Supersolvable LL-lattices of binary trees

Riccardo Biagioli and Frédéric Chapoton

November 13, 2018

Abstract

Some posets of binary leaf-labeled trees are shown to be supersolvable lattices and explicit EL-labelings are given. Their characteristic polynomials are computed, recovering their known factorization in a different way.

1 Introduction

The aim of this article is to continue the study of some posets on forests of binary leaf-labeled trees introduced by the second author in [4]. These posets have already been shown in [5] to have nice properties. The main result there was the fact that the characteristic polynomials of all intervals in these posets factorize completely with positive integer roots. By a theorem of Stanley [8], this property is true in general for the so-called semimodular supersolvable lattices. Since these intervals are not semimodular in general, one can not use this theorem to recover the result of [5]. For a class of lattices, called LL-lattices, containing the semimodular-supersolvable ones, a theorem due to Blass and Sagan [3] generalizes Stanley’s theorem.

The first main theorem of our article states that these intervals are indeed lattices, which was not known before. The proof uses a new description of the intervals using admissible partitions. Our second main result is the fact that these lattices are supersolvable. We prove it by giving explicit S_n EL-labelings and using the recent criterion of McNamara [6]. As third result, we show that these intervals are LL-lattices and, using the theorem of Blass and Sagan mentioned above, we give
a different proof of the factorization of characteristic polynomials and the explicit description of roots which were found in [5].

2 Notation, definitions and preliminaries

In this section we give some definitions, notation and results that will be used in the rest of this work. Let \(\mathbb{N} := \{1, 2, 3, \ldots \} \) and \(\mathbb{Z} \) the set of integers. For every \(n \in \mathbb{N} \) let \([n] := \{1, 2, \ldots, n\}\). The cardinality of a finite set \(A \) is denoted by \(|A|\).

2.1 Posets

We follow Chapter 3 of [9] for any undefined notation and terminology concerning posets. Given a finite poset \((P, \leq)\) and \(x, y \in P\) with \(x \leq y\) we let \([x, y] := \{z \in P : x \leq z \leq y\}\) and call this an interval of \(P\). We denote by \(\text{Int}(P)\) the set of all intervals of \(P\). We say that \(y\) covers \(x\), denoted \(x \triangleleft y\), if \(|[x, y]| = 2\). A poset is said to be bounded if it has one minimal and one maximal element, denoted by \(\hat{0}\) and \(\hat{1}\) respectively. The Möbius function of \(P\), \(\mu : \text{Int}(P) \to \mathbb{Z}\), is defined recursively by

\[
\mu(x, y) := \begin{cases}
1 & \text{if } x = y, \\
-\sum_{x \leq z < y} \mu(x, z) & \text{if } x \neq y.
\end{cases}
\]

If \(x, y \in P\) are such that \(\{z \in P : z \geq x, z \geq y\}\) has a minimum element then we call it the join of \(x\) and \(y\), denoted by \(x \lor y\). Similarly, we define the meet of \(x\) and \(y\) if \(\{z \in P : z \leq x, z \leq y\}\) has a maximum element, denoted by \(x \land y\). A lattice is a poset \(L\) for which every pair of elements has a meet and a join. A well-known criterion is the following (see e.g. [9, Proposition 3.3.1]).

Proposition 2.1 If \(P\) is a finite poset with \(\hat{1}\) such that every pair of elements has a meet then \(P\) is a lattice.

A lattice \(L\) that satisfies the following condition

\[
\text{if } x \text{ and } y \text{ both cover } x \land y, \text{ then } x \lor y \text{ covers both } x \text{ and } y,
\]

is said to be semimodular. The set of atoms of a finite lattice \(L\), i.e. the elements \(a\) covering \(\hat{0}\), is denoted by \(A(L)\).
2.2 Edge-labelings

If \(x, y \in P \), with \(x \leq y \), a chain from \(x \) to \(y \) of length \(k \) is a \((k+1) \)-tuple \((x_0, x_1, \ldots, x_k) \) such that \(x = x_0 < x_1 < \ldots < x_k = y \). A chain \(x_0 \triangleleft x_1 \triangleleft \ldots \triangleleft x_k \) is said to be saturated. A poset \(P \) with a \(\hat{0} \) is said to be graded if, for any \(x \in P \), all saturated chains from \(\hat{0} \) to \(x \) have the same length, called the rank of \(x \) and denoted by \(\text{rk}(x) \). We denote by \(M(P) \) the set of all maximal chains of \(P \).

A function \(\lambda : \{(x, y) \in P^2 : x \triangleleft y\} \rightarrow \mathbb{N} \) is an edge-labeling of \(P \). For any saturated chain \(m : x = x_0 \triangleleft x_1 \triangleleft \ldots \triangleleft x_k = y \) of the interval \([x, y]\) we set

\[
\lambda(m) = (\lambda(x_0, x_1), \lambda(x_1, x_2), \ldots, \lambda(x_{k-1}, x_k)).
\]

The chain \(m \) is said to be increasing if \(\lambda(x_0, x_1) \leq \lambda(x_1, x_2) \leq \cdots \leq \lambda(x_{k-1}, x_k) \).

Let \(\leq_L \) be the lexicographic order on finite integer sequences, i.e. \((a_1, \ldots, a_k) <_L (b_1, \ldots, b_k) \) if and only if \(a_i < b_i \) where \(i = \min \{j \in [k] : a_j \neq b_j\} \).

An edge-labeling of \(P \) is said to be an EL-labeling if the following two conditions are satisfied:

i) Every interval \([x, y]\) has exactly one increasing saturated chain \(m \).

ii) Any other saturated chain \(m' \) from \(x \) to \(y \) satisfies \(\lambda(m) <_L \lambda(m') \).

A graded poset is said to be edge-wise lexicographically shellable or EL-shellable, if it has an EL-labeling. EL-shellable posets were first introduced by Björner [1]. Several connections with shellable, Cohen-Macaulay complexes and Cohen-Macaulay posets can be found in the survey paper [2]. In particular EL-shellable posets are Cohen-Macaulay [1].

A particular class of EL-labelings has an interesting property.

An EL-labeling \(\lambda \) is said an \(S_n \) EL-labeling if, for any maximal chain \(m : \hat{0} = x_0 \triangleleft x_1 \triangleleft \cdots \triangleleft x_n = \hat{1} \) of \(P \), the label \(\lambda(m) \) is a permutation of \([n]\). If a poset \(P \) has an \(S_n \) EL-labeling, then it is said to be \(S_n \) EL-shellable.

Following [3], we introduce the following definition. A finite lattice \(L \) is said to be supersolvable if it contains a maximal chain, called an \(M \)-chain of \(L \), which together with any other chain in \(L \) generates a distributive sublattice. Examples of
supersolvable lattices include modular lattices, the partition lattice Π_n, and the lattice of subgroups of a finite supersolvable group.

McNamara [6, Theorem 1] has recently shown that supersolvable lattices are completely characterized by S_n EL-shellability.

Theorem 2.2 A finite graded lattice of rank n is supersolvable if and only if it is S_n EL-shellable.

2.3 Poset of forests

A tree is a leaf-labeled rooted binary tree and a forest is a set of such trees. Vertices are either inner vertices (valence 3) or leaves and roots (valence 1). By convention, edges are oriented towards the root. Leaves are bijectively labeled by a finite set. Trees and forests are pictured with their roots down and their leaves up, but are not to be considered as planar. A leaf is an ancestor of a vertex if there is a path from the leaf to the root going through the vertex. If F_1, F_2, \ldots, F_k are forests on I_1, I_2, \ldots, I_k, let $F_1 \sqcup F_2 \sqcup \cdots \sqcup F_k$ be their disjoint union. For a forest F, we denote by $\mathcal{V}(F)$ the set of its inner vertices and by $\mathcal{L}(F)$ the set of leaves. The number of trees in a forest F on I is the difference between the cardinal of I and the cardinal of $\mathcal{V}(F)$. By a subtree T_v we mean the union of all paths starting from any vertex v and going up to the leaves. Note that any subtree can be further divided in two parts denoted by T^L and T^R as shown in Figure 1.

Following [3], we introduce a partial order on the set of forests on I denoted by \text{For}(I).
Definition Let F and G be forests on the label set I. Then $F \leq G$ if there is a topological map from F to G with the following properties:

D1. It is increasing with respect to orientation towards the root.

D2. It maps inner vertices to inner vertices injectively.

D3. It restricts to the identity of I on leaves.

D4. Its restriction to each tree of F is injective.

In fact, such a topological map from F to G is determined up to isotopy by the images of the inner vertices of F. One can recover the map by joining the image of an inner vertex of F in G with the leaves of G which were its ancestor leaves in F.

The following proposition can be found in [5, Proposition 3.1].

Proposition 2.3 The poset $\text{For}(I)$ is graded by the number of inner vertices.

It was proved in [5] that the maximal elements of the poset $\text{For}(I)$ are the trees. The forest without inner vertices is the unique minimal element and is denoted by $\hat{0}$. For any $J \subseteq I$, we denote by $|J$ the tree such that $\mathcal{V}(|J) = \emptyset$ and $\mathcal{L}(|J) = J$. Note that $\hat{0} = |I$. 5
3 Intervals are lattices

In this section we fix a finite set of leaves \(I \) of cardinality \(n + 1 \) and consider a tree \(T \) on \(I \). We study the interval \([\hat{0}, T]\) that is a graded bounded subposet of \(\text{For}(I) \). Our main goal is to show that \([\hat{0}, T]\) is a lattice.

Any two distinct leaves \(i, j \in I \) determine an inner vertex \(v_{(i,j)} \in V(T) \), as the intersection of the two paths starting from these leaves and going down to the root. Sometimes we will write \(i \leftarrow v \rightarrow j \) instead of \(v = v_{(i,j)} \). For any \(J \subseteq I \), let

\[
S(J) := \{ v \in V(T) : v = v_{(i,j)} \text{ for some distinct } i, j \in J \}.
\]

Remark 1 For any subset \(J \subseteq I \), it is easy to see that \(|S(J)| = |J| - 1 \).

Lemma 3.1 For any \(J \subseteq I \), there exists a unique tree \(T_J \) on \(J \) such that \(T_J \sqcup |I \setminus J| \leq T \).

Proof. We define \(T_J \) to be the union of all the paths starting from the leaves in \(J \) and going down to the root. It is easy to check that all conditions in the definition of the partial order of forests are satisfied.

Remark 2 Let \(J_1 \subseteq J_2 \) be two subsets of \(I \). Then \(T_{J_1} \sqcup |I \setminus J_1| \leq T_{J_2} \sqcup |I \setminus J_2| \).

The following definition is crucial in the rest of this paper.

Let \(\pi = (\pi_1, \ldots, \pi_k) \) be a partition of \(I \). We say that \(\pi \) is \(T \)-admissible if and only if \(S(\pi_i) \cap S(\pi_j) = \emptyset \) for all \(i \neq j \in [k] \). We denote the set of all \(T \)-admissible partitions of \(I \) by \(\text{Ad}(T) \).

For example, let \(T = F'' \) be the tree in Figure 8 on the set \(I = \{a, b, c, d\} \). Then \(\{\{a, b\}, \{c, d\}\} \in \text{Ad}(T) \), but \(\{\{a, c\}, \{b, d\}\} \) is not a \(T \)-admissible partition of \(I \), as in fact \(S(\{a, c\}) = S(\{b, d\}) = v_{(a,c)} \).

It is easy to see that \(\text{Ad}(T) \) is a poset by refinement order \(\leq_r \), i.e. \((\pi_1, \ldots, \pi_m) \leq_r (\tau_1, \ldots, \tau_m) \) if and only if each block \(\pi_i \) is contained in some block \(\tau_j \).

For example \(\{\{a\}, \{b, c\}, \{d\}\} \leq_r \{\{a\}, \{b, c, d\}\} \).

Let \(F \in [\hat{0}, T] \), \(F = T_1 \sqcup \ldots \sqcup T_k \), we define

\[
\Pi(F) := (\pi_1, \ldots, \pi_k),
\]
where \(\pi_i := L(T_i) \) for all \(i \in [k] \).

Note that \(\Pi(F) \) is a \(T \)-admissible partition by condition D2.

Proposition 3.2 The map \(\Pi : ([\hat{0}, T], \leq) \rightarrow (\text{Ad}(T), \leq_r) \) is an isomorphism of posets.

Proof. First we prove that \(\Pi \) is a bijection. For every \(\pi = (\pi_1, \ldots, \pi_k) \in \text{Ad}(T) \), let

\[
\Gamma(\pi) := T_{\pi_1} \cup \ldots \cup T_{\pi_k},
\]

(2)

where each tree \(T_{\pi_i} \) is defined by Lemma 3.1.

It is clear that \(\Pi \circ \Gamma = \text{Id} \). By the uniqueness in Lemma 3.1 it follows that \(\Gamma \circ \Pi = \text{Id} \), and so \(\Gamma \) is the inverse of \(\Pi \).

Now let \(F, G \in [\hat{0}, T] \) with \(F \leq G \). Then, by condition D4, for all \(T_F \in F \) there exists a \(T_G \in G \) such that \(L(T_F) \subseteq L(T_G) \). It follows that \(\Pi(F) \leq_r \Pi(G) \). Conversely, if \(\pi \leq_r \pi' \), then, by Remark 2 we have \(\Gamma(\pi) \leq \Gamma(\pi') \). This concludes the proof.

From now on, forests in \([\hat{0}, T]\) and \(T \)-admissible partitions are identified via the bijection \(\Pi \).

We are ready to state and prove the main theorem of this section.

Theorem 3.3 For each tree \(T \) on the set \(I \), the interval \([\hat{0}, T]\) is a lattice.

Proof. As the interval has a \(\hat{1} \), by Proposition 2.1 it suffices to prove that each \(F, G \in [\hat{0}, T] \) have a meet. Let \(\Pi(F) = \pi = (\pi_1, \ldots, \pi_n) \) and \(\Pi(G) = \tau = (\tau_1, \ldots, \tau_m) \).

We show that the meet of \(\pi \) and \(\tau \) as partitions, defined by

\[
\pi \land \tau := (\pi_1 \cap \tau_1) \cup (\pi_1 \cap \tau_2) \cup \ldots \cup (\pi_1 \cap \tau_1) \cup \ldots \cup (\pi_n \cap \tau_m),
\]

is also in \(\text{Ad}(T) \). For every \((i, j) \neq (i', j') \in [n] \times [m] \) we have that

\[
S(\pi_i \cap \tau_j) \cap S(\pi_{i'} \cap \tau_{j'}) \subseteq S(\pi_i) \cap S(\pi_{i'}) \cap S(\tau_j) \cap S(\tau_{j'}) = \emptyset,
\]

because \(\pi \) and \(\tau \) are in \(\text{Ad}(T) \), hence either \(S(\pi_i) \cap S(\pi_{i'}) \) or \(S(\tau_j) \cap S(\tau_{j'}) \) is empty.

It is immediate to see that \(\pi \land \tau \) is the meet also in \(\text{Ad}(T) \), hence \(\text{Ad}(T) \) is a lattice and we are done. \(\square \)
4 S_n EL-labelings on $[\hat{0}, T]$

In this section we introduce an edge-labeling on the poset $[\hat{0}, T]$ and prove that it is an S_n EL-labeling. By Theorem 2.2 it follows that the lattice $[\hat{0}, T]$ is supersolvable.

A partial order \preceq is defined on the set $\mathcal{V}(T)$ in the following way.

Definition A vertex v is smaller than a vertex v', denoted by $v \preceq v'$, if v' is on the path between the root and v. Any total order extending this partial order on $\mathcal{V}(T)$ is called a nice total order, still denoted by \preceq.

Using a nice total order, one can label the inner vertices by integer numbers from 1 to n. From now on, inner vertices and labels are identified in this way using a fixed nice total order. Note that the bottom vertex is the maximum element for the order \preceq. An example is drawn in Figure 4.

Figure 4: Example of nice total order on $\mathcal{V}(T)$.

Now we introduce an edge-labeling as follows. First remark that for all $F \preceq G \in [\hat{0}, T]$, one has $\mathcal{V}(F) \subseteq \mathcal{V}(G) \subseteq \mathcal{V}(T)$. Moreover if $F \lhd G$, by Proposition 2.3 there exists a unique $v \in \mathcal{V}(G)$ such that $\mathcal{V}(G) = \mathcal{V}(F) \cup \{v\}$.

Definition Let $F \lhd G \in [\hat{0}, T]$. Then we define $\lambda: \{(F, G) : F \lhd G\} \to \mathbb{N}$ by

$$\mathcal{V}(G) = \mathcal{V}(F) \cup \{\lambda(F, G)\},$$

where $\lambda(F, G)$ is the label of v.

8
An example of this edge-labeling is shown in Figure 5. The proof of the following lemma is immediate.

Lemma 4.1 The label of a maximal chain of $[F, G]$ is a permutation of the set $\mathcal{V}(G) \setminus \mathcal{V}(F)$.

Lemma 4.2 For each $F \in [\hat{0}, T] \setminus \{T\}$, there exists a unique $G \in [\hat{0}, T]$ covering F such that

$$
\lambda(F, G) = \min(\mathcal{V}(T) \setminus \mathcal{V}(F)).
$$

Proof. Let $\Pi(F) = \pi$ and let $v_0 := \min(\mathcal{V}(T) \setminus \mathcal{V}(F))$. Consider the two subtrees starting from v_0, as explained in §2.3, denoted $T^L_{v_0}$ and $T^R_{v_0}$. We show that $\mathcal{L}(T^R_{v_0})$ is contained in one part of π.

Each $w \in \mathcal{V}(T^R_{v_0})$ is such that $w < v_0$. It follows that $w \in \mathcal{V}(F)$ by minimality of v_0. Let $i \neq j \in \mathcal{L}(T^R_{v_0})$, then there is $v \in \mathcal{V}(T^R_{v_0}) \subseteq \mathcal{V}(F)$ such that $i \leftrightarrow v \rightarrow j$. Hence i, j are in the same part of π. Therefore $\mathcal{L}(T^R_{v_0})$ is contained in only one part of π denoted by π_R. The same result is true for $T^L_{v_0}$, and we denote the corresponding part by π_L.

As $v_0 \not\in \mathcal{V}(F)$, the parts π_L and π_R are distinct. We define a new partition

$$
\pi' := (\pi_L \cup \pi_R, \pi_1, \ldots, \pi_k),
$$

where π_j are the remaining parts of π. From now on, we denote $\pi_L \cup \pi_R$ by π_{LR}.

To show that $\pi' \in \text{Ad}(T)$, it suffices to prove that

$$
S(\pi_{LR}) \cap S(\pi_j) = \emptyset, \quad \text{for all } j \in [k].
$$

We have that $S(\pi_{LR}) \supseteq S(\pi_L) \cup S(\pi_R) \cup \{v_0\}$. On the other hand, by Remark 4.2 we have that $|S(\pi_L)| + |S(\pi_R)| + 1 = |S(\pi_{LR})|$, and so we have an equality.

Now, for any $j \in [k]$, the vertex v_0 is not in $S(\pi_j)$, because all the ancestors of v_0 are in π_L or in π_R. Hence condition (3) is verified and the proof of theorem follows by defining $G := \Gamma(\pi_{LR}, \pi_1, \ldots, \pi_k)$, where Γ is defined in (2).

The preceding lemma can be extended as follows.

Proposition 4.3 For each $F, H \in [\hat{0}, T]$, $F < H$ there exists a unique $G \in [\hat{0}, T]$ covering F such that

$$
\lambda(F, G) = \min(\mathcal{V}(H) \setminus \mathcal{V}(F)).
$$
Proof. If $H = T$ then the result is given by Lemma 4.2. Otherwise let $H = H_1 \sqcup H_2 \sqcup \ldots \sqcup H_k$, where H_j is a tree for all $j \in [k]$. Since $F \leq H$, we have $F = F_1 \sqcup F_2 \sqcup \ldots \sqcup F_k$ where F_j is a forest, for all $j \in [k]$. It was observed in Proposition 2.1 that the interval $[F, H]$ is isomorphic to $\prod_{j=1}^k [F_j, H_j]$. Let $v_1 := \min(\mathcal{V}(H) \setminus \mathcal{V}(F))$. We have $\mathcal{V}(H) = \mathcal{V}(H_1) \cup \mathcal{V}(H_2) \cup \ldots \cup \mathcal{V}(H_k)$ and, after re-ordering, we can assume that $v_1 \in \mathcal{V}(H_1)$. Then, by Lemma 4.2 applied to $[F_1, H_1]$, there exists a unique $G_1 \in [F_1, H_1]$ covering F_1 such that $\lambda(F_1, G_1) = v_1$. Define $G = G_1 \sqcup F_2 \sqcup \ldots \sqcup F_k$ in $[F, H]$. Then G is the unique forest of $[F, H]$, covering F, such that $\lambda(F, G) = v_1$. This concludes the proof.

Theorem 4.4 The lattice $[\hat{0}, T]$ is EL-shellable.

Proof. By Lemma 4.1 for any interval $[F, G]$ of $[\hat{0}, T]$, the unique possible increasing label for a saturated chain from F to G is given by the unique increasing permutation of the elements of $\mathcal{V}(G) \setminus \mathcal{V}(F)$. Then Proposition 4.3 implies that there exists an unique chain m from F to G with this label. The other maximal chains of $[F, G]$ are labeled by different permutations, which are lexicographically greater than the increasing one. Hence the edge-labeling λ is an EL-labeling.

Corollary 4.5 The lattice $[\hat{0}, T]$ is supersolvable.

Proof. By Theorem 4.4 λ is an EL-labeling and by Lemma 4.1 $\lambda(m)$ is a permutation of $[n]$ for each maximal chain m. Hence λ is an S_n EL-labeling and the result follows from Theorem 2.2.

Remark 3 Note that $[\hat{0}, T]$ is not semimodular in general. For example, the atoms $\{\{j, k\}, \{i\}, \{l\}\}$ and $\{\{i, l\}, \{j\}, \{k\}\}$ in Figure 5 do not satisfy the condition (1).

5 Characteristic polynomials

In this section, we recover the results of [5] concerning the characteristic polynomials of the intervals $[\hat{0}, T]$. Note that, by Remark 3 the well-known theorem of Stanley
Theorem 4.1] (see also [7 Theorem 6.2]) on the factorization of the characteristic polynomials of semimodular supersolvable lattices, does not apply. We use instead a stronger theorem due to Blass and Sagan [3].

5.1 LL-lattices

Recall that the characteristic polynomial of a graded finite lattice \(L \) of rank \(n \) is

\[
\chi_L(t) = \sum_{y \in L} \mu(\hat{0}, y)t^{n-rk(y)},
\]

where \(\mu \) is the Möbius function of \(L \) and \(rk(y) \) is the rank of \(y \).

Following [3], we define an element \(x \) of a lattice \(L \) to be left-modular if, for all \(y \leq z \),

\[
y \lor (x \land z) = (y \lor x) \land z.
\]

A maximal chain \(m \in \mathcal{M}(L) \) is said to be left-modular if all its elements are left-modular.
Remark 4 From [8, Proposition 2.2], it follows that if L is a supersolvable lattice then its M-chain is left-modular.

Any maximal chain $m : \hat{0} = x_0 < x_1 < \cdots < x_n = \hat{1}$ defines a partition of the set of atoms A into subsets called *levels* indexed by $i \in [n]$:

$$A_i = \{ a \in A : a \leq x_i \text{ and } a \not\leq x_{i-1} \}.$$

The partial order \preceq_m on A *induced* by the maximal chain m is defined by

$$a \preceq_m b \text{ if and only if } a \in A_i \text{ and } b \in A_j \text{ with } i < j.$$

This partial order should not be confused with the covering relation.

Then the following is called the *level condition* with respect to m:

$$\text{if } a_0 \preceq_m a_1 \preceq_m a_2 \preceq_m \cdots \preceq_m a_k, \text{ then } a_0 \nsubseteq \bigvee_{i=1}^k a_i.$$

A lattice L having a maximal chain m that is left-modular and satisfies the level condition is called an LL-*lattice*.

The following theorem is due to Blass and Sagan [3, Theorem 6.5].

Theorem 5.1 Let P be an LL-lattice of rank n. Let A_i be the levels with respect to the left-modular chain of P. Then

$$\chi_P(t) = \prod_{i=1}^n (t - |A_i|).$$

5.2 Factorization of characteristic polynomials

A tree T with n inner vertices and leaf set I is fixed. A nice total order on $\mathcal{V}(T)$ is chosen, defining an edge-labeling as in §3.

The set \mathcal{A} of atoms of $[\hat{0}, T]$ is the set of pairs (i, j) of distinct elements of I. To each atom (i, j) is associated an inner vertex $v_{(i,j)}$ of T as defined in §3. The covering edge $\hat{0} \downarrow (i, j)$ is labeled by the integer in $[n]$ corresponding to $v_{(i,j)}$ in the chosen total order on $\mathcal{V}(T)$.

12
Proposition 5.2 Let \(a_1, a_2, \ldots, a_k \in A \) with pairwise distinct vertices \(v_1, v_2, \ldots, v_k \) in \(V(T) \). Then \(V(a_1 \lor a_2 \lor \ldots \lor a_k) = \{v_1, v_2, \ldots, v_k\} \).

Proof. Let \(V = \{v_1, v_2, \ldots, v_k\} \). Let \(\pi^{(1)}, \pi^{(2)}, \ldots, \pi^{(k)} \) be the partitions of \(I \) associated to \(a_1, a_2, \ldots, a_k \). Let \(\pi \) be the join \(\pi^{(1)} \lor \pi^{(2)} \lor \ldots \lor \pi^{(k)} \) in the lattice of partitions. We want to show that \(\pi \in \text{Ad}(T) \) and that \(V(\pi) = V \).

Let \(p \) be a part of \(\pi \). Let \(V_p \) be the set of vertices in \(V \) whose corresponding atoms in \(\{a_1, \ldots, a_k\} \) have their leaves in \(p \). Observe that the sets \(V_p \) form a partition of \(V \) because atoms in \(\{a_1, \ldots, a_k\} \) have pairwise distinct vertices. Let \(v \) be a vertex in \(S(p) \). This means that there exists \(i, j \) in \(p \) such that \(i \leftarrow v \to j \). As \(p \) is a part of a join, there exists a chain

\[
i = i_0 \leftarrow i_1 \leftarrow i_2 \ldots \leftarrow i_{\ell-1} \leftarrow i_\ell \leftarrow i_{\ell+1} = j,
\]

where each \(i_r \leftarrow i_{r+1} \) is an atom in \(\{a_1, \ldots, a_k\} \) with vertex in \(V_p \).

In the rest of the proof, the symbol \(\preceq \) stands for the partial order introduced in \(\{1, 2, \ldots, n\} \).

Let us prove by induction on the length \(\ell \) of the chain that there exists \(\theta_\ell \) in \(V_p \) such that \(\theta_\ell \succeq t_0 \) and \(\theta_\ell \succeq t_\ell \).

If \(\ell = 0 \), then one can take \(\theta_0 = t_0 \). Assume that there exists \(\theta_{\ell-1} \) in \(V_p \) such that \(\theta_{\ell-1} \succeq t_0 \) and \(\theta_{\ell-1} \succeq t_{\ell-1} \). The path joining the leaf \(i_\ell \) to the root contains the vertices \(t_{\ell-1}, t_\ell \) and hence also by induction hypothesis the vertex \(\theta_{\ell-1} \). Either \(t_\ell \not\preceq \theta_{\ell-1} \), and one can take \(\theta_\ell = \theta_{\ell-1} \) or \(t_\ell \succeq \theta_{\ell-1} \) and one can take \(\theta_\ell = t_\ell \). This concludes the induction.

Therefore \(\theta_\ell \in V_p \) is such that \(i \leftarrow \theta_\ell \to j \). Hence \(\theta_\ell = v \in V_p \) and so \(S(p) \subseteq V_p \). The converse inclusion is clear.

Now let \(p \) and \(p' \) be two different parts of \(\pi \). Then \(S(p) \cap S(p') = V_p \cap V_{p'} \) is empty. Hence \(\pi \) is \(T \)-admissible.

We have proved that \(\pi \) is \(T \)-admissible and that the vertices of \(\pi \) are exactly \(V \). It follows that \(\pi \) defines the join \(a_1 \lor \ldots \lor a_k \) in \([\hat{0}, T]\) and the proposition is proved.

Define another partition of \(A \) indexed by \(i \in [n] \):

\[
B_i = \{a \in A : \lambda(\hat{0}, a) = i\}.
\]

Let \(m : \hat{0} = x_0 \ll x_1 \ll \cdots \ll x_n = T \) be the fixed modular chain of \([\hat{0}, T]\), i.e. the unique increasing maximal chain for the fixed labeling.
Lemma 5.3 Let $i \in [n]$. For each $j \in [i]$, let a_j be an atom in B_j. Then

$$x_i = a_1 \lor a_2 \lor \ldots \lor a_i.$$

Proof. The proof is by induction on i. By Proposition 4.3, $x_1 = a_1$ is the unique atom in B_1. Assume that $x_{i-1} = a_1 \lor \ldots \lor a_{i-1}$. Then $a_1 \lor \ldots \lor a_{i-1} \lor a_i$ is $x_{i-1} \lor a_i$ and has rank i by Proposition 5.2. Moreover we have that $\lambda(x_{i-1}, x_{i-1} \lor a_i) = i$. By uniqueness in Proposition 4.3 it follows that $x_i = x_{i-1} \lor a_i$.

Lemma 5.4 Let A_i be the levels with respect to m. Then for each $i \in [n], \ A_i = B_i$.

Proof. It suffices to prove that

$$\{a \in A : a \leq x_i\} = \{a \in A : \lambda(\hat{0}, a) \in [i]\}.$$

If $a \leq x_i$, then $\lambda(\hat{0}, a)$ is one of the vertices of x_i, i.e. belongs to $[i]$. Conversely, take any atom a with $\lambda(\hat{0}, a)$ in $[i]$. Choose other atoms to have one atom in each B_j for $j \in [i]$. Then, by Lemma 5.3, x_i is the join of a and the other chosen atoms, so $a \leq x_i$.

Proposition 5.5 The lattice $[\hat{0}, T]$ is an LL-lattice.

Proof. This lattice is supersolvable, so by Remark 4 the M-chain is a left-modular chain. It remains to check the level condition. Take atoms a_0, a_1, \ldots, a_k which belongs to pairwise different A_i. By Lemma 5.3 these atoms belong to pairwise different B_i. Then by Proposition 5.2 the set of vertices of the join $a_1 \lor \ldots \lor a_k$ does not contain the vertex of the atom a_0. This ensures the level condition.

Now we are ready to state and prove the main result of this section, which was already proved in [5, Theorem 4.6].

Theorem 5.6 The characteristic polynomial of $[\hat{0}, T]$ is

$$\chi_{[\hat{0}, T]}(t) = \prod_{v \in V(T)} (t - e(v)),$$

where $e(v)$ is the product of the number of left ancestor leaves of v by the number of right ancestor leaves of v.

14
Figure 6: Example of roots of the characteristic polynomial.

Proof. By Proposition 5.5 one can apply Theorem 5.1 to $[\hat{0}, T]$. Let us count the number of elements of A_i for each i. By Lemma 5.4 this is equal to the cardinality of B_i. Let v be the vertex of T with index i. It is easy to see that the number of atoms in B_i is the number of left ancestor leaves of v times the number of right ancestor leaves of v.

For example, the characteristic polynomial of the interval $[\hat{0}, T]$ where T is the tree in Figure 6 is $\chi_{[\hat{0}, T]}(t) = (t - 1)^3(t - 4)^2(t - 10)$.

References

[1] A. Björner. Shellable and Cohen-Macaulay partially ordered sets. Trans. Amer. Math. Soc., 260(1):159–183, 1980.

[2] A. Björner, A. M. Garsia, and R. P. Stanley. An introduction to Cohen-Macaulay partially ordered sets. In Ordered sets, volume 83 of NATO Adv. Study Inst., pages 583–615. Reidel, Dordrecht, 1982.

[3] A. Blass and B. E. Sagan. Möbius functions of lattices. Adv. Math., 127(1):94–123, 1997.

[4] F. Chapoton. A Hopf operad of forests of binary trees and related finite-dimensional algebras. Preprint math.CO/0209038, September 2002.

[5] F. Chapoton. On intervals in some posets of forests. Journal of Combinatorial Theory (Series A), 2003. to appear.
[6] P. McNamara. EL-labelings, supersolvability and 0-Hecke algebra actions on posets. *Journal of Combinatorial Theory (Series A)*, 101:69–89, 2003.

[7] B. E. Sagan. Why the characteristic polynomial factors. *Bull. Amer. Math. Soc. (N.S.)*, 36(2):113–133, 1999.

[8] R. P. Stanley. Supersolvable lattices. *Algebra Universalis*, 2:197–217, 1972.

[9] R. P. Stanley. *Enumerative combinatorics. Vol. 1*, volume 49 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1997.