Unterschiede zwischen Studenten und Ärzten im Anspruch an die praktische Ausbildung – Eine Bedarfsanalyse zum Skills-Training im Fach Innere Medizin

Zusammenfassung

Zielsetzung: Der Wunsch nach praktischer Ausbildung im Medizinstudium wird vor allem von den Studierenden selbst formuliert. Was genau sie sich darunter vorstellen und ob diese Vorstellung mit derjenigen der Ärzte übereinstimmt, ist nicht bekannt.

Methodik: Wir führten eine Umfrage zu 26 Fertigkeiten der Inneren Medizin durch, die zuvor unter Studierenden und Ärzten ermittelt worden waren. An der Umfrage nahmen 95 Studierende im vierten Studienjahr, 62 Studierende im Praktischen Jahr und 67 internistisch tätige Ärzte teil. Eine gleichartige, aber kleinere Umfrage hatten wir bereits vor Einführung des Skills-Trainings an unserer Fakultät durchgeführt.

Ergebnisse: Während den Studierenden vor allem Fertigkeiten wichtig waren, die hohen technischen Aufwand erfordern, waren das bei den Ärzten eher solche, die mit einfachen Mitteln am Krankenbett ausgeführt werden. Dieses Ergebnis galt unabhängig davon, ob die Studierenden bereits trainiert waren oder nicht, beziehungsweise unabhängig vom Ausbildungsstand der Ärzte. Auch stimmte das Ergebnis der aktuellen Umfrage gut mit derjenigen vor Beginn des Skills-Trainings überein.

Schlussfolgerungen: Der Anspruch von Studierenden und Ärzten an die praktische Ausbildung unterscheidet sich grundlegend. Dies sollte bei der Diskussion um Lerninhalte Berücksichtigung finden.

Schlüsselwörter: Skills-Training, Skills Lab, praktische Fertigkeiten, Bedarfsanalyse, Innere Medizin, Umfrage

Einleitung

Das Training an Simulatoren gehört heutzutage zum festen Bestandteil der medizinischen Ausbildung. In so genannten Skills-Labs gibt es Übungen mit part-tasc-Modellen, full-scale-Simulatoren und/oder Schauspielerpatientenprogrammen, die Medizinstudenten auf den klinischen Alltag vorbereiten sollen. Die Idee des Übens am Modell ist plausibel: Praktische Fertigkeiten können so lange geübt werden, bis die Studierenden in der Lage sind, die erlernten Tätigkeiten sicher am Patienten auszuführen [1], [2]. Inwieweit sich die klinischen Fertigkeiten der Studierenden tatsächlich verbessern, ist unzureichend belegt. Eine größere Geschicklichkeit ist häufig nur durch Testwiederholung am Simulator, nicht aber im klinischen Kontext nachweisbar [3]. Lediglich bei sehr komplexen Aufgaben, wie etwa der Laparoskopie, dem Reanimationsalgorithmus oder der zentralvenösen Katheterisierung, ist der Nutzen eines Simulatortrainings für den klinischen Kontext nachzuweisen [4], [5].

Einiges spricht dafür, dass der eigentliche Trainingseffekt eines Skills-Lab-Kurses nicht lange anhält. Zwar lässt sich ein positiver Effekt des Trainings auf Selbst einschätzung und Selbstsicherheit auch noch nach Jahren nachweisen [6], [7], im Vergleich zu Untrainierten ist nach einer kurzen klinischen Rotation aber kein signifikanter Unterschied in der Geschicklichkeit mehr feststellbar [5]. Wenn ein Skills-Lab das handwerkliche Geschick des Berufs anfängers verbessern soll, müsste der tatsächliche Trainings effekt jedoch nachhaltig sein. Argumentiert man hingegen, dass ein Skills-Lab vor allem die Selbstsicherheit der Studierenden erhöhen soll und sich das Handwerk erst mit dem zunehmenden Patientenkontakt erlernen lässt, ist es folgerichtig, auf die von den Studierenden angenommenen Defizite ihres eigenen Könnens einzugehen. Diese könnten sich durchaus von den tatsächlichen Defiziten beim Berufseinstieg unterscheiden [8]. Wichtig für die Effizienz eines Skills-Labs wären demnach eher Übungen, die Studierende für erforderlich halten, als solche, die eine konkrete Berufsvorbereitung darstellen. Ob sich der „gefühlte“ vom „tatsächlichen“ Bedarf unterscheidet, ist bisher nie untersucht worden. Am Beispiel der Inneren Medizin haben wir bei Studierenden und internistisch tätigen Ärzten den Anspruch an die praktische Ausbildung im Studium ermittelt. Eine kleinere Umfrage vor Einrichtung eines Skills-Trainings Innere Medizin ergänzten wir durch eine repräsentativere Umfrage drei Semester nach Beginn des Trainings. Auf diese Weise
wollten wir ermitteln, ob das, was Studierende an prakti-
schen Tätigkeiten für erforderlich halten, sich von dem
unterscheidet, was klinisch tägliche Ärzte wichtig finden. Auch den Effekt, den die Einrichtung eines Skills-Trainings
auf die Perzeption der Studierenden hatte, können wir
durch Vergleich der Ergebnisse beider Umfragen abschat-
ze.

Methoden

Ein halbes Jahr vor Einrichtung eines Skills-Trainings In-
nere Medizin an der Universität zu Lübeck im Oktober
2009, führten wir unter Studenten und internistisch täti-
gen Ärzte eine Umfrage mit der Frage durch, für wie
wichtig sie das Training definierter Tätigkeiten im Studium
für die Praxis des ärztlichen Berufsanfängers halten. An
der Auswahl der Items waren Studenten des vierten Se-
mesters und internistische Oberärzte beteiligt. Die Fertig-
keiten sollten im Rahmen eines Peer-Teachings im Skills-
Lab sinnvoll zu vermitteln und mittels Selbststudium und
strukturenten Übungen zu vertiefen sein. Kommunikative
Skills wurden von vornherein ausgeschliemert. Der Aus-
wahlprozess ergab 26 Fertigkeiten (siehe Tabelle 1). Im
daraus angefertigten Fragebogen sollten die Befragten
die Wichtigkeit in einer Skala von 0 (völlig unwichtig) bis
10 (besonders wichtig) bewerten. Im Jahr 2009 beteilig-
ten sich 28 Studierende und 30 internistisch tägliche Ärzte
an der Umfrage.
Dieselben Items fragten wir in einer zweiten Umfrage im
April 2011 erneut ab. Dieses Mal wurden alle Studierende
im vierten Studienjahr (n=214), Studierende im Prakti-
schen Jahr (PJ; n=192) und Ärzte aller Medizinischen
Kliniken der Universität zu Lübeck (n=108) um Teilnahme
gebeten. Dazu erhielten die Zielpersonen im Verlauf der
zweiten Semesterwoche des Sommersemesters in
sämtlichen Lehrveranstaltungen des vierten Studienjahrs
und des PJ, sowie in allen ärztlichen Konferenzen einen
Fragebogen. Jeder der Befragten füllte in dieser Woche
maximal einen Bogen aus. Neun Studierende im PJ und
zehn Ärzte hatten in der Umfrage von 2009 bereits einen
Fragebogen ausgefüllt, wurden in der aktueller Umfrage
aber mit berücksichtigt. Der Fragebogen wurde an der
Quelle anonymisiert. Die Umfrage wurde der Ethikkom-
mission der Universität zu Lübeck angezeigt, die Ethik-
kommission hielt aufgrund des Charakters der Erhebung
ein gesondertes Votum für nicht erforderlich (AZ 11-
085A).

Zusätzlich wurden die Studierenden auf dem Fragebogen
der aktuellen Umfrage befragt, ob sie bereits das Skills-
Training Innere Medizin absolviert hatten. Von den Ärzten
wurde der Stand der Weiterbildung bzw. die Position er-
fragt (bis ein Jahr Berufstätigkeit, Assistent über einem
Jahr Berufstätigkeit, Facharzt, Oberarzt). Konnten sich
die Befragten in der Einschätzung eines der 26 Items
nicht zwischen zwei aufeinander folgenden Zahlen ent-
scheiden, wurde der Mittelwert aus beiden ereript.
Auf diese Weise gelangten auch gebrochene Zahlen in
die Auswertung. Die Auswertung erfolgte mittels SPSS
Version 12.0. Um einen Gruppenunterschied zu detektie-
ren, wurden die einzelnen Items zwischen den drei befrag-
ten Gruppen mittels Kruskal-Wallis-Test verglichen. Um
wegen des multiplen Testens dem α-Fehler entgegenzu-
wirken, führten wir eine Bonferoni-Korrektur durch. Für
Paarvergleiche verwendeten wir den Mann-Whitney-Test.
Als Irrtumswahrscheinlichkeit akzeptierten wir 5% (P<.05).

Ergebnisse

Im vierten Studienjahr beteiligten sich 95 (44%), im PJ
62 (32%) und unter den Ärzten 67 (62%) Personen an
ner Umfrage (siehe Tabelle 2). Bis auf wenige Items auf
einzigen Bögen waren alle Angaben vollständig. Die Er-
ergenss sind in Tabelle 1 zusammengefasst.

Tabelle 2: Charakteristika der befragten Personen

Anzahl	Prozent	
Studierende im vierten Studienjahr	95	(100)
davon Skills-Training absolviert	42	(44)
Studierende im Praktischen Jahr	62	(100)
davon Skills-Training absolviert	21	(34)
internistisch tätige Ärzte	67	(100)
davon < 1 Jahr Berufserfahrung	6	(9)
davon ältere Assistenten	28	(42)
davon Fachärzte (als Assistenten)	14	(21)
davon Oberärzte	19	(28)

Fertigkeiten, die die Studierenden wesentlicher wichtiger
fanden als die Ärzte, waren die Notfallsonografie, die
Defibrillation und Kardioversion, die Pleura- und Aszites-
punktion, die Anlage eines zentralvenösen Katheters
(ZVK), die arterielle Punktionsstelle, die i.m.-Injektion,
die Intubation, die Knochenmarkspunktion, das Legen einer
Magensonde und die Spirometrie. Dagegen setzten die
Ärzte eher den Schwerpunkt auf die Blutdruckmessung,
die körperliche Untersuchung von Abdomen und Thorax,
die venöse Blutentnahme, das Legen einer Verweilkatheter,
das Anlegen einer Blutkultur, die rektale Untersuchung
und den Schellong-Test. In etwa gleich wichtig wurden
(in absteigender Reihenfolge) betrachtet das Anfertigen
und die Interpretation eines EKG, einfache Reanimations-
maßnahmen, die Beurteilung eines Röntgen-Thorax-Bil-
des, die Interpretation einer Blutgasanalyse, die Blutent-
nahme aus dem ZVK, das Vorbereiten einer Transfusion,
die Vorbereitung von i.v.-Injektionen und die Blutzucker-
bestimmung (mit dem Benennen von Interventionen).

In keinem Item fand sich ein Unterschied zwischen traini-
erten und untrainierten Studierenden des vierten Jahres
bzw. PJ-Studierenden. Auch gab es keinen signifikanten Unterschied in der Einschätzung zwischen Assistenzärzten
und Fach- oder Oberärzten. Beim Vergleich zwischen den
| Tabelle 1: Auflistung der abgefragten Fertigkeiten im Wortlaut, Median der angegebenen Gewichtung (0 = völlig un wichtig, 10 = besonders wichtig) und Signifikanz niveaus der Vergleiche. Der Kruskal-Wallis-Test detektiert grundsätzliche Unterschiede zwischen den drei Gruppen, die Bonferoni-Korrektur erfolgte zum Ausgleich des α-Fehlers beim multiplen Testen. Zuletzt wurden die Gewichtungen der Studierenden des vierten Studienjahrs mit denen der Ärzte verglichen. Die hellgrau unterlegten Fertigkeiten wurden von den Studierenden als wichtiger angesehen, die dunkelgrau unterlegten Fertigkeiten von den Ärzten.

Fertigkeit	Median 4. Studienjahr	Median PJ	Median Ärzte	Kruskal-Wallis Test	Bonferoni Korrektur	Mann-Whitney Test 4. Studienjahr vs. Ärzte
Anlage einer Verweilkanüle und Portpunktion	9	8	10	<.05	<.05	<.05
Arterielle Punction	8	7,5	5	<.05	<.05	<.05
Beurteilung eines Röntgen-Thorax-Bildes	9	9	8	<.05	<.05	<.05
Blutdruckmessung	5	2,5	10	<.05	<.05	<.05
Blutentnahme aus ZVK / Port	8	8	9	<.05	<.05	.13
Blutkultur anlegen	7	8	10	<.05	<.05	<.05
Bluttransfusion vorbereiten	8	8	9	.35	entfällt	.35
Blutzucker-Bestimmung, Benden von Interventionen	8	5	8	<.05	<.05	.12
Defibrillation und Kardioversion	9	8	7	<.05	<.05	<.05
EKG schreiben und definierte EKG-Bilder zuordnen	10	9	10	.40	entfällt	.36
Herzdruckmassage und Maskenbeatmung	9	9	10	<.05	.26	<.05
Infusion und i.v.-Medikamente vorbereiten	8	7	8	<.05	.55	.56
Interpretation einer Blutgasanalyse	9	8	9	.49	entfällt	.53
Intramuskuläre Injektion	8	6	5	<.05	<.05	<.05
Intubation	8	8	6	<.05	<.05	<.05
Körperliche Untersuchung des Abdomens	8	8	10	<.05	<.05	<.05
Körperliche Untersuchung des Thorax	8	8	10	<.05	<.05	<.05
Knochenmark-Punktion bzw. -Stanze	8	6	3	<.05	<.05	<.05
Magensonde legen	8	8	6	<.05	<.05	<.05
Notfall-Sonografie (Gallenblase, Nieren, freie Flüssigkeit)	10	9	6	<.05	<.05	<.05
Pleura- und Aszitespunktion	9	8	7	<.05	<.05	<.05
Rektale Untersuchung	8	7	9	<.05	<.05	<.05
Schellong-Test durchführen und interpretieren	7	4	8	<.05	<.05	<.05
Spirometrie durchführen und interpretieren	8	6,5	6	<.05	<.05	<.05
venöse Blutentnahme	8	8	10	<.05	<.05	<.05
ZVK-Anlage	9	8	3	<.05	<.05	<.05
beiden Umfragen vor und nach Einrichtung des Skills-Trainings fanden wir deutliche Übereinstimmungen in der Gewichtung der Items sowohl bei den Studierenden als auch bei den Ärzten (siehe Tabelle 3). Lediglich die Gesamtzahl der vergebenen Punkte war bei den Studierenden vor Einrichtung des Skills-Trainings signifikant niedriger als nach Einführung. Bei den Ärzten unterschied sich die Gesamtpunktzahl vor und nach Einführung des Trainings hingegen nicht (siehe Abbildung 1).

Tabelle 3: Fertigkeiten, die aus den 26 Vorgaben als die zehn wichtigsten erkannt wurden. Vergleich zwischen Studierenden des vierten Studienjahres und Ärzten vor (2009) und nach (2011) Einführung eines Skills-Trainings Innere Medizin. Die Fertigkeiten sind verkürzt wiedergegeben, die genaue Formulierung beider Umfragen findet sich in Tabelle 1.

Item	Studierende 2009 (n=28)	Studierende 2011 (n=95)	Ärzte 2009 (n=30)	Ärzte 2011 (n=65)
1.	EKG	1. Venenkanüle	1. venöse Blutentnahme	1. venöse Blutentnahme
2.	Sonografie	2. Abdomenunters.	2. Abdomenunters.	2. Abdomenunters.
3.	Röntgen-Thorax	3. Thoraxunters.	3. Thoraxunters.	3. Thoraxunters.
4.	Arterienpunktung	4. Deltaplattierung	4. Deltaplattierung	4. Deltaplattierung
5.	ZVK-Anlage	5. ZVK-Anlage	5. Reanimation	5. Reanimation
6.	Venenkanüle	6. Blutkultur	6. Blutkultur	6. Blutkultur
7.	Pleuraufpunktung	7. Pleuraufpunktung	7. rektale Unters.	7. rektale Unters.
8.	BGA	8. BGA	8. BGA	8. BGA
9.	Thoraxunters.	9. Transfusionsvorb.	9. Blutentnahme aus ZVK	9. Blutentnahme aus ZVK
10.	Magensonde	10. Intubation	10. RR-Messung	10. RR-Messung

Abbildung 1: Gesamtpunktzahl der pro befragte Person vergebenen Punkte in der jeweiligen Gruppe. In der Umfrage vor Einführung der Skills-Trainings (2009) hatten die Studierenden signifikant weniger Punkte verglichen als drei Semester nach Einführung (2011). * P<.05

Diskussion

Interessanterweise fanden wir in unserer Umfrage erhebliche Diskrepanzen zwischen dem, was Studenten in der praktischen Ausbildung für wichtig erachten, und dem, was Ärzte relevant finden. Nur in einer kleinen Zahl von Items konnten keine Unterschiede detektiert werden. Während Studierende im vierten Studienjahr den Schwerpunkt eher auf technisierte Fertigkeiten wie die ZVK-Anlage und die Notfallsonografie legten, standen bei den Ärzten eher „Bedside-Skills“ wie Techniken der körperlichen Untersuchung im Vordergrund. Studierende im PJ legen tendenziell eher bei ihren jüngeren Kommilitonen oder unterschieden sich grundlegend von beiden anderen Gruppen, wie etwa bei den Items „Blutdruckmessung“, „Blutzuckerbestimmung“ und „Schellong-Test“. Letztere Fertigkeiten könnten aus der ersten klinischen Erfahrung heraus als einfach oder nicht lernenswert erscheinen und aus Sorge, nun Wichtigeres erlernen zu müssen, niedrig priorisiert worden sein. Dieser Effekt scheint aber mit der Professionalisierung zu vergehren, denn zwischen jüngeren und erfahreneren Ärzten gab es in unserer Umfrage keine signifikanten Unterschiede in der Gewichtung.

Ein Grund für diese recht klare Grenze zwischen der studentischen und professionellen Sichtweise könnte in der Tatsache liegen, dass komplexere Tätigkeiten meist von erfahrenen Assistenten ab dem dritten Jahr durchgeführt werden [9]. Studierende nehmen diese Zuordnung möglicherweise nicht so deutlich wahr und sehen technisierte Fertigkeiten als integraler Teil der ärztlichen Tätigkeitsanforderungen an. Dagegen ist aus der Sicht der Ärzte offenbar von geringer Bedeutung, so spezielle Prozeduren bereits während des Studiums zu üben, da sie erst viel später beherrscht werden müssen und dann zeitätlich erlernt werden können. Die einfacheren Tätigkeiten am Krankenbett nehmen aus ihrer Sicht in den ersten Jahren der Berufstätigkeit offenbar eine viel entscheidendere Rolle ein. Ein zweiter Grund könnte das „Gefühl des Alleingelassenseins“ bei Studierenden sein: Gerade bei komplexen Tätigkeiten ist der Zusammenhang zwischen der Selbstsicherheit im Grad der Beherrschung und der Gelegenheit, diese Tätigkeit unter Anleitung durchzuführen, groß [10]. Ausgerechnet bei diesen Fertigkeiten gibt es während des Studiums wenige Übungsmöglichkeiten, was diese Unsicherheit verschärfen könnte.

Wann genau es zu dem Umschwung von der studentischen zu der ärztlichen Betrachtungsweise kommt, ist nicht ganz klar. In einer Studie, die den Anspruch an das eigene Können von Berufsanfängern mit dem Anspruch von Fakultätsmitgliedern an Absolventen verglich, neigen die Berufsanfänger ebenso zu technisierteren Fertigkeiten wie etwa der Lumbalpunktion, Inzisionen, Drainagen und der ZVK-Anlage [11]. Die Autoren deuten dies allerdings eher als Defizit der Fakultät, denn als spezifische Perspektive der Absolventen. Im Lichte unserer Ergebnisse ist es durchaus möglich, dass Berufsanfänger noch die studentische Perspektive haben: In unserer Studie waren nur sechs der befragten Ärzte im ersten Berufsjahr. Eine Priorisierung der eher technisierten Fertigkeiten wurde aber auch schon bei Studierenden des dritten und vierten Studienjahres beschrieben, allerdings in anderem Kontext [12]. Obwohl in dieser Studie keine basalen Fertigkeiten wie zum Beispiel Elemente der körperlichen Untersuchung abgefragt wurden, war ein ähnlicher Trend schon in der
Einschätzung der Wichtigkeit von 22 allgemeinmedizinischen Techniken zu erkennen. Lediglich die Pleura- und Aszitespunktion spielten für die Studierenden eine untergeordnete Rolle, was mit einer ebenfalls berichteten niedrigen Anwendungsrate zusammenhängen könnte. Interessant ist auch die Frage, inwieweit die Implementierung eines Skills-Labs Einfluss auf die Wahl der als wichtig empfundenen Fertigkeiten hat. Obwohl unsere erste Umfrage vor Einführung des Skills-Trainings klein war, gibt der Vergleich mit der aktuellen Umfrage aufschlussreiche Informationen: Die Gesamtsumme der pro Student vergebenen Punkte war bei der aktuellen Umfrage signifikant höher als vor Einführung des Training, was darauf hindeuten könnte, dass die Implementierung eines Skills-Trainings das Interesse an eben diesem Training steigert. Das Prinzip der Gewichtung, also die Priorisierung technisierten Fertigkeiten, war hingegen in beiden Umfragen gleich. Von den zehn am wichtigsten erkannten Fertigkeiten schafften es lediglich drei nicht wieder in die Spitzengruppe und wurden durch andere, ebenfalls technisierte Fertigkeiten ersetzt. Dies darf als zufällige Schwankung und Bestätigung des Prinzips angesehen werden, zumal auch in der Gruppe der Ärzte, deren Interessen sich in diesem Zeitraum nicht geändert haben dürften, die gleiche Zahl von Items aus der Spitzengruppe herausfiel und analog durch andere „Bedside-Skills“ ersetzt wurde. Weiterhin spricht gegen den Einfluss des Skills-Trainings auf die prinzipielle Wahl der als wichtig erachteten Fertigkeiten, dass es in der aktuellen Umfrage keine signifikanten Unterschiede zwischen bereits trainierten und untrainierten Studierenden gab.

Einschränkend muss gesagt werden, dass unsere Umfragen ausschließlich Fertigkeiten der Inneren Medizin beinhalteten. Auch Auswahl und Umschreibung der Fertigkeiten, die schon in Hinblick auf das Trainingsszenario getroffen wurden, können kritisiert werden: Theorielastige Items wurden neben sehr praktische Fertigkeiten gestellt, oder beide Elemente in einem Item vereint. Sicher ist die Liste auch nicht vollständig. Dennoch kann anhand unserer Daten sehr schön die spezifische Perspektive von Studierenden auf die praktische Ausbildung dargelegt werden, insbesondere, weil sie sich grundlegend und reproduzierbar von derjenigen der Ärzte unterscheidet. In unserem Setting sehen wir das Skills-Training als Instrument an, die Studierenden zu aktivieren und ihre Selbstsicherheit im Stationsalltag zu erhöhen. Aus diesem Grunde orientieren wir unser Skills-Training an den von den Studierenden geäußerten Bedürfnissen.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenskonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Ogden PE, Cobbs LS, Howell MR, Sibbitt SJ, DiPette DJ. Clinical simulation: importance to the internal medicine educational mission. Am J Med. 2007;120(9):820-824. DOI: 10.1016/j.amjmed.2007.06.017
2. Burks JW, Cohen ER, Feinglass J, McGaghie WC, Wayne DB. Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med. 2009;169(15):1420-1423. DOI: 10.1001/archinternmed.2009.215
3. Lynam M, Burton R, Sanson-Fisher R. A systematic review of medical skills laboratory training: where to from here? Med Educ. 2007;41(9):879-887. DOI: 10.1111/j.1365-2923.2007.02821.x
4. Okuda Y, Bryson EO, DeMaria S Jr, Jacobson L, Quinones J, Shen B et al. The utility of simulation in medical education: what is the evidence? Mt Sinai J Med. 2009;76(4):330-343. DOI: 10.1002/mmj.20127
5. Smith CC, Huang GC, Newman LR, Clardy PF, Feller-Kopman D, Cho M et al. Simulation training and its effect on long-term resident performance in central venous catheterization. Simul Healthc. 2010;5(3):146-151. DOI: 10.1097/SHH.0b013e3181d9672
6. Liddell MJ, Davidson SK, Taub H, Whitecross LE. Evaluation of procedural skills training in an undergraduate curriculum. Med Educ. 2002;36(11):1035-1041. DOI: 10.1046/j.1365-2933.2002.01308.x
7. Niemi-Murola L, Helenius I, Turunen J, Remes V. Graduating medical students and emergency procedure skill teaching in Finland—does a clinical skills centre make the difference? Med Teach. 2007;29(8):821-826. DOI: /10.1080/01421590701601568
8. Turner SR, de Gara CJ. Medical students and recent graduates may disagree on the importance of procedural skills education. Med Teach. 2010;32(2):182.
9. Connick RM, Connick P, Hotsas AE, Tsagkaraki PA, Gkrania-Klotsas E. Procedural confidence in hospital based practitioners: implications for the training and practice of doctors at all grades. BMC Med Educ. 2009;9:2. DOI: 10.1186/1472-6920-9-2
10. Chen W, Liao SC, Tsai CH, Huang CC, Lin CC, Tsai CH. Clinical skills in final-year medical students: the relationship between self-reported confidence and direct observation by faculty or residents. Ann Acad Med Singapore. 2008;37(1):3-8.
11. Fitch MT, Kearns S, Manthey DE. Faculty physicians and new residents agree about which procedures are essential to learn in medical school. Med Teach. 2009;31(4):342-347. DOI: 10.1080/01421590802520964
12. Wu EH, Elinicki DM, Alper EJ, Bost JE, Corbett EC Jr, Fagan MJ, Mechaber AJ, Ogden PE, Sebastian J Jr, Torre DM. Procedural and interpretive skills of medical students: experiences and attitudes of fourth-year students. Acad Med. 2008;83(10 Suppl):S63-S67. DOI: 10.1097/ACM.0b013e318183c5a7

Korrespondenzadresse:

PD Dr. med. Gunther Weitz
Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Med. Klinik I, Ratzeburger Allee 160, 23538 Lübeck, Deutschland, Tel.: +49 (0)451/500-6033, Fax: +49 (0)451/500-6242
gunther.weitz@uk-sh.de
Differences between students and physicians in their entitlement towards procedural skills education – a needs assessment of skills training in internal medicine

Abstract

Objective: Procedural skills education has a high priority for medical students. However, it is not clear what kind of skills they consider important and whether their perception differs from the physicians’ view.

Methods: We conducted a survey on 26 skills in internal medicine among medical students and physicians. Ninety-five fourth year and 62 final year students along with 67 physicians working in medical departments participated in the survey. A similar but smaller survey was completed earlier before the implementation of a skills training at the faculty.

Results: Students generally preferred technically complex skills while, in contrast, physicians found “bed-side-skills” more important. The result was independent of the students’ participation in the skills training or of the physicians’ experience. A similar result was achieved in the smaller survey before the implementation of the skills training.

Conclusion: Students and physicians significantly differ in their entitlement towards procedural skills education. This should be considered when educational strategies are being discussed.

Keywords: procedural skills education, skills lab, needs assessment, internal medicine, survey

Introduction

Today simulator training is a key component in medical education. So called skills labs offer exercises with part-task-models, full-scale-simulators and programs with standardized patients that are supposed to prepare medical students for the clinical practice. The idea of observational learning makes sense: Practical skills can be trained in skills labs until students are comfortable performing the tasks safely in actual clinical settings [1], [2]. However, it has not been analyzed so far to which extent the ability of medical students in practical clinical skills actually does improve. Enhancement of capability can often only be shown in tests with the simulator but not in a real clinical setting [3]. So far it was only possible to demonstrate a benefit of simulator training in very complex tasks such as laparoscopy, cardiac life support or the insertion of a central line [4], [5] in clinical context. Good reasons exist to believe that the actual effect of skills training declines over time. A skills training tends to result in higher self-assessment and self-confidence of the medical students and this may be seen even after years have passed since the training [6], [7]. However, compared to untrained students, no differences in practical ability is evident after a short clinical rotation [5]. If skills labs are meant to improve manual skills of young professionals, the effect of training should be sustainable. If one argues that skills labs are predominantly supposed to enhance students’ self-confidence and that practical skills can only be long lastingly learned by increasing contact to actual clinical settings, it is hence indispensable to address the self-assumed deficits of the students as very important. These assumed deficits may well differ from the deficits in practical ability assessed by young professionals at the start of their career [8]. Thus, the efficiency of skills labs should rather be determined by skills, which students believe to be of importance and not by concrete training to vocational preparation. Whether there is a difference between “assumed need” and “actual requirement” has never been studied. We investigated the entitlement in procedural skills education of students and physicians in the field of internal medicine. A small survey was conducted before the implementation of the local skills lab. It was followed by an additional survey three semesters afterwards, which was larger and more representative. That way we sought to determine whether practical skills that students assumed to be of importance for them differ from those that physicians
assume to be important for the students. Additionally, we were able to estimate the effect of the implementation of a skills training on the perception of the students by comparing the results of the two surveys.

Methods

Six months before the implementation of a skills training at the University of Lübeck in the field of internal medicine in October 2009 we conducted a survey among fourth-year students and physicians from the departments of internal medicine. The participants were asked to assess the importance of a training of defined practical clinical skills in the undergraduate curriculum for the start of the professional career. A group of students and consultants in the field of internal medicine had defined the items. The chosen skills were supposed to be trainable in a setting of short peer-teaching units with the possibility to expand their knowledge by means of self-study and structured exercises. Communicative skills were excluded in the first place. Twenty-six skills were selected and compiled by the selection process (see table 1). The participants of the survey were asked to rate these skills from 0 (totally unimportant) to 10 (exceptionally important). Twenty-eight students and 30 physicians completed the form in 2009.

In April 2011 the same questionnaire was handed out to all fourth-year students of the University of Lübeck (n=214), to all final-year students, who were doing their practical year (n=192) and to all physicians of the departments of internal medicine (n=108). Each participant completed one form only. Nine final-year students and 10 physicians had already participated in 2009 but were nonetheless included in the present analysis. The questionnaire did not collect personal data and was performed anonymously. The survey was presented to the local ethics committee, which did not consider a vote necessary due to the kind of survey that was being used (AZ 11-085A).

Additionally, in the survey the students were asked whether they had already completed the local skills training. The physicians were asked to indicate their qualification and position (less than one year of experience, more than one year of experience, specialist or consultant). If the participants could not decide between two consecutive ratings the mean value was accepted. Thus, numbers with decimal markers entered the analysis. SPSS version 12.0 was used for analysis. To detect a group difference between the three groups, the items were compared by the Kruskal-Wallis-test. To avoid the α-error, a Bonferroni-correction was performed. To compare paired samples we used the Mann-Whitney-test. A P<.05 was considered as significant.

Results

95 fourth-year students (44%), 62 final-year students (32%), and 67 physicians (62%) took part in the survey (see table 2). Apart from missing out some items on very few forms, each form contained complete information. The results are summarized in table 1.

| Skills that were assumed to be more important for students than for physicians were emergency ultrasound, defibrillation and cardioversion, pleural drainage and paracentesis, insertion of a central line, arterial puncture, intramuscular injection, intubation, bone marrow puncture, insertion of a gastric tube, and spirometry. In contrast, physicians believed blood pressure measurement, physical examination of abdomen and chest, taking a blood sample, insertion of a peripheral intravenous line, sampling of a blood culture, rectal examination, and the Schellong-orthostasis-test to be of higher importance. Students and physicians did not differ in their perspective in the following skills (in descending order): Recording and interpreting ECGs, basic life support, interpretation of chest x-rays, interpretation of blood gas analysis, taking blood from a central line, preparation of a transfusion, preparation of an intravenous injection, and measuring blood glucose (including deciding about further interventions). No differences could be detected in the perspective of students that already had completed a skills training and those that had not. Also, the perspective of the physicians was independent of their degree in training or their position. A high consistency in the order of ratings could be found when comparing the survey before the implementation of the local skills training and the one afterwards, both in students and in physicians (see table 3). Merely the total number of rating points given by the students was significantly lower before the implementation of the training. No difference was noted in the group of physicians, regarding the total number of rating points (see figure 1).
Table 1: List of items according to the questionnaire, medians of the rating (0 = totally unimportant, 10 = exceptionally important) and level of significance (P) of the comparisons. The Kruskal-Wallis-test detects general differences between the three groups; the Bonferroni-correction was performed to avoid the α-error of multiple testing. In a final step, the ratings of the fourth-year students were compared to the ratings of the physicians. Light-grey background colour indicates skills that were rated higher by students; dark-grey background colour indicates skills that were rated higher by physicians. n.a. = not applicable.

Skill	Median 4 year	Median last year	Median Physicians	Kruskal-Wallis-test	Bonferroni-correction	Mann-Whitney Test 4 year vs. Physicians
Insertion of a peripheral intravenous line and port access	9	8	10	<.05	<.05	<.05
Arterial puncture	8	7.5	5	<.05	<.05	<.05
Interpretation of a thorax x-ray	9	9	8	<.05	.31	<.05
Blood pressure measurement	5	2.5	10	<.05	<.05	<.05
Blood sampling from a central line / port	8	8	9	<.05	.13	.06
Sampling of a blood culture	7	8	10	<.05	<.05	<.05
Preparation of a transfusion	8	8	9	.35	n.a.	.35
Measuring blood glucose (+ decision making on interventions)	8	5	8	<.05	<.05	.12
Defibrillation and cardioversion	9	8	7	<.05	<.05	<.05
Recording and basic interpretation of an ECG	10	9	10	.40	n.a.	.36
Basic life support	9	9	10	<.05	.26	.05
Preparation of an infusion and intravenous injection	8	7	8	<.05	.55	.56
Interpretation of a blood gas analysis	9	8	9	.49	n.a.	.53
Intramuscular injection	8	6	5	<.05	<.05	<.05
Tracheal intubation	8	8	6	<.05	<.05	<.05
Physical examination of the abdomen	8	8	10	<.05	<.05	<.05
Physical examination of the thorax	8	8	10	<.05	<.05	<.05
Bone marrow puncture	8	6	3	<.05	<.05	<.05
Insertion of a gastric tube	8	8	6	.05	<.05	<.05
Emergency ultrasound (gallbladder, kidney, fluid collections)	10	9	6	<.05	<.05	<.05
Pleural drain and paracentesis	9	8	7	<.05	<.05	<.05
Rectal examination	8	7	9	<.05	<.05	<.05
Schellong-orthostasis-test	7	4	8	<.05	<.05	<.05
Spirometry (+ interpretation)	8	6.5	6	<.05	<.05	<.05
Venous blood sampling	8	8	10	<.05	<.05	<.05
Insertion of a central line	9	8	3	<.05	<.05	<.05
Table 3: Top ten rated skills out of the total number of 26. A comparison between fourth-year students and physicians before the implementation of a skills training in the field of internal medicine (2009) and afterwards (2011). The skills are abbreviated, for precise information and phrasing see Table 1.

Students 2009 (n=28)	Students 2011 (n=95)	Physicians 2009 (n=30)	Physicians 2011 (n=65)
1. ECG	1. ultrasound	1. peripheral line	1. blood sampling
2. ultrasound	2. ECG	2. abdominal exam.	2. peripheral line
3. chest x-ray	3. chest x-ray	3. thorax exam.	3. thorax exam.
4. art puncture	4. defibrillation	4. blood sampling	4. abdomen exam.
5. central line	5. blood gas anal.	5. ECG	5. basic life supp.
6. peripheral line	6. central line	6. basic life supp.	6. blood culture
7. pleural drain	7. basic life supp.	7. blood culture	7. rectal exam.
8. blood gas anal.	8. pleural drain	8. rectal exam.	8. blood gas anal.
9. thorax exam.	9. peripheral line	9. transfusion	9. blood from c.i.
10. gastric tube	10. intubation	10. blood gas anal.	10. blood pressure

Figure 1: Total number of points given by each group. In the survey before the implementation of skills training (2009) students gave a significantly less number of points than three semesters after the implementation (2011). * P<.05

Discussion

Interestingly, we found considerable differences in the perspective of students and physicians regarding which practical skills should be taught in the undergraduate curriculum. In fact, only for very few items there was an agreement between physicians and students. While fourth-year students focus more on complicated technical skills such as the insertion of a central line or emergency ultrasound, physicians rather assume bedside skills such as the physical examination as important. Final-year students (who are in their practical year) supported most of the views of their younger fellow students, but differed substantially from the other two groups in some items such as blood pressure measurement, measuring blood glucose and orthostatic testing. These three skills could from the clinical point of view be considered as “too easy” or “not worth learning”, and final-year students may believe that they should rather be concerned about learning “more important” skills. However, this effect seems to vanish when becoming a professional: No difference in ratings of physicians at the beginning of their career as compared to more experienced ones could be ascertained.

One reason for this clear discrepancy in the perspective of undergraduates and professionals could be the fact that complex practical skills are usually performed by physicians with more than two years of practical experience [9]. Students might not notice this allocation and therefore believe these technical skills as basic when working as a physician. From the physicians perspective, however, it might be less important for a beginner to perform well in these skills since the ability is important only later in career and these skills can still be trained when they are necessary. In contrast, the basic bedside skills play a much more crucial role at the start of the career. Another reason could be that students feel like they are being left alone: Especially in complex skills there is a strong correlation between the level of confidence in their own ability and the chance to be able to perform the skills under instruction [10]. Moreover, there are hardly any opportunities for undergraduate students to practice these skills, which might aggravate their insecurity.

The exact point of time for this change of perspective is not clear. In a comparison between physicians in their first year and members of the faculty, in what they believe they are required to know, the young physicians (just like the students in our study) tended to focus on technical skills such as lumbar punctures, incisions, drains and insertions of a central lines [11]. The authors, however, interpreted this result as a failure in teaching and did not conclude that different perspectives may exist. According to our results it is possible that physicians at the very beginning of their career still have the students’ point of view, since there were only six physicians that took part in our survey that were in their first year. Another study had already reported a prioritization of technical skills in third- and fourth-year students, however, this took place in a different context [12]. Although the study did not include basic clinical skills such as physical examination a similar trend was evident in the rating of 22 skills in general practice. A difference to our study can be noted in two of the skills (pleural drainage and paracentesis), which only played a minor role for the students. However, this may be linked to the reported low rate of appliance and practice of these procedures.

The impact of an implementation of a skills lab on the different ratings of skills is also an intriguing question. Despite the small size of our first survey before the implementation of the skills lab, a comparison to the latter survey sheds revealing information: The total number of points given by the students was significantly higher in the second survey. This could be due to the fact that the implementation of a skills lab might actually enhance the interest to procedural training. However, the rating of the skills, i.e. the prioritization of technical skills by the stu-
dents, was the same in both surveys. Out of the ten most important rated skills only three failed to return to the top and only to be substituted by three other technical skills. This may be seen as random deviation and proof of principle particularly because in the group of physicians were also three items that were likewise replaced by three other bedside skills. Indeed, the fact that no difference in the ratings of trained and untrained students could be detected in the latest survey also argues against an impact of a skills training regarding the choice of what is assumed to be important.

A limitation of this study is that it is restricted to skills in the field of internal medicine. Also, choice und characterization of the skills that were defined with respect to the intended training may be criticized. Rather theoretical items were put next to very practical skills or both were combined in one exercise. The list of skills may also be incomplete. Nevertheless, our data clearly show the specific perspective of students on their procedural training particularly with regard to the profound and reproducible differences to the physicians’ perspective on this issue. In our faculty we consider the skills training as an instrument to activate students and to enhance their self-confidence for the clinical practice. For this reason we focus our training on the needs that the students believe to be of importance to them.

Competing interests
The authors declare that they have no competing interests.

References
1. Ogden PE, Cobbs LS, Howell MR, Sibbitt SJ, DiPette DJ. Clinical simulation: importance to the internal medicine educational mission. Am J Med. 2007;120(9):820-824. DOI: 10.1016/j.amjmed.2007.06.017
2. Barsuk JH, Cohen ER, Feinglass J, McGaghie WC, Wayne DB. Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med. 2009;169(15):1420-1423. DOI: 10.1001/archinternmed.2009.215
3. Lynagh M, Burton R, Sanson-Fisher R. A systematic review of medical skills laboratory training: where to from here? Med Educ. 2007;41(9):879-887. DOI: 10.1111/j.1365-2923.2007.02821.x
4. Okuda Y, Bryson EO, DeMaria S Jr, Jacobson L, Quinones J, Shen B et al. The utility of simulation in medical education: what is the evidence? Mt Sinai J Med. 2009;76(4):330-343. DOI: 10.1002/mjs.20127
5. Smith CC, Huang GC, Newman LR, Clardy PF, Feller-Kopman D, Cho M et al. Simulation training and its effect on long-term resident performance in central venous catheterization. Simul Healthc. 2010;5(3):146-151. DOI: 10.1097/SH.0b013e3181dd9672
6. Liddell MJ, Davidson SK, Taub H, Whitecross LE. Evaluation of procedural skills training in an undergraduate curriculum. Med Educ. 2002;36(11):1035-1041. DOI: 10.1046/j.1365-2923.2002.01306.x
7. Niemi-Murola L, Helenius I, Turunen J, Remes V. Graduating medical students and emergency procedure skill teaching in Finland—does a clinical skills centre make the difference? Med Teach. 2007;29(8):821-826. DOI: /10.1080/01421590701601568
8. Turner SR, de Gara CJ. Medical students and recent graduates may disagree on the importance of procedural skills education. Med Teach. 2010;32(2):182.
9. Connick RM, Connick P, Klotzas AE, Tsagkaraki PA, Gkrania-Klotzas E. Procedural confidence in hospital based practitioners: implications for the training and practice of doctors at all grades. BMC Med Educ. 2009;9:2. DOI: 10.1186/1472-6920-9-2
10. Chen W, Liao SC, Tsai CH, Huang CC, Lin CC, Tsai CH. Clinical skills in final-year medical students: the relationship between self-reported confidence and direct observation by faculty or residents. Ann Acad Med Singapore. 2008;37(1):3-8.
11. Fitch MT, Kearns S, Manthey DE. Faculty physicians and new physicians disagree about which procedures are essential to learn in medical school. Med Teach. 2009;31(4):342-347. DOI: 10.1080/01421590802520964
12. Wu EH, Elinicki DM, Alper EJ, Bost JE, Corbett EC Jr, Fagan MJ, Mechaber AJ, Ogden PE, Sebastian JL, Torre DM. Procedural and interpretive skills of medical students: experiences and attitudes of fourth-year students. Acad Med. 2008;83(10 Suppl):S63-S67. DOI: 10.1097/ACM.0b013e318183c5a7

Corresponding author:
PD Dr. med. Gunther Weitz
University Hospital of Schleswig-Holstein, Campus Lübeck, Clinic for Internal Medicine I, Ratzeburger Allee 160, 23538 Lübeck, Germany, Tel.: +49 (0)451/500-6033, Fax: +49 (0)451/500-6242
gunther.weitz@uk-sh.de

Please cite as
Weitz G, Twesten C, Hoppmann J, Lau M, Bonnemeier H, Lehnert H. Differences between students and physicians in their entitlement towards procedural skills education – a needs assessment of skills training in internal medicine. GMS Z Med Ausbild. 2012;29(1):Doc07. DOI: 10.3205/zma000777, URN: urn:nbn:de:0183-zma000777

This article is freely available from
http://www.egms.de/en/journals/zma/2012-29/zma000777.shtml

Received: 2011-08-10
Revised: 2011-09-23
Accepted: 2011-10-25
Published: 2012-02-15

Copyright ©2012 Weitz et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.