Supplementary Information : Cross-Platform Comparison of Arbitrary Quantum States

S1 The greedy method in the regime $M_S \gg 2^N$

The parameters M_U and M_S can be optimized through minimizing the statistical error with grid search1,2 or using the importance sampling with partial information on the quantum state3. Both approaches require prior knowledge or simulation of the target state. Here, we devise a greedy method for sampling the unitary operation U that reduces the statistical error without prior knowledge of the target state. The statistical error as a function of M_U converges faster than uniformly sampling the unitary operation when the number of shots $M_S \gg 2^N$, where N is the number of qubits. Therefore, the greedy method is particularly useful for the 5- and 7-qubit experiments. In this section, we demonstrate the comparison between the greedy method and random method for 5-qubit GHZ state.

When performing the fidelity estimation using randomized measurement, there are two major sources of errors, the shot noise error and the error from the incomplete tomography. The shot noise error can be suppressed when the number of shots is $M_S \gg 2^N$. Instead of uniformly sampling the random unitary from a set of unitary operators U, we generate a sequence of unitary operators while maximizing the distance between each random unitary. Specifically, we define the distance between two unitary operators as $d(u_a, u_b) = \max_\rho ||u_a \rho u_a^\dagger - u_b \rho u_b^\dagger||_1$. We sequentially generate the M_U unitary operators $\{u_i\}$, where $1 \leq i \leq M_U$ sequentially. For $i = 1$, we sample a unitary
operator randomly from V. For $i > 1$, we search for a unitary operator u_i that minimizes the cost function $C(u_i; u_1, \ldots, u_{i-1}) = -\sum_{j=1}^{i-1} d(u_i, u_j)$. In order to minimize the cost function efficiently, we randomly generate N_{sample} distinct unitary operators $u_{i,x}$, where $1 \leq x \leq N_{\text{sample}}$ and we define $u_i = \min_{u_{i,x}} C(u_{i,x}; u_1, \ldots, u_{i-1})$. In practice, we find that $N_{\text{sample}} = 200$ is enough to find the minimum for $N = 7$ and $V = Cl(2)^{\otimes N}$, where $Cl(2)$ is the single qubit Clifford group. The greedy method is summarized in Algorithm 1.
Algorithm 1 Greedy method for sampling random unitary

Input: Number of random unitaries M_U, a set of unitary operators S

Output: M_U random unitary operations for randomized measurement $\{u_i\}$, where $1 \leq i \leq M_U$.

1: Sample u_1 randomly from S.

2: for $i = 2$ to M_U do

3: Find a unitary $u_i \in S$ to minimize the cost function $C(u_i; u_1, \ldots, u_{i-1})$.

4: end for

5: return $\{u_i\}$

We compare the two different methods of sampling the random unitary U: the randomized sampling and the greedy method. Using these two methods, we evaluate the fidelity between the states prepared on the UMD,1 system and the IBM,1 system, by sampling subsets of various sizes M_U from the full state tomography measurements. Figure S1 shows the error of the fidelity estimation between UMD,1 and IBM,1 as a function of M_U for $M_S = 2000$. We see that the greedy method outperforms the random method in this regime.

To further characterize the performance of the greedy method, we perform numerical simulation through Pauli basis measurements. Specifically, to generate the random Pauli measurement using the greedy method, we define a set of unitary operators $S = \{H, HSH, I\}$ to perform measurement in the x, y, and z basis. Using Algorithm. 1, we can sample the greedy random unitary operators.

We compare the measurement results for the greedy method and the random sampling method
Figure S2: The number of Pauli-string operators that can be predicted through the set of measurements (N_{obs}) as function of M_U. In the large $M_U \gg 3^N$ limit, the measurement is equivalent to full state tomography and therefore, all the Pauli-string operator can be predicted ($N_{\text{obs}}/4^N = 1$). However, in the regime $M_U < 3^N$, we show that Greedy method can predict more observables than the random method.

Second, we perform the simulation for the prediction of the linear observable $\text{tr}(O\rho)$ and
Figure S3: The measurement error Δ for linear observable $tr(O\rho)$, where $O = \bigotimes_{i=1}^{N} X_i$ and non-linear observable $tr(\rho^2)$. In the regime $M_S \sim O(2^N)$, the greedy and the random methods have similar performance. However, when the number of shots $M_S \gg O(2^N)$, the greedy method shows better performance against the randomized measurement method.

We first generate a random wave function $|\psi\rangle = U|0\rangle$, where U is a unitary operator sampled from a Haar random distribution. We then generate M_U unitary operators via both greedy and random methods and simulate the measurements implied by the unitary operators with M_S shots. In Fig. S3, we present the average error $\Delta[O] = \text{avg}(|O_{\text{measure}} - O_{\text{exact}}|)$, where O_{measure} is the expectation value of $O = \bigotimes_{i=1}^{N} X_i$ using randomized measurements and O_{exact} is the exact expectation value. To obtain the average performance, we perform 100 independent numerical experiments and average
over the error from each numerical experiment.

S2 Full state tomography vs. randomized measurement for 5-qubit GHZ state

Here, we compare the cross-platform fidelity obtained from full-state tomography and that from the randomized measurement on the 5-qubit GHZ state prepared on different platforms. We perform the full-state-tomography on a platform by measuring all of the 243 independent 5-qubit Pauli operators. To do so, we first independently generate the 5-qubit GHZ state circuits on each platform. Then we append different single-qubit rotations to the circuit to create the 243 different circuits. Each of the circuits gives the projective measurement result of one of the 243 independent 5-qubit Pauli operators. We set \(M_S = 2000 \) for all the platforms. For the randomized measurement, because a random Pauli basis measurement is equivalent to a randomized measurement with single qubit Clifford gates \(^2\), we directly sample from the 243 Pauli basis measurements used for the full state tomography.

We calculate the cross-platform fidelity as a function of the number of randomized measurements \(M_U \). The fidelity error \(|\mathcal{F}_e - \mathcal{F}| \) is defined as the difference between the fidelity estimated by the randomized measurement \(\mathcal{F}_e \) and the fidelity calculated through full state tomography \(\mathcal{F} \). The average of \(|\mathcal{F}_e - \mathcal{F}| \) and the standard deviation are calculated through a bootstrap resampling method \(^4\). The result (Fig. S4) shows that with only a fraction of the full state tomography measurements, one can estimate the cross-platform fidelity accurately.
Figure S4: Fidelity error, $|\mathcal{F}_e - \mathcal{F}|$, for six randomly selected 5-qubit GHZ state cross-platform fidelities implemented on different platforms vs. the number of randomized measurements M_U.

The number of measurement is $M_S = 2000$ for all cases.

S3 **SWAP overhead for quantum volume circuits**

Two-qubit gates on non-nearest-neighbor pairs are not directly available on superconducting quantum computers. To realize such non-nearest-neighbor two-qubit gates effectively, SWAP gates are necessary. Note each SWAP gate consists of three CNOT gates. Thus, when used, non-trivial degradation to the overall fidelity of the computational output state is incurred.

Optimizing the so-called qubit routing can effectively decrease the number of involved non-nearest-neighbor two-qubit gates in evaluating the quantum volume circuits. As the number of layers d increases though, the non-nearest-neighbor two-qubit gate becomes unavoidable. In Fig.
S5 we show the mean value of two-qubit gates used to implement quantum volume circuits of d layers on different platforms. The value grows linearly with d.

![Connectivity graphs of IBM_2, IBM_3, and trapped ion (UMD_1 as an example)](image)

Figure S5: (a) Connectivity graphs of IBM_2, IBM_3, and trapped ion (UMD_1 as an example) (b) Average number of two-qubit (entangling) gates used to implement quantum volume circuits with d layers, on different quantum computers. The trapped ion quantum computers have an all-to-all connectivity.

S4 Quantum systems

In this section we detail the quantum systems used in this study.

IBM Quantum Experience

We use IBM Quantum Experience service to access several of their superconducting quantum computers. The ones we used are `ibmq_belem` (IBM_1), `ibmq_casablanca` (IBM_2), `ibmq_melbourne` (IBM_3), `ibmq_quito` (IBM_4), and `ibmq_rome` (IBM_5). All the IBM systems we used use superconducting transmon qubits. Their gate set is made of arbitrary single-qubit rotations on every
qubit and two-qubit CNOT gates over qubit pairs that are connected according to their respective connectivity graphs. The size of of single-qubit gate errors in the IBM systems ranges from 3.32×10^{-4} to 5.03×10^{-2}, and the size of two-qubit gate errors ranges from 7.47×10^{-3} to 1.07×10^{-1}. Detailed specifications of each quantum device including qubit-connectivity diagrams can be found on (https://quantum-computing.ibm.com/). We used QISKit open-source software for the circuit synthesis and optimization for all of our experiments conducted on the IBM systems.

TI_EURIQA (UMD_1)

Error-corrected Universal Reconfigurable Ion-trap Quantum Archetype (EURIQA) is a trapped-ion quantum computer currently located at the University of Maryland. This quantum computer supports up to 13 qubits in a single chain of 15 trapped 171Yb$^+$ ions in a microfabricated chip trap. The system achieves native single-qubit gate fidelities of 99.96% and two-qubit XX gate fidelities of 98.5-99.3%. On this platform, we compile the circuits to its native gate set through KAK decomposition. We optimize the qubit assignment through exhaustive search to minimize the anticipated noise of entangling gates. No SPAM correction was applied in post-processing.

TI_UMD (UMD_2)

The second trapped-ion quantum computer system at Maryland is part of the TIQC (Trapped Ion Quantum Computation) team. This quantum computer supports up to nine qubits made of a single chain of 171Yb$^+$ ions trapped in a linear Paul trap with blade electrodes. Typical single- and two-qubit gate fidelities are 99.5(2)% and 98–99%, respectively. On this platform, we compile the
quantum volume to its native gate set through KAK decomposition. We apply SPAM correction to mitigate the detection noise assuming that the preparation noise is negligible.

IonQ (IonQ.1 and IonQ.2)

The commercial trapped-ion quantum systems used by IonQ contain eleven fully connected qubits in a single chain of 171Yb$^+$ ions trapped in a linear Paul trap with surface electrodes. The single-qubit fidelities are 99.7% for both systems at the time of measurement, while two-qubit fidelities are 95 – 96% and 96 – 97% for IonQ.1 and IonQ.2 respectively. On this platform, we apply the technique described in Ref. 10 to optimize the circuit. No SPAM correction was applied in post-processing.

S5 **Intra-Technology Similarity through Principal component analysis**

We consider quantum states reconstructed from the shadow tomography measurement

$$\rho = \frac{1}{T} \sum_{U,b} \hat{\rho}_{U,b},$$

where $\hat{\rho} = \bigotimes_{i=1}^{n} \langle 3U_i | b \rangle \langle b | U_i^\dagger - I \rangle$ and T is the number of classical shadows. After averaging over T classical shadows, we decompose the density matrix defined in Eq. (S1) as a linear combination of Pauli string operators, $\rho = \sum_{k=0}^{4^n-1} v_k P_k$, where P_k is the Pauli string operator and

$$v_k = \frac{1}{2^n} tr(\rho P_k).$$

Therefore, a density matrix ρ can be represented by a 4^n-dimensional vector $\vec{v} = \sum_{k=0}^{4^n-1} v_k \hat{e}_k$. We define the vector \vec{v} as the feature vector for the principal component analysis.

In the noiseless limit, the vector that represents the target state $|\psi\rangle$ is

$$\vec{v}_t = \sum_{k=0}^{4^n-1} \langle \psi | P_k | \psi \rangle \hat{e}_k.$$
However, in the presence of noise, the vector can deviate from \vec{v}_t. Specifically, there are two main sources of noise: the noise from the finite sampling of the classical shadow and the noise from the imperfections in the quantum devices such as coherent and incoherent errors. The first type of noise gives a random fluctuation of the feature vector, which scales as $O(\frac{1}{\sqrt{T}})$. The second type of noise is highly platform specific. We conjecture the intra-technology similarity, i.e. quantum states prepared on similar quantum devices suffer from similar noise: The feature vectors prepared on similar devices cluster together in the 4^n-dimensional space.

In order to observe the intra-technology similarity, we prepare the feature vectors \vec{v} of all the platforms, for the 7-qubit QV states with $d = 2$ and $d = 3$. For each platform and each QV state, we independently sample N_{sample} feature vectors. We define a $N_{\text{sample}} \times 4^n$ data matrix M. Each row of M contains a feature vector \vec{v}. We perform the principal component analysis to project the data matrix M onto a lower dimensional space in order to reduce the dimensionality of the feature vector space while preserving as much of the variation of the data as possible. The implementation of principal component analysis is based on scikit-learn. Each low-dimensional vector corresponds to a state reconstructed from the classical shadow. In the main text Figure 3(c), we can see that the low-dimensional feature vectors cluster by platform. In addition, we also perform PCA analysis for 5-qubit GHZ states. The projection result to first two principal components is shown in Fig. S6. We observe the intra-technology similarity since the data generated from similar platforms are clustered together.
Figure S6: The projection of randomized measurement dataset of the GHZ state onto the first two principal axes, PC_1 and PC_2.

Platform	IBM.2 7q.2l (no calibrated)	IBM.2 7q.2l (calibrated)	IBM.2 7q.3l (no calibrated)	IBM.2 7q.3l (calibrated)
IBM.3	0.53(1)	0.542(7)	0.294(9)	0.30(4)
UMD.1	0.45(1)	0.461(8)	0.157(6)	0.159(5)
UMD.2	0.50(1)	0.511(5)	N/A	N/A
IonQ.1	0.42(1)	0.425(2)	N/A	N/A
IonQ.2	N/A	N/A	0.156(7)	0.161(4)
simulation	0.41(1)	0.418(6)	0.143(6)	0.150(5)

Table S1: The cross-platform fidelity between the platform IBM.2 and other platforms for the result with and without measurement error calibration.
Figure S7: (a) The measurement error matrix for platform IBM_2. (b) The single-qubit measurement error for \(x \)th qubit.
In this section, we introduce the measurement error of and the error mitigation technique used for the IBM superconducting qubits. Measurement error is one of the dominant errors in the superconducting qubit devices. A measurement error manifests itself as either a $|0\rangle$ state being read as a $|1\rangle$ state or vice versa. For a quantum computer with n qubits, the measurement error can be fully described by a $2^n \times 2^n$ measurement error matrix M. The matrix element $M[s, s']$ is the probability of measuring outcome s' when the quantum computer is in state $|s\rangle$. Therefore, if we take the probability vector P_{ideal} describing the ideal measurement results for a given circuit, applying the measurement matrix M gives a good approximation of the results when measurement noise is present. In particular,

$$P_{\text{noisy}} = MP_{\text{ideal}}.$$

(S2)

In order to approximate the P_{ideal}, we perform an optimization to minimize the cost function

$$||P_{\text{noisy}} - MP_{\text{ideal}}||^2_2,$$

(S3)

subject to constraints $0 \leq P_{\text{ideal}}(s) \leq 1$ and $\sum_s P_{\text{ideal}}(s) = 1$.

For the devices IBM.2 and IBM.3 with seven qubits, we measure the measurement error matrix M by initializing the qubits in all the 2^7 possible bit strings and measure each state with 2048 shots. The measurement error matrix for IBM.2 is shown in Fig. S7(a). The dominant measurement error is the single qubit flip. In particular, the error rate for measuring $|1\rangle$ when the state is $|0\rangle$ ranges from 1% to 8%. The error rate for measuring $|0\rangle$ if the state is $|1\rangle$ ranges from
0.1% to 2%, as shown in Fig. S7(b). We present the calibrated cross-platform fidelity between
the platform IBM_2 and other platforms in Table S1. The calibrated result are close to the result
without calibration up to the error bar.

Supplementary References

1. Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev.
 Lett. 124, 010504 (2020).

2. Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from
 very few measurements. Nature Physics 16, 1050–1057 (2020).

3. Rath, A., van Bijnen, R., Elben, A., Zoller, P. & Vermersch, B. Importance sampling of ran-
 domized measurements for probing entanglement. arXiv preprint arXiv:2102.13524 (2021).

4. Efron, B. & Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation.
 The American Statistician 37, 36–48 (1983).

5. Ibm quantum. https://quantum-computing.ibm.com/, 2021 .

6. Cross, A. The ibm q experience and qiskit open-source quantum computing software. In APS
 March Meeting Abstracts, vol. 2018, L58–003 (2018).

7. Maunz, P. L. W. High optical access trap 2.0. (2016).

8. Egan, L. et al. Fault-tolerant operation of a quantum error-correction code. arXiv preprint
 arXiv:2009.11482 (2020).
9. Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. *Nature* **536**, 63–66 (2016).

10. Nam, Y., Ross, N. J., Su, Y., Childs, A. M. & Maslov, D. Automated optimization of large quantum circuits with continuous parameters. *npj Quantum Information* **4**, 1–12 (2018).