Electrophysiological and Behavioral Responses of an Ambrosia Beetle to Volatiles of its Nutritional Fungal Symbiont

Christopher M. Ranger 1 · Marek Dzurenko 2,3 · Jenny Barnett 1 · Ruchika Geddi 1 · Louela Castrillo 4 · Matthew Ethington 5 · Matthew Ginzel 5,6 · Karla Addesso 7 · Michael E. Reding 1

Received: 17 December 2020 / Revised: 23 February 2021 / Accepted: 2 March 2021 / Published online: 24 March 2021
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021

Abstract

Ambrosia beetles (Coleoptera: Scolytinae) cultivate their fungal symbiont within host substrates as the sole source of nutrition on which the larvae and adults must feed. To investigate a possible role for semiochemicals in this interaction, we characterized electrophysiological and behavioral responses of Xylosandrus germanus to volatiles associated with its fungal symbiont Ambrosiella grosmanniae. During still-air walking bioassays, X. germanus exhibited an arrestment response to volatiles of A. grosmanniae, but not antagonistic fungi Beauveria bassiana, Metarhizium brunneum, Trichoderma harzianum, the plant pathogen Fusarium proliferatum, or malt extract agar. Solid phase microextraction-gas chromatography-mass spectrometry identified 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate and 3-methyl-1-butanol in emissions from A. grosmanniae; the latter two compounds were also detected in emissions from B. bassiana. Concentration-responses using electroantennography documented weak depolarizations to A. grosmanniae fungal volatiles, unlike the comparatively strong response to ethanol. When tested singly in walking bioassays, volatiles identified from A. grosmanniae elicited relatively weak arrestment responses, unlike the responses to ethanol. Xylosandrus germanus also exhibited weak or no long-range attraction to the fungal volatiles when tested singly during field trials in 2016–2018. None of the fungal volatiles enhanced attraction of X. germanus to ethanol when tested singly; in contrast, 2-phenylethanol and 3-methyl-1-butanol consistently reduced attraction to ethanol. Volatiles emitted by A. grosmanniae may represent short-range olfactory cues that could aid in distinguishing their nutritional fungal symbiont from other fungi, but these compounds are not likely to be useful as long-range attractants for improving detection or mass trapping tactics.

Keywords Xylosandrus germanus · Ambrosiella grosmanniae · Symbiosis · Fungal volatiles

Introduction

Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are characterized by their obligate symbiosis with fungi (Hulcr et al. 2015). Thirty of the 60 exotic Scolytinae established in North America are within the tribe Xyleborini, which includes many species that attack horticultural trees (Agnello et al. 2017; Gomez et al. 2018; Hulcr and Stelinski 2017; Range et al. 2016). Dispersing female xyleborine beetles carry spores of their fungal symbiont(s) within mycetangia in the form of pits, grooves, sacs, or invaginated pouches (Hulcr et al. 2015; Vega and Biedermann 2020). The fungal symbionts are mainly in the genera Ambrosiella, Fusarium, and Raffaelea and rely on ambrosia beetles for dispersal and propagation (Kostovcik et al. 2015; Meyers et al. 2015; Wingfield et al. 2017). During tunnel excavation by female xyleborine beetles into host trees, spores are transferred to the tunnel walls for establishing fungal
of ambrosia beetles were attracted to volatiles emitted from the mycelium of their fungal symbionts, namely, *Xyloborus glabratus* and *Raffaelea lauricola*, *Xyloborus ferrugineus* and *Ambroziomyza ambrosiae*, and *Xyloborus crassiusculus* and *Ambrosiella roepari*. In contrast, the aforementioned species were non-responsive or repelled by mycoparasitic *Trichoderma* sp. Olfactometer studies conducted by Egonyu and Torto (2018) also observed that *Xyloborus compactus* was attracted to volatiles emitted from mycelium of its symbiont *Fusarium solani* (Mart.) Sacc. Characterizing ambrosia beetle semiochemicals emitted by their fungal symbiont could provide insight into the evolutionary and ecological basis for such chemical signals. A specific and conserved association has been documented among populations of *X. germanus* and *A. grosmanniae* (Mayers et al. 2015), but other ambrosia beetles are associated with multiple different fungi (Kostovcik et al. 2015). Identifying these semiochemicals might also enhance attraction to existing lures for detecting and monitoring destructive ambrosia beetles.

The overall goal of our current study was to characterize the response of *X. germanus* to volatiles associated with its fungal symbiont *A. grosmanniae*. We hypothesized that *X. germanus* would exhibit short- and/or long-range behavioral responses to volatiles associated with *A. grosmanniae* due to their close evolutionary and ecological associations. To test this hypothesis, the specific objectives were to: (1) compare the short-range arrestant response of *X. germanus* to volatiles emitted from *A. grosmanniae* relative to the entomopathogenic fungi *Beauveria bassiana* and *Metarhizium brunneum*, the mycoparasitic fungus *Trichoderma harzianum*, and the plant pathogen *Fusarium proliferatum*; (2) identify volatiles emitted from *A. grosmanniae* and the aforementioned fungi by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS); (3) characterize olfactory responses of *X. germanus* by means of electroantennography (EAG) to *A. grosmanniae* fungal volatiles; and (4) evaluate the short- and long-range behavioral response of *X. germanus* to *A. grosmanniae* fungal volatiles.

Methods and Materials

Culturing of *A. grosmanniae*

Adult female *X. germanus* were collected after dispersing from their overwintering galleries within host tree substrates using bottle traps (Ranger et al. 2010). Traps were baited with an ethanol sachet lure (65 mg/d at 30 °C; AgBio, Inc., Westminster, CO) and deployed in a mixed hardwood forested area at the Ohio Agricultural Research and Development Center in Wayne Co., Ohio, USA (40°45′40.85″N, 81°51′14.71″W). Adults collected in the traps were prevented from desiccating by placing a moistened paper towel rolled into a
tube in the bottom collection vessel of the trap (Ranger et al. 2015). Trap contents were collected daily and transferred to parafilm-sealed petri dishes containing moistened filter paper and stored for 24 to 48 h at 3.3 °C. Field collected beetles were then surface sterilized by briefly (2–3 s) dipping in 70% ethanol (aq). Under a laminar flow hood, a sterile transfer needle was next inserted into the thoracic mycetangia of X. germanus and streaked onto petri dishes containing 2% malt extract agar.

A representative cultured strain isolated from beetles field collected beetles in Shreve, Ohio, USA (40°41′36.24″N; 81°55′31.59″W) in May 2010 and designated as XgOH11 was used (Castrillo et al. 2016; Maye et al. 2015).

Behavioral Bioassay

A still-air walking olfactometer (Fig. 1a, b) described by Borden et al. (1968) was used to assess the behavioral responses of X. germanus to volatiles of its fungal symbiont, A. grosmanniae, as compared to the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin strain GHA and Metarhizium brunneum Petch strain F52 (=ARSEF 5198; previously identified as Metarhizium anisopliae), the mycoparasitic fungus Trichoderma harzianum Rifai strain T-22, and the plant pathogen Fusarium proliferatum (Matsushima) Nirenberg as representative of a non-symbiont and non-entomopathogen. All fungal strains are maintained under long-term storage at the USDA-ARS Robert W. Holley Center for Agriculture & Health in Ithaca, NY (Castrillo et al. 2016).

The still-air olfactometer consisted of a Plexiglas acrylic platform (36 × 10 cm; L × W) on which ambrosia beetles could walk that included two rectangular openings (5 × 2.5 cm; L × W) positioned 10 cm from either end (Fig. 1a, b). Fine mesh polyester fabric (35 × 35 squares/cm²) was secured tightly across the surface of the platform using medium size binder clips (3.17 cm width; 1.6 cm clip capacity) to provide traction for beetles while walking and to allow beetles to pass over the two rectangular openings. The platform was then rested on two uncovered polystyrene petri dishes so the two rectangular openings were positioned directly over the open petri dishes. In doing so, volatiles could emanate upwards from the petri dishes and through the mesh-covered rectangular openings. The petri dish positioned on the right-hand side of the observer was empty and not used for measuring behavioral responses during all bioassays, while the

![Fig. 1](image)

Fig. 1 a-e. a, b Still-air walking olfactometer used to measure the arrestment response of female X. germanus to volatile stimuli. As beetles walked along the platform towards the light source, the duration of time was measured that beetles spent within the confines of the mesh-covered rectangular opening above the petri-dish on the left side (indicated by black horizontal bar in 1B, 2.5 cm). c Duration of time that X. germanus spent above petri dishes containing cultures of X. germanus’ nutritional fungal symbiont Ambrosiella grosmanniae, Ag; entomopathogenic fungi Beauveria bassiana, Bb, and Metarhizium brunneum, Mb; mycoparasitic fungus Trichoderma harzianum, Th; fungal plant pathogen Fusarium proliferatum, Fp; and malt extract agar, MEA. Duration of time that X. germanus spent above petri dishes containing filter paper treated with 40 μl of d 1 mg/ml and e 0.1 mg/ml dilutions of ethanol, EtOH; 2-ethyl-1-hexanol, 2E1H; 2-phenylethanol, 2PE; methyl benzoate, MB; 3-methyl-1-butanol, 3M1B; and mineral oil, MO. Different letters within a graph represent significantly different means using generalized linear models and least square means ((c): χ² = 100.70; df = 5; P < 0.0001; (d): χ² = 249.64; df = 5; P < 0.0001; (e): χ² = 17.28; df = 5; P = 0.004)
pounds to deliver 4 μg/ml dilutions in mineral oil of the aforementioned emer-
 acessed using the scaled deviance (G^2/df) parameter. When overdispersion was identified by a large departure >1.0 for the scaled deviance parameter, a negative binomial distribution and log link function was used to fit the model. Differences of least square means were used for pairwise comparisons on treatment effects with significant F-test values from analysis of variance (α = 0.05).

Analysis of Volatile Emissions

Solid phase microextraction-gas chromatography-mass spectrometry was used to collect and identify volatile emissions from *A. grosmanniae*, *B. bassiana*, *M. brunneum*, *T. harzianum*, *F. proliferatum*, and a MEA control. Briefly, cultures were grown on MEA in glass test tubes (20 × 150 mm) with a threaded black phenolic screw cap. After autoclaving the test tubes and MEA, an aliquot of 6.5 mL of agar was pipetted per test tube. Tubes were then placed in a test tube rack with a 20° tilt to allow the media to solidify at an angle. Test tubes were inoculated about 14 d before using in SPME-GC-MS analyses like the behavioral bioassays.

For sampling culture volatiles by SPME, a 1 mm diam. hole was pre-drilled into the screw cap of the test tube (Fig. 2a, b). An autoclaved cork borer was used to cut a circular disk (1.3 cm) from a blue septa silicone sheet (3 mm thick; Chromatography Research Supplies Inc., Louisville, KY). A needle was then used to puncture a hole through the center of the septum disk, and a piece of PTFE microbore tubing (0.81 mm I.D., 1.42 O.D.; Cole-Parmer, Vernon Hills, IL) was pulled through the hole in the septum disk (Fig. 2a). The disk with tubing in place was then inserted into the threaded test tube cap with the Teflon tubing extending out the top of the cap. The purpose of the PTFE tubing was to avoid puncturing the silicone septa and potentially contaminating the GC inlet liner during thermal desorption. Standard caps on the culture tubes were replaced with the modified and autoclaved SPME sampling caps immediately before sampling. A syringe containing a retracted SPME fiber (CAR/PDMS; 75 μm coating; Sigma-Aldrich, St. Louis, Missouri)
was then inserted through the test tube cap via the Teflon tubing and secured using a metal clamp and retort stand to position the end of the exposed fiber about 1 cm above the cultures (Fig. 2b). Four tubes with cultures incubated for about 14 d after inoculating were analyzed for each species, along with MEA controls. Sampling was conducted on a laboratory benchtop with an ambient temperature of 21 °C and overhead fluorescent lighting. Fibers were exposed for 30 min and then immediately analyzed by GC-MS.

Fibers were thermally desorbed for 2 min at 225 °C in the injection port of an Agilent 7890B GC (Agilent Technologies, Palo Alto, California) with a SPME liner (0.75 mm × 6.35 mm × 78.5 mm, i.d. × o.d. × length; Restek, Bellefonte, Pennsylvania) under splitless mode with 2 min splitter off time. A DB-5MS column (0.25 µm × 30 m × 0.25 mm; i.d. × length × film thickness; cross-linked/surface bonded 5% phenyl, 95% methylpolysiloxane; Agilent J&W, Santa Clara, California) and a temperature program of 50–250 °C at 3 °C/min were used for the analyses. An Agilent 5977A mass spectrometer was operated in electron impact mode with a scan range of 40–415 amu. Compounds that were unique to the aforementioned fungal cultures and absent in MEA volatile emissions were tentatively identified using NIST library searches. The following identifications were confirmed by comparing retention times and fragmentation patterns with authentic standards (Sigma-Aldrich): 3-methyl-1-butanol (≥99.0% chemical purity), 2-methyl-1-butanol (≥98.0% purity), 2-ethyl-1-hexanol (≥99.0% purity), methyl benzoate (≥99.5% purity), 2-phenylethanol (≥99.0% purity), 1-octen-3-ol (≥98.0% purity), 2-octenal (≥95.0% purity), methyl cinnamate (≥99.0% purity), and α-cedrene (≥95.0% purity).

Olfactory Responses

Electroantennography (EAG) was used to measure antennal olfactory responses of 5 d old laboratory-reared female X. germanus to 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate, 3-methyl-1-butanol, and ethanol. As described in greater detail by Ranger et al. (2014), the recording and indifferent electrodes contained Beadle-Ephrussi saline and a silver wire held in place using stainless steel electrode holders (Syntech, Buchenbach, Germany). The indifferent electrode was inserted into the foramen of a recently-excised X. germanus head, and the recording electrode was directed to the center of the antennal club where the majority of porous olfactory sensilla are located (Ranger et al. 2017). Micromanipulators were magnetically mounted onto the surface of an antivibration table and recordings were made within a Faraday cage (CleanBench, TMC, Peabody, MA). Antennal preparations were positioned at the end of a stainless steel odor delivery tube (diameter 0.64 cm) through which humidified and carbon-filtered air passed at 150 mL/min at approximately 2.5 cm/s.

Dilutions of 2-ethyl-1-hexanol, 2-phenethylthanol, methyl benzoate, 3-methyl-1-butanol, and ethanol (≥99.5; Sigma-Aldrich) were prepared in mineral oil to achieve concentrations of 0.001, 0.01, 0.1, and 1.0 mg/mL. A 20 µL aliquot of an individual dilution was applied to a filter paper strip (2.5 cm × 0.5 cm, l × w) within a disposable glass Pasteur pipette. The pipette tip was inserted into a hole in the odor delivery tube about 10.8 cm upwind of the antennal preparation. Signals

![Image](https://example.com/image.png)
from the recording electrode were pre-amplified by a high impedance probe (Universal Single Ended Probe, Syntech) and further amplified, filtered and optimized using a two-channel data acquisition controller (IDAC-2; Syntech). The EAG peak amplitude was measured (mV) and then normalized relative to the response to terpinolene using the following calculation: \[\frac{(\text{response to analyte})-(\text{initial + final response to terpinolene})}{2} \times 100. \]

Generalized linear models (PROC GENMOD) with a normal distribution were used to analyze relative percent EAG responses of *X. germanus* to the four concentrations of each compound (SAS Institute Inc., Cary, NC). Comparisons were also made among the five different compounds at each of the four concentrations. Differences of least square means were used for pairwise comparisons on treatment effects (\(\alpha = 0.05 \)).

Field Behavioral Responses

Two field trapping experiments were conducted under field conditions in 2016–2018 to test the attraction of *X. germanus* to 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate, 3-methyl-1-butanol, and ethanol. Bottle-traps were prepared according to Ranger et al. (2010). In short, two rectangular openings (length 12.5 cm, width 6 cm) were cut into the sides of a 1-L plastic bottle to allow the entrance of ambrosia beetles. The 1-L bottle was inverted and the mouth was connected to a 0.5-L plastic bottle using a Tornado Tube (Steve Spangler Science, Englewood, Colorado). Lures were secured using wire within the top of the 1-L bottle and the 0.5-L bottle was partially filled with 20 mL of ethanol-free propylene glycol antifreeze (PEAK® SIERRA®; Old World Industries, LLC, Northbrook, IL) as a killing and preserving agent.

Two field trapping experiments were conducted per year in 2016–2018. The first field experiment in 2016 consisted of traps being baited singly with heat-sealed pouch-style emitters of the following compounds: 2-ethyl-1-hexanol (2.5 mg/d at 25 °C; Synergy), 2-phenylethanol (3.0 mg/d at 25 °C; Synergy), methyl benzoate diluted to 20% with acetyl tributyl citrate (2.5 mg/d; Synergy), and 3-methyl-1-butanol (1.0 mg/d; Synergy). Lures were tested singly from 16–May–2016 to 29–May–2016 and combined with ethanol from 29–May–2016 to 26–June–2018.

A generalized linear model (PROC GENMOD) was used to analyze trap count data of *X. germanus* (SAS Institute Inc., Cary, NC). Due to non-normality, data were initially modeled assuming a Poisson distribution with a goodness of fit for the model being assessed using the scaled deviance (\(G^2/\text{df} \)) parameter. When overdispersion was detected by a large departure from 1.0 for the scaled deviance parameter, a negative binomial distribution and log link function was used to fit the model. Differences of least square means were used for pairwise comparisons on treatment effects with significant F-test values from analysis of variance (\(\alpha = 0.05 \)).

Results

Behavioral Bioassay

During still-air walking bioassays, *X. germanus* exhibited a stronger arrestant response to volatiles of its fungal symbiont *A. grosmanniae* compared to the entomopathogenic fungi *B. bassiana* and *M. brunneum*, the mycoparasitic fungus *T. harzianum*, the plant pathogen *F. proliferatum*, and a MEA control (Fig. 1c). As *X. germanus* oriented along a walking platform towards a light source (Fig. 1a, b), individual beetles spent a significantly longer duration arrested over a culture of *A. grosmanniae* compared to *B. bassiana*, *M. brunneum*, *T. harzianum*, *F. proliferatum*, and a MEA control (Fig. 1c). No difference was detected in the duration of time *X. germanus* spent positioned over the non-symbiont cultures or the MEA control.
Analysis of Volatile Emissions

Table 1 SPME-GC-MS analysis of volatiles associated with the ambrosia beetle nutritional fungal symbiont Ambrosiella grosmanniae (A.g.), entomopathogenic fungus Beauveria bassiana (B.b.), mycoparasitic fungus Trichoderma harzianum (T.h.), and the fungal plant pathogen Fusarium proliferatum (F.p.)

Species	Compound	Formula	Mean (±SE)	Composition (%)
A.g.	3-Methyl-1-Butanol	C₈H₁₂O	93.17 ± 0.51	2.27±0.71
	2-Ethyl-1-Hexanol	C₁₀H₂₀	3.21 ± 0.25	3.20±0.25
	Methyl Benzoate	C₆H₁₂O₂	1.90 ± 0.20	1.90±0.20
	2-Phenylethanol	C₈H₁₄O	1.72 ± 0.11	1.70±0.11
	Methyl Cinnamate	C₁₀H₁₄O₂	10.62 ± 0.84	10.6±0.84
	β-Elemene	C₁₅H₂₄O	11.18 ± 3.55	11.2±3.55
F.p.	Acoradiene-derivative	C₁₅H₂₄	5.20 ± 1.30	5.2±1.30
	α-Cedrene	C₁₅H₂₄	12.53 ± 3.45	12.5±3.45
	β-Cedrene	C₁₅H₂₄	9.53 ± 0.18	9.5±0.18
	Muurolenc-derivative	C₁₅H₂₄	2.48 ± 1.03	2.5±1.03
	α-Acoradiene	C₁₅H₂₄	70.26 ± 1.67	70.3±1.67
T.h.	1-Octen-3-ol	C₈H₁₀O₂	3.56 ± 1.08	3.5±1.08
	α-Copaene	C₁₅H₂₄	21.10 ± 1.37	21.1±1.37
	β-Cedrene	C₁₅H₂₄	32.82 ± 1.33	32.8±1.33
	γ-Muurolenc	C₁₅H₂₄	12.32 ± 0.65	12.3±0.65
	(+)-Sativene	C₅H₁₀O₂	2.05 ± 0.08	2.1±0.08
	α-Acoradiene	C₁₅H₂₄	5.18 ± 0.31	5.2±0.31
	β-Acoradiene	C₁₅H₂₄	3.99 ± 0.24	3.9±0.24
	Acorenone-derivative	C₁₅H₂₄O⁶	10.42 ± 1.42	10.4±1.42
	Acorenone	C₁₅H₂₄O⁶	8.58 ± 3.90	8.6±3.90

Identifications based on comparing mass spectra in the National Institute of Standards and Technology (NIST) library (*), or comparing with NIST and an authentic standard (‡)

Electroantennogram Responses

Olfactory responses of X. germanus were measured using EAG in response to ascending concentrations of 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate, 3-methyl-1-butanol, and ethanol (Fig. 3a-e). After normalizing the absolute responses relative to terpinolene, a positive concentration response was documented for ethanol such that 20 μg in 20 μl elicited a significantly larger antennal depolarization response than 0.02 and 0.2 μg in 20 μl (Fig. 3a). A positive concentration response was also documented for methyl benzoate, such that 2 μg and 20 μg in 20 μl elicited significantly larger antennal responses than 0.02 μg in 20 μl (Fig. 3d). A positive antennal concentration response was not observed for 2-ethyl-1-hexanol, 2-phenylethanol, or 3-methyl-1-butanol ranging at concentrations ranging from 0.02–20 μg in 20 μl (Fig. 3b, c, e).

When compared among the five volatile compounds, ethanol at 2 μg and 20 μg in 20 μl elicited significantly larger depolarizations than the remaining compounds at these corresponding concentrations (Fig. 3a). There was no difference in depolarizations for 2-ethyl-1-hexanol, 2-phenylethanol,
methyl benzoate, and 3-methyl-1-butanol when tested at concentrations ranging from 0.02–20 µg in 20 µl.

Field Behavioral Responses

When the fungal volatiles were tested singly at the higher release rate in 2016, significantly more *X. germanus* were attracted to traps baited with ethanol, 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate, or 3-methyl-1-butanol compared to the blank control (Fig. 4a). Ethanol alone attracted the most *X. germanus*, while 2-ethyl-1-hexanol and methyl benzoate attracted more *X. germanus* than 2-phenylethanol and 3-methyl-1-butanol (Fig. 4a). When re-tested singly in 2017, there was no difference in the number of *X. germanus* attracted to traps baited with 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate, 3-methyl-1-butanol, or the blank control (Fig. 4c). Traps baited with ethanol alone attracted significantly more *X. germanus* than all other compounds.

When paired with ethanol and tested in 2016, traps baited with ethanol plus methyl benzoate attracted a comparable number of *X. germanus* compared to traps baited with ethanol alone (Fig. 4b). In contrast, traps baited with ethanol plus 2-ethyl-1-hexanol, ethanol plus 2-phenylethanol, and ethanol plus 3-methyl-1-butanol attracted fewer *X. germanus* than traps baited with ethanol alone. When re-tested in 2017, traps baited with ethanol plus 2-ethyl-1-hexanol and ethanol plus methyl benzoate attracted a comparable number of *X. germanus* compared to traps baited with ethanol alone (Fig. 4d). In contrast, traps baited with ethanol plus 2-phenylethanol and ethanol plus 3-methyl-1-butanol attracted significantly fewer *X. germanus* than ethanol alone.

In 2018 with reduced rates of the fungal volatiles, there was no difference in the attraction of *X. germanus* to each of the four fungal volatiles tested singly compared to the non-baited blank control (Fig. 4e). When combined with an ethanol lure and tested in 2018, there was no difference in the attraction of *X. germanus* to traps baited with ethanol plus 2-ethyl-1-hexanol and ethanol plus methyl benzoate compared to ethanol alone, whereas 2-phenylethanol and 3-methyl-1-butanol still reduced the attraction of *X. germanus* to ethanol at the lower release rate tested in 2018 (Fig. 4f).

Discussion

The role of fungal volatiles in mediating interactions among fungi and insect symbionts is receiving increased attention, but has been largely unexplored, especially for bark and ambrosia beetles associated with symbiotic fungi (Cale et al. 2016). As part of our current study, *X. germanus* exhibited a short-range arrestment response to fungal volatiles emitted by the mycelium of its nutritional fungal symbiont, but not to emissions from two entomopathogenic fungi, a mycoparasitic fungus, or a fungal pathogen. SPME-GC-MS identified four volatile compounds in the emissions of *A. grosmanniae* growing on MEA, namely, 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate, and 3-methyl-1-butanol. Compared to ethanol, relatively weak antennal depolarizations were exhibited by *X. germanus* to these four fungal volatiles. Weak or no response to the individual volatiles was also documented during walking bioassays and field trials. None of the fungal volatiles enhanced attraction of *X. germanus* to ethanol when tested singly in field trials; in contrast, 2-phenylethanol and 3-methyl-1-butanol consistently reduced attraction to ethanol. Volatiles emitted by *A. grosmanniae* may function as short-range olfactory cues that aid in distinguishing their nutritional fungal symbiont from other fungi, but these compounds do not function as long-range attractants. For instance, olfactory and behavioral responses of *X. germanus* to these compounds...
could be a function of \textit{A. grosmanniae} being their sole source of nutrition, thereby critical semiochemicals linked to their survival and fitness perhaps by helping to maintain the specific symbiosis between \textit{X. germanus} and \textit{A. grosmanniae}. These responses could also be related to the association of these compounds with host trees (Holighaus and Schütz 2006), or represent compounds often found in the beetles environment (i.e., semiochemical parsimony) as described by Blum (1996). Similarly, the ‘neutral hypothesis’ proposes that microbial volatile emissions might influence insect behavior by coincidence, potentially due to similarity with evolutionarily relevant infochemicals (Davis et al. 2013).

Our current study supports a small body of work demonstrating that ambrosia beetles respond to the volatile profile of their fungal symbiont and can perhaps distinguish it from other fungal volatile profiles. \textit{Xylosandrus compactus} displayed short-range attraction to its fungal symbiont (\textit{F. solani}) during olfactometer bioassays, but comparisons were only made against an agar control (Egonyu and Torto 2018). Similarly, Hulcr et al. (2011) demonstrated that three species of ambrosia beetles exhibited short-range attraction exclusively to fungal volatiles emitted from their symbionts, including \textit{Ambrosiella xylebori}, \textit{Ambrosiozyma} sp., and \textit{Raffaelea lauricola}, but were non-responsive or repelled by \textit{Trichoderma} sp. (Hulcr et al. 2011). However, a limitation of the study by Hulcr et al. (2011) is that a non-pathogenic, non-symbiotic fungal species was not tested. Unlike the response to \textit{A. grosmanniae}, \textit{X. germanus} did not exhibit an arrestment response to volatiles associated with the entomopathogenic fungi \textit{B. bassiana} and \textit{M. brunneum}, the mycoparasitic fungus \textit{T. harzianum}, or the plant pathogen \textit{F. proliferatum} as a representative of a non-pathogenic, non-symbiotic fungus. Additional free-choice studies are warranted to assess what volatiles influence the short-range behavioral response of \textit{X. germanus} to its fungal symbiont. In addition, our SPME-GC-MS analyses tentatively identified a variety of sesquiterpenes from \textit{T. harzianum} that could have repellent activity in support of bioassays by Hulcr et al. (2011).
technique is useful for collecting volatile and semi-volatile compounds (D’Alessandro and Turlings 2006; Jelinek 2003; Morath et al. 2012). For instance, Egonyu and Torto (2018) detected 40 compounds emitted by *F. solani* using dynamic headspace sampling compared to 9 compounds detected by SPME. 3-Methyl-1-butanol was a predominant compound collected using SPME and dynamic headspace sampling from *F. solani* (Egonyu and Torto 2018). Similarly, 3-methyl-1-butanol was a predominant volatile collected by dynamic headspace sampling, along with eight other compounds, from fungal symbionts of the mountain pine beetle (*Dendroctonus ponderosae* Hopkins) (Cale et al. 2016).

Some of the volatiles identified from ambrosia beetle fungal symbionts appear to be ubiquitous, especially 3-methyl-1-butanol (Cale et al. 2016; Egonyu and Torto 2018; Korpi et al. 2009; Kuhns et al. 2014; Morath et al. 2012). Our results suggest *A. grosmanniae* is associated with a relatively simple volatile profile but could have a characteristic odor as documented for other fungi (Morath et al. 2012). Furthermore, volatile blends likely represent more distinguishing information than the presence of individual compounds. Percent compositions associated with SPME analyses in our current study and previous ones (Kuhns et al. 2014) must also be considered qualitatively since calibrations for specific volatile compounds were not performed. Thus, the abundance and ratio of volatiles emitted from *A. grosmanniae* could be quite different from the SPME analyses. As noted by Jelen (2003), peak areas of individual compounds extracted by SPME can be influenced by a variety of factors, including fiber coatings, temperature, time, pH, and others. The intention of our current study was to establish a qualitative volatile profile of *A. grosmanniae* in pursuit of behaviorally active compounds rather than quantitatively characterize volatile emissions of this fungal symbiont.

Notably, 3-methyl-1-butanol and methyl benzoate were detected in emissions from *A. grosmanniae* and *B. bassiana*, but *X. germanus* did not exhibit an arrestment response to this entomopathogenic fungus during our bioassays. Quantitative analyses of volatile emissions from *A. grosmanniae* and *B. bassiana* would be useful for comparing major, minor, and trace components between these two species. Crespo et al. (2008) detected ethanol, sesquiterpenes, and diisopropyl naphthalenes, while Bojke et al. (2018) detected 3-methylbutanal, fatty acids, and sesquiterpenes by SPME-GC-MS in volatile emissions from *B. bassiana*.

As previously noted, ethanol was detected in emissions from ambrosia beetle fungal symbionts (Egonyu and Torto 2018; Kuhns et al. 2014). We did not detect the emission of ethanol from *A. grosmanniae* at 14 days after inoculating the MEA as part of our current study, but subsequent analyses have detected the emission of ethanol from *A. grosmanniae* at 5 d after inoculating MEA media (Ranger, pers. obs.). The emission of ethanol from vulnerable host trees (Ranger et al. 2021) and by ambrosia beetle fungal symbionts (Egonyu and Torto 2018; Kuhns et al. 2014) could account for the strong behavioral response exhibited by *X. germanus* and other ambrosia beetle to this semiochemical. Since ethanol promotes the growth of *Ambrosiella* spp. and inhibits the growth of fungal garden competitors (Ranger et al. 2018), its emission by *Ambrosiella* spp. might also serve in a defensive capacity to suppress the establishment of antagonists. As the profile of volatiles emitted by fungi can vary depending on substrate, duration of incubation, nutrients, temperature, and other parameters (Morath et al. 2012), additional time-course studies are warranted to further characterize fungal volatiles emitted by *A. grosmanniae*. In particular, volatile profiles should be compared for symbionts growing on MEA alone vs. MEA infused with sawdust from host trees, along with cultures within host tree galleries.

Unlike the concentration-response to ethanol, relatively weak EAG concentration-responses were elicited by 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate, and 3-methyl-1-butanol as part of our current study. Due to the close evolutionary and ecological association between ambrosia beetles and their fungal symbionts, the olfactory system of ambrosia beetles could contain narrowly tuned, highly specific olfactory receptors that are wired to dedicated neuronal circuits in response to these ecologically relevant odors (Andersson et al. 2015). Data from our current study does not support this scenario for 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate, or 3-methyl-1-butanol, but a narrowly tuned receptor that is highly specific to ethanol could be associated with *X. germanus*. Single sensillum recordings from the antennal club of *X. germanus* would help to characterize the specificity of the different sensilla types, particularly for ethanol (Andersson et al. 2015; Olsson and Hansson 2013).

As compared to ethanol, some arrestment responses were exhibited by *X. germanus* to the individual fungal volatiles tested during the still-air olfactometer bioassays. Still, these results demonstrate the walking bioassay first described by Borden et al. (1968) is useful for measuring the behavioral response of ambrosia beetles. Weak and inconsistent long-range attraction was exhibited by *X. germanus* to the individual fungal volatiles when tested in 2016–2018. None of the compounds enhanced attraction to ethanol, and 2-phenylethanol and 3-methyl-1-butanol consistently reduced attraction to ethanol. 2-Phenylethanol inhibited the response of *Dendroctonus frontalis* Zimmermann and *Dendroctonus ponderosae* Hopkins to attractants (Pureswaran et al. 2000; Sullivan et al. 2007) but enhanced the attraction of *Ips paraconfusus* Lanier to male-infested logs (Renwick et al. 1976). The basis for inhibition could be related to the variety of origins of 2-phenylethanol, including bark beetles and associated microorganisms (Sullivan 2005; Sullivan et al. 2007). Similarly, *X. compactus* exhibited antennal responses to methyl isovalerate and 2,3-butanediol in adsorbent-trapped extracts.
from F. solani during gas chromatography–electroantennography experiments (Egonyu and Torto 2018), but unlike ethanol these compounds were only slightly attractive when tested singly under field conditions.

While semiochemical release rate is critical, Davis et al. (2013) noted that a central question of insect olfactory responses to fungal volatiles is whether the insects perceive the volatiles individually or as a mixture. Individual volatiles are probably not as informative as blends (Davis et al. 2013), as demonstrated for insect responses to plant volatiles (Webster et al. 2008). Still, ethanol alone is highly attractive to ambrosia beetles and emitted from both their host trees (Ranger et al. 2021) and fungal symbionts (Egonyu and Torto 2018; Kuhns et al. 2014). Subsequent studies are being pursued to test blends of volatiles based on the profile emitted from A. grosmanniae, but challenges exist with cross-reactivity and release rates among compounds of varying chemical classes when pursuing an optimal lure (Nielsen et al. 2019). Notably, a synthetic blend of fungal volatiles from R. lauricola consisting of ethyl acetate: ethanol: isoamyl alcohol: isoamyl acetate (36.5: 29: 22: 12.5) was not alone attractive to X. glabratus, but did synergistically enhance attraction to a Manuka oil lure comprised of host volatiles (Kuhns et al. 2014).

Our current findings contribute to a small but growing body of research seeking to characterize how fungal volatiles mediate interactions between ambrosia beetles and their fungal symbionts. Overall, results from our current study indicate that X. germanus can sense general volatiles emitted from A. grosmanniae, but it is unclear if these compounds are related to symbiosis. Our results also indicate that fungal volatiles identified from A. grosmanniae are not promising semiochemicals to enhance the attraction to ethanol for monitoring or mass trapping purposes. Since ethanol represents a strong long-range attractant for X. germanus and many other ambrosia beetles, a more effective blend could be difficult to achieve. Still, a range of ecological and practical topics could be addressed, including further characterization of fungal volatiles and factors influencing emissions, olfactory selectivity and sensitivity by ambrosia beetles, and lure optimization.

Acknowledgements We thank the anonymous reviewers for helping to improve the quality of the manuscript. This review was supported in part by the USDA Floriculture and Nursery Research Initiative, Horticultural Research Institute, and USDA-ARS National Program 305 (Project 5082-21000-018-00D).

Authors’ Contributions Christopher M. Ranger: Conceived and designed the research, conducted lab and field experiments, statistically analyzed the data, and wrote the manuscript. Marek Dzurendon: Conducted lab experiments. Jenny Barnett: Conducted lab experiments. Ruchika Geedi: Conducted lab experiments. Louela Castrillo: Provided fungal cultures and codesigned the research. Matthew Ethington: Conducted field experiments. Matthew Ginzel: Conducted field experiments. Karla Adesso: Conducted field experiments. Michael E. Reding: Codesigned the research and helped to write the manuscript. All authors have read and approved the manuscript.

Declarations All the procedures performed in studies involving insects were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants or vertebrate animals performed by any of the authors.

Conflict of Interest None.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agnello AM, Breth DI, Tee EM, Cox KD, Villani SM, Ayer KM, Wallis AE, Donahue DJ, Combs DB, Davis AE, Neal JA (2017) Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) occurs, fungal associations, and management trials in New York apple orchards. J Econ Entomol 110:2149–2164

Andersson MN, Löfstedt C, Newcomb RD (2015) Insect olfaction and the evolution of receptor tuning. Front Ecol Evol 3:53

Batra LR (1985) Ambrosia beetles and their associated fungi: research trends and techniques. Proc Plant Sci 94:137–148

Biedermann PHW, Taborsky M (2011) Larval helpers and age polyethism in ambrosia beetles. PNAS 108:17064–17069

Blum MS (1996) Semiochemical parasimony in the Arthropoda. Annu Rev Entomol 41:353–374

Bojke A, Tkacuzk C, Stepnowski P, Gołębiowski M (2018) Comparison of volatile compounds released by entomopathogenic fungi. Microbiol Res 214:129–136

Borden JH, Brownlee RG, Silverstein RM (1968) Sex pheromone of Trypodendron lineatum (Coleoptera: Scolytidae): production, bioassay, and partial isolation. Can Entomol 100:629–636

Cale JA, Collignon RM, Klutsch JG, Kanekar SS, Hussain A, Erbilgin N (2016) Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PLoS One 11:e0162197

Castrillo LA, Griggs MH, Vandenberg JD (2012) Brood production by Xylosandrus germanus (Coleoptera: Curculionidae) and growth of its fungal symbiont on artificial diet based on sawdust of different tree species. Environ Entomol 41:822–827

Castrillo LA, Griggs MH, Vandenberg JD (2016) Competition between biological control fungi and fungal symbionts of ambrosia beetles Xylosandrus crassiusculus and X. germanus (Coleoptera: Curculionidae): mycelial interactions and impact on beetle brood production. Biol Control 103:138–146

Crespo R, Pedrini N, Juárez MP, Bello GMD (2008) Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol Res 163:148–151

ACKNOWLEDGMENTS

We thank the anonymous reviewers for helping to improve the quality of the manuscript. This review was supported in part by the USDA Floriculture and Nursery Research Initiative, Horticultural Research Institute, and USDA-ARS National Program 305 (Project 5082-21000-018-00D).

AUTHORS’ CONTRIBUTIONS

Christopher M. Ranger: Conceived and designed the research, conducted lab and field experiments, statistically analyzed the data, and wrote the manuscript. Marek Dzurendon: Conducted lab experiments. Jenny Barnett: Conducted lab experiments. Ruchika Geedi: Conducted lab experiments. Louela Castrillo: Provided fungal cultures and codesigned the research. Matthew Ethington: Conducted field experiments. Matthew Ginzel: Conducted field experiments. Karla Adesso: Conducted field experiments. Michael E. Reding: Codesigned the research and helped to write the manuscript. All authors have read and approved the manuscript.

DECLARATIONS

All the procedures performed in studies involving insects were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants or vertebrate animals performed by any of the authors.

CONFLICT OF INTEREST

None.

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES

Agnello AM, Breth DI, Tee EM, Cox KD, Villani SM, Ayer KM, Wallis AE, Donahue DJ, Combs DB, Davis AE, Neal JA (2017) Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) occurs, fungal associations, and management trials in New York apple orchards. J Econ Entomol 110:2149–2164

Andersson MN, Löfstedt C, Newcomb RD (2015) Insect olfaction and the evolution of receptor tuning. Front Ecol Evol 3:53

Batra LR (1985) Ambrosia beetles and their associated fungi: research trends and techniques. Proc Plant Sci 94:137–148

Biedermann PHW, Taborsky M (2011) Larval helpers and age polyethism in ambrosia beetles. PNAS 108:17064–17069

Blum MS (1996) Semiochemical parasimony in the Arthropoda. Annu Rev Entomol 41:353–374

Bojke A, Tkacuzk C, Stepnowski P, Gołębiowski M (2018) Comparison of volatile compounds released by entomopathogenic fungi. Microbiol Res 214:129–136

Borden JH, Brownlee RG, Silverstein RM (1968) Sex pheromone of Trypodendron lineatum (Coleoptera: Scolytidae): production, bioassay, and partial isolation. Can Entomol 100:629–636

Cale JA, Collignon RM, Klutsch JG, Kanekar SS, Hussain A, Erbilgin N (2016) Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PLoS One 11:e0162197

Castrillo LA, Griggs MH, Vandenberg JD (2012) Brood production by Xylosandrus germanus (Coleoptera: Curculionidae) and growth of its fungal symbiont on artificial diet based on sawdust of different tree species. Environ Entomol 41:822–827

Castrillo LA, Griggs MH, Vandenberg JD (2016) Competition between biological control fungi and fungal symbionts of ambrosia beetles Xylosandrus crassiusculus and X. germanus (Coleoptera: Curculionidae): mycelial interactions and impact on beetle brood production. Biol Control 103:138–146

Crespo R, Pedrini N, Juárez MP, Bello GMD (2008) Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol Res 163:148–151
D’Alessandro M, Turlings TC (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32
Davis TS, Crippen TL, Hofsitter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859
Dodds KJ, Miller DR (2010) Test of nonhost angiosperm volatiles and verbenone to protect trap traps for Sirex noctilio (Hymenoptera: Siricidae) from attacks by bark beetles (Coleoptera: Scolytidae) in the northeastern United States. J Econ Entomol 103:2094–2099
Dzurenko M, Ranger CM, Hulcr J, Galko J, Kanuch P (2021) Origin of non-native Xylosandrus germanus, an invasive pest ambrosia beetle in Europe and North America. J Pest Sci 94:553–562
Egonyu JP, Torto B (2018) Responses of the ambrosia beetle Xylosandrus compactus (Coleoptera: Curculionidae: Scolytinae) to volatile constituents of its symbiotic fungus Fusarium solani (Hypocreales: Nectriaceae). Arthropod-Plant Inter 12:9–20
Galiko J, Dzurenko M, Ranger CM, Kufyan J, Kula E, Nikolov C, Zübrik M, Zach P (2018) Distribution, habitat preference, and management of the invasive ambrosia beetle Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) in European forests with emphasis on the West Carpathians. Forests 10:10. https://doi.org/10.3390/f10010010
Gomez DF, Rabaglia RJ, Fairbanks KE, Hulcr J (2018) North American Xyleborini north of Mexico: a review and key to genera and species (Coleoptera, Curculionidae, Scolytinae). ZooKeys 768:19–68
Holighaus G, Schütz S (2006) Odours of wood decay as semiochemicals for Trypodendron domesticaum L. (Col., Scolytidae). Mitteilungen der deutschen Gesellschaft für allgemeine und angewandte Entomologie 15:161–165
Hulcr J, Atkinson TH, Cognato AI, Jordan BH, McKenna DD (2015) Morphology, taxonomy, and phylogenetics of bark beetles. In: Vega FE, Hofsitter RW (eds) Bark beetles. Morphology, taxonomy, and phylogenetics of bark beetles. Academic, New York, pp 41–84
Hulcr J, Mann R, Stelinski LL (2011) The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts. J Chem Ecol 37:1374–1377
Hulcr J, Stelinski LL (2017) The ambrosia symbiosis: from evolutionary ecology to practical management. Annu Rev Entomol 62:285–303
Jeleši HH (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Letters Appl Microbiol 36:263–267
Kendra PE, Montgomery WS, Niogret J, Deyrup MA, Guillén L, Epsyki ND (2012) Xyloborus glabratus, X. affinis, and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): Electroantennogram responses to host-based attractants and temporal patterns in host-seeking flight. Eny Entomol 41:1597–1605
Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69:840–847
Klimetzek D, Köhler J, Vité JP, Kohlne U (1986) Dosage response to ethanol mediates host selection by “secondary” bark beetles. Naturwissenschaften 73:270–272
Kohnle U, Densborn S, Kölsch P, Meyer H, Francke W (1992) E-7-methyl-1,6-dioxaspiro[4,5]decane in the chemical communication of European Scolytidae and Nitidulidae. J Appl Entomol 114:187–192
Korpi A, Järnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Critical Rev Toxicol 39:139–193
Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9:126–138
Kuhns EH, Tribullian Y, Martini X, Meyer WL, Peña J, Hulcr J, Stelinski LL (2014) Volatiles from the symbiotic fungus Raffaelea lauricola are synergistic with Manuka lures for increased capture of the Redbay ambrosia beetle Xyloborus glabratus. Agric Forest Entomol 16:87–94
Mayers CG, McNew DL, Harrington TC, Roepfer RA, Friedrich SW, Biedermann PH, Castrillo LA, Reed SE (2015) Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biol 119:1075–1092
Miller DR, Dodds KJ, Hooebeke ER, Poland TM, Willhite EA (2015) Variation in effects of conophorin on catches of ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ethanol-baited traps in the United States. J Econ Entomol 108:183–191
Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83
Nielsen MC, Sansom CE, Larsen L, Worner SP, Rostás M, Chapman RB, Butler RC, de Kogel WJ, Davidson MM, Perry NB, Teulon DA (2019) Volatile compounds as insect lures: factors affecting release from passive dispenser systems. New Zealand J Crop Hort Sci 47:208–223
Niogret J, Montgomery WS, Kendra PE, Heath RR, Epsyki ND (2011) Attraction and electroantennogram responses of male Mediterranean fruit fly to volatile chemicals from Persea, Litchi and Ficus wood. J Chem Ecol 37:483–491
Olsson SB, Hansson BS (2013) Electroantennogram and single sensillum recording in insect antennae. In: Touhara K (ed) Pheromone signaling. Humana Press, Totowa, pp 157–177
Ott E (2007) Chemical ecology, fungal interactions, and forest stand correlations of the exotic Asian ambrosia beetle Xylosandrus crassiusculus (Coleoptera: Scolytinae). M.S. thesis. University of Louisiana, Baton Rouge
Pureswaran DS, Gries R, Borden HJ, Pierce HD Jr (2000) Dynamics of pheromone production and communication in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini (say) (Coleoptera: Scolytinae). Chemoecol 10:153–168
Ranger CM, Biedermann PHW, Phunnumtart V, Beligala GU, Ghosh S, Palquist DE, Mueller R, Barnett J, Schultz PB, Reding ME, Benz JP (2018) Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. PNAS 115:4447–4452
Ranger CM, Gorrzlancky AM, Addesso KM, Oliver JB, Reding ME, Schultz PB, Held DW (2014) Conophorin enhances the electroantennogram and field behavioural response of Xylosandrus germanus (Coleoptera: Curculionidae) to ethanol. Agric For Entomol 16:327–334
Ranger CM, Horst L, Barnett J, Reding ME, Anderson B, Krause CR (2017) Comparative morphology and distribution of antennal sensilla on Xylosandrus germanus and Xylosandrus crassiusculus (Coleoptera: Curculionidae: Scolytinae). Ann Entomol Soc Am 110:172–188
Ranger CM, Reding ME, Addesso K, Ginzel M, Rassati D (2021) Semiochemical-mediated host selection by Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science. Can Entomol 153:103–120
Ranger CM, Reding ME, Gandhi K, Oliver J, Schultz P, Cañas L, Herms D (2011) Species dependent influence of (−)-α-pinene on attraction of ambrosia beetles to ethanol-baited traps in nursery agroecosystems. J Econ Entomol 104:574–579
Ranger CM, Reding ME, Persad AB, Herms DA (2010) Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles (Coleoptera: Curculionidae, Scolytinae). Agric Forest Entomol 12:177–185
Ranger CM, Reding ME, Schultz PB, Oliver JB, Frank SD, Addesso KM, Chong JH, Sampson B, Werle C, Gill S, Krause C (2016) Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. J Int Pest Manag 7:1–23
Ranger CM, Schultz PB, Frank SD, Chong JH, Reding ME (2015) Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS One 10:e0131496
Rassati D, Contarini M, Ranger CM, Cavaletto G, Rossini L, Speranza S, Faccoli M, Marini L (2020) Fungal pathogen and ethanol affect host selection and colonization success in ambrosia beetles. Agric Forest Entomol 22:1–9
Renwick JAA, Hughes PR, Ty TD (1976) 2-Phenylethanol isolated from bark beetles. Naturwissenschaften 63:1968
Sullivan BT (2005) Electrophysiological and behavioral responses of Dendroctonus frontalis (Coleoptera: Curculionidae) to volatiles infested from conspecifics. J Econ Entomol 98:2067–2078
Sullivan BT, Dalusky MJ, Wakarchuk D, Berisford CW (2007) Field evaluations of potential aggregation inhibitors for the southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae). J Entomol Sci 42:139–149
VanDerLaan N, Ginzel M (2013) The capacity of conophthorin to enhance the attraction of two Xylosandrus species (Coleoptera: Curculionidae: Scolytinae) to ethanol and the efficacy of verbenone as a repellent. Agric Forest Entomol 15:391–397
Vega FE, Biedermann PH (2020) On interactions, associations, mycetangia, mutualists and symbiotes in insect-fungus symbioses. Fungal Ecol 44:100909. https://doi.org/10.1016/j.funeco.2019.100909
Webster B, Bruce T, Pickett J, Hardie J (2008) Olfactory recognition of host plants in the absence of host-specific volatile compounds: host location in the black bean aphid, Aphis fabae. Comm Integ Biol 1:167–169
Wingfield MJ, Barnes I, de Beer ZW, Roux J, Wingfield BD, Taerum SJ (2017) Novel associations between ophiostomatoid fungi, insects and tree hosts: current status—future prospects. Biol Inv 19:3215–3228