SARS-CoV-2 Infection in Children and Newborns: A Systematic Review

CURRENT STATUS: POSTED

Ilaria Liguoro
Department of Medicine DAME - Division of Pediatrics, University of Udine, Udine, Italy.
ilarialiguoro@gmail.com
Corresponding Author

Chiara Pilotto
Department of Medicine DAME - Division of Pediatrics, University of Udine, Udine, Italy.

Margherita Bonanni
Department of Medicine DAME - Division of Pediatrics, University of Udine, Udine, Italy.

Maria Elena Ferrari
Department of Medicine DAME - Division of Pediatrics, University of Udine, Udine, Italy.

Anna Pusiol
Department of Medicine DAME - Division of Pediatrics, University of Udine, Udine, Italy.

Agostino Nocerino
Division of Pediatrics, University Hospital of Udine, Udine, Italy.

Enrico Vidal
Department of Medicine DAME - Division of Pediatrics, University of Udine, Udine, Italy.

Paola Cogo
Department of Medicine DAME - Division of Pediatrics, University of Udine, Udine, Italy.

DOI:
10.21203/rs.3.rs-24629/v1

SUBJECT AREAS
Pediatrics

KEYWORDS
Covid-19, pediatrics, infectious disease, pandemic, novel coronavirus
Abstract
A recent outbreak of a novel Coronavirus responsible for a Severe Acute Respiratory Syndrome (SARS-CoV-2) is spreading globally. The aim of this study was to systematically review the existing evidence on SARS-CoV-2 infections in pediatric age.

An electronic search was conducted in PubMed database. Papers published between the 1st of January and the 7th of April, 2020 including children aged 0-18 years were selected.

Fifty-two studies and two reviews were included, with a total sample size of 4,612 children (2,366 males, 51.3%, weighted mean age 7 years). Patients showed mainly mild (1285/2679, 48.5%) and moderate (1035/2679, 39.1%) signs of the infection. Less than 2% of children were admitted to the Pediatric Intensive Care Unit. The most commonly described symptoms were fever (49.2%) and cough (44.1%). Laboratory findings were often unremarkable. Children underwent a chest CT-scan in 85.7% of all cases, and 36% resulted normal. Overall, the estimated mortality was 0.07%. A higher proportion of newborns was severely ill (17%) and dyspnea was the commonest reported sign (40%).

Conclusion: SARS-CoV-2 affects children less severely than adults. Laboratory and radiology findings are mainly nonspecific. Larger epidemiological and clinical cohort studies are needed to better understand possible implications of COVID-19 infection in children.

Introduction
In early January 2020, a novel type of Coronavirus (CoV) was identified in the bronchoalveolar lavage sample of a subject affected by pneumonia of unknown origin[1]. The virus was provisionally named novel coronavirus (2019-nCoV)[2] to differentiate it from the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)[3] and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV)[4], responsible for two previous outbreaks, in 2002 and 2012 respectively[5]. Successively, the International Committee on Taxonomy of Viruses defined it as SARS-CoV-2[6] and the associated disease has been called 2019 Coronavirus Disease (COVID-19). SARS-CoV-2 rapidly spread worldwide, forcing the World Health Organization (WHO) to declare the outbreak as a pandemic on 11 March[7, 8].

As of April 7, 1,511,104 cases have been reported in 184 countries in all continents except for
Antarctica, with 88,338 deaths and 328,661 recovered[9]. Children seem to be less affected than adults, but data regarding epidemiologic characteristics and clinical features of COVID-19 in pediatric age are very poor and essentially based on limited case series[10, 11]. In a report of 72,314 cases from Chinese Center for Disease Control and Prevention (CDC), about 2% of all patients were aged <19 years, but no specific clinical information was available[12].

Italy has the second largest number of COVID-19 cases in the world, with 1.2% of all patients represented by children[9, 13, 14]. The estimated overall case-fatality rate in Italy resulted higher than in China (7.2% vs 2.3%)[15], but no death in the pediatric age has been reported, confirming that the mortality remains low and no specific risk factor could be identified[16].

Neonatal SARS-CoV-2 infections are also extremely rare and, to date, there is no evidence of intrauterine infection caused by vertical transmission[17, 18]. As described in a case series by Chen et al., amniotic fluid, cord blood, neonatal throat swab and colostrum samples collected from infected mothers were negative for COVID-19[19]. However, as the virus is transmitted via droplets or direct contact, currently in China all newborns are separated from their infected mothers for at least 14 days[20].

Despite the global interest and concern about COVID-19, clinical pattern is still unclear for the pediatric health community. The aim of our review is to provide a concise and systematic overview of the available evidence on clinical, laboratory and radiological findings in children with SARS-CoV-2 infection.

Materials And Methods

This study is in compliance with the Preferred Reporting Items for Systematic Reviews and Metaanalyses (PRISMA) guidelines[21].

An electronic search was conducted on studies published from the 1st of January, 2020 to the 7th of April, 2020 in PubMed database. We used the search terms “2019 novel coronavirus OR COVID-19 OR SARS-CoV-2 AND child* OR pediatric* OR newborn OR infant” with no language restriction to include as much data as possible. However, since full texts available only in Chinese language could not be evaluated, we had to rely on English-language abstracts. For the purpose of this review, studies on
children aged 0 to 18 years old were included. Case reports, case series, retrospective or observational studies were all considered eligible.

Articles were first screened by title and abstract: duplicates and those with no available English summary were excluded. Eligible full texts were then assessed for pediatric clinical, laboratory and radiological data. Papers reporting information on both children and adults were included only if pediatric data could be retrieved. To identify missing studies, we also checked the reference list for each selected paper.

Three reviewers extracted data independently. A standardized table with the following information was used for data extraction: first author, date and journal of publication, study design (cohort study, case series, case report), sample size, age, mortality and morbidity rate, clinical features, laboratory and radiological results and treatment information. All included studies were differentiated in tables for newborns and infants ≤ 3 months and for children aged > 3 months.

During the data analysis process, clinical patterns were grouped according to the pediatric scoring for patients with COVID-19 (recommendations issued by the pediatric branch of the Chinese Medical Association[22]). In particular, cases described as “upper respiratory tract infection” (i.e. pharyngeal congestion, sore throat, and fever) with no abnormal radiographic and septic presentation were included in the “mild” symptomatic category. Children with “pneumonia” and no complications were categorized as “moderate”. Patients with mild or moderate clinical patterns, plus any manifestations suggesting disease progression (i.e. tachypnoea, hypoxia, neurological deterioration, dehydration, myocardial injury, coagulation dysfunction, rhabdomyolysis) were considered “severe”. Critically-ill children were those with a rapid disease progression, plus any other of the following conditions: respiratory failure with need for mechanical ventilation (i.e. acute respiratory distress syndrome, persistent hypoxia), septic shock or multiple organ failure (MOF)[22].

Laboratory data were presented as abnormally high or low according to the reference value reported by the paper, if available. Similarly, radiological findings were categorized according to the available description.

A quantitative synthesis of the included studies was performed. For continuous variables, weighted
mean (range) was calculated as appropriate, while categorical variables were expressed as percentages or frequencies in relation to the total or subtotal sample size, according to the number of missing data.

Results

We initially identified 191 papers on SARS-CoV-2 infection in children published from the 1st of January 2020 to the 7th of April 2020. After screening the title and abstract, 101 full articles were evaluated for eligibility. At the end of the selection process (Figure 1), 52[10, 11, 14, 16, 23–70] studies and two previously published reviews[71, 72] with a total sample size of 4.612 children (2.366 males, 51.3%) were included in the systematic review (Table 1). The weighted mean age of patients was 7 years, ranging from 0 to 18 years old. Children included were mainly Chinese (2700/4612; 58.6%) and Italian (1708/4612; 37%). The most extensive retrospective study[16] described clinical characteristics of 2.143 children with confirmed (n=713) or suspected (n=1430) SARS-CoV-2 infection. Overall, 3382/4612 (73.3%) were discharged after a weighted mean hospitalization of 11.6 days (range 2-23). The estimated mortality was 0.07%, with 3 reported deaths: a 10 months baby with intussusception who developed MOF[10], a 14-year-old boy from Hubei province[16], and a preterm newborn who died from complications of sepsis[59]. Significant comorbidities were reported in 11 patients: 3 who were on immunosuppressive treatment for previous liver transplantation[24], 3 with a diagnosis of congenital heart disease[26, 55], 2 with asthma[55, 56], 1 child had acute lymphoblastic leukemia (ALL)[25], 1 with duplicate kidneys[56], and 1 with nephroblastoma[55]. None of them had a severe course of the disease.

Clinical features

Clinical findings were available in 2.679 children aged 3 months-18 years (38 studies)[10, 11, 16, 24–56, 67, 68] (Table 2). Severe and critically ill children accounted for 4.5% (118/2679) and 0.7% (18/2679) of the total sample size respectively. The most commonly described symptoms in pediatric age were fever (49.2%), cough (44.1%) and sore throat (19%). Rarely children were also dyspneic (4.5%) and required oxygen supplementation for SpO₂ below 92% (10.4%)[10, 25]. Extrarespiratory symptoms were mainly represented by diarrhea (8.9%) and vomiting (5.5%). A familial history of
positive contact could be identified in 85% of the cases. One child with ALL on chemotherapy contracted SARS-CoV-2 infection during hospitalization, but then recovered[25].

Laboratory investigations

Table 3 summarizes the main laboratory investigations reported in 474 children (29 studies)[10, 11, 25–28, 30–44, 49, 52–56, 67, 68]. The full blood cell count was unremarkable in most patients, with less than one-fifth of them (18.9%) showing low white blood cell (WBC) and lympho- or neutropenia (12.3%). Elevated inflammatory indexes such as C-reactive protein (CRP) and procalcitonin (PCT) were shown by 38.7% of children. Creatine kinase (CPK) and liver enzymes were also altered, as shown by 13.1% and 12.9% of all patients respectively.

Radiology findings

Of the 493 children who had radiological exams (31 studies)[10, 11, 25–28, 30–44, 47, 49, 51–56, 67, 68], up to 52.1% of them showed abnormalities, even if asymptomatic (Table 4). Most patients underwent a chest CT-scan (85.7%) that resulted normal in 163 out of 453 patients (36%), whereas typical ground-glass opacities (GGO), nonspecific unilateral and bilateral lesions were identified in 33.7%, 21% and 15.4% of patients, respectively.

Treatment

Of all patients, less than 2% were admitted in the Pediatric Intensive Care Unit (PICU) and required mechanical ventilation (MV) (Table 5)[10, 11, 25–27, 30–32, 34, 35, 37, 38, 43, 45, 47, 49, 51–56, 67, 68]. Most authors described the use of nebulized Interferon (IFN) (47.5%), and of other antiviral agents (38.5%) or antibiotics (22.3%). The use of intravenous immunoglobulin (IVIg) and corticosteroids (CCS) was less frequently described (5% and 6%, respectively).

Neonatal cases

A few case reports[43, 57, 58, 62–65, 69, 70] and case series[59, 60, 66] including a total of 25 newborns (15 males, 60%) with SARS-CoV-2 were identified (Table 6). Neonates were usually screened because of a history of primary maternal infection (80%). Similarly to older children, most of them were asymptomatic (12%) or had mild (52%) and moderate (20%) signs of clinical infection. However, a slightly higher proportion of them was severely ill (17%). Dyspnea was the commonest
reported sign in neonatal age (40%). Fever (32%) and feeding intolerance (24%) were also described. Blood tests showed high WBC (28%), CRP and/or PCT (20%), CPK (28%) and liver enzymes (20%).

Unlike older children, newborns underwent a chest X-ray in most cases (64%) (Table 7). Abnormal radiological findings could be recognized in more than half of them (56%), but specific lesions were not so frequently described: 8% had GGO, 24% unilateral patchy area, and 12% bilaterally. Poor information on treatment options was obtainable from the included reports, and most patients (48%) received only symptomatic therapies.

Discussion
This systematic review fully assesses epidemiological and clinical characteristics of SARS-CoV-2 infections reported in pediatric age.

Children are less likely to develop severe symptoms of COVID-19 than adults, with 95% of all cases ranging from asymptomatic to mild-moderate clinical patterns, as described by different case series[10, 11, 24, 27-56, 67, 68]. Moreover, less than 2% of patients were admitted to PICU or required MV[10, 25, 26]. Overall, three deaths were reported (mortality rate 0.07%): all patients developed complications[10, 16], including a preterm newborn who died from sepsis[59]. In adulthood, over two-third of those who died from COVID-19 had a comorbidity[73], while a very limited number of children with underlying disease could be identified, and none of them showed worse clinical course of the infection in comparison to previously healthy patients[10, 24, 26, 55, 56]. However, children might not be tested for SARS-CoV-2 as frequently as adults. Moreover, the current gold standard for the diagnosis of SARS-CoV-2 infection is Real Time-Polymerase Chain Reaction (RT-PCR) on respiratory tract specimen. The diagnostic accuracy of RT-PCR highly depends on the virus-specific diagnostic window, and the analytical sensitivity of this assay is potentially plagued by false SARS-CoV-2 negativity attributable to the low viral loads, especially in asymptomatic or mild symptomatic patients that might transmit the disease as well[74].

Clinical features
Infected children usually show typical symptoms of acute respiratory infections including fever (49.2%) and cough (44.1%)[10, 11, 16, 25-29, 31–33, 35–37, 41, 45, 47, 49, 53–56]. In particular,
some authors reported that up to one-third of symptomatic children may have high fever[10], but generally below 39°C[32]. Differently from adults, children are more likely to present with extrarespiratory symptoms[75]: diarrhea (8.9%) and vomiting (5.5%) are the most frequently reported ones. It has been showed that, when present, gastrointestinal symptoms usually anticipate the typical respiratory pattern[76]. Previous studies on SARS-CoV cases demonstrated the viral detection in gut biopsy specimens and stool of recovered patients, indicating a possible gastrointestinal tract tropism that may partially provide explanations for extrarespiratory symptoms and persistent viral shedding through fecal-oral route[77]. There is growing evidence that this mechanism of excretion may be typical also for SARS-CoV-2[2, 31]. As described in a case series of ten infected children, SARS-CoV-2 remained detectable in rectal swabs after nasopharyngeal swabs turned negative[31]. However, the extrapulmonary detection of viral RNA does not mean infectious virus is present, but two independent laboratories from China declared that they have successfully isolated live 2019-nCoV from the stool of patients (unpublished)[76]. Moreover, given the fact that pathogenesis of human coronavirus mainly depends on the interactions between its transmembrane spike glycoprotein (S-protein) and specific cell receptors of angiotensin converting enzyme II (ACE2) [78], recent analysis revealed that ACE2 was expressed also in upper esophagus and absorptive enterocytes from ileum and colon[55].

According to evaluated studies, clinical presentation in newborns and infants below 3 months could be slightly different than in older children, with a higher proportion of them (17%) presenting with a severe pattern[59, 60]. Even if the vertical transmission for SARS-CoV-2 has not been demonstrated[19, 79], in 80% of neonatal cases the mother was infected[57–60, 63, 66]. Moreover, nosocomial infection may also occur, and strict measures to reduce this risk should be always observed[20]. However, some authors hypothesized that 2019-nCoV infection and morbidity in newborns may be related to possible hypoxemia in the infected mother that increases the risk of perinatal adverse events such as birth asphyxia and premature birth[59, 80]. Evidence remains still too limited.

Laboratory findings
Twenty-nine studies accounting for a total of 474 patients reported information on blood investigations in pediatric cases with COVID-19. Overall, no significant abnormalities were observed and this was consistent with the results of a previously published review including a total sample size of 66 children with confirmed SARS-CoV-2 infection[71]. In particular, full blood cell count was normal in most patients. Two case series reported high rates of lymphopenia (10/25, 40%[26] and 11/36, 30.1%[54] respectively). However, this finding seems to be in contrast with adult data, as low lymphocyte count has been noted in up to 80% of infected critically-ill subjects[74, 81]. The limited number of severe COVID-19 infection may in part explain the lack of significant lymphopenia in children.

Our results suggested that inflammatory indexes may be abnormal in more than one-third of children with SARS-CoV-2 infection (38.7%), while Henry et al. described only 10-13% of cases with high CRP and/or PCT[71]. This controversial finding could be explained by the high heterogeneity in defining a cut-off of abnormal values across all the included studies. However, in adults a PCT value of ≥0.5 ng/ml was observed to be associated with a near 5-fold increase in risk of severe clinical course of COVID-19 infection[82].

Other significant reported laboratory investigations were represented by high CPK values (13.1%) and liver enzymes (12.9%). These enzymes could be often altered during viral infections[83]. In particular, high CPK levels or aspartate aminotransferase activity correlated with more severe clinical patterns in adult patients with SARS-CoV-2 infection[84]. Abnormal transaminases levels may also express a sign of direct liver damage. Recently published data demonstrated enrichment of ACE2 expression in cholangiocytes (59.7% of cells) suggesting that SARS-CoV-2 might lead to direct damage of intrahepatic bile ducts[85].

Radiology findings

A total of 493 children had radiological exams, with half of them showing abnormalities. The sensitivity of chest X-ray is supposed to be inferior to that of CT-scan: in adults, nonspecific patchy peripheral and peribronchovascular opacities may be shown in all lung zones, according to the severity of the infection[86]. As children usually develop milder patterns of the disease, chest X-ray
may fail to identify typical lesions, and it is mainly adopted in newborns and younger infants[59, 63, 66]. CT-scan is frequently performed in children with suspected or confirmed SARS-CoV-2 infection (up to 85% of all cases reported). The most frequently recognizable lesions are represented by GGO, with unilateral or bilateral distribution [27–29]. However, it should be noted that CT-scan was performed also in asymptomatic patients[10, 27–30, 38, 39, 49, 57], and that more than one third of all patients who underwent this exam resulted completely normal. The use of CT-scan as a diagnostic screening tool in confirmed or suspected COVID-19 patients is supported by recent evidence showing that its sensitivity could be greater than that of real time-PCR in detecting the virus (98% vs. 71%, respectively)[87]. However, routine use of CT-scan has several obvious implications, in particular in a pediatric setting where concern about unnecessary exposure to radiation source should be raised. Therefore, other possible diagnostic imaging tools may be used. Lung ultrasound has been successfully adopted in adult subjects with SARS-CoV-2 infection[88], but, to date, there is no data in children.

Treatment
Currently, there is no ongoing drug trial specifically aimed at children. Symptomatic treatment alone was used in most cases, in particular in newborns[59]. The only therapeutic recommendation in pediatric age is to use nebulized IFN and oral antiviral agents (i.e., lopinavir/ritonavir), with CCS for complications (acute respiratory distress syndrome, encephalitis, hemophagocytic syndrome or septic shock) and IVIg for severe cases[22]. However, none of these therapies have shown a clear benefit in the treatment of SARS-CoV-2.

The main limitation of our review is represented by the difficulty to retrieve the full text of some Chinese studies, and we had to rely on English-language summaries, or publications that referenced papers published in Chinese. Moreover, our findings are essentially based on limited case-series and case reports, therefore laboratory parameters of interest were not consistently reported and reference ranges were not always clearly defined. Similarly, radiological patterns were difficult to compare, as the description of the included cases was not standardized. However, despite the scarce and extremely heterogeneous evidence on pediatric patients with
COVID-19, the use of systematic databases allowed us to review at a glance and interpret the majority of published studies up to 7 April 2020.

Conclusion

SARS-CoV-2 affects children less commonly and severely in comparison to adults, with an estimated very low mortality rate. This could be due either to the fact that children are less frequently exposed to the main sources of transmission (in particular, nosocomial), and that they tend to show milder symptoms, therefore may be less often tested. In symptomatic patients, laboratory and radiology findings are mainly nonspecific, but could help identifying those who are severely ill. Larger epidemiological and clinical cohort studies are needed to better understand possible implications of COVID-19 infection in children.

Declarations

Author Contribution

IL conceptualized the systematic review, performed the electronic search, evaluated articles for eligibility, extracted relevant data, interpreted the results, and drafted sections of the manuscript.

CP contributed to study design, screened search results, reviewed all included studies and reviewed and revised the manuscript.

MB and MF contributed to study design, developed search terms and performed the electronic search, and reviewed and revised the manuscript.

AN contributed to study design, reviewed and revised the manuscript, and provided mentorship;

AP, EV and PC conceptualized and designed the study, coordinated and supervised data collection, and critically reviewed the manuscript for important intellectual content.

All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Compliance with Ethical Statement:

Conflict of Interest: All authors have no conflicts of interest to disclose.

Funding Source: None

Ethical statement: This article does not contain any studies with human participants or animals performed by any of the authors.

References
1. Li Q, Guan X, Wu P, et al (2020) Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 382:1199-1207. https://doi.org/10.1056/NEJMoa2001316

2. Zhu N, Zhang D, Wang W, et al (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382:727-733. https://doi.org/10.1056/NEJMoa2001017

3. Drosten C, Günther S, Preiser W, et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967-1976. https://doi.org/10.1056/NEJMoa030747

4. de Groot RJ, Baker SC, Baric RS, et al (2013) Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J Virol 87:7790-7792. https://doi.org/10.1128/JVI.01244-13

5. Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA (2020) Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens 9:. https://doi.org/10.3390/pathogens9030186

6. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536-544. https://doi.org/10.1038/s41564-020-0695-z

7. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 30 Mar 2020

8. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-
of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov). Accessed 30 Mar 2020

9. Dong E, Du H, Gardner L (2020) An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases 0: https://doi.org/10.1016/S1473-3099(20)30120-1

10. Lu X, Zhang L, Du H, et al (2020) SARS-CoV-2 Infection in Children. N Engl J Med. https://doi.org/10.1056/NEJMc2005073

11. Liu W, Zhang Q, Chen J, et al (2020) Detection of Covid-19 in Children in Early January 2020 in Wuhan, China. New England Journal of Medicine

12. Wu Z, McGoogan JM (2020) Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. https://doi.org/10.1001/jama.2020.2648

13. Livingston E, Bucher K (2020) Coronavirus Disease 2019 (COVID-19) in Italy. JAMA. https://doi.org/10.1001/jama.2020.4344

14. COVID-19 Integrated Surveillance - ISS. https://www.iss.it/covid-19-integrated-surveillance. Accessed 30 Mar 2020

15. Onder G, Rezza G, Brusaferro S (2020) Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. https://doi.org/10.1001/jama.2020.4683

16. Dong Y, Mo X, Hu Y, et al (2020) Epidemiological Characteristics of 2143 Pediatric Patients With 2019 Coronavirus Disease in China. Pediatrics. https://doi.org/10.1542/peds.2020-0702

17. Schwartz DA (2020) An Analysis of 38 Pregnant Women with COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal
Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med.
https://doi.org/10.5858/arpa.2020-0901-SA

18. Yang H, Wang C, Poon LC (2020) Novel coronavirus infection and pregnancy.
Ultrasound Obstet Gynecol. https://doi.org/10.1002/uog.22006

19. Chen H, Guo J, Wang C, et al (2020) Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395:809-815. https://doi.org/10.1016/S0140-6736(20)30360-3

20. Wang L, Shi Y, Xiao T, et al (2020) Chinese expert consensus on the perinatal and neonatal management for the prevention and control of the 2019 novel coronavirus infection (First edition). Ann Transl Med 8:47.
https://doi.org/10.21037/atm.2020.02.20

21. Moher D, Liberati A, Tetzlaff J, et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097.
https://doi.org/10.1371/journal.pmed.1000097

22. Chen Z-M, Fu J-F, Shu Q, et al (2020) Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J Pediatr.
https://doi.org/10.1007/s12519-020-00345-5

23. Korean Society of Infectious Diseases, Korean Society of Pediatric Infectious Diseases, Korean Society of Epidemiology, et al (2020) Report on the Epidemiological Features of Coronavirus Disease 2019 (COVID-19) Outbreak in the Republic of Korea from January 19 to March 2, 2020. J Korean Med Sci 35:e112.
https://doi.org/10.3346/jkms.2020.35.e112

24. D’Antiga L (2020) Coronaviruses and immunosuppressed patients. The facts during the third epidemic. Liver Transpl. https://doi.org/10.1002/lt.25756
25. Sun D, Li H, Lu X-X, et al (2020) Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. https://doi.org/10.1007/s12519-020-00354-4

26. Zheng F, Liao C, Fan Q-H, et al (2020) Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China. Curr Med Sci. https://doi.org/10.1007/s11596-020-2172-6

27. Wang XF, Yuan J, Zheng YJ, et al (2020) [Retracted: Clinical and epidemiological characteristics of 34 children with 2019 novel coronavirus infection in Shenzhen]. Zhonghua Er Ke Za Zhi 58:E008. https://doi.org/10.3760/cma.j.issn.0578-1310.2020.0008

28. Xia W, Shao J, Guo Y, et al (2020) Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr Pulmonol. https://doi.org/10.1002/ppul.24718

29. Feng K, Yun YX, Wang XF, et al (2020) [Analysis of CT features of 15 Children with 2019 novel coronavirus infection]. Zhonghua Er Ke Za Zhi 58:E007. https://doi.org/10.3760/cma.j.issn.0578-1310.2020.0007

30. Wang D, Ju XL, Xie F, et al (2020) [Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China]. Zhonghua Er Ke Za Zhi 58:E011. https://doi.org/10.3760/cma.j.cn112140-20200225-00138

31. Xu Y, Li X, Zhu B, et al (2020) Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 1–4. https://doi.org/10.1038/s41591-020-0817-4

32. Cai J, Xu J, Lin D, et al (2020) A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis.
33. Liu H, Liu F, Li J, et al (2020) Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children. J Infect. https://doi.org/10.1016/j.jinf.2020.03.007

34. Li W, Cui H, Li K, et al (2020) Chest computed tomography in children with COVID-19 respiratory infection. Pediatr Radiol 1–4. https://doi.org/10.1007/s00247-020-04656-7

35. Ji L-N, Chao S, Wang Y-J, et al (2020) Clinical features of pediatric patients with COVID-19: a report of two family cluster cases. World J Pediatr. https://doi.org/10.1007/s12519-020-00356-2

36. Zhou Y, Yang G-D, Feng K, et al (2020) [Clinical features and chest CT findings of coronavirus disease 2019 in infants and young children]. Zhongguo Dang Dai Er Ke Za Zhi 22:215–220

37. Park JY, Han MS, Park KU, et al (2020) First Pediatric Case of Coronavirus Disease 2019 in Korea. J Korean Med Sci 35:e124. https://doi.org/10.3346/jkms.2020.35.e124

38. Liu Y, Yang Y, Zhang C, et al (2020) Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 63:364–374. https://doi.org/10.1007/s11427-020-1643-8

39. Chan JF-W, Yuan S, Kok K-H, et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395:514–523. https://doi.org/10.1016/S0140-6736(20)30154-9

40. Cai JH, Wang XS, Ge YL, et al (2020) [First case of 2019 novel coronavirus infection in children in Shanghai]. Zhonghua Er Ke Za Zhi 58:86–87. https://doi.org/10.3760/cma.j.issn.0578-1310.2020.02.002

41. Chen F, Liu ZS, Zhang FR, et al (2020) [First case of severe childhood novel
coronavirus pneumonia in China]. Zhonghua Er Ke Za Zhi 58:179-182.

https://doi.org/10.3760/cma.j.issn.0578-1310.2020.03.003

42. Kam K, Yung CF, Cui L, et al A Well Infant With Coronavirus Disease 2019 With High Viral Load. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa201

43. Zhang G-X, Zhang A-M, Huang L, et al (2020) [Twin girls infected with SARS-CoV-2]. Zhongguo Dang Dai Er Ke Za Zhi 22:221-225

44. Zhao R, Shen X, Yu K, Sheng (2020) [A case of children with 2019 novel Coronavirus Infection]. Zhejiang Med J

45. Wei M, Yuan J, Liu Y, et al (2020) Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA. https://doi.org/10.1001/jama.2020.2131

46. Shen K-L, Yang Y-H (2020) Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr.

https://doi.org/10.1007/s12519-020-00344-6

47. Lou XX, Shi CX, Zhou CC, Tian YS (2020) Three children who recovered from novel coronavirus 2019 pneumonia. J Paediatr Child Health.

https://doi.org/10.1111/jpc.14871

48. Qian G, Yang N, Ma AHY, et al (2020) A COVID-19 Transmission within a family cluster by presymptomatic infectors in China. Clin Infect Dis.

https://doi.org/10.1093/cid/ciaa316

49. Su L, Ma X, Yu H, et al (2020) The different clinical characteristics of corona virus disease cases between children and their families in China - the character of children with COVID-19. Emerg Microbes Infect 9:707-713.

https://doi.org/10.1080/22221751.2020.1744483

50. Tang A, Tong Z-D, Wang H-L, et al (2020) Detection of Novel Coronavirus by RT-PCR in Stool Specimen from Asymptomatic Child, China. Emerging Infect Dis 26:
51. Li Y, Guo F, Cao Y, et al (2020) Insight into COVID-2019 for pediatricians. Pediatr Pulmonol. https://doi.org/10.1002/ppul.24734

52. Pan X, Chen D, Xia Y, et al (2020) Asymptomatic cases in a family cluster with SARS-CoV-2 infection. The Lancet Infectious Diseases 20:410-411. https://doi.org/10.1016/S1473-3099(20)30114-6

53. Xing Y, Ni W, Wu Q, et al (2020) Prolonged presence of SARS-CoV-2 in feces of pediatric patients during the convalescent phase. medRxiv 2020.03.11.20033159. https://doi.org/10.1101/2020.03.11.20033159

54. Qiu H, Wu J, Hong L, et al (2020) Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30198-5

55. Zhang H, Kang Z, Gong H, et al (2020) The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv 2020.01.30.927806. https://doi.org/10.1101/2020.01.30.927806

56. Chen C, Cao M, Peng L, et al (2020) Coronavirus Disease-19 Among Children Outside Wuhan, China. Social Science Research Network, Rochester, NY

57. Wang S, Guo L, Chen L, et al (2020) A case report of neonatal COVID-19 infection in China. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa225

58. Cui Y, Tian M, Huang D, et al (2020) A 55-Day-Old Female Infant infected with COVID-19: presenting with pneumonia, liver injury, and heart damage. J Infect Dis. https://doi.org/10.1093/infdis/jiaa113

59. Zhu H, Wang L, Fang C, et al (2020) Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr 9:51-60. https://doi.org/10.21037/tp.2020.02.06
60. Lu Q, Shi Y (2020) Coronavirus disease (COVID-19) and neonate: What neonatologist need to know. J Med Virol. https://doi.org/10.1002/jmv.25740

61. Zhang YH, Lin DJ, Xiao MF, et al (2020) [2019 novel coronavirus infection in a three-month-old baby]. Zhonghua Er Ke Za Zhi 58:182-184. https://doi.org/10.3760/cma.j.issn.0578-1310.2020.03.004

62. Zeng LK, Tao XW, Yuan WH, et al (2020) [First case of neonate infected with novel coronavirus pneumonia in China]. Zhonghua Er Ke Za Zhi 58:E009. https://doi.org/10.3760/cma.j.issn.0578-1310.2020.0009

63. Le HT, Nguyen LV, Tran DM, et al (2020) The first infant case of COVID-19 acquired from a secondary transmission in Vietnam. Lancet Child Adolesc Health. https://doi.org/10.1016/S2352-4642(20)30091-2

64. Dong L, Tian J, He S, et al (2020) Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. JAMA. https://doi.org/10.1001/jama.2020.4621

65. Wang J, Wang D, Chen G-C, et al (2020) [SARS-CoV-2 infection with gastrointestinal symptoms as the first manifestation in a neonate]. Zhongguo Dang Dai Er Ke Za Zhi 22:211-214

66. Zeng L, Xia S, Yuan W, et al (2020) Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr. https://doi.org/10.1001/jamapediatrics.2020.0878

67. Shen Q, Guo W, Guo T, et al (2020) Novel coronavirus infection in children outside of Wuhan, China. Pediatr Pulmonol. https://doi.org/10.1002/ppul.24762

68. Han Y-N, Feng Z-W, Sun L-N, et al (2020) A comparative-descriptive analysis of clinical characteristics in 2019-Coronavirus-infected children and adults. J Med Virol. https://doi.org/10.1002/jmv.25835

69. Kamali Aghdam M, Jafari N, Eftekhar K (2020) Novel coronavirus in a 15-day-old
neonate with clinical signs of sepsis, a case report. Infect Dis (Lond) 1–3.
https://doi.org/10.1080/23744235.2020.1747634

70. Canarutto D, Priolo A, Russo G, et al (2020) COVID-19 infection in a paucisymptomatic infant: Raising the index of suspicion in epidemic settings. Pediatr Pulmonol. https://doi.org/10.1002/ppul.24754

71. Henry BM, Lippi G, Plebani M (2020) Laboratory abnormalities in children with novel coronavirus disease 2019. Clin Chem Lab Med. https://doi.org/10.1515/cclm-2020-0272

72. Ludvigsson JF (2020) Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. https://doi.org/10.1111/apa.15270

73. Guan W-J, Liang W-H, Zhao Y, et al (2020) Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. Eur Respir J. https://doi.org/10.1183/13993003.00547-2020

74. Guan W-J, Ni Z-Y, Hu Y, et al (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. https://doi.org/10.1056/NEJMoa2002032

75. Zimmermann P, Curtis N (2020) Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. The Pediatric Infectious Disease Journal 1. https://doi.org/10.1097/INF.0000000000002660

76. Gu J, Han B, Wang J (2020) COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. https://doi.org/10.1053/j.gastro.2020.02.054

77. Leung WK, To K-F, Chan PKS, et al (2003) Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125:1011-1017. https://doi.org/10.1016/s0016-5085(03)01215-0
78. Wang Y, Wang Y, Chen Y, Qin Q (2020) Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. https://doi.org/10.1002/jmv.25748

79. Karimi-Zarchi M, Neamatzadeh H, Dastgheib SA, et al (2020) Vertical Transmission of Coronavirus Disease 19 (COVID-19) from Infected Pregnant Mothers to Neonates: A Review. Fetal Pediatr Pathol 1–5. https://doi.org/10.1080/15513815.2020.1747120

80. Maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia: a case-control study | medRxiv.
https://www.medrxiv.org/content/10.1101/2020.03.10.20033605v1. Accessed 2 Apr 2020

81. Yang X, Yu Y, Xu J, et al (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. https://doi.org/10.1016/S2213-2600(20)30079-5

82. Lippi G, Plebani M (2020) Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta 505:190–191.
https://doi.org/10.1016/j.cca.2020.03.004

83. Sellers SA, Hagan RS, Hayden FG, Fischer WA (2017) The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses 11:372–393. https://doi.org/10.1111/irv.12470

84. Zhang G, Zhang J, Wang B, et al (2020) Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res 21:. https://doi.org/10.1186/s12931-020-01338-8

85. Chai X, Hu L, Zhang Y, et al (2020) Specific ACE2 Expression in Cholangiocytes May
Cause Liver Damage After 2019-nCoV Infection. bioRxiv 2020.02.03.931766.
https://doi.org/10.1101/2020.02.03.931766

86. Silverstein WK, Stroud L, Cleghorn GE, Leis JA (2020) First imported case of 2019 novel coronavirus in Canada, presenting as mild pneumonia. Lancet 395:734.
https://doi.org/10.1016/S0140-6736(20)30370-6

87. Fang Y, Zhang H, Xie J, et al (2020) Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 200432. https://doi.org/10.1148/radiol.2020200432

88. Buonsenso D, Piano A, Raffaelli F, et al Point-of-Care Lung Ultrasound findings in novel coronavirus disease-19 pneumoniae: a case report and potential applications during COVID-19 outbreak. 5

Tables
Table 1. Characteristics of the included studies and main outcome measures in children with documented SARS-CoV-2 infection.

Author	Cohort	Case series	Case Report	Country	Language	N	Males	Median
Lu^10	√	-	-	China	English	171	104	Median
Wang^27	√	-	-	China	Chinese	34	14	Median
Xia^28	-	√	-	China	English	20	13	Median
KSID^23	√	-	-	South Korea	English	201	NR	0-9 yrs: 84 yrs: 84 infanth
Dong^16	√	-	-	China	English	2143c	1213	Median
Liu^33	-	√	-	China	English	4	2	2 mo
Wang^57	-	-	√	China	English	1	1	36
Cui^58	-	-	√	China	English	1	0	55
Li^51	-	-	√	China	English	2	1	4
Ji^35	-	-	√	China	English	2	2	9-1
Liu^11	-	√	-	China	English	6	2	Median

22
Author	Age	Sex	Country	Language	N	Median Age	Notes
Zhou	36	√	China	Chinese	9	0-3 yrs	
Zhu	59	√	China	English	10	8 yrs	Nev
Li	34	√	China	English	5	4 yrs	Median
D'Antiga	24	√	Italy	English	3	NR	
Sun	25	√	China	English	8	6 yrs	2 mo
Zheng	26	√	China	English	25	14 yrs	3 yrs
Park	37	√	South Korea	English	1	0 yrs	1 yr
Lu	60	√	China	English	3	NR	Nev
Liu**	38	-	China	English	1	1 yrs	1 yr
Chan**	39	-	China	English	1	1 yrs	1 yr
Cai**	40	-	China	Chinese	1	7 yrs	
Chen**	41	-	China	Chinese	1	3 yrs	
Zhang**	61	-	China	Chinese	1	0 yrs	
Zeng**	62	-	China	Chinese	1	2 yrs	
Cai**	32	-	China	English	10	4 yrs	Median
Kam**	42	-	China	English	1	6 yrs	
Feng**	29	√	China	Chinese	15	5 yrs	4-1
Wang**	30	√	China	Chinese	31	NR	7 yrs
Zhang**	43	√	China	Chinese	2	0 yrs	1 yr
Zhao**	44	-	China	Chinese	1	1 yrs	
Wei	45	√	China	English	9	2 yrs	1-1
Shen	46	√	China	English	28	NR	1 mo
Lou	47	√	China	English	3	1 yrs	6 mo a
Qian	48	-	China	English	1	0 yrs	1 yr
Wang	65	-	China	Chinese	1	NR	Nev

- √ indicates presence of a specific feature or characteristic.
| Name | Age | Sex | Country | Language | Newborn | Median Age | Mean Age | Children | Total | SARS-CoV-2: Seroconversion | NR: Not Reported. |
|---------------|---------|-----|---------|----------|---------|------------|----------|----------|-------|----------------------------|-------------------|
| Su | 49 | ✓ | China | English | 3 | 3 | 6 | 1 | 20 | | |
| Zeng | 66 | ✓ | Vietnam | English | 1 | 0 | 3 | 1 | 3 | | |
| Le | 63 | ✓ | China | English | 1 | 1 | 1 | 1 | 3 | | |
| Tang | 50 | ✓ | China | English | 10 | 6 | 2 | 1 | 11 | | |
| Xu | 31 | ✓ | China | English | 36 | 23 | 2 | 1 | 3 | | |
| ISS | 14*** | ✓ | Italy | English | 802 | 433 | <1 | 1 | 14 | | |
| Pan | 52 | ✓ | China | English | 31 | 13 | 1.5 | 1 | 4 | | |
| Chen | 56 | ✓ | China | English | 36 | 23 | | | | | |
| Xing | 53 | ✓ | China | English | 36 | 23 | | | | | |
| Qiu | 54 | ✓ | China | English | 36 | 23 | | | | | |
| Zhang | 55 | ✓ | China | English | 36 | 23 | | | | | |
| Dong | 64 | ✓ | China | English | 36 | 23 | | | | | |
| Shen | 67 | ✓ | China | English | 36 | 23 | | | | | |
| Han | 68 | ✓ | China | English | 36 | 23 | | | | | |
| Kamli-Aghdam | 69 | ✓ | Iran | English | 36 | 23 | | | | | |
| Canarutto | 70 | ✓ | Italy | English | 36 | 23 | | | | | |
| Total | 9 | 20 | 19 | | 4612 | 2366 | | | 51.3%| | |

SARS-CoV-2: severe acute respiratory syndrome - Coronavirus -2. NR: Not Reported.

\[10\text{ mo. Baby with intussusception and MOF; ^bMedian; ^c713 confirmed; ^dMedian; ^eDied because of sepsis, MOF and DIC (preterm); ^f3/200 screened children on immunosuppressive treatment; ^gComplications: 2/8 MOF; 3/8 still in PICU; ^h2 CHD; ^i24 still admitted but recovering; ^j5 discharged children were admitted again because their stool resulted + for SARS-CoV-2; ^m(25 0-1 yr; 9 2-6; 25 >7). No child in PICU; ^nweighted mean (N=2508); ^oweighted mean (N=102). ^**Studies included in the review by Henry et al^67. ^***last update, 6 April, 2020. **

Table 2. Clinical features in children with documented SARS-CoV-2 infection.
Author	N	Clinical features	Common symptom						
		Asymptomatic	Mild	Moderate	Severe	Critical	Fever	Cough	Sor Thrc
Lu10	171	27	33	111	0	0	71	89	79
Wang27	34	3	9	22	0	0	17	13	0
Xia28	20	2	6	12	0	0	12	13	1
Dong16	2143	94	1091	831	112	13	NR	NR	NF
Liu33	4	1	3	0	0	0	3	3	0
Li51	2	0	2	0	0	0	0	2	0
Ji35	2	0	2	0	0	0	1	0	1
Liu11	6	0	2	4	0	0	6	6	0
Zhou36	9	5	4	0	0	0	4	2	0
Li34	5	4	1	0	0	0	1	0	1
D'Antiga24	3	3	0	0	0	0	0	0	0
Sun25	8	0	0	0	5	3	6	6	0
Zheng26	25	0	8	15	0	2	13	11	0
Park37	1	0	1	0	0	0	1	0	0
Liu38	1	1	0	0	0	0	0	0	0
Chan39	1	1	0	0	0	0	0	0	0
Cai40	1	0	1	0	0	0	NR	NR	NF
Chen41	1	0	0	0	1	0	1	1	0
Cai42	10	0	6	4	0	0	8	6	4
Kam42	1	1	0	0	0	0	0	0	0
Feng29	15	10	5	0	0	0	5	0	0
Wang30	31	4	13	14	0	0	20	14	0
Zhang43	2	0	2	0	0	0	2	2	0
Zhao44	1	0	1	0	0	0	NR	NR	NF
Wei45	9	1	6	0	0	0	4	2	0
Shen46	28	NR	NR	NR	NR	NR	NR	NR	NF
Lou47	3	0	3	0	0	0	3	1	0
Qian48	1	1	0	0	0	0	0	0	0
Su49	9	6	3	0	0	0	2	1	0
SARS-CoV-2: severe acute respiratory syndrome - Coronavirus -2. NR: Not Reported.

a2 others; b headache (1/8) and constipation (1/8); c1 in-hosp infection; d2 abdominal pain; e renal failure; f calculated on the total of reported symptoms (N=2647); g calculated on the total of reported symptoms (N=506); h calculated on the total of reported symptoms (N=502).

Studies included in the review by Henry et al67.

Table 3. Lab investigations in children with documented SARS-CoV-2 infection.

Author	N	Low WBC	High WBC	Lymphopenia/neutropenia	Low Plt
Lu10	171	45	0	6	NR
Wang27	34	1	5	1	NR
Xia28	20	4	2	7	NR
Liu33	4	1	0	0	NR
Ji35	2	0	1	0	NR
Liu11	6	4	0	6	NR
Zhou36	9	0	2	0	NR
Li34	5	0	2	0	NR
Sun25	8	1	6	1	2
Zheng26	25	NR	NR	10	NR
Park37	1	0	0	0	0
Author	N	Abnormal Radiological findings	Chest X-ray	CT-scan	
--------	---	-------------------------------	-------------	--------	
Lu	171	51	0	111	

Studies included in the review by Henry et al.

Table 4. Radiological findings in children with documented SARS-CoV-2 infection.
Name	27	34	0	34
Wang	20	16	0	20
Xia	4	3	0	4
Liu	2	2	0	2
Li	2	0	0	2
Ji	6	4	0	6
Zhou	9	9	0	9
Li	5	3	0	5
Sun	8	8	0	8
Zheng	25	17	0	25
Park	1	0	1	1
Liu	1	1	0	1
Chan	1	1	0	1
Cai	1	1	NR	NR
Chen	1	1	NR	NR
Cai	10	4	10	0
Kam	15	9	0	15
Wang	31	14	0	31
Zhang	2	1	0	2
Zhao	1	1	NR	NR
Lou	3	3	0	3
Xu	10	5	10	10
Su	9	1	0	9
Pan	1	0	0	1
Chen	31	11	0	31
Xing	3	2	0	3
Qiu	36	19	0	36
Zhang	34	28	0	34
Shen	9	2	0	9
Han	7	2	0	7
Total	493	257	21	420
%	52.1	4.3^a	85.7^a	
SARS-CoV-2: severe acute respiratory syndrome – Coronavirus -2. NR: Not Reported. GGO: ground-glass opacities

\(^a\)calculated on the total of reported imaging (N=490); \(^b\)calculated on the total of reported imaging (N=442); \(^c\)calculated on the total of reported imaging (N=453);

Studies included in the review by Henry et al\(^{67}\).

Table 5. Treatments used in children with documented SARS-CoV-2 infection

Author	N	PICU	MV	Noninvasive	Symptomatic alone	Antiviral	Antibiotic	IVIg	CCS	IFN	Other		
Lu\(^{10}\)	171	3\(^a\)	3\(^a\)	NR									
Wang	34	0	0	0	0	0	20\(^b\)	0	0	0	0		
Li\(^{51}\)	2	0	0	0	2	0	0	0	0	0	0		
Ji\(^{35}\)	2	0	0	0	2	0	0	0	0	0	0		
Liu\(^{11}\)	6	1	1	1	0	6\(^c\)	0	1	4	0	0		
Li\(^{34}\)	5	0	0	0	2	2	2	5	0	2	3\(^d\)		
Sun\(^{25}\)	8	2	2	6	0	8	5	4	5	0	1\(^e\)		
Zheng	25	2	2	0	0	12	13	2	0	12	1\(^f\)		
Park\(^{7}\)	1	0	0	0	1	0	0	0	0	0	0		
Liu**\(^{3}\)	1	0	0	0	0	1	0	0	1	0	0		
Cai**\(^{3}\)	10	0	0	5	0	5	0	0	0	0	0		
Wang** \(^{30}\)	31	0	0	0	31	0	0	0	0	0	0		
Zhang	2	0	0	0	2	0	0	0	0	0	0		
Wei\(^{45}\)	9	0	0	0	9	0	0	0	0	0	0		
Lou\(^{47}\)	3	0	0	0	1	0	0	0	0	2	0		
Xu\(^{31}\)	10	0	0	0	0	1	1	0	10	0	0		
	9	0	0	0	0	0	1	0	0	0	9	0	
-----	----	----	----	----	----	----	----	----	----	----	----	----	
Su	49	0	0	0	0	0	1	0	0	0	9	0	
Pan	52	1	0	0	NR								
Chen	5	31	0	0	0	0	3	1	0	0	30	0	
Xing	5	3	0	0	0	0	3	0	0	0	3	3	
Qiu	5	36	0	0	0	6	0	14	0	0	0	36	0
Zhang	55	34	0	0	0	3	0	28	0	0	5	28	0
Shen	5	9	0	0	0	9	0	9	5	1	1	0	0
Han	5	7	0	0	0	2	4	0	0	0	1	0	0
Total	450	8	8	29	57	107	62	14	17	132	8	8	

| % | 1.8 | 1.8 | 10.4 | 20.5 | 38.5 | 22.3 | 5 | 6.1 | 47.5 | 2.9 |

SARS-CoV-2: severe acute respiratory syndrome – Coronavirus -2. NR: Not Reported. PICU: pediatric intensive care unit. MV: mechanical ventilation. Noninvasive Ox: noninvasive oxygen. IVIg: intravenous immunoglobulin. CCS: corticosteroids. IFN: interferon

\(^{a}\)all with coexisting conditions (hydronephrosis, leukemia, and intussusception); \(^{b}\)Lopinavir and ritonavir; \(^{c}\)ribavirin 2/6; oseltamivir 6/6; \(^{d}\)3/5 montelukast; \(^{e}\)1/8 plasmapheresis; \(^{f}\)1 also kidney replacement; \(^{g}\)ribavirin; \(^{h}\)ribavirin; \(^{i}\)calculated on the total of reported treatments (N=278).

Studies included in the review by Henry et al\(^{67}\).

Table 6. Clinical features and laboratory results in newborns and infants ≤ 3 months of age with documented SARS-CoV-2 infection.
Author	N	Clinical Features	Symptoms							
		Asymptomatic	Mild	Moderate	Severe	Fever	Cough	Dyspneic	Vomiting	
Wang^57	1 (1 m)	1	0	0	0	0	0	0	0	
Cui^58	1	0	0	0	1	1	1	1	0	
Zhu^59	10 (8 m)	0	8	0	2	2	0	6	0	
Lu^60	3	1	1	0	1	1	0	1	1	
Zhang**6^1	1	0	0	1	0	NR	NR	NR	NR	
Zeng**6^2	1 (1 m)	0	1	0	0	NR	NR	NR	NR	
Wang^6^55	1	0	1	0	0	0	0	0	1	
Zeng^6^6	3 (3 m)	0	0	3	0	2	0	1	0	
Kamli-Aghdam^6^9	1 (1m)	0	0	1	0	1	0	1	0	
Canarutto	1 (1m)	0	1	0	0	1	1	0	0	
Le^63	1	0	1	0	0	0	1	0	0	
Dong^6^4	1	1	0	0	0	0	0	0	0	
Total	25 (15 m)	3	13	5	4	8	3	10	2	
%			12	52	20	17	32	12	40	8

SARS-CoV-2: severe acute respiratory syndrome – Coronavirus -2. NR: Not Reported. WBC: white blood cell. L: lymphocyte. Plt: platelet. CRP: C-reactive protein. PCT: procalcitonin. CPK: creatine kinase.

**Studies included in the review by Henry et al^6^7.

Table 7. Radiological findings and treatments used in newborns and infants ≤ 3 months of age with documented SARS-CoV-2 infection.
Author	N	Abnormal	Chest X-ray	CT-scan	GGO	Local patchy	Bilateral Patchy	Normal
Wang	1 (1 m)	1	0	1	0	1	0	0
Cui	1	1	0	1	1	1	0	0
Zhu	10 (8 m)	7	10	0	1	1	3	3
Lu	3	NR	NR	NR	NR	NR	NR	NR
Zhang**	1 (1 m)	1	NR	NR	NR	NR	NR	NR
Zeng**	1 (1 m)	1	NR	NR	NR	NR	NR	NR
Wang	1	NR	NR	NR	NR	NR	NR	NR
Zeng	3 (3 m)	3	3	0	0	3	0	0
Kamli-Aghdam	1 (1m)	0	1	0	0	0	0	1
Canarutto	1 (1m)	0	1	0	0	0	0	1
Le	1	0	1	0	0	0	0	1
Dong	1	0	0	1	0	0	0	1
Total	25 (15 m)	14	16	3	2	6	3	7
%	56	64	12	8	24	12	28	

SARS-CoV-2: severe acute respiratory syndrome – Coronavirus -2. NR: Not Reported. GGO: ground-glass opacities. PICU: pediatric intensive care unit. MV: mechanical ventilation. IVIg: intravenous immunoglobulin. CCS: corticosteroids. IFN: interferon

Studies included in the review by Henry et al.

Figures
Figure 1

PRISMA flow diagram of the included studies on children with SARS-CoV-2 infection.