Syndecan-4 Promotes Epithelial Tumor Cells Spreading and Regulates the Turnover of PKCα Activity under Mechanical Stimulation on the Elastomeric Substrates

Chun-Ping Huang, Chao-Min Cheng, Hong-Lin Su, Yi-Wen Lin

Department of Life Sciences, National Chung Hsing University, Taichung, Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Graduate Institute of Acupuncture Science, China Medical University, Taichung, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan

Key Words
Mechanotransducer • Syndecan-4 • Polydimethylsiloxane • Tumor cell development

Abstract
Background: Heparan sulfate proteoglycans (HSPGs) at the cell surface play an important role in cell adhesion, spreading, formation of focal adhesion complexes (FACs), and sensing mechanical stress. Syndecans are members of the HSPGs family and are highly expressed in various tumor cells. Syndecan-4 (SDC4) is a unique member of syndecans that activates protein kinase C alpha (PKCα). However, syndecan-4 in tumor cells development is not clear when receiving mechanical stress. Aims: Here we investigate the role of syndecan-4 in tumor cells spreading and its downstream kinases under mechanical stimulation. Methods: Epithelial tumor cells were seeded onto elastomeric polydimethylsiloxane (PDMS) membranes coated with poly-L-lysine (Pl), fibronectin (Fn), or anti-SDC4 antibody and stretched with a modified pressure-driven cell-stretching (PreCS) device. Results: When cells received mechanical stimulation, engagement of syndecan-4 promoted the phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 and PKCα at serine 657. Furthermore, we analyzed the cell contractility marker—myosin light chain 2 (MLC2) in 30 min time courses. The levels of phosphorylated MLC2 at serine19 were augmented through ligations of syndecan-4 but not integrin binding motif (RGD) at 10 min mechanical stimulation and were suppressed at 30 min and this phenomenon was associated with the activity of PKCα. Conclusion: Our data demonstrate that syndecan-4 is essential for transmitting the mechanotransduction signals via activation of PKCα and is important for tumor cells spreading, assembly of actin cytoskeleton and cell contractility.

Copyright © 2015 S. Karger AG, Basel
Introduction

The extracellular matrix (ECM) microenvironment plays a crucial role in tumor cell progression, invasion, and metastasis. For example, invadopodia formation allows tumor cells to penetrate the basement membrane and interstitial stroma [1]. Attachment to ECM allows suspension cells to form focal adhesion complexes (FACs) and activate focal adhesion kinase (FAK) to turn on multiple intracellular signaling pathways. Overexpression of FAK has been reported in various cancers [2]. FAK activation is induced by integrin–ECM engagement [3], growth factor collaboration [4], and mechanical stretch [5]. However, until now, the molecular mechanisms that link mechanical stimuli to FAK activation in tumor cells have been poorly understood.

Mechanical stress is converted into biochemical information by activating mechanotransducers [5]. Traditionally, it is believed that integrins are important mechanotransducers that connect the ECM with the actin cytoskeleton inside the cell. These integrin–ECM mechanotransduction signals including activation of Src [6], FAK [7], and ERK1/2 [8] lead to the expression of metalloproteinases (MMPs) and proteolysis of ECM to make tumor cells invasion and metastasis [9]. Cell surface heparan sulfate proteoglycans (HSPGs) play an important role in cell spreading [10] and sensing shear stress [11]. Furthermore, the disruption of HSPGs by heparinase treatment reduces mechanotransduction-sensing and differentiation [12, 13]. It is believed that HSPGs not only function as co-receptors, but also act as mechanotransducers in cell development and migration [14].

Syndecans are members of the HSPGs family [15] that belong to the group of adhesion receptors; together with integrins, they initiate synergistic signaling, control cell adhesive functions, and regulate cell behavior [12]. Syndecans are highly expressed in various tumor cells and promote tumor growth, invasion, metastasis, and angiogenesis [16]. Among the four subtypes of syndecans (syndecan-1 to -4), syndecan-4 (SDC4) has the unique ability to activate calcium-dependent protein kinase C alpha (PKCα) to bind to phosphatidylinositol 4,5-bisphosphate (PIP_{2}) at the V-region [17], forming a ternary complex. Syndecan-4 also regulates the activation of FAK [18] and RhoA [19] and serves as a mechanotransducer [20-22]. In particular, SDC4 binds to the heparin-binding domain of fibronectin [23] and activates RhoA through PKCα [24]. This evidence supports the idea that ligation of SDC4 induces the activation of FAK and RhoA through PKCα.

Mechanical stress triggers the activation of the Rho and its downstream effectors, Rho-associated kinase (ROCK) and mDia, through focal contacts [25]. ROCK inhibits the activity of MLC phosphatase and promotes the phosphorylation of myosin light chain (MLC), thus increasing focal adhesion formation [26] and cell contractility [27]. Indeed, RhoA-mediated contractility causes ECM remodeling of tumor stroma and feedback to induce the tumor cell proliferation [28]. The increase in ECM stiffness by mechanical stress critically promotes tumor progression and metastasis [9, 29]. However, the role of SDC4 in mechanical stress-mediated cytoskeleton remodeling in tumor cells is, as yet, unclear.

In this study, we hypothesize that syndecan-4 acts as a mechanotransducer to sense the microenvironmental mechanical force and activates the FAK and PKCα signaling pathways in tumor development. We examined the mechanical signal transmitting pathway of SDC4 in the regulation of PKCα and FAK activity through mechanical stretch stimulation. We seeded HeLa cells, human cervical cancer cells, and mouse melanoma cells (B16-F10) onto elastomeric polydimethylsiloxane (PDMS) membranes [30] coated with non-ECM (poly-L-lysine) and ECM molecules (fibronectin), or anti-SDC4 antibody. We stretched cells using a modified pressure-driven cell-stretching (PreCS) device [21] and observed the cellular morphology and phosphorylation of kinases triggered by SDC4 in the unstretched adhesion condition and under mechanical stimulation. Our results suggest that SDC4 may act as a mechanotransducer in the progression of cancer.
Materials and Methods

PDMS membrane and silanization
PDMS (Sylgard 184) was purchased from Dow Corning (Taipei, Taiwan). A ration of 6.0 g base to 0.4 g of curing agent (15:1 ratio) was mixed in a 90 mm Petri dish (Biomate, Taipei, Taiwan) and set aside for 7 days at room temperature. The elastic modulus of PDMS with this ratio has a Young’s modulus of approximately 173 kPa [31]. The membrane was chemically silanized to produce biological molecules conjugated to the surface due to the hydrophobic character of PDMS. PDMS membranes were treated for 5 minutes with air plasma and UV sterilization, followed by 24 hours of 2% 3-aminopropyltriethoxysilane (AMEO; Sigma, St. Louis, MO, USA) in ethanol. The membranes were subsequently heat-treated in an -80°C oven for 8 hours, and rinsed with ethanol and phosphate buffer saline (PBS) [21].

Immobilized ECM molecules and antibody coating
The silanization PDMS membranes were coated with 15 mL solution of poly-L-lysine (0.1%; Sigma, St. Louis, MO, USA), fibronectin (10 μg/mL; Sigma, St. Louis, MO, USA), RGD (10 μg/mL; Sigma, St. Louis, MO, USA) or anti-SDC4 5G9 antibodies (10 μg/mL; Santa Cruz Biotechnology, Texas, USA) in PBS for 24 hours at 4°C. Finally, the PDMS membranes were treated with a 1% BSA (Sigma, St. Louis, MO, USA) in ddH₂O solution for 30 minutes to block nonspecific binding.

Cell culture
HeLa cells and B16-F10 were cultured in 75 cm² flask (Falcon, Tewksbury, MA, USA) and maintained in Dulbecco’s modified Eagle’s medium (Gibco, Carlsbad, CA, USA) with 100 units penicillin per mL, and 100 μg streptomycin per mL (Gibco, Carlsbad, CA, USA), supplemented with 10% fetal bovine serum (Gibco, Carlsbad, CA, USA) at 37°C, 5% CO₂ and humidified atmosphere. For spreading and stretch assays, 1 X 10⁶ cells per Petri dish were trypsinized with 0.25% Trypsin-EDTA (Gibco, Carlsbad, CA, USA) and seeded onto PDMS membranes pre-coated with poly-L-lysine (Pl), fibronectin (Fn), or anti-SDC4 antibody in DMEM medium containing 10% FBS overnight. After cell adhesion and spreading, the DMEM medium was removed and cells were washed with PBS thrice, and subsequently serum starved for 18 hours to reduce interference [18, 32].

Mechanical stretch experiment
The pressure-driven cell-stretching device [21] was modified to enlarge the diameter to 90 mm in order to fill the space with a PDMS membrane. This modified device was handmade and purchased from BIOCHIEFDOM (Taipei, Taiwan). The pressure of mechanical stretch experiment was controlled at 5 lb/in² with a pressure regulating valve (San-Yuan, Taichung, Taiwan). After cell starvation, the membranes were cut around the edges of Petri dishes to loosen them and cell-laden membranes were laid on our modified pressure-driven cell-stretching (PreCS) device for 5, 10, and 30 minute periods in serum-free DMEM medium containing 1 mM sodium vanadate (Sigma, St. Louis, MO, USA).

Immunofluorescent staining and spreading area analysis
The unstretched or stretched PDMS membranes were washed with cold PBS containing 0.5 mM sodium vanadate thrice, cut into 1 X 1 cm² squares, and subsequently fixed with 4% paraformaldehyde for 15 minutes at room temperature, before being permeabilized and blocked with PBS containing 1% bovine serum albumin, 0.1% Triton X-100, and 0.02% sodium azide for 2 hours at 4°C. Samples were further incubated with primary antibodies at 4°C overnight. The primary antibodies were: anti-syndecan-4 monoclonal antibody (1:100, Santa Cruz Biotechnology, Texas, USA), anti-phosphospecific FAK at tyrosine 397 polyclonal antibody (1:200, Novus Biologicals, Littleton, CO, USA), anti-phosphospecific PKCα at serine 657 polyclonal antibody (1:200, Upstate, Billerica, MA, USA), anti-phosphospecific myosin light chain 2 at serine 19 monoclonal antibody (1:200, Cell Signaling Technology, Boston, MA, USA). The secondary antibodies were incubated with phalloidin conjugated with rhodamine (1:1000, Molecular Probes, Carlsbad, CA, USA), Goat anti-mouse IgG DyLight488 (1:1000, Jackson ImmunoResearch Laboratories, West Grove, PA) and Goat anti-rabbit IgG DyLight594 (1:1000, Jackson ImmunoResearch Laboratories, West Grove, PA) for 2 hours at 4°C. The stained HeLa cells were mounted with glycerol, sealed under a coverslip, and then photographed using a fluorescent microscope system (Olympus, BX-51, Japan). Stained B16-F10 cells were
mounted with DAPI-contained mounting medium (Sigma, St. Louis, MO, USA) and photographed by confocal microscope detection system (Leica, TCS SP2, Germany). The area of cell spreading was examined using NIH ImageJ software (Bethesda, MD USA), and the fluorescent image of fluorescent actin (80-120 cells from three independent experiments) was hand-measured.

Immunoblotting

HeLa cells were harvested by scrapers using 200 μL of lysis buffer (50 mM Tris-HCl pH 7.4, 250 mM NaCl, 1% NP-40, 5 mM EDTA, 50 mM NaF, 1 mM Na$_2$VO$_4$, 0.02% NaN$_3$) and a protease inhibitor cocktail (Amresco, Solon, USA). The extracted proteins (20 μg per sample assessed by BCA protein assay) were subjected to 8 or 10% SDS-Tris glycine gel electrophoresis and transferred to a PVDF membrane. The membrane was blocked with 5% nonfat milk in tris-buffered saline (TBS) buffer (10 mM Tris pH 7.5, 100 mM NaCl, 0.05% Tween 20), incubated with primary antibodies: anti-α-tubulin monoclonal antibody (1:2500, Santa Cruz Biotechnology, Texas, USA), anti-phosphospecific ERK1/2 at threonine 203 / tyrosine 205 polyclonal antibody (1:1000, Novus Biologicals, Littleton, CO, USA), anti-pFAKy397 polyclonal antibody (1:1000, Novus Biologicals, Littleton, CO, USA), anti-pPKCαs657 polyclonal antibody (1:1000, Upstate, Billerica, MA, USA), and anti-pMLC2s19 monoclonal antibody (1:1000, Cell Signaling Technology, Boston, MA, USA) in TBS with 1% bovine serum albumin at 4°C overnight. Peroxidase-conjugated anti-rabbit antibody and anti-mouse antibody (1:5000, Jackson ImmunoResearch Laboratories, West Grove, PA) were used as a secondary antibody. The bands were visualized using an enhanced chemiluminescent substrate kit (Thermo Scientific, Waltham, MA, USA) with LAS-3000 Fujifilm (Fuji Photo Film Co. Ltd). Where applicable, the image intensities of specific bands were quantified with NIH ImageJ software (Bethesda, MD, USA).

Sandwich enzyme-linked immunosorbent assay (ELISA)

B16-F10 cells were harvested by scrapers using 500 μL of ELISA lysis buffer (FIVEphoton Biochemicals, San Diego, USA) containing inhibitor cocktail (Amresco, Solon, USA) and 1 mM PMSF. The extracted proteins (20 μg per sample assessed by BCA protein assay) were used to detect pFAKy397 (R&D Systems, Minnesota, USA), pMLC2s18 (Assay Biotechnology, CA, USA) and pPKCαt638 (Assay Biotechnology, CA, USA) following manufacturer’s protocol. The absorbance of each sample was read by spectrophotometry (BioTek, VT, USA).

Statistical analysis

All statistic data are presented as the mean ± standard error. Statistical significance was tested using the ANOVA test, followed by a post hoc Tukey’s test ($p < 0.05$ was considered statistically significant).

Results

HeLa cells expanded on the fibronectin or anti-syndecan-4 antibody-coated elastomeric PDMS membranes

To determine the role of syndecan-4 in tumor cells adhesion and spreading on elastomeric matrix, we cultured HeLa cells on elastomeric PDMS membranes. HeLa cells are adenocarcinoma epithelial cells transformed by the human papillomaviruses 18 (HPV-18) and are used widely in cancer and cell biology research areas [33]. SDC4 mRNA is abundant in epithelial cells and expressed in HeLa cells [34]. After adhesion and starvation, cells were fixed and visualized by immunofluorescent staining for SDC4 (green) and filamentous actin (F-actin, red). On PI (Fig. 1A), a synthetic, positively charged amino acid polymer, the morphology of HeLa cells appeared condensed and rounded. On fibronectin, the glycoprotein of ECM and a ligand for both integrins and SDC4 [23], cells exhibited extended morphology and well-formed FACs (Fig. 1A). Furthermore, we analyzed the area of cell spreading with ImageJ software and the data showed the area of seeding on Fn ($386.0 ± 30.8 \mu m^2$, $p < 0.05$) or SDC4 ($478.1 ± 29.6 \mu m^2$, $p < 0.05$) -coated membrane was significantly higher than that for the PI ($156.4 ± 5.5 \mu m^2$, $n = 80-120$ cells) group (Fig. 1B). These results demonstrate that the engagement of SDC4 could promote the spreading of HeLa cells and the formation of FACs on the elastomeric polymer matrix.
Mechanical stretch induced the phosphorylation of focal adhesion kinase at tyrosine 397 through the engagement of syndecan-4

We hypothesized that SDC4 senses microenvironmental mechanical stimuli and turns on the FAK signaling pathway in cancer development. FAK plays a key role in...
mechanotransduction and phosphorylation at tyrosine 397, and is crucial in response to mechanical force [35]. Our results indicate that FAK was phosphorylated at tyrosine 397 (pFAKy397) and co-localized with SDC4 in the unstretched condition (Fig. 2A). After mechanical stretch (5 minutes, 5 lb/in²), pFAKy397 was activated around the edges of cells in both the Fn and SDC4 groups (Fig. 2B). These data suggest that cells sensed mechanical stimulation by the ligation of SDC4 and induced the activation of FAK.

Mechanical stretch induced the phosphorylation of syndecan-4 downstream kinases: PKCα, FAK, and ERK 1/2

The ligation of SDC4 and matrix induces the activation of PKCα in cell adhesion and spreading, but its role in signal transmitting under mechanotransduction is poorly understood. To elucidate the mechanism of SDC4, HeLa cells were harvested from PDMS membranes for protein extracts before and after mechanical stretch (5 minutes, 5 lb/in²). In the unstretched condition, the mechanotransduction-related signaling kinases showed basal levels of phosphorylation (Fig. 3A). After mechanical stretch, the phosphorylation levels of ERK1/2 were all increased compared to each of member of the unstretched control (Pl group: 148.8 ± 12.2%; Fn group: 158.2 ± 7.9%; SDC4 group: 154.9 ± 9.7%, p < 0.05). Noticeably, the phosphorylation levels of PKCα at serine 657 were increased in the Fn (136.0 ± 8.6%, p < 0.05) and SDC4 (141.3 ± 3.1%, p < 0.05) group, but not in the Pl group. The phosphorylation levels of FAKy397 were increased after mechanical stretch (Pl group: 146.0 ± 3.2%; fibronectin group: 132.6 ± 3.2%; SDC4 group: 130.5 ± 2.6%, p < 0.05) (Fig. 3B). These data suggest that the SDC4 molecule received mechanical stimulation to promote the phosphorylation of PKCα at serine 657, thus activating the downstream mechanotransduction-related kinases such as FAK and ERK1/2.

Mechanical stretch induced the phosphorylation of MLC 2 at serine19 through the engagement of SDC4

Shear stress induces transient inactivation of Rho and promotes the formation of focal contacts [36]. Rho can be activated by PKCα to maintain the phosphorylation of MLC2 and promote actin cross-linking and contractility. To dissect the role of SDC4 in cell contractility
Huang et al.: Syndecan-4 Promotes Epithelial Tumor Cells Spreading and Regulates PKCα Activity under Mechanical Stimulation

Fig. 4. Mechanical stretch induced the phosphorylation of myosin light chain 2 at serine19 on the Fn or anti-SDC4 antibody-coated PDMS membrane. (A) HeLa cells were seeded on the Fn, anti-SDC4 antibody or RGD pre-coated PDMS membrane as described previously, and visualized by immunofluorescent staining for phospho-MLC2 serine19 (pMLC2s19) (green) and pPKCαs657 (red). (B) After mechanical stretch (10 minutes, 5 Ib/in²), pPKCαs657 and pMLC2s19 were activated in the Fn and SDC4 group, but not in the RGD group. Arrows indicate the co-localization of pPKCαs657 and pMLC2s19 (scale bar = 25 μm).

Fig. 5. Mechanical stretch promoted the phosphorylation of myosin light chain 2 and dynamic changes were associated with the activity of PKCα. (A) Cells were treated with mechanical stretch at different time courses (0, 10, 30 minutes, 5 Ib/in²) and harvested. Phosphospecific antibodies to MLC2 at serine 19 (pMLCs19) and PKCα at serine 657 (pPKCαs657) were used to recognize phosphospecific proteins by immunoblotting. (B) Densitometry analysis of pMLCs19 was quantified with NIH ImageJ software as bar chart. Relative intensity was calculated based on defining the Fn lane (0’) as 100%. Mechanical stretch increased the phosphorylation of MLCs19 in the Fn group, but not in the RGD group at 10 minutes. The pMLCs19 was suppressed in the SDC4 and RGD group at 30 minutes (Fig. 5B#). (C) Mechanical stretch induced the phosphorylation of PKCαs657 at the 10 minute time point and decreased at the 30 minute time point in the Fn and SDC4 groups, but not in the RGD group. In particular, the phosphorylation of PKCα in the SDC4 group was suppressed at the 30 minute time point, which is consistent with the phosphorylated levels of pMLC2s19 (Fig. 5C#). Each bar represents the average of three independent experiments. (*p < 0.05, as compared to each of the unstretched group; #p < 0.05, as compared to that of the Fn stretch-treated group).
under mechanical stimulation, HeLa cells were seeded onto Fn, anti-SDC4 antibody or RGD pre-coated PDMS membranes, and were visualized by immunofluorescent staining for phospho-MLC2 at serine19 (pMLC2s19) (green), pPKCαs657 (red), and nucleus (DAPI, blue). The ligation of fibronectin (A), SDC4 (B) or RGD (C) showed basal levels of pMLC2s19 in the unstretched condition (0'). After mechanical stretch, the pMLC2s19 was increased in all groups (5'-10'). The pPKCαs657 was activated and merged with pMLC2s19 in the SDC4 (5') and Fn (10') groups, but not in the RGD group. Arrows indicate the co-localization of pPKCαs657 and pMLC2s19 (scale bar = 20 μm).

![Fig. 6.](image)

The engagement of SDC4 delivered mechanical signaling and activated PKCα in B16-F10 mouse melanoma cells. B16-F10 cells were seeded onto elastomeric PDMS membranes pre-coated with Fn, anti-SDC4, or RGD as described previously and treated with mechanical stretch in time intervals (0, 5, 10, 30 minutes, 5 lb/in²), and further stained for phospho-MLC2 at serine19 (pMLC2s19) (green), pPKCαs657 (red), and nucleus (DAPI, blue). The ligation of fibronectin (A), SDC4 (B) or RGD (C) showed basal levels of pMLC2s19 in the unstretched condition (0'). After mechanical stretch, the pMLC2s19 was increased in all groups (5'-10'). The pPKCαs657 was activated and merged with pMLC2s19 in the SDC4 (5') and Fn (10') groups, but not in the RGD group. Arrows indicate the co-localization of pPKCαs657 and pMLC2s19 (scale bar = 20 μm).
Huang et al.: Syndecan-4 Promotes Epithelial Tumor Cells Spreading and Regulates PKCα Activity under Mechanical Stimulation

The phosphorylation of MLC2 was associated with the activity of PKCα under mechanical stimulation

In order to elucidate the dynamic activity of PKCα, we analyzed the phosphorylation of MLC2 in HeLa cells under mechanical stretch at different time intervals (0, 10, 30 minutes, 5 lb/in²). The engagement of fibronectin, SDC4, or RGD showed basal levels of pMLC2s19 in the unstretched condition (Fig. 5A). We observed an increase of pMLC2s19 in the SDC4 group when cells were unstretched, but no statistical difference (Fig. 5B). After 10 minutes of mechanical stretch, the phosphorylation levels of pMLC2s19 were elevated in the Fn, SDC4, and RGD groups at 5 to 10-min time point, but no elevation was observed in the RGD group. The phosphorylation of PKCαt638 was increased in the Fn and SDC4 groups at 5 to 10-min time point, but no elevation was observed in the RGD group. Relative intensity was calculated based on defining the absorbance of Fn (0') as 100%. Each bar represents the average of three independent experiments. (*p < 0.05, as compared to each of the unstretched group; #p < 0.05, as compared to each 5 min time-point stretch-treated group).
Huang et al.: Syndecan-4 Promotes Epithelial Tumor Cells Spreading and Regulates PKCα Activity under Mechanical Stimulation

SDC4 delivered mechanical signaling and activated PKCα in B16-F10 mouse melanoma cells

Our data suggest that SDC4 could transmit a mechanical signal into biochemical information in the adenocarcinoma epithelial cells. We used malignant mouse melanoma cells (B16-F10) to confirm the role of SDC4 in mechanical signal transmitting. B16-F10 is an epithelial-like tumor cell line that has highly metastatic ability and is resistant to anticancer drugs treatment [37, 38]. Cells were seeded onto elastomeric PDMS membranes pre-coated with Fn, anti-SDC4, or RGD, as described above, and treated with mechanical stimulation in time intervals (0, 5, 10, 30 minutes, 5 lb/in2), further harvested, and stained for pMLC2s19 (green) and pPKCαs657 (red). The data shows basal levels of pMLC2s19 in the unstretched condition (Fig. 6, 0'). After mechanical stretch, the pMLC2s19 was increased from the 5 to 10 minute time-point in all groups (Fig. 6, 5'-10'). Noticeably, we observed that pPKCαs657 was activated and merged with pMLC2s19 after receiving mechanical stretch in the SDC4 (Fig. 6B) and Fn (Fig. 6A), but this did not occur in the RGD group (Fig. 6C). These results correspond to phenomena we observed in HeLa cells.

FAK activation increased at the initial stage and PKCα was important for maintaining the activity of MLC2 under mechanical stimulation

We further analyzed the phosphorylation of FAK, PKCα and MLC2 for the duration of 30 minutes by sandwich ELISA. Mechanical stimulation increased the concentration of pFAKγ397 in the Fn (56.0 ± 0.9 pg/μg, p < 0.05), SDC4 (60.1 ± 9.1 pg/μg, p < 0.05) and RGD (44.0 ± 6.6 pg/μg, p < 0.05) groups at the 5-minute time point (Fig. 7A). The phosphorylation levels of pMLC2s18 were raised at the 5-minute time point (Fig. 7B) in the Fn (117.1 ± 2.0%, p < 0.05), SDC4 (117.2 ± 0.4%, p < 0.05), and RGD (115.9 ± 1.5%, p < 0.05) groups. Noticeably, pMLC2s18 was immediately shut down in the RGD group at the 10-minute time point (92.7 ± 4.6%, p < 0.05). Otherwise, mechanical stretch through the engagement of fibronectin or SDC4 maintained the phosphorylation of MLC2 at the 10-minute time point (Fig. 7B). The phosphorylation of PKCαt638 was increased in the Fn and SDC4 groups at the 5- and 10-min time points, but no raise was observed in the RGD group (Fig. 7C). These ELISA results further confirmed that activity of PKCα was necessary to maintain the phosphorylation of MLC2 through the engagement of SDC4.

Discussion

In this study, we have shown that HeLa cells display condensed morphology on low stiffness substrates; however, immobilized ECM molecules such as fibronectin, RGD, or...
specific ligation (anti-SDC4 antibody) could promote cell spreading and formation of focal adhesions. The finding demonstrates that the SDC4 molecule promotes cell adhesion and spreading and overcomes the low stiffness of ECM. Mechanical stress plays a critical role in both normal cellular physiology and in diseases such as cardiac hypertrophy and atherosclerosis [39]. However, only a few studies have focused on the effects of mechanical stress in cancer progression. Since the major mechanical stress effector, FAK, is overexpressed in numerous cancers, we hypothesized that mechanical stress can induce the activation of FAK through HSPGs, especially SDC4. Our results show that mechanical stimulation promotes the phosphorylation of FAK at tyrosine 397 site through the engagement of fibronectin and unique syndecan-4 molecules. The levels of pFAK_{Y397} on the P1-coated group were greater than those of the Fn- and anti-SDC4-coated groups. This suggests the involvement of other mechanotransducers [40-42] that were adsorbed by poly-L-lysine and enhanced the effects induced by mechanical stimulation.

Mechanical stress increases the expression of SDC4 mRNA within 30 minutes [43], and PKCα is translocated to the cell membrane within 2 minutes [44]. Until now, the relationship between SDC4 and PKCα under mechanical stimulation was unclear. Our data suggest that SDC4 activates the PKCα downstream signaling pathway to initiate the activation of FAK and ERK1/2.

Mechanical stress mediates actin cytoskeleton remodeling and increases the contractility of cells by promoting the assembly of stress fibers [28, 45]. These stress fibers consist of α-actinin cross-linked actin filaments stabilized by interaction with myosin IIA [46]. The phosphorylation of myosin II light chain is regulated by MLC kinase (MLCK) and ROCK and promotes actomyosin contractility. Mechanical stress has been shown to increase the activities of both MLCK [47] and ROCK [26]. Integrins [48] and SDC4 [49] signaling transiently suppress the activity of RhoA through the regulation of p190RhoGAP at early stages of cell adhesion and migration. The activity of RhoA is rapidly reduced after 5 minutes of shear stress and recovered after 30 minutes [36]. As the details regarding the process by which mechanical stimuli regulate RhoA activity are unclear, we investigated the phosphorylation of myosin II light chain at serine 18 and 19 when cells were placed under mechanical stretch for 30 minutes. Our data demonstrate that 10 minutes of mechanical stimuli changed the morphology of cells into an extended shape and pPKCα_{S657} and pMLC_{2s19} were activated by SDC4, but not by the integrins RGD motif. Immunoblotting and ELISA results further confirmed that the phosphorylation of MLC2 was associated with the activity of PKCα. The ligation of cell surface receptors and matrix determines specific mechanotransduction signaling pathways in cells.

SDC4 increased the phosphorylation of myosin II at the early 10 minute time point, a process that may be mediated by PKCα-dependent activation of RhoA [24]. After 30 minutes of mechanical stimuli, the phosphorylation of myosin II was reduced; down regulation may be induced by p190RhoGAP [49]. Our data suggest that SDC4 activates PKCα to turn on the downstream kinase before p190RhoGAP during mechanical stimuli. Otherwise, RGD binding motif-mediated suppression of myosin II phosphorylation may be induced by the FAK—Src—p190RhoGAP pathway [50]. Furthermore, serine 183 phosphorylation in SDC4 is critical for regulation of PKCα activity [51]. The conformational change near the C2 region in phosphorylated SDC4 [52] suppresses the activity of PKCα [53]. Our data show that SDC4 promotes the activity of PKCα during the early stages of mechanical stress and suppresses it at the later stages. It is likely that phosphorylation at serine 183 [7] at different time points plays a role in regulating the activity of PKCα.

Conclusion

In summary, we applied mechanical stimulation with a modified pressure-driven cell-stretching (PreCS) device to elucidate the role of SDC4 in tumor cells. By using immobilized ECM molecules pre-coated with elastomeric PDMS membrane, the signals transmitted by...
engagement of fibronectin, RGD, or SDC4 were analyzed. Our experiments show that SDC4 supports cells spreading on the elastomeric matrix and acts as a mechanotransducer to initiate the phosphorylation of PKCα at threonine 638 and serine 657, FAK at tyrosine 397, and ERK1/2 (Fig. 8, solid arrow). Furthermore, we discovered that phosphorylation of MLC2 at serine 18 and 19 was associated with the activity of PKCα (Fig. 8, dotted arrow). These findings help us to understand the functions of SDC4 in sensing microenvironmental force during tumor cell progression.

Disclosure Statement

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by CMU under the Aim for Top University Plan of the Ministry of Education, Taiwan, NSC 101-2320-B-039-014-MY3, CMU101-N1-06, and in part by Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence (MOHW103-TDU-B-212-113002). We thank Jiunn-Wang Liao for kindly supporting B16-F10 cells.

References

1. Bissell MJ, Radisky D: Putting tumours in context. Nat Rev Cancer 2001;1:146-54.
2. Weiner TM, Liu ET, Graven RJ, Cance WG: Expression of focal adhesion kinase gene and invasive cancer. Lancet 1993;342:1024-1025.
3. Clark EA, Brugge JS: Integrins and signal transduction pathways: The road taken. Science 1995;268:233-239.
4. Sieg DJ, Hauck CR, Illic D, Klingbell CK, Schaefer E, Damsky CH, Schlaepfer DD: Fak integrates growth-factor and integrins signals to promote cell migration. Nat Cell Biol 2000;2:249-256.
5. Orr AW, Helmke BP, Blackman BR, Schwartz MA: Mechanisms of mechanotransduction. Developmental Cell 2006;10:11-20.
6. Sai X, Naruse K, Sokabe M: Activation of pp60(src) is critical for stretch-induced orienting response in fibroblasts. J Cell Sci 1999;112:1365-1373.
7. Wilcox-Adelman SA, Denhez F, Iwabuchi T, Saoncella S, Calautti E, Goetinck PF: Syndecan-4: Dispensable or indispensable? Glycoconj J 2002;19:305-313.
8. Aitken KJ, Block G, Lorenzo A, Herz D, Sabha N, Dessouki O, Fung F, Szybowska M, Craig L, Bagli DJ: Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am J Pathol 2006;169:459-470.
9. Wirtz D, Konstantopoulos K, Pearson PC: The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 2011;11:512-522.
10. Woods A, Couchman JR: Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell 1994;5:183-192.
11. Florian JA, Kosky JR, Ainslie K, Pang Z, Dunn RO, Tarbell JM: Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 2003;93:e136-142.
12. Tkachenko E, Rhodes JM, Simons M: Syndecans: New kids on the signaling block. Circ Res 2005;95:488-500.
13. Horowitz A, Simons M: Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase calpha. J Biol Chem 1998;273:25548-25551.
14. Sarrazin S, Lamanna WC, Esko JD: Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011;3
15. Carey DJ: Syndecans: Multifunctional cell-surface co-receptors. Biochem J 1997;327:1-16.
16 Yip GW, Smollich M, Gotte M: Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther 2006;5:2139-2148.
17 Morgan MR, Humphries MJ, Bass MD: Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 2007;8:957-969.
18 Wilcox-Adelman SA, Denhez F, Goetinck PF: Syndecan-4 modulates focal adhesion kinase phosphorylation. J Biol Chem 2002;277:32970-32977.
19 Saoncella S, Echtermeyer F, Denhez F, Nowden JK, Mosher DF, Robinson SD, Hynes RO, Goetinck PF: Syndecan-4 signals cooperatively with integrins in a rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc Natl Acad Sci U S A 1999;96:2805-2810.
20 Finsen AV, Lunde IG, Sjaastad I, Ostli EK, Lyngra M, Jarstadmarken HO, Hasic A, Ngyard S, Wilcox-Adelman SA, Goetinck PF, Lyberg T, Skrbic B, Florholmen G, Tonnessen T, Tuch WE, Djurovic S, Carlson CR, Christensen G. Syndecan-4 is essential for development of concentric myocardial hypertrophy via stretch-induced activation of the calcineurin-nfat pathway. PLoS One 2011;6:e28302.
21 Bellin RM, Kubicek JD, Frigault MJ, Kamien AJ, Steward RL, Jr., Barnes HM, Digiacomo MB, Duncan LJ, Edgerly CK, Morse EM, Park CY, Fredberg JJ, Cheng CM, LeDuc PR: Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proc Natl Acad Sci U S A 2009;106:22102-22107.
22 Matesic DF, Ali A, Sidorova TS, Burns TJ: A cell-cell communication marker for identifying targeted tumor therapies. Curr Bioact Compd 2013;9:255-262.
23 Tumova S, Woods A, Couchman JR: Heparan sulfate chains from glypicans and syndecans bind the hep II domain of fibronectin similarly despite minor structural differences. J Biol Chem 2000;275:9410-9417.
24 Dovas A, Yoneda A, Couchman JR: Pkcbeta-dependent activation of rhoa by syndecan-4 during focal adhesion formation. J Cell Sci 2000;6:2837-2846.
25 Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD: Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 2001;153:1175-1186.
26 Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F: Distinct roles of ROCK (rho-kinase) and MLCK in spatial regulation of ML phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 2000;150:797-806.
27 Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S: Cooperation between mDia1 and Rock in rho-induced actin reorganization. Nat Cell Biol 1999;1:136-143.
28 Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, GEFen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM: Tensional homeostasis and the malignant phenotype. Cancer Cell 2005;8:254-265.
29 Levental KR, Yu H, Kiosses WB, Schwartz MA: Regulation of the small GTP-binding protein rho by cell adhesion and the cytoskeleton. EMBO J 1999;18:578-585.
30 Masters JR: Hela cells 50 years on: The good, the bad and the ugly. Nat Rev Cancer 2002;2:315-319.
31 Li B, Chen J, Wang JH: Rgd peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J BIOMED MATER RES 2006;79:989-998.
32 Cheng CM, LeDuc PR, Lin YW: Localized bimodal response of neuron extensions and structural proteins in dorsal-root ganglion neurons with controlled polydimethylsiloxane substrate stiffness. J Biomech 2011;44:856-862.
33 Ren XD, Kiosses WB, Schwartz MA: Regulation of the small GTP-binding protein rho by cell adhesion and the cytoskeleton. EMBO J 1999;18:578-585.
34 Masters JR: Hela cells 50 years on: The good, the bad and the ugly. Nat Rev Cancer 2002;2:315-319.
Cillo C, Dick JE, Ling V, Hill RP: Generation of drug-resistant variants in metastatic b16 mouse melanoma cell lines. Cancer Res 1987;47:2604-2608.

Shyy JY, Chien S: Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 1997;9:707-713.

Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M: Yap/taz as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 2014;588:2663-2670.

Mantilidewi KI, Murata Y, Mori M, Otsubo C, Kotani T, Kusakari S, Ohnishi H, Matozaki T: Shear stress-induced redistribution of vascular endothelial-protein-tyrosine phosphatase (ve-ptp) in endothelial cells and its role in cell elongation. J Biol Chem 2014;289:6451-6461.

Fu M, Rao R, Sudhakar D, Hogue CP, Rutta Z, Morales S, Gordon LK, Braun J, Goodglick L, Wadehra M: Epithelial membrane protein-2 promotes endometrial tumor formation through activation of fak and src. PLoS One 2011;6:e19945.

Li L, Chaikof EL: Mechanical stress regulates syndecan-4 expression and redistribution in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2002;22:61-68.

Li C, Wernig F, Leitges M, Hu Y, Xu Q: Mechanical stress-activated pkcdelta regulates smooth muscle cell migration.FASEB J 2003;17:2106-2108.

Butcher DT, Alliston T, Weaver VM: A tense situation: Forcing tumour progression. Nat Rev Cancer 2009;9:108-122.

Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM: Myosin iia regulates cell motility and actomyosin-microtubule crosstalk. Nature Cell Biol 2007;9:299-309.

Smith PG, Tokui T, Ikebe M: Mechanical strain increases contractile enzyme activity in cultured airway smooth muscle cells. Am J Physiol 1995;268:L999-1005.

Arthur WT, Petch LA, Burridge K: Integrin engagement suppresses rhoa activity via a c-src-dependent mechanism. Curr Biol 2000;10:719-722.

Bass MD, Morgan MR, Roach KA, Settlement J, Goryachev AB, Humphries MJ: P190rhogap is the convergence point of adhesion signals from alpha 5 beta 1 integrin and syndecan-4. J Cell Biol 2008;181:1013-1026.

Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF: Fak-src signalling through paxillin, erk and mlck regulates adhesion disassembly. Nat Cell Biol 2004;6:154-161.

Brucher BL, Jamall IS: Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment. Cell Physiol Biochem 2014;34:213-243.

Koo BK, Jung YS, Shin J, Han I, Mortier E, Zimmermann P, Whiteford JR, Couchman JR, Oh ES, Lee W: Structural basis of syndecan-4 phosphorylation as a molecular switch to regulate signaling. J Mol Biol 2006;355:651-663.

Woods A, Couchman JR: Syndecan-4 and focal adhesion function. Curr Opin Cell Biol 2001;13:578-583.