Regions of multistationarity in cascades of Goldbeter–Koshland loops

Magalí Giaroli · Frédéric Bihan · Alicia Dickenstein

/ Revised: 17 October 2018 / Published online: 10 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
We consider cascades of enzymatic Goldbeter–Koshland loops (Goldbeter and Koshland in Proc Natl Acad Sci 78(11):6840–6844, 1981) with any number n of layers, for which there exist two layers involving the same phosphatase. Even if the number of variables and the number of conservation laws grow linearly with n, we find explicit regions in reaction rate constant and total conservation constant space for which the associated mass-action kinetics dynamical system is multistationary. Our computations are based on the theoretical results of our companion paper (Bihan, Dickenstein and Giaroli 2018, preprint: arXiv:1807.05157) which are inspired by results in real algebraic geometry by Bihan et al. (SIAM J Appl Algebra Geom, 2018).

Keywords Enzymatic cascades · Goldbeter–Koshland loops · Sparse polynomial systems · Multistationarity

Mathematics Subject Classification 92C42 · 80A30 · 14P99 · 14L32

AD and MG are partially supported by UBACYT 20020170100048BA, CONICET PIP 11220150100473, and ANPCyT PICT 2016-0398, Argentina.

Alicia Dickenstein
alidick@dm.uba.ar

Magalí Giaroli
mgiaroli@dm.uba.ar

Frédéric Bihan
frederic.bihan@univ-smb.fr

1 Dto. de Matemática, FCEN, Universidad de Buenos Aires, and IMAS (UBA-CONICET), Ciudad Universitaria, Pab. I, C1428EGA Buenos Aires, Argentina

2 Laboratoire de Mathématiques, Université Savoie Mont Blanc, 73376 Le Bourget-du-Lac Cedex, France
1 Introduction

Signal transduction is the process through which cells communicate with the external environment, interpret stimuli and respond to them. This mechanism is controlled by signaling cascades. Classical signaling pathways typically contain a cascade of phosphorylation cycles where the activated protein in one layer acts as the modifier enzyme in the next layer. An example of signaling cascades is the Ras cascade (see Fig. 1, as it is usually depicted in the biochemistry literature), which is an important signaling pathway in mitogen-activated protein kinases (MAPKs). This cascade reaction activates transcription factors and regulates gene expression. The Ras signaling pathway has a significant role in the occurrence and development of diseases such as cancer (Li et al. 2016) or developmental defects (Goyal et al. 2017). One key property is the occurrence of multistability, which triggers different crucial cellular events. A basic condition for these different cellular responses is the emergence of multistationarity.

Several articles studied the capacity for multistationarity from the structure of the directed graph of reactions (Banaji and Pantea 2018; Feliu and Wiuf 2012, 2013; Flockerzi and Conradi 2008; Joshi and Shiu 2013; Müller et al. 2016; Pérez Millán and Dickenstein 2018), a line initiated in Craciun and Feinberg (2005, 2006). When the capacity for multistationarity of G is determined, the following difficult step is to find values of multistationary parameters. This is a question of quantifier elimination in real algebraic geometry, which is effective, but for interesting networks the complexity of the computations with general standard tools is too high. Several articles in the literature addressed this question, with different approaches based on degree theory (Conradi and Mincheva 2014; Conradi et al. 2017), on algebraic and analytic computations at steady state including perturbation techniques (Wang and Sontag 2008), on sign conditions (Holstein et al. 2013), on reduction to univariate polynomials (Kothamachu et al. 2015) and on the study of sparse real polynomials via Viro’s deformation techniques (Gatermann and Wolfrum 2005).

In this work, we use tools from real algebraic geometry based on the papers by Bihan, Dickenstein and Giaroli (2018) and Bihan et al. (2018), as we referred before, to analyze multistationarity in cascades of enzymatic Goldbeter–Koshland loops. A second important ingredient is the observation that enzymatic cascades have the structure of $MESSI$ systems, introduced and studied in Pérez Millán and Dickenstein (2018), from which an explicit parametrization of the steady states can be obtained, even in presence of multistationarity. We show how to deform a given set of parameters of the model to produce multistationarity, including both the reaction rate constants and the total concentration constants. Moreover, we identify open sets where multistationarity occurs in the space of all these parameters. As we mentioned, a deformation of the parameter space based on Viro’s method was already considered in Gatermann and Wolfrum (2005), where a result in the line of Theorem 3.6 was obtained in conjunction with the study of nonnegative solutions associated with faces of the cone of relations of the stoichiometric vectors. Our simpler approach allows us to make very explicit computations in structured networks.

In Sect. 2 we provide the basic definitions of chemical reaction networks and multistationarity. In Sect. 3 we state and explain the theoretical setting presented in our companion paper (Bihan, Dickenstein and Giaroli, 2018) based on the results in Bihan.
et al. (2018). We apply our method to enzymatic cascades of Goldbeter–Koshland loops in Sects. 4 and 5. In Sect. 4 we apply our method to an enzymatic cascade with two layers and in Sect. 5 we work with the general case of n layers and present our main results (Theorems 5.1 and 5.2). In this case, the associated polynomial systems have positive dimensions growing linearly with n. The number of conservation relations (and then of total conservation constants) also grows linearly with n, and it is at least four if $n \geq 2$. Such systems were studied in Catozzi et al. (2016); Feliu et al. (2012) when all the enzymes are different, in which case there cannot be more than one positive steady state. This fact is proved in Feliu et al. (2012) and also is a particular case of a more general result in Barabanschikov and Gunawardena (2018, preprint), in which the authors work with a more general structure: tree networks of Goldbeter–Koshland loops. In the case of two layers, it was shown in Feliu and Wiuf (2012) that in the case $n = 2$ (see Fig. 2), if the same phosphatase is acting at both layers, then the network has the capacity for multistationarity. It can be deduced from the results in Banaji and Pantea (2018), that if there are any number of layers, and the last two share a phosphatase, multistationarity parameters for the case $n = 2$ can be extended to produce multistationarity parameters in the general case. We include an Appendix with the computer code to symbolically check the number of positive real roots of polynomial systems with rational coefficients, and with some general technical results that are the basis for some of our arguments.
2 Basic definitions on chemical reaction networks and multistationarity

A reaction network G on a given set of s chemical species is a finite directed graph whose edges \mathcal{R} represent the reactions and are labeled by parameters $\kappa \in \mathbb{R}_{>0}^{\mathcal{R}}$, known as reaction rate constants, and whose vertices are labeled by complexes, usually represented as nonnegative integer linear combinations of species. After numbering the species, a complex can be identified with a vector in $\mathbb{Z}^s_{\geq 0}$. Under mass-action kinetics, G defines the following autonomous system of ordinary differential equations in the concentrations x_1, x_2, \ldots, x_s of the species as functions of time t:

$$\dot{x} = f(x) = \left(\frac{dx_1}{dt}, \frac{dx_2}{dt}, \ldots, \frac{dx_s}{dt}\right) = \sum_{y \to y' \in \mathcal{R}} \kappa_{yy'} x^y (y' - y),$$

where $x = (x_1, x_2, \ldots, x_s)$, $f = (f_1, \ldots, f_s)$, $x^y = x_1^{y_1} x_2^{y_2} \ldots x_s^{y_s}$ and $y \to y'$ indicates that the complex y reacts to the complex y' and $(y, y') \in \mathcal{R}$. The steady states of the system correspond to constant trajectories, that is, to the zero set of the polynomials $f_1, \ldots, f_s \in \mathbb{R}[x_1, \ldots, x_s]$. As the vector $x(t)$ lies for all time t in the linear subspace S spanned by the reaction vectors $\{y' - y : y \to y' \in \mathcal{R}\}$ (which is known as the stoichiometric subspace), it follows that any trajectory $x(t)$ lies in a translate of S. Moreover, if $x(0) = x^0 \in \mathbb{R}^s_{\geq 0}$, then $x(t)$ lies for any t (in the domain of definition) in the stoichiometric compatibility class $(x^0 + S) \cap \mathbb{R}^s_{\geq 0}$.

We will work with conservative systems and so all trajectories will be defined for any $t \geq 0$. The linear equations of $x^0 + S$ give conservation laws. If $x^0 \in \mathbb{R}^s_{\geq 0}$, we can also write the linear variety $x^0 + S$ in the form: $\{x \in \mathbb{R}^s : \ell_1(x) = T_1, \ldots, \ell_\sigma(x) = T_\sigma\}$, where $\ell_1, \ldots, \ell_\sigma$ are linear forms defining a basis of the subspace orthogonal to S and $T = (T_1, \ldots, T_\sigma) \in \mathbb{R}^\sigma_{\geq 0}$. These constant values are called total conservation constants.

The network G is said to have the capacity for multistationarity if there exists a choice of reaction rate constants κ and total conservation constants T such that there are two or more steady states of system (1) in the stoichiometric compatibility class determined by T. The study of multistationarity is then related to the study of positive real roots of sparse polynomial systems, which we introduce in the next section.

3 Positive solutions of sparse polynomial systems

We summarize some results from Section 2 in Bihan, Dickenstein and Giaroli (2018), where complete details can be found. We also refer the reader to De Loera et al. (2010) for the combinatorial objects that we introduce in this section.

We consider a polynomial system of d Laurent polynomial equations $f_1(x) = \cdots = f_d(x) = 0$ in d variables $x = (x_1, \ldots, x_d)$, with

$$f_i(x) = \sum_{j=1}^n c_{ij} x^{a_j} \in \mathbb{R}[x_1, \ldots, x_d], \quad i = 1, \ldots, d,$$
where the exponents belong to a fixed finite point configuration $\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^d$, with $n + 2 \geq d$. We denote by $C = (c_{ij}) \in \mathbb{R}^{d \times n}$ the coefficient matrix of the system and we assume w.l.o.g. that no column of C is identically zero. The set \mathcal{A} is called the support of the polynomial system.

In order to understand the notation we present a basic example.

Example 3.1 We consider the following point configuration

$$\mathcal{A} = \{(0, 0), (2, 0), (0, 1), (2, 1), (1, 2), (1, 3)\} \subset \mathbb{Z}^2,$$

and the coefficient matrix

$$C = \begin{pmatrix} 1 & -2 & 1 & 1 & -1 & 0 \\ -2 & 1 & 0 & -1 & -1 & 1 \end{pmatrix}.$$

The polynomial system of two polynomial equations and two variables x, y:

$$1 - 2x^2 + y + x^2y - xy^2 = 0,$$
$$-2 + x^2 - x^2y - xy^2 + xy^3 = 0,$$

has support \mathcal{A} and coefficient matrix C, and we write it in the form:

$$C \left(\begin{array}{cccc} 1 & x^2 & y & x \end{array} \right)^t = 0,$$

where t denotes the transpose.

Our idea to ensure multistationarity, based on Bihan et al. (2018), is to restrict our polynomial system (2) to subsystems which have a positive solution and then extend these solutions to the total system, under a deformation of the coefficients. So, we are first interested in finding conditions in the coefficient matrix that guarantee a positive solution in the subsystems.

Suppose that the convex hull of \mathcal{A} is a full-dimensional polytope Q. Figure 3 shows the convex hull of \mathcal{A} of Example 3.1. A d-simplex with vertices in \mathcal{A} is a subset of $d + 1$ points of \mathcal{A} affinely independent. Following Section 3 in Bihan et al. (2018), we define:

Definition 3.2 Given any $d \times (d + 1)$ matrix M with real entries, we denote by minor(M, i) the determinant of the square matrix obtained by removing the i-th column. The matrix M is called positively spanning if all the values $(-1)^i \text{minor}(M, i)$, for $i = 1, \ldots, d + 1$, are nonzero and have the same sign.

Thus, a matrix is positively spanning if all the coordinates of any non-zero vector in the kernel of the matrix are non-zero and have the same sign. For example, the matrix

$$M = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$
Convex hull of the support \mathcal{A} of the Example 3.1 is positively spanning because the values $(-1)^1 \text{minor}(M, 1) = -1$, $(-1)^2 \text{minor}(M, 2) = -1$ and $(-1)^3 \text{minor}(M, 3) = -1$ are all nonzero and have the same sign. Also, any non-zero vector in the kernel of M is of the form $\lambda(1, 1, 1)$, with $\lambda \in \mathbb{R} - \{0\}$, that is, all the coordinates of one of these vectors share the same sign.

It can be shown (Proposition 3.3 in Bihan et al. 2018) that if a polynomial system of d polynomial equations in d variables has a d-simplex as support, then it has one non-degenerate positive solution if and only if its $d \times (d + 1)$ matrix of coefficients is positively spanning.

Definition 3.3 Let C be a $d \times n$ matrix with real entries. A d-simplex $\Delta = \{a_{i_1}, \ldots, a_{i_{d+1}}\}$ is said to be positively decorated by C if the $d \times (d + 1)$ submatrix of C with columns $\{i_1, \ldots, i_{d+1}\}$ is positively spanning.

Example 3.4 (Example 3.1 continued) Consider again the support with vertices in \mathcal{A} in (3), and the following 2-simplices:

$$
\Delta_1 = \{(0, 0), (2, 0), (0, 1)\}, \quad \Delta_2 = \{(2, 0), (0, 1), (2, 1)\},
$$

$$
\Delta_3 = \{(0, 1), (2, 1), (1, 2)\},
$$

depicted in Fig. 6. The submatrix of C given by the columns of Δ_1 (the first three columns) equals:

$$
\begin{pmatrix}
1 & -2 & 1 \\
-2 & 1 & 0
\end{pmatrix}.
$$

This matrix is positively spanning, so the simplex Δ_1 is positively decorated by C. It is easy to check that the simplex Δ_2 is also positively decorated by C. But the submatrix given by the columns of Δ_3 (the columns 3, 4 and 5):

$$
\begin{pmatrix}
1 & 1 & -1 \\
0 & -1 & -1
\end{pmatrix}
$$

is not positively spanning, and then the simplex Δ_3 is not positively decorated by C.

\text{ Springer}
Fig. 4 Examples of simplices Δ_1 and Δ_2, which share a facet, $d = 2$

Given a d-simplex Δ with vertices in A, we consider height vectors $h \in \mathbb{R}^n$, where each coordinate h_j of h gives the value of a lifting function on the point a_j of A. Denote by $\varphi_{\Delta, h}$ the unique affine function that agrees with h on the points of Δ, that is, $\varphi_{\Delta, h}(a_j) = h_j$ for all $a_j \in \Delta$. We associate with Δ the following cone:

$$ C_{\Delta} = \{ h = (h_1, \ldots, h_n) \in \mathbb{R}^n : \varphi_{\Delta, h}(a_j) < h_j \text{ for all } a_j \notin \Delta \}. $$

Assume that two simplices Δ_1 and Δ_2 share a common facet, that is, the points in A that lie in a face of dimension $d - 1$ of its convex hull, and they only intersect there (see Fig. 4 for an example). In this case, it can be shown that the cone C_{Δ_1, Δ_2} defined as the intersection

$$ C_{\Delta_1, \Delta_2} = C_{\Delta_1} \cap C_{\Delta_2}, $$

is nonempty (see Proposition 2.5 in Bihan, Dickenstein and Giaroli (2018)).

Example 3.5 (Examples 3.1 and 3.4 continued) We compute the cone C_{Δ_1, Δ_2} for the simplices Δ_1 and Δ_2. We take any values h_1, h_2, h_3 corresponding to the points of Δ_1: $(0, 0), (2, 0)$ and $(0, 1)$ respectively.

We consider then the unique affine linear function $\varphi_{\Delta_1, h}(x, y)$ which satisfies $\varphi_{\Delta_1, h}(0, 0) = h_1$, $\varphi_{\Delta_1, h}(2, 0) = h_2$ and $\varphi_{\Delta_1, h}(0, 1) = h_3$:

$$ \varphi_{\Delta_1, h}(x, y) = \left(\frac{h_2 - h_1}{2} \right) x + (h_3 - h_1) y + h_1. $$

We need that

$$ \varphi_{\Delta_1, h}(2, 1) = -h_1 + h_2 + h_3 < h_4, $$
$$ \varphi_{\Delta_1, h}(1, 2) = -\frac{3}{2} h_1 + \frac{1}{2} h_2 + 2 h_3 < h_5, $$
$$ \varphi_{\Delta_1, h}(1, 3) = -\frac{5}{2} h_1 + \frac{1}{2} h_2 + 3 h_3 < h_6. $$

Then, we have the description

$$ C_{\Delta_1} = \{ h = (h_1, \ldots, h_6) \in \mathbb{R}^6 : h_1 - h_2 - h_3 + h_4 > 0, $$
In analogous way we can compute C_{Δ_2}:

$$C_{\Delta_2} = \{ h = (h_1, \ldots, h_6) \in \mathbb{R}^6 : h_1 - h_2 - h_3 + h_4 > 0, \quad 2h_2 - h_3 - 3h_4 + 2h_5 > 0, \quad 4h_2 - h_3 - 5h_4 + 2h_6 > 0 \}.$$

We observe that one of the inequalities appears twice, then C_{Δ_1, Δ_2} is defined by five inequalities. We can write:

$$C_{\Delta_1, \Delta_2} = \{ h = (h_1, \ldots, h_6) \in \mathbb{R}^6 : \langle m_r, h \rangle > 0, \quad r = 1, \ldots, 5 \},$$

where $\langle \cdot, \cdot \rangle$ denotes the canonical inner product, and $m_1 = (1, -1, -1, 1, 0, 0), m_2 = (3, -1, -4, 0, 2, 0), m_3 = (5, -1, -6, 0, 0, 2), m_4 = (0, 2, -1, -3, 2, 0), m_5 = (0, 4, -1, -5, 0, 2)$.

Remark 1 Take any vector $h \in \mathbb{R}^n$ and consider the lower convex hull \mathcal{L} of the n lifted points $(a_j, h_j) \in \mathbb{R}^{d+1}$, with $a_j, j = 1, \ldots, n$, in the support A (see Fig. 5). Project to \mathbb{R}^d the subsets of points in each of the faces of \mathcal{L}. These subsets define a regular subdivision of A associated with h. When the lifting vector h is generic, the regular subdivision is a regular triangulation, in which all the subsets are simplices. Note that given a simplex $\Delta \subset A$, the cone C_{Δ} consists of the vectors h for which the induced regular subdivision contains the simplex Δ.

Given any $h \in \mathbb{R}^n$, consider the following family of polynomial systems parametrized by a positive real number t, which coincides for $t = 1$ with the system defined by the polynomials in (2):

$$f_{1,t}(x) = \cdots = f_{d,t}(x) = 0, \quad (6)$$

where

$$f_{i,t}(x) = \sum_{j=1}^{n} c_{ij} t^{h_j} x^{a_j} \in \mathbb{R}[x_1, \ldots, x_d], \quad i = 1, \ldots, d.$$
For each positive real value of t, this system has again support included in \mathcal{A}. Recall that a common root of (6) is nondegenerate when it is not a zero of the Jacobian of $f_{1,t}, \ldots, f_{d,t}$. The following result is a particular case of Theorem 3.4 in Bihan et al. (2018).

Theorem 3.6 Let $\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^d$ be a finite point configuration and $C = (c_{ij}) \in \mathbb{R}^{d \times n}$ a matrix. Let Δ_1, Δ_2 be two d-simplices with vertices in \mathcal{A} which share a facet, and which are positively decorated by the matrix C. Let h be any vector in the cone C_{Δ_1, Δ_2}. Then, there exists $t_0 \in \mathbb{R}_{>0}$ such that for all $0 < t < t_0$, the number of (nondegenerate) solutions of (6) contained in the positive orthant is at least two.

Example 3.7 (Examples 3.1, 3.4 and 3.5 continued) The simplices Δ_1 and Δ_2 are positively decorated by C and share a facet. Then, if we take $h \in C_{\Delta_1, \Delta_2}$, there exists $t_0 \in \mathbb{R}_{>0}$ such that for all $0 < t < t_0$, the number of (nondegenerate) solutions of the deformed system

$$
\begin{align*}
th_1 - t^{h_2}x^2 + t^{h_3}y + t^{h_4}x^2y - t^{h_5}xy^2 &= 0, \\
-t^{h_1}2 + t^{h_2}x^2 - t^{h_4}x^2y - t^{h_5}xy^2 + t^{h_6}xy^3 &= 0,
\end{align*}
$$

(7)

is at least two. Indeed, it is easy to check that the simplices $\Delta_4 = \{(0, 1), (1, 2), (1, 3)\}$ and $\Delta_5 = \{(2, 1), (1, 2), (1, 3)\}$ in Fig. 6 are also positively decorated by the matrix C. In fact, by Theorem 2.9 in Bihan, Dickenstein and Giaroli (2018), for any $h \in C_{\Delta_1, \Delta_2} \cap C_{\Delta_4} \cap C_{\Delta_5}$ there exists t_0 such that if $0 < t < t_0$ the system (7) has at least four positive solutions. Here four is the number of simplices which are positively decorated. For example if we take $h_1 = 1, h_2 = h_3 = h_4 = 0, h_5 = 1$ and $h_6 = 3$, we obtain the regular triangulation in Fig. 6, and if we choose $t = 1/12$, system (6) has four positive solutions. This fact can be checked using the free Computer Algebra System Singular (Singular2007) with the library “signcond.lib” implemented by E. Tobis, see Sect. A.1 in the “Appendix”. This procedure is symbolic and thus certified, as opposed to numeric algorithms to compute the roots which can be affected by numerical unstability. It is based on the algorithms described in (Basu et al. 2007).

We now state a similar result, but here we describe a subset with nonempty interior in the space of coefficients where we can find at least two positive solutions of the
associated system. This is a simplified version of Theorem 2.11 in Bihan, Dickenstein and Giaroli (2018).

Theorem 3.8 Consider a set $\mathcal{A} = \{a_1, \ldots, a_n\}$ of n points in \mathbb{R}^d and a matrix $C = (c_{i,j}) \in \mathbb{R}^{d \times n}$. Assume there are two d-simplices Δ_1, Δ_2 with vertices in \mathcal{A}, which share a facet and are positively decorated by the matrix C. Assume that the cone $\mathcal{C}_{\Delta_1, \Delta_2}$ is defined by the inequalities

$$\langle m_r, h \rangle > 0, \quad r = 1, \ldots, \ell,$$

where $m_r = (m_{r,1}, \ldots, m_{r,n}) \in \mathbb{R}^n$.

Then, there exists constants $M_1, \ldots, M_\ell > 0$ such that for any γ in the open set

$$U = \{\gamma \in \mathbb{R}_n^+ : \gamma^{m_r} < M_r, \ r = 1 \ldots, \ell\},$$

the system

$$\sum_{j=1}^{n} c_{ij} \gamma_j x^{a_j} = 0, \quad i = 1, \ldots, d,$$

has at least 2 nondegenerate solutions in the positive orthant.

Remark 2 Note that the choice of the positive constants M_1, \ldots, M_ℓ is not algorithmic, but we describe an open set in coefficient space for which more than one positive solution can be found. Furthermore, inequalities (8) indicate how to scale the coefficients of the system in order to get at least two positive solutions.

4 Enzymatic cascades with two layers

In this section we work with the case of an enzymatic cascade with two layers, and then in Sect. 5 we will work with the general case. The network involves two phosphorylation cycles. We call S_1 and S_2 the substrate proteins in the first and second layers respectively. The upper index can be interpreted as the absence (0) or the presence (1) of a phosphate group. The phosphorylation in the first layer is catalyzed by the enzyme E. The activated protein S_1^1 in the first layer acts as the modifier enzyme in the second layer, which is depicted in (A) in Fig. 2.

Note that the dephosphorylation is carried out by the same phosphatase F, which as we pointed out in the Introduction gives the capacity for multistationarity to the network by Feliu and Wiuf (2012). The kinetics is deduced by applying the law of mass-action to the following chemical reaction network:

$$
\begin{align*}
S_1^0 + E & \xrightleftharpoons[k_{\text{off}1}]{k_{\text{on}1}} Y_1^0 \xrightarrow[k_{\text{cat}1}]{k_{\text{cat}1}} S_1^1 + E & S_2^0 + S_1^1 & \xrightleftharpoons[k_{\text{off}2}]{k_{\text{on}2}} Y_2^0 \xrightarrow[k_{\text{cat}2}]{k_{\text{cat}2}} S_2^1 + S_1^1 \\
S_1^1 + F & \xrightleftharpoons[\ell_{\text{off}1}]{\ell_{\text{on}1}} Y_1^1 \xrightarrow[\ell_{\text{cat}1}]{\ell_{\text{cat}1}} S_1^0 + F & S_2^1 + F & \xrightleftharpoons[\ell_{\text{off}2}]{\ell_{\text{on}2}} Y_2^1 \xrightarrow[\ell_{\text{cat}2}]{\ell_{\text{cat}2}} S_2^0 + F.
\end{align*}
$$

(10)
We denote by Y_1^0, Y_2^0, Y_1^1, Y_2^1 the intermediate complexes, which consist of a single chemical species formed by the union of the substrate with the enzyme. The concentrations of the species will be denoted with small letters, for example s^0 single chemical species formed by the union of the substrate with the enzyme. The state variety can be cut out in the positive orthant by adding to the binomials in (12), the following binomial equations:

$$\frac{ds_1^0}{dt} = -k_{on_1}s_1^0e + k_{off_1}y_1^0 + \ell_{cat_1}y_1^1,$$
$$\frac{dy_1^1}{dt} = \ell_{on_1}s_1^1f - (\ell_{off_1} + \ell_{cat_1})y_1^1,$$
$$\frac{ds_1^1}{dt} = k_{cat_1}y_1^0 - \ell_{on_1}s_1^1f + \ell_{off_1}y_1^1 + k_{on_2}s_2^0s_1^1 + (k_{off_2} + k_{cat_2})y_2^0,$$
$$\frac{dy_2^0}{dt} = k_{on_2}s_2^0s_1^1 - (k_{off_2} + k_{cat_2})y_2^0,$$
$$\frac{dy_2^1}{dt} = \ell_{on_2}s_2^1f - (\ell_{off_2} + \ell_{cat_2})y_2^1,$$
$$\frac{ds_2^0}{dt} = -k_{on_2}s_2^0s_1^1 + k_{off_2}y_2^0 + \ell_{cat_2}y_2^1,$$
$$\frac{dy_2^1}{dt} = -k_{on_1}s_1^1e + (k_{off_1} + k_{cat_1})y_1^0,$$
$$\frac{ds_2^1}{dt} = k_{cat_2}y_2^0 - \ell_{on_2}s_2^1f + \ell_{off_2}y_2^1,$$
$$\frac{df}{dt} = -\ell_{on_1}s_1^1f + (\ell_{off_1} + \ell_{cat_1})y_1^1.$$

In this case, there is a basis of the conservation laws given by the four linear equations:

$$e + y_1^0 = E_{tot},$$
$$f + y_1^1 + y_2^1 = F_{tot},$$
$$s_1^0 + s_1^1 + y_1^0 + y_1^1 + y_2^0 = S_{1,tot},$$
$$s_2^0 + s_2^1 + y_2^0 + y_2^1 = S_{2,tot}. \quad (11)$$

Enzymatic cascades are an example of \textit{s-toric MESSI networks}, defined in Pérez Millán and Dickenstein (2018). By Theorem 3.5 in Pérez Millán and Dickenstein (2018) we can find binomial equations that describe the steady states. This is a general procedure, that in this case is easily obtained by manipulating the differential equations. First, the concentrations of the intermediates species y_1^0, y_1^1, y_2^0, y_2^1 at steady state satisfy the following binomial equations:

$$y_1^0 - K_1 es_1^0 = 0, \quad y_1^1 - L_1 fs_1^1 = 0,$$
$$y_2^0 - K_2 s_1^1s_2^0 = 0, \quad y_2^1 - L_2 fs_2^0 = 0, \quad (12)$$

where $K_1 = \frac{k_{on_1}}{k_{off_1} + k_{cat_1}}$, $K_2 = \frac{k_{on_2}}{k_{off_2} + k_{cat_2}}$, $L_1 = \frac{\ell_{on_1}}{\ell_{off_1} + \ell_{cat_1}}$ and $L_2 = \frac{\ell_{on_2}}{\ell_{off_2} + \ell_{cat_2}} (K_1^{-1}, K_2^{-1}, L_1^{-1}$ and L_2^{-1} are usually called \textit{Michaelis-Menten constants}). The whole steady state variety can be cut out in the positive orthant by adding to the binomials in (12), the following binomial equations:

$$\tau_1 s_1^0 e - \nu_1 s_1^1 f = 0, \quad \tau_2 s_2^0 s_1^1 - \nu_2 s_2^1 f = 0,$$
where $\tau_1 = k_{\text{cat}1} K_1$, $\tau_2 = k_{\text{cat}2} K_2$, $\nu_1 = \ell_{\text{cat}1} L_1$ and $\nu_2 = \ell_{\text{cat}2} L_2$.

Therefore, we can parametrize the positive steady states by monomials. For instance, we can write the concentration at steady state of s_0^0, s_0^1 and the intermediate species, in terms of the species (e, f, s_1^1, s_1^2):

\[
\begin{align*}
 s_0^0 &= G_1 \frac{s_1^1 f}{e}, \\
 y_0^1 &= K_1 G_1 s_1^1 f, \\
 y_1^1 &= L_1 s_1^1 f, \\
 s_0^1 &= G_2 \frac{s_2^1 f}{s_1^1}, \\
 y_0^2 &= K_2 G_2 s_2^1 f, \\
 y_1^2 &= L_2 s_2^1 f,
\end{align*}
\]

(13) where $G_1 = \frac{\nu_1}{\tau_1}$ and $G_2 = \frac{\nu_2}{\tau_2}$.

Now, we apply our results to this case. Denote by

\[
A_1 = \frac{\ell_{\text{cat}1}}{k_{\text{cat}1}}, \quad A_2 = \frac{\ell_{\text{cat}2}}{k_{\text{cat}2}},
\]

(14)

and assume that $S_{1,\text{tot}}, S_{2,\text{tot}}, E_{\text{tot}}, F_{\text{tot}} > 0$. Consider the following rational functions $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ depending on the catalytic reaction rate constants and total concentration constants:

\[
\begin{align*}
 \alpha_1 &= \frac{S_{1,\text{tot}}}{F_{\text{tot}}} - A_2, \\
 \alpha_2 &= (A_1 + 1) - \frac{S_{1,\text{tot}}}{F_{\text{tot}}}, \\
 \alpha_3 &= \frac{A_1 + 1 - A_2}{A_1} \frac{E_{\text{tot}}}{F_{\text{tot}}} - \left(\frac{S_{1,\text{tot}}}{F_{\text{tot}}} - A_2 \right), \\
 \alpha_4 &= \frac{A_1 + 1 - A_2}{A_2 + 1} \frac{S_{2,\text{tot}}}{F_{\text{tot}}} - \left(A_1 + 1 - \frac{S_{1,\text{tot}}}{F_{\text{tot}}} \right).
\end{align*}
\]

We then have:

Theorem 4.1 Consider the enzymatic cascade with two layers with digraph as in (10) and let A_1, A_2 as in (14). Assume that the reaction rate constants satisfy $A_1 + 1 > A_2$ and the total concentration constants satisfy the inequalities $\alpha_1, \alpha_2, \alpha_3, \alpha_4 > 0$, that is:

\[
A_1 + 1 > \frac{S_{1,\text{tot}}}{F_{\text{tot}}} > A_2, \quad \frac{E_{\text{tot}}}{F_{\text{tot}}} > \left(\frac{S_{1,\text{tot}}}{F_{\text{tot}}} - A_2 \right) \frac{A_1}{A_1 + 1 - A_2}, \quad \frac{S_{2,\text{tot}}}{F_{\text{tot}}} > \left(A_1 + 1 - \frac{S_{1,\text{tot}}}{F_{\text{tot}}} \right) \frac{A_2 + 1}{A_1 + 1 - A_2},
\]

or instead, that $A_1 + 1 < A_2$ and $\alpha_1, \alpha_2, \alpha_3, \alpha_4 < 0$.

Fix generic positive numbers h_2, h_3, h_7, h_8 such that $h_8 < h_2$. Then, there exists $t_0 > 0$ such that for any value of $t \in (0, t_0)$ the system has at least two positive steady
states after modifying the coefficients \(k_{on1}, k_{on2}, \ell_{on1}, \ell_{on2} \) via the rescaling \(t^{-h_7} k_{on1}, t^{-h_8} k_{on2}, t^{-h_9} \ell_{on1} \) and \(t^{-h_0} \ell_{on2} \).

Also, for any fixed choice of reaction rate constants and total concentration constants lying in the open set defined by one of the previous set of inequalities, there exist positive constants \(M_1, \ldots, M_6 \) such that for any values of \(\beta_1, \beta_2, \eta_1, \eta_2 \) satisfying

\[
\frac{1}{\eta_2} < M_1, \quad \frac{\eta_2}{\eta_1} < M_2, \quad \frac{1}{\beta_1} < M_3, \quad \frac{\eta_1}{\eta_2 \beta_2} < M_4, \quad \frac{\beta_2}{\eta_1} < M_5, \quad \frac{1}{\beta_2} < M_6, \tag{15}
\]

the rescaling of the given parameters \(k_{on0}, k_{on1}, \ell_{on0} \) and \(\ell_{on1} \) by \(\beta_1 k_{on1}, \beta_2 k_{on2}, \eta_1 \ell_{on1} \) and \(\eta_2 \ell_{on2} \) respectively, gives raise to a multistationary system.

Proof We substitute the monomial parametrization in (13) of the steady states in terms of the concentrations of the species \(e, f, s_1^1, s_2^1 \) into the linear conservation relations (11). We write this system in matricial form:

\[
C \left(e \ f \ s_1^1 \ s_2^1 \ f s_1^1 f s_1^1 f e^{-1} s_2^1 f (s_1^1)^{-1} 1 \right) = 0,
\]

where the matrix \(C \in \mathbb{R}^{4 \times 9} \) of coefficients equals:

\[
C = \begin{pmatrix}
1 & 0 & 0 & 0 & K_1 G_1 & 0 & 0 & 0 & -E_{tot} \\
0 & 1 & 0 & 0 & L_1 & K_2 G_2 & G_1 & 0 & -F_{tot} \\
0 & 0 & 1 & 0 & K_1 G_1 + L_1 & K_2 G_2 & G_1 & 0 & -S_{1,tot} \\
0 & 0 & 0 & 1 & 0 & K_2 G_2 + L_2 & 0 & G_2 & -S_{2,tot}
\end{pmatrix}.
\]

If we order the variables as before, the support of this system is:

\[
\mathcal{A} = \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (-1, 1, 1, 0), (0, 1, -1, 1), (0, 0, 0, 0)\}.
\]

We want to find two positively decorated 4-simplices with vertices in \(\mathcal{A} \) which share one facet. For example we take the simplices

\[
\Delta_1 = \{(1, 0, 0, 0), (0, 0, 0, 1), (0, 1, 1, 0), (0, 0, 0), (0, 0, 0, 0)\},
\]

\[
\Delta_2 = \{(1, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 1, -1, 1), (0, 0, 0, 0)\}.
\]

It is straightforward to check that both simplices are positively decorated by \(C \) if either \(A_1 + 1 > A_2 \) and \(a_1, a_2, a_3, a_4 > 0 \), or \(A_1 + 1 < A_2 \) and \(a_1, a_2, a_3, a_4 < 0 \), as in the statement.

Given \(h \in C_{\Delta_1, \Delta_2} \), by Theorem 3.6, there exists \(t_0 \in \mathbb{R}_+ \) such that for all \(0 < t < t_0 \), the number of positive (nondegenerate) solutions of the scaled system:

\[
t^{h_1} e + t^{h_5} K_1 G_1 s_1^1 f - t^{h_0} E_{tot} = 0,
\]

\[
t^{h_2} f + t^{h_5} L_1 f s_1^1 + t^{h_6} L_2 f s_2^1 - t^{h_0} F_{tot} = 0,
\]

Given some reaction rate constants and total concentration constants lying in the open set defined by one of the previous set of inequalities, there exist positive constants \(M_1, \ldots, M_6 \) such that for any values of \(\beta_1, \beta_2, \eta_1, \eta_2 \) satisfying

\[
\frac{1}{\eta_2} < M_1, \quad \frac{\eta_2}{\eta_1} < M_2, \quad \frac{1}{\beta_1} < M_3, \quad \frac{\eta_1}{\eta_2 \beta_2} < M_4, \quad \frac{\beta_2}{\eta_1} < M_5, \quad \frac{1}{\beta_2} < M_6, \tag{15}
\]
\[t^{h_3} s_1^1 + t^{h_7} G_1 s_1^1 \frac{f}{e} + t^{h_5} (K_1 G_1 + L_1) s_1^1 f + t^{h_6} K_2 G_2 s_2^1 f - t^{h_9} S_{1, tot} = 0, \]
\[t^{h_4} s_2^1 + t^{h_8} G_2 \frac{s_2^1 f}{s_1^1} + t^{h_6} (K_2 G_2 + L_2) s_2^1 f - t^{h_9} S_{2, tot} = 0, \]
\[(17) \]

is at least two. If we think of the vector \(h \) as a function \(\mathcal{A} \to \mathbb{R} \) (defined by \(h(a_j) = h_j \)), then \(h_1 = h(1, 0, 0, 0), h_2 = h(0, 1, 0, 0), h_3 = h(0, 0, 1, 0), h_4 = h(0, 0, 0, 1), h_5 = h(0, 1, 1, 0), h_6 = h(0, 0, 1, 0), h_7 = h(-1, 1, 1, 0), h_8 = h(0, 1, -1, 1) \) and \(h_9 = h(0, 0, 0, 0) \). Let \(\varphi_1 \) and \(\varphi_2 \) be the affine linear functions which agree with \(h \) on the simplices \(\Delta_1 \) and \(\Delta_2 \) respectively.

We can take \(h_1 = h_4 = h_5 = h_6 = h_9 = 0 \). Then \(\varphi_1 = 0, h_8 > 0 \) and \(\varphi_2 \) is defined by \(\varphi_2(x, y, z, w) = h_8 y - h_8 z - h_8 w \). Moreover,
\[0 < h_2, \varphi_2(0, 1, 0, 0) = h_8 < h_2, \]
\[0 < h_3, \varphi_2(0, 0, 1, 0) = -h_8 < h_3, \]
\[0 < h_7, \varphi_2(-1, 1, 1, 0) = 0 < h_7, \]
where we could take \(h_2, h_3 \) and \(h_7 \) generic.

If we change the variables \(\tilde{f} = t^{h_2} f, \tilde{s}_1^1 = t^{h_3} s_1^1 \), we get the following (Laurent) polynomial equations:
\[e + t^{-h_2-h_3} K_1 G_1 \tilde{s}_1^1 \tilde{f} - E_{tot} = 0, \]
\[\tilde{f} + t^{-h_2-h_3} L_1 \tilde{f} \tilde{s}_1^1 + t^{-h_2} L_2 \tilde{f} \tilde{s}_2^1 - F_{tot} = 0, \]
\[\tilde{s}_1^1 + t^{h_7-h_2-h_3} G_1 \frac{\tilde{s}_1^1 \tilde{f}}{e} + t^{-h_2-h_3} (K_1 G_1 + L_1) \tilde{s}_1^1 \tilde{f} + t^{-h_2} K_2 G_2 \tilde{s}_2^1 \tilde{f} - S_{1, tot} = 0, \]
\[\tilde{s}_2^1 + t^{h_8+h_3-h_2} G_2 \frac{\tilde{s}_2^1 \tilde{f}}{\tilde{s}_1^1} + t^{-h_2} (K_2 G_2 + L_2) \tilde{s}_2^1 \tilde{f} - S_{2, tot} = 0. \]
\[(18) \]

It is straightforward to verify that if we scale the constants:
\[t^{-h_7} K_1, t^{-h_3-h_8} K_2, t^{-h_2-h_3} L_1, t^{-h_2} L_2, \]
\[(19) \]
and we keep fixed the values of \(k_{\text{cat}1}, k_{\text{cat}2}, \ell_{\text{cat}1} \) and \(\ell_{\text{cat}2} \) and the total values \(E_{tot}, F_{tot}, S_{1, tot} \) and \(S_{2, tot} \), the intersection of the steady state variety and the linear varieties of fixed total concentrations of the dynamical system associated with the corresponding network, is described by system (18).

It is easy to check that to get the scaling in (19), it is enough to rescale the original constants as follows: \(t^{-h_7} k_{\text{on}1}, t^{-h_3-h_8} k_{\text{on}2}, t^{-h_2-h_3} \ell_{\text{on}1} \) and \(t^{-h_2} \ell_{\text{on}2} \). Then, for these choices of constants the system has at least two positive steady states. The last part of the statement follows from the previous rescaling or from the inequalities that define the cone \(\mathcal{C}_{\Delta_1, \Delta_2} \) of heights inducing regular subdivisions of the convex hull of \(\mathcal{A} \) that contain \(\Delta_1 \) and \(\Delta_2 \) and Theorem 3.8. For instance, we can check that \(\mathcal{C}_{\Delta_1, \Delta_2} \) is defined.
by 6 inequalities. We can write:

\[C_{\Delta_1, \Delta_2} = \{ h = (h_1, \ldots, h_8) \in \mathbb{R}^8 : \langle m_r, h \rangle > 0, \ r = 1, \ldots, 6 \}, \]

where \(\langle , \rangle \) denotes the canonical inner product of \(\mathbb{R}^8 \) and \(m_1 = (0, 1, 0, 1, 0, -1, 0, 0, -1), m_2 = (0, 0, 1, -1, -1, 1, 0, 0, 0), m_3 = (1, 0, 0, 0, -1, 0, 1, 0, -1), m_4 = (0, 0, 0, 1, 1, -2, 0, 1, -1), m_5 = (0, 1, 0, 0, -1, 1, 0, -1, 0), m_6 = (0, 0, 1, 0, 0, -1, 0, 1, -1) \). By Theorem 3.8, there exist \(M_1, \ldots, M_6 > 0 \) such that for any \(\gamma = (\gamma_1, \ldots, \gamma_9) \) in the open set

\[U = \{ \gamma \in \mathbb{R}^9_+ : \gamma^{mr} < M_r, \ r = 1 \ldots, 6 \}, \]

the system

\[
\begin{align*}
\gamma_1 e + \gamma_5 K_1 G_1 s_1^f & - \gamma_9 E_{tot} = 0, \\
\gamma_2 f + \gamma_5 L_1 f s_1^f + \gamma_6 L_2 f s_2^f & - \gamma_9 F_{tot} = 0, \\
\gamma_3 s_1^f + \gamma_7 G_1 s_1^f & + \gamma_5 (K_1 G_1 + L_1) s_1^f f + \gamma_6 K_2 G_2 s_2^f f - \gamma_9 S_{1,tot} = 0, \\
\gamma_4 s_2^f + \gamma_8 G_2 s_2^f & + \gamma_6 (K_2 G_2 + L_2) s_2^f f - \gamma_9 S_{2,tot} = 0, \\
\end{align*}
\]

has at least two positive solutions. If we take \(\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = \gamma_9 = 1 \), and we denote \(\beta_1 = \frac{\gamma_2}{\gamma_5}, \beta_2 = \frac{\gamma_6}{\gamma_8}, \eta_1 = \gamma_5 \) and \(\eta_2 = \gamma_6 \), the conditions such that \(\gamma \) belongs to \(U \) are equivalent to the conditions (15), and it is easy to check that the steady state equations of the network after the rescaling of the given parameters \(k_{on0}, k_{on1}, \ell_{on0} \) and \(\ell_{on1} \) by \(\beta_1 k_{on1}, \beta_2 k_{on2}, \eta_1 \ell_{on1} \) and \(\eta_2 \ell_{on2} \) give system (20). \(\square \)

Example 4.2 Note that the inequalities in the statement of Theorem 4.1 are clearly compatible. For example, the inequalities are satisfied if we take in the first case \(\frac{\ell_{cat1}}{K_{cat1}} = 1, \frac{\ell_{cat2}}{K_{cat2}} = 1, E_{tot} = F_{tot} = 20, S_{1,tot} = S_{2,tot} = 30 \). We can obtain in this case values of \(t \) such that the system (18) has two or more positive solutions, for instance \(t = \frac{1}{24} \). See Section A.1 of the “Appendix” for the computations using Singular (Singular 2007).

5 Enzymatic cascades with \(n \) layers

We now present our results to the general case of an enzymatic cascade of \(n \) layers, where we have \(n \) phosphorylation cycles (as in Fig. 7), under the assumption that there are (at least) two layers which share a phosphatase. We separate our study into two cases: the case of the occurrence of the same phosphatase in two consecutive layers (see Theorem 5.1) and the case where the layers which share the phosphatase are not consecutive (see Theorem 5.2). As we pointed out in the Introduction, the difficulty to deal with these networks is that the simplified polynomials that we get to describe the steady states in a given stoichiometric compatibility class depend on a number of
variables that grows linearly with n and the corresponding coefficient matrix does not have generic entries. We are nevertheless able to detect two simplices in these high dimensional spaces which share a facet, which are positively decorated by the (huge) coefficient matrix.

We first set the notation.

5.1 Our setting

Using the notation in Fig. 7, we call S_i^0, S_i^1 the substrate proteins in the i-th layer, for $i = 1, \ldots, n$. As before, the upper index can be interpreted as the absence (0) or the presence (1) of a phosphate group in the substrate. The phosphorylation in the first layer is catalyzed by the enzyme S_1^0. The activated protein S_i^1 in the i-th layer acts as the modifier enzyme in the $(i + 1)$-th layer. The dephosphorylation in the i-th layer is carried out by a phosphatase F_i. Some of the F_i can be the same species, that is, the same phosphatase can react at different layers.

We assume the following reaction scheme:

$$S_i^0 + S_i^1 \xrightarrow{\kappa_{on}} Y_i^0 \xrightarrow{\kappa_{cat}} S_i^1 + S_i^0, \quad i = 1, \ldots, n.$$

$$S_i^1 + F_i \xrightarrow{\ell_{on}} Y_i^1 \xrightarrow{\ell_{cat}} S_i^0 + F_i, \quad i = 1, \ldots, n.$$

We denote by $\mathcal{F} = \{P_1, \ldots, P_r\}$ the set of phosphatases that appear in the network. In this case we have $4n + r + 1$ chemical species: $S_0^0, S_0^1, S_1^0, S_1^1, \ldots, S_n^0, S_n^1, P_1, P_2, \ldots, P_r, Y_0^0, Y_0^1, Y_1^0, Y_1^1, Y_2^0, Y_2^1, \ldots, Y_n^0, Y_n^1$. We denote the concentration of the species with small letters. y_2, \ldots, y_n the concentration of $Y_1^0, Y_2^0, \ldots, Y_n^0, Y_n^1$. For each $j = 1, \ldots, r$, we call $\Lambda_j = \{i \in \{1, \ldots, n\} : F_i = P_j\}$ and we consider the function $j: \{1, \ldots, n\} \rightarrow \{1, \ldots, r\}$, defined by $j(i) = j$ if $F_i = P_j$.

\begin{math}\square\end{math} Springer
The associated dynamical system that arises under mass-action kinetics is equal to:

\[
\frac{d s^0_i}{dt} = -k_{on} s^0_i s_{i-1}^1 + k_{off} y^0_i + \ell_{cat} y^1_i, \quad i = 1, \ldots, n, \\
-k_{on_{i+1}} s^0_{i+1} s^1_i + \frac{d s^1_i}{dt} = k_{cat} y^0_i - \ell_{on} s^1_i p_j(i) + \ell_{off} y^1_i - k_{on_{i+1}} s^0_{i+1} s^1_i \\
+ (k_{off_{i+1}} + k_{cat_{i+1}}) y^0_{i+1}, \quad i = 1, \ldots, n - 1, \\
\frac{d s^1_n}{dt} = k_{cat_n} y^0_n - \ell_{on_n} s^1_n p_j(n) + \ell_{off_n} y^1_n, \\
\frac{d y^0_i}{dt} = k_{on_i} s^0_i s^1_{i-1} - (k_{off_i} + k_{cat_i}) y^0_i, \quad i = 1, \ldots, n, \\
\frac{d y^1_i}{dt} = \ell_{on_i} s^1_i p_j(i) - (\ell_{off_i} + \ell_{cat_i}) y^1_i, \quad i = 1, \ldots, n, \\
\frac{d s^0_0}{dt} = -\frac{d y^0_0}{dt}, \quad \frac{d p_j}{dt} = -\sum_{i \in \Lambda_j} \frac{d y^1_i}{dt}, \quad j = 1, \ldots, r.
\]

The space of linear forms yielding conservation laws has dimension \(n + r + 1 \), and we consider the following \(n + r + 1 \) linearly independent conservation relations:

\[
s^1_0 + y^0_0 = S_{0, \text{tot}}, \\
s^0_i + s^1_i + y^0_i + y^1_i = S_{i, \text{tot}}, \quad i = 1, \ldots, n - 1, \\
s^0_n + s^1_n + y^0_n + y^1_n = S_{n, \text{tot}}, \\
p_j + \sum_{i \in \Lambda_j} y^1_i = P_{j, \text{tot}}, \quad j = 1, \ldots, r. \tag{21}
\]

Again, following the general procedure described in Pérez Millán and Dickenstein (2018), we can find binomial equations that describe the concentration of the species at steady state. The concentration of the intermediate species satisfy these binomial equations:

\[
y^0_i - K_i s^1_{i-1} s^0_i = 0, \quad i = 1, \ldots, n, \\
y^1_i - L_i p_j(i) s^1_i = 0, \quad i = 1, \ldots, n,
\]

where \(K_i = \frac{k_{on_i}}{k_{off_i} + k_{cat_i}}, \quad i = 1, \ldots, n, \quad L_i = \frac{\ell_{on_i}}{\ell_{off_i} + \ell_{cat_i}}, \quad i = 1, \ldots, n. \) The remaining binomials can be (algorithmically) chosen to be:

\[
\tau_i s^0_i s^1_{i-1} - v_i s^1_i p_j(i) = 0, \quad i = 1, \ldots, n,
\]

where \(\tau_i = k_{cat_i} K_i, \quad v_i = \ell_{cat_i} L_i, \quad i = 1, \ldots, n. \)

As in the previous case of two layers, we can parametrize the positive steady states by monomials. For instance, we can write the concentrations of all species in terms of \(s^1_i \), for \(i = 0, 1, \ldots, n \) and \(p_1, \ldots, p_r \).
\[s_i^0 = G_i \frac{s_i p_{j(i)}}{s_{i-1}}, \quad i = 1, \ldots, n, \]
\[y_i^0 = K_i G_i \frac{s_i p_{j(i)}}{s_{i}}, \quad i = 1, \ldots, n, \]
\[y_i^1 = L_i \frac{s_i p_{j(i)}}{s_{i}}, \quad i = 1, \ldots, n, \]

where \(G_i = \frac{v_i}{t_j} \) for all \(i = 1, \ldots, n \).

5.2 Statement of our main results

Suppose first that there are two consecutive layers \(i_0, i_0 + 1, 1 \leq i_0 \leq n - 1 \), with the same phosphatase \(F \), that is, \(P_{j(i_0)} = P_{j(i_0+1)} \), and with no restriction in the other layers. As in (14), we will denote for any \(j = 1, \ldots, n \):

\[A_j = \frac{k_{cat,j}}{k_{cat,j}}. \quad (22) \]

Let \(\alpha_{1,i_0}, \alpha_{2,i_0}, \alpha_{3,i_0} \) and \(\alpha_{4,i_0} \) be as in the case \(n = 2 \), but these constants correspond to the restriction to the two layers \(i_0 \) and \(i_0 + 1 \). That is:

\[\alpha_{1,i_0} = \frac{S_{i_0,\text{tot}}}{F_{\text{tot}}} - A_{i_0+1}, \]
\[\alpha_{2,i_0} = (A_{i_0} + 1) - \frac{S_{i_0,\text{tot}}}{F_{\text{tot}}}, \]
\[\alpha_{3,i_0} = \frac{A_{i_0} + 1 - A_{i_0+1}}{A_{i_0}} \frac{S_{i_0-1,\text{tot}}}{F_{\text{tot}}} - \left(\frac{S_{i_0,\text{tot}}}{F_{\text{tot}}} - A_{i_0+1} \right), \]
\[\alpha_{4,i_0} = \frac{A_{i_0} + 1 - A_{i_0+1}}{A_{i_0+1} + 1} \frac{S_{i_0+1,\text{tot}}}{F_{\text{tot}}} - \left(A_{i_0} + 1 - \frac{S_{i_0,\text{tot}}}{F_{\text{tot}}} \right), \]

where the value of \(E_{\text{tot}} \) in the case \(n = 2 \) now corresponds to the value \(S_{i_0-1,\text{tot}} \) and \(F_{\text{tot}} = P_{j(i_0),\text{tot}} = P_{j(i_0+1),\text{tot}} \). We have the following result:

Theorem 5.1 Suppose \(n \geq 3 \), and suppose that there are two consecutive layers \(i_0, i_0 + 1, 1 \leq i_0 \leq n - 1 \), with the same phosphatase and with no restriction in the other layers. Let \(A_{i_0}, A_{i_0+1} \) be as in (22). Assume that the reaction rate constants satisfy

\[A_{i_0} + 1 > A_{i_0+1} \quad (23) \]

and the total concentration constants satisfy the inequalities \(\alpha_{1,i_0}, \alpha_{2,i_0}, \alpha_{3,i_0}, \alpha_{4,i_0} > 0 \), that is:

\[A_{i_0} + 1 > \frac{S_{i_0,\text{tot}}}{F_{\text{tot}}} > A_{i_0+1}, \quad \frac{S_{i_0-1,\text{tot}}}{F_{\text{tot}}} > \left(\frac{S_{i_0,\text{tot}}}{F_{\text{tot}}} - A_{i_0+1} \right) \frac{A_{i_0}}{A_{i_0} + 1 - A_{i_0+1}}. \]
\[
\frac{S_{i_0+1, tot}}{F_{tot}} > \left(A_{i_0} + 1 - \frac{S_{i_0, tot}}{F_{tot}} \right) \frac{A_{i_0+1} + 1}{A_{i_0} + 1 - A_{i_0+1}},
\]

or

\[A_{i_0} + 1 < A_{i_0+1}, \alpha_{1,i_0}, \alpha_{2,i_0}, \alpha_{3,i_0}, \alpha_{4,i_0} < 0.\]

Then, there exists a rescaling in the constants \(k_{oni}, i = 1, \ldots, n\) and \(\ell_{oni}, i = 1, \ldots, n\), such that the system has at least two positive steady states.

We will give an explicit rescaling in the proof.

Remark 3 In the statement of Theorem 5.1 we have conditions which are similar to those in the case \(n = 2\), but depending on the reaction rate constants corresponding to the layers \(i_0\) and \(i_0 + 1\) and total conservation constants. Again, the two sets of inequalities in the statement of Theorem 5.1 are clearly compatible.

For \(n \geq 3\), there is not only an increase in the number of variables but also in the number of conservation laws. The idea of the proof of Theorem 5.1 is to extend the simplices that appear in the proof of Theorem 4.1 to simplices in the higher dimensional space, showing that in fact the conditions of the new simplices to be positively decorated are basically the same.

The other case is when the layers which share a phosphatase are not consecutive. Assume \(i_1 < i_2\) are two non-consecutive layers sharing the same phosphatase. Assume also that there are no two other consecutives layers with a common phosphatase between them (otherwise, we would be in the hypothesis of the previous case).

That is, there exists \(i_1, i_2\), with \(1 \leq i_1 < i_1 + 1 < i_2 \leq n\), such that \(P_{j(i_1)} = P_{j(i_2)} = F\), and \(P_{j(i)}\) for \(i = i_1 + 1, \ldots, i_2 - 1\) are all distinct and different from \(F\). We impose no restrictions on the phosphatases of the remaining layers layers \(1, \ldots, i_1 - 1, i_2 + 1, \ldots, n\).

Consider the following rational functions \(\beta_{1,i_1,i_2}, \beta_{2,i_1,i_2}, \beta_{3,i_1,i_2}\) and \(\beta_{4,i_1,i_2}\) depending on the catalytic reaction rate constant and total concentration constants:

\[
\beta_{1,i_1,i_2} = \frac{S_{i_1-1, tot}}{S_{i_1, tot}} = \frac{A_{i_1}}{A_{i_1+1}},
\]

\[
\beta_{2,i_1,i_2} = (A_{i_1} + 1) - \frac{S_{i_1, tot}}{F_{tot}},
\]

\[
\beta_{3,i_1,i_2} = \frac{S_{i_2-1, tot}}{F_{tot}} = (A_{i_1} + 1) \frac{S_{i_2, tot}}{F_{tot}},
\]

\[
\beta_{4,i_1,i_2} = \frac{S_{i_1, tot}}{F_{tot}} - \frac{A_{i_1} + 1}{A_{i_2} + 1} \left(A_{i_2} + 1 - \frac{S_{i_2, tot}}{F_{tot}} \right),
\]

where \(F_{tot} = P_{j(i_1), tot} = P_{j(i_2), tot}\).

We then have:

Theorem 5.2 Suppose \(n \geq 3\), and suppose there exists layers \(i_1, i_2\), with \(1 \leq i_1 < i_1 + 1 < i_2 \leq n\), such that \(P_{j(i_1)} = P_{j(i_2)} = F\), \(P_{j(i)}\) for \(i = i_1 + 1, \ldots, i_2 - 1\)
are all distinct and different from F, and with no restriction in the phosphatases of layers $1, \ldots, i_1 - 1, i_2 + 1, \ldots, n$. Assume the reaction rate constants and the total concentration constants satisfy

$$\beta_{1,i_1,i_2}, \beta_{2,i_1,i_2}, \beta_{3,i_1,i_2}, \beta_{4,i_1,i_2} > 0.$$

Then, there exists a rescaling in the constants $k_{on_i}, i = 1, \ldots, n$ and $\ell_{on_i}, i = 1, \ldots, n$, such that the system has at least two positive steady states.

Again, we will give an explicit rescaling in the proof.

Remark 4 The inequalities in the statement of Theorem 5.2 are compatible. They have a similar flavour, but they are different from the conditions defining the regions of multistationarity in Theorems 4.1 and 5.1.

5.3 The proof of Theorem 5.1

Proof (Proof of Theorem 5.1) Without loss of generality we suppose that the phosphatase in the layers i_0 and $i_0 + 1$ is the phosphatase P_1, that we call F. We showed in (5.1) that we can parametrize the steady states in terms of the concentrations of s_i^1, for $i = 0, \ldots, n, f$ (we use f instead of p_1) and p_i, for $i = 2, \ldots, r$. To avoid unnecessary notation, in this proof we call $s_i = s_i^1$ for all $i = 0, \ldots, n$.

Consider the following set of monomials:

$$\mathcal{M} = \{s_{i_0-1}^1, f, s_{i_0}, s_{i_0+1}, s_{i_0} f, s_{i_0+1} f, s_{i_0} f(s_{i_0-1})^{-1}, s_{i_0+1} f(s_{i_0})^{-1}, 1\}.$$

These monomials appear in the parametrization of the concentration at steady state of the species in layers i_0 and $i_0 + 1$. Now, consider the set

$$\mathcal{M} = \mathcal{M} \cup \{s_0, s_1, \ldots, s_{i_0-2}, s_{i_0+2}, \ldots, s_n, p_2, \ldots, p_r\}.$$

And consider also the set of all the monomials that appear in the parametrization:

$$\mathcal{M}'' = \mathcal{M}' \cup \{s_1 p_j(1), \ldots, s_{i_0-1} p_j(i_0-1), s_{i_0+2} p_j(i_0+2), \ldots, s_n p_j(n), s_1 p_j(1)(s_0)^{-1}, \ldots, s_{i_0-1} p_j(i_0-1)(s_{i_0-2})^{-1}, s_{i_0+2} p_j(i_0+2)(s_{i_0+1})^{-1}, \ldots, s_n p_j(n)(s_{n-1})^{-1}\}.$$

We have $n + r + 1$ variables: $s_0, s_1, \ldots, s_n, f, p_2, \ldots, p_r$. Consider the variables with this last order. Let $\mathcal{A}, \mathcal{A}', \mathcal{A}'' \subset \mathbb{R}^{n+r+1}$ be the subsets corresponding to the supports of the sets $\mathcal{M}, \mathcal{M}', \mathcal{M}''$ respectively, that is, the exponents of the monomials in each set.

We consider an order in \mathcal{A}'' given by the order in which we construct \mathcal{M}'': first the exponents corresponding to monomials in \mathcal{M} (in that order), then the exponents corresponding to monomials that we add to obtain \mathcal{M}' (in that order), and then the rest of the exponents, in the same order as enumerated above. We have $3n + r + 2$ monomials.
As in the case \(n = 2 \), we replace the monomial parametrization into the conservation laws (21) and we write this system in a matricial form. We call \(C \in \mathbb{R}^{(n+r+1) \times (3n+r+2)} \) the matrix of coefficients of the resulting polynomial system.

We want to find two simplices with vertices in \(A'' \) which share a facet. Inspired by the 4-simplices that we choose for the case \(n = 2 \), we take the following \((n+r+1)\)-simplices:

\[
\Delta_1 = \{ e_{i_0}, e_{i_0+1} + e_{n+2}, e_{i_0+2} + e_{n+2}, e_{i_0+2}, 0 \} \cup (A' \setminus A), \\
\Delta_2 = \{ e_{i_0}, e_{i_0+1} + e_{n+2}, e_{i_0+2} + e_{n+2}, e_{i_0+2} + e_{n+2} - e_{i_0+1}, 0 \} \cup (A' \setminus A).
\]

where \(e_i \) denotes the \(i \)-th canonical vector of \(\mathbb{R}^{n+r+1} \). Note that the points \(e_{i_0}, e_{i_0+2}, e_{i_0+1} + e_{n+2}, e_{i_0+2} + e_{n+2}, 0 \) correspond to the monomials \(s_{i_0-1}, s_{i_0+1}, s_{i_0}f, s_{i_0+1}f \), \(1 \), and the points \(e_{i_0}, e_{i_0+1} + e_{n+2}, e_{i_0+2} + e_{n+2}, e_{i_0+2} + e_{n+2} - e_{i_0+1}, 0 \) correspond to the monomials \(s_{i_0-1}, s_{i_0}f, s_{i_0+1}f, s_{i_0+1}f(s_{i_0})^{-1}, 1 \) which are in correspondence with the points of the simplices in the proof of Theorem 4.1.

We consider first the equations corresponding to the conservation laws with total conservation constants \(S_{i_0-1,tot}, F_{tot}, S_{i_0,tot}, S_{i_0+1,tot} \) and then the equations corresponding to the conservation constants \(S_0,tot, \ldots, S_{i_0-2,tot}, S_{i_0+2,tot}, \ldots, S_{n,tot}, P_2,tot, \ldots, P_{r,tot} \). The submatrices of \(C \) restricted to the columns corresponding to the simplex \(\Delta_j \), for \(j = 1, 2 \), are equal to:

\[
C_{\Delta_j} = \begin{pmatrix}
0 & \cdots & 0 & -S_0,tot \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & -S_{i_0-2,tot} \\
0 & \cdots & 0 & -S_{i_0+2,tot} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & -S_{n,tot} \\
0 & \cdots & 0 & -P_{2,tot} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & -P_{r,tot}
\end{pmatrix}
\]

where \(C_1 \) is the submatrix corresponding to columns of the exponents \(\{e_{i_0}, e_{i_0+1} + e_{n+2}, e_{i_0+2} + e_{n+2}, e_{i_0+2}, 0\} \) and \(C_2 \) is the submatrix corresponding to the columns of the exponents \(\{e_{i_0}, e_{i_0+1} + e_{n+2}, e_{i_0+2} + e_{n+2}, e_{i_0+2} + e_{n+2} - e_{i_0+1}, 0\} \), that is:

\[
C_j = \begin{pmatrix}
1 & K_{i_0}G_{i_0} & 0 & 0 & -S_{i_0-1,tot} \\
0 & L_{i_0} & L_{i_0+1} & 0 & -F_{tot} \\
0 & K_{i_0}G_{i_0} + L_{i_0} & K_{i_0+1}G_{i_0+1} & 0 & -S_{i_0,tot} \\
0 & 0 & K_{i_0+1}G_{i_0+1} + L_{i_0+1} & (C_j)_{44} & -S_{i_0+1,tot}
\end{pmatrix},
\]

where \((C_1)_{44} = 1\) and \((C_2)_{44} = G_{i_0+1}\).

Note that the matrix \(C_{\Delta_j} \) is positively spanning if and only if \(C_j \) is positively spanning, for \(j = 1, 2 \). Moreover, \(C_1 \) and \(C_2 \) are positively spanning if and only if the
condition of the statement holds, that is, \(A_{i_0} + 1 > A_{i_0+1} \) and \(\alpha_{1,i_0}, \alpha_{2,i_0}, \alpha_{3,i_0}, \alpha_{4,i_0} > 0 \); or \(A_{i_0} + 1 < A_{i_0+1} \) and \(\alpha_{1,i_0}, \alpha_{2,i_0}, \alpha_{3,i_0}, \alpha_{4,i_0} < 0 \).

Given \(h \in \mathcal{C}_{\Delta_1, \Delta_2} \), by Theorem 3.6 there exists \(t_0 \in \mathbb{R}_{>0} \) such that for all \(0 < t < t_0 \), the number of positive (nondegenerate) solutions of the scaled system, that is, the system with the same support \(\mathcal{A}'' \) and matrix of coefficients \(C_i \) with \((C_i)_{ij} = t^{h(\alpha_j)}c_{ij} \), with \(\alpha_j \in \mathcal{A}'' \) and \(C = (c_{ij}) \), is at least two. This system has the following form. Call \(x = (s_0, s_1, \ldots, s_n, f, p_2, \ldots, p_r) \) and note that each coefficient \(c_{ij} \) is a rational function of the vector of reaction rate constants that we call \(\kappa = (k_{on_1}, \ell_{on_1}, \ldots) \). To emphasize this, we write \(c_{ij} = c_{ij}(\kappa) \). Moreover, setting \(\gamma_j = t^{h(\alpha_j)} \) for any \(j \), we have a Laurent polynomial system of \(n + r + 1 \) equations in \(n + r + 1 \) variables:

\[
\sum_j c_{ij}(\kappa)\gamma_j x^{\alpha_j} = 0, \quad i = 1, \ldots, n + r + 1. \tag{24}
\]

Now, the reaction network we are considering satisfies the hypotheses of Theorem 5.4 of Bihan, Dickenstein and Giaroli (2018). Then, there exists a vector of reaction rate constants \(\tilde{\kappa} \) such that the number of positive solutions of system (24) coincides with the number of positive solutions of the following system:

\[
\sum_j c_{ij}(\tilde{\kappa})x^{\alpha_j} = 0, \quad i = 1, \ldots, n + r + 1. \tag{25}
\]

We now describe the associated vector \(\tilde{\kappa} \) in an explicit form. We first describe the cone \(\mathcal{C}_{\Delta_1, \Delta_2} \) defined in (5). We denote by \(h_j \) the height corresponding to \(\alpha_j \in \mathcal{A}'' \), for \(j = 1, \ldots, 3n + r + 2 \) (in the order corresponding to the construction of \(\mathcal{M}'' \) that we described before). Let \(\varphi_1 \) and \(\varphi_2 \) be the affine linear functions which agree with \(h \) on the simplices \(\Delta_1 \) and \(\Delta_2 \) respectively. We can take the heights of the points of \(\Delta_1 \) as zero, that is, \(h_1 = h_4 = h_5 = h_6 = h_9 = 0 \) and \(h_j = 0 \) for \(j = 10, \ldots, n + r + 1 \), and \(h_8 > 0 \) (the height of the remaining point of \(\Delta_2 \) which is not in \(\Delta_1 \)). Then, \(\varphi_1(x_1, \ldots, x_{n+r+1}) = 0 \) and \(\varphi_2(x_1, \ldots, x_{n+r+1}) = -h_8 x_{i_0+1} - h_8 x_{i_0+2} + h_8 x_{n+2} \). Moreover, \(h \) satisfies \(0 = \varphi_1(\alpha) < h(\alpha) \), for all \(\alpha \notin \Delta_1 \) and \(\varphi_2(\alpha) < h(\alpha) \), for all \(\alpha \notin \Delta_1, \Delta_2 \). Then, we have:

\[
\begin{align*}
 h_8 &< h_2, \quad 0 < h_3, \quad 0 < h_7, \\
 h_j &> 0, \quad \text{for} \ j = n + r + 7, \ldots, 3n + r + 2, \\
 h_8 &< h_{n+r+6+j}, \quad \text{for} \ j \in \Lambda_1, \text{with} \ j = 1, \ldots, i_0 - 1, \\
 h_8 &< h_{n+r+4+j}, \quad \text{for} \ j \in \Lambda_1, \text{with} \ j = i_0 + 2, \ldots, n, \\
 h_8 &< h_{2n+r+4+j}, \quad \text{for} \ j \in \Lambda_1, \text{with} \ j = 1, \ldots, i_0 - 1, \\
 2h_8 &< h_{2n+r+4+j}, \quad \text{if} \ i_0 + 2 \in \Lambda_1, \text{and} \ h_8 < h_{2n+r+2+j} \text{for} \ j \in \Lambda_1, \text{with} \ j = i_0 + 3, \ldots, n.
\end{align*}
\]

where \(h_2, h_3, h_7 \) and \(h_j, \ j = n + r + 7, \ldots, 3n + r + 2 \), are generic.
If we change the variables $\tilde{f} = t^{h_2} f$, $\tilde{s}_{i_0} = t^{h_3} s_{i_0}$, we consider the constants:

\[
\begin{align*}
K_{i_0} &= t^{-h_3} K_{i_0}, \quad K_{i_0+1} = t^{-h_3-h_8} K_{i_0+1}, \quad L_{i_0} = t^{-h_2-h_3} L_{i_0}, \quad L_{i_0+1} = t^{-h_2} L_{i_0+1}, \\
K_i &= t^{h_n+r_6+i-h_2n+r_4+i} K_i, \quad i = 1, \ldots, i_0 - 1, \\
K_i &= t^{h_n+r_4+i-h_2n+r_2+i} K_i, \quad i = i_0 + 2, \ldots, n, \\
L_i &= t^{h_n+r_6+i-h_2} L_i, \quad \text{if } i \in \Lambda_1, \\
L_i &= t^{h_n+r_4+i-h_2} L_i, \quad \text{if } i \notin \Lambda_1, \quad \text{for } i = 1, \ldots, i_0 - 1, \\
L_i &= t^{h_n+r_4+i-h_2} L_i, \quad \text{if } i \notin \Lambda_1, \quad \text{for } i = i_0 + 2, \ldots, n.
\end{align*}
\]

and we keep fixed the values of the constants k_{cat,i_0}, k_{cat,i_0+1}, ℓ_{cat,i_0} and ℓ_{cat,i_0+1} and the total conservation constants $S_{i_0-1,\text{tot}}$, F_{tot,i_0}, $S_{i_0,\text{tot}}$ and $S_{i_0+1,\text{tot}}$, then the dynamical system associated with the network with these constants is system (25) with coefficients depending on the scaled reaction constants. Therefore, the cascade we are considering has at least two positive steady states for these constants.

To get the scalings in (26) it can be checked that it is enough to rescale the original constants as follows:

\[
\begin{align*}
\bar{k}_{on,i_0} &= t^{-h_3} k_{on,i_0}, \quad \bar{k}_{on,i_0+1} = t^{-h_3-h_8} k_{on,i_0+1}, \quad \bar{\ell}_{on,i_0} = t^{-h_2-h_3} \ell_{on,i_0}, \\
\bar{k}_{on,i} &= t^{h_n+r_6+i-h_2n+r_4+i} k_{on,i}, \quad i = 1, \ldots, i_0 - 1, \\
\bar{k}_{on,i} &= t^{h_n+r_4+i-h_2n+r_2+i} k_{on,i}, \quad i = i_0 + 2, \ldots, n, \\
\bar{\ell}_{on,i} &= t^{h_n+r_6+i-h_2} \ell_{on,i}, \quad \text{if } i \in \Lambda_1, \\
\bar{\ell}_{on,i} &= t^{h_n+r_4+i-h_2} \ell_{on,i}, \quad \text{if } i \notin \Lambda_1, \quad \text{for } i = 1, \ldots, i_0 - 1, \\
\bar{\ell}_{on,i} &= t^{h_n+r_4+i-h_2} \ell_{on,i}, \quad \text{if } i \notin \Lambda_1, \quad \text{for } i = i_0 + 2, \ldots, n.
\end{align*}
\]

\[\square\]

5.4 The proof of Theorem 5.2

For simplicity and to fix ideas, we only present a proof in the case when the first and the last layer have the same phosphatase (that is, $i_1 = 1$, $i_2 = n$), and the other layers have all different phosphatases. We also present an explicit rescaling for this case. The general case is similar, but with a heavier notation.

Proof (Proof of Theorem 5.2) We call f the concentration of the phosphatase F, the phosphatase that appear in the layers 1 and n, and we call $f_i = p_{j(i)}$ for $i = 2, \ldots, n - 1$. By assumption the variables f_i are all distinct and different from f. We showed in (5.1) that we can parametrize the steady states in terms of the concentrations of s_i^l, for $i = 0, \ldots, n$, f and f_i, for $i = 2, \ldots, n - 1$. To avoid unnecessary notation, in this proof we call again $s_i = s_i^l$ for all $i = 0, \ldots, n$.

\[\square\ Springer\]
We have 2n variables, and we consider these 2n variables with the following order: \(s_0, s_1, \ldots, s_n, f, f_2, \ldots, f_{n-1} \). In the monomial parametrization there are 4n + 1 different monomials, and we consider these monomials with this order: \(s_0, s_1, \ldots, s_n, f, f_2, \ldots, f_{n-1}, s_1 f, s_2 f_2, \ldots, s_n-1 f_{n-1}, s_n f, s_1 f(s_0)^{-1}, s_2 f_2(s_1)^{-1}, \ldots, s_n-1 f_{n-1}(s_n-2)^{-1}, s_n f(s_n-1)^{-1}, 1 \).

As in the previous cases, we replace the monomial parametrization into the conservation laws and we write this system in matricial form. Let \(C \in \mathbb{R}^{(2n) \times (4n+1)} \) be the matrix of coefficients of this polynomial system. We call \(A \) the support of the system.

We want to find two simplices with vertices in \(A \) which share a facet. We denote \(B \subset A \) the set of the exponents corresponding to the monomials: \(s_2 f_2(s_1)^{-1}, \ldots, s_{n-2} f_{n-2}(s_{n-3})^{-1}, f_2, \ldots, f_{n-1} \). We consider the two following simplices: \(\Delta_1 \) given by the exponents corresponding to the monomials \(s_0, s_1 f, s_n f, s_{n-1} f_{n-1}(s_{n-2})^{-1}, s_n, 1 \), and the points in \(B \), and \(\Delta_2 \) given by the exponents corresponding to the monomials \(s_0, s_1 f, s_n f, s_{n-1} f_{n-1}(s_{n-2})^{-1}, s_n f(s_n-1)^{-1}, 1 \) and the points in \(B \). That is:

\[
\Delta_1 = \{ e_1, e_2 + e_n+2, e_{n+1} + e_n+2, e_n + e_{2n} - e_n-1, e_{n+1}, 0 \} \cup B,
\]

\[
\Delta_2 = \{ e_1, e_2 + e_n+2, e_{n+1} + e_n+2, e_n + e_{2n} - e_n-1, e_{n+1} + e_n+2 - e_n, 0 \} \cup B,
\]

where \(e_i \) denotes the \(i \)-th canonical vector of \(\mathbb{R}^{2n} \).

If we consider first the equations corresponding to the conservation laws with total conservation constants \(S_{0,tot}, F_{tot}, S_{1,tot}, S_{n-1,tot}, S_{n,tot} \) and then the equations corresponding to the conservation constants \(S_{2,tot}, \ldots, S_{n-2,tot}, F_{2,tot}, \ldots, F_{n-1,tot} \), the submatrices of \(C \) restricted to the columns corresponding to the simplices \(\Delta_j \) for \(j = 1, 2 \) are as follows. We change the order of the columns following the order of the monomials in each simplex; the property of being positively spanning remains invariant:

\[
C_{\Delta_j} = \begin{pmatrix}
C_j & 0 & 0 \\
0 & \cdots & 0 & -S_{2,tot} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & -S_{n-2,tot} \\
0 & \cdots & 0 & -F_{2,tot} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & -F_{n-1,tot} \\
0 & \cdots & 0 & \text{Id}_{n-2}
\end{pmatrix},
\]

where \(G \in \mathbb{R}^{(n-3) \times (n-3)} \) is the diagonal matrix with \(G_{ii} = G_{i+1} \), for \(i = 1, \ldots, n-3 \), \(C_1 \) is the submatrix corresponding to columns to the exponents \(\{ e_1, e_2 + e_n+2, e_{n+1} + e_n+2, e_n + e_{2n} - e_{n-1}, e_{n+1}, 0 \} \) and \(C_2 \) is the submatrix corresponding to the columns of the exponents \(\{ e_1, e_2 + e_n+2, e_{n+1} + e_n+2, e_n + e_{2n} - e_{n-1}, e_{n+1} + e_n+2 - e_n, 0 \} \):

\[
C_j = \begin{pmatrix}
1 & K_1 G_1 & 0 & 0 & 0 & 0 & 0 & -S_{0,tot} \\
0 & L_1 & L_n & 0 & 0 & 0 & 0 & -F_{tot} \\
0 & K_1 G_1 + L_1 & 0 & 0 & 0 & 0 & -S_{1,tot} \\
0 & 0 & K_n G_n & G_{n-1} & 0 & 0 & \text{Id}_{n-2} & 0 \\
0 & 0 & K_n G_n + L_n & 0 & 0 & 0 & (C_j)_{55} & -S_{n,tot}
\end{pmatrix},
\]

\(\odot \) Springer
with \((C_1)_{55} = 1\) and \((C_2)_{55} = G_n\).

We observe that the matrix \(C_{\Delta j}\), if positively spanning if and only if \(C_j\) is positively spanning, for \(i = 1, 2\). It is straightforward to check that the conditions under which \(C_1\) and \(C_2\) are positively spanning are equivalent to the conditions of the statement: \(\beta_{1, 1, n}, \beta_{2, 1, n}, \beta_{3, 1, n}, \beta_{4, 1, n} > 0\).

Given \(h \in C_{\Delta_1, \Delta_2}\), by Theorem 3.6 there exists \(t_0 \in \mathbb{R}_{>0}\) such that for all \(0 < t < t_0\), the number of positive (nondegenerate) solutions of the scaled system, i.e. the system with support \(A\) and matrix of coefficients \(C_t\), with \((C_t)_{ij} = t^{h(\alpha_j)}c_{ij}\), (with \(\alpha_j \in A\), \(C = (c_{ij})\)) is at least two.

We now argue as in the proof of Theorem 5.1. We can write our system in the form (24), and since any cascade of Goldbeter–Koshland loops satisfies the hypotheses of Theorem 5.4 of Bhyan, Dickenstein and Girolami (2018), we again deduce the existence of a vector of rate constants \(\bar{k}\) such that the number of positive solutions of this system coincides with the number of positive solutions of the corresponding system of the form (25). In what follows, we also explicitly describe the rescaling of the parameters.

We denote by \(h_\ell\) the height corresponding to \(\alpha_j \in A\), for \(j = 1, \ldots, 4n + 1\), with the order of the monomials as we described before. Let \(\varphi_1\) and \(\varphi_2\) be the affine linear functions which agree with \(h\) on the simplices \(\Delta_1\) and \(\Delta_2\) respectively.

We can take zero heights at the points of \(\Delta_1\), that is, \(h_1 = h_{2n+1} = h_{3n} = h_{4n-1} = h_{n+1} = h_{4n+1} = h_{n+1} = 0\), \(h_j = 0\) for \(j = n + 3, \ldots, 2n\), \(h_j = 0\), for \(j = 3n + 2, \ldots, 4n - 2 = 0\) if \(n > 3\) (note that if \(n = 3\), \(h_{3n+2} = h_{4n-1}\), already defined) and \(h_{4n} > 0\) (the height of the other point of \(\Delta_2\)). Then, \(\varphi_1(x_1, \ldots, x_{2n}) = 0\) and \(\varphi_2(x_1, \ldots, x_{2n}) = -h_{4n}\sum_{i=1}^{n}x_i + h_{4n}x_{n+2}\).

As \(h \in C_{\Delta_1, \Delta_2}\), we have that \(h\) satisfies \(0 = \varphi_1(\alpha) < h(\alpha)\), for all \(\alpha \notin \Delta_1\) and \(\varphi_2(\alpha) < h(\alpha)\), for all \(\alpha \notin \Delta_1, \Delta_2\). Then, we have these conditions:

\[
h_{4n} < h_{n+2}, \quad h_j > 0, \quad \text{for } j = 2, \ldots, n, 2n + 2, \ldots, 3n - 1, 3n + 1,
\]

where \(h_j\) for \(j = 2, \ldots, n, n + 2, 2n + 2, \ldots, 3n - 1, 3n + 1\) are generic.

If we change the variables \(\bar{s}_i = t^{h_{i+1}}s_i\), for \(i = 1, \ldots, n - 1\) and \(\bar{f} = t^{h_{n+2}}f\), we consider the constants:

\[
\begin{array}{ll}
\bar{K}_1 = t^{-h_{3n+1}}K_1, & \bar{L}_1 = t^{-h_{2n+1}}L_1, \\
\bar{K}_i = t^{h_{2n+i}-h_i}K_i, & \bar{L}_i = t^{h_{2n+i}-h_{i+1}}L_i, \quad \text{for } i = 2, \ldots, n - 1, \\
\bar{K}_n = t^{-h_{n+1}}K_n, & \bar{L}_n = t^{-h_{n+2}}L_n,
\end{array}
\]

(28)

without altering the values of the constants \(k_{\text{cat}_1}, k_{\text{cat}_n}, \ell_{\text{cat}_1}, \ell_{\text{cat}_n}\) and the total conservation values, then the dynamical system associated with the network with these constants is the scaled system. Therefore, the network has at least two positive steady states for this choice of constants.
It is straightforward to check that to get the scalings in (28) it is enough to rescale the original constants as follows:

\[\overline{k_{on1}} = t^{-h_{3n+1}}k_{on1}, \quad \overline{\ell_{on1}} = t^{-h_{2n+2}}\ell_{on1}, \]
\[\overline{k_{oni}} = t^{h_{2n+i}+h_i}k_{oni}, \quad \overline{\ell_{oni}} = t^{h_{2n+i}+h_i+1}\ell_{oni}, \quad \text{for } i = 2, \ldots, n-1, \]
\[\overline{k_{on}} = t^{-h_{n-4n}}k_{on}, \quad \overline{\ell_{on}} = t^{-h_{n+2}}\ell_{on}. \]

\[\square \]

Discussion

Our approach allows us to describe open sets in the rate constant and total concentration parameter space which ensure multistationarity in a cascade of enzymatic Goldbeter–Koshland loops, when there is a pair of layers with a shared phosphatase. Note for instance the structure of the statement of Theorem 5.1: if the given rate constants satisfy inequality (23), then we give explicit inequalities on the total conservation constants for which multistationarity occurs after tuning some of the reaction rate constants not involved in (23), that we clearly specify. In previous works such Conradi and Mincheva (2014); Conradi et al. (2017) necessary and sufficient conditions for the multistationarity of certain networks are given in terms of reaction rate constants, but the authors do not describe the particular stoichiometric compatibility classes for which there is multistationarity. Instead, we give conditions in reaction rate constants but also in the total concentrations for the occurrence of more than one positive steady state.

Our results can be generalized to describe multistationarity regions for other architectures of cascades which define MESSI systems. For this purpose, we state and prove in an Appendix the extension Theorem A.1, that abstracts some of our computations in Sect. 5, which could be combined with the general results in Section 5 in Bihan, Dickenstein and Giaroli (2018). For example, in the case of the Ras cascade in Fig. 1, previous papers studied rate constant multistationarity parameters (see e.g. Conradi et al. (2008); Millán and Turjanski (2015)). Our methods yield multistationarity regions for this signaling pathway in terms of rate constants and total concentration parameters. We omitted these computations, because they are similar to the ones we detail in Sects. 4 and 5.

We expect that our methods can be applied to study other chemical reaction networks of interest, not only to find multistationarity regions but also to find regions of parameters that ensure several positive steady states in a same stoichiometric compatibility class.

Acknowledgements The authors are grateful to the Kurt and Alice Wallenberg Foundation and to the Institut Mittag-Leffler, Sweden, for their support to work on this project. We are also grateful to the Mathematics Department of the Royal Institute of Technology, Sweden, for the wonderful hospitality we enjoyed, and to the French Program PREFALC and the University of Buenos Aires, which made possible the visit of F. Bihan.
A Appendix

A.1 Symbolic computations of the number of positive real roots

We checked using Singular (2007) with the library “signcond.lib”, that the system of the Example 3.7 has four positive solutions, with the following code:

```plaintext
> LIB "signcond.lib";
> ring r= 0, (x,y), dp;
> ideal i = 1/12-2*x^2+y+x^2*y-(1/12)*x*y^2,
    -2*(1/12)+x^2-x^2*y-(1/12)*x*y^2+(1/12)^3*x*y^3;
> ideal j = std(i);
> firstoct(j);
4
```

We remark that the command `firstoct` works under the assumption that the polynomial system has a finite number of complex solutions, which is satisfied in this case.

Also, we checked that there exists a value of \(t > 0 \) such that the system of the Example 4.2 has 3 positive roots, taking for example \(h_2 = 2, h_3 = 1, h_7 = 1, h_8 = 1, K_1 = 1, K_2 = 1, L_1 = 1 \) and \(L_2 = 1 \). We have then that \(G_1 = 1 \) and \(G_2 = 1 \). If we take \(t = \frac{1}{24} \), we have that the system has 3 positive solutions, checked with the following code:

```plaintext
>LIB "signcond.lib";
>ring r=(0,t), (x,y,z,w), dp;
>poly f1=x+t^3*y*z-20;
>poly f2=y+t^3*y*z+t^2*y*w-20;
>poly f3=x*z+t^2*z*y+t^3*2*y*z*x+t^2*y*w*x-30*x;
>poly f4=z*w+y*w+t^2*y*z*w-30*z;
>poly g1=subst(f1,t,24);
>poly g2=subst(f2,t,24);
>poly g3=subst(f3,t,24);
>poly g4=subst(f4,t,24);
>ideal i=g1,g2,g3,g4;
>ideal j=std(i);
>firstoct(j);
3
```

Here \(x = e, y = \tilde{f}, z = \tilde{s}_1^1 \) and \(w = s_2^1 \). It can be checked that if we take a slightly higher value \(t = \frac{1}{32} \), the corresponding system has only one positive solution.

A.2 General statements behind our results about cascades

In the proof of Theorem 5.1 we extrapolated the multistationarity behaviour and the description of a region of multistationarity of a subnetwork (described in 4.1) to the whole network, even if it has more linearly independent conservation relations. For this,
we developed some ideas that we now abstract in Theorem A.1 and that can be used in the study of other cascade mechanisms. As we remarked at the end of the Introduction, they can be applied to describe a multistationarity region for the Ras cascade in Fig. 1 (see Millán and Turjanski (2015) for details about different models), extrapolating our results about a single layer with two sequential phosphorylations proved in Theorem 4.1 in Bihan, Dickenstein and Giaroli (2018). We assume the reader is familiar with the content of Section 2 in our companion paper (Bihan, Dickenstein and Giaroli (2018)).

We start with a couple of lemmas. Given a lattice configuration A, we will denote by $\text{Aff}(A)$ the affine span of A consisting of all points $\sum_{a \in A} \lambda_a \cdot a$ with $\lambda_a \in \mathbb{Z}$ for all $a \in A$ and $\sum_{a \in A} \lambda_a = 0$.

Lemma 1 Let $A \subset A' \subset \mathbb{Z}^d$ be finite point configurations, with $\text{Aff}(A) = \text{Aff}(A') = \mathbb{Z}^d$. Suppose that τ is a regular subdivision of A. Then, there exists a regular subdivision τ' of A' such that $\tau \subset \tau'$. Moreover, we can choose a lifting function h' inducing τ' such that $h := h'|_A$ induces τ.

Proof Let $h_\tau : A \rightarrow \mathbb{R}$ be any lifting function inducing the subdivision τ. Let $h_{A,A'} : A' \rightarrow \mathbb{R}$ be any lifting function which is zero on A and positive otherwise. Extending h_τ by zero outside A, we get that for $\epsilon > 0$ small enough the function $h' := h_{A,A'} + \epsilon \cdot h_\tau$ induces a regular subdivision τ' of A' containing the cells in τ and $h := h'|_A = \epsilon \cdot h_\tau$ induces τ. \square

Lemma 2 Let $A \subset A' \subset \mathbb{Z}^d$ be finite point configurations, with $\text{rkAff}(A) = d < \text{rkAff}(A') = d'$. Assume moreover that $A' \setminus A$ has cardinality $d' - d$. Suppose that τ is a regular subdivision (triangulation) of A. For each $\sigma \in \tau$ define $\sigma' = \sigma \cup (A' \setminus A)$. Then, the collection $\tau' := \{\sigma', \sigma \in \tau\}$ defines a regular subdivision (triangulation) of A'. Moreover, τ' can be induced by a lifting function h' whose restriction to A induces τ.

Proof Consider a point $a \in A' \setminus A$. Then a is outside the hyperplane spanned by A, that is, $a \cup A$ is a pyramid over A. It is known (see Observation 4.2.3 in De Loera et al. (2010)) that the collection $\{a \cup A, \sigma \in \tau\}$ is a subdivision of $a \cup A$, and it is regular if and only if τ is regular. Then, we can see A' as an iterated pyramid over A and the lemma follows by applying successively the previous fact. \square

Given a matrix $D \in \mathbb{R}^{d \times n}$ and $I \subset \{1, \ldots, n\}$, we will denote by D_I the submatrix of D corresponding to the columns indexed by I. For $i \in \{1, \ldots, n\}$, $D(i)$ will denote the matrix obtained by removing the i-th column of D, and for $j \in \{1, \ldots, d\}$, D_j will denote the j-th row of D.

Theorem A.1 Let $d, d' \in \mathbb{N}$ with $d \leq d'$. Let $A \subset A'' \subset \mathbb{Z}^d$ be finite point configurations, with $\text{rkAff}(A) = d$, $\text{rkAff}(A'') = d'$. Write $A = \{a_1, \ldots, a_n\}$, $A'' = A \cup \{a_{n+1}, \ldots, a_m\}$, with $m \geq d' - n$. Set $A' = A \cup \{a_{n+1}, \ldots, a_{n+d'-d}\}$ and assume that $\text{rkAff}(A') = d'$. Let τ be a regular subdivision of A induced by a lifting function h, τ' the regular subdivision of A' obtained as in Lemma 2, and τ'' any regular subdivision of A'' such that $\tau' \subset \tau''$, induced by a lifting function h'', such that h'' restricted to A induces τ.

\square Springer
Let \(f_1, \ldots, f_d \) be polynomials with support in \(A \) and coefficient matrix \(C \) of rank \(d \). Let \(f''_1, \ldots, f''_d, \ldots, f''_d \) be polynomials with support \(A'' \) and coefficient matrix \(C'' \) of rank \(d' \) of the form

\[
\begin{pmatrix}
C & 0 & D_1 \\
M & B & D_2
\end{pmatrix},
\]

with \(B \in \mathbb{R}^{(d'-d) \times (d'-d)} \) invertible. Assume \(\tau \) has \(p \) \(d \)-simplices positively decorated by \(C \) and the determinants of the submatrices

\[
\begin{pmatrix}
C_I \\
(B^{-1}M_I)_j
\end{pmatrix},
\]

have all the same sign as \((-1)^{d+i} \det(C_I(i))\), for each \(i = 1, \ldots, d+1 \), for each \(j = 1, \ldots, d' - d \), and for each subset \(I \subset \{1, \ldots, n\} \) which indexes a positively decorated simplex. Then, there exists \(t_0 > 0 \), such that for \(0 < t < t_0 \), the deformed system \(f''_{1,t} = \cdots = f''_{d',t} = 0 \), where

\[
f''_{i,t}(x) = \sum_{j=1}^{m} c''_{i,j} h''(a_j)x^{a_j},
\]

has at least \(p \) positive nondegenerate real roots.

Proof The subdivision \(\tau'' \) can be obtained by Lemma 1. Note that the columns of \(B \) correspond to the points in \(A' \setminus A \).

Suppose that \(\Delta \in \tau \) is a \(d \)-simplex positively decorated by \(C \). Then \(\Delta' = \Delta \cup \{a_{n+1}, \ldots, a_{n+d'-d}\} \) is a \(d' \)-simplex of \(\tau' \subset \tau'' \). We will show that \(\Delta' \) is positively decorated by \(C'' \).

Suppose that \(\Delta \) is indexed by the set \(I = \{i_1, \ldots, i_{d+1}\} \) of \(\{1, \ldots, n\} \). We have to prove that the submatrix \(C''_{I'} \) of \(C'' \) is positively spanning, with \(I' = I \cup \{n+1, \ldots, n+d' - d\} \). This is equivalent to prove that the matrix

\[
G = \begin{pmatrix}
\text{Id}_d & 0 \\
0 & B^{-1}
\end{pmatrix}
\begin{pmatrix}
C_I & 0 \\
M_I & B
\end{pmatrix}
= \begin{pmatrix}
C_I & 0 \\
B^{-1}M_I & \text{Id}_{d'-d}
\end{pmatrix},
\]

is positively spanning, as the property of being positively spanning remains invariant under multiplication by invertible matrices.

We compute \((-1)^i \det(G(i))\) for \(i = 1, \ldots, d' + 1 \). For \(i = 1, \ldots, d+1 \), we have:

\[
(-1)^i \det(G(i)) = (-1)^i \det \begin{pmatrix}
C_I(i) & 0 \\
B^{-1}M_I(i) & \text{Id}_{d'-d}
\end{pmatrix} = (-1)^i C_I(i),
\]

which have all the same sign, because \(\Delta \) is positively decorated by \(C \). Take now \(i > d+1 \). Let \(j \in 1, \ldots, d' - d \) such that \(d+1 + j = i \). Moving the \(i \)-th row of \(G \) to the row \(d + 2 \) in \(j - 1 \) interchanges of consecutive rows, we have:
\[(-1)^i \det(G(i)) = (-1)^i \det \begin{pmatrix} C_I & 0 \\ B^{-1} M_I & \text{Id}_{d'-d}(j) \end{pmatrix} \]
\[= (-1)^{d+1+j} (-1)^{j-1} \det \begin{pmatrix} C_I & 0 \\ (B^{-1} M_I)(j) & 0 \end{pmatrix} \]
\[= (-1)^d \det \begin{pmatrix} C_I \\ (B^{-1} M_I)(j) \end{pmatrix}, \]

where \((B^{-1} M_I)(j)\) denotes the submatrix of \(B^{-1} M_I\) obtained by removing its \(j\)-th row. For each \(j = 1, \ldots, d' - d\), this determinant has the same sign as \((-1)^i C_I(i)\), for each \(j = 1, \ldots, d' - d\), by hypothesis. Then, the simplex \(\Delta'\) is positively decorated by \(C''\).

We deduce that if \(\tau\) has \(p d\)-simplices positively decorated by \(C\), then \(\tau''\) has \(p d'\)-simplices positively decorated by \(C''\). Then, by Theorem 2.9 in Bihan, Dickenstein and Giaroli (2018) (from which we extracted Theorem 3.6), there exists \(t_0 > 0\), such that for \(0 < t < t_0\), the system \(f''_{1,t} = \cdots = f''_{d',t} = 0\), has at least \(p\) positive nondegenerate real roots. \(\square\)

Remark 5 The conditions that guarantee that the \(p d'\)-simplices of \(\tau''\) are positively decorated by \(C''\) include the conditions such that the \(p d\)-simplices of \(\tau\) are positively decorated by \(C\), plus other conditions. In the cases of cascades of Goldbeter–Koshland loops that we studied in Sect. 5, these other conditions are automatically fulfilled.

References

Banaji M, Pantea C (2018) The inheritance of nondegenerate multistationarity in chemical reaction networks. SIAM J Appl Math 78(2):1105–1130
Basu S, Pollack R, Coste-Roy MF (2007) Algorithms in real algebraic geometry. Springer Science & Business Media, New York
Bihan F, Santos F, Spaenlehauer PJ (2018) A polyhedral method for sparse systems with many positive solutions. SIAM J Appl Algebra Geom (to appear)
Catozzi S, Di-Bella JP, Ventura AC, Sepulchre JA (2016) Signaling cascades transmit information downstream and upstream but unlikely simultaneously. BMC Syst Biol 10(1):84
Conradi C, Mincheva M (2014) Catalytic constants enable the emergence of bistability in dual phosphorylation. J R Soc Interface 11(95):20140158
Conradi C, Flockerzi D, Raisch J (2008) Multistationarity in the activation of a mapk: parametrizing the relevant region in parameter space. Math Biosci 211(1):105–131
Conradi C, Feliu E, Mincheva M, Wiuf C (2017) Identifying parameter regions for multistationarity. PLoS Comput Biol 13(10):e1005751
Craciun G, Feinberg M (2005) Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J Appl Math 65(5):1526–1546
Craciun G, Feinberg M (2006) Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J Appl Math 66(4):1321–1338
De Loera JA, Rambau J, Santos F (2010) Triangulations structures for algorithms and applications. Springer, New York
Feliu E, Wiuf C (2012) Enzyme-sharing as a cause of multi-stationarity in signalling systems. J R Soc Interface 9(71):1224–1232
Feliu E, Wiuf C (2013) Simplifying biochemical models with intermediate species. J R Soc Interface 10(87):20130484

Springer
Regions of multistationarity in cascades of... 1145

Feliu E, Knudsen M, Andersen LN, Wiuf C (2012) An algebraic approach to signaling cascades with n layers. Bull Math Biol 74(1):45–72

Flockerzi D, Conradi C (2008) Subnetwork analysis for multistationarity in mass action kinetics. J Phys Conf Ser 138:012006

Gatermann K, Wolfrum M (2005) Bernstein’s second theorem and viro’s method for sparse polynomial systems in chemistry. Adv Appl Math 34(2):252–294

Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci 78(11):6840–6844

Goyal Y, Jindal GA, Pelliccia JL, Yamaya K, Yeung E, Futran AS, Burdine RD, Schüpbach T, Shvartsman SY (2017) Divergent effects of intrinsically active mek variants on developmental ras signaling. Nat Genet 49(3):465

Holstein K, Flockerzi D, Conradi C (2013) Multistationarity in sequential distributed multisite phosphorylation networks. Bull Math Biol 75(11):2028–2058

Joshi B, Shiu A (2013) Atoms of multistationarity in chemical reaction networks. J Math Chem 51(1):153–178

Kothamachu VB, Feliu E, Cardelli L, Soyer OS (2015) Unlimited multistability and boolean logic in microbial signalling. J R Soc Interface 12(108):20150234

Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX (2016) The ras/raf/mek/erl signaling pathway and its role in the occurrence and development of hcc. Oncol Lett 12(5):3045–3050

Millán MP, Turjanski AG (2015) Mapks networks and their capacity for multistationarity due to toric steady states. Math Biosci 262:125–137

Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A (2016) Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found Comput Math 16(1):69–97

Pérez Millán M, Dickenstein A (2018) The structure of messi biological systems. SIAM J Appl Dyn Syst 17(2):1650–1682

Singular A (2007) Computer algebra system for polynomial computations. See the SINGULAR homepage at http://www.singular.uni-kl.de

Wang L, Sontag ED (2008) On the number of steady states in a multiple futile cycle. J Math Biol 57(1):29–52