Research Article

Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method

Mingzhong Gao1,2, Bin Yu3*, Zhiqiang Qiu1,2, Xiangang Yin4, Shengwei Li1,2, Qiang Liu1,2

1 State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China, 2 Key Lab. of Energy Eng. Safety and Mechanics on Disaster (Sichuan Univ), Ministry of Education, Chengdu, China, 3 Datong Coal Mine Group Co. Ltd., Datong, China, 4 Changsha Institute of Mining Research Co.,Ltd, Changsha, China

* 42498410@qq.com

Abstract

Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.

Introduction

In practical underground construction projects, owing to the benefits of relatively simple construction processes, rapid cavern formation, quickly and easily shaped cavern supports, and the high rate of cross-section utilization, rectangular cross-sectional caverns are increasingly
employed in industrial and residential construction, transportation, mining, water resources
and hydroelectric power generation, as well as defense projects. For instance, the largest
underground shopping mall, Toronto’s PATH underground complex, occupies 370,000 m² of
space, and its foundation excavation has a full cross-sectional rectangular shape. Other exam-
pies include underground factories, urban subway stations, mining tunnels, underground
hydroelectric powerhouses, underground energy storage warehouses, and underground shel-
ters. Compared with tunnels of other cross-sectional shapes, the failure mechanism of rectan-
gular cavern wall rock is significantly different as a result of the cross-sectional shape and
variations in wall stress distributions [1]. The stability analysis of circular and elliptically
shaped cavern wall rocks is informed by mature theoretical analysis methods [2–7]. However,
an understanding of rectangular cavern wall rock deformation and damage characteristics is
still at an initial exploration stage, and a mature theory has not yet been developed. Thus, a sys-
tematic in-depth study of the rectangular wall rock deformation mechanism has extremely
important theoretical value and practical significance.

Complex variable functions can transform the boundaries of complicated shapes into sim-
ple shapes. Then, the solution obtained with the simply shaped boundary can be transformed
back to the complicated boundary to obtain a solution for the original problem. This method
is effective for solving complicated boundary problems. Therefore, researchers frequently use
complex variable function theory to study rectangular cavern wall rock damage characteristics
and mechanisms. On this basis, corresponding analytical equations used in wall rock deforma-
tion theory have been obtained. Muskhelishvili [8] applied a complex variable function to
study the elastic mechanics of a planar problem. The result contributes to develop the computa-
tional theory of complex boundaries cavern. He et al. [9] treated a rectangular cavern as an
equivalent circular cavern to facilitate a solution based on the equivalent Laurent series radius.
But the approach is at the cost of computational accuracy. Savin et al. [10] used a complex vari-
able function to study boundary stress distributions for caverns composed of isotropic or
anisotropic materials other than boundary deformations. Sharma et al. [11] employed a com-
plex variable function to analyze the stress concentration around circular, oval, round, triangu-
lar and quadrilateral caverns in an infinite plane. They suggest that the loading angle and
corner radius are the key factors affecting the value of stress concentration. Huo et al. [12]
used complex variable theory and conformal mapping to develop a solution for deep rectangu-
lar structure with a far-field shear stress. The solution showed that structural deformations
depend on the relative stiffness between the structure and the surrounding ground, and on the
shape of the structure. Charles et al. [13] presented a simple approximate solution for an artifi-
cial rectangular hole using complex variable theory and introducing a correction factor. Lv
et al. [14] employed an optimization technique to obtain a mapping function for caverns with
an arbitrary sectional shape. Akbarov et al. [15] used the framework of the three-dimensional
theory of elasticity under a plane-strain state to study the influence of the initial stretching of a
simply supported plate strip containing a rectangular hole. Grigorios et al. [16] made use of
dynamic centrifuge tests and ABAQUS numerical modeling to research the seismic behavior
of rectangular tunnels in soft soils; this study constitutes an important step in the development
of appropriate specifications for the seismic design of rectangular shallow tunnels.

The deformation characteristics of a rectangular cavern have been described in different
directions and levels by the researchers above. This research has had a significant guiding
influence on subsequent in-depth discussions of rectangular cross-sectional cavern wall rock
stability. However, most studies have been based on the transformation of a rectangular planar
area into an area with a simple boundary shape, such as inside or outside a unit circle. This
approach is especially suitable for analyzing typical points on the side of a hole (e.g., two sides,
a top arch, and floor heave). However, rectangular plane Cartesian coordinates transform to

Competing interests: The authors have declared that no competing interests exist.
multiple power functions of a unit circle in polar coordinates, so when this approach is used to solve for the displacement field at multiple points, the corresponding transformation has multiple solutions that are identified while a rectangular body is being mapped to corresponding unit circles. To obtain the corresponding unit circle coordinates, a determination based on relevant conditions is needed, thus causing the computation process to become extremely complex. However, according to the inverse mapping method [17], a one-to-one relationship exists where unit circle coordinate points are mapped to rectangular coordinates. Thus, this method greatly reduces the difficulty in solving for cavern boundary and internal wall rock displacements. This paper theoretically analyzes deformation at a rectangular cavern boundary and inside the wall rock, which enables the derivation of a corresponding function based on inverse mapping. The horizontal and vertical deformation displacements can be obtained for any point on the rectangular boundary and inside the wall rock. The results are compared with results calculated using ANSYS numerical software to verify the reliability of the proposed method. Therefore, the use of the inverse mapping method can greatly improve efficiency when solving for rectangular cavern internal wall rock displacements.

Rectangular cavern displacement field solutions based on the inverse mapping method

Complex variable function solutions for conventional rectangular cavern displacement

To study rectangular cavern deformation characteristics, a mechanical model has been constructed, as shown in Fig 1. This type of problem is treated as a hole-opening strain problem in an infinite plane because the cavern length exceeds the section dimensions. \(P \) represents the overlying strata pressure on the model, while \(\lambda P \) represents the surrounding rock’s pressure on the model, where \(\lambda \) is the lateral pressure coefficient. The cavern dimensions are set to \(a \times b \), and the model dimensions are set to \(A \times B \). According to St. Venant’s principle [18], the stress and strain corresponding to the opening of the cavern act only within a radius of three times the distance from the center of the cavern. Thus, to eliminate this boundary effect, this study uses a mechanical model that is five times the size of the cavern.

Conformal transformation is applied, and the cavern is mapped onto the unit circle in the \(\zeta \) plane based on complex variable theory [19]. Conformal transformation is a method that is used to transform the area outside a hole with a specified shape onto the region either outside or inside a unit circle. The key to this method is assessing how the conversion analytical function should be determined. A mapping function \(Z = w(\zeta) \) transforms the rectangle into a unit circle in the complex plane to facilitate study. Cavern wall rock deformation is determined by two analytical functions, \(\varphi(\zeta) \) and \(\psi(\zeta) \), based on elastic mechanics theory [20], as given by:

\[
2G(u + iv) = k\varphi(\zeta) - \frac{\partial \varphi(\zeta)}{\partial \zeta} \bar{\varphi'(\zeta)} - \bar{\psi'(\zeta)}
\]

(1)

In the equation, \(k = 3-4\mu \), \(G \) is the shear modulus of the rock such that \(G = \frac{E}{2(1+\mu)} \), \(E \) is the rock lithology modulus, and \(\mu \) is Poisson’s ratio. Assuming that the polar coordinates of any point in the \(\zeta \) plane are \((\rho, \theta) \), \(\zeta = \rho e^{i\theta} = \rho(\cos \theta + isin \theta) \). Eq (1) shows that only three complex variable analytical functions, \(\omega(\zeta) \), \(\varphi(\zeta) \) and \(\psi(\zeta) \), need to be solved. The real and imaginary parts are separated to obtain displacement components \(u \) and \(v \) for any point. A mapping function must be calculated via conformal transformation for caverns with arbitrary sectional shapes.
Mapping function solution based on the Schwarz-Christoffel method

The Z plane is mapped to a unit circle in the \(\zeta \) plane based on the mapping method provided by Schwarz-Christoffel. The general form of conformal transformation is:

\[
\omega = K \int [(z - x_1)^{\alpha_1} x_1^{\alpha_1 - 1} \ldots (z - x_k)^{\alpha_k} x_k^{\alpha_k - 1}] dz + c
\]

where \(\alpha_1, \alpha_2, \ldots, \alpha_k \) refer to the polygon mapping angles and \(x_1, x_2, \ldots, x_k \) refer to the mapping positions. Based on complex variable function theory, \(n = 4 \) in the equation and \(c = 0 \) at the boundary when the Z plane represents an elastic body with a rectangular external boundary. Therefore, the rectangular equation converts to:

\[
Z = \omega(z) = R \int_0^\infty [(t - a)^{\beta_1 - 1} (t - b)^{\beta_2 - 1} (t - c)^{\beta_3 - 1} (t - d)^{\beta_4 - 1}] dt
\]

where \(\beta_1, \beta_2, \beta_3, \) and \(\beta_4 \) represent the four vertices of the rectangle and the complex variable transformations of \(a, b, c, \) and \(d \) are:

\[
\begin{align*}
 a &= e^{i (\pi/2 - k\pi)} , \\
 b &= e^{i (\pi/2 + k\pi)} , \\
 c &= e^{i \pi/2 + k\pi} , \\
 d &= e^{i (\pi + k\pi)}
\end{align*}
\]

The previous expressions are substituted into Eq (4), and \(q(t) \) is used to represent the integrand:

\[
q(t) = \sqrt{(1 + 2t^2 \cos 2k\pi + t^4)}.
\]
inverse mapping method when points at infinity possess bounded stress, the infinity neighborhood expressions for \(q(z) \) is expanded in the neighborhood of the zero point and substituted to obtain:

\[
Z = x + iy = \omega(z) = R(z + c_0 + \frac{c_1}{z} + \frac{c_2}{z^2} + \ldots + \frac{c_n}{z^n} + \ldots)
\]

(6)

where \(c_n \) is the mapping function coefficient, the value of which is \(c_n = \frac{1}{2} a^{(n)}(t) \mid_{t=0} \) (the same below), and \(R \) is a constant that reflects the size of the rectangular cavern.

For the rectangular shape analyzed in this paper and according to the Schwarz-Christoffel equation, it is found that \(c_0 = 0, c_1 = \cos 2k\pi, c_2 = 0, c_3 = -\sin^2 2k\pi/6, c_4 = 0, c_5 = -\sin^2 2k\pi \cos 2k\pi/10, c_7 = (10 \cos 8k\pi - 8 \cos 4k\pi - 2)/896. \) Thus, we obtain:

\[
\begin{align*}
\psi_0 &= \frac{1}{2\pi(1 + \kappa)} \int_{\sigma=0}^{\sigma=\infty} \frac{\omega(\sigma)}{\omega(\sigma) - \sigma} d\sigma = \frac{1}{2\pi i} \int_{\sigma=0}^{\sigma=\infty} \frac{f_0}{\sigma - \zeta} d\sigma, \\
\psi_0 &= \frac{1}{2\pi i} \int_{\sigma=0}^{\sigma=\infty} \frac{\omega(\sigma)}{\omega(\sigma) - \sigma} d\sigma = \frac{1}{2\pi i} \int_{\sigma=0}^{\sigma=\infty} f_0 d\sigma.
\end{align*}
\]

(12)

(13)

By solving Eq (12) to obtain \(\varphi_0(\zeta) = \sum_{k=0}^{n} c_k \zeta^{-k} \) and substituting this into Eq (13), we obtain \(\psi_0(\zeta) \). Then by substituting \(\varphi_0(\zeta) \) and \(\psi_0(\zeta) \) into Eqs (10) and (11), \(\varphi(\zeta) \) and \(\psi(\zeta) \) can be
and an initial ground stress given by (Fig 2 illustrates a deep underground rectangular cavern with a width of 4 m, a height of 3 m)

Further, displacements \(u \) and \(v \) in the X and Y directions can be obtained:

\[
2G(u + iv) = \kappa \sum_{k=1}^{n} a_k \zeta^{-k} + \sum_{k=1}^{n} k a_k \rho^{-2(k+1)} \zeta^{-k+1} \left[\zeta^{-1} + \sum_{k=1}^{n} c_k \zeta^{-k}(1 - \rho^{2k}) \right] - \sum_{k=1}^{n-2} S_k \rho^{2k} \zeta^{-k} - \frac{PR}{2} (1 - \lambda) \sum_{k=1}^{n} c_k \rho^{2k} \zeta^{-k} + \frac{PR}{2} (1 + \lambda) \sum_{k=1}^{n} \frac{\zeta^{-k}}{\rho^2} \frac{n}{2} \lambda
\]

\(\lambda \) represents the lateral pressure coefficient. Variables \(a_k \) and \(s_k \) represent the relevant calculation coefficients for the mapping coefficient \(c_k \); they can be calculated using the Laurent series (Saint-Venant. 1855). When a point \((\rho, \theta) \) is given, based on the mapping function (7), the coordinates of this point can be calculated in the Z plane.

In the same way, the shear stress at the hole side is obtained when the boundary of the rectangular cavern is not loaded:

\[
\sigma_\theta = P(1 + \lambda) + \frac{4}{R} \cdot \frac{AC + BD}{A^2 + B^2}
\]

where: \(A = -\cos(n + 1) \theta + \sum_{k=1}^{n} kC_k \cos(n - k) \theta \), \(B = -\sin(n + 1) \theta + \sum_{k=1}^{n-1} kC_k \sin(n - k) \theta \), \(C = \sum_{k=1}^{n} k a_k \cos(n - k) \theta \), \(D = \sum_{k=1}^{n-1} k a_k \sin(n - k) \theta \).

Case study

Fig 2 illustrates a deep underground rectangular cavern with a width of 4 m, a height of 3 m and an initial ground stress given by \((\sigma_z = 30 \text{ MPa}, \sigma_r = 30 \text{ MPa}, \sigma_\theta = 0) \). The wall rock’s basic mechanical parameters are listed in Table 1. Based on the mapping function (7), we can obtain: \(k = 0.23 \) and \(R = 2.0805 \), then use the Schwarz-Christoffel formula to get \(c_1 = 0.125, c_2 = 0, c_3 = -0.164, c_5 = -0.012, \) and \(c_7 = 0.016 \). The corresponding coordinates of the intersection angle in the unit circle’s circumference can be calculated via inverse mapping. The corresponding intersection angle \(\theta_0 \) can then be calculated in the rectangular plane. When taking different negative power terms, the mapping between the unit circle and rectangle can be shown in Fig 3. The figure shows that when we take the expansion terms to 1, the mapping tends to an ellipse, with the expansion terms increased to 3, we can find that the mapping tends to rectangular geometries where the corner is rounded rather than at a right angle shape. When we add the terms to 5, it can be seen that when \(n \geq 5 \) (where \(n \) represents the number of expansion terms), the coefficient of mapping functions are small enough that the impact on the result of mapping can be ignored. Therefore, we set the negative power terms to \(n = 3 \). From the Laurent series, \(a_1 = \rho_1(1+\lambda) \frac{c_1}{2(c_5-1)} \), \(a_2 = \rho_2(1+\lambda) \frac{c_2}{2} \), \(a_3 = \rho_3(1+\lambda) \frac{c_3}{2} \) and \(S_1 = a_1 \times c_3 \).

MATLAB software is used to translate the calculation formula (14), execute the transformation between the cavern dimension related polar coordinates and Cartesian coordinate system and to store the mapping parameter calculation procedure so that the displacement can be calculated at any specific position on the cavern boundary or inside wall rock. The required parameters are calculated as \(k = 0.23, r = 2.0805, c_1 = 0.125, c_2 = 0, c_3 = -0.164, a_1 = -5.7122 \times 106, a_2 = 0, a_3 = 8.7032 \times 106 \) and \(S_1 = 0.937 \times 106 \).

According to the above theoretical results, \(\lambda \) will affect it as a variable in the solution formula of \(\sigma_\theta \). Combining the different boundary angles of the cavity in Z plane, the shear stress coefficient under diverse boundary angle distribution with different lateral pressure coefficient.
can be obtained. As the model is symmetrical, this paper takes the 1/4 structure to analysis, the calculation results are shown in Fig 4. We can see that the variation trends of shear stress coefficient under different side pressure coefficients are consistent and all of these showed an initial increase followed by a decrease, and the maximum stress concentration coefficient occurs at an angle of 35˚ to 40˚ to the horizontal, i.e., near the right angle of a rectangle. In addition, when the value of \(\lambda \) is relatively small, tensile stress will appear surrounding the cavern, and with the increase of \(\lambda \), the tensile stress decreases gradually until compressive stress appears. When \(\lambda \geq 0.8 \) the stress surrounding the cavern is all compressive stress.

Table 1. Cavern wall rock mechanical parameters.

Elastic modulus E/GPa	Poisson ratio \(\mu \)	Tensile strength \(\sigma_c/\text{MPa} \)	Compressive strength \(\sigma_t/\text{MPa} \)
25	0.15	30	3

https://doi.org/10.1371/journal.pone.0188336.t001
The X direction displacement around the cavern gradually decreases from 6.1 mm (in the middle of the lateral wall) to 0 mm (roof) with increasing angle. The Y direction displacement displays an opposite trend, gradually increasing from 0 mm (in the middle of the lateral wall) to 7.4 mm (at the roof) with increasing angle. To verify the accuracy of the theoretical
ANSYS finite element analysis software is employed to simulate wall rock boundary deformation under stress. The numerical calculation model is shown in Fig 5; the size of the cavern is $2 \times 1.5\text{m}$ and the model size is 11 times that of the cavern, i.e., a horizontal length of 22m, a vertical height of 16.5m, with a total mesh of 140. Additionally, the elastic model is used for numerical simulations. The upper and right lateral surfaces are stress boundaries, with the stress given by $\sigma_x = \sigma_y = 30\text{MPa}$. A displacement boundary condition is applied to the floor and left lateral surfaces. The boundary displacement calculation results are shown in Fig 5 in the blue curve. The maximum horizontal direction displacement is 5.3 mm, and the maximum vertical direction displacement is 6.4 mm. Comparative analysis indicates that the maximum displacement errors between the theoretical and numerical simulation calculation results are 14.5% in the horizontal direction and 15.6% in the vertical direction (as in Fig 6). Moreover, the maximum displacement errors in both directions occur at the vertices of the rectangular cavern. A possible source of the above errors is the process of mapping the unit circle to a rectangle (as in Fig 3), in which only the first three terms of the inverse mapping function are used. In doing so, the four vertices became four circles of small radii, which is different from an actual rectangular shape. Therefore, errors arise between the theoretical and numerical simulation values, and the errors are mainly concentrated in the vertex area. The errors are relatively small and within the acceptable range. Therefore, both the analytical results and the comparison suggest that the proposed method can be used to calculate the cavern boundary elastic displacement.
The evolution pattern of displacement inside the wall rock following cavern excavations ($\rho \neq 1$ or $\rho = 2, 3, 4, 5, 6, 7$ and 8) is substituted into Eq (14) to calculate the wall rock interior displacement field nephogram, as shown in Fig 7. Both the vertical and horizontal direction displacements decrease when the distance between the monitoring point and hole opening increases. This variation pattern also matches the actual scenario, which further validates the theory.

Basically, the method for calculating the displacement of surrounding rock of cavern is put forward tentatively, which provides a new way for calculating the displacement of cavern.
However, the shortcoming of the method is that the influence of complex geological conditions such as faults, joints and folds on the calculation results has not been considered yet. When it comes to the real engineering, an intensive research should be conducted.

Conclusions

1. A mapping function coefficient has been calculated and theoretical expressions for X- and Y-direction displacements have been derived for polar coordinates, based on the semi-infinite elastic body assumption, complex variable elastic theory, the conventional Laurent series complex method and Schwarz-Christoffel mapping. The proposed calculation method can be used as a reference for calculating rectangular cavern boundary displacement and the area of influence due to excavation.

2. Inverse mapping is investigated between polar coordinates in the unit circle plane and Cartesian coordinates in the rectangular plane. The transformation from a polar coordinate θ to an intersection angle θ’ between Cartesian coordinates and the X axis is also investigated. A relationship diagram is established between θ’ and horizontal and vertical direction displacement, providing an intuitive representation of wall rock deformation at a specific cavern boundary position.

3. Detailed comparisons suggest that the boundary displacement deformation rule calculated using the proposed method matches the ANSYS numerical simulation results. Wall rock interior displacement field nephograms are presented to verify the relevant elastic displacement calculations for a rectangular cavern via the proposed method.

4. A cavern’s axial strain ζ_z should be taken into account and cannot be treated as a planar strain problem if the studied cavern is relatively short. This type of problem must be solved using a complex variable function. Negative power terms in the mapping function should be accordingly increased to obtain a more accurate result.

Acknowledgments

The study was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFC0600701) and National Natural Science Foundation of China (Grant No. 51674170).

Author Contributions

Conceptualization: Mingzhong Gao.
Data curation: Xiangang Yin, Shengwei Li.
Formal analysis: Qiang Liu.
Funding acquisition: Mingzhong Gao, Bin Yu.
Investigation: Qiang Liu.
Validation: Bin Yu, Xiangang Yin.
Visualization: Qiang Liu.
Writing – original draft: Mingzhong Gao, Zhiqiang Qiu.
Writing – review & editing: Mingzhong Gao, Bin Yu, Zhiqiang Qiu.
References
1. Charles J (1988) Rock Mechanics and Engineering [M]. Cambridge University Press.
2. Sellers EJ, Klerck P (2000) Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels. Tunn Undergr Sp Tech 15(4):463–469.
3. Jiang BS, Zhang Q, He YN, Han LJ (2007) Elastoplastic analysis of cracked surrounding rocks in deep circular openings. J Rock Mech Eng 26(5): 982–986. (in Chinese)
4. Sharan SK (2003) Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media. Int J Rock Mech Min Sci 6(40): 817–827.
5. Wang SL, Wu ZJ, Guo MW (2012) Theoretical solutions of a circular tunnel with the influence of axial in situ elastic-brittle-plastic rock. Tunn Undergr Sp Tech 30:155–168.
6. Ahmad F, Farshad MT (2010) Analytical solution for excavation of circular tunnels in a visco-elastic Burger’s material under hydrostatic stress field. Tunn Undergr Sp Tech 25(4): 297–304.
7. Sharan SK (2005) Exact and approximates solutions for displacements around circular openings in elastic-brittle-plastic Hoek-Brown media. Int J Rock Mech Min Sci 4(42): 542–549.
8. Muskhelishvili NI (1962) Some basic problems of mathematical theory of elasticity [M]. The Netherlands: P. Noordhooff Ltd.
9. He MC (2004) Theory and practice of bolt support in coal mine of China [M]. Beijing: Scientific and Technical Publishers. (in Chinese)
10. Savin G (1961) Stress concentration around holes [M]. New York: Pergamon Press.
11. Dharmendra S (2012) Stress distribution around circular/elliptical/triangular holes in infinite composite plate. Eng Lett 20: 1–9.
12. Huo H, Bobet A (2006) Analytical solution for deep rectangular structures subjected to far-field shear stresses. Tunn Undergr Sp Tech 21(6):613–625.
13. Lei GH, Charles W (2001) Stress and displacement around an elastic artificial rectangular hole. J Eng Mech 127(9):880–890.
14. Lv AZ, Wang QW (1995) New method of determination for the mapping function of tunnel with arbitrary boundary using optimization techniques. J Rock Mech Eng 14(3):269–274. (in Chinese)
15. Akbarov SD, Yahnioglu D (2004) On the influence of the initial tension of a strip with a rectangular hole on the stress concentration caused by additional loading. J Strain Anal Eng 39(6):615–624.
16. Grigorios T, Kyriazis P (2013) Experimental and numerical investigation of the seismic behavior of rectangular tunnels in soft soils. Greece: 4th ECCOMAS Thematic Conference on computational methods in structural dynamics and Earthquake Engineering.
17. Lv AZ, Zhang LQ (2007) Complex variable function method for mechanical analysis of underground tunnel [M]. Beijing: Scientific and Technical Publishers. (in Chinese)
18. Saint-Venant B. de (1855) Mémoire sur la Torsion des Prisme, Mémoire des Savants Ettrangers, Académie de Sciences: 555–562.
19. Donald Sarason (2007) Complex function theory[M]. American Mathematical Society.
20. Barber JR (2002) Elasticity [M]. Kluwer Academic Publishers.