Upper limit on the flux of photons with energies above 10^{19} eV using the Telescope Array surface detector

T. Abu-Zayyad,1 R. Aida,2 M. Allen,1 R. Anderson,1 R. Azuma,3 E. Barcikowski,1 J. W. Belz,1 D. R. Bergman,1 S. A. Blake,1 R. Cady,1 B. G. Cheon,4 J. Chiba,5 M. Chikawa,6 E. J. Cho,4 W. R. Cho,7 H. Fujii,8 T. Fujii,9 T. Fukuda,3 M. Fukushima,10,11 D. Gorbunov,12 W. Hanlon,1 K. Hayashi,3 Y. Hayashi,9 N. Hayashida,10 K. Hibino,13 K. Hiyama,10 K. Honda,2 T. Iguchi,3 D. Ikeda,10 K. Ikuta,2 N. Inoue,14 T. Ishii,2 R. Ishimori,3 D. Ivanov,1,15 S. Iwamoto,2 C. C. H. Jui,1 K. Kadota,16 F. Kakimoto,3 O. Kalashev,12 T. Kanbe,2 K. Kasahara,17 H. Kawai,18 S. Kawakami,9 S. Kawana,14 E. Kido,10 H. B. Kim,4 H. K. Kim,7 J. H. Kim,4 J. H. Kim,4 K. Kitamoto,6 S. Kitamura,3 Y. Kitamura,3 Y. Kobayashi,5 Y. Kobayashi,3 Y. Kondo,10 K. Kuramoto,1 V. Kuzmin,12 Y. J. Kwon,7 J. Lan,1 S. I. Lim,19 S. Machida,3 K. Martens,11 T. Matsuda,8 T. Matsuura,3 T. Matsuura,9 J. N. Matthews,1 M. Minamino,3 K. Miyata,5 Y. Murano,3 I. Myers,1 K. Nagasawa,14 S. Nagataki,20 T. Nakamura,21 S. W. Nam,19 T. Nonaka,10 S. Ogio,9 M. Ohnishi,10 H. Ohoka,10 K. Oki,10 D. Oku,2 T. Okuda,22 A. Oshima,9 S. Ozawa,17 I. H. Park,19 M. P. Shirkov,12,23 D. C. Rodriguez,1,2 S. Y. Roh,24 G. I. Rubtsov,12,8 D. Ryu,24 H. Sagawa,10 N. Sakurai,9 A. L. Sampson,1 L. M. Scott,15 P. D. Shah,1 F. Shibata,2 T. Shibata,10 H. Shimodaira,10 B. K. Shin,3 J. I. Shin,7 T. Shirahama,14 J. D. Smith,1 P. Sokolsky,1 B. T. Stokes,1 S. R. Stratton,1,15 T. Stroman,1 S. Suzuki,8 Y. Takahashi,10 M. Takeda,10 A. Taketa,25 M. Takita,10 Y. Tameda,10 H. Tanaka,9 K. Tanaka,26 M. Tanaka,9 S. B. Thomas,1 G. B. Thompson,1 P. Tinyakov,12,23 I. Tkachev,12 H. Tokuno,3 T. Tomida,18 S. Troitsky,12 Y. Tsunesada,3 K. Tsutsumi,3 Y. Tsuyuguchi,2 Y. Uchihori,28 S. Udo,13 H. Ukai,2 G. Vasiloff,1 Y. Wada,14 T. Wong,1 M. Wood,1 Y. Yamakawa,10 R. Yamane,9 H. Yamaoka,8 K. Yamazaki,9 J. Yang,19 Y. Yoneda,9 S. Yoshida,18 H. Yoshii,29 X. Zhou,6 R. Zollinger,1 and Z. Zundel1

(Telescope Array Collaboration)

1High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
2University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi, Japan
3Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan
4Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea
5Department of Physics, Tokyo University of Science, Noda, Chiba, Japan
6Department of Physics, Kinki University, Higashi Osaka, Osaka, Japan
7Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea
8Department of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan
9Graduate School of Science, Osaka City University, Osaka, Osaka, Japan
10Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan
11Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba, Japan
12Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
13Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan
14The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
15Department of Physics and Astronomy, Rutgers University, Piscataway, USA
16Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan
17Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
18Department of Physics, Chiba University, Chiba, Chiba, Japan
19Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaemun-gu, Seoul, Korea
20Yukawa Institute for Theoretical Physics, Kyoto University, Sakyo, Kyoto, Japan
21Faculty of Science, Kochi University, Kochi, Kochi, Japan
22Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
23Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium
24Department of Astronomy and Space Science, Chungnam National University, Yuseong-gu, Daejeon, Korea
25Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan
26Department of Physics, Hiroshima City University, Hiroshima, Hiroshima, Japan
27RIKEN, Advanced Science Institute, Wako, Saitama, Japan
28National Institute of Radiological Science, Chiba, Chiba, Japan
29Department of Physics, Ehime University, Matsuyama, Ehime, Japan

(Received 20 April 2013; published 3 December 2013)

*Corresponding author.
grisha@ms2.inr.ac.ru
We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 10^{19}, $10^{19.5}$, and 10^{20} eV based on the first three years of data taken.

DOI: 10.1103/PhysRevD.88.112005

PACS numbers: 98.70.Sa, 96.50.sb, 96.50.sd

I. INTRODUCTION

The Telescope Array (TA) experiment [1] is a hybrid ultrahigh energy (UHE) cosmic ray detector covering about 700 km2 in central Utah, USA. It is composed of a surface detector (SD) array and three fluorescence detector (FD) stations. The TA SD array consists of 507 plastic scintillator detectors on a square grid with 1.2 km spacing [2]. They each contain two layers of 1.2 cm thick plastic scintillator 3 m2 in area. The three FD stations [3] contain a total of 38 telescopes overlooking the air space above the array of scintillator detectors. The purpose of this paper is to present the photon search capabilities of the Telescope Array surface detector and to search for primary photons in the cosmic ray flux. We place the limits on the integral flux of photons for energies greater than E_0, where E_0 takes values 10^{19}, $10^{19.5}$, and 10^{20} eV.

At present there is no experimental evidence for primary UHE photons. However, several limits on the photon flux have been set by independent experiments. These include Haverah Park [4], AGASA [5], Yakutsk [6,7] (see also reanalyses of the AGASA [8] and AGASA + Yakutsk [9] data at energies greater than 10^{20} eV), and the Pierre Auger Observatory [10–12].

Photon limits may be used to constrain the parameters of top-down models [13]. The photon searches may be used to assess parameters of astrophysical sources in the Greisen-Zatsepin-Kuzmin (GZK) [14,15] cutoff scenario which predicts photons as ever present secondaries. If UHE photons are observed, they will be a supporting evidence for the GZK nature of the spectrum break at the highest energies observed by HiRes [16], Pierre Auger Observatory [17], and TA [18]. Photon flux is sensitive to the mass composition of cosmic rays and hence may be used as a probe of the latter [19,20]. The results of the photon search also constrain parameters of Lorentz invariance violation [21–25]. Finally, photons with energies greater than $\sim10^{18}$ eV could be responsible for cosmic ray events correlated with BL Lacertae type objects on an angular scale significantly smaller than the expected deflection for protons in cosmic magnetic fields. This suggests neutral primaries [26,27] (see Ref. [28] for a possible mechanism).

Since the TA detectors are composed of thin scintillators, they respond equally to the muon and electromagnetic components of the extensive air shower and are therefore sensitive to showers induced by photon primaries (see, e.g., Ref. [29] for discussion). We use the shower front curvature as a composition-sensitive parameter (C-observable) and a modification of an event-by-event statistical method [30] to constrain the photon integral flux above the given energy. For the energy-sensitive parameter (E-observable), we use the scintillator signal density at 800 m core distance $S = S_{800}$. The comparison of an event-by-event statistical method with the “photon median” method [11] is presented.

II. SIMULATIONS

Extensive air showers (EAS) induced by photon primaries differ significantly from hadron-induced events (see, e.g., [31] for a review). Photon induced showers contain fewer muons and have a deeper shower maximum when compared to hadronic showers. The latter results in the shower front having more curvature at the surface as illustrated in Fig. 1. At the highest energies, there are two competing effects responsible for the diversity of showers induced by photon primaries. First, the electromagnetic cross-section is suppressed at energies, $E > 10^{19}$ eV due to the Landau, Pomeranchuk [32], and Migdal [33] (LPM) effect. The LPM effect delays the first interaction so that the shower arrives at ground level underdeveloped. The second effect is e^\pm pair production which is due to photon interaction with the geomagnetic field above the atmosphere. Secondary electrons produce gamma rays by synchrotron radiation generating a cascade in the geomagnetic field. The probability of photon conversion is a function of photon energy and the perpendicular component of geomagnetic field [34]. The shower development therefore depends on both the zenith and azimuthal angles of the photon arrival direction.

hadron-induced EAS gamma-induced EAS

FIG. 1 (color online). Illustrative view of hadron- (left) and gamma-induced (right) showers. The gamma-induced shower is deeper due to smaller cross-section of the first interaction. Moreover, the hadronic cascade is secondary with respect to electromagnetic cascade in photon-induced showers. The latter contains fewer muons (shown in red) and has larger curvature of the shower front.
The event-by-event method [30] requires a set of simulated photon-induced showers for the analysis of each real shower. We simulate the library of these showers with different primary energies and arrival directions. For the highest energy candidates (events which may be induced by a photon with primary energy greater than \(10^{19.5}\) eV) we simulate individual sets of showers with fixed zenith and azimuthal angles. At these energies, the shower development becomes azimuth-angle dependent due to the photon cascading in the geomagnetic field [31].

We use CORSIKA [35] with EGS4 [36] to model the electromagnetic interactions and PRESHOWER code [37] for geomagnetic interactions. There is no significant dependence on the hadronic model because only photon-induced simulated showers are used in the method. The showers are simulated with thinning, and the dethinning procedure is adopted [38] to simulate realistic shower fluctuations.

The detector response is accounted for by using lookup tables generated by GEANT4 [39] simulations. Real-time array status and detector calibration information are used for each Monte Carlo (MC) simulated event. The Monte-Carlo events are recorded in the same format as real events and analysis procedures are applied in the same way to both. The photon-induced MC set contains 2 \(\times 10^6\) triggered events produced from 3380 CORSIKA showers by randomizing core location [40].

III. DATA SET

We use the Telescope Array surface detector data set observed and recorded between 2008-05-11 and 2011-05-01. During this time period, the surface detector array was collecting data with a duty cycle greater than 95% [2].

We reconstruct each event with a joint fit of the geometry and lateral distribution function (LDF) and determine the Linsley curvature parameter “\(\alpha\)" (see Appendix A for definition) along with the arrival direction, core location, and signal density at 800 meters \(S = S_{800}\). As noted above, the same reconstruction procedure is applied to both data and Monte-Carlo events.

For each real event “\(i\),” we estimate the energy of the hypothetical photon primary, \(E_\gamma = E_\gamma(S_i, \theta_\gamma, \phi_\gamma)\), i.e., the average energy of the primary photon, inducing the shower with the same arrival direction and \(S\). The lookup table for \(E_\gamma(S, \theta, \phi)\) is built using the photon MC set; the dependence on azimuthal angle \(\phi\) is relevant for events with \(E_\gamma > 10^{19.5}\) eV where geomagnetic preshowering is substantial. Photon-induced showers are naturally highly fluctuating. Consequently, the accuracy of the determination of \(E_\gamma\) is about 50% at the one sigma level. In the present analysis, \(E_\gamma\) is used for event selection only and therefore its fluctuations are well accounted for in the exposure calculation. The effect of these fluctuations is “lost” photons [30], i.e., the photons with reconstructed energy below the energy cut. This will be estimated in Sec. V.

We imposed the following requirements on both the data and MC events:

1. The shower core is inside the array boundary with the distance to the boundary larger than 1200 m;
2. Zenith angle cut: \(45^\circ < \theta < 60^\circ\);
3. The number of scintillator detectors triggered is \(\geq 7\);
4. The joint fit quality cut, \(\chi^2/d.o.f. < 5\);
5. \(S\) cut: \(E_\gamma(S_{\text{obs}}, \theta_\gamma, \phi_\gamma) > 10^{19}\) eV or \(E_\gamma > 10^{19.5}\) eV depending on the energy region discussed (the second variant is used for both \(E_0 = 10^{19.5}\) and \(E_0 = 10^{20}\) eV).

The cuts determine a photon detection efficiency which is greater than 50% for showers induced by primary photons with energy above \(10^{19}\) eV. The calculation of exposure is given in Sec. V. The resulting data set contains 877 events with \(E_\gamma > 10^{19}\) eV and \(45^\circ < \theta < 60^\circ\) which we used for our photon search.

IV. METHOD

To estimate the flux limit, we used an event-by-event method [30]. The Linsley curvature parameter “\(\alpha\)" is used as a \(C\)-observable and \(S \equiv S_{800}\) is used as an \(E\)-observable. For each real event “\(i\),” we estimate the pair of parameters \((S_{\text{obs}}, \alpha_{\text{obs}})\) and the arrival direction \((\theta_\gamma, \phi_\gamma)\) from the fit of shower front geometry and LDF. Histograms of Linsley curvature are shown in Fig. 2. Note that both data and MC distributions show smallest variance in the region \(45^\circ < \theta < 60^\circ\). The latter motivates the selection of zenith angle range for the further procedure.

We selected simulated gamma-induced showers compatible with the observed \(\theta_\gamma, \phi_\gamma; \text{and} S_{\text{obs}}\) and calculate the curvature distribution of the simulated photon showers, \(f_\gamma^i(a)\), as discussed in Ref. [30]. For each event, we determined the percentile rank of Linsley parameter \(a\) for photon primaries

\[
C^i = \int_{-\infty}^{a_{\text{obs}}} f_\gamma^i(a) da,
\]

which is the value of the integral probability distribution function at the observed curvature. The shower front fit, \(f_\gamma^i(a)\), and \(C\) for one of the events is shown in Fig. 3.

The distribution of \(C\) for the data and MC is shown in Fig. 4. Although the distribution of \(f_\gamma^i(a)\) varies with energy and arrival direction, \(C^i\) for gamma-ray primaries would be distributed between 0 and 1 uniformly by definition [41]. On the other hand, the actual distribution of \(C^i\) in the data is strongly nonuniform (most of the events have \(C^i\) below 0.5).

Since the simulations of hadron-induced showers depend strongly on the hadronic interaction model, we do not use the hadronic showers simulations in the calculation of the photon limit.
Suppose that the integral flux of primary photons over a given energy range is F/C_{13}. Then we expect to detect

$$\bar{n}(F/C_{13}) = \left(1 - \lambda\right)F_{\gamma}A_{\text{geom}}$$

(1)

photon events on average, where A_{geom} is the geometrical exposure of the experiment for a given data set and λ is the fraction of "lost" photons (i.e., photons with primary energies within the interesting region which failed to enter the data set due to triggering efficiency and cuts).

We calculate an upper limit on the primary photon flux based on the idea that photons satisfy a uniform distribution from 0 to 1 of the variable C. To do this, we examine all possible combinations of n events from the data set, where n covers the range from 3 to some large value M. We compare each combination to a uniform C distribution using the Smirnov-Cramer-von Mises test [42], and let $P(n)$ be the largest probability found in this way. By definition of the test $P(0) = P(1) = P(2) = 1$ and we assume $M = 100$ (for which all probabilities vanish in the considered cases). See Appendix B for a description of the Smirnov-Cramer-von Mises test. To constrain the flux F_{γ} at the confidence level ξ, we require

$$\sum_{n=0}^{M} P(n)W(n, \bar{n}(F_{\gamma})) < 1 - \xi,$$

(2)

where $W(n, \bar{n})$ is the Poisson probability of finding n events when the mean is \bar{n}. To constrain the flux at the 95%
confidence level (CL) we set $\xi = 0.95$ and find \tilde{n} from Eq. (2). The upper limit on the flux follows from Eq. (1),

$$
F_\gamma < \frac{\tilde{n}}{(1 - \lambda)A_{\text{geom}}}.
$$

This method does not require any assumptions about hadron-induced showers and does not require the C-observable to be strongly discriminating (like the muon density used in [6,7,9]).

V. EXPOSURE

The geometrical exposure for the SD observation period with $45^\circ < \theta < 60^\circ$ and boundary cut is

$$
A_{\text{geom}} = 1286 \text{ km}^2 \text{ sr yr}.
$$

The fraction of “lost” photons is calculated using a photon MC set generated with an E^{-2} spectrum. The values of $(1 - \lambda)$ after consecutive application of cuts are shown in Table I.

VI. RESULTS

Using the statistical method (Sec. IV) we arrive at the following results:

$$
\tilde{n} < 14.1 \; (95\% \text{CL}), \quad E_\gamma > 10^{19} \text{ eV},
$$

$$
\tilde{n} < 8.7 \; (95\% \text{CL}), \quad E_\gamma > 10^{19.5} \text{ eV},
$$

$$
\tilde{n} < 8.5 \; (95\% \text{CL}), \quad E_\gamma > 10^{20} \text{ eV}.
$$

$$
F_\gamma < 1.9 \times 10^{-2} \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1} \; (95\% \text{CL}), \quad E_\gamma > 10^{19} \text{ eV},
$$

$$
F_\gamma < 0.97 \times 10^{-2} \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1} \; (95\% \text{CL}), \quad E_\gamma > 10^{19.5} \text{ eV},
$$

$$
F_\gamma < 0.71 \times 10^{-2} \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1} \; (95\% \text{CL}), \quad E_\gamma > 10^{20} \text{ eV}.
$$

These photon limits are shown along with the results of the other experiments in Fig. 5.

We obtain photon fraction limits by dividing the corresponding flux limits by the integral flux of the Telescope Array SD spectrum [18]:

$$
\epsilon_\gamma < 6.2\% \; (95\% \text{CL}), \quad E_\gamma > 10^{19} \text{ eV},
$$

$$
\epsilon_\gamma < 28.5\% \; (95\% \text{CL}), \quad E_\gamma > 10^{19.5} \text{ eV}.
$$

The limits strongly constrain the top-down models of the origin of cosmic rays, see [43] for discussion.

Cut	10^{19}	E_{inc}, eV	$10^{19.5}$	10^{20}
$n_{\text{det}} \geq 7$	72%	94%	97%	
χ^2/d.o.f. < 5	68%	89%	95%	
S cut	57%	70%	95%	
Total	57%	70%	95%	

Next, we compare the results of the event-by-event method with the results of the simpler “photon median” method [11]. In the latter, the events having curvature greater than the median photon curvature are identified as photon candidates. This criteria corresponds to $C > 0.5$. We observe three candidate events with energy greater than 10^{19} eV (see Figure 4) and no candidate events above $10^{19.5}$ eV. This corresponds to a 95% Poisson confidence limit of $\tilde{n}/2 < 8.25$ and $\tilde{n}/2 < 3.09$. The flux limits are $F_\gamma < 2.3 \times 10^{-2}$, $F_\gamma < 0.69 \times 10^{-2}$, and $F_\gamma < 0.51 \times 10^{-2}$ km$^{-2}$ sr$^{-1}$ yr$^{-1}$ for $E_\gamma = 10^{19}$, $10^{19.5}$, and 10^{20} eV correspondingly. The limits using the two methods are in mutual agreement.

Finally we discuss how the result depends on the assumption of the E^{-2} primary photon spectrum. We repeated the analysis with varied spectral index and for $E > 10^{19}$ eV arrived at $F_\gamma < 2.2 \times 10^{-2}$ and $F_\gamma < 1.8 \times 10^{-2}$ km$^{-2}$ sr$^{-1}$ yr$^{-1}$ for $E^{-1.5}$ and $E^{-2.5}$ primary spectra correspondingly. The limits for energy greater than $10^{19.5}$ and 10^{20} eV are less sensitive to the spectral assumption.

Both the use of plastic scintillators sensitive to photon-induced showers and the application of event-by-event statistical methods allowed us to put stringent limits on the flux of primary photons with energies in excess of 10^{19} eV with the data obtained during three years of the TA surface detector operation. The photons propagate without deflection by magnetic fields and therefore in the case of the few nearby sources we may not expect an isotropic flux. It is worth mentioning that the limits of this paper are strongest among those obtained in the northern hemisphere. The result depends neither on the choice of hadronic interaction model, nor on possible systematics in the energy determination of hadronic primaries.
ACKNOWLEDGMENTS

The Telescope Array experiment is supported by the Japan Society for the Promotion of Science through Grants-in-Aids for Scientific Research on Specially Promoted Research (21000002) “Extreme Phenomena in the Universe Explored by Highest Energy Cosmic Rays” and for Scientific Research (19104006), and the Inter-University Research Program of the Institute for Cosmic Ray Research; by the U.S. National Science Foundation Grant Nos. PHY-0307098, PHY-0601915, PHY-0649681, PHY-0703893, PHY-0758342, PHY-0848320, PHY-1069280, and PHY-1069286; by the National Research Foundation of Korea (2007-0093860, R32-10130, 2012R1A1A2008381, 2013004883); by the Russian Academy of Sciences, by the grant of the President of the Russian Federation MK-1170.2013.2, Dynasty Foundation, RFBR grants 11-02-01528, 13-02-01311 and 13-02-01293 (INR), IISN Project No. 4.4509.10 and Belgian Science Policy under IUAP VII/37 (ULB). The foundations of Dr. Ezekiel R. and Edna Wattis Dumke, Willard L. Eccles and the George S. and Dolores Dore Eccles all helped with generous donations. The State of Utah supported the project through its Economic Development Board, and the University of Utah through the Utah Institutional Trust Lands Administration (SITLA), U.S. Bureau of Land Management, and the U.S. Air Force. We also wish to thank the people and the officials of Millard County, Utah for their steadfast and warm support. We gratefully acknowledge the contributions from the technical staffs of our home institutions. An allocation of computer time from the Center for High Performance Computing at the University of Utah is gratefully acknowledged. The cluster of the Theoretical Division of INR RAS was used for the numerical part of the work.

APPENDIX A: LDF AND SHOWER FRONT FIT FUNCTIONS

We perform a joint fit of LDF and shower front with 7 free parameters: \(x_{\text{core}}, y_{\text{core}}, \theta, \phi, S_{800}, t_0, a \).

\[
S(r) = S_{800} \times \text{LDF}(r),
\]

\[
t_0(r) = t_0 + t_{\text{plane}} + a \times 0.67(1 + r/R_L)^{1.5} \text{LDF}^{-0.5}(r),
\]

where \(t_{\text{plane}} \) is a shower plane delay, \(a \) is a Linsley curvature parameter and the \(\text{LDF}(r) \) is defined as follows:

\[
\text{LDF}(r) = f(r)/f(800 \text{ m}),
\]

\[
f(r) = \left(\frac{r}{R_m} \right)^{1.2} \left(1 + \frac{r}{R_m} \right)^{-(\eta - 1.2)} \left(1 + \frac{R_m}{R} \right)^{-0.6},
\]

\(R_m = 90 \text{ m}, \ R_1 = 1000 \text{ m}, \ R_L = 30 \text{ m}, \)

\(\eta = 3.97 - 1.79 \times (\sec(\theta) - 1) \).

APPENDIX B: SMIRNOV-CRAMER-VON MISES “OMEGA-SQUARE” TEST IMPLEMENTATION

Let \(F(x) \) be theoretical distribution and \(F_N(x) \) the observed distribution of \(n \) events. We define the distance between distributions by [42]:

\[
\omega^2 = \int_{-\infty}^{\infty} (F_N(C) - F(C))^2 dF(C).
\]

If \(C_1, C_2, \ldots, C_n \) is a set of observed values in increasing order, \(\omega^2 \) may be rewritten in the following form:

\[
n \omega^2 = \frac{1}{12n} + \sum_{i=1}^{n} \left(\frac{2i - 1}{2n} - F(C_i) \right)^2.
\]

In this paper, we compare the distribution of an event subset with uniform distribution \(U(0, 1) \). Therefore \(F(C_i) = C_i \) and we have:

\[
n \omega^2 = \frac{1}{12n} + \sum_{i=1}^{n} \left(\frac{2i - 1}{2n} - C_i \right)^2.
\]

The required maximization of the probability over subsets is therefore reduced to the selection of \(n \) different events minimizing the above sum. The latter may be done with a fast iterative procedure.

[1] H. Tokuno et al. (Telescope Array Collaboration), J. Phys. Conf. Ser. 293, 012035 (2011).
[2] T. Abu-Zayyad et al. (Telescope Array Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 689, 87 (2012).
[3] H. Tokuno et al. (Telescope Array Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 676, 54 (2012).
[4] M. Ave, J. A. Hinton, R. A. Vázquez, A. A. Watson, and E. Zus, Phys. Rev. Lett. 85, 2244 (2000).
[5] K. Shinozaki et al., Astrophys. J. 571, L117 (2002).
[6] A. V. Glushkov, D. S. Gorbunov, I. T. Makarov, M. I. Pravdin, G. I. Rubtsov, I. E. Sleptsov, and S. V. Troitsky, JETP Lett. 85, 131 (2007).
[7] A. V. Glushkov, I. T. Makarov, M. I. Pravdin, I. E. Sleptsov, D. S. Gorbunov, G. I. Rubtsov, and S. V. Troitsky, Phys. Rev. D 82, 041101 (2010).
[8] M. Risse, P. Homola, R. Engel, D. Góra, D. Heck, J. Pękala, B. Wilczyńska, and H. Wilczyński, Phys. Rev. Lett. 95, 171102 (2005).
[9] G. I. Rubtsov et al., Phys. Rev. D 73, 063009 (2006).
[10] J. Abraham et al. (Pierre Auger Collaboration), Astropart. Phys. 27, 155 (2007).
[11] J. Abraham et al. (Pierre Auger Collaboration), Astropart. Phys. 29, 243 (2008).
[12] M. Settimo et al. (Pierre Auger Collaboration), Proceedings of the 32nd ICRC, Beijing, China, 2011 (Institute of High Energy Physics, Beijing, China, 2011), Vol. 2/11, pp. 254–257.
[13] V. Berezinsky, P. Blasi, and A. Vilenkin, Phys. Rev. D 58, 103515 (1998).
[14] K. Greisen, Phys. Rev. Lett. 16, 748 (1966).
[15] Z. T. Zatsepin and V. A. Kuz’min, JETP Lett. 4, 78 (1966).
[16] R. U. Abbasi et al. (HiRes Collaboration), Phys. Rev. Lett. 100, 101101 (2008).
[17] J. Abraham et al. (Pierre Auger Collaboration), Phys. Rev. Lett. 101, 061101 (2008).
[18] T. Abu-Zayyad et al. (Telescope Array Collaboration), Astrophys. J. Lett. 768, L1 (2013).
[19] G. B. Gelmini, O. E. Kalashev, and D. V. Semikoz, J. Cosmol. Astropart. Phys. 11 (2007) 002.
[20] D. Hooper, A. M. Taylor, and S. Sarkar, Astropart. Phys. 34, 340 (2011).
[21] S. R. Coleman and S. L. Glashow, Phys. Rev. D 59, 116008 (1999).
[22] M. Galaverni and G. Sigl, Phys. Rev. Lett. 100, 021102 (2008).
[23] L. Maccione, S. Liberati, and G. Sigl, Phys. Rev. Lett. 105, 021101 (2010).
[24] G. Rubtsov, P. Satunin, and S. Sibiryakov, Phys. Rev. D 86, 085012 (2012).
[25] P. Satunin, Phys. Rev. D 87, 105015 (2013).
[26] D. S. Gorbunov, P. G. Tinyakov, I. I. Tkachev, and S. V. Troitsky, JETP Lett. 80, 145 (2004).
[27] R. U. Abbasi et al. (HiRes Collaboration), Astrophys. J. 636, 680 (2006).
[28] M. Fairbairn, T. Rashba, and S. V. Troitsky, Phys. Rev. D 84, 125019 (2011).
[29] O. E. Kalashev, G. I. Rubtsov, and S. V. Troitsky, Phys. Rev. D 80, 103006 (2009).
[30] D. S. Gorbunov, G. I. Rubtsov, and S. V. Troitsky, Astropart. Phys. 28, 28 (2007).
[31] M. Risse and P. Homola, Mod. Phys. Lett. 22A, 749 (2007).
[32] L. D. Landau and I. Ya. Pomeranchuk, Dokl. Acad. Nauk SSSR 92, 535 (1953).
[33] A. B. Migdal, Phys. Rev. 103, 1811 (1956).
[34] T. Eber, Rev. Mod. Phys. 38, 626 (1966).
[35] D. Heck et al., Report No: FZKA-6019, 1998, Forschungszentrum Karlsruhe.
[36] W. R. Nelson, H. Hirayama, and D. W. O. Rogers, Report No. SLAC-0265.
[37] P. Homola, D. Góra, D. Heck, H. Klages, J. Pkala, M. Risse, B. Wilczyńska, and H. Wilczyński, Comput. Phys. Commun. 173, 71 (2005).
[38] B. T. Stokes, R. Cady, D. Ivanov, J. N. Matthews, and G. B. Thomson, Astropart. Phys. 35, 759 (2012).
[39] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[40] B. Stokes et al., in Proceedings of the 31st ICRC in Lodz, 2009 (to be published).
[41] Due to limited MC statistics C distribution for photon MC events differ from uniform. The deviations do not exceed 5%, see Fig. 4.
[42] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses (Springer, Berlin, 2010).
[43] J. Alvarez-Muniz, M. Risse, G. I. Rubtsov, and B. T. Stokes, Eur. Phys. J. Web Conf. 53, 01009 (2013).