Clinical features and outcomes of hospitalized COVID-19 patients in a low burden region

Eleni Mylona1, Margellou Evangelia2, Kranidioti Eleftheria3, Vlachakos Vasilios4, Sypsa Vana5, Sakka Vissaria6, Balis Evangelos7 and Kalomenidis Ioannis8

15th Department of Internal Medicine and Infectious Diseases, Evangelismos, Athens, Greece; 215th Department of Internal Medicine, Evaggelismos Hospital, Athens, Greece; 315th Department of Internal Medicine, Evangelismos Hospital, Athens, Greece; 415th Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece; 5Department of Hygiene, Epidemiology & Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 615th Department of Internal Medicine and Infectious Diseases, Red Cross Hospital, Athens, Greece; 7Department of Pulmonary Medicine, Evangelismos Hospital, Athens, Greece

ABSTRACT
Data on the clinical features and outcomes of COVID-19 patients from countries with low disease burden are rare. Greece, however, presented a low burden of COVID-19 disease during the first pandemic outbreak. This is a retrospective study of COVID-19 hospitalized patients in Greece. Clinical data were extracted from medical records using univariable and multivariable logistic regression analyses to assess the factors associated with Intensive Care Unit (ICU) admission and in-hospital death. Eighty-five patients were included in this study, 49 (57.7%) male with median (25th-75th) age 60 (49–72) years old. Sixty-one (72%) of them had at least one comorbidity with hypertension being the most common (45.6%). More than half (56%) had severe or critical disease, 20% required ICU care (14% received invasive ventilation) and 10.7% died. Solid tumor (p = 0.021) and NEWS score (p = 0.048), thrombocytopenia (p = 0.036) or involvement of all lung fields in chest x-ray (p = 0.002) on admission were independent risk factors for ICU admission. Immunosuppression (p = 0.032) and thrombocytopenia (p = 0.049) were independent predictors of death. Hospitalized COVID-19 patients in a European country with a low burden of the disease, in which hospital capacities had not been overwhelmed, had lower mortality rate compared to those reported for patients hospitalized in regions with a high burden of the disease.

Introduction
In December 2019, an outbreak of pneumonia, of an unknown cause, occurred in Wuhan (Hubei, China) [1]. A novel coronavirus was isolated from lower respiratory tract specimens and identified as the causative agent of the later designated Coronavirus Disease 2019 (COVID-19) spread rapidly worldwide, and ultimately, characterized as a pandemic by WHO in early March [2,3]. The clinical spectrum of COVID-19 is wide, ranging from few or no symptoms, to severe or critical illness that in 6–26% of the hospitalized patients requires Intensive Care Unit (ICU) admission [4] and results in death [4,5]. Interestingly, hospital mortality varies considerably between different countries ranging from 4% to 20% and may be up to 40% among patients requiring ICU admission [5]. This variability is not clearly explained and may reflect variations in disease severity between different cohorts or different availability of treatment resources in different institutions and different periods. Most of the available information comes from areas with a high pandemic burden and very little is known about patients from a low incidence region [6].

Greece is one of the countries with a low burden of COVID-19 disease during the first pandemic outbreak. The first COVID-19 case was reported on February 2 and a generalized lockdown was applied on March 3 when the community spread of the infection was still low. This held back the epidemic protecting the National Health Care System from excessive demand. Here, we describe the clinical characteristics, the clinical course, the risk factors, and the outcomes of patients with COVID-19 treated at a major Greek hospital during the spring pandemic outbreak.

Methods
Study design
This retrospective, observational study was performed at Evaggelismos Hospital (Athens, Greece), specifically, a referral center for patients with SARS-CoV2 infection. We analyzed patients who were admitted between March 11 and May 18, 2020. We included patients: with laboratory (real-time reverse-transcriptase polymerase-chain reaction assay on nasopharyngeal swab specimens) confirmed SARS-Cov-2 infection who were

CONTACT Eleni Mylona emylon@med.uoa.gr 5th Department of Internal Medicine and Infectious Diseases, Evangelismos Hospital, Athens, Greece

© 2021 Informa UK Limited, trading as Taylor & Francis Group
then immediately admitted in the COVID-19 ward. Patients admitted to the ICU were afterward transferred to the COVID-19 ward. The final date for the follow up was July 22. The Ethics Committee of Evaggelismos Hospital approved this study.

Clinical data

The medical records of the patients were reviewed to obtain data on age, sex, as well as exposure history, presenting symptoms, vital signs and laboratory values on admission, and treatment. Radiologic assessment included chest radiography for all patients on admission and also computed tomography (CT), to some of them, when required. Chest X-rays were scored with grades 0–4 according to how many of the four lung fields appeared abnormal, by two experienced pulmonologists, generating a Lung Field Score (LFS). We defined the clinical severity at the time of admission using the National Early Warning Score (NEWS) 2 [7]. The overall disease severity, i.e., the most severe state during the disease, was defined according to the Chinese management guideline for COVID-19 (version 7) [8]. Specifically, the outcomes under consideration were ICU admission and death.

Statistical analysis

Continuous variables are expressed as medians and in interquartile ranges. Categorical variables are summarized as counts and percentages. Univariable and multivariable logistic regression analyses were used to assess the impact of variables measured during admission on each of the two dichotomous outcomes (admission to ICU, death during hospitalization). Adjusted odds ratios were obtained with the corresponding 95% confidence intervals

Table 1. Patients’ clinical and laboratory features on admission (N = 85 patients admitted between March 11 and May 18, 2020).

Symptoms and Signs	Laboratory findings	
Respiratory rate (min)	18 (15, 24)	Lymphocytes (x10^9/L)
Respiratory rate >24/min	38 (44.7%)	Platelets (x10^9/L)
Heart rate (min)	90 (80, 100)	C-Reactive Protein (mg/dL)
Systolic Blood Pressure (mmHg)	120 (110, 125)	ESR (mm)
Fever	76 (89.4%)	Ferritin (ng/mL)
Temperature (°C)	37.5 (36.8, 38.2)	Fibrinogen (mg/dL)
Dyspnea	41 (48.2%)	d-dimers (μg/mL)
Cough	51 (60.0%)	LDH (IU/L)
Chest pain	13 (15.5%)	Glucose (mg/dL)
Sore throat/Nasal Congestion	4 (4.8%)	ALT (IU/L)
Diarrhoea/Vomiting	20 (23.5%)	AST (IU/L)
Anosmia/Ageusia	8 (9.4%)	ALP (IU/L)
Myalgia	10 (11.9%)	GGT (IU/L)
Fatigue	20 (23.8%)	Na⁺ (mEq/L)
Headache	7 (8.2%)	K⁺ (mEq/L)
NEWS score	3 (2.6%)	Ca²⁺ (mg/dL)
NEWS score >5	31 (37.4%)	CPK (μg/L)

Data are presented as median (25th–75th percentile) or number (%). Abbreviations: ESR, Erythrocyte Sedimentation Rate; LDH, Lactate Dehydrogenase; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline phosphatase; GGT, Gamma-Glutamyl Transpeptidase.

Results

Patients characteristics

Eighty-five patients, 49 (57.7%) male, with median (25th–75th) age 60 (49–72) year-old (y.o.), were included in the study (Table 1). The age distribution is as follows: 15 (17.7%) patients were 20–39 y.o., 31 (36.5%) were 40–64 y.o. and 39 (45.9%) were =65 y.o. Twenty-six patients (30.6%) were smokers or ex-smokers. In 50%, there was no history of contact yet in 16% there was a contact with a SARS-CoV2 (+) subject, 10% had recently traveled in places with increased community dissemination of the infection and 14.9% of the cases were health-care associated (including nursing homes). The median (25th–75th) duration of the symptoms until admission was 7 (5–10) days. The majority (72%) of the patients had comorbidities including hypertension (45.6%), diabetes (20%), solid tumors (17.7%), chronic obstructive pulmonary disease (COPD, 9.4%), coronary artery disease (9.4%), immunosuppression (treatment with corticosteroids or anti-TNFα agents or active hematologic malignancy, 8.5%) and chronic kidney disease (4.7%).

The chest X-ray appeared normal in 20 (23.5%) upon admission. Most of the patients with an abnormal chest X-ray had alveolar opacities, six (7%) had reticular and six (7%) as well as mixed alveolar-reticular opacities. The median (25th–75th) LFS was 2 (1–3.5). A Chest CT was conducted on 21 patients within 48 hours upon admission (supplementary Table 1). All CTs demonstrated bilateral disease. Lower lobe-predominance was observed in 20/21 patients. The lesions were predominantly peripheral in most patients. Even though a variety of parenchymal lesions were identified, all patients exhibited ground glass opacities.
Table 2. Patients’ features on admission that are statistically significantly associated with ICU admission and/or death.
ICU admission
Male gender
Age (year old)
Solid tumor
Immunosuppression
NEWS score >5
Respiratory rate (/min)
Respiratory rate >24/min
PO2/FiO2
Dyspnea
Chest pain
C-reactive protein (mg/dL)
Lymphocytes (µL)
Platelets (10^11/µL)
Ferritin (ng/mL)
LDH (IU/L)
Glucose (mg/dL)
ALT (IU/L)
AST (IU/L)
GGT (IU/L)
Procalcitonin (ng/mL)
Fibrinogen (mg/dL)
d-dimers (µg/mL)
Lung Field Score
1
2
3
4

Data are presented as median (25th–75th percentile) or number (%). Abbreviations: ESR, Erythrocyte Sedimentation Rate; LDH, Lactate Dehydrogenase; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline phosphatase; GGT, Gamma-Glutamyl Transpeptidase.
Treatment and disease progression

Hydroxychloroquine 400 mg/bid for the first day, 200 mg/bid for 7 days and azithromycin 500 mg/qd for 5–7 days were administered in 76 (90.5%) of the patients according to the national guidelines for the treatment of COVID-19. Remdesivir and Colchicine were given to three and seven patients, respectively, in the setting of clinical trials (13,14). One patient was given convalescent plasma in the setting of a clinical trial. Steroids were administered in five patients during an ICU stay. Thromboprophylaxis is adopted as standard therapy unless already in full anticoagulant therapy for previously diagnosed diseases.

On admission, 29/85 (34%) had hypoxemic respiratory failure. Within a median (25th–75th) 3 (1–4) days from admission 17 (20%) patients critically deteriorated and were transferred to the ICU, for monitoring and treatment with high-flow nasal oxygen (HFNO, 9 patients) or a non-rebreather mask (8 patients). Twelve of them (14% of the whole cohort) finally received mechanical ventilation. Three of them required renal replacement therapy. The median (25th–75th) duration of the ICU stay was 23 (11–99) days. Several clinical and laboratory features at the time of hospital admission, including male gender, immunosuppression, solid tumors and markers of severe respiratory disease and systemic inflammation (Table 2), were associated with subsequent ICU admission. Multiple logistic regression analysis revealed that solid tumors, thrombocytopenia, increased NEWS2 score, and involvement of all lung fields in chest X-rays present independent risk factors for ICU admission (Table 3).

Based on their entire disease course and according to previously proposed criteria (12), 18 (21%) of the patients turned out to have mild disease, 19 (22%) had moderate disease, 36 (42%) had severe disease and finally 12 (14%) had critical disease. Overall, the median (25th–75th) duration of hospital stay was 11 (6–17) days. Importantly, no dissemination of the virus resulting in infection of patients or members or personnel occurred in the unit.

Mortality

At the time of data analysis, 84/85 patients had definite outcomes: 9/84 (10.7%) patients died. Specifically, five in the ICU, two at our COVID-19 unit during the acute phase of the disease, and two, having survived the acute phase, were transferred to a second hospital due to their prolonged recovery from COVID-19. One patient was recovering in the wards after a long stay in the ICU and yet the rest were discharged. The four patients who died in the wards were elderly (81–91 y. o.) with multiple comorbidities and bacterial infections. Four out of the five patients who died at the ICU were immunocompromised because of active hematological malignancies and relevant therapies. The fifth patient had tetraplegia due to a neck trauma. A case of acute myocardial infarction treated with primary percutaneous coronary intervention was the only clinically evident thrombotic event. Age, solid tumors, immunosuppression and several clinical (increased NEWS score and respiratory rate, respiratory failure, dyspnea) and laboratory (increased serum CRP, troponin and d-dimer levels and decreased lymphocyte and platelet counts) features on admission, were linked with a fatal outcome (Table 2). However, multiple logistic regression analysis revealed that only immunosuppression and thrombocytopenia were independent risk factors for death (Table 3).

Discussion

The purpose of this paper is to report on the clinical/laboratory features, the clinical course, and the outcomes of 85 patients with COVID-19, admitted in a COVID-19 designated department in a low burden European region. Our main findings are: 1) more than half (56%) of the patients had severe/critical disease, 20% required ICU care (14% received mechanical ventilation), and 10.7% died; 2) NEWS2 score, solid tumors, thrombocytopenia and involvement of all lung fields in chest x-ray were independent risk factors of ICU admission; 3) Immunosuppression and thrombocytopenia were independent predictors of death.

This is the first report of Greek COVID-19 patients treated at the designed hospital wards. Greece experienced a relatively low community spread of SARS-CoV2 resulting in a moderate burden imposed on its health-care system. Until the 22nd of July (date of the

| Table 3. Risk factors in hospital admission are independently associated with increased risk of ICU admission and death (multiple logistic regression analysis). |
|---------------------------------|------------------------|-----------------|-----------------|
ICU admission	Adjusted Odds Ratio	95% CI	p-value
NEWS2 score (per 1 unit)	1.4	1–1.96	0.048
Solid tumor (Yes vs. No)	10.88	1.43–82.85	0.021
Platelets (per 10,000/μL)	0.84	0.71–0.99	0.036
Lung Field Score (4 versus <4)	20.88	3.07–141.1	0.002
Hospital mortality (adjusting for age)	Adjusted Odds Ratio	95% CI	p-value
--------------------------------	------------------------	-----------------	-----------------
Immunosuppression	896.8	2.58–311,432	0.032
Platelets (per 10,000/μL)	0.69	0.48–1	0.049

CI: Confidence Interval.
last follow-up assessment of our patients) only 137
patients were admitted to the ICUs and 200 died (mor-
tality 1.865/100,000) throughout the country (data
obtained by the national COVID-19 registry- https://
eody.gov.gr/epidimiologika-statistika-dedomena/
ektheses-covid-19). The clinical findings of our
patients on presentation are similar to those reported
elsewhere [5]. Significantly, most of them had severe/
critical disease and 20% required ICU support. The
hospital mortality was 10.7%, mainly restricted to
patients with hematological malignancy and elderly
patients with several comorbidities and bacterial infec-
tions. In general, COVID-19 hospital mortality is
thought to be 15–20% [5]. Most of the data, as
expected, come from severely hit countries. Liang
et al. compared the outcomes of patients hospitalized
in, or outside, Hubei (the pandemic epicenter) [6]
Hubei hospitals had higher mortality rates, which
most likely should be attributed to the substantially
higher rate of comorbidities and severe disease com-
pared to those from other regions in China. Therefore,
to compare the outcomes observed in our patients
with those reported elsewhere, the severity of the
disease and the underlying health problems of
patients should be considered. In China, Guan et al.
have reported probably the lowest percentages of ICU
admission (5%) and death (1.4%) in the literature [9].
However, only 15.7% of the patients had severe/critical
disease and 23.7% comorbidities – in our cohort, these
percentages were 56% and 72%, respectively. In con-
trast, Zhou et al., in patients with disease severity
similar to ours but with lower prevalence of comorbid-
ities (48%), reported 26% ICU admission and high
(28.3%) mortality [10]. New York City was another
region with a high incidence of COVID-19 and hetero-
genosity in reported outcomes. Richardson et al. report
14% ICU care and 21% mortality among hospitalized
patients, with a median age 63 (ours 60) y.o. and 94%
of them having at least one comorbidity. On admis-
sion, 20% of the patients had respiratory failure – 34%
in our cohort [11]. In other words, these patients,
despite being less severely ill and less often admitted
to the ICU, experienced double mortality compared to
our patients. The higher prevalence of comorbidities
may have contributed to that discrepancy. In the UK,
among 20,133 patients, 17% required ICU care and
26% died [12]. The comparison of the UK cohort with
ours is difficult due to the fact that the authors do not
report the disease severity while, at the time of their
observations’ release, one-third of the patients were
still hospitalized. Nevertheless, mortality was signifi-
cantly higher than ours, despite the similar percentage
of comorbidities (76%). In Germany, ICU admission
was required in 21% [13] and invasive ventilation in 14%-
17% of hospitalized patients [13,14] and mortality ran-
ged between 17%–22% [13,14]. Mortality in the non-
mechanically-ventilated population was 16% [14]. It is
not clear why, although the percentage of the German
patients requiring ICU was comparable to ours, signifi-
cantly however, mortality was double.

How should one explain the favorable outcome
observed in this study? Pharmacological treatment
most likely, had no, or only a weak effect. Hydroxychlooroquine plus azithromycin were given to
90% of the patients, according to the National guide-
lines at that time were not proved to be beneficial.
Furthermore, in randomized trials [15,16]. Remdesivir,
colchicine and steroids which may hinder COVID-19
[17–19] had been administered in very few patients.
The use of early prophylactic anticoagulation, as
a standard treatment, might have positively affected
survival since thrombosis is an important component
of COVID-19 pathogenetic spectrum [20]. Even though
clinically evident thrombotic events, except for a case
of acute myocardial infarction, did not occur in our
cohort, the impact of anticoagulation in COVID-19 out-
comes remains highly doubtful. While pharmacother-
apy for COVID-19 is still evolving, high quality
supportive care remains the cornerstone of COVID-19
treatment. Therefore, the fact that the COVID-19-
designated wards were not overwhelmed and there
was no lack of technical and human resources and
available ICU space made it possible for every patient
with severe respiratory failure to be timely transferred
from an isolated, unsupervised ward room to a proper
place for monitored and advanced respiratory support.
This certainly may have an impact on overall survival.
However, the fact that our patients had better out-
comes than those in the German cohort, where health
resources, including ICU space, were also adequate
may trigger further investigation.

In a potentially fatal disease like COVID-19, pre-
citive and/or prognostic factors in admission are
important for guiding decision-making. We found
that patients with solid tumors, thrombocytopenia,
increased NEWS score and involvement of all lung
fields in chest X-rays at the time of their hospital
admission, were more likely to need ICU care while
thrombocytopenia and immunosuppression sugges-
ted increased risk of death. In our cohort, the
NEWS score, known to predict in-hospital mortality
[7], was found to be a predictor of ICU admission but
not death. Though adverse outcomes have been
linked to patient’s features such as age, male gender,
and certain comorbidities [5], findings differ between
studies. For instance, in Metropolitan Detroit
patients, male sex, excessive obesity, and chronic
kidney disease (CDK) were risk factors for ICU admis-
sion [21]. In agreement with our results, age was not
an independent predictor of their patients’ ICU care
and needs. However, this cohort has some distinctive
characteristics: Most of its patients were female
(60.3%), African American (73%), with high preva-
lence of CKD (36.5%) and BMI>33.6. Zhu et al.
found older age, d-dimers>1 ng/ml and higher SOFA score on admission to be associated with higher odds of hospital death. However, a greater proportion of patients are critical on hospital admission (26%) compared to our series (14%) [10]. Scores generated to predict COVID-19 mortality differ substantially [22–24]. Iaccarino et al., based on the Italian population, identified age and Diabetes Mellitus, COPD and CKD as indicators of mortality [22]. Zhao et al. did not find age to be among the top predictors [23] while Dong et al. concluded that only hypertension and not age could predict an in-hospital death [24]. This divergence may suggest that the risk factors for ICU admission or death may critically depend on the characteristics of the population, in which these scores were developed, meaning that local validation of scores developed elsewhere may be required.

Some limitations of the present study deserve a comment. First, due to its retrospective design, data on parameters such as BMI and ethnicity were not available for all patients and were not investigated as putative predictors of ICU admission or death. Second, the small size of the cohort and the low number of events might result in low statistical power. However, the COVID-19 ward was based in the largest hospital in the country and the busiest, especially, during the spring pandemic, which means that our findings probably provide a representative view of hospital COVID-19 care in low burden European regions.

In conclusion, hospitalized COVID-19 patients in a European country with a low burden of the disease, although possessing similar clinical features and disease severity, had more favorable outcomes compared with patients from regions with a high burden of the disease. These findings might mostly be explained by the fact that the appropriate health resources were available even at the peak period of the pandemic, thus permitting the proper support of patients with severe and critical disease. This in turn highlights the vital role of prevention of the COVID-19 spread in ensuring favorable outcomes for those with more advanced disease.

Disclosure statement

The authors declare no conflict of interest.

References

[1] Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Medical Virol. 2020;92:401–402.
[2] Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733.
[3] World Health Organization. Coronavirus disease (COVID-19) outbreak. [Updated 2020 July 23; cited 2020 Step 12]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline
[4] Rodriguez-Horales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, et al. Latin American network of Coronavirus Disease 2019-Covid-19 (LANCOCVID-19). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. [in press].
[5] Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis and treatment of Coronavirus Disease 2019 (COVID-19): A review. JAMA. 2020;324:782–793.
[6] Liang W-H, Guan W-J, Li -C-C, et al. Clinical characteristics and outcomes of hospitalized patients with COVID-19 treated in Hubei (epicenter) and outside Hubei (non-epicenter): a nationwide analysis of China. Eur Resp J. 2020;55:2000562. [in press].
[7] Royal College of Physicians. National Early Warning Score (NEWS)2. Standardizing the assessment of acute-illness severity in the NHS. Updated 2017 Dec.
[8] National Health Commission and State Administration of Tradition Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (version 7). Chinese Med J. 2020;133:1087–1095.
[9] Guan W, Ni Z, Hu Y, et al. Clinical medical treatment expert group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720.
[10] Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.
[11] Richardson S, Hirsch JS, Narasimhan M, et al. Davidson KW and the Northwell COVID-19 research consortium. Presenting characteristics, comorbidities and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052–2059.
[12] Docherty AB, Morrison EM, Green CA, et al. Features of 20133 UK patients’ hospital with Covid-19 using the ISARIC WHO clinical characterization protocol: prospective observational cohort study. BMJ. 2020;309:m1985. [in press].
[13] Nachtigall I, Lenga P, Jóźwiak K, et al. Clinical course and factors associated with outcomes among 1904 patients hospitalized with COVID-19 in Germany: an observational study. Clin Microbiol Infect. 2020;26:1663–1669.
[14] Karagiannidis C, Mostert C, Hentschker C, et al. Characteristics, resource use and outcomes of 10021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Resp Med. 2020;8:853–862.
[15] Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of Hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383:517–525.
[16] Furtado RHM, Berwanger O, Fonseca HA, et al. COALITION COVID-19 Brazil II Investigators. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): a randomized clinical trial. Lancet 2020;S0140-6736(20)31862–6. [in press]. DOI:10.1016/S0140-6736(20)31862-6.
[17] Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomized double-blind,
placebo-controlled, multicenter trial. Lancet. 2020;16;393:1569–1578.

[18] Deftereos SG, Giannopoulos G, Vrachatis D, et al. Effect of colchicine versus standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with Coronavirus Disease 2019. The CRECCO-19 randomized Clinical Trial. JAMA Network Open. 2020;5:e2013136. [in press].

[19] Horby P, Lim WS, Embeson JR, et al. Dexamethasone in hospitalized patients with COVID-19 - preliminary report. N Engl J Med. 2020;NEJMoa2021436. [in press].

[20] Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–128.

[21] Suleyman G, Fadel RA, Malette KM, et al. Clinical characteristics and mortality associated with coronavirus disease 2019 in a series of patients in metropolitan Detroit. JAMA Network Open. 2020;3:e2012270. [in press].

[22] Iaccarino G, Grassi G, Borghi C, et al.; Volpe, on behalf of the SARS-RAS Investigators. Age and multimorbidity predict death among COVID-19 patients: results of the SARS-RAS study of the Italian Society of Hypertension. Hypertension. 2020;76:366–372.

[23] Zhao Z, Chen A, Hou W, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS One. 2020;15:e0236618. [in press].

[24] Dong Y-M, Sun J, Li Y-X, et al. Development and validation of a nomogram for assessing survival in patients with COVID-19 pneumonia. Clin Inf Dis. 2021;72:652-660. [in press].