Phase diagram of dipolar-coupled XY moments on disordered square lattices

Dominik Schildknecht, Laura J. Heyderman, and Peter M. Derlet

1 Condensed Matter Theory Group, LSM, NES, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
2 Laboratory for Multiscale Materials Experiments, NIM, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
3 Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland

(Dated: April 23, 2018)

The effects of dilution disorder and random-displacement disorder are analyzed for dipolar-coupled magnetic moments confined in a plane, which were originally placed on the square lattice. In order to distinguish the different phases, new order parameters are derived and parallel tempering Monte Carlo simulations are performed to obtain the phase diagrams for both types of disorder. We find that both dilution disorder and random-displacement disorder give similar phase diagrams, namely disorder at small enough temperatures favors a so-called microvortex phase. This can be understood in terms of the flux closure present in dipolar-coupled systems.

I. INTRODUCTION

In frustrated magnetic systems, there is a variety of interesting phenomena including the inhibition of long-range order,[1,4] highly degenerate ground states,[2] incommensurate phases,[3,5] spin glass physics,[6,7] and emergent rules on local fluctuations.[8,9] In many of these systems, including the pyrochlores,[8,9] dipolar contributions are important. Moreover, the dipolar interaction itself may be understood in terms of frustration. Here the ferromagnetic and antiferromagnetic components compete, resulting in its anisotropic behavior.

In recent years, artificial spin systems, manufactured by assembling single-domain nanoscale magnets have been investigated.[11] These nanomagnets interact purely via magnetostatic coupling that to lowest order, can be described by dipolar coupling only. In many of these artificial spin systems, the nanomagnets have Ising-like degrees of freedom.[11,12] In addition, a modification of the interaction energies was recently demonstrated by combining Ising-like nanomagnets with nanomagnets featuring continuous in-plane moments placed at the vertices.[11]

Systems entirely built out of dipolar-coupled moments that rotate freely in the plane are predicted to exhibit interesting physics such as continuously degenerate ground states[13] and order-by-disorder mechanisms.[14] Their experimental investigation is, however, still in its infancy.[15] Such a system will henceforth be denoted as a dXY system, where the XY is in analogy to the XY model and the d refers to the dipolar coupling.

Without any assumptions about the geometry of a dXY system, the only symmetry supported by the Hamiltonian is time reversal. If the moments are placed on a regular lattice, the symmetry group of the Hamiltonian is enhanced by the point group of the lattice as a result of the anisotropy of the dipolar interaction. Therefore, different geometries will give rise to additional phases and universality classes for the transitions involved.

If the dXY system is placed on the square lattice, the system is known to have a continuously-degenerate ground state, despite the symmetry group of the Hamiltonian being finite rather than continuous[16] In previous work, the so called order-by-disorder transition was demonstrated.[17] Here finite temperature leads to an effective selection of certain states of the ground-state manifold due to different spin-wave stiffness along certain directions that follow the fourfold symmetry of the square lattice. This results in a low-temperature long-range ordered striped phase. A similar selection effect is seen with the introduction of disorder in the form of vacancies. Here a long-range ordered microvortex state emerges, that also respects the finite symmetry of the Hamiltonian[18].

For the non-disordered dXY system on the square lattice, the resulting phase transition to a high-temperature paramagnetic regime has been studied numerically, revealing either an Ising[20] or an XYh4[21] universality class transition. The critical exponents obtained by numerical investigations lie within the numerical error at the values expected for the Ising model. But, since the XYh4 has a marginal operator, which means that the critical exponents can be tuned to the critical exponents of the Ising universality class in one of the limiting cases[22] it is not clear if the dXY system on the square lattice saturates this limit and therefore belongs to the Ising universality class, or is just close to saturation and is therefore only properly described by an XYh4 universality class. Consequently, numerical investigations of this transition are to a certain degree inconclusive.

The dilation-disordered system, where vacancies are introduced, was previously studied using a temperatur sweep Monte Carlo approach and an observable, which consisted of fourth powers of the spin components[35] Various values of dilution were examined and well-converged results were obtained up to a dilution rate of approximately 6%. In addition, the results qualitatively agreed with the predictions by the spin-wave analysis.[21]

The dXY system on the square lattice with random displacement of the sites was studied using a parallel tempering approach.[23] Here the spin glass overlap observable was considered and it was concluded that no spin glass phase is observed even for the highest amounts of disorder. In addition, fully random placement of dipolar-
coupled XY spins, as well as random-displacement disorder applied to the square lattice, was studied by means of a saddle-point analysis. Here, it was demonstrated that a spatial localization of magnetic excitations occurs in systems with strong disorder. To the best of our knowledge, however, no phase diagram has been determined for a random-displacement disordered dXY system on the square lattice.

In this paper, the full phase diagrams for both the dilution disordered as well as the random-displacement disordered case are obtained numerically. Both diagrams display a pocket at low temperature and moderate disorder where the microvortex phase dominates. Furthermore, there is a striped phase region for smaller disorder and higher temperature. Starting from either phase, the paramagnetic regime is obtained if either temperature or disorder are increased sufficiently. The structure of the phase diagram can be understood by considering the magnetic flux closure present in dipolar systems. If the full symmetry of the square lattice is present, the flux closure can occur globally and the striped phase will dominate due to a smaller spin-wave stiffness. If the point group symmetries are broken by introduction of disorder, magnetic flux closure will occur locally and the microvortex phase will dominate at low temperatures.

The remainder of the paper is organized as follows. The model and the order parameters are introduced in section II. The methods are specified in section III and numerical data are reported for the non-disordered case in section II. The methods are specified in section III and numerical data are reported for the non-disordered case in section II. The remainder of the paper is organized as follows.

II. MODEL & ORDER PARAMETERS

The (classical) Hamiltonian of the dXY system is given by

$$H = \frac{D}{2} \sum_{i \neq j} \frac{p_i p_j}{r_{ij}} \left[\vec{S}_i \cdot \vec{S}_j - 3 \left(\vec{S}_i \cdot \hat{r}_{ij} \right) \left(\vec{S}_j \cdot \hat{r}_{ij} \right) \right],$$

where the spins, as well as their positions, are confined to the xy-plane. D denotes the dipolar-interaction strength and without loss of generality is set to 1. The dilution parameters p_i are either 1 or 0, and are 0 if the ith moment is removed and 1 otherwise. In the non-disordered system all p_i are 1. The difference vector between the positions at the sites i and j is denoted by \hat{r}_{ij}. For a non-disordered system, all sites lie on a regular square lattice in the xy-plane, and the nearest-neighbor distance is set to 1. For the introduction of random displacements, the position of each site is randomly displaced in the xy-plane according to a Gaussian distribution.

The degenerate ground state of the dXY system on the square lattice is defined by a global angle-degeneracy parameter ϕ. As depicted in Fig. 1a, this continuous degeneracy is broken by finite temperature or dilution disorder as shown in Ref.[23]. Namely, thermal excitations favor striped phases, where $\phi = n \frac{\pi}{4}$ for $n \in \mathbb{Z}$, due to different spin-wave stiffnesses along different directions. In contrast to thermal excitations, dilution disorder is known to select the so-called microvortex phase, where $\phi = \frac{\pi}{4} + n \frac{\pi}{2}$ again with $n \in \mathbb{Z}$. The microvortex phase ensures magnetic flux closure at the scale of each plaquette, whereas magnetic flux closure happens in the striped phase at infinity.

Any type of long-range order in the dXY system on the square lattice has up to now been described by the magnitude of the order parameter

$$|\vec{M}| = \frac{1}{N} \left| \sum_i \left((-1)^y \cos \theta_i, (-1)^x \sin \theta_i \right) \right|,$$

where θ_i is the angle of the ith spin with, for example, the x-axis. The sites are enumerated with x_i and y_i, along \hat{x} and \hat{y}. In the non-disordered case, under the assumption of a nearest-neighbor distance of 1, the enumeration indices x_i and y_i are also the x and y coordinates respectively. The order parameter is normalized to be 1 for the

![FIG. 1. (color online) (a) The degenerate ground state of the square-lattice dXY system is defined within a two-by-two magnetic unit cell via an angle-degeneracy parameter ϕ. (b) Possible vectors M_1 are shown as given in Eq. (2). The black solid circle indicates $|M| = 1$, which is fulfilled for the ground state manifold depicted in (a). The arrows correspond to the four striped phase (light blue) and the four microvortex phases (dark blue). A pictograph is given to associate the vectors with their respective phases. The light blue dot in the middle corresponds to the paramagnetic phase.](image-url)
ground states by dividing by the total number of spins \(N \). The vector \(\vec{M} \) lies for ground state configurations on the unit circle. Possible values for the vector \(\vec{M} \) are depicted in Fig. 13 and for some of the ground states a pictograph is given, which represent the character of the phase given by each vector. As an example, the point \((1, 0)\) corresponds to a striped order along \(\hat{x} \), whereas \((-1, 0)\) also corresponds to a striped order along \(\hat{x} \) shifted by half a magnetic unit cell along the \(\hat{y} \) direction. Analogously, striped orders along \(\hat{y} \) correspond to the two vectors \((0, \pm 1)\). The microvortex phases correspond to the four points at \(\pm 1 \) and the paramagnetic phase corresponds to \((0, 0)\).

Since the vector \(\vec{M} \) lies on the circle described by \(|\vec{M}| = 1\) for all ground state phases, it is not possible to distinguish the microvortex phase from the striped phase by the magnitude \(|\vec{M}|\). However, it is possible to differentiate between the paramagnetic phase and long-range order in either the microvortex phase or the striped phase.

In order to differentiate the ground state phases, we can consider the polar representation of the order parameter \(\vec{M} = (M_x, M_y) = |\vec{M}|(\cos \phi, \sin \phi) \). The vector with doubled angle \((|\vec{M}|(\cos 2\phi, \sin 2\phi))\) is introduced, since this vector assigns the striped phases to values along the \(x \)-axis and the microvortex phases to values along the \(y \)-axis. This gives:

\[
|\vec{M}| \cos \left(2 \arctan \left(\frac{M_y}{M_x} \right) \right) = \frac{M_x^2 - M_y^2}{|\vec{M}|}, \tag{3a}
\]
\[
|\vec{M}| \sin \left(2 \arctan \left(\frac{M_y}{M_x} \right) \right) = \frac{2M_x M_y}{|\vec{M}|}, \tag{3b}
\]

which describe the projections of a state onto its striped phase components and its microvortex phase components, respectively.

Eqs. (3) therefore give possible order parameters for (a) the striped and (b) the microvortex phase. These order parameters are, however, numerically unfavorable at high temperature, since they divide by the length of the vector \(|\vec{M}|\). Group theory can therefore be considered to find order parameters with the same transformation properties. Such order parameters have to transform as irreducible representations of the symmetry group of the underlying system. For the dXY model on the square lattice, the symmetry group is given by time reversal symmetry, enhanced by the point group of the lattice, which is \(C_4 \), for the square lattice. The character table for the point group is given in Table I. In the last column of this table, the simplest functions are indicated, which transform according to the irreducible representations. These functions are the symmetry-allowed combinations of the components of the vector \(\vec{M} \) for constructing order parameters.

The vector \(\vec{M} \) itself transforms according to the irreducible representation \(E \), and therefore serves as an order parameter. The length of the vector transforms according to the trivial representation \(A_1 \) that, due to its transformation property, can only be used to distinguish between long-range order and the paramagnetic phase. Inspection of Table I reveals that the two projections derived in Eqs. (3a) and (3b) transform according to the irreducible representations \(B_1 \) and \(B_2 \), respectively, and therefore serve as valid order parameters.

Thus,

\[
M_x = \sqrt{|M_x^2 - M_y^2|} \quad \text{and} \quad M_{mv} = \sqrt{2M_x M_y} \tag{4}
\]

are also valid order parameters for the striped phase and the microvortex phase, since they transform according to \(B_1 \) and \(B_2 \) respectively. Furthermore, \(M_x \) and \(M_{mv} \) are numerically more stable as they do not divide by the magnitude \(|\vec{M}|\). These two quantities as well as \(|\vec{M}|\) are determined in the subsequent Monte Carlo simulations in order to distinguish between the different phases.

III. MONTE CARLO SIMULATIONS

Monte Carlo simulations are now performed for the dXY system on the square lattice to construct the phase diagrams for both the dilution-disordered system as well as the random-displacement disordered system. First of all, however, the non-disordered case is simulated to gain further insight into this simpler situation, where no disorder average has to be taken. The code is based on the ALPS project\[2, 3\]. It uses a parallel tempering algorithm\[4, 5\] (also known as replica-exchange Monte Carlo), in order to thermalize even quite heavily frustrated systems. Parallel tempering refers to the simulation of the same system at several temperatures in parallel, with regular exchange of the temperatures between the simulations according to a detailed-balance condition.

For all simulations, a cutoff radius was applied in the evaluation of Eq. (3) in order to speed up the calculations. When varying the cutoff there was no qualitative change, although a larger cutoff radius resulted in a slight decrease of \(T_c \), as the number of frustrating spins is increased. In the following, a cutoff radius of two lattice sites was used, which included the 12 closest sites.

Table I. Character table for \(C_{4v} \), the point group of the square lattice.

\(C_{4v} \)	\(E \)	\(2C_2 \)	\(C_2 \)	\(2\sigma_v \)	\(2\sigma_d \)	
\(A_1 \)	1	1	1	1		
\(A_2 \)	1	1	\(\uparrow \)	\(\uparrow \)		
\(B_1 \)	1	\(\uparrow \)	1	\(\uparrow \)	\(x^2 - y^2 \)	
\(B_2 \)	1	\(\uparrow \)	1	\(\uparrow \)	\(xy \)	
\(E \)	2	0	2	0	0	\((x, y) \)
FIG. 2. (color online) (a) The temperature dependence of the three order parameters discussed in section II are shown. These are obtained with parallel tempering Monte Carlo simulations for the non-disordered dXY system with a system size of $L = 16$. The same data plotted on a logarithmic temperature scale is shown in the inset. (b) A configuration is shown, which was obtained by our simulations at temperature $1.8 \cdot 10^{-6}$. Since the microvortex order parameter is very homogeneous on all the spins, it is likely to originate from the Goldstone mode.

A. No Disorder

The simulation for the non-disordered system was performed in order to validate the order parameters derived in section II. In total, 220 temperatures were implemented, which were uniformly spaced at higher temperatures and logarithmically spaced at lower temperatures. The three order parameters are plotted versus the temperature in Fig. 2a. As expected, the magnitude $|\vec{M}|$ indicates the appearance of long-range order as the temperature decreases. A similar trend is visible for M_s. Also M_{mv} rises around the T_c of the long-range order transition, and then just slowly decays. In the inset of Fig. 2a we show the same data with a logarithmic temperature axis. It can be seen from the inset, that the value of M_{mv} actually saturates at around 0.4, and does not decay to 0, in contrast to the prediction by the spin-wave calculation in Ref.21. However, the selection predicted by this spin-wave calculation gets weaker at lower temperature and the angle-degenerate ground state provides a Goldstone mode transforming $\phi \rightarrow \phi + \delta \phi$ in Fig. 1a over a large length scale. This converts the striped phase into the microvortex phase so that, at low temperatures, the value of M_{mv} saturates.

For a Goldstone mode, the deviation from a perfect striped phase at low temperatures is very homogeneous. A typical configuration, which displays this homogeneous behavior is shown in Fig. 2b. In this figure mostly a single-domain striped phase is displayed, but slight deviations in form of microvorticity, homogeneously distributed over all the spins in the simulation, are visible. This indicates the Goldstone mode acting as the main source of microvorticity at low temperatures. The selection term predicted by the spin-wave calculation for the striped phase gets weaker at lower temperatures and therefore the saturation of M_{mv} is expected due to the Goldstone mode.

B. Dilution

We now consider dilution disorder through the introduction of vacancies. Starting with the non-disordered square lattice, moments are removed with a probability p, which will be referred to as the dilution rate.

The diluted square-lattice dXY was previously treated using a spin-wave calculation in order to obtain the phase diagram.21 Here, for small but finite p at $T = 0$, the microvortex phase is preferred and for small but finite T at $p = 0$, the striped phase is preferred. For any value of p at sufficiently high T, the paramagnetic phase is expected. With temperature-sweep Monte Carlo simulations, a first quantitative phase diagram was constructed.27,31,32 Here, the measured observable consisted of fourth powers of the spin components and essentially was a measure of the likelihood of spins to point along diagonals rather than along axes. This gave an indication of the selected phase, but did not serve as an order parameter. This led to well-converged results for small values of p. However, due to the frustration and the disorder at higher values of the dilution rate, a temperature-sweep algorithm is prone to get stuck in metastable states, so that no conclusive statement was possible above a dilution rate of approximately 6%.

The order parameters determined by our Monte Carlo simulations as a function of temperature and dilution rate are summarized in Fig. 3. There is good convergence of the data for all system sizes, temperatures and dilution rates since there is no visible noise. The previously proposed phase diagram21 is in qualitative agreement with
the results for M_s and M_{mv}. Namely, there is a pocket at low temperatures and finite dilution rate, where the microvortex phase is predominant (region with strong signal in the panels for M_{mv}, which is better visible for larger system sizes). In addition, for small dilution rates and high enough temperatures, the striped phase dominates (region with strong signal in the panels for M_s). Nonetheless, in regions where one phase dominates, there is still some signal of the order parameter for the other phase visible. This occurs because fluctuations from one phase appear as an increase in the order parameter of the other phase.

Previously, it was predicted[24] that any long-range order disappears close to the percolation limit of the square lattice at $1 - p_{perc}^{bc} = 40.7\%$. However, inspection of $|\vec{M}|$ in Fig. 4 reveals that long-range order disappears already at a dilution rate of $p_c \approx 15\%$. Note that this value is dependent on the cutoff and that the inclusion of more lattice sites leads to a reduction of both T_c as well as p_c due to the frustration present in the system.

All of the data presented in Fig. 3 is system-size dependent. In order to give a system-size independent phase diagram another method needs to be implemented. Even though the data is not good enough to attempt a scaling collapse, a Binder cumulant analysis can be applied. Crossings of the cumulants for different system sizes at a fixed dilution rate can, up to corrections to scaling, precisely locate the critical temperatures for the involved transitions.

Making use of the binning analysis implemented in ALPS, we obtain the Binder cumulants with their statistical error. Through a resampling procedure, such error information can be used to obtain possible realizations of the Binder cumulant curves. In particular, the mean value of the Binder cumulants as a function of T at a fixed value of p was perturbed with uncorrelated Gaussian noise according to the statistical error at each sampling point. Through the analysis of many such curves, statistics on the crossings can be obtained and, from this, an estimate for T_c and its uncertainty at every value of p can be determined. We refer to this method as the fixed dilution rate analysis. Analogously, the same procedure can be applied for the Binder cumulants at a fixed temperature as a function of p in order to obtain an estimate for p_c at every value of T. We refer to this as the fixed temperature analysis.

The system-size independent phase diagram is shown in Fig. 4. Filled markers denote the procedure where the data was analyzed for a fixed dilution rate to obtain T_c, whereas open markers are the data for p_c obtained with the fixed temperature analysis. The Binder cumulant estimate for $T_c (p_c)$ is shown with red dots, violet diamonds and orange triangles for $|\vec{M}|$, M_{mv} and M_s, respectively. For comparison, the microvorticity heat map (M_{mv}) for $L = 48$ is shown in the background.

A few remarkable features can be identified in Fig. 4. At the critical line separating the paramagnetic phase and the striped phase, T_c predicted by the Binder cumulant analysis of M_s and $|\vec{M}|$ agree well and have small error bars. This data also agrees well with the data for p_c, which was obtained by the fixed temperature analysis. Furthermore, the fixed temperature analysis yielded the boundary where the striped phase and the paramagnetic phase at $p_c(T = 0) \approx 11\%$. Here, the fixed dilution rate analysis could no longer provide quantitative data. This is due to the fact that the phase boundary is close to vertical, so that T_c in this area is very sensitive to p. At the lower critical line, separating the microvortex phase (region “mv”) from the striped phase (region “s”), there is again good agreement between the data for the Binder cumulants of M_{mv} and M_s. However, here the error bars are substantially larger. This is due to the Binder cumulants being flatter as a function of temperature, resulting in poorly defined crossings. The fixed temperature analysis did not perform well for the phase boundary between the microvortex phase and the striped phase since it was noise dominated. Therefore this data is not shown. At $p \geq 12\%$, the analysis could no longer be performed, as there were no more crossings. This corresponds to the onset of paramagnetism in the region labeled “para”.

C. Random displacement

We now introduce random displacement. Starting with the non-disordered square lattice, every site is relocated by a random displacement in the xy-plane, drawn from a Gaussian random distribution with standard deviation σ.

To the best of our knowledge, no attempt has been made to provide a phase diagram with respect to the strength of the random displacement, even though sim-
IV. APPLICABILITY OF THE ORDER PARAMETERS

Strictly speaking, the order parameters (|\vec{M}|, M_s, M_{mv}) are only valid for the non-disordered system, since any disorder will in principle invalidate the symmetry discussion made in section III. Nevertheless, for small disorder, the derived order parameters should still be approximately valid. The implicit assumption made to employ the derived order parameters, even in disordered systems, is that the enumeration indices xi and yi in Eq. (2) are approximately valid descriptions of the lattice positions. Certainly for small disorder the indices specify the positions well. However, in the highly disordered systems, this is no longer true.

To test if the enumeration in terms of xi and yi is valid, the random-displacement disordered system can be considered. The problem of enumeration becomes apparent when two moments exchange their relative order. This is formally written as follows: let us denote the position of the i-th moment in the non-disordered case with \vec{r}_i = (r_{ix}, r_{iy}) and the position after applying the disorder with \vec{R} = (R_{ix}, R_{iy}). To compute the exchange probability, consider now two sites i and j, which respect in the non-disordered case \(r_{ix} < r_{jx} \). An exchange along the x-direction has occurred if \(R_{ix} > R_{jx} \). Analogously for the y-direction, \(r_{iy} < r_{jy} \) but \(R_{iy} > R_{jy} \). The probability of an exchange event depends on the width of the random displacement and can be computed to be

\[
\rho_{\text{ex}}(\sigma) = 2 \cdot \frac{1}{2\pi \sigma^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} du du' e^{-\frac{u^2}{2\sigma^2}} e^{-\frac{(u-u')^2}{2\sigma^2}}. \tag{5}
\]

The factor 2 comes from considering the exchange of sites along both the x-direction as well as the y-direction. As soon as an exchange event occurs, the group theoretical symmetry discussion in section III will be invalidated. Therefore we need to make sure that the value of \(\rho_{\text{ex}}(\sigma) \) is small enough, so that the order parameters obtained from the simulations are well defined in each region.

FIG. 4. (color online) The phase diagram for the diluted square lattice dXY system as a function of dilution rate and temperature derived via Binder cumulant crossings, superimposed on the corresponding \(M_{mv} \) data of Fig. 3 for \(L = 48 \). The filled (open) markers give \(T_c (p_c) \) with red dots for |\vec{M}|, orange triangles for \(M_s \) and violet diamonds for \(M_{mv} \) respectively. Region “mv” corresponds to the microvortex phase, region “s” to the striped phase and region “para” to the paramagnetic phase (details in the main text).
of the simulations, the definition of the order parameter breaks down at least locally. However, this is the highest disorder considered and the system is already in the paramagnetic phase, so that an error of this size should not affect the conclusions on the phase diagram.

For smaller values of σ, the exchange probability diminishes drastically. To illustrate this, for $\sigma = 0.16$, which is just slightly smaller than the highest disorder considered, the exchange is expected to only occur once in the 32 disorder realizations for of the largest considered system-size ($L = 48$) and this is still deep in the paramagnetic phase. Below $\sigma = 0.16$, $\rho_x \approx 0$ so it is not expected that the order parameters breaks down at all in the simulations. Therefore, we can conclude that the order parameter definitions in Eq. (3) are well justified for the construction of the phase diagrams.

V. CONCLUSIONS

In this work the dipolar-coupled XY (dXY) spin system on the square lattice was treated under the influence of disorder with Monte Carlo simulations. Starting from the perfect lattice, disorder was introduced in two different forms, namely by introduction of vacancies and by random displacement of each site. Some features of these systems are already known from previous work,

This paper extends these results by first deriving order parameters for the phases known as the striped phase and the microvortex phase. The order parameters of the dXY system were then determined using parallel tempering Monte Carlo simulations, first for non-disordered systems down to very low temperatures, and then for systems with either dilution or random displacement as sources of disorder. The phase diagrams for both cases of disorder were obtained via a Binder cumulant approach, to find system-size independent values for T_c (ρ_c) as well as to quantify the uncertainty. Finally it was argued, that the definitions of the order parameters are well defined even in the disordered systems.

The newly derived order parameters, as well as the use of parallel tempering Monte Carlo simulations allowed us to distinguish the long-range ordered phase from the paramagnetic phase, and to determine the character of the long-range ordered phases. For both types of disorder, well-converged results for the order parameters as a function of temperature and disorder strength were obtained for all system sizes. Furthermore, the system-size independent phase diagram could be derived via a Binder cumulant analysis, which gave in most regions small error bars for T_c as well as ρ_c.

In previous work on the dilution-disordered system,

it was speculated that the disappearance of long-range order would occur close to the percolation threshold of the square lattice. In contrast to these predictions, our simulations result in a much lower critical dilution rate of about $\rho_c(T = 0) \approx 12\%$.

A full phase diagram for the random-displacement dis-
ordered dXY system on the square lattice was obtained. In contrast to the dilution-disordered system, a large region seemed to be apparent (region “fs” in Fig. 21), where the system size results in a sizable contribution to the order parameters. This region “fs” is expected to vanish in the thermodynamic limit. Interestingly, in the phase diagrams for both the dilution-disordered system as well as the random-displacement disordered system, the other regions behave similarly, even though the notion of disorder in the two systems is quite different. The microvortex phase is favored by both types of disorder. Also in both systems, at high enough temperature and small enough disorder, the striped phase is favored, before ending in the paramagnetic phase at higher temperatures or disorder strengths.

These similarities in the phase diagrams suggest a general mechanism for the selection of the microvortex phase, which is common to both dilution and random displacement. This can be understood by considering the fact that in disordered systems, in contrast to the non-disordered system, it is more difficult for magnetic flux closure to occur at bulk length scales, since disorder breaks locally many of the previously available symmetries. Instead of a global magnetic flux closure obtained by the striped phase, a more local magnetic flux closure structure as in the microvortex phase is likely to be favorable. The derivation of this more general mechanism from an analytic perspective poses an interesting question for future work.

ACKNOWLEDGMENTS

We would like to thank Michael Schütt for helpful discussions. We also would like to thank Naëmi Leo and Valerio Scagnoli for carefully reading the manuscript and providing useful suggestions. This work was partially funded via a PSI-CROSS proposal (no. 03.15.).

* dominik.schildknecht@psi.ch

[1] G. H. Wannier, Phys. Rev. 79, 357 (1950)
[2] L. Pauling, in Nat. Chem. Bond (1945) pp. 301–304.
[3] R. J. Elliott, Phys. Rev. 124, 346 (1961).
[4] M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502 (1980).
[5] W. Selke, Phys. Rep. 170, 213 (1988).
[6] S. F. Edwards and P. W. Anderson, J. Phys. F Met. Phys. 5, 965 (1975).
[7] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975), arXiv:1011.1669v3.
[8] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, Nature 399, 333 (1999).
[9] C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008), arXiv:0710.5515v2.
[10] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and K. W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997).
[11] L. J. Heyderman and R. L. Stamps, J. Phys. Condens. Matter 25, 363201 (2013).
[12] C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013), arXiv:1306.0825.
[13] C. H. Marrows, in Spin Ice, edited by M. Udagawa and J. Ludovic, arXiv:1611.0744.
[14] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and P. Schiffer, Nature 439, 303 (2006), arXiv:0601429 [cond-mat].
[15] A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopard, M. Wyss, J. Perron, A. Scholl, F. Nolting, and L. J. Heyderman, Phys. Rev. Lett. 111, 057204 (2013).
[16] J. Cumings, L. J. Heyderman, C. H Marrows, and R. L Stamps, New J. Phys. 16, 075016 (2014).
[17] L. Anghinolfi, H. Luëtkens, J. Perron, M. G. Flokstra, O. Sendetskyi, A. Suter, T. Prokscha, P. M. Derlet, S. L. Lee, and L. J. Heyderman, Nat. Commun. 6, 8278 (2015).
[18] O. Sendetskyi, L. Anghinolfi, V. Seagnoli, G. Möller, N. Leo, A. Alberca, J. Kohlbrecher, J. Lüning, U. Staub, and L. J. Heyderman, Phys. Rev. B 93, 224413 (2016).
[19] E. Östman, H. Stopfel, I.-A. Chioar, U. B. Arnalds, A. Stein, V. Kapakis, and B. Hjörvarsson, Nat. Phys. (2018), 10.1038/s41567-017-0027-2, arXiv:1706.02127.
[20] P. I. Belobrov, R. S. Gekht, and V. A. Ignatchenko, Zh. Eksp. Teor. Fiz 84, 1097 (1983).
[21] S. Prakash and C. L. Henley, Phys. Rev. B 42, 6574 (1990).
[22] L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, Appl. Phys. Lett. 85, 4989 (2004).
[23] U. B. Arnalds, M. Ahlberg, M. S. Brewer, V. Kapakis, E. T. Papaioannou, M. Karimipour, P. Korelis, A. Stein, S. Ölafsson, T. P. A. Hase, and B. Hjörvarsson, Appl. Phys. Lett. 105, 042409 (2014).
[24] N. Leo, S. Holenstein, D. Schildknecht, O. Sendetskyi, H. Luetkens, P. M. Derlet, T. Prokscha, A. Suter, Z. Salman, S. Lee, and L. J. Heyderman, “Magnetic correlations in artificial 2D XY spin system (under review)”.
[25] S. Velten, R. Streubel, A. Farhan, N. Kent, M.-Y. Im, A. Scholl, S. Dhuey, C. Behncke, G. Meier, and P. Fischer, Appl. Phys. Lett. 110, 262406 (2017).
[26] S. K. Baek, P. Minnhagen, and B. J. Kim, Phys. Rev. B 83, 184409 (2011), arXiv:1104.1792.
[27] K. De’Bell, A. B. Maclaasac, I. N. Booth, and J. P. Whitehead, Phys. Rev. B 55, 15108 (1997).
[28] A. Carbognani, E. Rastelli, S. Regina, and A. Tassi, Phys. Rev. B 62, 1015 (2000).
[29] J. F. Fernández and J. J. Alonso, Phys. Rev. B 76, 014403 (2007), arXiv:1312.5602.
[30] J. V. José, L. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977), arXiv:arXiv:1011.1669v3.
[31] S. M. Patchediev, J. P. Whitehead, and K. De’Bell, J. Phys. Condens. Matter 17, 2137 (2005).
[32] T. LeBlanc, K. De’Bell, and J. P. Whitehead, Phys. Rev. B 74, 054407 (2006).
[33] J. J. Alonso and B. Allés, J. Phys. Condens. Matter 23, 136002 (2011).
[34] G. M. Pastor and P. J. Jensen, Phys. Rev. B 78, 134419 (2008).
[35] E. Rastelli, S. Regina, A. Tassi, and A. Carbognani, Phys. Rev. B 65, 094412 (2002).
Source code available under: http://github.com/dominisch/mcpp

M. Troyer, B. Ammon, and E. Heeb, in Lect. Notes Comput. Sci. Vol. 1505 (1998) pp. 191–198.

A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Läuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Paw łowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner, and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), arXiv:0801.1765.

B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Guelberger, E. Gull, S. Guentler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Paw łowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner, and S. Wessel, J. Stat. Mech. Theory Exp. 2011, P05001 (2011), arXiv:1101.2646.

R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607 (1986).

K. Hukushima and K. Nemoto, J. Phys. Soc. Japan 65, 1604 (1996).

H. G. Katzgraber, S. Trebst, D. A. Huse, and M. Troyer, J. Stat. Mech. Theory Exp. 2006, P03018 (2006), arXiv:0602085 [cond-mat].

J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).