CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function

Clare Pridans1,*, Kristin A. Sauter1,*, Kristin Baer2, Holger Kissel2 & David A. Hume1

1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK; 2TaconicArtemis GmbH, 51063 Cologne, Germany.

Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant neurodegenerative condition with rather variable penetrance. A recent study identified mutations in the colony-stimulating factor 1 receptor (CSF1R) in multiple families with this disorder1. Subsequently, CSF1R mutations were identified in a related disorder termed pigmented orthochromatic leukodystrophy2. CSF1R signalling is required for the generation of the majority of mature macrophages3, including the microglia of the brain4. CSF1-dependent microglial activation has been implicated in neural damage in a model of Charcot-Marie-Tooth disease5. The authors of the recent report suggest that the causal mutations in CSF1R result in a loss of function, although there was no evidence of altered CSF1R levels or phosphorylation state in blood or brain samples from HDLS patients. Conversely, in vitro analysis of transfected HeLa cells resulted in no detectable autophosphorylation in three HDLS CSF1R mutations. The authors suggest that the presence of wild type CSF1R in the heterozygous individuals as the cause of this discrepancy1. Heterozygous mutation of Csf1r in mice does not generate any phenotype, suggesting that haploinsufficiency is an unlikely explanation for the dominant inheritance in HDLS. An alternative suggestion was that in patients the products of the mutant allele might assemble into heterodimers with wild-type protein and have a dominant negative effect. CSF1R is a type III receptor tyrosine kinase belonging to the platelet-derived growth factor (PDGF) receptor family whose members include PDGF-α and –β, the FMS-like tyrosine kinase 3 (FLT3) and the receptor for stem cell factor (c-KIT)6. These proteins have similar structures consisting of five immunoglobulin-like domains, a transmembrane domain, a juxtamembrane domain (JM) and a protein kinase domain divided in two by an insert domain (KID)7. Protein kinase domains are structurally conserved and as key regulators of most cellular pathways are frequently associated with disease and are often oncopogenic8. Mutations in the kinase domains of PDGF-α and c-KIT result in increased receptor dimerization leading to gastrointestinal tumours and mastocytosis (reviewed in9) whilst FLT3 gain of function mutations are often found in acute myeloid leukemia10. Overexpression of CSF1R has been reported in a number of diseases including myeloid malignancies11. CSF1R, like many related tyrosine kinase receptors, exists in an autoinhibited state, stabilized by the JM domain12,13. Upon activation, the receptor dimerizes which results in autophosphorylation of a number of tyrosine residues in the intracellular domain and leads to recruitment of signalling molecules and ultimately internalization of the receptor. Yu et al14 generated a CSF1R in which all 6 major tyrosines involved in signalling were replaced by phenylalanine. Restoration of Y807 (Y809 in human) produced a receptor that was able to support ligand independent proliferation in a factor dependent cell line15. Three recent HDLS case reports have found additional mutations; K793T16, A781V17 and R782H18. R782, in the catalytic loop, binds to Y809 in the autoinhibited CSF1R12.
In this study, we chose four HDLS mutations and created expression plasmids introducing the corresponding mutation in murine Csf1r. All mutated residues are highly conserved and are located in the protein kinase (PTK) domain. In addition to these, we examined four other mutations. We included a mutation (K584E) in the conserved N terminal region of the PTK domain that has not previously been implicated in autoinhibition as well as a mutation in the activation loop (R814P). As a positive control, a kinase-defective receptor, K614R, with a mutation in the ATP-binding site was created. In addition, we created a double mutation within the catalytic site (V661I/T663A). The mutant proteins were expressed in IL-3-dependent Ba/F3 cells. Although these cells were originally referred to as pro-B cells, they express the myeloid-specific F4/80 and CD11b antigens and may therefore be an appropriate model system in which to investigate CSF1 signalling. We report that the mutations identified in HDLS as well as the K614R mutant were unable to sustain growth in CSF1. They were nevertheless expressed on the cell surface at the same level as the wild-type receptor and could be internalized in response to addition of CSF1. Csf1r signalling was intact in R814P, V661I/T663A and K584E whilst the latter two mutations displayed varying degrees of constitutive activity. We thus confirm that mutations of Csf1r in HDLS are loss of function and that the use of the Ba/F3 factor dependent cell line is an invaluable tool for assessing the effects of further Csf1r mutations in vitro.

**Results**

The protein kinase domain of human and mouse CSF1R is highly conserved. In order to examine the CSF1R mutations found in HDLS the equivalent murine mutations were produced. An overlay of the protein kinase domains of human and mouse CSF1R emphasizes the highly conserved nature of this protein (Figure 1). The kinase insert domain is not required for kinase activity and the highlighted mutations did not affect the structure of the protein kinase domain when modeled in YASARA (data not shown).

Csf1r mutants found in HDLS do not signal when expressed in Ba/F3 cells. Rademakers and colleagues suggested that the CSF1R mutations are effectively gain of function, producing dominant negative repressors. To identify the nature of the mutations found in HDLS, equivalent murine Csf1r proteins were expressed in factor dependent Ba/F3 cells. Expression of the wild-type receptor generated cells that could survive and proliferate in CSF1 (Figure 2). FACS analysis confirmed surface expression of Csf1r in these wild-type receptor expressing cells (Figure 3A). Conversely, the four mutations reported by Rademakers et al all produced cells that were unable to survive in CSF1 (Figure 2) and therefore the four HDLS mutations were cultured in IL-3. Because it was not possible to select for CSF1 dependence, not all cells were positive, but those that were demonstrated the same level of surface receptor as cells expressing wild-type receptor (Figure 3C).

**Discussion**

Csf1r regulates the proliferation, differentiation and survival of cells of the mononuclear phagocyte lineage, which include the microglia in the brain. In this study we chose four CSF1R mutations identified in HDLS as well as a kinase defective mutation (K614R), a highly conserved lysine mutation (K584E), an activation loop mutation (R814P) and a double mutation (V661I/T663A) within the catalytic site of the Csf1r protein kinase domain and created the equivalent murine mutations.

The IL3-dependent Ba/F3 cell line was used to test the biological activity of mutant receptors. When wild type Csf1r is introduced into these cells, survival can be maintained in the presence of CSF1 alone. Autophosphorylation of Csf1r dimers in response to ligand binding initiates recruitment of and activation of downstream signaling molecules such Src, Grb2, STAT proteins and PI3 kinase. Rademakers and colleagues found that Csf1r dimers in the presence of CSF1 yet still express Csf1r on the surface. To confirm that loss of receptor kinase activity does not necessarily affect receptor downregulation we co-treated the factor dependent mutants with CSF1. In each case, addition of CSF1 down-regulated surface CSF1R (Figure 3C).
mutant receptors can form dimers and can bind CSF1. Hence, in heterozygous individuals, 75% of ligand-receptor complexes would be either mutant dimers, or wild-type mutant heterodimers. The consequence would be a 75% reduction in the formation of active CSF1-CSF1R dimers competent to signal upon addition of the ligand. The inactive dimers are nevertheless internalized and degraded, so there is no possibility to recycle the wild-type proteins into active complexes.

The intracellular domain of Csf1r is highly-conserved across species. Our data suggest that there are many other mutations that could...
act in a dominant manner. In the autoinhibited CSF1R domain, E633 forms a salt bridge with the invariant amino acid K616\(^2\). Because E633K was identified in HDLS patients, we generated a mutant receptor in which K616 was mutated to arginine (K614R in mice) to further test the importance of this interaction. The K616R mutant is known to have reduced in vitro kinase activity\(^4\). Like the known HDLS mutants it was unable to survive in CSF1, highlighting the importance of the E633-K616 interaction in the autoinhibited CSF1R. Rademakers and colleagues\(^1\) also identified two splice site variants amongst the HDLS patients that generate in-frame deletions of exon 13 or exon 18. exon 13 is very highly conserved across species, even in birds and fish. We tested K584E, a charge reversal of an invariant amino acid within the exon 13-encoded region. This mutation generated a constitutively-active receptor that could produce growth factor independent Ba/F3 cells. Previous studies used another factor dependent cell line to identify activating mutations in exon 18 of CSF1R. R802V was characterized, which is equivalent to a known activating mutant in c-kit, a receptor tyrosine kinase (RTK) that is a member of the same RTK subfamily as Csfr\(^3\)\(^6\). The R802V variant caused constitutive activation, and associated receptor internalization and degradation\(^3\). Mutation of Asp814 in the phosphotransferase domain of murine c-kit, has been shown to produce factor independent growth\(^3\). This amino acid is conserved in Csfr. Unexpectedly, this mutation had no effect on function; the mutant receptor was able to sustain CSF1-dependent growth. We hypothesize that a hydrophobic amino acid substitution would have resulted in an activating mutation. Morley and colleagues found that substitution of human A802 with a polar residue could not substitute for binding nucleotides. T663 has been identified as a ‘Gatekeeper Residue’, an amino acid located in a kinase active site which confers selectivity for binding nucleotides. Mutation of gatekeeper residues in kinases has been shown to result in autoactivation due to enhanced phosphorylation\(^1\).

The intracellular domain of the CSF1 receptor is highly conserved across species, and indeed is closely-related to other receptor protein tyrosine kinases\(^5\). The crystal structure of the autoinhibited kinase domain revealed a very extensive interface between the JM domain and the catalytic loop. Remarkably, the variation table for the CSF1R gene in Ensembl identifies > 200 non-synonymous variants with minor allele frequencies of 1/1000 or more, many affecting conserved amino acids in the intracellular domain. It appears likely that other mutations in the receptor will be linked to more subtle microglial defects, and perhaps to other macrophage-related pathologies. We have demonstrated that mutations corresponding to those in HDLS are required for the function of the mouse Csfr. Csfr signaling in mice is known to be necessary for the generation of microglia\(^6\) and there is some evidence that the receptor may contribute directly to neuronal homeostasis\(^7\). The generation of the HDLS mutations in the mouse germ line via ES cell mutagenesis may therefore generate subtle hypomorphs and provide insight into neuroprotective roles of Csfr in the brain.

### Methods

**Cell culture.** Untransfected Ba/F3 (naïve) or Ba/F3 cells expressing wild-type or mutant murine Csfr were maintained in RPMI 1640 containing 10% FCS, 25 U/ml penicillin, 25 μg/ml streptomycin and 2 mM GlutaMAX\(^\text{TM}\) supplemented with either 5% conditioned media from x63-IL-3 cells\(^8\) or 10 U/ml (100 ng/ml) recombinant human CSF1 (rhCSF1, a gift from Chiron, USA).

**Plasmid construction and transfection.** The wild type murine Csfr and the mutations K614R and V659I/T661A were amplified from plasmids provided by Taconic using the following primers: F: ACCATGAGGTGGGCCT and R: GCAGAACATTGGATGGATACAAG. The receptor sequences were subcloned into pEY6/V5-His TOPO (Invitrogen). Murine mutations were prepared from the wild type Csfr pEY6/V5-His construct using Agilent’s QuickChange II XL Site-Directed Mutagenesis kit according to instructions. The mutagenic primers are listed in Table I with mutated nucleotides in bold and underlined. All clones were sequence verified.

For generation of cells expressing wild-type or mutant mCsfr, 5 × 10 \(^4\) Ba/F3 cells were electroporated (1 pulse, 300 V, 975 μF) with 10 μg pE6 in 250 μl complete medium. Stable transfectants were selected in 10 μg/ml Blasticidin (Invitrogen).

**Cell viability assays.** 2 × 10 \(^4\) cells/well of a 96-well plate were plated in complete medium either without growth factors, with x63-IL-3 conditioned media or 10 \(^3\) U/ml (100 ng/ml) rhCSF1 and incubated at 37 °C, 5% CO\(_2\) for 72 h. MTT stock solution (5 mg/ml in PBS) was added directly to growth medium at a concentration of 0.5 mg/ml and the plate was incubated at 37 °C for 3 h. Solubilization of tetrazolium salt was achieved with 10% SDS/50% isopropanol/0.01 M HCl at 37 °C overnight. The plates were read at 570 nm with a reference wavelength of 650 nm.

**FACS analysis.** Cells capable of growth in rhCSF1 (wild-type Csfr, K584E, R814P, and V659I/T661A) were starved of rhCSF1 24 hours prior to FACS analysis to allow for cell surface expression of the receptor. Cells unable to grow in rhCSF1 (K614R and the four HDLS mutants) were cultured in IL-3 prior to FACS analysis. Live cells were stained for Csfr expression with anti-Mouse CD115 (c-fms) PE (e Bioscience) according to standard protocols and analysed on a FACS Calibur (BD). Dead cells were excluded with propidium iodide staining (1 μg/ml). For analysis of cell surface Csfr downregulation, HDLS mutants were cultured in IL-3 and were also co-treated with rhCSF1 for 4 h prior to analysis.

**Protein visualization.** YASARA (http://www.yasara.org/) was used to predict the structure of the murine (aa540–917) and human (aa542–919) autoinhibited kinase domain based on the human crystalized structure (PDB ID code 2OGV) reported by Walter and colleagues\(^7\). Our models include the kinase insert domain which was omitted from 2OGV. Both proteins were aligned using MUSTANG\(^7\).

1. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44, 200–205 (2012).
2. Nicholson, A. M. et al. CSF1R mutations link POLD and HDLS as a single disease entity. Neurology (2013).
3. Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002).
4. Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6, e26317 (2011).

### Table I | Mutagenesis primers

| Human Mutation | Murine Mutation | Mutagenesis primers \(^{5}\) |
|----------------|----------------|------------------------|
| K586E | K584E | AACACACTGCGATTGTGTGAGACCTCTAGGGAGCGG |
| K616R | K614R | N/A - supplied by Taconic |
| E633K* | E631K | AGAGGGGCGCTGATGCAGCTGTAAGATGATC |
| V661I/T663A | V659I/T661A | N/A - supplied by Taconic |
| M766T* | M764T | CCAAGTCGGCTAGGCCAGCTTCCTT |
| I794T* | I792T | CCAACCCGGACATCTGGCAGGACTTG |
| M875T* | M873T | TGGTGAAGGTGATACCAAAGGGGCCAGCTTG |
| R816P | R814P | CAAAGGGCAATTGCCCTGCTGAAAGT |

*mutations from\(^1\).*
5. Groh, J. et al. Colony-stimulating factor-1 mediates macrophage-related neural damage in a model for Charcot-Marie-Tooth disease type 1X. *Brain* **135**, 88–104 (2012).
6. Rosnet, O. & Birnbaum, D. Hematopoietic receptors of class III receptor-type tyrosine kinases. *Citr Rev Oncog* **4**, 595–613 (1993).
7. Schlessinger, J. Cell signaling by receptor tyrosine kinases. *Cell* **103**, 211–225 (2000).
8. Scheib, B. & Griffin, J. D. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. *Oncogene* **21**, 3314–3333 (2002).
9. He, L. & Hristova, K. Physical-chemical principles underlying RTK activation, and their implications for human disease. *Biochim Biophys Acta* **1818**, 995–1005 (2012).
10. Leung, A. Y., Man, C. H. & Kwong, Y. L. FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia. *Leukemia* **27**, 260–268 (2013).
11. El-Gamal, M. I., Anbar, H. S., Yoo, K. H. & Oh, C. H. FMS Kinase Inhibitors: Current Status and Future Prospects. *Med Res Rev* (2012).
12. Walter, M. et al. The 2.7 Å crystal structure of the autoinhibited human c-Fms kinase domain. *J Mol Biol* **367**, 839–847 (2007).
13. Schubert, C. et al. Crystal structure of the tyrosine kinase domain of colony-stimulating factor-1 receptor (cFMS) in complex with two inhibitors. *J Biol Chem* **282**, 4094–4101 (2007).
14. Yu, W. et al. CSF-1 receptor structure/function in MacCa1Tr−/− macrophages: regulation of proliferation, differentiation, and morphology. *J Leukoc Biol* **84**, 852–863 (2008).
15. Yu, W. et al. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. *J Biol Chem* **287**, 13694–13704 (2012).
16. Kondo, Y., Kinoshita, M., Fukushima, K., Yoshida, K. & Ikeda, S. Early Involvement of the Corpus Callosum in a Patient with Hereditary Diffuse Leukoencephalopathy with Spheroids Carrying the de novo K793T Mutation of CSF1R. *Intern Med* **52**, 503–506 (2013).
17. Ahmed, R. et al. A novel A781V mutation in the CSF1R gene causes hereditary diffuse leucoencephalopathy with axonal spheroids. *J Neurol Sci* (2013).
18. Kinoshita, M., Yoshida, K., Oyanagi, K., Hashimoto, T. & Ikeda, S. Hereditary diffuse leukoencephalopathy with axonal spheroids caused by R782H mutation in CSF1R: case report. *J Neurol Sci* **315**, 115–118 (2012).
19. Ohitsuoka, M., Roussel, M. F., Sherr, C. J. & Downing, J. R. Ligand-induced phosphorylation of the colony-stimulating factor 1 receptor can occur through an intermolecular reaction that triggers receptor down modulation. *Mol Cell Biol* **10**, 1664–1671 (1990).
20. Gow, D. J. et al. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34. *Cytokine* (2012).
21. Taylor, G. R., Reediik, M., Rothwell, V., Rohrschneider, L. & Pawson, T. The unique insert of cellular and viral fms protein tyrosine kinase domains is dispensable for enzymatic and transforming activities. *EMBO J* **8**, 2029–2037 (1989).
22. Hamilton, J. A. CSF-1 signal transduction. *J Leukoc Biol* **62**, 145–155 (1997).
23. Uden, M., Morley, G. M. & Dibb, N. J. Evidence that downregulation of the M-CSF receptor is not dependent upon receptor kinase activity. *Oncogene* **18**, 3846–3851 (1999).
24. Palacios, R. & Steinmetz, M. IL-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. *Cell* **41**, 727–734 (1985).
25. Rohde, C. M., Schrum, J. & Lee, A. W. A juxtamembrane tyrosine in the colony stimulating factor-1 receptor regulates ligand-induced Ssrc association, receptor function, and down-regulation. *J Biol Chem* **279**, 43448–43461 (2004).
26. van der Geer, P. & Hunter, T. Mutation of Tyr697, a GRB2-binding site, and Tyr721, a PI 3-kinase binding site, abrogates signal transduction by the murine CSF-1 receptor expressed in Rat-2 fibroblasts. *EMBO J* **12**, 5161–5172 (1993).
27. Novak, U. et al. Colony-stimulating factor 1-induced STAT1 and STAT3 activation is accompanied by phosphorylation of Tyk2 in macrophages and Tyk2 and Jak1 in fibroblasts. *Blood* **86**, 2948–2956 (1995).
28. Reedijk, M. et al. Tyro721 regulates specific binding of the CSF-1 receptor kinase to PI-3’ kinase SH2 domains: a model for SH2-mediated receptor-target interactions. *EMBO J* **11**, 1365–1372 (1992).
29. Irvine, K. M. et al. A CSF-1 receptor kinase inhibitor targets effector functions and inhibits pro-inflammatory cytokine production from murine macrophage populations. *FASEB J* **20**, 1921–1923 (2006).
30. Glover, H. R., Baker, D. A., Celetti, A. & Dibb, N. J. Selection of activating mutations of c-fms in FDC-P1 cells. *Oncogene* **11**, 1347–1356 (1995).
31. Morley, G. M., Uden, M., Gullick, W. J. & Dibb, N. J. Cell specific transformation by c-fms activating loop mutations is attributable to constitutive receptor degradation. *Oncogene* **18**, 3076–3084 (1999).
32. Hashimoto, K. et al. Necessity of tyrosine 719 and phosphatidylinositol 3’-kinase-mediated signal pathway in constitutive activation and oncogenic potential of c-kit receptor tyrosine kinase with the A891V4a mutation. *Blood* **101**, 1094–1102 (2003).
33. Emrick, M. A. et al. The gatekeeper residue controls autoactivation of ERK2 via a pathway of intramolecular connectivity. *Proc Natl Acad Sci U S A* **103**, 18101–18106 (2006).
34. Yardi, S. et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. *Dev Biol* (2012).
35. Luo, J. et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. *J Exp Med* **210**, 157–172 (2013).
36. Karasuaya, H. & Melchers, F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. *Eur J Immunol* **18**, 97–104 (1988).
37. Konagurthu, A. S., Whisstock, J. C., Stuckey, P. J. & Lesk, A. M. MUSTANG: a multiple structural alignment algorithm. *Proteins* **64**, 559–574 (2006).

Author contributions

D.A.H. designed the project with contributions from C.P., K.A.S., K.B. and H.K. C.P., K.A.S. and D.A.H. wrote the manuscript and all authors reviewed the manuscript. C.P. prepared figures 1–2 and K.A.S. prepared figure 3. C.P. and K.A.S. performed the experiments. K.B. and H.K. provided reagents and D.A.H. provided funding and supervised the project.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Pridans, C., Sauter, K.A., Baer, K., Kissel, H. & Hume, D.A. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function. *Sci. Rep.* 3, 3013; DOI:10.1038/srep03013 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0