TRAMADOL SAFER AND EFFECTIVE ANALGESIC TO TREAT CHRONIC PAIN: A REVIEW

Gulshan Pandey*

Department of Pharmacy Barkatullah University Bhopal (M.P.)

E-mail of Corresponding Author: gulshan64@yahoo.co.in

Abstract

Pain is defined by the International Association for the Study of Pain (IASP) as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage". Pain has now been equated to a “fifth vital sign” highlighting the significance of pain management in patient care. Tramadol is a centrally acting analgesic, structurally related to codeine and morphine. It is effectively used to treat moderate-to-severe acute and chronic pain in diverse conditions. Tramadol is placed on the second step of WHO analgesic ladder and in contrast to traditional opioids, exerts its analgesic activity, a dual mechanism of action inhibiting transmission as well as perception of pain. Tramadol is more suitable than NSAIDs and coxibs for patient with GI, renal and cardiovascular problems. Combined with low dependence/abuse potential, it has proven to be of significant advantage over other agents, especially in the elderly.

Keywords: Tramadol; analgesic; pain; cyclooxygenase

1. Introduction

Pain is part of the body's defense system; triggering mental and physical behavior to end the painful experience. Pain perception is the sum of complex sensory, emotional and cognitive processes. The international Association for the study of pain (IASP) defines pain as "unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage". In contrast to acute pain, chronic pain is not a protective response and is no longer linked to a stimulus. Remodeling within the central nervous system results in persistent pain, hyperalgesia (lowered pain threshold), allodynia (perception of pain caused by the usually non-painful stimuli) and spread of pain to areas other than those involved with initial pathology. The most common etiology of chronic non-malignant pain is musculoskeletal such as arthritis, cancer; peripheral nerve disorders and diabetes are other conditions that cause chronic pain. Pain has been acknowledged as the “fifth vital sign” by the American Pain Society (APS) and pain assessment and treatment much now be integrated into overall patient management. The 3-step analgesic ladder, originally proposed for cancer pain relief by the WHO is useful and now widely employed for all types of pain, including the chronic pain of musculoskeletal diseases (Figure 1).

2. Current pharmacotherapy for pain: NSAIDs, opioids and co-analgesic (antidepressants, anticonvulsants and calcium channel blockers) form the mainstay of pharmacotherapy for chronic pain. But, their use is often limited by side effects.

2.1. Non-steroidal anti-inflammatory drugs: Usually abbreviated to NSAIDs, are drugs with analgesic, antipyretic and, in higher doses, with anti-inflammatory effects. The term "non-steroidal" is used to distinguish these drugs from steroids, which have a similar eicosanoid-depressing, anti-inflammatory action. As analgesics, NSAIDs are unusual in that they are non-narcotic.

2.1.1. Mode of Action: Most NSAIDs act as non-selective inhibitors of the enzyme cyclooxygenase, inhibiting both the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) isoenzymes. Cyclooxygenase catalyzes the formation of prostaglandins and thromboxane from arachidonic acid (itself derived from the
cellular phospholipid bilayer by phospholipase A₂). Prostaglandins act as messenger molecules in the process of inflammation\(^{3,6}\). This mechanism of action was elucidated by John Vane, who later received a Nobel Prize\(^6\).

2.1.2. Adverse Effects

The widespread use of NSAIDs has meant that the adverse effects of these relatively safe drugs have become increasingly prevalent. These effects are dose-dependent, and in many cases severe enough to pose the risk of ulcer perforation, upper gastrointestinal bleeding, and death, limiting the use of NSAID therapy. An estimated 10-20% of NSAID patients experience dyspepsia, and NSAID-associated upper gastrointestinal adverse events are estimated to result in 103,000 hospitalizations and 16,500 deaths per year in the United States, and represent 43% of drug-related emergency visits. Many of these events are avoidable; a review of physician visits and prescriptions estimated that unnecessary prescriptions for NSAIDs were written in 42% of visits\(^6\).

2.1.3. Cardiovascular Risk

A recent meta-analysis of all trials comparing NSAIDs found an 80% increase in the risk of myocardial infarction with both newer COX-2 antagonists and high dose traditional anti-inflammatories compared with placebo\(^7\).

NSAIDs aside from aspirin are associated with a doubled risk of symptomatic heart failure in patients without a history of cardiac disease. In patients with such a history, however, use of NSAIDs (aside from low-dose aspirin) was associated with more than 10-fold increase in heart failure. If this link is found to be causal, NSAIDs are estimated to be responsible for up to 20 percent of hospital admissions for congestive heart failure\(^8\).

2.1.4. Gastrointestinal ADRs

The main ADRs (adverse drug reactions) associated with use of NSAIDs relate to direct and indirect irritation of the gastrointestinal tract (GIT). NSAIDs cause a dual insult on the GIT: the acidic molecules directly irritate the gastric mucosa, and inhibition of COX-1 reduces the levels of protective prostaglandins\(^9,10,11\). Common gastrointestinal ADRs include: (Rossi, 2006)

- Nausea/Vomiting
- Dyspepsia
- Gastric ulceration/bleeding
- Diarrhea

2.1.5. Renal ADRs

NSAIDs are also associated with a relatively high incidence of renal adverse drug reactions (ADRs). The mechanism of these renal ADRs is due to changes in renal hemodynamics (blood flow), ordinarily mediated by prostaglandins, which are affected by NSAIDs. Prostaglandins normally cause vasodilation of the afferent arterioles of the glomeruli. This helps maintain normal glomerular perfusion and glomerular filtration rate (GFR), an indicator of renal function. By blocking this prostaglandin-mediated effect, NSAIDs ultimately may cause renal impairment. Common ADRs associated with altered renal function include\(^12,13\):

- Salt and fluid retention
- Hypertension (high blood pressure)

These agents may also cause renal impairment, especially in combination with other nephrotoxic agents. Renal failure is especially a risk if the patient is also concomitantly taking an ACE inhibitor and a diuretic - the so-called "triple whammy" effect\(^14\).

In rarer instances NSAIDs may also cause more severe renal conditions\(^15\):

- Interstitial nephritis
- Nephrotic syndrome
- Acute renal failure
- Acute tubular necrosis

2.1.6. Photosensitivity

Photosensitivity is a commonly overlooked adverse effect of many of the NSAIDs\(^16\). It is somewhat ironic that these anti-inflammatory agents may themselves produce inflammation in combination with exposure to sunlight. The 2-arylpropionic acids have proven to be the most likely to produce photosensitivity reactions, but other NSAIDs have also been implicated including piroxicam, diclofenac and benzydamine.

Benoxaprofen, since withdrawn due to its hepatotoxicity, was the most photoactive NSAID observed. The mechanism of photosensitivity, responsible for the high photo activity of the 2-arylpropionic acids, is the ready decarboxylation of the carboxylic acid moiety. The specific absorbance characteristics of the different chromophoric 2-aryl substituents, affects the decarboxylation mechanism. While ibuprofen is somewhat of an exception, having weak absorption, it has been reported to be a weak photosensitizing agent\(^17\).

2.1.7. During Pregnancy

NSAIDs are not recommended during pregnancy, particularly
2.2.1. Adverse Effects: During the third trimester. While NSAIDs as a class are not direct teratogens, they may cause premature closure of the fetal ductus arteriosus and renal ADRs in the fetus. Additionally, they are linked with premature birth. The report by Kaiser Permanente and published in the Journal of Urology, considered that "regular non-steroidal anti-inflammatory drug use is associated with erectile dysfunction beyond what would be expected due to age and other conditions".

2.1.9. Other ADRs: Common ADRs, other than listed above, include: raised liver enzymes, headache, and dizziness. Uncommon ADRs include: hyperkalemia, confusion, bronchospasm and rash. Rapid and severe swelling of the face and body. Ibuprofen may also rarely cause irritable bowel syndrome symptoms. In very rare cases, ibuprofen can cause aseptic meningitis.

2.2. Paracetamol: Paracetamol or acetaminophen is a widely used over-the-counter analgesic (pain reliever) and antipyretic (fever reducer). It is commonly used for the relief of fever, headaches, and other minor aches and pains, and is a major ingredient in numerous cold and flu remedies. In combination with non-steroidal anti-inflammatory drugs (NSAIDs) or opioid analgesics, paracetamol is used also in the management of more severe pain (such as cancer pain).

2.2.1. Adverse Effects: In recommended doses, paracetamol does not irritate the lining of the stomach, affect blood coagulation as much as NSAIDs, or affect function of the kidneys. However, some studies have shown that high dose-usage (greater than 2,000 mg per day) does increase the risk of upper gastrointestinal complications such as stomach bleeding. Paracetamol is safe in pregnancy, and does not affect the closure of the fetal ductus arteriosus as NSAIDs can. Unlike aspirin, it is safe in children, as paracetamol is not associated with a risk of Reye's syndrome in children with viral illnesses.

In 2008 the Lancet published the largest study to date on long term side effects of paracetamol in children. Conducted on over 200,000 children in 31 countries, the study determined that use of paracetamol for fever in children with viral illnesses is not associated with a risk of Reye's syndrome as NSAIDs can. Unlike aspirin, it is safe in children, as paracetamol is not associated with a risk of Reye's syndrome in children with viral illnesses.

In that article the authors acknowledged that "our findings might have been due to confounding by indication", i.e. that the association they found was not causal but rather due to the disease being treated with paracetamol, and emphasized that further research is needed.

Excessive use of paracetamol can damage multiple organs, especially the liver and kidney. In both organs, toxicity from paracetamol is not from the drug itself but from one of its metabolites, N-acetyl-p-benzoquinoneimine (NAPQI). In the liver, the cytochrome P450 enzymes CYP2E1 and CYP3A4 are primarily responsible for the conversion of paracetamol to NAPQI. In the kidney, cyclooxygenases are the principal route by which paracetamol is converted to NAPQI. Paracetamol overdose leads to the accumulation of NAPQI, which undergoes conjugation with glutathione. Conjugation depletes glutathione, a natural antioxidant. This in combination with direct cellular injury by NAPQI, leads to cell damage and death.
2.4. Tramadol: Tramadol is a CNS depressant and analgesic, used for treating moderate to severe pain. It is a synthetic agent, and it appears to have actions at the μ-opioid receptor as well as the noradrenergic and serotonergic systems. Tramadol was developed by the German pharmaceutical company Grunenthal GmbH in the late 1970s and marketed under the trade name Tramal®. Many other pharmaceutical companies market it under various names.

Tramadol is a centrally acting, synthetic analgesic of the aminocyclohexanol group, which has opioid-like effects. It has been in clinical use in Europe since the late 1970s. Its mode of action is not completely understood but it appears to have a dual mechanism of action, which involves inhibition of re-uptake of serotonin (5-HT) and/or noradrenaline as well as weak affinity for opioid (μ) receptors. Since tramadol does not affect prostaglandin synthesis, it does not have antipyretic or anti-inflammatory effects.

Tramadol has high oral bioavailability. Its absorption is not affected by food. The two oral dosage forms (50mg capsules 4 times daily and 100mg sustained-release tablets twice daily) have been reported to be equivalent in terms of analgesic efficacy and tolerability.

2.4.1. Clinical Use: Publications reporting the clinical use of tramadol are numerous. A number of reviews of the clinical use of tramadol have also been published.

2.4.2. Comparison with Placebo: A pooled analysis of 9 single-dose, double-blind, randomized, placebo-controlled studies included a total of 1594 patients with post-operative pain following caesarean section or general surgical procedures. Analysis showed that analgesic efficacy of tramadol at doses equal to or greater than 50mg was superior to that of placebo (statistical value not reported). Likewise, pooled analysis of 9 double-blind, randomized studies involving 1859 patients with dental extraction pain evaluated single oral doses of tramadol ranging from 50mg to 200mg. Analysis demonstrated a significantly greater efficacy for tramadol than for placebo at all doses evaluated. (The majority of these studies have not been published.) A subsequent meta-analysis of these 18 studies confirmed the effectiveness of tramadol in comparison with placebo and demonstrated a significant dose response. Multi-dose studies have also demonstrated a superior effect of oral tramadol over placebo in both pains after dental extraction and pain after orthopaedic surgery.

2.4.3. Comparison with Morphine: Tramadol (up to 3 doses of 50mg iv) was compared with morphine (up to 3 doses of 5mg iv) over 6 hours in a double-blind, randomised study of 150 patients after gynaecological surgery. In those patients who reported moderate pain, the two drugs were equally effective. However, morphine was superior in patients starting with severe pain. Respiratory depression (as measured by oxygen desaturation) occurred in 13% of the morphine group but not at all in the tramadol group. Sedation and nausea were also more common in the morphine group.

In a multi-centre, double-blind, randomised study involving 523 patients, the analgesic efficacy of tramadol and morphine given in repeated intravenous boluses as required to control post-operative pain over 24 hours following abdominal surgery was compared. There was no substantive difference in analgesia between tramadol (100mg iv then 100-125mg iv or im as needed) and morphine (5mg iv then 5-20mg iv or im as needed). The time between the first and second dose of study medication was longer in the tramadol group than in the morphine group, probably due to the lower comparative starting dose of morphine (5mg) compared with tramadol (100mg). However, the intervals between all subsequent doses were comparable. A high incidence of gastrointestinal adverse events were observed with both treatments, mostly consisting of nausea and symptoms such as dry mouth, vomiting, dyspepsia and hiccups. Constipation was not reported in either group. Similar efficacy has been observed in more recent studies in this surgical group.

Scott et al reviewed the literature (since 1993) where effectiveness of tramadol in perioperative pain was assessed using standard visual analogue scales. On the basis of percentage change in pain scores from baseline, they concluded that tramadol effectively relieved moderate to severe postoperative pain associated with several types of surgery, including abdominal, orthopaedic and cardiac surgery. Pain scores with tramadol were reduced by approximately 57% within 4 to 6 hours.
2.4.4. Comparison with NSAIDs: In comparative studies of tramadol and ketorolac in nasal surgery\(^6^8\) and orthopaedic surgery\(^6^9\), improvements in postoperative analgesia and quality of sleep were similar with intramuscular tramadol or ketorolac\(^6^9\).

2.4.5. Comparison with oral analgesics: single dose study: The analgesic efficacy of single dose, orally administered tramadol 75mg or 150mg was compared in a double blind, placebo controlled trial with a combination of paracetamol 650mg and dextropropoxyphene napsylate 100mg in 161 patients with severe post operative pain after caesarean section\(^7^2\). Both tramadol and the combination analgesic were statistically superior to placebo. Tramadol 150mg was significantly more effective than both tramadol 75mg and combination paracetamol/ dextropropoxyphene. No serious adverse effects were observed, but dizziness was more frequently reported with 150mg tramadol.

On the other hand, Stubhaug et al\(^5^3\) compared oral tramadol 50mg or 100mg with a combination paracetamol/codeine analgesic (1000mg/60mg) or placebo in a single-dose study in 144 patients after total hip replacement. In this study the combination of paracetamol/codeine was superior to both doses of tramadol. There was no difference in efficacy between either dose of tramadol and placebo. Adverse effects were more common with tramadol than with the combination, particularly nausea.

Single oral doses of tramadol 75mg or 150mg have been compared with codeine phosphate 60mg and paracetamol/propanoxyphene HCl (650mg/65mg) in 239 patients with pain after dental extraction\(^5^4\). Tramadol 75mg was more effective than codeine. Although 150mg of tramadol was superior to the combination analgesic, 75mg of tramadol was not. In another double-blind, single dose parallel study in 206 patients after dental extraction\(^5^5\), tramadol 100mg was judged to be more effective than codeine 60mg but only tramadol 200mg was statistically so.

2.4.6. Paediatric Surgery: In paediatric surgery (in patients over the age of 12 months), tramadol has been used effectively for moderate to severe pain in im or IV doses of 1-2mg/kg\(^5^6\).

2.4.7. Chronic Pain: Tramadol has been included as a step 2 analgesic in the second edition of the World Health Organization’s recommendations for treatment of cancer pain\(^5^8\). Twenty cancer patients with strong pain unresponsive to previous pain treatment were randomized to receive oral tramadol or morphine solution in a randomized, double-blind, cross-over study\(^5^9\). Doses were individually titrated and cross-over occurred on day 4. Pain scores were similar on day 4, although pain scores were higher in the tramadol group on days 1 and 2. There was a statistically significant reduction in side-effects (particularly nausea and constipation) with tramadol.

Efficacy and safety of high dose oral tramadol (300-600mg/day) compared with low dose oral morphine (10-60mg/day) was evaluated in a non-blinded, non-randomized study involving a total of 1658 patients with cancer pain\(^5^8\). There was no significant difference in analgesic efficacy between the two groups. Antiemetic’s, laxatives, neuroleptics and steroids were prescribed significantly more frequently in the morphine group; the use of other adjuvants was similar in both groups. Constipation, neuropsychological symptoms and pruritus were observed significantly more frequently with low dose morphine. Other symptoms had similar frequencies in both groups.

Oral tramadol was evaluated in a double-blind study over a 4 week period in 390 patients over 65 years of age with chronic pain due to a variety of conditions\(^5^9\). Patients were initially treated with either tramadol 50mg orally or paracetamol/codeine 300mg/30mg and were then allowed to titrate the dose according to pain severity to a total of eight capsules per day. Mean pre-treatment pain intensities were moderate for both groups. At the end of the study, average daily doses were 244mg of tramadol and 1,407mg/140.7mg of paracetamol/codeine. Both treatments were rated as good, very good or excellent by 55% of patients in each group. There was no significant difference in the incidence of adverse effects in each group, but adverse effects resulted in discontinuation in a significantly higher proportion of patients taking tramadol (18.8% vs 9.6%, p<0.05).

Oral tramadol (100mg eighth hourly) was compared with a fixed dose combination of

IJBAR (2012) 03(01) www.ssjournals.com
paracetamol/codeine (1000mg/60mg eighth hourly) in a randomized, double-blind cross-over study in 55 patients suffering from refractory chronic back pain. Efficacy was similar in the two arms. Although the combination analgesic was reported by the authors as better tolerated than tramadol, the difference was not statistically significant. A multicenter, randomized, double-blind, parallel group study compared the analgesic efficacy and tolerability of immediate release tramadol (50mg four times daily) and sustained-release tramadol (100mg twice daily) in 205 patients with chronic refractory low back pain. There was no difference in pain relief, the course of pain intensity or adverse events between the two groups. Those continuing beyond the first week became more tolerant of the adverse effects. The efficacy of tramadol in osteoarthritis has been evaluated in patients who experienced breakthrough pain while being treated with NSAIDs. After an open label phase, forty-two patients were randomized to receive tramadol or placebo for a two week period; NSAID therapy was continued. Significantly more tramadol-treated patients completed the study. An average daily dosage of 245mg was significantly more effective than placebo in reducing the severity of pain at rest. In naproxen-responsive patients with painful osteoarthritis of the knee, the addition of tramadol 200mg/day allowed a significant reduction in NSAID dosage (by 78%) without compromising pain relief. Fifty eight percent were able to discontinue naproxen with the addition of tramadol. Tramadol may have a role in treatment of neuropathic pain of diabetic or other origin and has been estimated to be similar in efficacy to tricyclic antidepressants in such conditions. Tramadol has been reported to be effective across a wide range of chronic pain conditions, including chronic pancreatitis, fibromyalgia, and scleroderma. It should be noted, however, that controlled studies in chronic pain conditions have been of relatively short duration (4-8 weeks) and studies of longer-term use are required.

2.4.8. Adverse Effects: The adverse effects of tramadol are similar to other opioids and include nausea, vomiting, constipation, headache, dizziness, dry mouth, sedation, asthenia, fatigue and sweating. Less common effects include skin reactions and pruritus. Titrating the dose slowly may improve tolerability, and intra-operative loading may reduce post-operative nausea and vomiting. With the exception of sweating, constipation and dry mouth, most adverse effects appear to decrease with prolonged use. Tramadol is unlikely to produce clinically relevant respiratory depression at recommended doses but respiratory depression may occur if recommended doses are exceeded. The abuse and/or dependence potential for tramadol is low, provided it is dosed within recommended ranges. However, reports of drug dependence and withdrawal have occurred. Tramadol has very low affinity for opioid receptors (10 times less than codeine, 60 times less than propoxyphene and 6000 times less than that of morphine). Low abuse potential has been confirmed in a randomised, double-blind, placebo-controlled, crossover trial. However, a number of case reports have been published which highlight the potential for dependence, abuse and withdrawal syndrome after long-term treatment.

Conclusion
Tramadol has a dual mechanism of action that explains its effectiveness in those types of pain that are refractory to conventional opioids, and its better tolerability profile. At therapeutic doses, Tramadol has weak/no effects on respiration, cardiovascular system and intestinal motility. Compared with traditional NSAIDs, Tramadol lacks serious GI renal toxicity, which are major concerns in the elderly. These side effects are generally mediated by prostaglandins, and so are not seen with Tramadol. Even though the new COX-2 specific NSAIDs may demonstrate greater GI safety than the older NSAIDs, Tramadol has a superior safety profile. Hepatotoxicity consider to be a class characteristic of NSAIDs that has not been reported to date with Tramadol. Unlike acetaminophen, Tramadol has no antipyretic activity. So it does not mask any possible infective and/or phlogistic processes. Tramadol can be used safely even in patients with hypertension, congestive heart failure, or renal insufficiency, because such patient such patients may not tolerate the renal side effects of NSAIDs. It is safer in patients with asthma and GI ulcers. Tramadol has every low affinity for opioid receptors (10 times less than codeine, 60 times less than propoxyphene and...
6000 times less than that of morphine). Consequently, constipation and respiratory depression are less frequent with Tramadol at therapeutic doses as compared to conventional opioids. There is also less risk of abuse and dependence with Tramadol and may result in lack of compliance. Noncompliance with high-frequency dosing regimens results in inconsistent analgesia.

Tramadol maintains a good profile of tolerability in every old patients (mean age 85 years) and in long term treatments with reduced pharmacological interactions. Tramadol represents a solution to the dilemma posed by the unfavorable side effects profiles of other analgesic typically used for unrelieved chronic pain.

References

1. Kowaluk E A, Arneric S P and Williams M. Opportunities in pain therapy beyond the opioids and NSAIDs. Emerging Drugs 1998; 3: 1-37.
2. Strong J Unruh A M and Wright A. Pain a textbook for therapists. 2nd ed. UK: Harcourt publisher; 2003. p. 4-5.
3. Marco P. The neurological basis of pain. 1st ed. USA: McGraw Hills; 2005. p.3-4.
4. Paul FS and Epstein JB. Oral complication and its management. New York: Oxford University press; 2010. p.246-248.
5. Lemke T L, Williams DA, Roche V and Zito W. Principles of medicinal chemistry. 6th ed. Philadelphia: Liincots Williams and wilkins; 2010. p.954-955.
6. Green G. Understanding NSAIDs from aspirin to COX-2. Clinical Cornerstone 2001; 3 (5): 50–60.
7. Kearney P, Baigent C, Godwin J, Halls H, Emberson J and Patrono C. Do selective cyclo-oxygenase-2 inhibitors and traditional non steroidal anti-inflammatory drugs increase the risk of atherothrombosis, meta-analysis of randomized trials. BMJ. Clinical Research Edition 2006; 332 (7553): 1302–1308.
8. Page J and Henry D. Consumption of NSAIDs and the development of congestive heart failure in elderly patients: an under recognized public health problem. Archives of Internal Medicine 2000; 160 (6): 777–784.
9. Traversa G, Walker A, Iolito F, Caffari B, Capurso L, Dezi A, Koch M, Maggini M, Alegiani S and Raschetti R. Gastroduodenal toxicity of different non steroidal anti inflammatory drugs. Epidemiology Cambridge, Mass 1995; 61: 49–54.
10. Pincus T and Griffin M. Gastrointestinal disease associated with non steroidal anti-inflammatory drugs new insights from observational studies and functional status questionnaires. Am. J. Medicine. 1991; 91(3):209–212.
11. Fries J F, Williams CA, Bloch DA and Michel BA. Non steroidal anti-inflammatory drug-associated gastropathy incidence and risk factor models. Am. J. Medicine. 1991; 91 (3): 213–222.
12. Dunn MJ, Simonson M, Davidson E W, Scharschmidt L A, Seditionor J R. Non steroidal anti-inflammatory drugs and renal function. J. Clin. Pharmacol. 1988; 28(6): 524–529.
13. Murray M D and Brater D C. Adverse effects of non steroidal anti-inflammatory drugs on renal function. Ann. Intern. Medicine. 1990; 112 (8): 559–560.
14. Thomas M Diuretics ACE inhibitors and NSAIDs -the triple whammy. The Medical Journal of Australia 2006; 172 (4): 184–185.
15. Sandler D P, Burr F R and Weinberg C R. Non steroidal anti-inflammatory drugs and the risk for chronic renal disease. Ann Intern Medicine 1991; 115 (3): 165–172.
16. Moore D. Drug-induced cutaneous photosensitivity incidence, mechanism, prevention and management, Drug safety. International Journal of Medical Toxicology and Drug Experience 2002; 25 (5): 345–372.
17. Tisdale J E and Douglas A M. Drug-Induced Diseases Prevention, Detection and Management. 2nd ed. American society of health system pharmacist. 2010. p.122-126.
18. Ostensen M and Skomsvoll J Anti-inflammatory pharmacotherapy during pregnancy. Expert Opinion on Pharmacotherapy 2004; 5 (3): 571–580.
19. Hamid R N P, Perrine B, Odile S and Anick B Use of non aspirin non steroidal anti-inflammatory drugs during pregnancy and the risk of spontaneous abortion. Canadian Medical Association Journal 2011; 183(15):1713-1720.
20. Nielsen G L, Sorensen H T, Larsen H and Peditionersen L: Risk of adverse birth ou-
come and miscarriage in pregnant users of non-steroidal anti-inflammatory drugs population based observational study and case-control study BMJ. 2001; 322 (7281): 266–270
21. Shiri et al. Effect of Non steroidal Anti-Inflammatory Drug Use on the Incidence of Erectile Dysfunction. Journal of Urology 2005; 175 (5):1812–1816.
22. Akil M, Amos R S and Stewart P. Infertility may sometimes be associated with NSAID consumption. Br. J. Rheumatol. 1996; 35 (1): 76–78.
23. Joseph M, Gleason J M, Slezak J, Howard K, Kristi R, Stephen K, Eeditionen V D, Haque R, Virginia P, Ronald K and Steven J. Regular Non steroidal Anti-Inflammatory Drug Use and Erectile Dysfunction. The Journal of Urology 2011; 185 (4):1388-1393.
24. Fowler PD. Aspirin paracetamol and non-steroidal anti-inflammatory drugs a comparative review of side effects. Medicine. Toxicol. Adverse Drug Exp. 1987; 2 (5): 338–366.
25. Borne R, Levi M and Wilson N. Foye’s Principle of Medicinal chemistry. 6th ed. (2nd reprint) New Delhi: Lipincott williams & wilkins; 2008. p.963-965.
26. Scottish Intercollegiate Guidelines Network. Guideline 106, Control of pain in adults with cancer, Scotland National Health Service, 2008: 6.1 and 7.11.
27. Bronwen B, Knights K, Bryant BJ, Knights KM, Salerno E and Knights B. Pharmacology for Health Professionals. 3rd ed. Australia: Elsevier, 2011. p.300.
28. Seditionigheh E, Esfahani S A, Ghaffari-an H R and Khoshneviszade M. Comparison of efficacy and safety of acetaminophen and ibuprofen administration as single dose to reduce fever in children. Iranian Journal of Pediatrics 2010; 20 (4): 500–501.
29. Lesko S M and Mitchell A A. The safety of acetaminophen and ibuprofen among children younger than two years old. Pediatrics 1999; 104 (4): 39.
30. Beasley R et al. Association between paracetamol use in infancy and childhood and risk of asthma, rhino conjunctivitis, and eczema in Children, Lancet 2008; 372:1039-1048.
31. Calder I C, Creek M J and Williams P J. N-hydroxylation of p-acetophenetidide as a factor in nephron toxicity. J. Medicine. Chem. 1973; 16:499–502.
32. Smil kstein M J, Kna GL and Kulig KW. Efficacy of oral N-acetyl cysteine in the treatment of acetaminophen overdose, Analysis of the national multi center study from 1976 to 1985. N. Engl. J. Medicine. 1988; 319:1557–1562.
33. Hughes J, Smith T W and Kosterlitz H W. Identification of two related penta peptides from the brain with potent opiate agonist activity. Nature1975; 258:577–579.
34. Lord J A H, Water A A and Hughes J. Endogenous opioid peptides multiple agonists and receptors. Nature 1977; 267: 495–499.
35. Ramsin B, Andrea M T, Datta S, and Buenaventura R, Adlaka R, Sehgal N, Glaser S E and Vallejo R. Opioid Complications and Side Effects. Pain Physician Special Issue 2008; 11:S105-S120.
36. US patent 3652589, Flick K, Frankus E. 1m-Substituted Phenyl-2-Aminomethyl Cyclohexanols, issue edition 28 March 1972.
37. CSL-Limited Accepted Product Information - Tramal, 1998.
38. Anonymous tramadol, a new oral analgesic. Medical Letter on Drugs & Therapeutics 1995; 37:59-62.
39. Raffa R B, Nayak R K and Minn F L. The mechanism of action and pharmacokinetics of tramadol hydrochloride. Rev. Contemp. Pharmacother. 1995; 6:485-497.
40. Schnitzer T J. Non-NSAID pharmacologic treatment options for management of chronic pain. Am. J. Medicine.1984; 105: 55-52S.
41. Sorge J, Stadler T. Comparison of the analgesic efficacy and tolerability of tramadol 100mg sustained-release tablets and tramadol 50mg capsules for the treatment of chronic low back pain. Clin. Drug Invest. 1997; 14:157-164.
42. Bamigbade T A and Langford RM. The clinical use of tramadol hydrochloride. Pain Reviews1998; 5:155-182.
43. Lewis K S and Han N H. Tramadol a new centrally acting analgesic. Am. J. Health-Syst. Pharm. 1997; 54:643-652.
44. Shipton E A. Tramadol present and future. Anaesth. Intensive Care 2000; 28:363-374.
45. Sunshine A. New clinical experience with tramadol. Drugs1994; 47: 8-18.
46. Houmes R J M, Voets M A, Verkkaak A, Erdmann W and Lachmann B. Efficacy and safety of tramadol versus morphine for moderate and severe postoperative pain with special regard to respiratory depression. Anesthesia and Analgesia 1992; 74: 510-514.
47. Vickers M D and Paravicini D. Comparison of tramadol with morphine for postoperative pain following abdominal surgery. European Journal of Anaesthesiology 1995; 13:265-271.
48. Gritti G, Verri M and Launo C. Multi center trial comparing tramadol and morphine for pain after abdominal surgery. Drugs. Exp. Clin. Res. 1998; 24: 9-16.
49. Scott L J and Perry C M. Tramadol a review of its use in pre operative pain. Drug therapy 2000; 60: 139-176.
50. Colletti V, Carner M and Vincenzi A. Intramuscular tramadol versus ketorolac in the treatment of pain following nasal surgery a controlled multi centre trial. Curr. Ther. Res. Clin. Exp. 1998; 59: 608-618.
51. Lanzetta A, Vizzardi M and Letizia G. Intramuscular tramadol versus ketorolac in patients with orthopedic and traumatologic postoperative pain a comparative multi centre trial. Curr. Ther. Res. Clin. Exp. 1998; 59: 39-47.
52. Sunshine A, Olson N Z, Zighelboim I, De Castro A and Minn F L. Analgesic oral efficacy of tramadol hydrochloride in postoperative pain. Clin. Pharmacol. Ther. 1992; 61: 740-746.
53. Stubhaug A, Grimstad J and Breivik H. Lack of analgesic effect of 50 and 100mg oral tramadol after orthopedic surgery, a randomized, double-blind, placebo and standard active drug comparison. Pain Reviews 1995; 62:111-118.
54. Mehlish DR, Minn F and Brown P. Tramadol hydrochloride: efficacy compared to codeine sulphate, acetaminophen with dextropropoxyphene and placebo in dental extraction pain. Clin. Pharmacol. Ther. 1990; 47: 187.
55. Fricke J R, Minn F, Cunningham B D, Angelocci DL, Peteros-Nowak CA. Dose response in pain from oral surgery. Clin. Pharmacol. Ther. 1991; 49:182.
56. Budd K and Langford R. Tramadol revisitedition. Brit. J. Anaesth. 1999; 82: 493-495.
57. Wilder-Smith C H, Schimke J, Osterwalder B and Senn HJ. Oral tramadol a µ-opioid agonist and monoamine reuptake-blocker and morphine for strong cancer-related pain. Ann. Oncol. 1994; 5:141-146.
58. Grond S, Radbruch L, Meuser T, Loick G and Sabatowski R. High-dose tramadol in comparison to low-dose morphine for cancer pain relief. Journal of pain and Symptom Management 1999; 18:174-179.
59. Rauck RL, Ruoff GE and Mc Millen JI. Comparison of tramadol and acetaminophen with codeine for long-term pain management in elderly patients. Current Therapeutic Research 1994; 55:1417-1431.
60. Muller FO, Odendaal CL, Muller FR, Raubenheimer J and Middle MV. Comparison of the efficacy and tolerability of a paracetamol/codeine fixed dose combination with tramadol in patients with refractory chronic back pain. Arzneimittelforschung Drug Research 1998; 48:675-679.
61. Roth SH. Efficacy and safety of tramadol in breakthrough musculoskeletal pain attributed to osteoarthritis. J. Rheumatol. 1998; 25:1358-1363.
62. Schnitzer MK and Olson WH. Tramadol allow reduction of naproxen dose among patients with naproxen-responsive osteoarthritis pain. Arthritis and Rheumatism 1999; 42: 1370-1377.
63. Sindrup S and Jensen T, Pharmacologic treatment of pain in poly neuropathy. Neurology 2000; 55:915-920.
64. National Health and Medical Research Council, Acute pain management, scientific evidence, Commonwealth of Australia, 1999.
65. Ruoff GE. Slowing the initial titration rate of tramadol improves tolerability. Pharmacotherapy 1999; 19: 88-93.
66. Pang WW, Huang S, Hung CP and Huang M H. Intra operative loading attenuates nausea and vomiting of tramadol patient-controlled analgesia. Can. J. Anesth. 2000; 47: 968- 973.
67. Wilder-Smith CH, Hill L, Spargo K and Kalla A. Treatment of severe pain from osteoarthritis with slow-release tramadol or
dihydrocodeine in combination with NSAIDs a randomized study comparing analgesia, anti nociception and gastrointestinal effects. Pain 2001; 91:23-31.

68. Leo RJ, Narendran R and De Guisee B. Methadone detoxification of tramadol dependence. Journal of Substance Abuse Treatment 2000; 19: 297-299.

69. Preston K L, Jasinski D R and Testa M. Abuse potential and pharmacological comparison of tramadol and morphine. Drug and Alcohol Dependence 1991; 27: 7-17.

70. Villaman J C R, Blanco C A, Sanchez A, Carvajal A, Arias LM and Del Pozo JG. Withdrawal syndrome after long-term treatment with tramadol. British Journal of General Practice 2000; 50: 406.

71. Thomas A N and Suresh M. Opiate withdrawal after tramadol and patient-controlled analgesia. Anaesthesia 2000; 55:826-827.

72. Yates WR, Nguyen MD and Warnock JK. Tramadol dependence with no history of substance abuse. Am. J. Psychiatry 2001; 158:964.