Measurement of the polarization amplitudes and triple product asymmetries in the $B_s^0 \rightarrow \phi\phi$ decay

The LHCb collaboration

Abstract

Using 1.0 fb$^{-1}$ of pp collision data collected at a centre-of-mass energy of $\sqrt{s} = 7$ TeV with the LHCb detector, measurements of the polarization amplitudes, strong phase difference and triple product asymmetries in the $B_s^0 \rightarrow \phi\phi$ decay mode are presented. The measured values are

$$|A_0|^2 = 0.365 \pm 0.022 \text{ (stat)} \pm 0.012 \text{ (syst)},$$

$$|A_\perp|^2 = 0.291 \pm 0.024 \text{ (stat)} \pm 0.010 \text{ (syst)},$$

$$\cos(\delta_\parallel) = -0.844 \pm 0.068 \text{ (stat)} \pm 0.029 \text{ (syst)},$$

$$A_U = -0.055 \pm 0.036 \text{ (stat)} \pm 0.018 \text{ (syst)},$$

$$A_V = 0.010 \pm 0.036 \text{ (stat)} \pm 0.018 \text{ (syst)}.$$

1Authors are listed on the following pages.
LHCb collaboration

R. Aaij38, C. Abellan Beteta33,n, B. Adeva34, M. Adinolfi42, C. Adrover6, A. Affolder49,
Z. Ajaltouni9, J. Albrecht35, F. Alessio35, M. Alexander48, S. Ali38, G. Alkhazov27,
P. Alvarez Cartelle34, A.A. Alves Jr22, S. Amato2, Y. Amlis36, J. Anderson37, R.B. Appleby51,
O. Aquines Gutierrez10, F. Archilli18,35, A. Artamonov32, M. Artuso53,35, E. Aaltonen36,
G. Aurora22,m, S. Bachmann11, J.J. Baek45, V. Balagura28,35, W. Baldini16, R.J. Barlow51,
C. Barschel35, S. Barsuk7, W. Barter44, A. Bates48, C. Bauer10, Th. Bauer38, A. Bay36,
I. Bediaga1, S. Belogurov28, K. Belous32, I. Belyaev28, E. Ben-Hamed8, M. Benayoun8,
G. Benvenuti18, S. Benson47, J. Benton43, R. Bernet37, M.-O. Bettler17, M. van Beuzekom38,
A. Bien31, S. Bifani12, T. Bird51, A. Bizzeti17,k, P.M. Bjørnstad51, T. Blake35, F. Blanco36,
C. Blanks30, J. Blouw11, S. Blusk31, A. Bobrovnitsky31, V. Boccia22, A. Bondar31, N. Bondar27,
W. Bonivento15, S. Borgioli48,51, A. Borgia33, T.J.V. Bowcock49, C. Bozzi16, T. Brambach9,
J. van den Brand39, J. Bressieux36, D. Brett51, M. Britsch10, T. Britton53, N.H. Brooks53,
H. Brown49, A. Büchler-Germann37, I. Burducea26, A. Bursche37, J. Buytaert35, S. Cadeddu15,
O. Callot7, M. Calvi20,j, M. Calvo Gomez33,n, A. Camboni33, P. Campana19,35, A. Carbone14,
G. Carboni21,k, R. Cardinale19,i,35, A. Cardini15, L. Carson50, K. Carvalho Akiba2, G. Casse49,
M. Cattaneo35, Ch. Cauet9, M. Charles52, Ph. Charpentier35, N. Chiapolini37, K. Ciba35,
X. Cid Vidal34, G. Cicirelli50, P.E.L. Clarke47, M. Clemencic35, H.V. Clift44, J. Closter35,
C. Coca26, V. Cocom38, J. Cogan6, P. Collins35, A. Conerma-Montells33, A. Contr25,
A. Cook43, M. Coombes43, G. Corti25, B. Couturier35, G.A. Cowan36, R. Currie17,
C. D’Ambrosio35, P. Davidi5, P.N.Y. David58, I. De Bonis4, K. De Bruyn38, S. De Capua21,k,
M. De Ciara37, J.M. De Miranda1, L. De Paula52, P. De Simone18, D. Decamp4, M. Dechelihoff8,
H. Degaudenzi36,53, L. Del Buono8, C. Deplanck15, D. Derkach14,35, O. Deschamps5,
F. Dettori89, J. Dickens44, H. Dijkstra35, P. Diniz Batista4, F. Domingo Bonal33,n,
S. Donleavy49, F. Dordei11, A. Dosil Suárez24, D. Dossett45, A. Dovbnya40, F. Dupertuis36,
R. Dzhelyadin32, A. Dziurda26, S. Easo46, U. Egede50, V. Egorychev28, S. Eidelman51,
D. van Eijk38, F. Eisele11, S. Eisenhardt47, R. Ekelhof9, L. Eklund48, Ch. Elsasser37,
D. Elsby42, D. Esperante Pereira34, A. Falabella16,e,14, C. Fäber11, G. Fardell47, C. Farinelli38,
S. Farry12, V. Fave36, V. Fernandez Albor34, M. Ferro-Luzzi35, S. Filipponi39, C. Fitzpatrick47,
M. Fontana10, F. Fontanelli19,j, R. Forty35, O. Francisco2, M. Frank35, C. Frei45, M. Frosmi17,j,
S. Furcas20, A. Gallas Torreira33, C. Galli14, M. Gandelmann2, P. Gandini2, Y. Gao1,
J.-C. Garnier35, J. Garofoli39, J. Garrido34, L. Garrido33, D. Gascon33, C. Gaspar35,
R. Gauld52, N. Gauvin36, M. Gersabeck35, T. Gershon45,35, Ph. Ghez4, V. Gibson44,
V.V. Gligorov35, C. Göbel54, D. Golubkov28, A. Golutvin50,28,35, A. Gomes9, H. Gordon52,
M. Grabalosa Gándera33, R. Graciani Diaz33, L.A. Granado Cardoso35, E. Graugés33,
G. Graziani17, A. Greco26, E. Greening52, S. Gregorius14, B. Gui53, E. Gushchin30, Yu. Gutz32,
T. Gys39, C. Hadjivasiliou54, G. Haefeli36, C. Haen45, S.C. Haines44, T. Hampson43,
S. Hansmann-Menzemer11, R. Harjik50, N. Harnew52, J. Harrison51, P.F. Harrison45,
T. Hartmann55, J. He7, V. Heijne38, K. Hennessy49, P. Henrard5, J.A. Hernando Morata34,
E. van Herwijnen25, E. Hicks40, K. Holubeyev11, P. Hopchev4, W. Hulsbergen38, P. Hunt52,
T. Huse49, R.S. Hunter12, D. Hutchcroft49, D. Hynds48, V. Iakovenko41, P. Ilten12, J. Imong43,
R. Jacobsson35, A. Jaeger11, M. Jahjah Hussein5, E. Jans36, F. Jansen38, P. Jaton36,
B. Jean-Marie1, F. Jing3, M. John52, D. Johnson52, C.R. Jones44, B. Jost35, M. Kaballo9,
S. Kandybei40, M. Karacson35, T.M. Karbach9, J. Keaveney12, I.R. Kenyon42, U. Kerzel35,
T. Ketel39, A. Keune36, B. Khanji6, Y.M. Kim47, M. Knecht36, R.F. Koopman39,
M. Tobin37, S. Tolk39, S. Topp-Jørgensen52, N. Torr52, E. Tournel4,50, S. Tourneur36, M.T. Tran36, A. Tsaregorodtsev6, N. Tuning38, M. Ubeda Garcia35, A. Ukleja25, U. Uwer11, V. Vagnoni14, G. Valent14, R. Vazquez Gomez33, P. Vazquez Regueiro34, S. Vecchi16, J.J. Velthuis43, M. Veltri17,2, B. Vial7, I. Videau7, D. Vieira2, X. Vilasis-Cardona33,n, J. Visniak44, A. Vollhardt37, D. Volansky10, D. Voong43, A. Vorobyev27, V. Vorobyev31, H. Voss10, R. Waldi55, S. Wandernoth11, J. Wang53, D.R. Ward44, N.K. Watson42, A.D. Webber51, D. Websdale50, M. Whitehead45, D. Wiedner11, L. Wiggers38, G. Wilkinson52, M.P. Williams45,46, M. Williams50, F.F. Wilson46, J. Wishahi9, M. Witke23, W. Witzeling35, S.A. Wotton44, K. Wyllie35, Y. Xie47, F. Xing52, Z. Xing53, Z. Yang3, R. Young47, O. Yushchenko32, M. Zangoli14, M. Zavertyaev10,n, F. Zhang3, L. Zhang53, W.C. Zhang12, Y. Zhang3, A. Zhelezov11, L. Zhong3, A. Zvyagin35.

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland
13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy
18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Roma Tor Vergata, Roma, Italy
22Sezione INFN di Roma La Sapienza, Roma, Italy
23Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
24AGH University of Science and Technology, Kraków, Poland
25Soltan Institute for Nuclear Studies, Warsaw, Poland
26Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
27Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
28Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
29Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
30Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
31Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
32Institute for High Energy Physics (IHEP), Protvino, Russia
33Universitat de Barcelona, Barcelona, Spain
34Universidad de Santiago de Compostela, Santiago de Compostela, Spain
35European Organization for Nuclear Research (CERN), Geneva, Switzerland
36Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
37Physik-Institut, Universität Zürich, Zürich, Switzerland
38Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
39Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The
Netherlands
40 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
42 University of Birmingham, Birmingham, United Kingdom
43 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
45 Department of Physics, University of Warwick, Coventry, United Kingdom
46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
50 Imperial College London, London, United Kingdom
51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
52 Department of Physics, University of Oxford, Oxford, United Kingdom
53 Syracuse University, Syracuse, NY, United States
54 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ²
55 Institut für Physik, Universität Rostock, Rostock, Germany, associated to ¹¹

a P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
b Università di Bari, Bari, Italy
c Università di Bologna, Bologna, Italy
d Università di Cagliari, Cagliari, Italy
e Università di Ferrara, Ferrara, Italy
f Università di Firenze, Firenze, Italy
g Università di Urbino, Urbino, Italy
h Università di Modena e Reggio Emilia, Modena, Italy
i Università di Genova, Genova, Italy
j Università di Milano Bicocca, Milano, Italy
k Università di Roma Tor Vergata, Roma, Italy
l Università di Roma La Sapienza, Roma, Italy
m Università della Basilicata, Potenza, Italy
n LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
o Hanoi University of Science, Hanoi, Viet Nam

vi
1 Introduction

In the Standard Model, the flavour-changing neutral current decay $B^0_s \to \phi \phi$ proceeds via a $b \to s \bar{s}s$ penguin process. Studies of the polarization amplitudes and triple product asymmetries in this decay provide powerful tests for the presence of contributions from processes beyond the Standard Model [1–5].

The $B^0_s \to \phi \phi$ decay is a pseudoscalar to vector-vector transition. As a result, there are three possible spin configurations of the vector meson pair allowed by angular momentum conservation. These manifest themselves as three helicity states, with amplitudes denoted H_{+1}, H_{-1} and H_0. It is convenient to define linear polarization amplitudes, which are related to the helicity amplitudes through the following transformations

\[
A_0 = H_0, \\
A_\perp = \frac{H_{+1} - H_{-1}}{\sqrt{2}}, \\
A_\parallel = \frac{H_{+1} + H_{-1}}{\sqrt{2}}.
\] (1)

The $\phi \phi$ final state can be a mixture of CP-even and CP-odd eigenstates. The longitudinal (A_0) and parallel (A_\parallel) components are CP-even and the perpendicular component (A_\perp) is CP-odd. From the V–A structure of the weak interaction, the longitudinal component, $f_L = |A_0|^2/(|A_0|^2 + |A_\perp|^2 + |A_\parallel|^2)$, is expected to be dominant [6–8]. However, roughly equal longitudinal and transverse components are found in measurements of $B^+ \to \phi K^{*+}$, $B^0 \to \phi K^{*0}$, $B^+ \to \rho^0 K^{*+}$ and $B^0 \to \rho^0 K^{*0}$ decays at the B-factories [9–14]. To explain this, large contributions from either penguin annihilation effects [15] or final state interactions [16] have been proposed. Recent calculations where phenomenological parameters are adjusted to account for the data allow f_L in the range $0.4 - 0.7$ [6,7]. Another pseudoscalar to vector-vector penguin decay is $B^0_s \to K^{*0}\bar{K}^{*0}$. A recent measurement by the LHCb Collaboration in this decay mode has found a value of $f_L = 0.31 \pm 0.12 \pm 0.04$ [17].

The time-dependent differential decay rate for the $B^0_s \to \phi \phi$ mode can be written as

\[
\frac{d^4 \Gamma}{d \cos \theta_1 d \cos \theta_2 d \Phi dt} \propto \sum_{i=1}^{6} K_i(t)f_i(\theta_1, \theta_2, \Phi),
\] (2)

where the helicity angles $\Omega = (\theta_1, \theta_2, \Phi)$ are defined in Fig. 1. The angular functions $f_i(\Omega)$ are [18]

\[
f_1(\theta_1, \theta_2, \Phi) = 4 \cos^2 \theta_1 \cos^2 \theta_2, \\
f_2(\theta_1, \theta_2, \Phi) = \sin^2 \theta_1 \sin^2 \theta_2 (1 + \cos 2\Phi), \\
f_3(\theta_1, \theta_2, \Phi) = \sin^2 \theta_1 \sin^2 \theta_2 (1 - \cos 2\Phi), \\
f_4(\theta_1, \theta_2, \Phi) = -2 \sin^2 \theta_1 \sin \theta_2 \sin 2\Phi, \\
f_5(\theta_1, \theta_2, \Phi) = \sqrt{2} \sin 2\theta_1 \sin \theta_2 \cos \Phi, \\
f_6(\theta_1, \theta_2, \Phi) = -\sqrt{2} \sin \theta_1 \sin \theta_2 \sin \Phi.
\] (3)
The time-dependent functions \(K_i(t) \) are given by [19]

\[
\begin{align*}
K_1(t) &= \frac{1}{2} A_0^2 [(1 + \cos \phi_s) e^{-\Gamma_L t} + (1 - \cos \phi_s) e^{-\Gamma_H t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s], \\
K_2(t) &= \frac{1}{2} A_0^2 [(1 + \cos \phi_s) e^{-\Gamma_L t} + (1 - \cos \phi_s) e^{-\Gamma_H t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s], \\
K_3(t) &= \frac{1}{2} A_0^2 [(1 - \cos \phi_s) e^{-\Gamma_L t} + (1 + \cos \phi_s) e^{-\Gamma_H t} \mp 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s], \\
K_4(t) &= |A_0||A_1| [\pm e^{-\Gamma_s t} \sin \delta_1 \cos(\Delta m_s t) - \cos \delta_1 \sin(\Delta m_s t) \cos \phi_s] \\
&\quad - \frac{1}{2} (e^{-\Gamma_H t} - e^{-\Gamma_L t}) \cos \delta_1 \sin \phi_s, \\
K_5(t) &= \frac{1}{2} |A_0||A_1| \cos(\delta_2 - \delta_1) \\
&\quad [(1 + \cos \phi_s) e^{-\Gamma_L t} + (1 - \cos \phi_s) e^{-\Gamma_H t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s], \\
K_6(t) &= |A_0||A_1| [\pm e^{-\Gamma_s t} \sin \delta_2 \cos(\Delta m_s t) - \cos \delta_2 \sin(\Delta m_s t) \cos \phi_s] \\
&\quad - \frac{1}{2} (e^{-\Gamma_H t} - e^{-\Gamma_L t}) \cos \delta_2 \sin \phi_s], \tag{4}
\end{align*}
\]

where the upper of the \(\pm \) or \(\mp \) signs refers to the \(B_s^0 \) meson and the lower refers to a \(\bar{B}_s^0 \) meson. Here, \(\Gamma_L \) and \(\Gamma_H \) are the decay widths of the light and heavy \(B_s^0 \) mass eigenstates, \(\Delta m_s \) is the \(B_s^0 \) oscillation frequency, \(\delta_1 = \text{arg}(A_1/A_0) \) and \(\delta_2 = \text{arg}(A_1/A_0) \) are \(CP \)-conserving strong phases and \(\phi_s \) is the weak \(CP \)-violating phase. It is assumed

\(^2\)Units are adopted such that \(\hbar = 1 \).
that the weak phases of the three polarization amplitudes are equal. The quantities \(\Gamma_H\) and \(\Gamma_L\) correspond to the observables \(\Delta \Gamma_s = \Gamma_L - \Gamma_H\) and \(\Gamma_s = (\Gamma_L + \Gamma_H)/2\). In the Standard Model, the value of \(\phi_s\) for this mode is expected to be very close to zero due to a cancellation between the phases arising from mixing and decay \[20\]. A calculation based on QCD factorization provides an upper limit of 0.02 rad for \(\phi_s\) \[6, 21\]. This is different to the situation in the \(B_0^s \rightarrow J/\psi\phi\) decay, where the Standard Model predicts \(\phi_s(J/\psi\phi) = -2 \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) = -0.036 \pm 0.002\) rad \[22\]. The magnitude of both weak phase differences can be enhanced in the presence of new physics in \(B_0^s\) mixing, where recent results from LHCb have placed stringent constraints \[23\]. For the \(B_0^s \rightarrow \phi\phi\) decay, new particles could also contribute in \(b \rightarrow s\) penguin loops.

To measure the polarization amplitudes, a time-integrated untagged analysis is performed, assuming that an equal number of \(B_0^s\) and \(\bar{B}_0^s\) mesons are produced and that the \(CP\)-violating phase is zero as predicted in the Standard Model. In this case, the functions \(K_i(t)\) integrate to

\[
K_1 = |A_0|^2/\Gamma_L, \\
K_2 = |A_\parallel|^2/\Gamma_L, \\
K_3 = |A_\perp|^2/\Gamma_H, \\
K_4 = 0, \\
K_5 = |A_0||A_\parallel|\cos(\delta_\parallel)/\Gamma_L, \\
K_6 = 0, \\
\]

where the strong phase difference is defined by \(\delta_\parallel \equiv \delta_2 - \delta_1 = \arg(A_\parallel/A_0)\) and the time integration assumes uniform time acceptance.

In addition, a search for physics beyond the Standard Model is performed by studying the triple product asymmetries \[1-3\] in the \(B_0^s \rightarrow \phi\phi\) decay. Non-zero values of these quantities can be either due to \(T\)-violation or final-state interactions. Assuming \(CPT\) conservation, the former case implies that \(CP\) is violated. Experimentally, the extraction of the triple product asymmetries is straightforward and provides a measure of \(CP\) violation that does not require flavour tagging or a time-dependent analysis.

There are two observable triple products denoted \(U = \sin(2\Phi)/2\) and \(V = \pm \sin(\Phi)\), where the positive sign is taken if the \(T\)-even quantity \(\cos \theta_1 \cos \theta_2 \geq 0\) and the negative sign otherwise. These variables correspond to the \(T\)-odd triple products

\[
\sin \Phi = (\hat{n}_1 \times \hat{n}_2) \cdot \hat{p}_1, \\
\sin(2\Phi)/2 = (\hat{n}_1 \cdot \hat{n}_2)(\hat{n}_1 \times \hat{n}_2) \cdot \hat{p}_1, \\
\]

where \(\hat{n}_i\) \((i = 1, 2)\) is a unit vector perpendicular to the \(\phi_i\) decay plane and \(\hat{p}_1\) is a unit vector in the direction of the \(\phi_1\) momentum in the \(B_0^s\) rest frame. The triple products, \(U\)

3The convention used in this Letter is that the symbol \(\phi_s\) refers solely to the weak phase difference measured in the \(B_0^s \rightarrow \phi\phi\) decay.

4In the case of non-zero \(\phi_s\) deviations from these formulas are suppressed by a factor of \(\Delta \Gamma_s/\Gamma_s\) and hence only small variations would be observed on the fitted parameters.
and V, are proportional to the f_4 and f_6 angular functions which, for $\phi_s = 0$, vanish in the untagged decay rate for any value of t. The f_4 and f_6 angular functions would not vanish in the presence of new physics processes that cause the polarization amplitudes to have different weak phases. Therefore, a measurement of significant asymmetries would be an unambiguous signal for the effects of new physics.

The asymmetry, A_U, is defined as

$$A_U = \frac{N_+ - N_-}{N_+ + N_-},$$

where N_+ (N_-) is the number of events with $U > 0$ ($U < 0$). Similarly A_V is defined as

$$A_V = \frac{M_+ - M_-}{M_+ + M_-},$$

where M_+ (M_-) is the number of events with $V > 0$ ($V < 0$). The triple product asymmetries, A_U and A_V are proportional to the interference terms $\Im(A_\perp A^*_\parallel)$ and $\Im(A_\perp A^*_0)$ in the decay rate.

The $B^0 \rightarrow \phi \phi$ decay mode was first observed by the CDF Collaboration. More recently, CDF has reported measurements of the polarization amplitudes and triple product asymmetries in this mode based on a sample of 295 events. In this Letter, measurements of the polarization amplitudes, $|A_0|^2$ and $|A_\perp|^2$, the strong phase difference, δ_\parallel, and the triple product asymmetries, A_U and A_V, are presented. The dataset consists of 801 ± 29 candidates collected in 1.0 fb^{-1} of pp collisions at the LHC. The Monte Carlo (MC) simulation samples used are based on the Pythia 6.4 generator configured with the parameters detailed in Ref. [27]. The EvtGen [28] and Geant4 [29] packages are used to generate hadron decays and simulate interactions in the detector, respectively.

2 Detector description

The LHCb detector [30] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift-tubes placed downstream. The combined tracking system has a momentum resolution $\Delta p/p$ that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter resolution of 20 μm for tracks with high transverse momentum. Charged hadrons are identified using two ring-imaging Cherenkov detectors. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and pre-shower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a muon system composed of alternating layers of iron and detector stations. The trigger consists of a hardware stage, based on
information from the calorimeter and muon systems, followed by a software stage which applies a full event reconstruction.

The software trigger used in this analysis requires a two-, three- or four-track secondary vertex with a high sum of the transverse momentum, p_T, of the tracks, significant displacement from the primary interaction, and at least one track with $p_T > 1.7\text{ GeV}/c$; impact parameter χ^2 with respect to the primary interaction greater than 16; and a track fit $\chi^2/\text{ndf} < 2$ where ndf is the number of degrees of freedom in the track fit. A multivariate algorithm is used for the identification of the secondary vertices \[31\]. The $B^0_s \to \phi\phi$ candidates are selected with high efficiency either by identifying events containing a ϕ meson or using topological information to select hadronic b decays. Events passing the software trigger are stored for subsequent offline processing.

3 Event selection

The $B^0_s \to \phi\phi$ channel is reconstructed using events where both ϕ mesons decay into a K^+K^- pair. The $B^0_s \to \phi\phi$ selection criteria were optimized using a data-driven approach based on the $sPlot$ technique employing the four-kaon mass as the unfolding variable \[32\] to separate signal (S) and background (B) with the aim of maximizing $S/\sqrt{S+B}$. The resulting cuts are summarized in Table 1. Good quality track reconstruction is ensured by a cut on the transverse momentum (p_T) of the daughter particles and a cut on the χ^2/ndf of the track fit.

Combinatorial background is reduced by cuts on the minimum impact parameter significance of the tracks with respect to all reconstructed pp interaction vertices and also by imposing a requirement on the vertex separation χ^2 of the B^0_s candidate. Well-identified ϕ meson candidates are selected by requiring that the two particles involved are identified as kaons by the ring-imaging Cherenkov detectors using a cut on the difference in the global likelihood between the kaon and pion hypotheses ($\Delta \ln \mathcal{L}_{\text{K}K} > 0$) and by requiring that the reconstructed mass of each K^+K^- pair is within 12 MeV/c^2 of the nominal mass of the ϕ meson \[33\]. Further signal purity is achieved by cuts on the transverse momentum of the ϕ candidates.

Figure 2 shows the four-kaon invariant mass distribution for selected events. To determine the signal yield an unbinned maximum likelihood fit is performed. The $B^0_s \to \phi\phi$ signal component is modelled by two Gaussian functions with a common mean. The resolution of the first Gaussian is measured from data to be 13.9 ± 0.6 MeV/c^2. The relative fraction and resolution of the second Gaussian are fixed to 0.785 and 29.5 MeV/c^2 respectively, where values have been obtained from simulation. Combinatorial background is modelled using an exponential function. Background from $B^0 \to \phi K^{*0}$ and $B^0_s \to K^{*0}K^{*0}$ decays is found to be negligible both in simulation and data driven studies. Fitting the probability density function (PDF) described above to the data, a signal yield of 801 ± 29 events is found.

In addition to the dominant P-wave $\phi \to K^+K^-$ component described in Section 1, other contributions, either from $f_0 \to K^+K^-$ or non-resonant K^+K^-, are possible. The
Table 1: Selection criteria for the $B^0_s \rightarrow \phi \phi$ decay. The abbreviation IP stands for impact parameter and $p_T^{\phi_1}$ and $p_T^{\phi_2}$ refer to the transverse momentum of the two ϕ candidates.

Variable	Value		
Track χ^2/ndf	< 5		
Track p_T	> 500 MeV/c		
Track IP χ^2	> 21		
$\Delta \ln L_{K\pi}$	> 0		
$	M_\phi - M_{\phi}^{PDG}	$	< 12 MeV/c2
$p_T^{\phi_1}, p_T^{\phi_2}$	> 900 MeV/c		
$p_T^{\phi_1} \cdot p_T^{\phi_2}$	> 2 GeV2/c2		
ϕ vertex χ^2/ndf	< 24		
B^0_s vertex χ^2/ndf	< 7.5		
B^0_s vertex separation χ^2	> 270		
B^0_s IP χ^2	< 15		

size of these contributions, neglecting interference effects, is studied by relaxing the ϕ mass cut to be within 25 MeV/c2 of the nominal value and using the sPlot technique in conjunction with the ϕ mass to subtract the combinatorial background.

The resulting ϕ mass distribution is shown in Fig. 3. A fit of a relativistic P-wave Breit-Wigner function together with a two body phase space component to model the S-wave contribution is superimposed. In a ± 25 MeV/c2 mass window, the size of the S-wave component is found to be $(1.3 \pm 1.2)\%$. Since the S-wave yield is consistent with zero, it will be neglected in the following section. A systematic uncertainty arising from this assumption will be assigned.

4 Results

The polarization amplitudes ($|A_0|^2, |A_\perp|^2, |A_\parallel|^2$), are determined by performing an unbinned maximum likelihood fit to the reconstructed mass and helicity angle distributions. For each event, the ϕ meson used to define θ_1 is chosen at random. Both the signal and background PDFs are the products of a mass component described in Section 3 together with an angular component. The angular component of the signal is given by Eq. 3 multiplied by the angular acceptance of the detector. The acceptance is determined using the simulation and is calculated separately according to trigger type, i.e. whether the event was triggered by the signal candidate or other particles in the event. In total the fit for the polarization amplitudes has eight free parameters: the signal angular parameters $|A_0|^2, |A_\perp|^2$ and $\cos(\delta_0)$ defined in Section 1, the fractions of signal for each trigger type, 5This is a larger window than the ± 12 MeV/c2 window used in the polarization amplitude and strong phase difference measurements.
Figure 2: Invariant $K^+K^-K^+K^-$ mass distribution for selected $B_s^0 \rightarrow \phi\phi$ candidates. A fit of a double Gaussian signal component together with an exponential background (dotted line) is superimposed.

the resolution of the core Gaussian, the B_s^0 mass and the slope of the mass background. The sum of squared amplitudes is constrained such that $|A_0|^2 + |A_\perp|^2 + |A_\parallel|^2 = 1$. The angular distributions for the background have been studied using the mass sidebands in the data, where mass sidebands are defined to be between 60 and 300 MeV/c^2 either side of the nominal B_s^0 mass [33]. With the current sample size these distributions are consistent with being flat in $(\cos \theta_1, \cos \theta_2, \Phi)$. Therefore, a uniform angular PDF is assumed and more complicated shapes are considered as part of the systematic studies. The values of $\Gamma_s = 0.657 \pm 0.009 \pm 0.008$ ps$^{-1}$ and $\Delta \Gamma_s = 0.123 \pm 0.029 \pm 0.011$ ps$^{-1}$ together with their correlation coefficient of -0.3 quoted in [23] are used as a Gaussian constraint. The validity of the fit model has been extensively tested using simulated data samples. The results are given in Table 2 and the angular projections are shown in Fig. 4.

Several sources of systematic uncertainty on the determination of the polarization amplitudes are considered and summarized in Table 3. With the present size of the dataset, the S-wave component is consistent with zero. From the studies described in Section 3 and fits to the data including the S-wave terms in the PDF [34], we consider a maximum S-wave component of 2%. Simulation studies have been performed to investigate the effect of neglecting an S-wave component of this size. As discussed in Section 1, the integration that leads to Eq. 5 assumes uniform time acceptance. This is not the case due to lifetime biasing cuts in the trigger and offline selections. The functional form of the decay time acceptance is obtained through the use of Monte Carlo events. The difference between using this functional form in simulation studies and using uniform time acceptance is taken...
Figure 3: Invariant mass distribution of K^+K^- pairs for the $B^0_s \rightarrow \phi\phi$ data without a ϕ mass cut. The background has been removed using the χ^2Plot technique in conjunction with the K^+K^- invariant mass. There are two entries per B^0_s candidate. The solid line shows the result of the fit model described in the text. The fitted S-wave component is shown by the dotted line.

Table 2: Measured polarization amplitudes and strong phase difference. The uncertainties are statistical only. The sum of the squared amplitudes is constrained to unity. The correlation coefficient between $|A_0|^2$ and $|A_\perp|^2$ is -0.47.

Parameter	Measurement						
$	A_0	^2$	0.365\pm0.022				
$	A_\perp	^2$	0.291\pm0.024				
$	A_\parallel	^2 = 1 - (A_0	^2 +	A_\perp	^2)$	0.344\pm0.024
$\cos(\delta_\parallel)$	-0.844 ± 0.068						

as a systematic uncertainty. The uncertainty on the angular acceptance for the signal is propagated to the observables also using Monte Carlo studies. The analysis was repeated with an alternative background angular distribution, taken from a coarsely binned histogram in $(\cos \theta_1, \cos \theta_2, \Phi)$ of the mass sidebands, and the difference taken as a systematic uncertainty. An additional uncertainty arises from angular acceptance dependencies on trigger type. This dependency is corrected for using Monte Carlo events, with half of the effect on fitted parameters assigned as systematic uncertainties. The total systematic uncertainty is obtained from the sum in quadrature of the individual uncertainties.
Figure 4: Angular distributions for (a) Φ, (b) $\cos \theta_1$ and (c) $\cos \theta_2$ of $B^0_s \rightarrow \phi \phi$ events with the fit projections for signal and background superimposed for the total fitted PDF (solid line) and background component (dotted line).

Table 3: Systematic uncertainties on the measured polarization amplitudes and the strong phase difference.

| Source | $|A_0|^2$ | $|A_\perp|^2$ | $|A_\parallel|^2$ | $\cos \delta_\parallel$ |
|-------------------------|----------|--------------|--------------------|--------------------------|
| S-wave component | 0.007 | 0.005 | 0.012 | 0.001 |
| Decay time acceptance | 0.006 | 0.006 | 0.002 | 0.007 |
| Angular acceptance | 0.007 | 0.006 | 0.006 | 0.028 |
| Trigger category | 0.003 | 0.002 | 0.001 | 0.004 |
| Background model | 0.001 | – | 0.001 | 0.003 |
| Total | 0.012 | 0.010 | 0.014 | 0.029 |

The distributions of the U and V triple product observables are shown in Fig. 5 for the mass range $5286.6 < M(K^+K^-K^+K^-) < 5446.6$ MeV/c2. To determine the triple product asymmetries, the dataset is partitioned according to whether U (V) is less than or greater than zero. Simultaneous fits are performed to the mass distributions for each of the two partitions corresponding to each observable individually. In these fits, the mean and resolution of the Gaussian signal component together with the slope of the exponential background component are common parameters. The asymmetries are left as free parameters and are fitted for directly in the simultaneous fit. The measured values are

$$A_U = -0.055 \pm 0.036,$$

$$A_V = 0.010 \pm 0.036.$$

Systematic uncertainties due to the residual effect of the decay time, geometrical acceptance and the signal and background fit models have been evaluated and are summarized in Table 3. The effect of the decay time acceptance has been found using the same method as for the polarization amplitudes. The impact of angular acceptance on the measured
values has been obtained from simplified simulation studies. The total systematic uncertainty is conservatively estimated by choosing the larger of the two individual systematic uncertainties on A_U and A_V. The contributions are combined in quadrature to determine the total systematic error. Various cross-checks of the stability of the result have been performed. For example, dividing the data according to how the event was triggered or by magnet polarity. No significant bias is observed in these studies.

Table 4: Systematic uncertainties on the triple product asymmetries A_U and A_V. The total uncertainty is the quadratic sum of the larger of the two components.

Source	A_U	A_V	Final uncertainty
Angular acceptance	0.009	0.006	0.009
Decay time acceptance	0.006	0.014	0.014
Fit model	0.004	0.005	0.005
Total			0.018

5 Summary

The polarization amplitudes and strong phase difference in the $B^0_s \rightarrow \phi\phi$ decay mode are measured to be

$$|A_0|^2 = 0.365 \pm 0.022 \text{ (stat)} \pm 0.012 \text{ (syst)},$$
$$|A_\perp|^2 = 0.291 \pm 0.024 \text{ (stat)} \pm 0.010 \text{ (syst)},$$
$$|A_\parallel|^2 = 0.344 \pm 0.024 \text{ (stat)} \pm 0.014 \text{ (syst)},$$
$$\cos(\delta_\parallel) = -0.844 \pm 0.068 \text{ (stat)} \pm 0.029 \text{ (syst)},$$
where the sum of the squared amplitudes is constrained to be unity. These values agree well with the CDF measurements \cite{25}. Measurements in other $B \to VV$ penguin transitions at the B factories generally give higher values of f_L \cite{9,11}. It is interesting to note that the value of f_L found in the $B^0_s \to \phi\phi$ channel is almost equal to that in the $B^0_s \to K^{*0}\bar{K}^{*0}$ decay \cite{17}. The results are in agreement with QCD factorization predictions \cite{6,7}, but disfavour the pQCD estimate given in \cite{8}. The triple product asymmetries in this mode are measured to be

$$AU = -0.055 \pm 0.036 \text{ (stat)} \pm 0.018 \text{ (syst)},$$

$$AV = 0.010 \pm 0.036 \text{ (stat)} \pm 0.018 \text{ (syst)}.$$

Both values are in good agreement with those reported by the CDF Collaboration \cite{25} and consistent with the hypothesis of CP conservation.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and at the LHCb institutes, and acknowledge support from the National Agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); CERN; NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS (Romania); MinES of Russia and Rosatom (Russia); MICINN, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7 and the Region Auvergne.

References

\cite{1} M. Gronau and J. L. Rosner, \textit{Triple product asymmetries in K, $D(s)$ and $B(s)$ decays}, Phys. Rev. \textbf{D84} (2011) 096013, \url{arXiv:1107.1232}.

\cite{2} W. Bensalem and D. London, \textit{T-violating triple product correlations in hadronic b decays}, Phys. Rev. \textbf{D64} (2001) 116003, \url{arXiv:hep-ph/0005018}.

\cite{3} A. Datta and D. London, \textit{Triple-product correlations in $B \to V_1V_2$ decays and new physics}, Int. J. Mod. Phys. \textbf{A19} (2004) 2505, \url{arXiv:hep-ph/0303159}.

\cite{4} S. Nandi and A. Kundu, \textit{New physics in $b \to s\bar{s}s$: study of $B \to V_1V_2$ modes}, J. Phys. \textbf{G32} (2006) 835, \url{arXiv:hep-ph/0510245}.

\cite{5} A. Datta, M. Duraisamy, and D. London, \textit{Searching for new physics with B-Decay fake triple products}, Phys. Lett. \textbf{B701} (2011) 357, \url{arXiv:1103.2442}.

\cite{6} M. Beneke, J. Rohrer, and D. Yang, \textit{Branching fractions, polarisation and asymmetries of $B \to VV$ decays}, Nucl. Phys. \textbf{B774} (2007) 64, \url{arXiv:hep-ph/0612290}.
[7] H.-Y. Cheng and C.-K. Chua, *QCD factorization for charmless hadronic B_s decays revisited*, Phys. Rev. D80 (2009) 114026, arXiv:0910.5237.

[8] A. Ali et al., *Charmless nonleptonic B_s decays to PP, PV, and VV final states in the perturbative QCD approach*, Phys. Rev. D76 (2007) 074018, arXiv:hep-ph/0703162.

[9] Belle collaboration, K.-F. Chen et al., *Measurement of polarization and triple-product correlations in $B \to \phi K^*$ decays*, Phys. Rev. Lett. 94 (2005) 221804, arXiv:hep-ex/0503013.

[10] BaBar collaboration, B. Aubert et al., *Vector-tensor and vector-vector decay amplitude analysis of $B^0 \to \phi K^*$*, Phys. Rev. Lett. 98 (2007) 051801, arXiv:hep-ex/0610073.

[11] BaBar collaboration, B. Aubert et al., *Time-dependent and time-integrated angular analysis of $B \to \phi K_S^0 \pi^0$ and $\phi K^\pm \pi^\mp$*, Phys. Rev. D78 (2008) 092008, arXiv:0808.3586.

[12] BaBar collaboration, P. del Amo Sanchez et al., *Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in $B^+ \to \rho^0 K^{*+}$ and $B^+ \to f_0(980)K^{*+}$ decays*, Phys. Rev. D83 (2011) 051101, arXiv:1012.4044.

[13] Belle collaboration, J. Zhang et al., *Measurements of branching fractions and polarization in $B^+ \to \rho^0 K_S^0$ decays*, Phys. Rev. Lett. 95 (2005) 141801, arXiv:hep-ex/0408102.

[14] BaBar collaboration, B. Aubert et al., *Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in $B \to \rho K^*$ and $B \to f_0(980)K^*$ decays*, Phys. Rev. Lett. 97 (2006) 201801, arXiv:hep-ex/0607087.

[15] A. L. Kagan, *Polarization in $B \to VV$ decays*, Phys. Lett. B601 (2004) 151, arXiv:hep-ph/0405134.

[16] A. Datta et al., *Testing explanations of the $B \to \phi K^*$ polarization puzzle*, Phys. Rev. D76 (2007) 034015, arXiv:0705.3915.

[17] LHCb collaboration, R. Aaij et al., *First observation of the decay $B_s^0 \to K^{*0}\bar{K}^{*0}$*, Phys. Lett. B709 (2012) 50, arXiv:1111.4183.

[18] C.-W. Chiang and L. Wolfenstein, *Observables in the decays of B to two vector mesons*, Phys. Rev. D61 (2000) 074031, arXiv:hep-ph/9911338.

[19] C.-W. Chiang, *Angular distribution of charming $B \to VV$ decays and time evolution effects*, Phys. Rev. D62 (2000) 014017, arXiv:hep-ph/0002243.

[20] M. Raidal, *CP asymmetry in $B \to \phi K_S$ decays in left-right models and its implications for B_s decays*, Phys. Rev. Lett. 89 (2002) 231803, arXiv:hep-ph/0208091.
[21] M. Bartsch, G. Buchalla, and C. Kraus, $B \rightarrow V_L V_L$ decays at next-to-leading order in QCD, arXiv:0810.0249.

[22] J. Charles et al., Predictions of selected flavour observables within the Standard Model, Phys. Rev. D84 (2011) 033005 arXiv:1106.4041

[23] LHCb collaboration, R. Aaij et al., Measurement of the CP-violating phase ϕ_s in the decay $B_s^0 \rightarrow J/\psi \phi$, Phys. Rev. Lett. 108 (2012) 101803 arXiv:1112.3183

[24] CDF collaboration, D. E. Acosta et al., First evidence for $B_s \rightarrow \phi \phi$ decay and measurements of branching ratio and A_{CP} for $B^+ \rightarrow \phi K^+$, Phys. Rev. Lett. 95 (2005) 031801 arXiv:hep-ex/0502044.

[25] CDF collaboration, T. Aaltonen et al., Measurement of polarization and search for CP violation in $B_s^0 \rightarrow \phi \phi$ decays, Phys. Rev. Lett. 107 (2011) 261802, arXiv:1107.4999.

[26] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 arXiv:hep-ph/0603175.

[27] I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155

[28] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.

[29] S. Agostinelli et al., GEANT4 – a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250

[30] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[31] V. Gligorov, C. Thomas and M. Williams, LHCb collaboration, The HLT inclusive B triggers, LHCb-PUB-2011-016

[32] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.

[33] Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G37 (2010) 075021.

[34] Y. Xie, P. Clarke, G. Cowan, and F. Muheim, Determination of $2\beta_s$ in $B_s^0 \rightarrow J/\psi K^+ K^-$ decays in the presence of a $K^+ K^-$ S-wave contribution, JHEP 09 (2009) 074, arXiv:0908.3627.