Neurosteroidogenesis and progesterone anti-inflammatory/ neuroprotective effects

A. F. De Nicola¹,² | L. I. Garay¹,² | M. Meyer² | R. Guennoun³ | R. Sitruk-Ware⁴ | M. Schumacher³ | M. C. Gonzalez Deniselle⁴,⁵

¹Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
²Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
³U1195 Inserm and Université Paris-Sud, Le Kremlin-Bicêtre, France
⁴The Population Council, New York, NY, USA
⁵Department of Physiology and Biophysics, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina

Correspondence
Alejandro F. De Nicola, Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina. Email: alejandrodenicola@gmail.com

Funding information
Ministry of Science and Technology, Grant/Award Number: PICT 2012-009; National Research Council of Argentina, Grant/Award Number: PIP 016; University of Buenos Aires, Grant/Award Number: Ubacyt 20020100100089; Foundation Rene Baron and Foundation Williams

Progesterone shows anti-inflammatory and promyelinating effects in mice with experimental autoimmune encephalomyelitis (EAE), a commonly used model for multiple sclerosis (MS). Because neurosteroids have been implicated as protective factors for MS and EAE, we analysed the expression of neurosteroidogenic enzymes in the compromised spinal cord of EAE mice. EAE was induced in female C57Bl6 mice, which were then killed on day 16 after induction. Progesterone was given by pellet implantation 1 week before EAE induction. Untreated EAE mice showed decreased mRNAs for the steroidogenic acute regulatory protein (Star), voltage-dependent anion channel (VDAC), cholesterol side-chain cleavage (P450scc), 5α-reductase, 3α-hydroxysteroid dehydrogenase (3α-HSOR) and aromatase, whereas changes of 3β-hydroxysteroid dehydrogenase (3β-HSD) were not significant. mRNA translocator protein (18 kDa) (TSPO) was elevated, concomitantly with a reactive microgliosis. EAE mice also showed abnormal mitochondrial ultrastructure in axons and neuronal bodies, as well as reduced expression of fission and fusion protein mRNAs. Progesterone pretreatment before EAE induction increased Star, VDAC, P450scс, 5α-reductase type I, 3α-HSOR and aromatase mRNAs and did not modify 3β-HSD. TSPO mRNA was decreased, possibly as a result of reversal of microgliosis. Progesterone pretreatment also improved mitochondrial ultrastructure and increased fission/fusion protein mRNAs. These mitochondrial effects may be part of the progesterone recovery of neurosteroidogenesis. The enzymes 3β-HSD, 3α-HSOR and 5α-reductase are also responsible for the formation of androgens. Because MS patients and EAE rodents show changes of central androgen levels, it is likely that, together with progestins and oestrogens, neuroandrogens afford neuroprotection for EAE and MS. The data reviewed suggest that enhanced synthesis of neurosteroids contributes in an auto/paracrine manner to reinforce the neuroprotective and anti-inflammatory effects of exogenous progesterone given to EAE mice.

KEYWORDS
neuroinflammation, neuroprotection, neurosteroidogenesis, progesterone

1 | INTRODUCTION

Multiple sclerosis (MS) is a disease of autoimmune origin, characterised by demyelination, faulty oligodendrocyte function and neurodegeneration.¹,² MS affects mostly females, with a female to male ratio of 2.3.³ In addition to sex differences, participation of sex steroids in MS is indicated by the fact that pregnant women with MS show a decline in relapses during the third trimester of pregnancy, at...
the time when progesterone levels become highly elevated, whereas relapses resume after progesterone levels decrease following parturition.7 These clinical findings support an anti-inflammatory role of progesterone for MS, similar to the antagonism of the immune response at the maternal-fetal interface during pregnancy. Notoriously, MS patients show decreased levels of allopregnanolone, in agreement with decreased gene expression of the 3α-HSOR enzyme,7 whereas dehydroepiandrosterone (DHEA) levels have not been related to altered expression of any enzyme. Moreover, MS patients also present increased levels of progesterone and its reduced metabolites in cerebrospinal fluid and plasma, as well as suppressed levels of several neurosteroids, including allopregnanolone in the white matter.6 These findings suggest that, in MS patients, changes of steroids and neurosteroids may associate with disease outcome.

Similar to the clinical findings, the anti-inflammatory effects of progesterone and reduced metabolites have been substantiated in experimental models of MS, including experimental autoimmune encephalomyelitis (EAE), cuprizone intoxication and lysolecithin demyelination of the spinal cord.7-11 Regarding the EAE model, we have shown that progesterone pretreatment 1 week before disease induction reduces cell infiltration, increases myelin basic protein and proteolipid protein, decreases microgliosis and astrogliosis, prevents axonal loss, decreases the pro-inflammatory mediator Toll-like receptor 4, as well as tumour necrosis factor (TNF)\textsubscript{x} and its cognate receptor TNF receptor 1, prevents neuronal dysfunction and enhances motor behaviour.7,9 In our experience, progesterone given at the time of EAE induction or in animals with established disease is inactive, supporting a protective role for this steroid. However, other studies have shown that progesterone treatment at the time of EAE induction reduces clinical scores, decreases pro-inflammatory and increases anti-inflammatory chemokines.10 Another group has shown that progesterone treatment of clinically affected mice induces nuclear sublocalisation of the Olig1 transcription factor followed by remyelination and clinical benefits.11 The effectiveness of progesterone for chronic EAE has been reported by Gatti et al.,12 who administered progesterone to Dark Agouti rats every other day from the day of EAE induction for 21 days, and killed the animals on day 45 post-induction. This treatment protocol decreases microglia activation, and increases Na,K-ATPase and MPB, indicating the effectiveness of the steroid for chronic EAE.12 In addition to EAE, progesterone is effective in cuprizone-induced demyelination. In cuprizone-intoxicated mice, progesterone given for 2 weeks alleviates demyelination, decreases apoptosis and increases markers of oligodendrogenesis.13 In the study by El-Etr et al.,14 progesterone or the synthetic progestin Nestorone delivered s.c. from implanted minipumps increases myelin formation in corpus callosum and cerebral cortex, as well as the number of mature oligodendrocytes and their progenitors. Therefore, these latter studies suggest that progesterone also plays a therapeutic role in rodents with EAE and in cuprizone-induced demyelination.

In addition to the natural hormones, preclinical trials for EAE have also used the progesterone metabolite allopregnanolone (tetrahydroprogesterone). Daily injections of allopregnanolone to immunised mice from the onset of clinical symptoms until the peak of the disease (days 16-17) reduces neuroinflammation, myelin and axonal injury and enhances motor behaviour.5

Moreover, the neuroprotective and anti-inflammatory effects of progesterone is not confined to MS models because it also occurs in Wobbler neurodegeneration, traumatic brain injury (TBI) and spinal cord transaction.15-17 The reported favourable effects of progesterone, its reduced metabolites or synthetic progestins in EAE have been considered as direct effects of the exogenously given compounds on central nervous system (CNS) target molecules. However, the neuroprotective, promyelinating an anti-inflammatory properties of progestins are also shared by steroids locally synthesised in the nervous system (neurosteroids). Accordingly, we have hypothesised that changes of locally synthesised steroids may potentiate the beneficial effects of the peripherally administered compounds. The present review summarises work performed in our laboratories regarding changes of neurosteroidogenesis in EAE mice and the response of neurosteroid pathways to progesterone.

2 | PROGESTERONE AND EXPRESSION OF NEUROSTEROIDOGENIC ENZYMES IN EAE MICE

Neurosteroidogenesis (ie, the synthesis de novo of steroids by the nervous system) is a dynamic process subject to modulation by a considerable number of factors. Fluctuations of neurosteroidogenesis occur under physiological conditions such as brain development, ovarian cycle and pregnancy, as well as pathological conditions such as neuropsychiatric disorders, Alzheimer’s disease, Parkinson’s disease, MS, Niemann-Pick type C disease, diabetic neuropathy, peripheral neuropathy, traumatic brain injury, spinal cord injury and stroke.18-20

Neurosteroidogenesis involves translocator proteins and enzymes responsible for the formation of progesterone and reduced derivatives, androgens and oestrogens. Baulieu was the first to report that the brain content of certain steroids remained after ablation of peripheral endocrine glands, and that their brain concentration in some cases outnumbered their blood concentration.21 The term “neurosteroid” was coined to include the synthesis of steroids by neurones, astrocytes, oligodendrocytes and Schwann cells pertaining to the central and peripheral nervous system. These cells contained the required machinery for steroid synthesis, starting with the mitochondrial transducesome. The transducesome complex of the CNS is similar to the mitochondrial complex described for peripheral endocrine glands, such as adrenal, ovary, testes and placenta. According to Papadopoulos and Miller,22 neurosteroidogenesis starts by activation of the Star protein that brings access of extra-mitochondrial cholesterol to the mitochondria. Once brought into the mitochondria, cholesterol is transported via the channel proteins translocator protein (18 kDa) (TSPO), the voltage-dependent anion channel (VDAC) and accessory proteins including TSPO-associated protein 7 (PAP7, ACBD3 for acyl-CoA-binding-domain 3) and protein kinase A regulatory subunit 1α (PKAR1). Inside the mitochondria, the cholesterol side chain cleavage enzyme (P450scc) splits the side chain of cholesterol...
converting it into pregnenolone. Figure 1 provides a schematic view of the transduceosome and enzymes involved in the synthesis of progesterone and its metabolites in the mitochondria and endoplasmic reticulum.

In the following steps, the conversion of pregnenolone into progesterone leads to the synthesis of androgens and oestrogens, which require the enzymes of the endoplasmic reticulum (ER) of several cell types. For example, metabolism of progesterone into dihydropregesterone (DHP) by 5α-reductase is present in oligodendrocytes and astrocytes, whereas 3α-HSOR is present in oligodendrocytes, astrocytes and neurons of the spinal cord and metabolises DHP into the potent GABA_A receptor agonist allopregnanolone (Figure 1). Furthermore, progesterone is also metabolised into androgens and oestrogens. The latter enzyme, aromatase, is normally detected in the endoplasmic reticulum of neurones, although it becomes highly expressed in astrocytes after brain injury or in Alzheimer’s disease.

Here, we report the changes of gene expression of Star, other mitochondrial components of the transduceosome complex and P450scc in the spinal cord of control and EAE mice with or without progesterone pretreatment. The experimental design for EAE induction involved female C57Bl6 mice, injected with a MOG₃₅₋₅₅ peptide dissolved in artificial cerebrospinal fluid, pertussis toxin and mycobacterium tuberculosis to boost the immune system. For steroid treatment, a single progesterone pellet (100 mg) was implanted into the neck of mice 1 week in advance of EAE induction. This method resulted in plasma levels of progesterone similar to those of pregnant mice. Animals were killed on day 16 after induction and the spinal cord was dissected out. RNA was extracted from the spinal cord, retrotranscribed into DNA and subjected to amplification using sequence specific forward and reverse primers to amplify the expression of the required genes. Full details are provided by Garay et al. As shown in Figure 2, untreated EAE mice showed a pronounced decrease of Star, VDAC and P455scc mRNA compared to the spinal cord of control mice. Progesterone pre-treatment of EAE mice recovered Star, VDAC and P450scc mRNA to control levels, which were significantly higher than those of steroid-naive EAE mice. Instead, Tspo showed an opposite profile, with a high increase in untreated EAE mice and a decrease in those mice receiving progesterone. To understand the discrepancy in the expression of the transduceosome components, it should be recalled that Tspo is also produced by activated microglia. Therefore, targeting Tspo with progesterone likely produced a beneficial effect because reactive microglia is the source of pro-inflammatory cytokines and enzymes, which cause neuronal and oligodendrocyte damage during neuroinflammation. Supporting these studies, we have previously described the up-regulation of microglia and inflammatory markers in untreated EAE mice, which decreases when mice receive progesterone or the synthetic progestin Nestorone. However, although a reduction in Tspo was evident in EAE mice pretreated with progesterone, it remained significantly higher than in control mice (P<0.01). This positive change in Tspo levels of progesterone-treated EAE mice suggests that progesterone might act by ameliorating enzymes and proteins related to neurosteroidogenesis independently from effects on the

FIGURE 1 Neurosteroidogenesis in mitochondria and extra-mitochondrial compartment. The transport of cholesterol from the cytoplasm to the inner mitochondrial membrane involves the translocator protein (18 kDa) (TSPO) and the steroidogenic acute regulatory protein (Star). Both proteins are part of a multiprotein complex named “transduceosome”, including the voltage-dependent anion channel (VDAC). At the level of the inner mitochondrial membrane, cholesterol is converted to pregnenolone by cytochrome P450scc. Pregnenolone is then converted to progesterone by the 3β-hydroxysteroid dehydrogenases (3β-HSD), which are either located inside the mitochondria, forming a complex with P450scc, or in the cytoplasm associated with membranes of the endoplasmic reticulum (ER). Progesterone is irreversibly converted to 5α-dihydroprogesterone by the 5α-reductases. In neural cells, both progesterone and 5α-dihydroprogesterone bind to the intracellular progesterone receptors (PR). 5α-dihydroprogesterone is metabolised to allopregnanolone by the 3α-hydroxysteroid dehydrogenase (3α-HSD). Allopregnanolone does not bind PR but is a positive modulator of GABA_A receptors. GABA_A, γ-aminobutyric acid type A; OMM, outer mitochondrial membrane; PRE, progesterone response element.
inflammatory response. Indeed, a role of TSPO in anxiety disorders, peripheral nerve injuries and axonal neuropathies indicates a strong effect of this protein on neurosteroid formation.19,20,22,33

Therefore, regarding mitochondrial neurosteroidogenesis, induction of EAE impairs mitochondrial neurosteroid enzymes expression, whereas progesterone pretreatment shows a protective effect on these metabolic pathways. It is not unreasonable to conclude that mitochondria of several neurosteroidogenic cells participate in these events. Regarding Star, it has been described in neurons and astrocytes.34,35 Our recent confocal laser microscopy observations have shown colocalisation of Star immunoreactive protein with CC1+ oligodendrocytes and glial fibrillary acidic protein+ astrocytes, as well as the presence of immunoreactive Star in motoneurones (L. Garay and A. De Nicola, unpublished results). Reduced levels of transducosome components indicate that EAE may damage the cell types and organelles expressing these molecules. VDAC is found predominantly in neuronal mitochondria,30 whereas P450scc is a mitochondrial-based enzyme found in neurons, astrocytes and oligodendrocytes.36,37 These data suggest that most spinal cord cells damaged during EAE become protected by progesterone treatment. This protective effect would be possible because neurons, oligodendrocytes and astrocytes express intracellular progesterone receptors (PR), membrane receptors (mPR) and other binding molecules15,36 which singly or in combination afford neuroprotection. Because the first enzyme and transport proteins responsible for neurosteroidogenesis are found in the mitochondria, opposite changes of this organelle are expected to occur in EAE and in progesterone-treated EAE mice. The presence of aberrant mitochondria has already been shown in EAE mice and MS patients.33,38 Electron microscopy of spinal cord motoneurones from EAE mice demonstrated that proximal mitochondria in the neuronal body and distal mitochondria in the axon were heavily vacuolated with a lack of cristae. Additionally, the axons of EAE mice were surrounded by a disrupted myelin sheath. By contrast, both proximal and distal mitochondria from progesterone-treated EAE mice showed a better conserved ultrastructure, with reconstituted myelin sheath in the axons. Thus, morphology studies support the protective effects of progesterone on mitochondrial ultrastructure and also suggest effects on axonal remyelination. Furthermore, mitochondrial dynamics (ie, fission and fusion transition states), a process important for mitochondrial efficiency, was also faulty in EAE mice. This was shown by a reduction of the Fis1 (fission1) and Mfn2 (mitofusin 2) mRNAs in EAE mice obtained by quantitative polymerase chain reaction. Progesterone pretreatment avoided these alterations and re-established Fis1 and Mfn2 mRNAs to control levels.39 Therefore, changes in morphology and in mitochondrial dynamic associate with an enhanced neurosteroidogenesis in progesterone-treated EAE mice.

FIGURE 2 Expression of the mRNA of steroidal acute regulatory protein (Star) and mitochondrial neurosteroidogenic enzymes in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice without or with progesterone pretreatment. (A) mRNA levels of Star were decreased in EAE mice (**P<.01 vs. control) and increased in the EAE group receiving progesterone (**P<.01 vs. EAE). (B) The mRNA for the translocator protein (18 kDa) (TSPO) was increased in EAE mice (**P<.001) but decreased if these mice receive progesterone (**P<.05). TSPO mRNA of the EAE receiving progesterone was still higher than those in control mice (**P<.01). (C) mRNA expression of the voltage-dependent anion channel (VDAC) was lower than control in EAE mice (**P<.001) but increased when these mice received progesterone (**P<.001). (D) Expression of the cholesterol-side chain cleavage enzyme (P450scc) was lower in EAE vs. control mice (P<.05) and recovered if EAE mice received progesterone (**P<.01). Statistical analysis (mean±SEM.; n=6-7 spinal cords per group) employed ANOVA followed by the Newman-Keuls test. Reprinted with permission from Garay et al.38 PROG, progesterone; CTRL, control.
Our studies have also shown that neurosteroidogenesis of EAE mice was abnormal in the ER. In this structure (Figure 3), we found low expression of 5α-reductase and 3α-HSOR mRNA, suggesting an impairment of progesterone metabolism into its reduced derivatives DHP and allopregnanolone. These findings have received support from previous studies reporting reduced levels of DHP in EAE rats and low levels of allopregnanolone in the brain of MS patients and EAE mice.5,12 Regarding the cellular synthesis of DHP and allopregnanolone, Patte-Mensah et al.23 demonstrated that oligodendrocytes and neurones can synthesise these neurosteroids, suggesting that these cell types are damaged during EAE and become protected following progesterone treatment. Finally, changes of aromatase expression indicate that EAE spinal cord may be oestrogen depleted, whereas progesterone recovers the aromatisation of androgens into oestrogens. Oestrogens have convincingly been shown to ameliorate EAE neuropathology. According to some studies, this process is mediated via ERF\textsubscript{α} signalling in astrocytes, which are considered to be producers of pro-inflammatory mediators.30 Instead, other studies have postulated that an ERF\textsubscript{β} agonist present in oligodendrocytes causes remyelination and has important implications for human use.41

Some of the enzymes described with respect to the ER (ie 3β-HSD, 3α-HSOR and 5α-reductase) are also responsible for the formation of androgens. Because MS patients and EAE rodents show changes of central androgen levels, it is likely that neuroandrogens also afford neuroprotection for EAE and MS.42

3 | MECHANISMS OF ACTION OF PROGESTERONE

There is general consensus that progesterone shows several effects in the CNS unrelated to female reproductive behaviour, neuroendocrine regulation or pregnancy. These effects concern neuroprotection, myelin formation, anti-inflammation, neurogenesis, stroke and trauma prevention.43 We propose that neurosteroidogenesis may be considered as another target of progesterone. In principle, several molecules and signalling pathways may give rise to these effects of progesterone on the pathological spinal cord of EAE mice. The mechanism of action of progesterone is multifactorial, involving the classical intracellular PR, several types of mPRs, sigma1 opioid receptors, the progesterone receptor membrane component 1 and GABA\textsubscript{A}.44 Regarding any effects on neurosteroidogenesis, some clues are provided by database software and experimental observations. In the first case, the transcription factor binding prediction software \textit{alibaba}, version 2.1 (http://www.gene-regulation.com/pub/programs/alibaba2/index.html) and the Eukaryotic Promoter Database (http://epd.vital-it.ch/) confirm that the promoter sequence of P450scx, TSPO, 3β-HSD and aromatase contain a PR binding site, suggesting an enhanced transcriptional effects on these genes. The possible PR binding site on the TSPO promoter sequence suggests a transcriptional effect. However, as reported in the literature and the present study, progesterone was able to partially decrease TSPO expression, possibly as a result
of an anti-inflammatory action. This effect may resemble the effects of progesterone in the pregnant myometrium, in which decreased pro-inflammatory gene expression occurs when the PR-A to PR-B ratio favoured the PR-B isof orm. However, as noted above, TSPO levels of progesterone-pretreated EAE mice remained higher than in control mice, supporting a positive modulation of TSPO unrelated to neuroinflammation.

Our experimental results also priorised the intervention of PR in some of the effects of progesterone because the PR binding agonist Nesterone induces neuroprotection and anti-inflammatory effects in EAE mice, supporting a genomic mechanism for these effects. Furthermore, work by Giatti et al. has shown that progesterone treatment of rodents with chronic EAE increases the spinal cord level of DHP, a ligand of the PR. Instead, binding of PR to the promoters of Star, VDAC, 5α-reductase and 3α-HSOR is not predicted by the mentioned databases, suggesting that other mediators are responsible for the effects of progesterone on these genes. As already noted, allopregnanolone recovers EAE mice from signs of the disease. Allopregnanolone is a typical agonist of the GABA_A receptor, implying a GABAergic mechanism for neuroprotection for EAE and MS among other recognised neuronal functions. Therefore, regulation by progesterone of neurosteroidogenesis in EAE may employ pleiotropic (genomic as well as membrane signalling) mechanisms, depending on the molecule in question.

Because neurosteroidogenesis is linked to neuroinflammation, we assumed that changes of PR in inflammation conditions may give clues about its role in neurosteroidogenesis. To resolve this question, we studied mice with deletion of both A and B isoforms of the PR (PRKO mouse) but, in contrast to our expectations, both the PRKO and wild-type mice raised on a C57BL6/129SvEv background were refractory to EAE induction or progesterone treatment (L. Garay and A. De Nicola, unpublished results). In this experiment, before EAE induction, PRKO and wild-type mice show equal numbers of mature oligodendrocytes, astrocytes and microglial cells, and similar myelin immunostaining. However, PRKO mice showed a significantly lower incidence of EAE than the C57BL/6 mice (ie, less than grade 1 or loss of tail tonicity), whereas spinal cord neurochemistry remained similar to control C56Bl6 mice and wild-type mice. This experiment suggested that the strain 129xB6 background precludes EAE induction and the response to progesterone. Consequently, we employed a different neuroinflammation model to test for the effects of progesterone in inflammation, as caused by an acute traumatic lesion of the spinal cord. Within hours after making a spinal cord lesion, both wild-type and PRKO mice develop astroglisis, microgliosis and high expression of the pro-inflammatory factors interleukin-1β, TNFα and interleukin-6. Although a single progesterone injection given at the time of the lesion blunted the pro-inflammatory factors and glial reactivity in wild-type mice, these parameters remained stable in PRKO mice. These results strongly support the progesterone modulation of immune responses and glial reactivity in the lesioned tissue requiring an intact PR. By extrapolation, we assume that the anti-inflammatory effects of progesterone on EAE mice may be PR-dependent. Future experimental designs are needed to unveil this possibility.

Reports in the literature indicate an increasing list of modulators of neurosteroidogenesis. These molecules include inducers such as oestrogens, progesterone and the neurotransmitter NMDA plus calcium. Proteins able to induce neurosteroidogenesis, such as TSPO and PXR, represent possible receptors for ligands of increasing interest for pharmacological studies and therapies. Comprehensive reviews of the beneficial effects of TSPO ligands in neurodegenerative diseases and MS models are provided by Porcu et al. and Ravikumar et al.

Preclinical studies provide the background for the design of clinical trials and, in this sense, progestins have been tested in patients with traumatic brain injury (TBI) and MS. In TBI patients, early phase II clinical trials have shown protective effects of progesterone, although two clinical trials (ie, ProTECT and SynAPSE) involving a large number of subjects have failed to replicate these effects. However, concerns about the heterogeneity of patients, a lack of reliable biomarkers, statistical evaluation, and dose and length of progesterone administration have recently questioned the conclusions of these Phase III trials. Regarding MS, the Popartmus trial, which used combined therapy with nomegestrol plus oestriol, has been discontinued as a result of the poor enrolment of patients. Therefore, further studies employing different species besides rodents and humans, modified treatment protocols and careful patient segregation will give more definite answers regarding the usefulness of progesterone and derivatives for diseases of the CNS.

ACKNOWLEDGEMENTS

Supported by grants from the Ministry of Science and Technology (PICT 2012-009), the National Research Council of Argentina (PI P016), the University of Buenos Aires (UBACYT 20020100100089), Foundation Rene Baron and Foundation Williams. The technical, assistance of Mrs Analia Lima, CPA, and Ms Paulina Roig, CPA, is gratefully acknowledged.

REFERENCES

1. Matute C, Perez-Cerda F. Multiple sclerosis: novel perspectives on newly forming lesions. Trends Neurosci. 2005;28:173-175.
2. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247-269.
3. Voskuhl RR, Pitchkilian-Halabi H, MacKenzie-Graham A, McFarland HF, Raine CS. Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis. Ann Neurol. 1996;39:724-733.
4. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tournaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998;339:285-291.
5. Noorbakhsh F, Ellestad KK, Maingat F, et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain. 2011;134:2703-2721.
6. Caruso D, Melis M, Fenu G, et al. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J Neurochem. 2014;130:591-597.
7. Garay L, Gonzalez Deniselle MC, Lima A, Roig P, De Nicola AF. Effects of progesterone in the spinal cord of a mouse model of multiple sclerosis. J Steroid Biochem Mol Biol. 2007;107:228-237.
8. Garay L, Deniselle MC, Meyer M, et al. Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis. Brain Res. 2009;1283:177-185.

9. Garay L, Gonzalez Deniselle MC, Brocca ME, Lima A, Roig P, De Nicola AF. Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis. Neuroscience. 2012;226:40-50.

10. Yates MA, Li Y, Chlebeck P, Proctor T, Vandenbark AA, Offner H. Progesterone treatment reduces disease severity and increases IL-10 in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;220:136-139.

11. Yu HJ, Fei J, Chen XS, et al. Progesterone attenuates neurological behavioral deficits of experimental autoimmune encephalomyelitis through remyelination with nucleus-sublocalized Olig1 protein. Neurosci Lett. 2010;476:42-45.

12. Giatti S, Caruso D, Boraso M, et al. Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis. J Neuroendocrinol. 2012;24:851-861.

13. Ye JN, Chen XS, Su L, et al. Progesterone alleviates neural behavioral deficits and demyelination with reduced degeneration of oligodendroglial cells in cuprizone-induced mice. PLoS ONE. 2013;8:e54590.

14. Eil-Etr M, Rame M, Boucher C, et al. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex. Glia. 2015;63:104-117.

15. Meyer M, Gonzalez Deniselle MC, Gargiulo-Monachelli G, et al. Progesterone attenuates several hippocampal abnormalities of the Wobbler mouse. J Neuroendocrinol. 2013;25:235-243.

16. Labombarda F, Jure I, Gonzalez S, et al. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol. 2015;154:274-284.

17. Webster KM, Wright DK, Sun M, et al. Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflammation. 2015;12:238.

18. Patte-Mensah C, Mensah-Nyagan AG. Peripheral neuropathy and neurosteroid formation in the central nervous system. Brain Res Rev. 2008;57:454-459.

19. Schule C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience. 2011;191:55-77.

20. Porcu P, Barron AM, Frye CA, et al. Neurosteroidogenesis today: novel targets for neuroactive steroid synthesis and action and their relevance for translational research. J Neuroendocrinol. 2016;28:12351.

21. Baulieu EE. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res. 1997;52:1-32.

22. Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26:771-790.

23. Gago N, Akwa Y, Sananes N, et al. Progesterone and the oligodendroglial lineage: stage-dependent biosynthesis and metabolism. Glia. 2001;36:295-308.

24. Melcangi RC, Celotti F, Martini L. Progesterone 5-alpha-reduction in neuronal and in different types of glial cell cultures: type 1 and 2 astrocytes and oligodendrocytes. Brain Res. 1994;639:202-206.

25. Patte-Mensah C, Penning TM, Mensah-Nyagan AG. Anatomical and cellular localization of neuroactive 5 alpha/3 alpha-reduced steroid-synthesizing enzymes in the spinal cord. J Comp Neurol. 2004;477:286-299.

26. Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci. 2005;6:565-575.

27. Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghourami AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci. 2012;6:10.

28. Garcia-Segura LM. Aromatase in the brain: not just for reproduction anymore. J Neuroendocrinol. 2008;20:705-712.

29. Garcia-Ovejero D, Azcoitia I, Doncarlos LL, Melcangi RC, Garcia-Segura LM. Glia-neuron crosstalk in the neuroprotective mechanisms of sex steroid hormones. Brain Res Brain Res Rev. 2005;48:273-286.

30. Papadopoulos V, Aghazadeh Y, Fan J, Campioni E, Zirkin B, Mizdak A. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol. 2015;408:90-98.

31. Venetti S, Lopresti BJ, Wiley CA. Molecular imaging of microglia/macrophages in the brain. Glia. 2013;61:10-23.

32. Garay L, Gonzalez Deniselle MC, Sitruk-Ware R, Guennoun R, Schumacher M, De Nicola AF. Efficacy of the selective progesterone receptor agonist Nestorone for chronic experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;276:89-97.

33. Nikic I, Merkler D, Sorbara C, et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011;17:495-499.

34. Sierra A, Lavaque E, Perez-Martín M, Azcoitia I, Hales DG, Garcia-Segura LM. Steroidogenic acute regulatory protein in the rat brain: cellular distribution, developmental regulation and overexpression after injury. Eur J Neurosci. 2003;18:1458-1467.

35. King SR, Stocco DM. Steroidogenic acute regulatory protein expression in the central nervous system. Front Endocrinol (Lausanne). 2011;2:72.

36. Zwain IH, Yen SS. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology. 1999;140:3843-3852.

37. Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab. 2002;13:35-43.

38. Campbell GR, Worrall JT, Mahad DJ. The central role of mitochondrial axon degeneration in multiple sclerosis. Mult Scler. 2014;20:1806-1813.

39. Garay L, Gonzalez Giqueaux P, Guennoun R, Schumacher M, Gonzalez Deniselle MC, De Nicola AF. Progesterone treatment modulates mRNA of neurosteroidogenic enzymes in a murine model of multiple sclerosis. J Steroid Biochem Mol Biol. 2017;165:421-429.

40. Spence RD, Wisdom AJ, Cao Y, et al. Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERalpha signaling on astrocytes but not through ERbeta signaling on astrocytes or neurons. J Neurosci. 2013;33:10924-10933.

41. Khalaj AJ, Yoon J, Nakai J, et al. Estrogen receptor (ER) beta expression in oligodendrocytes is required for attenuation of clinical disease by an ERbeta ligand. Proc Natl Acad Sci USA. 2013;110:19125-19130.

42. Giatti S, Rigolio R, Romano S, et al. Dihydrotestosterone as a protective agent in chronic experimental autoimmune encephalomyelitis. Neuroendocrinology. 2015;101:296-308.

43. Schumacher M, Mattern C, Ghourami A, et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol. 2014;113:6-39.

44. Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol. 2015;146:48-61.

45. Tan H, Yi L, Rote NS, Hurd WW, Mesiano S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab 2012;97:E719-E730.

46. Charlier TD, Cornil CA, Patte-Mensah C, Meyer L, Mensah-Nyagan AG, Balthazar J. Local modulation of steroid action: rapid control of enzymatic activity. Front Neurosci. 2015;9:83.

47. Cornel MF, Sanchez Granell ML, Raggio MC, et al. Temporal changes in the expression of the translocator protein TSPO and the steroidogenic enzyme Alpa-hydroxase-1 in the dorsal spinal cord of...
animals with neuropathic pain: effects of progesterone administration. Neurosci Lett. 2016;624:23-28.
48. Kimoto T, Tsurugizawa T, Ohta Y, et al. Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology. 2001;142:3578-3589.
49. Ravikumar B, Crawford D, Dellovade T, et al. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of multiple sclerosis. Neuropharmacology. 2016;108:229-237.
50. Skolnick BE, Maas Al, Narayan RK, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med 2014;371:2467-2476.
51. Wright DW, Yeatts SD, Silbergleit R, et al. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371:2457-2466.
52. Schumacher M, Denier C, Oudinet JP, Adams D, Guennoun R. Progesterone neuroprotection: the background of clinical trial failure. J Steroid Biochem Mol Biol. 2016;160:53-66.
53. Howard R, Sayeed I, Stein DG. Suboptimal dosing parameters as possible factors in the naitve Phase III clinical trials of progesterone for traumatic brain injury. J Neurotrauma 2017;34:1915-1917.

How to cite this article: De Nicola AF, Garay LI, Meyer M, et al. Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects. J Neuroendocrinol. 2018;30:e12502. https://doi.org/10.1111/jne.12502