The evolution of HIV-1 reverse transcriptase in route to acquisition of Q151M multi-drug resistance is complex and involves mutations in multiple domains

Jean L Mbisa1*, Ravi K Gupta2, Desire Kabamba3, Veronica Mulenga3, Moxmalama Kalumbi3, Chifumbe Chintu3, Chris M Parry1, Diana M Gibb4, Sarah A Walker4, Patricia A Cane1 and Deenan Pillay1,2

Abstract

Background: The Q151M multi-drug resistance (MDR) pathway in HIV-1 reverse transcriptase (RT) confers reduced susceptibility to all nucleoside reverse transcriptase inhibitors (NRTIs) excluding tenofovir (TDF). This pathway emerges after long term failure of therapy, and is increasingly observed in the resource poor world, where antiretroviral therapy is rarely accompanied by intensive virological monitoring. In this study we examined the genotypic, phenotypic and fitness correlates associated with the development of Q151M MDR in the absence of viral load monitoring.

Results: Single-genome sequencing (SGS) of full-length RT was carried out on sequential samples from an HIV-infected individual enrolled in ART rollout. The emergence of Q151M MDR occurred in the order A62V, V75I, and finally Q151M on the same genome at 4, 17 and 37 months after initiation of therapy, respectively. This was accompanied by a parallel cumulative acquisition of mutations at 20 other codon positions; seven of which were located in the connection subdomain. We established that fourteen of these mutations are also observed in Q151M-containing sequences submitted to the Stanford University HIV database. Phenotypic drug susceptibility testing demonstrated that the Q151M-containing RT had reduced susceptibility to all NRTIs except for TDF. RT domain-swapping of patient and wild-type RTs showed that patient-derived connection subdomains were not associated with reduced NRTI susceptibility. However, the virus expressing patient-derived Q151M RT at 37 months demonstrated ~44% replicative capacity of that at 4 months. This was further reduced to ~22% when the Q151M-containing DNA pol domain was expressed with wild-type C-terminal domain, but was then fully compensated by coexpression of the coevolved connection subdomain.

Conclusions: We demonstrate a complex interplay between drug susceptibility and replicative fitness in the acquisition Q151M MDR with serious implications for second-line regimen options. The acquisition of the Q151M pathway occurred sequentially over a long period of failing NRTI therapy, and was associated with mutations in multiple RT domains.

Background

RT inhibitors (RTIs) are the mainstay of combination antiretroviral therapy (cART). Recommended first-line therapy regimens for HIV-1 treatment usually comprise two nucleos(t)ide RTIs (NRTIs) plus a third agent, either a non-nucleoside RTI (NNRTI) or a boosted protease inhibitor (bPI) or integrase inhibitor [1-3]. More than 90 mutations have been identified in HIV-1 RT to be associated with resistance to RTIs, and the majority are clustered either around the polymerase active site or the hydrophobic binding pocket of NNRTIs in the DNA pol domain of RT [4-7]. A consequence of some of these mutations is a severe loss of viral replicative capacity which can subsequently be restored by compensatory mutations elsewhere within RT [8].

*Correspondence: tamyo.mbisa@hpa.org.uk

1Virus Reference Department, Microbiology Services, Colindale, Health Protection Agency, London, UK

Full list of author information is available at the end of the article.

© 2011 Mbisa et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The Q151M MDR is important because it has been shown to confer resistance to almost all NRTIs with the exception of TDF [9]. The Q151M MDR complex is composed of the Q151M mutation, which is normally the first to appear, followed by at least two of the following four mutations: A62V, V75I, F77L and F116Y [10]. The Q151M MDR complex was initially described to develop during long-term NRTI-containing combination therapy or NRTI therapy with zidovudine (AZT) and/or didanosine (ddI) [11,12]; however, it is now rarely observed in resource-rich countries, where more potent cART is used. It is believed that the Q151M MDR complex occurs infrequently because the Q151 to M mutation requires a 2-bp change (CAG to ATG), and the two possible intermediate changes of Q151L (CAG to CTG) and Q151K (CAG to AAG) significantly reduce viral replication capacity in vitro and are seldom observed in vivo [13-15]. The replicative capacity of a Q151L-containing virus was shown to improve in the presence of S68G and M230I mutations suggesting that compensatory mutations could favour the emergence of the Q151M MDR complex [13,15].

The Q151M complex has been identified in up to 19% of patients failing therapy because the Q151 to M mutation requires a 2-bp change (CAG to ATG), and the two possible intermediate changes of Q151L (CAG to CTG) and Q151K (CAG to AAG) significantly reduce viral replication capacity in vitro and are seldom observed in vivo [13-15]. The replicative capacity of a Q151L-containing virus was shown to improve in the presence of S68G and M230I mutations suggesting that compensatory mutations could favour the emergence of the Q151M MDR complex [13,15].

Although mutations causing resistance to RTIs have been shown to occur mainly in the DNA pol domain of RT, recent studies have implicated mutations in the C-terminal region of RT in resistance and possibly in restoring replication fitness of the HIV-1 drug-resistant variants [20,21]. Some of these mutations, such as N348I in the connection subdomain, have been reported to have a prevalence of 10-20% in treatment-experienced individuals [22]. The N348I mutation is associated with M184V and TAMs, and increases resistance to NRTIs such as AZT, as well as the NNRTI NVP. N348I confers resistance by reducing RNase H activity which allows more time for the excision or dissociation of the RT inhibitors [22-27]. However, few data are available on the evolution and genetic linkage of C-terminal mutations in the context of Q151M MDR complex, especially in non-B subtypes. In this study, we performed a detailed analysis of sequential samples collected from a patient in the CHAP2 cohort study who had developed resistance via the Q151M pathway to dissect the intrapatient viral population dynamics in the context of full-length RT.

Results
We investigated the emergence of the Q151M MDR complex in one of the two patients in the CHAP2 cohort study who had developed resistance via the Q151M pathway [19]. The patient, designated P66, was infected with HIV-1 subtype C virus.

Dynamics of emergence and genetic linkage of Q151M MDR complex mutations
Patients enrolled in the CHAP2 cohort study had CD4 counts done approximately every 6 months and plasma was stored for retrospective viral load and genotypic testing. For patient P66, six samples were collected at 0, 4, 10, 17, 28, and 37 months after initiation of therapy; four of which were available for viral load testing and SGS analysis. The viral load and CD4% counts for patient P66 are shown in figure 1. We initially determined the development of Q151M MDR complex using SGS of full-length RT gene in the four sequential samples collected from patient P66 at 4, 17, 28 and 37 months. More than 30 single-genome sequences were generated per time point except for the 4- and 28-month time points when we obtained 6 and 0 sequences respectively. Genetic linkage analysis of the single genomes at 4, 17 and 37 months showed that the patient acquired the Q151M MDR mutations in the order: A62V, V75I and finally Q151M (Table 1). The emergence of Q151M after the secondary mutations A62V and V75I is rare. In addition, the analysis showed that drug resistance mutation T69N was genetically linked to Q151M MDR mutations and was acquired prior to Q151M.

Accessory mutations in the DNA pol domain of RT have previously been demonstrated in the route to acquisition of Q151M MDR complex in subtype B viruses [12,28]. We, therefore, determined whether accessory mutations developed in this subtype C HIV-1 virus and whether the C-terminal region of RT played a role in the emergence of the Q151M MDR complex. The emergence and presence of mutations in DNA pol domain, connection subdomain and RNase H domain were assessed by SGS, and their genetic linkage to Q151M MDR mutations was determined. A pre-treatment sample was not available for analysis from patient P66; therefore a codon change was scored as a mutation if it met one of the following criteria: (i) if it was a known drug resistance mutation as determined by International AIDS Society-USA (IAS-USA) [29], (ii) if it was not present in sequences from a previous time point or
underwent a significant change in frequency between time points. This analysis showed a cumulative increase in mutations in all RT domains (Table 1). Mutations were identified at 12 codon positions in DNA pol domain, namely, 31, 33, 48, 68, 102, 123, 135, 174, 197, 202, 203 and 314; seven in connection subdomain, 357, 371, 386, 399, 403, 458 and 471; and one in RNase H domain, 517. The correlation between the progressive increments in the frequency of these mutations and the sequential acquisition of the Q151M MDR mutations suggested that they could be facilitating the emergence of the Q151M MDR complex. This notion is further supported by the observation that 18 out of the 20 mutations were present in a majority of the single genomes by 37 months and nearly half of them were present in all the single genomes (Table 1).

The Q151M MDR mutations were also genetically linked to NRTI mutations M184IV and L210F, and NNRTI mutations E138A, Y181I and H221Y (Table 1). Of note, the N348I mutation was identified in the connection subdomain of all single genomes at 4 months. However, the mutation was present in only one out of 33 single genomes at 17 months but none of the 31 single genomes at 37 months when the Q151M mutation emerged (Table 1).

Intrahospital viral genetic diversity in the route to acquisition of Q151M MDR complex

The evolution and viral population dynamics within patient P66 were examined further by phylogenetic analyses. Maximum likelihood (ML) trees of the PR-RT single-genome sequences generated from the sequential samples of the patient are shown in Figure 2A. In general, the ML-inferred genealogy clustered all single genomes from each time point within a monophyletic clade with corresponding progressive increases in genetic distances. Intriguingly, the analyses also showed a serial replacement effect with sequences from successive time points arising from a single branch of a cluster of sequences from a preceding time point. This suggests a serial founder effect in the development of Q151M MDR. Furthermore, ML-inferred genealogy of the sequences with drug resistance codons removed showed that the serial founder effect and monophyletic clustering of the sequences from each time point was maintained (Figure 2B). This indicates that the identified accessory mutations could be playing an important role in the evolution and development of the Q151M MDR.

High prevalence of some of the identified accessory mutations in subtype B and C infected patients

Next, we determined if the 20 accessory mutations that we identified in patient P66 were present in other patients who had developed resistance via the Q151M pathway. We compared mutation frequencies in subtype B or C samples from RTI-treatment naïve patients and Q151M-containing patient samples on the Stanford University HIV drug resistance database. A significant number of sequences (15 to 12,361) were available for analysis in each subgroup, except for connection subdomain and RNase H domain of Q151M-containing subtype C sequences, in which there was only one sample sequenced beyond the DNA pol domain. Therefore, the analysis for subtype C sequences could only be carried out for the DNA pol domain. This showed that eight out of the 12 codon positions identified in the DNA pol domain of patient P66 were significantly associated with the sequences containing the Q151M mutation compared to RTI-treatment naïve sequences. These codon positions were 31, 33, 48, 68, 123, 174, 202 and 203 \((P \leq 0.042; \text{Table 2}) \). In contrast, two of these codon positions, namely 48 and 174, were not associated with the acquisition of Q151M in subtype B infected patients, but an additional two others were, namely 102 and 197 \((P \leq 0.029) \). Interestingly, codon positions 386 and 403 in connection subdomain were also significantly associated with the acquisition of Q151M in subtype B infected individuals \((P \leq 0.018) \). These data indicate that some of the accessory mutations identified in the DNA pol domain and connection subdomain of patient P66 are highly prevalent in patients who develop resistance through the Q151M pathway and that they could be playing an important role in the acquisition of the Q151M MDR.
C-terminal mutations are not associated with decreased susceptibility of Q151M-containing viruses to NRTIs in patient P66

Consequently, we investigated whether the C-terminal mutations we observed affected susceptibility to NRTIs. Unique restriction sites were introduced in RT and IN genes without changing the amino acid coding, in both the packaging vector and cloned patient fragments in order to facilitate RT domain-swapping (Figure 3A).

The patient-derived RTs remained d4T-susceptible until the development of the Q151M mutation at 37 months, when there was a significant increase (~16-fold) in IC50 values compared to wild-type RT (Figure 3B; \(P < 0.002 \)). At most we observed a 1.3-fold change in susceptibility to d4T at 4 or 17 months leading us to conclude that Q151M is the main contributor to d4T resistance in the Q151M MDR complex. The patient-derived RT exhibited a 23-fold increase in 3TC IC50 values at 4 months which did not increase at 17 and 37 months despite the acquisition of the Q151M MDR mutations (Table 3).

Type or Location of mutations	Wild-type residue	Genetic linkage of other mutations to Q151M MDR		
		4 months (636)	17 months (51,000)	37 months (108,769)
n = 5^c	n = 1	n = 33	n = 31	
Q151M MDR				
A62	V	V	V	
V75	V	V	V	
Q151	V	V	V	
Other NRTI				
T69	i^20	i^100		
M184	i^100	i^100		
L210	i^100	i^100		
NNRTI				
V90	i^20	i^100		
E138	i^100	i^100		
Y181	i^100	i^100		
H221				
M230	i^100	i^100		
N348	i^100	i^100		
Other DNA pol domain				
I235	V^60	L^59V^14T^15		
R174	i^100			
K197	i^100			
E203	D^100			
V314	i^20			
Other connection subdomain				
M357	R^78L^3			
A371	i^100			
T386				
E399	i^100			
A403	i^100			
H458	V^20	V^100		
E471	D^19			
RNase H domain				
L517	i^20	i^100	i^20	

^a Wild-type residue was determined based on 4-month sequences and frequency in treatment-naïve individuals as determined using Stanford University HIV database

^b Viral load in copies/mL

^c Number of single genomes linked or unlinked to Q151M MDR mutations

^d Percent of single genomes with that particular mutation calculated as follows: number of mutations per codon/number of single genomes linked or unlinked to Q151M MDR (n) × 100%
The effect on susceptibility to 3TC was probably due to M184I/V mutations which were seen by 4 months. The 23-fold reduction in susceptibility is relatively lower than observed in other studies [30,31]. This could be because our assay uses full-length RT fragments derived from clinical isolates. It has recently been shown that the use of a co-evolved or subtype-specific C-terminal region of RT can influence the magnitude of drug resistance observed in a phenotypic drug susceptibility assay [32].

Analysis of susceptibilities of patient-derived RTs to the CHAP2 second-line NRTIs ddI and ABC showed a cumulative decrease in susceptibility in the order; 1.2- and 1.7-fold at 4 months, 4- and 6-fold at 17 months, and finally 9.9- and 10.8-fold at 37 months, respectively (Figure 3C). Thus, unlike d4T the cumulative acquisition of mutations on the route to Q151M MDR complex results in a parallel cumulative decrease in susceptibilities to ABC and ddI. In addition, the recombinant viruses expressing patient-derived RTs exhibited decreased susceptibilities to NRTIs FTC of >79-fold at 4 months and AZT of >15-fold at 37 months (Table 3) but remained susceptible to TDF even after the acquisition of the Q151M mutation at 37 months (Figure 3D) with no significant increases in IC50 values (P > 0.18). The susceptibility to TDF could probably be influenced by the presence of M184V which has been shown to increase HIV-1 sensitivity to TDF [33,34].

The expression of the patient-derived DNA pol domain at 37 months plus wild-type C-terminal region or coevolved connection subdomain showed no significant differences in IC50 values to d4T (P > 0.05) suggesting that none of the identified C-terminal mutations in patient P66 at 37 months contributed to the reduction in susceptibility to d4T (Figure 3B). Similarly, the coevolved C-terminal region did not contribute to 3TC resistance, including the previously identified N348I mutation at 4 months, neither did they contribute to the decreases in susceptibility to ABC, ddI or FTC (Figure 3C and 3D and Table 3). However, we observed an effect of the C-terminal mutations at 37 months to AZT, with the co-evolved C-terminal region contributing a 2.5-fold increase in AZT resistance (Table 3).

Finally, we determined the effect of the mutations on susceptibility to NVP, the NNRTI used for first-line therapy in the CHAP2 cohort study. The recombinant viruses expressing the patient-derived C-terminal region at 4 months, but not at 17 or 37 months, exhibited a 5-fold increase in the NVP IC50 value relative to wild-type (P < 0.002; Table 4). The decrease in NVP susceptibility associated with the C-terminal domain at 4 months is likely due to the presence of the N348I mutation in the connection subdomain which disappears at later time points.

Connection subdomain mutations in patient P66 partially restore replicative fitness of Q151M MDR-containing viruses
Since we did not observe any association of C-terminal mutations at 37 months with a decrease in susceptibilities
to first-line drugs, we evaluated their effect on virus replicative capacity by infecting HEK293T cells with equivalent amounts of virus. The patient’s sample before initiation of therapy was not available, thus the replicative capacity of the viruses measured by relative luciferase light units was compared to that of the virus expressing full-length patient-derived RT at 4 months. The patient-derived RT at 4 months had already developed the M184I mutation which is known to affect viral replicative fitness [35,36]. The virus expressing the full-length patient-derived RT containing the Q151M mutation at 37 months demonstrated ~42% replicative capacity of full-length patient-derived RT at 4 months ($P < 0.0001$; Figure 2E). This was further significantly decreased to ~22% ($P < 0.0001$) when the patient-derived DNA pol domain at 37 months was expressed in combination with wild-type connection subdomain and RNase H domain. This decrease in replicative capacity was fully compensated (to ~55% replicative capacity) by the coexpression of the coevolved connection subdomain at 37 months. In contrast, replicative capacity of the full-length patient-derived RT at 17 months was comparable to that at 4

Table 2 Analysis of the frequency of accessory mutations in RTI-treatment naïve and Q151M-containing sequences on Stanford University HIV database.

Subtype C	Subtype B											
RTI-treatment naïve	Q151M	Mut.% Diff.	Wild-type B									
No. of seqs.	% mut. freq.	Mut.% Diff.										
I31	3,557	<1	24	4 (L)	+4	I31	10,329	<1	373	5 (RL)	+5	
A33	3,600	<0.1	24	4 (V)	+4	A33	10,388	<1	375	2 (V)	+2	
T48	3,941	15 (SE)	44	39 (S)	+24	S48	12,361	3 (T)	492	2 (T)	-1	
S68	3,998	<1	44	73 (G)	+73	S68	12,350	4 (G)	491	50 (GNRK)	-46	
K102	4,004	2 (Q)	44	5 (QN)	+3	K102	12,204	5 (QR)	492	8 (QR)	+3	
D123	3,757	62 (SGNE)	44	77 (SGN)	+15	D123	12,001	29 (ENS)	492	28 (EN)	-1	
DNA pol	I135	3,942	28 (TVR)	44	23 (TVRM)	-5	I135	11,994	43 (TVLR)	492	38 (TVLMR)	-5
Q174	3,851	39 (KR)	44	61 (KR)	+22	Q174	12,241	7 (KEHR)	492	9 (RH)	+2	
Q197	3,999	3 (K)	44	2 (E)	-1	Q197	12,216	3 (KE)	492	5 (EK)	+2	
I202	3,955	7 (V)	44	27 (V)	+20	I202	12,151	9 (V)	492	24 (V)	+15	
E203	4,008	1	44	7 (K)	+6	E203	12,304	1	492	10 (DK)	+9	
V314	1,889	2 (A)	19	0	-2	V314	4,332	<1	91	0	-15	
M357	715	33 (RKLVIIT)	1	100 (K)	NC	M357	1,481	31 (TKVIR)	75	33 (TVRK)	+2	
A371	684	6 (V)	1	0	NC	A371	1,518	5 (V)	75	11 (VT)	+6	
T386	657	11 (IV)	1	100 (I)	NC	T386	1,504	18 (IV)	75	49 (IV)	+31	
connection	E399	595	5 (DG)	1	0	NC	E399	1,381	14 (D)	75	13 (DG)	-1
T403	556	6 (MAI)	0	NA	NA	T403	744	23 (MISAVL)	17	0	-23	
V458	401	6 (I)	0	NA	NA	V458	651	1 (I)	16	0	-1	
E471	396	3 (D)	0	NA	NA	E471	658	3 (EN)	16	0	-3	
RNase H	L517	392	7 (I)	0	NA	NA	L517	636	15 (IV)	15	0	-15

aThe residue occurring in the majority of RTI-treatment naïve patient sequences is referred to as wild-type. Codon positions showing statistically significant difference in mutation frequency between RTI-treatment naïve and Q151M-containing sequences are indicated in bold. Subtype C: I31 ($P = 0.033$), A33 ($P = 0.024$), T48 ($P < 0.0001$), S68 ($P < 0.0001$), D123 ($P = 0.042$), Q174 ($P < 0.0001$), I202 ($P < 0.0001$) and E203 ($P = 0.011$). Subtype B: I31 ($P = 0.024$), S68 ($P < 0.0001$), K102 ($P = 0.006$), I135 ($P = 0.029$), Q197 ($P = 0.015$), I202 ($P < 0.0001$), E203 ($P < 0.0001$), T386 ($P < 0.0001$) and T403 ($P = 0.018$).
bSequences containing the Q151M mutation.
cThe number of sequences used for the analysis. Only one sequence was used per individual if multiple sequences were available.
dThe percentage of sequences with an amino acid change from wild-type residue. The mutant amino acid(s) present at a frequency greater than 1% is shown in brackets.
eThe difference in mutation frequency between Q151M-containing and RTI-treatment naïve sequences; plus sign indicates an increase and minus sign a decrease in mutation frequency in Q151M-containing sequences compared to RTI-treatment naïve.
fNC = Not calculated (one sequence available for analysis).
gNA = Not applicable (no sequences available for analysis).

Mbisa et al. Retrovirology 2011, 8:31
http://www.retrovirology.com/content/8/1/31
months. This suggests that the Q151M mutation, as well as being the main determinant of drug resistance in the Q151M MDR complex, also has a more significant effect on virus replication fitness that is partially restored by mutations in the connection subdomain.

Discussion

Multiple mutations throughout HIV-1 RT are associated with RTI resistance including recently identified mutations in the connection subdomain and RNase H domain [10,21,27]. However, there are few data on
Table 3 3TC, AZT and FTC susceptibilities associated with RT domains of patient P66.

Virus	3TC IC50a	FCb	AZT IC50a	FCb	FTC IC50a	FCb
Wild-type	8.5 ± 0.8		168.6 ± 46.8		2.2 ± 0.3	
4-RT	198.8 ± 186	23.3	76.9 ± 68	0.5	184.2 ± 14.2	84.9
4-Pol	211.5 ± 175	24.8	60.0 ± 138	0.4	168.1 ± 64	77.5
17-RT	224.1 ± 169	26.3	56.4 ± 72	0.3	228.8 ± 6.7	105.5
17-Pol	2065.9 ± 97	24.2	58.1 ± 142	0.3	218.9 ± 133	1009
37-RT	2197.7 ± 57	25.8	5120.9 ± 515.6	30.4	230.9 ± 10.2	1064
37-Pol	2178.0 ± 181	25.6	2025.3 ± 144.2	120	231.5 ± 17.1	1067

*a50% inhibitory concentration in nM ± SEM.

Table 4 NVP susceptibilities associated with RT domains of patient P66.

Virus	IC50a	FCb
Wild-type	86.47 ± 11.84	
4-RT	>6,000	>66
4-Pol	>6,000	>66
4-Pol-Cn	>6,000	>66
4-Cn-Rh	410.5 ± 55.2	4.7
17-RT	>6,000	>66
17-Pol	>6,000	>66
17-Pol-Cn	>6,000	>66
17-Cn-Rh	73.83 ± 8.54	0.9
37-RT	>6,000	>66
37-Pol	>6,000	>66
37-Pol-Cn	>6,000	>66
37-Cn-Rh	88.23 ± 12.95	1.0

*a50% inhibitory concentration in nM ± SEM.

We show that although the connection subdomain mutations were acquired in parallel with Q151M MDR mutations they were not directly associated with drug resistance but played a role in improving the replicative fitness of the Q151M-containing viruses. Our findings confirm previous reports showing that the Q151M-containing virus replicates poorly [13,14,38,39]. We clearly show that the patient-derived connection subdomain is important for improving the Q151M-containing virus’ replicative fitness and is thus important for the development of the Q151M pathway. It will be interesting to elucidate the particular mutations involved and the mechanism behind the connection subdomain’s effect on replicative fitness of the Q151M-containing RT. The mutation at connection subdomain codon positions 386 and 403 were significantly associated with Q151M in the subtype B database analysis; however, a similar analysis could not be carried out for subtype C due to lack of samples sequenced beyond the DNA pol domain. Since the connection subdomain is involved in positioning of the template-primer complex at the polymerase active site, one possibility could be that the mutations improve enzyme-substrate interactions at the active site. Of note, the intermediate Q151K or L mutations which have been postulated to be involved in the emergence of the Q151M mutation were never identified in our SGS analysis. It is possible that these mutations do emerge but are only present transiently due to their negative effect on replication and, as a result, were missed in this analysis. This possibility could not be explored further in this study as we were unable to amplify any genomes at 28 months, the time point prior to the emergence of the Q151M mutation.

It was surprising to observe that the patient-derived connection subdomain and RNase H domain were not associated with the decreased susceptibility to NRTIs exhibited by the Q151M MDR-containing RTs and also that the N348I mutation disappeared prior to the acquisition of Q151M. As described earlier, N348I confers drug resistance by decreasing RNase H activity, thus it will be interesting to explore if a negative correlation exists between reduced RNase H activity and Q151M.
Another surprising finding was that full-blown resistance did not develop until 37 months after initiation of therapy, even though the viral load had been relatively high at earlier time points. This raises the possibility of suboptimal use of the drugs contributing to the emergence of the Q151M MDR complex.

Conclusions

Understanding the evolution and molecular mechanisms leading to the emergence of the Q151M MDR complex is important especially in light of its relatively frequent occurrence in some ARV rollout cohorts. As shown in this study and other previous reports [9], the presence of the Q151M mutation significantly limits the options for second-line therapies as the Q151M-containing virus remains only susceptible to one approved NRTI, TDF. Our results showed that the Q151M MDR takes a long time to develop and keeping patients on failing NRTI therapy could be facilitating its emergence. The Q151M MDR is also often linked to other NRTI and NNRTI mutations which develop earlier and thus further limiting the options for second-line regimens. In addition, the virus acquires compensatory mutations throughout RT which make it fitter, resulting in a virus that could persist even after switching to second-line therapy. This is a major obstacle in the developing world where fixed second-line therapies are composed of two alternate NRTIs (usually not TDF) and bPI. Thus, these types of studies are important in guiding public health approaches to the treatment and clinical management of HIV-1 infections in resource-poor settings.

Methods

Clinical HIV samples and database analysis

The plasma samples characterized in this study were from a patient enrolled in the CHAP2 prospective cohort study at the University Teaching Hospital in Lusaka, Zambia [19]. Children in this study were initiated on first-line cART of 3TC/d4T/NVP (adult Triomune30) and, following immunological or clinical failure, were switched to a fixed second-line therapy of Emicizumab (upstream of gag initiation codon and in gag) were eliminated to ensure that the introduced sites were unique. In parallel, patient-derived PR-RT single genomes that closely represented the sequence of the majority of the single genomes at each time point were subcloned into a TOPO-TA vector (Invitrogen) by PCR using primers GagApaF (5'-GCAGGGCCCTAGGAAAAAGGGC-3') and CRhINClaNRI (5'-CTTATCGGATTCCATCTAGAATAGC-3'). Similarly, HpaI (flanking RT amino acids 288/289) and ClaI (flanking IN amino acids 4/5) creating p8MJ4-HSC. The MJ4 sequence also contains a natural and unique ApaI site in p6 region of gag. In addition, the SpeI site in gag and two ClaI sites (upstream of gag initiation codon and in gag) were eliminated to ensure that the introduced sites were unique. In parallel, patient-derived PR-RT single genomes were used to study phenotypic drug susceptibility [42,43]. Briefly, vector p8MJ4 was modified to accommodate RT domain-swapping by introducing three restriction enzyme sites, Hpal (flanking RT amino acids 288/289) and SpeI (flanking RT amino acids 423/424) and ClaI (flanking IN amino acids 4/5) creating p8MJ4-HSC. The MJ4 sequence also contains a natural and unique ApaI site in p6 region of gag. In addition, the SpeI site in gag and two ClaI sites (upstream of gag initiation codon and in gag) were eliminated to ensure that the introduced sites were unique. In parallel, patient-derived PR-RT single genomes that closely represented the sequence of the majority of the single genomes at each time point were subcloned into a TOPO-TA vector (Invitrogen) by PCR using primers GagApaF (5'-GCAGGGCCCTAGGAAAAAGGGC-3') and CRhINClaNRI (5'-CTTATCGGATTCCATCTAGAATAGC-3'). Similarly, HpaI (flanking RT amino acids 288/289) and SpeI (flanking RT amino acids 423/424) sites were introduced and any HpaI or SpeI sites that were present in the cloned patient fragments were removed using sequence-specific primers. Mutagenesis reactions were carried out by site-
directed mutagenesis using QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent Technologies) and the presence and absence of each mutation was verified by sequencing. The other two vectors used in the system are pMDG encoding the vesicular stomatitis virus G protein and retroviral expression vector pCSFLW which encodes for the luciferase reporter gene. Virus stocks were prepared by cotransfection of HEK293T cells as described previously [44-46], diluted 50- to 500-fold and used to infect HEK293T target cells. The virus and target cells were incubated with medium containing varying drug concentrations for 48 h. Infectivity was determined by measuring luciferase activity in the target cells using Steady-Glo reporter assay system (Promega). Data were expressed relative to that of no drug controls and the drug concentrations required to inhibit virus replication by 50% (IC50) were determined by linear regression analysis. Results are expressed as fold changes in the IC50 compared to wild-type subtype C virus.

Antiretroviral drugs
The NRTIs ABC, AZT, ddI, emtricitabine (FTC), 3TC and d4T; and the NNRTIs efavirenz (EFV), etravirine (ETV), and NVP were obtained from the NIH AIDS Research and Reference Reagent Program. TDF was a generous gift from Gilead Sciences (Foster City, CA, USA).

Replicative capacity Assay
Recombinant viruses expressing wild-type and patient-derived RT domains were normalized for p24 capsid (Genetic Systems HIV-1 Ag EIA; Bio-Rad) and used to infect target HEK293T cells in a single-cycle-replication assay. Replicative capacity was determined by measuring luciferase activity as described above.

Statistical analyses
Student’s t test was used to describe differences in IC50 values and replicative capacity and two proportions analysis was performed by using Fisher’s Exact test with P values < 0.05 regarded as significant for both tests (StataSE software).

Nucleotide sequence accession numbers
The single-genome sequences generated and used in this study have been submitted to GenBank and assigned the accession numbers HQ111194–HQ111338.

Acknowledgements
We especially thank Sarah Palmer for technical advice in establishing the single-genome sequencing assay, Vinay Pathak, Stéphane Hué, and Andrew Buckton for helpful discussions; the patients, staff and project management of the CHAP2 cohort study in Lusaka, Zambia. We thank Nigel Temperton University of Kent for pCSFLW; Didier Trono EPFL Switzerland for pCMV-ΔΔ91 and pMDG; and Thombi Ndung’u, Boris Renjifo and Max Essex for p8M4. We also thank Soo-Yoon Rhee, Stanford University HIV database for help with database sequence analysis and Ross Harris, Health Protection Agency for help with statistical analysis.

This report is work financially supported by the National Institute for Health Research in Health Protection at the Health Protection Agency. The views expressed in this publicaion are those of the authors and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health. DP is part funded by the NIH UCHL/UCL Comprehensive Biomedical Research Centre and we acknowledge part funding from the UK Medical Research Council, the Wellcome Trust and the European Community’s Seventh Framework Programme (FP7/2007-2013) under the project “Collaborative HIV and Anti-HIV Drug Resistance Network (CHAIN)” - grant agreement n° 223131.

Author details
1Virus Reference Department, Microbiology Services, Colindale, Health Protection Agency, London, UK. 2UCL/MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, UCL, Windyeyr Institute, London, UK. 3University Teaching Hospital, UNZA School of Medicine, Lusaka, Zambia. 4MRC Clinical Trials Unit, London, UK.

Authors’ contributions
JLM carried out the bulk of the laboratory work, planning the study and writing the manuscript. RKG, CMP, DMG, ASW, PAC and DP were involved in planning the study, undertaking laboratory work and editing the manuscript. DK, VM, NK, CC, DMG were involved in undertaking clinical support work. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 3 January 2011 Accepted: 11 May 2011 Published: 11 May 2011

References
1. Panel on Antiretroviral Guidelines for Adults and Adolescents: Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services 2009, 1-161, 20-7-2010.
2. Hammer SM, Eron JJ Jr, Reiss P, Schooley RT, Thompson MA, Walmsley S, et al: Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel. JAMA 2008, 300:555-570.
3. World Health Organization (WHO): Antiretroviral therapy for HIV infection in adults and adolescents: recommendations for a public health approach 2010, 20-7-2010.
4. Ren J, Stammers DK: HIV reverse transcriptase structures: designing new inhibitors and understanding mechanisms of drug resistance. Trends Pharmacol Sci 2005, 26:4-7.
5. Sarafianos SG, Das K, Ding J, Boyer PL, Hughes SH, Arnold E: Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. Chem Biol 1999, 6:R137-R146.
6. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA: Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 1992, 256:1783-1790.
7. Huang H, Chopra R, Verdiene GL, Harrison SC: Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 1998, 282:1669-1675.
8. Mendez-Arias L, Martinez NA, Quinones-Mateu ME, Martinez-Picado J. Fitness variations and their impact on the evolution of antiretroviral drug resistance. Curr Drug Targets Infect Disord 2003, 3:355-371.
9. Harada S, Hazra R, Tamjya S, Zechner Sl, Mituya H: Emergence of human immunodeficiency virus type 1 variants containing the Q151M complex in children receiving long-term antiretroviral chemotherapy. Antiviral Res 2007, 75:159-166.
10. Shaffer BW, Schapiro JM: HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev 2008, 10:67-84.
11. Shirasaka T, Kavikcf M, Ueno T, Gao WY, Kojima E, Alcaide ML, et al: Emergence of human immunodeficiency virus type 1 variants with
resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. *Proc Natl Acad Sci USA* 1995, 92:2398-2402.

12. Iversen AK, Shafer RW, Wehrly K, Winters MA, Mullins JI, Chesebro B, et al: Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. *J Virol* 1996, 70:10860-10866.

13. Garcia-Lerma JG, Gerrish PJ, Wright AC, Qari SH, Heneine W: Evidence of a role for the Q151L mutation and the viral background in development of multiple dideoxynucleoside-resistant human immunodeficiency virus type 1. *J Virol* 2000, 74:9339-9346.

14. Kosalaraksa P, Kavlick MF, Maroun V, Le R, Mitsuha Y: Comparative fitness of multi-dideoxynucleoside-resistant human immunodeficiency virus type 1 (HIV-1) in an In vitro competitive HIV-1 replication assay. *J Virol* 1999, 73:5356-5363.

15. Matsumi S, Kosalaraksa P, Tsang H, Kavlick MF, Hanada S, Mitsuha Y: Pathways for the emergence of multi-dideoxynucleoside-resistant HIV-1 variants. *AIDS* 2003, 17:1127-1137.

16. Hosseinipour MC, van Oosterhout JJ, Weigel R, Phiri S, Kamwendo D, Parkin N, et al: The public health approach to identify antiretroviral therapy failure: high-level nucleoside reverse transcriptase inhibitor resistance among Malawians failing first-line antiretroviral therapy. *AIDS* 2009, 23:1127-1134.

17. Sivichayakul S, Ruangsumrung K, Ungsedhapand C, Teshasatit W, Ubolym S, Chuenyam T, et al: Nucleoside analogue mutations and Q151M in HIV-1 subtype A/E infection treated with nucleoside reverse transcriptase inhibitors. *AIDS* 2003, 17:1889-1896.

18. Sungkanuparph S, Manosuthi W, Kemburanakul S, Pyavong B, Chumpathan N, Chantattirat W: Options for a second-line antiretroviral regimen for HIV-1 infected patients whose initial regimen of a fixed-dose combination of stavudine, lamivudine, and nevirapine fails. *Clin Infect Dis* 2007, 44:447-452.

19. Gupta RK, Ford D, Mulenga V, Walker AS, Kabamba D, Kalumbi M, et al: Drug Resistance in Human Immunodeficiency Virus Type-1 Infected Zambian Children Using Adult Fixed Dose Combination Stavudine, Lamivudine, and Nevirapine. *Pediatr Infect Dis J* 2010, 29(1):147-1503.

20. Delviks-Frankenberry KA, Nikoleno GN, Pathak VK: The “Connection” Between HIV Drug Resistance and RNase H. Viruses 2010, 2(1):473-476.

21. Ehetsahmi M, Gotta M: Effects of mutations in the connection and RNase H domains of HIV-1 reverse transcriptase on drug susceptibility. *AIDS Rev* 2008, 10:224-235.

22. Yap SH, Sheen CW, Fahey J, Zarin M, Tyssen D, Lima VO, et al: N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance. *PLoS Med* 2007, 4:e335.

23. Delviks-Frankenberry KA, Nikoleno GN, Boyer PL, Hughes SH, Coffin JM, Jere A, et al: HIV-1 reverse transcriptase connection subdomain mutations reduce template RNA degradation and enhance AZT excision. *Proc Natl Acad Sci USA* 2008, 105:10943-10948.

24. Delviks-Frankenberry KA, Nikoleno GN, Barr R, Pathak VK: Mutations in human immunodeficiency virus type 1 RNase H primer grip enhance 3'-azido-3'-deoxythymidine resistance. *J Virol* 2007, 81:6837-6845.

25. Nikoleno GN, Palmer S, Maldarelli F, Mellors JW, Coffin JM, Pathak VK: Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: balance between RNase H activity and nucleotide excision. *Proc Natl Acad Sci USA* 2005, 102:2093-2098.

26. Ehetsahmi M, Beilhartz GL, Scarth BJ, Tchesnokov EP, McCormick S, Wynhoven B, et al: Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3'-azido-3'-deoxythymidine through both RNases H-dependent and -independent mechanisms. *J Biol Chem* 2008, 283:22223-22232.

27. Gotta M: Should we include connection domain mutations in the definition of HIV-1 resistance? *PLoS Med* 2007, 4:e346.

28. Gallego O, Mendoza C, Labarga P, Attiniet C, Gonzalez J, Garcia-Alcalde I, et al: Long-term outcome of HIV-infected patients with multinucleoside-resistant genotypes. *HIV Clin Trials* 2003, 4:372-381.

29. Johnson VA, Brun-Vezinet F, Clotet B, Gunthard HF, Kuitzkes DR, Pillay D, et al: Update of the drug resistance mutations in HIV-1: December 2010. *Top HIV Med* 2010, 18:156-163.

30. Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wint T, Huang W, et al: A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. *Antimicrob Agents Chemother* 2000, 44:920-928.

31. Barnas D, Koonz D, Bazmi H, Bixby C, Jemsek J, Mellors JW: Clonal resistance analyses of HIV type-1 after failure of therapy with didanosine, lamivudine and tenofovir. *Antivir Ther* 2010, 15:437-441.

32. Delviks-Frankenberry KA, Nikoleno GN, Maldarelli F, Hase S, Takebe Y, Pathak VK: Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3'-azido-3'-deoxythymidine. *J Virol* 2009, 83:8502-8513.

33. Wolf K, Walter H, Beerenwinkel N, Keulen W, Kaiser R, Hoffmann D, et al: Tenofovir resistance and resensitization. *Antimicrob Agents Chemotherapy* 2003, 47:3476-3484.

34. Miller MD, Margot NA, Hertogs J, Larder B, Miller V: Antiviral activity of tenofovir (PMPA) against nucleoside-resistant clinical HIV samples. *Nucleosides Nucleotides Nucleic Acids* 2001, 20:1025-1028.

35. Back NK, Njihuis M, Keulen W, Boucher CA, Oude Essink BO, van Kuijlenburg AB, et al: Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. *EMBO J* 1996, 15:4040-4049.

36. Wei X, Liang C, Gotta M, Wainberg MA: Negative effect of the M184V mutation in HIV-1 reverse transcriptase on initiation of viral DNA synthesis. *Virology* 2003, 311:202-212.

37. Geretti AM: HIV-1 subtypes: epidemiology and significance for HIV management. *Curr Opin Infect Dis* 2006, 19:1-7.

38. Shafer RW, Winters MA, Iversen AK, Merigan TC: Genotypic and phenotypic changes during culture of a multinucleoside-resistant human immunodeficiency virus type 1 strain in the presence and absence of additional reverse transcriptase inhibitors. *Antimicrob Agents Chemother* 1996, 40:2887-2890.

39. Maeda Y, Venn CL, Mitsuha H: Altered drug sensitivity, fitness, and evolution of human immunodeficiency virus type 1 with pol gene mutations conferring multi-dideoxynucleoside resistance. *J Infect Dis* 1998, 177:1207-1213.

40. Palmer S, Kearney M, Maldarelli F, Halvas EK, Bixby CJ, Bazmi H, et al: Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. *J Clin Microbiol* 2005, 43:406-413.

41. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol* 2007, 24:1596-1599.

42. Pany CM, Kohli A, Boineti CJ, Towers GJ, McCormick AL, Pillay D: Gag determinants of fitness and drug susceptibility in protease inhibitor-resistant human immunodeficiency virus type 1. *J Virol* 2009, 83:9004-9101.

43. Gupta RK, Kohli A, McCormick AL, Towers GJ, Pillay D, Pany CM: Full-length HIV-1 Gag determines protease inhibitor. *AIDS* 2010, 24:1651-1655.

44. Bainbridge JW, Stephehs C, Parsley K, Demaison C, Halfyard A, Thresher AJ, et al: In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector: efficient long-term transduction of corneal endothelium and retinal pigment epithelium. *Gene Ther* 2001, 8:1665-1668.

45. Beinier C, Takeuchi Y, Towers G: Restriction of lentivirus in monkeys. *Proc Natl Acad Sci USA* 2002, 99:11920-11925.

46. Wright E, Temperton NJ, Martinson DM, McElhinny LM, Fooks AR, Weiss RA: Investigating antibody neutralization of lysaviruses using lentiviral pseudotypes: a cross-species comparison. *J Gen Virol* 2008, 89:2204-2213.

Cite this article as: Mbisa et al.: The evolution of HIV-1 reverse transcriptase in route to acquisition of Q151M multi-drug resistance is complex and involves mutations in multiple domains. *Retrovirology* 2011, 8:31.