Modulation of neutrophil (dys)function by Ayurvedic herbs and its potential influence on SARS-CoV-2 infection

Manjunath B. Joshi a, Archana Kamath a, Aswathy S. Nair a, Pooja Yedehali Thimmappa a, Sitaram J. Sriranjini b, G.G. Gangadharan b, Kapaettu Satyamoorthy a, *

a Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
b Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India

1. Introduction

Coronavirus disease 2019 (COVID-19) by SARS-CoV-2, a plus strand RNA virus, is an ongoing pandemic and is causing respiratory disease associated with pneumonitis. Over the past months, COVID-19 crisis has caused devastating illness globally leading to enormous socio-economic burden. Epidemiological data as on early December, 2020 indicated by world health organization reveals 66,729, 375 confirmed cases and 1,535,982 deaths worldwide [1].

Although major sub-group of SARS-CoV-2 infected patients are clinically asymptomatic or minimally symptomatic, approximately 5% patients exhibit significant lung damage and/or multiple organ failure. Critically ill patients infected with SARS-CoV-2 manifest shock, sepsis, localized and systemic coagulopathies and these pathological conditions are significantly associated with acute inflammation [2]. Mechanistically, Angiotensin – Converting Enzyme 2 (ACE2) serves as one of the receptors for SARS-CoV-2 in pulmonary tissues and reduces bioavailability of ACE2 [3]. Decreased ACE2 levels results in the loss of its protective effects by increasing AngII levels, which induces oxidative stress and pro-inflammatory milieu via NADPH oxidase [2]. Increasing evidences suggest that the pandemic causes approximately 10–15% of the patients to progress towards acute respiratory distress syndrome...
1.1. Neutrophil extracellular traps in health and disease

Neutrophils are one of the critical constituents of innate immune system and play a significant role in fighting infections using range of arsenal of antimicrobial functions. Neutrophils belonging to granulocyte lineage of white blood cells, acts as the first line of defence against pathogens and eliminate them by a) degranulation, b) phagocytosis and c) by producing extracellular traps. Upon stimulation, neutrophils expel their DNA along with histones and granular proteins to form extracellular traps through a process referred as NETosis. Existence of NETs were discovered by Brinkmann et al. (2004) and showed these entities were composed of DNA lattices which trap and eliminate bacteria [5]. NETs are the scaffolds of decondensed chromatin and may contain both nuclear and mitochondrial DNA [6]. Subsequent analysis revealed NETs contained high concentrations of antimicrobial effectors including variety of proteases, histone variants and anti-bacterial peptides and these may aid in clearing the infection [7]. NETs participate as a defensive action against a broad range of microorganisms including viruses, bacteria, fungi and protozoa [8].

Variety of viruses have been demonstrated to activate pattern recognition receptors (PPR) in neutrophils to induce NETs formation and more interestingly, signalling effector mediators of virus induced NETs differed from that of bacteria. Upon binding to viral DNA, human immune deficiency virus (HIV-1) induced formation of NETs through endosomal PRR, TLR-7 and TLR-8 [9]. Respiratory syncytial virus fusion protein induced NETs activating TLR-4 [10]. Hantavirus has been demonstrated to form NETs via β2 integrin signalling in human neutrophils [11]. Narayan Moorthy et al. (2013) showed influenza A virus induced NETosis and however these NETs failed to protect against secondary bacterial infection of Pneumococcus [12]. However, virus induced NETs have been shown to act as double edged sword as they possess anti-viral activity and also induce organ damage during viral infections [13].

1.2. Neutrophil response in COVID-19 infections

Pulmonary inflammation during SARS-CoV-2 infection is characterized by the dysregulated innate immune system function associated with neutrophilia, infiltration of neutrophils and increased levels of pro-inflammatory mediators. Haematological analysis of 452 SARS-CoV-2 infected subjects in Wuhan, China, showed dysregulated immune response with lower lymphocyte counts, increased leukocyte counts and neutrophil-lymphocyte-ratios (NLR), decreased percentages of monocytes, eosinophils, basophils and both T helper and suppressor cells [14]. Recent meta-analysis of 15 studies constituting 3090 SARS-CoV-2 infected individuals indicated high neutrophil count and NLR significantly correlated with severity of the disease [15]. Wang et al. (2020) in a retrospective study of 139 hospitalized subjects suggested correlation of neutrophilia to poor outcome [16]. Autopsy samples from different studies reported infiltration of neutrophils in pulmonary capillaries along with fibrin deposition, neutrophils extravasation into the alveolar space, and neutrophilic mucositis [4,17]. Taken together, accumulating evidence suggest over functioning of neutrophils in advanced stages of COVID-19 associated ARDS. Neutrophils, component of innate immune system, combats pathogens by expelling DNA outside along with histones and granular proteins, and produce extracellular traps (NETs). Although NETs show beneficial effects, these DNA lattices also possess adverse effects on variety of diseases such as diabetes and atherosclerosis where, the NETs induce thrombosis and tissue/organ damage [18]. Interestingly, SARS-CoV-2 infected subjects with co-morbid conditions such as diabetes and atherosclerosis are more prone to mortality. Along with pro-inflammatory parameters, abnormal conditions such as disseminated intravascular coagulation [19], altered conventional coagulation parameters [20] and increase in the thrombus formation under hypoxic conditions [21] are observed in SARS-CoV-2 subjects and these can also be due to the cause or consequences of NETs formation. Neutrophils greatly outnumber other blood mononuclear cells at the site of infection and inflammation can produce reactive oxygen species as well as can release several pro- and anti-inflammatory mediators. Zuo et al. (2020) analysed sera of 50 COVID-19 infected individuals and showed elevated NETs components as an indication of hyper-activation of NETs [22]. Hence, targeting neutrophil functions, more specifically NETs formation, during SARS-CoV-2 infections might be beneficial in reducing the morbidities in advanced stages.

1.3. NETs in respiratory diseases/infections

Over the years, several studies have demonstrated dysregulated NETs formation in pulmonary diseases including lung infections. Caudrillier et al. (2012) demonstrated that the platelets induced formation of NETs in transfusion related lung injury. Authors observed increased NETs levels in the patients with transfusion associated ARDS when compared to those who did not have ARDS [23]. Recent proteomics analysis revealed granule the content and the NETs forming ability of neutrophils which correlated with the incidence and severity of respiratory distress in pneumonia patients [24]. NETs components were elevated in broncho-alveolar lavage and correlated with IL-8 levels in subjects with pneumonia related ARDS [25]. In a randomized controlled trial in the community acquired pneumonia model, Ebrahimi et al. (2018) demonstrated increased serum NETs with clinical outcome [26]. In 100 human subjects with ventilator associated pneumonia with or without ARDS, Mikacenic et al. (2018) showed elevated levels of myeloperoxidase-DNA complex in alveolar space, suggesting NETs associated with local inflammation and bacterial burden in the lung [27]. Extracellular histones, component of NETs, were elevated in both the broncho-alveolar lavage fluid and plasma of ARDS subjects [28]. In rodent model of H1N1 influenza infection, increased neutrophils and NETs were noted in the lung which contributed to ARDS [29]. SARS-CoV-2 infected subjects showed significant mucous secretions similar to that of cystic fibrosis. Earlier studies have demonstrated that secretions in cystic fibrosis contains large amount of NETs leading to impaired gas exchange and subsequent secondary infections [30]. Mounting evidences indicate substantial neutrophil recruitment in infected tissues of COVID-19 subjects (1, 6, 28). Interestingly, increased components of NETs such as cell free DNA, citrullinated histones and myeloperoxidase-DNA complexes in SARS-CoV-2 infected subjects were observed. Further, authors showed serum from COVID-19 patients induced NETs formation in the neutrophils of healthy subjects [22].

1.4. Interplay between oxidative stress and cytokines in NETs formation: implications in SARS-CoV-2 infections

Several studies have demonstrated that the SARS-CoV-2 infection is associated with dysregulated immune activation leading to cytokine storm. SARS-CoV-2 infection led to a significantly elevated systemic levels of cytokines such as IL-1β, IL-2, IL-6, IL-7, IL-8, IL-10, IL-17, IFNγ, IFNγ-inducible protein 10, monocyte chemo-attractant...
protein 1 (MCP-1), G-CSF, macrophage inflammatory protein 1α (MIP-1α), and TNF-α which was associated with the respiratory failure, septic shock, coagulopathy and increased ferritin [31,32]. On the other hand, these inflammatory mediators have been shown to play a role in either life cycle of neutrophils or its function including NETs formation [33].

Analysis of 150 COVID-19 infected subjects from Wuhan, China, revealed significant elevation of C-reactive protein and IL-6 along with cardiac troponin and myoglobin, indicating a cytokine storm and fulminant myocarditis [34]. Interestingly, IL-6R blocking antibody Tocilizumab was beneficial in reducing immune dysregulation by increasing the lymphocyte count and HLA-DR expression in response to SARS-CoV-2 [35]. Neutrophils are known to shed sIL-6R in response to IL-6 and they have also shown the demonstration of IL-6 in the SARS-CoV-2-associated cytokine storm [36]. Our earlier studies have shown IL-6 as one of the potential inducer of NETs and during Type 2 Diabetes, glucose modulated IL-6 induced NETs formation [37]. In a model of inflammation, we have also shown that human endothelial cells produce IL-8 during neutrophil-endothelial interactions which is responsible for inducing NETs and these NETs facilitated apoptosis in endothelial cells [40]. Elevated IL-6 in SARS-CoV-2 infected subjects is also known to induce NETs in acute respiratory distress syndrome [41-44]. TNF-α has been demonstrated to induce NETs via inducing oxygen free radicals and on the other hand, TNF-α is elevated in serum of SARS-CoV-2 subjects [38,39].

NETs formation is a redox sensitive process and requires either oxygen or nitrogen free radicals. Studies have shown involvement of both cytosolic and mitochondrial free radicals in the formation of NETs. Mutation(s) in any gene encoding for subunit of NADPH oxidase manifests in chronic granulomatous disease and infants suffering from this disease do not form intact NETs leading to lung infections [45]. This indicates NADPH derived oxygen free radicals is prerequisite to NETs formation. However, NOX independent NETs have also been demonstrated where mitochondrial ROS was prerequisite to form NETs [46]. Oxidant enzymes such as myeloperoxidase (MPO) are one of the key enzymes in the formation of NETs and MPO knockout mouse models failed to form intact NETs [47]. Reactive nitrogen species has also been shown to induce NETs. Accordingly, in vitro studies have shown antioxidants such as vitamin C, N-acetyl cysteine and enzyme inhibitors significantly abrogate NETs formation [48].

1.5. Immunomodulatory effects of ayurvedic herbs

Over the centuries, Ayurveda the Indian system of medicine, has been in use to treat several infectious and non-infectious diseases. Ayurvedic herbs may significantly contribute towards prophylaxis and clinical management of SARS-CoV-2 infection due to their substantial immunomodulatory properties and re-establishment of immune homeostasis [49]. In the context of COVID-19 pathology, persistent infection leads to intense release of pro-inflammatory mediators (cytokine storm) which further results in enhanced inflammation subsequently leading to organ damage. Hence, the herbs possessing anti-viral property along with the efficiency to maintain immune homeostasis with favourable Th1/Th2 cytokine balance might prove beneficial. Employing biochemical and cellular assays in in vitro in animals and clinical models, several studies have demonstrated immunomodulatory properties of various Ayurvedic herbs including Tinospora cordifolia (Guduchi), Withania somnifera (Ashwagandha), Asparagus racemosus (Shatavari), Ocimum sanctum (Tulsi), Zingiber officinale (Shinthi), Cinnamomum zeylanicum (Twak), Emblica officinalis (Amalaki), Andrographis paniculata (Kalmegh), Phyllanthus niruri (Bhunjyamalaki), Piper nigrum (Maricha), Piper longum (Pippali), Curcuma longa (Haridra), Glycyrrhiza glabra (Yashthimadhu), Adhatoda vasica (Vasa), Datura metal (Kanaka), Allium sativum (Lashuna) and Alstonia scholaris (Saptaparni) in treating infectious and non-infectious diseases.

Ayurveda recognises communicable disease and epidemics [50]. Based on the clinical presentation, SARS-CoV-2 infection can be understood as a complex variant of Jvara (febrile conditions) involving all the Tridosha, with a dominance of Vata and Kapha. It mainly affects the Pranavaha srotas (respiratory system) but can cascade to affect other systems in due course [51]. Hence, the various herbs explained by Charaka under Kasahara, Shwasahara, Jwarahara and Shirivirechana dashemani may help manage this condition. Most of the herbs discussed in the manuscript are Vata-Kaphahara, Krimighna (anti-microbial), Deepana (appetizer), Pachana (digesting), Rasayana (rejuvenation), Shothahara (anti-inflammatory) indicated in Kasa, Shwasa (respiratory ailments) and various types of Jvara (pyrexia). In the context of COVID-19 pathogenesis and associated neutrophil dysregulation, pharmacological activities of several Ayurvedic herbs can be potentially explored as a) anti-microbial to activate neutrophil function to eliminate infection, b) immuno-modulatory to minimize cytokine storm and thereby maintaining innate immune homeostasis and c) to inhibit over functioning neutrophils to form excess NETs which subsequently induced thrombosis. Experimental evidences demonstrating Ayurvedic herbs possessing aforementioned properties such as anti-microbial, immunomodulatory and anti-thrombotic effects along with the references are shown in Table 1.

1.6. Ayurvedic herbs possess anti-microbial properties

Based on Ayurveda scriptures, extensive studies have been carried out to demonstrate anti-microbial properties of Ayurvedic herbs and precisely have shown potential anti-viral effects in in vitro, in vivo and clinical settings [54,76,80,83,89]. Among them is Terminalia chebula which is widely used for the treatment of upper respiratory infections including cold and cough, and extensive research has shown that the fruit has anti-viral property against influenza A virus [154]. Studies have also demonstrated that treatment with the combination of Acyclovir (ACV) an anti-herpetic agent and T. chebula was effective for treating HSV-1 infection in mouse models [155]. Bioactive molecules such as chebulinic acid and chebulagic acid showed antiviral properties against HSV-2 and HIV [55].

Aqueous extract of P. niruri exhibits strong mitogenic activity against murine lymphocytes and enhances the antigen presentation capability of dendritic cells. Mahalakshmi et al. (2015) experimentally demonstrated that different doses of aqueous P. niruri triggered the activation of neutrophils and consequently eliminated infections [72]. Studies have shown that Phyllanthus urinaria extract inhibited formation and secretion of HBsAg and HBcAg by HBV in in vitro transient transfection model. Further studies showed that acetone, ethanolic and methanolic extracts of P. niruri was effective for treating HSV-1 infection in mouse models [156]. Bioactive molecules such as chebulanic acid and chebulaglic acid showed antiviral properties against HSV-2 and HIV [55].

Aqueous extract of P. niruri exhibits strong mitogenic activity against murine lymphocytes and enhances the antigen presentation capability of dendritic cells. Mahalakshmi et al. (2015) experimentally demonstrated that different doses of aqueous P. niruri triggered the activation of neutrophils and consequently eliminated infections [72]. Studies have shown that Phyllanthus urinaria extract inhibited formation and secretion of HBsAg and HBcAg by HBV in in vitro transient transfection model. Further studies showed that acetone, ethanolic and methanolic extracts of P. niruri inhibited the HSV-2 viral infection [73]. Authors also demonstrated polyphenolic extract and gallic acid from P. urinaria inhibited the HSV-2 viral infection [73]. Authors also demonstrated polyphenolic extract and gallic acid from P. urinaria exhibited anti-HIV-1 activities [73]. Procyanidin, a phytochemical from Vitis vinifera, showed anti-influenza A activity and could constrain the replication of virus at some stages of life cycle [80].

Active components of Glycyrrhiza such as glabrin, glabrin, glabrol, glabrene, hispaglabrín A, hispaglabridin B, 40-methylglabridin, and 3-hydroxyglabrol exhibited in vitro anti-microbial activity [156]. Studies have also demonstrated that antiviral activity of bioactive components such as ribavirin, 6-azauridine, pycrazifurin, mycophenolic acid and glycyrrhizin against SARS virus and glycyrrhizin has also been used for management of HIV-1 and chronic hepatitis C virus [156]. Aqueous and methanolic extracts of Justicia adhatoda has been demonstrated to possess
Table 1
Charaka Samhita and Bhavaprakasha references for Ayurvedic herbs with therapeutic properties to target respiratory system along with evidences to modulate neutrophil functions [52,53].

Ayurvedic herb (Botanical name)	Properties & indication as per Ayurveda	Dose/Model	Function in relation to neutrophil activity in COVID-19	Reference
Abhaya (Terminalia chebula)	Jvaraghna, Tridoshahara, (mitigates 3 Doshas) Deepana (appetizer), Rasayana (rejuvenation), Shothahara (nourishing), Shwasa-Kosahara (respiratory disorders), Krimihara (anti-inflammation), Vishama Jwara (intermittent fever)	In vivo: 50-62.5 mg/kg/d for 5 weeks Bovine type II Collagen induced arthritis DBA/1J mice	a) Antimicrobial b) Immunomodulatory Suppresses the production of TNF-α, IL-6 and IL-1β in a dose-dependent manner Decreases TNF-α, IL-1β, IL-6, PGE-2, COX-2 Increases IL-2, IL-10 and TNF-α Triphala contains T. chebula as a main ingredient. Enhances neutrophil function	[54,55,56-58]
Amalaki (Emblica officinalis)	Jvarogna, Tridoshahara, (mitigates 3 Doshas) Deepana (appetizer), Rasayana (rejuvenation), Bruhmana (nourishing), Shwasa-Kosahara (respiratory disorders), Krimihara (anti-inflammation), Vishama Jwara (intermittent fever)	In vivo: 500 μg/mL IB3-1 cells from cystic fibrosis patient		[54,59,60-64]
Ashwagandha (Withania somnifera)	Balya (provides strength), Bruhmana, Shothahara (anti-inflammatory), Kapha-vatahara (mitigates kapha-vata), Rassayana (rejuvenation)	In vivo: 200 mg/kg from day 15 in male albino Wistar rats		[65,66-71]
Bhumyamalaki (Phyllanthus niruri)/ Phyllanthus urinaria	Kasahara, Shwasahara, Kapha-pitta hara (mitigates kapha-pitta)	In vitro: 2 μg-2 mg (w/v) I.p. Oreochromis mossambicus fish of either sex	a) Antimicrobial b) Immunomodulatory c) Anti-thrombotic Inhibits mRNA expression of inflammatory cytokines such as IL-8, IL-6, TNF-α, IL-1β, IL-12. Elevates anti-inflammatory cytokine TGF-β1. Inhibits NF-κB pathway	[72,73,74,75]
Dhatura/Kanaka (Datura metel)	Jvarahara (mitigates fever), Kapha vata shamaka (mitigates kapha-vata), Krimihara (anti-microbial)	In vivo: 1.23 ± 2.46 ml/kg p.o. for 28 days, in male Wistar rats sensitized with ovalbumin 40 mg and aluminium hydroxide 2.0 mg	a) Antimicrobial b) Immunomodulatory c) Anti-thrombotic	[76,77-79]
Table 1 (continued)

Ayurvedic herb (Botanical name)	Properties & indication as per Ayurveda (Botanical name)	Dose/Model	Function in relation to neutrophil activity in COVID-19	Reference
Haridra (Curcuma longa)	Krimighni (anti-microbial), Kapha-pitta hara (mitigates kapha-pitta), Shirovirechana	*Ex vivo*: 50 μM. Mouse colonic epithelial cells (YAMC). Intra-peritoneal macrophages from BALB/c mice		
In vivo: 100 μg/g in 80 μl injection volume i.p. Male BALB/c mice post treatment peritonitis induction				
In vitro: 1×10⁵ M-1 μM. Polymorphonuclear cells from Rhesus monkey				
In vivo: 50 mg/kg i.p. Reovirus 1/L-induced acute viral pneumonia model	Elevated neutrophil in blood & BALF			
Decreases neutrophil counts	[89,90,91,92,93]			
Kalamegha (Andrographis paniculata)	Deepana (appetizer), Kapha-pitta hara (mitigates kapha-pitta), Krimighna (anti-microbial), Jwara (pyrexia)	*In vitro*: 0.1–1 μM Human neutrophils	(continued on next page)	[94–96]
Kantakari (Solamun xanthocarpum)	Shvayalthuha (anti-inflammatory), Kapha-vatahara (mitigates kapha-vata), Deepana (appetizer), Pachana (digestive), Kasa-Shwasa (respiratory ailments), Jwara (pyrexia), Krimihara (anti-microbial), Pnasa (rhinitis)	*In vivo*: 50–200 mg/kg/d p.o. for 22 days in Wistar rats of either sex induced with ovalbumin		
In vivo: 100 mg/kg p.o. for 14 days. Swiss albino mice				
In vivo: p.o. 11 days treatment in Albino rats	Increases neutrophil adhesion			
Reduces neutrophil percentage and cytokine induced neutrophil chemotactic factor (CINC-1)				
Reduces TNF-α, IL-1β and IL-6. Elevates IFN-γ	[85,97–100]			
Karkatashrungi (Pistacia integerrima)	Kapha-vatahara (mitigates kapha-vata), Jwara (pyrexia), Shwasa-Kasa (respiratory ailments), Aruchi (tastelessness), Vsmi (vomiting)	*In vivo*: 7.5–30 mg/kg i.p. Female Sprague–Dawley rats, Male Dunkin Hartley, Guinea pigs Swiss albino mice.	(continued on next page)	[101–103]
Lashuna (Allium sativum)	Bruhmana (nourishing), Kapha-vata hara (mitigates kapha-vata), Rasayana (rejuvenating), Jeerna jwara (chronic fever), Kasa hara (mitigates cough)	*In vitro*: Endothelial cell monolayers from human umbilical endothelial cells		
In vivo: 80 mg/kg p.o. for 4 weeks, Dermatophagoides pteronyssinus (Der p) induced allergic asthma mice model	Increases Th1 cytokines IFN-γ and IL-12, Reduces Th2 cytokines IL-13, IL-4 and IL-5. Inhibits expression of IL-1β, IL-6 and TNF-α	[104,105–108]		
Ayurvedic herb (Botanical name)	Properties & indication as per Ayurveda	Dose/Model	Function in relation to neutrophil activity in COVID-19	Reference
--------------------------------	---	------------	--	-----------
Maricha (Piper nigrum)	Deepana, Krimighna, Shirovirechana, Kapha-vatathara (mitigates Kapha-vata), Deepana (appetizer), Shwaasa (pain), Krimi (microbes)	*In vitro*: 50–100 µg/ml in BALB/c mice spleenocytes. *In vivo*: 200 mg/kg p.o. day 15–26 in female BALB/c mice Ovalbumin induced allergic asthma model	a) Antimicrobial. b) Immunomodulatory. Inhibits IL-4 and IL-10. Enhanced IFNγ Decreased neutrophil count. Regulates cytokine production of Th1, Th2, Th17 and Treg cells. Inhibits IL-1β, IL-4, IL-6, IL-17A, RORγt, TNF-α and GATA3. Increases IL-10, INF-γ.	[109,110–112]
Pippali (Piper longum)	Deepana, Triptighna, Kanyta, Shirovirechana, Vata-Kaphahara (mitigates vata–kapha), Deepana (appetizer), Rasayana (Rejuvenation), Krimi (Anti-microbial), Jwara (Antispetic), Shoola (pain), Shwasa-Kasa (Respiratory ailments), Jeerna Jwara (Chronic fever)	*In vitro*: 17.5 µg/mL Human endothelial cells	a) Antimicrobial. b) Immunomodulatory. Inhibits TNF-α-induced adhesion of neutrophils to endothelium monolayer Piperine reduces production of TNF-α, IL-1β & IL-6 Reduces acute pancreatitis induced neutrophil infiltration a) Antimicrobial. b) Immunomodulatory. Bharangyadi compound containing I. racemosa showed increase in neutrophil adhesion.	[113–115]
Pushkara (Hulsa racemosa)	Kapha-vatahara (mitigates kapha-vata), Jwara (fever), Shoolha (Anti-inflammatory) Kasa-shwasa (respiratory ailments), Aruchi (tastelessness)	*In vivo*: 500 mg/kg p.o. for 14 days in Swiss albino mice of either sex	a) Antimicrobial. b) Immunomodulatory. Increases phagocytic index Increases respiratory burst in Polymorphonuclear neutrophils Inhibits inflammatory mediators TNF-α and IL-8. Reduces IL-4 level a) Antimicrobial. b) Immunomodulatory. Increases absolute neutrophil count Inhibits TNF-α and IL-1β Reduces inflammatory cytokines level and neutrophil myeloperoxidase activity a) Antimicrobial. b) Immunomodulatory. Increases neutrophil count	[116–120]
Saptaparna (Alstonia scholaris)	Shirovirechana, Shleshma-vata hara (mitigates kapha-vata hara), Shwasaahara	*In vivo*: 50–200 mg/kg in BALB/c mice *In vitro*: 1–25 µg/mL in human neutrophils	a) Antimicrobial. b) Immunomodulatory. Increases phagocytic index Increases respiratory burst in Polymorphonuclear neutrophils Inhibits inflammatory mediators TNF-α and IL-8. Reduces IL-4 level a) Antimicrobial. b) Immunomodulatory. Increases absolute neutrophil count Inhibits TNF-α and IL-1β Reduces inflammatory cytokines level and neutrophil myeloperoxidase activity a) Antimicrobial. b) Immunomodulatory. Increases neutrophil count	[121–123]
Shatatvari (Asperagus racemosus)	Balya (provides strength), Vata pitta hara (mitigates vata-pitta), Agni pustida (increases digestive power), Rasayana (rejuvenation), Shotha (anti-inflammatory)	*In vitro*: 100 mg/kg/d p.o. 15 days in Swiss albino mice with cyclophosphamide induced neutropenia *In vivo*: 200 mg/kg i.p. in male C57BL/6 mice	a) Antimicrobial. b) Immunomodulatory. Increases phagocytes Reduces IL-4 level a) Antimicrobial. b) Immunomodulatory. Increases absolute neutrophil count Inhibits TNF-α and IL-1β Reduces inflammatory cytokines level and neutrophil myeloperoxidase activity a) Antimicrobial. b) Immunomodulatory. Increases neutrophil count	[124,125,126]
Shati (Hedychium spicatum)	Shwasaahara, Kapha-vatahara (mitigates Kapha-vata), Shothaahara (anti-inflammatory), Shwasa-Kasa (respiratory ailments), Shoolahara (analgesic)	*In vivo*: 200–500 mg/kg p.o. for 15 days in Swiss albino mice and albino rats. Ovalbumin induced allergic asthma	a) Antimicrobial. b) Immunomodulatory. Decreases neutrophils in BALF. Lowers IL-4 and IL-5 Reduces IL-5 and IL-4 a) Antimicrobial. b) Immunomodulatory. Increases neutrophil count	[127,128]
Shunthi (Zingiber officinale)	Kapha-vatahara (mitigates Kaphahva), Buchuta (enhances taste), Puchana (digestion), Swarupa (enhances voice), Shwasa-Kasa (respiratory ailments), Shoola (pain), Shofha (inflammation)	*In vivo*: 500 mg/kg and 720 mg/kg i.p. in Male BALB/c mice *In vivo*: 45–720 mg/kg i.p. day 7 and 8 in NOD mice and C57BL6 mice Ovalbumin induced	a) Antimicrobial. b) Immunomodulatory. Increases absolute neutrophil count Reduces neutrophils in BALF. Lowers IL-4 and IL-5 Reduces IL-5 and IL-4 a) Antimicrobial. b) Immunomodulatory. Increases neutrophil count	[129,130,131,132]
Talispatra (Abies webbiana)	Shwasa-Kasa (respiratory ailments), Kapha anila apha (mitigates kaphavata), Aruchi (tastelessness), Vahminandya (decreased appetite)	*In vivo*: 100 mg/kg i.p. for 45 days in Wistar strain male albino rats *In vivo*: 250 mg/kg p.o. for 20 days in Albino Wister rats. *In vitro*: 22–500 µg/ml in Splenocytes *In vivo*: 250 mg/kg for 20 days in Wistar albino rats of either sex. Excision model of wound repair *In vivo*: 850 mg/kg p.o. for 15 days in Swiss albino mice	a) Antimicrobial. b) Immunomodulatory. c) Antithrombotic Enhances phagocytic activity of neutrophil Enhances IL-2 Up regulates TNF-α production Elevates IL-2, IL-4, TNF-α and IFN-γ Reduces IL-1β and NF-κB levels a) Antimicrobial. b) Immunomodulatory.	[133,134,135–139]
Antiviral activity against influenza virus upon inhibiting Hemagglutination (HA) [143].

A. sativum exhibits broad range of anti-microbial activities. A garlic, a chemical compound of garlic showed potential antimicrobial effect because of its chemical reaction with thiol groups of various microbial enzymes. In vivo study showed that garlic fights against intranasal inoculation with influenza viruses in common cold. Human cytomegalovirus (HCMV), influenza B virus, herpes simplex virus type 1, herpes simplex virus type 2, parainfluenza virus type 3, vaccinia virus, vesicular stomatitis virus and human rhinovirus type 2 are sensitive to garlic extracts [104]. Interestingly, independent studies have shown that above mentioned herbs such as *T. chebula* [54], *P. niruri* [157], *V. vinifera* [80], *G. glabra* [148], *J. adhatoda* [143] and *A. sativum* [158] significantly modulated neutrophil functions in disease conditions.

1.7. Ayurvedic herbs possess anti-inflammatory and anti-oxidant properties

Over the decades, innumerable studies have reported the antioxidant and anti-inflammatory properties of extracts prepared from hundreds of medicinally important plants. In the present manuscript, we have reviewed the Ayurvedic herbs, which significantly modulate neutrophil functions, and also exhibit anti-inflammatory and antioxidant properties. As pro-inflammatory cytokines induce NETs formation via redox sensitive pathways, we hypothesise that following herbs can be explored to inhibit over-functioning of neutrophils and NETosis, and help in clinical management of SARS-CoV-2 infections.

Ayurvedic herb (Botanical name)	Properties & indication as per Ayurveda	Dose/Model	Function in relation to neutrophil activity in COVID-19	Reference
Twak (*Cinnamomum zeylanicum*)	Kasa (respiratory ailments), Krimi (anti-microbial)	In vivo: 10–100 mg/kg p.o. for 10 days in Albino Wistar rats	Increases neutrophil adhesion	[143,144–147]
Vasa (*Adhatoda vasica*)	Kapha-pitta-raktha (mitigates kapha-pitta-rakta), Shwasas-Kasa (respiratory ailments), Jwara (pyrexia)	In vivo: 10 gm/kg 28 days in humans (Clinical study)		
Yastimadhu (*Glycyrrhiza glabra*)	Pitta-asra jith (mitigates pitta-vata-rakta), Shothahara (anti-inflammatory), Ruchya (enhances taste), Rasayana (rejuvenation)	In vivo: 400 mg/kg p.o. for 8 days in male Wistar rats		[148,149,150–153]

		In vitro: 25–100 µg/mL in RAW 264.7 macrophages stimulated with LPS	Inhibits LPS-induced TNF-α, IL-1β, IL-6 production	
		In vitro: 50–200 µg/mL in LPS-stimulated mouse endometrial epithelial cells	Glycyrrhizin inhibits LPS-induced TNF-α, IL-1β, NO & PGE₂ production	
		In vitro: 200, 40, 8 mg/L in LPS-induced macrophage cell line of RAW264.7	Glycyrrhizin acid suppresses IL-1β, IL-3, IL-5, IL-10, IL-13, TNF-α (LPS stimulated)	
		In vivo: 50–100 mg/kg p.o. for 11 days in Male BALB/c mice.	G. glabra with 2 more herbs inhibits airway inflammation by inhibiting inflammatory cytokines TNF-α, IL-17A, IL-6, CD4-2	

Both poly-herbal formulations and extracts of *T. cordifolia*, *W. somnifera* and *O. sanctum* reduced pro-inflammatory mediators including IL-1β, IL-6, IL-23, TNF-α and MIP-1 in mouse models of diseases associated with inflammation [65,84,134]. A study by Hasan et al. (2016), demonstrated that administration of 200 mg/kg of *A. racemosa* root powder led to the reduction in the inflammatory cytokines level and neutrophil myeloperoxidase activity. Oral administration of methanolic extract of *A. racemosa* wild roots containing steroidal saponins reduced TNF-α, responsible for the expression of MCP-1 and VCAM-1 (vascular cell adhesion molecule-1), which are the key players leading to hyper inflammation state [124]. Treatment with aqueous *Z. officinale* extract in allergic airway inflammation reduced IL-13, IL-5 and IL-4 in OVA-immunized NOD/C57BL6/c mice [129,159]. Ethanolic extract of *C. zeylanicum* was tested on polymorphonuclear cells (PMNCs) stimulated with LPS, which showed reduced pro-inflammatory mediators such as IL-6 and TNF-α [160]. Piper species have been studied extensively for anti-bacterial, anti-mutagenic, anti-tumor, anti-diabetic, antioxidant and anti-inflammatory properties [161,162]. In allergic asthma model, *P. nigrum* extract reduced accumulation of inflammatory cells such as neutrophils and eosinophils in broncho-alveolar fluid (BALF) and mast cells in the pulmonary tissue. Further, authors showed cytokine production of Th1, Th2, Th17 and Treg cells were regulated and expression of IL-1β, IL-4, IL-6, IL-17A, RORγt, TNF-α and GATA3 were reduced upon treating with *P. nigrum* [109]. Herbs used in Ayurveda system such as Abhaya (*T. chebula*), Draksha (*V. vinifera*), Kantakari (*Solamun xanthocarpum*), Pushkara (*Inula race- mosa*), Shati (*Hedychium spicatum*), Talisapatra (*Abies webbiana* and Karkatashringi (*P. integerrima*) has also been shown to possess...
antioxidant and immunomodulatory properties and significantly modulate neutrophil activity as indicated in Table no 1 and Fig. 1.

1.8. Bioactive molecules of ayurvedic herbs significantly modulate neutrophil functions including NETs formation

Traditional herbal preparations may consist of mixture of macro- and micromolecules which may directly or indirectly activate/inactivate or modify several targets with the fine balance of their PK/PD characteristics. A large array of alkaloids, polyphenols, flavonoids, terpenes, glycosides, saponins and many more may be present depending on the methods of herbal preparation. The constituent bioactive molecules of aforesaid herbs modulating a) neutrophil function, b) immunomodulatory and c) antioxidant properties have been detailed in Table 2. These bioactive molecules are subjected to ADME independently or through drug metabolizing enzymes (DMEs). DMEs are broadly categorized into three phases (phase I, II and III) that consists of enzymes and proteins to facilitate mechanisms and functions associated with ADME.

Steroidal alkaloids, sitoindosides VII–X, withaferin A and steroidal lactones extracted from *W. somnifera* shows significant antioxidant and free radical scavenging activities. Antioxidant enzymes such as catalase, SOD and GPx increased upon the treatment of *W. somnifera* in rat brain [221]. In inflammatory mouse models induced by monosodium urate, Withaferin-A reduced the levels of TNF-α and enzymes such as β-glucuronidase and lactate dehydrogenase in neutrophils [222]. Withanolide showed anti-inflammatory activity by suppressing superoxide anion generation and release of elastase in neutrophils stimulated by fMLP [223].

Integrated serum metabolomics and network pharmacology approach has demonstrated that Withanolides from *D. metal* leaves inhibit the production of inflammatory cytokines such as IL-1β, IL-6, IL-8, IFN-γ, TNF-α, HIF-1α and VEGF [224]. Ethanolic extract of *O. sanctum* contains Luteolin, Orientin, Urosolic acid, Apigenin7-O-glucuronide, Luteolin–7–O–glucuronide, Isorientin, Aesculin, Valhin acid and Gallic acid and, these bioactive molecules significantly modulate inflammation including neutrophil functions [225]. A study by Nicolas et al. (2008) using bronchial epithelial cells, showed that *E. officinalis* extract containing pyrogallol possess anti-inflammatory effects and reduced the expression of the neutrophil chemokines such as GRO–α, GRO–γ, IL-8, ICAM–1 and of the pro-inflammatory cytokine IL-6 in IB3–1 cells [59]. *E. officinalis* is rich source of vitamin C and flavonoids. On the other hand, in vitro studies in human neutrophils showed flavonoids (−)-epicatechin (−)-catechin hydrate, rutin trihydrate and vitamin C significantly inhibited PMA activated ROS production and extra-cellular DNA as measured by SYTOX green dye suggesting reduced NETs formation [48]. Quercetin, a major flavonoid present in several Ayurvedic herbs ameliorated inflammation in mouse model of Rheumatoid arthritis, where it inhibited neutrophil infiltration and NETs formation upon impeding autophagy. Authors demonstrated quercetin reduced the expression of citrullination of histones and PAD4 in ankle joints indicating decreased NETs formation in arthritis models [226]. Influence of quercetin hydrate on reducing NETs formation was also demonstrated in bovine neutrophils [227]. Andrographolide is one of the bioactive molecules found in *A. paniculata*. Maria et al. (2013) reviewed several studies and proposing underlying mechanisms for the anti-inflammatory
Table 2
Pharmacologically active compounds in Ayurvedic herbs and their role in modulating inflammation.

Name of the herb	Phytochemical name	Function	Reference	
Tinospora cordifolia	β-sitosterol	Anti-inflammatory, Increases neutrophils count, Inhibits secretion of TNF-α, IL-1β, IL-6, IL-8, Reduces NLRP3 and caspase-1	[163], [164]	
Berberine		Anti-inflammatory, Downregulates MCP-1, IL-6, TNF-α, Attenuates the inflammation in the airway by inhibiting neutrophil infiltration	[165], [166]	
Magnoflorine		Anti-inflammatory, immuno-modulatory, antioxidant activity	[167]	
Cinnamomum zeylanicum	(-)-Linalool	Inhibits eosinophil numbers, Th2 cytokines and IgE levels, Prevents the influx of inflammatory cells and hyper secretion of mucus	[168]	
Beta-caryophyllene		Inhibits of neutrophil migration in Cg-induced peritonitis mice model, Decreases in TNF-α, IFN-γ, IL-4, IL-5, IL-6	[169]	
(1)-alpha-phellandrene		Prevents induction of Neutrophil accumulation, Inhibits TNF-α and IL-6	[170]	
p-cymene		Reduces total leukocyte and neutrophil count, Increases SOD activity, Downregulates IL-6, TNF-α and IL-1β	[171]	
(E)-Cinnamaldehyde		Reduces neutrophil phagocytosis, Increase in IL-8 secretion, inhibits PMA induced NETs, Hot cinnamon candies blocks NETs progression	[172], [173]	
Name of the herb	Phytochemical name	Function	Reference	
------------------	--------------------	----------	-----------	
Beta-carotene		Anti-inflammatory activity by reducing the area of alveolitis and emphysema of lungs. Reduces neutrophils and lymphocytes in broncho-alveolar fluid		
Withania somnifera	Withaferin A	Anti-arthritic and anti-inflammatory activities	[67]	
	Withanolide E	Immunosuppressive effect on human B and T lymphocytes and on mice thymocytes	[67]	
Zingiber officinale	Gingerol	Anti-oxidant property. Anti-inflammatory effect without interfering with antigen presenting function of macrophages Suppresses the TNF-α production in TPA-treated female ICR-mice and rats Inhibits the production of NETs formation and ROS production in response to various lupus stimuli except PMA	[174], [175]	
	1,8-Cineol	Decreases the neutrophil chemotaxis induced by formyl-methionyl-leucyl-phenylalanine (fMLP) Inhibits carrageenan-induced edema and neutrophil migration	[176]	
	Zingeron	Decreases neutrophil infiltration. Reduces neutrophil MPO activity, MPO	[177]	
Asparagus racemosus	Shatavaroside A	Anti-inflammatory effect.	[178]	
	Shatavaroside B	Increases phagocytosis and phagocytic index of PMN		
Name of the herb	Phytochemical name	Function	Reference	
------------------	--------------------	----------	-----------	
Phyllanthus niruri	Rutin	Anti-oxidant effect	[179]	
Quercetin	Anti-fungal, anti-inflammatory, anti-oxidant, antiseptic activities	[180]		
	Reduces NETs production	[181]		
	Inhibits neutrophil degranulation	[182]		
Quercitrin	Anti-inflammatory activity	[157]		
Astragalain	Enhances the phagocytosis, increasing macrophage count, enhancing antibodies synthesis	[157]		
p-Cymene	Antioxidant activity	[157]		
Ocimum sanctum	Apigenin Polyphenols	Anti-inflammatory effect	[183]	
Catechin	Antioxidant property	[184]		
Isothymusin	Antioxidant activity.	[185]		
Isothyronin	COX-1 enzyme inhibition activity	(continued on next page)		
Name of the herb	Phytochemical name	Function	Reference	
------------------	--------------------	----------	-----------	
Cirsimaritin	Phytochemical name	Antioxidant activity.	[186]	
Cirsilineol	Phenolic acid	Inhibits 97% COX-1 enzyme activity		
Rosmarinic acid	Inhibits inflammatory responses in rat neutrophils	[187]		
Eugenol				
Andrographis paniculata	Andrographolide	Inhibits inflammatory responses in rat neutrophils	[187]	
14-deoxy-11,12-didehydroandrograpolide	Effective against HIV virus	[188]		
Andrograpanin				
14-deoxyandrographolide				
Name of the herb	Phytochemical name	Function	Reference	
-----------------	-------------------	----------	-----------	
5-hydroxy-7,8-dimethoxyflavone	Diterpene	Inhibits delayed type hypersensitivity (DTH) response to sheep red blood cells (SRBC) in mice	[189]	
Bis-andrographolide	Emblica officinalis	l-ascorbic acid	Ascorbic acid infusion abrogates FIP induced NETs production in Vit C deficient Gulo−/− mice	[190]
Datura metel	Scopoletin	Inhibits IL-6, TNF-α, IL-8	[191]	
Fraxetin			[192]	
Scopolamine			[193]	
Hyoscyamine			[194]	

(continued on next page)
Name of the herb	Phytochemical name	Function	Reference
Curcuma longa	Curcuminoids-Bisdemethoxycurcumin	Modulates IL-6, IL-8, TNF-α, TGFβ, MCP-1	[195], [196]
		Blocks cytokine release of IL-1, IL-6 and TNF-α	
		Inhibits LPS induced up-regulation of IL-1β, IL-6 and TNF-α with strong down regulation of IL-8	[197]
	Demethoxycurcumin	Regulates both pro and anti-inflammatory factors IL-6, IL-8, IL-10 and COX-2	[196]
		Promotes PMN cells apoptosis	
		Scavenges ROS	
	Curcumin	Reduces IL-1β, TNF-α, IL-6 and MCP-1 in Amyloid β stimulated microglial cells	[198]
Piper longum	β-caryophyllene	Inhibits neutrophil migration in Cg-induced peritonitis mice model. Decreases TNF-α, IFN-γ, IL-4, IL-5, IL-6	[169]
	Guineensine	Prevents endotoxemia induced by LPS, reduction in expression of IL-1β, TNF-α and IL-6	[199]
	p-cymene	Attenuates inflammatory cell (IL-1β, TNF-α and IL-6) number in BALF, decreases NF-κB protein level in lungs, improves SOD activity, inhibits myeloperoxidase (MPO) activity, inhibits LPS-induced neutrophils	[171]
	Piperine	Reduces expression of IL-6, IL-1β and IgE in ovalbumin induced allergic rhinitis in mice. Inhibits LPS-induced IL-1β, TNF-α, IL-6 and PGE2 production in BV2 cells	[200], [201]
	Hexadecane	NETs formation is triggered in neutrophils Induced IL-1β secretion in THP-1 cells. IL-1α was elevated	[202]
Name of the herb	Phytochemical name	Function	Reference
------------------	-------------------	----------	-----------
Piperlongumine	Reduces OVA-induced airway inflammatory cell infiltration and Th2 cytokine expression. Reduces IgE level and pro-inflammatory cytokine TNF-α, IL-6 and NF-κB activation	[203]	
Terpinolene	Inhibits NO and reduction in O₂ production Inhibits TNF-α and IL-6. Inhibits production of pro-inflammatory cytokines IL-1β, TNF-α and IL-6 in human keratinocyte cell line	[204], [205]	
Piper nigrum	Guineensine	Prevents endotoxemia induced by LPS, reduction in expression of IL-1β, TNF-α and IL-6	[199]
Piper nigrum	Piperine	Reduces expression of IL-6, IL-1β and IgE in ovalbumin induced allergic rhinitis in mice. Inhibits LPS-induced IL-1β, TNF-α, IL-6 and PGE2 production in BV2 cells	[200], [201]
β-caryophyllene	Inhibits neutrophil migration in Cq-induced peritonitis mice model. Decreases in TNF-α, IFN-γ, IL-4, IL-5, IL-6	[169]	
α-thujone	48.28% of α-thujone in *Artemisia fukudo* inhibits pro-inflammatory cytokines IL-1β, TNF-α and IL-6 in LPS induced macrophages	[206]	
Allium sativum	Diallyl Disulfide	Suppresses pro-inflammatory cytokines TNF-α, IL-1β and IL-2, inhibits iNOS, COX-2 and NO-PGE2 by blocking NF-κB	[207]
Allium sativum	Diallyl trisulfide	Inhibits LPS-induced iNOS, COX-2, TNF-α and IL-1β	[208]
Allium sativum	Allin	Inhibits TNF-α and IL-1β in the BALF induced by LPS. Inhibits NF-κB activation	[209]
Allium sativum	Ajoene	Increases levels of INF-γ and IL-12. Partial inhibition of TNF-α	[210], [211]
Allium sativum	Allicin	Reduces LPS-induced increased pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and NO by HO-1 up-regulation. Down-regulates TNF-α, IL-1β, IL-6 in dose dependent manner	[212], [213]

(continued on next page)
and pro-inflammatory properties of andrographolide. Andrographolide decreased COX-2 expression in neutrophils and further modulated NF-κB pathway, inhibited effect of iNOS and COX-2 expression in macrophages and activated transcription factors AP-1 and STAT3 to produce pro-inflammatory cytokines such as IL-1β, IL-6 and IL-10. In the T-cells of rheumatoid arthritis mouse models, andrographolide induced Nuclear Factor of Activated T cells (NFAT) levels [228]. Li et al. (2019) have demonstrated reduced neutrophil infiltration and NETosis in ankle joints in adjuvants induced arthritis murine models by andrographolide and further showed inhibition of LPS induced autophagy dependent NETs [229]. Immunostaining of murine rheumatoid arthritis ankle showed increased PAD4 and citrullinated histone levels and further, andrographolide treatment significantly reduced these components of NETs [65]. In the context of influence of flavoured e-cigarettes, cinnamaldehyde, a major bioactive constituent of

Name of the herb	Phytochemical name	Function	Reference
Adhatoda vasica	Vasicine	Reduces TNF-α and IL-6	[214]
Anthocyanin		Inhibits TNF-α, IL-6, IL-8, IL-1β and CCL2	[215]
Glycyrrhiza glabra	Glycyrrhizin acid	Inhibits IL-1β, IL-3, IL-5, IL-6, IL-10, IL-12 (p40), IL-12 (p70), IL-13, Eotaxin and TNF-α secreted by LPS-induced RAW264.7 cells	[153]
Liquritin		TNF-α, IL-1β and IL-6 were decreased in LPS-stimulates BV2 cells	[216]
Alstonia scholaris	Ursolic acid	Inhibits IL-2, IL-4, IL-6 and IFN-γ. It also inhibits IL-6, IL-1β and TNF-α	[217]
Vitis vinifera	Proanthocyanidin	Decreases mRNA expressions of IFN-γ, ICAM-1, IL-6, IL-17A, IL1β and TNF-α.	[218]
Procyanidin		Decreases pro-inflammatory cytokines TNF-α and IL-6 in mesenteric WAT. Inhibits TNF-α and IL-1β expression. Suppresses production of NO, PGE2 and ROS thus suppressing inflammation. Suppresses protein expression of iNOS and COX-2, inhibition of NF-κB activity through p38 downregulation	[219, 220]
C. zeylanicum, inhibited PMA activated NETs formation and also phagocytic ability of neutrophils [172]. Authors demonstrated that cinnamaldehyde decreased extracellular DNA by fluorimetry and immunofluorescence [134]. In clinical models of lupus and anti-phospholipid syndrome (APS), gingerol, an important constituent of ginger root, reduced the DNA associated myeloperoxidase activity indicating abrogating NETs formation induced by ribonucleoprotein (RNP)/anti-RNP complexes and anti-phospholipid antibodies (aPL) from APS patients [175]. Kanashiro et al. (2007) examined the ability of flavonoids such as myricetin, quercetin, kaempferol and galangin on neutrophil degranulation and demonstrated quercetin as potent inhibitor of neutrophil elastase release induced by fMLP [230]. Kaempferol is one of the major bioactive molecules of Ayurvedic herbs and recent study showed that kaempferol inhibited lung metastasis in mouse breast cancer models by blocking NADPH/PAD4 dependent NETs formation [231].

The antioxidant traits possessed by \(P. \text{niruri} \) may be due to the chemical constituents such as lignans, flavonoids, tannins and terpenes. \(P. \text{niruri} \) in the polyherbal form showed nitric oxide scavenging properties [232]. A new class of amide alkaloid compounds from \(P. \text{nigrum} \) – Piperinigramides A–G (42–44) reduced inducible nitric oxide synthase (iNOS)-mediated NO and IL-1 \(\beta \) in mice model indicating a possible role in BaP lung injury [238]. A molecular docking study by Choudhary et al. (2020) demonstrated decreased IL-6 production by quercetin in the human PMBCs induced with oxidized-LDL suggesting the downregulation of TLR–NF–κB signalling axis [241]. NETs formation is also associated with release of metalloproteinase [242]. Using in silico approaches, Kanbarker and Mishra (2020) showed that the polyphenol compounds such as epigallocatechin-3-gallate and theaflavin possess the ability to inhibit the MMPs against SARS-COV-2 main protease suggesting the beneficial role in COVID-19 prophylaxis [243]. Heinemann et al. (2016) showed the NETs formation in response to viable \(S. \text{aureus} \) in hypoxic conditions [244]. The new insight of “happy hypoxia” in the COVID–19 cases shows the importance of targeting hypoxia inducible factor –1 (HIF-1) activation, which contributes to the pathophysiology of ischemic cardiovascular disorders and pulmonary diseases. Interestingly, Ouyang et al. (2019) showed the inhibition of HIF-1α induced inflammation and apoptosis in macrophage by curcumin, the phytochemical obtained from turmeric, via ERK dependent pathway [245].

The relationship between anti-oxidants and cytokine release is a double edged sword. While oxidants can activate cytokines; under different circumstances, cytokines can also activate oxidants and all of these are driven by several transcriptional and post-transcriptional events. Both oxidants and cytokines can induce NETosis. Besides, mitochondria also play a central role to maintain the fine balance between reactive oxygen species and cytokine production. It is critical to maintain the neutrophil function such as degranulation, phagocytosis and chemotaxis without excessive NETs formation. In the local microenvironment upon infection and if not adequately oxygenated, infiltration of neutrophils can cause hypoxic conditions due to excess oxygen consumption to release reactive oxygen species [246]. Hypoxic conditions, such as in ARDS, may inhibit radical formation, extend the life span of neutrophils, yet retain its function to induce degranulation and release pro-inflammatory cytokines [247]. However, these subjects are not within the purview of this review as already a number of articles are published on these topics. Nevertheless, these and more intricate multifactorial imbalances leading to altered phenotypes cannot be restored with a single drug for a normal homeostasis. Therefore, multiple constituents of a single herb or multiple herbs may be required to influence the pathways either sequentially or parallelly to cause induced additive, antagonistic and/or synergistic effects.

Studies suggest potent pro-inflammatory, pro-thrombotic and cytotoxic properties of NETs and their implications in the pathogenesis of thrombosis and associated diseases [248]. On the other hand, recent data indicate COVID-19 pathogenesis is significantly
associated with thrombotic microangiopathy via platelet/NETs/thrombin axis [249,250]. Multifaceted role of neutrophils in the pathogenesis of stroke has been demonstrated and targeting neutrophils showed ameliorated stroke progression [251]. Involvement of NETs have been demonstrated both in arterial and venous thrombosis. Fuchs et al. (2010) demonstrated NETs in the blood upon perfusion resulted in platelet activation, aggregation and recruitment of RBC and fibrin for clotting. This was abrogated by the addition of DNase, suggesting NETs can potentially cause thrombosis and NETs were enriched in thrombus in Baboon DVT model [252]. In a transient middle cerebral artery occlusion model for stroke, administration of DNase I and neutralizing antibodies against histone led to smaller infarcts [253]. Mechanistically, both neutrophils and platelets are known to activate each other either via P-selectin and β2/β3-integrins or cytokine/complement (IL-1β, TNF-α, GM-CSF, C3a, C5a) may mediate TREM-1 receptor interaction, which leads to IL-8 release resulting in recruitment neutrophils causing tissue injury [254]. Using human iliac artery biopsies, Wohner et al. (2012) demonstrated neutrophil derived elastase and metalloproteases degraded vWF promoting platelet adhesion. In severe inflammatory conditions of sepsis, activated platelets induced TLR mediated NETs [255].

Earlier studies have explored several Ayurvedic herbs in the management of thrombosis and associated diseases. Using rat model, Shen et al. (2004) showed extracts of_P. urinaria_ containing corilagin prolonged occlusion time of carotid artery, reduced thrombus and decreased platelet–neutrophil interaction [74]. _V. vinifera_ seed extract containing proanthocyanidins reduced pro-inflammatory mediators such as IL-6, IL-8, TNF-α and further decreased platelet aggregation and thrombus formation in rat deep vein thrombosis models [81]. Methanolic extracts of _Solranum xanthocarpum_ and_T. cordifolia_ showed anti-thrombotic activity by significantly inhibiting thrombin induced platelet aggregation [85]. Lee et al. (2017) showed Zingerone (ZGR) is an anti-FXa and anti-platelet compound that inhibited intrinsic blood coagulation pathways through FXa. ZGR a bioactive component of ginger inhibited human platelet aggregation in response to various agonists in _in vitro_ model induced by ADP and U46619 (a stable thromboxane A2 analog/aggregation agonist) in a dose-dependent manner. In an another study, ZGR also exhibited anti-thrombotic property in mouse models, treated with ferric chloride (FeCl3) to induce carotid artery thrombosis in mice [130]. Glycyrrhizin (GL) is compound extracted from _G. glabra_, showed anti-thrombotic effect in _in vivo_. In two different experimental models of induced thrombosis in rats, intravenous administration of GL showed dose-dependent reduction in thrombus size and hypercoagulability [149]. Interestingly, independent studies have shown Phyllanthus [157], Vitis [82], Ginger [175] and glycyrrhiza [148] significantly modulates neutrophil function. Taken together, these Ayurvedic herbs might help both to inhibit NETs production and its consequences on platelet aggregation in COVID-19 pathogenesis.

2. Conclusion

Clearly, excessive NETosis of neutrophils, the abundant white blood cells in circulation of innate immune system, is activated by autocrine and paracrine factors, metabolites and free radicals in an uncontrolled fashion. Our understanding of the activation of neutrophils, especially in conditions such as SARS-CoV-2 infection, is incomplete. Similarly, there is also a significant gap in our understanding of a) how oxidants and cytokines regulate each other under normal and disease states, b) their key molecular determinants, c) components of the ayurvedic herbal preparations that may target events of specific pathways and restore neutrophil function and d) impact of traditional therapy on other related innate and acquired immune functions. The challenge to overcome is the need to dive deeper to unravel new concepts and mechanisms towards translation relevant to traditional medicine practices.

In the context of neutrophil (dys)function in COVID-19 pathogenesis, Ayurvedic herbs might potentially act a) as anti-microbial by activating neutrophils to eliminate infection, b) to reduce over-functioning of neutrophils and NETs formation by inhibiting cytokine production thus maintaining immune homeostasis and c) to control NETs induced platelet aggregation, thereby reducing thrombosis and coagulation. In search of Ayurvedic herbs, we found Amalaki, Ashwagandha, Bhunymalakki, Datura, Draksha, Guduchi, Haridra, Kalmegha, Kantakari, Lashuna, Shunthi and Tulasi exhibiting all these properties and hence, we suggest Ayurvedic preparations from these might be beneficial for the management of the COVID-19. However, Ayurveda also describes a personalized medicine strategy based on Prakiriti and Tridoshas and hence, integration of may be necessary towards effective strategies to combat the disease.

Source of Funding

Authors gratefully acknowledge Centre for Ayurvedic Biology, MAHE, Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for the support.

Conflict of interest

None.

Acknowledgements

We gratefully acknowledge Centre for Ayurvedic Biology, MAHE, Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India and MAHE for the support and encouragement.

References

[1] WHO Coronavirus Disease (COVID-19) dashboard | WHO coronavirus disease (COVID-19) dashboard n.d.
[2] Beltrán-Garcia J, Osca-Verdegal R, Pallardó FV, Ferreres J, Rodríguez M, Muñoz S, et al. Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants 2020;9:936.
[3] Mortaz E, Tabarsi P, Varahram M, Folkerits G, Adcock IM. The immune response and immunopathology of COVID-19. Front Immunol 2020;11:2037.
[4] Barnes BJ, Adrover JM, Baxter-Stolzflus A, Borczuk A, Cooks-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 2020:217:e20200652.
[5] Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–5.
[6] Keshari RS, Jyoti A, Kumar S, Dubey M, Verma A, Sriraj BS, et al. Neutrophil extracellular traps contain mitochondrial as well as nuclear DNA and exhibit inflammatory potential. Cytometry 2012;81:338–47.
[7] Urban CE, Ermert D, Schmidt M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 2009;5:e1000639.
[8] Pappayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018;18:134–47.
[9] Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2012;10:98-107.
[10] Funchal GA, Jaeger N, Czepielewski RS, Machado MS, Muraro SP, Stein RT, et al. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS One 2015;10:e0124082.
[11] Raftery MJ, Lalwani P, KrautkrA, E, Peters T, Scharfetter-Kochanek K, Kruger R, et al. J2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J Exp Med 2014;211:1485–97.
M.B. Joshi, A. Kamath, A.S. Nair et al. Journal of Ayurveda and Integrative Medicine 13 (2022) 100424

[12] Moorby AN, Narasaraju T, Rai P, Perumalsamy R, Tan KB, Wang S, et al. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumonia after primary pulmonary influenza infection. Front Immunol 2013;4:56.

[13] Schöhnich G, Raftery MJ. Neutrophil extracellular traps go viral. Front Immunol 2016;7:366.

[14] Qiu CF, Li Y, Zhanh B, Yang S, Tan Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020;71:762–8. ciaa248.

[15] Zeng F, Li L, Zeng J, Deng Y, Huang H, Chen B, et al. Can we predict the severity of COVID-19 with a routine blood test? Pol Arch Intern Med 2020;130:400–6.

[16] Wang D, Hu B, Hu C, Zhu F, Li X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061–9.

[17] Yao XL, Li TY, He ZC, Ping YF, Liu HW, Yu SC, et al. [A pathological report of three COVID-19 cases by minimally invasive autopsies]. Chin J Pathol 2020;58:308.

[18] Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017;23:279–87.

[19] Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JC, Fogerty AE, Waheed A, et al. COVID and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020;136:489–500.

[20] Han H, Yang L, Liu R, Liu F, Wu K, Li J, et al. Prominent changes in blood profile in COVID-19 patients with severe respiratory failure. Lancet 2020;395:1033.

[21] Boccia M, Aronne L, Cella B, Mazzeo G, Ceparano M, D’Agnano V, et al. COVID-19 and coagulative axis: review of emerging aspects in a novel disease. Monaldi Arch Chest Dis 2020;90.

[22] Zuo Y, Yang Y, Zhao L, Lu C, Mo Q, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020;5:e138999.

[23] Caudriller A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monester M, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012;122:2661–71.

[24] Adrover JM, Dechecchi MC, Borgatti M, Tamanini A, Bianchi N, et al. Neutrophil extracellular traps are elevated in patients with pneumonia-related acute respiratory distress syndrome. Anesthesiology 2019;130:581–91.

[25] Babiker F, Gagli S, Hahn S, Blum CA, Baumgartner C, Kutz A, et al. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: secondary analysis of a randomised controlled trial. Eur Respir J 2018;51.

[26] Mikacenic C, Moore R, Dinyerko V, West TE, Alteneiser WA, Liles WC, et al. Neutrophil extracellular traps (NETS) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit Care 2018;22:358.

[27] Lv X, Wen T, Song J, Xie D, Wu L, Jiang X, et al. Extracellular histones are key factors in the formation of neutrophil extracellular traps. Mediat Inflamm 2020;2020:395:1033–40.

[28] Fox SE, Akmatbekov A, Harbert JL, Li G, Brown RS, Vander, Pulmonary and cardiac pathology in covid-19: the first autopsy series from new orleins, MedDev 2020;PPIR 49850.

[29] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19 and coagulative axis: review of emerging aspects in a novel disease. Eur Respir J 2018;51.

[30] Santoshkumar J, Devarmani MS, Sajjanar M. Original Article A study of Anti-arthritic and anti-inflammatory drugs in the treatment of people with severe coronavirus disease. Acta Biochim Biophys Sin (Shanghai) 2020;53:368-70.

[31] Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBs Lett 2013;587:2241–6.

[32] Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to pharmacological disarming. Blood 2012;119:2661–70.

[33] Kahnlen BM, Carmona-Rivera C, Smith CK, Kaplan M. Neutrophil extracellular trap−associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 2013;190:1271–26.

[34] Meher AK, Spinosa M, Davis JP, Pope N, Laubach VE, Su G, et al. Novel role of IL-1 (Interleukin)-1β in neutrophil extracellular trap formation and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2018;38:843–53.

[35] Si P, Wicklum H, Surell C, Rada B. Macrophage-derived IL-1β enhances pneumococcal urine crystal-triggered NET formation. Inflamm Res 2017;66:227–37.

[36] Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015;349:316–20. 80.

[37] Song EK, Jashankar GB, Saleh H, Jithpratuck W, Sahni R, Krishnaswamy G. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin Mol Allergy 2011;3:1–4.

[38] Douad DN, Khan MA, Graesemann H, Palaniyar N. SKI channel and mitochondrial ROS mediate NDH2 oxidative-independent NETosis induced by mitochondrial dysfunction. PLoS One 2012;7:e48111.

[39] Acharya Yadavji Trikamji, Acharya Narayana Ram, editors. Sushruta Samhita, nidanasthana; kustha nidana: chapter 5, verse 33-34. Varanasi: Chaukhambha Orientalia; 2002. p. 289.

[40] Acharya Yadavji Trikamji. Chaukhambha Sanskriti bills, 2008:71.

[41] Acharya Yadavji Trikamji. Chaukhambha Sanskriti bills, 2009:69.

[42] Acharya Yadavji Trikamji, editor. Charaka Samhita of agnivesha, sootha: shadhirevachya asthitashirtya adhayya: chapter 4, verse 9-13. Varanasi: Chaukhambha Surabharati Prakashan; 2000. p. 32–4 (reprint). 8.

[43] Mishra Bhrama Sankara, editor. Bhavaprakasha – vidyottini Hindi commentary of bhavamishra. 12th ed. vol. 209. Varanasi: Chaukhambha Sanskrit Bhawan; 2018.

[44] Srikumar R, Jeyaprakashar A, Neela Devi R. Immunomodulatory activity of triphala on neutrophil functions. Biol Pharm Bull 2005;28:1398–403.

[45] Kolla JN, Kulkarni NM, Kura RR, Theepreddy SKR. Terminalia chebula Retz. – an important medicinal plant. Herba Pol 2018;63:45–56.

[46] See JB, Jeong YJ, Park YC, Lee ST, Jo H, et al. Anti-arthritis and anti-inflammatory effect of NVF-2, a standardized extract of a novel ashwagandha plant salsalate and pain, arthitis and pain model. Biomol Ther 2012;20:104–12.

[47] Rahimi VB, Askari VR, Shirazinia R, Soheili-Far S, Askari N, Rahmanian-Devis P, et al. Protective effects of hydro-ethanolic extract of Terminalia chebula on primary microglia cells and their polarization (M(1)/M(2) balance). J Ethnopharmacol 2012;139:44–51.

[48] Arvind VD, Kumar A, Wahi. Immunomodulatory effect of alcoholic extract of Terminalia chebula ripe fruits. J Pharmaceut Sci Res 2010;10:567–75.

[49] Nicolosi E, Lampinti I, Deccichi MC, Bogartti M, Tamanani A, Bianchi N, et al. Pyrogallol, an active compound from the medicinal plant Emblica of Ayurveda and yoga for COVID-19 prophylaxis. J Alternative Compl Med 2020;26:360–40.

[50] Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBs Lett 2013;587:2241–6.
Park SY, Jin ML, Kim YH, Kim Y, Lee SJ. Anti-inflammatory and photoprotective properties of three new quercetin esters. Eur J Pharm Biopharm 2003;55:375-0.

Jablonska E, Garley M, Surzyński A, Grabczak K, Iwanuk A, Borys J, et al. Neutrophil extracellular traps (NETs) formation induced by TGF-β in oral lichen planus – possible implications for the development of oral cancer. Immunobiology 2020;225.

Sinhal A, Agarwal K, Reddy B, Mena A, Yadav P, Maurya AK, et al. Essential oil from waste leaves of Curcuma longa L alleviates skin inflammation. Skin Pharmacol Physiol 2018;31:1245–55.

Yoon WJ, Moon JY, Song G, Lee YK, Han MS, Lee JS, et al. Artemisia fukuokiana ether oil attenuates LPS-induction by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages. Food Chem Toxicol 2010;48:1222–9.

Zhang H, Shang C, Tian Z, Amin HK, Kassab RB, Aboul Moneim AE, et al. Diallyl disulphide stimulates colorectal cancer cell lines via activating caspase-3 and following cancerigenic-injection induced paw edema in mice. Mediat Inflamm 2020;2020:850890.

Lee HH, Han MH, Hwang HJ, Kim CY, Moon SK, Hyun JW, et al. Diallyl disulphide exerts anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophages by suppressing the Toll-like receptor 4/nuclear factor-κB pathway. Int J Mol Med 2015;35:487–95.

Wang Y-L, Guo X-Y, He W, Chen R-J, Zhuang R. Effects of alliin on LPS-induced acute lung injury by activating PPAR-γ. Microb Pathog 2017;110:375–9.

Thomaz L, Apitz-Castro R, Marques AF, Travassos LR, Taborda CP. Experimental paraccoidoevermoxymosis: alternative therapy with aloe, compound from Allium sativum, associated with sultamoxaethole/trimethoprim. Med Mycol 2008;46:113–8.

Romano EL, Montano RF, Brito B, Apitz A, Alonso J, Romano M, et al. Effects of Aloe on lymphocyte and macrophage membrane-dependent functions. J Ethnopharmacol 1997;51:1243–7.

Shen N, Cheng A, Cao M, Zang G, Allicin improves lung injury induced by sepsis via regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/nuclear factor kappa b (NF-κB) pathway. Med Sci Mon Int Med J Exp Clin Res 2019;25:2567.

Jiang T, Zhang L, Ding M, Li M. Protective effect of vasicine against myocardial infarction in rats via modulation of oxidative stress, inflammation, and the PI3K/Akt pathway. Drug Des Dev Ther 2019;13:3773–84.

Vugic L, Colson N, Nikbakhht E, Gaiz A, Holland OJ, Kandur AR, et al. Anthocyanin supplementation inhibits secretion of pro-inflammatory cytokines in overweight and obese individuals. J Funct Foods 2020;64:103596.

Yu JY, Ha JY, Kim KM, Jung YS, Jung JC. Oh S. Anti-inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice. Molecules 2015;20:13044–51.

Checkar R, Sandur SR, Sharma D, Patwardhan RS, Jayakumar S, Kohli V, et al. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-κB. PLoS One 2012;7:e137118.

Ahmad SF, Zeohir KMA, Abdel-Hamied HE, Artima SA, Bakheet SA, et al. Grape seed proanthocyanidin extract protects against carrageenan-induced lung inflammation in mice through reduction of pro-inflammatory markers and chemokine expressions. Inflammation 2014;37:500–7.

Tayebi-Nasir P, Montagud G, Umezawa H, Singh M, Gertz J. Vitis riparia seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 2009;20:210–8.

Bak MJ, Truong VL, Kang HS, Jun M, Jeong WS. Anti-inflammatory effect of Andrographis paniculata in LPS-stimulated RAW 264.7 cells. Oxid Med Cell Longev 2013;2013.

Bhattacharya A, Ghosal S, Bhattacharya SK. Anti-inflammatory effect of Withania somnifera glycowithanolides in chronic footstock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol 2001;74:1–6.

Rassou M, Chandal S, Sabina EP. Inhibition of monosodium urate crystal-induced inflammation by withaferin A. J Pharmaceut Sci 2008;11:46–55.

Chen BW, Lin YC, Sheu JH. Structures and bioactivities of withanolides from the leaves of Solanum capiscocodes. Planta Med 2015;81.

Parekh NJ, Savani R, Axelson J, Revathi S, Khare PC, et al. In vivo and in vitro anti-inflammatory and antioxidant activities of Surya Medicine 2015;45:63.
Li X, Yuan K, Zhu Q, Lu Q, Jiang H, Zhu M, et al. Andrographolide ameliorates rheumatoid arthritis by regulating the apoptosis–NF-κB balance of neutrophils. Int J Mol Sci 2019;20:5035.

Kanashiro A, Souza JG, Kabeya LM, Azzolini AECS, Lucisano-Valim YM. Matrix metalloproteinase inhibitors identified from Camellia sinensis for COVID-19 prophylaxis: an in silico approach. Adv Tradit Med 2020;1:1–6.

Pei H, Xue L, Tang M, Tang H, Kuang S, Wang L, et al. Alkaloids from black pepper (piper nigrum L.) exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-κB pathway. J Agric Food Chem 2020;68:2406–17.

Lee NYS, Khoo WKS, Adnan MA, Mahalingam TP, Fernandez AR, Zeng J, Xu H, Fan P, et al. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS-PAD4 pathway. J Cell Mol Med 2020;24:7590–9.

Li X, Yuan K, Zhu Q, Lu Q, Jiang H, Zhu M, et al. Andrographolide ameliorates rheumatoid arthritis by regulating the apoptosis–NF-κB balance of neutrophils. Int J Mol Sci 2019;20:5035.

Kanashiro A, Souza JG, Kabeya LM, Azzolini AECS, Lucisano-Valim YM. Matrix metalloproteinase inhibitors identified from Camellia sinensis for COVID-19 prophylaxis: an in silico approach. Adv Tradit Med 2020;1:1–6.

Pei H, Xue L, Tang M, Tang H, Kuang S, Wang L, et al. Alkaloids from black pepper (piper nigrum L.) exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-κB pathway. J Agric Food Chem 2020;68:2406–17.

Almatroodi SA, Alrumaihi F, Alsahli MA, Alhommrani MF, Khan A, Rahmani AH. Curcumin, an active constituent of turmeric spice: implication in the prevention of lung injury induced by benzo(a) pyrene (BAP) in rats. Molecules 2020;25:724.

Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokine production. Clin Exp Pharmacol Physiol 2018;45:84–93.

Yang XX, Li CM, Huang CZ. Curcumin modulates IL-6 production. Clin Exp Pharmacol Physiol 2018;45:84–93.

Lorne E, Zmjewski JW, Zhao X, Liu G, Tsuruta Y, Liu G, et al. Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. Am J Physiol Physiol 2008;294:C985–93.

Li H, Pan P, Su X, Liu S, Zhang L, Wu D, et al. Neutrophil extracellular traps are pathogenic in ventilator-induced lung injury and partially dependent on TLR4. BioMed Res Int 2017:2017:8272504.

Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol 2020;92:2105–13.

Schink A, Naunoska K, Kitanovski Z, Kampf G, Frohlich-Nowoisky J, Thines E, et al. Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food Funct 2018;9:5950–64.

Bhaskar S, Shalini V, Helen A. Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLR-NF-κB signaling pathway. Immunobiology 2011;216:367–73.

Carmona-Rivera C, Zhao W, Talavartih S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis 2015;74:1417–24.

Kanbarkar N, Mishra S. Matrix metalloproteinase inhibitors identified from Camellia sinensis for COVID-19 prophylaxis: an in silico approach. Adv Tradit Med 2020;1:1–6.

Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokine production. Clin Exp Pharmacol Physiol 2018;45:84–93.