Autologous Umbilical Cord Blood Transfusion in Young Children With Type 1 Diabetes Fails to Preserve C-Peptide

Michael J. Haller, MD 1
Clive H. Wasserfall, MS 2
Maiga A. Hulme, BS 2
Miriam Cintron, BS 2
Todd M. Brusko, PhD 2
Kieran M. McGrah, BS 2
Theresa M. Sumrall, BS 2
John R. Wingard, MD 1
Douglas W. Theriaque, MS 2
Jonathan J. Shuster, PhD 4
Mark A. Atkinson, PhD 2
Desmond A. Schatz, MD 1

OBJECTIVE—We conducted an open-label, phase 1 study using autologous umbilical cord blood (UCB) infusion to ameliorate type 1 diabetes (T1D). Having previously reported on the first 15 patients reaching 1 year of follow-up, herein we report on the complete cohort after 2 years of follow-up.

RESEARCH DESIGN AND METHODS—A total of 24 T1D patients (median age 5.1 years) received a single intravenous infusion of autologous UCB cells and underwent metabolic and immunologic assessments.

RESULTS—No infusion-related adverse events were observed. β-Cell function declined after UCB infusion. Area under the curve C-peptide was 24.3% of baseline 1 year postinfusion (P < 0.001) and 2% of baseline 2 years after infusion (P < 0.001). Flow cytometry revealed increased regulatory T cells (Tregs) (P = 0.04) and naive Tregs (P = 0.001) 6 and 9 months after infusion, respectively.

CONCLUSIONS—Autologous UCB infusion in children with T1D is safe and induces changes in Treg frequency but fails to preserve C-peptide.
Table 1—Baseline and postinfusion characteristics of autologous UCB recipients

	Preinfusion	3 months	6 months	9 months	1 year	1.5 years	2 years	(Preinfusion–to–1 year ratio) – 1	(Preinfusion–to–2 year ratio) – 1
HbA1c (%)	7.4 (6.5–8.4)	7.5 (7.1–8.5)	7.5 (7.1–8.5)	7.1 (6.7–7.1)	7.1 (6.7–7.8)	7.1 (6.6–7.9)	7.6 (7.2–8.0)	–0.2 (–0.6 to 0.7)	0.1 (–0.5 to 0.9)
Insulin use (units/kg per day)	0.37 (0.22–0.51)	0.46 (0.28–0.58)	0.58 (0.44–0.79)	0.58 (0.44–0.79)	0.69 (0.55–0.81)	0.63 (0.57–0.77)	0.66 (0.61–0.81)	–0.22 (–0.53 to –0.085)	–0.44 (–0.68 to –0.21)
Peak C-peptide (ng/mL)	1.16 (0.7–1.71)	0.83 (0.24–1.28)	0.73 (0.47–1.35)	0.6 (0.08–1.36)	0.28 (0.16–0.86)	0.17 (0–0.95)	0.05 (0–0.58)	–0.53 (–1.0 to –0.16)	–0.7 (–1.4 to –0.5)
AUC C-peptide (ng/mL)	0.95 (0.51–1.4)	0.66 (0.2–1.1)	0.64 (0.03–1.1)	0.46 (0.02–0.63)	0.22 (0.07–0.52)	0.15 (0–0.82)	0.02 (0–0.62)	–0.49 (–1.0 to –0.37)	–0.6 (–1.3 to –0.37)
IA-2A	11.0 (1.8–23.1)	7.5 (0.69–20)	4.5 (0.2–16.3)	4.1 (0–16.5)	2.9 (0–14.5)	2.2 (0–9.9)	2.3 (0–8.9)	–3.8 (–7.5 to –3.5)	–7.2 (–12.7 to –2.3)
GADA	2.5 (0.7–12.3)	1.7 (0.3–6.4)	1.95 (0.2–9.2)	2.0 (0.5–15.7)	2.6 (0.3–15.8)	1.9 (0–4.3)	1.2 (0–8.9)	–1.6 (–3.6 to 0.6)	–8.4 (–12.8 to 0)
WBC (cell × 10^9/L)	5.6 (5.0–7.3)	5.75 (4.7–7.85)	6.1 (4.7–6.9)	5.8 (4.6–6.9)	5.8 (4.4–6.7)	5.5 (3.9–7.6)	5.5 (4.25–7.35)	–0.7 (–0.7 to 0.2)	–1.8 (–0.8 to 0)
CD4-to-CD8 ratio	1.89 (1.5–2.4)	1.89 (1.6–2.2)	1.96 (1.5–2.2)	1.97 (1.6–2.2)	1.97 (1.4–2.2)	2.15 (1.7–2.4)	2.15 (1.7–2.4)	–0.28 (–0.28 to 0.24)	0.15 (–0.2 to 0.4)
Peripheral blood Treg (%)	3.1 (0.8–5.4)	4.1 (1.0–5.5)	4.4 (2.0–7.5)	3.6 (1.9–5.1)	3.6 (2.0–7.6)	3.0 (1.8–5.1)	3.3 (1.9–6.5)	0.13 (–1.3 to 1.0)	0.52 (–1.8 to 2.9)
CD45RA Treg (%)	39.0 (25.7–45.9)	42.6 (27.8–49.8)	40.5 (34.1–51.3)	43.5 (37.9–54.3)	40.9 (31.9–50.4)	40.2 (29.9–46.2)	42.8 (28.6–48.8)	–5.53 (–11.0 to 11.1)	1.82 (–3.8 to 1.8)

Data are median (interquartile range) and [n] [P value vs. baseline]. N = 24 (10 males, 14 females), median age at infusion 5.1 years (3.4–6.9). IA-2A, insulinoma-associated 2 antibody; GADA, GAD antibody; WBC, white blood cell count.
CONCLUSIONS

A single infusion of minimally manipulated autologous UCB in young children with T1D is feasible and safe but fails to preserve C-peptide. Lack of control subjects (in this case, attributable to internal review board and U.S. Food and Drug Administration restrictions) makes it difficult to form definitive conclusions regarding efficacy. The observation that total Treg frequency was increased up to 6 months after infusion suggests that autologous UCB infusion may favorably alter the T-cell repertoire in children with T1D.

The reasons for an inability of autologous UCB to effectively halt autoimmune progression are at least twofold. First, an insufficient number of cells carrying regenerative or immunoregulatory capacity may have been transferred to patients with T1D. In addition, the ongoing autoimmune response in new-onset T1D subjects may contain memory T cells, refractive to regulation by Tregs (6), that facilitate the ongoing autoimmune destruction of endogenous or de novo β-cells.

To address the first issue, efforts are underway to isolate and expand specific cell populations within UCB to augment their therapeutic potential. As proof of concept, a phase I clinical trial is currently under way in adult patients with recent-onset T1D using autologous expanded Tregs isolated from peripheral blood (clinical trial reg. no. NCT01210664). In terms of the second limitation, studies from our laboratory suggest that a combination therapeutic approach involving transient immune depletion and subsequent induction of immune regulation is optimal (7). As such, we believe that therapies combining transient immune depletion and subsequent infusion of expanded UCB Tregs may more effectively reset the balance of Tregs and effector T cells in T1D.

Although this effort failed to demonstrate benefit, the potential of UCB to participate in future T1D interventional therapies remains. Efforts to use autologous UCB in the treatment of T1D will continue with emphasis on improved understanding of UCB Treg function, the addition of generally regarded as safe therapies (i.e., vitamin D and n-3 fatty acids) to UCB infusion (clinical trial reg. no. NCT00873925), and perhaps most important, the potential use of expanded autologous UCB Tregs either alone or in combination with other immunomodulatory agents.

Acknowledgments—This study was funded by Juvenile Diabetes Research Foundation (JDRF) Innovative Grant 1-2005-362, JDRF Center Grant 4-2007-1065, a gift from the Arie Kurgitz Memorial Fund, National Institutes of Health (NIH) Grant 1R21-DK-077580-01, and an NIH/National Center for Research Resources Clinical and Translational Science Award to the University of Florida (UL1-RR029890). The sponsors of the study had no role in the study design, data collection, data analysis, interpretation of data, or writing of the manuscript.

No potential conflicts of interest relevant to this article were reported.

M.J.H. researched data and wrote the manuscript. C.H.W. researched data and contributed to discussion. M.A.H. and M.C. researched data. T.M.B. and D.A.S. researched data, contributed to discussion, and wrote the manuscript. K.M.M., T.M.S., J.R.W., and D.W.T. researched data. J.J.S. and M.A.A. researched data and edited the manuscript.

The authors acknowledge ongoing cord blood collaborations with the teams of Dr. Annette Zeigler (University of Munich, Munich, Germany) and Dr. Olli Simell (University of Turku, Turku, Finland). The authors thank the following for their assistance: Hilla-Lee Viener (laboratory technician, University of Florida), the University of Florida Stem Cell Laboratory staff and nurses, the General Clinical Research Center staff and nurses, and most importantly, the children and families who participated in this phase I trial.

References

1. Haller MJ, Viener HL, Wasserfall C, Brusko T, Atkinson MA, Schatz DA. Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol 2008;36:710–715
2. Brusko T, Atkinson M. Treg in type 1 diabetes. Cell Biochem Biophys 2007;48:165–175
3. Brusko T, Wasserfall C, McGrail K, et al. No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 2007;56:604–612
4. Brusko TM, Wasserfall CH, Clare-Salzer MJ, Schatz DA, Atkinson MA. Functional defects and the influence of age on the frequency of CD4+CD25+ T-cells in type 1 diabetes. Diabetes 2005;54:1407–1414
5. Smith L, Haller MJ, Staba-Kelly S. Characteristics and cell composition of privately banked autologous cord blood (UCB) units utilized for autologous infusion in children with type 1 diabetes (Abstract). Biol Blood Marrow Transplant 2008;14(Suppl.):45
6. Schneider A, Rieck M, Sanda S, Pihoker C, Greenbaum C, Buckner JH. The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells. J Immunol 2008;181:7350–7355
7. Parker MJ, Xue S, Alexander JJ, et al. Immune depletion with cellular mobilization imparts immunoregulation and reverses autoimmune diabetes in nonobese diabetic mice. Diabetes 2009;58:2277–2284