Tbr1 instructs laminar patterning of retinal ganglion cell dendrites

Jinyue Liu1,2,3, Jasmine D. S. Reggiani1,2, Mallory A. Laboulaye1,2, Shristi Pandey1,2, Bin Chen4, John L. R. Rubenstein5, Arjun Krishnaswamy1,2,6 and Joshua R. Sanes1,2*

Visual information is delivered to the brain by >40 types of retinal ganglion cells (RGCs). Diversity in this representation arises within the inner plexiform layer (IPL), where dendrites of each RGC type are restricted to specific sublaminae, limiting the interneuronal types that can innervate them. How such dendritic restriction arises is unclear. We show that the transcription factor Tbr1 is expressed by four mouse RGC types with dendrites in the outer IPL and is required for their laminar specification. Loss of Tbr1 results in elaboration of dendrites within the inner IPL, while misexpression in other cells retargets their neurites to the outer IPL. Two transmembrane molecules, Sorcs3 and Cdh8, act as effectors of the Tbr1-controlled lamination program. However, they are expressed in just one Tbr1 RGC type, supporting a model in which a single transcription factor implements similar laminar choices in distinct cell types by recruiting partially non-overlapping effectors.

Multiple cell-surface molecules have been shown to mediate intercellular interactions in the IPL, leading in some cases to targeting of neurites to specific sublaminae. They include members of the immunoglobulin10–12 and cadherin superfamilies10, semaphorins, and plexins11,12. In contrast, little is known about how the expression of these cell-surface molecules is coordinated to specify laminar targeting of dendrites. Here we identify the transcription factor T-box brain 1 (Tbr1) as one such regulator. We show that Tbr1 is selectively expressed by four RGC types, all of which bear dendrites that arborize in the outer third of the IPL. Intrigued by this commonality, we used loss- and gain-of-function approaches to ask whether Tbr1 is involved in dendritic targeting. We found that it is required for laminar patterning of Tbr1-expressing RGCs and can retarget dendrites of other neuronal types to the outer IPL when ectopically expressed. We then identified two cell-surface molecules, cadherin 8 (Cdh8) and sortilin-related VPS10 domain containing receptor 3 (Sorcs3), as downstream effectors of Tbr1; both restrict dendrites of one Tbr1-expressing RGC type, J-RGCs, to the outer IPL. Strikingly, however, Cdh8 and Sorcs3 are not expressed by the other three Tbr1-expressing RGC types. These results suggest that Tbr1 recruits at least partially distinct sets of downstream effectors to specify laminar identity in the different RGC types that express it.

Results

Four RGC types express Tbr1. To identify markers and potential regulators of specific RGC types, we analyzed the expression of transcription factors in mouse retina. Tbr1 was expressed by ~15% of RGCs but by no other retinal cells (Fig. 1a,b). To date, no single RGC type in mouse has been found to account for more than 10% of total RGCs. We therefore suspected that Tbr1 labeled multiple RGC types.

To assess the number and identity of what we will call ‘Tbr1-RGC’ types, we co-stained retinas with Tbr1 plus molecular markers expressed by RGC subsets, including other transcription factors. Tbr1-RGCs did not appreciably express Foxp2, which marks four F-RGC types; Satb1, which is enriched in four ON–OFF direction-selective RGC (osDSGC) types; or Tbr2, which marks five intrinsically photosensitive RGC types (Supplementary Fig. 1a). Instead, we found that subsets of Tbr1-RGCs expressed robust levels of Brn3b, Brn3c, osteopontin (Opn; gene symbol Spp1), or calretinin (Fig. 1c).

To determine whether these marker pairs labeled distinct RGC types, we made use of a feature of retinal neurons called mosaic spacing: neurons of the same type are less likely to be near neighbors than would be expected by chance, whereas they are randomly distributed with respect to cells of other types13,14. When viewed in...
Fig. 1 | Expression of Tbr1 in four types of OFF-laminating RGCs. a, P21 retinal whole-mount stained with antibodies to Tbr1 and Brn3a, an RGC marker. A subset of RGCs is Tbr1+. Yellow circles mark Tbr1+ soma. Scale, 50 µm. b, Cross-section of P12 retinas showing Tbr1 expression exclusively in RGCs, marked with RBPSMS. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. Arrowheads mark Tbr1+RbPMS+ RGCs. Scale, 25 µm. c, Whole-mounts showing that subsets of Tbr1-RGCs express Brn3b, Opn, Brn3c, or calretinin (arrowheads). Brn3b and Brn3c are nuclear, Opn is perinuclear, and calretinin is cytosolic. Scale, 50 µm. d, Density recovery profiles (DRP) for soma co-expressing each marker pair in c. Solid line represents mean and shaded bounds indicate standard error. Dotted gray line indicates normalized density of a heterogeneous population consisting of multiple cell types (in this case, the entire Tbr1+ population; n = 4 fields per retina, 3 retinas per marker pair, each retina from a different animal). e, Whole-mount of retina stained with a combination of Tbr1, Brn3b, Opn, and Brn3c, showing four non-overlapping populations of Tbr1-RGCs. Each population is marked by an open triangle, closed triangle, asterisk, or arrow as indicated below the image. Scale, 50 µm. f–i, Tbr1-RGCs labeled in whole-mounts showing dendritic morphologies of each type. Scale, 50 µm. j–m, Cross-sections (j,k,m) or rotated view (l) of each Tbr1-RGC type from JAM-B-CreER;Thy1-STOP-YFP (j), W7 (k), YFP-H (l) and Cdh4-CreER;Thy1-STOP-YFP (m) mice. Scale bar, 25 µm. n–q, Quantification of the dendritic stratification for each Tbr1-RGC type (n = 7 J-RGCs, 8 α-OFF-s RGCs, 6 Tbr1-S1 RGCs, and 6 Tbr1-S2 RGCs, from 3 animals each). Line plot and brackets indicate average and standard error. Grey arrowheads mark positions of S2 and S4 as indicated by VAChT immunostaining. r, Schematic summarizing dendritic stratification of Tbr1-RGCs in comparison to other RGC types. All Tbr1-RGCs laminate dendrites within the outer third of the IPL. Each experiment in a–c and f–m was repeated independently in three animals with similar results.
whole mounts, somata co-labeled by each marker pair formed a uniformly spaced mosaic, as judged by the density recovery profile statistic, and were therefore likely to represent a single type (Fig. 1c,d). Exclusion zone size and soma density varied with each marker pair, indicating that they defined four different RGC types (Supplementary Fig. 1b). They populated the entire retina, making up 1.8% (Tbr1\(^{\text{Opn}^+}\)) to 6.5% (Tbr1\(^{\text{Brn3b}^+}\)) of RGCs and totaling ~15% of all RGCs (Supplementary Fig. 1c–g). Co-immunostaining for Tbr1 with combinations of Brn3b, Brn3c, Opn, and calretinin confirmed that the four types are non-overlapping (Fig. 1e and Supplementary Fig. 1h). Together, these four RGC types account for most if not all Tbr1\(^+\) retinal cells.

Tbr1-RGCs laminate in the outer strata of the IPL. To assess the morphology of Tbr1-RGCs, we screened transgenic lines in which RGC subsets are labeled with a fluorescent protein. No labeled RGCs were Tbr1\(^+\) in lines that selectively marked ooDSGCs or W3-RGCs (Supplementary Fig. 1m,n). However, all J-RGCs labeled in JAM-B-CreER;Thy1-STOP-YFP\(^{\alpha}\) mice were Tbr1\(^{\text{Brn3b}^+}\) (Fig. 1f) and Supplementary Fig. 1i), and all alpha-OFF-s-RGCs (\(\alpha\)-OFF-s-RGCs) labeled in TYW722–24 mice were Tbr1\(^{\text{Opn}^+}\) (Fig. 1g,k and Supplementary Fig. 1j), identifying two previously described26; J-RGCs displayed a dorsal-low–ventral-high gradient of expression distributions, dendritic field areas, and coverage factors. We will refer to these two types as Tbr1-S1-RGCs and Tbr1-S2-RGCs, respectively.

The ability to label Tbr1-RGCs allowed us to assess their topographic distributions, dendritic field areas, and coverage factors. \(\alpha\)-OFF-s-RGCs displayed a temporal-high–nasal-low gradient as previously described23; J-RGCs displayed a dorsal-low–ventral-high gradient; and the two novel RGC types displayed shallow center-to-periphery gradients (Supplementary Fig. 1c–f). J-RGCs had the highest coverage factor, while \(\alpha\)-OFF-s-RGCs had the largest dendritic area (Supplementary Fig. 1o,p). Notably, however, dendrites of all four Tbr1-RGC types were restricted to the outer third of the IPL, with three restricted to the outermost sublamina (S1), and the fourth type to S2 (Fig. 1j–r).

Tbr1 is required for laminar specification of RGC dendrites. Before assessing the role of Tbr1 in the retina, we determined its expression pattern through development. Tbr1 immunoreactivity was undetectable at embryonic day (E) 13.5, when RGC production is reaching its peak22. Over the next few days, Tbr1 appeared in postmitotic cells; by E17.5, it was confined to a subset of RGCs that were already non-overlapping with FoxP2+ and Tbr2+ cells (Supplementary Fig. 2a–c). This suggests that Tbr1 could regulate aspects of RGC development, including dendritic morphogenesis, which begins around birth (postnatal day (P) 0)\(^{23}\).

Because constitutive Tbr1 mutant mice die perinatally\(^{23}\), we generated conditional Tbr1 mutants to test this possibility (Supplementary Fig. 3a). We first deleted Tbr1 throughout the retina using a line that expresses Cre in embryonic retinal progenitors (Tbr1\(^{\text{loxP}\text{2}6\text{loxP}\text{2}}\);Six3\(^{\text{Cre}}\), henceforth Tbr1\(^{\text{lox/lox}}\)). Pan-retinal deletion of Tbr1 had no detectable effect on retinal architecture or RGC numbers (Supplementary Fig. 3b).

We then deleted Tbr1 selectively from J-RGCs using the JAM-B-CreER line (Tbr1\(^{\text{lox/lox}}\);JAM-B-CreER;Thy1-STOP-YFP, henceforth Tbr1\(^{\text{CreER}}\); tamoxifen delivered at E14.5 or P0) and verified by immunostaining that ~95% of YFP-labeled J-RGCs lost Tbr1. Notably, ~65% of these Tbr1-deficient J-RGCs developed ectopic dendrites. Although they retained dendritic branches in S1, they also extended dendrites into S4, within the inner (ON) region of the IPL (\(P = 1.2 \times 10^{-4}\), Cochran–Armitage test; Fig. 2a–c). Other aspects of J-RGCs were not detectably affected: dendritic field area, total length, and ventral asymmetry of the dendritic arbor did not differ significantly between controls and mutants (two-tailed Student’s t test, \(P = 0.62, P = 0.40, P = 0.39\), respectively; Fig. 2d and Supplementary Fig. 4a–c). The projection of axons to a primary central target, the superior colliculus, was similarly restricted to the superficial retinoreceptor lamina in mutants and controls (Supplementary Fig. 4d). Finally, Tbr1 mutant J-RGCs neither expressed markers of other RGC types, such as FoxP2, Satb1, or Tbr2\(^{24,17}\), nor did they lose markers expressed by wild-type J-RGCs, such as Brn3b and Rbpms (Supplementary Fig. 4e; see also Supplementary Fig. 9b). Thus, Tbr1 plays a selective role in specifying the laminar position of J-RGC dendrites.

The ability to control the timing of Tbr1 deletion in Tbr1\(^{\text{CreER}}\) mice allowed us to determine when it is required for patterning J-RGC dendrites. J-RGC dendrites begin to extend around P0, are concentrated in the outer half of the IPL by P3, and become restricted to S1 by P6\(^{\text{H}}\) (Supplementary Fig. 5a). Deletion at E14.5 and P0 perturbed dendritic lamination to a similar extent (compare Fig. 2b and Supplementary Fig. 4e), indicating that Tbr1 acted during rather than before dendritogenesis. Moreover, mutant J-RGCs extended ectopic dendritic branches within the inner half of the IPL by P4, indicating that Tbr1 acted during the period of laminar restriction (\(P = 0.00018\), Cochran–Armitage test; Supplementary Fig. 5b,c). In contrast, deleting Tbr1 at P6 had no detectable effect on dendritic morphology (\(P = 0.096\), Cochran–Armitage test; Fig. 2e and Supplementary Fig. 5d,e). Thus, Tbr1 was required to direct dendritic stratification rather than to maintain it.

To find out whether Tbr1 serves a similar role in other RGC types, we extended the analysis to \(\alpha\)-OFF-s-RGCs. We could not use the TYW7 line for this purpose because Cre deletes its YFP cassette\(^{4}\). We therefore used the YFP-II line\(^{4}\) to reveal dendritic morphology and identified \(\alpha\)-OFF-s-RGCs as Opn\(^{\text{RGCs}}\) that lacked Brn3c and Tbr2, which are expressed by other alpha types\(^{23}\). As expected, dendrites of \(\alpha\)-OFF-s-RGCs marked in this way arborized within S1 in control mice (Fig. 2f,h). In contrast 70% of these RGCs sent dendritic branches to S4 or S5 in Tbr1\(^{\text{CreER}}\);YFP-H mice (\(P = 1.6 \times 10^{-4}\), Pearson’s \(\chi^2\) test; Fig. 2g,h). As was the case for J-RGCs, dendritic field area and length were unaffected (\(P = 0.75\) and \(P = 0.18\), respectively, two-tailed Student’s t test; Supplementary Fig. 4f,g). Although we were unable to assay Tbr1-S1- and Tbr1-S2-RGCs, this result suggests a common role for Tbr1 in patterning dendritic lamination for all Tbr1-RGC types.

Loss of visual responses in Tbr1 mutant RGCs. Assessing the role of Tbr1 in RGC function required recording from Tbr1-RGCs. We faced two problems. First, in previous studies, we used transgenic expression of YFP to target cells for intracellular recording\(^{6,9,10}\). In this case, however, we were unable to identify Tbr1-RGCs prospectively. We therefore developed a calcium imaging protocol in which we expressed the calcium indicator GCaMP6f in a large fraction of RGCs, recorded responses to visual stimuli, and then performed immunostaining to identify individual types (Fig. 3a and Supplementary Fig. 6a–d). Second, identification initially relied on Tbr1 immunostaining, which was not applicable to Tbr1\(^{\text{CreER}}\). We therefore used alternative markers. This approach was most successful for \(\alpha\)-OFF-s-RGCs because, as noted above, these cells express Opn but not Brn3c or Tbr2.

We first characterized \(\alpha\)-OFF-s-RGCs marked with the Tbr1-Opn and Tbr2-Opn-Brn3c combinations. In both cases, RGCs showed the expected properties\(^{22,24}\). They generated a robust increase in GCaMP signal to light offset and a decreased signal to...
light onset (Fig. 3b,c,f,g). They also responded to moving bars, with inhibition when a bright bar entered the receptive field and excitation when it left. However, they showed similar responses to motion in all directions and thus were not direction-selective (Fig. 3d,e,h,i and Supplementary Fig. 6e,f).

In contrast, α-OFF-s-RGCs in Tbr1ret/ret responded poorly to both flashes and moving bars (Fig. 3j–m and Supplementary Fig. 6g). Some nonresponsive cells are expected in calcium imaging studies for technical reasons (see Methods), but most control α-OFF-s-RGCs (11 of 16) responded appropriately, whereas only 4 of 13 mutant cells were responsive by criteria described in Methods. Moreover, of the 4 responsive mutant α-OFF-s-RGCs, only one appeared normal; the other 3 generated ON responses (Fig. 3j), a behavior not observed in control α-OFF-s-RGCs. Overall, however,
Fig. 3 | Physiological defects in Tbr1 mutants. a, Left: whole-mount view of a recorded field from a GCaMP6f-expressing retina that was immunostained for GFP, Tbr1, Opn, Brn3b, and Brn3c. Colors in composite image represent the above markers in gray, red, green, and blue, respectively. Right: calcium responses to a full-field flash from the three cells marked in a. Thick lines are averages of three repetitions, each represented by a thin line. Red arrow marks α-OFF-s-RGC (Tbr1+Opn+); as expected, it shows sustained activation to decreases in light intensity (top bar). Scale, 50 μm. b–m, Responses of α-OFF-s-RGCs in control and Tbr1ret/ret. Scale, 100% ΔF/F. Shaded bounds indicate standard error. (b,f) Sample calcium responses evoked by a 2-s full-field flash (in red) from three cells per genotype. Responses are average of three repetitions. (c,g,k) Averaged responses of all cells to full-field flashes. Black line and shaded bounds represent mean ± s.e.m. (d,h,l) Sample calcium responses evoked by a bar moving in eight different directions. Responses are average of three presentations of the bar stimulus. (e,i,m) Averaged calcium responses to moving bars. Black line and shaded bounds represent mean ± s.e.m. b–e are control α-OFF-s-RGCs identified by Tbr1 and Opn (n=18 cells from 6 retinas). f–i are control α-OFF-s-RGCs identified by Opn and absence of Tbr2 and Brn3c (n=16 cells from 3 retinas). j–m are α-OFF-s-RGCs from Tbr1ret/ret, identified as in f–i (n=13 cells from 6 retinas).

The responsiveness of control and Tbr1 mutant RGCs were similar, suggesting that the defect was specific (Supplementary Fig. 6h,i). These results indicate that Tbr1 is required for the visual responsiveness of RGCs that express it. We speculate that this phenotype is a consequence of dendritic displacement, a possibility supported by the acquisition of ON responses in conjunction with the formation of ON arbor. It is also possible, however, that Tbr1 plays additional roles in responsiveness or synaptogenesis (see Discussion).

Tbr1 is sufficient for laminar specification of dendrites. To ask whether Tbr1 expression is sufficient to direct RGC arbor to the outer portion of the IPL, we ectopically expressed it by electroporation in neonatal retinas, along with a plasmid encoding a fluorescent protein (XFP) to mark transfected cells. This technique transfects multiple retinal cell types, including photoreceptors, interneurons, and RGCs, depending on the site of DNA delivery (see Methods). To transfect RGCs, we delivered DNA intraretinally. Nearly all RGCs transfected with Tbr1+XFP elaborated dendrites within the OFF part of the IPL, whereas dendrites of control RGCs, transfected with XFP only, were equally likely to be found in OFF or ON regions (P=8.0×10−5, Pearson’s χ² test; Fig. 4a–c). Since only 15% of RGCs are endogenously Tbr1+, it seemed likely that forced expression of Tbr1 redirected dendrites of RGCs from other sublaminae to S1. In support of this idea, dendrites of Tbr1-misexpressing RGCs were diverse in arborization patterns and sizes, as well as in levels of Brn3b (Supplementary Fig. 7a). Moreover, we found that dendrites of CART+ ooDSGCs, which normally stratify in S2 and S4, were retargeted to S1 (Fig. 4b). Thus, Tbr1 plays an instructive role in dendritic lamination. We also ectopically expressed Tbr1 in interneurons, using subretinal delivery of DNA. Tbr1-misexpressing interneurons similarly retargeted neurites to the outer IPL (P=1.0×10−10,
Cochran–Armitage test; Fig. 4d–f). The effect was specific, in that transfected somata remained in the inner nuclear layer and neither expressed RGC markers (for example, RBPMS) nor extended axons (Supplementary Fig. 7b,c). Amacrine cells that misexpressed Tbr1 expressed RGC markers (for example, RBPMS) nor extended axons transfected somata remained in the inner nuclear layer and neither expressed RGC markers (for example, RBPMS) nor extended axons.

Tbr1 regulates Cdh8 and Sorcs3 expression in J-RGCs. To identify downstream effectors of Tbr1, we focused on J-RGCs, using five criteria to select promising candidates. First, we profiled J-RGCs by RNAseq at P6, when dendritic restriction is nearing completion, and compared them to profiles from two sets of ooDSGCs. Second, we analyzed microarray data from seven groups of RGCs, including J-RGCs. Third, from genes selectively expressed by J-RGCs in both morphologies but no alterations in lamination. Based on these considerations, we analyzed Sorcs3 and Cdh8 further.

We first validated that Sorcs3 and Cdh8 expression in the retina are Tbr1-dependent by performing reverse-transcription quantitative PCR (RT-qPCR) on total RGCs isolated from P4 control and Tbr1mut/mut mutants: mRNA levels of both Sorcs3 and Cdh8 decreased by ~80% in mutants (Fig. 5b). We also immunostained control and Tbr1 mutant retinas for Sorcs3 and, lacking appropriate antibodies to Cdh8, visualized Escherichia coli beta-galactosidase (LacZ) driven sequencing (ChIP-seq) of embryonic cortex. Alcam, Cdh8, Jam2, Neo1, Smo, and Sorcs3 (Fig. 5a). Of these 6 genes, Cdh8, a classical cadherin, and Sorcs3, a neuronal type I transmembrane receptor, have the most Tbr1-binding sites (Fig. 5a and Supplementary Fig. 8a). Finally, we isolated wild-type and Tbr1 mutant J-RGCs and compared them by RNAseq. Thirteen cell surface molecules were significantly downregulated in Tbr1-mutant J-RGCs (P<0.001, two-tailed Fisher's exact test), including Sorcs3, Jam2, and Cdh8, but not Alcam, Neo1, or Smo (Supplementary Fig. 9a; see also Supplementary Fig. 8b,c). None of the remaining 10 candidates were selectively expressed by J-RGCs (Supplementary Fig. 9c), and analysis of Jam2-null mutants revealed subtle defects in dendritic morphology but no alterations in lamination. Based on these considerations, we analyzed Sorcs3 and Cdh8 further.

We first validated that Sorcs3 and Cdh8 expression in the retina are Tbr1-dependent by performing reverse-transcription quantitative PCR (RT-qPCR) on total RGCs isolated from P4 control and Tbr1mut/mut mutants: mRNA levels of both Sorcs3 and Cdh8 decreased by ~80% in mutants (Fig. 5b). We also immunostained control and Tbr1 mutant retinas for Sorcs3 and, lacking appropriate antibodies to Cdh8, visualized Escherichia coli beta-galactosidase (LacZ) driven sequencing (ChIP-seq) of embryonic cortex.

Alcam, Cdh8, Jam2, Neo1, Smo, and Sorcs3 (Fig. 5a). Of these 6 genes, Cdh8, a classical cadherin, and Sorcs3, a neuronal type I transmembrane receptor, have the most Tbr1-binding sites (Fig. 5a and Supplementary Fig. 8a). Finally, we isolated wild-type and Tbr1 mutant J-RGCs and compared them by RNAseq. Thirteen cell surface molecules were significantly downregulated in Tbr1-mutant J-RGCs (P<0.001, two-tailed Fisher’s exact test), including Sorcs3, Jam2, and Cdh8, but not Alcam, Neo1, or Smo (Supplementary Fig. 9a; see also Supplementary Fig. 8b,c). None of the remaining 10 candidates were selectively expressed by J-RGCs (Supplementary Fig. 9c), and analysis of Jam2-null mutants revealed subtle defects in dendritic morphology but no alterations in lamination. Based on these considerations, we analyzed Sorcs3 and Cdh8 further.
Fig. 5 | Cdh8 and Sorcs3 are Tbr1 targets in J-RGCs.

a, Heatmaps showing expression of J-RGC-enriched cell-surface molecules from RNAseq and microarray data, and number of Tbr1-ChIPseq peaks associated with each gene ($n=2$ litters of pups per RGC type). **b**, Expression of J-RGC candidate genes in P4 RGCs from Tbr1$^{+ve}$ mice relative to controls by RT-qPCR ($n=3$ animals per genotype); bars indicate mean±standard error, circles indicate values from individual animals. **c**, Retinal cross-section showing expression of Sorcs3 and LacZ from the Cdh8LacZ allele by a P5 J-RGC. **d**, Cross-section of control and Tbr1$^{+ve}$ IPL stained for Sorcs3. In controls, immunoreactivity is concentrated in a subset of RGC somata and dendrites in outer IPL. Levels are decreased in Tbr1$^{−ve}$. **e**, En face views of P4 J-RGC soma in Tbr1$^{−ve}$ cells immunostained for Sorcs3 and LacZ. Arrowheads mark J-RGCs that express both markers. **f**, Proportions of P4 J-RGCs that express LacZ or Sorcs3 in Tbr1$^{−ve}$ retinas ($n=3$ retinas per genotype, 65–683 control cells and 152–520 and Tbr1$^{−ve}$ cells; $P=0.00050$ and $P=0.0025$ for LacZ and Sorcs3, respectively, two-tailed Student’s t test). Bars and brackets indicate mean±standard error; circles represent individual retinas. **g**, Proportion of control (Ctrl) or Tbr1-misexpressing (Tbr1 O/E) interneurons that express Sorcs3 ($n=6$ control and 4 Tbr1-misexpressing retinas, 38–603 and 60–230 cells respectively, ***$P<9.9\times10^{-6}$, two-tailed Student’s t test). Bars and brackets indicate mean±standard error; circles represent individual retinas. **h**, Retinal cross-sections showing Sorcs3 expression in control and Tbr1-misexpressing interneurons. Arrowheads mark Sorcs3$^{+ve}$ soma. Each experiment was repeated independently in 6 control and 4 Tbr1-misexpressing animals with similar results. **i**, Whole-mount of P3 Cdh8LacZ retina stained for LacZ, Tbr1, and Brn3b. Circles mark J-RGCs that are triple-positive. Arrowheads mark the other Tbr1-RGC types, which are Brn3b$^{−ve}$ cells. These cells lack LacZ immunoreactivity. **j**, Whole-mount of P5 JAM-B Cre knock-in retina stained for Sorcs3, Tbr1, and Cre. Dotted circles mark the other J-RGCs that are Cre$^{−ve}$. These cells lack Sorcs3. Scale in **c-e, h, 25μm; in j, 50μm. Each experiment in **c-e and **j was repeated independently in three animals with similar results.**
from a Cdh8^{lox/lox} knock-in allele³⁹. Control J-RGCs at P4–P5 expressed both Sorcs3 and Cdh8 (Fig. 5c). However, while we detected Sorcs3 protein in all J-RGCs, we detected LacZ in only about half of them (Fig. 5d–f). In Tbr1^{−/−} J-RGCs, levels of both Sorcs3 and LacZ protein were strongly reduced by P4–P5 (<i>P</i> = 0.0025 and <i>P</i> = 0.00050, respectively), two-tailed Student’s t-test; Fig. 5d–f). In the converse experiment, overexpression of Tbr1 by electroporation resulted in the upregulation of Sorcs3 protein in ~30% of Tbr1-misexpressing cells (<i>P</i> < 9.9 × 10^{−6}, two-tailed Student’s t-test; Fig. 5g,h). Together, these results confirm that Sorcs3 and Cdh8 expression in J-RGCs were regulated by Tbr1.

During the first postnatal week, neither Cdh8 nor Sorcs3 was detectably expressed by Tbr1-RGCs other than J-RGCs (Fig. 5i,j and Supplementary Fig. 8g). During the second postnatal week, however, their expression patterns diverged. Cdh8 expression declined in RGCs (Supplementary Fig. 8d) but was upregulated in OFF cone bipolar cells, as described previously³⁴. Sorcs3, in contrast, was upregulated in rod bipolar cells and other RGCs (Supplementary Fig. 8e,f). Notably, Sorcs3 was concentrated within the dendrites of both RGCs and rod bipolar cells (Fig. 5d and Supplementary Fig. 8e).

Cdh8 and Sorcs3 pattern J-RGC dendrites

We used loss- and gain-of-function strategies to ask whether Cdh8 and/or Sorcs3 affect dendritic targeting of J-RGCs. To delete Cdh8, we used the Cdh8^{lox/lox} line, which carries a null allele. Twelve percent of J-RGCs in Cdh8^{lox/lox} retinas displayed ectopic ON dendrites that resembled those in Tbr1 mutant J-RGCs, while <1% of wild-type J-RGCs and <2% of Cdh8^{lox/lox} RGCs had ectopic dendrites (<i>P</i> = 1.4 × 10^{−7} for wild-type vs. Cdh8^{lox/lox} RGCs and <i>P</i> = 0.38 for wild-type vs. Cdh8^{lox/lox}-^{αfadin} RGCs, Tukey–Kramer test; Fig. 6a,b,f). Given that Cdh8 was lost from all cells, we determined, in two ways, whether the ectopic dendrites were due to the specific loss from J-RGCs or whether their expression patterns diverged. Cdh8 expression declined in RGCs (Supplementary Fig. 8d) but was upregulated in OFF cone bipolar cells, as described previously³⁴. Sorcs3, in contrast, was upregulated in rod bipolar cells and other RGCs (Supplementary Fig. 8e,f). Notably, Sorcs3 was concentrated within the dendrites of both RGCs and rod bipolar cells (Fig. 5d and Supplementary Fig. 8e).

Fig. 6 | Requirement of Cdh8 and Sorcs3 for laminar restriction in J-RGCs. a–c, Traces of J-RGC dendrites in (a) wild-type (WT), (b) Cdh8^{lox/lox} and (c) afadin conditional knock-out (cKO) retinas. Arrows in ON (magenta) and OFF (green) halves of the IPL are shown separately. Insets show rotated views. d,e, En face and rotated views of single-cell traces of a P12 J-RGC, infected at P0 with a Ttd control AAV (d) or AAV expressing a short hairpin RNA against Sorcs3 (shSorcs3) (e). Scale bars, 30 μm for en face view; 20 μm for rotated view. f, Proportion of J-RGCs with ectopic dendrites in retinas infected with AAV encoding Ttd (Ctrl) or shSorcs3 (AAV encoding T tdT) or AAV expressing a short hairpin RNA against Sorcs3 (shSorcs3) (AAV encoding T tdT). g, Proportion of J-RGCs with ectopic dendrites in retinas infected with AAV encoding Ttd (Ctrl) or shSorcs3 (n = 3, 5, and 3 retinas, respectively) and Sorcs3 knockdown. Percent of J-RGCs with ectopic dendrites. h, Proportion of J-RGCs with ectopic dendrites in retinas infected with AAV encoding Ttd (Ctrl) or shSorcs3 (n = 3, 5, and 3 retinas, respectively) and Sorcs3 knockdown. Percent of J-RGCs with ectopic dendrites.
Lacking a germline Sorcs3 mutant, we attenuated Sorcs3 expression using RNA interference, injecting intravitreally an adeno-associated virus (AAV) encoding a short hairpin RNA directed against Sorcs3 at P0 (Supplementary Fig. 10c–e). Dendrites of J-RGCs infected with a control AAV laminated appropriately (Fig. 6d,g), but ~30% of J-RGCs developed ectopic dendrites upon Sorcs3 knockdown, phenocopying the loss of Tbr1 (P = 0.0048, Tukey–Kramer test; Fig. 6g). Knocking down Sorcs3 was not significantly more effective in Cdh8LacZ/LacZ mice than in controls (P = 0.25, Tukey–Kramer test; Fig. 6g).

For gain-of-function analyses, we misexpressed Cdh8 or Sorcs3 in J-RGCs by neonatal electroporation. Control RGCs showed a similar preference for either the ON or OFF half of the IPL, as shown in the average of dendritic distributions from all electroporated RGCs (Fig. 7a,d), and they projected equally to ON and OFF sublamina (Fig. 7g). In contrast, Cdh8-misexpressing RGCs were on average biased to the OFF sublamina (Fig. 7b,e). Approximately 60% and 35% of Cdh8-misexpressing RGCs developed exclusively OFF dendrites or ON–OFF dendrites, respectively (P = 0.0028, Pearson’s χ² test; Fig. 7h). Sorcs3-misexpressing RGCs showed an even stronger bias for the OFF sublamina (Fig. 7c,f). Of RGCs that overexpressed Sorcs3, 75% and 22% extended OFF and ON–OFF dendrites, respectively (P = 4.5 × 10⁻⁵, Pearson’s χ² test; Fig. 7i). Affected RGCs included immunohistochemically labeled ooDSGCs (Fig. 7c).

Therefore, both Cdh8 and Sorcs3 biased laminar targeting to the OFF half of the IPL.

Finally, we asked whether restoration of Cdh8 or Sorcs3 in Tbr1 mutant J-RGCs would rescue laminar defects of their dendrites. We generated AAV vectors for this experiment because insufficient numbers of RGCs were transfected by electroporation. AAVs expressing Sorcs3, a Cdh8–RFP fusion, or RFP alone were injected intravitreally into Tbr1J/J (Fig. 8a,d). In contrast, significantly fewer J-RGCs infected with Sorcs3- or Cdh8-overexpressing AAVs bore ectopic dendrites (11% for Sorcs3, 23% for Cdh8; P<0.0001 for control vs. Sorcs3 or Cdh8, Tukey–Kramer test; Fig. 8b–d). Co-delivery of both Sorcs3 and Cdh8 almost completely rescued the Tbr1 phenotype (3%; P < 0.0001 for control vs. Sorcs3+Cdh8, Tukey–Kramer test; Fig. 8d). Together, these data indicate that Cdh8 and Sorcs3 act downstream of Tbr1 to implement laminar identity of J-RGC dendrites.

J-RGCs (P = 0.11 for Cdh8LacZ/LacZ vs. afadin conditional knock-out, Tukey–Kramer test; Fig. 6e,f). This result also suggests that the limited penetrance of the Cdh8 mutant is not a result of redundancy with or compensation by other cadherins.

Fig. 7| Ectopic expression of Cdh8 or Sorcs3 retargets RGC dendrites to the outer IPL. a–c, Retinal cross-section showing RGCs electroporated with control XFP (a), XFP+Cdh8 (b) or XFP+Sorcs3 (c). Arrowheads mark electroporated ooDSGCs, identified by their CART immunoreactivity. Scale, 25 μm. d–f, Distribution of fluorescence intensities from dendrites of (d) control RGCs (gray; replotted from Fig. 4c), (e) Cdh8-overexpressing RGCs (orange) or (f) Sorcs3-overexpressing RGCs (blue). Line plots and brackets indicate average and standard error. Similar results were observed in retinas from 6 control, 4 Cdh8-misexpressing and 5 Sorcs3-misexpressing retinas, each processed independently. g–i, Proportions of electroporated cells that extended OFF, ON–OFF or ON arbors in each condition (n = 39, 32, and 35 RGCs from 6 control, 4 Cdh8-misexpressing, and 5 Sorcs3-misexpressing retinas).
Discussion

The ability of different RGC types to respond selectively to certain visual features is a consequence of their synaptic inputs, key determinants of which are the IPL sublaminae in which their dendrites arborize. We demonstrate that a single transcriptional regulator can implement a common feature of dendritic laminar patterning by different RGC types. Tbr1 is expressed by four OFF-laminating RGC types, and it is both necessary and sufficient for laminar targeting of their dendrites within the IPL. We also identify two cell-surface molecules, Cdh8 and Sorcs3, as downstream effectors of Tbr1 in just one of the four types. Therefore, Tbr1 may instruct both a common laminar identity and subtle differences within that identity, in part by recruiting non-overlapping sets of effectors depending on cell type.

Tbr1 in neural development. Tbr1 belongs to a family of 17 related transcription factors (in mice) that share a conserved T-box DNA binding domain. It is expressed in various neuronal populations in the vertebrate brain, including cerebral cortex and olfactory bulb, where it has been implicated in neuronal differentiation. Tbr1 had not been studied in retina previously, to our knowledge, but much is known about its roles and expression in cortex. Our results document both similarities and differences between the two structures. Tbr1 is expressed exclusively by layer 6 pyramidal cells in cortex and RGCs in retina. Expression in both populations is initiated early but postmitotically, consistent with roles in neuronal development.

In cortical neurons, loss of Tbr1 disrupts migration, differentiation, and axonal targeting, and may result in a partial fate switch in which layer 6 pyramidal neurons assume layer 5 identity. In contrast, Tbr1 has a notably selective effect on dendritic laminar identity in the retina, with no detectable role in fate determination, overall differentiation, or axonal projection.

Tbr2, the closest relative of Tbr1, is also expressed in both brain and retina. In cortex, expression of the two factors is sequential, with Tbr2 expressed in cortical progenitors and Tbr1 in layer 6 projection neurons. In the retina, expression of both Tbr1 and Tbr2...
Persist into adulthood and, at least by late gestation (E17.5), is limited to non-overlapping groups of cells. Tbr2 is expressed by intrinsically photosensitive RGCs, which are distinct from Tbr1-RGCs, and is essential for their differentiation and/or survival. Thus, despite their high homology, Tbr1 and Tbr2 appear to regulate distinct genes and processes depending on the brain region.

Laminar targeting by Cdh8 and Sorcs3. Using RNAseq, microarray, and ChIP-seq analyses, we chose Cdh8 and Sorcs3 as candidate mediators of Tbr1 effects in J-RGCs and confirmed that their expression is Tbr1-dependent. We do not know whether Tbr1 acts directly on these genes, but loss- and gain-of-function studies provided evidence that both act downstream of Tbr1.

Cdh8 is a member of the cadherin superfamily of adhesion molecules. Several type II cadherins have been implicated in shaping dendritic arbors of oodSGCs and the axonal arbors of bipolar cells that innervate them (Duan et al., submitted). Its role in J-RGCs was therefore not unexpected, but our demonstration that it acts downstream of Tbr1 provides the first clue as to how cadherin expression in the retina is regulated. Cdh8 is expressed transiently in J-RGCs, dissipating after P6, at which time dendritic restriction is complete (Supplementary Fig. 5a). Cdh8 is also expressed by type-2 bipolar cells, which arborize in S1, but it appears in these cells only after J-RGCs dendrites have become restricted. A homophilic interaction between arbors of these two cell types is therefore unlikely to explain the phenotype we observed. Instead, Cdh8 on J-RGCs is likely to interact with a heterophilic partner; one attractive possibility is Cdh11, to which it is known to bind.

Sorcs3 is a type I transmembrane protein that belongs to a family of vacuolar protein sorting 10 domain-containing receptors. Like other family members, Sorcs3 is expressed by a variety of neuronal populations. Although other family members have been implicated in intracellular trafficking, much of the Sorcs3 protein is present on the cell surface. Critically, Sorcs3 protein appears to be preferentially localized to neuronal dendrites. In hippocampus, Sorcs3 is present at dendritic spines, where it participates in the modulation of glutamate receptor function. Similarly, it is concentrated in dendrites of J-RGCs. The identity of the ligand for Sorcs3 on J-RGC dendrites is unknown, but it binds nerve growth factor, raising the possibility that it engages neurotrophin signaling in retina.

It is likely that other transcriptional regulators act in parallel with Tbr1 and that other cell surface molecules act in parallel with Cdh8 and Sorcs3 to sculpt J-RGC dendrites. Indeed, the limited penetrance of the Tbr1, Cdh8, and Sorcs3 loss-of-function phenotypes supports this idea, although it is also possible that J-RGCs scored as 'normal' by our stringent criteria may have harbored subtle defects.

Regulators of dendrite targeting. Tbr1 expression is shared by four RGC types with dendrites that arborize in the outer third of the retina. Our loss- and gain-of-function methods confirm its role in laminar patterning of dendrites in at least two of these types and possibly in all four (Fig. 8e). It is possible that other cell types with a common laminating pattern may also express common transcription factors that specify their patterns. Indeed, several, including Tbr2, Satb1, and FoxP1, are expressed in multiple cell types that project to one or two common sublaminae in the IPL.

The approaches we have taken here suggest that lamination programs may converge upon single regulators like Tbr1 but diverge at the level of cell types. We identified Cdh8 and Sorcs3 as downstream targets of Tbr1, yet of the four Tbr1-RGC types, only J-RGCs express these genes at detectable levels during laminar patterning of dendrites. Since Tbr1 confers laminar identity on at least one other Tbr1-RGC type, the α-OFF-s-RGCs, Tbr1 must act through other effectors in those cells. By analogy to a scheme proposed to explain neuronal diversification and differentiation in *Caenorhabditis elegans*, factors that define overall identity of a RGC type may cooperate with Tbr1 to regulate unique sets of cell-surface molecules in each Tbr1-RGC type (Fig. 8e).

The engagement of at least partially non-overlapping sets of effectors in the Tbr1 types provides an explanation for the observation that precise dendritic lamination patterns within the outer third of the IPL differ across the four types, as though they interact with different cues (Fig. 8f). Alternatively or in addition, Tbr1-regulated cell-surface effectors may participate in the distinct synaptic choices each Tbr1-RGC type makes. The loss of visual responses from Tbr1 mutant α-OFF-s-RGCs is consistent with this idea.

Finally, Cdh8 and Sorcs3 are also Tbr1 targets in the cortex, and all three genes have been implicated as risk factors in behavioral disorders such as autism. This conserved pathway is consistent with the speculation that dendritic defects contribute to the pathogenesis of diseases that result from neuronal miswiring.

Methods. Methods, including statements of data availability and any associated accession codes and references, are available at https://doi.org/10.1038/s41593-018-0127-z.

Received: 5 January 2018; Accepted: 20 February 2018; Published online: 9 April 2018

References.

1. Sanes, J. R. & Yamagata, M. Formation of lamina-specific synaptic connections. *Curr. Opin. Neurobiol.* 9, 79–87 (1999).

2. Baier, H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. *Annu. Rev. Cell Dev. Biol.* 29, 385–416 (2013).

3. Sanes, J. R. & Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. *Annu. Rev. Neurosci.* 38, 221–246 (2015).

4. Famiglietti, E. V. Jr. & Kolb, H. Structural basis for ON- and OFF-center responses in retinal ganglion cells. *Science* 194, 193–195 (1976).

5. Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. *Nature* 410, 583–587 (2001).

6. Krishnaswamy, A., Yamagata, M., Duan, X., Hong, Y. K. & Sanes, J. R. Sidekick 2 directs formation of a retinal circuit that detects differential motion. *Nature* 524, 466–470 (2015).

7. Yamagata, M. & Sanes, J. R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. *Nature* 451, 465–469 (2008).

8. Yamagata, M. & Sanes, J. R. Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. *J. Neurosci.* 32, 14402–14414 (2012).

9. Peng, Y. R. et al. Satb1 regulates Contactin 5 to pattern dendrites of a mammalian retinal ganglion cell. *Neuron* 95, 869–883 (2017). e6.

10. Duan, X., Krishnaswamy, A., De la Huerta, I. & Sanes, J. R. Type II cadherins guide assembly of a direction-selective retinal circuit. *Cell* 158, 793–807 (2014).

11. Matsuoka, R. L. et al. Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. *Nature* 470, 259–263 (2011).

12. Sun, L. O. et al. On and off retinal circuit assembly by divergent molecular mechanisms. *Science* 342, 1241974 (2013).

13. Kim, I. J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J. R. Molecular identification of a retinal cell type that responds to upward motion. *Nature* 452, 478–482 (2008).

14. Roussu, D. L. et al. Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. *Cell Rep.* 15, 1930–1944 (2016).

15. Sweeney, N. T., James, K. N., Nistorica, A., Longi-Roach, R. M. & Feldheim, D. A. Expression of transcription factors divides retinal ganglion cells into distinct classes. *J. Comp. Neurol.* 520, 633–655 (2017).

16. Mao, C. A. et al. T-box transcription regulator Tbr2 is essential for the formation and maintenance of Opn4/melanopsin-expressing intrinsically photosensitive retinal ganglion cells. *J. Neurosci.* 34, 13083–13095 (2014).

17. Sweeney, N. T., Tierney, H. & Feldheim, D. A. Tbr2 is required to generate a direction-selective retinal circuit. *Neuron* 95, 633–655 (2017).

18. Kay, J. N., Chu, M. W. & Sanes, J. R. MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. *Nature* 483, 465–469 (2012).

19. Rockhill, R. L., Euler, T. & Masland, R. H. Spatial order within but not between types of retinal neurons. *Proc. Natl Acad. Sci. USA* 97, 2303–2307 (2000).
39. McKenna, W. L. et al. Tbr1 and Fezf2 regulate alternate corticofugal
38. Han, W. et al. TBR1 directly represses Fezf2 to control the laminar origin and
37. Hevner, R. F. et al. Tbr1 regulates differentiation of the preplate and layer 6.
36. Mihalas, A. B. & Hevner, R. F. Control of neuronal development by T-box
34. Takai, Y., Ikeda, W., Ogita, H. & Rikitake, Y. The immunoglobulin-like cell
33. Willnow, T. E., Petersen, C. M. & Nykjaer, A. VPS10P-domain receptors -
32. Notwell, J. H. et al. TBR1 regulates autism risk genes in the developing
31. Kay, J. N. et al. Retinal ganglion cells with distinct directional preferences
differ in molecular identity, structure, and central projections. J. Neurosci. 31,
2773–7762 (2011).
30. Hong, Y. K., Kim, I. J. & Sanes, J. R. Stereotyped axial arbors of retinal
ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519,
1691–1711 (2011).
29. Kay, J. N. et al. Retinal ganglion cells with distinct directional preferences
differ in molecular identity, structure, and central projections. J. Neurosci. 31,
2773–7762 (2011).
28. Liu, J. & Sanes, J. R. Cellular and molecular analysis of dendritic
morphogenesis in a retinal cell type that senses color contrast and ventral
motion. J. Neurosci. 37, 12247–12262 (2017).
27. Bassett, E. A. & Wallace, V. A. Cell fate determination in the vertebrate
retina. Trends Neurosci. 35, 565–573 (2012).
26. Bleckert, A., Schwartz, G. W., Turner, M. H., Rieke, F. & Wong, R. O. Visual
space is represented by nonmatching topographies of distinct mouse retinal
ganglion cell types. Curr. Biol. 24, 310–315 (2014).
25. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing
multiple spectral variants of GFP. Neuron 28, 41–51 (2000).
24. Pang, J. J., Gao, F. & Wu, S. M. Light-evoked excitatory and inhibitory
synaptic inputs to ON and OFF alpha ganglion cells in the mouse retina.
J. Neurosci. 23, 6063–6073 (2003).
23. Kim, I. J., Zhang, Y., Meister, M. & Sanes, J. R. Laminar restriction of retinal
ganglion cell dendrites and axons: subtype-specific developmental patterns
revealed with transgenic markers. J. Neurosci. 30, 1452–1462 (2010).
22. Hevner, R. F. et al. Tbr1 regulates differentiation of the preplate and layer 6.
J. Neurosci. 30, 473–484 (2010).
21. Trenholm, S., Johnson, K., Li, X., Smith, R. G. & Awatramani, G. B.
Differential expression of beta-1 integrin subunits regulates GABAergic
signatures. J. Neurosci. 6, 247–251 (2005).
20. Rodenick, R. W. The density recovery profile: a method for the analysis of
points in the plane applicable to retinal studies. Vis. Neurosci. 6, 95–111 (1991).
19. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial
glia, intermediate progenitor cells, and postmitotic neurons in developing
neocortex. J. Neurosci. 25, 247–251 (2005).
18. Hobert, O. Terminal selectors of neuronal identity. Nat. Neurosci. 17, 240–247 (2014).
17. Huang, T. N. et al. Tbr1 haploinsufficiency impairs amygdalar axonal
projections and results in cognitive abnormality. Nat. Neurosci. 17, 240–247 (2014).
16. Oetjen, S., Malhike, C., Hermans-Borgmeyer, I. & Hermey, G. Spatiotemporal
expression analysis of the growth factor receptor SorCS3. J. Comp. Neurol.
522, 3386–3402 (2014).
15. Shimoyama, Y., Tsujimoto, G., Kitajima, M. & Natori, M. Identification of
three human type-II classic cadherins and frequent heterophilic interactions
between different subclasses of type-II classic cadherins. Biochem. J. 349,
159–167 (2000).
14. Hermey, G. et al. The three sorCS genes are differentially expressed and
regulated by synaptic activity. J. Neurochem. 88, 1470–1476 (2004).
13. Breiderhoff, T. et al. Sortilin-related receptor SorCS3 is a postsynaptic modulator
of synaptic depression and fear extinction. PLoS One 8, e75006 (2013).
12. Christiansen, G. B. et al. The sorting receptor SorCS3 is a stronger regulator
of glutamate receptor functions compared to GABAergic mechanisms in the
hippocampus. Hippocampus 27, 235–248 (2017).
11. Hobert, O. Terminal selectors of neuronal identity. Curr. Top. Dev. Biol. 116,
455–475 (2016).
10. Huang, T. N. & Hsueh, Y. P. Brain-specific transcriptional regulator T-brain-1
tools brain wiring and neuronal activity in autism spectrum disorders.
88, 59–70 (2013).
9. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted
in autism. Nature 515, 209–215 (2014).
8. Christiansen, G. B. et al. The sorting receptor SorCS3 is a stronger regulator
of glutamate receptor functions compared to GABAergic mechanisms in the
hippocampus. Hippocampus 27, 235–248 (2017).
7. Hobert, O. Terminal selectors of neuronal identity. Curr. Top. Dev. Biol. 116,
455–475 (2016).
6. Shi, X. et al. The sortilin-related receptor SorCS3 is a postsynaptic modulator
of synaptic depression and fear extinction. PLoS One 8, e75006 (2013).
5. Christiansen, G. B. et al. The sorting receptor SorCS3 is a stronger regulator
of glutamate receptor functions compared to GABAergic mechanisms in the
hippocampus. Hippocampus 27, 235–248 (2017).
4. Breiderhoff, T. et al. Sortilin-related receptor SorCS3 is a postsynaptic modulator
of synaptic depression and fear extinction. PLoS One 8, e75006 (2013).
3. Christiansen, G. B. et al. The sorting receptor SorCS3 is a stronger regulator
of glutamate receptor functions compared to GABAergic mechanisms in the
hippocampus. Hippocampus 27, 235–248 (2017).
2. Christiansen, G. B. et al. The sorting receptor SorCS3 is a stronger regulator
of glutamate receptor functions compared to GABAergic mechanisms in the
hippocampus. Hippocampus 27, 235–248 (2017).
1. Christiansen, G. B. et al. The sorting receptor SorCS3 is a stronger regulator
of glutamate receptor functions compared to GABAergic mechanisms in the
hippocampus. Hippocampus 27, 235–248 (2017).

Acknowledgements
We thank Z. He and C. Wang at Boston Children’s Hospital Viral Core for their generous
support (5P30EY012196). This work was supported by NIH grants NS29169 and
T102073 to J.R.S., NS4661 to J.L.S., and MH094549 to B.C. J.L. was funded by an
Agency for Science, Technology and Research (A*STAR) fellowship from Singapore.

Author contributions
J.L. and J.R.S. conceived the study, planned experiments, analyzed data, and wrote the
paper. J.L. performed all experiments unless otherwise stated. J.D.S.R. performed and
analyzed calcium imaging experiments. M.A.L. performed experiments on afadin, Cdh8,
and axonal projections. S.P. generated cDNA libraries for Tbr1 wild type and mutant
J-RGCs. J.L.S.R. and B.C. generated conditional Tbr1 mutant mice.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-018-0127-z.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to J.R.S.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
Articles
Nature Neuroscience

Histology. were used in accordance with NIH guidelines and protocols were approved by the Animals below P10 were killed by cervical dislocation. Animals of either sex were fixed in fresh cold 4% PFA for 75 min and 0.1% Triton X-100 used for all blocking in Fluoromount. For whole mounts, retinas were dissected free of sclera, blocked with 30% sucrose in PBS for at least 2 h, frozen, and cryosectioned (1:500, Abcam ab31), goat anti-Alcam (1:1,000, R&D Systems AF117259), goat anti-CART (1:2,000, Phoenix Pharmaceuticals Klein (M.D. Anderson Cancer Center)56. Cdh8LacZ were provided by M. Takeichi Tbr1loxP Tbr1Frt Jam2loxP encoding a ligand-activated Cre recombinase, thereby placing the expression of CreER under the control of regulatory elements of Jam2. Thy1-STOP-YFP expresses YFP in many neurons, including all RGCs, following Cre-mediated excision of sequences that terminate transcription and translation. Thus, in Jam-2Cre, Thy1-STOP-YFP, double transgenics, the administration of tamoxifen results in labeling of J-RGCs. We used homologous recombination to generate a Jam-B Cre knock-in mouse, in which the first exon of the endogenous Jam-2 gene has been replaced with the gene encoding Cre recombinase. Thy1-YFP-H mice label a sparse, nearly random subset of RGCs. In Thy1, Thy1 regulatory elements drive the expression of loxP-flanked YFP. Cre deletes the YFP. The Cd4Cre ER knock-in line was generated by targeted insertion of a frio-neo-frt cassette, a 6 × myc-tagged CreER-T2 and polyadenylation signal at the translational start site of the Cd4 coding sequence. A Vglut2-ires-Cre knock-in line was obtained from International Mouse Strain Resource (1:1000, Rockland Immunochemicals anti-GAD-67, Cell Signaling). Green fluorescent protein (GFP)-flanked GcaM969 and Hb9-GFP, which label oodSGCs that prefer ventral motion, were obtained from the Jackson Laboratory. Dopamine receptor D4-GFP (DRD4-GFP) mice, which label oodSGCs that prefer nasal motion, were obtained from MMRRC-UNC. Six3-c transgenic mice were provided by W. Klein (M.D. Anderson Cancer Center). Cdfl mice were used by M. Takechi (Riken, CDB, Kobe, Japan). A conditional afadin mutant (afadin cKO) was obtained from L. Reichardt. Tmxosixin (150 µg, Sigma) was injected subcutaneously into P0–P1 pups or intraperitoneally into P6–P8 pups and E14.5 pregnant females. Animals were killed by intraperitoneal injections of sodium pentobarbital followed by cervical dislocation. Animals below P10 were killed by cervical dislocation. Animals of either sex were analyzed. All mice were maintained on a C57BL/6 and CD1 mixed background. The methods used are similar to those reported in previous publications. Data distribution was categorized into discrete classes and the order of the classes was arbitrary. Average ± standard error unless otherwise stated. No significant changes were observed between groups, and all statistical analyses were performed with a two-tailed Student’s t-test, unless otherwise specified. For experiments involving animals of the same genotype (for example, different electroporation constructs or AAV injections). For experiments involving animals of the same treatment, no significant differences were observed between groups. Statistical analyses were performed using R (version 4.0.2) with the appropriate R packages. For this analysis, the data were divided into groups based on genotype or treatment (for example, different electroporation constructs or AAV injections). For this analysis, the data were divided into groups based on genotype or treatment.
characterization of calcium responses as detailed below. No other data or animals were excluded from analysis.

Reverse-transcription quantitative PCR (RT-qPCR). RGCs were isolated from P4 control and Tbr1^{69,70} retinas by live-staining with microbeads conjugated to monoclonal anti-mouse CD90.2, followed by magnetic column purification (MACS Miltenyi Biotec). RNA was extracted using DirectZol RNA extraction kit (Zymo Research) and assessed on a Bioanalyzer. First-strand cDNA synthesis was performed on equal amounts of RNA using SuperScript III reagents (Invitrogen). qPCR was performed using a KAPA Sybr FAST qPCR kit Master Mix (Kapa Biosystems) on ABI 7900. cDNA levels across samples were normalized using primers against Hprt. Fold-change expression relative to controls was calculated by the ΔΔCt method. Primers used were as follows: Cdh8, 5′-AACAGATTTGACGTTTATGCA-3′ and 5′-TTGAGTTGAGACGCTGCTG-3′; Hprt, 5′-TTGCCCATATCCACACGGTC-3′ and 5′-CAAGGGGATCATACAAAACAC-3′; Sorcs3, 5′-CTCTGGTGTATCTGGC-3′ and 5′-CAATGCTCTCTTATGACCCG-3′; Tbr1, 5′-CAAGGGGAGATCATACAAAACAC-3′ and 5′-GTCTCTGTGCCATCTCATC-3′.

Intravitreal injections. The AAV construct encoding a shRNA against Sorcs3 was generated by replacing the shPTEN sequence in pAAV-U6-shPTEN-CMV-mCherry⁶⁶ with shSorcs3. The efficiency of shSorcs3 was tested in vitro on HEK293T cells that were transfected with a Sorcs3-expression plasmid. AAV9-cag-Td-tomato was used as a control. Intravitreal injection was carried out for 2 weeks postinjection or, in the case of Sorcs3, by P12. Animals were killed for analysis and retinas collected at least 2 weeks postinjection or, in the case of Sorcs3, by P12.

For the generation of Sorcs3- and Cdh8-expressing AAVs, an AAV backbone was optimized with an expression cassette containing, a truncated WPRE and SV40 late polyadenylation signal⁶⁷, was used to accommodate the large sizes of these cDNAs. The GFP sequence in pAAV-CWSL-EGFP (Addgene plasmid 16643) was first replaced with a sequence of Sorcs3-Bagged Cdh8⁶⁸. The CaMKIIα promoter was replaced with a synuclein promoter. AAVs were delivered intravitreally at P0 and retinas collected 10 d later for whole-mount processing. AAVs to alter Cdh8 or Sorcs3 levels were generated by Boston Children’s Hospital viral core. AAV9-SynGaMP6F-WPRE-SV40 was purchased from the Penn Vector Core. We delivered ~0.1–1 µL of each AAV to each retina intravitreally. For adults, ophthalmic ointment was applied to the eye postinjection.

For visualizing axonal projections, 1 µL of fluorescently tagged recombinant cholera toxin subunit B (CTb) was injected into each eye using a 30.5-gauge Hamilton syringe. The contralateral superior colliculus and un.injected retina were collected 2 d after injection and processed for histology, as described above.

Calcium imaging. Mice were dark-adapted overnight before being killed for analysis. The retina was rapidly dissected under infrared illumination into oxygenated (95% O2; 5% CO2) Ames solution (Sigma). Three relaxing cuts were made and the retina was then placed in a recording chamber, ganglion cells facing up on the stage of a custom-built two-photon microscope⁶⁹. We added ~5–10 µL of 0.2 mg/mL sulforhodamine 101 (Sigma) to the recording chamber to label blood vessels, and the retina was left to rest for 5–10 min. GCaMP-expressing neurons were imaged under two photon illumination (wavelength 960 nm) and stimulated with movie stimuli. Visual stimuli were written in Matlab and displayed on the projector for the Brainbow toolbox. Movies generated from our calcium imaging field. Quality index and z-score were calculated as described previously⁷⁰. The quality index provides a measure of consistency across trials. It is calculated as the variance of the mean response for all trials (generally 3), divided by the mean of the trials over trials. Thus, the index spans from 0, if all trials are completely random with respect to each other (but have the same variance), to 1 if all responses are identical. Nonresponsive cells tend to have low quality indices, because they are dominated by noise. The z-score of responses to stimuli, a more direct measure of responsiveness, was calculated with respect to the mean and s.d. of signals recorded during steady-state stimulation that preceded the stimulus (6 s for full field flashes and 6 s for moving bars). For initial characterization (Supplementary Fig. 6a–d), we counted only cells with quality index >0.45 and a z-score that was >1.0 for at least two consecutive timepoints. For the analysis of α-Off-s-RGCs in control versus Tbr1^{69,70}, these selection criteria were omitted and all immunohistochemically identified cells were analyzed, so that we could detect changes in responsiveness in Tbr1 mutants.

Accession codes. GEO: J-RGC RNAseq data, GSE108789. Published gene sets used in this study are available at GEO accession codes GSE50577⁴⁹; GSE71384⁵⁰; GSE90673⁵¹.

Reporting Summary. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The data that support the findings of this study are available from the corresponding author upon reasonable request. No custom code was used in this study.

References

50. Rodriguez, C. J. et al. High-efficiency deleter mice show that FLPe is an excellent system for Cre-loxP. Nat. Genet. 25, 139–140 (2000).
51. Burrell, M. et al. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 424, 430–434 (2003).
52. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).
53. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).
54. Wichterle, H., Lieberman, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).
55. Huberman, A. D. et al. Genetic identification of an On-Off-direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327–334 (2009).
56. Furuta, Y., Lagutin, O., Hogan, B. L. & Oliver, G. C. Retina- and ventral forebrain-specific Cre recombine activity in transgenic mice. Genesis 26, 130–132 (2000).
57. Suzuki, S. C. et al. Cadherin-9 is required for the first relay synapses to receive functional inputs from primary sensory afferents for cold sensation. J. Neurosci. 27, 3466–3476 (2007).
58. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).
59. Guthusi, M. et al. ALCAM mediates T-cell recruitment and immune-cell interaction in the superior colliculus. J. Neurosci. 29, 15630–15641 (2014).
60. Matsuda, T. & Cepko, C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl Acad. Sci. USA 104, 1027–1032 (2007).
61. Dhande, O. S. & Cairr, M. C. Transfection of mouse retinal ganglion cells by in vivo electroporation. J. Vis. Exp. 50, 2678 (2011).
62. Trappnell, C. et al. Differenctial gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
63. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
64. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
65. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
66. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).
67. Adachi, H. et al. Stage-specific reference genes significant for quantitative PCR during mouse retinal development. Genes Cells 20, 625–635 (2015).
68. Duan, X. et al. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Pflugers Arch. 467, 142–154 (2011).
69. Choi, J. H. et al. Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Mol. Brain 7, 17 (2014).
70. Euler, T. et al. Eyecup scope—optical recordings of light-stimulus-evoked fluorescence signals in the retina. Pflugers Arch. 457, 1393–1414 (2009).
71. Baden, T. et al. The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350 (2016).
Life Sciences Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list items might not apply to an individual manuscript, but all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a. Refer to the help text for what text to use if an item is not relevant to your study. For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

1. Sample size
 Describe how sample size was determined.
 No statistical methods were used to pre-determine sample sizes but out sample sizes are similar to those reported in previous publications (Krishaswamy et al. 2015, Duan et al. 2014, Liu and Sanes 2017). At least 3 animals were analyzed per condition per genotype in each experiment and multiple independent measurements (cells) were taken from each animal. Exact numbers of animals and cells are provided in text and/or figure legends.

2. Data exclusions
 Describe any data exclusions.
 Exclusion criteria were pre-established for initial characterization of calcium responses in control animals (Supplementary Figure 6a-d) to eliminate noise due to technique. We counted only cells with quality index >0.45 and a z-score that was >1.0 for at least two consecutive time-points. For physiological comparisons across genotypes, all data were included. No other data were excluded.

3. Replication
 Describe the measures taken to verify the reproducibility of the experimental findings.
 All data was replicable, with the number of replicates (cells and animals) provided in text and/or figure legends.

4. Randomization
 Describe how samples/organisms/participants were allocated into experimental groups.
 Samples were allocated by genotype.

5. Blinding
 Describe whether the investigators were blinded to group allocation during data collection and/or analysis.
 No blinding was performed since phenotypes were assessed by definitive criteria that were applied consistently across all animals and cells.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the Methods section if additional space is needed).

n/a	Confirmed

- The exact sample size \((n)\) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)
- A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- A statement indicating how many times each experiment was replicated
- The statistical test(s) used and whether they are one- or two-sided

 Only common tests should be described solely by name; describe more complex techniques in the Methods section.

- A description of any assumptions or corrections, such as an adjustment for multiple comparisons
- Test values indicating whether an effect is present

 Provide confidence intervals or give results of significance tests (e.g. \(P\) values) as exact values whenever appropriate and with effect sizes noted.

- A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)
- Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

7. Software

Describe the software used to analyze the data in this study.

Generic functions on commercial or freely available software were used. They are as follows: ImageJ 1.49u, winDRP v1.6.4, Matlab R2015b, Imaris x64 7.4.0, Igor Pro 6.12A, R 3.1.3, Graphpad Prism 7.03.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for providing algorithms and software for publication provides further information on this topic.

8. Materials availability

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a third party.

All unique materials are readily available from the authors or from standard commercial sources as stated in Methods.

9. Antibodies

Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

All antibodies, supplier name, catalog number, working dilutions are reported in Methods. Antibodies used were as follows: chicken anti-GFP (1:1000, Abcam ab13970), rabbit anti-Tbr1 (1:1000, Abcam ab31940, McKenna et al. 2011), rabbit anti-Tbr2 (1:500, Abcam ab23345), goat FoxP2 (1:1000, Abcam), guinea pig FoxP1 (1:500, Ben Novitch), goat Satb1 (1:1000, Santa Cruz Biotechnology sc-5989X), goat Pcsk2 (1:1000, R&D Systems AF6018, Supplementary Figure 4e) rabbit anti-mCherry (1:5000, Cai et al. 2012), mouse anti-Cre (1:500, Millipore MAB3120), 1:1000, mouse anti-VAchT (1:1000, Millipore ABN100), mouse anti-Brn3a (1:500, Millipore Mab1585), guinea pig anti-VAchT (1:500, Promega G4481), guinea pig Rbms (1:500, PhosphoSolutions 1832-RBPS5), goat anti-Brn3b (1:500, Santa Cruz Biotechnology sc-6026), mouse anti-Bm3c (1:250, Santa Cruz Biotechnology sc-81980), rabbit anti-Calbindin (1:10000, Swant CB38a), rabbit anti-CART (1:2000, Phoenix Pharmaceuticals H-003-62), Syt2 (1:250, ZIRC Znp-1), goat anti-Opn (1:500, R&D Systems AF-808), goat Sorcs3 (1:1000, R&D systems AF3067, Figure 5d), mouse PKCa (1:500, Abcam ab31), goat anti-Acam (1:1000, R&D systems AF1172, Buhusi et al. 2009), goat anti-Neo1 (1:1000, R&D systems AF1079, Supplementary Figure 8c) and rabbit β-galactosidase (1:5000 Duan et al. 2014). Dylight405-, Alexa488-, Cy3- and Alexa647-conjugated secondary antibodies (1:1000) were obtained from Jackson ImmunoResearch. Unless stated otherwise, these antibodies have been previously validated in Rousson et al. 2016.
10. Eukaryotic cell lines
 a. State the source of each eukaryotic cell line used. No eukaryotic cell lines were used for results presented in this study.
 b. Describe the method of cell line authentication used. No eukaryotic cell lines were used in this study.
 c. Report whether the cell lines were tested for mycoplasma contamination. No eukaryotic cell lines were used in this study.
 d. If any of the cell lines used are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use. No eukaryotic cell lines were used in this study.

11. Description of research animals
 Provide all relevant details on animals and/or animal-derived materials used in the study.
 All mice used are reported in Methods. They are on a mixed CD1-C57BL6 background. No sex-specific differences were noted so animals were analyzed regardless of sex. Adult animals are defined as 21 days or older. Animals across developmental and adult stages were immunostained for expression analyses; all ages were reported in Results and Figure legends. Adults were used for calcium imaging. Electroporation and AAV injections were performed on postnatal day 0 pups; pups are sacrificed at P12-14. P5-6 mice were used for J-RGC RNAseq.

12. Description of human research participants
 Describe the covariate-relevant population characteristics of the human research participants.
 The study did not involve human research participants.