Abstract
Upcoming many core processors are expected to employ a distributed memory architecture similar to currently available supercomputers, but parallel pattern mining algorithms amenable to the architecture are not comprehensively studied. We present a novel closed pattern mining algorithm with a well-engineered communication protocol, and generalize it to find statistically significant patterns from personal genome data. For distributing communication evenly, it employs global load balancing with multiple stacks distributed on a set of cores organized as a hypercube with random edges. Our algorithm achieved up to 1175-fold speedup by using 1200 cores for solving a problem with 11,914 items and 697 transactions, while the naive approach of separating the search space failed completely.

Keywords: Frequent itemset mining, Distributed memory parallelization, Statistical significance, Multiple testing procedure

1 Introduction
Parallel algorithms for pattern mining have been a long-standing subject of research [1, 2, 3, 4, 5]. Algorithms for shared memory environments [2] are losing ground, because upcoming many-core systems such as Intel Single-Chip Cloud Computer (SCC) [6] will inevitably employ a distributed memory architecture due to difficulty in concurrent memory access.

This paper aims to redesign pattern mining algorithms for distributed memory environments. Parallel search algorithms distribute the search tree by maintaining yet unexplored nodes in one or multiple stacks, and letting a processing core pick up a node and explore the search tree further down. Newly found nodes are stored back to stacks and they will then be taken by other cores. In a distributed memory environment, holding the stacks at one core causes severe concentration of communication. Thus, distribution of stacks to cores and efficient communication among them is a central issue that does not arise in shared memory studies [2]. Our algorithm generalizes the LCM algorithm [7] based on global load balancing with multiple stacks distributed on a set of cores organized as a hypercube with random edges [8]. This structure is effective in distributing communication necessary for pruning the search tree.

Our interest in parallelization is motivated by ever growing personal genome data, i.e., mutation profiles of individuals [9]. Among several pattern mining-based approaches for genetics studies [10], we picked up limitless-arity multiple testing procedure (LAMP) [11, 12], because it computes properly corrected P-values for each pattern of alleles, and allows us to find all statistically significant patterns. Our strategy performed extremely well in parallelizing LAMP: Up to 1175-fold speedup was observed with 1200 cores.

The rest of this paper is organized as follows. Basics about closed itemset mining and parallel search are briefly reviewed in Section 2. LAMP is outlined in Section 3. Section 4 and 5 describe our method and experimental results, respectively. Section 6 describes related work and Section 7 concludes our paper.

2 Backgrounds
2.1 Linear time Closed itemset Miner (LCM)
Given an itemset I such that there is no item $j \notin I$ which satisfies $\text{sup}(I) = \text{sup}(I \cup j)$, I is a closed itemset. In other words, if an item is added to a closed itemset, the support will always become smaller. Closed itemset provides a loss-less compressed expression for enumerating itemsets. Original search space of itemset mining is shown in gray itemsets and edges in Fig. 1. Linear time Closed itemset Miner (LCM) is a famous technique in frequent itemset mining [7], which modifies the search space to a tree with edges connecting only closed itemsets. Please refer to [7] for the details of the LCM algorithm.
2.2 Parallel Search

There is no apparent parallelism in search algorithms because the subsequent behavior gets affected by the preceding results. Therefore, search algorithms are one of the difficult targets for parallelization.

One of the naive approaches is to divide the original tree to a number of subtrees and assign the subtrees to processes. Of course, it does not perform well if the search tree is unbalanced. In practical search problems, trees are normally highly unbalanced because of pruning techniques.

To equally distribute the workload to processes, parallel search techniques have been developed for popular search algorithms ([8], [13], [14]). Fortunately, depth-first search on trees is one of the most feasible problem among parallel search. It could be parallelized by transforming the algorithm to queue based version and using dynamic load balancing (explained in Section 4).

3 Significant Pattern Mining

In this section, we explain significant pattern mining introduced by Terada et al. [11].

Suppose that we have N transactions. Each transaction contains a set of items and is classified into positive or negative. In total, N_{pos} transactions are categorized into positive. The goal of significant pattern mining is to enumerate statistically significant associations between itemsets and the classification such that the probability that at least one false discovery appears, which is called the family-wise error rate (FWER), is at most α.

3.1 Statistical assessment for an itemset

Given an itemset I, we assess the statistical significance of I as the following. Let $x(I)$ and $n(I)$ be the frequency of I in all transactions and in positive transactions, respectively. The P-value of I is calculated by the one-sided Fisher’s exact test as

$$P(I) = \min \{ x(I), N_{pos} \} \binom{N_{pos}}{n_i} \binom{N - N_{pos}}{x(I) - n_i}.$$

On testing for a single itemset, when $P(I) \leq \alpha$, I is regarded as significantly associated positives.

On performing statistical assessments on multiple itemsets, FWER becomes large. Therefore, the multiple testing procedure should be conducted to adjust the threshold for the P-value so that FWER becomes at most α. For example, given k hypotheses, the Bonferroni correction, which is a widely used multiple testing procedure, calibrates the threshold such that $\delta = \alpha/k$. The itemset whose P-value is up to δ is regarded as significantly associated with the classification.

In itemset mining, detection of a significant itemset is hopeless using the Bonferroni correction because k exponentially increases to the number of items.

3.2 LAMP

More recently, the multiple testing procedure, which is named LAMP, has been proposed for detecting significant itemsets [11]. LAMP achieves higher sensitivity than the Bonferroni correction, whereas the upper bound of FWER is under the same level. We introduce here key points of LAMP: (1) Extremely low frequent itemsets can be eliminated from the Bonferroni factor k. (2) LAMP solves an optimization problem about the threshold for closed itemset frequency.

The first key point is obtained from the Tarone’s P-value bound strategy [16]. Given the marginal distribution N, N_{pos} and x, the lower bound of P-value is calculated as

$$f(x) = \binom{N_{pos}}{x} / \binom{N}{x}.$$

If $f(x) > \delta$, the itemset can never result in significant without calculation of P-value. These itemsets never increase the FWER, and hence they are eliminated from Bonferroni factor. Because $f(x)$ monotonically decreases to x, the frequencies of eliminated itemsets are less than the optimal threshold λ.

From this insight, LAMP first calculates the largest λ that satisfies the following condition:

$$f(\lambda - 1) > \alpha / \text{CS}(\lambda),$$

where $\text{CS}(\lambda)$ represents the number of closed itemsets. Then $\delta = \alpha / \text{CS}(\lambda)$ is used as the adjusted significance level, which is normally much larger than that of Bonferroni correction.
3.3 Support increase algorithm for LAMP

LAMP algorithm follows three phases. First phase finds an appropriate minimum support and then the second phase performs a normal frequent closed itemset mining based on it. In the third phase, statistically significant itemsets are extracted from the closed itemsets.

The definition of appropriate minimum support comes from theory as described in Section 3 which is illustrated in the left of Fig. 2. The number of closed itemsets monotonically decreases as the λ (e.g. frequency) increases. On the other hand, from Eq. 3.1, the threshold for closed itemset number can be calculated which monotonically increases as λ increases. (The numbers in the figure are just examples but are taken from a small but realistic problem.)

The inequality sign flips at $\lambda = 5$. Subtracting 1 from the λ we obtain the appropriate minimum support, 4 in this case, and the closed set number $CS(4)$ will be the correction factor for finding statistically significant itemsets.

In a simple approach, it could be found by counting closed itemset for all possible λ value. However, by using the support increase algorithm, minimum support can be found in a single run. The algorithm is explained in the right of Fig. 2.

Initial value of λ is set to 0. Each node in the tree represents one closed itemset and the number in the node shows the support. Please note that the search goes from left child to right child in depth-first manner. When the first child is traversed, the support is 6, and closed itemsets for $\lambda \leq 6$ becomes 1. The threshold for $\lambda = 1$ is immediately exceeded and λ is incremented. The boxes and nodes with thick line shows where a threshold was exceeded. When the next child is traversed, support is 5. Again, closed itemsets for $\lambda \leq 5$ are incremented by 1 and the threshold for $\lambda = 2$ gets exceeded, λ becomes 3.

This process continues until the search ends with λ value of 5 without exceeding the threshold for 5. The search space shrinks as λ increases. The dotted node with support 1 will be ignored because when the algorithm reach there, λ is already 3. (More nodes are likely to be ignored but those are omitted.) In this way we can efficiently know the minimum support which is 4 in this case. (It is smaller than the last λ by 1.)

Then in the second phase, the number of closed frequent itemsets with minimum support λ of 4 is counted and used as the correction factor.

Lastly, in the third phase, statistically significant itemsets are chosen from the discovered closed itemsets.

Figure 3: Depth First Search with recursion and stack

```java
DFS(node n) {
    foreach (child c of n) DFS(c)
}
DFS_Loop() {
    while (stack not empty)
        node n = Pop()
        foreach (child c of n) Push(c)
}
```

Figure 4: Stack operation in DFS

4 Proposed Method

Since our target is a tree, we will use the term node to denote nodes of the tree. To avoid confusions, we will use the normal term compute node only in limited places and use the term process instead. One process will be assigned to one CPU core. Therefore, there will be 12 processes on a 12 core machine.

4.1 Parallelize depth first search using stack

Single thread depth first search can be simply implemented using recursive function call as shown in the function DFS in Fig. 3. If the search reaches the leaf node, there will be no children and the function returns.

Back-tracking can be implemented naturally in this way.

Now we describe how to transform this into a stack based version as a preparation for parallelization. As shown in the function DFS_Loop in Fig. 3 we can replace the recursive function call for each child with push to and pop from the stack.

Only the root node will be pushed to the stack before the algorithm starts. Then the top entry of the stack will be popped and the children of the node will be pushed to the stack. The algorithm terminates when the stack becomes empty. For this approach, each node on the stack must have enough data for search. For itemset mining, the itemset data itself identify the node of the search tree.

Fig. 4 shows the behavior of DFS_Loop. Here we intentionally reversed the order of the children when pushing nodes onto the stack to make the search order equivalent with the original DFS function.

The algorithm does work if we change the stack
(First-in-last-out) to a queue (First-in-first-out). However, if a queue is used, the order of searching nodes will be equivalent to breadth-first search and, in general, breadth first search requires more memory because it stores a large portion of the tree. With stack (with reverse order push) the search order will be equivalent to depth-first search and the stack need to store only the nodes and the sibling nodes in the current search path. The required memory size will be limited because it is proportional to (search depth) × (number of branch). The usage is greater than the original DFS by a factor of (number of branches), but still small enough in practical cases.

4.2 Parallel search based on dynamic load balancing Once we have a search algorithm using the stack, the workload can be balanced by distributing the stack to processes.

The main part of the parallel algorithm is handled by the Probe function which receives messages and processes the tasks based on the message type. Probe relies on a function in the MPI library named MPI_Iprobe which returns true if a message is received and returns false otherwise. However it could be implemented on multithread environment with little trouble.

To reduce the number of communications, Steal is called only if node stack is empty and nodes are sent only if a request is received.

It is omitted from algorithm in the figure, but if termination is detected, finish message is broadcast and the algorithm exits the outer most while loop. Termination detection is briefly described in Section 4.3.

It became known recently that the diameter of random graph is small [17]. Global Load Balancing (GLB) method was proposed in [8] which distributes workloads following hypercube edges and random edges. We are using this method for workload distribution.

GLB constructs a hypercube connecting all the processes, which is called the lifeline graph. When there are \(P \) processes, the lifeline with length \(l \) should have smallest possible dimension \(z \) where \(P \leq l^z \) holds. Lifeline is constructed so that \(LL(j) (0 \leq j < z) \) is the process id of the \(j \)-th lifeline neighbor.

GLB tries the random steal for \(w \) times and lifeline steal for \(z \) times until one of them succeeds. We set \(l = 2 \) (the hypercube has the highest possible dimensions) and \(w = 1 \) based on preliminary experiments and our past experience ([18]).

Requests are sent only if the local stack becomes empty. Only one REQUEST is sent at a time. The algorithm waits until the request is replied either by REJECT or GIVE. When rejected, a request will be sent to the next target. If one steal phase finishes, it will be in idle state until it receives a GIVE message from one of the processes connected by lifeline graph.

4.3 Distributed termination detection One of the problems which arises for distributed algorithms is Distributed Termination Detection (DTD). In stack based parallel search, workload can be created by any processes. At first glance, it seems if stacks of all processes are empty, the algorithm can terminate. However that is not true because there can be a message which is on the way from one process to another.

Mattern proposed several variations of the time algorithm in [19]. In time algorithm, each process maintains a time-stamp and a counter for recording the difference of send/recv messages.

Messages for DTD are called control messages and others are called basic messages. When sending a basic message, the message counter is incremented and on receiving a basic message, the counter is decremented. All basic messages carry a time-stamp which is equal to the time-stamp in the sender process.

The basic idea is to collect the message counter of all processes and if the sum becomes zero, there will be no on-going messages. However, it may detect false termination if the same number of sends and receives are overlooked because of the timing of gathering the message counter.
```cpp
int l = 2 // length of hypercube
int z = (dimension of hypercube)
int w = 1 (number of random steal trials)
LL(j) = InitLiveline(l, z)

ParallelDFS() {
    while (not terminated) {
        node n = Pop()
        ProcessNode(n)
        if (stack empty) break
        Probe()
        Distribute()
        Reject()
    }
    Reject()
    Steal()
    Probe()
}

ProcessNode(node n) {
    foreach (child c of n) Push(c)
}

Steal() {
    for (j = 1; j <= w ∧ stack not empty; j + +) {
        Send(RandomId(), REQUEST)
        steal_replied = false
        while (true) {
            Probe()
            if (steal_replied == true) break
        }
    }
    for (j = 1; j <= z ∧ stack not empty; j + +) {
        if (LL(j).activated == false) {
            Send(LL(j), REQUEST)
        }
    }
}

Probe() {
    while (message received) {
        for message (source, TYPE, payload)
            switch (message:TYPE) {
                case REQUEST
                    if (stack empty) {
                        Send(source, REJECT)
                    } else {
                        work = half of node stack
                        Send(source, GIVE, work)
                    }
                    case REJECT
                        steal_replied = true
                    case GIVE
                        merge message:payload and local node stack
                        LL(j for source).activated = false
                        steal_replied = true
            }
    }
}
```

Figure 5: Parallel DFS with load balancing

To prevent this case, each basic message carry a time-stamp to check whether a message had crossed the boundary of “past” and “future”. Past means the state before the collection of the message counter and future means the state after the collection.

Mattern proposed a bounded clock-counter variant of the time algorithm. It was originally proposed for a star topology where one process sends control messages to all other processes. It could be easily modified for a version using a spanning tree and we have implemented a version using a ternary tree.

4.4 Closed itemset counter gather and broadcast

As described in Section [3.3](#), the first phase of LAMP requires to collect the sum of the number closed itemsets and broadcast the updated λ value. It should be frequently enough to avoid redundant computation but at the same time it should not disturb the main computation too much.

It is natural to implement such gather and broadcast using a spanning tree. In our case, Distribute Termination Detection messages are sent using a spanning tree. Therefore the closed itemset counter is included in the payload of the DTD messages. Fortunately, the delay of knowing the global value only slows down the algorithm and does not affect the correctness.

4.5 Preprocess

When starting search, the root node will be pushed only to the stack of the root process (which is proc. 0), before the algorithm starts. However, at the initial stage, it is possible to start the search by distributing the depth-1 children equally to all processes.

If there are P processes, process with id pᵢ only searches item id i if i mod P = pᵢ. Also, in the first phase, we can count the closed itemsets after the preprocess phase and we can start with λ greater than 1, to avoid frequent update of λ in the beginning.

4.6 Other Implementation details

All code is written in c++ and parallelized using the Message Passing Interface Library.

Our original target was dense database with relatively small number of transactions. Therefore we decided to exclude database reduction technique from our implementation and use the population count instruction (counts the number of 1 on a register) for counting the support.

In our algorithm, one call to ProcessNode can take approximately 0.1 s at maximum, and it would be too long for a time period between Probe calls. ProcessNode is modified so that Probe and Distribute are called approximately once in 1 millisecond.
5 Experiments

5.1 Setup of Experiments We applied our method to real datasets as shown in Table 1. The HapMap and Alzheimer (Alz) data obtained from two genome-wide association studies (GWASs), which is widely conducting research to detect causal genes of disease (Alzheimer study [20], the HapMap project [21]). A transaction and an item represent an individual and an existence of mutation, respectively, in both datasets. The positive and negative transactions were given as Alzheimer patient or not in Alz dataset. In HapMap dataset, Japanese are regarded as positive, and others are regarded as negative transactions.

We generated two problems with different density from the same database for testing our algorithm. At first, we eliminated highly frequent items with the minor allele frequency (MAF), which is a widely used measure in GWAS analysis. When we used a high MAF threshold, the generated dataset contained high frequent items. Then, we calculated the existence of mutation for each individual based on dominant (dom) or recessive (rec) model. The results of dominant model has higher density than that of the recessive model.

Additionally, to investigate effect on dataset containing small number of items and large number of transactions, we used human breast cancer transcriptome dataset (MCF7), which was analyzed in [11].

All experiments are performed on TSUBAME supercomputer at Tokyo Institute of Technology. Each compute node is equipped with two Xeon X5670 processors (2.90GHz, 6 cores each), and 52 GiB memory. Nodes are connected with dual-rail QDR Infiniband network with a total bandwidth of 80 Gbps. We have used MVAPICH, an implementation of MPI library and compiled the code using Intel compiler (ver. 14.0.2).

Performance of the parallel version is averaged for at least 10 runs because of the fluctuations caused by various reasons such as network and/or compute node status. Single thread performance is more stable and averaged over at least four runs.

5.2 Large scale performance The experimental results using up-to 1,200 cores is shown in Fig. 6. The speed was measured for 1, 12, 24, 48, 96, 192, 300, 600, and 1200 cores. For two of the largest problems (Alz. dom. upper10 and HapMap dom. upper 20), the speedup was almost linear to the number of processes and this is very efficient as a parallel search algorithm.

Parallel algorithms tend to perform worse for shorter execution time because it is difficult to hide the overheads given by communication and other operations due to parallelization. However, for other smaller problems in genomics data, our algorithm achieved an impressive performance. Even for computational time shorter than 1.0 second (measured on wall-clock time) approximately 300 to 600-fold speedup was observed.

The breakdown of the total CPU time summed up for all processes is given in Fig. 7. The time for 1 process, shown in the left-most bar of the figures, are measured for our best single process algorithm without any overhead needed for parallelization.

Main and preprocess are the computational time required for the main computation for the search. In ideal cases with linear speedup, the time indicated by the sum of the gray and black bar (main and preprocess) should be equal to the 1 process bar.

The idle and probe categories show the overhead of parallelization. Probe part includes the time needed for send / receive of all message and for splitting and merging the stack. Idle part shows the time of waiting for replies of steal requests or waiting for other processes to terminate. The length of the probe and idle part does not largely differ for genomics data. It is clearly shown that for large problems, the overhead is hidden by the longer computational time.

We haven’t conducted experiments on slow network such as Ethernet because we didn’t have such old cluster anymore. However, we can estimate the effect of network delay. The network delay only affects a portion of the probe part and if probe takes several more time, the performance will be still good.

The last problem, MCF7, is not our original target and the behavior is different from the other five problems. When using 600 or more cores, the preprocess time (searching depth 1 nodes) is taking longer than the rest of the computation. This is because there are only 397 items and it is smaller than the number of processes and all processes waits for other processes to finish the preprocess. This synchronization can be removed but it is a part of the future work.

One advantage of our algorithm is that no degradation of the speed was observed when increasing the number of cores. For parallel search algorithms, the degradation is often observed because of overhead.

5.3 Performance on single computer The summary of the performance is shown in Table 1. Column t_{12} on Table 1 shows the performance on a single compute node which has 12 CPU cores.

MPI library can be used a single compute node with small difficulty. Communication is replaced with a memory copy which might cause a small overhead but the results shows that our algorithm achieved 10.5 to 11.8-fold speedup using 12 cores. The results show the usefulness of our approach for shared memory (e.g. single computer) parallelization.
5.4 Limitations of Naive approach A simpler parallelization can be done by just assigning part of the search space to each process. The performance of such naive algorithm could be estimated by our algorithm without any work steal. (It still does broadcast of closed itemset number.)

Table 2 shows the results for single, 12, and 48 processes. Naive approach shown in n_{12}, n_{48} never overcome our approach t_{12}, t_{48}. For small problems it tends to perform better which is because the search space is very shallow and most part of the computation finishes within depth 1. For large problems with deeper search spaces, naive approach has a clear limit.

5.5 Comparison with LAMP2 (e.g. LCM) LAMP2 described in [12] uses LCM ver. 5.3 as the base tool. Since our code is tuned for large and high density database, LAMP2 outperforms our approach if both are run on single core, as shown in the right of Table 2. But it is shown that for large problems, which is our main target, the difference was small and with 12 cores our result outperformed single process LAMP2.

However the results show that, although it was not our main target, there is a large room for improvement for sparse database with large number of transactions.

5.6 Finding Significant Patterns As the final results, we found statistically significant patterns from the given database, which are meaningful combinations of mutations in terms of genomics. From HapMap dom. 20, we found statistically significant itemsets having 8 items at maximum within less than 20 seconds, which is far beyond the ability of brute force search. The third phase took very short time (approx. 10 ms at most) and the measurement is omitted from the paper.
Table 2: Comparison with Naive approach and LAMP2

Name	t_1	t_{12}	t_{48}	n_{12}	n_{48}	t_1	t_{12}	$t_{1,200}$	t_{LAMP2}
HapMap dom. 10	126	10.7	2.79	13.7	7.26	58.7	4.91	0.218	2.69
HapMap dom. 20	48285	4108	1029	6559	3611	20973	1780	17.6	2083
Alz. dom. 5	258	22.4	5.80	24.1	9.90	131	11.3	0.211	78.6
Alz. dom. 10	17646	1535	387	3486	3480	9066	788	8.30	8582
Alz. rec. 30	4361	415	115	657	398	2239	209	4.54	1499
MCF7	1330	121	31.7	385	387	611	55.6	4.34	23.63

6 Related Work

6.1 LAMP Multiple testing procedures for significant pattern mining have been proposed [11, 12, 22]. LAMP [11] uses Bonferroni-like multiple testing procedures with Tarone’s P-value bound strategy [10] to improve the sensitivity of the correction through frequent itemset mining. The first LAMP version used a breadth-first search for finding the optimal value, whereas a depth-first search is known to be efficient, and hence Minato et al. proposed a fast algorithm for LAMP using the depth-first search [12]. However, more acceleration is required to analyze dense and large datasets. Our parallel strategy is applicable to detecting not only significant itemset but also significant subgraph mining [22].

6.2 Parallel search As already described, our work is based on recent progress in smarter workload distribution using hypercube with random edges [8]. A similar approach was applied to Numerical Constraints Satisfaction Progress (NCSP) and achieved approximately 500-fold speedup on 600 cores [18].

There are other approaches for parallel search algorithms which requires hash table or priority queue, such as A* search or Iterative Deepening A* (IDA*) search. IDA* can be parallelized by distributing the hash table based on a hash function as shown in TDS approach [14]. A* search requires priority queue and seems more difficult, but efficient performance was achieved by Hash Distributed A* (HDA*) algorithm [13], which is applied to planning problems. Algorithms which does more pruning tend to be more difficult for parallelization. However, even for two player games where most of the branches are pruned, successful parallel algorithms are reported, for example, parallel Monte Carlo Tree Search algorithm [23].
6.3 Parallel Itemset Mining Speedup using up to 32 nodes (32 processors) is reported for parallelization of the variants of the apriori algorithm in [1]. Although part of the basic idea is common, many of the enhancements are specific to apriori algorithm and will not be needed for our LCM based solver.

Recent work on shared memory environment include [3] and [2]. These papers focus on a single computer and uses up-to 32 cores and the reported speedup was efficient. However, it is presumed that directly applying these results to distributed memory environment requires re-designing of the algorithm as well as large implementation effort.

7 Conclusions and Future Work

Our parallel algorithm achieved, 260 to 1175-fold speedup using up to 1,200 cores. Naturally, the scalability was better for more difficult problems which should be the main targets of a parallel approach. As a result, our approach is exceedingly promising.

The key difference between traditional algorithms and massive parallel algorithm is not whether memory is shared or distributed. From the viewpoint of the algorithm, the memory on different computer is just a slow and large memory. Future algorithms have to deal with such environments. We expect our algorithm continue to be efficient in the future where an increased number of cores and memory is available.

Acknowledgments KY is supported by JST ERATO, Kakenhi 25700038, 15H02708. AT is supported by JSPS Research Fellowships for Young Scientists. KT is supported by JST CREST, RIKEN PostK, NIMS MI2I, Kakenhi Nanostructure, Kakenhi 15H05711.

References

[1] R. Agrawal and J. C. Shafer, “Parallel mining of association rules,” IEEE TKDE, no. 6, pp. 962–969, 1996.
[2] B. Negrevergne, A. Termier, M.-C. Rousset, and J.-F. Méhaut, “Paraminer: a generic pattern mining algorithm for multi-core architectures,” Data Min. Knowl. Discov., vol. 28, no. 3, pp. 593–633, 2014.
[3] S. Tatikonda and S. Parthasarathy, “Mining tree-structured data on multicore systems,” Proc. VLDB Endow., vol. 2, no. 1, pp. 694–705, 2009.
[4] G. Buehrer, S. Parthasarathy, and Y. Chen, “Adaptive parallel graph mining for CMP architectures,” Proc. ICDM 2006, pp. 97–106, 2006.
[5] B. Négrevergne, A. Termier, J. Méhaut, and T. Uno, “Discovering closed frequent itemsets on multicore: Parallelizing computations and optimizing memory accesses,” Proc. HPCS 2010, pp. 521–528, 2010.
[6] A.-M. Corley, “Intel lifts the hood on its “single-chip cloud computer”,” IEEE Spectrum Online (9 feb 2010), 2010.
[7] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets,” Proc. IEEE ICDM’04 Workshop FIMT’04, vol. 126, 2004.
[8] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krishnamoorthy, “Lifeline-based global load balancing,” Proc. PPoPP ’11, 2011.
[9] B. Maher, “Personal genomes: The case of the missing heritability,” Nature, vol. 456, no. 7218, pp. 18–21, 2008.
[10] P. Onkamo and H. Toivonen, “A survey of data mining methods for linkage disequilibrium mapping,” Hum Genomics, vol. 2, no. 5, pp. 336–340, 2006.
[11] A. Terada, M. Okada-Hatakeyama, K. Tsuda, and J. Sese, “Statistical significance of combinatorial regulations,” Proc Natl Acad Sci U S A., vol. 110, no. 32, pp. 12996–13001, 2013.
[12] S. Minato, T. Uno, K. Tsuda, A. Terada, and J. Sese, “A Fast Method of Statistical Assessment for Combinatorial Hypotheses Based on Frequent Itemset Enumeration,” ECML/PKDD 2014, pp. 422–436, 2014.
[13] A. Kishimoto, A. Fukunaga, and A. Botea, “Evaluation of a simple, scalable, parallel best-first search strategy,” Artif. Intell., vol. 195, pp. 222–248, 2013.
[14] J. W. Romein, A. Plaat, H. E. Bal, and J. Schaeffer, “Transposition Table Driven Work Scheduling in Distributed Search,” AAAI/IAAI, pp. 725–731, 1999.
[15] S. Dudoit and M. J. Van Der Laan, Multiple Testing Procedures and Applications to Genomics, 2007.
[16] R. E. Tarone, “A modified Bonferroni method for discrete data,” Biometrics, vol. 46, no. 2, pp. 515–522, 1990.
[17] J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-world datacenters,” Proc. SOCC ’11, 2011.
[18] D. Ishii, K. Yoshizoe, and T. Suzumura, “Scalable parallel numerical constraint solver using global load balancing,” Proc. X10 2015, pp. 33–38, 2015.
[19] F. Mattern, “Algorithms for distributed termination detection,” Distributed Computing, vol. 2, no. 3, pp. 161–175, 1987.
[20] J. A. Webster, J. R. Gibbs, J. Clarke et al., “Genetic control of human brain transcript expression in Alzheimer disease.” Am J Hum Genet., vol. 84, no. 4, pp. 445–58, 2009.
[21] The International HapMap Consortium, “A haplotype map of the human genome.” Nature, vol. 437, pp. 1299–320, 2005.
[22] M. Sugiyama, F. Llinares-López, N. Kasenburg, and K. M. Borgwardt, “Significant subgraph mining with multiple testing correction,” SIAM SDM15, pp. 37–45, 2015.
[23] K. Yoshizoe, A. Kishimoto, T. Kaneko, H. Yoshimoto, and Y. Ishikawa, “Scalable Distributed Monte-Carlo Tree Search,” SoCS’11, pp. 180–187, 2011.