Multilayered Sporadic-E Response to the Annular Solar Eclipse on June 21, 2020

Jin Wang1, Xiaomin Zuo1, Yang-Yi Sun1, Tao Yu1, Yungang Wang2, Lihui Qiu1, Tian Mao2, XiangXiang Yan1, Na Yang1, Yifan Qi1, Jiuhou Lei1, Lingfeng Sun1, and Biqiang Zhao1

1Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan, China, 2National Satellite Meteorological Center, China Meteorological Administration, Beijing, China, 3Ministry of Education Key Laboratory of Geological Survey and Evaluation, China University of Geosciences, Wuhan, China, 4School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China, 5Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Abstract A moon shadow of annular solar eclipse passed through East Asia in the afternoon on June 21, 2020, which was a good opportunity to study the rapid ionospheric response to the solar radiation variations. In the study, the high-frequency echoes recorded by the ionosondes at Wuhan (82.4% obscuration), Xiamen (97.8% obscuration), and Nanning (81.1% obscuration) are analyzed to examine the variations in sporadic-E (Es) during the obscuration over the East China area. The echoes show not only the variations in the typical signal Es layer below 130 km, but for the first time also the multilayered Es at altitudes from 130 to 190 km. The relationship between the formation of the multilayered Es and the uplifted Es near the center path of the moon shadow are examined in the study. The small-scale atmospheric gravity waves play a key role in modulating the Es behaviors during the eclipse.

Plain Language Summary The sky’s darkness due to the eclipse obscuration can reduce the air temperature and induce wind and atmospheric waves, which makes a bit windy and chill people suddenly during the obscuration. Following the famous total solar eclipses on July 22, 2009 and August 21, 2017, the annular solar eclipse occurred on June 21, 2020 is another wonderful opportunity for us to examine the ionospheric and atmospheric responses to the sudden darkness. The impact of the annular solar eclipse on the ionosphere and atmosphere shall be weaker than that of a total solar eclipse. However, it is surprising for us to see that the ionospheric behaviors between 100 and 200 km altitudes during the 2020 annular eclipse are as prosperous as those during the total solar eclipses. The morphology of sporadic-E (Es) during the annular solar eclipse is examined here in detail. The results reveal that the atmospheric gravity waves play a key role in modulating the Es behaviors over eastern China during the 2020 annular solar eclipse.

1. Introduction

Solar eclipse is a unique space weather phenomenon that can induce rapid variations in ionospheric structures. It provides us rare opportunity to study the responses of the ionospheric and atmospheric structures and dynamics to the sudden reduction in solar radiation. Strong temperature gradients in the obscuration area can induce atmospheric gravity waves (AGWs) (Chimonas, 1970). The AGW-induced windshear interacting with metallic ions can form Sporadic-E (Es). Furthermore, the eclipse-generated AGWs can modulate the Es behaviors that are highly variable and different between the eclipse events in the areas of Asia, Africa, and Europe (Chen et al., 2010; Datta, 1972; Jakowski et al., 2008; Manju et al., 2014; Muller-Wodarg et al., 1998; Stoffregen, 1955; Tiwari et al., 2019).

Datta (1972) reported that the Es is strong between the beginning and maximum obscuration of the partial eclipse over Haringhat (67% obscuration), India, on June 20, 1955. Chen et al. (2010) and Yadav et al. (2013) showed that the Es intensity reached its maximum near the end of the total solar eclipse on July 22, 2009. Tiwari et al. (2019) found that the top frequency of the Es layer during the 2009 eclipse was much higher than that on the reference days. By contrast, several studies showed that the Es can attenuate during several
eclipses. Stoffregen (1955) found that the E_s ionization decreased significantly and even disappeared near the totality path on June 30, 1954. Nayak et al. (2012) reported the weakened E_s layer over Tirunelveli (84% obscuration) during the annual solar eclipse on January 15, 2010. However, Pezzopane et al. (2015) suggested that the AGWs can influence the persistence, rather than the intensity, of the E_s layer during the solar eclipse on March 20, 2015. Bullett and Mabie (2018) reported no discernible change in the E_s layer near the totality path over North America during the 2017 eclipse. Additionally, several studies showed the E_s oscillations with periods ranging from \sim10 to 100 min during the eclipses on 2009, 2010 (Chen et al., 2010; Manju et al., 2014; Tiwari et al., 2019; Yadav et al., 2013). They attributed the formation of the oscillations to the eclipse-generated AGWs.

The E_s behaviors being different between the eclipses should relate to the unique shadow geometry, season, and E_s climatology for each eclipse. A moon shadow of an annular solar eclipse passed through eastern China from \sim06:00 to \sim09:00 UT on 21 June 2020 (summer solstice) under geomagnetic quiet condition (Figure S1). It can be expected that the E_s layer highly occurs over Asia in the summer (Qiu et al., 2019). Accordingly, the June 2020 eclipse is another great opportunity for investigating the E_s response to the eclipse.

This study utilizes three ionosondes sited in Wuhan (30.5°N, 114.4°E, 82.4% obscuration), Hubei Province, Xiamen (24.2°N, 118.07°E, 97.8% obscuration), Fujian Province, and Nanning (22.7°N, 109.25°E, 81.1% obscuration), Guangxi Province, within the 80% obscuration area (Figure 1a) to observe the eclipse effect. The three ionosondes are operated by the National Satellite Meteorological Center (NSMC) and the Chinese Meridian Project (CMP). The three ionosondes recorded the ionograms every 5 min from 19 to 21 June 2020 except over Xiamen on June 19, 2020 (15 min). The high-temporal resolution benefits to capture the rapid changes in ionospheric structures during the eclipse. This study focuses on the ordinary-mode (O-mode) high-frequency (HF) echoes between 100 and 200 km altitudes for studying the E_s behaviors. The critical frequency of the E_s layer (f_oE_s) and its altitude that are derived from the O-mode reflection echoes are manually scaled from the ionograms using the SAO explorer software.

2. Results

The right panels of Figure 1 illustrate examples of the O-mode HF echoes recorded by the three ionosondes over Wuhan, Xiamen, and Nanning. The signal-layered echoes with frequency >3.0 MHz (Pignalberi et al., 2014) below 130 km altitude (virtual height) is the typical single E_s layer. Note that, hereinafter, the altitude stands for the virtual height of the echo reflection point. The term “E_s layer” stands for the typical signal E_s layer. In Figures 1b and 1c, the typical E_s layers with $f_oE_s > 5.0$ MHz are observed over Wuhan and Xiamen. However, several echoes appear at 145, 155, 165, 175, 190 km altitudes over Nanning at 09:06 UT (Figure 1d). The group of the multilayered echoes consisting of five sublayers distributes within 130–190 km altitudes that are much higher than the typical E_s altitude. The multilayered echoes may be the electron density ledge between the E and F_2 layers.

In Figure 2, we construct the height-time-amplitude (HTA) of the echoes to examine the altitude and temporal evolution of the E_s during the eclipse. The HTA is the integration of the echo amplitude over the sounding frequencies ranging from 1.0 to 15.0 MHz at each altitude from each ionogram. The E layer distributes near 105 km altitude over Xiamen during the eclipse, while it becomes weak near the maximum obscuration (08:10 UT). On the other hand, the E_s layer near 115 km altitude is weakened and uplifted since 07:30 UT that is 47 min after the beginning of the obscuration. The E_s layer reaches its highest altitude near 150 km, which is higher than the typical E_s altitude, near the maximum obscuration (08:10 UT). It eventually descends back to \sim110 km at 09:55 UT that is near a half hour after the obscuration. Moreover, it can be seen that the E_s layer is widely scattered within the altitude ranging from 140 to 180 km near the maximum obscuration.

The echoes of the E_s layer are strong and stable near 110 km over Nanning during the obscuration. Besides the typical E_s layer, the multilayered echoes suddenly appear since the maximum obscuration and vanish after 09:06 UT (near end of obscuration). The multilayered echoes mainly distribute at the altitudes ranging
Space Weather

from 130 to 190 km that are much higher than the typical E_s altitude. The echoes over Wuhan are much weaker than that over the other two stations. The echoes near 110 km altitude are weak and even disappear between the beginning and maximum obscuration. Thereafter, an echo suddenly appears at ~ 150 km altitude near the maximum obscuration, and descends to ~ 118 km around the end of obscuration. The time series of the f_{E_s} and multilayered echoes are displayed in Figures 3 and 4, respectively, for showing the E_s behaviors in detail.

Figure 3 displays the comparison between the variations in the f_{E_s} that is mainly below 130 km on the eclipse day and 2 days before. To avoid the contamination of the long-period variability to the examination of rapid changes in ionosphere due to a space weather phenomenon, the ionosonde observations on the 2 days before are chosen as the reference for the further comparison. The f_{E_s} over Wuhan during the eclipse
period is much lower than that on the reference days (Figure 3a). It almost vanishes between the beginning and maximum obscuration. Thereafter, it appears again and gradually enhances after the maximum obscuration. The f_E reaches its maximum over Xiamen near 07:10 UT, and rapidly decreases to its minimum near the maximum obscuration (Figure 3b). It can be noted that both the variations in f_E of the two stations contain the long-period tendencies responding to the obscuration. The f_E oscillates periodically over Xiamen during the eclipse period. The wavelet spectrum (Figure 3c) shows that the period of the f_E oscillations ranges from 15 to 60 min during the solar eclipse period. However, the f_E over Nanning is highly fluctuated during the three days (Figure 3d). There is no obvious tendency over Nanning, and it is hard to attribute the variations in the f_E to the eclipse effect.

Figure 4 further shows the characteristics of the multilayered echoes within the 3.0–5.0 MHz frequency band at 130–190 km altitude over Nanning. The multilayered echoes are most intense within the frequency band according to all the ionograms over Nanning during the obscuration (Figure S2). No multilayered echoes can be observed on the reference days (Figures 4a and 4b, S3, S4). However, clear multilayered echoes consisting of 3–5 sublayers appear mainly at 130–190 km altitudes between 08:36 and 09:06 UT on the eclipse day (Figure 4c). There are spans between the nearby sublayers in the vertical direction at each time step. The mean vertical spans are 22.6, 19.9, 19.8, 17.1, 17.7, and 11.4 km at 08:36, 08:41, 08:46, 08:51, 09:01, and 09:06 UT, respectively.

Figure 2. Height-time-amplitude (HTA) plots over Wuhan, Xiamen, and Nanning, during the eclipse. The HTA is the total echo amplitude as a function of virtual height and universal time (UT). The horizontal line at 130 km (virtual height) indicates the altitude where the typical signal E_s layer always occurs below. The vertical lines indicate the begin (b), maximum (M), and end (e) of the obscuration.
3. Discussion

The prominent reduction in the f_{Es} over Xiamen during the obscuration (Figure 3b) is similar to the weakness of E_s as reported by Stoffregen (1955) and Nayak et al. (2012) during the solar eclipses on June 30, 1954 and on January 15, 2011, respectively. It is well known that the photochemical and transport processes...
mainly control the behaviors of plasma in the ionosphere. The weakness of the E layer during the eclipse period can be expected, because the molecular ions are highly controlled by the photochemical process due to the variations in solar radiation. However, the reduction in solar radiation during an eclipse has little effect on the E_s ionization that mainly consists of metallic ions (Pezzopane et al., 2015; Whitehead, 1989). Therefore, the reduction in $f_o E_s$ seems irrelevant to the photochemical process. Rishbeth (1968) suggested that the thermal contraction and the reduction in conductivity can contribute to the vertical transport in the obscuration area. The prominent uplift of the E_s layer over Xiamen suggests the vertical transport being significant in the E region around the path of maximum obscuration (Figure 2b), which was rarely observed. Meanwhile, the large scatter of the E_s layer during its uplift would reduce the $f_o E_s$. The descending movement of the echo over Wuhan is similar to the descending E_s layer over Xiamen from the maximum obscuration to the end of eclipse. The uplifted E_s layer around the path of maximum obscuration may extend poleward along the geomagnetic field lines to the northern 80% obscuration area. That may be the reason for the sudden appearance of the echo at ~ 150 km altitude over Wuhan after the maximum obscuration.

The enhancement of the $f_o E_s$ over Xiamen near the beginning of obscuration is similar to the results of Datta et al. (1972) and Yadav et al. (2013). They attributed the E_s enhancement to the upward or downward propagating AGWs, which can be activated due to the photochemistry and temperature changes caused by the moving cooling spot of the Moon's shadow (Chimonas, 1970; Fritts & Luo, 1993). The presence of AGWs during an eclipse can cause a strong convergence of wind and introduce a wind shear condition, which further induce an intensification of the E_s ionization (Chen et al., 2010). Furthermore, the oscillations with the period of 15–60 min over Xiamen, further verify the appearance of the AGWs during the eclipse. The period of the observed waves mainly agrees with the previous studies (Tiwari et al., 2019; Walker et al., 1991; Yadav et al., 2013).

Figure 4. Multilayered echoes appear over Nanning during the period of 08:26–09:16 UT that is mainly between the maximum and the end of the obscuration. The color represents the echo amplitude. The multilayered echoes are mainly observed within the frequency band of 3.0–5.0 MHz. The vertical line divides the ionograms.
Most of all the previous studies reported the enhancement or attenuation of the typical E_s layer below 130 km during the eclipses. However, the appearance of the multilayered echoes near 130–190 km altitudes over Nanning is unexpected. The multilayered echoes are similar to those of the E_s simulation by Didebulidze et al. (2020). Their simulation results show that the E_s can be multilayered under the influence of the small-scale AGWs in nighttime. The AGWs with a vertical wavelength of 15 km can form the E_s with four (60/15) sublayers at the altitudes from 90 to 150 km. The vertical span between the nearby sublayers approximates the vertical wavelength of the AGWs. Figure 4c shows that the multilayered echoes consist of the 3–5 sublayers with the corresponding spans ranging from 11.4 to 22.6 km distributed also within a wide altitude range. The agreement between the observation (Figures 2 and 4c) and the independent numerical simulations performed by Didebulidze et al. (2020) suggests that the appearance of the multilayered E_s can be attributed to the small-scale AGWs due to the obscuration. Chen et al. (2011) also showed E_s being largely scattered around the 137–190 km altitude between the one- and two-hop regular E_s echoes by employing the HF fixed frequency ionosonde during the 2009 solar eclipse. However, there is no obvious stratification in their E_s observation. The different observation equipment and operational modes, such as fixed frequency versus sweep frequency, may be responsible for the different observation results.

Vadas (2007) suggested that AGWs have larger vertical scales as they propagate upward into the upper atmosphere. Oliver et al. (1997) showed that the vertical wavelength of AGWs is proportional to altitude, and it is near 100 km at the altitude around 150 km. However, the wavelengths of the AGWs are short (from 11.4 to 22.6 km) during the eclipse (Figures 4 and 51). Therefore, the origin of the small-scale AGWs may be closer to the E_s layer at ~50 and ~90 km altitudes where the atmospheric cooling rates are sensitive to the obscuration (Brasseur & Solomon, 2005).

On the other hand, metallic ion is another major factor for the formation of E_s layer. Thampi et al. (2010) suggested that the sudden withdrawal of solar radiation can deplete the background E-region electron density, thereby unmasking the long-lived metallic ions, because the recombination rate of the metallic ions is much weaker than that of the molecular ions during the obscuration. In Figure 2, the E_s layer around the center path of the solar eclipse are significantly uplifted and scattered near the maximum obscuration. The widely distributed metallic ions (140–180 km) are the ingredient for forming the multilayered E_s above the typical altitude of the E_s layer (130 km).

The multilayered E_s appear only over Nanning (southern 80% obscuration), while there is no similar phenomenon over the other two stations. It is well known that the cooling region during an eclipse can act as a continuous source of the AGWs that propagate away from the path of maximum obscuration (Chimonas, 1970). The moon shadow moving eastward can induce the AGWs that mainly propagate northward and southward. The poleward thermospheric wind in daytime can filter out the northward-propagating AGWs in the Northern Hemisphere. The ions influenced by the AGWs prefer to propagate equatorward along the geomagnetic field lines (Otsuka et al., 2006). Those may explain why the multilayered E_s appear over Nanning but not over Wuhan and Xiamen (Figure 2). The north-south asymmetry in the E_s behavior also agrees with the results of the Global Navigation Satellite System (GNSS) total electron content (TEC) observation over East Asia during the July 22, 2009 solar eclipse (Liu et al., 2011). They also showed that no TEC fluctuations/waves moved poleward on the northern side of the totality path. In contrast, the TEC fluctuations/waves associated with the eclipse-generated AGWs mainly propagated equatorward beyond the southern 85% obscuration.

Scientists have comprehensively examined the ionospheric responses to the eclipses on July 22, 2009 over East Asia and August 21, 2017 over North American due to the development of the dense ground-based GNSS networks and numerous ionosondes in recent decades. Most studies analyzed the ionosonde observations and reported that the E_s behaviors are highly variable in different areas of Asia during the 2009 eclipse (Brahmamandam et al., 2013; Chen et al., 2010; Thampi et al., 2010; Tiwari et al., 2019; Yadav et al., 2013). However, most of the ionosondes do not detect the E_s layer or its obvious variation during the 2017 eclipse over North American. Bullett and Mabie (2018) recorded the E_s at Lusk, Wyoming (near the totality path); however, the E_s layer has no discernible change during the eclipse. The ionospheric waves associated with the 2017 eclipse were mainly recorded by the GNSS networks over North American (Nayak & Erdal, 2017; Mrak et al., 2018; Perry et al., 2019; Sun et al., 2018; Zhang et al., 2017). It can be expected that the moon shadows can induce AGWs that propagate in the ionosphere. However, the different wavy structures in the ionosphere were detected by the different instruments during the two eclipses in the similar season (summer).
In the 2020 eclipse, the ionosondes record the prosperous E_s behaviors over Asia again, which reveals that the E_s is sensitive to the eclipse-generated AGWs in the Asia area near the summer solstice. Accordingly, the results recommend that the examination and simulation of the eclipse-generated ionospheric/atmospheric disturbances should consider the specific condition, such as the climatology of E_s (Qiu et al., 2019), in different areas all over the world.

4. Conclusion

This study performs an experiment for understanding the response of sporadic-E (E_s) to the annular solar eclipse over eastern China on June 21, 2020. This is for the first time to observe the multilayered E_s appearing at 130–190 km altitude over Nanning (81.1% obscuration) on the southern side of the obscuration path. However, no multilayered E_s is observed over Xiamen (97.8% obscuration) near the center path and Wuhan (82.4% obscuration) on the northern side. The formation of the multilayered E_s may take the following steps: (1) The typical single E_s layer being uplifted and scattered over Xiamen can act as a reservoir of metallic ions at the high altitudes (130–190 km). (2) The moon shadow induces small-scale AGWs that propagate upward and equatorward. (3) The AGWs encountering with the metallic ions results in the multilayered E_s over Nanning. The vertical span between the nearby sublayer of the multilayered E_s ranges from 11.4 to 22.6 km. Whether the eclipse generates waves in the F region (mainly above 200 km altitude) can be further examined.

Data Availability Statement

The authors acknowledge the use of data from the Chinese Meridian Project https://data.meridianproject.ac.cn/ and the National Satellite Meteorological Center (NSMC) http://www.nsmc.org.cn/en/NSMC/Home/Index.html.

References

Brahmanandam, P. S., Chu, Y. H., Su, C. L., & Lin, T. H. (2013). Daytime E-Region irregularities during the 22 July 2009 solar eclipse over Chung-Li (24.9°N, 121.2°E), a moderate mid-latitude station. Terrestrial, Atmospheric and Oceanic Sciences, 24(6), 1021–1032. https://doi.org/10.1029/2010GL042855

Brasseur, G. P., & Solomon, S. (2005). Aeronomy of the middle atmosphere, Chemistry and Physics of the Stratosphere and mesosphere. New York, NY: Springer.

Bultet, T., & Mable, J. (2018). Vertical and oblique ionospheric sounding during the 21 August 2017 solar eclipse. Geophysical Research Letters, 45, 3690–3697. https://doi.org/10.1002/2018GL077413

Chen, G., Zhao, Z., Yang, G., Zhou, C., Yao, M., Li, T., et al. (2010). Enhancement and HF Doppler observations of sporadic-E during the solar eclipse of 22 July 2009. Geophysical Research Atmospheres, 115(A9). https://doi.org/10.1029/2010JA015530

Chen, G., Zhao, Z., Zhang, Y., Yang, G., Zhou, C., Huang, S., et al. (2011). Gravity waves and spread E observed during the solar eclipse of 22 July 2009. Journal of Geophysical Research, 116, A09314. https://doi.org/10.1029/2011JA016720

Chimonas, G. (1970). Internal gravity-wave motions induced in the Earth’s atmosphere by a solar eclipse. Journal of Geophysical Research, 75(28), 5545–5551. https://doi.org/10.1029/JA075i028p05545

Datta, R. N. (1972). Solar-eclipse effect on Sporadic-E ionization. Journal of Geophysical Research Atmospheres, 77(1), 260–262. https://doi.org/10.1029/JA077i001p00260

Didebulidze, G. G., Giorgi, D., & Todua, M. (2020). Formation of multilayered sporadic-E under an influence of atmospheric gravity waves (AGWs). Atmosphere, 1(6), 653. https://doi.org/10.3390/atmos11060653

Fritts, D. C., & Luo, Z. (1993). Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse. Journal of Geophysical Research Atmospheres, 98(D2), 3011–3021. https://doi.org/10.1029/92JD0239

Jakowski, N., et al. (2008). Ionospheric behavior over Europe during the solar eclipse of 3 October 2005. Journal of Atmospheric and Solar-Terrestrial Physics, 70(6), 836–853. https://doi.org/10.1016/j.jastp.2007.02.016

Liu, J. Y., Sun, Y. Y., Kakimi, Y., Chen, C. H., Lin, C. H., & Tsai, H. F. (2011). Bow and stern waves triggered by the Moon’s shadow boat. Geophysical Research Letters, 38(17), L17109. https://doi.org/10.1029/2011GL048805

Manju, G., Madhav Haridas, M. K., Ramkumar, G., Pari, T. K., Sridharan, R., & Sreekhana, P. (2014). Gravity wave signatures in the dip equatorially ionosphere-thermosphere system during the annular solar eclipse of 15 January 2010. J. Geophys. Res. Space Physics, 119, 4929–4937. https://doi.org/10.1002/2014JA019865

Mrak, S., Semeter, J., Droh, D., & Huva, J. D. (2018). Direct EUV/X-ray modulation of the ionosphere during the August 2017 total solar eclipse. Geophysical Research Letters, 45, 3820–3828. https://doi.org/10.1002/2017GL076771

Muller-Wodarg, I. C. F., Aylward, A. D., & Lockwood, M. (1998). Effects of a mid-latitude solar eclipse on the thermosphere and ionosphere: A modeling study. Geophysical Research Letters, 25, 3787–3790. https://doi.org/10.1029/98GL00458

Nayak, C. K., Tiwari, D., Empetralum, K., & Bhattacharyya, A. (2012). The equatorial ionospheric response over Tirunelveli to the 15 January 2010 annular solar eclipse: observations. Annales Geophysicae, 30(9), 1371–1377. https://doi.org/10.5194/angeo-30-1371-2012
Nayak, C., & Yigit, E. (2017). GPS-TEC observation of gravity waves generated in the ionosphere during 21 August 2017 total solar eclipse. *Journal of Geophysical Research: Space Physics, 122*(1), 725–738. https://doi.org/10.1002/2017JA024845

Oliver, W. L., Otsuka, Y., Sato, M., Takami, T., & Fukao, S. (1997). A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. *Journal of Geophysical Research, 102*(A7), 14499–14512. https://doi.org/10.1029/97JA00491

Otsuka, Y., et al. (2006). GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake. *Earth Planets and Space, 58*, 159–165. https://doi.org/10.1186/BF03353373

Perry, G. W., Watson, C., Howarth, A. D., Themens, D. R., Foss, V., Langley, R. B., & Yau, A. W. (2019). Topside ionospheric disturbances detected using radio occultation measurements during the August 2017 solar eclipse. *Geophysical Research Letters, 46*(13), 7069–7078. https://doi.org/10.1029/2019GL083195

Pezzopane, M., Pietrella, M., Pignalberi, A., & Tozzi, R. (2015). 20 March 2015 solar eclipse influence on sporadic E layer. *Advances in Space Research, 56*, 2064–2072. https://doi.org/10.1016/j.asr.2015.08.001

Pignalberi, A., Pezzopane, M., & Zuccheretti, E. (2014). Sporadic E layer at mid-latitudes: average properties and influence of atmospheric tides. *Annales Geophysicae, 32*, 1427–1440. https://doi.org/10.5194/angeo-32-1427-2014

Qiu, L. H., Zuo, X. M., Yu, T., Sun, Y. Y., & Qi, Y. F. (2019). Comparison of global morphologies of vertical ion convergence and sporadic E occurrence rate. *Advances in Space Research, 63*(11), 3606–3611. https://doi.org/10.1016/j.asr.2019.02.024

Qiu, L. H., Zuo, X. M., Yu, T., Sun, Y. Y., & Qi, Y. F. (2019). Comparison of global morphologies of vertical ion convergence and sporadic E occurrence rate. *Advances in Space Research, 63*(11), 3606–3611. https://doi.org/10.1016/j.asr.2019.02.024

Rishbeth, H. (1968). Solar eclipses and ionospheric theory. *Space Science Reviews, 8*(4), 543–554. https://doi.org/10.1007/BF00175006

Stoffregen, W. (1955). Variation of FeIs during solar eclipses. *Nature, 176*, 610. https://doi.org/10.1038/176610a0

Sun, Y.-Y., Liu, J.-Y., Lin, C.-H., Lin, C.-Y., Shen, M.-H., Chen, C.-H., et al. (2018). Ionospheric bow wave induced by the moon shadow ship over the continent of United States on 21 August 2017. *Geophysical Research Letters, 45*, 533–544. https://doi.org/10.1002/2017GL075926

Thampl, S. V., Yamamoto, M., Liu, H., Saito, S., Otsuka, Y., & Patra, A. K. (2010). Nighttime–like quasi periodic echoes induced by a partial solar eclipse. *Geophysical Research Letters, 37*, L09107. https://doi.org/10.1029/2010GL042855

Tiwari, P., Parihar, N., Dube, A., Singh, R., & Sripathi, S. (2019). Abtypical behavior of sporadic E-layer during the total solar eclipse of 22 July 2009 near the crest of EIA over India. *Advances in Space Research, 64*(10). https://doi.org/10.1016/j.asr.2019.07.037

Vadas, S. L. (2007). Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. *Journal of Geophysical Research, 112*, A06305. https://doi.org/10.1029/2006JA011845

Walker, G. O., Li, T. Y. Y., Wong, Y. W., Kikuchi, T., & Huang, Y. N. (1991). Ionospheric and geomagnetic effects of the solar eclipse of 18 March 1988 in East Asia. *Journal of Atmospheric and Terrestrial Physics, 53*(1-2), 25–37. https://doi.org/10.1016/0021-9169(91)90017-2

Whitehead, J. D. (1989). Recent work on mid-latitude and equatorial Sporadic-E. *Journal of Atmospheric and Terrestrial Physics, 51*(5), 401–424. https://doi.org/10.1016/0021-9169(89)90122-0

Yadav, S., Das, R. M., Dabas, R. S., & Gwal, A. K. (2013). The response of sporadic E-layer to the total solar eclipse of July 22, 2009 over the equatorial ionization anomaly region of the Indian zone. *Advances in Space Research, 51*(11), 2043–2047. https://doi.org/10.1016/j.asr.2013.01.011

Zhang, S. R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W., & Vierinen, J. (2017). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. *Geophysical Research Letters, 44*(24), 12067–12073. https://doi.org/10.1002/2017GL076054

Reference From the Supporting Information

Lu, X., Liu, A. Z., Swenson, G. R., Li, T., Leblanc, T., & McDermid, J. S. (2009). Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere. *Journal of Geophysical Research, 114*, D11101. https://doi.org/10.1029/2008JD010112