Effectiveness of self help strategies (shs) for pcos on biochemical parameters among young adult girls

Tamilselvi S¹, Nalini S J²

¹Department of Community Health Nursing, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
²Department of Nursing, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India

ABSTRACT

Polycystic ovary syndrome (PCOS) with the predominance of 5 to 7% among youthful grown-up is a main source of infertility and endocrine issue. Metabolic clutters, for example, increased levels of LH and FSH in these young ladies was normal and impacts soundness of the youthful grown-up with PCOS in long-term. Treatment of female infertility and other entanglements needs to have direct hormones and get exogenous hormone. In this investigation, levels of Luteinizing hormone (LH) and Follicle stimulating hormone (FSH) and testosterone among young adults with PCOS were measured. The consequence of this investigation demonstrated that LH, FSH and Free testosterone hormone levels were altogether extraordinary in this disorder. The adjustments in the hormones show an intense effect on the character of the young people. It is a time of existence with explicit wellbeing and formative needs and rights to create information and aptitudes figure out how to oversee feelings and connections, and secure properties and capacities that will be significant for getting a charge out of the immature years and expecting adult roles. To identify the effectiveness of self help strategies in reducing PCOS symptoms.
To assess the prevalence of PCOS among young adult girls at selected colleges.

2. To compare the pre and post test level between the control and experimental group young adult girls.
3. To associate the selected demographic variables with bio physiological and biochemical parameters among young adults.

MATERIALS AND METHODS

The study participants were young adult girls with PCOS between the age of 18-25. The participants were selected from 2 constituent colleges in SIMATS after obtaining permission from the Principals of respective colleges and authorities. Totally 70 participants were selected based on convenience sampling technique and assigned to the control group, and experimental group. Written consent was obtained from the participants after explaining the study. The Institutional Human Ethics Committee of Saveetha University had given approval for the study (001/01/2016/IEC/SU; Dated 18th January 2016). The study included young adult girls with PCOS and not having other systemic diseases. Young adult girls with other problems like autoimmune diseases were excluded. Tools containing demographic variable and self assessment tool were used for pre and post assessment for both the groups.

Blood investigations included FSH, LH and Fasting blood glucose level and Ultra sonogram of pelvis was studied to confirm the diagnosis, PCOS prior and after interventions. The details are given in chapter 4.

1. Methodology (pre test phase) - Orientation programme was conducted for the participants in the conference hall. Demographic details of young adult girls were collected. Height and weight of the young adult girls were measured with the measuring tape and weighing machine to check BMI and self assessment tool was distributed. Scores were recorded. Prior appointment was fixed for obstetrician consultation for both the groups separately. Followed by the consultant advice those young adult girls were taken to laboratory for blood investigation like FBS,FSH,LH, and Testosterone and radiology department for Ultra sonogram Pelvis at SMCH. All the needed biochemical markers except free testosterone were done by ECLIA method. Testosterone sample alone was tested in a private lab. 83 young adults were confirmed with PCOS by ultra sound pelvis. Among them 70 were selected by convenience sampling technique and they were divided in to control and experimental group (35 in each group).

2. During the test phase - Self help strategies were started followed by investigations. For each individual the requirement was 5 gm of dried mint powder. The mint powder bought from a branded company and it was tested for quality in Food analysis laboratory. The mint tea was prepared hygienically by the investigator. The experimental group girls were given 50ml of mint tea. The exercise and diet module was explained. (balanced diet, do's and don'ts in PCOS). The tea was distributed daily on weekdays at the midmorning break. Daily reminder message for performing exercise and diet maintenance was given. This procedure was followed for 12 weeks by the participants

3. Post test Phase - The same physiological and biochemical parameter was followed in post assessment after twelve weeks of intervention. Haemoglobin level and RBC level were also randomly checked for experimental group students to rule out any adverse effects of mint tea. Among these 35 young girls 14 of them had regular menstrual cycle. Remaining 21 had no significance of Self Help Strategies because they did not follow the SHS regularly due to gastritis and bitterness, and some of them revealed that the taste was not good, whereas some performed exercise and followed the diet module alone.

4. Statistics - The data was analyzed by means of descriptive and inferential statistics. It was presented as mean and standard error. Pre test and post test were compared by paired “t” test. Wilcoxon signed rank test was used to find the effectiveness of self help strategies, compared with control group. A probability of 0.05 level or less was taken as statistically significant. The analysis and graph plotting were carried out by using Sigma Plot 13 (Systat software USA). The data’s of 14 young adult girls who followed the self help strategies regularly were also analysed separately to evaluate the effectiveness of the study by One way ANOVAs.

RESULTS

The effectiveness of self help strategies on biochemical parameters. A detailed analysis was done on the changes of biochemical parameters like, Fasting blood glucose level, free testosterone level, Follicle stimulating hormone level and luteinizing hormone level between both experimental and control group participants before and after the intervention. The pre and post- test intervention scores of control and experimental group were compared by paired t-test and the difference between experimental and control group was compared by unpaired t-test.
Comparison of pre-test and post test Fasting blood sugar in both experimental and control groups

The mean and SE pre test value of FBS for control group was 100.57 ± 2.935 and post test value was 93.143 ± 1.893. Paired ‘t’ test between pre and post test value of FBS for control group was statistically significant (p<0.00). The mean and SE pre test value of FBS for experimental group was 100.57 ± 1.619 and the post test value was 89.71 ± 1.263 The paired t test between the pre and post test value for FBS in the experimental group was statistically significant (p<0.001). The comparison of pre test FBS value between experimental and control group was not statistically significant (p=1.00). The comparison of post test FBS value between experimental and control group was not statistically significant (p=0.137).

Comparison of pre-test and post-test scores of FSH in experimental mint tea compliance, experimental mint tea non compliance and control groups

pre test value of FSH for control group was 2.565±0.143 and post test value was 2.381±0.153 respectively. Paired ‘t’ test between pre and post test value of FSH for control group was statistically significant (P=0.007). The mean and SE pre test value of FSH for experimental tea group was 2.740±0.186 and the post test value was 2.253±0.207 respectively. The mean and SE pre test value of FSH for experimental no tea group was 2.210±0.237 and the post test value was 2.116±0.226 respectively. The paired ‘t’ test between the pre and post test value for FSH in the experimental tea group was statistically significant (p<0.123). The paired ‘t’ test between the pre and post test value for FSH in the experimental no tea group was not statistically significant (p<0.022).The comparison of pretest FSH value between control group and experimental tea and no tea group through one way ANOVA showed not statistically significant difference between groups (p=0.193).The comparison of posttest FSH value between control group experimental tea and no tea group was not statistically significant between groups (p=0.581)

Comparison of pre-test and post-test scores of LH in experimental mint tea compliance, experimental mint tea non compliance and control group

The mean and SE pre test value of LH for control group was 11.340±0.836 and post test value was 11.216±0.820 respectively. Paired test between pre and post test value of LH for control group was statistically significant (p=0.024). The mean and SE pre test value of LH for experimental tea group was 10.426 ± 0.836 and the post test value was 9.461± 0.738 respectively. The mean and SE pre test value of LH for experimental no tea group was 13.256 ± 1.486 and the post test value was 13.458 ± 1.525 respectively. The paired ‘t’ test between the pre and post test value for LH in the experimental tea group was statistically significant (p<0.157).The paired ‘t’ test between the pre and post test value for LH in the experimental no tea group was not statistically significant (p<0.937).The comparison of pretest LH value between control group experimental tea and no tea groups through one way ANOVA showed not statistically significant difference between the groups(p=0.255).The comparison of post test LH value between control group experimental tea and no tea group was not statistically significant between groups(p=0.088).

Comparison of pre-test and post-test scores of testosterone in experimental mint tea compliance, experimental mint tea non compliance and control group

The mean and SE pre test value of testosterone for control group was 2.537±0.032 and post test value was 2.137±0.277 respectively. Paired test ‘t’ between pre and post test value of LH for control group was statistically significant (p=0.001). The mean and SE pre test value of testosterone for experimental tea group was 2.564 ± 0.261 and the post test value was 1.681± 0.368 respectively. The mean and SE pre test value of testosterone for experimental no tea group was 2.807 ± 0.217 and the post test value was 1.721 ± 0.378 respectively. The paired ‘t’ test between the pre and post test value for testosterone in the experimental tea group was statistically significant (p<0.020). The paired ‘t’ test between the pre and post test value for testosterone in the experimental no tea group was not statistically significant (p<0.015).The comparison of pretest testosterone value between control group and experimental tea and no tea group through one way ANOVA showed not statistically significant difference between groups (p=0.812).The comparison of post test testosterone value between control group experimental tea and no tea group was not statistically significant between the groups (p=0.539).

Comparison of pre-test and post-test ultra sonogram of pelvis (right ovary volume) in both experimental and control group

The comparison of the pre-test was assessed by Mann-Whitney rank sum test between control and experimental group which showed the T value to be 1005.000 and P=0.005, whereas control and experimental post test results showed that T= 1417.500
DISCUSSION

Polycystic ovary disorder (PCOS) is an intricate, normal concepetive and endocrine issue influencing up to 17.8% of regenerative matured ladies. Clinical administration places solid accentuation on a multidisciplinary approach as pharmaceutical medications give off an impression of being just decently powerful in treating singular indications. Customary pharmaceutical administration is restricted by the predominance of contraindications in ladies with PCOS. Non-viability in certain conditions. Reactions and by inclinations of ladies with PCOS for options in contrast to pharmaceutical administration (Khodakarami et al., 2015).

The utilization of Complementary medication (CM) use by ladies has expanded during the previous ten years with paces of utilization extending somewhere in the range of 26% and 91%. One of the well known sorts of CM is natural medication. Natural meds are known to contain pharmacologically dynamic constituents with physiological consequences for female endocrinology and have been emphatically connected with decreased occurrences of bosom malignancy, osteoporosis and cardiovascular malady. PCOS is a deep rooted condition and despite the fact that the specific reason is yet to be distinguished, it is accepted to have epigenetic beginnings, impacted by the uterine condition and social variables. Being overweight worsens all parts of PCOS because of basic metabolic unsettling influences. Signs and side effects are intervened by hormone issue including raised androgens and fasting insulin, and strange relative proportion of the gonadotropins luteinising hormone (LH) and follicle invigorating hormone (FSH). Endocrine lopsided characteristics happen inside the structure of confused ovarian folliculogenesis, ceaseless anovulation, clinical indications of hyperandrogenism and metabolic disorder (Lindsey, 2015)

Pharmaceutical treatment for menstrual inconsistency incorporates the oral prophylactic pill (OCP) and ovulation acceptance with Clomiphene citrate contingent upon fruitfulness needs. Ladies with PCOS are anyway prone to display contraindications for the OCP and while acceptance of ovulation with Clomiphene has exhibited achievement, pregnancy rates remain mysteriously low. Up to thirty 30% of ladies, especially overweight ladies with PCOS, neglect to react to Clomiphene treatment. The executives for hyperandrogenism incorporates enemies of androgens and hypoglycemic pharmaceuticals, for example, metformin. Metformin has shown viability for improving insulin affectability and hyperandrogenism, anyway utilization of metformin is related with the high rate of unfriendly impacts including queasiness, heaving and gastro-intestinal unsettling influences (Sanchez, 2014).

Home grown medications are intricate mediations with the potential for synergistic and opposing communications between mixes Effects inside the body may likewise display multifaceted nature by synchronous collaborations with different body frameworks, both biochemically and by modifying organ work The focal point of this survey was contemplates researching entire home grown medi-
cation removes with direct impacts on regenerative endocrinology for the treatment of ladies with unpredictable monthly cycle, hyperandrogenism and PCOS. Most patients exhibit abdominal obesity. PCOS patients with abdominal obesity often have glucolipid metabolism disorders, which lead to reproductive problems and aggravate the ovaries to promote the development of PCOS. Therefore, obese PCOS patients are more likely to have relevant clinical symptoms than those who are not obese. Western treatment of PCOS can promote ovulation, normalize endocrine metabolism, and improve clinical symptoms. However, drug dependence or relapse after disuse of drugs and toxic side effects of oral medication greatly limit the clinical use of Western Medicine. TCM including acupuncture can have certain curative effects on PCOS. However, it takes longer for Chinese medicine or acupuncture to take effect than Western Medicine in the treatment (Sills et al., 2001).

Comparative investigation was finished to assess the impact of green tea on the weight, and hormonal and biochemical profiles in large ladies with PCOS. In this investigation, 34 corpulent ladies with PCOS were haphazardly separated into two gatherings of mediation and control, who got cases of green tea and fake treatment for a quarter of a year, individually. As per the aftereffects of the referenced investigation, the patients’ weight in the intercession bunch was decreased by 2.4%; be that as it may, this decrease was not noteworthy (Bharathi et al., 2017).

A huge affiliation was found between stomach fat mass and insulin obstruction assessed by the glycemic hyper insulin micclamp procedure. They likewise found an exceptionally huge relationship between’s FFA fixations and insulin opposition, which underpins the idea that an expansion of FFA flow from the profoundly lipolytic stomach fat to the liver and muscles may speak to the most significant connection between stomach stoutness and the insulin obstruction state. In addition, this sub-group of PCOS ladies may have an increasingly negative lipid profile, in particular higher triglyceride and exceptionally low-thickness lipoprotein (VLDL) and lower HDL cholesterol focuses.

To outline, weight reduction in ladies with heftiness and PCOS diminishes all out and instinctive fat, yet in addition reestablishes ordinary menstrual cycles and improves the ripeness rate in a huge extent of influenced ladies, by lessening androgen and insulin fixations and improving insulin affectability. Eminently, the impacts of dietary-instigated weight reduction on androgens appear to be explicit to corpulent hyperandrogenic ladies, since they have not been accounted for in non-PCOS stout ladies. Clinical investigations have over and again demonstrated that stout PCOS ladies to be described by essentially lower LH focuses than their typical weight partners and that, in hefty PCOS ladies, LH fixations habitually take after the ordinary range (Ali et al., 2006)

Figure 1: Testosterone Hormone levels with self-help strategies on PCOS among young adult girls in control and experimental Tea group experimental No tea groups.

An investigation was directed on 28 patients with PCOS, who were arbitrarily allotted to two gatherings of intercession (n=14) and control (n=11). The patients in both the gatherings got marjoram and fake treatment teas two times per day for one month, separately. The hormonal and metabolic parameters were estimated at the pre-and post-mediation stages. In the mediation bunch the DHEA-S and fasting insulin levels fundamentally decreased; by the by, there was a noteworthy distinction between two gatherings just as far as DHEA-S level. Along these lines, it was affirmed that marjoram tea positively affects the hormone profile of females with PCOS (Zhou et al., 2014).

Mint is a herb which is effectively accessible consistently and has an awesome impact on endocrine framework. Exercise and diet adjustment additionally decrease the side effects of PCOS. There are barely any examinations on the impact of various teas on the PCOS. The investigations have affirmed their beneficial outcomes of utilizing this tea on the PCOS. PCOS is a more up to date methodology. Utilizing other therapeutic plants, can open another window for the scientists in this field.
by the standards of clinical preliminaries and Jadad scale, the nature of these four investigations was acceptable and the counter androgenic impacts of mint were more articulated than different teas (van Zuuren et al., 2015).

The present study supported the young adult girls to adopt natural herb and non pharmacological treatment, like mint tea, fast fat loss exercise and diet pattern which is available easily and throughout the year as an alternative therapy to reduce symptoms of PCOS and thereby lower the risk of type II Diabetes mellitus and CAD. Present data also suggest that mint tea proved to be of clinical importance in the management of Hirsutism and other symptoms of PCOS

The effectiveness of self help strategies on bio chemical parameters. A detailed analysis was done on the changes of biochemical parameters like, Fasting blood glucose level, free testosterone level, Follicle stimulating hormone level and luteinizing hormone level between both experimental and control group participants before and after the intervention. The pre and post-test intervention scores of control and experimental group were compared by paired t-test and the difference between experimental and control group was compared by unpaired t-test. The present research reveals that self help strategies were effective in reducing the symptoms of PCOS among young adult girls. While comparing the ANOVA from pre and post test the results were highly significant. Figure 1 shows the values are mean ± SE (n=35). The “t” and “P” values are by unpaired “t” test.

CONCLUSIONS

The finding of the study gives that commonness of indications and manifestations of PCOS are expanding. However, understudies didn’t know about PCOS in spite of the fact that its signs and side effects were knowledgeable about a significant number of them. So extraordinary mindfulness projects ought to be done to give learning about such sicknesses to females. Besides, the study demonstrates that the greater part of females don’t counsel gynecologist except if there is a serious or hazardous issue or sickness. So females ought to counsel gynecologist at any rate once in a year to analyze their wellbeing status to improve the wellbeing.

ACKNOWLEDGEMENT

Authors would like to appreciate participants for their cooperation to complete the study successfully.

Conflict of Interest
None.

Funding Support
None.

REFERENCES

Abbott, D. H., Barnett, D. K., Bruns, C. M., Dumesic, D. A. 2005. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Human Reproduction Update, 11(4):357–374.

Abdullah, Z., Masood, Q., Hassan, I., Kirmani, O. 2013. Hormonal profile and polycystic ovaries in women with acne vulgaris. Indian Journal of Dermatology, Venereology, and Leprology, 79(3):422–422.

Akdoğan, M., Tamer, M. N., Cüre, E., Cüre, M. C., Köroğlu, B. K., Delibaş, N. 2007. Effect of spearmint (Mentha spicata Labiatae) teas on androgen levels in women with hirsutism. Phytotherapy Research, 21(5):444–447.

Ali, T. S., Ali, P., Waheed, H., Memon, A. A. 2006. Understanding of puberty and related health problems among female adolescents in Karachi. Journal of Pakistan medical association, 56(2):68–68.

Altieri, P., Cavazza, C., Pasqui, F., Morselli, A. M., Gambineri, A., Pasquali, R. 2013. Dietary habits and their relationship with hormones and metabolism in overweight and obese women with polycystic ovary syndrome. Clinical Endocrinology, 78(1):52–59.

Azziz, R., Carmina, E., Dewailly, D., Diamanti-Kandarakis, E., Escobar-Morreale, H. F., Futterweit, W., Janssen, O. E., Legro, R. S., Norman, R. J., Taylor, A. E., Witchel, S. F. 2006. Criteria for Defining Polycystic Ovary Syndrome as a Predominantly Hyperandrogenic Syndrome: An Androgen Excess Society Guideline. The Journal of Clinical Endocrinology & Metabolism, 91(11):4237–4245.

Bharathi, R. V., Swetha, S., Neerajaa, J., Madhavica, J. V., Janani, D. M., Rekha, S. N., S., R., B., U. 2017. An epidemiological survey: Effect of predisposing factors for PCOS in Indian urban and rural population. Middle East Fertility Society Journal, 22(4):313–316.

Grant, P. 2010. Spearmint herbal tea has significant anti-androgen effects in polycystic ovarian syndrome. A randomized controlled trial. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(2):186–188.

Kataoka, E. C. J., Tassone, M., Misso, A. E., Joham, Elisabetstener-Victorin, H., Teede, L. J., Moran
2017. Weight Management Interventions in Women with and without PCOS. *review nutrients*.

Khodakarami, B., Masoomi, S. Z., Faradmal, J., Nazari, M., Saadati, M., Sharifi, F., Shakhbabaei, M. 2015. The severity of dysmenorrhea and its relationship with body mass index among female adolescents in Hamadan. *Iran. Journal of Midwifery and Reproductive Health*, 3(4):444–450.

Lindsey, M. 2015. Polycystic Ovary Syndrome In Adults. *A Literature Review And Clinical Practice Guideline For The Primary Care nurse Practitioner*, pages 122–128.

Sanchez, N. 2014. A life course perspective on polycystic ovary syndrome. *International journal of women’s health*, 6:115–115.

Sills, E. S., Perloe, M., Tucker, M. J., Kaplan, C. R., Genton, M. G., Schattman, G. L. 2001. Diagnostic and treatment characteristics of polycystic ovary syndrome: descriptive measurements of patient perception and awareness from 657 confidential self-reports. *BMC Women’s Health*, 1(1):3–3.

van Zuuren, E. J., Fedorowicz, Z., Carter, B., Pandis, N. 2015. Interventions for hirsutism (excluding laser and photoepilation therapy alone). *Cochrane Database of Systematic Reviews*, (4).

Zhou, W., Yang, X., Chen, K., Cai, P., He, S., Jiang, Y. 2014. Chemosensory communication of gender through two human steroids in a sexually dimorphic manner. *Current Biology*, 24(10):1091–1095.