Effects of $T=0$ two body matrix elements on M1 and Gamow-Teller transitions: isospin decomposition

Shadow J.Q. Robinsona and Larry Zamicka,b

a) Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855
b) TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada, V6T 2A3

Abstract

We perform calculations for M1 transitions and allowed Gamow Teller (GT) transitions in the even-even Titanium isotopes - 44Ti, 46Ti, and 48Ti. We first do calculations with the FPD6 interaction. Then to study the effect of $T=0$ matrix elements on the M1 and GT rates we introduce a second interaction in which all the $T=0$ matrix elements are set equal to zero and a third in which all the $T=0$ matrix elements are set to a constant. For the latter two interactions the $T=1$ matrix elements are the same as for FPD6. We are thus able to study the effects of the fluctuating $T=0$ matrix elements on M1 and GT rates.
I. INTRODUCTION

We have previously studied the effects of T=0 two body matrix elements on energy levels. In this work we will focus on the transition rates. In the former work we used an FPD6 interaction to get the energy levels of 44Ti, 46Ti, and 48Ti as well as a second interaction wherein the T=0 matrix elements were set to zero while the T=1 matrix elements we left unchanged. In a single j shell calculation of 44Ti we found that the energy levels of the yrast even spins J=2-12 were very little affected by this apparently severe change. The odd spin T=0 states (not yet found experimentally) were lowered in energy somewhat when this approximation was made. In this single j shell calculation many degeneracies appeared e.g. the J=9$^+_1$ and 10$^+_1$ states. The reason for these degeneracies was explained in the first two references.

In a full fp calculation the even spin spectrum spread out a bit more - leaning slightly toward a rotational spectrum when the T=0 matrix elements were reintroduced (ie full FPD6 interaction) but only slightly. It thus appeared that keeping only the T=1 matrix elements led to a reasonable spectrum and the T=0 matrix elements were only needed for fine tuning.

In the previous work we focused on excitation energies. We now examine the M1 and G-T transition strengths in the same nuclei to see whether these strengths are more sensitive to T=0 matrix elements than are the energy levels. For completeness we also look at some M3 transition strengths.

II. THE CALCULATION

Whereas in our previous works we considered only one modification of the basis FPD6 interaction here we consider two. We denote our three interactions as follows:

Interaction A Set all T=0 two body matrix elements of FPD6 to zero; keep all T=1 matrix elements of FPD6 unchanged.

Interaction B Set all T=0 two body matrix elements of FPD6 to a constant; keep all T=1 matrix elements of FPD6 unchanged.

Interaction C Unmodified FPD6 interaction.
It should be mentioned that there is no difference in the results for the spectrum of the states of a given isospin in a single j shell calculation between interaction A and B. Of course the ground state energy (binding energy) will be affected as will the relative energies of states with different isospins.

However when configuration mixing is included there will be a difference in the spectrum of states of a given isospin. There is a difference between setting the T=0 matrix elements equal to a constant and introducing a constant T=0 interaction \(c(\frac{1}{4} - t(1) \cdot t(2)) \). With the latter there will be no change in the spectrum of states of a given isospin when we change the value of c even in a large space calculation. We get the same answer whether c is positive, negative or zero (again the binding energy will be affected).

With the above constant T=0 interaction matrix elements of the form \(<[j_1, j_2]^{J=T=0}V[j_3, j_4]^{J=T=0}> \) will vanish if \((j_3, j_4) \neq (j_1, j_2)\). However for interaction B it will be a constant, the same constant as for the diagonal matrix elements.

We can regard the results for going from A to B to C as respectively studying the effects of

a) no T=0 interaction
b) An average T=0 interaction
c) fluctuations in the T=0 interaction with possible T=0 pairing

III. RESULTS

In tables I-VI we give the summed strength B(M1) for the three interactions A, B and C. We display results for total B(M1), B(M1)_spin, and B(M1)_orbital.

The respective g factors are

\[\begin{align*}
\text{B(M1); } g_{s_\pi} &= 5.586, \quad g_{s_\nu} = -3.826, \quad g_{l_\pi} = 1, \quad g_{l_\nu} = 0 \\
\text{B(M1)_spin; } g_{s_\pi} &= 5.586, \quad g_{s_\nu} = -3.826, \quad g_{l_\pi} = 0, \quad g_{l_\nu} = 0 \\
\text{B(M1)_orbital; } g_{s_\pi} &= 0, \quad g_{s_\nu} = 0, \quad g_{l_\pi} = 1, \quad g_{l_\nu} = 0
\end{align*} \]

The six tables are as follows

I. \(^{44}\text{Ti}\) J=0 T=0 \(\rightarrow \) J=1 T=0
II. \(^{44}\text{Ti}\) J=0 T=0 \(\rightarrow \) J=1 T=1
III. \(^{46}\text{Ti}\) J=0 T=1 \(\rightarrow \) J=1 T=1
IV. \(^{46}\text{Ti}\) J=0 T=1 \(\rightarrow \) J=1 T=2
V. \(^{48}\text{Ti}\) J=0 T=2 \(\rightarrow \) J=1 T=2
VI. \(^{48}\text{Ti}\) J=0 T=2 \(\rightarrow \) J=1 T=3
The first case ^{44}Ti $J=0 \ T=0 \rightarrow J=1 \ T=0$ is atypical because of the single j result that the M1 rates are zero. This is easily understood as arising from the fact that an isoscalar M1 operator μ can be replaced by gJ in a single j shell, and the total angular momentum operator \vec{J} cannot induce M1 transitions.

In this table we introduce the parameter t which is the number of nucleons excited from the $f_{7/2}$ shell (t should not be confused with isospin T). Thus $t=0$ corresponds to a single j shell calculation ($f_{7/2}^4$ in ^{44}Ti) while $t=4$ would correspond to all four nucleons free to roam the entire f-p shell. Since the B(M1)'s are very small and this case atypical we shall not pursue a discussion of it.

We next consider the transition $J=0 \ T=0 \rightarrow J=1 \ T=1$ in ^{44}Ti. We will now find a pattern of behavior more typical of what happens in the other nuclei. For the single j shell case ($t=0$) interactions A and B give identical results. This was explained earlier. Here we have performed calculations tuning t up to $t=4$ and we discuss this calculation.

Comparing interactions A and C (for $t=4$) we find that the reintroduction of the T=0 matrix elements causes the spin B(M1) to decrease from $9.296 \ \mu_n^2$ to $3.267 \ \mu_n^2$. The orbital B(M1) increases by about a factor of two from $1.121 \ \mu_n^2$ to $2.144 \ \mu_n^2$. These results are consistent with previous works where it was noted that in the SU(4) limit the orbital B(M1) is large and the spin B(M1) is zero. The SU(4) limit is a case of high collectivity with the other extreme being the single j shell limit. It is clear that reintroducing the T=0 matrix elements into the calculation will cause nuclear collectivity to increase.

For the heavier nuclei we only go up to $t=2$ so it is instructive to compare the $t=2$ and $t=4$ calculations in ^{44}Ti. We will focus on interaction C. Relative to $t=1$ we get a reduction in the $t=2$ calculation of B(M1)$_{\text{spin}}$ from $8.438 \ \mu_n^2$ to $4.680 \ \mu_n^2$. When we go to $t=4$ the trend continues with B(M1)$_{\text{spin}}$ further reduced to $3.267 \ \mu_n^2$. On the other hand the orbital strength increases from $1.317 \ \mu_n^2$ to $1.926 \ \mu_n^2$ to $2.144 \ \mu_n^2$ as we go from $t=1$ to $t=2$ to $t=4$. This means excitation energies also go steadily up. These results are consistent with the fact that as we increase the configuration mixing we increase the collectivity. We should keep in mind that for the heaviest titanium isotopes where we limit calculations to $t=2$ we might be underestimating the collectivity and the difference in $t=2$ and $t=1$ calculations would continue to grow if we enlarged the space further.
IV. THE NUCLEUS 46Ti

Since 44Ti is unstable no M1 excitation measurements have been performed on this nucleus. However the next nucleus that we consider 46Ti has been extensively studied via inelastic scattering by the Darmstadt group. [3]

We first consider the summed strength for the T=1 \rightarrow T=1 M1 transitions. We immediately see big changes as we go from interaction A to C. At the t=0 level ($f_{7/2}^2 f_{1/2}^1$) the A and B interactions yield very small values for all three M1’s. When the full interaction is reinstituted, the three B(M1)’s all increase by a nearly constant factor of about 4.6.

In the largest space calculation that we have done (t=2) B(M1) and B(M1)$_{spin}$ increase from A to C but the most dramatic increase is in the B(M1)$_{orbital}$. The values there increasing from 0.1850 to 0.7095 μ^2_N. This is almost a factor of four increase in the orbital (scissors mode) strength. So the T=0 matrix elements are vital for the enhanced B(M1).

One sees that most of this increase in orbital strength also occurs with the B interaction. This would suggest that it is mostly an average T=0 effect rather than being due to a fluctuation in the matrix elements or T=0 pairing.

Note that the B(M1)$_{spin}$ also gets some enhancement (4.996 \rightarrow 5.537) but it is not so dramatic. For the channel $0_1 \rightarrow 1_2$ the B(M1)$_{spin}$ get substantially quenched (3.941 \rightarrow 1.717) as one goes from A to C, but again the orbital summed strength gets enhanced (0.3846 \rightarrow 0.5138 μ^2_N). Note also that the mean energies of the modes go up substantially.

V. THE NUCLEUS 48Ti

The behavior for 48Ti is similar to that of 46Ti. In going from the A to C interactions the values of B(M1)$_{orbital}$ increases substantially from 0.1931 to 0.5816 μ^2_N for J=0 T=2 \rightarrow J=1 T=2 and from 0.1555 to 0.2719 μ^2_N for J=0 T=2 \rightarrow J=1 T=3.

We still see the orbital enhancement is well described also by the interaction B. This implies again that it is mostly an average T=0 effect rather than being due to a fluctuation in the matrix elements or T=0 pairing.

Note that in the single j shell calculation (t=0) the A and B interactions give identical results for the three B(M1)’s but the mean energies are different. This is also true in 46Ti. Only when there is configuration mixing does the constant T=0 interactions A and B differ as far as the B(M1)’s are concerned.
VI. GAMOW-TELLER TRANSITION

For the isovector $B(M1)$ we have the relation

$$\frac{B(GT)_{(T, -T)\rightarrow (T', -T+1)}}{B(M1)_{(T,T)\rightarrow (T',T)}} = \text{constant} \begin{pmatrix} T' & T & 1 \\ T - 1 & -T & 1 \end{pmatrix}^2 \begin{pmatrix} T' & T & 1 \\ T & -T & 0 \end{pmatrix}^2$$

which is equivalent to

$$= \left\{ \begin{array}{ll}
\text{constant}(1) & \text{if } T' = T \\
\text{constant} \frac{1}{(2T+1)} & \text{if } T' = T + 1
\end{array} \right\}.$$

For G-T there is one channel that is never present for M1’s, $J=0 \rightarrow J=1+ T-1$.

We present results for GT transitions in tables VII to IX. For ^{46}Ti we see even at the t=0 level a big change in the rate when the full FPD6 is used for this channel. (0.828 \rightarrow 0.361). At the t=2 level the change is from 4.666 to 2.033 more than a factor of two reduction.

This large of a difference does not occur with the interaction B. This suggests that for this channel pairing effects (alternatively deviations from the average $T=0$ interaction) are important.

In tables X and XI we show the trends as the configuration space is increased from t=1 to t=2. We present the ratio of correspondence M1 and GT rates for $[t=2]/[t=1]$.

We can see except for the anomolus $T=0 \rightarrow T=0$ transition in ^{44}Ti, the orbital $B(M1)$’s get enhanced as the configuration space increased. In all cases on the other hand, the spin $B(M1)$’s decrease as the configuration space is increased.

Looking at the corresponding numbers for GT ratios, we note that $[t=2]/[t=1]$ ratios are the same as for the corresponding spin $B(M1)$’s except for the $T_f=T_i$ case. In this case there is an isoscalar contribution to $B(M1)$ as well as the dominant isovector contribution.

There is a relationship between $A = B(GT)_{(T, -T)\rightarrow (T', -T+1)}$ and $B = B(GT)_{(T, -T)\rightarrow (T+1, -T+1)}$ i.e. $B(GT)_{T_i\rightarrow V(T+1)}$ and $B(GT)_{T_i\rightarrow Sc(T+1)}$

The ratio A/B is equal to

$$\frac{(T + 1) T 1}{-(T + 1) T 1}^2 = (2T+1)(2T+2) \text{ Thus}$$

$$\frac{B(GT)_{^{46}\text{Ti}\rightarrow ^{46}\text{Sc}(T=2)}}{B(GT)_{^{46}\text{Ti}\rightarrow ^{46}\text{V}(T=2)}} = 6 \text{ and } \frac{B(GT)_{^{48}\text{Ti}\rightarrow ^{48}\text{Sc}(T=3)}}{B(GT)_{^{48}\text{Ti}\rightarrow ^{48}\text{V}(T=3)}} = 15$$

In principle then one should get the $3(N-Z)$ sum rule without doing the (n,p) reaction on ^{46}Ti. For example the ^{46}Ti sum rule reads
\[
B(GT)^{46Ti\rightarrow46V(T=0)} + B(GT)^{46Ti\rightarrow46V(T=1)} + B(GT)^{46Ti\rightarrow46V(T=2)} - B(GT)^{46Ti\rightarrow46Sc(T=2)} = \frac{3(N - Z)}{}
\]

We can write this as
\[
B(GT)^{46Ti\rightarrow46V(T=0)} + B(GT)^{46Ti\rightarrow46V(T=1)} - 5B(GT)^{46Ti\rightarrow46V(T=2)} = \frac{3(N - Z)}{}
\]

However in practice it is very difficult if not impossible to separate the isospin components.

VII. COMMENTS ON M3 TRANSITIONS

In tables XII to XVII we present the results for M3 transitions from the ground states of \(^{44,46,48}Ti\). The tables are presented in the same format as those for M1’s in Tables I thru VI. One further note is that in table XVI on the lowest 1000 states are considered in the \(t=2\) case for \(^{48}Ti\).

The relative contribution of orbit to spin for \(B(M3)\) is much less than for \(B(M1)\).

In general going from interaction A to C causes the orbital M3 to be enhanced. For the spin case these are mixed results sometimes there is a quenching others an enhancement.
TABLE I. Summed B(M1) strengths and mean excitation energies for ^{44}Ti transition from $J=0^+ T=0$ to $J=1^+ T=0$.

t	A	\bar{E}_A	B	\bar{E}_B	C	\bar{E}_C
$t=0$						
TOTAL	0.0585	10.121	0.05287	10.910	0.0547	9.246
SPIN	0.3138	10.124	0.2835	10.914	0.2936	9.298
ORBIT	0.1013	10.118	0.09153	10.911	0.0948	9.279
$t=1$						
TOTAL	0.0325	11.563	0.03344	13.194	0.0274	11.422
SPIN	0.1743	11.560	0.1793	13.196	0.1470	11.422
ORBIT	0.0563	11.564	0.0579	13.193	0.0475	11.422
$t=2$						
TOTAL	0.0333	10.750	0.03130	12.990	0.0200	11.705
SPIN	0.1788	10.749	0.1679	12.990	0.1073	11.696
ORBIT	0.0577	10.748	0.0542	12.989	0.0340	11.701
$t=4$						
TOTAL	0.0333	10.750	0.03130	12.990	0.0200	11.705
SPIN	0.1788	10.749	0.1679	12.990	0.1073	11.696
ORBIT	0.0577	10.748	0.0542	12.989	0.0340	11.701
TABLE II. Summed B(M1) strengths and mean excitation energies for 44Ti transition from $J=0^+ T=0$ to $J=1^+ T=1$.

t=0	A	E_A	B	E_B	C	E_C
TOTAL	5.955	3.249	5.955	4.248	4.442	6.002
SPIN	2.221	3.249	2.221	4.249	1.657	6.000
ORBIT	0.9025	3.249	0.9025	4.429	0.6735	6.002

t=1	A	E_A	B	E_B	C	E_C
TOTAL	12.540	6.200	12.14	6.695	9.774	7.127
SPIN	10.860	7.776	9.24	9.123	8.438	8.933
ORBIT	0.9919	4.063	1.601	5.712	1.313	8.149

t=2	A	E_A	B	E_B	C	E_C
TOTAL	11.320	7.110	11.570	7.620	6.630	8.639
SPIN	9.100	8.964	8.252	10.547	4.680	10.589
ORBIT	1.111	5.425	1.907	6.890	1.926	10.249

t=4	A	E_A	B	E_B	C	E_C
TOTAL	11.42	7.054	10.500	8.430	5.349	9.121
SPIN	9.296	8.772	7.336	11.146	3.267	10.801
ORBIT	1.121	5.615	2.084	7.654	2.144	10.881

TABLE III. Summed B(M1) strengths and mean excitation energies for 46Ti transition from $J=0^+ T=1$ to $J=1^+ T=1$.

t=0	A	E_A	B	E_B	C	E_C
TOTAL	0.2384	2.704	0.2384	2.704	1.092	3.380
SPIN	0.08892	2.704	0.0889	2.704	0.4073	3.381
ORBIT	0.03614	2.704	0.03614	2.704	0.1655	3.381

t=1	A	E_A	B	E_B	C	E_C
TOTAL	7.004	8.905	7.526	9.302	8.695	8.476
SPIN	7.707	9.323	7.280	10.204	7.793	9.523
ORBIT	0.2504	7.468	0.4501	7.447	0.5865	6.723

t=2	A	E_A	B	E_B	C	E_C
TOTAL	4.604	10.469	8.026	9.348	6.665	9.404
SPIN	4.996	10.880	6.840	10.636	5.537	10.466
ORBIT	0.1850	8.914	0.6701	7.593	0.7095	9.257
TABLE IV. Summed B(M1) strengths and mean excitation energies for \(^{46}\)Ti transition from \(J=0^+\ T=1\) to \(J=1^+\ T=2\).

t = 0	A	\(E_A\)	B	\(E_B\)	C	\(E_C\)
TOTAL	1.874	3.882	1.874	5.886	0.8320	9.006
SPIN	0.699	3.882	0.699	5.886	0.3103	9.007
ORBIT	0.2841	3.882	0.284	5.886	0.1261	9.009
t = 1						
TOTAL	4.400	7.615	3.209	9.716	1.918	11.413
SPIN	4.487	8.703	3.297	11.732	2.688	12.209
ORBIT	0.2979	5.498	0.446	8.554	0.3153	2.029
t = 2						
TOTAL	4.210	8.658	2.992	11.651	1.275	13.027
SPIN	3.941	10.056	3.196	13.661	1.717	13.640
ORBIT	0.3846	7.057	0.508	10.688	0.5138	14.296

TABLE V. Summed B(M1) strengths and mean excitation energies for \(^{48}\)Ti transition from \(J=0^+\ T=2\) to \(J=1^+\ T=2\).

t = 0	A	\(E_A\)	B	\(E_B\)	C	\(E_C\)
TOTAL	0.1679	2.905	0.1679	2.905	0.6021	3.640
SPIN	0.0623	2.904	0.0623	2.904	0.2246	3.641
ORBIT	0.0255	2.905	0.02545	2.905	0.0912	3.641
t = 1						
TOTAL	10.86	9.438	11.20	10.0625	11.81	9.941
SPIN	11.88	9.604	11.09	10.586	11.54	10.426
ORBIT	0.2422	8.303	0.4486	8.598	0.4484	8.669
t = 2						
TOTAL	7.666	10.968	11.71	10.487	8.999	10.871
SPIN	8.246	11.108	10.77	11.151	8.393	11.315
ORBIT	0.1931	10.005	0.6303	9.229	0.5816	11.724
TABLE VI. Summed B(M1) strengths and mean excitation energies for 48Ti transition from $J=0^+ \ T=2$ to $J=1^+ \ T=3$.

$t=0$	A	E_A	B	E_B	C	E_C
TOTAL	0.5454	4.499	0.5454	7.499	0.1894	11.705
SPIN	0.2034	4.499	0.2304	7.498	0.0707	11.701
ORBIT	0.0827	4.499	0.08266	7.499	0.0287	11.700
$t=1$						
TOTAL	2.245	8.842	1.276	12.594	0.8479	13.587
SPIN	2.695	9.301	1.816	13.607	1.567	13.835
ORBIT	0.1089	7.243	0.1816	12.153	0.1793	13.882
$t=2$						
TOTAL	2.108	10.137	1.345	14.885	0.5532	15.454
SPIN	2.356	10.772	1.945	15.599	1.042	15.134
ORBIT	0.1555	9.256	0.2374	13.955	0.2719	16.775

TABLE VII. Gamow-Teller Transitions from the $J=0^+ \ T=0$ ground state of 44Ti to $J=1^+$ states.

Final State	A	B	C
$[t=0]$			
44Sc T=1	1.315	1.315	0.9807
44V T=1	1.315	1.315	0.9807
$[t=1]$			
44Sc T=1	6.430	5.470	4.995
44V T=1	6.430	5.470	4.995
$[t=2]$			
44Sc T=1	5.387	4.886	2.771
44V T=1	5.387	4.886	2.771
$[t=4]$			
44Sc T=1	5.503	5.470	1.934
44V T=1	5.503	5.470	1.934
TABLE VIII. Gamow-Teller Transitions from the J=0+ T=1 ground state of 46Ti to J=1+ states.

Final State	A	B	C	
$[t = 0]$	46Sc T=2	0.828	0.828	0.367
	46V T=2	0.139	0.138	0.061
	46V T=1	0.0526	0.0526	0.241
	46V T=0	4.661	4.661	4.089
$[t = 1]$	46Sc T=2	5.312	3.904	3.185
	46V T=2	0.8854	0.6507	0.5308
	46V T=1	5.261	4.892	5.228
	46V T=0	8.266	6.694	5.749
$[t = 2]$	46Sc T=2	4.666	3.784	2.033
	46V T=2	0.777	0.6307	0.3388
	46V T=1	3.442	4.505	3.734
	46V T=0	9.254	7.050	6.369

TABLE IX. Gamow-Teller Transitions from the J=0+ T=2 ground state of 48Ti to J=1+ states.

Final State	A	B	C	
$[t = 0]$	48Sc T=3	0.3612	0.3612	0.1255
	48V T=3	0.02408	0.02408	0.008365
	48V T=2	0.01854	0.01854	0.06647
	48V T=1	8.367	8.367	8.099
$[t = 1]$	48Sc T=3	4.787	3.226	2.783
	48V T=3	0.3191	0.2150	1.855
	48V T=2	4.288	3.942	4.094
	48V T=1	18.29	15.82	15.40
$[t = 2]$	48Sc T=3	4.184	3.454	1.851
	48V T=3	0.279	0.230	0.1234
	48V T=2	3.019	3.738	3.041
	48V T=1	18.37	16.48	15.66
TABLE X. Ratios of M1’s in different model spaces in FPD6

	Total	Spin	Orbital
44Ti			
$0_0 \rightarrow 1_0$ (t=2/t=1)	0.501	0.501	0.501
$0_0 \rightarrow 1_0$ (t=4/t=2)	0.366	0.365	0.359
$0_0 \rightarrow 1_0$ (t=2/t=1)	0.678	0.554	1.467
$0_0 \rightarrow 1_0$ (t=4/t=2)	0.551	0.387	1.633
46Ti			
$0_1 \rightarrow 1_1$	0.770	0.771	1.210
$0_1 \rightarrow 1_2$	0.665	0.639	1.630
48Ti			
$0_2 \rightarrow 1_2$	0.761	0.727	1.297
$0_2 \rightarrow 1_3$	1.006	0.665	1.587

TABLE XI. Ratio ($t = 2/t = 1$) of GT’s in different model spaces in FPD6

	44Sc T=1	44V T=1	46Ti T=2	46V T=2	46V T=1	46V T=0	48Ti T=3	48V T=3	48V T=2	48V T=1
44Ti		0.555		0.555						
46Ti			0.638		0.638			0.714		1.107
48Ti				0.665			0.665		0.743	1.017
TABLE XII. Summed B(M3) strengths and mean excitation energies for 44Ti transition from $J=0^+\ T=0$ to $J=3^+\ T=0$.

t	A	E_A	B	E_B	C	E_C	
$t=0$	TOTAL	53.07	3.852	53.95	3.852	223.8	4.821
	SPIN	11.63	3.852	11.82	3.853	49.03	4.822
	ORBIT	15.02	3.852	15.26	3.854	63.31	4.821
$t=1$	TOTAL	1124	5.588	1295	6.855	1146	6.889
	SPIN	1102	8.009	1051	8.924	1046	9.152
	ORBIT	375.5	7.671	410.6	8.327	369.8	8.077
$t=2$	TOTAL	529.1	7.171	1057	8.248	724	9.362
	SPIN	578	9.666	686.4	10.943	603.1	11.438
	ORBIT	201.1	9.364	341.3	10.056	230.7	10.152
$t=4$	TOTAL	510.4	6.549	1179	8.736	669.9	9.903
	SPIN	573.0	8.979	663.7	10.866	487.9	11.898
	ORBIT	204.5	8.792	403.1	10.794	242.8	10.613
TABLE XIII. Summed B(M3) strengths and mean excitation energies for 44Ti transition from J=0$^+$ T=0 to J=3$^+$ T=1.

$t=0$	A	E_A	B	E_B	C	E_C
TOTAL	12890	2.991	12890	3.993	15120	5.206
SPIN	8770	2.991	8770	3.993	10290	5.204
ORBIT	396	2.990	396	3.990	464.4	5.207
$t=1$						
TOTAL	41730	5.722	32910	6.879	37980	7.254
SPIN	39380	6.402	31380	7.597	35120	7.921
ORBIT	761.6	5.469	738.8	7.755	891.2	8.710
$t=2$						
TOTAL	33830	6.908	22640	9.090	25640	8.982
SPIN	31670	7.629	22240	9.834	23400	9.705
ORBIT	670.4	6.595	701.7	9.662	924.1	10.908
$t=4$						
TOTAL	33920	6.701	16500	10.745	19150	9.629
SPIN	31960	7.356	16700	11.371	17600	10.250
ORBIT	679.1	6.579	760.6	9.979	982.5	11.63

TABLE XIV. Summed B(M3) strengths and mean excitation energies for 46Ti transition from J=0$^+$ T=1 to J=3$^+$ T=1.

$t=0$	A	E_A	B	E_B	C	E_C
TOTAL	679.7	3.260	679.7	3.260	2896	4.043
SPIN	434.8	3.229	434.8	3.229	1849	4.019
ORBIT	35.90	3.482	35.90	3.482	155.2	4.214
$t=1$						
TOTAL	27220	7.351	26350	8.387	26830	8.233
SPIN	27520	7.751	25750	8.777	25930	8.589
ORBIT	610	7.836	675.8	8.866	724.8	8.469
$t=2$						
TOTAL	17030	9.065	21280	9.671	18980	9.768
SPIN	17390	9.413	20560	10.083	18180	10.071
ORBIT	371.3	9.499	602.8	10.567	592.1	10.758
TABLE XV. Summed B(M3) strengths and mean excitation energies for 46Ti transition from $J=0^+ T=1$ to $J=3^+ T=2$.

	A	E_A	B	E_B	C	E_C
$t=0$ TOTAL	5354	3.340	5354	5.340	5983	6.936
$t=0$ SPIN	3642	3.339	3642	5.340	4070	6.936
$t=0$ ORBIT	164.5	3.337	164.5	5.337	183.8	6.937
$t=1$ TOTAL	18850	6.488	14290	8.579	16090	9.627
$t=1$ SPIN	18080	7.151	13850	9.357	15010	10.380
$t=1$ ORBIT	346.2	6.043	348.7	9.415	406.6	10.592
$t=2$ TOTAL	16240	7.820	10850	10.876	12310	11.282
$t=2$ SPIN	15490	8.528	10980	11.685	11550	12.104
$t=2$ ORBIT	324.3	7.431	343.2	11.468	420.2	12.848

TABLE XVI. Summed B(M3) strengths and mean excitation energies for 48Ti transition from $J=0^+ T=2$ to $J=3^+ T=2$.

$t=0$	A	E_A	B	E_B	C	E_C	
TOTAL	580.6	3.340	580.6	3.340	2233	4.378	
SPIN	376.9	3.317	376.8	3.317	1445	4.374	
ORBIT	27.70	3.516	27.70	3.516	108.7	4.419	
$t=1$	TOTAL	43350	7.645	42340	8.618	42890	8.631
SPIN	43780	7.947	41210	8.974	41720	8.902	
ORBIT	686.3	8.104	796.7	9.041	807.9	8.791	
$t=2$	TOTAL	30100	9.236	37130	9.747	32780	9.826
SPIN	30530	9.489	36140	10.086	31750	10.04	
ORBIT	431.9	9.771	705.6	10.916	649.1	11.132	
TABLE XVII. Summed B(M3) strengths and mean excitation energies for 48Ti transition from $J=0^+ T=2$ to $J=3^+ T=3$.

$t=0$	A	\bar{E}_A	B	\bar{E}_B	C	\bar{E}_C
TOTAL	1932	3.715	1932	6.718	1897	8.809
SPIN	1314	3.716	1314	6.718	1290	8.814
ORBIT	59.35	3.715	59.35	6.716	58.27	8.809

$t=1$	TOTAL	10570	7.687	7110	11.049	7836	12.564
SPIN	10710	8.196	7543	11.644	8074	13.141	
ORBIT	174.6	7.268	170.3	11.973	188	13.511	

$t=2$	TOTAL	9333	9.103	5780	13.734	6250	14.211
SPIN	9381	9.640	6530	14.158	6524	14.785	
ORBIT	171	8.860	180.5	14.177	205.3	15.831	
REFERENCES

[1] S.J.Q. Robinson and Larry Zamick, Phys. Rev. C 63 064316 (2001) and references therein

[2] S.J.Q. Robinson and Larry Zamick, Phys. Rev. C (October 2001)

[3] T. Guber, H. Diesener, A. Richter, C.W. de Jager, H. deVries, and P.K.A. de Witt Z. Physics A- Atomic Nuclei 336, (1990) 159