The complete chloroplast genome sequence of *Huodendron tibeticum* (J.Anthony) Rehder (Styracaceae)

Xiaoyu Jianga,b, Yaoqin Zhanga,b, Lili Tongc, Xiaogang Xua,b, Yukun Tiana,b and Hongchao Wanga,b

aCo-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China; bState Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanping, China; cSchool of Horticulture & Landscape Architecture, Jinling Institute of Technology, Nanjing, China

ABSTRACT

Huodendron tibeticum (J.Anthony) Rehder, which plays an important role in ecology and economy, is a deciduous species of Styracaceae. The authors sequenced, assembled, and annotated the chloroplast (cp) genome of *Huodendron tibeticum* using the sequencing data from Illumina Novaseq platform in this study. The complete cp genome of *H. tibeticum* is 159,320 bp in length, including a large single-copy (LSC) region of 87,795 bp, and a small single-copy (SSC) region of 18,989 bp. It contains 130 genes, including 37 tRNA genes, 8 rRNA genes, and 85 protein-coding genes. The overall GC content of *H. tibeticum* chloroplast genome is 36.66%. The phylogenetic analysis suggests that *H. tibeticum* is a sister species to *H. biaristatum* in Styracaceae.
To reveal the phylogenetic evolution of *H. tibeticum*, we constructed a ML phylogenetic tree based on 36 cp genomes from Styracaceae and 4 cp genomes as outgroups from 2 taxa (Actinidiaceae, Symplocaceae). We found that *H. tibeticum* was clustered with other families of Styracaceae with 100% boot-strap values (Figure 1). What’s more, *H. tibeticum* was highly supported to be a sister species to *Huodendron biaristatum* in Styracaceae.

Figure 1. A maximum-likelihood tree was constructed based on the chloroplast genomes of 40 species. *Actinidia polygama*, *A. arguta*, *Symplocos paniculata* and *S. costaricana* were used as outgroups. The bootstrap supported the values shown at the branches.
Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research work was supported by The Biodiversity Investigation, Observation and Assessment Program of Ministry of Ecology and Environment of China [20191226]; The Special Fiscal Funds for Repair and Purchase in National Public Institutions [2010002002]; Jiangsu Forestry Science and Technology Innovation and Extension Program [No. LYKJ[2018]13]; The Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

ORCID

Xiaoyu Jiang http://orcid.org/0000-0001-6904-7665

Data availability statement

The data are accessible from https://pan.baidu.com/s/1gcgDnY3llnzzLYpcRJQow (password: b7na); https://pan.baidu.com/s/1lRQxW8SP8gV7PK6Spz0xrg (password:1kn4).

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pyshkin AV, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5): 455–477.

Greiner S, Lehwarl P, Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47(W1):W59–W64.

Huang S-M, Grimes JW. 2003. Styracaceae. In: Wu Z.-Y., Raven, P.H. & Hong D.-Y. (Eds.) Flora of China, Vol. 15 (Styracaceae). Beijing: Science Press; St. Louis, MO: Missouri Botanic Garden Press; p. 265.

Katoh K, Rozewicki J, Yamada KD. 2019. Mafft online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20(4):1160–1166.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7): 1870–1874.

Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X. 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics. 13:715