The complete mitochondrial genome of *Artemia sinica* Cai, 1989 (Crustacea: Anostraca) using next-generation sequencing

Alireza Asem, Weidong Li, Pei-Zheng Wang, Amin Eimanifar, Chun-Yang Shen, Stephanie De Vos & Gilbert Van Stappen

To cite this article: Alireza Asem, Weidong Li, Pei-Zheng Wang, Amin Eimanifar, Chun-Yang Shen, Stephanie De Vos & Gilbert Van Stappen (2019) The complete mitochondrial genome of *Artemia sinica* Cai, 1989 (Crustacea: Anostraca) using next-generation sequencing, Mitochondrial DNA Part B, 4:1, 746-747, DOI: 10.1080/23802359.2019.1565933

To link to this article: https://doi.org/10.1080/23802359.2019.1565933
The complete mitochondrial genome of *Artemia sinica* Cai, 1989 (Crustacea: Anostraca) using next-generation sequencing

Alireza Asem⁵, Weidong Li⁵, Pei-Zheng Wang⁵, Amin Eimanifar⁶, Chun-Yang Shen⁷, Stephanie De Vos⁸ and Gilbert Van Stappen⁹

⁵College of Life Sciences and Ecology, Hainan Tropical Ocean University, Sanya, China; ⁶EAG Laboratories Inc., Easton, MD, USA; ⁷Medical College, Chengde Medical University, Chengde, China; ⁸Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering - Blok F, Ghent University, Gent, Belgium

**ABSTRACT**

The complete mitochondrial genome of *Artemia sinica* was obtained using the next-generation sequencing (NGS) method. The mitochondrial genome is a circular molecule of 15,689 bp in length, with the typical structure of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and 2 ribosomal RNA genes, and a non-coding control region (CR). The base composition is 31.53% A, 18.99% C, 16.50% G, and 32.98% T, with an A+T content of 64.51%. All tRNAs have a cloverleaf structure excepting *tRNA-Ser*₁, that represents the D-loop structure.

The genus *Artemia* consists of seven bisexual species and a large number of parthenogenetic populations with different ploidy degrees (Asem et al. 2010). So far, the complete mitogenome of three bisexual species of *Artemia* (*Artemia franciscana*, *Artemia urmiana*, and *Artemia tibetiana*) have already been characterized (Valverde et al. 1994; Zhang et al. 2013). In this study, we sequenced and described the complete mitochrondial genome of *Artemia sinica* (GenBank: MK069595). The present study is a part of a more comprehensive project of characterizing the complete mitochondrial genome of genus *Artemia*.

The cysts of *A. sinica* (ARC: 1166) were collected from Ejinor Lake (Inner Mongolia, China) and stored in the Artemia Reference Center (Ghent University, Belgium). The total DNA was extracted from a cultured adult specimen. A genomic library was established followed by paired-end (2 × 150 bp) next-generation sequencing (10 Gb), using the Illumina HiSeq X-ten sequencing platform. Quality checks for sequencing reads were performed by FastQC (Andrews 2010) and the sequences were assembled and mapped to the reference *Artemia* mitochondrial genome (*A. franciscana*, X69067) with Spades v3.9.0 (Bankevich et al. 2012) and bowtie v2.2.9 (Langmead and Salzberg 2012). Putative tRNA genes were determined using the tRNAscan-SE2.0 (http://lowelab.ucsc.edu/tRNAscan-SE/) and ARWEN (http://130.235.46.10/ARWEN/) online software. All genes were annotated based on gene order on the reference mitochondrial map and using BLAST analysis (https://blast.ncbi.nlm.nih.gov). Additionally, to annotate PCGs and tRNAs, the position of start and stop codons, and secondary structures and the position of anticodons were re-considered, respectively.

The complete mitogenome of *A. sinica* was 15,689 bp in length, with 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region (CR). The overall nucleotide composition of the major strand of the *A. sinica* mitogenome was as follows: 31.53% A, 18.99% C, 16.50% G, and 32.98% T, with a total A+T content of 64.51%.

Nine tRNAs (*tRNA-Ile*, *tRNA-Gln*, *tRNA-Cys*, *tRNA-Tyr*, *tRNA-Phe*, *tRNA-His*, *tRNA-Pro*, *tRNA-Leu*, and *tRNA-Val*) and four PCGs (*ND5*, *ND4*, *ND4L*, and *ND1*) as well as both rRNAs were encoded on the light strand. Just six PCGs (*ND2*, *COX1*, *ATP6*, *COX3*, *CYTB*, and *ND1*) began with the common ATG start codon. Stop codons included TAA (*ND5*, *ND4*, *ND4L*, and *ND1*), TAG (ND6) and non-complete codons T (*COX1*, *COX2*, *COX3* and *ND5*), and ND4). The 12S rRNA and 16S rRNA were separated by the *tRNA-Val*.

Based on the results, the highest and lowest values of %GC tRNA composition belong to *tRNA-Lys* (46.9%) and *tRNA-Glu* (18.2%), respectively. Secondary structures of *tRNA-Ser*₁ showed the D-loop structure. The longest and shortest tRNAs were *tRNA-Ser*₂ (67 bp) and *tRNA-Ala* (59 bp), respectively.

CR was located between 12S rRNA and *tRNA-Met*, with an A+T content of 67.58%. The longest gap and overlapping were determined between *tRNA-Gln*/*tRNA-Cys* (54 bp) and *tRNA-Phe*/ND5 (13 bp), respectively.
The phylogenetic relationship of *A. sinica* with members of the genus *Artemia* was determined from a concatenated dataset including the 13 PCGs and 2 rRNAs using the software MEGA 7.0.26 v. (Kumar et al. 2016) with 1000 bootstrap replicates and a GTR model (Figure 1). According to the result, *A. sinica* was placed as a clade sister to other Asian spp. All Asian species were clearly separated from American *A. franciscana*.

**Disclosure statement**

No potential conflict of interest was reported by the authors.

**Funding**

This work was supported by the Science and Technology Major Project of Hainan Province [ZDKJ2016009-3], Hainan Tropical Ocean University Doctoral Research Funding [RHDX201628].

**ORCID**

Ali Reza Asem [http://orcid.org/0000-0002-8991-4903](http://orcid.org/0000-0002-8991-4903)

Stephanie De Vos [http://orcid.org/0000-0001-6830-6928](http://orcid.org/0000-0001-6830-6928)

**References**

Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data. [accessed 2018 Oct 4]. [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

Asem A, Rastegar-Pouyani N, De los Rios P. 2010. The genus *Artemia* Leach, 1819 (Crustacea: Branchiopoda): true and false taxonomical descriptions. Lat Am J Aquat Res. 38:501–506.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19:455–477.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Bio Evol. 33:1870–1874.

Langmead B, Salzberg S. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359.

Valverde J, Batuecas B, Moratilla C, Marco R, Garess R. 1994. The complete mitochondrial DNA sequence of the Crustacean *Artemia franciscana*. J Mol Evol. 39:400–408.

Zhang, H, Luo Q, Sun J, Liu F, Wu G, Yu J, Wang W. 2013. Mitochondrial genome sequences of *Artemia tibetiana* and *Artemia urmiana*: assessing molecular changes for high plateau adaptation. Sci China Life Sci. 56:440–452.