Evaluating a Generative Adversarial Framework for Information Retrieval

Ameet Deshpande
Department of Computer Science
Princeton University
asd@cs.princeton.edu

Mitesh M. Khapra
Robert-Bosch Centre for
Data Science and Artificial Intelligence
Indian Institute of Technology, Madras
miteshk@cse.iitm.ac.in

Abstract

Recent advances in Generative Adversarial Networks (GANs) have resulted in its widespread applications to multiple domains. A recent model, IRGAN, applies this framework to Information Retrieval (IR) and has gained significant attention over the last few years. In this focused work, we critically analyze multiple components of IRGAN, while providing experimental and theoretical evidence of some of its shortcomings. Specifically, we identify issues with the constant baseline term in the policy gradients optimization and show that the generator harms IRGAN’s performance. Motivated by our findings, we propose two models influenced by self-contrastive estimation and co-training which outperform IRGAN on two out of the three tasks considered.

1 Introduction

Information Retrieval (IR) can be viewed as a framework which returns a ranked list of documents \(\{d_1, d_2, \ldots, d_k\} \) in answer to a query \(q \). This ranked list also implicitly defines a conditional probability distribution for each query \(P(d|q) \) and captures the intuition that higher-ranked documents should be retrieved more often. This general formulation can be extended to various tasks like web search, content-recommendation, and closed-domain Question-Answering (QA) where information needs, users, and questions are the queries, and web pages, content, and answers are the documents respectively.

At the core, IR induces a probability distribution over documents, and GANs \cite{goodfellow2014generative} serve as a promising alternative to traditional methods. The generator in a GAN setup is capable of modeling the true probability distribution in high dimensional settings and can be used to retrieve relevant documents for the queries posed, thus making GANs a natural fit for IR. IRGAN \cite{wang2017irl} is a popular model which established the first concrete formulation of GANs for IR.

IRGAN consists of a discriminator and a generator, where the discriminator learns to distinguish between documents retrieved by the true probability distribution and the generator’s learned probability distribution, while the generator tries to mimic the true probability distribution. Ideally, equilibrium is achieved when the generator manages to rank the documents according to the true distribution. However, IRGAN’s loss curves show that equilibrium is not achieved in two of the three tasks.

Contribution
To evaluate the importance of IRGAN’s generator, we propose two models inspired by self-contrastive estimation \cite{goodfellow2014generative} and co-training \cite{blum1998combining} which outperform IRGAN on two out of the three tasks. We provide a theoretical explanation for the performance degradation of the generator, and our experiments confirm that it is detrimental to IRGAN’s performance, rendering it equivalent to sub-optimal noise-contrastive estimation methods \cite{gutmann2010noise}. Given the usefulness of GANs, we believe that a critical evaluation of adversarial frameworks for IR is necessary, and we hope that our study provides a foundation for the same.

2 Related Work

Noise Contrastive Estimation (NCE) \cite{gutmann2010noise} is a parameter estimation method used to train models to differentiate between true data instances and noise samples. NCE can be shown to be asymptotically unbiased \cite{dyer2014asymptotics} and provides an alternative way to approximate...
traditional maximum-likelihood estimation (MLE) based retrieval models (Baeza-Yates et al., 1999; Zhai and Lafferty, 2001; Hofmann, 1999). Self-contrastive estimation (Goodfellow, 2014) uses the same model for learning and generating the noise distribution, and dual-learning (He et al., 2016) can be perceived as a co-operative setup where one model generates the noise distribution for the other.

Generative Adversarial Networks GANs (Goodfellow et al., 2014) are generative models (Salakhut-din and Larochelle, 2010) which avoid computing intractable normalization constants in probability distributions. The generator tries to implicitly model the true data distribution and the discriminator learns to differentiate between true and generated data points. GANs have been widely applied to various problems like image generation (Radford et al., 2015; Zhu et al., 2017; Fedus et al., 2018), and cross-modal retrieval (Peng and Qi, 2019).

Adversarial frameworks for IR IRGAN (Wang et al., 2017) uses GANs to learn models for web search, recommendation, and QA. (He et al., 2018) introduce adversarial perturbations for robust ranking for recommendation. (Yang et al., 2019) modify IRGANs for QA and (Park and Chang, 2019) use a semi-supervised approach to generate adversarial samples which make the model robust and sample efficient. Since IRGAN is a widely adopted model, it forms the basis of our analysis.

3 Background

We present important details of IRGAN in this section, and refer the reader to (Wang et al., 2017) for a more detailed explanation. In the subsequent sections, D denotes the discriminator, G the generator, p_{true} the real probability distribution over documents, ϕ the parameters of D, θ the parameters of the G, d the document, q the query and r the rank of d with respect to a q. f is D’s model, and $D(d|q_n) = \sigma(f(\phi(d, q)))$.

Minimax objective Just like in GANs, IRGAN-Pointwise uses a joint objective.

$$J^{G^*, D^*} = \min_\theta \max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{true}(d|q_n, r)}[\log D(d|q_n)] + \mathbb{E}_{d \sim p_\theta(d|q_n, r)}[\log (1 - D(d|q_n))] \right)$$

The first term increases the likelihood of samples from p_{true} and the second decreases it for G’s learned distribution $p_\theta(d|q_n, r)$. IRGAN-Pairwise is an alternate formulation where the (d, q) pairs are substituted by triples (d_i, d_j, q) in equation 1 where document d_i is more relevant to q than d_j.

Optimization The discriminator essentially performs binary classification and can be optimized using backpropagation (Rumelhart et al., 1986). However, unlike in the original GAN setup (Goodfellow et al., 2014), the generator in IRGAN has a discrete sampling step, because it samples a document from an accessible pool. Thus, REINFORCE (Williams, 1992), a policy gradients approach, is used to calculate the gradients for the generator. The update averaged over K documents is given below.

$$\nabla_\theta J^G(q_n) = \frac{1}{K} \sum_{k=1}^{K} \nabla_\theta \log p_\theta(d_k|q_n, r) \log (1 + \exp(f_\phi(d_k, q_n)))$$

REINFORCE’s gradient updates generally have high variance, and reward baselines are used to make the learning stable (Weaver and Tao, 2001). A common baseline is the value function of the state (here, query) $V(d, q) \equiv \mathbb{E}_{d \sim p_\theta(d|q_n, r)}[\log (1 + \exp(f_\phi(d_k, q_n)))]$. Since this expectation over all the documents is intractable to compute, IRGAN uses a constant baseline of 0.5 for all the queries (appendix B (Wang et al., 2017)), and to alleviate training issues, $\log (1 + \exp(f_\phi(d_k, q_n)))$ is replaced with $\sigma(f_\phi(d_k, q_n)))$. The final gradient update is as follows.

$$\nabla_\theta J^G(q_n) = \frac{1}{K} \sum_{k=1}^{K} \nabla_\theta \log p_\theta(d_k|q_n, r) \times 2 \left(\sigma(f_\phi(d_k, q_n)) - 0.5 \right)$$

4 Tasks and Evaluation

We follow IRGAN and evaluate on Web Search, Item Recommendation, and Question Answering (QA). The datasets used are LETOR (Qin et al., 2010), MovieLens (Harper and Konstan, 2015) and InsuranceQA (Feng et al., 2015) respectively (appendix B). We report the NDCG@5 and Precision@5 metrics for Web Search and Item Recommendation, and the Precision@1 metric for QA.
5 Models and Method

IRGAN’s setup can be considered as a dynamic negative sampling (Zhang et al., 2013) approach where the generator continuously adapts the negative samples that it feeds to the discriminator. However, these negative samples can come from other sources, and we propose two different models based on the same. The first is the Single Discriminator (Single-D) model motivated by self-contrastive estimation (Goodfellow, 2014) where negative samples come from the model’s (M) probability distribution. M, like D, is a discriminator, and the probability of sampling a document \(d_i \in D\) according to its distribution is

\[
\frac{M(d_i | q_n)}{\sum_{d \in D} M(d | q_n)}
\]

The second is a two model setup called Dual Discriminator (Dual-D) and is motivated by co-training (Blum and Mitchell, 1998). It is similar to Single-D, but instead of the models feeding negative samples to themselves, they feed them to each other. One of the models is randomly chosen at evaluation time. The positive samples are drawn from the true data distribution for both Single-D and Dual-D. Figure 1 illustrates both the proposed models.

![Proposed Models](image)

Figure 1. Proposed Models Single-D (left) and Dual-D (right). Single-D uses a single discriminator which feeds itself negative samples, and Dual-D feeds negative samples to each other.

We follow IRGAN and compare RankNet (Burges et al., 2005), LambdaRank (Burges et al., 2007), IRGAN-pointwise, and IRGAN-pairwise on web search, BPR (Goodfellow et al., 2014), LambdaFM (Yuan et al., 2016), and IRGAN-pointwise on item recommendation, and QA-CNN (Santos et al., 2016), LambdaCNN (Zhang et al., 2013; Santos et al., 2016), and IRGAN-pairwise on QA. Our models Single-D and Dual-D are evaluated on all the tasks considered. We report the best performing hyperparameters in appendix C.

6 Experiments and Discussion

Results Table 1 summarizes all our experiments. On web search, Dual-D outperforms both the variants of IRGAN, while Single-D matches the performance of the better variant. The same applies to the QA task where Dual-D performs slightly better than IRGAN-pairwise while Single-D matches its performance. The strong performance of Single-D, which unlike IRGAN contains a single model, shows that the generator in IRGAN might not be important for its performance improvements. Item-recommendation is the only task where IRGAN performs better than Single-D and Dual-D. However, the performance difference between IRGAN and Single-D is negligible and corresponds to it making just 7 more mistakes on a test set of 943 users. We believe that Dual-D performs better than Single-D on two variants for the same reason that ensembles perform better than single classifiers (Dietterich, 2000; Džeroski and Ženko, 2004). One model helps correct the errors being made by the other model to some extent.

Loss Curves The loss curves for IRGAN reported in (Wang et al., 2017) follow a peculiar trend in both web search and QA (figure 2 illustrates an example). The generator is initialized with a pre-trained model, and its performance degrades throughout training, which is contrary to what one would expect in GANs, where the generator’s performance should improve till equilibrium. At that stage, the discriminator

1 The numbers differ slightly from IRGAN (Wang et al., 2017). After close correspondence with its authors, we obtained all the random seeds used by the models, but the results for QA could not be reproduced. We mention the results on our random seeds, and fully believe that any random seed which gives better performance for IRGAN should do so for our model as well.
Web Search	Recommendation	Question Answering					
Model	P@5	NDCG@5	Model	P@5	NDCG@5	Model	P@1
RankNet	0.1219	0.1709	BPR	0.3044	0.3245	QA-CNN	0.613
LambdaRank	0.1352	0.1920	LambdaFM	0.3474	0.3749	LambdaCNN	0.629
IRGAN-pointwise	0.1657	0.2225	0.3750	0.4099	-		
IRGAN-pairwise	0.1676	0.2154	-	-	0.616		
Single-D	0.1676	0.2190	0.3675	0.3925	0.614		
Dual-D	0.1733	0.2252	0.3450	0.3730	0.623		

Table 1. Dual-D outperforms all IRGAN variants on web search and QA, and Single-D matches the performance on all tasks. Its worse performance on recommendation corresponds only to 7 more errors.

It cannot differentiate between the true data distribution and generator’s learned distribution (Goodfellow et al., 2014). Negative samples generated from a degrading generator continuously deviate from the true distribution it needs to learn as training progresses, and this makes the discriminator’s objective easier, thus hurting IRGAN’s performance. This is equivalent to a sub-optimal NCE setup where the quality of negative samples is bad. However, in both Single-D and Dual-D, the performance of the models improves throughout training, thus improving the quality of negative samples.

Baseline As shown in equation 3, IRGAN uses a constant baseline of 0.5 as an approximation of the value function. We show that this may not be the best choice, and our observations are in line with (Greensmith et al., 2004). Our theoretical result in appendix A makes plausible assumptions and shows that using a constant baseline increases the variance of gradient updates for tasks where the fraction of correct documents that can be retrieved per query is low (equation 4). Since the average number of correct documents per query for QA (0.002) and web search (0.005) is significantly lower than for item-recommendation (0.015), the constant baseline affects the generator’s training in both web search and QA by increasing the variance and as a result making convergence harder. This is empirically supported by better performance of Dual-D and equal performance of Single-D on both those tasks, even though they don’t use a generator, and only discriminators. The loss curves in IRGAN (Figures 3,8 in (Wang et al., 2017)) which show the deteriorating generator further corroborate our result that the constant baseline term harms the generator.

\[
\mathbb{V}(g(b)) \geq \left(\frac{Q_{\text{max}}}{b} - 1 \right)^2 \mathbb{E}_{\rho_\pi} \left[\mathbb{E}_{a_1(s_t)} \mathbb{E}_{\pi(A_t)} \left[\left| \nabla \theta \log \pi_\theta(a_t | s_t) - \mathbb{E}_{\rho_\pi, \pi} \left[\nabla \theta \log \pi_\theta(a_t | s_t) \right] \right|^2 \right] \right]
\]

7 Conclusion

In this work, we theoretically and experimentally show issues with the adversarial framework of a popular IR model. Through experiments using our proposed models which outperform IRGAN on two out of three tasks and our theoretical analysis of the variance in the policy gradients update, we show that the generator in IRGAN is harmful for its learning, thus converting IRGAN into a sub-optimal NCE model.
Strong results of IRGAN on the recommendation task shows that adversarial learning is a promising area for IR when applied carefully, and we hope that our study provides a solid foundation for fundamental research in this area.

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. 2017. Hindsight experience replay. In Advances in Neural Information Processing Systems, pages 5048–5058.

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern information retrieval, volume 463. ACM press New York.

Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on Computational learning theory, pages 92–100. ACM.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings of the 22nd international conference on Machine learning, pages 89–96. ACM.

Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with nonsmooth cost functions. In Advances in neural information processing systems, pages 193–200.

Thomas G Dietterich. 2000. Ensemble methods in machine learning. In International workshop on multiple classifier systems, pages 1–15. Springer.

Chris Dyer. 2014. Notes on noise contrastive estimation and negative sampling. arXiv preprint arXiv:1410.8251.

Saso Džeroski and Bernard Ženko. 2004. Is combining classifiers with stacking better than selecting the best one? Machine learning, 54(3):255–273.

William Fedus, Ian Goodfellow, and Andrew M Dai. 2018. Maskgan: Better text generation via filling in the _. arXiv preprint arXiv:1801.07736.

Minwei Feng, Bing Xiang, Michael R Glass, Lidan Wang, and Bowen Zhou. 2015. Applying deep learning to answer selection: A study and an open task. arXiv preprint arXiv:1508.01585.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680.

Ian J Goodfellow. 2014. On distinguishability criteria for estimating generative models. arXiv preprint arXiv:1412.6515.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. 2004. Variance reduction techniques for gradient estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 297–304.

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History and context. Acm transactions on interactive intelligent systems (tiis), 5(4):1–19.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learning for machine translation. In Advances in neural information processing systems, pages 820–828.

Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial personalized ranking for recommendation. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pages 355–364.

Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pages 50–57.
Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. 2017. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4681–4690.

Tie-Yan Liu, Jun Xu, Tao Qin, Wenying Xiong, and Hang Li. 2007. Letor: Benchmark dataset for research on learning to rank for information retrieval. In Proceedings of SIGIR 2007 workshop on learning to rank for information retrieval, volume 310. ACM Amsterdam, The Netherlands.

Dae Hoon Park and Yi Chang. 2019. Adversarial sampling and training for semi-supervised information retrieval. In The World Wide Web Conference, pages 1443–1453.

Yuxin Peng and Jinwei Qi. 2019. Cm-gans: Cross-modal generative adversarial networks for common representation learning. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 15(1):1–24.

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. Letor: A benchmark collection for research on learning to rank for information retrieval. Inf. Retr., 13(4):346–374, August.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning representations by back-propagating errors. nature, 323(6088):533.

Ruslan Salakhutdinov and Hugo Larochelle. 2010. Efficient learning of deep boltzmann machines. In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 693–700.

Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. 2016. Attentive pooling networks. arXiv preprint arXiv:1602.03609.

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative and discriminative information retrieval models. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 515–524. ACM.

Lex Weaver and Nigel Tao. 2001. The optimal reward baseline for gradient-based reinforcement learning. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI’01, page 538–545, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade, Igor Mordatch, and Pieter Abbeel. 2018. Variance reduction for policy gradient with action-dependent factorized baselines. arXiv preprint arXiv:1803.07246.

Xiao Yang, Madian Khabsa, Miaoisen Wang, Wei Wang, Ahmed Hassan Awadallah, Daniel Kifer, and C Lee Giles. 2019. Adversarial training for community question answer selection based on multi-scale matching. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 395–402.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, page 2852–2858. AAAI Press.

Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan Zhang. 2016. Lambdaafm: learning optimal ranking with factorization machines using lambda surrogates. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pages 227–236. ACM.

Chengxiang Zhai and John Lafferty. 2001. Model-based feedback in the language modeling approach to information retrieval. In Proceedings of the tenth international conference on Information and knowledge management, pages 403–410.

Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n collaborative filtering via dynamic negative item sampling. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 785–788.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2223–2232.
A Variance of Gradient Updates in REINFORCE

We proceed to lower bound the variance of REINFORCE’s updates while making plausible assumptions. We use standard notation where S is the state space, s_t is the state at time t, A is the action space, π is the policy, θ represents the parameters of the model, \hat{Q} is the Q-value, and ρ_π is the state-visitation frequency. Also, in

Let b be a vector of size $|S|$ which denotes the baseline term used in REINFORCE’s updates and S be the state space. Let $b(s_t)$ represent the baseline for value for the state s_t. $g(b)$ describes the gradient update (Wu et al., 2018), and is a function of the baseline.

$$g(b) := \nabla_\theta \log \pi_\theta(a_t|s_t) \left(\hat{Q}(s_t, a_t) - b(s_t) \right), \quad a_t \sim \pi_\theta(\cdot|s_t), \quad s_t \sim \rho_\pi(\cdot)$$

Assume that the baseline term is the same for all the states, which is indeed the case for IRGAN.

$$b(s_t) = b \quad \forall s_t \in S$$

We can rewrite the function $g(\cdot)$ as

$$g(b) := \nabla_\theta \log \pi_\theta(a_t|s_t) \left(\hat{Q}(s_t, a_t) - b \right)$$

The variance of the gradient $g(\cdot)$ is given by

$$\mathcal{W}(g(b)) = \mathbb{E}_{\rho_\pi,\pi} \left[||g(b) - \mathbb{E}_{\rho_\pi,\pi} [g(b)] ||^2 \right]$$

Let A be the set of actions available in each state. For each state $s \in S$, A can be partitioned into $A_1(s)$ and $A_2(s)$ which are actions partitions such that Q value of picking that action is less than the baseline and greater than the baseline respectively.

$$\forall a \in A_1(s) : \hat{Q}(s, a) < b$$
$$\forall a \in A_2(s) : \hat{Q}(s, a) \geq b$$

The variance of $g(\cdot)$ can then be simplified to the following, where $\pi(A_1)$ refers to the policy which picks actions only from the set $A_1(s)$ when in state s.

$$\mathcal{W}(g(b)) = \mathbb{E}_{\rho_\pi} \left[\mathbb{P}(a \in A_1(s_t)) \mathbb{E}_{\pi(A_1)} [||g(b) - \mathbb{E}_{\rho_\pi,\pi} [g(b)] ||^2] \right] +$$
$$\mathbb{E}_{\rho_\pi} \left[\mathbb{P}(a \in A_2(s_t)) \mathbb{E}_{\pi(A_2)} [||g(b) - \mathbb{E}_{\rho_\pi,\pi} [g(b)] ||^2] \right]$$

At the beginning of training, we can make the following assumption

$$\mathbb{P}(a \in A_1(s_t)) \gg \mathbb{P}(a \in A_2(s_t))$$

This is because the number of “correct” documents corresponding to a given query is very low, and the policy at the beginning of training is uniformly random or bad. This makes the probability of picking the good actions (correct documents) low. This reduces the variance expression to

$$\mathcal{W}(g(b)) \approx \mathbb{E}_{\rho_\pi} \left[\mathbb{P}(a \in A_1(s_t)) \mathbb{E}_{\pi(A_1)} [||g(b) - \mathbb{E}_{\rho_\pi,\pi} [g(b)] ||^2] \right]$$

Define Q_{max} as

$$Q_{\text{max}} = \max_{s_t \in S} \max_{a_t \in A_1(s_t)} \hat{Q}(s_t, a_t)$$

Then, by pulling out the factor $(Q_{\text{max}} - b)^2$ which is a constant, we have

$$\mathcal{W}(g(b)) \geq (Q_{\text{max}} - b)^2 \mathbb{E}_{\rho_\pi} \left[\mathbb{P}(a \in A_1(s_t)) \mathbb{E}_{\pi(A_1)} [||\nabla_\theta \log \pi_\theta(a_t|s_t) - \mathbb{E}_{\rho_\pi,\pi} [\nabla_\theta \log \pi_\theta(a_t|s_t)] ||^2] \right]$$
We now have that (1) the term in expectation is independent of \(b \), (2) \(b > Q_{max} \) \(\forall a \in A_1 \), and (3) term in the expectation is always positive. We have the following, where \(\text{lower}(\mathcal{W}(g(b))) \) denotes the lower bound.

\[
b_1 > b_2 \implies (Q_{max} - b_1)^2 > (Q_{max} - b_2)^2 \implies \text{lower}(\mathcal{W}(b_1)) > \text{lower}(\mathcal{W}(b_2)) \quad \text{given} \quad Q_{max}
\]

The lower bound on variance can be rewritten as follows

\[
\mathcal{W}(g(b)) \geq b^2 \left(\frac{Q_{max}}{b} - 1 \right)^2 \mathbb{E}_{\rho^n}[\mathbb{E}(a \in A_1(s_t))\mathbb{E}_{\pi(A_1)}[||\nabla \theta \log \pi_\theta(a_t|s_t) - \mathbb{E}_{\rho^s,\pi}[\nabla \theta \log \pi_\theta(a_t|s_t)]||^2]]
\]

If for two tasks, \(Q_{max_1} < Q_{max_2} \) implies \(\mathcal{W}(g(b)|Q_{max_1}) > \mathcal{W}(g(b)|Q_{max_2}) \). Since \(Q_{max} \) is typically lower for tasks where the fraction of correct documents that can be retrieved are low, we have that the lower bound is higher for such tasks. This is equivalent to low \(Q \)-values of bad actions in large action spaces with sparse rewards (Andrychowicz et al., 2017). Intuitively, when only a small fraction of documents are correct, it is harder for the generator to fool the discriminator, and hence the \(Q \) values corresponding to incorrect documents are low. While we have proved a lower bound result, it provides some intuition as to why the same baseline term might have different effects on different tasks.

B Dataset Statistics

Task	Dataset	Number of queries
Web Search	LETOR (Liu et al., 2007)	784
Recommendation	Movielens (Harper and Konstan, 2015)	943
Question Answering	InsuranceQA (Feng et al., 2015)	12887

Table 2. Datasets

C Hyperparameters

Hyperparameter	Description
Learning Rate	For both generator and discriminator
Batch Size	Batch size for training
Embed Dim	Embedding dimension of words
Outer Epochs	Number of epochs of training
Inner Epochs	The number of epochs Dual-D models are trained for each outer epoch
Temperature	Temperature parameter for softmax
Random Seed	The random seed used for initializations
Feature Size	The intermediate size of neural networks
DNS_K	The number of negative samples

Table 3. Hyperparameters for our models
Table 4. Single-D for web search

Hyperparameter/Seed	Range/List	Best
Learning Rate	0.002-0.2	0.004
Batch Size	[8,16,32]	8
Feature Size	[46, 92]	46
Random Seed	[20,40,60]	40

Table 5. Dual-D for web search

Hyperparameter/Seed	Range/List	Best
Learning Rate	0.002-0.2	0.006
Outer Epochs	[30,50]	50
Inner Epochs	[30,50]	30
Batch Size	[8,16,32]	8
Feature Size	[46, 92]	46
Random Seed	[20,40,60]	40

Table 6. Single-D for item recommendation

Hyperparameter	Best
Learning Rate	0.05
Epochs	20
Batch Size	100
Embedding Dimension	100

Table 7. Single-D for Question Answering

Hyperparameter	Best
Learning Rate	0.05
Outer Epochs	20
Inner Epochs	1
Batch Size	100
Embedding Dimension	100

Table 8. Dual-D for Question Answering