Yet another note on the arithmetic-geometric mean inequality

Kabluchko, Zakhar, Prochno, Joscha and Vysotsky, Vladislav (2020) Yet another note on the arithmetic-geometric mean inequality. Studia Mathematica, 253. pp. 39-55. ISSN 0039-3223

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/83803/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
YET ANOTHER NOTE ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY

ZAKHAR KABLUCHKO, JOSCHA PROCHNO, AND VLADISLAV VYSOTSKY

Abstract. It was shown by E. Gluskin and V.D. Milman in [GAFA Lecture Notes in Math. 1807, 2003] that the classical arithmetic-geometric mean inequality can be reversed (up to a multiplicative constant) with high probability, when applied to coordinates of a point chosen with respect to the surface unit measure on a high-dimensional Euclidean sphere. We present here two asymptotic refinements of this phenomenon in the more general setting of the surface probability measure on a high-dimensional \(\ell_p \)-sphere, and also show that sampling the point according to either the cone probability measure on \(\ell_p \) or the uniform distribution on the ball enclosed by \(\ell_p \) yields the same results. First, we prove a central limit theorem, which allows us to identify the precise constants in the reverse inequality. Second, we prove the large deviations counterpart to the central limit theorem, thereby describing the asymptotic behavior beyond the Gaussian scale, and identify the rate function.

1. Introduction and main results

The classical inequality of arithmetic and geometric means states that the arithmetic mean of a finite sequence of non-negative real numbers is greater than or equal to the geometric mean of the sequence, i.e., for any \(n \in \mathbb{N} \) and \(x_1, \ldots, x_n \in [0, \infty) \),

\[
\left(\prod_{i=1}^{n} x_i \right)^{1/n} \leq \frac{1}{n} \sum_{i=1}^{n} x_i
\]

with equality if and only if \(x_1 = \cdots = x_n \). This inequality may be written in the form

\[
\left(\prod_{i=1}^{n} y_i \right)^{1/n} \leq \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} y_i^2 \right)^{1/2},
\]

where \(y_1, \ldots, y_n > 0 \). This means that if \(y = (y_1, \ldots, y_n) \) is an element of the Euclidean unit sphere \(S^{n-1} \), then

\[
\left(\prod_{i=1}^{n} |y_i| \right)^{1/n} \leq \frac{1}{\sqrt{n}}.
\]

2010 Mathematics Subject Classification. Primary 52A23, 60F05, 60F10; Secondary 46B06, 46B07.

Key words and phrases. arithmetic-geometric mean inequality, central limit theorem, large deviations, large deviations principle.
A natural question is how sharp this inequality is for a typical point on the sphere. In [7, Proposition 1], Gluskin and Milman showed that for large \(n \in \mathbb{N} \) the arithmetic and geometric means are actually equivalent (up to multiplicative constants) with very high probability. More precisely, if we denote by \(\sigma \) the rotationally invariant surface probability measure on \(S^{n-1} \), then for any \(t \in (0, \infty) \),

\[
\sigma \left(\left\{ x \in S^{n-1} : \left(\prod_{i=1}^{n} |x_i| \right)^{1/n} \geq t \cdot \frac{1}{\sqrt{n}} \right\} \right) \geq 1 - (1.6\sqrt{t})^n.
\]

In other words, if we sample a point uniformly at random on the unit Euclidean sphere, then it will satisfy a reverse (up to constant) arithmetic-geometric mean inequality with high probability. Alternatively, we can sample a point uniformly at random from the unit Euclidean ball, and put it to the sphere dividing by its norm.

The problem has been revisited by Aldaz in [2, Theorem 2.8], who showed that for any \(k, \varepsilon > 0 \) there exists an \(N = N(k, \varepsilon) \in \mathbb{N} \) such that for every \(n \geq N \), for the set

\[
B_n = \left\{ x \in S^{n-1} : \frac{(1 - \varepsilon)e^{-\frac{1}{2}(\gamma + \log 2)}}{\sqrt{n}} < \left(\prod_{i=1}^{n} |x_i| \right)^{1/n} < \frac{(1 + \varepsilon)e^{-\frac{1}{2}(\gamma + \log 2)}}{\sqrt{n}} \right\}
\]

it holds

\[
\sigma(B_n) \geq 1 - \frac{1}{n^k},
\]

where \(\gamma \) denotes Euler’s constant. This identifies the exact constant \(e^{-\frac{1}{2}(\gamma + \log 2)} \) around which the ratio of geometric and arithmetic means concentrates. Aldaz also obtained a similar result for points chosen on the \(\ell_1^n \)-sphere (with concentration around the constant \(e^{-\gamma} \)) and studied weighted versions of the arithmetic-geometric mean inequality. We also refer the reader to [1].

In this note we complement the inequalities (1.1) and (1.2) by finding the (logarithmic) asymptotics of their left-hand sides. Our first observation is the following central limit theorem. We state and prove it in the setting of the inequality between geometric and \(p \)-generalized means, which says that for all \(p > 0, n \in \mathbb{N}, \) and \(x_1, \ldots, x_n \in \mathbb{R}, \)

\[
\left(\prod_{i=1}^{n} |x_i| \right)^{1/n} \leq \left(\frac{1}{n} \sum_{i=1}^{n} |x_i|^p \right)^{1/p}.
\]

Since both sides of this inequality scale linearly, we can assume that the right-hand side equals (or does not exceed) one. If \(1 \leq p < \infty \), this means that \((x_1, \ldots, x_n) \) belongs to a unit \(\ell_p^n \)-sphere (or an \(\ell_p^n \)-ball), for which we
use the respective standard notation

\[S_p^{n-1} = \{ x \in \mathbb{R}^n : \| x \|_p = 1 \} \quad \text{and} \quad B_p^n = \{ x \in \mathbb{R}^n : \| x \|_p \leq 1 \} \]

with the \(\| \cdot \|_p \)-norm of \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) given by

\[\| x \|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}. \]

Then it is natural to study the behavior of the geometric mean for typical \(x \)'s, which corresponds to choosing \(x \) at random. There are several natural probability measures on \(B_p^n \) and \(S_p^{n-1} \). Restricting the Lebesgue measure to \(B_p^n \) and normalizing it, we obtain the uniform probability distribution on \(B_p^n \). We shall also consider the surface probability measure and cone probability measure on \(S_p^{n-1} \), which we denote respectively by \(\sigma_p \) and \(\mu_p \); see Subsection 2.2 for the definition of \(\mu_p \).

Recall that for \(x > 0 \), the digamma function \(\psi \) is defined via

\[\psi(x) := \frac{\Gamma'(x)}{\Gamma(x)}, \]

where \(\Gamma \) denotes the gamma function and \(\Gamma' \) its derivative.

Theorem 1.1. Let \(n \in \mathbb{N} \) and \(p \in [1, \infty) \). Suppose that \(X_n = (X_1^{(n)}, \ldots, X_n^{(n)}) \) is a random vector that is either uniformly distributed over \(B_p^n \) or distributed according to \(\mu_p \) or \(\sigma_p \) on \(S_p^{n-1} \). Then, for every \(a \in \mathbb{R} \),

\[
\lim_{n \to \infty} \mathbb{P} \left[\left(\prod_{i=1}^{n} |X_i^{(n)}| \right)^{1/n} \geq e^{m_p} \left(1 + \frac{a}{\sqrt{n}} \right) \cdot \left(\frac{1}{n} \sum_{i=1}^{n} |X_i^{(n)}|^p \right)^{1/p} \right]
= 1 - \Phi \left(\frac{pa}{\sqrt{\psi'(\frac{1}{p}) - p}} \right),
\]

where \(\Phi \) denotes the distribution function of a standard normal random variable and

\[m_p := \frac{\psi(\frac{1}{p}) + \log p}{p} \]

is a negative constant only depending on \(p \).

In other words, the sequence of (random) ratios of geometric and \(p \)-generalized means, given by

\[R_n := \left(\frac{n}{n} \right)^{1/n} \cdot \left(\prod_{i=1}^{n} |X_i^{(n)}| \right)^{1/n} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} |X_i^{(n)}|^p \right)^{1/p}, \quad n \in \mathbb{N}, \]

satisfies a central limit theorem with the normalization \(\sqrt{n}(e^{-m_p}R_n - 1) \).
Remark 1.2. Some particular values of e^{mp} for $p \in \{1, 2, 4\}$ and $p \to +\infty$ are

$$e^{mp} = \begin{cases} e^{-\gamma} \approx 0.561 & : p = 1 \\ \exp\left(-\frac{\gamma + \log 2}{2}\right) \approx 0.529 & : p = 2 \\ \exp\left(-\frac{2\gamma + \pi + 2\log 2}{8}\right) \approx 0.491 & : p = 4 \\ e^{-1} & : p \to \infty , \end{cases}$$

and $\psi'(1) = \frac{\pi^2}{6}$, $\psi'(\frac{1}{2}) = \frac{\pi^2}{2}$ (see [8, Section 8.366]). Let us also note that, setting $a = 0$ in Theorem 1.1, we obtain

$$\lim_{n \to \infty} \mathbb{P}\left[\left(\prod_{i=1}^{n} |X_i^{(n)}| \right)^{1/n} \leq e^{mp} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} |X_i^{(n)}|^p \right)^{1/p} \right] = \frac{1}{2},$$

which means that with probability approaching $1/2$ the inequality between geometric and p-generalized means can be improved with the multiplicative constant $e^{mp} < 1$. Similarly, using Theorem 1.1 with $a \to +\infty$ and $a \to -\infty$, we see that with probability approaching 1, the inequality holds true with any constant $c > e^{mp}$ but ceases to hold with any constant $c < e^{mp}$. The precise rate of convergence of these probabilities will be identified in our large deviations result, Theorem 1.4.

Remark 1.3. As will be shown at the end of the proof of Theorem 1.1, we also have

$$\lim_{n \to \infty} \mathbb{P}\left[\left(\prod_{i=1}^{n} |X_i^{(n)}| \right)^{1/n} \geq e^{mp} \left(1 + \frac{a}{\sqrt{n}} \right) \cdot n^{-1/p} \right] = 1 - \Phi\left(\frac{pa}{\sqrt{\psi'(\frac{1}{p}) - p}} \right),$$

which is of course trivially follows from the theorem if the distribution of X_n is μ_p or σ_p.

Our second observation concerns large deviations of the ratio R_n given in (1.3). While large deviations are extensively studied in probability theory (see, e.g., [4, 5] and the references cited therein), they have not been considered – contrary to central limit theorems – in geometric functional analysis until the very recent paper by Gantert, Kim, and Ramanan [6]. Already shortly after, this work has been extended and complemented in [3, 10, 9, 12, 13]. In contrast to the universality in central limit theorems, the probabilities of (large) deviations on the scale of laws of large numbers, are non-universal, thus being sensitive to the distribution of the random variables considered. This non-universality is reflected by the so-called rate function, which essentially defines the large deviations probabilities.
Theorem 1.4. Let $n \in \mathbb{N}$ and $p \in [1, \infty)$. Suppose that $X_n = (X_1^{(n)}, \ldots, X_n^{(n)})$ is a random vector that is either uniformly distributed over \mathbb{B}_p^n or distributed according to μ_p or σ_p on S_p^{n-1}. Then for $\theta \in \left[e^{m_p}, 1 \right)$, we have
\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P} \left[\left(\prod_{i=1}^{n} |X_i^{(n)}| \right)^{1/n} \geq \theta \cdot \left(\frac{1}{n} \sum_{i=1}^{n} |X_i^{(n)}|^p \right)^{1/p} \right] = -J_p(\theta)
\]
and for $\theta \in (0, e^{m_p}]$, we have
\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P} \left[\left(\prod_{i=1}^{n} |X_i^{(n)}| \right)^{1/n} \leq \theta \cdot \left(\frac{1}{n} \sum_{i=1}^{n} |X_i^{(n)}|^p \right)^{1/p} \right] = -J_p(\theta),
\]
where
\[
J_p(\theta) := \left[pG_p(\theta) - 1 \right] \log(\theta) + G_p(\theta) \left[\log \left(G_p(\theta) \right) - 1 \right] - \log \Gamma \left(G_p(\theta) \right) + \frac{1}{p} \log(p) + \frac{1}{p} \log \left(\frac{1}{p} \right), \quad \theta \in (0, 1)
\]
with $G_p(\theta) := H^{-1} \left(p \log(\theta) \right)$ and $H : (0, \infty) \to (-\infty, 0)$ being an increasing bijection given by
\[
H(x) := \psi(x) - \log(x).
\]
The function J_p is non-negative, satisfies $J_p(e^{m_p}) = 0$, and $J_p(0+) = J_p(1-) = +\infty$.

Remark 1.5. (a) Note that the equality $J_p(e^{m_p}) = 0$ agrees with Theorem 1.1. This equality also follows directly from the identity $m_p = \frac{1}{p} H \left(\frac{1}{p} \right)$.
(b) In fact, we shall prove the following so-called large deviations principle for \(R_n \) with the rate function \(\mathcal{J}_p \). Put \(\mathcal{J}_p \equiv +\infty \) on \(\mathbb{R} \setminus (0, 1) \), then for all Borel measurable sets \(A \subseteq \mathbb{R} \),

\[
- \inf_{\theta \in A^{\circ}} \mathcal{J}_p(\theta) \leq \liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}[R_n \in A] \leq \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}[R_n \in A] \leq - \inf_{\theta \in A} \mathcal{J}_p(\theta),
\]

where \(A^{\circ} \) and \(\overline{A} \) refer to the interior and closure of \(A \), respectively.

(c) In the setting of the uniform distribution on the sphere, Theorems 1.1 and 1.4 use results for the Radon–Nikodym density of \(\mu_p \) and \(\sigma_p \) (see Proposition 2.1 and Lemma 2.2). Their extension to the regime \(0 < p < 1 \) are not fully known (see, e.g., [15, Section 5, Comment (5)]), so for the uniform distribution on the sphere we truly need \(1 \leq p < +\infty \). For the other two distributions one can easily see that the results continue to hold in the regime \(0 < p < 1 \) by following verbatim the proofs presented.

2. Preliminaries

We shall present here the notation and background material used throughout the text. We split this into appropriate subsections. Having a broad readership from both probability theory and geometric functional analysis in mind, we introduce the material on large deviations in slightly more detail.

2.1. Notation. We denote by \(\mathbb{R}^n \) the \(n \)-dimensional Euclidean space and equip this with its standard inner product for which we write \(\langle \cdot, \cdot \rangle \). For a subset \(A \) of \(\mathbb{R}^n \), we denote by \(A^{\circ} \) the interior of \(A \) and by \(\overline{A} \) its closure. For a Borel measurable set \(A \subseteq \mathbb{R}^n \), we shall denote by \(|A| \) its \(n \)-dimensional Lebesgue measure. We shall also use the asymptotic notation \(\sim \) to denote that the ratio of functions or sequences tends to 1.

2.2. The \(\ell_p^n \)-balls. Let us recall some material regarding the geometry and probability of \(\ell_p^n \)-balls. For any \(p \in [1, +\infty) \) the \(\ell_p^n \)-norm of \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) is given by

\[
\|x\|_p := \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}.
\]

For any \(n \) and \(p \) let us denote by \(B^n_p := \{ x \in \mathbb{R}^n : \|x\|_p \leq 1 \} \) the unit ball and by \(S_p^{n-1} := \{ x \in \mathbb{R}^n : \|x\|_p = 1 \} \) unit sphere with respect to this norm. The restriction of the Lebesgue measure to \(B^n_p \) provides a natural volume
measure on \mathbb{B}_p^n. We will supply \mathbb{S}_p^{n-1} with the cone probability measure μ_p defined as follows: for a Borel set $A \subseteq \mathbb{S}_p^{n-1}$,
\begin{equation}
\mu_p(A) := \frac{|\{rx : x \in A, r \in [0, 1]\}|}{|\mathbb{B}_p^n|}.
\end{equation}

Let σ_p be the $(n-1)$-dimensional Hausdorff probability measure or, equivalently, the $(n-1)$-dimensional normalized Riemannian volume measure on \mathbb{S}_p^{n-1}, $p \in [1, +\infty)$. We remark that the cone measure μ_p coincides with σ_p if and only if $p = 1$ and $p = 2$. In particular, μ_2 is the same as the normalized spherical Lebesgue measure. We shall use the following result on the form of the Radon–Nikodym density of cone and surface measure, which was proved in [15, Lemma 2].

Proposition 2.1. Let $n \in \mathbb{N}$ and $1 \leq p < +\infty$. Then, for all $x = (x_1, \ldots, x_n) \in \mathbb{S}_p^{n-1}$,
\[h_{n,p}(x) := \frac{d\sigma_p}{d\mu_p}(x) = C_{n,p} \cdot \left(\sum_{i=1}^{n} |x_i|^{2p-2} \right)^{1/2}, \]
where
\[C_{n,p} := \left(\int_{\mathbb{S}_p^{n-1}} \left(\sum_{i=1}^{n} |x_i|^{2p-2} \right)^{1/2} \mu_p(dx) \right)^{-1}. \]

We refer to [14, 15] for more details on the relation between these two measures. We shall also use the following result.

Lemma 2.2. Let $1 \leq p < +\infty$. There is a constant $C = C(p) \in (0, +\infty)$ such that, for all $n \in \mathbb{N}$ and every $x \in \mathbb{S}_p^{n-1}$,
\[n^{-C} \leq h_{n,p}(x) \leq n^C. \]

Proof. It suffices to show that there is a constant $A > 0$ such that $n^{-2A} \leq \sum_{i=1}^{n} |x_i|^{2p-2} \leq n^{2A}$ for all $x \in \mathbb{S}_p^{n-1}$. Indeed, from this it would follow that $n^{-A} \leq C_{n,p} \leq n^{A}$ by the definition of $C_{n,p}$, which would yield the claim.

Write $y_i := |x_i|^p \geq 0$, so that $\sum_{i=1}^{n} y_i = 1$. It is an easy consequence of Hölder’s inequality that under this constraint we always have $\sum_{i=1}^{n} y_i^\alpha \leq \max\{n^{1-\alpha}, 1\}$ and $\sum_{i=1}^{n} y_i^\alpha \geq \min\{n^{1-\alpha}, 1\}$ for all $\alpha \geq 0$. Taking $\alpha = (2p - 2)/p$, we obtain the required bounds on $\sum_{i=1}^{n} y_i^\alpha = \sum_{i=1}^{n} |x_i|^{2p-2}$. \(\square\)

The proofs of our results rely on the following probabilistic representation for the cone probability measure on \mathbb{S}_p^{n-1} for $p \in [1, \infty)$ (and for the uniform distribution over \mathbb{B}_p^n), which is due to Schechtman and Zinn [17] and was independently obtained by Rachev and Rüschendorf in [16].
Proposition 2.3. Let $n \in \mathbb{N}$ and $p \in [1, \infty)$. Suppose that Z_1, \ldots, Z_n are independent p-generalized Gaussian random variables whose distribution has density

$$f_p(x) := \frac{1}{2p^{1/p} \Gamma(1 + \frac{1}{p})} e^{-|x|^p/p}$$

with respect to the Lebesgue measure on \mathbb{R}. Then, for $Z := (Z_1, \ldots, Z_n) \in \mathbb{R}^n$, we have:

(i) The random vector $Z/\|Z\|_p \in S_p^{n-1}$ is independent of $\|Z\|_p$ and its distribution is μ_p.

(ii) If U is a random variable uniformly distributed on $[0, 1]$ and independent of Z, then the random vector $U^{1/n} Z/\|Z\|_p$ is uniformly distributed on B_p^n.

2.3. Large deviations principles. We start with the definition of a large deviations principle. In this subsection we denote for clarity the space dimension by d instead of n in order to distinguish it from our index parameter n. Finally, we make the assumption that all random objects we are dealing with are defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For thorough introductions to the theory of large deviations, we refer the reader to the monographs [4, 5] or the book [11].

Definition 2.4. Let $X := (X^{(n)})_{n \in \mathbb{N}}$ be a sequence of random vectors taking values in \mathbb{R}^d. Further, let $s : \mathbb{N} \to (0, \infty]$ be a positive sequence and $J : \mathbb{R}^d \to [0, \infty]$ be a lower semi-continuous function. We say that X satisfies a large deviations principle (LDP) with speed $s(n)$ and rate function J if

$$- \inf_{x \in \mathbb{R}^d} J(x) \leq \liminf_{n \to \infty} \frac{1}{s(n)} \log \mathbb{P}(X^{(n)} \in A)$$

$$\leq \limsup_{n \to \infty} \frac{1}{s(n)} \log \mathbb{P}(X^{(n)} \in A) \leq - \inf_{x \in A} J(x)$$

for all Borel sets $A \subseteq \mathbb{R}^d$. If J has compact level sets $\{ x \in \mathbb{R}^d : J(x) \leq \alpha \}$, $\alpha \in \mathbb{R}$, then J is called a good rate function.

We notice that on the class of all J-continuity sets, that is, on the class of Borel sets $A \subseteq \mathbb{R}^d$ for which $J(A^c) = J(A)$ with $J(A) := \inf\{J(x) : x \in A\}$, one has the exact limit relation

$$\lim_{n \to \infty} \frac{1}{s(n)} \log \mathbb{P}(X^{(n)} \in A) = -J(A).$$

Let $d \geq 1$ be a fixed integer and let X be an \mathbb{R}^d-valued random vector. We write

$$\Lambda(u) = \Lambda_X(u) := \log \mathbb{E} e^{(X, u)}, \quad u \in \mathbb{R}^d,$$
for the cumulant generating function of X. Moreover, we define the (effective) domain of Λ to be the set $D_\Lambda := \{ u \in \mathbb{R}^d : \Lambda(u) < \infty \} \subseteq \mathbb{R}^d$.

Definition 2.5. The *Legendre–Fenchel transform* of a convex function $\Lambda : \mathbb{R}^d \to (-\infty, +\infty]$ is defined as

$$
\Lambda^*(x) := \sup_{u \in \mathbb{R}^d} \left[\langle u, x \rangle - \Lambda(u) \right], \quad x \in \mathbb{R}^d.
$$

The Legendre–Fenchel transform of the cumulant generating function plays a crucial rôle in the following result, usually referred to as Cramér’s theorem, (see, e.g., [4, Theorem 2.2.30, Theorem 6.1.3, Corollary 6.1.6] or [11, Theorem 27.5]).

Proposition 2.6 (Cramér’s theorem). Let X, X_1, X_2, \ldots be independent and identically distributed random vectors taking values in \mathbb{R}^d. Assume that $0 \in D_\Lambda^{\circ}$. Then the partial sums $\frac{1}{n} \sum_{i=1}^{n} X_i$, $n \in \mathbb{N}$, satisfy an LDP with speed n and good rate function Λ^*.

It will be important for us to deduce from an already existing large deviations principle a new one by applying a suitable transformation. The next result allows such a ‘transport’ by means of a continuous function. This device is known as the contraction principle and we refer to [4, Theorem 4.2.1] or [11, Theorem 27.11(i)].

Proposition 2.7 (Contraction principle). Let $d_1, d_2 \in \mathbb{N}$, and let $F : \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ be a continuous function. Further, let $X = (X^{(n)})_{n \in \mathbb{N}}$ be a sequence of \mathbb{R}^{d_1}-valued random vectors that satisfies an LDP with speed $s(n)$ and the good rate function J_X. Then the sequence $Y := (F(X^{(n)}))_{n \in \mathbb{N}}$ of \mathbb{R}^{d_2}-valued random vectors satisfies an LDP with the same speed and good rate function $J_Y = J_X \circ F^{-1}$, i.e., $J_Y(y) := \inf \{ J_X(x) : F(x) = y \}$, $y \in \mathbb{R}^{d_2}$, with the convention that $J_Y(y) = +\infty$ if $F^{-1}(\{ y \}) = \emptyset$.

3. ARITHMETIC-GEOMETRIC MEAN CLT FOR p-BALLS

We shall now present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let $(X_1^{(n)}, \ldots, X_n^{(n)})$ be chosen uniformly at random from \mathbb{B}_p^n. Consider independent p-generalized Gaussians Z_1, \ldots, Z_n and a random variable U uniformly distributed on $[0, 1]$ and independent of the Z_i's. We know from the Schechtman–Zinn result (Proposition 2.3) that

$$(X_1^{(n)}, \ldots, X_n^{(n)}) \overset{d}{=} U^{1/n} \frac{(Z_1, \ldots, Z_n)}{\|(Z_1, \ldots, Z_n)\|_p}.$$
With this representation, we have

\begin{equation}
\mathcal{R}_n = \left(\frac{\prod_{i=1}^{n} |X_i^{(n)}|^{1/n}}{\left(\frac{1}{n} \sum_{i=1}^{n} |X_i^{(n)}| \right)^{1/p}} \right)^{d} = \frac{\exp \left(\frac{1}{n} \sum_{i=1}^{n} \log |Z_i| \right)}{\exp \left(\frac{1}{n} \sum_{i=1}^{n} |Z_i|^p \right)^{1/p}},
\end{equation}

where \(d \) denotes equality of distributions. If \((X_1^{(n)}, \ldots, X_n^{(n)})\) is chosen at random with respect to the cone measure \(\mu \) on \(S_p^{n-1} \), then the factor \(U^{1/n} \) does not appear in the Schechtman–Zinn representation (see Proposition 2.3 (i)) and the formula for \(\mathcal{R}_n \) above does not change as the corresponding factor cancels out. For any \(a \in \mathbb{R} \), the tail probability for \(\mathcal{R}_n \) reads as follows,

\[
P[\mathcal{R}_n \geq e^{m_p + a/\sqrt{n}}] = P\left[\exp \left(- m_p - \frac{a}{\sqrt{n}} + \frac{1}{n} \sum_{i=1}^{n} \log |Z_i| \right) \geq \left(\frac{1}{n} \sum_{i=1}^{n} |Z_i|^p \right)^{1/p} \right] = P\left[\exp \left(- a + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\log |Z_i| - m_p) \right) \geq \left(1 + \frac{1}{n} \sum_{i=1}^{n} (|Z_i|^p - 1) \right)^{\frac{\sqrt{n}}{p}} \right].
\]

Taking the logarithm, we can further write this as

\begin{equation}
P[\mathcal{R}_n \geq e^{m_p + a/\sqrt{n}}] = P\left[\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\log |Z_i| - m_p) \right) - \frac{\sqrt{n}}{p} \log \left(1 + \frac{1}{n} \sum_{i=1}^{n} (|Z_i|^p - 1) \right) \geq a \right] = P\left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\log |Z_i| - m_p) - \frac{1}{p} \sum_{i=1}^{n} (|Z_i|^p - 1) \right. \left. - \frac{\sqrt{n}}{p} \log \alpha \left(\frac{1}{n} \sum_{i=1}^{n} (|Z_i|^p - 1) \right) \geq a \right].
\end{equation}

where the function \(\alpha(x) \) is defined by \(\log(1 + x) = x + \alpha(x) \) for \(x > -1 \), so that \(\alpha(x) = o(x) \) as \(x \to 0 \). Using Mathematica, we can find that \(\mathbb{E} \log |Z_1| = m_p \), \(\mathbb{E} |Z_1|^p = 1 \), and \(\mathbb{E} |Z_1|^p \log |Z_1| = \frac{1}{p} \log(p + \psi(1 + \frac{1}{p})) = m_p + 1 \), where in the last equality we used the property of the digamma function that \(\psi(x + 1) = \psi(x) + \frac{1}{x} \), \(x > 0 \). Let \((N_1, N_2)\) be a bivariate centered normal random vector with the same covariance matrix as that of \((\log |Z_1|, |Z_1|^p)\), i.e., with the diagonal elements \(\text{Var}(\log |Z_1|) = \frac{1}{p^2} \psi'(1) \) and \(\text{Var}(|Z_1|^p) = p \) and the covariance terms equal 1. Then the bivariate central limit theorem states that

\[
\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\log |Z_i| - m_p), \frac{1}{p\sqrt{n}} \sum_{i=1}^{n} (|Z_i|^p - 1) \right) \xrightarrow{d} (N_1, p^{-1}N_2),
\]
where \(\rightarrow d \) denotes the distributional convergence. Further, by the strong law of large numbers, \(\frac{1}{n} \sum_{i=1}^{n} (|Z_i|^p - 1) \) converges to 0 a.s. Using the relation \(\alpha(x) = o(x) \) as \(x \to 0 \) together with Slutsky's theorem, we arrive at

\[
\frac{\sqrt{n}}{p} \alpha \left(\frac{1}{n} \sum_{i=1}^{n} (|Z_i|^p - 1) \right) = \frac{1}{p \sqrt{n}} \sum_{i=1}^{n} (|Z_i|^p - 1) \cdot \frac{\alpha \left(\frac{1}{n} \sum_{i=1}^{n} (|Z_i|^p - 1) \right)}{\alpha \left(\frac{1}{n} \sum_{i=1}^{n} (|Z_i|^p - 1) \right)} \xrightarrow{n \to \infty} 0
\]

since the first factor converges to \(p^{-1}N_2 \) in distribution, whereas the second one converges to 0 a.s. Taking everything together and using the continuous mapping theorem together with Slutsky’s theorem, we arrive at

\[
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\log |Z_i| - m_p) - \frac{1}{p \sqrt{n}} \sum_{i=1}^{n} (|Z_i|^p - 1) - \frac{\sqrt{n}}{p} \alpha \left(\frac{1}{n} \sum_{i=1}^{n} (|Z_i|^p - 1) \right) \xrightarrow{n \to \infty} N_1 - p^{-1}N_2.
\]

Recalling (3.2), we obtain

\[
(3.3)
\]

\[
\lim_{n \to \infty} \mathbb{P}[\mathcal{R}_n \geq e^{m_p + a / \sqrt{n}}] = \mathbb{P}[N_1 - p^{-1}N_2 \geq a] = 1 - \Phi \left(\frac{pa}{\sqrt{\psi'(\frac{1}{p}) - p}} \right),
\]

where we used that \(\text{Var}(N_1 - p^{-1}N_2) = \frac{1}{p^2} \psi'(\frac{1}{p}) - 2 \frac{1}{p} + \frac{1}{p} = \frac{1}{p^2} \psi'(\frac{1}{p}) - \frac{1}{p}. \)

To prove that \(e^{m_p + a / \sqrt{n}} \) can be replaced with \(e^{m_p(1 + a / \sqrt{n})} \) in the above equality (3.3), fix some \(\varepsilon > 0 \) and note that \(1 + a / \sqrt{n} \) is sandwiched between \(e^{(a-\varepsilon)/\sqrt{n}} \) and \(e^{(a+\varepsilon)/\sqrt{n}} \) provided \(n \) is sufficiently large. Thus, for all such \(n \),

\[
\mathbb{P}[\mathcal{R}_n \geq e^{m_p + (a+\varepsilon)/\sqrt{n}}] \leq \mathbb{P}[\mathcal{R}_n \geq e^{m_p(1 + a / \sqrt{n})}] \leq \mathbb{P}[\mathcal{R}_n \geq e^{m_p + (a-\varepsilon)/\sqrt{n}}].
\]

Taking first the limit \(n \to \infty \) (which is given by (3.3)) and then letting \(\varepsilon \downarrow 0 \) and using the continuity of the function \(\Phi \), we arrive at

\[
\lim_{n \to \infty} \mathbb{P} \left[\mathcal{R}_n \geq e^{m_p \left(1 + \frac{a}{\sqrt{n}} \right)} \right] = 1 - \Phi \left(\frac{pa}{\sqrt{\psi'(\frac{1}{p}) - p}} \right).
\]

This proves the claim of Theorem 1.1 for the uniform distribution on \(B_p^n \) and the cone probability measure \(\mu_p \).

Consider now the case where \((X_1^{(n)}, \ldots, X_n^{(n)}) \) is chosen with respect to the probability measure \(\sigma_p \) on \(S_p^{n-1} \). It was proved in [15, Theorem 2] that the total variation distance between \(\mu_p \) and \(\sigma_p \), we write \(d_{TV}(\mu_p, \sigma_p) \), is bounded above by a constant \(c_p \in (0, \infty) \) (only depending on \(p \)) times \(n^{-1/2} \). Let us
consider the sets
\[A_n := \left\{ x = (x_1, \ldots, x_n) \in \mathbb{S}^{n-1}_p : \frac{1}{n} \prod_{i=1}^{n} |x_i|^{1/n} \geq e^{n_p} \left(1 + \frac{a}{\sqrt{n}} \right) \right\}, \]
where \(n \in \mathbb{N} \). As we have shown above,

\[\lim_{n \to \infty} \mu_p(A_n) = 1 - \Phi \left(\frac{pa}{\sqrt{\psi'(1/p) - p}} \right). \tag{3.4} \]

Since by [15, Theorem 2], \(|\sigma_p(A_n) - \mu_p(A_n)| \leq d_{TV}(\sigma_p, \mu_p) \xrightarrow{n \to \infty} 0 \), we can replace \(\mu_p \) by \(\sigma_p \) in (3.4) above.

We shall now briefly give the argument for Remark 1.3. Since this trivially holds when \(X_n \in \mathbb{S}^{n-1}_p \), we consider only the case of the uniform distribution on the ball \(\mathbb{B}^n_p \). Define the quantity

\[\tilde{R}_n := n^{1/p} \left(\prod_{i=1}^{n} |X_i^{(n)}| \right)^{1/n} = U^{1/n} \cdot R_n, \]
where \(U \) is uniformly distributed on \([0, 1]\) and independent of \(Z_1, \ldots, Z_n \) as in Proposition 2.3. Then

\[\sqrt{n} \left(\log \tilde{R}_n - m_p \right) = \sqrt{n} \left(\log R_n - m_p \right) + n^{-1/2} \log U. \]

Since \(n^{-1/2} \log U \to 0 \) in probability, it follows from Slutsky’s theorem that \(\sqrt{n}(\log \tilde{R}_n - m_p) \) satisfies the same central limit theorem as \(\sqrt{n}(\log R_n - m_p) \). Hence, the analogue of (3.3) with \(R_n \) replaced by \(\tilde{R}_n \) holds. \(\square \)

4. Arithmetic-geometric mean LDP for \(p \)-balls

We shall present here the proof of Theorem 1.4. Essentially, the result is a consequence of Cramér’s theorem, the contraction principle and the probabilistic representation of Schechtman and Zinn. However, most of the work is a careful analysis required to obtain the rate function, which is represented in terms of the inverse function of \(H(x) = \psi(x) - \log x \).

Proof of Theorem 1.4. We want to study the large deviations behaviour of the ratios \(R_n \) given in (3.1). As we shall see later, \(R_n \) can be written as a function of the partial sums

\[\frac{1}{n} \sum_{i=1}^{n} (\log |Z_i|, |Z_i|^p) \]

with i.i.d. increments \((\log |Z_i|, |Z_i|^p), \ i \in \mathbb{N}\), and where the \(Z_i \)'s are i.i.d. \(p \)-generalized Gaussians. The goal is to prove a large deviations principle.
via Cramér’s theorem and then to apply the contraction principle. In order to do that, we first need to check that $0 \in D_\Lambda^\circ$. We have

$$\Lambda(s, t) = \log \mathbb{E} e^{(\log |Z_i|, |Z_i|^p), (s, t)}$$

$$= \log \left(\frac{1}{p^{1/p} \Gamma(1 + \frac{1}{p})} \int_0^\infty e^{s \log x - (\frac{1}{p} - t)x^p} \, dx \right)$$

$$= \log \left(\frac{1}{p(1 - pt)^{1/p} \Gamma(1 + \frac{1}{p})} \left(\frac{p}{1 - pt} \right)^{s/p} \Gamma\left(\frac{s + 1}{p} \right) \right)$$

$$= -\frac{1}{p} \log(1 - pt) + \frac{s}{p} \left[\log(p) - \log(1 - pt) \right]$$

$$+ \log \left(\Gamma\left(\frac{s + 1}{p} \right) \right) - \log \Gamma\left(\frac{1}{p} \right),$$

where $t < \frac{1}{p}$ and $s > -1$. Otherwise, we have $\Lambda(s, t) = +\infty$ as can be seen from the second line. In particular, $D_\Lambda = (-1, +\infty) \times (-\infty, \frac{1}{p})$ and thus $0 \in D_\Lambda^\circ$. This means that we can apply Cramér’s theorem (Proposition 2.6) and obtain an LDP for the partial sums

$$\frac{1}{n} \sum_{i=1}^n \left(\log |Z_i|, |Z_i|^p \right)$$

(4.1)

with speed n and the rate function given by the Legendre–Fenchel transform of Λ, which is

$$\Lambda^*(\alpha, \beta) = \sup_{(s, t) \in \mathbb{R}^2} \left[\langle (s, t), (\alpha, \beta) \rangle - \Lambda(s, t) \right]$$

$$= \sup_{(s, t) \in (-1, \infty) \times (-\infty, \frac{1}{p})} \left[\langle (s, t), (\alpha, \beta) \rangle - \Lambda(s, t) \right].$$

First, we observe that the function $(s, t) \mapsto \langle (s, t), (\alpha, \beta) \rangle - \Lambda(s, t)$ is concave on $(-1, \infty) \times (-\infty, \frac{1}{p})$. In the following we shall show that if $\beta > e^{p\alpha}$, then the gradient of this function vanishes at some unique point $(s^*, t^*) \in (-1, \infty) \times (-\infty, \frac{1}{p})$. This implies that the supremum is attained at this point.

Forming the partial derivatives to find the point (s^*, t^*), we obtain the following two conditions:

$$\frac{\partial}{\partial s} \Lambda(s^*, t^*) = \frac{1}{p} \left[\frac{\Gamma'(s^* + 1)}{\Gamma(s^* + 1)} + \log \left(\frac{p}{1 - pt^*} \right) \right] = \alpha \tag{4.2}$$

and

$$\frac{\partial}{\partial t} \Lambda(s^*, t^*) = \frac{s^* + 1}{1 - pt^*} = \beta. \tag{4.3}$$
Let $\beta > e^{p\alpha}$. To prove that the system (4.2) and (4.3) has indeed a unique solution (s^*, t^*), we define $v^* \in (0, +\infty)$ as the unique solution to the equation
\[
H(v^*) = p\alpha - \log(\beta),
\]
where we recall that $H(x) = \psi(x) - \log(x)$ is negative on $(0, \infty)$. In order to see that this equation has a unique solution $v^* \in (0, +\infty)$, we use the representation (see, e.g., [8, Eq. 8.361.8, page 903])
\[
H(x) = \psi(x) - \log(x) = -\int_0^\infty e^{-tx} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) dt.
\]
The integrand is positive and decreases monotonously in $x > 0$ for every $t > 0$. Therefore, H is monotone increasing, and it follows from the monotone convergence theorem that $H(0+) = -\infty$ and $H(+\infty) = 0$ (for the former equality, we use that the integral diverges at $x = 0$). Hence, H is an increasing bijection between $(0, +\infty)$ and $(-\infty, 0)$, which also shows that m_p defined in Theorem 1.1 is negative.

Let $s^* > -1$ and $t^* < \frac{1}{p}$ be defined by
\[
v^* = \frac{s^* + 1}{p} \quad \text{and} \quad t^* = \frac{1}{p} - \frac{s^* + 1}{\beta p}.
\]
Then it can be easily checked that (4.2) and (4.3) hold. The uniqueness follows from the fact that (4.2) and (4.3) imply
\[
H\left(\frac{s^* + 1}{p}\right) = p\alpha - \log(\beta) < 0,
\]
which has a unique solution $s^* > -1$ as we have seen above. From this we can determine the unique solution t^* to (4.3).

The contraction principle (Proposition 2.7) shall be applied to the random vectors in (4.1) with the continuous function
\[
F : (x, y) \mapsto \frac{e^x}{y^{1/p}}, \quad x \in \mathbb{R}, \ y \geq e^{px}
\]
and $F(x, y) = 1$ otherwise. This means that the sequence of random variables
\[
F\left(\frac{1}{n} \sum_{i=1}^n (\log |Z_i|, |Z_i|^p)\right) = \frac{\left(\prod_{i=1}^n |Z_i|\right)^{1/n}}{\left(\frac{1}{n} \sum_{i=1}^n |Z_i|^p\right)^{1/p}} \stackrel{d}{=} \mathcal{R}_n
\]
satisfies an LDP with speed n and a certain rate function \mathcal{J}_p to be determined in the following. For $\theta \in (0,1)$, the rate function is given by
\[
\mathcal{J}_p(\theta) = \inf_{(\alpha, \beta): F(\alpha, \beta) = \theta} \Lambda^*(\alpha, \beta) = \inf_{\beta > 0, \alpha = \log(\theta) + \frac{1}{p} \log(\beta)} \left[\alpha s^* + \beta t^* - \Lambda(s^*, t^*) \right],
\]
and $\mathcal{J}_p \equiv +\infty$ on $\mathbb{R} \setminus (0, 1]$. Let $\theta \in (0, 1)$. Note that (4.3) implies
\begin{equation}
\frac{\beta}{s^* + 1} = \frac{p}{1 - pt^*} \quad \text{and} \quad \frac{\beta}{p} - \frac{s^* + 1}{p} = \beta t^*.
\end{equation}

Now, using (4.5) to exclude t^* from $\Lambda(s^*, t^*)$, we obtain
\begin{equation}
\Lambda(s^*, t^*) = \frac{s^* + 1}{p} \log \left(\frac{\beta}{s^* + 1} \right) + \frac{s^*}{p} \log p + \log \left(\Gamma \left(\frac{s^* + 1}{p} \right) \right) - \log \Gamma \left(\frac{1}{p} \right).
\end{equation}

Hence, excluding α and βt^* using (4.5) for the latter,
\begin{equation}
\mathcal{J}_p(\theta) = \inf_{\beta > 0} \left[s^* \log \theta + \frac{s^*}{p} \log \beta + \frac{\beta}{p} - \frac{s^* + 1}{p} - \Lambda(s^*, t^*) \right]
\end{equation}
\begin{equation}
= \inf_{\beta > 0} \left[s^* \log \theta + \frac{\beta}{p} - \frac{s^* + 1}{p} - \frac{1}{p} \log \beta \right.
\end{equation}
\begin{equation}
+ \frac{s^* + 1}{p} \log(s^* + 1) - \frac{s^*}{p} \log p - \log \left(\Gamma \left(\frac{s^* + 1}{p} \right) \right) + \log \Gamma \left(\frac{1}{p} \right) \left. \right].
\end{equation}

Note that the equalities $F(\alpha, \beta) = \theta$ and (4.4) imply
\begin{equation}
p \log \theta = H \left(\frac{s^* + 1}{p} \right).
\end{equation}

Since s^* given by (4.7) is a function of θ only and is independent of β (under $F(\alpha, \beta) = \theta$), it is clear that the infimum in (4.6) with $\theta \in (0, 1)$ is attained at $\beta = 1$ (which minimizes $p^{-1}(\beta - \log \beta)$). Thus,
\begin{equation}
\mathcal{J}_p(\theta) = \log(\theta) s^* + \frac{s^* + 1}{p} \left[\log \left(\frac{s^* + 1}{p} \right) - 1 \right] - \log \left(\Gamma \left(\frac{s^* + 1}{p} \right) \right)
\end{equation}
\begin{equation}
+ \frac{1}{p} \log(p) + \log \Gamma \left(\frac{1}{p} \right), \quad \theta \in (0, 1).
\end{equation}

Finally, using (4.7) to exclude s^* and recalling that $G_p(\theta) = H^{-1}(p \log(\theta))$, we obtain
\begin{equation}
\mathcal{J}_p(\theta) = \left[p G_p(\theta) - 1 \right] \log(\theta) + G_p(\theta) \left[\log \left(G_p(\theta) \right) - 1 \right] - \log \left(G_p(\theta) \right)
\end{equation}
\begin{equation}
+ \frac{1}{p} \log(p) + \log \Gamma \left(\frac{1}{p} \right), \quad \theta \in (0, 1).
\end{equation}

We shall now prove that $\mathcal{J}_p(1) = +\infty$, where by the contraction principle
\begin{equation}
\mathcal{J}_p(1) = \inf_{F(\alpha, \beta) = 1} \Lambda^*(\alpha, \beta) = \inf_{(\alpha, \beta): \beta \leq e^{p \alpha}} \Lambda^*(\alpha, \beta).
\end{equation}

We claim that for all pairs (α, β) with the property that $\beta \leq e^{p \alpha}$, we have
\begin{equation}
\Lambda^*(\alpha, \beta) \equiv \sup_{s > -1, t < \frac{1}{p}} \left[\alpha s + \beta t - \Lambda(s, t) \right] = +\infty.
\end{equation}
To prove this it is enough to consider a sequence of pairs \((s_k, t_k)\) such that
\[s_k \to +\infty \quad \text{as} \quad k \to +\infty \]
and \[t_k := \frac{1}{p} \frac{s_k + 1}{\beta p}, \quad k \in \mathbb{N}, \]
and to show that \(\alpha s_k + \beta t_k - \Lambda(s_k, t_k) \to +\infty\) as \(k \to +\infty\). It follows from the definition of \(t_k\) that if \(v_k = (s_k + 1)/p\), then
\[1 - pt_k = \frac{v_k p}{\beta} \quad \text{and} \quad \frac{p}{1 - pt_k} = \frac{\beta}{v_k}. \]
Using the expression for \(\Lambda(s_k, t_k)\) and excluding \(s_k\) and \(t_k\), we get
\[\alpha s_k + \beta t_k - \Lambda(s_k, t_k) = v_k (p\alpha - \log(\beta)) \]
\[+ (v_k \log(v_k) - v_k) - \log(\Gamma(v_k)) + c(\alpha, \beta, p) \]
where \(c(\alpha, \beta, p)\) is a term independent of the sequence \(v_k\). Note that \(v_k \to +\infty\) as \(k \to +\infty\). Hence, by Stirling’s formula, we have
\[v_k \log(v_k) - v_k - \log(\Gamma(v_k)) = \frac{1}{2} \log(v_k) - \frac{1}{2} \log(2\pi) + o(1). \]
Since \(p\alpha - \log(\beta) \geq 0\), we have, as \(k \to +\infty\),
\[\alpha s_k + \beta t_k - \Lambda(s_k, t_k) \to +\infty. \]
This proves that \(J_p(1) = +\infty\).

Therefore, we have proved an LDP for \(\mathcal{R}_n\) with speed \(n\) and rate function \(J_p\) as stated in Remark 1.5. Since the function \(H\) is continuous, so is \(G_p\) on \((0, 1)\), and consequently the same holds for \(J_p\) on the interval \((0, 1)\). Thus, the LDP for \(\mathcal{R}_n\) yields the limiting behavior presented in the statement of Theorem 1.4 in the case of the uniform distribution on \(\mathbb{B}_p^n\) or the cone measure on \(\mathbb{S}_p^{n-1}\). We will now prove that the same LDP holds for the uniform distribution on \(\mathbb{S}_p^{n-1}\). Let \(A \subseteq \mathbb{R}\) be a Borel set and define
\[D_n := \left\{ x = (x_1, \ldots, x_n) \in \mathbb{S}_p^{n-1} : \left(\frac{\prod_{i=1}^n |x_i|}{\left(\frac{n}{\sum_{i=1}^n |x_i|^p} \right)^{1/p}} \right)^{1/n} \in A \right\}, \quad n \in \mathbb{N}. \]
Then,
\[\frac{1}{n} \log \sigma_p(D_n) = \frac{1}{n} \log \int_{D_n} h_{n,p}(x) \mu_p(dx), \]
and it follows from Lemma 2.2 that, as \(n \to \infty\),
\[\left| \frac{1}{n} \log \mu_p(D_n) - \frac{1}{n} \log \sigma_p(D_n) \right| \to 0. \]
This shows the LDP for \(\mathcal{R}_n\) in the case of the surface probability measure \(\sigma_p\) on \(\mathbb{S}_p^{n-1}\) with the same rate function \(J_p\).
The limit relations $\mathcal{J}_p(0+) = \mathcal{J}_p(1-) = +\infty$ immediately follow from lower semi-continuity of \mathcal{J}_p and the identities $\mathcal{J}_p(0) = \mathcal{J}_p(1) = +\infty$. □

Acknowledgements. J. Prochno is supported by a Visiting Professor Fellowship of the Ruhr University Bochum and its Research School PLUS as well as by the Austrian Science Fund (FWF) Project F5508-N26, which is part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”. Part of this work was done while J. Prochno visited V. Vysotsky at the University of Sussex and Z. Kabluchko at the University of Münster. We thank the departments for their financial support.

References

[1] J.M. Aldaz. A refinement of the inequality between arithmetic and geometric means. *J. Math. Inequal.*, 2(4):473–477, 2008.

[2] J.M. Aldaz. Concentration of the ratio between the geometric and arithmetic means. *J. Theoret. Probab.*, 23(2):498–508, 2010.

[3] D. Alonso-Gutiérrez, J. Prochno, and C. Thäle. Large deviations for high-dimensional random projections of ℓ^n_p-balls. *Adv. Appl. Math.*, 99:1–35, 2018.

[4] A. Dembo and O. Zeitouni. *Large Deviations. Techniques and Applications*, volume 38 of *Stochastic Modelling and Applied Probability*. Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition.

[5] F. den Hollander. *Large Deviations*, volume 14 of *Fields Institute Monographs*. American Mathematical Society, Providence, RI, 2000.

[6] N. Gantert, S.S. Kim, and K. Ramanan. Large deviations for random projections of ℓ^n_p-balls. *Ann. Probab.*, 45(6B):4419–4476, 2017.

[7] E. Gluskin and V.D. Milman. Note on the geometric-arithmetic mean inequality. In *Geometric aspects of functional analysis*, volume 1807 of *Lecture Notes in Math.*, pages 130–135. Springer, Berlin, 2003.

[8] I.S. Gradshteyn and I.M. Ryzhik. *Table of integrals, series, and products*. Elsevier/Academic Press, Amsterdam, seventh edition, 2007.

[9] Z. Kabluchko, J. Prochno, and C. Thäle. Sanov-type large deviations in Schatten classes. *arXiv:1808.04862* (2018).

[10] Z. Kabluchko, J. Prochno, and C. Thäle. High-dimensional limit theorems for random vectors in ℓ^n_p-balls. *Commun. Contemp. Math.*, 21(1):1750092, 30, 2019.

[11] O. Kallenberg. *Foundations of Modern Probability*. Probability and its Applications. Springer-Verlag, New York, second edition, 2002.

[12] S.S. Kim. Problems at the interface of probability and convex geometry: Random projections and constrained processes. *Ph.D. thesis, Brown University*, 2017.
[13] S.S. Kim and K. Ramanan. A conditional limit theorem for high-dimensional ℓ^p-spheres. *J. Appl. Probab.*, 55(4):1060–1077, 2018.

[14] A. Naor. The surface measure and cone measure on the sphere of ℓ^n_p. *Trans. Amer. Math. Soc.*, 359(3):1045–1079 (electronic), 2007.

[15] A. Naor and D. Romik. Projecting the surface measure of the sphere of ℓ^n_p. *Ann. Inst. H. Poincaré Probab. Statist.*, 39(2):241–261, 2003.

[16] S.T. Rachev and L. Rüschendorf. Approximate independence of distributions on spheres and their stability properties. *Ann. Probab.*, 19(3):1311–1337, 1991.

[17] G. Schechtman and J. Zinn. On the volume of the intersection of two L^n_p balls. *Proc. Amer. Math. Soc.*, 110(1):217–224, 1990.

Zakhar Kabluchko: Institut für Mathematische Stochastik, Westfälische Wilhelms-Universität Münster, Germany
E-mail address: zakhar.kabluchko@uni-muenster.de

Joscha Prochno: Institut für Mathematik & Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Austria
E-mail address: joscha.prochno@uni-graz.at

Vladislav Vysotsky: Department of Mathematics, University of Sussex, United Kingdom and St. Petersburg Department of Steklov Mathematical Institute
E-mail address: v.vysotskiy@sussex.ac.uk