Supporting Information

for

Nomimicins B–D, new tetronate-class polyketides from a marine-derived actinomycete of the genus Actinomadura

Zhiwei Zhang, Tao Zhou, Taehui Yang, Keisuke Fukaya, Enjuro Harunari, Shun Saito, Katsuhisa Yamada, Chiaki Imada, Daisuke Urabe and Yasuhiro Igarashi

Beilstein J. Org. Chem. 2021, 17, 2194–2202. doi:10.3762/bjoc.17.141

Copies of UV, IR, and NMR spectra for 1–4 as well as Cartesian coordinates and energies of the most stable conformers of 4a–d
Table of Content

Figure	Description	Page
S1	UV spectrum of nomimicin B (1)	S3
S2	IR spectrum of 1	S4
S3	1H NMR spectrum of 1 (500 MHz, CD$_3$OD)	S5
S4	13C NMR spectrum of 1 (125 MHz, CD$_3$OD)	S6
S5	COSY spectrum of 1 (500 MHz, CD$_3$OD)	S7
S6	HSQC spectrum of 1 (500 MHz, CD$_3$OD)	S8
S7	HMBC spectrum of 1 (500 MHz, CD$_3$OD)	S9
S8	NOESY spectrum of 1 (500 MHz, CD$_3$OD)	S10
S9	ROESY spectrum of 1 (500 MHz, CD$_3$OD)	S11
S10	UV spectrum of nomimicin C (2)	S12
S11	IR spectrum of 2	S13
S12	1H NMR spectrum of 2 (500 MHz, CD$_3$OD)	S14
S13	13C NMR spectrum of 2 (125 MHz, CD$_3$OD)	S15
S14	COSY spectrum of 2 (500 MHz, CD$_3$OD)	S16
S15	HSQC spectrum of 2 (500 MHz, CD$_3$OD)	S17
S16	HMBC spectrum of 2 (500 MHz, CD$_3$OD)	S18
S17	NOESY spectrum of 2 (500 MHz, CD$_3$OD)	S19
S18	ROESY spectrum of 2 (500 MHz, CD$_3$OD)	S20
S19	UV spectrum of nomimicin D (3)	S21
S20	IR spectrum of 3	S22
S21	1H NMR spectrum of 3 (500 MHz, CD$_3$OD)	S23
S22	13C NMR spectrum of 3 (125 MHz, CD$_3$OD)	S24
S23	COSY spectrum of 3 (500 MHz, CD$_3$OD)	S25
S24	HSQC spectrum of 3 (500 MHz, CD$_3$OD)	S26
S25	HMBC spectrum of 3 (500 MHz, CD$_3$OD)	S27
S26	NOESY spectrum of 3 (500 MHz, CD$_3$OD)	S28
S27	ROESY spectrum of 3 (500 MHz, CD$_3$OD)	S29
S28	UV spectrum of nomimicin (4)	S30
S29	IR spectrum of 4	S31
S30	1H NMR spectrum of 4 (500 MHz, CD$_3$OD)	S32
S31	13C NMR spectrum of 4 (125 MHz, CD$_3$OD)	S33
S32	COSY spectrum of 4 (500 MHz, CD$_3$OD)	S34
S33	HSQC spectrum of 4 (500 MHz, CD$_3$OD)	S35
S34	HMBC spectrum of 4 (500 MHz, CD$_3$OD)	S36
Figure S35. COSY and key HMBC correlations for 2. .. S37
Figure S36. Relative correlations for 2 determined by ROESY analysis. S37
Table S1. NOESY and ROESY correlations of nomimicin B (1). ... S38
Table S2. NOESY and ROESY correlations of nomimicin C (2). ... S39
Table S3. ROESY and NOESY correlations of nomimicin D (3). ... S40
Table S4. Cartesian coordinates and energies of the most stable conformer of 4a. S41
Table S5. Cartesian coordinates and energies of the most stable conformer of 4b. S43
Table S6. Cartesian coordinates and energies of the most stable conformer of 4c. S45
Table S7. Cartesian coordinates and energies of the most stable conformer of 4d. S47
Figure S1. UV spectrum of nomimicin B (1).
Figure S2. IR spectrum of 1.
Figure S3. 1H NMR spectrum of 1 (500 MHz, CD$_3$OD).
Figure S4. 13C NMR spectrum of 1 (125 MHz, CD$_3$OD).
Figure S5. COSY spectrum of 1 (500 MHz, CD$_3$OD).
Figure S6. HSQC spectrum of 1 (500 MHz, CD$_3$OD).
Figure S7. HMBC spectrum of 1 (500 MHz, CD₃OD).
Figure S8. NOESY spectrum of 1 (500 MHz, CD$_3$OD).
Figure S9. ROESY spectrum of 1 (500 MHz, CD$_3$OD).
Figure S10. UV spectrum of nomimicin C (2).
Figure S11. IR spectrum of 2.
Figure S12. 1H NMR spectrum of 2 (500 MHz, CD$_3$OD).
Figure S13. 13C NMR spectrum of 2 (125 MHz, CD$_3$OD).
Figure S14. COSY spectrum of 2 (500 MHz, CD$_3$OD).
Figure S15. HSQC spectrum of 2 (500 MHz, CD$_3$OD).
Figure S16. HMBC spectrum of 2 (500 MHz, CD$_3$OD).
Figure S17. NOESY spectrum of 2 (500 MHz, CD$_3$OD).
Figure S18. ROESY spectrum of 2 (500 MHz, CD$_3$OD).
Figure S19. UV spectrum of nomimicin D (3).
Figure S20. IR spectrum of 3.
Figure S21. 1H NMR spectrum of 3 (500 MHz, CD$_3$OD).
Figure S22. 13C NMR spectrum of 3 (125 MHz, CD$_3$OD).
Figure S23. COSY spectrum of 3 (500 MHz, CD$_3$OD).
Figure S24. HSQC spectrum of 3 (500 MHz, CD$_3$OD).
Figure S25. HMBC spectrum of 3 (500 MHz, CD$_3$OD).
Figure S26. NOESY spectrum of 3 (500 MHz, CD$_3$OD).
Figure S27. ROESY spectrum of 3 (500 MHz, CD₃OD).
Figure S28. UV spectrum of nomimicin (4).
Figure S29. IR spectrum of 4.

![IR spectrum of 4]
Figure S30. 1H NMR spectrum of 4 (500 MHz, CD$_3$OD).
Figure S31. 13C NMR spectrum of 4 (125 MHz, CD$_3$OD).
Figure S32. COSY spectrum of 4 (500 MHz, CD$_3$OD).
Figure S33. HSQC spectrum of 4 (500 MHz, CD$_3$OD).
Figure S34. HMBC spectrum of 4 (500 MHz, CD$_3$OD).
Figure S35. COSY and key HMBC correlations for 2.

Figure S36. Relative correlations for 2 determined by ROESY analysis.
Table S1. NOESY and ROESY correlations of nomimicin B (1).

atom no.	δ_H, mult (J in Hz)^a	NOESY^a	ROESY^a	
5	1.66^b	6b, 7, 9, 10	6b, 7, 9, 10	
6ax	1.34, ddd (12.0, 12.0, 12.0)	6b, 10, 25,	6b, 10, 25, 26	
6eq	2.41, brd (12.0)	5, 6a, 7	5, 6a, 7	
7	3.74, dd (12.0, 4.3)	5, 6a, 9	5, 6a, 9	
9	3.21, d (11.2)	5, 7	5, 7	
10	2.02^b	6a, 11, 25	6a, 11, 25, 26	
11	5.85, d (10.1)	9, 10, 12	9, 10, 12	
12	5.61, ddd (10.0, 5.3, 2.6)	11, 13, 14b	11, 13, 14b	
13	2.81, m	12, 15, 25	12, 15, 23	
14a	1.80^b	15, 16	15, 16	
14b	1.98^b	12, 15, 16	12, 13, 15, 16	
15	5.49, dd (14.7, 11.5)	13, 14a, 14b, 16, 17b	13, 14a, 14b, 16, 17b	
16	5.12, dd (14.8, 11.3)	14a, 15, 17a, 17b, 27	14a, 14b, 15 17b, 27	
17a	1.95^b	27, 17b, 19	27, 17b, 19	
17b	2.32^b	15, 16, 17a, 19	17a, 19, 16, 15	
19	5.00, s	17a, 17b, 27, 28	27, 28, 17a, 17b	
21	2.00^b	22b, 30	22b, 30	
22a	1.78^b	30	30	
22b	2.34^b	21, 27, 29b	21, 27, 29b	
25	1.60, s	10, 13	10, 13	
26	3.99, s		6b, 10	
27	1.24, s			16, 17b, 19, 22b
28	1.75, s	19, 22a, 29b, 30	19	
29a	1.58^d	30	22b, 30	
29b	1.72^b	21	21, 22b	
30	0.93, t (7.4)	21, 22a, 29a, 29b	21, 22a, 29a, 29b	

^aRecorded at 500 MHz. ^bOverlapping signals.
Table S2. NOESY and ROESY correlations of nomimicin C (2).

atom no.	δ_H, mult (J in Hz)^a	NOESYa	ROESYa
5	1.68^b	6b, 7, 9	6b, 7, 9
6ax	1.20, ddd (11.9, 11.9, 11.9)	6b, 10, 25	6b, 10, 25
6eq	2.35^b	5, 6a, 7	5, 6a, 7
7	3.62, dd (11.8, 4.2)	5, 6a, 6b, 9	5, 6a, 6b, 9
9	3.11, d (11.0)	5, 7, 10	5, 7, 10
10	1.85^b	6a, 9, 11, 25, 26	6a, 9, 11, 25, 26
11	5.84, d (10.0)	9, 10, 12	9, 10, 12
12	5.60, ddd (10.0, 5.1, 2.5)	11, 13, 14b	11, 13, 14b
13	2.79, m	12, 14a, 14b, 15, 25	12, 14a, 14b, 15, 25
14a	1.80^b	13, 16	13, 16
14b	1.98^b	12, 13, 15, 16	12, 13, 15, 16
15	5.48, dd (14.5, 11.9)	13, 14b, 16, 17b	13, 14b, 16, 17b
16	5.12, dd (14.8, 11.6)	14a, 14b, 15, 17b, 27	14a, 14b, 17b, 27
17a	1.95^b	16, 19, 17b, 27	16, 19, 17b, 27
17b	2.32^b	15, 19, 17a, 27	15, 16, 17b, 19, 27
19	5.01, s	17b, 21, 27, 28	17b, 21, 27, 28
21	2.01^b	22b, 28, 30	22b, 28, 30
22a	1.79^b	30	30
22b	2.34^b	21, 22a, 27, 29b	21, 22a, 27, 29b
25	1.59, s	6b, 10, 13	6b, 10, 13
26	1.15, s	10	10
27	1.25, s	16, 17b, 19, 22b	16, 7b, 19, 22b
28	1.75, s	19, 21, 30	19, 21, 30
29a	1.62^b	30	30
29b	1.75^b	21, 22b, 30	21, 22b, 30
30	0.93, t (7.4)	21, 22a, 28, 29a, 29b	21, 22a, 28, 29a, 29b

^aRecorded at 500 MHz. ^bOverlapping signals.
Table S3. ROESY and NOESY correlations of nomimicin D (3).

Atom no.	δ_H, mult (J in Hz)a	NOESYa	ROESYa
5	1.72b	7	7, 9
6ax	1.14, ddd (11.7, 11.7, 11.7)	6eq, 10, 25, 26	6eq, 10, 25, 26
6eq	1.80, brd (11.7)	6ax, 7	6ax, 7
7	3.83, ddd (11.6, 4.5, 4.5)	5, 6ax, 6eq, 8	5, 6eq, 8, 9
8	2.32, m	9, 26	7, 9, 26
9	3.40, dd (10.8, 4.7)	5, 8, 10	5, 6eq, 7, 8
10	1.94b	6ax, 9, 11, 25, 26	6ax, 11, 26, 29
11	5.85, d (10.2)	10, 12	9, 10, 12
12	5.72, ddd (10.2, 4.8, 2.5)	11, 13	11, 13
13	3.32b	12, 14b, 15, 25	12, 14b, 15, 25
14a	1.75b	14b, 15	14b, 15, 16
14b	2.00b	13, 14a, 15	13, 14a, 15, 16
15	5.40, dt (15.0, 7.2)	13, 14a, 14b, 17	14a, 14b, 17
16	5.26, dt (15.2, 7.0)	17	14a, 14b, 17
17	2.63, d (6.9)	15, 16, 19, 27	15, 16, 19, 27
19	5.59, s	17, 27, 28	17, 27, 28
21	5.20, t (7.3)	28, 29	28, 29
22a	4.66, d (1.5)	22b	22b
22b	5.00, d (1.5)	22a	22a
25	1.38, s	6ax, 10, 13	6ax, 10, 13
26	0.92, d (6.9)	6ax, 8, 10	6ax, 8, 10
27	1.69, s	17, 19	17, 19
28	1.67, s	19, 21	19, 21
29	2.08, q (7.5)	21, 30	21, 30
30	0.98, t (7.5)	29	29

aRecorded at 500 MHz. bOverlapping signals.
Table S4. Cartesian coordinates and energies of the most stable conformer of 4a.

	C	H	C	O	C	C	C	O
	−3.503719	−2.346714	2.018768	C	−3.645152	−0.928348	2.483653	
	−2.842684	0.059614	1.614795	C	−1.406663	−0.467423	1.327473	
	−1.478556	−1.858223	0.592342	C	−2.535046	−2.744197	1.197996	
	−5.114423	−0.482563	2.517646	C	−5.279711	0.929994	3.107325	
	−4.385326	1.900074	2.329127	C	−2.928249	1.436913	2.295338	
	−3.357511	0.126062	0.644467	H	−3.275366	−0.872508	3.519517	
	−5.025003	0.971896	4.615534	O	−5.838844	−1.443966	3.275191	
	−4.511032	3.183884	2.931226	C	−0.628314	−0.610233	2.647818	
	−0.659504	0.477094	0.398921	C	0.661656	0.373915	−0.030811	
	−1.393789	1.424828	−0.127383	O	1.639477	−0.706686	0.113186	
	2.586816	−0.577666	−0.849731	C	2.365451	0.552627	−1.719717	
	1.091115	1.157639	−1.160964	O	0.536366	2.160395	−1.624592	
	3.524265	1.533137	−1.535198	O	1.725959	−1.631641	0.893988	
	−1.689680	−1.808606	−0.957891	C	−0.406444	−1.965046	−1.729977	
	0.043227	−1.135931	−2.672441	C	1.404868	−1.243425	−3.302139	
	2.266578	0.047683	−3.188329	C	1.683546	1.118875	−4.130266	

4a ($\Delta G = 0.0$ kcal/mol)
C	3.662248	-0.283699	-3.677645
C	4.887106	0.905325	-1.852568
C	5.512444	0.066671	-0.711618
H	-4.220916	-3.069641	2.399844
H	-2.480596	-3.789269	0.893961
H	-6.322708	1.233321	2.937115
H	-2.550962	1.377486	3.22789
H	-3.989715	0.728106	4.874078
H	-5.672929	0.256624	5.129063
H	-3.988011	3.806797	2.401920
H	0.400098	-0.923285	2.472441
H	-0.845789	1.972098	-0.768030
H	3.499613	1.926940	-0.514148
H	-2.207474	-0.885844	-1.250439
H	-0.577815	-0.283741	-2.958990
H	1.318885	-1.457654	-4.376482
H	0.619692	1.297559	-3.956449
H	3.681631	-0.872176	-4.596844
H	5.999076	-0.804052	-4.700691
H	6.676972	-1.020392	-3.079586
H	6.565455	-0.099793	-0.966336
H	5.792408	1.755548	0.637118

C	4.821642	0.087611	-3.125828
C	6.139258	-0.320159	-3.729921
C	5.437464	0.718326	0.666353
H	-0.513522	-2.347953	0.765753
H	-5.489581	-0.477409	1.481599
H	-4.751292	1.947582	1.290979
H	-2.335827	2.192927	1.774845
H	-5.241348	1.967971	5.010081
H	-6.770566	-1.171176	3.284207
H	-1.108293	-1.368329	3.274221
H	-0.614276	0.335119	3.197890
H	3.343562	2.379927	-2.204942
H	-2.362498	-2.633450	-1.225418
H	0.219027	-2.810432	-1.431182
H	1.944444	-2.082350	-2.849352
H	2.210249	2.072954	-4.037394
H	1.805293	0.771193	-5.161667
H	5.577214	1.743265	-2.030130
H	6.791306	0.551283	-3.866927
H	5.039526	-0.920376	-0.677361
H	6.060169	0.172370	1.382180
H	4.415026	0.722727	1.058638
Table S5. Cartesian coordinates and energies of the most stable conformer of 4b.

![Image of 4b molecule]

4b ($\Delta G = 0.4$ kcal/mol)

| M06-2X/def2-TZVP-SMD(MeOH)//M06-2X/6-31G(d)-SMD(MeOH): |
|-----------------|-----------------|-----------------|
| Gibbs Free Energy (a.u.) | -1617.989748 |

| M06-2X/def2-TZVP-SMD(MeOH): |
|-----------------|-----------------|
| Electronic energy (a.u.) | -1618.592155 |

| M06-2X/6-31G(d)-SMD(MeOH): |
|-----------------|-----------------|
| Zero-point correction (a.u.) | 0.663404 |
| Thermal correction to Energy (a.u.) | 0.697073 |
| Thermal correction to Enthalpy (a.u.) | 0.698017 |
| Thermal correction to Gibbs Free Energy (a.u.) | 0.602407 |

C 3.618438 -2.909456 -0.579758 C 3.596050 -2.596963 0.886760
C 2.246516 -2.007607 1.341583 C 1.744913 -0.909585 0.363405
C 1.574001 -1.515065 -1.078718 C 2.729540 -2.413072 -1.436418
C 3.919407 -3.832798 1.738119 C 4.018140 -3.495126 3.236562
C 2.724025 -2.801589 3.672159 C 2.405109 -1.579392 2.810437
H 1.506189 -2.821987 1.306460 H 4.389366 -1.859668 1.088091
C 5.268592 -2.681520 3.576455 O 5.138024 -4.385086 1.254332
O 2.861065 -2.450254 5.045375 C 2.738885 0.264248 0.324390
C 0.375484 -0.398696 0.810911 C -0.358178 0.669337 0.118117
O -0.219862 -0.956279 1.743585 C -0.133183 1.376208 -1.147617
O -1.298307 1.950198 -1.549630 C -2.383160 1.661905 -0.649570
C -1.691651 0.841546 0.399706 O -2.367565 0.368997 1.407338
C -2.894037 2.981673 -0.067781 O 0.855282 1.518871 -1.836063
C 0.236993 -2.284458 -1.351032 C -0.766837 -1.451250 -2.103366
C -2.006901 -1.178225 -1.698225 C -2.919243 -0.192170 -2.376254
C -3.499885 0.907016 -1.437439 C -4.542970 0.261648 -0.504280
C	-4.225278	1.915965	-2.305660	C	-4.198722	3.247720	-2.196414																
C	-3.363629	3.958870	-1.152301	C	-4.980385	4.122875	-3.139989																
C	-2.242858	4.779816	-1.835195	C	-1.211742	5.364777	-0.874187																
H	4.416873	-3.553661	-0.940213	H	1.602124	-0.670138	-1.775574																
H	2.794035	-2.675314	-2.492315	H	3.106877	-4.563318	1.595092																
H	0.402399	-4.448033	3.781395	H	1.896101	-3.520285	3.561892																
H	3.219561	-0.852265	2.910908	H	1.498088	-1.110394	3.197653																
H	5.263195	-1.689580	3.113726	H	5.350434	-2.544297	4.657764																
H	6.165481	-3.203811	3.232878	H	5.332275	-5.177042	1.781278																
H	2.022055	-2.053943	5.329490	H	3.690265	-0.070811	-0.101061																
H	2.368992	1.081147	-0.295383	H	2.929024	0.652284	1.329640																
H	-1.734714	-0.221670	1.908174	H	-3.727638	2.745672	0.601172																
H	-2.106467	3.424195	0.549511	H	0.479290	-3.173280	-1.947303																
H	-0.195437	-2.653647	-0.411959	H	-0.396145	-0.983866	-3.019317																
H	-2.362485	-1.633739	-0.770359	H	-2.383595	0.282214	-3.205743																
H	-3.789946	-0.705525	-2.807762	H	-4.919434	0.969573	0.239730																
H	-4.154491	-0.614174	0.020779	H	-5.393040	-0.060747	-1.114758																
H	-4.847764	1.463781	-3.079838	H	-4.013156	4.688077	-0.646375																
H	-5.641434	3.529251	-3.777741	H	-5.590130	4.846452	-2.585113																
H	-4.314530	4.701212	-3.791520	H	-1.737548	4.161791	-2.584728																
H	-2.723787	5.600685	-2.379436	H	-0.568568	6.082041	-1.393859																
H	-1.694869	5.890488	-0.041819	H	-0.563519	4.589250	-0.452792																
Table S6. Cartesian coordinates and energies of the most stable conformer of 4c.

![4c (ΔG = 3.5 kcal/mol)]

M06-2X/def2-TZVP-SMD(MeOH)//M06-2X/6-31G(d)-SMD(MeOH):

	Gibbs Free Energy (a.u.)	Electronic energy (a.u.)	Zero-point correction (a.u.)	Thermal correction to Energy (a.u.)	Thermal correction to Enthalpy (a.u.)	Thermal correction to Gibbs Free Energy (a.u.)
	−1617.984871	−1618.586628	0.663069	0.696797	0.697741	0.601757

C 1.860459 -3.459310 -2.831985 C 2.192833 -1.993084 -2.859413
C 1.197889 -1.132826 -2.052228 C -0.251763 -1.602591 -2.299214
C -0.397974 -3.086560 -1.796580 C 0.682014 -3.934794 -2.429161
C 3.612081 -1.676168 -2.374454 C 3.961273 -0.191477 -2.601203
C 2.903567 0.685037 -1.919253 C 1.480742 0.340058 -2.363188
H 1.415731 -1.295168 -0.991161 H 2.161243 -1.680349 -3.914794
C 4.147735 0.154664 -4.080021 O 4.512152 -2.530782 -3.068664
O 3.221913 2.045455 -2.197232 C -0.570394 -1.573346 -3.814119
C -1.344627 -0.781702 -1.620529 C -1.334381 0.041244 -0.494802
O -2.502099 -0.999269 -2.203615 C -2.617691 0.454941 0.056409
O -2.496049 0.957098 1.285166 C -1.117345 0.929387 1.731912
C -0.347569 0.355626 0.533365 O 0.868793 0.270088 0.544045
C -0.695930 2.371282 2.000210 O -3.731874 0.363810 -0.458461
C -0.295529 -3.391619 -0.274381 C -1.229319 -2.685563 0.669919
C -0.820582 -2.195345 1.841232 C -1.643751 -1.358336 2.779778
C -1.054727 0.061423 3.016344 C 0.384052 -0.061543 3.556985
C -1.876495 0.775743 4.069110 C -2.106078 2.091865 4.110946
C -1.571302 3.060906 3.068040 C -2.897411 2.695141 5.243048
C -2.699898 3.912004 2.446892 C -2.190515 5.107404 1.644890
H 2.611150 -4.140192 -3.226940 H -1.381654 -3.435593 -2.136929
H 0.488758 -5.006254 -2.460316 H 3.665326 -1.890851 -1.295217
H 4.918040 0.003764 -2.092933 H 2.965445 0.510769 -0.835070
H 1.373687 0.533681 -3.438007 H 0.781958 1.002806 -1.841389
H 3.214072 0.091985 -4.647964 H 4.531124 1.173008 -4.184646
H 4.867138 -0.526239 -4.542819 H 5.409371 -2.331953 -2.755270
H 2.599991 2.595456 -1.694684 H 0.201758 -2.095590 -4.377998
H -1.522805 -2.061216 -4.026022 H -0.627951 -0.542631 -4.178704
H -3.234325 -0.509748 -1.722967 H 0.356037 2.356798 2.297764
H -0.745179 2.919170 1.052934 H -0.457608 -4.476815 -0.198116
H 0.735084 -3.218691 0.057057 H -2.268453 -2.554477 0.356545
H 0.222227 -2.350860 2.121294 H -2.673820 -1.276961 2.412699
H -1.692504 -1.838057 3.766809 H 0.769758 0.911027 3.873369
H 1.077931 -0.486199 2.829223 H 0.368726 -0.711604 4.439169
H -2.256280 0.143831 4.873184 H -0.924534 3.766509 3.612048
H -3.013864 1.981457 6.063707 H -2.404578 3.593578 5.632692
H -3.902115 2.996720 4.921281 H -3.333373 3.274692 1.818785
H -3.336836 4.291939 3.252575 H -3.027840 5.713157 1.283832
H -1.556937 5.749962 2.267190 H -1.604970 4.807807 0.770002
Table S7. Cartesian coordinates and energies of the most stable conformer of 4d.

![4d (ΔG = 6.6 kcal/mol)](image)

M06-2X/def2-TZVP-SMD(MeOH)//M06-2X/6-31G(d)-SMD(MeOH):

Parameter	Value (a.u.)
Gibbs Free Energy	−1617.979974
Electronic energy	−1618.580947
Zero-point correction	0.662219
Thermal correction to Energy	0.695993
Thermal correction to Enthalpy	0.696937
Thermal correction to Gibbs Free Energy	0.600973

M06-2X/def2-TZVP-SMD(MeOH):

Parameter	Value (a.u.)
Electronic energy	−1618.580947

M06-2X/6-31G(d)-SMD(MeOH):

Parameter	Value (a.u.)
Zero-point correction	0.662219
Thermal correction to Energy	0.695993
Thermal correction to Enthalpy	0.696937
Thermal correction to Gibbs Free Energy	0.600973

X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
C	4.798129	0.356612	−0.661757	C	3.865655	−0.611239	−1.337749																
C	2.478207	−0.672378	−0.665771	C	2.621313	−0.693659	0.870177																
C	3.296870	0.647454	1.332342	C	4.576705	0.857650	0.553923																
C	3.674606	−0.330715	−2.832130	C	2.852422	−1.444172	−3.511003																
C	1.516062	−1.602040	−2.775862	C	1.697146	−1.840457	−1.275720																
H	1.948008	0.249241	−0.931338	H	4.335913	−1.605337	−1.274884																
C	3.620670	−2.762442	−3.625970	O	4.962624	−0.206470	−3.423002																
O	0.804306	−2.670629	−3.939564	C	3.534305	−1.859581	1.311313																
C	1.320249	−0.869455	1.671112	C	−0.037871	−0.515583	1.282252																
O	1.468333	−1.303555	2.834544	C	−1.001361	−0.508034	2.302151																
O	−2.154086	0.042689	2.009603	C	−2.081994	0.579029	0.653163																
C	−0.683430	0.158578	0.171270	O	−0.316574	0.384584	−0.973036																
C	−3.177513	0.099993	−0.157614	O	−0.880587	−0.951894	3.507228																
C	2.526872	1.990994	1.182403	C	1.173362	2.120588	1.823974																
C	0.151547	2.728125	1.218604	C	−1.265044	2.772635	1.720726																
C	−2.290452	2.111794	0.754683	C	−2.204751	2.786596	−0.629176																
Element	X	Y	Z	Element	X	Y	Z																
---------	------	------	------	---------	------	------	------																
C	-3.693033	2.329702	1.282666	C	-4.714940	1.480821	1.134440																
C	-4.589757	0.146532	0.414789	C	-6.084489	1.833650	1.657514																
C	-5.076852	-1.025825	1.293403	C	-5.283535	-2.323622	0.515721																
H	5.721491	0.596044	-1.184682	H	3.532826	0.523239	2.397973																
H	5.303092	1.534682	1.001980	H	3.132288	0.622443	-2.938194																
H	2.625469	-1.101816	-4.531012	H	0.948354	-0.667932	-2.898276																
H	2.229221	-2.786784	-1.115883	H	0.706718	-1.942932	-0.817550																
H	3.807702	-3.226634	-2.652466	H	3.057212	-3.477479	-4.231171																
H	4.587486	-2.598744	-4.109578	H	4.837256	-0.014227	-4.366424																
H	-0.071990	-2.711056	-2.978506	H	3.068909	-2.824437	1.084137																
H	4.498901	-1.813103	0.805816	H	3.717337	-1.820720	2.385965																
H	0.094087	-1.261776	3.549185	H	-3.093032	0.265730	-1.184575																
H	-2.957884	-1.172475	-0.189347	H	3.202828	2.748388	1.605874																
H	2.433893	2.234842	0.117487	H	1.030825	1.666621	2.808126																
H	0.331531	3.174889	0.239878	H	-1.331710	2.305737	2.711026																
H	-1.588853	3.815716	1.838684	H	-3.014094	2.448215	-1.281310																
H	-1.255279	2.601946	-1.134733	H	-2.320806	3.867898	-0.494541																
H	-3.864129	3.288546	1.773680	H	-5.283593	0.195608	-0.438423																
H	-6.142328	2.894263	1.917785	H	-6.857140	1.618341	0.909306																
H	-6.338219	1.256490	2.553936	H	-4.367923	-1.183707	2.114935																
H	-6.032211	-0.749527	1.751485	H	-5.687249	-3.103498	1.169287																
H	-5.994464	-2.174091	-0.305060	H	-4.353556	-2.708892	0.085761																