Early echocardiographic signs of diastolic dysfunction predict acute kidney injury in cirrhotic patients

Pei-Shan Wuab, Ying-Wen Wangb,d, Cheng-Chun Taih, Yun-Cheng Hsiehab, Pei-Chang Leeab, Chin-Chou Huangb,c, Yi-Hsiang Huanga,b, Ming-Chih Houtsb, Han-Chieh Lina,b, Kuei-Chuan Leea,b,*

aDivision of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; bDepartment of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC; cDivision of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; dDepartment of Healthcare and Service Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC

Abstract

Background: Cardiovascular dysfunction in cirrhotic patients affects survival and the development of cirrhotic complications. We aimed to evaluate potential echocardiographic parameters to predict mortality and acute kidney injury (AKI) in cirrhotic patients.

Methods: A total of 103 cirrhotic patients who underwent echocardiography between February 2009 and August 2016 in Taipei Veterans General Hospital were retrospectively enrolled. Cardiac function was evaluated using transthoracic two-dimensional echocardiography with tissue Doppler imaging. Cox hazard regression analysis was used for assessing predictors for 1-year mortality and AKI within 1 year.

Results: Baseline echocardiographic parameters were similar between survivors (n = 92) and nonsurvivors (n = 11). Lower serum levels of albumin, as well as higher albumin-bilirubin (ALBI) scores, Child-Pugh scores, and model for end-stage liver disease (MELD) scores were observed in nonsurvivors. Cox proportional hazard regression analysis revealed Child-Pugh score as the only predictor of 1-year mortality. Baseline serum creatinine (Cr) > 1.5 mg/dL, total bilirubin > 2 mg/dL, and a higher E/e′ ratio predict occurrence of AKI within 1 year. Among patients with serum Cr < 1.5 mg/dL, an increased atrial filling velocity and higher ALBI scores predict AKI occurrence within 1 year.

Conclusion: Severity of underlying liver disease but not echocardiographic parameters predicts 1-year mortality in cirrhosis. Early echocardiographic signs of diastolic dysfunction and higher ALBI scores may predict development of AKI in cirrhotic patients with serum Cr < 1.5 mg/dL.

Keywords: Acute kidney injury; Cardiomyopathies; Echocardiography; Liver cirrhosis

1. INTRODUCTION

Cirrhotic cardiomyopathy plays an important role in the development of several complications of liver cirrhosis, such as ascites, spontaneous bacterial peritonitis (SBP), hepatorenal syndrome (HRS), and is associated with poor prognosis. Some studies have demonstrated that diastolic dysfunction is related to adverse outcomes following transjugular intrahepatic portosystemic shunts insertion and is a leading cause of mortality after liver transplantation. Diagnostic and supportive criteria for cirrhotic cardiomyopathy were proposed by the 2005 World Congress of Gastroenterology, which was mainly based on the echocardiographic finding of systolic and/or diastolic dysfunction and electrocardiographic changes. In fact, cirrhotic cardiomyopathy remains occult with nearly normal cardiac function in most patients during the clinical course of liver cirrhosis and is only unmasked upon exercise or stress, which increases the difficulty in the early detection of cirrhotic cardiomyopathy.

Currently, researches have used echocardiographic parameters to investigate the association between cardiovascular alteration and outcomes in cirrhosis. Acute kidney injury (AKI), including HRS, is one of the most severe complications of cirrhosis and is associated with higher mortality among cirrhotic patients. Early identification of patients at high risk of developing AKI may help to improve their outcomes. Several biomarkers, such as urine neutrophil gelatinase-associated lipocalin and serum cystatin C, have been proposed as potential early predictors of AKI in cirrhotic patients. Nevertheless, these biomarkers are not yet widely available in clinical practice and there are still patients who are at high risk for AKI that may not be detected. Echocardiography is a simple and noninvasive clinical tool with the potential to identify patients who are at high risk for AKI. Cardiac index and E/e′ ratio, an important

<doi: 10.1097/JCMA.0000000000000422>
were recorded. The definition of AKI was based on criteria of including SBP, hepatic encephalopathy, and variceal bleeding, low-up period, newly developed complications of liver cirrhosis, score was also calculated at enrollment. During the 1-year fol-

clinical, demographic, biochemical, and echocardiographic data are summarized in Table 1. Patients were predominantly male (72.8%) with a median age of 68.5 years. Most patients were Child-Pugh class B (61.2%) and postviral cirrhosis (68.9%) was the major cause of liver cirrhosis. There were no significant differ-

In this study, we aimed to evaluate the predictive value of echocardiographic parameters for survival and development of AKI among cirrhotic patients.

2. METHODS

2.1. Study design and patient selection

A total of 103 consecutive cirrhotic patients who received echocardiography due to clinical suspicion of cirrhotic cardio-

Demographic characteristics, laboratory data, and underlying comorbidity were collected retrospectively by reviewing patients’ medical records. The laboratory parameters were recorded within 2 weeks following echocardiography as baseline liver, renal, and coagulation function. The presence of ascites was recorded from abdominal sonography performed on patients. Patients were excluded if they were <18 years old, loss to follow up during the study period, and had congenital heart disease or ever received cardiac surgery. The diagnosis of cirrhotic cardio-

2.2. Data collection

Echocardiographic parameter for left ventricular (LV) diastolic dysfunction, have been reported as independent prognostic factors for development of HRS.3,4,5 However, no studies have investigated the predictive value of echocardiographic param-

2.3. Electrocardiographic and echocardiographic examinations

On electrocardiographic examinations, the corrected QT interval (QTc) was calculated using Bazett’s formula. On echocardiographic examinations, two-dimensional and Doppler transthoracic echocardiography was performed, and the initial echocardiographic parameters were used for this analysis. All measurements were made according to the recommendations of the American Society of Echocardiography.6 LV dimensions and ejection fraction were measured by modified biplane Simpson’s method.7 The mitral inflow velocities were assessed by pulsed-

The mitral inflow velocity was assessed by pulsed-

2.4. Statistical analysis

Data were expressed as mean ± standard deviation or as counts, as appropriate. The Z test or Fisher’s exact test was used to analyze categorical variables. The Mann-Whitney U test was applied for assessing continuous variables. The Cox proportional-hazards model was used to identify factors associated with an increased risk of death and AKI in 1 year. The results of the Cox regression analysis were reported as p value, hazard ratio (HR), and 95% confidence interval (CI). All statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0 (IBM Corp., Armonk, NY, USA).

3. RESULTS

3.1. Characteristics of cirrhotic patients

Clinical, demographic, biochemical, and echocardiographic data were assessed to analyze factors for both the Cox proportional-hazards model and the Cox regression analysis. The Cox regression analysis was performed using IBM SPSS Statistics for Windows, version 24.0 (IBM Corp., Armonk, NY, USA).

www.ejcma.org
Table 1
Comparison of demographic, echocardiographic characteristics and complications of cirrhosis between survivors and nonsurvivors at 1 year of follow-up

Variables	Survivor (n = 92)	Nonsurvivor (n = 11)	p
Age, y	67.86 ± 15.57	74.00 ± 11.23	0.217
Male	66 (71.7)	9 (81.8)	0.478
Cause of cirrhosis (%)			
Viral	63 (68.5)	8 (72.9)	1.000
Alcohol	8 (8.7)	2 (18.2)	0.315
Other	21 (22.8)	1 (9.1)	0.293
Mean arterial pressure, mmHg	89.34 ± 14.08	89.00 ± 10.21	0.953

Laboratory

Platelet, 1000/µL/L	134.13 ± 103.56	141.84 ± 48.79	0.525
Sodium, mEq/L	135.45 ± 0.73	137.45 ± 5.94	0.855
Cr, mg/dL	1.56 ± 1.30	2.03 ± 1.32	0.297
TB, mg/dL	1.34 ± 2.80	4.28 ± 6.34	0.062
Albumin, g/dL	3.38 ± 0.60	2.95 ± 0.48	0.031
INR	1.15 ± 0.23	1.11 ± 0.43	0.608

Comorbidity

Diabetes	33 (35.9)	6 (54.5)	0.227
Pulmonary	15 (16.3)	1 (9.1)	0.532
Hypertension	64 (69.6)	7 (63.6)	0.688
Congestive heart failure	11 (12.0)	2 (18.2)	0.557
Coronary artery disease	24 (26.1)	2 (18.2)	0.933
Renal	22 (23.9)	2 (18.2)	0.671
Neurologic	7 (7.6)	2 (18.2)	0.241
Malignancy	31 (33.7)	7 (63.6)	0.094
Cirrhotic cardiomyopathy	60 (65.2)	7 (63.6)	0.917
Presence of ascites	16 (17.4)	6 (45.5)	0.004
MELD score	-2.11 ± 0.55	1.36 ± 0.41	0.016
Child-Pugh score	6.13 ± 1.29	8.18 ± 1.66	<0.001
MELD score	13.2 ± 5.95	17.9 ± 7.75	0.025
QTCc, ms	462.64 ± 46.02	472.25 ± 46.19	0.659

Echocardiographic data

ESV, mL	31.69 ± 18.57	45.51 ± 41.44	0.417
EDV, mL	69.96 ± 30.23	80.85 ± 44.64	0.565
LVEF, %	55.87 ± 11.72	51.59 ± 13.85	0.276
E, cm/s	85.26 ± 27.66	74.05 ± 27.23	0.219
A, cm/s	87.82 ± 26.16	82.65 ± 28.01	0.536
Septal e', cm/s	6.13 ± 2.08	4.53 ± 2.14	0.116
Septal E/e' ratio	16.49 ± 15.68	13.32 ± 4.54	0.557
E/A ratio	0.99 ± 0.55	0.93 ± 0.60	0.509
RVSP, mmHg	36.99 ± 15.69	42.17 ± 16.00	0.189
DT, ms	202.17 ± 107.91	218.18 ± 87.39	0.458
ACEI/ARBs	38 (41.3)	2 (18.2)	0.137
NSBBs*	11 (12.0)	3 (27.3)	0.161
Statin	17 (18.5)	0 (0.0%)	0.119

Complications of cirrhosis

Hepatic encephalopathy	8 (8.7)	0 (0.0%)	0.309
Variceal bleeding	4 (4.3)	0 (0.0%)	1.000
SBP	3 (3.3)	2 (18.2)	0.087
Acute kidney injury*	30 (36.1)	5 (50.0)	0.393

The data are expressed as mean ± standard deviation or number (%). Pulmonary comorbidities included chronic obstructive pulmonary disease or asthma. Renal comorbidities included chronic kidney disease or end-stage renal disease. Neurologic comorbidities included cerebral vascular accidents. A = atrial (late) diastolic filling velocity; ACEI = angiotensin-converting enzyme inhibitor; ALBI = albumin-bilirubin; ARBs = angiotensin II receptor antagonist; Cr = creatinine; DT = early wave deceleration time; E = peak early filling velocity; E′ = early diastolic mitral annular velocity; EDV = end-diastolic volume; ESV = end-systolic volume; INR = international normalized ratio; LVEF = left ventricle ejection fraction; MELD = model for end-stage liver disease; NSBBs = nonselective β-adrenergic blocker; QTCc = corrected QT interval; RVSP = right ventricular systolic pressure; SBP = spontaneous bacterial peritonitis; TB = total bilirubin.

*NSBBs include propranolol or carvedilol.

4. DISCUSSION

Cardiac dysfunction in liver cirrhosis is associated with poor survival and the development of cirrhosis-related complications. Therefore, some studies have investigated the correlation of echocardiographic parameters and patient outcomes, with diastolic dysfunction being the most evident factor for predicting outcomes.1,2,5,22 Nevertheless, these studies showed discordant results on echocardiography in predicting outcomes.1,12 In the present study, we found that there was no association between echocardiographic parameters and patient outcomes, with diastolic dysfunction being the most evident factor for predicting outcomes.1,2,5,22 Notably, our findings suggest a potential role of echocardiography and ALBI score in predicting AKI, which may be helpful in clinical practice to prevent adverse kidney events by ways of closely following up and avoidance of nephrotoxic drugs in these patients.

The predictive role of echocardiographic parameters on type 1 HRS has been addressed previously1. Several studies have shown that patients with an increased left atrial (LA) dimension, a higher E/e' ratio or the presence of diastolic dysfunction on echocardiography were associated with poor survival.1,2,5,12 However, other studies showed that the echocardiographic parameters were not associated with mortality and the only independent predicting factor for mortality was the Child-Pugh score or MELD score.1,12 Possible reasons for these discrepancies between these studies include different enroll criteria,
Table 3
Comparison of demographic, biochemical, and echocardiographic characteristics between those who did not develop AKI and who developed AKI at 1 year of follow-up in cirrhotic patients

Variables	Without AKI (n = 58)	With AKI (n = 35)	p
Age, y	67.38 ± 14.56	69.49 ± 15.94	0.357
Male	44 (75.9)	25 (71.4)	0.636
Mean arterial pressure, mmHg	90.93 ± 14.34	87.59 ± 11.68	0.337
Cause of cirrhosis (%)			
Viral	40 (69.0)	24 (68.6)	0.968
Alcohol	6 (10.3)	4 (11.4)	0.870
Other	12 (20.7)	7 (20.0)	0.936
Laboratory			
Platelet, 1000/μL/L	142.33 ± 170.71	121.89 ± 69.00	0.968
Sodium, mEq/L	133.14 ± 25.77	137.71 ± 44.44	0.247
Cr, mg/dl	1.35 ± 0.92	1.84 ± 1.24	0.013
TB, mg/dl	1.31 ± 2.73	2.43 ± 4.69	0.027
Albumin, g/dL	3.39 ± 0.68	3.25 ± 0.50	0.428
INR	1.11 ± 0.28	1.20 ± 0.26	0.263
Comorbidity			
Diabetes	22 (37.9)	14 (42.9)	0.638
Pulmonary	10 (17.2)	5 (14.3)	0.707
Hypertension	40 (69.0)	24 (68.6)	0.968
Congestive heart failure	8 (13.8)	5 (14.3)	0.947
Coronary artery disease	17 (29.3)	6 (17.1)	0.188
Renal	5 (8.6)	10 (28.6)	0.011
Neurologic	3 (5.2)	4 (11.4)	0.419
Malignancy	21 (36.2)	16 (45.7)	0.364
Cirrhotic cardiomyopathy	37 (63.8)	24 (68.6)	0.638
Presence of ascites	13 (22.4)	6 (17.1)	0.541
ALBI score	-2.16 ± 0.59	-1.89 ± 0.53	0.072
Child-Pugh score	6.19 ± 1.47	6.51 ± 1.42	0.201
MELD score	11.59 ± 5.36	15.03 ± 6.69	0.003
QTc, ms	458.04 ± 50.69	469.71 ± 41.59	0.214
Echocardiographic data			
E'V, cm/s	34.60 ± 26.2	34.50 ± 19.56	0.427
EDV, mL	71.55 ± 36.29	75.64 ± 27.63	0.384
LVEF, %	54.92 ± 13.61	56.46 ± 10.00	0.620
E, cm/s	77.13 ± 23.08	85.64 ± 29.55	0.141
A, cm/s	77.46 ± 19.95	106.07 ± 26.33	<0.001
Septal e', cm/s	6.18 ± 2.01	5.44 ± 2.33	0.041
Septal E/E' ratio	12.22 ± 4.20	20.54 ± 23.16	0.018
E/A ratio	1.07 ± 0.52	0.748 ± 0.3234	0.006
RVSP, mmHg	35.90 ± 17.37	38.35 ± 13.97	0.163
DT, ms	194.83 ± 98.09	217.14 ± 122.44	0.459
ACEI/ARBs	26 (44.8)	9 (25.7)	0.065
NSBs	8 (13.8)	5 (14.3)	0.947
Statin	12 (20.7)	3 (8.6)	0.124
Complications of cirrhosis			
Hepatic encephalopathy	2 (3.4)	3 (8.6)	0.361
Variceal bleeding	3 (5.2)	1 (2.9)	1.000
SBP	4 (6.9)	2 (3.4)	0.647

The data are expressed as mean ± standard deviation or number (%). Pulmonary comorbidities included chronic obstructive pulmonary disease or asthma. Renal comorbidities included chronic kidney disease or end-stage renal disease. Neurologic comorbidities included cerebral vascular accidents.

A = atrial (late) diastolic filling velocity; ACEI = angiotensin-converting enzyme inhibitors; AKI = acute kidney injury; ALBI = albumin-bilirubin; ARBs = angiotensin II receptor antagonist; Cr = creatinine; DT = early wave deceleration time; E = peak early filling velocity; e' = early diastolic mitral annular velocity; E/A = ratio of early and late diastolic velocity; E/e′ ratio = ratio of early diastolic velocity to peak early diastolic mitral annular velocity; EDV = end-diastolic volume; EFS = end-systolic volume; INR = international normalized ratio; LVEF = left ventricle ejection fraction; MELD = model for end-stage liver disease; NSBs = nonselective β-adrenergic blocker; QTc = corrected QT interval; RVSP = right ventricular systolic pressure; SBP = spontaneous bacterial peritonitis; TB = total bilirubin.

*Exclude patients with end-stage renal disease who received hemodialysis or peritoneal dialysis.

different follow-up time, and differences in the cause of cirrhosis. In the present study, we found that the baseline echocardiographic data did not differ between survivors and nonsurvivors at 1-year follow-up. Multivariate analysis revealed that only Child-Pugh score could predict 1-year mortality in cirrhosis. Moreover, there was no difference in 1-year mortality between patients with and without the diagnosis of cirrhotic cardiomyopathy, which suggests that cardiovascular dysfunction is not directly related to 1-year mortality in these patients.

Regarding the development of AKI, previous studies have aimed at identifying risk factors for AKI in cirrhosis. It has been reported that serum cystatin C levels and prior AKI events are independent predictors for the development of AKI and the risk of subsequent AKI rises with an increase in the number of AKI episodes. Among cirrhotic patients with ascites, the severity of ascites is also a significant predictor for the occurrence of AKI.

On cardiovascular parameters, cardiac index and E/e′ were potential predictors for type 1 HRS. In Fernandez’s study, primary prophylaxis of SBP with Norflaxacin in patients with advanced liver failure (Child-Pugh scores ≥ 9 points with TB ≥ 3 mg/dL) or impaired renal function (Cr ≥ 1.2 mg/dL, blood urea nitrogen ≥ 2.5 mg/dL, or sodium level ≤ 130 mEq/L) reduces the incidence of SBP and delays the development of HRS. In this study, baseline serum Cr > 1.5 mg/dL, TB > 2 mg/dL, and a higher E/e′ ratio were independent predictors for AKI. The predictive role of these factors was not masked by MELD score, a scoring system in which renal function was included. Increased serum levels of TB and creatinine are known risk factors for the development of SBP, which is a strong precipitating factor of HRS. Although the cut-off value of serum bilirubin and creatinine level was different between our study and Fernandez’s study, future prospective studies investigating the effect of prophylactic antibiotic treatment for patients at high risk of developing AKI is anticipated.

On the other hand, Cullaro et al. demonstrated that the risk of AKI in cirrhosis increases with the increments in serum creatinine levels even in those with “clinically normal” baseline creatinine levels. To further evaluate potential echocardiographic parameters in predicting AKI in patients with low creatinine levels, we identified 61 patients with serum Cr < 1.5 mg/dL. We further found that an increased atrial filling velocity and higher ALBI scores were associated with the development of AKI.

This study has some limitations. First, this was a retrospective, observational study using data from a single medical center, leaving the analysis susceptible to selection bias or other unconsidered variables. Second, we did not excluded patients taking β-blockers or other drugs that may interfere with heart function. Third, because of the missing data, several important measurements, such as LA volume/size, lateral e′, and cardiac index, which are

www.ejcma.org
Table 4
Cox's regression model of predictors for acute kidney injury in 1 year in cirrhotic patients

Predictors	Model 1 (dropping MELD score)	Model 2 (including MELD score)				
	HR	95% CI	p	HR	95% CI	p
Cr > 1.5 mg/dL	6.26	1.62-24.17	0.011	12.57	1.21-131.03	0.034
TB > 2 mg/dL	4.40	1.11-17.54	0.036	4.59	1.12-18.85	0.034
ALBI score	2.87	0.78-10.50	0.111	4.21	0.75-23.48	0.101
A, cm/s	1.01	0.98-1.04	0.347	1.01	0.99-1.04	0.298
Septal e′	1.03	0.69-1.54	0.884	0.97	0.63-1.50	0.894
E/A < 1	2.78	0.54-14.22	0.220	2.45	0.44-13.56	0.303
Septal E/e′	1.14	1.03-1.27	0.011	1.14	1.03-1.27	0.010
MELD score	0.02	0.74-1.15	0.480			

A = atrial (late) diastolic filling velocity; ALBI = albumin-bilirubin; CI = confidence interval; Cr = creatinine; e′ = early diastolic mitral annular velocity; E/A = ratio of early and late diastolic velocity; E/e′ ratio = ratio of early diastolic velocity to peak early diastolic mitral annular velocity; HR = hazard ratio; MELD = model for end-stage liver disease; TB = total bilirubin.

Table 5
Comparison of demographic, biochemical, and echocardiographic characteristics between those who developed AKI and who did not develop AKI at 1 year of follow-up in cirrhotic patients with baseline Cr < 1.5 mg/dL

Variables	Without AKI (n = 44)	With AKI (n = 17)	p
Age, y	65.32 ± 14.95	69.47 ± 9.53	0.489
Male	34 (77.3)	9 (52.9)	0.062
Mean arterial pressure, mmHg	91.72 ± 13.06	85.64 ± 11.9	0.113
Laboratory			
Platelet, 1000/µL	115.55 ± 71.84	111.24 ± 56.14	0.904
Sodium, mEq/L	132.05 ± 29.46	138.35 ± 4.34	0.765
Cr, mg/dL	0.95 ± 0.23	0.98 ± 0.20	0.546
TB, mg/dL	1.13 ± 0.62	1.60 ± 1.18	0.292
Albumin, g/dL	3.57 ± 0.64	3.36 ± 0.51	0.337
INR	1.14 ± 0.12	1.20 ± 0.17	0.189
Comorbidity			
Diabetes	15 (34.1)	2 (11.8)	0.349
Pulmonary	6 (13.6)	2 (11.8)	0.846
Hypertension	30 (68.2)	11 (64.7)	0.795
Congestive heart failure	4 (9.1)	1 (5.9)	1.000
Coronary artery disease	12 (27.3)	3 (17.6)	0.434
Neurologic	3 (6.8)	1 (5.9)	1.000
Malignancy	16 (36.4)	7 (41.2)	0.728
Cirrhotic cardiomyopathy	2 (59.1)	10 (58.8)	0.985
Presence of ascites	8 (18.2)	3 (17.6)	0.961
ALBI score	-2.23 ± 0.59	-1.96 ± 0.54	0.149
Child-Pugh score	5.84 ± 1.10	6.29 ± 1.31	0.178
MELD score	9.32 ± 2.77	11.06 ± 4.09	0.051
QTc, ms	459.14 ± 50.84	463.7 ± 39.17	0.689
ACEI/ARBs	17 (38.6)	4 (23.5)	0.266
NSBBs	6 (13.6)	2 (11.8)	0.846
Statin	10 (22.7)	1 (5.9)	0.125
Echocardiographic data			
ESV, mL	33.48 ± 21.97	27.31 ± 9.12	0.723
EDV, mL	3.57 ± 0.64	3.36 ± 0.51	0.583
LVEF, %	56.84 ± 13.20	58.00 ± 8.91	0.778
E, cm/s	75.83 ± 21.93	86.33 ± 27.45	0.191
A, cm/s	78.36 ± 19.00	98.32 ± 23.99	0.042
Septal e′, cm/s	6.13 ± 1.59	5.89 ± 2.73	0.376
Septal E/e′ ratio	12.37 ± 4.20	16.03 ± 8.21	0.132
E/A ratio	1.04 ± 0.46	0.72 ± 0.33	0.023
RVSP, mmHg	32.60 ± 14.32	41.39 ± 16.59	0.065
DT, ms	230.00 ± 56.39	275.00 ± 112.55	0.173

The data are expressed as mean ± standard deviation or number (%).

A = atrial (late) diastolic filling velocity; ACEI = angiotensin-converting enzyme inhibitors; AKI = acute kidney injury; ALBI = albumin-bilirubin; ARBs = angiotensin II receptor antagonist; Cr = creatinine; DT = early wave deceleration time; E = peak early filling velocity; e′ = early diastolic mitral annular velocity; E/A = ratio of early and late diastolic velocity; E/e′ ratio = ratio of early diastolic velocity to peak early diastolic mitral annular velocity; EDV = end-diastolic volume; ESV = end-systolic volume; INR = international normalized ratio; LVEF = left ventricle ejection fraction; MELD = model for end-stage liver disease; NSBBs = nonselective β-adrenergic blocker; QTc = corrected QT interval; RVSP = right ventricular systolic pressure; SBP = spontaneous bacterial peritonitis; TB = total bilirubin.
important in deciding the severity of LV diastolic dysfunction\(^a\) and the severity of cirrhotic cardiomyopathy, have been omitted from our study. Finally, the small case number was another limitation in this study, and caution must be taken in interpreting data.

In conclusion, in cirrhotic patients, mortality within 1 year was mainly determined by the underlying severity of liver disease. Echocardiographic parameters could not predict mortality in our study. Baseline serum Cr > 1.5 mg/dL, TB > 2 mg/dL, and a higher E/e\(^a\) ratio were independent predictors for AKI occurrence in cirrhotic patients. Furthermore, in cirrhotic patients with serum Cr < 1.5 mg/dL, an increased atrial filling velocity and higher ALBI scores predicted AKI development. Our study suggests that echocardiographic assessment and ALBI score evaluation in cirrhotic patients may help to identify patients at high risk of developing AKI, especially those with baseline serum Cr < 1.5 mg/dL. Moreover, we remind physicians to closely monitor renal function in such patients to avoid preventable kidney damage.

ACKNOWLEDGMENTS

This study was in part supported by the Taipei Veterans General Hospital (Grant No. V109C-118 and V108A-011) and Ministry of Science and Technology (Grant No. MOST 108-2628-B-075-008).

REFERENCES

1. Ruiz-del-Arbol L, Achêcar L, Serradilla R, Rodríguez-Gandía MA, Rivero M, Garijo E, et al. Diastolic dysfunction is a predictor of poor outcomes in patients with cirrhosis, portal hypertension, and a normal creatinine. *Hepatology* 2013;58:1732-41.
2. Lee SK, Song MJ, Kim SH, Ahn HJ. Cardiac diastolic dysfunction predicts poor prognosis in patients with decompensated liver cirrhosis. *Clin Mol Hepatol* 2018;24:409-16.
3. Krag A, Bendtsen F, Henrikssen JH, Møller S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. *Gut* 2010;59:105-10.
4. Ruiz-del-Arbol L, Monescillo A, Arocena C, Valer P, Giné S, Moreira V, et al. Circulatory function and hepatorenal syndrome in cirrhosis. *Hepatology* 2005;42:439-47.
5. Cesar M, Frigo AC, Tonon M, Angeli P. Cardiovascular predictors of death in patients with cirrhosis. *Hepatology* 2018;68:215-23.
6. Merli M, Torromeo C, Giusto M, Iacovone G, Riggio O, Puddu PE. Survival at 2 years among liver cirrhotic patients is influenced by left atrial volume and left ventricular mass. *Liver Int* 2017;37:700-6.
7. Cazzaniga M, Salerno F, Fagozzzi G, Dionigi E, Visentin S, Girelli L, et al. Diastolic dysfunction is associated with poor survival in patients with cirrhosis with transjugular intrahepatic portosystemic shunt. *Gut* 2007;56:869-75.
8. Joseffson A, Fos M, Allayari P, Björnsson E, Castedal M, Olausson M, et al. Impact of peri-transplant heart failure & left-ventricular diastolic dysfunction on outcomes following liver transplantation. *Liver Int* 2012;32:1262-9.
9. Mittal C, Qureshi W, Singla S, Ahmad U, Huang MA. Pre-transplant left ventricular diastolic dysfunction is associated with post transplant acute graft rejection and graft failure. *Dig Dis Sci* 2014;59:674-80.
10. Møller S, Henrikssen JH. Cardiovascular complications of cirrhosis. *Gut* 2008;57:668-78.
11. Sampao F, Pimenta J, Bettencourt N, Fontes-Carvalho R, Silva AP, Valente J, et al. Systolic dysfunction and diastolic dysfunction do not influence medium-term prognosis in patients with cirrhosis. *Eur J Intern Med* 2014;25:241-6.
12. Ginés A, Escorsell A, Ginés P, Saló J, Jiménez W, Ingладa L, et al. Incidence, predictive factors, and prognosis of the hepatorenal syndrome in cirrhosis with ascites. *Gastroenterology* 1993;105:229-36.
13. Scott RA, Austin AS, Kolhe NV, McIntyre CW, Selby NM. Acute kidney injury is independently associated with death in patients with cirrhosis. *Frontline Gastroenterol* 2013;4:191-7.
14. Wong F, O’Leary JG, Reddy KR, Patton H, Kamath PS, Fallon MB, et al; North American Consortium for Study of End-Stage Liver Disease. New consensus definition of acute kidney injury accurately predicts 30-day
mortality in patients with cirrhosis and infection. Gastroenterology 2013; 145:1280–8.e1.

15. Belcher JM, Garcia-Tsao G, Sanjal AJ, Bhogal H, Lim JK, Ansari N, et al; TRIBE-AKI Consortium. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology 2013; 57:753–62.

16. Hsieh YC, Lee KC, Chen PH, Su CW, Hou MC, Lin HC. Acute kidney injury predicts mortality in cirrhotic patients with gastric variceal bleeding. J Gastroenterol Hepatol 2017; 32:1859–66.

17. Ximenes RO, Farías AQ, Helou CM. Early predictors of acute kidney injury in patients with cirrhosis and bacterial infection: urinary neutrophil gelatinase-associated lipocalin and cardiac output as reliable tools. Kidney Res Clin Pract 2015; 34:140–5.

18. Lei L, Li LP, Zeng Z, Mu JX, Yang X, Zhou C, et al. Value of urinary KIM-1 and NGAL combined with serum Cys C for predicting acute kidney injury secondary to decompensated cirrhosis. Sci Rep 2018; 8:7962.

19. Kim TH, Lee HA, Seo YS, Lee YR, Yim SY, Lee YS, et al; Korean Study Group of Portal Hypertension. Assessment and prediction of acute kidney injury in patients with decompensated cirrhosis with serum cystatin C and urine N-acetyl-β-D-glucosaminidase. J Gastroenterol Hepatol 2019; 34:234–40.

20. Angeli P, Giniès P, Wong F, Bernardi M, Boyer TD, Gerbes A, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol 2015; 62:968–74.

21. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al; American Society of Echoardiography’s Nomenclature and Standards Committee; Task Force on Chamber Quantification; American College of Cardiology Echocardiography Committee; American Heart Association; European Association of Echocardiography, European Society of Cardiology. Recommendations for chamber quantification. Eur J Echocardiogr 2006; 7:79–108.

22. Premkumar M, Devurgowda D, Vyas T, Shasthry SM, Khumuckham JS, Goyal R, et al. Left ventricular diastolic dysfunction is associated with renal dysfunction, poor survival and low health related quality of life in cirrhosis. J Clin Exp Hepatol 2019; 9:32–43.

23. Alexopoulou A, Papatheodoridis G, Pouriki S, Chrysohoou C, Raftopoulos L, Stefanidis C, et al. Diastolic myocardial dysfunction does not affect survival in patients with cirrhosis. Transpl Int 2012; 25:1174–81.

24. Maxwall R, Kumar A, Bhardwaj A, Kumar G, Bhadoria AS, Sarin SK. Cystatin C predicts acute kidney injury and mortality in cirrhosics: a prospective cohort study. Liver Int 2018; 38:654–64.

25. Wong F, Jepsen P, Watson H, Vlstrar H. Un-precipitated acute kidney injury is uncommon among stable patients with cirrhosis and ascites. Liver Int 2018; 38:1785–92.

26. Fernández J, Navasa M, Planas R, Montoliu S, Monfort D, Soriano G, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 2007; 133:818–24.

27. Andreu M, Sola R, Sitges-Serra A, Alia C, Gallen M, Vila MC, et al. Risk factors for spontaneous bacterial peritonitis in cirrhotic patients with ascites. Gastroenterology 1993; 104:1133–8.

28. Guarner C, Sola R, Soriano G, Andreu M, Novella MT, Vila MC, et al. Risk of a first community-acquired spontaneous bacterial peritonitis in cirrhotics with low ascitic fluid protein levels. Gastroenterology 1999; 117:414–9.

29. Cullaro G, Park M, Lau JC. “Normal” creatinine levels predict persistent kidney injury and waitlist mortality in outpatients with cirrhosis. Hepatology 2018; 68:1953–60.

30. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29:277–314.

31. Khankirawatana B, Khankirawatana S, Peterson B, Mahrous H, Porter TR. Peak atrial systolic mitral annular velocity by Doppler tissue reliably predicts left atrial systolic function. J Am Soc Echocardiogr 2004; 17:353–60.

32. Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach—the ALBI grade. J Clin Oncol 2015; 33:550–8.

33. Toyoda H, Lai PB, O’Beirne J, Chong CC, Berhane S, Reeves H, et al. Long-term impact of liver function on curative therapy for hepatocellular carcinoma: application of the ALBI grade. Br J Cancer 2016; 114:744–50.

34. Chan AW, Chan RC, Wong GL, Wong VW, Choi PC, Chan HL, et al. New simple prognostic score for primary biliary cirrhosis: albumin-bilirubin score. J Gastroenterol Hepatol 2015; 30:1391–6.

35. Naqvi IH, Talib A, Mahmood K, Abidi R, Rizvi SNZ. The ability of the new ALBI scoring in predicting mortality, complications and prognostic comparison among cirrhotics. PLoS One 2019; 14:250–7.

36. Chen RC, Cai YJ, Wu JM, Wang XD, Song M, Wang YQ, et al. Usefulness of albumin-bilirubin grade for evaluation of long-term prognosis for hepatitis B-related cirrhosis. J Viral Hepat 2017; 24:238–45.

37. Oikonomou T, Goulis L, Doumtsis P, Tzoumari T, Akriviadis E, Cholongitas E. ALBI and PALBI grades are associated with the outcome of patients with stable decompenated cirrhosis. Ann Hepatol 2019; 18:126–36.