Enhancement of osteopontin expression in HepG2 cells by epidermal growth factor via phosphatidylinositol 3-kinase signaling pathway

Guo-Xin Zhang, Zhi-Quan Zhao, Hong-Di Wang, Bo Hao

Guo-Xin Zhang, Zhi-Quan Zhao, Hong-Di Wang, Bo Hao, Department of Gastroenterology, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.

Correspondence to: Dr. Guo-Xin Zhang, 300 Guangzhou Road, Department of Gastroenterology, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China. guoxinz2002@yahoo.com

Received: 2003-06-21 Accepted: 2003-08-16

Abstract

AIM: Osteopontin (OPN) is a phosphorylated glycoprotein with diverse functions including cancer development, progression and metastasis. It is unclear how osteopontin is regulated in HepG2 cells. The aim of this study was to investigate the effect of epidermal growth factor on the expression of osteopontin in HepG2 cells, and to explore the signal transduction pathway mediated this expression.

METHODS: Osteopontin expression was detected by RNAase protection assay and Western blot. Wortmannin, a specific inhibitor of PI3K, was used to see if PI3K signal transduction is involved in the induction of osteopontin gene expression.

RESULTS: HepG2 cells constitutively expressed low levels of osteopontin. Treatment with epidermal growth factor increased osteopontin mRNA and protein level in a dose- and time-dependent manner. Application of wortmannin caused a dramatic reduction of epidermal growth factor-induced osteopontin expression.

CONCLUSION: Osteopontin gene expression can be induced by treatment of HepG2 cells with epidermal growth factor. Epidermal growth factor may regulate osteopontin gene expression through PI3K signaling pathway. Several potential targets in the pathway can be manipulated to block the synthesis of osteopontin and inhibit liver cancer metastasis.

Zhang GX, Zhao ZQ, Wang HD, Hao B. Enhancement of osteopontin expression in HepG2 cells by epidermal growth factor via phosphatidylinositol 3-kinase signaling pathway. World J Gastroenterol 2004; 10(2): 205-208
http://www.wjgnet.com/1007-9327/10/205.asp

INTRODUCTION

Osteopontin (OPN) is a secreted arginine-glycine-aspartate (RGD)-containing phosphoprotein with cell adhesive and chemotactic properties in vitro and in vivo[1-3]. It is closely associated with infiltrating macrophages in tumors and can directly stimulate macrophage migration, which has made it a key target as a molecule likely to be important in mediating tumor metastasis[4]. It has been shown that osteopontin is up-regulated in many kinds of cancer, including hepatocellular carcinoma[5,6], breast cancer[7-9], prostate cancer[10,11], ovarian cancer[12,13], brain cancer[14,15] and lung cancer[16]. Elevated osteopontin transcription often correlates with increased metastatic potential of cancers.

Epidermal growth factor (EGF) receptor (EGFR) is a member of the ErbB family of ligand-activated tyrosine kinase receptors, which play a central role in the proliferation, differentiation, and/or oncogenesis of epithelial cells, neural cells, and fibroblasts[17,18]. It has been reported that EGF can induce osteopontin expression of breast cancer cells[19], rat kidney epithelial cells[20] and HL60 cells[21], and the induction of osteopontin may involve in signaling pathway related to PKC and tyrosine kinase[22]. The mechanism responsible for osteopontin up-regulation in HCC is unknown, but may involve induction by specific cytokines. We have investigated this hypothesis by testing the effects of epidermal growth factor on osteopontin regulation in hepatocellular carcinoma cell line, HepG2. Using RNAase protection assay, Western blot, we found that HepG2 cells constitutively expressed low levels of osteopontin mRNA and protein. EGF is a potent inducer of osteopontin mRNA and protein in HepG2 cells. Wortmannin, a specific PI3-K inhibitor, blocks the EGF-induced OPN expression. Our study suggests that OPN expression induced by EGF is dependent on PI3-K signaling pathway in HepG2 cells.

MATERIALS AND METHODS

Cell line and culture

HepG2 cell line was obtained from Cell Biology Institute (Shanghai, China). Cells were cultured in DMEM (Gibcol BRL) containing 10% fetal calf serum (Hyclone).

Induction of growth factor signaling

Cells were plated at 1x10⁵ per well in 6-well plates, and were grown overnight. Next morning, the cultures were washed twice with PBS and maintained in serum-free medium (containing 0.05% BSA) for 24 hours. The cells were then stimulated with the indicated amounts of EGF (Sigma) for the indicated time frames before harvesting and analysis.

To assess signal transduction molecules involved in the induction of osteopontin gene expression, the PI3-Kinase inhibitor wortmannin (Calbiochem) was added to the cells. The cells were pretreated with respective inhibitors or vehicle (DMSO) alone for half an hour and then treated in combination with EGF for 8 hours. Preliminary dose-response experiments had defined the concentrations of 100nM wortmannin to be effective and non-toxic.

DNA constructs and in vitro transcription

Plasmid pGEM-OPN containing osteopontin fragments was constructed in our laboratory. A 486bp of OPN fragment was obtained by reverse transcription-PCR from plasmid pBlueScript-OPN containing full length human osteopontin (a kind gift from Dr. Chambers, Canada) using the sense primer 5’-ATGGATCCGATGACACTGATGATTCTCAC-3’ and
Antisense primer 5’-GCGAATTCCAATTCGACGCTGACAAAA-3’. The resultant BamH1-EcoR1 cDNA fragment was ligated into the vector pGEM, and confirmed by direct sequencing. To make RNA probes for OPN and β-actin (a linearized plasmid containing β-actin fragment included in the kit), *in vitro* transcription was performed with a commercial kit (Ambion), according to the user’s instructions.

RNA isolation and RNase protection assay

Total RNA was isolated using the RNeasy Mini kit (QIAGEN GmbH, Germany). RNase protection assay was performed with a commercial kit (Ambion). α-32P-UTP labeled probes were mixed with sample RNA and co-precipitated. Hybridization was proceeded for 10 minutes at 68 °C, followed by digestion with RNase A-T1 for 30 minutes at 37 °C, and separation of hybridized RNA on 5% acrylamide and 8M urea gels. The gels were dried on filter paper for 40 minutes at 80 °C, and exposed to X-ray film. The autoradiographs were scanned using an AlphaImager 2200 spot densitometer (Alpha Innotech Corporation), and the integrated densities of areas were recorded.

Western blot

Cultured cells were lysed in RIPA buffer (50 mM Tris-HCL pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% Na-deoxycholate, 0.1% sodium dodecyl sulfate). Cell lysates were denatured at 100 °C for 5 minutes, and equal amounts of protein were loaded onto 10% SDS-polyacrylamide gels. The separated proteins were transferred to PVDF membranes (ROCHE) and probed with antibodies to osteopontin (Calbiochem). Membranes were stripped and re-probed with antibodies to tubulin as an internal control.

RESULTS

OPN expression in HepG2 cells induced by EGF-treatment

In order to examine the regulators of osteopontin expression in hepatocellular carcinoma cells, HepG2 cells were incubated in serum-free medium and then treated with epidermal growth factor that had been implicated in HCC. As shown in Figures 1 and 2, HepG2 cells constitutively expressed low levels of osteopontin, stimulation of the cells with EGF increased osteopontin mRNA expression as well as protein level in a dose-dependent and time-dependent manner. To quantitate this finding, densitometry of osteopontin mRNA levels was recorded (Figure 1B and Figure 2B). Osteopontin expression was elevated after treatment with EGF within a 8-hour period, expression levels were further increased at 16 hours and 24 hours following treatment.

Figure 1 Dose-dependent effect of EGF on osteopontin expression in HepG2 cells. 1×10⁵ cells were plated in 6-well plates. Next morning, cell cultures (near 80% confluent) were incubated in serum-free medium for 24 hours. The cells were stimulated dose-dependently by epidermal growth factor. Positive control denotes cells in normal growth medium containing 10% fetal calf serum. A. Osteopontin mRNA level was analyzed by RNase protection assay on total RNA using a 486 base-pair probe and controlling the loading with a probe for β-actin. B. Quantitation of osteopontin mRNA levels is shown in (A). RDU ratio reflects relative density units of osteopontin mRNA divided by β-actin mRNA. C. The results from RNase protection assay were confirmed by Western blot of osteopontin protein. Tubulin was served as loading control.

Figure 2 Time course showing effect of EGF on osteopontin expression in HepG2 cells. 1×10⁵ cells were plated in 6-well plates. Next morning, cell cultures (near 80% confluent) were incubated in serum-free medium for 24 hours. The cells were stimulated time-dependently by 10 ng/ml EGF. Positive control denotes cells in normal growth medium containing 10% fetal calf serum. A. Osteopontin gene expression was analyzed by RNase protection assay on total RNA using a 486 base-pair probe and controlling the loading with a probe for β-actin. B. Quantitation of osteopontin mRNA levels is shown in (A). RDU ratio reflects relative density units of osteopontin mRNA divided by β-actin mRNA. C. Western blot of osteopontin protein by cell lysates confirmed the results from RNase protection assay. Tubulin was served as loading control.
Interference of EGF-induced osteopontin gene expression in HepG2 cells with inhibition of PI3-kinase

We analyzed the involvement of EGF signaling pathway in the induction of osteopontin gene expression. Addition of the PI3-kinase inhibitor wortmannin blocked EGF-mediated increase of osteopontin mRNA levels in HepG2 cells (Figure 3). It should be mentioned that wortmannin only partially reversed EGF-induced osteopontin expression, suggesting that other pathways related to EGF might involve the induction of osteopontin expression.

DISCUSSION

Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world[23]. In China, at least 100 000 new cases occur every year, and the estimated number of HCC-related deaths exceeds 110 000 per year. Recent studies indicate that the incidence of HCC in the US and UK has increased substantially over the last two decades[24,25]. Although remarkable advances in surgery have improved the prognosis of HCC patients, the high rate of intra-hepatic recurrence and metastasis remains a major challenge in HCC therapy[26,27]. Recently, it has been reported that metastasis genes or metastasis-associated genes are involved in the migration and dissemination of cancers through certain signaling pathway[28,29]. Therefore, if the signal transduction pathway that regulates the expression of metastasis genes could be defined, some candidate targets via this pathway can be used for therapeutic intervention, including controlling the recurrence and metastasis of HCC.

Cytokine osteopontin, one of the metastatic genes, has been found in a number of tumors[15-16], and to be essential for the dissemination of various cancers[30]. Transfection of the cells with anti-sense OPN RNA reduced the malignancy of the cells and caused the decrease of tumorigenesis[31], while transfection with osteopontin increased their malignant phenotype[32]. Osteopontin was up-regulated in hepatocellular carcinoma and the increase of OPN expression was correlated with the metastatic ability of HCC and invasiveness of liver tumor–derived cell lines in vitro[3,4]. In the present study, we found that HepG2 cells constitutively expressed low levels of osteopontin, and EGF induced osteopontin expression in a dose- and time-dependent manner in the cell line. The concentration of EGF in the cells was very low. The induction of osteopontin was prominent at 0.1 ng/ml EGF concentration in our study, while the concentration of EGF was high up to 100 ng/ml in the literature[19,20]. The difference can be caused by many kinds of reasons, one of them may be that the different cells have different response to EGF. To our knowledge, this is the first study to demonstrate that EGF can cause the induction of osteopontin mRNA and protein levels in liver cancer cells. In other cell lines, the up-regulation of osteopontin by EGF was confirmed by overwhelming number of studies, including in kidney epithelial cells[23] and osteoblasts[33].

We then investigated the mechanism of osteopontin regulation by EGF in HepG2 cells. Using wortmannin, a specific inhibitor of PI3K, we found that EGF-induced osteopontin expression was significantly down-regulated. It suggested that the induction of osteopontin by EGF was dependent on PI3K signal transduction pathway in HepG2 cells. On the other hand, our results showed that wortmannin could not totally block EGF-induced osteopontin expression in HepG2 cells, suggesting that other pathways associated with EGF and its receptor may involve in the osteopontin induction.

A conclusion may be drawn from the study that EGF/PI3K signal pathway can regulate the expression of osteopontin in hepatocellular carcinoma cell line, HepG2. Several candidate targets via this pathway can be used for therapeutic intervention of HCC.

ACKNOWLEDGEMENTS

We thank Dr. Chambers for generously supplying the osteopontin construct.

REFERENCES

1. Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A 1986; 83: 8819-8823
2. Nasu K, Ishida T, Setoguchi M, Higuchi Y, Akizuki S, Yamamoto S. Expression of wild-type and mutated rabbit osteopontin in Escherichia coli and their effects on adhesion and migration of P388D1 cells. Biochem J 1995; 307(Pt 1): 257-265
3. Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor–ligand interaction between CD44 and osteopontin (Eta-1). Science 1996; 271: 509-512
4. Singh RP, Patarca R, Schwartz J, Singh P, Cantor H. Definition of a specific interaction between the early T lymphocyte activation 1 (Eta-1) protein and murine macrophages in vitro and its effect upon macrophages in vivo. J Exp Med 1990; 171: 1931-1942
5. Gotoh M, Sakamoto M, Kanetaka K, Chuma M, Hirohashi S. Overexpression of osteopontin in hepatocellular carcinoma. Pathol Int 2002; 52: 19-24
6. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, Ma ZC, Wu ZO, Ye SL, Liu YK, Tang ZY, Wang XW. Predicting hepatitis B virus–positive metastatic hepato-cellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 2003; 9: 416-423
7. Urquidi V, Sloan D, Kawai K, Agarwal D, Woodman AC, Tarin D, Goodison S. Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer.
cancer metastasis. Clin Cancer Res 2002; 8: 61-74
8 Reinholz MM, Iturria SJ, Ingle JN, Roche PC. Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat 2002; 74: 255-269
9 Tuck AB, Chambers AF. The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 2001; 6: 419-429
10 Tozawa K, Yamada Y, Kawai N, Okamura T, Ueda K, Kohri K. Osteopontin expression in prostate cancer and benign prostatic hyperplasia. Urol Int 1999; 62: 155-158
11 Angelucci A, Festuccia C, D'Andrea G, Teti A, Bologna M. Osteopontin modulates prostate carcinoma invasive capacity through RGD-dependent upregulation of plasminogen activators. Biol Chem 2002; 383: 229-234
12 Kim JH, Skates SJ, Uede T, Wong KK, Schorge JO, Feltrate CM, Berkowitz RS, Cramer DW, Mok SC. Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA 2002; 287: 1671-1679
13 Tiniakos DG, Yu H, Liapis H. Osteopontin expression in ovarian carcinomas and tumors of low malignant potential (LMP). Hum Pathol 1998; 29: 1250-1254
14 Weber GF, Ashkar S. Molecular mechanisms of tumor dissemination and metastatic brain cancers. Brain Res Bull 2000; 53: 421-424
15 Ding Q, Stewart Jr, Prince CW, Chang PL, Trikha M, Han X, Grammer Jr, Gladson CL. Promotion of malignant astrocytoma cell migration by osteopontin expressed in the normal brain: differential integrin signaling during cell adhesion to osteopontin through RGD-dependent upregulation of plasminogen activators. J Biol Chem 2002; 277: 20890-20896
16 Ding Q, Stewart Jr, Prince CW, Chang PL, Trikha M, Han X, Grammer Jr, Gladson CL. Promotion of malignant astrocytoma cell migration by osteopontin expressed in the normal brain: differences in integrin signaling during cell adhesion to osteopontin versus vitronectin. Cancer Res 2002; 62: 5336-5343
17 Zhang J, Takahashi K, Takahashi F, Shimizu K, Ohshita F, Kameda Y, Maeda K, Nishio K, Fukuchi Y. Differential osteopontin expression in lung cancer. Cancer Lett 2003; 171: 219-225
18 Walker F, Kato A, Gonen L, Hibbs ML, Pouliot N, Levitzki A, Burgess AW. Activation of the ras/mitogen-activated protein kinase pathway by kinase-defective epidermal growth factor receptors results in cell survival but not proliferation. Mol Cell Biol 1998; 18: 7192-7204
19 Zhang K, Sun J, Liu N, Wen D, Chang D, Thomason A, Yoshinaga SK. Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J Biol Chem 1996; 271: 3884-3890
20 Zhang G, He B, Weber GF. Growth factor signaling induces metastasis genes in transformed cells: molecular connection between akt kinase and osteopontin in breast cancer. Mol Cell Biol 2003; 23: 6507-6519
21 Malvankar UM, Almeida M, Johnson R, Pichler RH, Giachelli CM. Osteopontin regulation in cultured rat renal epithelial cells. Kidney Int 1997; 51: 1766-1773
22 Atkins KB, Simpson RU, Somerman MJ. Stimulation of osteopontin mRNA expression in HL-60 cells is independent of differentiation. Arch Biochem Biophys 1997; 343: 157-163
23 Chackalaparambil I, Peri A, Nemir M, Mckee MD, Lin PH, Mukherjee BB, Mukherjee AB. Cells in vivo and in vitro from osteopetrotic mice homozygous for c-src disruption show suppression of synthesis of osteopontin, a multifunctional extracellular matrix protein. Oncogene 1996; 12: 1457-1467
24 Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis 1999; 19: 271-285
25 El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340: 745-750
26 Taylor-Robinson SD. Foster GR, Arora S, Hargreaves S, Thomas HC. Increase in primary liver cancer in the UK, 1979-94. Lancet 1997; 350: 1142-1143
27 Yuki K, Hirohashi S, Sakamoto M, Kanai T, Shimosato Y. Growth and spread of hepatocellular carcinoma: a review of 240 consecutive autopsy cases. Cancer 1990; 66: 2174-2179
28 Genda T, Sakamoto M, Ichida T, Asakura H, Kojiro M, Narumiya S, Hirohashi S. Cell motility mediated by rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma. Hepatology 1999; 30: 1027-1036
29 Weber GF. The osteopontin gene: a metastasis candidate target for cancer therapy. Biochim Biophys Acta 2001; 1552: 61-85
30 Oates AJ, Barradough R, Rudland PS. The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumor model. Oncogene 1996; 13: 97-104
31 Denhardt DT, Mistretta D, Chambers AF, Krishna S, Porter JF, Raghuram S, Rittling SR. Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis 2003; 20: 77-84
32 Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J 1993; 7: 1475-1482
33 Lauverdure GR, Banerjee D, Chackalaparambil I, Mukherjee BB. Epidermal and transforming growth factors modulate secretion of a 69kDa phosphoprotein in normal rat kidney fibroblasts. FEMS Lett 1987; 222: 261-265
34 Pianetti S, Arora M, Romaine-Mouroz C, Coffey RJ, Sonnenshein GE. Her-2/neu overexpression induces NF-kappaB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IkappaB-alpha that can be inhibited by the tumor suppressor PTEN. Oncogene 2001; 20: 1287-1299

Edited by Zhang JZ and Wang XL