Cold water concreting technology using thermoactive formwork

Dmitriy Imaykin, Ruslan Ibragimov

Kazan State University of Architecture and Engineering, Kazan, 420043, Russia
E-mail: rusmag007@yandex.ru

Abstract. The paper presents the study results of temperature and strength indices of structures while performing isothermal warming in thermoactive formwork. The effectiveness analysis of thermoactive formwork panels warming in the freezer with complex additive was also carried out. Thermoactive formwork is a box-shaped structure consisting of 20 mm thick panels of laminated plywood with built-in wires. The total size of the thermoactive formwork for concrete construction was 200x200x200 mm. Concrete mixture was laid in thermoactive formwork in layers and caked by rodding. Then concrete mixture was warmed up using heating wires. Samples were placed in the freezer at a temperature of 18 °C for 1, 3, 7, 28 days. However, the samples were kept in a positive temperature of about 16 °C during the first ten hours while the concrete mixture was stored in the freezer. According to the experiment results it was established that the lowest temperature was in the center of a formwork, which proved that this formwork could be used at an ambient negative temperature. It was revealed that heavy weight concrete with complex additive had a compressive strength higher by 57 % compared to the control sample.

Keywords: cold-weather concreting, technology, heaters, additive.

1 Introduction

Today, many programs have been launched to provide citizens of Russia with housing, so the construction industry is entrusted with a serious task that is to increase house-building [1-4]. Technological processes of the construction industry are influenced by many factors, namely: change of temperature and weather conditions, technical characteristics of materials and mechanisms, change of requirements to structures quality [5-8].

Monolithic construction being the most advanced construction technology holds a leading position both in industrial and civil construction, and in road and bridge construction [9-12]. And therefore, widespread use of monolithic house-building in housing construction is one of the ways out of the current situation [13-16].

In order to reduce the construction time in monolithic construction, it is necessary to accelerate the strength development time of a concrete installed and to speed up the aging period before a formwork has to be removed [17-20]. For this purpose, the heating methods with complex additives and electrical heating methods using heating wires are very effective. For example, according to [21-24] such usage reduces electricity consumption by 10-25 % compared to other methods of concrete electrical heating at negative temperatures.

That is why we have designed a thermoactive formwork panel. For greater efficiency, a heating experiment with a complex type 2 CRIOPLAST P25 additive was carried out. The test sample was heated in a heating formwork without using additives [25-27].

2 Materials and methods

The type 2 CRIOPLAST P25 additive is a mixture of thiosulfate and sodium rhodanide, polymethylene naphthalene sulfonates and antifreezing inorganic sodium salts [28].

The main benefits of this additive are described as follows:

1. The additive ensures cement hydration flow processes at a concrete hardening temperature not lower than minus 30 °C.
2. The additive contributes to critical strength development using concrete and mortar mix at the age of 28 days at the design hardening temperature not lower than minus 30°C.

3. The additive increases the concrete-mix consistency from P1 to P5, increases mortar mix consistency from Pk1 to Pk4 (no strength loss during all hardening periods).

4. The additive reduces water demand by 20 -25 % while gauging.

5. The additive increases frost resistance and reduces permeability.

6. The additive does not contribute for efflorescence to build up on the structure surface and does not cause corrosion in a concrete reinforcement.

The type 2 CRIOPLAST P25 additive is especially effective when used at an increased temperature of the concrete mixture:

1. The additive contributes to preserving properties of concrete and mortar mix prior to the beginning of active heat treatment while erecting concrete and reinforced concrete structures.

2. The additive lowers the temperature of ice formation in the mixture and provides for cement hydration during enforced periods of heat treatment absence, significantly intensifies strength development while subsequently exposed to positive temperatures.

3. The additive can effectively be used in transporting concrete mixture at a temperature not lower than -30 °C. It is a frost additive for “hot weather” and “cold weather” concretes at an ambient temperature up to minus 30 °C in accordance with the Russian Federation standard 24211-08.

4. The additive provides for reducing the concrete heat treatment time in comparison with monocomponent antifreeze additives.

In order to prepare a concrete mixture, we used M400 cement, enriched sand of the Kamskoye deposit of 2.8 fineness modulus, 5-20 mm fraction gravel produced from the Satkinskoye deposit rocks (Chelyabinsk region). The ratio of all the components amounted to 1:1, 4:3:1 (cement:sand:gravel). The complex additive was introduced into the pre-mixed concrete mixture with the gauged water remaining shortly before the mixing was completed [29-30]. This allowed to obtain a more flexibilizing effect. The additive dosage rate was about 6 % of the cement weight. At the same time, the amount of water was selected so that the consistency of concrete mix would correspond to P2 class according to GOST 7473-94. The water-to-cement ratio of the sample with the additive was W/C = 0.38, and that of the sample without additive was W/C = 0.5.

Concrete mixture was laid in thermoactive formwork (Figure 1) in layers and caked with rodding. Then concrete mixture was warmed up using heating wires. Samples were placed in the freezer at a temperature of 18 °C for 1, 3, 7, 28 days. However, the samples were kept in a positive temperature of about 16 °C during the first ten hours while the concrete mixture was stored in the freezer.

![Figure 1](image)

Figure 1. Formwork design: 1-concrete mixture; 2-thermocouple; 3-formwork.

Previously [3], it was established that when concreting monolithic structures, it is most important to
control the temperature of three main areas in a concrete body, namely:
- in the corners of structures where the heat outflow is during concreting in open air at a negative air temperature;
- in the middle of the formwork panels, where the concrete is most intensely warmed by external heating elements;
- in the center of the monolithic structure, with the highest temperature caused by self-heat dissipation of a hardening concrete.

In order to determine the temperature value inside the concrete mixture, we used a Thermochron measuring complex installed in the corner, in the center and in the middle of the heating formwork wall. The results are listed in Table 1.

Heating time, h	Wall	Centre	Corner
1	17	15.5	17
2	17	15.5	16.5
3	16.5	15.5	16.5
4	16.5	15.0	16.5
5	16.5	15.0	16.5
6	16.5	15.0	16.0
7	16.5	15.0	16.0
8	16.5	15.0	16.0
9	16.0	15.0	16.0
10	16.5	15.0	15.5

3 Results
Thermoactive formwork is a box-shaped structure consisting of 20 mm thick panels of laminated plywood with built-in PSV-1.2 wires (Figure 2). Overall design size is 200x200 mm, height is 200 mm.

![Figure 2. Design of the formwork panel: 1- formwork; 2-heating element.](image)

The test samples' strength indicators at the hardening age of 1, 3, 7, 28 days were determined under normal conditions (Table 2).

Name of the additive	Compression strength (MPa) of concrete per days.			
	1	3	7	28
No additive & 6.24 & 14.9 & 24.3 & 31.1 & 100 \% & 100 \% & 100 \% & 100 \% \\ \hline type 2 CRIOPLAST P25 & 6.9 & 18.0 & 33.3 & 48.8 & 110 \% & 121 \% & 137 \% & 157 \%

4 Conclusions

The following conclusions can be drawn from the results of the research.

1. The design of the thermoactive formwork panel allowing to concrete construction structures in cold weather conditions was developed. The concrete body temperature has slight deviations from the average value. Thermoactive formwork is a box-shaped structure consisting of 20 mm thick panels of laminated plywood with built-in PSV-1.2 wires.

2. According to the experiment results, the lowest temperature was observed in the center of a formwork, which proves that this formwork can be used at an ambient negative temperature.

3. A concrete with complex type 2 Cryoplast P-25 additive has a compressive strength higher by 57 \% compared to the control sample when concrete heat treated.

References

[1] Svintsov A, Shchesnyak E, Galishnikova V, Fediuk R and Stashevskaya N 2020 Effect of nano-modified additives on properties of concrete mixtures during winter season Construction and Building Materials 237 117527 DOI: 10.1016/j.conbuildmat.2019.117527

[2] Melnik A 2017 Calculation of Concrete Strength in Winter Conditions Based on Heat Exchange Processes Modeling Procedia Engineering 206 pp 831-835 DOI: 10.1016/j.proeng.2017.10.559

[3] Yuan S and Yingzi Y 2020 Assessing the freezing process of early age concrete by resistivity method Construction and Building Materials 238 117689 DOI: 10.1016/j.conbuildmat.2019.117689

[4] Girum U, Kyong-Ku Y, Jaeheum Y and Jung H 2019 Thermal responses of concrete slabs containing microencapsulated low-transition temperature phase change materials exposed to realistic climate conditions Cement and Concrete Composites 104 103391 DOI: 10.1016/j.cemconcomp.2019.103391

[5] Ge Zhang, Haiyang Yu, Huaming Li and Yingzi Y 2019 Experimental study of deformation of early age concrete suffering from frost damage Construction and Building Materials 215 pp 410-421 DOI: 10.1016/j.conbuildmat.2019.04.187

[6] Naser P, Sharifi, Siyu Chen, Zhanping You, Thomas Van Dam, Christopher Gilbertson 2019 A review on the best practices in concrete pavement design and materials in wet-freeze climates similar to Michigan Journal of Traffic and Transportation Engineering (English Edition) 6(3) pp 245-255 DOI: 10.1016/j.jtte.2018.12.003

[7] Zipeng Q, Yuanming L, Yan T and Fan Y 2019 Frost-heaving mechanical model for concrete face slabs of earthen dams in cold regions Cold Regions Science and Technology 161 pp 91-98 DOI: 10.1016/j.coldregions.2019.03.009

[8] Xiaopeng H, Gang P, Ditao N and Nan Zh 2019 Bond characteristics of deformed steel bar in early-age frozen concrete during service period Engineering Structures 197 109438 DOI: 10.1016/j.engstruct.2019.109438

[9] Yi Hu and Kai Liu 2017 Chapter 2: Remote sensing and remote measurement technology of transmission lines Inspection and Monitoring Technologies of Transmission Lines with Remote Sensing pp 37-137 DOI: 10.1016/B978-0-12-812644-8.00002-3

[10] Michael L 2019 Chapter 15: Engineering Standards in Highway Design Litigation Engineering Standards for Forensic Application pp 199-220 DOI: 10.1016/B978-0-12-813220-1.00015-7

[11] Mark C. Sanders and Charlotta E. Sanders 2020 Chapter 6: Smorgasbord: An international overview of nation states Nuclear Waste Management Strategies pp 53-205 DOI: 10.1016/B978-0-12-813738-3.00006-6
[12] Joana Mourao, Ricardo Gomes, Luis Matias and Samuel Niza 2019 Combining embodied and operational energy in buildings refurbishment assessment. Energy and Buildings 197(15) pp 34-46 DOI: 10.1016/j.enbuild.2019.109438

[13] Donatello C, Amedeo F, Mauro De Luca P and Adriano M 2019 Estimating direct and indirect losses due to earthquake damage in residential RC buildings. Soil Dynamics and Earthquake Engineering 126 105801

[14] Thomas Cz and Fernanda L 2020 Automated digital modeling of existing buildings: A review of visual object recognition methods Automation in Construction 113 103131 DOI: 10.1016/j.autcon.2020.103131

[15] Alicia A, Jorge P, Rafael S and Rocío E 2020 Acoustical retrofit of existing residential buildings: Requirements and recommendations for sound insulation between dwellings in Europe and other countries worldwide Building and Environment 74 106771 DOI: 10.1016/j.buildenv.2020.106771

[16] Shabiev S 2016 The Ecological City Planning Aspects of the South Ural State University Main Building Complex Reconstruction Procedia Engineering 150 pp 1978-1982 DOI: 10.1016/j.proeng.2016.07.201

[17] Ibragimov R and Fediu R 2019 Improving the early strength of concrete: Effect of mechanochimical activation of the cementitious suspension and using of various superplasticizers Construction and Building Materials 226 pp 839-848

[18] Mangushev R and Osokin A 2017 Construction of Deep Foundation Ditch under a Reconstructed Multi-storey Building on the Main Avenue of St. Petersburg Procedia Engineering 189 pp 622-629 DOI: 10.1016/j.proeng.2017.05.099

[19] Yozo F, Dionysius M S, Yoshiki I, Tomonori N and Tsukasa M 2019 Research and Implementations of Structural Monitoring for Bridges and Buildings in Japan. Engineering 5(6) pp 1093-1119 DOI: 10.1016/j.eng.2019.09.006

[20] Dachuan S, Yafeng G and Rui Guo 2019 Life cycle assessment of white roof and sedum-tray garden roof for office buildings in China. Sustainable Cities and Society 46 101390 DOI: 10.1016/j.scs.2018.12.018

[21] Ibragimov R A, Korolev E V, Deberdeev T R, Leksin V V and Solovev D B 2018 Energy parameters of the binder during activation in the vortex layer apparatus Materials Science Forum 945 MSF pp 98-103 DOI: 10.4028/www.scientific.net/MSF.945.98

[22] Charles Th, Alain B and Marion S 2019 Building rehabilitation life cycle assessment methodology–state of the art. Renewable and Sustainable Energy Reviews 103 pp 408-422 DOI: 10.1016/j.rser.2018.12.037

[23] Ibragimov R A and Bogdanov R R 2017 The influence of a complex modifying agent on the hydration and structure formation of self-compacting concrete. ZKG International 70(4) pp 44-49

[24] Khalid M, Umberto A, Hyerin L and Jaume A Performance-based engineering and multi-criteria decision analysis for sustainable and resilient building design. Structural Safety 74 pp 1-13 DOI: 10.1016/j.strusafe.2018.03.005

[25] Min-Koo K, Qian W and Heng Li 2019 Non-contact sensing based geometric quality assessment of buildings and civil structures: A review Automation in Construction 100 pp 163-179 DOI: 10.1016/j.autcon.2019.01.002

[26] Marini A, Passoni C and Belleri A 2018 Life cycle perspective in RC building integrated renovation Procedia Structural Integrity 11 pp 28-35 DOI: 10.1016/j.prostr.2018.11.005

[27] Joblot L, Paviot T, Deneux D and Lamouri S 2019 Building Information Maturity Model specific to the renovation sector Automation in Construction 101 pp 140-159 DOI: 10.1016/j.autcon.2019.01.019

[28] Kokoshin S, Ustinov N and Kirgincev B 2016 The use of Flexible Tubular Elements of the Overhaul and Tunnels Reconstruction Procedia Engineering 165 pp 817-828 DOI: 10.1016/j.proeng.2016.11.780
[29] Izotov V S and Ibragimov R A 2015 Hydration products of portland cement modified with a complex admixture Inorganic Materials 51(2) pp 187-190 DOI: 10.1134/S0020168515020089

[30] Kashapov R R, Krasinikova N M and Khozin V G 2017 Research of exploitative properties of cement-based heavy concretes with polyfunctional additive Izvestiya KGASU 4(42) pp 296-302