Edge corona product as an approach to modeling complex simplicial networks

Yucheng Wang, Yuhao Yi, Wanyue Xu and Zhongzhi Zhang, Member, IEEE

Abstract—Many graph products have been applied to generate complex networks with striking properties observed in real-world systems. In this paper, we propose a simple generative model for simplicial networks by iteratively using edge corona product. We present a comprehensive analysis of the structural properties of the network model, including degree distribution, diameter, clustering coefficient, as well as distribution of clique sizes, obtaining explicit expressions for these relevant quantities, which agree with the behaviors found in diverse real networks. Moreover, we obtain exact expressions for all the eigenvalues and their associated multiplicities of the normalized Laplacian matrix, based on which we derive explicit formulas for mixing time, mean hitting time and the number of spanning trees. Thus, as previous models generated by other graph products, our model is also an exactly solvable one, whose structural properties can be analytically treated. More interestingly, the expressions for the spectra of our model are also exactly determined, which is sharp contrast to previous models whose spectra can only be given recursively at most. This advantage makes our model a good test-bed and an ideal substrate network for studying dynamical processes, especially those closely related to the spectra of normalized Laplacian matrix, in order to uncover the influences of simplicial structure on these processes.

Index Terms—Graph product, Edge corona product, Complex network, Random walk, Graph spectrum, Hitting time, Mixing time.

1 INTRODUCTION

C OMPLEX networks are a powerful tool for describing and studying the behavior of structural and dynamical aspects of complex systems [1]. An important achievement in the study of complex networks is the discovery that various real-world systems from biology to social networks display some universal topological features, such as scale-free behavior [2] and small-world effect [3]. The former implies that the fraction of vertices with degree \(d \) obeys a distribution of power-law form \(P(d) \sim d^{-\gamma} \) with \(2 < \gamma \leq 3 \). The latter is characterized by small average distance (or diameter) and high clustering coefficient [3]. In addition to these two topological aspects, a lot of real networks are abundant in nontrivial patterns, such as \(q \)-cliques [4] and many cycles at different scales [5], [6]. For example, spiking neuron populations form cliques in neural networks [7], [8], while coauthors of a paper constitute a clique in scientific collaboration networks [9]. These remarkable structural properties or patterns greatly affect combinatorial [10], [11], structural [12] and dynamical [13], [14] properties of networks, and lead to algorithmic efforts on finding nontrivial subgraphs, e.g., \(q \)-cliques [15], [16].

In order to capture or account for universal properties observed in practical networks, a lot of mechanisms, approaches, and models were developed in the community of network science [11]. Currently, there are many important graph generation literature [17], [18], [19], graph generators [20], as well as packages [21], for example, NetworkX [1].

In recent years, cliques, also called simplicial complexes, have become very popular to model complex networks [15], [22]. Since large real-world networks are usually made up of small pieces, for example, cliques [4], motifs [23], and communities [24], graph products are an important and natural way for modelling real networks, which generate a large graph out of two or more smaller ones. An obvious advantage of graph operations is the allowance of tractable analysis on various properties of the resultant composite graphs. In the past years, various graph products have been exploited to mimic real complex networks, including Cartesian product [25], corona product [26], [27], hierarchical product [28], [29], [30], [31], and Kronecker product [32], [33], [34], [35], [36], and many more [37].

Most current models based on graph operations either fail to reproduce serval properties of real networks or are hard to exactly analyze their spectral properties. For example, iterated corona product on complete graphs only yields small cycles [26], [27]; while for most networks created by graph products, their spectra can be determined recursively at most. On the other hand, in many real networks [38], [39], such as brain networks [7], [40] and protein-protein interaction networks [41], there exist higher-order nonpairwise relations between more than two nodes at a time. These higher-order interactions, also called simplicial interactions, play an important role in other structural and dynamical properties of networks, including percolation [42], synchronization [43], [44], disease spreading [45], and voter [46]. Unfortunately, most models generated by graph products and generators cannot capture higher-order interactions, and how simplicial interactions affect random walk dynamics, i.e., mixing time [47], is still unknown.

From a network perspective, higher-order interactions can be described and modelled by hypergraphs [48], [49]. Here we model the higher-order interactions by simplicial
complexes generated by a graph product. Although both simplicial complexes and hypergraphs can be applied for the modelling and analysis of realistic systems with higher-order interactions, they differ in some aspects. First, simplicial complexes have a geometric interpretation. For example, they can be explained as the result of gluing nodes, edges, triangles, tetrahedra, etc. along their faces. This interpretation for simplicial complexes can be exploited to characterize the resulting network geometry, such as network curvatures. Moreover, a higher-order interaction described by hypergraphs do not require the presence of all low-order interactions.

In this paper, by iteratively applying edge corona product first proposed by Haynes and Lawson to complete graphs or q-cliques \mathcal{K}_q with $q \geq 1$, we propose a mathematically tractable model for complex networks with various cycles at different scales. Since the resultant networks are composed of cliques of different sizes, we call these networks as simplicial networks. The networks can describe simplicial interactions, which have rich structural, spectral, and dynamical properties depending on the parameter q. Thus, they can be used to study the influence of simplicial interactions on various dynamics.

Specifically, we present an extensive and exact analysis of relevant topological properties for the simplicial networks, including degree distribution, diameter, clustering coefficient, and distribution of clique sizes, which reproduce the common properties observed for real-life networks. We also determine exact expressions for all the eigenvalues and their multiplicities of the transition probability matrix and normalized Laplacian matrix. As applications, we further exploit the obtained eigenvalues to derive leading scaling for mixing time, as well as explicit expressions for average hitting time and the number of spanning trees. The proposed model allows for rigorous analysis of structural properties, as previous models generated by graph products. In contrast to previous models for which the eigenvalues for related matrices are given recursively at most, the eigenvalues of transition probability matrix for our model can be exactly determined. This advantage allows to study analytically even exactly related dynamical processes determined by one or several eigenvalues, for example, mixing time of random walks, which gives deep insight into behavior for mixing time in real-life networks.

2 Network Construction

The network family proposed and studied here is constructed based on the edge corona product of graphs defined as follows, which is a variant of the corona product first introduced by Frucht and Harary of two graphs. Let G_1 and G_2 be two graphs with disjoint vertex sets, with the former G_1 having n_1 vertices and m_1 edges. The edge corona $G_1 \odot G_2$ of G_1 and G_2 is a graph obtained by taking one copy of G_1 and m_1 copies of G_2, and then connecting both end vertices of the ith edge of G_1 to each vertex in the ith copy of G_2 for $i = 1, 2, \ldots, m_1$.

Let \mathcal{K}_q, $q \geq 1$, be the complete graph with q vertices. When $q = 1$, we define \mathcal{K}_q as a graph with an isolate vertex. Based on the edge corona product and the complete graphs, we can iteratively build a set of graphs, which display the striking properties of real-world networks. Let $G_q(g)$, $q \geq 1$ and $g \geq 0$, be the network after g iterations. Then, $G_q(g)$ is constructed in the following way.

Definition 1. For $g = 0$, $G_q(0)$ is the complete graph \mathcal{K}_{q+2}. For $g \geq 1$, $G_q(g + 1)$ is obtained from $G_q(g)$ and \mathcal{K}_q by performing edge corona product on them: for every existing edge of $G_q(g)$, we introduce a copy of the complete graph \mathcal{K}_q and connect all its vertices to both end vertices of the edge. That is, $G_q(g + 1) = G_q(g) \odot \mathcal{K}_q$.

Figure illustrates the construction process of $G_q(g)$ for two particular cases of $q = 1$ and $q = 2$. Note that for $q = 1$, $G_q(g)$ is reduced to the pseudofractal scale-free web, which only contains triangles but excludes other complete graphs with more than 3 vertices.

![Fig. 1. The first several iterations of $G_q(g)$ for $q = 1$ and $q = 2$.](image)

Let $N_q(g)$ and $M_q(g)$ be the number of vertices and number of edges in graph $G_q(g)$, respectively. Suppose $L_v(g)$ and $L_e(g)$ be the number of vertices and the number of edges generated at iteration g. Then for $g = 0$, $L_v(0) = N_q(0) = q + 2$ and $L_e(0) = M_q(0) = \frac{(q+1)(q+2)}{2}$. For all $g \geq 1$, by Definition 1 we obtain the following two relations:

\[L_v(g + 1) = qM_q(g) \]

and \[L_e(g + 1) = \left[\frac{(q+1)(q+2)}{2} - 1\right] M_q(g), \]

which lead to recursive relationships for $N_q(g)$ and $M_q(g)$ as

\[M_q(g + 1) = \frac{(q+1)(q+2)}{2} M_q(g) \]

and

\[N_q(g + 1) = qM_q(g) + N_q(g). \]

Considering the initial conditions $N_q(0) = q + 2$ and $M_q(0) = \frac{(q+1)(q+2)}{2}$, the above two equations are solved to obtain

\[M_q(g) = \left[\frac{(q+1)(q+2)}{2}\right]^{g+1} \]
and

\[N_q(g) = \frac{2}{q+3} \left[\frac{(q+1)(q+2)}{2} \right]^{q+1} + \frac{2(q+2)}{q+3}. \]

Then, the average degree distribution of vertices in graph \(G_q(g) \) is \(2M_q(g)/N_q(g) \), which tends to \(q+3 \) when \(g \) is large.

Therefore, the graph family \(G_q(g) \) is sparse.

In addition, inserting Eqs. (5) and (6) into Eqs. (1) and (2) gives \(L_v(g) = \frac{(q+1)(q+2)}{2} - 1 \left[\frac{(q+1)(q+2)}{2} \right]^{q+1} \) for \(q \geq 1 \), which are helpful for the computation in the sequel.

3 STRUCTURAL PROPERTIES

In this section, we study some relevant structural characteristics of \(G_q(g) \), focusing on degree distribution, diameter, clustering coefficient, and distribution of clique sizes.

3.1 Degree distribution

The degree distribution \(P(d) \) for a network is the probability of a randomly selected vertex \(v \) having exactly \(d \) neighbors. When a network has a discrete sequence of vertex degrees, one can use cumulative degree distribution \(P_{\text{cum}}(d) \) instead of ordinary degree distribution \(P(d) \), which is the implicit determination. Let \(P(d) \) for \(d \) adjacent to \(v \), it has a degree of \(q+1 \). For construction, for any edge incident with \(v \) at current iteration, it will lead to \(q \) additional new edges adjacent to \(v \) at the following iteration. Therefore,

\[d_v(g) = (q+1)^{g-g_v+1}. \]

On the other hand, in graph \(G_q(g) \) the degree of all simultaneously emerging vertices is the same. Then, the number of vertices with the degree \((q+1)^{g-g_v+1} \) is \(q+2 \) and \(q \left[\frac{(q+1)(q+2)}{2} \right]^{g_v} \) for \(g_v = 0 \) and \(g_v > 0 \), respectively.

Proposition 1. The degree distribution of graph \(G_q(g) \) follows a power-law form \(P(d) \sim d^{-\gamma} \) with the power exponent \(\gamma = 2 + \frac{\ln(d+2)}{\ln(q+1)} - \frac{\ln 2}{\ln(q+1)} \).

Proof: As shown above, the degree sequence of vertices in \(G_q(g) \) is discrete. Thus we can get the degree distribution \(P(d) \) for \(d = (q+1)^{g-g_v+1} \) via the cumulative degree distribution given by

\[P_{\text{cum}}(d) = \frac{1}{N_q(g)} \sum_{r \leq g_v} L_v(r) \]

From Eq. (8), we derive \(g_v = q + 1 - \frac{\ln d}{\ln(q+1)} \). Plugging this expression for \(g_v \) into the above equation leads to

\[P_{\text{cum}}(d) = \frac{2 \ln d}{\ln(q+1)} - g_v - 2 \left(\frac{(q+1)(q+2)}{2} \right)^{g+1} + q + 2 \]

The degree distribution follows a power-law form \(P(d) \sim d^{-\gamma} \) with the exponent \(\gamma = 2 + \frac{\ln(d+2)}{\ln(q+1)} - \frac{\ln 2}{\ln(q+1)} \).

It is not difficult to see that the power exponent \(\gamma \) lies in the interval \([\frac{\ln 2}{\ln(q+1)} + 1, \frac{\ln 2}{\ln(q+1)} + 2] \). Moreover, it is a monotonically increasing function of \(q \). When \(q \) increases from 2 to infinite, \(\gamma \) increases from \(\frac{\ln 2}{\ln(q+1)} + 1 \) to \(\frac{\ln 2}{\ln(q+1)} + 2 \). Note that for most real scale-free networks [1], their power exponent \(\gamma \) is in the range between 2 and 3.

3.2 Diameter

In a graph \(G \), where every edge having unit length, a shortest path between a pair of vertices \(u \) and \(v \) is a path connecting \(u \) and \(v \) with least edges. The distance \(d(u, v) \) between \(u \) and \(v \) is defined as the number of edges in such a shortest path. The diameter of graph \(G \), denoted by \(D(G) \), is the maximum of the distances among all pairs of vertices.

Proposition 2. The diameter \(D(G_q(g)) \) of graph \(G_q(g) \), is

\[D(G_q(g)) = g + 1 \] for \(q = 1 \). Below we only prove the case of \(q \geq 2 \).

Proof: For the case of \(q = 1 \), \(D(G_0(g)) = g + 1 \) was proved in [3]. We prove the case of \(q \geq 2 \).

For \(g = 0 \), \(G_0(0) \), \(q \geq 2 \), is the complete graph \(K_{q+2} \). We can arbitrarily choose four vertices as \(u_1, u_2, u_3, u_4 \) to meet the condition. For \(g \geq 1 \), suppose that the statement holds for \(G_q(g-1) \), see Fig. 2. In other words, there exist two pairs of adjacent vertices: \(v_1 \) and \(v_2 \) and \(v_3 \) and \(v_4 \) in \(G_q(g-1) \), with their distances in \(G_q(g-1) \) satisfying \(d(v_1, \ v_2) = d(v_3, \ v_4) = 2 \). For \(G_q(g-1) \), let \(u_1 \) and \(u_2 \) be two adjacent vertices generated by the edge connecting \(v_1 \) and \(v_3 \) at iteration \(g \), and let \(u_3 \) and \(u_4 \) be two adjacent vertices generated by the edge connecting \(v_2 \) and \(v_4 \) at iteration \(g \). Then, by assumption, the vertex pair \(u_1 \) and \(u_2 \) in graph \(G_q(g-1) \), their distance obeys \(d(u_1, u_2) = d(v_1, v_3) = 2 \). Similarly, we can prove that in \(G_q(g-1) \), the distances of related vertex pairs satisfy \(d(u_1, u_4) = d(u_3, u_2) = d(u_3, u_4) = 2 \).
From Eq. (6), the number of vertices \(N_q(g) \sim \frac{(q+1)(q+2)}{2}^{g+1}\). Thus, the diameter \(D(G_q(g))\) of \(G_q(g)\) scales logarithmically with \(N_q(g)\), which means that the graph family \(G_q(g)\) is small-world.

3.3 Clustering coefficient

Clustering coefficient \([3]\) is another crucial quantity characterizing network structure. In a graph \(G = (\mathcal{V}, \mathcal{E})\) with vertex set \(\mathcal{V}\) and edge set \(\mathcal{E}\), the clustering coefficient \(C_v(G)\) of a vertex \(v\) with degree \(d_v\) is defined \([3]\) as the ratio of the number \(e_v\) of edges between the neighbours of \(v\) to the possible maximum value \(d_v(d_v - 1)/2\), that is \(C_v(G) = \frac{2e_v}{d_v(d_v - 1)}\). The clustering coefficient \(C(G)\) of the whole network \(G\) is defined as the average of \(C_v(G)\) over all vertices: \(C(G) = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} C_v(G)\).

For graph \(G_q(g)\), the clustering coefficient for all vertices and their average value can be determined explicitly.

Proposition 3. In graph \(G_q(g)\), the clustering coefficient \(C_v(G_q(g))\) of any vertex with degree \(d_v(g)\) is

\[
C_v(G_q(g)) = \frac{q+1}{d_v(g)}.
\]

Proof: By Definition \([1]\) when a vertex \(v\) was created at iteration \(q\), its degree and clustering coefficient are \(q + 1\) and 1, respectively. In any two successive iterations \(t\) and \(t - 1\) (\(t \leq g\)), its degree increases by a factor of \(q\) as \(d_v(t) = (q+1)d_v(t-1)\). Moreover, once its degree increases by \(q\), then the number of edges between its neighbors increases by \(q(q+1)/2\). Then, in network \(G_q(g)\), the clustering coefficient \(C_v(G_q(g))\) of vertex \(v\) with degree \(d_v(g)\) is

\[
C_v(G_q(g)) = \frac{\frac{q(q+1)}{2} + \frac{d_v(g)-1}{2} \frac{q(q+1)}{2}}{d_v(g)\frac{d_v(g)-1}{2}} = \frac{q+1}{d_v(g)},
\]

as claimed by the Proposition.

Thus, in graph \(G_q(g)\), the clustering coefficient of any vertex is inversely proportional to its degree, a scaling observed in various real-world networks \([59]\).

Proposition 4. For all \(g \geq 0\), the clustering coefficient \(C(G_q(g))\) is

\[
C(G_q(g)) = \frac{\frac{(q+1)^2(q+2)}{2}^{g+1} + q^2 + 4q + 4}{\frac{q^2+4q+5}{(q+1)(q+3)}\frac{(q+1)^2(q+2)}{2}^{g+1} + \frac{q+2(q^2+4q+5)}{q+3}(q+1)^g}.
\]

Proof: By using Proposition \([3]\) the quantity \(C(G_q(g))\) can be calculated by

\[
C(G_q(g)) = \frac{1}{N_q(g)} \left(\sum_{g=0}^{q} L_v(g) \frac{g+1}{d_v(g)} \right)
= \frac{1}{N_q(g)} \left(\frac{(q+2)}{(q+1)^g} + \sum_{g=1}^{q} \frac{(q+1)(q+2)}{2} \left(\frac{g+1}{(q+1)^g} \right)^{g+1} \right)
= \frac{\left(\frac{(q+1)^2(q+2)}{2} \right)^{g+1} + q^2 + 4q + 4}{\frac{q^2+4q+5}{(q+1)(q+3)}\left(\frac{(q+1)^2(q+2)}{2} \right)^{g+1} + \frac{q+2(q^2+4q+5)}{q+3}(q+1)^g}.
\]

This finishes the proof.

From Proposition \([3]\) we can see that the clustering coefficient of graph \(G_q(g)\) is very high. For large \(g\), the clustering coefficient \(C(G_q(g))\) converges to a large constant as

\[
\lim_{g \to \infty} C(G_q(g)) = \frac{q^2 + 4q + 3}{q^2 + 4q + 5}.
\]

Thus, similarly to the degree exponent \(\gamma\), clustering coefficient \(C(G_q(g))\) is also dependent on \(q\), with large \(q\) corresponding to large \(C(G_q(g))\). When \(q \to \infty\), the clustering coefficient of the graph tends to 1.

3.4 Distribution of clique sizes

It is apparent that graph \(G_q(g)\) contains many cliques as subgraphs. Let \(N_k(G_q(g))\) denote the number of \(k\)-cliques in graph \(G_q(g)\). Since graph \(G_1(0)\) is a \(q + 2\) complete graph, the maximum clique size in it is \(q + 2\). Then in \(G_q(g)\) the number \(N_k(G_q(0))\) of \(k\)-cliques is the combinatorial number \(C_q^k = \frac{(q+2)!}{k!(q+2-k)!}\) for \(k = 2, 3, \ldots, q + 2\), and is 0 for \(k > q + 2\). For graph \(G_q(g)\) with \(g \geq 1\), the number of \(2\)-cliques equals the number of edges, while for cliques with size more than 2, we have the following proposition.

Proposition 5. For \(g \geq 0\), we have

\[
N_k(G_q(g)) = \frac{\left(\frac{(q+1)(q+2)}{2} \right)^{g+1} - 1}{\frac{(q+1)(q+2)}{2} - 1} \frac{(q+2)!}{k!(q+2-k)!},
\]

for \(k = 3, 4, \ldots, q + 2\). And \(N_k(G_q(g)) = 0\), for \(k > q + 2\).

Proof: The proposition is naturally satisfied in graph \(G_q(0)\). Thus, we only need to prove the proposition for \(g \geq 1\). By definition, when \(g \geq 1\), \(G_q(g)\) is obtained from \(G_q(g-1)\) by introducing a new \(q\)-complete graph for every edge. Then, all the \(k\)-cliques in \(G_q(g)\) can be partitioned into two parts: (i) the \(k\)-cliques in \(G_q(g-1)\), and (ii) the \(k\)-cliques that contain at least one newly introduced vertex.

For part (i), the number of \(k\)-cliques is \(N_k(G_q(g-1))\). For part (ii), since every newly introduced vertex is only connected to other vertices in the \(q + 2\) compete graph generated by an edge of \(G_q(g-1)\), any \(k\)-clique contain this new vertex must be a subgraph of this \(q + 2\) compete graph. The number of new \(q + 2\) compete graphs equals the number \(M_q(q-1)\) of edges in \(G_q(g-1)\), and in every new \(q + 2\) compete graph, the number of \(k\)-cliques is the combinatorial number \(C^k_{q+2}\) for \(k \leq q + 2\). Since in every new \(q + 2\) compete graph, there are only two old vertices, each of its \(k\)-clique subgraph with \(k \geq 3\) includes at least one new vertex. Thus, for part (ii) the number of \(k\)-cliques
Lemma 1. For $\lambda \neq -\frac{1}{q+1}$ and $\lambda \neq \frac{q+1}{q+1}$, λ is an eigenvalue of P_{g+1} if and only if $(q+1)\lambda - q$ is an eigenvalue of P_g, and the multiplicity of λ of P_{g+1}, denoted by $m_{g+1}(\lambda)$, is the same as the multiplicity of an eigenvalue $(q+1)\lambda - q$ of P_g, denoted by $m_g((q+1)\lambda - q)$, i.e. $m_{g+1}(\lambda) = m_g((q+1)\lambda - q)$.

Proof. Let V_{g+1} be the set of vertices in graph $G_q(g+1)$. It can be looked upon the union of two disjoint sets V_g and $V'_{g+1} = V_{g+1} \setminus V_q$, where V'_{g+1} includes all the newly introduced vertices by the edges in $G_q(g)$. For all vertices in V'_{g+1}, we label those in V_q from 1 to $N_q(g)$, while label the vertices V'_{g+1} from $N_q(g)+1$ to $N_q(g+1)$. In the following statement, we represent all the vertices by their labels.

Let $y = (y_1, y_2, \ldots, y_{N_q(g+1)})$ denote the eigenvector of eigenvalue λ of matrix P_{g+1}, where the component y_i corresponds to vertext i in $G_q(g+1)$. Then,

$$\lambda y = P_{g+1} y.$$ \tag{19}

By construction, for any two adjacent old vertices u and v in V_q, there are q vertices newly introduced by the edge connecting u and v, which are denoted by h_1, h_2, \ldots, h_q. These q vertices, together with u and v form a complete graph of $q+2$ vertices. Moreover, each vertex h_i in set $\{h_1, h_2, \ldots, h_q\}$ is exactly connected to u, v, and other vertices in $\{h_1, h_2, \ldots, h_q\}$ excluding h_i itself. Then the row in Eq. (19) corresponding to vertex $h_i, i = 1, 2, \ldots, q$, can be written as

$$\lambda y_{h_i} = \sum_{j=1}^{N_q(g+1)} P_{g+1}(h_i, j)y_j = \frac{1}{d_{h_i}(g+1)} \sum_{j=h_i}^{N_q(g+1)} y_j = \frac{1}{q+1} \left(y_u + y_v + y_{h_1} + \ldots + y_{h_{i-1}} + y_{h_{i+1}} + \ldots + y_{h_q} \right),$$ \tag{20}

Adding $\frac{1}{q+1}y_{h_i}$ to both sides of the above equation yields

$$\left(\lambda + \frac{1}{q+1} \right) y_{h_i} = \frac{1}{q+1} \left(y_u + y_v + \sum_{j=1}^{q} y_j \right),$$ \tag{21}

for all $i = 1, 2, \ldots, q$. Therefore, for $\lambda \neq -\frac{1}{q+1}$,

$$y_{h_1} = y_{h_2} = \ldots = y_{h_q}.$$ \tag{22}

Combining Eqs. (21) and (22), we can derive that, for $\lambda \neq -\frac{1}{q+1}$

$$y_{h_i} = \frac{1}{(q+1)\lambda - q - 1} (y_u + y_v)$$ \tag{23}

holds for $i = 1, 2, \ldots, q$. According to Eq. (19), we can also express the rows corresponding to components y_u and y_v. For the row associated with component y_u, we have

$$\lambda y_u = \sum_{j=1}^{N_q(g+1)} P_{g+1}(u, j)y_j = \frac{1}{d_u(g+1)} \left(\sum_{j=N_q(g)}^{N_q(g)+1} y_j + \sum_{j=N_q(g)+1}^{q} y_j \right).$$ \tag{24}
By Definition 1 for an old vertex \(u \), all its adjacent vertices in \(V_{g+1} \) are introduced by the edges between \(u \) and its neighboring vertices in \(V_g \). Thus, combining Eqs. (23) and (24), we derive

\[
\lambda y_u = \frac{1}{d_u(g+1)} \left(\sum_{j \sim u} y_j + \sum_{j \sim u} \frac{q(y_u + y_j)}{(q+1)\lambda - q - 1} \right).
\]

Considering \(d_u(g+1) = (q+1)d_u(g) \), Eq. (25) can be recast as

\[
\frac{1}{d_u(g)} \sum_{j \sim u} \left(1 + \frac{q}{(q+1)\lambda - q - 1} \right) y_j.
\]

When \(\lambda \neq -\frac{1}{q+1} \) and \(\lambda \neq \frac{q-1}{q+1} \), the above equation is simplified as

\[
[(q+1)\lambda - q] y_u = \frac{1}{d_u(g)} \sum_{j \sim u} y_j,
\]

which implies if \(y = (y_1, y_2, \ldots, y_{N_q}(g), \ldots, y_{N_q(g+1)})^T \) is an eigenvector of matrix \(P_{g+1} \) associated with eigenvalue \(\lambda \), then \(\tilde{y} = (y_1, y_2, \ldots, y_{N_q(g)})^T \) is an eigenvector of matrix \(P_g \) associated with eigenvalue \((q+1)\lambda - q \).

On the other hand, suppose that \(\tilde{y} = (y_1, y_2, \ldots, y_{N_q(g)}(g))^T \) is an eigenvector of matrix \(P_g \) associated with eigenvalue \((q+1)\lambda - q \), then \(y = (y_1, y_2, \ldots, y_{N_q(g+1)})^T \) is an eigenvector of matrix \(P_{g+1} \) associated with eigenvalue \(\lambda \) if and only if its components \(y_i, i = N_q(g) + 1, N_q(g) + 2, \ldots, N_q(g+1) \), can be expressed by Eq. (23). Thus, the number of linearly independent eigenvectors of \(\lambda \) is the same as that of \((q+1)\lambda - q \). Since both \(P_g \) and \(P_{g+1} \) are normal matrices, which are diagonalizable, the multiplicity of \(\lambda \) (or \((q+1)\lambda - q \)) is equal to the number of its linearly independent eigenvectors. Hence, \(m_{g+1}(\lambda) = m_g((q+1)\lambda - q) \).

Lemma 1 indicates that except \(\lambda \neq -\frac{1}{q+1} \) and \(\frac{q-1}{q+1} \), all eigenvalues \(\lambda \) of matrix \(P_{g+1} \) can be derived from those of matrix \(P_g \). However, it is easy to check that both \(-\frac{1}{q+1}\) and \(\frac{q-1}{q+1}\) are eigenvalues of matrix \(P_{g+1} \). Moreover, their multiplicities can be determined explicitly. The following lemma gives the multiplicity of \(-\frac{1}{q+1}\), while the multiplicity of \(\frac{q-1}{q+1}\) will be provided later.

Lemma 2. The multiplicity of \(-\frac{1}{q+1}\) as an eigenvalue of matrix \(P_{g+1} \) is \(q-1 \), \(N_q(g) + N_q(g+1) \), i.e. \(m_{g+1}(\frac{1}{q+1}) = (q-1)M_q(g) + N_q(g) \).

Proof: Let \(y = (y_1, y_2, \ldots, y_{N_q(g+1)})^T \) be an eigenvector associated with eigenvalue \(-\frac{1}{q+1}\) of matrix \(P_{g+1} \). Then,

\[
-\frac{1}{q+1} y = P_{g+1} y.
\]

For an edge \(e_x, x = 1, 2, \ldots, M_q(g) \), in graph \(G_q(g) \) with end vertices \(u \) and \(v \), at iteration \(q+1 \), it will generate \(q \) vertices \(h_1, h_2, \ldots, h_q \) in \(V_{g+1} \). Then, the row in Eq. (25) corresponding to vertex \(h_i, i = 1, 2, \ldots, q \), can be expressed by

\[
-\frac{1}{q+1} y_{h_i} = \sum_{j=1}^{N_q(g+1)} P_{g+1}(h_i, j) y_j = \frac{1}{q+1}(y_u + y_v + y_{h_1} + \ldots + y_{h_{i-1}} + y_{h_{i+1}} + \ldots + y_{h_q}),
\]

which is equivalent to

\[
\sum_{i=1}^{q} y_{h_i} = -(y_u + y_v).
\]

On the other hand, the row in Eq. (25) corresponding to vertex \(u \) can be expressed as

\[
-\frac{1}{q+1} y_u = \frac{1}{d_u(g+1)} \left(\sum_{j \sim u} y_j + \sum_{j > N_q(g)} y_j \right).
\]

Note that Eq. (30) holds for every pair of adjacent vertices in graph \(G_q(g) \) and the new vertices it generates at iteration \(q+1 \). Plugging Eq. (30) into the right-hand side of Eq. (31) leads to

\[
\frac{1}{d_u(g+1)} \left(\sum_{j \sim u} y_j + \sum_{j > N_q(g)} y_j \right) = \frac{1}{d_u(g+1)} \left(\sum_{j \sim u} y_j + \sum_{j > N_q(g)} -(y_u + y_j) \right)\]

\[
= \frac{1}{d_u(g+1)} \left(\sum_{j \sim u} y_j \right) - \frac{1}{(q+1)} y_u.
\]

Therefore, the constraint on \(y \) in Eq. (28) is equivalent to the constraint provided by \(M_q(g) \) equations in Eq. (30). The matrix form of these \(M_q(g) \) equations can be written as

\[
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1 \\
\end{bmatrix} - R_q^T \begin{bmatrix}
1 & \cdots & 1 \\
\end{bmatrix} y = 0,
\]

where \(R_q^T \) is the transpose of \(R_q \), and the unmarked entries are vanishing. It is straightforward that the right partition of the matrix in Eq. (33) is an \(M_q(g) \times M_q(g) \) matrix, with each row corresponding to an edge \(e_x, x = 1, 2, \ldots, M_q(g) \), in graph \(G_q(g) \). Moreover, in each row associated with \(e_x, 1 \) repeats \(q \) times, corresponding to the \(q \) vertices newly created by edge \(e_x \).
Since the row vectors of the matrix in Eq. \((33)\) are linearly independent, the dimension of the solution space of Eq. \((33)\) is \(N_q(g+1) - M_q(g) = (q-1)M_q(g) + N_q(g)\). Therefore, the multiplicity of eigenvalue \(-\frac{1}{q+1}\) for matrix \(P_{g+1}\) is \((q-1)M_q(g) + N_q(g)\).

Theorem 1. Let \(\Lambda_{g+1} \geq 0\), be the set of the \(N_q(g)\) eigenvalues \(\lambda_1(g), \lambda_2(g), \ldots, \lambda_{N_q(g)}(g)\) for matrix \(P_{g+1}\), satisfying \(1 = \lambda_1(g) \geq \lambda_2(g) \geq \ldots \geq \lambda_{N_q(g)}(g) \geq -1\). Then the \(N_q(g+1)\) eigenvalues for \(P_{g+1}\) forming the set \(\Lambda_{g+1}\) can be listed in a descending order as

\[
\Lambda_{g+1} = \left\{ \frac{\lambda_1(g) + q}{q+1}, \frac{\lambda_2(g) + q}{q+1}, \ldots, \frac{\lambda_{N_q(g)}(g) + q}{q+1}, \frac{q-1}{q+1}, \frac{q-1}{q+1}, \ldots, \frac{q-1}{q+1}, \frac{1}{(q-1)M_q(g)+N_q(g)} \right\}.
\]

Proof: We prove this theorem by induction on \(g\). First, for \(g = 0\), it is easy to verify that the statement holds. For graph \(G_q(g), g \geq 1\), assume that the relation between \(\Lambda_{g-1}\) and \(\Lambda_{g}\) is valid. We now prove that the result is true for graph \(G_q(g+1)\).

For each eigenvalue \(\lambda_i(g) \in \Lambda_{g}, i = 1, 2, \ldots, N_q(g)\), we have \(\lambda_i(g) > -1\) by the assumption. Therefore, for \(i = 1, 2, \ldots, N_q(g)\),

\[
\frac{\lambda_i(g) + q}{q+1} > \frac{q-1}{q+1},
\]

which implies \(\frac{\lambda_i(g) + q}{q+1} \neq \frac{q-1}{q+1}\) and \(\frac{\lambda_i(g) + q}{q+1} \neq -\frac{1}{q+1}\). By Lemma 1, \(\frac{\lambda_i(g) + q}{q+1}\) is an eigenvalue of \(P_{g+1}\) with the same multiplicity of \(\lambda_i(g)\) as an eigenvalue of \(P_g\), namely,

\[
m_{g+1} \left(\frac{\lambda_i(g) + q}{q+1} \right) = m_g \left(\lambda_i(g) \right).
\]

Moreover, by Lemma 1 for each eigenvalue \(\lambda\) of \(P_{g+1}\) satisfying \(\lambda \neq -\frac{1}{q+1}\) and \(\lambda \neq -\frac{q-1}{q+1}\), \((q+1)\lambda - q\) must be an eigenvalue of \(P_g\), which means \(\lambda\) can be expressed by as \(\lambda = \frac{\lambda_i(g) + q}{q+1}\) with \(i \in \{1, 2, \ldots, N_q(g)\}\). Therefore, the sum of multiplicity of all eigenvalues of \(P_{g+1}\) excluding \(-\frac{1}{q+1}\) and \(-\frac{q-1}{q+1}\) is \(N_q(g)\), that is,

\[
m_{g+1} \left(\lambda \notin \left\{ -\frac{1}{q+1}, -\frac{q-1}{q+1} \right\} \right) = N_q(g).
\]

We proceed to compute the multiplicity \(m_{g+1} \left(\frac{q-1}{q+1} \right)\) of eigenvalue \(\frac{q-1}{q+1}\) for matrix \(P_{g+1}\), which obeys

\[
m_{g+1} \left(-\frac{1}{q+1} \right) + m_{g+1} \left(\frac{q-1}{q+1} \right) + m_{g+1} \left(\lambda \notin \left\{ -\frac{1}{q+1}, -\frac{q-1}{q+1} \right\} \right) = N_q(g+1).
\]

Using Eq. \((37)\) and Lemma 2 one obtains

\[
m_{g+1} \left(\frac{q-1}{q+1} \right) = M_q(g) - N_q(g).
\]

Combining Eqs. \((35)\), \((36)\), \((38)\), and Lemma 2 yields \((39)\).}

Theorem 2. Let \(\Sigma_{g}, g \geq 0\), be the set of the \(N_q(g)\) eigenvalues \(\sigma_1(g), \sigma_2(g), \ldots, \sigma_{N_q(g)}(g)\) for matrix \(L_{g+1}\), satisfying \(0 = \sigma_1(g) \leq \sigma_2(g) \leq \ldots \leq \sigma_{N_q(g)}(g) \leq 2\). Then the \(N_q(g+1)\) eigenvalues for \(L_{g+1}\) forming the set \(\Sigma_{g+1}\) can be listed in an increasing order as

\[
\Sigma_{g+1} = \left\{ \frac{\sigma_1(g), \sigma_2(g), \ldots, \sigma_{N_q(g)}(g)}{q+1}, \frac{\sigma_1(g) + q}{q+1}, \frac{\sigma_2(g) + q}{q+1}, \ldots, \frac{\sigma_{N_q(g)}(g) + q}{q+1} \right\}.
\]

Proof: The proof is easily obtained by combining the relation \(\lambda_i(g) = 1 - \sigma_i(g)\) and Theorem 1. The set \(\Sigma_0\) of eigenvalues for matrix \(L_0\) is \(\Sigma_0 = \left\{ 0, \frac{q+2}{q+1}, \frac{q+2}{q+1}, \ldots, \frac{q+2}{q+1} \right\}\). For \(g \geq 1\), by recursively applying Theorem 2 we can obtain the exact expressions for all eigenvalues for matrix \(L_g\) for any \(g\) and \(q\), given by

\[
\Sigma_g = \left\{ 0, \frac{q+2}{(q+1)^g}, \frac{q+2}{(q+1)^g}, \ldots, \frac{q+2}{(q+1)^g} \right\}.
\]

5 **Applications of the Spectra**

In this section, we apply the above-obtained eigenvalues and their multiplicities of related matrices to evaluate some relevant quantities for graph \(G_q(g)\), including mixing time, mean hitting time also called Kemeny constant, and the number of spanning trees.
5.1 Mixing time

As is well-known, the probability transition matrix $P(G)$ of a graph G characterizes the process of random walks on the graph. As a classical Markov chain, random walks describe various phenomena or other dynamical processes in graphs. Many interesting quantities about random walks can be extracted from the eigenvalues of the probability transition matrix. In this paper, we only consider mixing time and mean hitting time.

For an ergodic random walk on an un-bipartite graph G with N vertices, it has a unique stationary distribution $\pi = (\pi_1, \pi_2, \ldots, \pi_N)^T$ with $\sum_{i=1}^{N} \pi_i = 1$, where π_i represents the probability that the walker is at vertex i when the random walk converges to equilibrium state. The mixing time is defined as the expected time that the walker needs to approach the stationary distribution. Let π_2 be the stationary distribution π, and we use them to evaluate the mixing time for random walks on graph G. The reciprocal of H is the spectral dimension d of graph G. In this subsection, we use the eigenvalues of the normalized Laplacian matrix for graph G, given by

$$H = \sum_{i=2}^{N} \frac{1}{\sigma_i}. \quad (43)$$

Mean hitting time can be applied to measure the efficiency of user navigation through the World Wide Web and the efficiency of robot surveillance in network environments. We refer to the reader to [70] for many other applications of mean hitting time.

Theorem 3. Let $H_q(g)$ be the mean hitting time for random walk in $G_q(g)$. Then, for all $g \geq 0$,

$$H_q(g) = \left(\frac{(q+1)^2}{q-2} - \frac{3(q+1)}{2} \right) (q+1)^g + \frac{(q+1)(3q+7)}{2(q+3)} \left(\frac{(q+1)(q+2)}{2} \right)^g + \frac{q+1}{q+3}. \quad (44)$$

Proof: By Theorem 2 and Eq. (43), we have

$$H_q(g+1) = \frac{q+1}{2} (M_q(g) - N_q(g)) + \sum_{i=2}^{N_q(g)} \frac{q+1}{\sigma_i}$$

where $\theta(q) = 2/\log(q+1)/(q+2)$ is the spectral dimension of graph $G_q(g)$ that is a function of q. Note that for $q = 1$, the spectral dimension $\theta(2) = 2 \ln 3 / \ln 2$ reduces to the result obtained in [62].

Note that it is believed that real-world networks are often fast mixing with their mixing time at most $O(\log N)$, where N is the number of vertices. However, it was experimentally reported that the mixing time of some real-world social networks is much higher than anticipated [63]. Our obtained sublinear scaling of mixing time on graph G supports this recent study, and sheds lights on understanding the scalings of mixing time.

5.2 Mean hitting time

Our second application for our obtained eigenvalues is the mean hitting time. For a random walk on graph G, the hitting time H_{ij}, also called first-passage time [63, 65, 66], from vertex i to vertex j, is defined as the expected time taken by a walker starting from vertex i to reach vertex j for the first time. The mean hitting time H, also known as the Kemeny constant, is defined as the expected time for a random walker going from a vertex i to another vertex j that is chosen randomly from all vertices in G according to the stationary distribution π_i:

$$H = \sum_{j=2}^{n} \pi_j H_{ij}. \quad (42)$$

Interestingly, the quantity H is independent of the starting vertex i, and can be expressed in terms of the $N-1$ non-zero eigenvalues $\sigma_i, i = 2, 3, \ldots, N$, of the normalized Laplacian matrix $L(G)$ for graph G, given by [67, 68],

$$H = \sum_{i=2}^{N} \frac{1}{\sigma_i}. \quad (43)$$

Theorem 3 shows that for $g \to \infty$, the dependence of mean hitting time $H_q(g)$ on the number $N_q(g)$ of vertices in graph $G_q(g)$ is $H_q(g) \sim N_q(g)$, which implies that the $H_q(g)$ behaves linearly with $N_q(g)$. We refer to the reader to [70] for many other applications of mean hitting time.

5.3 The number of spanning trees

A spanning tree of an undirected graph $G = (V, E)$ with N vertices is a subgraph of G, which is a tree including all the N vertices. Let $\tau(G)$ denote the number of spanning trees in graph G. It has been shown [72, 73] that $\tau(G)$ can be expressed in terms of the $N-1$ non-zero eigenvalues
for normalized Laplacian matrix of G and the degrees of all vertices in G:

$$
\tau(G) = \frac{\prod_{i \in V} d_i \prod_{i=2}^n \sigma_i(G)}{\sum_{i \in V} d_i}.
$$

(47)

The number of spanning trees is an important graph invariant. In the sequel, we will use the above-obtained eigenvalues to determine this invariant for graph $G_q(g)$.

Theorem 4. Let $\tau_q(g) = \tau(G_q(g))$ be the number of spanning trees in graph $G_q(g)$. Then, for all $g \geq 0$,

$$
\tau_q(g) = \frac{2^{(q+1)} \left(\frac{q}{q+1} \right) \left(\frac{q}{q+1} \right)^{q+1} - \left(\frac{q}{q+1} \right) \left(\frac{q}{q+1} \right)^{q+1}}{\left(\frac{q}{q+1} \right)^2}
\times (g+2) 2^{(q^2+q-1)} \left(\frac{q}{q+1} \right)^{q+1} \left(\frac{q}{q+1} \right)^{q+1}.
$$

(48)

Proof: First, by Theorem 3, we derive the relation for the product of all the non-zero eigenvalues for normalized Laplacian matrix for graph $G_q(g+1)$ and $G_q(g)$:

$$
\prod_{i \in V} d_i(g+1) = \prod_{i \in V} d_i(g+1) \prod_{i \in V} d_i(g+1)
$$

(49)

or write the corresponding equations in Eqs. (50) and (51), we obtain the following recursive relation for $\tau_q(g+1)$ and $\tau_q(g)$:

$$
\tau_q(g+1) = 2^{M_q(g)} N_q(g+1) (q+2) (q-1) M_q(g) + M_q(g) N_q(g+1) \tau_q(g).
$$

(50)

Finally, the sum of degrees of all vertices in $G_q(g)$ is equal to $2 M_q(g)$. Then, Combining Eqs. (46), (47), (49), and (50), we obtain the following recursive relation for $\tau_q(g+1)$ and $\tau_q(g)$:

$$
\tau_q(g+1) = 2^{M_q(g)} N_q(g+1) (q+2)^2 (q-1) M_q(g) + N_q(g+1) \tau_q(g).
$$

(51)

Considering the expressions for $M_q(g)$ and $N_q(g)$ in Eqs. (43) and (46), we obtain

$$
\tau_q(g+1) = \frac{2^{q+1} \left(\frac{q}{q+1} \right) \left(\frac{q}{q+1} \right)^{q+1} - \left(\frac{q}{q+1} \right) \left(\frac{q}{q+1} \right)^{q+1}}{\left(\frac{q}{q+1} \right)^2}
\times (q+2) 2^{(q^2+q-1)} \left(\frac{q}{q+1} \right)^{q+1} \left(\frac{q}{q+1} \right)^{q+1} \tau_q(g).
$$

(52)

With the initial condition $\tau_q(0) = \tau(K_{q+2}) = (q+2)^q$, Eq. (52) is solved to yield $\tau_q(g)$.

6 Conclusion

For many graph products of two graphs, one can analyze the structural and spectral properties of the resulting graph, expressing them in terms of the corresponding two graphs. Because of this strong advantage, many authors have used graph products to generate realistic networks with cycles at different scales. In this paper, by iteratively using the edge corona product, we proposed a minimal model for complex networks called simplicial networks, which can capture group interactions in real networks, characterized by a parameter q. We then provided an extensive analysis for relevant topological properties of the model, most of which are dependent on q. We show that the resulting networks display some remarkable characteristics of real networks, such as non-trivial higher-order interaction, power-law distribution of vertex degree, small diameter, and high clustering coefficient.

Furthermore, we found exact expressions for all the eigenvalues and their multiplicities of the transition probability matrix and normalized Laplacian matrix of our proposed networks. Using these obtained eigenvalues, we further evaluated mixing time, as well as mean hitting time for random walks on the networks. The former scales sublinearly with the vertex number, while the latter behaves linearly with the vertex number. The sublinear scaling of mixing time is contrary to previous knowledge that mixing time scales at most logarithmically with the vertex number. We also using the obtained eigenvalues to determine the number of spanning tree in the networks. Thus, in addition to the advantage of networks generated by other graph products, the proposed networks have another obvious advantage that both the eigenvalues and their multiplicities of relevant matrix can be analytically and exactly determined, since for previous networks created by graph products, the eigenvalues are only obtained recursively at most. The explicit expression for each eigenvalue facilitates to study those dynamical processes determined by one or several particular eigenvalues, such as mixing time considered here.

It should be mentioned that many real networks are weighted with variable edge length. For example, in scientific collaboration networks, the collaboration strength between collaborators can be weighted by the number of papers they coauthored. It is thus necessary to model these realistic networks by weighted simplicial complexes. In future, as the case of corona product, one can also define extended edge corona product of graphs and use it to build weighted scale-free networks with rich properties matching those of real-world networks.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Nos. 61872093 and 61803248), the National Key R & D Program of China (No. 2018YFB1305104), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJLab.

References

[1] M. E. Newman, “The structure and function of complex networks,” SIAM Rev., vol. 45, no. 2, pp. 167–256, 2003.
[2] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[3] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[4] C. Tsourakakis, “The k-clique densest subgraph problem,” in Proceedings of the 24th International Conference on World Wide Web. Florence, Italy: ACM, 18-22 May 2013, pp. 1122–1132.

[5] H. D. Rozenfeld, J. E. Kirk, E. M. Bollt, and D. Ben-Avraham, “Statistics of cycles: how loopy is your network?” J. Phys. A, vol. 38, no. 21, p. 4589, 2005.

[6] K. Klemm and P. F. Stadler, “Statistics of cycles in large networks,” Phys. Rev. E, vol. 73, no. 2, p. 025101, 2006.

[7] C. Giusti, E. Pastalkova, C. Curto, and V. Itskov, “Clique topology reveals intrinsic geometric structure in neural correlations,” Proc. Natl. Acad. Sci. U.S.A., vol. 112, no. 38, pp. 13 853–13 858, 2015.

[8] M. W. Reimann, M. Nolte, M. Scolamiero, K. Turner, R. Perin, G. Chindemi, P. Dłotko, R. Levi, K. Hess, and H. Markram, “Clique of neurons bound into cavities provide a missing link between structure and function,” Front. Comput. Neurosci., vol. 11, p. 48, 2017.

[9] A. Patania, G. Petri, and F. Vaccarino, “The shape of collaborations,” EPJ Data Sci., vol. 6, no. 1, p. 18, 2017.

[10] Z. Zhang and B. Wu, “Piattal orientations and perfect matchings of scale-free networks,” Theoret. Comput. Sci., vol. 570, pp. 55–69, 2015.

[11] Y. Jin, H. Li, and Z. Zhang, “Maximum matchings and minimum dominating sets in Apollonian networks and extended Tower of Hanoi graphs,” Theoret. Comput. Sci., vol. 703, pp. 37–54, 2017.

[12] F. Chung and L. Lu, “The average distances in random graphs with given expected degrees,” Proc. Natl. Acad. Sci. U.S.A., vol. 99, no. 25, pp. 15 879–15 882, 2002.

[13] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, “Epidemic thresholds in real networks,” ACM Trans. Inform. Syst. Secur., vol. 10, no. 4, p. 13, 2008.

[14] Y. Yi, Z. Zhang, and S. Patterson, “Scale-free loopy structure is resistant to noise in consensus dynamics in complex networks,” IEEE Trans. Cybern., vol. 50, no. 1, pp. 190–200, 2020.

[15] M. Mitzenmacher, J. Pachocki, R. Peng, and M. Scolamiero, “The generalizational hierarchical product of graphs,” Discrete Math., vol. 309, no. 12, pp. 3871–3881, 2009.

[16] L. Barrière, C. Faldo, M. A. Fiol, and M. Mitjana, “The generalized hierarchical product of graphs,” Discrete Math., vol. 309, no. 12, pp. 3871–3881, 2009.

[17] L. Barrière, P. F. Stadler, D. A. Bader and K. Madduri, “Gtgraph: A synthetic graph generating clique densest subgraph problem,” in Proceedings of the 24th International Conference on Machine Learning. New York, NY, USA: ACM, 20-24 June 2007, pp. 497–504.

[18] M. Mahdian and Y. Xu, “Stochastic Kronecker graphs,” in Proceedings of the 5th International Conference on Algorithms and Models for the Web-Graph. San Diego, CA: Springer-Verlag, Berlin, 11-12 December 2007, pp. 453–466.

[19] D. Chakrabarti, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker graphs: An approach to modeling random networks,” J. Mach. Learn. Res., vol. 11, pp. 985–1042, 2010.

[20] M. Mahdian and Y. Xu, “Stochastic Kronecker graphs,” Random Struct. Algorithms, vol. 38, no. 4, pp. 453–466, 2011.

[21] E. Parsonage, H. X. Nguyen, R. Bowden, S. Knight, N. Falkner, and M. Roughan, “Generalized graph products for network design and analysis,” in 2013 19th IEEE International Conference on Network Protocols. IEEE, 2011, pp. 79–88.

[22] A. R. Benson, R. Abebe, M. T. Schaumb, A. Jadbabaie, and J. Kleinberg, “Clique-based clustering and higher-order link prediction,” Proc. Natl. Acad. Sci. U.S.A., vol. 115, no. 48, pp. E11221–E11230, 2018.

[23] V. Salnikov, D. Cassese, and R. Lambiotte, “Clique-based community detection,” Eur. J. Phys., vol. 40, no. 1, pp. 1–10, 2018.

[24] M. W. Reimann, M. Nolte, M. Scolamiero, K. Turner, R. Perin, G. Chindemi, P. Dłotko, R. Levi, K. Hess, and H. Markram, “Clique of neurons bound into cavities provide a missing link between structure and function,” Front. Comput. Neurosci., vol. 11, p. 48, 2017.

[25] S. Wuchty, Z. N. Oltvai, and A.-L. Barabási, “Evolutionary conservation of motif constituents in the yeast protein interaction network,” Nature Genetics, vol. 33, no. 2, pp. 44–48, 2003.

[26] G. Bianconi and R. M. Ziff, “Topological percolation on hyperbolic simplicial complexes,” Phys. Rev. E, vol. 98, no. 5, p. 052308, 2018.

[27] P. S. Skardal and A. Arenas, “Arenas,” PLoS Comput. Biol., vol. 5, no. 5, p. 052308, 2018.

[28] P. Millán, J. J. Torres, and G. Bianconi, “Synchronization in network geometries with finite spectral dimension,” Phys. Rev. E, vol. 99, no. 2, p. 022307, 2019.

[29] I. Lacopini, G. Petri, A. Barrat, and V. Latora, “Clique-based clustering and higher-order link prediction,” Phys. Rev. E, vol. 101, no. 2, p. 022305, 2020.

[30] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times. American Mathematical Society, Providence, RI, 2008.

[31] S. Klamt, U.-U. Haus, and F. Theis, “Hypergraphs and cellular networks,” PLoS Comput. Biol., vol. 5, no. 5, p. 052308, 2010.

[32] G. Ghoshal, V. Zlatić, G. Caldarelli, and M. E. Newman, “Random hypergraphs and their applications,” Phys. Rev. E, vol. 79, no. 6, p. 066118, 2009.

[33] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

[34] K. Devriendt and P. Van Mieghem, “The simplex geometry of graphs,” J. Complex Networks, vol. 7, no. 4, pp. 469–490, 2019.

[35] Y. Ollivier, “Ricci curvature of markov chains on metric spaces,” J. Funct. Anal., vol. 256, no. 3, pp. 810–864, 2009.

[36] H. Hou, Yaoping, Shi, and Wai-Chat, “The spectrum of the edge corona of two graphs,” Electron. J. Linear Algebra, vol. 20, no. 1, pp. 782–786, 2010.

[37] T. W. Haynes and L. M. Lawson, “Applications of E-graphs in network design,” in 2013 19th IEEE International Conference on Network Protocols. IEEE, 2011, pp. 79–88.

[38] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

[39] K. Devriendt and P. Van Mieghem, “The simplex geometry of graphs,” J. Complex Networks, vol. 7, no. 4, pp. 469–490, 2019.

[40] P. S. Skardal and A. Arenas, “Arenas,” PLoS Comput. Biol., vol. 5, no. 5, p. 052308, 2010.

[41] G. Ghoshal, V. Zlatić, G. Caldarelli, and M. E. Newman, “Random hypergraphs and their applications,” Phys. Rev. E, vol. 79, no. 6, p. 066118, 2009.

[42] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.
[56] R. Frucht and F. Harary, “On the corona of two graphs,” \textit{Aequati} ones Math., vol. 4, no. 3, pp. 322–325, 1970.

[57] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “Pseudofrac- tional scale-free web,” \textit{Phys. Rev. E}, vol. 65, no. 6, p. 066122, 2002.

[58] Z. Zhang, L. Rong, and S. Zhou, “A general geometric growth model for pseudofractal scale-free web,” \textit{Physica A}, vol. 377, no. 1, pp. 329–339, 2007.

[59] E. Ravasz and A.-L. Barabási, “Hierarchical organization in complex networks,” \textit{Phys. Rev. E}, vol. 67, no. 2, p. 026112, 2003.

[60] J. G. Kemeny and J. L. Snell, \textit{Finite Markov Chains}. Springer, New York, 1976.

[61] A. Sinclair, “Improved bounds for mixing rates of Markov chains and multicommodity flow,” \textit{Combin. Probab. Comput.}, vol. 1, no. 04, pp. 351–370, 1992.

[62] G. Bianconi and S. N. Dorogovtsev, “The spectral dimension of simplicial complexes: A renormalization group theory,” \textit{J. Stat. Mech.}, vol. 2020, no. 1, p. 014005, 2020.

[63] A. Mobaisen, A. Yun, and Y. Kim, “Measuring the mixing time of social graphs,” in \textit{Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement}. ACM, 2010, pp. 383–389.

[64] S. Redner, \textit{A guide to first-passage processes}. Cambridge University Press, 2001.

[65] J. D. Noh and H. Rieger, “Random walks on complex networks,” \textit{Phys. Rev. Lett.}, vol. 92, no. 11, p. 118701, 2004.

[66] S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, and J. Klafter, “First-passage times in complex scale-invariant media,” \textit{Nature}, vol. 450, no. 7166, pp. 77–80, 2007.

[67] L. Lovász, L. Lov, and O. P. Erdos, “Random walks on graphs: A survey,” \textit{Combinatorics}, vol. 8, no. 4, pp. 1–46, 1996.

[68] D. Aldous and J. Fill, “Reversible Markov chains and random walks on graphs,” \textit{J. Theor. Probab.}, vol. 2, pp. 91–100, 1993.

[69] M. Levene and G. Loizou, “Kemeny’s constant and the random surfer,” \textit{Am. Math. Mon.}, vol. 109, no. 8, pp. 741–745, 2002.

[70] R. Patel, P. Agharkar, and F. Bullo, “Robotic surveillance and Markov chains with minimal weighted Kemeny constant,” \textit{IEEE Trans. Autom. Control}, vol. 60, no. 12, pp. 3156–3167, 2015.

[71] J. J. Hunter, “The role of Kemeny’s constant in properties of Markov chains,” \textit{Commun. Stat. — Theor. Methods}, vol. 43, no. 7, pp. 1309–1321, 2014.

[72] F. R. K. CHUNG, “Spectral graph theory, regional conference series in math.” \textit{CBMS, Amer. Math. Soc}, vol. 92, 1997. [Online]. Available: https://ci.nii.ac.jp/naid/10010355102/en/]

[73] H. Chen and F. Zhang, “Resistance distance and the normalized Laplacian spectrum,” \textit{Discrete. Appl. Math.}, vol. 155, no. 5, pp. 654–661, 2007.

[74] Z. He, S. Mao, S. Kompella, and A. Swami, “Minimum time length scheduling under blockage and interference in multi-hop mmwave networks,” in \textit{Proceedings of 2015 IEEE Global Communications Conference}. IEEE, 2015, pp. 1–7.

[75] O. T. Courtney and G. Bianconi, “Weighted growing simplicial complexes,” \textit{Phys. Rev. E}, vol. 95, no. 6, p. 062301, 2017.

[76] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks,” \textit{Proc. Natl. Acad. Sci. U.S.A.}, vol. 101, no. 11, pp. 3747–3752, 2004.