COMMUNICATIONS

ELEMENT ORDERS IN COVERS
OF FINITE SIMPLE GROUPS

M. A. Grechkoseeva

UDC 512.542

Presented by V. D. Mazurov, a member of the Editorial Board

The set of element orders of a finite group G is called the spectrum of G and is denoted by $\omega(G)$. We say that a finite group H is a cover of a group G if $G = H/K$ for some normal subgroup K of H; if, in addition, $K \neq 1$, then the corresponding cover is proper. A group G is recognizable by spectrum among covers if $\omega(G) \neq \omega(H)$ for any proper cover H of G. If G has a nontrivial normal soluble subgroup, then it is not recognizable by spectrum among covers; moreover, there are infinitely many pairwise nonisomorphic covers H of G with $\omega(H) = \omega(G)$ [1, Lemma 1].

We study the property of being recognizable among covers for finite non-Abelian simple groups. Our main object is to prove a conjecture which says that this property is shared by all finite non-Abelian simple groups except for some Lie-type groups of low Lie rank.

THEOREM 1. Let G be a finite non-Abelian simple group. Suppose that $G \neq 3D_4(2)$ and G is not a classical group of dimension less than 11. Then G is recognizable by spectrum among covers.

By 2011, the conclusion of Theorem 1 was proved for sporadic groups [2], alternating groups [3], Ree and Suzuki groups [4-6], groups $G_2(q)$ [7] and $E_8(q)$ [8], as well as for linear groups of dimension at least five [9] and unitary groups of dimension at least six [10]. Also we have recently become aware that the group $3D_4(2)$ is unrecognizable among covers [11]. In [10], the following intermediate result on symplectic and orthogonal groups was obtained: if G is one of the groups $S_{2n}(q)$ and $O_{2n+1}(q)$ with $n \geq 3$, or $O_{2n}^{\pm}(q)$ with $n \geq 4$, and V is a nonzero G-module over a field of characteristic coprime to q, then $\omega(V \ltimes G) \neq \omega(G)$. A motivation for this result is a simple

*Supported by RFBR (project Nos. 12-01-31221 and 12-01-90006) and by the SB RAS Program for Basic Research Partnership Projects for 2012-2014 (project No. 14).

1Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia; grechkoseeva@gmail.com. Translated from *Algebra i Logika*, Vol. 52, No. 5, pp. 638-641, September-October, 2013. Original article submitted October 29, 2013.
observation that a group G is recognizable be spectrum among covers iff $\omega(G) \neq \omega(H)$ for any split extension $H = V \times G$, where V is a nonzero G-module over a field of positive characteristic. Thus, modulo the results mentioned above, Theorem 1 follows from the two propositions below.

PROPOSITION 2. Let G be one of the simple groups $3D_4(q)$, $F_4(q)$, $E_6(q)$, $2E_6(q)$, and $E_7(q)$, and let V be a nonzero G-module over a field of positive characteristic coprime to q. If H is a natural semidirect product of V and G, then $\omega(H) \neq \omega(G)$.

PROPOSITION 3. Let G be one of the groups $3D_4(q)$ with $q > 2$, $F_4(q)$, $E_6(q)$, $2E_6(q)$, and $E_7(q)$, or one of the simple groups $S_{2n}(q)$ (where $n = 3$ and q is odd or $n \geq 4$), $O_{2n+1}(q)$ (where q is odd and $n \geq 3$), and $O_{2n}^\pm(q)$ (where $n = 5$ and q is even, or $n = 4$, or $n \geq 6$). Suppose that V is a nonzero G-module over a field of characteristic dividing q, and H is a natural semidirect product of V and G. Then $\omega(H) \neq \omega(G)$.

It is worth noting that Proposition 2 and [10, Thm. 1] give an affirmative answer to [12, Question 17.74].

Information on element orders in covers of the simple group $O_{2n+1}(q)$ has also been used to solve a problem that arose in studying quasirecognizability of symplectic groups. A simple non-Abelian group G is said to be quasirecognizable by spectrum if every finite group H with $\omega(H) = \omega(G)$ has exactly one non-Abelian composition factor and that factor is isomorphic to G. According to [13, Thm. 3], if $G = S_{2n}(q)$, where $n \geq 4$, and H is a finite group with $\omega(H) = \omega(G)$, then non-Abelian composition factors of H, which are Lie-type groups over a field of characteristic dividing q, are contained in the set $\{S_{2n}(q), O_{2n+1}(q), O_{2n}^-(q)\}$. The groups $S_{2n}(q)$ and $O_{2n+1}(q)$ are not isomorphic if q is odd and $n \geq 3$, but nevertheless their spectra coincide very closely and share the same subsets of odd numbers, of numbers coprime to q, and of numbers of the form $2m$, where m is an odd prime. For that reason, eliminating the case where a non-Abelian composition factor of H is isomorphic to $O_{2n+1}(q)$ is a severe challenge. By comparing the spectra of proper covers of $O_{2n+1}(q)$ with the spectrum of $S_{2n}(q)$, we reduce this case to the situation where H is an almost simple group with socle $O_{2n+1}(q)$.

PROPOSITION 4. Let G be a simple group $S_{2n}(q)$ and S a simple group $O_{2n+1}(q)$, where q is odd and $n \geq 3$. Suppose that H is a finite group with $\omega(H) = \omega(G)$ and H has a composition factor isomorphic to S. Then $S \leq H \leq \text{Aut}(S)$.

REFERENCES

1. V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements,” Algebra Logika, 37, No. 6, 651-666 (1998).
2. V. D. Mazurov and W. J. Shi, “A note to the characterization of sporadic simple groups,” Alg. Colloq., 5, No. 3, 285-288 (1998).
3. A. V. Zavarnitsine and V. D. Mazurov, “Element orders in coverings of the symmetric and alternating groups,” Algebra Logika, 38, No. 3, 296-315 (1999).
4. W. J. Shi, “A characterization of Suzuki’s simple groups,” Proc. Am. Math. Soc., 114, No. 3, 589-591 (1992).

5. R. Brandl and W. J. Shi, “A characterization of finite simple groups with Abelian Sylow 2-subgroups,” Ric. Mat., 42, No. 1, 193-198 (1993).

6. H. W. Deng and W. J. Shi, “The characterization of Ree groups $2F_4(q)$ by their element orders,” J. Alg., 217, No. 1, 180-187 (1999).

7. A. V. Vasil’ev and A. M. Staroletov, “Recognizability of groups $G_2(q)$ by spectrum,” Algebra Logika, 52, No. 1, 3-21 (2013).

8. A. S. Kondrat’ev, “Recognizability by spectrum of groups $E_8(q)$,” Trudy Inst. Mat. Mekh. UrO RAN, 16, No. 3, 146-149 (2010).

9. A. V. Zavarnitsine, “Properties of element orders in covers for $L_n(q)$ and $U_n(q)$,” Sib. Mat. Zh., 49, No. 2, 309-322 (2008).

10. M. A. Grechkoseeva, “On element orders in covers of finite simple classical groups,” J. Alg., 339, 304-319 (2011).

11. V. D. Mazurov, “Unrecognizability by spectrum for a finite simple group $3D_4(2)$,” Algebra Logika, 52, No. 5, 601-605 (2013).

12. Unsolved Problems in Group Theory, The Kourovka Notebook, 17th edn., Institute of Mathematics SO RAN, Novosibirsk (2010), http://www.math.nsc.ru/~alglog/17kt.pdf.

13. A. V. Vasil’ev, M. A. Grechkoseeva, and V. D. Mazurov, “On finite groups isospectral to simple symplectic and orthogonal groups,” Sib. Mat. Zh., 50, No. 6, 1225-1247 (2009).