Biochemical evidence that regulation of Ero1 activity in human cells does not involve the isoform-specific cysteine 262

Hansen, Henning Gram; Søltoft, Cecilie Lützen; Schmidt, Jonas Damgård; Birk, Julia; Appenzeller-Herzog, Christian; Ellgaard, Lars

Published in: Bioscience Reports

DOI: 10.1042/BSR20130124

Publication date: 2014

Document version Publisher's PDF, also known as Version of record

Citation for published version (APA): Hansen, H. G., Søltoft, C. L., Schmidt, J. D., Birk, J., Appenzeller-Herzog, C., & Ellgaard, L. (2014). Biochemical evidence that regulation of Ero1 activity in human cells does not involve the isoform-specific cysteine 262. Bioscience Reports, 34(2). https://doi.org/10.1042/BSR20130124
Biochemical evidence that regulation of Ero1β activity in human cells does not involve the isoform-specific cysteine 262

Henning G. HANSEN*1, Cecilie L. SØLTOFT*, Jonas D. SCHMIDT*2, Julia BIRK†, Christian APPENZELLER-HERZOG*† and Lars ELLGAARD*3

*Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
†Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland

Synopsis

In the ER (endoplasmic reticulum) of human cells, disulfide bonds are predominantly generated by the two isoforms of Ero1 (ER oxidoreductin-1): Ero1α and Ero1β. The activity of Ero1α is tightly regulated through the formation of intramolecular disulfide bonds to help ensure balanced ER redox conditions. Ero1β is less tightly regulated, but the molecular details underlying control of activity are not as well characterized as for Ero1α. Ero1β contains an additional cysteine residue (Cys262), which has been suggested to engage in an isoform-specific regulatory disulfide bond with Cys100. However, we show that the two regulatory disulfide bonds in Ero1α are likely conserved in Ero1β (Cys95–Cys100 and Cys90–Cys130). Molecular modelling of the Ero1β structure predicted that the side chain of Cys262 is completely buried. Indeed, we found this cysteine to be reduced and partially protected from alkylation in the ER of living cells. Furthermore, mutation of Cys100 — but not of Cys262 — rendered Ero1β hyperactive in cells, as did mutation of Cys130. Ero1β hyperactivity induced the UPR (unfolded protein response) and resulted in oxidative perturbation of the ER redox state. We propose that features other than a distinct pattern of regulatory disulfide bonds determine the loose redox regulation of Ero1β relative to Ero1α.

Key words: disulfide-bond formation, endoplasmic reticulum oxidoreductin-1 (Ero1), redox regulation, unfolded protein response (UPR)

INTRODUCTION

In the ER (endoplasmic reticulum), optimal redox conditions are maintained to facilitate formation of native disulfide bonds in secretory proteins. In mammalian cells, disulfide bonds are mainly generated by Ero1 (ER oxidoreductin-1) [1,2]. Proteins of the Ero1 family comprise two conserved di-cysteine active sites [3] (Figure 1). The so-called inner active site sits adjacent to a FAD moiety inside a four-helix bundle, whereas the outer active site (containing the two ‘shuttle’ cysteines) is located on a flexible loop region [4,5]. The inner active site is oxidized by molecular oxygen via FAD, which leads to generation of hydrogen peroxide [6–8]. In turn, the inner active site oxidizes the shuttle cysteines by thiol–disulfide exchange [9]. The shuttle cysteines then oxidize active-site cysteines in members of the PDI (protein disulfide-isomerase) family [2, 8, 10–12]. As the final step in the Ero1–PDI disulfide relay, PDIs introduce disulfide bonds into newly synthesized proteins in the ER [13].

Two isoforms of Ero1 have been identified in nearly all vertebrates studied so far [14] including humans: Ero1α and Ero1β [15,16]. Whereas Ero1α is widely expressed, Ero1β is predominantly found in select tissues, such as the pancreas and salivary gland [16,17]. Both Ero1 isoforms are up-regulated by the UPR (unfolded protein response), which is a transcriptional and translational programme that is induced by accumulation of...
misfolded proteins in the ER (designated ER stress). The UPR seeks to restore ER homeostasis, for example by decreasing the ER protein load through translational arrest and in parallel up-regulating chaperones to assist folding [18]. PERK [PKR (double-stranded-RNA-dependent protein kinase)-like endoplasmic reticulum kinase], Inositol-requiring enzyme 1 (double-stranded-RNA-dependent protein kinase)-like endoplasmic reticulum kinase], Inositol-requiring enzyme 1 (activating transcription factor 6a) [19], Ero1 (Saccharomyces cerevisiae) [21, 22], Ero1α [23, 25]. In the cell, formation and reduction of the disulfide-bonded state [23, 32]. Similarly, Ero1α-WT (wild-type Ero1α) is predominantly inactive and therefore has a subtle effect on the redox state of the PDI homologue ERp57 [23, 24], overexpression of Ero1β-WT hyperoxidizes ERp57, i.e. leads to a larger fraction of the molecules with active-site cysteines in the disulfide-bonded state [23, 32]. Similarly, Ero1β-WT is more active than Ero1α-WT in an in vitro oxidation assay performed with PDI as the substrate [7]. On non-reducing SDS–PAGE gels exogenous Ero1β expressed in mammalian cells migrates as two distinct redox species, with the distribution between the faster migrating (OX) and slower migrating species (Red) varying between experiments [23, 33, 34]. Similar to Ero1α [25], an initial shift from the OX to the Red species of Ero1β was observed during the catalysis of thioredoxin oxidation in vitro [7]. When thioredoxin was completely oxidized, the redox state of Ero1β reverted to the OX species [7]. Thus, Ero1β activity is also regulated by intramolecular disulfides.

In Ero1α, a cysteine-to-alanine mutant of Cys^{104} and Cys^{131} (Ero1α-C104A/C131A) displays hyperactivity since it can no longer form the two regulatory disulfides, but retains the two residues of the outer active site, Cys^{94} and Cys^{99} [24, 25].

Figure 1 Disulfide bonds in Ero1β and Ero1α

(A) Schematic representation of the proposed disulfide pattern in the OX redox form of Ero1β as reported by Wang et al. [7]. (B) Proposed disulfide bond pattern in Ero1β based on the present study. (C) Disulfide bond pattern in Ero1α OX verified by mass spectrometry [23, 24] and crystallography [4]. The cysteine residues are shown in black, magenta (outer active site) and red (reported regulatory function; Ero1α S262 in Ero1β) with amino acid numbering. Disulfide bonds are depicted as thick grey (likely structural), black (active site) or red (reported regulatory function; Ero1α S262 in Ero1β) with amino acid numbering. Disulfide bonds are depicted as thick grey (likely structural), black (active site) or red (reported regulatory function; Ero1α S262 in Ero1β) with amino acid numbering. Disulfide bonds are depicted as thick grey (likely structural), black (active site) or red (reported regulatory function; Ero1α S262 in Ero1β) with amino acid numbering. Disulfide bonds are depicted as thick grey (likely structural), black (active site) or red (reported regulatory function; Ero1α S262 in Ero1β) with amino acid numbering. Disulfide bonds are depicted as thick grey (likely structural), black (active site) or red (reported regulatory function; Ero1α S262 in Ero1β) with amino acid numbering. Disulfide bonds are depicted as thick grey (likely structural), black (active site) or red (reported regulatory function; Ero1α S262 in Ero1β) with amino acid numbering.
Recently, we showed that overexpression in human cells of the equivalent Ero1β mutant (Ero1β-C100A/C130A) gave rise to more pronounced hyperoxidation of ERp57 relative to overexpression of Ero1β-WT [32], suggesting that the regulatory mechanism is shared for Ero1α and Ero1β. However, Ero1β contains an additional cysteine residue (Cys262), which is not present in Ero1α. A disulfide bond between Cys100 and Cys262 was recently proposed to be present in Ero1β purified from Escherichia coli [7]. Moreover, Ero1β-C100A displayed slowed oxidation kinetics relative to Ero1β-WT [7], suggesting that the presence of the proposed Cys100-Cys262 disulfide bond increases Ero1β activity. On this background, we decided to further investigate the interplay between intramolecular disulfide bonds and regulation of activity in Ero1β.

MATERIALS AND METHODS

Primers and plasmids
Human Ero1β-myc6his ([16]; a gift from R. Sitia, Milan) cloned into the pcDNA5/FRT/TO vector [23] was used as a template for QuikChange mutagenesis (Stratagene) to introduce Cys-to-Ala mutations. The following primer was used to generate the pcDNA5/FRT/TO vector [23] was used as a template for QuikChange mutagenesis (Stratagene) to introduce Cys-to-Ala mutations. The following primer was used to generate the correct DNA sequence of the inserts.

Cell culture
Dox (doxycycline)-inducible Flp-In T-REx HEK-293 (Life Technologies) cell lines were generated and grown as previously described [23]. Ero1β expression was induced for 24 h (unless otherwise stated) using 1 μg/ml Dox (Sigma). For ER stress induction, cells were treated with either 5 μg/ml thapsigargin (Sigma) or 2.5 μg/ml tunicamycin (Sigma) for 5 min at 37 °C in full growth medium.

Sample preparation and AMS (4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid) modification
Cells were treated with NEM (N-ethylmaleimide) and subsequently lysed as described elsewhere [35]. The AMS (Life Technologies) modification protocol has been described previously [35]. Reduced and oxidized control lysates were obtained from cells treated with 10 mM DTT (dithiothreitol) or 5 mM diamide (both Sigma) for 5 min at 37 °C in full growth medium.

Antibodies and Western blotting
The following mouse monoclonal antibodies were used: αHis (Tetra-His, Qiagen), αmyc (9E10, Covance), αβ-actin (AC-15, Sigma). The rabbit polyclonal antisera used were: αBiP (G8918, Sigma), αERp57 (a gift from A. Helenius, Zürich, Switzerland), αHERP (a gift from L. Hendershot, Memphis, TN, U.S.A.). Western blotting was performed as previously described [24]. The shown Western blots are representative of at least two independent experiments.

Redox state analysis of Ero1β by TCA (trichloroacetic acid) precipitation and alkylation of free thiols
Cells cultivated to 60–80% confluency in 6 cm dishes were washed twice in PBS. They were then concomitantly lysed and precipitated by incubation in 10% (v/v) TCA for 15 min on ice. Cells were transferred to an Eppendorf tube, centrifuged (16 100 g, 4 °C, 15 min) and the supernatant was discarded. Pellets were washed once in ice-cold acetone, centrifuged (16 100 g, 4 °C, 15 min) and resuspended in 100 μl 100 mM Tris–HCl pH 7.0, 8% (v/v) glycerol, 2% (w/v) SDS, 10% dimethyl sulfoxide, 0.01% (w/v) bromocresol purple and 20 mM NEM. Samples were neutralized by drop-wise addition of 1 M Tris–HCl, pH 7.5, 2% SDS until samples turned purple (bromocresol purple changes colour between pH 5.2 and 6.8). The pellets were subsequently dissolved by sonication, incubated at RT in the dark for 1 h and the redox state of Ero1β was determined by non-reducing Western blotting.

RESULTS

Structure homology modelling of Ero1β predicts Cys262 to be buried in the structure
The amino acid sequences of Ero1β are highly conserved between orthologues (Supplementary Figure S1 available at http://www.bioscirep.org/bsr/034/bsr034e103add.htm). Thus, potential roles of cysteine residues in regulatory disulfide bonds based on evolutionary conservation could not be inferred from a multiple sequence alignment. Instead, we used structure homology modelling of Ero1β to assess the proposed disulfide patterns in the protein (Figures 1A and 1B). The protein structure prediction software SWISS-MODEL [36] was used to predict the three-dimensional structure of Ero1β based on the crystal structure of inactive Ero1α, a mutant in essence corresponding to the OX2 form ([4]; PDB ID: 3AHR) (Figure 2A). The sequences of mature Ero1α and Ero1β are highly similar [14] with a sequence identity of 65%. As expected from the high sequence conservation, the α-helical fold in Ero1α was predicted to be preserved in Ero1β including the four-helix bundle involved in FAD binding (Figure 2A, red-coloured α-helices). The structure of the flexible region (residues 86–130) comprising the proposed Cys95-Cys130 or the Cys95-Cys100 disulfide bonds could not be reliably modelled (Figure 2A).

In contrast to the cysteines in the flexible region, Cys262 is located at the end of a conserved helix [14], which is part of the four-helix bundle (Figure 2A). Moreover, Cys262 is positioned close...
to a protruding β-hairpin, which is critical for the interaction with PDI [37]. The equivalent residue in Ero1α (Ser262) is completely buried. Similarly, in the Ero1β model, Cys262 is predicted to have a relative accessible surface area of 0 (as calculated by the ASAView software [38] and the GETAREA method [39]), which strongly suggests that Cys262 in Ero1β is buried in the native structure. Moreover, the side chain −SH (Cys262) is buried in the backbone carbonyl group of Asn258 (Ser263) is predicted to form a hydrogen bond with the backbone carbonyl group of Asn258/Asn259, respectively (Figure 2B). This hydrogen bond seems to be part of a conserved hydrogen bond network, including hydrogen bonds from the side chain of Asn258/Asn259 to FAD, which helps stabilize the structure in the vicinity of the bound cofactor. Finally, we also note that in Xenopus tropicalis Ero1β, a serine residue is found in place of Cys262 (Supplementary Figure S1), indicating that a cysteine is not strictly necessary at this position as may have been expected if it played an important function in regulating the activity of the enzyme.

SDS–PAGE mobility of Ero1β mutants suggests conservation of regulatory disulfide bonds in Ero1α and Ero1β

To investigate the structural importance of intramolecular disulfide bonds in human Ero1β, we expressed Ero1β cysteine mutants in human cells and analysed the mobility of these mutants by non-reducing SDS–PAGE. Apart from already established stable cell lines for ectopic inducible expression of Ero1β-WT [23] and Ero1β–C100A/C130A [32], we generated three new inducible cell lines for the following mutants: Ero1β–C100A, Ero1β–C130A and Ero1β–C262A. As compared with Ero1β-WT, Ero1β–C100A and Ero1β–C262A showed similar expression levels, whereas the expression levels of Ero1β–C130A and Ero1β–C100A/130A were lower (Figure 3A). Importantly, none of the cell lines overexpressing Ero1β mutants of Cys100 and/or Cys130, which turned out to be hyperactive (see below), expressed more protein than the Ero1β-WT-expressing cell line.

As previously observed [33], the monomeric form of exogenous Ero1β-WT migrated as two distinct redox species (Red and OX) when cells were treated with NEM to alkylate free thiols in situ prior to lysis (Figure 3B, lane 2 and Figure 3C, lane 3). However, upon TCA precipitation with subsequent NEM treatment, monomeric Ero1β-WT migrated as one redox species (Figure 3D, lane 4). TCA precipitation rapidly quenches thiol–disulfide exchange reactions and denatures proteins, enabling alkylation of thiols buried in the native structure [40]. When cells are in situ NEM-treated, approximately 20% of the cellular protein thiols have been shown to be inaccessible to NEM [41]. Such NEM inaccessibility is thought to be a consequence of these thiols being buried in the native structure [40]. We therefore suggest that inefficient alkylation of (a) free thiol(s) buried in the structure of Ero1β gives rise to rearrangement of disulfide bonds upon denaturation, leading to the appearance of the Red Ero1β redox form (Figures 3B and 3C). Conversely, when all free thiols are efficiently alkylated, Ero1β-WT is preserved as a single redox species visible on SDS–PAGE gels (Figure 3D).

The SDS–PAGE mobility of the Ero1β variants on non-reducing gels (Figure 3D) is consistent with Ero1β having a similar pattern of disulfide bonds as Ero1α (Figures 1B and 1C). We were able to detect a relatively small migration shift between Ero1β-WT and Ero1α–C100A (Figure 3D, lanes 4–5) suggesting that Cys100 is not engaged in a long-range disulfide bond. In contrast, a larger shift was observed upon mutation of Cys130 (Figure 3D, lanes 6–7) consistent with removal of the longer-ranging Cys90–Cys130 disulfide bond. No redox species of Ero1β–C100A co-migrated with Ero1β–C130A (Figure 3D, lanes 5–6), suggesting that the Cys80–Cys130 disulfide bond is intact in Ero1β–C100A.
Figure 3 SDS–PAGE mobility of Ero1,β variants suggests that Ero1,α and Ero1,β share their sets of regulatory disulfide bonds

(A) Expression of His- and Myc-tagged Ero1,β variants was induced with Dox for 24 h and cells were NEM treated to alkylate-free thiols. Equal amounts of protein from lysates were analysed by reducing SDS–PAGE and Western blotting using αHis (Ero1,β) and αActin (loading control) to compare expression levels of Ero1,β variants. (B, C) Cell lysates were obtained as in (A). The SDS–PAGE mobility of the Ero1,β variants was analysed under non-reducing (Non-red) or reducing (Red) conditions by αmyc or αHis Western blotting. The open and filled circles indicate the previously described OX and Red redox forms of Ero1,β WT [33], respectively, and vertical hairlines denote removal of lanes. Asterisk denotes a background band. (D) Expression of Ero1,β variants was induced as in (A). Cells were subjected to TCA precipitation to rapidly quench thiol–disulfide exchange reactions and to denature cellular proteins. Precipitates were redissolved in a buffer containing NEM to alkylate free thiols. Subsequently, the SDS–PAGE mobility of the Ero1,β variants was analysed under non-reducing conditions by αHis Western blotting. Section signs (§) indicate possible Ero1,β mixed-disulfide dimeric species and the asterisk (*) denotes a background band.

Figure 4 Hyperoxidation of ERp57 is intensified by removal of regulatory disulfide bonds in Ero1,β

(A–C) Where indicated, expression of Ero1,β variants was induced with Dox for 24 h. Prior to lysis, cells were treated with NEM to alkylate free thiols. After cell lysis, cysteines present in disulfides were reduced and decorated with AMS. Such AMS modification of active-site cysteines originally present in the oxidized state gives rise to slower SDS–PAGE mobility compared with the (NEM-decorated) pool of ERp57 containing reduced active-site cysteines. The cellular redox state of ERp57 was visualized by Western blotting. DTT and Diamide (Dia) treated-cells were used to show the mobility of fully oxidized (Ox) and reduced (Red) ERp57. A vertical hairline denotes removal of lanes.
A fraction of Ero1β is present as a disulfide-bonded homodimer in human cells [33] and when expressed in bacteria [7]. Moreover, Ero1β engages in heterodimeric mixed-disulfide species with PDI and ERp44 in human cells [42]. The possible dimeric species involving Ero1β-WT and Ero1β-C262A were similar (Figure 3D, lanes 3–4), suggesting that Cys100 and Cys130 alone or in combination increased the hyperoxidizing effect (Figure 3D, lane 3). This clearly suggests that non-native disulfide shuffling in lysates of in situ NEM-treated cells observed for Ero1β-WT (Figures 3B and 3C) depends on the presence of Cys100 and Cys130, and that this residue is inaccessible to NEM in the native structure.

Based on these results, we propose that the regulatory disulfide bonds in Ero1α (Cys94–Cys131 and Cys98–Cys134) are conserved in Ero1β (Cys90–Cys130 and Cys95–Cys139) and that Cys262 constitutes a poorly accessible free thiol in the native structure. The deduced disulfide pattern in the OX redox form of Ero1β is shown in Figure 1(B).

DISCUSSION

Tight regulation of Ero1α activity is important to maintain balanced ER redox conditions [23–25]. We propose that the regulatory disulfide bonds in Ero1α and Ero1β are conserved (Figures 1B and 1C). This conclusion is based on several lines of evidence, including molecular modeling of the Ero1β structure (Figure 2), SDS–PAGE mobility analysis of Ero1β mutants (Figures 3B–3D) and ER redox (Figure 4) and ER stress readouts (Figure 5). Overall, the findings that overexpression of Ero1β mutants devoid of Cys100 and/or Cys130 induces the UPR, hyperoxidizes ERp57 and that Ero1β-C100A/C130A hyperoxidizes an ER-localized glutathione sensor [32], indicate that the underlying mechanism is likely to involve an oxidizing perturbation of the ER redox environment, which in turn results in protein misfolding and therefore activation of the UPR.

In a previous study [7], Ero1β-C262A purified from E. coli displayed a prominent slow-migrating redox species when compared with Ero1β-WT by non-reducing SDS–PAGE, indicating the loss of a long-range disulfide. Furthermore, analysis of tryptic fragments supported the presence of a Cys100–Cys262 disulfide bond. Finally, the Ero1β-C100A mutant was less active in vitro than Ero1β-WT, suggesting that the presence of the proposed Cys100–Cys262 disulfide bond positively regulates the activity of Ero1β.

Here, we expressed Ero1β (and mutants thereof) in its native environment in the ER of human cells and reached the conclusion that a disulfide bond between Cys100 and Cys262 is not likely to form. Thus, mutation of Cys100 rendered Ero1β hyperactive and overexpression of Ero1β-C262A showed effects comparable to Ero1β-WT overexpression. We also provide two-fold evidence that Cys262 is a solvent inaccessible residue in the native structure of Ero1β. First, a fraction of Ero1β-WT molecules rearrange into a redox species that migrates as the Red form upon in situ NEM treatment in a Cys262-dependent manner, suggesting that NEM cannot gain access to Cys262 under native conditions. Secondly, a homology model of Ero1β based on the crystal structure of Ero1α places Cys262 in a non-solvent exposed site in a highly conserved α-helix. Collectively, these findings strongly support the conclusion that Cys262 does not engage in an intramolecular disulfide bond with Cys100. To verify the proposed
Asp–Lys–Cys396) substantially increases the oxidase activity of Ero1α relative to Ero1β, as has previously been achieved for Ero1α [23]. Unfortunately, the results obtained by this approach were ambiguous (H. G. Hansen, L. Ellgaard and F. Hubálek, unpublished work), which was likely a result of disulfide bond scrambling in the course of sample preparation.

Using TCA precipitation and subsequent NEM treatment, we demonstrated that the Red form of Ero1β [33] is likely an artefact of inefficient thiol alkylation, indicating that overexpressed Ero1β is present solely as the OX redox species. Unfortunately, the redox state of endogenous Ero1β assessed by SDS–PAGE mobility under non-reducing conditions is currently unknown. Moreover, we currently do not know why Ero1β migrates 5–7 kDa faster than Ero1α on non-reducing SDS–PAGE gels [23], even though the predicted molecular mass of mature Ero1β is only 1–2 kDa smaller than the corresponding mass of mature Ero1α. Since deglycosylation of Ero1β gives rise to a more pronounced mobility shift on SDS–PAGE gels as compared with Ero1α [16], the presence of N-linked glycans cannot explain the unexpectedly large difference in SDS–PAGE mobility between Ero1α and Ero1β.

As Ero1α and Ero1β likely share their sets of regulatory disulfide bonds, features other than a distinct pattern of disulfide bonds must determine the loose redox regulation of Ero1β relative to Ero1α. Mutation of the Cys394–Phe–Lys–Cys397 inner active site sequence of Ero1α to the Ero1β sequence (Cys393–Asp–Lys–Cys396) substantially increases the oxidase activity of Ero1α [7]. This suggests that Asp394 in Ero1β contributes to the apparently loose redox regulation of Ero1β relative to Ero1α.

As previously proposed [22], the loose regulation of Ero1β activity relative to Ero1α could be explained by a higher reduction potential of the regulatory disulfide bonds in Ero1β. The high expression of Ero1β in the pancreas and salivary gland indicates a specific role of the protein in secretory tissues. Accordingly, oxidative folding of pro-insulin is impeded in pancreatic islet cells derived from Ero1β-compromised mice, an effect that is not exacerbated by concomitantly compromising Ero1α function [45]. However, increasing disulfide-bond formation by exogenous Ero1α expression stimulates oxidative folding of pro-insulin [46]. These observations suggest that the loose regulation of Ero1β activity could have evolved to optimally support the high demand of disulfide bonds in secretory tissues.

FUNDING

This work was supported by the Lundbeck Foundation [grant number 2009-3653 (to L.E.)]. H.G.H. was a recipient of a Ph.D. stipend from the Faculty of Science at the University of Copenhagen, and an EliteForsk Travel Stipend from the Danish Ministry of Science.
REFERENCES

1 Rutkевич, L. A. and Williams, D. B. (2012) Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum. Mol. Biol. Cell 23, 2017–2027

2 Appenzeller-Herzog, C., Riemer, J., Zito, E., Chin, K. T., Ron, D., Spiess, M. and Eilgaard, L. (2010) Disulphide production by Ero1alpha-PDI relay is rapid and effectively regulated. EMBO J. 29, 3318–3329

3 Bertoli, G., Simmen, T., Anelli, T., Molteni, S. N., Fesce, R. and Sitia, R. (2004) Two conserved cysteine triads in human Ero1alpha cooperate for efficient disulfide bond formation in the endoplasmic reticulum. J. Biol. Chem. 279, 30047–30052

4 Inaba, K., Masui, S., Iida, H., Vavassori, S., Sitia, R. and Suzuki, M. (2010) Crystal structures of human Ero1alpha reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO J. 29, 3330–3343

5 Gross, E., Kastner, D. B., Kaiser, C. A. and Fass, D. (2004) Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell 117, 601–610

6 Gross, E., Sevier, C. S., Heldman, N., Vitu, E., Bentzur, M., Kaiser, C. A., Thorpe, C. and Fass, D. (2006) Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc. Natl. Acad. Sci. U.S.A. 103, 299–304

7 Wang, L., Zhu, L. and Wang, C. C. (2011) The endoplasmic reticulum sulfhydryl oxidase Ero1beta drives efficient oxidative protein folding with loose regulation. Biochem. J. 434, 113–121

8 Wang, L., Li, S. J., Sidhu, A., Zhu, L., Liang, Y., Freedman, R. B. and Wang, C. C. (2009) Reconstitution of human Ero1-Lalpha/protein-disulfide isomerase oxidative folding pathway in vitro. Position-dependent differences in role between the a and a' domains of protein-disulfide isomerase. J. Biol. Chem. 284, 199–206

9 Sevier, C. S. and Kaiser, C. A. (2006) Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1. Mol. Biol. Cell. 17, 2256–2266

10 Tu, B. P. and Weissman, J. S. (2002) The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell 10, 983–994

11 Frand, A. R. and Kaiser, C. A. (2000) Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2833–2843

12 Mezghrani, A., Fassio, A., Benham, A., Simmen, T., Braakman, I. and Sitia, R. (2001) Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J. 20, 6288–6296

13 Appenzeller-Herzog, C. and Eilgaard, L. (2008) The human PDI family: versatility packed into a single fold. Biochem. Biophys. Acta 1783, 535–548

14 Araki, K. and Inaba, K. (2012) Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid. Redox Signal. 16, 790–799

15 Cabibbo, A., Pagani, M., Fabbri, M., Rocchi, M., Farmery, M. R., Bulleid, N. J. and Sitia, R. (2000) ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J. Biol. Chem. 275, 4827–4833

16 Pagani, M., Fabbri, M., Benedetti, C., Fassio, A., Pilati, S., Bulleid, N. J., Cabibbo, A. and Sitia, R. (2000) Endoplasmic reticulum oxidoreductin 1–Ibeta (ERO1–Ibeta), a human gene induced in the course of the unfolded protein response. J. Biol. Chem. 275, 23685–23692

17 Ramming, T. and Appenzeller-Herzog, C. (2012) The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more. Antioxid. Redox Signal. 16, 1109–1118

18 Walter, P. and Ron, D. (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086

19 Marciniak, S. J., Yun, C. Y., Oyadomari, S., Novaoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H. P. and Ron, D. (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077

20 Shoulders, M. D., Ryno, L. M., Genereux, J. C., Moresco, J. J., Tu, P. G., Wu, C., Yates, J. R., 3rd, Su, A. I., Kelly, J. W. and Wiseman, R. L. (2013) Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292

21 Adachi, Y., Yamamoto, K., Okada, T., Yoshida, H., Harada, A. and Mori, K. (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct. Funct. 33, 75–89

22 Taverner, T. J. and Bulleid, N. J. (2010) Molecular mechanisms regulating oxidative activity of the Ero1 family in the endoplasmic reticulum. Antioxid. Redox Signal. 13, 1177–1187

23 Appenzeller-Herzog, C., Riemer, J., Christensen, B., Sørensen, E. S. and Eilgaard, L. (2008) A novel disulphide switch mechanism in Ero1Lalpha balances ER oxidation in human cells. EMBO J. 27, 2977–2987

24 Hansen, H. G., Schmidt, J. D., Salttoft, C. L., Ramming, T., Geert-Hansen, H. M., Christensen, B., Sørensen, E. S., Juncker, A. S., Appenzeller-Herzog, C. and Eilgaard, L. (2012) Hyperactivity of the Ero1Lalpha oxidase elicits endoplasmic reticulum stress but no broad antioxidant response. J. Biol. Chem. 287, 39513–39523

25 Baker, K. M., Chakravarthi, S., Langton, K. P., Sheppard, A. M., Lu, H. and Bulleid, N. J. (2008) Low reduction potential of Ero1alpha regulatory disulphides ensures tight control of substrate oxidation. EMBO J. 27, 2988–2997

26 Molteni, S. N., Fassio, A., Cirioio, M. R., Filomeni, G., Pasqualetto, E., Fagioli, C. and Sitia, R. (2004) Glutathione limits Ero1-dependent oxidation in the endoplasmic reticulum. J. Biol. Chem. 279, 32667–32673

27 Jessop, C. E. and Bulleid, N. J. (2004) Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells. J. Biol. Chem. 279, 55341–55347

28 Appenzeller-Herzog, C. (2011) Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum. J. Cell Sci. 124, 847–855

29 Kim, S., Sidenis, D. P., Sevier, C. S. and Kaiser, C. A. (2012) Balanced Ero1 activation and inactivation establishes ER redox homeostasis. J. Cell Biol. 196, 713–725

30 Sevier, C. S., Qu, H., Heldman, N., Gross, E., Fass, D. and Kaiser, C. A. (2007) Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1. Cell 129, 333–344

31 Heldman, N., Vonshak, O., Sevier, C. S., Vitu, E., Mehmian, T. and Fass, D. (2010) Steps in reductive activation of the disulfide-generating enzyme Ero1p. Protein Sci. 19, 1863–1876

32 Birk, J., Meyer, M., Aller, I., Hansen, H. G., Odermatt, A., Dick, T. P., Meyer, A. J. and Appenzeller-Herzog, C. (2013) Endoplasmic reticulum: reduced and oxidized glutathione revisited. J. Cell Sci., doi: 10.1242/jcs.117218
33 Dias-Gunasekara, S., Gubbens, J., van Lith, M., Dunne, C., Williams, J. A., Kataky, R., Scoones, D., Lapthorn, A., Bulleid, N. J. and Benham, A. M. (2005) Tissue-specific expression and dimerization of the endoplasmic reticulum oxidoreductase Ero1beta. J. Biol. Chem. 280, 33066–33075
34 Dias-Gunasekara, S., van Lith, M., Williams, J. A., Kataky, R. and Benham, A. M. (2006) Mutations in the FAD binding domain cause stress-induced misoxidation of the endoplasmic reticulum oxidoreductase Ero1beta. J. Biol. Chem. 281, 25018–25025
35 Appenzeller-Herzog, C. and Ellgaard, L. (2008) In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms. Antioxid. Redox Signal. 10, 55–64
36 Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201
37 Masui, S., Vavassori, S., Fagioli, C., Sitia, R. and Inaba, K. (2011) Molecular bases of cyclic and specific disulfide interchange between human ER01alpha protein and protein-disulfide isomerase (PDI). J. Biol. Chem. 286, 16261–16271
38 Ahmad, S., Gromiha, M., Fawareh, H. and Sarai, A. (2004) ASAView: database and tool for solvent accessibility representation in proteins. BMC Bioinformatics 5, 51
39 Fraczkiewicz, R. and Braun, W. (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 19, 319–333
40 Hansen, R. E. and Winther, J. R. (2009) An introduction to methods for analyzing thiois and disulfides: Reactions, reagents, and practical considerations. Anal. Biochem. 394, 147–158
41 Lind, C., Gerdes, R., Hannell, Y., Schuppe-Koistinen, I., von Lowenheim, H. B., Holmgren, A. and Cotgreave, I. A. (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch. Biochem. Biophys. 406, 229–240
42 Otsu, M., Bertoli, G., Fagioli, C., Guerini-Rocco, E., Nerini-Molteni, S., Ruffato, E. and Sitia, R. (2006) Dynamic retention of Ero1alpha and Ero1beta in the endoplasmic reticulum by interactions with PDI and ERp44. Antioxid. Redox Signal. 8, 274–282
43 Sato, Y., Kojima, R., Okumura, M., Hagiwara, M., Masui, S., Maegawa, K., Saiki, M., Honbe, T., Suzuki, M. and Inaba, K. (2013) Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding. Sci. Rep. 3, 2456
44 Yamamoto, K., Sato, T., Matsui, T., Sato, M., Okada, T., Yoshida, H., Harada, A. and Morii, K. (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev. Cell 13, 365–376
45 Zito, E., Chin, K. T., Blais, J., Harding, H. P. and Ron, D. (2010) ER01–beta, a pancreas-specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. J. Cell Biol. 188, 821–832
46 Wright, J., Birk, J., Haataja, L., Liu, M., Ramming, T., Weiss, M. A., Appenzeller-Herzog, C. and Arvan, P. (2013) Endoplasmic reticulum oxidoreductin-1alpha (ero1alpha) improves folding and secretion of mutant proinsulin and limits mutant proinsulin-induced ER stress. J. Biol. Chem. 288, 31010–31018
47 Araki, K. and Nagata, K. (2011) Functional in vitro analysis of the ER01 protein and protein-disulfide isomerase pathway. J. Biol. Chem. 286, 32705–32712
SUPPLEMENTARY DATA

Biochemical evidence that regulation of Ero1β activity in human cells does not involve the isoform-specific cysteine 262

Henning G. HANSEN*, Cecilie L. SØLTOFT*, Jonas D. SCHMIDT*, Julia BIRK†, Christian APPENZELLER-HERZOG*† and Lars ELLGAARD*3

*Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
†Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland

Supplementary Figure S1 is on the following page.
Evolutionary conservation of Ero1β

A multiple sequence alignment of Ero1β orthologs was performed with Muscle [1] using the following UniProt entries. *Xenopus tropicalis* (frog; F6ULN4); *Gallus gallus* (chicken; E1C917); *Anolis carolinensis* (lizard; G1KAL4); *Monodelphis domestica* (opossum; F7CL82); *Mus musculus* (mouse; Q8R2E9); *Canis familiaris* (dog; F1Q091); *Homo sapiens* (human; Q86YB8); *Danio rerio* (zebrafish; E7F2A8); *Oryzias latipes* (rice fish; H2L719); *Takifugu rubripes* (pufferfish; H2TT03). Black boxes indicate amino acid identities and grey boxes show amino acid similarities when found in at least seven of the nine sequences. The human sequence is shown in boldface, cysteine residues are shown in red colour and amino acid position of the cysteine residues in the human sequence is indicated above the alignment.

REFERENCE

1. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797

Received 19 November 2013/8 January 2014; accepted 28 January 2014

Published as Immediate Publication 25 February 2014, doi 10.1042/BSR20130124