ISOLATION AND PURIFICATION OF LYSOZYME FROM THE HEN EGG WHITE

S. S. Dekina, I. Romanovska, A. M. Ovsepyan, M. G. Bodyul, V. A. Toptikov

1 Bogatskii Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odesa
2 Odesa National Polytechnic University
3 Mechnikov Odesa National University
The aim of the research was the development of the method of lysozyme isolation from hen egg proteins. Lysozyme was isolated by differential heat denaturation of proteins with changing of the medium pH value, followed by neutralization, dialysis and additional purification by gel chromatography on Sephadex G-50. Activity was determined by bacteriolytic method (with *Micrococcus lysodeikticus* 4698 as a substrate). The enzyme purity and molecular mass were determined using SDS-electrophoresis and mass spectrometry.

The method of lysozyme isolation from hen egg proteins with the enzyme yield of 3.2 ± 0.2% and bacteriolytic activity of 22 025 ± 1 500 U/mg is modified. According to electrophoresis data, the isolated enzyme is characterized by high degree of purity (~95–98%) and is comparable with lysozyme of AppliChem company by main physical and chemical characteristics. The obtaining product is stored in a crystalline form at low temperature (~24 °C) for 9 months. The proposed method allows obtaining active and stable lysozyme with high purity from hen egg protein in laboratory conditions for the usage in biotechnology.

Key words: hen egg protein, lysozyme.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008

{spoiler title=References}

1. Köse K., Denizli A. Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for lysozyme purification from chicken egg white. *Artif. Cell Blood Substit. Biotechnol.* 2013, V. 41, P. 13–20. doi: 10.3109/10731199.2012.696067.

2. Levitskiy A. P. Lysozyme instead of antibiotics. *Odesa: KP OGT.* 2005, 74 p. (In Russian).

3. Leśniewski G., Cegielska-Radziejewska R. Potential possibilities of production, modification and practical application of lysozyme. *Acta Sci. Pol. Technol. Aliment* 2012, 11 (3), 223–230.

4. Callewaert L., Michiels C. W. Lysozymes in the animal kingdom. *J. Biosci.* 2010, V. 35, P.
5. Alderton G., Ward W. H., Fevold H. L. Isolation of lysozyme from egg white. *J. Biol. Chem.* 1945, V. 157, P. 43–58.

6. Abeyrathne N. S., Lee H. Y., Ahn D. U. Sequential separation of lysozyme and ovalbumin from chicken egg white. *Korean J. Food Sci. An.* 2013, 33 (4), 501–507. doi: 10.5851/kosfa.2013.33.4.501.

7. Strang R. H. Purification of egg white lysozyme by ion exchange chromatography. *Biochem. Edu.* 1984, V. 12, P. 57–59. http://dx.doi.org/10.1016/0307-4412(84)90003-7

8. Safarik I., Sabatková Z., Tokar O., Safaríková M. Magnetic cation exchange isolation of lysozyme from native egg white. *Food Technol. Biotechnol.* 2007, 45 (4), 355–359.

9. Chang H. M., Yan C. C., Chang Y. C. Rapid separation of lysozyme from chicken egg white by reductants and thermal treatment. *J. Agric. Food Chem.* 2000, V. 48, P. 161–164. doi: 10.1021/jf9902797.

10. Wana Y., Lub J., Cui Z. Separation of lysozyme from chicken egg white using ultrafiltration. *Separ. Purif. Tech.* 2006, 48 (2), 133–142. doi:10.1016/j.seppur.2005.07.003.

11. Gorin G., Wang S. F., Papapavlou L. Assay of lysozyme by its lytic action on *M. lysodeikticus* cells. *Anal. Biochem.* 1971, 39 (1), 113–127. http://dx.doi.org/10.1016/0003-2697(71)90467-2

12. Hartree E. F. Determination of protein: a modification of the Lowry method, that gives a linear photometric response. *Anal. Biochem.* 1972, 48 (2), 422–427.

13. Mickelson V. J., Anderson P. P., Kaulins U. Ya. A method for isolating of lysozyme. AS 1239147 USSR. MKI 12 N 9/36. September 18, 1984. (In Russian).

14. Binkley S. L., Ziegler C. J., Herrick R. S., Roger S. Specific derivatization of lysozyme in aqueous solution with Re(CO)$_3$(H$_2$O). *Rowlett. Chem. Commun*.
15. Dekina S. S., Romanovska I. I., Gromovoy T. Y. Influence of polymers on lysozyme molecules association processes. *Biopolymers and cells.* 2011, 27 (6), 442–445. (In Russian).

16. Duhin S. S., Deryagin B. V. Electrophoresis. *Moskva: Nauka.* 1976, 332 p. (In Russian).

17. Dekina S. S., Romanovska I. I., Leonenko I. I., Yegorova A. V. Mucoadhesive gel with immobilized lysozyme: preparation, properties. *Biotechnol. acta.* 2015, 8 (3), 104–109. http://dx.doi.org/10.15407/biotech8.03.104

18. Lapach S. N., Tschubenko A. V., Babich P. N. Statistical methods in biomedical research using Excel. *Kyiv: Morion.* 2000, 320 p. (In Russian).

19. Abeyrathne E. D., Lee H. Y., Ahn D. U. Sequential separation of lysozyme, ovomucin, ovotransferrin, and ovalbumin from egg white. *Poult. Sci.* 2014, 93 (4), 1001–1009. doi: 10.3382/ps.2013-03403.

{/spoiler}