ORIGINAL RESEARCH

Risk of Parkinson Disease and Secondary Parkinsonism in Myocardial Infarction Survivors

Jens Sundbøll, MD, PhD; Szimonetta Komjáthi Szépligeti, MSc; Péter Szentkúti, MSc; Kasper Adelborg, MD, PhD; Erzsébet Horváth-Puhó, MSc, PhD; Lars Pedersen, PhD; Victor W. Henderson, MD, MS; Henrik Toft Sørensen, MD, PhD, DMSc

BACKGROUND: In addition to primary neurodegenerative processes, vascular disorders, such as stroke, can lead to parkinsonism. However, some cardiovascular risk factors, such as smoking and elevated cholesterol levels, are associated with reduced risk of Parkinson disease. We examined the risk of Parkinson disease and secondary parkinsonism in 1-year survivors of myocardial infarction (MI).

METHODS AND RESULTS: We conducted a nationwide population-based matched cohort study using Danish medical registries from 1995 to 2016. We identified all patients with a first-time MI diagnosis and sampled a sex-, age-, and calendar year–matched general population comparison cohort without MI. Cox regression analysis was used to compute adjusted hazard ratios (aHRs) for Parkinson disease and secondary parkinsonism, controlled for matching factors and adjusted for relevant comorbidities and socioeconomic factors. We identified 181,994 patients with MI and 909,970 matched comparison cohort members (median age, 71 years; 62% men). After 21 years of follow-up, the cumulative incidence was 0.9% for Parkinson disease and 0.1% for secondary parkinsonism in the MI cohort. Compared with the general population cohort, MI was associated with a decreased risk of Parkinson disease (aHR, 0.80; 95% CI, 0.73–0.87) and secondary parkinsonism (aHR, 0.72; 95% CI, 0.54–0.94).

CONCLUSIONS: MI was associated with a 20% decreased risk of Parkinson disease and 28% decreased risk of secondary parkinsonism. Reduced risk may reflect an inverse relationship between cardiovascular risk factors and Parkinson disease.

Key Words: epidemiology ■ myocardial infarction ■ Parkinson disease

The number of myocardial infarction (MI) survivors has increased worldwide because of an ongoing demographic shift toward an elderly population combined with improved mortality rates following MI. In this growing population, the risk of neurovascular complications, such as ischemic stroke and vascular dementia, is markedly increased. Although the risk of cardiovascular disease is increased in patients with Parkinson disease, the risk of Parkinson disease in MI survivors remains unknown.

Parkinson disease is primarily a neurodegenerative disease, whereas parkinsonism has several underlying causes besides primary neurodegenerative processes, including a variety of vascular mechanisms. These may include lacunar infarcts and other vascular insults encompassing the substantia nigra, cerebral white matter, and other cerebral structures. Complications after MI, such as atrial fibrillation and regional wall motion abnormalities, may increase the risk of such infarcts. Likewise, heart failure and...
hypotension following MI may facilitate formation of watershed infarcts in susceptible areas of the brain.10 Cardiovascular drugs commonly initiated in the course of an MI (eg, verapamil and diltiazem) also are known to increase the risk of parkinsonism.11,12

Shared risk factors between MI and Parkinson disease include age and male sex, whereas coffee consumption and physical activity each are associated with a lower risk of both diseases.13 Conversely, several studies confirm that classic cardiovascular risk factors, such as smoking, hypercholesterolemia, increased blood pressure, and diabetes, are negatively associated with the risk of Parkinson disease.14-16 However, it is not known whether this inverse relationship extends to manifest atherosclerotic disease. As the underlying cause of Parkinson disease is largely unknown, identification of potential risk factors would contribute to our understanding of the disease. We therefore examined the long-term risk of Parkinson disease and secondary parkinsonism following first-time MI and the impact of common MI treatments and complications.

CLINICAL PERSPECTIVE

What Is New?
• In addition to primary neurodegenerative processes, cerebrovascular disorders can lead to parkinsonism.
• Although the risk of cardiovascular disease is increased in patients with Parkinson disease, the risk of Parkinson disease in myocardial infarction survivors remains unknown.
• In our study, myocardial infarction was associated with a 20% decreased risk of Parkinson disease and a 28% decreased risk of secondary parkinsonism compared with the general population.

What Are the Clinical Implications?
• Our observations suggest that myocardial infarction is negatively associated with Parkinson disease.
• This finding may reflect inverse associations between classic cardiovascular risk factors, such as smoking and elevated cholesterol, and Parkinson disease.
• The risk of Parkinson disease need not be a focus area during follow-up of patients with myocardial infarction.

METHODS

Setting and Design
The data that support the findings of this study are available from the corresponding author on reasonable request.

We conducted this nationwide population-based cohort study in Denmark, which had a cumulative population of 8 262 736 inhabitants during the study period (January 1, 1995, to December 31, 2016).17 The Danish National Health Service provides tax-supported health care, with free and equal access to general practitioners and hospitals for all Danish inhabitants. Accurate linkage of all registries at the individual level is possible in Denmark because of the unique central personal registry number assigned to each Danish citizen at birth and to residents on immigration.18

Patients With MI
We used the Danish National Patient Registry (DNPR) to identify all patients with a first-time inpatient diagnosis of MI during the study period. The DNPR has recorded information on all admissions to Danish nonpsychiatric hospitals since 1977 and on emergency department and outpatient clinic visits since 1995.19 Each hospital discharge or outpatient visit is recorded in the DNPR with one primary diagnosis and one or more secondary diagnoses classified according to the International Classification of Diseases, Eighth Revision (ICD-8), through 1993 and International Classification of Diseases, Tenth Revision (ICD-10), thereafter.19 We identified patients with MI using both primary and secondary diagnoses.

General Population Comparison Cohort
We created a general population comparison cohort using the Danish Civil Registration System, which has provided daily updates on vital statistics, including dates of birth, emigration, and death, since 1968.18 For each patient in the MI cohort, 5 individuals from the general population without an MI diagnosis were randomly selected and matched on sex, age, and calendar year of MI diagnosis.20 Each hospital discharge or outpatient visit is recorded in the DNPR with one primary diagnosis and one or more secondary diagnoses classified according to the International Classification of Diseases, Eighth Revision (ICD-8), through 1993 and International Classification of Diseases, Tenth Revision (ICD-10), thereafter.19 We identified patients with MI using both primary and secondary diagnoses.
Parkinson Disease and Secondary Parkinsonism

Data on inpatient and outpatient Parkinson disease and secondary parkinsonism diagnoses were retrieved from the DNPR.19 We also included secondary parkinsonism to consider patients with parkinsonism attributable to, for example, cerebrovascular insults following MI. In the DNPR, diagnoses are available for hospital admissions since 1977 and for outpatient clinic visits since 1995.19 We identified Parkinson disease and secondary parkinsonism using both primary and secondary diagnoses. The validity of Parkinson disease in the DNPR is high at 91%.21

Covariables

All patients’ medical histories were available in the DNPR since 197719 and the Danish Psychiatric Central Research Register since 1995.22 We obtained information on comorbidities that may represent confounders or shared risk factors for MI and parkinsonism. These consisted of all hospital inpatient and outpatient diagnoses of heart failure, angina pectoris, atrial fibrillation/atrial flutter, heart valve disease, hypercholesterolemia, hypertension, stroke, intermittent claudication, obesity, diabetes, chronic pulmonary disease (as an indicator of chronic smoking), alcoholism-related diseases, head trauma, osteoarthritis, anemia, chronic kidney disease, depression, and a modified Charlson Comorbidity Index (CCI) score (excluding congestive heart failure, MI, cerebrovascular disease, chronic pulmonary disease, chronic kidney disease, and diabetes from the index). We also obtained information on personal gross income, employment status during the year preceding the index date, and highest education achieved from the Integrated Database for Labour Market Research.23

Finally, we included certain antipsychotics (specifically piperazine side chain neuroleptics) and calcium channel blockers from the nationwide prescription registry,24 as they are known to cause extrapyramidal adverse effects mimicking Parkinson disease11,25 and are commonly used in patients with cardiovascular disease.26,27

Surgical Procedures

We obtained information on coronary artery bypass graft surgery, percutaneous coronary intervention, and pacemaker implantation from the DNPR, which has coded surgery according to the Danish Classification of Surgical Procedures and Therapies until January 1, 1996, and according to the NOMESCO Classification of Surgical Procedures thereafter.19

Statistical Analysis

We characterized the MI and general population comparison cohorts according to sex, age groups (<60, 60–69, 70–79, and ≥80 years), index year calendar periods (1995–1999, 2000–2004, 2005–2009, and 2010–2016), comorbidities, and socioeconomic factors at baseline and at 1 year after MI. We followed up all patients with MI and members of the general population comparison cohort until the occurrence of any Parkinson disease or secondary parkinsonism diagnosis, emigration, death, or December 31, 2016, whichever came first. A priori, we disregarded the first year after MI and initiated follow-up thereafter, because parkinsonism diagnosed shortly after admission for MI is unlikely to be a consequence of MI and is prone to diagnostic bias shortly after MI. The Figure provides a flowchart of exclusions within the first year of MI and the resulting final study population.

We used cumulative incidence functions with death as a competing risk to calculate risks of Parkinson disease or secondary parkinsonism during 1 to 22 years of follow-up. This implies a maximum follow-up of 21 years. Using multivariable stratified Cox proportional hazards regression, we computed adjusted hazard ratios (aHRs) with 95% CIs, comparing patients with MI with members of the general population comparison cohort.28 The aHRs were controlled for sex, age, and calendar year by the matched study design and in multivariable analyses adjusted for preadmission diagnoses of heart failure, stable angina pectoris, atrial fibrillation or atrial flutter, valvular heart disease, hypercholesterolemia, hypertension, stroke, intermittent claudication, obesity, diabetes, chronic pulmonary disease, alcoholism-related disease, head trauma, osteoarthritis, anemia, chronic kidney disease, depression, a modified CCI score, antipsychotics, calcium channel blockers, and socioeconomic factors (income and employment). The proportional-hazards assumption was assessed graphically using log-log plots, and there were indications of violation within the total follow-up period. Therefore, we repeated all analyses using the Poisson regression approach,29 which does not require proportionality of hazards. We found no difference in the estimates with these 2 approaches and therefore report results from the Cox regression analyses. All codes used in the study are provided in Tables S1 and S2.

Additional Analyses

To identify clinical pathways with a potential impact on the association between MI and Parkinson disease or secondary parkinsonism, we stratified by cardiac procedures performed during hospital admission for MI.
and by complications occurring between MI and start of follow-up 1 year later.

The presence of potential interactions was examined in strata of sex, age groups, underlying preadmission comorbidity, different levels of comorbidity measured using modified CCI scores, and socioeconomic factors, the matching was dissolved and ahIRs were additionally adjusted for matching variables. Dissolving the matching introduced a lack of independence among members of the comparison cohort because they were matched with replacement. However, we did not use a robust variance estimator in the Cox regression analyses, because we did not detect any notable difference in doing so (the maximum difference was 0.01 in the CI) and because all estimates were tested with a Poisson regression model using a robust variance estimator, also with no difference compared with the original estimates.

Sensitivity Analyses

We performed several sensitivity analyses. First, given an assumed latency period for development of clinically overt parkinsonism following MI, we repeated the analyses sequentially excluding the initial 2, 3, and 5 years of follow-up. Second, we additionally adjusted for education, which was not included in the main analysis because data were unavailable for ≈18% of participants and because there was a strong collinearity with the other socioeconomic factors (income and employment). Third, we divided follow-up time into periods of 1 to 5 years, 6 to 10 years, 11 to 15 years, and 16 years to end of follow-up to examine whether associations changed over time. Fourth, we continued follow-up for members of the comparison cohort who experienced an MI during follow-up. Fifth, in a sensitivity analysis, we also calculated E-values for main estimates and the corresponding upper limit of the 95% CI. This allowed us to assess how strongly a single unmeasured binary confounder would need to be associated with both the exposure (MI) and outcome (Parkinson disease/secondary parkinsonism) to fully explain away the observed exposure-outcome association.

All statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC). The study was approved by the Danish Data Protection Agency (record number 1-16-02-268-14). According to Danish legislation, no approval from an ethics committee or informed consent from patients is required for registry-based studies in Denmark.

RESULTS

The study included 181,994 patients in the MI cohort and 909,970 individuals in the matched general
population comparison cohort. Median age at MI diagnosis was 71 (interquartile range, 60–80) years, and 62% of the study population were men. Median follow-up time was 4.1 (25th–75th percentile, 0.7–9.6) years for patients with MI and 6.6 (25th–75th percentile, 2.9–11.6) years for members of the comparison cohort. The difference in follow-up time arose mainly from the competing risk of death after MI. The MI cohort had an expected higher prevalence of cardiovascular conditions and CCI levels. Patients in the MI cohort had slightly lower income and educational levels, and a larger proportion were unemployed compared with the general population comparison cohort (Table 1). Findings were similar in MI survivors and members of the comparison cohort at 1 year after MI (Table S3).

Table 1. Continued

Characteristics	MI cohort (n=181,994)	Comparison cohort (n=909,970)
Men		
Age, y		
<60	43,829 (24.1)	219,145 (24.1)
60–69	41,579 (22.8)	207,895 (22.8)
70–79	48,668 (26.7)	243,340 (26.7)
≥80	47,918 (26.3)	239,590 (26.3)
Median (25th–75th percentile)	71.0 (60–80)	71.0 (60–80)
Decade of diagnosis/index year		
1995–1999	41,201 (22.6)	206,005 (22.6)
2000–2004	46,685 (25.7)	233,425 (25.7)
2005–2009	40,965 (22.5)	204,825 (22.5)
2010–2016	53,143 (29.2)	265,715 (29.2)
Comorbidity		
Heart failure	14,059 (7.7)	31,218 (3.4)
Angina pectoris	29,771 (16.4)	59,753 (6.6)
Atrial fibrillation or flutter	14,558 (8.0)	53,802 (5.9)
Valvular heart disease	7,265 (4.0)	17,522 (1.9)
Hypercholesterolemia	9,888 (5.4)	24,847 (2.7)
Hypertension	63,119 (34.7)	216,747 (23.8)
Stroke	14,062 (7.7)	45,301 (5.0)
Intermittent claudication	5,426 (3.0)	9445 (1.0)
Obesity	72,193 (4.0)	18,799 (2.1)
Diabetes	25,853 (14.2)	69,485 (7.6)
Chronic pulmonary disease	18,988 (10.4)	58,456 (6.4)
Alcoholism-related diseases	5,975 (3.3)	22,344 (2.5)
Head trauma	12,291 (6.8)	55,411 (6.1)
Osteoarthritis	23,633 (13.0)	104,967 (11.5)
Anemia	9,588 (5.3)	29,929 (3.3)
Chronic kidney disease	6,650 (3.7)	12,044 (1.3)
Depression	6,244 (3.4)	24,152 (2.7)
Drugs frequently associated with parkinsonism		
Typical antipsychotics (piperazine side chain neuroleptics)	3,437 (1.9)	14,288 (1.6)
Calcium channel blockers	56,081 (30.8)	184,974 (20.3)
Modified CCI score*		
Normal	132,575 (72.8)	724,979 (79.6)
Moderate	25,091 (13.8)	81,607 (9.0)
Severe	17,008 (9.3)	78,669 (8.6)
Very severe	7,320 (4.0)	25,097 (2.8)
Income		
Low	55,289 (30.4)	242,797 (26.7)
Intermediate	53,763 (29.5)	250,765 (27.8)

*Categories of comorbidity were based on modified CCI scores: 0 (normal), 1 (moderate), 2 (severe), and ≥3 (very severe).

Risk of Parkinson Disease and Secondary Parkinsonism

During follow-up, 668 patients in the MI cohort were diagnosed with Parkinson disease and 71 with secondary parkinsonism. The cumulative incidence in the MI cohort after 21 years of follow-up was 0.9% for Parkinson disease and 0.1% for secondary parkinsonism. As a result of the competing risk of death, the cumulative incidence of Parkinson disease and secondary parkinsonism was higher in the general population comparison cohort than in the MI cohort (Table 2). MI was associated with a moderately decreased risk of both Parkinson disease (aHR, 0.80; 95% CI, 0.70–0.92) and secondary parkinsonism (aHR, 0.59; 95% CI, 0.40–0.87) compared with the general population comparison cohort.
Additional Analyses
In analyses stratified by procedures and complications (including stroke) after MI, we observed no impact on the risk of Parkinson disease or secondary parkinsonism (Table 3). In age-stratified analyses, the decreased risk of Parkinson disease was more pronounced for older age groups, whereas estimates were too imprecise to draw firm conclusion for secondary parkinsonism. We observed no sex differences (Table S4). Apart from a null association for patients with atrial fibrillation or flutter, alcoholism-related disease, and chronic kidney disease, the results remained largely unchanged in subgroup analyses of cardiac and noncardiac comorbidity, CCI levels, and use of drugs associated with extrapyramidal adverse effects mimicking Parkinson disease (Table S5). We observed no temporal difference in the association observed during early versus late time periods, apart from a weakened association from 2005 to 2009 for Parkinson disease (Table S6). In analyses stratified by primary versus secondary diagnoses of MI, the results also remained unchanged (Table S6). Across levels of income, employment status, and education, the results agreed with those of the main analysis, apart from a near null association for employed patients with MI (Table S7). Despite no apparent statistical significance at the 95% level of confidence in these additional analyses, we cannot entirely rule out type 1 errors attributable to limited sample sizes in these subgroup analyses.

Sensitivity Analyses
Results of the sensitivity analyses are presented in Table S8. The results were essentially unchanged when we sequentially excluded the initial 2, 3, and 5 years of follow-up. The results also remained robust when the model was extended to adjust for education, and when the 4 follow-up periods (1–5 years, 6–10 years, 11–15 years, and 16 years–end of follow-up) were considered separately. In addition, type of MI (ST-segment–elevation MI/non–ST-segment–elevation MI) did not substantially affect the results, although results were less precise in these MI subgroups. Finally, results were consistent when we continued follow-up for members of the population comparison cohort who experienced MI during follow-up (data not shown). The derived E-values were relatively large (E-values of 1.56 for Parkinson disease and 1.32 for secondary parkinsonism) in comparison with their main estimate counterparts (aHRs of 0.80 for Parkinson disease and 0.72 for secondary parkinsonism) (Figure S1). These results indicate that an unmeasured confounder would need to be strongly associated with both MI and Parkinson disease to fully explain our findings but still leave the potential for a single confounder with a moderate or large effect (eg, smoking) to explain away the observed association.

DISCUSSION
In this nationwide matched population-based cohort study with virtually complete follow-up of 181 994 MI survivors for 21 years, we found a moderately lower risk of both Parkinson disease and secondary parkinsonism compared with the general population. Apart from a null association in patients with MI who were employed or had specific comorbidity (atrial fibrillation or flutter, alcoholism-related disease, and chronic kidney disease), our results for Parkinson disease remained unchanged across subgroup and sensitivity analyses. For secondary parkinsonism, subgroups analyses were hampered by imprecise estimates attributable
to smaller sample sizes, and should be interpreted with caution. Our study is the first to examine the MI–Parkinson disease association, and from a clinical perspective our findings do not suggest the need for increased attention to development of Parkinson disease among MI survivors. Reduced risk of Parkinson disease and secondary parkinsonism after MI might be related to an inverse association with cardiovascular risk factors, such as smoking and blood cholesterol.

Although studies of the relation between classic cardiovascular risk factors and Parkinson disease have been inconsistent, most studies point to smoking as negatively associated with Parkinson disease.14,15,33–35 Our finding of a lower risk of Parkinson disease and secondary parkinsonism in MI survivors may partially be driven by a higher prevalence of smoking in MI survivors compared with the general population, although we adjusted for chronic pulmonary disease as a proxy for chronic smoking exposure. High blood levels of cholesterol also have been negatively associated with risk of Parkinson disease. A prospective study from the Netherlands reported high serum cholesterol levels to be associated with a decreased risk of Parkinson disease after adjusting for other cardiovascular risk factors (HR, 0.77; 95% CI, 0.64–0.94).36 This finding has been confirmed in a case-control study14 and a population-based cohort study.16 Although we adjusted for hypercholesterolemia diagnoses, the prevalence in the MI cohort is only 5.4% (Table 1). Hence, residual confounding of hypercholesterolemia may also partly drive our results of lower risk of Parkinson disease and secondary parkinsonism. High

Table 3. Risk of Parkinson Disease and Secondary Parkinsonism in Patients With MI and Members of the General Population Cohort, by Procedures and Complications After MI

Variable	Parkinson disease	Secondary parkinsonism		
	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*
Procedures and complications during admission for MI				
Coronary artery bypass grafting				
Yes	1.10 (0.69–1.69)	1.12 (0.61–2.05)	…	…
No	0.85 (0.78–0.94)	0.79 (0.73–0.87)	0.09 (0.07–0.12)	0.74 (0.56–0.97)
Percutaneous coronary intervention				
Yes	0.98 (0.80–1.20)	0.83 (0.71–0.98)	0.04 (0.02–0.08)	0.51 (0.26–0.99)
No	0.80 (0.73–0.89)	0.78 (0.71–0.87)	0.10 (0.08–0.13)	0.78 (0.57–1.06)
Pacemaker				
Yes	0.51 (0.21–1.06)	0.55 (0.23–1.34)	…	…
No	0.86 (0.79–0.95)	0.80 (0.74–0.88)	0.09 (0.07–0.12)	0.74 (0.56–0.98)
Complications during first year after MI				
Cardiogenic shock or pulmonary edema				
Yes	0.87 (0.62–1.20)	0.87 (0.60–1.27)	0.07 (0.03–0.15)	0.27 (0.07–0.96)
No	0.86 (0.79–0.95)	0.79 (0.72–0.87)	0.09 (0.07–0.12)	0.77 (0.58–1.03)
Stroke (ischemic or hemorrhagic)				
Yes	0.10 (0.01–0.56)	0.21 (0.02–2.49)	0.11 (0.01–0.60)	…
No	0.87 (0.79–0.95)	0.80 (0.74–0.88)	0.09 (0.07–0.12)	0.71 (0.54–0.94)
Heart failure				
Yes	0.73 (0.59–0.90)	0.88 (0.70–1.11)	0.09 (0.05–0.15)	0.72 (0.31–1.71)
No	0.88 (0.80–0.97)	0.78 (0.71–0.86)	0.09 (0.07–0.12)	0.69 (0.51–0.93)
Hypertension				
Yes	0.88 (0.76–1.01)	0.76 (0.68–0.86)	0.09 (0.06–0.12)	0.72 (0.49–1.06)
No	0.85 (0.75–0.96)	0.85 (0.75–0.96)	0.09 (0.07–0.14)	0.72 (0.48–1.09)
Atrial fibrillation or flutter				
Yes	0.91 (0.70–1.16)	1.01 (0.75–1.36)	0.19 (0.08–0.42)	0.78 (0.32–1.88)
No	0.86 (0.78–0.94)	0.79 (0.72–0.86)	0.08 (0.06–0.11)	0.69 (0.51–0.93)

Ellipses (…) indicate insufficient data to compute a meaningful estimate. MI, myocardial infarction.

*Controlled for matching factors by study design and adjusted for heart failure, stable angina pectoris, atrial fibrillation/atrial flutter, valvular heart disease, hypercholesterolemia, hypertension, stroke, intermittent claudication, obesity, diabetes, chronic pulmonary disease, alcoholism-related disease, head trauma, osteoarthritis, anemia, chronic kidney disease, depression, a modified Charlson Comorbidity Index score, antipsychotics, calcium channel blockers, income, and employment.
body mass index has been described as a risk factor for Parkinson disease in a Finnish observational study reporting a 2-fold increased risk for body mass index ≥30 kg/m²,37 whereas a recent Swedish population-based cohort study reported no association with Parkinson disease.38 This null association has further been supported in a case-control study29 and a population-based cohort study.15 High blood pressure has been both positively40 and negatively41,15 associated with the risk of Parkinson disease. It is interesting that stroke among MI survivors did not increase Parkinson disease risk in our study.

Several study strengths and limitations should be considered when interpreting our results. An important strength is the size of the study, allowing for examination of several possible interactions and mediators of the association between MI and parkinsonism, while retaining precision. The population-based design, within the setting of a tax-supported universal health care system with complete follow-up of all patients, largely eliminated selection biases.16 Registration of the MI diagnosis in the DNPR is accurate, with validation studies consistently reporting positive predictive values of >90% throughout the study period.19,30,41,42 The accuracy of Parkinson disease in the DNPR also is high at 91%.21 A concern is the unknown sensitivity of the diagnosis of Parkinson disease and secondary parkinsonism. The sensitivity may be higher in the MI cohort because of surveillance bias. However, this would lead to increased risk among patients with MI compared with the general population, which we did not observe. Despite extensive confounder adjustment for sex, age, comorbidity, and socioeconomic factors, our study is limited by its observational design. Thus, residual and unmeasured confounding cannot be ruled out and may partly underlie our results. More important, we lacked information on smoking and incompletely captured hypercholesterolemia, both of which are positively associated with MI43 and negatively associated with Parkinson disease.34,36

For the growing population of MI survivors and their managing physicians, the primary implication of our results is that the risk of Parkinson disease and parkinsonism is not increased compared with the general population. Conversely, our results point to a moderately decreased risk, which may reflect inverse associations between cardiovascular risk factors, such as smoking and elevated cholesterol, and Parkinson disease.

In conclusion, MI was associated with a moderately decreased risk of Parkinson disease and secondary parkinsonism, with robust results across subgroups and in sensitivity analyses.

REFERENCES
1. Koch MB, Davidsen M, Andersen LV, Juel K, Jensen GB. Increasing prevalence despite decreasing incidence of ischaemic heart disease and myocardial infarction: a national register based perspective in Denmark, 1980-2009. Eur J Prev Cardiol. 2015;22:189–195. doi: 10.1177/2047487315509495
2. Schmidt M, Jacobsen JB, Lash TL, Botker HE, Sørensen HT. 25 Year trends in first time hospitalisation for acute myocardial infarction, subsequent short and long term mortality, and the prognostic impact of sex and comorbidity: a Danish nationwide cohort study. BMJ. 2012;344:e356. doi: 10.1136/bmj.e356
3. Sundbøll J, Horváth-Puhó E, Schmidt M, Pedersen L, Henderson VW, Botker HE, Sørensen HT. Long-term risk of stroke in myocardial infarction survivors: thirty-year population-based cohort study. Stroke. 2016;47:1727–1733. doi: 10.1161/STROKEAHA.116.013321
4. Sundbøll J, Horváth-Puhó E, Adelborg K, Schmidt M, Pedersen L, Botker HE, Henderson VW, Sørensen HT. Higher risk of vascular dementia in myocardial infarction survivors. Circulation. 2018;137:567–577. doi: 10.1161/CIRCULATIONAHA.117.029127
5. Hong CT, Hu HH, Chan L, Bai CH. Prevalent cerebrovascular and cardiovascular disease in people with Parkinson's disease: a meta-analysis. Cln Epidemiol. 2018;10:1147–1154. doi: 10.2147/CLEP.S163493
6. Park JH, Kim DH, Park YG, Kwon DY, Choi M, Jung JH, Han K. Association of Parkinson disease with risk of cardiovascular disease and all-cause mortality: a nationwide population-based cohort study. Circulation. 2020;141:1205–1207. doi: 10.1161/CIRCULATIONAHA.119.044948
7. Kaila LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912. doi: 10.1016/S0140-6736(15)61393-3
8. Korczyn AD. Vascular parkinsonism—characteristics, pathogenesis and treatment. Nat Rev Neurol. 2015;11:319–326. doi: 10.1038/nrneurol.2015.61
9. de Laat KF, van Norden AGW, Gons RAR, van Uden IWM, Zwiers MP, Bloem BR, van Dijk EJ, de Leeuw F-E. Cerebral white matter lesions and lacunar infarcts contribute to the presence of mild parkinsonian signs. Stroke. 2012;43:2574–2579. doi: 10.1161/STROKEAHA.112.657130
10. Abete P, Della-Morte D, Gargiulo G, Basile C, Langellotto A, Galizia G, Testa G, Canonico V, Bonaduce D, Cacciatore F. Cognitive impairment and cardiovascular diseases in the elderly: a heart-brain continuum hypothesis. Ageing Res Rev. 2014;18:41–52. doi: 10.1016/j.arr.2014.07.003

ARTICLE INFORMATION
Received June 5, 2021; accepted December 6, 2021.

Affiliations
Department of Clinical Epidemiology (J.S., S.K.S., P.S., K.A., E.H., L.P., V.W.H., H.T.S.); and Department of Cardiology (J.S.), Aarhus University Hospital, Aarhus, Denmark; Departments of Epidemiology and Population Health (V.W.H., H.T.S.) and Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA (V.W.H., H.T.S.).

Acknowledgments
Dr Sørensen is the guarantor of this work, had full access to all the data in the study, and takes responsibility for the integrity of the data and the accuracy of the data analyses.

Sources of Funding
This work was supported by a grant from Lundbeckfonden (grant R248-2017-521). Neither funding source had a role in the design, conduct, analysis, or reporting of the study. Dr Henderson’s effort was supported by a grant from National Institutes of Health (grant P30AG066515).

Disclosures
None.

Supplemental Material
Tables S1–S8
Figure S1

Sundbøll et al Myocardial Infarction and Parkinson Disease
11. Alvarez MVG, Evidente VGH. Understanding drug-induced parkinsonism: separating pearls from oyster. Neurology. 2008;70:e32–e34. doi: 10.1212/01.wnl.0000302255.49113.51

12. Morgan JC, Sethi KD. Drug-induced tremors. Lancet Neurol. 2005;4:866–876. doi: 10.1016/S1474-4422(05)70250-7

13. Patashnik J, Huang X, Becker C, Chen H, Fotinyie T, Marras C. Understanding the links between cardiovascular disease and Parkinson’s disease. Mov Disord. 2020;35:55–74. doi: 10.1002/mds.27838

14. Scigliano G, Muscicchio M, Solviero P, Piccioni L, Ronchetti G, Girotti F. Reduced risk factors for vascular disorders in Parkinson disease patients: a case-control study. Stroke. 2006;37:1184–1188. doi: 10.1161/01.STR.0000217384.03237.8c

15. Vikdahl M, Bäckman L, Johansson I, Forsgren L, Häglin L. Cardiovascular risk factors and the risk of Parkinson’s disease. Eur J Clin Nutr. 2015;69:729–733. doi: 10.1038/ejcn.2014.259

16. Rozani V, Squirevich T, Giliadi N, El-Ad B, Tsamir J, Hemo B, Peretz C. Higher serum cholesterol and decreased Parkinson’s disease risk: a statin-free cohort study. Mov Disord. 2018;33:1296–1305. doi: 10.1002/mds.27413

17. Schmidt M, Schmidt SAJ, Adelborg K, Sundboll J, Laugesen K, Ehrenstein V, Sørensen HT. The Danish health care system and epidemiological research: from health care contacts to database records. Clin Epidemiol. 2019;11:563–591. doi: 10.2147/CLEP.S179083

18. Schmidt M, Pedersen L, Sørensen HT. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol. 2014;29:541–549. doi: 10.1007/s10654-014-9930-3

19. Schmidt M, Schmidt SA, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol. 2015;7:449–490. doi: 10.2147/CLEP.S91125

20. Heide-Jørgensen U, Adelborg K, Kahlert J, Sørensen HT, Pedersen L. Sampling strategies for selecting general population comparison cohorts. Clin Epidemiol. 2016;10:1225–1337. doi: 10.2147/CLEP.S164456

21. Ruggbjerg K, Ritz B, Korbo L, Martinussen N, Olsen JH. Risk of Parkinson’s disease after hospital contact for head injury: population based case-control study. BMJ. 2008;337:a2494. doi: 10.1136/bmj.a2494

22. Mors O, Perto GP, Mortensen PB. The Danish psychiatric central research register. Scand J Public Health. 2011;39:54–57. doi: 10.1177/1403494810398625

23. Petersen F, Baadsgaard M, Thygesen LC. Danish registers on personal labour market affiliation. Scand J Public Health. 2011;39:95–98. doi: 10.1177/1403494811408483

24. Gaist D, Sørensen HT, Hallas J. The Danish prescription registries. Dan Med Bull. 1997;44:445–448.

25. Shin HW, Chung SJ. Drug-induced parkinsonism. J Clin Neurol. 2012;8:15–21. doi: 10.3988/jcn.2012.8.1.15

26. Sundboll J, Schmidt M, Adelborg K, Pedersen L, Betker HE, Videbech P, Sørensen HT. Impact of pre-admission depression on mortality following myocardial infarction. Br J Psychiatry. 2017;210:356–361. doi: 10.1192/bjp.bp.116.194605

27. Adelborg K, Schmidt M, Sundboll J, Pedersen L, Videbech P, Betker HE, Egstrup K, Sørensen HT, Egstrup K, Sørensen HT. Mortality risk among heart failure patients with depression: a nationwide population-based cohort study. J Am Heart Assoc. 2016;5:e004137. doi: 10.1161/ JAHAA.116.004137

28. Therneau T. Modeling Survival Data: Extending the Cox Model. Springer Science & Business Media; 2000:44–48.
SUPPLEMENTAL MATERIAL
Table S1. Codes used in the study.

Disease	ICD-8 codes	ICD-10 codes	ATC code	Procedure codes
Cardiovascular diseases				
Myocardial infarction	410	I21		
ST-segment myocardial infarction (STEMI)	N/A	I211B, I210B, I213		
Non-STEMI	N/A	I211A, I210A, I214		
Heart failure	427.09, 427.10, 427.11, 427.19, 428.99, 782.49	I50, I11.0, I13.0, I13.2		
Angina pectoris	413	I20 (except I20.0), I25.1, I25.9		
Atrial fibrillation or flutter	427.93, 427.94	I48		
Valvular heart disease	394-398	I05, I06, I07, I08.0, I09.8, I34-I37, I39.0, I39.3, I51.1A, Q22		
Hypercholesterolemia	272.00	E780		
Hypertension	400-404	DI10-DI15, I67.4		Combination treatment of at least two redeemed prescriptions for different types of the following classes of antihypertensive drugs within 180 days prior to myocardial infarction: α-adrenergic blockers, ATC: C02A, C02B, C02C, non-loop diuretics, ATC: C02DA, C02L, C03A, C03B, C03D, C03E, C03X, C07C, C07D, C08G, C09BA, C09DA, C09XA52, vasodilators, ATC: C02DB, C02DD, C02DG, C04, C05, β-blockers, ATC: C07, calcium channel blockers, ATC: C07F, C08, C09BB, C09DB, and reninangiotensin system inhibitors, ATC: C09
Stroke (ischemic and intracerebral)	431, 433-434	I61, I63-I64		
Condition	ICD-10 Code			
--	----------------------------			
Intermittent claudication	443.89–443.99			
Cardiogenic shock and pulmonary edema	427.10, 427.11			
Non-cardiovascular diseases				
Obesity	277			
Diabetes mellitus (excluding 249.02, 250.02)	249, 250			
Chronic pulmonary disease	490-493; 515-518			
Alcoholism-related diseases	980, 291.09-291.99, 303.09-303.99, 571.09-571.11, 577.10			
Head trauma	800-803, 850-854			
Depression	296.09, 296.29, 298.09, 300.49			
Osteoarthritis	713			
Anemia	280-281, 283-285			
Chronic kidney disease	249.02, 250.02, 753.10-753.19, 582, 583, 584, 590.09, 593.20, 792			
Drug frequently causing parkinsonism				
Typical antipsychotics (piperazine side chain neuroleptics)	N05AB			
Calcium-channel blockers				
Outcomes				
Parkinson’s disease	342			
Secondary parkinsonism	–			
Procedures during admission				
Coronary artery bypass graft surgery
Before 1996: 30009, 30019, 30029, 30039, 30049, 30059, 30069, 30079, 30089, 30099, 30109, 30119, 30120, 30129, 30139, 30149, 30159, 30169, 30179, 30189, 30199, 30200
After 1996: KFNA-E, KFNH20

Percutaneous coronary intervention
Before 1996: 30350, 30354, 30240
After 1996: KFNG, KFNF

Pacemaker
Before 1996: 30930, 32140, 32199, 32490
After 1996: BFCA
Disease	Weight	ICD-8	ICD-10
Peripheral vascular disease	1	440, 441, 442, 443, 444, 445	170, 171, 172, 173, 174, 177
Cerebrovascular disease		430-438; 160-169, G45, G46	
Dementia		290.09-290.19, 293.09; F00-F03, F05.1, G30	
Connective tissue disease		712, 716, 734, 446, 135.99; M05, M06, M08, M09, M30, M31, M32, M33, M34, M35, M36, D86	
Ulcer disease		530.91, 530.98, 531-534; K22.1, K25-K28	
Mild liver disease		571, 57301, 57304; B18, K70.0-K70.3, K70.9, K71, K73, K74, K76.0	
Hemiplegia	2	344; G81, G82	
Non-metastatic solid tumor		140-194; C00-C75	
Leukemia		204-207; C91-C95	
Lymphoma		200-203, 275.59; C81-C85, C88, C90, C96	
Moderate to severe liver disease	3	070.00, 070.02, 070.04, 070.06, 070.08, 070.09, 573.00, 456.00-456.09; B15.0, B16.0, B16.2, B19.0, K70.4, K72, K76.6, I85	
Metastatic cancer	6	195-198, 199; C76-C80	
AIDS		079.83; B21-B24	
Table S3. Characteristics of myocardial infarction survivors and members of the general population comparison cohort at 1 year after myocardial infarction, Denmark, 1995-2012.

Characteristics	Myocardial infarction cohort (n=131,396)	Comparison cohort (n=630,166)
Male	84,818 (64.6)	408,024 (64.7)
Age, years		
<60	39,027 (29.7)	193,419 (30.7)
60–69	34,235 (26.1)	167,756 (26.6)
70–79	33,882 (25.8)	161,726 (25.7)
≥80	24,252 (18.5)	107,265 (17.0)
Median (25th–75th percentile)	67 (57–77)	67 (57–76)
Decade of diagnosis / index date		
1996–1999	28,448 (21.7)	136,107 (21.6)
2000–2004	34,128 (26.0)	162,980 (25.9)
2005–2009	31,361 (23.9)	150,336 (23.9)
2010–2016	37,459 (28.5)	180,743 (28.7)
Comorbidity		
Heart failure	28,317 (21.6)	18,318 (2.9)
Angina pectoris	77,330 (58.9)	39,782 (6.3)
Atrial fibrillation or flutter	17,524 (13.3)	34,016 (5.4)
Valvular heart disease	8,068 (6.1)	11,615 (1.8)
Hypercholesterolemia	35,356 (26.9)	18,976 (3.0)
Hypertension	81,433 (62.0)	150,163 (23.8)
Stroke	10,826 (8.2)	29,127 (4.6)
Intermittent claudication	4,996 (3.8)	6,607 (1.0)
Obesity	8,012 (6.1)	13,978 (2.2)
Diabetes mellitus	21,264 (16.2)	48,656 (7.7)
Chronic pulmonary disease	16,160 (12.3)	39,467 (6.3)
Alcoholism-related diseases	4,562 (3.5)	17,411 (2.8)
Head trauma	9,537 (7.3)	40,078 (6.4)
Osteoarthritis	17,269 (13.1)	70,382 (11.2)
Anemia	9,540 (7.3)	18,389 (2.9)
Chronic kidney disease	5,828 (4.4)	8,196 (1.3)
Depression	5,111 (3.9)	16,321 (2.6)
Drugs frequently causing parkinsonism		
Typical antipsychotics (piperazine side chain neuroleptics)	2,308 (1.8)	9,115 (1.4)
Calcium-channel blockers	53,126 (40.4)	127,167 (20.2)
Modified CCl score*		
Normal	94,456 (71.9)	509,388 (80.8)
Moderate	19,848 (15.1)	52,884 (8.4)
Severe	11,860 (9.0)	51,338 (8.1)
Very severe	5,232 (4.0)	16,556 (2.6)
Income		
Low	39,983 (30.4)	165,356 (26.2)
Intermediate	37,309 (28.4)	163,355 (25.9)
High	30,093 (22.9)	147,668 (23.4)
Very high	23,971 (18.2)	153,272 (24.3)
Missing	40 (0.0)	515 (0.1)
Employment		
Employed	40,956 (31.2)	231,073 (36.7)
Early retirement	19,346 (14.7)	75,547 (12.0)
Unemployed	4,100 (3.1)	15,501 (2.5)
State pensioner	66,756 (50.8)	305,731 (48.5)
Missing	238 (0.2)	2,314 (0.4)
Education		
Basic education or primary school	53,463 (40.7)	222,997 (35.4)
Youth education, high school, or similar education	44,197 (33.6)	219,647 (34.9)
Higher education	16,608 (12.6)	114,198 (18.1)
Unknown	17,128 (13.0)	73,324 (11.6)

Table values are given as n (%). CCI indicates Charlson Comorbidity Index.

*Categories of comorbidity were based on modified Charlson Comorbidity Index scores: 0 (normal), 1 (moderate), 2 (severe), and ≥3 (very severe).
Table S4. Risk of parkinsonism following myocardial infarction compared with the general population cohort, by sex and age.

Characteristics	Parkinson’s disease	Secondary parkinsonism		
	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*
Female	0.57 (0.47–0.68)	0.80 (0.68–0.95)	0.08 (0.05–0.13)	0.97 (0.57–1.68)
Male	1.02 (0.92–1.14)	0.79 (0.72–0.88)	0.10 (0.07–0.13)	0.67 (0.48–0.93)
<60 years	0.61 (0.47–0.79)	0.93 (0.73–1.19)	0.05 (0.03–0.10)	1.06 (0.41–2.73)
60-69 years	1.16 (0.99–1.37)	0.83 (0.71–0.97)	0.15 (0.10–0.22)	0.78 (0.49–1.22)
70-79 years	1.11 (0.98–1.25)	0.73 (0.64–0.84)	0.13 (0.08–0.19)	0.62 (0.39-0.98)
80+ years	0.48 (0.40–0.59)	0.76 (0.61–0.95)	0.03 (0.01–0.06)	0.46 (0.17–1.23)

CI indicates confidence interval.

*Controlled for matching factors by study design and adjusted for heart failure, stable angina pectoris, atrial fibrillation/atrial flutter, valvular heart disease, hypercholesterolemia, hypertension, stroke, intermittent claudication, obesity, diabetes mellitus, chronic pulmonary disease, alcoholism-related disease, head trauma, osteoarthritis, anemia, chronic kidney disease, depression, a modified Charlson Comorbidity Index score, antipsychotics, calcium channel blockers, income, and employment.
Table S5. Risk of Parkinson’s disease and parkinsonism following myocardial infarction compared with the general population cohort, by history of comorbidity.

Comorbidity	Parkinson’s disease	Secondary parkinsonism														
	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*												
Heart failure																
Yes	0.50 (0.31–0.76)	0.65 (0.41–1.05)	0.04 (0.01–0.13)	0.33 (0.07–1.48)												
No	0.88 (0.80–0.97)	0.79 (0.73–0.86)	0.09 (0.07–0.12)	0.74 (0.57–0.96)												
Angina pectoris																
Yes	1.05 (0.82–1.32)	0.77 (0.62–0.95)	0.07 (0.04–0.13)	0.64 (0.32–1.26)												
No	0.84 (0.76–0.92)	0.79 (0.73–0.87)	0.09 (0.07–0.12)	0.74 (0.57–0.98)												
Atrial fibrillation or flutter																
Yes	0.95 (0.70–1.27)	1.26 (0.92–1.73)	0.27 (0.08–0.72)	1.46 (0.63–3.39)												
No	0.86 (0.78–0.94)	0.79 (0.73–0.86)	0.09 (0.06–0.11)	0.69 (0.53–0.90)												
Valvular heart disease																
Yes	0.43 (0.22–0.80)	0.58 (0.30–1.12)	0.08 (0.01–0.45)	0.51 (0.05–5.10)												
No	0.87 (0.79–0.95)	0.79 (0.73–0.86)	0.09 (0.07–0.12)	0.72 (0.56–0.93)												
Hypercholesterolemia																
Yes	2.43 (0.86–5.45)	1.04 (0.69–1.58)	0.07 (0.02–0.17)	1.57 (0.43–5.71)												
No	0.84 (0.77–0.92)	0.78 (0.72–0.85)	0.09 (0.07–0.12)	0.71 (0.55–0.92)												
Hypertension																
Yes	0.89 (0.76–1.04)	0.88 (0.76–1.03)	0.10 (0.06–0.18)	0.70 (0.44–1.11)												
No	0.85 (0.76–0.95)	0.75 (0.68–0.83)	0.09 (0.07–0.12)	0.73 (0.54–0.99)												
Stroke																
Yes	0.61 (0.42–0.85)	0.78 (0.54–1.14)	0.14 (0.06–0.28)	0.88 (0.38–2.06)												
No	0.88 (0.80–0.96)	0.79 (0.73–0.86)	0.09 (0.07–0.12)	0.71 (0.54–0.93)												
Intermittent Claudication																
Yes	0.22 (0.08–0.52)	0.48 (0.18–1.31)	–	–												
No	0.87 (0.80–0.96)	0.79 (0.73–0.86)	0.09 (0.07–0.12)	0.73 (0.57–0.95)												
Obesity																
Yes	0.51 (0.30–0.85)	0.72 (0.40–1.27)	–	–												
No	0.87 (0.79–0.95)	0.79 (0.73–0.86)	0.09 (0.07–0.12)	0.76 (0.59–0.98)												
Diabetes mellitus																
Yes	0.87 (0.65–1.14)	0.91 (0.70–1.18)	0.08 (0.04–0.17)	0.38 (0.17–0.85)												
No	0.86 (0.78–0.95)	0.78 (0.71–0.85)	0.09 (0.07–0.12)	0.78 (0.60–1.01)												
Chronic pulmonary disease																
Yes	0.45 (0.31–0.63)	0.66 (0.45–0.96)	0.05 (0.02–0.13)	0.57 (0.19–1.67)												
No	0.90 (0.82–0.98)	0.80 (0.73–0.87)	0.10 (0.07–0.12)	0.73 (0.57–0.95)												
Alcoholism-related disease																
Yes	0.68 (0.36–1.22)	0.98 (0.54–1.79)	0.28 (0.10–0.67)	1.53 (0.53–4.45)												
No	0.87 (0.79–0.95)	0.79 (0.72–0.86)	0.09 (0.07–0.11)	0.69 (0.53–0.90)												
Head trauma																
Yes	0.79 (0.51–1.19)	0.93 (0.64–1.37)	0.14 (0.04–0.38)	0.81 (0.26–2.56)												
No	0.87 (0.79–0.95)	0.78 (0.72–0.85)	0.09 (0.07–0.12)	0.71 (0.55–0.93)												
Osteoarthritis																
Yes	0.81 (0.63–1.04)	0.81 (0.63–1.04)	0.05 (0.02–0.12)	0.40 (0.17–0.94)												
No	0.87 (0.79–0.95)	0.79 (0.72–0.86)	0.10 (0.07–0.12)	0.78 (0.60–1.02)												
	Yes	No	Chronic kidney disease	Depression	Modified CCI score	Typical antipsychotics use within the first year after myocardial infarction	Calcium-channel blockers use within the first year after myocardial infarction									
----------------------	--------------	---------------	------------------------	------------	-------------------	--	--									
	0.44 (0.26–0.72)	0.87 (0.80–0.96)	0.74 (0.42–1.24)	0.87 (0.79–0.95)	0.86 (0.78–0.94)	1.46 (0.61–3.02)	0.93 (0.77–1.12)	0.91 (0.82–1.00)	0.51 (0.25–0.96)	0.82 (0.47–1.43)	0.79 (0.73–0.86)	0.78 (0.72–0.85)	0.80 (0.74–0.87)	0.91 (0.87–1.78)	0.91 (0.87–1.78)	0.51 (0.25–0.96)
	0.82 (0.47–1.43)	0.79 (0.73–0.86)	1.27 (0.67–2.39)	0.78 (0.72–0.85)	0.80 (0.74–0.87)	0.54 (0.33–0.88)	0.54 (0.33–0.88)	0.79 (0.72–0.87)	0.91 (0.47–1.78)	0.06 (0.01–0.21)	0.09 (0.02–0.32)	0.09 (0.07–0.12)	0.20 (0.07–0.45)	0.06 (0.01–0.21)	0.06 (0.01–0.21)	
			0.06 (0.01–0.21)	0.09 (0.07–0.12)	0.09 (0.07–0.12)	0.28 (0.03–1.49)	0.28 (0.03–1.49)	0.09 (0.07–0.12)	0.09 (0.07–0.12)	0.71 (0.54–0.93)						
			0.41 (0.09–1.86)	0.74 (0.57–0.95)	0.74 (0.57–0.95)	–	–	0.86 (0.79–0.94)	0.82 (0.74–0.91)	0.82 (0.74–0.91)	0.82 (0.74–0.91)	0.78 (0.72–0.85)	0.79 (0.73–0.86)	0.78 (0.72–0.85)	0.78 (0.72–0.85)	0.78 (0.72–0.85)
			0.72 (0.26–2.01)	0.72 (0.55–0.93)	0.71 (0.54–0.93)			0.83 (0.75–0.92)	0.83 (0.75–0.92)	0.83 (0.75–0.92)	0.83 (0.75–0.92)	0.80 (0.74–0.87)	0.78 (0.72–0.85)	0.78 (0.72–0.85)	0.78 (0.72–0.85)	0.78 (0.72–0.85)
			0.41 (0.09–1.86)	0.74 (0.57–0.95)	0.74 (0.57–0.95)			0.06 (0.01–0.21)	0.06 (0.01–0.21)	0.06 (0.01–0.21)	0.06 (0.01–0.21)	0.06 (0.01–0.21)	0.06 (0.01–0.21)	0.06 (0.01–0.21)	0.06 (0.01–0.21)	0.06 (0.01–0.21)

– Indicates insufficient data to compute a meaningful estimate; CCI, Charlson Comorbidity Index, CI, confidence interval.

*Adjusted for age, sex, calendar year, heart failure, stable angina pectoris, atrial fibrillation/atrial flutter, valvular heart disease, hypercholesterolemia, hypertension, stroke, intermittent claudication, obesity, diabetes mellitus, chronic pulmonary disease, alcoholism-related disease, head trauma, osteoarthritis, anemia, chronic kidney disease, depression, a modified Charlson Comorbidity Index score, antipsychotics, calcium channel blockers, income, and employment (except the stratified variable).
Table S6. Risk of Parkinson’s disease and parkinsonism following myocardial infarction compared with the general population cohort, by calendar periods and type of myocardial infarction diagnosis.

Year/diagnosis	Parkinson’s disease	Secondary parkinsonism		
	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*
1995–1999	0.85 (0.75–0.97)	0.79 (0.68–0.92)	0.12 (0.08–0.16)	0.93 (0.59–1.47)
2000–2004	0.72 (0.62–0.83)	0.75 (0.64–0.87)	0.08 (0.06–0.12)	0.77 (0.48–1.23)
2005–2009	0.69 (0.58–0.82)	0.91 (0.77–1.09)	0.01 (0.01–0.04)	0.15 (0.05–0.43)
2010–2016	0.26 (0.18–0.35)	0.75 (0.55–1.02)	0.03 (0.01–0.06)	0.31 (0.06–1.72)
Primary diagnosis of myocardial infarction	0.88 (0.80–0.97)	0.80 (0.73–0.87)	0.10 (0.07–0.12)	0.72 (0.54–0.95)
Secondary diagnosis of myocardial infarction	0.60 (0.44–0.82)	0.89 (0.63–1.24)	0.05 (0.02–0.12)	0.62 (0.11–3.45)

CI indicates confidence interval.

*Controlled for matching factors by study design and adjusted for heart failure, stable angina pectoris, atrial fibrillation/atrial flutter, valvular heart disease, hypercholesterolemia, hypertension, stroke, intermittent claudication, obesity, diabetes mellitus, chronic pulmonary disease, alcoholism-related disease, head trauma, osteoarthritis, anemia, chronic kidney disease, depression, a modified Charlson Comorbidity Index score, antipsychotics, calcium channel blockers, income, and employment.
Table S7. Risk of Parkinson’s disease and parkinsonism following myocardial infarction compared with the general population cohort, restricted to different socioeconomic status levels in both cohorts.

Socioeconomic Characteristics	Parkinson’s disease			Secondary parkinsonism			
	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*			
Income							
Low	0.73 (0.63–0.85)	0.69 (0.59–0.81)	0.09 (0.06–0.13)	0.61 (0.39–0.95)			
Intermediate	0.97 (0.82–1.14)	0.88 (0.76–1.02)	0.10 (0.06–0.15)	0.79 (0.50–1.25)			
High	0.80 (0.67–0.97)	0.75 (0.63–0.89)	0.09 (0.05–0.15)	0.70 (0.41–1.18)			
Very high	0.93 (0.74–1.16)	0.86 (0.71–1.04)	0.10 (0.05–0.20)	0.95 (0.49–1.87)			
Unknown	2.73 (0.21–12.12)	2.17 (0.18–26.46)	–	–			
Employment							
Employed	0.82 (0.68–0.98)	0.92 (0.78–1.08)	0.08 (0.05–0.14)	0.94 (0.55–1.59)			
Early retirement	1.10 (0.84–1.41)	0.84 (0.68–1.03)	0.13 (0.06–0.24)	0.74 (0.41–1.36)			
Unemployed	0.76 (0.33–1.58)	0.80 (0.42–1.50)	0.13 (0.04–0.33)	2.72 (0.77–9.65)			
State pensioner	0.82 (0.74–0.91)	0.73 (0.66–0.82)	0.09 (0.06–0.12)	0.60 (0.42–0.84)			
Missing	2.44 (0.56–6.98)	1.76 (0.50–6.23)	–	–			
Education							
Basic education, primary school	0.82 (0.71–0.94)	0.78 (0.68–0.88)	0.09 (0.06–0.13)	0.74 (0.51–1.08)			
Youth education, high school or similar education	1.01 (0.85–1.18)	0.90 (0.78–1.03)	0.13 (0.08–0.20)	0.92 (0.61–1.40)			
Higher education	1.12 (0.84–1.48)	0.74 (0.59–0.93)	0.09 (0.03–0.21)	0.54 (0.23–1.25)			
Unknown	0.51 (0.40–0.64)	0.72 (0.57–0.92)	0.04 (0.02–0.08)	0.44 (0.19–1.02)			

* Indicates insufficient data to compute a meaningful estimate; CI, confidence interval.

*Adjusted for age, sex, calendar year, heart failure, stable angina pectoris, atrial fibrillation/atrial flutter, valvular heart disease, hypercholesterolemia, hypertension, stroke, intermittent claudication, obesity, diabetes mellitus, chronic pulmonary disease, alcoholism-related disease, head trauma, osteoarthritis, anemia, chronic kidney disease, depression, a modified Charlson Comorbidity Index score, antipsychotics, calcium channel blockers, income, and employment (except the stratified variable).
Table S8. Sensitivity analyses of the association between myocardial infarction and risk of Parkinson’s disease and parkinsonism.

Analysis change	Parkinson’s disease	Secondary parkinsonism		
	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*	Cumulative risk, % (95% CI)	Adjusted hazard ratio (95% CI)*
Excluding initial years of follow-up (years since diagnosis)				
2–22 years	0.87 (0.78–0.95)	0.81 (0.74–0.89)	0.09 (0.07–0.12)	0.73 (0.54–0.98)
3–22 years	0.85 (0.76–0.94)	0.81 (0.73–0.89)	0.09 (0.07–0.12)	0.75 (0.55–1.03)
5–22 years	0.82 (0.73–0.92)	0.82 (0.73–0.92)	0.10 (0.07–0.13)	0.91 (0.63–1.30)
Additionally adjusting for education	0.86 (0.79–0.94)	0.80 (0.73–0.87)	0.09 (0.07–0.12)	0.72 (0.54–0.94)
Disaggregating the follow-up				
1–5 years	0.22 (0.20–0.25)	0.76 (0.66–0.87)	0.02 (0.01–0.03)	0.51 (0.32–0.82)
6–10 years	0.33 (0.29–0.38)	0.81 (0.69–0.94)	0.04 (0.03–0.06)	0.75 (0.46–1.23)
11–15 years	0.41 (0.35–0.49)	0.92 (0.75–1.13)	0.05 (0.03–0.08)	1.35 (0.71–2.58)
16 years–22 years	0.33 (0.22–0.47)	0.68 (0.44–1.04)	–	–
Type of myocardial infarction	0.89 (0.74–1.06)	0.93 (0.79–1.09)	0.07 (0.04–0.13)	0.61 (0.33–1.14)

*– Indicates insufficient data to compute a meaningful estimate; CI, confidence interval; STEMI, ST-segment elevation myocardial infarction.

*Controlled for matching factors by study design and adjusted for heart failure, stable angina pectoris, atrial fibrillation/atrial flutter, valvular heart disease, hypercholesterolemia, hypertension, stroke, intermittent claudication, obesity, diabetes mellitus, chronic pulmonary disease, alcoholism-related disease, head trauma, osteoarthritis, anemia, chronic kidney disease, depression, a modified Charlson Comorbidity Index score, antipsychotics, calcium channel blockers, income, and employment.
Figure S1. Required strength of an unmeasured confounder for Parkinson’s disease (upper panel) and secondary parkinsonism (lower panel) to fully explain the main estimate counterpart. The graphs illustrate how strongly an unmeasured confounder would need to be associated with myocardial infarction (prevalence ratio for exposure–confounder association [PR_{EC}]) and Parkinson’s disease or secondary parkinsonism (relative risk of the disease in patients with the confounder [RR_{CD}]) to fully explain away our estimates. The graphs depict the adjusted hazard ratio for the outcomes along with the upper limit of the 95% confidence interval (CI).