C. Hampson
S. Kikot
A. Kurucz

The Decision Problem of Modal Product Logics with a Diagonal, and Faulty Counter Machines

Abstract. In the propositional modal (and algebraic) treatment of two-variable first-order logic equality is modelled by a ‘diagonal’ constant, interpreted in square products of universal frames as the identity (also known as the ‘diagonal’) relation. Here we study the decision problem of products of two arbitrary modal logics equipped with such a diagonal. As the presence or absence of equality in two-variable first-order logic does not influence the complexity of its satisfiability problem, one might expect that adding a diagonal to product logics in general is similarly harmless. We show that this is far from being the case, and there can be quite a big jump in complexity, even from decidable to the highly undecidable. Our undecidable logics can also be viewed as new fragments of first-order logic where adding equality changes a decidable fragment to undecidable. We prove our results by a novel application of counter machine problems. While our formalism apparently cannot force reliable counter machine computations directly, the presence of a unique diagonal in the models makes it possible to encode both lossy and insertion-error computations, for the same sequence of instructions. We show that, given such a pair of faulty computations, it is then possible to reconstruct a reliable run from them.

Keywords: Two-variable first-order logic, Equality, Products of modal logics, Minsky machines, Lossy and insertion-error computations.

1. Introduction

It is well-known that the first-order quantifier $\forall x$ can be considered as an ‘S_5-box’: a propositional modal \square-operator interpreted over universal frames (that is, relational structures (W, R) where $R = W \times W$). The so-called ‘standard translation’, mapping modal formulas to first-order ones, establishes a validity preserving, bijective connection between the modal logic S_5 and the one-variable fragment of classical first-order logic [42]. The idea of generalising such a propositional approach to full first-order logic was suggested and

Presented by Yde Venema; Received October 4, 2014
thoroughly investigated both in modal setting [20,30,41], and in algebraic logic [16,18]. In particular, the bimodal logic $S5 \times S5$ over two-dimensional (2D) squares of universal frames corresponds to the equality and substitution free fragment of two-variable first-order logic, via a translation that maps propositional variables P to binary predicates $P(x, y)$, the modal boxes \Box_0 and \Box_1 to the first-order quantifiers $\forall x$ and $\forall y$, and the Boolean connectives to themselves. In this setting, equality between the two first-order variables can be modally ‘represented’ by extending the bimodal language with a constant δ, interpreted in square frames with universe $W \times W$ as the diagonal set
\[
\{\langle x, x \rangle : x \in W\}.
\]
The resulting modal logic (algebraically, representable 2D cylindric algebras [18]) is now closer to the full two-variable fragment (though $P(y, x)$-like transposition of variables is still not expressible in it). The generalisation of the modal treatment of full two-variable first-order logic to products of two arbitrary modal logics equipped with a diagonal constant (together with modal operators ‘simulating’ the substitution and transposition of first-order variables) was suggested in [36,37]. The product construction as a general combination method on modal logics was introduced in [8], and has been extensively studied ever since (see [7,21] for surveys and references). Two-dimensional product logics can not only be regarded as generalisations of the first-order quantifiers [23], but they are also connected to several other logical formalisms, such as the one-variable fragment of modal and temporal logics, modal and temporal description logics, and spatio-temporal logics. At first sight, the diagonal constant can only be meaningfully used in applications where the domains of the two component frames consist of objects of similar kinds, or at least overlap. However, as modal languages cannot distinguish between isomorphic frames, in fact any subset D of a Cartesian product $W_h \times W_v$ can be considered as an interpretation of the diagonal constant, as long as it is both ‘horizontally’ and ‘vertically’ unique in the following sense:
\[
\forall x \in W_h, \forall y, y' \in W_v \left(\langle x, y \rangle, \langle x, y' \rangle \in D \rightarrow y = y'\right), \quad (1)
\]
\[
\forall x, x' \in W_h, \forall y \in W_v \left(\langle x, y \rangle, \langle x', y \rangle \in D \rightarrow x = x'\right). \quad (2)
\]
So, say, in the one-variable constant-domain fragment of first-order temporal (or modal) logics, the diagonal constant can be added in order to single out a set of special ‘time-stamped’ objects of the domain, provided no special
object is chosen twice and at every moment of time (or world along the modal accessibility relation) at most one special object is chosen.

In this paper we study the decision problem of δ-product logics: arbitrary 2D product logics equipped with a diagonal. It is well-known that the presence or absence of equality in the two-variable fragment of first-order logic does not influence the coNExpTime-completeness of its validity problem [14, 28, 34]. So one might expect that adding a diagonal to product logics in general is similarly harmless. The more so that decidable product logics like $K \times K$ (the bimodal logic of all product frames) remain decidable when one adds modal operators ‘simulating’ the substitution and transposition of first-order variables [38]. However, we show that adding the diagonal is more dangerous, and there can be quite a big jump in complexity. In some cases, the global consequence relation of product logics can be reduced the validity-problem of the corresponding δ-products (Proposition 2). We also show (Theorems 2, 4) that if L is any logic having an infinite rooted frame where each point can be accessed by at most one step from the root, then both $K \times^\delta L$ and $K4.3 \times^\delta L$ are undecidable (here K is the unimodal logic of all frames, and $K4.3$ is the unimodal logic of linear orders). Some notable consequences of these results are:

(i) $K \times^\delta S5$ is undecidable, (while $K \times S5$ is coNExpTime-complete [24], and even the global consequence relation of $K \times S5$ is decidable in co2NExpTime [33, 43]).

(ii) $K4.3 \times^\delta S5$ is undecidable (while $K4.3 \times S5$ is decidable in 2ExpTime [31]).

(iii) $K \times^\delta K$ is undecidable (while $K \times K$ is decidable [8], though not in ElementaryTime [13]).

See also Table 1 for some known results on product logics, and how our present results on δ-products compare with them.

While all the above δ-product logics are recursively enumerable (Theorem 1), we also show that in some cases decidable product logics can turn highly undecidable by adding a diagonal. For instance, both $K \times^\delta S5$ and $K \times^\delta K$ when restricted to finite (but unbounded) product frames result in non-recursively enumerable logics (Theorem 3). Also, $\text{Logic}_{\langle \omega, < \rangle} \times^\delta S5$ is Π^1_1-hard (Theorem 5). On the other hand, the unbounded width of the second-component frames seems to be essential in obtaining these results. Adding a diagonal to decidable product logics of the form $K \times \text{Alt}(n)$, $S5 \times \text{Alt}(n)$, and $\text{Alt}(m) \times \text{Alt}(n)$ results in decidable logics, sometimes
Theorem 6 and 7) (here Alt(n) is the unimodal logic of frames where each point has at most n successors for some 0 < n < ω).

Our undecidable δ-product logics can also be viewed as new fragments of first-order logic where adding equality changes a decidable fragment to undecidable. (A well-known such fragment is the Gödel class [11,12].) In particular, consider the following ‘2D extension’ of the standard translation [9], from bimodal formulas to three-variable first-order formulas having two free variables x and y and a built-in binary predicate R:
$P^\dagger := P(x, y)$, for propositional variables P,
$$(-\phi)^\dagger := -\phi^\dagger \quad \text{and} \quad (\phi \land \psi)^\dagger := \phi^\dagger \land \psi^\dagger,$$
$$(\Box_0 \phi)^\dagger := \forall z \ (R(x, z) \to \phi^\dagger(z/x, y)),$$
$$(\Box_1 \phi)^\dagger := \forall z \ (R(y, z) \to \phi^\dagger(x, z/y)).$$

It is straightforward to see that, for any bimodal formula ϕ, ϕ is satisfiable in the (decidable) modal product logic $K \times K$ iff ϕ^\dagger is satisfiable in first-order logic. So the image of † is a decidable fragment of first-order logic that becomes undecidable when equality is added.

Our results show that in many cases the presence of a single proposition (the diagonal) with the ‘horizontal’ and ‘vertical’ uniqueness properties (1)–(2) is enough to cause undecidability of 2D product logics. If each of the component logics has a difference operator, then their product can express ‘horizontal’ and ‘vertical’ uniqueness of any proposition. For example, this is the case when each component is either the unimodal logic Diff of all frames of the form $\langle W, \neq \rangle$, or a logic determined by strict linear orders such as $K4.3$ or Logic of $\langle \omega, < \rangle$. So our Theorems 4 and 5 can be regarded as generalisations of the undecidability results of [32] on ‘linear’× ‘linear’-type products, and those of [17] on ‘linear’× Diff-type products.

On the proof methods. Even if 2D product structures are always grid-like by definition, there are two issues one needs to deal with in order to encode grid-based complex problems into them:

(i) to generate infinity, even when some component structure is not transitive, and

(ii) somehow to ‘access’ or ‘refer to’ neighbouring-grid points, even when there is no ‘next-time’ operator in the language, and/or the component structures are transitive or even universal.

When both component structures are transitive, then (i) is not a problem. If in addition component structures of arbitrarily large depths are available, then (ii) is usually solved by ‘diagonally’ encoding the $\omega \times \omega$-grid, and then use reductions of tiling or Turing machine problems [10, 25, 32]. When both components can express the uniqueness of any proposition (like strict linear orders or the difference operator), then it is also possible to make direct use of the grid-like nature of product structures and obtain undecidability by forcing reliable counter machine computations [17]. However, δ-product logics of the form $L \times \delta S5$ apparently neither can force such computations directly, nor they can diagonally encode the $\omega \times \omega$-grid. Instead, we prove
our lower bound results by a novel application of counter machine problems. The presence of a unique diagonal in the models makes it possible to encode both lossy and insertion-error computations, for the same sequence of instructions. We then show (Proposition 3) that, given such a pair of faulty computations, one can actually reconstruct a reliable run from them. The upper bound results are shown by a straightforward selective filtration.

The structure of the paper is as follows. Section 2 provides all the necessary definitions. In Sect. 3 we establish connections between our logics and other formalisms, and discuss some consequences of these connections on the decision problem of \(\delta\)-products. In Sect. 4 we introduce counter machines, and discuss how reliable counter machine computations can be approximated by faulty (lossy and insertion-error) ones. Then in Sects. 5 and 6 we state and prove our undecidability results on \(\delta\)-products having a K or a ‘linear’ component, respectively. The decidability results are proved in Sect. 7. Finally, in Sect. 8 we discuss some related open problems.

2. \(\delta\)-Product Logics

In what follows we assume that the reader is familiar with the basic notions in modal logic and its possible world semantics (see [3,5] for reference). Below we summarise the necessary notions and notation for our 3-modal case only, but we will use them throughout for the uni- and bimodal cases as well. We define our formulas by the following grammar:

\[
\phi ::= P \mid \delta \mid \neg \phi \mid \phi \land \psi \mid \Box_h \phi \mid \Box_v \phi,
\]

where \(P\) ranges over an infinite set of propositional variables. We use the usual abbreviations \(\lor, \rightarrow, \leftarrow, \perp := P \land \neg P, \Diamond_i := \neg \Box_i \neg,\) and also

\[
\Diamond_i^+ \phi ::= \phi \lor \Diamond_i \phi, \quad \Box_i^+ \phi ::= \phi \land \Box_i \phi,
\]

for \(i = h, v.\) (The subscripts are indicative of the 2D intuition: \(h\) for ‘horizontal’ and \(v\) for ‘vertical’.)

A \(\delta\)-frame is a tuple \(\mathcal{F} = \langle W, R_h, R_v, D \rangle\) where \(R_i\) are binary relations on the non-empty set \(W,\) and \(D\) is a subset of \(W.\) We call \(\mathcal{F}\) rooted if there is some \(w\) such that \(wR^*v\) for all \(v \in W,\) for the reflexive and transitive closure \(R^* \) of \(R := R_h \cup R_v.\) A model based on \(\mathcal{F}\) is a pair \(\mathcal{M} = \langle \mathcal{F}, \nu \rangle,\) where \(\nu\) is a function mapping propositional variables to subsets of \(W.\) The truth relation \(\mathcal{M}, w \models \phi\) is defined, for all \(w \in W,\) by induction on \(\phi\) as usual. In particular,
We say that ϕ is satisfied in M, if there is $w \in W$ with $M, w \models \phi$. We write $M \models \phi$, if $M, w \models \phi$ for every $w \in W$. Given a set L of formulas, we write $M \models L$ if $M \models \phi$ for every ϕ in L. Given formulas ϕ and ψ, we write $\phi \models^* \psi$ if $M \models \psi$ for every model M such that $M \models L \cup \{\phi\}$.

We say that ϕ is valid in \mathcal{F}, if $M \models \phi$ for every model M based on \mathcal{F}. If every formula in a set L is valid in \mathcal{F}, then we say that \mathcal{F} is a frame for L. We let FrL denote the class of all frames for L. Given a set L of formulas, we write $M \models L$ if $M \models \phi$ for every ϕ in L.

We call a set L of formulas a Kripke complete logic if $L = \text{Logic}_C$ for some class C. A Kripke complete logic L such that for all formulas ϕ and ψ, $\phi \models^* \psi$ if $M \models \phi$ implies $M \models \psi$ for every model M based on a frame for L, is called globally Kripke complete.

We are interested in some special ‘two-dimensional’ δ-frames. Given unimodal Kripke frames $\mathcal{F}_h = \langle W_h, R_h \rangle$ and $\mathcal{F}_v = \langle W_v, R_v \rangle$, their product is the bimodal frame

$$\mathcal{F}_h \times \mathcal{F}_v := \langle W_h \times W_v, R_h, R_v \rangle,$$

where $W_h \times W_v$ is the Cartesian product of sets W_h and W_v, and the binary relations R_h and R_v are defined by taking, for all $x, x' \in W_h, y, y' \in W_v$,

$$\langle x, y \rangle R_h \langle x', y' \rangle \text{ iff } x R_h x' \text{ and } y = y',$$

$$\langle x, y \rangle R_v \langle x', y' \rangle \text{ iff } y R_v y' \text{ and } x = x'.$$

The δ-product of \mathcal{F}_h and \mathcal{F}_v is the δ-frame

$$\mathcal{F}_h \times^\delta \mathcal{F}_v := \langle W_h \times W_v, R_h, R_v, \text{id} \rangle,$$

where $\langle W_h \times W_v, R_h, R_v \rangle = \mathcal{F}_h \times \mathcal{F}_v$ and

$$\text{id} = \{\langle x, x \rangle : x \in W_h \cap W_v\}.$$

For classes C_h and C_v of unimodal frames, we define

$$C_h \times^\delta C_v = \{\mathcal{F}_h \times^\delta \mathcal{F}_v : \mathcal{F}_i \in C_i, \text{ for } i = h, v\}.$$

Now, for $i = h, v$, let L_i be a Kripke complete unimodal logic in the language with \Diamond_i. The δ-product of L_h and L_v is defined as

$$L_h \times^\delta L_v := \text{Logic}_C (\text{Fr} L_h \times^\delta \text{Fr} L_v).$$
As a generalisation of the modal approximation of two-variable first-order logic, it might be more ‘faithful’ to consider

\[L_h \times_{sq} \delta L_v := \{ \phi : \phi \text{ is valid in } \mathfrak{F}_h \times_{sq} \mathfrak{F}_v, \text{ for some rooted } \mathfrak{F}_i = \langle W_i, R_i \rangle \text{ in } \mathfrak{F} L_i, \ i = h, v, \text{ such that } W_h = W_v \}, \]

or, in case \(L_h = L_v = L \), even

\[L \times_{sqf} \delta L := \{ \phi : \phi \text{ is valid in } \mathfrak{F} \times_{sqf} \delta \mathfrak{F}, \text{ for some rooted } \mathfrak{F} \in \mathfrak{F} L \}. \]

Then \(S5 \times_{sq} S5 = S5 \times_{sqf} S5 \) indeed corresponds to the transposition-free fragment of two-variable first-order logic. However, \(S5 \times_{\delta} S5 \) is properly contained in \(S5 \times_{sqf} S5 \): for instance \(\Diamond_h \delta \) belongs to the latter but not to the former. In general, clearly we always have \(L_h \times_{\delta} L_v \subseteq L_h \times_{sq} L_v \) and \(L \times_{\delta} L \subseteq L \times_{sqf} L \), whenever \(L_h = L_v = L \). Also, it is not hard to give examples when the three definitions result in three different logics. Throughout, we formulate all our results for the \(L_h \times_{\delta} L_v \) cases only, but each and every of them holds for the corresponding \(L_h \times_{sq} L_v \) as well (and also for \(L \times_{sqf} L \) when it is meaningful to consider the same \(L \) as both components).

Given a set \(L \) of formulas, we are interested in the following decision problems:

L-validity: Given a formula \(\phi \), does it belong to \(L \)?

If this problem is (un)decidable, we simply say that ‘\(L \) is (un)decidable’.

L-satisfiability: Given a formula \(\phi \), is there a model \(\mathcal{M} \) such that \(\mathcal{M} \models L \) and \(\phi \) is satisfied in \(\mathcal{M} \)?

Clearly, if \(L = \text{Logic of } \mathcal{C} \) then L-satisfiability is the same as

C-satisfiability: Given a formula \(\phi \), is there a frame \(\mathfrak{F} \in \mathcal{C} \) such that \(\phi \) is satisfied in a model based on \(\mathfrak{F} \)?

We also consider

Global L-consequence: Given formulas \(\phi \) and \(\psi \), does \(\phi \models^*_L \psi \) hold?

Notation. Our notation is mostly standard. In particular, we denote by \(R^+ \) the reflexive closure of a binary relation \(R \). The cardinality of a set \(X \) is denoted by \(|X| \). For each natural number \(k < \omega \), we also consider \(k \) as the finite ordinal \(k = \{0, \ldots, k - 1\} \).

3. Decidability of \(\delta \)-Products: What to Expect?

To begin with, the following proposition is straightforward from the definitions:
Proposition 1. $L_h \times^\delta L_v$ is always a conservative extension of $L_h \times L_v$.

So it follows from the undecidability results of [10] on the corresponding product logics that $L_h \times^\delta L_v$ is undecidable, whenever both L_h and L_v have only transitive frames and have frames of arbitrarily large depths. For example, $K4 \times^\delta K4$ is undecidable, where $K4$ is the unimodal logic of all transitive frames.

Next, we establish connections between the global consequence relation of some product logics and the corresponding δ-products. To begin with, we introduce an operation on frames that we call disjoint union with a spy-point. Given unimodal frames $\mathfrak{F}_i = \langle W_i, R_i \rangle$, $i \in I$, and a fresh point r, we let

$\bigcup_{i \in I} \mathfrak{F}_i := \langle W, R \rangle$,

where

$W = \{r\} \cup \{\langle w, i \rangle : i \in I, w \in W_i\}$, and

$R = \{\langle r, \langle w, i \rangle \rangle : w \in W_i, i \in I\}$

$\cup \{\langle \langle w, i \rangle, \langle w', i \rangle \rangle : w, w' \in W_i, wR_i w', i \in I\}$.

Note that the spy-point technique is well-known in hybrid logic [4].

Proposition 2. If L_h and L_v are Kripke complete logics such that both $Fr L_h$ and $Fr L_v$ are closed under the ‘disjoint union with a spy-point’ operation and $L_h \times L_v$ is globally Kripke complete, then the global $L_h \times L_v$-consequence is reducible to $L_h \times^\delta L_v$-validity.

Proof. We show that for all bimodal (δ-free) formulas ϕ, ψ,

$\phi \vdash_{L_h \times L_v}^* \psi$ iff $\left((\text{univ}^\delta \land \Box_h \Box_v \phi) \rightarrow \Box_h \Box_v \psi\right) \in L_h \times^\delta L_v$,

where

$\text{univ}^\delta := \Box_h \Diamond_v \delta \land \Box_h \Box_v \delta \land \Box_v \delta \land \Box_v \Box_h \delta$.

\Rightarrow: Suppose that $\mathfrak{M}, \langle r_h, r_v \rangle \models \text{univ}^\delta \land \Box_h \Box_v \phi \land \Diamond_h \Diamond_v \neg \psi$ in a model \mathfrak{M} that is based on $\mathfrak{F}_h \times^\delta \mathfrak{F}_v$, for some frames $\mathfrak{F}_i = \langle W_i, R_i \rangle$ in $Fr L_i$, $i = h, v$. Then there exist x_h, x_v such that $r_h R_h x_h$, $r_v R_v x_v$ and $\mathfrak{M}, \langle x_h, x_v \rangle \models \neg \psi$. For $i = h, v$, let \mathfrak{G}_i be the subframe of \mathfrak{F}_i generated by point x_i, and let \mathfrak{N} be the restriction of \mathfrak{M} to $\mathfrak{G}_h \times \mathfrak{G}_v$. Then

$\mathfrak{N} \models L_h \times L_v$ and $\mathfrak{N}, \langle x_h, x_v \rangle \models \neg \psi$. (3)
We claim that
\[r_i R_i w, \text{ for all } w \in \mathfrak{S}_i \text{ and } i = h, v. \]
Indeed, let \(i = h \). We prove (4) by induction on the smallest number \(n \) of \(R_h \)-steps needed to access \(w \) from \(x_h \). If \(n = 0 \) then we have \(r_h R_h x_h \). Now suppose inductively that (4) holds for all \(w \) in \(\mathfrak{S}_h \) that are accessible in \(\leq n \) \(R_h \)-steps from \(x_h \) for some \(n < \omega \), and let \(w' \) be accessible in \(n + 1 \) \(R_h \)-steps. Then there is \(w \) in \(\mathfrak{S}_h \) that is accessible in \(n \) steps and \(w R_h w' \).

Thus \(r_h R_h w \) by the IH, and so \(\mathfrak{M}, \langle w', r_v \rangle \models \Diamond_v \delta \) by \(\text{univ}^\delta \). Therefore, we have \(w' \in W_v \) and \(r_v R_v w' \). Then \(\mathfrak{M}, \langle r_h, w' \rangle \models \Diamond_h \delta \) again by \(\text{univ}^\delta \), and so \(r_h R_h w' \) as required. The \(i = v \) case is similar.

Now it follows from \(\mathfrak{M}, \langle r_h, r_v \rangle \models \Box_h \Box_v \phi \) and (4) that \(\mathfrak{N} \models \phi \). Therefore, \(\phi \not\models \mathfrak{L}_v \times \mathfrak{L}_v \psi \) by (3).

\[\Leftarrow: \] Suppose that \(\mathfrak{M} \models \phi \) and \(\mathfrak{M}, w \models \neg \psi \) in some model \(\mathfrak{M} \) with \(\mathfrak{M} \models \mathfrak{L}_h \times \mathfrak{L}_v \). As \(\mathfrak{L}_h \times \mathfrak{L}_v \) is globally Kripke complete, we may assume that \(\mathfrak{M} = \langle \mathfrak{F}_h \times \mathfrak{F}_v, \mu \rangle \) for some frames \(\mathfrak{F}_i = \langle W_i, R_i \rangle \) in \(\text{Fr} \mathfrak{L}_i \), \(i = i, h \). Let \(\mathfrak{F}_h^\alpha \), \(\alpha < |W_v| \), be \(|W_v| \)-many copies of \(\mathfrak{F}_h \), and \(\mathfrak{F}_v^\beta \), \(\beta < |W_h| \), be \(|W_h| \)-many copies of \(\mathfrak{F}_v \). Take some fresh point \(r \) and define

\[\mathfrak{S}_h = \langle U_h, S_h \rangle := \bigcup_{\alpha < |W_v|} \mathfrak{F}_h^\alpha \quad \text{and} \quad \mathfrak{S}_v = \langle U_v, S_v \rangle := \bigcup_{\beta < |W_h|} \mathfrak{F}_v^\beta. \]

Then by our assumption, \(\mathfrak{S}_i \) is a frame for \(\mathfrak{L}_i \), for \(i = h, v \). Define a model \(\mathfrak{N} := \langle \mathfrak{S}_h \times ^\delta \mathfrak{S}_v, \nu \rangle \) by taking, for all propositional variables \(P \),

\[\nu(P) := \{ \langle \langle x, \alpha \rangle, \langle y, \beta \rangle \rangle : \langle x, y \rangle \in \mu(P) \}. \]

Then \(\mathfrak{N}, \langle r, r \rangle \models \Box_h \Box_v \phi \land \Diamond_h \Diamond_v \neg \psi \). As \(|U_h| = |U_v| \) and \(\text{Fr} \mathfrak{L}_i \) is closed under isomorphic copies for \(i = h, v \), we can actually assume that \(U_h = U_v \), and so \(\mathfrak{N}, \langle r, r \rangle \models \text{univ}^\delta \).

Corollary 1. \(K \times ^\delta K \) and \(K \times ^\delta K4 \) are both undecidable.

Proof. It is not hard to check that the 2D product logics \(K \times K \) and \(K \times K4 \) satisfy the requirements in Proposition 2 (cf. [7, Theorem 5.12] for global Kripke completeness). A reduction of, say, the \(\omega \times \omega \)-tiling problem [2] shows that global \(K \times K \)-consequence is undecidable [24], and so the undecidability of \(K \times ^\delta K \) follows by Proposition 2. It is shown in [15] that the reduction of \(K4 \) to global \(K \)-consequence [40] can be ‘lifted’ to the product level, and so \(K4 \times K4 \) is reducible to global \(K \times K4 \)-consequence. Therefore, the latter is undecidable [10], and so the undecidability of \(K \times ^\delta K4 \) follows by Proposition 2.

\[\square \]
Note that we can also make Proposition 2 work for logics having only reflexive frames by making the ‘spy-point’ reflexive, and using a slightly different ‘translation’:

\[\phi \models^* L_h \times L_v \psi \iff (\text{univ}_h \land \Box_h P \land \Box_v P \land \Box_h \Box_v (\neg P \rightarrow \phi) \rightarrow \Box_h \Box_v (\neg P \rightarrow \psi)) \in L_h \times^\delta L_v, \]

where \(P \) is a fresh propositional variable.

However, logics having only symmetric frames (like \(S5 \)), or having only frames with bounded width (like \(K4.3 \) or \(\text{Alt}(n) \)) are not closed under the ‘disjoint union with a spy-point’ operation, and so Proposition 2 does not apply to their products. It turns out that in some of these cases such a reduction is either not useful in establishing undecidability of \(\delta \)-products, or does not even exist. While global \(K \times S5 \)-consequence is reducible to \(PDL \times S5 \)-validity,\(^1\) and so decidable in \(\text{co2NExpTime} \) [33,43], \(K \times^\delta S5 \) is shown to be undecidable in Theorem 2 below. While \(K \times^\delta \text{Alt}(n) \) is decidable by Theorem 6 below, the undecidability of global \(K \times \text{Alt}(n) \)-consequence can again be shown by a straightforward reduction of the \(\omega \times \omega \)-tiling problem.

Finally, the following general result is a straightforward generalisation of the similar theorem of [8] on product logics. It is an easy consequence of the recursive enumerability of the consequence relation of (many-sorted) first-order logic:

Theorem 1. If \(L_h \) and \(L_v \) are Kripke complete logics such that both \(\text{Fr} L_h \) and \(\text{Fr} L_v \) are recursively first-order definable in the language having a binary predicate symbol, then \(L_h \times^\delta L_v \) is recursively enumerable.

4. Reliable Counter Machines and Faulty Approximations

A Minsky [27] or counter machine \(M \) is described by a finite set \(Q \) of states, an initial state \(q_{ini} \in Q \), a set \(H \subseteq Q \) of terminal states, a finite set \(C = \{c_0, \ldots, c_{N-1}\} \) of counters with \(N > 1 \), a finite nonempty set \(I_q \subseteq Op_C \times Q \) of instructions, for each \(q \in Q - H \), where each operation in \(Op_C \) is one of the following forms, for some \(i < N \):

- \(c_i^{++} \) (increment counter \(c_i \) by one),
- \(c_i^{--} \) (decrement counter \(c_i \) by one),
- \(c_i^{??} \) (test whether counter \(c_i \) is empty).

\(^1\)Here \(PDL \) denotes Propositional Dynamic Logic.
For each \(\alpha \in Op_C \), we will consider three different kinds of semantics: reliable (as described above), lossy \[26\] (when counters can spontaneously decrease, both before and after performing \(\alpha \)), and insertion-error \[29\] (when counters can spontaneously increase, both before and after performing \(\alpha \)).

A configuration of \(M \) is a tuple \(\langle q, \vec{c} \rangle \) with \(q \in Q \) representing the current state, and an \(N \)-tuple \(\vec{c} = \langle c_0, \ldots, c_{N-1} \rangle \) of natural numbers representing the current contents of the counters. Given \(\alpha \in Op_C \), we say that there is a reliable \(\alpha \)-step between configurations \(\langle q, \vec{c} \rangle \) and \(\langle q', \vec{c}' \rangle \) (written \(\langle q, \vec{c} \rangle \xrightarrow{\alpha} \langle q', \vec{c}' \rangle \)) iff \(\langle \alpha, q' \rangle \in I_q \) and

- if \(\alpha = c_i^{++} \) then \(c'_i = c_i + 1 \) and \(c'_j = c_j \) for \(j \neq i, j < N \);
- if \(\alpha = c_i^{--} \) then \(c'_i = c_i - 1 \) and \(c'_j = c_j \) for \(j \neq i, j < N \);
- if \(\alpha = c_i^{??} \) then \(c'_i = c_i = 0 \) and \(c'_j = c_j \) for \(j < N \).

We say that there is a lossy \(\alpha \)-step between configurations \(\langle q, \vec{c} \rangle \) and \(\langle q', \vec{c}' \rangle \) (written \(\langle q, \vec{c} \rangle \xrightarrow{\alpha_{\text{lossy}}} \langle q', \vec{c}' \rangle \)) iff \(\langle \alpha, q' \rangle \in I_q \) and

- if \(\alpha = c_i^{++} \) then \(c'_i \leq c_i + 1 \) and \(c'_j \leq c_j \) for \(j \neq i, j < N \);
- if \(\alpha = c_i^{--} \) then \(c'_i \leq c_i - 1 \) and \(c'_j \leq c_j \) for \(j \neq i, j < N \);
- if \(\alpha = c_i^{??} \) then \(c'_i = 0 \) and \(c'_j \leq c_j \) for \(j < N \).

Finally, we say that there is an insertion-error \(\alpha \)-step between configurations \(\langle q, \vec{c} \rangle \) and \(\langle q', \vec{c}' \rangle \) (written \(\langle q, \vec{c} \rangle \xrightarrow{\alpha_{\text{err}}} \langle q', \vec{c}' \rangle \)) iff \(\langle \alpha, q' \rangle \in I_q \) and

- if \(\alpha = c_i^{++} \) then \(c'_i \geq c_i + 1 \) and \(c'_j \geq c_j \) for \(j \neq i, j < N \);
- if \(\alpha = c_i^{--} \) then \(c'_i \geq c_i - 1 \) and \(c'_j \geq c_j \) for \(j \neq i, j < N \);
- if \(\alpha = c_i^{??} \) then \(c_i = 0 \) and \(c'_j \geq c_j \) for \(j < N \).

Now suppose that a sequence \(\vec{\tau} = \langle \langle \alpha_n, q_n \rangle : 0 < n < B \rangle \) of instructions of \(M \) is given for some \(0 < B \leq \omega \). We say that a sequence \(\vec{\sigma} = \langle \langle q_n, \vec{c}(n) \rangle : n < B \rangle \) of configurations is a reliable \(\vec{\tau} \)-run of \(M \) if

(i) \(q_0 = q_{\text{ini}}, \vec{c}(0) = \vec{0}, \) and

(ii) \(\langle q_{n-1}, \vec{c}(n-1) \rangle \xrightarrow{\alpha_n} \langle q_n, \vec{c}(n) \rangle \) holds for every \(0 < n < B \).

A reliable run is a reliable \(\vec{\tau} \)-run for some \(\vec{\tau} \). Similarly, a sequence \(\vec{\sigma} \) satisfying (i) is called a lossy \(\vec{\tau} \)-run if we have \(\langle q_{n-1}, \vec{c}(n-1) \rangle \xrightarrow{\alpha_n_{\text{lossy}}} \langle q_n, \vec{c}(n) \rangle \), and an insertion-error \(\vec{\tau} \)-run if we have \(\langle q_{n-1}, \vec{c}(n-1) \rangle \xrightarrow{\alpha_n_{\text{err}}} \langle q_n, \vec{c}(n) \rangle \), for every \(0 < n < B \). (Note that in order to simplify the presentation, in each case we only consider runs that start at state \(q_{\text{ini}} \) with all-zero counters.)
Observe that, for any given \(\bar{\tau} \), if there exists a reliable \(\bar{\tau} \)-run, then it is unique. The following statement says that this unique reliable \(\bar{\tau} \)-run can be ‘approximated’ by a (lossy, insertion-error)-pair of \(\bar{\tau} \)-runs:

Proposition 3. (faulty approximation)

Given any sequence \(\bar{\tau} \) of instructions, there exists a reliable \(\bar{\tau} \)-run iff there exist both lossy and insertion-error \(\bar{\tau} \)-runs.

Proof. The \(\Rightarrow \) direction is obvious, as each reliable \(\bar{\tau} \)-run is both a lossy and an insertion-error \(\bar{\tau} \)-run as well. For the \(\Leftarrow \) direction, suppose that \(\bar{\tau} = \langle \alpha_n, q_n : 0 < n < B \rangle \) for some \(B \leq \omega \), \(\langle q_n, \bar{c}^\circ(n) : n < B \rangle \) is a lossy \(\bar{\tau} \)-run, and \(\langle q_n, \bar{c}^\bullet(n) : n < B \rangle \) is an insertion-error \(\bar{\tau} \)-run. We claim that there is a sequence \(\langle \bar{c}(n) : n < B \rangle \) of \(\omega \)-tuples of natural numbers such that, for every \(n < B \),

(a) \(c_i^\circ(n) \leq c_i(n) \leq c_i^\bullet(n) \) for every \(i < N \),

(b) if \(n > 0 \) then \(\langle q_{n-1}, \bar{c}(n-1) \rangle \to^{\alpha_n} \langle q_n, \bar{c}(n) \rangle \).

It would follow that \(\langle q_n, \bar{c}(n) : n < B \rangle \) is a reliable \(\bar{\tau} \)-run as required.

We prove the claim by induction on \(n \). To begin with, we let \(\bar{c}(0) := \bar{0} \). Now suppose that (a) and (b) hold for all \(k < n \) for some \(n \) with \(0 < n < B \). For each \(i < N \), we let

\[
c_i(n) := \begin{cases}
 c_i(n-1) + 1, & \text{if } \alpha_n = c_i^{++}, \\
 c_i(n-1) - 1, & \text{if } \alpha_n = c_i^{--}, \\
 c_i(n-1), & \text{if } \alpha_n \in \{ c_i^{??}, c_i^{??} \} \text{ for } j \neq i.
\end{cases}
\]

We need to check that (a) and (b) hold for \(n \). There are several cases, depending on \(\alpha_n \). If \(\alpha_n = c_i^{??} \) then, by \(\langle q_{n-1}, \bar{c}^\circ(n-1) \rangle \to^{\alpha_n} \langle q_n, \bar{c}^\bullet(n) \rangle \), the IH(a), and \(\langle q_{n-1}, \bar{c}^\bullet(n-1) \rangle \to^{\alpha_n}_{\text{lossy}} \langle q_n, \bar{c}^\bullet(n) \rangle \), we have

\[
c_j^\circ(n) \leq c_j^\circ(n-1) \leq c_j(n-1) = c_j(n) \leq c_j^\bullet(n-1) \leq c_j^\bullet(n) \quad \text{for all } j \neq i.
\]

Also, \(c_i^\bullet(n-1) = 0 \) by \(\langle q_{n-1}, \bar{c}^\bullet(n-1) \rangle \to^{\alpha_n}_{\text{err}} \langle q_n, \bar{c}^\bullet(n) \rangle \). So by the IH(a), we have \(c_i(n-1) = 0 \), and so \(c_i(n) = 0 \) and \(\langle q_{n-1}, \bar{c}(n-1) \rangle \to^{\alpha_n} \langle q_n, \bar{c}(n) \rangle \). As \(\langle q_{n-1}, \bar{c}^\circ(n-1) \rangle \to^{\alpha_n}_{\text{lossy}} \langle q_n, \bar{c}^\circ(n) \rangle \), we have \(c_i^\circ(n) = 0 \). Thus \(c_i^\circ(n) = c_i(n) = c_i^\bullet(n-1) = 0 \leq c_i^\bullet(n) \), as required. The other cases are straightforward and left to the reader.

In each of our lower bound proofs we will use ‘faulty approximation’, together with one of the following problems on reliable counter machine runs:

CM non-termination: (II\(^0\)-hard [27])

*Given a counter machine \(\mathcal{M} \), does \(\mathcal{M} \) have an infinite reliable run?
CM reachability: (Σ^0_1-hard [27])
Given a counter machine \mathcal{M}, and a state q_{fin}, does \mathcal{M} have a reliable run reaching q_{fin}?

CM recurrence: (Σ^1_1-hard [1])
Given a counter machine \mathcal{M} and a state q_r, does \mathcal{M} have a reliable run that visits q_r infinitely often?

5. Undecidable δ-Products with a K-Component

For each $0 < k \leq \omega$, we call any frame $\langle k, R \rangle$ a k-fan if
\[
\{ \langle 0, n \rangle : 0 < n < k \} \subseteq R.
\]

Theorem 2. Let L be any Kripke complete logic having an ω-fan among its frames. Then $K \times^{\delta} L$ is undecidable.

Corollary 2. $K \times^{\delta} S5$ is undecidable.

We prove Theorem 2 by reducing the ‘CM non-termination’ problem to $L_h \times^{\delta} L_v$-satisfiability. Let \mathfrak{M} be a model based on the δ-product of some frame $\mathfrak{F}_h = \langle W_h, R_h \rangle$ in $\text{Fr} L_h$ and some frame $\mathfrak{F}_v = \langle W_v, R_v \rangle$ in $\text{Fr} L_v$. First, we generate an $\omega \times \omega$-grid in \mathfrak{M}. Let grid be the conjunction of the formulas
\[
\Box_v^+ \Diamond_h \delta, \\
\Box_h \Diamond_v (\Diamond_h \delta \land \Box_h \delta). \tag{7}
\]

Claim 2.1. (grid generation)
If $\mathfrak{M}, \langle r_h, r_v \rangle \models \text{grid}$ then there exist points $\langle x_n \in W_h \cap W_v : n < \omega \rangle$ such that, for all $n < \omega$,

(i) $r_h R_h x_n$,
(ii) $x_0 = r_v$, and if $n > 0$ then $x_0 R_v x_n$,
(iii) if $n > 0$ then $x_{n-1} R_h x_n$,
(iv) if $n > 0$ then x_n is the only R_h-successor of x_{n-1}.

(We do not claim that all the x_n are distinct.)

Proof. By induction on n. Let $x_0 := r_v$. Then (i) holds by (6). Now suppose inductively that we have $\langle x_k : k < n \rangle$ satisfying (i)–(iv) for some $0 < n < \omega$. Then by (7), there is $x_n \in W_v$ such that $x_0 R_v x_n$ and $\mathfrak{M}, \langle x_{n-1}, x_n \rangle \models \Diamond_h \delta \land \Box_h \delta$. Therefore, $x_n \in W_h, x_{n-1} R_h x_n$, and x_n is the only R_h-successor of x_{n-1}. By (6), $\mathfrak{M}, \langle r_h, x_n \rangle \models \Diamond_h \delta$. So $r_h R_h x_n$ follows, as required. □
Observe that because of Claim 2.1(iii) and (iv), \square_h in fact expresses ‘horizontal next-time’ in our grid. For any formula ψ and any $w \in W_v$,
\[\mathcal{M}, \langle x_n, w \rangle \models \square_h \psi \iff \mathcal{M}, \langle x_{n+1}, w \rangle \models \psi, \text{ for all } n < \omega. \] (8)

Using this, we will force a pair of infinite lossy and insertion-error \mathcal{P}-runs, for the same sequence \mathcal{P} of instructions. Given any counter machine M_i, for each $i < M$ of its counters, we take two fresh propositional variables C_{i}° and C_{i}^\bullet. At each moment n of time, the actual content of counter c_i during the lossy run will be represented by the set of points
\[\Sigma^\circ_i(n) := \{ w \in W_v : x_0R^+_vw \text{ and } \mathcal{M}, \langle x_n, w \rangle \models C_{i}^\circ \}, \]
and during the insertion-error run by the set of points
\[\Sigma^\bullet_i(n) := \{ w \in W_v : x_0R^+_vw \text{ and } \mathcal{M}, \langle x_n, w \rangle \models C_{i}^\bullet \}. \]

For each $i < M$, the following formulas force the possible changes in the counters during the lossy and insertion-error runs, respectively:
\[\text{fix}_{i}^\circ := \square_v^+ (\square_h C_{i}^\circ \to C_{i}^\circ), \]
\[\text{inc}_{i}^\circ := \square_v^+ (\square_h C_{i}^\circ \to (C_{i}^\circ \lor \delta)), \]
\[\text{dec}_{i}^\circ := \square_v^+ (\square_h C_{i}^\circ \to C_{i}^\circ) \land \Diamond_v^+ (C_{i}^\circ \land \square_h \neg C_{i}^\circ), \]
and
\[\text{fix}_{i}^\bullet := \square_v^+ (C_{i}^\bullet \to \square_h C_{i}^\bullet), \]
\[\text{inc}_{i}^\bullet := \square_v^+ (C_{i}^\bullet \to \square_h C_{i}^\bullet) \land \Diamond_v^+ (\neg C_{i}^\bullet \land \square_h C_{i}^\bullet), \]
\[\text{dec}_{i}^\bullet := \square_v^+ (C_{i}^\bullet \to (\square_h C_{i}^\bullet \lor \delta)). \]

Claim 2.2. (lossy and insertion-error counting)

Suppose that $\mathcal{M}, \langle r_h, r_v \rangle \models \text{grid. Then for all } n < \omega \text{ and } i < M:*

(i) If $\mathcal{M}, \langle x_n, x_0 \rangle \models \text{fix}_{i}^\circ$ then $\Sigma^\circ_i(n+1) \subseteq \Sigma^\circ_i(n)$.
(ii) If $\mathcal{M}, \langle x_n, x_0 \rangle \models \text{inc}_{i}^\circ$ then $\Sigma^\circ_i(n+1) \subseteq \Sigma^\circ_i(n) \cup \{x_n\}$.
(iii) If $\mathcal{M}, \langle x_n, x_0 \rangle \models \text{dec}_{i}^\circ$ then $\Sigma^\circ_i(n+1) \subseteq \Sigma^\circ_i(n) - \{z\}$ for some $z \in \Sigma^\circ_i(n)$.
(iv) If $\mathcal{M}, \langle x_n, x_0 \rangle \models \text{fix}_{i}^\bullet$ then $\Sigma^\bullet_i(n+1) \supseteq \Sigma^\bullet_i(n)$.
(v) If $\mathcal{M}, \langle x_n, x_0 \rangle \models \text{inc}_{i}^\bullet$ then there is z such that $x_0R^+_v z$, $z \notin \Sigma^\bullet_i(n)$, and $\Sigma^\bullet_i(n+1) \supseteq \Sigma^\bullet_i(n) \cup \{z\}$.
(vi) If $\mathcal{M}, \langle x_n, x_0 \rangle \models \text{dec}_{i}^\bullet$ then $\Sigma^\bullet_i(n+1) \supseteq \Sigma^\bullet_i(n) - \{x_n\}$.

Proof. We show items (ii) and (v). The proofs of the other items are similar and left to the reader.
(ii): Suppose \(w \in \Sigma_i^*(n+1) \). Then \(x_0R_i^+w \) and \(\mathcal{M}, \langle x_{n+1}, w \rangle \models C_i^0 \). By (8), we have \(\mathcal{M}, \langle x_n, w \rangle \models \Box_h C_i^0 \). Therefore, \(\mathcal{M}, \langle x_n, w \rangle \models C_i^0 \lor \delta \) by inc\(_i^o\), and so either \(w \in \Sigma_i^*(n) \) or \(w = x_n \).

(v): By inc\(_i^o\), there is \(z \) with \(x_0R_i^+z \) and \(\mathcal{M}, \langle x_n, z \rangle \models \neg C_i^0 \land \Box_h C_i^0 \). Thus \(z \notin \Sigma_i^*(n) \). Also, we have \(\mathcal{M}, \langle x_{n+1}, z \rangle \models C_i^0 \) by (8), and so \(z \in \Sigma_i^*(n+1) \). Now suppose \(w \in \Sigma_i^*(n) \). Then \(x_0R_i^+w \) and \(\mathcal{M}, \langle x_n, w \rangle \models C_i^0 \). By inc\(_i^o\), we have \(\mathcal{M}, \langle x_n, w \rangle \models \Box_h C_i^0 \). Thus \(\mathcal{M}, \langle x_{n+1}, w \rangle \models C_i^0 \) by (8), and so \(w \in \Sigma_i^*(n+1) \).

Using the above counting machinery, we can encode lossy and insertion-error steps. For each \(\alpha \in Op_C \), we define

\[
\text{do}^o(\alpha) := \begin{cases}
\text{inc}_i^o \land \bigwedge_{i \neq j < N} \text{fix}_j^o, & \text{if } \alpha = c_i^{++}, \\
\text{dec}_i^o \land \bigwedge_{i \neq j < N} \text{fix}_j^o, & \text{if } \alpha = c_i^{--}, \\
\Box_v \Box_h \neg C_i^0 \land \bigwedge_{i \neq j < N} \text{fix}_j^o, & \text{if } \alpha = c_i^{??},
\end{cases}
\]

and

\[
\text{do}^o(\alpha) := \begin{cases}
\text{inc}_i^o \land \bigwedge_{i \neq j < N} \text{fix}_j^o, & \text{if } \alpha = c_i^{++}, \\
\text{dec}_i^o \land \bigwedge_{i \neq j < N} \text{fix}_j^o, & \text{if } \alpha = c_i^{--}, \\
\Box_v \neg C_i^0 \land \bigwedge_{i \neq j < N} \text{fix}_j^o, & \text{if } \alpha = c_i^{??}.
\end{cases}
\]

Now we can force runs of \(M \) that start at \(q_{ini} \) with all-zero counters. For each state \(q \in Q \), we introduce a fresh propositional variable \(S_q \), and define

\[
\hat{S}_q := S_q \land \bigwedge_{q \neq q' \in Q} \neg S_{q'}.
\]

(9)

Let \(\varphi_M \) be the conjunction of

\[
\Box_h \big(\delta \rightarrow (\hat{S}_{q_{ini}} \land \Box_v^+ (\neg C_i^0 \land \neg C_i^0)) \big),
\]

(10)

\[
\Box_h \bigwedge_{q \in Q-H} \big(\hat{S}_q \rightarrow \bigvee_{(\alpha,q') \in I_q} (\Box_h \hat{S}_{q'} \land \text{do}^o(\alpha) \land \text{do}^o(\alpha)) \big),
\]

(11)

\[
\Box_h \bigvee_{q \in Q-H} \hat{S}_q.
\]

(12)

Lemma 2.3. (lossy and insertion-error run-emulation)

Suppose that \(\mathcal{M}, \langle r_h, r_v \rangle \models \text{grid} \land \varphi_M \). Let \(q_0 := q_{ini} \), and for all \(i < N \), \(n < \omega \), let \(c_i^0(n) := |\Sigma_i^0(n)| \) and
\[c_i^\bullet(n) = \begin{cases} c_i^\bullet(n-1) + 1, & \text{if } \Sigma_i^\bullet(n) \text{ is infinite,} \\ |\Sigma_i^\bullet(n)|, & \text{otherwise.} \end{cases} \]

Then there exists an infinite sequence \(\vec{\tau} = \langle \alpha_n, q_n : 0 < n < \omega \rangle \) of instructions such that

1. \(\langle q_n, \vec{c}^\circ(n) : n < \omega \rangle \) is a lossy \(\vec{\tau} \)-run of \(M \), and
2. \(\langle q_n, \vec{c}^\bullet(n) : n < \omega \rangle \) is an insertion-error \(\vec{\tau} \)-run of \(M \).

Proof. We define \(\langle \alpha_n, q_n : 0 < n < \omega \rangle \) by induction on \(n \) such that for all \(0 < n < \omega \),

- \(q_n \in Q - H \) and \(\mathcal{M}, \langle x_n, x_0 \rangle \models \hat{S}_{\alpha_n} \),
- \(\langle q_{n-1}, \vec{c}^\circ(n-1) \rangle \rightarrow_{\alpha_n}^{\text{lossy}} \langle q_n, \vec{c}^\circ(n) \rangle \) and \(\langle q_{n-1}, \vec{c}^\bullet(n-1) \rangle \rightarrow_{\alpha_n}^{\text{lossy}} \langle q_n, \vec{c}^\bullet(n) \rangle \).

As \(\vec{c}^\circ(0) = \vec{c}^\bullet(0) = \vec{0} \) by (10), the lemma will follow.

To this end, take some \(n \) with \(0 < n < \omega \). Then we have \(q_{n-1} \in Q - H \) and \(\mathcal{M}, \langle x_{n-1}, x_0 \rangle \models \hat{S}_{\alpha_{n-1}} \) by (10) and (12) if \(n = 1 \), and by the IH if \(n > 1 \). Therefore, by Claim 2.1(i) and (11), there is \(\langle \alpha_n, q_n \rangle \in I_{\alpha_n} \) such that \(\mathcal{M}, \langle x_{n-1}, x_0 \rangle \models \square_h \hat{S}_{\alpha_n} \wedge \text{do}^\circ(\alpha_n) \land \text{do}^\bullet(\alpha_n) \). So \(\mathcal{M}, \langle x_n, x_0 \rangle \models \hat{S}_{\alpha_n} \) by Claim 2.1(iii), and so \(q_n \in Q - H \) by Claim 2.1(i) and (12). Using Claim 2.2(i)–(iii), it is easy to check that \(\langle q_{n-1}, \vec{c}^\circ(n-1) \rangle \rightarrow_{\alpha_n}^{\text{lossy}} \langle q_n, \vec{c}^\circ(n) \rangle \).

Finally, in order to show that \(\langle q_{n-1}, \vec{c}^\bullet(n-1) \rangle \rightarrow_{\alpha_n}^{\text{lossy}} \langle q_n, \vec{c}^\bullet(n) \rangle \), we need to use Claim 2.2(iv)–(vi) and the following observation. As for each \(i < N \) either \(\Sigma_i^\bullet(n-1) \) is infinite or \(c_i^\bullet(n-1) = |\Sigma_i^\bullet(n-1)| \), if \(c_i^\bullet(n-1) \neq 0 \) then \(\Sigma_i^\bullet(n-1) \neq \emptyset \), and so \(\alpha_n \neq c_i^\bullet \) follows by \(\mathcal{M}, \langle x_{n-1}, x_0 \rangle \models \text{do}^\bullet(\alpha_n) \).

For each \(k \leq \omega \), let \(\mathcal{S}_k \) be the frame obtained from \(\langle k, +1 \rangle \) by adding a ‘spy-point’, that is, let \(\mathcal{S}_k := (k + 1, S_k) \), where

\[S_k = \{ \langle k, n \rangle : n < k \} \cup \{ \langle n-1, n \rangle : 0 < n < k \}. \]

Lemma 2.4. (Soundness)

If \(M \) has an infinite reliable run, then \(\text{grid} \land \varphi_M \) is satisfiable in a model over \(\mathcal{S}_\omega \times^\delta \mathcal{F} \) for some \(\omega \)-fan \(\mathcal{F} \).

Proof. Suppose that \(\langle q_n, \vec{c}(n) : n < \omega \rangle \) is a reliable \(\vec{\tau} \)-run of \(M \), for some sequence \(\vec{\tau} = \langle \alpha_n, q_n : 0 < n < \omega \rangle \) of instructions. We define a model \(\mathcal{M}_\infty = (\mathcal{S}_\omega \times^\delta \mathcal{F}, \mu) \) as follows. For each \(q \in Q \), we let

\[\mu(S_q) := \{ (n, 0) : n < \omega, q_n = q \}. \]

Further, for all \(i < N, n < \omega \), we will define inductively the sets \(\mu_n(C_i^\circ) \) and \(\mu_n(C_i^\bullet) \), and then put

\[\mu(C_i^\circ) := \{ (n, m) : m \in \mu_n(C_i^\circ) \} \quad \text{and} \quad \mu(C_i^\bullet) := \{ (n, m) : m \in \mu_n(C_i^\bullet) \}. \]
To begin with, we let $\mu_0(C^*_i) = \mu_0(C^*_i) := \emptyset$, and

$$
\mu_{n+1}(C^*_i) := \begin{cases}
\mu_n(C^*_i) \cup \{n\}, & \text{if } \alpha_{n+1} = c_i^{++}, \\
\mu_n(C^*_i) - \{\min \mu_n(C^*_i)\}, & \text{if } \alpha_{n+1} = c_i^{--}, \\
\mu_n(C^*_i), & \text{otherwise}.
\end{cases}
$$

It is straightforward to check that

$$
|\mu_n(C^*_i)| = c_i(n) \quad \text{and} \quad M_\infty, \langle n, 0 \rangle \models \text{do}^\circ(\alpha_{n+1}), \quad \text{for all } i < N, \ n < \omega.
$$

We need to be a bit more careful when defining $\mu_n(C^*_i)$. As the formulas do$^\circ(\alpha_n)$ permit decrementing the insertion-error counters only at diagonal points, we must be sure that only previously incremented points get decremented. To this end, for every $i < N$, we let

$$
\Lambda_i := \{k < \omega : \alpha_{k+1} = c_i^{--}\}, \quad \Xi_i := \{k < \omega : \alpha_{k+1} = c_i^{++}\},
$$

and let

$$
\langle \lambda^i_m : m < L_i \rangle \quad \text{be the enumeration of } \Lambda_i \quad \text{in ascending order, and}
$$

$$
\langle \xi^i_m : m < K_i \rangle \quad \text{be the enumeration of } \Xi_i \quad \text{in ascending order,}
$$

for some $L_i, K_i \leq \omega$. As in a run only non-zero counters can be decremented and our run is reliable, we always have $L_i \leq K_i$, and $\lambda^i_m > \xi^i_m$ for all $m < L_i$.

Then we let

$$
\mu_{n+1}(C^*_i) := \begin{cases}
\mu_n(C^*_i) \cup \{\lambda^i_m\}, & \text{if } \alpha_{n+1} = c_i^{++}, \ n = \xi^i_m, \\
\mu_n(C^*_i) \cup \{\min(\omega - \mu_n(C^*_i))\}, & \text{if } \alpha_{n+1} = c_i^{++}, \ n = \xi^i_m, \ L_i \leq m < K_i, \\
\mu_n(C^*_i) - \{n\}, & \text{if } \alpha_{n+1} = c_i^{--}, \\
\mu_n(C^*_i), & \text{otherwise}.
\end{cases}
$$

We claim that if $\alpha_{n+1} = c_i^{--}$ then $n \in \mu_n(C^*_i)$, and so $|\mu_{n+1}(C^*_i)| = |\mu_n(C^*_i)| - 1$. Indeed, if $\alpha_{n+1} = c_i^{--}$ then $n = \lambda^i_m$ for some $m < L_i$.

So $\mu_{\xi^i_m+1}(C^*_i) = \mu_{\xi^i_m}(C^*_i) \cup \{\lambda^i_m\}$, and so $n \in \mu_{\xi^i_m+1}(C^*_i)$. It follows that $n \in \mu_k(C^*_i)$ for every k with $\xi^i_m + 1 \leq k < n + 1$, as required.

Now it is not hard to see that $|\mu_n(C^*_i)| = c_i(n)$ and $M_\infty, \langle n, 0 \rangle \models \text{do}^\circ(\alpha_{n+1})$, for all $i < N$ and $n < \omega$. Using this and (14), it is easy to check that $M_\infty, \langle \omega, 0 \rangle \models \text{grid} \land \phi_M$.}

Now Theorem 2 follows from Proposition 3, Lemmas 2.3 and 2.4.

Note that it is easy to generalise the proof to obtain undecidability of $T \times^\delta L$ (where T is the unimodal logic of all reflexive frames), by using a
version of the ‘tick-’ or ‘chessboard’-trick (see e.g. [10,32,39] for more details): Take a fresh propositional variable \(\text{tick}\), and define a new ‘horizontal’ modal operator by setting, for all formulas \(\varphi\),
\[
\square_h \varphi := (\text{tick} \rightarrow \square_h (\neg \text{tick} \rightarrow \varphi)) \land (\neg \text{tick} \rightarrow \square_h (\text{tick} \rightarrow \varphi)).
\] (18)
Then replace each occurrence of \(\square_h\) in the formula \(\text{grid} \land \varphi_M\) with \(\square_h\), and add the conjunct
\[
\square_h ((\text{tick} \leftrightarrow \square_v \text{tick}) \land (\neg \text{tick} \leftrightarrow \square_v \neg \text{tick})).
\] (19)
It is not hard to check that the resulting formula is \(T \times \delta L\)-satisfiable iff \(M\) has an infinite reliable run.

Next, recall \(k\)-fans from (5), and the frames \(\mathcal{H}_k\) from (13).

Theorem 3. Let \(\mathcal{C}_h\) and \(\mathcal{C}_v\) be any classes of frames such that

- either \(\mathcal{C}_h\) or \(\mathcal{C}_v\) contains only finite frames,
- either \(\mathcal{H}_\omega \in \mathcal{C}_h\), or \(\mathcal{H}_k \in \mathcal{C}_h\) for every \(k < \omega\),
- either \(\mathcal{C}_v\) contains an \(\omega\)-fan, or \(\mathcal{C}_v\) contains a \(k\)-fan for every \(k < \omega\).

Then Logic\(_\delta\)(\(\mathcal{C}_h \times \delta \mathcal{C}_v\)) is not recursively enumerable.

Proof. We sketch how to modify the proof of Theorem 2 to obtain a reduction of the ‘CM reachability’ problem to \(\mathcal{C}_h \times \delta \mathcal{C}_v\)-satisfiability. To begin with, observe that if we add the conjunct
\[
\square_h (\Diamond_v (\text{end} \lor (\Diamond_v \delta \land \square_h \delta)))
\] (20)
to the formula \(\text{grid}\) defined in (6)–(7), then the grid-points \(x_n\) generated in Claim 2.1 are all different. Now we introduce a fresh propositional variable \(\text{end}\), and let \(\text{grid}^{\text{fin}}\) be the conjunction of (6), (20) and the following ‘finitary’ version of (7):
\[
\square_h (\Diamond_v (\text{end} \lor (\Diamond_v \delta \land \square_h \delta))).
\] (21)
Given any counter machine \(M\) and a state \(q_{\text{fin}}\), let \(\varphi_M^{\text{fin}}\) be obtained from \(\varphi_M\) by replacing (12) with
\[
\square_h \bigvee_{q \in (Q - H) \cup \{q_n\}} \hat{S}_q.
\]
It is not hard to see that \(\text{grid}^{\text{fin}} \land \varphi_M^{\text{fin}} \land \square_h (\Diamond_v \text{end} \rightarrow \hat{S}_{q_{\text{fin}}})\) is \(\mathcal{C}_h \times \delta \mathcal{C}_v\)-satisfiable iff there is a reliable run of \(M\) reaching \(q_{\text{fin}}\).

Note that it is also possible to give another proof of Theorem 2 by doing everything ‘backwards’. The conjunction of the following formulas generates a grid backwards in \(K \times \delta L\)-frames, and is used in [22] to show that these
logics lack the finite model property w.r.t. any (not necessarily product) frames:

\[\Diamond v \Diamond_h (\delta \land \Box_h \bot), \]
\[\Box_v (\Diamond_h \delta \to \Diamond_h (\neg \delta \land \Diamond_h \delta \land \Box_h \delta)), \]
\[\Box_h \Diamond_v \delta. \]

Then the conjunction of the following formulas emulates counter machine runs, again by going backwards along the generated grid:

\[\Box_h \left(\Box_h \bot \to (\hat{S}_{q_{ini}} \land \Box^+_h (\neg C^i_\circ \land \neg C^*_i)) \right), \]
\[\Box_h \bigwedge_{q \in Q-H} \left(\Diamond_h \hat{S}_q \to \bigvee_{\langle \alpha, q' \rangle \in I_q} (\hat{S}_{q'} \land \text{bw}_\text{do}^\circ (\alpha) \land \text{bw}_\text{do}^\bullet (\alpha)) \right), \]
\[\Box_h \bigvee_{q \in Q-H} \hat{S}_q, \]

where

\[\text{bw}_\text{do}^\circ (\alpha) := \begin{cases}
\text{bw}_\text{inc}^\circ_i \land \bigwedge_{i \neq j < N} \text{bw}_\text{fix}^\circ_j, & \text{if } \alpha = c_i^{++}, \\
\text{bw}_\text{dec}^\circ_i \land \bigwedge_{i \neq j < N} \text{bw}_\text{fix}^\circ_j, & \text{if } \alpha = c_i^{--}, \\
\Box^+_v \neg C^i_\circ \land \bigwedge_{i \neq j < N} \text{bw}_\text{fix}^\circ_j, & \text{if } \alpha = c_i^{??},
\end{cases} \]

\[\text{bw}_\text{do}^\bullet (\alpha) := \begin{cases}
\text{bw}_\text{inc}^\bullet_i \land \bigwedge_{i \neq j < N} \text{bw}_\text{fix}^\bullet_j, & \text{if } \alpha = c_i^{++}, \\
\text{bw}_\text{dec}^\bullet_i \land \bigwedge_{i \neq j < N} \text{bw}_\text{fix}^\bullet_j, & \text{if } \alpha = c_i^{--}, \\
\Box^+_v \Box_h \neg C^*_i \land \bigwedge_{i \neq j < N} \text{bw}_\text{fix}^\bullet_j, & \text{if } \alpha = c_i^{??},
\end{cases} \]

\[\text{bw}_\text{fix}^\circ_i := \Box^+_v (C^i_\circ \to \Box_h C^i_\circ), \]
\[\text{bw}_\text{inc}^\circ_i := \Box^+_v (C^i_\circ \to (\Box_h C^i_\circ \lor \delta)), \]
\[\text{bw}_\text{dec}^\circ_i := \Box^+_v (C^i_\circ \to \Box_h C^i_\circ) \land \Diamond^+_v (\neg C^i_\circ \land \Box_h C^i_\circ), \]
\[\text{bw}_\text{fix}^\bullet_i := \Box^+_v (\Box_h C^*_i \to C^*_i), \]
\[\text{bw}_\text{inc}^\bullet_i := \Box^+_v (\Box_h C^*_i \to \neg C^i_\circ \land \Box_h \neg C^*_i), \]
\[\text{bw}_\text{dec}^\bullet_i := \Box^+_v (\Box_h C^*_i \to (C^*_i \lor \delta)), \]

for \(i < N \).
6. Undecidable \(\delta \)-Products with a ‘Linear’ Component

Theorem 4. Let \(L_h \) be any Kripke complete logic such that \(L_h \) contains \(K4.3 \) and \(\langle \omega, < \rangle \) is a frame for \(L_h \). Let \(L_v \) be any Kripke complete logic having an \(\omega \)-fan among its frames. Then \(L_h \times \delta L_v \) is undecidable.

Corollary 3. \(K4.3 \times \delta S5 \) and \(K4.3 \times \delta K \) are both undecidable.

We prove Theorem 4 by reducing the ‘CM non-termination’ problem to \(L_h \times \delta L_v \)-satisfiability. Let \(\mathcal{M} \) be a model based on the \(\delta \)-product of a frame \(\mathfrak{F}_h = \langle W_h, R_h \rangle \) for \(L_h \) (so \(R_h \) is transitive and weakly connected\(^2\)), and some frame \(\mathfrak{F}_v = \langle W_v, R_v \rangle \) for \(L_v \). First, we again generate an \(\omega \times \omega \)-grid in \(\mathcal{M} \).

\[
\text{lingrid} := \delta \land \Box_h \Diamond_v (\Diamond_h \delta \land \Box_h \Box_h \neg \delta).
\]

Claim 4.1. (grid generation)

If \(\mathcal{M}, \langle r_h, r_v \rangle \models \text{lingrid} \) then there exist points \(\langle x_n \in W_h \cap W_v : n < \omega \rangle \) such that, for all \(n < \omega \),

1. \(x_0 = r_v \), and if \(n > 0 \) then \(x_0 R_v x_n \),
2. if \(n > 0 \) then \(\mathcal{M}, \langle x_{n-1}, x_n \rangle \models \Diamond_h \delta \land \Box_h \Box_h \neg \delta \),
3. if \(n > 0 \) then, for every \(z \), \(x_{n-1} R_h z \) implies that \(z = x_n \) or \(x_n R_h z \),
4. \(x_0 = r_h \) and \(x_m R_h x_n \) for all \(m < n \).

Proof. By induction on \(n \). Let \(x_0 := r_h \). As \(\mathcal{M}, \langle r_h, r_v \rangle \models \delta \), we have \(r_h = r_v \). Now suppose inductively that we have \(\langle x_k : k < n \rangle \) satisfying (i)–(iv) for some \(0 < n < \omega \). Then there is \(x_n \in W_v \) such that \(x_0 R_v x_n \) and \(\mathcal{M}, \langle x_{n-1}, x_n \rangle \models \Diamond_h \delta \land \Box_h \Box_h \neg \delta \). Therefore, \(x_n \in W_h \), \(x_{n-1} R_h x_n \), and for every \(z \), \(x_{n-1} R_h z \) implies that \(z = x_n \) or \(x_n R_h z \), by the weak connectedness of \(R_h \). So by the IH and the transitivity of \(R_h \), we have \(x_m R_h x_n \) for all \(m < n \).

Next, given any counter machine \(M \), we will again force both an infinite lossy and an infinite insertion-error \(\vec{\tau} \)-run, for the same sequence \(\vec{\tau} \) of instructions. As \(R_h \) is transitive, we do not have a general ‘horizontal next-time’ operator in our grid, like we had in (8). However, because of Claim 4.1(iii) and (iv), we still can have the following: For any formula \(\psi \) and any \(w \in W_v \),

\(^2\)A relation \(R \) is called weakly connected if \(\forall x, y, z \ (x R y \land x R z \rightarrow (y = z \lor y R z \lor z R y)) \).
if ψ is such that $M, \langle x_{n+1}, w \rangle \models \psi \rightarrow \Box_h \psi$, then

$$M, \langle x_n, w \rangle \models \Box_h \psi \quad \text{iff} \quad M, \langle x_{n+1}, w \rangle \models \psi, \quad \text{for all } n < \omega.$$ (22)

In order to utilise this, for each counter $i < N$ of M, we introduce two pairs of propositional variables: \ln_i^o, \Out_i^o for emulating lossy behaviour, and \ln_i^*, \Out_i^* for emulating insertion-error behaviour. The following formula ensures that the condition in (22) hold for each of these variables, at all the relevant points in M:

$$\xi_M := \bigwedge_{i < N} \Box_h^+ (\Box_h \ln_i^o \rightarrow \ln_i^o) \land (\Out_i^o \rightarrow \Box_h \Out_i^o) \land (\ln_i^* \rightarrow \Box_h \ln_i^*) \land (\Out_i^* \rightarrow \Box_h \Out_i^*).$$

At each moment n of time, the actual content of counter c_i during the lossy run will be represented by the set of points

$$\Delta_i^o(n) := \{ w \in W_v : x_0 R_i^+ w \text{ and } M, \langle x_n, w \rangle \models \ln_i^o \land \neg \Out_i^o \},$$

and during the insertion-error run by the set of points

$$\Delta_i^*(n) := \{ w \in W_v : x_0 R_i^+ w \text{ and } M, \langle x_n, w \rangle \models \ln_i^* \land \neg \Out_i^* \}.$$

For each $i < N$, the following formulas force the possible changes in the counters during the lossy and insertion-error runs, respectively:

$$\lin_{\text{fix}}_i^o := \Box_v^+ (\Box_h \ln_i^o \rightarrow \ln_i^o),$$
$$\lin_{\text{inc}}_i^o := \Box_v^+ (\Box_h \ln_i^o \rightarrow (\ln_i^o \lor \delta)), $$
$$\lin_{\text{dec}}_i^o := \Box_v^+ (\Box_h \ln_i^o \rightarrow \ln_i^o) \land \Diamond_v^+ (\ln_i^o \land \neg \Out_i^o \land \Box_h \Out_i^o), $$

and

$$\lin_{\text{fix}}_i^* := \Box_v^+ (\Box_h \Out_i^* \rightarrow \Out_i^*),$$
$$\lin_{\text{inc}}_i^* := \Box_v^+ (\Box_h \Out_i^* \rightarrow \Out_i^*) \land \Diamond_v^+ (\neg \ln_i^o \land \neg \Out_i^* \land \Box_h \ln_i^*), $$
$$\lin_{\text{dec}}_i^* := \Box_v^+ (\Box_h \Out_i^* \rightarrow (\Out_i^* \lor \delta)).$$

Claim 4.2. (lossy and insertion-error counting)

Suppose that $M, \langle r_h, r_v \rangle \models \text{lingrid} \land \xi_M$. **Then for all** $n < \omega$, $i < N$:

(i) If $M, \langle x_n, x_0 \rangle \models \lin_{\text{fix}}_i^o$ then $\Delta_i^o(n+1) \subseteq \Delta_i^o(n)$.

(ii) If $M, \langle x_n, x_0 \rangle \models \lin_{\text{inc}}_i^o$ then $\Delta_i^o(n+1) \subseteq \Delta_i^o(n) \cup \{x_n\}$.

(iii) If $M, \langle x_n, x_0 \rangle \models \lin_{\text{dec}}_i^o$ then $\Delta_i^o(n+1) \subseteq \Delta_i^o(n) - \{z\}$ for some $z \in \Delta_i^o(n)$.

(iv) If $M, \langle x_n, x_0 \rangle \models \lin_{\text{fix}}_i^*$ then $\Delta_i^*(n+1) \supseteq \Delta_i^*(n)$.
The Decision Problem of Modal Product Logics with a Diagonal...

477

In (vi) we show items (iii) and (vi). The proofs of the other items are similar and left to the reader.

(iii): By \(\text{lin}_i \), there is \(z \) such that \(x_0 R_v^+ z \) and

\[\mathcal{M}, \langle x_n, z \rangle \models \text{lin}_i \land \neg \text{Out}_i \land \square_i \text{Out}_i. \]

So \(z \in \Delta_i^\circ (n) \). Also, by Claim 4.1(iv),

\[\mathcal{M}, \langle x_n, 1, z \rangle \models \text{Out}_i. \]

(23)

Now suppose \(w \in \Delta_i^\circ (n+1) \). Then \(x_0 R_v^+ w \) and \(\mathcal{M}, \langle x_n, w \rangle \models \text{lin}_i \land \neg \text{Out}_i \). Then \(\mathcal{M}, \langle x_n, w \rangle \models \neg \text{Out}_i \) by \(\xi_M \) and Claim 4.1(iv), and \(\mathcal{M}, \langle x_n, w \rangle \models \square_i \text{lin}_i \) by \(\xi_M \) and (22). So we have \(\mathcal{M}, \langle x_n, w \rangle \models \text{lin}_i \) by \(\text{lin}_i \), and so \(w \in \Delta_i^\circ (n) \). Finally, \(w \neq z \) by (23).

(vi): Suppose that \(w \in \Delta_i^\circ (n) \setminus \{x_n\} \). Then \(x_0 R_v^+ w \) and \(\mathcal{M}, \langle x_n, w \rangle \models \text{lin}_i \land \neg \text{Out}_i \land \neg \delta \). Then \(\mathcal{M}, \langle x_{n+1}, w \rangle \models \text{lin}_i \) by \(\xi_M \) and Claim 4.1(iv), and \(\mathcal{M}, \langle x_n, w \rangle \models \neg \square_i \text{Out}_i \) by \(\text{lin}_i \). Therefore, \(\mathcal{M}, \langle x_{n+1}, w \rangle \models \neg \text{Out}_i \) by \(\xi_M \) and (22), and so we have \(w \in \Delta_i^\circ (n+1) \).

For each \(\alpha \in \text{Op}_C \), we define

\[
\text{lin}_i^\circ (\alpha) := \begin{cases}
\text{lin}_i^\circ \land \bigwedge_{i \neq j < N} \text{lin}_j^\circ, & \text{if } \alpha = c_i^{++}, \\
\text{lin}_i^\circ \land \bigwedge_{i \neq j < N} \text{lin}_j^\circ, & \text{if } \alpha = c_i^{--}, \\
\square_i^+ (\square_i \text{lin}_i \to \square_i \text{Out}_i) \land \bigwedge_{i \neq j < N} \text{lin}_j^\circ, & \text{if } \alpha = c_i^{??},
\end{cases}
\]

and

\[
\text{lin}_i^* (\alpha) := \begin{cases}
\text{lin}_i^\circ \land \bigwedge_{i \neq j < N} \text{lin}_j^*, & \text{if } \alpha = c_i^{++}, \\
\text{lin}_i^\circ \land \bigwedge_{i \neq j < N} \text{lin}_j^*, & \text{if } \alpha = c_i^{--}, \\
\square_i^+ (\text{lin}_i^\circ \to \text{Out}_i^\circ) \land \bigwedge_{i \neq j < N} \text{lin}_j^*, & \text{if } \alpha = c_i^{??}.
\end{cases}
\]

For each state \(q \in Q \), we introduce a fresh propositional variable \(S_q \), and define the formula \(\hat{S}_q \) as in (9). Let \(\psi_M \) be the conjunction of \(\xi_M \) and the following formulas:
We define

\[\hat{S}_{\text{ini}} \land \Box^+ v \left(-\text{ln}_i \land -\text{Out}_i \land -\text{ln}^*_i \land -\text{Out}^*_i \right) \],

\[\Box^+_h \bigwedge_{q \in Q - H} \left(\Diamond^+_v \hat{S}_q \to \bigvee_{\langle \alpha, q' \rangle \in I_q} \left(\text{lin}_\text{do}^\circ(\alpha) \land \text{lin}_\text{do}^\bullet(\alpha) \land \Box^+_v \left(\Diamond^+_h \delta \land \Box^+_h \Box^+_h \neg \delta \to \Box^+_h (\delta \to \hat{S}_{q'}) \right) \right) \), \tag{24} \]

\[\Box^+_h \Box^+_v (\delta \to \bigvee_{q \in Q - H} \hat{S}_q). \tag{25} \]

Lemma 4.3. (Lossy and insertion-error run-emulation)

Suppose that \(M, \langle r_h, r_v \rangle \models \text{lingrid} \land \psi_M \). Let \(q_0 := q_{\text{ini}} \), and for all \(i < N \), \(n < \omega \), let \(c^*_i(n) := |\Delta_i^*(n)| \) and

\[c^*_i(n) := \begin{cases} c^*_i(n - 1) + 1, & \text{if } \Delta_i^*(n) \text{ is infinite,} \\ \Delta_i^*(n), & \text{otherwise.} \end{cases} \]

Then there exists an infinite sequence \(\bar{\tau} = \langle \langle \alpha_n, q_n \rangle : 0 < n < \omega \rangle \) of instructions such that

- \(\langle \langle q_n, \bar{c}^\circ(n) \rangle : n < \omega \rangle \) is a lossy \(\bar{\tau} \)-run of \(M \), and
- \(\langle \langle q_n, \bar{c}^\bullet(n) \rangle : n < \omega \rangle \) is an insertion-error \(\bar{\tau} \)-run of \(M \).

Proof. We define \(\langle \langle \alpha_n, q_n \rangle : 0 < n < \omega \rangle \) by induction on \(n \) such that for all \(0 < n < \omega \)

- \(q_n \in Q - H \) and \(M, \langle x_n, x_n \rangle \models \hat{S}_{q_n} \),
- \(\langle q_{n-1}, \bar{c}^\circ(n - 1) \rangle \to_{\alpha_n}^\text{lossy} \langle q_n, \bar{c}^\circ(n) \rangle \) and \(\langle q_{n-1}, \bar{c}^\bullet(n - 1) \rangle \to_{\alpha_n}^\text{err} \langle q_n, \bar{c}^\bullet(n) \rangle \).

As \(\bar{c}^\circ(0) = \bar{c}^\bullet(0) = \bar{0} \) by (24), the lemma will follow.

To this end, take some \(n \) with \(0 < n < \omega \). Then we have \(q_{n-1} \in Q - H \) and \(M, \langle x_{n-1}, x_{n-1} \rangle \models \hat{S}_{q_{n-1}} \), by (24) and (26) if \(n = 1 \), and by the IH if \(n > 1 \). So by Claim 4.1(i), we have \(M, \langle x_{n-1}, x_0 \rangle \models \Diamond^+_v \hat{S}_{q_{n-1}} \). Thus by Claim 4.1(iv) and (25), there is \(\langle \alpha_n, q_n \rangle \in I_{q_{n-1}} \) such that \(M, \langle x_{n-1}, x_0 \rangle \models \text{lin}_\text{do}^\circ(\alpha_n) \land \text{lin}_\text{do}^\bullet(\alpha_n) \) and

\[M, \langle x_{n-1}, x_0 \rangle \models \Box^+_h \left(\Diamond^+_h \delta \land \Box^+_h \Box^+_h \neg \delta \to \Box^+_h (\delta \to \hat{S}_{q'}) \right). \tag{27} \]

Now it is easy to check that \(\langle q_{n-1}, \bar{c}^\circ(n - 1) \rangle \to_{\alpha_n}^\text{lossy} \langle q_n, \bar{c}^\circ(n) \rangle \) holds, using Claim 4.2(i)–(iii). In order to show that \(\langle q_{n-1}, \bar{c}^\bullet(n - 1) \rangle \to_{\alpha_n}^\text{err} \langle q_n, \bar{c}^\bullet(n) \rangle \), we need to use Claim 4.2(iv)–(vi) and the following observation. As for each \(i < N \) either \(\Delta_i^*(n - 1) \) is infinite or \(c_i^*(n - 1) = |\Delta_i^*(n - 1)| \), if \(c_i^*(n - 1) \neq 0 \) then \(\Delta_i^*(n - 1) \neq 0 \), and so \(\alpha_n \neq c_i^\circ^? \) follows by \(M, \langle x_{n-1}, x_0 \rangle \models \text{lin}_\text{do}^\bullet(\alpha_n) \).
Finally, we have $\mathcal{M}, \langle x_n, x_n \rangle \models \hat{S}_q$, by (27) and Claim 4.1(ii),(iv), and so $q_n \in Q - H$ by Claim 4.1(i),(iv) and (26).

Lemma 4.4. (soundness)

If M has an infinite reliable run, then $\text{lingrid} \land \psi_M$ is satisfiable in a model over $\langle \omega, \langle \rangle \rangle^\omega$ for some countably infinite one-step rooted frame \mathfrak{F}.

Proof. We may assume that $\mathfrak{F} = \langle \omega, S \rangle$ and $\langle \langle 0, n \rangle : 0 < n < \omega \rangle \subseteq S$. Suppose that $\langle \langle q_n, c(n) \rangle : n < \omega \rangle$ is a reliable run of M, for some sequence $\tau = \langle \langle \alpha_n, q_n \rangle : 0 < n < \omega \rangle$ of instructions. We define a model

$\mathcal{M}_\infty = \langle \langle \omega, \langle \rangle \rangle^\omega, \nu \rangle$

as follows. For each $q \in Q$, we let

$\nu(S_q) := \{ \langle n, q \rangle : n < \omega, \ q_n = q \}$.

Further, for all $i < N$, $n < \omega$, we will define inductively the sets $\nu_n(\text{In}_i^\circ), \nu_n(\text{Out}_i^\circ), \nu_n(\text{In}_i^\ast), \nu_n(\text{Out}_i^\ast)$, and then put

$\nu(P) := \{ \langle n, m \rangle : m \in \nu_n(P) \}$,

for $P \in \{ \text{In}_i^\circ, \text{Out}_i^\circ, \text{In}_i^\ast, \text{Out}_i^\ast \}$. To begin with, we let $\nu_0(\text{In}_i^\circ) = \nu_0(\text{Out}_i^\circ) = \nu_0(\text{In}_i^\ast) = \nu_0(\text{Out}_i^\ast) := \emptyset$, and

$\nu_{n+1}(\text{In}_i^\circ) := \begin{cases} \nu_n(\text{In}_i^\circ) \cup \{ n \}, & \text{if } \alpha_{n+1} = c_i^{++}, \\ \nu_n(\text{In}_i^\circ), & \text{otherwise,} \end{cases}$

$\nu_{n+1}(\text{Out}_i^\circ) := \begin{cases} \nu_n(\text{Out}_i^\circ) \cup \{ \min(\nu_n(\text{In}_i^\circ) - \nu_n(\text{Out}_i^\circ)) \}, & \text{if } \alpha_{n+1} = c_i^{--}, \\ \nu_n(\text{Out}_i^\circ), & \text{otherwise,} \end{cases}$

$\nu_{n+1}(\text{Out}_i^\ast) := \begin{cases} \nu_n(\text{Out}_i^\ast) \cup \{ n \}, & \text{if } \alpha_{n+1} = c_i^{--}, \\ \nu_n(\text{Out}_i^\ast), & \text{otherwise.} \end{cases}$

Next, recall the notation introduced in (15)–(17). We let

$\nu_{n+1}(\text{In}_i^\ast) := \begin{cases} \nu_n(\text{In}_i^\ast) \cup \{ \lambda_m^i \}, & \text{if } \alpha_{n+1} = c_i^{++}, \ n = \xi_m^i, \\ \nu_n(\text{In}_i^\ast) \cup \{ \min(\omega - \nu_n(\text{In}_i^\ast)) \}, & \text{if } \alpha_{n+1} = c_i^{++}, \ m < L_i, \\ \nu_n(\text{In}_i^\ast), & \text{if } \alpha_{n+1} = c_i^{++}, \ L_i \leq m < K_i, \end{cases}$

We claim that if $\alpha_{n+1} = c_i^{--}$ then $n \in \nu_n(\text{C}_i^\ast) = \nu_{n+1}(\text{C}_i^\ast)$, and so

$|\nu_{n+1}(\text{In}_i^\ast) - \nu_{n+1}(\text{Out}_i^\ast)| = |\nu_n(\text{In}_i^\ast) - \nu_n(\text{Out}_i^\ast)| - 1$.

Indeed, if $\alpha_{n+1} = c_i^{--}$ then $n = \lambda_m^i$ for some $m < L_i$. So $\nu_{\xi_m^i+1}(\text{In}_i^\ast) = \nu_{\xi_m^i}(\text{In}_i^\ast) \cup \{ \lambda_m^i \}$, and so $n \in \nu_{\xi_m^i+1}(\text{In}_i^\ast)$. It follows that $n \in \nu_k(\text{In}_i^\ast)$ for every k with $\xi_m^i + 1 \leq k$. As $\lambda_m^i > \xi_m^i$, we have $n \in \nu_n(\text{C}_i^\ast)$ as required.
Now it is not hard to check that
\[|\nu_n(\text{In}_i^\circ) - \nu_n(\text{Out}_i^\circ)| = |\nu_n(\text{In}_i^\bullet) - \nu_n(\text{Out}_i^\bullet)| = c_i(n) \]
and \(\mathcal{N}_\infty, \langle n, 0 \rangle \models \text{lin}_\circ (\alpha_{n+1}) \land \text{lin}_\bullet (\alpha_{n+1}) \), for all \(i < N \) and \(n < \omega \), and so \(\mathcal{N}_\infty, \langle 0, 0 \rangle \models \text{lingrid} \land \psi_M \).

Now Theorem 4 follows from Proposition 3, Lemmas 4.3 and 4.4.

In some cases, we can have stronger lower bounds than in Theorem 4. We call a frame \(\langle W, R \rangle \) modally discrete if it satisfies the following aspect of discreteness: there are no points \(x_0, x_1, \ldots, x_n, \ldots, x_\infty \) in \(W \) such that \(x_0Rx_1Rx_2R\ldots Rx_nRx_\infty \), \(x_n \neq x_{n+1} \) and \(x_\infty \neg Rx_n \), for all \(n < \omega \). We denote by \(\text{DisK4.3} \) the logic of all modally discrete linear orders. Several well-known ‘linear’ modal logics are extensions of \(\text{DisK4.3} \), for example, \(\text{Logic}_\langle \omega, \prec \rangle \), \(\text{Logic}_\langle \omega, \leq \rangle \), \(\text{GL.3} \) (the unimodal logic of all Noetherian linear orders), and \(\text{Grz.3} \) (the unimodal logic of all Noetherian reflexive linear orders). Unlike ‘real’ discreteness, modal discreteness can be captured by modal formulas, and each of the logics above is finitely axiomatisable [6,35].

Theorem 5. Let \(L_h \) be any Kripke complete logic such that \(L_h \) contains \(\text{DisK4.3} \) and \(\langle \omega, \prec \rangle \) is a frame for \(L_h \). Let \(L_v \) be any Kripke complete logic having an \(\omega \)-fan among its frames. Then both \(L_h \times^\delta L_v \) and \(L_h \times^\delta_{sq} L_v \) are \(\Pi_1^1 \)-hard.

Proof. We sketch how to modify the proof of Theorem 4 to obtain a reduction of the ‘CM recurrence’ problem to \(L_h \times^\delta L_v \)-satisfiability. Observe that by Claim 4.1(ii),(iv), the generated grid-points \(x_n \) are such that \(x_n \neq x_{n+1} \) for all \(n < \omega \). Therefore, if \(\mathcal{M} \) is a model based on a \(\delta \)-product frame with a modally discrete ‘horizontal’ component and
\[\mathcal{M}, \langle r_h, r_v \rangle \models \text{lingrid} \land \psi_M \land \Box_h \diamond_h \diamond_v (\delta \land \widehat{S}_{q_r}) \]
for some state \(q_r \), then by Claim 4.1(iii),(iv), for every \(n < \omega \) there is \(k \) such that \(n < k < \omega \) and \(\mathcal{M}, \langle x_k, x_k \rangle \models \widehat{S}_{q_r} \).

However, the formula \(\text{lingrid} \) is clearly not satisfiable when \(L_h \) has only reflexive and/or dense frames (like \(\text{S4.3} \), the unimodal logic of all reflexive linear orders, or the unimodal logic \(\text{Logic}_\langle \mathbb{Q}, \prec \rangle \) over the rationals). It is not hard to see that a ‘linear’ version of the ‘tick-trick’ in (18)–(19) can be used to generalise the proof of Theorem 4 for these cases. Further, as by

\[\langle W, R \rangle \text{ is Noetherian if it contains no infinite ascending chains } x_0Rx_1Rx_2R\ldots \text{ where } x_i \neq x_{i+1} \text{ for } i < \omega. \]
Claim 4.1 the formula lingrid forces an infinite ascending chain of points, it is not satisfiable when L_h has only Noetherian frames (like GL.3 or Grz.3). Similarly to the K-case in Section 5, it is also possible to generate an infinite grid and then emulate counter machine runs by going backwards in linear frames, and so to extend Theorem 4 to Noetherian cases. The interested reader should consult [17], where all these issues are addressed in detail.

7. Decidable δ-Products

The following theorem shows that the unbounded width of the second-component frames is essential in obtaining the undecidability result of Theorem 2:

Theorem 6. $L \times^\delta \text{Alt}(n)$ is decidable in coNExpTime, whenever L is K or $\text{Alt}(m)$, for $0 < n, m < \omega$.

Proof. We prove the theorem for $\text{K} \times^\delta \text{Alt}(n)$. The other cases are similar and left to the reader. We show (by selective filtration) that if some formula ϕ does not belong to $\text{K} \times^\delta \text{Alt}(n)$, then there exists a δ-product frame for $\text{K} \times^\delta \text{Alt}(n)$ whose size is exponential in ϕ where ϕ fails. It will also be clear that the presence or absence of the diagonal is irrelevant in our argument.

To begin with, we let $\text{sub}(\phi)$ denote the set of all subformulas of ϕ. For any $\psi \in \text{sub}(\phi)$, we denote by $h\psi$ the maximal number of nested ‘horizontal’ modal operators (\Diamond_h and \Box_h) in ψ. Similarly, $v\psi$ denotes the ‘vertical’ nesting depth of ψ. Now suppose that $M, \langle r_h, r_v \rangle \not\models \phi$ in some model M that is based on the δ-product of $\mathcal{F}_h = \langle W_h, R_h \rangle$ and some frame $\mathcal{F}_v = \langle W_v, R_v \rangle$ for $\text{Alt}(n)$. (Note that with δ in our language it is possible to force cycles in the component frames of a δ-product, so we cannot assume that \mathcal{F}_h and \mathcal{F}_v are trees.) For every $k \leq v\psi$, we define

$$U^k_v := \{ y \in W_v : \text{there is a } k\text{-long } R_v\text{-path from } r_v \text{ to } y \}. $$

The U^k_v are not necessarily disjoint sets for different k, but we always have

$$|U^k_v| \leq 1 + n + n^2 + \cdots + n^k \leq 1 + k \cdot n^k. \quad (28) $$

Then we define $\mathcal{F}'_v := \langle W'_v, R'_v \rangle$ by taking

$$W'_v := \bigcup_{k \leq v\psi} U^k_v, \quad R'_v := R_v \cap (W'_v \times W'_v).$$

Next, for every $m \leq h\psi$, we define inductively U^m_h and S^m_h as follows. We let $U^0_h := \{ r_h \}$ and $S^0_h := \emptyset$. Now suppose inductively that we have defined U^m_h and S^m_h for some $m < h\psi$. For all $x \in U^m_h$, $y \in W'_v$, and $\Diamond_h \psi \in \text{sub}(\phi)$
with $\mathcal{M}, \langle x, y \rangle \models \Diamond_h \psi$, choose some $z_{x,y,\psi}$ from W_h such that $x R_h z_{x,y,\psi}$ and $\mathcal{M}, \langle z_{x,y,\psi}, y \rangle \models \psi$. Then define
\[
U_{m+1}^{m+1} := \{ z_{x,y,\psi} : x \in U_m^m, y \in W_v', \Diamond_h \psi \in \text{sub}(\phi), \mathcal{M}, \langle x, y \rangle \models \Diamond_h \psi \}, \\
S_{m+1}^{m+1} := \{ \langle x, z_{x,y,\psi} \rangle : x \in U_m^m, y \in W_v', \Diamond_h \psi \in \text{sub}(\phi), \mathcal{M}, \langle x, y \rangle \models \Diamond_h \psi \}.
\]
Again, the U_m^m are not necessarily disjoint sets for different m, but by (28) we always have that
\[
|U_m^m| \leq (vd(\phi) \cdot n^{vd(\phi)} \cdot |\text{sub}(\phi)|)^m.
\]

Then we define $\mathfrak{F}_h' := \langle W_h', R_h' \rangle$ by taking
\[
W_h' := \bigcup_{m \leq \text{hd}(\phi)} U_m^m, \\
R_h' := \bigcup_{m \leq \text{hd}(\phi)} S_m^m.
\]
Clearly, by (28) and (29) the size of $\mathfrak{F}_h' \times^\delta \mathfrak{F}_v'$ is exponential in the size of ϕ. Let \mathcal{M}' be the restriction of \mathcal{M} to $\mathfrak{F}_h' \times^\delta \mathfrak{F}_v'$. Now a straightforward induction on k, m and the structure of formulas shows that for all $k \leq \text{vd}(\phi)$, $m \leq \text{hd}(\phi)$, $\psi \in \text{sub}(\phi)$,
\[
\mathcal{M}, \langle x, y \rangle \models \psi \quad \text{iff} \quad \mathcal{M}', \langle x, y \rangle \models \psi,
\]
whenever $x \in U_{h}^{\text{hd}(\phi)-m}$, $y \in U_{v}^{\text{vd}(\phi)-k}$, $\text{hd}(\psi) \leq m$, and $\text{vd}(\psi) \leq k$. It follows that $\mathcal{M}', \langle r_h, r_v \rangle \not\models \phi$, as required.

In certain cases the above proof gives polynomial upper bounds on the size of the falsifying δ-product model, so we have:

Theorem 7. The validity problems of both $S5 \times^\delta \text{Alt}(1)$ and $\text{Alt}(1) \times^\delta \text{Alt}(1)$ are coNP-complete.

Note that all the above results hold with $\text{Alt}(n)$ being replaced by its serial4 version $\text{DAlt}(n)$. One should simply make the ‘final’ points in the filtrated component frames reflexive.

8. Open Problems

We have shown that in many cases adding a diagonal to product logics results in a dramatic increase in their computational complexity (Sects. 5 and 6), while in other cases upper bounds similar to diagonal-free product logics can be obtained (Sect. 7). Here are some related open problems:

4A frame $\langle W, R \rangle$ is called serial, if for every x in W there is y with $x R y$.
1. Theorems 4 and 5 do not apply when the first component logic has transitive but not necessarily weakly connected (linear) frames. In particular, while $K_4 \times S_5$ is decidable in cON2ExpTime [8], it is not known whether $K_4 \times^\delta S_5$ remains decidable. Note that it is not clear either whether we could somehow use Theorem 2 here, that is, whether $K \times^\delta S_5$ could be reduced to $K_4 \times^\delta S_5$. Note that the reduction of [13] from $K \times L$ to $K_4 \times L$ uses that $K \times L$ is determined by product frames having intransitive trees as first components, and this is no longer true for $K \times^\delta L$. As is shown in Lemma 2.4 and Claim 2.1, the formula grid defined in (6)–(7) is satisfiable in a $^\delta$-product frame for $K \times^\delta L$, but forces a ‘horizontal’ non-tree structure.

2. By the above, $K \times^\delta K$ is properly contained in Logic_of(‘Intransitive trees’ \times^δ ‘Intransitive trees’), and Theorem 2 does not imply the undecidability of the latter. Is this logic decidable? Note that it is not clear either whether the selective filtration proof of Theorem 6 could be used here, as both component frames could be of arbitrary width. However, it might be possible to generalise one of the several proofs showing the decidability of $K \times K$ [7, 8].

3. It can be proved using 2D type-structures called quasimodels that the diagonal-free product logic $K \times ^\delta \text{Alt}(1)$ is decidable in ExpTime [7, Thm.6.6]. Is $K \times^\delta \text{Alt}(1)$ also decidable in ExpTime?

4. While $^\delta$-product logics are determined by $^\delta$-product frames by definition, there exist other (non-product, ‘abstract’) $^\delta$-frames for these logics. The finite frame problem of a logic L asks: “Given a finite frame, is it a frame for L?” If a logic L is finitely axiomatisable, then its finite frame problem is of course decidable: one just has to check whether the finitely many axioms hold in the finite frame in question. However, as is shown in [19], many $^\delta$-product logics ($K \times ^\delta K$ and $K \times^\delta K_4$ among them) are not finitely axiomatisable. So the decidability of the finite frame problem is open for these logics. Note that if every finite frame for, say, $K \times ^\delta K$ were the p-morphic image of a finite $^\delta$-product frame, then we could enumerate finite frames for $K \times^\delta K$. As $K \times^\delta K$ is recursively enumerable by Theorem 1, we can always enumerate those finite $^\delta$-frames that are not frames for $K \times^\delta K$. So this would provide us with a decision algorithm for the finite frame problem of $K \times^\delta K$. However, consider the $^\delta$-frame $\mathfrak{F} = \langle W, R_h, R_v, D \rangle$, where
\[W = \{ x, y, z \}, \quad D = \{ z \}, \]
\[R_h = \{ \langle x, x \rangle, \langle y, y \rangle, \langle z, z \rangle, \langle z, x \rangle, \langle y, x \rangle \}, \]
\[R_v = \{ \langle x, x \rangle, \langle y, y \rangle, \langle z, z \rangle, \langle x, z \rangle, \langle z, y \rangle, \langle x, y \rangle \}. \]

Then it is easy to see that \(\mathfrak{F} \) is a p-morphic image of \(\langle \omega, \leq \rangle \times^6 \langle \omega, \leq \rangle \), but \(\mathfrak{F} \) is not a p-morphic image of any finite \(\delta \)-product frame.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Alur, R., and T. Henzinger, A really temporal logic, *Journal of ACM* 41:181–204, 1994.
[2] Berger, R., The undecidability of the domino problem, *Memoirs of the AMS* 66, 1966.
[3] Blackburn, P., M. de Rijke, and Y. Venema, *Modal Logic*, Cambridge University Press, Cambridge, 2001.
[4] Blackburn, P., and J. Seligman, Hybrid languages, *Journal of Logic, Language and Information* 4:251–272, 1995.
[5] Chagrov, A., and M. Zakharyaschev, *Modal Logic*, vol. 35 of Oxford Logic Guides, Clarendon Press, Oxford, 1997.
[6] Fine, K., Logics containing K4, part II, *Journal of Symbolic Logic* 50:619–651, 1985.
[7] Gabbay, D., A. Kurucz, F. Wolter, and M. Zakharyaschev, *Many-Dimensional Modal Logics: Theory and Applications*, vol. 148, Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 2003.
[8] Gabbay, D., and V. Shehtman, Products of modal logics. Part I, *Logic Journal of the IGPL* 6:73–146, 1998.
[9] Gabbay, D., and V. Shehtman, Products of modal logics. Part II, *Logic Journal of the IGPL* 2:165–210, 2000.
[10] Gabelaia, D., A. Kurucz, F. Wolter, and M. Zakharyaschev, Products of ‘transitive’ modal logics, *Journal of Symbolic Logic* 70:993–1021, 2005.
[11] Gödel, K., Zum Entscheidungsproblem des logischen Funktionenkalküls, *Monatshefte für Mathematik und Physik* 40:433–443, 1933.
[12] Goldfarb, W., The unsolvability of the Gödel class with identity, *Journal Symbolic Logic* 49:1237–1252, 1984.
[13] Göller, S., J. C. Jung, and M. Lohrey, The complexity of decomposing modal and first-order theories, in *IEEE Proceedings of the LICS 2012*, 2012, pp. 325–334.
[14] Grädel, E., P. Kolaitis, and M. Vardi, On the decision problem for two-variable first order logic, *Bulletin of Symbolic Logic* 3:53–69, 1997.
15. Gutiérrez-Basulto, V., J. C. Jung, and T. Schneider, Lightweight description logics and branching time: A troublesome marriage, in Proceedings of the KR 2014, AAAI Press, Cambridge, 2014.

16. Halmos, P., Algebraic Logic, Chelsea Publishing Company, New York, 1962.

17. Hampson, C., and A. Kurucz, Undecidable propositional bimodal logics and one-variable first-order linear temporal logics with counting, ACM Transactions on Computational Logic 16(3):27:1–27:36, 2015.

18. Henkin, H., J. D. Monk, and A. Tarski, Cylindric Algebras, Part II, North Holland, Amsterdam, 1985.

19. Kikot, S., Axiomatization of modal logic squares with distinguished diagonal, Mathematical Notes 88:238–250, 2010.

20. Kuhn, S. T., Quantifiers as modal operators, Studia Logica 39:145–158, 1980.

21. Kurucz, A., Combining modal logics, in P. Blackburn, J. van Benthem, and F. Wolter (eds.), Handbook of Modal Logic, vol. 3 of Studies in Logic and Practical Reasoning, Elsevier, Amsterdam, 2007, pp. 869–924.

22. Kurucz, A., Products of modal logics with diagonal constant lacking the finite model property, in S. Ghilardi, and R. Sebastiani, (eds.), Procs. FroCoS-2009, vol. 5749 of LNCS, Springer, New York, 2009, pp. 279–286.

23. Kurucz, A., Representable cylindric algebras and many-dimensional modal logics, in H. Andréka, M. Ferenczi, and I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer, 2013, pp. 185–203.

24. Marx, M., Complexity of products of modal logics, Journal of Logic and Computation 9:197–214, 1999.

25. Marx, M., and M. Reynolds, Undecidability of compass logic, Journal of Logic and Computation 9:897–914, 1999.

26. Mayr, R., Undecidable problems in unreliable computations, in G. H. Gonnet, D. Panario, and A. Viola (eds.), Proceedings of the LATIN-2000, vol. 1776 of LNCS, Springer, New York, 2000, pp. 377–386.

27. Minsky, M., Finite and infinite machines, Prentice-Hall, Upper Saddle River, 1967.

28. Mortimer, M., On languages with two variables, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21:135–140, 1975.

29. Ouaknine, J., and J. Worrell, On metric temporal logic and faulty Turing machines, in L. Aceto, and A. Ingólfsdóttir (eds.), Procs. FOSSACS-2006, vol. 3921 of LNCS, Springer, New York, 2006, pp. 217–230.

30. Quine, W. V., Algebraic logic and predicate functors, in R. Rudner, and I. Scheffer (eds.), Logic and Art: Essays in Honor of Nelson Goodman, Bobbs-Merrill, 1971. Reprinted with amendments in The Ways of Paradox and Other Essays, 2nd edition, Harvard University Press, Cambridge, Massachusetts, 1976.

31. Reynolds, M., A decidable temporal logic of parallelism, Notre Dame Journal of Formal Logic 38:419–436, 1997.

32. Reynolds, M., and M. Zakharyaschev, On the products of linear modal logics, Journal of Logic and Computation 11:909–931, 2001.
[33] Schmidt, R., and D. Tishkovsky, Combining dynamic logic with doxastic modal logics, in P. Balbiani, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev (eds.), Advances in Modal Logic, vol. 4, King’s College Publications, London, 2003, pp. 371–391.

[34] Scott, D., A decision method for validity of sentences in two variables, Journal of Symbolic Logic 27:477, 1962.

[35] Segerberg, K., Modal logics with linear alternative relations, Theoria 36:301–322, 1970.

[36] Segerberg, K., Two-dimensional modal logic, Journal of Philosophical Logic 2:77–96, 1973.

[37] Shehtman, V., Two-dimensional modal logics, Mathematical Notices of the USSR Academy of Sciences 23:417–424, 1978. (Translated from Russian).

[38] Shehtman, V., On squares of modal logics with additional connectives, Proceedings of the Steklov Institute of Mathematics 274:317–325, 2011.

[39] Spaan, E., Complexity of Modal Logics, Ph.D. thesis, Universiteit van Amsterdam, 1993.

[40] Tobies, S., Complexity results and practical algorithms for logics in knowledge representation, Ph.D. thesis, Aachen, Technische Hochschule, 2001.

[41] Venema, Y., Many-Dimensional Modal Logics, Ph.D. thesis, Universiteit van Amsterdam, 1991.

[42] Waissberg, M., Ein erweiterter Klassenkalkül, Monatsh Mathematical Physics 40:113–126, 1933.

[43] Wolter, F., The product of converse PDL and polymodal K, Journal of Logic and Computation 10:223–251, 2000.

C. Hampson, A. Kurucz
Department of Informatics
King’s College London
Strand
London WC2R 2LS, UK
agi.kurucz@kcl.ac.uk

C. Hampson
christopher.hampson@kcl.ac.uk

S. Kikot
Institute for Information Transmission Problems
Moscow Institute for Physics and Technology
Moscow, Russia
staskikotx@gmail.com