Article

Crystal structure and composition of hiärneite, \( \text{Ca}_2\text{Zr}_4\text{Mn}^{3+}\text{SbTiO}_{16} \), and constitution of the calzirtite group

Dan Holtstam\(^1\) and Luca Bindi\(^2\)

\(^1\)Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden; and \(^2\)Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, 50121, Firenze, Italy

Abstract

The crystal structure of hiärneite has been refined from single-crystal X-ray diffraction data (\( \lambda = 0.71073 \) Å) on type material from Långban, Värmland, Sweden. The refinement converged to \( R_I = 0.046 \) based on 1073 reflections with \( F^2 > 4\sigma(F^2) \). The tetragonal unit cell, space group \( I_4_{1}acd \), has the parameters \( a = 15.2344(6) \) Å and \( c = 10.0891(6) \) Å with \( Z = 8 \). The mineral is isomorphous with calzirtite, ideally \( \text{Ca}_2\text{Zr}_4\text{Ti}_2\text{O}_{16} \), with a structural derivation derived from fluorite. In hiärneite, \( \text{Mn}^{3+} \) is ordered at a 4- to 8-fold coordinated site (with a distorted polyhedral coordination figure), without the atom splitting encountered at the corresponding Zr-dominated site of calzirtite. The end-member formula for hiärneite is established as \( \text{Ca}_2\text{Zr}_4\text{Mn}^{3+}\text{SbTiO}_{16} \). The calzirtite group, with calzirtite, hiärneite and tazheranite (cubic \( \text{ZrO}_2 \)), has been approved by the IMA–CNMNC.

Keywords: hiärneite, crystal structure, calzirtite group, tazheranite, mineral nomenclature, Långban, Sweden

Introduction

Hiärneite, \((\text{Ca},\text{Na},\text{Mn}^{3+})_2(\text{Zr},\text{Mn}^{3+})_3(\text{Sb},\text{Ti},\text{Fe}^{3+})_2\text{O}_{16} \), was described as a new mineral (Holtstam, 1997) from the famous Fe–Mn–(Ba–Pb–As–Sb–Be–B) deposit at Långban, in Värmland, Sweden (Holtstam and Langhof, 1999). It occurs in a phlogopite-rich skarn with magnetoplumbite, fluorapatite, oxyplumboroméite, pyrophanite and jacobsite (Fig. 1), and was interpreted as a product of metasomatism and regional metamorphism. Hiärneite was the first mineral known to have an essential combination of Zr and Sb in its formula (the second one is urstite, a member of the garnet supergroup: Grew et al., 2013).

Hiärneite, having a tetragonal unit cell with \( a = 15.264(1) \), \( c = 10.089(2) \) Å, space-group symmetry \( I_4_{1}acd \), was inferred to be isostructural with calzirtite, ideally \( \text{Ca}_2\text{Zr}_5\text{Ti}_2\text{O}_{16} \) (Holtstam, 1997). The crystal structure was, however, not studied in detail at the time of discovery. We have now collected single-crystal X-ray diffraction data and refined the crystal structure of type hiärneite (sample from the mineral collection of the Swedish Museum of Natural History, GEO-NRM #19920776).

X-ray diffraction data and refinement

X-ray diffraction data of hiärneite were obtained with an Oxford Diffraction Xcalibur 3 diffractometer (MoK\( \alpha \) radiation, \( \lambda = 0.71073 \) Å) fitted with a Sapphire 2 CCD detector (see Table 1 for details). Intensity integration and standard Lorentz-polarisation corrections were done with the CrysAlis RED (Oxford Diffraction, 2006) software package. Crystal shape and dimension optimisation were performed with X-shape (Stoe and Cie, 1996), based on the Habitus program (Herrendorf, 1993). The set of reflections was corrected for absorption via a Gaussian analytical method and averaged according to the 4/mmm point group. Following an absorption correction, the merging \( R \) for the data set decreased from 0.081 to 0.054. The analysis of the reflection conditions unequivocally led to the choice of the space group \( I_4_{1}acd \). Given the close similarity in terms of unit-cell dimensions and crystal symmetry, the crystal structure was refined starting from the atomic coordinates of calzirtite, ideally \( \text{Ca}_2\text{Zr}_5\text{Ti}_2\text{O}_{16} \) (Rossel 1982; Sinclair et al., 1986; Rastsvetaeva et al., 1995; Jafar et al., 2016).

The site occupancy factor (s.o.f.) at the cation sites was allowed to vary (Mn vs. structural vacancy, Sb vs. structural vacancy, Ca vs. structural vacancy and Zr vs. structural vacancy for \( M1, M2, M3 \) and \( M4 \), respectively) using scattering curves for neutral atoms taken from the International Tables for Crystallography (Ibers and Hamilton, 1974). The mean electron numbers obtained for each site were modelled considering the observed bond distances and the electron microprobe analysis (see below). These proportions were then fixed in subsequent refinement cycles (see Table 2 – constrained refinement). The full-matrix least-squares program Shelx-97 (Sheldrick, 2008) was used for the refinement of the structure. Convergence was easily achieved up to \( R_I = 0.046 \). Atomic coordinates and bond distances are given in Tables 2 and 3, respectively. The crystallographic information file has been deposited with the Principal Editor of
**Table 1. Crystal and diffraction experimental data.**

| Parameter                          | Value                                      |
|------------------------------------|--------------------------------------------|
| Ideal formula                      | Ca₉ZrMn³⁺SbTiO₁₆                          |
| Crystal dimensions (mm)            | 0.065 × 0.080 × 0.090                      |
| Crystal system, space group        | Tetragonal, I₄₁/acd                       |
| Temperature (K)                    | 293(2)                                     |
| α, c (Å)                           | 15.2344(6), 10.0891(6)                    |
| V (Å³)                             | 2341.6(2)                                  |
| Z                                  | 8                                          |

**Data collection**

| Parameter                          | Value                                      |
|------------------------------------|--------------------------------------------|
| Instrument                        | Oxford Xcalibur 3                          |
| Radiation type, wavelength (Å)     | MoKα, 0.71073                              |
| θ range (°)                       | 4.46 to 38.82                             |
| Absorption correction             | Gaussian analytical                       |
| Number of measured, independent and observed reflections | 4988, 1588, 1073 |
| Rint                              | 0.054                                      |
| Indices range of h, k, l           | –8→26, –7→23, –17→12                     |

**Refinement**

| Parameter                          | Value                                      |
|------------------------------------|--------------------------------------------|
| Full-matrix least squares on F²   |                                            |
| Number of reflections, parameters, restraints | 1588, 60, 0                                 |
| R₁ [F² > 4σ(F²)]                  | 0.046, 0.081                               |
| GoF                               | 1.04                                       |
| wR₂, wR₂ (all)*                   | 0.094, 0.113                               |
| Δρmax, Δρmin (e⁻ A⁻³)             | 2.16, –2.20                               |

*Weighting scheme: w=1/[σ²(Fo)+0.041P²+4.907P²] where P = (Fo²+2Fe²)

**Chemical composition**

Calzirtite is normally chemically relatively pure, with minor Nb and Ta substituting for Ti, Hf for Zr and Fe for Ca (Bellatreccia et al., 1999); it may also host rare earth elements and actinides at low concentrations (Pascal et al., 2009). As the concentration of common Pb is usually negligible, calzirtite has proven to be useful for ²⁰⁷Pb–⁰²⁰⁶Pb age determination (Wu et al., 2010). Härnèite is more complex in composition (Table 4, data from Holtstam, 1997).

The distribution of the cations present at the structural sites of härmèite is based primarily on ionic radii and electronic charge. Calcium, Na and a fraction of Mn³⁺ are assigned to M3. The M2 site is a mixed Sb, Ti site with minor Fe³⁺. The M4 site, as for calzirtite, is dominated totally by Zr (+ Hf). The M1 site hosts mainly Mn and a small fraction of Zr. These cation assignments are supported by refined site-scattering values (Table 5) and bond-valence sums (Table 6). The deviation of 2% in the overall mean electron number is acceptable for an Sb-bearing compound. The corresponding empirical formula of härmèite is (Ca₁₅₋₃⁺⁰.₁₂Mn₃⁺⁰.₀₄Al⁺²⁰.₀₂O₆)⁺ (Zr₁₋₉⁻²⁾(Sb₁.₃⁰⁻²⁾(Fe²⁺⁰.₃⁰⁻²) (O₆)⁻⁴.⁰₀⁻⁰.₂₅. The presence of Mn³⁺ in härmèite is confirmed by optical absorption spectroscopy (Holtstam, 1997). Ordering of Mn³⁺ to a normally Zr-dominated site is a very rare phenomenon, but the similar ionic radii (0.65 and 0.72 Å, respectively) and electronic charges make it

**Table 2. Fractional atomic coordinates, site occupancies and equivalent isotropic displacement parameters (Å²) for härmèite.**

| Site       | Site occupancy | x     | y     | z     | Ueq  |
|------------|----------------|-------|-------|-------|------|
| M1         | Mn₀.⁷₂Zr₀.₂₁F₀.₀₂Mg₀.₀₂ | 0     | ¼     | 0.1250 | 0.0195(3) |
| M2         | Sb₀.⁶⁶⁶Ti₂₀.₂⁵F₀.₀₂   | 0.16860(2) | 0.41860(2) | 0.1250 | 0.0073(2) |
| M3         | Ca₀.₇₆Mn₀.₁₃Ho₀.₀₂   | 0.3367(4)  | 0.41326(7) | 0.3750 | 0.0120(3) |
| M4         | Zr₀.₉⁸Hf₀.₀₂       | 0.16019(3) | 0.26721(3) | 0.3631(5) | 0.00648(12) |
| O1         | O₁,₀₀             | ¼     | 0.4716(4) | 0.0000 | 0.0138(10) |
| O2         | O₁,₀₀             | ¼     | 0.3186(3) | ½     | 0.0099(9)  |
| O3         | O₁,₀₀             | 0.0769(2) | 0.4941(2) | 0.0145(3) | 0.0101(6)  |
| O4         | O₁,₀₀             | 0.3783(2) | 0.3388(2) | 0.0099(4) | 0.0131(7)  |
| O5         | O₁,₀₀             | –0.0609(2) | 0.1772(2) | 0.4948(3) | 0.0106(6)  |

**Table 3. Selected bond distances (Å) in härmèite.**

| Site       | Bond distance (Å) |
|------------|--------------------|
| M1–O5      | 1.953(3)           |
| M1–O4      | 2.669(4)           |
| <M1–O>     | 2.311              |
| M2–O1      | 1.945(2)           |
| M2–O4      | 1.959(3)           |
| M2–O3      | 1.980(3)           |
| <M2–O>     | 1.961              |
| M3–O2      | 2.327(3)           |
| M3–O5      | 2.461(4)           |
| M3–O1      | 2.532(4)           |
| M3–O3      | 2.583(3)           |
| <M3–O>     | 2.476              |

Mineralogical Magazine and is available as Supplementary material.

**Crystal structure**

The crystal structure (Fig. 2) is a derivative of the fluorite-type structure, with a tetragonal symmetry. Here we use the same site nomenclature previously used for calzirtite. The cations are arranged on planes parallel to (010) and constitute double heteropolyhedral layers (at y = ½, ⅜). The M4 site occupies the 4- to 8-coordinated site (Zr–Zr contact 0.54 Å) within a distorted cube of O atoms. In härmèite, metal atoms occupying the 4- to 8-coordinated site
feasible. The assignment of Mn$^{3+}$ to the M1 site, and the presence of both Sb$^{5+}$ and Ti$^{4+}$ at the M2 site, form the basis for a definition of the ideal formula of hiärneite: Ca$_2$Zr$_4$Mn$_3+$Sb$_2$O$_{16}$. The formula is expressed in this way to conform with the listed International Mineralogical Association (IMA) formula of calzirtite (from which its name is directly derived, and where Zr$_5$ represents the combined contents of M1$^+$+M4). The point-analysis closest to the hiärneite end-member represented here (no. 6 in Table 4) has the composition $^{M3}$(Ca$_{1.61}$Na$_{0.13}$Mn$_{0.26}^{2+}$)$_{2.00}$$^{M4}$(Zr$_{5.96}$Hf$_{0.04}$)$_{2.00}$$^{M2}$(Mn$_{3+}$Zr$_{0.17}$Fe$_{0.03}$Mg$_{0.02}$)$_{2.00}$$^{M4}$(Sb$_{1.24}$Ti$_{0.73}$Fe$_{0.03}$)$_{2.00}$$O_{16}$.

In hiärneite, the average sum of trivalent ions at M1 (Mn$^{3+} +$ Fe$^{3+}$) is 0.41 atoms per formula unit (apfu), a marginally higher value than (Mn$^{2+}$ + Mg) with 0.37 apfu. Minor changes in the chemical compositions could make the sum of divalent cations dominant instead, and thus the hypothetical end-member formula Ca$_2$Zr$_4$Mn$_3+$Sb$_2$O$_{16}$ becomes valid according to the

Fig. 2. The crystal structure of hiärneite seen along [001].

### Table 4. Compositional data for hiärneite based on electron-microprobe point measurements*.

|        | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | mean 2σ |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| Na$_2$O | 0.59  | 0.46  | 0.72  | 0.62  | 0.50  | 0.42  | 0.45  | 0.59  | 0.21    |
| MgO    | 0.09  | 0.10  | 0.13  | 0.11  | 0.07  | 0.03  | 0.08  | 0.10  | 0.06    |
| CaO    | 9.15  | 9.08  | 8.87  | 8.83  | 9.36  | 9.41  | 9.02  | 9.14  | 9.11    |
| MnO**  | 4.01  | 5.24  | 3.74  | 4.78  | 4.07  | 3.83  | 5.81  | 4.58  | 4.51    |
| Mn$_2$O$_3$** | 3.71  | 0.98  | 3.90  | 2.98  | 3.13  | 4.39  | 1.65  | 3.03  | 2.97    |
| TiO$_2$ | 4.66  | 5.26  | 4.30  | 4.25  | 5.28  | 6.09  | 4.57  | 4.60  | 4.88    |
| ZrO$_2$ | 53.94 | 54.63 | 52.90 | 52.28 | 54.11 | 53.40 | 53.23 | 53.31 | 53.48   |
| Sb$_2$O$_5$ | 22.87 | 21.97 | 23.45 | 24.31 | 21.93 | 21.04 | 24.07 | 23.91 | 22.94   |
| Fe$_2$O$_3$ | 0.81  | 1.12  | 0.71  | 0.67  | 0.88  | 0.52  | 0.57  | 0.70  | 0.75    |
| HfO$_2$ | 0.50  | 0.50  | 0.50  | 0.50  | 0.50  | 0.50  | 0.50  | 0.50  | 0.50    |
| Total  | 100.33| 99.34 | 99.22 | 99.33 | 99.83 | 99.60 | 99.95 | 100.46| 99.76   |

*Analytical conditions: wavelength-dispersive spectroscopy, 20 kV accelerating voltage and 12 nA beam current. HfO$_2$ concentration is estimated from energy-dispersive X-ray spectrometry. Data from Holtstam (1997), reproduced with permission.

**Calculated from stoichiometry (9 cations, 16 oxygen atoms).
dominant-constituent rule. The application of the site-total-charge (STC) approach (Bosi et al., 2019), however, gives a STC value of +2.81 for M1 and +1.93 for M2, close to +3 and +2, respectively. The dominant site arrangement is then Mn\(^{3+}\) at M1 and (Sb\(\text{Si}\)\(^{9+}\)) at M2, giving the end-member formula presented here.

### Classification

As calzirtite and hårnäite are nearly isostructural, and consist of similar chemical components, they constitute a mineral group (Mills et al., 2009b). The calzirtite group was introduced informally by Strunz and nickel (2001), and includes calzirtite, an orthorhombic modification, calzirtite-I\(0\) (described by Callegari et al., 1997), hårnäite and the structurally closely related cubic mineral tazheranite (Zr\(_2\)Ti\(_2\)Ca\(_2\)(Sb\(\text{Si}\))\(_4\)O\(_{16}\) \(\cdot\)2\(\text{H}_2\text{O}\)). Tazheranite is considered as a natural form of Zr\(_2\)O\(_2\), 'cubic zirconia', stabilised by impurity elements and oxygen vacancies (Rastsvetaeva et al., 1998; Konzett et al., 2013). Its structure is characterised by Zr and Ca, Ti etc. distributed randomly over the regular 8-coordinated sites in a fluorite-type Fm\(_{3m}\) unit cell, whereas the anion sites are only partially occupied for charge compensation (also shown for synthetic analogues; Howard et al., 1988). In calzirtite and hårnäite, the ordering of the cations over specific sites leads to a lower symmetry and a tripped a parameter and doubled c parameter (Table 7). More pure variants of cubic ZrO\(_2\) have also been reported to form from shock-metamorphism of zircon (e.g. Kenny and Pasek, 2021). All of the group members belong to the Nickel-Strunz subdivision 4.DL (Strunz and Nickel, 2001). The calzirtite group, with calzirtite, hårnäite and tazheranite, has been accepted by the Commission on New Minerals, Nomenclature and Classification of the IMA, along with the new formula of hårnäite presented here (proposal 21-G, Miyawaki et al., 2022).

### Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1180/mgm.2022.19

### Acknowledgements

We thank CNMNC members for suggestions on the original proposal dealt with by the commission. Reviews by two anonymous reviewers and Structural Editor Peter Leverett improved the paper.

### References

Bellatrecia F., Della Ventura, G., Caprilli E., Williams C.T. and Parodi G.C. (1999) Crystal-chemistry of zirconolite and calzirtite from Jacupiranga, São Paulo (Brazil). Mineralogical Magazine, 63, 649–660.

Bosi F., Hatert F., Hälenius U., Pasero M., Miyawaki R. and Mills S.J. (2019) On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627–632.

Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.

Callegari A., Mazzi F. and Ungaretti L. (1997) The crystal structure of the orthorhombic calzirtite from Val Malenco (Italy). Neues Jahrbuch für Mineralogie-Monatshefte, 467–480.

Grew E.S., Locock A.J, Mills S.J., Galuskina I.O., Galuskin E.V. and Hålenius U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785–811.

Herrendorf W. (1993) Habitus. PhD dissertation, University of Karlsruhe, Germany.

Holtstam D. (1997) Hårnäite, a new, Zr\(_2\)-Sb oxide mineral isocratic with calzirtite, from Långban, Sweden. European Journal of Mineralogy, 9, 843–848.

Holtstam D. and Langhov J. (editors) (1999) Långban. The Mines, their Minerals, Geology and Explorers, Swedish Museum of Natural History and Raster Förlag, Stockholm, 215 pp.

Howard C.J., Hill R.J. and Reichert B.E. (1988) Structures of ZrO\(_2\) polymorphs at room temperature by high-resolution neutron powder diffraction. Acta Crystallographica, B44, 116–120.

Ibers J.A. and Hamilton W.C. Eds. (1974) International Tables for X-ray Crystallography, vol. IV. Kynock, Dordrecht, The Netherlands, 366 pp.

Jafar M., Phapale S.B., Achary S.N., Mishra R. and Tyagi A.K. (2016) High temperature crystallographic and thermodynamic investigations on synthetic calzirtite (Ca\(_2\)Zr\(_5\)Ti\(_2\)O\(_{16}\)). Journal of Alloys and Compounds, 480, 284–293.

Kenny G.G. and Pasek M.A. (2021) The response of zircon to the extreme pressures and temperatures of a lightning strike. Scientific reports, 11, 1–11.

Konzett J., Wirth R., Hauzenberger C. and Whitehouse M. (2013) Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos, 182, 165–184.

Mills S.J., Christy A.G., Chen E.C.-C. and Raudsepp M. (2009a) Revised values of the bond valence parameters for \[\text{Sb}^{V}\] and \[\text{Sb}^{VI}\] of [3\text{Sb}(\text{III})–O]\(_4\) and [6\text{Sb}(\text{V})–O] groups. Zeitschrift für Kristallographie, 224, 423–431.

Mills S.J., Hatert F., Nickel E.H. and Ferraris G. (2009b) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 1073–1080.

Miyawaki R., Hatert F., Pasero M. and Mills S.J. (2022) Newsletter 64. To view supplementary material for this article, please visit https://doi.org/10.1180/mgm.2022.19

Oxford Diffraction (2006) CrysAlis RED (Version 1.171.32) and ABBSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

### Table 5. Site-scattering (s.s.) values (epfu) for hårnäite.

| Site | W. | Refined s.s. | Site population (apfu) | Calculated s.s. |
|------|----|-------------|------------------------|-----------------|
| M1   | 8b | 25.2        | Mn\(_{0.72}\)Zr\(_{0.23}\)Fe\(_{0.01}\)Mg\(_{0.02}\)     | 27.7            |
| M2   | 16f| 81.2        | Sb\(_{1.37}\)Ti\(_{0.63}\)Fe\(_{0.04}\)        | 83.9            |
| M3   | 16f| 38.6        | Ca\(_{1.5}\)Na\(_{0.1}\)Mn\(_{0.26}\)         | 39.8            |
| M4   | 32g| 160.0       | Zr\(_{3.36}\)Fe\(_{0.02}\)          | 160.6           |
| Sum  |    | 305.0       |                        | 312.0           |

* Wyckoff position

### Table 6. Weighted bond-valence sums (in valence units) for hårnäite according to the parameters of Brese and O’Keeffe (1991) for all the elements (site occupancies in Table 2) apart from Sb\(^{V}\), which was calculated according to Mills et al. (2009a).

| M1   | M2   | M3   | M4   | ΣM |
|------|------|------|------|-----|
| 0.840\(^{+2}\) | 0.206\(^{-2}\) | 0.357\(^{+2}\) | 0.633\(^{-2}\) | 2.092 |
| 0.777\(^{+2}\) | 0.179\(^{-2}\) | 0.537 | 1.923 |
| 0.104\(^{+2}\) | 0.816\(^{-2}\) | 0.489 | 0.558 |
| 0.717\(^{+4}\) | 0.247\(^{+2}\) | 0.644 | 2.107 |
| 3.281 | 4.860 | 1.978 | 3.793 |

Ideal 3.000 4.500 2.000 4.000

### Table 7. Minerals of the calzirtite group.

| Calzirtite\(^{1}\) | Hårnäite\(^{2}\) | Tazheranite\(^{3}\) |
|-------------------|-----------------|-------------------|
| Formula           | \[\text{Mn}\(_{2}\text{Ca}\(_{2}\text{Mn}\(_{2}\text{Fe}\(_{4}\text{O}\(_{16}\)\)}\times 0.25\] | \[\text{Zr}\(_{2}\text{O}\(_{2}\)\] |
| Space group       | I\(_{4}\)\(_{1}\)\(_{ac}\) | I\(_{4}\)\(_{1}\)\(_{ac}\) | Fm\(_{3m}\) |
| \(Z\)            | 8               | 8                  | 4             |
| \(a\,(\text{Å})\)  | 15.094(2)       | 15.234(6)          | 5.111(1)      |
| \(c\,(\text{Å})\)  | 10.043(3)       | 10.0991(6)         |                |

\(^{1}\text{Sinclair et al. (1986); this work; }^{2}\text{Rastsvetaeva et al. (1998).}\)
Pascal M.L., Di Muro A., Fonteilles M. and Principe C. (2009) Zirconolite and calzirtite in banded forsterite-spinel-calcite skarn ejecta from the 1631 eruption of Vesuvius: inferences for magma-wallrock interactions. *Mineralogical Magazine*, 73, 333–356.

Rastsvetaeva R.K., Pushcharovskii D.Y., Spiridonov E.M. and Gekimenants V.M. (1995) Crystal structure of ordered calzirtite Ca₂Zr₅Ti₂O₁₆. *Crystallography Reports*, 40, 746–748.

Rastsvetaeva R.K., Pushcharovskii D.Y., Spiridonov E.M. and Gekimenants V.M. (1998) Tazheranite and calzirtite: structural-mineralogical similarity and distinction. *Doklady Akademii Nauk*, 359, 529–531 [in Russian].

Rossell H.J. (1982) Calzirtite – a fluorite-related superstructure. *Acta Crystallographica*, B38, 593–595.

Sheldrick G.M. (2008) A short history of SHELX. *Acta Crystallographica*, A64, 112–122.

Sinclair W., Eggleton R.A. and McLaughlin G.M. (1986) Structure refinement of calzirtite from Jacupiranga, Brazil. *American Mineralogist*, 71, 815–818.

Stoe and Cie (1996) X-shape (version 1.02). Stoe and Cie, Darmstadt, Germany.

Strunz H. and Nickel E. (2001) *Strunz Mineralogical Tables. Chemical-Structural Mineral Classification system*. Ninth Edition. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany, 870 pp.

Wu F.Y., Yang Y.H., Mitchell R.H., Bellatreccia F., Li Q.L. and Zhao Z.F. (2010) In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. *Chemical Geology*, 277, 178–195.