PROBLEMS 85 AND 87 OF BIRKHOF F’S \textit{LATTICE THEORY}

JONATHAN DAVID FARLEY AND DOMINIC VAN DER ZYPEN

Abstract. We solve problems 85 and 87 from Birkhoff’s book \textit{Lattice Theory} \cite{1}.

1. Introduction

A partially ordered set (or \textit{poset} for short) is a set \(X \) with a binary relation \(\leq \) that is reflexive, transitive, and anti-symmetric (i.e., \(x, y \in X \) with \(x \leq y \) and \(y \leq x \) implies \(x = y \)). Often, a poset is denoted by \((X, \leq) \). A subset \(D \subseteq X \) is called a \textit{down-set} if it is “closed under going down”, that is \(d \in D, x \in X, x \leq d \) jointly imply \(x \in D \). A special case of a down-set is the set \(\downarrow_P x = \{ y \in X : y \leq x \} \) for \(x \in X \). (Sometimes we just write \(\downarrow x \) if the poset \(P \) is clear from the context.) Down-sets of this form are called \textit{principal}. If \(S \subseteq X \) we say \(S \) has a \textit{smallest element} \(s_0 \in S \) if \(s_0 \leq s \) for all \(s \in S \). Note that anti-symmetry of \(\leq \) implies that a smallest element is unique (if it exists at all!). Similarly, we define a largest element. Moreover, we set \(S^u = \{ x \in X : x \geq s \text{ for all } s \in S \} \) to be the \textit{set of upper bounds} of \(S \). The set of lower bounds \(S^\ell \) is defined analogously.

We say that a subset \(S \subseteq X \) of a poset \((X, \leq) \) has an \textit{infimum} or \textit{largest lower bound} if

\begin{enumerate}
 \item \(S^\ell \neq \emptyset \), and
 \item \(S^\ell \) has a largest element.
\end{enumerate}

Again, an infimum (if it exists) is unique by anti-symmetry of the ordering relation, and it is denoted by \text{inf}(S) or \(\bigwedge_X S \). The dual notion (everything taken “upside down” in the poset) is called \textit{supremum} and is denoted by \text{sup}(S) or \(\bigvee_X S \). The infimum of the empty set is defined to be the largest element of \(X \) if it has one, and the supremum is the smallest element of \(X \).

2010 \textit{Mathematics Subject Classification.} 05A18, 06B23.

\textit{Key words and phrases.} Lattice theory, interval topology, breadth, Birkhoff.
A poset \((X, \leq)\) in which infima and suprema exist for all \(S \subseteq X\) is called a complete lattice. A lattice has suprema and infima for finite non-empty subsets. If \((X, \leq)\) is a poset and \(x, y \in X\) we use the following notation
\[
x \lor y := \bigvee_{x} \{x, y\},
\]
and \(x \land y\) is defined analogously. To emphasize the binary operations \(\lor, \land\), a lattice \((L, \leq)\) is sometimes written as \((L, \lor, \land)\). A lattice is distributive if for all \(x, y, z \in L\) we have
\[
x \land (y \lor z) = (x \land y) \land (x \land z).
\]

Definition 1.1. Given a poset \((X, \leq)\), the interval topology \(\tau_i(X)\) is given by the subbase
\[
S = \{X \setminus (\downarrow x) : x \in X\} \cup \{X \setminus (\uparrow x) : x \in X\}.
\]

Finally we give the notion of breadth of a lattice.

Definition 1.2. Let \(n \in \mathbb{N}\) be a positive integer. For a complete lattice \((L, \leq)\) we say that it has breadth \(\leq n\) if for any finite set \(F\) there is \(A \subseteq F\) with \(|A| \leq n\) such that \(\inf(A) = \inf(F)\). We say \(L\) has finite breadth if there is a positive integer \(n \in \mathbb{N}\) such that \(L\) has breadth \(\leq n\). Otherwise we say that \(L\) has infinite breadth.

\section{Problem 85}

Here is the statement of this problem:

Is every complete morphism (i.e., for arbitrary joins and meets) of complete lattices continuous with respect to star-convergence? in the interval topology?

For the notion of star-convergence, we have to introduce some further notions. We start with the answer to the second part of the question, which is about the interval topology.

\subsection{Interval topology.}

Proposition 2.1. A complete homomorphism between complete lattices is continuous in the interval topology.

Proof. Let \(L\) and \(M\) be complete lattices and let \(f : L \to M\) be a complete lattice homomorphism. Then \(f\) is order-preserving. Let \(x, y \in M\) be such that \(x \leq y\). Either \(f^{-1}([x, y])\) is empty or else take \(a = \inf(f^{-1}([x, y]))\) and \(b = \sup(f^{-1}([x, y]))\). Then \(a \leq b\). Then
\[
f(a) = f(\inf(f^{-1}([x, y]))) = \inf(f(f^{-1}([x, y]))) \geq x,
\]
and similarly
\[f(b) = f(\sup(f^{-1}([x, y]))) = \sup(f(f^{-1}([x, y]))) \leq y, \]
and \(f(a) \leq f(b) \) so \(x \leq f(a) \leq f(b) \leq y \) and hence \(f(a), f(b) \) are in \([x, y]\).

Let \(c \in [a, b] \). Then \(x \leq f(a) \leq f(c) \leq f(b) \leq y \), so \([a, b]\) is a subset of \(f^{-1}([x, y])\). But \(f^{-1}([x, y]) \) is a subset of \([a, b]\). Thus \(f^{-1}([x, y]) = [a, b] \).

Hence \(f^{-1} \) takes subbasic closed sets to subbasic closed sets or the empty set. Therefore \(f \) is continuous when \(L \) and \(M \) have the interval topology. \(\square \)

2.2. Star-convergence. For this part of the question we need the notion of order convergence expressed with filters (Birkhoff uses nets, and filters offer an equivalent, but more concise approach to convergence [3]).

Let \((P, \leq)\) be a poset. By a set filter \(F \) on \(P \) we mean a collection of subsets of \(P \) such that:
- \(\emptyset \notin F; \)
- \(A, B \in F \) implies \(A \cap B \in F; \)
- \(U \in F, U' \subseteq P \) and \(U' \supseteq U \) implies \(U' \in F. \)

If \(F \) is a set filter, then we set \(F^u = \bigcup \{ F^u : F \in F \} \) and define \(F^\ell \) similarly.

For \(x \in P \) and \(F \) a set filter on \(P \) we write
\[F \to x \text{ iff } \bigwedge F^u = x = \bigvee F^\ell \]
and say \(F \) order-converges to \(x \).

If \(B \) is a collection of subsets of \(P \) such that
- \(\emptyset \notin B, \)
- for \(A, B \in B \) there is \(C \in B \) with \(C \subseteq A \cap B, \)
then we call \(B \) a filter base. The filter generated by \(B \) is the collection of sets that contain some member of \(B \).

If \(F \subseteq G \) are filters on \(P \) we say that \(G \) is a super-filter of \(F \).

Finally, we say that a filter \(F \) star-converges to \(x \in P \) if for every super-filter \(F' \) of \(F \) there is a super-filter \(G \) of \(F' \) such that \(F \to x \).

If \(X, Y \) are sets and \(F \) is a filter on \(X \) then it is easy to verify that \(B_f := \{ f(F) : F \in F \} \) is a filter base in \(Y \). We define \(f(F) \) to be the filter generated by \(B_f \).

The positive answer to the star-convergence part of question 85 follows from the following two lemmas:

Lemma 2.2. Let \(L, M \) be complete lattices and let \(f : L \to M \) be a complete lattice homomorphism. Suppose that \(F \) is a filter on \(L \) and \(x \in L \) such that \(F \to x \). Then \(f(F) \to f(x) \).
Proof. We prove that $\bigwedge_M f(F)^u = f(x)$.

The tool we use is Fact 1.1(1) from [2], which states that

$$x \in F^u \iff \downarrow x \in F.$$

So assuming $F \to x$ in the lattice L, we get $\downarrow x \in F$. Therefore $f(\downarrow x) \in B_f$.

Since f is order-preserving, we get $\downarrow M f(x) \supseteq f(\downarrow x)$, which implies $\downarrow M f(x) \in f(F)$ because B_f is a filter base for $f(F)$.

Using the other direction of the equivalence stated above, we get $\bigwedge (f(F))^u = f(x)$.

Lemma 2.3. If $G \supseteq F$ are filters on a set X and $f : X \to Y$ is any map, then $f(G) \supseteq f(F)$.

3. Problem 87

Here is the statement of this problem:

Can a lattice of infinite breadth be a Hausdorff lattice in its interval topology?

We will show that 2^ω is such an example. (We order $2 = \{0, 1\}$ by $0 < 1$ and set 2^ω to be the set of all functions $f : \omega \to 2$, ordered pointwise.)

First, we look at the interval topology of 2^ω.

Lemma 3.1. Let $(P_k)_{k \in K}$ be a family of posets. The interval topology $\tau_i = \tau_i(\prod_{k \in K} P_k)$ on $P = \prod_{k \in K} P_k$ equals the product topology τ_p of the topological spaces $(P_k, \tau_i(P_k))$.

Proof. Take a subbasic element of $U \in \tau_i$ and show that it is a member of τ_p. Without loss of generality we let $U = P \setminus (\uparrow (x_k)_{k \in K})$ where $x_k \in P_k$. Note that $\uparrow (x_k)_{k \in K}$ is a product of closed sets in the spaces $(P_k, \tau_i(P_k))$, therefore it is closed in the product topology, so $U \in \tau_p$.

Conversely, for some $j \in K$ let $U = \pi_j^{-1}(U_j)$ be subbasic in τ_p where $\pi_j : P \to P_j$ is the projection map and $U_j = P_j \setminus \uparrow x^*$ for some $x^* \in P_j$. Then

$$U = \bigcup \{P \setminus (\uparrow (z_k)_{k \in K}) : (z_k)_{k \in K} \in P \text{ and } z_j = x^*\}. $$

So $U \in \tau_i$. □

Corollary 3.2. The interval topology on 2^ω is Hausdorff.
Proof. The lemma shows that the interval topology is just the product topology of the (discrete) Hausdorff topology on \(2 = \{0, 1\} \), and the product topology of Hausdorff spaces is always Hausdorff.

\[\square \]

Lemma 3.3. The complete lattice \(2^\omega \) has infinite breadth.

Proof. For \(m \in \omega \) we let \(e_m : \omega \to 2 = \{0, 1\} \) be the function where \(e_m(m) = 0 \) and \(e_m(k) = 1 \) for \(m \neq k \).

In order to show that for any positive \(n \in \mathbb{N} \) the complete lattice \(2^\omega \) does not have breadth \(\leq n \), we consider the finite set

\[F = \{e_0, \ldots, e_n\}. \]

So \(\inf(F) \in 2^\omega \) is the function \(r : \omega \to 2 \) such that \(r(k) = 0 \) for \(k \leq n \) and \(r(k) = 1 \) otherwise.

Note that \(F \) has \(n+1 \) elements, and that for no subset of \(\mathcal{A} \subseteq F \) with \(\mathcal{A} \neq F \) do we have \(\inf(\mathcal{A}) = \inf(F) \).

\[\square \]

So corollary 3.2 and lemma 3.3 answer question 87.

References

[1] G. Birkhoff, *Lattice Theory*, third edition, p. 253.

[2] D. van der Zypen, *Order convergence and compactness*, Cah. Topol. Geom. Diff. Cat. (2004), 45(4), 297-300.

[3] https://en.wikipedia.org/wiki/Net_(mathematics)#Relation_to_filters

Morgan State University, Baltimore MD, United States of America

E-mail address: jonathan.farley@morgan.edu

Federal Office of Social Insurance, CH-3003 Bern, Switzerland

E-mail address: dominic.zypen@gmail.com