Determination of the levels of lead and cadmium in canned fish and meat, imported to the local markets of Diyala Province, Iraq

Hussein S.A. 1 , Rathi M.H. 1 * and Kadhim T.J. 2

1 Department of Biology, College of Science/University of Diyala, Diyala, Iraq.
2 College of Veterinary Sciences/ University of Diyala, Diyala, Iraq.
*Corresponding author e-mail: muntherh7@gmail.com

Abstract

Food of animal origin is among those products that provide many important nutrients. The food industry employs numerous technologies which allow manufacturing of products with diversified shelf life. The objective of the study was to determine the contents of lead (Pb) and cadmium (Cd) in 49 samples of canned fish and meat from different brands by using the flame atomic absorption spectroscopy (FAAS). It was found that the highest mean of lead in canned fish was 0.2294 ± 0.00014 mg / kg, while the lowest mean was 0.0214 ± 0.00049 mg / kg, the highest mean of cadmium in canned fish was 0.2322 ± 0.00686 mg / kg and the lowest was 0.1170 ± 0.00021 mg / kg. The highest mean of lead in chicken and beef meat was 0.2454±0.03486 mg/ kg, while the lowest mean was 0.0217 ± 0.00057 mg/ kg. For cadmium, the highest mean in chicken and beef meats was 0.3091 ± 0.00014 mg / kg and the lowest was 0.1214 ± 0.00021 mg / kg. The statistical analysis showed that there were significant differences (p≤0.05) between the studied samples for each element. Lead values in the tested samples varied between values above the acceptable limits recommended by the WHO or within the global limits, while the cadmium values for all tested samples exceeded the acceptable limits adopted by the WHO.
INTRODUCTION

Food of animal origin is among those products that provide many important nutrients. The food industry employs numerous technologies which allow manufacturing of products with diversified shelf life. Canned products are characterized by a long shelf life, do not need to be kept at low temperature, and do not require special treatment during transport or distribution [1]. The topics “food quality” and “food safety” are very close and two important issues in the food sector, due to the globalization of the food supply and the increased complexity of the food chain. The consumers need to purchase safe products that do not involve any kind of risk for health and food safety is a major public concern worldwide, during the last decades, the increasing demand of food safety has stimulated research regarding the risk associated with consumption of food stuffs contaminated by pesticides, heavy metals and/or toxins [2]. The aim of the “food safety” is to avoid health hazards for the consumer: microbiological hazards, pesticide residues, misuse of food additives and contaminants, such as chemicals, biological toxins and adulteration. While the “food quality” includes all attributes that influence the value of a product for the consumer; this includes negative attributes such as spoilage, contamination with filth, discoloration, off-odors and positive attributes such as the origin, color, flavor, texture and processing method of the food [3].

Heavy metal pollution, such as lead and cadmium, is a human-made pollution [4]. Therefore, it has become an issue of concern due to its persistent nature in the environment [5]. Heavy metals are distributed in the environment through many natural processes such as volcanic eruptions, spring water, erosion, bacterial activity, and through human activities that include fossil fuel combustion, industrial processes, agricultural activities, as well as nutrition [6].

The objective of the study was to determine the contents of lead and cadmium in 49 samples of canned fish and meat from different brands by using the flame atomic absorption spectroscopy (FAAS).

MATERIALS AND METHODS

Samples collection

In total, 49 samples have been investigated and as follow: canned tuna (n=22), sardine (n=6), chicken luncheon (n=11), and canned beef (n=10) purchased from local markets of Baquba city, the capital city of Diyala Province in the middle of Iraq, during 2019 (Tables 1 and 2). Canned foods were transported to the laboratory, labeled, and stored at room temperature in a clean dry place until being used.

Sample preparation and reagents

The meat was removed from the can and left at room temperature (25°C), washed with distilled water, homogenized with a mixer. Two grams from each sample were selected with three replicates, placed in a 100ml glass beaker, then a solution of hydrochloric acid (37% HCl) as a solvent after dilution with deionized water at a ratio of (1: 2), the samples were placed on electric heater at a temperature of 180 ºC for two hours to complete the digestion. A mixture of 37% HCl and nitric acid (HNO3) at a concentration of 65% (royal water) at a ratio of (3: 1) was added and then the mixture was placed on the electric heater at a temperature of 150 ºC, and then the samples were left to cool down at laboratory temperature. The samples were transferred to 25ml volumetric flask after filtration and the volume was completed by adding the deionized water and thus, the samples were ready for measurement by an atomic absorption device [7].
Standards

Standard stock solutions containing 1000 mg/L of each element (Cd and Pb) were obtained from the Ibn Sina Center / Ministry of Industry and Minerals /Iraq. The purity of the starting material in standards was 99.99% for each element. For qualitative analysis of the samples, a five-point calibration curve (including zero) was constructed.

Determination the concentrations of cd and pb

The concentrations of the lead and cadmium in the fish and meat samples were determined by using the flame atomic absorption spectroscopy (FAAS), Analytic Jena NOV AA 350 / Germany.

Statistical Analysis.

Data were analyzed by SPSS for windows TM version 24.0. Statistical analysis of data was performed using t-test and one-way ANOVA. All experimental data were presented as mean ± SD. A p-value less than 0.05 was considered statistically significant.

Table 1: Characteristics of the tested canned fish.

Sample code	Fish type	Number of samples analyzed
F1	Tuna in oil	3
F2	Tuna in oil	3
F3	Tuna in oil	3
F4	Tuna in oil	3
F5	Tuna in oil	3
F6	Tuna in oil	3
F7	Tuna in oil	3
F8	Tuna in oil	3
F9	Tuna in oil	3
F10	Tuna in oil	3
F11	Tuna in oil	3
F12	Tuna in oil	3
F13	Tuna in oil	3
F14	Tuna in oil	3
F15	Tuna in oil	3
F16	Tuna in oil	3
F17	Tuna in oil	3
F18	Tuna in oil	3
F19	Tuna in oil	3
F20	Tuna in oil	3
F21	Tuna in oil	3
F22	Tuna in oil	3
F23	Sardine in oil	3
F24	Sardine in oil	3
F25	Sardine in oil	3
F26	Sardine in oil	3
Table 2: Characteristics of the tested canned meat.

Sample code	Meat type	Number of samples analyzed
M1	Chicken luncheon meat	3
M2	Chicken luncheon meat	3
M3	Chicken luncheon meat	3
M4	Chicken luncheon meat	3
M5	Chicken luncheon meat	3
M6	Chicken luncheon meat	3
M7	Chicken luncheon meat	3
M8	Chicken luncheon meat	3
M9	Chicken luncheon meat	3
M10	Chicken luncheon meat	3
M11	Chicken luncheon meat	3
M12	Beef	3
M13	Beef	3
M14	Beef	3
M15	Beef	3
M16	Beef	3
M17	Beef	3
M18	Beef	3
M19	Beef	3
M20	Beef	3
M21	Beef	3

RESULTS AND DISCUSSION

Levels of lead (Pb) and cadmium (Cd) were determined in 28 canned fish (tuna and sardine) and in 21 canned meat (chicken and beef) products and the results are shown in Tables 3 and 4.
Table 3: Mean and standard deviation of lead and cadmium in canned fish.

Sample code	fish type	Pb mg/kg Mean ±SD	cd mg/kg Mean ±SD
F1	Tuna in oil	0.1619±0.00057b	0.1657±0.00057b
F2	Tuna in oil	0.0970±0.00057c	0.1907±0.00057b
F3	Tuna in oil	0.1271±0.00021b	0.2322±0.00686a
F4	Tuna in oil	0.1174±0.00035b	0.1170±0.00021b
F5	Tuna in oil	0.1579±0.00035b	0.1256±0.00085b
F6	Tuna in oil	0.1435±0.00028b	0.2008±0.00064a
F7	Tuna in oil	0.2018±0.00042a	0.1969±0.00028b
F8	Tuna in oil	0.0214±0.00049c	0.2169±0.00064a
F9	Tuna in oil	0.0283±0.00035c	0.1807±0.00064b
F10	Tuna in oil	0.1601±0.00085b	0.2219±0.00057a
F11	Tuna in oil	0.0989±0.00028c	0.2306±0.00071a
F12	Tuna in oil	0.0925±0.00028c	0.2068±0.00064a
F13	Tuna in oil	0.0337±0.00064c	0.1886±0.00078b
F14	Tuna in oil	0.1734±0.00021b	0.2260±0.00049a
F15	Tuna in oil	0.1549±0.00057b	0.2099±0.00028a
F16	Tuna in oil	0.1480±0.00120b	0.1797±0.00064b
F17	Tuna in oil	0.1530±0.00042b	0.1466±0.00064b
F18	Tuna in oil	0.1427±0.00035b	0.1628±0.00014b
F19	Tuna in oil	0.0382±0.00148c	0.2067±0.00057a
F20	Tuna in oil	0.0979±0.00014c	0.1829±0.00085b
F21	Tuna in oil	0.2294±0.00014a	0.2170±0.00021a
F22	Tuna in oil	0.0873±0.00042c	0.1886±0.00134b
F23	Sardine in oil	0.1879±0.00057b	0.1478±0.00028b
F24	Sardine in oil	0.0876±0.00042c	0.2016±0.00014a
F25	Sardine in oil	0.0557±0.00078c	0.1593±0.00028b
F26	Sardine in oil	0.1013±0.00035b	0.1555±0.00035b
F27	Sardine in oil	0.0267±0.00057c	0.1498±0.00014b
F28	Sardine in oil	0.0395±0.00007c	0.1575±0.00057b

* Values followed by different letters indicate a significant difference (p≤0.05)

Table 3 shows that all canned fish of different brands contain lead and cadmium in varying concentrations. The highest concentration of lead was 0.2294 ± 0.00014mg / kg in tuna fish sample (F21), while the lowest concentration was 0.0214 ± 0.00049mg / kg in the tuna F8 sample. On the other hand, the highest concentration of cadmium was 0.2322 ± 0.00686 mg / kg in the F3 sample and the minimum concentration was 0.1170 ± 0.00021 mg / kg in tuna F4 sample. The results of the statistical analysis showed that there were significant differences (p≤ 0.05) between the studied samples for each element.
The results showed that the lead level in 13 samples exceeded the accepted limits of the World Health Organization for lead in fish meat which was 0.123mg / kg, while the remaining values were within the acceptable limits. As for the level of cadmium in fish samples, it exceeded the accepted limits of the World Health Organization for cadmium in Fish meat (which is 0.05mg / kg) in all the tested canned tuna and sardine samples [8].

The results of the current study showed a variation in the lead levels in canned tuna fish and this is consistent with a study conducted in the Kingdom of Saudi Arabia to determine the level of lead in canned tuna fish as the lead concentration ranged between 0.03-0.51 mg / kg and an average of 0.23mg / kg which is exceeding the acceptable limit by the World Health Organization [9]. Another study conducted to determine the level of heavy metals in canned tuna fish in the local market in Tehran showed that the lead level in 54 samples from more than ten different origins was with an average of 0.053 ± 0.058mg / kg [10] which is within the permissible limits of the World Health Organization. The results of the present study also agrees with the results of another study conducted to estimate the heavy metals in canned fish from four common brands in Iran, where the cadmium level was 0.10 ± 0.04µg / g which is higher than the permissible level for human consumption [11].

Table 4: mean and standard deviation of lead and cadmium in canned fish.

Sample code	Meat type	Pb mg/kg Mean ±SD	Cd mg/kg Mean ±SD
M1	Chicken luncheon meat	0.1200 ± 0.00042b	0.1586 ± 0.00042b
M2	Chicken luncheon meat	0.0854 ± 0.00042c	0.3078 ± 0.00035a
M3	Chicken luncheon meat	0.0521 ± 0.00028c	0.2557 ± 0.00035a
M4	Chicken luncheon meat	0.2012 ± 0.00042a	0.1590 ± 0.00014b
M5	Chicken luncheon meat	0.2029 ± 0.00028a	0.1214 ± 0.00021b
M6	Chicken luncheon meat	0.1291 ± 0.00049b	0.2115 ± 0.00028a
M7	Chicken luncheon meat	0.2454 ±0.03486a	0.1311 ± 0.00057b
M8	Chicken luncheon meat	0.2151 ± 0.00028a	0.1270 ± 0.00014b
M9	Chicken luncheon meat	0.0519 ± 0.00057c	0.2442 ± 0.00021a
M10	Chicken luncheon meat	0.0792 ± 0.00064c	0.2309 ± 0.00028a
M11	Chicken luncheon meat	0.0766 ± 0.00064c	0.2655 ± 0.00007a
M12	Beef	0.0993 ± 0.00049c	0.1333 ± 0.00035b
M13	Beef	0.0280 ± 0.00014c	0.2761 ± 0.00014a
M14	Beef	0.2070 ± 0.00021a	0.1449 ± 0.00057b
M15	Beef	0.0876 ± 0.00085c	0.1397 ± 0.00028b
M16	Beef	0.0217 ± 0.00057c	0.3091 ± 0.00014a
M17	Beef	0.0778 ± 0.00042c	0.3017 ± 0.00028a
M18	Beef	0.0374 ± 0.00021c	0.2754 ± 0.06322a
M19	Beef	0.0852 ± 0.00064c	0.1284 ± 0.00042b
M20	Beef	0.0582 ± 0.00035c	0.3088 ± 0.00035a
M21	Beef	0.0425 ± 0.00057c	0.3089 ± 0.00028a

* Figures followed by vertically different letters indicate a significant difference at the probability level (p≤0.05).
Table 4 shows that all canned meat of 21 samples of different brands contain lead and cadmium in varying concentrations. The highest concentration of lead was 0.2454 ±0.03486 mg/kg in chicken luncheon meat sample M7, while the lowest was 0.0217 ± 0.00057 mg/kg in the beef M16 sample. The highest concentration of cadmium was 0.3091 ± 0.00014 mg/kg in the beef M16 sample and the minimum concentration was 0.1214 ± 0.00021 mg/kg in chicken luncheon meat sample M5. The results of the statistical analysis showed that there were significant differences (p ≤ 0.05) between the studied samples for each element. The concentration of lead in only 7 samples of canned meat exceeded the accepted limits of WHO and FAO which is 0.1 mg/kg, while the level of cadmium exceeded the internationally acceptable limit of 0.05 mg/kg in all tested canned meat samples [12].

The results showed a variation in the lead levels of the studied samples, as some of the values were within the limits accepted by the WHO and FAO, and they agreed with the results of the study of Alzuhairi et al. [13] who reported that the lead level in chicken was 0.0953 mg/kg, also with the results of the study conducted by Hamasalim and Mohammed [14] who determined the heavy elements in four samples of canned chicken luncheon produced by Jordan and France in Sulaymaniyyah markets, as the lead level was 1.19 ± 0.010, 1.02 ± 0.005, 1.00 ± 0.300, 0.52 ± 0.005µg/g, respectively, which were higher than the acceptable lead limits for poultry meat by FAO and WHO. It also agreed with the findings of Akan et al. [15] who found that the lead level in beef was 0.25mg/kg, as well as the results of the study conducted by Demirezen and Uruc [16], which showed that the lead levels in beef ranged between 0.18-0.28 mg/kg.

The results of the current study showed that the level of cadmium in most of the tested samples was 4-6 times higher than the globally allowed limit. The results of this study are consistent with the results of the study conducted by Makki [17] who investigated the microbial contamination and heavy metals in cooked poultry meat and sold in local markets of Basra Province, Iraq. Moreover, the results of the present study are consistent with what of Nasser [18] who studied the levels of heavy metals in canned meat sold in Saudi markets where the cadmium values of four samples of canned chicken meat were above the internationally allowed limit as they ranged between 0.14-0.61 mg/kg. The results of this study also agreed with what of Ei-Salam et al. [19] who found the cadmium level in beef was 1.15 ± 0.00. It is clear that the levels of cadmium reported in all the above-mentioned studies were higher than the limits allowed by the WHO. It has been reported that the pollution of heavy metals in meat products comes mainly from environmental conditions, industrial waste and mining [20].

CONCLUSION

In conclusion, the levels of lead and cadmium in almost all canned meat samples (fish, chicken, and beef) exceeded the values permitted by the WHO. In addition, the results showed that there were statistically significant differences in the levels of each element between the fish and canned meat selected samples.

REFERENCES

1. Kapica C., Weiss W. Canned fruits, vegetables, beans and fish provide nutrients at a lower cost compared to fresh, frozen or dried. J Nutr Food Sci. 2012; 2:131-134.
2. D'Mello J.P.F. (2003). Food Safety: Contaminants and Toxins. CABI publishing, Wallingford, Oxon, UK, Cambridge, MA. 480.
3. FAO (2003). "Assuring Food safety and Quality: Guidelines for Strengthening National Food Control Systems." FAO Food and Nutrition Paper, 0254-4725; 76. Rome, Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO).
4. Roy M.N., Roy A., Saha S. Probing inclusion complexes of cyclodextrins with amino acids by physicochemical approach. *Carbohydr Polym.* 2016;151: 458-466.
5. Makedonski L., Peycheva K., Stancheva M. Determination of heavy metals in selected black sea fish species. *Food Cont.* 2017; 72: 313-318.
6. Hirner A.V., Emons H. (Eds.). (2004). Organic metal and metalloid species in the environment: analysis, distribution, processes and toxicological evaluation. Springer Science & Business Media.
7. Ang H.H., Lee K.L. Analysis of mercury in Malaysian herbal preparations. *J Med Biomed Res.* 2005; 4(1): 31-36
8. Chatta A., Khan M., Mirza Z., Ali A. Heavy metal (cadmium, lead, and chromium) contamination in farmed fish: a potential risk for consumers' health. *Turk J Zool.* 2016; 40(2): 248-256.
9. Ashraf W., Seddigi Z., Abulkibash A., Khalid M. Levels of selected metals in canned fish consumed in Kingdom of Saudi Arabia. *Environ Monit Assess.* 2006;117: 271-279.
10. Andayesh S., Hadiani M.R., Mousavi Z., Shoiebi S. (2015). Lead, cadmium, arsenic and mercury in canned tuna fish marketed in Tehran, Iran. *Food Addit Contam. Part B*, 2015; 8(2): 93-98.
11. Sobhanardakani S. Tuna fish and common kilka: health risk assessment of metal pollution through consumption of canned fish in Iran. *J Consum Protect Food Saf.* 2017; 12(2): 157-163.
12. FAO/WHO. (2002). Codex Alimentarius, Schedule 1 of the proposed draft Codex general standards for contaminants and toxins in food. Joint FAO/WHO Food Standards Programme Codex Committee, Rotterdam. Reference CX/FAC 02/16.
13. Al-Zuhairi, W. S., Farhan, M. A., & Ahemd, M. A. Determine of heavy metals in the heart, kidney and meat of beef, mutton and chicken from Baquba and Howaydir market in Baquba, Diyala Province, Iraq. *Int J Rec Sci Res.* 2015; 6(8): 5965-5967.
14. Hamasalim H.J. Mohammed H.N. Determination of heavy metals in exposed corned beef and chicken luncheon that sold in Sulaymaniah markets. *Afr J Food Sci.* 2013; 7(7): 178-82.
15. Akam J.C., Abdulrahman F.I., Sodipo O.A., Chiroma Y. A. (2010). Distribution of heavy metals in the liver, kidney and meat of beef, mutton, caprine and chicken from Kasuwan Shanu market in Maiduguri Metropolis, Borno State, Nigeria. *Res J Appl Sci, Engineer Technol.* 2010; 2(8): 743-748.
16. Demirezen D. Uruç, K. Comparative study of trace elements in certain fish, meat and meat products. *Meat Sci.* 2006; 74(2): 255-260.
17. Makki G.A. Detection of Microbial and Heavy Metals Contamination in Cooked Poultry Meat and Displayed in Local Markets in Basrah Governorate, Iraq. *SJAR.* 2019; 6(2):212-220.
18. Nasser L.A. Molecular identification of isolated fungi, microbial and heavy metal contamination of canned meat products sold in Riyadh, Saudi Arabia. *Saud J Biol Sci.* 2015; 22(5): 513-520.
19. Ei-Salam N.M., Ahmad S., Basir A., Rais A. K., et al. Distribution of heavy metals in the liver, kidney, heart, pancreas and meat of cow, buffalo, goat, sheep and chicken from Kohat market Pakistan. *Life Sci. J.* 2013; 10: 937-940.
20. A. Ghazay, A., Mayar Hezam, A., M. Alkhuzaie, M., & Obayes, I. S. (2020). Study the effect of different temperatures on the biofilm production in Proteus mirabilis isolated from urinary tract infection patients. Al-Qadisiyah Journal Of Pure.
21. Salah, A. (2020). The New Combination of Semi-Analytical Iterative Method and Elzaki Transform for Solving Some Korteweg-de Vries Equations. Al-Qadisiyah Journal Of Pure Science, 25(1), Math. 23 -26.
22. Ali , W., & R.Annon, M. (2020). Biological Effective of organic solvent extracts of Mirabilis jalapa Leaves in the Non-cumulative for mortality of Immature stages Culex quinquefasciatus Say (Diptera : Culicidae). Al-Qadisiyah Journal Of Pure Science, 25(1), Bio 1-6.
23. Sami Abd ali , mohammed, Shaker Hussein, A., & mohammed hadi, H. (2020). Study The Current Density-Voltage (J-V) Characteristics of α-Fe2O3 Thin Film Prepared by Spray Pyrolysis Technique. Al-Qadisiyah Journal Of Pure Science, 25 (1), Phys 1-7.