Ground state and excited state properties of LaMnO$_3$ from full-potential calculation

P. Ravindran1, A. Kjekshus1, H. Fjellvåg1, A. Delin2 and O. Eriksson3

1Department of Chemistry, University of Oslo, Box 1033, Blindern, N-0315, Oslo, Norway
2ICTP, Strada Costiera 11, P.O.Box 586, 34100, Trieste, Italy
3Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, 75121, Uppsala, Sweden

(March 22, 2022)

Abstract

The ground state and excited state properties of the perovskite LaMnO$_3$, the mother material of colossal magnetoresistance manganites, are calculated based on the generalized-gradient-corrected relativistic full-potential method. The electronic structure, magnetism and energetics of various spin configurations for LaMnO$_3$ in the ideal cubic perovskite structure and the experimentally observed distorted orthorhombic structure are obtained. The excited state properties such as the optical, magneto-optical, x-ray photoemission (XPS), bremsstrahlung isochromat (BIS), x-ray absorption near edge structure (XANES) spectra are calculated and found to be in excellent agreement with available experimental results. Consistent with earlier observations the insulating behavior can be obtained only when we take into account the structural distortions and the correct antiferromagnetic ordering in the calculations. The present results suggest that the correlation effect is not significant in LaMnO$_3$ and the presence of ferromagnetic coupling within the ab plane as well as the antiferromagnetic coupling perpendicular to this plane can be explained through the itinerant band picture. As against earlier expectations, our calculations show that the Mn $3d_{t_{2g}}$ as well as the e_g electrons are present in the whole valence band region. In particular significantly large amounts of t_{2g} electrons are present in combination with the e_g electrons at the top of the valence band against the common expectation of presence of only pure e_g electrons. We have calculated the hyperfine field parameters for the A-type antiferromagnetic and the ferromagnetic phases of LaMnO$_3$ and compared the findings with the available experimental results. The role of the orthorhombic distortion on electronic structure, magnetism and optical anisotropy are analyzed.
I. INTRODUCTION

Even though the Mn containing oxides with the perovskite-like structure have been studied for more than a half century, various phase transitions occurring on doping in these materials are not fully understood. In particular, LaMnO$_3$ exhibit rich and interesting physical properties because of the strong interplay between lattice distortions, transport properties and magnetic ordering. This compound also have a very rich phase diagram depending on the doping concentration, temperature and pressure; being either antiferromagnetic (AF) insulator, ferromagnetic (F) metal or charge ordered (CO) insulator. The magnetic behavior of the LaMnO$_3$ perovskite is particularly interesting, because the Jahn-Teller (JT) distortion is accompanied by the so-called A-type antiferromagnetic (A-AF) spin (moment) and C-type orbital ordering (OO), i.e, alternative occupation of $d_{x^2-r^2}$ and $d_{y^2-r^2}$ in the ab plane and same type of orbital occupation perpendicular to the ab plane. Recently manganites have also been subjected to strong interest due to their exhibition of negative colossal magnetoresistance (CMR) effects. In particular the perovskite-oxide system La$_{1-x}$AE$_x$MnO$_3$, where AE is a divalent alkali element such as Ca or Sr, have attracted much attention primarily due to the discovery of a negative CMR effect around the ferromagnetic transition temperature T_C, which is located near room temperature. The mutual coupling among the charge, spin, orbital and lattice degrees of freedom in perovskite-type manganites creates versatile intriguing phenomena such as CMR field-melting of the CO and/or OO state(s) accompanying a huge change in resistivity, field-induced structural transitions even near room temperature, field control of inter-grain or inter-plane tunneling of highly spin-polarized carriers, etc. Several mechanisms have been proposed for CMR, such as double exchange, dynamical JT effect, antiferromagnetic fluctuation, etc., but no consensus has been attained so far about the importance of those mechanisms. Since the spin, charge, orbital and structural ordering phenomena may affect CMR at least indirectly it is important to obtain a full understanding of the mechanism stabilizing the observed A-AF order in the undoped insulating mother compound LaMnO$_3$.

It has been suggested that an understanding of hole-doped LaMnO$_3$ must include, in addition to the double-exchange mechanism, strong electron correlations, a strong electron-phonon interaction and cooperative JT distortions associated with Mn$^{3+}$. Several theoretical studies have been made on this material using the mean-field approximation, numerical diagonalization, Gutzwiller technique, slave-fermion theory, dynamical mean-field theory, perturbation theory and quantum Monte-Carlo technique. Nevertheless it is still controversial as to what is the driving mechanism of the experimentally established properties, particularly the strongly incoherent charge dynamics, and what the realistic parameters of theoretical models are. By calculating and comparing various experimentally observed quantities one can get an idea about the role of electron correlations and other influences on the CMR effect in these materials. Hence, theoretical investigations of ground state and excited state properties are important to understand the exotic physical properties of these materials.

The importance of spin and lattice degrees of freedom on the metal-insulator transition in LaMnO$_3$ is studied extensively. Popovic and Satpathy showed how the cooperative JT coupling between the individual MnO$_6$ centers in the crystal leads to simultaneous ordering of the distorted octahedron and the electronic orbitals. It is now accepted that OO
and magnetic ordering (MO) are closely correlated and that the anisotropy in the magnetic coupling originates from OO. So in order to understand the origin of OO, it is important to study the energetics of different spin-ordered states. Ahn and Millis calculated the optical conductivity of LaMnO$_3$ using a tight-binding parameterization of the band structure. They noted a troubling discrepancy with LSDA band-theory calculations of the optical conductivity and concluded with the need for further work to find the origin of the difference. Hence, accurate calculations of optical properties is expected to give more insight into the origin of the discrepancy. An appreciable Faraday rotation has been observed in hole-doped LaMnO$_3$ thin films and hence it has been suggested that these ferromagnetic films may be used to image vortices in high-temperature superconductors. Further, due to the half-metallic behavior in the F phase of LaMnO$_3$ one can expect a large magneto-optical effect. For this reason, we have calculated the optical and magneto-optical properties of this material.

The simultaneous presence of strong electron-electron interactions within the transition-metal 3d manifold and a sizable hopping interaction between transition metal ($T = Ti-Cu$) 3d and O 2p states are primarily responsible for the wide range of properties exhibited by transition-metal oxides. Often the presence of a strong intraatomic Coulomb interaction makes a single-particle description of such systems inadequate. Due to this deficiency, the density-functional calculations often fail to predict the insulating behavior of LaMnO$_3$. To correct this deficiency of the local spin-density approximation (LSDA) to give the right insulating properties of the perovskites, LSDA+U theory is applied, where U is the intrasite Coulomb repulsion. From experimental and theoretical studies it has been believed that the electron correlations in the LaTO$_3$ ($T = Ti-Cu$) series are very important and should be considered more rigorously beyond LSDA. Hence, LDA+U is applied to obtain magnetic moments and fundamental gap in good agreement with experiment. The calculations for LaTO$_3$ by Solovyev et al. showed that the correlation correction was significant for Ti,V,Co but less important for Mn. However, in this study the calculated intensity of the optical conductivity were found to be much smaller than the experimental results in the whole energy range. Hu et al. reported that to get the correct experimental ground state for LaMnO$_3$, it is necessary to take JT distortion, electron-electron correlation and AF ordering simultaneously into consideration. From the observation of large on-site Coulomb U and exchange J, obtained from ”constrained LDA calculations”, Satpathy et al. indicated the importance of correlation effects in LaMnO$_3$. Held and Vollhardt using the dynamical mean-field theory, emphasize the importance of electronic correlations from the local Coulomb repulsion for understanding the properties of manganites. Maezono et al. pointed out that the electron correlations remain strong even in the metallic state of doped manganites. Photoemission studies on doped manganites gave an electron-electron correlation effect with $U = 7.5$ eV for the Coulomb repulsion.

In contrast to the above observations, it has been shown that many aspects of the ground state as well as single-electron excited state properties of LaMnO$_3$ and related compounds can be described satisfactorily in terms of LSDA energy bands. Density functional calculations also show strong couplings between lattice distortions, magnetic order, and electronic properties of LaMnO$_3$. In particular, it is found that without lattice distortions LaMnO$_3$ would have a F metallic ground state, and even if forced to be A-AF, it would still be metallic. Further, Sarma et al. indicated that the electron-electron correlation is unim-
portant due to a relatively large hopping parameter t and a large screening effect. The LSDA studies show that substantially hybridized bands derived from majority-spin Mn e_g and O p states dominate the electronic structure near the Fermi energy (E_F). X-ray absorption spectroscopy (XAS) data show that several apparent peaks exist up to 5 eV above E_F, but some disputes still remain about the origins of these conduction-band peaks.\[34,39-42\] The reported positions of the e_g^\dagger bands in LaMnO$_3$ differ.\[34,46\] The above mentioned studies indicate that it is important to study the significance of correlation effects in LaMnO$_3$.

Some of the features lacking in most of the theoretical studies on LaMnO$_3$ originate from the fact that they have often resulted from the use of the atomic-sphere approximation (ASA), i.e. the calculations have not included the nonspherical part of the potential and also used a minimal basis set. Further the cubic perovskite structure is frequently assumed\[29,47\] and the significant structural distortions are not taken into account. Apart from these, owing to the presence of magnetic ordering, relativistic effects such as spin-orbit coupling may be of significance in this material, which was not been included in earlier studies. Moreover, it is shown that instead of using the uniform electron gas limit for exchange and correlations (corresponding to LSDA) one can improve the outcome by including the inhomogeneity effects through the generalized-gradient approximation (GGA).\[48\] To overcome the above mentioned deficiencies we have used a generalized-gradient-corrected, relativistic full-potential method with the experimentally observed orthorhombic distorted perovskite structure as the input in the present calculation.

The rest of the paper is organized as follows. The structural aspects and the computational details about the calculations of the electronic structure, energetics of different magnetic phases, optical properties, magneto-optical properties, XPS and XANES features are given in Sec. II. In Sec. III we give the orbital, angular momentum and site-projected density of states (DOS) for LaMnO$_3$ in the ground state, the spin-projected DOS for various magnetic state. The calculated band structure for the A-AF and F phases of the distorted orthorhombic structure are given. The role of the structural distortion on the electronic structure, optical and magnetic properties is analyzed. Calculated magnetic properties are compared with available experimental and theoretical studies. The origin of excited state properties such as XPS, BIS, XANES, optical properties and magneto-optical properties is analyzed through the electronic structure and compared with available experimental spectra. Finally in Sec. IV we have summarized the important findings of the present study.

II. STRUCTURAL ASPECTS AND COMPUTATIONAL DETAILS

A. Crystal and magnetic structure

LaMnO$_3$ is stabilizes in the orthorhombic GdFeO$_3$-type structure\[49,50\] (comprising four formula units; space group $Pnma$) as shown in Fig. I. It can be viewed as a highly distorted cubic perovskite structure with a quadrupled unit cell $(a_p \sqrt{2}, a_p \sqrt{2}, 2a_p)$ where a_p is the lattice parameter of the cubic perovskite structure. The structural parameters used in the calculations are taken from a 4.2K neutron diffraction study\[50\] with $a = 5.742$, $b = 7.668$ and $c = 5.532\,\text{Å}$ and atom positions: La in 4c (0.549 0.25 0.01), Mn in 4a (0 0 0), O(1) in 4c (-0.014 0.25 -0.07) and O(2) in 8d (0.309 0.039 0.244). The electronic configuration of Mn$^{3+}$ in LaMnO$_3$ is postulated as $t_{2g}^2e_g^\dagger$ and hence, it is a typical JT system. Basically,
two different types of distortions are included in the structure shown in Fig. 1. One is a tilting of the MnO$_6$ octahedra around the cubic [110] axis as in GdFeO$_3$ so that the Mn-O-Mn angle changes from 180° to \sim 160° which is not directly related with the JT effect, but is attributed to the relative sizes of the components, say, expressed in terms of the
tolerance factor $t_p = \frac{R_{La} + R_O}{\sqrt{2(R_{Mn} + R_O)}}$, where R_{La}, R_{Mn} and R_O are the ionic radii for La, Mn and O respectively giving $t_p = 0.947$ for LaMnO$_3$. The rotation of the MnO$_6$ octahedra facilitates a more efficient space filling. The second type of crystal distortion in LaMnO$_3$ is the deformation of the MnO$_6$ octahedra caused by the JT effect, viz. originating from orbital degeneracy. This may be looked upon as a cooperative shifting of the oxygens within the ab plane away from one of its two nearest neighboring Mn atoms towards the others, thus creating long and short Mn-O bond lengths (modified from 1.97 Å for cubic case to 1.91, 1.96 and 2.18 Å for the orthorhombic variant) perpendicularly arranged with respect to the Mn atoms. The long bonds can be regarded as rotated 90° within ab on going from one Mn to the neighboring Mn. The structural optimization wrongly predicts that the ground state of LaMnO$_3$ is close to that of cubic perovskite with the F state lower in energy than the experimentally observed AF state. Hence it is important to study the relative stability between the orthorhombic and cubic phases for different magnetic arrangements. Consequently we have made calculations both for the orthorhombic ($Pnma$) as well as the ideal cubic perovskite variants. For the calculations of the undistorted cubic variant we have used the experimental equilibrium volume for the orthorhombic structure.

When LaMnO$_3$ is in the AF state there are three possible magnetic arrangements according to interplane and intraplane couplings within (001) plane. (i) With interplane AF coupling and intraplane F coupling the A-AF structure arises. (ii) The opposite structure of A-AF, where the interplane coupling is F, but the intraplane coupling is AF is called C-AF structure. In the C-type cell all atoms have two F and four AF nearest neighbors whereas the reverse is true for A-type AF. (iii) If both the inter- and intraplane couplings are AF the G-AF structure should arise. In the G-type AF lattice, each Mn atom is surrounded by six Mn neighbors whose spins are antiparallel to the chosen central atom. Among the several possible magnetic orderings, the experimental studies show that for LaMnO$_3$ the A-AF ordering is the ground state with a Néel temperature of 140 K. In the cubic case we have made calculations for the AF structures in the following way. The A-AF structure contains two formula units, and is a tetragonal lattice with $a = b = a_p$ and $c = 2a_p$. The C-AF structure is also tetragonal with $a = b = \sqrt{2}a_p$ and $c = a_p$. Finally, the G-AF structure is a face centered cubic structure with $a = b = c = 2a_p$ with eight formula units, where two nonequivalent 3d metals with spins up and down replace Na and Cl in an NaCl configuration. This magnetic structure can be viewed as consisting of two interpenetrating face-centered lattices with opposite spin orientation.

B. Computation details for the LAPW calculations

These investigations are based on ab initio electronic structure calculations derived from spin-polarized density-functional theory (DFT). For the XANES, orbital-projected DOS and the screened plasma frequency calculations we have applied the full-potential linearized-augmented plane wave (FPLAPW) method in a scalar-relativistic version, i.e. without spin-orbit (SO) coupling. In the calculation we have used the atomic sphere radii (R_{MT})
of 2.2, 2.0 and 1.5 a.u. for La, Mn and O, respectively. Since the spin densities are well confined within a radius of about 1.5 a.u., the resulting magnetic moments do not depend strongly on the variation of the atomic sphere radii. The charge density and the potentials are expanded into lattice harmonics up to \(L = 6 \) inside the spheres and into a Fourier series in the interstitial region. The initial basis set included 4\(s \), 4\(p \), 3\(d \) functions and 3\(s \), 3\(p \) semicore functions at the Mn site, 6\(s \), 6\(p \), 5\(d \) valence and 5\(s \), 5\(p \) semicore functions for the La site and 2\(s \), 2\(p \) and 3\(d \) functions for the O site. This set of basis functions was supplemented with local orbitals for additional flexibility in representing the semicore states and for relaxing the linearization errors generally. Due to the linearization errors DOS are reliable to about 1–2 Ry above the Fermi level. So, after selfconsistency was achieved for this basis set we included a few high-energy local orbitals; 6\(d \)-, 4\(f \)-like function for La, 5\(s \)-, 5\(p \)-like functions for Mn and 3\(p \)-like functions for O atoms. The effects of exchange and correlation are treated within the generalized-gradient-corrected local spin-density approximation using the parameterization scheme of Perdew et al.\(^{53}\) To ensure convergence for the Brillouin zone (BZ) integration 243 \(k \) points in the irreducible wedge of first BZ were used. Self-consistency was achieved by demanding the convergence of the total energy to be smaller than \(10^{-5} \text{Ry/cell} \). This corresponds to a convergence of the charge below \(10^{-4} \) electrons/atom.

C. Computational details for the FPLMTO calculations

The full-potential LMTO calculations\(^{54}\) presented in this paper are all electron, and no shape approximation to the charge density or potential has been used. The base geometry in this computational method consists of a muffin-tin part and an interstitial part. The basis set is comprised of augmented linear muffin-tin orbitals.\(^{55}\) Inside the muffin-tin spheres the basis functions, charge density and potential are expanded in symmetry-adapted spherical harmonic functions together with a radial function and a Fourier series in the interstitial. In the present calculations the spherical-harmonic expansion of the charge density, potential and basis functions were carried out up to \(L = 6 \). The tails of the basis functions outside their parent spheres are linear combinations of Hankel or Neumann functions depending on the sign of the kinetic energy of the basis function in the interstitial region. For the core charge density, the Dirac equation is solved self-consistently, i.e. no frozen core approximation is used. The calculations are based on the generalized-gradient-corrected-density-functional theory as proposed by Perdew et al.\(^{53}\)

The SO term is included directly in the Hamiltonian matrix elements for the part inside the muffin-tin spheres, thus doubling the size of the secular matrix for a spin-polarized calculation. Even though the La 4\(f \) states are well above \(E_F \) their contribution to the magnetic and structural properties are very important.\(^{48}\) So we have included these orbitals in all our calculations. Moreover, the present calculations make use of a so-called multibasis, to ensure a well converged wave function. This means that we use different Hankel or Neuman functions each attaching to its own radial function. We thus have two 6\(s \), two 5\(p \), two 6\(p \), two 5\(d \) and two 4\(f \) orbitals for La, two 4\(s \), two 5\(p \) and three 3\(d \) orbitals for Mn, two 2\(s \), three 2\(p \) and two 3\(d \) orbitals for O in our expansion of the wave function. In the method used here, bases corresponding to multiple principal quantum numbers are contained within a single, fully hybridizing basis set. The direction of the moment is chosen to be (001). The calculations were performed for the cubic perovskite structure as well as the orthorhombic
GdFeO$_3$-type structure in nonmagnetic (P), F, A-AF, C-AF and G-AF states. The k-space integration was performed using the special point method with 284 k points in the irreducible part of first BZ for the orthorhombic structure and the same density of k points were used for the cubic structure in the actual cell as well as the supercell. All calculations were performed using the experimental structural parameters mentioned in Sec. II A for both the nonmagnetic and spin-polarized cases. Using the self-consistent potentials obtained from our calculations, the imaginary part of the optical dielectric tensor and the band structure of LaMnO$_3$ were calculated for the A-AF and F cases. The density of states were calculated for the P, F, A-AF, C-AF and G-AF phases in the cubic as well as orthorhombic structure using the linear tetrahedron technique.

D. Calculation of optical properties

Once energies ϵ_{kn} and functions $|kn\rangle$ for the n bands are obtained self consistently, the interband contribution to the imaginary part of the dielectric functions $\epsilon_2(\omega)$ can be calculated by summing transitions from occupied to unoccupied states (with fixed k vector) over BZ, weighted with the appropriate matrix element for the probability of the transition. To be specific, the components of $\epsilon_2(\omega)$ are given by

$$
\epsilon_{ij}^2(\omega) = \frac{Ve^2}{2\pi \hbar m_2 \omega^2} \int d^3k \sum_{nn'} \langle kn'|p_i|kn\rangle \langle kn'|p_j|kn\rangle \times f_{kn}(1-f_{kn'}) \delta(\epsilon_{kn'} - \epsilon_{kn} - \hbar \omega),
$$

Here $(p_x, p_y, p_z) = p$ is the momentum operator and f_{kn} is the Fermi distribution. The evaluation of the matrix elements in Eq. (1) is done over the muffin-tin and interstitial regions separately. Further details about the evaluation of matrix elements are given elsewhere.

Due to the orthorhombic structure of LaMnO$_3$ the dielectric function is a tensor. By an appropriate choice of the principal axes we can diagonalize it and restrict our considerations to the diagonal matrix elements. We have calculated the three components $E||a$, $E||b$ and $E||c$ of the dielectric constants corresponding to the electric field parallel to the crystallographic axes a, b and c, respectively. The real part of the components of the dielectric tensor $\epsilon_1(\omega)$ is then calculated using the Kramer-Kronig transformation. The knowledge of both the real and imaginary parts of the dielectric tensor allows the calculation of important optical constants. In this paper, we present the reflectivity $R(\omega)$, the absorption coefficient $I(\omega)$, the electron energy loss spectrum $L(\omega)$, as well as the refractive index n and the extinction coefficient k. The calculations yield unbroadened functions. To reproduce the experimental conditions more correctly, it is necessary to broaden the calculated spectra. The exact form of the broadening function is unknown, although comparison with measurements suggests that the broadening usually increases with increasing excitation energy. Also the instrumental resolution smears out many fine features. To simulate these effects the lifetime broadening was simulated by convoluting the absorptive part of the dielectric function with a Lorentzian, whose full width at half maximum (FWHM) is equal to 0.01(\hbar \omega)^2 eV. The experimental resolution was simulated by broadening the final spectra with a Gaussian, where FWHM is equal to 0.02 eV.
E. Calculation of magneto-optical properties

The magneto-optic effect can be described by the off-diagonal elements of the dielectric tensor which originate from optical transitions with a different frequency dependence of right and left circularly polarized light because of SO splitting of the states involved. For the polar geometry, the Kerr-rotation \(\theta_K \) and ellipticity \(\eta_K \) are related to the optical conductivity through the following relation:

\[
\frac{1 + \tan(\eta_K)}{1 - \tan(\eta_K)} e^{2i\theta_K} = \frac{(1 + n_+)(1 - n_-)}{(1 - n_+)(1 + n_-)}, \tag{2}
\]

where \(n_{\pm}^2 \) in terms of conductivities are

\[
n_{\pm}^2 = 1 + \frac{4\pi i}{\omega} (\sigma_{xx} \pm i\sigma_{xy}). \tag{3}
\]

For small Kerr-angles, Eq. (2) can be simplified to

\[
\theta_K + i\eta_K = \frac{-\sigma_{xy}}{\sigma_{xx} \sqrt{1 + \frac{4\pi i}{\omega}\sigma_{xx}}}.
\tag{4}
\]

The magnetic circular birefringence, also called the Faraday rotation \(\theta_F \), describes the rotation of the polarization plane of linearly polarized light on transmission through matter magnetized in the direction of the light propagation. Similarly, the Faraday ellipticity \(\eta_F \), which is also known as the magnetic circular dichroism, is proportional to the difference of the absorption for right- and left-handed circularly polarized light. Thus, these quantities are simply given by

\[
\theta_F + i\eta_F = \frac{\omega d}{2c} (n_+ - n_-), \tag{5}
\]

where \(c \) is the velocity of light in vacuum, and \(d \) is the thickness of the thin film.

F. Calculation of XPS and BIS spectra

Within the so-called single-scatterer final-state approximation (free propagation of the photoelectrons through the crystal, loss of \(\mathbf{k} \)-dependent information and neglect of surface effects) the photocurrent is a sum of local (atomic like), partial (\(\ell \)-like) DOS weighted by cross sections (transition probabilities). As the theoretical framework of the XPS intensity calculations is given earlier, only a brief description of the main points is outlined here. For high incident energies of XPS (\(\sim 1.5 \) keV) the low-energy electron-diffraction function can be simplified and the fully relativistic angle-integrated intensity \(I(E, \omega) \) can be written as

\[
I(E, \omega) = \sum_{\tau} \sum_{\kappa} \sigma_{\kappa}^\tau(E, \omega) D_{\kappa}^\tau(E) \delta(E_F + \hbar\omega - E) \tag{6}
\]

where

\[
\kappa = \begin{cases}
-\ell - 1, & j = \ell + \frac{1}{2} \\
\ell, & j = \ell - \frac{1}{2}
\end{cases}
\]
where \(\omega \) denotes the energy of the incident photons. This expression has been cast into a Fermi golden-rule form, where \(D^\tau_\kappa(E) \) are the partial DOS functions for the \(\kappa^{th} \) channel at the \(\tau^{th} \) site, and are obtained from full-potential LMTO calculation. The partial, angular momentum-dependent cross sections \(\sigma^\tau_\kappa(E, \omega) \) of the species \(\tau \) can be obtained from

\[
\sigma^\tau_\kappa(E, \omega) = \sum_{\kappa'} (2j + 1) \begin{pmatrix} j & 1 & j' \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix}^2 \times [M^\tau_{kk'}(E, \omega)]^2
\]

where

\[
M^\tau_{kk'}(E, \omega) = \int_0^{R_{mt}} R^\tau_\kappa(r, E) \nabla V^\tau(r) Z^\tau_{\kappa'}(r, \omega) r^2 dr
\]

In Eq. 7 the radial functions \(R^\tau_\kappa(r, E) \) and \(Z^\tau_{\kappa'}(r, E) \) differ conceptually only by different single-site scattering normalizations. The radial gradients \(\nabla V^\tau(r) \) refer to the \(\tau \)-th scattering potential. The Wigner 3j-symbols automatically take care of the dipole selection rules. The relativistic cross sections \(\sigma^\tau_\kappa(E, \omega) \) are calculated using the muffin-tin part of the potential over the energy range \(E \) of the DOS functions for the fixed incident photon energy \(\omega \). This expression has been evaluated for LaMnO\(_3\) from the potentials and DOS functions by a fully relativistic full-potential LMTO self-consistent calculation. Because the cross sections (matrix elements) are energy dependent, the theoretically predicted spectra will depend on the energy chosen for the calculation. To be consistent with the reported XPS data, we have made all calculations with the fixed incident photon energy \(\omega = 1253.6 \text{ eV} \) (MgK\(\alpha\) line) used in the experimental study. The finite lifetime of the photoholes was taken into account approximately by convoluting the spectra using a Lorentzian with a energy-dependent half-width. The FWHM of this Lorentzian is zero at \(E_F \) and increases linearly with the binding energy, as \(0.2(E_F - E) \). In addition to the Lorentzian life-time broadening, the spectra were broadened with a Gaussian of half-width 0.8 eV to account for spectrometer resolution. The procedure we adapt to calculate XPS and BIS spectra is as follows. First, we take the partial DOS functions \(E < E_F \) for XPS and \(E > E_F \) for BIS) from a full-potential LMTO calculations. We multiply these by the calculated \(\ell \) dependent cross-sections for all band energies and sum them to get a total spectral-like function. Next, to get a good fit to the data we broaden this with an energy-dependent Lorentzian function to simulate what we call inherent life-time effects due to the coupling of the excited outgoing electron from the crystal. This broadening is zero at \(E_F \) and goes as the square of the energy below \(E_F \). Then we fit the leading edge to the experimental data with a Gaussian broadening to simulate the instrument resolution. This broadening is same for all states. Finally we add a background function to get the experimental profile. While the calculations were performed at the one-electron level, we believe this procedure should capture the essence of the photoemission process and lead to a meaningful comparison between calculated and observed spectra.
G. Calculation of XANES

The theoretical x-ray absorption spectra for LaMnO$_3$ were computed within the dipole approximation from the FLAPW partial DOS along the lines described by Neckel et al. The intensity $I(\omega) = E - E_c$ arising from transitions from initial VB states (energy E and angular momentum ℓ) to a final core state (E_c, ℓ') is given by

$$\frac{I_{\tau n'\ell'}(\omega)}{\omega^3} = \sum_\ell W_{\ell\ell'} M^2_\tau(\ell, n', \ell', E) D^\ell_\ell(E) \delta(E - E^\text{core}_n - \hbar \omega)$$ \hspace{1cm} (8)

where the matrix elements are given by

$$M^2(\ell, n', \ell', E) = \left[\int_0^{R_\tau} P^\ell_\tau(r, E) P^n_{n'\ell'}(r) dr \right]^2$$

$n' and \ell'$ represent principal and angular momentum quantum numbers for the core states. $D^\ell_\ell(E)$ is the partial DOS of atom τ with angular momentum ℓ. P^ℓ_τ and R_τ are the radial wave function and atomic sphere radii of atom τ. The transition coefficient $W_{\ell\ell'}$ can be calculated analytically according to the following equation,

$$W_{\ell\ell'} = \frac{\ell + 1}{2\ell + 1} \delta_{\ell, \ell'-1} + \frac{\ell}{2\ell - 1} \delta_{\ell, \ell'+1}$$

In the case of absorption spectra $D^\ell_\ell(E > E_F) = 0$. To account for instrument resolution and life-time broadening of both core and valence states we have broadened the calculated spectra using the Lorentzian function with FWHM of 1 eV.

III. RESULTS AND DISCUSSION

A. Electronic structure

1. Electronic structure of the cubic phase

Let us first discuss qualitative distinctions among the electronic band structures of LaMnO$_3$ with various magnetic configurations without considering the structural distortion. With full cubic symmetry, t_{2g} and e_g orbitals are three-fold and two-fold degenerate, respectively. The orbital-projected DOS of Mn 3d electrons in the F phase of cubic LaMnO$_3$ are shown in Fig. 2, where the t_{2g} states are away from E_F and also rather narrow. However, the e_g levels are broadly distributed in the DOS profile. The electrons at E_F have both e^+_g and the t^4_{2g} electrons as shown in Fig. 2. Against the pure ionic picture (where the e_g electrons only are expected to be closer to E_F) there is considerable amount of e_g electrons present around -6 eV. These states originate from the covalent interaction between the Mn e_g electrons and O 2p states which produce the e_g bonding (around -6 eV) and antibonding (above -2 eV) hybrids. The t_{2g} states are energetically degenerate with the O 2p states in VB indicating that there are finite covalent interactions between these states. Owing to this covalent interaction along with the exchange interaction between the t_{2g} and e_g states, a
finite DOS of \(t_{2g} \) electrons in the energy range \(-7 \) to \(-5 \) eV is created. With \(E_F \) positioned in the middle of the \(e_g \) band, a JT instability is produced which causes the oxygen octahedra to distort and removes the orbital degeneracy. For the undistorted cubic perovskite structure, the total DOS is shown in Fig. 3 for the nonmagnetic (paramagnetic\(= P \), F and the A-, C- and G- type AF spin configurations. Without the JT-caused lattice distortion, the LSDA calculations show that \(\text{LaMnO}_3 \) is metallic for all these magnetic states. In all the cooperative magnetic states, the Hund splitting is large and induces an empty minority-spin band at the Mn site. The DOS for the P phase given in Fig. 4 shows a large value at \(E_F \). This is a favorable condition for providing a magnetic splitting and hence the cooperative magnetic phase is more stable than the P phase. From DOS for the F state of the undistorted structure (see Fig. 3) one can see that there is a finite number of states present in both spin channels. On the other hand the half-metallic character clearly appeared in the F state of the orthorhombic structure. The total DOS of the AF phases are much different from that of the F phase (Fig. 3). Owing to large exchange splitting there is a smaller DOS at the Fermi level \(N(E_F) \) for the F and AF phases compared with the P phase. The calculated value of \(N(E_F) \) for the P phase is 146.6 states/(Ry. f.u.) and 16.7, 20.5, 25.1 and 17.8 states/(Ry f.u.) for A-, C- and G-AF as well as F phases, respectively.

2. Electronic structure of the orthorhombic phase

Let us now focus on the role of the structural distortion on the electronic structure of \(\text{LaMnO}_3 \). It is believed that \(\text{LaMnO}_3 \) is a charge-transfer-type (CT) insulator according to the Zaanen-Sawatzky-Allen scheme in which the lowest-lying gap transition corresponds to the CT excitation from the O 2p to Mn 3d state and has four d electrons per Mn\(^{3+}\) site with a configuration of \(t_{2g}^3 e_g^1 \). This electronic configuration with one electron for the two \(e_g \) orbitals implies that \(\text{LaMnO}_3 \) is a typical JT system. So, this electronic configuration is susceptible to a strong electron-phonon coupling of the JT type that splits the \(e_g \) states into filled \(d_{z^2} \) and empty \(d_{x^2-y^2} \), and thus, produces large asymmetric oxygen displacements. The important factors governing the formation of the electronic structure of orthorhombic \(\text{LaMnO}_3 \) are the exchange splitting owing to spin polarization, the ligand field splitting of \(e_g \) and \(t_{2g} \) states and the further splitting of the \(e_g \) states owing to the JT distortion. Early theoretical work focused on the undistorted perovskite aristotype structure and it was found that usual LSDA can not produce the correct insulating ground state for \(\text{LaMnO}_3 \). Using the LAPW method, Pickett and Singh obtained a gap of 0.12 eV for the distorted \(\text{LaMnO}_3 \) when they include the JT effect and A-AF ordering.

As noticed in earlier studies, two unexpected behaviors appear when one includes the structural distortion; the stabilization of the A-AF over the F phase and an opening of a gap and large rearrangement of bands. The valence band DOS of \(\text{LaMnO}_3 \) are derived primarily from Mn 3d and O 2p admixture with dominant Mn 3d character (Fig. 5). From the projected density of states (PDOS) it can be seen that the Mn 3d \(\rightarrow \) O 2p hybridization is spin dependent. For the case of the majority-spin channel both Mn 3d and O 2p strongly mix with each other in the whole VB. On the contrary, owing to the presence of Mn 3d in
the high spin state, the minority-spin VB is nearly empty for the Mn 3d states. Hence, there is little overlap between Mn 3d and O 2p states in the minority-spin channel. Because of CT from La and Mn to the O 2p states, the latter are almost filled and their contribution to the unoccupied state is minimal. The O 2s states are well localized and are present around −18 eV.

VB of LaMnO₃ is generally composed of four regions. The lowest energy region contains mainly O 2s bands, above this the La 5p bands are distributed in the region between −17 eV and −14 eV. Both the O 2s and La 5p bands are well separated from the bands in the vicinity of E_F, and consequently they hardly contribute to the chemical bonding or to transport properties. The O 2p bands are present in the energy range -7 eV to -2 eV and energetically degenerate with the Mn 3d states in the whole VB region indicating covalent interaction between Mn and O in LaMnO₃. The present observation of strong covalency in the ground state of LaMnO₃ is consistent with the conclusion drawn from photoemission and x-ray-absorption spectroscopy. The negligible contribution of La electrons in the VB region indicates that there is an ionic interaction between La and the MnO₆ octahedra. It has been pointed out by Goodenough that the covalency between the A site and oxygen is important for the GdFeO₃-type distortion. However our PDOS profile shows that there is only a negligible amount of electrons present in VB from the A (La) site indicating that the covalent interaction between La and O is rather unimportant in LaMnO₃. From PDOS along with the orbital-projected DOS we see that both Mn t_{2g} and e_g electrons participate in the covalent interaction with the neighboring oxygens. The top of VB is dominated by the majority-spin Mn 3d states indicating the importance of Mn 3d states in transport properties such as CMR observed in hole-doped LaMnO₃. The bottom of CB is dominated by the minority-spin Mn 3d electrons and above the La 4f electrons are present in a very narrow energy range between 2.6 and 3.5 eV (Fig. 5). O 3d and Mn 4p states are found around 10 eV above E_F. As the Mn d states are playing an important role for the magnetism and other physical properties of LaMnO₃, it is worthwhile to investigate these in more detail.

An approximately cubic crystal field stemming from the oxygen octahedron around Mn would split the Mn 3d levels into t_{2g} and e_g levels. For Mn³⁺ in LaMnO₃, three electrons would occupy localized t_{2g} levels, and one electron a linear combination of two e_g levels. The general view of the electronic structure of LaMnO₃ is that both t_{2g} and e_g orbitals hybridize with O 2p orbitals, t_{2g} mainly with 2p π and e_g mainly with 2p σ. The t_{2g} electrons hybridize less with O 2p states and hence may be viewed as local spins ($S = 3/2$). In contrast to that, e_g orbitals, which hybridize more strongly produce rather broad bands. The strong exchange interaction with the t_{2g} subbands along with the JT distortion lead to the splitting of e_g into half occupied e_g^1 and unoccupied e_g^2 bands. Our calculations show that t_{2g} bands forms intense peaks in both VB and CB, and majority-spin t_{2g} bands are almost completely filled owing to the high spin state of Mn in LaMnO₃. Contrary to the general opinion, our orbital projected DOS (Fig. 5) show that both e_g and t_{2g} electrons are present throughout VB and hence both types of electrons participate in the covalent bonding with oxygen. The orbital projected DOS (Fig. 5) clearly shows that there is almost equal amounts of both e_g and t_{2g} electrons at the top of VB and certainly not dominated by Mn e_g bands alone. The DOS in Fig. 5 $d_{x^2-y^2}$ states are shifted to a lower energy than $d_{x^2-y^2}$ and is more populated.

A comparison of the orbital projected DOS for the Mn d states of the F cubic phase with that of the AF orthorhombic phase show significant differences. In the F cubic
the \(e_g \) levels are well separated from the \(t_{2g} \) levels and there is no \(t_{2g}^\uparrow \) electrons present in the vicinity of \(E_F \). In the A-AF orthorhombic phase both \(t_{2g}^\uparrow \) and \(e_g^\uparrow \) electrons are present in the vicinity of \(E_F \). Both \(e_g \) and \(t_{2g} \) electrons are energetically degenerate throughout the VB range and in particular the electrons in the \(d_{z^2} \) orbitals are well localized and degenerate with the electrons in \(d_{yz} \) and \(d_{xz} \). Importantly, the JT distortion split the \(e_g \) states in the A-AF orthorhombic phase and hence we find semiconducting behavior. Photoemission studies\(^46\) show that the character of the bandgap of LaMnO\(_3\) is of the \(p\)-to-\(d \) CT type. Our site projected DOSs predict that there is considerable \(p \) and \(d \) character present at the top of VB as well as in the low energy region of CB. The VB photoemission study\(^46\) has been interpreted to suggest that DOS closer to \(E_F \) in VB contains contributions from Mn \(e_g^\uparrow \). In contrast, our calculations (Fig. 6) show that DOS closer to \(E_F \) in VB contains contribution from both Mn \(e_g^\uparrow \) and \(t_{2g}^\uparrow \) electrons.

Owing to the JT distortion the \(e_g \) electrons are subjected to an OO effect in LaMnO\(_3\). As the JT distortion influences the stability of the orbital configuration, one can expect that it also should affect the electronic structure of LaMnO\(_3\) differently for different magnetic orderings. Hence, we next focus our attention to the electronic structure of orthorhombic LaMnO\(_3\) in different magnetic configurations. The calculated total DOS for orthorhombic LaMnO\(_3\) in the P, F and A-, C- and G-AF arrangements are shown in Fig. 4. From DOS at \(E_F \) in the P phase, one can deduce pertinent information concerning the magnetism in LaMnO\(_3\). This shows that LaMnO\(_3\) is a very favorable compound for cooperative magnetism since it has a large DOS value at \(E_F \) in the P state (Fig. 4). Owing to the splitting of \(e_g \) states by the JT distortion, a gap opens up \(E_F \) in DOSs for both the A-AF and G-AF phases (Fig. 4). It is interesting to note that the cubic phase of LaMnO\(_3\) is always metallic irrespective of the magnetic ordering considered in the calculations. Thus the structural distortion is the key ingredient to account for the stabilization of the insulating behavior of LaMnO\(_3\), consistent with the earlier studies.\(^39\) From Fig. 4 it is interesting to note that the P, F and C-AF phases of LaMnO\(_3\) are found to exhibit metallic conduction even when we include the structural distortions in the calculation. This shows that apart from structural distortion, the AF ordering also plays and important role for stabilizing the insulating behavior of LaMnO\(_3\). Usually, the \(e_g \) splitting caused by the JT effect is somewhat underestimated in the ASA calculations\(^27,29,30,34\) and a discrepancy could reflect an uncertainty introduced by the ASA approach. The energy separation between the \(e_g \) and \(t_{2g} \) levels, caused by the crystal-field splitting, is known to be larger than 1 eV\(^68\). Owing to strong overlap between the \(e_g \) and \(t_{2g} \) levels in the A-AF orthorhombic phase, we are unable to estimate the crystal field splitting energy. However, owing to the well separated \(e_g \) and \(t_{2g} \) levels in the cubic phase we estimated this energy to be \(\sim 0.96 \) eV. The JT distortion lifts the degeneracy of the \(e_g \) level. The \(e_g \) level splitting in our calculation is found to be 0.278 eV and this is nothing but the (semiconducting) bandgap in this material. The Mn \(d \) exchange splitting obtained from our calculation is 3.34 eV and this is found to be in agreement with 3.5 eV found by Pickett and Singh\(^38\) by a LAPW calculation and 3.48 eV reported by Mahadevan \textit{et al.}\(^69\) from LMTO-ASA calculations.

The LMTO-ASA\(^38\) calculations reveals that the splittings between the spin-up and spin-down states on introduction of the orthorhombic distortion are slightly asymmetric for the two types of Mn. However, our more accurate full potential calculations do not show any asymmetry of the splitting and the magnetic moments are completely canceled due to the
AF interaction between the Mn ions. The total DOS in Fig. 4 show clearly that there is a gap opening near E_F in the G-AF phase with a value of 0.28 eV, comparable with that of the A-AF phase. As there is no bandgap in the C-AF and F phases, the above results indicate that the AF coupling between the layers plays an important role in opening up the bandgap in LaMnO$_3$. The DOS for the F phase shows a half-metallic feature, viz., the finite total DOS around E_F comes from one of the spin channels while there is a gap across E_F for the other spin channel. Both spin-up and spin-down e_g states extend over a wide energy range. Owing to the F ordering within the ab plane in the A-AF phase and within ac in the C-AF phase, the DOS for these phases bears resemblance to that of the F phase. On the other hand, DOS for the G-AF phase (dominated by the AF superexchange interactions) is quite different from that of the A-, C-AF and the F phases (Fig. 4). Moreover, in the G-AF phase the width of the e_g state is narrower than that in the A-, C-AF and F phases and the partially filled e_g states in these phases are well separated from the empty t_{2g} states.

B. Magnetic properties

As the JT coupling between the e_g electrons and the distortion modes for the MnO$_6$ octahedra plays an important role for the physical properties of LaMnO$_3$, a magnetic-property study of the undistorted cubic phase of LaMnO$_3$ is important. We have calculated the total energies and magnetic moments for LaMnO$_3$ in the undistorted cubic perovskite structure as well as for the orthorhombic structure with different magnetic configurations. The calculated total energies for the P, F, A-, C- and G-AF states of LaMnO$_3$ with the cubic perovskite structure relative to the A-AF phase with the orthorhombic structure is given in Table I. According to these data the cubic phase of LaMnO$_3$ should be stabilized in the F phase. Stabilization of the F phase in the cubic structure concurs with earlier findings. The LAPW calculations of Hamada et al. for undistorted LaMnO$_3$ show that the A-AF phase is 1 eV above the F phase, whereas Pickett and Singh found a difference of only 110 meV. Our calculations shows that the A-AF phase is 60 meV above the F phase in the cubic perovskite structure (Table I). We used GGA, SO coupling and a large number of k points along with a well converged basis set. This may account for the difference between the present work and the earlier studies. Our orbital projected DOS for the d electrons of Mn (Fig. 2) show that the e_g electrons are only distributed in the vicinity of E_F in the majority-spin channel. The removal of the JT distortion enhances the exchange interaction originating from the e_g states drastically and also reduces the negative exchange from the t_{2g} state. Hence, the total interplane exchange interaction is positive and the system stabilizes in the F phase.

The calculated total energies of various magnetic configurations for LaMnO$_3$ in the orthorhombic structure (Table II) shows that the orthorhombic structure with the A-AF ordering of the moments is the ground state for LaMnO$_3$. The stabilization of the A-AF state is consistent with the neutron diffraction findings. Further, our calculations predict that the F phase is only 24 meV higher in energy than the ground state. On the other hand, the P phase is ~ 1.4 eV higher in energy than the ground state. From the total energy of the various possible magnetic arrangements it is clear that intralayer exchange interactions in LaMnO$_3$ are F and considerably stronger than the AF interlayer couplings, the latter being very sensitive to lattice distortions. This observation is in agreement with the conclusion of
Terakura et al.\cite{13} from electronic structure studies and in qualitative agreement with inelastic neutron scattering results.\cite{72} The present observation of a small energy difference between the A-AF and F phases is consistent with earlier theoretical studies.\cite{72,73} It should be noted that LMTO-ASA calculations\cite{33} predict the F state to be lower in energy than the AF state also for the orthorhombic structure (Table I). However, the LSDA+U calculations\cite{33} with lattice distortion yielded the correct ground state. Hence, it has been concluded that the correlation effect plays an important role for obtaining the correct electronic structure of LaMnO$_3$. It should also be noted that the theoretically optimized crystal-structure theory predicts\cite{48} that F is more stable than the observed A-AF state in LaMnO$_3$. On the other hand, our calculations, without the inclusion of the correlation effect, give the correct ground state for LaMnO$_3$ indicating that the correlation effect is not so important in this case.

If the interlayer F coupling is stronger than the intralayer AF coupling the system will be stabilized in the C-AF phase. However, our calculations show that C-AF phase is higher in energy than the A-AF and F phases. Due to the JT instability of Mn d^4, a substantial energy gain is expected when we include the actual structural distortions in our calculations. Hence, a gain of 0.323 eV/f.u. is found for F and 0.407 eV/f.u. for A-AF (Table I) when the structural distortions were included. The magnetic ordering is such that the difference in total energy between F and A-AF (C-AF) gives information about the exchange-coupling energy within the plane (perpendicular to the plane for C-AF). Our calculations show that the AF intraplane exchange interaction energy is smaller (24 meV for the orthorhombic phase and 59 meV for the cubic phase) than the AF interplane exchange interaction energy (41 meV for the orthorhombic phase and 92 meV for the cubic phase). The present findings are consistent with the experimental studies in the sense that neutron scattering measurements\cite{73} on a LaMnO$_3$ single crystal showed a strong intraplane F coupling and a weak AF interplane coupling.

Now we will try to understand the microscopic origin for the stabilization of A-AF in LaMnO$_3$. In the ideal cubic lattice the hybridization between the Mn t_{2g} and e_g states is nearly vanishing. As expected for a half-filled t_{2g} band, the t_{2g}-type interatomic exchange facilitates AF ordering. Our orbital-projected DOS show that the $d_{x^2-y^2}$ electrons are distributed in the whole VB region and are mainly populated in the top of VB. The JT distortion induces orbital ordering in which the orbitals confined to the ab plane ($d_{x^2-y^2}$ and $d_{y^2-z^2}$) are dominantly populated and the counter e_g orbitals of d_{z^2} symmetry are less populated in the vicinity of E_F. In this case itinerant band ferromagnetism is operational in the ab plane and is responsible for the F ordering with in the plane. The electrons in the d_{yz} and d_{xz} orbitals are well localized and these make the interplane exchange interaction AF, which in turn stabilizes the A-AF phase. However, the electrons in the d_{xz} orbitals are well delocalized and have almost the same energy distribution as $d_{x^2-y^2}$. This weakens the AF coupling between the layers and in turn makes the energy difference between the F and A-AF phases very small. The CMR effect in manganites may be understood as follows. When charges are localized by strong electron-electron interactions the system becomes an AF insulator, but this state is energetically very close to the metallic F state in LaMnO$_3$. Consequently, aligning of spins with an external magnetic field will activate the metallic F states and cause a large gain of kinetic energy, i.e. a CMR phenomenon.

Table I lists the calculated magnetic moment at the Mn site in LaMnO$_3$ for different spin configurations in the undistorted cubic perovskite structure as well as the distorted
orthorhombic structure, including for comparison corresponding values from other theoretical studies and experimental neutron diffraction results. Without hybridization, the Mn spin moment should take an appropriate integer value (4 µ_B/Mn atom in the case of high spin state) and the oxygen moment should be negligible. Owing to the covalent interaction between the Mn d and O p states, experimental as well as theoretical studies will give smaller Mn moments than predicted by the ionic model. For the F phase in the orthorhombic structure, Mn polarizes the neighboring oxygens and the induced moment at the O(1) site is 0.07 µ_B/atom and at the O(2) 0.059 µ_B/atom and these moments are coupled ferromagnetically with the local moments of Mn^{3+}. There are small differences in the magnetic moments for the different magnetic arrangements indicating that these moments have a distinct atomic-like character. From Table I it should be noted that the LMTO-ASA approach generally gives larger moments than the accurate full-potential calculation. The reason for this difference is that the full-potential calculations estimate the moments using the spin density within the muffin-tin spheres so that the spin-density in the interstitial region is neglected. Our calculated magnetic moment at the Mn site in the A-AF orthorhombic structure is comparable with the experimental value (Table II).

The electric field gradient for Mn in the F phase obtained by the FLAPW calculation is 3.579×10^{21} V/m2 as compared with -1.587×10^{21} V/m2 for the A-AF phase. The asymmetry parameter η of the electric field gradient tensor follows from the relation $\eta = \frac{V_{xx} - V_{yy}}{V_{zz}}$, which gives $\eta=0.95$ for Mn in the A-AF phase in good agreement with $\eta = 0.82$ obtained from low temperature perturbed-angular-correlation spectroscopy. The magnetic hyperfine field at the Mn site derived from our FLAPW calculation is 198 kG for the A-AF phase and 176 kG for the F phase.

A comment on the appearance of the F state by doping of divalent elements in LaMnO$_3$ is appropriate. It has long been believed that the appearance of the F ground state in metallic La$_{1-x}$AE$_x$MnO$_3$ can be explained by the double-exchange interaction of Mn$^{3+}$ ($t^3_{2g}e^{1}_g$) and Mn$^{4+}$ ($t^2_{2g}e^0_g$). Recent experiments and theoretical investigations have revealed many discrepancies in the simple double-exchange model. Urushbara et al. pointed out that the simple double-exchange model is methodologically inappropriate for predicting the AF insulating phase ($0.1 \leq x \leq 0.15$, $T < T_C$), for the canted AF insulating phase with large canting angle or large magnetic moment estimated by Kawano et al. in the F phase region. Millis et al. proposed that in addition to the double-exchange mechanism, a strong electron-phonon interaction arising from the JT splitting of the outer Mn d level is important. As our calculations predict the cubic phase of LaMnO$_3$ to be the F state, there must be another mechanism than the doping by the divalent elements which reduces the JT distortion and in turn increases the interlayer exchange coupling to stabilize the F state. Moreover, our calculations show that within the ab plane the Mn ions are F coupled without involvement of Mn in different ionic states. If the double-exchange mechanism is operational in LaMnO$_3$ one can expect a charge imbalance between the Mn atoms in the ab plane (with F alignment) This suggests that the F coupling in LaMnO$_3$ can be explained within the framework of itinerant band ferromagnetism.
C. Magneto-optical properties

The magneto-optical (MO) Kerr-effect can be described by the off-diagonal elements of the dielectric tensor which in a given frequency region originates from optical transitions with different frequency dependence for right and left circularly polarized light caused by the SO splitting of the states involved. Considerable interest has recently been focused on studying MO properties of materials owing to their potential for application in rewritable high-density data storage. For magneto-optical information storage one requires materials with a large Kerr-effect as well as perpendicular magnetic anisotropy. Uniaxial magnetic anisotropy is observed for La\textsubscript{0.67}Ca\textsubscript{0.33}MnO\textsubscript{3} films grown on SrTiO\textsubscript{3} [001] substrates and confirmed theoretically.

The energy difference between the A-AF and F states of LaMnO\textsubscript{3} is very small and hence a small magnetic field could drive a transition from A-AF to F. Also, it is interesting to note that LaMnO\textsubscript{3} produced by annealing in an oxygen atmosphere shows a simple F structure below \(T_C = 140 \) K, with moments oriented along \(c \). Manganites exhibiting the CMR effect are also in the F state and hence it is interesting to study the F phase of LaMnO\textsubscript{3} in more detail. Polar Kerr-rotation measurements on hole doped LaMnO\textsubscript{3} show that Bi doping enhances the Kerr-rotation to a value of 2.3\(^\circ\) at wavelength of 0.29 nm at 78 K. It may be recalled that the large MO effect in MnPtSb is usually linked with its half-metallic behavior. Hence, as the F phase of LaMnO\textsubscript{3} also possesses half-metallic behavior with a bandgap of 2.38 eV (between top of the minority-spin VB and the bottom of CB in Fig. at \(E_F \)), it is interesting to examine its MO properties.

In the case of F state LaMnO\textsubscript{3}, our calculations predicted half-metallic behaviour and hence the intraband contribution will be of importance to predict the MO property reliably. Therefore, we have taken into account the intraband contribution using the Drude formula with the same relaxation time as earlier. We have calculated the unscreened plasma frequency by integrating over the Fermi surface using the FLAPW method. For F state La\textsubscript{0.7}Ca\textsubscript{0.3}MnO\textsubscript{3} Pickett and Singh predicted a plasma frequency of 1.9 eV. Several groups have reported an anomalously small Drude weight in both La\textsubscript{0.7}Ca\textsubscript{0.3}MnO\textsubscript{3} and La\textsubscript{0.7}Sr\textsubscript{0.3}MnO\textsubscript{3}. Interpreting the latter findings in terms of enhanced optical mass, the effective mass values established optically are much greater than those derived from the specific-heat measurements. The theoretically established half-metallic feature of the F state in LaMnO\textsubscript{3} suggests that the small Drude weight is originating from large exchange splitting which contracts the Drude contribution coming from the minority-spin channel. In accordance with the half-metallic nature of the F state, our calculated DOS at \(E_F \) is very small [3.36 states/(Ry f.u.)] As a result, the calculated unscreened plasma frequency along \(a, b \) and \(c \) are 1.079, 1.276 and 0.926 eV, respectively. Owing to the half-metallic nature of this material there is no intraband contribution arising from the majority-spin channel. Hence, we conclude that the experimentally observed anomalously small Drude weight in La\textsubscript{0.7}Ca\textsubscript{0.3}MnO\textsubscript{3} and La\textsubscript{0.7}Sr\textsubscript{0.3}MnO\textsubscript{3} is due to half-metallic behavior. Our calculated MO spectra for F state LaMnO\textsubscript{3} is given in Fig. Our recent MOKE studies of FePt shows that Kerr-rotation spectra can be reliably predicted even up to as high energies as 10 eV with the formalism adopted here. Hence, we have depicted the calculated MO spectra up to 8 eV in Fig. The Kerr-rotation (\(\Theta_K \)) shows a positive or negative peak when the Kerr-ellipticity (\(\eta_K \)) passes through zero. The frequency dependent Kerr-rotation and ellipticity spectra are
experimentally established for hole-doped LaMnO$_3$. As there are no experimental MO spectra available for comparison with our theoretical spectra for (pure) F state LaMnO$_3$, we have made comparison with the experimental spectrum for hole-doped LaMnO$_3$ (Fig. 8).

MO effects are proportional to the product of the SO-coupling strength and the net electron-spin polarization. This makes MO effects sensitive to the magnetic electrons, i.e. the 3d electrons of Mn in LaMnO$_3$. In order to promote the understanding of the microscopic origin of the MO effect, we present the off-diagonal elements of the imaginary part of the dielectric tensor in Fig. 8. Note that the ε_{2y}^{xy} spectra can have either positive or negative sign since it is proportional to the difference in the absorption of RCP and LCP light. The sign of ε_{2y}^{xy} is thus directly related to the spin polarization of the electronic states that contributes to the MO effect. Owing to the half-metallic behavior of the F state of LaMnO$_3$ the off-diagonal components of the dielectric tensor below 2.46 eV originate only from the majority-spin electrons (see Fig. 8). So, the peaks at 0.4, 0.9 and 2 eV in the Kerr-rotation spectra stem from transition from Mn ε_{2y}^{xy} to the hybridized Mn–O Mn($t_{2g}^{-1}O 2p)^{↑}$ bands. The experimental ε_{2y}^{xy} spectra show two peaks, one at 1.2 eV and the other at 3.5 eV. These two peaks are assigned to be $t_{2g}^{↑}e_{g}^{↑} \rightarrow t_{2g}^{↑}e_{g}^{L}$ transitions involving $t_{2g}^{↑}e_{g}^{L}$ minority-spin electrons, respectively. The absence of the 3.5 eV peak in our theoretical spectra indicate that it is an effect of the hole-doping.

It is experimentally observed that Kerr-rotation spectra change significantly with the temperature as well as with the doping level. Our calculated MO spectra are valid only for the stoichiometric F state LaMnO$_3$ at low temperature. The polar MO Kerr-rotation data for La$_{0.7}$Sr$_{0.3}$MnO$_3$ at 78 K was taken from the experimental spectra of Popma and Kamminga. Even though the experimental MO spectra La$_{0.8}$Sr$_{0.2}$MnO$_3$ were measured at 300 K with a magnetic field of 2.2 kOe, our calculated Kerr-rotation spectrum is comparable in the lower energy region (Fig. 8). The discrepancy between the experimental and theoretical Kerr-spectra in the higher-energy region may be explained as a temperature and/or hole doping effect. We hope that our theoretical findings may motivate to measurements on fully magnetized LaMnO$_3$ at low temperatures. Solovyev et al. have performed theoretical calculation on MO properties such as Kerr-rotation and ellipticity for LaMnO$_3$ for different canted-spin configurations. As the F state is only 24 meV above the ground state, it is quite possible that the F state can be stabilized experimentally. However, since we have studied the MO properties of F state LaMnO$_3$ our result can not be compared with the findings of Solovyev et al.

Lawler et al. found strong Faraday rotation at 1.5 eV ($\theta_F > 1 \times 10^4$ o/cm) and 3 eV ($\theta_F > 4.10^4$ o/cm) for La$_{1-x}$Ca$_x$MnO$_3$ when (0.2 \leq x \leq 0.5). Our theoretical Faraday rotation spectra also show two prominent peaks at 1.5 and 4 eV, the latter having the highest value ($\sim 1.25 \times 10^5$ o/cm) in the spectrum. The lower-energy peak in the experimental spectrum of La$_{1-x}$Ca$_x$MnO$_3$ is interpreted as associated with both ligand-to-metal charge transfer and d-d transitions. However, there are as yet no experimental frequency-dependent Faraday rotation and ellipticity measurements available.

D. Optical properties

A deeper understanding of optical properties is important from a fundamental point of view, since the optical characteristics involves not only the occupied and unoccupied part of
the electronic structure but also the character of the bands. So, in order to compare the band structure of LaMnO$_3$ directly with experimental facts, we have calculated the optical spectra for LaMnO$_3$ (for earlier theoretical studies see Refs. 27, 47). The experimental reflectivity spectra are rather confusing and controversial (see the discussion in Ref. 71). Recent experiments indicate that the optical spectrum of the manganites is very sensitive to the condition at the surface. As the optical properties of materials originate from interband transitions from occupied to unoccupied bands it is more instructive to turn to the electronic energy-band structure. The calculated energy-band structure of LaMnO$_3$ in the A-AF state is shown in Fig. 9. From this illustration it is immediately clear that LaMnO$_3$ is an indirect bandgap semiconductor where the bandgap is between the S-Y direction on the top of VB and the Γ point at the bottom of CB. There are two energy bands present in the top of VB, well separated from the rest of the VB. Our detailed analysis shows that these two energy bands have mainly Mn $d_{x^2-y^2}$ and d_{xz} character with a small contribution from O p. The La 4f electrons contribute with a cluster of bands between 2.5 to 3.5 eV in CB (Fig. 9). The Mn 3d and O 2p electrons are distributed over the whole energy range of VB.

Saitoh et al. reported strong covalency and suggested that the energy gap in LaMnO$_3$ should be considered as of the CT type. The bandgap estimated from our DOS studies for A-AF state LaMnO$_3$ is 0.278 eV and this is found to be in good agreement with the value of 0.24 eV obtained from resistivity measurements by Mahendiran et al. whereas Jonker reported 0.15 eV. However, our value for the direct gap (0.677 eV) between occupied and empty states at the same location in BZ is too low in comparison with optical (1.1 eV) and photoemission (1.7 eV) measurements. (It should be noted however that optical gaps are usually defined at the onset of an increase in spectral intensity in the measured optical variable.) It is also useful to compare our calculated bandgap with other theoretical results. The LSDA and LSDA+U calculations of Yang et al. using the LMTO-ASA method gave a bandgap of 0.1 and 1.0 eV, respectively. The LSDA+$U/2$ approach (where U is applied only to the t_{2g} electrons) yielded a bandgap of 0.2 eV. Hence, our bandgap is somewhat larger than that of other LSDA calculations. On the other hand, Hartree Fock calculations gave an unphysically large gap (3 eV) for LaMnO$_3$.

As all the linear optical properties can be derived from $\epsilon_2(\omega)$ we have illustrated this quantity in Fig. 8 and we have compared our theoretical spectra with the experimental $\epsilon_2(\omega)$ spectra derived from reflectivity measurements. The illustration shows that our calculated spectra are in good agreement with the experimental data at least up to 20 eV. This indicates that unlike earlier reported ϵ_2 spectra obtained from ASA calculations, accurate full-potential calculations are able to predict the electronic structure of LaMnO$_3$ reliably not only for the occupied states but also for the excited states. It is interesting to note that we are able to predict correctly the peaks around 1.5, 4.7, 8.8 and 20 eV without the introduction of so-called scissor operations. This suggests that electron-correlation effects are less significant in LaMnO$_3$. The peak around 4.7 eV is reasonably close to the experimental feature reported by of Arima et al. (Fig. 8). Our theoretical peak at 8.8 eV in the spectra is in quantitative agreement with both sets of experimental data included in the figure. Our calculations are also able to predict correctly the experimentally observed peak at 20 eV by Jung et al. (which Arima et al. failed to record).

Now we will try to understand the microscopic origin of the optical interband transitions.
in LaMnO$_3$. The peak around 1.5 eV has been assigned\(^\text{22}\) as intra-atomic $e_g^1(Mn^{3+}) \rightarrow e_g^2(Mn^{3+})$ transitions. Note that such $d \rightarrow d$ transitions are not allowed by the electric dipole selection rule, but it has been suggested\(^\text{21}\) that a strong hybridization of the e_g bands with the O 2p bands will make such $d \rightarrow d$ transitions optically active. The interband transition between JT split bands gives low-energy transitions in the $\epsilon_2(\omega)$ spectra and the sharp peak features present in $\epsilon_2||a$ and $\epsilon_2||c$ are attributed to such interband transition. The partial DOS for LaMnO$_3$ given in Fig.\(^\text{8}\) show that there is a considerable amount of O 2p states present at the top of VB as well as at the bottom of CB arising from strong covalent interaction between Mn d and O p states. Hence, we propose that the lower energy peak in the $\epsilon_2(\omega)$ spectra originates from $[(Mn\, d_{x^2-y^2},\, O\, p\, \text{hybridized}) \rightarrow (Mn\, d;\, O\, p)]$ optical interband transition. The peak around 4.7 eV in the $E||b\, \epsilon_2(\omega)$ spectrum originates mainly from hybridized (Mn $d_{x^2},\, O\, p$) states to unoccupied hybridized (Mn $3d;O\, p$) states. All the majority-spin d electrons participate in the interband transition from 3 eV up to 10 eV in in Fig.\(^\text{8}\).

In the cubic case, $\epsilon_2(\omega)$ is a scalar, and in the orthorhombic case it is a tensor. So we have calculated the dielectric component with the light polarized along a, b and c as shown in Fig.\(^\text{8}\). The optical anisotropy in this material can be understood from our direction-dependent, optical dielectric tensor shown in Fig.\(^\text{8}\). From the calculations we see that the $\epsilon_2(\omega)$ spectra along a and c are almost the same. Large anisotropy is present in the lower energy region of the $\epsilon_2(\omega)$ spectra. In particular the sharp peaks present for $E||a$ and $E||c$ which is less pronounced for $E||b$. The optical conductivity obtained by Ahn and Millis\(^\text{24}\) from tight-binding parameterization of the band structure also shows a sharp peak feature in the lowest energy part of σ_{xx} whereas this feature is absent in their σ_{zz} spectrum. Our calculation predicts that the interband transition due to JT splitting is less pronounced in the ϵ_2 spectrum corresponding to $E||b$. In order to confirm these theoretical predictions polarized optical property measurements on LaMnO$_3$ are needed.

Solovyev\(^\text{25}\) suggested that the optical anisotropy in A-AF state LaMnO$_3$ is due to two factors: (i) Owing to large exchange splitting the minority-spin d_{z^2} states near E_F will contribute less to ϵ_2^{xx}. (ii) Owing to A-AF ordering and JT distortion, the contribution of d_{z^2} character to the states with d_{x^2} and d_{z^2} symmetry is significantly reduced and hence the intensity of ϵ_2^{xx} in the low-energy region should also be reduced. In order to understand the role of the JT distortion for the optical properties of LaMnO$_3$, we calculated also the optical dielectric tensor for LaMnO$_3$ in the cubic perovskite structure with A-AF ordering (Fig.\(^\text{8}\)). Just like for the orthorhombic A-AF phase, there is large optical anisotropy present in the lower-energy (< 2 eV) part of the spectrum. This indicates that the A-AF spin ordering is responsible for the large anisotropy in the optical dielectric tensor which in turn is a result of different spin-selection rules applicable to in-plane and out-of-plane optical transitions. However, the optical anisotropy in the orthorhombic A-AF phase is much larger than the corresponding undistorted cubic phase (Fig.\(^\text{8}\)) indicating that apart from A-AF ordering, the JT distortion also contributes to large optical anisotropy in the lower energy region of the optical spectra of LaMnO$_3$.

In order to compare our calculated spectra with those obtained by the LMTO-ASA method, we have plotted the optical dielectric tensors obtained by Solovyev et al.\(^\text{22}\) from LSDA calculation in Fig.\(^\text{8}\). Our calculated $E||b$ spectrum below 2 eV is found to be in good agreement with the $E||xx$ and $E||yy$ spectra of these authors. However, their $E||zz$ spectra is
much smaller in the lower-energy region than our results as well as the experimental findings (Fig. 8). From the optical spectrum calculated by the LDA+U method, Solovyev et al. found that the low-energy part (up to 3 eV) reflects excitations from O p to an unoccupied band formed by alternating Mn d_{x^2-r^2} and d_{y^2-r^2} orbitals. However, their study poorly described the higher-energy excitations. This discrepancy may be due to the limitations of ASA or the minimal basis they have used in the calculation (La 4f states where not included). Bouarab et al. calculated optical conductivity spectra for LaMnO3. They used the LMTO-ASA method where nonspherical contributions to the potential are not included. Further, these calculations are made with a minimal basis set and for the undistorted cubic perovskite structure rather than the actual distorted perovskite structure. Hence, it does not make sense to compare our calculated optical spectra directly with the latter findings.

As the linear optical spectra are directly measurable experimentally, we have reported our calculated optical spectra in Fig. 10. Also, to understand the anisotropy in the optical properties of LaMnO3 we show the linear optical spectra for LaMnO3 along the a and b axis in the same illustration. A large anisotropy in the optical properties for the low-energy region is clearly visible in the reflectivity as well as the extinction coefficient spectra. (Fig. 10 shows the experimentally measured reflectivity by Jung et al., Arima et al. and Takenaka et al. in comparison with calculated spectra from our optical dielectric tensors.). The reflectivity measured by Takenaka et al. above 8.4 eV is found at a higher value than found in the spectra of other two experiments (Fig. 10). Overall our calculated reflectivity spectra are found to be in good qualitative agreement with the experimental spectra up to 30 eV in Fig. 10. The peaks around 10 and 25 eV in our reflectivity spectra concur with the findings of Takenaka et al. As the optical properties of LaMnO3 are anisotropic, it is particularly interesting to calculate the effective number of valence electrons, N_{eff}(\omega), participating in the optical transitions in each direction. Hence, we have calculated (see Ref. 43) the number of electrons participating in the optical interband transitions in different crystallographic directions, and the comparison between N_{eff}(\omega) the E||a and E||b shows significant differences in the low-energy (Fig. 10). Except for the reflectivity there is no optical properties measurements for LaMnO3 available. Hopefully our findings will motivate such studies.

E. XPS and BIS studies

In spite of intense experimental and theoretical efforts to understand the electronic structure of LaMnO3, there are still a number of ambiguities concerning the VB features. Both x-ray (XPS) and ultraviolet photoemission spectroscopy (UPS) experiments showed a double peak structure between -10 eV and E_F. Even though it is widely accepted that the double-peak structure arises from O p and Mn d bands, an important controversy still remains in that some authors have argued that the O p band lies below the Mn t2g bands, while others have suggested the opposite. In Fig. 11 we have compared our calculated value of VB XPS intensity with the experimental spectra. In all the experimental studies, the main VB features have a marked increase in binding energy around 1.5–2 eV, remaining large in the region 2–6 eV, and falling off in the range 6–8 eV. The experimental XPS data show three peak intensity features between -7 and -3 eV. As can be seen from Fig. 11, these three peaks are well reproduced in the calculated profile. The large experimental background intensity makes a direct comparison with the calcu-
lated peak feature around -1.8 eV difficult. The overall agreement between the theoretical and experimental positions of peaks and shoulders in the XPS spectra is very satisfactory (Fig. 11). Note that the experimental XPS spectra does not exhibit any appreciable intensity in a correlation-induced satellite at higher-binding energies in contrast to intense satellite features usually found in transition metal monoxides, e.g. NiO. Thus, the good agreement between experimental and theoretical spectra indicates that the on-site Coulomb correlation effect is not significant in LaMnO$_3$.

Knowledge of the theoretically calculated photoemission spectra (PES) has the advantage that one can identify contributions from different constituents to the PES intensity in different energy ranges. From Fig. 11 it is clear that the XPS intensity in the energy range $-3.5 \text{ eV} \to E_F$ mainly originates from Mn d states. The O p electrons contribute to the PES intensity in the energy range -7 to 3.5 eV. Below -4 eV both La and Mn atoms contribute equally to the PES intensity. Pickett and Singh39 compared their theoretical DOS with PES and found significant differences. Thus, the good agreement between the experimental and our theoretical XPS indicates that the matrix-element effect is important in LaMnO$_3$.

We now turn to a discussion of the BIS spectra. The physical process in BIS is as follows. An electron of energy E_1 is slowed down to a lower energy level E_2 corresponding to an unoccupied valence state of the crystal. The energy difference is emitted as bremsstrahlung radiation, which reflects the density of unoccupied valence states. Our calculated BIS spectrum is compared with the experimental spectrum38 in Fig. 11 which show that theory is able to reproduce the experimentally observed peak at 2 eV. There is an intense peak above 3.5 eV in the experimental spectrum which originates from the La $4f$ electrons, but owing to its large intensity this is not shown in Fig. 11.

F. XANES spectra

Another experimental technique that provides information about CB is x-ray absorption spectroscopy. Calculated O K_α, Mn K_α and Mn L_{III} XANES spectra for LaMnO$_3$ are shown in Fig. 12. Because of the angular momentum selection rule (dipole approximation), only O $2p$ states and Mn $4p$ states contribute to the O K-edge and Mn K-edge spectra, respectively. The Mn $4s$ and Mn $3d$ states contribute to the Mn L_{III} spectrum. The calculated X-ray absorption spectrum for the O K-edge (VB $\to 1s$) is given in the upper panel of Fig. 12 along with available experimental data. The experimental spectrum has two prominent peaks in the low-energy range and both are well reproduced in our theoretical spectra even without including the core-hole effect in the calculation. As reflected in different Mn-O distances there are two kinds (crystallographically) of oxygens present in LaMnO$_3$ and results in considerable differences in peak positions in the XANES spectra.

The calculated L_{III} spectrum is shown in the middle panel of Fig. 12. Due to the non-availability of experimental Mn L_{III} spectra for LaMnO$_3$ we have compared our calculated spectrum with that experimentally established103 for Mn$^{3+}$ in Mn$_2$O$_3$. The calculated Mn K-edge spectrum for LaMnO$_3$ is given in the lower panel of Fig. 12 along with the available experimental K-edge spectra. Although DOS are large for the empty e_g^* and t_{2g}^* bands, they are not directly accessible in K-edge absorption via dipole transitions. Thus the main K-edge absorption begins where the large part of the $4p$ states are highly delocalized and extend over several Mn atoms. Takahashi102 show that the intensity of the Mn K-edge
spectrum increases with an increasing degree of local lattice distortion and is insensitive to the magnetic order. The experimental Mn K-edge spectra show two peaks in the lower energy region and these are well reproduced in our theoretical spectrum. In particular our Mn K-edge spectrum is found to be in very good agreement with that of Subias et al.\cite{104} in the whole energy range we have considered. The good agreement between experimental and calculated XANES spectra further emphasizes the relatively little significance of correlation effects in LaMnO$_3$ and also shows that the gradient-corrected full-potential approach is able to predict even the unoccupied spectra quite correctly.

IV. SUMMARY

Transition metal oxides are generally regarded as a strongly correlated systems which are believed to be not properly treated by electronic structure theory. The present paper has demonstrated, however, that accurate full-potential calculations including SO coupling and generalized-gradient corrections can account well for several features observed for LaMnO$_3$. We have presented a variety of results based on the \textit{ab initio} local spin-density approach that are broadly speaking in agreement with experimental results for both ground and excited state properties. The present study strongly support experimental\cite{104,105} and theoretical models\cite{13,17}, in which a strong coupling of the conduction electrons to a local Jahn-Teller distortion is considered to be important for understanding the basic physical properties of manganites. In particular we found the following:

1. The Mn ions are in the high-spin state in LaMnO$_3$ and hence the contribution to the minority-spin channel from the Mn 3d electrons are negligible small.

2. Both Mn t_{2g} and the e_g electrons are present in the entire valence band region. The e_g electrons with the d_{z^2} symmetry are well localized compared with those of $d_{x^2-y^2}$ symmetry and hence the d_{z^2} contribution in the vicinity of E_F is negligible. On the other hand, the t_{2g} electrons with d_{z^2} character have large electron distributions on the top of the valence band comparable with the distribution of $d_{x^2-y^2}$ electrons.

3. The insulating behavior in LaMnO$_3$ originates from the combined effect of Jahn-Teller distortion and A-type antiferromagnetic ordering.

4. Without Jahn-Teller distortion LaMnO$_3$ is predicted to be a ferromagnetic metal.

5. Unlike the LMTO-ASA calculations\cite{33} without inclusion of the correlation effects in the calculations we are able to predict the correct A-type antiferromagnetic insulating ground state for LaMnO$_3$ indicating that the importance of correlation effect has been exaggerated for this material.

6. The large changes in energy and the development of an energy gap resulting from the structural distortion along with exchange splitting indicate strong magnetostructural coupling. This may be the possible origin for the observation of CMR in hole-doped LaMnO$_3$.

23
7. Our calculation supports the viewpoint that the stabilization of the cubic phase is the prime cause for the occurrence of the ferromagnetic state by hole doping rather than the often-believed double-exchange mechanism.

8. The density-functional approach works well for not only the ground-state properties but also the excited state properties of LaMnO$_3$.

ACKNOWLEDGMENTS

PR is thankful for the financial support from the Research Council of Norway. Also wish to acknowledge Y. Tokura, T. Arima, K. Takenaka and J. Jung for generously sending their experimental optical data for comparison. Part of these calculations were carried out on the Norwegian supercomputer facilities. PR is grateful to Igor Solovyev and Lars Nordström for the useful communications and R. Vidya for the comments and critical reading of this manuscript. John Wills, Karlheinz Schwarz and Peter Blaha for making their programs available for the present study. O.E is grateful to the Swedish Research Foundation and the Swedish Foundation for Strategic Research (SSF).
REFERENCES

* Electronic address: ravindran.ponniah@kjemi.uio.no

1 G. Jonker and J. Van Santen, Physica (Amsterdam), 16, 337 (1950).
2 E.O. Wollan and W.C. Koehler, Phys. Rev. 100, 545 (1955); W.C. Koehler and E.O. Wollan, J. Phys. Chem. Solids., 2 100 (1957).
3 P. Schiffer, A.P. Ramirez, A.P. Bao and S.W. Cheong, Phys. Rev. Lett., 75, 3336 (1995).
4 T. Mizokawa, D.I. Khomskii and G.A. Sawatsky, Phys. Rev. B, 60, 7309 (1999).
5 R.M. Kusters, J. Singleton, D.A. Keen, R. McGreevy and W. Hages, Physica B, 155, 362 (1989); K. Chahara, T. Ohno, M. Kasai and Y. Kozono, Appl. Phys. Lett., 63, 100 (1993); R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer, Phys. Rev. Lett., 71, 2331 (1993); S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, and L. Chen, Science, 264, 413 (1994); H.L. Ju, C. Kwon, R.L. Green and T. Vankatesan, Appl. Phys. Lett., 65, 2108 (1994).
6 Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara and Y. Tokura, Phys. Rev. Lett., 74, 5108 (1995); P. Schiffer, A.P. Ramirez, W. Bao and S. -W. Cheong, Phys. Rev. Lett., 75, 3336 (1995); Y. Tomiaka, A. Asamitsu, Y. Moritomo, H. Kuwahara and Y. Tokura, J. Phys. Soc. Jpn., 64, 3626 (1995); H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo and Y. Tokura, J. Phys. Soc. Jpn., 64, 3626 (1995).
7 A. Asamitsu, Y. Moritomo, T. Arima and Y. Tokura, Nature, 373, 407 (1995); A. Asamitsu, Y. Moritomo, R. Kumai, Y. Tomioka and Y. Tokura, Phys. Rev. B, 54, 1716 (1996).
8 H.Y. Hang, S. -W. Cheong, N.P. Ong, and B. Batlogg, Phys. Rev. Lett., 77, 2041 (1996); T. Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura and Y. Tokura, Science 274, 1698 (1996).
9 C. Zener, Phys. Rev. 82, 403 (1951); P.W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955); P.G. de Gennes, Phys. Rev. 118, 141 (1960).
10 A.J. Millis, B.I. Shraiman and R. Mueller, Phys. Rev. Lett., 77, 175 (1996).
11 M. Kataoka and M. Tachiki, Physica B, 237-238, 24 (1997).
12 Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and N. Furukawa, J. Phys. Soc. Jpn., 63, 3931 (1994).
13 A.J. Millis, P.B. Littlewood and B.I. Shraimann, Phys. Rev. Lett., 74, 5144 (1995); A.J. Millis, Phys. Rev. B, 55, 6405 (1997).
14 K.I. Kugel and D.I. Khomski, Sov. Phys. JETP, 37, 725 (1973).
15 R. Maezono, S. Ishihara and N. Nagaosa, Phys. Rev. B, 83, 11583 (1998).
16 W. Koshibae, S. Ishihara, Y. Kawamura, S. Okamota, J. Inone and S. Maekawa, Physica B, 230-232 (1997).
17 H. Röder, J. Zang and R. Bishop, Phys. Rev. Lett., 76, 1356 (1996).
18 S. Ishihara, M. Yamanaka and N. Nagaosa, Phys. Rev. B, 56, 686 (1997).
19 A.J. Millis, P.B. Littlewook and B.I. Shraimann, Phys. Rev. Lett., 74, 5144 (1995).
20 P.E. Brito and H. Shiba, Phys. Rev. B, 57, 1539 (1998).
21 A. Takahashi and H. Shiba, Euro. Phys. J. B, 5, 413 (1998).
22 Y. Motome and M. Imada, J. Phys. Soc. Jpn., 68, 16 (1999).
23 O.N. Mryasov, R.F. Sabiryanov, A.J. Freeman and S.S. Jaswal, Phys. Rev. B, 56, 7255 (1997).
24 Z. Popovic and S. Satpathy, Phys. Rev. Lett., 84, 1603 (2000).
I.V. Solovyev and K. Terakura, J. Korean Phys. Soc., 33, 375 (1998).
26 K.H. Ahn and A.J. Millis, J. Appl. Phys., 87, 5013 (2000).
27 I.V. Solovyev, N. Hamada and K. Terakura, Phys. Rev. B, 53, 7158 (1996).
28 J.F. Lawler, J.G. Lunney and J.M.D. Coey, Appl. Phys. Lett., 65, 3017 (1994).
29 G. Pari, S.M. Jaya, G. Subramoniam and R. Asokamani, Phys. Rev. B, 51, 16575 (1995).
30 Z. Yang, L. Ye and X. Xie, J. Phys. Cond. Matt., 12, 2737 (2000).
31 I.V. Solovyev, N. Hamada and K. Terakura, Phys. Rev. B, 53, 7158 (1996).
32 J.F. Lawler, J.G. Lunney and J.M.D. Coey, Appl. Phys. Lett., 65, 3017 (1994).
33 G. Pari, S.M. Jaya, G. Subramoniam and R. Asokamani, Phys. Rev. B, 51, 16575 (1995).
34 K. Held and D. Vollhardt, Phys. Rev. Lett., 84, 5168 (2000).
35 J. Inoue and S. Mackama, Phys. Rev. Lett., 74, 3407 (1995).
36 A.E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame and A. Fujimori, Phys. Rev. B, 46, 3771 (1992).
37 D.D. Sarma, N. Shanthi and R. Mahadevan, Phys. Rev. B, 53, 1622 (1996).
38 W.E. Pickett, and D.J. Singh, Phys. Rev. B, 53, 1146 (1996).
39 I.V. Solovyev, N. Hamada and K. Terakura, Phys. Rev. Lett., 76, 4825 (1996).
40 D.D. Sarma, N. Shanthi, S.R. Barman, N. Hamada, H. Sawada and K. Terakura, Phys. Rev. Lett., 75, 1126 (1995).
41 D.J. Singh and W.E. Pickett, Phys. Rev. B, 57, 88 (1998).
42 P. Ravindran, A. Delin, B. Johansson, O. Eriksson and J.M. Wills, Phys. Rev. B, 59, 1176 (1999).
43 M. Abbate, F. de Groot, J. Fuggle, A. Fujimori, O. Strehbl, F. Lopez, M. Domke, G. Kaindl, G. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, and S. Uchida, Phys. Rev. B, 46, 4511 (1992).
44 J.-H. Park, C.T. Chen, S.-W. Cheong, W. Bao, G. Meigs, V. Chakarian, and Y.U. Idzerda, Phys. Rev. Lett., 76, 4215 (1996).
45 T. Saitoh, A.E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda and M. Takano, Phys. Rev. B, 51, 13942 (1995).
46 S. Bouarab, A. Vega and M.A. Khan, Phys. Rev. B, 54, 11271 (1996).
47 H. Sawada, Y. Morikawa, K. Tarakura and N. Hamada, Phys. Rev. B, 56, 12154 (1997).
48 G. Matsumoto, J. Phys. Soc. Jpn., 29, 606 (1970).
49 J.B.A.A. Elemans, B.V. Laar, K.R.V.D. Veen and B.O. Looptra, J. Solid State Chem., 3, 238 (1971).
50 J.B. Goodenough, Phys. Rev. 100, 564 (1955).
51 P. Blaha, K. Schwarz and J. Luitz, WIEN97, Vienna University of Technology, 1997
(Improved and updated Unix version of the original copyrighted WIEN code, which was published by P. Blaha, K. Schwarz, P. Sorantin and S.B. Trickey, Comput. Phys. Commun., 59 399 (1990).
52 J.P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
53 J.M. Wills, O. Eriksson, M. Alouani and D.L. Price in in Electronic Structure and Physical Properties of Solids, P.148, Ed. H. Dreyssse, Springer, Berlin (2000); J.M. Wills and B.R. Cooper, Phys. Rev. B, 36, 3809 (1987); D.L. Price and B.R. Cooper, Phys. Rev. B, 39, 4945 (1989).
O.K. Andersen, Phys. Rev. B, 12, 3060 (1975).
56 M. Alouani and J.M. Wills, Phys. Rev. B, 54, 2480 (1996); R. Ahuja, S. Auluck, J.M. Wills, M. Alouani, B. Johansson and O. Eriksson, Phys. Rev. B, 55, 4999 (1997).
57 F.J. Kahn, P.S. Pershan and J.P. Remeika, Phys. Rev. 186, 891 (1969).
58 M. Faraday, Phil. Trans. Roy. Soc., 136, 1 (1846).
59 W. Reim and J. Schoenes in Ferromagnetic Materials, Eds., K.H.K. Buschow and E.P. Wohlfarth, Elsevier, Netherland, 5 Chap.2 (1990).
60 H. Winter, P.J. Durham and G.M. Stocks, J. Phys. F, 14, 1047 (1984).
61 J. Redinger, P. Marksteiner and P. Weinberger, Z. Phys. B, 63, 321 (1986).
62 P. Marksteiner, P. Weinberger, R.C. Albers, A.M. Boring and G. Schadler, Phys. Rev. B, 34, 6730 (1986).
63 A. Neckel, K. Schwarz, R. Eibler and P. Rastl, Microchim. Acta, Suppl. 6, 257 (1975).
64 T. Arima, Y. Tokura and J.B. Torrance, Phys. Rev. B, 48, 17006 (1993).
65 J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett., 55, 418 (1985).
66 J.B. Goodenough, Magnetism and the Chemical Bond, Wiley, New York (1963).
67 J.H. Jung, K.H. Kim, K.J. Eom, T.W. Noh, E.J. Choi, J. Yu, Y.S. Kwon, and Y. Chung, Phys. Rev. B 55, 15489 (1997).
68 Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, Phys. Rev. Lett., 75, 109 (1995).
69 P. Mahadevan, N. Shanthi and D.D. Sarma, J. Phys. Condens. Matter., 9, 3129 (1997).
70 N. Hamada, H. Sawada and K. Terakura, in Spectroscopy of Mott insulators and Correlation Metals, edited by A. Fujimori and Y. Tokura, Springer-Verlag, Berlin (1995).
71 W.C. Koehler and E.O. Wollan, J. Phys. Chem. Solids, 2, 100 (1957).
72 K. Terakura, I.V. Solovyev and H. Sawada, in Advances in Condensed Matter Science: Colossal Magnetoresistive Oxides, ed. Y. Tokura, Gordan Breach, Tokyo, (1999).
73 K. Hirota, N. Kanedo, A. Nishizawa and Y. Endoh, J. Phys. Soc. Jpn., 65, 3736 (1996).
74 F. Moussa, M. Hennion, J. Rodriguez-Carvajal, H. Moudden, L. Pinsard and A. Revecolevschi, Phys. Rev. B, 54, 15149 (1996).
75 T. Hotta, S. Yunoko, M. Mayr and E. Dagotto, Phys. Rev. B, 60, R15009 (1999).
76 R.L. Rasera and G.L. Catchen, Phys. Rev. B, 58, 3218 (1998).
77 A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and Y. Tokura, Phys. Rev. B, 51, 14103 (1995).
78 H. Kawano, R. Kajimoto, M. Kubota and H. Yoshizawa, Phys. Rev. B, 53 R14709 (1996).
79 Y.R. Shen, Phys. Rev. 133, 511 (1964).
80 J.O. Donnell, M.S. Rzchowski, J.N. Eckstein and I. Bozovic, Appl. Phys. Lett., 72, 1775 (1998).
81 A.B. Shick, Phys. Rev. B, 60, 6254 (1999).
82 Q. Huang, A. Santoro, J.W. Lynn, R.W. Erwin, J.A. Borchers, J.L. Peng and R.L. Greene, Phys. Rev. B, 55, 14987 (1997).
83 T.J.A. Popma, M.G.J. Kamminga, Solid State Commun., 17, 1073 (1975).
84 R.A. de Groot, F.M. Mueller, P.G. van Engen and K.H.J. Buschow, Phys. Rev. Lett., 50, 2024 (1983).
85 W.E. Pickett and D.J. Singh, J. Magn. Magn. Mater., 172, 237 (1997).
86 K.H. Kim, J.H. Jung and T.W. Noh, Phys. Rev. Lett., 81, 1517 (1998).
87 J.J. Hamilton, E. L. Keatley, H. L. Ju, A. K. Raychaudhuri, V. N. Smolyaninova, and R.
L. Greene, Phys. Rev. B, 54, 14926 (1996).
88 P. Ravindran et al., (unpublished).
89 S. Yamaguchi, Y. Okimoto, K. Ishibashi and Y. Tokura, Phys. Rev. B, 58, 6862 (1998).
90 I.V. Solovyev, Phys. Rev. B, 55, 8060 (1997).
91 K. Takenaka, K. Iida, Y. Sawaki, S. Sugai, Y. Moritomo and A. Nakamura, J. Phys. Soc. Jpn., 68, 1828 (1999).
92 R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishnan, R. Mahesh, N. Rangavittal, C.N.R. Rao, Phys. Rev. B, 53, 3348 (1996).
93 G.H. Jonker, Physica, 20, 1118 (1954).
94 Z. Yang, Z. Huang, L. Ye and X. Xie, Phys. Rev. B, 60, 15674 (1999).
95 T. Mizokawa and A. Fujimori, Phys. Rev. B, 54, 5368 (1996).
96 J.H. Jung, K.H. Kim, T.W. Noh, E.J. Choi and J. Yu, Phys. Rev. B, 57, R11043 (1998).
97 I.V. Solovyev, Phys. Metals and Metallog. submitted (2001).
98 K. Takenaka, K. Iida, Y. Sawaki, S. Sugai, Y. Moritomo and A. Nakamura, Phys. Stat. Sol. B, 215, 637 (1999).
99 A. Chainani, M. Matthew and D.D. Sarma, Phys. Rev. B, 47, 15397 (1993).
100 W. Speier, J.C. Fuggle, R. Zeller, B. Ackermann, K. Szot, F.U. Hillebrecht and M. Campagna, Phys. Rev. B, 32, 3597 (1985).
101 H. Kurata, E. Lefevre and C. Colliex, R. Brydson, Phys. Rev. B, 47, 13763 (1993).
102 M. Takahashi, J. Igarashi and P. Fulde, J. Phys. Soc. Jpn., 68, 2530 (1999).
103 G. Subias, J. Garcia, J. Blasco and M.G. Proietti, Phys. Rev. B, 58, 9287 (1998).
104 G.M. Zhao, K. Ghosh, H. Keller and R.L. Greene, Phys. Rev. B, 59, 81 (1999).
105 S.J.L. Billinge R. G. Difrancesco, G. H. Kwei, J. J. Neumeier, and J. D. Thompson, Phys. Rev. B, 77, 715 (1996).
106 M. Jaime M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Phys. Rev. B, 54, 11914 (1996).
107 T.T.M. Palstra, A. P. Ramirez, S-W. Cheong, B. R. Zegarski P. Schiffer and J. Zaanen Phys. Rev. B, 56, 5104 (1997).
108 C.H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, and J. J. Neumeier Phys. Rev. Lett., 80, 853 (1998).
109 F. Bridges, C.H. Booth, G.H. Kwei, J.J. Neumeier and G.A. Sawatzky, Phys. Rev. B, 61, R9237 (2000).
110 M. Croft, D. Sills, M. Greenblatt, C. Lee, S.-W. Cheong, K.V. Ramanujachary and D. Tran, Phys. Rev. B, 55, 8726 (1997).
111 M. Abbate, G. Zampieri, F. Prado, A. Caneiro, A.R.B. Castro, Solid State Commun., 111, 437 (1999).
TABLES

TABLE I. Total energy (relative to the lowest energy state in meV/f.u.) for LaMnO$_3$ in A-, C-, G-AF, F and P states with undistorted cubic (referred as cubic) and orthorhombic structures.

Method	A-AF	C-AF	G-AF	F	P	Reference
LSDA(LAPW)	0	52	42	18	—	[48]
LSDA (LMTO-ASA, cubic)	15	—	125	—	—	[33]
LSDA(LMTO-ASA)	15	—	110	0	—	[33]
LSDA+U (LMTO-ASA, cubic)	0	—	2042	1076	—	[33]
LSDA+U (LMTO-ASA)	0	—	204	34	—	[33]
GGA+SO (FLMTO)	0	66.5	60.4	24.7	1515.4	Present
GGA+SO (FLMTO, cubic)	406.9	439.4	573.1	347.5	1642.9	Present

TABLE II. Calculated magnetic moment (in μ_B/atom) per Mn atom for LaMnO$_3$ in AF (A-, C-, G-type) and F states. The total moment (total) refers to the total magnetic moment per formula unit.

Method	A	C	G	F	F, total	Reference
LSDA (LMTO-ASA, cubic)	3.81	—	3.64	3.81	—	[33]
LSDA (LMTO-ASA)	3.73	—	3.63	3.76	—	[33]
LSDA+U (LMTO-ASA)	3.72	—	3.63	3.76	—	[33]
GGA+SO (FLMTO)	3.433	3.356	3.272	5.509	3.976	Present
GGA+SO (FLMTO, cubic)	5.315	3.278	3.134	3.318	3.698	Present
GGA (FLAPW)	3.394	—	—	3.295	3.525	Present
Experiment	3.7±0.1	—	—	—	—	[50]
FIGURES

FIG. 1. The GdFeO$_3$-type crystal structure of LaMnO$_3$, viz. an orthorhombically distorted perovskite-type structure.

FIG. 2. Orbital projected DOS for Mn in F state LaMnO$_3$ with hypothetical cubic perovskite structure. (Obtained by LAPW calculations.)

FIG. 3. Total DOS for LaMnO$_3$ in cubic perovskite-type atomic arrangement and P, F, A-, C- and G-AF magnetic states.

FIG. 4. Total density of states for LaMnO$_3$ in orthorhombic GdFeO$_3$-type structure and P, F, A-, C- and G-AF magnetic states.

FIG. 5. Site and angular-momentum projected DOS for A-AF state LaMnO$_3$ in orthorhombic GdFeO$_3$-type structure.

FIG. 6. Orbital projected DOS for Mn in A-AF state LaMnO$_3$ in orthorhombic GdFeO$_3$-type structure. (Results obtained from LAPW calculations.)

FIG. 7. Magneto-optical Kerr-rotation, ellipticity, Faraday rotation and ellipticity spectra obtained for F state LaMnO$_3$ in the orthorhombic GdFeO$_3$-type structure. The experimental Kerr-rotation spectrum for La$_{0.7}$Sr$_{0.3}$MnO$_3$ is taken from Ref. 83 and the experimental Kerr-rotation and Kerr-ellipticity spectra for La$_{0.8}$Sr$_{0.2}$MnO$_3$ are taken from Ref. 89.

FIG. 8. Imaginary part of optical dielectric tensors for the diagonal elements ($\epsilon_2(\omega)$) for the A-AF states LaMnO$_3$ in hypothetical cubic and real orthorhombic GdFeO$_3$-type structures. Off-diagonal element for the imaginary part of the dielectric tensor ($\epsilon_{xy}^2(\omega)$) for F state LaMnO$_3$ with the GdFeO$_3$-type orthorhombic structure. The experimental $\epsilon_2(\text{omega})$ data are taken from Ref. 67,64 and the theoretical data are from Ref. 27.

FIG. 9. Calculated electronic energy band structure for A-AF state LaMnO$_3$ in orthorhombic GdFeO$_3$ structure. Fermi level set at zero. Relevant symmetry directions in the Brillouin zone are indicated.

FIG. 10. Calculated linear optical properties; absorption coefficient ($I(\omega)$) in 10^5 cm$^{-1}$, reflectivity ($R(\omega)$), real part of optical dielectric tensor ($\epsilon_1(\omega)$), refractive index ($n(\omega)$), extinction coefficient ($k(\omega)$), electron energy loss function ($L(\omega)$), and effective number of electrons participating the optical interband transition ($N_{\text{eff}}(\omega)$ in electrons/f.u.) for A-AF state LaMnO$_3$ in GdFeO$_3$-type orthorhombic structure. The experimental reflectivity spectra are taken from Ref. 67,64,98.
FIG. 11. XPS and BIS spectra for A-AF state LaMnO$_3$ in GdFeO$_3$-type orthorhombic structure. Experimental XPS spectrum is taken from Ref. 46 and BIS spectrum from Ref. 41.

FIG. 12. XANES spectra for A-AF state LaMnO$_3$ in orthorhombic GdFeO$_3$-type structure. The experimental Mn K-edge spectra are taken from Refs. 103,109,110, the Mn $L_{II,III}$ spectrum from Ref. 101 and the O K-edge spectra from Refs. 45,111.
Energy (eV)

DOS (states eV$^{-1}$)

d$_{yz}$
d$_{xz}$
d$_{xy}$
d$_{x-y}^{2}$
d$_{z}^{2}$

e$_{g}$
t$_{2g}$

Energy (eV)
Minority spin

Majority spin

Hypothetical Cubic

GdFeO$_3$-type

Photon Energy (eV)
LaMnO$_3$

Sarma et al. (exp.)

LaMnO$_3$

La

Mn

O

BIS

Energy (eV)

Intensity (arb. unit)

XPS

La

Mn

O

LaMnO$_3$

Saitoh (exp.)

Energy (eV)
