Familial hypercholesterolemia mutations in Petrozavodsk: no similarity to St. Petersburg mutation spectrum

Tatiana Yu Komarova1†, Victoria A Korneva2†, Tatiana Yu Kuznetsova2, Alexandra S Golovina1,3, Vadim B Vasilyev1 and Michail Yu Mandelshtam1,3*

Abstract

Background: Familial hypercholesterolemia (FH) is a human monogenic disease induced by a variety of mutations with striking genetic diversity. Despite this variability recurrent mutations occur in each population studied, which allows both elucidating prevalent mutations and developing DNA diagnostic tools for the disease. Recent research of FH in St. Petersburg, Moscow and Novosibirsk (major cities in Russia) demonstrates that each megapolis has its own FH mutation spectrum sharing only small part of mutations with other populations in Russia and Europe. In order to optimize molecular-genetic diagnostic protocols for FH in Russia we studied mutation spectrum in other regions including Petrozavodsk, a smaller town in relatively close proximity to St. Petersburg.

Methods: The principal method was automated detection of single-strand conformation polymorphism followed by direct PCR amplified DNA sequencing.

Results: Twelve different mutations of the low density lipoprotein (LDL) receptor gene were detected in the Petrozavodsk sample (80 patients). Out of these twelve mutations, seven have never been described before (c.192_201delinsGGACTTCA, c. 195_196insT, c. 618 T > G, c. 1340C > G, c. 1686_1693delinsT, c. 1936C > A, c. 2191delG). Other five mutations (c. 58G > A, c. 925_931del, c. 1194C > T, c. 1532 T > C, c. 1920C > T) were previously characterized elsewhere. All new mutations are considered to be a probable cause of the FH in their carriers. Direct evidence of the neutral character of c.58G > A or p. (Gly20Arg) is provided for the first time. Each pathogenic mutation was a trait of its own unique pedigree and so far has not been found in other patients.

Conclusions: Strikingly, out of twelve mutations characterized in the Petrozavodsk sample only one mutation, c. 925_931del, has previously been found in patients from St. Petersburg and Finland (most closely located studied populations), suggesting some common roots in origin of these populations in the past or limited gene exchange between them nowadays. No recurrent mutations were detected.

Background
Familial hypercholesterolemia is a dominant inborn error of metabolism due to LDL lowered catabolism via specific LDL receptor. The disease is quite common (1:500) and can be diagnosed by detection of mutations in LDL receptor gene [1]. More than a thousand different mutations have been characterized in Europe [2-6], their spectra demonstrating ethnic specificity as well as importance of the founder effect. In Russia only patients from three cities: St. Petersburg [7], Moscow [8] and Novosibirsk [9], were studied showing high heterogeneity of the disease within the country. In order to search for ethnic mutations and to improve the DNA diagnostics of FH we carried out the mutation spectra characterization in the city of Petrozavodsk, Republic of Karelia, Russia.

Methods
We collected DNA samples from 80 hypercholesterolemic patients from Petrozavodsk city demonstrating at
least two of the following parameters: (1) positive family history of hypercholesterolemia and coronary heart disease; (2) high serum cholesterol, usually higher than 8 mM; (3) the presence of stigmata as corneal arcus, tendon xanthomata or xanthelasma. All patients signed an informed consent for the study. Research was performed in compliance with the Helsinki Declaration and approved both by Petrozavodsk State University and Institute of Experimental Medicine ethics committees. DNA was isolated from peripheral blood mononuclear cells nuclei using standard method with phenol-chloroform extractions [7,10]. All exons and promoter of the LDL receptor gene were amplified in separate PCR with the help of Cy-5 labelled oligonucleotide primers as described [7] and subjected to SSCP analysis on ALFexpress DNA automated sequencer (Life Sciences). Gels were interpreted with the help of ALFWin DNA Fragment Analyzer program. Samples demonstrating shifted mobilities in SSCP analysis were gel-purified and sequenced by Sanger method on contract terms at Eurogen Co. (Moscow).

Results

Total of 18 sequence variations were found in the Petrozavodsk FH sample (Table 1). Lipid data of the patients with specific LDL receptor mutations are listed in Additional file 1. APOB R3500Q mutation common for FH in Europe was not found in FH patients from Karelia in the studied sample. For majority of variations in nucleotide sequence detected, rapid detection methods by RFLP analysis were developed (Table 1). Presence of the specific mutation was confirmed by restriction analysis using enzymes commercially available from Sibenzyme (Novosibirsk, Russia). The isoschizomers used and their prototypes are listed in Additional file 2. Effect of mutations on protein function was predicted using various programs in silico (Additional file 3) and by segregation analysis.

Discussion

Several novel mutant alleles that have been characterized in our study contain frameshifts, which results in occurrence of premature nonsense-codons (see Table 1). Besides detecting a well-characterized allele FH-North Karelia [12], a number of new mutations were identified in our study, including c.192_201delinsGAAGTTGG (c.192del10/ins8), c.195_196insT, c.1686_1693del/insT (c.1686del38/insT) and c.2191delG. The deleterious character of these mutations seems likely since they cause a translation frameshift and formation of a premature termination codon (Table 1). Usual mechanism of action of a mutation introducing a premature codon is the nonsense-mediated decay of the corresponding transcript.

Of special interest, however, are missense-mutations that hamper the LDL receptor function. Analysis of these mutations (Additional file 3) by PROVEAN, Polymorphism Phenotyping t@ster and SiftBlink gave somehow different predictions about pathogenicity of these missense mutations.

All of the methods agreed that p. (Gly20Arg) is a neutral variant. p. (Gly20Arg) mutation was first described among other disease-causing mutations by Amsellem et al. [13] in France and later reported from New Zealand [14], from the Netherlands [15], from Turkey [16] and from Austria [17]. Despite that Gly-20 of the signal sequence is conserved in a number of animals, such as chimp, monkey, rat, rabbit and hamster, the most recent publications e.g. [18] consider it as a polymorphism. However, no segregation data were available and no direct functional analysis of the mutated protein was ever performed. In our sample p. (Gly20Arg) mutation was found in a genetic compound with very well characterized disease-causing mutation FH-North Karelia. Proband’s father carried only FH-North Karelia mutation and had quite typical atherogenic lipid plasma profile. In a reference patient p. (Gly20Arg) mutation was also present, but the profile was typical for heterozygous rather than homozygous FH. The mother of the genetic compound was not available for DNA analysis, but according to personal communication, she had no FH features. Therefore, these data are probably the first direct evidence that p. (Gly20Arg) mutation inherited by the proband from a healthy mother is a neutral non-FH causing variant.

Exact predictions regarding a function of the other missense mutations were not available using in silico analysis (Additional file 3). However, we believe that substitutions p. (Ser447Cys), p. (Leu646Ile), p. (Ser206Arg) and p. (Leu511Ser) resulted in the development of the FH phenotype. It’s important to note that p. (Ser447Cys) mutation introduces a novel cysteine residue, and it could affect specific Cys-Cys bonding in the EGF precursor homology domain of the LDL receptor. Another mutation, p. (Ser206Arg), introduces a large positively charged side chain into strongly conserved ligand-binding repeat 5 (LR5) of the receptor. Mutation p. (Leu646Ile) doesn’t change the charge of the receptor molecule, but it provides for the substitution of the short aliphatic chain by the branched analogue that potentially could result in misfolding of the receptor protein. Allele p. (Leu511Ser) has previously been classified as a pathogenic variant FH Rome-4 in an Italian patient [19].

There were several variants in the LDL receptor exons predicted to be silent mutations due to preservation of the codon sense. However, a synonymous variant p. (Asn891=) (c. 1773C>T, also known as rs688) was shown not only to direct alternative splicing of mRNA
followed by enhanced nonsense-mediated decay, but also to reduce the uptake of fluorescently labeled LDLs by 25%. This polymorphism was associated with increased plasma total and LDL cholesterol in several populations and so far cannot be considered a neutral nucleotide substitution [20]. However, p. (Asn591=) variant was found at a similar frequency in the St.Petersburg FH cohort and in the control group and thus unlikely is a disease-causing variant (M.Y. Mandelshtam, unpublished data).

No data suggesting functional role of other silent mutations have been published. This is also true for p. (Ala391Thr) (c.1171G > A variant), cited previously as p. (Asn640=) [20]. However, p. (Asn591=) variant was found at a similar frequency in the St.Petersburg FH cohort and in the control group and thus unlikely is a disease-causing variant (M.Y. Mandelshtam, unpublished data). No data suggesting functional role of other silent mutations have been published. This is also true for p. (Ala391Thr) (c.1171G > A variant), cited previously as p. (Asn640=) [20]. However, p. (Asn591=) variant was found at a similar frequency in the St.Petersburg FH cohort and in the control group and thus unlikely is a disease-causing variant (M.Y. Mandelshtam, unpublished data).

Putative splice site mutations or neutral mutations

Mutation, systematic name	Nucleotide change	Exon/intron	Rapid test method	Occurrence in other populations [3,5]	Number of families (patients) with the mutation or rare allele frequency
p. (Asn591=) [=p.N570N]	c. 1773C > T	exon 12	Hinc II	USA, China, Morocco, etc.	16%

Neutral mutations/polymorphisms

Mutation, systematic name	Nucleotide change	Exon/intron	Rapid test method	Occurrence in other populations [3,5]	Number of families (patients) with the mutation or rare allele frequency
p. (Ala391Thr) [=p. A370T]	c. 1171G > A	exon 8	Stu I	South Africa, England, France etc.	6%

Silent mutations/polymorphisms

Mutation, systematic name	Nucleotide change	Exon/intron	Rapid test method	Occurrence in other populations [3,5]	Number of families (patients) with the mutation or rare allele frequency
p. (Ile398=) [=p. I377I]	c.1194C > T	exon 9	Bse3D I	Austria	4 (4)
p. (Arg471=) [=p. R450R]	c.1413 G > A	exon 10A	BslFI	South Africa, Japan, Russia, Morocco etc.	34%
p. (Pro539=) [=p. P518P]	c.1617C > T	exon 11	BspACI	Morocco, China, Russia, etc.	5%
p. (Asn640=) [=p. N619N]	p.1920C > T	exon 13	Sse 9 I	Hispania, Austria.	1 (2)
p. (Val653=) [=p. V632V]	c.1959C > T	exon 13	Asp S9 I	The Netherlands, USA, Russia, etc.	49%
p. (Arg744=) [=p. R723R]	c.2232G > A	exon 15	Msp I	Germany, China.	21%

Footnote: SSCP – single-strand conformation polymorphism analysis. Numeration of nucleotides and aminoacids follows modern nomenclature (numerals according to Yamamoto’s nomenclature [11] are given in brackets.

Footnote: Asterisk indicates that the codon with frameshift is followed by several non-wildtype codons up to newly appeared termination codon. For example, script p. (Trp562Cysfs*5) indicates that the frameshift occurs in codon 562 for tryptophan that is changed to codon for cysteine and is followed by 5 non-wildtype codons prior to termination codon.
both for Caucasian and Chinese populations [27].

Other silent variants of the LDL receptor gene were previously characterized as neutral and were not associated with the disease: this is true for c.1413G > A or p.(Arg471=) polymorphism in exon 10A known as BslFI RFLP [24, 25], c.1959C > T transition or p.(Val633=) variant cited in many sources as Avall RFLP or Sau 96 I RFLP, and c.2232G > A or p.(Arg744=) transition known as MspI RFLP [26]. All these variants have been reported both for Caucasian and Chinese populations [27].

Conclusions

Considering epidemiology of FH in the Petrozavodsk population we can conclude that the FH cohort is very heterogeneous, showing no predominant FH-causing mutations. It seems that known mutations from Finnish population are only a rare cause of the disease in the Karelian FH sample; the same is true about the St. Petersburg FH collection [7]. Because no founder effect was detected in the Karelian FH sample, the rationale for FH diagnostics dictates direct sequencing of the full coding region of the gene and exon/intron boundaries rather than testing for known mutations. Modern DNA sequencing technologies allow performing such analysis quickly and at a relatively low price.

Additional files

Additional file 1: Lipid data of patients with LDL receptor mutations from Petrozavodsk sample.

Additional file 2: Enzymes used in RFLP analysis for mutation validation.

Additional file 3: In silico predictions of effects of the nucleotide substitutions found in the LDL receptor gene in Petrozavodsk FH sample.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TYuKo, ASG, MYuM performed cloning, SSCP, sequencing and familial analysis, VAK and TYuKo selected patients for analysis, VBV and MYuM participated in the study design and coordination and also have written the paper. All authors read and approved the final manuscript.

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (grant no.10-04-00563 and 13-04-00902). The research was performed within the frames of the program “Strategic Development of Petrozavodsk State University”. Dr. Olga Potapova is thanked for improving the language of the paper. Special thanks are addressed to reviewers, Dr. Mathilde Varret and Dr. George Dedoussis for their critical comments that helped making the manuscript better.

Author details

1 Department of Molecular Genetics, Institute for Experimental Medicine, NW Branch of Russian Academy of Medical Sciences, Pavlov Street, 12, St. Petersburg 197376, Russia. 2 Department of Faculty Therapy, Infectious diseases and Epidemiology, Petrozavodsk State University, Lenin Street, 33, Petrozavodsk, Republic of Karelia 185910, Russia. *Department of Biochemistry, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.

Received: 25 March 2013 Accepted: 19 December 2013

Published: 27 December 2013

References

1. Goldstein JL, Hobbs HH, Brown MS: Familial hypercholesterolaemia. I. In The metabolic and Molecular Basis of Inherited Disease. Volume III. Edited by Schriner CR, Beaudet AL, Sly WS, Valle D. New York: McGraw-Hill; 2001:2853–2914.

2. Dedoussis GV, Schmidt H, Genschel J: LDL-receptor mutations in Europe. Hum Mutat 2004, 24:443–459.

3. The Low Density Lipoprotein Receptor (Ldr) Gene in Familial Hypercholesterolemia.[http://www.ucl.ac.uk/ldr/CURRENT/]

4. Wilson DJ, Cahman M, Haddad L, Heath K, Whitall RA, Williams RR, Humphries SE, Day IN: A World Wide Web site for low-density lipoprotein receptor gene mutations in familial hypercholesterolemia: sequence-based, tabular, and direct submission data handling. Am J Cardiol 1998, 81(12):1509–1511.

5. Universal Mutation Database.[http://www.umd.be/LDLR/]

6. Villegger L, Abifadel M, Allard D, Rabès JP, Thoat R, Kotze MJ, Béroud C, Junien C, Bouleau C, Varret M: The UMD-LDLR database: additions to the software and 490 new entries to the database. Hum Mutat 2002, 20(2):81–87.

7. Zakharova FM, Damgaard MD, Mandelshtam MV, Golubkov VI, Nissen PH, Nilsson GG, Stenderup A, Lipovetsky BM, Konstantinov VO, Denisenko AD, Faergerman D: Familial hypercholesterolemia in St. Petersburg: the known and novel mutations found in the low density lipoprotein receptor gene in Russia. BMC Med Genet 2005, 6(1):6.[http://www.biomedcentral.com/1471-2350/6/6]

8. Meshkov AN, Stambol’skii DV, Krapivner SV, Bochkov VN, Kukharchuk W, Malyshev PP: [Low density lipoprotein receptor gene mutations in patients with clinical diagnosis of familial hypercholesterolemia]. Kardiologiia 2004, 44:58–61 [Article in Russian].

9. Voevoda MJ, Kulikov IV, Shakeshneider EV, Makimov VN, Pilipenko NV, Tereischenko IP, Kobazov VF, Romaschenko AG, Nikitin VP: The spectrum of mutations in the low-density lipoprotein receptor gene in the Russian population. Rus J Genet 2008, 44(10):1191–1194. Translated from: Genetika. 44:1374–1378.

10. Kunkel LM, Smith KD, Boyer SH, Borgaardar DS, Wachtel SS, Miller DJ, Breg MR, Jones HW, Ray JM: Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Natl Acad Sci USA 1997, 74:1245–1249.

11. Yamamoto T, Davis CG, Brown MS, Schneider WJ, Goldstein JL, Russell DW: The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 1984, 39:27–38.

12. Kovisto UM, Turtola H, Aalto-Setälä K, Top B, Frants RR, Kovanen PT, Syvänen AC, Kontula K: The familial hypercholesterolaemia (FH)-North Karelia mutation of the low density lipoprotein receptor gene deletes seven nucleotides of exon 6 and is a common cause of FH in Finland. J Clin Investig 1992, 90(1):219–228.

13. Arnesløm S, Brifaut D, Carell A, Rabès JP, Girardet JP, Fedirench A, Moulin P, Krempf M, Reznik Y, Vialettes B, de Gennes JL, Brukert E, Benlian P: Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia. Hum Genet 2002, 111(6):501–510.

14. Laurie AD, Scott RS, George PM: Genetic screening of patients with familial hypercholesterolaemia (FH): A New Zealand perspective. Atheroscler Suppl 2004, 5(S13–15.

15. Foucher SW, Kastelein JJ, Defesche JC: Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum Mutat 2005, 26(6):550–556.

16. Sözen MM, Whitall R, Oner C, Tokatli A, Kaplanoglu HS, Dursun A, Coğkun T, Oner R, Humphries SE: The molecular basis of familial hypercholesterolemia in Turkish patients. Atherosclerosis 2005, 180(1):63–71.

17. Widiham K, Dirsmas A, Lindemaryn A, Kosten G: Diagnosis of families with familial hypercholesterolemia and/or apo B-100 defect by means of
DNA analysis of LDL-receptor gene mutations. J Inherit Metab Dis 2007, 30(2):239–247.

18. Pečin I, Whitall R, Futema M, Sertić J, Reiner Z, Leigh SEA, Humphries SE: Mutation detection in Croatian patients with familial hypercholesterolemia. Ann Hum Genet 2013, 77(1):22–30.

19. Familial hypercholesterolemia due to defects in the gene encoding the LDL receptor. In Mutations Occurring in Italy and their Analysis, bth edition. Edited by Cantaf)era A, Prestinaci F, Blotta I; 2006:90. Rapporto ISTISAN 06/23 [Article in Italian].

20. Gao F, Ihn HE, Medina MW, Krauss RM: A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function. Hum Mol Genet 2013 [Epub ahead of print].

21. Zakharova FM, Tatishcheva YA, Golubkov VI, Lipovetsky BM, Konstantinov VO, Denisenko AD, Faergeman O, Vasilyev VB, Mandelshtam MY: Familial hypercholesterolemia in St. Petersburg: diversity of mutations argues against a strong founder effect. Russ J Genet 2007, 43(9):1046–1052 [Translated from Genetika 43: 1255–1262].

22. Zakharova FM, Golubkov VI, Mandelshtam MY, Lipovetsky BM, Gaitskhoki VS: Identification of novel missense mutation G571E, novel silent mutation H229H, nonsense mutation C74X, and four single nucleotide polymorphisms in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia from St. Petersburg. Russ J Bioorg. Chem 2001, 27(5):349–351 [Translated from Bioorganicheskaya Khimiya, 27(5):393–396].

23. Vieira JR, Whitall RA, Cooper JA, Miller GI, Humphries SE: The A370T variant (Stul polymorphism) in the LDL receptor gene is not associated with plasma lipid levels or cardiovascular risk in UK men. Ann Hum Genet 2006, 70(Pt 6):697–704.

24. Warnich L, Kotze MJ, Langenhoven E, Retief AE: Detection of a frequent polymorphism in exon 10 of the low-density lipoprotein receptor gene. Hum Genet 1992, 89(3):362.

25. Tatishcheva YA, Mandelshtam MY, Golubkov VI, Lipovetsky BM, Gaitskhoki VS: Four new mutations and two polymorphic variants of the low-density lipoprotein receptor gene in familial hypercholesterolemia patients from St. Petersburg. Rus J Genet 2001, 37:1082–1086. Translated from Genetika 37:1290–1295.

26. Gesel J, Weisshaar B, Oette K, Mechtel M, Doerfler W: Double Msp I RFLP in the human LDL receptor gene. Nucl Acids Res 1987, 15:3943.

27. Mak YT, Pang CP, Tomlinson B, Zhang J, Chan YS, Mak TW, Masarei JR: Mutations in the low-density lipoprotein receptor gene in Chinese familial hypercholesterolemia patients. Arterioscler Thromb Vasc Biol 1998, 18(10):1600–1605.