Mass Value Assignment of Total and Subclass Immunoglobulin G in a Human Standard Anthrax Reference Serum

V. A. Semenova,* E. Steward-Clark, K. L. Stamey, T. H. Taylor, Jr., D. S. Schmidt, S. K. Martin, N. Marano, and C. P. Quinn

Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia

Received 19 April 2004/Returned for modification 28 May 2004/Accepted 22 June 2004

An anti-Anthrax Vaccine Adsorbed (anti-AVA) standard human reference serum pool, AVR414, has been prepared, and the total and protective antigen (PA)-specific immunoglobulin G (IgG) were quantified. AVR414 was prepared by plasmapheresis of healthy adults who had received a minimum of four subcutaneous injections of AVA. Mass values (in milligrams per milliliter) for total IgG and IgG subclasses 1 to 4 were determined by radial immunodiffusion. Anti-PA-specific IgG assignment (in micrograms per milliliter) was done by consensus of two complementary approaches: homologous enzyme-linked immunosorbent assay (ELISA) with affinity-purified anti-PA IgG as a calibrator and summation of mean PA-specific IgG subclass concentrations determined by IgG subclass-specific ELISA using the United States National Reference Preparation for Human Serum Proteins as a standard. The total IgG concentration assigned to AVR414 reference serum was 8.33 mg/ml. IgG subclass concentrations were the following: for IgG1, 4.48 mg/ml; for IgG2, 3.35 mg/ml; for IgG3, 0.37 mg/ml; and for IgG4, 0.30 mg/ml. The assigned mass value for total anti-PA-specific IgG was 141.2 µg/ml. Anti-PA-specific IgG subclass concentrations were the following: for IgG1, 79.6 µg/ml; for IgG2, 35.3 µg/ml; for IgG3, 3.2 µg/ml; and for IgG4, 25.3 µg/ml. Human reference serum pool AVR414 will have direct application in the standardization of anthrax serological assays, in reagent qualification, and as a standard for quantification of PA-specific IgG in humans who have been vaccinated with or otherwise exposed to Bacillus anthracis PA.

The immune response to anthrax toxin protective antigen (PA) is central to protection against anthrax (19, 20). Immunoglobulin G (IgG) is the most abundant immunoglobulin in human serum and provides the dominant immune response to protein antigens after vaccination with multiple injections (16, 16a). Measurement of anti-PA IgG antibody is therefore an appropriate marker of human immune responses to Bacillus anthracis infection and anthrax vaccines. A lack of assay standardization and qualified reagents has been a major obstacle to the comparative analysis of human serological responses to clinical anthrax and anthrax vaccines. Compounding this problem are variations in antigen selection, preparation, and purity; variations in assay methodology and end point determination between laboratories; the diversity of antibodies in polyclonal serum; and the absence of a suitable standard reference serum (32). In 2001, the Centers for Disease Control and Prevention (CDC; Atlanta, Ga.) initiated the Anthrax Vaccine Research Program to determine the feasibility of reducing the number of priming series doses of the licensed Anthrax Vaccine Adsorbed (AVA or BioThrax; BioPort Corp., Lansing, Mich.) (17, 26, 27) from six to three and changing the route of administration from subcutaneous (s.c.) to intramuscular (28) without reducing the vaccine’s immunogenicity. The Anthrax Vaccine Research Program required the development of precise, accurate, specific, and sensitive serological assays for the quantification of anti-PA IgG responses in humans (32). Fundamental to the consistency of such assays is the availability of a standard reference serum and qualified control reagents together with standardized assay technologies and methods for end point determination (29). In the present study, we report the preparation and assignment of mass values for total and PA-specific IgG and IgG subclasses for an anti-AVA human reference serum, AVR414. The performance characteristics of AVR414 as a standard reference reagent for quantification of anti-PA IgG responses in human serum and the assignment of PA-specific IgG mass values to positive quality control (QC) sera and standards (AVR801) for use in anthrax serological assays are also demonstrated.

MATERIALS AND METHODS

Preparation of anti-AVA human standard reference serum. The anti-AVA human reference serum AVR414 (CDC standard anthrax reference sera AVR414 and AVR801 may be obtained free of charge under a suitable materials transfer agreement by application to C. P. Quinn, CDC) was prepared by pooling equal volumes of serum from each of three healthy adult CDC volunteers who had received a minimum of four s.c. injections of AVA with the licensed regimen (at 0, 2, and 4 weeks and 6, 12, and 18 months with two yearly boosters). Serum selection was based on anti-PA IgG titers in the range of 3,200 to 6,400 as determined by an anti-PA IgG enzyme-linked immunosorbent assay (ELISA) (32). Plasmapheresis of selected donors and subsequent serum conversion were done at the Emory Transfusion Medicine Program, Emory University School of Medicine (Atlanta, Ga.) and the Scientific Resource Program at the CDC, respectively, by TPE DUAL-NEEDLE operation using a Spectra apheresis system as described by the manufacturer (Cobe BCT, Inc., Blood Component Technology, Lakewood, Colo.). The plasma units were stored frozen at −70°C, thawed overnight at 4°C prior to use, and converted to serum by the injection of 4.0 ml of sterile glass microbeads (B. Braun Instruments, Burlingame, Calif.) suspended in 1.5 M CaCl2–2.0 M ε-amino-caproic acid (Sigma, St. Louis, Mo.). Clots were allowed to form overnight at 4°C and were then removed by centrif-
ugation at 2,200 × g for 15 min at 4°C. The serum from each unit was recovered by aspiration and stored separately in 500-ml sterile polycarbonate containers (Nalge Nunc International, Rochester, N.Y.). The level of residual anticoagu-

Calibration standard for serum immunoglobulins. The U.S. National Refer-

Affinity purification of human IgG. Total IgG was purified from the AVR414 serum pool with a HiTrap Protein G column (Amersham Biosciences Corp., Piscataway, N.J.). After equilibration, IgG was eluted with 0.1 M glycine-HCl (Sigma), pH 2.75, in 1.0-ml fraction volumes and immediately neutralized by the addition of 0.1 M volumes of 1.0 M Tris-HCl, pH 9.0 (Life Technologies, Gaithersburg, Md.). Eluted peak fractions were dialyzed against 0.01 M phosphate-buffered saline (PBS), pH 7.4 (Life Technologies). The concentration of purified IgG was determined by radial immunodiffusion (RID) and the Bio-Rad (Heracles, Calif.) protein assay using purified commercially obtained human IgG as a standard (ICN Biomedicals, Inc., Costa Mesa, Calif.).

Affinity purification of PA-specific IgG. The anti-PA-specific IgG from the protein G-purified AVR414 total IgG was isolated by affinity adsorption to PA immobilized on CNBr-activated Sepharose 4B according to the manufacturer’s instructions (Amersham Biosciences Corp.). Affinity-purified total IgG was loaded onto the column (2.5-ml bed volume) and eluted under neutral conditions using ActiSep elution medium according to the manufacturer’s instructions (Stegene Bioseparations Inc., Carlsbad, Calif.). Fractions (0.5 ml) were collected, dialyzed against several changes of 100 mM HEPES buffer (Life Technologies), pH 7.4, containing 100 mM sodium chloride (Sigma), and then concentrated using Slide-A-Lyzer concentrating solution (Pierce Chemical Com-

Quantitative anti-PA IgG ELISA. The quantitative ELISA for human anti-PA IgG has previously been described in detail (32). Briefly, Immulon 2 HB micro-

The U.S. National Refer-

For determination of a specific IgG subclass in PA ELISA, IgG subclass-spe-

performance characteristics of AVR414 in an anti-PA IgG ELISA. Performance characteristics established for AVR414 in human anti-PA IgG ELISA included dilution-corrected linearity of the assigned anti-PA IgG value, intermediate precision (repeatability over time) of a 7-point dilution series, and the goodness of fit of these data to a 4-PL model. Evaluation of parallelism between the AVR414 curve and the curve for the test serum samples was performed in accordance with the guidelines described previously (30). Briefly, if the within-assy coefficient of variation (CV) is ≤20%, the curves are considered parallel (30). Dilution-corrected linearity of the curve of AVR414 in an anti-PA IgG ELISA was evaluated by comparison of the expected concentrations of anti-PA IgG in AVR414 for seven twofold dilutions (1:100 to 1:6,400, calibration factor, 141.2 μg/ml) with computed concentrations for the same dilutions (SAS version 8.0; SAS Institute, Cary, N.C.). Dilutional linearity was determined from triplicate curves in 34 independent assays (204 observations). The reportable IgG concen-

Before incubation with 60 min at 37°C, plates were washed as described above. Bound human anti-PA IgG was detected by incubation for 60 min at 37°C with horse-

Animals. The U.S. National Reference Laboratory at the CDC was the source of the AVL serum. It was not determined (32). The anti-AVA human standard reference sera were used in the determination of total IgG and anti-PA IgG subclass concentrations. The IgG subclass concentrations were calculated as described above (31).

Downloaded from http://cvi.asm.org/ on July 10, 2018 by guest
RESULTS

Table IgG and IgG subclasses. The concentrations of total IgG in AVR414 determined by RID and by summation of IgG subclasses were 8.33 mg/ml and 8.50 mg/ml, respectively. These values are not statistically significantly different (P = 0.284) (Table 1). The values for individual IgG subclasses in AVR414 determined by RID were the following: for IgG1, 4.48 mg/ml (52.7% of total IgG); for IgG2, 3.35 mg/ml (39.4%); for IgG3, 0.37 mg/ml (4.4%); and for IgG4, 0.30 mg/ml (3.5%) (Table 1).

PA-specific IgG and IgG subclasses. The assignment of the anti-PA-specific IgG concentration in AVR414 was done by consensus of two complementary approaches: an anti-PA IgG ELISA using antigen affinity-purified anti-PA IgG as a calibrator and summation of the mean PA-specific IgG subclass concentrations determined by the IgG subclass-specific ELISA with USNRP as a standard. The anti-PA IgG concentration in AVR414 as determined by ELISA with purified anti-PA IgG was 139.0 μg/ml (Table 2). IgG subclass summation data were obtained from independent determinations in duplicate of 20, 8, 23, and 29 observations for IgG1, IgG2, IgG3, and IgG4, respectively (Table 3). The predominant anti-PA IgG subclass in AVR414 was IgG1, with a concentration of 79.6 μg/ml (55.51% of total IgG). The concentrations of IgG2 and IgG4 were 35.3 μg/ml (24.62% of total IgG) and 25.3 μg/ml (17.64%). The concentration of IgG3 in AVR414 was low (3.2 μg/ml; 2.2% of total IgG). These data indicate that the anti-PA IgG subclasses in AVR414 are primarily IgG1, IgG2, and IgG4 (Table 3). The sum of the individual IgG subclass concentrations (143.4 μg/ml) was compared with the concentration of total anti-PA IgG obtained by anti-PA IgG ELISA (139.0 μg/ml) by two-sample t test (23). There was no significant difference between the two mass values calculated (P = 0.42); a conservative minimum sample size of eight was used for calculating the sum of IgG subclasses. The overall anti-PA IgG concentration was computed as an equally weighted mean of the results from the two methods. The PA-specific IgG component of AVR414 was assigned to be 141.2 μg/ml and was 1.7% of the total IgG (Table 2).

ELISA performance characteristics of human reference serum AVR414. An evaluation of parallelism between the AVR414 curve and the curves of test serum samples showed that the within-assay CV was ≤20% and that the antibody-binding characteristics of standard reference serum AVR414 and the serum samples are similar enough to allow the determination of antibody concentrations in diluted serum samples (30). The inter assay precision level of the human anti-PA IgG ELISA was high. The CVs for three positive QC sera were less than 20%: 13.3% for QC1 (AVR216; 163 tests), 17.8% for QC2 (AVR284; 201 tests), and 16.4% for QC3 (AVR370; 215 tests). These values are within the accepted values of 20% for interassay precision (11) and are indicative of a high level of precision for this type of assay (24). The goodness of fit (mean R²) for the AVR414 standard curve calculated over 503 separate assays was 0.998. The intermediate precision of the positive control serum panel expressed as the mean CV was 12.7% (14 separate sera; 378 observations). These values for inter assay precision levels are also within the accepted values of 20% for enzyme immunoassays and indicate a high level of precision for the performance of the AVR414 standard in these assays (24). Diluting AVR414 over the range from 1:100 to 1:6,400 and evaluating the resultant plot of measured concentration versus expected concentration by regression analyses of interpolated results from the 4-PL model fit indicated a highly significant linear relationship (mean R² = 0.999; P < 0.001), with a slope of 1.0 and an intercept through the origin (Fig. 1). Analysis of serum pool AVR801 showed that the anti-PA IgG concentration (109.4 μg/ml) determined by anti-PA IgG ELISA using AVR414 as the standard was not significantly different (P = 0.467) from the anti-PA IgG concentration obtained by the summation of anti-PA IgG subclasses (111.3 μg/ml). The anti-PA IgG subclass concentrations with AVR801 obtained by anti-PA ELISAs using AVR414 as the standard were the following: for IgG1, 60.2 μg/ml; for IgG2, 25.8 μg/ml; for IgG3, 4.5 μg/ml; and for IgG4, 20.8 μg/ml (Table 3). The anti-PA IgG subclass distribution in AVR801 was similar to that in AVR414 (54.1% for IgG1, 23.2% for IgG2, 4.0% for IgG3, and 18.7% for IgG4) (Table 3).

DISCUSSION

A qualified and characterized standard reagent is a critical component in the development and standardization of serological assays and provides a benchmark for the comparative analysis of new assay technologies (1, 15, 21). In this study, we
report the quantification of total IgG and IgG subclasses and the assignment of mass values for total and subclass-specific anti-PA IgG in human standard anthrax reference serum AVR414. The concentration of total IgG assigned for AVR414 (8.33 μg/ml) was within the established range for human serum IgG in healthy adults (8 to 16 mg/ml) (2, 8, 9, 16). The concentrations of IgG1 (4.48 mg/ml) and IgG3 (0.37 mg/ml) in AVR414 were lower than the established range for normal healthy human adults (5.0 to 12.0 mg/ml and 0.5 to 1.0 mg/ml, respectively) (2, 8, 16, 22). The percentages of total IgG represented by IgG1 (52.7%) and IgG3 (4.4%) were also lower than the range in normal adult sera (60.3 to 71.5% and 5.0 to 8.4%, respectively) (8). The concentration of IgG2 (3.35 mg/ml) was within the established range for normal adult sera with a dynamic range of 2.0 to 6.0 mg/ml (2, 8, 22, 36), but the IgG2 percentage of total IgG (39.4%) was higher than the established range (19.4 to 31.0%) (8). The AVR414 standard reference serum pool contains anti-PA-specific IgG of all four subclasses, with concentrations of PA-specific IgG1, IgG2, and IgG4 being the highest (55.5, 24.6, and 17.6% of total anti-PA IgG) and the concentration of IgG3 being the lowest (2.2% of total anti-PA IgG). A possible explanation for the low concentration of anti-PA IgG3 in AVR414 is affinity maturation and isotype switching to IgG2 and IgG4 (4) due to the plasma donors in this study receiving a minimum of four vaccinations of the licensed AVA regimen.

The anti-PA IgG concentrations assigned by the two methods were not significantly different (P = 0.42). This level of probability from two different approaches for mass values assignment is an indication of the robustness and reliability of the assigned units. The utility of AVR414 has been clearly demonstrated in its application to anti-PA IgG mass value assignments in a panel of QC and positive vaccine control sera and the assignment of PA-specific values to an additional standard reference serum pool, AVR801.

It has been our objective to create a standardized platform technology and reagents that will enable the comparative analyses of human anti-PA IgG responses to clinical anthrax and anthrax vaccines. The characterization of the anti-PA-specific total IgG and IgG subclasses of the standard AVR414 described here provides a strong basis for this standardization. AVR414 has been successfully applied in quantitative serological assays to evaluate human humoral antibody immune responses to vaccination with AVA (N. Marano, J. Lingappa, P. Pittman, V. Semenova, S. Leitman, P. Plikaytis, C. Quinn, and B. Perkins, Abstr. 5th Int. Conf. Anthrax, abstr. O609, 2003), for analysis of the immune response to PA in individuals with bioterrorism-associated cutaneous and inhalation anthrax (5, 10, 13, 14, 32, 35, 37), and for evaluation of anti-PA IgG subclass distribution in anthrax vaccinees and confirmed cases of clinical anthrax (V. A. Semenova, P. M. Dull, D. S. Schmidt, T. H. Taylor, E. Steward-Clark, M. M. Ballard, and C. P. Quinn, Int. J. Infect. Dis. vol. 8, abstr. 35.010, p. S111, 2004).

ACKNOWLEDGMENTS

We acknowledge the contribution of CDC employees and NIH volunteers for their donation of plasma and serum samples, Emory Blood Bank for plasmapheresis of CDC volunteers, Wanda Philips for conversion of plasma to serum, Stephen H. Lepplia for provision of anthrax toxin protective antigen, and Susan Leitman (NIH) for providing the plasma for AVR801.

FIG. 1. Linear regression of the results of diluting AVR414 from 1:100 to 1:6,400 and evaluating measured concentration versus expected concentration of anti-PA IgG. Data points are the means of results from triplicate determinations.

TABLE 3. Comparison of anti-PA-specific IgG subclass distributions in the two anti-AVA standard reference sera, AVR414 and AVR801

IgG subclass	AVR414		AVR801							
	Mean (μg/ml)	SD (μg/ml)	CV (%)	n	% total IgG*	Mean (μg/ml)	SD (μg/ml)	CV (%)	n	% total IgG*
IgG1	79.6	9.46	11.7	20	55.5	60.2	5.19	8.62	9	54.1
IgG2	35.3	9.73	27.6	8	24.6	25.8	2.79	10.81	9	23.2
IgG3	3.2	0.70	21.9	23	2.2	4.5	0.53	11.78	9	4.0
IgG4	25.3	2.97	11.7	29	17.6	20.8	3.11	14.95	9	18.7

*The total anti-PA IgG concentrations obtained by sum of the mean of the anti-PA IgG subclass concentrations (143.4 μg/ml for AVR414 and 111.3 μg/ml for AVR801) were used for a more accurate calculation of the percentage of total IgG by subclass. This approach was based on consideration of equality of each set of data for comparison of means, with a P value of 0.785 for AVR414 and a P value of 0.467 for AVR801.
