Pangeo Benchmarking Analysis: Object Storage vs. POSIX File System

Haiying Xu, Kevin Paul, Anderson Banihirwe
NCAR
Oct 07, 2020

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852077.
Introduction

• Motivation
• Introduction to Pangeo
• Varied testing conditions
• Benchmark setup
• Performance results
• Discussion
• Future work
Motivation

• Become a standard tool to benchmark Pangeo stack
• Make the metric a standard to compare among different systems
• Compare the read/write throughput of Zarr vs. NetCDF
• Show the performance and scalability of object storage
Pangeo

• Pangeo
 • A community of geoscientists and software developers promoting open, reproducible, and scalable science
 • Core of software stack: Dask, Xarray, and Jupyter lab
• Dask
 • Parallel computation and out-of-core memory capability
• Xarray
 • Array-oriented data with labeled metadata such as dimension, coordinates and attributes
• Jupyter lab
 • Web-based interactive environment to the Pangeo platform
Varied Testing Conditions

- Object storage vs. POSIX storage
 - Object storage - ActiveScale from Quantum at 8 GBps transfer rate (multiple stream)
 - POSIX storage - DDN storage at 200 GBps transfer rate
- IO format: NetCDF vs. Zarr
- Read vs. write
 - The NetCDF API with Dask does not allow direct write to object storage yet
- Cluster size
 - Node count: 1, 2, 3, 6, 12
- Chunk size
 - 64MB, 192MB, 384MB and 768MB
Benchmark Setup

- A xarray dataarray with 3 dimensions (time, lon, lat), with randomly generated data
- Dask cluster
 - Nodes, workers, memory usage
 - Cheyenne supercomputer at NCAR:
 - Intel Xeon processor cores in 4,032 dual-socket nodes (36 cores/node)
- Weak scaling analysis
 - Measure read and write throughput for a fixed dataset size per processor as the node count varies
 - Look like scaling a CESM simulation from low resolution with a few nodes to high resolution with many nodes
- Strong scaling analysis
 - Measure read and write throughput for a fixed total dataset size (460GB) as the node amount varies
 - Look like scaling a CESM simulation with a fixed resolution from low number of nodes to high number of nodes

Pangeo benchmarking analysis: Object Storage vs. POSIX File System
Weak Scaling Read

NetCDF POSIX read

Zarr POSIX read

Zarr S3 read

Pangeo benchmarking analysis: Object Storage vs. POSIX File System
Weak Scaling Read

NetCDF POSIX read

20% faster than Zarr

Zarr POSIX read

Zarr S3 read

Throughput (MBps)

Number of nodes

64.00 MB

192.00 MB

384.00 MB

768.00 MB
Pangeo benchmarking analysis: Object Storage vs. POSIX File System

Weak Scaling Read

NetCDF POSIX read

Zarr POSIX read

Zarr S3 read

NCAR UCAR
Weak Scaling Read

NetCDF POSIX read

Throughput (MBps)

Number of nodes

Zarr POSIX read

Throughput (MBps)

Number of nodes

Zarr S3 read

Throughput (MBps)

Number of nodes

Optimal and linear

64.00 MB

192.00 MB

384.00 MB

768.00 MB

Pangeo benchmarking analysis: Object Storage vs. POSIX File System
Weak Scaling Write

Pangeo benchmarking analysis: Object Storage vs. POSIX File System
Weak Scaling Write

Pangeo benchmarking analysis: Object Storage vs. POSIX File System

10% faster

NetCDF POSIX write

Zarr POSIX write

Zarr S3 write
Weak Scaling Write

NetCDF POSIX write

Zarr POSIX write

Zarr S3 write

NCAR | Pangeo benchmarking analysis: Object Storage vs. POSIX File System

9 times faster
Weak Scaling Write

NetCDF POSIX write

Zarr POSIX write

Zarr S3 write

50% slower
Weak Scaling Write

Pangeo benchmarking analysis: Object Storage vs. POSIX File System

45% faster
Strong Scaling Read

Pangeo benchmarking analysis: Object Storage vs. POSIX File System
Strong Scaling Read

Pangeo benchmarking analysis: Object Storage vs. POSIX File System

- NetCDF POSIX read
- Zarr POSIX read
- NetCDF S3 read
- Zarr S3 read

45% faster, 0% diff
Strong Scaling Read

Pangeo benchmarking analysis: Object Storage vs. POSIX File System

NetCDF POSIX read

Zarr POSIX read

30% faster
15% faster

NetCDF S3 read

Zarr S3 read
Strong Scaling Read

NetCDF POSIX read

Zarr POSIX read

NetCDF S3 read

Zarr S3 read

3% slower
13% faster
Strong Scaling Read

Pangeo benchmarking analysis: Object Storage vs. POSIX File System

- 8% faster
- 6% faster

Optimal
Discussion

• Object storage
 • Zarr read throughput same as NetCDF
• POSIX file system
 • NetCDF format reads a little faster
 • Zarr scales better
• Zarr format is beneficial for geoscience
 • Lossy compression with faster write throughput
 • Flexible storage API
• Optimization on Zarr
 • skip_instance_cache
 • use_listing_cache
Future Work

• Enable asynchronous mode in Dask
• Containerize the benchmarking tool with Docker (for cloud) or Singularity (for HPC)
• Compare write performance against PnetCDF
• Benchmark on high throughput scalable object storage
 • AWS or Google cloud
 • Benchmark with cost in mind