Supplemental Figure 1. Recombination of the Brca1 floxed allele in hematopoietic tissue following pIpC treatment. RT-PCR genotyping analysis of Brca1 allele status in spleen and brain of control Brca1^{F/F};Trp53^{+/−} (n=3) and diseased Mx1-Cre;Brca1^{F/F};Trp53^{+/−} (n=8) mice. Values represent mean ± SEM. Statistical significance was assessed using a two-tailed Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). All mice carry Mx1-Cre except controls.
Supplemental Figure 2 – related to Figures 1 and 2

A

WBC reads

K/U/L

Control (average)

Brcal+/-(average)

Brcal+/+;Trp53+/-(individual)

Weeks post initial pylpC

Peripheral Blood

B

B220+ cells

% Live Cells

*** ****

n.s.

C

CD3+ cells

% Live Cells

** n.s.

D

Gr1+ cells

% Live Cells

n.s. n.s.

E

Bone marrow

% c-Kir/CD71+ cells

*** ****

dKIt

cKit

CD71+/c-Kit+ CD71+

Spleen

% c-Kir/CD71+ cells

**** ****

dKIt

cKit

CD71+/c-Kit+ CD71+
Supplemental Figure 2, related to Figures 1 and 2. Expansion of erythroid lineage in *Mx1-Cre;Brca1^{F/F};Trp53^{+/−}* mice. (A) Individual peripheral blood white blood cell (WBC) reads* of *Mx1-Cre;Brca1^{F/F};Trp53^{+/−}* mice (n=9) and average WBC reads* of control (n=13) and *Mx1-Cre;Brca1^{F/F}* (n=11) mice before (prebleed) and after plpC treatment. * Indicate erythroid blast cells. (B-D) No increase of B220⁺ B cell (B), CD3⁺ T cell (C), or Gr1⁺ cell (D) frequencies in peripheral blood of diseased *Mx1-Cre;Brca1^{F/F};Trp53^{+/−}* mice (n=9) compared to control (n=8) or *Mx1-Cre;Brca1^{F/F}* (n=6) mice. (E) Frequencies of c-kit⁺, CD71⁺/c-kit⁺, and CD71⁺ cells in bone marrow and spleen in diseased *Mx1-Cre;Brca1^{F/F};Trp53^{+/−}* mice (n=5) show the high abundance of CD71 and c-kit double positive cells. Values represent mean ±SEM. Statistical significance was assessed using one-way ANOVA followed by Bonferroni correction (*p < 0.0167, **p < 0.003, ***p < 0.0003, ****p < 0.00003). Controls were without *Mx1-Cre*, all other mice carry *Mx1-Cre.*
Supplemental Figure 3

Supplemental Figure 3. *Vav1-iCre; Brca1^{F/F}; Trp53^{+/−}* mice recapitulate hematopoietic phenotypes of Mx1-Cre driven Brca1/Trp53 deficiency. (A) *Vav1-iCre; Brca1^{F/F}; Trp53^{+/−}* mice develop pIpC-independent splenomegaly. Increased spleen weights of *Vav1-iCre; Brca1^{F/F}; Trp53^{+/−}* (n=6) mice compared to control (n=7) and *Vav1-iCre; Brca1^{F/F}* (n=4) mice. (B-C) H&E stains of spleen sections show that compared to controls (B), *Vav1-iCre; Brca1^{F/F}; Trp53^{+/−}* spleens (C) are effaced with monomorphic cells. (D-E) Compared to cytopenic *Vav1-iCre; Brca1^{F/F}* mice, *Vav1-iCre; Brca1^{F/F}; Trp53^{+/−}* mice have higher white blood cell (WBC) reads (D) and bone marrow megakaryocyte/erythroid progenitor (MEP)(E) frequencies. WBC and flow cytometry numbers: Control (n=20), *Vav1-iCre; Brca1^{F/F}* (n=11), *Vav1-iCre; Brca1^{F/F}; Trp53^{+/−}* (n=18). Values represent means ±SEM. Statistical significance was assessed using one-way ANOVA followed by Bonferroni correction (*p<0.0167, **p<0.003, ***p<0.0003, ****p<0.00003). Controls were either wildtype or without *Vav1-iCre.*
Supplemental Figure 4 – related to Figure 3

A

B

C

D

E

F

G

H

I

J

K

B cell

Spleen

T cell

Gr+Mac1

% Live Cells

% Live Cells

% Live Cells
Supplemental Figure 4, related to Figure 3. Mx1-Cre;Brca1^{F/insC};Trp53^{+/−} mice develop an erythroproliferative disease similar to that of Mx1-Cre;Brca1^{F/F};Trp53^{+/−} mice. (A) Individual mouse white blood cell (WBC) reads* show that Mx1-Cre;Brca1^{F/insC};Trp53^{+/−} mice (black, n=5) develop high WBC reads* earlier than Mx1-Cre;Brca1^{F/F};Trp53^{+/−} mice (red, n=4). (B) Time to elevated WBC read* in Mx1-Cre;Brca1^{F/insC};Trp53^{+/−} (black, n=5) and Mx1-Cre;Brca1^{F/F};Trp53^{+/−} (red, n=4) mice. (C-D) Spleen (C) and liver (D) weights 8-12 weeks post initial plpC treatment. The spleens of Mx1-Cre;Brca1^{F/insC};Trp53^{+/−} and Mx1-Cre;Brca1^{F/F};Trp53^{+/−} mice were on average 14-fold larger (5.8% vs. 0.4% spleen/body weight) and 12-fold larger (4.9% vs. 0.4% spleen/body weight) than control mice. Livers were on average 2- (9.0% vs. 4.3% liver/body weight) and 1.9-fold (9.3% vs. 5.0% liver/body weight) larger. Numbers of mice: Controls (n=6), Mx1-Cre;Brca1^{F/insC}; Trp53^{+/−} (n=9), and Mx1-Cre;Brca1^{F/F}; Trp53^{+/−} (n=13). (E-J) Representative H&E stained sections of effaced spleens (F,G) and infiltrated liver (I,J) of Mx1-Cre;Brca1^{F/insC}; Trp53^{+/−} and Mx1-Cre;Brca1^{F/F}; Trp53^{+/−} mice compared to control (E,H). (K) Flow cytometric analysis of spleen B cells, T cells, and granulocyte/monocyte late progenitors (Gr⁺Mac1⁺) in control (n=5), Mx1-Cre;Brca1^{F/insC}; Trp53^{+/−} (n=2) and Mx1-Cre;Brca1^{F/F}; Trp53^{+/−} (n=5) mice. Values represent mean ± SD. Statistical significance was assessed using a log rank test or one-way ANOVA followed by Bonferroni correction (*p < 0.0167, **p < 0.003, ***p < 0.0003, ****p < 0.00003). All mice carry Mx1-Cre except controls.
Supplemental Figure 5. Enlarged spleens of diseased Mx1-Cre; Brca1^{1F/F}; Trp53^{+/-} mice show Trp53 LOH. (A) Whole exome analysis show specific loss of heterozygosity in the spleens of diseased Mx1-Cre;Brca1^{1F/F};Trp53^{+/-} mice compared to brains and tissue of control Brca1^{1F/F};Trp53^{+/-} mice. Signal intensity of the genomic region corresponding to the Trp53 deletion is reduced in Mx1Cre;Brca1^{1F/F};Trp53^{+/-} spleens compared to control Brca1^{1F/F};Trp53^{+/-} spleens. No difference in signal between control
Brca1^{F/F};Trp53^{+/−} and Mx1-Cre;Brca1^{F/F};Trp53^{+/−} brains. (B) RT-PCR genotyping analysis show decreased wildtype (WT) probe and increased knockout (KO) probe in enlarged Mx1-Cre;Brca1^{F/F};Trp53^{+/−} spleens compared to control Brca1^{F/F};Trp53^{+/−} spleens. No difference in brain tissue. Control Brca1^{F/F};Trp53^{+/−} (n=2) and Mx1-Cre;Brca1^{F/F};Trp53^{+/−} (n=3).
Supplemental Figure 6

A. WBC reads

B. Erythroblasts (CD71^+\text{c-kit}^+)

C. WBC reads

D. RBCs

E. Erythroblasts (CD71^+\text{c-kit}^+)

F. UF Spleen cells

G. CD71^+\text{c-kit}^+ Spleen cells

H. Spleen

I. % Body Weight
Supplemental Figure 6. Erythroid neoplasia of *Brca1* and *Trp53* double deficiency is transplantable through diseased bone marrow and spleen. (A) Terminal white blood cell (WBC) reads of primary and secondary recipients of control or *Mx1-Cre;Brca1^{F/F};Trp53^{+/-}* bone marrow (BM) cells. WBC reads* of CD71+ recipient mice with prolonged survival are marked by open circles. Control UF (n=4) and *Mx1-Cre;Brca1^{F/F};Trp53^{+/-}* primary UF (n=7), primary CD71+/c-kit+ (n=12), primary CD71+ (n=7), primary c-kit+ (n=1), secondary UF (n=5), secondary CD71+c-kit+ (n=5). (B) Flow cytometric analysis for CD71+/c-kit+ erythroblasts in recipients of control UF (n=4) or *Mx1-Cre;Brca1^{F/F};Trp53^{+/-}* bone marrow – primary (1^o) UF (n=4), 1^o CD71+/c-kit+ (n=3), secondary (2^o) CD71+/c-kit+ (n=4), 1^o CD71+(n=6), 1^o c-kit+(n=1). (C-D) Terminal white blood cell reads* (WBCs) (C) and red blood cell counts (RBCs) of recipients of *Mx1-Cre;Brca1^{F/F};Trp53^{+/-}* spleen cells - UF (n=4-5), CD71+/c-kit+ (n=3), CD71+ (n=4-5), and c-kit+ (n=2). (E) Flow cytometric analysis for CD71+/c-kit+ erythroblasts in spleen and bone marrow of mice that received spleen cells. UF (n=4), CD71+/c-kit+ (n=5), CD71+ (n=3), and c-kit+ (n=2). (F) Kaplan-Meier curves of overall survival for recipients of 2.0x10⁶ (bold solid line, n=3), 0.2x10⁶ (solid line, n=6), or 0.02x10⁶ (dotted line, n=4) of unfractionated (UF) *Mx1-Cre;Brca1^{F/F};Trp53^{+/-}* spleen (SP) cells. Average time to disease is 3.14 weeks, 4.07 weeks, and 5.57 weeks respectively. (G) Kaplan-Meier survival curves for recipients of 20,000 (solid line, n=7) or 1,000 (dotted line, n=4) CD71+/c-kit+ spleen cells from *Mx1-Cre;Brca1^{F/F};Trp53^{+/-}* mice. (H) Elevated terminal spleen weights of recipient mice in (F). (I) Elevated terminal spleen weights of recipient mice in (G). * Indicate erythroid blast cells. Values represent mean ± SEM.
Supplemental Figure 7

- **A:**
 - WBC reads
 - RBCs
 - Spleen
 - Time post initial plpC
 - Time post Initial plpC
 - Time post Initial plpC

- **B:**
 - 3.5 weeks
 - Percent survival
 - Time post transplant (weeks)

- **C:**
 - 6.5 weeks
 - Percent survival
 - Time post transplant (weeks)

- **D:**
 - 3.5 weeks
 - WBC reads
 - Spleen

- **E:**
 - 6.5 weeks
 - WBC reads
 - Spleen

Legend:
- Control
- Brca1^{+/+}; Trp53^{++}
- Control BM
- Control SP
- Brca1^{+/+}; Trp53^{++} BM
- Brca1^{+/+}; Trp53^{++} SP

Graphs showing data for WBC reads, RBCs, spleen, percent survival, and body weight with various time points and conditions.
Supplemental Figure 7. *Brca1/Trp53* deficiency-associated erythroleukemia can be transplanted from bone marrow or spleen prior to disease manifestation in peripheral blood (A) White blood cell reads* (WBCs), red blood cell counts (RBCs) and spleen weights of 3.5-, 6.5-m, and >10.5-week old *Mx1-Cre;Brca1^{F/F};Trp53^{+/−}* or control donors. (B-C) Kaplan-Meier survival curves of the recipients of 3.5- or 6.5-week bone marrow (BM) or spleen (SP) cells. Control BM (n=5), SP (n=4) and *Mx1-Cre;Brca1^{F/F};Trp53^{+/−}* BM (n=3), SP (n=5). (D-E) Terminal white blood cell reads* (WBCs) and spleen weights of recipient mice. * Indicate erythroid blast cells. Values represent mean ± SEM. Statistical significance was assessed using a two-tailed Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). All mice carry *Mx1-Cre* except controls.
Supplemental Figure 8

A. Floxed Brca1 probe

B. Trp53 WT probe

C. Trp53 KO probe

D. Brain relative expression

E. Brain relative expression

F. Brain relative expression

G. WBC reads

H. RBCs

I. Spleen

Legend:
- Control - Veh
- Control - Olap
- Vav-cre, Brca1fl/fl - Veh
- Vav-cre, Brca1fl/fl - Olap

57
Supplemental Figure 8. *Brca1* deficient hematopoietic cells are sensitive to PARP inhibitor olaparib. (A-F) The signal levels of the probes that recognize unrecombined floxed *Brca1* (A) and wild-type *Trp53* (B) are significantly higher and the probe that recognize *Trp53* knockout (C) lower in olaparib-treated spleens (n=7) compared to vehicle-treated spleens (n=7). No differences seen between the two treatment groups in brain tissue (D-F). (G-H) Peripheral blood counts before (Pre Tx) and after (Post Tx) 10 daily treatments of olaparib (50mg/kg) or vehicle. Reduced white blood cell (WBC) reads* (2.55-fold) and red blood cell (RBC) (2.64-fold) counts in olaparib-treated Vavi-Cre;*Brca1*F/F mice (n=5) compared to vehicle-treated Vavi-Cre;*Brca1*F/F mice (n=7). No significant decrease of WBC reads* and modest decrease of RBC counts seen in olaparib-treated control mice (n=6) compared to vehicle-treated control mice (n=6). * Indicate erythroid blast cells. (I) Reduced spleen weights of olaparib-treated Vavi-Cre;*Brca1*F/F mice (n=6) compared to vehicle-treated Vavi-Cre;*Brca1*F/F mice (n=7). No difference in spleen weights between olaparib- and vehicle-treated control mice (n=6). Values represent mean ± SEM. Statistical significance was assessed using a two-tailed Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). All mice carry Vav1- iCre except controls.
Supplemental Figure 9. BLG-cre;Brca1^{F/F};Trp53^{+/+} and BLG-cre;Brca1^{F/insC};Trp53^{+/+} mice develop mammary tumors following a long latency. (A-C) Histopathology of BLG-cre;Brca1^{F/F};Trp53^{+/+} tumors categorized as poorly differentiated (A), moderately differentiated (B), or well differentiated (C). (D) Kaplan-Meier curves for survival of control (dashed black, n=15), BLG-cre;Brca1^{F/F};Trp53^{+/+} (solid black, n=20), and BLG-cre;Brca1^{F/insC};Trp53^{+/+} (solid red, n=21) mice. Average time to maximum tumor BLG-cre;Brca1^{F/F};Trp53^{+/+} 11.5 months vs. BLG-cre;Brca1^{F/insC};Trp53^{+/+} 13.9 months, p=0.032). Statistical significance was assessed using a log-rank test. Controls were paired littermates of various genotypes, all without a BLG-Cre allele.
Supplemental Table 1. Antibodies used in flow cytometric analysis.

Antibody	Clone	Conjugate	Catalog no.	Provider
Sca1	D7	PE-Cy7	108113	BioLegend
CD117 (c-kit)	2B8	APC-Cy7	105825	BioLegend
CD117 (c-kit)	2B8	APC-eFluor780	47-1171-82	Invitrogen
CD117 (c-kit)	2B8	PE-Cy7	105813	BioLegend
CD48	HM48-1	APC	103411	BioLegend
CD150	TC15-12F12.2	PE	115903	BioLegend
CD16/32	93	Alexa Fluor 700	56-0161-82	Invitrogen
CD34	RAM34	FITC	11-0341-82	Invitrogen
CD3	17A2	Alexa Fluor 700	56-0032-82	Invitrogen
CD3	17A2	PE	100205	BioLegend
CD3ε	142-2C11	Biotin	100301	BioLegend
CD4	GK1.5	PE	12-0041-82	eBioscience
CD4	GK1.5	FITC	100405	BioLegend
CD4	53-7.3	Biotin	100603	BioLegend
CD8a	53-6.7	Biotin	100703	BioLegend
CD8a	53-6.7	FITC	100705	BioLegend
Ter119	TER-119	APC	116211	BioLegend
Ter119	TER-119	Biotin	116203	BioLegend
CD45	30-F11	Alexa Fluor 700	103127	BioLegend
CD45R (B220)	RA3-6B2	PE	103207	BioLegend
CD45R (B220)	RA3-6B2	PerCP-Cy5.5	65-0452	TONBO
CD45R (B220)	RA3-6B2	Biotin	103203	BioLegend
Gr-1 (Ly-6G)	RB6-8C5	PE	108407	BioLegend
Gr-1 (Ly-6G)	RB6-8C5	PE-Cy7	108415	BioLegend
Gr-1 (Ly-6G)	RB6-8C5	Biotin	108403	BioLegend
CD11b (Mac-1)	M1/70	APC-eFluor780	47-0112-82	Invitrogen
CD11b (Mac-1)	M1/70	PE	553311	BD Pharmigen
CD11b (Mac-1)	M1/70	Biotin	101230	BioLegend
CD71	RI7217	BV421	113813	BioLegend
Streptavidin		PE-CF594	562318	BD Biosciences

60