Implementing a State-Based Cardiovascular Disease and Diabetes Prevention Program

OBJECTIVE — To evaluate weight loss and cardiometabolic risk reduction achieved through an adapted Diabetes Prevention Program intervention among adults at high risk for cardiovascular disease (CVD) and diabetes.

RESEARCH DESIGN AND METHODS — Eight health care facilities implemented a group-based lifestyle intervention beginning in 2008. Participants attended 16 weekly core sessions followed by 6 monthly after core sessions.

RESULTS — A total of 1,003 participants were enrolled, 816 (81%) completed the core and 578 (58%) completed the after core. Of participants completing the core and after core, 45 and 57% achieved the 7% weight loss goal, respectively. There were significant improvements in blood pressure, fasting glucose, and LDL cholesterol among participants completing the intervention.

CONCLUSIONS — Our findings indicate it is feasible for state-coordinated CVD and diabetes prevention programs to achieve significant weight loss and improve cardiometabolic risk.

From the Montana Department of Public Health and Human Services, Helena, Montana.

Corresponding author: Karl K. Vanderwood, kvanderwood@mt.gov.

Received 11 May 2010 and accepted 21 August 2010. Published ahead of print at http://care.diabetesjournals.org on 30 August 2010. DOI: 10.2337/dc10-0862.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
RESULTS — Between February 2008 and January 2010, 1,003 participants were enrolled in the intervention; 816 (81%) completed the core and 578 (58%) completed the after core. Mean ± SD attendance was 14.9 ± 1.6 sessions during the core and 3.7 ± 2.1 sessions during the after core. The age of enrolled participants was 52.3 ± 11.6, and 80% (n = 805) were female. Core completers were significantly older than those who did not complete the core and after core completers were significantly older, had a lower BMI at baseline, and were more likely to have diagnosed dyslipidemia at baseline than those completing only the core (supplementary Table, available in an online appendix at http://care.diabetesjournals.org/cgi/content/full/dc10-0862/DC1).

At the conclusion of the core, 45% of completers achieved the 7% weight loss goal, 66% achieved 5% weight loss, and 66% met the physical activity goal. Among the after core completers, 49% met the 7% weight loss goal, 64% achieved 5% weight loss, and 70% achieved the physical activity goal at the end of core.

Core and after core completers achieved significant improvements in weight, systolic and diastolic blood pressure, LDL cholesterol, and fasting blood glucose and a significant reduction in HDL cholesterol at the end of core (Table 1). Significant improvements in HDL cholesterol were seen for those completing the after core. Participants with and without impaired glucose values at baseline achieved significant improvements in weight, blood pressure, LDL cholesterol, and blood glucose values at completion of the core and after core (data not shown).

CONCLUSIONS — Core and after core completers achieved significant reductions in weight and improvements in cardiometabolic risk. However, HDL decreased significantly at the end of the core but was followed by a significant increase for those completing the after core. Other studies have found similar results, indicating reductions in HDL during initial weight loss, followed by increased HDL levels during weight maintenance (8,9).

Our lifestyle intervention has a number of strengths, which support translating this research into practice. We included overweight adults with risk factor(s) for CVD or diabetes, rather than only adults with pre-diabetes, an approach supported by recommendations from the American Diabetes Association and American Heart Association, acknowledging the importance of addressing an individual’s global risk for CVD and diabetes (10). We also relied on physician referrals rather than time-consuming screening events. Finally, offering the DPP in groups allowed for greater participant enrollment than a one-on-one intervention. There are several limitations to our study. First, there was a dropout rate of 19 and 42% at the end of the core and after core, respectively. Second, we used a pre- and post-evaluation with no comparison group. Third, we relied on self-reported physical activity and diet measures. Fourth, we were unable to obtain laboratory measures for all participants. Last, our analyses only included participants completing the intervention, which differed from the DPP, in which an intention-to-treat analysis was used.

Coordinated state and national approaches to implement diabetes prevention programs are needed. A recent assessment of Montana DSME programs indicated that these programs have the capacity to provide diabetes prevention services, the primary barrier being lack of reimbursement (11). Other promising models in the U.S. include regional training and implementation centers in Pittsburgh, Pennsylvania, and Indianapolis, Indiana (12,13). Because of the large number of individuals at high risk for diabetes in the U.S., many prevention sites will be needed, including DSME programs and other settings.
Acknowledgments — This project was funded through the Montana State Legislature and supported through a cooperative agreement with the Centers for Disease Control and Prevention, Division of Diabetes Translation (U32/CCU822743-05) in Atlanta, Georgia.

No potential conflicts of interest relevant to this article were reported.

K.K.V. and T.O.H. researched data, contributed to discussion, wrote the manuscript, and reviewed/edited the manuscript. T.S.H. researched data, contributed to discussion, and reviewed/edited the manuscript. M.K.B. and S.D.H. researched data and reviewed/edited the manuscript.

Parts of this study were presented in abstract form at the 70th Scientific Sessions of the American Diabetes Association, Orlando, Florida, 25–29 June 2010.

We thank and acknowledge Susan Day from the Montana DPHHS for her work and support on this project. We also thank Carol Percy and Cathy Manus from ACKCO American Indian Professional Services for providing the initial training and technical assistance for this project.

References

1. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403
2. Ratner R, Goldberg R, Haffner S, Marco-vina S, Orchard T, Fowler S, Temprosa M. Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care 2005;28:888–894
3. Saaristo T, Peltonen M, Keinänen-Kiukaanniemi S, Vanhala M, Saltevo J, Niskanen L, Oksa H, Korpi-Hyövälä E, Tuomilehto J. National type 2 diabetes prevention programme in Finland. FIN-D2D. Int J Circumpolar Health 2007;66:101–112
4. Schwarz PEH, Reddy P, Greaves CJ, J Dunbar JA, Schwarz J. Diabetes Prevention in Practice. Dresden, Germany, TUMAINI Institute for Prevention Management, 2010, p. 45–56
5. Schwarz PE, Lindström J, Kissimova-Scarbeck K, Szybinski Z, Barengo NC, Peltonen M, Tuomilehto J. The European perspective of type 2 diabetes prevention: diabetes in Europe—prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project. Exp Clin Endocrinol Diabetes 2008;116:167–172
6. Amundson HA, Butcher MK, Gohdes D, Hall TO, Harwell TS, Vanderwood KK. Translating the Diabetes Prevention Program into practice in the general community: findings from the Montana Cardiovascular Disease and Diabetes Prevention Program. Diabetes Educ 2009;35:209–210, 213–214, 216–220
7. Healthy Native Community Partnership. Native lifestyle balance curriculum [article online], 2008. Available from http://www.hncp.org/wst/hpdp/NLB. Accessed 8 March 2008
8. Rossner S, Bjorvell H. Early and late effects of weight loss on lipoprotein metabolism in severe obesity. Atherosclerosis 1987;64:125–130
9. Fox AA, Thompson JL, Butterfield GE, Gylfadottir U, Moynihan S, Spiller G. Effects of diet and exercise on common cardiovascular disease risk factors in moderately obese older women. Am J Clin Nutr 1996;63:225–233
10. Eckel RH, Kahn R, Robertson RM, Rizza RA. Preventing cardiovascular disease and diabetes: a call to action from the American Diabetes Association and the American Heart Association. Circulation 2006;113:2943–2946
11. Butcher MK, Vanderwood KK, Hall TO, Gohdes D, Helgerson SD, Harwell TS. Capacity of diabetes education programs to provide both diabetes self-management education and to implement diabetes prevention services. J Public Health Manag Pract. In press
12. Ackermann RT, Marrero DG. Adapting the Diabetes Prevention Program lifestyle intervention for delivery in the community: the YMCA model. Diabetes Educ 2007;33:69–74, 77–78
13. Kramer MK, Kriska AM, Venditti EM, Miller RG, Brooks MM, Burke LE, Siminiero LM, Solano FX, Orchard TJ. Translating the Diabetes Prevention Program: a comprehensive model for prevention training and program delivery. Am J Prev Med 2009;37:505–511