Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Malnutrition Care During the COVID-19 Pandemic: Considerations for Registered Dietitian Nutritionists

Deepa Handu, PhD, RDN, LDN; Lisa Moloney, MS, RDN; Mary Rozga, PhD, RDN; Feon W. Cheng, PhD, MPH, RDN, CHTS-CP

ABSTRACT

Recent evidence examining adults infected with coronavirus disease 2019 (COVID-19) has indicated a significant impact of malnutrition on health outcomes. Individuals who have multiple comorbidities, are older adults, or who are malnourished, are at increased risk of being admitted to the intensive care unit and of mortality from COVID-19 infections. Therefore, nutrition care to identify and address malnutrition is critical in treating and preventing further adverse health outcomes from COVID-19 infection. This document provides guidance and practice considerations for registered dietitian nutritionists providing nutrition care for adults with suspected or confirmed COVID-19 infection in the hospital, outpatient, or home care settings. In addition, this document discusses and provides considerations for registered dietitian nutritionists working with individuals at risk of malnutrition secondary to food insecurity during the COVID-19 pandemic.

J Acad Nutr Diet. 2021;121(5):979-987.

MEDICAL NUTRITION THERAPY (MNT) plays an important role in the prevention and treatment of malnutrition. There is significant evidence to demonstrate that protein-energy malnutrition from inadequate dietary intake can increase risk of infectious diseases.1 Reciprocally, any exposure, including infectious disease, that impairs immune function and causes malabsorption, increased catabolism, or decreased nutrient intake, can increase risk of malnutrition. Exploratory studies indicate that patients infected with coronavirus disease 2019 (COVID-19) experience some or any of the following symptoms: fever, cough, shortness of breath, muscle ache, confusion, headache, sore throat, chest pain, pneumonia, diarrhea, nausea and vomiting, and loss of taste and smell; all of which can influence nutrition status and ultimately immune function.2,3 The term malnutrition is defined most simply as imbalanced intake of protein and/or energy over prolonged periods of time, and can occur in both undernutrition and overnutrition.3 The current document provides guidance that focused primarily on protein-energy malnutrition, which can result from inadequate intake, increased requirements, impaired absorption, and/or altered nutrient utilization.4

The purpose of this document is to provide general guidance and practice considerations for registered dietitian nutritionists (RDNs) providing care to the malnourished adult in the hospital, outpatient, or home care settings during the COVID-19 pandemic, including the following:

- Screening and assessment for malnutrition in adults with suspected or confirmed COVID-19 infection;
- MNT for critical illness in the hospital for adults with suspected or confirmed COVID-19 infection;
- MNT for adults with suspected or confirmed COVID-19 infection managing mild to moderate symptoms at home, including transitioning to home from the hospital; and
- Adults experiencing increased food insecurity secondary to the COVID-19 pandemic.

While there are currently no nutrition guidelines specifically for adults with or at risk for COVID-19 infection, many existing guidelines from the Evidence Analysis Library and other organizations are still applicable and can be used to provide guidance when working with adults with COVID-19 infection.6 However, some adjustments might be required to meet the increased metabolic and functional needs caused by the COVID-19 infection and treatments. The following discussion and guidance are based on best current knowledge and existing guidelines from the Academy of Nutrition and Dietetics (Academy) and other organizations. This document is not exhaustive and there is still much to be learned about the effect of nutrition management on COVID-19 infection and severity.

I. SCREENING AND ASSESSMENT OF MALNUTRITION IN ADULTS WITH SUSPECTED OR CONFIRMED COVID-19 INFECTION

It has been well-established that malnutrition is associated with poor health outcomes.7 In the context of an infection such as COVID-19, an individual with malnutrition might have suboptimal immunity, contributing to a longer or more difficult recovery. Nutrition screening aims to identify patients who are at risk for malnutrition...
and provide a referral for an RDN to deliver detailed nutrition care based on the Nutrition Care Process,\(^8\) including assessment, diagnosis, and intervention by an RDN, in order to treat and prevent further malnutrition and consequent adverse health outcomes.

For adults with suspected or confirmed COVID-19 infection, the Malnutrition Screening Tool can be used to identify individuals who are at risk of malnutrition regardless of setting.

A recent systematic review and corresponding position paper published by the Academy states, “based upon current evidence, the Malnutrition Screening Tool should be used to screen adults for malnutrition (undernutrition) regardless of their age, medical history, or setting.”\(^9\)

The Malnutrition Screening Tool appears to still be applicable for adults with COVID-19, as it is a quick and easy-to-use validated tool based on 2 questions addressing decreased intake due to poor appetite and recent unintentional weight loss.\(^10\) Due to limited resources and staff during the COVID-19 pandemic, some nutrition screening procedures can require flexibility to better meet the safety needs and operational needs of an organization. For example, while nurses or other team members might have conducted nutrition screening before the COVID-19 pandemic, during the pandemic, these professionals might be needed for emergency patient care and not be able to perform malnutrition screening. In these cases, the nutrition team could carry out the screening process so that patients who are at risk for malnutrition can receive appropriate nutrition assessment and intervention without delay. Also, special coordination, such as conducting nutrition screening using patient-room telephones, can be considered to minimize staff exposure.

For adults with suspected or confirmed COVID-19 infection, the RDN should perform a comprehensive nutrition assessment to identify malnutrition regardless of setting.

Although there are currently no nutrition guidelines specifically for patients with COVID-19, the Academy’s assessment recommendations within evidence-based practice guidelines, available from the Evidence Analysis Library, can be used to guide nutrition assessment for individuals with suspected or confirmed COVID-19.\(^5\) The Figure displays some examples of nutrition assessment guidance for critically ill individuals in the following domains: food and nutrition–related history, anthropometric measurements, biochemical data, medical tests and procedures, nutrition-focused physical findings, and client history. Most of these nutrition assessment tools and procedures are applicable to adults with suspected or confirmed COVID-19 infection. For example, the Subjective Global Assessment can still be used to diagnose nutrition status, and it is important to take medications and intravenous drips, such as propofol or dextrose 5%, into consideration when assessing patients, so nutrition prescription can be adjusted as needed. In the context of the COVID-19 pandemic, touching or gently palpating the patient to determine muscle and fat store losses might not be possible. In these cases, the RDN can still conduct visual inspection to note indentations and bony prominences, which could indicate somatic losses. For RDNs working directly with patients infected with COVID-19, personal protective equipment should be used per institution policy while conducting in-person nutrition assessment. RDNs can also utilize nursing and physician notes to provide evidence of wasting as the disease progresses.

A comprehensive assessment should result in the RDN determining the nutrition diagnosis. Examples of potential nutrition diagnoses applicable to adults infected with COVID-19 can include malnutrition, increased nutrient needs, predicted inadequate energy intake, altered gastrointestinal function, or inadequate energy intake. In addition, nutrition assessment can assist in identifying the key etiology of the diagnosis, which will help the RDN determine the best intervention for each patient. For example, an RDN might identify a patient’s inability to reach protein and energy needs orally, resulting in the need for supplemental oral or enteral nutrition (EN).

II. MNT FOR ADULTS WITH MALNUTRITION IN THE INTENSIVE CARE UNIT WITH SUSPECTED OR CONFIRMED COVID-19 INFECTION

Most patients admitted to the intensive care unit (ICU) with COVID-19 are acutely malnourished.\(^12\) Poor appetite is common with infection, and patients with noninvasive ventilation (NIV) (ie, no endotracheal tube or tracheostomy tube), such as continuous positive airway pressure or bilevel positive airway pressure, often have inadequate intake of calories and protein to meet needs.\(^13\) Critically ill patients in the ICU should be provided with small frequent feedings, including high-energy and high-protein foods and oral nutrition supplements. If protein and energy needs cannot be met with oral intake, nutrition support should be initiated. Although EN is typically the preferred route for nutrition support, airway complications can occur in patients with NIV, and parenteral nutrition (PN) can be considered under these conditions.\(^14\)

In individuals with suspected or confirmed COVID-19 infection in the ICU who are not mechanically ventilated, RDNs should work with the multidisciplinary team to ensure adequate protein and energy intake.

When needs cannot be met orally, EN is preferred to PN. If EN is not appropriate or tolerated, PN must be initiated in a timely manner to treat and prevent further malnutrition.

EN Initiation

In adults with suspected or confirmed COVID-19 infection in the ICU, RDNs should work with the multidisciplinary team to ensure nutrition support is initiated within 36 hours of hospitalization or within 12 hours of intubation.

Nutrition support should be initiated as soon as possible, ideally within 36 hours of hospitalization or within 12 hours of intubation.\(^15\) In adults in the ICU, requiring nutrition support, EN should be provided instead of PN if the patient is hemodynamically stable and has a functional gastrointestinal tract.\(^11,14,15\) The RDN should consider holding EN if:

- mean arterial pressure <65 mm Hg\(^15\);
- escalating number and doses of vasopressors\(^15\);
- rising lactate levels\(^15\);
- unexplained abdominal pain, nausea, vomiting, diarrhea, or abdominal distention\(^15\); or
- uncontrolled shock, life-threatening hypoxemia, hypercapnia, or acidosis.\(^14\)

\(^9\) Academy of Nutrition and Dietetics: “Malnutrition Screening Tool: A Position Paper of the Academy of Nutrition and Dietetics,” J Acad Nutr Diet 2020;120: 708–717.

\(^10\) Academy of Nutrition and Dietetics: “Nutrition Care Process: A Systematic Approach to Nutrition Care,” J Acad Nutr Diet 2019;119: 1539–1558.

\(^11\) Academy of Nutrition and Dietetics: “Malnutrition Screening Tool: A Position Paper of the Academy of Nutrition and Dietetics,” J Acad Nutr Diet 2020;120: 708–717.

\(^12\) U.S. Department of Agriculture: “Food and Nutrition Service: Dietary Guidelines for Americans,” 2020 edition.

\(^13\) Academy of Nutrition and Dietetics: “Malnutrition Screening Tool: A Position Paper of the Academy of Nutrition and Dietetics,” J Acad Nutr Diet 2020;120: 708–717.

\(^14\) Academy of Nutrition and Dietetics: “Nutrition Care Process: A Systematic Approach to Nutrition Care,” J Acad Nutr Diet 2019;119: 1539–1558.

\(^15\) Academy of Nutrition and Dietetics: “Malnutrition Screening Tool: A Position Paper of the Academy of Nutrition and Dietetics,” J Acad Nutr Diet 2020;120: 708–717.
When EN is not feasible or appropriate, PN might be necessary to treat or prevent malnutrition. PN will require management by a multidisciplinary care team due to high risk for line sepsis and metabolic complications, such as refeeding syndrome and hyperglycemia.

EN Administration

EN should be provided initially via a nasogastric tube or orogastric tube because placement of feeding tubes in the small bowel could delay initiation of feeding and could increase risk of spreading infection, due to the need for skilled staff and confirmation of feeding tube placement.14,15 The height
Nutrition assessment of critically ill adults. *CI=critical illness. Adapted from the Academy of Nutrition and Dietetics’s Critical Illness guidelines.1

EN Formula and Supplementation
In adults with suspected or confirmed COVID-19 infection, RDNs should take overall nutrition assessment, including nutrient needs, fluid status, and interventions to address fluid status, into consideration when selecting the type of EN formula.

In adults who are critically ill in the ICU, fluid management is impacted by a multitude of factors, including COVID-19 infection pathology. For the initial resuscitation of patients with COVID-19, physicians are frequently restricting fluid volumes.18 To further complicate assessment of fluid status, approximately 40% of patients who are critically ill with COVID-19 infection are developing acute kidney injury.19 The exact cause of acute kidney injury in these patients is unknown; however, dehydration starting before admission could be a contributing factor.

EN Considerations for NIV
In patients with NIV, feeding tube placement might be contraindicated due to potential issues, such as air leakage, distention of the stomach, or if the patient is in the prone position.13 Stomach distention can lead to poor feeding tolerance and impaired diaphragmatic function. If nasogastric/
Monitoring and Evaluation

In adults with suspected or confirmed COVID-19 infection, RDNs should monitor nutrition support tolerance daily and work with the multidisciplinary team to promote tolerance.

Tolerance can be evaluated through a physical examination, including abdominal distention, diarrhea, and laboratory values. Gastric residual volume (GRV) should not be used as the sole indicator of EN tolerance. Practitioners should recommend against holding EN when GRV is <500 mL in the absence of other signs of intolerance.11,15 To promote EN tolerance, the RDN should work with the multidisciplinary team to promote the following initiatives:

- Patients beds should be upright at an angle of 30 to 45 degrees (10-25 degrees if prone).
- If GRVs between 200 and 500 mL, consider promotility agents.
- If the abdomen remains distended after the above initiatives, consider aspirating the stomach and checking GRV; GRV <500 mL/6 h is considered acceptable, repeat after 6 hours if GRV is >500 mL.11
- In the event a patient is experiencing diarrhea, soluble fiber supplementation should be provided.15
- If the patient is still not tolerating EN, consider placement of nasojejunal tube.15
- If EN is not feasible, PN should be initiated as soon as possible.

In addition to physical assessment, laboratory values should be monitored daily. RDNs should monitor for refeeding syndrome and hyperglycemia, especially among patients receiving PN.

To monitor for refeeding syndrome, RDNs should monitor sodium and fluid balance and serum phosphorus, potassium, magnesium, and calcium, which can decrease rapidly.21 If refeeding syndrome is suspected, electrolytes should be replaced immediately intravenously and feeding rate should be decreased.21

Post Intubation

Prolonged ICU stay can exacerbate muscle catabolism and therefore increase protein needs.14 Furthermore, dysphagia can result from post-intubation trauma, and its presence for a prolonged period can lead to consequences such as aspiration pneumonia and malnutrition.22 The nutrition care plan for these patients should incorporate recommendations from the speech-language pathologist and should accommodate increased nutrient requirements of the patients, food preferences, and availability of resources. If severe dysphagia persists and energy and protein needs cannot be met, the RDN might need to either initiate or resume EN. If EN is not possible, PN should be provided until oral or EN can be resumed.14

III. MNT FOR MALNUTRITION IN ADULTS WITH SUSPECTED OR CONFIRMED COVID-19 INFECTION IN OUTPATIENT AND HOME-CARE SETTINGS, INCLUDING TRANSITIONING TO HOME FROM THE HOSPITAL

According to studies from China and case reports in the United States, the majority of all COVID-19 patients exhibited mild to moderate symptoms and managed their illness at home.23,24 Common symptoms of COVID-19 can lead to problems with nutrient absorption and/or overall inadequate dietary intake. Patients recovering from COVID-19 infection who are discharged from the hospital might still be experiencing COVID-19 symptoms and might be malnourished and therefore have increased nutrient needs. For individuals managing or recovering from COVID-19 symptoms in their homes, maintaining adequate nutrient intake and hydration is critical.

In adults with suspected or confirmed COVID-19 infection who are managing their illness at home, RDNs should work with patients and their families to ensure adequate intake of energy, protein, and hydration.

When counseling patients with suspected or confirmed COVID-19 infections who are in their homes or in the outpatient setting, RDNs can advise patients and their families of the following:

- Ensure adequate intake of energy and protein by meeting, at minimum, 100% of the recommended dietary allowance for energy and protein based on age and sex. These requirements will likely be increased due to the pathology of COVID-19 infection.
- High-calorie, high-protein meals and snacks can help prevent weight loss and maintain lean muscle mass. For example, RDNs can advise eating vegetables with cream, butter, margarine, cheese sauce, olive oil, or salad dressing to increase energy intake and choosing foods high in protein, such as milk, eggs, cheese, meats, fish, poultry, nuts, and beans.24
- Nutrient-dense foods and beverages, including oral nutritional supplements, are good methods to increase calorie and protein intake if oral dietary intake is not adequate to meet needs (eg, protein powders and meal-replacement shakes and bars).24
- For individuals having difficulty coordinating chewing and breathing, beverages might be a better option to efficiently increase energy intake compared to solid foods.
- Micronutrient supplements can help compensate for inadequate oral intake to address deficiencies.24
- Manage nausea, vomiting, and shortness of breath by offering small, frequent meals and snacks.25,26
- Focus on providing foods that require little handling, preparation, or effort to eat.
- Ensure adequate intake of fluids to stay hydrated throughout the day and evening. If the patient is experiencing vomiting and
diabetes, advise consumption of rehydration drinks.

Additional guidance on managing malnutrition through adequate intake of calories, protein, and hydration can be found in the Academy’s Nutrition Care Manual, Evidence Analysis Library, and Malnutrition Quality Improvement Toolkit. In addition to nutrition management, RDNs should consider discussing guidelines for managing safe home care practices, including food safety, with patients and their families.

IV. ADDITIONAL NUTRITION CONSIDERATIONS FOR MALNUTRITION IN ADULTS DURING THE COVID-19 PANDEMIC

Adults with Comorbidities

While there is no clear evidence demonstrating a causal relationship between COVID-19 infection and underlying comorbidities, recent evidence suggests that the majority of severe symptoms and complications from COVID-19 infection are reported among older adults and individuals with underlying comorbidities, such as diabetes, chronic kidney disease, cardiovascular disease, or pulmonary disorders. Individuals with these comorbidities are already at increased risk of malnutrition, which can contribute to an impaired immune system and exacerbation of symptoms. It is imperative that individuals with pre-existing conditions, such as chronic kidney disease, cardiovascular disease, hypertension, or pulmonary disorders, receive regular nutrition assessment, and that individuals at moderate or high risk of malnutrition receive effective nutrition interventions by RDNs. RDNs should ensure that individuals with comorbidities have adequate oral dietary intake to meet calorie and protein needs, and oral nutritional supplements can be considered to meet needs if dietary intake is inadequate. The COVID-19 pandemic requires that prevention and management of malnutrition become a focus in patient care.

The Academy has recent guidelines containing recommendations on malnutrition management in chronic kidney disease, cystic fibrosis, and chronic obstructive pulmonary disease. These guidelines are still relevant to patients with COVID-19 and these conditions; however, implementation of these recommendations should include consideration of COVID-19 pathology, personal protective equipment standards set by Centers for Diseases Control and Prevention, and institutional guidelines.

For adults with existing comorbidities and not infected with COVID-19, RDNs should continue to advise consuming a nutrient-dense eating pattern to meet protein and energy needs, with oral supplementation when necessary, to prevent and treat malnutrition.

For adults with existing comorbidities and with suspected or confirmed COVID-19 infection, RDNs should proactively prevent and treat protein-energy wasting by regularly assessing weight and nutritional status when possible, and advising adequate protein and energy intake through diet, with supplementation through oral, EN, or PN, when necessary.

Micronutrients

Among patients at risk or with suspected or confirmed COVID-19 infection, there is a paucity of evidence indicating effects of adding micronutrients through supplementation or intravenously on the risk or severity of COVID infection. Therefore, it is critical for RDNs to rely on their scientific training and clinical expertise to determine whether the patient is deficient in a specific micronutrient and whether treating the respective deficiency is a priority. Existing evidence from a critical illness population can also help inform practice for patients with COVID-19 infections.

V. MALNUTRITION AND FOOD INSECURITY DURING THE COVID-19 PANDEMIC

While COVID-19 infection itself can increase risk for malnutrition, food insecurity caused by the economic crisis and social isolation secondary to the COVID-19 pandemic can also increase risk for malnutrition. In 2018, 37 million individuals in the United States were food insecure. Adults with food insecurity are at higher risk of chronic conditions, such as mental health problems and depression, diabetes, hypertension, and sleep problems. Children with food insecurity are at increased risk for poor health, asthma, obesity, anemia, developmental problems, behavioral problems, and aggression and anxiety.

Currently, there have been no major food shortages reported in the United States related to the COVID-19 pandemic. However, unemployment rates have soared, causing unprecedented demand for unemployment benefits and several initiatives to reduce the burden of monthly payments for rent, utilities, and home or student loans. Despite these measures, many individuals are struggling economically, which can decrease accessibility of fresh and healthy foods. Social isolation measures implemented to prevent the spread of COVID-19 infection can also increase risk for food insecurity. For example, in the United States, 29.7 million children depend on free lunches from the National School Breakfast and Lunch Programs, but during the current COVID-19 pandemic, many schools have closed, and clients might be uncertain how to access free meals being provided by schools. Uncertainty of how to access food-assistance programs can increase the daily financial burden on low-income families to provide healthy meals. In addition, individuals who are at high risk of severe symptoms and mortality from COVID-19 infection, including individuals who are elderly, might be wary of shopping at the grocery store or might want to avoid public transportation to the grocery store. RDNs working in the community, outpatient, and hospital settings have a crucial responsibility to identify clients’ food access needs and provide federal, state, and local resources to help address these needs.

When appropriate, RDNs should screen for food insecurity, provide guidance and resources for eating healthfully on a budget, and provide resources to improve access to healthy foods.

When working with individuals with or at risk of malnutrition due to food insecurity during the COVID-19 pandemic, RDNs should consider the following:

- It might be advantageous to screen for food insecurity. Validated tools include the 2-item...
as leaders in nutrition, RDNs should advocate for increased access to healthy foods by supporting state and federal initiatives for increased and emergency food assistance.

Increased risk of food insecurity during the COVID-19 pandemic requires proactive, broad-scale action to help individuals and families improve or maintain nutrition status, preventing even more damage to health from the COVID-19 pandemic. RDNs can affect change on a state and local level via advocacy through the following venues:

- The Academy’s “Action Center” provides templates for letters to representatives or senators to communicate support or opposition for bills that impact public health. RDNs can “take action” by visiting this resource and sending a letter of support to their respective lawmakers to help Americans keep food on the table during the COVID-19 pandemic and to urge congress to prioritize federal food-assistance program funding.54
- Monitor the Academy’s Action Center to increase awareness and advocacy for food-assistance programs as opportunities arise.54
- “Take action” and monitor opportunities to support food assistance at the Food Research & Action Center,55 and the Alliance to End Hunger.56
- Monitor and utilize advocacy tools provided by the Food Research & Action Center, including to maximize the role of the WIC program to support health and food security.57

The COVID-19 pandemic has created an unprecedented need for RDNs to assess and address food insecurity among clients and their families through innovative and conscientious nutrition counseling, referral to and participation in food-assistance programs, and by taking action to advocate for greater access to food assistance on state and federal levels.

VI. RESEARCH NEEDS
In order to inform evidence-based nutrition and dietetics practice for individuals infected with COVID-19, the Academy is seeking to gather data from RDNs who are currently working with patients infected with COVID-19 or whose work has been impacted by the pandemic. In order to inform evidence-based practice, the Academy is seeking to collect patient-level data, as well as data at a systems or process level, using surveillance surveys. The Academy is requesting RDNs register with the Academy of Nutrition and Dietetics Health Informatics Infrastructure (www.ANDHII.org), which is the Academy’s, free, de-identified system for collecting patient-level data, in order to document nutrition care of patients infected with COVID-19. For the patient-level data, the Academy does not specify what, when, or how much data RDNs enter into the Academy of Nutrition and Dietetics Health Informatics Infrastructure system, but requests that practitioners enter data as they have the time and capacity to do so. Collection of this type of patient-level data is needed in order elucidate effective interventions to support RDNs in their day-to-day efforts with COVID-19 patients and for future pandemics.

CONCLUSIONS
MNT is an integral aspect of managing malnutrition due to COVID-19 infection. RDNs should proactively implement appropriate nutrition care plans...
References

1. Farhadi S, Ovchinnikov RS. The relationship between nutrition and infectious diseases: A review. Biomed Biotechnol Res J. 2018;2:168-172.
2. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507-513.
3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-504.
4. Malnutrition Quality Improvement Initiative. Malnutrition Quality Improvement Initiative complete toolkit. http://malnutritionquality.org/mqi-toolkit.html. Accessed May 5, 2020.
5. White JV, Guenter P, Jensen G, Malone A, Schofield M. Consensus Statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: Characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J Acad Nutr Diet. 2012;112(5):730-738.
6. Academy of Nutrition and Dietetics. Evidence Analysis Library. https://www.andea.org. Accessed April 20, 2020.
7. World Health Organization. Malnutrition. https://www.who.int/news-room/fact-sheets/detail/malnutrition. Accessed April 27, 2020.
8. Swan WI, Vivanti A, Hakel-Smith NA, et al. Nutrition Care Process and Model update: Toward realizing people-centered care and outcomes management. J Acad Nutr Diet. 2017;117(12):2003-2014.
9. Skipper A, Colman A, Tomaske J, et al. Position of the Academy of Nutrition and Dietetics: Malnutrition (undernutrition) screening tools for all adults. J Acad Nutr Diet. 2020;120(4):709-713.
10. Ferguson M, Capra S, Bauer J, Banks M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutrition. 1999;15(6):458-464.
11. Academy of Nutrition and Dietetics, Evidence Analysis Library. 2012 Critical illness evidence practice guideline. https://www.andea.org/vault/pqnew109.pdf. Accessed April 22, 2020.
12. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(4).
13. British Association for Parenteral and Enteral Nutrition. Route of nutrition support in patients requiring NIV & CPAP during the COVID-19 response. https://www.bapen.org.uk/pdfs/covid-19/nutrition-in-niv-21-04-20.pdf. Accessed April 28, 2020.
14. Barazzoni R, Bischoff SC, Breda J, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020;39(6):1631-1638.
15. American Society for Parenteral and Enteral Nutrition. Nutrition therapy in the patient with COVID-19 disease requiring ICU care. https://www.nutritioncare.org/uploadedfiles/Documents/Guidelines_and_Clinical_Resources/Nutrition%20Therapy%20COVID-19_SCCM-ASPEN.pdf. Accessed April 22, 2020.
16. BDA Critical Care Specialist Group. BDA critical care specialist group COVID-19 best practice guidance: Bolus enteral feeding. https://www.bda.uk.com/uploads/assets/b1018bd5-7b27-4099-a1997d4f/6735dc6b/200421-COVID-19-Bolus-Food-Guideline-CCSG.pdf. Accessed May 7, 2020.
17. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enteral Nutr. 2016;40(2):159-211.
18. Alhazzani W, Moller MH, Arabi YM, et al. Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med. 2020;48(5):854-887.
19. Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-838.
20. Australasian Society of Parenteral and Enteral Nutrition (AuPSEN). Nutrition management for critically and acutely unwell hospitalised patients with COVID-19 in Australia and New Zealand. https://custom.event.com/FE8AED3E346EB4896BCEA8239F12DC757/files/93ecb6ead724f4a08db9482921428a&.pdf. Accessed April 22, 2020.
21. Mahlaudin HM, Moledina J, Travis J. Refeeding syndrome: What it is, and how to prevent and treat it. BMJ. 2008;336(7659):1495-1498.
22. Langmore SE, Terpening MS, Schork A, et al. Predictors of aspiration pneumonia: How important is dysphagia? Dysphagia. 1998;13(2):69-81.
23. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020;323(16):1612-1614.
24. Academy of Nutrition and Dietetics. Client resources for underweight, high calorie, high protein. In: Adult Nutrition Care Manual, https://www.nutritioncaremanual.org/category.cfm?nmc_category_id=1&nv2=22249&nmc_toc_id=22249&nmc_heading=Meal%20Plans&client_ed=1. Accessed April 25, 2020.
25. Academy of Nutrition and Dietetics. Chronic obstructive pulmonary disease. In: Adult Nutrition Care Manual, https://www.nutritioncaremanual.org/topic.cfm?nmc_category_id=1&nv2=274543&nmc_toc_id=274545&nmc_heading=Nutrition%20%20Care, Accessed April 25, 2020.
26. Academy of Nutrition and Dietetics. Client resources for pulmonary nutrition therapy. In: Adult Nutrition Care Manual, https://www.nutritioncaremanual.org/category.cfm?nmc_category_id=1&nv2=274544&nmc_toc_id=274544&nmc_heading=Nutrition%20%20Care, Accessed April 25, 2020.
27. Academy of Nutrition and Dietetics. Malnutrition. In: Adult Nutrition Care Manual, https://www.nutritioncaremanual.org/topic.cfm?nmc_category_id=1&nv2=274543&nmc_toc_id=274545&nmc_heading=Nutrition%20%20Care, Accessed April 25, 2020.
28. World Health Organization. Home care for patients with COVID-19 presenting with mild symptoms and management of their contacts. Interim guidance. https://www.who.int/publications-detail/home-care-for-patients-with-suspected-novel-coronavirus-(ncov)-infection-presenting-with-mild-symptoms-and-management-of-contacts. Published March 17, 2020. Accessed May 12, 2020.
29. Centers for Disease Control and Prevention. What to do if you are sick. https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/steps-when-sick.html. Accessed May 12, 2020.
30. Academy of Nutrition and Dietetics, Evidence Analysis Library. Chronic obstructive pulmonary disease. https://www.andea.org/topic.cfm?cat=3707. Accessed May 12, 2020.
31. Academy of Nutrition and Dietetics, Evidence Analysis Library. Cystic fibrosis. https://www.andea.org/ct. Accessed May 12, 2020.
32. Feeding America. The impact of the coronavirus on food insecurity. https://hungerandhealth.feedingamerica.org/wp-content/uploads/2020/02/Feed_Covid-19-Food-Insecurity-3.30.pdf. Accessed April 25, 2020.
33. Office of Disease Prevention and Health Promotion. Food insecurity. https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-health/intervention-resources/food-insecurity. Accessed April 25, 2020.
34. Spoede E, Corkins MR, Spear B, et al. Food insecurity and pediatric malnutrition related to under- and overweight in the United States: An Evidence Analysis Center systematic
review. J Acad Nutr Diet. 2021;121(5):952-978.
35. Gunderson C, Ziliak JP. Food insecurity and health outcomes. Health Aff (Millwood). 2015;34(11):1830-1839.
36. US Bureau of Labor Statistics. Effects of COVID-19 pandemic on employment and unemployment statistics. https://www.bls.gov/bls/effects-of-covid-19-pandemic-on-employment-and-unemployment-statistics.htm. Accessed April 25, 2020.
37. US Department of Agriculture, Economic Research Service. National School Lunch Program. https://www.ers.usda.gov/topics/food-nutrition-assistance/child-nutrition-programs/school-breakfast-program/. Updated August 20, 2019. Accessed April 25, 2020.
38. Hager ER, Quigg AM, Black MM, et al. Development and validity of a 2-item screen to identify families at risk for food insecurity. Pediatrics. 2010;126(1):e26-e32.
39. US Department of Agriculture, Economic Research Service. Survey tools. https://www.ers.usda.gov/topics/food-nutrition-assistance/food-security-in-the-us/survey-tools/. Updated September 4, 2019. Accessed April 25, 2020.
40. Gattu RK, Paik G, Wang Y, Ray P, Lichenstein R, Black MM. The Hunger Vital Sign identifies household food insecurity among children in emergency departments and primary care. Children (Basel). 2019;6(10).
41. US Department of Agriculture, Economic Research Service. National School Lunch Program. https://www.fns.usda.gov/sfsp/covid-19/covid-19-meal-delivery. Accessed May 7, 2020.
42. US Department of Agriculture, Economic Research Service. Nutrition Program Announcements (FANO). https://www.fns.usda.gov/sfsp/covid-19/covid-19-nutrition-tips-for-stocking-and-eating-fruits-and-vegetables. Accessed March 20, 2020.
43. Academy of Nutrition and Dietetics. COVID-19 nutrition. Tips for stocking and eating fruits and vegetables. https://hungerandhealth.feedingamerica.org/wp-content/uploads/2020/04/COVID-19-Nutrition--Tips-for-Stocking-and-Eating-Fruits-and-Vegetables_FANO.pdf. Published March 2020. Accessed April 25, 2020.
44. Academy of Nutrition and Dietetics. COVID-19 nutrition: Stocking a healthy pantry & fridge. https://www.choosemyplate.gov/coronavirus. Accessed April 25, 2020.
45. Academy of Nutrition and Dietetics. COVID-19 nutrition: Stocking a Healthy Pantry. https://hungerandhealth.feedingamerica.org/wp-content/uploads/2020/04/COVID-19-Nutrition--Stocking-a-Healthy-Pantry_FANO.pdf. Published March 2020. Accessed April 25, 2020.
46. Academy of Nutrition and Dietetics, Telehealth quick guide for RDNs. https://www.eatrightpro.org/practice/practice-resources/telehealth-quickGuide. Accessed May 7, 2020.
47. Academy of Nutrition and Dietetics, Nutrition Entrepreneurs. TeleHealth: Expanding options for providing nutrition care and education. https://www.nedpg.org/courses/telehealth-expanding-options-for-providing-nutrition-care-and-education/. Accessed May 7, 2020.
48. Jones L. Tackling telehealth and licensure limitations. https://drive.google.com/file/d/171BcdZi6dJh1vun5iIe2qD-5zHYZ5yI9/view. Accessed May 7, 2020.
49. Feeding America. Find your local food bank. https://www.feedingamerica.org/find-your-local-foodbank. Accessed April 25, 2020.
50. US Department of Agriculture, National Agricultural Library. USDA nutrition assistance programs. https://www.nal.usda.gov/fnic/usda-nutrition-assistance-programs. Accessed April 25, 2020.
51. US Department of Agriculture, Food and Nutrition Service. FNS response to COVID-19. https://www.fns.usda.gov/disaster/pandemic/covid-19. Accessed April 25, 2020.
52. US Department of Agriculture, Food and Nutrition Service. Find meals for kids when schools are closed. https://www.fns.usda.gov/meals4kids. Accessed April 25, 2020.
53. US Department of Agriculture, Food and Nutrition Service. COVID-19 congregate meal waivers & Q&As on summer meal delivery using existing authority. https://www.fns.usda.gov/sfsp/covid-19/19-meal-delivery. Accessed May 7, 2020.
54. Academy of Nutrition and Dietetics. Take action center. https://www.eatrightpro.org/advocacy/take-action/action-center. Accessed April 25, 2020.
55. Food Research and Action Center. COVID-19 updates. https://frac.org/covid-19-updates. Accessed April 25, 2020.
56. Alliance to End Hunger. COVID-19 resources and needs. https://alliancetoendhunger.org/covid-19-resources/. Accessed April 25, 2020.
57. Food Research and Action Center. Maximizing WIC’s role in supporting health, food security, and safety during the COVID-19 pandemic: Opportunities for action. https://frac.org/research/resource-library/maximizing-wics-role-in-supporting-health-food-security-and-safety-during-the-covid-19-pandemic-opportunities-for-action. Accessed April 25, 2020.

AUTHOR INFORMATION

D. Handu is senior scientific director, and L. Moloney, M. Rozga, and F. W. Cheng are nutrition researchers, Academy of Nutrition and Dietetics Evidence Analysis Center, Chicago, IL.

Address correspondence to: Deepa Handu, PhD, RDN, LDN, Academy of Nutrition and Dietetics Evidence Analysis Center, 120 S Riverside Plaza, Suite 2190, Chicago, IL 60606-6995. E-mail: dhandu@eatright.org

STATEMENT OF POTENTIAL CONFLICT OF INTEREST

No potential conflict of interest was reported by the authors.

FUNDING/SUPPORT

This work was supported by the Academy of Nutrition and Dietetics.

AUTHOR CONTRIBUTIONS

All authors wrote sections of the first draft, thoroughly edited the manuscript, and approved the final draft.