Case report

Congenital broncho-oesophageal fistula: An unusual cause of persistent pneumonia in a young adult

Savvidou Savvoula a,*, Pasogliou Vasiliki b, Karatzidou Kyparisia a, Antoniou Christina a, Mallias Ioannis a, Kalampakas Athanasios a

a 1st Department of Internal Medicine, “Papageorgiou” General Hospital of Thessaloniki, Ring Road N. Efkarpi-Thessaloniki, 54629 Thessaloniki, Greece
b Department of Radiology, University Hospital of Liege, Liege, Belgium

A R T I C L E I N F O

Article history:
Received 14 September 2012
Received in revised form 20 November 2012
Accepted 11 December 2012

Keywords:
Broncho-oesophageal fistula
Respiratory fistula
Fistula

A B S T R A C T

A 19-year-old female with a 3-day history of high temperature, productive cough and dyspnoea was admitted due to diabetic ketoacidosis and pneumonia of the right lower lobe. Antibiotics (amoxicillin-clavulanic acid), insulin, fluids and electrolytes were administered, as appropriate. The patient was doing well (normal temperature, normal glucose levels, normal acid-base balance) until the sixth day of hospitalization, when she reported bouts of cough when swallowing liquids. Barium oesophagography revealed the presence of a broncho-oesophageal fistula (BOF). Congenital BOFs are rare developmental malformations (only just over 100 reported cases in the literature), which are attributable to persistent attachments between the tracheobronchial tree and the oesophagus. When not combined with oesophageal atresia, symptoms may not appear until adult life. History of recurrent respiratory infections, bronchiectasis, haemoptysis and chronic cough associated with eating, may indicate investigation with conventional or multi-positional oesophagography. At the time that surgery was decided, our patient developed persistent pneumonia of both the middle and the lower right lobes. A fistulous tract between the medial segmental bronchus and the oesophagus was removed, along with right middle lobectomy. Post-operative clinical course was excellent.

2. Case report

A 19-year-old female presented in the emergency department with a 3-day history of productive cough, dyspnoea and high temperature of 39 degrees Celsius (°C). Clinical examination revealed a respiration rate of 36 breaths per minute, oxygen saturation of 96% while breathing ambient air, and late inspiratory rales on auscultation of the right pulmonary base. Chest X-ray confirmed pneumonia of the right lower lobe (Fig. 1a). Laboratory investigation, shown in Table 1, revealed, among others, a remarkable hyperglycemia of 392 mg/dl, while pH oxymetry was indicative of diabetic ketoacidosis.

The patient reported having no history of diabetes mellitus or other co-morbid conditions. She was Caucasian in origin, lived in Greece, and reported no recent travelling abroad. She had no pets, never smoked, and did not use systematically any medication. Her
family history was only of a grandfather with a history of type 2 diabetes mellitus.

The patient was admitted to the department of internal medicine for the management of diabetic ketoacidosis triggered by a community-acquired pneumonia, where she initially received intravenously antibiotics (amoxicillin-clavulanic acid), as well as insulin, fluids and electrolytes, as appropriate. Two days later, temperature dropped to 37.7 °C, serum glucose and blood gases normalized, and the patient began eating on subcutaneously administered insulin.

On the sixth day, recurrence of high temperature with persistence of productive cough prompted new radiographic investigation with chest X-ray (Fig. 1b) and computed tomography (Fig. 2), which both revealed significant increase of the inflammatory infiltrates, with expansion of the bronchopneumonia in both the middle and lower right lobes, as well as accumulation of small amount of pleuritic fluid. Antibiotic treatment changed from amoxicillin-clavulanic acid to piperacillin-tazobactam, in order to cover possible hospital-acquired pathogens, but the patient remained febrile. Simultaneously, the patient reported new onset, worsening cough, and, particularly, bouts of cough when swallowing liquids. This new symptom raised clinical suspicion of a communication between the respiratory tree and the upper gastrointestinal tract. The patient was advised to stop eating, and was subjected to a barium-oesophagography, which confirmed the presence of a BOF (Fig. 3).

The patient was referred to a specialized department of Cardio-Thoracic Surgery, where open right thoracotomy and resection of the fistulous tract, along with right middle lobectomy, were performed. The fistula was about 3 cm long, connecting the right middle segmental bronchus and the lower third of the oesophagus, while the right middle lobe macroscopically resembled liver parenchyma. The histopathological examination reported that the whole lobe removed was atelectatic with evidence of chronic pneumonitis, while medium-sized bronchi were moderately dilated and full of cellular debris. The fistula was covered with squamous epithelial tissue. No evidence of malignancy or granuloma formation was found in the samples taken from the reactively hyperplastic hilar lymph nodes.

Post-operative course of the patient was excellent and the patient was discharged 8 days later.

3. Discussion

Congenital communications between the respiratory tree and the oesophagus are rare developmental anomalies (1:3000 to 1:4500 live births) resulting from failure of the lung bud to separate

Table 1
Laboratory data.
Variables*
White-cell count (/mm³)
Neutrophils (%)
Haematocrit (%)
Haemoglobin (g/dl)
Glucose (mg/dl)
Na (mmol/l)
C-reactive protein (mg/dl)
pH oxymetry
pO₂ (mmHg)
pCO₂ (mmHg)
HCO₃ (mmol/l)
BE (mmol/l)
Lac (mmol/l)

*Measured variables of platelet count, prothrombin time, urea, creatinine, aminotransferases, alkaline phosphatase, total protein, albumin, potassium, calcium, were within normal values, at all times.
completely from the foregut, a procedure that takes place between the 4th and the 6th weeks of gestation.4 In the majority of cases, this malformation is accompanied by oesophageal atresia, and is typically presented in infancy.1,2 However, in the so-called “H-type” fistula, which comprises only 3–6% of all cases, the oesophagus is otherwise normal, communicating with either the trachea or a bronchus, formulating either a TOF or a BOF, respectively.1,2

3.1. Epidemiology

Congenital BOFs were first described by Negus in 1929,2,5 and were classified into four categories by Braimbridge and Keith in 1965.3 So far, only about 100 cases have been reported in the literature.1 Their presentation may be delayed until childhood or adult life, with a median age of 33 years old, while the duration of symptoms can vary from 6 months to 50 years, with a mean of 17 years.1,2 No sex predominance has been described.1,2

The majority (90%) of fistulas are type II according to Braimbridge classification.5 The communication is usually short and is running directly from the oesophagus to a main or segmental bronchus. In other types, the fistula is communicating with a congenital oesophageal diverticulum (type I), an intralobar cyst (type III) or a pulmonary sequestration (type IV).5

3.2. Aetiopathogenesis

Congenital BOFs comprise rare developmental anomalies with an unknown aetiopathogenesis. Presence of a membrane or a tissue fold of the oesophagus which can work as a “flap valve” on the fistulous opening, and spasm of the smooth muscle in the fistula wall are the two most favourable theories that have been developed in order to explain why congenital BOFs can remain silent and asymptomatic for several decades.1

Unlike congenital, acquired forms of BOFs are increasingly encountered when reviewing the literature. Several reports, either as sole cases or as small cohorts of patients, describe broncho-oesophageal communications as the result of malignancy,6 inflammation,7–11 trauma,12,13 iatrogenic procedures14–16 or drug-induced oesophageal injury.17 Graph 1 demonstrates a schematic classification of BOFs according to their aetiology.

3.3. Clinical presentation

When asymptomatic, BOFs are accidently discovered in surgery affecting lobectomy for various reasons.1 Non-specific symptoms include cough, dysphagia, chest pain and haemoptysis. Paroxysmal and recurrent cough when ingesting liquids (“Ohno’s sign”) can be pathognomonic in 65% of cases.3,5 Clinical suspicion should further be raised in patients with recurrent respiratory infections and with non-tuberculous bronchiectasis.1,2

3.4. Diagnosis

Conventional barium oesophagography is the most sensitive and most “rewarding” tool in the diagnosis of BOFs.1,3 In several cases, repetitive multi-positional scans may be necessary for definite diagnosis.3 Instillation of methylene blue into the oesophagus

![Graph 1. Classification of broncho-oesophageal fistulas.](image-url)
during bronchoscopy, or finding the fistulous orifice during oesophagoscopy can be helpful in establishing diagnosis.3,5 Nevertheless, as already mentioned, in several cases diagnosis was either made or confirmed intra-operatively.1

In all cases, pre-operatively scanning with computed tomography is essential in defining the extent of coexisting pulmonary infection, which may need resection.1

3.5. Treatment and prognosis

Thoracotomy with complete resection of the fistula and removal of any permanent co-existing pulmonary lesions is the “gold standard” in the treatment of BOFs.1,3 Other techniques, mostly indicated in malignant or non-operable cases, are stenting or occlusion of the fistulous tract using specific glues.18,19

Despite the benign nature of congenital BOFs, if left untreated, fatal complications are to be expected.1–3 On the other hand, when successfully and permanently resected, prognosis is excellent.

4. Conclusion

In conclusion, a high index of clinical suspicion for the presence of a possible BOF has to be raised by physicians in cases of unexplained recurrent respiratory infections, non-tuberculous bronchiectasis or chronic cough whenever swallowing liquids. Barium oesophagography is the gold standard in the diagnosis of BOFs, and surgical resection is the preferable choice for a definite treatment.

Conflict of interest

None.

Acknowledgements

Special acknowledgements to Dr. Filippou K. in the Cardio-Thoracic Surgery Unit of the Interbalkan Medical Center of Thessaloniki, and Dr Zaraboukas M. in the Department of Pathology, for their significant contribution.

References

1. Dogan R, Farsak B, Yilmaz M, Tok M, Gungen Y. Congenital broncho-oesophageal fistula associated with bronchiectasis in adults. Report of two cases and review of the literature. \textit{Respiration} 1999; \textbf{66}:361–5.
2. Bekoe S, Magovern GJ, Liebler GA, Park SB, Cushing WJ. Congenital broncho-oesophageal fistula in the adult. \textit{Chest} 1974; \textbf{66}:201–3.
3. Zhang B, Zhou N, Yu C. Congenital broncho-oesophageal fistula in adults. \textit{World J Gastroenterol} 2011; \textbf{17}:1358–61.
4. Long JD, Orlando RC. Anatomy, histology, embryology, and developmental anomalies of the esophagus. In: Feldman M, Friedman LS, Brandt LJ, editors. \textit{Sleisenger and Fordtran’s gastrointestinal and liver diseases}. 8th ed. Philadelphia: Saunders Elsevier; 2006. p. 845–7.
5. Su L, Wei X-Q, Zhi X-Y, Xu QS, Ma T. Congenital broncho-oesophageal fistula in an adult: a case report. \textit{World J Gastroenterol} 2007; \textbf{13}:3776–7.
6. Zueger O, Bolliger CT, Quadri F, Lohri A, Soler M, Ibicki G, et al. Conservative management of a broncho-oesophageal fistula in a patient with non-Hodgkin’s lymphoma. \textit{Respiration} 1997; \textbf{64}:388–91.
7. Lado FL, Gomez AG, Ortiz de Barron AC, Lopez AJR. Broncho-oesophageal fistulae secondary to tuberculosis. \textit{Respiration} 2002; \textbf{69}:322–5.
8. Luketombung JC, Virally J, Jagot JL, Elhadad A, Lebarbier C, Mathieu M. Pulmonary nocardiosis and broncho-oesophageal fistula in a patient infected with HIV. \textit{Rev Mal Respir} 2004; \textbf{21}:147–51.
9. Kanzaki R, Yano M, Takachi K, Ishiguro S, Motoori M, Kishi K, et al. Candida esophagitis complicated by an esophago-airway fistula: report of a case. \textit{Surg Today} 2009; \textbf{39}:972–8.
10. Remy DF, Kuzmiowycz TV, Rohatgi PK, Ortega LG. Herpetic bronchitis with a broncho-oesophageal fistula. \textit{Thorax} 1995; \textbf{50}:506–7.
11. Vartian CV, Septimus EJ. Broncho-oesophageal fistula due to \textit{Mycobacterium tuberculosis} and \textit{Cytophaga} in a patient with AIDS. \textit{CID} 1996; \textbf{22}:381.
12. Ahn D, Hee SJ, Park JH, Sohn JH. Tracheo-oesophageal fistula with tracheal stenosis resulting from retained esophageal foreign body. \textit{Auris Nasus Larynx} 2011; \textbf{38}:753–6.
13. Babik J, Beck J, Schnellyova T, Topko K. Late complication of respiratory thermal injuries. \textit{Acta Chir Plast} 2008; \textbf{50}:105–7.
14. Seet E, Beevee S, Cheng A, Lim E. The Sengstaken-Blackmore tube: uses and abuses. \textit{Singap Med J} 2008; \textbf{49}:e195.
15. Carr-Locke DL, Sidky K. Broncho-oesophageal fistula: a late complication of broncho-oesophageal fistula: report of a case. \textit{Thorax} 2011; \textbf{66}:201–3.
16. Byard RW, Gilbert JD. Potentially lethal complications of tracheostomy: autopsy considerations. \textit{Am J Forensic Med Pathol} 2011; \textbf{32}:352–4.
17. McAndrew NA, Greenway MW. Medication-induced oesophageal injury leading to broncho-oesophageal fistula. \textit{Postgrad Med J} 1999; \textbf{75}:379–81.
18. Ahn J, Jung H, Choi J, Kim MY, Lee HJ, Choi KS, et al. Benign broncho-oesophageal fistula in adults: endoscopic closure as primary treatment. \textit{Gut Liver} 2010; \textbf{4}:508–13.
19. Jones C, Laurence BH, Faulkner KW, Cullingford GL. Closure of a benign broncho-oesophageal fistula by endoscopic injection of bovine collagen, cyanoacrylate glue and gelfoam. \textit{Aust N Z J Surg} 1996; \textbf{66}:53–5.