Regulation of the PKCθ-NF-κB axis in T lymphocytes by the tumor necrosis factor receptor family member OX40

Takanori So1* and Michael Croft2*

1 Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
2 Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, LA, USA

*Correspondence: Takanori So, Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aobaku, Sendai 980-8575, Japan. e-mail: tso@med.tohoku.ac.jp; Michael Croft, Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. e-mail: mick@liai.org

Antigen primed T lymphocytes need to expand and persist to promote adaptive immunity. The growth and survival signals that control this are in large part provided by the NF-κB pathway in activated or effector/memory T cells. Although several membrane receptors impact NF-κB activation, signaling from OX40 (CD134, TNFRSF4), a member of the tumor necrosis factor receptor (TNFR) superfamily, has proven to be important for T cell immunity and a strong contributor to NF-κB activity. PKCθ directs the T cell receptor (TCR) and CD28-dependent assembly of a CBM complex (CARMA1, BCL10, and MALT1) for efficient activation of NF-κB, raising the question of whether other membrane bound receptors that activate NF-κB also require this PKCθ-CBM axis to control TCR-independent T cell activity. We discuss here our recent data demonstrating that after ligation by OX40L (CD252, TNFSF4) expressed on antigen-presenting cells, OX40 translocates into detergent-insoluble membrane lipid microdomains (DIM or lipid rafts) in T cells irrespective of TCR signals, and assembles into a signaling complex containing PKCθ, together with TRAF2, RIP1, the CBM complex, and the IKKα/β/IκB complex. PKCθ is required for optimal NF-κB activation mediated by OX40 and thus works as an essential component of this OX40 signalosome. We also discuss the likelihood that other TNFR superfamily molecules might complex with PKCθ in T cells, and whether PKC isoforms may be critical to the function of TNFR molecules in general.

Keywords: OX40, PKCθ, TRAF, NF-κB, IKK, CBM, TNFSE, TNFRSF

INTRODUCTION

Interactions between several members of the tumor necrosis factor (TNF) superfamily and the TNF receptor (TNFR) superfamily are vital for regulation of T cell activation, differentiation, and survival (Croft, 2003, 2009). Many TNFR molecules, such as TNFR2 (TNFRSF1B), OX40 (TNFRSF4), CD27 (TNFRSF7), CD30 (TNFRSF8), 4-1BB (TNFRSF9), HVEM (TNFRSF14), GITR (TNFRSF18), and DR3 (TNFRSF25) are constitutively or inducibly expressed on T cells. They can be viewed as major sources of nuclear factor κB (NF-κB) signals, through TNF ligand-dependent recruitment of adaptors (TNF receptor-associated factors or TRAFs), making them important components of the T cell signaling machinery (Croft, 2003, 2009, 2010; Sugamura et al., 2004; Watts, 2005; So et al., 2006; Nocentini et al., 2007; Nolte et al., 2009; Faustman and Davis, 2010). Although the molecular machinery through which TNFR1 (TNFRSF1A) regulates signaling has been extensively studied in non-T cells and has become a framework to understand the classical or canonical NF-κB (NF-κB1) pathway as well as induction of apoptosis, it is unclear how other members of the TNFR superfamily organize their signaling complexes on the membrane, especially in T cells, and whether the respective complexes are comparable to that recruited by TNFR1.

Activation of NF-κB1 is initiated by signal-dependent phosphorylation, ubiquitination, and subsequent degradation of inhibitory IκB. This allows cytoplasmic NF-κB1/RelA to stably translocate to the nucleus and activate gene transcription. IκB phosphorylation is catalyzed by the IκB kinase (IKK) complex that contains two homologous catalytic subunits, IκKα and IκKβ, and the regulatory subunit IκKγ. Activation of IκKβ is essential for NF-κB1 in response to all pro-inflammatory stimuli (Hayden and Ghosh, 2008; Vallabhappurapu and Karin, 2009). Although all stimuli leading to NF-κB1 activation appear to converge on IκKβ-mediated IκB phosphorylation, the upstream events controlling activation of the IKK complex are possibly distinct and specific to the individual type of NF-κB-activating stimulus. In T cells, the T cell receptor (TCR) and the Ig superfamily costimulatory molecule CD28 are capable of synergizing together and activating NF-κB1. CARMA1 [caspase-recruitment domain (CARD)-membrane-associated guanylate kinase (MAGUK) protein 1] has been shown to control this NF-κB1 activation by forming a complex with B cell lymphoma 10 (BCL10), and mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1), termed CBM (Gaide et al., 2002; Wang et al., 2002; Thome, 2004). Importantly, PKCθ (protein kinase Cθ) is also recruited after cross-linking the TCR and CD28 (Bi et al., 2001). Phosphorylation of CARMA1 by PKCθ induces the assembly of the CBM complex that then activates IκKβ (Matsumoto et al., 2005; Sommer et al., 2005).

The question was then raised as to whether this PKCθ-CBM module to activate IκKβ was specific to cooperation between the TCR and CD28 or might be a shared pathway with other molecules,
either in T cells or non-T cells. Initial studies of CARMA1 suggested the former. TNF binding with TNFR, largely on non-T cells such as embryonic fibroblasts, has been extensively characterized, and shown to recruit TRAF2 that links the serine/threonine kinase RIP1 (receptor interacting protein kinase-1) to activation of IKKβ (Chen and Goeddel, 2002; Wajant et al., 2003; Muppidi et al., 2004; Kovalenko and Wallach, 2006). In contrast, TNF was found to induce NF-κB activation equivalently in CARMA1-deficient T cells (Gaide et al., 2002; Wang et al., 2002), implying that TNFR superfamily members may not use or require the PKCθ and also PKCδ complex.

NF-κB1 SIGNALING THROUGH OX40 IS ESSENTIAL FOR ACTIVATED/EFFECTOR T CELL RESPONSES

The TNF receptor OX40 is induced on activated CD4+ and CD8+ T cells and the TNF ligand OX40L is induced on activated antigen-presenting cells (APCs; Croft, 2010). Signaling through OX40 dominantly regulates T cell turnover at the peak of the expansion phase of many immune responses and the subsequent survival of activated/effectector T cells when antigen becomes limiting (Gramaglia et al., 2000; Rogers et al., 2001; Bansal-Pakala et al., 2004). OX40-deficient T cells cannot persist well and exhibit decreased survival rates, resulting in reduced accumulation of memory cells with time (Gramaglia et al., 2000; Murata et al., 2000; Humphreys et al., 2007; Soroosh et al., 2007; Mousavi et al., 2008). The signaling mechanisms by which OX40 contributes to T cell survival are reasonably well defined in CD4+ T cells. Little has been done in terms of signaling in CD8 T cells but the targets and molecules involved are likely similar. One critical pathway that regulates CD4+ T cell survival mediated by OX40 is NF-κB1 (Song et al., 2008). Phosphorylation of IκB, nuclear translocation of NF-κB1/RelA, and NF-κB1 activities, are impaired in antigen-responding CD4+ T cells which lack OX40. In accordance with this, OX40-deficient CD4+ T cells cannot maintain high levels of several anti-apoptotic Bcl-2 family members that are under the control of NF-κB1. Correspondingly, retroviral transduction of a constitutively active form of IKKβ into OX40-deficient CD4+ T cells rescues the poor survival phenotype and increases the expression of Bcl-2 family members (Song et al., 2008).

The TNF ligand OX40L is a type II transmembrane and homotrimeric protein composed of three TNF homology domains, whereas OX40 is a type I transmembrane protein monomer and is trimmerized through binding with OX40L, resulting in formation of a quaternary organized hexamer complex. OX40 has four cysteine-rich domains (CRDs) and the first three CRDs from the N-terminus interact with OX40L in the extracellular space (Compaan and Hymowitz, 2006). OX40 has the potential to recruit TRAF2, TRAF3, and TRAF5 to a QEE motif existing in its ~40 amino acid cytoplasmic tail (Arch and Thompson, 1998; Kawamata et al., 1998; Table 1). However, whether all TRAFs are recruited in vivo is not clear and the downstream signaling that is controlled by these TRAFs has not been investigated in detail. To easily visualize and uncover the signaling modules induced by OX40 ligation, we established an MCC-specific T cell hybridoma cell from OX40-deficient and TCR transgenic mice, and introduced cMyc-tagged-OX40 into this T cell (So et al., 2011b). Although the cMyc-tag is attached to the N-terminus of OX40, this cMyc-OX40 can interact normally with OX40L and induce strong NF-κB1 activity in the T cell. Furthermore, the cMyc-tagged OX40 can be efficiently precipitated from this cell (So et al., 2011b). After triggering OX40 with membrane bound OX40L expressed on a fibroblast cell (Gramaglia et al., 1998), we observed recruitment of the canonical TRAF2, RIP1, and IKK complex, and also PKCθ and the CBM complex (Table 1). Importantly, this signalsome did not require TCR signals, and was formed without antigen recognition and in the complete absence of a TCR. Moreover, an anti-OX40 agonist antibody immobilized on a plate induced the same signaling complex (So et al., 2011b).
So and Croft OX40 complexes with PKCθ

Table 1 | Proteins involved in the OX40 signalosome

Protein	Structure	Interactors
OX40	CRD	OX40L, TRAF2
TRAF2	RING	OX40, IKKα, IKKβ, TAK1/TAB?, GLK?
IKKα	Kinase domain ULD SDD NBD	IKKβ, IKKγ, PKB, TRAF2
IKKβ	Kinase domain ULD SDD NBD	IKKα, IKKγ, PKB, TRAF2
IKKγ (NEMO)	CC CC LZ Zn	IKKα, IKKβ, CBM, RIP1, TAK1/TAB
RIP1	Kinase domain RHM DD	TRAF2, TAK1/TAB, IKKγ
CARMA1	CARD CC PDZ SH3 GUK	BCL10, MALT1, PKCθ, PDK1, PKB, IKKγ
BCL10	CARD	CARMA1, MALT1, IKKγ
MALT1	DD Ig Caspase-like Ig	BCL10, IKKγ
PKCθ	C2 C1 C1	PDK1, CARMA1, PKB, GLK
PKB	PH Kinase domain	PKCθ, IKKα, IKKβ, CARMA1
PDK1	Kinase domain PH	PKCθ
p85 (PI3K)	SH3 Rho GAP-like SH2	p110 (PI3K)

^Protein name abbreviations: TRAF, tumor necrosis factor receptor-associated factor; IKK, inhibitor of NF-κB (IκB) kinase; NEMO, NF-κB essential modulator; RIP, receptor interacting protein kinase; CARMA, caspase-recruitment domain (CARD)-membrane-associated guanylate kinase (MAGUK) protein 1; BCL, B cell lymphoma; MALT, mucosa-associated-lymphoid-tissue lymphoma-translocation gene; PKC, protein kinase C; PKB, protein kinase B; PDK, 3-phosphoinositide-dependent protein kinase; PI3K, phosphoinositide-3-kinase; TAK, transforming-growth-factor-β-activated kinase; TAB, TAK1-binding protein; GLK, germinal center kinase-like kinase; CBM, CARMA1, BCL10, and MALT1. Domain name abbreviations: CRD, cysteine-rich domain; TM, transmembrane; QEE, a motif containing three amino acids, glutamine-glutamic acid-glutamic acid; RING, really interesting new gene; Zn, zinc finger; CC, coiled coil; TRAF, C-terminal TRAF domain; ULD, ubiquitin-like domain; SDD, scaffolding and dimerization domain; NBD, NEMO-binding domain; LZ, leucine zipper; RHM, RIP homotypic interaction motif; DD, death domain; CARD, caspase-recruitment domain; PDZ, PSD95, DLG and ZO1 homology; SH3, src homology 3; GUK, guanylate kinase; Ig, immunoglobulin-like domain; C2, calcium binding domain in PKC; C1, phosphatidylinerine- and diacylglycerol-binding domain in PKC; PH, pleckstrin homology; SH2, src homology 2; Rho GAP, Rho GTPase-activating protein.

explain our finding that PKCθ and the CBM complex associate with OX40.

PKCθ is highly expressed in T cells and the importance for mature T cell activation is well recognized (Sun et al., 2000; Isakov and Altman, 2002). We had previously observed in one in vivo system that OX40 signaling could not compensate for defective activation of PKCθ-deficient CD4+ T cells even though OX40 was expressed (Salek-Ardakani et al., 2005). This implied that PKCθ was a possible mediator of OX40 signals. Although TRAF2, RIP1, CARMA1, and the IKK complex were pulled down with OX40 under conditions of immunoprecipitation with a stringent buffer (RIPA), the PKCθ-CBM complex was only pulled down using a milder buffer containing n-dodecyl-β-maltoside, a detergent that preserves membrane protein structure. This shows that the PKCθ-CBM compartment of the OX40 complex is weaker in association and may require additional intermediates, and that the membrane environment is required to organize the compartment.

It has been demonstrated that PKCθ specifically interacts with lipids or protein components in DIM (Bi et al., 2001; Melowic et al., 2007; Kong et al., 2011). Phosphoinositide 3-kinase (PI3K) participates in the selective membrane recruitment of PKCθ (Villalba et al., 2002). Protein kinase B (PKB or Akt; Bauer et al., 2001) and 3-phosphoinositide-dependent protein kinase-1 (PDK1; Park et al., 2009) interact with PKCθ, and can also control NF-κB activity. The interaction between PKB and CARMA1 additionally may play an important role for NF-κB (Narayan et al., 2006). In our experiments, OX40 translocated into DIM after interaction with OX40L and although we found that the interaction...
So and Croft OX40 complexes with PKCθ

FIGURE 1 | A model of the OX40 complex cascade leading to IKK activation. OX40L binding to OX40 on T cells results in trimerization of OX40 monomers and recruitment of TNFR-associated factor 2 (TRAF2) to the cytoplasmic QEE motif in OX40. The IκB kinase (IKK) complex (IKKα, IKKβ, and IKKγ) is then recruited to the OX40-TRAF2 module, but this event is not sufficient for IKK activation. The OX40-OX40L hexamer complex translocates into detergent-insoluble membrane lipid microdomains (DIM). This organizes the higher ordered multimolecular receptor-ligand architecture that is required for IKK activation in a T cell receptor (TCR)-independent manner. Phosphoinositide 3-kinase (PI3K), 3-phosphoinositide-dependent protein kinase-1 (PDK1), and protein kinase B (PKB) are recruited to OX40 in the DIM. Although not yet determined, germinal center kinase-like kinase (GLK) is possibly incorporated into the OX40 signalosome through TRAF2. Protein kinase Cθ (PKCθ) translocates to the DIM resident OX40, likely through the activities of PDK1, PKB, or GLK, and may be activated by either PDK1 or GLK. Caspase-recruitment domain (CARD)-membrane-associated guanylate kinase (MAGUK) protein 1 (CARMA1) also associates with OX40 in DIM, possibly through PKB. Activated PKCθ phosphorylates CARMA1, and this subsequently induces the CBM complex [CARMA1, B cell lymphoma 10 (BCL10), and mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1)]. Receptor interacting protein 1 (RIP1) is also incorporated into the OX40 complex in DIM in a TRAF2-independent manner. OX40, TRAF2, and RIP1 are highly polyubiquitinated in the OX40 complex, and thus the transforming-growth-factor-β-activated kinase-1 (TAK1) complex might be recruited through these polyubiquitin chains. The IKK complex activated in the OX40 complex phosphoactivates and degrades IκB, and then this facilitates entry of NF-κB1/RelA into the nucleus.
primary CD4+ T cells displayed severely reduced activation of NF-κB1 when stimulated by OX40L in spite of normal expression of OX40 (So et al., 2011b).

It is also possible that the cross-talk between OX40 and PKCθ is mediated through the germinal center kinases (GCKs). Four of the mammalian group I GCKs, GCK, GCK-related (GCKR), GCK-like kinase (GLK), and hematopoietic progenitor kinase-1 (HPK1), have a conserved carboxyl terminal regulatory domain that was suggested to target TRAF proteins (Kyriakis, 1999) and thus these four kinases may be recruited to members of the TNFR superfamily. Both GCK and GCKR can physically associate with TRAF2 (Yuasa et al., 1998; Chin et al., 1999; Shi et al., 1999; Shi and Kehrl, 2003) although the stimuli that may induce this are unclear. Most interestingly, GCK was recently found to directly phosphorylate and activate PKCθ in T cells (Chuang et al., 2011). These data then suggest that OX40 might activate PKCθ through the TRAF2-mediated recruitment of GLK (Figure 1). Whether GCKs are recruited to OX40 and function to control PKCθ activity needs to be addressed in the future.

The OX40 complex is likely to be tightly controlled by polyubiquitin chains. A polyubiquitin chain is formed when one of the eight amino groups within ubiquitin (seven ε-amino groups of internal lysines and one α-amino group of N-terminal methionine) is linked to the C-terminal glycine of another ubiquitin. The best characterized linkages utilize ubiquitin K48 and K63. K48-linked polyubiquitination usually targets substrates for proteasomal degradation, whereas K63-linked polyubiquitin chains can function as scaffolds to assemble signaling complexes, such as the TAK1/TAB2/TAB3 and the IKK complexes (Wertz and Dixit, 2003). This cytoplasmic tail of OX40 contains three lysine residues, which might be targets for ubiquitination. Indeed, upon triggering with OX40L, OX40 is highly ubiquitinated and the protein level of OX40 is transiently decreased (So et al., 2011a,b). Disruption of DIM decreases the level of polyubiquitin chains, correlating with reduced complex formation and weak NF-κB1 activity induced by OX40 (So et al., 2011a,b). This suggests that DIM works as a platform to attach polyubiquitin chains to OX40 and that this event plays an essential role for IKK activation. At the present, we do not know how many K48- and K63-linked polyubiquitin chains are conjugated to OX40, but we think that both types of polyubiquitin chains should be critical for regulation of the OX40-NF-κB1 axis. Whether ubiquitination of OX40 will affect recruitment of PKCθ remains to be seen.

Blocking interactions between OX40L and OX40 conceivably block survival of pathogenic effector T cells and promote clonal expansion and suppressive function of Foxp3+ regulatory T cells. OX40 is therefore a promising drug target for T cell-mediated inflammatory diseases. Mice treated with anti-OX40L blocking mAb or OX40L-deficient mice have revealed significantly attenuated inflammation in murine models of colitis, asthma, diabetes, multiple sclerosis, rheumatoid arthritis, atherosclerosis, graft-versus-host disease, sepsis, and uveitis (Croft, 2009, 2010). PKCθ also has a similar dual role in effector and regulatory T cells, i.e., inhibition of PKCθ decreases inflammation mediated by effector T cells, whereas it promotes suppressive functions of regulatory T cells (Zanin-Zhorov et al., 2011). This suggests that inhibitors that target the molecular machinery of OX40 (Table 1; Figure 1) also have a great therapeutic potential with inflammatory and autoimmune diseases.

REGULATION OF PKC ISOFORMS BY OTHER MEMBERS OF THE TNFR SUPERFAMILY

Of the TNFR family members most closely related to OX40 (TNFR2, HVEM, 4-1BB, CD30, GITR, CD27, DR3), only 4-1BB has been assessed in terms of potentially modulating or requiring PKCθ. Ligation of 4-1BB in activated CD8+ T cells was found to induce translocation of PKCθ into lipid raft domains augmenting PKCθ accumulation in the contact area between a T cell and an APC (Nam et al., 2005). The signaling complex of 4-1BB has not been visualized, but this data implies 4-1BB may recruit a signaling complex that is closely related to that recruited by OX40. 4-1BB also binds TRAF2, and given our finding that TRAF2 knockdown inhibited PKCθ association with OX40, it is likely that any TNFR molecule that binds TRAF2 might have the capacity to engage PKCθ. TRAF2 can bind TNFR2, HVEM, CD30, GITR, CD27, and DR3 in transient transfection systems, implying this molecule may be central to the activities of all of these molecules. This remains to be determined, but in this regard, induction of a monocytic inflammatory mediator, TGF-β-inducible gene h3 (Big-h3), by cross-linking DR3 was blocked by several PKC inhibitors that might target PKCθ, although no direct data was provided (Lee et al., 2010).

As discussed above, current ideas suggest that PKCθ is not required for the activity of TNF through TNFR1, however other PKC isoforms may be involved in TNFR family signaling in some situations. It is well known that activation of PKCθ by phorbol ester can antagonize death (apoptosis) induced by DD containing TNFR members, such as TNFR1, FAS (TNFRSF6), and TRAIL-R1/2 (TNFRSF10A/B; Ruiz-Ruiz et al., 1997; Gomez-Angelats et al., 2000; Meng et al., 2002; Harper et al., 2003). Pretreatment of HeLa cells with phorbol ester inhibits recruitment of key obligatory DD-containing adaptor proteins to the death-inducing signaling complex (DISC) organized by TRAIL-R and TNFR1 (Harper et al., 2003). In the TNFR1 complex, RIP1 may recruit atypical PKCs (PKCζ and λ, or θ) through p62 (Sanz et al., 1999). In human neutrophils, TNFR1 was found to recruit PKCθ to the complex and this counteracted apoptotic signaling mediated by the DISC through activation of NF-κB1 (Kilpatrick et al., 2004). Furthermore, in the TNFRI complex of mouse embryonic fibroblast, PKCθ and PKCζ were recently shown to be responsible for phosphorylation of TRAF2, controlling the introduction of K63-linked polyubiquitin chains into TRAF2, and recruitment of the TAK1/TAB2/TAB3 complex and activation of the IKK complex (Li et al., 2009). In another example, in human peripheral blood lymphocytes and leukemic T cell lines, FAS upon stimulation with FASL (TNFSF6) induced rapid localization of stromal interaction molecule 1 (STIM1) and Orai1 into the membrane receptor cluster and this led to Ca2+ entry and recruitment of PKCζ into the DISC. PKCθ2 in turn also delayed DISC formation and prevented induction of the apoptotic pathway (Khadra et al., 2011). Thus, in the apoptosis-inducing members of the TNFR superfamily, PKC recruitment may primarily limit cell death, or function to help molecules like TNFR1 to switch their signaling toward the pro-inflammatory NF-κB pathway (Figure 2).
In other TNFR members that do not contain DD, such as CD40 (TNFRSF5), BAFF-R (TNFRSF13C), RANK (TNFRSF11A), NGFR (TNFRSF16), and GITR, alternate PKC isoforms also appear to play roles in cellular functions. In peritoneal macrophages, strong or weak engagement of CD40 reciprocally regulated PKC isoforms, resulting in differential cellular responsiveness to *Leishmania major* infection. A higher concentration of anti-CD40 induced phosphorylation and membrane translocation of PKCα, β1, β2, and ε, which favored Th1-type protective immunity effective for the parasite elimination, whereas a lower concentration induced phosphorylation and membrane translocation of PKCβ and ζ/λ, which favored Th2-type immunity and thus permitted parasite growth (Sudan et al., 2012). In mature B cells, triggering of BAFF-R with BAFF (TNFSF13B) also induced membrane translocation of PKCβ which controlled B cell survival through PKB activation (Patke et al., 2006). Stimulation of RANK with RANKL (TNFSF11), in a pre-osteoclast cell line RAW264.7 and in primary bone marrow-derived macrophages, led to recruitment of atypical PKCs through a RANK-TRAF6-p62-PKC linkage. This activated NF-κB1/NFATc1 and played a critical role for osteoclastogenesis (Duran et al., 2004). Moreover, in P12 cells, a rat pheochromocytoma cell line, NGFR stimulation induced a receptor complex that contained K63-polyubiquitinated TRAF6, p62, IKKβ, and PKCε, which induced NF-κB1 and was involved in neuronal survival (Wooten et al., 2005). Lastly, stimulation of a macrophage cell line with soluble GITR induced recruitment of PKCδ to the cell membrane fraction (Lee et al., 2004). These data then collectively imply that overall usage of PKC isoforms by members of the TNFR superfamily is likely to be widespread. It is tempting to speculate that the TNFR-PKC axis may be critical for life and death decisions in many different types of cells by inducing NF-κB1 activation or activities of other signaling pathways (Figure 2).

CONCLUSIONS

Based on results obtained in our biochemical studies, we present an original model that can explain how PKCθ contributes to the NF-κB1 pathway mediated by the OX40 stimulatory receptor in T cells (Figure 1). Upon interaction with membrane OX40L, OX40 moves into the DIM of T cells and builds a multimolecular complex irrespective of antigen/TCR engagement. This complex provides the molecular machinery that controls IKKβ through PKCθ. PKCθ is recruited to the OX40-TRAF2 compartment, activates CARMA1, and then induces the CBM complex to augment IKK activities. This OX40 complex, which contains several upstream kinases for IKK, is an important source of NF-κB1 in T cells and controls longevity of T cells through induction of pro-survival genes. Although OX40 can provide classical costimulatory signals to T cells in concert with those from antigen and CD28, OX40 also sustains signals initiated by the TCR and CD28 while functioning as an independent signaling unit. PKC is central to signal transduction pathways involved in T cell activation, differentiation, and survival. Our data suggests that PKCθ is an integral component of the complex that allows OX40 to function in this regard, and we speculate that an equivalent signaling complex containing PKCθ is likely to be found in complexes formed by other members of the TNFR-PKC axis.

FIGURE 2 | PKC isoforms control life and death induced by TNFRSF. The TNFR-PKC axis activates NF-κB1 or other signaling pathways, which concomitantly promotes cell growth/survival and inhibits cell death.
ACKNOWLEDGMENTS

Michael Croft is supported by grants CA91837, AI49453, AI089624, and AI070535 from the National Institutes of Health. This is publication #1504 from the La Jolla Institute for Allergy and Immunology. Disclosure: Michael Croft has patents on several TNFSF molecules.

REFERENCES

Arch, R. H., and Thompson, C. B. (1998). 4-1BB and OX40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol. Cell. Biol. 18, 558–565.

Bansal-Pakala, P., Halteman, B. S., Cheng, M. H., and Croft, M. (2004). Costimulation of CD8 T cell responses by OX40. J. Immunol. 172, 4821–4825.

Bauer, B., Krumbock, N., Frasser, F., Hochholdinger, F., Spitaler, M., Simm, A., Uberall, F., Schraven, B., and Bailer, G. (2001). Complex formation and cooperation of protein kinase C theta and Akt1/protein kinase B alpha in the NF-kappaB transactivation cascade in Jurkat T cells. J. Biol. Chem. 276, 31627–31634.

Bertrand, M. J., and Vandenabeele, P. (2010). RIP1’s function in NF-kappaB activation: from master actor to onlooker. Cell Death Differ. 17, 379–380.

Bi, K., Tanaka, Y., Coudronniere, N., Sugie, K., Hong, S., van Stipdonk, M. J., and Altman, A. (2001). Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat. Immunol. 2, 536–543.

Chen, G., and Goeddel, D. V. (2002). TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635.

Chin, A. I., Shu, J., Shan Shi, C., Yao, Z., Kehrl, J. H., and Cheng, G. (1999). TANK potentiates tumor necrosis factor receptor-associated factor-mediated c-Jun N-terminal kinase/stress-activated protein kinase activation through the germlinal center kinase pathway. Mol. Cell. Biol. 19, 6665–6672.

Chuang, H. C., Lan, J. L., Chen, D. Y., Yang, C. Y., Chen, Y. M., Li, J. P., Huang, C. Y., Liu, P. E., Wang, X., and Tan, T. H. (2011). The kinase GLK controls autoimmunity and NF-kappaB signaling by activating the kinase PKC-theta in T cells. Nat. Immunol. 12, 1113–1118.

Compaan, D. M., and Hymowitz, S. G. (2006). The crystal structure of the costimulatory OX40-OX40L complex. Structure 14, 1232–1330.

Croft, M. (2003). Costimulatory members of the TNF family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3, 609–620.

Croft, M. (2009). The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 9, 271–285.

Croft, M. (2010). Control of immunity by the TNF-related molecule OX40 (CD134). Annu. Rev. Immunol. 28, 57–78.

Duran, A., Serrano, M., Leitges, M., Flores, J. M., Picard, S., Brown, J. P., Moscat, J., and Diaz-Meco, M. T. (2004). The atypical PKC interacting protein p60 is an important mediator of RANK-activated osteoclastogenesis. Dev. Cell 6, 303–309.

Ea, C. K., Deng, L., Xia, Z. P., Pineda, G., and Chen, Z. J. (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257.

Faustman, D., and Davis, M. (2010). TNF receptor 2 pathway: drug target for autoimmune diseases. Nat. Rev. Drug Discov. 9, 482–493.

Gaide, O., Favier, B., Legler, D. F., Bonnet, D., Brissone, B., Valittuti, S., Bron, C., Tachhop, J., and Thome, M. (2002). CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappaB activation. Nat. Immunol. 3, 836–843.

Gomez-Angelats, M., Bortner, C. D., Gramaglia, I., W einberg, A. D., Lemon, J. P., Moscat, J., and Diaz-Meco, M. T. (2004). Costimulation of CD8 T cell responses by OX40 (CD134). Annu. Rev. Immunol. 22, 433–436.

Hayden, M. S., and Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell 132, 344–362.

Humphreys, I. R., Loewendorf, A., de Trep, C., Schneider, K., Benedict, C. A., Munks, M. W., Ware, C. F., and Croft, M. (2007). OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T Cells: a CD4-dependent mechanism. J. Immunol. 179, 2195–2202.

Ikazaki, J. (2009). Signaling by the germinal center kinase family of protein kinases. J. Biol. Chem. 274, 5259–5262.

Lee, H. S., Park, S. Y., Lee, H. W., and Choi, H. S. (2004). Secretions of MMP-9 by soluble glucocorticoid-induced tumor necrosis factor receptor (sGITR) mediated by protein kinase C (PKC)delta and phospholipase D (PLD) in murine macrophage. J. Cell. Biochem. 92, 481–490.

Lee, S. H., Kim, E. J., Suk, K., Kim, I. S., and Lee, W. H. (2010). TLR4 induces the expression of TGF-beta-inducible gene h3 (betaig-h3) through PKC, PI3K, and ERK in THP-1 cells. Cell. Immunol. 266, 61–66.

Li, S., Wang, L., and Dorf, M. E. (2009). PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination. Mol. Cell. 33, 30–42.

Matsumoto, R., Wang, D., Blonska, M., Li, H., Kobayashi, M., Pappu, B., Chen, Y., Wang, D., and Lin, X. (2005). Phosphorylation of CARMA1 plays a critical role in T cell receptor-mediated NF-kappaB activation. Immunity 23, 575–585.

Medowic, H. R., Stahelin, R. V., Blatner, N. R., Tian, W., Hayashi, K., Altman, A., and Cho, W. (2007). Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Cbeta. J. Biol. Chem. 282, 21467–21476.

Meng, X. W., Heidebrandt, M. P., and Kaufmann, S. H. (2002). Phor- bol 12-myristate 13-acetate inhibits death receptor-mediated apoptosis in Jurkat cells by disrupting recruitment of Fas-associated poly peptide with death domain. J. Biol. Chem. 277, 3776–3783.

Kovalenko, A., and Wallach, D. (2006). If the prophet does not come to the mountain: dynamics of signaling complexes in NF-kappaB activation. Mol. Cell 22, 433–436.

Kawamata, S., Hori, T., Imura, A., Takaiori, Kondo, A., and Uchiyama, T. (1998). Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2 and TRAF5-mediated NF-kappaB activation. J. Biol. Chem. 273, 5808–5814.

Khadra, N., Bresson-Bepoldin, L., Penna, A., Chainge-Delandel, B., Segui, B., Levade, T., Vacher, A. M., Reiffers, J., Ducet, T., Moreau, J. F., Cahalan, M. D., Vacher, P., and Legembre, P. (2011). CD95 triggers Orai1-mediated localized Ca2+ entry, regulates recruitment of protein kinase C (PKC) beta2, and prevents death-inducing signaling complex formation. Proc. Natl. Acad. Sci. U.S.A. 108, 19072–19077.

Klisapinstances, H. E., Xu, S., and Korkach, H. M. (2004). Selective regulation by delta-PKC and PI 3-kinase in the assembly of the antiapoptotic TNFR1 signaling complex in neutrophils. Am. J. Physiol. Cell Physiol. 287, C633–C642.

Kong, K. F., Yokosuka, T., Canonigo- Balancio, A. J., Isakov, N., Saito, T., and Altman, A. (2011). A motif in the V3 domain of the kinase PKC-theta determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat. Immunol. 12, 1105–1112.
Ox40 complexes with PKCθ

Mousavi, S. F., Soroosh, P., Takahashi, T., Yoshikai, Y., Shen, H., Lefrancos, L., Borst, J., Sugamura, K., and Ishii, N. (2008). Ox40 cotransduction signals potentiate the memory commitment of effecter CD8+ T cells. J. Immunol. 181, 5990–6001.

Muppidi, R. I., Tschopp, J., and Siegel, R. M. (2004). Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunol. Rev. 201, 461–465.

Murata, K., Ishii, N., Takano, H., Miura, S., Ndhlovu, L.C., Nose, M., Noda, T., and Sugamura, K. (2000). Impairment of antigen-presenting cell function in mice lacking expression of Ox40 ligand. J. Exp. Med. 191, 365–374.

Nam, N. G., Kang, H., Shin, S. M., Cho, K. H., Kwon, R., Kwon, B. S., Kim, S. J., and Lee, H. W. (2005). Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. J. Immunol. 174, 1989–1903.

Napolitano, G., and Karin, M. (2010). Sphingolipids: the oil on the TRAFire that promotes inflammation. Sci. Signal. 3, pe34.

Narayan, P., Holt, B., Tostie, R., and Kane, L. P. (2006). CARD1MA is required for Akt-mediated NF-kappaB activation in T cells. Mol. Cell. Biol. 26, 2327–2336.

Nocentini, G., Ronchetti, S., Cazzucchi, S., and Riccardi, C. (2007). GITR/GTRL: more than an effector T cell co-stimulatory system. Eur. J. Immunol. 37, 1165–1169.

Nolte, M. A., van Olffen, R. W., van Gisbergen, K. P., and van Lier, R. A. (2009). Timing and tuning of CD27–CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol. Rev. 229, 216–231.

Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., and Donner, D. B. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–85.

Park, S. G., Schulze-Luehrman, J., Hayden, M. S., Hashimoto, N., Ogawa, W., Kasuga, M., and Ghosh, S. (2009). The kinase PKD1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-kappaB and activate T cells. Nat. Immunol. 10, 158–166.

Patke, A., Mecklenbrauker, L., Erdjument-Bromage, H., Tempst, P., and Tarakhovsky, A. (2006). BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J. Exp. Med. 203, 2531–2562.

Rogers, P. R., Song, J., Gramaglia, I., Kilkeen, N., and Croft, M. (2001). Ox40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15, 445–455.

Romashkova, J. A., and Makarov, S. S. (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401, 86–90.

Ruiz-Ruiz, M. C., Izquierdo, M., de Murcia, G., and Lopez-Rivas, A. (1997). Activation of protein kinase C attenuates early signals in Fas-mediated apoptosis. Eur. J. Immunol. 27, 1442–1450.

Sakaguchi, N., and Kehrl, J. H. (2003). Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCGR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J. Biol. Chem. 278, 15429–15434.

Shi, C. S., and Kehrl, J. H. (2003). Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCGR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J. Biol. Chem. 278, 15429–15434.

So, T., Choi, H., and Croft, M. (2011a). Ox40 complexes with phosphoinositide-3 kinase and protein kinase B (PKB) to augment TCR-dependent PKB signaling. J. Immunol. 186, 3547–3555.

So, T., Soroosh, P., Eun, S. Y., Altman, A., and Croft, M. (2011b). Antigen-independent signalsome of CARMA1, PKCθeta, and TNF-receptor-associated factor 2 (TRAF2) determines NF-kappaB signaling in T cells. Proc. Natl. Acad. Sci. U.S.A. 108, 2903–2908.

So, T., Lee, S. W., and Croft, M. (2006). Tumor necrosis factor/Tumor necrosis factor receptor family members that positively regulate immunity. Int. J. Hematol. 83, 1–11.

Sommer, K., Guo, B., Pomerantz, J. L., Bandaranayake, A. D., Moreno-Garcia, M. E., Ovechkin, X. L., and Rawlings, D. J. (2005). Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity 23, 561–574.

Song, J., So, T., and Croft, M. (2008). Activation of NF-kappaB by OX40 contributes to antigen-driven T cell expansion and survival. J. Immunol. 180, 7240–7248.

Soroosh, P., Ine, S., Sugamura, K., and Ishii, N. (2007). Differential requirements for OX40 signals on generation of effector and central memory CD4 + T cells. J. Immunol. 179, 5014–5023.

Sudan, M., Krastavova, N., Pandey, S. P., Majumdar, S., and Saha, B. (2012). Reciprocal regulation of protein kinase C isoforms results in differential cellular responsiveness. J. Immunol. 188, 2328–2337.

Sugamura, K., Ishii, N., and Weinberg, A. D. (2004). Tumor necrosis factor receptor family member TRAF2 to mitogen-activated protein kinase ERK kinase 1 and p38. Germline center kinase couples TRAF2 to mitogen-activated protein kinase ERK kinase 1 and p38 while receptor interacting protein associates with a mitogen-activated protein kinase protein kinase upstream of MKK6 and p38. J. Biol. Chem. 273, 22681–22692.

Zanin-Zhorov, A., Dustin, M. L., and Blazar, B. R. (2011). PKC-θ2a-theta function at the immunological synapse: prospects for therapeutically targeting. Trends Immunol. 32, 358–363.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 21 March 2012; accepted: 08 May 2012; published online: 28 May 2012.

Citation: So T and Croft M (2012) Regulation of the PKCθ-NF-κB axis in T lymphocytes by the tumor necrosis factor receptor family member Ox40. Front. Immunol. 3:133. doi: 10.3389/fimmu.2012.00133

This article was submitted to Frontiers in T Cell Biology, a Specialty of Frontiers in Immunology.

Copyright © 2012 So and Croft. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.