Research Article

First-Principle Calculations to Investigate Structural, Electronic, Elastic, Mechanical, and Optical Properties of $K_2CuX$ ($X=\text{As, Sb}$) Ternary Compounds

Mwende Mbilo and Robinson Musembi

Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197–00100, Nairobi, Kenya

Correspondence should be addressed to Mwende Mbilo; mwende@students.uonbi.ac.ke

Received 5 July 2022; Accepted 2 September 2022; Published 20 September 2022

Copyright © 2022 Mwende Mbilo and Robinson Musembi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Efficient materials with good optoelectronic properties are required for the good performance of photovoltaic devices. In this work, we present findings of a theoretical investigation of the structural, electronic, elastic, mechanical, and optical properties of $K_2CuX$ ($X=\text{As, Sb}$) ternary compounds. The computations were carried out by using the density functional theory (DFT) formalism as implemented in the quantum espresso (QE) software package. The calculated lattice constants of 19.1414 a.u ($K_2CuAs$) and 20.0041 a.u ($K_2CuSb$) are in agreement with the experimental results from the literature. The materials under study were found to have bandgaps of 1.050 eV ($K_2CuAs$) and 1.129 eV ($K_2CuSb$). The valence band was majorly formed by Cu-3d, As-2p, and Cu-4s states while the conduction band was majorly dominated by Cu-5p in $K_2CuAs$, whereas in $K_2CuSb$, the valence band was mainly formed by Cu-3d, Cu-4s, and Sb-3p states while the conduction band was majorly formed by Sb-3p and Cu-5p states. The investigated materials were found to be mechanically stable at zero pressure, ductile, and ionic. The optical absorption coefficient curves were found to cover the ultraviolet to visible (UV-Vis) regions, thus making $K_2CuAs$ and $K_2CuSb$ good UV-Vis absorbers hence their suitability for photovoltaic applications.

1. Introduction

Photovoltaic technology depends on various materials for photon-to-electron conversion, which mainly includes organic, inorganic, or organic-inorganic blends [1]. The contemporary photovoltaic industry is currently dominated by the inorganic class with high incidence photon-electron conversion efficiency (IPCE) materials comprising mainly silicon, gallium arsenide, and cadmium telluride, among others [1]. The commercial applicability of these inorganic-based materials in the photovoltaic industries is, however, limited by the high costs and level of purity required during production [2]. Most of these materials, when applied in photovoltaics, work in the principle of light absorption, charge separation, and transport of minority carriers, all happening in the same material [3]. In the recent past, perovskite material has gained traction due to the rapid growth in its conversion efficiency from as low as 3% to the current 25% [4] in a short span of time. Despite their rapid growth in their efficiency, these types of materials are dogged by the instability of the photovoltaic systems produced by using such materials, and this has begged to cast the search wider [4–7]. The search for alternative classes of materials has led to the realization of cheap and abundant ternary semiconductor compounds [8]. These ternary semiconductor compounds have been found to have excellent electronic as well as optical properties [9]; they also do not require sophisticated technologies when performing thin film deposition since they work on the principle of majority carrier transport, where light absorption and charge separation take place in the absorber, while charge transport takes place in other layers of the optoelectronic device [10]. Among the desirable properties of ternary semiconductor compounds is the considerable wide bandgap range of 1–3 eV [11], which covers the UV-Vis region of the electromagnetic spectrum. This property makes these
compounds promising candidates for application in the fields of solar cells, lasers, and photodetectors [12]. Among the ternary semiconductor compounds, ternary compounds adopting the ABC₂-type configuration are most studied due to their wide range of photovoltaic applications [12]. The ABC₂-type ternary compounds comprise chalcogenides with type I-III-V₂ anions and pnictides with type II-IV-V₂ anions [13]. Experimental studies, as well as theoretical predictions of properties of the ABC₂-type ternary compounds, have been performed for application in the optoelectronic and photovoltaic fields. Among the ABC₂-type ternary compounds, the copper-based ternary compounds have been principally investigated for potential solar cell application [11, 14–18]. Other studies have been carried out on ABC₂-type ternary compounds by replacing the copper element with other elements. For instance, Khan et al. [19] investigated the structural, electronic, and optical properties of the CaCN₂ compound by using the DFT, where in their deduction from the study, the results showed that the compound had properties that are suitable for utilization in the photovoltaic applications. Additionally, optical properties of SrSiP₂ and CaSiP₂ compounds by using the DFT approach have been investigated [20]. Elements such as gold, silver, and aluminum, among others, have also been investigated as a replacement for copper for potential optoelectronic and photovoltaic applications [21–42]. Ternary chalcogenides are more promising among the multinary compounds because the majority possess properties such as low toxicity semiconductors and tunable bandgaps allowing improvement of intrinsic properties [43]. In a study for such compounds performed by Regulo Han, a CuInS₂ compound was studied for application as a light-emitting diode due to its unique properties for bright light emission and nondegradability on thermal exposure. In a different study of ABX compounds, the combination of A = Cu, Ag; B=Zn; and X = Ge, Sn was found suitable for application in photocatalysis [43]. Extensive DFT work of similar compounds is available in the literature, such as ABiX₂ and ABiX₃ (A = Na, K; X = O, S) and the references therein [44]. ABC₂-type ternary compounds based on potassium elements have been less studied as compared to their copper, silver, gold, and aluminum analogues [45]. Specifically, ternary compounds with K-Cu-X (X = N, P, As, Sb, Bi) formula have been less reported apart from a few exceptions [46–48]. To the best of our knowledge, there are a few experimental reports in the literature on the crystal structure of K-Cu-X (X = As; Sb) [48] hence the motivation for this study. The objective of this work is to investigate the structural, electronic, elastic, mechanical, and optical properties of K₂CuAs and K₂CuSb ternary compounds using the DFT method for potential applications in the photovoltaic field.

2. Computational Details

The structural, electronic, elastic, mechanical, and optical properties of K₂CuAs and K₂CuSb ternary compounds were computed within the DFT [49, 50]. Formalism is implemented in the QE code [51]. The K₂CuAs and K₂CuSb crystal structure input files were downloaded from the materials project database [52, 53].
materials cloud input generator implemented in QE was used to generate the PWscf input files [54] for DFT calculations. The electron-ion interaction was denoted by using the projector augmented-wave function (PAW) method [55]. The Generalized Gradient Approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) [56, 57] was chosen to define the exchange-correlation effect of the electrons. The optimized cutoff energy of 150 Ry and $8 \times 8 \times 8$ Monkhorst-Pack grid for Brillouin zone integration were used. Geometry optimization was performed by computing the total energy per unit cell at several lattice constant values to obtain the ground state structural properties. Based on the optimized lattice constants, the elastic, electronic, and optical properties were calculated.

3. Results and Discussion

3.1. Structural Properties. Both $K_2CuAs$ and $K_2CuSb$ ternary compounds adopt an orthorhombic crystal system with the space group Cmcm as reported elsewhere [48]. These crystal structures have K atoms bonded in 4 coordinate geometries to 4 equivalent As and Sb atoms, whereas the Cu atoms are bonded in a linear geometry to 2 equivalent As and Sb atoms [48], as shown in Figure 1.

From Table 1, the As–Cu bond is stronger than the As–K bond in $K_2CuAs$, while the Sb–Cu bond is stronger than the Sb–K bond in $K_2CuSb$. The K–K bond is the weakest with long bond lengths; this difference is attributed to the fact that the volume per atom tends to increase with the increase in atomic radius and therefore affects crystal lattice basis [13]. The total energy at various lattice constant values is computed and presented in Figure 2.

The computed total energy as a function of lattice constant values was fitted in the Birch–Murnaghan equation of state [58] to get the equilibrium structural properties.
properties. The computed ground state lattice parameters in Table 2 are consistent with the ones reported by Eisenmann et al. [48].

3.2. Electronic Properties. The electronic band structures and projected density of states (PDOSs) of the K$_2$CuAs and K$_2$CuSb ternary compounds were computed by using the optimized crystal structures and presented as follows.

The K$_2$CuAs and K$_2$CuSb compounds have narrow bandgaps of 1.050 eV and 1.129 eV (see Figures 3(a) and 4(a)), respectively. The maxima of the valence bands and the minima of the conduction bands occur at different symmetry points (Y−Γ) in the Brillouin zone, implying that K$_2$CuAs and K$_2$CuSb ternary compounds are indirect bandgap semiconductors. The projected density of states describes the available states for electrons to occupy when projected on atomic orbitals. By carrying out the projected density of states calculation, we can tell which electronic states (shell (s, p, d, f) and orbital) for a particular atom contribute to the formation of the band edges. Suppose two orbitals lying in the same energy range hybridize, the value of the projected density of states increases. In this way, these orbitals are said to have contributed to the band structure edges. The orbital contributions to the formation of valence bands and conduction bands are described by the PDOS in the energy region $-3.5$ eV to 5 eV. As illustrated in Figure 3(b), the upper valence band in the region $-1.4$ to the Fermi level was majorly formed by As-2p and Cu-3d with a small contribution from the other states while the middle valence band in the energy region $-2.6$ eV to $-1.5$ eV was majorly formed by Cu-3d with few contributions from the other states. The lower valence band in the energy region $-3$ eV to $-3.4$ eV was formed mainly by As-2p, Cu-3d, and Cu-4s, whereas the conduction band was majorly formed by Cu-5p and As-1s with little contribution from the other states. In the case of the K$_2$CuSb compound (Figure 4(b)), the valence band was majorly formed by the Cu-3d, Sb-3p, and Cu-4s orbitals, while the conduction band was majorly formed by the Cu-5p and Sb-3p orbitals.

3.3. Elastic and Mechanical Properties. The K$_2$CuAs and K$_2$CuSb ternary compounds adopt an orthorhombic crystal structure featuring 9 independent elastic constants [59] given as $C_{11}, C_{12}, C_{13}, C_{22}, C_{23}, C_{33}, C_{44}, C_{55}$, and $C_{66}$. The necessary and sufficient conditions for elastic stability of the orthorhombic crystal system [59, 60] are given as

![Figure 3: The calculated (a) band structure and (b) PDOS of the K$_2$CuAs ternary compound.](image-url)
\[
\begin{align*}
\text{Table 3: Computed elastic constants } C_{ij} \text{ (GPa) of } \text{K}_2\text{CuAs and } \text{K}_2\text{CuSb compounds.} \\
\text{Compounds} & \quad C_{11} & \quad C_{12} & \quad C_{13} & \quad C_{22} & \quad C_{23} & \quad C_{33} & \quad C_{44} & \quad C_{55} & \quad C_{66} \\
\text{K}_2\text{CuAs} & 45.13 & 8.23 & 5.70 & 38.93 & 20.15 & 34.40 & 22.00 & 7.09 & 4.68 \\
\text{K}_2\text{CuSb} & 37.27 & 8.88 & 4.68 & 31.96 & 18.30 & 27.42 & 18.75 & 6.64 & 3.09 \\
\end{align*}
\]

\[
\text{Table 4: Voigt-Reuss–Hill approximations of bulk modulus } B \text{ (GPa), Young’s modulus } E \text{ (GPa), shear modulus } G \text{ (GPa), Pugh’s ratio } B/G, \text{ and Poisson's ratio } n. \\
\text{Compounds} & \quad B & \quad E & \quad G & \quad B/G & \quad n \\
\text{K}_2\text{CuAs} & 20.59 & 26.94 & 10.55 & 1.95 & 0.27 \\
\text{K}_2\text{CuSb} & 17.56 & 21.28 & 8.24 & 2.13 & 0.29 \\
\]

The computed elastic constants in Table 3 satisfy the conditions for elastic stability of the orthorhombic system; thus, the \text{K}_2\text{CuAs} and \text{K}_2\text{CuSb ternary compounds are mechanically stable. Other mechanical properties are shown in Table 4.}

Bulk modulus measures the resistance against volume change resulting from applied external pressure [61]. Large B
value predicts hard materials; thus, from the computed values of the bulk modulus, both K$_2$CuAs and K$_2$CuSb are not hard materials. Additionally, the bond lengths of the crystal structures are correlated to the size of the B. The shorter the bond lengths, the larger the B value [61]. From the structural properties, the obtained bond lengths in K$_2$CuAs are shorter than those in the K$_2$CuSb crystal structure thus the higher value of B in the K$_2$CuAs compound. The ductile (ionic) and brittle (covalent) nature of materials is determined by using Pugh’s ratio B/G and Poisson’s ratio, $n$ [62]. The restriction for brittleness is $B/G < 1.75$; otherwise, the material is said to be ductile [63]. Poisson’s ratio $n = 0.1, 0.25,$ and $0.33$ for pure covalent, ionic, and metallic bonds, respectively, [64]. Thus, we can conclude that K$_2$CuAs and K$_2$CuSb ternary compounds are ductile and strongly dominated by ionic character. These findings are in agreement with the other reports in the literature for compounds with similar stoichiometry [47]. The stiffness of a material is determined by applying Young’s modulus value [65]. The higher the value of $E$, the stiffer the material [65]; therefore, K$_2$CuAs compound is stiffer than K$_2$CuSb.

### 3.4. Optical Properties

To explore the prospect of any material for solar cell and optoelectronic applications, an
A complex dielectric wave function describes the electron transitions from the valence to the conduction bands. The absorption onsets in $\varepsilon_2(\omega)$ curves refer to the materials bandgaps which lie within the visible region, $<3.1$ eV for $K_2CuAs$ and $K_2CuSb$ compounds, an implication of strong interband transitions. This makes $K_2CuAs$ and $K_2CuSb$ promising candidates for solar cell applications [41]. Additionally, narrow bandgaps facilitate faster electron transitions as opposed to wide bandgaps [61]. The key feature of the $\varepsilon_1(\omega)$ curve is $\varepsilon_1(\text{Energy} = 0)$, also referred to as the static value [70]. This static value is correlated to the material’s refractive index as $n = \sqrt{\varepsilon_1(0)}$. Starting from Energy = 0, the $\varepsilon_1(\omega)$ plot attained major peaks at low energy regions, 1.786 eV and 1.652 eV for $K_2CuAs$ and $K_2CuSb$, respectively. The photon transmission persisted until the $\varepsilon_1(\omega)$ values became negative at energy regions 5.681–9.173 eV. At this energy region, the incident photon radiations are assumed to be fully attenuated [71] and the compounds assert a metallic behaviour [72]. The calculated refractive indices for $K_2CuAs$ and $K_2CuSb$ were 2.49 and 2.55, respectively. The major refractive index peaks reside within the visible region. The optical absorption coefficients of $K_2CuAs$ and $K_2CuSb$ compounds cover the UV-Vis regions in the range of 2.82–11.71 eV; this demonstrates that these compounds can be utilized for photovoltaic applications. The materials’ surface behaviour and energy loss by fast electrons entering a medium are determined by reflectivity and energy loss function, respectively [41]. The main peaks of the reflectivity curves were observed in the regions 2.217–5.345 eV. The reflectivity decreased beyond this region. There was no significant absorption in the visible regions, as depicted in the loss spectrum. The major absorption peak occurred at higher energy regions $>10$ eV. The optical properties’ results obtained in this work are in agreement with the results obtained previously on the related materials [46, 47].

4. Conclusions

In summary, we have studied the structural, electronic, elastic, mechanical, and optical properties of $K_2CuAs$ and $K_2CuSb$ ternary compounds by using the DFT method as implemented in the QE package. Equilibrium lattice constants of 19.1414 and 20.0041 a.u were obtained for $K_2CuAs$ and $K_2CuSb$, respectively. The bandgaps obtained were 1.050 eV and 1.129 eV for $K_2CuAs$ and $K_2CuSb$, respectively. The formation of the valence band was primarily by Cu-3d, As-2p, and Cu-4s states, while the conduction band was majorly formed by Cu-5p and As-1s states in $K_2CuAs$ whereas, in $K_2CuSb$, the valence band was majorly formed by Cu-3d, Cu-4s, and Sb-3p states while the conduction band was mainly formed by Sb-3p and Cu-5p states. Both $K_2CuAs$ and $K_2CuSb$ were found to be mechanically stable at zero pressure, ductile, and ionic, thus their potentiality for resilient materials application. The calculated bandgaps, high refractive indices, high absorption coefficients, and wide energy coverage of the absorption coefficients spectra, mainly in the UV-Vis regions of the electromagnetic spectrum, make $K_2CuAs$ and $K_2CuSb$ ternary compounds suitable for photovoltaic applications.

Data Availability

The source files and raw data supporting the conclusions in this paper will be assessed upon request from the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Partnership for Skills in Applied Sciences, Engineering and Technology (PASET)—Regional Scholarship Innovation Fund (RSIF) and ISP Sweden through the KEN02 grant. RSIF is also gratefully thanked for grant number RSIF-RA-015. The authors acknowledge the Centre for High-Performance Computing, CHPC, Cape Town, and RSA for HPC resources.
Supplementary Materials

The results and conclusions of this work are supported by a supplementary file submitted along with the manuscript. The file comprises the K₂CuX (X = As, Sb) crystal structure data, the pseudopotentials, Plane Wave self-consistent field (PWScf) input files, output files for structural properties, output files for elastic and mechanical properties as well as the Equations used for calculating optical properties. Also, the references to K₂CuX (X = As, Sb) source files are provided. Supplementary Materials (Supplementary Materials)

References

[1] M. S. Yaseen, G. Murtaza, and R. M. Arif Khalil, “Ab-initio study of Li based chalcopyrite compounds LiGaX₂ (X = S, Se, Te) in tetragonal symmetry: a class of future materials for optoelectronic applications,” Current Applied Physics, vol. 18, pp. 1113–1121, 2018.

[2] L. Qu, L. K. Ono, and Y. Qi, “Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology,” Materials Today Energy, vol. 7, pp. 169–189, 2019.

[3] R. Bayon, R. Musembi, A. Belaidi et al., “Highly structured TiO₂/In(OH)₃/Sr/Pb₃/PEDOT: PSS for photovoltaic applications,” Solar Energy Materials and Solar Cells, vol. 89, pp. 13–25, 2005.

[4] T. Zhou, M. Wang, Z. Zang, and L. Fang, “Stable dynamics performance and high efficiency of ABX₃-type super-alkali perovskites first obtained by introducing HS(O)₂ cation,” Advanced Energy Materials, vol. 9, no. 29, Article ID 1900664, 2019.

[5] S. Kundu and T. L. Kelly, “In situ studies of the degradation mechanisms of perovskite solar cells,” EcoMat, vol. 2, no. 2, 2020.

[6] Y. Luan, F. Wang, J. Zhuang et al., “Dual-function interface engineering for efficient perovskite solar cells,” EcoMat, vol. 3, no. 2, 2021.

[7] Q. Wang, Z. Lin, J. Su et al., “Dithiol surface treatment towards improved charge transfer dynamic and reduced lead leakage in lead halide perovskite solar cells,” EcoMat, vol. 4, no. 3, 2022.

[8] P. Ranjan and T. Chakraborty, “Materials Science in Semiconductor Processing A computational study of chalcopyrite-type nanomaterials for solar cell applications,” Materials Science in Semiconductor Processing, vol. 127, Article ID 105745, 2021.

[9] A. Gani, O. Cheref, M. Ghezali et al., “Mechanical stability and optoelectronic behavior of BeXP₂ (X = Si and Ge) chalcopyrite,” Chinese Journal of Physics, vol. 64, pp. 174–182, 2020.

[10] R. J. Musembi, M. Rusu, J. M. Mwabora, B. O. Aduda, K. Fostiragoulou, and M. C. Lux-Steiner, “Intensity and temperature dependent characterization of eta solar cell,” Physica Status Solidi (A), vol. 205, pp. 1713–1718, 2008.

[11] P. Ranjan, P. Kumar, T. Chakraborty, M. Sharma, and S. Sharma, “A study of structure and electronic properties of chalcopyrites semiconductor invoking Density Functional Theory,” Materials Chemistry and Physics, vol. 241, Article ID 122346, 2020.

[12] A. Es-Smairi, N. Fazouan, H. Joshi, and E. H. Atmani, “First-principles calculations to investigate electronic, optical, thermodynamic and thermoelastic properties of new Na₆ZnX₄ (X = O, S, Se) ternary alloys,” Journal Of Physics And Chemistry Of Solids, vol. 160, Article ID 110305, 2022.

[13] G. M. Dongho Nguimdo and D. P. Joubert, “A density functional (PBE, PBEsol, HSE06) study of the structural, electronic and optical properties of the ternary compounds AgAIX₂ (X = S, Se, Te),” The European Physical Journal B, vol. 88, no. 5, p. 113, 2015.

[14] Y. Yu, X. G. Kong, Y. H. Shen, and J. Deng, “Thermodynamic properties of CuAlS₂ with chalcopyrite structure from first-principles calculations,” vol. 16, no. 11, pp. 513–522, 2019.

[15] K. Khan, A. Gaur, A. Soni, U. Ahuja, and J. Sahariya, “Revealing structural and optoelectronic properties for Bi-doped CuGaS₂ chalcopyrite: a density functional investigation,” Emerging Technologies for Smart Cities, pp. 171–177, Springer, Berlin, Heidelberg, Germany, 2021.

[16] A. Gaur, K. Khan, A. Soni, A. Dashora, and J. Sahariya, “Optical and electronic analysis of Al doped CuInSe₂ thin film based flexible solar cells,” AIP Conference Proceedings, vol. 2294, pp. 2–7, 2020.

[17] S. Palchoudhury, K. Ramasamy, and A. Gupta, “Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications,” Nanoscale Advances, vol. 2, pp. 3069–3082, 2020.

[18] M. Elamin Kefi, H. Bennacer, S. S. Essaoud, M. Issam Ziane, and A. Boukortt, “Computational evaluation of optoelectronic, thermodynamic and electron transport properties of CuY₂Z (Z = S, Se and Te) chalcogenides semiconductors,” Materials Chemistry and Physics, vol. 277, Article ID 125553, 2022.

[19] K. Khan, A. Gaur, U. Ahuja, A. Soni, and J. Sahariya, “The first principle investigation for the structural and optoelectronics properties of tetragonal compound CaCN₂,” Journal of physics: conference series, vol. 1849, no. 1, pp. 2–7, 2021.

[20] S. R. Thahirunnissa and I. B. Shameem Banu, “Optical properties of novel ASiP₂ (A = Ca, Sr) chalcopyrites: first-principle study,” Applied Physics A, vol. 124, p. 801, 2018.

[21] K. Bida, M. Ameri, S. Amel et al., “First-principles calculations of pressure and temperature dependence of thermodynamic properties of anti-perovskite BiNb₃ compound,” Chinese Journal of Physics, vol. 55, no. 5, pp. 2144–2155, 2017.

[22] M. H. Benkabou, M. Harmel, A. Haddou et al., “Structural, electronic, optical and thermodynamic investigations of NaXF₃ (X =Ca and Sr): first-principles calculations,” Chinese Journal of Physics, vol. 56, no. 1, pp. 131–144, 2018.

[23] E. Attilan and J. Hu, “First-principle-based computational doping of SrTiO₃ using combinatorial genetic algorithms,” Bulletin of Materials Science, vol. 41, pp. 1–9, 2018.

[24] X. Wang, R. Khenata, A. Bouhemadou, and C. H. Voon, “Electronic, optical and thermolectric investigations of Zn₁₋ₓNdₓTi₂O₇ (0 ≤ x ≤ 0.2) solid solution,” AIP Conference Proceedings, vol. 88, no. 5, p. 113, 2008.

[25] A. Gamier, B. Fink, C. Payri et al., “Optical and electronic properties of NaScSi alloy,” Emergent Materials, vol. 1, no. 2, pp. 379–391, 2018.

[26] M. Ameri, F. Belkharroubi, M. Ameri et al., “Optical and electronic properties of NaScSi alloy,” Emergent Materials, vol. 1, no. 2, pp. 379–391, 2018.

[27] B. Fadila, M. Ameri, D. Bensaid et al., “Structural, magnetic, electronic and mechanical properties of full- Heusler alloys Co 2 YAI ( Y = Fe, Ti): first principles calculations with different exchange-correlation potentials,” Journal of Magnetism and Magnetic Materials, vol. 448, pp. 208–220, 2018.
Advances in Materials Science and Engineering

[38] M. K. Zoubir, B. Fadila, B. Keloum et al., “Structural, electronic and thermodynamic investigation of Ag2GdSi, Ag2GdSn and Ag2Gd Pb Heusler alloys: first-principles calculations,” Materials Testing, vol. 63, pp. 537–542, 2021.

[39] A. Khreidinne, A. Bouhemadou, S. Alnajim et al., “First-principles predictions of the structural, electronic, optical and elastic properties of the zintl- phases AE 3 GaAs 3 (AE = Sr, Ba),” Solid State Sciences, vol. 114, pp. 106563–106574, 2021.

[40] A. Mentefa, F. Z. Boufadi, M. Ameri et al., “First-principles calculations to investigate structural, electronic, elastic, magnetic, and thermodynamic properties of full-heusler Rh 2 MnZ (Z = Zr, Hf),” Journal of Superconductivity and Novel Magnetism, vol. 34, no. 1, pp. 269–283, 2021.

[41] N. Guechi, A. Bouhemadou, Y. Medkour, Y. Al-Douri, R. Khenata, and S. Bin-Omran, “Electronic and thermoelectric properties of the layered Zintl phase CaIn 2 P 2: first-principles calculations,” Philosophical Magazine, vol. 100, pp. 3023–3039, 2020.

[42] A. Moussali, M. B. Amina, B. Fassi, I. Ameri, M. Ameri, and Y. Al-Douri, “First-principles calculations to investigate structural and thermodynamic properties of Ni 2 LaZ (Z = As, Sb and Bi) Heusler alloys,” Indian Journal of Physics, vol. 94, no. 11, pp. 1733–1747, 2020.

[43] M. Ayad, F. Belkharroubi, F. Z. Boufadi et al., “First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-heusler alloy Co 2 TaGa,” Indian Journal of Physics, vol. 94, no. 6, pp. 767–777, 2020.

[44] M. Mbilo, G. S. Manyali, and R. J. Musembi, “Ab initio study of K3Cu3P2 material for photovoltaic applications,” Computational Condensed Matter, vol. 32, p. e00726, 2022.

[45] M. Mbilo, G. S. Manyali, and R. J. Musembi, “Ab initio study of K5[\{3\}SCu5{\{3\}}SP5{\{2\}}] material for photovoltaic applications,” 2022, https://arxiv.org/abs/2203.13230.

[46] B. Eisenmann, G. Savelseberg, and H. Schaerfe, “Zur Darstellung und Kristallstruktur von Na2 Cu As, K2 Cu As und K2 Cu Sb,” Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, vol. 31, pp. 1344–1346, 1976.

[47] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical review, vol. 136, no. 3, pp. 1–8, 1964.

[48] W. Kohn and L. J. Sham, “Self-Consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4A, pp. A1133–A1138, 1965.

[49] P. Giannozzi, S. Baroni, and N. Bonini, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” Journal of Physics: Condensed Matter, vol. 21, no. 39, pp. 1–20, 2009.

[50] M. D. Regulacio and M. Y. Han, “Multinary I-III-VI2 and I2-III-VI4 semiconductor nanostructures for photocatalytic applications,” Accounts of Chemical Research, vol. 49, pp. 511–519, 2016.

[51] S. Kumar, A. Akande, F. El-Mellouhi, H. Park, and S. Sanvito, “Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides,” Physical Review Materials, vol. 4, 2020.

[52] J. P. Perdew and Y. Wang, “Erratum: accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, vol. 44, pp. 13298–13307, 1991.
[59] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Physical Review B - Condensed Matter and Materials Physics, vol. 90, no. 22, pp. 1–4, 2014.

[60] M. Born, K. Huang, and M. Lax, “Dynamical theory of crystal lattices,” American Journal of Physics, vol. 23, p. 474, 1955.

[61] G. S. Manyali, R. Warmbier, and A. Quandt, “Computational study of the structural, electronic and optical properties of M2N2(NH): M = C, Si, Ge, Sn,” Computational Materials Science, vol. 79, pp. 710–714, 2013.

[62] S. Tariq, A. Ahmed, S. Saad, and S. Tariq, “Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study,” AIP Advances, vol. 5, no. 7, pp. 1–10, 2015.

[63] G. Nazir, S. Tariq, A. Afq et al., “Under pressure DFT investigations on optical and electronic properties of PbZrO 3,” Acta Physica Polonica A, vol. 133, no. 1, pp. 105–113, 2018.

[64] V. Kumar and B. P. Singh, “Structural and elastic properties of AIBIIIC 2VI semiconductors,” Indian Journal of Physics, vol. 92, pp. 29–35, 2018.

[65] S. O. Karta and T. Cagın, “Elastic properties of Ni2MnGa from first-principles calculations,” Journal of Alloys and Compounds, vol. 508, no. 1, pp. 177–183, 2020.

[66] R. Bhattacharjee and S. Chattopadhyaya, “Effects of barium (Ba) doping on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds - a theoretical investigation using DFT based FP-LAPW approach,” Materials Chemistry and Physics, vol. 199, pp. 295–312, 2017.

[67] A. Srivastava, P. Sarkar, S. K. Tripathy et al., “Structural, electronic and optical properties of Ag2MgSn(S/Se)4 quaternary chalcogenides as solar cell absorber layer: an Ab-initio study,” Solar Energy, vol. 209, pp. 206–213, 2020.

[68] F. Okbi, S. Lakel, S. Benramache, and K. Almi, “First principles study on electronic structure and optical properties of ternary semiconductor InxAl1 –xP alloys,” Semiconductors, vol. 54, pp. 58–66, 2020.

[69] Y. O. Ciftci, K. Colakoglu, and N. S. Korozlu, “First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP 2,” vol. 529, pp. 1–7, 2012.

[70] S. Azam, M. Irfan, Z. Abbas, and M. Rani, “DFT study of the electronic and optical properties of ternary chalcogenides AIX2Te4,” Materials Research Express, vol. 6, no. 11, pp. 1–14, 2019.

[71] G. Murtaza and I. Ahmad, “First principle study of the structural and optoelectronic properties of cubic perovskites CaPbM3 (M=Cl, Br, I),” Physica B: Condensed Matter, vol. 406, pp. 3222–3229, 2011.

[72] G. Murtaza, I. Ahmad, B. Amin et al., “Investigation of structural and optoelectronic properties of BaThO 3,” Optical Materials, vol. 33, pp. 553–557, 2011.