Research Article

Regularity of Commutators of the One-Sided Hardy-Littlewood Maximal Functions

Daiqing Zhang\footnote{Correspondence should be addressed to Daiqing Zhang; zhangdaiqing2011@163.com}

College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian 350118, China

1. Introduction

The regularity theory of maximal operators has been the subject of many recent articles in harmonic analysis. One of the driving questions in this theory is whether a given maximal operator improves, preserves, or destroys a priori regularity of an initial datum \( f \). The question was first studied by Kinnunen [1], who showed that the usual centered Hardy-Littlewood maximal function \( \mathcal{M} \) is bounded on the first order Sobolev spaces \( W^{1,p}(\mathbb{R}^d) \) for all \( 1 < p \leq \infty \). Recall that the Sobolev spaces \( W^{1,p}(\mathbb{R}^d) \), \( 1 \leq p \leq \infty \), are defined by

\[
W^{1,p}(\mathbb{R}^d) = \left\{ f : \mathbb{R}^d \rightarrow \mathbb{R} : \|f\|_{1,p} = \|f\|_{L^p(\mathbb{R}^d)} + \|\nabla f\|_{L^p(\mathbb{R}^d)} < \infty \right\},
\]

where \( \nabla f \) is the weak gradient of \( f \). It was noted that the \( W^{1,p} \) -bound for the uncentered maximal operator \( \mathcal{M} \) also holds by a simple modification of Kinnunen’s arguments or Theorem 1 of [12]. Later on, Kinnunen’s result was extended to a local version in [2], to a fractional version in [3], to a multi-sublinear version in [4, 5], and to a one-sided version in [6]. Due to the lack of sublinearity for \( \mathcal{M} \) at the derivative level, the continuity of \( \mathcal{M} : W^{1,p}(\mathbb{R}^d) \rightarrow W^{1,p}(\mathbb{R}^d) \) for \( 1 < p < \infty \) is certainly a nontrivial issue. This problem was addressed by Luiro [7] in the affirmative and was later extended to the local version in [8] and the multisublinear version in [4, 9]. Other works on the regularity of maximal operators can be consulted in [10, 11]. Since the map \( \mathcal{M} : L^1(\mathbb{R}^d) \rightarrow L^1(\mathbb{R}^d) \) is not bounded, the \( W^{1,1} \)-regularity for the maximal operator seems to be a deeper issue. A crucial question was posed by Hajłasz and Onninen in [12]: Is the map \( f \mapsto |\nabla \mathcal{M} f| \) bounded from \( W^{1,1}(\mathbb{R}^d) \) to \( L^1(\mathbb{R}^d) \)? A complete solution was obtained only in dimension \( d = 1 \) (see [13–16] for an example), and partial progress on the general dimension \( d \geq 2 \) was given by Hajłasz and Malý [17] and Luiro [18]. For other interesting works related to this theory, we suggest the readers to consult [19–22], among others.

Very recently, Liu et al. [23] investigated the regularity of commutators of the Hardy-Littlewood maximal function. Precisely, let \( b \) be a locally integrable function defined on \( \mathbb{R}^n \), we define the commutator of the Hardy-Littlewood maximal function \( [b, \mathcal{M}] \) by

\[
[b, \mathcal{M}](f)(x) = b(x)\mathcal{M}f(x) - \mathcal{M}(bf)(x), \quad x \in \mathbb{R}^n.
\]

The maximal commutator of \( \mathcal{M} \) with \( b \) is defined by

\[
\mathcal{M}_b f(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |b(x) - b(y)||f(y)|dy,
\]

where \( B(x,r) \) is the open ball in \( \mathbb{R}^d \) centered at \( x \) with radius \( r \) and volume \( |B(x,r)| \).
We now list the main result of [23] as follows:

**Theorem 1** (see [23]). Let $1 < p_1, p_2, p < \infty$ and $1/p = 1/p_1 + 1/p_2$. If $b \in W^{1,p_1}(\mathbb{R}^d)$, then

(i) The map $[b, M]: W^{1,p_1}(\mathbb{R}^d) \rightarrow W^{1,p}(\mathbb{R}^d)$ is bounded and continuous. In particular, if $f \in W^{1,p_1}(\mathbb{R}^d)$, then

\[
|\nabla [b, M](f)(x)| \leq |\nabla b(x)| Mf(x) + |b(x)| M|\nabla f|(x) + M|\nabla (bf)|(x),
\]

for almost every $x \in \mathbb{R}^d$. Moreover,

\[
||[b, M](f)||_{1,p} \leq C_{p_1,p_2}||b||_{1,p_1}||f||_{1,p_1},
\]

(ii) The map $M_b: W^{1,p_1}(\mathbb{R}^d) \rightarrow W^{1,p}(\mathbb{R}^d)$ is bounded. Moreover, if $f \in W^{1,p_1}(\mathbb{R}^d)$, then

\[
||M_b f||_{1,p} \leq C_{p_1,p_2}||b||_{1,p_1}||f||_{1,p_1}.
\]

The main motivations of this work not only extend Theorem 1 to a one-sided setting but also investigate the regularity properties of the discrete analogue for commutators of the one-sided Hardy-Littlewood maximal functions and their fractional variants. Let us recall some definitions and backgrounds. For $0 \leq \beta < 1$, the one-sided fractional maximal operators $M^+_\beta$ and $M^-_\beta$ are defined by

\[
M^+_\beta f(x) = \frac{1}{\Gamma(\beta)} \int_x^{\infty} |f(y)| dy,
\]

\[
M^-_\beta f(x) = \frac{1}{\Gamma(\beta)} \int_{-\infty}^x |f(y)| dy.
\]

When $\beta = 0$, the operators $M^+_\beta$ (resp., $M^-_\beta$) reduce to the one-sided Hardy-Littlewood maximal functions $M^+$ (resp., $M^-$). The study of the one-sided maximal operators originated ergodic maximal operator (see [24]). The one-sided fractional maximal operators have a close connection with the well-known Riemann-Liouville fractional integral operator and the Weyl fractional integral operator (see [25]). It was known that $M^+_\beta$ is of type $(\rho, q)$ for $1 < \rho < \infty$, $0 \leq \beta < 1/p$ and $q = p/(1 - p\beta)$. For $p = 1$ we have $M^+_\beta: L^1(\mathbb{R}) \rightarrow L^{1/(1-\beta),\infty}(\mathbb{R})$ bounded. The same conclusions hold for $M^-_\beta$.

In order to establish the $W^{1,1}$-regularity for the onedimensional uncentered Hardy-Littlewood maximal function, Tanaka [16] first studied the regularity of $M^+$ and $M^-$. Precisely, Tanaka proved that if $f \in W^{1,1}(\mathbb{R})$, then the distributional derivatives of $M^+ f$ and $M^- f$ are integrable functions, and

\[
\| (M^+ f)' \|_{L^1(\mathbb{R})} \leq \| f' \|_{L^1(\mathbb{R})},
\]

\[
\| (M^- f)' \|_{L^1(\mathbb{R})} \leq \| f' \|_{L^1(\mathbb{R})}.
\]

A combination of arguments in [15, 16] yields that both $M^+ f$ and $M^- f$ are absolutely continuous on $\mathbb{R}$. Later on, Liu and Mao [6] proved that both $M^+$ and $M^-$ map $W^{1,p}(\mathbb{R}) \rightarrow W^{1,q}(\mathbb{R})$ boundedly and continuously for $1 < p < \infty$. Similar arguments to those in Remark (iii) in [1] can be used to conclude that both $M^+$ and $M^-$ map $W^{1,\infty}(\mathbb{R}) \rightarrow W^{1,\infty}(\mathbb{R})$ boundedly. Recently, the main result of [6] was extended to the fractional version in [26] and to the multilinear case in [27]. We now introduce the partial result of [26] as follows:

**Theorem 2** (see [26]). Let $1 < p \leq \infty$, $0 \leq \beta < 1/p$, and $1/q = 1/p - \beta$. Then, the map $M^+_\beta: W^{1,p}(\mathbb{R}) \rightarrow W^{1,q}(\mathbb{R})$ is bounded and continuous. Moreover, if $f \in W^{1,p}(\mathbb{R})$, then

\[
\left| (M^+_\beta f)'(x) \right| \leq M^+_\beta |f'(x)|,
\]

for almost every $x \in \mathbb{R}$. The same conclusions hold for the operator $M^-_\beta$.

Now we introduce two classes of commutators of the one-sided fractional maximal functions.

**Definition 3.** Let $b: \mathbb{R} \rightarrow \mathbb{R}$ be a locally integrable function and $\beta \in [0, 1)$. The commutators of the one-sided fractional maximal function $[b, M^+_\beta]$ and $[b, M^-_\beta]$ are defined by

\[
[b, M^+_\beta](f)(x) = b(x)M^+_\beta f(x) - M^+_\beta (bf)(x), \quad x \in \mathbb{R},
\]

\[
[b, M^-_\beta](f)(x) = b(x)M^-_\beta f(x) - M^-_\beta (bf)(x), \quad x \in \mathbb{R}.
\]

**Definition 4.** Let $b: \mathbb{R} \rightarrow \mathbb{R}$ be a locally integrable function and $\beta \in [0, 1)$. The maximal commutators of $M^+_\beta$ and $M^-_\beta$ with $b$ are defined, respectively, by

\[
M^+_{b, \beta} f(x) = \frac{1}{\Gamma(\beta)} \int_x^{\infty} |b(x) - b(y)| |f(y)| dy, \quad x \in \mathbb{R},
\]

\[
M^-_{b, \beta} f(x) = \frac{1}{\Gamma(\beta)} \int_{-\infty}^x |b(x) - b(y)| |f(y)| dy, \quad x \in \mathbb{R}.
\]

It should be pointed out that the following facts are useful in proving our main results.

**Remark 5.** (i) The operator $[b, M^+_\beta]$ is neither positive nor sublinear. By Hölder’s inequality and the $L^p$-bounds and continuity for $M^+_\beta$, we have that the map $[b, M^+_\beta]: L^p(\mathbb{R}) \rightarrow L^q(\mathbb{R})$ is bounded and continuous, provided that $1 < p_1, p_2$,
q < \infty, \ 0 \leq \beta < 1/p_1, \ 1/q = 1/p_1 + 1/p_2 - \beta, \ 1/p_1 + 1/p_2 < 1,
and \ b \in L^\beta(\mathbb{R}). \ Moreover,

\left\| [b, \mathcal{M}_p^\beta](f) \right\|_{L^q(\mathbb{R})} \leq C_{p_1, p_2, \beta} \left\| f \right\|_{L^{p_1}(\mathbb{R})} \left\| b \right\|_{L^{p_2}(\mathbb{R})}.

The same conclusions also hold for \ [b, \mathcal{M}_p^\beta].

(ii) The operator \ \mathcal{M}_p^\beta \ is positive and sublinear.

\mathcal{M}_p^\beta f(x) \leq |b(x)| \mathcal{M}_p^\beta f(x) + \mathcal{M}_p^\beta (bf)(x), \ \text{for all} \ x \in \mathbb{R}.

\text{(13)}

Inequality (13) together with Hölder’s inequality, the bounds, and sublinearity of \ \mathcal{M}_p^\beta \ yields that the map \ \mathcal{M}_p^\beta : L^p(\mathbb{R}) \to L^q(\mathbb{R}) \ is bounded if \ 1 < p_1, p_2, q < \infty, \ 0 \leq \beta < 1/p_1, \ 1/p_1 + 1/p_2 < 1, \ 1/q = 1/p_1 + 1/p_2 - \beta, \ and \ b \in L^\beta(\mathbb{R}). \ Moreover,

\left\| \mathcal{M}_p^\beta f \right\|_{L^q(\mathbb{R})} \leq C_{p_1, p_2, \beta} \left\| f \right\|_{L^{p_1}(\mathbb{R})} \left\| b \right\|_{L^{p_2}(\mathbb{R})}.

The same conclusions also hold for \ \mathcal{M}_p^\beta.

Based on the above, it is a natural question to ask whether the commutators \ [b, \mathcal{M}_p^\beta], \ \mathcal{M}_p^\beta \ and \ \mathcal{M}_p^\beta \ have somewhat regularity properties. This is one main motivation of this paper, which can be addressed by the following results.

\textbf{Theorem 6.} Let \ 1 < p_1, p_2, q < \infty, \ 0 \leq \beta < 1/p_1, \ 1/p_1 + 1/p_2 < 1, \ and \ 1/q = 1/p_1 + 1/p_2 - \beta. \ If \ b \in W^{1,p_2}(\mathbb{R}), \ then the map \ \mathcal{M}_p^\beta : W^{1,p_1}(\mathbb{R}) \to W^{1,q}(\mathbb{R}) \ is bounded and continuous. \ In particular, \ if \ f \in W^{1,p_1}(\mathbb{R}), \ it holds that

\left\| \left( \mathcal{M}_p^\beta f \right)' \right\|_{L^q(\mathbb{R})} \leq |b(x)| \left\| \mathcal{M}_p^\beta f \right\|_{L^q(\mathbb{R})} + \left\| b' \right\|_{L^q(\mathbb{R})} \left\| \mathcal{M}_p^\beta f \right\|_{L^q(\mathbb{R})}.

\text{(15)}

for almost every \ x \in \mathbb{R}. \ Moreover,

\left\| [b, \mathcal{M}_p^\beta](f) \right\|_{L^{1,q}(\mathbb{R})} \leq C_{p_1, p_2, \beta} \left\| f \right\|_{L^{p_1}(\mathbb{R})} \left\| b \right\|_{L^{p_2}(\mathbb{R})}.

\text{(16)}

The same conclusions also hold for the operator \ [b, \mathcal{M}_p^\beta].

\textbf{Theorem 7.} Let \ 1 < p_1, p_2, q < \infty, \ 0 \leq \beta < 1/p_1, \ 1/p_1 + 1/p_2 < 1, \ and \ 1/q = 1/p_1 + 1/p_2 - \beta. \ If \ b \in W^{1,p_2}(\mathbb{R}) \ and \ f \in W^{1,p_1}(\mathbb{R}), \ then

\left\| \left( \mathcal{M}_p^\beta f \right)' \right\|_{L^q(\mathbb{R})} \leq |b(x)| \left\| \mathcal{M}_p^\beta f \right\|_{L^q(\mathbb{R})} + \left\| b' \right\|_{L^q(\mathbb{R})} \left\| \mathcal{M}_p^\beta f \right\|_{L^q(\mathbb{R})}.

\text{(17)}

for almost every \ x \in \mathbb{R}. \ Moreover,

\left\| [b, \mathcal{M}_p^\beta](f) \right\|_{L^{1,q}(\mathbb{R})} \leq C_{p_1, p_2, \beta} \left\| b \right\|_{L^{p_2}(\mathbb{R})} \left\| f \right\|_{L^{p_1}(\mathbb{R})}.

\text{(18)}

The same conclusions also hold for the operator \ \mathcal{M}_p^\beta.

On the other hand, the investigation on the regularity of discrete maximal operators also has attracted the attention of many authors (see [6, 19, 28–33]). Let \ 1 \leq p < \infty \ and \ f : \mathbb{Z} \to \mathbb{R} \ be a discrete function, we define the \ \ell^p \text{-norm} \ and \ the \ \ell^\infty \text{-norm} \ of \ f \ by

\left\| f \right\|_{\ell^p(\mathbb{Z})} = \left( \sum_{n \in \mathbb{Z}} \left| f(n) \right|^p \right)^{1/p},

\text{(19)}

\left\| f \right\|_{\ell^\infty(\mathbb{Z})} = \sup_{n \in \mathbb{Z}} \left| f(n) \right|.

Formally, we define the discrete analogue of the Sobolev spaces by

\text{W}^{1,p}(\mathbb{Z}) = \left\{ f : \mathbb{Z} \to \mathbb{R} \mid \left\| f \right\|_{1,p} = \left\| f \right\|_{\ell^p(\mathbb{Z})} + \left\| f' \right\|_{\ell^p(\mathbb{Z})} < \infty \right\},

\text{(20)}

where \ f' = f(n + 1) - f(n) \ is the first derivative of \ f. \ It is clear that

\left\| f \right\|_{\ell^1(\mathbb{Z})} \leq \left\| f \right\|_{1,p} \leq 3 \left\| f \right\|_{\ell^p(\mathbb{Z})}, \ \text{for all} \ 1 \leq p \leq \infty.

\text{(21)}

Estimate (21) implies that the discrete Sobolev space \ \text{W}^{1,p}(\mathbb{Z}) \ is just the classical \ \ell^p(\mathbb{Z}) \ with an equivalent norm. Hence, the \ \text{W}^{1,p}(\mathbb{Z}) \ (1 \leq p < \infty) \ regularity for discrete maximal operators is trivial. However, the situation \ p = 1 \ is highly nontrivial. We define the total variation of \ f \ by

\text{Var}(f) = \left\| f' \right\|_{\ell^1(\mathbb{Z})}.

\text{(22)}

We also write

\text{Var}(f : [a, b]) = \left\| f' \right\|_{\ell^1([a, b - 1])} = \sum_{n=a}^{b-1} |f(n + 1) - f(n)|

\text{(23)}

for the variation of \ f \ on the interval \ [a, b], \ where \ a \ and \ b \ are integers (or possibly \ a = -\infty, \ or \ b = \infty). \ It is clear that \ \text{Var}(f : (-\infty, \infty)) = \text{Var}(f). \ Denote by \ \text{BV}(\mathbb{Z}) \ the set of functions of bounded variation defined on \ Z, \ which is a Banach space with the norm

\left\| f \right\|_{\text{BV}(\mathbb{Z})} = |f(-\infty)| + \text{Var}(f),

\text{(24)}

where \ f(-\infty) = \lim_{n \to -\infty} f(n). \ Clearly,

\left\| f \right\|_{\text{BV}(\mathbb{Z})} \leq \left\| f \right\|_{\ell^\infty(\mathbb{Z})} \leq 3 \left\| f \right\|_{\ell^1(\mathbb{Z})}.

\text{(25)}

The study of regularity properties of discrete maximal operators began with Bober et al. [28] who studied the endpoint regularity of one dimensional discrete centered and
uncentered Hardy-Littlewood maximal operators $M$ and $\hat{M}$, which are defined by

\begin{align*}
Mf(n) &= \sup_{r \in \mathbb{N}} \frac{1}{2r + 1} \sum_{k = -r}^{r} |f(n + k)| \quad \text{and} \quad \hat{M}f(n) \\
&= \sup_{r \in \mathbb{N}} \frac{1}{r + s + 1} \sum_{k = -r}^{0} |f(n + k)|,
\end{align*}

where $\mathbb{N} = \{0, 1, 2, 3, \ldots \}$. It was shown in [28] that

\begin{equation}
\text{Var}(\hat{M}f) \leq \text{Var}(f), \quad \text{if } \text{Var}(f) < \infty,
\end{equation}

\begin{equation}
\text{Var}(Mf) \leq \left(2 + \frac{146}{315}\right) \|f\|_{\ell^1(\mathbb{Z})}, \quad \text{if } f \in \ell^1(\mathbb{Z}).
\end{equation}

It was noted that inequality (27) is sharp and inequality (28) for $M$ was proven by Temur in [33] (with constant $C = 294,912,004$). Inequality (28) was improved by Madrid [32] who obtained the sharp constant $C = 2$. Recently, Carneiro and Madrid [19] extended (28) to the fractional setting and showed that if $0 \leq \beta < 1$, $q = 1/(1 - \beta)$, and $f : \mathbb{Z} \to \mathbb{R}$ is a discrete function such that $\text{Var}(f) < \infty$ and $\hat{M}_\beta f \equiv \infty$, then

\begin{equation}
\| (\hat{M}_\beta f)' \|_{\ell^1(\mathbb{Z})} \leq 4^{1/\beta} \text{Var}(f),
\end{equation}

where $\hat{M}_\beta$ is the discrete uncentered fractional maximal operator defined by

\begin{equation}
\hat{M}_\beta f(n) = \sup_{r \in \mathbb{N}} \frac{1}{(r + s + 1)^{1/\beta}} \sum_{k = -r}^{s} |f(n + k)|.
\end{equation}

It was pointed out in [30] that both the maps $f \mapsto (\hat{M}_\beta f)'$ and $f \mapsto (\hat{M}_\beta f)$ (for $0 \leq \beta < 1$) are bounded and continuous from $\ell^1(\mathbb{Z})$ to $\ell^1(\mathbb{Z})$. Moreover, if $f \in \ell^1(\mathbb{Z})$, then

\begin{align*}
\text{Var}(\hat{M}_\beta f) \leq 2 \|f\|_{\ell^1(\mathbb{Z})}, \\
\text{Var}(Mf) \leq \left(2 + \frac{146}{315}\right) \|f\|_{\ell^1(\mathbb{Z})}.
\end{align*}

The second aim of this paper is to study the regularity of the discrete analogues of $[b, \hat{M}_\beta^\ast]$ and $\hat{M}_\beta^\ast$. Let us introduce some definitions.

**Definition 10.** Let $b : \mathbb{Z} \to \mathbb{R}$ be a discrete function and $\beta \in (0, 1)$. The commutators of the discrete one-sided fractional maximal function $[b, \hat{M}_\beta^\ast]$ and $[b, \hat{M}_\beta]$ are defined by

\begin{align*}
[b, \hat{M}_\beta^\ast](f)(n) &= b(n)M_\beta^\ast f(n) - M_\beta^\ast(bf)(n), \quad n \in \mathbb{Z}, \\
[b, \hat{M}_\beta](f)(n) &= b(n)\hat{M}_\beta f(n) - \hat{M}_\beta(bf)(n), \quad n \in \mathbb{Z}.
\end{align*}

**Theorem 8** (see [6]). Let $f : \mathbb{Z} \to \mathbb{R}$ be a discrete function such that $\text{Var}(f) < \infty$, then

\begin{equation}
\text{Var}(M^\ast f) \leq \text{Var}(f).
\end{equation}

Moreover, the map $f \mapsto (M^\ast f)'$ is continuous from $\ell^1(\mathbb{Z})$ to $\ell^1(\mathbb{Z})$. The same results also hold for $M^\ast$. Here

\begin{align*}
M^\ast f(n) &= \sup_{r \in \mathbb{N}} \frac{1}{r + s} \sum_{k = 0}^{r} |f(n + k)|, \\
M^\ast f(n) &= \sup_{r \in \mathbb{N}} \frac{1}{r + 1} \sum_{k = -r}^{0} |f(n + k)|.
\end{align*}

Very recently, Liu [26] extended Theorem 8 to the fractional setting.

**Theorem 9** (see [26]). Let $0 \leq \beta < 1$. Then, the map $f \mapsto (M_{\beta}^\ast f)'$ is bounded and continuous from $\ell^1(\mathbb{Z})$ to $\ell^1(\mathbb{Z})$. Moreover, if $f \in \ell^1(\mathbb{Z})$, then

\begin{equation}
\text{Var}(M_{\beta}^\ast f) \leq 2 \|f\|_{\ell^1(\mathbb{Z})},
\end{equation}

and the constant $C = 2$ is the best possible. The same results hold for $M_{\beta}$. Here

\begin{align*}
M_{\beta}f(n) &= \sup_{r \in \mathbb{N}} \frac{1}{(s + 1)^{1/\beta}} \sum_{k = 0}^{s} |f(n + k)|, \\
M_{\beta}f(n) &= \sup_{r \in \mathbb{N}} \frac{1}{(r + 1)^{1/\beta}} \sum_{k = -r}^{0} |f(n + k)|.
\end{align*}


Theorem 12. Let \( b \in BV(\mathbb{Z}) \). Then, the map \([b, M^*] : BV(\mathbb{Z}) \rightarrow BV(\mathbb{Z})\) is bounded. Moreover,

\[
M_{b,\beta}^*(f)(n) = \sup_{r \in \mathbb{N}} \frac{1}{(r+1)^{1-\beta}} \sum_{k=0}^{r} |b(n) - b(n+k)| \cdot |f(n+k)|, \quad n \in \mathbb{Z},
\]

(38)

The same conclusions also hold for the operator \([b, M^*]\).

Theorem 13. Let \( b \in BV(\mathbb{Z}) \) and \( \beta \in [0, 1) \). Then, the map \([b, M_{\beta}^*] : \ell^1(\mathbb{Z}) \rightarrow BV(\mathbb{Z})\) is bounded and continuous. Moreover, for any \( \beta \in (0, 1) \), it holds that

\[
\text{Var}
\left[
\left|\left[\left[b, M_{\beta}^*\right](f)\right]\right|
\right] \leq 6 \|b\|_{BV(\mathbb{Z})} \|f\|_{\ell^1(\mathbb{Z})}, \quad \text{for all } f \in \ell^1(\mathbb{Z}).
\]

(40)

The same conclusions also hold for the operator \([b, M_{\beta}^*]\).

Theorem 14. Let \( b : \mathbb{Z} \rightarrow \mathbb{R} \) be a discrete function such that \( \text{Var}(b) < \infty \) and \( \beta \in [0, 1) \). Then, the map \( f \mapsto (M_{b,\beta}^*)^f \) is bounded and continuous from \( \ell^1(\mathbb{Z}) \) to \( \ell^1(\mathbb{Z}) \). Moreover,

\[
\left\| (M_{b,\beta}^*)^f \right\|_{\ell^1(\mathbb{Z})} \leq 2 \text{Var}(b) \left\| f \right\|_{\ell^1(\mathbb{Z})}, \quad \text{for all } f \in \ell^1(\mathbb{Z}).
\]

(41)

The same conclusions also hold for the operator \( M_{b,\beta}^* \).

This paper will be organized as follows. Section 2 is devoted to proving Theorems 6 and 7. The proofs of Theorems 12–14 will be given in Section 3. We remark that the proofs of Theorems 6 and 7 are motivated by [21, 28]. The main ideas in the proofs of Theorems 12–14 are motivated by [6, 26], but some techniques are needed. In particular, in the proof of the continuity part of Theorem 14, we give a useful application of the Brezis-Lieb lemma in [35].

Throughout this paper, the letter C will stand for positive constants, not necessarily the same one at each occurrence but independent of the essential variables. In particular, the letter \( C_{\alpha,\beta}^\ast \) denotes the positive constants that depend on the parameters \( \alpha, \beta \).

2. Proofs of Theorems 6 and 7

In this section, we shall prove Theorems 6 and 7. Before giving our proofs, let us give some notations and lemmas. Let \( f \in L^p(\mathbb{R}) \) with \( p \geq 1 \). For all \( h \in \mathbb{R} \) with \( h \neq 0 \), we define

\[
f_h(x) = \frac{f(x-h) - f(x)}{|h|} \quad \text{and } f_{\tau(h)}(x) = f(x-h).
\]

(42)

For convenience, we set

\[
G(f ; p) = \limsup_{h \to 0} \frac{\left\| f_{\tau(h)} - f \right\|_{L^p(\mathbb{R})}}{|h|}.
\]

(43)

According to Section 7.11 in [36], one has that for \( 1 < p < \infty \),

\[
f \in W^{1,p}(\mathbb{R}) \Leftrightarrow f \in L^p(\mathbb{R}) \text{ and } G(f ; p) < \infty.
\]

(44)

Moreover, for functions \( f \in W^{1,p}(\mathbb{R}) \) for \( 1 < p < \infty \), we have (see [36], Section 7.11) that \( f_h \to f \) in \( L^p(\mathbb{R}) \) when \( |h| \to 0 \).

In order to prove Theorems 6 and 7, we need the following lemma, which follows from [23].

Lemma 15. (see [23]). Let \( 1 < p_1, p_2, p < \infty \) and \( 1/p = 1/p_1 + 1/p_2 \). If \( f \in W^{1,p_1}(\mathbb{R}) \) and \( g \in W^{1,p_2}(\mathbb{R}) \), then \( fg \in W^{1,p}(\mathbb{R}) \). Moreover,

\[
(fg)'(x) = f'(x)g(x) + f(x)g'(x),
\]

(45)

for almost every \( x \in \mathbb{R} \). In particular, it holds that

\[
\|fg\|_{1,p} \leq \|f\|_{1,p_1} \|g\|_{1,p_2}.
\]

(46)

Now we are in a position to prove Theorems 6 and 7.

Proof of Theorem 6. We only prove Theorem 6 for \([b, M_{\beta}^*]\) since another case can be obtained similarly. Let \( 1 < p_1, p_2, q < \infty \), \( 0 \leq \beta < 1/p_1 \), \( 1/q = 1/p_1 + 1/p_2 - \beta \), \( 1/p_1 + 1/p_2 < 1 \), \( b \in W^{1,p_1}(\mathbb{R}) \), and \( f \in W^{1,p_2}(\mathbb{R}) \). Let \( r, p \) be such that \( 1/p = 1/p_1 + 1/p_2 \) and \( 1/r = 1/p_1 - \beta \). It is clear that \( 1/q = 1/p_2 + 1/r = 1/p - \beta \), \( p \in (1, \infty) \), and \( 0 \leq \beta < 1/p \).

(i) We first prove the bounds for \([b, M_{\beta}^*]\). By Theorem 2, we have \( M_{\beta}^*f \in W^{1,q}(\mathbb{R}) \). By Lemma 15, we have that \( bM_{\beta}^*f \in W^{1,q}(\mathbb{R}) \) and \( bf \in W^{1,q}(\mathbb{R}) \). By Theorem 2 again, we see that \( M_{\beta}^*bf \in W^{1,q}(\mathbb{R}) \). Hence, \( [b, M_{\beta}^*](bf) \in W^{1,q}(\mathbb{R}) \).

(ii) We now prove (16). Applying Theorem 2, one has

\[
\left\| M_{\beta}^*f \right\|_{1,q} \leq C_{p,\beta} \left\| f \right\|_{1,p_2},
\]

(47)

which together with Lemma 15 yields that
\[ \left\| b. \mathcal{M}_{p} f \right\|_{1,q} \leq 2 \| b \|_{1,p_2} \left\| \mathcal{M}_{p} f \right\|_{1,r} \leq C_{p,\beta} \| b \|_{1,p_2} \| f \|_{1,p_1}. \]

(48)

By Lemma 15 again, it holds that
\[ \| b f \|_{1,p} \leq 2 \| b \|_{1,p_2} \| f \|_{1,p_1}, \]

which together with Theorem 2 implies that
\[ \left\| \mathcal{M}_{p}^{\ast} (b f) \right\|_{1,q} \leq C_{p,\beta} \| b f \|_{1,p} \leq C_{p,\beta} \| b \|_{1,p_2} \| f \|_{1,p_1}. \]

Combining (50) with (48) leads to (16).

(iii) We now prove the continuity part. Let \( f_j \longrightarrow f \) in \( W^{1,p} (\mathbb{R}) \). It suffices to show that
\[ \left\| [b. \mathcal{M}_{p}^{\ast}] (f_j) - [b. \mathcal{M}_{p}^{\ast}] (f) \right\|_{1,q} \longrightarrow 0 \text{ as } j \longrightarrow \infty. \]

(51)

By Lemma 15 and applying the continuity result in Theorem 2, one can get
\[ \left\| b. \mathcal{M}_{p} f_j - b. \mathcal{M}_{p} f \right\|_{1,q} = \left\| b \left( \mathcal{M}_{p} f_j - \mathcal{M}_{p} f \right) \right\|_{1,q} \leq 2 \| b \|_{1,p_2} \left\| \mathcal{M}_{p} f_j - \mathcal{M}_{p} f \right\|_{1,r} \longrightarrow 0 \text{ as } j \longrightarrow \infty, \]

(52)

Combining (53) with the continuity result in Theorem 2 implies that
\[ \left\| \mathcal{M}_{p}^{\ast} (b f_j) - \mathcal{M}_{p}^{\ast} (b f) \right\|_{1,q} \longrightarrow 0 \text{ as } j \longrightarrow \infty. \]

(54)

Then, (51) follows from (52) and (54).

(iv) It remains to prove (15). By Lemma 15, we have
\[ (b f)'(x) = b' (x) f(x) + b(x) f'(x), \]

(55)

\[ \left( [b. \mathcal{M}_{p}^{\ast}] (f) \right)'(x) = \left( [b. \mathcal{M}_{p}^{\ast}] f \right)'(x) - \left( [b. \mathcal{M}_{p}^{\ast}] (b f) \right)'(x) \]
\[ = b'(x) \mathcal{M}_{p}^{\ast} f(x) + b(x) \mathcal{M}_{p}^{\ast} f'(x) - \mathcal{M}_{p}^{\ast} (b f)'(x), \]

(56)

for almost every \( x \in \mathbb{R} \). By Theorem 2, one can get
\[ \left\| \mathcal{M}_{p}^{\ast} f(x) \right\|_{1,q} \leq \mathcal{M}_{p}^{\ast} (b f)'(x), \]

(57)

\[ \left\| \mathcal{M}_{p}^{\ast} (b f)'(x) \right\|_{1,q} \leq \mathcal{M}_{p}^{\ast} (b f)'(x), \]

(58)

for almost every \( x \in \mathbb{R} \). It follows from (55)–(58) that
\[ \left\| \left( [b. \mathcal{M}_{p}^{\ast}] (f) \right)'(x) \right\|_{1,q} \leq \left\| b'(x) \mathcal{M}_{p}^{\ast} f(x) + b(x) \mathcal{M}_{p}^{\ast} f'(x) \right\|_{1,q} \]
\[ + \left\| \mathcal{M}_{p}^{\ast} (b f)'(x) \right\|_{1,q} \]
\[ + \left\| b(x) \mathcal{M}_{p}^{\ast} f'(x) + \mathcal{M}_{p}^{\ast} (b f)'(x) \right\|_{1,q} \]
\[ + \mathcal{M}_{p}^{\ast} (b f)'(x), \]

(59)

for almost every \( x \in \mathbb{R} \). This proves (15) and completes the Proof of Theorem 6.

Proof of Theorem 7. We only prove Theorem 7 for \( \mathcal{M}_{b,\beta} \) since another case can be obtained similarly. Let \( 1 < p_1, p_2, q < \infty \), \( 0 \leq \beta < 1/p_1, 1/q = 1/p_1 + 1/p_2 - \beta, 1/p_1 + 1/p_2 < 1, b \in W^{1,p_2} (\mathbb{R}) \), and \( f \in W^{1,p_1} (\mathbb{R}) \). Let \( r, p \) be such that \( 1/p = 1/p_1 + 1/p_2 \) and \( 1/r = 1/p_1 - \beta \). It is clear that \( 1/q = 1/p_2 + 1/r = 1/p - \beta \), \( p \in (1, \infty) \) and \( 0 \leq \beta < 1/p \).

(i) We first prove that \( \mathcal{M}_{b,\beta} f \in W^{1,p} (\mathbb{R}) \). Fix \( x, h \in \mathbb{R} \), it is easy to see that
\[ \left( \mathcal{M}_{b,\beta} f \right)' (x) = \sup_{r \in \mathbb{R}} \frac{1}{r} \int_{x-r}^{x+r} \left| b_{r}(h)(x) - b_{r}(h)(y) \right| f_{r}(h)(y) \, dy, \]

(60)

which gives that
\[ \left\| \left( \mathcal{M}_{b,\beta}^{\ast} f \right)' (x) - \mathcal{M}_{b,\beta} f(x) \right\|_{1,q} \leq \sup_{r \in \mathbb{R}} \frac{1}{r^{1+p_2}} \int_{x-r}^{x+r} \left| b_{r}(h)(x) - b_{r}(h)(y) \right| f_{r}(h)(y) \]
\[ - (b(x) - b(y)) f'(y) \, dy \]
\[ \leq \mathcal{M}_{r(h),\beta} \left( f_{r}(h) - f \right)(x) + \left| b_{r}(h)(x) - b(x) \right| \mathcal{M}_{p}^{\ast} f(x) \]
\[ + \mathcal{M}_{p}^{\ast} \left( b_{r}(h) - b \right) f'(x). \]

(61)

By (61), Hölder’s inequality, and the bounds for \( \mathcal{M}_{b,\beta}^{\ast} \) and \( \mathcal{M}_{p}^{\ast} \), one can get
We now prove (17). Since \( \beta \leq C_p b + b \), \( \beta \) of real numbers \( \beta \in \mathbb{R} \) in \( (0, 2) \), when \( \tau \rightarrow 0 \) as \( h \rightarrow 0 \). From (61) and (13) we have that for all \( h \), \( \mathcal{M}_b^\beta (b f(x)) \rightarrow \mathcal{M}_b^\beta (b f(x)) \) as \( h \rightarrow 0 \).

It follows that

\[
\left( \mathcal{M}_b^\beta f \right)'(x) = \lim_{h \to 0} \left( \mathcal{M}_b^\beta f \right)_{x+h} - \left( \mathcal{M}_b^\beta f \right)_{x-h}
\]

for any \( x \in E \), which gives (17).

(iii) By (17), the bounds for \( \mathcal{M}_b^\beta \), and Hölder’s inequality, one can get

\[
\left( \mathcal{M}_b^\beta f \right)' \leq \left\| b \mathcal{M}_b^\beta f \right\|_{L^1(R)} + \left\| b' \mathcal{M}_b^\beta f \right\|_{L^1(R)}
\]

which together with (14) yields (18).

3. Proofs of Theorems 12–14

This section is devoted to presenting the proofs of Theorems 12–14.

Proof of Theorem 12. It is clear that

\[
(bf)'(n) = b(n+1)f(n+1) - b(n)f(n) = b'(n) + b(n)f'(n),
\]

for all \( n \in \mathbb{Z} \). By (68) one has

\[
\left\| (bf)' \right\|_{L^1(\mathbb{Z})} \leq \text{Var}(b) ||f||_{L^1(\mathbb{Z})} + ||b||_{L^1(\mathbb{Z})} \text{Var}(f).
\]
By (69) and Theorem 8, it holds that
\[
\text{Var}(b, M^+(f)) = \left\| (b, M^+(f))^t \right\|_{\ell^1(\mathbb{Z})} \\
\leq \left\| (bM^+ f)^t \right\|_{\ell^1(\mathbb{Z})} + \left\| (M^+ (bf))^t \right\|_{\ell^1(\mathbb{Z})} \\
\leq \text{Var}(b) \left\| M^+ f \right\|_{e^1(\mathbb{Z})} + \| b \|_{e^1(\mathbb{Z})} \text{Var}(M^+ f) + \| M^+ (bf) \|_{e^1(\mathbb{Z})} \\
\leq 2 \left( \text{Var}(b) \left\| f \right\|_{e^1(\mathbb{Z})} + \| b \|_{e^1(\mathbb{Z})} \text{Var}(f) \right). \\
\tag{70}
\]

On the other hand, one can easily check that
\[
\left| \text{Var}(b) \left\| f \right\|_{e^1(\mathbb{Z})} + \| b \|_{e^1(\mathbb{Z})} \text{Var}(f) \right| \\
\leq \| b(n) \|_M^+ f(n) + M^+ (bf)(n) \\
\leq 2 \| b \|_{e^1(\mathbb{Z})} \left\| f \right\|_{e^1(\mathbb{Z})},
\tag{71}
\]

which together with (70) and (25) yields that
\[
\left\| (b, M^+(f)) \right\|_{BV(\mathbb{Z})} \leq 6 \| b \|_{BV(\mathbb{Z})} \left\| f \right\|_{BV(\mathbb{Z})}. \\
\tag{72}
\]

Proof of Theorem 13. (i) It is clear that
\[
\left\| M^+ (f) \right\|_{e^1(\mathbb{Z})} \leq \left\| f \right\|_{e^1(\mathbb{Z})}. \\
\tag{73}
\]

One can easily check that
\[
M^+ (f)(n) \leq \left\| f \right\|_{e^1(\mathbb{Z})}, \\
\tag{74}
\]

for all \( n \in \mathbb{Z} \). In light of (73) and (74) we would have
\[
\left\| \left[ b, M^+ (f) \right] \right\|_{e^1(\mathbb{Z})} \leq \left\| b \right\|_{e^1(\mathbb{Z})} \left\| M^+ f \right\|_{e^1(\mathbb{Z})} + \left\| M^+ (bf) \right\|_{e^1(\mathbb{Z})} \\
\leq \left\| b \right\|_{e^1(\mathbb{Z})} \left\| f \right\|_{e^1(\mathbb{Z})} + \left\| b \right\|_{e^1(\mathbb{Z})} \left\| f \right\|_{e^1(\mathbb{Z})} \\
\leq 2 \left( \left\| b \right\|_{e^1(\mathbb{Z})} \left\| f \right\|_{e^1(\mathbb{Z})} \right). \\
\tag{75}
\]

On the other hand, by Theorem 9 and (73), (69), and (25), we have
\[
\text{Var}(\left[ b, M^+ (f) \right]) = \left( \left[ b, M^+ (f) \right] \right)^t \left\| \ell^1(\mathbb{Z}) \right| \\
\leq \left\| (bM^+ f)^t \right\|_{\ell^1(\mathbb{Z})} + \left\| (M^+ (bf))^t \right\|_{\ell^1(\mathbb{Z})} \\
\leq \text{Var}(b) \left\| M^+ f \right\|_{e^1(\mathbb{Z})} + \left\| M^+ (bf) \right\|_{e^1(\mathbb{Z})} + 2 \| b \|_{e^1(\mathbb{Z})} \text{Var}(M^+ f) \\
\leq 5 \| b \|_{BV(\mathbb{Z})} \left\| f \right\|_{e^1(\mathbb{Z})}. \\
\tag{76}
\]

Combining (76) with (75) yields that the map \([b, M^+]_{\ell^1(\mathbb{Z})} \longrightarrow BV(\mathbb{Z})\) is bounded.

(iii) We now prove the continuity result. Let \( f \in \ell^1(\mathbb{Z}) \), \( \{f_j\}_{j=1}^\infty \subset \ell^1(\mathbb{Z}) \), and \( f_j \longrightarrow f \) in \( \ell^1(\mathbb{Z}) \) as \( j \longrightarrow \infty \). We want to show that
\[
\left\| \left[ b, M^+ \right] (f_j) - \left[ b, M^+ \right] (f) \right\|_{BV(\mathbb{Z})} \longrightarrow 0 \text{ as } j \longrightarrow \infty. \\
\tag{77}
\]

By the sublinearity of \( M^+ \) and (25), (73), and (74), it holds that
\[
\left\| \left[ b, M^+ \right] (f_j) - \left[ b, M^+ \right] (f) \right\| (n) \\
\leq \left\| (b(n)) M^+ f_j(n) - M^+ (bf)(n) \right\| + \left\| M^+ (bf)(n) - M^+ (bf)(n) \right\| \\
\leq \left\| b(n) \right\|_M^+ f_j(n) + M^+ (bf)(n) \\
\leq \left\| b \right\|_{e^1(\mathbb{Z})} \left\| f_j - f \right\|_{e^1(\mathbb{Z})} + \left\| b \right\|_{e^1(\mathbb{Z})} \left\| f_j - f \right\|_{e^1(\mathbb{Z})} \\
\leq 2 \left( \left\| b \right\|_{BV(\mathbb{Z})} \left\| f_j - f \right\|_{e^1(\mathbb{Z})} \right), \\
\tag{78}
\]

for all \( n \in \mathbb{Z} \). From (78), we see that \( \left[ b, M^+ \right] (f_j)(n) \longrightarrow \left[ b, M^+ \right] (f)(n) \) uniformly for \( n \in \mathbb{Z} \). Therefore, to prove (77), it suffices to show that
\[
\text{Var} \left( \left[ b, M^+ \right] (f_j) - \left[ b, M^+ \right] (f) \right) \longrightarrow 0 \text{ as } j \longrightarrow \infty. \\
\tag{79}
\]

By (73) and (25), we get
\[
\left\| bf_j - bf \right\|_{e^1(\mathbb{Z})} = \left\| f_j - f \right\|_{e^1(\mathbb{Z})} \leq 2 \left\| b \right\|_{e^1(\mathbb{Z})} \left\| f_j - f \right\|_{e^1(\mathbb{Z})} \\
\leq 2 \left\| b \right\|_{BV(\mathbb{Z})} \left\| f_j - f \right\|_{e^1(\mathbb{Z})}, \\
\tag{80}
\]

which yields that \( bf_j \longrightarrow bf \) in \( \ell^1(\mathbb{Z}) \) as \( j \longrightarrow \infty \). This together with Theorem 9 implies that
\[
\text{Var} \left( M^+ (bf_j) - M^+ (bf) \right) \longrightarrow 0 \text{ as } j \longrightarrow \infty. \\
\tag{81}
\]

On the other hand, by Theorem 9 again, we get
\[
\text{Var} \left( M^+ f_j - M^+ f \right) \longrightarrow 0 \text{ as } j \longrightarrow \infty. \\
\tag{82}
\]

By (69), (74), and (25) and the sublinearity for \( M^+ \), we have
\[
\text{Var} \left( bM^2_{b,j} f_j - bM^2_{b,f} \right) \\
= \left\| \left( bM^2_{b,j} f_j - bM^2_{b,f} \right)' \right\|_{\ell^1(\mathbb{Z})} \\
= \left\| \left( bM^2_{b,j} f_j - bM^2_{b,f} \right)' \right\|_{\ell^1(\mathbb{Z})} \\
\leq \text{Var} \left( b \right) \left\| M^2_{b,j} f_j - M^2_{b,f} \right\|_{\ell^1(\mathbb{Z})} \\
+ \left\| b \right\|_{\ell^1(\mathbb{Z})} \text{Var} \left( bM^2_{b,j} f_j - bM^2_{b,f} \right) \\
\leq \left\| b \right\|_{\ell^1(\mathbb{Z})} \left( \left\| f_j - f \right\|_{\ell^1(\mathbb{Z})} + \text{Var} \left( M^2_{b,j} f_j - M^2_{b,f} \right) \right).
\]

This together with (82) yields that
\[
\text{Var} \left( bM^2_{b,j} f_j - bM^2_{b,f} \right) \rightarrow 0 \text{ as } j \rightarrow \infty. \tag{84}
\]

Combining (84) with (81) implies that
\[
\text{Var} \left( b, M^2_{b,j} \right) \left( f_j - \left[ b, M^2_{b,j} \right] (f) \right) \\
= \left\| \left( b, M^2_{b,j} \right) \left( f_j - \left[ b, M^2_{b,j} \right] (f) \right)' \right\|_{\ell^1(\mathbb{Z})} \\
\leq \left\| \left( bM^2_{b,j} f_j - bM^2_{b,f} \right)' \right\|_{\ell^1(\mathbb{Z})} \\
+ \left\| \left( bM^2_{b,j} f_j - bM^2_{b,f} \right)' \right\|_{\ell^1(\mathbb{Z})} \\
= \text{Var} \left( bM^2_{b,j} f_j - bM^2_{b,f} \right) + \text{Var} \left( bM^2_{b,j} f_j - bM^2_{b,f} \right) \\
\rightarrow 0 \text{ as } j \rightarrow \infty, \tag{85}
\]

which proves (79) and finishes the proof of Theorem 13.

**Proof of Theorem 14.** We only prove Theorem 14 for \( M^+_{b,j} \) since another one is analogous. The proof will be divided into two steps:

**Step 1.** Proof of the boundedness part. Let \( f \in \ell^1(\mathbb{Z}) \). Without loss of generality we may assume \( f \geq 0 \) since \( M^+_{b,j} f = M^+_{b,j} |f| \).

For convenience, we define the function \( \Gamma : [0, \infty) \rightarrow \mathbb{R} \) by
\[
\Gamma (x) = (x + 1)^{\beta - 1} - (x + 2)^{\beta - 1}
\]
for any \( x \geq 0 \). It is clear that \( \Gamma (x) \) is decreasing on \([0, \infty)\) and \( \sum_{n \in \mathbb{N}} \Gamma (n) = 1 \). Fix \( n \in \mathbb{Z} \) and \( r \in \mathbb{N} \), it holds that
\[
\frac{1}{(r + 1)^{\beta - 1}} \sum_{k=0}^{r} \left| b(n) - b(n + k) \right| |f(n + k)| \\
\leq \text{Var} (b) \left\| f \right\|_{\ell^1(\mathbb{Z})} (r + 1)^{\beta - 1}. \tag{86}
\]

This yields that for any fixed \( n \in \mathbb{Z} \), there exists \( r_n \in \mathbb{N} \) such that
\[
M^+_{b,j} f(n) = A_{r_n} f(n) = (r_n + 1)^{\beta - 1} \sum_{k=0}^{r_n} \left| b(n) - b(n + k) \right| f(n + k). \tag{87}
\]

Let
\[
X^+ = \left\{ n \in \mathbb{Z} : M^+_{b,j} f(n + 1) > M^+_{b,j} f(n) \right\}, \tag{88}
\]
\[
X^- = \left\{ n \in \mathbb{Z} : M^+_{b,j} f(n) > M^+_{b,j} f(n + 1) \right\}.
\]

Then, we have
\[
\left\| \left( M^+_{b,j} f \right)' \right\|_{\ell^1(\mathbb{Z})} = \sum_{n \in X^+} \left( M^+_{b,j} f(n + 1) - M^+_{b,j} f(n) \right) \\
+ \sum_{n \in X^-} \left( M^+_{b,j} f(n) - M^+_{b,j} f(n + 1) \right). \tag{89}
\]

We can write
\[
\sum_{n \in X^+} \left( M^+_{b,j} f(n + 1) - M^+_{b,j} f(n) \right) \\
\leq \sum_{n \in X^+} \left( A_{r_n} f(n + 1) - A_{r_n+1} f(n) \right) \\
= \sum_{n \in X^+} \left( r_n + 1 \right)^{\beta - 1} \sum_{k \in \mathbb{Z}} |b(n) - b(k)| f(k) x_{|n+r_n+1|} |k| \\
- \left( r_n + 2 \right)^{\beta - 1} \sum_{k \in \mathbb{Z}} |b(n) - b(k)| f(k) x_{|n+r_n+1|} |k| \\
\leq \sum_{n \in X^+} \left( r_n + 1 \right)^{\beta - 1} \sum_{k \in \mathbb{Z}} |b(n) - b(k)| f(k) x_{|n+r_n+1|} |k| \\
- \left( r_n + 2 \right)^{\beta - 1} \sum_{k \in \mathbb{Z}} |b(n) - b(k)| f(k) x_{|n+r_n+1|} |k| \\
\leq \sum_{n \in X^-} |b(n + 1) - b(n)| (r_n + 1)^{\beta - 1} \sum_{k \in \mathbb{Z}} f(k) x_{|n+r_n+1|} |k| \\
+ \sum_{n \in X^-} \Gamma (r_n) \sum_{k \in \mathbb{Z}} |b(n + 1) - b(k)| f(k) x_{|n+r_n+1|} |k|. \tag{90}
\]

\[
M^+_{b,j} f(n) = A_{r_n} f(n) = (r_n + 1)^{\beta - 1} \sum_{k=0}^{r_n} \left| b(n) - b(n + k) \right| f(n + k) \\
\leq \text{Var} (b) \left\| f \right\|_{\ell^1(\mathbb{Z})} (r_n + 1)^{\beta - 1}. \tag{86}
\]
By Hölder’s inequality with exponents $p = 1/\beta$ and $p’ = 1/(1 - \beta)$ and the fact that $\ell^q(Z) \subseteq \ell^p(Z)$ for all $1 \leq q \leq p \leq \infty$, it holds that
\[
(r_n + 1)^{\beta^{-1}} \sum_{k \in \mathbb{Z}} f(k)X_{[n+1,n+r_n+1]}(k) \leq \|f\|_{\ell^p(Z)} \leq \|f\|_{\ell^q(Z)}.
\]
(92)

In light of (90) and (92), we would have
\[
\sum_{n \in \mathbb{N}} \left( M_{k,\beta}^+ f(n + 1) - M_{k,\beta}^+ f(n) \right) 
\leq \|f\|_{\ell^q(Z)} \sum_{n \in \mathbb{N}} \left| b(n + 1) - b(n) \right| 
+ \text{Var}(b) \sum_{n \in \mathbb{N}} \Gamma(r_n) \sum_{k \in \mathbb{Z}} f(k)X_{[n+1,n+r_n+1]}(k).
\]
(93)

By (91) and (93), we have
\[
\sum_{n \in \mathbb{N}} \left( M_{k,\beta}^+ f(n + 1) - M_{k,\beta}^+ f(n) \right) 
\leq \|f\|_{\ell^q(Z)} \sum_{n \in \mathbb{N}} \left| b(n + 1) - b(n) \right| 
+ \text{Var}(b) \sum_{n \in \mathbb{N}} \Gamma(r_n) \sum_{k \in \mathbb{Z}} f(k)X_{[n+1,n+r_n+1]}(k).
\]
(94)

It follows from (89), (94), and (95) that
\[
\left\| \left( M_{k,\beta}^+ f \right)’ \right\|_{\ell^q(Z)} 
\leq \sum_{n \in \mathbb{N}} \left| b(n + 1) - b(n) \right| \|f\|_{\ell^q(Z)} 
+ \text{Var}(b) \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{Z}} f(k) \Gamma(k - n - 1)X_{[n+1,n+\infty]}(k) 
\leq \text{Var}(b)\|f\|_{\ell^q(Z)} + \text{Var}(b) \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{Z}} f(k) \Gamma(k - n - 1)X_{[n+1,n+\infty]}(k) 
\leq \text{Var}(b)\|f\|_{\ell^q(Z)} + \text{Var}(b) \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{Z}} f(k) \Gamma(k - n - 1)X_{[n+1,n+\infty]}(k).
\]
(96)

Fix $k \in \mathbb{Z}$, one can easily check that
\[
\sum_{n \in \mathbb{N}} \Gamma(k - n - 1)X_{[n+1,n+\infty]}(k) = \sum_{n = -\infty}^{k-1} \Gamma(k - n - 1) = 1.
\]
(97)

This together with (96) yields that
\[
\left\| \left( M_{k,\beta}^+ f \right)’ \right\|_{\ell^q(Z)} \leq 2\text{Var}(b)\|f\|_{\ell^q(Z)}.
\]
(98)

This proves (41).

Step 2. Proof of the continuity part. Let $f \in \ell^1(Z)$, $\{f_j\}_{j=1}^{\infty} \subseteq \ell^1(Z)$, and $f_j \to f$ in $\ell^1(Z)$ when $j \to \infty$. Without loss of generality, we may assume that all $f_j \geq 0$ and $f \geq 0$ since $|f_j - f| = |f_j - f|$. We want to show that
\[
\left\| \left( M_{k,\beta}^+ f \right)’ - \left( M_{k,\beta}^+ f \right) ’ \right\|_{\ell^q(Z)} \to 0 \text{ as } j \to \infty.
\]
(99)

By the sublinearity of $M_{k,\beta}$, we can get
\[
\left| \left( M_{k,\beta}^+ f \right)’(n) - \left( M_{k,\beta}^+ f \right)’(n) \right| \leq \text{Var}(b)\|f\|_{\ell^q(Z)} 
\leq \|f\|_{\ell^q(Z)},
\]
(100)

which yields that $M_{k,\beta}^+ f_j \to M_{k,\beta}^+ f$ uniformly in $Z$. Fix $\varepsilon \in (0, 1)$, there exists $N_1 > 0$ depending only on $\varepsilon, f$ such that
\[
\|f_j - f\|_{\ell^q(Z)} < \varepsilon, \text{ for all } j \geq N_1;
\]
(101)

\[
\|f_j\|_{\ell^q(Z)} \leq \|f\|_{\ell^q(Z)} + \|f\|_{\ell^q(Z)} 
\leq \|f\|_{\ell^q(Z)} + 1, \text{ for all } j \geq N_1.
\]
(102)

It follows from (100) that
\[
\left( M_{k,\beta}^+ f_j \right)’(n) \to \left( M_{k,\beta}^+ f \right)’(n) \text{ as } j \to \infty,
\]
(103)

for all $n \in \mathbb{Z}$. By the boundedness part, we have that $(M_{k,\beta}^+ f)’ \in \ell^1(Z)$. This together with the classical Brezis-Lieb lemma in [3] implies that (99) reduces to the following:
\[
\lim_{j \to \infty} \left\| \left( M_{k,\beta}^+ f \right)’ \right\|_{\ell^q(Z)} = \left\| \left( M_{k,\beta}^+ f \right)’ \right\|_{\ell^q(Z)}.
\]
(104)

By (103) and Fatou’s lemma, one can get
\[
\left\| \left( M_{k,\beta}^+ f \right)’ \right\|_{\ell^q(Z)} \leq \liminf_{j \to \infty} \left\| \left( M_{k,\beta}^+ f \right)’ \right\|_{\ell^q(Z)}.
\]
(105)

Therefore, to prove (104), it suffices to show that
\[
\limsup_{j \to \infty} \left\| \left( M_{k,\beta}^+ f \right)’ \right\|_{\ell^q(Z)} \leq \left\| \left( M_{k,\beta}^+ f \right)’ \right\|_{\ell^q(Z)}.
\]
(106)

We now prove (106). Since $f \in \ell^1(Z)$, then there exists a sufficiently large positive integer $A_1 > 0$ depending only on $\varepsilon, f$ such that
\[
\sum_{|n| \geq A_1} f(n) < \varepsilon.
\]
(107)

There exists an integer $A_2 > 0$ such that $s^{\beta^{-1}} < \varepsilon$ if $s \geq A_2$. Since $\text{Var}(b) < \infty$, then there exists a large positive integer $A_3$ depending only on $b, \varepsilon$ such that
\[
\sum_{|n| \geq A_3} |b(n + 1) - b(n)| < \varepsilon.
\]
(108)
Let $\Lambda = \max \{ \Lambda_1, \Lambda_2, \Lambda_3 \}$. By (103), there exists $N_2 > 0$ depending only on $\varepsilon, \Lambda$ such that

$$
\left| \left( M_{k,\beta} f_j \right)'(n) - \left( M_{k,\beta} f \right)'(n) \right| \leq \frac{\varepsilon}{4\Lambda + 2}, \quad \text{for all } |n| \leq 2\Lambda, \ j \geq N_2. \tag{109}
$$

It follows from (109) that

$$
\left\| \left( M_{k,\beta} f_j \right)' \right\|_{\ell^1(\mathbb{Z})} \leq \sum_{|n| \geq 2\Lambda} \left| \left( M_{k,\beta} f_j \right)'(n) - \left( M_{k,\beta} f \right)'(n) \right| \\
+ \left\| \left( M_{k,\beta} f \right)' \right\|_{\ell^1(\mathbb{Z})} \\
+ \sum_{|n| \geq 2\Lambda} \left| \left( M_{k,\beta} f_j \right)'(n) \right| \\
\leq \varepsilon + \left\| \left( M_{k,\beta} f \right)' \right\|_{\ell^1(\mathbb{Z})} \\
+ \sum_{|n| \geq 2\Lambda} \left| \left( M_{k,\beta} f_j \right)'(n) \right|, \tag{110}
$$

for all $j \geq N_2$. Fix $j \geq N_2$, we set

$$
X_j^+ = \left\{ |n| \geq 2\Lambda : M_{k,\beta} f_j(n + 1) > M_{k,\beta} f_j(n) \right\},
$$

$$
X_j^- = \left\{ |n| \geq 2\Lambda : M_{k,\beta} f_j(n) \geq M_{k,\beta} f_j(n + 1) \right\}. \tag{111}
$$

Since $f_j \in \ell^1(\mathbb{Z})$, then for $n \in \mathbb{Z}$, there exists $r_n \in \mathbb{N}$ such that $M_{k,\beta} f_j(n) = A_r f_j(n)$. Then, we can write

$$
\sum_{|n| \geq 2\Lambda} \left| \left( M_{k,\beta} f_j \right)'(n) \right| = \sum_{n \in X_j^+ \setminus X_j^-} \left( M_{k,\beta} f_j(n + 1) - M_{k,\beta} f_j(n) \right) \\
+ \sum_{n \in X_j^+ \setminus X_j^-} \left( M_{k,\beta} f_j(n) - M_{k,\beta} f_j(n + 1) \right). \tag{112}
$$

Similar arguments to those used in deriving (94) and (95) may yield that

$$
\sum_{n \in X_j^+ \setminus X_j^-} \left( M_{k,\beta} f_j(n + 1) - M_{k,\beta} f_j(n) \right) \\
\leq \left\| f_j \right\|_{\ell^1(\mathbb{Z})} \sum_{n \in X_j^+ \setminus X_j^-} |b(n + 1) - b(n)| \\
+ \text{Var}(b) \sum_{n \in X_j^+ \setminus X_j^-} \Gamma(r_{n+1}) \sum_{k \in \mathbb{Z}} f_j(k) X_{\max(n+\varpi+1)}(k), \tag{113}
$$

$$
\sum_{|n| \geq 2\Lambda} \left( M_{k,\beta} f_j(n) - M_{k,\beta} f_j(n + 1) \right) \\
\leq \left\| f_j \right\|_{\ell^1(\mathbb{Z})} \sum_{|n| \geq 2\Lambda} |b(n + 1) - b(n)| \\
+ \text{Var}(b) \sum_{n \in X_j^+ \setminus X_j^-} \Gamma(r_{n+1}) \sum_{k \in \mathbb{Z}} f_j(k) X_{\max(n+\varpi+1)}(k). \tag{114}
$$

It follows from (102), (108), and (112)–(114) that

$$
\sum_{|n| \geq 2\Lambda} \left| \left( M_{k,\beta} f_j \right)'(n) \right| \\
\leq \sum_{|n| \geq 2\Lambda} |b(n + 1) - b(n)| \left\| f_j \right\|_{\ell^1(\mathbb{Z})} \\
+ \text{Var}(b) \sum_{n \in X_j^+ \setminus X_j^-} \Gamma(r_{n+1}) \sum_{k \in \mathbb{Z}} f_j(k) X_{\max(n+\varpi+1)}(k). \tag{115}
$$

By (101) and (107), we can get

$$
\sum_{|n| \geq 2\Lambda} f_j(k) \sum_{|n| \geq 2\Lambda} \Gamma(k - n - 1) X_{\max(n+\varpi+1)}(k) \\
\leq \sum_{|k| \leq \Lambda} \Gamma(k - n - 1) \sum_{|n| \geq 2\Lambda} f_j(k) \sum_{n \in X_j^+ \setminus X_j^-} \Gamma(k - n - 1) \sum_{|k| \leq \Lambda} f_j(k) \Delta_{\beta-1} \leq \left( 3 + \left\| f \right\|_{\ell^1(\mathbb{Z})} \right) \varepsilon. \tag{116}
$$

It follows from (115) and (116) that

$$
\sum_{|n| \geq 2\Lambda} \left| \left( M_{k,\beta} f_j \right)'(n) \right| \leq \left( 3 + \left\| f \right\|_{\ell^1(\mathbb{Z})} \right) \text{Var}(b) \\
+ \left( \left\| f \right\|_{\ell^1(\mathbb{Z})} + 1 \right) \varepsilon. \tag{117}
$$

Inequality (117) together with (110) implies that

$$
\left\| \left( M_{k,\beta} f_j \right)' \right\|_{\ell^1(\mathbb{Z})} \leq C\varepsilon + \left\| \left( M_{k,\beta} f \right)' \right\|_{\ell^1(\mathbb{Z})}, \tag{118}
$$

for all $j \geq \max \{ N_1, N_2 \}$. Here, $C > 0$ depends only on $b, f$. This leads to (106) and completes the Proof of Theorem 14.
Data Availability
No data were used to support this study.

Conflicts of Interest
The author declares that she have no conflicts of interest.

Acknowledgments
The author want to express her sincerely thanks to the referee for his or her valuable remarks and suggestions, which made this paper more readable. This work was funded by the Natural Science Foundation of Fujian University of Technology Department of Fujian Province (No. 2019J01784) and the Natural Science Foundation of Fujian University of Technology (Nos. GY-Z15124 and GY-Z160129).

References
[1] J. Kinnunen, "The Hardy-Littlewood maximal function of a Sobolev function," Israel Journal of Mathematics, vol. 100, no. 1, pp. 117–124, 1997.
[2] P. Lindqvist and J. Kinnunen, "The derivative of the maximal function," Journal für die Reine und Angewandte Mathematik, vol. 1998, no. 503, pp. 161–167, 1998.
[3] J. Kinnunen and E. Saksman, "Regularity of the fractional maximal function," The Bulletin of the London Mathematical Society, vol. 35, no. 4, pp. 529–535, 2003.
[4] E. Carneiro and D. Moreira, "On the regularity of maximal operators," Proceedings of the American Mathematical Society, vol. 136, no. 12, pp. 4395–4404, 2008.
[5] F. Liu and H. Wu, "On the regularity of the multisublinear maximal functions," Canadian Mathematical Bulletin, vol. 58, no. 4, pp. 808–817, 2015.
[6] F. Liu and S. Mao, "On the regularity of the one-sided Hardy-Littlewood maximal functions," Czechoslovak Mathematical Journal, vol. 67, no. 1, pp. 219–234, 2017.
[7] H. Luiro, "Continuity of the maximal operator in Sobolev spaces," Proceedings of the American Mathematical Society, vol. 135, no. 1, pp. 243–251, 2007.
[8] H. Luiro, "On the regularity of the Hardy-Littlewood maximal operator on subdomains of R^n," Proceedings of the Edinburgh Mathematical Society, vol. 53, no. 1, pp. 211–237, 2010.
[9] F. Liu, "Continuity and approximate differentiability of multi-sublinear fractional maximal functions," Mathematical Inequalities & Applications, vol. 21, no. 1, pp. 25–40, 2018.
[10] J. Hart, F. Liu, and Q. Xue, "Regularity and continuity of local multilinear maximal type operators," The Journal of Geometric Analysis, 2020.
[11] S. Korry, "Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces," Revista Matemática Complutense, vol. 15, no. 2, pp. 401–416, 2002.
[12] P. Hajłasz and J. Onninen, "On boundedness of maximal functions in Sobolev spaces," Annales Academiae Scientiarum Fennicae Mathematica, vol. 29, no. 1, pp. 167–176, 2004.
[13] J. M. Aldaz and J. Pérez Lázaro, "Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities," Transactions of the American Mathematical Society, vol. 359, no. 5, pp. 2443–2462, 2007.
[14] O. Kurka, "On the variation of the Hardy-Littlewood maximal function," Annales Academiae Scientiarum Fennicae Mathematica, vol. 40, pp. 109–133, 2015.
[15] F. Liu, T. Chen, and H. Wu, "A note on the endpoint regularity of the Hardy-Littlewood maximal functions," Bulletin of the Australian Mathematical Society, vol. 94, no. 1, pp. 121–130, 2016.
[16] H. Tanaka, "A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function," Bulletin of the Australian Mathematical Society, vol. 65, no. 2, pp. 253–258, 2002.
[17] P. Hajłasz and J. Malý, "On approximate differentiability of the maximal function," Proceedings of the American Mathematical Society, vol. 138, no. 1, pp. 165–174, 2010.
[18] H. Luiro, "The variation of the maximal function of a radial function," Arkiv för Matematik, vol. 56, no. 1, pp. 147–161, 2018.
[19] E. Carneiro and J. Madrid, "Derivative bounds for fractional maximal functions," Transactions of the American Mathematical Society, vol. 369, no. 6, pp. 4063–4092, 2017.
[20] E. Carneiro, J. Madrid, and L. B. Pierce, "Endpoint Sobolev and BV continuity for maximal operators," Journal of Functional Analysis, vol. 273, no. 10, pp. 3262–3294, 2017.
[21] E. Carneiro and B. F. Svaiter, "On the variation of maximal operators of convolution type," Journal of Functional Analysis, vol. 265, no. 5, pp. 837–865, 2013.
[22] H. Luiro and J. Madrid, "The variation of the fractional maximal function of a radial function," International Mathematics Research Notices, vol. 17, pp. 5284–5298, 2019.
[23] F. Liu, Q. Xue, and P. Zhang, "Regularity and continuity of commutators of the Hardy-Littlewood maximal function," Mathematische Nachrichten, vol. 293, no. 3, pp. 491–509, 2020.
[24] G. H. Hardy and J. E. Littlewood, "A maximal theorem with function-theoretic applications," Acta Mathematica, vol. 54, pp. 81–116, 1930.
[25] K. F. Andersen and E. T. Sawyer, "Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators," Transactions of the American Mathematical Society, vol. 308, no. 2, pp. 547–558, 1988.
[26] F. Liu, "On the regularity of one-sided fractional maximal functions," Mathematica Slovaca, vol. 68, no. 5, pp. 1097–1112, 2018.
[27] F. Liu and L. Xu, "Regularity of one-sided multilinear fractional maximal functions," Open Mathematics, vol. 16, no. 1, pp. 1556–1572, 2018.
[28] J. Bober, E. Carneiro, K. Hughes, and L. B. Pierce, "On a discrete version of Tanaka’s theorem for maximal functions," Proceedings of the American Mathematical Society, vol. 140, no. 5, pp. 1669–1680, 2012.
[29] E. Carneiro and K. Hughes, "On the endpoint regularity of discrete maximal operators," Mathematical Research Letters, vol. 19, no. 6, pp. 1245–1262, 2012.
[30] F. Liu, "A remark on the regularity of the discrete maximal operator," Bulletin of the Australian Mathematical Society, vol. 95, no. 1, pp. 108–120, 2017.
[31] F. Liu and H. Wu, "A note on the endpoint regularity of the discrete maximal operator," Proceedings of the American Mathematical Society, vol. 147, no. 2, pp. 583–596, 2019.
[32] J. Madrid, "Sharp inequalities for the variation of the discrete maximal function," Bulletin of the Australian Mathematical Society, vol. 95, no. 1, pp. 94–107, 2017.
[33] F. Temur, “On regularity of the discrete Hardy-Littlewood maximal function,” http://arxiv.org/abs/1303.3993v1.

[34] J. Madrid, “Endpoint Sobolev and BV continuity for maximal operators, II,” Revista Matemática Iberoamericana, vol. 35, no. 7, pp. 2151–2168, 2019.

[35] H. Brezis and E. Lieb, “A relation between pointwise convergence of functions and convergence of functionals,” Proceedings of the American Mathematical Society, vol. 88, no. 3, pp. 486–490, 1983.

[36] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2nd edition, 1983.