Filming for auditing of real-life emergency teams: a systematic review

Lise Brogaard, Niels Uldbjerg

INTRODUCTION
Delivering high-quality emergency care is the ambition for every emergency team. To succeed requires not only that the individual provider is well trained; it also commands a rapid and coordinated team effort. However, performance often falls short of expectations. Therefore, strategies like simulation training, audits, feedback and debriefings have been studied. Furthermore, filming of emergency teams was introduced back in 1969. Filming makes it possible to review and analyse the performance in detail. Despite the widespread availability and acceptability of video as a method for auditing and quality improvement in healthcare today, it is still not used by the majority of emergency teams.

This review describes current evidence for video review to audit emergency teams’ management of real-life patients. Video review is defined in this manuscript as any assessment, evaluation or audit where video is used. The key questions in this systematic review are:

1. Where has video review been used; populations and settings?
2. How has video review been used; technical solutions, legal and ethical issues?
3. What is the evidence that video review improves patient care?

METHODS
This systematic review used the protocol for systematic reviews (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols). The full study protocol in registered with PROSPERO.

Eligibility criteria
The eligibility criteria were based on the PICOS (Population, Intervention, Control, Outcome and Study design) guideline.

Population was resuscitation teams, code teams, emergency teams, trauma teams, rapid response teams in hospitals.

Intervention was video review.

Control/comparison was non-exposed teams.

Outcome was any assessment of the team’s performance and/or patient outcome.

Study designs eligible for inclusion include randomised controlled trials (RCTs) and non-randomised studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) and cross-sectional studies. Studies of single case reports and unpublished studies (eg, conference abstract and non-English papers) were excluded. We excluded studies of teams performing any planned activities (elective procedures or operations) and teams performing procedures in out-of-hospital settings or simulated environments.

Literature search
The full search strategy for MEDLINE is visualised in PROSPERO. The search was conducted on 15 March 2018, and this search strategy was adapted to other databases. The databases used were: (1) Ovid MEDLINE (1946 to present). (2) Embase (1974 to present; Ovid). (3) PsycINFO (1806 to present; Ovid). (4) The Cochrane Central Register of Controlled Trials (CENTRAL). (5) Cochrane Database of Systematic Reviews (current issue; part of the Cochrane Library).

The literature review was supplemented with studies found by reviewing the references of the included studies.

Study selection and data extraction
LB and our Liberian KRS conducted the literature search. LB checked for duplicates and conducted an initial screening, drawing up a preliminary list of records (n=157). LB and our colleague KJ independently assessed and extracted the data and conducted risk of bias assessment.

Data synthesis and risk of bias
The included studies were characterised by setting, population, outcomes, technical solution, ethical solution and risk of bias (low, unclear or high according to four criteria).
A. Selection bias was categorised as low risk if inclusion of participants was clearly described and representative of the population.

B. Performance bias was categorised as low risk if the majority of healthcare providers were included in the study and as high risk if only a small part of the teams agreed to be filmed.

C. Measurement bias 1 was categorised as low if a validated tool, checklist or protocol was used.

D. Measurement bias 2 was categorised as low if several raters independently assessed the video and their agreement was acceptable (eg, measured by kappa or intra class correlation >0.75).

Patient and public involvement

This systematic review was conducted with no patient and public involvement.

RESULTS

Study selection

The literature search identified 7077 papers, the full texts of 157 of which were assessed by two reviewers. A further eight studies were identified by checking the references lists. Among these 165 studies, 50 were eligible according to the inclusion criteria (online supplementary table S1) and five of these evaluated the impact of video review in regards to improvement in patient care (PICOS). (figure 1).

Study designs

There were 6 cohort or case–control studies, 27 cross-sectional studies and 17 case reports or series (figure 2). There were no trials or protocols of RCTs.

Population and setting

We identified five categories of team: cardiac arrest team (n=7), neonatal resuscitation team (n=18), trauma team (n=15), paediatric trauma team (n=9) and obstetric emergency team (n=1). The 50 studies were conducted at 30 different hospitals situated in the USA (n=12), Australia (n=1), Europe (n=11) and Asia (n=5) (figure 2).

Technical solution: how to capture the team’s management

The technical solution was described in 43 of the studies. The procedure of filming was continuous video recording (n=6), manual activation where you have to ‘press the button’ (n=20) or recording automatically activated either by motion triggers (n=3) or Bluetooth in the team leader’s telephone which activated the camera when the leader entered the room (n=1). In 20 studies, the cameras were placed either as a bird’s eye view or at a high angle. In bird’s eye view, the camera is placed directly above the patient; for example, the camera could be mounted on the radiant heater above the neonatal resuscitation table. In high angle view, the cameras were mounted in the ceiling in the corner presenting an oblique view. Cameras with low angle view were used in studies prioritising patient anonymity. Only a few studies described recording sound. Where described, microphones were either integrated into the camera or as separate microphones placed in the ceiling. Informed consent

Consent was collected in 14 studies. Consent was collected either from all who participated in the video (n=4) or in part from either staff or patients (n=10). In the majority of the studies, informed consent from the patient could not be obtained before video recording due to the patient’s situation, for example, cardiac arrest or severe trauma. In these studies, the hospital approved the.
Figure 2 The included studies in the systematic review. CRP, Cardiopulmonary resuscitation; ROSC, return of spontaneous circulation.
Evidence that video review improves patient care

Five studies evaluated the effect of video review on the provided care of trauma teams (n=3),4 21 23 cardiac arrest teams (n=1)41 and neonatal resuscitation teams (n=1)42 (table 1).

Intervention by video review

The teams’ management of real-life patients was filmed, and the teams received feedback at an educational conference where they reviewed their performance.

Quality of studies

Four studies had high or unclear risk of bias4 21 23 62 and one study of cardiac arrest teams41 had low risk of bias (table 1).

Outcomes
To audit the care provided in the video review, four categories of outcomes were identified: teams’ clinical performance (n=34), teams’ technical performance (n=13), teams’ non-technical performance (n=17) and patient outcome (n=14) (figure 2). Teams’ clinical performance consisted of the overall management of the emergency and was assessed in terms of adherence to protocol or guideline.4 5 8 21 22 26 28 30 32 33 34 35 36 37 39 40 43 47 53 57 58 63 Technical performance was assessed for procedures like intubation or chest compression depth.13 46 48 49 51 52 56 59 60 61 64 65 Non-technical performance comprised decision-making, situation awareness, communication, teamwork or vigilance and was assessed in terms of use of checklist or descriptive analysis.24 25 27 28 30 31 35 36 37 39 40 43 47 53 57 58 63 Patient outcomes comprised return of spontaneous circulation (ROSC), length of hospital stay or survival and were assessed based on either the video or medical charts (n=14).4 21 22 26 28 41–43 48 49 51 65

Project ethically and legally and waived informed consent on the grounds that video recording was considered a quality assurance measure.

Table 1: Studies evaluating the effect of video review on provided care (PICOS)

Study	Comparator group	Video review	Team outcome	Patient outcome	Results	Risk of bias
Hoyt (1988)8	n=60	n=180	ATLS*	Team: Improved in timely delivery of care (ATLS) for trauma patients	? + -	
Townsend (1993)21	n=361	n=522	ATLS*	Survival	Team: Improved significantly in timely delivery of care (mean 97.5/88.6 min, p<0.01)	? ? + ?
Scherer (2002)23	n=27	n=24	ATLS*	Team: Improved significantly in 8/10 of the ATLS checklist.	- ? + -	
Carbine (2000)42	n=25	n=25	Neonatal Resuscitation Protocol*	Neonatal resuscitation: No overall improvement in resuscitation protocol.	? ? + +	
Jiang (2010)41	n=15	n=15	ALS*	Team: In 3/8 resuscitation tasks, the team improved significantly (p<0.002)	+ + + +	

(A) Selection bias was categorised as low risk if inclusion of participants was clearly described and representative of the population.
(B) Performance bias was categorised as low risk if the majority of healthcare providers were included in the study and as high risk if only a small part of the team agreed to be filmed.
(C) Measurement bias 1 was categorised as low if a validated tool, checklist or protocol was used.
(D) Measurement bias 2 was categorised as low if several raters independently assessed the video and their agreement was acceptable (eg, measured by kappa or intra class correlation>0.75).

Information about quality items (risk of bias A-D) results in: + Adequate; ? Unclear; - Inadequate.

*Adherence to a protocol or clinical guideline, for example, ATLS (Advanced Trauma Life Support), ALS (Advanced Life Support for cardiac arrest).
†ISS: (Injury Severity Score) is an anatomical scoring system that provides an overall score for patients with multiple injuries.
‡TRISS: The probability of survival (Ps) of a patient from the ISS and RTS using a formula 68.
PICOS, Population, Intervention, Control, Outcome and Study design; ROSC, return of spontaneous circulation.
Meta-analysis

Meta-analysis was waived due to the heterogeneity of the studies and the lack of consistently applied reference standards.

Level of evidence for video review

All five studies were in favour of video review as an educational intervention to improve patient care. Four of the five studies found that video review significantly improved teams’ clinical performance, which was assessed either in terms of improved guideline adherence or less time spent on providing patient care.8 21 23 41 (Table 1). Two studies evaluated whether the improved clinical performance improved survival rates.21 41 The first study by Townsend et al.41 found a significant reduction of mortality from 10.8% to 10.4%, p<0.01, and controlled for the confounder of the Trauma and Injury severity score (TRISS) score (probability of survival based on Injury Severity Score).86 However, the second study,41 evaluating whether improved clinical performance resulted in better patient outcome for 45 cardiac arrest cases, reported no improvement in survival or ROSC, as only two patients survived until discharge in the control group and one patient survived until discharge in the video group. Two studies evaluated the educational impact of video review where teams reviewed their own performance compared with verbal feedback.8 23 Both found that video review outperformed verbal feedback alone in improving clinical performance (Figure 1).

Recommendation

Educational intervention by reviewing video of actual emergencies may improve teams’ clinical performance. The Oxford strength of this recommendation is B.69

Discussion

This systematic review of 50 observational studies provides insight into the use of video review of resuscitation teams, trauma teams, emergency paediatric teams and emergency obstetric teams. This technical solution is affordable and relatively easy to install; however, legal and ethical issues may be challenging. Investigating the impact of video review, with regards to improved patient care, all five studies were in favour of the use of video review as an educational intervention. Four of the five studies found that video review significantly improved teams’ clinical performance, and one study found improved survival of trauma patients.

After systematically reviewing the included studies, the question remains whether we may rely on video review to improve team performance in the future. In an attempt to answer this question, we discuss the strengths, weaknesses, opportunities and threats (SWOT analysis) of video review below.

Strength

Easy to install cameras

Cameras and microphones are easy to install and this solution is affordable compared with other medicotechnical equipment.

Data collection

Once data are collected, the data can be reviewed repeatedly.5 78 79

Improve teams’ performance

As the need for high-value, cost-conscious medical education is more prevalent than ever, video may be a learning tool to expedite mastery of necessary techniques.71 Video can capture teams’ behaviour, timing of medicine, flow of an algorithm and time taken to master techniques.23 72 73 Video review also allows teams to evaluate local algorithms for patient care. Furthermore, one can conduct research by linking these processes to patient outcomes.8 21 23 41 62

Video in feedback and debriefing

The present literature of video review to improve patient care favours video review over other modalities.8 21 23 41 62

Quality assessment

Video review can be used for quality assessment and benchmarking of performance between departments or countries.

Documentation

Video provides more detailed and accurate information than paper-based records,53 56 and videos can be saved as a supplement to patient records.

Weaknesses

Blinding

When we use video, we are limited by the ‘eye’ of the camera. Thus, we can easily be blind to missing information, for example, information that is obvious to the team but not to the video reviewer.74

Forgetting to turn on the cameras

This is a well-known problem.5 8 21 Therefore, continuous video recording is recommended; however, if this is not feasible, we recommend considering how cameras can be activated automatically by either motion triggers48 59 60 or Bluetooth.66

Hindsight bias

Knowing the outcome affects how we perceive the team’s performance.75 Therefore, teams reviewing their own performance are biased to overestimating both the importance of error in cases of poor outcomes and to underestimate the importance of their management when the outcome is good.

How to use the video as an educational tool

We have limited information regarding how to use the video as an educational tool, for example, is the video review facilitated by the team itself or a trained facilitator and used for structured feedback or debriefing? Debriefing in simulation-based education suggests that the effectiveness of facilitator-led debriefings seems to the same whether performed with video or without use of videos.76 77 However, in simulation, the facilitator observes the team’s management, whereas in real-life emergencies
the facilitator is not there; in those cases, video may serve as an eye witness.

Difficult to benchmark performance

Standardisation of appropriate outcomes is needed before we can benchmark outcomes between studies, and this would also open the possibility for meta-analysis. Guideline adherence is the most frequently used outcome; however, this should be standardised by use of systematically developed checklists for evaluation of teams’ performance. Time can be a relevant outcome; however, outcomes should always be selected based on relevance for the clinicians and the patients and not because they are easy to assess.

Time-consuming and costly

To date, the majority of selected outcomes are assessed manually by observers reviewing the video using a checklist or protocol, and this is tedious, time-consuming and costly.

Opportunities

Work environment

Research into teams’ working environment may identify factors that complement teams’ management but also factors that prevent teams from becoming effective. Such research may be the first step towards innovative solutions to improve environments, for example, the arrangement of the room, how to diagnose or to deliver the right dose of medicine. In the future, such development may improve the quality of care as it simply becomes easier to deliver the right care.

Automatic assessment

Manual analysis of video is time-consuming and expensive as several raters are usually needed. Therefore, development of innovative solutions is needed to reduce the cost and increase the objectivity and the quality of video analyses. Innovative solutions could combine analysis of the team and other objective measures, for example, technical skills like chest compression depth measured by the monitor device.

Faster education

By reviewing not only our own performance but also that of our colleagues, video review could have the potential to reduce the time to mastery.

Threats

Legal issues

Some projects may be stopped before they ever get started because it can be difficult to get legal permission for recording where informed consent cannot be collected, for example, in cardiac arrest cases.

Patient compliance

Overall, patients are reportedly positive regarding the use of video to improve care. In an Australian survey, 96% of parents agreed to the use of video in neonatal resuscitation to improve patient safety. In a Danish study, patients and their relatives gave consent in 94% of the cases of major postpartum haemorrhage.

Staff compliance

Studies find that staff in general are positive and find that video review improves their knowledge and the provided care. However, in a survey on trauma teams, 30% of the staff found video to provoke moderate anxiety; still, 90% of the staff agreed on the educational value of using video. Although the benefits of video seem to outweigh the potential liability risk, there will always be a concern for how videos can be used in malpractice trial, even if this risk is minimal and knowing that video is more likely to provide evidence of good care.

Video versus audio recording

The gold standard is video and audio recording. However, if this is not possible, audio recording is an alternative; and audio has been used in analysis of telephone conversations.

Ethical issues

Video recording of patients without informed consent raises the ethical question whether the public benefit of video recording outweighs the patient’s right to privacy. There is no unambiguous answer to this, and several studies video record without consent. Reviewing the timeline of the included studies, the number of studies using video review has dropped dramatically since 2003. In 2003, a new act, The Health Insurance Portability and Accountability Act (HIPAA), was passed in the USA, and this affected the use of video in trauma centres there as informed consent was now needed before filming. Hence, a survey from 2005 found that the use of video review in trauma centres dropped from 58% to 18% after the HIPAA became law, and the most cited reason for discontinuation of video review was the need for informed consent, legal concerns and concerns about patient privacy. A survey from 2010 reported that the use of video had not changed since 2005 as only 20% of 108 trauma centres used video review in the USA, although 100% of all trauma centres agreed that it can improve the trauma resuscitation process.

Building on findings from this review, future research may address two main aspects:

1. The teams’ conditions, for example, development of new innovative solutions for the emergency room, monitors providing information and guiding the team, reduction of noise, improved lighting of the room, premixed syringes with correct dose medicine, new tool as surgical instruments, checklists or other cognitive aids.

2. Video as an educational tool; as the educational strategies of real-life video are lacking, future research should therefore focus on describing all characteristics involved in how to use video in debriefing to maximise educational efficiency.
CONCLUSION

The need for high-value, cost-conscious medical education is more prevalent than ever, with shrinking time for training and increasing complexity of the care delivered by the emergency teams. Filming emergencies has educational value and is an important priority for clinical research seeking to identify factors that complement teams’ management and factors that prevent teams from becoming effective. However, the ethical and legal concerns remain unresolved. If we can solve these ethical and legal concerns, video review can provide us with the opportunity to analyse, understand and improve our performance and the quality of patient care.

Acknowledgements
We would, therefore, like to thank Kristiane Roed Jensen for reviewing and extracting data and conducting the analysis of the risk of biases together with LB. Also, we are grateful to Kristian Krogh for reviewing the final manuscript.

Contributors
LB and NU designed the review, made the analysis and extracted the data. LB drafted the paper and NU approved the final version.

Funding
This work was supported by: Tryg Foundation (Trygfonden) (grant ID no 109507); The Regional Hospital in Horsens, Department of Obstetrics and Gynaecology; and the Regional Postgraduate Medical Education Administration Office North.

Competing interests
None declared.

Patient consent for publication
Not required.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
All data relevant to the study are included in the article.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Acknowledgements
We would, therefore, like to thank Kristiane Roed Jensen for reviewing and extracting data and conducting the analysis of the risk of biases together with LB. Also, we are grateful to Kristian Krogh for reviewing the final manuscript.

Contributors
LB and NU designed the review, made the analysis and extracted the data. LB drafted the paper and NU approved the final version.

Funding
This work was supported by: Tryg Foundation (Trygfonden) (grant ID no 109507); The Regional Hospital in Horsens, Department of Obstetrics and Gynaecology; and the Regional Postgraduate Medical Education Administration Office North.

Competing interests
None declared.

Patient consent for publication
Not required.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
All data relevant to the study are included in the article.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Lise Brogaard http://orcid.org/0000-0001-5136-9682

REFERENCES

1. Charney C. Making a team of experts into an expert team. Adv Neonatal Care 2011;11:334–9.
2. Norris EM, Lockey AS. Human factors in resuscitation teaching. Resuscitation 2012;83:423–7.
3. Abella BS, Alvarado JP, Myklebust H, et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 2005;293:305–10.
4. Spanjerberg WR, Bergh EA, Mushkudiani N, et al. Protocol compliance and time management in blunt trauma resuscitation. Emerg Med J 2009;26:23–7.
5. Santora TA, Trooskin SZ, Blank CA, et al. Video assessment of trauma response: adherence to ATLS protocols. Am J Emerg Med 1996;14:564–9.
6. Handley AJ, Handley SAJ. Improving CPR performance using an audible feedback system suitable for incorporation into an automated external defibrillator. Resuscitation 2003;57:57–62.
7. Mileder L, Urelesberger B, Szylf E, et al. Simulation-Based neonatal and infant resuscitation teaching: a systematic review of randomized controlled trials. Klin Padiatr 2014;226:259–67.
8. Hoyt DB, Shackford SR, Fridland PH, et al. Video recording trauma resuscitations: an effective teaching technique. J Trauma 1988;28:435–40.
9. Mundell WC, Kennedy CC, Szostek JH, et al. Simulation technology for resuscitation training: a systematic review and meta-analysis. Resuscitation 2013;84:1174–83.
10. Edelson DP. Improving in-hospital cardiac arrest process and outcomes with performance Debriefing. Arch Intern Med 2008;168:1063–9.
11. Pelletier LF, Geertzma RH, Youmans RL. Television videotape recording: an adjunct in teaching emergency medical care. Surgery 1969;66:233–6.
12. Chamberlain DA, Hazinski MF. Education in resuscitation. Resuscitation 2003;59:11–43.
13. Murray L, McCabe M. The video-recorder in the accident and emergency department. Arch Emerg Med 1991;8:182–4.
14. Georgiou A, Lockey DJ. The performance and assessment of hospital trauma teams. Scand J Trauma Resusc Emerg Med 2010;18:66.
15. Parry R, Pino M, Faull C, et al. Acceptability and design of video-based research on healthcare communication: evidence and recommendations. Patient Educ Couns 2016;99:1271–84.
16. Gambadoara P, Magos A. Surgical Videos for accident analysis, performance improvement, and complication prevention. Surg Innov 2012:19:76–80.
17. Rogers SC, Dudley NC, McDonnell W, et al. Camera, action. spotlight on trauma video review: an underutilized means of quality improvement and education. Pediatr Emerg Care 2010;26:803–7.
18. Shameer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015;349:g6747–25.
19. Stone PW. Popping the (PICO) question in research and evidence-based practice. Appl Nurs Res 2002;15:197–8.
20. Khan K, Kruz R, Kleijnen J, et al. Systematic reviews to support evidence-based medicine. 2nd edn. New York: CRC Press, 2011: 39–51.
21. Townsend RN, Clark R, Rameynsfky ML, et al. ATLS-based videotape trauma resuscitation review: education and outcome. J Trauma 1993;34:133–6.
22. Fitzgerald M, Cameron P, Mackenzie C, et al. Trauma resuscitation errors and computer-assisted decision support. Arch Surg 2011;146:218–25.
23. Scherer LA, Chang MC, Meredith JN, et al. Videotape review leads to rapid and sustained learning. Am J Surg 2003;185:516–20.
24. Lubbett PHW, Kaasschieter EG, Hoorn D, et al. Video registration of trauma team performance in the emergency department: the results of a 2-year analysis in a level 1 trauma center. J Trauma 2009;67:1412–20.
25. Maluso P, Hernandez M, Amdur RL, et al. Trauma team size and task performance in adult trauma resuscitations. J Surg Res 2016;204:176–82.
26. van Olden GJJ, van Vught AB, Bier J, et al. Trauma resuscitation time. Injury 2003;34:191–5.
27. Ritchie PD, Cameron PA. An evaluation of trauma team leader performance by video recording. Aust NZ J Surg 1999:69:183–6.
28. Berge EA, Rutten FLPA, Tadros T, et al. Communication during trauma resuscitation: do we know what is happening? Injury 2005;36:905–11.
29. Mann FA, Walkup RK, Berryman CR, et al. Computer-Based videotape analysis of trauma resuscitations for quality assurance and clinical research. J Trauma 1994;36:226–30.
30. Hoff WS, Reilly PM, Rotondo MF, et al. The importance of the Command-Physician in trauma resuscitation. J Trauma 1997;43:772–7.
31. DeMoor S, Abdel-Rehim S, Olmsted R, et al. Evaluating trauma team performance in a level I trauma center. J Trauma Acute Care Surg 2017;83:159–64.
32. Nussmeier NJ, Trechwell D. Video evaluation of pediatric trauma codes. Int J Trauma Nurs 1996;2:42–8.
33. Oakley E, Staubli G, Young S. Using video recording to identify management errors in pediatric trauma resuscitation. Pediatrics 2006;117:658–64.
34. Carter EA, Waterhouse LJ, Kovler ML, et al. Adherence to ATLS primary and secondary surveys during pediatric trauma resuscitation. Resuscitation 2013;84:66–71.
35. El-Shafy IA, Delgado J, Akerman M, et al. Closed-Loop communication improves task completion in pediatric trauma resuscitation. J Surg Educ 2014;71:86–91.
36. Webster RB, Fritzeen JL, Yang J, et al. Classification and team response to nonroutine events occurring during pediatric trauma resuscitation. J Trauma Acute Care Surg 2016;81:666–73.
37. Kelleher DC, Kovler ML, Waterhouse LJ, et al. Factors affecting team size and task performance in pediatric trauma resuscitation. Pediatr Emerg Care 2014;30:248–53.
38. Kelleher DC, Carter EA, Waterhouse LJ, et al. Effect of a checklist on advanced trauma life support performance during pediatric trauma resuscitation. Acad Emerg Med 2014;21:1129–34.
39. Sarcevic A, Marsic I, Waterhouse LJ, et al. Leadership structures in emergency care settings: a study of two trauma centers. Int J Med Inform 2011;80:227–38.
