A realistic first-principle-based spin Hamiltonian is constructed for the type-II multiferroic NiI₂, using a symmetry-adapted cluster expansion method. Besides single ion anisotropy and isotropic Heisenberg terms, this model further includes the Kitaev interaction and a biquadratic term, and can well reproduce striking features of the experimental helical ground state, that are, e.g., a proper screw state, canting of rotation plane, propagation direction and period. Using this model to build a phase diagram, it is demonstrated that, (i) the in-plane propagation direction of (110) is determined by the Kitaev interaction, instead of the long-believed exchange frustrations; and (ii) the canting of rotation plane is also dominantly determined by Kitaev interaction, rather than interlayer couplings. Furthermore, additional Monte Carlo simulations reveal three equivalent domains and different topological defects. Since the ferroelectricity is induced by spins in type-II multiferroics, our work also implies that Kitaev interaction is closely related to the multiferroicity of NiI₂.

Another interesting but still elusive point is the canting of the spin rotation plane. Measurements find that the normal of the rotation plane is not along the in-plane ⟨110⟩ propagation direction, but rather forms an angle of 55° with the out-of-plane direction of NiI₂ bulk [8]. Such canting has been believed to be natural, as the presumed PS state should have its rotation plane being perpendicular to its propagation direction and the PS state of NiI₂ does have an out-of-plane propagation component [9, 15]. However, common mechanisms can not explain such canting, as (i) single ion anisotropy (SIA) does not favor specific canting angle; (ii) the Dzyaloshinskii-Moriya interaction (DMI) is not allowed by the inversion symmetry of NiI₂ (Note that incommensurate spin patterns are too weak to generate non-negligible DMI); and (iii) interlayer Heisenberg terms are proved to have effects neither on propagation directions nor cantings [16]. On the other hand, new forms of interactions, i.e., Kitaev interaction [11, 12, 17] and biquadratic interactions [13], have recently been proposed to be non-negligible in NiI₂, but their effects and interplays are still not clearly understood. Hence, any highly desired realistic model of NiI₂ has to not only incorporate all these aforementioned important mechanisms, but also reproduce the correct ground state — which is currently lacking.

In this work, we build a first-principle-based spin Hamiltonian for NiI₂, taking advantage of a symmetry-adapted cluster expansion and machine learning methods. The resulting Hamiltonian can well reproduce the observed PS state of NiI₂, with the propagation, period
and canting angle comparing well with experiments on bulk systems. By further developing a phase diagram, it is demonstrated that (i) Heisenberg terms actually lead to \(\langle 110\rangle\) propagation; and (ii) it is the Kitaev interaction that not only results in the actual \(\langle 1\bar{1}0\rangle\) propagation, but also dominantly determines the canting of the rotation plane. The roles of biquadratic interaction and interlayer couplings are also carefully examined. Monte Carlo (MC) simulations further predict diverse spin textures and topological defects.

Our newly developed symmetry-adapted cluster expansion method, as implemented in the PASP software, is applied to build the spin Hamiltonian of NiI\(_2\) \([18, 19]\). Such method roots in cluster expansion that goes over all isomers and topological defects. The Hamiltonian of NiI\(_2\) is determined employing the Hamiltonian of Eq. (1) within MC and conjugate gradient (CG) methods. The predicted ground state indeed yields a canted PS state with an in-plane \(\langle 1\bar{1}0\rangle\) propagation and antiparallel interlayer alignments, which agree

NiI\(_2\)	HSE	PBE
\(A_{zz}\)	0.140 (-0.03)	0.212 (-0.05)
\(J\)	-4.976 (1.00)	-4.338 (1.00)
\(K\)	0.858 (-0.17)	1.433 (-0.33)
\(B\)	-0.719 (0.14)	-0.685 (0.16)
\(J_2\)	-0.155 (0.03)	-0.121 (0.03)
\(J_3\)	2.250 (-0.45)	3.155 (-0.73)
\(J_{1}^{+}\)	-0.048 (0.01)	-0.060 (0.01)
\(J_{1}^{-}\)	0.685 (-0.14)	1.103 (-0.25)
\(J_{3}^{+}\)	0.105 (-0.02)	0.195 (-0.04)

with \(n = 1, 2, 3\) and where \(\langle i, j\rangle_n\) denotes pairs of \(n\)th nearest neighbors (NN) within each layer, while the \(\perp\) symbol refers to interlayer couplings; \(\gamma\) chooses its value from \(X, Y\) and \(Z\) from the Kitaev basis (see Fig. 1d and SM [21]), which shows the bond-dependent feature. Note that the SOC effects are reflected by the Kitaev term and SIA. For the sum running over \(\langle i, j\rangle_1\), \(J\) quantifies the isotropic exchange coupling, \(K\) the Kitaev interaction, and \(B\) a biquadratic term. Note that one can also define \(J_1 = \frac{1}{3}(3J + K)\), which can be thought of as the real isotropic exchange. \(A_{zz}\) denotes the SIA. As shown in Table I, the NN isotropic exchange favors FM since \(J = -4.976\) meV, which is the largest coefficient in magnitude. \(J_2\) also favors FM because of its negative sign, but is relatively very small. On the other hand, \(J_3 = 2.250\) meV favors AFM and thus competes with the NN \(J\). Regarding the interlayer couplings, \(J_{1}^{\perp}\) is FM in nature but very small in magnitude. In contrast, \(J_{3}^{\perp} = 0.685\) meV favors AFM and is the strongest interlayer coupling. Moreover, sizable AFM Kitaev \(K = 0.858\) meV and \(B = -0.719\) meV biquadratic interactions are predicted, which are in line with previous studies \([11–13, 17, 24, 25]\). Such spin Hamiltonian of Eq. (1) yields a very small mean averaged error (MAE) of 0.063 meV/\(\text{Ni}\), as indicated in the SM [21].

The ground state of NiI\(_2\) is determined employing the Hamiltonian of Eq. (1) within MC and conjugate gradient (CG) methods. The predicted ground state indeed yields a canted PS state with an in-plane \(\langle 1\bar{1}0\rangle\) propagation and antiparallel interlayer alignments, which agree

![FIG. 1. Schematics of (a) NiI\(_2\) crystal structure and common helical spin structures, (b) proper screw, (c) in-plane cycloid and (d) vertical cycloid. Panel (e) displays the PS\(_{\text{conf}}\) state of NiI\(_2\), where spins rotate in a canted plane that is spanned by the NiI\(_2\) clusters. The hollow red, green and blue arrows denote the Kitaev basis \{XYZ\}.](image-url)
comes IC \langle \end{verbatim}

well with measurements. The period is determined to be $\lambda = 7.3a$ if neglecting interlayer couplings, which compares well with the experimental value of $\lambda = 7.23a$ (where a denotes the in-plane lattice constant) [8, 9]. Strikingly the canting angle of the rotation plane is numerically found to be 46° for bulk, which is consistent with the corresponding measured value of 55°±10° [8]. Our model therefore reproduces well the correct PS state for bulk, where the spin texture in a single layer will be referred to as $\text{PS}_{\text{cont}}^{(110)}$ state. Note that the parameters from PBE result in the $\langle 110 \rangle$ propagation, as a result of rather strong J_3/J. It is also important to know that isotropic Heisenberg terms, by themselves, do not support in-plane $\langle 110 \rangle$ propagation, as J_2 and J both favor FM while J_3 and J compete against each other (since $J_3 > 0$ and thus favor AFM while $J_3/J = -0.45$). Such isotropic Heisenberg terms lead to an incommensurate state along $\langle 110 \rangle$ ($\text{IC}^{(110)}$), which is consistent with both analytical results [10] and previous models from DFT [11–14]. It therefore indicates that the $\langle 110 \rangle$ propagation is stabilized by mechanisms other than the isotropic Heisenberg terms.

To unravel the puzzling mechanisms that stabilize such $\langle 110 \rangle$ propagation, we built a phase diagram. More precisely, we chose $J = -1$ meV and sweep over $J_3 \geq 0$ and $B \leq 0$ (in this phase diagram, “only” J, J_3 and B are thus included for now). As shown in Fig. 2, for $B/J = 0$, the chosen negative J stabilizes the FM state when J_3 is weak; while the system adopts $\text{IC}^{(110)}$ states when $J_3/J < -0.25$, which is consistent with the analytical results of Ref.[10]. For $B/J > 0$, the negative biquadratic term shifts the $\text{IC}^{(110)}$-FM boundary toward larger magnitude of J_3/J, which can be understood by

The Kitaev interaction is therefore now further incorporated into the computations and resulting phase diagram (consequently, J, J_3, B and K are now included in this new phase diagram). Surprisingly, with $K = 0.1$ meV (resulting thus in $K/J = -0.1$), an incommensurate state propagating along $\langle 110 \rangle$ ($\text{IC}^{(110)}$) emerges at the border of the previous $\text{IC}^{(110)}$-FM transition, as additionally shown in Fig. 2. Such $\text{IC}^{(110)}$ state takes a slim area of the previous FM zone and a relatively large area of the previous $\text{IC}^{(110)}$ state. When increasing the Kitaev interaction even more to $K = 0.2$ meV, the area of $\text{IC}^{(110)}$ state further expands. As a result, the phase points defined by, e.g., $J_3/J = -0.4$ and $B/J = 0$, as well as $J_3/J = -0.5$ and $B/J = 0.2$, transform from the $\text{IC}^{(110)}$ to $\text{IC}^{(110)}$ state. It is thus clear that, for NiI$_2$, the ratios $J_3/J = -0.45$ and $B/J = 0.14$ favor the $\text{IC}^{(110)}$ state, but $K/J = -0.17$ renders the ground state to become the $\text{IC}^{(110)}$ state. Such results therefore demonstrate that the Kitaev interaction (with $K > 0$), along with the frustration between J and J_3, tends to stabilize the $\langle 110 \rangle$ propagation.

Moreover, it is found that the aforementioned $\text{IC}^{(110)}$ state resulted from the J-K-J_3(-B) model (i.e. a model with only such terms) also exhibits canted rotation plane. This canting angle between the Y axis and out-of-plane

TABLE II. Total energy and relative energies of different PS states, as well as the decomposition of these energies into specific interaction, as calculated with the HSE parameters in Table I. (unit: meV/Ni).

Para.	$\text{PS}_{\text{cont}}^{(110)}$	$\text{PS}^{(110)}$	$\text{PS}^{(110)}$	$\text{PS}^{(110)}$	$\text{PS}^{(110)}$	$\text{PS}^{(110)}$
A_{xx}	0.04	0.07	0.07	0.00	-0.03	-0.03
J	-11.42	-11.42	-11.39	-0.03	-0.03	0.00
K	0.56	0.61	0.61	0.00	-0.05	-0.05
B	0.84	0.84	0.85	-0.01	-0.01	-0.00
J_2	-0.18	-0.18	-0.17	-0.00	-0.00	0.00
J_3	1.52	1.52	1.45	0.07	0.07	0.00
Total	-8.64	-8.56	-8.59	0.03	-0.05	-0.08
We then develop a model to better understand why Kitaev interaction favors \(\langle 110 \rangle \) propagation, as well as, a canting in rotation plane (see details in SM [21]). Here, we construct \(\text{PS}^{(110)} \) and \(\text{PS}^{(110)} \) states and adopt only the Kitaev interaction. The resulted energies are expressed as

\[
E^{110}/K = c_1(\cos 2\theta_1 - 2\sqrt{2}\sin 2\theta_1) + c_2 \text{ and } E^{110}/K = c_3\cos 2\theta_1 + c_4,
\]

where \(E^{110} \) and \(E^{110} \) are the total energies of the corresponding \(\text{PS} \) states, \(\theta_1 \) is the angle from the \{001\} direction to the normal of the rotation plane, and \(c_n(n = 1 - 4) \) are positive constants. It is found that (i) \(E^{110} \) has its minimum at \(\theta_1 = 54.7^\circ \), which is the angle between the \{001\} direction and the \(Y \) (Z or X, respectively) axis, demonstrating that the Kitaev interaction prefers the rotation plane of the \(\text{PS}^{(110)} \) pattern within the \(XZ \) (\(XY \) or \(YZ \), respectively) plane; (ii) \(E^{110} \) has its minimum at \(\theta_1 = \pm 90^\circ \), indicating an exact \(\text{PS} \) state with rotation plane being perpendicular to the propagation direction; and (iii) \(E^{110}_{\text{min}} < E^{110}_{\text{min}} \), confirming that \(\langle 110 \rangle \) propagation, together with a canting, is energetically more favorable (see Fig. S3 of SM [21]).

The critical role of Kitaev interaction in reproducing the canting in spin rotation plane demonstrates the significance of SOC effects on the spin model of NiI₂. Moreover, our DFT results (see Fig. S7 of SM) show that the strength of electric polarization depends largely on the orientation of the spin rotation plane. It thus indicates that the Kitaev interaction is closely related to the ferroelectricity. Such findings are thus in line with previous work, which demonstrates that the ferroelectric order is controlled by the SOC of iodine [28].

Furthermore, Monte-Carlo simulations, as well as a conjugate gradient (CG) algorithm, are performed on large supercells using the Hamiltonian of Eq. (1). Since bulk only differs from the monolayer only by a longer period of propagation and interlayer AFM alignments, we focus on the monolayer hereafter for simplicity. As shown in Fig. 3(a), these simulations found that canted \(\text{PS} \) states form stripy domains and cover most of the area at low temperatures, which is consistent with the fact that the \(\text{PS}^{(110)} \) states are the ground states of NiI₂ bulk. There are three domains that propagate along \(\langle 110 \rangle \) or the equivalent \(\langle 120 \rangle \) and \(\langle 210 \rangle \) directions, which is also in line with the observed three domains of NiI₂ monolayer [7]. Note that the spin pattern shown in Fig. 3a is only 0.038 eV/Ni higher in energy than the ground state of \(\text{PS}^{(110)} \) monodomain. Interestingly, topological defects are predicted to occur at phase boundaries (see Fig. 3), which is in line with the prediction of skyrmion lattice in monolayer NiI₂ [11].

To conclude, we adopted the symmetry-adapted cluster expansion method and built a realistic spin model for multiferroic NiI₂. Such model can reproduce well the experimental \(\langle 110 \rangle \) propagating proper screw state, as well as the canting in its spin rotation plane. The Kitaev interaction is found to play a key role in NiI₂, and is proved to impose anisotropy on coplanar spin texture. Our work...
thus leads to a better understanding on the magnetism of NiI₂, as well as its type-II multiferroicity.

This work is supported by NSFC (grants No. 811825403, 11991061, 12188101, 12174060, and 12274082) and the Guangdong Major Project of the Basic and Applied Basic Research (Future functional materials under extreme conditions--2021B0301030005). C.X. also acknowledge support from the the support from Shanghai Science and Technology Committee (grant No. 23ZR1406600) and the open project of Guangdong provincial key laboratory of magnetoelectric physics and devices (No. 2020B1212060030). L.B. acknowledges support from the Vannevar Bush Faculty Fellowship (VBFF) from the Department of Defense and the ARO Grant No. W911NF-352-21-2-0162 (ETHOS). The Arkansas High Performance Computing Center (AHPCC) is also acknowledged.

* csxu@fudan.edu.cn
* lxliang@fudan.edu.cn

[1] Kostya S. Novoselov, Andre K Geim, Sergey Vladimirovich Morozov, Dingde Jiang, Michael I Katsnelson, IVA Grigorieva, SVb Dubonos, and andAA Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[2] Kin Fai Mak, Keilang He, Jie Shan, and Tony F Heinz, “Control of valley polarization in monolayer MoS₂ by optical helicity,” Nat. Nanotech. 7, 494–498 (2012).
[3] Kai Chang, Junwei Liu, Haicheng Lin, Na Wang, Kun Zhao, Anmin Zhang, Feng Jin, Yong Zhong, Xiaopeng Hu, Wenhui Duan, et al., “Discovery of robust in-plane ferroelectricity in atomic-thick SnTe,” Science 353, 274–278 (2016).
[4] Cheng Gong, Lin Li, Zhenglu Li, Huiwen Ji, Alex Stern, Yang Xia, Ting Cao, Wei Bao, Chenzhe Wang, Yuan Wang, et al., “Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals,” Nature 546, 265–269 (2017).
[5] Bevin Huang, Genevieve Clark, Efren Navarro-Moratalla, Dahlia R Klein, Ran Cheng, Kyle L Seyler, Ding Zhong, Emma Schmidgall, Michael A McGuire, David H Cobden, et al., “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit,” Nature 546, 270–273 (2017).
[6] Hwiin Ju, Youjin Lee, Kwang-Tak Kim, In Hyeok Choi, Chang Jae Roh, Suhan Son, Pyeongjae Park, Jae Ha Kim, Taek Sun Jung, Jae Hoon Kim, et al., “Possible persistence of multiferroic order down to bilayer limit of van der Waals material NiI₂,” Nano Lett. 21, 5126–5132 (2021).
[7] Qian Song, Connor A Ochialini, Emre Ergeçen, Batyr Ilyas, Danila Amoroso, Paolo Barone, Jesse Kapkeghan, Kenji Watanabe, Takashi Taniguchi, Antia S Botana, et al., “Evidence for a single-layer van der Waals multiferroic,” Nature 602, 601–605 (2022).
[8] SR Kuindersma, JP Sanchez, and C Haas, “Magnetic and structural investigations on NiI₂ and CoI₂,” Physica B+ C 111, 231–248 (1981).
[9] T Kurumaji, S Seki, S Ishiwata, H Murakawa, Y Kaneko, and Y Tokura, “Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI₂ and CoI₂,” Phys. Rev. B 87, 014429 (2013).
[10] Tsuyoshi Okubo, Sungki Chung, and Hikaru Kawamura, “Multiple-q states and the skyrmion lattice of the triangular-lattice heisenberg antiferromagnet under magnetic fields,” Phys. Rev. Lett. 108, 017206 (2012).
[11] Danila Amoroso, Paolo Barone, and Silvia Picozzi, “Spontaneous skyrmionic lattice from anisotropic symmetric magnetic exchange in a Ni-halide monolayer,” Nat. Commun. 11, 5784 (2020).
[12] Kira Riedl, Danila Amoroso, Steffen Backes, Aleksandr Razpopov, Thi Phuong Thao Nguyen, Kunihiko Yamachii, Paolo Barone, Stephen M Winter, Silvia Picozzi, and Roser Valentí, “Microscopic origin of magnetism in monolayer 3d transition metal dihalides,” Phys. Rev. B 106, 035156 (2022).
[13] Jinyang Ni, Xueyang Li, Danila Amoroso, Xu He, Junsheng Feng, Erjun Kan, Silvia Picozzi, and Hongjun Xiang, “Giant biquadratic exchange in 2d magnets and its role in stabilizing ferromagnetism of NiCl₂ monolayers,” Phys. Rev. Lett. 127, 147204 (2021).
[14] Xiaosheng Ni, Daoxin Yao, and Kun Cao, “In-plane strain tuning multiferroicity in monolayer van der waals NiI₂,” arXiv:2209.12392 (2022).
[15] T Kurumaji, S Seki, S Ishiwata, H Murakawa, Y Tokunaga, Y Kaneko, and Y Tokura, “Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI₂,” Phys. Rev. Lett. 106, 167206 (2011).
[16] LP Régnauld, J Rossat-Mignod, A Adam, D Billerey, and C Terrier, “Inelastic neutron scattering investigation of the magnetic excitations in the helimagnetic state of NiBr₂,” J. Phys. 43, 1283–1290 (1982).
[17] P Peter Stavropoulos, D Pereira, and Hae-Young Kee, “Microscopic mechanism for a higher-spin Kitaev model,” Phys. Rev. Lett. 123, 037203 (2019).
[18] Feng Lou, XY Li, JY Ji, HY Yu, JS Feng, XG Gong, and HJ Xiang, “Pasp: Property analysis and simulation package for materials,” The Journal of Chemical Physics 154, 114103 (2021).
[19] Changsong Xu, Xueyang Li, Peng Chen, Yun Zhang, Hongjun Xiang, and Laurent Bellaiche, “Assembling diverse skyrmionic phases in Fe₇GeTe₂ monolayers,” Adv. Mater. 34, 2107779 (2022).
[20] Xue-Yang Li, Feng Lou, Xin-Gao Gong, and Hongjun Xiang, “Constructing realistic effective spin hamiltonians with machine learning approaches,” New J. Phys. 22, 053036 (2020).
[21] See supplemental materials at [url] for detailed methods and further discussions, which includes Refs. [8, 11, 13, 16, 18, 20, 22, 23, 29–34].
[22] Aliaksandr V Krukau, Oleg A Vydrov, Artur F Izmaylov, and Gustavo E Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” Chem. phys. 125, 224106 (2006).
[23] John P Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
[24] Changsong Xu, Junsheng Feng, Hongjun Xiang, and Laurent Bellaiche, “Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI₃ and
CrGeTe$_3$ monolayers,” npj Comput. Mater. 4, 57 (2018).

[25] Changsong Xu, Junsheng Feng, Mitsuaki Kawamura, Youhei Yamaji, Yousra Nahas, Sergei Prokhorenko, Yang Qi, Hongjun Xiang, and L Bellaiche, “Possible Kitaev quantum spin liquid state in 2D materials with $S = 3/2$,” Phys. Rev. Lett. 124, 087205 (2020).

[26] Linlu Wu, Linwei Zhou, Xieyu Zhou, Cong Wang, and Wei Ji, “In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe$_2$ and CrTe$_2$ monolayers and bilayers,” Phys. Rev. B 106, L081401 (2022).

[27] Note that the spin patterns in Fig. 3(a) do not correspond to a MC temperature, as the CG algorithm leads the pattern to a stable state, which is a global or local energy minimum.

[28] Adolfo O Fumega and JL Lado, “Microscopic origin of multiferroic order in monolayer NiI$_2$,” 2D Materials 9, 025010 (2022).

[29] Georg Kresse and Jürgen Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).

[30] Peter E Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).

[31] Magnus Rudolph Hestenes and Eduard Stiefel, Methods of conjugate gradients for solving linear systems, Vol. 49 (National Bureau of Standards Washington, DC, 1952).

[32] Changsong Xu, Junsheng Feng, Sergei Prokhorenko, Yousra Nahas, Hongjun Xiang, and Laurent Bellaiche, “Topological spin texture in janus monolayers of the chromium trihalides Cr(I,X)$_3$,” Phys. Rev. B 101, 060404 (2020).

[33] Minsoo Kim, Piranavan Kumaravadivel, John Birkbeck, Wenjun Kuang, Shuigang G Xu, DG Hopkinson, Johannes Knolle, Paul A McClarty, AI Berdyugin, M Ben Shalom, et al., “Micromagnetometry of two-dimensional ferromagnets,” Nature Electronics 2, 457–463 (2019).

[34] Zefang Li, Dong-Hong Xu, Xue Li, Hai-Jun Liao, Xuekui Xi, Yi-Cong Yu, and Wenhong Wang, “Abnormal critical fluctuations revealed by magnetic resonance in the two-dimensional ferromagnetic insulators,” arXiv preprint arXiv:2101.02440 (2021).