A NEARBY OLD HALO WHITE DWARF CANDIDATE FROM THE SLOAN DIGITAL SKY SURVEY

PATRICK B. HALL1, PIOTR M. KOWALSKI2, HUGH C. HARRIS3, AKSHAY AWAL1,4, S. K. LEGGETT5, MUKREMIN KILIC6, SCOTT F. ANDERSON7, and EVALYN GATES8

1 Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada
2 Lehrstuhl für Theoretische Chemie, Ruhr-Universität, 44780 Bochum, Germany
3 United States Naval Observatory, Flagstaff, AZ 86001, USA
4 Emery College, Institute, Toronto, Ontario M9M 2V9, Canada
5 Gemini Observatory, 670 North A‘ohoku Place Hilo, HI 96720, USA
6 Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
7 Department of Astronomy, University of Washington, Seattle, WA 98195, USA
8 Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637, USA

Received 2008 February 22; accepted 2008 April 3; published 2008 May 27

ABSTRACT

We report the discovery of a nearby old halo white dwarf (WD) candidate from the Sloan Digital Sky Survey (SDSS). SDSS J110217.48+411315.4 has a proper motion of 1°75 yr−1 and redder optical colors than all other known featureless (type DC) WDs. We present SDSS imaging and spectroscopy of this object, along with near-infrared photometry obtained at the United Kingdom Infrared Telescope (UKIRT). Fitting its photometry with up-to-date model atmospheres, we find that its overall spectral energy distribution is fit reasonably well with a pure-hydrogen composition and Teff ≈ 3800 K (assuming log g = 8). This temperature and gravity would place this WD at 35 pc from the Sun with a tangential velocity of 290 km s−1 and space velocities consistent with halo membership; furthermore, its combined main-sequence and WD cooling age would be ≈11 Gyr. However, if this object is a massive WD, it could be a younger object with a thick disk origin. Whatever its origin, the optical colors of this object are redder than predicted by any current pure-hydrogen, pure-helium, or mixed hydrogen–helium atmospheric model, indicating that there remain problems in our understanding of the complicated physics of the dense atmospheres of cool WDs.

Key words: stars: individual (SDSS J110217.48+411315.4) – white dwarfs

Online-only material: color figures

1. INTRODUCTION

There is considerable interest in white dwarf (WD) stellar remnants in the halo of our galaxy. Since halo stars are generally older than disk stars, the oldest halo WDs should be older and cooler than the oldest disk WDs. Such objects are of interest for studying the age distribution of halo stars and for testing our understanding of stellar atmospheres, since their spectra can depart significantly from simple blackbodies (see, e.g., Hansen 1998; Saumon & Jacobson 1999; Kowalski 2006a). Halo WD candidates may be identifiable as faint objects with high proper motions and unusual colors (e.g., Ducourant et al. 2007). Some halo WD candidates have indeed been found, but most of them have relatively warm temperatures, indicating that they are relatively young WDs (e.g., Bergeron et al. 2005; Lépine et al. 2005). To date, the coolest known probable halo WD is WD 0346+246, with T ≈ 3800 K (Bergeron 2001). The coolest halo WD candidate, whose velocities are consistent with either a halo or a thick disk origin, is SDSS J122048.65+091412.1 (Gates et al. 2004). The latter object is one of a handful of ultracool WDs (Teff ≈ 3800 K) whose optical spectra show collision-induced absorption (CIA) from H2. CIA causes WDs to exhibit increasingly bluer colors at increasingly shorter wavelengths at Teff ≲ 5000 K (see, e.g., Bergeron et al. 2005).

Here we report the identification of a candidate old halo WD with red optical colors whose spectrum was obtained by the Sloan Digital Sky Survey (SDSS; York et al. 2000). The SDSS used a drift-scanning imaging camera (Gunn et al. 1998) on a 2.5 m telescope (Gunn et al. 2006) to image ∼104 deg2 of sky on the SDSS ugriz magnitude system (Fukugita et al. 1996; Hogg et al. 2001; Smith et al. 2002; Pier et al. 2003; Ivezić et al. 2004; Tucker et al. 2006). Two multi-fiber, double spectrographs are being used to obtain R ∼ 2100 spectra for ∼106 galaxies and ∼105 quasar candidates (Stoughton et al. 2002). As discussed in Richards et al. (2002), most quasar candidates are targeted for spectroscopy because they are outliers from the stellar locus. Spectroscopy of such targets provides data not just on quasars, but also on objects with colors different from those of the stellar locus, such as the unusual WD presented herein.

2. IMAGES AND PHOTOMETRY

SDSS J110217.48+411315.4 (hereafter J1102+4113) was noticed during visual inspection of all SDSS spectra from Data Release Six (Adelman-McCarthy et al. 2008) classified as UNKNOWN by the SDSS pipeline. It stood out in the SDSS Catalog Archive Server as having a high proper motion of μα = −105.0 ± 3.5 mas yr−1 and μδ = −1750 ± 3.5 mas yr−1, computed as described in Munn et al. (2004) by combining astrometry from the SDSS and from the USNO-B1.0 catalog (Monet et al. 2003). J1102+4113 is present in seven Palomar Observatory Sky Survey (POSS) plates and is present in one published SDSS observation. A selection of these images is shown in Figure 1. J1102+4113 is cataloged in USNO-B1.0 as 1312-0217226, with proper motions of μα = −106 ±
2 mas yr$^{-1}$ and $\mu_\delta = -1744 \pm 1$ mas yr$^{-1}$ based on five photographic epochs only. We adopt a total proper motion of $\mu = 1.75$ arcsec yr$^{-1}$. In Galactic coordinates, J1102+4113 is located above the Galactic plane near anticenter ($l, b = 174^\circ, 63.5^\circ$). Its proper motion is predominantly in the +l direction. Taken together, these findings mean that its velocity parallel to the Galactic plane is less than the Sun’s (see Section 4.1).

Despite its presence in the USNO-B1.0 catalog, this object has not been reported in the literature as a high-proper-motion star. No sources are listed in the SIMBAD or NASA/IPAC Extragalactic Database (NED) databases within 1’ of its position. J1102+4113 is bright enough that it could have been found by Luyten (1974). It was missed during examination of USNO-B high-proper-motion stars by Levine (2005) because it is 0.3 mag fainter than the limit of $R < 18.0$ used in that study.

It should also have been found in the LSPM-N catalog (Lépine et al. 2003; Lépine & Shara 2005), although it is near the lower magnitude limit and upper proper-motion limit of that catalog. It may have been missed by previous searches because the image on the POSS-I E plate appears double (Figure 1, top left panel). This is likely due to a plate flaw, since the second component of the putative double is narrower than the point-spread function (PSF).

Available photometry from published observations of J1102+4113 is given in Table 1. The object is consistently faint in blue passbands. There is a faint J-band feature in the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006) within 2'' of the expected position of J1102+4113 at that epoch. To measure the flux in this feature, we retrieved the 2MASS Atlas images covering this object, measured 3'' radius aperture magnitudes.
Table 1
Photometry of SDSS J110217.48+411315.4

Source	MJD	$u \pm \sigma_u$	$g \pm \sigma_g$	$r \pm \sigma_r$	$i \pm \sigma_i$	$z \pm \sigma_z$	$J \pm \sigma_J$	$H \pm \sigma_H$	$K \pm \sigma_K$	$u - g$	$g - z$
POSS1	35183.7938	...	20.59
POSS1	35183.8321	18.58
POSS2	47540.9117	18.67
POSS2	48001.6992	...	20.26
POSS2	48294.8804	Unavailable
POSS2	50094.9138	18.41
2MASS	50912.8346	17.78 ± 0.76	17.37 ± 0.92	17.52 ± 1.81
POSS2	50948.6813	Unavailable
SDSS	52754.1402	23.01 ± 0.48	20.20 ± 0.02	18.76 ± 0.02	18.21 ± 0.02	17.93 ± 0.02	2.81 ± 0.48	2.27 ± 0.03
UKIRT	54456.1192	17.24 ± 0.02	17.33 ± 0.02	17.34 ± 0.03

Notes. Optical magnitudes are on the AB system (but see text), and 2MASS and UKIRT magnitudes on the Vega system. 2MASS magnitudes use the 2MASS filter system (Skrutskie et al. 2006) and UKIRT magnitudes use the MKO filter system (Ghiasi et al. 2002). POSS magnitudes have been recalibrated to the indicated SDSS filter (Sesar et al. 2006). SDSS magnitudes are PSF magnitudes, but have been converted from asinh magnitudes (Lupton et al. 1999) to traditional magnitudes, using the information in Table 21 of Stoughton et al. (2002). For this object, the difference is significant only in the u-band.
in J, H, and K_s at the position of the potential J-band detection, and calculated appropriate magnitude uncertainties.\footnote{The calculation of the magnitude uncertainties followed the procedure in section VI.8.a.ii of the 2MASS Explanatory Supplement at http://www.ipac.caltech.edu/2mass/releases/allsky/doc/explsup.html.} These measurements are included in Table 1, but their large uncertainties make them of limited use. To obtain better near-infrared (near-IR) constraints, we obtained JHK photometry of J1102+4113 on 2007 December 21 using the United Kingdom Infrared Telescope (UKIRT) Fast-Track Imager (UFTI; Roche et al. 2003) in a service mode. The data were reduced in the standard fashion and the photometry was calibrated using observations of UKIRT faint standard #130 (Leggett et al. 2006). These measurements are also included in Table 1.

3. SPECTRA

Based on initial (“TARGET”) photometric reductions of SDSS imaging, J1102+4113 was targeted as a high-redshift quasar candidate (target flag QSO_HIZ). A single SDSS spectrum was obtained on Modified Julian Date (MJD) 53046 on the SDSS spectroscopic plate no. 1437 and fiber no. 428. In Figure 2, we present the full SDSS spectrum of J1102+4113. Its spectrum is red and featureless (in particular, there is no sign of Balmer absorption) except for a possible broad emission feature at 5750–5900 Å. This feature is near one end of the wavelength region 5800–6150 Å where both the blue and the red SDSS spectrographs record flux from an object. To investigate the reality of this feature, we examined the four individual blue exposures, but not in any of the four individual red exposures. In fact, the red exposures all show a dip in flux below 6050 Å. In Figure 3 we present the average spectra of this object obtained with the blue-wavelength SDSS spectrograph (in blue) and the red-wavelength SDSS spectrograph (in red), along with ±1σ error bars (in gray). The discrepant flux levels in the two spectra between 5800 and 6000 Å casts doubt on the reality of the emission feature at 5750–5900 Å in the combined spectrum.

(A color version of this figure is available in the online journal)

in gray. The flux levels at 5800–6000 Å in the two spectra do not agree within the uncertainties. This disagreement is indicative of some problem with the SDSS spectrum in this wavelength range. We conclude that the broad feature at 5750–5900 Å is an artifact,\footnote{Some pixels at nearby wavelengths are flagged as potentially being untrustworthy, with some or all of the flags NEARBPIXEL, LOWFLAT, SCATTEREDLIGHT, BADFLUXFACTOR, and BADSKYCHI (Stoughton et al. 2002). Empirically, we have found that the grow radius around such untrustworthy pixels is, on rare occasions, not large enough to flag all apparently problematic pixels in SDSS spectra. This spectrum may be one such case.} although an independent spectrum would still be worth obtaining to verify that conclusion.

There is no other statistically significant absorption or emission feature in the spectrum. In particular, there is no sign of Hα absorption to a 3σ limit of ~0.8 Å. (The smoothed spectrum shows a dip in flux at 6522 Å, but it is due to two noise spikes which are narrower than the instrumental resolution.)

4. ANALYSIS AND COMPARISON WITH MODELS

We classify J1102+4113 as a DC WD, since its optical spectrum has no robust features. The featureless spectrum of J1102+4113 is similar to other cool DC WDs. At optical wavelengths, the reddest of these are WD 0346+246 (Oppenheimer et al. 2001b), GD 392B (Farihi 2004), WD 1247+550 (Liebert et al. 1988), and WD 1310-472 (Bergeron et al. 2001). These four stars all have $B-V \lesssim 1.4$ and $1.39 < V-I < 1.46$.\footnote{Two WDs reported to have $V-I > 1.5$ by Oswalt et al. (1996) in fact have $V-I < 1.0$ (Bergeron et al. 2001; H. C. Harris, unpublished).} Only one of these four WDs has a measured $g-i$ color, but the small dispersion in their $V-I$ colors means that there will be a small dispersion in their $g-i$ colors. Thus, comparing the $g-i = 1.67$ measured for WD 1247+550 with the $g-i = 1.99$ measured for J1102+4113, we conclude that J1102+4113 is $\lesssim 0.3$ mag redder in $g-i$ than the reddest previously

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Full SDSS spectrum of J1102+4113, smoothed by a 7 pixel boxcar, plotted as F_λ (in units of 10^{-17} erg s$^{-1}$ cm$^{-2}$ Å$^{-1}$) vs. wavelength in Å. The uncertainty at each pixel is plotted along the bottom.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Average spectra of J1102+4113 from the blue-wavelength SDSS spectrograph (in blue) and the red-wavelength SDSS spectrograph (in red), along with ±1σ error bars (in gray). The discrepant flux levels in the two spectra between 5800 and 6000 Å casts doubt on the reality of the emission feature at 5750–5900 Å in the combined spectrum.}
\end{figure}
known DC WDs. The only other non-magnetic WDs13 known to have optical colors approaching those of J1102+4111 are DZ WDs with extremely strong calcium and sodium absorption: WD 2251-070 (Liebert et al. 1988), WD J2356-209 (Oppenheimer et al. 2001a), and SDSS J133001.13+643523.8 (Harris et al. 2003). In contrast, J1102+4111 shows no evidence of absorption from Na \(i \lambda \lambda 5891, 5897 \), Ca \(i \lambda 4227 \), or Ca \(ii \lambda \lambda 8500, 8544, 8664 \). A cool atmosphere with an extremely low metal abundance seems the best explanation for its red color.

For a surface temperature as low as that indicated by the red color of J1102+4111, both pure-hydrogen and pure-helium model atmospheres are expected to be essentially featureless in the optical. In cool, pure-H atmospheres, most H is in the form of \(\text{H}_2 \) and most atomic H is in the ground state, leading to negligible Balmer absorption (which would be extremely pressure broadened in any case). In cool, pure-He atmospheres, most He is neutral and the lower levels of optical transitions of He\(i \) are not populated for \(T_{\text{eff}} \lesssim 12,000 \) K, leading to highly optically transparent atmospheres. Nonetheless, there can be detectable differences between the spectra of hydrogen- and helium-dominated cool WDs, particularly in the near-IR where CIA is affected by the composition.

To constrain the atmospheric composition of J1102+4113, we fit model WD atmospheres to the UKIRT photometry and to the SDSS photometry converted to an AB system. The SDSS magnitudes are already on an AB system to within \(\pm 1\% \) uncertainties in these corrections, we increased the SDSS magnitude by \(0.3 \) to match the optical photometry.

\[\chi^2 \text{ is shown as the black error bars. Blue triangles are synthetic photometry from the best-fit pure-H model. Red squares are synthetic photometry from a pure-He model fit to the optical data only.} \]

(A color version of this figure is available in the online journal)

While J1102+4113 is 0\(^{\circ} \)22 redder in \(g - z \) than any pure-H model, it is an open question how well such models reproduce the relevant physics at \(T_{\text{eff}} \approx 3800 \) K. Hydrogen in the atmosphere of a \(T_{\text{eff}} \approx 3800 \) K WD approaches a density where nearby molecules are strongly correlated and where the refractive index is significantly greater than unity. Furthermore, there are still uncertainties about the reliability of \(\text{H}_2 \) CIA opacities in WDs. Observationally, there are few WDs known near that temperature with which comparisons with models can be made. At \(T_{\text{eff}} \lesssim 3800 \) K, CIA will affect the optical colors of WDs and their \(g - z \) colors will become bluer. However, given all the physical effects discussed above, which may not be handled correctly in the models, it is not certain how optically red pure-H atmospheres become before they turn bluer. In short, the models could be sufficiently in error to explain the formally poor fit of the pure-H model predictions to the J1102+4113 data.

The distance to the WD in our pure-H model fit is 35 pc, making the tangential velocity \(v_{\text{tan}} = 290 \) km s\(^{-1} \). The cooling time to reach \(T_{\text{eff}} = 3830 \) K is \(\approx 9.6 \) Gyr, assuming a typical WD mass of 0.6 \(M_\odot \) with a core of equal parts C and O (Fontaine et al. 2001). Including \(\approx 1 \) Gyr for its progenitor’s lifetime (Fontaine et al. 2001), for a pure-H model J1102+4113 is the remnant of a star that formed \(\approx 11 \) Gyr ago. Alternatively, at the same temperature, if \(\log g = 9 \) (9.5), then J1102+4113 would have the following approximate properties: \(M = 1.11 \) (1.36) \(M_\odot \), \(d = 17 \) (10) pc, \(v_{\text{tan}} = 140 \) (83) km s\(^{-1} \), cooling time 7 (3) Gyr, and progenitor lifetime \(\ll 1 \) Gyr. If J1102+4113 has \(\log g = 7.5 \), then it would be at \(d = 42 \) pc with \(M = 0.35 M_\odot \) and its total age would be greater than the age of the universe unless it is an unresolved double degenerate or a product of common-envelope binary star evolution (Fontaine et al. 2001).

\[\chi^2 \text{ is shown as the blue triangles in Figure 4. The fit is reasonable given the model uncertainties, although the formal uncertainties are too large to be useful, assuming a typical WD gravity of } \log g = 8 \text{ (e.g., Fontaine et al. 2001). The resulting fit yields } T_{\text{eff}} = 3830 \text{ K.} \]

\[\text{Hydrogen in the atmosphere of a } T_{\text{eff}} \approx 3800 \text{ K WD approaches a density where nearby molecules are strongly correlated and where the refractive index is significantly greater than unity. Furthermore, there are still uncertainties about the reliability of } \text{H}_2 \text{ CIA opacities in WDs. Observationally, there are few WDs known near that temperature with which comparisons with models can be made. At } T_{\text{eff}} \lesssim 3800 \text{ K, CIA will affect the optical colors of WDs and their } g - z \text{ colors will become bluer. However, given all the physical effects discussed above, which may not be handled correctly in the models, it is not certain how optically red pure-H atmospheres become before they turn bluer. In short, the models could be sufficiently in error to explain the formally poor fit of the pure-H model predictions to the J1102+4113 data.} \]

\[\text{The distance to the WD in our pure-H model fit is 35 pc, making the tangential velocity } v_{\text{tan}} = 290 \text{ km s}^{-1}. \text{ The cooling time to reach } T_{\text{eff}} = 3830 \text{ K is } \approx 9.6 \text{ Gyr, assuming a typical WD mass of 0.6 } M_\odot \text{ with a core of equal parts C and O (Fontaine et al. 2001). Including } \approx 1 \text{ Gyr for its progenitor’s lifetime (Fontaine et al. 2001), for a pure-H model J1102+4113 is the remnant of a star that formed } \approx 11 \text{ Gyr ago. Alternatively, at the same temperature, if } \log g = 9 \text{ (9.5), then J1102+4113 would have the following approximate properties: } M = 1.11 \text{ (1.36) } M_\odot, \text{ } d = 17 \text{ (10) pc, } v_{\text{tan}} = 140 \text{ (83) km s}^{-1}, \text{ cooling time 7 (3) Gyr, and progenitor lifetime } \ll 1 \text{ Gyr. If J1102+4113 has } \log g = 7.5, \text{ then it would be at } d = 42 \text{ pc with } M = 0.35 M_\odot \text{ and its total age would be greater than the age of the universe unless it is an unresolved double degenerate or a product of common-envelope binary star evolution (Fontaine et al. 2001).} \]

\[\chi^2 \text{ is shown as the blue triangles in Figure 4. The fit is reasonable given the model uncertainties, although the formal uncertainties are too large to be useful, assuming a typical WD gravity of } \log g = 8 \text{ (e.g., Fontaine et al. 2001). The resulting fit yields } T_{\text{eff}} = 3830 \text{ K.} \]

\[\text{Hydrogen in the atmosphere of a } T_{\text{eff}} \approx 3800 \text{ K WD approaches a density where nearby molecules are strongly correlated and where the refractive index is significantly greater than unity. Furthermore, there are still uncertainties about the reliability of } \text{H}_2 \text{ CIA opacities in WDs. Observationally, there are few WDs known near that temperature with which comparisons with models can be made. At } T_{\text{eff}} \lesssim 3800 \text{ K, CIA will affect the optical colors of WDs and their } g - z \text{ colors will become bluer. However, given all the physical effects discussed above, which may not be handled correctly in the models, it is not certain how optically red pure-H atmospheres become before they turn bluer. In short, the models could be sufficiently in error to explain the formally poor fit of the pure-H model predictions to the J1102+4113 data.} \]

\[\text{The distance to the WD in our pure-H model fit is 35 pc, making the tangential velocity } v_{\text{tan}} = 290 \text{ km s}^{-1}. \text{ The cooling time to reach } T_{\text{eff}} = 3830 \text{ K is } \approx 9.6 \text{ Gyr, assuming a typical WD mass of 0.6 } M_\odot \text{ with a core of equal parts C and O (Fontaine et al. 2001). Including } \approx 1 \text{ Gyr for its progenitor’s lifetime (Fontaine et al. 2001), for a pure-H model J1102+4113 is the remnant of a star that formed } \approx 11 \text{ Gyr ago. Alternatively, at the same temperature, if } \log g = 9 \text{ (9.5), then J1102+4113 would have the following approximate properties: } M = 1.11 \text{ (1.36) } M_\odot, \text{ } d = 17 \text{ (10) pc, } v_{\text{tan}} = 140 \text{ (83) km s}^{-1}, \text{ cooling time 7 (3) Gyr, and progenitor lifetime } \ll 1 \text{ Gyr. If J1102+4113 has } \log g = 7.5, \text{ then it would be at } d = 42 \text{ pc with } M = 0.35 M_\odot \text{ and its total age would be greater than the age of the universe unless it is an unresolved double degenerate or a product of common-envelope binary star evolution (Fontaine et al. 2001).} \]
to the data (again assuming log g = 8. Fits to all data yield $T_{\text{eff}} = 3830$ K for pure-H (solid green) and $T_{\text{eff}} = 3360$ K for pure-He (solid blue). Fits to optical data only yield $T_{\text{eff}} = 3450$ K for pure-H (dotted green) and $T_{\text{eff}} = 3360$ K for pure-He (dotted blue). Helium-dominated models with $T_{\text{eff}} = 3500$ K are shown by the red lines, with hydrogen contents as follows: log H/He = -3 (solid), -4 (dash-dotted), -5 (dotted), and -5.5 (dashed).

Figure 5. Synthetic spectra of pure-H, pure-He, and mixed H/He models, all assuming log g = 8. Fits to all data yield $T_{\text{eff}} = 3830$ K for pure-H (solid green) and $T_{\text{eff}} = 3360$ K for pure-He (solid blue). Fits to optical data only yield $T_{\text{eff}} = 3450$ K for pure-H (dotted green) and $T_{\text{eff}} = 3360$ K for pure-He (dotted blue).

We can calculate the components of the object’s space velocity relative to the Sun, U, V, and W, which are positive in the directions of Galactic center, Galactic rotation, and the north Galactic pole, respectively. If we assume zero radial velocity, we find $(U,V,W) = (63,-280,46)$ km s$^{-1}$ for $d = 35$ pc, $(30,-140,22)$ km s$^{-1}$ for $d = 17$ pc, and $(18,-80,13)$ km s$^{-1}$ for $d = 10$ pc. Chiba & Beers (2000) give $(U(V,W)) = (17 \pm 141, -187 \pm 106, -5 \pm 94)$ km s$^{-1}$ for the halo and $(4 \pm 46, -20 \pm 50, -3 \pm 35)$ km s$^{-1}$ for the thick disk. Thus, the space velocities of J1102+4113 are most consistent with those of the halo. However, if J1102+4113 is at $d \lesssim 13.5$ pc, it could be a young, thick disk WD with an unusually (but not unprecedentedly) high mass. A parallax measurement is needed to discriminate between these possibilities and to pin down the mass of J1102+4113.

4.2. Comparison with Pure-Helium Models

We next fit pure-He models (Kowalski & Saumon 2004, 2006) to the data (again assuming log g = 8), but were not able to find a realistic fit. If the near-IR photometry is omitted, a good fit is found with $T_{\text{eff}} = 3360$ K. Synthetic photometry from this model is shown as the red squares in Figure 4; the model near-IR fluxes greatly overpredict the observed fluxes. Thus, a good fit cannot be found to the combined optical and near-IR photometry of J1102+4113 with a pure-He model: if the temperature is increased to move the peak of the fit to shorter wavelengths, the slope of the optical fit will deviate unacceptably from the observations (see the blue lines in Figure 5).

4.3. Comparison with Mixed Hydrogen–Helium Models

We also consider mixed H/He models, as even a tiny amount of hydrogen in a helium-dominated atmosphere (H/He $\lesssim 10^{-6}$) can induce sufficient H$_2$–He CIA to cause a significant near-IR flux deficit (see, e.g., Figure 5 of Bergeron & Leggett 2002). The results of normalizing mixed H/He models with $T_{\text{eff}} = 3500$ K to the photometry are shown in Figure 5; for slightly higher or lower T_{eff} (±500 K), the overall results are similar. None of the mixed H/He models yields a better match to the data than the pure-hydrogen model, although a model with H/He = 10^{-5} fits at wavelengths $\lambda < 1.5$ μm.

In summary, the poor fit of pure-He models to the photometry means that hydrogen is certainly there in the atmosphere of this WD. However, the H/He ratio cannot be pinned down with current models, due to uncertainties in how accurately the models treat the complicated physics involved (refraction, non-ideal equation of state, non-ideal chemistry, perturbed Lyman series absorption, etc.; see Kowalski 2006a). Both H/He $\gg 1$ and H/He $\ll 1$ are possible.

4.4. Modeled and Observed Fluxes and Colors

If only observational uncertainties are considered, no current WD model atmosphere provides a formally acceptable fit to the photometry of J1102+4113. To guide future models, it is worth examining at what wavelengths the discrepancies arise.

In both Figures 4 and 5, it can be seen that J1102+4113 is redder at optical wavelengths than most model fits. To even approximately match both the red optical colors and the depression of the near-IR flux (relative to a blackbody of the same temperature) requires some hydrogen in its atmosphere.

In terms of $u-g$ versus $g-z$, J1102+4113 matches neither pure-H models nor pure-He models (see Table 1 and Figure 4(b) of Kowalski & Saumon 2006). It is redder in $g-z$ than pure-H models at any $u-g$, but is bluer in $u-g$ than the pure-He models at its $g-z$ color. Because of the large uncertainty in its $u-g$ color, J1102+4113 is only 1.7σ redder in $u-g$ than the pure-He sequence of Kowalski & Saumon (2006).

5. SUMMARY

SDSS J110217.48+411315.4 is a cool WD with either a pure-hydrogen atmosphere at $T_{\text{eff}} \approx 3380$ K or a mixed hydrogen–helium atmosphere with H/He $\approx 10^{-5}$ and $T_{\text{eff}} \approx 3500$ K. In either case, its distance is expected to be $d \lesssim 40$ pc. At its best-fit distance of $d \approx 35$ pc, its high proper motion of 1.75 yr$^{-1}$ makes it a member of the halo, with an estimated total age of ≈ 11 Gyr. If its distance is $d \lesssim 13.5$ pc, it could be a halo or a thick disk object. A parallax measurement for J1102+4113 is needed to settle the question of its origin and to determine its mass. To improve the data available for fitting models to J1102+4113, deeper u photometry and photometry at $\lambda > 2.5$ μm might be useful, as might optical spectroscopy with a higher signal-to-noise ratio (S/N). As for the models themselves, improvements to mixed H–He models are known to be needed. In addition, better H$_2$ CIA opacities (especially at optical wavelengths) and more examples of WDs at $T_{\text{eff}} \approx 4000$ K are needed to determine how well, on average, pure-H models at such temperatures match real WD atmospheres.

In principle, the SDSS can be used to place an upper limit on the surface density of red, high-proper-motion WDs like J1102+4113. In practice, additional spectroscopy beyond that obtained by the SDSS will be needed to place such a limit, because objects like J1102+4113 have colors too similar to those of the stellar locus to be routinely selected for SDSS spectroscopy. J1102+4113 itself barely qualified as a quasar candidate based on preliminary (“TARGET”) SDSS imaging reductions and no longer qualified for spectroscopy based on final (“BEST”) reductions. J1102+4113 is the only $g < 19.7$, $g-r > 1.4$ object in the 8417 deg2 SDSS DR6 Legacy imaging database with SDSS+USNO-B1.0 proper motion $\mu > 1.5'$ yr$^{-1}$ (Munn et al. 2004), but similarly red objects with $\mu \lesssim 1'$ yr$^{-1}$ that lack SDSS spectroscopy exist in the database. Whether or
not any of these objects turn out to be WDs, J1102+4113 will remain one of the highest-proper-motion cool WDs in the sky as seen from Earth.

We thank D. Saumon and the anonymous referee for helpful comments. P.B.H. was supported by NSERC and A.A. by the York-Seneca Summer Science and Technology Program. P.M.K. acknowledges partial support from Ruhr Universität. S.K.L.’s research is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America.

Some of the data reported here were obtained as part of Service Programme 1771 at the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. This research has also made use of the NASA/IPAC Infrared Science Archive and the NASA/IPAC Extragalactic Database (NED), which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; the SIMBAD database, operated at CDS, Strasbourg, France; data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation; and the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station (http://www.nofs.navy.mil/data/fchpix/).

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Energy, the National Aeronautics and Space Administration, the SIMBAD Database, operated at CDS, Strasbourg, France; data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation; and the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station (http://www.nofs.navy.mil/data/fchpix/).

not any of these objects turn out to be WDs, J1102+4113 will remain one of the highest-proper-motion cool WDs in the sky as seen from Earth.

REFERENCES

Abazajian, K., et al. 2004, AJ, 128, 502
Adelman-McCarthy, J., et al. 2008, ApJS, 175, 297
Bergeron, P. 2001, ApJ, 558, 369
Bergeron, P., & Leggett, S. K. 2002, ApJ, 580, 1070
Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJS, 133, 413
Bergeron, P., Ruiz, M. T., Hamuy, M., Leggett, S. K., Currie, M. J., Lajoie, C.-P., & Dufour, P. 2005, ApJ, 625, 838
Chiba, M., & Beers, T. C. 2000, AJ, 119, 2843
Ducourant, C., Teixeira, R., Hambly, N. C., Oppenheimer, B. R., Hawkins, M. R. S., Rapaport, M., Modolo, J., & Lecampion, J. F. 2007, A&A, 470, 387
Eisenstein, D. J., et al. 2006, ApJS, 167, 401
Farhi, J. 2004, ApJ, 610, 1013
Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748
Gautier, T. N., et al. 2004, ApJ, 612, L129
Ghiani, F., Licandro, J., Oliva, E., Baffa, C., Chechbacci, A., Comoretto, G., Gennari, I. S., & Marucchi, G. 2002, A&A, 386, 1157
Gunn, J. E., et al. 1998, AJ, 116, 3040
Gunn, J. E., et al. 2006, AJ, 131, 2332
Hansen, B. M. S. 1998, Nature, 394, 860
Harris, H. C., et al. 2003, AJ, 126, 1023
Hogg, D., Finkebeiner, D., Schlegel, D., & Gunn, J. 2001, AJ, 122, 2129
Holberg, J. B. 2007, in ASP Conf. Ser. 364, The Future of Photometric, Spectrophotometric and Polarimetric Standardization, ed. C. Sterken, (San Francisco, CA: ASP), 553
Ivezić, Z., et al. 2004, Astron. Nachr., 325, 583
Kowalski, P. M. 2006a, ApJ, 641, 488
Kowalski, P. M. 2006b, ApJ, 651, 1120
Kowalski, P. M. 2007, A&A, 474, 491
Kowalski, P. M., & Saumon, D. 2004, ApJ, 607, 970
Kowalski, P. M., & Saumon, D. 2006, ApJ, 651, L137
Leggett, S. K., et al. 2006, MNRAS, 373, 781
Lépine, S., Rich, R. M., & Shara, M. M. 2005, ApJ, 633, L121
Lépine, S., & Shara, M. M. 2005, AJ, 129, 1483
Lépine, S., Shara, M. M., & Rich, R. M. 2003, AJ, 126, 921
Levine, S. E. 2005, AJ, 130, 319
Liebert, J., Dahn, C. C., & Monet, D. G. 1988, ApJ, 332, 891
Lupton, R. H., Gunn, J. E., & Szalay, A. S. 1999, AJ, 118, 1406
Lupton, R. H., & Shara, M. M. 2001, Science, 292, 698
Monet, D. G., et al. 2003, AJ, 125, 984
Munn, J. A., et al. 2004, AJ, 127, 3034
Oppenheimer, B. R., Hambly, N. C., Digby, A. P., Hodgkin, S. T., & Saumon, D. 2001a, Science, 292, 698
Oppenheimer, B. R., et al. 2001b, ApJ, 550, 448
Ostwal, T. D., Smith, J. A., Wood, M. A., & Hintzen, P. 1996, Nature, 382, 692
Pier, J. R., Munn, J. A., Hindsley, R. B., Hennessy, G. S., Kent, S. M., Lupton, R. H., & Ivezić, Z. 2003, AJ, 125, 1559
Richards, G. T., et al. 2002, AJ, 123, 2945
Roche, P. F., et al. 2003, in SPIE Conf. 4841, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, ed. M. Iye, & A. F. M. Moorwood (Bellingham, WA: SPIE), 901–12
Saumon, D., & Jacobson, S. B. 1999, ApJ, 511, L107
Sesar, B., et al. 2006, AJ, 131, 2803
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Smith, J. A., et al. 2002, AJ, 123, 2121
Stoughton, C., et al. 2002, AJ, 123, 485
Tucker, D. L., et al. 2006, Astron. Nachr., 327, 821
York, D. G., et al. 2000, AJ, 120, 1579