Abstract

Orthographic similarities across languages provide a strong signal for probabilistic decipherment, especially for closely related language pairs. The existing decipherment models, however, are not well-suited for exploiting these orthographic similarities. We propose a log-linear model with latent variables that incorporates orthographic similarity features. Maximum likelihood training is computationally expensive for the proposed log-linear model. To address this challenge, we perform approximate inference via MCMC sampling and contrastive divergence. Our results show that the proposed log-linear model with contrastive divergence scales to large vocabularies and outperforms the existing generative decipherment models by exploiting the orthographic features.

1 Introduction

Word-level translation models are typically learned by applying statistical word alignment algorithms on large bilingual parallel corpora (Brown et al., 1993). However, building a parallel corpus is expensive, and data is limited or even unavailable for many language pairs. On the other hand, large monolingual corpora can be easily downloaded from the internet for most languages. Decipherment algorithms exploit such monolingual corpora in order to learn translation model parameters, when parallel data is limited or unavailable (Koehn and Knight, 2000; Ravi and Knight, 2011; Dou et al., 2014).

Existing decipherment methods are predominantly based on probabilistic generative models (Koehn and Knight, 2000; Ravi and Knight, 2011; Nuhn and Ney, 2014). These models exploit the statistical similarities between the n-gram frequencies in the source and the target language, and rely on the Expectation Maximization (EM) algorithm (Dempster et al., 1977) or its faster approximations. These existing models, however, do not allow incorporating linguistically motivated features. Previous research has shown the effectiveness of incorporating linguistically motivated features for many different unsupervised learning tasks, such as: unsupervised part-of-speech induction (Berg-Kirkpatrick et al., 2010), Haghighi and Klein, 2006), word alignment (Ammar et al., 2014; Dyer et al., 2011), and grammar induction (Berg-Kirkpatrick et al., 2010). In this paper, we present a feature-rich log-linear model for probabilistic decipherment.

Words in different languages are often derived from the same source, or borrowed from other languages with minor variations, resulting in substantial phonetic and lexical similarities. As a result, orthographic features provide crucial information on determining word-level translations for closely related language pairs. [Haghigh et al., 2008] proposed a generative model for inducing a bilingual lexicon from monolingual text by exploiting orthographic and contextual similarities among the words in two different languages. The model proposed by Haghighi et al. learns a one-to-one mapping between the words in two languages by analyzing type-level features only, while ignoring the token-level frequencies. We propose a decipherment model, that unifies the type-level feature-based approach of Haghighi et al. with the token-level EM based approaches (Koehn and Knight, 2000; Ravi and Knight, 2011).

One of the key challenges with the proposed latent variable log-linear models is the high computational complexity of training, as it requires “normalizing globally” via summing over all possible observations and latent variables. We perform ap-
proximate inference using Markov Chain Monte Carlo (MCMC) sampling for scalable training of the log-linear decipherment models. The main contributions of this paper are:

- We propose a feature-based decipherment model that combines both type-level orthographic features and token-level distributional similarities. Our proposed model outperforms the existing EM-based decipherment models.

- We apply three different MCMC sampling strategies for scalable training and compare them in terms of running time and accuracy. Our results show that Contrastive Divergence (Hinton, 2002) based MCMC sampling can dramatically improve the speed of the training, while achieving comparable accuracy.

2 Problem Formulation

Given a source text \(F \) and an independent target corpus \(E \), our goal is to decipher the source text \(F \) by learning the mapping between the words in the source and the target language. Although the sentences in the source and target corpus are independent of each other, there exist distributional and lexical similarities among the words of the two languages. We aim to automatically learn the translation probabilities \(p(f|e) \) by exploiting the similarities between the bigrams in \(F \) and \(E \).

As a simplification step, we break down the sentences in the source and target corpus as a collection of bigrams. Let \(F \) contain a collection of source bigrams \(f_1 f_2 \), and \(E \) contain a collection of target bigrams \(e_1 e_2 \). Let the source and target vocabulary be \(V_F \) and \(V_E \) respectively. Let \(N_F \) and \(N_E \) be the number of unique bigrams in \(F \) and \(E \) respectively. We assume that the corpus \(F \) is an encrypted version of a plaintext in the target language. Each source word \(f \in V_F \) is obtained by substituting one of the words \(e \in V_E \) in the plaintext. However, the mappings between the words in the two languages are unknown, and are learned as latent variables.

3 Background Research

Existing decipherment models assume that each source bigram \(f_1 f_2 \) in \(F \) is generated by first generating a target bigram \(e_1 e_2 \) according to the target language model, and then substituting \(e_1 \) and \(e_2 \) with \(f_1 \) and \(f_2 \) respectively. The generative process is typically modeled via a Hidden Markov Model (HMM) as shown in Figure 1(a). The target bigram language model \(p(e_1 e_2) \) is trained from the given monolingual target corpus \(E \). The translation probabilities \(p(f|e) \) are unknown, and learned by maximizing the likelihood of the observed source corpus \(F \):

\[
P(F) = \prod_{f_1 f_2 \in F} p(f_1 f_2) = \prod_{f_1 f_2 \in F} \sum_{e_1 e_2} p(e_1 e_2) p(f_1|e_1)p(f_2|e_2),
\]

where \(e_1 \) and \(e_2 \) are the latent variables, indicating the target words in \(V_E \) corresponding to \(f_1 \) and \(f_2 \) respectively. The log-likelihood function with latent variables is non-convex, and several methods have been proposed for maximizing it.

3.1 Expectation-Maximization (EM)

The Expectation-Maximization (EM) (Dempster et al., 1977) algorithm has been widely applied for solving the decipherment problem (Knight and Yamada, 1999; Koehn and Knight, 2000). In the E-step, for each source bigram \(f_1 f_2 \), we estimate the expected counts of the latent variables \(e_1 \) and \(e_2 \) over all the target words in \(V_E \). In the M-step, the expected counts are normalized to obtain the translation probabilities \(p(f|e) \). The computational complexity of the EM algorithm is \(O(N_F V^2) \) and the memory complexity is \(O(V^2) \), where \(N_F \) is the number of unique bigrams in \(F \) and \(V = \max(|V_F|, |V_E|) \). As a result, the regular EM algorithm is prohibitively expensive for large vocabulary sizes, both in terms of running time and memory consumption.

To address this challenge, Ravi and Knight (2011) proposed the Iterative EM algorithm, which starts with the \(K \) most frequent words from \(F \) and \(E \) and performs EM-based
decipherment. Next, the source and target vocabularies are iteratively extended by \(K \) new words, while pruning low probability entries from the probability table. The computational complexity of each iteration becomes \(O(N_F K^2) \).

3.2 Bayesian Decipherment using Gibbs Sampling

Ravi and Knight (2011) proposed a Gibbs sampling based Bayesian Decipherment strategy. For each observed source bigram \(f_1 f_2 \), the Gibbs sampling approach starts with an initial target bigram \(e_1 e_2 \), and alternately fixes one of the target words and replaces the other with a randomly chosen sample. When \(e_1 \) is fixed, a new sample \(e_2^{new} \) is drawn from the probability distribution \(p(e_2^{new}|e_1^{new}, f_2) \). Next, we fix \(e_2 \) and sample \(e_1^{new} \), and continue alternating until \(n \) samples are collected. Bayesian decipherment reduces memory consumption via Gibbs sampling. The probability table remains sparse, since only a small number of word pairs \((f, e)\) will be observed together in the samples.

3.3 Slice Sampling

To draw each sample via Gibbs sampling, we need to estimate the probabilities of choosing each target word \(e \in V_E \), which requires \(O(V) \) operations. To address this issue, Dou et al. (2012) proposed a slice sampling approach with precomputed top-\(K \) lists. Similar to Gibbs sampling, for each source bigram \(f_1 f_2 \), the slice sampling approach starts with one initial target bigram \(e_1 e_2 \), and alternately replaces either \(e_1 \) or \(e_2 \) while keeping the other one fixed. In order to replace \(e_1 \) with a new sample \(e_1^{new} \), we sample a random threshold \(T \) uniformly between 0 and \(p(e_1 e_2)p(f_1|e_1) \). Next, we uniformly sample an \(e_1^{new} \) from all the candidates \(e_1' \) such that \(p(e_1^{new}|e_1') > T \). While sampling \(T \) is straightforward, the second sampling stage requires finding all the candidates, which again takes \(O(V) \) computation. Dou et al. (2012) addressed this challenge by precomputing sorted top-\(K \) word lists for both \(p(f|e) \) and \(p(e_1, e_2) \). While sampling \(e_1 \), it tries to generate all the candidates by looking only at the top-\(K \) lists for \(p(e_1'|f_1) \) and the top \(K \) list for \(p(e_1'|f_2) \). Even though slice sampling with top-\(K \) lists is faster than Gibbs sampling on average, sometimes the top-\(K \) lists fail to provide all the candidates, and it needs to fall back to sampling from the entire vocabulary, which requires \(O(V) \) operations.

3.4 Beam Search

Nuhn et al. (2013, 2014) showed that Beam search can significantly improve the speed of EM-based decipherment, while providing comparable or even slightly better accuracy. Beam search prunes less promising latent states by maintaining two constant-sized beams, one for the translation probabilities \(p(f|e) \) and one for the target bigram probabilities \(p(e_1 e_2) \) – reducing the computational complexity to \(O(N_F) \). Furthermore, it saves memory because many of the word pairs \((f, e)\) are never considered due to not being in the beam.

3.5 Feature-based Generative Models

Feature-based representations have previously been explored under the generative setting. Haghighi et al. (2008) proposed a Canonical Correlation Analysis (CCA) based model for automatically learning the mapping between the words in two languages from monolingual corpora only. They exploited the orthographic and contextual features between the word types, but ignored the token-level frequencies. Ravi (2013) proposed a Bayesian decipherment model based on hash sampling, which takes advantage of feature-based similarities between source and target words. However, the feature representation was not integrated with their decipherment model, and was only used for efficiently sampling candidate target translations for each source word. Furthermore, the feature based hash sampling included only contextual features, and did not consider orthographic features. In contrast, our log-linear model integrates both type-level orthographic features and token-level bigram frequencies.

4 Feature-based Decipherment

Our feature-based decipherment model is based on a chain structured Markov Random Field (Figure 1b)), which jointly models the observed source bigrams \(f_1 f_2 \) and corresponding latent target bigram \(e_1 e_2 \). For each source word \(f \in V_F \), we have a latent variable \(e \in V_E \) indicating the corresponding target word. The joint probability distribution:

\[
p(f_1 f_2, e_1 e_2) = \frac{1}{Z_w} \exp w^T \Phi(f_1 f_2, e_1 e_2) p(e_1 e_2),
\]

where \(\Phi(f_1 f_2, e_1 e_2) \) is the feature function for the given source and the target bigrams, \(w \) is the
model parameters, and Z_w is the normalization term. We assume that the bigram feature function decomposes linearly over the two unigrams:

$$\Phi(f_1 f_2, e_1 e_2) = \phi(f_1, e_1) + \phi(f_2, e_2)$$ \hspace{1cm} (3)

The normalization term is:

$$Z_w = \sum_{f_1 f_2} \sum_{e_1 e_2} p(e_1 e_2) \exp w^T \Phi(f_1 f_2, e_1 e_2)$$

The gradient of the joint log-likelihood is:

$$\frac{\partial L}{\partial w} = E_{e_1 e_2|f_1 f_2} [\Phi(f_1 f_2, e_1 e_2)] - E_{f_1 f_2, e_1 e_2} [\Phi(f_1 f_2, e_1 e_2)] = E_{\text{Forced}} - E_{\text{Full}}$$

Here, the first term is the expectation with respect to the empirical data distribution. We refer to it as the “Forced Expectation”, as the source text is assumed to be given. The second term is the expectation with respect to our model distribution, and referred to as “Full Expectation”. In theory, we can apply gradient descent or other off-the-shelf optimization techniques to optimize the conditional log-likelihood. However, exact estimation of the gradient is computationally expensive, as discussed in the next sub-sections.

4.1 Estimating Forced Expectation (E_{Forced})

We estimate the forced expectation over latent variables using the following equation:

$$E_{\text{Forced}} = \sum_{f_1 f_2 \in F} \frac{1}{Z(f_1 f_2)} \sum_{e_1 e_2 \in V_E^2} \left[p(e_1 e_2) \exp w^T \Phi(f_1 f_2, e_1 e_2) \right] \Phi(f_1 f_2, e_1 e_2)$$ \hspace{1cm} (4)

where $Z(f_1 f_2)$ is the normalization term given $f_1 f_2$:

$$Z(f_1 f_2) = \sum_{e_1 e_2 \in V_E^2} p(e_1 e_2) \exp w^T \Phi(f_1 f_2, e_1 e_2)$$

For each observed $f_1 f_2 \in F$, we need to sum over all possible $e_1 e_2 \in V_E^2$, which requires $O(N_F V^2)$ computation.

4.2 Estimating Full Expectation (E_{Full})

For the full expectation, we assume that both the source text and latent variables are unknown. We estimate it by summing over all the possible source bigrams $f_1 f_2$, and associated latent variables $e_1 e_2$:

$$E_{\text{Full}} = \frac{1}{Z_g} \sum_{f_1 f_2 \in V_F^2} \sum_{e_1 e_2 \in V_E^2} \left[p(e_1 e_2) \exp w^T \Phi(f_1 f_2, e_1 e_2) \right] \Phi(f_1 f_2, e_1 e_2),$$ \hspace{1cm} (5)

where Z_g is the global normalization term:

$$Z_g = \sum_{f_1 f_2 \in V_F^2} \sum_{e_1 e_2 \in V_E^2} p(e_1 e_2) \exp w^T \Phi(f_1 f_2, e_1 e_2).$$

The computational complexity is $O(V^4)$.

5 MCMC Sampling for Faster Training

The overall computational complexity of estimating the exact gradient is $O(N_F V^2 + V^4)$, which is infeasible for decipherment even with a modest-sized vocabulary. Instead, we apply several different MCMC sampling methods to approximately estimate the forced and full expectations.

5.1 Gibbs Sampling

5.1.1 Gibbs Sampling for Approximating Forced Expectation

Instead of summing over all target bigrams $e_1 e_2$, we approximate the forced expectation by taking n
samples of \(e_1 e_2\) for each observed \(f_1 f_2\), and take an average of the features for these samples. For each observed \(f_1 f_2\), the following steps are taken:

- Start with an initial target bigram \(e_1 e_2\).
- Fix \(e_2\) and sample \(e_1^{\text{new}}\) according to the following probability distribution:

\[
P(e_1^{\text{new}} | e_2, f_1 f_2) = \frac{1}{Z_{\text{gibbs}}} \left[p(e_1^{\text{new}} e_2) \exp w^T \Phi(f_1 f_2, e_1^{\text{new}} e_2) \right]
\]

where

\[
Z_{\text{gibbs}} = \sum_{e_1} p(e_1 e_2) \exp w^T \Phi(f_1 f_2, e_1 e_2)
\]

- Next, fix \(e_1\) and draw a new sample \(e_2\) similarly according to \(P(e_2^{\text{new}} | e_1, f_1 f_2)\), and continue sampling \(e_1\) and \(e_2\) alternately until \(n\) samples are drawn.

Drawing each sample requires \(O(V)\) operations, as we need to estimate the normalization term \(Z_{\text{gibbs}}\). The computational complexity of estimating the forced expectation becomes: \(O(N F V n)\), which is expensive as \(V\) can be large.

5.1.2 Gibbs Sampling for Approximating Full Expectation

To efficiently estimate the full expectation, we sample \(n\) source bigrams \(f_1 f_2\) from our model. The Gibbs sampling procedure is:

- Start with an initial random \(f_1 f_2\).
- Fix \(f_2\), and sample a new \(f_1\) according to \(p(f_1 | f_2)\):

\[
p(f_1 | f_2) = \frac{1}{Z'_{\text{gibbs}}} \sum_{e_1} \sum_{e_2} \left[p(e_1 e_2) \exp w^T \Phi(f_1 f_2, e_1 e_2) \right]
\]

where

\[
Z'_{\text{gibbs}} = \sum_{f_1} \sum_{e_1} \sum_{e_2} \left[p(e_1 e_2) \exp w^T \Phi(f_1 f_2, e_1 e_2) \right]
\]

Next fix \(f_1\) and sample \(f_2\) according to \(P(f_2 | f_1)\). Continue alternating until \(n\) samples are drawn.

The computational complexity of exactly estimating \(p(f_1 f_2)\) is \(O(V^3)\), resulting in the computational complexity \(O(V^3 n)\), which is infeasible. However, instead of summing over all possible \(e_1 e_2\), we can approximate via sampling. For each \(f_1 f_2\), we first sample \(n\) samples \(e_1 e_2\) according to \(p(e_1 e_2)\). Let \(S\) be the set of \(n\) samples of target bigrams. Next, we approximate \(p(f_1 | f_2)\) as:

\[
p(f_1 | f_2) = \frac{1}{Z_{\text{approx}}} \sum_{e_1 e_2 \in S} \exp w^T \Phi(f_1 f_2, e_1 e_2)
\]

where

\[
Z_{\text{approx}} = \sum_{f_1} \sum_{e_1 e_2 \in S} \exp w^T \Phi(f_1 f_2, e_1 e_2)
\]

This reduces the computational complexity to \(O(V n^2)\).

5.2 Independent Metropolis Hastings (IMH)

The Gibbs sampling for our log-linear model is slow as it requires normalizing the sampling probabilities over the entire vocabulary. To address this challenge, we apply Independent Metropolis Hastings (IMH) sampling, which relies on a proposal distribution and does not require normalization. However, finding an appropriate proposal distribution can sometimes be challenging, as it needs to be close to the true distribution for faster mixing and must be easy to sample from.

For the forced expectation, one possibility is to use the bigram language model \(p(e_1 e_2)\) as a proposal distribution. However, the bigram language model did not work well in practice. Since \(p(e_1 e_2)\) does not depend on \(f_1 f_2\), it resulted in slow mixing and exhibited a bias towards highly frequent target words.

Instead, we chose an approximation of \(p(e_1 e_2 | f_1 f_2)\) as our proposal distribution. To simplify sampling, we assume \(e_1\) and \(e_2\) to be independent of each other for any given \(f_1 f_2\). Therefore, the proposal distribution \(q(e_1 e_2 | f_1 f_2) = q_u(e_1 | f_1) q_u(e_2 | f_2)\), where \(q_u(e | f)\) is a probability distribution over target unigrams for a given source unigram. We define \(q_u(e | f)\) as follows:

\[
q_u(e | f) = (1 - p_b) q_s(f | e) + p_b \frac{1}{V}
\]
where \(p_b \) is a small back-off probability with which we fall back to the uniform distribution over target unigrams. The other term \(q_s(e|f) \) is a distribution over the target words \(e \) for which \((f, e) \in \mathbf{w} \):

\[
q_s(e|f) = \begin{cases}
\frac{1}{Z_{mh}} \exp \mathbf{w}^T \phi(f, e), & \text{if } (f, e) \in \mathbf{w} \\
0, & \text{otherwise.}
\end{cases}
\]

Here, \(Z_{mh} \) is a normalization term over all the \(e \) such that \((f, e) \in \mathbf{w} \). The weight vector \(\mathbf{w} \) is sparse, as only a small number of translation features \((f, e) \) are observed during sampling. Furthermore, we update \(q_s \) only once every 5 iterations of gradient descent.

The actual target distribution is:

\[
p(e_1 e_2|f_1 f_2) \propto p(e_1 e_2) \exp \mathbf{w}^T \Phi(f_1 f_2, e_1 e_2)
\]

(6)

For each \(f_1 f_2 \in \mathcal{F} \), we take the following steps during sampling:

- Start with an initial English bigram: \(\langle e_1 e_2 \rangle^0 \)
- Let the current sample be \(\langle e_1 e_2 \rangle^t \). Next, sample \(\langle e_1 e_2 \rangle^{t+1} \) from the proposal distribution \(q(e_1 e_2|f_1 f_2) \).
- Accept the new sample with the probability:

\[
P_a = \frac{\frac{p(\langle e_1 e_2 \rangle^{t+1}|f_1 f_2)}{q(\langle e_1 e_2 \rangle^{t+1}|f_1 f_2)}}{\frac{p(\langle e_1 e_2 \rangle^t|f_1 f_2)}{q(\langle e_1 e_2 \rangle^t|f_1 f_2)} \cdot \frac{q(\langle e_1 e_2 \rangle^{t+1}|f_1 f_2)}{q(\langle e_1 e_2 \rangle^t|f_1 f_2)}}
\]

The IMH sampling reduces the complexity of the forced expectation estimation to \(O(N_F n) \) which is significantly less than the complexity of \(O(N_F V n) \) in the case of Gibbs sampling. However, we could not apply IMH while estimating the full expectation, as finding a suitable proposal distribution is more complicated. Therefore, the overall complexity remains: \(O(N_F n + V n^2) \).

5.3 Contrastive Divergence Based Sampling

The main reason for the slow training of the proposed log-linear model is the high computational cost of estimating the partition function \(Z_g \) of our MRF model when estimating the full expectation. A similar problem arises while training deep neural networks. An increasingly popular technique to address this issue is to perform Contrastive Divergence \([\text{Hinton}, 2002] \), which allows us to avoid estimating the partition function. \(^{1}\)

For each observed source bigram \(f_1 f_2 \in \mathcal{F} \), the contrastive divergence sampling procedure works as follows:

- Sample a target bigram \(e_1 e_2 \) according to the distribution \(p(e_1 e_2|f_1 f_2) \). We perform this step using Independent Metropolis Hastings, as discussed in the previous section.
- Sample a reconstructed source bigram \(\langle f_1 f_2 \rangle^{\text{recon}} \) by sampling from the distribution \(p(f_1 f_2|e_1 e_2) \), again via Independent Metropolis Hastings.

We take \(n \) such samples of \(e_1 e_2 \) and corresponding \(\langle f_1 f_2 \rangle^{\text{recon}} \). For each sample and reconstruction pair, we update the weight vector by an approximation of the gradient:

\[
\frac{\partial L}{\partial \mathbf{w}} \approx \Phi(\langle f_1 f_2 \rangle^{\text{data}}, e_1 e_2) - \Phi(\langle f_1 f_2 \rangle^{\text{recon}}, e_1 e_2)
\]

6 Feature Design

We included the following unigram-level features:

- **Translation Features:** each \((f, e)\) word pair, where \(f \in V_F \) and \(e \in V_E \), is a potential feature in our model. While there are \(O(V^2) \) such possible features, we only include the ones that are observed during sampling. Therefore, our feature weights \(\mathbf{w} \) is a sparse vector, with most of the entries zero.
- **Orthographic Features:** we incorporated an orthographic feature based on the normalized edit-distance. For a word pair \((e, f)\), the orthographic feature is triggered if the normalized edit distance is less than a threshold (set to 0.3 in our experiments).

The set of features can further be extended by including context window based features \(\{ \text{Haghighi et al., 2008} \} \) \& \(\text{Kavi, 2013} \) and topic features.

7 Experiments and Results

7.1 Datasets

We experimented with two closely related language pairs: (1) Spanish and English and (2) French and English. For Spanish/English, we experimented with a subset of the OPUS Subtitle corpus \(\{ \text{Tiedemann, 2009} \} \). For French/English, we used the Hansard corpus \(\{ \text{Brown et al., 1991} \} \), containing parallel French and English text from...
the proceedings of the Canadian Parliament. In order to have a non-parallel setup, we extracted monolingual text from different sections of the French and English text. The detailed description of the two datasets are provided below:

OPUS Subtitle Dataset: the OPUS dataset is a smaller pre-processed subset of the original larger OPUS Spanish/English parallel corpora. The dataset consists of short sentences in Spanish and English, each of which is a movie subtitle. The same dataset has been used in several previous decipherment experiments (Ravi and Knight, 2011; Nuhn and Ney, 2014; Ravi, 2013).

Hansard Dataset: The Hansard dataset contains parallel text from the Canadian Parliament Proceedings. We experimented with two datasets:

- **Hansard-100:** The French text consists of the first 100 sentences and the English text consists of the second 100 sentences.

- **Hansard-1000:** The French text consists of the first 1000 sentences and the English text consists of the second 1000 sentences.

Table 3 provides some statistics on the three datasets used in our experiments. Due to the relatively small vocabulary size of OPUS and Hansard-100 dataset, we were able to run all 4 versions of the log-linear model and compare with the exact EM-based decipherment. The Hansard-1000 dataset, however, is too large to run the exact EM and some of the inexact log-linear models (e.g., Gibbs sampling and IMH + Gibbs). As a result, we only applied the fastest log-linear model with contrastive divergence on the Hansard-1000 dataset.

7.3 Results

We experimented with three versions of our log-linear decipherment algorithms: (1) Gibbs Sampling, (2) IMH and Gibbs Sampling, and (3) Contrastive Divergence (CD). To determine the impact of the orthographic features, the Contrastive Divergence based log-linear model was tested both with and without the orthographic features. We compared the log-linear models with the exact EM algorithm (Koehn and Knight, 2000; Ravi and Knight, 2011). We could not include the exact log-linear model in our experiments due to the extremely slow training. The number of iterations was fixed to 50 for all five methods. For the sampling based methods, we set the number of samples $n = 50$.

For the log-linear model with no orthographic features, we initialized all the feature weights to zero. We do not store these initial weights in memory, as they are all set to zero by default. When we included the orthographic features, we initialized the weight of the orthographic match feature to 1.0 to encourage translation pairs with high orthographic similarity. Furthermore, for each word pair (f, e) with high orthographic similarity, we assigned a small positive weight (0.1). This initialization allowed the proposal distribution to sample orthographically similar target words for each source word. For the exact EM, we initialized the translation probabilities uniformly and stored the entire probability table.

| Dataset | Num. Sentences | $|V_f|$ | $|V_e|$ |
|---------------|----------------|-------|-------|
| OPUS | 19,777K (1128 unique) | 579 | 411 |
| Hansard-100 | 100 | 358 | 371 |
| Hansard-1000 | 1000 | 2957 | 3082 |

Table 3: Statistics on the datasets used in our experiments.
Table 4: The running time per iteration and accuracy of decipherment.

Method	OPUS		Hansard-100		Hansard-1000	
	Time	Acc (%)	Time	Acc (%)	Time	Acc (%)
EM	520.2s	6.04	188.0s	2.96	–	–
Log-linear + Gibbs	429.7s	8.63	207.3s	14.02	–	–
Log-linear + IMH + Gibbs	61.6s	8.46	39.0s	13.21	–	–
Log-linear + CD	15.1s	8.46	7.77s	12.93	401.0s	15.08
Log-linear + CD (No ortho)	15.3s	1.89	7.70s	3.50	396.4s	2.66

We applied all four log-linear models and the exact EM on the OPUS and the Hansard-100 datasets. On the Hansard-1000 dataset, we could only apply the Contrastive Divergence based log-linear model (with and without orthographic features) due to its large vocabulary sizes. Table 4 reports the accuracy and the running time per iteration for all the methods on the three datasets. The BLEU scores for the OPUS dataset are reported in Table 5. A bigram language model was used for all the models. Table 6 shows a few examples for which the log-linear model performed better due to orthographic features.

8 Discussion and Future Work

We notice that all the log-linear models with orthographic features outperformed the EM-based methods. The only log-linear model which performed much worse was the one which lacked the orthographic features. This result emphasizes the importance of orthographic features for decipherment between closely related language pairs. The margin of improvement due to orthographic features was bigger for the Hansard datasets than that for the OPUS dataset. It is expected, as the lexical similarity between French and English is higher than that for Spanish and English. The Contrastive Divergence based log-linear model achieved comparable accuracy to the two other log-linear models, despite being orders of magnitude faster. Furthermore, the log-linear models resulted in better translations, as they obtained significantly higher BLEU score on the OPUS dataset (Table 5).

While the orthographic features provide huge improvements in decipherment accuracy, they also introduce new errors. For example, the Spanish word “madre” means “mother” in English, but our model gave highest score to the English word “made” due to the high orthographic similarity. However, such error cases are negligible compared to the improvement.

In this paper, we assumed no parallel data is available, and experimented with fairly simple initialization strategies. However, the objective functions for both EM and the latent variable log-linear model are non-convex, and the results may vary drastically based on initialization (Berg-Kirkpatrick and Klein, 2013). In future, we would like to start with a small parallel corpora, and initialize the decipherment models with the parameters learned from the small parallel corpora (Dou et al., 2014). We would also like to experiment with a more sophisticated translation model that incorporates NULL words, local reordering of neighboring words, and word fertilities (Ravi, 2013). Finally, we would like to incorporate more flexible non-local features, which are not supported by the feature-based directed graphical models, such as Feature-HMM (Berg-Kirkpatrick et al., 2010).

9 Conclusion

We presented a feature-based decipherment system using latent variable log-linear models. The proposed models take advantage of the orthographic similarities between closely related languages, and outperform the existing EM-based models. The Contrastive Divergence based variant provided the best trade-off between speed and accuracy.

References

[Ammar et al.2014] Waleed Ammar, Chris Dyer, and Noah A Smith. 2014. Conditional random field autoencoders for unsupervised structured prediction. In Z. Ghahramani, M. Welling, C. Cortes, N.D.
[Berg-Kirkpatrick and Klein2013] Taylor Berg-Kirkpatrick and Dan Klein. 2013. Decipherment with a million random restarts. In Proceedings of EMNLP, pages 874–878. ACL.

[Berg-Kirkpatrick et al.2010] Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. 2010. Painless unsupervised learning with features. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 582–590. Association for Computational Linguistics.

[Brown et al.1991] Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer. 1991. Aligning sentences in parallel corpora. In Proceedings of the 29th Annual Conference of the Association for Computational Linguistics (ACL-91), pages 169–176. ACL.

[Brown et al.1993] Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1993. The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2):263–311.

[Dempster et al.1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–21.

[Dou and Knight2012] Qing Dou and Kevin Knight. 2012. Large scale decipherment for out-of-domain machine translation. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 266–275. Association for Computational Linguistics.

[Dou et al.2014] Qing Dou, Ashish Vaswani, and Kevin Knight. 2014. Beyond parallel data: Joint word alignment and decipherment improves machine translation. In Proceedings of EMNLP.

[Dyer et al.2011] Chris Dyer, Jonathan Clark, Alon Lavie, and Noah A. Smith. 2011. Unsupervised word alignment with arbitrary features. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 409–419. Association for Computational Linguistics.

[Haghighi et al.2008] Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein. 2008. Learning bilingual lexicons from monolingual corpora. In ACL, volume 2008, pages 771–779.

[Hinton2002] Geoffrey Hinton. 2002. Training products of experts by minimizing contrastive divergence. Neural computation, 14(8):1771–1800.

[Knight and Yamada1999] Kevin Knight and Kenji Yamada. 1999. A computational approach to deciphering unknown scripts. In ACL Workshop on Unsupervised Learning in Natural Language Processing, volume 1, pages 37–44.

[Koehn and Knight2000] Philipp Koehn and Kevin Knight. 2000. Estimating word translation probabilities from unrelated monolingual corpora using the EM algorithm. In AAAI/IAAI, pages 711–715.

[Nuhn and Ney2014] Malte Nuhn and Hermann Ney. 2014. EM decipherment for large vocabularies. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 759–764. Association for Computational Linguistics.

[Nuhn et al.2013] Malte Nuhn, Julian Schamper, and Hermann Ney. 2013. Beam search for solving substitution ciphers. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1568–1576. Association for Computational Linguistics.

[Ravi and Knight2011] Sujith Ravi and Kevin Knight. 2011. Deciphering foreign language. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 12–21. Association for Computational Linguistics.

[Ravi2013] Sujith Ravi. 2013. Scalable decipherment for machine translation via hash sampling. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 362–371.

[Tiedemann2009] Jörg Tiedemann. 2009. News from OPUS - A collection of multilingual parallel corpora with tools and interfaces. In N. Nicolov, K. Bontcheva, G. Angelova, and R. Mitkov, editors, Recent Advances in Natural Language Processing, volume V, pages 237–248. John Benjamins, Amsterdam/Philadelphia, Borovets, Bulgaria.