Phase transitions in quasi-one dimensional system with unconventional superconductivity

Andrzej Ptok · Agnieszka Cichy · Karen Rodríguez · Konrad Jerzy Kapcia

Abstract The paper is devoted to a study of superconducting properties of population-imbalanced fermionic mixtures in quasi-one dimensional optical lattices. The system can be effectively described by the attractive Hubbard model with the Zeeman magnetic field term. We investigated the ground state phase diagram of the model as a function of the chemical potential and the magnetic field. The ground state of the system exhibits the conventional BCS-type superconductivity as well as the unconventional so-called Fulde-Ferrell-Larkin-Ovchinnikov state, in which the total momentum of Cooper pairs is non-zero. We determine the orders of transitions as well as the behavior of order parameters with a change of the model parameters.

Keywords attractive Hubbard model · FFLO superconductivity · ground state · phase diagram · phase transition

1 Introduction

The unconventional superconductivity is still very fascinating but unsolved problem. It involves such issues as superconductivity with extremely short coherence length [1–4], the BCS-BEC crossover [4–6], unconventional pairings (particularly those with non-zero total momentum of Cooper pairs, \(Q \neq 0 \), e.g. the so-called Fulde-Ferrell-Larkin-Ovchinnikov state – FFLO, [7–9]). The phenomenon of the FFLO superconductivity can be realized possibly in many physical systems: (i) in condensed matter physics, e.g. iron-based superconductors [10–14], heavy-fermion compounds [14–20], and organic conductors [21–23], as well as (ii) in ultra cold atomic gases on optical lattices [24–34]. In the latter group of systems the interaction parameters can be changed in a wider range [35–39]. Thus, it makes that group better candidate to experimentally investigate the model Hamiltonians.

Motivated by the experimental feasibility of such systems with ultracold gases loaded on a quasi-one dimensional lattice, we studied the unconventional superfluid phases of the attractive Hubbard model, in the presence of an external magnetic field [40]. In that paper, we have shown that the system evolves from the BCS-type superconducting state (at small field) to the FFLO phase (for sufficiently large field). In an extremal
case, the momentum of Cooper pairs can lie on the vertex of the first Brillouin zone and the so-called η phase emerges. In this work we present and discuss in details the dependence (as a function of chemical potential and magnetic field) of the following quantities: (i) an amplitude of superconducting order parameter, (ii) a total momentum of Cooper pairs, and (iii) the particle concentration.

The rest of the paper is organised as follows. In Section 2 the investigated model is presented and the method of its solution is briefly discussed. Section 3 is devoted to a discussion of the ground state phase diagram of the model, particularly focussing on changes of order parameters with the model parameters. Finally, in Section 4 we summarize the results of the present work.

2 Model and methods

In this paper, we study a one-dimensional chain with a BCS-type superconducting pairing term (i.e. s-wave one). The system is described by the attractive Hubbard model ($U < 0$) in a magnetic field [40], which in the real space can be written in the following form:

$$
\hat{H} = \sum_{(i,j)\sigma} (-t - (\mu + \sigma h)\delta_{ij}) \hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma} + U \sum_i \hat{n}_{i\uparrow}\hat{n}_{i\downarrow},
$$

where $\hat{c}_{i\sigma}^{\dagger}$ ($\hat{c}_{i\sigma}$) denotes an operator of creation (annihilation) of the electron with spin σ at site i and $\hat{n}_{i\sigma} = \hat{c}_{i\sigma}^{\dagger}\hat{c}_{i\sigma}$ is particle number operator. $t > 0$ is the hopping between the nearest-neighbor sites, $U < 0$ is the on-site pairing interaction, μ is the chemical potential, which determines the average number of particles $n = (1/N)\sum_{i\sigma}(\hat{n}_{i\sigma})$ in the system (filling) (N is the total number of sites in the lattice). Finally, h is a Zeeman field, which can originate from an external magnetic field (in $g\mu_B/2$ units) or from population imbalance in the context of the cold atomic Fermi gases. Moreover, we can introduce $\mu_{\sigma} = \mu + \sigma h$ as the effective chemical potential of atoms with (pseudo) spin σ.

The second term of Hamiltonian (1) is decoupled within the mean-field approximation, which takes into account only superconducting averages:

$$
\hat{n}_{i\uparrow}\hat{n}_{i\downarrow} = \Delta_i^*\hat{c}_{i\uparrow}\hat{c}_{i\uparrow} + \Delta_i\hat{c}_{i\downarrow}^{\dagger}\hat{c}_{i\downarrow} - |\Delta_i|^2,
$$

where $\Delta_i = \langle \hat{c}_{i\uparrow}\hat{c}_{i\downarrow} \rangle$ is the site-dependent on-site superconducting order parameter (SOP). Then, the mean-field Hamiltonian in the real space is written in the form:

$$
\hat{H}^{MF} = \sum_{(i,j)\sigma} (-t - (\mu + \sigma h)\delta_{ij}) \hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma} + U \sum_i (\Delta_i^*\hat{c}_{i\uparrow}\hat{c}_{i\uparrow} + H.c.) - U \sum_i |\Delta_i|^2.
$$

Without loss of generality, one can write down the SOP as: $\Delta_i = \Delta_0 \exp(iQ \cdot R_i)$, where $\Delta_0 > 0$ is the spatially oscillating amplitude of the SOP and Q is the total momentum of the Cooper pairs. We assume that the lattice constant is equal to one, i.e. $a = 1$. In a one-dimensional case considered here, $|Q| = Q_x$, where Q_x is the (absolute value of) coordinate (the only one) of the vector Q (with the largest allowed value $Q_x^{max} \equiv \pi$). The procedure of numerical solving of the system and final equations for the grand canonical potential and order parameters are presented in Ref. [40, 41]. Notice that all found solutions correspond to minimal value of the grand canonical potential (with respect to Δ_0 and Q) at fixed model parameters [40, 41]. Below, we just discuss the behavior of the quantities in the system for some exemplary value of the on-site attraction.

3 Numerical results and discussion

In this section, we consider the system with a value of the pairing interaction set as $U/t = -3$. The ground state phase diagram of model (3) is presented in Fig. 1. In the absence of an external Zeeman field, the usual superconducting BCS-type s-wave state (with $\Delta_0 \neq 0$ and $Q_x = 0$) is stable. As the magnetic field increases, superfluidity is destroyed due to paramagnetic effects.

Fig. 1 The phase diagram of the model for $U/t = -3.0$ as a function of $|\mu|/t$ and h/t. BCS denotes the usual superconducting BCS-type s-wave state, FFLO labels the polarized superconducting state with non-zero momentum of Cooper pairs, whereas NO corresponds to normal (non-ordered) phase. Additionally, inside the FFLO region above the dashed line, there is a region, where the η phase is distinguished. Inside the NO area, the NO phase with $n = 1$ (for small $|\mu|/t$ and large h/t) and the NO phase with $|n-1| = 1$ (for large $|\mu|/t$ and small h/t) are indicated by the dotted lines.
or by population imbalance. Hence, the unpolarized BCS-like superconducting phase undergoes a first-order phase transition to the polarized normal (NO) state (with $\Delta_0 = 0$, $Q_x = $ undetermined, n and $|n-1| \neq 1$) or to the FFLO phase (with $\Delta_0 \neq 0$ and $Q_x \neq 0$). Inside the FFLO phase, for large fields and near half-filling, the η-FFLO superconducting phase (i.e. the FFLO phase with $Q_x = Q_0^{\text{max}}$) is also identified. Increasing higher the field and close to half-filling, the FFLO-η-pairing superconducting phase undergoes a first-order phase transition to the normal state (this transition can be also second-order for larger $|\mu|/t$, see the text below). Moreover, for magnetic fields larger than the top of the band (i.e. $2t$ for one-dimensional case studied here), one can find the magnetic Lifshitz transition \cite{40, 42}. As a consequence of the relatively strong pairing interaction, the superconductivity still exists in the system, even if the Fermi surface for one type spin disappears.

Now we discuss the evolution of (i) the amplitude Δ_0 of the superconducting order parameter, (ii) the component Q_x of the total momentum of Cooper pairs, and (iii) electron concentration n in the system as a function of the model parameters μ and h.

Fig. 2 presents the amplitude Δ_0 of the superconducting order parameter in the BCS phase Δ_0 is monotonously decreasing function of $|\mu|/t$ and it is independent of h/t. At the transition between the BCS phase and the NO phase with $n = 0$ the Δ_0 vanishes continuously as it should behave at continuous transition. At $h/t \neq 0$ the BCS-NO transition is discontinuous (with discontinuous change of Δ_0). Similarly, at the BCS–FFLO boundary Δ_0 exhibits a discontinuous change to a lower value. Inside the FFLO region (including also η phase) Δ_0 decreases monotonously with increasing $|\mu|/t$ and h/t. At the FFLO–NO boundary parameter Δ_0 vanishes continuously to $\Delta_0 = 0$. The transition between the η-FFLO phase and the NO phase is continuous only in some range of model parameters. For high magnetic field and near the half-filling it is associated to a discontinuity of Δ_0 (it is hardly visible in Fig. 2).

The ground state values of Q_x are presented in Fig. 3. As one can expect, $Q_x = 0$ at the BCS phase, where the total momentum of Copper pairs is zero. In the FFLO phase $Q_x \neq 0$ and it increases with increasing of the magnetic field to its maximal value $Q_0^{\text{max}} = \pi$. In the whole region of η-FFLO phase, the total momentum of the pairs does not change and equals $Q_x = Q_0^{\text{max}}$. Notice that at the BCS–FFLO boundary Q_x changes discontinuously. Q_x is continuous at the boundary between the η-FFLO phase (with $Q_x = Q_0^{\text{max}}$) and the FFLO phase (where $0 < Q_x < Q_0^{\text{max}}$). At the NO region Q_x is undetermined (i.e. it is not well-defined, no Cooper pairs in the system), but in Fig. 3 we have adopted the convention that in the NO phase $Q_x = 0$.

The very important feature is the behavior of the particle concentration n, particularly in the context of the phase separations (cf. Refs. \cite{43–46} and references therein). If n changes discontinuously from n_- to n_+ at the boundary line between two phases in the diagram for fixed μ, the phases can co-exist on the phase diagram as a function of n. The dependence of particle concentration n (precisely the value of $|n-1|$) with changing the model parameters is shown in Fig. 4. At fixed h/t, the value of $|n-1|$ is increasing function of $|\mu|/t$. It turns out that the discontinuous changes of n
depend on low and intermediate values of phase separation between the BCS and NO phases, and finally separation between the BCS and FFLO phases. Phase changing presented in Ref. [40] do not modify qualitatively with ground state phase diagrams for different attractive pairings in the system. Notice also that the discontinuity of \(n \) is in the NO phase. As a result one can distinguish three different phase separated states, which can occur in the phase diagram as a function of \(n \): phase separation between the BCS and FFLO phases, phase separation between the BCS and NO phases, and finally phase separation between the \(\eta \)-FFLO and NO phases (cf. also [40]).

The behavior of \(\Delta_0, Q_2 \) and \(n \) should not strongly depend on low and intermediate values of \(U < 0 \) qualitatively since it only determines the magnitude of the pairing potential in the system. Notice also that the ground state phase diagrams for different attractive \(U \) presented in Ref. [40] do not modify qualitatively with changing \(U \) in this range of \(U \).

4 Summary

In this work we have studied the ground state of the attractive Hubbard model focusing on the behavior of order parameters. We found that in the ground state of the system the following phases can occur: the NO phase, the BCS phase and the FFLO phase (with its extreme case — the \(\eta \)-FFLO phase). The phase transition between the BCS and FFLO-phase is continuous one, whereas the FFLO–NO and FFLO–\(\eta \)-FFLO transitions are continuous. The BCS–NO and \(\eta \)-FFLO–NO transitions can be of both types, depending on the region of the phase diagram.

Notice that the mean-field approach is generally valid only for small \(U \) and high-dimensions. It overestimates usually critical temperatures and the range of stability of the phases with long-range order. However, the mean-field approach gives at least qualitative description of the system in the ground state, even in the strong coupling limit [4]. Nevertheless, we used this approach to study quasi-one dimensional model describing fermionic ultracold gas on the optical lattice. According to the Mermin-Wagner theorem, a one-dimensional superfluid system cannot support superfluidity and would possess, at best, algebraically decaying long-range order at zero temperature [47] (cf. also with Refs. [48–50]). The real systems of atoms on the optical lattices are quasi-one dimensional systems which means that the one-dimensional cylindrical-shaped regions are weakly coupled with each other, what makes the mean-field approximation more appropriate.

Acknowledgements

The authors thank Jan Barański, Krzysztof Cichy, Anna Ciechan, Tadeusz Domanski, and Matteo Rizzi for valuable comments and discussions. This work was partially supported by the National Science Centre (NCN, Poland) under grants no. UMO-2016/20/S/ST3/00274 (A.P.), UMO-2017/24/C/ST3/00357 (A.C.), UMO-2016/21/D/ST3/03385 (K.J.K.), and UMO-2017/24/C/ST3/00276 (K.J.K.). K.R. acknowledges the support from CIByFi and the Colombian Science, Technology and Innovation Foundation–COLCIENCIAS “Francisco José de Caldas” under project 1106-712-49884 (contract No.264-2016) and –General Royalties System (Fondo CTeI-SGR) under contract No. BPIN 2013000100007.

References

1. Robaszkiewicz, S., Micnas, R., Chao, K.A.: Hartree theory for the negative-\(U \) extended Hubbard model: Ground state. Phys. Rev. B 24, 4018 (1981). doi:10.1103/PhysRevB.24.4018
2. Robaszkiewicz, S., Micnas, R., Chao, K.A.: Hartree theory for the negative-\(U \) extended Hubbard model. II. Finite temperature. Phys. Rev. B 26, 3915 (1982). doi:10.1103/PhysRevB.26.3915
3. Dutta, O., Gajda, M., Hauke, P., Lewenstein, M., Lüth, D.-S., Malomed, B.A., Sowiński, T., Zakrzewski, J.: Non-standard Hubbard models in optical lattices: A review. Rep. Prog. Phys. 78, 066001 (2015). doi:10.1088/0034-4885/78/6/066001
Phase transitions in quasi-one dimensional systems

4. Micnas, R., Ranninger, J., Robaszskiewicz, S.: Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113 (1990). doi:10.1103/RevModPhys.62.113

5. Bourdel, T., Khaykovich, L., Cubizolles, J., Zhang, J., Chevy, F., Teichmann, M., Tarruell, L., Kokkedams, S.-J.J.M.F., Salomon, C., Experimental Study of the BEC-BCS Crossover Region in Lithium 6. Phys. Rev. Lett. 93, 050401 (2004). doi:10.1103/PhysRevLett.93.050401

6. Cichy, A., Micnas, R.: The spin-imbalanced attractive Hubbard model in Phase diagrams and BCS-BCS crossover at low filling. Ann. Phys. 347, 207 (2014). doi:10.1016/j.aop.2014.04.014

7. Fulde, P., Ferrell, R.A.: Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550 (1964). doi:10.1103/PhysRev.135.A550

8. Larkin, A.I., Ovchinnikov, Yu.N.: Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].

9. Jakubczyk, P.: Renormalization theory for the Fulde-Ferrell-Larkin-Ovchinnikov states at T > 0. Phys. Rev. A 95, 063626 (2017). doi:10.1103/PhysRevA.95.063626

10. Zocco, D.A., Grube, K., Eilers, F., Wolf, T., von Löhnseyn, H.: Pauli-Limited Multiband Superconductivity in KFe₃As₂. Phys. Rev. Lett. 111, 057007 (2013). doi:10.1103/PhysRevLett.111.057007

11. Ptok, A., Crivelli, D.: The Fulde-Ferrell-Larkin-Ovchinnikov State in Pnictides. J. Low Temp. Phys. 172, 226 (2013). doi:10.1007/s10909-013-0871-0

12. Kasahara, S., Watashige, T., Kohsaka, S., Yamashita, T., Shimoyama, Y., Mizukami, Y., Endo, R., Ikeda, H., Aoyama, K., Terashima, T., Ohtoh, S., Wolf, T., von Löhnseyn, H., Shiinauchi, T., Matsuda, Y.: Field-induced superconducting phase of FeSe in the BCS-BCS cross-over. PNAS 111, 16309 (2014). doi:10.1073/pnas.1414771111

13. Cho, Ch.-w., Yang, J. H., Shen, J., Wolf, T., Lortz, R.: Thermodynamic evidence for the Fulde-Ferrell-Larkin-Ovchinnikov state in the KFe₂As₂ superconductor. arXiv:1708.05526

14. Ptok, A., Kapcia, K.J., Piekarz, P., Oleś, A.M.: The ab initio study of unconventional superconductivity in CeCoIn₅ and FeSe. New. J. Phys. 19, 063039 (2017). doi:10.1088/1367-2630/aa6d5b

15. Bianchi, A., Movshovich, R., Oeschler, N., Gegenwart, P., Steglich, F., Thompson, J.D., Pagliuso, P.G., Sarrao, J.L.: First-Order Superconducting Phase Transition in CeCoIn₅. Phys. Rev. Lett. 89, 137002 (2002). doi:10.1103/PhysRevLett.89.137002

16. Bianchi, A., Movshovich, R., Capan, C., Palgiuso, P.G., Sarrao, J.L.: Possible Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in CeCoIn₅. Phys. Rev. Lett. 91, 187004 (2003). doi:10.1103/PhysRevLett.91.187004

17. Matsuda, Y., Shimahara, H.: Fulde-Ferrell-Larkin-Ovchinnikov state in heavy fermion superconductors. J. Phys. Soc. Jpn. 76, 051005 (2007). doi:10.1143/JPSJ.76.051005

18. Kenzelmann, M., Strässle, Th., Niedermayer, Ch., Sigrist, M., Padmanabhan, B., Zoller, M., Bianchi, A.D., Movshovich, R., Bauer, E.D., Sarrao, J.L., Thompson, J.D.: Coupled superconducting and magnetic order in CeCoIn₅. Science 321, 1652 (2008). doi:10.1126/science.1161818

19. Maška, M.M., Mierzejewski, M., Kaczmarczyk, J., Spalek, J.: Superconducting Bardeen-Cooper-Schrieffer versus Fulde-Ferrell-Larkin-Ovchinnikov states of heavy quasiparticles with spin-dependent masses and Kondotype pairing. Phys. Rev. B 82, 054509 (2010). doi:10.1103/PhysRevB.82.054509

20. Kaczmarczyk, J., Spalek, J.: Unconventional superconducting phases in a correlated two-dimensional Fermi gas of nonstandard quasiparticles: a simple model. J. Phys.: Condens. Matter 22, 355702 (2010). doi:10.1088/0953-8984/22/35/355702

21. Uji, S., Terashima, T., Nishimura, M., Takahide, Y., Konoike, T., Enomoto, K., Cui, H., Kobayashi, H., Kobayashi, A., Takana, H., Tokumoto, M., Choi, E.S., Tokumoto, T., Graf, D., Brooks, J.S.: Vortex Dynamics and the Fulde-Ferrell-Larkin-Ovchinnikov State in a Magnetic-Field-Induced Organic Superconductor. Phys. Rev. Lett. 97, 157001 (2006). doi:10.1103/PhysRevLett.97.157001

22. Lortz, R., Wang, Y., Denauer, A., Böttger, P.H.M., Bergk, B., Zwicknagl, G., Nakazawa, Y., Wosnitza, J.: Calorimetric Evidence for a Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in the Layered Organic Superconductor κ-(BEDT-TTF)₂Cu(NCS)₂. Phys. Rev. Lett. 99, 187002 (2007). doi:10.1103/PhysRevLett.99.187002

23. Mayaffre, H., Kramer, S., Horvatic, M., Berthier, C., Miyagawa, K., Kanoda, K., Mitrovec, F.V.: Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)₂Cu(NCS)₂. Nat. Phys. 10, 928 (2014). doi:10.1038/nphys3121

24. Liu, W.V., Wilczek, F.: Interior Gap Superfluidity. Phys. Rev. Lett. 90, 047002 (2003). doi:10.1103/PhysRevLett.90.047002

25. Hu, H., Liu, X.-J.: Mean-field phase diagrams of imbalanced Fermi gases near a Feshbach resonance. Phys. Rev. A 73, 051603 (2006). doi:10.1103/PhysRevA.73.051603

26. Guan, X.W., Batchelor, M.T., Lee, C., Bortz, M.: Phase transitions and pairing signature in strongly attractive Fermi atomic gases. Phys. Rev. B 76, 085120 (2007). doi:10.1103/PhysRevB.76.085120

27. Orso, G.: Attractive Fermi Gases with Unequal Spin Populations in Highly Elongated Traps. Phys. Rev. Lett. 98, 070402 (2007). doi:10.1103/PhysRevLett.98.070402

28. Hu, H., Liu, X.-J., Drummond, P.D.: Phase Diagram of a Strongly Interacting Polarized Fermi Gas in One Dimension. Phys. Rev. Lett. 98, 070403 (2007). doi:10.1103/PhysRevLett.98.070403

29. Lüscher, A., Noack, R.M., Läuchli, A.M.: Fulde-Ferrell-Larkin-Ovchinnikov state in the one-dimensional attractive Hubbard model and its fingerprint in spatial noise correlations. Phys. Rev. A 78, 013637 (2008). doi:10.1103/PhysRevA.78.013637

30. Pahl S., Koiv, Z.: Phase diagram of a 6Li-40K mixture in a square lattice. J. Low Temp. Phys. 176, 113 (2014). doi:10.1007/s10909-014-1166-9

31. Wolak, M. J., Grémaud, B., Scallettar, R.T., Batrouni, G.G.: Pairing in a two-dimensional Fermi gas with population imbalance. Phys. Rev. A 86, 023630 (2012). doi:10.1103/PhysRevA.86.023630

32. Guan, X.-W., Batchelor, M.T., Lee, C.: Fermi gases in one dimension: From Bethe ansatz to experiments. Rev. Mod. Phys. 85, 1633 (2013). doi:10.1103/RevModPhys.85.1633

33. Cichy, A., Cichy, K., Polak, T.P.: Competition between Abelian and Zeeman magnetic field effects in a two-dimensional ultracold gas of fermions. Ann. Phys. 354, 89 (2015). doi:10.1016/j.aop.2014.12.008
34. Hu, A., Maśka, M.M., Clark, Ch.W., Freericks, J.K.: Robust finite-temperature disordered Mott-insulating phases in inhomogeneous Fermi-Fermi mixtures with density and mass imbalance. Phys. Rev. A 91, 063624 (2015). doi:10.1103/PhysRevA.91.063624
35. Fedichev, P.O., Kagan, Yu., Shlyapnikov, G.V., Wallraff, J.T.M.: Influence of Nearly Resonant Light on the Scattering Length in Low-Temperature Atomic Gases. Phys. Rev. Lett. 77, 2913 (1996). doi:10.1103/PhysRevLett.77.2913
36. Partridge, G.B., Li, W., Kamar, R. I., Liao, Y.-a., Hulet, R.G.: Pairing and phase separation in a polarized Fermi gas. Science 311, 503 (2006).
37. Zwierlein, M.W., Ketterle, W.: Comment on “Pairing and phase separation in a polarized Fermi gas”. Science 314, 54 (2006). doi:10.1126/science.1129812
38. Schunck, C.H., Shin, Y., Schirotzek, A., Zwierlein, M.W., Ketterle, W.: Pairing without superfluidity: The ground state of an imbalanced Fermi mixture. Science 316, 867 (2007). doi:10.1126/science.1140749
39. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014). doi:10.1103/RevModPhys.86.153
40. Ptok, A., Cichy, A., Rodríguez, K., Kapcia, K. J.: Critical behavior in one dimension: Unconventional pairing, phase separation, BEC-BCS crossover, and magnetic Lifshitz transition. Phys. Rev. A 95, 033613 (2017). doi:10.1103/PhysRevA.95.033613
41. Kapcia, K.J., Czart, W.R., Ptok, A.: Phase separation of superconducting phases in the Penson-Kolb-Hubbard model. J. Phys. Soc. Jpn. 85, 044708 (2016). doi:10.7566/JPSJ.85.044708
42. Mermin, N.D., Wagner, H.: Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 17, 1133 (1966). doi:10.1103/PhysRevLett.17.1133
43. Lieb, E.H.: Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201 (1989). doi:10.1103/PhysRevLett.62.1201
44. Ühlig, G.S.: Nonexistence of planar magnetic order in the one- and two-dimensional generalized Hubbard model at finite temperatures. Phys. Rev. B 45, 4738 (1991). doi:10.1103/PhysRevB.45.4738
45. Müller-Hartmann, E.: Correlated fermions on a lattice in high dimensions. Z. Phys. B 74, 507 (1989). doi:10.1007/BF01311