Key players of singlet oxygen-induced cell death in plants
Christophe Laloi, Michel Havaux

To cite this version:
Christophe Laloi, Michel Havaux. Key players of singlet oxygen-induced cell death in plants. Frontiers in Plant Science, Frontiers, 2015, 6 (39), <10.3389/fpls.2015.00039>. <hal-01222328>

HAL Id: hal-01222328
https://hal-amu.archives-ouvertes.fr/hal-01222328
Submitted on 29 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Key players of singlet oxygen-induced cell death in plants

Christophe Laloi*1,2,3 and Michel Havaux*2,3,4

1 Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Marseille, France
2 CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Marseille, France
3 Aix Marseille Université, Marseille, France
4 Laboratoire d’Ecophysiological Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France

*Correspondence:
Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13009 Marseille, France
e-mail: christophe.laloi@univ-amu.fr;
Michel Havaux, Laboratoire d’Ecophysiological Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France
e-mail: michel.havaux@cea.fr

INTRODUCTION

Singlet oxygen (1O2) is a highly reactive species to which has only been recognized more recently in plants (op den Camp et al., 2003; Wagner et al., 2004). This delayed knowledge stems from the fact that the study of the specific biological activity of 1O2 in plants has been hindered by its high reactivity and short lifetime, the concurrent production of other ROS under photooxidative stress, and limited in vivo detection methods. However, during the last 15 years, the isolation and characterization of two 1O2-overproducing mutants in Arabidopsis thaliana, flu and ch1, has allowed the identification of genetically controlled 1O2 cell death pathways and a 1O2 acclimation pathway that are triggered at sub-cytotoxic concentrations of 1O2. The study of flu has revealed the control of cell death by the plastid proteins EXECUTER (EX)1 and EX2. In ch1, oxidized derivatives of β-carotene, such as β-cyclocitrin and dihydroactinidiolide, have been identified as important upstream messengers in the 1O2 signaling pathway that leads to stress acclimation. In both the flu and ch1 mutants, phytohormones act as important promoters or inhibitors of cell death. In particular, jasmonate has emerged as a key player in the decision between acclimation and cell death in response to 1O2. Although the flu and ch1 mutants show many similarities, especially regarding their gene expression profiles, key differences, such as EXECUTER-independent cell death in ch1, have also been observed and will need further investigation to be fully understood.

Keywords: singlet oxygen, oxidative stress, cell death, acclimation, EXECUTER, β-cyclocitrin, phytohormones, oxylipins
**GENETICALLY CONTROLLED \(^1\text{O}_2\)-TRIGGERED CELL DEATH IN **

Arabidopsis: **LEARNING FROM THE flu MUTANT**

A major breakthrough in understanding the intracellular signaling function of \(^1\text{O}_2\) was the isolation and characterization of the conditional fluorescent (flu) mutant of *Arabidopsis*, which is defective in the nuclear-encoded FLU protein involved in the negative feedback control of the Mg\(^{2+}\) branch of tetrapyrrole biosynthesis (Meskauskiene et al., 2001; Meskauskiene and Apel, 2002). In contrast to wild-type plants, flu plants are no longer able to restrict the synthesis of protochlorophyllide (Pchlide) in the dark. As a consequence, free Pchlide accumulates in the dark and then acts as a photosensitizer upon re-illumination, generating \(^1\text{O}_2\) in a rapid (and probably transient) manner within the chloroplasts (Figure 1). The flu mutant has two other important properties. First, flu plants under continuous light, where Pchlide is immediately photo-reduced to chlorophyllide and hence does not accumulate, have a wild-type phenotype. Second, the amount of \(^1\text{O}_2\) generated is proportional to the amount of Pchlide and hence to the extent of the dark period. Therefore, the conditional flu mutant is a powerful tool for the generation of different quantities of \(^1\text{O}_2\) in photosynthetic tissues in a noninvasive and controlled manner. This makes it possible to study the stress response triggered by the release of a specific quantity of \(^1\text{O}_2\) inside plastids simply by growing the plants under continuous light till they reach the developmental stage of interest, transferring them to the dark for a defined time period, and then re-illuminating them.

In this way, the release of \(^1\text{O}_2\) during re-illumination of flu plants grown under continuous light and transferred to the dark for 8 h was initially shown to result in a rapid induction of specific sets of nuclear genes that were not activated by other treatments generating different ROS inside plastids (op den Camp et al., 2003; Gadjev et al., 2006; Laloi et al., 2006). In addition, two obvious stress responses were observed in flu plants following the release of \(^1\text{O}_2\): a transient inhibition of growth almost immediately after the beginning of re-illumination, and a cell death response. Quite unexpectedly, the growth arrest and cell death responses in the flu mutant were found to result from a genetic program that involves the EXECUTER proteins (EX1 and EX2), rather than from the direct toxicity of \(^1\text{O}_2\) (Wagner et al., 2004; Lee et al., 2007). The EXECUTER pathway also promoted cell death in wild-type plants treated with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) (Wagner et al., 2004), a herbicide that blocks photosynthetic electron transport at the level of the photosystem II (PSII) primary quinone electron acceptor, thus leading to the increased production of \(^1\text{O}_2\) in PSII reaction centers (Fufezan et al., 2002). Cytological changes that follow the onset of \(^1\text{O}_2\) production have been recently shown to include the sequential rapid loss of chloroplast integrity that precedes the rupture of the central vacuole and the final collapse of the cell (Kim et al., 2012). Inactivation of the two plastid proteins EXECUTER in the flu mutant abrogates these responses, indicating that disintegration of chloroplasts is due to EX-dependent signaling rather than \(^1\text{O}_2\) directly (Kim et al., 2012). Interestingly, it was shown that the initial light-dependent release of \(^1\text{O}_2\) was not sufficient to trigger the onset of cell death, but had to act together with a second concurrent blue light reaction that requires the activation of the UVA/blue light-absorbing photoreceptor CRY1 (Danon et al., 2006).

CELL DEATH-PROMOTING AND -INHIBITORY SIGNALS IN flu

Several genes that are up-regulated after the release of \(^1\text{O}_2\) in the flu mutant encode proteins involved in the biosynthesis or signaling of the phytohormones ethylene (ET), salicylic acid (SA), and jasmonic acid (JA), suggesting that these phytohormones could be involved in triggering cell death. This hypothesis is further supported by the increased concentrations of oxylipins [12-oxophytodienoic acid (OPDA), dinor-OPDA (dnOPDA), and JA] in flu soon after re-illumination. The oxylipin increase was followed by a slower increase in SA, with variations depending on the developmental stage (Danon et al., 2005; Ochsenbein et al.,

![Figure 1](https://example.com/figure1.png)

FIGURE 1 | Photosensitivity of the \(^1\text{O}_2\)-overproducing Arabidopsis mutants, flu and ch1. (A) Wild-type (WT) and flu mutant plants after an 8 h dark/light transition, showing leaf damage (2 days after the dark-to-light shift, left) and lipid peroxidation as measured by autoluminescence imaging (2 h after the dark-to-light shift, right). (B) WT and ch1 mutant plants after high light stress (1000 μmol photons m\(^{-2}\) s\(^{-1}\) for 2 days), showing leaf bleaching (left) and lipid peroxidative damage (right). No luminescence and no leaf damages were detected in WT and the mutant plants before the light treatments. The color palette on the right indicates the intensity of the luminescence signal from low (dark blue) to high (white). The signal intensity is indicative of the amount of lipid peroxides present in the sample (Biric et al., 2011). Adapted from Ramel et al. (2013a) (Copyright American Society of Plant Biologists, www.plantcell.org) and completed.
Laloi and Havaux

Singlet oxygen-induced cell death

FIGURE 2 | A model for the cellular responses to different O₂ levels. Depending on the level of O₂, the plant cell might trigger an acclimation response or a programmed cell death (PCD) program, or, in case of extreme O₂ production, will succumb in a completely uncontrollable manner to the so-called ‘accidental cell death’ (ACD), due to a general oxidation that leads to the loss of structural integrity. PCD and acclimation, which are both initiated by genetically encoded machinery, are controlled by the phytohormones jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). JA, SA, and ET seem to work as PCD-promoting signals, while the JA precursor OPDA (and dnOPDA) might counteract the JA-effect and work as inhibitory signals. JA seems to play a central role in the decision between acclimation and PCD. Evidence suggests that O₂ production sites, production rates and production times will influence this model. The dotted lines in the ACD zone indicate predicted changes in phytohormone concentrations which still need to be substantiated by experimental data.

2006; Figure 2). The possible involvement of these phytohormones in regulating cell death was tested by combining genetic and pharmacological approaches (Danon et al., 2005). flu mutant seedlings expressing the NahG transgene, which encodes a salicylate hydroxylase that converts SA to catechol, were partially protected from the death provoked by the release of O₂ suggesting a requirement for SA in this process. However, a role for the possibly increased levels of catechol in reducing the susceptibility was not completely excluded (van Wees and Glazebrook, 2003; Danon et al., 2005). A similar partial protection from cell death was found when ET biosynthesis was blocked in the flu mutant by the addition of l-aminooxyxyvinylglycine (AVG), a potent inhibitor of l-Aminocyclopropene-1-carboxylic acid (ACC) synthase. These treatments were additive because flu NahG plants grown on a medium containing AVG were almost fully protected from cell death. This suggests that there is a synergistic interaction between the SA and ET signaling pathways during the regulation of cell death induced by O₂ in flu (Danon et al., 2005).

The possible role of oxylipins in the O₂ cell death was investigated by crossing flu with the JA-depleted mutant opr3 and with the JA-, OPDA-, and dnOPDA-depleted dle2-2 mutant defective in the ALLENE OXIDE SYNTHASE gene. The analysis of cell death in the double mutant lines, in combination with or without the addition of exogenous JA, revealed that, in contrast to the JA-induced suppression of superoxide/H₂O₂-dependent cell death, JA promotes the O₂-mediated cell death reaction. Other oxylipins, most likely OPDA/dnOPDA, were found to antagonize the death-promoting activity of JA (Danon et al., 2005; Figure 2).

Other ROS seem to have an inhibitory effect on O₂-triggered cell death, as revealed in flu plants overexpressing the thylakoid-bound ascorbate peroxidase (tAPX), an H₂O₂-scavenging enzyme (Murgia et al., 2004). In flu overexpressing tAPX, the intensity of O₂-mediated cell death was increased when compared with the flu line, suggesting that H₂O₂ either directly or indirectly suppresses O₂-triggered cell death (Laloi et al., 2007). The inhibitory effect of H₂O₂ may explain why, in wild-type plants exposed to photooxidative stress conditions that trigger the simultaneous production of O₂ and H₂O₂, cell death is delayed by several days from the onset of the light stress. In contrast, the generation of O₂ in flu occurs without a concomitant production of H₂O₂ and is rapidly followed by cell death (Kim et al., 2012). In the microalga Chlamydomonas reinhardtii, H₂O₂ production induced by high light treatment was shown to promote carotenoid synthesis, thus enhancing O₂ scavenging ability and hence delaying photooxidative damage and cell death (Chang et al., 2013). This delay appears to be important for allowing the plant enough time to activate adaptive responses before initiating a cell death program if cellular homeostasis cannot be restored. The antagonistic effect of H₂O₂ on O₂-triggered cell death might thus contribute to the overall robustness of wild-type plants exposed to photooxidative stress conditions. Therefore, the relative amount of different ROS, rather than the concentration of one particular ROS, seems to
1O2-TRIGGERED ACCIDENTAL CELL DEATH IN flu

The flu mutant was isolated and first characterized during a genetic screen for etiolated mutant seedlings that are no longer able to restrict the accumulation of Pchlide in the dark and hence emit strong red Pchlide fluorescence when exposed to blue light. In etiolated seedlings, introduction of the exc1 mutation does not suppress seedling lethality of the flu mutation. The ineffectiveness of the exc1 mutation under these conditions has been attributed to the fact that flu and flu exc1 etiolated seedlings accumulate about four times more Pchlide than seedlings grown in continuous light and transferred to the dark for 8 h, which are the initial light conditions under which the exc1 mutation was shown to suppress cell death and growth inhibition (Wagner et al., 2004; Przybyla et al., 2008). Therefore, flu plants exposed to an 8 h dark period then re-illuminated appear to produce a relatively low level of 1O2 which has limited cytotoxic effects, but which is nevertheless able to trigger a genetically controlled cell death program that is regulated by the EXECUTER proteins. Conversely, etiolated flu seedlings transferred to light generate a high level of 1O2 that is cytotoxic and causes irreversible damage to cellular components (Przybyla et al., 2008). Thus, at least two types of cell death can be triggered by 1O2 in flu cells exposed to very high levels of 1O2 succumb in a EXECUTER-independent and uncontrollable manner, a process generally referred to as “accidental cell death” (ACD; van Doorn et al., 2011; Galluzzi et al., 2015); alternatively, in cells exposed to a lower production of 1O2 inside plastids, a programmed cell death (PCD) is initiated that involves the genetic control by EXECUTER proteins. Both types of cell death may coexist at the level of a tissue, organ or the whole plant, significantly complicating the identification of reliable molecular markers for cell death type.

Measurements of oxylipins, the oxidation products of polyunsaturated fatty acids (PUFAs), further support the concept of two types of 1O2-triggered cell death. Etiolated flu seedlings transferred to light generate a high level of 1O2 that is cytotoxic and causes irreversible damage to cellular components (Przybyla et al., 2008). Thus, at least two types of cell death can be triggered by 1O2 in flu cells exposed to very high levels of 1O2 succumb in a EXECUTER-independent and uncontrollable manner, a process generally referred to as “accidental cell death” (ACD; van Doorn et al., 2011; Galluzzi et al., 2015); alternatively, in cells exposed to a lower production of 1O2 inside plastids, a programmed cell death (PCD) is initiated that involves the genetic control by EXECUTER proteins. Both types of cell death may coexist at the level of a tissue, organ or the whole plant, significantly complicating the identification of reliable molecular markers for cell death type.

The discovery of at least two different types of 1O2-triggered cell death in the flu mutant raises the question of whether 1O2 levels lower than those that trigger genetically controlled cell death could activate an acclimation response. The characterization of another 1O2-producing mutant, ch1, has allowed us to answer this question.

THE Arabidopsis ch1 MUTANT, AN ALTERNATIVE MODEL TO flu

Impairment of the CAO gene, encoding chlorophyll a oxygenase, in the Arabidopsis chlorinal (ch1) mutant results in the absence of chlorophyll b and in a pale-green phenotype (Espineda et al., 1999). Because functional PSII antennae cannot assemble in the absence of chlorophyll b (Plumley and Schmidt, 1987), the ch1 mutant is completely deficient in functional light-harvesting antenna complex of PSII (LHCCI; Havaux et al., 2007). The only PSII antenna protein detected in significant amounts in ch1 is Lhcb5, but this protein is not assembled with pigments and is therefore not functional in this mutant (Havaux et al., 2007; Figure 1). Thus, PSII is composed solely of its reaction center core (with the internal antennae) in the leaves of ch1. These alterations have relatively little effect on photosynthetic electron flow at high photon flux densities (PFDs; Havaux et al., 2007; Kim et al., 2009; Ramel et al., 2013a). Loss of the normal structural architecture around the PSII reaction centers in chlorophyll b−less plant mutants has significant effects on the functionality of the PSI complexes, including loss of non-photochemical energy quenching (NPQ), impaired oxidizing side of PSI, and reduced grana stacking (Havaux and Tardy, 1997; Kim et al., 2009). LHCI antennae are less dependent on chlorophyll b for assembly than LHCIIs and, consequently, the PSI units retain part of their LHCIs in ch1 mutant leaves (Havaux et al., 2007; Takabayashi et al., 2011).

The ch1 mutant was found to be highly photosensitive, exhibiting leaf damage and cell death under light conditions (1000 μmol photons m−2 s−1 for 2 days) that had very limited effects on wild-type leaves (Havaux et al., 2007; Figure 1). This effect is attributable to an increased release of 1O2 from the ‘naked’ PSI centers in the absence of the protective mechanisms associated with the light-harvesting system, such as non-photochemical energy quenching (NPQ). Accordingly, inhibition of NPQ in the Arabidopsis npq4 mutant has been reported to increase the oxidation of β-carotene by 1O2 in the PSI reaction centers (Ramel et al., 2012a). The enhanced formation of 1O2 in ch1 was confirmed by measuring 1O2 in leaves using 1O2-specific fluo probes (Dall’Osto et al., 2010; Ramel et al., 2013a) and lipid oxidation markers (Trianthalphilides et al., 2008), or in thylakoids using spin probes and EPR spectroscopy (Ramel et al., 2013a). Moreover, a good correlation was found between the transcriptomic profiles of the ch1 and flu mutants, supporting the fact that a 1O2 signaling pathway is activated in the ch1 leaves under high light stress. However, important differences were observed between the two mutants. First, cell death in ch1 is not dependent on the EXECUTER proteins (Ramel et al., 2013a). Second, the increased production of 1O2 in the ch1 mutant occurs in the main natural production site, the PSI reaction center (Krieger-Liszkay et al., 2008; Telfer, 2014), while in flu 1O2 is produced from the membrane-bound chlorophyll precursor Pchlide in the absence of PSI over-oxidation (op den Camp et al., 2003; Przybyla et al., 2008). In addition, the flu mutant must
be grown in continuous light to avoid accumulation of Pchlide, while the chl1 mutant does not require any particular light regime.

1O2-TRIGGERED ACCLIMATION IN chl1

By playing with the light conditions, it was found that chl1 plants are able to acclimate to 1O2. Pre-exposure of chl1 plants to a moderately elevated PFD, which induces a moderate and controlled production of 1O2, rendered the plants resistant to high light stress conditions that induced lipid peroxidation, loss of chlorophyll and PSII inhibition in non-pretreated chl1 plants (Ramel et al., 2013a). This acclimation phenomenon was not associated with a reduction in the formation of 1O2 in the PSII centers, indicating a true acclimation phenomenon. Gene responses to 1O2 that do not lead to cell death were previously reported in the lut2 npq1 double mutant of Arabidopsis deficient in two 1O2 quenchers (Alboresi et al., 2011). In this mutant 1O2 formation was associated with the induction of genes whose function is to protect chloroplasts against the damaging effect of ROS. A 1O2-mediated stress acclimation phenomenon has also been reported more recently in wild-type Arabidopsis (Kim and Apel, 2013; Zhang et al., 2014). In addition, Arabidopsis cell suspensions exposed to high light display gene responses that very much resemble the gene expression profile induced in the flu mutant by 1O2, but again this occurs in the absence of cell death (González-Pérez et al., 2011).

Acclimation and increased resistance to photooxidative damage in chl1 were accompanied by a strong downregulation of the JA pathway (Ramel et al., 2013a; Figure 2); almost all genes of the JA pathway were downregulated during the acclimation treatment. Moreover, mutational suppression of JA synthesis led to constitutive phototolerance in Arabidopsis leaves: a double mutant generated by crossing the chl1 mutant with the jasmonate-deficient mutant dde2 was found to be tolerant to light stress conditions that induced severe photooxidative damage in the chl1 single mutant (Ramel et al., 2013b). Conversely, photodamage in non-acclimated plants was correlated with JA accumulation. Importantly, exogenous applications of methyl-JA were observed to cancel the acclimation response. These results allow us to refine our understanding of the interaction between the 1O2 signaling and JA pathways that was revealed earlier in the flu mutant. JA appears to act as a ‘decision maker’ between cell death and acclimation, with high concentrations of this phytohormone favoring the onset of cell death (Ramel et al., 2013b). In contrast, the strong inhibition of JA biosynthesis, as observed in chl1 leaves during acclimation to 1O2, prevents cell death and allows the initiation of cellular defense mechanisms (Figure 2). In other words, JA appears to function as a cell death-promoting phytohormone in the response of plants to high light stress. This is consistent with numerous molecular genetic studies that have provided evidence for the involvement of JAs in the regulation of cell death program under various environmental stress conditions (Reymond and Farmer, 1998; Balbi and Devoto, 2008; Reinothe et al., 2009; Avanci et al., 2010). Whether other oxylipins such as OPDA and dnOPDA could antagonize the activities of JA during high light stress and/or acclimation in chl1 remains elusive since the concentration of OPDA did not seem to be affected by the treatments (Ramel et al., 2013a).

The role of JAs in plant cell death regulation involves interactions with other signal molecules such as SA and ET (Reymond and Farmer, 1998; Reinothe et al., 2009; Ballaré, 2011). The close correlation between JA levels and sensitivity to 1O2 was not observed for SA, which exhibited little change during photooxidative stress in chl1 mutant plants, unlike in the flu mutant (Ramel et al., 2013a). On the other hand and like in flu, microarray-based transcriptomic analyses of chl1 leaves revealed the induction of a number of genes related to ET such as ACS2, ETR1, ERF1, ERF5, and ERF2, in response to increased PFDs (Ramel et al., 2013a). Interestingly, the ET-responsive element binding protein ERF72 (also known as AtEBP and RAP2.3) and the ET-inducible protein of unknown function encoded by the At2g38210 gene were found to be specifically induced during acclimation of the chl1 mutant to 1O2 stress. The ERF72 protein is involved in the ET signaling pathway, functioning as a transcription activator that regulates the expression levels of plant defense genes and confers resistance to Bax- and abiotic stress-induced plant cell death (Ogawa et al., 2007). Based on these observations, it is tempting to propose a role for ERF72 in the acclimation mechanism as a cell death suppressor. This attractive possibility is currently investigated in our laboratory using an ERF72-deficient mutant of Arabidopsis.

SECONDARY MESSAGERS OF 1O2-TRIGGERED ACCLIMATION

Recently, 1O2 oxidation products of β-carotene, such as β-cyclocitrinal and dihydroactinidiolide, were found to accumulate in Arabidopsis leaves under high light stress (Ramel et al., 2012b; Shumbe et al., 2014). Those carotenoid derivatives were able to induce changes in the expression of 1O2-responsive genes and to increase plant phototolerance. Since β-carotene is located in the PSII reaction center, its oxidized derivatives β-cyclocitrinal and dihydroactinidiolide can be considered as upstream messengers in the 1O2 signaling pathway. Although the exact mode of action of those signaling compounds is not yet known, it has been suggested that they act as reactive electrophile species (RES; Havaux, 2014). Interestingly, acclimation to 1O2 was also reported in the microalgae Chlamydomonas following exposure to low, sublethal concentrations of 1O2 (Ledford et al., 2007). This acclimation process is accompanied by gene transcription changes, with the promoter of many genes containing a palindromic sequence element functioning as an electrophile response element (Fischer et al., 2012). Taken together, these results strongly support the involvement of lipid and/or carotenoid RES in the 1O2 signaling pathway leading to acclimation to 1O2 toxicity in photosynthetic organisms. Their mechanisms of action remain to be elucidated and constitute a major research challenge for the future. Also, the possible interactions between carotenoid RES and other metabolite retrograde signals from the chloroplasts (Estavillo et al., 2012) need to be assessed.

1O2 AND CELL DEATH IN WILD-TYPE Arabidopsis AND IN OTHER PHOTOSYNTHETIC MODELS

Data on 1O2-induced cell death in wild-type Arabidopsis and in other plant species are scarce. Compared to the chl1 and flu mutants, the responses to high light stress are more complex in the wild-type since several ROS can be produced simultaneously in...
the chloroplasts and several superimposing signaling pathways can be expected. In particular, it has been proposed that the \(\text{O}_2^- \) and EXECUTER-dependent pathway operates in wild-type Arabidopsis leaves but, depending on the severity of light stress, it can be superimposed by \(\text{O}_2^- \) mediated signaling that does not depend on EXECUTER and is associated with photooxidative damage (Kim and Apel, 2013). Nevertheless, in cultured Arabidopsis cells, \(\text{O}_2^- \) was reported to be the main ROS produced in high light (González-Pérez et al., 2011). Using \(\text{O}_2^- \)-specific lipid oxidation markers, Triantaphylides et al. (2008) found that photooxidative damage to Arabidopsis leaves is always associated with \(\text{O}_2^- \) induced lipid peroxidation, indicating a central role played by this ROS in the execution of high light-induced cell death.

Mor et al. (2014) have recently shown that transcriptomes of multiple stresses, whether from light or dark treatments, are correlated with the transcriptome of the flu mutant. They also detected \(\text{O}_2^- \) production in roots in the dark, suggesting that the role of \(\text{O}_2^- \) in plant stress regulation and response is more ubiquitous than previously thought and is not restricted to high light. Lipid peroxidation and reactions between superoxide and hydrogen peroxide have been suggested as possible sources of \(\text{O}_2^- \) in the dark (Khan and Kasha, 1994; Miyamoto et al., 2007). \(\text{O}_2^- \) production can also occur under biotic stress conditions, as indicated by the accumulation of \(\text{O}_2^- \)-specific lipid oxidation products in leaves during pathogen attacks (Vellaisillo et al., 2010; Zoeller et al., 2012). Chlorophyll catabolites have been involved in the photosensitization of the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis (Mur et al., 2010). Any stress conditions that perturb the assembly of the chlorophyll binding proteins can release uncoupled chlorophyll molecules that can act as \(\text{O}_2^- \)-producing photosensitizers (Santabarbara and Jennings, 2005). It is then clear that \(\text{O}_2^- \) signaling can operate under a variety of environmental conditions and can lead, likely through interactions with other signaling pathways, to physiological responses associated with cell death or acclimation.

Adaptive responses to \(\text{O}_2^- \) have also been reported in photosynthetic microorganisms. In the facultative photosynthetic \(\alpha \)-proteobacteria Rhodobacter sphaeroides, bacteriochlorophylls can act as cellular photosensitizers. A \(\text{O}_2^- \) response mechanism was shown to occur in this organism, which involves the alternative sigma factor RpoE (Anthony et al., 2005): when cells are exposed to \(\text{O}_2^- \), the complex that RpoE forms with its anti-sigma factor ChrR is disrupted, allowing the binding of RpoE to RNA polymerase and resulting in the activation of target gene expression (Nuss et al., 2013). This transcriptional response was associated with an increased tolerance of Rhodobacter cells to \(\text{O}_2^- \). Acclimation to \(\text{O}_2^- \) was also reported in the microalga C. reinhardtii, with low sublethal concentrations of \(\text{O}_2^- \) inducing an increased resistance to higher \(\text{O}_2^- \) concentrations (Ledford et al., 2007). Recently, two mediators of \(\text{O}_2^- \)-dependent gene expression have been identified in this organism: a small zinc finger protein named MBS (Shao et al., 2013) and a cytosolic phosphoprotein, SAK1 (Wakao et al., 2014). SAK1 has been proposed to be a key regulator of acclimation to \(\text{O}_2^- \) in C. reinhardtii because the SAK1 protein is phosphorylated upon exposure to \(\text{O}_2^- \) and the sak1 knock-out lacks a \(\text{O}_2^- \) acclimation response. However, SAK1 homologues have been identified only in chlorophytes. In contrast, the identification of a homologous MBS gene in Arabidopsis, and the characterization of mutant and overexpressing lines, revealed a critical and evolutionarily conserved role for the MBS protein in \(\text{O}_2^- \) signaling and photooxidative stress tolerance.

CONCLUDING REMARKS AND OUTLOOK

The study of the two \(\text{O}_2^- \)-overproducing mutants, flu and chl, has greatly improved our understanding of the cellular function of \(\text{O}_2^- \) in the model plant A. thaliana. Besides its cytotoxicity at high concentrations, \(\text{O}_2^- \) may trigger signaling pathways that lead either to acclimation or regulated cell death. Key cell death-promoting and -inhibitory signals have been identified that coexist and counteract one another and which may explain, in agreement with the competition model of cell death initiation (Galluzzi et al., 2015), how an adaptive stress response can promote cell death when unsuccessful (Figure 2). Specifically, jasmonate, and possibly other oxylipins, seem to play a central role in the decision between acclimation and cell death in the response to \(\text{O}_2^- \) (Danon et al., 2005; Ramel et al., 2013b).

The gene expression responses to \(\text{O}_2^- \) in the flu and chl mutants show many similarities, as expected for two \(\text{O}_2^- \) producers. Nevertheless, important differences were also observed. In particular, the dependence of the response to \(\text{O}_2^- \) on the EXECUTER proteins, which was revealed in the flu mutant, was not observed in the chl mutant. Furthermore, the chl mutant exposed to high light stress did not exhibit increased expression of EDS1 encoding the ENHANCED DISEASE SUSCEPTIBILITY1 protein that is required for the modulation of the \(\text{O}_2^- \)-mediated cell death response in flu (Ochsenbein et al., 2006). Similarly, in Arabidopsis cell suspensions, EDS1 was not up-regulated during \(\text{O}_2^- \)-induced cell death (Gutiérrez et al., 2014). These differences suggest that the site of \(\text{O}_2^- \) production (thylakoid membranes vs. PSII reaction centers) can modulate the gene expression response. Alternatively, or additionally, the \(\text{O}_2^- \)-production rate and time might contribute to the differences observed between flu and chl. In the flu mutant, \(\text{O}_2^- \) concentration rises immediately after the dark-to-light shift (within minutes, most likely less) and probably quite transiently since it depends on the photosensitizer Pchlide that has accumulated during the preceding dark period. Conversely, the \(\text{O}_2^- \) concentration is likely to rise more gradually in the chl mutant under high light stress, but the production lasts as long as the stress is maintained and the PSII reaction centers are not severely damaged. The lack of a precise and continuous determination of \(\text{O}_2^- \) concentrations emphasizes the need for the further development of highly sensitive and quantitative \(\text{O}_2^- \) detection methods that will allow the accurate detection of \(\text{O}_2^- \) in planta, and within cellular compartments (Fischer et al., 2013).

The \(\text{O}_2^- \) signaling pathways have been shown to operate in the wild-type but the situation is probably more complex than in the flu and chl mutants, with the interaction and the convergence of different signaling pathways (Kim and Apel, 2013). In addition, several lines of evidence indicate that the role of \(\text{O}_2^- \) in plant stress response is probably more ubiquitous than usually thought and is not exclusive to excess light energy. Indeed, not only \(\text{O}_2^- \) appears to be involved in the response to pathogen attacks, but it can also emanate from compartments other than the chloroplasts and in a
light-independent manner. Therefore, a better knowledge of the plant responses to O₂ could have important implications not only for the understanding of how plants can adapt to changing and unfavorable climatic environments, but also for the development of plants tolerant to various types of stresses, including biotic stresses.

ACKNOWLEDGMENTS

The research works on O₂ performed in the authors’ laboratories are supported by the French National Research Agency (ANR-14-CE02-0010 and ANR-2010-JCJC-1205-01). We thank Dr. Ben Field for critical reading of the manuscript.

REFERENCES

Alboresi, A., Dall’osto, L., Aprile, A., Carillo, P., Roncaglia, E., Cattivelli, L., et al. (2011). Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biol. 11:62. doi: 10.1186/1471-2229-11-62

Anthony, J. R., Warczak, K. L., and Donohue, T. J. (2005). A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 102, 6502–6507. doi: 10.1073/pnas.050225102

Avanci, N. C., Luche, D. D., Goldman, G. H., and Goldman, M. H. S. (2010). Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet. Mol. Res. 9, 484–505. doi: 10.4238/vol9-1gmr754

Balbi, V., and Devoto, A. (2008). Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 177, 301–318. doi: 10.1111/j.1469-8137.2007.02292.x

Ballaré, C. L. (2011). Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci. 16, 249–257. doi: 10.1016/j.plants.2010.12.001

Birtic, S., Ksas, B., Genty, B., Mueller, M. J., Triantaphylides, C., and Havaux, M. (2011). Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. Plant J. 67, 1103–1115. doi: 10.1111/j.1365-313X.2011.04646.x

Bisby, R. H., Morgan, C. G., Hamblett, I., and Gorman, A. A. (1999). Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature. J. Phys. Chem. A103, 7454–7459. doi: 10.1021/jp90838c

Danon, A., Goll, N. S., and Apel, K. (2006). Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 103, 17036–17041. doi: 10.1073/pnas.0608193103

Danon, A., Miersch, O., Felix, G., Op Den Camp, R. G. L., and Apel, K. (2005). Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J. 41, 68–80. doi: 10.1111/j.1365-313X.2004.02276.x

Espineda, C. E., Linford, A. S., Devine, D., and Brusslan, J. A. (1999). The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 96, 10507–10511. doi: 10.1073/pnas.96.18.10507

Estavillo, G. M., Chan, K. X., Phua, S. Y., and Pogson, B. J. (2012). Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast. Front. Plant Sci. 3:300. doi: 10.3389/fpls.2012.00300

Fischer, B. B., Hideg, E., and Krieger-Liszkay, A. (2013). Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid. Redox Signal. 18, 2145–2162. doi: 10.1089/ars.2012.5124

Fischer, B. B., Ledford, H. K., Wako, S., Huang, S. G., Casero, D., Pellegreni, M., et al. (2012). SINGLET OXYGEN RESISTANT 1 links reactive electrophile signaling to singlet oxygen claccination in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U.S.A. 109, E1302-E1311. doi: 10.1073/pnas.1116843109

Gadjev, I., Vanderwaawer, S., Gechev, T. S., Laloì, C., Minkov, I. N., Shulaev, V., et al. (2006). Transcriptional footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141, 436–445. doi: 10.1104/pp.106.976617

Galluzzo, L., Bravo-San Pedro, J. M., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., et al. (2015). Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73. doi: 10.1038/cdd.2014.137

Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. Plant J. 79, 596–606. doi: 10.1111/tjp.12386

Havaux, M., Dall’osto, L., and Bassi, R. (2007). Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol. 145, 1506–1520. doi: 10.1104/pp.107.108480

Havaux, M., Ksas, B., Szewczyk, A., Rumeau, D., Franck, E., Caffarri, S., et al. (2009). Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress. BMC Plant Biol. 9:130. doi: 10.1186/1471-2229-9-9-130

Havaux, M., and Tardy, F. (1997). Thermotolerance and photostability of photosystem II in leaves of the chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol. 113, 913–923.

Khan, A. U., and Kashia, M. (1994). Singlet molecular oxygen in the Haber-Weiss reaction. Proc. Natl. Acad. Sci. U.S.A. 91, 12365–12367. doi: 10.1073/pnas.91.26.12365

Kim, C., and Apel, K. (2013). Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity. Photosynth. Res. 116, 453–464. doi: 10.1007/s11120-013-9876-4

Kim, C., Meskauskienė, R., Apel, K., and Laloì, C. (2008). No single way to understand singlet oxygen signalling in plants. EMBO Rep. 9, 435–439. doi: 10.1038/embo.2008.57

Kim, C., Meskauskienė, R., Zhang, S., Lee, K. P., Lakshmanan Ashok, M., Blajecia, K., et al. (2012). Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 24, 3026–3039. doi: 10.1105/tpc.111.104879

Krieger-Liszkay, A., Meskauskienė, R., Zhang, S., Lee, K. P., Lakshmanan Ashok, M., Blajecia, K., et al. (2012). Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 24, 3026–3039. doi: 10.1105/tpc.111.104879

Kroger-Liszkay, A., Fufezan, C., and Trebst, A. (2008). Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98, 551–564. doi: 10.1007/s11120-008-9349-3

Laloì, C., Przybyla, D., and Apel, K. (2006). A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana. J. Exp. Bot. 57, 1719–1724. doi: 10.1093/jxb/er183

Laloì, C., Stachowiak, M., Pers-Kamczyc, E., Warych, E., Murgia, I., and Apel, K. (2007). Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 672–677. doi: 10.1073/pnas.0609063103
Ledford, H. K., Chin, B. L., and Niyogi, K. K. (2007). Acclimation to singlet oxygen in Chlamydomonas reinhardtii. Eukaryot. Cell 6, 919–930. doi: 10.1128/EC.00207-06

Lee, K. F., Kim, C., Landgraf, F., and Apel, K. (2007). EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 10270–10275. doi: 10.1073/pnas.0702061104

Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583–593. doi: 10.1016/0092-8674(94)90544-4

Li, H., Melo, T. B., Arelano, J. L., and Razi Naqvi, K. (2012). Temporal profile of the singlet oxygen emission endogenously produced by photosystem II reaction center in an aqueous buffer. Photosynth. Res. 112, 75–79. doi: 10.1007/s11110-012-9793-4

Mesauskienė, R., and Apel, K. (2002). FLU: a negative regulator of chlorophyll biosynthesis with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett. 532, 27–30. doi: 10.1016/S0014-5793(02)03617-7

Mesauskienė, R., Nater, M., Goslings, D., Kessler, F., op den Camp, R., and Apel, K. (2001). FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 98, 12826–12831. doi: 10.1073/pnas.22152798

Miyamoto, S., Ronsein, G. E., Prado, F. M., Uemi, M., Corrêa, T. C., Toma, I. N., Meskauskiene, R., Nater, M., Goslings, D., Kessler, F., op den Camp, R., Ueda, K., and Apel, K. (2007). EXECUTER1- and EXECUTER2-dependent activation of RpoE in Arabidopsis. FEBS J. 274, 4666–4681. doi: 10.1111/j.1742-4658.2009.07193.x

Reymond, P., and Farmer, E. E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1, 404–411. doi: 10.1016/S1369-5266(98)80264-1

Santabarbara, S., and Jennings, R. C. (2005). The size of the population of weakly coupled chlorophyll pigments involved in thylakoid photoinduction determined by steady-state fluorescence spectroscopy. Biochim. Biophys. Acta 1709, 138–149. doi: 10.1016/j.bbcb.2005.01.001

Shao, N., Duan, G. Y., and Bock, R. (2013). A mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a luciferase-based genetic screen in algal cells. Plant Cell 25, 4209–4226. doi: 10.1101/113739

Shumbe, L. B., Roth, R., and Havaux, M. (2014). Dihydroxyacetonephosphate, a high-light-induced β-carotene derivative that can regulate gene expression and photo-acclimation in Arabidopsis. Mol. Plant 7, 1248–1251. doi: 10.1093/mp/ssu028

Takabayashi, A., Kurihara, K., Kuwano, M., Kasahara, Y., Tanaka, R., and Tanaka, A. (2011). The oligomeric states of the photosystems and the light-harvesting complexes in the Chl b-less mutant. Plant Cell Physiol. 52, 2103–2114. doi: 10.1093/pcp/pcr138

Telfer, A. (2014). Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant Cell Physiol. 55, 1216–1223. doi: 10.1093/pcp/pcu040

Thordal-Christensen, H., Zhang, Z., Wei, Y., and Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J. 11, 1187–1194. doi: 10.1046/j.1365-313x.1997.11001187.x

Triantaphylides, C., and Havaux, M. (2009). Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci. 14, 219–228. doi: 10.1016/j.tplants.2009.01.008

Triantaphylides, C., Krischke, M., Hoeberichts, F. A., Ksas, B., Gresser, G., Havaux, M., et al. (2008). Singlet oxygen is the major reactive oxygen species involved in phototoxic oxidative damage to plants. Plant Physiol. 148, 960–968. doi: 10.1104/pp.108.125690

van Doorn, W. G., Beers, E. P., de Vries, F. J., Franklin-Tong, V. E., Gallois, P., Harms, J. M., and Dangl, J. L. (2003). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J. 11, 1187–1194. doi: 10.1046/j.1365-313x.1997.11001187.x

van der Voort, F. W., Beers, E. P., de Vries, F. J., Franklin-Tong, V. E., Gallois, P., Harms, J. M., and Dangl, J. L. (2003). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J. 11, 1187–1194. doi: 10.1046/j.1365-313x.1997.11001187.x

Vellvisio, L., Vicente, J., Kulasekaran, S., Hamberg, M., and Castresana, C. (2010). Expressing chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc. Natl. Acad. Sci. U.S.A. 84, 146–150. doi: 10.1073/pnas.84.14.146

Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K. P., et al. (2004). The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Sci. Signal. 18, 1241–1246. doi: 10.1371/journal.srep.02286

Wakao, S., Chin, B. L., Ledford, H. K., Dent, R. M., Casero, D., Pellegrin, M., et al. (2014). Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii. Elife 3:e02286. doi: 10.7554/eLife.02286
Zhang, S., Apel, K., and Kim, C. (2014). Singlet oxygen-mediated and EXECUTER-dependent signalling and acclimation of Arabidopsis thaliana exposed to light stress. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130227. doi: 10.1098/rstb.2013.0227

Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S., et al. (2012). Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol. 160, 365–378. doi: 10.1104/pp.112.202846

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 09 December 2014; paper pending published: 22 December 2014; accepted: 15 January 2015; published online: 04 February 2015.

Citation: Laloi C and Havaux M (2015) Key players of singlet oxygen-induced cell death in plants. Front. Plant Sci. 6:39. doi: 10.3389/fpls.2015.00039

This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.

Copyright © 2015 Laloi and Havaux. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.