PageRank Algorithm using Eigenvector Centrality- New Approach

Abstract—The purpose of the research is to find a centrality measure that can be used in place of PageRank and to find out the conditions where we can use it in place of PageRank. After analysis and comparison of graphs with a large number of nodes using Spearman’s Rank Coefficient Correlation, the conclusion is evident that Eigenvector can be safely used in place of PageRank in directed networks to improve the performance in terms of the time complexity.

Keywords— PageRank, Centrality, Eigenvector, Webgraph

I. INTRODUCTION

In today's era of computer technology with the vast usage of the World Wide Web, users want a fast and accurate answer. It is the need of the hour to explore every avenue for quicker results and better time complexity. Thus a constant re-evaluation of existing algorithms is necessary. Centrality measures in any kind of network highlights the important parts of that network. In dense networks, there is a potential for more importance as compared to sparse networks. Ranking is essential in terms of finding the most important or influential nodes in a network.

II. EXISTING ALGORITHMS

Degree centrality selects the most important node based on the principle that an important node is involved in a lot of interactions. However degree centrality doesn’t take into account the importance of the nodes it is connected to. Closeness centrality decides the importance of the nodes according to the concept that important nodes will be able to communicate quickly with the nodes. Betweenness centrality finds the most important node based on the theory that if a node is important it will lie on the path between two nodes. Betweenness and closeness centrality is mostly redundant when it comes to ranking of webpages as it attaches no proper importance to the relevant webpages. Degree centrality is relevant however it doesn’t take into account the importance of the node pointing to it hence it gives ample opportunity for malicious and inauthentic websites to be ranked first. Apart from the abovementioned algorithms, other algorithms to find the ranking of a webpage include-

A. The Existing Algorithms in Use

Eigentrust Algorithm[2]: Peer-to-peer network consists of partitioning tasks between various peers such that each peer is equally privileged. This method is popular for sharing information but due to its open source nature, the spread of inauthentic files is easy. Eigentrust Algorithm assigns a rank to each peer based on the past uploads made by the peer in an attempt to reduce the rank of inauthentic or malicious peers trying to pose as peers distributing authentic files.

SimRank: There are many areas where the similarity of objects or interests come into play. The most obvious one being the use to find similar documents on the World Wide Web. Another is to group people with similar interests together, for example the recommended friends list by social media sites. SimRank measures the similarity between two objects based on the basis of the objects that they are referenced by.

B. Algorithms Used By GOOGLE

Google is the most popular search engine used. The reason being that it is able to provide relevant search results quickly. The very first algorithm used by Google was PageRank algorithm by Larry page and Sergey Brin. However incidents like Google bombing, where a search for a topic can lead to the webpages of a seemingly unrelated topic prompted tweaks in algorithms used by Google. Google bombs can be a done for business, political or comical reasons. It works on the principle of spamdexing, which is the manipulation of the index used by the search engines and heavy linking of websites. In order to reduce incidents like Google bombing, Google uses many algorithms along with the original PageRank algorithm to ascertain the final ranking of a webpage. These algorithms include-

Google Panda: Authority is one of the key measurements of ranking in search engines. The trust can be measured by the authority of the link to the article, where the more a link is authoritative, the more the article it points to can be trusted. Google Panda is essentially a filter of the content quality, depreciating low quality websites including websites that have unoriginal or redundant content, contains a huge number of advertisements, have content that is not written or authorized by an expert. If the panda rank score of a site is high, the website gets ‘Pandified’ which means that the pages in the site are imposed with a penalty.

Google Hummingbird: Google Hummingbird attempts to judge the intent of the person making the query ie. to take into consideration the meaning of the sentence as a whole as compared to certain keywords. It is said that Google uses the vast database of information or the ‘Knowledge graph’ to determine the best results.

Google Penguin: Google Penguin assigns a penalty to the webpages which are involved in the usage of black hat Search Engine Optimization techniques or violation of Google’s webmaster guidelines. The goal is to do away with keyword stuffing, link building, meaningless and irrelevant content and doorway pages or paying for links to the website.

III. ALGORITHMS FOR COMPARISON

A. Existing: PageRank Algorithm

PageRank[5] centrality defines the importance of nodes based on the number and quality of nodes connected to it. The World Wide Web can be represented as a directed graph in which every webpage is represented by a node and the edges pointing to a node represents the links pointing to a webpage and the edges pointing away from the node represents the links that are pointing towards other websites. The most relevant page will be decided not only by the in-degree but

Authors:

Suvarna—The purpose of the research is to find a centrality measure that can be used in place of PageRank and to find out the conditions where we can use it in place of PageRank. After analysis and comparison of graphs with a large number of nodes using Spearman’s Rank Coefficient Correlation, the conclusion is evident that Eigenvector can be safely used in place of PageRank in directed networks to improve the performance in terms of the time complexity.

Keywords— PageRank, Centrality, Eigenvector, Webgraph

I. INTRODUCTION

In today's era of computer technology with the vast usage of the World Wide Web, users want a fast and accurate answer. It is the need of the hour to explore every avenue for quicker results and better time complexity. Thus a constant re-evaluation of existing algorithms is necessary. Centrality measures in any kind of network highlights the important parts of that network. In dense networks, there is a potential for more importance as compared to sparse networks. Ranking is essential in terms of finding the most important or influential nodes in a network.

II. EXISTING ALGORITHMS

Degree centrality selects the most important node based on the principle that an important node is involved in a lot of interactions. However degree centrality doesn’t take into account the importance of the nodes it is connected to. Closeness centrality decides the importance of the nodes according to the concept that important nodes will be able to communicate quickly with the nodes. Betweenness centrality finds the most important node based on the theory that if a node is important it will lie on the path between two nodes. Betweenness and closeness centrality is mostly redundant when it comes to ranking of webpages as it attaches no proper importance to the relevant webpages. Degree centrality is relevant however it doesn’t take into account the importance of the node pointing to it hence it gives ample opportunity for malicious and inauthentic websites to be ranked first. Apart from the abovementioned algorithms, other algorithms to find the ranking of a webpage include-

A. The Existing Algorithms in Use

Eigentrust Algorithm[2]: Peer-to-peer network consists of partitioning tasks between various peers such that each peer is equally privileged. This method is popular for sharing information but due to its open source nature, the spread of inauthentic files is easy. Eigentrust Algorithm assigns a rank to each peer based on the past uploads made by the peer in an attempt to reduce the rank of inauthentic or malicious peers trying to pose as peers distributing authentic files.

SimRank: There are many areas where the similarity of objects or interests come into play. The most obvious one being the use to find similar documents on the World Wide Web. Another is to group people with similar interests together, for example the recommended friends list by social media sites. SimRank measures the similarity between two objects based on the basis of the objects that they are referenced by.

B. Algorithms Used By GOOGLE

Google is the most popular search engine used. The reason being that it is able to provide relevant search results quickly. The very first algorithm used by Google was PageRank algorithm by Larry page and Sergey Brin. However incidents like Google bombing, where a search for a topic can lead to the webpages of a seemingly unrelated topic prompted tweaks in algorithms used by Google. Google bombs can be a done for business, political or comical reasons. It works on the principle of spamdexing, which is the manipulation of the index used by the search engines and heavy linking of websites. In order to reduce incidents like Google bombing, Google uses many algorithms along with the original PageRank algorithm to ascertain the final ranking of a webpage. These algorithms include-

Google Panda: Authority is one of the key measurements of ranking in search engines. The trust can be measured by the authority of the link to the article, where the more a link is authoritative, the more the article it points to can be trusted. Google Panda is essentially a filter of the content quality, depreciating low quality websites including websites that have unoriginal or redundant content, contains a huge number of advertisements, have content that is not written or authorized by an expert. If the panda rank score of a site is high, the website gets ‘Pandified’ which means that the pages in the site are imposed with a penalty.

Google Hummingbird: Google Hummingbird attempts to judge the intent of the person making the query ie. to take into consideration the meaning of the sentence as a whole as compared to certain keywords. It is said that Google uses the vast database of information or the ‘Knowledge graph’ to determine the best results.

Google Penguin: Google Penguin assigns a penalty to the webpages which are involved in the usage of black hat Search Engine Optimization techniques or violation of Google’s webmaster guidelines. The goal is to do away with keyword stuffing, link building, meaningless and irrelevant content and doorway pages or paying for links to the website.

III. ALGORITHMS FOR COMPARISON

A. Existing: PageRank Algorithm

PageRank[5] centrality defines the importance of nodes based on the number and quality of nodes connected to it. The World Wide Web can be represented as a directed graph in which every webpage is represented by a node and the edges pointing to a node represents the links pointing to a webpage and the edges pointing away from the node represents the links that are pointing towards other websites. The most relevant page will be decided not only by the in-degree but
also the importance of the node pointing towards the node in question. PageRank is basically based on the probability of a person surfing the web by randomly clicking on links to stop. The probability that the person will continue to click on the links is given by the damping factor and studies suggest that the ideal value is 0.85. The formula is given by

\[PR_i = (1 - d) + d \sum_{b \in S_i} \frac{PR_b}{OI_b} \]

Where \(S_i \) is a set of all the webpages pointing to a page ‘a’ and \(OI_b \) is the out-links from the page, \(d \) is the damping factor.

![Graph Image](image-url)

The time complexity of this algorithm using adjacency matrix as input is \(O(V^3) \), where \(V \) is the number of vertices. The initial value of Page Rank is assumed and the subsequent values are calculated iteratively till the values converge. igraph\(^6\) has stated that the time complexity for the algorithm with input as adjacency list is \(O(\sqrt{|E + V|}) \) where \(V \) is the total number of vertices and \(E \) is the total number of edges in the graph.

B. Proposed: Eigenvector Centrality

Eigenvector centrality\(^7\) defines the importance of a node in the graph by the importance of the nodes connected to it. It can be used for finding the most influencing person or for the identification of the spread of infection. One of the most interesting applications of eigenvector centrality is its potential to be used for analyzing the connectivity patterns in the data obtained from a functional magnetic resonance scale\(^8\).

Let us assume a graph \(G \) that has \(E \) edges and \(V \) vertices. The graph can be given by \(G(E,V) \). If \(A \) is the adjacency matrix, for the graph \(G \), the value of \(a_{ij} \) will be equal to the weight of the edges of the graph. If the graph is a directed graph, and the direction is from \(i \) to \(j \) i.e. the head is at \(j \) node and the tail is at \(i \) node, then the value of \(a_{ij} \) will be equal to the edge weight. If the graph is undirected, both the values of \(a_{ij} \) and \(a_{ji} \) will be equal to the edge weight. If two vertices are not connected, the value of \(a_{ij} \) is 0.

\[Ax = \lambda x\]

The above equation represents the eigenvector centrality in the matrix form, where \(A \) is the adjacency matrix and \(\lambda \) is the largest eigenvalue of the adjacency matrix. \(x \) is the vector containing the centrality score of the node. The Perron-Frobenius theorem states that there is at least one non-negative eigenvector corresponding to the largest eigenvalue of a square matrix. It can also be defined as the eigenvector corresponding to the largest eigenvalue \(\lambda \) of the matrix \(A \).

\[\lambda x_k = \sum_{l=1}^{n} a_{kl}x_l \quad k = 1,2,\ldots,n\]

The above equation represents the eigenvector centrality in a sum form where \(\lambda \) is the largest eigenvalue of the adjacency matrix and \(a_{kl} \) represents the entry in the \(k \)th row and \(l \)th column.

For the graph given in Fig.1, the adjacency matrix will be

\[A = \begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}\]

The eigenvalues calculated are

\(\lambda_0 = 3.3911; \lambda_1 = -1.2860 + 1.0500i; \lambda_2 = -1.2860 - 1.0500i; \lambda_3 = -0.0354 + 0.8151i; \lambda_4 = -0.0354 - 0.8151i; \lambda_5 = 0.1522; \lambda_6 = 1.2185\)

The principal or the largest eigenvalue is \(\lambda_0 = 3.3911\) and the corresponding eigenvector which also represents the eigenvector centrality of the graph given in Fig.1 is

\[\begin{bmatrix}
0.4924 \\
0.3853 \\
0.3564 \\
0.3548 \\
0.4686 \\
0.3544 \\
0.1051 \\
\end{bmatrix}\]

The time complexity of this algorithm using adjacency matrix as an input is \(O(V^2) \), where \(V \) is the total number of vertices. The calculation of the time complexity hinges on the calculation of the eigenvector as the rest of the processes can be done in constant time. igraph has stated that the time complexity for the algorithm using adjacency list as input is \(O(\sqrt{|V|}) \). Time complexity analysis consists of the assumption that \(n \rightarrow \infty \). If we consider each webpage to be a node in a graph this assumption becomes true due to the vastness of the websites that is available on the internet.

In a directed graph, in the case that every node \(V \) is connected to every other node \(V-1 \), the maximum number of edges can be given by \(V(V-1) \). Hence in the calculation of the time complexity of the worst case, we can take the value of \(E \) as \(V^2 \) hence giving the time complexity as \(O(V^2) \), thus proving that the time complexity to calculate the values of the
eigenvector centrality $O(V)$ is better than the existing PageRank algorithm.

IV. CALCULATION AND VERIFICATION

In our endeavor to prove that our hypothesis is right, we have found the eigenvector and PageRank values for several graphs. We initially started with 21 node directed graphs with each node representing a webpage. However, practically it is irrelevant to have such few webpages in a network therefore we increased the number of nodes to 50 and then 100 to simulate the trends with the increase in the number of webpages.

![Fig. 3. A 21 node graph used for comparison of the centrality measures.](image)

TABLE 1

Vertex	Page rank	Rank	Eigenvector	Rank
v19	1.4466	1	0.3168	1
v16	1.2509	2	0.273	3
v2	1.2364	3	0.2818	2
v15	1.1694	4	0.2517	5
v17	1.1688	5	0.254	4
v20	1.1065	6	0.2391	6
v12	1.0696	7	0.2262	7
v8	1.0356	8	0.2224	8
v3	1.0296	9	0.2139	10
v13	0.9872	10	0.2145	9
v10	0.9800	11	0.2112	11
v6	0.9744	12	0.2064	13
v7	0.9407	13	0.2085	12
v5	0.8944	14	0.1852	16
v4	0.8915	15	0.1884	14
v9	0.8843	16	0.1799	17
v18	0.8658	17	0.1822	15
v21	0.8261	18	0.175	18
v14	0.8227	19	0.1674	19
v1	0.7954	20	0.1612	20
v11	0.6242	21	0.1239	21

![Fig. 4. A 21 node graph used for comparison of the centrality measures.](image)

TABLE 2

Vertex	Page rank	Rank	Eigenvector	Rank
v13	1.3884	1	0.3011	1
v9	1.2609	2	0.2837	2
v17	1.2511	3	0.2622	4
v3	1.2085	4	0.2755	3
v19	1.1892	5	0.2574	5
v8	1.1586	6	0.2452	7
v6	1.1387	7	0.2467	6
v20	1.0904	8	0.2265	10
v11	1.0795	9	0.2343	8
v18	1.0750	10	0.2294	9
v12	0.9454	11	0.1951	11
v21	0.9312	12	0.1935	13
v7	0.9183	13	0.1912	14

![Fig. 5. A 50 node graph used for comparison of the centrality measures.](image)

TABLE 3

Vertex	Page rank	Rank	Eigenvector	Rank
v10	0.9053	14	0.194	12
v14	0.9037	15	0.1858	16
v2	0.9028	16	0.1893	15
v5	0.8496	17	0.1838	17
v4	0.7528	18	0.1558	18
v16	0.7365	19	0.1519	20
v15	0.7179	20	0.1531	19
v1	0.5964	21	0.1161	21
Vertex	PageRank	Rank	Eigenvector	Rank
--------	----------	------	-------------	------
v19	0.8319	43	0.1151	42
v48	1.1889	4	0.1715	4
v42	1.1646	5	0.1652	5
v8	1.1379	6	0.162	6
v5	1.1314	7	0.1609	7
v4	1.1222	8	0.1596	9
v21	1.1181	9	0.1606	8
v2	1.1096	10	0.1561	11
v50	1.1041	11	0.1587	10
v25	1.0955	12	0.1558	12
v34	1.0772	13	0.1517	14
v39	1.0678	14	0.1497	17
v44	1.065	15	0.1531	13
v27	1.064	16	0.1496	18
v7	1.0609	17	0.1434	24
v30	1.0606	18	0.15	15
v22	1.0486	19	0.1498	16
v35	1.0408	20	0.1457	20
v41	1.0335	21	0.1458	19
v9	1.0331	22	0.144	23
v38	1.0297	23	0.1446	22
v3	1.0248	24	0.1422	26
v36	1.0225	25	0.1452	21
v16	1.0168	26	0.1404	28
v6	1.015	27	0.1431	25
v24	1.0089	28	0.1399	30
v13	1.0043	29	0.1418	27
v17	0.9951	30	0.14	29
v32	0.9915	31	0.1399	30
v37	0.986	32	0.1393	32
v20	0.9787	33	0.1343	33
v47	0.9483	34	0.1295	36
v10	0.9298	35	0.1319	34
v23	0.929	36	0.129	37
v45	0.9248	37	0.131	35
v31	0.9098	38	0.1279	38
v26	0.8998	39	0.1249	39
v33	0.8924	40	0.1227	40
v15	0.8881	41	0.1214	41
v49	0.8583	42	0.1151	42

Table 4: Comparison between eigenvector centrality and PageRank centrality for the graph shown in Fig. 6.
Vertex	Page rank	Rank	Eigenvector	Rank
v37	0.8728	40	0.1203	39
v16	0.8691	41	0.1166	46
v18	0.8634	42	0.1172	43
v7	0.8631	43	0.1171	44
v38	0.8534	44	0.1215	37
v14	0.8439	45	0.1171	44
v40	0.8405	46	0.1181	41
v19	0.8368	47	0.1148	48
v46	0.8245	48	0.1151	47
v49	0.8202	49	0.1103	49
v17	0.7071	50	0.0896	50

TABLE 5

Comparison between eigenvector centrality and PageRank centrality for a 100 node graph

Vertex	PageRank	Rank	Eigenvector	Rank
v8	1.254	1	0.1294	1
v24	1.1787	2	0.1196	2
v55	1.1681	3	0.1185	3
v28	1.1599	4	0.1165	4
v61	1.1446	5	0.1164	5
v62	1.1398	6	0.1148	7
v91	1.1364	7	0.1138	8
v1	1.1207	8	0.1133	9
v6	1.117	9	0.1151	6
v76	1.1141	10	0.113	10
v48	1.112	11	0.1112	12

Vertex	PageRank	Rank	Eigenvector	Rank
v52	1.1044	12	0.1099	16
v9	1.1004	13	0.1117	11
v85	1.0982	14	0.1098	17
v56	1.0928	15	0.1101	14
v94	1.0899	16	0.1106	13
v100	1.0845	17	0.1101	14
v2	1.082	18	0.1088	19
v83	1.0805	19	0.1096	18
v84	1.0691	20	0.1073	22
v87	1.0672	21	0.1088	19
v26	1.0669	22	0.1073	24
v34	1.0667	23	0.1064	25
v11	1.0658	24	0.1074	22
v4	1.0642	25	0.1057	28
v95	1.0578	26	0.107	23
v53	1.0558	27	0.1056	29
v68	1.0544	28	0.1047	33
v71	1.054	29	0.1063	26
v75	1.0536	30	0.1051	30
v81	1.0498	31	0.105	32
v86	1.0479	32	0.104	38
v35	1.0473	33	0.1045	35
v12	1.0454	34	0.1059	27
v27	1.0452	35	0.1047	33
v54	1.0442	36	0.1051	30
v21	1.044	37	0.1043	36
v89	1.0405	38	0.1021	42
v15	1.0393	39	0.104	38
v80	1.0309	40	0.1043	36
v30	1.0294	41	0.102	43
v22	1.0274	42	0.1023	41

Vertex	PageRank	Rank	Eigenvector	Rank
v57	1.0176	44	0.1006	45
v82	1.0165	45	0.1024	40
v44	1.0159	46	0.1006	45
v25	1.0137	47	0.1004	47
v77	1.0088	48	0.1004	47
v41	1.0007	49	0.099	52
v32	0.9993	50	0.0983	57
v5	0.9989	51	0.1004	47
v78	0.9925	52	0.0986	55
COMPARISON BETWEEN EIGENVECTOR CENTRALITY AND PAGERANK CENTRALITY FOR A 100 NODE GRAPH

Vertex	PageRank	Rank	Eigenvector	Rank
v51	1.1992	1	0.1222	1
v77	1.1976	2	0.1215	2
v47	1.1793	3	0.1203	3
v50	1.1453	4	0.1167	5
v11	1.1409	5	0.1169	4
v42	1.1263	6	0.114	7
v82	1.1257	7	0.1131	9
v73	1.1236	8	0.1141	6
v66	1.1204	9	0.1132	8
v17	1.1189	10	0.1123	10
v100	1.1024	11	0.111	11
v21	1.0941	12	0.1099	14
v7	1.0884	13	0.1107	12
v31	1.0882	14	0.1099	14
v41	1.0827	15	0.1075	23
v84	1.0814	16	0.1071	24
v98	1.0806	17	0.1099	14
v86	1.0791	18	0.11	13
v90	1.0782	19	0.1086	18
v27	1.0774	20	0.1093	17
v70	1.0744	21	0.1077	21
v69	1.0682	22	0.1077	21
v32	1.0671	23	0.1081	19
v38	1.0651	24	0.1078	20
v97	1.0603	25	0.1043	34
v58	1.0594	26	0.1066	25
v62	1.0562	27	0.1056	30
v78	1.0538	28	0.106	28
v52	1.0522	29	0.1063	26
v80	1.0522	29	0.1062	27
Vertex	PageRank	Rank	Eigenvector	Rank
--------	----------	------	-------------	------
v5	0.9872	58	0.0973	59
v40	0.9787	59	0.0987	57
v3	0.9736	60	0.0959	60
v4	0.9728	61	0.0954	65
v18	0.9696	62	0.0956	63
v95	0.9666	63	0.0958	62
v2	0.966	64	0.0951	67
v59	0.9649	65	0.0959	60
v14	0.9619	66	0.0943	71
v13	0.9613	67	0.0946	68
v67	0.9611	68	0.0936	73
v75	0.9599	69	0.0955	64
v68	0.9597	70	0.0954	65
v15	0.959	71	0.0946	68

Fig. 7. A graph showing comparison of the ranks for Fig. 3.

Fig. 8. A graph showing comparison of the ranks for Fig. 4.
The Spearman’s rank correlation coefficient is a nonparametric measure that determines the statistical dependence of one variable on the other. It uses a monotonic function to assess the relation between the two variables. It measures how strongly the two variables which are ranked are associated.

VI. PEARSON’S COEFFICIENT CORRELATION

The Pearson’s rank correlation coefficient is much like Spearman’s coefficient correlation however it differs in the respect that it indicates the linear relation between the two variables.

As shown in the figures Fig. 13, the graph between PageRank and Eigenvector centrality is not only monotonic, but is also linear. Hence, it gives a value of almost 1 for both the Pearson’s coefficient correlation test and Spearman’s coefficient correlation test. Some of the values obtained by Spearman’s coefficient correlation to back the hypothesis that PageRank Centrality can be easily replaced with eigenvector centrality are given in Table 7. Critical value for 21 node graph is 0.681 for a 0.05% probability that the value occurred by chance. Similarly for 50 nodes graph, the critical value is 0.465 for a 0.05% probability that the value occurred by chance and for a 100 node graph, the critical value is 0.326 for a 0.05% probability that the value occurred by chance.

From Table 1-Table 6, showing the comparison of the ranks assigned by application of the eigenvector formula is comparable to the ranks obtained by PageRank. In a search engine that will be used for finding the most accurate results, the highest priority is given to the first few pages as those are the ones that will attract the attention of the user who is surfing the internet. For all the graphs taken, the first five vertices analogous to the webpages ranking are the same, thus strengthening our argument for the use of Eigenvector in place of PageRank. The figures (Fig. 7- Fig. 12) show that the variation of the ranks assigned by eigenvector centrality as compared to the ones assigned using the PageRank algorithm. As observed in the figures, the variation is insignificant and it goes on decreasing with the increase in the number of nodes in the graph. Therefore, in an actual web graph the difference would be reduced to a miniscule amount while keeping the top nodes or the top pages the same.

V. SPEARMAN’S RANK COEFFICIENT CORRELATION

The Spearman’s rank correlation coefficient is a nonparametric measure that determines the statistical dependence of one variable on the other. It uses a monotonic function to assess the relation between the two variables. It measures how strongly the two variables which are ranked are associated.
Fig. 15. A scatterplot representing the average value of Spearman’s Rank Coefficient Correlation for different number of nodes.

As shown in Fig. 15, the average value of Spearman’s Rank Coefficient correlation increases with the increase in the number of nodes in the graph. This shows that the strength of association between the values obtained by eigenvector and PageRank continue to converge with the increase in the number of nodes, analogous to webpages, which is practically \(n \to \infty \).

VII. CONCLUSION

In a fast-paced world where each nanosecond has proved to be of crucial importance, it is essential to adopt every possible means to save time. With this purpose in mind, we have proved the dominance of eigenvector centrality over the existing PageRank algorithm in the respect of time complexity showing positive results in our favour by giving supportive and conclusive evidence.

VIII. REFERENCES

1. Luca Donetti, Franco Neri and Miguel A. Muoz “Optimal network topologies: expanders, cages, Ramanujan graphs, entangled networks and all that” Journal of Statistical Mathematics (2006)
2. Sepandar D. Kamvar, Mario T. Schlosser, Hector Garcia-Molina, “The EigenTrust Algorithm for Reputation Management in P2P Networks,” Stanford University
3. Z. Gyöngyi, H. Garcia-Molina, J. Pedersen “Combating Web Spam with Trust Rank” Stanford University, thirteenth international conference on very large databases – volume 30
4. Krishnan, Vijay; Raj, Rashmi. “Web Spam Detection with Anti-Trust Rank” Stanford University.
5. S. Brin and L. Page, “The PageRank Citation Ranking: Bringing Order to the Web” Stanford InfoLab, (Jan., 1998)
6. Gabor Csardi, Tamas Nepusz, “The igraph software package for complex network research,” InterJournal Complex Systems 2006
7. Spizzirri, Leo, 2011, Justification and application of eigenvector centrality, working paper.
8. Gabriele Lohmann, Daniel S. Margulies, Annette Horstmann, Burkhard Pleger, Joeran Lepsien, Dirk Goldhahn, Haiko Schloegl, Michael Stumvoll, Arno Villringer, Robert Turner “Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain”
9. B. Jaganathan, Kalyani Desikan, “Category-Based Pagerank Algorithm,” International Journal of Pure and Applied Mathematics., vol.101, No.5, pp. 811-820, August 2015.
10. B. Jaganathan, Kalyani Desikan, “Penalty-Based Pagerank Algorithm,” ARPN Journal of Engineering and Applied Sciences, vol.10, No.5
11. B. Jaganathan, Kalyani Desikan, “Weighted Pagerank Algorithm based on In-Out weight of webpages,” Indian Journal of Science and Technology, vol.8, No.34, pp. 1-6, December 2015