MULTIDIMENSIONAL EXPONENTIAL DIVISOR FUNCTION
OVER GAUSSIAN INTEGERS

ANDREW V. LELECHENKO

Abstract. Let \(\tau_{k}^{(e)} : \mathbb{Z} \to \mathbb{Z} \) be a multiplicative function such that \(\tau_{k}^{(e)}(p^a) = \sum_{d_1 \cdots d_k = a} 1 \). In the present paper we introduce generalizations of \(\tau_{k}^{(e)} \) over the ring of Gaussian integers \(\mathbb{Z}[i] \). We determine their maximal orders by proving a general result and establish asymptotic formulas for their average orders.

1. Introduction

Exponential divisor function \(\tau^{(e)} : \mathbb{Z} \to \mathbb{Z} \) introduced by Subbarao in [3] is a multiplicative function such that

\[
\tau^{(e)}(p^a) = \tau(a),
\]

where \(\tau : \mathbb{Z} \to \mathbb{Z} \) stands for the usual divisor function, \(\tau(n) = \sum_{d|n} 1 \). Erdős estimated its maximal order and Subbarao proved an asymptotic formula for \(\sum_{n \leq x} \tau^{(e)}(n) \). Later Wu [12] gave more precise estimate:

\[
\sum_{n \leq x} \tau^{(e)}(n) = Ax + Bx^{1/2} + O(x^{\theta_{1,2} + \varepsilon}),
\]

where \(A \) and \(B \) are computable constants, \(\theta_{1,2} \) is an exponent in the error term of the estimate \(\sum_{ab \leq x} 1 = \zeta(2)x + \zeta(1/2)x^{1/2} + O(x^{\theta_{1,2} + \varepsilon}) \). The best modern result [2] is that \(\theta_{1,2} \leq 1057/4785 \).

One can consider multidimensional exponential divisor function \(\tau_{k}^{(e)} : \mathbb{Z} \to \mathbb{Z} \) such that

\[
\tau_{k}^{(e)}(p^a) = \tau_k(a),
\]

where \(\tau_k(n) \) is a number of ordered \(k \)-tuples of positive integers \((d_1, \ldots, d_k)\) such that \(d_1 \cdots d_k = n \). So \(\tau^{(e)} \equiv \tau_{2}^{(e)} \). Toth [11] investigated asymptotic properties of \(\tau_{k}^{(e)} \) and proved that for arbitrarily \(\varepsilon > 0 \)

\[
\sum_{n \leq x} \tau_{k}^{(e)}(n) = C_k x + x^{1/2} S_{k-2}(\log x) + O(x^{w_k + \varepsilon}),
\]

where \(S_{k-2} \) is a polynomial of degree \(k - 2 \) and \(w_k = (2k - 1)/(4k + 1) \).

In the present paper we generalize multidimensional exponential divisor function over the ring of Gaussian integers \(\mathbb{Z}[i] \). Namely we introduce multiplicative functions \(\tau_{k}^{(e)} : \mathbb{Z} \to \mathbb{Z}, t_k^{(e)}, t_k^{(e)} : \mathbb{Z}[i] \to \mathbb{Z} \) such that

\[
(1) \quad \tau_{k}^{(e)}(p^a) = \tau_k(a), \quad t_k^{(e)}(p^a) = \tau_k(a), \quad t_k^{(e)}(p^a) = t_k(a),
\]

where \(p \) is prime over \(\mathbb{Z} \), \(p \) is prime over \(\mathbb{Z}[i] \), \(\tau_k(a) \) is a number of ordered \(k \)-tuples of non-associated in pairs Gaussian integers \((d_1, \ldots, d_k)\) such that \(d_1 \cdots d_k = a \).

2010 Mathematics Subject Classification. 11A05, 11N37, 11N56, 11R16.

Key words and phrases. Exponential divisor function, multidimensional divisor function, Gaussian integers, average order, maximal order.
The aims of this paper are to determine maximal orders of \(\tau^{(e)}_k \), \(\tau^{(e)}_{k^*} \), \(t^{(e)}_k \), \(t^{(e)}_{k^*} \) and to provide asymptotic formulas for \(\sum_{n \leq x} \tau^{(e)}_k(n) \), \(\sum'_{N(\alpha) \leq x} \tau^{(e)}_{k^*}(\alpha) \), \(\sum'_{N(\alpha) \leq x} t^{(e)}_k(\alpha) \), \(\sum'_{N(\alpha) \leq x} t^{(e)}_{k^*}(\alpha) \). A theorem on the maximal order of multiplicative functions over \(\mathbb{Z}[i] \), generalizing [9], is also proved.

2. Notation

Let us denote the ring of Gaussian integers by \(\mathbb{Z}[i] \), \(N(a+bi) = a^2 + b^2 \).

In asymptotic relations we use \(\sim \), \(\asymp \), Landau symbols \(O \) and \(o \), Vinogradov symbols \(\ll \) and \(\gg \) in their usual meanings. All asymptotic relations are written for the argument tending to the infinity.

Letters \(p \) and \(q \) with or without indexes denote Gaussian primes; \(p \) and \(q \) denote rational primes.

As usual \(\zeta(s) \) is Riemann zeta-function and \(L(s, \chi) \) is Dirichlet \(L \)-function. Let \(\chi_4 \) be the single nonprincipal character modulo 4, then \(Z(s) = \zeta(s)L(s, \chi_4) \) is Hecke zeta-function for the ring of Gaussian integers.

Real and imaginary components of the complex \(s \) are denoted as \(\sigma := \Re s \) and \(t := \Im s \), so \(s = \sigma + it \).

We use abbreviations \(\log x := \log \log x \), \(l\log x := \log \log \log x \).

Notation \(\sum' \) means a summation over non-associated elements of \(\mathbb{Z}[i] \), and \(\prod' \) means the similar relative to multiplication. Notation \(a \sim b \) means that \(a \) and \(b \) are associated, that is \(a/b \in \{\pm 1, \pm i\} \). But in asymptotic relations \(\sim \) preserves its usual meaning.

Letter \(\gamma \) denotes Euler–Mascheroni constant. Everywhere \(\varepsilon > 0 \) is an arbitrarily small number (not always the same).

We write \(f \ast g \) for the notation of the Dirichlet convolution

\[
(f \ast g)(n) = \sum_{d|n} f(d)g(n/d).
\]

3. Preliminary lemmas

We need following auxiliary results.

Lemma 1 (Gauss criterion). Gaussian integer \(p \) is prime if and only if one of the following cases complies:

- \(p \sim 1 + i \),
- \(p \sim p \), where \(p \equiv 3 \pmod{4} \),
- \(N(p) = p \), where \(p \equiv 1 \pmod{4} \).

In the last case there are exactly two non-associated \(p_1 \) and \(p_2 \) such that \(N(p_1) = N(p_2) = p \).

Proof. See [1, §34].

Lemma 2.

\[
\sum'_{N(p) \leq x} 1 \sim \frac{x}{\log x},
\]

\[
\sum'_{N(p) \leq x} \log N(p) \sim x,
\]
Proof. Taking into account Gauss criterion and the asymptotic law of the distribution of primes in the arithmetic progression we have

\[
\sum_{N(p)\leq x} 1 \sim \# \{ p \mid p \equiv 3 \pmod{4}, p \leq \sqrt{x} \} + 2 \# \{ p \mid p \equiv 1 \pmod{4}, p \leq x \} \sim
\]

\[
\sim \frac{\sqrt{x}}{\phi(4) \log x/2} + 2 \frac{x}{\phi(4) \log x} = \frac{x}{\log x}.
\]

A partial summation with the use of (2) gives us the second statement of the lemma.

Lemma 3. For \(k \geq 2 \)

(4) \[
\max_{n \geq 1} \frac{\log \tau_k(n)}{n} = \frac{\log k}{2}.
\]

Proof. Taking into account

\[
\tau_k(p^a) = \binom{k + a - 1}{a} \leq k^a,
\]

for \(\Omega(n) := \sum_{p \mid |n} a \) we have \(\tau_k(n) \leq k^{\Omega(n)} \leq k^{\log_2 n} \). This implies

\[
\frac{\log \tau_k(n)}{n} \leq \frac{\log_2 n}{n} \log k \leq \frac{\log k}{2},
\]

because \(n^{-1} \log_2 n \) is strictly decreasing for \(n \geq 2 \). But

\[
\frac{\log \tau_k(2)}{2} = \log k.
\]

Lemma 4. For \(k \geq 2 \)

(5) \[
\max_{n \geq 1} \frac{\log t_k(n)}{n} = \frac{1}{2} \log \left(\frac{k + 1}{2} \right).
\]

Proof. Let \(k_2 := \binom{k+1}{2} \). Lemma 4 implies that

\[
t_k(2^a) = \binom{k + 2a - 1}{2a} \leq k_2^a,
\]

\[
t_k(p^a) = \binom{k + a - 1}{a} \leq k^a \leq k_2^a \quad \text{if} \quad p \equiv 3 \pmod{4},
\]

\[
t_k(p^a) = \binom{k + a - 1}{a}^2 \leq k_2^{2a} \quad \text{if} \quad p \equiv 1 \pmod{4}.
\]

Let us define

\[
\Omega_1(n) := \sum_{p \equiv 1 \pmod{4}} a, \quad \Omega_2(n) := \sum_{p \equiv 1 \pmod{4}} a.
\]

Then \(t_k(n) \leq k^{2\Omega_1(n)}k_2^{\Omega_2(n)} \). Consider

\[
f(x, y) = \frac{x \log k^2 + y \log k_2}{5x^2y},
\]

then \(n^{-1} \log t_k(n) \leq f(\Omega_1(n), \Omega_2(n)) \). One can verify that if \(x \geq 1 \) or \(y \geq 1 \) then

\[
f(x + 1, y) \leq f(x, y), \quad f(x, y + 1) \leq f(x, y),
\]

because \(\log k_2 + \log k^2 < 5 \log k_2 \). So

\[
\max_{x, y \geq 0} f(x, y) = \max \{ f(1, 0), f(0, 1) \} = \frac{\log k_2}{2}.
\]
But
\[\frac{\log t_2(2)}{2} = \frac{\log k_2}{2}. \]

Lemma 5. Let \(F: \mathbb{Z} \to \mathbb{C} \) be a multiplicative function such that \(F_k(p^a) = f(a) \), where \(f(n) \ll n^\beta \) for some \(\beta > 0 \). Then
\[\limsup_{n \to \infty} \frac{\log F_k(n) \log n}{\log n} = \sup_{n \geq 1} \frac{\log f(n)}{n}. \]

Proof. See [9].

Lemma 6. Let \(f(t) \geq 0 \). If
\[\int_1^T f(t) \, dt \ll g(T), \]
where \(g(T) = T^\alpha \log^\beta T, \alpha \geq 1 \), then
\[I(T) := \int_1^T \frac{f(t)}{t} \, dt \ll \begin{cases} T^{\beta+1} & \text{if } \alpha = 1, \\ T^{\alpha-1} \log^\beta T & \text{if } \alpha > 1. \end{cases} \]

Proof. Let us divide the interval of integration into parts:
\[I(T) \leq \sum_{k=0}^{\log_2 T} \int_{T/2^k}^{T/2^{k+1}} \frac{f(t)}{t} \, dt < \sum_{k=0}^{\log_2 T} \frac{1}{T/2^{k+1}} \int_{T/2^k}^{T/2^{k+1}} f(t) \, dt \ll \sum_{k=0}^{\log_2 T} g(T/2^k). \]
Now the lemma’s statement follows from elementary estimates.

Lemma 7. Let \(T > 10 \) and \(|d - 1/2| \ll 1/\log T \). Then we have the following estimates
\[\int_{-T}^{d+iT} |\zeta(s)|^4 \frac{ds}{s} \ll \log^5 T, \]
\[\int_{-T}^{d+iT} |L(s, \chi_4)|^4 \frac{ds}{s} \ll \log^5 T, \]
for growing \(T \).

Proof. The statement is the result of the application of Lemma [9] to the estimates [6] Th. 10.1, p. 75.

Lemma 8. Define \(\theta > 0 \) such that \(\zeta(1/2 + it) \ll t^\theta \) as \(t \to \infty \), and let \(\eta > 0 \) be arbitrarily small. Then
\[\zeta(s) \ll \begin{cases} |t|^{1/2 - (1-2\theta)/2}, & \sigma \in [0, 1/2], \\ |t|^{2\theta(1-\sigma)}, & \sigma \in [1/2, 1-\eta], \\ |t|^{2\theta(1-\sigma)} \log^{2/3} |t|, & \sigma \in [1-\eta, 1], \\ \log^{2/3} |t|, & \sigma \geq 1. \end{cases} \]
The same estimates are valid for \(L(s, \chi_4) \) also.

Proof. The statement follows from Phragmén–Lindelöf principle, exact and approximate functional equations for \(\zeta(s) \) and \(L(s, \chi_4) \). See [4] and [10] for details.

The best modern result [3] is that \(\theta \leq 32/205 + \varepsilon. \)
4. Main results

First we give maximal orders of $\tau_k(\alpha)$, $\tau_k(\beta)$, $t_k(\alpha)$ and $t_k(\beta)$.

The following theorem generalizes Lemma 5 in [9] to Gaussian integers; the proof’s outline follows the proof of Lemma 5 in [9].

Theorem 1. Let $F : \mathbb{Z}[i] \rightarrow \mathbb{C}$ be a multiplicative function such that $F(p^\alpha) = f(a)$, where $f(n) \ll n^\beta$ for some $\beta > 0$. Then

$$\limsup_{\alpha \to \infty} \frac{\log F(\alpha) \log N(\alpha)}{\log N(\alpha)} = \sup_{n \geq 1} \frac{\log f(n)}{n} := K_f.$$

Proof. Let us fix arbitrarily small $\varepsilon > 0$. Firstly, let us show that there are infinitely many α such that

$$\frac{\log F(\alpha) \log N(\alpha)}{\log N(\alpha)} > K_f - \varepsilon.$$

By definition of K_f we can choose l such that

$$(\log f(l))/l > K_f - \varepsilon/2.$$

It follows from (3) that for $x \geq 2$ inequality

$$\sum_{N(p) \leq x} \log N(p) > Ax$$

holds, where $0 < A < 1$.

Let q be an arbitrarily large Gaussian prime, $N(q) \geq 2$. Consider

$$r = \sum_{N(p) \leq N(q)} 1, \quad \alpha = \prod_{N(p) \leq N(q)} p^\alpha.$$

Then $F(\alpha) = (f(l))^r$ and we have

$$\sum_{N(p) \leq N(q)} \log N(p) > AN(q),$$

$$\log F(\alpha) = r \log f(l) \geq \frac{\log N(\alpha) \log f(l)}{\log N(\alpha)} l.$$

But (3) implies

$$\log A + \log N(q) < \log \frac{\log N(\alpha)}{l} \leq \log N(\alpha),$$

so $\log N(q) < \log N(\alpha) - \log A$. Then it follows from (7) that

$$\frac{\log F(\alpha) \log N(\alpha)}{\log N(\alpha)} > \frac{\log N(\alpha) \log f(l)}{l \log N(\alpha) - \log A} (K_f - \varepsilon/2) > K_f - \varepsilon.$$

Second, let us show the existence of $N(\varepsilon)$ such that for all $n \geq N(\varepsilon)$ we have

$$\frac{\log F(n) \log N(\alpha)}{\log N(\alpha)} < (1 + \varepsilon)K_f.$$

Let us choose $\delta \in (0, \varepsilon)$ and $\eta \in (0, \delta/(1 + \delta))$. Suppose $N(\alpha) \geq 3$, then we define

$$\omega := \omega(\alpha) = \frac{(1 + \delta)K_f}{\log N(\alpha)}, \quad \Omega := \Omega(\alpha) = \log^{1-\eta} N(\alpha).$$
By choice of δ and η we have
\[\Omega^\omega = \exp(\omega \log \Omega) = \exp((1 - \eta)(1 + \delta)K_f) > e^{K_f}. \]
Suppose that the canonical expansion of α is
\[\alpha \sim p_1^{\alpha_1} \cdots p_r^{\alpha_r} q_1^{b_1} \cdots q_s^{b_s}, \]
where $N(p_k) \leq \Omega$ and $N(q_k) > \Omega$. Then
\[\frac{F(\alpha)}{N^{\omega b_k}(p_k)} = \prod_{k=1}^{r} \frac{f(a_k)}{N^{\omega a_k}(p_k)} \prod_{k=1}^{s} \frac{f(b_k)}{N^{\omega b_k}(q_k)} := \Pi_1 \cdot \Pi_2. \]
But since $\Omega^\omega > e^{K_f}$ and $K_f \geq (\log f(b_k))/b_k$ then
\[\frac{f(b_k)}{N^{\omega b_k}(q_k)} < \frac{f(b_k)}{\Omega^{b_k}} < \frac{f(b_k)}{e^{K_f} b_k} \leq 1 \]
and it follows that $\Pi_2 \leq 1$. Consider Π_1. From the statement of the theorem we have $f(n) \ll n^\beta$, so
\[\frac{f(a_k)}{N^{\omega a_k}(p_k)} \ll \frac{a_k^\beta}{(\omega a_k)^\beta} \ll \omega^{-\beta}. \]
Then
\[\log \Pi_1 \ll \Omega \log \omega^{-\beta} \ll \log^{1-n} N(\alpha) \ll \log N(\alpha) = o\left(\frac{\log N(\alpha)}{\log \log N(\alpha)}\right) \]
And finally by (5) we get
\[\log F(n) = \omega \log n + \log \Pi_1 + \log \Pi_2 = \frac{(1 + \delta)K_f \log n}{\log n} + \frac{(\varepsilon - \delta)K_f \log n}{\log n}. \]

Theorem 2.

\begin{align*}
\limsup_{n \to \infty} \frac{\log \tau_k(n) \log n}{\log n} &= \frac{\log k}{2}, \\
\limsup_{n \to \infty} \frac{\log \tau_k^{(c)}(n) \log n}{\log n} &= \frac{1}{2} \log \binom{k + 1}{2}, \\
\limsup_{\alpha \to \infty} \frac{\log \tau_k^{(c)}(\alpha) \log N(\alpha)}{\log N(\alpha)} &= \frac{\log k}{2}, \\
\limsup_{\alpha \to \infty} \frac{\log \tau_k^{(c)}(\alpha) \log N(\alpha)}{\log N(\alpha)} &= \frac{1}{2} \log \binom{k + 1}{2}.
\end{align*}

Proof. Statements follow from (4), (5), Lemma 5 and Theorem 1.

A simple corollary of the Theorem 2 is that
\[\tau_k^{(c)}(n) \ll n^\varepsilon, \quad t_k^{(c)}(\alpha) \ll N^\varepsilon(\alpha), \quad t_k^{(c)}(\alpha) \ll N^\varepsilon(\alpha). \]

We are ready to provide asymptotic formulas for sums of $\tau_k^{(c)}(n)$, $t_k^{(c)}(\alpha)$, $t_k^{(c)}(\alpha)$. Let us denote
\[G_k(s) := \sum_n \tau_k^{(c)}(n)n^{-s}, \quad T_k(s) := \sum_n \tau_k^{(c)}(n), \]
\[F_k(s) := \sum_\alpha t_k^{(c)}(\alpha)N^{-s}(\alpha), \quad M_k(s) := \sum_\alpha t_k^{(c)}(\alpha), \]
\[F_k(s) := \sum_\alpha t_k^{(c)}(\alpha)N^{-s}(\alpha), \quad M_k(s) := \sum_\alpha t_k^{(c)}(\alpha). \]
Lemma 9.
\[(10)\] \[G_k(s) = \zeta(s)(2s)\zeta(-k^2+k-2)/2(2s)\zeta(-k^2+k)/2(3s)\zeta(-k^2+7k^2-6k)/12(4s) \times \zeta(5k^4-6k^3-5k^2+6k)/24(5s)g_k(s),\]
\[(11)\] \[F_k(s) = Z(s)Z^{-1}(2s)Z^{-1}(k-k^2)/2(5s)Z^{-1}(k^2+6k-5k^2)/6(6s) \times \]
\[Z(k^2-4k^2+3k)/2(7s)Z(3k^4-26k^3+57k^2-34k)/24(8s)f_k(s),\]
\[(12)\] \[F_k(s) = Z(s)Z^{-1}(k^2+k-2)/2(2s)Z^{-1}(k^2+k)/2(3s)Z^{-1}(k^2+7k^2-6k)/12(4s) \times \]
\[Z(5k^4-6k^3-5k^2+6k)/24(5s)f_k(s),\]
where Dirichlet series $f_k(s)$ are absolutely convergent for $\Re s > 1/9$ and Dirichlet series for $g_k(s)$ are absolutely convergent for $\Re s > 1/6$.

Proof. The statements can be directly verified with the help of the Bell series for corresponding functions. For example, for $t_k(e)$ we have following representation:
\[
\left(\sum_{a=0}^{\infty} t_k^{(e)}(p^a)x^a\right)(1-x)(1-x^2)k-1(1-x^5)(k-k^2)/2(1-x^6)(k^2+6k^3-5k^2)/6 \times
\]
\[(1-x)^7(k^2-4k^2+3k)/2(1-x)^8(3k^4-26k^3+57k^2-34k)/24 = 1 + O(x^9).\]
Then (11) follows from the representation of F_k and Z in the form of infinite products by p:
\[F_k(s) = \prod_p \left(\sum_{a=0}^{\infty} t_k^{(e)}(p^a)x^a\right), \quad Z(s) = \prod_p (1-p^{-s})^{-1}.\]
Identities (10) and (12) can be proved the same way. □

Let us define $\alpha := (1,2,\ldots,2)$,
\[\tau(\alpha; n) := \sum_{d_0d_1^2d_2^2 = n} 1, \quad T(\alpha; x) := \sum_{n \leq x} \tau(\alpha; n) = \sum_{d_0d_1^2d_2^2 \leq x} 1,\]
Due to [5, Th. 6.10] we have
\[(13)\] \[T(\alpha; x) = C_1 x + x^{1/2}Q(\log x) + O(x^{w_1+\varepsilon}),\]
where Q is a polynomial with computable coefficients, $\deg Q = l - 1$, and $w_l \leq (2l + 1)/(4l + 5)$. For some special values of l better estimates of the error term can be obtained. For example, $w_1 \leq 1057/4785$ (see [2]) and $w_2 \leq 8/25$ due to [5] (6.16).

Theorem 3.
\[T_k^*(x) = A_k x + x^{1/2}P_k(\log x)O(x^{v_k+\varepsilon}),\]
where P_k is a polynomial with computable coefficients, $\deg P_k = (k^2 + k - 4)/2$, and $v_k = \max(w(k^2+k-2)/2, 1/3)$.

Proof. Let $l = (k^2 + k - 2)/2$. Identity (11) implies
\[(14)\] \[\tau_k^{(e)} = \tau(\alpha; \cdot) * f, \quad T_k^*(x) = \sum_{n \leq x} T(\alpha; x/n)f(n),\]
where series $\sum_{n=1}^{\infty} f(n)n^{-\sigma}$ are absolutely convergent for $\sigma > 1/3$.
One can plainly estimate:

\[(15) \quad \sum_{n>x} \frac{f(n)}{n} \ll x^{-2/3+\varepsilon} \sum_{n>x} \frac{f(n)}{n^{1/3+\varepsilon}} \ll x^{-2/3+\varepsilon}, \]

\[(16) \quad \sum_{n>x} \frac{f(n) \log^a n}{n^{1/2}} \ll x^{-1/6+\varepsilon} \sum_{n>x} \frac{f(n) \log^a n}{n^{1/3+\varepsilon}} \ll x^{-1/6+\varepsilon}. \]

Substituting estimates \((13), (15)\) and \((16)\) into \((14)\) we get

\[T_{k^*}(x) = C_1 x \sum_{n \leq x} \frac{f(n)}{n} + x^{1/2} \sum_{n \leq x} \frac{f(n)Q(x/n)}{n^{1/2}} + O(x^{w_1+\varepsilon}) + O(x^{1/3+\varepsilon}) =
\]

\[= A_k x + x^{1/2} F_k (\log x) + O(x^{w_k+\varepsilon}). \]

\[\blacksquare\]

Lemma 10.

\[(17) \quad \res_{s=1} F_k(s) x^s/s = C_k x, \quad \res_{s=1} F_{k^*}(s) x^s/s = C_{k^*} x, \]

where

\[(18) \quad C_k = \frac{\pi}{4} \prod_p \left(1 + \sum_{a=2}^\infty \frac{\tau_k(a) - \tau_k(a-1)}{N^a(p)} \right), \]

\[(19) \quad C_{k^*} = \frac{\pi}{4} \prod_p \left(1 + \sum_{a=2}^\infty \frac{\ell_k(a) - \ell_k(a-1)}{N^a(p)} \right). \]

Proof. As a consequence of the representation \((11)\) we have

\[\frac{F_k(s)}{Z(s)} = \prod_p \left(1 + \sum_{a=1}^\infty \frac{\tau_k(a)}{N^{a+1}(p)} \right) \left(1 - p^{-1}\right) = \prod_p \left(1 + \sum_{a=2}^\infty \frac{\tau_k(a) - \tau_k(a-1)}{N^{a+1}(p)} \right), \]

and so function \(F_k(s)/Z(s)\) is regular in the neighbourhood of \(s = 1\). At the same time we have

\[\res_{s=1} Z(s) = L(1, \chi_k) \res_{s=1} \zeta(s) = \frac{\pi}{4}, \]

which implies \((13)\). The proof of \((19)\) is similar. \[\blacksquare\]

Numerical values of \(C_k\) and \(C_{k^*}\) can be calculated in PARI/GP \([7]\) with the use of the transformation

\[\prod_p f(N(p)) = f(2) \prod_{p=4k+1} f(p^2) \prod_{p=4k+3} f(p^2) \]

due to Lemma \((11)\). For example,

\[C_2 \approx 1,156,101, \quad C_{2^*} \approx 1,524,172. \]

Theorem 4.

\[(20) \quad M_k(x) = C_k x + O(x^{1/2} \log^{3+4(k-1)/3} x), \]

\[(21) \quad M_{k^*}(x) = C_{k^*} x + O(x^{1/2} \log^{3+2(k^2+k-2)/3} x), \]

where \(C_k\) and \(C_{k^*}\) were defined in \((13)\) and \((19)\).

Proof. By Perron formula and by \((1)\) for \(c = 1 + 1/\log x, \log T \ll \log x\) we have

\[M_k(x) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} F_k(s) \frac{x^s}{s} ds + O \left(\frac{x^{1+\varepsilon}}{T}\right). \]
Suppose $d = 1/2 - 1/\log x$. Let us shift the interval of integration to $[d - iT, d + iT]$. To do this consider an integral about a closed rectangle path with vertexes in $d - iT$, $d + iT$, $c + iT$ and $c - iT$.

There are two poles in $s = 1$ and $s = 1/2$ inside the contour. The residue at $s = 1$ was calculated in [17]. The residue at $s = 1/2$ is equal to $D x^{1/2}$, D is const and will be absorbed by error term (see below).

Identity (11) implies

$$F_k(s) = Z(s)Z^{k-1}(2s)f_k(s),$$

where $f_k(s)$ is regular for $\Re s > 1/3$, so for each $\varepsilon > 0$ it is uniformly bounded for $\Re s > 1/3 + \varepsilon$.

Let us estimate the error term using Lemma 7 and Lemma 8. The error term absorbs values of integrals about three sides of the integration’s rectangle. We take into account $Z(s) = \zeta(s)L(s, \chi_4)$. On the horizontal segments we have

$$\int_{d+iT}^{c+iT} Z(s)Z^{k-1}(2s)\frac{x^s}{s} ds \ll \max_{\sigma \in [d,c]} Z(\sigma + iT)Z^{k-1}(2\sigma + 2iT)x^{\sigma}T^{-1} \ll x^{1/2}T^{2\sigma-1}\log^{4(k-1)/3}T + xT^{-1}\log^{4/3}T,$$

It is well-known that $\zeta(s) \sim (s-1)^{-1}$ in the neighborhood of $s = 1$. So on $[d, d+i]$ we get

$$\int_{d}^{d+i} Z(s)Z^{k-1}(2s)\frac{x^s}{s} ds \ll x^{1/2} \int_{0}^{1} \zeta^{k-1}(2d + 2it)dt \ll x^{1/2} \int_{0}^{1} \frac{1}{|it - 1/\log x|^{k-1}} \ll x^{1/2} \log^{k-1} x,$$

and for the rest of the vertical segment we have

$$\int_{d+i}^{D+iT} Z(s)Z^{k-1}(2s)\frac{x^s}{s} ds \ll \left(\int_{1}^{T} |\chi(1/2+it)|^{4} \left| T \right|^{1/4} \left| \left(\int_{1}^{T} \left| Z(1+2it) \right| \frac{1}{t} \right|^{1/4} \right| \left(\int_{1}^{T} \left| Z(1+2it) \right|^{2(k-1)} \frac{1}{t} \right|^{1/2} \right) \ll x^{1/2} \log^{5}T \cdot \log^{k(k-1)/3+1}T^{1/2} \ll x^{1/2} \log^{3+4(k-1)/3}T,$$

The choice $T = x^{1/2+\varepsilon}$ finishes the proof of (20).

The proof of (21) is similar, but due to (12) one have replace $k - 1$ by $(k^2 + k - 2)/2$.

References

[1] Gauss C. F. Theoria residuorum biquadraticorum, Commentatio secunda // Commentationes reales societatis regiae scientarum Gotting. — 1832. — Vol. 7.
[2] Graham S. W., Kolesnik G. On the difference between consecutive squarefree integers // Acta Arith. — 1988. — Vol. 49, no. 5. — P. 435–447.
[3] Huxley M. N. Exponential sums and the Riemann zeta function V // Proc. Lond. Math. Soc. — 2005. — Vol. 90, no. 1. — P. 1–41.
[4] Ivic A. The Riemann zeta-function: Theory and applications. — Mineola, New York : Dover Publications, 2003. — 562 p.
[5] Kratzel E. Lattice points. — Dordrecht : Kluwer, 1988. — 436 p.
[6] Montgomery H. L. Topics in multiplicative number theory. — Springer Verlag, 1971. — Vol. 227. — 178 p.
[7] The PARI Group, Bordeaux. — PARI/GP, Version 2.6.0, 2012. — URL: http://pari.math.u-bordeaux.fr/
[8] Subbarao M. V. On some arithmetic convolutions // The theory of arithmetical functions, Lecture Notes in Mathematics. — Springer Verlag, 1972. — Vol. 251. — P. 247–271.
[9] Suryanarayana D., Rao R. Sita Rama Chandra. On the true maximum order of a class of arithmetic functions // Math. J. Okayama Univ. — 1975. — no. 17. — P. 95–101.

[10] Titchmarsh E. C. The theory of the Riemann zeta-function / Ed. by D. R. Heath-Brown. — 2nd, rev. edition. — New-York : Oxford University Press, 1986. — 418 p.

[11] Tóth L. An order result for the exponential divisor function // Publ. Math. Debrecen. — 2007. — Vol. 71, no. 1-2. — P. 165–171.

[12] Wu J. Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré // J. Théor. Nombres Bordx. — 1995. — Vol. 7, no. 1. — P. 133–141.

I. I. Mechnikov Odessa National University

E-mail address: 10@ixdy.ru