Isolation and identification of fenobucarb degrading bacteria from Pangalengan farm land

A A Khdiya1,*, R A Sanjaya1, and Wartono1

1 Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development

* E-mail: alinakhdiya@pertanian.go.id

Abstract. The long term excessive use of pesticides can lead to their residues accumulation in the soils. Soil microbes were considered to convert the residues into harmless compounds, however the indigenous soil microbes having those beneficial properties are limited. Therefore this study aimed to isolate, select and identify the fenobucarb insecticide-degrading bacteria from agricultural soils. The soil samples were collected from the vegetable fields in Pangalengan, West Java, Indonesia. Isolation of the bacteria was conducted using Nitrate Mineral Salt Agar supplemented by 100 ppm of a fenobucarb. The bacteria isolates were selected based on its hypersensitive response, haemolytic activity, and its ability to degrade fenobucarb. The selected isolates was identified base on sequences of 16S rRNA gene. Twenty nine bacteria were isolated from four soil samples and 23 of the isolates were not potentially phytopathogenic and non haemolytic. The best three isolates that could degrade 94.2%, 94.5% and 95.47% fenobucarb residue are B41, B54 and B83 isolates, respectively. The 16S rDNA Sequence analysis showed that B41 and B83 isolates have 100% similarity to Bacillus thuringiensis MYBT 18426B54, while B54 isolate has 99% similarity to Bacillus luciferensis LMG 18422. These isolates are potential to be developed as a bioremediation agent.

1. Introduction

Farmers commonly use synthetic pesticides as one of the important components to protect their crop. Contrary to benefit of the synthetic agrochemical use, there are so many negative effect on human health and the environment [1]. Uncontrolled use of pesticides will cause adverse changes to ecosystems such as pest resistance, death of beneficial organisms, and pesticides residues in water, soil, food, and organisms [2]. One of the most widely used insecticides in the world is fenobucarb. Fenobucarb is a broad spectrum insecticides which contain BPMC (butylphenyl methylcarbamate). The insecticide has high extermination power and rapid knock down effect [3].

Naturally indigenous microbes reside in a land could degrade pesticides residue. However, the microbial capability will not proportional with the higher increasing of intensity and quantity of agrochemicals input. Efforts are needed to reduce the negative impacts caused by their use such as by implementing integrated pest control and the use of natural pesticides [4]. More over, enrichment of the polluted land by using bioremediation agent is needed. Availability of selected dan fine characterize microbial isolates is important to formulate an efective bioremediation agent. This research was conducted to isolate, screen, and indentify fenobucarb degrading bacteria from farm soil.

2. Methods
2.1. Materials
Soil samples were taken from Paddy, tomato, potato, and cabbage farmland, at Legok Bako village, Margaluyu, Pangalengan, West Java. Bacteria used in this research were isolated from the soil samples, while Ralstonia solanacearum is a collection of Biogen Culture Collection, ICABIIOGRAD.

2.2. Isolation and Purification of Fenobucarb Degrading Bacteria
Isolation and purification of the bacteria were conducted by following the procedure published by Akhdiya et. al. [5] that modified by substitute the insecticides with fenobucarb. The pure isolates were stored at -20°C in 40% glycerol as stock cultures. While as the working cultures, the isolates were streaked on NA + 100 ppm fenobucarb and stored at 15-18°C.

2.3. Hypersensitive Response (HR) Bioassay
Bacterial isolates were rejuvenated on Nutrient Agar media (Merck, US) for 24-48 hours. A colonies of bacteria were suspended in 1.5 ml of 0.85% NaCl. Half milliter of bacterial suspension was injected into the lower surface of tobacco leaf (N. tabacum L.). Ralstonia solanacearum was used as positive control. Necrotic tissue formed on the leaf were observed every day for 7 days. The experiment was conducted duplicate

2.4. Hemolytic Activity Testing
The isolates that did not cause necrotic symptoms in the previous bioassay, were inoculated on the surface of blood agar and then incubated at room temperature (25°C) for 24-72 hours. Clear zone formed around the colonies indicated haemolytic activity of the isolates.

2.5. Test to Use Fenobucarb as Exclusive C Source
The test was carried out by following the procedure published by Akhdiya et. al. [5] that modified by substitute the insecticides with fenobucarb. The cultures growth were observed visually for 24-72 hours.

2.6. Fenobucarb Degradation Test
Selected isolates were cultivated using the same procedure for use of exclusive C source. The culture were cultivated for 96 hours before its were centrifugated at 10.000 x g for 10 minutes. Supernatan of the cultures were sended to Agricultural Environmental Research Institute (IAERI) to be determined the residue. Determination of the residues was carried out using Gas Chromatography (Variant Type 450, US) equipped with VF-1701 columns and Electrone Captured Detector. The experiment was conducted in triplicate. Percentage of the degraded fenobucarb, calculated by the following equation

\[Fd = \frac{Fi - Ff}{Fi} \times 100\% \]

Fd : Degraded fenobucarb (%)
Fi : Initial concentration of Fenobucarb
Ff : Final concentration of Fenobucarb

2.7. Identification of the Selected Isolates
DNA of the selected isolates were extracted using the PrestoTM Mini gDNA Bacteria Kit. The DNA were amplified using 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′) primers [6]. Steps of the 30 PCR cycles were : activation (94°C, 5 minutes), denaturation (94°C, 5 minutes), annulling (55°C, 45 seconds), elongation (72°C, 1 minute), and final extension (72°C, 1 minute). Two microlitres of the amplification products were runned in
electrophoresis gel (agarosa 1%) using 1X TAE buffer at 80 volt for 40 minutes. Diamond™ Nucleic Acid Dye (Promega, US) was used to visualize the DNA bands under UV transilluminator.

The amplicon DNA were send to sequencing service laboratory. The DNA sequences were aligned with Genbank data using the BLAST-N (Basic Local Alignment Search Tool-Nucleotide) program from the NCBI (National Center for Biotechnology Information) to determine the identity of the isolates. Phylogenetic trees was created using Clustal X [7], neighbor joining method (NJ) with 1000x bootstrap.

3. Results and discussion

Fenobucarb degrading bacteria were isolated from soil samples taken from non-organic agricultural land (paddy, cabbage, tomato, and potato) in Pangalengan area, West Java. Consideration of the sampling locations was that agricultural land is managed intensively with high frequency of pesticide application. The use of NMSA + fenobucarb as the isolation medium was initial screening efforts to suppress growth of satellite colonies and to increase probability to isolate the high fenobucarb degrading capability bacteria. There were 29 fenobucarb degrading bacteria were isolated from 4 soil samples (Table 1).

Farm land soil	Number of bacteria isolates
Cabbage	6
Paddy	4
Potato	13
Tomato	6

Hypersensitivity response (HR) bioassay was conducted to eliminate the phytopathogenic potential bacteria. All of the isolates tested did not cause necrotic symptom of tobacco leaves tissues (Fig. 1A and 1B). Contrary to the asymptomatic leaves which injected with the isolates, injection of R. solanacearum caused necrotic symptom of the leaf tissues. Hypersensitive response is a rapid defense reaction of plants, when facing pathogens [8]. Plant HR is indicated by formation of leaf browning tissues in the infected area due to the death of local leaf tissues [9]. The bioassay results indicated that all of the isolates are phytopathogenic.

Figure 1. Photographs of the tobacco leaves at 24 hours (A), 48 hours (B) after injected with the bacteria isolates and necrotic leaf after 48 hours after injected with R. solanacearum (C).

Next selection base on hemolytic activity of the isolates was conducted to eliminate bacterial isolates potentially pathogenic to mammals and humans. Erythrocytes lysing bacteria are potentially more virulent compared to the non haemolytic bacteria. Ability of bacteria to lysis erythrocytes is
determined by an extracellular protein “hemolisin”. Haemolysine producing bacteria will damage erythrocytes in their growth media, forming clear zones and decoloration [10]. Six of the 29 isolates were hemolytic (Figure 2).

![Figure 2](image.png)

Figure 2. Non-haemolytic bacteria isolates (A) and haemolytic isolates surrounded by clear zone (B)

Among the non-haemolytic isolates, 6 isolates (B41, B54, B83, B95, B96 and B97) showed grow well on liquid NMS media containing fenobucarb as sole of carbon source. Bacteria growth was indicated by increasing culture turbidity after incubation for 48 hours. The turbidity of liquid culture in NMS containing pesticide is caused by the growth of bacteria that utilize pesticides as sole of carbon source for their growth [11]. Fenobucarb resistant isolates but can not use the compound as its C and energy source can not grow in the medium. Carbon is one of the main element of cells macro molecules. There are four organic macro molecules: proteins, nucleic acids, carbohydrates and fats that have different chemical properties [12]. All organisms needs this element in relatively large quantities for its growth.

Isolate code	Degraded pesticides (%)
B41	94.27
B54	94.57
B83	95.29
B95	75.47
B96	69.65
B97	67.19

Table 2.† Fenobucarb residue in liquid culture 6 isolates selected after 96 hours incubation

Analysis of fenobucarb residues in the culture of 6 selected isolates showed its ability to degrade the compound were 67.19% - 95.29% within 96 hours. Isolates B83, B54, and B41 could degrade respectively 95.29%, 94.57% and 94.27% fenobucarb residue (Table 2). Fenobucarb is an aromatic hydrocarbon compound. Ability of microorganisms to degrade aromatic hydrocarbon compounds are varies. The differences can be caused by the type, quantity, and activity of pesticide-degrading enzymes producing by the organisms. Bacterial enzymes that play a role in degradation process of aromatic hydrocarbon compounds include dioxygenases, monooxygenases [13], and hydrolytic enzymes [14, 15]. Monoxygenase and dioxygenase enzymes are able to open carbon bonds of the aromatic rings and produce primary alcohol by using oxygen molecules as electron acceptors. The process will produces dicarboxylic and semi-aldehyde acids that are useful for the metabolism of cell intermediates [15]. Decreasing of fenobucarb concentration in the cultivation media after incubation is the result of bacteria metabolism. Major chemical bonds in the toxic molecules can disrupt by hydrolytic enzymes and results in the reduction of its toxicity. This enzymatic mechanism is
effective for the biodegradation of hydrocarbon compounds include oil, organophosphate, and carbamate [15]. Fenobucarb is degraded through a hydrolysis reaction by producing the main product 2-sec-buthylphenol. The hydrolysis product, then metabolized into carbon dioxide and water [16]. Many publications reported that Bacillus spp. Have dioxygenase [17], hydroxylase [18], and hydrolases [15, 19, 20]. Phosphatase and esterase are hydrolytic enzymes produced by soil microbes that can break the unstable chain structure such as carbamate [21].

Amplification of 16S rDNA sequences of the three selected isolates using primers 27F and 1492R produced ± 1,500 bp DNA fragments. Molecular identification results based on 16S rDNA sequence analysis showed that B54 isolate has 99% similarity Bacillus luciferensis LMG 18422 (99% homology), while B41 and B83 isolates show the highest similarity (99%) with Bacillus thuringiensis MYBT 18246. The phylogenetic tree constructed base on the sequences showed the closely related Bacillus species with Bacillus luciferensis B54 and Bacillus thuringiensis B41 and B83 (Figure 3).

Figure 3. Phylogenetic tree of three phenobucarb-degrading Bacillus isolates based on its 16S rRNA sequences.

4. **Conclusion**
B. thuringiensis B41, B. thuringiensis B83, and Bacillus luciferensis B54 have high capability to degrade fenobucarb. The Bacillus were potential to be develop as bioremediation agents. Further testing is needed to determine its ability to degrade other pesticides

Acknowledgments
This study was supported by the DIPA 2016 of ICABIOGRAD-IAARD, Ministry of Agriculture, Republic of Indonesia. Thanks to Ameli Mustika for her assistance in our laboratory.

References
[1] Matthews GA 2015 Pesticides: Health, Safety and The Environment. Ascot, Berkshire (UK): Blackwell Publishing.

[2] Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman A J, Jenkins A, Ferriere RC, Li H, Lu W. and Wan T 2015 Impacts of soil and water pollution on food safety and health risks in China. Environment International 77 5-15.
[3] Subandi M, Chaidir L, Nurjanah U 2016 Effectiveness of BPMC insecticide and suren leaf extract on brown planthopper (Nilaparvata lugens Stal.) and its natural enemy population on Cihera rice variety *Jurnal Agrikultura* 27 (3) 160-166.

[4] Peshin R, Zhang WJ 2014 Integrated pest management and pesticide use. Springer: Integrated Pest Management - Pesticide Problems Vol 3, Chapter 1.

[5] Akhdia A, Wartono, Sulaeman E, Samudra IM 2018 Characterization of profenofos degrading bacteria. *Jurnal Agro Biogen* 14 (1) 37-46.

[6] Weisburg WG, Barns SM, Pelletier DA, Lane DJ 1991 16S ribosomal DNA amplification for phylogenetic study *Journal of Bacteriology* 1991 173(2) 697-703.

[7] Thompson JD, Higgins DG, Gibson TJ 1994 Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position gap penalties and weight matrix choice *Nucleic Acids Research* 22 4673-4680.

[8] Dehgahi R, Subramaniam S, Zakaria L, Joniyas A, Firouzjahi FB, Haghnama K, Razinataj M 2015 Review of research on fungal pathogen attack and plant defense mechanism against pathogens *International Journal of Scientific Research in Agricultural Sciences* 2(8) 197-208.

[9] Nahar K, Matsumoto I, Taguchi F, Inagaki Y, Yamamoto M, Toyoda K, Shiraishi T, Ichinose Y, Mukaihara T 2014 *Ralstonia solanacearum* type III secretion system effector Rip36 induces a hypersensitive response in the non-host wild eggplant *Solanum torvum* *Molecular Plant Pathology* 15(3) 297–303.

[10] Hogg S 2005 Essential Microbiology UK John Wiley and Sons Ltd.

[11] Akhter MA, Laz R 2013 Isolation and molecular characterization of pesticide (fenitrothion) resistant bacteria from agricultural field *Journal of Pharmacy* 3(5):31-38.

[12] Sinnott M L 2007 Carbohydrate chemistry and biochemistry: Structure and Mechanism. UK RSC Publishing.

[13] Fuentes S, Méndez V, Aguila P, Seeger M 2014 Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications *Applied Microbiology and Biotechnology* 98 (11): 4781–94.

[14] Sharma A, Sharma T, Sharma T, Sharma S, Kanwar SS 2019 Role of microbial hydrolases in bioremediation. *Microbes and Enzymes in Soil Health and Bioremediation* 16: 149-164.

[15] Karigar CS, Rao SS 2011 Role of microbial enzymes in the bioremediation of pollutants: a review *Enzyme Research*. 805187 11

[16] Hansen J, Mørk N, Bundgaard H 1992 Phenyl carbamates of amino acids as prodrug forms for protecting phenols against first-pass metabolism *International Journal of Pharmaceutics* 81 253–61.

[17] Olowomofe TO, Oluyege JO, Aderiye BI, Oluwole OA 2019 Degradation of poly aromatic fractions of crude oil and detection of catabolic genes in hydrocarbon-degrading bacteria isolated from agabau bitumen sediments in Ondo State *AIMS Microbiology* 5(4) 308–323.

[18] Dokic L, Naranctic T, Nikodinivic-Runic J, Bajkic S, Vasiljevic B 2011 Four *Bacillus* spp. soil isolates capable of degrading phenol, toluene, biphenyl, naphtalene, and other aromatic compounds exhibit different aromatic catabolic potentials *Aricve Biological Science Belgrade* 63(4) 1057-1067.

[19] Arora PJ 2020 *Bacilli*-Mediated Degradation of Xenobiotic Compounds and Heavy Metals *Frontiers Bioengineering and Biotechnology* 8 570307.

[20] Hao J, Liu J, Sun M 2014 Identification of a marine *Bacillus* strain C5 and parathion-methyl degradation characteristics of the extracellular esterase B1 *BioMed Research International* 863094 7

[21] Rahmansyah M, Sulistinah N 2009 Bacterial Perform in Soil Contaminated with Pesticide *Berita Biologi* 9 (5) 657–64.