High Prevalence and Early Onsets: Legal and Illegal Substance Use in an Urban Cohort of Young Adults in Switzerland

Quednow, Boris B; Steinhoff, Annekatrin; Bechtiger, Laura; Ribeaud, Denis; Eisner, Manuel; Shanahan, Lilly

Abstract: Introduction: Debates about the legalization of illegal substances (e.g., cannabis) continue around the globe. A key consideration in these debates is the adequate protection of young people, which could be informed by current prevalence and age-of-onset patterns. For Switzerland, such information is limited, which is particularly true for women, despite advanced political efforts to legalize cannabis. The objective of the current study was to investigate substance use prevalence rates and ages of onset in a community-representative sample of female and male young adults in Switzerland. Methods: Data came from the Zurich Project on the Social Development from Childhood to Adulthood (z-proso). In 2018, participants (N = 1,180, 50.8% females) were 20 years old. Lifetime and past-year use of alcohol, tobacco, cannabinoids, stimulants, hallucinogens, opioids, and benzodiazepines were assessed with an extensive substance use questionnaire. Additionally, ages of onsets of the respective substances were estimated by averaging participants’ self-reported ages of onsets from ages 13 to 20 (max. 4 assessments). Results: 57% of 20-year-olds had used cannabinoids, 16% stimulants, 15% opioids (mostly codeine), and 8% hallucinogens in the past year. Males had higher prevalence than females for most drugs; nevertheless, females’ prevalence rates were notably high. Legal substance use was typically initiated 1.3–2.7 years before legal selling age. Thus, almost half of the sample had consumed alcohol and tobacco by age 14. More than 40% of the total sample had smoked cannabis by age 16. Males initiated use of legal substances and cannabis earlier than females. Discussion: Our recent community-representative data suggested unexpectedly high levels and early onsets of substance use compared to a previous Swiss surveys and also the European average. Drug policy debates should consider urban substance use patterns when considering legalization efforts.

DOI: https://doi.org/10.1159/000520178

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-211209
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Quednow, Boris B; Steinhoff, Annekatrin; Bechtiger, Laura; Ribeaud, Denis; Eisner, Manuel; Shanahan, Lilly (2021). High Prevalence and Early Onsets: Legal and Illegal Substance Use in an Urban Cohort of Young Adults in Switzerland. European Addiction Research:Epub ahead of print.
DOI: https://doi.org/10.1159/000520178
High Prevalence and Early Onsets: Legal and Illegal Substance Use in an Urban Cohort of Young Adults in Switzerland

Boris B. Quednowa, b, c\Annekatrin Steinhoffb\Laura Bechtigerb\Denis Ribeaudb\Manuel Eisnerb, d\Lilly Shanahanb, e

aExperimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; bJacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; cNeuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; dInstitute of Criminology, University of Cambridge, Cambridge, UK; eDepartment of Psychology, University of Zurich, Zurich, Switzerland

Keywords
Adolescent drug use · Adolescents · Age at onset · Community-based research · Drug policy · Epidemiology · Legalization debate · Switzerland · Young people · Youth

Abstract
Introduction: Debates about the legalization of illegal substances (e.g., cannabis) continue around the globe. A key consideration in these debates is the adequate protection of young people, which could be informed by current prevalence and age-of-onset patterns. For Switzerland, such information is limited, which is particularly true for women, despite advanced political efforts to legalize cannabis. The objective of the current study was to investigate substance use prevalence rates and ages of onset in a community-representative sample of female and male young adults in Switzerland. Methods: Data came from the Zurich Project on the Social Development from Childhood to Adulthood (z-proso). In 2018, participants (N = 1,180, 50.8% females) were \textasciitilde20 years old. Lifetime and past-year use of alcohol, tobacco, cannabinoids, stimulants, hallucinogens, opioids, and benzodiazepines were assessed with an extensive substance use questionnaire. Additionally, ages of onsets of the respective substances were estimated by averaging participants’ self-reported ages of onsets from ages 13 to 20 (max. 4 assessments). Results: 57\% of 20-year-olds had used cannabinoids, 16\% stimulants, 15\% opioids (mostly codeine), and 8\% hallucinogens in the past year. Males had higher prevalence than females for most drugs; nevertheless, females’ prevalence rates were notably high. Legal substance use was typically initiated 1.3\textendash2.7 years before legal selling age. Thus, almost half of the sample had consumed alcohol and tobacco by age 14. More than 40\% of the total sample had smoked cannabis by age 16. Males initiated use of legal substances and cannabis earlier than females. Discussion: Our recent community-representative data suggested unexpectedly high levels and early onsets of substance use compared to a previous Swiss surveys and also the European average. Drug policy debates should consider urban substance use patterns when considering legalization efforts.

Boris B. Quednow and Lilly Shanahan contributed equally.

Correspondence to:
Boris B. Quednow, quednow@bli.uzh.ch
Lilly Shanahan, lilly.shanahan@jacobscenter.uzh.ch
Introduction

Young people’s brains develop and reorganize fundamentally until their early to mid-20s. Such plasticity provides both, windows of opportunity and vulnerability in brain development [1–3]. Research on animals and humans shows that exposure to substances during adolescence and into young adulthood potentially results in long-term negative consequences, including heightened risk for substance use disorders, decreases in cognitive, motivational, and psychosocial functioning, and additional psychiatric impairments [1, 4–10]. For example, frequent cannabis use during adolescence has been linked with later substance use disorders [1, 11, 12], psychosis [1, 13–15], and worse functional outcomes, including delinquency, financial, and social problems [16–25], reduced intellectual ability [26], and educational attainment [18–20].

Several countries have eased their cannabis use policies during the last decade [27]. In Switzerland, cannabis is illegal, but legalization debates have drawn out for decades, and drug policy based on prohibition are being critiqued [28]. Accordingly, Switzerland is currently implementing the first cannabis legalization trials [29, 30]. Although youth protection has been identified as a central aspect of cannabis regulation [31], it has recently been suggested in the Swiss legalization debate that cannabis use should be legal already beginning at age 16, given that the prevalence rates are typically highest in late adolescence [32]. Thus, public policy discussions must be critically informed by young people’s current use and age-of-onset patterns in order to implement suitable, feasible, and reliable protection and prevention strategies. However, for Switzerland, such numbers are incomplete yet.

Globally, substance use is highest between the ages of 18–25 – the transition from adolescence to adulthood [33]. According to the latest European Drug Report of the European Monitoring Center for Drugs and Drug Addiction, an estimated 18.5% of the European adolescents and young adults aged 15 to 24 have used illegal substances in the past year, with rates was almost twice as high in males (23.3%) compared to females (13.6%) [34]. Cannabis showed the highest last-year prevalence in this age-group (mean 17.1%, range across countries 2.4–27.6%) followed by 3–4% “Ecstasy,” mean 2.2%, range 0.2–8.6%), cocaine (mean 2.2%, range 0.1–6.2%), and amphetamine (mean 1.3%, range 0–3.8%) [34]. Switzerland does not belong to the European Union; therefore, it does not contribute data to such annual reports of the European Monitoring Center for Drugs and Drug Addiction yet. However, several population-representative Swiss studies offer substance use prevalence data, including, for example (1) the Swiss part of the WHO’s Health Behavior in School-aged Children study (HBSC) [35], (2) the Swiss Addiction Monitoring survey (Suchtmonitoring Schweiz, www.suchtmonitoring.ch) [36], and (3) the Swiss conscript-based Study on Substance Use Risk Factors (C-SURF; [37]). Results from these studies suggest that the prevalence of illegal substance use among adolescents and adults in Switzerland is lower or similar to the European Union average, with the exception of cannabis, for which prevalence seem to be higher ([38], for review see [39]). The former conclusions were, however, recently challenged by results of waste water analyses [40] revealing that concentrations of MDMA and the cocaine metabolite benzoylecgonine were considerably higher in several Swiss cities than many other European cities [39].

Indeed, although the previous surveys were representative of broad segments of young people in Switzerland, they came with limitations that could lead to underestimating substance use. First, the HBSC study focused on youth aged 11–15 only, missing critical older ages of adolescence and young adulthood during which illegal substances are typically first taken and their consumption increases dramatically [41]. Second, the Swiss Addiction Monitoring relied on telephone interviews only, which typically result in considerable underreporting of substance use [42–46] also issues with representativeness given that “hidden” populations, such as young people and frequent substance users, are not always reached [47]. Third, the recruitment of the C-SURF cohort took place at 3 of 6 army recruitment centers in Switzerland, during the compulsory medical examination that all Swiss young men must undergo when registering for military (or civil) service. Although the research assessment was subsequently primarily done via online questionnaires and the independence of the study from the Swiss army was emphasized, it is possible that participants did not fully disclose their substance use due to the army context. Finally, C-SURF assessed males only, generating no knowledge about female substance use or sex differences in substance use. Taken together, most population-representative surveys of young people’s substance use in Switzerland likely suffer from systematic underreporting, provide insufficient data on females and sex differences, and also feature limited information on ages of onset of illegal drugs. It is exactly these types of data, however, that could be crucial for informing drug-related policy-making.

The current study addresses these gaps in research by drawing on a community-representative sample of $N =$
Methods

Recruitment and Participants

Data came from the prospective-longitudinal Zurich Project on the Social Development from Childhood to Adulthood (z-proso). Participants were selected using a cluster-stratified randomizing sampling approach. The initial target sample included 1,675 children from 56 primary schools randomly selected from the 90 public schools in Zurich, the largest city of Switzerland. Stratification took into account school size and socioeconomic background [48–50]. N = 1,360 participants were first assessed in 2004, when the sample was largely representative of first-graders attending public schools in Zurich. Seven additional assessments were completed since. Data for the current article primarily came from the most recent assessment in 2018, at age 20, when N = 1,180 participants (males n = 581; females n = 599) completed a detailed interview of their substance use. In addition, age-of-onset data from ages 13, 15, 17, and 20 were used. Information on sample attrition and nonresponse in the analytic sample can be found in online supplement 1 (for all online suppl. material, see www.karger.com/doi/10.1159/000520178).

Consistent with Switzerland’s immigration policies and the city’s diverse population, parents of participants had been born in over 80 different countries; the majority of participating 20-year-olds were, however, born in Switzerland (90.3%). Parental educational background was diverse; 30.1% of participants had at least 1 parent with a university degree. The mean household International Socioeconomic Index of Occupational Status [51] was M = 47.1 (SD = 19.7). The International Socioeconomic Index of Occupational Status is an internationally comparable index of socioeconomic status based on occupation-specific income and the required educational level, with scores ranging from 16 (e.g., unskilled worker) to 90 (e.g., judge).

Data were collected with paper/pencil questionnaires up to age 17 in random groups of n = 3–25 (not classes) in classrooms, and with computer-administered surveys at age 20 in a university laboratory environment. Adolescents received a cash incentive for their participation, increasing from ~USD 30 at age 13 to ~USD 75 at age 20.

Assessment of Substance Use Prevalence

At age 20, an extensive substance use questionnaire was administered. Participants were asked whether they had used the following substances in the past year or ever in their life at least once. Examples of relevant drugs, currently on the Swiss market, were provided: (1) tobacco (e.g., cigarettes and shisha/hookah); (2) beer/wine/alcopops; (3) liquor (e.g., vodka, whisky, and gin); (4) cannabinoids, including cannabis (e.g., hashish, grass/weed/marihuana, and cannabis); CBD (e.g., CBD-enriched hemp, cigarettes with CBD-enriched hemp, and CBD tinctures), cannabinoid substances (e.g., synthetic cannabinoids, herbal incense, "herbal smoking blends," such as "Dutch Orange", "Spice", "K2", and "Ganja Style"); (5) stimulants, including "Ecstasy" (MDMA), cocaine, and amphetamine/methamphetamine (e.g., "Speed", "Peppe", "Ice", "Crystal Meth"); (6) hallucinogens, including LSD/psilocybin (e.g., magic mushrooms/truffles), 2C substances (e.g., Bromo, "Erox," "Nexus," "Venus"), and ketamine ("Special K", "Vitamin K"); (7) opioids, including nonmedical use of codeine-based cough medicine (e.g., Resyl plus™, Makatussin™, Pectocal-mine NTM, and Codein Knoll™), and nonmedical use of opioid painkillers (e.g., Tramal™, Sevre-Long™, Temgesic™, Oxycontin™, Palladon™, and Durogesic™); and (8) benzodiazepines (e.g., Valium™, Rohypnol™, and Xanax™).

Assessment of Onset Ages

At the age of 13, 15, 17, and 20 assessments, participants were also asked at what age they had first used the substances assessed at that age (i.e., tobacco, alcohol, and cannabis at age 13; tobacco, alcohol, cannabis, Ecstasy, cocaine, [meth-]amphetamine, LSD, and psilocybin at ages 15 and 17; all substances listed in the previous section at age 20). All available onset ages were averaged. The repeated age-of-onset measures showed moderate to good reliability, with the exception of LSD/psilocybin (see intraclass coefficients in online suppl. Table 1).

Analytic Strategy

Analyses were conducted in SPSS 25 (IBM Corp., Germany) and R (http://www.R-project.org). All respondents at age 20 have been included in the analysis. Prevalence estimates of substance use were computed for the overall sample and for males and females separately. We report lifetime prevalence and 12-month prevalence – for groups of substances and also for individual substances. Sex differences in prevalence rates were tested using χ² statistics. Sex differences in ages of onset distributions were tested using Wilcoxon rank sum. There were no oversampling or other stratification procedures during recruitment that would have required the use of sampling/survey weights in our statistical analyses.

Results

Overall Lifetime Prevalence

The vast majority of young people had used alcohol and tobacco by age 20 (Fig. 1a). Over 69% had used can-
nabnoids, 19 stimulants, 19 opioids, and 10% hallucinogens, respectively. Among cannabinoids, cannabis was most prevalent, with over 3 in 4 20 year olds having used it. Surprisingly, one-third of the sample had used CBD; >5% reported use of synthetic cannabinoids. With respect to stimulants, Ecstasy was most prevalent, followed by cocaine and amphetamines. For opioids, one in 6 20-year-olds reported lifetime nonmedical use of codeine; >5% had used opioid painkillers nonmedically. Notably, almost 9% of participants reported lifetime use of LSD/psilocybin and >6% nonmedical use of benzodiazepines. 2C drugs, ketamine, and heroin were the least used substances (<5% of sample).

Sex-Specific Lifetime Prevalence

Liquor and tobacco were more commonly used by males than females, but prevalence in females was nevertheless high (>80%) (Fig. 1b). Furthermore, almost all groups of illegal substances were more commonly used by males than females, including cannabinoids, stimulants, and hallucinogens, but not opioids (Table 1). One in 3 males (vs. 1 in 5 females) had used CBD. One in 5 males (vs. 1 in 7 females) reported nonmedical use of codeine. One in 6 males (vs. 1 in 8 females) had used Ecstasy. One in 7 males (vs. 1 in 10 females) had used cocaine. For example, more than two-thirds of females had used cannabinoids by age 20. After Bonferroni corrections, significant sex differences remained for cannabis, CBD, and LSD/psilocybin (p<0.001 for sex difference).
Table 1. Lifetime and 12-month prevalence rates of groups of substances and associated 95% CIs

	Overall % (95% CI)	Male % (95% CI)	Female % (95% CI)	p for sex difference
Lifetime prevalence				
Cannabinoids	69.1 (66.3–71.7)	75.2 (71.5–78.7)	63.1 (59.1–67.0)	<0.001
Stimulants	18.6 (16.4–20.9)	22.2 (18.9–25.8)	15.1 (12.3–18.2)	0.002
Opioids	18.6 (16.5–21.0)	20.5 (17.3–24.0)	16.9 (13.9–20.1)	0.110
Hallucinogens	10.3 (8.6–12.1)	13.6 (10.9–16.7)	7.0 (5.1–9.4)	<0.001
Twelve-month prevalence				
Cannabinoids	57.1 (54.2–60.0)	63.7 (59.6–67.6)	50.8 (46.7–54.8)	<0.001
Stimulants	16.2 (14.1–18.4)	19.9 (16.7–23.3)	12.6 (10.0–15.5)	<0.001
Opioids	14.9 (13.0–17.1)	16.4 (13.5–19.7)	13.5 (10.9–16.5)	0.165
Hallucinogens	8.3 (6.8–10.0)	11.6 (9.1–14.5)	5.2 (3.5–7.3)	<0.001

CI, confidence interval.
Overall 12-Month Prevalence

The large majority of 20-year olds reported beer/wine/alcopops, liquor, and also tobacco use in the past year (Fig. 2a); >50% of the sample had used cannabinoids (57%). Past-year use of stimulants, opioids, and hallucinogens was at 16, 15, and 8%, respectively. Cannabis use was the most commonly used substance in the cannabinoids category, at 56%; nevertheless, more than 1 in 4 participants had used CBD and almost 5% had used synthetic cannabinoids. More than 1 in 10 participants had
used codeine, Ecstasy, and cocaine, respectively. Within the group of hallucinogens >7% reported LSD or psilocybin use. Nonmedical use of opioid painkillers and benzodiazepines was unexpectedly high, at almost 1 in 20. Heroin was the least commonly used drug. For associations between the uses of different substances, see online supplement 2. Briefly, significant bivariate associations emerged for most substance combinations.

Sex Differences in 12-Month Prevalence

Sex differences were not identified for beer/wine/alcopops or tobacco (Fig. 2b). Males were more likely than females to report use of liquor. Males were also more likely to report use of any cannabinoids, any stimulants, and any hallucinogens (Table 1). Past-year opioids use did not differ by sex. With respect to specific substances, cannabis, CBD, all stimulants, LSD, and codeine use were more commonly used by males than females, but prevalence in several of these categories was still high among females. After Bonferroni corrections, significant sex differences remained for cannabis, CBD, cocaine, and LSD/psilocybin (p corr < 0.05).

Onset Ages: Overall Sample

Age-of-onset distributions (Fig. 3; Table 2) revealed that tobacco, alcohol, and cannabis had the earliest onset ages (median age-of-onset ~15 years). In fact, more than one half of adolescents had used alcohol or tobacco before the legal selling age of 16 in Switzerland: 67.4% for tobacco and 68.9% for beer/wine/alcopops. Of the participants, 53.8% had consumed liquor before age 16, and 87.2% before age 18 (i.e., the legal selling age for liquor in Switzerland). Forty-two percent of participants had consumed cannabis before age 16, and 63.6% before age 18. Onset ages of cannabinoids other than cannabis were older (Fig. 4a; Table 2): 3.8% of participants had consumed CBD before age 18 and 1.7% synthetic cannabinoids.

The age-of-onset distribution of stimulants shows 2 peaks (1 at age 16, another at age 19, Fig. 4b). Roughly half of the youth whoever consumed Ecstasy or other amphetamines did so before age 18, with 7.8% of the total sample having consumed Ecstasy before age 18 and 5.3% having consumed amphetamines before age 18. Cocaine use had a slightly later onset: 4.7% of participants had consumed cocaine before age 18. Age-of-onset curves for hallucinogens did not have distinct peaks (Fig. 4c; Table 2), but LSD/psilocybin most commonly had their onsets around ages 18 and 19; 3.6% of participants had consumed LSD/psilocybin before age 18 and 1.4% of participants had used 2C substances before age 18, and 0.8% ketamine.

Table 2.

Substance	Total sample	Males	Females	Sex diff	N	mean	median	stand. dev	W	p
Beer/wine/alcopops	1,087	14.8	14.7	1.7	540	14.6	14.5	1.6	126,890	<0.001
Liquor	1,074	15.5	15.3	1.8	538	15.4	15.3	1.6	131,060	0.010
Tobacco	1,042	14.6	14.7	1.7	528	14.4	14.3	1.8	117,286	<0.001
Cannabis	843	13.6	13.5	1.7	449	13.3	13.0	1.8	113,186	0.063
Cannabidiol	642	12.9	12.7	1.4	349	12.6	12.5	1.5	94,186	0.049
Synthetic cannabinoids	188	17.6	17.3	2.1	108	17.2	17.0	2.0	25,386	0.177
Ecstasy	154	17.5	17.5	2.4	83	17.4	17.3	2.5	5,317	0.083
(Meth-)Amphetamine	31	17.5	17.3	2.8	17	17.1	17.0	2.7	845	0.373
LSD, psilocybin	17	17.0	16.9	1.7	9	16.7	16.0	1.6	5,317	0.073
2C drugs	71	17.9	18.3	2.5	30	17.9	18.5	2.7	661	0.089
Ketamine	<5	17.0	16.5	1.2	5	16.7	16.0	1.3	-	-
Opioid painkillers	<5	17.0	16.5	1.2	5	16.7	16.0	1.3	-	-
Benzodiazepines	71	17.9	18.3	2.5	30	17.9	18.5	2.7	661	0.089

1 Assessed at age 20 only. 2 Mean based on up to 4 assessments (ages 13–20). 3 Mean based on up to 3 assessments (ages 15–20).
Opioids and benzodiazepines showed relatively flat age-of-onset distributions (Fig. 4d; Table 2), increasing with age only slightly; 7.4% of participants had used codeine cough syrup nonmedically before age 18, 2.7% had used opioid painkillers nonmedically before age 18, and 0.2% of participants had used heroin before age 18; 2% benzodiazepine.

In sum, a large percentage of adolescents who used an illegal substance by age 20 did so before age 18. Onset ages for legal substances peaked between 1.3 (tobacco and beer/wine/alcopops) and 2.7 years (liquor) before legal selling age, and more than 2 in 5 adolescents had used cannabis by age 16. For correlations between onset ages, see online supplement 3. Online supplement 4 documents what percentage of individuals whoever took a substance by age 20, initiated use of that substance by age 16 or 18. Results illustrate that in the cases of several illegal substances such as Ecstasy, amphetamines, or 2C drugs, almost half of those who used this substance by age 20 had initiated used at age 18 or younger.

Onset Ages: Sex Differences
Wilcoxon rank sum tests were applied to test sex differences in Age-of-onset distributions. These tests accounted for the nonparametric distributions of onset ages (Table 2). Results revealed that males had a younger onset age for beer/wine/alcopops, liquor, tobacco, and cannabis than females. In turn, females initiated nonmedical use of codeine earlier than males and, marginally, also amphetamines and LSD/psilocybin use. For the age-of-onset distributions for males and females, see online supplement 5.

Relationship between Age-of-Onset and Substance Use Prevalence at Age 20
In general, earlier age-of-onset of alcohol, tobacco, and cannabis use correlated with higher probability of use of several substances at age 20 (see online supplement 6). The strongest associations ($r > 0.25$) were found for early onset of alcohol use and later cannabis and CBD use; early onset of cannabis use and later CBD, MDMA, cocaine, and amphetamine use; early use of hallucinogens and later LSD use; early use of opioids and later tobacco and cocaine use; as well as early and later benzodiazepine use.

Discussion
In the face of debates about the legalization of illegal substances around the globe [28], including in Switzerland [52], our pre-legalization data revealed high levels and early onsets of substance use in a community-representative urban sample of young adults. Almost half of participants had used tobacco or alcohol by age 14; >40% had used cannabis by age 16. Use of illegal substances other than cannabis was initiated before age 18 by a substantial number of participants. By age 20, almost 70% of participants had used cannabis, 1 in 10 had used hallucinogens, and 1 in 5 had used stimulants and/or opioids – both substance classes with strong harm and addictive potential [53].

These high percentages of substance use among urban adolescents are remarkable specifically as youth protection is a stated goal of the current cannabis legalization efforts in Switzerland [31]. Given that legalization efforts tend to increase youths’ perceptions that substances under discussion are safe, which has led to increased and earlier use [54], Swiss legalization debates could possibly exacerbate the early use patterns observed here. However, early onset of a substance may hamper young people’s attainment of physical, psychosocial, educational, and professional milestones [1] because of its negative neurodevelopmental impact on circuits linked to psychosocial functioning, cognition, and motivation [4, 9, 10, 55, 56].

Prevalence at Age 20
Among the illegal substances, specifically lifetime and 12-months prevalence of cannabis use in our study was considerably higher than previous representative Swiss surveys [36, 37] and to the European average [38]. When comparing the male prevalence rates at the same age between our and the C-SURF study directly, much higher rates were detected in the z-proso sample for all compared substances. χ²-tests, comparing prevalence rates of the overlapping substances between only male z-proso participants with the male C-SURF conscripts, confirmed significantly higher rates in the z-proso sample (Bonferroni-corrected p values <0.0001). Of note, C-SURF was conducted 7–8 years before z-proso. However, it is less likely that the very large differences in prevalence rates are explained only by temporal changes in substance use in Switzerland. According to Swiss Addiction Monitoring, lifetime prevalence and past-year prevalence has increased between 2011 and 2016 by 6.1 and 2.3%, respectively [36], while, in contrast, our study comparison showed a difference of 22.6% for lifetime and 31.4% for past-year prevalence. The case of the other investigated substances is similar. One may argue that C-SURF measured more participants from rural than from urban areas (41% vs. 59%, respectively) and that substance use is over-represented in urban regions as assessed in z-proso. How-
Substance Use in Switzerland:

High Prevalence and Early Onsets of

Our cohort’s in-person interviews with participants took place beginning at age 7. The trust and rapport built with participants over time and beginning at a young age could have been more conducive to disclosing potentially illegal and socially undesirable behaviors than anonymous telephone surveys (Swiss Addiction Monitoring) or interviews conducted in the context of military recruitment (C-SURF). Thus, we believe that our results are more valid than existing previous surveys, although they are only locally and not nationally representative.

Several findings with respect to specific substances are noteworthy. First, lifetime prevalence of cannabis use by age 20 was high at 68%. Cannabis use is illegal in Switzerland, but it is often tolerated by law enforcement [58]. Indeed, there is some cultural normalization around cannabis [59], especially in the Canton of Zurich [52]. Other prospective-longitudinal studies (e.g., USA-based) had reported similarly high lifetime rates [41], but at older ages (i.e., age 30). Nevertheless, in the US cannabis has become the first psychoactive substance that adolescents start using [60]. In contrast, the alcohol use in youth is steadily declining in the USA but also in other countries [61, 62].

Prevalence of CBD – which is freely available for purchase in Switzerland – but also synthetic cannabinoids was also unexpectedly high. However, onsets for both CBD and synthetic cannabinoids were at later ages than for cannabis, perhaps due several reasons, including that CBD products spread on the legal market only since 2016 [63] and also that cannabis law enforcement is less strict in Switzerland compared to other countries. Thus, cannabis is easy to access already at earlier ages making synthetic cannabinoids less attractive in this age-group [29, 58].

Second, lifetime prevalence of stimulants, hallucinogens, and nonmedical opioids (cough syrup and painkillers) use was high by age 20. This could, in part, be due to the urban setting in which substances are easily accessible to young people. Indeed, many young people in Zurich come from relatively affluent families, and, thus, have the means to purchase drugs. In addition, Zurich is the site of many music scenes/festivals, concerts, and parties – including those based on house, techno, and hip hop – each of which come with their own drug culture. The high prevalence of nonmedical use of opioids was nevertheless surprising, especially considering relatively conservative prescription patterns of opioid-based painkillers in Switzerland. However, some opioid-based cough syrups are freely available in Swiss pharmacies, and it is the use of those that is also glamorized by some music scenes (e.g., hip hop) [64, 65].

Third, lifetime prevalence of non-medical benzodiazepine use was at 6%. This trend is important to monitor given unfolding benzodiazepine crises in other countries such as the USA [66]. In recent cohorts in high-income countries, adolescent and young adult females have reported high levels of depressive and anxious symptoms [67]. In the current sample, females also engaged in high rates of behaviors indicative of such emotional distress, including non-suicidal self-injury (for example, [68]). It is possible that the high rates of tranquilizer use in the current sample are indicative of self-medication for emotional and social distress [69].

Age of Onset

The onset ages identified here were young and below average onsets in other countries. This may, in part, be due to earlier legal selling ages of some substances (e.g., alcohol) in Switzerland compared to select other countries (e.g., the USA). The finding that almost half of participants had consumed alcohol or tobacco before or at age 14 suggests that the enforcement of current laws is not sufficiently successful. Importantly, early age-of-onset of several substances such as alcohol, tobacco, and cannabis was associated with a higher probability of illegal substance use at age 20. According to the “gateway” theory, the hindrance of early onsets in legal substance use potentially could prevent progression to more problematic and illegal substance use in later life [70–72]. For example, recent work from the Monitoring the Future study in the USA showed that nicotine use of 12th grade students (approximately 18 years old) decreased to historically low levels from 63% in 2000–24% in 2018. With declining nicotine use, rates of adolescent cannabis use also became much lower than projected [73]. Certainly, the transition from legal substance use during adolescence to substance use disorders in adulthood cannot be solely explained by the gateway theory [74], and the sequences of substance use onsets are “variable and opportunistic rather than uniform and developmentally deterministic” ([75], p. S3).
However, at least for cannabis use, a methodologically sound twin study has shown that early cannabis use in fact predicted later use of substances with stronger harm potential suggesting that genetic and environmental factors might be less strong than expected [76]. Of note, another twin study concluded that the link between early age of alcohol initiation and later alcohol use disorders in adulthood was almost entirely explained by a common genetic risk factor [77].

Sex Differences

Young adult females are traditionally understudied with respect to substance use. Although males in our sample were more likely than females to report use of cannabinoids, stimulants, hallucinogens, and codeine, females’ nevertheless had remarkably high prevalence rates and early onsets. For example, more than two-thirds of females had used cannabis by age 20. Interestingly, some sex differences favoring males were significant for lifetime prevalence only, but not for 12-month prevalence (e.g., several hallucinogens and synthetic cannabinoids). Perhaps males experimented with these substances before age 19, but then ceased using them. Indeed, although age-of-onset data in recent cohorts have sometimes suggested that females are beginning to “catch up” with early onsets [78–80], males in the current sample had earlier onsets for beer/wine/alcopops, liquor, tobacco, and cannabis.

The high rate of substance use among young females in Switzerland is of major concern. Females’ drug metabolism differs from that of males due, in part, to differences in sex hormones and body composition [81]. Accordingly, the same dose of a substance could have a stronger and longer-lasting effect in females than in males. Furthermore, our results suggest that young females in their reproductive ages consume many substances.

Limitations

Findings may not be generalized to other parts of Switzerland, especially to more rural areas where substances or substance use-relevant party scenes are less accessible compared to Zurich. However, data from the Swiss C-SURF study suggest that rural young males had surprisingly easy access to hard substances [57], indicating that the prevalence differences between rural and urban environments might not be as pronounced as expected. Furthermore, Zurich has a relatively affluent population, meaning that many youth have the means to buy substances; this could be different in other areas. Substance use assessments took place via self-reports. Although, the long-standing nature of the panel may have contributed to trust and honesty in reporting, objective verification of substance use would be ideal specifically for substances with low-prevalence rates (such as 2C-B, ketamine, heroin, and opioid painkillers) given that specifically self-report of low-prevalence phenomena might be considerably biased by false positive and false negative responses. At age 20, we also collected hair samples from participants. These samples are currently being assayed for substances and substance metabolites. These data are forthcoming and a next step in our program of research will be to test the agreement between self-reported and hair data.

Acknowledgments

We thank all the participants of the study for their valuable contribution.

Statement of Ethics

The study was conducted consistent with national and international ethics standards and was approved by the responsible Ethics Committee (Cantonal Ethics Committee Zurich, BASEC-Nr. 2017–02021). Adolescents provided written informed consent at each assessment; until age 15 parents could opt their child out of the study.

Conflict of Interest Statement

B.B.Q. is an Editorial Board Member of the journal. Beyond that none of the authors declared a potential conflict of interest. The funders of the study did not influence the study design; the collection, analysis, or interpretation of data; or the writing of the manuscript, and they did not impose any restrictions regarding the submission.

Funding Sources

Substantial funding across several project phases was provided by the Swiss National Science Foundation (grant Nos.: 10531C_189008, 405240_69025, 100013_116829, 100014_132124 100014_149979, 10FI14_170409), the Jacobs Foundation (grant No.: 2010-888, 2013-1081-1), and the Swiss Federal Office of Public Health (grant Nos.: 2.001391, 8.000665).
Author Contributions

D.R. and M.E. planned, implemented, and received funding for the z-proso cohort. B.B.Q. and L.S. designed the substance use questionnaire, planned the present analyses, and supervised the study. A.S. and L.B. conducted the statistical analyses. B.B.Q. and L.S. wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

Data Availability Statement

Publicly available datasets were analyzed in this study. Anonymized individual participant data and data dictionaries that underlie the results reported in this article are available to other researchers upon request. Requests including a brief proposal should be sent to D.R. As a research infrastructure supported by the SNSF, the z-proso study is committed to an open data access policy. Anonymized data, protocols, and other metadata from earlier data collections of the study are generally available to the scientific community. Please contact D.R. for this purpose.

References

1 Volkow ND, Baler RD, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med. 2014 Jun 5;370(23):2219–27.
2 Fuhrmann D, Knoll LJ, Blakemore SJ. Adolescence as a sensitive period of brain development. Trends Cogn Sci. 2015 Oct;19(10):558–66.
3 Dahl RE, Allen NB, Wilbrecht L, Suleiman AB. Importance of investing in adolescence from a developmental science perspective. Nature. 2018 Feb 21;554(7693):441–50.
4 Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci. 2011 Jul 27;31(30):10937–47.
5 Voonmoos M, Hulka LM, Preller KH, Jenni D, Baumgartner MR, Stohler R, et al. Cognitive dysfunctions in recreational and dependent cocaine users: role of attention-deficit hyperactivity disorder, craving and early age at onset. Br J Psychiatry. 2013 Jul;203(1):35–43.
6 Hall WD, Patton G, Stockings E, Weier M, Lynskey M, Morley KL, et al. Why young people's substance use matters for global health. Lancet Psychiatry. 2016 Mar;3(3):265–79.
7 Squeglia LM, Gray KM. Alcohol and drug use and the developing brain. Curr Psychiatry Rep. 2016;18(5):46.
8 Jordan CJ, Andersen SL. Sensitive periods of substance abuse: early risk for the transition to dependence. Dev Cogn Neurosci. 2017 Jun;25:29–44.
9 Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci. 2018 Apr;19(4):197–214.
10 Shinoto TA, Liu Z, Wang X, Grant KA, Kroenke CD. Chronic alcohol drinking slows brain development in adolescent and young adult nonhuman primates. eNeuro. 2019 Mar-Apr;6(2).
11 Blanco C, Hasin DS, Wall MM, Florez-Salamanca L, Hoertel N, Wang S, et al. Cannabis use and risk of psychiatric disorders: prospective evidence from a US national longitudinal study. JAMA psychiatry. 2016 Apr;73(4):388–95.
12 Boden JM, Dhakal B, Foulds JA, Horwood LJ. Life-course trajectories of cannabis use: a latent class analysis of a New Zealand birth cohort. Addiction. 2020 Feb;115(2):279–90.
13 Arsenault L, Cannon M, Poullon R, Murray R, Caspi A, Moffitt TE. Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. Bmj. 2002;325(7374):212.
14 Fergusson DM, Horwood LJ, Ridder EM. Tests of causal linkages between cannabis use and psychotic symptoms. Addiction. 2005 Mar;100(3):354–66.
15 Bourque J, Azfali MH, Conrod PJ. Association of cannabis use with adolescent psychotic symptoms. JAMA psychiatry. 2018 Aug 1;75(8):864–6.
16 Fergusson DM, Horwood LJ. Does cannabis use encourage other forms of illicit drug use? Addiction. 2000 Apr;95(4):505–20.
17 Fergusson DM, Horwood LJ, Swain-Campbell N. Cannabis use and psychosocial adjustment in adolescence and young adulthood. Addiction. 2002 Sep;97(9):1123–35.
18 Horwood LJ, Fergusson DM, Hayatbakhsh MR, Najman JM, Coffey C, Patton GC, et al. Cannabis use and educational achievement: findings from three Australasian cohort studies. Drug Alcohol Depend. 2010 Aug 1;110(3):247–53.
19 Silins E, Horwood LJ, Patton GC, Fergusson DM, Olsson CA, Hutchinson DM, et al. Young adult sequelae of adolescent cannabis use: an integrative analysis. Lancet Psychiatry. 2014 Sep;1(4):286–93.
20 Silins E, Fergusson DM, Patton GC, Horwood LJ, Olsson CA, Hutchinson DM, et al. Adolescent substance use and educational attainment: an integrative data analysis comparing cannabis and alcohol from three Australasian cohorts. Drug Alcohol Depend. 2015 Nov 1;156:90–6.
21 Cerda M, Moffitt TE, Meier MH, Harrington H, Houts R, Ramakrish S, et al. Persistent cannabis dependence and alcohol dependence represent risks for midlife economic and social problems: a longitudinal cohort study. Clin Psychol Sci. 2016 Nov;4(6):1028–46.
22 Green KM, Doherty EE, Ensminger ME. Long-term consequences of adolescent cannabis use: examining intermediary processes. Am J Drug Alcohol Abuse. 2017 Sep;43(5):567–75.
23 Silins E, Swift W, Slade T, Tsonb B, Rodgers B, Hutchinson DM. A prospective study of the substance use and mental health outcomes of young adult former and current cannabis users. Drug Alcohol Rev. 2017 Sep;36(5):618–25.
24 Taylor M, Collin SM, Munafo MR, MacLeod J, Hickman M, Heron J. Patterns of cannabis use during adolescence and their association with harmful substance use behaviour: findings from a UK birth cohort. J Epidemiol Community Health. 2017 Aug;71(8):764–70.
25 Shanahan L, Steinhoff A, Bechtiger L, Copeleland WE, Ribeaud D, Eisner M, et al. Frequent teenage cannabis use: prevalence across adolescence and associations with young adult psychopathology and functional well-being in an urban cohort. Drug Alcohol Depend. 2021;228:109063.
26 Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RS, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci U S A. 2012;109(40):E2657–64.
27 Caulkins JP, Kilborn ML. Cannabis legalization, regulation, and control: a review of key challenges for local, state, and provincial officials. Am J Drug Alcohol Abuse. 2019;45(6):689–97.
28 Csete J, Kamarulzaman A, Kazatchkine M, Altice F, Balicki M, Buxton J, et al. Public health and international drug policy. Lancet. 2016;387(10026):1427–80.
29 Zobel F, Marthaler M. Neue Entwicklungen in der Regulierung des Cannabismarktes: von A (Anchorage) bis Z (Zürich). 3rd ed. Lausanne: Sucht Schweiz; 2016. p. 1–52.
30 Hehli S. Legales Opium fürs Volk. Neue Zürcher Zeitung. Zurich: NZZ-Mediengruppe; 2017.
31 Nationale Arbeitsgemeinschaft Suchtpolitik. Zentrale Aspekte der Cannabisregulierung. Bern: NAS-CPA, KKKBS & SKBS; 2015.
32 Baumberger P, Bücheli A, Grob A, Hubrich R, Rindlisbacher B, Rohr U. Jugendschutz im regulierten Cannabismarkt. In: Ajir C, editor. zürich: Fachverband Sucht; 2015.
33 UNODC. World Drug Report 2018, booklet 4. Drugs and Age: Drugs and Associated Issues Among Young People and Older People. Vienna: United Nations; 2018.
46 Rohde P, Lewinsohn PM, Seeley JR. Comparison of gender role and sexual selection theories. Aggress Behav. 2014 Sep-Oct; 40(5):431–46.

47 Eisner MP, Malti T. Aggressive and violent behavior. Aggressive Violent Behav. 2015;3:1–48.

48 Ribeaud D, Eisner M. A randomised field experiment to prevent violence. Int J Public Health. 2012 Jun;58(4):287–98.

49 Aquilino WS, William S. Interview mode effect and marijuana use among US 12th grade students from 1991 to 2016. Addict Behav. 2017;74:13–9.

50 Zobel F, Maier LJ. Chapter 14 Switzerland: moving towards public health and harm reduction. In: Klein A, Stothard B, editors. Collapse of the global order on drugs: from UN-GASS 2016 to Review 2019. Bingley, UK: Emerald Publishing; 2018. p. 277–88.

51 Nutt DJ, King LA, Phillips LD. Independent varying associations between perceived risk and marijuana use among US 12th grade students from 1991 to 2016. Addict Behav. 2017;74:13–9.

52 Zobel F, Maier LJ. The swiss drug policy. In: European drug report 2018. Luxembourg: Publications Office of the European Union; 2018.

53 Nutt DJ, King LA, Phillips LD. The association between alcohol and effects of early-onset intensive use of alcohol, tobacco and cannabis on other illicit drug use. Swiss Med Wkly. 2013;143:w13805.

54 Terry-McElrath YM, O’Malley PM, Patrick ME, Miech RA. Risk is still relevant: time-varying associations between perceived risk and marijuana use among US 12th grade students from 1991 to 2016. Addict Behav. 2017 Feb;67:1–9.

55 Volkow ND, Swanson JM, Evins AE, DeLisi LE, Meier MH, Gonzalez R, et al. Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: a review. JAMA Psychiatry. 2016 Mar;73(3):292–7.

56 Pacheco-Colon I, Limia JM, Gonzalez R. Nonacute effects of cannabis use on motivation and reward sensitivity in humans: A systematic review. Psychol Addict Behav. 2018 Aug;32(5):497–507.

57 Dupuis M, Baggio S, Accard ME, Mohler-Kuo M, Gmel G. The association between alcohol dependence, drinking or binge drinking and drug use: is alcohol abstinence that safe? Dat. 2016;16(3):212–21.

58 Zobel F. The swiss drug policy. In: Colson R, Bergeron H, editors. European drug policies: the ways of reform. New York: Routledge; 2017.

59 Sznitman SR. An examination of the normalisation of cannabis use among 9th grade school students in Sweden and Switzerland. Addict Res Ther. 2009;15(6):601–16.

60 Keyes KM, Rutherford C, Miech R. Historical trends in the grade of onset and sequence of cigarette, alcohol, and marijuana use among adolescents from 1976-2016: Implications for “Gateway” patterns in adolescence. Drug Alcohol Depend. 2019 Jan 1;194:51–8.

61 Pape H, Rossov I, Brunborg GS. Adolescents drink less: who, why and who? A review of the recent research literature. Drug Alcohol Rev. 2018 Apr;37(Suppl 1):S98–S114.

62 Vashishtha R, Livingstone M, Penney A, Diezze P, MacLean S, Holmes J, et al. Why is adolescent drinking declining? A systematic review and narrative synthesis. Addict Res Ther. 2019;28(4):275–88.

63 Zobel F, Notari L, Schneider E, Rudman O. Cannabidiol (CBD) : analyse de situation. Lausanne: Addiction Suisse; 2018.

64 Peters RJ, Kelder SH, Markham CM, Yacoubian GS, Peters LA, Ellis A. Beliefs and social norms about codeine and promethazine hydrochloride cough syrup (CPsRs) onset and perceived addiction among urban houstonian adolescents: an addiction trend in the city of lean. J Drug Educ. 2004;33(4):415–25.

65 Hart M, Agnich LE, Stogner J, Miller BL. ‘Me and My Drank’ exploring the relationship between musical preferences and purple drank experimentation. Am J Criminal Justice. 2013;39(1):172–86.

66 Agarwal SD, Landon BE. Patterns in outpatient benzodiazepine prescribing in the United States. JAMA Netw Open. 2019 Jan 4;2(1):e187399.

67 Keyes KM, Gary D, O’Malley PM, Hamilton A, Schulenberg J. Recent increases in depressive symptoms among US adolescents: trends from 1991 to 2018. Soc Psychiatry Psychiatr Epidemiol. 2019 Aug;54(8):987–96.

68 Steinhoff A, Ribeaud D, Kupferschmidt S. Raible-Destan N, Quednow BB, Hepp U, et al. Self-injury from early adolescence to early adulthood: age-related course, recurrence, and services use in males and females from the community. Eur Child Adolesc Psychiatry. 2021 Jun;30(6):937–51.

69 Turner S, Mota N, Bolton J, Sareen J. Self-medication with alcohol or drugs for mood and anxiety disorders: a narrative review of the epidemiological literature. Depress Anxiety. 2018;35(9):851–60.

70 Degenhardt L, Dierker L, Chiu WT, Medina-Mora ME, Neumark Y, Sampson N, et al. Evaluating the drug use “gateway” theory using cross-national data: consistency and associations of the order of initiation of drug use among participants in the WHO World Mental Health Surveys. Drug Alcohol Depend. 2010 Apr 1;108(1–2):84–97.

71 Anthony JC. Steppingstone and gateway ideas: a discussion of origins, research challenges, and promising lines of research for the future. Drug Alcohol Depend. 2012 Jun;123(Suppl 1):S99–S104.

72 Kandel D, Kandel E. The gateway hypothesis of substance abuse: developmental, biological and societal perspectives. Acta Paediatr. 2015 Feb;104(2):130–7.

73 Miech R, Johnston L, O’Malley PM. Prevalence and attitudes regarding marijuana use among adolescents over the past decade. Pediatrics. 2017 Dec;140(6):e20170982.

74 Nkansah-Amanket S, Minelli M. “Gateway hypothesis” and early drug use: additional findings from tracking a population-based sample of adolescents to adulthood. Prev Med Rep. 2016;4:134–41.

75 Vanyukov MM, Tarter RE, Kirillova GP, Kirisic L, Reynolds MD, Kreek MJ, et al. Common liability to addiction and “gateway hypothesis”: theoretical, empirical and evolutionary perspective. Drug Alcohol Depend. 2012;123 Suppl 1(Suppl 1):53–7.
76 Lynskey MT, Vink JM, Boomsma DI. Early onset cannabis use and progression to other drug use in a sample of Dutch twins. Behav Genet. 2006;36(2):195–200.

77 Ystrom E, Kendler KS, Reichborn-Kjennerud T. Early age of alcohol initiation is not the cause of alcohol use disorders in adulthood, but is a major indicator of genetic risk. A population-based twin study. Addiction. 2014 Nov;109(11):1824–32.

78 Zhong H, Schwartz J. Exploring gender-specific trends in underage drinking across adolescent age groups and measures of drinking: is girls’ drinking catching up with boys. J Youth Adolesc. 2010 Aug;39(8):911–26.

79 Mahalik JR, Levine Coley R, McPherran Lombardi C, Doyle Lynch A, Markowitz AJ, Jaffee SR. Changes in health risk behaviors for males and females from early adolescence through early adulthood. Health Psychol. 2013 Jun;32(6):685–94.

80 Bratberg GH, C Wilsnack S, Wilsnack R, Håvås Haugland S, Krostad S, Sund ER, et al. Gender differences and gender convergence in alcohol use over the past three decades (1984-2008), The HUNT Study, Norway. BMC Public Health. 2016 Aug 5;16:723.

81 Becker JB, McClellan ML, Reed BG. Sex differences, gender and addiction. J Neurosci Res. 2017 Jan 2;95(1–2):136–47.
Sample attrition and non-response

The participation rate in z-proso peaked at age 15, when $N=1,446$ adolescents responded. $N=1,180$ (81.6%) of these adolescents participated in the age 20 assessment. Of the age-15 participants, females were more likely than males to participate in the survey again at age 20 (84.5% vs. 76.9%, $p<.001$), those whose parents held a university degree were more likely to participate than those whose parents held a lower educational degree (95.0% vs. 79.4%, $p<.001$), and those with at least one Swiss-born parent were more likely to participate than those whose parents were both born abroad (83.9% vs. 77.9%, $p=.004$). ISEI was higher among those who responded at age 20 than among drop-outs ($M=47.2$ [SD=19.7] vs. $M=40.4$ [SD=16.6], $p<.001$). Attrition was also related to the lifetime prevalence of beer/wine/alcopops, tobacco, and cocaine use, but not to other alcohol use, cannabis, or other illicit drug use. Those who reported any previous use of beer/wine/alcopops at age 15 were more likely to participate at age 20 than those who had never consumed these drinks (82.7% vs. 78.0%, $p=.025$). By contrast, those who had used tobacco or cocaine were less likely than others to participate at age 20 (77.6% vs. 85.8%, $p<.001$ for tobacco; 61.1% vs. 80.9%, $p=.035$ for cocaine). At age 20, refusal of self-reports on substances was low ($n=0–1$ for lifetime self-reports, $n=0–4$ for 12-month self-reports). Taken together, there was no uniform pattern of study attrition for substance users. For information on attrition till the age of 17 please see Eisner et al. [1].
Intraclass correlation coefficients for repeated measures of ages of onset

To assess the test-retest reliability (or intra-rater-reliability) of the repeated ages of onset measures, we estimated intraclass correlation coefficients. We specified two-way mixed effects models based for mean-ratings (up to 3 or 4 repeated measures, respectively) and absolute agreement.

eTable1
Intraclass correlation coefficients for ages of onset

Substance	ICC	95% CI
Tobacco^a	0.81	0.80-0.83
Alcohol^a	0.77	0.75-0.78
Liquor^a	0.75	0.73-0.77
Cannabis^a	0.86	0.85-0.87
Ecstasy^b	0.59	0.55-0.62
(Meth-)amphetamine^b	0.69	0.66-0.71
LSD/Psilocybin^b	0.34	0.28-0.39
Cocaine^b	0.60	0.57-0.64

^aup to 4 repeated assessments
^bup to 3 repeated assessments

Reference

1. Eisner NL, Murray AL, Eisner M, Ribeaud D. A practical guide to the analysis of non-response and attrition in longitudinal research using a real data example. International Journal of Behavioral Development. 2018;43(1):24-34.
Bivariate Substance Use Associations (12-Month Reports)

For most drug combinations, significant bivariate associations emerged; here we discuss only the most sizable correlations ($r_s > .50$; eTable 2). eTable 3 shows that beer/wine/alcopop and liquor use were highly correlated: beer/wine/alcopop drinkers had a 67-fold higher risk for use of liquor. Cannabis use was strongly correlated with cannabidiol (CBD) use: cannabis users had a 40-fold higher risk for use of CBD. Ecstasy use was highly correlated with cocaine, LSD/psilocybin, and (meth-)amphetamine use, showing a 33-, 39-, and 58-fold elevated risk, respectively. Finally, cocaine and amphetamine use were highly associated; cocaine users had a 49-fold increased risk for additional amphetamine use. Of note, the two highest odds ratios (ORs) emerged for the combinations of ketamine and amphetamine and ketamine and 2C drugs, respectively. Finally, tobacco use was associated with a 7-fold higher risk of cannabis use. Additional ORs of drug combinations with $r_s > .35$ are shown in eTable 3.
eTable 2

Correlations of 12-month reports

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1) Beer/wine/alcopop														
2) Liquors					.71***									
3) Tobacco					.23***	.31***								
4) Cannabis					.32***	.37***	.38***							
5) Cannabidiol					.21***	.20***	.25***	.50***						
6) Synthetic cannabinooids					.07*	.07*	.12***	.18***	.30***					
7) Ecstasy	.09**	.12***	.18***	.30***	.39***	.23***								
8) Cocaine	.10***	.12***	.17***	.27***	.33***	.16***	.58***							
9) (Meth-)Amphetamine	.07*	.11***	.13***	.21***	.32***	.15***	.58***	.57***						
10) LSD, Psilocybin	.08**	.11***	.10***	.24***	.33***	.19***	.54***	.36***	.43***					
11) 2C drugs	.02	.02	.07	.10***	.19***	.17***	.30***	.29***	.30***	.31***				
12) Ketamine	.04	.04	.05	.09**	.17***	.16***	.30***	.33***	.41***	.33***	.40***			
13) Codeine	.06*	.07	.11***	.21***	.26***	.14***	.31***	.38***	.25***	.28***	.17***	.20***		
14) Opioid painkillers	.02	.00	.00	.05	.08**	.17***	.14***	.16***	.15***	.14***	.17***	.16***	.26***	
15) Benzodiazepines	.07*	.05	.04	.09**	.12***	.12***	.22***	.25***	.20***	.16***	.11***	.18***	.30***	.38***

*p<.01; ***p<.001; significant correlations after Bonferroni correction are bold (p_corr<0.05).
eTable 3. Significant odds ratios of bivariate substance use combinations with rs > .35 and n of 20-year-olds who used both substances >10 (12-month reports).

Bivariate drug combination	OR	95% CI	p
Ketamine & (Meth-)Amphetamine	100.985	29.002–351.627	<.001
Beer/wine/alcopop & Liquor	67.458	42.362–107.421	<.001
(Meth-)Amphetamine & Ecstasy	58.181	31.760–106.583	<.001
(Meth-)Amphetamine & Cocaine	49.123	27.978–86.249	<.001
Cannabis & CBD	39.745	21.452–73.638	<.001
LSD & Ecstasy	39.077	22.725–67.196	<.001
Ecstasy & Cocaine	33.359	21.222–52.437	<.001
Opioids & Benzodiazepine	22.444	11.913–42.283	<.001
LSD & (Meth-)Amphetamine	21.213	12.586–35.755	<.001
Cannabis & Liquor	12.973	8.079–20.831	<.001
Cocaine & LSD	11.988	7.435–19.330	<.001
Codeine & Cocaine	10.896	7.222–16.439	<.001
CBD & Ecstasy	10.363	6.961–15.428	<.001
Tobacco & Cannabis	6.943	5.095–9.463	<.001

Note. CBD=Cannabidiol. Significant correlations after Bonferroni correction are bold (p_{corr}<0.05).
Correlations Among Onset Ages

In the following section, we only discuss correlations at $r > .50$ (see eTable 4a). Onset ages for different kinds of alcohol (beer/wine/alcopops and liquor) were strongly correlated. Onset of alcohol use was also strongly correlated with onset of tobacco and cannabis use. Cannabis use onset was strongly correlated with tobacco use onset. Moreover, onsets of different stimulants (Ecstasy, cocaine, (meth-)amphetamines) were strongly correlated and also showed strong correlations with onset of hallucinogen use (LSD/Psilocybin, 2C drugs, ketamine). Onsets of use of individual hallucinogens were highly correlated. Notably, onset of non-medical use of codeine was strongly associated with non-medical use of opioids-based painkillers. Finally, onset of the use of 2C drugs was specifically correlated with onset of non-medical opioids as well as tobacco use. Statistical power for estimating these latter correlations was low, however, given the relatively small numbers of individuals who had used two of these substances, respectively. Correlations of ages of onset within substance categories are additionally shown in eTable 4b.
eTable 4a

Age-of-onset correlations

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1) Beer/wine/alcopop	--													
2) Liquor	.72***	--												
3) Tobacco	.54***	.62***	--											
4) Cannabis	.52***	.62***	.63***	--										
5) Cannabidiol	.13	.14***	.09	.09	--									
6) Synthetic cannabinoids	.39**	.21	.21	.20	.47***	--								
7) Ecstasy	.16	.25**	.25**	.32***	.25**	.33	--							
8) Cocaine	.21	.22**	.32***	.38***	.33**	.47	.70***	--						
9) (Meth-)Amphetamine	.16	.19	.19	.21	.34**	.41	.77***	.74***	--					
10) LSD, Psilocybin	.16	.21	.29**	.32***	.28**	.27	.75***	.62***	.68***	--				
11) 2C Drugs	.15	.18	.51**	.34	.25	.40	.60***	.74***	.63***	.72***	--			
12) Ketamine	-.03	-.10	.10	-.05	.09	.11	.64***	.54**	.60**	.61***	.66**	--		
13) Codeine	.17	.14	.11	.22**	.16	.13	.15	.28	.17	.34**	.72**	.44	--	
14) Opioid painkillers	-.16	.01	.08	.18	.37	.13	.39	.62**	.55**	.34	.71	.30	.63***	--
15) Benzodiazepines	.18	.16	.10	.22	.50**	.24	.41**	.36	.52**	.57**	.75	.94***	.40**	.67***

p<.01; *p<.001, significant correlations after Bonferroni correction are bold (p_corr<0.05).**

Note. Responses below age of 10 were recoded to 10. Sample sizes are limited to those who had used both drugs (sample sizes of N< 30 are shown in grey).
eTable 4b

Correlations of ages of onset within substance categories

Variable	Alcohol	Tobacco	Cannabinoids	Stimulants	Hallucinogens	Opioids
Alcohol	.54***					
Tobacco		.47***	.58***			
Cannabinoids	.17**	.23***	.29***			
Stimulants	.10	.31***	.30***	.67***		
Hallucinogens	.09	.08	.17*	.22*	.41***	.32*
Opioids	.10	.13	.26*	.29	.41*	.32*
Benzodiazepine						

*p<.05; **p<.01; ***p<.001

Note. Responses below age of 10 were recoded to 10. Sample sizes are limited to those who had used both drugs. N ranges from 27 (Benzodiazepine and hallucinogens) to 1011 (alcohol and nicotine). Significant correlations after Bonferroni correction are bold (p<0.05).
eTable 5.
Onsets before age 16 and 18, respectively, among those who had used a given substance by age 20.

Substance	% before Age 16	% before Age 18
Beer/Wine/Alcopop	74.4	94.7
Liquor	59.1	90.5
Tobacco	76.3	94.2
Cannabis	58.7	89.0
Cannabidiol	5.5	13.1
Synthetic cannabinoids	9.7	32.3
Ecstasy	13.3	48.9
Cocaine	9.7	35.7
(Meth-)Amphetamine	13.6	49.6
LSD, Psilocybin	11.1	35.9
2C drugs	13.9	44.4
Ketamine	12.9	29.0
Codeine	15.8	45.8
Opioid painkillers	25.4	54.2
Heroin	0	50.0
Benzodiazepines	11.3	33.8
Sex differences in age-of-onset distributions

The age-of-onset distributions for males and females (see eFigures 1 and 2) were mostly very similar for all the substances, and resemble the distributions found in the overall sample. However, they do reflect males’ earlier onset ages and higher prevalence for most substances.
eFigure 1. Age-of-onset distributions for tobacco and alcohol by sex

Note. Reported ages of onset below age 10 were recoded to 10. Red dashed lines represent the legal age for consuming tobacco, beer/wine/alcopops (age 16) and liquor (age 18) in Switzerland. BWA=beer/wine/alcopops.
eFigure 2. Age-of-onset distributions for cannabinoids (a), stimulants (b), hallucinogens (c), and opioids and benzodiazepines (d) by sex.

Note. Responses below age 10 were recoded to 10.
eTable 6

Correlations of ages of onset of substance classes with single substance prevalence rates (last-year) at age 20

Last-year prevalence at age 20	Alcohols	Tobacco	Cannabis	Stimulants	Hallucinogens	Opioids	Benzodiazepines
Alcohol	-0.14**	-0.03	0.01	0.01	0.14	0.09	0.17
Liquor	-0.11**	-0.02	0.05	0.16*	0.28**	0.10	0.13
Tobacco	-0.14**	-0.03	-0.05	0.12	0.13	0.28***	0.06
Cannabis	-0.27***	-0.24***	0.05	0.19**	0.25**	0.32***	-0.08
Cannabidiol	-0.26***	-0.23***	-0.25***	0.06	-0.06	0.16*	-0.15
Synthetic Cannabinoids	-0.11***	-0.12***	-0.13***	-0.13*	0.02	0.02	-0.12
Ecstasy	-0.18***	-0.22***	-0.26***	0.11	0.14	0.11	-0.17
Cocaine	-0.16***	-0.20***	-0.28***	0.07	0.09	0.11	-0.22
(Meth-jamfetamine)	-0.13***	-0.17***	-0.26***	0.03	0.10	0.09	-0.15
LSD	-0.16***	-0.12***	-0.19***	0.02	0.51***	0.17*	-0.12
2C Drugs	-0.07*	-0.04	-0.11**	-0.18**	-0.07	-0.02	-0.15
Ketamine	-0.09**	-0.11***	-0.15***	-0.13	0.02	0.08	-0.01
Codeine	-0.12***	-0.16***	-0.17***	0.01	0.10	0.24***	-0.07
Opioid painkillers	-0.05	-0.10**	-0.07**	-0.18**	-0.09	-0.17*	-0.07
Benzodiazepines	-0.09**	-0.09**	-0.09**	-0.07	0.02	0.01	0.41***

*p<.05; **p<.01; ***p<.001

Note. Responses below age of 10 were recoded to 10. Sample sizes are limited to those who had reported an age-of-onset. N ranges from 69 (age of onset for Benzodiazepines) to 1,113 (age of onset for alcohol). Significant correlations after Bonferroni correction are bold (p<0.05).