, Ushijima H, Tanaka T, Watanabe K, et al. Posttraumatic stress symptoms in elementary and junior high school children after the 2011 Japan earthquake and tsunami: symptom severity and recovery vary by age and sex. *J Pediatr* (2014) 164:917–21.e911. doi: 10.1016/j.jpeds.2013.11.061.

50. True WK, Rice J, Eisen SA, Heath AC, Goldberg J, Lyons MJ, et al. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. *Arch Gen Psychiatry* (1993) 50:257–64. doi: 10.1001/archpsyc.1993.01820160019002.

51. Binder EB, Bradley RG, Liu W, Epstein MP, Deaveau TC, Mercer KB, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress symptoms. *Learn Mem* (2012) 19:85–92. doi: 10.1101/lm.78204.

52. Guastella AJ, Lobovibond PF, Dadda MR, Mitchell P, Richardson RA. A randomized controlled trial of the effect of D-cycloserine on extinction and fear conditioning in humans. *Behav Res Ther* (2007) 45:663–72. doi: 10.1016/j.brat.2006.07.005.

53. Resler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. *Arch Gen Psychiatry* (2004) 61:1316–44. doi: 10.1001/archpsyc.61.11.1336.

54. Otto MW, McHugh RK, Rescher NM, Farach JF, Worthington J, Pollack MH. Efficacy of CBT for benzodiazepine discontinuation in patients with panic disorder: further evaluation. *Behav Res Ther* (2010) 48:720–7. doi: 10.1016/j.brat.2010.04.002.

55. Hofmann SG, Meuret AE, Smits JA, Simon NM, Pollack MH, Eisenmenger K, et al. Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. *Arch Gen Psychiatry* (2006) 63:298–304. doi: 10.1001/archpsyc.63.3.298.

56. Hofmann SG, Smits JA, Rosenfield D, Simon N, Otto MW, Meuret AE, et al. D-Cycloserine as an augmentation strategy with cognitive-behavioral therapy for social anxiety disorder. *Am J Psychiatry* (2013) 170:751–8. doi: 10.1176/appi.apj.2013.12070974.

57. Kushner MG, Kim SW, Donahue C, Thuras P, Adson D, Kotlyar M, et al. D-cycloserine augmented exposure therapy for obsessive-compulsive disorder. * Biol Psychiatry* (2007) 62:835–8. doi: 10.1016/j.biopsych.2006.12.020.

58. Wilhelm S, Buhlmann U, Tolín DF, Meunier SA, Pearlson GD, Reese HE, et al. Augmentation of behavior therapy with D-cycloserine for obsessive-compulsive disorder. *Am J Psychiatry* (2008) 165:335–41. quiz 409. doi: 10.1176/appi.ajp.2007.07050776.

59. Chasson GS, Buhlmann U, Tolín DF, Rao SR, Reese HE, Rowley T, et al. Need for speed: evaluating slopes of OCD recovery in behavior therapy enhanced with D-cycloserine. *Behav Res Ther* (2010) 48:675–9. doi: 10.1016/j.brat.2010.03.007.

60. de Kleine RA, Hendriks GJ, Kusters WJ, Broekman TG, Van Minnen A. A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder. * Biol Psychiatry* (2012) 71:962–8. doi: 10.1016/j.biopsych.2012.02.033.

61. Litz BT, Salters-Pedneault K, Steenkkamp MM, Hermos JA, Bryant RA, Otto MW, et al. A randomized placebo-controlled trial of D-cycloserine and exposure therapy for posttraumatic stress disorder. * Psychol Med* (2012) 42:1184–90. doi: 10.1017/s0140525x12000847.

62. Hofmann SG, Wu QJ, Boetcher H. D-Cycloserine as an augmentation strategy for cognitive behavioral therapy of anxiety disorders. * Biol Mood Anxiety Disord* (2013) 3:11. doi: 10.1186/2045-3380-3-11.

63. Smits JA, Rosenfield D, Otto MW, Powers MB, Hofmann SG, Telch MJ, et al. D-cycloserine enhancement of fear extinction is specific to successful exposure sessions: evidence from the treatment of height phobia. * Biol Psychiatry* (2013) 73:1054–8. doi: 10.1016/j.biopsych.2012.12.009.

64. Difede J, Cukor J, Wyka K, Oden M, Hoffman H, Lee FS, et al. D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: a pilot randomized clinical trial. *Neuropharmacology* (2014) 39:1052–8. doi: 10.1038/npp.2013.317.

65. Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agustsdottir A, et al. Venlafaxine facilitates between-session extinction and prevents reinstatement of auditory-cue conditioned fear. *Behav Brain Res* (2012) 230:668–73. doi: 10.1016/j.bbr.2012.02.023.
1. Deschaux O, Zheng X, Lavigne J, Nachon O, Cleren C, Moreau C, et al. Post-extinction fluoxetine treatment prevents stress-induced reemergence of extinguished fear. *Psychopharmacology (Berl)* (2013) 225:209–16. doi: 10.1007/s00213-012-2806-x

2. Bui E, Otis SP, Jacoby RL, Keshaviah A, LeBlanc NJ, Milad MR, et al. Two weeks of pretreatment with escitalopram facilitates extinction learning in healthy individuals. *Hum Psychopharmacol* (2013) 28:447–56. doi: 10.1002/hup.2330

3. Chhatwal JP, Davis M, Maguschak KA, Ressler KJ. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. *Neuropsychopharmacology* (2005) 30:516–24. doi: 10.1038/sj.npp.1300655

4. Gunduz-Cinar O, Hill MN, Mcewen BS. Amygdala FAAH and anandamide: mediating protection and recovery from stress. *Trends Pharmacol Sci* (2013) 34:637–44. doi: 10.1016/j.tips.2013.08.008

5. Gunduz-Cinar O, Macpherson KP, Cinar R, Gamble-George J, Sugden K, Williams B, et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. *Mol Psychiatry* (2013) 18:813–23. doi: 10.1038/mp.2012.72

6. Acheson D, Feifel D, De Wilde S, Mckinney R, Lohr J, Risbrough V. The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. *Psychopharmacology (Berl)* (2013) 229:199–208. doi: 10.1007/s00213-013-2806-x

7. Marvar PJ, Goodman J, Fuchs S, Choi DC, Banerjee S, Ressler KJ. Angiotensin type 1 receptor inhibition enhances the extinction of fear memory. *Biol Psychiatry* (2014) 75:864–72. doi: 10.1016/j.biopsych.2013.08.024

8. Maren S, Chang CH. Recent fear is resistant to extinction. *Proc Natl Acad Sci U S A* (2006) 103:18020–5. doi: 10.1073/pnas.0608398103

9. Woods AM, Bouton ME. Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning. *Learn Mem* (2008) 15:909–20. doi: 10.1101/lm.1078508

10. Norrholm SD, Vervliet B, Jovanovic T, Boshoven W, Myers KM, Davis M, et al. Timing of extinction relative to acquisition: a parametric analysis of fear extinction in humans. *Behav Neurosci* (2008) 122:1016–30. doi: 10.1037/a0012604

11. Golkar A, Bellander M, Olsson A, Ohman A. Are fear memories erasable? Reconsolidation of learned fear with fear-relevant and fear-irrelevant stimuli. *Front Behav Neurosci* (2012) 6:80. doi: 10.3389/fnbeh.2012.00080

12. Oyarzun JP, Lopez-Barroso D, Fuentemilla L, Cacurell D, Pedraza C, Rodríguez-Fornells A, et al. Updating fearful memories with extinction training during reconsolidation: a human study using auditory aversive stimuli. *PLoS One* (2012) 7:e38849. doi: 10.1371/journal.pone.0038849

13. Kindt M, Soeter M. Reconsolidation in a human fear conditioning study: a test of extinction as updating mechanism. *Biol Psychol* (2013) 92:43–50. doi: 10.1016/j.biopsycho.2011.09.016

14. Breslau N, Davis GC, Andreski P, Peterson EL, Schultz LR. Sex differences in post-traumatic stress disorder. *Arch Gen Psychiatry* (1997) 54:1044–8. doi: 10.1001/ archpsyc.1997.01830230082012

15. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. *Nature* (2011) 470:492–7. doi: 10.1038/nature09856

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.