On Irregular Interconnect Fabrics for Self-Assembled Nanoscale Electronics

Christof Teuscher
Los Alamos National Laboratory
CCS-1, MS-B287, Los Alamos, NM 87545, USA
E-mail: christof@teuscher.ch

Abstract—Nanoscale electronics and novel fabrication technologies bear unique opportunities for self-assembling multi-billion component systems in a largely random manner, which would likely lower fabrication costs significantly compared to a definite ad hoc assembly. It has been shown that communication networks with the small-world property have major advantages in terms of transport characteristics and robustness over regularly connected systems. In this paper we pragmatically investigate the properties of an irregular, abstract, yet physically plausible small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework’s key parameters, such as the connectivity, the number of switch blocks, the number of virtual channels, the routing strategy, the distribution of long- and short-range connections, and measure the network’s transport characteristics and robustness against failures. We further explore the ability and efficiency to solve two simple toy problems, the synchronization and the density classification task. The results confirm that (1) computation in irregular assemblies is a promising new computing paradigm for nanoscale electronics and (2) that small-world interconnect fabrics have major advantages over local CA-like topologies. Finally, the results will help to make important design decisions for building self-assembled electronics in a largely random manner.

I. INTRODUCTION AND MOTIVATION

Despite important progress in recent years, nanoscale electronics is still in its infancy and there is no consensus on what type of computing architecture holds most promises. Most of the effort in nanotechnology has been focused in the past few years on developing molecular devices that would eventually replace the traditional CMOS transistor, but the development of higher-level computational architectures for such devices always played a secondary role. As Chen et al. [5] state, "[i]n order to realize functional nano-electronic circuits, researchers need to solve three problems; invent a nanoscale device that switches an electric current on and off; build a nanoscale circuit that controllably links very large numbers of these devices with each other and with external systems in order to perform memory and/or logic functions; and design an architecture that allows the circuits to communicate with other systems and operate independently on their lower-level details.”

The physical realization of computations from an abstract computing machine is a challenging task, which is usually guided by a number of major tradeoffs in the design space, such as the number and characteristics of the resources available, the required performance, the energy consumption, and the reliability. The lack of systematic understanding of these issues and of clear design methodologies makes the process still more of an art than of a scientific endeavor. The appearance of novel and non-standard physical computing devices for nanoscale and molecular electronics (such as for example array-based [8] architectures or random assemblies of molecular gates [32]) only aggravates these difficulties.

In recent years, the importance of interconnects on chips has outrun the importance of transistors as a dominant factor of chip performance [7], [12], [21]. The ITRS roadmap [1] lists a number of critical challenges for interconnects and states that “[i]t is now widely conceded that technology alone cannot solve the on-chip global interconnect problem with current design methodologies.” The major problems are related to delays of non-scalable global interconnects and reliability in general, which leads to the observation that simple scaling will no longer satisfy performance requirements as feature sizes continue to shrink [12].

In this paper we pragmatically investigate a certain class of irregular, physically plausible 3D interconnect fabrics, which are likely to be easily and cheaply built by future self-assembling processes for nanoscale electronics. We vary the framework’s key parameters, such as the connectivity, the number of switch blocks, the number of virtual channels, the routing strategy, the distribution of long- and short-range connections, and measure the network’s transport characteristics and robustness against failures. As a reference, we will compare its performance with regular and nearest-neighbor connected 2D and 3D cellular-automata-like fabrics. In addition to previous work, we will also evaluate and compare the performance of two toy tasks which are frequently used in the cellular automata community, the synchronization and the density classification task. The ability to solve a given task efficiently by means of a certain interconnect topology has been a research topic since the early age of parallel computing architectures.

The motivation for investigating alternative and more biologically-inspired interconnects can be summarized by the following observations: (1) long-range and global connections are costly and limit system performance [12]; (2) it is unclear whether a precisely regular and homogeneous arrangement of components is needed and possible on a multi-billion-component nanoscale assembly [32]; (3) “[s]elf-assembly makes it relatively easy to form a random array of wires with
randomly attached switches” [36]; and (4) building a perfect system is very hard and expensive.

By using an abstract, yet physically plausible and fabrication-friendly nanoscale computing framework, we will show that interconnect fabrics with small-world-like [33] properties have major advantages in terms of performance and robustness over purely regular and nearest-neighbor connected fabrics. We think that the results will help to make important design decisions for building self-assembled electronics in a largely random manner. Compared to purely theoretical approaches, our framework provides more realistic results.

The remainder of the paper is as following: Section II gives a brief introduction to complex networks. The framework is presented in Section III. Sections IV, V, and VI describe various experiments and comparisons, and Section VII concludes the paper.

II. AN OVERVIEW ON COMPLEX NETWORKS

Most real networks, such as brain networks [9], [29], electronic circuits [16], the Internet, and social networks share the so-called small-world (SW) property [33]. Compared to purely locally interconnected networks (such as the cellular automata interconnect), small-world networks have a very short average distance between any pair of nodes, which makes them particularly interesting for efficient communication.

The classical Watts-Strogatz small-world network [33] is built from a regular lattice with only nearest neighbor connections. Every link is then rewired with a rewiring probability p to a randomly chosen node. Thus, by varying p, one can obtain a fully regular (p = 0) and a fully random (p = 1) network topology. The rewiring procedure establishes “shortcuts” in the network, which significantly lower the average distance (i.e., the number of edges to traverse) between any pair of nodes. In the original model, the length distribution of the shortcuts is uniform since a node is chosen randomly. If the rewiring of the connections is done proportional to a power law, \(l^{-\alpha} \), where \(l \) is the wire length, then we obtain a small-world power-law network. The exponent \(\alpha \) affects the network’s transport characteristics [19] and navigability [18], which is better than in the uniformly generated SW network. One can think of other distance-proportional distributions for the rewiring, such as for example a Gaussian distribution, which has been found between certain layers of the rat’s neocortical pyramidal neurons [11].

In a real network, it is fair to assume that local connections have a lower cost (in terms of resources required and delay) than long-distance connections. Physically realizing small-world networks with uniformly distributed long-distance connections is thus not realistic and distance, i.e., the wiring cost, needs to be taken into account [17], [25], [26].

In real networks, it is fair to assume that local connections have a lower cost (in terms of resources required and delay) than long-distance connections. Physically realizing small-world networks with uniformly distributed long-distance connections is thus not realistic and distance, i.e., the wiring cost, needs to be taken into account [17], [25], [26].

III. DESCRIPTION OF THE FRAMEWORK

In order to compare representative regular nearest-neighbor and irregular small-world interconnect fabrics, we use an abstract, yet physically realistic system- and network-on-chip-like framework and an evaluation methodology inspired by Pande et al. [24]. We will compare selected measures that are relevant for real systems.

The main challenge of interconnect fabrics—seen from a bird’s eye view—consists in transferring data between two points of the chip with a minimal latency, minimal energy consumption, and maximal reliability. This job can obviously be done in a wide variety of ways. As opposed to the monolithic ad hoc interconnect networks used in traditional chip design, we draw inspiration from recent network-on-chip (NoC) [2], [24] paradigms, which transmit data in the form of packets on a routing network from a source to the destination.

A. Regular 2D and 3D CA-like Architectures

Both 2D and 3D cellular automata (CA) like architectures are used as representatives of regular nearest-neighbor interconnect fabrics. The basic system-on-chip-like architecture is composed of programmable computing elements, called processing nodes (PNs), and of an associated switch-based interconnect fabric, which is itself composed of switch nodes.
(SNs) and bi-directional point-to-point interconnects. Both PNs and SNs might be considered as simple IP blocks. Each SN can execute and transmit in parallel messages on C different virtual channels to its neighbors (see e.g. [24] for more details about the concept of virtual channels). We use an unfolded version (see Figure 1, top right and bottom), called CLICHE in [24], since folding requires long-distance connections. The PNs are regularly arranged in the 2D or 3D Euclidean space inside a unitary square, respectively cube. The number of PNs is equal to the number of SNs, and each PN is connected to its associated SN by a single connection of 0.01 unit length. For our purposes, the PNs are able to send and receive messages, whereas the SNs perform routing only.

B. The Irregular Random Multitude (RM)

In a random multitude (RM), both PNs and SNs are randomly arranged in 3D space, as illustrated in Figure 1 (top left). To make comparisons with the CA-like architectures easier, we assume that each PN is connected to the nearest SN in space by a single connection only. In this paper, we explore two different distributions for establishing long-distance connections: (1) power-law and (2) Gaussian. In case of a power-law distribution, the SNs are connected among themselves by a small-world power-law network [17], [25], [26] with average connectivity SN_k, i.e., each node establishes connections with its neighbors proportional to $l^{-\alpha}$, where l is the Euclidean distance between the two SNs in question. Thus, the bigger α, the more local the connections. For $\alpha = 0$, we obtain the original Watts-Strogatz SW topology. In case of a Gaussian distribution, the connections with the neighbors are established proportional to $f(l, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{l^2}{2\sigma^2}}$, where l is the distance between the two SNs in question and σ is the standard deviation. Thus, the smaller σ, the more local the connections. For $\sigma = \infty$, we obtain the original Watts-Strogatz SW topology. Compared to the power-law distribution, the Gaussian distribution has a higher proportion of local connections.

Algorithm 1 summarizes the construction of a random multitude from an algorithmic point of view. δ is used to have some variability in the connectivity around the mean value.

C. Physical Realization of a Random Multitude

There exists an abundance of abstract computing models which are either hard or impossible (e.g., when infinite resources or time is involved) to physically realize. Despite progress, the fabrication of ordered 3D hierarchical structures remains very challenging [35]. Because of fewer physical constraints, we argue that computing architectures that are “assembled” in a largely random manner are easier and cheaper to build than highly regular architectures, such as crossbars or CA-like assemblies, which usually require a perfect or almost perfect establishment of the connections. Self-assembly, for example, is particularly well suited for building random structures [36]. Power-law connection-length distributions have been observed in many systems created through self-organization, such as the human cortex or the Internet, and they can be considered “physically realizable” [26]. Such topologies evolve naturally in Nature because of the cost associated with long distance connections. There is very little work about computing architectures with irregular assemblies of connections and components. Tour et al. [32], for example, explored the possibility of computing with randomly assembled, easily realizable molecular switches, that were only locally interconnected though. On the other hand, Hogg et al. [13] present an approach to build reliable circuits by self-assembly with some random variation in the connection location.

Designing nanoscale interconnects is guided by a number of dependent major tradeoffs: (1) the number of long(er)-distance connections, (2) the physical plausibility, and (3) the efficiency of communication. Being able to physically realize a RM is crucial for the success of such an unconventional architecture. Although we do not provide any concrete solution, a plausible approach shall be sketched here. We believe that a random multitude would be best realized in a hybrid way today, where the PNs and SNs are for example made of current (nanoscale) silicon. The interconnect fabric would then be gradually self-assembled using nanoscale techniques such as directed assembly [34] by means of electrodeposition or vapor deposition, or any other suitable technique. To obtain a power-law distribution of connection lengths, one might imagine fabricating a large amount of wires first, whose lengths follow a power law distribution. In a second step, they would be immersed in a solution together with the nodes, randomly aligned (e.g., by means of electric fields), and soldered as described in [34]. Note that current nanowires tend to be fairly short because of a high resistance and probability of breaks, which will limit the number of long-distance connections today.

IV. Experiments A: Exploring Parameters

The goal of this initial experiment is to vary certain key parameters and thus to be able to make better design choices. We would like to answer questions such as: (1) What is
the right connectivity? (2) What is the right distribution of local and global connections? (3) How does the number of virtual channels affect throughput? (4) How does the number of switch nodes (SNs) affect performance? As we will see, most of these questions cannot be reduced to a single value because of the various tradeoffs involved.

A. Methods

We have systematically explored the parameter space of α, σ, S, and SN_k of the framework as described above, with both a power-law and a Gaussian distribution of long-distance connections. The number of processing nodes was fixed to $N = 125$ for all experiments. As a simplification, all buffer sizes are considered unlimited. All nodes are updated asynchronously. Our simulations use a simplistic random traffic model, which generates a message with a random destination with a certain probability $trLoad$ in each PN. If $trLoad = 1$, a message will be generated in each node at each update. In the following experiments, we used a traffic load of $trLoad = 0.1$. We have also implemented, random, shortest path, and ant routing [4], but will focus on random routing in this section since the results are more pronounced and illustrative. Also, due to the similarity between the two distributions, we’ll only present results for the power-law distribution in the following results section. The Gaussian distribution will be compared in Section V.

B. Results

Figure 2 shows that the average number of hops for a message to take from a any source to any destination increases with an increasing number of switch nodes and a decreasing number of global connections if S gets bigger. On the other hand, as Figure 3 shows, the smaller the number of switch nodes, the longer the average shortest path length. Thus, depending on what the network needs to be optimized for (i.e., lower number of hops or shorter average path length), one can make the appropriate choice for the number of switch nodes. Obviously, the amount of hardware resources and the volume required will also come into play in reality.

Figure 4 illustrates that the higher the connectivity and the more global the connectivity (i.e., $\alpha = 0$), the lower the average shortest path length. Due to a lack of space for more figures, the main results shall be summarized:

- A higher switch node connectivity decreases both the average latency and the average number of hops. The throughput is only slightly improved.
- The higher the number of switch nodes S, the higher the number of hops and the higher the average latency. The lower S, the higher the average path length and the higher the throughput (measured in messages/update/switch node).
- The higher the number of virtual channels C, the higher the node throughput (within the limits of the capacity of the physical links) and the lower the average latency. The average shortest path length is not affected by C.
C. Discussion

There are no “optimal” values for connectivity, the number of switch nodes, and the number of virtual channels. Instead, choosing the right values is a matter of dependent tradeoffs in the design space. Local connections are very interesting from an implementational point of view, but offer diminished global transport characteristics only, which directly affects the efficiency of problem solving. Adding a few (long)er-distance connections proportional to the distance between the nodes is physically plausible and greatly improves the overall transport characteristics (i.e., small-world property) as well as the robustness, as we will see in the next section.

In the following experiments, we used 6 virtual channels and \(N = S \) in order to be able to compare the results with the 3D CA-like arrangement.

V. Experiments B: Comparison with CA-like Interconnects

We performed a number of experiments to compare and contrast the different interconnect architectures as described in Section III.

A. Methods

As a simple showcase, we assume that each SN can only perform either random (RR) or shortest path (SPR) routing. Many other and more efficient routing techniques exist, but we consider these two as simple representatives of the least and the most effective methods. To be able to compare the results with the CA-like topologies, we keep the number of SNs and PNs equal in the random multitude architecture. We measure the following performance metrics: (1) average message latency (in clock cycles); (2) the average shortest path length (in distance units); (3) the average number of hops; (4) and the throughput (in messages/number of updates/switch node). For all experiments in this section, we used \(S = N = 64 \), 6 virtual channels per node (i.e., a 3D CA-node could send a message into all directions simultaneously), an average SN connectivity of \(SN_k = 6 \), an exact PN connectivity of 1, and a traffic load of \(\text{trLoad} = 0.1 \). For our purposes, we kept all these parameters constant as a detailed analysis would have been beyond the scope of this paper.

B. Results

Figure 5 shows the average length of the shortest paths (left y-axis) between each pair of PNs and the number of hops (right y-axis) as a function of the power-law exponent \(\alpha \). As one can see, the average shortest path gets shorter the smaller \(\alpha \) i.e., the more long-distance connections exist. The effect on the number of hops is identical.

According to [26], a network is in a small-world regime if \(\alpha < 2D \), where \(D \) is the dimension of the original lattice. Compared to [26], we allow multiple connections and the nodes are randomly arranged, but the above equation should still approximately hold for \(D = 3 \). We have chosen \(\alpha = 1.25 \) for the following experiments since with this value, the RM performs just better than a 3D CA.

Figure 6 shows both latency and throughput as a function of the power-law exponent \(\alpha \). Due to the long-distance connections, the random multitude has a lower latency than both 3D and 2D local-neighborhood interconnects. Rather surprisingly, the throughput of the random multitude is the worst if one uses shortest path routing (SPR). This is because SPR uses the same nodes for numerous paths and thus creates more congestion because of the limited number of channels per node. If one uses random routing (RR), as also shown in Figure 6, the random multitude performs best because the SNs are used more evenly and there is thus less congestion. In reality, a routing algorithm which also considers traffic and queue-lengths should be used.

Figure 7 shows the same information as Figure 6, but for a Gaussian distribution with standard deviation \(\sigma \). The bigger \(\sigma \), the more uniform—and thus global—the connectivity, \(\sigma = \infty \) corresponds to the original Watts-Strogatz model. In terms of absolute values, the latency is worse in case of a Gaussian distribution, mainly because the connectivity is more local.
The throughput values are similar for both random and shortest path routing. Finally, Figure 8 illustrates what happens when a certain number of links is removed randomly. The latency of the random multiset is lowest and is basically unaffected by the random removal of a rather small number of links. We used random routing (RR) to illustrate an extreme case. The 2D CA is not shown because it performs much worse than both the 3D CA and the RM. As one can see, the number of hops is affected by the link removal in a similar way as the latency. The results are similar for a Gaussian distribution.

C. Discussion

We have seen that small-world power-law networks perform better and are more robust than 2D and 3D local-neighborhood interconnects in our framework. The reason for this are the few longer-distance connections, which provide short-cuts in the network. Compared to a random network (which also has small-world properties), the small-world power-law networks we use are more fabrication friendly and very resource economical because they only use a very limited number of longer-distance connections. As Jespersen and Blumen [17] state, networks with $\alpha < 2$ differ significantly from those of regular lattices, which our experiments confirm. We have also seen that small-world power-law networks are very robust with respect to link deletions. Petermann and De Los Rios [25] have further shown that the mean distance increases by removing links and that the system becomes more fragile as α increases. Finally, as our experiments show, 3D local-neighborhood interconnects require a lower number of hops and have a lower average latency than their 2D counterpart. 3D fabrics thus presents an obvious solution to interconnect problems. It has been shown elsewhere [7] that the average total wire lengths are shorter and that fewer and shorter semi-global and global wires are required in 3D interconnects.

VI. Experiments C: Solving Problems

In this last set of experiments, we are interested in evaluating the performance of solving two “toy problems”, which are well known in the area of cellular automata (CA): the synchronization and the density classification task. Both of these “global” tasks are mostly trivial to solve if one has a global view on the entire system (i.e., if one has access to the state of all nodes at the same time), but are non-trivial to solve for locally connected cellular automata or random boolean networks (RBNs). Although they are commonly called toy problems, especially the synchronization task has actually many real-world applications, such as for example in sensor networks, where one cannot assume global synchronization and global signals, and thus requires special mechanisms [20].

In the density classification task, each node of a cellular system must decide whether or not the initial configuration of the automaton contains more than 50% of 1s. In this context, the term “configuration” refers to an assignment of the states 0 or 1 to each cell of the system (i.e., there are 2^N possible initial configurations). The desired behavior of the automaton is to have all of its cells set to 1 if the initial density of 1s exceeded 1/2, and all 0s otherwise. The density classification task was studied by many people, e.g., [3], [22], [23], [28], [31], in various forms, including non-uniform CAs, asynchronous CAs, and non-standard architectures.

The synchronization task (also called firefly task) for synchronous CAs was introduced by Das et al. [6] and studied among others by Hordijk [15] and Sipper [27]. In this task, the two-state one-, two-, or higher-dimensional automaton, given any initial configuration, must reach a final configuration within M time steps, that oscillates between all 0s and all 1s on successive time steps. The whole automaton is then globally synchronized.

Here, we use slightly modified versions of the two tasks that were adapted to our framework.
A. Methods

For the synchronization task, we assume that each processing node (PN) in our framework contains an oscillator which frequency is specified by a number between $0 \leq f_{osc} \leq 1$. The modified task then consists to find a common frequency for all oscillators. The algorithm is inspired by the averaging algorithm as described in [20]. Each processing node state is initialize to a random value from the interval $[0,1]$ before it repeatedly performs the following steps in an asynchronous manner: (1) send current oscillator frequency to a random PN; (2) if the current node i receives a message from any other PN r, then average own oscillator f_i with neighbor frequency f_r; (3) set own oscillator to this frequency $f_i = \frac{f_i + f_r}{2}$; and (4) also send it to a new random PN.

The density classification task is implemented in a similar way. Each node can have a value d from the interval $[0,1]$ and is initialized randomly. If more than 50% of the values are bigger then 0.5, we want all nodes to converge towards 1, otherwise towards 0. Each node thus repeatedly performs the following steps in an asynchronous manner after the initialization: (1) send current node value d to a random PN; (2) if the current node i receives a message from any other PN r, then average d_i with d_r; (3) set d_i to this value, $d_i = \frac{d_i + d_r}{2}$; (4) if $d > 0.5$, then send $d_i + \frac{1-d_i}{2}$ to a random PN, otherwise send $d_i - \frac{d_i}{2}$.

There are obviously numerous (also more efficient) ways to solve these two tasks, but here we are interested in an illustrative comparison rather than in the absolute performance values and limits. We thus compared how these two simple algorithms perform on the investigated interconnect fabrics using random routing.

B. Results

Figures 9 and 10 show the performance of the synchronization and the density classification task respectively. The smaller the standard deviation of the node state values, the better the nodes are synchronized. The initial values depend on the randomly initialized network state.

C. Discussion

It has been shown elsewhere that irregular small-world interconnects perform better on both the synchronization (e.g., [10], [14], [22] and many others) and the density classification task (e.g., [22]) than purely locally interconnected topologies. However, the frameworks and assumptions used in each approach are somehow different and sometimes not straightforward to compare. The results of our toy framework merely confirm what has been found theoretically elsewhere and in our two previous experiments, namely that the excellent transport characteristics (i.e., short characteristic path length, small latency, etc.) also helps to efficiently solve tasks, especially tasks which require a lot of global communication. From an evolutionary perspective, this is also the reason why most natural networks, e.g. the brain [9], [11], [29], have evolved with the small-world and scale-free property.

VII. Conclusion

We have investigated in a pragmatic way several relevant metrics of both regular and irregular, realistic system-on-chip-like computing architectures for self-assembled nanoscale electronics, namely 2D and 3D local-neighborhood as well as two random small-world interconnects with different distributions for long-distance connections. The small-world architectures are both physically plausible, could likely be built very
economically by self-assembling mechanisms, possess great transport characteristics, and are robust against link failures. While regular and local-neighborhood interconnects are easier and more economical to build than interconnects with lots of global or semi-global long-distance connections, we have seen in the last Section that they are not as efficient for global communication, which is very important and directly affects how efficient problems can be solved in general. Small-world networks with a uniform distribution of long-distance connections or pure random networks, on the other hand, are not physically plausible because one has to assume an increasing cost for connections with distance. As our results have shown by means of our simplistic, yet realistic framework, small-world power-law interconnects offer a unique balance between performance, robustness, physical plausibility, and fabrication friendliness. In addition, it has been shown that adaptive routing—which we haven’t explored here—is very efficient on small-world power-law graphs [18].

We believe that computation in random self-assemblies of components (e.g., [32]) is a highly appealing paradigm, both from the perspective of fabrication as well as performance and robustness. This is obviously a radical new technological and conceptual approach with many open questions. For example, there are basically no methodologies and tools that would allow (1) to map an arbitrary architecture on a randomly assembled physical substrate, (2) to do arbitrary computations with such an assembly, and (3) to systematically analyze performance and robustness within a rigorous mathematical framework. There are also many open questions regarding the self-assembling fabrication techniques.

Future work will concentrate on the computational aspects of such assemblies and not solely on the interconnects, as in the present work. We also plan to evaluate further measures, such as energy consumption and area used, and to develop localized and adaptive routing strategies.

REFERENCES

[1] International technology roadmap for semiconductors (ITRS). Semiconductor Industry Association, http://public.itrs.net, 2003.
[2] L. Benini and G. de Micheli. Networks on chips: A new SoC paradigm. IEEE Computer, 35(1):70–78, 2002.
[3] M. Capcarrere and M. Sipper. Necessary conditions for density classification by cellular automata. Physical Review E, 6403(3):6113–6117, 2001.
[4] G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control for Communications Networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.
[5] Y. Chen, G.-Y. Jung, D. A. A. Olhberg, X. Li, D. R. Steward, J. O. Jepperson, K. A. Nielsen, J. F. Stoddart, and R. S. Williams. Nanoscale molecular-switch crossbar circuits. Nanotechnology, 14:462–468, 2003.
[6] R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally synchronized cellular automata. In L. J. Sheshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 336–343, San Francisco, CA, 1995. Morgan Kaufmann.
[7] J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat, A. Rahman, R. Reif, and J. D. Meindl. Interconnect limits on gigascale integration (GSI) in the 21st century. Proceedings of the IEEE, 89(3):305–324, 2001.
[8] A. DeHon. Array-based architecture for FET-based nanoscale electronics. IEEE Transactions on Nanotechnology, 2(1):23–32, 2003.
[9] V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian. Scale-free brain functional networks. Physical Review Letters, 94:018102, 2005.
[10] H. Gücü, G. Korniss, M. A. Novotny, Z. Toroczkai, and Z. Rácz. Synchronization landscapes in small-world-connected computer networks. arXiv:cond-mat/0601058, 2006.
[11] B. Hellwig. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/5 of the rat visual cortex. Biological Cybernetics, 82:111–121, 2000.
[12] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceedings of the IEEE, 89(4):490–504, 2001.
[13] T. Hogg, Y. Chen, and P. J. Kuekes. Assembling nanoscale circuits with randomized connections. IEEE Transactions on Nanotechnology, 5(2):110–122, 2006.
[14] H. Hong, B. J. Kim, M. Y. Choi, and H. Park. Factors that predict better synchronizability on complex networks. arXiv:cond-mat/0403745, 2004.
[15] W. Jordijk. The structure of the synchronizing-CA landscape. Technical Report 96-10-078, Santa Fe Institute, Santa Fe, NM (USA), 1996.
[16] R. Ferrer i Cancho, C. Janssen, and R. V. Sole. Topology of technology graphs: Small world patterns in electronic circuits. Physical Review E, 64:046119, 2001.
[17] S. Jepsersen and A. Blumen. Small-world networks: Links with long-tailed distributions. Physical Review E, 62(5):6270–6274, 2000.
[18] J. K. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.
[19] B. Kozma, M. B. Hastings, and G. Korniss. Diffusion processes on power-law small-world networks. Physical Review Letters, 95:018701, 2005.
[20] Q. Li and D. Rus. Global clock synchronization in sensor networks. IEEE Transactions on Computers, 55(2):214–226, 2006.
[21] J. D. Meindl. Interconnect opportunities for gigascale integration. IEEE Micro, 23(3):28–35, 2003.
[22] B. Mesot and C. Teuscher. Deducing local rules for solving global tasks with random Boolean networks. Physica D, 211(1–2):88–106, 2005.
[23] M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D, 75:361–391, 1994.
[24] P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance evaluation and design trade-offs for network-on-chip interconnect architectures. IEEE Transactions on Computers, 54(8):1025–1040, 2005.
[25] T. Petermann and P. De Los Rios. Spatial small-world networks: A wiring-cost perspective. arXiv:cond-mat/0501420, 2005.
[26] T. Petermann and P. De Los Rios. Physical realizability of small-world networks. IEEE Transactions on Computers, 55(2):214–226, 2006.
[27] M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Springer-Verlag, Heidelberg, 1997.
[28] M. Sipper, M. S. Capcarrere, and E. Ronald. A simple cellular automaton that solves the density and ordering problems. International Journal of Modern Physics C, 9(7):899–902, October 1998.
[29] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Organization, development, and function of complex brain networks. Trends in Cognitive Sciences, 8(9):418–425, 2004.
[30] M. Tomassini, M. Giacobini, and C. Darabos. Evolution and dynamics of small-world cellular automata. Complex Systems, 15(4):261–284, 2004.
[31] M. Tomassini and M. Vienzi. Evolving robust asynchronous cellular automata for the density task. Complex Systems, 13(3):185–204, 2002.
[32] J. Tour, W. L. Van Zundt, C. P. Husband, S. M. Husband, L. S. Wilson, P. D. Franzon, and D. P. Nackashi. Nanocell logic gates for molecular computing. IEEE Transactions on Nanotechnology, 1(2):100–109, 2002.
[33] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393:440–442, 1998.
[34] H. Ye, Z. Gu, T. Yu, and D. H. Gracias. Integrating nanowires with substrates using directed assembly and nanoscale soldering. IEEE Transactions on Nanotechnology, 5(1):62–66, 2006.
[35] F. Zhang and H. Y. Low. Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography. Nanotechnology, 17:1884–1890, 2006.
[36] V. V. Zhurav and D. J. C. Herr. New frontiers: Self-assembly in nanoelectronics. IEEE Computer, pages 34–43, January 2001.

[1] L. Benini and G. de Micheli. Networks on chips: A new SoC paradigm. IEEE Computer, 35(1):70–78, 2002.
[2] M. Capcarrere and M. Sipper. Necessary conditions for density classification by cellular automata. Physical Review E, 6403(3):6113–6117, 2001.
[3] G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control for Communications Networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.
[4] Y. Chen, G.-Y. Jung, D. A. A. Olhberg, X. Li, D. R. Steward, J. O. Jepperson, K. A. Nielsen, J. F. Stoddart, and R. S. Williams. Nanoscale molecular-switch crossbar circuits. Nanotechnology, 14:462–468, 2003.
[5] R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally synchronized cellular automata. In L. J. Sheshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 336–343, San Francisco, CA, 1995. Morgan Kaufmann.
[6] J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat, A. Rahman, R. Reif, and J. D. Meindl. Interconnect limits on gigascale integration (GSI) in the 21st century. Proceedings of the IEEE, 89(3):305–324, 2001.
[7] A. DeHon. Array-based architecture for FET-based nanoscale electronics. IEEE Transactions on Nanotechnology, 2(1):23–32, 2003.
