“Borderline” epithelial lesions of the breast: what have we learned in the past three decades?

Anna Sapino1,2, Caterina Marchiò1,2, Janina Kulka3

1 Candiolo Cancer Institute, FPO-IRCCS Candiolo, (TO), Italy; 2 Department of Medical Sciences, University of Torino, Torino Italy; 3 2nd Department of Pathology, Semmelweis University, Budapest

Summary
Atypical ductal hyperplasia (ADH), atypical lobular hyperplasia (ALH) and flat epithelial atypia (FEA) are common lesions mainly detected during mammographic screening. They are considered lesions at risk for the development of breast cancer, and they have been documented as non-obligate precursors of low grade in situ carcinomas. In a monumental work in 1991 Rosai gathered them as “borderline epithelial lesions”, and he described and demonstrated the subjectivity in their microscopic interpretation. Such subjectivity persists nowadays and limits considerably the diagnostic consistency. With his incredible ability to see, analyze and rationalize, Rosai introduced the concept of “mammary intraepithelial neoplasia (MIN) of either ductal or lobular type, followed by a grading system” which would have better represented the biological continuum between these lesions and benign and malignant lesions.

Key words: atypical hyperplasia, carcinoma in situ, non-obligate precursor, border-line in situ lesions

The diagnostic problem and the risk categories
In 1991, a deep-thinking paper entitled “Borderline epithelial lesions of the breast” with several practical considerations was published by Juan Rosai in the American Journal of Surgical Pathology. He was strongly convinced that this issue merited a focus because in the breast, the concept of borderline epithelial lesions is intimately linked with that of atypical ductal (ADH) and atypical lobular hyperplasia (ALH), “proliferative processes placed somewhere between the usual type of hyperplasia and carcinoma in situ (CIS), both in terms of morphologic features and propensity for the development of invasive carcinoma”. Second, in agreement with Azzopardi, one of the masters of breast pathology, Rosai thought that “atypical or borderline lesions of the breast are practically non-existent, and only our inadequate grasp of the subject explains and partially justifies the interim use of those terms”.

At that time, the most used morphological criteria to define atypical hyperplastic lesions were those described by Page et al. “a lesion in which either cytologic or pattern criteria of ductal CIS (DCIS) are met, but both are not present in full flower, as well as the lesion in which criteria for DCIS are present, but not uniformly so throughout at least two spaces” for ADH and “a lesion with cytologic appearances identical to those of LCIS found in lobular units, but in which less than one-half of the acini in a unit are filled, distorted and distended with a uniform
population of characteristic cells” for ALH. However, the same authors admitted “…the seeming lack of clarity or firmness in the definition of atypical hyperplasia”, but optimistically concluded that despite this fact “…experienced surgical pathologists and histopathologists frequently recognize such a category” 4. In 1990, by applying the same morphological criteria of Page, Tavassoli and Norris suggested to change the extent of the lesion to ≤ 2 mm in contiguous ducts, instead of 2 ducts, to diagnose ADH 5. The 2019 edition of blue book on breast tumors accepted both cut-offs 6. UDH and ADH may be represented both morphologically and dimensionally in Figure 1A and 1D, respectively. Figure 2 is a graphical representation of the dimensional criteria used to differentiate ADH from low grade DCIS. Undoubtedly dimensional criteria are clear cut and may be more easily reproduced. However, in small lesions, from a pragmatic standpoint we believe that it is important to compare histology with radiological findings, to perform levels on the block(s) where the lesions have been identified and to define the three-dimensional organization of the lesion in order to assess the real ex-

Figure 1. Representative micrographs of usual ductal hyperplasia (UDH) and atypical ductal hyperplasia (ADH). UDH shows a proliferation of cells with a streaming pattern and haphazard orientation with respect to one another (A), heterogeneous expression of basal cytokeratins (B) and estrogen receptor (C). ADH features a monomorphic proliferation of clonal proliferation featuring monomorphic cells with uniform-sized nuclei growing in arcades, cribriform, or solid patterns (D) with homogeneous expression of estrogen receptor (E).
tension of it. These issues may be exemplified looking at Figure 3 of the paper by Allison et al. 7 which repre-
sents diagnostic areas from the two cases of 72 with the highest agreement with the diagnosis of ADH. Fig-
ure 3A is representing a single “ductal” structure isolated
in the interlobular stroma, it is less than 2 mm (and
< 2 basement membrane bound spaces), visible at low
power and it shows obvious cytotpic monotony and a
cribiform architectural pattern (typical of DCIS) at high-
er magnification. This structure could be anatomically
referred to a “subsegmental duct” that continues with
terminal duct and acini, structures which are known to
be primarily involved by low grade DCIS. Thus, we think
that cases like this one merit to be compared with radi-
ological findings (e.g. calcification extension) to be sure
that we are not missing a DCIS.

Apart from pure morphological criteria, Page and Du-
pont 2,3 determined the corresponding risks for the
development of invasive carcinoma of the “atypical”
category. Rosai considered these as the best-de-
signed and carried out studies with this aim until that
moment: “The atypical hyperplasia group was found
to be at a risk which was almost exactly in between
that of moderate or florid hyperplasia without atypia
on one hand and that of CIS on the other”.

In 1988, the consensus meeting of the Cancer Com-
mittee of the College of American Pathologists 8, ap-
proved the three “risk categories” of breast cancer,
with a moderate increase of risk (x5) for ADH and ALH
(category III). Later on, Dupont and Page 9 described
ductal involvement by “an insinuated characteristic
population of cells between attenuated luminal cells
and basement membrane” and specified that this pat-
ttern slightly increases the risk of cancer in ALH.

Rosai’s comment, regarding the use by pathologists
of these risk categories, was as follows: “the wide-
spread adoption of this practice presupposes the ex-
istence of a reasonable degree of intraobserver and
interobserver concordance in the placement of the
lesions in the various categories that, to the best of my
knowledge, has never been tested”. He thus decided
to circulate slides among world known breast pathol-
gists (David Page among them) asking them to se-
lect among hyperplasia, ADH, ALH, carcinoma in situ,
and normal tissue for the lesions in the circled area
on each slide. Disagreement spanned from hyperpla-
sia (without atypia) to carcinoma in situ. Notably, not a
single case reached 100% interobserver agreement 1.

With this study, Rosai highlighted the very subjective
judgement of “atypicality” and the very subjectively un-
derstood definitions of ADH and ALH and he conclud-
ed: “A further, inescapable conclusion derived from
this admittedly small survey is that we are far from hav-
ing reached uniform diagnostic criteria in this field” 1.

One year later, in 1992, Page and Rogers proposed
to use combined histologic and cytologic criteria for
the diagnosis of ADH 10. In 2000, the members of
the European Commission Working Group on Breast
Screening Pathology using these criteria reached an
agreement of K 0.35 for ADH diagnosis 11! In
addition, Schnitt and Vincent-Salomon described
in 2003 the so called “columnar cell lesions of the
breast”, which “represent a spectrum of lesions which
have in common the presence of columnar epithelial
cells lining variably dilated terminal duct lobular units,
ranging from those that show little or no cytotpic or
architectural atypia to those that show sufficient cyto-
logic and architectural features to warrant a diagnosis
of atypical ductal hyperplasia or ductal carcinoma in
situ12, which were then universally recognized with the
term “Flat Epithelial Atypia -FEA”.

In Rosai’s paper these lesions were part of the set
of slides sent for evaluation (see his Figs. 2, 8, 9) 1. They
were classified either as benign or ADH. Schnitt
in a review 13 concluded “clinical significance at this
time, the appropriate management of patients whose
breast biopsies show flat epithelial atypia in the
absence of diagnostic areas of ADH or DCIS is unknown
and requires evaluation in further clinical outcome
studies”. Numerous studies have considered the is-
ue related to up-grading of pre-operative diagnoses
of FEA, ADH to DCIS, or infiltrating carcinomas and
different criteria have been proposed but, the problem
remains to be solved.

Another three decades have passed since Rosai’s pa-
per and many studies have been published on FEA, ADH
and ALH definition and diagnostic (dis-)agree-
ments. With the advance of screening programs, we are
encountering these “atypical proliferative lesions” more
and more frequently and make diagnoses leading at
the excision of microscopic “atypicality” because of the
“risk” of cancer and with the hope to reduce this risk.

What other methods may solve the
diagnostic problem?
Past and present

Rosai pointed out that different ancillary techniques
were proposed to obtain a sharper and more repro-
ducible separation among the various diagnostic cate-
gories. Some of them, like estimation of DNA content,
by cytophotometry or flow cytotmetry and electron mi-
icroscopy, are nowadays obsolete 1.

In 1991, immunohistochemical (IHC) tests were lim-
ited by the low availability of antibodies and Rosai
sceptically considered IHC as a solving method 1. Cur-
rently, pathologists are successfully using monoclonal
antibodies against cytokeratins (CK14 and CK5/6) for diagnostic differentiation of usual hyperplasia from ADH 14 (Fig. 1B), but so far, no specific antibodies are available to differentiate ADH from DCIS.

Rosai reported that morphometry of nuclear area was used, to separate ductal hyperplasia without atypia from DCIS 1,15. In 2000, Guski et al. applied image analysis of argyrophilic nucleolar organizer regions (AgNORs) to differentiate ADH from DCIS 16. Digital image analysis of Ki67 IHC expression, with a cut-off of 2% of cell proliferation, has been used to stratify risk in women with atypical hyperplasia. High Ki67 expression increased the risk of breast cancer by four-fold within 10 years after the first excisional breast biopsies, whereas patients with low Ki67 lesions had a risk compared to the general population 17.

Finally, Rosai reported one of the first papers linked to the use of oncogene (RAS) alterations or enhanced levels of expression of their proteins in borderline lesions 1,18. Danforth 19 and Kader et al. 20 in 2018 both published comprehensive literature reviews on molecular alterations of atypical hyperplasia of the breast. ADH and ALH show gains or losses of whole chromosomes and loss of heterozygosity/allelic imbalance changes, which involve all informative markers on specific chromosome arms, specifically on 16q and 17p. This is consistent with the pattern found in low grade DCIS and well differentiated breast cancers, while only single markers of allelic imbalance involved normal breast tissue. Gene expression profile show that atypical breast hyperplasia molecularly pertains to the “luminal category” with overexpression of estrogen-related genes (ESR1, EZH2). We know that Estrogen Receptor-alpha (ER-α) are intensely and uniformly expressed in luminal cells of FEA and ADH (Fig. 1D, 1E), while a decrease of ER-beta expression has been reported 21. At difference with atypical lesions and low grade DCIS, ER expression is heterogeneous in UDH (Fig. 1C). To our knowledge, no specific somatic mutations are related to atypical breast hyperplasia, although a high prevalence of premalignant lesions has been observed in prophylactically removed breasts from women at hereditary risk for breast cancer with germline mutations 22.
How Rosai proposed to solve the risk problem

Rosai agreed with Harvey and Fechner statement, “...the difference between the phrases “atypical hyperplasia” and “carcinoma in situ” gives the morphologic spectrum a semantic dividing point, which is far sharper in words than in the histologic images”. He was fascinated by the proposal of Buckely et al. for uterine cervix “of dropping the dysplasia/carcinoma in situ dichotomy at this site and its replacement for a single term-cervical intraepithelial neoplasia, or CIN-coupled with a grading system that would indicate increasing degrees of severity”. Rosai, thus, proposed the concept of “mammary intraepithelial neoplasia (MIN) of either ductal or lobular types”. He suggested two grading options: one would be to have three grades, corresponding to hyperplasia, atypical hyperplasia, and carcinoma in situ, the other, a “four or five grading system could be devised to allow for the separation between mild and moderate/florid hyperplasia, or between cribriform/papillary/micropapillary/solid ductal CIS and comedocarcinoma”.

Tavassoli, in 1997, proposed again the pathological concept of “mammary intraepithelial neoplasia” as a solution to the problem of differential diagnosis. Then the terminology was changed to “ductal intraepithelial neoplasia” DIN to explain the progression of intraductal proliferative lesions from usual epithelial hyperplasia to DCIS as a sequential lesion. DINs were classified into three categories: DIN1 includes usual hyperplasia, ADH, and low-grade DCIS; DIN2, and DIN3 correspond to intermediate- and high nuclear grade DCIS, respectively.

DIN classification was adopted by the WHO breast tumor blue book in 2003 and dismissed in the next edition of the blue book. In the last WHO edition ADH is defined as “an epithelial proliferative lesion with cytological and architectural features similar to those of low-grade ductal carcinoma in situ (DCIS) but less developed in architecture, degree of terminal duct lobular unit involvement, and contiguous extent.” Thus, we are back again to uncertainty and as stated by the authors of the ADH WHO chapter “Variability in diagnosis is frequently related to subtle differences in professional opinion and diagnostic thresholds and may be reduced when additional consensus or second reviews are sought with the assistance of immunohistochemistry”.

Acknowledgments

We thank, SIAPeC-IAP Board of Directors and Dr. Mattia Barbareschi for supporting this initiative.

Author’s contributions

A.S. and J.K.: conception and writing; C.M.: writing and production of graphical images.

Ethical consideration

No ethical issue was raised by this work.

References

1 Rosai J. Borderline epithelial lesions of the breast. Am J Surg Pathol 1991;15:209-21. https://doi.org/10.1097/00000478-199103000-00001
2 Page DL, Dupont WD, Rogers LW, et al. Atypical hyperplastic lesions of the female breast: a long-term follow-up study. Cancer 1985;55:2698-708. https://doi.org/10.1002/1097-0142(19850501)55:11-2698::aid-cncc2820551127>3.0.co;2-a
3 Dupont WD, Page DL. Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 1985;312:146-51. https://doi.org/10.1056/NEJM198501173120303
4 Page DL, Anderson TJ. Diagnostic histopathology of the breast. Edinburgh: Churchill Livingstone 1987, pp. 137, 139, 145.
5 Tavassoli FA, Norris HJ. A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal carcinoma of the breast. Cancer 1990;65:518-29. https://doi.org/10.1002/1097-0142(19900201)65:3<518::aid-cncc2820650324>3.0.co;2-o
6 Breast Tumours, WHO Classification of Tumours, 5th Edition, ed. WHO Classification Editorial Board. Lyon: France, IARC 2019.
7 Kimberly HA, Rendi HM, Peacock S, et al. Histologic Features associated with diagnostic agreement in atypical ductal hyperplasia of the breast: illustrative cases from the B-Path study. Histopathology 2016;69:1028-1046. https://doi.org/10.1111/hi.13035
8 Hutter RVP. Consensus meeting: is “fibrocystic disease” of the breast precancerous? Arch Pathol Lab Med 1986;110:171-173. PMID: 3606334.
9 Page DL, Dupont WD, Rogers LW. Ductal involvement by cells of atypical lobular hyperplasia in the breast: a long-term follow-up study of cancer risk. Hum Pathol 1988;19:201-207. https://doi.org/10.1016/s0046-8177(88)80350-2
10 Page DL, Rogers LW. Combined histologic and cytologic criteria for the diagnosis of mammary atypical ductal hyperplasia. Hum Pathol 1992;23:1095-1097. https://doi.org/10.1016/0046-8177(92)90026-y
11 Elston CW, Sloane JP, Amendoeira I, et al. Causes of inconsistency in diagnosing and classifying intraductal proliferations of the breast. European Commission Working Group on Breast Screening Pathology. Eur J Cancer 2000;36:1769-1772. https://doi.org/10.1016/s0046-8177(92)90026-y
12 Schmitt SJ, Vincent-Salomon A. Columnar cell lesions of the breast. Adv Anat Pathol 2002;3:113-124. https://doi.org/10.1097/00125480-200203000-00001
13 Schmitt SJ. The diagnosis and management of pre-invasive breast disease flat epithelial atypia - classification, pathologic features. Breast Cancer Res 2003;5:263-268. https://doi.org/10.1186/bcr625
14 Otterbach F, Bänkfalvi A, Bergner S, et al. Cytokeratin 5/6 immunohistochemistry assists the differential diagnosis of atypi-
BREAST BORDERLINE EPITHELIAL LESIONS

cal proliferations of the breast. Histopathology 2000;37:232-240. https://doi.org/10.1046/j.1365-2559.2000.00882.x

15 Bhattacharjee DK, Harris M, Faragher EB. Nuclear morphometry of epitheliosis and intraduct carcinoma of the breast. Histopathology 1985;9:511-516. https://doi.org/10.1111/j.1365-2559.1985.tb02832.x

16 Guski H, Hufnafl P, Kaufmann O, et al. AgNOR analysis of atypical ductal hyperplasia and intraductal carcinoma of the breast. Anal Quant Cytol Histol 2000;22:206-216. PMID: 10872036

17 Santisteban M, Reynolds C, Barr Fritcher EG, et al. Ki67: a time-varying biomarker of risk of breast cancer in atypical hyperplasia. Breast Cancer Res Treat 2010;121:431-437. https://doi.org/10.1007/s10549-009-0534-7

18 Thor A, Ohuchi N, Hand PH, et al. Ras gene alterations and enhanced levels of ras p21 expression in a spectrum of benign and malignant human mammary tissues. Lab Invest 1986;55:603-615. PMID: 2431221.

19 Danforth DN. Molecular profile of atypical hyperplasia of the breast. Breast Cancer Res Treat 2018;167:9-29. https://doi.org/10.1007/s10549-017-4488-x

20 Kader T, Hill P, Rakha EA, et al. Atypical ductal hyperplasia: update on diagnosis, management, and molecular landscape. Breast Cancer Research 2018;20:39. https://doi.org/10.1186/s13058-018-0967-1

21 Roger P, Sahla ME, Makela S, et al. Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 2001;61:2537-2541. PMID: 11289127.

22 Hoogerbrugge N, Bult P, de Widt-Levert LM, et al. High prevalence of premalignant lesions in prophylactically removed breasts from women at hereditary risk for breast cancer. J Clin Oncol 2003;21:41-45. https://doi.org/10.1200/JCO.2003.02.137

23 Harvey DG, Fechner RE. Atypical lobular and papillary lesions of the breast: A follow-up study of 30 cases. South Med J 1978;71:361-4. https://doi.org/10.1097/00007861-197804000-00004

24 Buckley CH, Butler EB, Fox H. Cervical intraepithelial neoplasia. J Clin Pathol 1982;35:1-13. https://doi.org/10.1136/jcp.35.1.1

25 Tavassoli FA. Mammary intraepithelial neoplasia: a translational classification system for the intraductal epithelial proliferations. Breast J 1997;3:48-58. doi.org/10.1111/j.1524-4741.1997.tb00139.x

26 Tavassoli FA. Ductal carcinoma in situ: introduction of the concept of ductal intraepithelial neoplasia. Mod Pathol 1998;11:140-54. PMID: 9504685.

27 Tavassoli FA, Devilee P. Pathology and Genetics: Tumours of the Breast and Female Genital Organs. WHO Classification of Tumours series - volume IV. Lyon, France: IARC Press 2003. ISBN 92 832 2412 4

28 Lakhani SR, Ellis IO, Schnitt SJ et al. eds. World Health Organization classification of tumours of the breast. 4th ed. Lyon: IARC Press, 2012.

29 WHO Classification of Tumors Editorial Board, ed. WHO classification of tumors, 5th edition - Breast tumors. Lyon: International Agency for Research on Cancer 201.