Decompositions of Complete Multigraphs into Cyclic Designs

Mowafaq Alqadri#, Haslinda Ibrahim#, Sharmila Karim#
Department of Mathematics, School of Quantitive Sciences, College of Arts and Sciences, Universiti Utara Malaysia, Kedah, Malaysia
E-mail: moufaqq@yahoo.com, linda@uum.edu.my, mila@uum.edu.my

Abstract—Let v and 2 be positive integer, λK_v denote a complete multigraph. A decomposition of a graph G is a set of subgraphs of G whose edge sets partition the edge set of G. The aim of this paper, is to decompose a complete multigraph $4K_v$ into cyclic $(v-1)$-cycle system according to specified conditions. As the main consequence, construction of decomposition of $8K_v$ into cyclic Hamiltonian wheel system, where $v \equiv 2 \pmod 4$, is also given. The difference set method is used to construct the desired designs.

Keywords—Cyclic design; Hamiltonian cycle, Near four factor, Wheel graph.

I. INTRODUCTION

Throughout this paper, all graphs consider finite and undirected. A decomposition of a complete graph of order v by its subgraphs belonging to an assigned multiset Y. An (G,Y)-design is a decomposition of the graph G into subgraphs subject to specified conditions.

A cycle of a graph G is called Hamiltonian when its vertices passes through all the vertex set of G. An m-cycle, written $C_{m}=(c_0, c_1, \ldots, c_{m-1})$, consists of m distinct vertices $\{c_0, c_1, \ldots, c_{m-1}\}$ and m edges $\{c_i c_{(i+1)} \pmod m\}$, for $0 \leq i \leq m-2$ and $c_0 c_{(m-1)}$. An m-cycle of a graph G is called Hamiltonian when its vertices passes through all the vertex set of G. An m-path, written $[c_0, c_1, \ldots, c_{(m-1)}]$, consists of m distinct vertices $\{c_0, c_1, \ldots, c_{(m-1)}\}$ and $m-1$ edges $\{c_i c_{(i+1)} \pmod m\}$, for $0 \leq i \leq m-2$. An m-cycle system of a graph G is a collection of m-cycles. If $G=K_v$ then such m-cycle system is called m-cycle system of order v and is also said a simple when its cycles are all distinct.

An automorphism group on (G,Y)-design is a bijections on $V(G)$ fixed Y. An (G,Y)-design is a cyclic if it admit automorphism group acting regularly on $V(G)$ [1]. For a cyclic (G,Y)-design, we can assume that $V(G)=Z_v$. So, the automorphism can be represented by

$\alpha : i \mapsto i+1 \pmod v$ or $\alpha : (0,1,\ldots, v-1)$

A starter set of a cyclic (G,Y)-design is a set of subgraphs of G that generates all subgraphs of Y by repeated addition of 1 modular v.

A complete multigraph of order v, denoted by λK_v, is obtained by replacing each edge of K_v with λ edges. The problem which concerned in the decomposition of the complete multigraph into subgraphs has received much attention in recent years. The necessary and sufficient conditions for decomposing λK_v into cycles of order λ and cycles of prime order have been established by [2]. While, the existence theorem of m-cycle system of λK_v has been proved for all values of λ in [3]. For the important case of $\lambda=1$, the existence question for m-cycle system of order v has been completely settled by [4] in the case m odd and by [5] in the case m even. Moreover, the cyclic m-cycle system of order v for $m=3$, denoted by $CTS(v,\lambda)$, has been constructed by [6] and for a cyclic Hamiltonian cycle system of order v was proved when v is an odd integer but $v \neq 15$ and $v \neq p^a a$ with p a prime and $a > 1$ [7].

On the other hand, the necessary and sufficient conditions for decomposing λK_v into cycle and star graphs have been investigated by [8].

A four-factor of a graph G is a spanning subgraph whose vertices have a degree 4. While a near-four-factor is a spanning subgraph in which all vertices have a degree four with exception of one vertex (isolated vertex) which has a degree zero [9].

In this paper, we propose new type of cyclic cycle system that is called cyclic near Hamiltonian cycle system of $4K_v$, denoted $CNHC(4K_v,C_{(v-1)})$. This is obtained by combination a near-four-factors and cyclic $(v-1)$-cycle system of $4K_v$ when $v \equiv 2 \pmod 4$. Furthermore, the construction of $CNHC(4K_v,C_{(v-1)})$ will be employed to decompose $8K_v$ into Hamiltonian wheels.

II. PRELIMINARIES

In our paper, all graphs considered have vertices in Z_v. We will use the difference set method to construct the desired designs. The difference between any two distinct vertices a and b in λK_v is $|a-b|$, arithmetic (mod v). Given $C_m = \{c_0, \ldots, c_{m-1}\}$ an m-cycle, the differences from
\(C_m \) are the multiset \(\Delta(C_m) = \{ \pm |c_i - c_{i-1}| \mid i = 1, 2, \ldots, m \} \) where \(c_0 = c_m \). Let \(F = \{ B_1, B_2, \ldots, B_s \} \) be an \(m \)-cycles of \(\lambda K_v \), the list of differences from \(F \) is \(\Delta(F) = \bigcup_{i=1}^{s} \Delta(B_i) \).

The orbit of cycle \(C_m \), denoted by \(orb(C_m) \), is the set of all distinct \(m \)-cycles in the collection \(\{ C_m + k \mid k \in Z \} \). The length of \(orb(C_m) \) is its cardinality, i.e., \(orb(C_m) = k \) where \(k \) is the minimum positive integer such that \(C_m + k = C_m \). A cycle orbit of length \(v \) on \(\lambda K_v \) is said full or otherwise short. [10]

The stabilizer of a subgraph \(H \) of a graph \(G \) of order \(v \) by \(\text{stab}(H) = \{ z \in Z_v \mid z + H = H \} \) and \(H \) has trivial stabilizer when \(\text{stab}(H) = \{0\} \). One may easily deduce the following result.

For presenting a cyclic \(m \)-cycle system of \(\lambda K_v \), it sufficient to construct a starter set, i.e., \(m \)-cycle system of representations for its cycle orbits. As particular consequences of the theory developed in [11] we have:

Lemma 1. Let \(H \) be a subgraph of \(G \) and \(|\text{stab}(H)| > 1 \). Then each nonzero integer in \(\Delta H \) appears a multiple of \(|\text{stab}(H)| \) times.

Lemma 2. Let \(\delta \) be a multiset of subgraphs of \(\lambda K_v \) and every subgraph of \(\delta \) has trivial stabilizer. Then \(\delta \) is a starter of cyclic \(\left(\lambda K_v, \delta \right) \)-design if and only if \(|\Delta \delta| \) covers each nonzero integer of \(Z_v \), exactly \(t \) times.

III. CYCLIC NEAR HAMILTONIAN CYCLE SYSTEM

Definition 1. A full cyclic near Hamiltonian cycle system of the \(4K_v \), denoted by \(CNHC(4K_v, C_{n-1}) \), is a cyclic \((v - 1) \)-cycle system of \(4K_v \) graph, that satisfies the following conditions:

1. The cycle in row \(r \) form a near-4-factor with focus \(r \).
2. The cycles associated with the rows contain no repetitions.

Surely, for presenting a full cyclic near Hamiltonian cycle system of the \(4K_v \), \(CNHC(4K_v, C_{n-1}) \), it is sufficient to provide a starter set that satisfies a near-4-factor. We give here example to explain the above definition.

Example 1. Let \(G = 4K_{14} \) and \(F = \{ C_{13}, C_{13} \} \) is a set of 13-cycles of \(G \) such that:

\[
C_{13} = (1, 13, 2, 12, 3, 11, 4, 5, 10, 6, 9, 7, 8),
\]

\[
C_{13} = (13, 8, 12, 9, 11, 10, 4, 3, 5, 2, 6, 1, 7).
\]

Firstly, it is easy to observe that each non zero element in \(Z_{14} \) occurs exactly twice in the 13-cycles of \(F \). Since, the cycle graph is 2-regular graph, then every vertex has a degree 4 except a zero element (isolated vertex) has a degree zero. Thus, it is satisfies the near-4-factor with focus zero element. Secondly, the list of differences set of the set \(F \) is listed in Table I.

13-cycles	Difference set
(1,13,2,12,3,11,4,5,10,6,9,7,8)	\{2,123,11,4,10,5,6,8,7,1,13\}
(13,8,12,9,11,10,4,3,5,2,6,1,7)	\{5,9,4,10,3,11,2,1,13,6,8,1\}

It can be seen from the Table I. \(\Delta(F) = \Delta(C_{13}) \cup \Delta(C_{13}) \) covers each nonzero element in \(Z_{14} \) exactly four times. Since the cycles set \(F \) has trivial stabilizer based on Lemma 1, then the set \(F = \{ C_{13}, C_{13} \} \) is the starter set of \(CNHC(4K_{14}, C_{13}) \) by Lemma 2.

Therefore, \(CNHC(4K_{14}, C_{13}) \) is an \((14 \times 2)\) array design and cycles set \(F = \{ C_{13}, C_{13} \} \) in the first row generates all cycles in \((14 \times 2)\) array by repeated addition of 1 modular 14 as shown in the Table II.

Focus	\(CNHC(4K_{14}, C_{13}) \)	
\(r = 0 \)	(1,13,2,12,3,11,4,5,10,6,9,7,8) (13,8,12,9,11,10,4,3,5,2,6,1,7)	
\(r = 1 \)	(20,3,13,4,12,5,6,11,7,10,8,9) (0,9,13,10,12,11,5,4,6,3,7,2,8)	
\(r = 2 \)	(3,14,05,13,6,7,12,8,11,9,10) (1,10,0,11,13,12,6,5,7,4,3,9)	
\(i \)	\(i \)	\(i \)
\(r = 13 \)	(0,12,1,2,10,3,4,5,5,6,7,8,6,7) (12,7,11,8,10,9,3,2,4,15,0,6)	

Throughout the paper, a near Hamiltonian cycle of order \((v - 1)\) will be represented as connected paths, we mean that \(C_{r-1} = \{ c_{(1,1)}, c_{(1,2)}, \ldots, c_{(1,n)} \} \), where \(c_{(1,i)} \) and \(c_{(1,n)} \) are \((2n)\)-paths such that:

\[
P_{(n,1,2)} = \{ c_{(1,1)}, c_{(1,2)}, \ldots, c_{(n,1)}, c_{(2,1)} \},
\]

\[
P_{(n,2,1)} = \{ c_{(1,2)}, c_{(2,1)}, \ldots, c_{(2,n)}, c_{(4,1)} \}.
\]

Let the vertex sets of \(P_{(n,1,2)} \) and \(P_{(n,2,1)} \) are \(\{ U_{1=1}^{n-1}c_{(1,i)}, U_{1=1}^{n-1}c_{(2,i)} \}, \{ U_{1=1}^{n-1}c_{(1,i)}, U_{1=1}^{n-1}c_{(4,i)} \} \), respectively. And the list of difference sets of \(P_{(n,1,2)} \) and \(P_{(n,2,1)} \) will be calculated as follows:

\[
\Delta(P_{(n,1,2)}) = \Delta_{1}(P_{(n,1,2)}) \cup \Delta_{2}(P_{(n,1,2)}) \cup \Delta_{3}(P_{(n,1,2)}) \text{ such that:}
\]

\[
\Delta_{1}(P_{(n,1,2)}) = \{ \pm c_{(1,i)} - c_{(1,j)} \mid 1 \leq i < j \leq n \},
\]

\[
\Delta_{2}(P_{(n,1,2)}) = \{ \pm c_{(1,i)} - c_{(1,j)} \mid 1 \leq i < j \leq n - 1 \},
\]

\[
\Delta_{3}(P_{(n,1,2)}) = \{ \pm c_{(4,i)} - c_{(4,j)} \mid 1 \leq i < j \leq n \}.
\]
And we define \(\Delta(c_{1}, p_{1}, p_{2}, c_{1}) \) and \(\Delta(p_{1}, p_{2}, p_{3}, c_{1}) \) as follows:

\[
\Delta(c_{1}, p_{1}, p_{2}, c_{1}) = \pm |c_{1} - c_{1}|, \\
\Delta(p_{1}, p_{2}, p_{3}, c_{1}) = \pm |p_{1} - c_{1}|
\]

So, the list of difference of \(C_{n+1} \) shall be represented as follows:

\[
\Delta(C_{n+1}) = \Delta(p_{1}, p_{2}, p_{3}, c_{1}) \cup \Delta(p_{1}, p_{2}, p_{3}, c_{1}) \cup \\
\Delta(c_{1}, p_{1}, p_{2}, c_{1}) \cup \Delta(c_{1}, p_{1}, p_{2}, c_{1})
\]

Now we are able to provide our main result.

Theorem 1. There exists a full cyclic near Hamiltonian cycle system of \(4K_{n} \), \(CNHC(4K_{n}, C_{n+1}) \), when \(n = 2 + 2n > 2 \).

Proof. Suppose \(F = \{ C_{n+1}, C_{n+1}^{*} \} \) is a set of near Hamiltonian cycles of \(4K_{n} \) where \(C_{n+1} = \{ P_{1}, P_{2}, P_{3}, C_{1} \} \) and \(C_{n+1}^{*} = \{ 2n + 1, P_{1}, P_{2}^{*}, P_{3}^{*} \} \).

Such that:

- \(P_{1}^{*} = [4n + 1, 2n + 1, 3, \ldots, 3n + 2 + i] \) = \(\{ U_{i}^{n+1} n + i, 1 \leq i \leq 2n \} \)
- \(P_{2}^{*} = [n + 2, 3n + 1, n + 1, 2n + 1, 2n + 2] \)
- \(P_{3}^{*} = [4n + 1, 2n + 2, 4n + 2, 3n + 3, 3n + 4, 3n + 5, \ldots, 3n + 2n + 1 + i] \)
- \(P_{4}^{*} = [n + 2, n + 3, \ldots, 2n + 1, n + 1, 2n + 1] \)

We will divide the proof into two parts as follows:

Part 1. In this part will be proved that \(F \) satisfies a near-four-factor. We shall calculate the vertex set of \(C_{n+1} \) and \(C_{n+1}^{*} \) such that:

\[
V(C_{n+1}) = V(p_{1}^{*}) \cup V(p_{2}^{*}) \cup \{ 1 \}, \\
V(C_{n+1}^{*}) = V(p_{1}^{*}) \cup V(p_{2}^{*}) \cup \{ 2n + 1 \}
\]

\[
U_{i}^{p_{1}} = \{ 4n + 2 - i, 1 \leq i \leq n \} = \{ 4 + 1, 4n, \ldots, 3n + 2 \} \\
U_{i}^{p_{2}} = \{ i + 1, 1 \leq i \leq n \} = \{ 2, 3, \ldots, n + 1 \} \\
U_{i}^{p_{3}} = \{ n + 1, i + 1, 1 \leq i \leq n \} = \{ n + 2, n + 3, \ldots, 2n + 1 \} \\
U_{i}^{p_{4}} = \{ 3n + 2 - i, 1 \leq i \leq n \} = \{ 3n + 1, 3n + 2, \ldots, 2n + 2 \}
\]

From above equations, it is easy to notice that \(V(C_{n+1}) \) covers each nonzero element of \(Z_{4n+2} \) exactly once.
\[\Delta_0 \left(P_{n \times 2}^{m+1} \right) = U_{n+1}^{m+1} \cup \{ 2n, 2n+2 \} \]

- \[\Delta_0 \left(P_{n \times 2}^{m+1} \right) = U_{n+1}^{m+1} \cup \{ 2n, 2n+2 \} \]

\[\Delta_0 \left(P_{n \times 2}^{m+1} \right) = U_{n+1}^{m+1} \cup \{ 2n, 2n+2 \} \]

As clearly shown, in the equations (10), every nonzero element in \(Z_{4n+2} \) appears twice except \(\{ 2n, 2n+2 \} \) appear three times in \(\Delta(P_{n \times 2}^{m+1}) \). Based on Lemma 1, the cycles \(\{ C_{4n+1}, C_{4n+1} \} \) have trivial stabilizer. One can easily note that \(\Delta(F) = \Delta(C_{4n+1}) \cup \Delta(C_{4n+1}) \) covers each nonzero integer in \(Z_{4n+4} \) four times. Thus, \(F = \{ C_{4n+1}, C_{4n+1} \} \) is the starter cycles of cyclic (\(v \)-1)-cycle system of \(K_{n}^{1} \) by Lemma 2. Hence, the cycles set \(F = \{ C_{4n+1}, C_{4n+1} \} \) generates a full near Hamilton cycle system of \(K_{n}^{1} \) by adding one modular \(v \) when \(v = 4n + 2, n \geq 2 \).

IV. CYCLIC HAMILTONIAN WHEEL SYSTEM

A wheel graph of order \(m \), denoted by \(W_{m} \), consists of a singleton graph \(K_{1} \) and a cycle graph of order \(m-1 \), in which the \(K_{1} \) is connected to all the vertices of \(C_{m-1} \)-written \(K_{1} + C_{m-1} \) or \(c_{0} + \{ c_{1}, c_{2}, \ldots, c_{m-1} \} \). An \(m \)-wheel contains \(2(m-1) \) edges such that the edge set of \(W_{m} \) is \(E(W_{m}) = E(K_{1}) \cup E(C_{m-1}) \).

An \(m \)-wheel system of graph \(G \) is a decomposition of edge set of \(G \) into collection \(\mathcal{W} \) of \(W_{m} \) of edge-disjoint \(m \)-wheels. Similar to the cyclic system, an \(m \)-wheel system of \(\mathcal{K}_{m} \) is a cyclic if \(\mathcal{W}(\mathcal{K}_{m}) \) is \(Z_{e} \) and if \(W_{m} = c_{0} + \{ c_{1}, c_{2}, \ldots, c_{m-1} \} \) implies that \(W_{m} = \mathcal{W}(\mathcal{K}_{m}) \) covers each nonzero element of \(Z_{m} \) exactly four times. Now we want to find the list of differences from \(\{ K_{1}, K_{1} \} \) as a follows

\[\Delta(K_{1}, K_{1}) = \{ \pm c_{i} - c_{j} | 1 \leq i \leq m \} \]

such that the \(c_{j} \) appears twice except \(\{ c_{j} \} \) appear three times in \(\Delta(C_{4n+1}) \). \(\{ c_{j} \} \) \(Z_{14} \) four times. Thus, \(\mathcal{W} = \{ W_{4}, W_{4} \} \) is the starter set of \(\mathcal{K}_{14} \).

Then \(\mathcal{W}(\mathcal{K}_{14}, W_{4}) \) is an \((14 \times 2) \) array design where all its wheels can be generated by repeated addition 1 (modular 14) on the starter set \(\mathcal{W} \) as shown in the Table III.

\(\mathcal{W}(\mathcal{K}_{14}, W_{4}) \)
0 + (1, 1, 2, 3, 12, 13, 14, 5, 6, 7, 8)
1 + (2, 3, 13, 14, 12, 5, 6, 11, 10, 8, 9)
2 + (3, 4, 14, 15, 13, 6, 7, 12, 8, 11, 10)
3 + (0, 12, 11, 12, 6, 5, 4, 9, 8, 7, 6, 5)

The following theorem proves the existence of \(\mathcal{W}(\mathcal{K}_{4n+2}, \mathcal{W}) \).

Theorem 2. There exists a full cyclic Hamiltonian wheel system of \(\mathcal{K}_{m} \), \(\mathcal{W}(\mathcal{K}_{m}, \mathcal{W}) \), for \(v = 4n + 2, n > 2 \).

Proof. We have to present a starter set \(\mathcal{W} = \{ K_{1} + C_{4n+1}, K_{1} + C_{4n+1} \} \) of \(\mathcal{W}(\mathcal{K}_{4n+2}, \mathcal{W}) \) such
that the cycles associated with the wheels in W satisfy a near-four-factor with focus a singleton graph.

Suppose $W = \{0 + C_{2n+1}, 0 + C_{4n+1} \}$ is a set of Hamiltonian wheels of $3K_{2n+2}$ where

$$C_{2n+1} = (1, P_{2n+1}^{2n+1}),$$
$$C_{4n+1} = (2n + 1, P_{2n+1}^{2n+1}, P_{4n+1}^{2n+1}).$$

Such that:

- $P_{2n+1}^{2n+1} = [4n + 1, 2, 4n, 3, \ldots, 3n + 2, n + 1].$
- $P_{4n+1}^{2n+1} = [2n + 1, 2n + 1, 3n + 2, n + 1].$

Now, we want to prove $W = \{K_n + C_{2n+1}, K_n + C_{4n+1} \}$ is a $\lambda K_n, W$-difference system. To do this, it is enough to show that the list of differences

$$\Delta W = \{\Delta(C_{2n+1}) \cup \Delta(C_{4n+1}) \cup \Delta(K_{1, (4n+1)}^{n}) \cup \Delta(K_{1, (4n+1)}^{n+1})\}$$

covers each element of $\{Z_{4n+2} - \{0\}\}$ eight times. Firstly, as indicated in Theorem 1, the list of differences of $\{C_{4n+1}, C_{4n+1}\}$ cover each nonzero element in Z_{4n+2} exactly four times.

Secondly, the list of differences of $\{K_{1, (4n+1)}^{n}, K_{1, (4n+1)}^{n+1}\}$ is $\{\pm c_i - 0 | i \in C_{4n+1}\}.$ Since $V(C_{4n+1}) = Z_{4n+2} - \{0\}$ then $\{c_i - 0 | i \in C_{4n+1}\} = Z_{4n+2} - \{0\}.$ Because of $Z_{4n+2} = \{Z_{4n+2} - \{0\}\},$ then $\Delta(K_{1, (4n+1)}^{n}) = \{\pm c_i - 0 | i \in C_{4n+1}\}$ covers each nonzero element of Z_{4n+2} twice. Likewise, we repeat the same strategy on cycle $K_{1, (4n+1)}^{n+1}$ to find $\Delta(K_{1, (4n+1)}^{n+1})$. Also, it is an easy matter to check that $\Delta(K_{1, (4n+1)}^{n+1}) = \Delta(K_{1, (4n+1)}^{n}).$

Linking together the above list of differences, we see that ΔW covers each nonzero element of Z_{4n+2} eight times. On the other hand, each wheel graph in W has trivial stabilizer based on Lemma 1. Therefore, W is the starter set of $\text{CHWS}(3K_{2n+2}, W)$, by Lemma 2. One can be generated $\text{CHWS}(3K_{2n+2}, W)$ by repeated addition 1 modular ν on W. □

V. CONCLUSION

In this paper, we have provided new designs $\text{CNHC}(4K_{2n}, C_{2n+1})$ and $\text{CHWS}(3K_{2n+2}, W)$ where $\nu \equiv 2(\text{mod} 4)$. These designs are interested in a decomposition of complete multigraph into cyclic $(\nu - 1)$-cycle and cyclic (ν)-wheel graphs, respectively. We have also proved the existence of these designs by constructed the starter set for each of them. Moreover, one can ask if $\text{CNHC}(2\lambda K_{2n}, C_{2n+1})$ and $\text{CHWS}(2\lambda K_{2n+2}, W)$ can be constructed for the case $\nu \equiv 2, 4 (\text{mod} 4)$ and $\lambda > 2$.

REFERENCES

[1] S. L. Wu and H. C. Lu, “Cyclically decomposing the complete graph into pendant edges.” ARS COMBINATORIA-WATERLOO THEN WINNIPEG, vol. 86, no. 217, 2008.
[2] B. R. Smith, “Cycle decompositions of complete multigraphs,” Journal of Combinatorial Designs, vol. 18, no. 2, pp. 85-93, 2010.
[3] D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, “Cycle decompositions of complete multigraphs,” Journal of Combinatorial Designs, vol. 19, no. 1, pp. 42-69, 2011.
[4] B. Alspach and H. Gavlas, “Cycle decompositions of K_n and K_{n-1}.” Journal of Combinatorial Theory, Series B, vol. 81, no. 1, pp. 77-99, 2001.
[5] M. Saîna, “Cycle decompositions III: complete graphs and fixed length cycles,” Journal of Combinatorial Designs, vol. 10, no. 1, pp. 27-42, 2002.
[6] M. J. Colbourn and J. Colbourn, “Cyclic block designs with block size 3,” European Journal of Combinatorics, vol. 2, no. 1, pp. 21-26, 1981.
[7] M. Buratti and A. Del Fra, “Cyclic Hamiltonian cycle systems of the complete graph,” Discrete mathematics, vol. 279, no. 1, pp. 107-119, 2004.
[8] F. Beggas, M. Haddad and K. Kheddouci, “Decomposition of Complete Multigraphs Into Stars and Cycles,” Discussiones Mathematicae Graph Theory, vol. 35, no. 4, pp. 629-639, 2015.
[9] R. S. Rees, “The spectrum of triangle-free regular graphs containing a cut vertex,” Australasian Journal of Combinatorics, vol. 26, pp. 135-14, 2002.
[10] S. L. Wu and H. L. Fu, “Cyclic m - cycle systems with $m \leq 32$ or $m = 2q$ with q a prime power.” Journal of Combinatorial Designs, vol. 14, no. 1, pp. 66-81, 2006.
[11] M. Buratti, “A description of any regular or 1-rotational design by difference methods,” Booklet of the abstracts of Combinatorics, pp. 35-52, 2000.
[12] S. Pemmaraju and S. Skiena, “Cycles, stars, and wheels,” Computational Discrete Mathematics Combinatorics and Graph Theory in Mathematica, pp. 284-249, 2003.