Walsogynes H–O from *Walsura chrysogyne*

Alfarius Eko Nugroho1 · Saori Nakajima1 · Chin Piow Wong1 · Yusuke Hirasawa1 · Toshio Kaneda1 · Osamu Shirot2 · Takahiro Tougan3 · Toshihiro Horii4 · A. Hamid A. Hadi5 · Hiroshi Morita1

Received: 21 June 2021 / Accepted: 29 July 2021 / Published online: 5 August 2021
© The Japanese Society of Pharmacognosy 2021

Abstract
Eight new limonoids, walsogynes H–O (1–8) were isolated from the barks of *Walsura chrysogyne*, and their structures were determined on the basis of the 1D and 2D NMR data. Walsogynes H–M (1–6) and O (8) were concluded to be 11,12-seco limonoids with a dodecahydro-1H-naphtho[1,8-bc:3,4-c′]difuran skeleton, and walsogyne N (7) to be 11,12-seco limonoid sharing a unique dodecahydronaphtho[1,8-bc:5,4-b′c′]difuran skeleton. Walsogynes H–O (1–8) exhibited potent antimalarial activity against *Plasmodium falciparum* 3D7 strain with IC50 value of 2.5, 2.6, 1.6, 2.5, 1.5, 2.6, 2.1, and 1.1 µM, respectively.

Graphic abstract

Keywords Limonoids · *Walsura chrysogyne* · Antimalarial activity

1 Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo 142-8501, Japan
2 Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki City, Kagawa 769-2193, Japan
3 Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
4 Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
5 Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Introduction

Walsura, a genus belonging to Meliaceae, is composed of about 16 species distributed from Sri Lanka to the Himalaya and Indochina through Malaysia, Indonesia to New Guinea, and Walsura chrysogyne is distributed in Peninsular Malaysia [1]. The plants of this genus have been reported to produce limonoids, dammarane, tirucallane and apotirucallane triterpenoids [2–7]. In our search for new bioactive compounds [8–27], we have reported the isolation of eight new limonoids, walsogynes H–O (1–8) showing antimalarial activity (Fig. 1). Structure elucidation of 1–8 and their antimalarial activity of a series of walsogynes are reported herein.

Results and discussions

Compounds 1–8 were obtained as optically active white amorphous solids. The 1H and 13C NMR data (Tables 1 and 2) suggested the identity of 1–8 as walsogynes derivatives. Based on the 13C NMR data, 1–6 and 8 were assumed to be derivatives of walsogynes A [2], and 7 was assumed to be a derivative of walsogynes B [4].

Compounds 1 and 4 were determined to have the same molecular formula, C$_{31}$H$_{38}$O$_{11}$, based on the HR-ESIMS data. Their 1H and 13C NMR data are highly similar and the differences are similar to the differences of walsogynes F and G [4], indicating the structure of 1 as 11-epi-4. Furthermore, except for the signal associated with the α,β-unsaturated-γ-lactone moiety (C-20–C-23), the 1H and 13C NMR data of 4 and walsogynes A were highly similar. Thus, the structures of 1 and 4 were deduced to be as shown in Fig. 1. Analysis of the 2D NMR data further supported the proposed structures.

Compounds 3 and 5 were also determined to possess the same molecular formula, C$_{36}$H$_{50}$O$_{14}$. Furthermore, their NMR data are highly similar to each other and to 1 and 4. However, the signals associated with CH-3’ and CH$_3$-4’ of the tiglate moiety in 1 and 4 are not observed in 3 and 5, and sp^2 methylene signals (δC 127.2, δH 5.61 and 6.49, and δC 125.9, δH 5.67 and 5.92 for 3 and 5) are observed instead. Therefore, 3 and 5 should have a methacrylate moiety instead of a tiglate moiety. Analysis of the 2D NMR data supported the structures of 3 and 5 to be as shown in Fig. 1. Specifically, the presence of a methacrylate moiety was supported by the HMBC correlations of H$_3$-4’ to C-1’, C-2’ and C-3’.

Compound 2 was revealed to have the molecular formula C$_{35}$H$_{42}$O$_{12}$ by HRESITOFMS. Its NMR data are highly similar to 4. However, the signals for H-2 and H-3 in 1 are not observed in 2, and a methoxy signal (δH 3.34) and three aliphatic signals (δH 2.66, d, 17.5; δH 3.14, d, 17.5; and δH 3.58, br s) are observed instead. Based on the chemical shifts and the multiplicity patterns, 2 was proposed to be 2,3-dihydro-3α-methoxy-4. The proposed structure was also confirmed through analysis of the 2D NMR data. In particular, the HMBC correlations of H$_3$-29 and the methoxy to C-3, and H-3 to C-1, and the NOESY correlation of H-3/H 3-29 confirmed the position and the configuration of the methoxy at C-3.

By HRESITOFMS, 6 and 8 were revealed to have the molecular formula C$_{36}$H$_{50}$O$_{14}$ and C$_{33}$H$_{46}$O$_{13}$, respectively. Their NMR data are also highly similar to 4 and 2, respectively, differing only on the signals assigned to the α,β-unsaturated-γ-lactone in 2 and 4. Analysis of the NMR data revealed that the furan moiety in both 6 and 8 were highly oxidized. The planar structure of the modified furan moiety in 6 was deduced from the 1H-1H COSY correlation of H-22 and H-23, and the HMBC correlations of H-21 to C-17 and C-20, H-22 to C-17, H-23 to C-21, a methoxy (δH 3.07) to C-21 and a methoxy (δH 3.38) to C-23 (Fig. 2). The relative configuration of the furan moiety was then deduced from the ROESY correlations in pyridine-d$_5$ to be as shown in Fig. 3 since only the proposed configuration in Fig. 1 will fulfill the conditions set by the ROESY correlations shown in Fig. 3. Based on the 1H and 13C NMR data of 6 and 8, the furan moiety in 8 was deduced to be as shown in Fig. 3.
Table 1 1H NMR data of 1–8 in CD$_3$OD (* in DMSO-d$_6$)

	1	2	3	4	5	6	7	8
2a	5.91 (1H, d, 9.8)	2.66 (1H, d, 17.5)	5.90 (1H, d, 9.8)	5.97 (1H, d, 9.8)	5.96 (1H, d, 9.7)	In CD$_3$OD	6.29 (1H, d, 9.8)	In CD$_3$OD
2b	7.05 (1H, d, 9.8)	3.58 (1H, brs)	7.05 (1H, d, 9.8)	7.20 (1H, d, 9.8)	7.20 (1H, d, 9.8)	In C$_5$D$_5$N	7.05 (1H, d, 9.8)	In DMSO-d$_6$
3	3.53 (1H, d, 12.9)	3.00 (1H, d, 12.5)	3.53 (1H, d, 13.0)	2.65 (1H, d, 12.6)	2.65 (1H, d, 12.6)	In CD$_3$OD	3.98 (1H, d, 12.9)	In CD$_3$OD
6	4.38 (1H, dd, 12.9, 3.2)	4.41 (1H, d, 12.5)	4.40 (1H, dd, 13.2, 3.0)	4.46 (1H, dd, 12.6, 2.9)	4.47 (1H, d, 12.7, 2.7)	In CD$_3$OD	4.41 (1H, d, 12.9)	In CD$_3$OD
7	5.45 (1H, d, 3.2)	5.32 (1H, brs)	5.46 (1H, d, 3.0)	5.37 (1H, d, 3.0)	5.38 (1H, d, 3.0)	In CD$_3$OD	5.45 (1H, d, 3.2)	In CD$_3$OD
9	2.75 (1H, d, 6.7)	2.75 (1H, d, 6.4)	2.76 (1H, d, 6.6)	2.85 (1H, d, 7.1)	2.84 (1H, d, 7.0)	In CD$_3$OD	2.75 (1H, d, 6.7)	In CD$_3$OD
11	5.91 (1H, s)	9.58 (1H, s)	9.72 (1H, s)	9.58 (1H, s)	9.64 (1H, m)	In CD$_3$OD	5.91 (1H, s)	In CD$_3$OD
12	4.31 (1H, d, 4.7)	4.91 (1H, d, 4.8)	4.31 (1H, d, 4.8)	4.91 (1H, m)	4.91 (1H, d, 5.3)	In CD$_3$OD	4.31 (1H, d, 4.7)	In CD$_3$OD
16a	1.77 (1H, m)	1.79 (1H, m)	1.77 (1H, m)	1.82 (1H, m)	1.82 (1H, m)	In CD$_3$OD	1.77 (1H, m)	In CD$_3$OD
16b	2.68 (1H, ddd, 16.3, 11.1, 5.3)	2.79 (1H, m)	2.68 (1H, m)	2.78 (1H, ddd, 19.0, 11.0, 5.4)	2.77 (1H, ddd, 15.6, 10.6, 5.1)	In CD$_3$OD	2.79 (1H, m)	In CD$_3$OD
17	3.40 (1H, m)	3.48 (1H, m)	3.41 (1H, m)	3.48 (1H, m)	3.47 (1H, m)	In CD$_3$OD	3.40 (1H, m)	In CD$_3$OD
18	1.23 (3H, s)	1.22 (3H, s)	1.23 (3H, s)	1.22 (3H, s)	1.23 (3H, s)	In CD$_3$OD	1.23 (3H, s)	In CD$_3$OD
19	1.33 (3H, s)	1.43 (3H, s)	1.33 (3H, s)	1.40 (3H, s)	1.38 (3H, m)	In CD$_3$OD	1.33 (3H, s)	In CD$_3$OD
21	5.45* (1H, d, 9.8)	5.37* (1H, m)	5.46* (1H, m)	5.37 (1H, d, 3.0)	5.38 (1H, d, 3.0)	In CD$_3$OD	5.45* (1H, d, 9.8)	In CD$_3$OD
22	6.07* (1H, d, 9.8)	6.13* (1H, m)	6.28* (1H, m)	5.45* (1H, d, 9.8)	5.45* (1H, d, 9.8)	In CD$_3$OD	6.07* (1H, d, 9.8)	In CD$_3$OD
28a	3.27 (1H, m)	3.44 (1H, d, 12.6)	3.31 (1H, m)	3.30 (1H, d, 12.6)	3.34 (1H, m)	In CD$_3$OD	3.27 (1H, m)	In CD$_3$OD
28b	3.60 (1H, d, 6.9)	3.67 (1H, d, 6.7)	3.61 (1H, d, 6.7)	3.67 (1H, d, 6.7)	3.69 (1H, d, 6.7)	In CD$_3$OD	3.60 (1H, d, 6.9)	In CD$_3$OD
29	1.25 (3H, s)	1.32 (3H, s)	1.25 (3H, s)	1.29 (3H, s)	1.29 (3H, m)	In CD$_3$OD	1.25 (3H, s)	In CD$_3$OD
30	1.66 (3H, s)	1.64 (3H, s)	1.66 (3H, s)	1.67 (3H, s)	1.67 (3H, m)	In CD$_3$OD	1.66 (3H, s)	In CD$_3$OD
3a	5.61 (1H, d, 9.8)	6.79 (1H, q, 6.5)	5.61 (1H, s)	6.72 (1H, q, 6.4)	5.67 (1H, m)	In CD$_3$OD	5.61 (1H, d, 9.8)	In CD$_3$OD
3b	3.27 (1H, m)	6.49 (1H, s)	3.31 (1H, m)	3.30 (1H, d, 6.9)	5.92 (1H, m)	In CD$_3$OD	3.27 (1H, m)	In CD$_3$OD
4'	1.76 (3H, d, 7.1)	1.84 (3H, d, 6.5)	1.89 (3H, m)	1.81 (3H, d, 6.4)	1.92 (3H, m)	In CD$_3$OD	1.76 (3H, d, 7.1)	In CD$_3$OD
5'	1.79 (3H, s)	1.84 (3H, s)	1.82 (3H, m)	1.82 (3H, m)	1.92 (3H, m)	In CD$_3$OD	1.79 (3H, s)	In CD$_3$OD
3-OMe	3.34 (3H, s)	In CD$_3$OD	3.34 (3H, s)	In CD$_3$OD				
	Table 1 (continued)							
-----	---							
29	1.31 (3H, s)							
30	1.60 (3H, s)							
3'	6.75 (1H, q, 7.0)							
4'	1.84 (3H, d, 7.0)							
5'	1.82 (3H, s)							
3'-OMe	3.32 (3H, s)							
11-OMe	3.38 (3H, s)							
21-OMe	3.07 (3H, s)							
23-OMe	3.38 (3H, s)							

	Table 2 13C NMR data of 1–8
1	205.4 213.7 205.4 202.6 202.5 214.1 212.3 106.7 203.0
2	131.1 40.4 131.1 131.2 131.2 40.2 40.0 37.2 131.0
3	152.8 81.8 152.8 154.6 154.6 81.9 80.6 69.2 155.0
4	42.6 44.5 42.7 42.7 42.7 44.5 43.4 42.5 42.6
5	46.2 42.1 46.3 47.1 47.1 42.0 40.8 40.0 46.9
6	74.7 73.9 74.6 74.4 74.4 74.1 73.0 71.6 74.6
7	73.0 74.1 73.3 73.5 73.8 73.9 72.7 74.4 73.4
8	52.8 56.5 52.8 56.5 56.6 56.7 55.8 43.5 56.8
9	59.2 65.0 59.3 63.6 63.7 64.7 64.2 58.4 63.3
10	46.1 50.3 46.2 46.3 46.3 50.3 49.2 46.8 46.3
11	96.6 99.4 96.6 98.8 98.8 99.1 98.5 106.5 98.5
12	202.6 201.3 203.0 201.6 201.9 202.9 200.9 N.D 203.0
13	59.6 60.2 59.7 60.1 60.2 60.2 59.5 58.5 60.2
14	98.4 100.3 98.5 99.9 100.0 100.7 100.0 72.0 100.0
15	80.7 80.6 80.7 80.8 80.8 80.2 79.6 60.2 80.4
16	40.2 39.4 40.2 39.4 39.5 33.1 33.0 29.5 33.2
17	41.3 41.2 42.1 41.2 41.2 46.8 46.4 N.D 46.8
18	12.7 13.1 12.8 13.1 13.1 14.2 14.3 13.0 14.3
19	22.3 22.3 22.3 22.4 22.4 22.2 21.6 18.3 22.5
20	148.6 148.6 148.6 148.6 148.6 82.6 N.D 148.6 82.5
21	98.9 98.9 98.9 98.9 98.9 109.0 108.4 98.9 109.0
22	120.4 120.4 120.4 120.4 120.4 82.5 81.8 120.4 82.6
23	171.5 171.5 171.5 171.5 171.5 111.7 111.3 171.5 112.0
28	80.7 77.7 80.7 80.4 80.4 77.5 76.4 76.8 80.3
29	20.3 19.3 20.4 20.4 20.5 19.3 18.6 18.9 20.4
30	25.8 24.1 25.8 23.8 23.9 23.6 23.7 23.9 23.4
1'	169.2 168.4 168.4 168.0 167.4 168.4 166.4 164.9 168.0
2'	130.8 130.7 138.8 130.9 138.9 130.8 130.5 128.1 131.0
3'	139.7 139.0 127.2 138.6 125.9 138.3 135.9 137.4 138.0
4'	14.5 12.1 18.4 14.6 18.5 12.1 14.1 14.4 12.3
5'	12.0 14.6 12.3 14.6 14.3 12.3 14.6
3-OMe	58.1
11-OMe	58.1
21-OMe	54.3
23-OMe	56.4

*a in CD3OD; b in C6D6N; c in DMSO-d6
should have the same relative configuration as in 6. Thus, the structure of 8 was proposed to be as shown in Fig. 1.

Compound 7 was revealed to have the molecular formula C_{32}H_{42}O_{12} by HRESITOFMS. Its 1H and 13C NMR data are highly similar to walsogyne B. However, the NMR data suggested that the furan moiety in walsogyne B was oxidized to a lactone moiety similar to the one found in 1. Furthermore, the signals for H-2 and H-3 in walsogyne B are also not observed in 7, and three aliphatic signals (δ_{H} 1.92, δ_{H} 1.98 and δ_{H} 3.57) are observed instead. Finally, the HMBC correlations of H3-29 to C-3 and H-3 to C-1 and the NOESY correlation of H-3/H3-29 confirmed the position and the α orientation of the hydroxy at C-3.

Considering that 1–8 were isolated from the same extract as walsogynes B–G [4], their absolute configurations were assumed to be similar to walsogynes B–G based on the biogenetic relationships.

Antimalarial activity

Walsogynes H–O (1–8) were tested for the antimalarial activity against *Plasmodium falciparum* 3D7 strain. The assay showed that 1–8 had potent in vitro antimalarial activity [the half-maximal (50%) inhibitory concentration (IC_{50}) = 2.5, 2.6, 1.6, 2.5, 1.5, 2.6, 2.1, and 1.1 μM, respectively] (Table 3).

From *Walsura spp.*, one of limonoid peroxide has been reported to show antimalarial activity [28]. We also reported some limonoids, ceramicines A–D isolated from the barks of *C. ceramicus*, exhibited antimalarial activity against *P. falciparum* 3D7 in vitro [29]. However, the skeleton of these limonoids was different from that of walsogynes. A series of walsogynes H–O (1–8) and walsogynes B, D, and E (IC_{50} = 2.4, 2.6, and 2.6 μM, respectively) had more potent antimalarial activity than these known limonoids (Table 3). The activity might be depending on their unique 11,12-seco limonoid skeleton but not influenced by their substituent patterns.

Experimental section

General experimental procedures

Optical rotations were measured on a JASCO DIP-1000 polarimeter. UV spectra were recorded on a Shimadzu UVmini-1240 spectrophotometer and IR spectra on a JASCO FT/IR-4100 spectrophotometer. High-resolution ESI MS were obtained on a JMS-T100LP (JEOL). 1H and 2D NMR spectra were measured on a 400 MHz or 600 MHz spectrometer at 300 K, while 13C NMR spectra were on a 100 MHz or 150 MHz spectrometer. The residual solvent peaks were used as internal standards (δ_{H} 7.26 and δ_{C} 77.0 for CDCl3, δ_{H} 3.31 and δ_{C} 49.0 for CD3OD).

Material

The barks of *W. chrysogyne* were collected in Mersing, Malaysia in October 2000. The botanical identification was made by Mr. Teo Leong Eng, Faculty of Science, University of Malaya. Voucher specimens (Herbarium No. 4957)

IC_{50} (µM)
1
2
3
4
5
6
7
8
Walsogyne B
Walsogyne D
Walsogyne E
are deposited in the Herbarium of Chemistry Department, University of Malaya.

Extraction and isolation

The dried ground barks of *W. chrysogyne* (440 g) were extracted successively with MeOH and 54 g of extract were obtained. The total extract was successively partitioned with *n*-hexane, EtOAc, *n*-BuOH, and water. The EtOAc-soluble materials (11.5 g) were separated with a silica gel column (CHCl₃/MeOH, 1:0 to 1:1) to obtain 10 fractions (E-1 to E-10). Fraction E-5 was further separated to five fractions (E-5-1 to E-5-5) with an LH-20 column (CHCl₃/MeOH, 1:1). Fraction E-5-3 was further separated with a silica gel column (CHCl₃/MeOH, 1:0 to 0:1) to obtain 13 fractions (E-5-3-1 to E-5-3-13). Fraction E-5-3-9 was further separated by HPLC (Shiseido C18 MGII, H₂O/MeCN, 70:30) to obtain impure I-5. Impure I and 3-5 were purified using HPLC (Nacalai tesque Cholester, H₂O/MeCN, 54:0, 30:70) to obtain pure 1 (1.3 mg, 0.0003%, tᵣ 70 min), 3 (1.3 mg, 0.0003%, tᵣ 58 min), 4 (0.5 mg, 0.0001%, tᵣ 46 min) and 5 (1.8 mg, 0.0004%, tᵣ 38 min). In addition, impure 2 was purified using HPLC (Nacalai tesque Cholester, H₂O/MeCN, 75:25) to obtain pure 2 (1.8 mg, 0.0004%, tᵣ 48 min). Fraction E-5-3-8 was further separated by HPLC (Shiseido C18 MGII, H₂O/MeCN, 70:30) to obtain 6 (1.3 mg, 0.0003%, tᵣ 26 min), 7 (2.4 mg, 0.0005%, tᵣ 20 min), 8 (0.5 mg, 0.0001%, tᵣ 22 min).

Walsogyne I (1) white amorphous solid. [α]ᵣ²⁸⁻²⁸ (c 1.0, MeOH). IR (film) νₓ max 3411, 2928, 1746, 1710, 1671 cm⁻¹. UV (MeOH) λₓ max (log e) 216 (4.32) nm. CD (MeOH) λₓ max (Δe) 205 (12.50), 228 (−1.79), 250 (2.29), 300 (−1.01) nm. ESIMS m/z 609 (M + Na)⁺. HRESIMS m/z 609.2335 [calcd for C₃₀H₅₀O₁₁Na (M + Na)⁺: 609.2312].

Walsogyne J (2) white amorphous solid. [α]ᵣ²⁸⁻⁰ (c 1.0, MeOH). IR (film) νₓ max 3435, 2928, 1743, 1721, 1711 cm⁻¹. UV (MeOH) λₓ max (log e) 213 (4.52) nm. CD (MeOH) λₓ max (Δe) 206 (4.13), 226 (−2.08), 247 (1.36), 297 (0.25) nm. ESIMS m/z 641 (M + Na)⁺. HRESIMS m/z 641.2571 [calcd for C₃₂H₄₆O₁₃Na (M + Na)⁺: 641.2574].

Walsogyne K (4) white amorphous solid. [α]ᵣ²⁸⁻¹² (c 0.7, MeOH). IR (film) νₓ max 3444, 2926, 1747, 1714, 1681 cm⁻¹. UV (MeOH) λₓ max (log e) 215 (4.09) nm. CD (MeOH) λₓ max (Δe) 208 (8.78), 228 (−1.41), 247 (1.77), 296 (−0.63), 349 (0.29) nm. ESIMS m/z 609 (M + Na)⁺. HRESIMS m/z 609.2309 [calcd for C₃₂H₃₈O₁₂Na (M + Na)⁺: 609.2312].
01-03, (build 16]) and used specific reagents (CELLPACK DCL, SULFOLYSER, Lysercell M, and Fluorocell M) (Sysmex, Kobe, Japan) [32, 33]. Approximately 100 µL of the culture suspension diluted with 100 µL phosphate-buffered saline was added to a BD Microtainer MAP Microtube for Automated Process K3 EDTA 1.0 mg tube (Becton Dickinson and Co., Franklin Lakes, NJ, USA) and loaded onto the XN-30 analyzer with an auto-sampler as described in the instrument manual (Sysmex). The parasitemia (MI-RBC%) was automatically reported [32]. Then 0.5% DMSO alone or containing 5 µM artemisinin used as the negative and positive controls, respectively. The growth inhibition (GI) rate was calculated from the MI-RBC% according to the following equation:

$$GI(\%) = 100 - \frac{(test \ sample - positive \ control)}{(negative \ control - positive \ control)} \times 100$$

The IC50 was calculated from GI (%) using GraphPad Prism version 5.0 (GraphPad Prism Software, San Diego, CA, USA) [34].

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11418-021-01556-4.

Acknowledgements We thank to Prof. Masatsugu Kimura (Osaka City University, Osaka, Japan) for the kind gift of the 3D7 strain, Mr. Yuji Toya and Dr. Kinya Uchihashi (Sysmex) for the setting of the XN-30 analyzer and Ms. Toshie Ishisaka and Ms. Sawako Itagaki for their technical assistance. This work was partly supported by JSPS KAKENHI (JP 19K07152 to MH) and (JP 16K08309 to AEN), Japan.

References

1. Mabberley DJ (2011) Meliaceae. In: Kubitzki K (ed) Flowering plants Eu dicots: Sapindales, Cucurbitales, Myrtaceae. Springer, pp 185–211
2. Mohamad K, Hirasawa Y, Lim CS, Awang K, Hadi AHA, Takeya K, Morita H (2008) Ceramicine A and walsogynes A, novel limonoids from two species of Meliaceae. Tetrahedron Lett 49:4276–4278
3. Nugroho AE, Okuda M, Yamamoto Y, Wong CP, Hirasawa Y, Kaneda T, Shirota O, Hadi AHA, Morita H (2017) Apowalsogynes A and B, two highly oxidized 3,4-seco-apotirucallane triterpenoids from Walsura chrysogyne. Nat Prod Commun 12:1189–1192
4. Nugroho AE, Okuda M, Yamamoto Y, Hirasawa Y, Wong CP, Kaneda T, Shirota O, Hadi AHA, Morita H (2013) Walsogynes B–G, limonoids from Walsura chrysogyne. Tetrahedron 69:4139–4145
5. Sichaem J, Siripong P, Tip-ypsang S, Phaopongthai J (2014) A new cytotoxic tirucallane from the twigs of Walsura trichostemon. Nat Prod Commun 9:367–368
6. Sichaem J, Aree T, Khumkratok S, Jong-aramruang J, Tip-ypsang P (2012) A new cytotoxic apotirucallane from the roots of Walsura trichostemon. Phytochem Lett 5:665–667
7. Mahmoud H, Kwong HC, Tahir MIM, Ismail IS (2011) (203E, 24E)-25-hydroxy-20,24-epoxy-A-homo-4-oxodammaran-3-one (Chrysura) isolated from the leaves of Walsura chrysogyne. Acta Crystallogr Sect E 67:a3296
8. Kaneda T, Matsumoto M, Sotozono Y, Fukami S, Nugroho AE, Hirasawa Y, Hamid AHA, Morita H (2019) Cycloartane triterpenoid (23R, 24E)-23-acetoxymanferonic acid inhibited proliferation and migration in B16-F10 melanoma via MITF downregulation caused by inhibition of both β-catenin and c-Raf-MEK1-ERK signaling axis. J Nat Med 73:47–58
9. Nugroho AE, Hashimoto A, Wong C-P, Yokoe H, Tsubuki M, Kaneda T, Hadi AHA, Morita H (2018) Ceramicines M-P from Chiscocheton cerasicus: isolation and structure–activity relationship study. J Nat Med 72:64–72
10. Nugroho AE, Inoue D, Wong CP, Hirasawa Y, Kaneda T, Shirotia O, Hadi AHA, Morita H (2018) Reineirens A and B, new onocerane triterpenoids from Reinwardtiodendron cinereum. J Nat Med 72:588–592
11. Nugroho AE, Nakamura H, Inoue D, Hirasawa Y, Wong CP, Kaneda T, Hadi AHA, Morita H (2018) Polysiprenylated acylphloroglucinols from Garcinia nervosa. Nat Prod Commun 13:367–369
12. Nugroho AE, Matsumoto M, Sotozono Y, Kaneda T, Hadi AHA, Morita H (2018) Cycloartane triterpenoids with anti-melanin deposition activity. Nat Prod Commun 13:809–812
13. Nugroho AE, Zhang W, Hirasawa Y, Tang Y, Wong CP, Kaneda T, Hadi AHA, Morita H (2018) Bisleuconothines B-D, modified eburnane-apidosperma bisindole alkaloids from Leuconost grifithii. J Nat Prod 81:2600–2604
14. Nugroho AE, Sasaki T, Kaneda T, Hadi AHA, Morita H (2017) Calfollic acids A-F, chromonones from the bark of Calophyllum sciblitifolium with vasorelaxation activity. Bioorg Med Chem Lett 27:2124–2128
15. Iijima C, Wong CP, Nugroho AE, Sotozono Y, Someya S, Hirasawa Y, Kaneda T, Hadi AHA, Morita H (2016) Anti-melanin deposition activity of ceramicines from Chiscocheton cerasicus. J Nat Med 70:702–707
16. Nugroho AE, Wong CP, Hirasawa Y, Janar J, Kaneda T, Shirotia O, Morita H (2016) Daphnane Diterpenoids from Daphne alata. Nat Prod Commun 11:1073–1075
17. Nugroho AE, Sugirua R, Momota T, Hirasawa Y, Wong CP, Kaneda T, Hadi AHA, Morita H (2015) Dysosesquiflorins A and B, sesquiperpenoids from Dysosyllum densiflorum. J Nat Med 69:411–415
18. Kireen Y, Nugroho AE, Hirasawa Y, Shirotia O, Bekanova M, Narbekovich NO, Shapilova M, Maeno H, Morita H (2014) Munic acids A-E: new diterpenoids from nymuio. J Nat Med 68:199–205
19. Prema WCP, Awouafack MD, Nugroho AE, Win YY, Win NN, Ngwe H, Morita H, Morita H (2019) Two new quassinoids and other constituents from the Picrasma javanica wood and their biological activities. J Nat Med 73:589–596
20. Prema WCP, Cadama T, Nugroho AE, El-Desoky AH, Awouafack MD, Win YY, Ngwe H, Abe I, Morita H, Morita H (2020) Three new quassinoids isolated from the wood of Picrasma javanica and their anti-Vpr activities. J Nat Med 74:571–578
21. Nugroho AE, Hirasawa Y, Kaneda T, Shirotia O, Matsuno M, Mizukami H, Morita H (2021) Triterpenoids from Walstra trichostemon. J Nat Med 75:415–422
22. Nugroho AE, Ono Y, Jin E, Hirasawa Y, Kaneda T, Rahman A, Kusumawati I, Tougan T, Horii T, Zaini NC, Morita H (2021) Bisindole alkaloids from Voacanga grandifolia leaves. J Nat Med 75:408–414
23. Hirasawa Y, Agawa-Kakimoto M, Takahisa K, Uchihashi J, Fujii K, Kusumawati I, Tougan T, Horii T, Zaini NC, Morita H (2021) Bisdienone alkaloids from Voacanga grandifolia leaves. J Nat Med 75:408–414
24. Hirasawa Y, Agawa-Kakimoto M, Zhai M, Kusumawati I, Fujii K, Kusumawati I, Tougan T, Horii T, Zaini NC, Morita H (2021) Bisdienone alkaloids from Voacanga grandifolia leaves. J Nat Med 75:408–414
25. Kaneda T, Nakajima Y, Koshikawa S, Nugroho AE, Morita H (2019) Cyclolinopeptide F, a cyclic peptide from flaxseed inhibiting MEK1–ERK signaling. Acta Crystallogr Sect E 67:o3296
25. Hirasawa Y, Dai X, Deguchi J, Hatano S, Ohtsuka R, Nugroho AE, Kaneda T, Morita H (2019) New vasorelaxant indole alkaloids, taberniacins A and B, from Tabernaemontana divaricata. J Nat Med 73:627–632
26. Tang Y, Nugroho AE, Hirasawa Y, Tougan T, Horii T, Hamid A, Hadi A, Morita H (2019) Leucophyllinines A and B, bisindole alkaloids from Leuconotis eugeniifolia. J Nat Med 73:533–540
27. Amelia P, Nugroho AE, Hirasawa Y, Kaneda T, Tougan T, Horii T, Morita H (2019) Indole alkaloids from Tabernaemontana macrocarpa jack. J Nat Med 73:820–825
28. Yin S, Wang XN, Fan CQ, Liao SG, Yue JM (2007) The first limonoid peroxide in the Meliaceae family: walsuronoid A from Walsura robusta. Org Lett 9:2353–2356
29. Mohamad K, Hirasawa Y, Litaudon M, Awang K, Hadi AHA, Takeya K, Ekasari W, Widyawaruyanti A, Zaini NC, Morita H (2009) Ceramicines B–D, new antiplasmodial limonoids from Chisocheton ceramicus. Bioorg Med Chem 17:727–730
30. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675. https://doi.org/10.1126/science.781840
31. Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420
32. Tougan T, Suzuki Y, Itagaki S, Izuka M, Toya Y, Uchihashi K, Horii T (2018) An automated haematology analyzer XN-30 distinguishes developmental stages of falciparum malaria parasite cultured in vitro. Malar J 17:59. https://doi.org/10.1186/s12936-018-2208-6
33. Toya Y, Tougan T, Horii T, Uchihashi K (2021) Lysercell M enhances the detection of stage-specific Plasmodium-infected red blood cells in the automated hematology analyzer XN-31 prototype. Parasitol Int 80:102206. https://doi.org/10.1016/j.parint.2020.102206
34. Tougan T, Toya Y, Uchihashi K, Horii T (2019) Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J 18:8. https://doi.org/10.1186/s12936-019-2642-0

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.