EXPONENTIAL HIGHER DIMENSIONAL
ISOPERIMETRIC INEQUALITIES FOR SOME
ARITHMETIC GROUPS

KEVIN WORTMAN

Abstract. We show that arithmetic subgroups of semisimple groups
of relative \mathbb{Q}-type A_n, B_n, C_n, D_n, E_6, or E_7 have an exponential
lower bound to their isoperimetric inequality in the dimension that
is 1 less than the real rank of the semisimple group.

Let G be a connected, semisimple, \mathbb{Q}-group that is almost simple
over \mathbb{Q}. Let X be the symmetric space of noncompact type associated
with $G(\mathbb{R})$ and let $X_\mathbb{Z}$ be a contractible subspace of X that is a finite
Hausdorff distance from some $G(\mathbb{Z})$-orbit in X; Raghunathan proved
that such a space exists [Ra 1]. We denote the \mathbb{R}-rank of G by $rk_{\mathbb{R}}G$.

Given a homology n-cycle $Y \subseteq X_\mathbb{Z}$ we let $v_X(Y)$ be the infimum of
the volumes of all $(n+1)$-chains $B \subseteq X$ such that $\partial B = Y$. Similarly,
we let $v_\mathbb{Z}(Y)$ be the infimum of the volumes of all $(n+1)$-chains $B \subseteq X_\mathbb{Z}$
such that $\partial B = Y$. We define the ratio

$$R_n(Y) = \frac{v_\mathbb{Z}(Y)}{v_X(Y)}$$

and we let $R_n(G(\mathbb{Z})): \mathbb{R}_{>0} \to \mathbb{R}_{\geq 1}$ be the function

$$R_n(G(\mathbb{Z}))(L) = \sup \{ R_n(Y) \mid \text{vol}(Y) \leq L \}$$

These functions measure a contrast between the geometries of $G(\mathbb{Z})$
and X.

Clearly if G is \mathbb{Q}-anisotropic (or equivalently, if $G(\mathbb{Z})$ is cocompact
in $G(\mathbb{R})$) then we may take $X_\mathbb{Z} = X$ so that $R_n(G(\mathbb{Z})) = 1$ for all n.

The case is different when G is \mathbb{Q}-isotropic, or equivalently, if $G(\mathbb{Z})$
is non-cocompact in $G(\mathbb{R})$.

Leuzinger-Pittet conjectured that $R_{rk_{\mathbb{R}}G-1}(G(\mathbb{Z}))$ is bounded below
by an exponential when G is \mathbb{Q}-isotropic [L-P]. The conjecture in
the case $rk_{\mathbb{R}}G = 1$ is equivalent to the well-known observation that
the word metric for non-cocompact lattices in rank one real simple
Lie groups is exponentially distorted in its corresponding symmetric
space. Prior to [L-P], the conjecture was evidenced by other authors in
some cases. It was proved by Epstein-Thurston when $G(\mathbb{Z}) = SL_k(\mathbb{Z})$
[Ep et al.], by Pittet when $G(\mathbb{Z}) = \text{SL}_2(\mathcal{O})$ and \mathcal{O} is a ring of integers in a totally real number field [Pa], by Hattori when $G(\mathbb{Z}) = \text{SL}_k(\mathcal{O})$ and \mathcal{O} is a ring of integers in a totally real number field [Ha 1], and by Leuzinger-Pittet when $\text{rk}_R G = 2$ [L-P].

This paper contributes to the verification of the Leuzinger-Pittet conjecture by proving

Theorem 1. Let G be as in the introductory paragraph and assume that G is \mathbb{Q}-isotropic. Furthermore, suppose the \mathbb{Q}-relative root system of G is of type A_n, B_n, C_n, D_n, E_6, or E_7. Then there exist constants $C > 0$ and $L_0 > 0$ such that

$$R_{\text{rk}_G - 1}(G(\mathbb{Z}))(L) \geq e^{CL}$$

for any $L > L_0$.

0.1. **Example.** Let \mathcal{O} be the ring of integers in a number field K, and let $G = R_{K/\mathbb{Q}}\text{SL}_k$ where $R_{K/\mathbb{Q}}$ is the restriction of scalars functor. Then $G(\mathbb{Z}) = \text{SL}_k(\mathcal{O})$, G is \mathbb{Q}-isotropic, G has a \mathbb{Q}-relative root system of type A_{k-1}, and $\text{rk}_\mathbb{Q} G = (k-1)S$ where S is the number of inequivalent archimedean valuations on K. Therefore, $R_{(k-1)S-1}(\text{SL}_k(\mathcal{O}))$ is bounded below by an exponential.

0.2. **Non-nonpositive curvature of arithmetic groups.** If $G(\mathbb{Z})$ satisfied a reasonable notion of nonpositive curvature (including CAT(0) or combable, for example), we would expect polynomial bounds on isoperimetric inequalities for $G(\mathbb{Z})$. Thus, not only does Theorem 1 provide a measure of the difference between $G(\mathbb{Z})$ and X, it also exhibits non-nonpositive curvature tendencies for $G(\mathbb{Z})$ when G is \mathbb{Q}-isotropic and $\text{rk}_\mathbb{Q} G > 1$.

0.3. **Type restriction.** Our proof of Theorem 1 excludes the remaining types – G_2, F_4, E_8, and BC_n – because groups of these types do not contain proper parabolic subgroups whose unipotent radicals are abelian. Our techniques require an abelian unipotent radical of a maximal \mathbb{Q}-parabolic subgroup of G to construct cycles in $X_\mathbb{Z}$.

0.4. **Related results.** It is an open question whether $R_n(G(\mathbb{Z}))$ is bounded above by a constant when $n < \text{rk}_\mathbb{Q} G - 1$. When $n = 0$ it is; this is a theorem of Lubotzky-Mozes-Raghunathan [L-M-R].

Druțu showed that if the \mathbb{Q}-relative root system of G is of type A_1 or BC_1, then for any $\varepsilon > 0$, $G(\mathbb{Z})$ has a Dehn function that is bounded above by $L^{2+\varepsilon}$ for L sufficiently large [Dr].

Young proved that $G(\mathbb{Z}) = \text{SL}_k(\mathbb{Z})$ has a quadratic Dehn function if $k \geq 5$ [Yo].
Gromov proved that all of the functions $R_n(G(\mathbb{Z}))$ are bounded above by an exponential function, and Leuzinger later provided a more detailed proof of this fact (5.4 [Gr] and Corollary 5.4 [Le]).

1. Choice of parabolic

Let $T \leq G$ be a maximal \mathbb{Q}-split torus in G. We let $\Phi_\mathbb{Q}$ be the roots of G with respect to T. Choose an ordering on $\Phi_\mathbb{Q}$. We denote the corresponding sets of simple and positive roots by $\Delta_\mathbb{Q}$ and $\Phi_\mathbb{Q}^+$ respectively.

If $I \subseteq \Delta_\mathbb{Q}$, we let $[I] \subseteq \Phi_\mathbb{Q}$ be the set of roots that are linear combinations of elements in I, and we let $\Phi_\mathbb{Q}(I)^+ = \Phi_\mathbb{Q}^+ - [I]$.

For each $\alpha \in \Phi_\mathbb{Q}$, we let $U_\alpha \leq G$ be the root subgroup associated with α. For $J \subseteq \Phi_\mathbb{Q}$, we let $U_J = \prod_{\alpha \in J} U_\alpha$.

We define $T_I = \cap_{\alpha \in I} \text{Ker}(\alpha)^\circ$ where the superscript \circ denotes the connected component of the identity, and we label the centralizer of T_I in G by $Z_G(T_I)$.

1.1. Maximal parabolics with abelian unipotent radicals. For any $\alpha_0 \in \Delta_\mathbb{Q}$, we let P_{α_0} be the maximal proper parabolic subgroup of G given by $U_{\Phi_\mathbb{Q}(\Delta_\mathbb{Q} - \alpha_0)^+}Z_G(T_{\Delta_\mathbb{Q} - \alpha_0})$. The unipotent radical of P_{α_0} is $U_{\Phi_\mathbb{Q}(\Delta_\mathbb{Q} - \alpha_0)^+}$.

Lemma 2. There is some $\alpha_0 \in \Delta_\mathbb{Q}$ such that $U_{\Phi_\mathbb{Q}(\Delta_\mathbb{Q} - \alpha_0)^+}$ is abelian.

Proof. Suppose $\Delta_\mathbb{Q} = \{\alpha_1, \alpha_2, ..., \alpha_k\}$. The set of positive roots $\Phi_\mathbb{Q}^+$ contains a “highest root” $\sum n_i \alpha_i$ for positive integers n_i such that if $\sum m_i \alpha_i \in \Phi_\mathbb{Q}^+$, then $m_i \leq n_i$ (Bou, VI 1 8).

Given that $\Phi_\mathbb{Q}$ is a root system of type A_n, B_n, C_n, D_n, E_6, or E_7, there is some $\alpha_0 \in \{\alpha_1, \alpha_2, ..., \alpha_k\}$ such that $n_0 = 1$; consult the list of root systems in the appendix of [Bou].

Since any $\sum m_i \alpha_i \in \Phi_\mathbb{Q}(\Delta_\mathbb{Q} - \alpha_0)^+$ has $m_0 > 0$, it follows that any $\sum m_i \alpha_i \in \Phi_\mathbb{Q}(\Delta_\mathbb{Q} - \alpha_0)^+$ has $m_0 = 1$, and thus the sum of two elements in $\Phi_\mathbb{Q}(\Delta_\mathbb{Q} - \alpha_0)^+$ is not a root.

Therefore, given $\tau_1, \tau_2 \in \Phi_\mathbb{Q}(\Delta_\mathbb{Q} - \alpha_0)^+$, we have

$$[U_{\tau_1}, U_{\tau_2}] \subseteq U_{\tau_1 + \tau_2} = 1$$

\square

In what remains, we let $P = P_{\alpha_0}$, we let U_P be the real points of $U_{\Phi_\mathbb{Q}(\Delta_\mathbb{Q} - \alpha_0)^+}$. Thus, we can rephrase Lemma 2 as

Lemma 3. U_P is abelian.
1.2. A contracting ray. Recall that $T_{\Delta_Q-\alpha_0} \leq Z_G(T_{\Delta_Q-\alpha_0}) \leq P$ is a 1-dimensional Q-split torus. Choose $a_+ \in T_{\Delta_Q-\alpha_0}(\mathbb{R})$ such that $\alpha_0(a_+) > 1$ and such that the distance in $T_{\Delta_Q-\alpha_0}(\mathbb{R})$ between 1 and a_+ equals 1.

The Lie algebra of U_P is u.

Lemma 4. There is some $s > 0$ such that for any $v \in u$

$$Ad(a_+^s)v = e^{sv}$$

Proof. Recall that

$$u = \prod_{\beta \in \Phi_Q(\Delta_Q-\alpha_0)^+} u_\beta$$

where

$$u_\beta = \{ v \in u \mid Ad(x)v = \beta(x)v \text{ for all } x \in T \}$$

If $\beta \in \Phi_Q(\Delta_Q-\alpha_0)^+$, then $\beta = \alpha_0 + \sum_{\alpha_i \in \Delta_Q-\alpha_0} n_i \alpha_i$. Since $a_+ \in \cap_{\alpha_i \in \Delta_Q-\alpha_0} \text{Ker}(\alpha_i)^\circ$, we have $\beta(a_+) = \alpha_0(a_+)$ and thus for $v \in u$, it follows that $Ad(a_+^s)v = \alpha_0(a_+^s)v$.

Let $s = \log(\alpha_0(a_+))$. \hfill \square

2. A horoball in the symmetric space, disjoint from X_Z.

Lemma 5. There is a maximal Q-torus $A \leq G$ such that the maximal Q-split torus of A is $T_{\Delta_Q-\alpha_0}$ and such that A contains a maximal R-split torus of G.

Proof. See Proposition 3.3 in [B-W] where $K = Q$, $H = G$, $T_1 = T_{\Delta_Q-\alpha_0}$, $S = \{v\}$, and $K_v = \mathbb{R}$. \hfill \square

Let Q be a minimal parabolic that contains A and is contained in P. We let $\Phi_\mathbb{R}$ be the roots of G with respect to the maximal \mathbb{R}-split subtorus of A, $\Delta_\mathbb{R}$ be the collection of simple roots given by Q, and $\Phi_\mathbb{R}^+$ be the corresponding positive roots.

2.1. Alternate descriptions of the symmetric space. Let $G = G(\mathbb{R})$ and let $A \leq G$ be the \mathbb{R}-points of the maximal \mathbb{R}-split subtorus of A. Recall that $A(\mathbb{R}) = AB$ for some compact group $B \leq A(\mathbb{R})$.

Choose a maximal compact subgroup $K \leq G$ that contains B. Then G/K is a symmetric space that G acts on by isometries. We name this symmetric space X.

Let U_Q be the group of real points of the unipotent radical of Q. By the Iwasawa decomposition, U_QA acts simply transitively on X and we identify X with U_QA. In this description of X, A is a flat.
2.2. **Integral translations in a flat.** By Dirichlet’s units theorem, \(A(\mathbb{Z}) \) contains a finite index free abelian subgroup of rank \(\text{rk}_R(G) - 1 = \dim(A) - 1 \). Thus, if \(A_\mathbb{Z} \) is the convex hull in \(X \) of the \(A(\mathbb{Z}) \)-orbit of the point \(1 \in U_Q A = X \), then \(A_\mathbb{Z} \) is a codimension-1 Euclidean subspace of the flat \(A \), and \(A(\mathbb{Z}) \) acts cocompactly on \(A_\mathbb{Z} \). We may assume \(A_\mathbb{Z} \subseteq X_\mathbb{Z} \).

2.3. **Horoballs.** Notice that \(\{ a_+^t \}_{t>0} \) defines a unit-speed geodesic ray that limits to a point in \(A^\infty \). We let \(b_{a_+^t} : U_Q A \to \mathbb{R} \) be the Busemann function corresponding to the geodesic ray \(\{ a_+^t \}_{t>0} \). That is,

\[
b_{a_+^t}(x) = \lim_{t \to \infty} [d(x, a_+^t) - t]
\]

We let \(A_0 \leq A \) be the codimension-1 subspace of \(A \) consisting of those \(a \in A \) for which \(b_{a_+^t}(a) = 0 \). Thus, \(A_0 \) is orthogonal to \(a_+^\mathbb{R} \).

Lemma 6. For \(T \in \mathbb{R} \), \((b_{a_+^t})^{-1}(-T) = U_Q A_0 a_+^T \).

Proof. We first show that for \(u \in U_Q \) and \(x \in X \), \(b_{a_+^t}(x) = b_{ua_+^t}(x) \)

Where \(b_{ua_+^t} \) is the Busemann function for the ray \(\{ ua_+^t \}_{t>0} \).

Notice that \(U_Q = U_p U_a \) where \(U_a \leq Z_G(T_{\Delta_Q - a_0})(\mathbb{R}) \) is a unipotent group whose elements commute with \(a_+ \).

If \(u \in U_p \), then Lemma 4 implies

\[
d(a_+^t, ua_+^t) = d(1, a_+^{-t}ua_+^t) \to 0
\]

Therefore,

\[
b_{a_+^t}(x) = \lim_{t \to \infty} [d(x, a_+^t) - t] = \lim_{t \to \infty} [d(x, ua_+^t) - t] = b_{ua_+^t}(x)
\]

The quotient map of a Lie group by a normal subgroup is distance nonincreasing. Because \(U_p \) is normal in \(U_Q A \), and because \(a_+^\mathbb{R} \) is normal in \(U_a A \), the following composition is distance nonincreasing

\[
U_Q A \to U_a A \to U_a A_0
\]

We denote the geodesic between points \(z, w \in X \) by \(\overline{zw} \). Orthogonality of \(A_0 \) and \(a_+^\mathbb{R} \) and the conclusion of the above paragraph show that for any \(u \in U_a \), \(\overline{1u} \) is orthogonal to \(a_+^\mathbb{R} \) at 1 and to \(ua_+^\mathbb{R} \) at \(u \) and thus that \(a_+^t, ua_+^t \) is orthogonal to \(a_+^\mathbb{R} \) at \(a_+^t \) and to \(ua_+^R \) at \(ua_+^t \). Furthermore, the length of \(a_+^t, ua_+^t \) is independent of \(t \) since \(u \) commutes with \(a_+^t \).

Notice that the angle between \(\overline{a_+^t, x} \) and \(\overline{a_+^t, 1} \) limits to 0 as \(t \to \infty \). Similarly, the angle between \(\overline{ua_+^t, x} \) and \(\overline{ua_+^t, u} \) limits to 0. Hence, the
triangle in X with vertices $a'_+, u a'_+$, and x approaches a triangle with angles $\frac{\pi}{2}$, $\frac{\pi}{2}$, and 0. That is
\[d(x, a'_+) - d(x, u a'_+) \to 0\]
Consequently, for $u \in U_a$ we have
\[b_{a'_+}(x) = \lim_{t \to \infty} [d(x, a'_+) - t] = \lim_{t \to \infty} [d(x, u a'_+) - t] = b_{u a'_+}(x)\]
Therefore, for $u \in U_q$, $b_{a'_+}(u^{-1} x) = b_{u a'_+}(x) = b_{a'_+}(x)$, and it follows that $U_q(b_{a'_+})^{-1}(-T) = (b_{a'_+})^{-1}(-T)$. The lemma is a combination of this last fact together with $A_0 a^T_+ \subseteq (b_{a'_+})^{-1}(-T)$.
\[\square\]

Lemma 8. For some $T > 0$, $X_Z \subseteq U_Q A_0 a^T_+^{(-\infty, T]}$.

Proof. Theorem A of [Ha 2] states that $X_Z \subseteq (b_{a'_+})^{-1}[-T, \infty)$ for some $T > 0$, and $(b_{a'_+})^{-1}[-T, \infty) = U_Q A_0 a^{(-\infty, T]}_+$ by Lemma 6.

\[\square\]

2.4. **Projecting onto a horosphere.** Let $\pi : U_Q A_0 a^{\infty}_+ \to U_Q A_0$ be the obvious projection of X onto the horosphere $(a_{a'_+}^+)^{-1}(0)$.

Lemma 8. There is some $M > 0$ such that for any $x_1, x_2 \in X_Z$, we have $d(x_1, x_2) + M \geq d(\pi(x_1), \pi(x_2))$.

Proof. Recall that $U_Q = U_P U_a$ where elements of $U_a \leq P$, and elements of A_0, commute with a_+. Similar to Lemma 4 we have that for any $t > 0$ and any v in the Lie algebra of $U_Q A$ that
\[||Ad(a^{+t}_+)v|| \leq ||v||\]
Let T be as in Lemma 7 and define $\pi_T : U_Q A_0 a^T_+^{(-\infty, T]} \to U_Q A_0 a^T_+$ by $\pi_T = R_{a^T_+} \circ \pi$ where $R_{a^T_+}$ is right multiplication by a^T_+.

We claim that π_T is distance nonincreasing. To see this, first let v be a tangent vector to X at the point a'_+ for some $t \leq T$. With $|| : ||_x$ as the norm at x, and f_* as the differential of f, we have
\[||(|\pi_T)_*v||_{\pi_T(a'_+)} = ||(R_{a^{T-t}_+})_*v||_{a^{T-t}_+}\]
\[= ||(L_{a^{T-t}_+})_*v||_{a^{T-t}_+}\]
\[= ||Ad(a^{T-t}_+)v||_{a^{T-t}_+}\]
\[\leq ||v||_{a^{T-t}_+}\]
Left-translations by $U_Q A_0$ show that for any $x \in U_Q A_0 a_+^{(-\infty,T]}$, and any $v \in T_x X$,

$$||(\pi_T)_* v||_{\pi_T(x)} \leq ||v||_x$$

For any path $c : [0, 1] \to U_Q A_0 a_+^{(-\infty,T]}$, apply π_T to those segments contained in $U_Q A_0 a_+^{(-\infty,T]}$ to define a path between $\pi_T(c(0))$ and $\pi_T(c(1))$. This new path will have its length bounded above by the length of c as is easily verified from the inequality on norms of vectors from above. This confirms our claim that π_T is distance nonincreasing.

To confirm the lemma, notice that similarly, the map $R_{a_+^T} : U_Q A_0 a_+^{T} \to U_Q A_0$ translates all point in X a distance of

$$d(x, R_{a_+^T}(x)) = d(1, a_+^T)$$

Therefore,

$$d(R_{a_+^T}(x_1), R_{a_+^T}(x_2)) \leq d(x_1, x_2) + 2d(1, a_+^T)$$

The lemma follows as $\pi = R_{a_+^T} \circ \pi_T$.

\[\square\]

3. Choice of a Cell in X_Z

We want to construct a cycle $Y \subseteq X_Z$. In this section we begin by constructing a cell $F \subseteq A_0$ that will be used in the construction of Y.

Lemma 9. $A_0 \subseteq X_Z$.

Proof. Both A_0 and the convex hull of A_Z are codimension 1 subspaces of A. Since $A_Z \subseteq X_Z \subseteq U_Q A_0 a_+^{(-\infty,T]}$ we have that $A_Z \subseteq A_0 a_+^{(-\infty,T]}$. Therefore A_Z and A_0 are parallel hyperplanes. Since the both contain 1, they are equal.

\[\square\]

Let X^∞ be the spherical Tits building for $X = U_Q A$, and let $A^\infty \subseteq X^\infty$ be the apartment given by A. Let $\Pi^\infty \subseteq X^\infty$ be the simplex given by P and let $\Pi^\infty \subseteq X^\infty$ be the simplex opposite of Π^∞ in A^∞, or equivalently, Π^∞ is the simplex given by the parabolic group $P^- = U_{\Phi(Q^{-\infty})} Z_G(T_{\Delta_Q^{-\infty}})$.

Denote the star of Π^∞ in A^∞ by $\Sigma \subseteq A^\infty$. Note that Σ is homeomorphic to a $\text{rk}_R(G) - 1$ ball. We denote the codimension 1 faces of Σ as $\Sigma_1, ..., \Sigma_n$.
3.1. \(A_0^\infty \) and \(\Sigma \) are disjoint. Let \(\Psi \subseteq \Phi_\tilde{\mathfrak{g}} \) be such that \(U_\Psi = R_u(\mathbb{P}^-) \). Given \(b \in A_0 \) we define the following sets of roots:

\[
C(b) = \{ \beta \in \Psi \mid \beta(b) > 1 \}
\]

\[
Z(b) = \{ \beta \in \Psi \mid \beta(b) = 1 \}
\]

\[
E(b) = \{ \beta \in \Psi \mid \beta(b) < 1 \}
\]

Thus, if \(U_{C(b)} \) are the real points of \(U_{C(b)} \) etc., then \(R_u(\mathbb{P}^-)(\mathbb{R}) = U_{C(b)}U_{Z(b)}U_{E(b)} \).

Lemma 10. There is a sequence \(\gamma_n \in R_u(\mathbb{P}^-)(\mathbb{Z}) - 1 \) such that \(d(\gamma_n, U_{C(b)}) \to 0 \).

Proof. There is a \(\mathbb{Q} \)-isomorphism of the variety \(R_u(\mathbb{P}^-) \) with affine space that maps \(U_{C(b)} \) onto an affine subspace. Therefore, the problem reduces to showing that the distance between \(\mathbb{Z}^n - 1 \) and a line in \(\mathbb{R}^n \) that passes through the origin is bounded above by any positive number, and this is well known.

\[\square \]

Lemma 11. \(A_0^\infty \cap \Sigma = \emptyset \)

Proof. Suppose \(A_0^\infty \cap \Sigma \neq \emptyset \). Then there is some \(b \in A_0 \) such that \(b^\infty \in \Sigma \) where \(b^\infty = \lim_{t \to \infty} b^t \).

If \(\mathcal{C} \subseteq \Sigma \) is a chamber, then \(\Pi_{\mathcal{C}} \subseteq \mathcal{C} \). Hence, the minimal \(\mathbb{R} \)-parabolic subgroup corresponding to \(\mathcal{C} \) contains \(R_u(\mathbb{P}^-) \) and thus elements of \(R_u(\mathbb{P}^-)(\mathbb{R}) \) fix \(\mathcal{C} \) pointwise. That is, elements of \(R_u(\mathbb{P}^-)(\mathbb{R}) \) fix \(\Sigma \) pointwise, so they fix \(b^\infty \).

Let \(u \in R_u(\mathbb{P}^-)(\mathbb{R}) \). Then \(ub^\infty = b^\infty \), so \(d(ub^t, b^t) \) is bounded, so \(\{b^{-t}ub^t\}_{t>0} \) is bounded. It follows that \(\beta(b^{-1}) \leq 1 \) for all \(\beta \in \Psi \), or equivalently that \(\beta(b) \geq 1 \). Hence, \(E(b) = \emptyset \) and \(R_u(\mathbb{P}^-)(\mathbb{R}) = U_{C(b)}U_{Z(b)} \).

Now we use Lemma [10]. For any \(n \in \mathbb{N} \), there exists \(\gamma_n \in R_u(\mathbb{P}^-)(\mathbb{Z}) - 1 \) with \(d(\gamma_n, U_{C(b)}) < 1/n \). Let \(\gamma_n = c_n z_n \) where \(c_n \in U_{C(b)} \), and \(z_n \in U_{Z(b)} \). Notice that \(z_n \to 1 \), \(bz_n = z_n b \), and that \(b^{-t}c_n b^t \to 1 \) as \(t \to \infty \).

Choose \(t_n > 0 \) such that \(d(b^{-t_n}c_n b^{t_n}, 1) < 1/n \). Then

\[
b^{-t_n}\gamma_n b^{t_n} = (b^{-t_n}c_n b^{t_n})z_n \to 1
\]

By Theorem 1.12 of [Ra 2], \(\{b^{-t}\}_{t>0} \) is not contained in any compact subset of \(G(\mathbb{Z}) \backslash G(\mathbb{R}) \), which contradicts that \(b^{-t} \in A_0 \subseteq X_\mathbb{Z} \) (Lemma [9]).

\[\square \]
3.2. $L > 0$ and choice of cell in A_0. At this point, we fix $L > 0$ to be sufficiently large. We will use this fixed L for our proof of the Theorem \[1\]

Let $W_i \subseteq A$ be the kernel of a root $\beta_i \in \Phi^+_R$ such that the visual image of W_i in A^∞ is a great sphere that contains Σ_i.

We let F be the component of $A_0 - \cup_i a^L_iW_i$ that contains 1.

Lemma 12. F is compact Euclidean polygon with volume $O(L^{rkG-1})$.

Proof. The visual cone of Σ in A based at $a^L_iW_i$ is abelian.

The lemma follows if Σ and a^∞_+ are contained in distinct components of $A^\infty - A^\infty_0$, and if $a_-^\infty = \lim_{t \to \infty} a_-^{-t} \in \Sigma$. That is indeed the case: $\alpha(a_+) > 1$ for all $\alpha \in \Phi_\infty(Q - a_0)\cup \Phi_\infty(Q - a_0)\cup \Phi_\infty(Q - a_0)$, and $Z_G(T_{\Delta a - a_0})$ fixes a_+^∞. Hence, $a^\infty_+ \in \Pi^\infty$. The antipodal map on A^∞ stabilizes A^∞_0, transposes a^∞_+ and $a^-\infty_+$, and maps Π^∞ onto Π^∞_Σ.

We denote the face of F given by $a^L_+W_i \cap F$ as F_i, so that the topological boundary of F equals $\cup_{i=1}^n F_i$.

4. Other cells in X_Z and their homological boundaries

We denote the real points of the root group $U_{(\beta_i)}$ as U_i, and $\langle U_i \rangle_i$ is the group generated by the U_i for $i \in \{1, 2, ..., n\}$.

Lemma 13. For each $i \in \{1, 2, ..., n\}$, $U_i \leq U_P$, and thus $\langle U_i \rangle_i \leq U_P$ is abelian.

Proof. Since $\beta_i \in \Phi^+_R$, we have $U_i \leq U_Q = U_P U_a$. Either $U_i \leq U_P$ or $U_i \leq U_a \leq Z_G(T_{\Delta a - a_0})$.

Because $Z_G(T_{\Delta a - a_0})$ is contained in both P and P^-, the latter case implies that U_i fixes the antipodal cells Π^∞ and $\Pi^-\infty$. The fixed point set of U_i is a hemisphere in A^∞ with boundary equal to W^∞_i. Thus, Π^∞ and $\Pi^-\infty$ are contained in W^∞_i, which contradicts that $\Sigma_i = \Sigma \cap W^\infty_i$ does not contain $\Pi^-\infty$.

Having ruled out the latter case, $U_i \leq U_P$ and the lemma follows from Lemma \[3\].

4.1. A space for making cycles in X_Z.

Lemma 14. $\langle U_i \rangle_i F \subseteq X_Z$.

Proof. Because $R_u(P)$ is unipotent, $R_u(P)(Z)$ is a cocompact lattice in U_P. We choose a compact fundamental domain $D \subseteq U_P$ for the $R_u(P)(Z)$-action.
There is also a compact set $C \subseteq A_0 = A_2$ such that $A(\mathbb{Z})C = A_2 = A_0$. As DC is compact, we may assume that $G(\mathbb{Z})DC \subseteq X_Z$.

Recall that A is contained in P, so A normalizes $R_u(P)$. Hence,

\[
\langle U_i \rangle A_0 \subseteq U_PA(\mathbb{Z})C
\]
\[
\subseteq A(\mathbb{Z})U_PC
\]
\[
\subseteq A(\mathbb{Z})R_u(P)(\mathbb{Z})DC
\]
\[
\subseteq G(\mathbb{Z})DC
\]
\[
\subseteq X_Z
\]

\[\square\]

4.2. Description of cells used to build our cycle. Given $i \in \{1, ..., n\}$, let f_i be a point in F_i that minimizes the distance to $1 \in A$, and let $u_i \in U_i$ be such that $d(u_if_i, f_i) = 1$. Since $F_i \subseteq a_L + W_i$, any $f_i \in F_i$ can be expressed as $f = w f_i$ for some $w \in \text{Ker}(\beta_i)$. It follows that $Ad(w)$ acts trivially on the Lie algebra of U_i, that u_i commutes with w, and that

\[
d(u_i f_i, f_i) = d(u_i w f_i, w f_i) = d(w u_i f_i, w f_i) = d(u_i f_i, f_i) = 1
\]

Setting $u_i = \{u_i^t\}_{t=0}^1$, the space $\overline{u_i}F_i$ is a metric direct product of volume $O(L^{\dim(F_i)})$.

For $I \subseteq \{1, ..., n\}$, let $F_I = \cap_{i \in I} F_i$ with $F_\emptyset = F$. And let $u_I = \prod_{i \in I} u_i$ and $\overline{u_I} = \prod_{i \in I} \overline{u_i}$ with $\overline{u_\emptyset} = u_\emptyset = 1$.

Similar to the case when $|I| = 1$, $\overline{u_I}F_I$ is a metric direct product of volume $O(L^{\dim(F_I)})$.

4.3. Homological boundaries of the cells. We endow each interval $\overline{u_i} = [0, u_i]$ with the standard orientation on the closed interval, and we orient each $\overline{u_I}$ with the product orientation, where the product is taken over ascending order in \mathbb{N}. Given $m \in I$, we let $s_I(m)$ be the ordinal of m assigned by the order on I induced by \mathbb{N}. Notice that the standard formula for the homological boundary of a cube then becomes

\[
\partial(\overline{u_I}) = \sum_{m \in I} (-1)^{s_I(m)} (\overline{u_{I-m}} - u_m \overline{u_{I-m}})
\]

We assign an orientation to F, and then assign the orientation to each F_i such that

\[
\partial(F) = \sum_{i=1}^n F_i
\]

In what follows, if we are given a set $I \subseteq \{1, ..., n\}$ with an ordering (which may differ from the standard order on \mathbb{N}), and if $m \in \{1, ..., n\}$ with $m \notin I$, then the set $I \cup m$ is ordered such that the original order on
I is preserved and \(m \) is the “greatest” element of \(I \cup m \). For example, \(\{1, 7, 5\} \cup 3 = \{1, 7, 5, 3\} \).

If \(m \in I \), for some ordered set \(I \subseteq \{1, \ldots, n\} \), then we endow \(I - m \) with the order restricted from \(I \).

For an ordered \(I \) and \(m \in I \), let \(r_I(m) = 1 \) if an even number of transpositions are required to transform the order on \(I \) to the order on \((I - m) \cup m \). Let \(r_I(m) = -1 \) otherwise.

Given an ordering on a set \(I \subseteq \{1, \ldots, n\} \), an orientation on \(F_I \), and some \(m \in \{1, \ldots, n\} \) with \(m \notin I \), we define the orientation of \(F_{I \cup m} \) to be such that \(F_{I \cup m} \), and not \(-F_{I \cup m} \), is the oriented cell that appears as a summand in \(\partial(F_I) \). Therefore

\[
\partial(F_I) = \sum_{m \notin I} F_{I \cup m}
\]

In what follows, whenever we write the exact symbols \(F_I \) or \(F_I' \) – but not necessarily the symbol \(F_{I \cup m} \) – the order on \(I \) or \(I' \) will be the order from \(\mathbb{N} \). Thus, the orientation on \(F_I \) and \(F_I' \) can be unambiguously determined from the above paragraph.

It’s easy to check that if \(I \) is ordered by the standard order on \(\mathbb{N} \) and \(m \in I \), then \((-1)^{s_I(m)} r_I(m) = (-1)^{|I|} \) and thus

\[
-(-1)^{s_I(m)} = (-1)^{|I|} -1 \cdot r_I(m)
\]

Suppose \(w_0 \) is an outward normal vector for \(F_{I \cup m} \) with respect to \(F_I \), and \(w_1, \ldots, w_k \) is a collection of vectors tangent to \(F_{I \cup m} \) such that \(\{w_0, w_1, \ldots, w_k\} \) defines the orientation for \(F_I \). Then \(\{w_1, \ldots, w_k\} \) defines the orientation for \(F_{I \cup m} \). If \(\{v_1, \ldots, v_{|I|}\} \) is an ordered basis for the tangent space of \(\overline{\mathcal{F}}_I \) that induces the standard orientation on \(\overline{\mathcal{F}}_I \), then \(|I|\) transpositions are required to arrange the ordered basis

\[
\{w_0, v_1, \ldots, v_{|I|}, w_1, \ldots, w_k\}
\]

into the ordered basis

\[
\{v_1, \ldots, v_{|I|}, w_0, w_1, \ldots, w_k\}
\]

That is, the orientation on \(\overline{\mathcal{F}}_IF_{I \cup m} \) defined above is a \((-1)^{|I|}\)-multiple of the orientation on \(\overline{\mathcal{F}}_IF_{I \cup m} \) assigned by \(\partial(\overline{\mathcal{F}}_IF_I) \).

It follows from this fact and our above formulas for \(\partial(\overline{\mathcal{F}}_I) \) and \(\partial(F_I) \) that

\[
\partial(\overline{\mathcal{F}}_IF_I) = \sum_{m \in I} (-1)^{s_I(m)} (\overline{u_{I-m}} - u_m \overline{u_{I-m}}) F_I + (-1)^{|I|} \sum_{m \notin I} \overline{u_I} F_{I \cup m}
\]
5. A cycle in X_Z

Let

$$Y = \sum_{\substack{K, I \subseteq \{1, \ldots, n\} \\ K \cap I = \emptyset}} (-1)^{|K|} u_K u_I F_I$$

Lemma 15. Y is a cycle that is contained in X_Z and has volume $O(L^{rkG-1})$.

Proof. Each cell of Y is contained in X_Z by Lemma 14 and has volume $O(L^k)$ for $k \leq rkG - 1$, so we have to check that $\partial Y = 0$.

From our formula for $\partial(\overline{u_I F_I})$ we have that

$$\partial Y = \sum_{\substack{K, I \subseteq \{1, \ldots, n\} \\ K \cap I = \emptyset}} (-1)^{|K|} u_K \left[\sum_{m \in I} (-1)^{s_I(m)} (\overline{u_I - m} - u_m \overline{u_I - m}) F_I \right]$$

$$\quad + (-1)^{|I|} \sum_{m \notin I} u_I F_{I \cup m}$$

$$= \sum_{\substack{K, I \subseteq \{1, \ldots, n\} \\ K \cap I = \emptyset}} \sum_{m \in I} (-1)^{s_I(m)} (-1)^{|K|} u_K (\overline{u_I - m} - u_m \overline{u_I - m}) F_I$$

$$\quad + \sum_{\substack{K, I \subseteq \{1, \ldots, n\} \\ K \cap I = \emptyset}} \sum_{m \notin I} (-1)^{|I|} \sum_{m \notin I} (-1)^{|K|} u_K u_I F_{I \cup m}$$

For $K, I \subseteq \{1, \ldots, n\}$ with $K \cap I = \emptyset$ we have

$$\sum_{m \notin I} (-1)^{|K|} u_K u_I F_{I \cup m}$$

$$= \sum_{m \notin I \cup K} (-1)^{|K|} u_K u_I F_{I \cup m}$$

$$\quad + \sum_{m \in K} (-1)^{|K|} u_K u_I F_{I \cup m}$$

$$= \sum_{m \notin I \cup K} (-1)^{|K|} u_K \overline{u_{I \cup m} - m} F_{I \cup m}$$

$$\quad + \sum_{m \in K} (-1)^{|K|} u_K - m u_m \overline{u_{I \cup m} - m} F_{I \cup m}$$

There is a natural bijection between triples (I, K, m) where $K \cap I = \emptyset$ and $m \notin I \cup K$, and triples (I', K', m) where $K' \cap I' = \emptyset$ and $m \in I'$. To realize the bijection, let $K' = K = K - m$ and $I' = I \cup m$.
There is also a bijection between triples \((I, K, m)\) where \(K \cap I = \emptyset\) and \(m \in K\), and triples \((I', K', m)\) where \(K' \cap I' = \emptyset\) and \(m \in I'\). This bijection is also realized by setting \(K' = K - m\) and \(I' = I \cup m\).

Therefore, if we let \(K' = K - m\) and \(I' = I \cup m\) then the above equation gives

\[
\sum_{K, I \subseteq \{1, \ldots, n\}} (-1)^{|I|} \sum_{m \not\in I} (-1)^{|K|} u_K u_I u_{I \cup m} F_{I \cup m}
\]

\[
= \sum_{K', I' \subseteq \{1, \ldots, n\}, K' \cap I' = \emptyset} (-1)^{|I'|-1} \left[\sum_{m \in I'} (-1)^{|K'|} r_{I'}(m) u_{K'} u_{I' - m} F_{I'} \right]
\]

\[
+ \sum_{m \in I'} (-1)^{|K' \cup m|} r_{I'}(m) u_{K'} u_{I' - m} F_{I'}
\]

\[
= \sum_{K, I \subseteq \{1, \ldots, n\}, K \cap I = \emptyset} (-1)^{|I|} \left[\sum_{m \in I} (-1)^{|K|} r_{I}(m) u_{K} u_{I - m} F_{I} \right]
\]

\[
- \sum_{m \in I} (-1)^{|K|} r_{I}(m) u_{K} u_{I - m} F_{I}
\]

\[
= \sum_{K, I \subseteq \{1, \ldots, n\}, K \cap I = \emptyset} (-1)^{|I|} \sum_{m \in I} (-1)^{|K|} r_{I}(m) u_{K} \left(u_{I - m} - u_{m} u_{I - m} \right) F_{I}
\]

\[
= \sum_{K, I \subseteq \{1, \ldots, n\}, K \cap I = \emptyset} \sum_{m \in I} (-1)^{|I| - 1} r_{I}(m) (-1)^{|K|} u_{K} \left(u_{I - m} - u_{m} u_{I - m} \right) F_{I}
\]

\[
= - \sum_{K, I \subseteq \{1, \ldots, n\}, K \cap I = \emptyset} \sum_{m \in I} (-1)^{s_{I}(m)} (-1)^{|K|} u_{K} \left(u_{I - m} - u_{m} u_{I - m} \right) F_{I}
\]

Substituting the preceding equation into our equation for \(\partial Y\) proves

\[
\partial Y = 0
\]

\(\square\)
6. Fillings of Y

There exists polynomially efficient fillings for Y in the symmetric space X.

Lemma 16. There exists a chain Z with volume $O(L^{rkG})$ and $\partial Z = Y$.

Proof. As $Y \subseteq \overline{\pi_1 F}$, it follows from Lemma 4 that there is some $T = O(L)$ such that $a_+^T Y$ is contained in an ε-neighborhood of $a_+^T F$, which is isometric to F. Thus, there is a filling, Z_0, of $a_+^T Y$ of volume $O(L^{rkG-1})$.

Let $Z = Z_0 \cup_{t \in \{1, T\}} a_+^T Y$.

\[\square \]

6.1. Fillings of Y in X_Z. In contrast to Lemma 16, the fillings of Y that are contained in X_Z have volumes bounded below by an exponential in L. A fact that we will prove after a couple of helpful lemmas.

For $f \in F$, define $d_i(f)$ to be the distance in the flat A between f and $a_+^L W_i$.

Lemma 17. There are $s_i > 1$ and $s_0 > 0$ such that the cube $\overline{\pi_1 f}$ with the path metric is isometric to $\prod_{i \in I} [0, e^{s_i d_i(f) + s_0}]$.

Proof. It suffices to prove that $\overline{\pi_1 f}$ is isometric to $[0, e^{s_i d_i(f) + s_0}]$.

Choose $b_i \in A$ such that $d(b_i, 1) = d(f, a_+^L W_i) = d_i(f)$ and such that there exists some $w_i \in W_i$ with $f = b_i a_+^L w_i$. Notice that W_i separates b_i from a_+^L in A. Since $U_i \leq U_P$, Lemma 4 shows that $\beta_i(a_+^L) > 1$. It follows that $\beta_i(b_i) < 1$.

With d_Ω as the path metric of a subspace $\Omega \subseteq X$,

\[d_{U_i,f}(u_i f, f) = d_{U_i,f}(u_i b_i a_+^L w_i, b_i a_+^L w_i) \]

As W_i is the kernel of β_i, w_i commutes with u_i implying

\[d_{U_i,f}(u_i f, f) = d_{w_i^{-1} U_i,f}(u_i b_i a_+^L, b_i a_+^L) \]
\[= d_{U_i}(a_+^{-L} b_i^{-1} u_i b_i a_+^L, 1) \]

On the Lie algebra of U_i, $Ad(a_+^{-L} b_i^{-1})$ scales by $\beta_i(a_+^{-L}) \beta_i(b_i)^{-1}$.

\[\square \]

In the above lemma we may let $f = 1$ and let I be the singleton i. It can easily be seen that $d_i(1) = O(L)$ which leaves us

Lemma 18. There is some $C > 0$ such that $d_{U_i}(u_i, 1) \geq e^{CL+s_0}$ for any i.

We conclude our proof of Theorem 1 with the following
Lemma 19. Suppose there is a chain $B \subseteq X_Z$ such that $\partial B = Y$. Then the volume of B is bounded below by $e^{C_0 L}$ for some $C_0 > 0$.

Proof. Suppose B has volume λ. By Lemma 8, $\pi(B) \subseteq U_Q A_0$ has volume $O(\lambda)$.

Recall that $Y \subseteq U_Q A_0$, so $\partial \pi(B) = Y$.

After perturbing $\pi(B)$, we may assume that $\pi(B)$ is transverse to U_Q, and that the 1-manifold $\pi(B) \cap U_Q$ has length proportional to the volume of $\pi(B)$. Since

$$\partial(\pi(B) \cap U_Q) = \partial \pi(B) \cap U_Q = Y \cap U_Q = \{u_I\}_{I \subseteq \{1, \ldots, n\}}$$

there is an $I \subseteq \{1, \ldots, n\}$ and a path $\rho : [0, 1] \to \pi(B) \cap U_Q$ such that $\rho(0) = 1$ and $\rho(1) = u_I$ with $\text{length}(\rho) = O(\lambda)$.

Choose $i \in I$. U_Q is nilpotent, so the distortion of the projection $q : U_Q \to U_i$ is at most polynomial. Therefore, $q \circ \rho$ is a path in U_i between 1 and u_i with $\text{length}(q \circ \rho) = O(\lambda^k)$ for some $k \in \mathbb{N}$.

The preceding lemma showed $e^{CL + s_0} \leq \text{length}(q \circ \rho)$. Therefore, $\lambda \geq \kappa e^{\frac{CL + s_0}{N}}$ for some $\kappa > 0$.

□

Combining Lemmas 16 and 19 yields Theorem 1.

References

[Bou] Bourbaki, N., Lie groups and Lie algebras, Chapters 4-6. Springer, Berlin, (2008).

[B-W] Bux, K.-U., and Wortman, K., Finiteness properties of arithmetic groups over function fields. Invent. Math. 167 (2007), 355-378.

[Dr] Druţu, C., Filling in solvable groups and in lattices in semisimple groups. Topology 43 (2004), 983-1033.

[Ep et al.] Epstein, D. B. A., Cannon, J., Holt, D., Levy, S., Paterson, M., and Thurston, W., Word processing in groups. Jones and Bartlett Publishers, Boston, (1992).

[Gr] Gromov, M., Asymptotic invariants of infinite groups. Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, (1993).

[Ha 1] Hattori, T., Non-combability of Hilbert modular groups. Comm. Anal. Geom. 3 (1995), 223-251.

[Ha 2] Hattori, T., Geometric limit sets of higher rank lattices. Proc. London Math. Soc. 90 (2005), 689-710.

[Le] Leuzinger, E., On polyhedral retracts and compactifications of locally symmetric spaces. Differential Geom. Appl. 20 (2004), 293-318.

[L-P] Leuzinger, E., and Pittet, C., Isoperimetric inequalities for lattices in semisimple Lie groups of rank 2. Geom. Funct. Anal. 6 (1996), 489-511.
[L-M-R] Lubotzky, A., Mozes, S., and Raghunathan, M. S., *The word and Riemannian metrics on lattices of semisimple groups*. Inst. Hautes Études Sci. Publ. Math., **91** (2000), 5-53.

[Pi] Pittet, C., *Hilbert modular groups and isoperimetric inequalities*. Combinatorial and geometric group theory (Edinburgh 1993). London Math. Soc., Lecture Note Ser. **204**, 259-268.

[Ra 1] Raghunathan, M. S., *A Note on quotients of real algebraic groups by arithmetic subgroups*. Invent. Math. **4** (1968), 318-335.

[Ra 2] Raghunathan, M. S., *Discrete subgroups of Lie groups*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer-Verlag, New York-Heidelberg (1972).

[Yo] Young, R. *The Dehn function of SL(n,Z)*. Preprint.