Search for \(CP \) violation and observation of \(P \) violation in \(\Lambda^0_b \to p\pi^-\pi^+\pi^- \) decays

LHCb collaboration

Abstract
A search for \(CP \) violation in the \(\Lambda^0_b \to p\pi^-\pi^+\pi^- \) decay is performed using LHCb data corresponding to an integrated luminosity of 6.6 fb\(^{-1}\) collected in \(pp \) collisions at centre-of-mass energies of 7, 8 and 13 TeV. The analysis uses both triple product asymmetries and the unbinned energy test method. The highest significances of \(CP \) asymmetry are 2.9 standard deviations from triple product asymmetries and 3.0 standard deviations for the energy test method. Once the global \(p \)-value is considered, all results are consistent with no \(CP \) violation. Parity violation is observed at a significance of 5.5 standard deviations for the triple product asymmetry method and 5.3 standard deviations for the energy test method.
The violation of CP symmetry, where C and P are the charge-conjugation and parity operators, is a well-established phenomenon in the decays of K and B mesons [1–3]. Recently, it has also been observed in the decays of D mesons by the LHCb collaboration [4]. However, CP violation has yet to be established in baryonic decays, although first evidence was recently found [5]. Such decays offer a novel environment to probe the mechanism for quark-flavour mixing and for CP violation, which is regulated by the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the Standard Model (SM) [6,7].

In this Letter searches for CP and P violation with \(\Lambda_b^0 \to p\pi^-\pi^+\pi^- \) decays are reported. Throughout, the inclusion of charge-conjugate processes is implied, unless otherwise indicated. This decay is mediated mainly by tree and loop processes of similar magnitudes, proportional to the product of the CKM matrix elements \(V_{ub}V_{ud}^* \) and \(V_{tb}V_{td}^* \), respectively. This allows for significant interference effects with a relative weak phase \(\alpha \) of the Unitary Triangle between the amplitudes. If matter and antimatter exhibit different effects, CP violation manifests as either global asymmetries in decay rates, or as local asymmetries within the phase space. The \(\Lambda_b^0 \to p\pi^-\pi^+\pi^- \) decay is particularly well suited for CP-violation searches [8] due to a rich resonant structure in the decay.

The LHCb collaboration has previously studied the \(\Lambda_b^0 \to p\pi^-\pi^+\pi^- \) decay and found evidence for CP violation with a significance of 3.3 standard deviations including systematic uncertainties [5]. This Letter supersedes the previous results using pp collision data corresponding to an integrated luminosity of 6.6 fb\(^{-1}\) collected from 2011 to 2017 at centre-of-mass energies of 7, 8 and 13 TeV that represents a four times larger sample in signal yield.

The LHCb detector [10,11] is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5 \), designed for the study of particles containing b or c quarks. The detector elements that are particularly relevant to this analysis are: a silicon-strip vertex detector surrounding the pp interaction region that allows b hadrons to be identified from their characteristically long flight distance; a tracking system that provides a measurement of the momentum, \(p \), of charged particles; and two ring-imaging Cherenkov detectors that are able to discriminate between different species of charged hadrons. Simulation is required to model the effects of the detector acceptance and the selection requirements. The pp collisions are generated using PYTHIA [12] with a specific LHCb configuration [13], and neither CP- nor P-violating effects are present in the signal channel. Decays of unstable particles are described by EvtGen [14], in which final-state radiation is generated using Photos [15]. The interaction of the generated particles with the detector, and its response, are implemented using the Geant4 toolkit [16] as described in Ref. [17].

The analysis searches for CP and P violation by measuring triple product asymmetries (TPA) and by exploiting the unbinned energy test method [18–24]. In the TPA analysis, both local and integrated asymmetries are considered. The analysis also benefits from additional studies of amplitude models [9,25] to maximise the sensitivity. The energy test method is designed to look for localized differences in the phase space between two samples.
The scalar triple products are defined as $C_{\hat{T}} \equiv \vec{p}_p \cdot \left(\vec{p}_{\pi_{\text{fast}}} \times \vec{p}_{\pi_{\text{slow}}} \right)$ and $\overline{C}_{\hat{T}} \equiv \vec{p}_p \cdot \left(\vec{p}_{\pi_{\text{fast}}} \times \vec{p}_{\pi_{\text{slow}}} \right)$, for A^0_b and \overline{A}^0_b respectively. Hereinafter π_{fast}^{-} (π_{slow}^{-}) refers to the faster (slower) of two negative pions in the A^0_b rest frame. Following these definitions, four statistically independent subsamples are considered, labeled with I for $C_{\hat{T}} > 0$, $I\!I$ for $C_{\hat{T}} < 0$, $I\!I\!I$ for $-\overline{C}_{\hat{T}} > 0$ and $I\!V$ for $-\overline{C}_{\hat{T}} < 0$. Samples I and $I\!I$ are related by a CP transformation, as are samples $I\!I\!I$ and $I\!V$. Samples I and $I\!I$ are related by a P transformation, as are samples $I\!I\!I$ and $I\!V$. Both CP- and P-violating effects appear as differences between the triple product observables related by CP and P transformations. The \hat{T} operator reverses momentum and spin three-vectors \cite{26, 27}. The quantities $C_{\hat{T}}$ and $\overline{C}_{\hat{T}}$ are odd under this operator. This enables studies of the P-odd CP violation, which occurs via interference of the \hat{T}-even and \hat{T}-odd amplitudes with different CP-odd (‘weak’) phases \cite{9, 23, 27}.

The TPA are defined as

$$A_{\hat{T}} = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}, \quad \overline{A}_{\hat{T}} = \frac{\overline{N}(\overline{C}_{\hat{T}} > 0) - \overline{N}(\overline{C}_{\hat{T}} < 0)}{\overline{N}(\overline{C}_{\hat{T}} > 0) + \overline{N}(\overline{C}_{\hat{T}} < 0)},$$

where N and \overline{N} are the yields of A^0_b and \overline{A}^0_b decays, respectively. The CP- and P-violating asymmetries are then defined as

$$a_{CP}^{\hat{T}\text{odd}} = \frac{1}{2} \left(A_{\hat{T}} - \overline{A}_{\hat{T}} \right), \quad a_{P}^{\hat{T}\text{odd}} = \frac{1}{2} \left(A_{\hat{T}} + \overline{A}_{\hat{T}} \right).$$

Two types of asymmetries are determined from data. The first are localized in the phase space in order to enhance sensitivity to local effects and the second are integrated over the whole phase space. By construction, such asymmetries are largely insensitive to particle-antiparticle production and detector-induced asymmetries \cite{28}.

The previous LHCb result \cite{5} showed evidence for a dependence of the CP asymmetry as a function of $|\Phi|$, the absolute value of the angle between the planes defined by the $p\pi_{\text{fast}}^{-}$ and $\pi^+\pi_{\text{slow}}^{-}$ systems in the A^0_b rest frame. In the present analysis a binning scheme, labeled A, is considered, based on the results of an approximate amplitude analysis performed on $A^0_b \rightarrow p\pi^-\pi^+\pi^-$ decays. The binning scheme consists in dividing the data sample into 16 subsamples to explore the distribution of the polar and azimuthal angles of the proton (Δ^{++}) in the Δ^{++} (N^{*+}) rest frame. A second binning scheme, labeled B, is used to probe the asymmetries as a function of $|\Phi|$, dividing the data sample into ten subsamples uniformly distributed in the range $[0, \pi]$. The invariant-mass regions $m(p\pi^+\pi_{\text{slow}}^{-}) > 2.8 \text{ GeV}/c^2$ (samples A_1, B_1), dominated by the a_1 resonance, and $m(p\pi^+\pi_{\text{slow}}^{-}) < 2.8 \text{ GeV}/c^2$ (samples A_2, B_2), dominated by the N^{*+} decay, are studied separately. The compatibility of the measured asymmetries with CP and P conservation is checked by means of a χ^2 test taking into account statistical and systematic effects.

The energy test is a model-independent unbinned test sensitive to local differences between two samples, as might arise from CP violation. It can provide superior discriminating power between different samples than traditional χ^2 tests \cite{21, 22}. The test is performed through the calculation of a test statistic

$$T \equiv \frac{1}{2n(n-1)} \sum_{i\neq j}^{n} \psi_{ij} + \frac{1}{2n(n-1)} \sum_{i\neq j}^{\pi} \psi_{ij} - \frac{1}{n\pi} \sum_{i=1}^{n} \sum_{j=1}^{\pi} \psi_{ij},$$

(3)
where there are n candidates in the first (second) sample. The first (second) term sums over pairs of candidates drawn from the first (second) sample and the final term sums over pairs with one candidate drawn from each sample. Each pair of candidates ij is assigned a weight $\psi_{ij} = e^{-d_{ij}^2/2\delta^2}$, where d_{ij} is their Euclidean distance in phase space, while the tunable parameter δ determines the distance scale probed using the energy test. The phase space is defined using the squared masses $m^2(p\pi^+)$, $m^2(\pi^+\pi^-)$, $m^2(p\pi^-)$, $m^2(\pi^+\pi^-\pi^+\pi^-)$, $m^2(p\pi^-\pi^+\pi^-\pi^+)$, and $m^2(p\pi^-\pi^+\pi^-\pi^+)$. The value of T is large when there are significant localized differences between samples and has an expectation of zero when there are no differences. The distribution of T under the hypothesis of no sample differences, and the assignment of p-values, are determined using a permutation method \[21,22\].

Similarly to the TPA method, the comparison of subsamples I and IV to subsamples II and III allows for a P-odd and CP-odd test; the comparison of subsamples I and II to subsamples III and IV for a P-even and CP-odd test. The P violation is also tested by comparing the combination of subsamples I and III with the combination of subsamples II and IV. This provides three test configurations. The length scale at which CP violation might appear is not known. Therefore three different scales are probed in each configuration, chosen following Refs. [21,22] as $\delta = 1.6 \text{ GeV}^2/c^4$, $2.7 \text{ GeV}^2/c^4$ and $13 \text{ GeV}^2/c^4$. For each of the three test configurations all three scales are probed, such that nine tests are made overall: six tests for effects arising from CP violation (three probing P-even CP violation and three P-odd CP violation) and three tests for effects arising from P violation.

The candidate $A^0_b \rightarrow p\pi^-\pi^+\pi^-\pi^+$ decays are formed by combining tracks with transverse (total) momentum greater than 250 MeV/c (1.5 GeV/c) identified as protons and pions that originate from a common vertex displaced from the primary vertex. A cut on the invariant-mass $m(pK^-\pi^+)$ in [2,26,2.30] GeV/c^2 is applied to select $A^0_b \rightarrow A^+_c \rightarrow pK^-\pi^+\pi^-\pi^+$ decay candidates used as control sample. A boosted decision tree classifier [29] (BDT) is constructed from a set of kinematic variables that discriminate between signal and background. The result of an unbinned extended maximum-likelihood fit to the invariant-mass distribution, $m(p\pi^-\pi^+\pi^-)$, is shown in Fig. 1 for the dataset integrated over the phase space. The invariant-mass distribution of the signal is modelled by a Gaussian function core with power-law tails [30], with the mean and width of the Gaussian function determined from the fit to data. All other parameters of the signal fit model are taken from simulation except for the yields. The combinatorial background is parameterised with an exponential function where the parameters are left free to vary in the fits. Partially reconstructed A^0_b decays, as for example $A^0_b \rightarrow p\pi^-\pi^+\pi^-\pi^0$, are described by an ARGUS function [31] convolved with a Gaussian function to account for resolution effects. The shapes of backgrounds from other b-hadron decays due to incorrectly identified particles, e.g. kaons identified as pions or protons identified as kaons, are modelled using simulated events. These consist mainly of $A^0_b \rightarrow pK^-\pi^-\pi^-$ and $B^0 \rightarrow K^+\pi^-\pi^+\pi^-\pi^+$ decays. Their yields are obtained from fits to data where the invariant-mass distributions are reconstructed under the appropriate mass hypotheses and then fixed in the baseline fits. The signal yields for the $A^0_b \rightarrow p\pi^-\pi^+\pi^-\pi^-$ decay and the $A^0_b \rightarrow A^+_c \rightarrow pK^-\pi^+\pi^-\pi^+$ control sample are $27\,600 \pm 200$ and $434\,500 \pm 800$, respectively. Fits in bins of phase space are also performed to determine asymmetries A_T and \overline{A}_T in each region, assigning signal candidates to four categories according to A^0_b or \overline{A}^0_b flavour and sign of C_T or \overline{C}_T. The asymmetries A_T and \overline{A}_T are found to be uncorrelated. Corresponding asymmetries for each of the background components are also determined in the fit; they are found to be
consistent with zero, and do not lead to significant systematic uncertainties in the signal asymmetries.

For the energy test, Λ^0_b candidates are selected in a window corresponding to 2.5 standard deviations of the Gaussian function around the known Λ^0_b mass [32], which optimises the sensitivity to CP violation. The background component with this selection is small and does not affect the analysis.

The reconstruction efficiency for signal candidates with $C_{\hat{T}}>0$ is consistent with that for candidates with $C_{\hat{T}}<0$. This indicates that the detector and the reconstruction algorithms do not bias the measurements. This is confirmed using the control sample and a large sample of simulated events. The same check is performed for the $C_{\hat{T}}$ observable. As a general cross-check, the CP asymmetry is measured in the control sample and found to be compatible with zero, $a_{C_{\hat{T}}}^{T-even}(\Lambda^+\pi^-) = (+0.04 \pm 0.16)\%$.

The main sources of systematic uncertainties in the TPA analysis are selection criteria, reconstruction and detector acceptance. They are evaluated using the control sample. In the TPA analysis, a systematic uncertainty of 0.16% is assigned for the integrated measurements, while uncertainties in the range (0.6–2.5)% are assigned for local measurements. The systematic uncertainty arising from the experimental resolution of the triple products $C_{\hat{T}}$ and $C_{\hat{T}}$, which could introduce a migration of candidates between bins, is estimated from simulation. The difference between the reconstructed and generated asymmetries, 0.01%, is taken as a systematic uncertainty in the TPA analysis. To assess the systematic uncertainty associated with the fit model, an alternative is used to compare the results measured on pseudoexperiments with respect to the baseline model. A value of 0.06% (0.08%) for $a_{C_{\hat{T}}}^{T-even}/a_{C_{\hat{T}}}^{T-even} (A_{\hat{T}}/A_{\hat{P}})$ is assigned as systematic uncertainty. No significant differences are observed comparing results from different running conditions, trigger requirements and selection criteria.

Several studies are made to confirm the reliability of the energy test method. The method is insensitive to global asymmetries, and so is not affected by differences between

![Figure 1: Invariant-mass distribution for $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$ candidates with the result of the fit overlaid. The solid and dotted lines describe the projections of the fit results for various components as listed in the legend.](image-url)
Λ_0^b and $\overline{\Lambda}_0^b$ production rates. However, local asymmetries due to detector effects may yield significant results that would lead to an incorrect conclusion. The potential presence of such effects is studied using the control sample. No evidence is found for any local asymmetry.

Contributions from background decays are considered, in case they contain localized asymmetries not related to CP violation. A high-mass selection is applied ($5.75 < m(p\pi^-\pi^+\pi^-) < 6.10 \text{ GeV}/c^2$) to identify candidates predominantly produced by random combinations of particles. No significant effect is found in the six configurations of the energy test probing the CP-conserving hypothesis. Moreover, a small independent sample of the dominant peaking background ($A_0^b \rightarrow pK^-\pi^+\pi^-$) is selected using the same requirements as in Ref. [5], with the number of candidates corresponding to the size of the relevant background in the $A_0^b \rightarrow p\pi^-\pi^+\pi^-$ sample. Again, no p-values corresponding to a significance above 3 standard deviations are observed when the six configurations of the energy test probing CP violation are applied to this sample. The background contribution from the $B^0 \rightarrow K^+\pi^-\pi^+\pi^-$ decay is negligible within the mass window selected for the energy test.

Finally, the proton detection asymmetry in simulation is replicated in the $A_0^b \rightarrow p\pi^-\pi^+\pi^-$ data sample by setting the A_0^b flavour in the data sample at random to create the same asymmetry. The P-even and P-odd configurations of the energy test are then run for all three distance scales to test for effects that might lead to an incorrect rejection of the CP-conserving hypothesis. This is repeated multiple times for each test with different flavour assignments for the A_0^b candidates. In all six tests the distribution of p-values is consistent with being uniform, so no evidence for any bias from the proton detection asymmetry is found.

The measured TPA from the fit to the full data set are $a_{CP}^{\text{odd}} = (-0.7 \pm 0.7 \pm 0.2)\%$ and $a_{P}^{\text{odd}} = (-4.0 \pm 0.7 \pm 0.2)\%$. Consistency with the CP-conserving hypothesis is observed, while a significant non-zero value for the a_{P}^{odd} asymmetry is found. The effect, estimated with the profile likelihood-ratio test, has a significance of 5.5 standard deviations and indicates parity violation in the $A_0^b \rightarrow p\pi^-\pi^+\pi^-$ decay.

The values of the TPA for the binning schemes A_1, A_2, B_1 and B_2 are shown in Fig. 2. In the binning schemes A_2 and B_2 the contribution from N^{*+} resonances dominates and therefore larger CP asymmetries are possible relative to the A_1 and B_1 binning schemes. However, in the A_2 and B_2 phase-space regions, p-values with respect to the CP-conserving hypothesis corresponding to statistical significances of 0.5 and 2.9 standard deviations are measured, respectively. The evidence of CP violation previously observed [5] is therefore not established.

The same binning scheme B with the present data provides a deviation at 2.8 standard deviations from the CP conservation hypothesis. The compatibility with the previous published measurement [3] is determined to be at 2.6 standard deviations, a value which decreases to 2.1 when the same BDT selection is applied. Pseudoexperiments are generated by randomly assigning the flavour and C_P sign to each candidate. The asymmetries are extracted and the difference between the Run 1 and full datasets is determined as a χ^2 value. The fraction of pseudoexperiments with a χ^2 value greater than the observed χ^2 in data represents the p-value.

The observed p-value for the P-symmetry hypothesis corresponds to a statistical significance of 5.1 standard deviations for the binning scheme B. The p-values measured in the case of binning schemes B_1 and B_2 indicate that the P violation has a large
contribution from the $A_{10} \to p\pi_1(1260)^-$ decay, for which the statistical significance is 5.5 standard deviations.

The p-values obtained for different configurations of the energy test are summarised in Table 1. All CP-violation searches using the energy test result in p-values with a significance of 3 standard deviations or smaller. Given the reported p-value for the P-even configuration of the energy test at a distance scale of 2.7 GeV$/c^4$ is marginally consistent with the CP-conserving hypothesis, the different distance scales considered are combined to obtain a global p-value for the P-even configuration. A new test statistic is defined as $Q = p_1p_2p_3$, where p_i corresponds to a p-value for a distance scale i. The value of Q observed in data is then compared to the corresponding values from permutations, considering correlations between the different distance scales. The combined p-value for the P-even energy test configuration is 4.6×10^{-3}. In addition, the test for parity violation is also performed using the same three distance scales with the energy test. The results are reported in Table 1. The p-values found with this study correspond to the observation of local parity violation for the two smaller distance scales probed.

In conclusion, this Letter reports the searches for CP violation in $A_{10} \to p\pi^−\pi^+\pi^-$ decays both globally and in regions of phase space, using two different methods. The results are marginally compatible with the no CP-violation hypothesis. Violation of P symmetry is observed using both methods, locally with a significance of over 5 standard deviations, and, when the triple product asymmetries are evaluated having integrated

Distance scale δ	1.6 GeV$/c^4$	2.7 GeV$/c^4$	13 GeV$/c^4$
p-value (CP conservation, P even)	3.1×10^{-2}	2.7×10^{-3}	1.3×10^{-2}
p-value (CP conservation, P odd)	1.5×10^{-1}	6.9×10^{-2}	6.5×10^{-2}
p-value (P conservation)	1.3×10^{-7}	4.0×10^{-7}	1.6×10^{-1}

Figure 2: Measured asymmetries for the binning scheme (left) A_1 and A_2 and (right) B_1 and B_2. The error bars represent the sum in quadrature of the statistical and systematic uncertainties. The χ^2 per ndof is calculated with respect to the null hypothesis and includes statistical and systematic uncertainties.
over the entire sample, with a significance of 5.5 standard deviations.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

References

[1] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of the K^0_s meson, Phys. Rev. Lett. 13 (1964) 138.

[2] BaBar collaboration, B. Aubert et al., Measurement of CP-violating asymmetries in B^0 decays to CP eigenstates, Phys. Rev. Lett. 86 (2001) 2515, arXiv:hep-ex/0102030.

[3] Belle collaboration, K. Abe et al., Observation of large CP violation in the neutral B meson system, Phys. Rev. Lett. 87 (2001) 091802, arXiv:hep-ex/0107061.

[4] LHCb collaboration, R. Aaij et al., Observation of CP violation in charm decays, Phys. Rev. Lett. 122 (2019) 211803, arXiv:1903.08726.

[5] LHCb collaboration, R. Aaij et al., Measurement of matter-antimatter differences in beauty baryon decays, Nature Physics 13 (2017) 391, arXiv:1609.05216.

[6] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531.

[7] M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652.

[8] M. Gronau and J. L. Rosner, Triple product asymmetries in Λ_b and Ξ^0_b decays, Phys. Lett. B749 (2015) 104, arXiv:1506.01346.
[9] G. Durieux, CP violation in multibody decays of beauty baryons, *JHEP* **10** (2016) 005, [arXiv:1608.03288](https://arxiv.org/abs/1608.03288).

[10] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, *JINST* **3** (2008) S08005.

[11] LHCb collaboration, R. Aaij et al., LHCb detector performance, *Int. J. Mod. Phys. A* **30** (2015) 1530022.

[12] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, *JHEP* **05** (2006) 026, [arXiv:hep-ph/0603175](https://arxiv.org/abs/hep-ph/0603175); T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, *Comput. Phys. Commun.* **178** (2008) 852, [arXiv:0710.3820](https://arxiv.org/abs/0710.3820).

[13] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, *J. Phys. Conf. Ser.* **331** (2011) 032047.

[14] D. J. Lange, The EvtGen particle decay simulation package, *Nucl. Instrum. Meth.* **A462** (2001) 152.

[15] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, *Eur. Phys. J.* **C45** (2006) 97, [arXiv:hep-ph/0506026](https://arxiv.org/abs/hep-ph/0506026).

[16] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, *IEEE Trans. Nucl. Sci.* **53** (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, *Nucl. Instrum. Meth.* **A506** (2003) 250.

[17] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, *J. Phys. Conf. Ser.* **331** (2011) 032023.

[18] B. Aslan and G. Zech, New test for the multivariate two-sample problem based on the concept of minimum energy, *J. Stat. Comput. Simul.* **75** (2005) 109.

[19] B. Aslan and G. Zech, Statistical energy as a tool for binning-free, multivariate goodness-of-fit tests, two-sample comparison and unfolding, *Nucl. Instrum. Methods Phys. Res. A* **537** (2005) 626.

[20] M. Williams, How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics, *JINST* **5** (2010) P09004, [arXiv:1006.3019](https://arxiv.org/abs/1006.3019).

[21] M. Williams, Observing CP violation in many-body decays, *Phys. Rev.* **D84** (2011) 054015, [arXiv:1105.5338](https://arxiv.org/abs/1105.5338).

[22] C. Parkes et al., On model-independent searches for direct CP violation in multi-body decays, *J. Phys. G* **44** (2017) 085001.

[23] W. Barter, C. Burr, and C. Parkes, Calculating p-values and their significances with the energy test for large datasets, *JINST* **13** (2018) P04011, [arXiv:1801.05222](https://arxiv.org/abs/1801.05222).

[24] T. P. S. Gillam and C. G. Lester, Biased bootstrap sampling for efficient two-sample testing, *JINST* **13** (2018) P12014, [arXiv:1810.00335](https://arxiv.org/abs/1810.00335).
[25] G. Durieux and Y. Grossman, *Probing CP violation systematically in differential distributions*, Phys. Rev. D 92 (2015) 076013.

[26] R. G. Sachs, *The physics of time reversal*, The University of Chicago Press, 1987.

[27] G. C. Branco, L. Lavoura, and J. P. Silva, *CP violation*, Oxford University Press, 1999.

[28] LHCb collaboration, R. Aaij et al., *Search for CP violation using T-odd correlations in D⁰ → K⁺K⁻π⁺π⁻ decays*, JHEP 10 (2014) 005, arXiv:1408.1299.

[29] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, *Classification and regression trees*, Wadsworth International Group, Belmont, California, USA, 1984.

[30] T. Skwarnicki, *A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances*, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

[31] ARGUS collaboration, H. Albrecht et al., *Search for hadronic b → u decays*, Phys. Lett. B 241 (1990) 278.

[32] Particle Data Group, M. Tanabashi et al., *Review of particle physics*, Phys. Rev. D98 (2018) 030001.
LHCb collaboration

R. Aaij, C. Abellán Beteta, T. Ackernley, B. Adeva, M. Adinolfi, H. Afsharina, C.A. Aïdala, S. Aiola, Z. Ajaltouni, S. Aka, P. Albicocco, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Alderero, G. Alkhazov, P. Alvarez Cartelle, A.A. Alves Jr, S. Amato, Y. Amhis, L. An, L. Anderlini, G. Andreassi, M. Andreotti, F. Archilli, J. Arnau Romeu, A. Artamonov, M. Artuso, K. Arzymatov, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, J.J. Back, S. Bake, V. Balagura, W. Baldini, A. Baranov, R.J. Barlow, S. Barsuk, W. Bartel, M. Bartolini, F. Baryshnikov, G. Bassi, V. Batozskaya, B. Batsukh, A. Battig, V. Battista, A. Bay, M. Becker, F. Bedeschi, I. Bediaga, A. Beiter, L.J. Bel, S. Belin, N. Beliy, V. Bellee, K. Belous, I. Belyaev, G. Benvenuti, E. Ben-Haim, S. Benson, S. Beranek, A. Berezhnoy, R. Bernet, D. Berninghoff, H.C. Bernstein, E. Bertholet, A. Bertolín, C. Betancourt, F. Betti, M.O. Bettler, Ia. Bezhshyko, S. Bhasin, J. Bhow, M.S. Bieker, S. Bifani, P. Billoir, A. Birnkraut, A. Bizzet, M. Bjorn, M.P. Blago, T. Blake, F. Blanc, S. Blusk, D. Bobulsa, V. Bocci, O. Boente Garcia, T. Boettcher, A. Boldyrev, A. Bondar, N. Bondar, S. Borsch, M. Borisyak, M. Borsato, J.T. Borsuk, T.J.V. Bowcock, C. Bozzi, S. Braun, A. Brea Rodriguez, M. Brodski, J. Brodzicka, A. Brossa Gonzalez, D. Brundu, E. Buchanan, A. Buonara, C. Burr, A. Bursche, J.S. Butter, J. Byutaert, W. Byczynski, S. Cadeddu, C. Cai, R. Calabrese, S. Cali, R. Calladine, M. Calvi, M. Calvo Gomez, M. Camboni, P. Campana, D.H. Campora Perez, L. Capriotti, A. Carbone, G. Carboni, A. Cardinale, A. Cardini, P. Carniti, K. Carvalho Akiba, A. Casais Vidal, G. Casse, M. Cattaneo, G. Cavallero, R. Cenci, J. Cerasoli, M.G. Chapman, M. Charles, Ph. Charpentier, G. Chatzikonstantinidis, S. Chefdieville, V. Chekaldina, C. Chen, S. Chen, A. Chernov, S.-G. Chitic, A. Brea Rodriguez, J. Arnau Romeu, A. Artamonov, M. Artuso, K. Arzymatov, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, J.J. Back, S. Bake, V. Balagura, W. Baldini, A. Baranov, R.J. Barlow, S. Barsuk, W. Bartel, M. Bartolini, F. Baryshnikov, G. Bassi, V. Batozskaya, B. Batsukh, A. Battig, V. Battista, A. Bay, M. Becker, F. Bedeschi, I. Bediaga, A. Beiter, L.J. Bel, S. Belin, N. Beliy, V. Bellee, K. Belous, I. Belyaev, G. Benvenuti, E. Ben-Haim, S. Benson, S. Beranek, A. Berezhnoy, R. Bernet, D. Berninghoff, H.C. Bernstein, E. Bertholet, A. Bertolín, C. Betancourt, F. Betti, M.O. Bettler, Ia. Bezhshyko, S. Bhasin, J. Bhow, M.S. Bieker, S. Bifani, P. Billoir, A. Birnkraut, A. Bizzet, M. Bjorn, M.P. Blago, T. Blake, F. Blanc, S. Blusk, D. Bobulsa, V. Bocci, O. Boente Garcia, T. Boettcher, A. Boldyrev, A. Bondar, N. Bondar, S. Borsch, M. Borisyak, M. Borsato, J.T. Borsuk, T.J.V. Bowcock, C. Bozzi, S. Braun, A. Brea Rodriguez, M. Brodski, J. Brodzicka, A. Brossa Gonzalez, D. Brundu, E. Buchanan, A. Buonara, C. Burr, A. Bursche, J.S. Butter, J. Byutaert, W. Byczynski, S. Cadeddu, C. Cai, R. Calabrese, S. Cali, R. Calladine, M. Calvi, M. Calvo Gomez, M. Camboni, P. Campana, D.H. Campora Perez, L. Capriotti, A. Carbone, G. Carboni, A. Cardinale, A. Cardini, P. Carniti, K. Carvalho Akiba, A. Casais Vidal, G. Casse, M. Cattaneo, G. Cavallero, R. Cenci, J. Cerasoli, M.G. Chapman, M. Charles, Ph. Charpentier, G. Chatzikonstantinidis, S. Chefdieville, V. Chekaldina, C. Chen, S. Chen, A. Chernov, S.-G. Chitic, V. Chobanova, M. Chrzaszcz, A. Chubykin, P. Ciambrone, M.F. Cicala, X. Cid Vidal, G. Ciezarek, F. Cindolo, P.E.L. Clarke, M. Clemencic, H.V. Cliff, J. Cloisier, J.L. Cobledick, V. Coco, J.A.B. Coelho, J. Cogan, E. Cogneras, L. Cojocari, P. Collins, T. Colomba, A. Comerma-Montells, A. Contu, S. Cooke, G. Coombs, S. Coquereau, G. Corti, C.M. Costa Sobral, B. Couturier, D.C. Craik, A. Crocombe, M. Cruz Torres, R. Currie, C.L. Da Silva, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, A. Danilina, P. d’Argent, A. Davis, O. De Aguilar Francisco, K. De Bruyn, S. De Capua, M. De Cian, J.M. De Miranda, L. De Paula, M. De Serio, P. De Simone, J.A. de Vries, C.T. Dean, W. Dean, J.D. Decamp, L. Del Buono, D. Delaney, H.-P. Dembinski, M. Demmes, A. Dendek, V. Denysenko, D. Derkach, O. Deschamps, F. Desse, F. Dettori, B. Dey, A. Di Canto, P. Di Nezza, S. Didenko, H. Dijkstra, F. Dorder, M. Dorigo, A.C. dos Reis, L. Douglas, A. Dovbnya, K. Dreimanis, M.W. Dudek, L. Dufour, G. Dujany, P. Durante, J.M. Durham, D. Dutta, R. Dzhelyadin, M. Dziewiecki, A. Dziurda, A. Dzyuba, S. Ease, U. Egide, V. Egorychev, S. Eidelman, S. Eisenhardt, R. Ekelhof, S. Ekel. E. Ekhund, S. Ely, A. Eno, S. Escher, S. Esen, T. Evans, A. Falabella, J. Fan, N. Fairley, S. Farry, D. Fazzini, M. Féo, P. Fernandez Declarra, A. Fernandez Prieto, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, S. Ferreres Sole, M. Ferro-Luzzi, S. Filipov, R.A. Fini, M. Fiorini, M. Firlej, K.M. Fischer, C. Fitzpatrick, T. Fiuwowski, F. Fleuret, M. Fontana, F. Fontanelli, R. Forty, V. Franco Lima, M. Franco Sevilla, M. Frank, C. Frei, D.A. Friday, J. Fu, H. Fuehring, W. Funk, E. Gabriell, A. Gallas Torreira, D. Galli, S. Gallorini, S. Gambetta, Y. Gan, M. Gandelmann, P. Gandini, Y. Gao, L.M. Garcia Martin, J. Garcia Pardinas, B. Garcia Planas, F.A. Garcia Rosales, J. Garra Tico, L. Garrido, D. Gascon,
A. Papanestis, M. Pappalaggo, L.L. Pappalardo, W. Parker, C. Parkes, G. Passaleva, A. Pastore, M. Paten, C. Patrignani, A. Pearce, A. Pellegrino, G. Penso, M. Pepe Altarelli, S. Perazzini, D. Pereima, P. Perret, L. Pescatore, K. Petrdis, A. Petrolini, A. Petrov, D. Petrov, S. Petrucci, M. Petruzzo, B. Pietrzyk, G. Pietrzyk, M. Pikies, M. Pili, D. Pinc, J. Pinzino, F. Pisani, A. Piucci, V. Placinta, S. Playfer, J. Plews, M. Plo Casasus, F. Polci, M. Poli Lener, M. Poliakova, A. Polukov, N. Polukhina, I. Polyakov, E. Polycarpov, G.J. Pomyr, S. Ponce, A. Popov, D. Popov, S. Poslavskii, K. Prasanti, L. Promberger, C. Prouve, V. Pugatch, A. Puig Navarro, H. Pullen, G. Punzi, W. Qian, J. Qin, R. Quagliani, B. Quintana, N. Raab, B. Rachwal, J.H. Rademacker, M. Rama, M. Ramos Pernas, M.S. Range, F. Ratnikov, G. Raven, M. Ravonel Salzgeber, M. Reboud, F. Redi, S. Reichert, F. Reiss, C. Remon Alepu, Z. Ren, V. Renaudin, S. Ricciardi, S. Richards, K. Rinnert, P. Robbe, A. Robert, A.B. Rodrigues, E. Rodrigues, J.A. Rodriguez Lopez, M. Roehrken, S. Roiser, A. Rollings, V. Romanov, A. Romero Lima, A. Romero Vidal, J.D. Roth, M. Rotondo, M.S. Rudolph, T. Ruf, J. Ruiz Vidal, J. Ryzka, J.J. Saborido Silva, N. Sagidova, B. Saitta, C. Sanchez Gras, C. Sanchez Mayordomo, B. Sanninnt, R. Santacesaria, C. Santamarina Rios, M. Santamaria, E. Santovetti, G. Sarip, A. Sarti, C. Satriano, A. Satta, M. Saur, D. Savrini, L.G. Scantlebury Smead, S. Schael, M. Schellenberg, M. Schiller, H. Schindler, M. Schmelling, T. Schmelzer, B. Schmidt, O. Schneider, A. Schopper, H.F. Schreiner, M. Schubiger, S. Schulte, M.H. Schune, R. Schwemmer, B. Sciascia, A. Scibba, S. Sellam, A. Semennikov, A. Sergi, N. Serra, J. Serrano, L. Sestini, A. Seyfert, D.M. Shangase, M. Shapkin, T. Shears, L. Shekhtman, V. Shevchenko, E. Shimanski, J.D. Shupped, B.G. Siddi, R. Silva Coutinho, L. Silva de Oliveira, G. Simo, S. Simone, I. Sibika, N. Skidmore, T. Skwarnicki, M.W. Slater, J.G. Smeaton, E. Smith, I.T. Smith, M. Smith, A. Snoc, M. Soares, L. Soares Lavra, M.D. Sokoloff, F.J.P. Soler, B. Souza De Paula, B. Spana, E. Spadaro Norella, P. Spradlin, F. Stagni, M. Stahl, S. Stahl, P. Stefko, S. Stiefska, O. Steinke, V. Stemmele, O. Stenyakin, M. Stepanova, H. Stevens, L. Stone, S. Stracka, M.E. Stramaglia, M. Straticiuc, U. Straumann, S. Strojko, J. Sun, L. Sun, Y. Sun, S. Sviha, K. Swientek, A. Szabelski, T. Szumlak, M. Szymanski, S. Taneja, Z. Tang, T. Tekampe, G. Tellarini, F. Teubert, E. Thomas, K.A. Thomson, M.J. Tilley, V. Tisserand, S. T’Jampens, M. Tobin, S. Tolk, L. Tomassetti, D. Tonelli, D.Y. Tou, E. Tournefier, M. Traill, M.T. Tran, A. Trisovic, A. Tsaregorodtsev, G. Tuci, A. Tully, N. Tuning, A. Ukeje, A. Usachov, A. Ustyuzhanin, U. Uwer, A. Vagner, V. Vagnoni, A. Valassi, G. Valenti, M. van Beuzekom, H. Van Hecke, E. van Herwijnen, C.B. Van Hulse, J. van Tilburg, M. van Veghel, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vazquez Sierra, S. Vecchi, J.J. Velthuin, M. Velti, A. Venkateswaran, V. Vernet, M. Veronesi, M. Werner, J.V. Viana Barbosa, D. Vieira, M. Vieites Diaz, H. Viemann, X. Vilasis Cardona, A. Vitkovskiy, V. Volkov, A. Vollhardt, D. vom Bruch, A. Vorobyev, V. Vorobyev, R. Waldi, J. Waish, J. Wang, J. Wang, M. Wang, Y. Wang, Z. Wang, D.R. Ward, H.M. Wark, N.K. Watson, D. Websdale, A. Weiden, C. Weissler, B.D.C. Westhenry, D.J. White, M. Whitehead, D. Wiedner, G. Wilkinson, M. Wilkinson, I. Williams, M. Williams, M.R.J. Williams, T. Williams, F.F. Wilson, M. Winn, W. Wislicki, M. Witek, G. Wormser, S.A. Wotton, H. Wu, K. Wyllie, Z. Xiang, D. Xiao, Y. Xie, H. Xing, A. Xu, L. Xu, M. Xu, Q. Xu, Z. Xu, Z. Yang, Z. Yang, Y. Yao, L.E. Yeomans, H. Yin, J. Yu, X. Yuan, O. Yushchenko, K.A. Zarebski, M. Zavertyaev, M. Zdyba, M. Zeng, D. Zhang, L. Zhang, S. Zhang, W.C. Zhang
Y. Zhang47, A. Zhelezov16, Y. Zheng5, X. Zhou5, Y. Zhou5, X. Zhu3, V. Zhukov13,39, J.B. Zonneveld57, S. Zucchelli19,e.

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
5University of Chinese Academy of Sciences, Beijing, China
6Institute Of High Energy Physics (IHEP), Beijing, China
7Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
9Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
10Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
11LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
12LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
13I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
14Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
15Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
16Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
17School of Physics, University College Dublin, Dublin, Ireland
18INFN Sezione di Bari, Bari, Italy
19INFN Sezione di Bologna, Bologna, Italy
20INFN Sezione di Ferrara, Ferrara, Italy
21INFN Sezione di Firenze, Firenze, Italy
22INFN Laboratori Nazionali di Frascati, Frascati, Italy
23INFN Sezione di Genova, Genova, Italy
24INFN Sezione di Milano-Bicocca, Milano, Italy
25INFN Sezione di Milano, Milano, Italy
26INFN Sezione di Cagliari, Monserrato, Italy
27INFN Sezione di Padova, Padova, Italy
28INFN Sezione di Pisa, Pisa, Italy
29INFN Sezione di Roma Tor Vergata, Roma, Italy
30INFN Sezione di Roma La Sapienza, Roma, Italy
31Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
32Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
33Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
34AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35National Center for Nuclear Research (NCBJ), Warsaw, Poland
36Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
37Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
38Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
39Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
40Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
41Yandex School of Data Analysis, Moscow, Russia
42Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
43Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
44ICCCUB, Universitat de Barcelona, Barcelona, Spain
45Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
46Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
47European Organization for Nuclear Research (CERN), Geneva, Switzerland
48Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

13
Physik-Institut, Universität Zürich, Zürich, Switzerland
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Laboratoire Leprince-Ringuet, Palaiseau, France
University of Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Université di Bari, Bari, Italy
Université di Bologna, Bologna, Italy
Université di Cagliari, Cagliari, Italy
Université di Ferrara, Ferrara, Italy
Université di Genova, Genova, Italy
Université di Milano Bicocca, Milano, Italy
Université di Roma Tor Vergata, Roma, Italy
Université di Roma La Sapienza, Roma, Italy
AGH - University of Science and Technology, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Vietnam
Université di Padova, Padova, Italy
University of Pisa, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Università di Urbino, Urbino, Italy
Università della Basilicata, Potenza, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Siena, Siena, Italy
MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
Novosibirsk State University, Novosibirsk, Russia
INFN Sezione di Trieste, Trieste, Italy
School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China
Physics and Micro Electronic College, Hunan University, Changsha City, China
Lanzhou University, Lanzhou, China
† Deceased