A comparative study: Multimedia interactive use on contextual and cooperative approaches in increasing mathematical understanding

I Nasrulloh*, D Rahadian, N A Hamdani, K A N Imania and P B R Rikaldi

Institut Pendidikan Indonesia, Garut, Indonesia

*imannasrulloh@gmail.com

Abstract. Students’ abilities are not limited to just knowing the mathematics theory and concepts, but a deeper understanding needs to be had by students. The characteristic of contextual and cooperative approaches have distinct advantages. The study tries to quantify achieving contextual and cooperative approaches by using multimedia interactive in improving student math comprehension. Research shows increased student's mathematics comprehension over contextual classes 0.71 in the high category and the cooperative class 0.38 in the moderate category. Increased mathematical understanding of students with classes uses a contextual approach higher than the class that uses a cooperative approach. The primary key of the contextual approach can link lesson materials with the real world or student experience. A cooperative approach requires students’ characteristics in high-level activity, learning skills, and great learning motivation.

1. Introduction

Learning is a process to help learners learn activities to have the desired competence. The learning system is made up of several interconnected and influential components to achieve the purpose of learning. A teacher’s function is required to be able to integrate the whole learning component so that the learning process can run effectively and efficiently. One possible effort is to combine learning approaches with learning media. Several studies have been conducted in interactive multimedia design for learning but it is still limited to multimedia trials: describe the concept and framework of interactive multimedia courseware, test the feasibility of interactive multimedia courseware by experts and practitioners and test student responses to the use of interactive multimedia courseware [1–3].

A factual approach is a concept of the way of learning by connecting lesson materials to everyday life or real-world conditions. CTL is a learning concept that helps teachers link between the learning material and the real-world situations of students and encourages students to make connections between their knowledge and its praxis in their daily life as a family or community members [4,5]. There are seven principles in contextual or contextual teaching and learning (CTL) that is: (a) constructivism, (b) inquisitiveness, (c) inquiry, (d) society learning an authentic assessment, (f) reflection, and (g) modelling [6,7]. The application of contextual teaching-learning has made a positive contribution and high learning result [8,9].

Students’ learning is expected not only to be cognitive and psychomotor ability, but students need to cooperate. Cooperative learning is a learning approach that encourages learners to cooperate with other students, as well as discussions in their classroom learning activities under management directed...
by a teacher [10,11]. Learners are given opportunities to communicate and interact with their friends in achieving the purposes of learning and teachers act as the motivator and facilitator of learners' activities [12,13].

The development of information technology provides the world of education to be harnessed to better implementation of learning. It should be the institution of education to introduce information technologies in cultivated learning to contribute and influence positive [14–16]. The multimedia interactive parts of information technology will increase efficiency, motivation, and facilitate active learning, experimental learning, consistent, by learning-centered on students [17]. Studies on the application of interactive multimedia have made a significant and effective impact on learning [18,19]. The contextual and cooperative approach of this study presents its effective results in the attainment of a student's mathematical understanding. Mathematical understanding (conceptual understanding) is one of the skills that is the purpose of mathematical learning. Students' abilities are expected not only to know mathematical theories and concepts, but deeper insights need to be had by students. The characteristics of both contextual and cooperative approaches have distinct advantages. A contextual approach is oriented in the learning process by connecting the lesson materials with the real world. The cooperative approach, in turn, exposes the students' function of cooperation and interaction with other students. The study attempts to compare quantitatively the achievements of these two approaches (contextual and cooperative) in improving student math comprehension.

2. Methods
The study is a comparative study using a quantitative approach [20]. The data-gathering technique uses the test results of learning about mathematical understanding and cluster samples of random samples on elementary school V students with 36 students. Engineering and data analysis with prerequisite tests (normal and homogeneity tests) and hypothetical tests (independent t-test).

Figure 1. Flow chart of the study (A total of 36 students class V used interactive multimedia to contextual group and cooperative group).
3. Results and discussion
In this study, the number of classes is divided into 2 groups, whereas classes use contextual and class use cooperative approaches on both classes given multimedia interactive treatment with pre-test and post-test stages.

![Interactive multimedia display.](image)

The following presents the results of the pre-test and post-test on contextual and cooperative approach.

Interactive Multimedia	Contextual Classroom	Cooperative Classroom	Scores Max		
	Pre-test	Post-test	Pre-test	Post-test	
Mean	44.85	85	45.25	72.5	100
Score Max	60	90	55	80	100
Score Min	25	75	35	65	-

Based on Table 1, post-test averages in contextual classes by 85 and a cooperative class of 72.5. The average mathematical understanding of contextual classes is greater than the cooperative class. Post-test is a final test on students after applied contextual and cooperative approach treatment. Increased student math understanding is obtained based on increased pre-test scores to the post-test by making normalized gain tests. Here are the results of increasing student math understanding in contextual and cooperative classes.

Classroom	N	Mean	Gain Tern	Category
Gain				
Contextual	18	41.28	0.71	High
Cooperative	18	26.76	0.38	Medium
Increased student mathematics comprehension based on Table 2, the contextual class of 0.71 in the high category, and the cooperative class of 0.38 in the moderate category [21]. The use of a contextual approach is more effective in improving students' understanding of mathematics than with the cooperative approach. Subsequent tests of data normality gain obtained data as follows.

Based on data normality tests in table 3, the contextual class gained a value of 0.63 > 0.05, which means data in contextual normally distributed classes. The cooperative class obtained a probability value of 0.329. By comparison with significant value 0.05 then 0.299 > 0.05 means that a drop of data over the cooperative class is a normal distribution. The result of the homogeneity test in the contextual and cooperative class obtained the probability value of 0.281. When compared to significant value 0.05 then 0.281 > 0.05 means that the data in both classes are homogeneous. Based on the statistical test of the hypothesis using the independent t-test with an SPSS 20 on the table obtained data that probability value is. When compared with the value of 0.000 <0.05 which means ho is rejected and ha accepted. It may be concluded that a contextual approach significantly increases the understanding of the students rather than cooperative learning.

Student math comprehension with class use a contextual approach higher than the cooperative use class. Contextual approaches can visualize lesson materials connected to life or the real world. As the theory of Thorndike connectionism, learning needs to connect the individual/student experience with the object learned to be a fundamental part [22]. As well as Edgar dale that one's learning results come from personal experience (concrete), a reality that exists in one environment [23]. Research results on the application of contextual learning indicate that students' learning outcomes increased [8]. Contextual teaching and learning (CTL) is a model of learning that provides a systematic learning process to enhance students' critical thinking ability and help teachers to make connections between learning materials and student world situations and encourage students to link their knowledge and practical knowledge into their lives as a family or community members [24].

The use of a cooperative approach is not ineffective in enhancing the student's math understanding but there is a flaw in the way students cooperate in his or her learning activities. Teachers need to understand the overall characteristic of the learners' activation in learning [25]. The student has a different behavioural diversity that influences his or her learning activities in class. Cooperative learning demands the level of activation and learning skills of the students in the classroom, the students' high scientific stance, considerable time, their effectiveness depends largely on the student's learning motivation, learning skills, and high performance of the teacher [26–28].

4. Conclusion
Increased student math comprehension in contextual classes by 0.71 in the high category and cooperative class 0.38 in the moderate category. Student math comprehension with class use a contextual approach higher than the class that uses a cooperative approach. A key to the effectiveness of a contextual approach to improving students' mathematical understanding by connecting individual/student experiences to objects learned. Unlike a cooperative approach requires a student's characteristics in high activation levels, student learning skills, and high student learning motivation.

References
[1] Hsiao C C, Tiao M M and Chen C C 2016 Using interactive multimedia e-Books for learning blood cell morphology in pediatric hematology BMC Med. Educ. 16 1–8
[2] Riski A A 2016 Developing interactive multimedia for learning three dimensions with adobe flash cs4 468–78
[3] Akbarini N R, Murtini W and Rahmanto A N 2018 International Journal of Multicultural and Multireligious Understanding Design of Interactive Learning Multimedia Development in General Administration Subject Int. J. Multicult. MultireligiousUnderstanding 5 138–48
[4] Trianto 2008 Mendesain Pembelajaran Kontekstual (CTL) di Kelas (Jakarta: Publisher)
[5] Johnson E B 2011 Contextual Teaching & Learning: Menjadikan Kegiatan Belajar Mengajar Mengasyikkan dan Bermakna (Bandung: Kaifa Learning)
[6] Sanjaya W 2010 *Strategi Pembelajaran Berorientasi Standar Proses Pendidikan* (Jakarta: Kencana Prenada Media.)

[7] Baker E D, Hope L and Karandjeff K 2009 Contextualized Teaching & Learning: A Faculty Primer. *A Review of Literature and Faculty Practices with Implications for California Community College Practitioners*. *Acad. Senat. Calif. Community Coll.*

[8] Nurdin E A, Ikhsan F A, Kurnianto F A and Apriyanto B 2017 Application of Contextual Teaching Learning to Learning Results in Understanding The Life Environment In SMP Negeri 2 Sukodono Geosfera Indonies. 1 1–7

[9] Sudarman, Djuniadi and Sutopo Y 2019 Nurturing Conservation - Minded Behavior of Students of Agricultural Mechanization Program, Vocational School using Contextual Learning Strategy *KnE Soc. Sci.* **2019** 480–91

[10] Isjoni 2012 *Cooperative Learning Efektifitas Pembelajaran Kelompok* (Bandung: Alfa Beta)

[11] Suprijono A 2011 *Cooperative Leraning Teori dan Aplikasi PAIKEM* (Yogyakarta: Pustaka Pelajar)

[12] Choi A, Hand B and Norton-Meier L 2014 Grade 5 Students’ Online Argumentation about their Inclass Inquiry Investigations *Res. Sci. Educ.* **Vol 44** 267–87

[13] Kong S C 2015 An Experience of a Three-Year Study on the Development of Critical Thinking Skills in Flipped Secondary Classrooms with Pedagogical and Technological Support *Comput. Educ.* **Vol 89** 16–31.

[14] Darmawan D 2011 *Teknologi Pembelajaran* (Bandung: PT Remaja Rosda Karya)

[15] Machii J K, Science C and Mis M B A 2016 Assessment of Cloud Computing Adoption for E-Learning by Institutions of Higher Learning in Nairobi County , Kenya *Int. J. Sci. Res. Innov. Technol. ISSN* **3** 9–20

[16] Nasrulloh I, Rahadian D, Bariah S H, Purwanti Y and Imania K A N 2019 Adaption of cloud computing types of software as a service *Journal of Physics: Conference Series* vol 1402 (IOP Publishing) p 66043

[17] Husein S, Herayant L and Gunawan. 2015 Pengaruh Penggunaan Multimedia Interaktif terhadap Penguasaan Konsep dan Keterampilan Berpikir Kritis Siswa Pada Materi Suhu dan Kalor *J. Pendidik. Fis. dan Teknol.* **1** 221–5

[18] Priyanto W 2016 Penerapan Multimedia Interaktif Berbasis Inkuiri Terbimbing Dalam Pembelajaran IPS Siswa Kelas IV Sekolah Dasar *J. Mimb. Sekol. Dasar* **3** 120–35

[19] Deliany N, Hidayat A and Nurhayati Y 2019 Penerapan Multimedia Interaktif untuk Meningkatkan Pemahaman Konsep IPA Peserta Didik di Sekolah Dasar *J. Pendidik. dan Pembelajaran* **17** 90–7

[20] Sukmadinata N S 2012 *Metode Penelitian Pendidikan* (Bandung: PT. Remaja Rosdakarya)

[21] Meltzer D E 2002 The Relationship between Mathematics Preparation and Conceptual Learning Grains in Physics: A Possible “Hidden Variable” in Diagnostice Pretest Scores *Am. J. Phys.* **70** 1–27

[22] Schunk D H 2012 *Learning Theories: An Educational Perspective* (Boston: Pearson)

[23] Dale E 1969 *Audio Visual Methods in Teaching* (New York: Holt Rinehart and Winston Inc. The Dryden Press.)

[24] Hakim M F Al, Sariyatun S and Sudiyanto S 2018 Constructing Student’s Critical Thinking Skill through Discovery Learning Model and Contextual Teaching and Learning Model as Solution of Problems in Learning History *Int. J. Multicult. Multireligious Underst.* **5** 175

[25] Akdemir E and Arslan A 2012 From past to present: Trend analysis of cooperative learning studies *Procedia-Social Behav. Sci.* **55** 212–7

[26] Herianto A and Ibrahim I 2018 Analisis Efektivitas, Kelebihan dan Kekurangan Desain Model Cooperative Learning Dalam Meningkatkan Motivasi dan Hasil Belajar Geografi Lingkungan Pada Mahasiswa Program Studi Pendidikan Geografi di Pulau Lombok *Prosidning Seminar Nasional Pendidik dan Pengembang Pendidikan Indonesia* pp 17–27

[27] Gillies R M 2016 Cooperative learning: Review of research and practice *Aust. J. Teach. Educ.*
[28] Azizah N N 2015 Analisis Model Pembelajaran Kooperatif Tipe Numbered Head Together 41–4