Research and characterization of selected pathogens of cutaneous and mucocutaneous lesions in cetaceans from the Brazilian coast

Tese apresentada ao Programa de Pós-Graduação em Patologia Experimental e Comparada da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo para obtenção do título de Doutor em Ciências.

Departamento:
Patologia

Área de concentração:
Patologia Experimental e Comparada

Orientador:
Prof. Dr. José Luiz Catão Dias

De acordo:_______________________
Orientador

São Paulo
2017

Obs: A versão original se encontra disponível na Biblioteca da FMVZ/USP
Autorizo a reprodução parcial ou total desta obra, para fins acadêmicos, desde que citada a fonte.

DADOS INTERNACIONAIS DE CATALOGAÇÃO NA PUBLICAÇÃO

(Biblioteca Virginie Buff D’Ápice da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo)

T. 3542	Sacristán Yagüe, Carlos
FMVZ	Research and characterization of selected pathogens of cutaneous and mucocutaneous lesions in cetaceans from the Brazilian coast. / Carlos Sacristán Yagüe. -- 2017.
	181 p. : il.
Título traduzido:	Pesquisa e caracterização de patógenos cutâneos e mucocutâneos selecionados em cetáceos da costa brasileira.
Tese (Doutorado) - Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia. Departamento de Patologia, São Paulo, 2017.	
Programa de Pós-Graduação: Patologia Experimental e Comparada.	
Área de concentração: Patologia Experimental e Comparada.	
Orientador: Prof. Dr. José Luiz Catão Dias.	
1. Pathology. 2. Dermatology. 3. Herpesvirus. 4. Poxvirus. 5. *Paracoccidioides brasiliensis*. I. Título.	
RESUMO

SACRISTÁN YAGUE, C. Pesquisa e caracterização de patógenos cutâneos e mucocutâneos selecionados em cetáceos da costa brasileira. [Research and characterization of selected pathogens of cutaneous and mucocutaneous lesions in cetaceans from the Brazilian coast]. 2017. 181 f. Tese (Doutorado em Ciências) – Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2017.

Cetáceos são sentinelas do ambiente marinho, atualmente ameaçados por diversos fatores, principalmente antropogênicos. Os processos de pele e mucosas externas são os mais facilmente identificados, bons indicadores do estado de saúde em cetáceos. Lesões cutâneas e mucocutâneas já foram amplamente relatadas em cetáceos de vida livre e de cativeiro, mas pouco se sabe a respeito dos fatores etiológicos envolvidos, evolução das lesões dermatológicas e suas consequências sistêmicas. Vírus são os agentes mais comumente envolvidos em lesões cutâneas e mucocutâneas, especialmente os herpesvírus (HV), associados a lesões de morfologias variáveis em mucosas, e poxvírus dos cetáceos (Cetacean Poxvirus – CePV), principalmente associados a lesões de pele “tatuagem” ou “anel” características. Agentes fúngicos também podem causar doenças dermatológicas em cetáceos, como por exemplo a paracoccidioidomicose ceti, caracterizada por lesões esbranquiçadas elevadas e proliferativas, causada por leveduras não-cultiváveis de Paracoccidioides brasiliensis (ordem Onygenales). Apesar de mundialmente reportados, a ocorrência desses agentes etiológicos em cetáceos do Atlântico Sul ainda é pouco compreendida. O objetivo desse estudo foi identificar e caracterizar patógenos cutâneos e mucocutâneos selecionados (HV, CePV e P. brasiliensis) de cetáceos brasileiros de vida livre e desenhar métodos diagnósticos mais sensíveis para sua detecção. Todos os animais estudados encalharam ao longo da costa brasileira, entre 2005 e 2015, exceto por três botos-cor-de-rosa que foram fisicamente imobilizados e liberados após a coleta de amostras. Para atingir tais objetivos, empregamos técnicas moleculares e histológicas, e ocasionalmente de imunohistoquímica e microscopia eletrônica. A presença de HV e CePV foi avaliada, respectivamente, em amostras cutâneas e de mucosa oral e genital de 115 espécimes, e amostras de pele de 113 indivíduos; enquanto a presença de membros da ordem Onygenales foi avaliada em quatro espécimes que apresentavam lesões macroscópicas compatíveis. Amostras de pele ou de mucosa oral de quatro animais foram positivas para a PCR de HV: uma lesão ulcerada de pele de coloração esbranquiçada de um boto-cinza (Sotalia guianensis), uma amostra de tecido lingual de um golfinho-pintado-do-Atlântico (Stenella frontalis), lesões ulcerativas e amostras de pele saudável de um cachalote-anão (Kogia sima), e uma lesão proliferativa de pele em boto-vermelho-boliviano
(Inia boliviensis). Os primeiros três animais estavam infectados com alphaherpesvírus. Uma sequência mais similar com gammaherpesvírus foi obtida da lesão proliferativa de pele do boto-vermelho-boliviano. A sequência do boto-vermelho-boliviano possivelmente pertence a um novo gênero de gammaherpesvírus. Ademais, todas as outras amostras de tecidos disponíveis dos especímenes HV-positivos, à parte de pele e mucosa oral, também foram avaliadas por técnicas de PCR e histológicas. Uma sequência diferente de alphaherpesvírus foi encontrada no estômago e em um linfonodo mesentérico do cachalote-anão. Achados microscópicos em dois animais HV-positivos (dermatites proliferativas em boto-vermelho-boliviano e boto-cinza) eram compatíveis com HV. CePV foi identificado em lesões de pele do tipo “tattoo” de um golfinho-nariz-de-garrafa (Tursiops truncatus) e de um boto-cinza por meio de técnicas moleculares estabelecidas, e observação de partículas de poxvírus por microscopia eletrônica. Animais CePV-positivos apresentavam degeneração balonosa epidérmica e ocasionais inclusões intracitoplasmáticas anfófilas ou eosinófilas compatíveis com CePV. Motivos aminoácidos específicos para todos os CePVs também foram identificados, reforçando a sugestão de um novo gênero, chamado Cetaceanpoxvirus.

Nesse estudo também foram desenvolvidas novas técnicas de PCR convencional e real-time com SYBR® Green, significativamente mais sensíveis do que os métodos atualmente disponíveis em literatura. Um boto-cinza, inicialmente negativo segundo os métodos de PCR previamente conhecidos foi diagnosticado positivo para CePV por meio das novas técnicas aqui descritas. Leveduras refratáveis (4−9 μm de diâmetro) foram observadas à microscopia sob a forma de lesões de pele granulomatosas moderadas e necróticas em quatro golfinhos-nariz-de-garrafa, e pela primeira vez, em um abscesso muscular (esse último um indício do potencial invasivo desse agente). Leveduras de Onygenales sp. foram identificadas em lesões de pele por meio de imunohistoquímica e uma sequência de P. brasiliensis mais semelhante (100% de identidade de nucleotídeos) àquela descrita em golfinhos de Cuba do que a casos de humanos e mamíferos descritos no Brasil, foi encontrada em lesões de pele de um dos especímenes. Esse estudo relata a primeira identificação molecular de HV em cetáceos da América do Sul e em golfinhos de rio no mundo. Além disso, descrevemos a primeira amplificação de CePV e P. brasiliensis em odontocetes da América do Sul, conferindo a etiologia desse tipo de lesões. Quatro das cinco novas sequências de HV identificadas são possivelmente novas espécies, provisoriamente chamadas Delphinid HV-10, Kogiid HV-2, Kogiid HV-3 e Iniid HV-1.

Palavras-chave: Patologia. Dermatologia. Herpesvírus. Poxvírus. Paracoccidioides brasiliensis.
ABSTRACT

SACRISTÁN YAGUE, C. Research and characterization of selected pathogens of cutaneous and mucocutaneous lesions in cetaceans from the Brazilian coast. [Pesquisa e caracterização de patógenos cutâneos e mucocutâneos selecionados em cetáceos da costa brasileira]. 2017. 181 f. Tese (Doutorado em Ciências) – Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2017.

Cetaceans are sentinels of the marine environment, currently threatened by many factors, mainly anthropogenic. The most easily identified compromising conditions are those affecting the skin and external mucosae - good indicators of the cetacean’s health status. Cutaneous and mucocutaneous lesions have been extensively reported in wild and captive cetaceans, but little is known about the involved etiological factors, evolution of the dermatological lesions and their systemic consequences. Viruses are the most commonly involved agents in cutaneous and mucocutaneous lesions, especially herpesviruses (HV) and, associated with skin and mucosal lesions with varying morphologies, and cetacean poxviruses (CePV), mainly associated with characteristic “tattoo” or “ring” skin lesions. In addition, fungal agents are also recognized as causative agents of dermatological disease in cetaceans, especially in the process known as paracoccidioidomycosis ceti, observed as raised proliferative whitish lesions, caused by non cultivable yeast of Paracoccidioides brasiliensis (order Onygenales). Despite being reported worldwide, the occurrence of these etiological agents in southern Atlantic cetaceans is still poorly understood. The goal of this study was to identify and characterize selected cutaneous and mucocutaneous pathogens (HV, CePV and P. brasiliensis) of free-ranging cetaceans from Brazil, and to design more sensitive diagnostic methods for their detection. All the studied cetaceans stranded along the coast of Brazil, between 2005 and 2015, except three wild riverine dolphins that were physically contained and released after sample collection. In order to achieve our goals, we employed molecular, histopathological, and occasionally immunohistochemical and electron microscopy techniques. The presence of HV and CePV was evaluated in cutaneous, and oral and genital mucosal samples from 115 specimens and skin samples from 113 individuals, respectively; whereas the presence of members of the genus Onygenales sp. was evaluated in four specimens presenting macroscopic compatible lesions. Skin or oral mucosal samples from four animals were HV PCR-positive: a whitish ulcerated skin lesion from a Guiana dolphin (Sotalia guianensis), a lingual sample from an Atlantic spotted dolphin (Stenella frontalis), ulcerative lesions and healthy skin samples from a dwarf sperm whale (Kogia sima), and a proliferative skin lesion from a Bolivian river dolphin (Inia boliviensis).
The tree first animals were infected with alphaherpesvirus. A sequence more similar to gammaherpesvirus was obtained from the Bolivian river dolphin's proliferative skin lesion. The Bolivian river dolphin sequence could possibly be a member of a new gammaherpesvirus genus. Additionally, all other available tissue samples from HV-positive specimens, aside from skin and oral mucosa, were also tested by PCR and histologically evaluated. A different alphaherpesvirus sequence was found in the stomach and in a mesenteric lymph node of the dwarf sperm whale. Microscopic findings in two HV-positive animals (chronic proliferative dermatitis in Bolivian river dolphin and Guiana dolphin) were compatible with HV. CePV was identified in “tattoo” skin lesions of an Atlantic bottlenose dolphin and a Guiana dolphin by established molecular methods, and poxviral particles were observed by electron microscopy. CePV-positive animals presented epidermal ballooning degeneration and occasionally small, pale eosinophilic or amphophilic intracytoplasmic inclusions, compatible with CePV. Specific amino acid motifs for all CePV were also identified, reinforcing the suggestion of the new Cetaceanpoxvirus genus. We also designed novel SYBR® Green real-time and conventional CePV PCR methods significantly more sensitive than those currently available in the literature. An additional Guiana dolphin, previously negative based in established PCR methods was diagnosed positive for CePV through these new techniques. Refractile yeasts (4−9 μm in diameter) were observed under light microscopy in mild granulomatous and necrotic skin lesions of four Atlantic bottlenose dolphin, and for the first time, in a skeletal muscle abscess (the former possibly indicating the invasive potential of the agent). Onygenales sp. yeasts were identified in skin lesions by immunohistochemistry and a sequence of *P. brasiliensis*, more similar (100% nucleotide identity) to the one described in an Atlantic bottlenose dolphin from Cuba than to human or any other terrestrial mammals cases in Brazil, was obtained from the skin lesion of one of the specimens, confirming the etiological agent of these type of lesions. Herein we report the first molecular identification of HV in South American cetaceans and in riverine dolphins worldwide. This study also describes the first amplification of CePV and *P. brasiliensis* in odontocetes from South America. Four of the five novel herpesvirus sequences herein identified are possibly novel species, tentatively named Delphinid HV-10, Kogiid HV-2, Kogiid HV-3 and Iniid HV-1.
The ecosystem health could be defined as the lack of signs of ecosystem distress, its resilience (defined as the ability to recover rapidly and complexly from an injury), and/or the absence of risk or threats towards the ecosystem’s composition, structure and/or function (RAPPORTS, 1995). In order to maintain biodiversity, preserve healthy ecosystems is necessary (HILTY; MERENLENDER, 2000).

One of the most used methods to assess ecosystem health is the measurement of the effects of a phenomenon or substance of interest over a species used as a sensor, known as indicator species - usually invertebrates, but also of animals of upper trophic level (HILTY; MERENLENDER, 2000; CARIGNAN; VILLARD, 2002; HEINK; KOWARIK, 2010).

Cetaceans are important indicator species, used as sentinels of marine and riverine environments due to their long life spans, high position at the food chain, storage ability of their large fat deposits (e.g., anthropogenic pollutants) and shared sensitivity to certain pathogens (e.g. *Toxoplasma gondii*), toxins and chemicals with humans (REDDY et al., 2001; WELLS et al., 2004; MOORE et al. 2008; BOSSART, 2011; WISE et al., 2009; GIBSON et al., 2011). The study of resident populations, e.g., Atlantic bottlenose dolphin (*Tursiops truncatus*), Guiana dolphin (*Sotalia guianensis*), beluga whale (*Delphinapterus leucas*), provides additional information on specific geographical areas of the marine environment (DE GUISE; LAGACÉ; BÉLAND, 1994; SIMÕES-LOPES; FABIAN, 1999; AZEVEDO et al., 2017). Cetaceans are charismatic aquatic megafauna species that arise very strong human empathy, easily observed at their natural habitat (BOSSART, 2011), subject of a growing whale and dolphin watching tourism. Cetacean-associated economical activities also include hunting, either for commercial or livelihood purposes (REEVES, 2002; TRYLAND et al., 2014; DA SILVA JÚNIOR, 2017), a commonly controversial issue, also strongly related with cultural values.

Two clades are recognized in the unranked Cetacea taxon: Odontoceti (dolphins, porpoises and toothed whales) and Mysticeti (baleen whales), respectively comprised of by ten and four families (Box 1).
Box 1 - Clades (Odontoceti and Mysticeti), families and cetacean species.

CLADE	FAMILY	SPECIES
Odontoceti	Physeteridae	sperm whale (*Physeter macrocephalus*)
	Kogiidae	pygmy sperm whale (*Kogia breviceps*)
		dwarf sperm whale (*K. sima*)
	Ziphiidae	e.g., Hector’s beaked whale (*Mesoplodon hectori*)
	(beaked whales)	
	Platanistidae	Indian river dolphin (*Platanista gangetica*)
	Iniidae	e.g. Bolivian river dolphin (*Inia boliviensis*)
	(pink river dolphins)	
	Lipotidae	baiji (*Lipotes vexillifer*)
	Pontoporiidae	Francisca/toninha (*Pontoporia blainvillei*)
	Monodontidae	beluga (*Delphinapterus leucas*)
	(belugas and narwhals)	narwhal (*Monodon monoceros*)
	Delphinidae	e.g., Atlantic bottlenose dolphin (*Tursiops truncatus*)
	(true dolphins)	
	Phocoenidae	e.g., Burmeister’s porpoise
	(true porpoises)	(*Phocoena spinipinnis*)
Mysticeti	Balaenidae	e.g., southern right whales (*Eubalaena australis*)
	(right whales and bowhead whale)	bowhead whale (*Balaena mysticetus*)
	Neobalaenidae	pygmy right whales (*Caperea marginata*)
	Eschrichtiidae	grey whale (*Eschrichtius robustus*)
	Balaenopteridae	e.g., Bryde’s whale (*Balaenoptera brydei*)
(rorquals)		

All of these families are part of a larger group, the order Cetartiodactyla, which also comprises the Artiodactyla (e.g., suborders Suina [pigs and boars], Tylopoda [camels and llamas], and Ruminantia [deer, giraffes and cows]) (TRUJILLO et al., 2010; GRAVENA et al., 2014; COMMITTEE ON TAXONOMY, 2016). The divergence between cetaceans and their terrestrial ancestors occurred approximately 53 Million years ago (ARNASON; GULLBERG; JANKE, 2004). Since then, these organisms have adapted to an obligate aquatic life cycle through special adaptive mechanisms,
such as echolocation (odontocetes), filter-feeding (mysticetes), presence of a
vestigial pelvis girdle, loss of hind limbs at the end of the fetal development, and
other modifications in organs, such as kidneys, lungs, gonads, internal ears and skin
(e.g., absence of sebaceous or apocrine glands) (ROMMEL; LOWENSTINE, 2001;
THEWISSEN et al., 2006; DINES et al., 2014; PYENSON, 2017). A high number
of cetacean species is present in Brazil, a megadiverse country, with at least 48
riverine, coastal or pelagic described cetacean species (LODI; BOROBIA, 2013;
GRAVENA et al., 2014; CYPRIANO-SOUZA et al., 2016). This rich diversity is
promoted by three main marine currents: Malvinas/Falklands, North Brazil, and
Brazil, and two riverine basins (Amazonas and Tocantins), creating different
ecosystems (LODI; BOROBIA, 2013).

The study of wildlife health, through the evaluation of the etiology, occurrence
and prevalence of diseases, is a very important branch of conservation management,
not to mention the application of such processes as sensitive indicators of
anthropogenic impacts (DEEM; KARESH; WEISMAN, 2001). Cetacean health
studies may have even further significance, especially when it comes to raising the
general public’s awareness about the deterioration of the marine environment
(BOSSART, 2011).

The Health Concept comprises not only the absence of disease, but also the
interaction among environmental, biological and social parameters that influence the
organisms’ adaptation to environmental changes and populations’ resilience
(STEPHEN, 2014). Due to ethical and logistic issues, the most common way to
assess the health status of free-ranging cetacean populations is through the study of
stranded animals. For instance, the first identification of morbillivirus in cetaceans
was performed in stranded dead striped dolphins (Stenella coeruleoalba) (DOMINGO
et al., 1990; GERACI; LOUNSBURY, 2005). Other alternative methods adapted to
the study of cetaceans’ health include exhaled breath analysis and skin biopsies
(NOREN; MOCKLIN, 2012; RAVERTY et al., 2017). These studies have clarified
many of the current cetacean morbidity and mortality causes, such as: (1) fishing
interaction and competition, (2) hunting, (3) pollution: debris, heavy metals, organic
pollutants (e.g., the high of neoplasm prevalence in the St. Lawrence River’s beluga
whale [Delphinapterus leucas] population in Canada, associated with polycyclic
aromatic hydrocarbons, and reproduction impairment in odontocetes from European
waters associated with polychlorinated biphenyls), (4) ship collision and acoustic
pollution, (5) biotoxins, (6) the effects of climate change (e.g., oceanic acidification, alterations in the food chain), and (7) infectious diseases (DE GUISE; LEGACE; BÉLAND, 1994; MARTINEAU et al., 2002; WRIGHT et al., 2007; FERNÁNDEZ et al., 2008; PARSONS et al., 2008; MARIGO et al., 2010; KAPLAN et al., 2013; LITZ et al., 2014; JEPSON; DEAVILLE; LAW, 2016; UNGER et al., 2016).

Diseases can affect wild population’s reproductive trends, survival and dispersal (GULLAND; HALL, 2006). Initially, wildlife infectious diseases were only valued when the wildlife-livestock interface was involved or when considered potential zoonoses. Nevertheless, the concern over their impact and threat to the biodiversity is currently increasing (DASZAK; CUNNINGHAM; HYATT, 2000; DE CASTRO; BOLKER, 2004). One must also consider the differences between the terrestrial and aquatic environments. In the marine environment, some diseases may spread at a faster rate than on the terrestrial environment, as seen in certain viral epizootics reported in fish (Australian pilchard, *Sardinops sagax neopilchardus*) by herpesvirus (10,000 km/year), and phocids and cetaceans by morbillivirus (3,000 km/year) (MCCALLUM; HARVELL; DOBSON, 2003; WHITTINGTON et al., 2008).

Diseases in cetaceans, including of several emerging pathogens, e.g., morbillivirus, poxvirus, herpesvirus, *Brucella ceti*, *T. gondii*, *Paracoccidioides brasiliensis*, have been increasingly reported (ESPERON; FERNANDEZ; SANCHEZ-VIZCAINO, 2008; VAN BRESSEM et al., 2009; BELLIERE et al., 2011; GONZALES-VIERA et al., 2013; GROCH et al., 2014; SIMEONE et al. 2015; VILELA et al., 2016). However, assessing cetacean diseases’ spatiotemporal trends, as observed in other marine species, such as corals, is very challenging (SIMEONE et al., 2015). Cetaceans are long-live animals that generally produce only one calf per year; therefore, infectious diseases that compromise reproductive success and/or fertility (e.g., brucellosis, toxoplasmosis, sarcocystosis by *Sarcocystis neurona*) could negatively impact cetacean populations (MILLER et al., 1999; JARDINE; DUBEY, 2002; BARBOSA et al., 2015). In addition, physiological stress - increasingly associated with anthropogenic impact over the marine and riverine environments - can impair the cetacean immune system, increasing its susceptibility to infectious diseases (WRIGHT et al., 2007; REIF et al., 2009; JEPSON; DEAVILLE; LAW, 2016).
The study of infectious diseases affecting the skin and oral and genital mucosa of cetaceans is considered especially relevant for several reasons: (1) the skin is directly evaluated through visual assessment, which is sometimes the only or the main available resource in field studies; (2) although infectious cutaneous and mucosal diseases are usually not fatal, and often self-limiting, they may serve as entry routes for other pathogens; (3) several systemic diseases cause cutaneous and oral mucosal alterations (e.g., herpesvirus, erysipelas); and (4) cutaneous and oral and genital mucosal alterations may be good indicators of cetaceans’ health status (BOSSART; EIMSTAD, 1988; SCHULMAN; LIPSCOMB, 1999; PETTIS et al., 2004; BOSSART et al., 2008; REIF et al., 2009; VAN BRESSEM et al., 2009; SIERRA et al., 2014). Cutaneous and mucocutaneous alterations have been observed both in wild and in captive cetaceans, since the 50’s (SIMPSON; WOOD; YOUNG, 1958); however, most of the time, the involved etiological agents were not identified (MALDINI et al., 2010; FURY; REIF, 2012; GROCH, 2014).

Cutaneous and mucocutaneous lesions are usually benign, although they may occasionally be fatal, and present different distributions, characteristics, sizes and presentations (unique or multiple lesions). The main etiological agents known to affect cetacean’s skin, oral and genital mucosa are viruses (e.g., herpesvirus, poxvirus and papillomavirus) and fungal agents (P. brasiliensis) (SWEENEY; RIDGWAY, 1975; VAN BRESSEM; VAN WAEREBEEK; RAGA, 1999; VAN BRESSEM et al., 2009; ESPERON et al., 2012; VILELA et al., 2016). Herpesviruses present a wide distribution and affect most animal species (PELLETT; ROIZMAN, 2007). The first cases of herpesviral infection in cetaceans were reported in the 80’s by electron microscopy (MARTINEAU et al., 1988; BARR et al., 1989). Since then, with the advent of molecular techniques based on the employment of universal primers, novel sequences related to cutaneous and mucocutaneous processes have been described (SMOLAREK-BENSON et al., 2006; VAN ELK et al., 2009; SIERRA et al., 2014). In cetaceans, herpesviruses may cause skin, oral and genital lesions, occasionally characterized by loss of pigmentation or proliferative nodules (VAN BRESSEM et al., 1994; HART et al., 2012). This latter manifestation of the disease is currently surrounded by controversy on whether they are caused by gamma-herpesvirus or by papillomavirus (REHTANZ et al., 2012).

Papillomaviruses cause tumors (papillomas) - mainly in the oral and genital mucosa - in several cetacean species (LAMBERTSEN et al., 1987; REHTANZ et al.,
2006; VAN BRESSEM et al., 2007; RECTOR et al., 2008). Large oral papillomas may affect feeding, whereas genital papillomas could compromise reproduction (VAN BRESSEM; VAN WAEREBECK; RAGA, 1999; VAN BRESSEM et al., 2009).

Poxviruses have been reported in cetaceans since the late 70’s (FLOM; HOUK, 1979; GERACI; HICKS; ST AUBIN, 1979; BRACHT et al., 2006), associated with characteristic skin lesions presenting melanic margins and a stippled interior, known as “tattoo”-lesions (GERACI; HICKS; ST AUBIN, 1979; BRACHT et al., 2006).

Paracoccidioidomycosis ceti, previously known as lobo’s disease, lacaziosis, lacaziosis-like disease, lobomycosis or lobomycosis-like disease, is a cetacean cutaneous disease firstly identified in the 70’s (MIGAKI et al., 1971), caused by *P. brasiliensis* non-cultivable yeasts of the order Onygenales (ROTSTEIN et al., 2009; ESPERON et al., 2012; UEDA et al., 2013; VILELA et al., 2016), closely related to *Lacazia lobo*, the etiological agent of lacaziosis in humans (VILELA et al., 2016). Clinical signs include chronic cutaneous, well demarcated, firm, proliferative, ulcerative or verrucous, whitish- to grayish colored, and occasionally pink lesions (MIGAKI et al., 1971).

In Brazil, papillomatosis and poxvirus-like lesions have been reported, respectively, in a rough-toothed dolphin (*Steno bredanensis*) (GONZALES-VIERA et al., 2011; GONZALES-VIERA et al., 2012) and in Guiana dolphins (GONZALES-VIERA et al., 2012). Skin lesions caused by yeast similar to those observed in paracoccidioidomycosis ceti cases were also described in the country in 1993, in an Atlantic bottlenose dolphin (SIMÕES-LOPES et al., 1993), and suggestive macroscopic lesions have been observed in an Atlantic bottlenose dolphin population (DAURA-JORGE; SIMÕES-LOPES, 2011; VAN BRESSEM et al., 2015) and in Guiana dolphins (VAN BRESSEM; SANTOS; OSHIMA, 2009).

In Brazil, studies of infectious agents related to cetacean cutaneous and mucocutaneous lesions are scarce, with limited histopathological descriptions and complete absence of immunohistochemical and/or molecular identification.
The aim of this study was to determine the infectious etiology of cutaneous and mucocutaneous lesions in cetaceans from Brazil, through the analyses of a decade of sample collections (2005-2015). To the authors’ knowledge, this is the first study to molecularly detect and identify selected emerging infectious pathogens – herpesvirus, poxvirus and *Paracoccidioides brasiliensis* – affecting this clade in Brazil, and in the case of herpesvirus and *P. brasiliensis*, also in South America.

The available literature particularly documents the connection between herpesvirus activation and immunosuppression, which could also be caused by the agent itself. Poxvirus is also considered a potentially immunosuppressant agent to other vertebrate species. Therefore, the presence of cutaneous “tattoo” lesions caused by poxvirus, proliferative whitish and verrucous lesions associated with *P. brasiliensis*, and proliferative or whitish lesions potentially related with herpesvirus could be used as health indicators, even though viral immunosuppression is not well established in cetaceans.

Among the novel herpesvirus sequences we described, three of them – both sequences from dwarf sperm whale and especially the one from the Bolivian river dolphin – greatly differ from previously known sequences. The macroscopic and microscopic findings observed in the Guiana dolphin and the Bolivian river dolphin are similar to previously reported herpesvirus skin lesions, although the marked herpesvirus genetic divergence observed in the Bolivian river dolphin requires further research. On the other hand, the herpesvirus detected in dwarf sperm whale’s skin lesions could have been an incidental finding, related to systemic infection. Future studies, employing techniques such as electron microscopy, amplification of longer fragments or the complete genome and/or viral culture are necessary to correctly classify these novel herpesviruses, which in the case of the Bolivian river dolphin could possibly lead to a new genus within the *Gammaherpesvirinae*.

We identified characteristic cetacean poxvirus amino acid motifs, providing new evidence to further support its inclusion in a new genus, *Cetaceanpoxvirus*. In order to do so, one requires either cell culture or sequencing of longer fragments - preferably of the complete genome - to establish the type species. Detailed and
comprehensive anatomopathological studies are required to further understand this agent’s impact on cetaceans.

The relative stability observed in the odontocete cetacean poxvirus allowed us to design novel real-time and conventional PCR techniques. Unfortunately, it was not possible to design new methods for the other studied agents, due to the high variability between the herpesviruses and limited number of described *P. brasiliensis* sequences. The newly designed techniques are highly sensitive and more efficient in diagnosing these agents in cetaceans when compared to those currently available in the literature.

Upon histopathology and immunohistochemistry, we detected Onygenales yeasts in raised, verrucous and whitish cutaneous lesions of four Atlantic bottlenose dolphins, and in muscular tissue of one specimen; this latter finding indicates this agent’s invasive potential. Subsequently, *P. brasiliensis* was identified as the etiological agent of a yeast-associated cutaneous lesion in the latter specimen’s, similar to those previously reported in cetaceans from other latitudes. We confirmed the role of *P. brasiliensis* as an etiological agent of this type of lesion, previously attributed, without any molecular or immunohistochemical diagnostic support, to *Lacazia lobo*.

P. brasiliensis is responsible for the most relevant human systemic mycosis in South America, the paracoccidioidomycosis. Comparative studies between human and dolphin paracoccidioidomycosis cases are fundamental to further clarify this agent’s cycle and pathology. The zoonotic potential of cetacean-infecting yeasts is still not fully understood.

Finally, we believe that further studies are necessary to provide new sensitive tools to diagnose these agents, understand their cycle and associated pathological processes, their zoonotic potential, and clarify the natural history of these agents and their hosts, the potential impact of cutaneous and mucocutaneous lesions in cetaceans - specially in endangered species and populations - and their role as health indicators of marine and riverine environments.
REFERENCES

ABDO, W.; KAWACHI, T.; SAKAI, H.; FUKUSHI, H.; KANO, R.; SHIBAHARA, T.; SHIROUZU, H.; KAKIZOE, Y.; TUJI, H.; YANAI, T. Disseminated mycosis in a killer whale (Orcinus orca). Journal of Veterinary Diagnostic Investigation, v. 24, n. 1, p. 211-218, 2012.

AL-DARAJI, W. I.; HUSAIN, E.; ROBSON, A. Lobomycosis in African patients. Brazilian Journal of Dermatology, v. 159, n. 1, p. 234–236, 2008.

APPRILL, A.; ROBBINS, J.; EREN, A. M.; PACK, A. A.; REVEILLAUD, J.; MATTILA, D.; MOORE, M.; NIEMEYER, M.; MOORE, K. M.; MINCER, T. J. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?. PLOS One, v. 9, n. 3, p. e90785, 2014.

ARBELO, M.; SIERRA, E.; ESPERÓN, F.; WATANABE, T. T. N.; BELLIERE, E. N.; ESPINOSA DE LOS MONTEROS, A.; FERNÁNDEZ, A. Herpesvirus infection with severe lymphoid necrosis affecting a beaked whale stranded in the Canary Islands. Diseases of Aquatic Organisms, v. 89, n. 3, p. 261–264, 2010.

ARNASON, U.; GULLBERG, A.; JANKE, A. Mitogenomic analyses provide new insights into cetacean origin and evolution. Gene, v. 333, p. 27–34, 2004.

ASSIS-CASAGRANDE, R. Herpesviroses em primatas. In: CUBAS, Z.S.; SILVA, J. C. R.; CATÃO-DIAS, J. L.: Tratado de Animais Selvagens-Medicina Veterinária. v.1. 2. Ed. São Paulo: Roca. 2014. p. 1321-1336.

AZEVEDO, A. F.; CARVALHO, R. R.; KAIN, M.; VAN SLUYS, M.; BISI, T. L.; CUNHA, H. A.; LAILSON-BRITO, J. The first confirmed decline of a delphinid population from Brazilian waters: 2000–2015 abundance of Sotalia guianensis in Guanabara Bay, South-eastern Brazil. Ecological Indicators, v. 79, p. 1-10, 2017.

BACHA, W. J. Jr.; BACHA, L. M. Digestive system. Color Atlas of Veterinary Histology. 2 ed. Philadelphia: Lippincott Williams & Wilkins, 2000a. p.119-162.

BACHA, W. J. Jr.; BACHA, L. M. Digestive system. Color Atlas of Veterinary Histology. 2 ed. Philadelphia: Lippincott Williams & Wilkins, 2000b. p.221-244.

BAGAGLI, E.; BOSCO, S. M. G.; THEODORO, R. C.; FRANCO, M. Phylogenetic and evolutionary aspects of Paracoccidioides brasiliensis reveal a long coexistence with animal hosts that explain several biological features of the pathogen. Infection Genetics and Evolution, v. 6, n. 5, p. 344–351, 2006.

BAGAGLI, E.; THEODORO, R. C.; BOSCO, S. M.; MCEWEN, J. G. Paracoccidioides brasiliensis: phylogenetic and ecological aspects. Mycopathologia, v. 165, n. 4-5, p. 197–207, 2008.

BARBOSA, L.; JOHNSON, C. K.; LAMBOURN, D. M.; GIBSON, A. M.; HAMAN, K. H.; HUGGINS, J. L.; SWEENY, A. R.; SUNDAR, N.; RAVERY, S. A.; GRIGG, M. E. A novel Sarcocystis neurona genotype XIII is associated with severe encephalitis in
an unexpectedly broad range of marine mammals from the northeastern Pacific Ocean. *International Journal for Parasitology*, v. 45, n. 9-10, p. 595–603, 2015.

BARLEY, J.; FOSTER, G.; REID, B.; DAGLEISH, M.; HOWIE, F. Encephalitis in a northern bottlenose whale. *Veterinary Record*, v. 160, n. 13, p. 452, 2007.

BARNETT, J.; DASTJERDI, A.; DAVISON, N.; DEAVILLE, R.; EVEREST, D.; PEAKE, J.; FINNEGAN, C.; JEPSON, P.; STEINBACH, F. Identification of novel Cetacean Poxviruses in cetaceans stranded in south west England. *PLOS ONE*, v. 10, n. 6, p. e0124315, 2015.

BARR, B.; DUNN, J. L.; DANIEL, M. D.; BANFORD, A. Herpes-like viral dermatitis in a beluga whale. *Journal of Wildlife Diseases*, v. 25, n. 4, p. 608-611, 1989.

BAUM, C.; MEYER, W.; ROESSNER, D.; SIEBERS, D.; FLEISCHER, L. G. A zymogel enhances the self-cleaning abilities of the skin of the pilot whale (*Globicephala melas*). *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, v. 130, n. 4, p. 835-847, 2001.

BECEGATO, E. Z.; ANDRADE, J. P.; GUIMARAES, J. P.; VERGARA-PARENTE, J. E.; MIGLINO, M. A.; SILVA, F. M. Reproductive morphology of female Guiana dolphins (*Sotalia guianensis*). *Anais da Academia Brasileira de Ciências*, v. 87, n. 3, p. 1727-1736, 2015.

BEHRMANN, G. Calcareous concretions in the skin of toothed whales (*Odontoceti*). *Archives of Fishery and Marine Research*, v. 43, n. 2, p. 183-193, 1996.

BELLEHUMEUR, C.; LAIR, S.; ROMERO, C. H.; PROVOST, C.; NIELSEN, O.; GAGNON, C. A. Identification of a novel herpesvirus associated with a penile proliferative lesion in a beluga (*Delphinapterus leucas*). *Journal of Wildlife Diseases*, v. 51, n. 1, p. 244-249, 2015.

BELLIERE, E. N.; ESPERÓN, F.; ARBELO, M.; MUÑOZ, M. J.; FERNÁNDEZ, A.; SÁNCHEZ-VIZCAÍNO, J. M. Presence of herpesvirus in striped dolphins stranded during the *cetacean morbillivirus* epizootic along the Mediterranean Spanish coast in 2007. *Archives of Virology*, v. 155, n. 8, p. 1307–1311, 2010.

BELLIERE, E. N.; ESPERON, F.; FERNANDEZ, A.; ARBELO, M.; MUÑOZ, M. J.; SANCHEZ-VIZCAINO, J. M. Phylogenetic analysis of a new Cetacean morbillivirus from a short-finned pilot whale stranded in the Canary Islands. *Research in Veterinary Science*, v. 90, n. 2, p. 324-328, 2011.

BEST, B.; MCCULLY, R. M. Zygomycosis (phycomycosis) in a right whale (*Eubalaena australis*). *Journal of Comparative Pathology*, v. 89, n. 3, p. 341–348, 1979.

BESWICK, T. S. L. The origin and the use of the word herpes. *Medical History*, v. 6, n. 3, p. 214-232, 1962.

BLACKLAWS, B. A.; GAJDA, A. M.; TIPPELT, S.; JEPSON, P. D.; DEAVILLE, R.; VAN BRESSEM, M. F.; PEARCE, G. P. Molecular characterization of poxviruses
associated with tattoo skin lesions in UK cetaceans. PLOS ONE, v. 8, n. 8, p. e71734, 2013.

BLEHERT, D. S. Fungal disease and the developing story of bat white-nose syndrome. PLOS Pathogens, v. 8, n. 7, p. e1002779, 2012.

BOOSINGER, T. R.; WINTERFIELD, R. W.; FELDMAN, D. S.; DHILLON, A. S. Psittacine pox virus: virus isolation and identification, transmission, and cross-challenge studies in parrots and chickens. Avian diseases, v. 26, n. 2, p. 437-444, 1982.

BOSSART, G. D. Marine mammals as sentinel species for oceans and human health. Veterinary Pathology, v. 48, n. 3, p. 676-690, 2011.

BOSSART, G. D.; EIMSTAD, E. A. Erysipelothrix vesicular glossitis in a Killer Whale (Orcinus orca). The Journal of Zoo Animal Medicine, v. 19, n. 1-2, p. 42-47, 1988.

BOSSART, G. D.; ROMANO, T. A.; PEDEN-ADAMS, M. M.; RICE, C. D.; FAIR, P. A.; GOLDSTEIN, J. D.; KILPATRICK, D.; CAMMEN, K.; REIF, J. S.; REIF, J. S. Hematological, biochemical, and immunological findings in Atlantic bottlenose dolphins (Tursiops truncatus) with orogenital papillomas. Aquatic Mammals, v. 34, n. 2, p. 166-177, 2008.

BOURNE, D.; DUFF, J. P.; VIKØREN, T. Poxvirus. In: GAVIER-WIDEN, D.; MEREDITH, A.; DUFF, J. P. HOBOKEN, N. J. (Ed.). Infectious Diseases of Wild Mammals and Birds in Europe, Oxford: Wiley-Blackwell, 2012. p. 191-209.

BOWENKAMP, K. E.; FRASCA JR, S.; DRAGHI, A.; TSONGALIS, G. J.; KOERTING, C.; HINCKLEY, L.; DE GUISE, S.; MONTALI, R. J.; GOERTZ, C. E.; ST AUBIN, D. J.; DUNN, J. L. Mycobacterium marinum dermatitis and panniculitis with chronic pleuritis in a captive white whale (Delphinapterus leucas) with aortic rupture. Journal of Veterinary Diagnostic Investigation, v. 13, n. 6, p. 524-530, 2001.

BRACHT, A. J.; BRUDEK, R. L.; EWING, R. Y.; MANIRE, C. A.; BUREK, K. A.; ROSA C.; BECKMEN, K. B.; MARUNIAK, J. E.; ROMERO, C. H. Genetic identification of novel poxviruses of cetaceans and pinnipeds. Archives of Virology, v. 151, n.3, p. 423–438, 2006.

BROWN, W. R.; GERACI, J. R.; HICKS, B. D.; AUBIN, D. S.; SCHROEDER, J. P. Epidermal cell proliferation in the bottlenose dolphin (Tursiops truncatus). Canadian Journal of Zoology, v. 61, n. 7, p. 1587-1590, 1983.

BUCK, J. D.; WELLS, R. S.; RHINEHART, H. L.; HANSEN, L. J. Aerobic microorganisms associated with free-ranging bottlenose dolphins in coastal Gulf of Mexico and Atlantic Ocean waters. Journal of Wildlife Diseases, v. 42, n. 3, p. 536-544, 2006.

BURDETT-HART, L.; ROTSTEIN, D. S.; WELLS, R. S.; ALLEN, J.; BARLEYCORN, A.; BALMER B. C.; LANE, S. M.; SPEAKMAN, T.; ZOLMAN, E. S.; STOLEN, M.; MCFEE, W.; GOLDSTEIN, T.; ROWLES, T. K.; SCHWACKE, L. H. Skin lesions on common bottlenose dolphins (Tursiops truncatus) from three sites in the northwest Atlantic, USA. PLOS ONE, v. 7, n. 3, p. e33081, 2012.
BUREK, K. A.; BECKMEN, K.; GELATT, T.; FRASER, W.; BRACHT, A. J.; SMOLAREK, K. A.; ROMERO, C. H. Poxvirus infection of Steller sea lions (Eumetopias jubatus) in Alaska. *Journal of Wildlife Diseases*, v. 41, n. 4, p. 745–752, 2005.

BUREK, K. Chapter 29. Mycotic diseases. In: WILLIAMS, E. S.; BARKER, I. K. (Ed.). *Infectious Diseases of Wild Mammals*, 3 ed. Ames: Iowa State University Press, 2001, p. 514-531.

BYRNES, E. J.; LI, W.; LEWIT, Y.; MA, H.; VOELZ, K.; REN, P.; CARTER, D. A.; CHATURVEDI, V.; BILDFELL, R. J.; MAY, R. C.; HEITMAN, J. Emergence and pathogenicity of highly virulent *Cryptococcus gattii* genotypes in the northwest United States. *PLOS Pathogens*, v. 6, n. 4, p. e1000850, 2010.

CAMERON, S. A.; LOZIER, J. D.; STRANGE, J. P.; KOCH, J. B.; CORDES, N.; SOLTER, L. F.; GRISWOLD, T. L. Patterns of widespread decline in North American bumble bees. *Proceedings of the National Academy of Sciences of the United States of America*, v. 108, n. 2, p. 662-667. 2011.

CAMPBELL, J. Smallpox in Aboriginal Australia, the early 1830s. *Australian Historical Studies*, v. 21, n. 84, p. 336-358, 1985.

CARIGNAN, V.; VILLARD, M. A. Selecting indicator species to monitor ecological integrity: a review. *Environmental Monitoring and Assessment*, v. 78, n. 1, p. 45–61, 2002.

CASSLE, S. E.; LANDRAU-GIOVANNETTI, N.; FARINA, L. L.; LEONE, A.; WELLEHAN J. F. JR.; STACY, N. I.; THOMPSON, P.; HERRING, H.; MASE-GUTHRIE, B.; BLAS-MACHADO, U.; SALIKI, J. T.; WALSH, M. T.; WALTZEK T. B. Coinfection by Cetacean morbillivirus and *Aspergillus fumigatus* in a juvenile bottlenose dolphin (*Tursiops truncatus*) in the Gulf of Mexico. *Journal of Veterinary Diagnostic Investigation*, v. 28, n. 6, p. 729-734, 2016.

CATES, M. B.; KAUFMAN, L.; GRABAU, J. H.; PLETCHER, J. M.; SCHROEDER, J. P. Blastomycosis in an Atlantic bottlenose dolphin. *Journal of the American Veterinary Medical Association*, v. 189, n. 9, p. 1148–1150, 1986.

COHEN, J. I. Epstein–Barr virus infection. *New England Journal of Medicine*, v. 343, n. 7, p. 481-492, 2000.

COLLIER, L.; OXFORD, J.; KELLAM, P. Smallpox: human disease eradicated but zoonotic pox virus infections common. *Human Virology*, 5 ed. Oxford: Oxford University Press, 2016. p. 250-258.

COMMITTEE ON TAXONOMY. List of marine mammal species and subspecies. Society for Marine Mammalogy. 2016. Available at: <www.marinemammalscience.org>. Consulted on: 30 Jun 2017.

COWAN, D. F. Lobo's disease in a bottlenose dolphin (*Tursiops truncatus*) from Matagorda Bay, Texas. *Journal of Wildlife Diseases*, v. 29, n. 3, p. 488-9, 1993.
CROUS, P. W.; GROENEWALD, J. Z.; SLIPPERS, B.; WINGFIELD, M. J. Global food and fibre security threatened by current inefficiencies in fungal identification. Philosophical Transactions of the Royal Society B, v. 371, n. 1709, p. 20160024, 2016.

CYPRIANO-SOUZA, A. L.; MEIRELLES, A. C. O.; CARVALHO, V. L.; BONATTO, S. L. Rare or cryptic? The first report of an Omura's whale (Balaenoptera omurai) in the South Atlantic Ocean. Marine Mammal Science, v. 33, n. 1, p. 80-95, 2017.

DA SILVA JÚNIOR, J. M. Turismo de observação de mamíferos aquáticos: benefícios, impactos e estratégias. Revista Brasileira de Ecoturismo, v. 10, n. 2, p. 433-465, 2017.

DAGLEISH, M. P.; BARROWS, M.; MALEY, M.; KILICK, R.; FINLAYSON, J.; GOODCHILD, R.; VALENTINE, A.; SAUNDERS, R.; WILLOUGHBY, K.; SMITH, K. C.; STIDWORTHY, M. F. The first report of Otarine herpesvirus-1-associated urogenital carcinoma in a South American fur seal (Arctocephalus australis). Journal of Comparative Pathology, v. 149, n. 1, p. 119–125, 2013.

DAGLEISH, M. P.; FOSTER, G.; HOWIE, F. E.; REID, R. J.; BARLEY, J. Fatal mycotic encephalitis caused by Aspergillus fumigatus in a northern bottlenose whale (Hyperoodon ampullatus). The Veterinary Record, v. 163, p. 602-604, 2008.

DAGLEISH, M. P.; PATTERSON, I. A. P.; FOSTER, G.; REID, R. J.; LINTON, C.; BUXTON, D. Intracranial granuloma caused by asporogenic Aspergillus fumigatus in a harbour porpoise (Phocoena phocoena). The Veterinary Record, v. 159, n. 14, p. 458, 2006.

DAMON, I. K. Poxviruses. In: KNIFE, D. M.; HOWLEY, P. M; COHEN, J. I.; GRIFFIN, D. E.; LAMB, R. A.; MARTIN, M. A.; RACANIELLO, V. R.; ROIZMAN, B. (Ed.). Fields Virology, 6 ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2013. p 2160-2185, 2013.

DAS, S.; LYLAA, P. S.; KHAN, S. A. Marine microbial diversity and ecology: importance and future perspectives. Current Science, v. 90, n. 10, p. 1325-1335, 2006.

DASZAK, P.; CUNNINGHAM, A. A.; HYATT, A. D. Emerging infectious diseases of wildlife - threats to biodiversity and human health. Science, v. 287, n. 5452, p. 443-449, 2000.

DAURA-JORGE, F. G.; SIMÕES-LOPES, P. C. Lobomycosis-like disease in wild bottlenose dolphins Tursiops truncatus of Laguna, Southern Brazil: monitoring of a progressive case. Diseases of Aquatic Organisms, v. 93, n. 2, p. 163-170, 2011.

DAVISON, A. J. Evolution of the herpesviruses. Veterinary Microbiology, v. 86, n. 1-2, p. 69–88, 2002.

DAS NEVES, C. G.; ROTH, S.; RIMSTAD, E.; THIRY, E.; TRYLAND, M. Cervid herpesvirus 2 infection in reindeer: a review. Veterinary Microbiology, v. 143, n. 1, p. 70-80, 2010.

DAYARAM, A.; FRANZ, M.; SCHATTSCHNEIDER, A.; DAMIANI, A. M.; BISCHOFBERGER, S.; OSTERRIEDER, N.; GREENWOOD, A. D. Long term
stability and infectivity of herpesviruses in water. Scientific Reports, v. 7, p. 46559, 2017.

DE CASTRO, F.; BOLKER, B. Mechanisms of disease-induced extinction. Ecology Letters, v. 8, n. 1, p. 117–126, 2004.

DE GUISE, S.; LAGACÉ, A.; BÉLAND, P. Tumors in St. Lawrence beluga whales (Delphinapterus leucas). Veterinary Pathology, v. 31, n. 4, p. 444-449, 1994.

DE SAHAGÚN; F. B. El doceño libro fracta de cómo los españoles conquistarán a la ciudad de Mexico (Libro Duodécimo XII). Historia general de las cosas de Nueva España. 1577, p. 823-999 <https://www.wdl.org/es/item/10096/view/3/934/>

DE VRIES, G. A.; LAARMAN, J. J. A case of Lobo's disease in the dolphin Sotalia guianensis. Aquatic Mammals, v. 1, n. 3, p. 26–33, 1973.

DEEM, S. L.; KARESH, W. B.; WEISMAN, W. Putting theory into practice: wildlife health in conservation. Conservation Biology, v. 15, n. 5, p. 1224–1233, 2001.

DEJOURS, P. Water and air physical characteristics and their physiological consequences. In: DEJOURS, P.; BOLIS, L.; TAYLOR, C. R.; WEIBEL, E. R. (Ed.). Comparative physiology: life in water and on land. Padova: Liviana Press. 1987, p. 3–11.

DELANEY, M. A.; TERIO, K. A.; COLEGROVE, K. M.; BRIGGS, M. B.; KINSEL, M. J. Occlusive fungal tracheitis in 4 captive bottlenose dolphins (Tursiops truncatus). Veterinary Pathology, v. 50, n. 1, p. 172-176, 2013.

DELIBES-MATEOS, M.; DELIBES, M.; FERRERAS, P.; VILLAFUERTE, R. Key role of European rabbits in the conservation of the Western Mediterranean basin hotspot. Conservation Biology, v. 22, n. 5, p. 1106-1117, 2008.

DEJSJARDINS, C. A.; CHAMPION, M. D.; HOLDER, J. W.; MUSZEWSKA, A.; GOLDBERG, J.; BAILÃO, A. M.; BRIGIDO, M. M.; FERREIRA, M. E.; GARCIA, A. M.; GRYNBERG, M.; GUJJA, S.; HEIMAN, D. I.; HENN, M. R.; KODIRA, C. D.; LEÓN-NARVÁEZ, H.; LONGO, L. V.; MA, L. J.; MALAVAZI, I.; MATSUO, A. L.; MORAIS, F. V.; PEREIRA, M.; RODRÍGUEZ-BRITO, S.; SAKTHIKUMAR, S.; SALEM-IZÁCC, S. M.; SYKES, S. M.; TEIXEIRA, M. M.; VALLEJO, M. C.; WALTER, M. E.; YANDAVA, C.; YOUNG, S.; ZENG, Q.; ZUCKER, J.; FELIPE, M. S.; GOLDMAN, G. H.; HAAS, B. J.; MCEWEN, J. G.; NINO-VEJA, G.; PUCCIA, R.; SAN-BLAS, G.; SOARES, C. M.; BIRREN, B. W.; CUOMO, C. A. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLOS Genetics, v. 7, n. 10, p. e1002345, 2011.

DINES, J. P.; OTÁROLA-CASTILLO, E.; RALPH, P.; ALAS, J.; DALEY, T.; SMITH, A. D.; DEAN, M. D. Sexual selection targets cetacean pelvic bones. Evolution, v. 68, n. 11, p. 3296-3306, 2014.

DOMINGO, M.; FERRER, L.; PUMAROLA, M.; MARCO, A.; PLANA, J.; KENNEDY, S.; MCALISKEY, M.; RIMA, B. K. Morbillivirus in dolphins. Nature, v. 348, n. 6296, p. 21, 1990.
DOMINGO, M.; VISA, J.; PUMAROLA, M.; MARCO, A. J.; FERRER, L.; RABANAL, R.; KENNEDY, S. Pathologic and immunocytochemical studies of morbillivirus infection in striped dolphins (Stenella coeruleoalba). *Veterinary Pathology*, v. 29, n. 1, p. 1–10, 1992.

DUNN, J. L.; BUCK, J. D.; SPOTTE, S. Candidiasis in captive cetaceans. *Journal of the American Veterinary Medical Association*, v. 181, n. 11, p. 1316, 1982.

DUNOWSKA, M.; LETCHWORTH, G. J.; COLLINS, J. K.; DEMARTINI, J. C. *Ovine herpesvirus 2* glycoprotein B sequences from tissues of ruminant malignant catarrhal fever cases and healthy sheep are highly conserved. *Journal of General Virology*, v. 82, n. 11, 2785–2790, 2001

DURDEN, W. N.; LEGER, J. S.; STOLEN, M.; MAZZA, T.; LONDONO, C. Lacaziosis in bottlenose dolphins (*Tursiops truncatus*) in the Indian River Lagoon, Florida, USA. *Journal of Wildlife Diseases*, v. 45, n. 3, p. 849-856, 2009.

EHlers, B.; Lowden, S. Novel herpesviruses of Suidae: indicators for a second genogroup of artiodactyl gammaherpesviruses. *Journal of General Virology*, v. 85, n. 4, p. 857-862, 2004.

ELAD, D.; MORICK, D.; DAVID, D.; SCHEININ, A.; YAMIN, G.; BLUM, S.; GOFFMAN, O. Pulmonary fungal infection caused by *Neoscytalidium dimidiatum* in a Risso's dolphin (*Grampus griseus*). *Medical Mycology*, v. 49, n. 4, p. 424-426, 2011.

ELLIS, D.; PFEIFFER, T. The ecology of *Cryptococcus neoformans*. *European Journal of Epidemiology*, v. 8, n. 3, p. 321–325, 1992.

ESPARZA, J. Has horsepox become extinct?. *The Veterinary Record*, v. 173, n. 11, p. 272-273, 2013.

ESPERON, F.; FERNANDEZ, A.; SANCHEZ-VIZCAINO, J. M. Herpes simplex-like infection in a bottlenose dolphin stranded in Canary Islands. *Diseases of Aquatic Organisms*, v. 81, p. 73-76, 2008.

ESPERÓN, F.; GARCÍA-PÁRRAGA, D.; BELLÍÈRE, E. N.; SÁNCHEZ-VIZCAÍNO, J. M. Molecular diagnosis of lobomycosis-like disease in a bottlenose dolphin in captivity. *Medical Mycology*, v. 50, n. 1, p. 106–9, 2012.

ESSBAUER, S.; PFEFFER, M.; MEYER, H. Zoonotic poxviruses. *Veterinary Microbiology*, v. 140, n. 3-4, p. 229-236, 2010.

Fiorito, C.; Palacios, C.; Golemba, M.; Bratanich, A.; Argüelles, M. B.; Fazio, A.; Bertelotti, M.; Lombardo, D. Identification, molecular and phylogenetic analysis of poxvirus in skin lesions of southern right whale. *Diseases of Aquatic Organisms*, v. 116, n. 2, p. 157–163, 2015.

Fisher, M. C.; Henk, D. A.; Briggs, C. J.; Brownstein, J. S.; Madoff, L. C.; McCraw, S. L.; Gurr, S. J. Emerging fungal threats to animal, plant and ecosystem health. *Nature*, v. 484, p. 186–194, 2012.

FLOM, J. O.; HOUK, E. J. Morphologic evidence of poxvirus in "tattoo" lesions from captive bottlenosed dolphins. *Journal of Wildlife Diseases*, v. 15, n. 4, p. 593-596, 1979.
FRASCA, S. Jr; DUNN, J. L.; COOKE, J. C.; BUCK, J. D. Mycotic dermatitis in an Atlantic white-sided dolphin, a pygmy sperm whale, and two harbor seals. *Journal of the American Veterinary Medical Association*, v. 208, n. 5, p. 727–729, 1996.

FRIEND, M.; FRANSON, J. C. Avian pox. Field Manual of Wildlife Diseases: General Field Procedures and Diseases of Birds. Washington: US Department of the Interior, Fish and Wildlife Service, 1999. p. 99–110.

FURY, C. A.; REIF, J. S. Incidence of poxvirus-like lesions in two estuarine dolphin populations in Australia: Links to flood events. *Science of The Total Environment*, v. 416, p. 536-540, 2012.

GALES, N.; WALLAGE, G.; DICKSON, J. Pulmonary cryptocciosis in a striped dolphin (*Stenella coeruleoalba*). *Journal of Wildlife Diseases*, v. 21, n. 4, p. 443–446, 1985.

GALLARDO-ROMERO, N. F.; Drew, C. P.; Weiss, S. L.; Metcalfe, M. G.; Nakazawa, Y. J.; Smith, S. K.; EMERSON, G. L.; HUTSON, C. L.; SALZER, J. S.; BARTLETT, J. H.; OLSON, V. A.; CLEMMONS, C. J.; DAVIDSON, W. B.; ZAKI, S. R.; KAREM, K. L.; DAMON, I. K.; CARROLL, D. S. The pox in the North American backyard: Volepox virus pathogenesis in California mice (*Peromyscus californicus*). *PLOS ONE*, v. 7, n. 8, p. e43881, 2012.

GALVANI, A. P; SLATKIN, M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. *Proceedings of the National Academy of Sciences of the United States of America*, v. 100, n. 25, p. 15276–15279, 2003.

GARCIA, N. M.; DEL NEGRO, G. M.; HEINS-VACCARI, E. M.; DE MELO, N. T.; DE ASSIS, C. M.; DA LACAZ, C. S. *Paracoccidioides brasiliensis*, a new sample isolated from feces of a penguin (*Pygoscelis adeliae*). *Revista do Instituto de Medicina Tropical de São Paulo*, v. 35, n. 3, p. 227–35, 1993.

GARLAND, S. M.; STEBEN, M. Genital herpes. *Best Practice & Research Clinical Obstetrics & Gynaecology*, v. 28, n. 7, p. 1098-1110, 2014.

GAUTHIER, G. M. Dimorphism in fungal pathogens of mammals, plants, and insects. *PLOS Pathogens*, v. 11, n. 2, p. e1004608, 2015.

GERACI, J. R.; HICKS, B. D.; ST AUBIN, D. J. Dolphin pox: a skin disease of cetaceans. *Canadian Journal of Comparative Medicine. Revue Canadienne de Medecine Comparee*, v. 43, n. 4, p. 399-404, 1979.

GERACI, J. R.; LOUNSBURY, V. J. Marine mammals ashore: a field guide for strandings, 2 ed. Baltimore: National Aquariumin Baltimore, 2005, p. 382.

GIBSON, A. K.; RAVERTY, S.; LAMBOURN, D. M.; HUGGINS, J.; MAGARGAL, S. L.; GRIGG, M. E. Polyparasitism is associated with increased disease severity in *Toxoplasma gondii*-infected marine sentinel species. *PLOS Neglected Tropical Diseases*, v. 5, n. 5, p. e1142, 2011.
GILARDI, K. V. K.; OXFORD, K. L.; GARDNER-ROBERTS, D.; KINANI, J. F.; SPELMAN, L.; BARRY, P. A.; CRANFIELD, M. R.; LOWENSTINE, L. J. *Human herpes simplex virus* type 1 in confiscated gorilla. *Emerging Infectious Diseases*, v. 20, n. 1883-1886, 2014.

GUIMARÃES, J. P.; MARI, R. B.; MARIGO, J.; ROSAS, F. C. W.; WATANABE, I. 2011. Light and scanning electron microscopic study of the tongue in the estuarine dolphin (*Sotalia guianensis* van Bénéden, 1864). *Zoological Science*, v. 28, n. 8, p. 617–622.

GUIMARÃES, J. P.; MARI, R. B.; MARIGO, J.; ROSAS, F. C. W.; WATANABE, I. Gross and microscopic observations on the lingual structure of the franciscana (*Pontoporia blainvillei*—Gervais and D’Orbigny, 1844). *Microscopy research and technique*, v. 75, n. 6, p. 737-742, 2012.

GINN, P. E.; MANSELL, J. E. K. L.; RAKICH, P. M. Skin and Appendages. In: MAXIE, M. G. (Ed.) *Jubb, Kennedy & Palmer’s Pathology of domestic animals*, 5 Ed., Philadelphia: Saunders Elsevier: 2007, p. 553-781.

GJESSING, M. C.; YUTIN, N.; TENG, T.; SENKEVICH, T.; KOONIN, E.; RØNNING, H. P.; KOONIN, E.; RØNNING, H. P.; ALARCON, M.; YLVING, S.; LIE K-I.; SAURE, B.; TRAN, L.; MOSS, B.; DALEA, O. B. Salmon gill poxvirus, the deepest representative of the *Chordopoxvirinae*. *Journal of Virology*, v. 89, n. 18, p. 9348–9367, 2015.

GOLDSTEIN, T.; MAZET, J. A.; GULLAND, F. M.; ROWLES, T.; HARVEY, J. T.; ALLEN, S. G.; KING, D. P.; ALDRIDGE, B. M.; STOTT, J. L. The transmission of *phocine herpesvirus-1* in rehabilitating and free-ranging Pacific harbor seals (*Phoca vitulina*) in California. *Veterinary Microbiology*, v. 103, n. 3-4, p. 131–141, 2004.

GOLDSTEIN, T.; MAZET, J. A.; LOWENSTINE, L. J.; GULLAND, F. M.; ROWLES, T. K.; KING, D. P.; ALDRIDGE, B. M.; STOTT, J. L. Tissue distribution of *phocine herpesvirus-1* (*PhHV-1*) in infected harbour seals (*Phoca vitulina*) from the central Californian coast and a comparison of diagnostic methods. *Journal of Comparative Pathology*, v. 133, n. 2-3, p. 175–183, 2005.

GONZALES-VIERA, O.; MARIGO, J.; RUOPPOLO, V.; CARVALHO, V. L.; ROSAS, F. C. W.; BERTOZZI, C. P.; CATÃO-DIAS, J. L. Occurrence of *Toxoplasma gondii*, papillomavirus and poxvirus Infections in Brazilian Dolphins. In: 2012 ANNUAL AMERICAN ASSOCIATION OF ZOO AND WILDLIFE VETERINARIANS CONFERENCE, 1-1, 2012, Oakland. 2012.

GONZALES-VIERA, O.; MARIGO, J.; RUOPPOLO, V.; KANAMURA, C. T.; TAKAKURA, C.; RODRIGUEZ, A. J. F.; CATÃO-DIAS, J. L. Toxoplasmosis in a Guiana dolphin (*Sotalia guianensis*) from Paraná, Brazil. *Veterinary Parasitology*, v. 191, n. 3-4, p. 358-362, 2013.

GONZALES-VIERA, O.; RUOPPOLO, V.; MARIGO, J.; BERTOZZI, C. P.; DUARTE, M. I. S.; TAKAKURA, C.; VANSTREELS, R. E. T.; CATÃO-DIAS, J. L. Oranal papilloma in a rough-toothed dolphin (*Steno bredanensis*) exposed to high levels of PCB’s and DDT’s. In: 60TH ANNUAL INTERNATIONAL CONFERENCE OF THE WILDLIFE DISEASE ASSOCIATION (WDA), 176-176, 2011, Quebec City. 2011.
GRAVENA, W.; FARIAS, I. P.; DA SILVA, M. N. F.; DA SILVA, V. M. F.; HRBEK, T. Looking into the past and the future: were the Madeira River rapids a geographical barrier to the boto (Cetacea: Iniidae)? Conservation Genetics, v. 15, n. 3, p. 619-629, 2014.

GREENWOOD, A. D.; TSANGARAS, K.; HO, S. Y.; SZENTIKS, C. A.; NIKOLIN, V. M.; MA, G.; DAMIANI, A.; EAST, M. L.; LAWRENZ, A.; HOFER, H.; OSTERRIEDER, N. A potentially fatal mix of herpes in zoos. Current Biology, v. 22, n. 18, p. 1727-1731, 2012.

GROCH, K. Interação antropogênica e sanidade de baleias-jubarte (Megaptera novaeangliae) na costa brasileira. 2014. p. 139. Thesis (Thesis of Veterinary Science) - Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2008.

GROCH, K. R.; COLOSIO, A. C.; MARCONDES, M. C.; ZUCCA, D.; DÍAZ-DELGADO, J.; NIEMEYER, C.; MARIGO, J.; BRANDÃO, P. E.; FERNANDEZ, A.; CATÃO-DIAS, J. L. Novel cetacean morbillivirus in Guiana dolphin, Brazil. Emerging Infectious Diseases, v. 20, n. 3, p. 11-13, 2014.

GUASS, O.; HAAPANEN, L. M.; DOWD, S. E.; ŠIROVIĆ, A.; MCLAUGHLIN, R. W. Analysis of the microbial diversity in faecal material of the endangered blue whale, Balaenoptera musculus. Antonie van Leeuwenhoek, v. 109, n. 7, p. 1063-1069, 2016.

GUBSER, C.; HUE, S.; KELLAM, P.; SMITH, G. L. Poxvirus genomes: a phylogenetic analysis. Journal of General Virology, v. 85, n. 1, p. 105-117, 2004.

GUBSER, C.; SMITH, G. L. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. Journal of General Virology, v. 83, n. 4, p. 855–872, 2002.

GUGNANI, H. C. Entomophthoromycosis due to Conidiobolus. European Journal of Epidemiology, v. 8, n. 3, p. 391–396, 1992.

GULLAND, F. M. D.; HALL, A. J. The role of infectious disease in influencing status and trends. In: REYNOLDS, J. E.; PERRIN, W. F.; REEVES, R. R.; MONTGOMERY, S.; RAGEN T. (Ed.), Marine mammal research: conservation beyond crisis. Baltimore: Johns Hopkins University Press, 2006. p. 46–61.

HALLER, S. L.; PENG, C.; MCFADDEN, G.; ROTHENBURG, S. Poxviruses and the evolution of host range and virulence. Infection, Genetics and Evolution, v. 21, p. 15-40, 2014.

HANSON, D.; DIVEN, D. G. Molluscum contagiosum. Dermatology Online journal, v. 9, n. 2, p. 2, 2003.

HART, L. B.; ROTSTEIN, D. S.; WELLS, R. S.; ALLEN, J.; BARLEYCORN, A.; BALMER, B. C.; LANE, S. M.; SPEAKMAN, T.; ZOLMAN, E. S.; STOLEN, M.; MCFEE, W.; GOLDSTEIN, T.; ROWLES, T. K.; SCHWAKE, L. H. Skin lesions on common bottlenose dolphins (Tursiops truncatus) from three sites in the northwest Atlantic, USA. PLOS ONE, v. 7, n. 3, e33081, 2012.
HARZEN, S.; BRUNNICK, B. J. Skin disorders in bottlenose dolphins (*Tursiops truncatus*), resident in the Sado Estuary, Portugal. *Aquatic Mammals*, v. 23, n. 1, p. 59–68, 1997.

HEINK, U.; KOWARIK, I. What are indicators? On the definition of indicators in ecology and environmental planning. *Ecological Indicators*, v. 10, n. 3, p. 584-593. 2010.

HICKS, B. D. ST.; SUBIN, D. J.; GERACI, J. R.; BROWN, W. R. Epidermal growth in the bottlenose dolphin, *Tursiops truncatus*. *The Journal of Investigative Dermatology*, v. 85, n. 1, p. 60–63, 1985.

HILL, J. M.; GEBHARDT, B. M.; WEN, R.; BOUTERIE, A. M.; THOMPSON, H. W.; O’CALLAGHAN, R. J.; HALFORD, W. P.; KAUFMAN, H. E. Quantitation of *Herpes simplex virus* type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. *Journal of Virology*, v. 70, n. 5, p. 3137-3141, 1996.

HILTY, J.; MERENLENDER, A. Faunal indicator taxa selection for monitoring ecosystem health. *Biological Conservation*, v. 92, n. 2, p. 185–197, 2000.

HOSHINA, T.; SIGIURA Y. On a skin disease and nematode parasite of a dolphin *Tursiops truncatus* (Montagu, 1821). *Scientific Whale Research Institute*, v. 1, p 133–137, 1956.

HUBÁLEK, Z. Emerging Human Infectious Diseases: Anthroponoses, zoonoses, and sapronoses. *Emerging Infectious Diseases*, v. 9, n. 3, p. 403-404, 2003.

HUCKABONE, S. E.; GULLAND, F. M.; JOHNSON, S. M.; COLEGROVE, K. M.; DODD, E. M.; PAPPAGIANIS, D.; DUNKIN, R. C.; CASPER, D.; CARLSON, E. L.; SYKES, J. E.; MEYER, W.; MILLER, M. A. Coccidioidomycosis and other systemic mycoses of marine mammals stranding along the central California, USA coast: 1998–2012. *Journal of Wildlife Diseases*, v. 51, n. 2, p. 295-308, 2015.

HUFF, J. L.; BARRY, P. A. B-virus (*Cercopithecine herpesvirus 1*) infection in humans and macaques: potential for zoonotic disease. *Emerging Infectious Diseases*, v. 9, n. 2, p. 246–250, 2003.

ICTV (International Committee on Taxonomy of Viruses). Virus Taxonomy: The Classification and Nomenclature of Viruses The Online (9th) Report of the ICTV. 2016. Email ratification 2017 (MSL #31). Available at: https://talk.ictvonline.org/ictv-reports/ictv_online_report/. Consulted on: 01 Jul. 2017.

ISIDORO-AYZA, M.; PÉREZ, L.; CABAÑES, F. J.; CASTELLÀ, G.; ANDRÉS, M.; VIDAL, E.; DOMINGO, M. Central nervous system mucormycosis caused by *Cunninghamamella Bertholletiae* in a bottlenose dolphin (*Tursiops Truncatus*). *Journal of Wildlife Diseases*, v. 50, n. 3, p. 634-638, 2014.

JARDINE, J. E.; DUBEY, J. P. Congenital toxoplasmosis in a Indo-Pacific bottlenose dolphin (*Tursiops aduncus*). *Journal of Parasitology*, v. 88, n. 1, p.197-199, 2002.

JENSEN, E. D.; LIPSCOMB, T.; VAN BONN, B.; MILLER, G.; FRADKIN, J. M.; RIDGWAY, S. H. Disseminated histoplasmosis in an Atlantic bottlenose dolphin
JEPSON, P. D.; DEAVILLE, R.; LAW, J. L. PCB pollution continues to impact populations of orcas and other dolphins in European waters. *Scientific Reports*, v. 6, p. 18573, 2016.

JOHNE, R.; KNORATH, A.; KRAUTWALD-JUNGHANNS, M. E.; KALETÅ, E. F.; GERLACH, H.; MÜLLER, H. Herpesviral, but no papovaviral sequences, are detected in cloacal papillomas of parrots. *Archives of Virology*, v. 147, n. 10, p. 1869–1880, 2002.

JONES, F. M.; PFEIFFER, C. J. Morphometric comparison of the epidermis in several cetacean species. *Aquatic Mammals*, v. 20, n. 1, p. 29-29, 1994.

JOSEPH, B. E.; CORNELL, L. H.; SIMPSON, J. G.; MIGAKI, G.; GRINER, L. Pulmonary aspergillosis in three species of dolphin. *Zoo Biology*, v. 5, n. 3, p. 301–308, 1986.

MESCHER, A. L. The male reproductory system. *Junqueira’s basics histology text and atlas*. 13 ed. McGraw Hill, 2013, p. 429-448.

MESCHER, A. L. The female reproductory system. *Junqueira’s basics histology text and atlas*. 13 ed. McGraw Hill, 2013, p. 449-478.

KAPLAN, M. B.; MOONEY, T. A.; MCCORKLE, D. C.; COHEN, A. L. Adverse Effects of Ocean Acidification on Early Development of Squid (*Doryteuthis pealeii*). *PLOS ONE*, v. 8, n. 5, p. e63714, 2013.

KEMPER, C. M.; TOMO, I.; BINGHAM, J.; BASTIANELLO, S. S.; WANG, J.; GIBBS, S. E.; WOOLFORD, L.; DICKASON, C.; KELLY, D. Morbillivirus-associated unusual mortality event in South Australian bottlenose dolphins is largest reported for the Southern Hemisphere. *Royal Society Open Science*, v. 3, n. 12, p. 160838, 2016.

KENDALL, R.; HOWARD, L.; MASTERS, N.; GRANT, R. The impact of *Elephant endotheliotropic herpesvirus* on the captive Asian elephant (*Elephas maximus*) population of the United Kingdom and Ireland (1995–2013). *Journal of Zoo and Wildlife Medicine*, v. 47, n. 2, p. 405-418, 2016.

KERR, P. J.; LIU, J.; CATTADORI, I.; GHEDIN, E.; READ, A. F.; HOLMES, E. C. *Myxoma virus* and the *Leporipoxviruses*: an evolutionary paradigm. *Viruses*, v. 7, n. 3, p. 1020-1061, 2015.

KIM, K; HARVELL, C. D. The rise and fall of a six-year coral-fungal epizootic. *The American Naturalist*, v. 164, n. 5, p. 52-63, 2004.

KIM, T. J.; SCHNITZLEIN, W. M.; MCALOOSE, D.; PESSIER, A. P.; TRIPATHY, D. N. Characterization of an avianpox virus isolated from an Andean condor (*Vultur gryphus*). *Veterinary Microbiology*, v. 96, n. 3, p. 237-246, 2003.

KING, D. P.; HURE, M. C.; GOLDSSTEIN, T.; ALDRIDGE, B. M.; GULLAND, F. M. D.; SALIKI, J. T.; BUCKLES, E. L.; LOWENSTINE, L. J.; STOTT, J. L. *Otarine herpesvirus*-1: a novel gammaherpesvirus associated with urogenital carcinoma in...
California sea lions (*Zalophus californianus*). *Veterinary Microbiology*, v. 86, n. 1-2, p. 131–137, 2002.

KIRKWOOD, J. K.; BENNETT, P. M.; JEPSON, P. D.; KUIKEN, T.; SIMPSON, V. R.; BAKER, J. R. Entanglement in fishing gear and other causes of death in cetaceans stranded on the coasts of England and Wales. *The Veterinary Record*, v. 141, n. 4, p. 94–98, 1997.

KLEINDORFER, S.; DUDANIEC, R. Y. Increasing prevalence of avian poxvirus in Darwin’s finches and its effect on male pairing success. *Journal of Avian Biology*, v. 37, n. 1, p. 69-76, 2006.

KUIKEN, T.; ROSS, H. M.; MCALISKEY, M.; MOFFETT, D.; MCNIVEN, C. M.; CAROLE, M. Morbillivirus infection in two common porpoises (*Phocoena phocoena*) from the coasts of England and Scotland. *The Veterinary Record*, v. 131, p. 286-290, 1992.

KURIS, A. M.; LAFFERTY, K. D.; SOKOLOW, S. H. Sapronosis: a distinctive type of infectious agent. *Trends in Parasitology*, v. 30, n. 8, p. 386-393, 2014.

LAMBERTSEN, R. H.; KOHN, B. A.; SUNDBERG, J. P.; BUERGELT, C. D. Genital papillomatosis in sperm whale bulls. *Journal of Wildlife Diseases*, v. 23, n. 3, p. 361-367, 1987.

LANE, E.; DE WET, M.; THOMPSON, P.; SIEBERT, U.; WOHLSEIN, P.; PLÖN, S. A systematic health assessment of Indian Ocean bottlenose (*Tursiops aduncus*) and Indo-Pacific humpback (*Sousa plumbea*) dolphins, incidentally caught in the shark nets off the KwaZulu-Natal coast, South Africa. *PLOS ONE*, v. 9, n. 9, p. e107038, 2014.

LECIS, R.; TOCCHETTI, M.; ROTTA, A.; NAITANA, S.; GANGES, L.; PITTAU, M.; ALBERTI, A. First gammaherpesvirus detection in a free-living Mediterranean bottlenose dolphin. *Journal of Zoo and Wildlife Medicine*, v. 45, n. 4, p. 922-925, 2014.

LI, H.; TAUS, N. S.; LEWIS, G. S.; KIM, O.; TRAUL, D. L.; CRAWFORD, T. B. Shedding of *Ovine herpesvirus 2* in sheep nasal secretions: the predominant mode for transmission. *Journal of Clinical Microbiology*, v. 42, n. 12, p. 5558-5564, 2004.

LIPS, K. R.; BREM, F.; BRENES, R.; REEVE, J. D.; ALFORD, R. A.; VOYLES, J.; CAREY, C.; LIVO, L.; PESSIER, A. P.; COLLINS, J. P. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. *Proceedings of the National Academy of Sciences of the United States of America*, v. 103, n. 9, p. 3165–3170, 2006.

LIPSCOMB, T. P.; KENNEDY, S.; MOFFET, D.; KRAFT, A.; KLAUNBERG, B. A.; LICHY, J. H.; REGAN, G. T.; WORTHY, G. A. J.; TAUBENBERGER, J. K. Morbilliviral epizootic in bottlenose dolphins of the Gulf of Mexico. *Journal of Veterinary Diagnostic Investigation*, v. 8, n. 3, p. 283-290, 1996.

LIPSCOMB, T. P.; KENNEDY, S.; MOFFETT, D.; FORD, B. K. Morbilliviral disease in an Atlantic bottlenose dolphin (*Tursiops truncatus*) from the Gulf of Mexico. *Journal of Wildlife Diseases*, v. 30, n. 4, p. 572-576, 1994.
LITZ, J. A.; BARAN, M. A.; BOWEN-STEVENS, S. R.; CARMICHAEL, R. H.; COLEGROVE, K. M.; GARRISON, L. P.; FIRE, S. E.; FOUGERES, E. M.; HARDY, R.; HOLMES, S.; JONES, W.; MASE-GUTHRIE, B. E.; ODELL, D. K.; ROSEL, P. E.; SALIKI J. T.; SHANNON, D. K.; SHIPPEE, S. F.; SMITH, S. M.; STRATTON, E. M.; TUMLIN, M. C.; WHITEHEAD, H. R.; WORTHY, G. A.; ROWLES, T. K. Review of historical unusual mortality events (UMEs) in the Gulf of Mexico (1990-2009): providing context for the multi-year northern Gulf of Mexico cetacean UME declared in 2010. Diseases of Aquatic Organisms, v. 112, n. 2, p. 161-175, 2014.

LODI, L.; BOROBIA, M. Baleias botos e golfinhos do Brasil, guia de identificação. Rio de Janeiro: Technical books editora, 2013. 480 p.

LONG, S. Y.; LATIMER, E. M.; HAYWARD, G. S. Review of elephant endotheliotropic herpesviruses and acute hemorrhagic disease. ILAR Journal, v. 56, n. 3, p. 283-296, 2016.

LORCH, J. M.; KNOWLES, S.; LANKTON, J. S.; MICHELL, K.; EDWARDS, J. L.; KAPFER, J. M.; STAFFEN, R. A.; WILD, E. R.; SCHMIDT, K. Z.; BALLMANN, A. E.; BLODGETT, D.; FARRELL, T. M.; GLORIÓSO, B. M.; LAST, L. A.; PRICE, S. J.; SCHULER, K. L.; SMITH, C. E.; WELLEHAN, J. F. JR.; BLEHERT, D. S. Snake fungal disease: an emerging threat to wild snakes. Philosophical Transactions of the Royal Society B, v. 371, n. 1709, p. 20150457, 2016.

MACLACHLAN, N. J; DUBOVI, E. J. Chapter 7, Poxviridae, Fenner's Veterinary Virology, 5 ed. San Diego: Academic press, 2010. p. 157-174.

MACLACHLAN, N. J; DUBOVI, E. J. Chapter 9, Herpesvirales, Fenner's Veterinary Virology, 5 ed. San Diego: Academic press, 2010. p. 190-215.

MALDINI, D.; RIGGIN, J.; CECCHETTI, A.; COTTER, M. P. Prevalence of epidermal conditions in california coastal bottlenose dolphins (Tursiops truncatus) in Monterey Bay. Ambio, v. 39, n. 7, p. 455-462, 2010.

MALIK, R.; KROCKENBERGER, M. B.; CROSS, G.; DONELEY, R.; MADILL, D. N.; BLACK, D.; MCWHIRTER, P.; ROZENWAX, A.; ROSE, K.; ALLEY, M.; FORSHAW, D.; RUSSELL-BROWN, I.; JOHNSTONE, A. C.; MARTIN, P.; O’BRIEN, C. R.; LOVE, D. N. Avian cryptococcosis. Medical Mycology, v. 41, n. 2, p. 115-24, 2003.

MANESS, H. T.; NOLLENS, H. H.; JENSEN, E. D.; GOLDSMITH, T.; LAMBERG, S.; CHILDRESS, A.; SYKES, J.; ST LEGER, J.; LACAVE, G.; LATSON, F. E.; WELLEHAN, J. F. JR. Phylogenetic analysis of marine mammal herpesviruses. Veterinary Microbiology, v. 149, n. 1, p. 23–29, 2011.

MANIRE, C. A.; SMOLAREK, K. A.; ROMERO, C. H.; KINSEL, M. J.; CLAUS, T. M.; BYRD, L. Proliferative dermatitis associated with a novel Alphaherpesvirus in an Atlantic bottlenose dolphin (Tursiops truncatus). Journal of Zoo and Wildlife Medicine, v. 37, v. 2, p. 174-181, 2006.

MANTEL, A.; CARPENTER-MENDINI, A.; VANBUSKIRK, J.; DE BENEDETTI, A.; BECK, L.; PENTLAND, A. P. Aldo-keto reductase 1C3 (AKR1C3) is expressed in differentiated human epidermis, affects keratinocyte differentiation, and is
upregulated by atopic dermatitis. Journal of Investigative Dermatology, v. 132, n. 4, p. 1103–1110, 2012.

MARIGO, J.; RUOPPOLO, V.; ROSAS, F. C. W.; VALENTE, A.; OLIVEIRA, M. R.; DIAS, R. A.; CATÃO-DIAS, J. L. Helminths of Sotalia guianensis (Cetacea: Delphinidae) from the south and southeastern coasts of Brazil. Journal of Wildlife Diseases, v. 46, n. 2, p. 599-602, 2010.

MARQUES, S. A. Paracoccidioidomycosis. Clinics in Dermatology, v. 30, n. 6, p. 610-615, 2012.

MARSCHANG, R. E. Viruses infecting reptiles. Viruses, v. 3, n. 11, p. 2087-2126, 2011.

MARSHALL, I. D.; REGNERY, D. C. Myxomatosis in a Californian Brush Rabbit (Sylvilagus bachmani). Nature, v. 188, n. 4744, p. 73-74, 1960.

MARTEL, A.; BLOOI, M.; ADRIAENSEN, C.; VAN ROOIJ, P.; BEUKEMA W.; FISHER, M. C.; FARRER, R. A.; SCHMIDT, B. R.; TOBLER, U.; GOKA, K.; LIPS, K. R.; MULETZ, C.; ZAMUDIO, K. R.; BOSCH, J.; LÖTTERS, S.; WOMBWELL, E.; GARNER, T. W. J.; CUNNINGHAM, A. A.; SPITZEN-VAN DER SLUIJS, A.; SALVIDIO, S.; DUCATELLE, R.; NISHIKAWA, K.; NGUYEN, T. T. T.; KOLBY, J. E.; VAN BOCXLAER, I.; BOSSUYT, F.; PASMANS, F. Wildlife disease. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science, v. 346, n. 6209, p. 630–631, 2014.

MARTINA, B. E.; VAN DOORNUM, G.; DORRESTEIN, G. M.; NIETERS, H. G.; STITTELAAR, K. J.; WOLTERS, M. A. D. I.; VAN BOLHUIS, H. G. H.; OSTERHAUS, A. D. M. E. Cowpox virus transmission from rats to monkeys, the Netherlands. Emerging Infectious Diseases, v.12, n. 6, p. 1005-1007, 2006.

MARTINEAU, D.; LAGACE, A.; BELAND, P.; HIGGINS, R.; ARMSTRONG, D.; SHUGART, L. R. Pathology of stranded beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary, Québec, Canada. Journal of Comparative Pathology, v. 98, n. 3, p. 287-311, 1988.

MARTINEAU, D.; LEMBERGER, K.; DALLAIRE, A.; LABELLE, P.; LIPSCOMB, T. P.; MICHEL, P.; MIKAELIAN, I. Cancer in wildlife, a case study: beluga from the St. Lawrence estuary, Québec, Canada. Environmental Health Perspectives, v. 110, n. 3, p. 285–292, 2002.

MASOT, J. A.; GIL, M.; RISCO, D.; JIMÉNEZ, O. M.; NÚÑEZ, J. I.; REDONDO, E. Pseudorabies virus infection (Aujeszky’s disease) in an Iberian lynx (Lynx pardinus) in Spain: a case report. BMC Veterinary Research, v. 13, p. 6, 2017.

MAZZARIOL, S.; MARRUCCHELLA, G.; DI GUARDO, G.; PODESTA, M.; OLIVIERI, V.; COLANGELO, P.; KENNEDY, S.; CASTAGNARO, M.; COZZI, B. Post-mortem Findings in Cetacean Stranded along Italian Adriatic Sea coastline (2000–2006). SC/59/DW6, p. 1-8, 2007.

MCADAM, A. J.; SHARPE, A. H. Doenças Infecciosas. In: KUMAR, V.; ABBAS, A. K.; FAUSTO, N.; ASTER, J. C. (Ed.). Robbins and Cotran Pathologic Basis of Disease, 8 ed. Philadelphia: Saunders Elsevier, 2010. p. 331-405.
MCALOOSE, D.; RAGO, M. V.; DI MARTINO, M.; CHIRIFE, A.; OLSON, S. H.; BELTRAMINO, L.; POZZI, L. M.; MUSMECI, L.; LA SALA, L.; MOHAMED, N.; SALA, J. E.; BANDIERI, L.; ANDREJUK, J.; TOMASZEWICZ, A.; SEIMON, T.; SIRONI, M.; SAMARTINO, L. E.; ROWNTREE, V.; UHART.; M. M. Post-mortem findings in southern right whales *Eubalaena australis* at Peninsula Valdés, Argentina, 2003–2012. *Diseases of Aquatic Organisms*, v. 119, n. 1, p. 17–36, 2016.

MCCALLUM, H.; HARVELL, D.; DOBSON A. Rates of spread of marine pathogens. *Ecology Letters*, v. 6, n. 2, p. 1062–1067, 2003.

MCGEOCH, D. J.; COOK, S.; DOLAN, A.; JAMIESON, F. E.; TELFORD, E. A. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. *Journal of Molecular Biology*, v. 247, n. 3, p. 443-458, 1995.

MCGEOCH, D. J.; RIXON, F. J.; DAVISON, R. A. Topics in herpesvirus genomics and evolution. *Virus Research*, v. 117, n. 1, p. 90–104, 2006.

MCINNES, C. J.; COULTER, L.; DAGLEISH, M. P.; DEANE, D.; GILRAY, J.; PERCIVAL, A.; WILLOUGHBY, K.; SCANTLEBURY, M.; MARKS, N.; GRAHAM, D.; EVEREST, D. J.; MCGOLDRICK, M.; ROCHFORD, J.; MCKAY, F.; SAINSbury, A. W. The emergence of squirrelpox in Ireland. *Animal Conservation*, v. 16, n. 1, p. 51–59, 2013.

MCINNES, C. J.; COULTER, L.; DAGLEISH, M. P.; FIEGNA, C.; GILRAY, J.; WILLOUGHBY, K.; COLE, M.; MILNE, E.; MEREDITH, A.; EVEREST, D. J.; MACMASTER, A. M. First cases of squirrelpox in red squirrels (*Sciurus vulgaris*) in Scotland. *The Veterinary Record*, v. 164, n. 17, p. 528-531, 2009.

MEGID, J.; BORGES, I. A.; ABRAHÃO, J. S.; TRINDADE, G. S.; APPOLINÁRIO, C. M.; RIBEIRO, M. G.; ALLENDORF, S. D.; ANTUNES, J. M. A. P.; SILVA-FERNANDES, A. T.; KROON, E. G. *Vaccinia virus* zoonotic infection, Sao Paulo state, Brazil. *Emerging infectious diseases*, v. 18, n. 1, p. 189-191, 2012.

MELERO, M.; GARCÍA-PÁRRAGA, D.; CORPA, J. M.; ORTEGA, J.; RUBIO-GUERRI, C.; CRESPO, J. L.; RIVERA-ARROYO, B.; SÁNCHEZ-VIZCAÍNO, J. M. First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus (*Odobenus rosmarus divergens*). *BMC Veterinary Research*, v. 10, p. 968, 2014.

MENON, G. K.; GRAYSON, S.; BROWN, B. E.; ELIAS, P. M. Lipokeratinocytes of the epidermis of a cetacean (*Phocoena phocoena*). *Cell and Tissue Research*, v. 244, n. 2, p. 385–394, 1986.

MEYER, W.; SEEGER, S. A preliminary approach to epidermal antimicrobial defense in Delphinidae. *Marine Biology*, v. 144, n. 5, p. 841–844, 2004.

MIGAKI, G.; VALERIO, M. G.; IRVINE, B.; GARNER, F. M. Lobo's disease in an Atlantic bottle-nosed dolphin. *Journal of the American Veterinary Medical Association*, v. 159, n. 5, p. 578–582, 1971.

MILLER, W. G.; ADAMS, L. G.; FICHT, T. A.; CHEVILLE, N. F.; PAYEUR, J. P.; HARLEY, D. R.; HOUSE, C.; RIDGWAY, S. H. *Brucella*-induced abortions and
infection in bottlenose dolphins (*Tursiops truncatus*). *Journal of Zoo and Wildlife Medicine*, v. 30, n. 1, p. 100–110, 1999.

MILLER, W. G.; PADHYE, A. A.; VAN BONN, W.; JENSEN, E.; BRANDT, M. E.; RIDGWAY, S. H. Cryptococcosis in a bottlenose dolphin caused by *Cryptococcus neoformans* var. *gatti*. *Journal of Clinical Microbiology*, v. 40, n. 2, p. 721–724, 2002.

MINAKAWA, T.; UEDA, K.; TANAKA, M.; TANAKA, N.; KUWAMURA, M.; IZAWA, T.; KONNO, T.; YAMATE, J.; ITANO, E. N.; SANO, A.; WADA, S. Detection of multiple budding yeast cells and a partial sequence of 43-kDa Glycoprotein coding gene of *Paracoccidioides brasiliensis* from a case of lacaziosis in a female Pacific white-sided dolphin (*Lagenorhynchus obliquidens*). *Mycopathologia*, v. 181, n. 7-8, p. 523-529, 2016.

MONTAGNA, W. Comparative anatomy and physiology of the skin. *Archives of Dermatology*, v. 96, n. 4, p. 357–363, 1967.

MONTIE, E. W.; FAIR, P. A.; BOSSART, G. D.; MITCHUM, G. B.; HOUDE, M.; MUIR, D. C.; LETCHER, R. J.; MCFEE, W. E.; STARCZAK, V. R.; STEGEMAN, J. J.; HAHN, M. E. Cytochrome P4501A1 expression, polychlorinated biphenyls and hydroxylated metabolites, and adipose size of bottlenose dolphins from the southeast United States. *Aquatic Toxicology*, v. 86, n. 3, p. 397–412, 2008.

MOORE, S. E. Marine mammals as ecosystem sentinels. *Journal of Mammalogy*, v. 89, n. 3, p. 534–540, 2008.

MORENO, I. B.; OTT, P. H.; TAVARES, M.; OLIVEIRA, L. R.; BORBA, M. R.; DRIEMEIER, D.; NAKASHIMA, S. B.; HEINZELMANN, L. S.; SICILIANO, S.; VAN BRESSEM, M. F. Mycotic dermatitis in common bottlenose dolphins (*Tursiops truncatus*) from Southern Brazil, with a confirmed record of lobomycosis disease. In: International Whaling Commission (ed.) *Workshop on cetacean skin diseases*, IWC, Santiago de Chile, SC/60/DW1, 2008, p. 1–11,

MORENO, S.; BELTRÁN, J. F.; COTILLA, I.; KUFFNER, M. B.; LAFFITE, R.; JORDÁN, G.; AYALA, J.; QUINTERO, C.; JIMÉNEZ, A.; CASTRO, F.; CABEZAS, S.; VILLAFUERTE, R. Long-term decline of the European wild rabbit (*Oryctolagus cuniculus*) in south-western Spain. *Wildlife Research*, v. 34, n. 8, p. 652-658, 2008.

MORRIS, P. J.; JOHNSON, W. R.; PISANI, J.; BOSSART, G. D.; ADAMS, J.; REIF, J. S.; FAIR, P. A. Isolation of culturable microorganisms from free-ranging bottlenose dolphins (*Tursiops truncatus*) from the southeastern United States. *Veterinary Microbiology*, v. 148, n. 2, p. 440-447, 2011.

MOSS, B. *Poxviridae*. In: KNIFE, D. M.; HOWLEY, P. M.; COHEN, J. I.; GRIFFIN, D. E.; LAMB, R. A.; MARTIN, M. A.; RACANIELLO, V. R.; ROIZMAN, B. (Ed.). *Fields Virology*, 6 ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2013. p. 2129–2159.

MOUTON, M.; BOTHA, A. Cutaneous Lesions in Cetaceans: An Indicator of Ecosystem Status?. In: Romero, A.; Keith, E. A. (Ed.). *New Approaches to the Study of Marine Mammals*. In Tech Open Science Pub, 2012. p. 123-150
NAGELKERKEN, I.; CONNELL, S. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. *Proceedings of the National Academy of Sciences*, v. 112, n. 43, p. 13272–13277, 2015.

NAIFF, R. D.; FERREIRA, L. C. L.; BARRETT, T. V.; NAIFF, M. F.; ARIAS, J. R. Paracoccidioidomicose enzoótica em tatus (*Dasypus novemcinctus*) no estado do Pará. *Revista do Instituto de Medicina Tropical de São Paulo*, v. 28, n. 1, p. 19-27, 1986.

NAOTA, M.; SHIMADA, A.; MORITA, T.; KIMURA, K.; OCHIAI, K.; SANO, A. Granulomatous pericarditis associated with systemic mucormycosis in a finless porpoise (*Neophocaena phocaenoides*). *Journal of Comparative Pathology*, v. 140, n. 1, p. 64-66, 2009.

NAPLES, L. M.; POLL, C. P.; BERZINS, I. K. Successful treatment of a severe case of fusariomycosis in a beluga whale (*Delphinapterus leucas leucas*). *Journal of Zoo and Wildlife Medicine*, v. 43, n. 3, p. 596-602, 2012.

NESTLE, F. O.; DI MEGLIO, P.; QIN, J. Z.; NICKOLOFF, B. J. Skin immune sentinels in health and disease. *Nature Reviews Immunology*, v. 9, n. 10, 679-691, 2009.

NEMOTO, T. On the diatoms of the skin film of whales in the northern pacific. *The Scientific Reports of the Whales Research Institute*, v. 11-13, p. 99-132, 1956.

NIELSEN, K.; DE OBALDIA, A. L.; HEITMAN, J. *Cryptococcus neoformans* mates on pigeon guano: implications for the realized ecological niche and globalization. *Eukaryotic Cell*, v. 6, n. 6, p. 949–959, 2007.

NIELMEYER, C.; FAVERO, C. M.; KOLESNIKOVAS, C. K.; BHERING, R. C.; BRANDÃO, P.; CATÃO-DIAS, J. L. Two different avipoxviruses associated with pox disease in Magellanic penguins (*Spheniscus magellanicus*) along the Brazilian coast. *Avian Pathology*, v. 42, n. 6, p. 546-551, 2013.

NIELMEYER, C.; FAVERO, C. M.; SHIVAPRASAD, H. L.; UHART, M.; MUSSO, C. M.; RAGO, M. V.; SILVA-FILHO, R. P.; CANABARRO, P. L.; CRAIG, M. A.; OLIVERA, V.; PEREDA, A.; BRANDÃO, P. E.; CATÃO-DIAS, J. L. Genetically diverse herpesviruses in South American Atlantic coast seabirds. *PLOS ONE*, v. 12, n. 6, p. e0178811, 2017.

NOREN, D. P.; MOCKLIN, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. *Marine Mammal Science*, v. 28, n. 1, p. 154-199, 2012.

NORMAN, S. A.; RAVERTY, S.; ZABEK, E.; ETHERIDGE, S.; FORD, J. K. B; HOANG, L. M.; MORSHED, M. Maternal–fetal transmission of *Cryptococcus gattii* in harbor porpoise. *Emerging infectious diseases*, v. 17, n. 2, p. 304, 2011.

ODOM, M. R.; HENDRICKSON, R. C.; LEFKOWITZ, E. J. Poxvirus protein evolution: family wide assessment of possible horizontal gene transfer events. *Virus Research*, v. 144, n. 1-2, p. 233–249, 2009.
OSTENRATH, F. Some remarks on therapy of mycotic and bacteriological skin diseases in freshwater dolphins, *Inia geoffrensis*. *Aquatic Mammals*, v. 4, n. 2, p. 49–51, 1976.

OSTERRIEDER, N.; WALLASCHEK, N.; KAUFER, B. B. Herpesvirus genome integration into telomeric repeats of host cell chromosomes. *Annual Review of Virology*, v. 1, n. 1, p. 215-235, 2014.

PALMER, E.; WEDDELL, The relationship between structure, innervation and function of the skin of the bottlenose dolphin (*Tursiops truncatus*). *Proceedings of the Zoological Society of London*, v. 143, n. 4, p. 553-568, 1964.

PANIZ-MONDOLFI, A. E.; TALHARI, C.; SANDER-HOFFMANN, L.; CONNOR, D. L.; TALHARI, S.; BERMUDEZ-VILLAPOL, L.; HERNANDEZ-PEREZ, M.; VAN BRESSEM, M. F. Lobomycosis: An emerging disease in humans and Delphinidae. *Mycoses*, v. 55, n. 5, p. 298–309, 2012.

PAPADAVID, E.; DALAMAGA, M.; KAPNIARI, I.; PANTELIDAKI, E.; PAPAGEORGIOU, S.; PAPPA, V.; TSIRIGOTIS, P.; DERVENOULAS, I.; STAVRIANEAS, N.; RIGOPOULOS, D. Lobomycosis: A case from southeastern Europe and review of the literature. *Journal of Dermatological Case Reports*, v. 6, n. 3, p. 65–69, 2012.

PARSONS, E. C. M.; DOLMAN, S. J.; WRIGHT, A. J.; ROSE, N. A.; BURNS, W. C. G. Navy sonar and cetaceans: Just how much does the gun need to smoke before we act?. *Marine Pollution Bulletin*, v. 56, n. 7, p. 1248-1257, 2008.

PARSONS, N. J.; GOUS, T. A.; VAN WILPE, E.; STRAUSS, V.; VANSTREELS, R. E. T. Herpesvirus-like respiratory infection in African penguins *Spheniscus demersus* admitted to a rehabilitation centre. *Diseases of Aquatic Organisms*, v. 116, n. 2, p. 149-155, 2015.

PATTERSON, K. B.; RUNGE, T. Smallpox and the Native American. *American Journal of the Medical Sciences*, v. 323, n. 4, p. 216-222, 2002.

PAXTON, E. H.; CAMP, R. J.; GORRESEN, P. M.; CRAMPTON, L. H.; LEONARD, D. L.; VANDERWERF, E. A. Collapsing avian community on a Hawaiian island. *Science Advances*, v. 2, n. 9, p. e1600029, 2016.

PELLETT, P. E.; ROIZMAN, B. *Herpesviridae*. In: KNIPE, D. M.; HOWLEY, P. M.; COHEN, J. I.; GRIFFIN, D. E.; LAMB, R. A.; MARTIN, M. A.; RACANIIELLO, V. R.; ROIZMAN, B. (Ed.). *Fields Virology*, 6 ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2013. p. 1802-1822.

PENTERIANI, V.; GALLARDO, M.; ROCHE, P. Landscape structure and food supply affect eagle owl (*Bubo bubo*) density and breeding performance: a case of intra-population heterogeneity. *Journal of Zoology*, v. 257, n. 3, p. 365-372, 2002.

PETTIS, H. M.; ROLLAND, R. M.; HAMILTON, P. K.; BRAULT, S.; KNOWLTON, A. R.; KRAUS, S. D. Visual health assessment of North Atlantic right whales (*Eubalaena glacialis*) using photographs. *Canadian Journal of Zoology*, v. 82, n. 8–19, 2004.
PISCITELLI, M. A.; MCLELLAN, W. A.; ROMMEL, S. A.; BLUM, J. E.; BARCO, S. G.; PABST, D. Lung size and thoracic morphology in shallow-and deep-diving cetaceans. *Journal of Morphology*, v. 271, n. 6, p. 654-673, 2010.

POWER, E. P.; O'CONNOR, M.; DONNELLY, W. J.; DOLAN, C. E. Aujeszky's disease in a cow. *Veterinary Record*, v. 126, n. 1, p. 13-15, 1990.

PRAHL, S.; JEPSON, P. D.; SANCHEZ-HANKE, M.; DEAVILLE, R.; SIEBERT, U. Aspergillosis in the middle ear of a harbour porpoise (*Phocoena phocoena*): a case report. *Mycoses*, v. 54, n. 4, p. e260-e264, 2011.

PYENSON, N. D. The Ecological Rise of Whales Chronicled by the Fossil Record. *Current Biology*, v. 27, n. 11, p. R558-R564. 2017.

RADONIĆ, A.; METZGER, S.; DABROWSKI, P. W.; COUACY-HYMANN, E.; SCHUENADEL, L.; KURTH, A.; MÄTZ-RENSING, K.; BOESCH, C.; LEENDERTZ, F. H.; NITSCHE, A. Fatal monkeypox in wild-living sooty mangabey, Cote d’Ivoire, 2012. *Emerging infectious diseases*, v. 20, n. 6, p. 1009-1011, 2014.

RAMOS, M. C.; COUTINHO, S. D.; MATUSHIMA, E. R.; SINHORINI, I. L. Poxvirus dermatitis outbreak in farmed Brazilian caimans (*Caiman crocodilus yacare*). *Australian Veterinary Journal*, v. 80, n. 6, p. 371-2, 2002.

RAPPORT, D. J. Ecosystem Health: More than a Metaphor?. *Environmental Values*, v. 4, n. 4, p. 287- 309, 1995.

RAVERTY, S. A.; RHODES, L. D.; ZABEK, E.; ESHGHI, A.; CAMERON, C. E.; HANSON, M. B.; SCHROEDER, J. P. Respiratory microbiome of endangered southern resident killer whales and microbiota of surrounding sea surface microlayer in the Eastern North Pacific. *Scientific Reports*, v. 7, N. 1, p. 394, 2017.

RECTOR, A.; STEVENS, H.; LACAVE, G.; LEMEY, P.; MOSTMANS, S.; SALBANY, A.; VOS, M.; VAN DOORSLAER, K.; GHIM, S. J.; REHTANZ, M.; BOSSART, G. D.; JENSON, A. B.; VAN RANST, M. Genomic characterization of novel dolphin papillomaviruses provides indications for recombination within the *Papillomaviridae*. *Virology*, v. 378, n. 1, p. 151-161, 2008.

REDDY, M. L.; REIF, J. S.; BACHAND, A.; RIDGWAY, S. H. Opportunities for using Navy marine mammals to explore associations between organochlorine contaminants and unfavorable effects on reproduction. *The Science of the Total Environment*, v. 274, n. 3-4, p. 171-182, 2001.

REEB, D.; BEST, P. B.; BOTHA, A.; CLOETE, K. J.; THORNTON, M.; MOUTON, M. Fungi associated with the skin of a southern right whale (*Eubalaena australis*) from South Africa. *Mycology*, v. 1, n. 3, p. 155-162, 2010.

REEB, D.; BEST, P. B.; KIDSON, S. H. Structure of the integument of southern right whales, *Eubalaena australis*. *The Anatomical Record*, v. 290, n. 6, p. 596-613, 2007.

REEVES, R. R. The origins and character of ‘aboriginal subsistence’whaling: a global review. *Mammal Review*, v. 32, n. 2, p. 71-106, 2002.
REHTANZ, M.; BOSSART, G. D.; FAIR, P. A.; REIF, J. S.; GHIM, S. J.; JENSON, A. B. Papillomaviruses and herpesviruses: who is who in genital tumor development of free-ranging Atlantic bottlenose dolphins (Tursiops truncatus)?. Veterinary Microbiology, v. 160, n. 3-4, p. 297-304, 2012.

REHTANZ, M.; GHIM, S. J.; RECTOR, A.; VAN RANST, M.; FAIR, P.A.; BOSSART, G.D.; JENSON, A. B. Isolation and characterization of the first American bottlenose dolphin papillomavirus: Tursiops truncatus papillomavirus type 2. The Journal of General Virology, v. 87, n. 12, p. 3559-3565, 2006.

REIDARSON, T. H.; GRINER, L. A.; PAPPAGIANIS, D.; MCBAIN, J. Coccidioidomycosis in a bottlenose dolphin. Journal of Wildlife Diseases, v. 34, n. 3, p. 629–631, 1998a.

REIDARSON, T. H.; HARRELL, J. H.; RINALDI, M. G.; MCBAIN, J. Bronchoscopic and serologic diagnosis of Aspergillus fumigatus pulmonary infection in a bottlenose dolphin (Tursiops truncatus). Journal of Zoo and Wildlife Medicine, v. 29, p. 451–455, 1998b.

REIDARSON, T. H.; MCBAIN, J. F.; DALTON, L. M.; RINALDI, M. G. Mycotic diseases. In: DIERAUF, L. A.; GULLAND, F. M. D. (Ed.). CRC Handbook of marine mammal medicine. Boca Raton: CRC Press, 2001, p. 337-355.

REIF, J. S.; PEDEN-ADAMS, M. M.; ROMANO, T. A.; RICE, C. D.; FAIR, P. A.; BOSSART, G. D. Immune dysfunction in Atlantic bottlenose dolphins (Tursiops truncatus) with lobomycosis. Medical Mycology, v. 47, p. 125–135, 2009.

REIF, J. S.; SCHAEFER, A. M.; BOSSART, G. D. Lobomycosis: risk of zoonotic transmission from dolphins to humans. Vector-Borne and Zoonotic Diseases, v. 13, n. 10, p. 689-693, 2013.

RICCI, G.; MOTA, F. T.; WAKAMATSU, A.; SERAFIM, R. C.; BORRA, R. C.; FRANCO, M. Canine paracoccidioidomycosis. Medical mycology, v. 42, n. 4, p. 379-383, 2004.

RICHARDSON, M. D. Opportunistic and pathogenic fungi. Journal of Antimicrobial Chemotherapy, v. 28, n. A, p. 1-11, 1991.

RICHMAN, L. K.; ZONG, J. C.; LATIMER, E. M.; LOCK, J.; FLEISCHER, R. C.; HEAGGANS, S. Y.; HAYWARD, G. S. Elephant endotheliotropic herpesviruses EEHV1A, EEHV1B, and EEHV2 from cases of hemorrhagic disease are highly diverged from other mammalian herpesviruses and may form a new subfamily. Journal of Virology, v. 88, n. 23, p. 13523-13546, 2014.

RIDGWAY, S. H. Reported causes of death of captive killer whales (Orcinus orca). Journal of Wildlife Diseases, v. 15, n. 1, p. 99-104, 1979.

RIYESH, T.; BARUA, S.; KUMAR, N.; JINDAL, N.; BERA, B. C.; NARANG, G.; MAHAJAN, N. K.; ARORA, D.; ANAND, T.; VAID, R. K.; YADAV, M.; CHANDEL, S. S.; MALIK, P.; TRIPATHI, B. N.; SINGH, R. K. Isolation and genetic characterization of swinepox virus from pigs in India. Comparative Immunology, Microbiology and Infectious Diseases, v. 46, n. 5, p. 60-65, 2016.
ROBECK T. R.; DALTON L. M. Saksenaea vasiformis and Apophysomyces elegans zygomycotic infections in bottlenose dolphins (*Tursiops truncatus*), a killer whale (*Orcinus orca*), and pacific white-sided dolphins (*Lagenorhynchus obliquidens*). *Journal of Zoo and Wildlife Medicine*, v. 33, n. 4, p. 356–366, 2002.

RODRÍGUEZ, A.; DELIBES, M. Internal structure and patterns of contraction in the geographic range of the Iberian lynx. *Ecography*, v. 25, n. 3, p. 314-328, 2002.

ROESS, A. A.; LEVINE, R. S.; BARTH, L.; MONROE, B. P.; CARROLL, D. S.; DAMON, I. K.; REYNOLDS, M. G. Sealpox virus in marine mammal rehabilitation facilities, North America, 2007–2009. *Emerging Infectious Diseases*, v. 17, n. 12, p. 2203-2208, 2011.

ROMMEL, S. A.; LOWENSTINE, L. J. Gross and microscopic anatomy. In: DIERAUF, L. A.; GULLAND, F. M. D. (Ed.). *CRC Handbook of Marine Mammal Medicine*. Boca Ratón: CRC Press, 2001. p. 129-164.

ROTSTEIN, D. S.; BURDETT, L. G.; MCLELLAN, W.; SCHWACKE, L.; ROWLES, T.; TERIO, K. A.; SCHULTZ, S.; PABST, A. Lobomycosis in offshore bottlenose dolphins (*Tursiops truncatus*), North Carolina. *Emerging Infectious Diseases*, v. 15, n. 4, p. 588–590, 2009.

ROTSTEIN, D. S.; WEST, K.; LEVINE, G.; LOCKHART, S. R.; RAVERY, S.; MORSHED, M. G.; ROWLES, T. *Cryptococcus gattii* VGI in a spinner dolphin (*Stenella longirostris*) from Hawaii. *Journal of Zoo and Wildlife Medicine*, v. 41, n. 1, p. 181-183, 2010.

SAINSBURY, A. W.; DEAVILLE, R.; LAWSON, B.; COOLEY, W. A.; FARELLY, S. S.; STACK, M. J.; DUFF, P.; MCINNES, C. J.; GURNELL, J.; RUSSELL, P. H.; RUSHTON, S. P.; PFEIFFER, D. U.; NETTLETON, P.; LURZ, P. W. Poxviral disease in red squirrels *Sciurus vulgaris* in the UK: spatial and temporal trends of an emerging threat. *EcoHealth*, v. 5, n. 3, p. 305-316, 2008.

SANMARTÍN, M. L.; POWER, D. M.; DE LA HERRÁN, R.; NAVAS, J. I.; BATISTA, F. M. Evidence of vertical transmission of ostreid herpesvirus 1 in the Portuguese oyster *Crassostrea angulata*. *Journal of Invertebrate Pathology*, v. 22, n. 2, p. 39-41, 2016.

SARMIENTO-RAMÍREZ, J. M.; ABELLA, E.; MARTÍN, M. P.; TELLERÍA, M. T.; LÓPEZ-JURADO, L. F.; MARCO, A.; DIÉGUEZ-URIBEONDO, J. *Fusarium solani* is responsible for mass mortalities in nests of, in Boavista, Cape Verde. *FEMS Microbiology Letters*, v. 312, n. 3, p. 192–200, 2010.

SCHRENZEL, M. D.; TUCKER, T. A.; DONOVAN, T. A.; BUSCH, M. D.; WISE, A. G.; MAES, R. K.; KIUPEL, M. New hosts for Equine Herpesvirus 9. *Emerging Infectious Diseases*, v. 14, n. 10, p. 1616-1619, 2008.

SCHULMAN, F. Y.; LIPSCOMB, T. P. Dermatitis with invasive ciliated protozoa in dolphins that died during the 1987-1988 Atlantic bottlenose dolphin morbilliviral epizootic. *Veterinary Pathology*, v. 36, n. 2, p. 171-174, 1999.
SCHULZ, T. F. The pleiotropic effects of Kaposi’s sarcoma herpesvirus. The Journal of Pathology, v. 208, n. 2, p. 187-198, 2006.

SHOTTS, E. B. JR.; ALBERT, T. F.; WOOLEY, R. E.; BROWN, J. Microflora associated with the skin of the bowhead whale (Balaena mysticetus). Journal of Wildlife Diseases, v. 26, n. 3, p. 351-359, 1990.

SIERRA, E.; SÁNCHEZ, S.; SALIKI, J. T.; BLAS-MACHADO, U.; ARBELO, M.; ZUCCA, D.; FERNÁNDEZ, A. Retrospective study of etiologic agents associated with nonsuppurative meningoencephalitis in stranded cetaceans in the Canary Islands. Journal Of Clinical Microbiology, v. 52, n. 7, p. 2390-2397, 2014.

SIERRA, E.; DÍAZ-DELGADO, J.; ARBELO, M.; ANDRADA, M.; SACCHINI, S.; FERNÁNDEZ, A. Herpesvirus-associated genital lesions in a stranded striped dolphin (Stenella coeruleoalba) in the Canary Islands, Spain. Journal of Wildlife Diseases, v. 51, n. 3, p. 696-702, 2015.

SIMEONE, C. A.; GULLAND, F. M.; NORRIS, T.; ROWLES, T. K. A systematic review of changes in marine mammal health in North America, 1972-2012: The need for a novel integrated approach. PLOS ONE, v. 10, n. 11, p e0142105, 2015.

SIMÕES-LOPES, P. C.; FABIAN, M. E. Residence patterns and site fidelity in bottlenose dolphins, Tursiops truncatus (Montagu) (Cetacea, Delphinidae) off Southern Brazil. Revista brasileira de Zoologia, v. 16, n. 4, p. 1017-1024, 1999.

SIMÕES-LOPES, P. C.; PAULA, G. S.; BOTH, M. C.; XAVIER, F. M.; SCARAMELLO, A. C. First case of lobomycosis in a bottlenose dolphin from Southern Brazil. Marine Mammal Science, v. 9, n. 3, p. 329–331, 1993.

SIMPSON, C. F.; WOOD, F. G.; YOUNG, F. Cutaneous lesions on a porpoise with Erysipelas. Journal of the American Veterinary Medical Association, v. 133, n. 11, p. 558-560, 1958.

SKERRATT, L. F.; BERGER, L.; SPEARE, R.; CASHINS, S.; MCDONALD, K. R.; PHILLOTT, A. D.; HINES, H. B.; KENYON, N. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth, v. 4, p. 125–134, 2007.

SMITH, S. A.; KOTWAL, G. J. Immune response to poxvirus infections in various animals. Critical Reviews in Microbiology, v. 28, n. 3, p. 149-185, 2002.

SMITS, J. E.; TELLA, J. L.; CARRETE, M.; SERRANO, D.; LÓPEZ, G. An epizootic of avian pox in endemic short-toed larks (Calandrella rufescens) and Berthelot’s pipits (Anthus berthelotti) in the Canary Islands, Spain. Veterinary Pathology, v. 42, n. 1, p. 59-65, 2005.

SMOLAREK-BENSON, K. A.; MANIRE, C. A.; EWING, R. Y.; SALIKI, J. T.; TOWNSEND, F. I.; EHLERS, B.; ROMERO, C. H. Identification of novel alpha- and gammaherpesviruses from cutaneous and mucosal lesions of dolphins and whales. Journal of Virological Methods, v. 136, n. 1, p. 261-266, 2006.

SOKOLOV, V.; BULINA, I.; RODIONO, V. Interaction of dolphin epidermis with flow boundary layer. Nature, v. 222, p. 267-268.
SPRINGER, M. S.; MURPHY, W. J.; EIZIRIK, E.; O’BRIEN, S. J. Placental mammal diversification and the Cretaceous-Tertiary boundary. Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 3, p. 1056–1061, 2003.

STAGGS, L.; ST. LEGER, J.; BOSSART, G.; TOWNSEND JR, F. I.; HICKS, C.; RINALDI, M. A novel case of Fusarium oxysporum infection in an Atlantic bottlenose dolphin (Tursiops truncatus). Journal of Zoo and Wildlife Medicine, v. 41, n. 2, p. 287-290, 2010.

STANFORD, M. M.; MCFADDEN, G.; KARUPIAH, G.; CHAUDHRI, G. Immunopathogenesis of poxvirus infections: forecasting the impending storm. Immunology and Cell Biology, v. 85, n. 2, p. 93-102, 2007.

STEPHEN, C. Toward a modernized definition of wildlife health. Journal of Wildlife Diseases, v. 50, n. 3, p. 427–430, 2014.

STEPHEN, C.; LESTER, S.; BLACK, W.; FYFE, M.; RAVERTY, S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Canadian Veterinary Journal, v. 43, n. 10, p. 792–794, 2002.

STEPHENS, N.; DUGNAN, P. J.; WANG, J.; BINGHAM, J.; FINN, H.; BEJDER, L.; PATTERSON, A. P.; HOLYOAKE, C. Cetacean morbillivirus in coastal Indo-Pacific bottlenose dolphins, Western Australia. Emerging Infectious Diseases, v. 20, n. 4, p. 666-670, 2014.

STUART, S. N.; CHANSON, J. S.; COX, N. A.; YOUNG, B. E.; RODRIGUES, A. S. L.; FISCHMAN, D. L.; WALLER, R. W. Status and trends of amphibian declines and extinctions worldwide. Science, v. 306, n.1783–1786, 2004.

SWEENEY, J. C.; MIGAKI, G.; VAINIK, P. M.; CONKLIN, R. H. Systemic Mycosis in Marine Mammals. Journal of the American Veterinary Medical Association, v. 169, n. 9, p. 946-948, 1976.

SWEENEY, J. C.; RIDGWAY, S. H. Common diseases of small cetaceans. Journal of the American Veterinary Medical Association, 167, 533-540, 1975.

TABORDA, P. R.; TABORDA, V. A.; MICHAEL, R. Lacazia lobo gen. nov., comb. nov., the etiologic agent of lobomycosis. Journal of Clinical Microbiology, 37, 6, 2031–2033, 1999.

Takahashi, H.; Ueda, K.; Itano, E. N.; Yanagisawa, M.; Murata, Y.; Murata, M.; Murata, M.; Yaguchi, T.; Murakami, M.; Kamei, K.; Inomata, T.; Miyahara, H.; Sano, A.; Uchida, S. Candida albicans and C. tropicalis isolates from the expired breathes of captive dolphins and their environments in an aquarium. Veterinary Medicine International, v. 2010, p. 349364, 2010.

Tanaka, M.; Izawa, T.; Kuwamura, M.; Nakao, T.; Maezono, Y.; Ito, S.; Murata, M.; Murakami, M.; Sano, A.; Yamate, J. Deep Granulomatous dermatitis of the fin caused by Fusarium solani in a false killer whale (Pseudorca crassidens). Journal of Veterinary Medical Science, v. 74, n. 6, p. 779-782, 2012.
TEIXEIRA, M. M.; THEODORO, R. C.; NINO-VEJA, G.; BAGAGLI, E.; FELIPE, M. S. *Paracoccidioides* species complex: ecology, phylogeny, sexual reproduction, and virulence. *PLOS Pathogens*, v. 10, n. 10, p. e1004397, 2014.

TERÇARIOLI, G. R.; BAGAGLI, E.; REIS, G. M.; THEODORO, R. C.; BOSCO, S. D. M. G.; DA GRAÇA MACORIS, S. A.; RICHINI-PEREIRA, V. B. Ecological study of *Paracoccidioides brasiliensis* in soil: growth ability, conidia production and molecular detection. *BMC Microbiology*, v. 7, p. 92, 2007.

THEODORO, R. C.; TEIXEIRA, M. De M.; FELIPE, M. S. S.; PADUAN, K. D. S.; RIBOLLA, P. M.; SAN-BLAS, G.; BAGAGLI, E. Genus *Paracoccidioides*: Species recognition and biogeographic aspects. *PLOS ONE*, v. 7, n. 5, p. e37694, 2012.

THEWISSEN, J. G. M.; COHN, M. J.; STEVENS, L. S.; BAJPALI, S.; HEYNING, J.; HORTON, W. E. Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplan. *Proceedings of the National Academy of Sciences*, v. 103, n. 22, p. 8414-8418, 2006.

TIMAR, K. K.; DALLOS, A.; KISS, M.; HUSZ, S.; BOS, J. D.; ASGHAR, S. S. Expression of terminal complement components by human keratinocytes. *Molecular Immunology*, v. 44, n. 10, p. 2578–2586, 2007.

TOMASZEWSKI, E. K.; KALETA, E. F.; PHALEN, D. N. Molecular phylogeny of the psittacid herpesviruses causing Pacheco’s disease: correlation of genotype with phenotypic expression. *Journal of Virology*, v. 77, n. 20, p. 11260-11267, 2003.

TREJO-CHÁVEZ, A.; RAMÍREZ-ROMERO, R.; ANCER-RODRÍGUEZ, J.; NEVÁREZ-GARZA, A. M.; RODRIGUEZ-TOVAR, L. E. Disseminated paracoccidioidomycosis in a southern two-toed sloth (*Choloepus didactylus*). *Journal of Comparative Pathology*, v. 144, n. 2, p. 231-234, 2011.

TRUJILLO, F.; CRESPO, E.; VAN DAMME, P. A. USMA J. S. The Action Plan for South American River Dolphins 2010 – 2020. Bogotá: WWF, Fundación Omacha, WDS, WDCS, Solamac. 2010, p. 249.

TRYLAND, M.; KLEIN, J.; NORDOY, E. S.; BLIX, A. S. Isolation and partial characterization of a parapoxvirus isolated from a skin lesion of a Weddell seal. *Virus Research*, v. 108, n. 1-2, p. 83–87, 2005.

TRYLAND, M.; NESBAKKEN, T.; ROBERTSON, L.; GRAHEK-OGDEN, D.; LUNESTAD, B. T. Human pathogens in marine mammal meat – a northern perspective. *Zoonoses and Public Health*, v. 61, n. 6, p. 377-394, 2014.

TUOMI, P. A.; MURRAY, M. J.; GARNER, M. M.; GOERTZ, C. E. C.; NORDHAUSEN, R. W.; BUREK-HUNTINGTON, K. A.; GETZY, D. M.; NIelsen, O.; ARCHER, L. L.; MANESS, H. T. D.; WELLEHAN, J. F. X.; WALTZEK, T. B. Novel poxvirus infection in northern and southern sea otters (*Enhydra Lutris Kenyoni* and *Enhydra Lutris Neiris*), Alaska and California, USA. *Journal of Wildlife Diseases*, v. 50, n. 3, p. 607–615, 2014.

UEDA, K.; SANO, A.; YAMATE, J.; NAKAGAWA, E. I.; KUWAMURA, M.; IZAWA, T.; TANAKA, M.; HASEGAWA, Y.; CHIBANA, H.; IZUMISAWA, Y.; MIYAHARA, H.;
UCHIDA, S. Two cases of lacaziosis in bottlenose dolphins (*Tursiops truncatus*) in Japan. *Case Reports in Veterinary Medicine*, v. 2013, p. 1-9, 2013.

UNGER, B.; REBOLLEDO, E. L.; DEAVILLE, R.; GRÖNE, A.; IJSSELDIJK, L. L.; LEOPOLD, M. F.; SIEBERT, U.; SPITZ, J.; WOHLSEIN, P.; HERR, H. Large amounts of marine debris found in sperm whales stranded along the North Sea coast in early 2016. *Marine Pollution Bulletin*, v. 112, n. 1-2, p. 134-141, 2016.

VAN BRESSEM, M. F.; CASSONNET, P.; RECTOR, A.; DESAINTES, C.; VAN WAEREBEEK, K.; ALFARO-SHIGUETO, J.; VAN RANST, M.; ORTH, G. Genital warts in Burmeister’s porpoises: characterization of *Phocoena spinipinnis* papillomavirus type 1 (PsPV-1) and evidence for a second, distantly related PsPV. *Journal of General Virology*, v. 88, n. 7, p. 1928-1933, 2007.

VAN BRESSEM, M. F.; RAGA, J. A.; DI GUARDO, G.; JEPSON, P. D.; DUIGNAN, P. J.; SIEBERT, U.; BARRETT, T.; SANTOS, M. C.; MORENO, I. B.; SICILIANO, S.; AGUILAR, A.; VAN WAEREBEEK, K. Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. *Diseases of Aquatic Organisms*, v. 86, n. 2, p. 143-157, 2009.

VAN BRESSEM, M. F.; SANTOS, M. C.; OSHIMA, J. E. Skin diseases in Guiana dolphins (*Sotalia guianensis*) from the Paranaguá estuary, Brazil: a possible indicator of a compromised marine environment. *Marine Environmental Research*, v. 67, n. 2, p. 63-68, 2009.

VAN BRESSEM, M. F.; SIMÕES-LOPES, P. C.; FÉLIX, F.; KISZKA, J. J.; DAURA-JORGE, F. G.; AVILA, I. C.; SECCHI, E. R.; FLACH, L.; FRUET, P. F.; DU TOIT, K.; OTT, P. H.; ELWEN, S.; DI GIACOMO, A. B.; WAGNER, J.; BANKS, A.; VAN WAEREBEEK, K. Epidemiology of lobomycosis-like disease in bottlenose dolphins *Tursiops* spp. from South America and southern Africa. *Diseases of Aquatic Organisms*, v. 117, n. 1, p. 59-75, 2015.

VAN BRESSEM, M. F.; VAN WAEREBEEK, K.; GARCIA-GODOS, A.; DEKEGEL, D.; PASTORET, P. P. Herpes-like virus in dusky dolphins, *Lagenorhynchus obscurus*, from coastal Peru. *Marine Mammal Science*, v. 10, n. 3, p. 354-359, 1994.

VAN BRESSEM, M. F.; VAN WAEREBEEK, K.; RAGA, J. A. A review of virus infections of cetaceans and the potential impact of morbilliviruses, poxviruses and papillomaviruses on host population dynamics. *Diseases of Aquatic Organisms*, v. 38, n. 1, p. 53-65, 1999.

VAN BRESSEM, M. F.; VAN WAEREBEEK, K.; PIÉRARD, G. E.; DESAINTES, C. Genital and lingual warts in small cetaceans from coastal Peru. *Diseases of Aquatic Organisms*, v. 26, n. 1, p. 1-10, 1996.

VAN ELK, C. E.; VAN DE BILDT, M. W.; DE JONG, A. A.; OSTERHAUS, A. D.; KUIKEN, T. Herpesvirus in bottlenose dolphins (*Tursiops truncatus*): cultivation, epidemiology, and associated pathology. *Journal of Wildlife Diseases*, v. 45, n. 4, p. 895–906, 2009.
VAN ELK, C.; VAN DE BILD T, M.; VAN RUN, P.; DE JONG, A.; GETU, S.; VERJANS, G.; OSTERHAUS, A.; KUIKEN, T. Central nervous system disease and genital disease in harbor porpoises (*Phocoena phocoena*) are associated with different herpesviruses. *Veterinary Research*, v. 47, p. 28, 2016.

VENN-WATSON, S.; DANIELS, R.; SMITH, C. Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin *Tursiops truncatus* population. *Diseases of Aquatic Organisms*, v. 99, n. 3, p. 237-242, 2012.

VERPOEST, S.; CAY, A. B.; BERTRAND, O.; SAULMONT, M.; DE REGGE, N. Isolation and characterization of pseudorabies virus from a wolf (*Canis lupus*) from Belgium. *European Journal of Wildlife Research*, v. 60, p. 149–154, 2014.

VILELA, R.; BOSSART, G. D.; ST LEGER, J. A.; DALTON, L. M.; REIF, J. S.; SCHAEFER, A. M.; MCCARTHY, P. J.; FAIR, P. A.; MENDOZA, L. Cutaneous granulomas in dolphins caused by novel uncultivated *Paracoccidioides brasiliensis*. *Emerging Infectious Diseases*, v. 22, n. 12, p. 2063-2069, 2016.

WARNER R. E. The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. *Condor*, v. 70, n. 2, p. 101–120, 1968.

WELCH, H. M.; BRIDGES, C. G.; LYON, A. M.; GRIFFITHS, L.; EDINGTON, N. Latent Equid herpesviruses 1 and 4: Detection and distinction using the polymerase chain reaction and co-cultivation from lymphoid tissues. *Journal of General Virology*, v. 73, p. 261-268, 1992.

WELLS, R. Bottlenose dolphins as marine ecosystems sentinels: developing a health monitoring system. *EcoHealth*, v. 1, n. 3, p. 246–254, 2004.

WHITTINGTON, R. J.; CROCKFORD, M.; JORDAN, D.; JONES, B. Herpesvirus that caused epizootic mortality in 1995 and 1998 in pilchard, *Sardinops sagax neopilchardus* (Steindachner), in Australia is now endemic. *Journal of Fish Diseases*, v. 31, n. 2, p. 97-105, 2008.

WIDEN, F.; DAS NEVES, C. G.; RUIZ-FONS, F.; REID, H. W.; KUIKEN, T.; GAVIER-WIDÈN, D. KALET A, E. F. 2012. Herpesvirus infections. In: GAVIER-WIDÈN, D.; MEREDITH, A.; DUFF, J. P. HOBOKEN, N. J. (Ed.). *Infectious Diseases of Wild Mammals and Birds in Europe*, Oxford: Wiley-Blackwell, 2012. p. 3-36.

WILSON, D. J.; MCFARLANE, L. Contagious ecthyma in a Rocky Mountain bighorn sheep from Utah. *Human–Wildlife Interactions*, v. 6, n. 7-11, p. 3, 2012.

WISE, J. P.; PAYNE, R.; WISE, S. S.; LACERTE, C.; WISE, J.; GIANIOS, C. JR.; THOMPSON, W. D.; PERKINS, C.; ZHENG, T.; ZHU, C.; BENEDICT, L.; KERR, I. A global assessment of chromium pollution using sperm whales (*Physeter macrocephalus*) as an indicator species. *Chemosphere*, v. 75, n. 11, p. 1461-1467, 2009.

WORK, T. M.; DAGENAIS, J.; BALAZS, G. H.; SCHETTLE, N.; ACKERMANN, M. Dynamics of virus shedding and in situ confirmation of *chelonid herpesvirus* 5 in Hawaiian green turtles with fibropapillomatosis. *Veterinary Pathology*, v. 52, n. 6, p. 1195-1201, 2015.
WOŹNIAKOWSKI, G.; SAMOREK-SALAMONOWICZ, E. Animal herpesviruses and their zoonotic potential for cross-species infection. *Annals of Agricultural and Environmental Medicine*, v. 22, n. 2, p. 191-194, 2015.

WRIGHT, A. J.; SOTO, N. A.; BALDWIN, A. L.; BATESON, M.; BEALE, C. M.; CLARK, C.; DEAK, T.; EDWARDS, E. F.; FERNÁNDEZ, A.; GODINHO, A.; HATCH, L. T.; KAKUSCHKE, A.; LUSSEAU, D.; MARTINEAU, D.; ROMERO, M. L.; WEILGART, L. S.; WINTLE, B. A.; NOTARBARTOLO-DI-SCIARA, G.; MARTIN, V. Do marine mammals experience stress related to anthropogenic noise?. *International Journal of Comparative Psychology*, v. 20, n. 274-316, 2007.

WÜNSCHMANN, A.; SIEBERT, U.; WEISS, R. Rhizopusmycosis in a harbor porpoise from the Baltic Sea. *Journal of Wildlife Diseases*, v. 35, n. 3, p. 569-573, 1999.

YAMAMOTO, R.; TERAMOTO, M.; HAYASAKA, I.; IKEDA, K.; HASEGAWA, T.; ISHIDA, T. Reactivation of lymphocryptovirus (Epstein-Barr virus chimpanzee) and dominance in chimpanzees. *Journal of General Virology*, v. 91, n. 8, p. 2049–2053, 2010.

YOUNG, S. J. F.; HUFF, D. G.; STEPHEN, C. A risk-management approach to a mycotic disease potential in captive beluga whales (*Delphinapterus leucas*). *Zoo Biology*, v. 18, n. 1, p. 5-16, 1999.

ZABRA, T. S.; ROMANO, T. A. Distribution of MHC II (+) cells in skin of the Atlantic bottlenose dolphin (*Tursiops truncatus*): an initial investigation of dolphin dendritic cells. *The Anatomical Record*, v. 273, n. 1, p. 636–647, 2003.

ZANIN, E.; CAPUA, M.; CASACCIA, C.; ZUIN, A.; MORESCO, A. Isolation and characterization of Aujeszky's disease virus in captive brown bears from Italy. *Journal of Wildlife Diseases*, v. 33, n. 3, p. 632–634, 1997.

ZHU, K.; ZHOU, X.; XU, S.; SUN, D.; REN, W.; ZHOU, K.; YANG, G. The loss of taste genes in cetaceans. *BMC Evolutionary Biology*, v. 14, n. 1, p. 218, 2014.