Lifestyle Behaviors of African American Breast Cancer Survivors: A Sisters Network, Inc. Study

Raheem J. Paxton1*, Wendell C. Taylor2, Shine Chang3, Kerry S. Courneya4, Lovell A. Jones1

1 Dorothy I. Height Center for Health Equity & Evaluation Research at the University of Houston/The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America, 2 Division of Health Promotion and Behavioral Sciences at The University of Texas Health Science Center at Houston, Houston, Texas, United States of America, 3 Department of Epidemiology at The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America, 4 Faculty of Department Physical Education and Recreation, University of Alberta, Edmonton, Canada

Abstract

Introduction: African American breast cancer survivors experience poor cancer outcomes that may, in part, be remedied by healthy lifestyle choices. Few studies have evaluated the health and lifestyle behaviors of this population. The purpose of this study was to characterize the health and lifestyle habits of African American breast cancer survivors and evaluate the socio-demographic and medical correlates of these behaviors.

Methods: A total of 470 African American breast cancer survivors (mean age = 54 years) participated in an online survey. All participants completed measures assessing medical and demographic characteristics, physical activity, and sedentary behavior. Chi-square tests for association, nonparametric tests, and logistic regression models were used to assess associations. All statistical tests were two sided.

Results: Almost half (47%) of the women met the current guidelines for physical activity, almost half (47%) were obese, and many reported having high blood pressure (53%) or diabetes (21%). The prevalence of high blood pressure, diabetes, and high cholesterol increased by age (P < 0.001), and obese women had a higher prevalence of high blood pressure (63% vs. 44%) and diabetes (21% vs. 12%) than did non-obese women (all P < 0.05). Obese women participated in significantly fewer total minutes of physical activity per week (100 minutes/week) than did non-obese women (150 minutes/week; P = 0.05). The number of comorbid conditions was associated with increased odds for physical inactivity (odds ratio = 1.40) and obesity (odds ratio = 2.22).

Conclusion: Many African American breast cancer survivors had chronic conditions that may be exacerbated by poor lifestyle choices. Our results also provide evidence that healthy lifestyle interventions among obese African American breast cancer survivors are urgently needed.

Citation: Paxton RJ, Taylor WC, Chang S, Courneya KS, Jones LA (2013) Lifestyle Behaviors of African American Breast Cancer Survivors: A Sisters Network, Inc. Study. PLoS ONE 8(4): e61854. doi:10.1371/journal.pone.0061854

* E-mail: rjpaxton@mdanderson.org

Introduction

Scientific advancements in cancer treatment during the past 30 years have resulted in improvements in cancer-specific and overall survival rates [1]. For example, 5-year in situ breast cancer survival rates exceed 98% [2]. Despite the overall improvement in the health and well-being of cancer survivors, similar improvements have not been observed among African American (AA) women [3]. Five-year relative survival rates among AA breast cancer survivors are approximately 23% lower than those of non-Hispanic white women, and AA women have higher rates of comorbid conditions such as cardiovascular disease and diabetes [4,5,6,7]. Some researchers have speculated that many AA breast cancer survivors fail to engage in preventive health behaviors (e.g., cancer screening, weight management, physical activity [PA], healthy diet) [3], thereby increasing their vulnerability to comorbid conditions and cancer recurrence after primary cancer treatment [8].

PA is associated with several benefits throughout the cancer continuum, including improvements in cancer-related symptoms (e.g., fatigue, nausea, and pain), functional status, body mass index (BMI), and mood [9,10,11,12]. In addition, a recent meta-analysis reported that post-diagnosis PA is associated with a ~24% reduction in breast cancer recurrence and a ~50% reduction in breast cancer deaths [13]. Conversely, sedentary behavior (SB; e.g., sitting, lying, lounging) is an independent risk factor for many chronic diseases, including diabetes and cardiovascular disease, as well as premature mortality [14,15,16,17]. Recent studies of cancer survivors have shown that prolonged periods of SB are associated with larger waist circumferences [18]. Both abdominal obesity and general obesity have been shown to be causal factors in cancer initiation, development, and metastasis [19,20,21]. Importantly, AA breast cancer survivors are generally more sedentary,
fail to meet current guidelines for PA, and have higher rates of
general and abdominal obesity, thereby elevating their risk for
cancer recurrence and prolonged disability [22,23].

Few studies have reported on the health behaviors of AA breast
 cancer survivors, despite their increased vulnerability to poor
health outcomes. Studies that provide data on the health behaviors
of these women may help identify the factors that contribute to
poor outcomes in this population. Descriptive studies are a
necessary first step in filling the void and documenting the health
and well-being of AA breast cancer survivors. Therefore, the
purpose of this study was to (a) characterize the health behaviors of
a sample of AA breast cancer survivors, (b) determine whether
these behaviors differ by age group or obesity status, and (c)
identify the determinants of lifestyle behaviors in this population.

Methods and Materials

Study Population

AA breast cancer survivors aged 18–70 years were identified
through Sisters Network, Inc., the largest AA breast cancer
survivorship organization in the United States. These women were
recruited via solicitation emails about our survey and via
anonymous survey links on social media sites and Sisters Network
blog sites between April and July 2012. All surveys were completed
using Survey Monkey, a web-based platform that allows investi-
gators to create surveys, perform routine updates, and manage
survey responses. Participants were eliminated from the final
analyses if they were not breast cancer survivors, were not AA, or
reported being diagnosed at younger than 18 years. The project
was approved by the Institutional Review Board at The University
of Texas MD Anderson Cancer Center prior to data collection,
and a consent form was included on the initial survey web page.
The Institutional Review Board approved all procedures, includ-
ing the development of the web-based survey and the use of a
passive consent form, before the survey was administered.

Measures

Guidelines for PA were assessed via a self-administered
instrument designed for the Women’s Health Initiative [24]. PA
was calculated separately for light (metabolic equivalent task
[MET] level ≤3.0), moderate (MET level 3.0–5.9), and vigorous
(MET level ≥6.0) activities. A variable was also created for
moderate-to-vigorous PA (MET level ≥3.0), which was then used
to create a dichotomous variable (“meeting or not meeting PA
guidelines”) based on a cutoff of 10.0 MET hours per week, which
equalled approximately 150 minutes per week of moderate-paced
walking or the equivalent of other exercise durations and
intensities. The cutoff used in this study was consistent with the
current recommendations of the Centers for Disease Control for
PA [25] and has been validated in previous studies [26,27].

Television-viewing time. Time spent watching television or
videos was reported by participants separately for weekdays and
weekend days during the previous week. Total television time was
calculated as the sum of the time participants watched television
on weekdays and weekend days. This measure has been shown to
have reasonable reliability and validity for estimating television-
viewing time in adults [28]. Although no current guidelines for SB
exist, previous studies have indicated that television viewing in
excess of 2 hours per day is associated with significant health
effects [14,29,30,31]. In view of the elevated risk for chronic
diseases at 2 hours of reported television viewing, we created a
variable to classify women with an average weekly television
viewing time of 14 hours or less or greater than 14 hours.

Obesity status. The study participants’ self-reported height
and weight were used to compute their BMI, BMI was computed
in a standard manner: weight in kilograms divided by height
in meters squared (kg/m²). BMI risk categories were created to
distinguish non-obese women from obese women and healthy
women from normal/overweight (BMI<30 kg/m²) and obese
(BMI=30.0 kg/m²) women.

Socio-demographic and medical data. All socio-
demographic and medical data were self-reported by participants.
We collected data on the following variables: current age, race/
ethnicity, marital status, education, treatment, smoking status,
alcohol intake, time since diagnosis, disease stage at diagnosis, and
comorbid conditions. Age was categorized to for an age group
variable and we also summed the number of chronic conditions
(e.g., cardiovascular disease, blood sugar/diabetes, digestive
disorders, arthritis, and osteoporosis) that were self-reported.

Statistical Analysis

Means and frequencies were used to characterize the study
participants. Mean differences in continuous indicators were
assessed with paired t tests. In the event that the distributions of
the continuous variables were skewed or non-normal, we used a
Wilcoxon rank-sum test to assess differences. Differences in
categorical variables were assessed with a chi-square test of
associations. We then used bivariate logistic regression models
followed by multivariable forward stepwise logistic regression
models to assess the associations of the medical and socio-
demographic characteristics with the outcome variables (i.e., not
meeting requirements for PA, excessive television viewing, and
obesity status). In the stepwise regression model, the variables were
progressively entered into the model if their significance level was
at least 0.2 and were allowed to stay in the model if the significance
remained at least 0.1 after adjusting for other variables. We opted
to use this procedure to find the best possible model that fit the
data. Indicators in multivariable (i.e., stepwise logistic regression
analysis) models included age group, education, disease stage at
diagnosis, years since diagnosis, smoking status, use of hormone
replacement therapy, and income. In addition, PA and television
viewing were included in models for obesity status and vice versa.
The number of comorbid conditions was treated as a continuous
variable in our models. Logistic regression models were reported
in odds ratios (ORs) and 95% confidence intervals (CIs). These
data were analyzed using the SAS Enterprise System version 4.2.
All statistical tests were two-sided, and alpha <0.05 was
considered statistically significant.

Results

Descriptive Characteristics

Of 760 people who initially visited the website, 525 visitors
identified themselves as breast cancer survivors, and 307
completed the survey. The mean age of the survey participants
was 54 years; the mean time since diagnosis was 7 years; and most
participants were diagnosed with stage II disease. More than half
had a least one comorbid condition, and half had high blood
pressure. Fifty-three percent of the women report having high
blood pressure, 28% had high cholesterol, and 21% had diabetes.
Generally, younger women were married, were diagnosed at a
later disease stage, and were more likely to have undergone
chemotherapy (all P<0.05). In addition, a higher proportion of
women 60 years and older reported having high blood pressure,
cholesterol, and diabetes than did younger participants (all
P<0.001). The highest proportion of participants with high blood
pressure was observed in obese women, and the highest proportion
of nonsmokers was observed in non-obese women (all $P<0.05$). Likewise, the number of comorbid conditions increased proportionally with age, and obese women reported having more comorbid conditions than did non-obese women (all $P<0.01$). The descriptive characteristics are reported in Table 1.

Lifestyle Characteristics

Self-reported television viewing and PA are reported in Table 2. A total of 53% were not meeting current guidelines for PA, 47% were obese, and 43% sat more than 2 hours per day while watching television. The total television-viewing time ranged from 7.2 to 21.2 hours per week, and the differences in television-viewing time according to age or weight status were not significant (all $P>0.05$). Leisure time moderate-to-vigorous PA ranged between 40 and 250 minutes per week, and the duration did not differ according to age. However, non-obese women reported significantly more total minutes of exercise per week and more minutes of moderate-intensity PA and walking than did obese women ($P<0.05$).

Correlates of Lifestyle Behaviors

Bivariate associations among the medical, demographic, and lifestyle characteristics are reported in Table 3. In the following subsections, we describe the correlates of PA, television viewing, and obesity. Only the bivariate analyses are reported in Table 3. Results of the stepwise logistic regression models were reported here in the text for simplicity and clarity.

Not meeting guidelines for PA

Bivariate analyses revealed that a larger number of comorbid conditions were significantly associated with not meeting the current guidelines for PA. Similarly, in bivariate analyses, a lower education level was significantly associated with not meeting the current guidelines for PA (all $P<0.05$). In stepwise logistic regression models, the number of comorbid conditions was significantly associated with not meeting current guidelines for PA ($OR = 1.50; 95\% CI = 1.11, 2.03$). In the stepwise model, women who completed high school ($OR = 4.03; 95\% CI = 1.00, 16.27$) and those with some college ($OR = 2.04; 95\% CI = 1.03, 4.04$) were less likely to meet the current guidelines for PA than were women who had graduate degrees.

Table 1. Medical and demographic characteristics of AA breast cancer survivors.

Variable	Total	<50 (n = 167)	50–59 (n = 160)	≥60 (n = 143)	P-value	Obesity Status	Non-obese (n = 250)	Obese (n = 218)	P-value
Mean Age (SD)	53.8 (9.9)	43.4 (4.8)	54.3 (2.9)	65.5 (5.0)	–	53.9 (10.4)	53.8 (9.4)		0.941
Mean Age at diagnosis, (SD)	47.0 (9.1)	39.4 (5.4)	48.0 (5.7)	54.6 (8.7)	–	46.5 (9.4)	47.5 (8.7)		0.132
Mean years since diagnosis, (SD)	6.9 (6.3)	4.0 (3.6)	6.2 (5.4)	10.9 (7.5)	–	7.4 (6.7)	6.3 (5.8)		0.071
Stage, n (%)					<0.001				
I	152 (35)	38 (24)	60 (39)	56 (43)	–	81 (38)	71 (34)		0.361
II	188 (43)	66 (43)	62 (41)	60 (46)	–	101 (45)	87 (41)		
≥ III	95 (22)	51 (33)	30 (20)	14 (11)	–	43 (19)	52 (25)		
Treatment, n (%)									
Surgery	445 (95)	157 (94)	154 (96)	134 (94)	–	238 (95)	205 (94)		0.681
Chemotherapy	329 (72)	136 (81)	117 (73)	76 (53)	<0.001	166 (66)	161 (74)		0.087
Radiation	327 (71)	120 (72)	116 (73)	91 (64)	0.179	171 (68)	154 (70)		0.616
Hormone therapy	248 (48)	78 (47)	78 (49)	67 (47)	0.920	117 (47)	105 (48)		0.781
Marital Status	<0.001	0.185							
Married	228 (49%)	83 (51%)	83 (52%)	62 (44%)	0.914	127 (51%)	101 (47%)		
Single	254 (51%)	77 (49%)	77 (48%)	65 (46%)	0.091	157 (63%)	147 (63%)		
Education	0.914	0.091							
≤ high school	42 (9)	16 (10)	14 (9)	12 (8)	0.914	17 (7)	25 (12)		
Some College	184 (40)	70 (42)	58 (36)	57 (40)	0.914	92 (37)	92 (43)		
College Graduate	126 (27)	44 (27)	44 (28)	38 (27)	0.914	72 (29)	54 (25)		
Graduate degree	113 (24)	35 (21)	43 (27)	35 (25)	0.914	68 (27)	45 (21)		
Select Comorbidities, n (%)	<0.001	0.214							
High blood pressure	248 (53)	56 (34)	92 (58)	100 (70)	<0.001	110 (44)	138 (63)		<0.001
Diabetes	76 (21)	8 (5)	34 (21)	34 (24)	<0.001	30 (12)	46 (21)		0.008
High Cholesterol	130 (28)	13 (8)	50 (31)	67 (47)	<0.001	63 (25)	67 (31)		0.214
Number of comorbidities, m (SD)	1.26 (1.4)	1.09 (1.4)	1.41 (1.08)	1.87 (1.15)	<0.001	1.10 (1.10)	1.44 (1.16)	<0.001	
Lifestyle Behaviors, n (%)	<0.001	0.074							
Never smoker	332 (72)	142 (86)	104 (66)	87 (62)	<0.001	184 (75)	148 (69)		0.013
Regular alcohol intake	62 (14)	140 (12)	134 (14)	119 (14)	0.873	202 (17)	190 (10)		0.074

P-values are based on non-parametric Kruskal-Wallis test (for age group) and Wilcoxon Rank Sum Test (for obesity). Estimate for moderate, strenuous, and walking are expressed in minutes/week.
Table 2. Physical activity and sedentary habits of AA breast cancer survivors.

Variable	Age Group	Obesity Status	P-value	n = 167	n = 160	n = 143	n = 250	n = 218	p-value
Sitting in hours/week in Median									
TV									
Total	12.2 (7.2, 21.2)	11.7 (8.2, 20.2)	10.5 (6.2, 20)	13.2 (7.9, 24)	0.159	11.3 (7.2, 21.1)	12.2 (7.2, 21.7)	0.928	
Weekdays	5.4 (3.1, 12.1)	5.1 (3.1, 12.1)	5.1 (3.1, 10.1)	7.1 (4.1, 15.1)	0.076	5.2 (3.1, 12.1)	5.8 (3.1, 12.1)	0.859	
Weekends	5.5 (3.1, 9.1)	5.1 (3.1, 10.1)	5.1 (2.9, 9.1)	6.1 (3.1, 8.9)	0.611	5.1 (3.1, 8.2)	6.1 (3.1, 9.2)	0.665	
Physical activity in Median									
Total MET-minutes	570 (132, 1220)	638 (120, 1295)	450 (173, 1139)	388 (75, 975)	0.201	598 (194, 1295)	353 (74, 1006)	0.028	
Total minutes/week	130 (40, 250)	145 (40, 280)	145 (60, 280)	120 (30, 210)	0.214	150 (60, 280)	100 (30, 235)	0.032	
Moderate	10 (0, 60)	5 (0, 60)	10 (0, 60)	10 (0, 60)	0.998	20 (0, 70)	0 (0, 50)	0.057	
Strenuous	0 (0, 60)	0 (0, 90)	0 (0, 60)	0 (0, 40)	0.218	0 (0, 60)	0 (0, 60)	0.334	
Walking	60 (20, 120)	60 (20, 150)	80 (20, 140)	60 (10, 100)	0.232	80 (30, 140)	60 (20, 100)	0.043	
Body Mass Index	29.5 (25.9, 33.3)	28.9 (25.4, 33.7)	30.2 (26.6, 33.5)	29.3 (26.6, 33.1)	0.388	26.3 (24.1, 28.1)	33.7 (31.9, 37.3)	–	
At risk for lifestyle behaviors n (%)									
>2 hours/day of TV	146 (43)	55 (44)	43 (37)	48 (48)	0.260	76 (43)	70 (43)	0.962	
≤150 min MVPA/week	163 (53)	53 (48)	53 (53)	57 (60)	0.238	79 (50)	84 (57)	0.260	
BMI ≥30	218 (47)	92 (55)	78 (49)	80 (56)	0.397				

All estimates are reported in median (25% confidence limit, 75% confidence limit); TV = television viewing; TV = total minutes/week = television or video viewing; MET-minutes = metabolic equivalents of walking, moderate, and vigorous activities. Sample sizes may differ due to missing data. P-values are based on non-parametric Kruskal-Wallis test (for age group) and Wilcoxon rank-sum test (for obesity).

Excessive television viewing.

Socio-demographic and medical characteristics were not significantly associated with a television-viewing time of more than 2 hours per day in bivariate or multivariable models.

Obesity status.

The number of comorbid conditions and level of education were significantly associated with self-reported obesity in bivariate models (all P < 0.05). In stepwise logistic regression models, the number of comorbid conditions (OR = 1.67; 95% CI = 1.22, 2.27) was associated with increased risk for obesity, and women who were recently diagnosed (i.e., within the past 2 years; OR = 2.80; 95% CI = 1.32, 5.95) were more likely to be obese than were women who had been diagnosed 10 years prior to study enrollment.

Discussion

In this study, we found that almost half of the women were obese, did not meet the current guidelines for PA, and had comorbid conditions. Fewer than half watched television for more than 2 hours per day. Comorbid conditions were prevalent in older women and women who were obese. Interestingly, we observed few lifestyle differences between population subgroups, but obese women were less active than non-obese women. In addition, the number of comorbid conditions appeared to be an important correlate of being obese and not meeting the current guidelines for PA. Our preliminary data show that AA breast cancer survivors need lifestyle interventions to curb high rates of inactivity and obesity, particularly because they are often burdened by other comorbid conditions that render them vulnerable to inactivity and obesity.

Approximately 50% of the women in our study reported having high blood pressure, and another 20% and 30% reported having diabetes or high cholesterol levels, respectively, and these rates appeared to increase with age. The rates of high blood pressure and diabetes observed among the women in our study are similar to those reported in other studies of minority women [32], yet these rates are substantially higher than national estimates for other women [33]. These data add to the current literature that suggests AA breast cancer survivors have high rates of comorbid conditions [8]. The exceedingly high rates of comorbid conditions observed in women who were older and in those who were obese are alarming, especially because comorbid conditions advanced age, and obesity are associated with overall- and cancer-specific survival. In particular, Tammemagi et al. [8] found that comorbid conditions among AA survivors account for approximately half of the overall survival disparity between AA and non-Hispanic white breast cancer survivors. Lifestyle interventions that target obesity among older AA cancer survivors are needed to combat or manage the comorbid conditions experienced by this population [22, 23].

Nearly half the women in our study were obese. These rates of obesity are comparable to those reported in previous studies of AA breast cancer survivors [22] yet greater than national averages among healthy AA women [33]. We found that obesity was significantly associated with the time since diagnosis and the number of comorbid conditions in multivariate models. The associations observed among comorbid conditions and obesity are congruent with previous findings [34]; however, the reason why PA and at-risk television viewing were not significantly associated with obesity in our models is not clear. The variability in the range of PA and television-viewing time could have attenuated the
Table 3. Crude associations between medical and sociodemographic variables with physical activity, television viewing, and obesity status.

	Physical Activity	Television Viewing	Obesity
	<150 min/week	≥ 150 min/week	Crude
	N (%)	N (%)	OR (95% CI)
Age group			
<50	40	32	0.62 (0.36, 1.08)
50–59	33	33	0.75 (0.43, 1.33)
60	27	35	1
Years out from diagnosis			
0–2	31	28	0.61 (0.33, 1.12)
3–4	25	21	0.55 (0.29, 1.05)
5–9	22	18	0.57 (0.29, 1.11)
10+	22	33	1
Stage at diagnosis			
I	35	33	0.84 (0.44, 1.62)
II	45	45	0.89 (0.47, 1.65)
≥ III	19	22	1
Highest Education			
≤ high school	6	9	2.58 (0.98, 6.81)
Some College	37	44	1.88 (1.05, 3.35)
College Graduate	26	27	1.60 (0.85, 3.01)
Graduate Degree	31	20	1
Yearly Household Income			
< 35,000	20	29	1.72 (0.88, 3.39)
$35,000–64,000	19	21	1.32 (0.65, 2.69)
$65,000–79,000	17	14	0.98 (0.45, 2.12)
≥ $80,000	43	36	1
Marital Status			
Married	24	17	1.55 (0.88, 2.72)
Weight Status			
Normal	23	14	0.55 (0.30, 1.03)
Overweight	32	34	0.93 (0.56, 1.55)
Obese	45	52	1
Number of comorbidities			
-	-	1.40 (1.10, 1.77)	
Smokers	27	33	0.74 (0.45, 1.21)
Hormone replacement	46	50	0.83 (0.53, 1.31)
associations. Alternatively, categorizing women as obese or non-obese prevented us from evaluating the range of risk along the BMI continuum (i.e., normal, overweight, obese, and morbidly obese). Future research should examine various lifestyle factors (including diet) across the range of body size categories.

Our data indicate that 53% of the women in our study did not meet the current guidelines for PA and that 43% of them watched television for more than 2 hours per day. The percentage of women who did not meet the current guidelines for PA was similar to the percentage of healthy AA women not meeting PA guidelines [32]. However, the levels of television viewing appeared to be lower than those reported in the American Time Use Survey [35]. In particular, recent population-based data showed that women in the United States watch on average 3.28 hours of television per day [35]. The participants in our study watched an average of 12.2 hours of television per week or 1.74 hours per day. We are uncertain why television viewing in this population was considerably lower than estimates from national data. Our sample could have been biased toward educated women who spend less time watching television or a proportion of the women in our study could have misinterpreted the questionnaire items and reported their average daily television-viewing time rather than a weekly total. Unfortunately, there is no way to objectively measure television viewing among adults that is not intrusive. Self-report instruments that encourage adults to report the television shows that they watch on a given day may shed some insight into the specific amount of time they spend watching television.

The correlates of PA and SB in AA cancer survivors are not well understood. Herein, we found that education and comorbid conditions were significantly associated with PA, but we did not find any correlates for SB. AA breast cancer survivors reported similar levels of SB regardless of age, education, or health status. Alternatively, psychosocial constructs may be better correlates of PA and SB than demographic and medical conditions. Research assessing these correlates among AA breast cancer survivors is greatly needed.

The results from this study provide important and unique information about a minority group of breast cancer survivors and the lifestyle characteristics of this population. There are, however, several limitations of this study that should be noted. Our study focused exclusively on AA breast cancer survivors and adding a comparison group (e.g., non-Hispanic white survivors) may have helped to rule out the potential for confounding. The sample of AA breast cancer survivors was relatively healthy and well educated, so the results may not be generalizable to other populations of AA breast cancer survivors. In addition, PA and SB were assessed using a self-reported measure; therefore, recall and reporting biases might have existed. Moreover, these data are cross-sectional and do not imply causal inference. Nonetheless, to our knowledge, this is one of the first studies to report on the sedentary habits of AA breast cancer survivors. Future studies should consider including a comparison condition to examine potential similarities and differences in study outcomes.

In conclusion, these data show that many AA breast cancer survivors are overweight and obese, have comorbid conditions that may increase their risk for premature mortality, and are physically inactive. AA breast cancer survivors urgently need interventions that shield them from high rates of obesity and comorbid conditions. Ideally, these interventions will be based on their personal preferences and promote lifelong skills that enable them to adopt and maintain a physically active lifestyle. Researchers or institutions who partner with local and national organizations such as the Sisters Network may be able to harness the support needed to develop interventions in which minority breast cancer survivors

Table 3. Cont.
Television Viewing
Physical Activity
Obesity
N (%)
<2 hrs/day
≥2 hrs/day

For purposes of clarity, this table only contains results from the bivariate logistic regression analysis. Please see the text for the odds ratio (OR) and 95% confidence interval (CI).
are receptive to participating. Intervention studies may help to improve survival outcomes in this population.

Acknowledgments

We wish to thank the women of the Sisters Network, Inc., for participating in our study and Scientific Publication Department at MD Anderson for editing our manuscript. We would also like to thank Ms. Kelly Hodges of the Sisters Network for playing an instrumental role in organizing the recruitment efforts.

Author Contributions

Analyzed the data: RP. Wrote the paper: RP. Read, edited, and revised drafts of the manuscript: RP SC WT KC LJ.

References

1. DeVita VT, Lawrence TS, Rosenberg SA, Ovid Technologies Inc. (2008) DeVita, Hellman, and Rosenberg’s cancer principles & practice of oncology. 8th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins.
2. (2009) Breast Cancer Facts & Figures 2009–2010. Atlanta, GA: American Cancer Society.
3. (2010) Cancer Facts & Figures for African Americans 2010–2011. Atlanta, GA: American Cancer Society.
4. Herdman MB, McBride R, Jacobson JS, Lamerato L, Roberts K, et al. (2005) Racial disparities in treatment and survival among women with early-stage breast cancer. J Clin Oncol 23: 6639–6646.
5. Innes K, Horn-Ross PL (2008) Risk of second primary breast cancers among women with ductal carcinoma in situ of the breast. Breast Cancer Res Treat 111: 531–540.
6. Jones BA, Kasi SV, Curnen MG, Owens PH, Dubrow R (1997) Severe obesity as an explanatory factor for the black/white difference in stage at diagnosis of breast cancer. Am J Epidemiol 146: 394–404.
7. Lund MJ, Trivers KA, Porter PL, Coates RJ, Leyland-Jones B, et al. (2009) Race and triple negative breast cancer survival: a population-based study in Atlanta, GA. Breast Cancer Res Treat 113: 357–370.
8. Tammenemagi CM, Nerenz D, Neshland-Dudas C, Feldkamp C, Nathanson D (2005) Comorbidity and survival disparities among black and white patients with breast cancer. JAMA : the journal of the American Medical Association 294: 1765–1772.
9. Schmitz KH, Holtzman J, Courneya KS, Masse LC, Duval S, et al. (2005) Controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 14: 1508–1595.
10. Specck RM, Courneya KS, Masse LC, Duval S, Schmitz KH (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv 4: 87–100.
11. Fong DY, Hu JW, Hui BP, Lee AM, Macfarlane DJ, et al. (2012) Physical activity for cancer survivors: meta-analysis of randomised controlled trials. BMJ 344: e707.
12. Specck RM, Courneya KS, Masse LC, Duval S, Schmitz KH (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Journal of cancer survivorship : research and practice 4: 87–100.
13. Ibrahim EM, Al-Homaidh A (2011) Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Medical oncology 28: 753–765.
14. Grunwiede A, Hu FB (2011) Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA 305: 2448–2455.
15. Owen N, Healy GN, Matthews CE, Dunstan DW (2010) Too much sitting: the association between objectively assessed sitting time and self-reported physical activity, sedentary time and waist circumference among prostate cancer survivors: findings from the National Health and Nutrition Examination Survey (2005-2006). European journal of cancer care 20: 514–519.
16. Taylor WC (2011) Prolonged sitting and the risk of cardiovascular disease and mortality. Current Cardiovascular Risk Reports 5: 350–357.
17. Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N (2010) Physiological and health implications of a sedentary lifestyle. Applied physiology, nutrition, and metabolism = Physiologie appliquée, nutrition et métabolisme 35: 725–740.
18. Lynch BM, Dunstan DW, Winkler E, Healy GN, Eakin E, et al. (2011) Objectively assessed physical activity, sedentary time and waist circumference among prostate cancer survivors: findings from the National Health and Nutrition Examination Survey (2005-2006). European journal of cancer care 20: 514–519.
19. Hall JJ, Newman B, Milikan RC, Moorman PG (2000) Body size and breast cancer risk in black women and white women: the Carolina Breast Cancer Study. Am J Epidemiol 151: 754–764.
20. Harvie M, Hooper L, Howell AH (2003) Central obesity and breast cancer risk: a systematic review. Obes Rev 4: 157–173.
21. Palmer JR, Adams-Campbell LL, Boggs DA, Wise LA, Rosenberg L (2007) A prospective study of body size and breast cancer in black women. Cancer Epidemiol Biomarkers Prev 16: 1795–1802.
22. Paxton RJ, Phillips KL, Jones LA, Chang S, Taylor WC, et al. (2012) Associations among physical activity, body mass index, and health-related quality of life by race/ethnicity in a diverse sample of breast cancer survivors. Cancer 118: 4024–4031.
23. Paxton RJ, Jones LA, Chang S, Hernandez M, Hajek RA, et al. (2011) Was race a factor in the outcomes of the Women’s Health Eating and Living Study? Cancer 117: 3805–3813.
24. Langer RD, White E, Lewis CE, Konchen JM, Hendrix SL, et al. (2003) The Women’s Health Initiative Observational Study: baseline characteristics of participants and reliability of baseline measures. Annals of epidemiology 13: S107–121.
25. CDC (2008) 2008 Physical Activity Guidelines for Americans. Atlanta, GA.
26. Belanger LJ, Piotnikoff RC, Clark A, Courneya KS (2011) Physical activity and health-related quality of life in young adult cancer survivors: a Canadian provincial survey. J Cancer Surviv 5: 44–55.
27. Bertram LA, Stefanick ML, Saqui N, Natarajan L, Patterson RE, et al. (2011) Physical activity, additional breast cancer events, and mortality among early-stage breast cancer survivors: findings from the WHI LS. Cancer Causes Control 22: 427–435.
28. Gardiner PA, Healy GN, Eakin EG, Clark BK, Dunstan DW, et al. (2011) Associations between television viewing time and overall sitting time with the metabolic syndrome in older men and women: the Australian Diabetes, Obesity and Lifestyle study. J Am Geriatr Soc 59: 780–796.
29. Hu FB, Li FY, Colditz GA, Willett WC, Manson JE (2003) Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA : the journal of the American Medical Association 289: 1785–1791.
30. Katzmarzyk PT, Lee IM (2012) Sedentary behavior and life expectancy in the USA: a cause-deleted life table analysis. BMJ Open 2.
31. Liao Y, Bang D, Cosgrove S, Dulin R, Harris Z, et al. (2011) Surveillance of health status in minority communities - Racial and Ethnic Approaches to Community Health Across the U.S. (REACH U.S.). Risk Factor Survey, United States, 2009. Morbidity and mortality weekly report Surveillance summaries 60: 1–44.
32. Sundaram AA, Ayala C, Greenlund KJ, Kerenan NL (2005) Differences in the prevalence of self-reported risk factors for coronary heart disease among American women by race/ethnicity and age: Behavioral Risk Factor Surveillance System, 2001. American journal of preventive medicine 29: 25–30.
33. Mosher CE, Snoue R, Morey MC, Snyder DC, Cohen HJ, et al. (2009) Associations between lifestyle factors and quality of life among older long-term breast, prostate, and colorectal cancer survivors. Cancer 115: 4001–4009.
34. Tudor-Locke C, Leonard C, Johnson WD, Katmarzyk PT (2011) Time spent in physical activity and sedentary behaviors on the working day: the American time use survey. Journal of occupational and environmental medicine/American College of Occupational and Environmental Medicine 53: 1382–1387.