Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Subviral particle as vaccine and vaccine platform
Ming Tan and Xi Jiang

Recombinant subviral particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts.

Addresses
Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States

Corresponding author: Tan, Ming (ming.tan@cchmc.org)

Current Opinion in Virology 2014, 6:24–33
This review comes from a themed issue on Vaccines
Edited by Shan Lu
For a complete overview see the Issue and the Editorial
Available online 21st March 2014
1879-6257/$ – see front matter, © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.coviro.2014.02.009

Introduction
Most viruses share common spherical or rod-shaped capsids built by multiple subunits of capsid proteins that encapsulate the viral genome. Through bioengineering technology viral capsid proteins can be produced in vitro, resulting in self-assembled, empty virus-like particles (VLPs) (reviewed in [1,2**]). In addition, smaller particles with less subunits can be produced for some viruses by expression of portions of the major viral capsid proteins [3–7]. These artificial subviral particles retain the structures and antigenic properties of their native viruses, including the virus-specific molecular patterns and high density of B-cell and T-cell epitopes to induce potent innate, humoral, and cellular immune responses, respectively, in animals and humans [1.2**]. Thus, these subviral particles are excellent source of materials for vaccine development against many viruses and their associated diseases. VLPs are usually made by an eukaryotic expression system, including the baculovirus/insect cells, yeast, and mammalian cells, while the smaller subviral particles and hepatitis B virus (HBV) VLPs can be produced through the E. coli expression system (Table 1), which is more cost-effective. Several subviral particle-based vaccines are currently available in the market, while many others are under clinical or preclinical development.

The self-assembled, polyvalent subviral particles are also excellent platforms for antigen presentation to enhance immunogenicity. Through genetic engineering or chemical conjugation heterologous antigens or peptide epitopes can be inserted or conjugated onto the surface of the subviral particles. The polyvalent presentation of the foreign antigens or epitopes on the subviral particles leads to enhanced immunogenicity, providing an effective approach for novel vaccine development. On the other hand, the immunogenicity of the subviral particle is generally maintained without disruption by the foreign insertion, and thus the chimeric particles can be used as dual or even multivalent vaccines against two or more pathogens. A number of such chimeric particles have been under preclinical development, pointing to a new direction of highly efficient, low cost vaccines against major infectious diseases.

Subviral particles as vaccines
Over 50 different subviral particles (Table 1), representing at least 21 viral families, have been generated so far through recombinant baculovirus, yeast, mammalian cells and E. coli expression systems. Most of them are VLPs comprising one or more full-length viral structural proteins, while others are smaller subviral particles formed by truncated capsid proteins [3–7]. The most complex subviral particles are VLPs of the rotavirus, influenza virus and coronavirus that contain up to four structure proteins. The smaller subviral particles include the E2 particles (~25 nm) of the hepatitis E virus (HEV) that are composed of the truncated protruding (P) P1 and P2 domains (~30 kDa) of HEV VP1 [2**,3,8] and the P particles (~20 nm) of norovirus (NoV) that are formed by 24 copies of the P domain (~34 kDa) of the NoV capsid protein VP1 [4,6,9*].

Most subviral particles can be easily produced in the laboratory (Table 1) and several of them have reached the markets as effective vaccines after successfully scaled-up production through Good Manufacturing Practices (GMP). These subviral particles are excellent immunogens inducing strong humoral and cellular immune responses as shown by numerous studies (Table 1). Immunization of subviral particle vaccines in different animal species and humans, through various routes, such as intranasal, intramuscular, and intraperitoneal administrations, stimulated high antibody as well as high CD4+ proliferative and cytotoxic T lymphocyte (CTL) responses (Table 1).
Table 1

Virus family	Virus species	Subviral particle	Production system	Immune responses in lab animals (mice)	Neutralization/protective against virus and diseases (mice)	Clinical trial/commercial use	Reference
Arteriviridae	PRRSV	VLP	Baculovirus	Ab, T cell	Neutralization		[46]
Birmaviridae	IBDV	VLP	Baculovirus	Ab (chicken)	Neutralization, protection (chicken)		[47,48]
Bunyaviridae	RVFV	VLP	Baculovirus	Ab, T cell (rat)	Neutralization/protection (rat)		[49]
Caliciviridae	NoV	VLP	Baculovirus	Ab, T cell	Block NoV-receptor interaction, protection (human)	Phase I and II	[19**,50]
	RHDV	VLP	Baculovirus	Ab (rabbit)	Protection (rabbit)		[51,52]
	NoV	P particle	E. coli	Ab, T cell	Block NoV-receptor interaction		[9',38']
	NoV	Polyvalent complex	E. coli	Ab, T cell	Block NoV-receptor interaction		[53]
Circoviridae	PCV	VLP	E. coli	Ab (pig)	Protection (pig)	Commercial use	[17,18]
Coronaviridae	SARS-CoV	VLP	Baculovirus	T cell	Neutralization (chicken)		[54,55]
	IBV	VLP	Baculovirus	Ab, T cell (chicken)	Neutralization (chicken)		[56]
Filoviridae	EBOV	VLP	Mammalian cells	Ab (guinea pig)	Protection (guinea pig)		[57,58]
Flaviviridae	HCV	VLP	Baculovirus	Ab, T cell (primate)	Protection		[59-62]
Hepadnaviridae	HBV	VLP	Yeast	Ab (monkey, chimpanzee)	Protection (chimpanzee, human)		[14,15]
	HBV	VLP	E. coli	Ab, T cell (human)	Protection		[26,63]
	HBV	VLP	E. coli	Ab	Protection against B. burgdorferi		[64,65]
Hepeviridae	HEV	VLP	Baculovirus	Ab	Protection (monkey, human)	Phase I and II	[20,21,66,67]
	HEV	E2 particle	E. coli	Ab (monkey)	Protection (monkey, human)	Commercial use	[3,68]
Herpesviridae	EVB	VLP	HEK293 cell line	Ab, T cell	Protection		[69]
Nodaviridae	BV	VLP	Baculovirus	Protection (European Sea Bass)			[70,71]
	FHV	VLP	Baculovirus	Ab (rat)			[72]
Orthomyxoviridae	Flu virus	VLP	Baculovirus	Ab, T cell (ferret)	Protection (ferret)		[73-75]
Paramyxoviridae	NDV	VLP	Baculovirus	Ab (chicken)	Protection (chicken)		[76]
	RSV	VLP	Baculovirus	Ab	Neutralization/ protection		[77]
Parvoviridae	PPV	VLP	Baculovirus	Ab (guinea pig, pig)	Protection (pig)		[78]
	CPV	VLP	Baculovirus, E. coli	Ab (dog), T cell	Protection (dog)		[79-81]
	GPV PV B19	VLP	Baculovirus, yeast	Ab (goose)	Neutralization (human)	Phase I	[82]
Papillomaviridae	HPV	VLP	Baculovirus, yeast	Ab (rabbit)	Neutralization, protection (human)		[10-13]
	HPV	Capsomere	E. coli	Ab (dog)	Protection (dog)	Commercial use	[7,11,85,86]
These features support the subviral particles to be highly efficient vaccines against many infectious diseases.

To date five subviral particle-based vaccines are commercially available for human use. The two VLP vaccines against human papillomavirus (HPV) are made by L1, the major capsid protein of HPV16 [10], through recombinant yeasts (Gardasil®, Merck & Co., NJ, USA) or baculoviruses in insect cells (Cervarix®, GlaxoSmithKline, London, UK) [10–13]. Both vaccines have been proven for the prevention of cervical and anogenital infection and diseases associated with HPVs. The other two commercial VLP vaccines against hepatitis B viruses (HBVs), Recombivax HB® (Merck & Co., NJ, USA) and Engerix-B® (GlaxoSmithKline, London, UK), are made by the small surface antigen of HBV (HBsAg) through recombinant yeasts (Saccharomyces cerevisiae) [14,15]. These vaccines have been proven effective worldwide against HBV infection. Most recently, a further subviral particle vaccine against HEVs, the HEV 239/Hecolin® (Xiamen Innovax Biotech, Xiamen, China) that is made through the E. coli system, has been proven by the Chinese health authorities for human use in China [16]. In addition, there are two other subviral particle vaccines, the Ingelvac CircoFLEX® (Boehringer Ingelheim, Germany) and Porcilis PCV® (Intervet International, The Netherlands), that are commercially available for use in domestic pigs against porcine circovirus infection and diseases [17,18]. Furthermore, the NoV VLP vaccine has shown significant protection against NoV diarrhea in phase II clinical trials [19*,20,21], while many other subviral particle vaccines are under intensive preclinical development (Table 1).

Table 1 (Continued)

Virus family	Virus species	Subviral particle	Production system	Immune responses in lab animals (mice)	Neutralization/protection against virus and diseases (mice)	Clinical trial/commercial use	Reference
Picornaviridae	EMCV	VLP	Baculovirus	Ab (pig)	Neutralization	[87]	
	CVB3	VLP	Baculovirus	Ab	Protection	[88]	
	CVA16	VLP	Baculovirus	Ab	Protection	[89]	
	EV71	VLP	Baculovirus, yeast	Ab, T-cell (monkey)	Neutralization (monkey), protection	[90–92]	
	FMDV	VLP	Baculovirus, E. coli	Ab, T cell (dog, cattle)	Protection (guinea pig, dog, cattle)	[93,94]	
PyV	VLP	Yeast	Ab, T cell	Protection	[95–97]		
PyV	VLP	Yeast	Ab, T cell	Protection	[96]		
PyV	VLP	E. coli	Ab	Protection	[98]		
PyV	VLP	Baculovirus	Ab, T cell	Against tumor growth, protection	[100,101]		
Polyomaviridae	SV40	VLP	Baculovirus	Ab, T cell	Protection (mouse, pig)	[102]	
Reoviridae	RV	VLP	Baculovirus, E. coli	Ab, T cell	Protection (mouse, pig)	[102]	
	BTV	VLP	Baculovirus	Ab	Neutralization, protection (sheep)	[107–109]	
Retroviridae	HIV	VLP	Baculovirus	Ab, CTL	Neutralization	[110]	
Togaviridae	CHIKV	VLP	Baculovirus	Ab (monkey)	Protection (monkey)	[111]	

Ab, antibody; B. burgdorferi, Borrelia burgdorferi; BV, betanodavirus; BTV, bluetongue virus; CHPV, chikungunya virus; CoV, coronavirus; CPV, canine parvovirus; CTL, cytotoxic T-lymphocyte; CVA16, coxsackievirus A-16; CVB3, coxsackievirus B3; E. coli, Escherichia coli; EBOV, ebolavirus; EMCV, encephalomyocarditis virus; EV71, Enterovirus 71; EBV, Epstein–Barr virus; FHV, flock house virus; Flu virus, influenza virus; FMDV, foot-and-mouth disease virus; GPV, Goose parvovirus; HBV, hepatitis B virus; HCV, hepatitis C virus; HEV, hepatitis E virus; HIV, human immunodeficiency virus; HPV, human papillomavirus; IBDV, Infectious bursal disease virus; IBV, infectious bronchitis virus; NDV, Newcastle disease virus; NoV, norovirus; PCV, porcine circovirus; PPV, porcine parvovirus; PRRSV, porcine reproductive and respiratory syndrome virus; PV, parvovirus; PyV, porcine parvovirus; RHDV, Rabbit haemorrhagic disease virus; RSV, respiratory syncytial virus; RVFV, Rift Valley fever virus; SARS, severe acute respiratory syndrome; SV40, simian vacuolating virus 40 or simian virus 40; VLP, virus-like particle.

Subviral particles as vaccine platforms

In addition to being vaccines, the subviral particles can also be used as vaccine platforms to present foreign antigens and small peptide epitopes of heterologous pathogens for novel vaccine development. The highly stable structures of most subviral particles tolerate an exogenous insertion, which can be achieved through either recombinant DNA technology or chemical conjugation. The native antigenic properties of the inserted antigens or epitopes usually are preserved on the surface of the chimeric particles, while the immunogenicity of the antigen/epitope is significantly enhanced by the polyvalent nature of the subviral particles functioning as an adjuvant. In addition, the major antigenic determinants of the subviral particle carriers are generally preserved, and thus the resulting chimeric particles can be used as a dual vaccine against the pathogens of the insertion and the carrier.
Table 2

Some subviral particle platforms for display of heterologous antigens and epitopes for vaccine development

Virus species	Subviral particle	Displayed epitope or antigen	Production system	Immune response in animal (mouse)	Neutralization/Protection against pathogens and diseases (mouse)	Clinical trial	Reference	
Vaccine candidates that are in clinical trials								
HBV	VLP	CSP antigen of *P. falciparum*	Yeast	Ab, T cell (human)	Protection against malaria (human)	Phase I, II, III	[23*,24**, 112,113]	
	VLP	CSP epitopes of *P. falciparum*	*E. coli*	Ab (monkey, human)	Protection against malaria (monkey)			[25,26]
	VLP	M2e epitope (influenza virus)	*E. coli*	Ab	Protection	Phase I	[27,29,33]	
Bacteriophage	VLP	Nicotide	*E. coli*	Ab (human)	Increase smoking cessation (human)	Phase I, II	[34,35]	
Qβ	VLP	Angiotensin II epitopes	*E. coli*	Ab (rat, human)	Reduces blood pressure (rat)	Phase I	[36]	
	VLP	allergen Der p 1 epitope	*E. coli*	Ab (human)		Phase I	[114]	
Some vaccine candidates that are in preclinical development								
CPMV	Virion	VP2 epitope of MEV	Cowpea leaf	Ab	Protection (minks)		[115]	
	Virion	Protein F epitope of *P. aeruginosa*	Cowpea leaf	Ab			[116]	
	Virion	F1BP epitope of *T. aureus*	Cowpea leaf	Ab	Protection against endocarditis (rat)		[117]	
FHV	VLP	Toxin of *Bacillus anthracis*	Baculovirus	Ab	Neutralization, protection (rat)		[72]	
Influenza virus	VLP	IBV S1 protein	Baculovirus	Ab, T cell (chicken)	Neutralization, protection (chicken)		[118]	
	VLP	HA/NA Epitope of NDV	Baculovirus	Ab (chicken)	Protection (chicken)			[119]
	VLP	F or G antigen of RSV	Baculovirus	Ab	Neutralization/Protection		[77]	
HAV	VLP	Angiotensin II epitopes	Baculovirus	Ab (rat)	Reduced blood pressure (rat)			[120]
HBV	VLP	SP55/SP70 epitopes of EV71	*E. coli*	Ab	Neutralization/Protection			[121]
	VLP	epitopes of HCV	*E. coli*	Ab, T cell, CTL			[122]	
	VLP	HVR1 epitope of E2 of HCV	*E. coli*	Ab	Neutralization			[123]
	VLP	EDIII antigen of DENV-2	Yeast	Ab	Neutralization		[124,125]	
	VLP	E1 epitope of rubella virus	*E. coli*	Ab			[126]	
	VLP	CSP epitopes of *P. falciparum*	*E. coli*	Ab, T cell (human)		Phase I	[26,63]	
	VLP	OspA antigen of *B. burgdorferi*	*E. coli*	Ab	Protection		[64,65]	
	VLP	VP2 five-mimotope of IBDV	*E. coli*	Ab (chicken)	Protection (chicken)			[127]
	VLP	CFP-10 antigen of MTB	*E. coli*	Ab, T cell				[128]
HIV	VLP	Domain III of DENV1 or WNV	Baculovirus	Ab	Neutralization			[129]
	VLP	F/G surface antigens of HMPV	Baculovirus	Ab	Neutralization/Protection			[130]
NoV	P particle	VP8* antigen of RV	*E. coli*	Ab	Neutralization/Protection			[9*]
	P particle	M2e epitope of influenza virus	*E. coli*	Ab	Protection			[41]
	Polyvalent complex VP8* antigen of RV	*E. coli*	Ab, T cell	Neutralization/Protection			[53]	
	Polyvalent complex M2e epitope of influenza virus	*E. coli*	Ab	Neutralization/Protection			[53]	
PyV	VLP	Pre-S1 epitope of HBV	Yeast	Ab			[95]	
	VLP	N-termini of NP of PUUV	Yeast	Ab			[96]	
	VLP	CTL epitope of mucin 1	Yeast	Ab, T cell				[97]
	VLP	GP33 CTL epitope of LCMV	Yeast	T cell	Protection			[98]
	VLP	J8I antigen of GAS	*E. coli*	Ab	Protection			[99]
	VLP	Her2 antigens of tumors	Baculovirus	T cell	Protection against tumor growth			[100]
	VLP	PSA antigens of D2F2 tumors	Baculovirus	Ab, T cell	Protection against tumor growth			[101]
	VLP	H190 epitope of influenza virus	*E. coli*	Ab				[132]
	Pentamer capsid	B cell epitopes	*E. coli*	Ab (pig)				[102]
Numerous chimeric particles with antigen or epitope insertions on the surface have been produced (Table 2), in which the foreign antigen is usually inserted into a surface loop of the subviral particles. The capacity of a foreign insertion is subviral particle-dependent, with a maximal insertion of 238 residues (green fluorescence protein, GFP) for the HBV VLP [22] and 159 residues (VP8* antigen of rotavirus) for the P particle of NoV [9*] being reported. A selection of proper sites of a subviral particle for insertion of exogenous antigens and/or epitopes is important for the generation of stable chimeric particles, the distal end of a flexible surface loops is generally a good choice.

The HBV VLP has been extensively studied as a vaccine platform for presentation of heterologous antigens and epitopes, with a chimeric VLP vaccines reaching to phase III and other two to phase I human trials. One is the RTS,S/AS01 malaria vaccine (GlaxoSmithKline) that comprises of the C-terminal half (189 residues) of the circumsporozoite protein (CSP) of Plasmodium falciparum on the surface of the HBV VLP (HBcAg) with adjuvant AS01 [23]. This chimeric vaccine is currently under phase III evaluations with high protective efficacy [24*] and thus will most likely be the first malaria vaccine ever licensed and the first vaccine with a VLP-displayed antigen. Another VLP-based malaria vaccine is ICC-1132 (Malarivax) that is composed of a HBV VLP (HBcAg) displaying multiple epitopes of the P. falciparum CSP [25,26]. After testing in rodents and nonhuman primates [25], this vaccine candidate was assessed for safety and immunogenicity by a phase I human trial, which showed malaria- and HBV-specific immune responses [26], supporting ICC-1132 as a potential dual vaccine. The other HBV VLP-based dual vaccine is the M2e-HBcAg chimera, in which the conserved M2e epitope of influenza A virus M2 protein is linked to the HBV VLP through either recombinant DNA technology [27] or chemical conjugation [28]. After a number of animal experiments showing specific immune responses against the M2e epitope and HBV, as well as protective immunity against influenza virus infection [28–31], the first phase I trial was performed in 2008, demonstrating its safety and immunogenicity in humans [32,33]. These data prove the concept that subviral particle can be a practical strategy of novel vaccine development.

Another well studied subviral particle platform is the bacteriophage QB VLPs that have been used to develop vaccines to control smoking addiction, hypertension and allergy. Nicotine was cross-linked to QB VLPs, forming nicotine-QB chimeric particle vaccine. Both phase I and II human trials of smokers showed high nicotine-specific immune responses in vaccinated subjects and revealed significantly increased abstinence rates of smoking [34,35]. The QB VLP was also used to display the epitopes of angiotensin II (Ang-QB) and the chimeric vaccine induced high level of angiotensin II-specific IgG and reduced systolic blood pressure in vaccinated rats [36]. A phase I human trial confirmed the high immunogenicity and safety of the chimeric vaccine [36]. In a separate study, an epitope of allergen Der p1 was covalently coupled to the QB VLPs (Der-P1-QB). This vaccine induced high immune response and has been shown to be safe in humans [37].

There are many other chimeric subviral particle-based vaccines that are in the preclinical evaluation, including those derived from VLPs of polyomaviruses, cowpea mosaic viruses, flock house virus, and NoVs (Table 2). The P particle of NoV that is formed by 24 copies or 12 dimers of the protruding (P) domain of NoV capsid protein (VP1) is highly stable and immunogenic [38*,39]. Three surface loops are identified on each of the P monomer that tolerate a heterologous insertion of at least 159 residues [9*,40]. Two chimeric P particles, each with the rotavirus surface spike protein VP8* [9*] and the conserved M2e epitope of influenza A viruses [41], have been successfully constructed. Both chimeric vaccines revealed strong humoral and cellular immune responses,
neutralization and protective efficacies against these viruses in mouse models \cite{9,38,41}, supporting the two chimeric particles as dual vaccines against rotavirus and NoV, and influenza virus and NoV, respectively.

Challenges and future directions

The non-replicating subunit vaccine is an important option against many viral pathogens, particularly those that an in vitro cultivation system remains lacking such as human NoV, and that are too dangerous to culture, such as variola virus and Ebola virus. It is also a choice for future vaccines to avoid the safety concerns of conventional live attenuated or inactivated vaccines, such as a safe vaccine for eradication of poliovirus. The recent reports on the increased risk of intussusception of the two live attenuated rotavirus vaccines to vaccinated children \cite{42,43,44} is a new example of such concerns that could be prevented by a non-replicating subunit vaccine. However, based on current technology, it seems not possible to produce subviral particles of all known viral pathogens. Thus, the technology of subviral particle-based antigen presentation provides an important strategy for vaccine development against those viral pathogens. As shown in the two tables, many subviral particles are capable antigen carriers. Since the major antigenic determinants of many viral pathogens are known (Table 2), it would be straightforward for design and producing a new vaccine by taking advantage of this technology.

The past experience suggests that success of a chimeric vaccine may rely on certain levels of structural and/or chemical compatibility between the carriers and the inserted antigens. There is no simple solution to this technical challenge. If such a problem occurs, attempts of other carrier-antigen combinations are encouraged. In addition, a modification of the carrier vectors by including short flexible peptide adaptors to the two arms of the surface loops is an option. Furthermore, the maximal size of an inserted antigen may vary among different carriers, and therefore, selection of proper carriers for larger antigens is also recommended. Finally, selection of appropriate carrier-antigen combinations should be considered based on the target pathogens and host populations. For example, both NoVs and rotaviruses cause acute gastroenteritis in children, the selection of NoV P particle as carrier to present the rotavirus surface antigens is an ideal combination for a highly effective dual vaccine against the two most important causes of acute gastroenteritis in children.

Subviral particle-based vaccines may not be as immunogenic as those replicating viruses following a natural infection. Thus, development of strategies for a maximal efficacy of the subviral vaccines is important, for which optimization of the vaccine formulations and vaccination regimes may be the key, including increase of vaccine doses and dosages, identification of the best administration routes, and use of appropriate adjuvants. In the case that the antigen-presentation approach is used, rational designs of the vaccines by increasing the copy numbers of the inserted antigens/epitopes on each subviral particle carrier should be considered. In addition, insertion of a universal immune stimulate elements, such as the T cell epitope, may be considered.

Currently, production of most subviral particles relies on a eukaryotic expression system, such as baculovirus/insect cells, yeasts or mammalian cells. Since bacteria can produce subviral particles at lower cost, attempt to improve the prokaryotic expression system for production of more subviral particles would help to reduce the cost of vaccine delivery in the developing countries. It is worth to point out that several smaller or simpler subviral particles, including the VLP of HBV (HBcAg) \cite{22}, the P particles of NoV \cite{4,6}, the E2 particles of HEV \cite{2,3,8}, and the small VLP \cite{7} and the L1 capsomers \cite{45} of HPV, can be readily produced in E. coli with excellent quality and yields. Since all these viral pathogens are prevalent in the developing countries, further study to develop their subviral particles into cost-effective vaccines and vaccine platform for broad application in the developing world is highly significant. Finally, new concept of vaccine delivery, such edible vaccines produced by transgenic vegetables containing related subviral particles should be explored.

Acknowledgements

The laboratories of the authors are supported by the National Institutes of Health (ROI Al089634, P01 HD13021 to XJ and R21AM09243 to MT), Department of Agriculture (NIFA, AFRI to XJ) of the United States of America, and an institutional Clinical and Translational Science Award (NIH/NCRR 8UL1TR000707-04 to MT).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Plummer EM, Manchester M: Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. *Wiley Interdiscip Rev Nanomaterials* 2010.
2. Zhao Q, Li S, Yu H, Xia N, Modis Y: Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. *Trends Biotechnol* 2013, 31:654-663.
3. Li SW, Zhang J, Li YM, Ou SH, Huang GY, He ZQ, Ge SX, Xian YL, Pang SQ, Ng MH et al.: A bacterially expressed particulate hepatitis E vaccine: antigenicity, immunogenicity and protective properties. *Vaccine* 2005, 23:2895-2901.
4. Tan M, Fang P, Chachiyo T, Xie M, Huang P, Fang Z, Jiang W, Jiang X: Noroviral P particle: structure, function and applications in virus-host interaction. *Virology* 2008, 382:115-123.
5. Tan M, Fang PA, Xia M, Chachiyo T, Jiang W, Jiang X: Terminal modifications of norovirus P domain resulted in a new type of subviral particles, the small P particles. Virology 2011, 410:345-352.

6. Tan M, Jiang X: The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J Virol 2005, 79:14017-14030.

7. Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC: Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 2000, 5:557-567.

8. Yang C, Pan H, Wei M, Zhang X, Wang N, Gu Y, Hu D, Zhang J, Li S, Xia N: Hepatitis E virus capsid protein assemblies in 4 M urea in the presence of salts. Protein Sci 2013, 22:314-326.

9. Tan M, Huang P, Xia M, Fang PA, Zhong W, McNeal M, Wei C, Jiang W, Jiang X: Norovirus P particle, a novel platform for vaccine development and antibody production. J Virol 2011, 85:753-764.

This is a typical study showing the pattern of how a subviral particle is developed into a vaccine platform for antigen display for novel vaccine development.

10. Kirmbauer R, Booy F, Cheng N, Lowy DR, Schiller JT: Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad U S A 1992, 89:12180-12184.

11. Jagu S, Kwak K, Garcea RL, Roden RB: Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection. Vaccine 2010, 28:4478-4486.

12. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, Zafar T, Innis B, Naud P, De Carvalho NS et al: Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 2004, 364:1757-1765.

13. Villa LL, Costa RL, Petta CA, Andrade RP, Ault KA, Giuliano AR, Wheeler CM, Koutsky LA, Malm C, Lehtinen M et al: Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised, double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 2005, 6:271-278.

14. McAuley WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR: Human hepatitis B vaccine from recombinant yeast. Nature 1984, 307:178-180.

15. Andre FE, Safety A: Summary of clinical findings on Engerix-B, a genetically engineered yeast derived hepatitis B vaccine. Postgrad Med J 1987, 63(Suppl 2):169-177.

16. Proffitt A: First HEV vaccine approved. Nat Biotechnol 2012, 30:300.

17. Wu PC, Lin WL, Wu CM, Chi JN, Chien MS, Huang C: Characterization of porcine circovirus type 2 (PCV2) capsid particle assembly and its application to virus-like particle vaccine development. Appl Microbiol Biotechnol 2012, 95:1301-1307.

18. Kekarainen T, Montoya M, Dominguez J, Mateu E, Segales J: Porcine circovirus type 2 (PCV2) viral components immunomodulate recall antigen responses. Vet Immunol Immunopathol 2008, 124:41-49.

19. Atmar RL, Bernstein DI, Harro CD, Al-Ibrahim MS, Chen WH, Ferreira J, Estes MK, Graham DY, Opekun AR, Richardson C et al: Norovirus vaccine against experimental human Norwalk Virus illness. N Engl J Med 2011, 365:2178-2187.

This paper reported the first phase II clinical trials of norovirus VLP vaccine and demonstrated for the first time that norovirus VLP vaccine protects vaccinated children against norovirus infection and illness.

20. Safety A: Perspectives of vaccination against hepatitis E. Intervirology 2001, 44:162-166.

21. Shrestha MP, Scott RM, Joshi DM, Mammen MP Jr, Thapa GB, Thapa N, Myint KS, Fourneau M, Kuschner RA, Shrestha SK et al: Safety and efficacy of a recombinant hepatitis E vaccine. N Engl J Med 2007, 356:895-903.

22. Kratz PA, Bottcher B, Nasal M: Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc Natl Acad Sci U S A 1999, 96:1915-1920.

23. Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A: From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum Vaccin 2010, 6:890-96.

This review article summarizes the development process of the first subviral particle-based-malaria vaccine from bench to patients. This includes the rational selection of the circumsporozoite protein (CSP) as the target antigen, the genesis of the RTS,S/AS concept, and the salient results of phase 2 studies.

24. Rts SCTP, Apgandji ST, Leil B, Fernandes JF, Abossolo BP, Methogo BK, Bagwende AL, Adegikia AA, Mordmuller B, Isdifu S et al: A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. N Engl J Med 2012, 367:2284-2295.

This paper reported the results of the latest phase III clinical trial of the first subviral particle based malaria vaccine, RTS,S/AS01. The vaccine provided modest protection against both clinical and severe malaria in young infants.

25. Birkett A, Lyons K, Schmidt A, Boyd D, Oliveira GA, Siddique A, Nussenzweig R, Calvo-Calle JM, Nardin E: A modified hepatitis B virus core particle containing multiple epitopes of the Plasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in rodent and primate hosts. Infect Immun 2002, 70:6860-6870.

26. Nardin EH, Oliveira GA, Calvo-Calle JM, Wetzel K, Maier C, Birkett AJ, Sarapotar P, Corado ML, Thornton GB, Schmidt A: Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect Immun 2004, 72:6519-6527.

27. Neirynck S, Deroo T, Saeens X, Vanlandschoot P, Jou WM, Fiers W: A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 1999, 5:1157-1163.

28. Fu TM, Grimm KM, Citron MP, Freed DC, Fan J, Keller PM, Shiver JW, Liang X, Joyce JG: Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinant virus like particle or conjugate vaccines in mice and monkeys. Vaccine 2009, 27:1440-1447.

29. De Filette M, Martens W, Smet A, Schotsaert M, Birkett A, Londono-Arcila P, Fiers W, Saeens X: Universal influenza A M2e-HBC vaccine protects against disease even in the presence of pre-existing anti-HBC antibodies. Vaccine 2008, 26:6503-6507.

30. De Filette M, Min Jou W, Birkett A, Lyons K, Schultz B, Tonkya Y, Reich S, Fiers W: Universal influenza A vaccine: optimization of M2e-based constructs. Virology 2005, 337:149-161.

31. De Filette M, Ramme A, Birkett A, Lycke N, Lowenadler B, Min Jou W, Saeens X, Fiers W: The universal influenza vaccine M2e-HBC administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 2006, 24:544-551.

32. Fiers W, De Filette M, El Bakkouri K, Schepens B, Roose K, Schotsaert M, Birkett A, Saeens X: M2e-based universal influenza A vaccine. Vaccine 2009, 27:6280-6283.

33. Schotsaert M, De Filette M, Fiers W, Saeens X: Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev Vaccines 2009, 8:499-508.

34. Cornuz J, Zwahlen S, Jungi WF, Osterwalder J, Klingler K, van Melle G, Bangala Y, Guessous I, Muller P, Willers J et al: A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS ONE 2008, 3:e2547.

35. Mauer P, Jennings GT, Willers J, Rohner F, Lindman Y, Roubicek K, Rennar WA, Muller P, Bachmann MF: A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and pharmacokinetics. Eur J Immunol 2006, 36:2031-2040.

36. Ambuhl PM, Tissot AC, Furlurija A, Maurer P, Nussberger J, Sabat R, Nief V, Schellekens C, Sladko K, Roubicek K et al: A vaccine for hypertension based on virus-like particles: preclinical efficacy and Phase I safety and immunogenicity. J Hypertens 2007, 25:63-72.
37. Kurtisky, JN, Osterholm MT, Kortath JA, White KE, Kaplan JE: A statewide assessment of the role of Norwalk virus in outbreaks of food-borne gastroenteritis. J Infect Dis 1985, 151:568.
38. Fang H, Tan M, Xia M, Wang L, Jiang X: Norovirus P particle efficiently elicits innate, humoral and cellular immunity. PLoS ONE 2013, 8:e63269.
This study described the data that norovirus P particle efficiently elicits innate, humoral and cellular immunity as a typical example of how a subviral particle inducing various immune responses.
39. Bereszczak JZ, Barbu IM, Tan M, Xia M, Jiang X, van Duijn E, Heck AJ: Structure, stability and dynamics of norovirus P domain derived protein complexes studied by native mass spectrometry. J Struct Biol 2012, 177:273-282.
40. Tan M, Xia M, Huang P, Wang L, Zhong W, McNeil M, Wei C, Jiang X: Norovirus P particle as a platform for antigen presentation. Proc Vaccinol 2011, 4:19-26.
41. Xia M, Tan M, Wei C, Zhong W, Wang L, McNeil M, Jiang X: A candidate dual vaccine against influenza and noroviruses. Vaccine 2011, 29:7670-7677.
42. Weintrab ES, Baggs J, Duffy J, Vellozzi C, Belongia EA, Irving S, Klein NP, Glanz JM, Jacobsen SJ, Nalawany A et al.: Risk of intussusception after monovalent rotavirus vaccination. N Engl J Med 2014.
This new study indicated a risk of intussusception after rotavirus vaccination, suggesting a need of consideration of balancing between risks and health benefits of rotavirus vaccines.
43. Glass RI, Parashar UD: Rotavirus vaccines—balancing intussusception risks and health benefits. N Engl J Med 2014.
44. Yih WK, Lieu TA, Kullendorf M, Martin D, McMahill-Wraleven CN, Platt R, Selman N, Selman M, Lee NJ, Nguyen M: Intussusception risk after rotavirus vaccination in U.S. infants. N Engl J Med 2014.
45. Chen XS, Casini G, Harrison SC, Garcea RL: Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol 2001, 307:173-182.
46. Nam HM, Chae KS, Song YJ, Lee NH, Lee JB, Park SY, Song CS, Seo KH, Kang SM, Kim MC et al.: Immune responses in mice vaccinated with virus-like particles composed of the GPs and M proteins of porcine reproductive and respiratory syndrome virus. Arch Virol 2013, 158:1275-1285.
47. Martinez-Torrepasswordra J, Saubin N, Pages-Mante A, Castor JR, Espuna E, Casal J: Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines. Vaccine 2003, 21:3342-3350.
48. Martinez-Torrepasswordra J, Saubin N, Pages-Mante A, Castor JR, Espuna E, Casal J: Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines. Vaccine 2003, 21:1952-1960.
49. Koukoulta R, Mandell RB, Flick R: Virus-like particle-based countermeasures against Rift Valley fever virus. Zoonoses Public Health 2012, 59(Suppl 2):142-150.
50. Jiang X, Matson DO, Ruiz-Palacios GM, Hu J, Treanor J, Pickering LK: Expression, self-assembly, and antigenicity of a snow mountain agent-like calicivirus capsid protein. J Clin Microbiol 1995, 33:1452-1455.
51. Crisci E, Fraile L, Moreno N, Blanco E, Cabezón R, Costa M, Mussa T, Baselli M, Martínez-Orellana P, Garces L et al.: Chimeric calicivirus-like particles elicit specific immune responses in pigs. Vaccine 2012, 30:2427-2439.
52. Laurent S, Vautherot JF, Madelaine MF, Le Gall G, Raschaert D: Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection. J Virol 1994, 68:6794-6798.
53. Wang L, Huang P, Fang H, Xia M, Zhong W, McNeil MM, Jiang X, Tan M: Polyvalent complexes for vaccine development. Biomaterials 2013, 34:4480-4492.
54. Mortola E, Roy P: Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett 2004, 576:174-178.
55. Bai B, Hu Q, Hu H, Zhou P, Shi Z, Meng J, Lu B, Huang Y, Mao P, Wang H: Virus-like particles of SARS-like coronavirus formed by membrane proteins from different origins demonstrate stimulating activity in human dendritic cells. PLoS ONE 2008, 3:e2685.
56. Liu G, Lv L, Yin L, Li X, Luo D, Liu K, Xue C, Cao Y: Assembly and immunogenicity of coronavirus-like particles carrying infectious bronchitis virus M and S proteins. Vaccine 2013, 31:5524-5530.
57. Swenson DL, Warfield KL, Negley DL, Schmaljohann A, Aman MJ, Bavi S: Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine 2005, 23:3033-3042.
58. Warfield KL, Bosio CM, Welcher BC, Deal EM, Mohamadzadeh M, Schmaljohann A, Aman MJ, Bavi S: Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci U S A 2003, 100:15888-15894.
59. Baumert TF, Ito S, Wong DT, Liang TJ: Hepatitis C virus structural proteins assemble into virus-like particles in insect cells. J Virol 1998, 72:3827-3836.
60. Jeong SH, Qiao M, Nascimbeni M, Hu Z, Rehermann B, Murthy K, Liang TJ: Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J Virol 2004, 78:6995-7003.
61. Murata K, Lechmann M, Qiao M, Gunji T, Alter HJ, Liang TJ: Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proc Natl Acad Sci U S A 2003, 100:6753-6758.
62. Beaumont E, Roingeard P: Prospects for prophylactic hepatitis C vaccines based on virus-like particles. Hum Vacc Immunother 2013, 9:1112-1118.
63. Oliveira GA, Wetzke K, Calvo-Callie JM, Nussenweeng R, Schmidt A, Birkett A, Dubovsky F, Tierney E, Gleieter CH, Boehmer G et al.: Safety and enhanced immunogenicity of a hepatitis B core particle Plasmidium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a phase I trial. Infect Immun 2005, 73:3587-3597.
64. Nossal M, Skamel C, Kratz PA, Wallich R, Stehle T, Simon MM: A fusion product of the complete Borellia burgdorferi outer surface protein A (OspA) and the hepatitis B virus capsid protein is highly immunogenic and induces protective immune similarity to that seen with an effective lipidated OspA vaccine formula. Eur J Immunol 2005, 35:665-665.
65. Nossal M, Skamel C, Vogel M, Kratz PA, Stehle T, Wallich R, Simon MM: Development of hepatitis B virus capsids into a whole-chain protein antigen display platform: new particulate Lyme disease vaccines. Int J Med Microbiol 2007.
66. Li TC, Takeda N, Miyamura T, Matsuya Y, Wang JC, Engvall H, Hammar L, Xing L, Cheng RH: Essential elements of the capsid protein for self-assembly into empty virus-like particles of hepatitis E virus. J Virol 2005, 79:12999-13006.
67. Purcell RH, Nguyen H, Shapiro M, Engle RE, Govindarajan S, Blackwelder WC, Wong DC, Priests JP, Emerson SU: Pre-clinical immunogenicity and efficacy trial of a recombinant hepatitis E vaccine. Vaccine 2003, 21:2607-2615.
68. Zhu FC, Zhang J, Zhang XF, Zhou C, Wang ZZ, Huang SJ, Wang H, Yang CL, Jiang HM, Cai JP et al.: Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 2010, 375:895-902.
69. Ruis R, Jochum S, Wanner G, Reisbach G, Hammerschmidt W, Zeidler R: A virus-like particle-based Epstein-Barr virus vaccine. J Virol 2011, 85:13105-13113.
70. Thiery R, Cozien J, Cabon J, Lamour F, Baud M, Schneemann A: Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus-like particles. J Virol 2006, 80:10201-10207.
71. Tzang L, Lin CS, Krishna NK, Yeager M, Schneemann A, Johnson JE: Virus-like particles of a fish nodavirus display a
capsid subunit domain organization different from that of insect nodaviruses. J Virol 2002, 76:6370-6375.

72. Mananyi DJ, Thomas D, Dryden KA, Reddy V, Siladi ME, Marlett JM, Rainey GJ, Pique ME, Scoibie HM, Yeager M et al.: A viral nanoparticle with dual function as an anthrax antitoxin and vaccine. PLoS Pathog 2007, 3:e142.

73. Kang SM, Pushko P, Bright RA, Smith G, Comans RW: Influenza virus-like particles as pandemic vaccines. Curr Top Microbiol Immunol 2009, 333:269-289.

74. Perrone LA, Ahmad A, Veguilla V, Lu X, Smith G, Katz JM, Pushko P, Tumpey TM: Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J Virol 2009, 83:5726-5734.

75. Pushko P, Pearce MB, Ahmad A, Tretyakova I, Smith G, Belser JA, Tumpey TM: Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes. Vaccine 2011, 29:5911-5918.

76. Park JK, Lee DH, Yoo SK, To EO, Kwon JH, Nah JY, Kim BY, Choi SW, Kang SM, Lee JB et al.: Virus-like particle vaccine confers protection against a lethal NDV challenge in chickens and allows DIVA strategy. Clin Vaccine Immunol 2014.

77. Quan FS, Kim Y, Lee S, Yi H, Kang SM, Bozza J, Moore ML, Comans RW: Virus-like particle vaccine induces protection against respiratory syncytial virus infection in mice. J Infect Dis 2011, 204:987-995.

78. Antonis AF, Bruscheck CJ, Rueda P, Maranga L, Casal Ji, Vela C, Hilgers LA, Belt PB, Weerdmeester K, Carrondo MJ et al.: A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure. Vaccine 2006, 24:5481-5490.

79. Salki JT, Mizak B, Flore HP, Gettig RR, Burand JP, Carmichael LE, Wood HA, Parrish CR: Canine parvovirus empty capsids produced by expression in a baculovirus vector: use in analysis of viral properties and immunization of dogs. J Gen Virol 1992, 73(Pt 2):369-374.

80. Lopez de Turisto JA, Cortes E, Martinez C, Ruiz de Ybarzane R, Simarro J, Vela C, Casal I: Recombinant vaccine for canine parvovirus in dogs. J Virol 1992, 66:2748-2753.

81. Xu J, Guo HC, Wei YQ, Dong H, Han SC, Ao D, Sun DH, Wang HM, Cao SZ, Sun SC: Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine. Appl Microbiol Biotechnol 2014.

82. Ju H, Wei N, Wang Q, Wang C, Jing Z, Guo L, Liu D, Gao M, Ma B, Wang J: Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose. Biochem Biophys Res Commun 2011, 409:131-136.

83. Chandramouli S, Medina-Selby A, Coit D, Schaefer M, Spencer T, Brito LA, Zhang P, Otten G, Mandl CW, Mason PW et al.: Generation of a parvovirus B19 vaccine candidate. Vaccine 2013, 31:3872-3878.

84. Bemstein DI, El Sahly HM, Keitel WA, Wolff M, Simone G, Segawa C, Wong S, Shelly D, Young NS, Dempsey W: Safety and immunogenicity of a candidate parvovirus B19 vaccine. Vaccine 2011, 29:7357-7363.

85. Rose RC, White WL, Li M, Suzich JA, Lane C, Garcea RL: Human papillomavirus type 11 recombinant L1 capsomeres induce virus-neutralizing antibodies. J Virol 1998, 72:6151-6154.

86. Yuan H, Estes PA, Chen Y, Newsome J, Olcese VA, Garcea RL, Schlegel R: Immunization with a pentameric L1 fusion protein protects against papillomavirus infection. J Virol 2001, 75:7848-7853.

87. Jeoung HY, Lee WH, Jeong W, Shin BH, Choi HW, Lee HS, An DJ: Immunogenicity and safety of virus-like particle of the porcine eencephalomyocarditis virus in pig. Virol J 2011, 8:170.

88. Zhang L, Parham NJ, Zhang F, Aasa-Chapman M, Gould EA, Zhang H: Vaccination with coxsackievirus B3 virus-like particle elicits humoral immune response and protects mice against myocarditis. Vaccine 2012, 30:2301-2308.

89. Liu Q, Yan K, Feng Y, Huang X, Ku Z, Cai Y, Liu F, Shi J, Huang Z: A virus-like particle vaccine for coxsackievirus A16 potently elicits neutralizing antibodies that protect mice against lethal challenge. Vaccine 2012, 30:6642-6648.

90. Chung YC, Ho MS, Wu JC, Chen WJ, Huang JH, Chou ST, Hu YC: Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vaccine 2008, 26:1855-1862.

91. Lin YL, Yu CI, Hu YC, Tsai TJ, Kuo YC, Chi WK, Lin AN, Chiang BL: Enterovirus type 17 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles. Vaccine 2012, 30:1305-1312.

92. Li HY, Han JF, Qin CF, Chen R: Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine 2013, 31:3281-3287.

93. Bhat SA, Saravana P, Hosamani BS, Basagoudanavar SH, Sreenivasa BP, Tanishelvan RP, Venkataramanan R: Novel immunogenic baculovirus expressed virus-like particles of foot-and-mouth disease (FMD) virus protect guinea pigs against challenge. Res Vet Sci 2013, 95:1217-1223.

94. Guo HC, Sun SQ, Jin Y, Yang SL, Wei YQ, Sun DH, Yin SH, Ma JW, Liu ZX, Guo JH et al.: Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Vet Res 2013, 44:48.

95. Gedvilaite A, Frommel C, Sasnauskas K, Michael B, Ozel M, Behring S, Stanulis J, Jandrig B, Scherneck S, Ulrich R: Formation of immunogenic virus-like particles by inserting epitopes into surface-exposed regions of hamster polyomavirus major capsid protein. Virology 2000, 273:21-35.

96. Gedvilaite A, Zvibriene A, Stanulis J, Sasnauskas K, Kruger DH, Ulrich R: Segments of p8/p9a haemagglutinin domain of polyomavirus-derived virus-like particles inserted into chimeric polyomavirus-derived virus-like particles induce a strong immune response in mice. Viral Immunol 2004, 17:51-68.

97. Dorn DC, Lavecstockcheck R, Zvibriene A, Aleskaite E, Pecher G, Sasnauskas K, Ozel M, Raftery M, Schonrich G, Ulrich RG et al.: Cellular and humoral immunogenicity of hamster polyomavirus-derived virus-like particles harboring a mucin 1 cytotoxic T-cell epitope. Virus Immunol 2008, 21:12:27.

98. Mazeike E, Gedvilaite A, Blohm U: Induction of insert-specific immune response in mice by hamster polyomavirus VP1 derived virus-like particles carrying LCMV GP3 CTL epitope. Virus Res 2012, 163:2-10.

99. Rivera-Hernandez T, Hartas J, Wu Y, Chuan YP, Luo LH, Good M, Batzloff MR, Middelberg AP: Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine 2013, 31:1950-1955.

100. Tegerstedt K, Lindencrona JA, Curcio C, Andreasson K, Tullus C, Forini G, Dalianis T, Kiessling R, Ramqvist T: A single vaccination with polyomavirus VP1/VP2her2 virus-like particles prevents outgrowth of HER-2/neu-expressing tumors. Cancer Res 2005, 65:5953-5967.

101. Eriksson M, Andreasson K, Weidmann J, Lundberg K, Tegerstedt K, Dalianis T, Ramqvist T: Marine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor. PLoS ONE 2011, 6:e23828.

102. Neugebauer M, Walders B, Brinkman M, Ruehlard C, Schumacher T, Bentling WM, Geuther E, Reiser CO, Reichel C, Strich S et al.: Development of a vaccine Parker technology: display of B cell epitopes on the surface of recombinant polyomavirus-like pentamers and capsids induces peptide-specific antibodies in piglets after vaccination. Biotechnol J 2006, 1:1435-1446.

103. Kawano M, Matsui M, Handa H: SV40 virus-like particles as an effective delivery system and its application to a vaccine carrier. Expert Rev Vaccines 2013, 12:199-210.
104. Zhao Q, Chen W, Chen Y, Zhang L, Zhang J, Zhang Z: Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery. Bioconjug Chem 2011, 22:346-352.

105. Ward RL, McNeal MM: VP6: a candidate rotavirus vaccine. J Infect Dis 2010, 202(Suppl):S101-S107.

106. Azevedo MP, Vlasova AN, Saif LJ: Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease. Expert Rev Vaccines 2013, 12:109-181.

107. Roy P, French T, Erasmus BJ: Protective efficacy of virus-like particles for bluetongue disease. Vaccine 1992, 10:25-32.

108. Roy P, Urakawa T, Van Dijk AA, Erasmus BJ: Recombinant virus vaccine for bluetongue disease in sheep. J Virol 1990, 64:1990-2003.

109. Stewart M, Dubois E, Saillau C, Broard E, Viarouge C, Desprat A, Thiery R, Zientara S, Roy P: Bluetongue virus serotype 8 virus-like particles protect sheep against virulent virus infection as a single or multi-serotype cocktail immunogen. Vaccine 2013, 31:553-558.

110. Doan LX, Li M, Chen C, Yao Q: Virus-like particles as HIV-1 vaccines. Rev Med Virol 2005, 15:75-88.

111. Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, Lewis MG, Higgs S, Rossmann MG, Rao S et al.: A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med 2010, 16:333-338.

112. Gordon DM, McGovern TW, Krych U, Cohen JC, Schneider I, LaChance R, Heppner DG, Yuan G, Hollingdale M, Slapoial M et al.: Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J Infect Dis 1995, 171:1576-1585.

113. Kester KE, McKinney DA, Tornieporth N, Ockenhouse CF, Heppner DG Jr, Hall T, Welde BT, White K, Sun P, Schwenk R et al.: A phase I/IIa safety, immunogenicity, and efficacy bridging randomized study of a two-dose regimen of liquid and lyophilized formulations of the candidate malaria vaccine RTS,S/AS02A in malaria-naive adults. Vaccine 2007, 25:5359-5366.

114. Kudig TI, Senti G, Schnetzler G, Wolf C, Prinz Vavricka BM, Fulurija A, Hennecke F, Stadko K, Jennings GT, Bachmann MF: Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol 2006, 117:1470-1476.

115. Dalsgaard K, Uttenhall A, Jones TD, Xu F, Merryweather A, Hamilton WD, Langeveld P, Boshiuvene RS, Kamstrup S, Lomonossoff GP et al.: Plant-derived vaccine protects target animals against a viral disease. Nat Biotechnol 1997, 15:248-252.

116. Brennan FR, Jones TD, Gilleland LB, Bellaby T, Xu F, North PC, Thompson A, Staczek J, Lin T, Johnson JE et al.: Pseudomonas aeruginosa outer-membrane protein F epitopes are highly immunogenic in mice when expressed on a plant virus. Microbiology 1999, 145(Pt 1):211-220.

117. Rennemalm A, Li YH, Bohaufs L, Jarstrand C, Brauner A, Brennan FR, Plock JC: Antibodies against a truncated Staphylococcus aureus fibronectin-binding protein protecting animals against dissemination of infection in the rat. Vaccine 2001, 19:3376-3383.

118. Lv L, Li X, Liu G, Li R, Liu Q, Shen H, Wang W, Xue C, Cao Y: Production and immunogenicity of chimeric virus-like particles (VLPs) containing the spike (S1) glycoprotein of infectious bronchitis virus (IBV). J Vet Sci 2013.

119. Shen H, Xue C, Lv L, Wang W, Liu Q, Liu K, Chen X, Zheng J, Li X, Cao Y: Assembly and immunological properties of a bivalent virus-like particle (VLP) for avian influenza and Newcastle disease. Virus Res 2013, 178:430-436.

120. Xu Y, Guo L, Wu J, Mi K, Yin N, Zhang G, Li H, Sun M: Construction, expression and immunogenicity of a novel anti-hypertension angiotensin II vaccine based on hepatitis A virus-like particle. Hum Vaccin Immunother 2013, 9:1191-1199.

121. Ye X, Ku Z, Liu Q, Wang X, Shi J, Zhang Y, Kong L, Cong Y, Huang Z: Chimeric virus-like particle vaccines displaying conserved enterovirus 71 epitopes elicit protective neutralizing antibodies in mice through divergent mechanisms. J Virol 2014, 88:72-81.

122. Sominskaya I, Srksartina D, Dlischers A, Vasiliev D, Mihailova M, Ose V, Drelina D, Pumpons P: Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes. Clin Vaccine Immunol 2010, 17:1027-1033.

123. Vieheer PT, Boo I, Drummer HE, Nettet HJ: Immunizations with chimeric hepatitis B virus-like particles to induce potential anti-hepatitis C virus neutralizing antibodies. Antivir Ther 2007, 12:477-487.

124. Arora U, Tyagi P, Swaminathan S, Khanna N: Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. J Nanobiotechnol 2012, 10:30.

125. Arora U, Tyagi P, Swaminathan S, Khanna N: Virus-like particles displaying envelope domain III of dengue virus type 2 induce virus-specific antibody response in mice. Vaccine 2013, 31:873-878.

126. Skrastina D, Petrovskis I, Petraityte R, Sominskaya I, Ose V, Lieknina I, Bogans J, Sasnauskas K, Pumpons P: Chimeric derivatives of hepatitis B virus core particles carrying major epitopes of the rubella virus E1 glycoprotein. Clin Vaccine Immunol 2013, 20:1719-1728.

127. Wang YS, Ouyang W, Liu XJ, He KW, Yu SQ, Zhang HB, Fan HJ, Lu CP: Virus-like particles of hepatitis B virus core protein containing five mimotopes of infectious bursal disease virus (IBDV) protect chickens against IBDV. Vaccine 2012, 30:2125-2130.

128. Dhanasooraj D, Kumar RA, Mundayoor S: Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles. Int J Nanomed 2013, 8:835-843.

129. Chua AJ, Vituret C, Tan ML, Gonzalez G, Boulanger P, Ng ML, Hong SS: A novel platform for virus-like particle-display of flavivirus envelope domain III: induction of Dengue and West Nile virus neutralizing antibodies. Virol J 2013, 10:129.

130. Levy C, Aerts L, Hamelin ME, Granier C, Szecsi J, Lavillette D, Bovin G, Cosset FL: Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice. Vaccine 2013, 31:2778-2785.

131. Wang L, Cao D, Wei C, Meng XJ, Jiang X, Tan M: A dual vaccine candidate against norovirus and hepatitis E virus. Vaccine 2013.

132. Angraeeni MR, Connors NK, Wu Y, Chuan YP, Lu LH, Middelberg AP: Sensitivity of immune response quality to influenza helix 190 antigen structure displayed on a modular virus-like particle. Vaccine 2013, 31:4428-4435.

133. Kawano M, Morikawa K, Suda T, Ohno N, Matsushita S, Akatsuka T, Handa H, Matsui M: Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants. Virolology 2014, 448:159-167.