The 37/67 kDa laminin receptor (LAMR), as a cell surface receptor, has roles in cell migration, invasion, angiogenesis, and extracellular matrix remodeling. LAMR also serves as a cellular receptor for many pathogens, including prion protein, bacteria, and numerous viruses. Since its initial discovery, however, LAMR was determined to be a highly conserved ribosomal protein that acquired its extracellular functions during evolution. The human sequence of LAMR has homologs in many species, including prokaryotes; Archaea encode a protein that is 40% identical to LAMR, which places it as a member of the S2 family of ribosomal proteins. The crystal structure of recombinant human LAMR from residues 1 to 220, generated by our laboratory, shows structural homology with the Archaeoglobus fulgidus S2 ribosomal protein. Such sequence and structural conservation implies that LAMR is important for basic cellular functioning. Indeed, yeast homologs of LAMR are essential for cell viability, having roles in 20s–18s rRNA processing and ribosome assembly. LAMR homologs are ribosome associated in higher organisms as well, including plant and mouse, although, whether or not the ribosomal functions of LAMR are important for cell viability in higher organisms remains unclear. Reduction of LAMR expression in HeLa cells results in apoptosis; however, translation was reportedly not affected. Apoptosis was observed in Hep3b cells upon reduction of LAMR, but the effect on translation was not reported. LAMR can also localize to the nucleus and interact with histones; therefore, nuclear functions of LAMR may have a role in cell viability. LAMR has been implicated in cell signaling pathways that are important for cell survival as well.

Interestingly, sequence homology between human LAMR and homologs in invertebrates resides only within the first two-thirds of the molecule, whereas the C-terminal sequence is more divergent. The human LAMR sequence is 73.5% homologous to that of hydra from residues 1 to 218, but only 20% homologous in the C-terminal 76 residues. In contrast, the entire human LAMR sequence is highly conserved among vertebrates as the human LAMR sequence displays >98% homology with the mouse, bovine, and rat sequences.

C-terminal divergence among higher organisms is considered to be the process by which LAMR acquired its extracellular functions. It may have also enabled LAMR to become a multifunctional protein, acting as an extracellular receptor, localizing to the nucleus, and playing roles in rRNA processing and ribosome assembly. LAMR is important for cell viability; however, it is unclear which of its functions are essential. We developed a silent mutant LAMR construct, resistant to siRNA, to rescue the phenotypic effects of knocking down endogenous LAMR, which include inhibition of protein synthesis, cell cycle arrest, and apoptosis. In addition, we generated a C-terminal-truncated silent mutant LAMR construct structurally homologous to the Archaeoglobus fulgidus S2 ribosomal protein and missing the C-terminal 75 residues of LAMR, which displays more sequence divergence. We found that HT1080 cells stably expressing either silent mutant LAMR construct still undergo arrest in the G1 phase of the cell cycle when treated with siRNA. However, the expression of full-length silent mutant LAMR rescues cell viability, whereas the expression of the C-terminal-truncated LAMR does not. Interestingly, we also found that both silent mutant constructs restore protein translation and localize to the nucleus. Our findings indicate that the ability of LAMR to regulate viability is associated with its C-terminal 75 residues. Furthermore, this function is distinct from its role in cell proliferation, independent of its ribosomal functions, and may be regulated by a nonnuclear localization.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation without specific permission.
dimeric molecule, as the 37 kDa LAMR has been shown to serve as a precursor to the 67 kDa LAMR, which has only been observed in vertebrates and is dependent on posttranslational modifications. Extraribosomal functions associated with the C terminus of LAMR may also have enabled alternative mechanisms to regulate cell viability in higher organisms, including nuclear localization.

The elucidation of how LAMR regulates cell survival is important from a therapeutic standpoint. LAMR is overexpressed in many different types of cancers and is considered a prognostic factor for determining the severity of tumors. Transplanted tumor cells with reduced expression of LAMR grow slower in vivo, resulting in prolonged survival of recipient mice. Furthermore, the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) targets tumors using LAMR as a cellular receptor and induces G1 arrest and apoptosis in multiple myeloma cells. Previously, we have shown that the reduction of LAMR expression in HT1080 human fibrosarcoma cells results in G1-phase cell-cycle arrest. We found protein translation to be dramatically reduced as knockdown of LAMR in HT1080 cells leads to fewer 40S subunits and 80S monosomes, as well as an increase in unassociated 60S subunits. These results were consistent with yeast studies and show that LAMR can serve as a critical component of the translational machinery in mammalian cells. In turn, HT1080 cells with reduced LAMR expression have an impaired ability to grow tumors in vivo.

In this study, we used a silent mutant LAMR, construct resistant to siRNA, to rescue cell viability and translation in siRNA-treated HT1080 cells. Furthermore, using a silent mutant 1–220 truncated LAMR construct, homologous to the A. fulgidus S2 ribosomal protein and devoid of the C-terminal 75 residues, we clarified whether cell viability in HT1080 cells is dependent on the highly conserved ribosomal functions of LAMR.

Results

Silent mutant LAMR constructs are resistant to siRNA and rescue the phenotypic effect of knocking down endogenous LAMR. We mutated the third base of 6 codons within the coding region of LAMR targeted by siRNA (siLAMR) to generate a silent mutant cDNA/mRNA sequence that still encodes a wild-type protein but is resistant to siLAMR (Figure 1). To distinguish from endogenous LAMR, silent mutant LAMR (silMUT) was cloned with an N-terminal flag tag and introduced into the human fibrosarcoma HT1080 cell line. In addition, we introduced silent mutations and an N-terminal

![Figure 1](https://example.com/figure1.png)

Figure 1: Constructing silent mutant LAMR. The coding sequence of LAMR (accession no. NM_001012321.1) is shown along with the sequence that siLAMR targets (bold). The third base pair of each codon (underlined) within this region was changed as displayed by sequence alignment. The last residue of silMUT 220 is bold and shaded gray. A schematic of FLAG-tagged silMUT and silMUT 220 and the region that siLAMR targets is shown below the coding sequence. Numbers represent every 50 residues of LAMR starting with 1 at the N terminus (N), and ending with 295 at the C terminus (C). Shaded area represents the proposed transmembrane region of LAMR.
flag tag into a 1–220 residue LAMR construct previously used to generate a crystal structure. This silent mutant construct (siMUT²²⁰), missing the C-terminal 75 residues of LAMR, is homologous to the <i>A. fulgidus</i> S2 ribosomal protein. We selected several clonally derived HT1080 cell lines that stably express siMUT and siMUT²²⁰. Although we performed experiments with all selected cell lines, yielding similar results, we report herein our findings with one of each, siMUT, siMUT²²⁰, and parental HT1080 (WT) cells were transfected with either siLAMR or a fluorescently labeled nontargeting control siRNA (siGLO) and analyzed for total LAMR protein expression. Four days after transfection, endogenous LAMR is reduced in all cells treated with siLAMR (Figure 2a, top panel). Exogenous siMUT LAMR, detected by both an antibody for LAMR (Figure 2a, arrow) and an antibody for the FLAG tag (Figure 2b, middle), is not reduced by siLAMR treatment but rather appears to be increased in expression compared with siGLO-treated siMUT cells. siMUT²²⁰ is not readily detected by the antibody we used for LAMR as it is missing a part of its C-terminal epitope. However, using an antibody for the FLAG tag (Figure 2b, right), is not reduced by siLAMR treatment but rather appears to be increased in expression compared with siGLO-treated siMUT cells. siMUT²²⁰ is not readily detected by the antibody we used for LAMR as it is missing a part of its C-terminal epitope. However, using an antibody for the FLAG tag (Figure 2b, right), is not reduced by siLAMR treatment but rather appears to be increased in expression compared with siGLO-treated siMUT cells. siMUT²²⁰ is not readily detected by the antibody we used for LAMR as it is missing a part of its C-terminal epitope. However, using an antibody for the FLAG tag (Figure 2b, right), is not reduced by siLAMR treatment but rather appears to be increased in expression compared with siGLO-treated siMUT cells.

As visualized by microscopy, WT cells treated with siLAMR are reduced in number and cell size with many rounded cells (Figure 2b, top). In contrast, siMUT cells treated with siLAMR have normal morphology with a phenotype similar to cells treated with siGLO (Figure 2b, middle). It should be noted that similar results were obtained with several additional FLAG-tagged siMUT stable clones (data not shown) and stable cell lines that express either untagged or C-terminal v5/his-tagged siMUT LAMR constructs (Supplementary Figure 2). Conversely, cell lines that stably express nonmutated exogenous LAMR do not rescue the phenotypic effect of siLAMR (data not shown). The phenotype of siMUT²²⁰ cells treated with siLAMR does not appear to be as severe as in WT cells (Figure 2b, bottom), although siLAMR-treated siMUT²²⁰ cells are still smaller in size (including rounded cells) than their siGLO-treated counterparts. This suggests that unlike full-length siMUT, siMUT²²⁰ LAMR is unable to fully restore the phenotypic effect of siLAMR.

Silent mutant LAMR cells still undergo G₁-phase cell-cycle growth arrest. Analyzing the cell-cycle profile of WT, siMUT, and siMUT²²⁰ cells, we found that all cell lines are arrested in the G₁ phase of the cell cycle 4 days after treatment with siLAMR. Overall, 68% of WT, 72% of siMUT, and 62% of siMUT²²⁰ siLAMR-treated cells are in the G₁ phase of the cell cycle compared with 40, 47, and 36% for their siGLO-treated controls, respectively (Figure 3a). Furthermore, only 18% of WT, 16% of siMUT, and 30% of siMUT²²⁰ siLAMR-treated cells are in the S phase compared with 40, 47, and 36% for their siGLO-treated controls, respectively (Figure 3a).

As visualized by microscopy, WT cells treated with siLAMR are reduced in number and cell size with many rounded cells (Figure 2b, top). In contrast, siMUT cells treated with siLAMR have normal morphology with a phenotype similar to cells treated with siGLO (Figure 2b, middle). It should be noted that similar results were obtained with several additional FLAG-tagged siMUT stable clones (data not shown) and stable cell lines that express either untagged or C-terminal v5/his-tagged siMUT LAMR constructs (Supplementary Figure 2). Conversely, cell lines that stably express nonmutated exogenous LAMR do not rescue the phenotypic effect of siLAMR (data not shown). The phenotype of siMUT²²⁰ cells treated with siLAMR does not appear to be as severe as in WT cells (Figure 2b, bottom), although siLAMR-treated siMUT²²⁰ cells are still smaller in size (including rounded cells) than their siGLO-treated counterparts. This suggests that unlike full-length siMUT, siMUT²²⁰ LAMR is unable to fully restore the phenotypic effect of siLAMR.

Silent mutant LAMR cells still undergo G₁-phase cell-cycle growth arrest. Analyzing the cell-cycle profile of WT, siMUT, and siMUT²²⁰ cells, we found that all cell lines are arrested in the G₁ phase of the cell cycle 4 days after treatment with siLAMR. Overall, 68% of WT, 72% of siMUT, and 62% of siMUT²²⁰ siLAMR-treated cells are in the G₁ phase of the cell cycle compared with 40, 47, and 36% for their siGLO-treated controls, respectively (Figure 3a). Furthermore, only 18% of WT, 16% of siMUT, and 30% of siMUT²²⁰ siLAMR-treated cells are in the S phase compared with 40, 47, and 36% for their siGLO-treated controls, respectively (Figure 3a).
with 49, 40, and 52% of siGLO-treated cells, respectively. While analyzing cell-cycle profiles, we noticed that 9% of siLAMR-treated WT cells are in the sub-G1 phase 4 days after transfection, indicative of cells undergoing apoptosis (Figure 2a). Interestingly, we found no increase in a sub-G1 population for silMUT cells treated with siLAMR; however, silMUT220 cells treated with siLAMR display an increase in the sub-G1 population similar to WT cells. The percentages of cells in G1, S, and sub-G1 phases for each cell line are shown in Figure 2b (left, middle, and right panel, respectively). These results indicate that although all siLAMR-treated cells are still arrested in the G1 phase of the cell cycle, full-length silMUT LAMR rescues the apoptotic effects of reducing endogenous LAMR, whereas the C-terminal-truncated silMUT220 LAMR does not.

The C-terminal 75 residues of LAMR are required for maintaining cell viability. To further analyze cell viability, we stained siLAMR- and siGLO-treated WT, silMUT, and silMUT220 cells 3–6 days after transfection with MitoTracker Deep-Red (Invitrogen, Carlsbad, CA, USA), a fluorescent dye that stains the mitochondria only in viable cells. Cell viability was accessed by fluorescence-activated cell sorting (FACS) with forward and side scatter (Figure 4a, left), as well...
as MitoTracker (Figure 4a, right). Viewing side scatter 5 days after transfection, we observed that WT and silMUT220 cells treated with siLAMR develop a large population of nonviable cells (red rectangle), whereas silMUT cells do not. Overall, 46% of siLAMR-treated WT and 28% of silMUT220 cells are in this nonviable population, compared with only 8% of siLAMR-treated silMUT cells. Similar results were obtained with MitoTracker (Figure 3a, right). Overall, 51% of siLAMR-treated WT and 37% of silMUT220 cells are negative for MitoTracker compared with only 8% of siLAMR-treated silMUT cells. The percentage of nonviable cells for the entire time course, determined by MitoTracker, is shown in Figure 4b.

Furthermore, using side scatter, we gated the most dense population of viable siGLO-treated WT, silMUT, and silMUT220 cells (Figure 4a left panel, right plots, 42, 40, and 52%, respectively). Each gate was applied to its respective cell line treated with siLAMR. We found that viable WT cells treated with siLAMR become smaller and more granular, as determined by their shift in forward and side scatter, respectively (12% of cells remain in the gate applied for siGLO viable cells). silMUT220 treated with siLAMR also become smaller (23% of cells remain in the gate applied for siGLO viable cells). In contrast, viable siLAMR-treated silMUT cells have the same size and morphology as siGLO-treated silMUT cells (36% of cells remain in the gate applied for siGLO viable cells).

Figure 4 The C-terminal 75 residues of LAMR are required for maintaining cell viability. (a) FACS analysis of siLAMR- and siGLO-treated WT (top), silMUT (middle), and silMUT220 (bottom) cells 5 days after transfection. Cell viability was assessed through forward and side scatter (left panel), and the MitoTracker Deep-Red stain (right panel). Nonviable cell populations were gated in siLAMR-treated WT cells (red rectangle) and applied to all plots to determine the percentage of nonviable cells, as indicated. The most dense viable cell population was gated in each siGLO-treated plot (red circle, left panels) and applied to siLAMR plots of each respective cell line to determine changes in cell size/morphology. Each plot is indicative of at least three separate transfections. (b) The percentage of nonviable cells 3–6 days after transfection, according to MitoTracker Deep Red and normalized to siGLO-treated cells, are summarized. Bar = S.E.M. Statistical analysis was performed using a two-way ANOVA to generate P-values. ***P<0.0005
cells), indicating that morphological functions are also restored by silMUT LAMR. In all, the viability/morphology results from our FACS analysis are consistent with the rescue of phenotypic effects we observed by microscopy (Figure 1), and indicate that the C-terminal residues of LAMR are required for maintaining cell viability.

The C-terminal 75 residues of LAMR are not required for ribosomal functions. As silMUT^{220} is structurally homologous to the *A. fulgidus* S2 ribosomal protein, we reasoned that it should maintain all ribosomal functions of LAMR, and therefore its inability to rescue viability must be due to an extraribosomal function. To clarify whether the ribosomal functions of LAMR are required for cell viability, we measured protein synthesis in WT, silMUT, and silMUT^{220} cells treated with siLAMR and siGLO 3–6 days after transfection. Five days after transfection, translation in siLAMR-treated WT cells is dramatically reduced, whereas that in siLAMR-treated silMUT and silMUT^{220} cells appears normal (Figure 5a). It should be noted that translation appears to be higher in control siGLO-treated WT cells than in siGLO-treated silMUT and silMUT^{220} cells, which may be due to the clonal selection of both cell lines. Therefore, protein synthesis for the entire time course was quantified by scintillation counting (Figure 5b).

The percentage of translation for WT, silMUT, and silMUT^{220} siLAMR-treated cells, compared with that of their respective siGLO-treated cells, is shown. Surprisingly, the trend of translation inhibition is similar for all cell lines 3 and 4 days after transfection, although siLAMR-treated silMUT and silMUT^{220} do have higher protein synthesis levels than do WT siLAMR cells 4 days after transfection (31 and 37% compared with 14%, respectively). Five days after transfection, siLAMR-treated WT cells have a modest increase in protein synthesis to 25% of siGLO-treated WT cells. However, siLAMR-treated silMUT and silMUT^{220} cells dramatically increase their protein synthesis up to 60% and 74%, respectively. These results indicate that both silMUT and silMUT^{220} LAMR restore protein translation in siLAMR-treated cells, thus showing that the C-terminal 75 residues of LAMR are not required for ribosomal functions.

The C-terminal 75 residues of LAMR are not required for nuclear localization. As LAMR was previously shown to interact with histones and localize to the nucleus, we decided to see whether endogenous, silMUT, and silMUT^{220} LAMR can be detected in HT1080 nuclear extracts by western blot. The nuclear marker Lamin A/C and the cytosolic marker HSP 90-α/β show that we successfully separated both fractions (Figure 5, top and second panel, respectively). We found endogenous LAMR to be both cytosolic and nuclear in all cell lines (Figure 5, third panel, LAMR). Furthermore, we found that both silMUT and silMUT^{220} are cytosolic and nuclear as well. Therefore, our results show that LAMR localizes to the nucleus in HT1080 cells and that the C-terminal 75 residues are not required for this process.

Discussion

Reduction of LAMR expression by siRNA results in translation inhibition, G1-phase cell-cycle arrest, and apoptosis.

Therefore, we had to use a transient siRNA system to study LAMR. This complicates determining the kinetics of our observations, as well as identifying which functions/localizations of LAMR (namely ribosomal, nuclear, extracellular) are important for proliferation and cell viability. Our silent mutant LAMR system addresses these issues by providing a novel way in which to study the multiple functions of LAMR.
a cellular environment. Interestingly, silMUT LAMR rescues different functions of LAMR separately. We observe that siLAMR-treated silMUT cells still undergo cell cycle arrest (Figure 3) and that restoration of protein synthesis is delayed (Figure 5). This contrasts with the rescue of morphology and cell viability, which happens during times of cell-cycle arrest and translational inhibition (Figure 4). The inability of exogenous LAMR to rescue all phenotypes resulting from inhibition of endogenous LAMR has previously been observed in another system as well. It is possible that there are threshold levels of LAMR expression required for each cellular function it regulates and thus with limited expression of exogenous LAMR, only certain functions can be restored. In this case, functions required for cell viability would be restored before those for translation and proliferation as they are more essential. This is suggested by studies in yeast, which have two copies of the lamr gene. Disruption of one gene leads to inhibition of cell growth, whereas knockout of both gene copies is lethal.

LAMR CDNA cloned from yeast has been previously used to complement double mutant yeast strains lacking LAMR to restore cell viability. In addition, exogenous LAMR has been expressed to rescue both lethal and viable phenotypes in Drosophila due to mutations of the endogenous gene. We are the first to achieve such rescue in mammalian cells. Although studies conducted in yeast and Drosophila concluded that the rescue of cell viability is most likely attributed to the ribosomal functions of LAMR, our results with silMUT LAMR cells indicate that extraribosomal functions of LAMR are important for this process. We found that silMUT220 LAMR can restore protein synthesis in a delayed manner similar to full-length silMUT LAMR (Figure 5). This is consistent with sequence analysis showing that, as a ribosomal protein, the first two-thirds of LAMR are highly conserved, whereas the C terminus is more divergent among higher organisms (most likely to acquire extracellular functions). This also supports our structural analysis showing the homology between the A. fulgidus S2 ribosomal protein and LAMR. However, despite retaining ribosomal functions, silMUT220 is unable to rescue cell viability (Figure 4), indicating that extraribosomal functions of the C-terminal 75 residues are essential for this process.

Furthermore, we have shown that the C-terminal 75 residues of LAMR are not required for nuclear localization (Figure 6), as silMUT220 localizes to the nucleus in a similar capacity as full-length silMUT and endogenous LAMR. Future studies are required to determine whether silMUT220 is functional in a nuclear context. Although silMUT220 may localize to the nucleus, its inability to rescue cell viability may be due to a lack of the necessary residues/domains required for nuclear interactions. Still, these findings suggest that the functions of LAMR associated with viability may be dependent on a nonnuclear localization.

As mentioned earlier, LAMR was initially discovered as a cell surface receptor for laminin. Surface localization of LAMR may therefore be important for maintaining cell viability. Others have shown that the 37 kDa LAMR is expressed on the cell surface of numerous cell types, including HT1080 cells. However, we were unable to detect 37 kDa LAMR at the cell surface of our HT1080 cells (data not shown). Surface localization may instead be reserved for a different form of LAMR, in particular the 67 kDa dimer. As this molecule is only observed in vertebrates, it is believed that C-terminal sequence divergence has a role in its formation. Therefore, silMUT220 may be missing the required residues/domain to form a dimer. Alternatively, silMUT220 may still be able to form a dimer, but one that is missing residues important for essential contacts with the extracellular matrix. It should be noted that three binding sites for laminin have been discovered on LAMR thus far: residues 161–181 (peptide G), 205–229,37 and the C-terminal 53 residues. Although silMUT220 contains the peptide G binding region and is functional in laminin-1 binding,37 it is missing portions or all of the other two laminin-binding sites. The laminin-binding regions missing in silMUT220 may be required for interactions important for cell viability. Interestingly, cleavage of LAMR by stromelysin-3, which separates the laminin-binding regions of LAMR from the cell surface, may have a role in promoting apoptosis.39 Therefore, the expression of silMUT220, missing these binding sites, may have a similar effect.

In conclusion, our silent mutant rescue system has determined that translation and cell viability are regulated in distinct manners by LAMR and that the extraribosomal functions of LAMR are required for maintaining cell viability. In addition, we used truncated LAMR to examine and distinguish its role in proliferation, translation, morphology, and viability. Further use of silMUT220 as well as additional truncated/mutated silent mutant LAMR constructs will ultimately help define the multiple functions/localizations of LAMR.

Materials and Methods

Cloning. The LAMR coding sequence was cloned into the pcDNA 3.1/c N-terminal flag vector (Invitrogen) using BamH1 and Xho1 restriction sites. Primers used were as follows:
Forward primer: 5'-GGATCTCCGGACCCCTGTAGTG-3' and reverse primer: 5'-CTCGAGTAAACCCGAGTTGCTGCTCC-3'.

This vector served as a backbone for generating six silent mutations in the LAMR coding sequence using the Quick change II XL site-directed Mutagenesis kit (Stratagene, La Jolla, CA, USA). Primers used for silent mutant cloning were as follows: Forward primer: 5'-GGAGAATTGTCAGTATGGAGTATCTCCGCCTGGA CACCC-3' and reverse primer: 5'-GGGTTTGCCAGGAGATGCTCCTGATGGCTGATCGTAGAACCCTCC-3'.

To generate the C-terminal-truncated silent mutant LAMR construct, the above forward primer was used with a reverse primer starting at the codon for the 220th residue of LAMR (out of 295).

Reverse truncated primer: 5'-CTCGAGTACTTCCTCAGCAGCAGCTGCCG-3'.

Gene extraction. Extraction of total cellular RNA was performed using the RNA easy mini kit (Qiagen, Valencia, CA, USA). In all, 0.5 μg of RNA was used for the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA). Overall, 0.5 μl of cDNA was used to determine LAMR expression levels by quantitative real-time PCR using a Bio-Rad Cycler. Human GAPDH was chosen as the housekeeping gene for comparative analysis between samples. Human LAMR and GAPDH primers were designed and used as described previously. The fold change in laminin receptor expression was calculated using the comparative analysis method. Human LAMR and GAPDH primers were used for each PCR reaction. Human GAPDH was chosen as the housekeeping gene for comparative analysis between samples. Human LAMR and GAPDH primers were designed and used as described previously. The fold change in laminin receptor expression was calculated using the comparative analysis method.

Cell culture. The HT1080 cell line was obtained from the ATCC (Manassas, VA, USA). Silent mutant LAMR cell lines were generated by transfecting HT1080 cells with a CDNA 3.1/c N-terminal flag vectors containing either full-length or 1-220 C-terminal-truncated silent mutant LAMR. Lipofectamine 2000 (Invitrogen) was used for transfection and clonal stable cell lines were selected with neomycin.

Endogenous LAMR expression was inhibited using the predesigned siGENOME individual oligonucleotide no. 3 targeting LAMR (Dharmacon, Lafayette, CO, USA). Control nontargeting siGLO RISC-free siRNA and DharmaFECT 4 transfection reagent were also purchased from Dharmacon. A final concentration of 100 nM of siRNA was used for each transfection. To analyze phenotypic effects of siRNA, cells were imaged using a Nikon Eclipse TE200-E microscope (Tokyo, Japan) using the NIS-Elements BR-2.30 program (Nikon).

Cell proliferation/viability. For cell-cycle profile analysis, cells were permeabilized overnight in 100% ethanol at 4°C then stained with final concentrations of 50 μg/ml of propidium iodide (Invitrogen) and 100 μg/ml of RNAse A (Sigma-Aldrich, St. Louis, MO, USA). Cells were analyzed using a BD FACSscan machine (BD Biosciences, San Jose, CA, USA) and the percentages of cells in sub-G1, G0, and S phase were determined using the ModFit LT 3.2 program (Verity software house, Topsham, ME, USA).

Cell morphology/viability was further analyzed by forward-side scatter FACScan analysis and using the Deep-Red Mitotracker stain (Invitrogen). Analysis was performed using a BD LSRII machine. Viable/nonviable cells were gated and quantified using the FlowJo 8.2 program (Tree Star, Ashland, OR, USA).

Protein analysis. For western blots, cells were harvested in Mammalian Protein Extraction Reagent (MPER) (Pierce, Rockford, IL, USA). A total of 20 μg of total protein was used for SDS-PAGE and transferred to PVDF membrane. LAMR protein expression was detected using the rabbit polyclonal antibody H-141, total protein was used for SDS-PAGE and transferred to PVDF membrane. LAMR expression was detected using the rabbit polyclonal antibody H-141, total protein was used for SDS-PAGE and transferred to PVDF membrane. LAMR expression was detected using the rabbit polyclonal antibody H-141.

Nuclear extraction. Nuclear extracts were collected from 2 × 106 WT, siMUT, and siMUT200 cells using the Affymetrix Nuclear Extraction Kit (Affymetrix, Fremont, CA, USA). The procedure was carried out according to the manufacturer’s protocol. The number of cells used for extraction, as well as buffer volume, were scaled up twofold.

Statistical analysis. Statistical analysis for cell-cycle data was performed using a Student’s t-test. The P-values generated are two-tailed. Statistical analysis for Mitotracker staining (viability), scintillation counting (translation), and mRNA expression was performed with two-way ANOVA. All statistics were generated using GraphPad Prism, version 3.0c for Macintosh (GraphPad Software, San Diego, CA, USA).

Conflict of interest. In addition, funding for this study was also provided by a Research and License agreement between NYU and CynVec. In particular, the contents of this study may be used for a patent. According to the rules and regulations of the New York University School of Medicine, if this patent is licensed by a third party, Mr Scheiman, Ms Jamieson, Dr. Tseng, and Dr. Meruelo may receive benefits in the form of royalties or equity participation. Ms Ziello declares no potential conflict of interest.

Acknowledgements. We thank Dr. Christine Pampeno for the critical reading of this paper. US Public Health grants CA100867 from the National Cancer Institute, National Institutes of Health, and Health and Human Services supported this study. Funding was also provided by a gift from the Litwin Foundation.

1. Wewer UM, Taraboteli G, Sobel ME, Abrecht D, Lotta LA. Role of laminin receptor in tumor cell migration. Cancer Res 1987; 47: 5691–5699.
2. Malone K, Ravkumar TS. Anti-sense RNA of 32-kDa laminin-binding protein inhibits attachment and invasion of a human colon carcinoma cell line. J Surg Res 1992; 52: 340–346.
3. Bernard A, Gao-Lij J, Franco CA, Boubeau T, Huet A, U. Z. Laminin receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor. J Biol Chem 2009; 284: 10490–10490.
4. Arndt E, Sporcha B, Pollegioni L, Modugno M, Ginelli C, Castiglioni F et al. Identification of a novel function for 67-kDa laminin receptor: increase in laminin degradation rate and release of motility fragments. Cancer Res 2002; 62: 1301–1301.
5. Bema V, Porrini D, Castiglioni F, Campiglio M, Casalini P, Pupa SM et al. The 67 kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1. Endor Relat Cancer 2009, 12: 393–406.
6. Guczyński S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R et al. The 37-40 kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 2001; 20: 5863–5873.
7. Kim KJ, Chung JW, Kim KS. 67-42 kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem 2005; 280: 1360–1360.
8. Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 1992; 66: 4992–5000.
9. Ludwig GV, Kondig JP, Smith JF. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J Virol 1996; 70: 5592–5599.
10. Therghart P, Smith DR. Serotype-specific entry of dengue virus into liver cells: identification of the 37-40 kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 2001; 20: 5863–5873.
11. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA. The 37-40 kDa laminin receptor is a receptor for adenovirus-associated virus serotypes 6, 2, 3, 9, and 1, J Virol 2006; 80: 961–968.
12. Arndt E, Pesole G, Tagliafuoro A, Magnifico A, Sobel ME et al. The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution. Molec Biol Evol 1998; 15: 1017–1025.
13. Ouzonis C, Kyrpides N, Sander C. Novel protein families in archaean genomes. Nucleic Acids Res 1995; 23: 556–570.
14. Jamieson KV, Wu J, Hubbard SR, Meruelo D. Crystal structure of the human laminin receptor precursor. J Biol Chem 2008; 283: 3002–3005.
15. Demianova M, Formosa TG, Ellis SR. Yeast proteins related to the p40/laminin receptor precursor. J Biol Chem 1999; 274: 11383–11391.
16. Ford CL, Randal-Whitis L, Ellis SR. Yeast proteins related to the p40/laminin receptor precursor. J Biol Chem 1999; 274: 340–346.
17. Garcia-Hernandez M, Davies E, Staszwick PE. Arabidopsis p40 homologue. A novel acidic protein associated with the 40 S subunit of ribosomes. J Biol Chem 1994; 269: 20744–20749.

18. Auth D, Brawerman G. A 33-kDa polypeptide with homology to the laminin receptor: component of translation machinery. Proc Natl Acad Sci USA 1992; 89: 4368–4372.

19. Kaneda Y, Kinoshita K, Sato M, Saeki Y, Yamada R, Wataya-Kaneda M et al. The induction of apoptosis in HeLa cells by the loss of LPB-p40. Cell Death Differ 1998; 5: 20–28.

20. Susantad T, Smith DR. siRNA-mediated silencing of the 37/67-kDa high affinity laminin receptor in Hep3B cells induces apoptosis. Cell Mol Biol Lett 2008; 13: 453–464.

21. Kinoshita K, Kaneda Y, Sato M, Saeki Y, Wataya-Kaneda M, Hoffmann A. LBPP-40 binds DNA tightly through associations with histones H2A, H2B, and H4. Biochem Biophys Res Commun 1998; 253: 277–282.

22. Givant-Horwitz V, Davidson B, Reich R. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res 2004; 64: 3572–3579.

23. Keppel E, Schaller HC. A 33 kDa protein with sequence homology to the ‘laminin binding protein’ is associated with the cytoskeleton in hydra and in mammalian cells. J Cell Sci 1991; 100 (Part 4): 789–797.

24. Menard S, Castronovo V, Tagliabue E, Sobel ME. New insights into the metastasis-associated 67 kD laminin receptor. J Cell Biochem 1997; 67: 155–165.

25. Rao CN, Castronovo V, Schmitt MC, Wewer UM, Claysmith AP, Liotta LA et al. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry 1989; 28: 7476–7486.

26. Landowski TH, Dratz EA, Starkey JR. Studies of the structure of the metastasis-associated 67 kDa laminin binding protein: fatty acid acylation and evidence supporting dimerization of the 32 kDa gene product to form the mature protein. Biochemistry 1995; 34: 11276–11287.

27. Buto S, Tagliabue E, Ardini E, Magnifico A, Ghirelli C, van den Brule F et al. Formation of the 67-kDa laminin receptor by acylation of the precursor. J Cell Biochem 1998; 69: 244–251.

28. Menard S, Tagliabue E, Colnaghi MI. The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat 1998; 52: 137–145.

29. Satoh K, Narumi K, Abe T, Sakai T, Kikuchi T, Tanaka M et al. Diminution of 37/47 kDa laminin binding protein expression reduces tumour formation of murine lung cancer cells. Br J Cancer 1999; 80: 1115–1122.

30. Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 2004; 11: 380–381.

31. Shammas MA, Neri P, Koley H, Batchu RB, Bertheau RC, Munshi V et al. Specific killing of multiple myeloma cells by (−)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood 2006; 108: 2804–2810.

32. Scheiman J, Tseng JC, Zheng Y, Meruelo D. Multiple functions of the 37/67-kDa laminin receptor make it a suitable target for novel cancer gene therapy. Mol Ther 2010; 18: 63–74.

33. Melnick MB, Noll E, Perrimon N. The Drosophila stubarista phenotype is associated with a dosage effect of the putative ribosome-associated protein D-p40 on spineless. Genetics 1993; 135: 553–564.

34. Montero M, Marcilla A, Sentandreu R, Valentin E. A Candida albicans 37 kDa polypeptide with homology to the laminin receptor is a component of the translational machinery. Microbiology 1998; 144 (Part 4): 839–847.

35. Zuber C, Knackmuss S, Zemora G, Reusch U, Vlasova E, Diehl D et al. Invasion of tumorigenic HT1080 cells is impeded by blocking or downregulating the 37 kDa/67 kDa laminin receptor. J Mol Biol 2008; 378: 530–539.

36. Castronovo V, Taraboletti G, Sobel ME. Functional domains of the 67-kDa laminin receptor precursor. J Biol Chem 1991; 266: 20440–20446.

37. Landowski TH, Uthayakumar S, Starkey JR. Control pathways of the 67 kDa laminin binding protein: surface expression and activity of a new ligand binding domain. Clin Exp Metastasis 1995; 13: 357–372.

38. Kazmin DA, Hoyt TR, Taubner L, Teintze M, Starkey JR. Phage display mapping for peptide 11 sensitive sequences binding to laminin-1. J Mol Biol 2000; 298: 431–445.

39. Mathew S, Fu L, Fiorentino M, Matsuda H, Das B, Shi YB. Differential regulation of cell type-specific apoptosis by stromelysin-3: a potential mechanism via the cleavage of the laminin receptor during tail resorption in Xenopus laevis. J Biol Chem 2008; 283: 18945–18956.

40. Tseng JC, Hurtado A, Yee H, Levin B, Boivin C, Benet M et al. Using sindbis viral vectors for specific detection and suppression of advanced ovarian cancer in animal models. Cancer Res 2004; 64: 6684–6692.