Synthesis of Unsymmetrical N-Heterocyclic Carbene–Nitrogen–Phosphine Chelated Ruthenium (II) Complexes and their Reactivity in Acceptorless Dehydrogenative Coupling of Alcohols to Esters

Xiaochun He¹, Yaqiu Li¹, Haiyan Fu¹, Xueli Zheng¹, Hua Chen¹, Ruixiang Li¹*, Xiaojun Yu²*

¹Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
²Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China

Supporting Information

Table of contents
1. Crystal data for complex 2 ..2
2. NMR spectra of complexes ...6
3. Optimization of ADC reaction conditions ...9
4. Mechanistic study ..13
5. NMR spectra of substrates ..22
1. Crystal data for complex 2

CCDC No. of complex 2 is 1904695.

Table S1. Crystallographic data for complex 2.

Property	Value		
Empirical formula	C_{45}H_{44}Cl_{3}N_{3}O_{2}P_{2}Ru		
Formula weight	928.19		
Temperature/K	293.15		
Crystal system	triclinic		
Space group	P-1		
a/Å	9.6104(4)		
b/Å	15.2013(7)		
c/Å	19.2006(8)		
α/°	79.193(4)		
β/°	76.374(4)		
γ/°	74.033(4)		
Volume/Å³	2598.2(2)		
Z	2		
ρ calc/g/cm³	1.186		
Absorption coefficient/mm⁻¹	0.551		
F(000)	952.0		
Crystal size/mm³	0.35 × 0.25 × 0.2		
Radiation	Mo Kα (λ = 0.71073)		
2Θ range for data collection/°	5.764 to 52.74		
Index ranges	-12≤h≤11, -18≤k≤18, -23≤l≤23		
Reflections collected	21191		
Independent reflections	10549 [R_{int}=0.0308, R_{sigma}= 0.0557]		
Data/restraints/parameters	10549/0/513		
Goodness-of-fit on F²	1.098		
Final R indexes [I>2σ(I)]	R₁=0.0749, wR₂ = 0.2127		
Final R indexes [all data]	R₁=0.0873, wR₂ = 0.2267		
Largest diff. peak/hole/ e Å⁻³	0.95/-1.78		
	Bond Angles		
----------	-------------	------------------	------------------
	P1 Ru1 P2	161.32(5)	C43 C38 C39
	N3 Ru1 P1	83.33(11)	C19 C14 P1
	N3 Ru1 P2	92.72(11)	C15 C14 P1
	N3 Ru1 C1	84.36(18)	C15 C14 C19
	C1 Ru1 P1	97.69(13)	C37 C32 P2
	C1 Ru1 P2	100.09(13)	C33 C32 P2
	C44 Ru1 P1	91.24(18)	C33 C32 C37
	C44 Ru1 P2	91.73(18)	C24 C25 C20
	C44 Ru1 N3	174.1(2)	C11 C12 C13
	C20 P1 Ru1	114.65(17)	C9 C8 C13
	C20 P1 C13	105.5(3)	C9 C8 C7
	C20 P1 C14	104.8(2)	N3 C6 C5
	C13 P1 Ru1	107.50(17)	N3 C7 C8
	C14 P1 Ru1	121.11(18)	C26 C31 C30
	C14 P1 C13	101.6(2)	C20 C21 C22
	C26 P2 Ru1	111.51(18)	C28 C27 C26
	C26 P2 C32	103.3(3)	C14 C19 C18
	C38 P2 Ru1	114.14(19)	C36 C37 C32
	C38 P2 C26	102.7(3)	N2 C5 C6
	C38 P2 C32	101.2(3)	C34 C33 C32
	C32 P2 Ru1	121.71(19)	C14 C15 C16
	C6 N3 Ru1	116.5(3)	C38 C39 C40
	C7 N3 Ru1	129.5(4)	C23 C22 C21
	C7 N3 C6	113.6(5)	C2 C3 N2
	C1 N2 C5	127.9(5)	C17 C18 C19
	C3 N2 C1	110.7(5)	C25 C24 C23
	C3 N2 C5	121.4(5)	C12 C11 C10
	N2 C1 Ru1	127.3(4)	C18 C17 C16
	N1 C1 Ru1	130.0(4)	C33 C34 C35
	N1 C1 N2	102.6(4)	C38 C43 C42
	O1 C44 Ru1	175.2(5)	C37 C36 C35
	C1 N1 C4	126.4(5)	C11 C10 C9
	C1 N1 C2	112.1(5)	C41 C40 C39
	C2 N1 C4	121.5(5)	C17 C16 C15
	C25 C20 P1	117.0(4)	C10 C9 C8
	C21 C20 P1	123.3(5)	C3 C2 N1
	C21 C20 C25	119.2(6)	C22 C23 C24

Table S2. Bond Angles for Complex 2.
C31 C26 P2	117.8(5)	C34 C35 C36	117.8(7)
C31 C26 C27	119.9(6)	C40 C41 C42	119.6(9)
C27 C26 P2	122.2(5)	C27 C28 C29	119.7(7)
C12 C13 P1	122.2(4)	C29 C30 C31	119.3(7)
C12 C13 C8	117.7(5)	C30 C29 C28	120.5(7)
C8 C13 P1	120.0(4)	C41 C42 C43	120.7(10)
C39 C38 P2	118.2(6)	C13 C45 C12	112.9(8)
C43 C38 P2	122.5(6)		
Table S3. Bond Lengths for Complex 2.

Ru1 P1	2.3147(13)	C14 C15 1.386(9)
Ru1 P2	2.3791(13)	C32 C37 1.403(9)
Ru1 N3	2.178(4)	C32 C33 1.396(9)
Ru1 C1	2.179(5)	C25 C24 1.374(9)
Ru1 C44	1.834(6)	C12 C11 1.371(9)
P1 C20	1.823(6)	C8 C7 1.463(8)
P1 C13	1.837(5)	C8 C9 1.407(8)
P1 C14	1.831(5)	C6 C5 1.519(8)
P2 C26	1.852(6)	C31 C30 1.410(9)
P2 C38	1.827(6)	C21 C22 1.394(10)
P2 C32	1.853(6)	C27 C28 1.370(9)
Cl2 C45	1.78(3)	C19 C18 1.396(10)
O1 C44	1.161(7)	C37 C36 1.361(10)
Cl3 C45	1.64(3)	C33 C34 1.357(11)
N3 C6	1.471(7)	C15 C16 1.411(9)
N3 C7	1.269(7)	C39 C40 1.427(13)
N2 C1	1.372(7)	C22 C23 1.375(12)
N2 C5	1.446(7)	C3 C2 1.307(10)
N2 C3	1.367(8)	C18 C17 1.316(12)
C1 N1	1.348(7)	C24 C23 1.395(12)
N1 C4	1.470(8)	C11 C10 1.372(11)
N1 C2	1.384(8)	C17 C16 1.367(12)
C20 C25	1.413(8)	C34 C35 1.371(13)
C20 C21	1.373(9)	C43 C42 1.432(12)
C26 C31	1.367(9)	C36 C35 1.384(12)
C26 C27	1.393(9)	C10 C9 1.386(10)
C13 C12	1.400(8)	C40 C41 1.344(18)
C13 C8	1.408(8)	C41 C42 1.342(17)
C38 C39	1.376(10)	C28 C29 1.389(12)
C38 C43	1.373(10)	C30 C29 1.372(12)
C14 C19	1.391(8)	
2. NMR spectra of complexes

Figure S1. 1H NMR spectrum of complex 1 (400.1 MHz, CD$_2$Cl$_2$).

Figure S2. 31P NMR spectrum of complex 1 (162.0 MHz, CD$_2$Cl$_2$).
Figure S3. 1H NMR spectrum of complex 2 (400.1 MHz, CD$_2$Cl$_2$).

Figure S4. 13C NMR spectrum of complex 2 (100.6 MHz, CD$_2$Cl$_2$).
Figure S5. 31P NMR spectrum of complex 2 (162.0 MHz, CD$_2$Cl$_2$).
3. Optimization of ADC reaction conditions

Table S4. Effect of bases on ADC reaction of alcohol a.

entry	base	temp (°C)	conv (%)	yield of aldehyde (%)	yield of ester (%)
1	KOH	110	26	8	17
2	NaOH	110	50	6	44
3	CsOH	110	51	18	33
4	KOtBu	110	40	7	33
3	NaOtBu	110	54	7	47
6	LiOtBu	110	47	4	43
7	NaH	110	65	5	60
8	Cs2CO3	110	79	2	77
9	EtONa	110	75	27	48

aReaction Condition: benzyl alcohol (1.0 mmol, 104 µL), complex 1 (0.01 mmol, 8.3 mg), base (0.3 mmol), toluene (2 ml) and reflux under N$_2$ for 24 h. All conversions and yields were determined by GC.
Table S5. Effect of bases and base loadings on ADC reaction of alcohol.

![Chemical structure](image)

entry	base	quantity of base (mmol)	conv (%)	yield of aldehyde (%)	yield of ester (%)
1	Cs$_2$CO$_3$	0	2	2	NR
2	Cs$_2$CO$_3$	0.01	31	7	24
3	Cs$_2$CO$_3$	0.03	67	3	64
4	Cs$_2$CO$_3$	0.1	72	2	70
5	Cs$_2$CO$_3$	0.3	79	2	77
6	Cs$_2$CO$_3$	0.5	94	6	88
7	Cs$_2$CO$_3$	0.7	>99	20	80
8	Cs$_2$CO$_3$	0.3	94	6	88
9	NaH	0.3	>99	16	84
10	NaOtBu	0.3	>99	13	87

Reaction Condition: benzyl alcohol (1.0 mmol, 104 µL), complex 1 (0.01 mmol, 8.3 mg), toluene (2 ml) and reflux under N$_2$ for 24 h. All conversions and yields were determined by GC.
Table S6. Effect of reaction temperature and reaction time on ADC of alcohol a.

![Chemical Reaction Diagram]

entry	temp (°C)	time (h)	conv (%)	yield of aldehyde (%)	yield of ester (%)
1	80	24	65	16	49
2	90	24	73	14	59
3	100	24	77	11	66
4	120	24	79	14	65
5	110	24	94	6	88
6	110	26	99	2	97
7	110	30	>99	3	97

aReaction Condition: benzyl alcohol (1.0 mmol, 104 µL), complex 1 (0.01 mmol, 8.3 mg), Cs_2CO_3 (0.5 mmol, 163 mg), toluene (2 ml), under N_2. All conversions and yields were determined by GC.
Table S7. Effect of catalyst loading on ADC of alcohol.

![Chemical structure](image)

entry	cat. (mol %)	conv (%)	yield of aldehyde (%)	yield of ester (%)
1	RuHCl(CO)(PPh₃)₃	13	7	6
2	1 (0)	4	4	NR
3	1(0.05)	17	2	15
4	1(0.1)	42	5	37
5	1(0.2)	50	4	46
6	1(0.5)	65	2	63
7	1(1)	>99	3	97
8	2(1)	97	3	94

反应条件：苯甲醇 (1.0 mmol, 104 µL), Cs₂CO₃ (0.5 mmol, 163 mg), 甲苯 (2 ml), 于 N₂ 氛围下回流 26 h。所有转化率及产率均通过 GC 确定。

aReaction Condition: benzyl alcohol (1.0 mmol, 104 µL), Cs₂CO₃ (0.5 mmol, 163 mg), toluene (2 ml), reflux under N₂ for 26 h. All conversions and yields were determined by GC.
4. Mechanistic study

4.1 Reaction profiles NMR spectra in-situ

Condition (from bottom to top):
1) Benzyl alcohol (0.5 mmol, 52 µL), complex 1 (0.03 mmol, 25 mg), Cs₂CO₃ (0.5 mmol, 163 mg), 1 ml Toluene-d₈, 110°C, under N₂, 1 min.
2) Benzyl alcohol (0.5 mmol, 52 µL), complex 1 (0.03 mmol, 25 mg), Cs₂CO₃ (0.5 mmol, 163 mg), 1 ml Toluene-d₈, 110°C, under N₂, 10 min.
3) Benzyl alcohol (0.5 mmol, 52 µL), complex 1 (0.03 mmol, 25 mg), Cs₂CO₃ (0.5 mmol, 163 mg), 1 ml Toluene-d₈, 110°C, under N₂, 30 min.
4) Benzyl alcohol (0.5 mmol, 52 µL), complex 1 (0.03 mmol, 25 mg), Cs₂CO₃ (0.5 mmol, 163 mg), 1 ml Toluene-d₈, 110°C, under N₂, 1.0 h.
5) Benzyl alcohol (0.5 mmol, 52 µL), complex 1 (0.03 mmol, 25 mg), Cs₂CO₃ (0.5 mmol, 163 mg), 1 ml Toluene-d₈, 110°C, under N₂, 2.0 h.
4.2 NMR spectra of reaction mixture.

Figure S6. 1H NMR spectra of ADC reaction mixture for (a) 1 min, (b) 10 min, (c) 0.5 h, (d) 1.0 h, (e) 2.0 h (400.1 MHz, Toluene-d^8).
Figure S7. 1H NMR spectra (Chemical shift is negative) of ADC reaction mixture for (a) 1 min, (b) 10 min, (c) 0.5 h, (d) 1.0 h, (e) 2.0 h (400.1 MHz, Toluene-d_8).

Figure S8. 31P NMR spectra of ADC reaction mixture for (a) 1 min, (b) 10 min, (c) 0.5 h, (d) 1.0 h, (e) 2.0 h (162.0 MHz, Toluene-d_8).
4.3 HR-MS results of reaction mixture.

Chemical Formula: C_{33}H_{33}N_{3}O_{2}PRu^+
Exact Mass: 636.1348
Molecular Weight: 635.6772
Found: 636.1283

![HR-MS result of reaction mixture.](image)

Figure S9. HR-MS result of reaction mixture.

Chemical Formula: C_{26}H_{27}N_{3}OPRu^+
Exact Mass: 530.0930
Molecular Weight: 529.5553
Found: 530.0772
ESI^+

![HR-MS result of reaction mixture.](image)

Figure S10. HR-MS result of reaction mixture.
4.4 Control experiments about Tishchenko coupling of benzaldehyde to benzyl Benzoate.

Scheme S1. Cs$_2$CO$_3$ catalyzed Tishchenko coupling of benzaldehyde to benzyl Benzoate.

A Schlenk tube was loaded with Cs$_2$CO$_3$ (0.5 mmol, 163 mg), anhydrous and anaerobic toluene (2 mL), and benzyl aldehyde (1.0 mmol, 101 µL). The mixture was heated to 110 °C and stirred for 26 h. At the end of reaction, the mixture was cooled to room temperature and diluted with 2 mL dichloromethane and filtered with Celite. The filtrate was evaporated to remove organic solvents. Dibromomethane (0.5 mmol, 35 µL) was added to the reaction mixture as internal standard. An aliquot of mixture was taken out, and subjected to NMR analysis with CDCl$_3$ as solvent. Yield of benzyl benzoate: 0%. The same reaction was repeated in the presence of complex 1. NMR yield of benzyl benzoate: 47%.

Scheme S2. Cs$_2$CO$_3$ catalyzed Tishchenko coupling of benzaldehyde to benzyl Benzoate in the presence of benzyl alcohol.

In glovebox, a Schlenk tube was loaded with Cs$_2$CO$_3$ (0.5 mmol, 163 mg), anhydrous and anaerobic toluene (2 mL), and benzyl alcohol (1.0 mmol, 104 µL), benzyl aldehyde (1.0 mmol, 101 µL). The mixture was heated to 110 °C and stirred for 1 h, 2 h, 4 h, 8 h, 12 h, 26 h, respectively. After the reaction, the mixture was cooled to room temperature and diluted with 2 mL dichloromethane and filtered with Celite. After evaporated to remove organic solvents, dibromomethane (1.0 mmol, 70 µL) was added to the reaction mixture as internal standard. An aliquot of mixture was taken out, and subjected to NMR analysis with CDCl$_3$ as solvent. NMR yields of benzyl benzoate were illustrated in Table S8.

Scheme S3. Complex 1/Cs$_2$CO$_3$ catalyzed Tishchenko coupling of benzaldehyde to benzyl Benzoate in the presence of benzyl alcohol.

In glovebox, a Schlenk tube was loaded with Cs$_2$CO$_3$ (0.5 mmol, 163 mg), complex 1 (1% mol, 8.3 mg), anhydrous and anaerobic toluene (2 mL), and benzyl alcohol (1.0 mmol, 104 µL), benzyl aldehyde (1.0 mmol, 101 µL). The mixture was heated to
110 °C and stirred for 1 h, 2 h, 4 h, 8 h, 12 h, 26 h, respectively. After the reaction, the mixture was cooled to room temperature and diluted with 2 mL dichloromethane and filtered with Celite. After evaporated to remove organic solvents, dibromomethane (1.0 mmol, 70 µL) was added to the reaction mixture as internal standard. An aliquot of mixture was taken out, and subjected to NMR analysis with CDCl₃ as solvent. NMR yields of benzyl benzoate were illustrated in Table S9.
Table S8. Cs$_2$CO$_3$ Catalyzed Tishchenko Coupling of Benzaldehyde to Benzyl Benzoate in the Presence of Benzyl Alcohola.

entry	base	time (h)	residual alcohol (%)	yield of ester (%)
1	Cs$_2$CO$_3$	1	98	7
2	Cs$_2$CO$_3$	2	97	12
3	Cs$_2$CO$_3$	4	98	22
4	Cs$_2$CO$_3$	8	98	29
5	Cs$_2$CO$_3$	12	96	36
6	Cs$_2$CO$_3$	26	98	42

aReaction Condition: benzyl aldehyde (1.0 mmol, 101 µL), benzyl alcohol (1.0 mmol, 104 µL), Cs$_2$CO$_3$ (0.5 mmol, 163 mg), toluene (2 ml). Yield determined by 1H NMR using dibromomethane as an internal standard.
Table S9. Complex 1/Cs$_2$CO$_3$ Catalyzed Dehydrogenative Coupling of Benzyl Alcohol in the Presence of Benzaldehyde a.

entry	cat. (mol %)	base	time (h)	residual alcohol (%)	yield of ester (%)
1	1(1)	Cs$_2$CO$_3$	1	84	49
2	1(1)	Cs$_2$CO$_3$	2	74	51
3	1(1)	Cs$_2$CO$_3$	4	70	58
4	1(1)	Cs$_2$CO$_3$	8	66	67
5	1(1)	Cs$_2$CO$_3$	12	34	74
6	1(1)	Cs$_2$CO$_3$	26	13	90

aReaction Condition: benzyl aldehyde (1.0 mmol, 101 µL), benzyl alcohol (1.0 mmol, 104 µL), Cs$_2$CO$_3$ (0.5 mmol, 163 mg), complex 1 (1% mol, 8.3 mg), toluene (2 ml). Yield determined by 1H NMR using dibromomethane as an internal standard.
Figure S11. Reaction Rate of Benzyl Alcohol with Benzaldehyde in the Presence of Catalyst 1 and in the Absence of Catalyst 1.
5. NMR spectra of substrates

5.1 Characterization Data of esters

benzyl benzoate (3a). 1H NMR (CDCl$_3$, 400.1 MHz) δ 8.01 (m, 2H), 7.49 (m, 1H), 7.3-7.4 (m, 7H), 5.30 (s, 2H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 166.47, 136.25, 133.14, 130.28, 129.83, 128.73, 128.51, 128.36, 128.30, 66.77.

4-methoxybenzyl 4-methoxybenzoate (3b). 1H NMR (CDCl$_3$, 400.1 MHz) δ 8.02 (d, $J = 8.9$ Hz, 2H), 7.39 (d, $J = 8.7$ Hz, 2H), 6.92 (d, $J = 5.7$ Hz, 2H), 6.90 (d, $J = 5.9$ Hz, 2H), 5.28 (s, 2H), 3.84 (s, 3H), 3.81 (s, 3H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.21, 162.31, 158.52, 130.64, 128.95, 127.35, 121.60, 112.88, 112.52, 65.18, 54.34, 54.21.

4-methylbenzyl 4-methylbenzoate (3c). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.87 (d, $J = 7.9$ Hz, 2H), 7.25 (d, $J = 7.1$ Hz, 2H), 7.14–7.08 (m, 4H), 5.22 (s, 2H), 2.30 (s, 3H), 2.27 (s, 3H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.52, 142.59, 136.97, 132.15, 128.69, 128.21, 128.01, 127.27, 126.44, 65.44, 20.62, 20.18.

4-(trifluoromethyl)benzyl 4-(trifluoromethyl)benzoate (3d). 1H NMR (CDCl$_3$, 400.1 MHz) δ 8.12 (d, $J = 8.1$ Hz, 2H), 7.65 (d, $J = 8.2$ Hz, 2H), 7.59 (d, $J = 8.1$ Hz, 2H), 7.49 (d, $J = 8.0$ Hz, 2H), 5.37 (s, 2H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 164.03, 138.53, 133.75 (q, $J = 32.7$ Hz), 131.94, 129.64 (q, $J = 32.6$ Hz), 129.11, 127.26, 124.66 (q, $J = 3.8$ Hz), 124.51 (q, $J = 3.7$ Hz), 122.95 (d, $J = 272.2$ Hz), 122.55 (d, $J = 272.7$ Hz), 65.22.

4-chlorobenzyl 4-chlorobenzoate (3e). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.99 (d, $J = 8.6$ Hz, 2H), 7.42 (d, $J = 8.6$ Hz, 2H), 7.37 (m, 4H), 5.31 (s, 2H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.48, 139.68, 134.33, 134.30, 131.10, 129.69, 128.87, 128.81, 128.37, 66.14.

4-fluorobenzyl 4-fluorobenzoate (3f). 1H NMR (CDCl$_3$, 400.1 MHz) δ 8.1 (m, 2H), 7.4 (m, 2H), 7.1 (m, 4H), 5.3 (s, 2H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 164.82 (d, $J = 254.2$ Hz), 164.36, 161.68 (d, $J = 247.0$ Hz), 131.21 (d, $J = 9.3$ Hz), 130.72 (d, $J = 3.2$ Hz), 129.23 (d, $J = 8.3$ Hz), 125.23 (d, $J = 3.0$ Hz), 114.64, 114.42, 65.09.

3-chlorobenzyl 3-chlorobenzoate (3g). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.98 (t, $J = 1.8$ Hz, 1H), 7.89 (m, 1H), 7.48 (m, 1H), 7.39 – 7.30 (m, 2H), 7.26 (t, $J = 1.3$ Hz, 2H), 7.20 (s, 1H), 5.27 (s, 2H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 164.05, 136.59, 133.59, 133.52, 132.22, 130.53, 128.95, 128.76, 128.75, 127.57, 127.27, 126.84, 125.27, 65.15.

3-fluorobenzyl 3-fluorobenzoate (3h). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.90 – 7.84 (m, 1H), 7.75 (m, 1H), 7.43 (td, $J = 8.0$, 5.6 Hz, 1H), 7.40 – 7.33 (m, 1H), 7.31 – 7.24 (m, 1H), 7.21 (d, $J = 7.6$ Hz, 1H), 7.15 (d, $J = 9.4$ Hz, 1H), 7.05 (td, $J = 8.4$, 2.1 Hz, 1H), 5.36 (s, 2H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 164.10 (d, $J = 3.1$ Hz), 161.86 (d, $J = 246.6$ Hz), 161.53 (d, $J = 247.3$ Hz), 137.15 (d, $J = 7.4$ Hz), 130.99 (d, $J = 7.5$ Hz), 129.21 (d, $J = 8.2$ Hz), 129.07 (d, $J = 7.8$ Hz), 124.43 (d, $J = 3.1$ Hz), 122.54 (d, $J = 3.0$ Hz), 119.24 (d, $J = 21.3$ Hz), 115.57 (d, $J = 23.1$ Hz), 114.25 (d, $J = 21.1$ Hz), 113.93 (d, $J = 22.0$ Hz), 65.11 (d, $J = 1.9$ Hz).

2-methylbenzyl 2-methylbenzoate (3i). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.85 (d, $J =
8.0 Hz, 1H), 7.40 – 7.26 (m, 2H), 7.14 (m, 5H), 5.26 (s, 2H), 2.52 (s, 3H), 2.33 (s, 3H). 13C NMR (CDCl3, 100.6 MHz) δ 166.28, 139.38, 135.95, 133.02, 131.02, 130.69, 129.63, 129.35, 128.37, 128.23, 127.46, 125.01, 124.68, 63.88, 20.77, 17.98.

2-chlorobenzyl 2-chlorobenzoate (3j). 1H NMR (CDCl3, 400.1 MHz) δ 8.02 (m, 1H), 7.52 – 7.47 (m, 1H), 7.40 – 7.32 (m, 4H), 7.21 (m, 2H), 5.40 (s, 2H). 13C NMR (CDCl3, 100.6 MHz) δ 165.17, 135.01, 132.71, 132.09, 131.98, 128.89, 128.76, 128.70, 128.65, 128.57, 128.47, 127.38, 125.86, 63.00.

3-phenylpropyl 3-phenylpropanoate (3m). 1H NMR (CDCl3, 400.1 MHz) δ 7.30 (m, 4H), 7.26 – 7.14 (m, 6H), 4.11 (t, J = 6.5 Hz, 2H), 2.98 (t, J = 7.8 Hz, 2H), 2.70 – 2.55 (m, 4H), 2.03 – 1.88 (m, 2H). 13C NMR (CDCl3, 100.6 MHz) δ 171.91, 140.15, 139.48, 127.47, 127.39, 127.36, 127.25, 125.23, 124.96, 62.78, 34.83, 31.10, 29.94, 29.13.

pyridin-3-ylmethyl nicotinate (3o). 1H NMR (CDCl3, 400.1 MHz) δ 9.08 (d, 1H, J = 4.0 Hz), 8.78 (d, 1H, J = 8.0 Hz), 8.67 (s, 1H), 8.52 (d, 1H, J = 4.0 Hz), 8.28 (m, 1H), 7.54 (m, 2H), 7.40 (m, 1H), 5.38 (s, 2H). 13C NMR (CDCl3, 100.6 MHz) δ 163.91, 152.72, 149.93, 148.46, 148.32, 136.15, 135.58, 130.39, 124.58, 122.74, 122.37, 63.46.

furan-3-ylmethyl furan-3-carboxylate (3p). 1H NMR (CDCl3, 400.1 MHz) δ 7.94 (m, 1H), 7.45 (m, 1H), 7.37 – 7.28 (m, 2H), 6.67 (m, 1H), 6.40 (m, 1H), 5.08 (s, 2H). 13C NMR (CDCl3, 100.6 MHz) δ 161.97, 146.86, 142.74, 142.41, 140.67, 119.38, 118.20, 109.63, 108.80, 56.71.

thiophen-3-ylmethyl thiophene-3-carboxylate (3q). 1H NMR (CDCl3, 400.1 MHz) δ 8.05 (m, 1H), 7.47 (m, 1H), 7.31 – 7.20 (m, 3H), 7.08 (m, 1H), 5.25 (s, 2H). 13C NMR (CDCl3, 100.6 MHz) δ 161.50, 135.83, 132.45, 131.93, 126.93, 126.61, 125.22, 125.02, 123.33, 60.47.

thiophen-2-ylmethyl thiophene-2-carboxylate (3r). 1H NMR (CDCl3, 400.1 MHz) δ 7.82 (m, 1H), 7.56 (m, 1H), 7.34 (m, 1H), 7.17 (d, J = 3.3 Hz, 1H), 7.09 (m, 1H), 7.01 (m, 1H), 5.48 (s, 2H). 13C NMR (CDCl3, 100.6 MHz) δ 160.9, 136.7, 132.8, 132.4, 131.7, 127.4, 126.8, 126.0, 125.8, 60.0.

acetophenone (3s). 1H NMR (DMSO-d6, 400.1 MHz) δ 8.01 – 7.87 (m, 2H), 7.67 – 7.61 (m, 1H), 7.53 (m, 2H), 2.58 (s, 3H). 13C NMR (CDCl3, 100.6 MHz) δ 197.21, 136.07, 132.10, 127.28, 25.57.

2-methoxybenzyl 4-methoxybenzoate (4ba). 1H NMR (CDCl3, 400.1 MHz) δ 8.05 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 7.4 Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 8.7 Hz, 3H), 5.40 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H). 13C NMR (CDCl3, 100.6 MHz) δ 165.27, 162.28, 156.42, 130.69, 128.31, 128.25, 123.64, 121.80, 119.38, 112.53, 109.40, 60.83, 54.41, 54.38.

4-(trifluoromethyl)benzyl 4-methoxybenzoate (4bb). 1H NMR (CDCl3, 400.1 MHz) δ 8.04 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.56 (d, J = 7.9 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 5.39 (s, 2H), 3.87 (s, 3H). 13C NMR (CDCl3, 100.6 MHz) δ 165.99, 163.63, 140.34, 131.80, 130.59 – 129.93 (m), 128.09 – 127.97 (m), 125.55 (q, J = 3.8 Hz), 124.06 (q, J = 271.9 Hz), 122.09, 113.74, 65.43, 55.47.

4-methoxybenzyl 4-(trifluoromethyl)benzoate (4bb’). 1H NMR (CDCl3, 400.1 MHz) δ 8.16 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 6.93 (d, J
= 8.7 Hz, 2H), 5.33 (s, 2H), 3.82 (s, 3H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.32, 159.82, 134.43 (q, $J = 32.5$ Hz), 133.47, 130.29 – 130.27 (m), 130.08, 127.64, 125.39 (q, $J = 3.8$ Hz), 123.63 (q, $J = 272.8$ Hz), 114.04, 67.16, 55.32.

2-chlorobenzyl 4-methoxybenzoate (4bc). 1H NMR (CDCl$_3$, 400.1 MHz) δ 8.02 (d, $J = 8.9$ Hz, 2H), 7.51 – 7.44 (m, 1H), 7.40 – 7.35 (m, 1H), 7.26 – 7.21 (m, 2H), 6.89 (d, $J = 9.0$ Hz, 2H), 5.41 (s, 2H), 3.82 (s, 3H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.99, 163.53, 134.00, 131.82, 131.76, 129.72, 129.60, 129.44, 126.91, 122.32, 113.70, 63.79, 55.47.

2-methylpentyl 4-methoxybenzoate (4bd). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.99 (d, $J = 8.9$ Hz, 2H), 6.91 (d, $J = 8.9$ Hz, 2H), 4.22 – 4.01 (m, 2H), 3.83 (s, 3H), 1.97 – 1.82 (m, 1H), 1.48 – 1.29 (m, 4H), 1.00 (d, $J = 6.8$ Hz, 3H), 0.91 (t, $J = 7.1$ Hz, 3H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.46, 162.22, 130.51, 121.98, 112.55, 68.59, 54.40, 34.72, 31.46, 18.99, 16.00, 13.27.

2-ethylbutyl 4-methoxybenzoate (4be). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.92 (d, $J = 8.9$ Hz, 2H), 6.84 (d, $J = 8.8$ Hz, 2H), 4.15 (d, $J = 5.8$ Hz, 2H), 3.78 (s, 3H), 1.58 (m, 1H), 1.44 – 1.30 (m, 4H), 1.00 (d, $J = 6.8$ Hz, 3H), 0.87 (t, $J = 7.5$ Hz, 6H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 166.54, 163.25, 131.53, 123.02, 113.58, 66.66, 55.42, 40.55, 23.54, 11.15.

Neopentyl 4-methoxybenzoate (4bf). 1H NMR (CDCl$_3$, 400.1 MHz) δ 8.01 (d, $J = 9.0$ Hz, 2H), 6.92 (d, $J = 9.0$ Hz, 2H), 3.98 (s, 2H), 3.86 (s, 3H), 1.03 (s, 9H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.38, 162.24, 130.49, 121.95, 112.56, 72.91, 54.39, 30.59, 25.58.

Isopentyl 4-methoxybenzoate (4bg). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.99 (d, $J = 8.9$ Hz, 2H), 6.91 (d, $J = 8.9$ Hz, 2H), 4.32 (t, $J = 6.8$ Hz, 2H), 3.83 (s, 3H), 1.79 (m, 1H), 1.65 (q, $J = 6.8$ Hz, 2H), 0.98 (s, 3H), 0.96 (s, 3H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.45, 162.22, 130.51, 121.95, 112.53, 62.32, 54.39, 36.46, 24.21, 21.51.

Methyl 4-methoxybenzoate (4bh). 1H NMR (CDCl$_3$, 400.1 MHz) δ 7.99 (d, $J = 8.8$ Hz, 2H), 6.91 (d, $J = 8.8$ Hz, 2H), 3.88 (s, 3H), 3.85 (s, 3H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.83, 162.28, 130.55, 121.57, 112.56, 54.38, 50.83.

2-ethylbutyl 4-(trifluoromethyl)benzoate (4bj). 1H NMR (CDCl$_3$, 400.1 MHz) δ 8.15 (d, $J = 8.1$ Hz, 2H), 7.71 (d, $J = 8.2$ Hz, 2H), 4.29 (d, $J = 5.7$ Hz, 2H), 1.81 – 1.59 (m, 1H), 1.46 (m, 4H), 0.96 (t, $J = 7.5$ Hz, 6H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 165.51, 134.32 (q, $J = 32.5$ Hz), 129.93 – 129.91 (m), 129.04, 125.40 (q, $J = 3.8$ Hz), 123.65 (q, $J = 272.7$ Hz), 67.54, 40.44, 23.48, 11.11.

cyclohexyl 4-methoxybenzoate (4bk). 1H NMR (CDCl$_3$, 400.1 MHz) δ 8.00 (d, $J = 8.9$ Hz, 2H), 6.91 (d, $J = 8.9$ Hz, 2H), 5.00 (m, 1H), 3.85 (s, 3H), 2.01 – 1.85 (m, 2H), 1.79 (m, 2H), 1.57 (m, 3H), 1.49 – 1.29 (m, 3H). 13C NMR (CDCl$_3$, 100.6 MHz) δ 164.75, 162.13, 130.49, 122.44, 112.46, 71.63, 54.39, 30.67, 24.49, 22.67.
5.2 NMR spectra of self-esters

![NMR spectra](image)

Figure S12. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of benzyl benzoate (3a).

![NMR spectra](image)

Figure S13. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of benzyl benzoate (3a).
Figure S14. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 4-methoxybenzyl 4-methoxybenzoate (3b).

Figure S15. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 4-methoxybenzyl 4-methoxybenzoate (3b).
Figure S16. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 4-methylbenzyl 4-methylbenzoate (3c).

Figure S17. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 4-methylbenzyl 4-methylbenzoate (3c).
Figure S18. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 4-(trifluoromethyl) benzyl 4-(trifluoromethyl) benzoate (3d).

Figure S19. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 4-(trifluoromethyl) benzyl 4-(trifluoromethyl) benzoate (3d).
Figure S20. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 4-chlorobenzyl 4-chlorobenzoate (3e).

Figure S21. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 4-chlorobenzyl 4-chlorobenzoate (3e).
Figure S22. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 4-fluorobenzyl 4-fluorobenzoate (3f).

Figure S23. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 4-fluorobenzyl 4-fluorobenzoate (3f).
Figure S24. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 3-chlorobenzyl 3-chlorobenzoate (3g).

Figure S25. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 3-chlorobenzyl 3-chlorobenzoate (3g).
Figure S26. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 3-fluorobenzyl 3-fluorobenzoate (3h).

Figure S27. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 3-fluorobenzyl 3-fluorobenzoate (3h).
Figure S28. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-methylbenzyl 2-methylbenzoate (3i).

Figure S29. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 2-methylbenzyl 2-methylbenzoate (3i).
Figure S30. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-chlorobenzyl 2-chlorobenzoate (3j).

Figure S31. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 2-chlorobenzyl 2-chlorobenzoate (3j).
Figure S32. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 3-phenylpropyl 3-phenylpropanoate (3m).

Figure S33. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 3-phenylpropyl 3-phenylpropanoate (3m).
Figure S34. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of pyridin-3-ylmethyl nicotinate (3o).

Figure S35. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of pyridin-3-ylmethyl nicotinate (3o).
Figure S36. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of furan-3-ylmethyl furan-3-carboxylate (3p).

Figure S37. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of furan-3-ylmethyl furan-3-carboxylate (3p).
Figure S38. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of thiophen-3-ylmethyl thiophene-3-carboxylate (3q).

Figure S39. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of thiophen-3-ylmethyl thiophene-3-carboxylate (3q).
Figure S40. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of thiophen-2-ylmethyl thiophene-2-carboxylate (3r).

Figure S41. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of thiophen-2-ylmethyl thiophene-2-carboxylate (3r).
Figure S42. 1H NMR spectrum of (400.1 MHz, DMSO-d_6) of acetophenone (3x).

Figure S43. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of acetophenone (3x).
5.3 NMR spectra of cross-esters

Figure S44. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-methoxybenzyl 4-methoxybenzoate (4ba).

Figure S45. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 2-methoxybenzyl 4-methoxybenzoate (4ba).
Figure S46. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 4-(trifluoromethyl)benzyl 4-methoxybenzoate (4bb).

Figure S47. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 4-(trifluoromethyl)benzyl 4-methoxybenzoate (4bb).
Figure S48. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 4-methoxybenzyl 4-(trifluoromethyl) benzoate (4bb').

Figure S49. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 4-methoxybenzyl 4-(trifluoromethyl) benzoate (4bb').
Figure S50. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-chlorobenzyl 4-methoxybenzoate (4bc).

Figure S51. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 2-chlorobenzyl 4-methoxybenzoate (4bc).
Figure S52. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-methylpentyl 4-methoxybenzoate (4bd).

Figure S53. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 2-methylpentyl 4-methoxybenzoate (4bd).
Figure S54. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-ethylbutyl 4-methoxybenzoate (**4be**).

Figure S55. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 2-ethylbutyl 4-methoxybenzoate (**4be**).
Figure S56. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of neopentyl 4-methoxybenzoate (4bf).

Figure S57. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of neopentyl 4-methoxybenzoate (4bf).
Figure S58. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of isopentyl 4-methoxybenzoate (4bg).

Figure S59. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of isopentyl 4-methoxybenzoate (4bg).
Figure S60. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of methyl 4-methoxybenzoate (4bh).

Figure S61. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of methyl 4-methoxybenzoate (4bh).
Figure S62. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-ethylbutyl 4-(trifluoromethyl) benzoate (4bj).

Figure S63. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of 2-ethylbutyl 4-(trifluoromethyl) benzoate (4bj).
Figure S64. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of cyclohexyl 4-methoxybenzoate (4bk).

Figure S65. 13C NMR spectrum of (100.6 MHz, CDCl$_3$) of cyclohexyl 4-methoxybenzoate (4bk).
5.4 Typical 1H NMR (CDCl$_3$, 400.1 MHz) spectra obtained for the substrate scope

Figure S66. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of naphthalen-2-ylmethyl 2-naphthoate (3n).

Figure S67. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of hexyl hexanoate (3s).
Figure S68. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of octyl octanoate (3t).

Figure S69. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of dodecyl dodecanoate (4u).
Figure S70. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-methylpentyl 2-methylpentanoate (3v).

Figure S71. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-methylpentyl 2-methylpentanoate (4w).
Figure S72. 1H NMR spectrum of (400.1 MHz, CDCl$_3$) of 2-ethylbutyl benzoate (4bi).