In silico characterisation of stand-alone response regulators of *Streptococcus pyogenes*

Sean J. Buckley¹*, Mark R. Davies², David J. McMillan¹

1 School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia, 2 Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia

* sean.buckley@research.usc.edu.au

Abstract

Bacterial “stand-alone” response regulators (RRs) are vital to the control of gene transcription in response to changing cytosolic and extracellular microenvironments during infection. The genome of group A *Streptococcus* (GAS) encodes more than 30 stand-alone RRs that orchestrate the expression of virulence factors involved in infecting multiple tissues, so causing an array of potentially lethal human diseases. Here, we analysed the molecular epidemiology and biological associations in the coding sequences (CDSs) and upstream intergenic regions (IGRs) of 35 stand-alone RRs from a collection of global GAS genomes. Of the 944 genomes analysed, 97% encoded 32 or more of the 35 tested RRs. The length of RR CDSs ranged from 297 to 1587 nucleotides with an average nucleotide diversity (\(\pi\)) of 0.012, while the IGRs ranged from 51 to 666 nucleotides with average \(\pi\) of 0.017. We present new evidence of recombination in multiple RRs including mga, leading to mga-2 switching, emm-switching and emm-like gene chimerization, and the first instance of an isolate that encodes both mga-1 and mga-2. Recombination was also evident in rofA/nra and msmR loci with 15 emm-types represented in multiple FCT (fibronectin-binding, collagen-binding, T-antigen)-types, including novel emm-type/FCT-type pairings. Strong associations were observed between concatenated RR allele types, and emm-type, MLST-type, core genome phylogroup, and country of sampling. No strong associations were observed between individual loci and disease outcome. We propose that 11 RRs may form part of future refinement of GAS typing systems that reflect core genome evolutionary associations. This subgenomic analysis revealed allelic traits that were informative to the biological function, GAS strain definition, and regional outbreak detection.

Introduction

Streptococcus pyogenes (group A *Streptococcus*; GAS) colonises assorted human tissues causing multiple clinical manifestations, ranging from uncomplicated pharyngitis and impetigo to lethal invasive disease and post-infection sequelae [1]. GAS isolates are typically classified on the basis of nucleotide sequence variation in the 5’ end of emm gene, termed the emm-type [2]. Another typing scheme based on changes in the composition and arrangement of emm and emm-like genes, termed emm-pattern-type has been shown to be a reasonable correlate with tissue tropism: throat (type A-C), skin (type D), and throat or skin (type E ‘generalists’) [3].
The GAS genome encodes an arsenal of virulence factors and precise regulatory systems that confer adaptability in the face of challenging host environments [4]. Notwithstanding considerable recombination and genetic plasticity [5–11], the influence of GAS genotype diversity on differential clinical outcomes remains to be elucidated [1, 12, 13]. This is an important research focus, given that GAS kills more than 600,000 people globally each year [14].

GAS continuously sense the conditions in the surrounding environment whilst simultaneously regulating gene expression, allowing them to survive and thrive in the changing milieu throughout infection [4]. Unlike many other bacteria that employ multiple RNA polymerase sigma factors, GAS growth-phase gene expression is modulated globally by transcription response regulators (RRs) [15–18]. GAS RRs control factors that mediate metabolism, colonization of tissues, evasion of immunity, stressor response, dissemination, and persistence [19]. Whilst ‘two-component system’ RRs are encoded adjacent to a surface-exposed sensory kinase, ‘stand-alone’ RRs lack a hitherto-defined cognate sensory partner [19]. Stand-alone RRs possess helix-turn-helix domains that bind to DNA in the upstream intergenic region (IGR) of effector genes with a precision and affinity that varies with changes in intracellular conditions, such as the presence of an inducing substrate [20, 21]. Stand-alone RRs can interact with other RRs in complex transcription regulatory networks (TRNs), and are often auto-regulating [4, 20]. Although at least 30 virulence-related GAS stand-alone RRs are known, the full repertoire of stand-alone RRs remains to be characterised [4]. Consequently, the variability in the nucleotide sequences of the coding sequences (CDSs) [22] and IGRs of GAS stand-alone RRs is likely to contribute to differential biology and clinical outcomes. Hereafter RR refers to stand-alone RR unless otherwise stated.

Advances in whole-genome sequencing (WGS) and molecular characterisation have transformed the study of bacterial evolution, pathogenicity, and epidemiology [23]. WGS in many cases is faster, more cost effective, more auditable, and enables a higher resolution and discriminatory power than standard microbial methods [24–27]. Increasingly, it is evident that WGS will predominate as the bacteriological investigatory standard for typing, disease surveillance, disease manifestation, disease transmission, outbreak surveillance, evolution, vaccine development, and geotemporal variation [11, 26, 28–31]. However, the major impediments to the ascent of WGS are the development of standardised downstream bioinformatic analytical techniques [23, 26, 32], and high-quality, curated databases [33].

Here, we applied subgenomic analysis to GAS RRs, finding that whilst a range of sequence variation was observed in both the CDS and IGR sequences, with few exceptions they were present in all genomes. We observed that the same forms of mutation and recombination were present in both the CDSs and IGRs, suggesting a utility for IGRs in future genomic studies, and especially for RRs given that they are autoregulatory elements. Investigation of a specific recombination event in the IGRs of \textit{mga} in a group of \textit{emm}-pattern-type E generalist isolates led to the development of a putative evolutionary pathway for the deletion-fusion (chimerization) of genes within the \textit{mga} regulon using multiple \textit{emm82} isolates in the dataset. We also ascertained that there was generally a higher degree of plasticity in many of the RR loci of the often clinically-relevant generalist isolates. Furthermore, we made multiple \textit{emm}-type-specific observations that should inform \textit{emm}-type selection of future wet assay and bioinformatics studies. One example of this was that the nucleotide sequences of both the \textit{emm3} \textit{mga} CDSs as well as IGRs were different from their non-\textit{emm3} counterparts, suggesting a distinctive protein binding domain/DNA binding site pair. We also quantified many instances when an \textit{emm}-type was represented in more than one multilocus sequence typing (MLST)-type and \textit{vice versa}. We argue for augmentation of the current GAS typing schemes [11, 13], based on subgenomic interrogation of whole genome sequences. This study also reveals the utility of alternative schemes in cross-referencing, and defines the subgenomic resolution required for a functional GAS typing scheme.
Methods

Bacterial genomes and extraction of nucleotide sequence data

The 944 genomes tested in this study comprise 65 complete GAS genomes representing 27 emm-types sourced from the NCBI reference genomic database (as of 1st August 2018), and an additional 879 draft genomes representing 123 emm-types collected from five geographically disparate countries over the time period 1987 to 2013 (S1 Data) [11, 34–39]. A distribution of emm-types used in this study compared to the NCBI database of complete genomes and the Davies GAS atlas [11] is included (S1 Fig). Where available, the clinical data (for example, disease association, year of isolation, and country of isolation) was also collected for all genomes (S1 Data). Nucleotide sequences of the CDS and IGR of 35 selected stand-alone RRs were extracted from the genomes using the BLASTN algorithm implemented in Geneious 8.1.9 (maximum e-value of 1e-20) [40], and reconciled with annotated genes.

Bioinformatic analyses

The nucleotide sequences of the CDS and IGR of the 35 RRs (S2 Fig and Table 1) were aligned using Muscle [41] as implemented in Geneious. Nucleotide polymorphisms were identified in both the CDSs and IGRs, and independently quantified using Geneious. Individual CDS and IGR alleles were subsequently defined on the basis of possessing a minimum of one Single Nucleotide Polymorphism (SNP) compared with all other alleles [12] (S2 and S3 Data, respectively).

Nucleotide diversity (π) was calculated using DnaSP version 5.10.01 [76]. Allelic diversity was calculated using the Simpson Index of Diversity [77] and the Wallace coefficient [78] as implemented at www.comparingpartitions.info. The ratio of non-synonymous (Kₐ) to synonymous (Kₛ) nucleotide substitution (Kₐ/Kₛ) was calculated in Mega7. Absent genes were designated as absent. The truncated proteins possess a premature stop codon that were almost all either caused by an indel that resulted in a frameshift mutation, or a non-synonymous point mutation. Phylogenetic relationships were inferred from the nucleotide sequences of individual RRs using the maximum likelihood algorithm, with a general time reversible model and bootstrap value of 1000 [79]. Analysis of both ‘recent’ and ‘ancestral’ recombination events, was performed using fastGEAR with default parameters. The resolution of an isolate type (defined by the concatenation of all of the RR CDS allele types for each strain) was tested for its ability to discriminate emm-type. The equivalent RR IGR type resolution was also tested. Alignment and visualization was performed using the BRIG tool [80].

Associations between the RR alleles and the typing, geotemporal, and clinical metadata, where tested using two methods. Firstly, neighbour-joining phylogenetic trees were constructed using the MEGAX maximum composite likelihood and uniform rates model (bootstrap = 1000) based on Muscle alignments of the 35 individual RR CDSs. This was also performed on the concatenated SNPs of the 35 RR CDSs (n = 3551) using a Muscle alignment of 3884 sites in length. Trees were labelled with metadata using Phandango. Secondly, concordance of the RR allele types and metadata was measured using the Simpson Index of Diversity and the adjusted Wallace coefficient.

Results

Distribution of GAS stand-alone response regulators

Overall, the CDSs of stand-alone RRs and their IGRs were well conserved throughout the 944 genomes examined. The majority of the genomes (n = 577) possessed DNA sequences that
were highly homologous at all 35 RR loci (percentage nucleotide identity >95%). Only 2% of the genomes lacked four or more RRs (n = 20). The three genes that were most frequently absent were vgl (~28%), msrR (~24%), and ralp3 (~12%) (Table 1, S2 and S3 Data).
Diversity and variability in the coding sequences of selected GAS stand-alone response regulators

The size of RR CDSs ranged from 297 bp for vfr to 1587 bp for mga-1 (Table 2). Nucleotide polymorphism causing allelic variation in the RR CDSs was primarily due to SNPs. The RR CDSs also exhibited single and multiple nucleotide indels. Single nucleotide indels were observed in atoR, comR, copY, gczA, mrgA, rivR, spy0715, spy1258, and vfr, while multi-

Table 2. Nucleotide variation in the coding sequences of selected GAS stand-alone response regulators.

Gene 1	Size (nt)	Alleles	Variant nt positions 2	Nucleotide diversity (π)	Allelic diversity (D)	Average nt percentage identity [range]	Recombination events 3
adcR	723	32	41	0.0035	0.708	100 [94–100]	1
atoR	993	141	68	0.0173	0.981	98 [93–100]	1
capA	645	87	62	0.0037	0.962	100 [99–100]	1
codY	999	58	41	0.0041	0.915	100 [99–100]	1
comR	1203	78	407	0.0896	0.897	86 [52–100]	1
copY	894	87	182	0.0737	0.954	92 [65–100]	3
cpyY	432	63	58	0.0027	0.895	100 [99–100]	0
crgR	480	74	57	0.0041	0.933	100 [97–100]	0
ctsR	741	25	18	0.0025	0.616	100 [99–100]	0
gczA	459	61	55	0.0033	0.864	100 [97–100]	3
hrcA	639	95	89	0.0062	0.952	99 [97–100]	0
hsp	1038	164	202	0.0134	0.985	99 [90–100]	3
malR	717	90	187	0.0031	0.953	100 [95–100]	2
mga-1	1587	40	362	0.0181	0.278	98 [89–100]	3
mga-2	1491	201	366	0.0103	0.939	99 [84–100]	4
mrgA	1491	56	61	0.0026	0.838	100 [91–100]	0
msmR	780	90	83	0.0047	0.922	100 [99–100]	0
mtsR	465	145	87	0.0102	0.983	99 [98–100]	1
nra	885	40	50	0.0052	0.559	99 [99–100]	1
perR	741	44	35	0.0038	0.845	100 [99–100]	0
ralp3	1506	161	390	0.0065	0.926	97 [1–100]	0
regR	441	123	388	0.0292	0.967	97 [86–100]	4
rgg2	849	63	52	0.0027	0.917	100 [99–100]	0
rgg3	909	77	60	0.0053	0.958	99 [99–100]	1
rivR	840	156	140	0.0034	0.982	100 [99–100]	2
rolA	1533	122	201	0.0088	0.871	99 [96–100]	2
ropB	864	132	138	0.0036	0.945	100 [94–100]	1
spy0715	531	114	240	0.0453	0.971	95 [78–100]	17
spy1202	720	45	118	0.0041	0.571	100 [89–100]	1
spy1258	519	57	53	0.0019	0.703	100 [97–100]	0
spy1602	1032	135	232	0.0193	0.98	98 [90–100]	2
spy2177	540	54	100	0.0049	0.887	99 [65–100]	0
ssv	902	52	37	0.0039	0.894	100 [99–100]	0
vfr	297	39	30	0.0011	0.602	100 [99–100]	0
vgl	846	32	36	0.0052	0.819	99 [95–100]	0

1Gene name, or SF370 locus tag where not available
2Variant nucleotides in the multiple sequence alignment
3Number of putative recombination events inferred by fastGEAR.

https://doi.org/10.1371/journal.pone.0240834.t002
nucleotide indels were observed in atoR, comR, crgR, malR, mga-1, mga-2, spy0715, and spy1258. The number of unique alleles per RR ranged from 25 for etsR and spy1202 to 201 for mga-2 (Table 2). Based on Simpson diversity index (D) the ten most variable RRs alleles were lrp, mtsR, rivR, atoR, spy1602, spy0715, regR, ccpA, rgg3, and copY (Table 2). Multiple RRs including atoR, mga-1, comR, copY, lrp, ralp3, regR, rivR, spy0715, spy1202, spy1258 and spy1602 displayed variation in the nucleotide sequence and allelic length suggesting that some RRs can accommodate more sequence variation than others. How this relates to function, is unknown noting that variation in the function of GAS RofA response regulators has even been linked to SNPs [81]. Table 2 summarises the key measures of nucleotide diversity of the RR alleles. Together the 35 RR CDS loci could be used to identify 525 unique concatenated RR-RRs.

Diversity and variability in the amino acid sequences of selected GAS stand-alone response regulators

Of the selected RRs, there were approximately twice as many repressors (or putative repressors) than activators. In a previous study we noted that all 14 of the GAS two-component system RRs possess helix-turn-helix (HTH) domains at their C-termini [82]. By contrast, 27 of the RRs tested had HTH domains at their N-termini, four were at the C-termini (codY, lrp, msmR, and srv), two were mid-protein (aDCR and etsR), and two lacked known HTH motifs (vfr and vgl). The majority of translated CDSs were intact and full length. However, there were many examples of significant variability in the composition and length of the translated proteins that suggested putative altered function (that is, loss or gain of function). The majority of truncations were observed in the C-terminal half of the translated sequence. In many cases the variants displayed emm gene association suggesting clonality. The number of nonsense mutations per RR ranged from 0 in CrgR, CtsR, and HrcA to 94 in AtoR (Table 3). Six RR proteins (CopY, Gcza, RivR, Spy0715, ComR, and AtoR) had more than ten nonsense mutations. Observed causes of these truncations in the whole dataset included single nucleotide deletion (for example subset of emm1 copY), single nucleotide insertion (as in a subset of emm4 ralp3), and multiple nucleotide insertions (as in a subset of emm71 comR). The average amino acid (aa) identity values ranged from 77% for ComR to greater than 99% for 27 of the 35 RRs (Table 3). Collectively this implies that the most conserved of the proteins tested were HrcA, CtsR, CrgR, CpsY, Rgg3, and SrV, suggesting that evolution is constrained for some GAS RRs and not others.

Diversity and variability in the upstream intergenic regions of selected GAS stand-alone response regulators

The RR IGRs ranged in size from 51 bp for perR to 666 bp for mga-2 and 675 bp for mga-1 (S2 Fig and Table 4). Again, most of the observed allelic variation in the RR IGRs was due to SNPs. However, there were also examples of single nucleotide indels, multiple nucleotide indels, and variable number of tandem repeats (VNTRs), and phage-related Insertion Sequences (IS). Single nucleotide indels were observed in the IGRs of atoR, comR, copY, crgR, etsR, hrcA, lrp, malR, mga-1, mga-2, msmR, nra, rgg3, rofA, spy0715, srv, and vgl. While multi-nucleotide indels were observed in the IGRs of atoR, ccpA, crgR, hrcA, lrp, mga-1, msmR, ralp3, rivR, rofA, ropB, and spy0715. Examples of VNTR-related polymorphism were observed in mga-1 IGRs of emm3, and mga-2 IGRs of emm82 and emm87 isolates. The number of unique IGR alleles per RR ranged from 3 for rgg2 to 133 for mga-2 and lrp (Table 4). Based on Simpson diversity index (D) the ten most variable IGRs were upstream of lrp, ralp3, atoR, mga-2, rivR, msmR, malR, comR, spy1602, and copY (Table 4). Several of the intergenic loci, including mga-2, atoR, copY,
comR, lrp, ralp3, spy0715, and vgl displayed variation in the allele length and, or nucleotide composition that was consistent with discrete allelic forms. Table 4 summarises the key measures of nucleotide diversity including allele-types, polymorphic nucleotide sites, nucleotide diversity, and Simpson diversity index (D) of the RR IGR alleles. Together the 35 RR IGR loci could be used to identify 473 unique concatenated RR-types within the 944 genomes.

Finally, short Open Reading Frames (ORF) of unknown function were identified upstream of rofA, nra, ralp3, rivR, mga-1, mga-2 and msmR whose length and nucleotide identity were

Gene	Average aa percentage identity [range]	Nonsense mutations	πA / πS	KA / KS	Selection pressure
adcR	99.3 [15.9–100]	3	0.069	0.068	neg
atoR	94.6 [9.6–100]	94	0.15	0.132	neg
ccpA	99.8 [16.6–100]	3	4.548	4.456	pos
codY	99.8 [34–100]	2	1.062	1.008	pos
comR	77.2 [7.5–100]	47	0.613	0.659	neg
copY	88.7 [19.4–100]	29	0.984	0.951	neg
cpsY	99.7 [77.5–100]	1	0.153	0.155	neg
crgR	99.5 [96–100]	0	0.185	0.107	neg
ctsR	99.4 [97.4–100]	0	0.955	0.947	neg
gczA	95.1 [3.3–100]	29	1.91	2.039	pos
hrcA	99.5 [98–100]	0	0.122	0.121	neg
i	98.7 [22.9–100]	15	0.573	0.455	neg
malR	99.2 [31.7–100]	1	0.131	0.13	neg
mga-1	93.4 [11.3–100]	5	0.109	0.108	neg
mga-2	98.5 [16.5–100]	9	0.785	0.909	neg
mргA	99.4 [9–100]	4	0.027	0.025	neg
msmR	99.6 [88.4–100]	3	0.091	0.096	neg
mtsR	97.9 [6.7–100]	6	0.84	0.949	neg
nra	99.6 [98.4–100]	3	0.101	0.1	neg
perR	99.8 [98.1–100]	9	0.069	0.066	neg
ralp3	90.8 [5.5–100]	9	0.228	0.228	neg
regR	98.9 [9.5–100]	4	3.086	4.503	pos
rgg2	99.6 [97.9–100]	6	0.262	0.26	neg
rgg3	99.6 [78.4–100]	1	0.346	0.314	neg
rivR	96.2 [27.3–100]	36	0.413	0.548	neg
rofA	97.8 [15.7–100]	8	0.423	0.411	neg
ropB	99.3 [13–100]	15	0.098	0.099	neg
spy0715	94 [7.5–100]	60	0.689	0.723	neg
spy1202	99 [6.4–100]	13	0.062	0.052	neg
spy1258	98.2 [7.4–100]	19	0.272	0.311	neg
spy1602	98.1 [25.1–100]	3	0.204	0.203	neg
spy2177	97.8 [5.8–100]	11	0.788	0.554	neg
srv	99.9 [90.8–100]	1	0.018	0.018	neg
vfr	99 [10.2–100]	7	0.703	0.833	neg
vgl	98.9 [50–100]	3	0.507	0.506	neg

1 Gene name, or SF370 locus tag where not available
2 Alleles containing premature stop codon
3 pos = positive and neg = negative.

https://doi.org/10.1371/journal.pone.0240834.t003
consistent with regulatory elements previously described upstream of ropB, rgg2 and rgg3 [83, 84]. The size of the currently-annotated IGRs of these seven genes is larger than 100 bp, which is the average IGR length of GAS [85]. This suggests a putative biological function for these short ORFs, possibly as regulatory elements.

Table 4. Nucleotide variation in the upstream intergenic regions of selected GAS stand-alone response regulators.

RR	Size²	Alleles	Variant nt positions³	Nucleotide diversity (π)	Allelic diversity (D)	Recombination events
adcR	109	12	12	0.0017	0.178	0
atoR	200	94	105	0.0002	0.966	0
ccpA	173	18	67	0.0066	0.515	0
codY	217	30	27	0.0072	0.801	0
comR	131	68	67	0.0148	0.879	0
copY	221	23	29	0.0036	0.610	0
cpsY	239	27	32	0.0041	0.643	0
crgR	195	15	15	0.0050	0.693	0
ctsR	135	28	85	0.0074	0.756	0
gczA	134	25	37	0.0052	0.580	0
hrcA	360	27	32	0.0041	0.784	0
hsp	245	106	213	0.0028	0.900	0
mga-1	675	42	396	0.0233	0.310	2
mga-2	666	133	535	0.0174	0.939	3
mrgA	162	31	71	0.0095	0.729	0
msmR	384	60	55	0.0143	0.904	0
mtsR	142	25	37	0.0019	0.321	0
mra	429	26	126	0.0173	0.564	0
perR	51	7	6	0.0014	0.149	0
ralp3	513	132	521	0.0308	0.970	1
regB	63	8	8	0.0126	0.515	0
rgg2	88	14	20	0.0066	0.147	0
rgg3	79	14	20	0.0125	0.777	0
rivK	558	80	109	0.0095	0.938	0
rofA	262	42	91	0.0021	0.759	1
ropB	268	44	182	0.0080	0.786	0
spy0715	147	34	190	0.0122	0.719	0
spy1202	55	7	5	0.0040	0.215	0
spy1258	117	20	19	0.0053	0.483	0
spy1602	105	41	40	0.0344	0.859	0
spy2177	134	34	66	0.0111	0.528	0
srv	105	6	13	0.0001	0.148	0
vfr	147	16	15	0.0008	0.150	0
vgl	155	27	63	0.0024	0.793	0

¹Gene name, or SF370 locus tag where not available
²Nucleotide distance between RR genes and upstream gene
³Variant nucleotides in the multiple sequence alignment
⁴Number of putative recombination events inferred by fastGEAR.
Evidence for recombination in the stand-alone response regulator loci

Recombination was observed to span, flank, or intersect both the IGRs and CDSs of the RRs, and was at times caused by insertion sequences or VNTRs. The number of recombination events inferred for the RR CDSs using fastGEAR ranged from 17 for spy0715 to none for 14 of the genes (Table 2). While the equivalent range for the IGRs was zero for 26 of the genes and three for mga-2 (Table 4). There was no significant difference between the mean number of recombination events inferred for the RRs and the GAS MLST loci [11]. The most recombinogenic intergenic alleles were mga-2, mga-1, and lrp with three, two, and two events inferred, respectively. Detailed descriptions of mga, rofA/nra, msmR, and FCT-types are provided in the sections below. The mga is of biological and clinical significance as it is known to influence expression of about 10% of the GAS genome and the transcription of mga is auto-regulating [4].

Sequence similarity and phylogenetic clustering of the combined CDS and IGR of mga in a subset of isolates (n = 10) strongly suggested that DNA encoding mga-2 has homologously recombined into the flank of the intergenic locus of mga-1 (Fig 1). That is, the mga IGRs and CDSs of these ten isolates displayed high pairwise nucleotide identity (99.0%), while sharing lower homologies with the IGRs (63.5%) and CDSs (74.8%) of mga-2 and mga-1 type isolates, respectively (Fig 1 and S3 Fig). These isolates were: NGAS473 ST36 (emn82), MGAS11027 ST407 (emn89), SP7LAU ST46 (emn22), NGAS325 ST1069 (emn22), NGAS616 ST1069 (emn22), STAB14018 ST150 (emn75), STAB120304 ST150 (emn75), STAB090229 ST150 (emn75), NGAS344 ST49 (emn75), and NGAS604 ST49 (emn75) (Fig 1 and S3 Fig). These isolates were: NGAS473 ST36 (emn82), MGAS11027 ST407 (emn89), SP7LAU ST46 (emn22), NGAS325 ST1069 (emn22), NGAS616 ST1069 (emn22), STAB14018 ST150 (emn75), STAB120304 ST150 (emn75), STAB090229 ST150 (emn75), NGAS344 ST49 (emn75), and NGAS604 ST49 (emn75) (Fig 1).

While screening the IGRs of mga it was observed that one of these isolates, NGAS743, also displayed chimerization of emn82 and the adjacent emn gene, in contrast to other emn82 isolates in the dataset (Fig 3). Alignment of the mga regulon locus of the other emn82 isolates in the dataset revealed a putative evolutionary pathway to NGAS473 involving multiple deletion events (Fig 3). Multiple sequence alignment of the RR allele types groups NGAS473 with the emn12 isolates. Furthermore, emn82 NGAS473 is MLST-type ST36 which is historically observed in emn12 isolates. This association has recently been shown to be attributed to
orthologous recombination of a region encompassing *emm*82 into an *emm*12 background [30]. Within this dataset ‘mga-2 switching’ (n = 10) and ‘emm-switching’ was observed in isolates sampled from the United States of America, Canada, Lebanon, and France. Together these findings highlight the plasticity of the *mga* regulon in *emm*82 GAS, and identify an ‘mga-2-switching’ event in addition to an *emm*-switching in a GAS strain known to be clinically-relevant in northern hemisphere outbreaks [86].

Analysis of the *emm*-type and MLST-type pairings revealed numerous examples of *emm*-types that had multiple MLST-types, and MLST-types that were also found in multiple *emm*-types. Of the 256 unique MLST-types in the total dataset, eight (3.1%) were present in multiple
emm-types and 17 (6.6%) were present in multiple emm-subtypes. Of the 125 unique emm-types, 67 (53.6%) had multiple MLST-types, while of the 186 unique emm-subtypes, 60 (32.3%) had multiple MLST-types. The five emm-types represented in the highest number of different MLST-type backgrounds were all emm-pattern-type ‘E’ (‘generalist’). While closely related clonal complexes and Single Locus Variants (SLVs) account for many of the occurrences of an emm-type occurring in multiple MLST-types, putative emm-switching is also contained in this subset. Collectively, these findings highlight both the shortcomings of using only emm-typing in strain definition, and the increased resolution that MLST can provide.

The FCT locus encodes the rofA/nra locus and msmR response regulators along with the key pili-associated, collagen-binding, and fibronectin-binding virulence genes, in an approximately emm-type-dependent manner [87]. Consistent with the observation of others, rofA and nra were mutually exclusive within each genome and were generally congruent with emm-type [87]. However, five genomes had an atypical rofA/nra to emm association (S4 Fig). These were Fijian isolates emm15.1 ST872 (201111V111) and emm18.22 ST335 (20058V111), and Kenyan isolates emm42.3 ST721 (K42600), emm49.9 ST705 (K36294), and emm57.0 ST723 (K44582).

The scarcity of these MLST-types was evident because they were unique amongst their emm-isolates subtype 91.0 genomes isolated from canines that were of MLST-type 12, which is the MLST-type (80%) with a playing 100% identity with the equivalent 49.9 ST705 K36294 lacked emm-type isolates encoded one of three variants of 68 type isolates were represented by both 73 and emm type isolates were represented by both 73 and 29.1, whereas the two emm29 (n = 2) possessed nra. This contradicts others who observed nra in emm29 and emm105, and rofA in emm29 [59]. Furthermore, emm49.9, emm57.8, and emm110-type isolates were represented by both msmR-positive and msmR-negative genomes, and emm68 type isolates encoded one of three variants of rofA. While the above mentioned 49.9 ST705 K36294 lacked msmR, it encoded an iron transporter in the FCT region displaying 100% identity with the equivalent 77 gene (n = 2) and high sequence identity (80%) with a Streptococcus canis gene. Interestingly, within the dataset there were two emm-type subtype 91.0 genomes isolated from canines that were of MLST-type 12, which is the MLST-type also represented in subtypes emm29.1, emm29.14, and emm29.2. This suggests recombination in the mga regulon and raises the possibility of inter-species recombination.

Collectively, this is further evidence of both emm-types encoding multiple FCT-types and the plasticity of the FCT locus. Based on the alignment of RR allele-types and sof, K36294 (emm49.9 ST705) appears to be a novel example of emm-switching, with a recipient genome of emm-type emm77. Isolate K44582 (emm57.0 ST 723) has also undergone rearrangement of the mga regulon locus, including putative emm-switch into an emm238 recipient with a fusion event at the 3’ end of the chimeric emm-like genes. GAS emm-types can display different FCT-types, albeit with low frequency. Within this dataset, emm-types encoding the unexpected rofA/nra-type were only observed in isolates sampled from Kenya and Fiji (n = 5). Qualifying these exceptions has implications for both isolate typing, and understanding the expression of pilus and biofilm formation.

Associations between RR allelic profiles, and typing, geotemporal and clinical metadata

In order to assess relationships between the metadata and the nucleotide sequences of the RRs, phylogenetic and concordance analyses were performed. The phylogenetic analysis revealed
no strong associations between the individual RR CDS alleles and emm-type, geotemporal data, or clinical outcomes. In general, the more discernible clustering was observed for meta-data labels of the concatenated RR alleles phylogenetic tree (S5 Fig). Of note, were the ‘emm-pattern’ and ‘Country’ labels which displayed a greater degree of clustering. It was also noted that ralp3 and vgl alleles were absent in the acute rheumatic fever (ARF)/rheumatic heart disease (RHD)-related isolates. Concordance between the concatenated RR allele types and various genomic traits (metadata) was tested, where the adjusted Wallace coefficients values represent the mean likelihood that two identical concatenated RR allele types share the same metadata value (S4 Data). The concatenated RR alleles were highly predictive of the emm-type and emm-subtype and by inference emm-cluster and emm-pattern. Adjusted Wallace coefficients between concatenated RR allele type and emm-type, MLST, and core genome phylogroup were measured as 99.8%, 98.3%, and 99.7%, respectively. Each of the concatenated RR allele types was observed in isolates of only one emm-type in all except for two cases. That is, where one type was seen in both emm101 (n = 3 of 11) and emm205 (n = 1 of 1), and another in both emm183 (n = 1 of 7) and emm79 (n = 1 of 3). However, 100 of the 125 emm-types had more than one concatenated RR allele type. Suggesting that the concatenated allele type is more predictive of the emm-type than vice versa. Similarly, the concatenated RR alleles were highly predictive of the country of sampling (91.5%). Moreover, when the emm-subtype and country of sampling were amalgamated, the adjusted Wallace coefficient increased to 93.4%, suggesting a geographical dependency in the variability of the RR alleles. Finally, within this dataset, the chance of two concatenated RR allele types sharing the same site of tissue sampled and disease outcome were, 58.4% and 63.3%, respectively, suggesting that the RR alleles have less power in predicting GAS clinical outcomes than they do for the evolutionary history of a strain. However, it should be noted that the emm-types of the isolates that have switched mga-2 have been previously implicated in antibiotic resistance by others [88–91].

Evidence for selection pressure on response regulators

Values for the ratios π_A/π_S and K_A/K_S were calculated for each of the RR coding alleles (Table 3). These values generally correlated and suggested that the majority were under negative selection pressure. Several exceptions, inferring positive pressure were observed for ccpA, codY, gczA, and regR.

rofA-like protein (RALP) genes and msmR

It has previously been established that rofA, nra, ralp3 and rivR are the rofA-like proteins (RALPs), and together with msmR are significant regulators of the virulence-related FCT and ‘enso ralp3 epf sagA’ (ERES) loci [20, 54]. They share approximately 62% aa identity, and all GAS isolates encode either rofA or nra, but not both [59]. Very few emm-types are represented in multiple FCT-types, and more specifically the rofA/nra-type of an isolate correlates tightly with emm-type [92]. rofA and nra are auto-regulating, global virulence regulators that generally exert positive and negative influence on the FCT regulon, respectively, in an FCT-type-dependent manner [4]. Linkages have also been observed between emm-type and the form and function of ralp3 and msmR [20, 54]. The RALPs contain N-terminal helix-turn-helix (HTH) DNA-binding domains and mid protein or C-terminal phosphotransferase system regulating domains (PRDs).

The throat-associated MGAS10750 is an emm4 GAS reference genome that lacks hasA, encoding hyaluronan synthase, a key enzyme involved in synthesising the hyaluronic acid capsule a key determinant of the pathogenicity of GAS [93]. Recently, a chimeric fusion of emm4 and the adjacent enn gene was characterised, designated emm4c, noted for its current clinical
importance, and identified in the Paediatric Autoimmune Neuropsychiatric Disorders Associated with *Streptococci* (PANDAS)-associated throat isolate MEW427 [94, 95]. Other *emm4c*-encoding isolates have been associated with invasive GAS outbreak and non-synonymous variation of *ropB* and increased *speB* transcription [96].

In this study, all genomes were observed to encode either *rofA* or *nra*; *emm*-types encoding multiple FCT-types are detailed above (n = 5). *ralp3* was present in 834 of the 944 genomes, representing 114 *emm*-types of which 10 (*emm* 18, 19, 22, 53, 68, 75, 80, 83, 89, and 111) were also represented in isolates that lacked *ralp3*. In line with previous studies, we identified *ralp3* in *emm*-types 1, 4, 12, 28, and 49 [97], and can also report the first instance of a naturally occurring *ralp3* in an *emm53* isolate (n = 2 of 6: ST460 from Kenya and ST363~ from Fiji) [98]. Each of the NCBI ARF-associated genomes (*emm5* Manfredo, *emm6* JRS4, *emm6* JRS4_DNA, *emm6* D471, *emm14* HSC5, *emm18* MGAS8232, and *emm23* M23ND) that were ‘single protein *emm*-cluster clade Y’ representatives lacked *ralp3*. Of the *emm89* isolates tested (n = 33), *ralp3* was only present in the *emm*-subtypes 89.14 (n = 9) and 89.8 (n = 4). Only two of the six *emm53* encoded *ralp3*, and these alleles were different. The *mga* allele of these two *emm53* isolates were different from each other, and the other four *emm53* *mga* alleles (including reference strain AP53). The *msmR* gene was present in 722 of the 944 genomes representing 101 *emm*-types of which 12 (*emm* 8, 12, 19, 22, 25, 49, 68, 77, 82, 92, 110, and 238) were also represented in isolates that lacked *msmR*. *msmR* was not encoded in any *emm4* genomes. We observed a shorter *ralp3* variant in *emm12* (S4 Fig), which has traditionally been considered amongst the most ‘nephritogenic’ strains [99].

Truncation of Nra by a stop codon has been described previously in *emm18* MGAS8232 [100]. We also only observed the truncation of Nra in *emm18* (n = 3 of 15 including MGAS8232). Truncation of RoF A was observed in a single representative of seven different *emm*-types including the NCBI genomes pharyngeal *emm6* MGAS10394, invasive *emm44* STAB901, and invasive *emm59* MGAS15252. Variants of RivR were observed in *emm3* (n = 12 of 12). Within the IGRs of *msmR*, multi-nucleotide insertions were observed in isolates representing *emm89* (n = 19, including *emm89* clades 2 and 3), *emm1* (n = 1), *emm9* (n = 1), and *emm77* (n = 1). While, multiple putative CovR DNA-binding nucleotide sequence (‘ATTARA’) were observed in the IGRs of *nra*.

In our dataset, seven *emm4c*-encoding isolates were identified, and observed to possess a truncation of *ralp3* (n = 7 of 18) resulting in a protein 318 shorter than *ralp3* in MGAS10750. The nucleotide sequence variants of *emm4* *ralp3* also correlated with the geographical location of sampling. Nonsense mutations were seen in *mga*-2 and *isp* of MEW427, and *emm* of MGAS10750, while their fibronectin binding proteins were 365 and 281 long, respectively. Variants of *rivR* were observed in *emm4* (n = 11 of 19 including MGAS10750 and MEW427) that were 88 aa and 191 aa long, respectively (compared with the 502 aa of M1GAS). All of the *emm4* genomes lacked *msmR*. Given that the *mga* regulon and FCT region influence virulence, and *ralp3* plays a role in GAS survival in blood [64], the variability of these genes suggests that they may play a regulatory role in *emm4c* virulence.

Multiple gene regulator of GAS (*mga*)

GAS Mga is a metabolite-responsive, auto-regulating, global regulator of virulence genes encoded by two divergent alleles, *mga*-1 and *mga*-2, that correlate with *emm*-type [92]. Each allele is respectively linked to a throat-associated serum opacity factor (*sof*)-negative phenotype, or a skin-associated or ‘generalist’ *sof*-positive phenotype [92]. This suggests an important role for *mga*-1 and *mga*-2 in the evolutionary history of GAS tissue tropism [92]. *mga* encodes two PRDs, between N-terminal HTH DNA-binding domains and a C-terminal EBI-
Mga indirectly affects expression of over 10% of the GAS genome particularly in the exponential growth stage [44, 102]. In this study *mga* was observed in all genomes, and the variants *mga-1* and *mga-2* displayed average intra-variant percentage identities of 97.7% and 98.8%, respectively. In a novel finding, throat-associated *emm*12 ST36 isolate (SP1LAU) encoded both *mga-1* and *mga-2* (Fig 4). In addition to an intact *rofA*, *ralp3*, and *rivR*, SP1LAU also encoded *mga-1* in the canonical locus, of the allele-type *mga*379 [103]. The *mga-2*-like gene displayed 91.1% similarity to the nucleotide sequence of *mga-2*, and was encoded 8963 nucleotides downstream of the phage-related DNase (*spd1*) between recombinase (*recT*) and a gene encoding a phage subunit. This finding is of significance in the understanding of gene expression in clade I *emm*12 GAS [104].

DNA polymorphism in the IGRs and CDSs of *mga-1* and *mga-2* was calculated and plotted using DnaSP sliding window algorithm (Fig 5). The IGR of *mga-2* displayed a higher degree of polymorphism than the equivalent of *mga-1*, with the greatest difference observed at its 3' end adjacent to the coding region. While the coding region of *mga-1* had greater polymorphism than *mga-2*, displaying bands of peak variation that were consistent with the previously described functional domains. The domain displaying the greatest variability was the PRD-1 domain. These findings inform the relative variability of the functional domains of the *mga* [44, 105], and are consistent with the recombination event described above.

Considering *emm*3 GAS, serotype-specific mutations of *rofA*, *fasC*, and *rivR* have been observed [106, 107]. Flores et al. have described a VNTR in the IGR of *emm*3 *mga-1* whose
variable number of repeat units (two or three) correlated with the asymptomatic carrier and invasive phenotypes, respectively [108]. Within our dataset the three repeat unit variant of the VNTR was observed exclusively in the *emm*3 *mga*-1 IGRs (n = 12 of 12). Additionally, an 18 nt insertion (886nt-904nt) in the PRD-2 domain was also seen exclusively in *emm*3 *mga*-1 coding region (n = 12 of 12). Our findings raise the possibility that the relationship between the distinctive CDSs and IGRs of *emm*3 *mga* may influence the binding specificity of *emm*3 *mga* in regulating its own transcription. We present these data as another example of *emm*3-specific variability, and as a putative marker for *emm*3 GAS [109].

Fig 5. Observed nucleotide diversity (π) distribution within the intergenic region and functional domains of A) *mga*-1 (n = 151) and B) *mga*-2 (n = 793). IGR = intergenic region, 1 = Common Mga domain, 2 = helix-turn-helix (HTH)-3, 3 = HTH-4, 4 = phosphotransferase system regulatory domain (PRD)-1, 5 = PRD-2, 6 = phosphotransferase system enzyme IIB-like domain.
Further variation in mga is summarised as follows. Sanson et al. identified a non-synonymous H201R mutation, which significantly increased virulence of clinically relevant emm59 [110]. We identified the same mutation in emm59 MGAS1882 (emm-cluster-type E6) and seven other genomes, representing emm73 (E4), emm94 (E6), emm102 (E4), and emm114 (E4). We noted that emm5 Mga-1 (n = 2 of 2 including Manfredo) possessed a truncation of the C-terminus that yields a translated sequence that is 37 aa shorter than that of emm1 M1GAS. Mga-1 was truncated by nonsense mutations in emm1 MTB313, and four emm12 isolates, while Mga-2 was truncated in emm44 STAB901, emm4 MEW427 (Fig 2) and emm80 Rosenbach. Collectively, these findings are further evidence of the plasticity of mga in cluster E-type GAS.

ropB-like proteins: ropB, rgg2, rgg3, and comR

ropB, rgg2, rgg3, and comR are the rgg-like genes that are present in all GAS strains [58]. RopB is the growth phase-dependent, global regulator that controls the expression of multiple virulence genes including speB during high cell density [111]. Vfr acts as an inhibitory peptide in the RopB-dependent expression of SpeB [111]. Rgg2 and Rgg3 bind post-translationally to short hydrophobic peptides (SHPs), which are encoded proximally, in an inter-related fashion to regulate the transcription of a common set quorum sensing–related genes [58]. Similarly, ComR interacts with the SigX-inducing peptide (XIP) to upregulate transcription of competence genes [112, 113] and is essential in emm3-type biofilm formation [47]. Different comR allele variants have been identified in emm3 MGAS315 and emm1 MGAS5005 [47]. The functional domains of these ComR-types have been investigated and found to show different biological activity [114]. The mga, RALP, and ropB-like genes contrive complex and yet to be elucidated transcriptional regulatory networks that have proven growth phase- and serotype-dependencies [4, 20].

In this study, comR was present in all genomes tested. Phylogenetic analysis revealed the novel finding that each of the 944 genomes tested encoded one of the two distinct allele types (S4 Fig). ComR-1 (represented by emm3 MGAS315) and ComR-2 (represented by emm1 MGAS5005), displayed 99.1% and 99.8% intra-type identity at the protein level, respectively, and 58.1% between types. comR-1 and comR-2 were represented in 78 and 79 emm-types, respectively. Thirty two emm-types (4, 15, 18, 19, 22, 25, 28, 42, 49, 53, 57, 60, 63, 65, 68, 70, 75, 77, 82, 83, 84, 89, 90, 93, 110, 116, 118, 122, 169, 192, 209, and 223) where represented in both comR types. The above mentioned emm49.9 ST705 K36294 was the only emm49 isolate (n = 1 of 9), and the Kenyan-sampled emm89.8 isolates were the only emm89 isolates (n = 4 of 33) to encode comR-1. The most variable ComR-2-related emm-types were emm11, emm25, emm49, emm71, emm82, emm106. While for ComR-1 the most variable were emm25 and emm83. A subset of emm25 ComR-1 (n = 21) displayed a 15 aa variant at the C-terminus due to a frameshift caused by a single adenine deletion. Multiple sequence alignment of the ComR-2 set revealed ten variant proteins that had a three aa insertion from 201–203 aa (‘ELD’ in NZ131; and ‘EQF’ in one ST591 emm82.1, one emm106, and seven emm49 isolates). These loci coincide with a putative pheromone ligand-binding domain [114]. The variable comR emm-types, emm15, emm49, and emm82, are mentioned in the evidence of recombination section above. While emm82 and emm49 (NZ131) display increased competence [115], and emm25 and emm49 are poststreptococcal glomerulonephritis-associated emm-types [116]. Therein, the described variation in the functional domains of comR are likely to inform the biology of competence and biofilm formation, and the clinical importance of the included emm-types.

The rgg-like genes were well conserved reinforcing the importance of their roles in the fitness of GAS. Several noteworthy examples of variation include the following. In MEW427,
RopB displayed T104I and S116L mutations (with respect to MGAS10750), and Vfr was truncated, again suggesting different regulatory mechanisms between the emm4 isolates. A 145 nt sequence that contains multiple putative CovR DNA binding sites has inserted into the IGRs of rgg2, and ropB in five genomes (including emm89 ST407 MGAS11027 and four emm65.5 ST215 isolates). This suggests differential transcriptional regulation. While emm89 MGAS11027 has an indel in the IGR of rgg3 that is unique amongst emm89 isolates. Both emm65 and emm89 have shown variability in biofilm production [117, 118]. While, a putative CovR DNA-binding sequences, was also observed upstream of rgg2. Our results advance the testable hypothesis, that measured intra-strain variability in the ability produce biofilm may provide insights into biofilm formation mechanisms.

Other stand-alone response regulators (crgR, lrp, copY)

crgR is a transcriptional regulator that is important for survival in the presence of the antimicrobial peptide LL-37 in emm49 NZ131 [119]. Subsequent work with emm1 MGAS5005 and emm6 JR54 has identified an emm-type-dependent biological activity [50, 120, 121].

In this study, crgR was encoded in all genomes, that when translated produced two variant protein lengths. The emm1 MGAS5005 was 5 aa shorter than the 253 aa emm6 JR54 variant. The CovR DNA binding site was observed in a subset of the crgR IGRs, including emm6 but excluding emm1 isolates (S4 Fig). Therein possibly explaining differential expression of comR. Variation in the CDSs and IGRs of crgR may correlate with observed differential bioactivity (for example, variable functional efficacy in LL-37 resistance of the crgR of the two strains). Phylogenetic trees of the CDSs of lrp and copY have been included (S4 Fig) to illustrate the diversity within these loci.

Isolates displaying wide-spread disruption to stand-alone response regulators

Several of the individual isolates showed a higher degree of variability across all of their RRs. These were emm1 MTB313, emm4 MEW472, emm44 STAB901, emm49 NZ131, emm82 and emm87 isolates. MTB313 is a 'highly mucoid' isolate that displays variability or truncation of AdcR, GczA, MalR, Mga-1, MrgA, MtsR, RegR, LacR and Spy2177. In addition to the genes described above, MEW472 variants of Ralp3, RopB and Vfr were also observed. emm44 STAB901 displayed variant AdcR, GczA, Mga-2, MtsR, RegR, RivR, RofA, LacR and Srv. While emm82 and emm87 are emerging clinically-relevant strains in North America [34].

Discussion

Distribution and diversity in the nucleotide and amino acid sequences of the IGR and CDS of GAS RRs

Here we characterised the distribution and diversity of the nucleotide and amino acid sequences of the IGRs and CDSs of 35 selected GAS RRs from 944 geotemporally diverse genomes. Different and often novel forms of variability were observed in the IGR and CDS loci, including single and multiple nucleotide mutations, recombination, and VNTRs. These individual nucleotide differences were used to define IGR and CDS allele types which then facilitated comparison to other existing typing schemes and inference of loci recombinogenicity and selection pressure. Because GAS RRs have been observed to be autoregulating [4, 20, 71], it was important to not exclude the IGRs from this study. Consequently, within the IGRs we identified several novel recombination events and putative binding sites including that of the global regulator CovR. We were also able to identify many instances of nonsense
mutations, causing premature stop codons in the translated sequences that possibly alter the function of the protein by deleting key functional domains. We also provide new insight into the evolutionary dynamics of RR and IGR which clearly shows that carriage of these networks are important to GAS biology. Furthermore, the expansion of population genomic frameworks to capture RRs is required to get a better understanding of the nexus between regulatory systems, virulence pathways and pathogenesis.

Recombination

The recombinogenicity of GAS is well established [5, 11]. By applying comparative subgenomic techniques we were able to increase the understanding of recombinogenicity of the RR loci, and identified several key loci involved in recombination events, including the mga regulon and FCT region. Specifically, we identified novel recombination events in the mga locus in ten isolates that were consistent with a switch from mga-1 to mga-2 type (“mga-2 switching”). In one of these isolates, emm82 ST36 NGAS5949, we also observed a chimerization (deletion fusion) of the emm-like genes, for which we have proposed an evolutionary path using other emm82 isolates in the dataset. The discovery of mga-2 switching is significant, because autoregulating mga is known to control the expression of about 10% of the GAS genome including surface-exposed M-protein and other virulence factors. mga-1 is found in throat-associated GAS and is considered a proxy for emm-pattern-type A-C tissue tropism [92]. Therefore, recombination of mga-2 into an otherwise mga-1 genomic background is predicted to dramatically alter the transcription profile with the possible consequence of altering host-pathogen interaction in growth-phase transition. Our findings increase the understanding of emm82 GAS. Interestingly there has been a recent increase in emm82 outbreaks in North America, and in this context, investigation of the impact the mga-2 switch on tissue tropism and virulence warrants further investigation.

We also identified the first known instance of an isolate (SP1LAU emm12 ST-type 36) encoding both an intact mga-1 and mga-2, with the latter also having proximal bacteriophage-related elements suggesting a phage-mediated mode of recombination. Further investigation is required to assess the impact of this recombination event on the transcriptional landscape of SP1LAU.

GAS encodes either rofA or nra at the same locus in the FCT region. We observed five emm-types that were represented in both the rofA-positive and nra-positive subsets, that is five emm-types with multiple FCT-types. This was either explained by an emm-switch or recombination of the rofA/nra locus (that is, an FCT-switch), and resulted in several novel emm/FCT pairings. Identifying these pairings is useful in mitigating emm-type/FCT-typing ambiguities. This is of clinical significance, since rofA and nra are generally positive and negative regulators, respectively, of surface-exposed pili which are central to GAS biofilm formation. We also observed that each of the isolates of the emm-types represented in multiple FCT-types were sampled in Kenya or Fiji (n = 5), while the isolates displaying mga-2 switching were sampled from northern hemisphere countries of higher median income. This raises the possibility of differential virulence factors associated with disproportionate rates of poverty, insecure and low-paid labour, poorer conditions and overcrowded housing. Regardless, a higher degree of overall plasticity was noted in emm-pattern E type generalist isolates, especially in the mga regulon and FCT region. Collectively, these findings could explain mechanisms for the geographically-dependent, rapid evolution of adhesion and immunity evasion in the progression of GAS disease.

Selection pressure

One of the two response regulators inferred to be under the largest positive selection pressure was regR which represses expression of chromosomally-encoded hyaluronidase (hylA) [66].
While the mechanism has not been elucidated, hylA has been implicated in the degradation of both GAS and human hyaluronic acid, possibly enhancing the dissemination of GAS [66]. Historically the expression of an abundance of ‘mucoid’ GAS hyaluronic acid capsule, mediated by the hasABC operon, has been associated with virulent isolates. More recently virulent acapsular isolates, lacking intact and functional hasABC, have been observed [122]. We note that whilst acapsular isolates have been a topic of recent GAS virulence studies, the role of hylA and its regulator, regR, also warrant closer scrutiny.

Associations

Strong associations were observed between the concatenated RR allele types and the current GAS typing systems. Weaker yet highly predictive associations were observed between concatenated RR alleles and country of sampling, and this was augmented with the amalgamation of the country of sampling with the isolate emm-type. Therein, suggesting a geographical dependence on the evolutionary history of GAS RR alleles. The power of the concatenated RR allele types to predict the clinical outcomes was significantly lower than for the typing and geotemporal metadata. In general, individual RR alleles were considerably less predictive of the metadata, however several notable observations were made. Switching of mga-2 was observed in emm-types 22, 75, 82, and 89, all of which are emm-pattern E types that have been associated with clinically-relevant antibiotic resistance [88–91]. Furthermore, SP7LAU was one of the isolates displaying mga-2 switching as were isolates of emm22 ST46-type, which has been identified as one of the most frequently observed macrolide-resistant lineages [90]. Collectively, this serves to increase our understanding of the evolutionary history of GAS.

Typing

The most commonly used epidemiological marker for GAS is the emm-type, and this is commonly used as a proxy for inferring evolutionary relatedness, especially within geotemporally restricted settings. However, in response to an immunity-imposed selection pressure, emm is known to readily mutate or recombine into a diversity of GAS genomic backgrounds [13, 123]. Another key GAS molecular typing scheme is the MLST which is based on the sequence of seven (partial) housekeeping genes. In combination the emm-type and MLST-type yield a less ambiguously defined GAS strain than emm-type alone. However, recombination has also been observed within the seven MLST housekeeping genes [13]. Amidst this complexity, measurement of the associations between emm-type and MLST-type has identified weakness in their definition of the GAS strain, particularly in isolates of emm-pattern types D and E from high-income countries [11, 124–126]. Comparison of emm-type and or MLST-type to the traditional serological surface-exposed GAS typing proteins (for example, M-protein, pili T antigens, and serum opacity factor) has also yielded some inconsistencies between these typing schemes [127, 128]. The complexity of GAS genomics adds to the difficulty of deciphering GAS biology and epidemiology, and has led to calls for reconsideration of the functional definition of a GAS strain [11, 13].

In this study we observed that the frequency with which an emm-type is not represented by a single MLST-type, and vice versa, was not de minimus. Using the RR allele types as a cross reference, we identified novel examples of mga-2 switching and FCT-type/emm-type pairs, and inferred novel examples of the horizontal gene transfer of emm in a distantly related MLST-type (emm-switching). Together these observations serve to mitigate GAS typing ambiguities, and in the latter case add to the growing list of inferred emm-switches [13, 30, 125, 129]. Several of the observed advantages of typing using GAS RR alleles included the following. GAS RRs are a family of cytosolic proteins that share broadly similar functional domains and
functions, including control of the expression of traditional GAS typing proteins. Nearly all RRs are found in all GAS genomes at loci that are distributed throughout the GAS genome. Targeting multiple RRs in a typing scheme reduces the reliance on a single locus, and the effect of recombination on typing schemes. We observed no difference in the mean recombination rates between the RR and MLST-typing loci. However, with judicious selection of RR alleles there were 11 that were inferred to be core and non-recombinogenic genes (Tables 1 and 2). Furthermore, RR alleles are contrived from the subgenomic interrogation of the nucleotide sequences of GAS WGSs which are available in increasing abundance and cost-effectiveness. RR alleles are genotype-dependent and not phenotype-dependent like traditional serological GAS typing proteins, circumventing some of the complexities of host-pathogen interaction. The proteins used in traditional typing schemes are generally antigenic and implicated in immune evasion, and as therein display high intragenic variability, experience strong selection pressure, and are prone to recombination. By contrast the RRs display a range of intragenic variability and recombinogenicity, and only two are inferred to be under strong selection pressure. In more nuanced observations it is preferred that a GAS typing scheme is readily backwards compatible with the abundant emm-type-specific knowledge base and is readily expandable to ensure future-proofing.

These findings are significant because they support the redefinition of a GAS strain by quantifying and mitigating elements of the existing typing ambiguities. They also re-iterate the notable plasticity of the mga regulon and FCT region of the emm-pattern-type E isolates, and therein identify a potential mechanism for the rapid evolution of E type isolates. They also serve to better inform the choice of emm-type in future GAS bioinformatic and laboratory studies. The delineation and description of genomic diversity may also indicate differential evolutionary history or virulence, with the associated downstream consequences for understanding GAS epidemiology and disease outcomes.

Resolving power of RR allele-types

The future of microbiological molecular typing schemes will be WGS-centric. As such, choosing all 35 RR loci (as opposed to a selection of less than 35) may not provide significant impost. However, we acknowledge that MLST system is based on seven loci and any PCR-based RR typing system of equivalent discriminatory power would likely require a maximum of seven loci to justify adoption. At this stage the 11 RR alleles inferred to be core and non-recombinogenic are worthy of consideration. However, defining the minimum set of RR alleles that provides adequate power to discriminate a globally evolving population is the focus of future work.

Furthermore, the mga locus represents a noteworthy example of the importance of data resolution and granularity in subgenomics. Traditionally, GAS mga has been classified in two similar allele types mga-1 and mga-2. Today, it seems logical and cost-effective to utilise the resolution of next-generation sequencing to define additional mga allele-types based on individual nucleotide variation [103]. However, moving forward it is important to realise the ongoing utility of the mga-1 and mga-2 variants, given their strong association with niche preference and tissue tropism. Furthermore, the work of others has identified that emm3 encodes distinctive naturally-occurring mga-3 IGR alleles that are causal of differential virulence [108]. We observed that the IGR of emm3 mga was also distinctive in the Mga binding site, potentially representing an influential feature of autoregulation. Analogously, we observed that two previously described different comR alleles were present across the extent of our large dataset. Given that comR has been implicated in natural transformation and biofilm formation, definition of comR-1 and comR-2 promises equally distinct biological associations. In light of these
examples, our findings increase the definition of the compartmentalisation and resolving power of the variation of IGR and CDS RR allele-types in deciphering bioinformatic, biological and clinical manifestations.

Conclusions
We observed strong associations between the collective variation in the DNA sequences of the RR alleles, and GAS emm-type, MLST-type, core genome phylogroup, and the country of sampling. Our subgenomic interrogation of GAS genomes confirms the resolution and utility of RR loci in the burgeoning redefinition of GAS typing and strain. Whilst we saw no strong novel associations between individual RR loci and clinical outcomes, our work is likely to inform the selection of emm-type in future bioinformatic and laboratory studies. Furthermore, response regulators are clearly essential to the long term persistence of GAS, and a better understanding of how response regulators evolve/relate to transcriptional networks is essential to deciphering the GAS host-pathogen interface.

Supporting information
S1 Data. Catalogue of GAS strains. Catalogue of NCBI and draft GAS genomes and metadata. (XLSX)
S2 Data. Typing data and concordance of response regulator CDSs. Typing data and concordance of response regulator CDSs. (XLSX)
S3 Data. Typing data and concordance of response regulator IGRs. Typing data and concordance of response regulator IGRs. (XLSX)
S4 Data. Concordance of metadata. Concordance analysis of genomic traits and metadata. (XLSX)
S1 Fig. emm-type distribution. Distribution of emm-types within this study (n = 125), the NCBI database of complete genomes as at 11-3-2020 (n = 59), and the Davies GAS atlas (n = 149) [11]. (PPTX)
S2 Fig. Response regulator gene drawings. Schematic drawings of GAS response regulator genes. (PPTX)
S3 Fig. Dendrogram and phylogram of the mga CDSs and IGRs. Maximum likelihood and Neighbour-joining phylogenetic trees of the DNA sequences of mga CDSs and IGRs displaying recombination event, and the two mga alleles of SP1LAU. (PDF)
S4 Fig. Dendrograms of GAS response regulator CDSs and IGRs. Dendrograms of GAS response regulator CDSs (comR, rofA, ralp5, lrp, and copY) and IGR (crgR). (PDF)
S5 Fig. Phylogram of concatenated RR alleles. Neighbour joining phylogenetic tree of 3551 SNPs generated from an alignment of 35 response regulator genes. (PDF)
Acknowledgments

The authors wish to acknowledge Professor Robert J. Harvey for his expertise and generosity while providing comments and feedback in the writing this manuscript. SJB wishes to acknowledge the invaluable support and assistance of the University of the Sunshine Coast.

Author Contributions

Conceptualization: Sean J. Buckley, David J. McMillan.

Data curation: Sean J. Buckley.

Methodology: Sean J. Buckley.

Writing – original draft: Sean J. Buckley.

Writing – review & editing: Mark R. Davies, David J. McMillan.

References

1. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, et al. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clinical microbiology reviews. 2014; 27(2):264–301. https://doi.org/10.1128/CMR.00101-13 PMID: 24696436

2. Beall B, Facklam R, Thompson T. Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. Journal of clinical microbiology. 1996; 34(4):953–8. https://doi.org/10.1128/JCM.34.4.953-958.1996 PMID: 8815115

3. Hollingshead SK, Readdy TL, Li Yung D, Bessen DE. Structural heterogeneity of the emm gene cluster in group A streptococci. Molecular microbiology. 1993; 8(4):707–17. https://doi.org/10.1111/j.1365-2958.1993.tb01614.x PMID: 8332063

4. Vega LA, Malke H, McIver KS. Virulence-related transcriptional regulators of Streptococcus pyogenes. 2016.

5. Feil EJ, Spratt BG. Recombination and the population structures of bacterial pathogens. Annual Reviews in Microbiology. 2001; 55(1):561–90.

6. Kalia A, Spratt BG, Enright MC, Bessen DE. Influence of recombination and niche separation on the population genetic structure of the pathogen Streptococcus pyogenes. Infection and immunity. 2002; 70(4):1971–83. https://doi.org/10.1128/iai.70.4.1971-1983.2002 PMID: 11895961

7. Hanage WP, Fraser C, Spratt BG. The impact of homologous recombination on the generation of diversity in bacteria. Journal of theoretical biology. 2006; 239(2):210–9. https://doi.org/10.1016/j.jtbi.2005.08.035 PMID: 16236325

8. Lefèbure T, Stanhope MJ. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome biology. 2007; 8(5):R71. https://doi.org/10.1186/gb-2007-8-5-r71 PMID: 17475002

9. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. The ISME journal. 2009; 3(2):199–208. https://doi.org/10.1038/ismej.2008.93 PMID: 18830278

10. Bao Y-J, Liang Z, Mayfield JA, McShan WM, Lee SW, Ploplis VA, et al. Novel genomic rearrangements mediated by multiple genetic elements in multiple genetic elements in Streptococcus pyogenes M23ND confer potential for evolutionary persistence. Microbiology. 2016; 162(8):1346–59. https://doi.org/10.1099/mic.0.000326 PMID: 27329479

11. Davies MR, McIntyre L, Mutreja A, Lacey JA, Lees JA, Towers RJ, et al. Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nature genetics. 2019; 51(6):1035–43. https://doi.org/10.1038/s41588-019-0417-8 PMID: 31133745

12. McGregor KF, Spratt BG, Kalia A, Bennett A, Bilek N, Beall B, et al. Multilocus sequence typing of Streptococcus pyogenes representing most known emm types and distinctions among subgroup genetic structures. Journal of bacteriology. 2004; 186(13):4285–94. https://doi.org/10.1128/JB.186.13.4285-4294.2004 PMID: 15205431

13. Bessen DE, Smeesers PR, Beall BW. Molecular epidemiology, ecology, and evolution of group A streptococci. J Microbiol Spectr. 2018; 6:3000921018CPP.

14. Hand RM, Snelling TL, Carapetis JR. Group A Streptococcus. Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier, 2020. p. 429–38.
15. Helmann JD, Moran CP. RNA polymerase and sigma factors. Bacillus subtilis and its Closest Relatives: American Society of Microbiology; 2002. p. 289–312.

16. Opdyke JA, Scott JR, Moran CP Jr. A secondary RNA polymerase sigma factor from Streptococcus pyogenes. Molecular microbiology. 2001; 42(2):495–502. https://doi.org/10.1046/j.1365-2958.2001.02657.x PMID: 11703670

17. Beyer-Sehmeyer G, Kreikemeyer B, Hörster A, Podbielski A. Analysis of the growth phase-associated transcriptome of Streptococcus pyogenes. International journal of medical microbiology. 2005; 295(3):161–77. https://doi.org/10.1016/j.ijmm.2005.02.010 PMID: 16044856

18. Woodbury RL, Wang X, Moran CP Jr. Sigma X induces competence gene expression in Streptococcus pyogenes. Research in microbiology. 2006; 157(9):851–6. https://doi.org/10.1016/j.resmic.2006.07.002 PMID: 16963321

19. McIver KS. Stand-alone response regulators controlling global virulence networks in Streptococcus pyogenes. Bacterial Sensing and Signaling. 16: Karger Publishers; 2009. p. 103–19.

20. Kreikemeyer B, McIver KS, Podbielski A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends in microbiology. 2003; 11(5):224–32. https://doi.org/10.1016/s0966-842x(03)00098-2 PMID: 12781526

21. Shelburne SA, Olsen RJ, Suber B, Sahasrabhojane P, Sumby P, Brennan RG, et al. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection. PLoS pathogens. 2010; 6(3):e1000817. https://doi.org/10.1371/journal.ppat.1000817 PMID: 20333240

22. Sarkar P, Sumby P. Regulatory gene mutation: a driving force behind Group A Streptococcus strain- and serotype-specific variation. Molecular microbiology. 2017; 103(4):576–89. https://doi.org/10.1111/mmi.13584 PMID: 27868255

23. Xavier BB, Mysara M, Bolzan M, Ribeiro-Goncalves B, Alako BT, Harrison P, et al. BacPipe: A rapid, user-friendly whole-genome sequencing pipeline for clinical diagnostic bacteriology. iScience. 2020; 23(1):100769. https://doi.org/10.1016/j.isci.2019.100769 PMID: 31887656

24. Didelot X, Bowden R, Wilson DJ, Pető TE, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nature Reviews Genetics. 2012; 13(9):601–12. https://doi.org/10.1038/nrg3226 PMID: 22868263

25. Doyle RM, O’Sullivan DM, Aller SD, Bruchmann S, Clark T, Pelegrin AC, et al. Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: An inter-laboratory study. Microbial genomics. 2020; 6(2).

26. Rossen JW, Friedrich A, Moran-Gilad J. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clinical Microbiology and Infection. 2018; 24(4):355–60. https://doi.org/10.1016/j.cmi.2017.11.001 PMID: 29117578

27. Schwengers O, Hoek A, Fritzenwanker M, Falgenhauer L, Hain T, Chakraborty T, et al. ASA3P: An automatic and scalable pipeline for the assembly, annotation and higher level analysis of closely related bacterial isolates. PLoS computational biology. 2020; 16(3):e1007134. https://doi.org/10.1371/journal.pcbi.1007134 PMID: 32134915

28. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome research. 2018; 28(2):304–16. https://doi.org/10.1101/gr.241455.118 PMID: 30679308

29. Turner CE, Bedford L, Brown NM, Judge K, Török ME, Parkhill J, et al. Community outbreaks of group A Streptococcus revealed by genome sequencing. Scientific reports. 2017; 7(1):8554. https://doi.org/10.1038/s41598-017-08914-x PMID: 28819111

30. Chochoya S, Metcalf BJ, Li Z, Rivers J, Mathis S, Jackson D, et al. Population and whole genome sequence based characterization of invasive group A streptococci recovered in the United States during 2015. MBio. 2017; 8(5):e01422–17. https://doi.org/10.1128/mBio.01422-17 PMID: 28928212

31. Wiklening RV, Federle MJ. Evolutionary constraints shaping Streptococcus pyogenes–host interactions. Trends in microbiology. 2017; 25(7):562–72. https://doi.org/10.1016/j.tim.2017.01.007 PMID: 28216292

32. Mintzer V, Moran-Gilad J, Simon-Tuval T. Operational models and criteria for incorporating microbial whole genome sequencing in hospital microbiology—A systematic literature review. Clinical Microbiology and Infection. 2019; 25(9):1086–95. https://doi.org/10.1016/j.cmi.2019.04.019 PMID: 31039443

33. Efratiou A, Lamagni T. Epidemiology of Streptococcus pyogenes. Streptococcus pyogenes: basic biology to clinical manifestations [Internet]: University of Oklahoma Health Sciences Center; 2017.

34. Athey TB, Teatero S, Li A, Marchand-Austin A, Beall BW, Fittipaldi N. Deriving group A Streptococcus typing information from short-read whole genome sequencing data. Journal of clinical microbiology. 2014;JCM. 00029–14.
35. Zakour NLB, Davies MR, You Y, Shen JH, Forde BM, Stanton-Cook M, et al. Transfer of scarlet fever-associated elements into the group A Streptococcus M1T1 clone. Scientific reports. 2015; 5:15877. https://doi.org/10.1038/srep15877 PMID: 26522788

36. Davies MR, Holden MT, Coupland P, Chen JH, Venturini C, Barnett TC, et al. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nature genetics. 2015; 47(1):84. https://doi.org/10.1038/ng.3147 PMID: 25401300

37. Lees JA, Vehkala M, Valkimaki N, Harris SR, Chewapreecha C, Croucher NJ, et al. Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nature communications. 2016; 7(1):1–8.

38. Seale AC, Davies MR, Anampiu K, Morpeth SC, Nyongesa S, Mwarumba S, et al. Invasive group A Streptococcus infection among children, rural Kenya. Emerging infectious diseases. 2016; 22(2):224. https://doi.org/10.3201/eid2202.151358 PMID: 26811918

39. Tokajian S, Eisen JA, Jospin G, Coil DA. Draft genome sequences of Streptococcus pyogenes strains associated with throat and skin infections in Lebanon. Genome Announc. 2014; 2(3):e00358–14. https://doi.org/10.1128/genomeA.00358-14 PMID: 24831139

40. Kearse M, Moir R, Wilson Å, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28(12):1647–9. https://doi.org/10.1093/bioinformatics/bts199 PMID: 22543637

41. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research. 2004; 32(5):1792–7. https://doi.org/10.1093/nar/gkh340 PMID: 15034147

42. Ong C-L, Gillen CM, Barnett TC, Walker MJ, McEwan AG. An antimicrobial role for zinc in innate immunity. 2007; 75(6):2981–90. https://doi.org/10.1128/IAI.00081-07 PMID: 17403878

43. Sitkiewicz I, Musser JM. Deletion of atoR from Streptococcus pyogenes results in hypervirulence in a mouse model of sepsis and is luxS independent. Polish Journal of Microbiology. 2017; 66(1):17–24. https://doi.org/10.5604/17331331.1234989 PMID: 29395701

44. Hondorp ER, McIver KS. The Mga virulence regulon: infection where the grass is greener. Molecular microbiology. 2005; 57(3):786–803. doi:10.1111/j.1365-2958.2005.04730.x PMID: 16045622

45. Frank C, Steiner K, Malke H. Conservation of the organization of the streptokinase gene region among pathogenic streptococci. Medical microbiology and immunology. 1995; 184(3):139–46. https://doi.org/10.1007/BF00224351 PMID: 8577315

46. Nakata M, Podbielski A, Kreikemeyer B. MsrR, a specific positive regulator of the Streptococcus pyogenes FCT pathogenicity region and cytolysin-mediated translocation system genes. Molecular microbiology. 2005; 57(3):786–803. https://doi.org/10.1111/j.1365-2958.2005.04730.x PMID: 16045622
55. Cho KH, Caparon MG. Patterns of virulence gene expression differ between biofilm and tissue communities of *Streptococcus pyogenes*. Molecular microbiology. 2005; 57(6):1545–56. https://doi.org/10.1111/j.1365-2958.2005.04786.x PMID: 16135223

56. Tsou C-C, Chiang-Ni C, Lin Y-S, Chuang W-J, Lin M-T, Liu C-C, et al. An iron-binding protein, Dpr, decreases hydrogen peroxide stress and protects *Streptococcus pyogenes* against multiple stresses. Infection and immunity. 2008; 76(9):4038–45. https://doi.org/10.1128/IAI.00477-08 PMID: 18541662

57. Toukoki C, Gold KM, McIver KS, Eichenbaum Z. MtsR is a dual regulator that controls virulence genes and metabolic functions in addition to metal homeostasis in the group A *Streptococcus*. Molecular microbiology. 2010; 76(4):971–89. https://doi.org/10.1111/j.1365-2958.2010.07157.x PMID: 20398221

58. Chang JC, Jimenez JC, Federle MJ. Induction of a quorum sensing pathway by environmental signals enhances group A *streptococcal* resistance to lysozyme. Molecular microbiology. 2015; 97(6):1097–113. https://doi.org/10.1111/mmi.13088 PMID: 26062094

59. Kratovac Z, Manoharan A, Luo F, Lizano S, Bessen DE. Population genetics and linkage analysis of loci within the FCT region of *Streptococcus pyogenes*. Journal of bacteriology. 2007; 189(4):1299–310. https://doi.org/10.1128/JB.01301-06 PMID: 17028269

60. Siemens N, Chakrakodi B, Shambat SM, Morgan M, Bergsten H, Hyldegaard O, et al. Biofilm in group A *Streptococcus* nectrotizing soft tissue infections. JCI insight. 2016; 1(10).

61. Makthal N, Rastegar S, Sanson M, Ma Z, Olsen RJ, Helmann JD, et al. Crystal structure of peroxide stress regulator (PerR) from *Streptococcus pyogenes* provides functional insights into the mechanism of oxidative stress sensing. Journal of Biological Chemistry. 2013; 10.1111/j.1365-2958.2005.04786.x PMID: 16135223

62. Grifantini R, Toukoki C, Colaprico A, Gryllos I. The Peroxide Stimulon and the Role of PerR in Group A *Streptococcus*. Journal of bacteriology. 2011; 10.1111/j.1365-2958.2011.09241.x

63. Kwinn LA, Khosravi A, Aziz RK, Timmer AM, Doran KS, Kotb M, et al. Genetic characterization and virulence region regulator Ralp3 on *Streptococcus pyogenes* serotype M49 virulence factor expression. Journal of bacteriology. 2012; 10.1128/JB.00227-12

64. Hynes W, Sloan M. Secreted extracellular virulence factors. 2016.

65. Dmitriev AV, McDowell EJ, Chaussée MS. Inter-and intraserotypic variation in the *Streptococcus pyogenes* Rgg regulon. FEMS microbiology letters. 2008; 284(1):43–51. https://doi.org/10.1111/j.1574-6968.2008.01171.x PMID: 18479433

66. Chang JC, LaSarre B, Jimenez JC, Aggarwal C, Federle MJ. Two group A *streptococcal* peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS pathogens. 2011; 7(8):e1002190. https://doi.org/10.1371/journal.ppat.1002190 PMID: 21829369

67. Roberts SA, Scott JR. RvR and the small RNA RvX: the missing links between the CovR regulatory cascade and the Mga regulon. Molecular microbiology. 2007; 66(6):1506–22. https://doi.org/10.1111/j.1365-2958.2007.06015.x PMID: 1805100

68. Dmitriev AV, McDowell EJ, Kappeler KV, Rieck LD. The Rgg regulator of *Streptococcus pyogenes* influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolyase virulence operon. Journal of bacteriology. 2006; 188(20):7230–41. https://doi.org/10.1128/JB.00877-06 PMID: 17015662

69. Graham MR, Smoot LM, Migliaccio CAL, Virtaneva K, Sturdevant DE, Porcella SF, et al. Virulence control in group A *Streptococcus* by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proceedings of the National Academy of Sciences. 2002; 99(21):13855–60.

70. Liu D, Hollingshead S, Swiatlo E, Lawrence ML, Austin FW. Rapid identification of *Streptococcus pyogenes* with PCR primers from a putative transcriptional regulator gene. Research in microbiology. 2005; 156(4):564–7. https://doi.org/10.1016/j.resmic.2005.01.010 PMID: 15862455

71. Connolly KL, Braden AK, Holder RC, Reid SD. Srv mediated dispersal of *streptococcal* biofilms through SpeB is observed in CovRS+ strains. PLoS One. 2011; 6(12):e28640. https://doi.org/10.1371/journal.pone.0028640 PMID: 22163320

72. Shelburne SA III, Olsen RJ, Makthal N, Brown NG, Sahasrabhojane P, Watkins EM, et al. An aminoterminal signal peptide of Vfr protein negatively influences RopB-dependent SpeB expression and...
attenuates virulence in *Streptococcus pyogenes*. Molecular microbiology. 2011; 82(6):1481–95. https://doi.org/10.1111/j.1365-2958.2011.07902.x PMID: 22040048

75. Bessen DE, Kumar N, Hall GS, Riley DR, Luo F, Lizano S, et al. Whole genome association study on tissue tropism phenotypes in Group A *Streptococcus*. Journal of bacteriology. 2011; JB. 05263–11.

76. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25(11):1451–2. https://doi.org/10.1093/bioinformatics/btp187 PMID: 19346325

77. Carrico J, Silva-Costa C, Melo-Cristino J, Pinto F, De Lencastre H, Almeida J, et al. Illustration of a common framework for relating multiple typing methods by application to macrolide-resistant *Streptococcus pyogenes*. Journal of clinical microbiology. 2006; 44(7):2524–32. https://doi.org/10.1128/JCM.02536-05 PMID: 16825375

78. Severiano A, Pinto FR, Ramirez M, Carrico JA. Adjusted Wallace coefficient as a measure of congruence between typing methods. Journal of Clinical Microbiology. 2011; 49(11):3997–4000. https://doi.org/10.1128/JCM.00624-11 PMID: 21918028

79. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution. 2016; 33(7):1870–4. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

80. Alikhan N-F, Petty NK, Zakour NLB, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC genomics. 2011; 12(1):402.

81. Li Y, Nanduri SA, Van Beneden CA, Beall BW. M1UK lineage in invasive group A *streptococcus* isolates from the USA. The Lancet Infectious Diseases. 2020; 20(5):538–9.

82. Buckley SJ, Timms P, Davies MR, McMillan DJ. In silico characterisation of the two-component system regulators of *Streptococcus pyogenes*. PloS one. 2018; 13(6).

83. Do H, Makthal N, VanderWal AR, Rettel M, Savitski MM, Peschek N, et al. Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proceedings of the National Academy of Sciences. 2017; 114(40):E8498–E507.

84. Wilkening RV, Capodaghi GC, Khatakor A, Tylor KM, Neiditch MB, Federle MJ. Activating mutations in quorum-sensing regulator Rgg2 and its conformational flexibility in the absence of an intermolecular disulfide bond. Journal of Biological Chemistry. 2017; jbc. M117. 801670.

85. Falaleeva M, Zurek OW, Watkins RL, Reed RW, Ali H, Sunby P, et al. Transcription of the *Streptococcus pyogenes* hyaluronic acid capsule biosynthesis operon is regulated by previously unknown upstream elements. Infection and immunity. 2014; 82(12):3029–307. https://doi.org/10.1128/IAI.02035-14 PMID: 25287924

86. Gherardi G, Vitali LA, Credi RJFiph. Prevalent *emm* types among invasive GAS in Europe and North America since year 2000. 2018; 6:59.

87. Bessen DE. Molecular basis of serotyping and the underlying genetic organization of *Streptococcus pyogenes*. *Streptococcus pyogenes*: Basic Biology to Clinical Manifestations [Internet]: University of Oklahoma Health Sciences Center; 2016.

88. Wang HB, Song YF, You YH, Wang HW, Han QH, Zhao JH, et al. Molecular epidemiological analysis of group A *Streptococci* isolated from children in Chaoyang District of Beijing, 2011: *emm* types, virulence factor genes and erythromycin resistant genes. Biomed Environ Sci. 2013; 26(9):782–4. https://doi.org/10.1128/JCM.00624-11 PMID: 21918028

89. Lu B, Fang Y, Fan Y, Chen X, Wang J, Zeng J, et al. High prevalence of macrolide-resistance and molecular characterization of *Streptococcus pyogenes* isolates circulating in China from 2009 to 2016. Frontiers in microbiology. 2017; 8:1052. https://doi.org/10.3389/fmicb.2017.01052 PMID: 28642756

90. Silva-Costa C, Friaes A, Ramirez M, Melo-Cristino J. Macrolide-resistant *Streptococcus pyogenes*: prevalence and treatment strategies. Expert review of anti-infective therapy. 2015; 13(5):615–28. https://doi.org/10.1586/14787210.2015.1023292 PMID: 25746210

91. Huang C-Y, Lai J-F, Huang I-W, Chen P-C, Wang H-Y, Shiau Y-R, et al. Epidemiology and molecular characterization of macrolide-resistant *Streptococcus pyogenes* in Taiwan. Journal of clinical microbiology. 2014; 52(2):508–16. https://doi.org/10.1128/JCM.02383-13 PMID: 24478481

92. Bessen DE, Manoharan A, Luo F, Wertz JE, Robinson DA. Evolution of transcription regulatory genes is linked to niche specialization in the bacterial pathogen *Streptococcus pyogenes*. Journal of bacteriology. 2005; 187(12):4163–72. https://doi.org/10.1128/JB.187.12.4163-4172.2005 PMID: 15937178

93. Flores AR, Jewell BE, Fittipaldi N, Beres SB, Musser JM. Human disease isolates of serotype M4 and M22 group A *Streptococcus* lack genes required for hyaluronic acid capsule biosynthesis. MBio. 2012; 3(6):e00413–12. https://doi.org/10.1128/mBio.00413-12 PMID: 23131832

94. DebRoy S, Li X, Kalia A, Galloway-Pena J, Shah BJ, Fowler VG, et al. Identification of a Chimeric M4 Protein and Novel Emm Pattern in Currently Circulating Strains of *Emm4* Group A *Streptococcus*. bioRxiv. 2018:333666.
95. Jacob KM, Spikler T, LiPuma JJ, Dawid SR, Watson ME. Complete genome sequence of emm4 Streptococcus pyogenes MEW427, a throat isolate from a child meeting clinical criteria for pediatric autoimmune neuropsychiatric disorders associated with Streptococcus (PANDAS). Genome Announc. 2016; 4(2):e00127–16. https://doi.org/10.1128/genomeA.00127-16 PMID: 26988046

96. Galloway-Peña J, Clement ME, Sharma Kuiñkel BK, Ruffin F, Flores AR, Levinson H, et al., editors. Application of whole-genome sequencing to an unusual outbreak of invasive group A streptococcal disease. Open forum infectious diseases; 2016: Oxford University Press.

97. Kreikemeyer B, Nakata M, Köller T, Hildisch H, Kourakos V, Standar K, et al. The Streptococcus pyogenes serotype M49 Nra-Ralp3 transcriptional regulatory network and its control of virulence factor expression from the novel eno ralp3 epit sagA pathogenicity region. Infection and immunity. 2017; 75(12):5698–710. https://doi.org/10.1128/IAI.01757-17 PMID: 17893125

98. Luo F, Lizano S, Bessen DE. Heterogeneity in the polarity of Nra regulatory effects on streptococcal plus gene transcription and virulence. Infection and immunity. 2008; 76(6):2490–7. https://doi.org/10.1128/IAI.01567-07 PMID: 18347035

99. Brodsky SV, Nadasdy T. Acute Poststreptococcal Glomerulonephritis. Bacterial Infections and the Kidney: Springer; 2017. p. 1–36.

100. Smoot JC, Barbian KD, Van Gompel JJ, Smoot LM, Sylva GL, Sturdevant DE, et al. Global Collection of Group A Streptococcus Genomes Reveals that the Majority Encode a Trio of M and M-Like Proteins. mSphere. 2020; 5(1).

101. You Y, Davies MR, Protani M, McIntyre L, Walker MJ, Zhang J. Scarlet fever epidemic in China caused by Streptococcus pyogenes serotype M12: epidemiologic and molecular analysis. EBioMedicine. 2018; 28:128–35. https://doi.org/10.1016/j.ebiom.2018.01.010 PMID: 29342444

102. Sanson M, Makthal N, Gavagana M, Cantu C, Olsen RJ, Musser JM, et al. Phosphorylation events in the multiple gene regulator of Group A streptococcus. Molecular microbiology. 2015; 98(3):473–89. https://doi.org/10.1111/mmi.13136 PMID: 26192205

103. Frost HR, Davies MR, Delforge V, Lakhloufi D, Sanderson-Smith M, Srinivasan V, et al. Analysis of Global Collection of Group A Streptococcus genomes reveals that the majority encode a trio of M and M-like proteins. mSphere. 2020; 5(1).

104. Miller EW, Danger JL, Ramalinga AB, Horstmann N, Shelburne SA, Sumby P. Regulatory rewiring confers serotype-specific hyper-virulence in the human pathogen group A Streptococcus. Molecular microbiology. 2015; 98(3):473–89. https://doi.org/10.1111/mmi.13136 PMID: 26192205

105. Smoot JC, Barbian KD, Van Gompel JJ, Smoot LM, Sylva GL, Sturdevant DE, et al. Genomes Reveals that the Majority Encode a Trio of M and M-Like Proteins. mSphere. 2020; 5(1).

106. Lei B, Minor D, Feng W, Liu M. Hypervirulent group A Streptococcus of genotype emm2 invades the vascular system in pulmonary infection of mice. Infection and immunity. 2018; 86(6):e00080–18. https://doi.org/10.1128/IAI.00080-18 PMID: 29610254

107. Sanson M, O’Neill BE, Kachroo P, Anderson JR, Flores AR, Valson C, et al. A naturally occurring single amino acid replacement in multiple gene regulator of group A Streptococcus significantly increases virulence. The American journal of pathology. 2015; 185(2):462–71. https://doi.org/10.1016/j.ajpath.2014.10.018 PMID: 25476528

108. Makthal N, Gavagan M, Do H, Olsen RJ, Musser JM, Kumaraswami M. Structural and functional analysis of RopB: a major virulence regulator in Streptococcus pyogenes. Molecular microbiology. 2016; 99(6):1119–33. https://doi.org/10.1111/mmi.13294 PMID: 26714274

109. Mashburn-Warren L, Morrison DA, Federle MJ. The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. Journal of bacteriology. 2012; JB. 00830–12.
113. Mashburn-Warren L, Morrison DA, Federle MJ. A novel double-tryptophan peptide pheromone controls competence in *Streptococcus* spp. via an Rgg regulator. Molecular microbiology. 2010; 78 (3):589–606. https://doi.org/10.1111/j.1365-2958.2010.07361.x PMID: 20969646

114. Shanker E, Morrison DA, Talagas A, Nessler S, Federle MJ, Prehna G. Pheromone recognition and selectivity by ComR proteins among *Streptococcus* species. *PLoS* pathogens. 2016; 12(12): e1005979. https://doi.org/10.1371/journal.ppat.1005979 PMID: 27907154

115. McShan WM, Ferretti JJ, Karasawa T, Suvorov AN, Lin S, Qin B, et al. Genome sequence of a nephritogenic and highly transformable M49 strain of *Streptococcus pyogenes*. *Journal of bacteriology*. 2008; 190(23):7773–85. https://doi.org/10.1128/JB.00672-08 PMID: 18820018

116. Cunningham MW. Pathogenesis of group A streptococcal infections. *Clinical microbiology reviews*. 2000; 13(3):470–511. https://doi.org/10.1128/CMR.13.3.470-511.2000 PMID: 11128308

117. Nithyanand P, Thenmozhi R, Rathna J, Pandian SK. Inhibition of *Streptococcus pyogenes* biofilm formation by coral-associated actinomycetes. *Current microbiology*. 2010; 60(6):454–60. https://doi.org/10.1007/s00284-009-9564-y PMID: 20020301

118. Enright MC, Spratt BG, Kalia A, Cross JH, Bessen DE. Multilocus sequence typing of *Streptococcus pyogenes* and the relationships between *emm* type and clone. *Infection and immunity*. 2001; 69(4):2416–27. https://doi.org/10.1128/IAI.69.4.2416-2427.2001 PMID: 11254602

119. Bessen DE, McGregor KF, Whatmore AM. Relationships between *emm* and multilocus sequence types within a global collection of *Streptococcus pyogenes*. 2008; 8(1):59.

120. McGregor KF, Bilek N, Bennett A, Kalia A, Beall B, Carapetis JR, et al. Group A *streptococci* from a remote community have novel multilocus genotypes but share *emm* types and housekeeping alleles with isolates from worldwide sources. *The Journal of infectious diseases*. 2004; 189(4):717–23. https://doi.org/10.1086/381452 PMID: 14767827

121. Beall B, Gherardi G, Lovgren M, Facklam RR, Forwick BA, Tyrrell GJ. *emm* and *sof* gene sequence variation in relation to serological typing of opacity-factor-positive group A *streptococci*. *Microbiology*. 2000; 146(5):1195–209.

122. Johnson DR, Kaplan EL, VanGheem A, Facklam RR, Beall B. Characterization of group A *streptococci* (*Streptococcus pyogenes*): correlation of M-protein and *emm*-gene type with T-protein agglutination pattern and serum opacity factor. *Journal of medical microbiology*. 2006; 55(2):157–64.

123. Turner CE, Holden MT, Blane B, Horner C, Peacock SJ, Sniskandan S. The emergence of successful *Streptococcus pyogenes* lineages through convergent pathways of capsule loss and recombination directing high toxin expression. *mBio*. 2019; 10(6).
Author/s:
Buckley, SJ; Davies, MR; McMillan, DJ

Title:
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes

Date:
2020-10-19

Citation:
Buckley, S. J., Davies, M. R. & McMillan, D. J. (2020). In silico characterisation of stand-alone response regulators of Streptococcus pyogenes. PLOS ONE, 15 (10), https://doi.org/10.1371/journal.pone.0240834.

Persistent Link:
http://hdl.handle.net/11343/251771

File Description:
published version

License:
CC BY