Valid p-values and expectations of p-values revisited

Albert Vexler

Received: 3 July 2019 / Revised: 13 August 2019 / Published online: 3 March 2020
© The Institute of Statistical Mathematics, Tokyo 2020

Abstract
We focus on valid definitions of p-values. A valid p-value (VpV) statistic can be used to make a prefixed level-α decision. In this context, Kolmogorov–Smirnov goodness-of-fit tests and the normal two-sample problem are considered. We examine an issue regarding the goodness-of-fit testability based on a single observation. We exemplify constructions of new test procedures, advocating practical reasons to implement VpV mechanisms. The VpV framework induces an extension of the conventional expected p-value (EPV) tool for measuring the performance of a test. Associating the EPV concept with the receiver operating characteristic (ROC) curve methodology, a well-established biostatistical approach, we propose a Youden’s index-based optimality to derive critical values of tests. In these terms, the significance level $\alpha = 0.05$ is suggested. We introduce partial EPV’s to characterize properties of tests including their unbiasedness. We provide the intrinsic relationship between the Bayes Factor (BF) test statistic and the BF of test statistics.

Keywords AUC · Bayes Factor · Kolmogorov–Smirnov tests · Likelihood ratio · p-value · ROC curve · Pooled data · Single observation · Type I error rate · Youden’s index

1 Introduction
A storm of favorable or critical publications regarding p-values-based procedures has been observed in both the theoretical and applied literature.

Commonly, statistical testing procedures are designed to draw a conclusion (or make an action) with respect to the binary decision of rejecting or not rejecting the null hypothesis H_0, depending on locations of the corresponding values of the observed test statistics, i.e., detecting whether test statistics’ values belong to a fixed sphere or interval. Oftentimes, p-values can serve as a data-driven approach for testing statisti-
tical hypotheses based on using the observed values of test statistics as the thresholds in the theoretical probability of the Type I error. *P*-values can themselves also serve as a summary type result based on data in that they provide meaningful data based evidence about the null hypothesis. This principle simplifies and standardizes statistical decision-making policies. In this manner, for example, different algorithms for combining decision-making rules using their *p*-values as test statistics can be naturally derived.

Data-driven research-oriented journals have started to alarm regarding critical issues that have occurred in experimental studies where statistical decision-making procedures have been involved and *p*-values-based conclusions have been misused and/or misinterpreted. This has stimulated a storm of favorable or critical publications regarding *p*-values-based procedures in both the theoretical and applied literature (e.g., Wasserstein and Lazar 2016; Ionides et al. 2017).

In this article, we indicate that proper uses of *p*-values depend on their structures that can be built in different manners. Our aim is to describe the following specific areas: (1) valid definitions of *p*-values in parametric and nonparametric settings; (2) examples of new VpV-based test procedures that are reasonable to be implemented in practice; (3) examination of the issue to test for goodness-of-fit based on a single observation (the corresponding motivations are presented below); (4) revisiting the EPV concept in order to attend to VpV’s and optimal selections of tests’ significance levels; (5) proposing partial EPV’s to characterize properties of decision-making mechanisms; and (6) demonstrating an interesting fact that the BF based on the BF test statistic comes to be the BF.

In particular, we concentrate on tests in the presence of nuisance parameters. In parametric statistical statements, Berger and Boos (1994) and then Silvapulle (1996) studied testing problems related to a model with an unknown parameter, say θ, under H_0. In the frequentist hypothesis testing fashion, a test is deemed statistically significant if the *p*-value is below some threshold known as the significance level, say $\alpha \in [0, 1]$. In this context, if θ were known, then the Type I error rate depends on values of θ, and we can define the conventional *p*-value such that, under the null hypothesis, $\Pr(\text{p-value} \leq \alpha | H_0) \leq \alpha$, for each $\alpha \in [0, 1]$. When the value of θ is unspecified, H_0 is no longer simple; however, we aim to construct a *p*-value, preserving the property $\Pr(\text{p-value} \leq \alpha | H_0) \leq \alpha$ that provides the corresponding test to be a level-α test. In this case, a statistic “*p*-value” is called a valid *p*-value (VpV).

Note that if the VpV property is not deemed desirable, there are different ways to handle the unknown θ, e.g., estimating values of θ or using posterior predictive *p*-values (Bayarri and Berger 2000). We investigate the concept of VpV’s with respect to nonparametric classical Kolmogorov–Smirnov (KS) tests for goodness-of-fit and the normal two-sample problem. In this framework, we consider the problem of constructing level-α goodness-of-fit tests based on KS measures of the discrepancy between a single observed data point and the value expected under the null model. This issue is not trivial and requires attention from both theoretical and experimental points of view (see Sect. 2.1 for details). In this context, e.g., we can make mention of an outstanding study of Portnoy (2019) related to problems of making statistical inference based on a single observation.
For example, in practice, the high cost associated with measuring biomarkers values can significantly restrict further biostatistical applications. When analysis is restricted by the high cost of assays, one can suggest applying an efficient pooling design for collection of data (see, e.g., Vexler et al. 2008; Schisterman and Vexler 2008; Schisterman et al. 2011, for details). Pooled data can also be an organic output of a study. In order to reduce the cost or labor intensiveness of a study, a pooling strategy may be employed whereby \(m \geq 2 \) individual specimens are physically combined into a single “pooled” unit for analysis. Thus, applying pooling design provides a \(m \)-fold decrease in the number of measured assays. Each pooled sample test result is assumed to be the average of the individual unpooled samples. Then, commonly, pooled data consist of a very limited number of observations. Commonly, in order to evaluate pooled data, corresponding parametric assumptions are made. It is a practical issue to test for, e.g., exponentiality or normality using pooled data. For example, an efficient inference can be provided using a single pooled observation, say \(X \), if it is accepted that \(X \) is normally distributed (Portnoy 2019).

It turns out that the VpV method can be a valuable tool in developing reasonable and robust testing strategies that is exemplified in Sect. 2 via Monte Carlo experiments.

In general, the VpV is a function of the data and hence it is a random variable, which too has a probability distribution. In order to study the stochastic character of VpV’s, we advance the conventional expected \(p \)-value (EPV)-based measure of the performance of a test. The stochastic aspect of the \(p \)-value has been well studied by Dempster and Schatzoff (1965) who introduced the concept of the expected significance level under the alternative. Sackrowitz and Samuel-Cahn (1999) developed the approach further and renamed it as the EPV. The authors presented the great potential of using EPV’s in various aspects of hypothesis testing.

Comparisons of different test procedures, e.g., the Wilcoxon rank-sum test versus Student’s \(t \)-test, based on their statistical power are oftentimes problematic in terms of deeming one method being the preferred test over a range of scenarios. One reason for this issue to occur is that the comparison between two or more testing procedures is dependent upon the choice of a pre-specified significance level \(\alpha \). One test procedure may be more or less powerful than the other one depending on the choice of \(\alpha \) (e.g., Vexler and Yu 2018). Alternatively, one can consider the EPV approach for comparing test procedures. The EPV is related to the integrated power of a test via all possible values of \(\alpha \in [0, 1] \). The EPV is one minus the expected power of a test, where the expectation is with respect to an \(\alpha \) level which is uniformly \([0,1]\) distributed. Thus, the performance of the test procedure can be evaluated globally using the EPV concept. Smaller values of EPV show better test qualities in a universal fashion.

For example, let the random variable \(T \) represent a test statistic depending on data \(X \). Assume \(F_k \) defines the distribution function of \(T \) under the hypothesis \(H_k \), \(k = 0, 1 \), where the subscript \(k \) indicates the null (\(k = 0 \)) and alternative (\(k = 1 \)) hypotheses, respectively. Given \(F_k \) is continuous, we can denote \(F_k^{-1} \) to represent the inverse or quantile function of \(F_k \), such that \(F_k(F_k^{-1}(\gamma)) = \gamma \), where \(0 < \gamma < 1 \) and \(k = 0, 1 \). In this setting, in order to concentrate upon the main issues, we will only focus on tests of the form: the event \(T > C \) rejects \(H_0 \), where \(C \) is a prefixed test threshold. When \(F_0 \)
is known, the \(p \)-value can be defined as \(1 - F_0(T) \). Then, the EPV, \(E\{1 - F_0(T)|H_1\} \), is

\[
\text{EPV} = \Pr(T^0 \geq T^A),
\]

where independent random variables \(T^0 \) and \(T^A \) are distributed according to \(F_0 \) and \(F_1 \), respectively. The value of the 1-EPV can be expressed in the form of the statistical power of a test through

\[
\text{EPV} = \Pr(T^0 \geq T^A) = \int_{-\infty}^{\infty} \Pr(T^A \leq t) dF_0(t) = \int_{-\infty}^{\infty} \Pr\{F_0(T^A) \leq F_0(t)\} dF_0(t)
\]

\[
= \int_1^0 \Pr\{1 - F_0(T^A) \geq \alpha\} d(1 - \alpha)
\]

\[
= \int_0^1 \left[1 - \Pr\{1 - F_0(T^A) \leq \alpha\}\right] d\alpha = 1 - \int_0^1 \Pr(p\text{-value} \leq \alpha|H_1) d\alpha.
\]

\[\tag{2}\]

\textit{Vexler et al.} (2018) showed a strong association between the EPV concept and the well-known receiver operating characteristic (ROC) curve methodology (e.g., \textit{Vexler and Hutson} 2018; \textit{Schisterman et al.} 2005). Such a relationship between the EPV and ROC curve comes in handy for assessing and visualizing the properties of various decision-making procedures in the \(p \)-value-based context. This approach was successfully applied to construct optimal multiple testing procedures (\textit{Vexler et al.} 2018). In Sect. 3.2 of the present article, the EPV/ROC technique is applied to propose a Youden-type criterion for defining optimal tests’ critical values.

A wide spectrum of theoretical and applied papers has extensively discussed the old school rule: reject \(H_0 \) if \(p \)-value < 0.05 (e.g., \textit{Benjamin et al.} 2018; \textit{Wasserstein and Lazar} 2016). We advocate the choice of the significance level \(\alpha = 0.05 \) using Youden’s index and evaluating the likelihood ratio and Bayes Factor (BF)-type test procedures. To this end, in particular, we show an intrinsic relationship between the BF test statistic and the BF based on test statistics (Proposition 5).

In Sect. 3.3, following the ROC curve methodology, we consider a partial EPV (pEPV) to evaluate properties of tests including their unbiasedness. We demonstrate that the conventional power characterization of tests is a partial aspect of the present EPV/ROC technique.

Section 4 is designed to provide several concluding remarks. We refer to the Appendix for technical derivations and proofs.

2 Valid \(p \)-values

Suppose, in statistical analysis of data \(X \), we wish to test \(H_0 : X \sim f_0(x; \theta) \) versus \(H_1 : X \sim f_1(x) \), where \(f_0(x; \theta) \) is a density function that is specified depending on some unknown nuisance parameter \(\theta \), the alternative density function \(f_1 \neq f_0 \) can be assumed to be in an unknown form to state the problem in the nonparametric context. For example, one can consider the goodness-of-fit statement \(H_0 : X_1 \sim f_0(x; \theta) = \)
$\theta \exp(-\theta x)$, $\theta > 0$, versus $H_1 : X_1$ is not exponentially distributed, when X consists of n independent and identically distributed (iid) observations $X_i > 0$, $i = 1, \ldots, n$.

Let a statistic $T(\theta)$ based on X be developed to test for H_0 versus H_1. In this case, $T(\theta)$ can either contain θ or have a structure without θ. In order to focus on the main issues, we assume the corresponding decision-making procedure can be expressed in such a way that large values of a test statistic $T(\theta)$ are evidence against the null hypothesis H_0. Redefine $T(\theta)$’s distribution under H_k, $k = 0, 1$, by $F_{T(\theta), k}$. In this framework, in general, we cannot use the p-value in the form

$$p(\theta) = 1 - F_{T(\theta), 0}(T(\theta)),$$

since θ is unknown. For example, assuming that X contains iid observations X_i, $i = 1, \ldots, n$, we have

$$p(\theta) = \int \cdots \int I\{t(x_1, \ldots, x_n; \theta) \geq T_{\text{obs}}(\theta)\} \prod_{i=1}^{n} f_0(x_i; \theta) dx_1 \ldots dx_n,$$

where I is the indicator function, $t(x_1, \ldots, x_n; \theta)$ has a form of the test statistic $T(\theta)$ based on data (x_1, \ldots, x_n) and $T_{\text{obs}}(\theta)$ represents a value of $T(\theta)$ computed using underlying data (X_1, \ldots, X_n).

The conventional definition of the p-value is

$$p_S = \sup_{\theta \in \Theta} p(\theta),$$

where Θ represents the parameter space for θ (e.g., Lehmann and Romano 2006). Unfortunately, definition (4) is of rather limited usefulness, since the need to compute the $\sup_{\theta \in \Theta}$ has complicated the problem and, moreover, the supremum is oftentimes too large (in several scenarios $p_S = 1$) to provide a suitable criticism of the null hypothesis (e.g., Bayarri and Berger 2000). In order to overcome this difficulty, Berger and Boos (1994) and Silvapulle (1996) proposed to denote a valid p-value (VpV) restricting the supremum to θ in a confidence set for θ. In this setting, let C_β define a $1 - \beta$ confidence set for the nuisance parameter θ, under H_0. Then, it is suggested to state the VpV in the form

$$p_C = \sup_{\theta \in C_\beta} p(\theta) + \beta. \quad (5)$$

In this context, the term “valid p-value” signifies that a statistic p-value $\in [0, 1]$ is valid if

$$\Pr_{H_0}(p\text{-value} \leq \alpha) \leq \alpha, \text{ for each } \alpha \in [0, 1], \quad (6)$$

where \Pr_{H_k} denotes the probability under H_k, $k = 0, 1$. This statement can be applied in the common way to define a level-α decision-making procedure. We can decide to reject H_0 if and only if the corresponding VpV $\leq \alpha$, having the property (6). This
principle can simplify and standardize different statistical decision-making policies, providing, e.g., easy strategies for combining test procedures, for example, via the classical Bonferroni method.

P-values defined in (4) and (5) satisfy (6), since denoting the true but unknown θ by θ_0 and assuming $\beta < \alpha$ we obtain

$$\text{Pr}_{H_0}(p_S \leq \alpha) \leq \text{Pr}_{H_0}(p(\theta_0) \leq \alpha) = \text{Pr}_{H_0}\{F_{T^{(\theta_0)},0}(T(\theta_0)) \geq 1 - \alpha\} = \alpha$$

and

$$\text{Pr}_{H_0}(p_C \leq \alpha) \leq \text{Pr}_{H_0}(p(\theta_0) + \beta \leq \alpha, \theta_0 \in C_\beta) + \text{Pr}_{H_0}(\theta_0 \notin C_\beta)$$

$$\leq \text{Pr}_{H_0}(p(\theta_0) \leq \alpha - \beta, \theta_0 \in C_\beta) + \text{Pr}_{H_0}(\theta_0 \notin C_\beta)$$

$$\leq \text{Pr}_{H_0}(p(\theta_0) \leq \alpha - \beta) + \beta = \alpha - \beta + \beta = \alpha,$$

where it is used that $\sup_{\theta} p(\theta) \geq p(\theta_0)$ and $p(\theta_0)$ is Unif[0,1] distributed under H_0.

Unfortunately, concepts (4) and (5) cannot be applied to some testing problems. This is exemplified in the following section. Note that, oftentimes, the approach of the VpV is addressed by the statistical literature in parametric statistical analysis (e.g., Bayarri and Berger 2000; Berger and Boos 1994; Silvapulle 1996). In the following sections, we consider the VpV approach in nonparametric and parametric settings.

2.1 Kolmogorov–Smirnov tests

In this section, we focus on the classical KS goodness-of-fit tests. The presented analysis is relatively clear and has the basic ingredients for more general cases. Consider the scenario when a statistician is called upon to test some hypothesis about the distribution of a population. If the test is concerned with the agreement between the distribution of a set of sample values and a theoretical distribution, we call it a “test of goodness-of-fit.”

We begin with examining the goodness-of-fit test for exponentiality based on iid data points X_1, \ldots, X_n. We wish to investigate compatibility of the model $H_0 : X_1 \sim f_0(x; \theta) = \theta \exp(-\theta x)I(x > 0)$, for some $\theta > 0$, versus the model $H_1 : X_1$ is not $\sim f_0(x; \theta)$, for all $\theta > 0$. In this case, the usual KS statistic has the form

$$D_n(\theta) = \sup_{0<u<\infty} |1 - \exp(-\theta u) - F_n(u; X)|,$$

where $D_n(\theta)$ measures the closeness between the H_0-distribution function $1 - \exp(-\theta u)$ and the sample (empirical) distribution function $F_n(u; X) = \sum_{i=1}^{n} I(X_i \leq u)$.

\(\Box \) Springer
It is well known that the distribution function \(\Pr_{H_0} \{ D_n(\theta_0) \leq u \mid \text{the true value of } \theta = \theta_0 \} \) is independent of \(\theta_0 \). Then, in this case, it is clear that the \(p \)-value

\[
p(\theta) = 1 - F_{D_n(\theta),0}(D_n(\theta))
\]

\[
= \int \ldots \int I \left\{ \sup_{0 < u < \infty} |1 - \exp(-\theta u) - F_n(u; x_1, \ldots, x_n)| \right\}
\]

\[
\geq \sup_{0 < u < \infty} \left\{ 1 - \exp(-\theta u) - F_n(u; X_1, \ldots, X_n) \right\}
\]

\[
\prod_{i=1}^n f_0(x_i; \theta)dx_1 \ldots dx_n
\]

\[
= \int \ldots \int I \left\{ K_{S_n}(x_1, \ldots, x_n) \geq \sup_{0 < u < \infty} |1 - \exp(-\theta u) - F_n(u; X_1, \ldots, X_n)| \right\}
\]

\[
\prod_{i=1}^n f_0(x_i; \theta)dx_1 \ldots dx_n = 1 - F_{K_{S_n},0}(D_n(\theta)),
\]

where the statistic \(K_{S_n}(x_1, \ldots, x_n) \) based on iid random variables \(x_1, \ldots, x_n \) is distributed independently of \(\theta \)'s values under \(H_0 \) (see, e.g., Wang et al. 2003, for details). Thus, the VpV's by (5) and (6) can be computed as

\[
p_S = 1 - F_{K_{S_n},0} \left(\inf_{0 < \theta < \infty} D_n(\theta) \right) \quad \text{and} \quad p_C = 1 - F_{K_{S_n},0} \left(\inf_{0 < \theta \in C_\beta} D_n(\theta) \right) + \beta. \quad (8)
\]

The following propositions show that when we observe only one single data point \(n = 1 \) the KS approach is not useful in the context of the VpV method.

Proposition 1 Assume we observe only \(X = X_1 > 0 \). Then, the statistic \(p_S \) is independent of the data and satisfies \(p_S = 1 - F_{K_{S_n},0}(0.5) = 1. \)

In order to apply \(p_C \) obtained in (8), we denote the maximum \(H_0 \)-likelihood ratio confidence interval for \(\theta \) in the form

\[
C_\beta = \left[\theta : \hat{\theta} \exp(-\hat{\theta} X_1) \{ \theta \exp(-\theta X_1) \}^{-1} < A_\beta \right],
\]

where the maximum \(H_0 \)-likelihood estimator \(\hat{\theta} \) of \(\theta \) is \(1/X_1 \) and the threshold \(A_\beta \) satisfies

\[
\Pr_{H_0} \{ \theta_0 \in C_\beta \mid \text{the true value of } \theta = \theta_0 \}
\]

\[
= \Pr \left\{ (\theta_0 x)^{-1} \exp(\theta_0 x - 1) < A_\beta \mid x \sim \text{Exp}(\theta_0) \right\} = 1 - \beta.
\]

In this case, we have the following result.

Proposition 2 Assume we observe only \(X = X_1 > 0 \). Then, the statistic \(p_C \) is independent of the data and satisfies \(p_C = 1 - F_{K_{S_n},0}(0.5) + \beta = 1 + \beta \), for \(\beta \in (0, 0.75) \).
The following arguments show that the issue addressed by Propositions 1 and 2 is not trivial. The problem of making statistical inference based on a single observation has been extensively dealt with in the literature (e.g., Portnoy 2019). This issue can be considered in both the theoretical and the practical aspects. For example, assume that we survey a statistic \(X \), which is a function of unobserved variables \(\eta_1, \ldots, \eta_N \), and it is anticipated that \(X \) has an asymptotic distribution, say, \(\mathcal{Y} \), as \(N \to \infty \) (relevant examples related to biological markers evaluations can be found in Sect. 1 and Vexler and Hutson 2018: Section 2.4.6). In this case, the problem of investigating compatibility of the model \(H_0 : X \sim \mathcal{Y} \) with the observed data point \(X \), for a fixed \(N \), can be in effect. Someone can propose to test for exponentiality, using the procedure of the form: reject the null hypothesis when \(X \geq C \), where \(C \) is a test threshold. This procedure can be relatively powerful in many scenarios based on different underlying data distributions. However, it turns out that, in this statement of problem, we cannot define the VpV and control the Type I error rate of the decision-making mechanism. Note that, in practice, in order to test for the composite hypothesis of exponentiality, the statistical literature suggests to transform observations \(X_1, \ldots, X_n \), for example, applying
\[
\frac{X_1}{\sum_{i=1}^{n} X_i} = 1, \ldots, \frac{X_n}{\sum_{i=1}^{n} X_i}(e.g., \text{Henze and Meintanis 2005}).
\]
It is clear that we cannot use such invariant (with respect to the parameter \(\theta \)) transformations when \(n = 1 \).

The above analysis can be adapted to treat different KS type procedures. Consider, for example, the problem of testing for normality based on iid data points \(X_1, \ldots, X_n \):
\[
H_0 : X \sim N(\theta, 1), \text{ for some } \theta, \text{ versus } H_1 : X \text{ is not } \sim N(\theta, 1), \text{ for all } \theta.
\]
In this case, the KS statistic is
\[
D_n(\theta) = \sup_{-\infty < u < \infty} \left| \int_{-\infty}^{u} \exp\left(-\left(z - \theta\right)^2/2\right) dz/(2\pi)^{1/2} - F_n(u) \right|
\]
with
\[
F_n(u) = n^{-1} \sum_{i=1}^{n} I(X_i \leq u),
\]
and then
\[
p_S = 1 - F_{KS,n,0} \left(\inf_{-\infty < \theta < \infty} D_n(\theta) \right) \text{ and } p_C = 1 - F_{KS,n,0} \left(\inf_{\theta \in C_\beta} D_n(\theta) \right) + \beta,
\]
where \(F_{KS,n,0} \) is the \(H_0 \)-distribution function of the statistic
\[
\sup_{-\infty < u < \infty} \left| \int_{-\infty}^{u} \exp\left(-\left(z - \theta\right)^2/2\right) dz/(2\pi)^{1/2} - n^{-1} \sum_{i=1}^{n} I(x_i \leq u) \right|
\]
based on iid random variables \(x_1, \ldots, x_n \) from \(N(\theta, 1) \) and \(F_{KS,n,0} \) is independent of \(\theta \)'s values; \(C_\beta \) defines a corresponding \(1 - \beta \) confidence set for the parameter \(\theta \) under \(H_0 \).

In this framework, Proposition 3 below displays that the classical KS approach cannot provide VpV's < 1 when we observe only one single data point (\(n = 1 \)).
Proposition 3 Assume we observe only $X = X_1 > 0$. Then, the statistics p_S and p_C are independent of the data and satisfy $p_S = 1 - F_{K_S,0}(0.5) = 1, p_C = 1 - F_{K_S,0}(0.5) + \beta = 1 + \beta$, where $C_\beta = \{\theta : \exp((X_1 - \theta)^2/2) < A_\beta\}$ with $A_\beta : \Pr_{H_0}\{\theta_0 \in C_\beta \mid \text{the true value of } \theta \text{ is } \theta_0\} = 1 - \beta$ is the maximum H_0-likelihood ratio confidence interval for θ.

Suppose the problem is that of testing $H_0 : X_1, \ldots, X_n \sim N(0, \theta^2)$, for some $\theta > 0$, versus $H_1 : X_1, \ldots, X_n$ are not $N(0, \theta^2)$ distributed, for all $\theta > 0$. In this scenario, the KS statistic is

$$D_n(\theta) = \sup_{-\infty < u < \infty} \left| \int_{-\infty}^{u/\theta} \exp\left(-z^2/2\right)dz/(2\pi)^{1/2} - F_n(u) \right|,$$

and (8) defines the VpV when $F_{K_S,0}$ is the H_0-distribution function of the above statistic $D_n(\theta)$ based on iid random variables x_1, \ldots, x_n from $N(0, \theta^2)$, $F_{K_S,0}$ is independent of θ’s values. Then, one can prove the following result.

Proposition 4 Assume we observe only $X = X_1 > 0$. Then, the statistics p_S and p_C are independent of the data and we have, for all $\beta \in (0, 1)$,

$$p_S = 1 - F_{K_S,0}(0.5) = 1, \quad p_C = 1 - F_{K_S,0}\left(D_1\left(\int_{-\infty}^{u_0} \exp\left(-z^2/2\right)dz/(2\pi)^{1/2}\right)\right) + \beta \geq 1,$$

where the maximum H_0-likelihood ratio confidence interval for θ has the form

$$C_\beta = \left\{\theta : |X_1|^{-1}\exp\left(|X_1|^2(2\theta^2)^{-1} - 0.5\right) < A_\beta\right\},$$

the threshold A_β satisfies $\Pr\left\{\eta^{-1/2}\exp(\eta/2 - 1/2) > A_\beta\right\} = \beta$ with η that is a random variable from the χ^2 distribution, and $0 < u_0 < 1$ is a root of the equation $u^{-1}\exp(u^2/2 - 1/2) = A_\beta$.

2.1.1 Monte Carlo examples

We evaluated the power of the p_S and p_C-based tests (reject H_0 if $p_k \leq \alpha, k = S, C$) for $H_0 : X_1, \ldots, X_n \sim N(0, \theta^2)$, for some $\theta > 0$, versus $H_1 : X_1, \ldots, X_n$ are not $N(0, \theta^2)$ distributed, for all $\theta > 0$, at $\alpha = 0.05$, in the Monte Carlo (MC) manner. The VpV, p_C, was defined using $\beta = 0.0005$ and the maximum likelihood ratio interval $C_\beta = \left\{\theta > 0 : \theta^n\left(\sum_{i=1}^n X_i^2/n\right)^{-n/2}\exp\left((2\theta^2)^{-1}\sum_{i=1}^n X_i^2 - 0.5n\right) < A_\beta\right\}$, where the threshold A_β satisfies $\Pr\left\{\eta/n^{-n/2}\exp(\eta/2 - n/2) > A_\beta\right\} = \beta$ with η that is a random variable from the χ^2_n distribution. We only exemplify several scenarios where the power of the p_S/p_C-based tests is compared with that of the Shapiro–Wilk test for normality combined with the one sample t-test for $EX_1 = 0$ in the Bonferroni fashion (the notation SW_t denotes this composite test). In the considered nonparametric framework, there are not most powerful decision-making mechanisms. Our aim is to demonstrate cases when the p_S/p_C-based tests outperform the classical powerful
Table 1 The Monte Carlo powers of the tests

Test	PS	PC	SWt	PS	PC	SWt
Design (A)	(B)					
$n = 7$	0.7987	0.8186	0.6204	0.9276	0.9526	0.7193
$n = 8$	0.9626	0.9660	0.7922	0.9823	0.9908	0.8629
$n = 10$	0.9963	0.9995	0.9874	0.9993	0.9999	0.9970
Design (C)	(D)					
$n = 7$	0.6926	0.7035	0.6315	0.7923	0.8186	0.6153
$n = 8$	0.8355	0.8459	0.7977	0.9398	0.9717	0.7914
$n = 10$	0.9641	0.9758	0.9703	0.9952	0.9992	0.9875
Design (F)						
$n = 7$	0.7676	0.7911	0.6735	0.9947	0.9974	0.9822

SWt procedure. The following scenarios of source distributions were treated: (A) $X_i = \xi_i - 0.03, \xi_i \sim \text{Gamma}(1, 2)$; (B) $X_i = \xi_i - \exp(3), \xi_i \sim \text{LogN}(5, 1)$; (C) $X_i = \xi_i - 0.45, \xi_i \sim \chi^2_3$; (D) $X_i = \xi_i - 0.3, \xi_i \sim \text{Weibull}(1, 5)$; (F) $X_i = \xi_i / \eta_i - \exp(3)/2, \xi_i \sim \text{LogN}(5, 1), \eta_i \sim \text{N}(2, 1)$ (this case is similar to (B), but $E(X_i)$ does not exist in statement (F)), $i = 1, \ldots, n$. At each baseline distribution, the MC experiments were replicated 25,000 times to generate underlying data points (X_1, \ldots, X_n). Table 1 presents the computed MC powers.

We should note that, for relative large sample sizes, we do not suggest to apply the p_S/p_C-based tests in many scenarios with different underlying data distributions. For example, when $n = 50$ and $X_i \sim \text{Cauchy}(\text{location} = 0, \text{scale} = 1/2), i = 1, \ldots, n$, the p_S/p_C-based tests and SWt showed powers of 0.06, 0.85 and 0.99, respectively.

2.2 The normal two-sample problem

In a similar manner to Section 3 of Berger and Boos (1994) and Section 3.2 of Sackrowitz and Samuel-Cahn (1999), we consider a pedagogical example related to the following scenario. Let X_1, \ldots, X_n be iid $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_m be iid $N(\mu_2, \sigma^2)$, independent of the X’s. We focus on testing $H_0 : \mu_1 = \mu_2$ versus $H_1 : \mu_1 > \mu_2$. If σ^2 were known, then we could use the t-test statistic

$$T(\sigma) = (\bar{X} - \bar{Y})/\left\{\sigma(n + m)^{1/2}(nm)^{-1/2}\right\}, \bar{X} = \sum_{i=1}^{n} X_i / n, \bar{Y} = \sum_{i=1}^{m} Y_i / m,$$

computing the p-value $p(\sigma) = 1 - F_{T(\sigma),0}(T(\sigma))$.

It is clear that $F_{T(\sigma),0}(u) = \Phi(u)$, where $\Phi(u) = \int_{-\infty}^{u} \exp(-z^2/2) dz / (2\pi)^{1/2}$. Then, we can define

$$p_S = 1 - \Phi\left(\inf_{\sigma > 0} T(\sigma)\right) \text{ and } p_C = 1 - \Phi\left(\inf_{\sigma \in C_\beta} T(\sigma)\right) + \beta,$$

where C_β is the maximum H_0-likelihood ratio confidence interval for σ.

Springer
\[C_\beta = \left[\sigma : \sigma^N (\hat{\sigma}_N)^{-N} \exp \left\{ \left(2\sigma^2 \right)^{-1} \sum_{i=1}^{N} (Z_i - \bar{Z})^2 - 0.5N \right\} < A_\beta \right], \]

\[(Z_1, \ldots, Z_N) = (X_1, \ldots, X_n, Y_1, \ldots, Y_m), \quad \bar{Z} = \frac{\sum_{i=1}^{N} Z_i}{N}, \quad (\hat{\sigma}_N)^2 = \sum_{i=1}^{N} (Z_i - \bar{Z})^2 / N, \quad N = n + m; \] the threshold \(A_\beta \) satisfies

\[
\Pr \left[N^{-1} \sum_{i=1}^{N} \left(z_i - N^{-1} \sum_{i=1}^{N} z_i \right)^2 \right]^{N/2} \exp \left\{ 0.5 \sum_{i=1}^{N} \left(z_i - N^{-1} \sum_{i=1}^{N} z_i \right)^2 - 0.5N \right\} > A_\beta = \beta
\]

with iid random variables \(z_1, \ldots, z_N \sim N(0, 1) \). Note that the statistic \(T(\sigma) \) contains the nuisance parameter \(\sigma \) and does not include \(\mu_1, \mu_2 \). Then, we do not consider \(C_\beta \) using \(\mu = \mu_1 = \mu_2 \) instead of \(\bar{Z} \), defining, for example, \(p_C = \sup_{\mu} \left\{ \sup_{\theta \in C_\beta} p(\theta) + \beta \right\} \).

In the case of \(\bar{X} \leq \bar{Y} \), we have \(\inf_{\sigma > 0} T(\sigma) = -\infty \) and then \(p_S = 1 \), whereas when \(\bar{X} > \bar{Y} \) we have \(\inf_{\sigma > 0} T(\sigma) = 0 \) obtaining \(p_S = 0.5 \). Therefore, in this example, \(p_S \geq 0.5 \), although valid, is useless.

The above analysis leads to \(p_C = 1 - \Phi(T(\sigma_{L_\beta})I(\bar{X} \leq \bar{Y}) + T(\sigma_{U_\beta})I(\bar{X} > \bar{Y}) + \beta \), where \(\sigma_{L_\beta} \) and \(\sigma_{U_\beta} \) are the lower and upper endpoints of \(C_\beta \). (Values of \(\sigma_{L_\beta} \) and \(\sigma_{U_\beta} \) can be accurately calculated numerically.) So we can propose the VpV-based test strategy: reject the null hypothesis if and only if \(p_C \leq \alpha \) at a desired user-specified significance level \(\alpha \).

2.2.1 Monte Carlo examples

As mentioned above, the example considered in Sect. 2.2 is called as “Pedagogical,” since, in practice, it is very difficult to compete against the well-known two-sample Student’s \(t \)-test. For example, we used 150,000 MC replications of \(X_1, \ldots, X_{10} \sim N(0.7, 1) \) and \(Y_1, \ldots, Y_{Y_1} \sim N(0, 1) \), obtaining the MC powers 0.105 and 0.323 of the \(p_C(\beta = 0.005) \)-based test and Student’s \(t \)-test, respectively, at \(\alpha = 0.05 \). Suppose an investigator anticipate \(X_1, \ldots, X_n \sim N(\mu_1, \sigma^2) \) and \(Y_1, \ldots, Y_m \sim N(\mu_2, \sigma^2) \). However, real data correspond to the scenario: \(X_1, \ldots, X_{10} \sim N(0, 2^2) \) and \(Y_1, \ldots, Y_{Y_1} \sim N(0, 1) \). In this case, the experimental study shows the MC Type I error rates 0.008 and 0.076 of the \(p_C \)-based test and Student’s \(t \)-test, respectively, at expected \(\alpha = 0.05 \). Certainly, if it would be known that \(\text{var}(X_1) \neq \text{var}(Y_1) \), Welch’s \(t \)-test could be suggested to be applied. Defining \(X_i = 1 - \xi_i, \xi_i \sim \text{Exp}(1), i = 1, \ldots, 10 \) and \(Y_1, \ldots, Y_{Y_1} \sim N(0, 1) \) in the simulation study, we calculated the MC Type I error rates 0.004, 0.065 and 0.080 of the \(p_c \)-based test, Student’s \(t \)-test and Welch’s \(t \)-test, respectively, at \(\alpha = 0.05 \). Then, it seems to be reasonable that, when “\(E(X) = E(Y) \)” type conservatism is deemed desirable, to implement the \(p_c \)-based test.

Note that, in the experiments above, we used the maximum \(H_0 \)-likelihood ratio confidence interval for \(\sigma \), anticipating good properties of this likelihood based approach, in the parametric setting. One can simplify the \(p_c \)-based test, considering \(C_\beta = C' = \left\{ \sigma^2 : 0 \leq \sigma^2 \leq \sum_{i=1}^{N} (Z_i - \bar{Z})^2 / \gamma_\beta \right\} \), where \(\gamma_\beta \) is the 100\(\beta \) percentile of a \(\chi^2_{N-1} \)
distribution with $N - 1$ degrees of freedom. In this case, we observed outputs that were similar to those shown above. For example, in the scenarios examined above: (1) $X_i \sim N(0.7, 1), Y_j \sim N(0, 1)$ and (2) $X_i = 1 - \xi_i, \xi_i \sim \text{Exp}(1), Y_j \sim N(0, 1), 1 \leq i \leq 10, 1 \leq j \leq 15$, the MC powers of the corresponding p_C-based test with C' were calculated as 0.114 and 0.005, respectively.

2.3 Remarks

(1) In the frequentist perspective, the meaning of the VpV’s is straightforward. Indeed, definitions (4) and (5) can be regarded as conservative. In general, the statistics extensively evaluated in Bayarri and Berger (2000), e.g., $\int p(\theta)\pi(\theta)d\theta$, where $\pi(\theta)$ is a prior distribution for θ, are not VpV’s. In Sects. 2.1 and 2.2, we demonstrate MC experiments to provide a practical implementation of the VpV’s. (2) In contrast to Bayarri and Berger (2000), we consider test statistics that can contain unknown parameters. In this case, the VpV’s convert the decision-making procedures into useful mechanisms based on the rule: reject H_0 if the corresponding VpV $\leq \alpha$.

3 Expected p-values

3.1 Expected valid p-values

Consider first the composite null hypotheses stated in Sect. 2. In general, expected VpV’s have forms that can be different from those investigated in Sackrowitz and Samuel-Cahn (1999). The use of (4) and (5) leads to the EPV’s expressions

$$\text{EPV}_S = E \left\{ \sup_{\theta \in \Theta} p(\theta) | H_1 \right\} \quad \text{and} \quad \text{EPV}_C = E \left\{ \sup_{\theta \in C_\beta} p(\theta) | H_1 \right\} + \beta.$$

Suppose the problem is to evaluate the KS goodness-of-fit tests. Then, we have

$$\text{EPV}_S = 1 - E \left\{ F_{KS_{n,0}} \left(\inf_{\theta \in \Theta} D_n(\theta) \right) | H_1 \right\} = \Pr \left(T^0_S \geq T^A_S \right) \quad \text{and}$$

$$\text{EPV}_C = 1 - E \left\{ F_{KS_{n,0}} \left(\inf_{\theta \in C_\beta} D_n(\theta) \right) | H_1 \right\} + \beta = \Pr \left(T^0_C \geq T^A_C \right) + \beta,$$

where random variables T^0_S, T^A_S, T^0_C and T^A_C are independent, T^0_S and T^0_C are $F_{KS_{n,0}}$-distributed, T^A_S and T^A_C are distributed as the statistics $\inf_{\theta \in \Theta} D_n(\theta)$ and $\inf_{\theta \in C_\beta} D_n(\theta)$, respectively, under H_1; $F_{KS_{n,0}}$ and C_β are defined corresponding to the statements considered in Sect. 2.1.

In the framework of the normal two-sample problem (Sect. 2.2), we can determine

$$\text{EPV}_C = 1 - E \left\{ \Phi(T(\sigma_{L_\beta})I(\bar{X} \leq \bar{Y}) + T(\sigma_{U_\beta})I(\bar{X} > \bar{Y})) | H_1 \right\} + \beta = \Pr \left(T^0_C \geq T^A_C \right) + \beta.$$

Springer
where random variables \(T_C^0 \sim N(0, 1) \) and \(T_{C}^{A} \) are independent, \(T_{C}^{A} \) is distributed as the statistic \(T(\sigma_{L} I(\bar{X} \leq \bar{Y}) + T(\sigma_{U} I(\bar{X} > \bar{Y}) \) based on \(\{X_1, \ldots, X_n \sim N (\mu_1, \sigma^2), Y_1, \ldots, Y_m \sim N(\mu_2, \sigma^2)\} \) with \(\mu_1 > \mu_2 \).

By virtue of the property of expectation of a positive random variable, we have \(E(\pi_k|H_1) = \int_0^1 \{1 - Pr(\pi_k \leq \alpha|H_1)\} d\alpha, k = S, C, \) and therefore, \(EPV_S \) and \(EPV_C \) are associated with the integrated power of the tests. The quantities \(EPV_S \) and \(EPV_C \) represent one minus the expected power of the corresponding tests, where the expectation is with respect to an \(\alpha \) level which is uniformly \([0,1]\) distributed.

In a similar manner to computing the conventional test power functions, in order to obtain values of \(EPV_S \) and \(EPV_C \), the alternative hypothesis \(H_1 \) should be specified.

3.1.1 Monte Carlo examples

In order to exemplify the \(EPV_S \) and \(EPV_C \) concepts, we used the MC setting shown in Sect. 2.1.1 regarding the experimental evaluations of the \(p_S \) and \(p_C \)-based tests for \(H_0 : X_i \sim N(0, \theta^2), \) for some \(\theta > 0, i = 1, \ldots, n. \) The designs (A), (B), (C) and (D) considered in Table 1 were performed. Table 2 displays the MC estimated \(EPV \)’s.

Thus, in the \(EPV \) context, the \(p_C \)-approach is somewhat better than the \(p_S \)-approach (\(EPV_C < EPV_S \)) in the studied scenarios. Table 2 shows that the KS policies discriminate alternative (B) from the model \(H_0 \) better than alternatives (A), (C) and (D), whereas (C) is a “worse” scenario in this study.

3.2 Why does the significance level \(\alpha \) be 5%? A Youden’s index-based approach

As introduced in Sect. 1, the \(EPV \) concept can be treated in light of the ROC curve methodology. Youden’s index is often used in conjunction with the ROC curve technique as a summary measure of the ROC curve (e.g., Schisterman et al. 2005). It both measures the effectiveness of a diagnostic marker and enables the selection of an optimal threshold value (cutoff point) for the biomarker. Youden’s index, say \(J \), is related to the point on the ROC curve which is farthest from line of equality (diagonal line). That is to say, assuming, without loss of generality, that \(Z_1, \ldots, Z_n \) and \(V_1, \ldots, V_m \) are iid observations from diseased and non-diseased populations, respectively, we have \(J = \max_{-\infty < c < \infty} \{Pr(Z_1 \geq c) + Pr(V_1 \leq c) - 1\}. \)
In this context, we consider a scenario in which \(n \) data points \(X_1, \ldots, X_n \) are distributed according to the joint density function \(f(x_1, \ldots, x_n) \), where \(x_1, \ldots, x_n \) are arguments of \(f \). In general, the observations do not need to represent values of iid random variables. We would like to classify \(X \) against \(H_0 \) following a prespecified test threshold that does not depend on the observations.

The LR test-based decision rule is to reject \(H_0 \) if and only if \(LR_n = f_1(X_1, \ldots, X_n) / f_0(X_1, \ldots, X_n) \).

The likelihood ratio (LR) as \(LR_n = f_1(X_1, \ldots, X_n) / f_0(X_1, \ldots, X_n) \).

In this case, we have \(EPV = \Pr(T^0 \geq T^A) \), where independent random variables \(T^0 \) and \(T^A \) are distributed as \(LR_n \) under \(H_0 \) and \(H_1 \), respectively. Then Youden’s approach suggests to find values of \(C \) that maximize \(\Pr(T^0 < C) + \Pr(T^A \geq C) = \int_0^C f_{LR,0}(u)du + 1 - \int_0^C f_{LR,1}(u)du \), where \(f_{LR,k}(u) \) defines the density function of the LR test statistic \(LR_n \) under the hypothesis \(H_k \), \(k = 0, 1 \). Vexler and Hutson (2018) showed the following result.

\[(R1) \text{ For all } u > 0, \ f_{LR,1}(u) = uf_{LR,0}(u).\]

This implies \(\Pr(T^0 < C) + \Pr(T^A \geq C) = \int_0^C f_{LR,0}(u)du + 1 - \int_0^C uf_{LR,0}(u)du \) and hence
\[d\left\{\Pr(T^0 < C) + \Pr(T^A \geq C)\right\}/dC = f_{LR,0}(C) - Cf_{LR,0}(C) = 0\]
gives the optimal test threshold \(C = 1 \).

The practice of considering normally distributed data when optimal properties of statistical procedures are investigated has historically been common in research (e.g., Fisher 1922). Let \(X_1, \ldots, X_n \) be iid \(N(\mu, \sigma^2) \) and \(H_0 \) state \(\mu = 0 \) against \(H_1 \). \(\mu = \delta
eq 0 \). We have \(LR_n = \exp(\delta \sum_{i=1}^n X_i / \sigma^2 - \delta^2 n/(2\sigma^2)) \) and then the Type I error rate is \(\Pr(2\delta^{-1} \sum_{i=1}^n X_i > n|H_0) \), when \(C = 1 \). Following an usual method for evaluating tests’ efficiencies (e.g., Lazar and Mykland 1998), we set \(\delta = \tau \sigma n^{-1/2} \). It turns out that, for \(|\tau| > 3.3 \) (\(\delta \approx \pm \text{three sigma} \times n^{-1/2} \)), the Type I error rate is smaller than \(\alpha = 0.05 \). The “three-sigma” component involved in this analysis can be associated with the so-called three-sigma rule of thumb that expresses a conventional heuristic that nearly all values are taken to lie within three standard deviations of the mean. Three-sigma limit is a statistical calculation that refers to data within three standard deviations from a mean. For example, in business applications, three sigma refers to processes that operate efficiently and produce items of the highest quality. In this context, e.g., one can refer to well-established statistical procedures based on Shewhart charts.

One can also observe that \(\Pr(2\delta^{-1} \sum_{i=1}^n X_i > n|H_0) \leq 0.05 \), when \(\delta \approx \sigma \) and \(n \geq 11 \) (\(n \geq 11 \) is a reasonable sample size). Designing a statistical study, it is rational to require that cases with \(|E(X|H_1) - E(X|H_0)| \geq \sigma \) could be detected by the test procedure. It turns out that requesting \(n \geq 11 \) observations for the study, we could provide the optimal decision-making procedure and control the Type I error rate to be \(< 5\% \), even when \(|E(X|H_1) - E(X|H_0)| = \sigma \).
Note, for example, that, if $\delta = \tau \sigma n^{-1/2}$ and $\tau > 0$, $\Pr(2\delta^{-1} \sum_{i=1}^{n} X_i > n | H_0) = 1 - \Pr(\sigma^{-1} \sum_{i=1}^{n} X_i/n^{1/2} < \tau/2 | H_0) = 1 - \int_{-\infty}^{\tau/2} \exp(-u^2/2)du/(2\pi)$ which equals approximately to 0.049, when $\tau \approx 3.3$. In this case, the power $\Pr(2\delta^{-1} \sum_{i=1}^{n} X_i > n | H_1)$ is $1 - \int_{-\infty}^{\tau/2} \exp(-u^2/2)du/(2\pi) \approx 0.95$. Then, the difference “Power – Type I error” is 0.95–0.049 ≈ 0.9. Assume, e.g., we select a test threshold C such that $\Pr(LR_n > C | H_0) = \Pr(\sigma^{-1} \sum_{i=1}^{n} X_i/n^{1/2} > \tau/2 + \log(C^2)/\tau | H_0) = 0.01$ with $\tau = 3.3$, i.e., $C' \approx 9.4$. Then, we have $\Pr(LR_n > C' | H_1) \approx 0.83$ and the corresponding difference is 0.83–0.01 = 0.82.

Result (R1) shown above can be extended in order to deal with a situation in which, under H_1, n data points X_1, \ldots, X_n are distributed according to the joint density function $f_1(x_1, \ldots, x_n; \theta)$ with unknown parameter θ. Let $\pi(\theta)$ represent a prior distribution for θ under the alternative hypothesis, satisfying $\int \pi(\theta)d\theta = 1$. Using the Bayes Factor (BF) methodology (e.g., Vexler and Hutson 2018), we define the test statistic

$$B_n = \int f_1(X_1, \ldots, X_n; \theta)\pi(\theta)d\theta / f_0(X_1, \ldots, X_n).$$

Proposition 5 For all $u > 0$, $\int f_{B,1}(u)\pi(\theta)d\theta = uf_{B,0}(u)$, where $f_{B,k}$ is the density function of the test statistic B_n under the hypothesis H_k, $k = 0, 1$.

The interesting fact is that the BF, $\int f_{B,1}(B_n)\pi(\theta)d\theta / f_{B,0}(B_n)$, based on the BF, B_n, comes to be the BF, B_n, i.e., $\int f_{B,1}(B_n)\pi(\theta)d\theta / f_{B,0}(B_n) = B_n$.

In Youden’s manner, we select a value of the test threshold C, maximizing

$$\Pr(B_n < C | H_0) + \int \Pr(B_n \geq C | H_1)\pi(\theta)d\theta = \int_{0}^{C} f_{B,0}(u)du + 1 - \int_{0}^{C} f_{B,1}(u)du\pi(\theta)d\theta$$

$$= \int_{0}^{C} f_{B,0}(u)du + 1 - \int_{0}^{C} u f_{B,0}(u)du.$$

Proposition 5 yields $\Pr(B_n < C | H_0) + \int \Pr(B_n \geq C | H_1)\pi(\theta)d\theta = \int_{0}^{C} f_{B,0}(u)du + 1 - \int_{0}^{C} uf_{B,0}(u)du$.

Therefore, we obtain $C = 1$ that maximizes $\Pr(B_n < C | H_0) + \int \Pr(B_n \geq C | H_1)\pi(\theta)d\theta$.

Note that the BF-based decision making procedure can be asymptotically ($n \to \infty$) associated with the corresponding maximum likelihood ratio test (Vexler and Hutson 2018).

3.2.1 Monte Carlo experiments

In a parallel with the likelihood ratio test based on normally distributed observations evaluated in Sect. 3.2, we consider experimentally the following nonparametric examples. Assume we would like to test for normality iid observations X_1, \ldots, X_n, using the Shapiro–Wilk test. Under the alternative hypothesis, we define $X_i = \xi_i + 3.3n^{-0.5}\eta_i$, $\xi_i \sim N(0, 1)$, $\eta_i \sim \text{Log}N(0, 1.3^2)$, $i = 1, \ldots, n$. Generating 100,000 samples of...
X_1, \ldots, X_n with $n = 100$, for $\alpha = 0.3, 0.1, 0.05, 0.01$, we obtained the differences “MC Power-Type I error (α)” as 0.6584, 0.8248, 0.8558 and 0.8450, respectively. In a similar manner, we examined the case with $n = 150$, obtaining the differences as 0.6696, 0.8419, 0.8764, 0.8644. Thus, it seems that $\alpha = 0.05$ is a reasonable selection in these cases. (This conclusions was also confirmed for different distributions of η_i.)

In the Monte Carlo fashion shown above, we examined the Wilcoxon rank-sum test based on $X_i = \xi_i + 3.3n^{-0.5}$, $\xi_i \sim N(0, 1), i = 1, \ldots, 100$. In this case, the differences “MC Power-Type I error (α)” had the values 0.6850, 0.8295, 0.8437 and 0.7127 corresponding to $\alpha = 0.3, 0.1, 0.05, 0.01$. Applying $X_i = \xi_i + 3.3n^{-0.5}\pi / 3^{0.5}$, $\xi_i \sim \text{Logistic}(0, 1)$, $sd(\xi_i) = 3^{-0.5}\pi$, $i = 1, \ldots, 100$, the differences were obtained as 0.6917, 0.8619, 0.8781 and 0.7728.

3.3 Partial expected p-values

Expression (2) of the EPV considers the weight of the significance level α from 0 to 1. It may appear to suffer from the defect of assigning most of its weight to relatively uninteresting values of α not typically used in practice, e.g., $\alpha \geq 0.1$. Alternatively, we can use the concept of the partial area under the summary ROC curve (AUC) from the ROC methodology to focus on significance levels of α in a specific interesting range by considering the partial expected p-value (pEPV):

$$pEPV = 1 - \int_0^{\alpha_U} \Pr(p\text{-value} \leq \alpha | H_1) d\alpha = 1 - \int_0^{\alpha_U} \Pr\left\{ 1 - F_0(T^A) \leq \alpha \right\} d\alpha$$

$$= 1 + \int_0^{\alpha_U} \Pr \left\{ F_0(T^A) \geq 1 - \alpha \right\} d(1 - \alpha) = 1 + \int_1^{1-\alpha_U} \Pr \left\{ F_0(T^A) \geq \alpha \right\} d\alpha$$

$$= 1 - \int_1^{-1} \Pr \left\{ F_0(T^A) \geq \alpha \right\} d\alpha$$

$$= 1 - \int_{F_0^{-1}(1-\alpha_U)}^{\infty} \Pr \left\{ F_0(T^A) \geq t \right\} dF_0(t)$$

$$= 1 - \Pr \left\{ T^A \geq T^0, T^0 \geq F_0^{-1}(1-\alpha_U) \right\}$$

at a fixed upper level $\alpha_U \leq 1$. In general, one can define the function $pEPV(\alpha_L, \alpha_U) = 1 - \int_{\alpha_L}^{\alpha_U} \Pr(p\text{-value} \leq u | H_1) du$ and focus on $\Pr(-pEPV(0, \alpha)) / d\alpha$. Then, in this case, $d(-pEPV(0, \alpha)) / d\alpha$ implies the power at a significance level of α.

An essential property of efficient statistical tests is unbiasedness (Lehmann and Romano 2006). An unbiased statistical test satisfies the rule $\Pr(\text{reject } H_0 | H_0) \leq \alpha$ and $\Pr(\text{reject } H_0 | H_1) \geq \alpha$. In parallel with this definition, it is natural to consider the inequality $pEPV(0, \alpha) \leq 1 - \int_0^\alpha \Pr(p\text{-value} \leq u | H_0) du = 1 - \alpha^2 / 2$, since $p\text{-value} \sim \text{Uniform}[0, 1]$ under H_0 (i.e., $\Pr(p\text{-value} \leq u | H_0) = u, u \in [0, 1]$) and we assume $H_1 \neq H_0$. In this case,

$$d(pEPV(0, \alpha)) / d\alpha = - \Pr(\text{reject } H_0 | H_0 \text{ is not true}) \text{ and } d(1 - \alpha^2 / 2) / d\alpha = -\alpha.$$

However, it is clear that the requirement $pEPV(0, \alpha) \leq 1 - \alpha^2 / 2$ is weaker than that of $\Pr(p\text{-value} < \alpha | H_1) \geq \alpha$. Then, the EPV-based concept can extend the conventional power characterization of tests.

Springer
Indeed if, for all \(\alpha > 0 \), \(\Pr(p\text{-value} < \alpha | H_0 \text{ is not true}) \geq \alpha \), then \(PEV(0, \alpha) \leq 1 - \alpha^2 / 2 \). Assume we have a test statistic \(T \). To analyze a relationship between the condition \(PEV(0, \alpha) \leq 1 - \alpha^2 / 2 \) and the power \(Pr_{H_1}(p\text{-value} < \alpha) \), we present the following proposition.

Proposition 6 The inequality \(PEV(0, \alpha) \leq 1 - \alpha^2 / 2 \) implies

\[
\Pr(p\text{-value} < \alpha | H_1) \geq 0.5\alpha + 0.5\alpha f_{T,1}(C_\alpha) / f_{T,0}(C_\alpha),
\]

where \(C_\alpha \) is the level-\(\alpha \) critical value, \(C_\alpha = F_0^{-1}(1 - \alpha) \), of \(T \) and \(f_{T,1} / f_{T,0} \) is the likelihood ratio.

For example, when \(T = LR_n \), Propositions 5 and 6 provide \(\Pr(p\text{-value} < \alpha | H_1) \geq 0.5\alpha + 0.5\alpha C_\alpha \). Taking into account the results shown in Sect. 3.2, it is reasonable to set \(\alpha : C_\alpha = 1 \). In this case, we conclude \(\Pr(p\text{-value} < \alpha | H_1) \geq \alpha \).

In the scenario, where \(X_1, \ldots, X_n \) are distributed according to \(f_\pi(x_1, \ldots, x_n; \theta) \), under \(H_1 \), we define the partial expected \(p\text{-value} \) as \(p\text{EPV}(\pi(\theta), \alpha_U) = 1 - \int \int \alpha_U \Pr(p\text{-value} \leq u | H_1)du \pi(\theta) \theta \). In a similar manner to Proposition 6, we have that \(p\text{EPV}(0, \alpha) \leq 1 - \alpha^2 / 2 \) implies the inequality \(\int \Pr(p\text{-value} < \alpha | H_1) \pi(\theta) \theta \theta \geq 0.5\alpha + 0.5\alpha \int f_{T,1}(C_\alpha) \pi(\theta) \theta \theta / f_{T,0}(C_\alpha) \). Using the BF, \(T = B_n \), by virtue of Proposition 5, we obtain \(\int \Pr(p\text{-value} < \alpha | H_1) \pi(\theta) \theta \theta \geq 0.5\alpha + 0.5\alpha C_\alpha \) that is \(\int \Pr(p\text{-value} < \alpha | H_1) \pi(\theta) \theta \theta \geq \alpha \), when \(\alpha : C_\alpha = 1 \).

4 Concluding remarks

In this article, we have focused on the principle that proper uses of \(p\text{-values} \) are subject to what investigators could expect from these statistics. Toward this end, the valid statements of \(p\text{-values} \) and their stochastic aspect have been treated. We have considered the VpV concept in the testing scenarios when composite null models are stated. In this context, we have evaluated the KS goodness-of-fit tests and the normal two-sample problem.

We have examined the problem of the goodness-of-fit testability based on a single observation. It turns out that the KS approach is not helpful for obtaining goodness-of-fit level-\(\alpha \) tests based on one data point, in many situations. In general, the problem can be formulated as follows: if someone has \(k \) observations, can then these data points be tested for being from an assumed distribution function with \(h \leq k \) parameters? Further studies are needed to evaluate this framework.

In order to briefly illustrate a practical implementation of the VpV methods, we have exemplified constructions of new test procedures. Although the VpV-based tests are conservative, they can be suggested for practical use when underlying data are relatively small.

Attending to the VpV framework, we have advanced the conventional EPV measure of the performance of a test. The expected VpV is shown to be one minus the expected power of a test. We have proposed a Youden’s index-based principle to define critical values of decision making procedures. In these terms, the significance level \(\alpha = \)
0.05 can be suggested, in many decision-making scenarios. In light of an ROC curve analysis, we introduce partial EPV’s to characterize properties of tests including their unbiasedness.

The present article has displayed a small portion of research in the VpV’s and EPV’s fields. We hope to rekindle a research interest in valid constructions of p-values and evaluations of the stochastic behavior and properties of p-values related to parametric and nonparametric procedures.

Acknowledgements Dr. Vexler’s effort was supported by the National Institutes of Health (NIH) Grant 1G13LM012241-01. I thank Professor Berger for many useful comments and discussions. The author is grateful to the Editor, the Associate Editor and the referees for suggestions that led to a substantial improvement in this paper.

Appendix

Proof of Proposition 1 Consider, for $u > 0$,

$$D(u) = |1 - \exp(-\theta u) - I(X_1 \leq u)| = |1 - \exp(-\theta u)I(X_1 > u) + \exp(-\theta u)I(X_1 \leq u)|$$

where the function $1 - \exp(-\theta u)$ increases and the function $\exp(-\theta u)$ decreases with respect to $u > 0$. Then, the function $D(u)$ increases, for $u < X_1$, and decreases, for $u \geq X_1$. Thus,

$$D_1(\theta) = \sup_{0 < u < \infty} D(u) = \max\{1 - \exp(-\theta X_1), \exp(-\theta X_1)\}.$$

Assume $1 - \exp(-\theta X_1) < \exp(-\theta X_1)$. In this case, $\theta < \log(2)/X_1$ and $D_1(\theta) = \exp(-\theta X_1)$ that is a decreasing function with respect to θ. Assume $1 - \exp(-\theta X_1) \geq \exp(-\theta X_1)$. In this case, $\theta \geq \log(2)/X_1$ and $D_1(\theta) = 1 - \exp(-\theta X_1)$ that is an increasing function with respect to θ. Thus, $D_1(\theta)$ decreases, for $\theta < \log(2)/X_1$, and increases, for $\theta \geq \log(2)/X_1$. That is, we conclude that $\inf D_1(\theta) = D_1(\log(2)/X_1) = 0.5$. By virtue of (8), the proof is complete.

Proof of Proposition 2 Define the notation $H_0(\theta_0)$ to indicate the hypothesis H_0 when the true value of θ is θ_0. Now, we will obtain bounds related to the interval C_β. The function $u^{-1}\exp(u-1), u > 0$, has a global minimum at $u = 1$. Then, the threshold A_β satisfies $A_\beta > 1$, in order to provide a solution of $\Pr_{H_0(\theta_0)}\{u^{-1}\exp(u_0 - 1) < A_\beta\} = 1 - \beta$. Let $0 < u_0 < 1 < u_1$ be roots of the equation $u^{-1}\exp(u - 1) = A_\beta$. The roots $0 < u_0 < 1 < u_1$ exist, since $A_\beta > 1$ and the function $u^{-1}\exp(u - 1)$ monotonically decreases, for $0 < u \leq 1$, and increases, for $u > 1$. This behavior of the function $u^{-1}\exp(u - 1)$ can be used to show that

$$\beta = \Pr_{H_0(\theta_0)}\{(\theta_0 X_1)^{-1}\exp(\theta_0 X_1 - 1) > A_\beta\}$$

$$= \Pr_{H_0(\theta_0)}\{(\theta_0 X_1)^{-1}\exp(\theta_0 X_1 - 1) > A_\beta, \theta_0 X_1 \leq 1\}$$

Springer
Valid \(p \)-values and expectations of \(p \)-values revisited 245

Fig. 1 The values of \(u_0 \) (solid lines) and \(u_1 \) (dashed lines), which satisfy (11), plotted against \(\beta \in (0, 1) \). The dotted lines show \(\log(2) \)

\[
\begin{align*}
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
0 & 2 & 4 & 6 & 8 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{align*}
\]

\(\beta \)

\(u_0, \log(2), u_1 \)

This defines the system of equations

\[
1 - \exp(-u_0) + \exp(-u_1) = \beta \quad \text{and} \quad (u_0)^{-1} \exp(-u_0) = (u_1)^{-1} \exp(-u_1). \quad (11)
\]

Then, given \(\beta \), one can derive values of \(u_0 \) and \(u_1 \) that do not depend on values of \(\theta \) and provide

\[
\Pr_{H_0(\theta)} \left\{ (\theta_0 X_1)^{-1} \exp(\theta_0 X_1 - 1) > A_\beta, \theta_0 X_1 > 1 \right\}
\]

\[
= \Pr_{H_0(\theta)} \{ \theta_0 X_1 < u_0, \theta_0 X_1 \leq 1 \} + \Pr_{H_0(\theta)} \{ \theta_0 X_1 > u_1, \theta_0 X_1 > 1 \}
\]

\[
= \Pr_{H_0(\theta)} \{ \theta_0 X_1 < u_0 \} + \Pr_{H_0(\theta)} \{ \theta_0 X_1 > u_1 \}
\]

\[
= F_{X_1 \sim \theta_0} \exp(-\theta_0 x_0)(u_0/\theta_0) + 1 - F_{X_1 \sim \theta_0} \exp(-\theta_0 x_0)(u_1/\theta_0)
\]

\[
= 1 - \exp(-u_0) + \exp(-u_1).
\]

Proof of Proposition 3 It is clear that

\[
D_1(\theta) = \max \{ F_{X_1,0}(X_1), 1 - F_{X_1,0}(X_1) \}, \quad F_{X_1,0}(u) = \int_{-\infty}^{u} \exp(-z^2/2) \, dz / (2\pi)^{1/2}.
\]

Assume \(F_{X_1,0}(X_1) \geq 1 - F_{X_1,0}(X_1) \), i.e., \(F_{X_1,0}(X_1) \geq 1/2 \). In this case, \(F_{X_1,0}(X_1) = (2\pi)^{-1/2} \int_{-\infty}^{\alpha} \exp(-z^2/2) \, dz \), where \(\theta \leq X_1 \), and then \(D_1(\theta) = F_{X_1,0}(X_1) \).
(X_1) is a decreasing function with respect to \(\theta \). Assume \(F_{X_1,0}(X_1) < 1 - F_{X_1,0}(X_1) \), i.e., \(F_{X_1,0}(X_1) < 1/2 \). In this case, \(\theta > 1 \) and \(D_1(\theta) = 1 - F_{X_1,0}(X_1) \) increases with respect to \(\theta \). Thus, \(\inf_{\theta < \infty} D_1(\theta) = D_1(X_1) = 0.5 \). The point \(\theta = X_1 \) belongs to the interval \(C_\beta = \{ \theta : \exp((X_1 - \theta)^2/2) < A_\beta \} \). Therefore, \(\inf_{\theta \in C_\beta} D_1(\theta) = D_1(X_1) = 0.5 \). The proof is complete. \(\square \)

Proof of Proposition 4 We have

\[
D_1(\theta) = \max\{F_{X_1,0}(X_1), 1 - F_{X_1,0}(X_1)\}, \quad F_{X_1,0}(u) = \int_{-\infty}^{u/\theta} \exp\left(-\frac{z^2}{2}\right)dz/(2\pi)^{1/2}.
\]

If \(X_1 > 0 \), then \(F_{X_1,0}(X_1) > 1/2 \) and \(F_{X_1,0}(X_1) > 1 - F_{X_1,0}(X_1) \). In this case, since \(D_1(\theta) = F_{X_1,0}(X_1) \) is a decreasing function with respect to \(\theta > 0 \), \(\inf_{0 < \theta < \infty} D_1(\theta) = D_1(\infty) = 0.5 \).

If \(X_1 < 0 \), then \(D_1(\theta) = 1 - F_{X_1,0}(X_1) \) is a decreasing function with respect to \(\theta > 0 \), and \(\inf_{0 < \theta < \infty} D_1(\theta) = D_1(\infty) = 0.5 \).

Now, we consider \(p_C \). Note that since the function \(u^{-1/2} \exp(u/2 - 1/2), u > 0 \), has a global minimum at \(u = 1 \), in order to provide a solution of \(\Pr \{\eta^{-1/2} \exp(\eta/2 - 1/2) > A_\beta\} = \beta \), where \(\eta \sim X_1^2 \), the threshold \(A_\beta \) should satisfy \(A_\beta > 1 \). Thus, we have \(0 < u_0 < 1 < u_1 \) that are roots of the equation \(u^{-1} \exp(u^2/2 - 1/2) = A_\beta \) and

\[
C_\beta = \{ \theta > 0 : \theta|X_1|^{-1} \exp(|X_1|^2/(2\theta^2) - 0.5) < A_\beta \} = \{ \theta > 0 : u_0 < |X_1|/\theta < u_1 \}.
\]

According to the above proof scheme, \(D_1(\theta) \) is a decreasing function with respect to \(\theta > 0 \) and then we obtain \(p_C = 1 - F_{K_\beta,0}(D_1(|X_1|/u_0)) + \beta \), for \(\theta \in C_\beta \), where

\[
D_1(|X_1|/u_0) = \int_{-\infty}^{u_0} \exp\left(-\frac{z^2}{2}\right)dz/(2\pi)^{1/2}I(X_1 \geq 0) + \left\{1 - \int_{-\infty}^{-u_0} \exp\left(-\frac{z^2}{2}\right)dz/(2\pi)^{1/2}\right\}I(X_1 < 0),
\]

since \(D_1(\theta) = \max\{F_{X_1,0}(X_1), 1 - F_{X_1,0}(X_1)\} \). The distribution function \(\int_{-\infty}^{u} \exp(-z^2/2)dz/(2\pi)^{1/2} = 1 - \int_{-\infty}^{-u} \exp(-z^2/2)dz/(2\pi)^{1/2} \) is symmetric. This implies

\[
D_1(|X_1|/u_0) = \int_{-\infty}^{u_0} \exp\left(-\frac{z^2}{2}\right)dz/(2\pi)^{1/2}.
\]

Now, one can easily use a simple R Code (R Development Core Team 2002) to compute the accurate Monte Carlo approximations to \(p_C = 1 - F_{K_\beta,0}(D_1(\int_{-\infty}^{u_0} \exp(-z^2/2)dz/(2\pi)^{1/2})) + \beta \), showing that \(p_C \geq 1 \) increases when \(\beta \) increases. The proof is complete. \(\square \)

Proof of Proposition 5 Consider, for non-random variables \(u \) and \(s \), the probability

\[
\int \Pr(u - s \leq B_n \leq u|H_1)\pi(\theta)d\theta = \int E[I\{u - s \leq B_n \leq u\}|H_1]\pi(\theta)d\theta
\]
\[\begin{align*}
&= \int \left[\int I\{u - s \leq B_n \leq u\} f_1(x_1, \ldots, x_n; \theta) dx_1 \ldots dx_n \right] \pi(\theta) d\theta \\
&= \int I\{u - s \leq B_n \leq u\} \left[\int f_1(x_1, \ldots, x_n; \theta) \pi(\theta) d\theta \right] dx_1 \ldots dx_n \\
&= \int I\{u - s \leq B_n \leq u\} \left[\int \frac{f_1(x_1, \ldots, x_n; \theta)}{f_0(x_1, \ldots, x_n)} \pi(\theta) d\theta \right] f_0(x_1, \ldots, x_n) dx_1 \ldots dx_n \\
&= \int I\{u - s \leq B_n \leq u\} (B_n) f_0.
\end{align*}\]

This implies the inequalities
\[
\int \Pr\{u - s \leq B_n \leq u | H_1\} \pi(\theta) d\theta \leq \int I\{u - s \leq B_n \leq u\}(u) f_0 \\
= u \Pr\{u - s \leq B_n \leq u | H_0\} \text{ and} \\
\int \Pr\{u - s \leq B_n \leq u | H_1\} \pi(\theta) d\theta \geq \int I\{u - s \leq B_n \leq u\}(u - s) f_0 \\
= (u - s) \Pr\{u - s \leq B_n \leq u | H_0\}.
\]

Dividing these inequalities by \(s\) and employing \(s \to 0\), we obtain Proposition 5. \(\square\)

Proof of Proposition 6 Define the power function \(g(u) = \Pr(p\text{-value} < u | H_1)\). We have \(\int_0^\alpha g(u) du \geq \alpha^2/2\), where \(\int_0^\alpha g(u) du = g(u)_{u=\alpha} - \int_0^\alpha uw(u) du\), \(w(u) = \frac{dg(u)}{du}\). Since \(g(u) = \Pr\{1 - F_{T,0}(T) < u | H_1\} = 1 - \Pr\{T < F_{T,0}^{-1}(1-u) | H_1\}\), we obtain \(w(u) = f_{T,1}(C_u)/f_{T,0}(C_u)\) with \(C_u = F_{T,0}^{-1}(1-u)\). It is clear that when \(u \sim^*\), the corresponding critical values \(C_u \sim\) and then the likelihood ratio \(f_{T,1}(C_u)/f_{T,0}(C_u)\sim\). This implies \(\alpha^2/2 \leq \int_0^\alpha g(u) du = g(\alpha)\alpha - \int_0^\alpha uw(u) du \leq g(\alpha)\alpha - w(\alpha)\int_0^\alpha u \, du\) that completes the proof. \(\square\)

References

Bayarri, M. J., Berger, J. O. (2000). P values for composite null models. *Journal of the American Statistical Association*, 95, 1127–1142.

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., et al. (2018). Redefine statistical significance. *Nature Human Behaviour*, 2, 6–10. https://doi.org/10.1038/s41562-017-0189-z.

Berger, R. L., Boos, D. D. (1994). P values maximized over a confidence set for the Nuance parameter. *Journal of the American Statistical Association*, 89, 1012–1016.

Dempster, A. P., Schatzoff, M. (1965). Expected significance level as a sensitivity index for test statistics. *Journal of the American Statistical Association*, 60, 420–436.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. *Philosophical Transactions of the Royal Society A*, 222, 309–368.

Henze, N., Meintanis, S. G. (2005). Recent and classical tests for exponentiality: A partial review with comparisons. *Metrika*, 61, 29–45.

Ionides, E. L., Giessing, A., Ritov, Y., Page, S. E. (2017). Response to the ASA’s statement on p-values: Context, process, and purpose. *The American Statistician*, 71(1), 88–89. https://doi.org/10.1080/00031305.2016.1234977.
Lazar, N. A., Mykland, P. A. (1998). An evaluation of the power and conditionality properties of empirical likelihood. *Biometrika*, 85(3), 523–534.

Lehmann, E. L., Romano, J. P. (2006). *Testing statistical hypotheses*. New York: Springer.

Portnoy, S. (2019). Invariance, optimality and a 1-observation confidence interval for a normal mean. *The American Statistician*, 73, 10–15. https://doi.org/10.1080/00031305.2017.1360796.

R Development Core Team. (2002). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria, 2002. http://www.R-project.org.

Sackrowitz, H., Samuel-Cahn, E. (1999). P values as random variables-expected p values. *The American Statistician*, 53, 326–331.

Schisterman, E. F., Vexler, A. (2008). To pool or not to pool, from whether to when: Applications of pooling to biospecimens subject to a limit of detection. *Paediatric and Perinatal Epidemiology*, 22, 486–496.

Schisterman, E. F., Perkins, N. J., Liu, A., Bondell, H. (2005). Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. *Epidemiology*, 16, 73–81.

Schisterman, E. F., Vexler, A., Ye, A., Perkins, N. J. (2011). A combined efficient design for biomarker data subject to a limit of detection due to measuring instrument sensitivity. *The Annals of Applied Statistics*, 5, 2651–2667.

Silvapulle, M. L. (1996). A test in the presence of nuisance parameters. *Journal of the American Statistical Association*, 91, 1690–1693.

Vexler, A., Hutson, A. D. (2018). *Statistics in the health sciences: Theory, applications, and computing*. New York: CRC Press.

Vexler, A., Yu, J. (2018). To t-test or not to t-test? A p-values-based point of view in the receiver operating characteristic curve framework. *Journal of Computational Biology*, 25, 541–550. https://doi.org/10.1089/cmb.2017.0216.

Vexler, A., Schisterman, E. F., Liu, A. (2008). Estimation of ROC based on stably distributed biomarkers subject to measurement error and pooling mixtures. *Statistics in Medicine*, 27, 280–296.

Vexler, A., Yu, J., Zhao, Y., Hutson, A. D., Gurevich, G. (2018). Expected p-values in light of an ROC curve analysis applied to optimal multiple testing procedures. *Statistical Methods in Medical Research*, 27, 3560–3576. https://doi.org/10.1177/0962280217704451.

Wang, J., Tsang, W. W., Marsaglia, G. (2003). Evaluating Kolmogorov’s distribution. *Journal of Statistical Software*, 8(18), 1–4.

Wasserstein, R. L., Lazar, N. (2016). The ASA’s statement on p-values: Context, process, and purpose. *The American Statistician*, 70, 129–133.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.