Τεχνολογία γάλακτος και των προϊόντων του

- Παπαϊωάννου Μπάμπης
Ζυμωμένα γάλατα

- Codex Alimentarius
- Γαλακτοκομικά προϊόντα που παράγονται με ζύμωση γάλακτος, το οποίο γάλα μπορεί να έχει παρασκευαστεί από προϊόντα που λαμβάνονται από το γάλα με ή χωρίς τροποποίησης της σύνθεσής του, με δράση κατάλληλων μικροοργανισμών που επιφέρουν μείωση του pH με πήξη ή χωρίς πήξη.
- Οι μικροοργανισμοί πρέπει να είναι ζωντανοί, άφθονοι και δραστικοί στο τελικό προϊόν μέχρι το τέλος της ελάχιστης διατηρησιμότητάς του.
Γιαούρτι ΚΤΠ

1. «Γιαούρτι» χαρακτηρίζεται το γαλακτοκομικό προϊόν το οποίο παράγεται από τη ζύμωση και πήξη του γάλακτος, με τη χρήση υποχρεωτικά των καλλιεργειών - εκκινητών Streptococcus salivarious subsp. thermophilus και Lactobacillus delbrueckii subsp. bulgaricus, ώστε το τελικό ζυμωμένο προϊόν να περιέχει τουλάχιστον 10^7 cfu/g προϊόντος μέχρι την ημερομηνία ανάλωσής του.

2. Ως πρώτη ύλη του γιαούρτιου χρησιμοποιείται το γάλα όπως αυτό ορίζεται στον Κανονισμό (ΕΚ) 1308/2013.

3. Δεν επιτρέπεται η χρήση ολικά αφυδατωμένου γάλακτος ή παραγώγων του γάλακτος σε μορφή σκόνης με εξαίρεση την περίπτωση της παρ. 5, σημ. β.

4. Η περιεκτικότητα σε πρωτεΐνη στο γιαούρτι από αγελαδινό ή γίδινο γάλα πρέπει να είναι τουλάχιστον 3,2% και από πρόβειο γάλα τουλάχιστον 5,5%. Σε περίπτωση χρήσης μιγμάτων γάλακτος η ελάχιστη περιεκτικότητα σε πρωτεΐνη υπολογίζεται από την αναλογία των ειδών του γάλακτος.
5. Κατά την παρασκευή του γιαούρτιού, πέραν της πρώτης ύλης, επιτρέπεται μόνο:

α) η προσθήκη κρέμας γάλακτος για τη ρύθμιση της περιεκτικότητας σε λιπαρές ουσίες

β) η προσθήκη πρωτεϊνών γάλακτος για τεχνολογικούς λόγους ρύθμισης του

Στερεού Υπολείμματος Άνευ Λίπους (΢ΤΑΛ), του ίδιου είδους ζώου, υπό την προϋπόθεση ότι η αύξηση του ΢ΤΑΛ στο γιαούρτι δε θα ξεπερνά το ΢ΤΑΛ του γάλακτος που χρησιμοποιήθηκε, όπως ορίζεται στο άρθρο 80, παρ. 3 του Κ.Σ.Π., κατά 4 μονάδες.

6. Στην περίπτωση που χρησιμοποιηθούν για τη ζύμωση και άλλοι μικροοργανισμοί επιπλέον της χαρακτηριστικής καλλιέργειας του γιαουρτιού της παρ. 1, αναγράφονται στην επισήμανση υπό την προϋπόθεση ότι ο πληθυσμός τους θα είναι τουλάχιστον 106cfu/gr προϊόντος κατά την ημερομηνία ανάλωσης.
Βασικά στάδια παρασκευής

- Τυποποίηση
 - Λίπος, ΣΥΑΛ
 - Συμπύκνωση
 - Εξάτμιση
 - Υπερδιήθηση

- Προσθήκη αποβουτυρωμένης σκόνης
 - Γάλα
 - Πρωτεϊνες τυρογάλακτος
 - Καζεϊνικά όλατα
Θέρμανση

- 85-90οC/5-30min
- Μετουσίωση πρωτεϊνών
- Καταστρέφονται όλοι οι παθογόνοι μικροοργανισμοί, οι βακτηριοφάγοι, ένα μεγάλο μέρος των μη παθογόνων μικροοργανισμών που δρουν ανταγωνιστικά με τα οξυγαλακτικά βακτήρια και επηρεάζουν δυσμενώς την ποιότητα του γιαουρτιού. Επίσης δημιουργούνται ουσίες (π.χ. HCOOH, NPN) που βοηθούν την ανάπτυξη του Lactobacillus delbrueckii subsp. bulgaricus και του Streptococcus thermophilus.
- Αυξάνει τη συνεκτικότητα και το ιξώδες του γιαουρτιού και βελτιώνοντας την υφή του.
- Αδρανοποίηση ενζύμων όπως η αλκαλική φωσφατάση LPL.
Πίνακας 10.1. Μεταβολές που προκαλεί η θέρμανση στα συστατικά του γάλακτος και επίδρασή τους στην ποιότητα της γιαούρτης

Συστατικό και είδος μεταβολής	Επίδραση στην ποιότητα της γιαούρτης	
Πρωτεΐνες αρω	Αύξηση της ΙΣΥ, μείωση τάσης για συναίρεση, αύξηση εξώδους, σταθερότητα πήγαματος. Μείωση οξειδωτικών αντιδράσεων, γεύση "βρασμένου". Ευνοεί την ανάπτυξη των οξυγαλακτικών βακτηρίων.	
Μετουσίωση και σχηματισμός συμπλόκων μορίων μεταξύ α-Ακ και β-Λγ και σύνδεση με κ-καζέινη.	Επίδραση στον πεπτικότητα και γευστικότητα.	
Παραγωγή ενεργών σουλφοδραμικών ομάδων (-SH).	Μείωση της τάσης για ιδρυλοτική τάγμιση, ή για απόκτηση πικρής γεύσης.	
Μειωμένη αποκοδόμηση σε αμινοξέα.	Σχηματίζονται προϊόντα που δίνουν ευχάριστη γεύση και άρωμα.	
Καζέινης	Μείωση pH και Eh, παραγωγή μυρμηκικού οξέος. Καλύτερη ανάπτυξη των οξυγαλακτικών βακτηρίων. Καλύτερο άρωμα.	
Μειωμένη υδρόλυση, απελευθέρωση γλυκοπεπτιδίων από κ-καζέινη, αποφασφορυλίωση.	Συμβολή στο άρωμα και τη γεύση.	
Τσιμέντοι	Μικρή υφοβάθμιση θρητικής αξίας.	
Ενζυματική απορρήτηση (κυρίως oι ενδογενεικές λεπίδες και πρωτεάσεις).	Τροποποίηση δομής μικρού Καζέινης και μείωση χρόνου πηγάζης.	
Ενζύμα αμινοξέα	Αποσπασματικούς ανταγωνισμού για την οξυγαλακτική καλλιέργεια.	
Αλλόδομη σε Σχηματισμός λυσινοαλανίνης.	Προστασία της Δημόσιας Υγείας. Αύξηση του χρόνου συντήρησης.	
Αλλόδομη σε Σχηματισμός λυσινοαλανίνης.	Ευνοεί την ανάπτυξη των οξυγαλακτικών βακτηρίων.	
Υδατάνθρακες		
Αποδόμηση προς οργανικά οξέα, φορμαλνάλη και υπονεμελευροφυρούνθα. Αντίδραση με αμινοξέα (αντίδραση Maillard).		
Απίδεια		
Χημιστικώς λακτοπαντών, μεθυλοκετονών και άλλων ομοιοκαταστάτων κατονών.		
Βιταμίνες		
Μειωμένη κατασκευή (έως 60%) των βιταμινών B1, B6, B12, C και φυτικού οξέος.		
Αλατα		
Ανακατανομή Ca, P, Mg μεταξύ της κολλοειδούς και οιδικονηλικής φάσης.		
Μικροοργανισμοί		
Εμβιοτική μείωση της ενδογενούς χλωρίδας του γάλακτος.		
Κατασκευή παθογόνων και αλλεογόνων μικροοργανισμών.		
Αέρα		
Μείωση διαλυμένου O2 (μείωση Eh).		
Προσθήκη οξυγαλακτικής καλλιέργειας

- Ψύξη 40-43οC
- *Streptococcus thermophilus* και *Lactobacillus delbrueckii subsp. Bulgaricus*
- Φυσική γιαούρτη 2% (1:1)
- Υγρή μορφή
 - 0,5-3,0% (3:1, 3:2,2:1, 1:1, 2:3)
 - Ποσότητα, θερμοκρασία, τελική οξύτητα
Προσθήκη οξυγαλακτικής καλλιέργειας

- Λυοφιλοποιημένες
 - Σκόνη
- Κατεψυγμένες
 - Πλάκες
- Επιμόλυνση
- Οδηγίες κατασκευαστή
- Άλλα είδη (Lactobacillus, Bifidobacterium)
Κριτήρια Επιλογής Στελέχων Οξυγαλακτικών Βακτηρίων

1. Παραγωγή οξέως
 > Κατά την επώαση: Επιδιώκεται η χρησιμοποίηση στελεχών βακτηρίων με πολύ μεγάλο δυναμικό οξίνισης.
 > Μετά την επώαση και συντήρηση (μετοξίνιση): Επιδιώκεται η χρησιμοποίηση στελεχών βακτηρίων με μικρή ενζυμική δραστηριότητα κατά τη διάρκεια της ψύξης και ιδιαίτερα της διατήρησης του γιαουρτιού.

2. Παραγωγή αρωματικών ουσιών
 > Επιδιώκεται η χρησιμοποίηση στελεχών βακτηρίων που παράγουν άρωμα. Πέρα από το γαλακτικό οξύ και την πτώση του pH, παράγονται και μικρές ποσότητες αρωματικών πτητικών ουσιών μεταξύ των οποίων κύρια ακεταλδεΰδη και σε δεύτερη μοίρα άλλες καρβονυλικές ενώσεις, πτητικά αρωματικά οξέα κ.α.).
Χαρακτηριστικά των Οξυγαλακτικών Βακτηρίων του Γιαουρτιού

Χαρακτηριστικά	**Streptococcus thermophilus**	**Lactobacillus delbrueckii subsp. bulgaricus**
Gram	+	*
Καταλάση	-	-
Μορφολογία	Σφαιρικοί ή ωσείδεις κόκκοι (0,7-0,9 μ), ανά ζεύγη ή αλυσίδες	Επιμήκεις βάκιλοι με στρογγυλεμένα άκρα, μονοί ή ανά ζεύγη. Με το ΚΜ σχηματίζουν ψευδοπυρήνες
Συνθήκες ανάπτυξης	Προαιρετικά αναερόβιος	**Αναερόβιος** - προαιρετικά αναερόβιος
Θ/α ανάπτυξης	20°C-50°C, opt 40-45 °C	22°C-52°C, opt 40-43 °C
Ανθεκτικότητα στη θ/α	Επιβιώνει στους 65°C / 33 min	Επιβιώνει στους 75°C / 30 min
Ανάπτυξη σε 2% NaCl	-	+

Δρ. Καμιναρίδης Στέλιος
41-43 °C/3h

- Streptococcus thermophilus = 37 °C
- Lactobacillus delbrueckii subsp. Bulgaricus = 45 °C

Συνεκτική (δοχεία – περιέκτες)

Αναμιγμένη (δεξαμενές)
Λακτόζη → γλυκόζη + γαλακτόζη
Γλυκόζη → γαλακτικό οξύ

Στην αρχική φάση της αναπτύξεως των μικροοργανισμών που συμβιούν, τα κύτταρα του Streptococcus thermophilus πολλαπλασιάζονται ταχύτερα και υπερτερούν αριθμητικά των βακίλων. Αυτό γιατί ευνοείται ο Streptococcus thermophilus από την προηγηθείσα θερμική επεξεργασία του γάλακτος και τη μείωση του CO2 του γάλακτος.
ΣΥΜΒΙΩΣΗ

Παραγωγή ουσιών από τους μικροοργανισμούς

Υπόστρωμα που χρησιμοποιούν οι μικροοργανισμοί / υποκίνηση της ανάπτυξης των μικροοργανισμών

Παρεμπόδιση της ανάπτυξης των μικροοργανισμών

Σχήμα: Σχηματική παρουσίαση της συμβιωτικής ανάπτυξης των θερμόφιλων οξυγαλακτικών βακτηρίων του γιαουρτιού (από τους Walstra και συν., 1999).
Εξελίσσεται ότι ο Lactobacillus delbrueckii subsp. Bulgaricus ενισχύει την ανάπτυξη του Streptococcus thermophilus με την απελευθέρωση μικρών πεπτιδίων και αμινοξέων, μεταξύ των οποίων σημαντικότερο είναι η βαλίνη. Επίσης εξελίσσεται ότι ο Streptococcus thermophilus παράγει CO2 και μυρμηκικό οξύ που είναι βοηθητικές ουσίες ανάπτυξης του Lb. buglaricus. Αργότερα ο ρυθμός επιβραδύνεται χάρη στη συσσώρευση του γαλακτικού οξέος, που αρχίζει να δρα ανασταλτικά περισσότερο στο Streptococcus thermophilus και έτσι ο αριθμός του Lactobacillus delbrueckii subsp. Bulgaricus προσεγγίζει προς εκείνο του Streptococcus thermophilus.
Η Θερμοκρασία Επώασης

- Άριστη θ/α ανάπτυξης των μικροοργανισμών (42οC) ➔ Ταχύτερη παραγωγή οξέου.

- Χαμηλότερη της άριστης θ/α ανάπτυξης των μικροοργανισμών ➔ Μεγαλύτερη παραγωγή υδροκολλοειδών και αρωματικών ουσιών, χαμηλό ιξώδες.

- Υψηλότερη της άριστης θ/α ανάπτυξης των μικροοργανισμών ➔ Συναίρεση του πήγματος.
Το γαλακτικό οξύ προκαλεί μείωση του pH (<5,3) –(4,7-4,6)
Συσσωμάτωση μικκυλίων
Συνδυασμός με μετουσιωμένες πρωτεϊνές ορού
Η Οξύτητα
Επηρεάζει την υφή (pH≤4,6).
Μεγάλη οξύτητα ➔ Συναίρεση ➔
διαχωρισμός ορού.
ψύξη

- Περιέκτες
- Τούνελ ψύξης (<5 oC)
- Θάλαμοι ψύξης

- Αρχή της ψύξης:
 - Κατάλληλη όταν το pH= 4,5 -4,7 ή η οξύτητα = 0,9 –1%.
 - Ενωρίς Χαμηλή συγεκτικότητα, αδύναμη γεύση.
 - Αργά Υπεροξύνιση.
Ρυθμός ψύξης:

- Στην πρώτη φάση η θερμοκρασία του πήγματος μειώνεται όσο το δυνατόν πιο γρήγορα από τους 45-42οC στους 38-35οC, να μειωθεί γρήγορα ο πολλαπλασιασμός των βακτηρίων που βρίσκονται στη λογαριθμική φάση ανάπτυξης, γιατί η παραγωγή οξέος είναι μεγάλη λόγω πολλαπλασιασμού των βακτηρίων.
- Στη δεύτερη φάση η θερμοκρασία μειώνεται από τους 38-35οC στους 20-19οC. Ο στόχος είναι να παρεμποδιστεί πλήρως η ανάπτυξη των βακτηρίων της γιαούρτης.
- Στην τρίτη φάση της ψύξης μειώνεται από τους 20-19οC στους 12-10οC, έτσι ώστε να επιβραδυνθεί σε ικανοποιητικό βαθμό η παραγωγή του γαλακτικού οξέος.
- Η τελευταία φάση της ψύξης χαρακτηρίζεται από μείωση της θερμοκρασίας από τους 12-10οC στους 5οC. Στην τελευταία αυτή φάση έχουμε μείωση της δράσης των ενζύμων.
Διαταραχές πήξης

- Αντιμικροβιακές ουσίες
 - Αντιβιοτικά
 - Απολυμαντικά
 - Απορρυπαντικά

- Βακτηριοφάγοι

- Άλλες αιτίες

- Επιδόρπια (προστιθέμενες ουσίες)
Τύποι γιαούρτης

- ΚΤΠ
- «Παραδοσιακό» είναι το γιαούρτι που πληροί τις παρακάτω προδιαγραφές:
 a) Παρασκευάζεται με την παραδοσιακή μέθοδο ώστε να φέρει υμένα (πέτσα) στην επιφάνεια του.
 b) Προκύπτει από την πήξη αποκλειστικά νωπού ή παστεριωμένου γάλακτος που δεν έχει υποστεί τροποποίηση της φυσικής του σύνθεσής με μόνη εξαίρεση τη ρύθμιση της λιποπεριεκτικότητας, έως του σημείου που είναι τεχνικά επιτευξιμό η δημιουργία υμένα.
παραδοσιακή

- Γιαούρτη προηγουμένης ημέρας για «μαγιά»
 - Βρασμός (μερική συμπύκνωση)
 - Κατανομή σε κύπελλα
 - Ψύξη (35-40 οC)
 - Προσθήκη γιαούρτης (μαγιά)
 - Επώαση (30-40 οC)
 - Ψύξη - συντήρηση

- Ποιοτικός έλεγχος
- Τυποποίηση
- Θέρμανση 90-95 oC/5-10min
- Κατανομή σε περιέκτες
- Ψυξή 40-42 oC
- Προσθήκη οξυγαλακτικής καλλιέργειας (1-3%)
- Επώαση (41-420C / 3 ώρες)
- Ψύξη - συντήρηση
Ομοιογενοποίηση

- Η Ομοιογενοποίηση (Μέγεθος λιποσφαιρίων < 2μ)
- Βελτιώνει την υφή του γιαουρτιού καθιστώντας το πιο πλούσιο.
- Το καλύτερο ιξώδες του γιαουρτιού επιτυγχάνεται με ομοιογενοποίηση του γάλακτος σε πίεση 150-200 Atm και θερμοκρασία 60-75°C.
συνεκτική

Τυποποίηση γάλακτος (λίπος, ΣΥΑΛ) ↓
Προθέρμανση (60-70°C) ↓
Ομογενοποίηση (10-20 MPa) ↓
Θέρμανση 80-85°C για 30-20 min ή 90-95°C για 10-5 min ↓
Ψύξη (40-43°C) ↓
Προσθήκη οξυγαλακτικής καλλιέργειας ↓
Διανομή σε κύπελλα ↓

Επώαση (40-42°C) έως pH ~ 4,5 ↓
Ταχεία ψύξη (≤ 5°C) ↓
Εμπορία (ΦΥΣΙΚΗ ΠΙΑΟΥΡΤΗ) ↓

Ανάμιξη με φρούτα ή άρωμα φρούτων ↓
Επώαση (40-42°C) έως pH ~ 4,5 ↓
Ταχεία ψύξη (≤ 5°C) ↓
Εμπορία (ΕΠΙΔΟΡΡΙΟ)

Σημ. 10.3. Διάγραμμα ροής παραγωγής συνεκτικής γιαούρτης ή επιδορρίου
10.5. Διάγραμμα ροής παραγωγής αναμιγμένης γιαούρτης ή επιδορπίου
Εικόνα 10.6. Γραμμή παραγωγής αναμιμένης γιαούρτης (ΤetraPak)

1. Συγκρότημα θερμικής επεξεργασίας γάλακτος
2. Δεξιάμενες οξυγαλακτικής καλλιέργειας
3. Δεξιάμενες πήξες
4. Πλακοειδής ψύκτης
5. Δεξιάμενες τροφοδοσίας συσκευασίας
6. Φρούτα/άρωμα
7. Αναμίκτης
8. Συσκευασία
στραγγιστό

ΚΤΠ

«Στραγγιστό γιαούρτι» χαρακτηρίζεται το προϊόν που λαμβάνεται από το γιαούρτι μετά από αποστράγγιση μέρους του ορού μετά την πήξη και έχει κατ' ελάχιστο 5,6% πρωτεΐνες για το αγελαδινό ή γίδινο γάλα και 8% για το πρόβειο γάλα.

Σε περίπτωση μιγμάτων διαφόρων ειδών γάλακτος η ελάχιστη περιεκτικότητα σε πρωτεΐνες υπολογίζεται με βάση την αναλογία των ειδών γάλακτος.
Σχήμα 10.7. Διάγραμμα ροής παραγωγής στραγγασμένης (συμπυκνωμένης) γιαούρτης
Επίδορπια

- ΚΤΠ
- Ως επίδορπιο (Dessert) χαρακτηρίζεται προϊόν έτοιμο προς βρώση, που παρασκευάζεται:
 1) Από μία ή περισσότερες κατηγορίες γάλακτος που προβλέπονται από το άρθρο 80 του Κώδικα Τροφίμων,
 2) προϊόντα γάλακτος ή και συστατικά γάλακτος (πρωτεΐνη γάλακτος, λακτόζη) ή και μαγιά γιαουρτιού και στις δύο περιπτώσεις τα παραπάνω προϊόντα γάλακτος ή το γάλα σε αναλογία 75% τουλάχιστον κατά βάρος του τελικού προϊόντος αναγόμενο σε νωπό γάλα,
 3) ζαχαρούχες γλυκαντικές ύλες,
 4) σκόνη κακάο λιποπεριεκτικότητας 10% τουλάχιστον σε βούτυρο κακάο, σοκολάτα ή εκχύλισμα καφέ με ή χωρίς καφεΐνη,
 5) χυμοί φρούτων με ή χωρίς ζάχαρη, ή τεμάχια φρούτων φρέσκα ή ζαχαρωμένα καθώς και προϊόντα με γλυκαντικές ύλες του άρθρου 131 ή και άλλες ύλες που περιλαμβάνονται στον Κώδικα Τροφίμων με εξαίρεση τις πρόσθετες ύλες του Κεφαλαίου ΙΙΙ του παρόντα Κώδικα.

Στα επίδορπια κατατάσσονται τα ροφήματα και γενικά τα προϊόντα με βάση το αρωματισμένο γάλα.

Στην κατηγορία αυτή υπάγονται και τα κατευμυγμένα επίδορπια, στην παρασκευή των οποίων έχει χρησιμοποιηθεί και η ψύξη και διατηρούνται σε χαμηλές θερμοκρασίες.

4. Στα προϊόντα της παραγράφου 3: α) Επιτρέπεται: Ι. Επιτρέπεται η χρήση προσθέτων του παραρτήματος Ι του άρθρου 33 του Κώδικα Τροφίμων, σύμφωνα με την αρχή του quantum satis. Επίσης επιτρέπονται πρόσθετα
Γιαούρτι με προβιωτικά
Κατεψυγμένο γιαούρτι
 > ανάμιξη γιαουρτιού (10-20%) με άπαχο ή χαμηλής περιεκτικότητας παστεριωμένο μίγμα παγωτού ➔ κατάψυξη
 > pH=6,0
Αφυδατωμένο γιαούρτι (kishk)
Ρευστή (ανάμιξη με νερό) (αριάνι)
συσκευασία

- Πλαστικοί περιέκτες
- Πήλινα κλπ
Συντήρηση

- Στην πράξη οι θερμοκρασίες συντήρησης της γιαούρτης είναι μεταξύ 2οC και 5οC. Για να περιοριστούν οι ενζυματικές αλλαγές στο ελάχιστο πρέπει να χρησιμοποιείται ως θερμοκρασία συντήρησης αυτή των 0οC.
- Αν οι θερμοκρασίες είναι άνω των 5οC επιτρέπουν τον πολλαπλασιασμό των μικροοργανισμών επιμόλυνσης (ζύμες και μύκητες).
- Αρχική τιμή pH
- Επιμολύνσεις
- Τρόπος παραγωγής συσκευασία
 - Άσηπτη μέθοδος
 - Αδρανές αέριο
 - Συντηρητικά (όχι ΚΤΠ)
Οι Αρωματικές Ουσίες του Γιαουρτιού

1) Καρβονυλικές ενώσεις όπως ακεταλδεΰδη, ακετόνη, ακετοϊνη, διακετύλιοι και 2,3-βουτανεδιόλη.

2) Συστατικά που σχηματίζονται από τη θερμική αποικοδόμηση του λίπους (ακετόνη, βουτανόνη, 2-επτανόνη κλπ), της λακτόζης (φουρφουράλη κλπ), των πρωτεϊνών (μεθειονίνη, βαλίνη, σερίνη, γλουταμινικόξυ, προλίνη, βαλίνη, λευκίνη, ισολευκίνη, τυροσίνη).

3) Μη πτητικά οξέα όπως γαλακτικό, πυροσταφυλικό, οξαλοξικό.

4) Πτητικά οξέα όπως μυρμηκίκο, οξίκο, προπιονικό, βουτυρικό, ισοβαλερικό, καπροϊκό, καπρυλικό και καπρικό.
Ελαττώματα εμφάνισης και υφής

- Διαχωρισμός ορού:
 > υπερβολική οξίνιση (pH < 4,2).
 > μηχανική διαταραχή του πήγματος.
 > μικρή περιεκτικότητα σε στερεά (<10%).
 > ανεπαρκής θερμική επεξεργασία.
 > ενσωμάτωση αέρα στο αναμιγμένο γιαούρτι.

- Ανάπτυξη κηλίδων
 > Λευκών, λόγω αποικιών ζυμών.
 > Εγχρώμων, λόγω κύρια αποικιών μυκήτων.

- Πήγμα κοκκώδες ή αμμώδες
 > υπερθέρμανση
 > υπερβολική συμπύκνωση του γάλακτος
Ελαττώματα εμφάνισης και υφής

- Βλεννώδης σύσταση:
 > Οφείλεται σε παραγωγή βλέννας από βακτήρια κυρίως του Bacillus subtilis.

- Διόγκωση (φυσαλίδες και σχισμές):
 > Παραγωγή αερίων (CO2, H2) από αεριογόνα μικρόβια (ζύμες, κολοβακτηρίδια).
 > Ζύμωση του κιτρικού οξέος.
 > Ενσωμάτωση σέρα από έντονη ανάμιξη εμβολίου και γάλακτος.

- Λεπτόρρευστο πήγμα:
 > μικρή αναλογία στερεών συστατικών.
 > Ατελής ζύμωση.
 > Διατάραξη του πήγματος πριν συμπληρωθεί η πήξη.
 > Αντιβιοτικά, απορρυπαντικά, απολυμαντικά.
 > Μικρή ποσότητα εμβολίου.
 > Βακτηριοφάγοι
 > Πολύ χαμηλή θ/α επώαση
 > Υψηλή θ/α εμβολιασμού.

- Ρυτινώδη επιφάνεια:
 > Οφείλεται σε αφυδάτωση του γιαουρτιού λόγω κακής συντήρησης.
Ελαττώματα εμφάνισης και υφής

- Κολλώδης σύσταση:
 > Υπερβολική χρήση σταθεροποιητών σε σκευάσματα γιαουρτιού.
 > Κακή ποιότητα σταθεροποιητών σε σκευάσματα γιαουρτιού.

- Υπερβολική ή ανομοιογενής χρώση:
 > Κακή ανάμιξη του χρώματος στα σκευάσματα γιαουρτιού (γιαούρτη φρούτων).
 > Υπερβολικής ποσότητα χρωστικής ουσίας.

- Χαμηλό ιξώδες:
 > Λίγα στερεά συστατικά
 > Ανεπαρκής θερμική επεξεργασία / ομογενοποίηση.
 > Πολύ χαμηλή θερμοκρασία επώασης.
 > Πολύ χαμηλή ποσότητα εμβολίου.
 > Παρατεταμένη ανάδευση.
Ελαττώματα γεύσης και οσμής.

- Γεύση πικρή:
 > Εκτεταμένη πρωτεόλυση από ανάπτυξη πρωτεολυτικών μικροοργανισμών (ψυχρότροφα βακτήρια ή μύκητες).
 > Υψηλή ποσότητα εμβολίου.

- Γεύση ταχή:
 > Εκτεταμένη λιπόλυση (μεγάλη συγκέντρωση ελευθέρων λιπαρών οξέων) από ανάπτυξη λιπολυτικών μικροοργανισμών (ψυχρότροφα βακτήρια ή μύκητες).

- Δυσάρεστη οσμή:
 > Ανάπτυξη ξένων και ανεπιθύμητων μικροβίων (πχ. κολοβακτηρίδια).
 > Φάρμακα
 > Απολυμαντικά
 > Ζωοτροφές

- Γεύση και οσμή ζύμης:
 > Μόλυνση με ζύμες

- Πολύ όξινη:
 > Προκύπτει από μακρά περίοδο επώασης.
 > Υψηλή θ/α διατήρησης.
 > Μεγάλο ποσοστό εμβολίου και στερεών συστατικών.
| Ονομασία | Κύρια χώρα/περιοχή | Σύσταση |
|------------------------|--|-------------|
| Acidophilus milk | ΗΠΑ | Ρευστό |
| Ayran | Τουρκία, Αζερμπαϊτζάν, ΠΓΔΜ, κ.ά. | Ρευστό |
| Artaírν | Ελλάδα, Κύπρος | Ρευστό |
| Cultured buttermilk | ΗΠΑ | Ρευστό |
| Dahi | Ινδία | Ημίρρευστο |
| Filmjolk | Σκανδιναβικές χώρες | Ημίρρευστο |
| Kefir | Ρωσία, κεντρική Ασία | Ρευστό |
| Kumys (koumiss, kumis) | Κεντρική Ασία | Ρευστό |
| Lassi | Μπαγκλαντές, Ινδία, Πακιστάν | Ρευστό |
| Leben/laban | Λίβανος, Συρία | Συνεκτικό |
| Tan | Αρμενία | Ρευστό |
| Vili | Φινλανδία | Συνεκτικό |
| Yakult | Ιαπωνία | Ρευστό |
| Ymer | Δανία | Ημίρρευστο |
VIILI YMER
Καλλιεργημένο βουτυρόγαλα

- Cultured buttermilk
- Ξινόγαλα
- Τυποποίηση
- Θέρμανση -85οC/30min, 95οC/3-5min
- Καλλιέργεια
 - S. lactis, S. cremoris, Leuconostoc citrovorum, L. dextranicum, L. diacetylactis
- Επώαση 20-30 oC/ 8-14h
- Ψύξη 11-14oC + ανάδευση κατά διαστήματα
- pH 4,6
- Συντήρηση σε 5oC
- Πρόσθεση ή όχι αλάτι (0.18%)
Ξινόγαλα – αριάνι
Δεν ορίζονται στον ΚΤΠ
Καλλιέργεια γιαούρτης ή άλλη
Το τελικό πήγμα θραύεται και αναμιγνύεται ή όχι με νερό
προσθήκης; αλατιού
κεφίρ

- Καυκασος
- Μικτή ζύμωση
- Αφυδατομένοι κόκκοι 1-3 cm
- Πολλά είδη και γένη οξυγαλακτικών και ζυμών
Τυποποίηση γάλακτος (λίπος, ΣΥΑΛ)
Θέρμανση (95°C για 30 min)
Ψύξη (20°C)
Προσθήκη κόκκων κεφίρ (αναλογία κόκκων:γάλακτος 1:10 έως 1:50)
Επώαση (20°C για 24 h)
Απομάκρυνση (φιλτράρισμα) κόκκων
Μητρική καλλιέργεια (φιλτραρισμένο ζυμωμένο γάλα)
Συσκευασία σε φιάλες
Επώαση (10°C για 12 h)
Συντήρηση υπό ψύξη

φιλελεύθερος: 10.12. Διάγραμμα ροής παραγωγής κεφίρ με χρήση κόκκων
κουμις

- Κασπία
- Γάλα φοράδας
- Lactobacillus
- Torula (ζύμομύκητας)
- Γαλακτικό οξύ, αιθανόλη
- Αφρώδες, θρεπτικό, εφραντικό ποτό
Μάντης Ι. Αντώνιος, Παπαγεωργίου Κ. Δημήτριος, Φλετούρης Ι. Δημήτριος, Αγγελίδης Σ. Απόστολος (2015). Υγιεινή και τεχνολογία του γάλακτος και των προϊόντων του. ΑΦΟΙ ΚΥΡΙΑΚΙΔΗ ΕΚΔΟΣΕΙΣ Α.Ε.

Χρήστος Κεχαγιάς, Ευσταθία Σακάλη (2017). Επιστήμη και Τεχνολογία Γάλακτος και Γαλακτοκομικών Προϊόντων. Εκδόσεις Νέων Τεχνολογιών

ΚΤΠ

https://oceclass.aua.gr/modules/document/file.php/OCDFSHN111/ETDA_2475_04a_3h.pdf

https://www.dairy-services.com/%CF%80%CE%B1%CF%81%CE%B1%CF%83%CE%BA%CE%B5%CF%85%CE%AE-%CE%BA%CE%BF%CF%8D%CE%BC%CE%B9%CF%82-%CF%84%CE%BF%CE%BB%CE%BC%CE%AE%CF%83%CF%84%CE%B5/