Individuals under chronic stress suffer anxiety and depression at higher rates than sex- and age-matched controls (O’Donovan et al., 2010; Slavich & Irwin, 2014). In modern society, some of the primary sources of chronic stress are social in nature, relating to relationships and conflicts with other people (McEwen, 2003, 2004; Slavich & Irwin, 2014). As such, the development of appropriate animal models could provide insights into the behavioral, physiological, and neurological consequences associated with chronic social stressors. In addition, using these models to demonstrate how individuals respond to the termination of these same stressors may provide insight into potential therapeutic applications to mitigate symptoms associated with chronic stress with specific implications for anxiety and depressive disorders.
Historically, the most common rodent model that has been utilized to investigate chronic social stress is the social defeat model (a.k.a. “resident-intruder” model; Golden, Covington, Berton, & Russo, 2011; Hollis & Kabbaj, 2014; Iniguez et al., 2014; Kinsey, Bailey, Sheridan, Padgett, & Avitsur, 2007; Watt, Burke, Renner, & Forster, 2009). This model involves a male rodent subject (i.e., the “intruder”) being introduced to a larger and more aggressive male’s cage (i.e., the “resident”). The subject is often attacked repeatedly by the aggressive resident, eventually resulting in the subject expressing behavioral and physiological symptoms that resemble human populations experiencing clinical anxiety and depression (e.g., social withdrawal, anhedonia; Hollis and Kabbaj, 2014; Iniguez et al., 2014; Kinsey et al., 2007; Watt et al., 2009; Zhang, Yuan, Shao, & Wang, 2016).

For at least two reasons, the social defeat paradigm has been insufficient for providing a complete picture of the neuroendocrine correlates of depression and anxiety. First, the social defeat model involves both physical (i.e., attacks by resident male) and psychological (i.e., being placed into an unfamiliar cage) stressors, whereas the most common sources of social stress in modern human populations are psychological. Physical stressors certainly exist, even in Western societies (e.g., malnutrition, infectious diseases), but psychosocial stressors are recognized as frequent precursors to onset of depressive and anxiety disorders (Juster, McEwen, & Lupien, 2010; McEwen, 2004, 2005; Slavich & Irwin, 2014). Second, the social defeat model is typically only effective with male rodents (although, see Harris et al., 2018; Takahashi et al., 2017; Williams et al., 2018) because males tend to be more aggressive than females (Solomon, 2017). However, women report experiencing depressive or anxiety symptoms two times more frequently than men (McLean, Asnaani, Litz, & Hofmann, 2011; Silverstein, 2002). Therefore, a rodent model that involves a primarily psychological stress and is effective with females might provide insights that have been missed when using the social defeat paradigm.

One alternative model has been developed in which male mice either experience or witness social defeat (Warren et al., 2013). Although this testing paradigm allows for the assessment of strictly psychological stress (in the witnesses), it still employs male subjects. Recently, a social instability paradigm was developed and found to be effective at eliciting the predicted behavioral and hypothalamic-pituitary-adrenal (HPA) responses in female subjects (Herzog et al., 2009; Jarcho, Massner, Eggert, & Wichelt, 2016). This paradigm is characterized by frequent and unpredictable changes to the subjects’ social environments including social isolation and social crowding.

The social instability model described above was designed to accurately translate to frequent and substantial changes to one’s social environment in humans. Given that social stressors may last for weeks to months (e.g., family disagreements, feeling excluded from a group), or longer (e.g., end of a marriage, loss of a loved one), assessing glucocorticoid responses over a comparable timeline is ideal. Common methods of sampling glucocorticoids involve the collection of either blood plasma or saliva. Additionally, urinary and fecal samples provide insight to HPA functioning over the preceding hours (Harper & Austad, 2015; Shamim, Yousufuddin, Bakhai, Coats, & Honour, 2000). These methods give “point” values that are highly variable within the same individual, and within a given day. A number of variables are known to affect plasma and salivary samples in particular (e.g., food intake, exercise, time of day/year) and need to be controlled for or taken into account, and repeated samples are required for an accurate understanding of HPA regulation (Davenport, Tiefenbacher, Lutz, Novak, & Meyer, 2006). Sampling glucocorticoids (i.e., corticosterone in rodents, cortisol in primates) in hair, however, is a newer method that allows for the noninvasive assessment of glucocorticoids over a longer period of time with a single sample and has been shown to accurately reflect individual responses to various social stressors in rhesus macaques (Davenport et al., 2006; Dettmer, Novak, Meyer, & Suomi, 2014; Dettmer, Novak, Novak, Meyer, & Suomi, 2009; Dettmer, Novak, Suomi, & Meyer, 2012). Further, because the hair samples reflect HPA activity over the entire period that the hair has been growing (5 weeks in the current study), variables like stage of estrous cycle and time of day are inherently controlled.

Previous work in this lab (Jarcho et al., 2016) has shown that female mice exposed to social instability experience an increase in hair corticosterone, indicating that HPA activity is elevated in these animals throughout the time that they experience social instability. However, we were unable to determine whether our effects were unique to social instability stress itself, or whether they would be common across other social stressors. In addition, previous work by this lab was limited because we did
Comparing Chronic Social Stressors

Thus, for the current study, we investigated whether social stress and social isolation stress has not been investigated. Cytokine expression resulting from social instability has been demonstrated using chronic variable stress and forced-swim stress models (Badowska-Şahin et al., 2013; Liu et al., 2015), brain stress and forced-swim stress models (Badowska-Şahin et al., 2013; Liu et al., 2015), to determine the effect of chronic social stress on mRNA expression. We specifically looked at the involvement of tumor necrosis factor alpha (TNF-α), interleukin 1 receptor beta receptor (IL-1βR), and glial fibrillary acidic protein (GFAP). Expression of proinflammatory cytokines including TNF-α and IL-1βR have been found to increase following chronic stress (Badowska-Szalewska et al., 2013; Liu et al., 2015), and increased levels of these markers have been implicated in the etiology of stress-associated disorders like depression and posttraumatic stress disorder in rat models (Jones, Lebonville, Barrus, & Lysle, 2015; Şahin et al., 2015). Because IL-1β is thought to be a key mediator in a variety of behavioral actions of stress, its receptor has emerged as an attractive target for the treatment of stress-related disorders like depression (Koo & Duman, 2009a, 2009b). Although increased cytokine levels following stress have been demonstrated using chronic variable stress and forced-swim stress models (Badowska-Szalewska et al., 2013; Liu et al., 2015), brain cytokine expression resulting from social instability and social isolation stress has not been investigated. Thus, for the current study, we investigated whether elevated brain TNFα and IL-1βR were also observed in our social stress paradigms.

Our third marker, GFAP, is an intermediate filament component of astrocytes and is often used as an indicator of astrocyte activity and function (Hol & Pekny, 2015). Because GFAP expression has been found to be an important stress-related endpoint and indicator of astrocyte function, we wanted to determine how its expression would change in response to our social stress paradigm(s).

Our overall prediction for the current study was that both forms of chronic social stress would induce behavioral, physiological, and neuronal changes when compared to controls, and that social instability would be a more potent chronic social stressor than social isolation. The predicted difference between forms of chronic social stress was based on the fact that social instability is more stress sensitive brain regions, leading to anxiety-like and depressive behaviors (Li, Yang, Ma, & Qu, 2013; Rahati, Nozari, Eslami, Shabani, & Basiri, 2016). Because GFAP expression has been found to be an important stress-related endpoint and indicator of astrocyte function, we wanted to determine how its expression would change in response to our social stress paradigm(s).

Our overall prediction for the current study was that both forms of chronic social stress would induce behavioral, physiological, and neuronal changes when compared to controls, and that social instability would be a more potent chronic social stressor than social isolation. The predicted difference between forms of chronic social stress was based on the fact that social instability is more stress sensitive brain regions, leading to anxiety-like and depressive behaviors (Li, Yang, Ma, & Qu, 2013; Rahati, Nozari, Eslami, Shabani, & Basiri, 2016). Because GFAP expression has been found to be an important stress-related endpoint and indicator of astrocyte function, we wanted to determine how its expression would change in response to our social stress paradigm(s).

Our third marker, GFAP, is an intermediate filament component of astrocytes and is often used as an indicator of astrocyte activity and function (Hol & Pekny, 2015). Because GFAP expression has been shown to occur in the brains of stressed animals (Araya-Callís, Hiemke, Abumaria, & Flugge, 2012; Imbe, Kimura, Donishi, & Kaneoke, 2013) indicating astrocyte dysfunction. Considering that astrocytes are critical in supporting neuronal functioning, astrocyte dysfunction may lead to neuronal dysfunction, particularly in stress sensitive brain regions, leading to anxiety-like and depressive behaviors (Li, Yang, Ma, & Qu, 2013; Rahati, Nozari, Eslami, Shabani, & Basiri, 2016). Because GFAP expression has been found to be an important stress-related endpoint and indicator of astrocyte function, we wanted to determine how its expression would change in response to our social stress paradigm(s).

Our overall prediction for the current study was that both forms of chronic social stress would induce behavioral, physiological, and neuronal changes when compared to controls, and that social instability would be a more potent chronic social stressor than social isolation. The predicted difference between forms of chronic social stress was based on the fact that social instability is more stress sensitive brain regions, leading to anxiety-like and depressive behaviors (Li, Yang, Ma, & Qu, 2013; Rahati, Nozari, Eslami, Shabani, & Basiri, 2016). Because GFAP expression has been found to be an important stress-related endpoint and indicator of astrocyte function, we wanted to determine how its expression would change in response to our social stress paradigm(s).

Our third marker, GFAP, is an intermediate filament component of astrocytes and is often used as an indicator of astrocyte activity and function (Hol & Pekny, 2015). Because GFAP expression has been shown to occur in the brains of stressed animals (Araya-Callís, Hiemke, Abumaria, & Flugge, 2012; Imbe, Kimura, Donishi, & Kaneoke, 2013) indicating astrocyte dysfunction. Considering that astrocytes are critical in supporting neuronal functioning, astrocyte dysfunction may lead to neuronal dysfunction, particularly in stress sensitive brain regions, leading to anxiety-like and depressive behaviors (Li, Yang, Ma, & Qu, 2013; Rahati, Nozari, Eslami, Shabani, & Basiri, 2016). Because GFAP expression has been found to be an important stress-related endpoint and indicator of astrocyte function, we wanted to determine how its expression would change in response to our social stress paradigm(s).

Our overall prediction for the current study was that both forms of chronic social stress would induce behavioral, physiological, and neuronal changes when compared to controls, and that social instability would be a more potent chronic social stressor than social isolation. The predicted difference between forms of chronic social stress was based on the fact that social instability is more stress sensitive brain regions, leading to anxiety-like and depressive behaviors (Li, Yang, Ma, & Qu, 2013; Rahati, Nozari, Eslami, Shabani, & Basiri, 2016). Because GFAP expression has been found to be an important stress-related endpoint and indicator of astrocyte function, we wanted to determine how its expression would change in response to our social stress paradigm(s).

Our overall prediction for the current study was that both forms of chronic social stress would induce behavioral, physiological, and neuronal changes when compared to controls, and that social instability would be a more potent chronic social stressor than social isolation. The predicted difference between forms of chronic social stress was based on the fact that social instability is more stress sensitive brain regions, leading to anxiety-like and depressive behaviors (Li, Yang, Ma, & Qu, 2013; Rahati, Nozari, Eslami, Shabani, & Basiri, 2016). Because GFAP expression has been found to be an important stress-related endpoint and indicator of astrocyte function, we wanted to determine how its expression would change in response to our social stress paradigm(s).
stress-associated depression and anxiety (Lehmann et al., 2016; Weber, Godbout, & Sheridan, 2017), we expected markers of inflammation to be expressed at higher levels in those animals that had experienced chronic social stress (i.e., either isolation or instability), and that animals experiencing instability would express these markers at the highest levels. Given that chronic stress can be accompanied by a proinflammatory profile due to glucocorticoid resistance (Avitsur, Stark, & Sheridan, 2001; Cacioppo, Cacioppo, Capitanio, & Cole, 2015; Hawkley, Cole, Capitanio, Norman, & Cacioppo, 2012), we predicted that subjects showing increased expression of proinflammatory markers would also have elevated hair corticosterone following the stress period. Therefore, we predicted that both groups of animals experiencing social stress would show elevated hair corticosterone levels, and that those experiencing social instability would have the highest hair corticosterone levels.

Method

Subjects and Study Outline

Adult (Age in weeks, \(M = 12.33, \ SE = 0.45 \) at start of baseline, \(M = 22.33, \ SE = 0.45 \) at end of Stress period, and \(M = 27.24, \ SE = 0.78 \) weeks at end of Recovery) female CD-1 mice (\(N = 27 \)) that were bred in our facility at Loras College were housed in clear plastic cages (10.5'' x 19'' x 6'', Allentown, Inc., Allentown, NJ) in a temperature- and humidity-controlled animal facility on a 12-hour light-dark cycle with food and water available *ad libitum*. All behavioral testing occurred within the first 4 hours of the dark (i.e., active) period. Mice were randomly assigned to either the control (\(n = 9 \)), social instability (\(n = 9 \)), or social isolation (\(n = 9 \)) groups, similar to the experimental groups in previous work (Maslova, Bulygina, & Amstislavskaya, 2010). Animals in the control group remained with two familiar females throughout the study, and all animals in the cage were used for the study. Animals in the social instability and social isolation groups spent the first 5 weeks of the study (i.e., “Baseline”) housed with two other females. During the “Stress” period of the experiment, animals in the social instability group experienced an unpredictable and unstable social environment. At varying times of day, these animals were moved every 24–48 hours between social isolation (i.e., housed by themselves) and social crowding (i.e., housed with six female conspecifics in the same cage dimensions) for 5 weeks. This social instability model was based on previous work in rats (Herzog et al., 2009) and mice (Jarcho et al., 2016). For social crowding, animals were returned to the same cage and same cohabitants for each exposure. This housing paradigm is considered stressful because the animals have no control over their social environment, nor are they able to predict exactly how long they will remain in either isolated or crowded social conditions (Baranyi et al., 2005; Haller et al., 1999; Herzog et al., 2009). During this time, animals in the social isolation group were housed continuously in isolation. To control for any handling effects, control and isolated animals were handled on all days that animals in the social instability group were moved. Animals in all experimental groups were returned to their original housing groups (i.e., same subjects housed together as were housed together during baseline) for the final five weeks of the study (i.e., “Recovery”; see Table 1). Adequate measures were taken to minimize pain or discomfort, and all experiments were conducted in accordance with international standards on animal welfare, were compliant with local and national regulations, and were approved by the Institutional Animal Care and Use Committee at Loras College.

Behavioral Testing

All animals were weighed and assessed for behavioral expressions of anxiety and depression once per week throughout the 15-week study in an open field maze and an elevated plus maze (\(n = 9 \) per group during the baseline and stress periods, \(n = 6 \) per group during the recovery period). Mice were tested for 5 minutes on each maze and were video recorded under dim red lighting. Video recordings were scored using Behavior Tracker 1.5 (www.behaviortracker.com) by observers blind to the experimental manipulations. In the open field, the duration of time spent in the center or perimeter of the open field, and frequency of rearing were quantified. In the elevated plus maze, the time spent in the “open” and “closed” arms were quantified.

Brain Tissue Collection

One third of the animals for each group (\(n = 3 \) per group) were randomly selected to be euthanized at the same time for brain tissue collection 24 hours after the end of the stress period at approximately 1300 hours. Animals were euthanized by CO\(_2\) asphyxiation. Brains were extracted and the entire hippocampus, both dorsal and ventral aspects, was collected from each mouse. Tissue was placed in tubes containing RNAlater (ThermoFisher,
Waltham, MA) and stored at 4°C until mRNA analyses were conducted.

Gene Expression Analyses
mRNA from mouse hippocampus was isolated using Pure Link spin columns (ThermoFisher, Waltham, MA), and cDNA was synthesized using Verso cDNA synthesis kit (ThermoFisher, Waltham, MA). Real-time polymerase chain reaction (RT-PCR) was performed using PowerUp SYBR Green Master Mix (ThermoFisher, Waltham, MA) and gene specific primers (see Table 2; Integrated DNA Technologies, Coralville, IA). Samples were run in triplicate using a StepOnePlus RT-PCR System (Applied Biosystems, Inc., Foster City, CA). Data were analyzed using the 2^ΔΔCt method (Livak & Schmittgen, 2001), and mRNA expression of target genes was normalized to that of the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Data are expressed as fold change of levels compared to control mice.

Hair Sample Collection and Preparation

To ensure that hair corticosterone samples represented HPA activity during the study, mice were shaved at the start of the baseline period. This hair was not collected or analyzed for corticosterone. Mice were shaved again at the end of the 5-week baseline (n = 9 per group), stress (n = 9 per group), and recovery (n = 6) periods. Hair was collected from the posterior dorsal portion of the animals (see Figure 1) in order to minimize auto-grooming of the shaved area. Collection was conducted without anesthesia by two trained technicians, one to immobilize the mouse and one to operate the hair clippers (Wahl Clipper Corporation, Sterling, IL). Animals were shaved using the same protocol regardless of experimental group to eliminate any handling effects on hair corticosterone. Hair samples were collected, weighed (mean weight 13.9±0.3 mg), and stored in a -20°C freezer until assay. Samples were prepared following a modified previously published protocol (Davenport et al., 2006). Briefly, samples were washed with isopropanol to remove debris and external corticosterone while minimally affecting corticosterone levels inside the hair (Davenport et al., 2006; Gow, Thomson, Rieder, Van Uum, & Koren, 2010). Washing involved adding 1 ml of isopropanol to each sample for a 5-minute incubation, followed by centrifugation at 13,000 rpm at room temperature prior to removing the solution. Washing was repeated two additional times for all samples. Washed samples were allowed to dry by leaving them in a laminar flow hood for 24 hours. Samples were then chopped into fine pieces with a razor blade to facilitate steroid extraction (Yu et al., 2015). To obtain a holistic measure of HPA activity throughout a given period of the study (e.g., throughout the Baseline period), the entire sample was processed. Steroids were then

TABLE 1
Description of Social Instability Methodology
Control
Shave: sample not assayed
Week 1–5
Shave: baseline sample
Week 6 Stress
Week 7 Stress
Week 8 Stress
Week 9 Stress
Week 10 Stress

Note: All animals were shaved initially to ensure corticosterone concentrations reflected only the study period. The study was comprised of three 5-week phases: (a) baseline, (b) stress, and (c) recovery. During each phase, mice were weighed and assessed behaviorally once per week. At the end of each phase, mice were shaved and hair was collected to assess corticosterone production. All mice were housed three mice per cage for 5 weeks leading up to the study. Controls remained in these groups for the duration of the study. Mice in the isolation group were isolated for 5 weeks, and then returned to the same groups of 3 for 5 weeks. Mice in the instability experienced multiple changes in their housing environment for 5 weeks prior to returning to a stable housing environment of three mice per cage for the final 5 weeks of the study. All mice were weighed and tested behaviorally once per week, and hair samples were collected for corticosterone analyses from all mice at the time points indicated. Three animals from each experimental group were sacrificed at the end of the stress period for collection of brain tissue samples.
extracted from the chopped hair by incubating the samples in methanol for 24 hours. Samples were centrifuged for 5 minutes at 13,000 rpm at room temperature and the steroid-containing methanol solution supernatant was collected. This solution was purified by passing it through Supelco-select HLB SPE tubes (Sigma-Aldrich). Purified extracts were reconstituted with assay buffer (Arbor Assays, Ann Arbor, MI).

Corticosterone Assays
Reconstituted samples were assayed in duplicate(s) for corticosterone via commercially available enzyme immunoassay kits (Arbor Assays, Ann Arbor, MI). The detectable range of corticosterone for these kits was 78.125–10,000 pg/ml, and the intra-assay and inter-assay coefficients of variance were 16.43 and 6.59, respectively. Corticosterone concentrations as detected by enzyme immunoassay were then matched with the original weight of the hair collected in order to account for minor variations in hair quantity collected. Corticosterone concentrations are, therefore, expressed in pg/mg of hair.

Statistical Analyses
Physiological and behavioral patterns were evaluated with a 3 x 3 repeated-measures Analysis of Variance (ANOVA) with group (i.e., social instability vs. social isolation vs. control) and time (i.e., baseline vs. stress vs. recovery) included as main factors, a group by time interaction term, and individual subject identity as a within subject factor. For behavioral trials that were conducted every week (i.e., five trials per mouse per period of the study), averages were calculated for each individual for each period of the study. That is, each subject had three averages for each behavioral measure—one at baseline, one at stress, and one at recovery. Post-hoc t tests were used to compare social instability values to controls, to compare social isolation values to controls, and to compare baseline to stress to recovery levels within groups. Analyses of mRNA expression levels was assessed with ANOVA. An α of .05 was used in all statistical analyses, and Bonferroni adjustment was used to correct for multiple tests. Effect sizes were calculated as partial eta-squared (η²) for ANOVA and as Cohen’s d for t tests. Post-hoc power analyses were conducted using G*Power software (Faul, Erdfelder, Lang, & Buchner, 2007) with an α level of .05. Power values are reported following estimates of effect size as 1-beta (1-β).

Results

Effect of Social Stress on Body Mass
Animals were weighed once per week throughout the study, and weights were averaged across individuals within experimental groups. Repeated-measures ANOVA with main effects of time and group did not yield significant differences for either main effect, nor was there a Group x Time interaction (all ps > .05).

Figure 1
Area of fur collected for corticosterone assays. Following each period of the study (i.e., Baseline, Stress, Recovery) hair samples were collected for corticosterone quantification. Hair was collected from the posterior dorsal surface of the mice, between the tail and hind legs. Shaded area represents target area to be shaved.

Table 2

Gene	Species	Accession	Forward	Reverse
GFAP	Mouse	NM_010277.2	TGGCGGGGGCTCTAGTGTCG	GGGCAGCTCCCGGCATGGCCCT
IL-1Beta R	Mouse	NM_010555.2	GGGCCCTACAGGAAGAAGTGT	TACAGTTGGGAACCTGTCG
TNF alpha	Mouse	NM_013693.2	GAACCTGGGCAAGAGGACCT	AGGCTGGGCCCAAGAAGT
GAPDH	Mouse	NM_008084	AACCTGCAGATGTGGGAAGG	GGATCAGGAGGATGTGTTCT

Note. GFAP = glial fibrillary acidic protein. IL-1Beta R = interleukin 1 receptor beta receptor. TNF alpha = tumor necrosis factor alpha. GAPDH = glyceraldehyde 3-phosphate dehydrogenase.
Comparing Chronic Social Stressors

No group differences were seen in the amount of time spent in either the open arms of the elevated plus maze or the center of the open field (all ps > .1). The only behavior that showed group differences was rearing in the open field maze. This indicator of anxiety remained relatively constant in control mice, but increased during the stress period in the isolation and instability animals (see Figure 2). Rearing frequency was predicted by experimental group, $F(2, 351) = 6.91, p = .001, \eta^2 = .04, (1-\beta) = 0.94$, and post-hoc tests revealed that this effect was primarily driven by differences between rearing patterns of mice in the instability group: compared to controls, $t(238) = 2.37, p = .018, d = 0.10, (1-\beta) = 0.90$; compared to isolated animals, $t(238) = 3.87, p < .001, d = 0.14, (1-\beta) = 0.92$, whereas isolated animals did not show different rearing patterns from controls ($p > .1$).

Effect of Social Stressors on RNA Expression Patterns in the Brain

In hippocampal samples, IL-1β mRNA levels differed across experimental groups, $F(2, 6) = 5.65, p = .045, \eta^2 = .85, (1-\beta) = 0.99$ (see Figure 3a), and post-hoc tests revealed significant differences when any two groups were compared, with expression levels being lowest in controls, higher in isolated animals, and highest in instability animals: control vs. isolation, $t(4) = 5.21, p = .032, d = 2.53, (1-\beta) = 0.64$; control vs. instability, $t(4) = 11.89, p < .01, d = 4.12, (1-\beta) = 0.96$; isolation vs. instability, $t(4) = 5.93, p = .031, d = 2.28, (1-\beta) = 0.57$. A similar pattern was observed for TNFα mRNA with differences in expression across experimental groups, $F(2, 6) = 8.89, p = .042, \eta^2 = .86, (1-\beta) = 0.99$ (see Figure 3b). Post-hoc analyses revealed differences between all groups, again with expression levels being lowest in controls, higher in isolated animals, and highest in instability animals: control vs. isolation, $t(4) = 8.29, p = .01, d = 3.37, (1-\beta) = 0.87$; control vs. instability, $t(4) = 12.12, p < .01, d = 4.22, (1-\beta) = 0.96$; isolation vs. instability, $t(4) = 5.96, p = .03, d = 2.44, (1-\beta) = 0.60$. Hippocampal mRNA levels for GFAP showed a similar pattern of group differences in expression, but in the opposite direction, $F(2, 6) = 13.37, p = .006, \eta^2 = .82, (1-\beta) = 0.99$. Post-hoc analyses revealed lower and lowest expression patterns in isolated and instability animals, respectively: control vs. isolation, $t(4) = 7.51, p = .02, d = 2.91, (1-\beta) = 0.76$; control vs. instability, $t(4) = 9.48, p = .01, d = 3.58, (1-\beta) = 0.90$; isolation vs. instability, $t(4) = 4.09, p = .05, d = 1.79, (1-\beta) = 0.39$ (see Figure 3c).

Effect of Social Stressors on Hair Corticosterone

Hair corticosterone concentrations were assessed by repeated-measures ANOVA, which revealed a significant group by time interaction, $F(4, 63) = 3.47, p = .013, \eta^2 = .18, (1-\beta) = 0.89$ (see Figure 4), indicating different patterns of corticosterone production over time between the three groups. In addition, the phase of the study predicted corticosterone concentrations, $F(2, 63) = 15.41, p < .001, \eta^2 = .35, (1-\beta) = 0.99$. However, the experimental group was not a significant predictor of corticosterone concentrations, $F(2, 63) = 0.85, p = .42, \eta^2 = .03, (1-\beta) = 0.17$. Post-hoc analyses revealed group differences in corticosterone concentrations during the stress period: control vs. isolation, $t(16) = 2.76, p = .025, d = 1.08, (1-\beta) = 0.58$; control vs. instability, $t(16) = 3.98, p = .004, d = 1.49, (1-\beta) = 0.84$, but no differences between groups during either the baseline or recovery periods, and no differences between instability and isolation animals at any period (all ps > .25).

Discussion

We predicted that both social instability and social isolation would have behavioral, physiological, and neural consequences in adult female mice, and that social instability would have amplified

WINTERTH1201

PSI CHI JOURNAL OF PSYCHOLOGICAL RESEARCH

Copyright © 2018 by PSI CHI, THE INTERNATIONAL HONOR SOCIETY IN PSYCHOLOGY (VOL. 23, NO. 5 ISSN 2325-7342)
consequences. Specifically, we predicted that either social stressor would be associated with increases in hippocampal expression of proinflammatory mRNA, increases in the expression of certain anxiety-like behaviors, and increases in hair corticosterone. We further predicted that social instability would have more potent effects on each of these measures, as a result of being less predictable for the animals experiencing this social stressor. We observed significant increases in markers of neuroinflammation and reduced glial health in animals that experienced both social stressors, and significantly greater changes in animals that experienced social instability. We observed increased rearing behavior only in animals that experienced social instability. Lastly, we observed increased hair corticosterone concentrations in all animals that experienced chronic social stress.

Differences in hippocampal mRNA expression were observed between experimental groups and were greatest between animals that had experienced social instability and controls. Females that experienced social instability were characterized by decreases in a marker of astrocyte structural stability (i.e., GFAP) and increases in markers of neural inflammation (i.e., IL-1βR and TNFα). The decrease in hippocampal GFAP is consistent with other studies showing that chronic stress, and elevated glucocorticoids in particular, leads to a reduction of GFAP within the hippocampus and other areas of the brain (Liu et al., 2011; Tynan et al., 2013; Zhang, Zhao, & Wang, 2015). Glucocorticoids are known to modulate GFAP expression throughout the brain (O’Callaghan, Brinton, & McEwen, 1989), with prolonged corticosterone treatments causing a decrease in GFAP mRNA expression in the hippocampus and cerebral cortex (Nichols et al., 1990). Corticosterone treatment to adult rats also decreases GFAP protein levels in several brain regions whereas adrenalectomy increases the GFAP protein levels (O’Callaghan et al., 1989). Thus, glucocorticoids may be involved in the suppression of GFAP. Although the exact cause of astrocyte atrophy under stressful conditions is poorly understood, there is evidence to suggest that changes in astrocyte morphology and viability is a consequence of immune activation (Lee et al., 2013), specifically attributed to the cytokines TNF-alpha and IL-1beta (van Kralingen, Kho, Costa, Angel, & Graham, 2013), which are likely produced by glucocorticoid-activated microglia.
Comparing Chronic Social Stressors | Jarcho, Avery, Kornacker, Hollingshead, and Lo

Hippocampal inflammation, driven by the cytokines TNF-alpha and IL-1β, has been shown to play a key role in the pathogenesis of depression and anxiety (Abbott et al., 2015; Goshen et al., 2008). In our work, we detected an increase in hippocampal TNF-alpha and IL-1βR in mice subjected to psychosocial stressors. Consistent with previous reports, social defeat stress has been shown to elevate the expression of cytokines and their receptors in the hippocampus (Joana et al., 2016; McQuaid, Audet, Jacobson-Pick, & Anisman, 2015). Differences in stressor, strain, and sex can all independently vary brain cytokines levels (Deak et al., 2015; Gibb, Hayley, Poulter, & Anisman, 2011; Razzoli, Carboni, Andreoli, Ballottari, & Arban, 2011). Therefore, it is difficult to put the scale of our observations—35-fold increase in hippocampal IL-1βR expression and 62-fold increase in hippocampal TNF-alpha mRNA expression in social instability-stressed mice compared to controls—in the context of other social stressor studies that did not utilize the exact same variables. Although, to the best of our knowledge, there is no direct correlate for our present study, our observed numbers are comparable to the elevation in hippocampal cytokine expression that follows lipopolysaccharide (LPS) administration (Browne, O’Brien, Connor, Dinan, & Cryan, 2012; Czapski, Gajkowska, & Strosznajder, 2010; Henry et al., 2008; Shin et al., 2014).

Given these comparisons, the current study supported previous findings indicating the power of social stressors to promote inflammation in the hippocampus. Our mRNA results indicate that chronic social stress induces an unfavorable neural environment characterized by astrocyte dysfunction and increased neuroinflammation, both of which are implicated in the development of neurological dysfunction and behavioral symptoms associated with stress-related disorders like depression (Bortolato, Carvalho, Soczynska, Perini, & McIntyre, 2015; Cobb et al., 2016).

Importantly, differences in expression patterns were present not just between control and stressed animals, but also between animals experiencing the two types of social stress. This suggests that social instability and social isolation result in distinguishable hippocampal consequences. Coupled with the group differences in rearing behavior, these results indicate that isolation and instability are not experienced in the same way and that instability induces more substantial behavioral and neural consequences than isolation (Maslova, Bulygina, & Amstislavskaya, 2010).

Rearing behavior in the open field, a behavior typically associated with elevated anxiety in mice (Heisler et al., 1998), was exhibited differently between experimental groups. Females subjected to social instability displayed elevated rearing behavior when compared to either isolated animals or controls. A similar pattern was previously observed following social instability stress in this lab, also without other group differences in behavior (Jarcho et al., 2016). It is possible that rearing behavior in the open field is an anxiety-like behavior that is particularly sensitive to the unpredictable nature of social instability stress.

We observed increases in hair corticosterone in animals that experienced either form of social stress, in line with previous work investigating the effects of social stress on the production of glucocorticoids (McCormick, Merrick, Secen, & Helmreich, 2007; Saavedra-Rodriguez & Feig, 2013). Plasma levels of corticosterone consistently show 3- to 4-fold increases in response to acute social stressors, whereas hair corticosterone increases are less substantial, even in response to repeated social defeat (Yu et al., 2015). However, we did not find a difference in the degree of increase between animals experiencing social instability as

FIGURE 4

Effect of social stress on hair corticosterone. Corticosterone concentrations remained relatively constant in control (white circles) animals, whereas concentrations in animals subjected to either social isolation (gray triangles) or instability (black squares) increased during the social instability phase, and a significant decrease was observed when the stress was removed. Further, during the period when either social stress was present, corticosterone concentrations were significantly higher in those animals that experienced the stressor as compared to control animals during the same time. Data are shown as mean ± SEM of hair corticosterone concentrations averaged within sample groups; * indicates significant group differences between either social instability animals or social isolation animals and control animals, only during the stress period of the study (p < .05). For all groups, n = 9 during the baseline and stress periods, n = 6 during the recovery period.
compared to those experiencing social isolation. We predicted a more substantial increase in hair corticosterone in animals that had experienced social instability than those that had experienced isolation, but observed nearly equal increases in both groups.

The hair corticosterone results combined with the group differences in behavioral and neural markers begs the question of why the experimental groups differed on certain measures of stress and not on the primary measure of HPA activity. One possible explanation might be that there is a ceiling effect of corticosterone deposition in the hair. However, previous work in rats suggest that this is not the case (Scorrano et al., 2015). Another explanation is that, although the HPA response was nearly equivalent in these two groups, other physiological systems are impacted by chronic stress, and may have varying sensitivities to specific chronic stress paradigms (Capitanio & Cole, 2015). That is, chronic social stress, in any form, might increase HPA activity, but the added unpredictability or lack of control associated with social instability (as opposed to isolation, which is unchanging) may more potently increase inflammation in the brain and may be more likely to affect behavior. An additional possibility is that, although the cumulative HPA activity did not differ between the two stress groups, the specific pattern of HPA activity and corticosterone production did. That is, perhaps diurnal patterns were flatter in subjects experiencing social instability than in those experiencing social isolation.

In humans, flattened diurnal cortisol release was observed in individuals who previously experienced anxiety or major depressive disorder (Doane et al., 2013; Jarcho, Slavich, Tylova-Stein, Wolkwitz, & Burke, 2013), who are battling metastatic breast cancer (Abercrombie et al., 2004), or who endorse higher ratings of loneliness (Doane & Adam, 2010). Similar consequences of diurnal rhythmicity have been observed in rodents. Experimentally flattening the diurnal corticosterone rhythm in mice results in increased expression of anxiety and depression like behaviors in mice (Murray, Smith, & Hutson, 2008), and a similar manipulation in rats resulted in altered hippocampal mRNA expression, demonstrating a possible link between HPA activity, anxiety- and depression-like behaviors, and hippocampal protein expression (Cacioppo et al., 2015; Gartside, Leitch, McQuade, & Swarbrick, 2003; Miller, Maletic, & Raison, 2009). We are unable to assess glucocorticoid reactivity or diurnal patterns in hair samples, but future work will add plasma sampling of corticosterone to address these questions directly.

An alternative explanation for the hair corticosterone patterns that we observed is that the elevations in corticosterone were not a result of the housing paradigms being perceived as stressful, but instead that the two experimental conditions (i.e., isolation and instability) were associated with elevated physical activity patterns. It is certainly true that increased physical activity can increase plasma glucocorticoid concentrations (Few, 1974; Girard & Garland, 2002; Stupnicki & Obminski, 1992), although voluntary exercise has also been shown to mitigate the expected increase in plasma glucocorticoids and downstream health consequences in animals and humans experiencing chronic stress (Adlard & Cotman, 2004; Puterman et al., 2010; Sasse et al., 2008). We cannot rule this possibility out because we did not collect behavioral data on the mice while they were in their home cages. However, it seems highly unlikely that both of these housing paradigms would be associated with increases in physical activity. It should also be noted that, although we did not quantify behavior in the home cages, previous observations in female rats did not detect changes in home-cage behaviors as a result of prolonged isolation stress (McCormick et al., 2007).

Based on previous work investigating the effect of social stressors on behavioral expression of anxiety and depression (Kaushal, Nair, Gozal, & Ramesh, 2012; Kinn Rød et al., 2012; Liu et al., 2013; Reiss, Wolter-Sutter, Krezel, & Ouagazzal, 2007; Treit, 1985; Watt et al., 2009), we expected, but did not observe group, differences in the open field and elevated plus maze in the amount of time spent in the center/perimeter or open/closed arms, respectively. Our findings indicate that, although physiological and neural responses were elicited, the primary behavioral measures associated with anxiety (i.e., time in the perimeter of the open field and the closed arms of the elevated plus maze) were not significantly affected by these forms of social stress. It should be noted that previous work in this lab demonstrated a similar lack of group differences on these measures (Jarcho et al., 2016), and other authors did not detect group differences on the forced swim test (Herzog et al., 2009). It is possible that, given the social nature of these stressors, behavioral expressions of anxiety would only have been observable in a more social setting. That is, this lack of observable differences may reflect the nature of the testing apparatuses used.
Comparing Chronic Social Stressors

not the actual anxiety levels of the mice (Ennaceur & Chazot, 2016). Despite this possibility, group differences on these apparatuses were expected. It is possible that more socially relevant behavioral measures (e.g., social withdrawal) might have revealed significant group differences.

The implications of these findings are limited by certain aspects of the current study. Primarily, the number of animals (n = 9 per experimental group) used in the study was rather small, particularly in our investigation of hippocampal mRNA expression, because only three animals were sacrificed from each group. Future investigations should attempt to increase sample sizes, even if elimination of certain measures that were collected in the present study is necessary for feasibility. A second limitation of the current study is that it focused exclusively on female mice. Females were used in the current study because they show a greater response to psychosocial stress (Haller et al., 1999) and women report higher rates of anxiety disorders than men (Bangasser & Valentino, 2014; McLean et al., 2011). However, to increase the translational value of these findings, future investigations should include both females and males in order to directly observe sex differences that may be relevant to differential rates of stress-induced anxiety disorders in humans. A third limitation is the limited behavioral measures we quantified. Future studies should include additional behavioral tests, particularly those that specifically target indicators of social anxiety (e.g., social withdrawal tests). Lastly, we are unable to determine causality across our dependent variables. For example, it is possible that the changes in hippocampal mRNA were a direct result of social stress. However, it is equally possible that the mRNA effect was mediated by changes in HPA activity. Future studies should attempt to disentangle these variables to determine causality in order to better inform treatment strategies.

These findings support previous work indicating that social stressors are potent enough to elicit behavioral, physiological, and neural responses in adult female mice. In addition, they further support the initial findings that these stressors can induce physiological changes that are detectable in mouse hair, and that the corticosterone concentrations are responsive to the onset and termination of a social stressor. These data also indicate that, although the hair corticosterone responses to both social isolation and instability were similar, the behavioral and neural consequences of these two forms of social stress were quite different. These subtle differences in the form of social stress and the consequences associated with them may be translatable to different sources of social stress in humans and the multitude of mood disorders and other psychological consequences that may result. Additional work is needed to establish a more concrete causal relationship between types of social stress and behavioral, physiological, and neural consequences.

References

Abbott, R., Whear, R., Nikolaou, V., Bethel, A., Coon, J. T., Stein, K., & Dickens, C. (2015). Tumour necrosis factor-a inhibitor therapy in chronic physical illness: A systematic review and meta-analysis of the effect on depression and anxiety. Journal of Psychosomatic Research, 79, 175–184. https://doi.org/10.1016/j.jpsychores.2015.04.008

Abercrombie, H. C., Giese-Davis, J., Sephton, S., Epe, E. S., Turner-Cobb, J. M., & Spiegel, D. (2004). Flattened neural and behavioral response to psychosocial stress in metastatic breast cancer patients. Psychoneuroendocrinology, 29, 1082–1092. https://doi.org/10.1016/j.psyneuen.2003.11.003

Adhikari, A., Topiwala, M. A., & Gordon, J. A. (2010). Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 65, 257–269. https://doi.org/10.1016/j.neuron.2009.12.002

Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992. https://doi.org/10.1016/j.neuroscience.2003.12.039

Araya-Callis, C., Himke, C., Abumaria, N., & Flugge, G. (2012). Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology, 224, 209–222. https://doi.org/10.1007/s00213-012-2741-x

Avitzur, Y., Stark, I. L., & Sheridan, J. F. (2001). Social stress induces glucocorticoid resistance in subordinate animals. Hormones and Behavior, 39, 247–257. https://doi.org/10.1006/hbeh.2000.1653

Badowska-Szalewska, E., Ludkiewicz, B., Sidor-Kaczmarek, J., Lietzau, G., Spodnik, J. H., Świetlik, D., . . . Moryś, J. (2013). Hippocampal interleukin-1β in the juvenile and middle-aged rat: Response to chronic forced swim or high-light open-field stress stimulation. Research Paper Acta Neurobiol Exp, 73, 364–378. Retrieved from https://www.ane.pl/pdf/7325.pdf

Bangasser, D. A., & Valentino, R. J. (2014). Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Frontiers in Neuroendocrinology, 35, 303–319. https://doi.org/10.1016/j.yfrne.2014.03.008

Baranyi, J., Bakos, N., & Haller, I. (2005). Social instability in female rats: The relationship between stress-related and anxiety-like consequences. Physiology and Behavior, 84, 511–518. https://doi.org/10.1016/j.physbeh.2005.01.005

Bortolato, B., Carvalho, A. F., Soczynska, J. K., Perini, G. I., & McIntyre, R. S. (2015). Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Frontiers in Neuroendocrinology, 35, 303–319. https://doi.org/10.1016/j.yfrne.2014.03.008

Cacioppo, J. T., Cacioppo, S., Capilonio, J. P., & Cole, S. W. (2015). The neuroendocrinology of social isolation. Annual Review of Psychology, 66, 633–67. https://doi.org/10.1146/annurev-psych-010814-015240

Capilonio, J. P., & Cole, S. W. (2015). Social instability and immunity in rhesus monkeys: The role of the sympathetic nervous system. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1669), 20140104. https://doi.org/10.1098/rstb.2014.0104

Chang, C. H., Hsiao, Y. H., Chen, Y. W., Yu, Y. J., & Gean, P. W. (2015). Social isolation-induced increase in NMDA receptors in the hippocampus exacerabtes emotional dysregulation in mice. Hippocampus, 25, 474–485. https://doi.org/10.1002/hipo.22384

Cobb, J. A., O’Neill, K., Milner, J., Mahajan, G. J., Lawrence, T. J., May, W. L., . . . Spiegel, D. (2004). Flattened neural and behavioral response to psychosocial stress in metastatic breast cancer patients. Psychoneuroendocrinology, 29, 1082–1092. https://doi.org/10.1016/j.psyneuen.2003.11.003

Ennaceur, A., & Chazot, P. (2016). The role of the hippocampus in the mediation of social stress. Annual Review of Psychology, 67, 557–583. https://doi.org/10.1146/annurev-psych-010615-092459

Haller, J., Wallnöfer, J., & Kastner, M. (2005). Sex differences in stress-induced decreases in brain-derived neurotrophic factor protein expression. Neurosciences, 1082–1092. https://doi.org/10.1016/j.yfrne.2014.03.008

Jarcho, J. A., Avery, K., Kornacker, Hollingshead, and Lo
Comparing Chronic Social Stressors | Jarcho, Avery, Kornacker, Hollingshead, and Lo

WINTER 2018

PSI CHI JOURNAL OF PSYCHOLOGICAL RESEARCH

exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice. *Brain Research*, 1454, 65–79. https://doi.org/10.1016/j.brainres.2012.03.019

Kinn Reed, A. M., Milde, A. M., Groeni, J., Jellstad, F. K., Sundberg, H., & Murison, R. (2012). Long-term effects of footshock and social defeat on anxiety-like behaviours in rats: Relationships to pre-stressor plasma corticosterone concentration. *Stress*, 15, 658–670. https://doi.org/10.1007/s10787-012-9338-4

Kinsey, S. G., Bailey, M. T., Sheridan, J., F. P., Padgett, D. A., & Aurthur, R. (2007). Repeated social defeat causes increased anxiety-like behavior and alters splotchenzyme function in C57BL/6 and CD-1 mice. *Brain Research, and Immunity*, 21, 458–466. https://doi.org/10.1016/j.jibib.2006.11.001

Koo, J. W., & Duman, R. S. (2009a). Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. *Current Opinion in Investigational Drugs*, 10, 664–671. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1959172

Koo, J. W., & Duman, R. S. (2009b). Interleukin-1 receptor null mutant mice show decreased anxiety-like behavior and enhanced fear memory. *Neuroscience Letters*, 456, 39–43. https://doi.org/10.1016/j.neulet.2009.03.068

Lee, K. M., Chiu, K. B., Sansing, H. A., Inglis, F. M., Baker, K. C., & MacLean, A. G. (2013). Astrocyte atrophy and immune dysfunction in self-harming macaques. *PLoS ONE*, 8(7), e69980. https://doi.org/10.1371/journal.pone.0069980

Lehmann, M. L., Cooper, H. A., Maric, D., Herkenham, M., Tingstrom, A., Dhabhar, F., … Weiss, J. (2016). Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages. *Journal of Neuroinflammation*, 13, 224–242. https://doi.org/10.1186/s12974-016-0672-x

Li, L. F., Yang, J., Ma, S. P., & Qu, R. (2013). Magnolol treatment reversed the glial pathology in an unpredictable chronic mild stress-induced rat model of depression. *European Journal of Pharmacology*, 710(1), 42–49. https://doi.org/10.1016/j.ejphar.2013.04.008

Liu, B., Xu, C., Wu, X., Liu, F., Du, Y., Sun, J., … Dong, J. (2015). Icariin exerts an antidepressive effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. *Neuroscience*, 294, 153–205. https://doi.org/10.1016/J.NEUROSCIENCE.2015.02.053

Liu, Q., Li, B., Zhu, H. Y., Wang, Y. Q., Yu, J., & Wu, G. C. (2011). Glia atrophy in the hippocampus of chronic unpredictable stress-induced depression model rats is reversed by electroacupuncture treatment. *Journal of Affective Disorders*, 128, 309–313. https://doi.org/10.1016/j.jad.2010.07.007

Liu, X., Wu, R., Tai, M. L., Wei, B., Yang, X., … Jia, R. (2013). Effects of group housing on stress-induced emotional and neuroendocrine alterations. *Brain Research*, 1502, 71–80. https://doi.org/10.1016/j.brainres.2013.01.044

Lore, T. J., & Schmiedt, T. O. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. *Methods*, 25, 402–408. https://doi.org/10.1016/S1046-8920(01)00126-2

Maslova, L. N., Bulygina, V. V., & Amstislavskaya, T. G. (2010a). Prolonged social isolation and social instability in adolescence in rats: Immediate and long-term physiological and behavioural effects. *Neuroscience and Behavioral Physiology*, 40, 955–963. https://doi.org/10.1016/j.nbp.2010.09.032-y

McCormick, C. M., Merrick, A., Secen, J., & Helmreich, D. L. (2007). Social instability in adolescence alters the central and peripheral hypothalamic-pituitary-adrenal responses to a repeated homotypic stressor in male and female rats. *Journal of Neuroendocrinology*, 19, 116–26. https://doi.org/10.1111/j.1365-2826.2006.01515.x

McCormick, C. M., Thomas, C. M., Sheridan, C. S., Nixon, F., Flynn, J. A., & Mathews, I. Z. (2012). Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood. *Hippocampus*, 22, 1300–1312. https://doi.org/10.1002/hipo.20966

McEwen, B. S. (2003). Mood disorders and allostatic load. *Biological Psychiatry*, 54, 200–207. https://doi.org/10.1016/S0006-3223(03)00717-X

McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. *Annals of the New York Academy of Sciences*, 1032(1), 2–12. https://doi.org/10.1196/annals.1314.001

McEwen, B. S. (2005). Glucocorticoids, depression, and mood disorders: Structural remodeling in the brain. *Metabolism Clinical and Experimental*, 54(Suppl 1), 20–23. https://doi.org/10.1016/j.metabol.2005.01.008
metabolites. *Annals of Clinical Biochemistry*, 37, T70–T74. https://doi.org/10.1288/00463019900084
Shin, J. W., Cheong, Y. I., Koo, Y. M., Kim, S., Noh, C. K., Son, Y. H., ... Sohn, N. W. (2014). O-asarone ameliorates memory deficit in lipopolysaccharide-treated mice via suppression of pro-inflammatory cytokines and microglial activation. *Biomolecules and Therapeutics*, 22, 17–26. https://doi.org/10.4062/biomother.2013.102
Silverstein, B. (2002). Gender differences in the prevalence of somatic versus pure depression: A replication. *American Journal of Psychiatry*, 159, 1051–1052. https://doi.org/10.1176/appi.ajp.159.6.1051
Slavich, G. M., & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. *Psychological Bulletin*, 140, 774–815. https://doi.org/10.1037/a0035302
Solomon, M. B. (2017). Evaluating social defeat as a model for psychopathology in adult female rodents. *Journal of Neuroscience Research*, 95, 763–776. https://doi.org/10.1002/jnr.23971
Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. *Psychological Review*, 99, 195–231. https://doi.org/10.1037/0033-295X.99.2.195
Stupnicki, R., & Obminski, Z. (1992). Glucocorticoid response to exercise as measured by serum and salivary cortisol. *European Journal of Applied Physiology and Occupational Physiology*, 65, 546–549. https://doi.org/10.1007/BF00602363
Takahashi, A., Chung, J. R., Zhang, S., Zhang, H., Grossman, Y., Aleyasins, H., ... Russo, S. J. (2017). Establishment of a repeated social defeat stress model in female mice. *Scientific Reports*, 7(1), 12838. https://doi.org/10.1038/s41598-017-1281-8
Thakur, T., Patel, V., Gulati, K., Anand, R., & Ray, A. (2015). Differential effects of chronic predictable and unpredictable stress on neurobehavioral and biochemical responses in rats. *Therapeutic Targets for Neurological Diseases*, 2, 603. https://doi.org/10.1007/s10438-011-0603
Tret, D. (1985). Animal models for the study of anti-anxiety agents: A review. *Neuroscience and Biobehavioral Reviews*, 9, 203–222. https://doi.org/10.1016/0149-7634(85)90046-6
Tyan, R. J., Beynon, S. B., Hinwood, M., Johnson, S. J., Nilsson, M., Woods, I. J., & Walker, F. R. (2013). Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. *Acta Neuropathologica*, 126, 75–91. https://doi.org/10.1007/s00401-013-1022-0
van Kralingen, C., Kho, D. T., Costa, J., Angel, C. E., & Graham, E. S. (2013). Exposure to inflammatory cytokines IL-1β and TNFα induces compromise and death of astrocytes; Implications for chronic neuroinflammation. *PLoS ONE*, 8(2), e54269. https://doi.org/10.1371/journal.pone.0054269
Warren, B. L., Vialou, V. F., IHiguez, S. D., Alicantara, L. F., Wright, K. N., Feng, J., ... Bolanos-Guzman, C. A. (2013). Neurobiological sequelae of witnessing stressful events in adult mice. *Biological Psychiatry*, 73, 7–14. https://doi.org/10.1016/j.biopsych.2012.06.006
Watt, M. J., Burke, A. R., Renner, K. J., & Forster, G. L. (2009). Adolescent male rats exposed to social defeat exhibit altered anxiety behavior and limbic monoamines as adults. *Behavioral Neuroscience*, 123, 564–576. https://doi.org/10.1037/a0015752
Weber, M. D., Godbout, J. P., & Sheridan, J. F. (2017). Repeated social defeat, neuroinflammation, and behavior: Monocytes carry the signal. *Neuropsychopharmacology*, 42, 46–61. https://doi.org/10.1038/npp.2016.102
Williams, A. V., Laman-Mahang, A., Armstrong, C. V., Ramos-Maciel, S., Minie, V. A., & Trainor, B. C. (2018). Acute inhibition of kappa opioid receptors before stress blocks depression-like behaviors in California mice. https://doi.org/10.1016/j.jnpp.2018.06.001
Yu, T., Xu, H., Wang, W., Li, S., Chen, Z., & Deng, H. (2015). Determination of endogenous corticosterone in rodent’s blood, brain and hair with LC-APCI-MS/MS. *Journal of Chromatography B*, 1002, 267–276. https://doi.org/10.1016/j.jchromb.2015.08.035
Zhang, F., Yuan, S., Shao, F., & Wang, W. (2016). Adolescent social defeat induced alterations in social behavior and cognitive flexibility in adult mice: Effects of developmental stage and social condition. *Frontiers in Behavioral Neuroscience*, 10, 149. https://doi.org/10.3389/fnbeh.2016.00149
Zhang, H., Zhao, Y., & Wang, Z. (2015). Chronic corticosterone exposure reduces hippocampal astrocyte structural plasticity and induces hippocampal atrophy in mice. *Neuroscience Letters*, 592, 76–81. https://doi.org/10.1016/j.neulet.2015.03.006

Author Note. Michael R. Jarcho, Psychology Department, Siena College, and Neuroscience Program, Loras College; Madeline R. Avery, Neuroscience Program, Loras College; Kelsey B. Kornacker, Danielle Hollingshead, Biology Department, Coe College; David Y. Lo, Biology Department, Coe College.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Special thanks to Psi Chi Journal reviewers for their support.

Correspondence concerning this article should be addressed to Michael R. Jarcho, Assistant Professor of Psychology, 219 Roger Bacon Hall, Siena College, 515 Loudon Rd. Loudonville, NY 12211.

E-mail: mjarcho@siena.edu

Comparing Chronic Social Stressors

Jarcho, Avery, Kornacker, Hollingshead, and Lo

Copyright 2018 by Psi Chi, The International Honor Society in Psychology
Find your career.

Eight graduate degree programs and four certificates in Educational Psychology

PhD in Educational Psychology
Engage in the science of learning. Prepare for a career where you can use your knowledge of human learning and development to help shape the school environment and public policy. Core program areas include learning, motivation, and research design.

MS or MA in Educational Psychology *
Broaden your ability to apply psychological principles to a variety of professional contexts or prepare for your future doctorate in social science.

MS in Quantitative Psychology *
Do you like numbers, statistics, and social science? Prepare for a career in research, assessment, and data analysis. Develop proficiency in advanced statistical techniques, measurement theory, and data analytics.

PhD in School Psychology (five-year program)
Prepare for a career as a licensed psychologist. Gain competencies in health service psychology to work in schools, private practice, or hospital settings. Accredited by the American Psychological Association (APA)** and approved by the National Association of School Psychologists (NASP). Scientist-practitioner model with advocacy elements. Specializations available.

MA/EdS in School Psychology (three-year program)
Be immersed in community engaged, real-world field experiences and intervention opportunities in our scientist-practitioner-advocate program. Leads to licensure as a school psychologist. Approved by NASP and the National Council for Accreditation of Teacher Education (NCATE).

MA in School Counseling (two-year program)
Be a leader and advocate for educational equity for all students in PK–12 schools. Leads to licensure as a school counselor. Accredited by the Council for Accreditation of Counseling and Related Educational Programs (CACREP) and nationally recognized by The Education Trust as a Transforming School Counseling program.

Accreditation of Counseling and Related Educational Programs (CACREP) and nationally recognized by The Education Trust as a Transforming School Counseling program.

Certificates
High Ability/Gifted Studies,* Human Development and Learning,* Identity and Leadership Development for Counselors,* Neuropsychology*

Graduate assistantships and tuition waivers are available.

bsu.edu/edpsy

*Online programs are available.
**Questions related to the PhD in school psychology’s accreditation status should be directed to the Office of Program Consultation and Accreditation, American Psychological Association, 750 First St. NE, Washington, D.C. 20002; (202) 336-5979; apaaccred@apa.org; or apa.org/ed/accreditation.

Ball State University practices equal opportunity in education and employment and is strongly and actively committed to diversity within its community. Ball State wants its programs and services to be accessible to all people. For information about access and accommodations, please call the Office of Disability Services at 765-285-5293; go through Relay Indiana for deaf or hard-of-hearing individuals (relayindiana.com or 877-446-8772); or visit bsu.edu/disabilityservices. 582418-19 mc
“MY JOB IS NOT JUST TO TEACH, BUT ALSO TO HELP STUDENTS SEE THEIR INNER STRENGTHS.”

At the College of Clinical Psychology at Argosy University, we believe in a practitioner-scholar model of training. Our programs offer a rigorous curriculum grounded in theory and research, while also offering real-world experience. What’s more, all our PsyD programs have received accreditation from the American Psychological Association (APA), certifying that they meet the industry’s standards.

Learn more at clinical.argosy.edu/psi

Arizona School of Professional Psychology at Argosy University
American School of Professional Psychology at Argosy University | Southern California
American School of Professional Psychology at Argosy University | San Francisco Bay Area
Florida School of Professional Psychology at Argosy University
Georgia School of Professional Psychology at Argosy University
Hawaii School of Professional Psychology at Argosy University
Illinois School of Professional Psychology at Argosy University | Chicago
Illinois School of Professional Psychology at Argosy University | Schaumburg
Minnesota School of Professional Psychology at Argosy University
American School of Professional Psychology at Argosy University | Northern Virginia

DR. NAHID AZIZ
Associate Professor at the American School of Professional Psychology at Argosy University | Northern Virginia

Dr. Aziz is committed to mentorship, training, and addressing issues relevant to the ethnic and racial diversity.

*The Doctor of Psychology in Clinical Psychology Program at Argosy University Atlanta, Chicago, Hawaii, Orange County, Phoenix, San Francisco Bay Area, Schaumburg, Tampa, Twin Cities and Northern Virginia is accredited by the Commission on Accreditation of the American Psychological Association (APA). Questions related to the program’s accredited status should be directed to the Commission on Accreditation, Office of Program Consultation and Accreditation, American Psychological Association, 750 1st Street, NE, Washington DC 20002. Phone: (202) 336-5959 / E-mail: appacinfo@apa.org / Web: www.apa.org/ed/accreditation

Argosy University is accredited by the WASC Senior College and University Commission (685 Atlantic Ave., Suite 100, San Rafael, CA 94901, w sac.org). Programs, credential levels, technology, and scheduling options are subject to change. Not all online programs are available to residents of all U.S. states. Administrative office: Argosy University, 601 South Lewis Street, Orange, CA 92868 ©2018 Argosy University. All rights reserved. Our email address is materialsreview@argosy.edu

WINTER 2018

PSI CHI
JOURNAL OF PSYCHOLOGICAL RESEARCH

COPYRIGHT 2018 BY PSI CHI, THE INTERNATIONAL HONOR SOCIETY IN PSYCHOLOGY (VOL. 23, NO. 5/ISSN 2325-7342)
Are All Eligible People Encouraged to Join Your Local Chapter?

Psi Chi values people with diverse perspectives and a broad representation of social identities and cultural backgrounds! This year, we are launching Our Diversity Matters Membership Drive to help chapters identify potential members who are sometimes overlooked.

"Experiencing the full range of human diversity enhances individuals’ world views, empathy, and skills. A powerful way to grow from diversity is to seek it in our daily lives."

Melanie M. Domenech Rodríguez, PhD
Psi Chi President

Learn more and how to get involved at https://www.psichi.org/resource/resmgr/pdfs/2018_diversitymattersdrive.pdf
PSI CHI Advertising Contract: Psi Chi Journal

Client Information

Advertiser

Contact Name

Address

City	State	Zip	Country

Phone (daytime)

E-mail

Submitted by

Authorized Signature

Digital Publication

Issue	Deadline	Online Date
Spring	Jan 31	Feb 22
Summer	April 15	May 17
Fall	Sept 3	Sept 28
Winter	Nov 15	Dec 14

Size/Dimensions

- Full page (no bleed): 6 ⅞ x 9 ⅜" Cost: $400 Black & White only
- Half page (horizontal): 6 ⅞ x 4 ⅜" Cost: $275 Black & White only

Our Journal

Advertising in Psi Chi Journal allows you to connect with established psychology researchers and mentors, as well as undergraduates and graduate students striving to build a career in one of the many areas of research. People regularly visit our journal online to:

- view current and past issues,
- submit their research for publication,
- learn about reviewing for Psi Chi Journal, and
- share invited editorials as teaching tools in the classroom.

All issues and advertisements are permanently free online to both members and nonmembers alike. During the 2017–18 fiscal year, psiChi.org received almost 1.5 million page views, ensuring that high-achieving students and professionals will see your content for years to come.

To further enhance the visibility of our journal, latest issues and calls for submissions are regularly featured in Psi Chi Digest e-mails (177,000+ subscribers) and on our four social media platforms:

- Facebook (22,500+ followers)
- Twitter (4,700+ followers)
- LinkedIn (10,200+ followers)
- Instagram (1,000+ followers)

Articles are also indexed in PsycINFO, EBSCO, and CrossRef databases—essential tools that researchers use to search for millions of psychology-related articles. This makes Psi Chi Journal a key place to communicate your message with our Professional Organization's three quarters of a million lifetime members and far beyond.

Ad Specifications

Digital format: PDF, EPS, and TIFF
Resolution: 300 dpi (B&W line art—1,200 dpi)
Black & white ads (no RGB or 4-color process)
PDF settings: Press quality, embed all fonts

Deadline/Billing

Payment due upon receipt of invoice.

Contact

Submit contract by e-mail to

Susan Iles
Advertising Sales
Psi Chi Central Office
E-mail: susan.iles@psichi.org
Phone: 423-771-9864

See past issues of Psi Chi Journal of Psychological Research at http://www.psichi.org/?journal_past

Stay connected with PSI CHI
www.psichi.org

All advertisements must be scholarly and professional in nature, and Psi Chi reserves the right to reject (or cancel) any ads that are not in the best interest of the Organization or consistent with the Society’s mission.
Publish Your Research in *Psi Chi Journal*

Undergraduate, graduate, and faculty submissions are welcome year round. Only the first author is required to be a Psi Chi member. All submissions are free. Reasons to submit include:

- a unique, doctoral-level, peer-review process
- indexing in PsycINFO, EBSCO, and Crossref databases
- free access of all articles at psichi.org
- our efficient online submissions portal

View Submission Guidelines and submit your research at www.psichi.org/?page=JN_Submissions

Become a Journal Reviewer

Doctoral-level faculty in psychology and related fields who are passionate about educating others on conducting and reporting quality empirical research are invited become reviewers for *Psi Chi Journal*. Our editorial team is uniquely dedicated to mentorship and promoting professional development of our authors—Please join us!

To become a reviewer, visit www.psichi.org/page/JN_BecomeAReviewer

Resources for Student Research

Looking for solid examples of student manuscripts and educational editorials about conducting psychological research? Download as many free articles to share in your classrooms as you would like.

Search past issues, or articles by subject area or author at www.psichi.org/?journal_past

Add Our Journal to Your Library

Ask your librarian to store *Psi Chi Journal* issues in a database at your local institution. Librarians may also e-mail to request notifications when new issues are released.

Contact PsiChiJournal@psichi.org for more information.

Register an account:
http://pcj.msubmit.net/cgi-bin/main.plex