Original Articles

1 Interleukin 1β Up-Regulates mRNA Expression of Inducible Nitric Oxide Synthase in 3T3-L1 Preadipocytes: Role of JAKs/STATs, PKCs, and Src
 Yu-Kyoung Park, Saini Wang, Byeong-Churl Jang

9 Manufacture of the Animations on Health Information
 Min Suk Chung, Hyeon Min Ha

15 The Correlation Between Facial Proportion Measurement and the Beauty Satisfaction in College Students
 Yoo-Jin Shin, Yun-Mi Lee, Jae-Ho Lee

19 The Analysis of Perfusion Index and Plethysmographic Variability Index During Elective Cesarean Section
 Na Jeong Ha, Ji Hee Hong

26 Clinically Significant Monocyte Biomarker for Differential Diagnosis of COVID-19 Pneumonia in the Emergency Department
 Hyo-Won Kim, Jae Cheon Jeon, Woo Ik Choi, Ji Yeon Lee, Yong Sik Kwon, Mi Jin Lee, Jae Wan Cho, Guynn Kim, You Ho Mun, Sang-Hun Lee

32 Waist-to-Height Ratio as an Index for Screening Lifestyle-Related Diseases in Overweight Adults
 Min Jin Lee, Young Sung Suh, Seung Wan Hong, Dae Hyun Kim

39 The Effect of a Breathing Relaxation Therapy for Pregnant Women with Preterm Labor Pain: a Systematic Review and Meta-Analysis
 Seo-A Park

Case Reports

48 Suicide Attempt by Inhalation of Argon Gas
 Jae Cheon Jeon, Woo Ik Choi, Soo Won Jung, Joo Hwan Lee

52 Anesthetic Management for Combined Cardiac and Renal Transplantation: a Case Report
 Hyo-jin Lee, Ji-Hoon Park, Ji Seob Kim

58 A Case of Pneumatosis Cystoides Intestinalis in a Patient with Chronic Diarrhea and Abdominal Pain
 Seong Wook Hwang
Vol. 40, No. 1, 15 June 2021

Aims and Scope

Keimyung Medical Journal (KMJ) is the official publication of Keimyung University School of Medicine, a journal published in Korean or English with an abstract of English. The abbreviation Keimyung Med J.

KMJ publishes articles in all medical fields, including clinical research, basic medicine and nursing, with the goal of contributing to the treatment of diseases and promoting human health by sharing the latest information on medical and medical development. KMJ publishes articles on creative and informative original articles, case reports, review articles, and editorials that can encourage and promote medical research.

KMJ was first published in 1982, and is published two times a year (June 15 and December 15), and is available for free of charge from the first issue to the latest issue at http://www.e-kmj.org

Open Access

Keimyung Medical Journal is an Open Access journal. All articles are distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4-0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Editorial Board

Dae Hyun Kim, Shin Kim, Yae Rim Kim, Hyeryung Kim, Gi-Young Park, Joen Cheol Park, Dong-Hun Suh, Young Shin, Kyung-Jae Lee, Moo Sik Lee, Mi Young Lee, Sang Hwa Lee, Ja Ho Lee, Ju Yup Lee, Byong Churl Jang, Yong Hyun Jun, WoonHo Jung, Jae Ho Cho, Jong Ki Joo, Sang Taek Heo, Yun Seok Heo, Tae Gu Lee

Publisher

Dae Kyu Song, M.D.

Editor-in-Chief

Dae Hyun Kim, M.D.

Published by

Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea

Editorial Office

Medical Library, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
Tel: +82-53-258-7585 Fax: +82-53-258-7589 E-mail: tinlib@dsnmc.kit HP: http://www.kmu-med.ac.kr

Printing Office

M2PI
8th FL, DreamTower, 66 Seongsui-ro, Seongdong-gu, Seoul 04784, Korea
Tel: +82-2-4896-4830 Fax: +82-2-4896-4845 E-mail: support@m2-pi.com

Published on June 15, 2021

© 2021 Keimyung University School of Medicine

This paper meets the requirements of KS X ISO 9706, ISO 9706-1994 and ANSI/NISO Z39. 48-1992 (Permanence of paper).
Original Articles

1 Interleukin 1β Up-Regulates mRNA Expression of Inducible Nitric Oxide Synthase in 3T3-L1 Preadipocytes: Role of JAKs/STATs, PKCs, and Src
 Yu-Kyoung Park, Saini Wang, Byeong-Churl Jang

9 Manufacture of the Animations on Health Information
 Min Suk Chung, Hyeon Min Ha

15 The Correlation Between Facial Proportion Measurement and the Beauty Satisfaction in College Students
 Yoo-Jin Shin, Yun-Mi Lee, Jae-Ho Lee

19 The Analysis of Perfusion Index and Plethysmographic Variability Index During Elective Cesarean Section
 Na Jeong Ha, Ji Hee Hong

26 Clinically Significant Monocyte Biomarker for Differential Diagnosis of COVID-19 Pneumonia in the Emergency Department
 Hyo-Won Kim, Jae Cheon Jeon, Woo Ik Choi, Ji Yeon Lee, Yong Sik Kwon, Mi Jin Lee, Jae Wan Cho, Gyunmoo Kim, You Ho Mun, Sang-Hun Lee

32 Waist-to-Height Ratio as an Index for Screening Lifestyle-Related Diseases in Overweight Adults
 Min Jin Lee, Young Sung Suh, Seung Wan Hong, Dae Hyun Kim

39 The Effect of a Breathing Relaxation Therapy for Pregnant Women with Preterm Labor Pain: a Systematic Review and Meta-Analysis
 Seo-A Park

Case Reports

48 Suicide Attempt by Inhalation of Argon Gas
 Jae Cheon Jeon, Woo Ik Choi, Soo Won Jung, Joo Hwan Lee

52 Anesthetic Management for Combined Cardiac and Renal Transplantation: a Case Report
 Hyo-jin Lee, Ji-Hoon Park, Ji Seob Kim

58 A Case of Pneumatosis Cystoides Intestinalis in a Patient with Chronic Diarrhea and Abdominal Pain
 Seong Wook Hwang
Interleukin 1β Up-Regulates mRNA Expression of Inducible Nitric Oxide Synthase in 3T3-L1 Preadipocytes: Role of JAKs/STATs, PKCs, and Src

Yu-Kyoung Park¹, Saini Wang², Byeong-Churl Jang²

¹Department of Physiology & Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Korea
²Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Korea

Recent evidence suggests obesity as a low or systemic chronic inflammation. (Pre)adipocytes in the adipose tissue (AT) express and secrete a variety of cytokines and adipokines. Inducible nitric oxide synthase (iNOS) is an inflammatory enzyme involved in the production of NO. Until now, the inducer(s) of iNOS expression in (pre)adipocytes remains unclear. In this study, we investigated the effects of proinflammatory cytokines [interleukin-1β (IL-1β), IL-10, IL-12, interferon-γ (IFN-γ)], adipokines [retinol-binding protein 4 (RBP4), adiponectin, leptin, and resistin], and lipopolysaccharide (LPS), a bacterial cell wall component, on the expression of iNOS in 3T3-L1 preadipocytes. Notably, treatment with IL-1β at 20 ng/mL for 4 h markedly increased iNOS mRNA expression in 3T3-L1 preadipocytes, but that with IL-10 (10 ng/mL), IL-12 (5 ng/mL), IFN-γ (10 ng/mL), RBP4 (5 ug/mL), adiponectin (100 ng/mL), leptin (100 ng/mL), and resistin (100 ng/mL), and LPS (1 ug/mL) for 4 h had little or no effect on it. Results of dose-response and time-course experiments confirmed the ability of IL-1β at 20 ng/mL for 4 h to maximally induce iNOS mRNA expression in 3T3-L1 preadipocytes. Importantly, pharmacological inhibition studies demonstrated that treatment with AG490 (an inhibitor of Janus-activated kinases (JAKs) and signal transducer and activator of transcription proteins (STATs)), GO6976 (an inhibitor of PKCs), or PP1 (an Src kinase inhibitor) suppressed IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes, pointing out the involvement of JAKs/STATs, PKCs, and Src in the process. This work advocates that IL-1β is a major and strong inducer of iNOS expression in 3T3-L1 preadipocytes.

Keywords: 3T3-L1 Cells, Apha-cyano-(3,4-dihydroxy)-N-benzylcinnamide, GO6976, Inducible nitric oxide synthase, Interleukin-1β

Introduction

Obesity is a major health concern, often deteriorating life expectancy and increasing risks of many human diseases, such as type 2 diabetes mellitus, cardiovascular diseases, hypertension, non-alcoholic fatty liver disease, osteoarthritis, and cancer [1]. It is documented that obesity is defined as an increase in body mass fat in the adipose tissue (AT) resulting from excessive preadipocyte differentiation in the human body [2,3]. However, there is recent evidence alternatively proposing obesity as a low or systemic chronic inflammation [4].

A large body of evidence illustrates that preadipocytes, adipocytes, and macrophages in the AT secrete an array of cytokines and adipokines, which are involved in anti- or pro-inflammatory roles [5]. A wealth of information also indicates that (pre)adipocytes are exposed to different endogenic (cytokines, adi-
pokines, free fatty acids) and exogenic [lipopolysaccharide (LPS), a bacterial cell wall component] stimuli [6-8], which may aggregate inflammation in the AT and thus obesity inflammation. It has been of interest demonstrated that tumor necrosis factor-a (TNF-α), a pro-inflammatory cytokine, stimulates (pre)adipocytes to express and secrete many inflammatory mediators and chemokines [9], thereby exacerbating inflammation and recruiting macrophages in the AT [10]. These results suggest that (pre)adipocytes or macrophages-derived other adipokines and/or cytokines also can stimulate (pre)adipocytes to express and secrete inflammatory mediators.

Inducible nitric oxide synthase (iNOS) is an inflammatory enzyme involved in the production of NO [11,12]. NO is generated from L-arginine and molecular oxygen by the action of three NOSs: the neuronal NOS (nNOS), endothelial NOS (eNOS), and iNOS [13,14]. At the physiological level, NO produced by eNOS and nNOS is an essential signaling molecule involved in vascular homeostasis, neurotransmission, and immune defense against infectious agents [15]. Of importance, there is a wealth of information demonstrating that the expression and activity of iNOS are abnormally increased in inflammation and cancer, and the resultant NO overproduction plays a causative role in these pathologies [16]. Notably, growing body of evidence further points out the role of iNOS in AT or obesity inflammation, as evidenced by that iNOS deficiency in ob/ob mice improved AT inflammation through lower AT macrophage infiltration and a down-regulation of proinflammatory and profibrogenic genes [17]. It also has been reported that the high amount of NO synthesized by iNOS acts with reactive oxidative species producing nitrosative stress, playing a key role in the impairment of adipocyte function and the development of obesity [18]. In characteristic, while eNOS and nNOS are constitutively expressed in endothelial and neuronal cells, iNOS expression is largely increased in many types of cells exposed to interferon-γ (IFN-γ), a cytokine or LPS [19,20]. Expression of iNOS is regulated at transcription and translation [21]. iNOS expression is also influenced by the expression and activity of multiple intracellular signaling proteins, including the family of Janus-activated kinases (JAKs) and signal transducer and activator of transcription proteins (STATs), nuclear factor-kB (NF-kB), mitogen-activated protein kinases (MAPKs), protein kinase Cs (PKCs), and Src non-receptor kinase [22,23]. Of interest, it has been previously shown that TNF-α is a strong inducer of iNOS in many types of cells, including (pre)adipocytes [24]. Supporting this, we also have recently demonstrated the ability of TNF-α to induce iNOS expression in 3T3-L1 (pre)adipocytes [25]. However, at present, the inducer(s) and its regulation of iNOS expression in (pre)adipocytes remain unclear.

In this study, we investigated the effects of a subset of cytokines [interleukin-1β (IL-1β), IL-10, IL-12, interferon-γ (IFN-γ)], adipokines [(retinol-binding protein 4 (RBP4), adiponectin, leptin, and resistin] and LPS on the expression of iNOS in 3T3-L1 preadipocytes. Strikingly, we have found that among the endogenic and exogenic stimuli tested, IL-1β strongly induces iNOS mRNA expression in 3T3-L1 preadipocytes. Our data also indicate that the cytokine-induced iNOS mRNA expression in 3T3-L1 preadipocytes is linked to the activities of JAKs/STATs, PKCs, and Src kinase.

Materials and methods

1. Materials

IL-1β was purchased from R&D Systems (Minneapolis, MN, USA). Benzoyloxy carbonyl Leu Leu phenylalaninal Inhibitor (ZLLF-CHO, the chymotrypsin-like activity inhibitor), MG132 (a 26S proteasome inhibitor), SP600125 (an inhibitor of JNK-1/2), salubrinal (an inhibitor of eIF-2α dephosphorylation), and PP1 (an inhibitor of Src) were obtained from Calbiochem (La Jolla, CA, USA). SB203580 (an inhibitor of p38 MAPK), PD98059 (an inhibitor of ERK-1/2), Hispidin (an inhibitor of PKC-β), LY294002 (an inhibitor of PI3K/PKB), GF109203X (a pan-inhibitor of PKCs), H89 (an inhibitor of PKA), and GO6976 (a pan-inhibitor of PKCs) were purchased from Biomol (Plymouth, PA, USA). GO6983 (an inhibitor of PKC-α/β/γ/δ/ζ) was purchased from Promega (Madison, WI, USA). Antibodies of phospho (p)-STAT-3 and STAT-3 were obtained from Santa Cruz Biotechnology (Delaware, CA, USA). Antibodies of p-Src, Src, p-JNK-1/2, p-ERK-1/2, and IxB-α were bought from Cell Signaling Technology (Danvers, CO, USA). AG490 (an inhibitor of JAKs/STATs) and antibody of β-actin were purchased from Sigma (St. Louis, MO, USA). Antibodies against anti-rabbit or mouse secondary horseradish peroxidase and enhanced chemiluminescence (ECL) Western detection reagents were bought from Amersham Biosciences (Corston, Bath, UK). ECL reagent was bought from Advansta (Menlo Park, CA, USA).

2. Cell culture

3T3-L1 murine white preadipocytes (ATCC, Manassas, VA, USA) were grown in DMEM supplemented with 10% newborn calf serum (Gibco, Thermo Fisher, New Zealand) and
1% penicillin-streptomycin (Welgene, Daegu, Korea).

3. Reverse-transcription polymerase chain reaction (RT-PCR) analysis.

Total cellular RNA in the control or agents-treated 3T3-L1 preadipocytes at the designated time point was isolated with the RNAiso Plus (TaKaRa, Kusatsu, Shiga, Japan). Three micrograms of total RNA were reverse transcribed using a random hexadeoxynucleotide primer and reverse transcriptase. Single-stranded cDNA was amplified by PCR with the following primers: iNOS sense 5′-GACAAGCTGCATGTGACATC-3′; antisense 5′-GCTGGTAGGTTCCTGTTGTT-3′; β-actin sense 5′-TCATGAAGTGTGACGTTGACATC-3′; antisense 5′-CTCTAGAAGCATTTGCGGTGCACGATG-3′; Expression levels of β-actin mRNA expression were used as an internal control as well as the protein loading control.

4. Preparation of whole cell lysates (total cellular proteins)

At the designated time point, the control or agents-treated 3T3-L1 preadipocytes were washed twice with PBS and lysed with a modified RIPA buffer [50 mM Tris-Cl (pH 7.4), 150 mM NaCl, 0.1% sodium deoxycholate, 0.25% sodium deoxycholate, 1% Triton X-100, 1% Nonidet P-40, 1 mM EDTA, 1 mM EGTA, proteinase inhibitor cocktail (1x)]. The cell lysates were then collected and centrifuged at 13,000 rpm for 15 min at 4°C. The supernatant was saved, and its protein concentration was determined with Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA).

5. Western blot analysis

Proteins (30 μg) were separated by SDS-PAGE (10%) and transferred onto a PVDF membrane (Millipore, Burlington, MA, USA). The membrane was washed with TBS (10 mM Tris, 150 mM NaCl) supplemented with 0.05% (vol/vol) Tween 20 (TBST) followed by blocking with TBST containing 5% (vol/vol) non-fat dried milk. The membrane was incubated overnight with respective antibody of p-STAT-3 (1:2,000), STAT-3 (1:2,000), Src (1:2,000), p-Src (1:2,000), p-JNK-1/2 (1:2,000), p-ERK-1/2 (1:2,000), IκB-α (1:2,000) or β-actin (1:10,000) at 4°C. The membrane was washed three times with TBST at room temperature (RT). The membrane was then exposed to a secondary antibody coupled to horseradish peroxidase for 2 h at RT. The membrane was washed three times with TBST at RT. Immunoreactivities were detected by ECL reagents. Equal protein loading was assessed by the expression level of β-actin protein.

Results

1. Treatment with IL-1β (20 ng/ml, 4 h) strongly and selectively induces high mRNA expression of iNOS in 3T3-L1 preadipocytes.

Initially, we investigated the effects of pro-inflammatory cytokines (IL-1β, IL-10, IL-12, IFN-γ), adipokines (RBP4, adiponectin, leptin, and resistin) and LPS on regulation of iNOS expression in 3T3-L1 preadipocytes using RT-PCR analysis. Strikingly, as shown in Fig. 1A, treatment with IL-1β at 20 ng/ml for 4 h led to high mRNA expression of iNOS in 3T3-L1 preadipocytes. However, treatment with IL-10 (10 ng/mL), IL-12 (5 ng/mL), IFN-γ (10 ng/mL), RBP4 (5 μg/mL), adiponectin (100 ng/mL), leptin (100 ng/mL), resistin (100 ng/mL) or LPS (1 μg/mL) for 4 h had little or no effect on iNOS mRNA expression in 3T3-L1 preadipocytes (Fig. 1A, B). These results point out the selective ability of this pro-inflam-
matory cytokine to strongly up-regulate iNOS mRNA expression in 3T3-L1 preadipocytes. Because of high induction of iNOS mRNA expression, we chose IL-1β for further studies.

2. Treatment with IL-1β leads to a concentration- and time-dependent increase of iNOS mRNA expression in 3T3-L1 preadipocytes

We next examined the effect of IL-1β at different concentrations for 4 h on iNOS mRNA expression in 3T3-L1 preadipocytes. As shown in Fig. 2A, treatment with IL-1β at 1 or 5 ng/mL did not induce iNOS mRNA expression in 3T3-L1 preadipocytes, but that with IL-1β at 10 ng/mL led to a weak induction of iNOS mRNA expression in these cells. However, as anticipated, treatment with IL-1β at 20 ng/mL resulted in strong induction of iNOS mRNA expression in 3T3-L1 preadipocytes, illustrating the maximal iNOS induction by 20 ng/mL of IL-1β. Because of high induction of iNOS mRNA expression, we selected this 20 ng/mL of IL-1β for further studies. Kinetic studies were next carried out to know the time of iNOS mRNA expression in 3T3-L1 preadipocytes treated with IL-1β (20 ng/mL). Apparently, as shown in Fig. 2B, treatment with IL-1β led to a time-dependent increase of iNOS mRNA expression in 3T3-L1 preadipocytes. Vividly, maximal iNOS mRNA expression was seen at 4 h treatment with IL-1β. Notably, there was a sharp decline of iNOS transcripts in 3T3-L1 preadipocytes thereafter.

3. Treatment with IL-1β leads to the altered expression and phosphorylation levels of intracellular proteins in 3T3-L1 preadipocytes

Aforementioned, multiple transcription factors and signaling proteins, including JAKs, STATs, NF-κB, Src kinase, and MAPKs, participate in pro-inflammatory cytokine(s)-induced iNOS expression in many types of cells [22,23]. This led us to investigate whether IL-1β (20 ng/mL) treatment affects the expression and phosphorylation levels of ERK-1/2, JNK-1/2, inhibitory kappa B-α (IκB-α), STAT-3, and Src in 3T3-L1 preadipocytes over time. Notably, as shown in Fig. 3, compared with control, treatment with IL-1β led to a slight increase in the phosphorylation levels of ERK-1/2 in 3T3-L1 preadipocytes at the times tested. However, there was no detection of phosphorylated JNK-1/2 in 3T3-L1 preadipocytes treated with IL-1β at the times tested. Strikingly, treatment with IL-1β at 0.25, 0.5 or 1 h caused a big loss of IκB-α in 3T3-L1 preadipocytes. Moreover, IL-1β treatment at 1 or 2 h led to a slight increase in the phosphorylation and expression levels of STAT-3 and Src in 3T3-L1 preadipocytes. Control actin protein expression remained largely unchanged under these experimental conditions.

Fig. 2. Concentration and time-dependent effects of IL-1β on iNOS mRNA expression in 3T3-L1 preadipocytes. (A) 3T3-L1 preadipocytes were treated without or with IL-1β at the designated concentrations for 4 h. Total cellular RNA from the conditioned cells was prepared and analyzed by RT-PCR to measure mRNA expression levels of iNOS or β-actin. (B) 3T3-L1 preadipocytes were treated with IL-1β (20 ng/mL) at the designated time points. At each time point, total cellular RNA from the conditioned cells was prepared and analyzed by RT-PCR to measure mRNA expression levels of iNOS or β-actin.
Fig. 3. Effects of IL-1β on expression and phosphorylation of transcription factors and signaling proteins in 3T3-L1 preadipocytes over time. 3T3-L1 preadipocytes were treated without or with IL-1β (20 ng/mL) for the designated time points. At each time point, whole cell lysates from the conditioned cells were prepared and subjected to Western blot analysis to measure protein expression and phosphorylation levels of ERK-1/2, JNK-1/2, IκB-α, STAT-3, Src or β-actin. p-ERK-1/2, phosphorylated ERK-1/2; p-JNK-1/2, phosphorylated JNK-1/2; p-STAT-3, phosphorylated STAT-3; p-Src, phosphorylated Src.

Fig. 4. Effects of IL-1β and/or various pharmacological inhibitors on iNOS mRNA expression in 3T3-L1 preadipocytes. (A) 3T3-L1 preadipocytes were treated without or with IL-1β (20 ng/mL) in the absence or presence of Hispidin (an inhibitor of PKC-β, 10 μM), AG490 (an inhibitor of JAKs/STATs, 100 μM), ZLLF-CHO (the chymotrypsin-like activity inhibitor, 10 μM) or MG132 (an inhibitor of 26S proteasome, 5 mM) for 4 h. Total cellular RNA from the conditioned cells was prepared and analyzed by RT-PCR to measure mRNA expression levels of iNOS or β-actin. (B) 3T3-L1 preadipocytes were treated without or with IL-1β (20 ng/mL) in the absence or presence of PD98059 (an inhibitor of ERK-1/2, 50 μM), SB203580 (an inhibitor of p38 MAPK, 25 μM), SP600125 (an inhibitor of JNK-1/2, 25 μM), LY294002 (an inhibitor of PI3K/PKB, 25 μM), GF109203X (a pan-inhibitor of PKCs, 10 μM), GO6976 (a pan-inhibitor of PKCs), GO6983 (an inhibitor of PKCaβ/γ/δ/ζ, 10 μM), H89 (an PKA inhibitor, 10 μM), salubrinal (an inhibitor of elf-2α, 10 μM), and PP1 (an inhibitor of Src, 10 μM) for 4 h. Total cellular RNA from the conditioned cells was prepared and analyzed by RT-PCR to measure mRNA expression levels of iNOS or β-actin.
4. Treatment with AG490 (an inhibitor of JAKs/STATs), GO6976 (an inhibitor of PKCs) or PP1 (a Src kinase inhibitor) suppressed IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes

Using pharmacological inhibitors, we next sought to explore which transcription factors and signaling proteins mediate IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes. Pharmacological inhibitors used herein included Hispidin, AG490, ZLLF-CHO, MG132, PD98059, SB203580, SP600125, LY294002, GF109203X, GO6976, GO6983, H89, salubrinal, and PP1. Of note, as shown in Fig. 4A, while treatment with Hispidin (10 μM), ZLLF-CHO (10 μM) or MG132 (5 mM) had no effect on IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes, that with AG490 (100 μM) strongly suppressed it. Furthermore, as shown in Fig. 4B, treatment with GO6976 (10 μM) strongly attenuated IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes, and that with PP1 (10 μM) also partially interfered with it. However, treatment with PD98059 (50 μM), SB203580 (25 μM), SP600125 (25 μM), LY294002 (25 μM), GF109203X (25 μM), GO6983 (10 μM), H89 (10 μM) or salubrinal (10 μM) had no effect on IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes.

Discussion

Recent evidence strongly indicates that a low or systemic inflammation contributes to the development of obesity. (Pre)adipocytes express and secrete an array of cytokines and adipokines, collectively named as adipocytokines or adipokines. iNOS is an inflammatory enzyme that is involved in production of NO. Until now, the inducer(s) and its regulation of iNOS expression in (pre)adipocytes remain unclear. In this study, we demonstrate that IL-1β, a pro-inflammatory cytokine, largely induces iNOS mRNA expression in 3T3-L1 preadipocytes, which appears to be dependent on the activities of JAKs, STATs, PKCs, and Src kinase.

Aforementioned, we and others have previously shown that TNF-α, another pro-inflammatory cytokine, up-regulates the expression of iNOS in (pre)adipocytes [24,25]. Given that (pre)adipocytes express and secrete not only TNF-α but also other pro-inflammatory cytokines, and they are exposed to many endogenic and exogenic stimuli, we herein have investigated the effects of endogenic (IL-1β, IL-10, IL-12, IFN-γ) and exogenic (LPS) stimuli on the expression of iNOS in 3T3-L1 preadipocytes. Notably, the present study has demonstrated the ability of IL-1β to strongly and selectively induce iNOS mRNA expression in 3T3-L1 preadipocytes, based on the facts that IL-10, IL-12, IFN-γ or LPS has no inductive effect on it. In general, pro-inflammatory cytokines and LPS exert their biological activities, including gene expression, via direct binding or interaction with their cognate receptors expressed on the surface of cells [26]. Thus, considering the IL-1β’s ability to induce iNOS mRNA expression in 3T3-L1 preadipocytes herein, it is likely that 3T3-L1 preadipocytes express functional IL-1β receptor, but they do not express IL-10, IL-12, IFN-γ or LPS receptor at the cell surface. It is documented that upon the exposure of differentiation cocktails 3T3-L1 preadipocytes become mature 3T3-L1 adipocytes filled with many lipid droplets through differentiation process, also named adipogenesis [27], and that mature 3T3-L1 adipocytes express and secrete overproduction of pro-inflammatory cytokines, and these cytokines stimulate (pre)adipocytes in autocrine and paracrine manners [28], thereby aggregating inflammation in the AT. In line of this, it will be interesting to examine, in future, whether differentiated 3T3-L1 adipocytes secrete and express not only IL-1β and IL-1β receptor but also IL-12 and IFN-γ and their receptors at the cell surface, and they are functional in inducing the expression of iNOS (and other inflammatory enzymes or mediators). Distinctly, in this study, we have known no inducibility of iNOS mRNA expression by 4 different adipokines (RBP4, adiponectin, leptin, resistin) tested in 3T3-L1 preadipocytes. These results point out that 3T3-L1 preadipocytes may not express RBP4, adiponectin, leptin or resistin receptor at the cell surface. Given that mature 3T3-L1 adipocytes express and secrete high levels of adipokines including RBP4, adiponectin, leptin and resistin [29], and these adipokines regulate (pre)adipocytes in autocrine and paracrine manners [30], it will be thus interesting to see, in future, whether differentiated 3T3-L1 adipocytes express these adipokine receptors and they are functional in inducing the expression of iNOS (and other inflammatory enzymes or mediators).

Mounting evidence demonstrates that iNOS expression is regulated at transcription [13,14,31]. Previous studies have shown that pro-inflammatory cytokine(s)-induced iNOS transcription is largely dependent on activities of transcription factors, including NF-κB, which acts on its cognate cis-acting element(s) present in the iNOS promoter [32-34]. Indeed, there is escalating evidence strongly supporting that activation of NF-κB is crucial for the cytokine-induced iNOS expression in many types of cells [35]. In resting cells, NF-κB is inactive because of its cytoplasmic retention by a physical interaction with IκB-α, a cytoplasmic inhibitory protein of
NF-κB [36]. When cells are exposed to extracellular stimuli, IκB-α is rapidly phosphorylated, poly-ubiquitinated, and degraded by 26S proteasome pathway, thereby leading to activation of NF-κB [37]. The present study has clearly demonstrated the ability of IL-1β to rapidly induce activation of NF-κB in 3T3-L1 preadipocytes, which is supported by that IL-1β induces a rapid and large loss of IκB-α in these cells. However, we herein have shown that MG132, a 26S proteasome pathway inhibitor, does not suppress IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes. These results point out that although IL-1β rapidly triggers NF-κB activation in 3T3-L1 preadipocytes, the IL-1β-induced NF-κB activation does not play a pivotal role in the cytokine-induced iNOS mRNA expression in 3T3-L1 preadipocytes. These results may thus indicate presence of other transcription factors responsible for the IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes. Aforementioned, expression of iNOS is also regulated by the expression and activity of other transcription factors and signaling proteins, including the family of JAKs and STATs, MAPKs, PKCs, PI3K/PKB, and Src [14,15]. In the current study, we have shown that IL-1β increases the phosphorylation and expression levels of STAT-3 in 3T3-L1 preadipocytes, and AG490, an inhibitor of JAKs/STATs, greatly suppresses IL-1β-induced iNOS mRNA expression in these cells, addressing that activation of the family of JAKs/STATs appears to play a partial role in the IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes. Furthermore, considering the present findings that IL-1β increases Src phosphorylation and expression in 3T3-L1 preadipocytes, and PP1, a Src inhibitor, substantially blocks the IL-1β-induced iNOS mRNA expression in these cells, it is likely that Src activation also contributes to the cytokine-induced iNOS mRNA expression in 3T3-L1 preadipocytes.

In summary, we demonstrate that IL-1β induces high iNOS mRNA expression in 3T3-L1 mouse preadipocytes, and this cytokine-induced iNOS mRNA expression in these cells largely depends on the activities JAKs/STATs, PKCs, and Src kinase. Although there are still important issues that remain to be resolved, including IL-1β’s ability to induce iNOS expression in mature 3T3-L1 adipocytes and human (pre)adipocytes, our present findings show IL-1β is a strong inducer of iNOS expression in 3T3-L1 preadipocytes.

Conflicts of interest

All authors declare no conflicts-of-interest related to this article.

Acknowledgements

We deeply thank Dr. Anil Kumar Yadav for his technical assistance in preparing this manuscript.

References

1. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:5:288-98.
2. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126:126-32.
3. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol. 2013;92:229-36.
4. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13:633-43.
5. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347-55.
6. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761-72.
7. Cani PD, Jordan BE. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2018;15:671-82.
8. Chirumbolo S, Franceschetti G, Zoico E, Bambace C, Cominacci N, Zamboni M. LPS response pattern of inflammatory adipokines in an in vitro 3T3-L1 murine adipocyte model. Inflamm Res. 2014;63:495-507.
9. Makki K, Froguel P, Woldowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:139239.
10. Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev. 2015;16:127-36.
11. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986-1000.
12. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829-37, 37a-37d.
13. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994;78:915-8.
14. Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994;269:13725-8.
15. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest. 1991;21:361-74.
16. Maeda H, Akaite T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc). 1998;63:854-65.
17. Becerril S, Rodríguez A, Catalán V, MOndez-GimÉnez L, RamÉrez B, SÉniz N, et al. Targeted disruption of the iNOS gene
improves adipose tissue inflammation and fibrosis in leptin-deficient ob/ob mice: role of tenasin C. Int J Obes (Lond). 2018;42:1458-70.
18. Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenasin-C biology. Cell Mol Life Sci. 2011;68:3175-99.
19. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992;256:225-8.
20. Chu SC, Marks-Konczalik J, Wu HP, Banks TC, Moss J. Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters. Biochem Biophys Res Commun. 1998;248:871-8.
21. Papapetropoulos A, Rudic RD, Sessa WC. Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc Res. 1999;43:509-20.
22. Dell’Albani P, Santangelo R, Torrisi L, Nicoletti VG, de Vellis J, Giuffrida Stella AM. JAK/STAT signaling pathway mediates cytokine-induced iNOS expression in primary astroglial cell cultures. J Neurosci Res. 2001;65:417-24.
23. Lee JY, Lowell CA, Lemay DG, Youn HS, Rhee SH, Sohn KH, et al. The regulation of the expression of inducible nitric oxide synthase by Src-family tyrosine kinases mediated through MyD88-independent signaling pathways of Toll-like receptor 4. Biochem Pharmacol. 2005;70:1231-40.
24. Kim HL, Ha AW, Kim WK. Effect of saccharin on inflammation in 3T3-L1 adipocytes and the related mechanism. Nutr Res Pract. 2020;14:109-16.
25. Kwon HS, Jeong GS, Jang BC. Cudratricusxanthone A inhibits lipid accumulation and expression of inducible nitric oxide synthase in 3T3-L1 preadipocytes. Int J Mol Sci. 2021;22. DOI: 10.3390/ijms22020505.
26. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27-37.
27. Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol. 2012;4:a008417.
28. Mohamed-Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord. 1998;22:1145-58.
29. Leal Vde O, Mafra D. Adipokines in obesity. Clin Chim Acta. 2013;419:87-94.
30. Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer. 2007;14:189-206.
31. Wang Y, Marsden PA. Nitric oxide synthases: gene structure and regulation. Adv Pharmacol. 1995;34:71-90.
32. Xie QW, Whisnant R, Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med. 1993;177:1779-84.
33. Goldring CE, Reveneau S, Algarte M, Jeannin JF. In vivo footprinting of the mouse inducible nitric oxide synthase gene: inducible protein occupation of numerous sites including Oct and NF-IL6. Nucleic Acids Res. 1996;24:1682-7.
34. Dlaska M, Weiss G. Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression. J Immunol. 1999;162:6171-7.
35. Du Q, Zhang X, Cardinal J, Cao Z, Guo Z, Shao L, et al. Wnt/β-catenin signaling regulates cytokine-induced human inducible nitric oxide synthase expression by inhibiting nuclear factor-kappaB activation in cancer cells. Cancer Res. 2009;69:3764-71.
36. Malek S, Chen Y, Huxford T, Ghosh G. IkappaBeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells. J Biol Chem. 2001;276:45225-35.
37. Hehner SP, Heinrich M, Bork PM, Vogt M, Ratter F, Lehmann V, et al. Sesquiterpene lactones specifically inhibit activation of NF-kappa B by preventing the degradation of I kappa B-alpha and I kappa B-beta. J Biol Chem. 1998;273:1288-97.
The first author as a medical doctor has elaborated four-frame comic strips on health information. The comic strips can be easily converted into the animations by means of PowerPoint (animation function) and additional software. The first purpose of the present study was to enhance national health by distributing the animations on health information. The second purpose was to help the interested people make their own animations with minimal technology. The comic strips in Adobe Illustrator file were imported to PowerPoint. Using animation tools of PowerPoint, sequential appearance of the figures and texts was arranged; the various movements of the figures were adjusted. On Vocalware homepage, Korean texts were changed into voices, which were recorded using Gomrecorder; the voices were inserted into PowerPoint file. On PowerPoint, animation displaying the figures, texts, and voices was carried out and recorded using Bandicam. As the final products, the animations of 42 episodes (MP4 files) were uploaded to YouTube. The presented method to make the animation on PowerPoint, etc. has the advantage: to learn the method easily, to perform the method at inexpensive cost, to expand the method for further applications.

Keywords: Animations, Cartoons, Movies, Public health informatics, Software

Introduction

The first author as a medical doctor has elaborated four-frame comic strips on health information. The comic strips can be easily converted into the animations by means of PowerPoint (animation function) and additional software. The first purpose of the present study was to enhance national health by distributing the animations on health information. The second purpose was to help the interested people make their own animations with minimal technology. The comic strips in Adobe Illustrator file were imported to PowerPoint. Using animation tools of PowerPoint, sequential appearance of the figures and texts was arranged; the various movements of the figures were adjusted. On Vocalware homepage, Korean texts were changed into voices, which were recorded using Gomrecorder; the voices were inserted into PowerPoint file. On PowerPoint, animation displaying the figures, texts, and voices was carried out and recorded using Bandicam. As the final products, the animations of 42 episodes (MP4 files) were uploaded to YouTube. The presented method to make the animation on PowerPoint, etc. has the advantage: to learn the method easily, to perform the method at inexpensive cost, to expand the method for further applications.

Keywords: Animations, Cartoons, Movies, Public health informatics, Software
이 연구의 목적은 재미있는 건강 상식 만화의 움직임을 만들고 퍼뜨려 국민 보건에 이바지하는 것이었다. 또 다른 목적은 파워포인트를 비롯한 몇 개의 소프트웨어에서 움직임을 어떻게 만드는지 알려서 움직임을 만드는 사람만 도움 주는 것이었다. 이를 위해서 건강 상식에 관한 4간 만화(일러스트레이터 파일)을 바탕으로 그림을 움직이는 방법, 글을 말로 바꾸는 방법, 움직임을 녹화하는 방법 등을 정리하였다.

Materials and Methods

이 연구에서 움직임을 만들려고 쓴 소프트웨어는 일러스트레이터(Adobe Illustrator CC, Adobe System, Inc., San Jose, CA, USA), 파워포인트(PowerPoint 2016 for Windows, Microsoft Corp., Redmond, WA, USA), 보컬웨어(Vocalware, New York, NY, USA), 곰녹음기(Gomrecorder, GOM & Company, Seoul, Korea), 반디캠(Bandicam, Bandicam Company, Seoul, Korea)이었다(Fig. 1).

1. 일러스트레이터에서 그린 그림을 파워포인트로 옮기기

일러스트레이터에서 건강 상식 만화를 그렸고(Fig. 2), 이를 파워포인트로 옮겼다. 파워포인트에서 그리지 않은 것은 일러스트레이터에서 기준점, 조점점을 움직이듯이 파워포인트에서 그림을 마음대로 바꿀 수 없기 때문이었다[5]. 또한 파워포인트에서 그림의 해상도를 높이면, 파일의 용량이 약간 커져서 다음 단계를 시행할 때 많이 느리기 때문이었다.

일러스트레이터에서 움직이지 않은 그림과 움직일 그림을 추렸다. 움직이지 않은 그림은 파워포인트에서 제 자리에 놓들었으며, 이 움직이지 않은 그림은 만능설을 포함하였다. 만능설은 파워포인트로 보내면 크기, 모양이 바뀌지 않았다. 따라서 일러스트레이터에서 만능설의 크기, 모양을 고쳐서 파워포인트로 보냈다.

움직일 그림은 파워포인트에서 이동할 그림, 회전할 그림, 변가 아 나타낼 그림이었다. 변가 아 나타낼 그림의 보기를 들면, 입을 단 문 열과 입을 범 인 열을 변가 아 나타낼대로 움직일 것처럼 보이게 하는 것이었다. 일러스트레이터에서 입을 단 문 열과 범 인 열을 새로 그리고(Fig. 3).

일러스트레이터에서 그림을 추린 다음에 화색 배경을 넣었다. 화색 배경은 그림의 빛깔과 겉치지 않아서 나중에 제거하기 쉬웠다 (Fig. 3). Adobe Illustrator (AI) 파일에 한 간이 있었고(Fig. 2), 각 간을 portable network graphics (PNG) 파일로 저장하였다. Joint photographic experts group (JPEG) 파일로 저장하면 색상에

Fig. 1. Software for manufacture of the animations.
참음이 생겨서 회색 배경을 제거하기 어렵기 때문이었다. 파워포인트(PPTX) 파일에서 슬라이드 4개를 만든 다음에, 각 슬라이드에 각 PNG 파일을 담았다. 즉 슬라이드 4개에 만화 4같을 담았다. ‘배경 제거’ 도구로 회색 배경을 제거해서 각 그림을 독립하게 만들었다.

2. 파워포인트에서 애니메이션을 만들기
각 슬라이드에서 슬라이드쇼를 할 때 먼저 나올 그림(글 포함)과 나중에 나올 그림을 정했다. 즉 ‘애니메이션 창’에서 각 그림이 나올 시간을 정했다(Fig. 4). 각 그림을 처음부터 두건하게 나타낼 수도 있었고, ‘밝기 변화’ 도구로 흐릿하다가 두건하게 나타낼 수도 있었다.

‘이동 경로’ 도구로 그림을 이동하였다. 이를테면 사람의 직선으로 이동하거나(Fig. 5) 곡선으로 이동하였다. 이때 이동하는 속도를 조절할 수 있었다.

‘회전’ 도구로 그림을 회전하였다. 이 도구는 언제나 그림의 가운데를 중심으로 회전하는데, 이를테면 팔을 회전할 때에는 팔꿈치 점을 중심으로 회전하였다. 어깨관절을 중심으로 회전하기 위해서, 팔 위에 안 보이는 그림을 넣고 몸을 들면 이ديل하게 회전하였다(Fig. 6).

이런 효과와 함께 시작’ 도구로 그림을 변경가 나타났다. 이렇게 하면 입을 다문 얼굴과 입을 벌린 얼굴을 변환이 나타났다(Fig. 3).

3. 보컬웨어, 곰녹음기에서 녹음한 것을 파워포인트로 보내기
음직그림에 들어갈 발음은 사람이 아닌 컴퓨터가 글을 읽어서 만든 것이었다. 글 읽어서 말을 만드는 홈페이지로 보컬웨어를 썼다. 이렇게 만든 말을 보컬웨어에서 저장할 수 없었기 때문에 곰녹음기를 써서 저장하였다.

만화의 풀이와 대사(생각 포함)를 대부분 임기로 하였다. 일러스트레이터에서 임을 풀이와 대사를 하나씩 복사해서 보컬웨어에 붙여 넣었다. 보컬웨어에서 언어를 Korean으로 정한 다음에, 풀이와 남자 대사의 목소리를 Junwoo로 정했고, 여자 대사의 목소리를 Yumi로 정했다.

보험웨어에서 들이와 대사의 목소리를 만들었다. 이때 곰녹음기를

Fig. 3. Figures from Adobe Illustrator to be animated.

Fig. 4. Figures and voices to be arranged by animations window on PowerPoint.

Fig. 5. Figures to be moved in a straight line on PowerPoint.
Animations on Health Information

Keimyung Med J

Fig. 6. Figures to be rotated on PowerPoint.

Fig. 7. Texts to be narrated on Vocalware (A) and recorded on Gomrecoder (B).

Fig. 8. Animation to be uploaded to YouTube.

4. 파워포인트의 애니메이션으로 녹화하기
파워포인트의 애니메이션을 녹화해서 움직그림을 만들 소프트웨어로 반디캠을 썼다. 반디캠에서 움직림의 해상도를 848×480으로 조절하였다. 파워포인트에서 슬라이드쇼를 실행한 다음에, 한 슬라이드의 애니메이션이 끝나면 수동으로 넘어서 다음 슬라이드의 애니메이션이 나오게 하였다. 이때 반디캠을 켜서 그림과 맷이 나온 애니메이션을 녹화하였고, 움직그림을 MP4 파일로 저장하였다.

5. 움직그림을 유튜브에 올리기
건강 상식 움직그림을 유튜브(youtube.com)의 첫째저자 채널(Visually Memorable Neuroanatomy)에 올렸다. 움직그림의 제목을 알맞게 적었고, 미리보기 이미지를 골랐다(Fig. 8).

Results

연구원 1명이 움직그림 42편을 모두 만들었다. 움직그림을 만드는 방법이 익숙해지기 전에는 1편을 만드는 데 10시간을 걸렸고, 익숙해진 다음에는 1편을 만드는 데 6시간을 걸렸다. 움직그림을 만드는 단계 중에서 "1. 일러스트레이터에서 그린 그림을 파워포인트로 올기기"와 "2. 파워포인트에서 애니메이션을 만들기"를 시행하는 데 5시간을 걸렸고, "3. 보컬웨어, 곰녹음기에서 녹음한 것을
파워포인트로 보내기"와 "4. 파워포인트의 에너메이션을 반디캠으
로 녹화하기"를 시행하는 데 1시간을 절약했다. 실제로 적은 두 단계
는 1편씩 시행하였고, 나중 두 단계는 여러 편을 묶어서 한꺼번에
시행하였다.

음직그림 1편의 재생 시간은 1분이었고, 파일(MP4) 크기는 4
MByte였다.

유튜브에서 '못 지릴 박사'로 검색하면 이 음직그림을 찾을 수 있
었다. 2020년 5월 7일에 음직그림 42편을 유튜브에 올렸고, 2021년
4월 14일에 각 음직그림의 조회 수를 확인하였다. 그 결과, 조회 수
가 가장 적은 것은 9회였고, 가장 많은 것은 574회였다(평균 55회).

Discussion

이 연구에서는 국민 보건에 이바지하기 위해서 전강 상식 만화
의 음직그림을 만들었다. 유튜브에 올린 음직그림의 조회 수가 기
대보다 많지 않았는데, 이것은 음직그림을 많이 알리지 않은 것과
채택자 채널의 구독자(2021년 4월 14일: 2,000명)가 많지 않
은 것 때문이라고 보았다. 원시 자료인 전강 상식 만화는 쉽고 재미
있고 이해하고 인정받았으며, 트위터에서 각 만화의 조회 수가 2,000명이
보였다[1]. 이 만화에 음직임과 빈을 보낸 음직그림은 더 변하게 볼
수 있으므로, 앞으로 조회 수가 더 많아질 것이라고 기대하였다.

유튜브에서 음직그림을 감독하려면 본래 음직그림에 비해서 파
 일이 커지지고 할인이 많아졌다. 따라서 음직그림 파일(MP4)을 원하
는 사람이 쉽게 볼 수 있도록 하였다.

이 연구에서는 파워포인트를 비롯한 몇 개의 소프트웨어로 음직
그림 만드는 방법을 찾아서 정리하였다(Fig. 1). 이 방법은 Adobe
Animate를 쓰는 방법[4]에 비해서 다음과 같은 장점이 있다.

첫째, 이 방법을 쉽게 익힐 수 있다. 파워포인트는 아주 많이 쓰
는 소프트웨어라 누구한테나 낯설다. 캐타기 사용 방법을 쉽게
익힐 수 있는데, 이를테면 각 도구를 잘 사용하면 그 기
능을 능숙히 알 수 있다. 보컬웨어, 굽음치, 반디캠은 원격 간단
해서 큰 편이다. 알려스트레이저 이용을 위한 소프트웨어인[5],
알러스트레이저 대신 Photoshop CC (Adobe System,
Inc., San Jose, CA, USA) 또는 그림판(Microsoft Paint,
Microsoft Corp., Redmond, WA, USA)처럼 비교적 쉬운 소프트웨어
로 만드는 방법도 있다. 또한 알러스트레이저에서 그린 그
림을 파워포인트로 옮길 때 중간 소프트웨어로 그림판을 써서 그림
을 쉽게 고치거나 나누는 방법도 있다.

둘째, 이 방법을 쓰는 데 돈이 많이 들지 않는다. 애드옵스 오리지
의 일부인 파워포인트는 이메일 사용이 가능하고, 짧게 마련
하는 방법만 있다. 굽음치기는 공짜이고, 보컬웨어와 반디캠은 기
본 기능만 쓸 경우에 공짜다. 기본 기능의 보기를 들면, 보컬웨어
에서 100금지까지만 익을 수 있고, 반디캠에서 19.3 GByte까지만
녹화할 수 있다. 이 연구에서는 4단 만화의 짧은 음직그림(체계적
간 1분)을 만들기 때문에 이런 제한이 상관 없었다. 알러스트
레이저는 공짜가 아니며, 그림판처럼 공짜인 소프트웨어에서 만화
를 그리고는 방법도 있다.

셋째, 이 방법을 확장할 수 있다. 이 연구에서 쓴 소프트웨어는
다른 기능도 많이 담고 있으며, 이것은 스스로 익어서 쓸 수 있다.
이름에 굽음치기는 더 많은 점급 기능(음악 조절, 따위 등)을 할
수 있다. 보컬웨어와 반디캠을 넣고 사면 더 많은 기능을 할 수 있
다. 또한 보컬웨어에서 더 많은 남자 목소리, 여자 목소리를 쓸 수
있다. 영어 얻는 기능을 할 수 있다. 파워포인트를 빼 나머지 소프
트웨어를 다른 소프트웨어로 바꿀 수도 있다. 보컬웨어 마운트의 홈
페이지에서 글을 가끔 틀리게 잡는데, 이 문제를 해결하기 위해서
그리고 더 자연스러운 음직그림을 만들기 위해서 사람들이 익을하고
녹음할 수도 있다.

음직그림 만드는 방법보다 어렵고 중요한 것은 만화를 비롯한
작품을 잘 만드는 것이다. 채택자자의 경우, 전강 상식 만화를 그린
다음에 음직그림 만드는 방법을 익혔다. 만화를 그린 사람의 방
법을 쉽게 익히는 것은 가능할지, 이런 방법만 익힌 사람의 만화를 쉽게 그
될 수 있는가. 한편 만화를 그린 사람은 다른 사람의 도움을 쉽게 받
을 수 있지만, 이 방법만 익힌 사람은 다른 사람의 도움을 쉽게 받
을 수 없다. 따라서 만화를 비롯한 작품을 만드는 데 많은 시간과
노력을 들여야 한다.

채택자자는 20년 동안 전강 상식 만화뿐 아니라 해부학 만화, 과학
만화를 구준히 그리고[6], 이것을 영작하였다[6,7]. 필요하면 모
두 음직그림으로 만드는 걸 수 있다. 전강 상식 만화의 음직그림이 국민
보건에 이바지하기는 명분이 있는 것처럼, 다른 만화의 음직그림은
어떤 명분이 있는지 따질 필요가 있다.

이 연구에서는 쓴 쉬운 소프트웨어에서 음직그림 만드는 방법
을 소개하였다. 만화 또는 비슷한 작품을 만들었거나 만화 사람이
이 방법을 쓰면 자기 작품을 음직그림으로 바꾸서 널리 퍼뜨리는
데 도움 될 것이다.

Conflict of interest

All authors declare no conflicts-of-interest related to this article.

Acknowledgements

This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2019R1F1A1059842).

http://www.e-kmj.org
References

1. Kim SK, Lee JH, Chung MS. Comic strips on health drawn by a medical doctor. J Korea Contents Assoc. 2018;18:102-7.
2. Sinor MZ. Comparison between conventional health promotion and use of cartoon animation in delivering oral health education. Int J Humanit Soc Sci. 2011;1:169-74.
3. Calderón JL, Shaheen M, Hays RD, Fleming ES, Norris KC, Baker RS. Improving diabetes health literacy by animation. Diabetes Educ. 2014;40:361-72.
4. Lee IS. English learning with the tools of flash animation. J Digit Contents Soc. 2013;14:537-44.
5. Hwang SB, Chung MS, Park JS. Anatomy cartoon for common people. Korean J Anat. 2005;38:433-41.
6. Park JS, Kim DH, Chung MS. Anatomy comic strips. Anat Sci Educ. 2011;4:275-9.
7. Kim DH, Jang HG, Shin DS, Kim SJ, Yoo CY, Chung MS. Science comic strips. J Educ Learn. 2012;1:65-71.
Introduction

In the modern era, the standards and expectations for the shape and beauty of the face are increasing. Therefore, we measured the facial structure and its proportions in Koreans, and to find out the correlation between these results and beauty satisfaction. A questionnaire survey and facial structure measurement were conducted on 85 college students about their beauty satisfaction. The vertical height of the face was 206.0 ± 35.5 mm, and the vertical ratio was 1:1:1. The width of the face was 168.1 ± 30.4 mm, and when it was divided into 5 parts, the middle part was the widest. Dimples and dark circles were found in 22 (25.9%) and 51 (60.0%), respectively, and eye length and nose height nose were 12.6 ± 2.7 mm and 22.8 ± 9.5 mm, respectively. Beauty satisfaction was on average 28.7 ± 5.9 out of a total of 50 points, inversely proportional to the length of the face \((r = -0.235)\), and was proportional to the width of the nose \((r = 0.298)\). And beauty satisfaction was related to skin condition, but it was not statistically significant. It can be used in various ways as basic data on the shape and proportion of Korean faces obtained through this study, and by comparing this with beauty satisfaction, it is thought that false recognition and stress according to the individual's aesthetic standards can be reduced.

Keywords: Beauty satisfaction, Facial measurement, Facial ratio

The Correlation Between Facial Proportion Measurement and Beauty Satisfaction in College Students

Yoo-Jin Shin1, a, Yun-Mi Lee2, a, Jae-Ho Lee3

1Intern Course, Catholic Medical Center, Catholic University, Seoul, Korea
2Intern Course, Dongsan Medical Center, Keimyung University, Daegu, Korea
3Department of Anatomy, Keimyung University School of Medicine, Daegu, Korea

In the modern era, the standards and expectations for the shape and beauty of the face are increasing. Therefore, we measured the facial structure and its proportions in Koreans, and to find out the correlation between these results and beauty satisfaction. A questionnaire survey and facial structure measurement were conducted on 85 college students about their beauty satisfaction. The vertical height of the face was 206.0 ± 35.5 mm, and the vertical ratio was 1:1:1. The width of the face was 168.1 ± 30.4 mm, and when it was divided into 5 parts, the middle part was the widest. Dimples and dark circles were found in 22 (25.9%) and 51 (60.0%), respectively, and eye length and nose height nose were 12.6 ± 2.7 mm and 22.8 ± 9.5 mm, respectively. Beauty satisfaction was on average 28.7 ± 5.9 out of a total of 50 points, inversely proportional to the length of the face \((r = -0.235)\), and was proportional to the width of the nose \((r = 0.298)\). And beauty satisfaction was related to skin condition, but it was not statistically significant. It can be used in various ways as basic data on the shape and proportion of Korean faces obtained through this study, and by comparing this with beauty satisfaction, it is thought that false recognition and stress according to the individual's aesthetic standards can be reduced.

Keywords: Beauty satisfaction, Facial measurement, Facial ratio
Facial Proportion Measurement and Beauty Satisfaction

Keimyung Med J

vian Man)을 통해 인체비례를 제시하였다. 그는 ‘모나리자’와 같은 미술품에서 얼굴의 황금비율을 또한 제시하였는데, 이는 현재까지 미적인 기준으로 다양하게 이용되고 있다. 황금비율(Golden Ratio)이란 수학적으로 가장 아름다다고 여겨지는 비율로, 약 1.618로 표현된다. 한 선분을 두 부분으로 나누는 때 전체 길이 : 긴 길이 = 긴 길이 : 짧은 길이로 나눈 것을 황금분할이라 하며, 이 비율을 황금비율이라 하며 이는 유클리드(Euclid of Alexandria, 기원전 330~기원전275)로부터 시작되었다(4).

이를 바탕으로 현재까지 얼굴의 구조에 대한 계측연구가 많아 진행되었지만, 계측하는 기준이 연구마다 조금씩 다르며, 대부분 연구가 단순히 측정 자료를 제시하기로만 있다(5~7). 따라서 얼굴의 구조에 대한 계측연구와 함께 외모에 대한 만족도에 대한 연구는 현재로서의 조사에 불공평하다. 이를 바탕으로 미를 추구하는 현대인들에게 미의 기준에 이에 대한 심리적 만족감의 균형 있는 가치관을 형성하는데 도움을 주고자 한다.

Materials and Methods

대학에 재학중인 학생 85명(남 57명, 여 28명)을 대상으로 설문 조사와 얼굴의 계측연구를 시행하였다. 얼굴의 계측연구는 얼굴 가로비율, 얼굴 세로비율, 눈 크기, 코 높이, 피부상태, 보조개와 다크 서클 유무를 조사하였다(Fig. 1). 2명의 조사자가 얼굴에 직접 디지털렌즈를 이용하여 계측하였다. 얼굴 길이는 이마시작점에서 뒤로 끝점까지의 수직 길이로 측정하였고, 이들 눈썹상과 코밀점으로 3 등분하여 세로비율을 계산하였다. 얼굴 폭은 입과 눈의 폭이 기준으로 5등분하여 가로비율을 측정하였다. 다음으로 눈 크기는 양 눈의 평균 세로길이로, 코 높이는 코 최단단까지 높이를 측정하였다. 피부상태는 대상자가 '좋음, 보통, 나쁨' 중에서 주관적으로 선택하고 도록 하였고, 보조개나 다크서클의 유무는 조사자가 확인하였다.

미적 만족도는 전체만족도를 연구한 이전 자료에서 얼굴에 해당하는 부분을 중심으로 본 연구에 적합하게 수정하였다(8). 5가지 항목(얼굴형, 이목구비, 모발상태, 피부상태, 전체적인 비율)을 10점 만점으로 설문을 시행하였다. 얼굴계측을 통해 얻은 데이터를 가공하여 각종 비율을 얻었고, 이 비율과 각 평가영역에 대한 응답과의 상관관계를 SPSS 통계프로그램(SPSS for Windows, v23.0; IBM Corporation, Chicago, IL, USA)을 이용하여 통계처리하였다. 연속변수의 평균은 Mann–Whitney U test를 사용하였고, 상관관계는 Pearson correlation analysis를 사용하여 분석하였다.

Results

총 이마와 중간, 아랫가족 68.2 ± 12.1 mm, 69.3 ± 12.2 mm, 68.2 ± 12.1 mm으로 세로비율이 약 1:1:1을 보였다. 얼굴 폭은 총 168.1 ± 30.4 mm로 5등분하였을 때, 가장 중간인 코의 부분은 35.8 ± 6.5 mm로 가장 넓었고, 중간의 볼부위와 가족부위는 각각 33.5 ± 6.1 mm와 32.4 ± 11.0 mm로 나타났다. 눈 크기는 평균 12.6 ± 2.7 mm으로 나타났다. 코 높이는 평균 22.8 ± 9.5 mm이었다. 보조개와 다크서클은 각각 22명(25.9%)과 51명(60.0%)에서 나타났으며, 피부상태는 보통(57명, 67.8%)이 가장 많았고, 좋다(16명, 19.0%)와 나쁘다(11명, 13.1%)가 비슷하게 나타났다. 외모에 대한 만족도는 10점 척도 5개 문항으로 이루어진 설문 결과 총점 50점 중 평균 28.7 ± 5.9점이었다. 각 항목에 대하여 답을 비교하였을 때, 중간 부위를 제외한 얼굴 길이에서 남자가 여자보다 유의하게 크게 나타났다(p < 0.01). 코 높이는 남자에서, 미적 만족도는 여성이 더 높은 경향이었으나 모두 통계적 유의성은 없었다(Table 1).

다음으로 외적 만족도와 얼굴계측 자료와의 상관관계를 알아보았다(Table 2). 여려 계측인자 중 미적 만족도는 얼굴의 길이와 반비례하였다(r = -0.235, p < 0.05). 부정적으로는 얼굴 중앙부분과 반비례하는 경향이 있었으나, 통계적으로 유의하지는 않았다. 반면, 미적 만족도는 얼굴 중간 부분인 코 네이 약의 상관관계를 보였고(r = 0.298, p = 0.026). 미관 혹은 미인의 기준으로 중요하다고 알려진 눈 크기가나 코 높이를 비롯한 다른 계측인자와 미적 만족도에 유의한 차이가 나타나지 않았다. 보조개와 다크서클의 유무에 따라서 미적 만족도는 차이가 없었다(Table 3). 다양한 피부상태가 총을 수록 미적 만족도가 높아지는 경향이 있겠지만, 통계적으로 유의하지는 않았다.

Fig. 1. Measurement guideline. (1) Upper face length. (2) Middle face length. (3) Lower face length. (4) 160 Lateral face width. (5) Middle face width. (6) Central face width. (7) Nose height. (8) Eye size.

http://www.e-kmj.org
Table 1. Facial structures analysis in male and female

Total (n = 85)	Male (n = 57)	Female (n = 28)	p-Value	
Face length (mm)	206.0 ± 35.5	215.3 ± 40.4	188.7 ± 12.2	0.001
Upper	68.2 ± 12.1	71.9 ± 13.1	61.8 ± 6.5	< 0.001
Middle	69.3 ± 12.2	70.6 ± 14.6	67.0 ± 5.9	0.232
Lower	68.2 ± 12.1	71.8 ± 13.1	61.9 ± 6.5	< 0.001
Face width (mm)	168.1 ± 30.4	171.2 ± 35.3	164.0 ± 22.3	0.374
Central	35.8 ± 6.5	33.3 ± 6.1	33.9 ± 6.3	0.719
Middle	33.5 ± 6.1	33.3 ± 6.1	33.9 ± 6.5	0.255
Lateral	32.4 ± 11.1	33.9 ± 12.5	30.5 ± 8.9	0.255
Eye size (mm)	12.6 ± 2.7	12.5 ± 2.8	12.8 ± 2.6	0.562
Nose height (mm)	22.8 ± 9.5	24.2 ± 9.0	19.9 ± 10.2	0.065
Beauty satisfaction (score)	28.7 ± 5.9	27.8 ± 5.8	30.5 ± 6.0	0.053

Dimple (count)

| (+) | 22 (100%) | 14 (63.6%) | 8 (36.4%) |
| (-) | 63 (100%) | 42 (66.7%) | 21 (33.3%) |

Dark circle (count)

| (+) | 51 (100%) | 32 (62.7%) | 19 (37.3%) |
| (-) | 34 (100%) | 25 (73.5%) | 9 (26.5%) |

Skin status (count)

Good	16 (100%)	10 (62.5%)	6 (37.5%)
Moderate	57 (100%)	37 (64.9%)	20 (35.1%)
Bad	11 (100%)	9 (81.8%)	2 (18.2%)

Table 2. Correlation among facial structures and beauty satisfaction

Face length	Upper	Middle	Lower	Face width	Central	Middle	Lateral	Eye size	Nose height	Beauty satisfaction
Face length	1	0.834***	0.861***	0.827***	0.048	-0.025	0.068	0.096	-0.131	-0.235*
Upper	0.514***	0.449***	-0.077	-0.299*	-0.109	-0.006	0.035	-0.179	-0.226	
Middle	0.748***	0.085	0.189	0.018	0.065	0.151	-0.041	-0.179		
Lower	0.124	0.157	0.089	0.095	0.076	0.030	-0.178			
Face width	0.568***	0.653***	0.853**	0.288*	0.053	0.113				
Central	0.471***	0.207	-0.005	0.002	0.298*					
Middle	0.193	0.103	-0.127	-0.045						
Lateral	0.351**	0.148	0.132							
Eye size	0.116	0.064								
Nose height	0.110									

*p < 0.05, **p < 0.01, ***p < 0.001.

Table 3. Beauty satisfaction according to the variables

Beauty satisfaction (score)	p-Value
Dimple (+)	0.136
(-)	
Dark circle (+)	0.231
(-)	
Skin status Good	0.076
Moderate	
Bad	

Discussion

얼굴 계측결과, 얼굴 가로비율과 세로비율이 미의 기준인 황금 비율에 합당하게 1:1의 형태를 보였다. 얼굴 길이에 대한 이전 연구에서 20대는 0.85±1.1로 이마부분(상안부)이 상대적으로 작으며, 60대에서는 0.84±1.06으로 하안부길이가 길고 상안부길이가 짧았다[5]. 이는 노화에 의해 턱선의 처짐으로 하안부길이가 길어진 것으로 추측된다. 본 연구는 20대에 한정하였는데, 이 연구와 다르게 이마 부분의 길이도 다른 부분과 비슷하게 나타났다. 이 연구는 얼굴 정면사진을 기반으로 측정된 것이고, 학생들이 직접 계측한
것이라서 차이가 나타난 것으로 생각된다.

눈 크기는 12.6 mm로 10.0 mm를 보인 이전 연구와 비슷하게 나타났다[6]. 본 연구에서 남녀의 얼굴 세로길이의 차이가 나타났는데, 위와 아래 부분의 차이에서 기원한 것임을 알 수 있다. 반면, 얼굴 가로길이는 총 길이에서는 남녀 간에 유의한 차이가 나타났으나, 부분적으로는 유의한 차이가 나타나지 않았다. 흔히로운 것은 얼굴로 세로길이가 미적 만족도와 음의 상관관계를 보인다는 점이다. 얼굴이 정한 형태와 외모에 큰 영향을 미침하며, 특히 남학생에서 부분적으로 외모의 길이가 긴 것이 주요한 것으로 생각된다. 반면, 미적 만족도가 얼굴로 측정된 가로길이의 코 네이도 양의 상관관계를 나타냈다. 이는 미간이 넓은 것에 대한 특이도 관관이 있는데, 흔히 미간이 넓은 것이 미적적으로 문제가 되는 것과 반대되는 결과이다. 이전 연구[6]에 의하면 얼굴의 폭림 정도에 대한 분석을 한 결과, 남성에서는 decentralization이 여성에서는 centralization이 더 높은 것으로 나타났다. 한편, 한국의 여성 연예인을 바탕으로 한 얼굴계측자료에 의하면, 낭성에 비해 아래분의 세로길이가 짧고, 눈 크기가 크며, 가름한 얼굴형으로 나타났다[10]. 이러한 차이는 시대적 흐름과 유예에 따른 차이와 미적 만족에 대한 개인적인 가치관의 차이에 따른 것으로 생각된다.

시대의 자기 만족도와 평균이 보통에 해당하는 30대에 가까운 28.7로 나타났으며 정규분포를 보였고, 이는 자기 만족도 설문조사가 어느 정도 신뢰성을 가지는 설문조사라 생각할 수 있는 결과로 보인다. 한편, 실제 얼굴의 계측 결과와 자기 만족도를 비교하였을 때, 흔히 얼굴의 미적 기준으로 중요하다고 알려진 눈 크기가 그 높이가 통계적으로 유의한 결과를 보이지 않았으나 오히려 피부상태가 보다 유의한 의미를 가졌다.

본 연구를 통하여 대학생들의 외모에 대한 자기 만족도에 중요한 인자로 얼굴의 부분적인 길이와 피부상태에 연관이 있다는 사실을 알게 되었다. 성형수술을 하지 않는 한 얼굴의 크기를 바꿀 수는 없겠지만, 자신의 몸단과 같은 피부관리를 통해 미적 만족도를 증진할 수 있을음을 의미한다. 하지만 본 연구는 의과대학 학생들에게 국한되어 설문이 이루어졌기 때문에 연구결과를 대학생으로 일반화하기에는 제한이 있으며, 이 결과를 바탕으로 다양한 집단에서 추가 연구를 고려해볼 필요가 있을 것이다.

본 연구는 한국인 얼굴의 형태와 비례에 대한 기본 자료로서 다양하게 이용될 수 있으며, 이를 개인의 미적만족도와 비교해 볼 수로서, 개인의 미적 기준에 따른 잘못된 인식과 스트레스를 줄일 수 있을 것으로 생각된다.

Conflict of interest

All authors declare no conflicts-of-interest related to this article.

References

1. Park HW, Chung MS. The effects of self-assertiveness and appearance satisfaction on psychological well-being. Res J Costume Culture. 2014;22:728-42.
2. Lim IS. The experience and intention of cosmetic surgery in the looks-discriminatory society. J Korean Womens Stud. 2004;20:95-122.
3. Son EJ. The influence of the perception of teasing, physical comparison, body surveillance, and body distortion on the Intention of plastic surgery. Korean J Psychol Women. 2008;13:121-36.
4. Han JS, Lim JR. Golden section found in hand axe. J Hist Math. 2006;19:43-54.
5. Kim AK, Lee KH. Comparison and analysis of women faces in 20s and women faces in 60s through women faces’ measured value. Korean J Sci Emot Sensibility. 2010;13:485-92.
6. Song WC, Kim SH, Koh KS. High-set or low-set of Korean face. Korean J Anthropol. 2017;30:1-6.
7. Bayome M, Park JH, Shoaib AM, Lee NK, Boettner V, Kook YA. Comparison of facial esthetic standards between Latin American and Asian populations using 3D stereophotogrammetric analysis. J World Fed Orthod. 2020;9:129-36.
8. Hong SN. Behavior according to interest in appearance and body satisfaction of Korean women and migrant women [master’ thesis]. Seoul: Konkuk University; 2013.
9. Yoo JY, Kim JN, Shin KJ, Kim SH, Choi HG, Jeon HS, et al. Centralization or decentralization of facial structures in Korean young adults. J Craniofac Surg. 2013;24:1007-10.
10. Rhee SC, Dhong ES, Yoon ES. Photogrammetric facial analysis of attractive Korean entertainers. Aesthetic Plast Surg. 2009;33:167-74.
Introduction

Spinal anesthesia is commonly performed for cesarean section, as it has many advantages over general anesthesia. But it carries a risk of hypotension which may cause some adverse effects such as nausea, vomiting, dizziness in parturients, and umbilical arterial acidosis in the newborn [1,2].

Hypotension following spinal anesthesia is mainly caused by peripheral vasodilation and venous pooling due to sympathetic blockade. The degree of sympathetic blockade is known to affect the occurrence of hypotension after spinal anesthesia. The perfusion index (PI) and plethysmographic variability index (PVI) are non-invasive tools for measuring the vasomotor tone and volume status, respectively. The purpose of this study is to compare the trends of PI and PVI values between hypotension and normotension groups during cesarean section following spinal anesthesia. Fifty-one parturients were divided into two groups whether they developed hypotension or maintained normotension after spinal anesthesia. Spinal anesthesia was performed with 0.5% hyperbaric bupivacaine (10 mg) and fentanyl (15 μg) at the L3-4 intervertebral space. The data of blood pressure, heart rate, PI and PVI were recorded every minute until delivery of baby. Hypotension occurred in 61% of parturients during cesarean section. The overall PI and PVI value after spinal anesthesia have gradually increased and decreased, respectively. The degree of increase and decrease in PI ($p = 0.31$) and PVI value ($p = 0.35$) was not significant between hypotension and normotension groups. The trend of PI value has gradually increased while the PVI value has decreased, regardless of whether the parturient has experienced hypotension or not.

Keywords: Cesarean section, Hypotension, Perfusion index, Plethysmographic variability index

The Analysis of Perfusion Index and Plethysmographic Variability Index During Elective Cesarean Section

Na Jeong Ha, Ji Hee Hong

Department of Anesthesiology and Pain Medicine, Keimyung University School of Medicine, Daegu, Korea

Hypotension following spinal anesthesia of cesarean section is mainly caused by peripheral vasodilation and venous pooling due to sympathetic blockade. The degree of sympathetic blockade is known to affect the occurrence of hypotension after spinal anesthesia. The perfusion index (PI) and plethysmographic variability index (PVI) are non-invasive tools for measuring the vasomotor tone and volume status, respectively. The purpose of this study is to compare the trends of PI and PVI values between hypotension and normotension groups during cesarean section following spinal anesthesia. Fifty-one parturients were divided into two groups whether they developed hypotension or maintained normotension after spinal anesthesia. Spinal anesthesia was performed with 0.5% hyperbaric bupivacaine (10 mg) and fentanyl (15 μg) at the L3-4 intervertebral space. The data of blood pressure, heart rate, PI and PVI were recorded every minute until delivery of baby. Hypotension occurred in 61% of parturients during cesarean section. The overall PI and PVI value after spinal anesthesia have gradually increased and decreased, respectively. The degree of increase and decrease in PI ($p = 0.31$) and PVI value ($p = 0.35$) was not significant between hypotension and normotension groups. The trend of PI value has gradually increased while the PVI value has decreased, regardless of whether the parturient has experienced hypotension or not.

Keywords: Cesarean section, Hypotension, Perfusion index, Plethysmographic variability index

Introduction

Spinal anesthesia is commonly performed for cesarean section, as it has many advantages over general anesthesia. But it carries a risk of hypotension which may cause some adverse effects such as nausea, vomiting, dizziness in parturients, and umbilical arterial acidosis in the newborn [1,2].

Hypotension following spinal anesthesia is mainly caused by peripheral vasodilatation and sympathetic blockade [3,4]. Peripheral vasodilatation causes venous pooling of extremities, which results in decrease of preload [5,6]. Predicting a risk of hypotension is essential to minimize an adverse effect of the parturient and the newborn. Although management with vasoactive drugs and intravascular volume loading maintains hemodynamic stability, hypotension may not be completely avoided because of the lag in non-invasive blood pressure monitoring.

Baseline peripheral vasomotor tone, volume status, and sympathetic activity are known to affect the degree of hypotension after spinal anesthesia in parturients undergoing cesarean section [5,6]. Dynamic indices, such as stroke volume variation, pulse pressure variation, perfusion index (PI), and plethysmo-
Perfusion Index During Cesarean Section

2020) were enrolled. Written informed consent was obtained from each parturient in this study.

Materials and Methods

Patients

After getting approval of the study by the institutional review board (IRB No. 2020-06-040) of our institution, parturients undergoing cesarean section (June, 2020 ~ September, 2020) were enrolled. Written informed consent was obtained from each parturient in this study.

Parturients aged from twenty to forty with singleton or twin pregnancy who are scheduled for elective cesarean section were enrolled. We excluded parturients with emergency cases, cardiovascular or cerebrovascular disease, placenta previa, preeclampsia, morbid obesity with body mass index ≥ 40, gestational age 34 or 40 weeks, and contraindications to spinal anesthesia.

Spinal anesthesia

On arrival of operating room, each parturient was laid on an operating table and was given an infusion of 300 mL of Plasmalyte solution (Baxter, S.L) for prehydration. No premedication was given to the parturient and the temperature of the operating room was maintained at 22°C. Electrocardiography, noninvasive blood pressure, pulse oximetry (Masimo Radical 7; Masimo Corp., USA) were applied. A pulse oximetry probe was placed on the left 4th finger.

Every parturient had 3 minutes of resting period in supine position to minimize the variation of baseline PI value. After 3 minutes of resting period, baseline systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP), heart rate (HR), PI and PVI values were measured.

Spinal anesthesia was performed by a single anesthesiologist who had experiences in obstetric anesthesia more than 5 years. After obtaining baseline data, spinal anesthesia was performed with 0.5% hyperbaric bupivacaine (10 mg) and fentanyl (15 μg) at the L3-4 intervertebral space using 25 gauge whitacre needle. In the sitting position for spinal anesthesia, SBP, DBP, MBP, HR, PVI and PI values were also measured. After returning to supine position, a wedge pillow was placed underneath the right buttock to avoid aortocaval compression to facilitate the uterine blood supply.

The upper sensory block level was assessed 5 minutes after spinal anesthesia by loss of cold sensation using alcohol swabs. If sensory block at the T6 level was not achieved by 10 minutes after spinal anesthesia, the parturient was excluded from the study.

Plasmalyte solution was rapidly administered at a rate of 20 mL/min in both normotension and hypotension groups. The data of blood pressure, HR, PVI, and PI values were collected from the induction of spinal anesthesia until final delivery of baby every minute.

Group allocation

The parturients were divided into two groups according to whether they developed hypotension (hypotension group) or maintained normal blood pressure (normotension group) after spinal anesthesia. Hypotension was defined as a decrease of MBP < 60 mmHg or decrease more than 25% compared to baseline value for at least 5 minutes during study period. This definition was applied according to the result of a previous study [2]. When hypotension occurred, phenylephrine 100...
Äg and additional bolus dose were injected until hypotension was corrected. Hypotension was corrected only by phenylephrine without additional fluid administration. Every cesarean section was done by one surgeon.

Statistical analysis

Data for categorical variables are presented as the frequency, while data for continuous variables are presented as the mean (SD). The distribution of continuous variables was tested for normality using the Shapiro-Wilk test. Differences in the subject characteristics and study outcomes between the groups were evaluated using the Chi-squared test or Fisher’s exact test for categorical values and using Student’s t-test or the Mann-Whitney U-test for continuous variables, depending on their distribution. Differences in the consecutive measurements of the PI and PVI values were evaluated using repeated measures of ANOVA, followed by Bonferroni post hoc analysis for multiple comparisons.

For all analysis, statistical significance was considered as $p < 0.05$. The SPSS version 22.0 (IBM Corporation, USA) was used for statistical analysis.

Sample size estimation

Pilot study was performed for the estimation of sample size. Based on the result of a pilot study containing 30 parturients (15 per group), wherein PI after spinal anesthesia values (mean [SD]) were 4.0 (2.3) for hypotension group and 3.5 (1.8) for normotension group, sample size was calculated. We estimated a sample size of 20 patients per group using a two-sided t-test, a power of 80%, a significance of 5% and a dropout rate of 15%.

Results

Fifty-seven parturients were enrolled in the study. Among them, six parturients were excluded from the study because their level of sensory block was inadequate for the surgery. Therefore, this analysis was performed with fifty-one parturients (Fig. 1).

Hypotension occurred in 61% of parturients during the surgery. Thirty-one parturients developed hypotension during cesarean section, while the remaining twenty parturients without hypotension. Hence, those thirty-one parturients who developed hypotension were assigned to hypotension group.

Demographical characteristics of parturients were compared (Table 1). Delivery time measured after the start of anesthesia was 19.5 ± 5.2 and 21.5 ± 6.2 minutes in normotension and hypotension groups, respectively. Phenylephrine (200 ± 25 μg) was only used in hypotension group.

Hemodynamic values of two groups before and after spinal anesthesia were compared between two groups. Baseline he-

Fig. 1. Flow chart of the study.
Perfusion Index During Cesarean Section

Keimyung Med J

Table 1. Demographic data

	Normotension group (n = 20)	Hypotension group (n = 31)	p-Value
Age (yr)	35 ± 4.7	34.8 ± 4.6	0.90
Gestational age (weeks)	37.1 ± 1.6	37.1 ± 1.3	0.85
Gestational diabetes mellitus	3(15)	1(3.3)	0.29
Twin pregnancy	5(25)	11(35.5)	0.54
Height (cm)	162.6 ± 4.2	162.1 ± 6.2	0.79
Weight (kg)	74.6 ± 15.5	71 ± 8.7	0.30
BMI (kg/m²)	28.1 ± 6	27.2 ± 3.5	0.48

Values are presented as mean ± SD, or number of parturient (percent). BMI, Body mass index.

Table 2. Hemodynamic data in patients before and after spinal anesthesia

	Normotension group (n = 20)	Hypotension group (n = 31)	p-Value
Baseline hemodynamic data			
SBP (mmHg)	122.6 ± 9.5	126.5 ± 17.8	0.31
DBP (mmHg)	68.2 ± 8.6	74.1 ± 12.4	0.07
MBP (mmHg)	89.2 ± 7.8	90.1 ± 20.3	0.83
HR (bpm)	75.1 ± 13.3	81.1 ± 13.9	0.13
Minimum blood pressure (mmHg)			
SBP	100.1 ± 8	85.9 ± 13	0.005*
DBP	51.5 ± 5.1	44.9 ± 8.8	0.005*
MBP	72.3 ± 5.6	61.1 ± 10.4	0.005*
Mean blood pressure (mmHg)			
Before spinal anesthesia	89.2 ± 7.8	90.1 ± 20.3	0.83
Sitting	94.8 ± 11.6	94 ± 14.4	0.84
After spinal anesthesia	85.4 ± 12.5	70.7 ± 17.1	0.005*
Start of surgery(15min)	84.1 ± 9.9	72.4 ± 15.0	0.038*
Delivery(20min)	77.6 ± 9.4	72.5 ± 9.3	0.19
Heart rate (bpm)			
Before spinal anesthesia	75.1 ± 13.3	81.1 ± 13.9	0.13
Sitting	79.3 ± 17.8	84.5 ± 14.2	0.13
After spinal anesthesia	76.4 ± 13.6	81.5 ± 16.8	0.25
Start of surgery	75.1 ± 14.7	79.7 ± 14.1	0.28
Delivery	82 ± 13.8	83 ± 16.3	0.25

Values are presented as mean ± SD. SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; HR, heart rate. *Statistically significant.

Hemodynamic values were not significantly different. However, minimum and mean blood pressure after spinal anesthesia demonstrated significant differences between two groups (p = 0.005, Table 2).

The overall value of PI after spinal anesthesia has gradually increased in both groups. Although baseline PI value of normotension group was slightly higher than that of hypotension group, this difference did not show any statistical significance. PI values of both groups decreased when the position of parturient was changed from supine to sitting. From 7 minutes after induction of spinal anesthesia, PI value of hypotension group started to demonstrate higher than normotension group and such trend of increase was maintained until final delivery of the baby. However, the difference of PI values between two groups was not significant during whole period of PI measurement (p = 0.31, Fig. 2).

Immediately after spinal anesthesia, the PVI value increased in both groups and then it gradually decreased until delivery of the baby. The PVI values of hypotension group were greater than that of normotension group, except for a few minutes after the induction of anesthesia (p = 0.35, Fig. 3).

Discussion

In this prospective study, the results showed that the overall trends of PI and PVI in both groups were gradually increased and decreased, respectively. However, there was no significant differences in PI and PVI values between two groups after spinal anesthesia.

Spinal anesthesia causes sympathetic blockade in the affect-
ed lower extremities [3]. It causes the decreased systemic vascular resistance, blood pooling in the blocked area, leading to reductions of cardiac output and mean blood pressure.

Normal physiologic changes of third trimester of pregnancy include decrease in systemic vascular resistance, increase of blood volume, stroke volume, heart rate, and cardiac output. Because of pregnancy-induced decrease in vascular tone, parturients have more blood volume trapped in extremities, and have higher PI and PVI values than non-parturients [1].

Previous studies showed that higher baseline PI and PVI values have an ability to predict the hypotension after the spinal anesthesia for cesarean section [6,9]. Greater PVI value after spinal anesthesia is also associated with incidence of hypotension [10]. According to the previous studies, the baseline PI and PVI values of hypotension group were expected to be higher than that of normotension group. Our study showed
a higher baseline PVI values in hypotension group, whereas higher baseline PI values in normotension group.

The increased PVI value immediately after spinal anesthesia was an independent risk factor of spinal anesthesia-induced hypotension [10]. This study also showed increased PVI value immediately after spinal anesthesia. However, the degree of increase was higher in normotension group than hypotension group. Kuwata et al. [10] suggested optimal PVI threshold of 18% to predict hypotension after spinal anesthesia. However, in this study, the PVI value of hypotension group was maintained less than 18% until delivery of baby except for 3 minutes immediately after induction of spinal anesthesia.

Contrary to the study by Toyama et al. [6] which demonstrated higher PI value at baseline to predict hypotension, our study showed lower PI value in hypotension group from baseline to 7 minutes than normotension group and then it was reversed. In this study, the pulse oximetry probe was placed on left 4th finger of the parturients. Therefore, PI values can represent the vasomotor changes of upper extremities. We suppose that lower PI value of hypotension group from baseline to 7 minutes after spinal anesthesia is due to the difference of uppermost level of sensory block between two groups. In former studies, high thoracic sensory block (C7-T3) induced thoracic sympathetic block that proceeds and exceeds sensory block [11,12]. Ginosar et al. [5] have demonstrated that an increase in PI value was an earlier and more sensitive indicator of the development of epidural induced sympathetic block compared with an increase in skin temperature. We suppose that uppermost level of sensory block from spinal anesthesia was lower in hypotension group than normotension group immediately after spinal anesthesia. Such lower level of sensory block in hypotension group resulted in an increased vasomotor tone of upper extremity compared to normotension group, leading to lower PI value. However, after 7 minutes, hypotension group might become similar or even higher sensory level compared to normotension group since PI started to show higher than normotension group.

According to the conflicting result of our study compared to previous studies [6,9,10], overall application of PI and PVI value to predict hypotension has some limitations and it requires further study.

In our study, 61% of parturients developed hypotension after spinal anesthesia. This is in consistency with former studies under the same definition of hypotension (59.3%) [2]. The incidence of hypotension during spinal anesthesia for cesarean section varies, ranging from 7.4% to 74.1% [2]. We think that this variation results from the definition of hypotension which was used during their study.

This study did not show any significant differences in PI and PVI values between two groups after spinal anesthesia. One reason is that spinal anesthesia was performed under sitting position not in the decubitus position by previous studies [6,10]. Different position during spinal anesthesia can potentially affect the values of PI and PVI. In addition, small sample size of this study might have resulted in different values compared to previous studies [6,10].

Our study has several limitations. First, photoplethysmographic analysis is sensitive to emotional stress, anxiety, and movement of the patient. Although all parturients in this study had 3 minutes of resting period to minimize such emotional factor, the resting period of 3 minutes might be too short to remove emotional factor entirely. Second, PVI may be less accurate in evaluation of intravascular volume and prediction of fluid responsiveness in spontaneously breathing patients, which may be related to the greater changes in respiratory rate and tidal volume. Third, physiologic conditions vary between patients, therefore, PI may be considered as a relative number which reflects the change of trends rather than an absolute number. Fourth, we did not check the uppermost level of sensory block, but we only checked whether the sensory loss reached to T6 dermatome or not.

In conclusion, we demonstrated that the trend of PI value has gradually increased while the PVI value has decreased, regardless of whether the parturient has experienced hypotension or not. Further studies using PI and PVI values should be conducted to assess the effect of hemodynamic variations in spinal anesthesia for cesarean section.

Conflict of interest

All authors declare no conflicts-of-interest related to this article.

References

1. Corke BC, Datta S, Ostheimer GW, Weiss JB, Alper MH. Spinal anaesthesia for caesarean section. The influence of hypotension on neonatal outcome. Anaesthesia. 1982;37:658-62.
2. Klöhr S, Roth R, Hofmann T, Rossaint R, Heesen M. Definitions of hypotension after spinal anaesthesia for caesarean section: literature search and application to parturients. Acta Anaesthesiol Scand. 2010;54:909-21.
3. Hanss R, Bein B, Ledowski T, Lehmkuhl M, Ohnesorge H, Scherkl W, et al. Heart rate variability predicts severe hypoten-
sion after spinal anesthesia for elective cesarean delivery. Anesthesiology. 2005;102:1086-93.

4. Mowafi HA, Ismail SA, Shafi MA, Al-Ghamdi AA. The efficacy of perfusion index as an indicator for intravascular injection of epinephrine-containing epidural test dose in propofol-aneu
tertized adults. Anesth Analg. 2009;108:549-53.

5. Ginosar Y, Weiniger CF, Meroz Y, Kurz V, Bdolah-Abram T, Babchenko A, et al. Pulse oximeter perfusion index as an early indicator of sympatheticnomy after epidural anesthesia. Acta An-
aesthesiol Scand. 2009;53:1018-26.

6. Toyama S, Kakumoto M, Morioka M, Matsuoka K, Omatsu H, Tagaito Y, et al. Perfusion index derived from a pulse oximeter can predict the incidence of hypotension during spinal anaes-
thesia for Caesarean delivery. Br J Anaesth. 2013;111:235-41.

7. Renner J, Gruenewald M, Meybohm P, Hedderich J, Steinfath M, Scholz J, et al. Effect of elevated PEEP on dynamic variables of fluid responsiveness in a pediatric animal model. Paediatr An-
aesth. 2008;18:1170-7.

8. Renner J, Gruenewald M, Quaden R, Hanss R, Meybohm P, Steinfath M, et al. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure vari-
tion and stroke volume variation in a porcine model. Crit Care Med. 2009;37:650-8.

9. Sun S, Huang SQ. Role of pleth variabi

10. Kuwata S, Suehiro K, Juri T, Tsujimoto S, Mukai A, Tanaka K, et al. Pleth variability index can predict spinal anesthesia-induced hypotension in patients undergoing caesarean delivery. Acta Anaesthesiol Scand. 2018;62:75-84.

11. Freise H, Meissner A, Lauer S, Ellger B, Radke R, Bruewer M, et al. Thoracic epidural analgesia with low concentration of bupivacaine induces thoracic and lumbar sympathetic block: a ran-
domized, double-blind clinical trial. Anesthesiology. 2008;109:1107-12.

12. Bergek C, Zdolsek JH, Hahn RG. Non-invasive blood haemoglob

13. http://www.e-kmj.org
Introduction

In December 2019, novel coronavirus disease 2019 (COVID-19) was first diagnosed in Wuhan, China. Subsequently, it spread worldwide and the World Health Organization declared a pandemic on March 11, 2020 [1,2]. In total, 19% of patients with COVID-19 require hospitalization, 5% require critical care, and the observed mortality rate is 2.3% [3]. In particular, the mortality rate is very high in elderly people over 80 years of age, with a rate of 14.9% [3].

The standard diagnosis of COVID-19 has a low positive rate and involves reverse-transcription polymerase chain reaction (RT-PCR) of samples collected using oropharynx swabs [4]. The testing of throat swabs or sputum increases the sensitivity, but remains insufficient for the diagnosis of all patients [5]. Recently, it has been suggested that computed tomography (CT) can aid in diagnosis through typical COVID-19 CT findings such as lung global ground-glass pat-
tens and consolidative pulmonary opacities [6]. However, Reporting RT-PCR results can take anywhere from a few hours to about 2-8 days, and CT imaging without coronavirus screening test is very limited owing to the potential exposure of the CT rooms to the virus [7]. Moreover, these tests cannot be performed in all clinics, and testing is possible only in some hospitals equipped with appropriate equipment.

In this study, we aimed to elucidate the simple biomarkers and basic characteristics that can aid the diagnosis of COVID-19 in pneumonia patients visiting the emergency room.

Material and methods

Study design and search strategy

In this retrospective study, all adult patients (aged ≥ 18 years) diagnosed with COVID-19 pneumonia or community-acquired pneumonia (CAP) and managed in emergency rooms at four tertiary medical centers in Daegu, South Korea from February 1 to March 31, 2020, were included. The study protocol was approved by the Institutional Review Board and exempted from prior consent requirements due to the retrospective nature of the study. Patients transferred from other hospitals after initial management; those who had not undergone the laboratory test; those who had other infection, and those who had other kinds of diseases, such as coronary artery disease, heart failure, renal failure, liver disease, malignancy, rheumatic disease, stroke, pulmonary disease, or hematologic disease were excluded.

Enrolled CAP patients were those showing abnormal lung parenchyma such as a new patchy infiltrate, leaf or segment consolidation, ground-glass opacity, or interstitial change on chest radiograph, due to respiratory infections acquired outside the hospital [8]. This diagnosis was done by an emergency medicine or internal medicine specialist. COVID-19 pneumonia was diagnosed based on RT-PCR results of nasopharynx swab or sputum and image of X-ray or CT findings. It was not included if only swab was positive or only image was positive. Chest CT findings used to diagnose COVID-19 pneumonia included pure ground-glass opacities (GGOs), GGOs with interstitial and/or interlobular septal thickening, and GGOs with consolidation [9]. All CT results were reported by board-certified radiologists on duty.

Other data, including age, sex, comorbid disease, vital signs, mental status, laboratory data, pneumonia severity index (PSI), CURB-65, length of stay in the hospital, and 28-day mortality, were retrieved from all patients’ electronic medical records. The biomarkers comprising neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) were calculated.

Statistical analysis

Continuous variables were reported as mean ± standard deviation or median and inter-quartile range, with parametric data compared using Student’s t-tests and non-parametric using the Mann-Whitney U test. Categorical variables were reported as number (percentage) and compared using the χ² test with Yates correction or the Fisher’s exact test, as warranted. Variables with statistical significance were tested by binary logistic regression analysis, and its odds ratio (OR) and 95% confidence interval (CI) were calculated. The area under curve (AUC) value, optimal cutoff value, sensitivity, and specificity were determined using receiver operating characteristic (ROC) curve. All statistical analyses were performed using SPSS 21 (SPSS Inc., Armonk, NY, United States), with a two-sided p-value < 0.05 considered statistically significant.

Results

During the study period, 226 patients visited the A medical center emergency department exhibiting pneumonia. After excluding 169 patients due to predetermined criteria, 57 patients were enrolled, including 40 CAP patients and 17 COVID-19 pneumonia patients. Sixty-four patients with COVID-19 pneumonia were enrolled from three other university hospitals in Daegu (Fig. 1).

In total, 81 COVID-19 pneumonia patients, including 38 (46.9%) men and 43 (53.1%) women, of mean age 65.8 years (range 25-95 years) were analyzed. On comparison of CAP and COVID-19 groups, the COVID-19 group depicted a decrease in absolute monocyte count (580/µL vs. 3.5 g/dL, p < 0.001), absolute neutrophil count (6,200/µL vs. 5,600/µL, p = 0.031), MLR (0.52 vs. 0.38, p = 0.05), erythrocyte sedimentation rate (67 mm/h vs. 53 mm/h, p = 0.040), and albumin (4.0 g/dL vs. 3.5 g/dL, p < 0.001) , while prothrombin time (1.03 vs. 1.11, p < 0.001), D-dimer (0.68 µg/mL vs. 1.21 µg/mL, p = 0.023), CK-MB (0.96 µg/mL vs. 1.40 µg/mL, p = 0.008), lactate dehydrogenase (L) (1.1 mmol/L vs. 1.6 mmol/L, p = 0.001), and PLR (178.97 vs. 235.78, p = 0.002) increased. Severity indexes, including CURB-65, PSI, and 28-day mortality were higher in the COVID-19 pneumonia group (Table 1).

A comparison of the AUC between the monocyte count and MLR area score revealed that the area of monocyte count was higher (AUC [95% CI]: 0.697 [0.590 to 0.803] and 0.658 [0.556 to 0.761], respectively). The PSI area score was found
to be higher on comparing the CURB-65 and PSI area scores by the AUC of the ROC curve. (AUC [95% CI]: 0.550 [0.439 to 0.661] and 0.637 [0.524 to 0.750], respectively) (Table 2, Fig. 2).

All the factors showing significance were further analyzed by multivariate analysis. Lower monocyte count (OR: 0.996; 95% CI: 0.994-0.999, \(p = 0.002 \)), and higher PSI (OR: 1.025; 95% CI: 1.002-1.049, \(p = 0.035 \)), were factors significantly associated with diagnosis of the COVID-19 pneumonia (Table 3). The AUC representing combination of monocyte and PSI was 0.789. (95% CI: 0.700-0.878, \(p < 0.001 \)) (Fig. 3).

Discussion

Differentiation of COVID-19 pneumonia from CAP could have important treatment implications. Although RT-PCR is used to detect COVID-19 virus, it has imperfection and is time consuming [5,7]. As a result, the use of other variables is necessary to distinguish between CAP and COVID-19 pneumonia. To our knowledge, this is the first study to investigate the biomarkers associated with COVID-19 pneumonia. In this study, we attempted to clarify the difference between CAP and COVID-19 pneumonia through an initial biomarker result and the patient’s character when the emergency room was visited. COVID-19 pneumonia was shown to be significantly predicted by monocytes, a biomarker, as well as PSI, which is a measure of pneumonia severity.

Although technological advances for the diagnosis of viral pneumonia are ongoing, they are still insufficient to clarify the cause of pneumonia [10]. In particular, the upper respiratory tract infection is detected using nasopharyngeal swabs, which are easy to collect, but lower respiratory specimens obtained via sputum are not only difficult to obtain, but also pose difficulty in distinguishing infection from colonization or long-term shedding [11]. Therefore, the variables such as individual basic characters and clinical profiles, biomarkers, imaging results, and treatment response prove to be useful in distinguishing viral pneumonia from bacterial pneumonia [12]. White blood cell (WBC), C-reactive protein (CRP), and procalcitonin (PCT) showed comparatively high values in bacterial pneumonia and use of antibiotics in an early stage, helped improve patient prognosis [8,12]. Blood test parameters for the diagnosis of CAP revealed that NLR and MLR were significant, and it was found that monocyte had a diagnostic value in patients with liver injury [13]. The value of a biomarker is affected by multiple underlying diseases including tumors, infectious diseases, renal failure, rheumatic diseases cardiovascular disease, etc. [14-16]. Therefore, this study excluded patients with underlying illnesses, except hypertension and diabetes. The results of this study showed that CRP and PCT did not differ between CAP and COVID-19 pneumonia, but WBCs were significantly different and lower in count in COVID-19 pneumonia patients. (7,880/μL vs. 7,020, \(p = 0.025 \)) The neutrophil and monocyte count of the WBC showed a statistically significantly lower value in the COVID-19 pneumonia group, and only MLR showed a statistically significant lower value when calculated via the ratio with lymphocytes. The AUC of the difference between COVID-19 pneumonia and CAP for
Table 1. Demographic and clinical characteristics of the community-acquired pneumonia and COVID-19 pneumonia

	CAP (n = 40)	COVID-19 (n = 81)	p-Value
Age (years)	59.2 (24-92)	65.8 (25-95)	0.083
Sex, male (%)	21 (62.5)	38 (46.9)	0.350
Previous illness			
Hypertension (%)	13 (32.5)	34 (42)	0.210
Diabetes (%)	7 (17.5)	17 (21)	0.423
Vital sign			
Systolic blood pressure (mmHg)	130 (115-150)	130 (117-150)	0.493
Diastolic blood pressure (mmHg)	80 (70-90)	80 (70-90)	0.235
Pulse rate (heart rate/minute)	97 (81.3-113.8)	87 (78-104)	0.060
Body temperature (°C)	37.7 (36.9-38.5)	37.2 (36.6-38.0)	0.014
O2 saturation (%)	96.0 (92.5-97.0)	96.0 (90.0-99.0)	0.318
Laboratory finding			
White blood cell (× 1,000/µL)	7.88 (5.60-14.28)	7.02 (5.01-9.06)	0.025
Absolute neutrophil count (x 1,000/µL)	6.22 (4.54-11.91)	5.60 (3.30-7.83)	0.011
Absolute lymphocyte count (x 1,000/µL)	1.02 (0.73-1.33)	0.91 (0.69-1.21)	0.17
Absolute monocyte count (x 1,000/µL)	0.58 (0.37-0.87)	0.38 (0.25-0.54)	< 0.001
Platelet (x1,000/µL)	208 (163-275)	222 (154-297)	0.314
C-reactive protein (mg/dL)	5.4 (1.9-11.7)	7.9 (2.5-15.1)	0.217
ESR (mm/h)	67 (40-85)	53 (36-71)	0.040
Procalcitonin (ng/mL)	0.139 (0.057-0.416)	0.131 (0.059-0.318)	0.340
Hemoglobin (g/dL)	12.9 (12.0-14.4)	13.1 (12.1-14.2)	0.449
Prothrombin time (INR)	1.03 (0.98-1.10)	1.11 (1.06-1.22)	< 0.001
Cr (mg/dL)	0.92 (0.75-1.24)	0.83 (0.7-1.1)	0.196
Albumin (g/dL)	4.0 (3.6-4.4)	3.5 (3.3-3.9)	< 0.001
Total bilirubin (mg/dL)	0.5 (0.4-0.6)	0.6 (0.4-1.0)	0.083
D-dimer (µg/mL)	0.68 (0.41-1.61)	1.21 (0.60-2.77)	0.023
CK-MB (µg/mL)	0.96 (0.65-2.27)	1.40 (1.00-2.70)	0.008
BNP (pg/mL)	147 (94-581)	216 (122-511)	0.186
pH	7.433 (7.377-7.464)	7.444 (7.409-7.470)	0.164
Lactic acid (mmol/L)	1.1 (0.8-1.6)	1.6 (1.2-2.3)	0.001
NLR	6.47 (4.21-12.54)	6.10 (3.15-10.57)	0.195
PLR	178.97 (144.9-298.23)	235.78 (164.86-338.49)	0.002
MEL	0.52 (0.36-0.86)	0.38 (0.28-0.55)	0.050
CURB-65	1 (0-2)	1 (0-2)	0.023
PSI	66 (42-94)	82 (65-98)	0.005
28-day mortality	2 (6)	15 (12.4)	0.032

Esr, erythrocyte sedimentation rate; Cr, creatinine; BNP, brain natriuretic peptide; NLR, neutrophil lymphocyte ratio; PLR, platelet lymphocyte ratio; MLR, monocyte lymphocyte ratio; CURB-65 (confusion, blood urea > 42,8 mg/dL, respiratory rate > 30/min, blood pressure < 90/60 mmHg, age > 65 years); PSI, pneumonia severity index.

Table 2. Diagnostic value of predictive factors for COVID-19 pneumonia

	AUC	CI 95%	p-Value	Optimal cutoff value	Specificity	Sensitivity
Monocyte	0.697	0.590-0.803	< 0.001	456.78	64.2	65
MLR	0.658	0.556-0.761	0.005	0.48	66.7	60
CURB-65	0.550	0.439-0.661	0.372	0.5	42.5	57.5
PSI	0.637	0.524-0.750	0.014	74	62.5	63
Monocyte and PSI	0.789	0.700-0.878	< 0.001	67.5	76.5	

MLR, monocyte lymphocyte ratio; CURB-65 score (confusion, blood urea > 42,8 mg/dL, respiratory rate > 30/min, blood pressure < 90/60 mmHg, age > 65 years); PSI, pneumonia severity index.
COVID-19 pneumonia is more severe than other pneumonia. Therefore, a score indicating the severity of pneumonia can be helpful in clinical judgment [3]. The most commonly used scores are PSI and CURB-65 [17,18]. The PSI had divided patients into five severity classes, composed of 20 items associated with mortality risk. CURB-65 is more convenient than the PSI for assessing the severity of pneumonia using only 5 items, excluding comorbidities [18]. From the results of this study, the severity of COVID-19 pneumonia was higher in PSI (66 vs. 82, \(p = 0.005 \)) and 28-day mortality (5% vs. 12.4%, \(p = 12.4\% \)). AUC of the PSI ROC was 0.637 and the cut-off value was observed at 74. CURB-65 score consisted of only 5 points, could not subdivide patient severity, and was equally observed with a median value of 1 in both COVID-19 pneumonia and CAP groups.

This study had some limitations. Firstly, this study was a retrospective study and included relatively small sample size and selective exclusion of the previous disease. Considering this retrospective nature of the study, caution is required when interpreting and applying the current results, because not all patients are able to provide precise information. Secondly, the subsequent period was relatively short; hence we could not identify the long-term outcomes. Therefore, additional controlled studies involving a larger number of patients are need-

Source of the curve	Monocyte	MLR	Reference Line
Sensitivity	0.6	0.8	1.0
1-Specificity	0.2	0.4	0.6

Fig. 2. (A) Receiver operating characteristic curve in monocyte and monocyte/lymphocyte ratio. (B) Receiver operating characteristic curve in pneumonia severity index and CURB-65.

Table 3. Multivariate logistic regression analysis of factors affecting COVID-19 pneumonia diagnosis

Factor	Odds Ratio	95% confidence interval	\(p \)-Value
Monocyte	0.996	0.994-0.999	0.002
PSI	1.025	1.002-1.049	0.035

PSI, pneumonia severity index.

Fig. 3. Receiver operating characteristic curve in integrated factor.
ed to validate the clinical value of monocytes in COVID-19 pneumonia. Thirdly, CAP patients were collected only in one hospital and were fewer than COVID-19 patients. Therefore, additional controlled studies involving a larger number of patients included various underlying disease are needed to validate the clinical value of monocytes in COVID-19 pneumonia.

In conclusion, this study is the first report on the relationship between monocyte and diagnosis of COVID-19 pneumonia. We believe that the combination of a wide and readily available monocyte and PSI score could be helpful in the diagnosis of COVID-19 pneumonia.

Conflict of interest

All authors declare no conflicts-of-interest related to this article.

Acknowledgements

This study was supported by a research grant from Daegu Medical Association COVID-19 scientific committee.

References

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-33.
2. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19). [cited 2020 Apr 5]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/summary.html.
3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239-42.
4. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9:386-9.
5. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. 2020;296:E115-7.
6. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295:202-7.
7. Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents. 2020;55. DOI: 10.1016/j.ijantimicag.2020.105955.
8. Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet. 2015;386:1097-108.
9. Song F, Shi N, Shan F, Zhang Z, Shen J, Lu H, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295:210-7.
10. Murdoch DR, O’Brien KL, Scott JA, Karron RA, Bhat N, Driscoll AJ, et al. Breathing new life into pneumonia diagnostics. J Clin Microbiol. 2009;47:3405-8.
11. Murdoch DR, Jennings LC, Bhat N, Anderson TP. Emerging advances in rapid diagnostics of respiratory infections. Infect Dis Clin North Am. 2010;24:791-807.
12. Ruuskonen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet. 2011;377:1264-76.
13. Huang Y, Liu A, Liang L, Jiang J, Luo H, Deng W, et al. Diagnostic value of blood parameters for community-acquired pneumonia. Int Immunopharmacol. 2018;64:10-5.
14. Wang JL, Lu XY, Xu XH, Zhang KJ, Gong H, Lv D, et al. Predictive role of monocyte-to-lymphocyte ratio in patients with Klebsiella pneumonia infection: a single-center experience. Medicine (Baltimore) 2019;98. DOI: 10.1097/md.0000000000017215.
15. Ji H, Li Y, Fan Z, Zuo B, Jian X, Li L, et al. Monocyte/lymphocyte ratio predicts the severity of coronary artery disease: a syntax score assessment. BMC Cardiovasc Disord. 2017;17:90.
16. Feng F, Sun L, Zheng G, Liu S, Liu Z, Xu G, et al. Low lymphocyte-to-white blood cell ratio and high monocyte-to-white blood cell ratio predict poor prognosis in gastric cancer. Oncotarget. 2017;8:5281-91.
17. Fine MJ, Aube TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, et al. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med. 1997;336:243-50.
18. Lim WS, van der Eerden MM, Laing R, Boersma WG, Karalus N, Towrn GI, et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax. 2003;58:377-82.
Central obesity carries more metabolic risks compared with total obesity assessed by Body mass index (BMI). Also, there’s paradoxical relationship between BMI and all-cause mortality in overweight group (23 kg/m2 ≤ BMI < 25 kg/m2). The aim of this study is to assess relationship between waist-to-height ratio (WHtR) and lifestyle-related diseases such as metabolic syndrome, hypertension, and type 2 diabetes in overweight group, and to find the most predictable and useful obesity index for screening lifestyle-related diseases. A total of 3,994 overweight (23 kg/m2 ≤ BMI < 25 kg/m2) adults from the Korea National Health and Nutrition Examination Survey, 2013-2015 (KNHANES VI) were included. We assessed the relationship between WHtR and metabolic syndrome components using multiple regression analysis, and assessed the relationship between abdominal obesity (WHtR ≥ 0.5) and lifestyle-related diseases using complex samples logistic regression analysis. Also, to find the most useful index to predict lifestyle-related diseases, we calculated the areas under the Receiver operating characteristic curves. WHtR was significantly related to metabolic syndrome components. Odds ratios of metabolic syndrome, hypertension and type 2 diabetes were 2.187, 1.445, 2.463 in abdominal obese group (WHtR ≥ 0.5), respectively. Area under the curve of WHtR was the most significantly highest among those of obesity indices. WHtR is a simple and useful obesity index to predict lifestyle-related diseases in overweight Korean adults. Further investigations for other obesity indices are needed to predict lifestyle-related diseases better.

Keywords: Body mass index, Lifestyle-related diseases, Metabolic syndrome, Waist-height ratio
경색과 같은 질환들은 과거 성인병으로 불리던 것이 현재는 생활습관(behavior-related disease)이라는 명칭으로 변경되었다. 생활습관은 식사, 운동, 흡연, 음주, 스트레스 관리 등과 같은 생활 속의 개인 습관이 병의 발병과 진행에 관여하는 질환으로, 생활습관의 개선을 통해 질병의 발생과 진행을 막을 수 있다는 1차 예방적 개념을 가지고 있다[3].

비만을 평가하는 지표로는 체질량지수(body mass index, BMI), 허리둘레(waist circumference, WC), 허리-엉덩이둘레 비(waist-to-hip ratio, WHR), 허리둘레-신장 비(waist-to-height ratio, WHtR) 등이 있으며, 이 중 가장 널리 쓰이는 지표는 BMI이다. BMI는 체중을 신장의 제곱으로 나누어 보정하여 간단하고 객관적인 비만 평가지표로 입상에서 널리 이용되고 있으며, 대사성 질환과의 연관성이 높은 복부내장지방의 분포를 반영하지 못한다[4, 5]. 또한, 미국, 유럽, 아시아인에서 BMI를 기준으로 한 과체중(서양인 25~29.9 kg/m², 동양인 23~24.9 kg/m²) 인구집단이 다른 구간의 인구집단에 비해 전체사망률(all-cause mortality) 및 사망위험요인의 발생률이 낮게 나타나는 비만역설에 대한 연구에서도 가장 낮은 사망률을 보였고[6], 한국인을 대상으로 시행한 전향적 연구에서도 BMI 23~24.9 kg/m² 구간에서 가장 낮은 사망률을 보였다[7].

이러한 한계점을 지닌 BMI를 대체할 비만지표로 복부비만을 잘 반영하는 허리둘레를 고려해 보면, 허리둘레 기준은 성별, 인종 및 나라별로 차이가 있다[11].

한편, 허리둘레를 신장 비로 보정한 WHR는 생계적, 연령, 인종에 상관없이 공통적으로 사용할 수 있다는 장점이 있다[12]. 최근 연구에서는 WHtR가 허리둘레로 보정한 당뇨병 및 심혈관질환 위험을 더 잘 예측하며, 특히 동양인에서 대사증후군 요소와 더 강한 관련성을 가진다고 보고되었다[13-15]. 본 연구에서의 정상복부군의 교차비(95% 신뢰구간)는 허리둘레 이상인 경우로 1.59, 허리둘레 이상인 경우로 1.92, 허리둘레 이상인 경우로 1.66, 허리둘레 이상인 경우로 1.85를 보였다[16].

2. 연구방법

연구에 사용된 비만지표로는 허리둘레, BMI, WHR를 사용하였으며, 이에 체질량지표로 알려진 체중을 신장²으로 나눈 tri-ponderal mass index, 허리둘레-신장 비로 산정한 대사증후군의 지표로 사용하였다. 허리둘레를 사용하는 사례로는 최저혈압과 당뇨병의 관계 연구[17] 등이 있다.

대사증후군 요소는 2005년 AHA/NHLBI (American Heart Association and the National Heart, Lung, and Blood Institute)에서 발표한 NCEP-ATP III (National Cholesterol Education Program's Adult Treatment Panel III) 정단기준에 따라 고혈압은 수측기 혈압이 130 mmHg 이상이거나 이완기 혈압이 85 mmHg 이상이거나 혈압이 140 mmHg 이상이거나 항고혈압제 복용 중인 경우로 정한 상태에서 복합표본 로지스틱 회귀분석을 통해 대사증후군 관절의 유무를 종속변수로 설정했다. 성별, 연령, 인종에 따라 대사증후군 요소와의 연관성을 알아보기 위해 다중회귀분석을 사용하였다. 본 연구에서는 연구대상자에서 남녀별로 각 변수 및 대사증후군 요소들의 주요성과 상관성을 예측해 볼 수 있으며, 이와 같은 생활습관을 개선하기 위해서는 개별도, 커뮤니티나 정부의 교육이 필요한 것이라 할 수 있다.

3. 분석방법

연구대상자의 일반적 특성 중 연속형 변수는 평균±표준편차로, 범주형 변수는 빈도(백분율)로 나타내며, 모두에서 T-검정과 교차분석의 카이 제곱검정을 실시했다. 본 연구에서 언급된 당뇨병 유병은 국민건강영양조사상 현재 당뇨병으로 진단 받았다고 정한 상태에서 복합표본 로지스틱 회귀분석을 사용하였다. 또한, 당뇨병 유병은 현재 고혈압으로 진단받았다고 정한 경우를 포함시켰다.

Materials and Methods

1. 연구대상

국민건강영양조사 제6기 1,2,3차년도에 해당하는 2013-2015년 조사에 참여한 19세 이상 성인 중 BMI가 23 kg/m² 이상 25 kg/m² 미만인 과체중 그룹 3,994명을 대상으로 했다.
Results

1. Study characteristics of study subjects

Variables	Men (n = 1,887)	Women (n = 2,107)	p-Value*
Age (y)	52.0 ± 16.28	54.7 ± 15.37	< 0.001
Height (cm)	169.5 ± 6.78	155.7 ± 6.55	< 0.001
Body weight (kg)	69.1 ± 5.74	58.1 ± 4.97	< 0.001
Waist circumference (cm)	84.9 ± 4.84	80.4 ± 5.34	< 0.001
Body mass index (kg/m²)	24.0 ± 0.6	23.9 ± 0.6	0.002
Waist-to-height ratio	0.50 ± 0.06	0.52 ± 0.04	< 0.001
Systolic blood pressure (mmHg)	120.1 ± 14.98	118.9 ± 18.0	0.020
Diastolic blood pressure (mmHg)	76.5 ± 10.14	73.0 ± 9.73	< 0.001
Fasting glucose (mg/dL)	102.3 ± 23.26	99.8 ± 24.59	0.001
Triglyceride (mg/dL)	160.3 ± 129.12	124.8 ± 86.17	< 0.001
HDL-cholesterol (mg/dL)	47.0 ± 10.73	52.2 ± 11.67	< 0.001
Smoking (≥ 5 packs)	1,316 (69.7)	153 (0.5)	< 0.001
Alcohol consumption (≥ 2~4/wk)	1,113 (58.9)	492 (23.4)	< 0.001
Metabolic syndrome⁰²	459 (24.3)	545 (25.9)	0.262
Hypertension	374 (19.8)	490 (23.3)	0.008
Diabetes	168 (8.9)	178 (8.4)	0.61

Values are presented as mean ± SD or number(%).
*p-Values were obtained by Student’s t-test or chi-square test. **Metabolic syndrome is defined as the presence of three or more components of metabolic syndrome.
고혈압을 예측하는 가장 좋은 비만지표에 대해 분석한 결과 전체 집단에서는 WHtR의 면적 값이 0.725로 가장 컸으며, 남성 집단에서는 허리둘레-체중 비가 0.728, 여성 집단에서는 허리둘레-신장² 비가 0.746으로 가장 컸다(Table 6). 당뇨를 예측하는 가장 좋은 비만지표에 대해 분석한 결과 전체 집단, 남성, 여성 집단 모두에서 WHtR의 면적 값이 각각 0.710, 0.710, 0.726으로 가장 컸다(Table 7).

Table 2. Clinical characteristics of study subjects according to waist-to-height ratio 0.5

Variables	WHtR < 0.5 (n = 1,665)	WHtR ≥ 0.5 (n = 2,329)	p-Value
Age (y)	43.9 ± 13.79	60.2 ± 13.59	< 0.001
Height (cm)	166.5 ± 8.85	159.2 ± 8.92	< 0.001
Body weight (kg)	66.3 ± 7.36	61.2 ± 7.14	< 0.001
Waist circumference (cm)	79.1 ± 4.69	85.0 ± 4.77	< 0.001
Body mass index (kg/m²)	23.8 ± 0.56	24.1 ± 0.58	< 0.001
Waist-to-height ratio	0.5 ± 0.04	0.5 ± 0.28	< 0.001
Systolic blood pressure (mmHg)	114.8 ± 14.44	122.8 ± 17.30	< 0.001
Diastolic blood pressure (mmHg)	75.1 ± 9.91	74.4 ± 10.19	0.054
Fasting glucose (mg/dL)	96.4 ± 19.45	104.5 ± 26.44	< 0.001
Triglyceride (mg/dL)	131.9 ± 114.31	149.6 ± 106.76	< 0.001
HDL-cholesterol (mg/dL)	50.9 ± 11.39	48.7 ± 11.54	< 0.001
Smoking (≥ 5 packs)	658 (39.5)	811 (34.8)	0.002
Alcohol consumption (≥ 2~4/wk)	794 (47.7)	811 (34.8)	< 0.001
Metabolic syndrome	181 (9.9)	823 (32.7)	< 0.001
Hypertension	151 (9.1)	713 (30.6)	< 0.001
Diabetes	46 (2.8)	300 (12.9)	< 0.001

Values are presented as mean ± standard deviation or number (%).

Table 3. Correlations between waist-to-height ratio and components of metabolic syndrome

Component	Men	Women	Total			
	β*(Adj-R²**)	p-Value	β*(Adj-R²**)	p-Value	β*(Adj-R²**)	p-Value
Systolic blood pressure	0.028 (0.087)	0.293	0.072 (0.181)	< 0.001	0.070 (0.282)	0.002
Diastolic blood pressure	-0.042 (0.041)	0.011	-0.042 (0.041)	0.011	-0.040 (0.007)	0.123
Fasting glucose	0.093 (0.079)	0.001	0.094 (0.067)	< 0.001	0.082 (0.053)	0.003
Triglycerides	0.128 (0.027)	< 0.001	0.114 (0.051)	< 0.001	0.100 (0.058)	< 0.001
HDL-cholesterol	-0.042 (0.037)	0.131	-0.078 (0.106)	< 0.001	-0.071 (0.062)	0.013

p-values were obtained by multiple regression analysis.
*Standardized coefficient. **Determinant coefficient after adjustment for age, sex, smoking, alcohol consumption.

Table 4. Odds ratios for metabolic syndrome components, metabolic syndrome, hypertension, and diabetes in central obesity (waist-to-height ratio ≥ 0.5) group

Risk factor	Men	Women	Total
High blood pressure	1.339 (1.030-1.739)	1.282 (0.948-1.732)	1.287 (1.056-1.568)
High fasting glucose	1.281 (0.966-1.700)	1.632 (1.233-2.161)	1.384 (1.130-1.695)
High triglycerides	1.589 (1.279-1.975)	1.434 (1.086-1.894)	1.412 (1.171-1.702)
Low HDL-cholesterol	1.440 (1.148-1.808)	1.285 (1.046-1.578)	1.311 (1.11-1.541)
Metabolic syndrome	2.095 (1.504-2.916)	2.764 (1.929-3.961)	2.187 (1.727-2.770)
Hypertension	1.388 (0.948-2.032)	1.514 (1.011-2.267)	1.445 (1.091-1.914)
Diabetes	2.348 (1.425-3.870)	3.083 (1.591-5.976)	2.463 (1.707-3.555)

Values were presented as odds ratio (95% confidence interval). Odds ratio (OR) and p-Values were obtained by complex samples logistic regression analysis after adjustment of age, sex, body mass index, smoking, alcohol consumption. p-Values of all values were < 0.05.
BMI는 임상에서 흔히 사용되는 비만지표이나 허리둘레에 비해 대사성질환 발생 예측율이 낮다[18]. 또한, BMI 23 kg/m² 이상 24.9 kg/m² 미만의 과체중 구간에서 다른 구간에 비해 오히려 사망 위험이 감소하는 비만 역설(obesity paradox)과 체내 지방 분포, 특히 복부비만을 제대로 반영하지 못하는 BMI의 한계로 인해 다른 유용한 비만지표에 대한 필요성이 대두되었다.

복부비만을 반영하는 허리둘레와 관련된 여러 지표들을 고려해 볼 수 있는데, 그 중 허리-엉덩이둘레 비는 2개의 서로 다른 측정 오차값을 가질 수 있으며 제증변화 시 허리둘레와 엉덩이둘레가 비슷한 비율로 증가하므로 제증변화에 따른 효과를 잘 반영하지 못한다. 반면 WHtR는 비교적 측정이 간편하며, 연령, 성별, 인종에 관계없이 같은 기준점을 사용할 수 있다는 장점이 있어 실용적인 새로운 비만지표로서 꾸준히 연구되어 왔다[19]. 우리와 비슷한 신체조건을 가진 일본인에서 정상 및 과체중 구간의 WHtR가 다른 비만지표들에 비해 대사성 위험이 높은 군을 선별하기에 유용하며, 남녀 모두 그리고 전 연령대에서 적용이 가능하고 측정이 비교적 간단하며 실용적이라는 연구결과가 있었다[19]. 또한, 아시아인을 대상으로 한 연구에 따르면 WHtR이 다른

| Table 5. Area Under Curve (AUC) for various obesity indices to predict metabolic syndrome |
|-----------------|---------|---------|---------|
| Obesity index | Men | Women | Total |
| Height (cm) | 0.447 | 0.390 | 0.439 |
| Body weight (kg)| 0.476 | 0.414 | 0.455 |
| Waist circumference (cm) | 0.698 | 0.734 | 0.693 |
| Body mass index (kg/m²) | 0.587 | 0.572 | 0.579 |
| Triponderal mass index (kg/m³) | 0.591 | 0.626 | 0.585 |
| Waist-to-height ratio | 0.706 | 0.760 | 0.732 |
| Waist-to-height² ratio | 0.672 | 0.736 | 0.678 |
| Waist-to-weight ratio | 0.653 | 0.722 | 0.662 |

Values were presented as AUC (95% Confidence Interval). AUC estimated by ROC analysis.

| Table 6. Area Under Curve (AUC) for various obesity indices to predict hypertension |
|-----------------|---------|---------|---------|
| Obesity index | Men | Women | Total |
| Height (cm) | 0.336 | 0.320 | 0.365 |
| Body weight (kg)| 0.344 | 0.336 | 0.372 |
| Waist circumference (cm) | 0.624 | 0.662 | 0.624 |
| Body mass index (kg/m²) | 0.497 | 0.538 | 0.519 |
| Triponderal mass index (kg/m³) | 0.637 | 0.667 | 0.631 |
| Waist-to-height ratio | 0.714 | 0.736 | 0.725 |
| Waist-to-height² ratio | 0.726 | 0.746 | 0.712 |
| Waist-to-weight ratio | 0.728 | 0.743 | 0.709 |

Values were presented as AUC (95% Confidence Interval). AUC estimated by ROC analysis.

| Table 7. Area Under Curve (AUC) for various obesity indices to predict type 2 diabetes |
|-----------------|---------|---------|---------|
| Obesity index | Men | Women | Total |
| Height (cm) | 0.355 | 0.374 | 0.418 |
| Body weight (kg)| 0.366 | 0.391 | 0.425 |
| Waist circumference (cm) | 0.640 | 0.679 | 0.653 |
| Body mass index (kg/m²) | 0.513 | 0.548 | 0.532 |
| Triponderal mass index (kg/m³) | 0.628 | 0.626 | 0.584 |
| Waist-to-height ratio | 0.710 | 0.726 | 0.710 |
| Waist-to-height² ratio | 0.709 | 0.720 | 0.676 |
| Waist-to-weight ratio | 0.706 | 0.713 | 0.671 |

Values were presented as AUC (95% Confidence Interval). AUC estimated by ROC analysis.

Discussion

BMI는 임상에서 흔히 사용되는 비만지표이나 허리둘레에 비해 대사성질환 발생 예측율이 낮다[18]. 또한, BMI 23 kg/m² 이상 24.9 kg/m² 미만의 과체중 구간에서 다른 구간에 비해 오히려 사망 위험이 감소하는 비만 역설(obesity paradox)과 체내 지방 분포, 특히 복부비만을 제대로 반영하지 못하는 BMI의 한계로 인해 다른 유용한 비만지표에 대한 필요성이 대두되었다.

복부비만을 반영하는 허리둘레와 관련된 여러 지표들을 고려해 볼 수 있는데, 그 중 허리-엉덩이둘레 비는 2개의 서로 다른 측정
비만지표보다 만성질환 및 심혈관 대사질환과 더 밀접한 연관성이 있다는 결과들이 나왔다[20].

본 연구에서도 과체중 성인에서 WHtR가 대사증후군 요소와 연관성이 있으며, 다른 여러 비만지표들과 비교했을 때 WHtR이 대사증후군, 고혈압, 당뇨와 같은 생활습관병을 예측하는 가장 좋은 비만지표로 나타났다.

이제 복부비만 군에서의 WHtR의 절단값은 확정된 것은 없으나, 이전 연구 결과들에 따라 WHtR의 결과가 0.5가 대사질환의 발생 위험이 높은 위험군을 선별하는 효과적인 기준치일 수 있다[21,22]. 또한 본 연구에서도 WHtR이 대사증후군, 고혈압, 당뇨와 같은 생활습관병의 발생 위험, 대사증후군, 고혈압, 당뇨와 같은 생활습관병의 예측하는 가장 좋은 비만지표로 나타났다.

WHtR이 생활습관병을 예측하는 가장 좋은 비만지표이며, 절단 값으로 0.5가 적절하다는 연구결과를 통해 우리는 이상하게 허리 둘레와 신장 사이의 비율을 구함으로써 손쉽게 대사증후군, 고혈압, 당뇨와 같은 생활습관병을 예측할 수 있으며, 이전 연구결과들에 따라 WHtR의 절단값 0.5가 대사질환의 발생위험을 높이는 위험군을 선별하는 효과적인 기준점이 될 수 있다[21,22]. 또한 본 연구에서는 WHtR 0.5 이상인 복부비만군에서 복부비만군에 비해 대사증후군 요소의 변화가 더 많아 정상복부군에 비해 대사증후군 요소의 변화가 더 많았다.

WHtR이 생활습관병을 예측하는 가장 좋은 비만지표이며, 절단 값으로 0.5가 적절하다는 연구결과를 통해 우리는 이상하게 허리 둘레와 신장 사이의 비율을 구함으로써 손쉽게 대사증후군, 고혈압, 당뇨와 같은 생활습관병을 예측할 수 있으며, 이전 연구결과들에 따라 WHtR의 절단값 0.5가 대사질환의 발생위험을 높이는 위험군을 선별하는 효과적인 기준점이 될 수 있다[21,22]. 또한 본 연구에서는 WHtR 0.5 이상인 복부비만군에서 복부비만군에 비해 대사증후군 요소의 변화가 더 많아 정상복부군에 비해 대사증후군 요소의 변화가 더 많았다.

본 연구결과 중 흥미로운 점은, 고혈압을 예측하는 데 있어 가장 좋은 비만지표는 전체집단을 남녀로 세분화하여 분석했을 때 허리둘레와 신장 비율이 더 좋았고, 허리둘레와 신장 비율이 더 좋은 경우에서 고혈압의 발생 위험성이 더 높았다는 것이다. 이를 통해 허리둘레와 신장 비율이 대사증후군, 고혈압, 당뇨와 같은 생활습관병의 발생위험을 예측하는 데에도 유용할 것으로 생각된다.

본 연구결과 중 흥미로운 점은, 고혈압을 예측하는 데 있어 가장 좋은 비만지표는 허리둘레와 신장 비율이 더 좋았고, 허리둘레와 신장 비율이 더 좋은 경우에서 고혈압의 발생 위험성이 더 높았다는 것이다. 이를 통해 허리둘레와 신장 비율이 대사증후군, 고혈압, 당뇨와 같은 생활습관병의 발생위험을 예측하는 데에도 유용할 것으로 생각된다.

References

1. Korea Centers for Disease Control and Prevention. Korea health statistics 2016: Korea national health and nutrition examination survey (KNHANES VII-1). Cheongju: Korea Centers for Disease Control and Prevention; 2016.
2. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143-421.
3. Gang JG. Concept of lifestyle-related disease. Korean J Med. 2003;65:121-5.
4. Blair D, Habicht JP, Sims EA, Sylwester D, Abraham S. Evidence for an increased risk for hypertension with centrally located body fat and the effect of race and sex on this risk. Am J Epidemiol. 1984;119:526-40.
5. Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutrition. 2001;17:26-30.
6. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53:1925-32.
7. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71-82.
8. Chen Y, Copeland WK, Vedanthan R, Grant E, Lee JE, Gu D, et al. Association between body mass index and cardiovascular disease mortality in east Asians and south Asians: pooled analysis of prospective data from the Asia Cohort Consortium. BMJ 2013;347:f5446.
9. Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et al. Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med. 2011;364:719-29.
10. Jee SH, Sull JW, Park J, Lee SY, Ohr H, Guallar E, et al. Body-mass index and mortality in Korean men and women. N Engl J Med. 2006;355:779-87.
11. Misra A, Wasir JS, Vikram NK. Waist circumference criteria for the diagnosis of abdominal obesity are not applicable uniformly to all populations and ethnic groups. Nutrition. 2005;21:969-76.
Waist-to-Height Ratio in Overweight Adults

12. Ashwell M, Lejeune S, McPherson K. Ratio of waist circumference to height may be better indicator of need for weight management. BMJ. 1996;312:377.

13. Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56:303-7.

14. Lee CM, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61:646-53.

15. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13:275-86.

16. Grundy SM. Metabolic syndrome scientific statement by the American Heart Association and the National Heart, Lung, and Blood Institute. Arterioscler Thromb Vasc Biol. 2005;25:2243-4.

17. Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract. 2007;75:72-80.

18. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17:319-26.

19. Hsieh SD, Yoshinaga H, Muto T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk in Japanese men and women. Int J Obes Relat Metab Disord. 2003;27:610-6.

20. Hsieh SD, Yoshinaga H. Waist/height ratio as a simple and useful predictor of coronary heart disease risk factors in women. Intern Med. 1995;34:1147-52.

21. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0·5 could be a suitable global boundary value. Nutr Res Rev. 2010;23:247-69.

22. Ashwell M, Gibson S. Waist-to-height ratio as an indicator of ‘early health risk’: simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open. 2016;6. DOI: 10.1136/bmjopen-2015-010159.
조기진통 임부 대상의 복식호흡요법 프로그램 효과에 대한 체계적 문헌고찰 및 메타분석
박서아
경운대학교 간호학과

The Effect of a Breathing Relaxation Therapy for Pregnant Women with Preterm Labor Pain: a Systematic Review and Meta-Analysis
Seo-A Park
Department of Nursing, Kyungwoon University, Gumi, Korea

To evaluate the effects of abdominal breathing relaxation therapy on anxiety, stress, pain for pregnant women with preterm labor pain. Electronic databases, including PubMed, OVID MEDLINE, RISS, Google Scholar and Korean databases and were searched through April 2021. 401 studies were identified; 5 were suitable for meta-analysis. Cochrane's risk of bias tool and the R version 3.5.2 (Meta-analysis with R) program were used. The authors performed a meta-analysis of 5 trials that met eligibility criteria. Two randomized, controlled trials (RCTs) and three non-RCTs examined a total of 533 pregnant women with preterm labor pain patients who received breathing relaxation therapy were compared with those who received control or usual care (no intervention). The findings in this study indicate that effect size of breathing relaxation therapy for anxiety was Hedges’ g = -0.93 (95% CI: -1.46 to -0.41), as indicated by a "large effect size" and the effect size of stress was Hedges’ g = -0.59 (95% CI: 0.22 to 0.95) as indicated by a "moderate effect size". The effect size of BP was Hedges’ g = -1.03 (95% CI: -1.43 to -0.63), as indicated by a "large effect size". Overall, abdominal breathing relaxation therapy had beneficial effects on anxiety, stress and BP, and it was statistically significant. In the meta-subgroup analyses by approach type, intervention duration had a significant effect. These results indicate that abdominal breathing may be an effective nursing intervention for pregnant women with preterm labor.

Keywords: Anxiety, Meta-analysis, Obstetric labor, Preterm labor, Relaxation therapy

Introduction

1. 연구의 필요성

의료기술의 발달과 산전관리 교육이 꾸준히 증가하고 있지만 조기진통과 조산의 빈도는 계속 증가하고 있다[1, 2]. 최근 우리나라의 조산율은 2007년에는 5.2%, 2010년 5.9%, 2017년 7.6%로 10년 만에 1.5배 이상 증가하고 있다[3]. 조기진통이 진행되어 임신 20주에서 임신 37주 사이에 발생할 경우를 조산이라고도 말한다[4]. 조산의 주 원인인 조기진통은 임신 3기의 호르몬 혼합물이며 전체 임신의 6~15%를 차지할 정도로 높고, 자궁경부와 자궁주출을 동반하게 된다[4]. 이러한 조기진통의 원인은 이전의 조산, 이전 임신 2~3기의 유산, 산모의 나이, 영양 상태, 태issance, 자궁내 감염, 자궁 경부 기형, 자궁경부 손상, 내과적 질환, 스트레스 등의 임부 측 요인과 다태아, 양수
과증, 태반이상, 태아 기형 등의 태아측 요인을 있다[5]. 이처럼 조기진통의 발생 추정요인이 다양하고, 조기진통에 대해 많은 연구가 이루어지고 있지만 정확한 원인은 파악하기 어려운 실정이다[6,7].

현재 조기진통 일부의 일반적인 관리로는 임신기간 연장을 위함
여 병원에 입원하여 침상안정을 취하면서 필요에 따라 진동약제(tocolytic drug)를 투여 받는다[4]. 이 과정에서 조기진통 일부들은
가족들과 상의되어 낮은 병원 환경에 적용해야 하고, 절대안정으로
인하여 활동이 제한되며, 조산의 가능성이 태아의 안녕에 대한 염
려 등으로 병안, 스트레스, 신체적 불편감 및 피로 등을 경험하는
것으로 알려져 있다[8-10]. 불안을 느끼게 되면 자율신경계의 신경
신경을 활성화시켜 카테놀미닌의 방출이 증가되어 말초혈관이 수
축되고 혈압과 백혈구 증가를 유발하는 신경계 반응을 야기하게 된다[11].
그리므로 조기진통 일부가 병원에서 진동약제를 침료를 받는다
하더라도 지속되는 불안 및 스트레스는 일부 태아에게 위험요인
으로 작용될 수 있다[9,11]. 따라서 간호사는 조기진통 일부의 원인
와 위험요소를 조기 확인하고, 침상안정 및 약물요법으로 자궁수축
활동을 억제하도록 하는 신체적 간호뿐만 아니라, 심리적 불안으로
발생되는 스트레스를 감소시키기 위해 정서적 지지와 간호를 해야
한다[9,12,13].

간호중재로서 이완요법은 불안, 스트레스와 관련된 정신적 신체
적 증상의 치료에 주목되어되었으며, 조기진통 일부의 불안 및
스트레스 완화를 위해 다양한 프로그램이 진행되고 있다. 지금까지
조기진통 일부의 간호중재는 입원중 조기진통 완화를 위해 투여되
는 약물 등의 의학적 치료 외에도 불안, 스트레스를 완화하기 위
하여 복식호흡[14-16], 음악요법[17-19], 이완요법[20-22]과 같은 다
양한 프로그램이 국내외에 수행되었다.

이완요법에는 복식호흡, 음악요법, 점진적 근육이완요법, 자가
혼합법, 명상법 등이[14-19,23-25] 있으며 그 중 복식호흡은 전
통적인 이완요법[26]으로 일명 웃음가호흡법이라고 한다. 이는 가
장 효과적으로 신소와 탄산가스를 교환시키기 동시에 이완을 증진
시키는 방법이다[20] 그러나 이완요법으로 가장 많이 사용되고 있
는 복식호흡이 조기진통 일부의 불안 및 스트레스를 완화시키기 위
한 여러 연구들이 꾸준히 지속되고 있으며, 이에 따른 다양한 이완
중재방법을 적용한 개별 연구들이 시행되고 있다. 그러나 조기진통
 일부 대상의 복식호흡을 적용한 이완요법의 프로그램의 효과나 전
략에 대해 체계적으로 분석된 연구 없이 조기진통 일부의 간호중
재에 활용하기에 한계가 있다.

2. 연구목적
본 연구목적은 조기진통 일부 대상의 복식호흡을 적용한 이완요
법 프로그램의 선도연구들에 대해 주요 연구방법과 결과를 체계
적으로 고찰함으로써, 간호중재의 효과 확인을 바탕으로, 메타분석
을 통한 효율적 간호중재 방안 모색 및 기초적 근거를 제공하고자
하려는 것이다. 이를 바탕으로 향후 조기진통 일부에게 미치는 임상적
가능성 및 효과를 제시하고자 한다.

Materials and Methods

1. 연구 설계
본 연구는 조기진통 일부의 복식호흡을 적용한 이완요법 프로그
램이 불안, 스트레스, 혈압에 미치는 효과를 분석한 중재문헌에 대
한 체계적 문헌고찰 연구이다.

2. 연구대상
본 연구에서 분석대상 문헌을 선정하기 위하여 PICO(Population,
Intervention, Comparison, Outcome) 기준에 의거하여 국내외
의 연구문헌을 검색하였다. 구체적인 선정기준은 2021년 4월까지
의 조기진통 일부 대상으로 제공된 복식호흡을 적용한 이완요법 프
로그램의 효과를 검증한 국내외 연구를 적용하였다. 분석대상
문헌은 PICO에 따라 대상환자(0)는 조기진통을 진단받은 일부, 중재
(1)는 복식호흡을 적용한 이완요법, 비교집단(C)으로는 복식호흡을
적용한 이완요법을 제공받지 않은 대조군, 중재결과(O)로는 불안, 스
트레스, 혈압으로 하였다. 연구설계로는 무작위 대조군 연구
(RCTs)과 비무작위 대조군 연구(NRCTs)로 실험군과 대조군의 효
과과기를 산출하는데 필요한 동등수치(평균, 표준편차)를 보고한
연구로 한정하여 선정하였다. 따라서 본 연구의 효과 분석에 포함
된 문헌의 선택기준은 첫째 조기진통을 진단받은 일부를 대상으로
한 연구, 둘째 실험군에게 복식호흡을 적용한 이완요법이 제공된
연구, 셋째 대조군에게 일상적인 간호(unusual care) 또는 보존적
치료(conservative Tx)가 적용된 연구, 넷째 복식호흡을 적용한 이완
요법의 효과(불안, 스트레스, 혈압)가 하나 이상 제시된 연구로
점검하였다. 문헌의 배제기준은 첫째 RCTs 또는 NRCTs가 아
닌 경우, 둘째 대조군이 없는 경우, 넷째 복식호흡을 적용한 이완요
법 프로그램이 제공되지 않은 경우, 페이 희석문헌(gray literature)
인 경우와 peer review 되지 않은 경우로 하였다.

3. 문헌 검색 및 선정기준
본 연구의 문헌검색과 선정 전 과정은 PRISMA(PREFERRED Re
porting Items for Systematic Reviews and Meta-Analysis)의 체계
적 문헌고찰 흐름도에 의거하여 수행하였다[26]. 조기진통 일부를
대상으로 다양한 복식호흡을 적용한 이완요법이 제공된 연구를 찾기
위해 인터넷을 활용한 국내외, 외 학술 데이터베이스를 활용하였
으며, 문헌검색 시 검색 기간에 제한을 두지 않고 2021년 04월까
지 진행하였다.

문헌검색은 전 세계 데터베이스로는 Ovid MEDLINE과 미국 국
립의학도서관의 PubMed을 사용하였으며, Medical Subject Head-
ing(MeSH) Database를 통해 조기진통, 조기진통 일부, 조산, 간호

40

http://www.e-kmj.org
교육프로그램, 간호중재 등이 표현되는 MeSH 용어와 유의미, 관련 용어를 확인하였다. 검색어로는 (preterm* OR labor* OR pregnant*) AND (nursing education* OR nursing information* OR nursing intervention* OR evaluation* OR education* OR program*)을 조합하여 검색하였다. 국내 데이터베이스로서 학술연구 정보서비스(RISS), Google Scholar를 사용하여 중복 및 완성된 학술지 및 학위논문을 검색하였으며, 일부 문헌은 수기검색을 통해 추가하였다. 국내문헌 데이터베이스는 MeSH 검색 기능이 없으므로 검색의 특이도를 위해 ‘프로그램’과 ‘중재’에서 검색어를 도출하여 검색하였다. 핵심질문의 구성요소인 연구대상자(P)와 중재(I)로부터 주요 검색어를 도출하여 검색필드를 구성하였다. 검색된 연구 논문은 문헌관리프로그램(EndNote X9)을 이용하여 정리하였다.

4. 문헌의 질 평가
문헌의 질 평가를 위해 2개의 도구가 사용되며, RCT에 대해서는 Cochrane Collaboration의 Risk of bias (RoB) 도구로 평가하였고, NRCTs에 대해서는 한국보건의료연구원(National Evidence-based Healthcare Collaborating Agency)의 Risk of bias assessment tool for non-randomized study (RoBANS) 도구를 사용하여 문헌의 질 평가를 실시하였다[27]. RoB 평가도구 문헌은 무작위 배정순서 생성, 배정순서 은폐, 연구 참여자, 연구자에 대한 눈 가림, 결과평가에 대한 눈가림, 불분명한 결과자료, 선택적 보고 및 그 외 빠풀림으로 포함되어 있으며 RoBANS 평가도구 문헌은 대상군 비교가능성, 대상군 선정, 교란변수, 노출 측정, 평가자의 눈 가림, 결과평가, 불완전한 결과자료, 선택적 결과보고로 포함되어 있다. 이 도구들은 각 문헌에 대하여 낮음, 높음, 불확실로 평가하였다.

5. 자료분석 방법
총 5편의 연구는 R version 3.5.1(Meta-analysis with R)과 RevMann 5.3을 활용하여 분석하였다. 메타분석의 대상 측정값은 연속형 변수인 경우, 분석 시 실험군과 대조군간 평균 차이(mean difference)로 기술하였고, 종속변수가 다른 경우를 비교하기 위해 효과크기는 교정된 표준화 평균 효과크기(corrected standardized mean difference), 즉 Hedges’ g를 산출하였고, 95% 신뢰수준(confidence intervals, CI)을 계산하였다[28-30]. 각 효과크기의 가중치(weight)는 분산의 역수(inverse of variance)를 이용하였다. 평균효과 크기는 각 연구의 연구방법, 표본, 중재방법, 평가도구 등이 서로 다양한지를 점검할 수 있고 임의효과모형(random effect model)을 적용하여 산출하였다. 효과크기의 이질성이 Q값과, Q값의 유의확률, 실제 분산비율(I²)로 제시하였다. 이질성이(heterogeneity)의 정도는 전체 분산 중 실제 분산이 차지하는 비율인 I²가 25.0% 이하이며 이질성이 낮은 것으로, 25.0% 초과 75.0% 이하는 중간정도의 이질성이 있는 것으로, 75.0% 이상은 이질성이 높은 것을 의미한다[31]. 따라서 실제 분산비율이 50% 이상이고, Q값의 유의확률이 0.10보다 작을 경우 효과크기의 이질성이 있다고 보고 있다[31]. 전체 연구결과의 타당성을 평가하기 위한 출판 비풀림 위험 (publication bias)은 캐날로 그림(funnel plot)으로 검토하였다.

Results
1. 자료정선
문헌 검색결과 관련 논문 중 245편이 검색되었고, 문헌을 총이론에서 선택한 데이터 중 29편을 제외하여 총 216편이 도출되었으며, 이 중 문헌을 제목, 연도, 저자, 학위논문 중심으로 일부 대조하여 문헌과 초록 중심으로 연구 대상, 중재 및 연구설계의 제외 기준 적용하여 선정기준에 충족되지 문헌 203편을 제외하여 13편만 추출되었다. 13편의 조합을 토대로 결과 대상자와 아닌 경우 1편, 학위논문 3편, 수치가 보고되지 않은 연구 3편, 질적 연구 1편을 제외하여 총 8편을 제외한 5편의 연구가 선정되었다. 종합 선정기준에 부합한 5편 중, RCTs 2편, NRCTs 3편이 본 연구에 분석대상이 되었다(Fig. 1).

2. 질 평가 결과
최종 5편의 연구 중 RCTs는 2편[22,32]으로, 2편의 모든 문헌에 서 연구주제는 명확하였고, 실험군과 대조군의 동질성 검사가 이루어졌으며, 동질도구는 신뢰도와 타당도가 확보된 것을 사용하였다. 분석 시에는 적절한 통계방법을 사용하였고, 탐색률은 20% 미만이었으며, 무작위배정순서 생성 및 배정순서 은폐의 비풀림 위험은 2편의 무작위 연구 모두 비풀림 위험 '낮음'으로 평가하였다. NRCTs는 3편[14,16,21]으로, 3편의 모든 문헌에서 연구주제가 명확하였으며, 실험군과 대조군의 동질성 확보, 타당도와 신뢰도가 확보된 도구를 사용하였다. 이 중 무작위배정순서 생성에서 '높음'은 1편으로 평가하였고, 배정순서 은폐의 비풀림 위험 '높음'은 1편으로 평가하였다. 그 외 문헌에서는 모두 비풀림 위험 '낮음'이었다. 따라서 본 연구에서 선택한 문헌 5편의 전체 질 평가 결과 비풀림 위험은 전반적으로 낮은 것으로 판단하였다(Fig. 2).

3. 연구의 일반적 특성
최종 분석대상인 RCTs 2편의 연구가 메타분석에 포함되었고 최 종 선택된 문헌의 일반적 특성은 Table 1과 같다. 연도별 분포는 2009-2010년 3편, 2011-2019년 2편이 총합되었었다. 복식효율을 적용한 이원효과 프로그램을 제공받은 실험군의 대상자수는 총 293명이었고, 대조군의 경우 대상자수는 총 240명의 분포를 보였다. 본 연구의 대상자의 평균 연령은 32.09 ± 4.13세로 나타났다. 증례유형은 복식효율화임을 이용한 이원방법이 대부분으로 정보 제공법, 상상중심을 함께 병행하여 교육을 방법 2편이었다. 증례의 효과 측정시기에는 3일 후 2주에 가장 많았고, 1일, 2일, 5일, 2
4. 복식호흡을 적용한 이완요법의 효과 비교

본 연구는 복식호흡 등급 대상의 복식호흡 이완요법프로그램의 효과를 확인하기 위해 불안(n = 5), 스트레스(n = 4), 혈압(n = 3)을 두 집단의 표준화된 평균치(Hedges’ g)로 검토하였다(Fig. 3).

1) 불안

복식호흡 이완요법 중재에 대하여 결과변수별로 분석한 결과 불안의 경우 표준화된 평균 효과크기 Hedges’ g는 -0.93(95% CI: -1.46, -0.41)로 나타나 큰 효과가 있었으며, 통계적으로 유의하게 나타났다(p < 0.01). 문헌의 동질성 검증결과 Q = 22.80(p < 0.0001)로 유의하여 이질성 정도가 큰 것으로 나타났다(I² = 82%).

본 연구에서 복식호흡 이완요법 중재의 전체 이질성이 I² = 82%(Q = 22.80, p < 0.0001)로 나타나 연구간 효과크기가 서로 다른 배경, 즉 효과크기의 이질성에 대한 탐색적 설명이 필요하다고 판단되었다. 따라서 중재방법, 중재시간, 중재기간을 조절변수(moderators)로 한 메타 ANOVA를 실시하였다(Table 2).

중재방법을 조절변수로 하여 분석한 결과 복식호흡군과 복식호흡의 다른 중재를 병행한 군 간의 Q값은 Qb = 0.57(df = 1, p = 0.448)로 나타나 중재방법 간의 효과크기 차이는 통계적으로 유의하지 않았다.
Table 1. Table caption

Author, Year [Reference No]	Design	Participants	Intervention	Outcome	Instrument
Exp. (Mean ± SD)/ Con. (Mean ± SD)	Program	Time/Session/Duration	Variable	Name	
Chang, 2009 [16]	NRCT	31.50 ± 3.9	1:1	Anxiety	VAS-A
		31.40 ± 3.5	5min/once/1days	BP	BP
Choi, 2010 [21]	NRCT	31.70 ± 3.3	1:1	Anxiety stress	STAI
		32.20 ± 3.5	(14min/1days) /5days	BP	VAS-A
Yu, 2010 [14]	NRCT	29.61 ± 4.46	1:1	Anxiety stress	STAI
		29.64 ± 5.43	(15min/1days) /3days	Stress of preterm labor	Stress of preterm labor
Chuang, 2011 [22]	RCT	31.72 ± 4.45	1:1	Anxiety stress	VAS-S
		30.39 ± 4.29	(1,2,4,8,12,16weeks)	Stress of preterm labor	Stress of preterm labor
Kao, 2019 [33]	RCT	32.83 ± 4.07	1:1	Anxiety	BAI
		33.10 ± 4.21	(admission/2weeks)	Anxiety	BAI

Exp, Experimental group; Cont, Control group; RCT, Randomized controlled trials; BP, Blood pressure; VAS-A, Visual analog scale-anxiety; BAI, Beck anxiety inventory; VAS-S, Visual analog scale-stress; STAI, State trait anxiety inventory.

Fig. 3-1 Anxiety

Fig. 3-2 Stress

Fig. 3-3 Bp

Fig. 3. Forest plots of the effects of relaxation therapy.
Table 2. Effect of moderator variable

Category	Subgroup	k	Hedge'g	95% CI Lower limit	95% CI Upper limit	I²	Qb (p)
Type of intervention	Abdominal relaxation	2	-0.61	-1.80	0.579	88.6%	0.57(0.448)
	Other	3	-1.14				
Intervention duration	15 min below	3	-0.99	-2.00	0.01	88%	0.06(0.001)
	More than 15 min	2	-0.85				
	Less than 5 days	2	-0.61	-1.80	-0.57	88.6%	0.57(0.448)
	More than 5 days	3	-1.14				

CI, Confidence interval; Qb, Q-value between subgroups; k, Number of studies.

Fig. 4. Funnel plot.

산출되어 관찰된 평균 효과크기 0.93보다 평균 효과크기가 감소된 것을 알 수 있다. 하지만 보정된 평균 효과크기의 95% 신뢰구간이 -0.27에서 -0.19로 나타나 통계적으로 유의하지 않으므로 전체 연구결과에 영향을 줄 수 있는 것으로서 연구결과에 영향을 줄 수 있는 것으로 나타났다.

Discussion

1. 논의

본 연구는 조기진통 임부 대상으로 복식호흡 이완요법으로의 효과를 측정한 연구이다. 본 연구의 결과를 고찰한 결과, 복식호흡 이완요법은 조기진통 임부의 불안을 감소시켰으며, 중재의 효과는 임신과 임상간에 유의하게 차이를 보였다. 또한, 분 연구결과에 의한 통계적 유의성을 높이기 위해 상대적인 축정도구(SAI)나 시평도(VAS-A)를 사용하였으며, 생리적 불안으로 중재하기에 발현, 맥락, 밝은 배부담도, 태어날정도를 사용하였다. 복식호흡 이완요법은 임부 스트레스 축정도구와 시상의 차이를 중재시에 유의하게 감소시켰다.
본 연구에서 문헌의 이질성이 높아 세부를 분석을 수행하였 다. 중재기간을 세부로 분석한 결과, 임원일로부터 5일간 중재 적용하는 방법이 유의하지 않은 것으로 나타났다. 이는 조기 진통 임상의 증상이 완화되는 시기의 5일이 이으로 중재법은 임원일로부터 5일간 적용하는 것이 효과적이라 보고한 연구 [21]와는 상반되는 결과이다. Yu와 Song [4]에 따르면, 연속된 3일간의 복식호흡 증가가 조기진통 임상의 불안과 스트레스, 그리고 진통약제의 투여 양 감소에 긍정적인 결과를 보였고, Yang 등 [17]이 중국에서 시행한 연구에서도 음악요법을 적용한 이완요법을 연속된 3일 동안 적용한 결과 조기진통 임상의 불안감과 스트레스 감소에 기여하는 것으로 보고하였다. 이완요법은 교감신경계 혼란과 관련된 질환에서 치료적, 예방적으로 유용하고, 대상자의 개별적 상황에 따라 스스로 적용이 가능함으로써 효과가 높다. 증상적 증기는 조기진통 임상의 특성을 고려하여 신체적, 정서적 상태에 따른 간호요구를 파악하여 증가기간 및 시기를 체계적으로 모색함으로써 보다 향상된 질적 간호 수행을 기대할 수 있다.

증례기간을 세부로 분석한 결과, 하루에 15분 이상 복식호흡을 이용한 이완요법을 적용하는 방법이 효과적인 것으로 나타났다. Shim [32]의 연구에서도 조기진통 임상의 복식호흡 적용 시 1회 중재 방법으로 2회 약 3분간 적용 시 대상자들이 기간이 완료함을 발견하여 복식호흡 단위를 5분으로 고정시켜 증가하였다. 호흡주기의 작용기전의 하나로 인지적 전환(cognitive diversion)과 인지적 재구성(cognitive restructuring)은 부정적인 사고부터 관심을 다른 새로운 전환시키면서 일시적으로 분산을 감소시킬 수 있다고 하였다 [15]. 복식호흡은 각기 기초시키는데 효과적이며, 대상자가 스스로 적용이 가능하고 부작용을 초래하지 않다 [32]. 그러나 조기진통 임상은 자극수축 및 복합적인 간호요구를 가진 대상으로 동통적인 증가가 필요하다. Kao 등 [33]의 연구에서는 정보제공과 함께 복식호흡을 이용한 이완요법을 하루에 10분씩 3회~5회로 총 30~40분을 진행하여 조기진통 임상에서 불안 장소가 감소한 것으로 나타났는데 이는 조기진통 임상에 관한 다양한 정보를 함께 제공함으로써 유의하게 나타난 것이라 생각된다.

이상으로 조기진통 임상을 위한 복식호흡을 적용한 이완요법의 효과에 대한 체계적 문헌고찰 및 메타분석한 결과, 복식호흡은 이용한 이완요법들이 다양한 방법으로 시행되고 있으며, 이를 통해 불안, 스트레스, 혈압 감소에 효과가 있다는 것을 알 수 있었다. 다만 본 연구에서는 조기진통 임상의 복식호흡을 적용한 이완요법 논문의 수가 적어 효과가지 분석하기에 충분하지 못하였으며, 분석에 포함된 논문의 다수가 NRCSTs였으며 연구결과를 일반화하기나 확대 해석하는데 한계가 있다. 따라서 본 연구 결과를 통하여 조기진통 임상의 이완요법 효과를 검증하는 RCTs가 더 누적되어야 할 것으로 판단된다.

2. 결론 및 제언

본 연구는 임상현장 중 주요기 이완요법과 사망률의 가장 큰 원인이 되며 조상의 발생원인이 되고 있는 조기진통 임상을 대상으로 복식호흡을 이용한 이완요법 효과를 검토하였다. 조기진통 임상의 복식호흡을 이용한 이완요법 효과를 증례방법, 증례기간, 증례기간 동안 효과를 비교검토하였으며 조기진통 임상의 이완요법을 적용할 수 있을 것으로 사료된다. 그러나 본 연구에 포함된 대부분의 문헌은 NRCSTs로 증례효과를 일반화하는 데 한계가 있다. 따라서, 추후 연구에서는 잘 설계된 RCTs의 누적으로 자료를 이용할 필요가 있다.

조기진통 임상은 임상 임상에 비해 높은 불안과 더 많은 스트레스를 가지며, 임상으로 인한 스트레스뿐만 아니라 조상 가능성, 테이 안정에 대한 영향 등에 급격한 신체적 변화가 나타난다 [10]. 여러 역학연구에서도 조기진통 임상이 임상보다 불안 및 스트레스 정도가 상당히 높은 것으로 보고되고 있으며, 임상의 산전 스트레스는 조산 발생과도 높은 관련이 있다고 보고되고 있다 [9, 13]. 따라서 본 연구에서는 조기진통 임상을 대상으로 복식호흡을 이용한 이완요법 효과를 동등적으로 분석하여 세부적 정보를 제공함으로써, 임상임상의 가이드라인을 제시할 수 있을 것이라 생각된다. 이는 간호사들이 임상현장에서 조기진통 임상의 이완요법 교육프로그램을 제공할 때 효율적인 개입방안을 선택할 수 있게 도와주며, 더불어 조기진통 임상의 정량적 치료효과로 인해 유의하게 나타난 것이라 생각된다.

본 연구는 조기진통 임상의 복식호흡을 이용한 이완요법 프로그램 효과를 메타분석을 통해 동등적으로 평가하였다. 총 5권의 문헌을 토대로 분석한 결과 복식호흡을 이용한 이완요법 프로그램은 불안 g = -0.93, 스트레스 g = 0.59, 혈압 g = -1.03으로 동등적으로 유의하게 감소시켰다. 본 연구를 통해 복식호흡을 이용한 이완요법 프로그램은 적용한 조기진통 임상의 불안, 스트레스, 혈압에 긍정적인 영향을 미치며, 특히 임상 시 15분 이상의 교육이 효과적인 것으로 나타나 추후 임상현장에서 조기진통 임상을 대상으로 이완요법 제공 시 이를 활용할 수 있을 것으로 기대한다.

Conflict of interest

All authors declare no conflicts-of-interest related to this article.

References

1. Lee NH. Ways to improve prenatal care in a low-fertility Korea. Health Welf Policy Forum. 2014;217:64-74.
2. Morrison JC, Roberts WE, Jones JS, Istwan N, Rhea D, Stanza-
no G. Frequency of nursing, physician and hospital interventions in women at risk for preterm delivery. J Matern Fetal Neonatal Med. 2014;16:102-5.
3. Korean statistical information service (KOSIS) [Internet]. Statistics Korea. 2020 [cited 2021 May 05]. Available from: https://kosis.kr/statisticsList/statisticsListIndex.do?parentTd = E.1&vwd=
4. Ricci SS. Essentials of maternity, newborn and women’s health nursing. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.
5. Cunningham FG, Williams JW. Williams obstetrics. 23rd ed. New York: McGraw-Hill; 2010.
6. Goldenberg RL. The management of preterm labor. Obstet Gynecol. 2002;100:1020-37.
7. McParland P, Jones G, Taylor D. Preterm labour and prematurity. Curr Obstet Gynaecol. 2004;14:309-19.
8. Kim MK, Lee YW, Cho IS, Lim JY. Change of stress and nursing needs after hospitalization in preterm labor women. Korean J Women Health Nurs. 2009;15:24-31.
9. Moon DH. The comparative study with fatigue, anxiety and stress between full-term and preterm pregnancy [Doctoral dissertation]. Gwangju: Chonnam National University; 2006.
10. Ryu KH, Shin HS. Phenomenological study on experience of preterm labor. Korean J Women Health Nurs. 2009;15:140-9.
11. Benson H, Beary JF, Carol MP. The relaxation response. Psychiatry. 1974;37:37-46.
12. Kim JY. The use of imagery-centered music listening for relaxation for women with high-risk pregnancy. Korean J Music Ther Educ. 2010;7:17-36.
13. Kim HK. Stress and coping style of women with preterm labor [master’s thesis]. Seoul: Seoul National University; 2003.
14. Yu WJ, Song JE. Effects of abdominal breathing on state anxiety, stress, and tocolytic dosage for pregnant women in preterm labor. J Korean Acad Nurs. 2010;40:442-52.
15. Chang SB, Park HJ, Bae CH, Shim JO. The effects of abdominal breathing on preterm labor anxiety and frequency of uterine contraction. Clin Nurs Res. 2007;13:31-41.
16. Chang SB, Kim HS, Ko YH, Bae CH, An SE. Effects of abdominal breathing on anxiety, blood pressure, peripheral skin temperature and saturation oxygen of pregnant women in preterm labor. Korean J Women Health Nurs. 2009;15:32-42.
17. Yang M, Li L, Zhu H, Alexander IM, Liu S, Zhou W, et al. Music therapy to relieve anxiety in pregnant women on bedrest: a randomized, controlled trial. MCN Am J Matern Child Nurs. 2009;34:316-23.
18. Park HJ, Sung MH. Effects of music therapy on stress of preterm labor and uterine contraction in pregnant women with preterm labor. Korean J Women Health Nurs. 2017;23:109-16.
19. Oh MO, Kim YJ, Baek CH, Kim JH, Park NM, Yu MJ, et al. Effect of music intervention on maternal anxiety and fetal heart rate pattern during non-stress test. J Korean Acad Nurs. 2016;46:315-26.
20. Janke J. The effect of relaxation therapy on preterm labor outcomes. J Obstet Gynecol Neonatal Nurs. 1999;28:255-63.
21. Choi MS, Park YJ. The effects of relaxation therapy on anxiety and stress of pregnant women with preterm labor. Korean J Women Health Nurs. 2010;16:336-47.
22. Chuang LL, Lin LC, Cheng PJ, Chen CH, Wu SC, Chang CL. Effects of a relaxation training programme on immediate and prolonged stress responses in women with preterm labour. J Adv Nurs. 2012;68:170-80.
23. Son CN. Relaxation techniques, relaxation theories, and relaxation states. Korean J Health Psychol. 2012;17:793-822.
24. Bonadies V. Guided imagery as a therapeutic recreation modality to reduce pain and anxiety. Ther Recreation J. 2009;43:43-55.
25. An YG, Chang HK, Baik KI. Development of mindfulness for pregnant women (MPW) program and its psychological efficacy. Korean J Cog Biol Psychol. 2011;23:321-37.
26. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6. DOI: 10.1371/journal.pmed.1000097.
27. Kim SY, Park JE, Lee YJ, Jang BH, Son HJ, et al. NECA’s guidance for undertaking systematic reviews and meta-analyses for intervention. Seoul: National evidence-based healthcare collaborating agency; 2011.
28. Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods. 2002;7:105-25.
29. Netz Y, Wu MJ, Becker BJ, Tenenbaum G. Physical activity and psychological well-being in advanced age: a meta-analysis of intervention studies. Psychol Aging. 2005;20:272-84.
30. Becker BJ. Synthesizing standardized mean-change measures. Br J Math Stat Psychol. 1988;41:257-78.
31. Higgins JP. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [cited 2021 May 05]. Available from: www.cochrane-handbook.org.
32. Shim JO. The Effects of abdominal breathing on preterm labor...
33. Kao MH, Hsu PF, Tien SF, Chen CP. Effects of support interventions in women hospitalized with preterm labor. Clin Nurs Res. 2019;28:726-43.
Introduction

Asphyxiation is a state of insufficient oxygen supply to the body. While it typically is caused by low oxygen concentration in air it can occur in normal oxygen concentrations, if there is an impairment to the oxygen transportation system, such as in carbon monoxide poisoning. Asphyxiant gases can be divided into chemical asphyxiants (such as carbon monoxide and hydrogen sulfide) which have a direct toxic effect, and simple asphyxiants (such as nitrogen, helium, and argon) which are not directly toxic to the human body. Simple asphyxiants, such as inert gases, cause asphyxiation by reducing oxygen concentration in air and in severe cases can cause death [1,2].

In Korea, suicides using asphyxiants have rapidly increased since 2008, following a celebrity death by carbon monoxide poisoning [3,4]. Argon, an inert gas used in welding, can be obtained relatively easily and inexpensively [5,6]. Although in Korea there have been reports of domestic suicide attempts using inert gases, attempts using argon gas are rare. Therefore, the authors report the first experience of suicide attempts using argon gas in Korea with a review of the literature.

Case

A 24-year-old man, with a history of depression, was brought into the emergency room with impaired consciousness. On arrival, his vital signs were as follows: blood pressure, 140/90 mmHg; pulse rate, 145 beats/min; respiratory rate, 29 breaths/min; body temperature, 37.4°C; oxygen saturation (using a non-rebreather mask), 97%. He was drowsy, Glasgow Coma Scale (GCS) 13/15, the pupils were equal in size (3 mm) and reactive to light. According to his par-
ents, they had left the house for about one hour and returned to find their son next to a cylinder of argon gas (Fig. 1). He was seated in a chair with a plastic bag over his face which was connected to the cylinder by a rubber pipe. There was condensation on the inside of the bag, and the mouth of the bag had a string that could be tightened around the neck to prevent gas leakage (Fig. 2). A suicide note and a receipt for the purchase of argon gas were found near the patient.

Initial, arterial blood gas analysis showed: pH, 7.265; pCO$_2$, 34.0 mmHg; pO$_2$, 101.4 mmHg; bicarbonate, 12.1 mmol/L; base excess, -10.6 mmol/L; lactic acid, 9.1 mmol/L; methemoglobin, 0.2% and carboxyhemoglobin, 0.5%. Blood tests showed: white cell count, 8,571/uL; hemoglobin, 13.6 g/dL; sodium, 134 mmol/L; potassium, 4.1 mmol/L; chloride 91 mmol/L; aspartate transaminase (AST), 42 U/L; alanine transaminase (ALT), 21 U/L; blood urea nitrogen (BUN), 11.0 mg/dL; creatinine, 0.85 mg/dL and glucose, 102 mg/dL. The patient was administered oxygen at 12 L/min via a non-rebreather mask, and normal saline infusion was commenced. Computed tomography of the brain was performed to exclude other causes of impaired consciousness; no acute lesions were observed. After three hours, the patient’s GCS score was normal (15/15), and he had a residual mild headache. Arterial blood gases and lactate levels normalized. The patient revealed he had attempted suicide following a deterioration in his depressive symptoms. He had learned about this method of suicide, and purchased the argon gas online. He was discharged without complications 2 days.

Discussion

Although inert gases are considered safe and easy to handle as they are unreactive, they can act as simple asphyxiants. These gases are typically defined as Group 18 (VIIIa) in the periodic table, and consist of helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn). Nitrogen may also be considered an unreactive gas [5,6]. The incidence of suicide by inert gas asphyxiation is increasing worldwide, and there have been several reports in Korea [7-9].

Fig. 1. An argon gas cylinder was found in the patient's living room.

Fig. 2. The patient was sitting in a chair with a plastic bag over his head, which was connected to the argon gas cylinder.
Argon is the most abundant inert gas on Earth, accounting for around 0.93% of the Earth’s atmosphere. It has a molecular weight of 39.95 g/mol, which is heavier than air (28.8 g/mol), and its specific gravity relative to air is 1.35 [5]. Argon is stable at high temperatures and is commonly used in steel and iron manufacturing, welding, and cutting. It is colorless and odorless making it difficult to detect. While it is not by itself toxic, in enclosed spaces asphyxiation can occur, as its higher density relative to air causes oxygen displacement [5, 6]. According to Yoo et al. [10], eight workers suffered asphyxiation injuries due to argon gas while working in enclosed spaces, between 1999 and 2007 in Korea.

Studies show that suicide attempts using argon are less common than those using helium or nitrogen. Azrael et al. [11] analyzed suicides in the United States between 2005 and 2012, and reported that 4% of deaths were caused by gas inhalation, of which carbon monoxide was most common (73%), followed by helium (21%), hydrogen sulfide (1%), and nitrogen (1%). Gunnell et al. [12] reported that of 2,495 suicide cases using gas between 2001 and 2011 in England, there were three deaths due to argon. Yau and Paschall [13] investigated 968 suicides, using chemical substances or gas between 2005 and 2014, and found six caused by argon gas poisoning; fewer than those caused by helium or nitrogen. However, experimental studies have reported that argon is a stronger asphyxiant than helium or nitrogen. Altland et al. [14] discovered that rats that had been exposed to helium, nitrogen, or argon showed survival rates after one hour of 92%, 60%, and 12% respectively, demonstrating that argon was the strongest asphyxiant. Another study identified that argon gas has a sedative effect via actions on GABA_α, the receptor targeted by benzodiazepines [15]. Thus, argon could present a more attractive option for those considering suicide as it may help alleviate fear. In Korea, argon gas is inexpensive and easily accessible online without any regard for intended use, so more concerns are arising.

The normal concentration of oxygen in air is 21%. Following argon gas inhalation, manifestations of oxygen deficiency appear when oxygen concentration drops below 16%; these include quickening of the pulse and respiratory rate, vomiting and headache. At oxygen concentrations below 10%, the patient may experience a loss of consciousness, seizure, and a dramatic decrease in pulse, ultimately resulting in death by asphyxiation. Prolonged resuscitation, beyond six minutes, could result in severe neurological sequelae [6, 16]. The treatment priority is to establish a rapid and plentiful oxygen supply, which may include mechanical ventilation [6]. In this case the patient’s suicide attempt was not successful, probably due to incomplete sealing of the plastic bag allowing outside oxygen to enter, and a fairly short duration of exposure to the argon.

Suicide using inert gas first gained public awareness in 2002, when Derek Humphry’s suicide manual, “Final Exit”, described a method involving helium and a plastic bag [17]. This ‘pain-free method’ has since spread indiscriminately on suicide websites. In an analysis of suicides involving inert gases in Korea, all cases used a plastic bag (Table 1). Lim et al. [8] analyzed 17 suicides using helium. The mean age was 30.6 years, with ten cases aged 20-29 years, three aged 30-39 years, and four aged 40-49 years. Younger individuals, who may be more familiar with the Internet, have easier access to suicide information online. Korea takes pride in its status as a world leader in information technology, though easily obtained suicide information could increase the risk of inert gas suicides. Prevention strategies must include strict monitoring of suicide websites and the introduction of robust systems for checking the identity and qualifications of those purchasing inert gases.

Conflict of interest

All authors declare no conflicts-of-interest related to this article.
References

1. Borron SW, Bebarta VS. Asphyxiants. Emerg Med Clin North Am. 2015;33:89-115.
2. Kwon BH. A study on asphyxiations occurring in the confined space, and their prevention. J Korea Saf Manag Sci. 2016;18:47-54.
3. Sohn K. The trend in suicide methods in South Korea in 1997-2015. Death Stud. 2017;41:303-10.
4. Chen YY, Yip PS, Chan CH, Fu KW, Chang SS, Lee WJ, et al. The impact of a celebrity’s suicide on the introduction and establishment of a new method of suicide in South Korea. Arch Suicide Res. 2014;18:221-6.
5. Korea Occupational Safety & Health Agency. Inert gas technical data. [cited 2010 December 22]. http://www.kosha.or.kr/kosha/data.
6. Peelen RV, Ramakers BP, Koopmans A. The dangers of argon, an inert industrial gas: beware of asphyxiation. Neth J Crit Care. 2019;27:165-8.
7. Ogden RD, Wooten RH. Asphyxial suicide with helium and a plastic bag. Am J Forensic Med Pathol. 2002;23:234-7.
8. Lim HS, Hahn KW, Kang HW. Observation of 17 asphyxial suicides by helium gas. Korean J Leg Med. 2013;37:78-83.
9. Ha H, Lim S, Kim JM, Park S, Yang KM, Kim SH, et al. A case of dyadic death associated with helium gas: an autopsy case report. Korean J Leg Med. 2014;38:121-5.
10. Yoo KM, Park HH, Chung GJ. A study on statistics for accidents in confined space in Korea. J Korean Soc Occp Environ Hyg. 2009;19:363-9.
11. Azrael D, Mukamal A, Cohen AP, Gunnell D, Barber C, Miller M. Identifying and tracking gas suicides in the US using the National Violent Death Reporting System, 2005-2012. Am J Prev Med. 2016;51:219-25.
12. Gunnell D, Coope C, Fearn V, Wells C, Chang SS, Hawton K, et al. Suicide by gases in England and Wales 2001-2011: evidence of the emergence of new methods of suicide. J Affect Disord. 2015;170:190-5.
13. Yau RK, Paschall MJ. Epidemiology of asphyxiation suicides in the United States, 2005-2014. Inj Epidemiol. 2018;5:1.
14. Altland PD, Brubach HF, Parker MG. Effects of inert gases on tolerance of rats to hypoxia. J Appl Physiol. 1968;24:778-81.
15. Abraini JH, Kriem B, Balon N, Rostain JC, Risso JJ. Gamma-amino butyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg. 2003;96:746-9.
16. Park JH, Kwon M, Kim HJ, Choi BT. Asphyxia due to oxygen deficiency by evaporated liquid nitrogen. Korean J Leg Med. 2015;39:88-91.
17. Gilson T, Parks BO, Porterfield CM. Suicide with inert gases: addendum to final exit. Am J Forensic Med Pathol. 2003;24:306-8.
18. Park SW, Yeom SR, Han SK, Kim HB, Cho YM, Bae BK, et al. Attempted suicide by nitrogen Gas asphyxiation: a case report. J Korean Soc Clin Toxicol. 2017;15:47-50.
Introduction

Cardiac and renal diseases are related physiologically and often co-exist in patients with either one disease. The population of patients with end-stage cardiac and renal diseases is growing, and the waiting lists for one or both organ transplantation continue to grow. Here, we describe the case of performing general anesthesia for combined heart and kidney transplantation. A 55-year-old male who has underlying diabetes mellitus, chronic kidney failure and heart failure was referred for combined heart and kidney transplantation. After the induction of general anesthesia, heart transplantation was done. Norepinephrine, epinephrine, and dobutamine infusions were initiated for the weaning from cardiopulmonary bypass. After heart transplantation, continuous renal replacement therapy was used in operation room. Kidney transplantation was done and the patient was sent to intensive care unit without extubation. The patient was discharged to general ward on postoperative day 6 after extubation. Since more patients require multi-organ transplantation, it is important for anesthesiologist to understand the physiology of underlying disease and the process of operation.

Keywords: Anesthetics, Inhalation; Heart-kidney transplantation; Hemodialysis
Case Report

환자는 55세, 신장 174 cm, 체중 81 kg의 남성으로 2009년부터 당뇨병으로 진단받고 치료받던 중이며, 심실실막염으로 심역형 제2기(implantable cardioverter defibrillator)를 삽입 받은 상태였다. 6년 전에는 간첩화와 당뇨병 신부전을 진단받았고, 당시 시행한 경흉부 심초음파검사 결과에서 좌심실 심박출계수(cardiac index) 52%, 좌심실 수축기능에서 전반적인 경도 감소, 좌심실 이완기능 이상 2단계의 소견이 있었다. 이후 조절되지 않는 전신부종으로 입원과 퇴원을 반복하였다. 1년 전 시행한 경흉부 심초음파검사에서 좌심실 심박출계수 23%, 좌심실과 우심실 수축기능이 전반적인 감소와 좌심실 이완기능 이상 3단계로 악화된 소견을 보였다. 이후 혈액검사 상 혈중 요소질소(blood urea nitrogen)와 크레아티닌(creatinine) 농도가 지속적으로 상승하였고 furosemide의 지속적인 사용으로 소변량이 유지되지 않았으며 고혈압증상이 발생하여 핀카테터(permanent catheter) 삽입 후 투석을 시도하였고 dobutamine 정주 및 펌프마크로립사를 통한 혈액투석을 시도하면서 이식 대기 상태를 지속하였다.

뇌사 장기기증자의 장기체계성 심장 심장동맥 동맥 사라지지 않고 수술 중을 받는 환자의 경우 5 mcg/kg/min dobutamine를 투여하여 경호흡기의 중심대장관(peripherally inserted central catheter)를 통해 지속적으로 정주하면서 수술실로 이송하였다. 수술실 입실 후, 50% 신장도와 비침습적 혈압 감시장치를 부착하였고, Rainbow® 백혈관조절도 재정하(Masimo Corporation, Irvine, CA, USA)를 오른 쪽 전방성관에 위치하여 산소포화도, 관류지수, 경피적 혈액글로빈 농도를 지속적으로 감시하였다. 마취유도 전에 측정한 혈압 수치는 혈압 140/67 mmHg, 심박수 60회/분, 백혈관조절도 95%였다. 이에 SEDLine™, O3® 국소 산소계측센서(Masimo Corporation, Irvine, CA, USA)를 부착하여 마취 심도와 대사산소화도 지속적 감시하였다. 환자가 케이드에 섭취하여 1 리터의 카페트를 피하주사하여 국소마취를 시행한 후, 우측 요도동맥에 20G 혈관카테터를 거치하여 착착적 지속적 동맥압감시장치에 연결하였다. 안면마스크로 분당 6 L의 100% 산소를 투여하면서 midazolam 8 mg를 정주하였고 remifentanil을 목표농도조절 주입기(target controlled infusion)를 사용하여 목표치 농도 5.0 mg/L로 설정하여 투여하였다. 의식 소실을 확인한 후 안면마스크를 통한 용수환기를 시작하였고 rocuronium 100 mcg 1분 복 뒤 나머지 7.5 mm 기관내브로로 기관내 산란을 시행하였다. 기관내 산란 후에는 용의 피난관이 모두 통에 일회용형 450 mL 호흡기 분당 12L의 기관내브로로 적용하였다. 우측 상부동맥에 20G 혈관카테터를 거치하여 지속적 동맥압감시를 시행하였고, 우측 내경동맥을 통 하여 피로반동맥카테터(pulmonary artery catheter)를 거치하였다. 우측 요도동맥에 거치당한 카테터는 FloTrac/Vigileo 시스템™ (Edwards Lifesciences LLC, Irvine, CA, USA)을 연결하여 동맥과대를 분석하였고, 이를 통해 수술 중 심박출량, 맥초협관저항, 심박출계수를 지속적으로 감시하였다. 수술 중에는 경흉부 심초음파검사로 시행하였고, 마취 후 시행한 경흉부 심초음파검사에서 좌심실 심박출계수 25%로 감소된 심기능을 보였다. 마취 유지는 흡입마취제 sevoflurane 1.5-2 vol%를 유지하여 이루어졌고, 목표농도조절 주입기를 이용하여 remifentanil을 1.0-3.0 ng/mL 범위에서 지속적으로 정주하였다. 수술 종에는 cisatracurium 6-10 mg/hr를 지속 주입하여 근이완 상태를 유지하였다.

심장이식 수술을 먼저 시행하였는데, 장정 흉골절개술 시행 후 전신 휴파리취를 위해 휴파리 24330 IU를 투여하였고 활성화 유지 시간(activated clotting time)이 450초 이상을 확인하였다. 상행 대동맥, 대동맥류통과, 하대문맥과 대문맥류통 정중도관을 거치하여 심폐와 관류를 유지하였다. 대동맥 경주 후 기존 심장 압박방지장치를 제거하고 심폐와 관류 기계를 풀고 상대정맥도관을 정중하였다. 총 대동맥 경주 시간 56분, 총 예비판단시간 112분 동안 목표농도조절 주입기를 사용하여 2% propofol, remifentanil을 각각 목표치 농도 1.0-2.0 mcg/mL, 1.0-2.5 ng/mL로 설정하여 마취를 유지하였고 SEDLine™ 수치 상 35-43 정도로 마취 심도는 적절하게 유지되었다. 체외순환 동안 폐관동맥은 약 60 mmHg로 유지되었고, O3® 세트를 통한 경피적 대뇌 산소포화도는 환자의 기저수치에서 큰 변화없이 유지되었다. 심장이심습수치가 이루어지는 동안 백혈관카테터는 경피적 상대정맥도관 장치의 하단부에 위치하였고 수술이 끝난 후 백혈관 카테터로 자동리자하였다. 심폐와관기 이탈 전에 체위를 두부하위로 두었고 경식도 심초음파 검사를 통해 심장 내 공기가 충분히 제거되었음을 확인하였다. 심폐와관기 이탈을 위하여 dobutamine 5 mg/kg/min, norepinephrine 0.05 mcg/kg/min. epinephrine 0.05 mcg/kg/min을 지속적으로 정조주하였고, 심폐와관기 이탈 이후 protamine 243 mg를 투여하여 전신 휴파리취를 밝혀 활성화 유지시간 125초를 확보하였다. 체외순환이 종료된 후 다시 흉막마취에 sevoflurane를 이용하여 마취를 유지하였다. 심장이식 후 심장은 흉막마취를 통해 심박출계수 55% 감소 유지되었고 흉막 마취 이후 활성화 유지형인 적절하였다. 심장이식 수술 동안에는 심폐와관기 통해 능적혈관 53%를 수혈하였고, 심폐와관기 이탈 이후에는 능적혈관 1백, 혈소판 6백, 동맥혈체형 7백, 심장질환관 3백을 수혈하였다(Table 1).

심장이식 수술을 종료한 이후, 수술실에서 지속적 신대체요법 (continuous renal replacement therapy, CRRT)을 시행하였다. 전신마취를 지속하여 SEDLine™ 수치를 41-47 정도로 유지하였고 마취 유지를 위해 흉막마취에 sevoflurane 1.5 vol%로 흉막을 지속 하고, 목표농도조절주입기를 이용하여 remifentanil 1.0-1.5 ng/mL 지속 정주하였다. 근이완 상태를 유지하기 위해 Cisatracurium을 6-10 mg/hr로 지속 정주하였다. 심장이식 후 사용된 환자감시장치를 유지하여 동맥압, 중심정맥압, 백혈관압, 심박출량 등의 감시를 지속하였다. 경식도 심초음파검사를 통해 지속적으로 이식 심장의

http://www.e-kmj.org

Keimyung Med J
기능 및 혈액량을 평가하였다. 농축혈류 1 백, 신선동맥혈 1.5 백, 5% 알부민 250 mL을 추가로 투여하여 30분에서 1시간 간격으로 동맥혈가스분석을 시행하였다(Table 1). 심장이식 수술 종료시점부터 신장이식 수술 시작시점까지 5시간 동안 수술실에서 지속적 신체계조법을 시행하여 안정적인 활률징후를 유지하였다(Table 2).

이후 신장이식 수술을 시행하였고, 동맥암, 중심정맥암, 심박출
량, 경피적 혈액고저반등도 등의 감시를 지속하였다. 마취 유지를 위해 흡입마취제 sevoflurane을 2.0 vol% 정도로 유지하였고 목표
농도조절 주입기를 이용하여 remifentanil 2.0~3.0 ng/mL를 정주
하고 cisatracurium 6~10 mL/hr로 지속적으로 정주하였다. 이식 신
장은 우측 영당맥은행에 이식하였으며, 바깥 장골동맥과 장골정맥
에 각각 신동맥과 신정맥을 연결한 후 요관과 방광을 연결하였고,
신장이식 수술에는 총 205분이 소요되었다. 지속적으로dobuta-
mine 5 mcg/kg/min, epinephrine 0.05 mcg/kg/min을 투여하여
활률징후를 안정적으로 유지하였다(Table 3). 수술 종료 후 기관 내

Discussion

심부전은 긴 시간 동안 신장이식에는 급기로 여겨졌으나, 심부

Table 1. Serial laboratory results
Pre-OP
WBC
RBC
Hb
Hct
PLT
Na⁺
K⁺
Cl⁻
BUN
Cr
pH
BE
Lactate

OP, operation; CPB, cardiopulmonary bypass; HT, heart transplantation; CRRT, continuous renal replacement therapy; POD, post-operation day; WBC, white blood cell (10×6/μL); RBC, red blood cell (10×6/μL); Hb, hemoglobin (g/dL); Hct, hematocrit (%); PLT, platelets (10×6/μL); Na+, sodium (mmol/L); K⁺, potassium (mmol/L); Cl⁻, chloride (mmol/L); BUN, blood urea nitrogen (mg/dL); Cr, creatinine (mg/dL); BE, base excess (mEq/L); lactate, lactic acid (mg/dL).

Table 2. Circulatory parameters during continuous renal replacement therapy
Operation time (min)
0
sBP
dBP
mBP
HR
SpO₂
CO
CVP
SvO₂
SpHb

sBP, systolic blood pressure (mmHg); dBP, diastolic blood pressure (mmHg); mBP, mean arterial blood pressure (mmHg); HR, heart rate; SpO₂, peripheral oxygen saturation (%); CO, cardiac output (L/min); CVP, central venous pressure (mmHg); SvO₂, mixed venous oxygen saturation (%); SpHb, percutaneous hemoglobin (g/dL).
전이 이차적으로 신부전을 유발하거나, 신부전이 요독성 심근병증을 유발하는 인자로 작용하며 심장 및 신장 기능이 동시에 저하되는 환자들이 많아졌다. 미국에서는 심장이식 대기 기간을 만족하는 환자의 약 20%에서 3년 후에 신부전이 발생하는 것으로 알려져 있다 [6]. 수술 술기, 술후 관리, 면역억제제 등의 발전으로 신부전, 신부전을 동시에 가진 환자에게서 심장-신장 동시 이식이 가능하게 되었다 [7].

심장-신장 동시 이식 수술에서 식별환기 기술이 이동할 때 혈액학적 불안정성이 지속될 때 단계적인 수술을 시행하게 되는데, 이 경우 심장이식 수술을 시행한 후 환자에서의 복합 관리기와 심장이식 수술을 시행하는 방식은 수술 중 환자의 복합 기능과 신장기능에서 혈액학적 안정성을 확보할 수 있게 해준다. 단계적 수술은 식별환기를 이용한 순환 동안 염증 및 염증반응(inflammatory cascade)의 활성화, 높은 용량으로 사용되는 혈관수축제, 혈액학적으로 불안정한 상태에서 신장 혈액 배给이 늦어지는 것보다 더 부정적인 효과를 가져올 것이라고 예측될 때 시행한다 [8]. 본 증례에서는 심장이식 수술을 시행한 후, 수술실에서 전신마취 상태를 유지하기로서 심장이식을 수술하였다. 환자를 중환자실로 이송하지 않고 수술실에서 투석을 시행함으로써 수술 중 신고혈압이 있을 수 있는 혈액학적 불안정성을 줄일 수 있었고, 수술실과 중환자실 간의 이동 및 모니터링의 필요성을 줄일 수 있었다. 심장-신장 동시 이식 수술 후 지속되는 여전한 신장이식 수술 후에도 저혈압이 지속되자 신장이식 수술 후에도 저혈압이 지속되는 것을 최소화하였다. 수술 중 환자의 관리에서 환자에게서의 신장이식은 심장이식 수술과 심장-신장 동시 이식의 결과를 보였다 [9]. 심장 보호작용을 가지고 있는 것으로 알려진 sevoflurane을 중심기장성을 진행하기 위해 사용 시 정맥마취제에 비하여 심장 보호작용을 보였다고 보고하였다 [9]. 따라서 수술실에서 흡입마취제를 이용한 전신마취에 투석을 진행함으로써 정맥마취제에 비하여 이식심장의 보호작용을 보였고 이에 따라 강심제 및 혈관수축제의 사용을 조절하여 안정된 투석을 진행할 수 있게 하였다.

심장-신장 동시 이식 수술을 대신하여 심장이식 수술 이후 심장이식 수술을 받게 되는 경우, 환자는 약 80%가 뇌사자 신장이식의 경우 약 20%가 서식신장이식의 경우다. 심장이식 수술 후 외과적 안정을 확보하고 심장 기능을 지속적으로 유지할 수 있는 방법은 수술 중 환자에게서의 신장이식 수술과 심장이식 수술 후에도 저혈압이 지속되자 신장이식 수술 후에도 저혈압이 지속되자는 것을 최소화하였다. 수술 중 환자의 관리에서 환자에게서의 신장이식은 심장이식 수술과 심장-신장 동시 이식의 결과를 보였다 [9]. 심장 보호작용을 가지고 있는 것으로 알려진 sevoflurane을 중심기장성을 진행하기 위해 사용 시 정맥마취제에 비하여 심장 보호작용을 보였다고 보고하였다 [9]. 따라서 수술실에서 흡입마취제를 이용한 전신마취에 투석을 진행함으로써 정맥마취제에 비하여 이식심장의 보호작용을 보였고 이에 따라 강심제 및 혈관수축제의 사용을 조절하여 안정된 투석을 진행할 수 있게 하였다.

심장-신장 동시 이식 수술을 대신하여 심장이식 수술 이후 심장이식 수술을 받게 되는 경우, 환자는 약 80%가 뇌사자 신장이식의 경우 약 20%가 서식신장이식의 경우다. 심장이식 수술 후 외과적 안정을 확보하고 심장 기능을 지속적으로 유지할 수 있는 방법은 수술 중 환자에게서의 신장이식 수술과 심장이식 수술 후에도 저혈압이 지속되자 신장이식 수술 후에도 저혈압이 지속되자는 것을 최소화하였다. 수술 중 환자의 관리에서 환자에게서의 신장이식은 심장이식 수술과 심장-신장 동시 이식의 결과를 보였다 [9]. 심장 보호작용을 가지고 있는 것으로 알려진 sevoflurane을 중심기장성을 진행하기 위해 사용 시 정맥마취제에 비하여 심장 보호작용을 보였다고 보고하였다 [9]. 따라서 수술실에서 흡입마취제를 이용한 전신마취에 투석을 진행함으로써 정맥마취제에 비하여 이식심장의 보호작용을 보였고 이에 따라 강심제 및 혈관수축제의 사용을 조절하여 안정된 투석을 진행할 수 있게 하였다.

Table 3. Circulatory parameters during renal transplantation

Operation time (min)
0
sBP
dBP
mBP
HR
SpO2
CO
CVP
SvO2
SpHb

sBP, systolic blood pressure (mmHg); dBP, diastolic blood pressure (mmHg); mBP, mean arterial blood pressure(mmHg); HR, heart rate; SpO2, peripheral oxygen saturation (%); CO, cardiac output (L/min); CVP, central venous pressure (mmHg); SvO2, mixed venous oxygen saturation (%); SpHb, percutaneous hemoglobin (g/dL).

마취제가 아닌 흡입마취제가 있어야만 흡입마취제를 사용할 수 있어 일반적으로 정맥마취제 환자를 중환자실로 이송하여 투석을 진행하였을 경우 특수한 장비와 신장 허혈시간이 증가하는 것을 최소화하였다. 심장이식 수술 후에도 저혈압이 지속되자 신장이식 수술 후에도 저혈압이 지속되자는 것을 최소화하였다. 수술 후 흡입마취여부를 판단하기도 유의한 차이를 보이지 않는 것으로 나타났다 [16], desflurane으로 마취 유지한 경우와 비교하였을 때 이식신기능에 유의한 영향을 미치지 않는 것으로 보였다 [17].

수술 중 이식 수술으로 충분한 판관을 유지해주는 것은 이식이식 수술과 관리에서 가장 중요한 점으로 알려져 있다. 특히 재판류 이후에 재판류를 피하는 것이 중요하며, 몇몇 연구에서는 충분한 판관 유지와 이식신기능의 변화를 위해 수술기시상액 170 mmHg와 평균 동맥압 95 mmHg 이상을 유지한 것을 권고하고 있다 [18]. 혈관수축성 약물의 사용으로 수술 중이식 수술의 효과를 증진시키는 뿐만 아니라 이식신기능의 변화를 줄여 이식이식 수술의 결과를 보완하기도 하였다 [18]. 혈관수축성 약물의 사용으로 수술 중이식 수술의 결과를 보완하기도 하였다 [18]. 혈관수축성 약물의 사용으로 수술 중이식 수술의 결과를 보완하기도 하였다 [18]. 혈관수축성 약물의 사용으로 수술 중이식 수술의 결과를 보완하기도 하였다 [18].
mmHg 이상으로 유지하기 위해 혈관수축성 약물을 지속적으로 사용하였다. 수술 중 수축기동맥압, 심박출량은 안정적으로 유지하였고 (Table 3), 수술 후 소변량과 혈액검사 수치 상에서도 이식신장의 기능 이상은 보이지 않았다 (Table 1).

Summary

심장과 신장 동시 이식은 점점 늘어나는 추세로, 앞으로는 심부전에서 좌심실 보조장치 등의 기계적 보조장치가 발달함에 따라 심장과 신장 동시 이식 대상자가 더 늘어날 것으로 예측된다. 마취과의사는 심부전과 신부전의 병리, 수술과정에 대해 이해하고 있어야 한다. 또한 단계적 수술을 시행할 경우 신장 허혈시간은 증가하지만 중환자실이 아닌 수술실에서 투석을 적용하여 허혈시간을 최소화할 수 있고 혈액학적 안정을 도모할 수 있으며 정맥마취제 대비 상대적으로 심기능에 유리한 흡입마취제의 지속적 사용이 가능하다. 심폐순환기 이탈 이후의 혈액학적 불안정성이 이식 장기에 미칠 수 있는 영향을 고려하여 적절한 혈관 내 용적 조절과 혈관수축제 등의 약물주입을 통해 적절한 신장이식 수술 중 관리를 시행해야 한다.

Conflict of interest

All authors declare no conflicts-of-interest related to this article.

References

1. Hermens JL, Nath DS, del Río AM, Eickstaedt JB, Wigfield C, Lindsey JD, et al. Combined heart-kidney transplantation: the University of Wisconsin experience. J Heart Lung Transplant. 2007;26:1119-26.
2. Norman JC, Brook MI, Cooley DA, Klima T, Kahan BD, Frazier OH, et al. Total support of the circulation of a patient with post-cardiotomy stone-heart syndrome by a partial artificial heart (ALVAD) for 5 days followed by heart and kidney transplantation. Lancet. 1978;1:1125-7.
3. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36:1037-46.
4. Awad MA, Czer LSC, Emerson D, Jordan S, De Robertis MA, Mirocha J, et al. Combined heart and kidney transplantation: clinical experience in 100 consecutive patients. J Am Heart Assoc. 2019;8. DOI: 10.1161/JAHA.118.010570.
5. Blanche C, Kamlot A, Blanche DA, Kearney B, Wong AV, Czer LS, et al. Combined heart-kidney transplantation with single-donor allografts. J Thorac Cardiovasc Surg. 2001;122:495-500.
6. Trachiotis GD, Vega JD, Johnston TS, Berg A, Whelchel J, Smith AL, et al. Ten-year follow-up in patients with combined heart and kidney transplantation. J Thorac Cardiovasc Surg. 2003;126:2065-71.
7. Wang S, Chou N, Chi N, Hsu R, Huang S, Chen Y, et al. Simultaneous heart and kidney transplantation for combined cardiac and renal failure. Transplant Proc. 2006;38:2135-7.
8. Mc Loughlin S, Bianco JC, Marenchino RG. Anesthetic and perioperative considerations for combined heart-kidney transplantation. J Cardiothorac Vasc Anesth. 2018;32:44-9.
9. Kim HY, Lee JE, Kim HY, Kim J. Volatile sedation in the intensive care unit: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96. DOI: 10.1097/MD.0000000000008976.
10. Raichlin E, Kushwaha S, Daly R, Kremers WK, Frantz R, Clavell A, et al. Combined heart and kidney transplantation provides an excellent survival and decreases risk of cardiac cellular rejection and coronary allograft vasculopathy. Transplant Proc. 2011;43:1871-6.
11. Chen H, Yu RG, Yin NN, Zhou JX. Combination of extracorporeal membrane oxygenation and continuous renal replacement therapy in critically ill patients: a systematic review. Crit Care. 2014;18:675.
12. Shen J, Yu W, Chen Q, Shi J, Hu Y, Zhang J, et al. Continuous renal replacement therapy (CRRT) attenuates myocardial inflammation and mitochondrial injury induced by venovenous extracorporeal membrane oxygenation (VV ECMO) in a healthy piglet model. Inflammation. 2013;36:1186-93.
13. Shi J, Chen Q, Yu W, Shen J, Gong J, He C, et al. Continuous renal replacement therapy reduces the systemic and pulmonary inflammation induced by venovenous extracorporeal membrane oxygenation in a porcine model. Artif Organs. 2014;38:215-23.
14. Holaday DA, Smith FR. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology. 1981;54:100-6.
15. Gonsowski CT, Laster MJ, Eger EI, Ferrell LD, Kerschmann RL. Toxicity of compound A in rats. Effect of a 3-hour administration. Anesthesiology. 1994;80:556-65.
16. Teixeira S, Costa G, Costa F, da Silva Viana J, Mota A. Sevoflurane versus isoflurane: does it matter in renal transplantation? Transplant Proc. 2007;39:2486-8.
17. Park JH, Lee JH, Joo DJ, Song KJ, Kim YS, Koo BN. Effect of
sevoflurane on grafted kidney function in renal transplantation. Korean J Anesthesiol. 2012;62:529-35.

18. Tiggeler R, Berden J, Hoitsma AJ, Koene R. Prevention of acute tubular necrosis in cadaveric kidney transplantation by the combined use of mannitol and moderate hydration. Ann Surg. 1985;201:246.

19. Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36:S179-86.

20. Schmid S, Jungwirth B. Anaesthesia for renal transplant surgery: an update. Eur J Anaesthesiol. 2012;29:552-8.
만성 설사와 복통을 동반한 장관 포상 기종 1례
황성욱
순천향대학교 의과대학 병리학교실

A Case of Pneumatosis Cystoides Intestinalis in a Patient with Chronic Diarrhea and Abdominal Pain
Seong Wook Hwang
Department of Pathology, Soonchunhyang University Gumi Hospital, Soonchunhyang University College of Medicine, Gumi, Korea

Pneumatosis cystoides intestinalis is a rare gastrointestinal complication with multiple gas-filled cysts in the submucosa or subserosa of the bowel wall. It can occur as primary or secondary disease with other etiology. Although this disease is usually asymptomatic and found incidentally during radiologic or endoscopic examination, it can be a cause of severe problem such as obstruction or pneumoperitoneum. The author report a case of pneumatosis cystoides intestinalis in a 45-year-old male with chronic diarrhea and abdominal discomfort.

Keywords: Abdominal pain, Diarrhea, Pneumatosis cystoides intestinalis

Introduction
장관 포상 기종(pneumatosis cystoides intestinalis)은 위장관의 점막하층이나 장막 하층에 기체로 채워진 납포가 관찰되는 비교적 드문 질환이다[1,2]. 원인에 따라 특별한 원인 없이 발생하는 일차성과 다른 질환과 연관되어 발생하는 이차성으로 구분할 수 있는데, 85% 이상이 이차성으로 보고되고 있다[3]. 증상은 대 부분 무증상이나 설사, 복통, 변비, 혈변, 체중감소 등 비특이적인 증상을 호소하기도 한다. 심한 경우에는 장관 폐쇄, 장염, 장폐열, 장천공, 기복증을 동반하기도 한다[4]. 최근 복부 컴퓨터 단층촬영 및 대장 내시경검사가 널리 이용되는 장관 포상 기종의 진단이 늘어나는 추세이다. 저자는 최근 만성적인 설사와 복통을 주소로 내원한 45세 남자에서 복부 컴퓨터단층촬영과 대장 내시경검사 및 내시경검사를 통해 확인 된 장관 포상 기종 1례를 경험하였기에 문헌 고찰과 함께 보고하는 바이다.

Case Report
45세 남자가 만성 설사와 복통을 주소로 내원하였다. 내원 1개월 전부터 몰만 나오는 설사가 지속되다가, 장관 시 설사 양상의 무른 변을 보였다. 이후 장관을 하지 않음을 경우 다시 몰만 나오는 배변 양상을 반복적으로 보였으며 별다른 치료 없이 경과 관찰할 경우 복부 폐색감과 구역감이 동반되었다. 과거력이나 가족력에 특이 사항은 없었다.

활령단 검사 상 혈압 106/67 mmHg, 심박수 65회/분, 호흡수 20회/분, 체온 36.2도였다. 최근 설사와 변비가 반복되면서 체중이 1년 동안 65 kg에서 57 kg으로
감소하였다. 신체진찰 상 특이 소견은 발견되지 않았다. 검사실 소견으로 일반혈액검사 상 백혈구 수치가 6,360/mL, 혈색소 14.1 g/dL, 적혈구용적을 41.7%, 혈소판 240,000/mL으로 측정되었다. 혈청 생화학 검사상 일부면 4.1 g/dL, 콜블리리뷰 1.1 mg/dL, AST, ALT 는 30 U/L, 16 U/L, BUN, Creatinine는 20.2 mg/dL, 1.0 mg/dL로 측정되었다. 홍부진찰에서도 특이 소견은 없었다. 복부진찰 상 장 음이 증가되어 있었고, 축전 시 약간의 압통을 호소하였으나 반발 통은 없었다.

복부 단순방사선촬영에서 소장과 대장 부위에 가스와 대변이 많 이 관찰되었고 전반적으로 확장된 양상을 보였다(Fig. 1). 복부 컴퓨터단층촬영에서 대장과 직장 부위에 낭성 혹은 거품 모양의 공기 음영이 다수 관찰되었으며, 장관벽의 비후나 종괴 소견은 보이지 않았다(Fig. 2). 대장 내시경 소견 상 구부결장과 직장 전반에 걸쳐서 다양한 크기의 다발성 용종성 병변들이 관찰되었다. 용종성 병변들은 정상 점막으로 덮여 있었고 내시경 경로로 압박할 때 탄력이 있었다. 조직검사를 위해서 병변 부위를 점검했을 때 공기가 빠지면서 용기된 병변이 펌프해졌다(Fig. 3). 조직병리검사 상 점막 하에 염증세포와 다핵성 거대세포로 둘러싸인 낭성 병변이 관찰되었다. 낭종을 덮고 있던 점막은 일부 미란 소견을 제외하고 정상 소견이었다(Figs. 4, 5). 이러한 소견들을 종합하여 본 증례는 장관 포상 기종으로 진단되었다.

환자는 입원 후 금식 및 수액 치료를 받았고, 이와 함께 metronidazole 정맥투여를 시작하였고 산소흡입치료도 병행하였다. Metronidazole 정맥투여 3일 후 설사 및 복통 증상 대부분이 호전되어서 metronidazole 250 mg 정구투여로 전환한 후 퇴원하였다.

Discussion

장관 포상 기종(pneumatosis cystoides intestinalis)은 장관 벽의 점막하층과 장막하층 부위에서 기체를 함유한 낭종성 병변이다. 발생 원인에 따라 일차성과 이차성으로 분류할 수 있다. 투과한 원인 없이 발생하는 일차성과 달리 이차성 장관 기종은 관련된 다양한

Fig. 1. Plain abdominal radiograph shows gaseous dilated small and large bowel loops with large amount of fecal content.

Fig. 2. Abdominal computer tomograph shows cystic or bubbly air collections in sigmoid colon and rectum without significant bowel wall thickening and some air bubbles in small bowel loops.

Fig. 3. Colonoscopic finding shows multiple variable sized polypoid elevated lesions at the sigmoid colon.
A Case of Pneumatosis Cystoides Intestinalis

Keimyung Med J

Fig. 4. Microscopic examination shows multiple gas-filled cystic lesion with multinucleated giant cells in the submucosal layer (H&E, ×200).

Fig. 5. Microscopic finding shows gas-filled cysts lined by multinucleated giant cells in the submucosal layer (H&E, ×400).

원인들이 보고되고 있다. 그 예로 장마비, 크론병, 궤양성 대장염, 종수두마비, 괴사성 장염, 장염 등의 위장관 문제와 만성 폐쇄성 폐질환, 교원성 혈관 질환, 스테로이드, 항암제 등의 약제, 수술, 외상 등이 있다[5]. 대부분은 무증상이나 설사, 변비, 복부통증, 혈변, 체중감소, 식욕부진 등의 비특이적 증상을 호소하기도 한다[4]. 예후의 경우 일차적으로 발생하는 경우에 백혈관, 일반적인 위장관질환 등과 관련된 경우는 예후가 좋은 편이다. 장폐쇄, 독성 거대절강, 혈혈성 질장환, 교원성 질환 등과 연관되었을 경우는 예후가 나쁜 편이다[6].

장관 포상 기증의 발생기전은 정확히 알려져 있지 않지만, 장관 내장의 기체 유입설, 세균에 의한 기체 생성설, 폐질환 합병증으로 인한 기체 유입설 등의 가설이 알려져 있다[1]. 장관 내강의 기체 유입설은 변비나 폐쇄성 장질환에 동반한 높은 내강압력과 장염, 외상 등에 의한 점막의 손상 등과 관련해서 발생할 수 있다. 세균에 의한 기체 생성설은 수소가스를 생성하는 세균들이 점막내로 침투하여 점막 하부 장막 하에 수소가스를 함유한 납포를 형성한다는 가설이다. 이 가설은 metronidazole을 사용하는 의학적 근거가 되기도 한다. 폐질환과 관련된 기체 유입설은 폐포가 파괴되면서 폐포 안의 가스가 종격동을 거쳐 후복막, 장막하, 점막하로 이동한다는 가설이다. 이는 폐기증이나 기관내전식 환자에 동반한 장관포상 기증을 설명하는 하나의 근거이다[1].

장관 포상 기증은 복부 단순방사선촬영이나 복부 컴퓨터단층촬영에서 우연히 발견되는 경우가 많다. 복부 단순방사선촬영에서는 위장관벽을 따라서 보이는 방사선 투과성 음영이 특징적이다. 복부 컴퓨터단층촬영은 강점으로 복부 및 장관 포상 기증의 진단에 매우 유용한데, 장관벽 내에 낱사 혹은 선상, 괄선형의 기체 내포 소견으로 관찰된다. 또한 복부 전산화단층촬영은 장관 내강의 기계나 지방동맥과 감별해도 유용하고 장관 포상 기증에 동반된 다른 질환들을 진단하는데도 유용하다[8]. 최근 들어서는 기관 내강 점지 등을 목적으로 대장 내시경검사를 보완화되면서 장관 포상 기증의 진단이 증가하고 있다. 대장 내시경검사는 복부 컴퓨터단층촬영에서 발견하기 어려운 용중이나 조기 암중을 진단하는데 장점이 있다. 내시경 소견 상 장관 포상 기증은 장으로 유행한 점막 하 병변으로 보이고 크기는 낱중의 크기에 따라 다양하다. 조직검사를 위해서 병변 부위를 천자 penet을 넣고 내장 내 고가스가 배출되면서 편평해지는 특징이 있다. 낱중 상부의 점막은 대부분 정상이고 간혹 충혈되거나 미란 소견을 보이기도 한다[9]. 조직학적 소견으로 장막하증이나 점막하증에 가스가 재워진 다양한 크기의 낱중 병변과 함께 낱중을 둘러싸고 있는 다핵성 거대세포나 염증세포들을 관찰할 수 있다.

장관 포상 기증의 치료는 증상과 동반 질환에 의한 치료를 중점으로 한다. 합병증이 없는 경우 동반 질환에 대한 치료 및 내부 치료를 우선적으로 시행하고, 완벽형이나 장폐쇄 등의 증상 합병증이 동반된 경우 수술적 치료를 고려한다[10]. 일차성 장관 포상 기증의 경우 산소요법과 항생제요법을 시행할 수 있다. 산소요법은 혈류 내와 납포내의 기체 농도와 압력 차에 의해서 납포 내의 가스를 추워 조기적으로 확산시키기 위한 요법이다. 장관 내고가스의 수소를 혈액으로 확산시켜 납포의 크기를 감소시킬 수 있다. 산소요법의 경우 납포의 재발의 가능성이 많아서 48시간 이상의 치료가 권장되며, 마스크, 비강 캐날라를 통한 산소요법이 충분하지 않을 경우 고압산소마스크나 기계적 호흡기를 사용해 볼 수 있다[3]. 항생제 요법은 장관 납포 내 수소가스를 형성하는 세균에 효과적인 metronidazole, vancomycin, ampicillin, tetracycline 등을 투여하는 방법이다. 항생제 요법 또한 재발할 가능성이 있어서 2개 이상 장기 투여가 권장되기도 한다[11]. 이러한 보존적 치료에 반응이 없거나, 장폐쇄, 복강 기증, 장폐쇄, 장막하, 장출혈 등의 증중 합병증이 발생할 경우

http://www.e-kmj.org
수술적 치료가 필요하다[11].
본 증례의 경우 과거력, 가족력, 컴퓨터단층촬영, 대장 내시경검사, 병리조직화학검사 등의 결과들을 종합하여 일차성 장관 포상 기종으로 진단되었다. 입원 후 3일간 급식 및 수액요법, 산소 흡입 치료 그리고 metronidazole 정맥투여 등의 보전적 치료를 중계가 호전되어 metronidazole 경구투여로 전환한 이후 퇴원하였다. 퇴원 후 한달간 metronidazole 경구투여를 하면서 경과 관찰한 결과 관련 증상 대부분이 호전되어 치료를 종결하였다.

Conflict of interest
The author declares no conflicts-of-interest related to this article.

References
1. Galandiuk S, Fazio VW. Pneumatosis cystoides intestinalis. A review of the literature. Dis Colon Rectum. 1986;29:358-63.
2. Hanna P, Kassir R, Tarek D, Bassile B, Saint-Eve P, Elias B. Pneumatosis cystoidis intestinalis presenting as bowel perforation, a rare entity. Int J Surg Case Rep. 2016;20:7-9.
3. Heng Y, Schuffler MD, Haggitt RC, Rohrmann CA. Pneumatosis intestinalis: a review. Am J Gastroenterol. 1995;90:1747-58.
4. Gagliardi G, Thompson IW, Hershman MJ, Forbes A, Hawley PR, Talbot IC. Pneumatosis coli: a proposed pathogenesis based on study of 25 cases and review of the literature. Int J Colorectal Dis. 1996;11:111-8.
5. Goodman RA, Riley TR. Lactulose-induced pneumatosis intestinalis and pneumoperitoneum. Dig Dis Sci. 2001;46:2549-53.
6. Ho LM, Paulson EK, Thompson WM. Pneumatosis intestinalis in the adult: benign to life-threatening causes. AJR Am J Roentgenol. 2007;188:1604-13.
7. Berritto D, Crincoli R, Iacobellis F, Iasiello F, Pizza NL, Lassandra F, et al. Primary pneumatosis intestinalis of small bowel: a case of a rare disease. Case Rep Surg. 2014;2014:350312.
8. Caudill JL, Rose BS. The role of computed tomography in the evaluation of pneumatosis intestinalis. J Clin Gastroenterol. 1987;9:223-6.
9. Shimada M, Ina K, Takahashi H, Horiuchi Y, Imada A, Nishio Y, et al. Pneumatosis cystoides intestinalis treated with hyperbaric oxygen therapy: usefulness of an endoscopic ultrasonic catheter probe for diagnosis. Intern Med. 2001;40:896-900.
10. Togawa S, Yamami N, Nakayama H, Shibayama M, Mano Y. Evaluation of HBO2 therapy in pneumatosis cystoides intestinalis. Undersea Hyperb Med. 2004;31:387-93.
11. Ellis BW. Symptomatic treatment of primary pneumatosis coli with metronidazole. Br Med J. 1980;280:763-4.
계명의대학술지(KMJ)는 계명대학교 의과대학의 공식 간행물로 영어 초록과 함께 한글 혹은 영어로 발행되는 학술지이며 약칭은
Keimyung Med J 입니다. KMJ는 의료정보학과 의과학에 관한 최신의 정보를 공유함으로써 질병의 치료에 기여하고 인류 건강을 증진시키는 것을 목표로 하고 있으며, 임상연구, 기초의학 및 간호학을 포함한 모든 보건의료 분야의 발전을 촉진할 논문을 게재하고 있다.

KMJ는 1982년 창간호가 발간되었으며, 매년 6월 15일, 12월 15일 2회에 걸쳐 발행되고 있으며, 창간호부터 최신호까지 http://www.e-kmj.org에서 무료로 이용할 수 있다.

KMJ에 제출된 모든 원고는 아래의 지침을 준수하여야 하며, 아래에 명시되지 않은 경우, Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication (http://www.icmje.org)을 따라야 한다. 학술지에 게재된 논문에 대한 저작권은 KMJ측에 있으며, 저작권의 양도에 모든 저자가 승인해야 한다.

원고 종류와 언어

KMJ에 투고하는 원고는 창의적이어야 하며, 질병의 치료와 예방을 포함한 보건의료, 의료서비스 및 의용기술, 의학교육의 발전에 기여할 수 있어야 한다. 원고의 형태는 원저, 증례보고, 종설(최근이슈, 새로운 정보, 심층검토, 임상실험), 독자의견 등이 포함된다.

원고 중복게재 및 표절

중복 출판물은 원본 출처의 귀속 없이 실질적으로 동일한 저작물이 2회 이상 발행(발행 또는 출판 시도)하는 것으로 정의한다. 이전에 다른 출판물로 출간된 원고는 본 학술지에 게재될 수 없다. 또한 다른 학술지에서 게재 심사 중인 원고는 본 학술지에 중복하여 투고할 수 없으며, 다른 학술지의 심사가 종료된 후에 본 학술지에 투고하여야 한다. 원고가 일단 채택된 후에는 편집위원회의 허가 없이 원고의 어떠한 부분도 다른 학술지에 중복하여 게재 할 수 없다. 만약 KMJ에 게재된 원고가 다른 학술지에 중복으로 게재된 것이 밝혀질 경우 해당 원고는 게재를 철회함과 동시에 KMJ는 해당 저자가 중복 게재한 사실을 공개한다. 이러한 사실은 저자가 소속된 기관에 통지하여야 하며, 저저에게는 추가적인 징계를 내릴 수 있다. 원고의 표절에 대한 검사는 심사 전에 Ithenticate(https://app.ithenticate.com/)를 활용하여 시행한다.

이차출판

다른 학술지에 출판된 원고를 KMJ에서 이차로 출판하고자 하는 경우에는 본 학술지 편집위원회가 원전 출판한 학술지 편집위원회의 동의를 획득한 경우에 한하여 이차 출판을 허용하며, 이 경우에는 Uniform Requirements for Manuscripts Submitted to Biomedical Journals (http://www.icmje.org)의 일반적인 사항에 따른다.

4. 이해관계 명시

교신저자는 임의적으로 저자의 자료 해석에 영향을 줄 수 있는 이해관계(예: 기업의 재정적 후원이나 특정 기업의 직원) 등이 있음을 밝히고, 이에 따른 배제의 원칙을 준수하도록 연구자 및 편집위원회에 알리도록 한다.

Enacted: June 15, 2020
부합하는지를 심사하며, 다음 단계로 유사도 검사를 통해 표절이거나 중복게재 여부를 확인한다. 이후 편집위원회에 의해 선정된 일국의 심사위원 2명이 원고로 교차검토를 한다. 교차검증에서 저자의 이름과 소속기관을 제거하고 심사하는 브라인드(이중방행) 방식을 사용한다. 편집위원회는 심사위원들이 보낸 심사결과를 심의하여 원고의 일시 채택 여부를 결정한다. 통상적으로 편집위원회는 원고의 게재 여부를 접수 후 3주 내에 일차적으로 결정하며, 이후 즉시 교신저자에게 원고의 심의 결과와 심사 의견서를 전자메일로 전달해야 한다. 교신저자는 심사의 심의에 따라 수정이 이루어진 모든 부분을 항목별로 표시하여 편집위원회에서 정한 기한 내에 수정한 원고를 다시 제출하여야 한다. 특별한 사유가 없는 한 원고가 수정되지 않은 채 다시 제출되거나 또는 수정된 원고가 기한 내에 편집위원회에 도착하지 않으면 저자가 원고를 흑표하므로 기한한다. 만약, 수정기간을 연장하고자 할 경우 교신저자는 편집위원회에 연락해야 한다.

편집위원회는 원고의 심의 결과는 ‘원고대로 게재, 수정 후 게재, 수정 후 재심사, 게재 불가’ 중에서 최종적으로 통지한다.

저작권, 라이선스, 데이타 공유

1. 저작권

모든 출판물에 대한 저작권은 KMJ가 소유한다. 교신저자는 원고를 투고할 때 모든 저자가 서명한 ‘저작권양도동의서’를 전자통신험시스템을 통해 제출해야 한다.

저작권 양도에는 재출판, 번역, 사진 복제, 마이크로폼, 전자형식(오프라인, 온라인) 또는 기타 유사한 공개 복제물을 포함하여 원고를 재생성 및 배포할 수 있는 복제를 포괄한다.

2. 라이선스

KMI는 적절히 이용되는 전자 허에 대한 모든 매체를 통해 원래 저작물을 비상업적 목적으로 활용하거나 배포하는 것을 무제한적으로 허용하는 "Creative Commons Attribution Non Commercial License (https://creativecommons.org/licenses/by-nc/4.0/)"의 조건에 따라 배포하는 오픈액세스 학술지이다. KMI에 게재된 모든 표지 그림을 학문적, 교육적 목적으로 다른 학술지, 책, 매체에 사용하는 경우 "Badatsep Open Access Initiative (BOAIL)"의 오픈 엑세스에 대한 정의에 따라 따로 허가를 받지 않아도 된다.

3. 데이터 공유

KMI는 논리, 개인정보 보호, 비밀유지와 관련된 문제로 제한되는 경우가 아닌 이상 ICMJE Recommendations for data sharing statement policy에 따른 데이터 공유를 권장한다.
원고작성의 세부사항

1. 원고 작성

1) 원고는 한글 또는 영문으로 작성하여야 하며, 특별한 경우를 제외하고는 한글과 영문을 혼용하지 않는다. 초록은 한글이나 영문 원고 모두 영문초록을 첨부한다.
2) 원고는 A4용지에 상하좌우 2.5cm 여백을 두고 MS Word로 작성하고, 본문은 글자크기 10포인트, 줄 간격 200으로 기술한다.
3) 원고는 표지, 영문초록, 본문(서론, 방법, 결과, 고찰, 요약), 참고문헌, 표 및 그림 설명, 표, 그림 등의 순서로 작성하며, 각 부분은 새 쪽으로 시작한다.
4) 학술용어는 대한의사협회에서 최근에 발행한 의학용어집을 기준으로 사용함을 원칙으로 한다. 번역어가 있으나 의미 전달이 어려운 경우에는 번역어를 처음 사용할 때 번역어 다음에 괄호 안에 원어를 표기한 다음 이 후 사용 시에는 번역어만 기술한다. 적절한 번역어가 없는 학술용어, 고유명사, 지명, 인명, 약품명, 단위 등은 원어로 직접 표기할 수도 있다.
5) 약자를 사용해야 할 경우에는 용어를 처음 사용할 때 전체 용어를 표기한 다음에 괄호 안에 약자를 기입한다. 이후에는 약자가만 사용한다.
6) 숫자는 아라비아 숫자, 도량형은 미터법을 사용하고 모든 단위는 국제표준(SI) 단위를 사용하는 것을 원칙으로 한다.

2. 표지

1) 표지에는 원고의 종류, 제목, 저자명, 소속 등을 명시한다(한글논문인 경우 영문도 표기). 소속이 각기 다른 저자가 포함된 경우에는 주 연구기관을 먼저 기록한 다음, 나머지 기관은 해당하는 저자명과 일치시켜 저자명과 소속기관에 각각 같은 어깨번호를 표기하되 저자명의 순으로 번호를 붙인다.
2) 제목은 원고의 취지와 내용을 적절히 반영하여야 하며 한글 제목은 40자, 영문 제목은 20단어를 넘지 않도록 한다. 영문 단어의 첫 문자는 대문자로 한다.
3) 표지 하단에는 교신저자의 성명, 소속, 주소, 연락처 등을 명시하고, 연구비 수혜나 학술대회 발표 등 관련사항을 기재한다.

3. 영문초록

1) 영문초록은 문단의 구분이 없이 기술하며 250 단어를 넘지 않아야 한다.
2) 중심단어(Key Words)는 초록 하단에 최대 5개까지 영문으로 제시한다. 중심단어는 미국국립의학도서관이 제공하는 Medical Subject Headings (MeSH)를 참조한다.

4. 본문

1) 원자는 서론, 재료 및 방법(대상 및 방법), 결과, 고찰, 감사의 글, 이해관계의 순으로 기술한다.
2) 증례보고는 서론, 증례, 고찰, 감사의 글, 이해관계의 순으로 기술하고, 본문의 용량은 5쪽 내외로 한다.

5. 참고문헌

1) 참고문헌은 본문에서 인용된 것이어야 하며 본문에 인용된 순으로 영문으로 기술한다.
2) 저자의 기술방법은 먼저 성을 기술한 뒤에 이름은 약어로만 표기한다.
3) 저자의 수가 6명 이하일 경우 모든 저자명을 기재한다. 저자가 6명을 넘으면 6명까지는 저자명을 기재한 다음 ‘et al.’로 나머지 저자명을 대체한다.
4) 학술지명의 표기는 Index Medicus의 공인된 약어를 사용한다.
5) 본문에서 참고문헌은의 표기는 인용된 순서대로 번호를 대괄호 속에 붙이며, 번호는 저자의 성 뒤에 기재하여야 하고 저자의 성이 없는 경우는 문장의 마침표나 쉼표 앞에 기재한다. 저자가 2명 이하일 때는 모든 저자의 성을 다 쓰며, 3명 이상일 때에는 첫 저자의 성 다음에 ‘et al.’을 붙인다.
6) 기타 명시되지 않은 참고문헌 기술방법은 Uniform Requirement for Manuscripts

참고문헌 기술방법은 다음과의 예시에 준한다.

Journal Article
1. Skinnider BF, Amin MB. An immunohistochemical approach to the differential diagnosis of renal tumors. Semin Diagn Pathol 2005;22:51–68.
2. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the infectious diseases society of america. Clin Infect Dis 2008;46:327–60.
3. Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol. 2008;9. DOI: 10.1186/gb-2008–9–9–232.

Book
4. Rosai J, Ackerman LV. Rosai and Ackerman’s Surgical Pathology. 9th ed. Edinburgh, New York: Mosby; 2004.

Book Section
5. Zipfel GJ, Day AL. Surgical treatment of intracavernous and paracloidian internal carotid artery aneurysm. In: Winn HR, editor. Youmans Neurological Surgery. 5th ed. Philadelphia: W.B.Saunders; 2004. p.1895-913.

Web Page:
6. National Cancer Institute. The Cancer Genome Atlas Program. [cited 2020 Mar 16]. Available from: https://www.cancer.gov/about-nci/organization/ccg.
7. 표(Tables)
1) 표는 본문에서 기술되는 것만 순서대로 배열하고 아라비아 숫자를 매긴다.
2) 표는 영문으로 작성하며 제목과 가로축 및 세로축의 범례에서 첫 글자만 대문자를 사용한다.
3) 표의 제목은 표의 왼쪽 상단에 절이나 구의 형태로 표기한다.
4) 표는 구획은 세로 줄의 가로 실선만 사용하여 나타내며 수직선은 긋지 않는다.
5) 본문에서 특정 표를 지칭할 때 ‘Table 1’과 같이 표기한다.
6) 표에 약자를 사용할 때는 표의 하단에 약자를 풀어서 설명한다.

8. 그림 및 사진(Figures)
1) 그림은 본문에서 언급되는 순서대로 나열하고 아라비아 숫자를 매긴다.
2) 그림은 선명해야 하며, 크기는 15 x 20cm 이하, 용량 크기는 SMB 이하, 해상도는 300 dpi 이상을 권장하며, ppt, jpg, tif 파일로 접수한다.
3) 동일 번호에서 2개 이상의 그림인 경우 아라비아 숫자 이후에 A, B, C 글자를 기입하여 표시한다.
4) 본문에서 특정 그림을 지칭하는 경우에는 ‘Fig. 1’과 같이 표기한다.
5) 도화(line drawing)는 원칙적으로 원본이어야 한다. 다른 논문의 그림을 인용할 때는 원칙적으로 원저자의 동의를 얻어야 한다.

9. 기타
본투고규정에 언급되지 않은 사항은 일반적인 관례에 준한다.
원고는 다른 학술지에 중복해서 제출(투고)되지 않았다.
원고와 동일한 내용이 다른 학술지에 게재되지 않았다.
원고는 의학논문 출판윤리 가이드라인을 모두 준수하고 있다.
원고의 규격은 A4 용지에 위아래 및 좌우 각각 2.5cm 여백을 두었고, 텍스트는 10포인트, 줄 간격 200으로 작성하였다.
원고는 표지, 제목, 영문초록, 본문, 참고문헌, 그림설명, 표, 그림의 순서로 작성하였으며, 각 부분은 새로운 폭으로 시작하였다.
제목은 간결하면서도 본문의 내용을 함축적이고 명료하게 표현하고 있다.
영문초록은 문단 구분 없이 작성하였고, 250단어를 초과하지 않았다.
중심단어는 최대 5개를 초과하지 않았으며, 영문초록 하단에 제시하였다.
본문은 서론, 재료 및 방법, 결과, 고찰, 요약의 순으로 제시하였다.
참고문헌은 모두 본문에 인용되어 있고, 본문에 인용된 순서대로 나열되어 있다.
참고문헌 표기방법이 투고규정과 일치한다.
표와 그림에서 제목과 내용은 영문으로 작성하고 일관되게 표시하였다.
표와 그림의 영문 제목에는 첫 단어와 고유명사만 대문자로 시작하였다.
표 혹은 그림은 그 자체만으로 독자가 충분히 이해할 수 있을 정도로 작성하였고, 본문에서 동일한 내용을 표와 그림으로 중복해서 제시하지 않았다.
그림과 사진은 축소 인쇄되더라도 영향을 받지 않을 정도로 명료하다.
모든 저자가 원고 제출에 동의하였다.
논문제목:

라든 제목의 논문이 “계명의대학술지”에 출간될 경우 그 저작권을 계명대학교 의과대학에 양도한다. 저자는 저작권 이외의 모든 권한 즉, 특히 신청이나 향후 논문을 작성하는 데 있어서 본 논문 일부 혹은 전부를 사용하는 등의 권한을 소유한다. 저자는 계명의대학술지 편집위원회로부터 서면으로 승인을 받으므로 타 논문에 본 논문의 자료를 사용할 수 있으며, 이 경우 자료가 발 표된 원 논문을 밝힌다. 논문의 모든 저자는 본 논문에 실제적이고 지적인 공헌을 하였으며 논문의 내용에 대해서 책임을 공유한다.

본 논문은 과거에 출판된 적이 없으며 현재 타 학술지에 제출되었거나 제출할 계획이 없음을 보장하고 아래에 서명하는 바이다. (6명 이상의 저자가 있는 경우에는 이면에 서명해도 가함)

저자명:

년/월/일:

(서명)：

