Clinical Significance of Blastocystis Sp. among Children with Leukemia

Zainab Khalid khalil *

ABSTRACT

Background: Blastocystis spp. distributes world widely and the genus Blastocystis include many subtypes that are isolated from human intestinal tract. It is considered the most common parasite detected in human being.

Objectives: To evaluate the incidence of Blastocystis spp. among leukemic children, to find out its association with the presence of symptoms (diarrhea and abdominal pain), and to assess the efficacy of different staining methods in detection of Blastocystis spp.

Type of the study: cross-sectional study.

Method: 103 children were enrolled in this study, 53 leukemic patients and 50 healthy controls. The study was performed during the period between January and June 2014, in Oncology department of Ibn Al-Atheer teaching hospital in Mosul city. Three consecutive samples were taken from each child and a thorough history was taken from them. The samples then treated with 3 stains, iodine, iron hematoxylin, and trichrome. The data was analyzed using minitab version 17, Fischer’s exact test, Two-proportions test, and Correlation test. The results were considered statistically significant with P-value <0.05.

Results: Blastocystis spp. was detected in 18.87% of leukemic children and in 10% of healthy group. All specimens were stained by iodine, iron hematoxylin, and trichrome stains. Infection rates among patients were (9.4%, 11.3%, and 18.87% respectively) while among healthy children they were (4%, 6%, and 10% respectively). However, these differences were statistically nonsignificant. A higher infection rate was detected in the preschool children (33.3%) than school age group (6.9%). Furthermore, there was a significant association between Blastocystis spp. infection and intestinal symptoms (abdominal pain and diarrhea).

Conclusion: Our study reveals a higher rate of infection with Blastocystis spp. among leukemic children than normal controls and a significant association was seen between incidence of Blastocystis spp. infection and symptomatic children. Those results draw attention for the significance of Blastocystis spp. infection in immunosuppressed patients and lighten the way for further studies on its pathogenicity and diagnostic methods.

Key words: Blastocystis, Leukemia, Immunosuppression

* M.B.Ch.B, Ms.C in microbiology

Al-Kindy College Medical Journal 2017: Vol.13 No.2 Page: 101-105

Received 30th March 2017, accepted in final th June 2017

Corresponding to : zainab Khalid khalil , email: D_zainab_009@yahoo.com, Mobil: 07719274048

Blastocystis spp. are unicellular, anaerobic enteric parasites that was considered as a harmless yeast in the past (1). It is distributed worldwide and found in almost all species of animals. It increases especially in developing countries in the tropics and sub tropics (2). Blastocystis spp. is one of the most common intestinal protozoa found in human intestinal tract (3). Nine subtypes (genotypes) of Blastocystis are described on the basis of small subunit ribosomal RNA gene analysis (4). As well, isolates from humans and animals can be divided into 12 species, several of which are found in humans and no subtype exclusive to them (5,6). Consequently, human isolate should be referred as Blastocystis spp. instead of Blastocystis hominis. All Blasctostis spp. that were isolated from humans and animalshave been reported to be morphologically similar and cannot be differentiated microscopically (7), the morphological stages preset in stool sample include vacuolar, granular, and amoeboid. The vacuolated form is most commonly found in feces and responsible for transmitting infection by fecal-oral route (8). The pathogenicity of Blastocystis spp. is still an issue of controversy. Initially, it was believed to be a commensal protozoan, but recent studies support its pathogenicity in certain situations (9). The incidence of Blastocystis spp. increases in malignancy causing symptomatic or a symptomatic infections. The clinical manifestations among symptomatic individuals include diarrhea, vomiting, abdominal pain, flatulence (10). The disease progresses rapidly in patients with leukemia in particular (11,12). Leukemia is the most prevalent malignancy in children below 15 years. A large number of leukemic children become victims of infections that considered a lethal cause in leukemia (13). Diagnosis of Blastocystis spp. is based on microscopic detection using direct wet mount preparation method with lugol's iodine or trichrome stain which is more sensitive for identification of the protozoa (14). Monotherapy with metronidazole is the most commonly recommended drug with eradication rates vary from 0-100% (15). Studying the prevalence of Blastocystis spp. in patients with leukemia will help inassessment of its pathogenicity and correlation with diarrhea and abdominal pain among those immunosuppressed children.

Methods: This study was conducted during January to June 2014 on two groups; fifty three children (28 male, 25 female) with leukemia attending Oncology
department of Ibn Al Atheer teaching hospital in Mousl City, and fifty apparently healthy children (25 male, 25 female) included patient relatives as a control group. All children were between ages of (1.5-12 years) and the two groups were matched by age and sex to each other. A special data was provided for each child in the study included (Age, Sex, Residence, presence or absence of diarrhea & abdominal pain).

Stool sample collection: Three consecutive stool specimens were collected from each child and stored in wide mouth tightly closed containers. These containers were labeled with the child name, age, date of collection. Each stool sample was stored in 10% formalin solution. The samples were centrifuged by ZnSO4 and formal-ether (ethyl acetate) concentration technique. Sediments were examined by Wet mount with Lugol’s iodine, Iron hematoxylin, and trichrome stain (16) (17).

Statistical analysis: Statistical interpretation of data was performed by using the computerized software program minitab version 17. Fischer’s exact test and Two-proportions test were used to compare between the variables in the study, while Correlation test was used to detect a possible association between Blastocystis spp. infection and symptoms (diarrhea & abdominal pain). All P values > 0.05 were considered statistically insignificant.

Results: Blastocystis spp. was found in 10 (18.87%) of the 53 leukemic children and in 5 (10%) of the 50 healthy control group Fig.1. Table 1 shows the distribution of Blastocystis spp. in the study and control groups according to gender and area of residency. The infection rate was higher among male than female in both patients (25%, 21%) and controls (12%, 8% respectively). Also it was higher in rural than urban among leukemic children (20%, 17.4%) and healthy group (15.4%, 4.2%) respectively. Although, infection rates were higher among patients than controls, these differences were statistically insignificant. Fig. 2 All of the collected samples were stained by 3 types of stains iodine, iron hematoxylin and trichrome. The infection rates were (9.4%, 11.3%, and 18.87% respectively) in the patients group and (4%, 6%, and 10% respectively) in the control group. The highest infection rates were recorded when the samples stained with trichrome and higher infection rates were seen among the patients than the controls but the difference was nonsignificant and p value >0.05. In table 2 the leukemic children were divided according to the age in to two groups. The first group included children< 6 years (preschool) who showed an infection rate of (33.3%), while the second group included those ≥ 6 years (school age) with an infection rate of (6.9%). This difference was statistically significant with p value 0.004. Again the patients were divided into two groups (symptomatic & a symptomatic) according to the presence and absence of diarrhea and abdominal pain in order to study the correlation between Blastocystis spp. infection and clinical symptoms. 50% of the 1st group was positive for Blastocystis spp. while only 2.85% of the second group was positive.
Fig. 2: Comparison between efficacy of different staining methods for diagnosis of Blastocystis spp. in leukemic children.
Discussion: *Blastocystis* spp. is a ubiquitous parasite with a wide world distribution. Its prevalence differs from country to country and in variable communities within the same country (18, 19). However, the truth about it's being a commensal or pathogenic parasite in certain conditions is still a questionable matter (21). Many reports about the incidence of *Blastocystis* spp. in immunocompromised individuals are available (20). In our study, 18.87% of the patients were positive for *Blastocystis* spp. compared to 10% of the controls and the difference was statistically insignificant. A similar study done by Aksoy et al. who found no statistically significant difference in the incidence of *Blastocystis* spp. in patients with malignant neoplasms (26%) compared to a healthy group which was 4% (16). Essa et al. results were against that and he attributed his findings to the lower exposure of leukemic children to pathogens due to lower activity and more care by their food and hygiene (13). Furthermore, there was no significant difference in the incidence of *Blastocystis* spp. among male and female groups and among rural and urban groups in agreement with many similar result studies (3, 13, 22). In the present study, we used different staining methods including iodine, iron hematoxylin, and trichrome stains that show an infection rate of (9.4%, 11.3%, and 18.87% respectively) in immunosuppressed group while (4%, 6%, and 10% respectively) in the healthy controls. We noticed that trichrome staining method detected more positive cases than the other two methods and this is in agreement with many other studies that showed trichrome as the most sensitive stain for diagnosis of *Blastocystis* spp. (23, 24). We noticed that the *Blastocystis* spp. infection rates were higher in the preschool than the school age group. That may be attributed to the higher activity of children under 6 years old and less awareness of hygienic aspects (16). In the other hand, we found that infection by *Blastocystis* spp. was significantly correlated with the presence of diarrhea and abdominal pain, and that was similar to El Shazly et al and kaya et al studies (25, 26). Other authors suggested that such symptomatic individuals had no correlation with being positive for *Blastocystis* spp. (27, 28). This disparity is controversial, but it may be attributed to the wide variety of the isolated subtypes and host defense factors like age and immune status.

Conclusions: Our findings reported that *Blastocystis* spp. infection was seen more frequently among leukemic children and there was a significant association with the presence of diarrhea and abdominal pain. Those findings are expected to produce an awareness about the right diagnostic method for *Blastocystis* spp. and open doors for further studies on its prevalence and pathogenicity.
Clinical Significance — zainab Khalid Khalil

References

1. Robyn N, Helle BO and Rebecca T. Clinical pilot study: efficacy of triple antibiotic therapy in Blastocystis positive irritable bowel syndrome patients. Gut Pathog J 2014; 6:34-1.

2. Stark D, Barratt JLN, Van Hal S, et al. Clinical significance of enteric protozoa in the immunosuppressed human population. Clin. Microbiol. Rev.2009; 22:634-650.

3. Awatif MA, Init I, Hesham MA, et al. Prevalence, predictors and clinical significance of Blastocystissspp. in Sebha, Libya. Parasites & Vectors 2013; 6:86-1.

4. Stensvold CR, Arendrup MC, Jespersgaard C, et al. Detecting Blastocystisusing parasitologic and DNA-based methods: a comparative study. Diagn. Microbiol. Infect Dis 2007; 59:303-310.

5. Parkar U, Traub RJ, Kumar S, et al. Direct characterization of Blastocystis from faeces by PCR and evidence of zoonotic potential. Parasitology 2007; 134:359-367.

6. Christina MC, Julie V, Louis MW, et al. Blastocystis: to treat or not to treat. CID 2012; 54:105-110.

7. Kevin SWT. New insights on classification, identification, and clinical relevance of Blastocystissspp. Clin. Microbiol. Rev.2008; 21:639-665.

8. Javed Y, Wasim J, Nadim J, et al. Irritable bowel syndrome: in search of an etiology: Role of Blastocystishominis. Am. J. Trop. Med. Hyg.2004; 70:383-385.

9. Jean FR, Samir MK, Mohamme al. Blastocystishominisin immunocompetent individual. Gut Pathog J 2005; 653-666.

10. AbdulSalam AM, Ilthoi I, Al-MekhlaﬁHM, et al. Drinking water is a signiﬁcant predictor of Blastocystis infection among rural Malaysian primary schoolchildren. Parasitol2012; 139:1014-1020.

11. Umit A, Ayse E, Ciler A, et al. Intestinal parasites in children with neoplasms. Turk J Pediatr 2003; 45:129-132.

12. Rose AK, Dina LMF, Leticia N, et al. Blastocystissspp. and other intestinal parastes inhemodialysis patients. BJID 2008; 12(4): 338-341.

13. Safaaj V, Hama SA, Sanaa AE, et al. Blastocystishominisamong immunocompromised and immunocompetent children in Alexandria, Egypt. JMed Pub J 2016; 4(2):92.

14. Selcuk K, Emel SC, Buket CA, et al. Pathogenicity of Blastocystishominis, A clinical reevaluation. Turk ParasitolDerg2007; 31 (3): 184-187.

15. Stensvold CR, Smith HV, Nagel R, et al. Eradication of Blastocystiscarriage with antimicrobials: reality or delusion?. J ClinGastroenterol2009; 44(2): 85-90.

16. Aksoy U, Akisa C, Bayram S, et al. Demographic status and prevalence of intestinal parasitic infections in schoolchildren in Izmir, Turkey. Turk. J. Pediatr.2007; 49:278-282.

17. Noor A, San YM, Gan CC, et al. Prevalence of intestinal protozoa in an aborigine community in Pahang, Malaysia. Trop. Biomed.2007; 24:55-62.

18. Baldo ET, Belizario VY, De Leon WU, et al. Infection status of intestinal parasites in children living in residential institutions in Metro Manila, the Philippines. Korean J. Parasitol. 2004; 42:67-70.

19. Florez AC, Garcia DA, Moncada L, et al. Prevalence of microsporidia and other intestinal parasites in patients with HIV infection. Bogota Boimedica2003; 23:274-282.

20. Wumba R, Enache-Angoulvant A, Develoux M, et al. Prevalence of opportunistic digestive parasitic infections in Kinshasa, Democratic Republic of Congo. Results of a preliminary study in 50 AIDS patients. Med Trop. 2007; 67(2): 145-153.

21. Tekola E, Gemechu T and Beyene P. Signiﬁcance of Blastocystishominisin patients referred for bacteriological stool culture at EHNRI. Ethiop. J. Health Dev. 2007; 21(1): 61-67.

22. Hegazy MM, Maklouf LM, El Hamshary EM, et al. Protein proﬁle and morphometry of cultured human Blastocystishominisin from children with gastroenteritis and healthy ones. J Egypt SocParasitol. 2008; 38: 453-464.

23. Ozczakir O, Gureser S, Erguven S, et al. Characteristics of Blastocystishominisin Turkish university hospital. Turk ParazitolDerg. 2007; 31: 277-282.

24. Forbes BA, Saah DF and Weissfeld AS. Laboratory methods for diagnosis of parasitic infections in: Baily Scott’s. Diag. Microbil. 2002; 11:606.

25. El-Shazly AM, Abdel-Magiid AA, El-Beshbishi, et al. Blastocystishominisamong symptomatic and asymptomatic individuals in Talkha Center, Dakahlia Governorate, Egypt. J. Egypt. Soc. Parasitol. 2005; 653-666.

26. Kaya S, Cetin ES, Aridogan BC, et al. Pathogenicity of Blastocystishominis, a clinical reevaluation. Turk. Parazitol. Derg. 2007; 31: 184-187.

27. Leder K, Hellared ME, Sinclair, et al. No correlation between clinical symptoms and Blastocystishominisin immunocompetent individual. J GastroenterolHepatol. 2005; 20(9): 1390-1394.

28. Kuo HY, Chiang DH, Wang CC, et al. Clinical significance of Blastocystishominis: experience from a medical center in northern Taiwan. J MicrobiolImmunol Infect. 2008; 41(3):222-228