Sequence-specific minimizers via polar sets

Hongyu Zheng, Carl Kingsford and Guillaume Marçais*

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Minimizers are efficient methods to sample k-mers from genomic sequences that unconditionally preserve sufficiently long matches between sequences. Well-established methods to construct efficient minimizers focus on sampling fewer k-mers on a random sequence and use universal hitting sets (sets of k-mers that appear frequently enough) to upper bound the sketch size. In contrast, the problem of sequence-specific minimizers, which is to construct efficient minimizers to sample fewer k-mers on a specific sequence such as the reference genome, is less studied. Currently, the theoretical understanding of this problem is lacking, and existing methods do not specialize well to sketch specific sequences.

Results: We propose the concept of polar sets, complementary to the existing idea of universal hitting sets. Polar sets are k-mer sets that are spread out enough on the reference, and provably specialize well to specific sequences. Link energy models how well spread out a polar set is, and with it, the sketch size can be bounded from above and below in a theoretically sound way. This allows for direct optimization of sketch size. We propose efficient heuristics to construct polar sets, and via experiments on the human reference genome, show their practical superiority in designing efficient sequence-specific minimizers.

Availability and implementation: A reference implementation and code for analyses under an open-source license are at https://github.com/kingsford-group/polarset.

Contact: gmarcais@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
offer only modest improvements on sequences of interest such as reference genomes (Zheng et al., 2020).

The current theory for minimizers with low density in average is tightly linked to the theory of universal hitting sets (UHS) (Marçais et al., 2018; Orenstein et al., 2016). As the name suggests, a UHS is a set of k-mers that ‘hits’ every w-long window of every possible sequence (hence the universality; it is an unavoidable set of k-mers). Universal hitting sets of small size generate minimizers with a provable upper-bound on their density, meaning the number of selected locations is upper bounded. Universal hitting sets are less useful in the sequence-specific case as the requirement to hit every window of every sequence is too strong, and UHSs are too large to provide a meaningful upper-bound on the density in the sequence-specific case. New theoretical tools are needed to analyze the sequence-specific case.

Frequency-based orders are examples of sequence-specific minimizers (Chikhi et al., 2016; Jain et al., 2020b). In these constructions, k-mers that occur less frequently in the sequence compare less than k-mers that occur more frequently. The intuition is to select rare k-mers as they should be spread apart in the sequence, hence giving a sparse sampling. This intuition is only partially correct. First, there is no theoretical guarantee that a frequency-based order gives low-density minimizers, and there are many theoretical counter-examples. Second, in practice, frequency-based orders often give minimizers with lower density, but not always. For example, Winnowmap (Jain et al., 2020b) uses a two-tier classification (very frequent versus less frequent k-mers) as it performs better than an order strictly following frequency of occurrence.

Another approach to sequence-specific minimizers is to start from a UHS and to remove as many k-mers from U as long as it still hits every w-long window of the sequence of interest (DeBlasio et al., 2019). Because this procedure starts with a UHS that is not related to the sequence, the amount of possible improvement in density is limited. In addition, given the exponential growth in size of the UHS with k, current methods are computationally limited to \(k \leq 15 \), which is limiting in many applications.

The construction proposed here takes a different approach and introduces polar sets. The polar sets concept can be seen as complementary to the universal hitting sets: while a UHS is a set of k-mers that intersects with every w-long window at least once, a polar set is a set of k-mers that intersect with any window at most once. The name ‘polar set’ is an analogy to a set of polar opposite magnets that cannot be too close to one another. That is, our construction builds upon sets of k-mers that are sparse in the sequence of interest, and consequently the minimizers derived from these polar sets have provably tight bounds on their density. Our main contribution is Theorem 1, which gives an upper bound and a lower bound on the expected density (over inherent randomness in the construction) obtained by a minimizer created from a polar set. These bounds are expressed using the ‘total link energy’ of the polar set on the given sequence. The link energy is a new concept that measures how well spread apart the k-mers of the polar sets are; the higher the energy, the more spread apart the k-mers are in the given sequence. We show that the link energy is almost exactly the expected density improvement by using a minimizer created from the polar set compared to a random minimizer.

In the following sections, we also show that the problem of finding a polar set with maximum total link energy is, unsurprisingly, NP-hard. We then describe heuristics to create polar sets with high total link energy. Finally, we show that our implementation of these heuristics generates minimizers that have specific density on the human reference genome much lower than any other previous methods, and, for some parameter choices, relatively close to the theoretical minimum.

2 Materials and methods

2.1 Overview

We set the stage by defining important terms and concepts, then giving an overview of the main results, which are then proved formally in the following sections. The sequence \(S \) is a string on the alphabet \(\Sigma \) of size \(\sigma = |\Sigma| \). The parameters \(k \) and \(w \) define respectively the length of the k-mers and the window size. We assume that \(S \) is relatively long compared to these parameters: \(|S| \gg w + k \).

Definition 1. (Minimizer and Windows). A minimizer is characterized by \((w, k, \mathcal{O})\) where \(\mathcal{O} \) is a complete order of \(\mathbb{Z}^2 \). A window is a sequence of length \((w + k - 1)\) consisting of exactly \(w \) k-mers. Given a window as input, the minimizer outputs the location of the smallest k-mer according to \(\mathcal{O} \), breaking ties by preferring the leftmost k-mer.

The minimizer \((w, k, \mathcal{O})\) is applied to the sequence \(S \) by finding the position of the smallest k-mer in every window of \(S \). Because two consecutive windows in \(S \) have a large overlap, the same k-mer is often selected in these two windows, hence the minimizer returns a sampling of positions in the sequence \(S \). The specific density of the minimizer on \(S \) is defined as the number of selected positions over the length \(|S|\).

The density is between \(1/w \), because at least one k-mer in every window must be picked, and 1, because it is a sampling of the positions of \(S \). Therefore the goal is to find orders \(\mathcal{O} \) that have a density as close to \(1/w \) as possible. A minimizer with density \(1/w \) is a perfect minimizer. For simplicity, when stating the density of a minimizer we ignore any additive term that is \(o(1/w) \) (i.e. asymptotically negligible compared to \(1/w \)).

A random minimizer is defined by choosing at random one of the permutations of all k-mers. The expected density of a random minimizer over a random string is \(2/(w + 1) \) (Roberts et al., 2004b; Schleimer et al., 2003; Zheng et al., 2020). Equivalently, the expected distance between adjacent selected k-mers is \((w + 1)/2 \). The random minimizers will serve as a baseline against which to compare.

Defining orders. For practical reasons, we define orders by defining a set \(U \) and considering orders that are compatible with \(U \): an order \(\mathcal{O} \) is compatible with \(U \) if for every element of \(U \) compares less than any element not in \(U \). That is, only the smallest elements for \(\mathcal{O} \) are specified (the elements of \(U \)) and a minimizer using an order compatible with \(U \) will preferentially select the elements of \(U \).

There exist many orders that are compatible with \(U \) as the relative order between the elements within \(U \) is not specified.

Universal hitting sets. A set \(U \) is a universal hitting set if for every one of \(2^{w+k-1} \) possible windows (recall \(\sigma \) is the size of the alphabet), it contains a k-mer from \(U \). In the average case, minimizers compatible with \(U \) have densities upper bounded by \((|U|/\sigma)^2 \), because only k-mers from the universal hitting set can be selected. Supplementary Section S2 provides a more detailed discussion of why this bound is provided by universal hitting sets does not always apply for sequence-specific minimizer analysis, and why universal hitting sets do not specialize well.

Short sequences. On a short random sequence (in a sense made precise by Lemma 1) most k-mers are unique (i.e. they occur only once in the sequence \(S \)). Therefore, it is likely that there is a set \(U \) of unique k-mers of \(S \) that are exactly \(w \) bases apart in \(S \), and a minimizer compatible with \(U \) is perfect. Unfortunately most sequences of interest (e.g. reference genomes) are too long, too repetitive and in general do not satisfy the hypothesis of Lemma 1. For most sequences it is not possible to find a set of ‘perfect seeds’ of k-mers spaced exactly \(w \) apart.

Polar sets. A polar set is a relaxed version of a perfect set: any pair of k-mers \(m_1 \) and \(m_2 \) from a polar set \(A \) is always more than \(w/2 \) bases apart in \(S \) (see the more general Definition 2). The intuition behind this definition is that for a minimizer compatible with \(A \), any k-mer from \(A \) selected by the minimizer is at distance \(\geq (w + 1)/2 \) from the previous and the next selected k-mer. Hence, k-mers selected from \(A \) are at least as sparse, and usually more sparse than k-mers selected using a random minimizer by expectation.

Section 2.2 gives a formal definition of the link energy of a polar set and Theorem 1 gives upper and lower bounds using this link energy for the density of a minimizer compatible with a polar set. This theorem shows that the link energy of the polar set \(A \) is a measure of
how much reduction in density is obtained by using a minimizer compatible with \(A \) rather than a random minimizer. Hence, designing a polar set with high link energy is a method to find minimizers with provably low density.

Section 2.3 introduces layered polar sets, which are an extension to polar sets, and builds heuristic methods to create such sets.

2.2 Polar sets and link energy

2.2.1 Key definitions

We now define polar sets, the key component for our proposed methods.

Definition 2. (Polar set). Given sequence \(S \) and parameters \((w, k, s)\) with \(0 \leq s < 1/2 \), a polar set \(A \) of slackness \(s \) is a set of \(k \)-mers such that every two \(k \)-mers in \(A \) appears at least \((1-s)w\) bases apart in \(S \).

This can be viewed as a complementary idea to the universal hitting sets or a relaxed form of perfect sets. As discussed in the introduction, a universal hitting set requires the set to hit every \(w \) consecutive \(k \)-mers at least once, while a polar set with \(s = 0 \) requires the set to hit every \(w \) consecutive \(k \)-mers at most once. A set of perfect seeds, if it exists, is both a polar set with zero slackness and a universal hitting set. See Figure 1 for a more concrete example.

The condition \(s < 1/2 \) is critical for our analysis. Specifically, this condition is required to obtain a lower bound on the specific density of compatible minimizers, not just an upper bound.

Definition 3. (Link energy). Given sequence \(S \) and parameters \((w, k, s)\) and a polar set \(A \), if two \(k \)-mers on \(S \) are \(l \leq w\) bases apart and are both in \(A \), they form a link with link energy \(2l/(w+1) - 1 \geq 0 \). The total link energy of \(A \) is the sum of link energy across all eligible pairs.

Any two \(k \)-mers from \(A \) in \(S \) must be more than \(w/2 \) bases apart, so two \(k \)-mers cannot form a link if there is a third \(k \)-mer from \(A \) between them. This means that only consecutive occurrences of polar \(k \)-mers can form links. With \(s = 0 \), the link energy is fixed to be \(2w/(w+1) - 1 = 1 - 2/(w+1) \approx 1 \) for each eligible pair, and the total link energy is approximately the number of pairs that form a link, which in turn is the number of \(k \)-mer pairs in the polar set that are exactly \(w \) bases away on \(S \).

In the following sections, we introduce and discuss the backbone of the polar set framework, which revolves around closer inspection of how a random minimizer works on a specific sequence, and drawing contrast between sequence-specific minimizers and non-sequence-specific minimizers. We use the term ‘non-sequence-specific minimizers’ to refer to constructions of minimizers that do not specifically target a certain sequence, but rather aim to minimize the expected specific density on a random string.

2.2.2 Perfect minimizer for short sequences

A perfect minimizer is a minimizer that achieves density of exactly \(1/w \). While the only known examples of perfect minimizers are in the asymptotic case where \(w \ll k \) (Marc¸ais et al., 2018), perfect sequence-specific minimizers exist with high probability for short sequences.

Lemma 1. If \(|S| < \sqrt{w} \sigma k^{3/2} \), with at least \(1 - \epsilon \) probability, a sequence of length \(|S|\) where each character is uniformly randomly selected has a perfect minimizer.

Proof. The optimal minimizer is constructed with fixed interval sampling. More specifically, we take every \(w \) \(k \)-mer in \(S \) and denote the resulting \(k \)-mer set \(U \), then construct a minimizer compatible with \(U \). The resulting minimizer is perfect if and only if the \(k \)-mers in \(U \) only appear in the selected locations. There are \(|S|/w\) selected locations and \((1 - 1/w)|S|\) locations not selected, and for each pair of selected and not selected locations, the \(k \)-mer at these two locations are identical with probability \(\sigma^{-k} \) (see Supplementary Section S1.1). By union bound, the probability that the sequence violates the polar set condition is at most \(|S|^2 \sigma^{-k} < \epsilon \), and the sequence has a perfect minimizer with probability at least \(1 - \epsilon \). \(\square \)

2.2.3 Context energy and energy savers

Contexts provide an alternative way to measure the density of a minimizer (Zheng et al., 2020). These play a central role on the analysis of polar sets.

Definition 4. (Charged Contexts). A context of \(S \) is a substring of length \((w+k)\), or equivalently \((w+1)\) consecutive \(k \)-mers, or equivalently two consecutive windows.

A context is charged if the minimizer selects a different \(k \)-mer in the first window than in the second window.

See top left of Figure 2 for examples of charged contexts. Intuitively, a charged context corresponds to the event that a new \(k \)-mer is picked, and counting picked \(k \)-mers is equivalent to counting charged contexts.

![Fig. 1](https://example.com/fig1.png)
Fig. 1. Comparing universal hitting sets, perfect seeds (compatible minimizers become perfect minimizers) and polar sets. Each block indicates a \(k \)-mer, and each segment indicates a window of length 5 \((w=5)\). To provide a better contrast with universal hitting sets, we show polar sets with slackness \(s = 0 \) (see Definition 2).

![Fig. 2](https://example.com/fig2.png)
Fig. 2. Examples for our argument for the polar set density bound with \(w = 5 \). Left top: Legend for a context, and when it is charged. Right top: Case for a singleton polar \(k \)-mer without links. In this case, \(L(S,A) = 0 \). Bottom: Case for three linked polar \(k \)-mers. Whatever the ordering between the three polar \(k \)-mers, two of the four contexts marked in blue will be charged. The link energy \(L(S,A) = 1/3 \): \(A \) and \(B \) are \(l = 3 \) bases away with energy \(2l/(w+1) - 1 = 0 \), \(B \) and \(C \) are \(l = 4 \) bases away with energy \(2l/(w+1) - 1 = 1/3 \).
Lemma 5. Given a context \(c \), define \(E(c) \) as the probability that \(c \) will be charged with a random minimizer (one with a random ordering of \(k \)-mers), which we call the energy of \(c \).

Lemma 3. The expected number of charged \(k \)-mers in \(S \) is at most \(E_0(S) \), where \(E_0(S) = \sum E(c) \) is the initial energy of \(S \) and the summation is over every context of \(S \).

This is proved by combining the linearity of expectation and Lemma 2. This implies that the total energy of a sequence is directly related to the specific density of random minimizers, which is number of picked locations in \(S \) divided by number of \(k \)-mers in \(S \). \(E(c) \) admits a simple formula:

Lemma 4. \(E(c) = 2/w(c) \) if the last \(k \)-mer in the context is unique, \(1/w(c) \) otherwise, where \(w(c) \) denotes the number of unique \(k \)-mers in \(c \).

Proof. If all \(k \)-mers in a context are unique, \(E(c) = 2/(w + 1) \) is guaranteed, which we call the baseline. If this holds for all windows, a random minimizer will have specific density of \(2/(w + 1) \), similar to applying a random minimizer to a random sequence. As lower \(w(c) \) only increases \(E(c) \), \(E(c) < 2/(w + 1) \) only if the last \(k \)-mer in \(c \) is not unique and there are over \((w + 1)/2 \) unique \(k \)-mers in the context.

Definition 5. A context \(c \) is called an energy saver if \(E(c) < 2/(w + 1) \), and its energy deficit is defined as \(2/(w + 1) - E(c) \). The energy deficit of \(S \), denoted \(D(S) \), is the total energy deficit across all energy savers:

\[
D(S) = \sum \text{max}(0, 2/(w + 1) - E(c)).
\]

In general, the value of \(D(S) \) is very small due to the fact that energy saver contexts (those with \(E(c) < 2/(w + 1) \)) are rare.

Lemma 5. For a random context, the probability that it is an energy saver is at most \(w \sigma^{-k} \).

Proof. In Supplementary Section S1.3, there are examples of sequences where energy saver contexts are abundant. An extreme scenario is when the sequence \(S \) has a period of \(w \), and has \(w \) distinct \(k \)-mers. In this case, all contexts become energy saver contexts. These scenarios are rare in practice.

Similarly, we can define energy spenders and energy surplus as follows:

Definition 6. A context \(c \) is called an energy spender if \(E(c) > 2/(w + 1) \), and its surplus is defined as \(E(c) - 2/(w + 1) \). The energy surplus of \(S \), denoted \(X(S) \), is the total energy surplus across all energy spenders:

\[
X(S) = \sum \text{max}(0, E(c) - 2/(w + 1)).
\]

Contexts with energy surpluses are more common than energy savers, but still fairly rare in a random sequence with suitable choice of \(w \) and \(k \).

Lemma 6. For a random context, the probability that it is an energy spender is at most \(w(w + 1) \sigma^{-k}/2 \).

Proof. In Supplementary Section S1.3

2.2.4 Density bounds with polar sets

With the proper tools, we now state the main theorem of the Polar Sets.

Theorem 1. Given a sequence \(S \) and a polar set \(A \) on \(S \), let \(E_0(S) \) be the initial energy of \(S \), \(D(S) \) be the total energy deficit, \(X(S) \) be the total energy surplus, and \(L(S, A) \) be the total link energy from the polar set. The expected number of selected \(k \)-mers over \(S \) for a random minimizer compatible with \(A \) is at most \(1 + E_0(S) + D(S) - L(S, A) \), and at least \(1 + E_0(S) - X(S) - L(S, A) \).

Proof. If all contexts do not contain a \(k \)-mer from \(A \), \(E(x) = E_0(x) \). Thus, we only need to consider the contexts that contain at least a \(k \)-mer from \(A \), which are split into continuous segments by the set of contexts not containing \(k \)-mers from \(A \).

If a segment only contains one \(k \)-mer from \(A \), there are exactly \((w + 1) \) contexts in this segment (see Fig. 2, upper right for an example). As each context now has energy at least \(2/(w + 1) \), the total energy from \((w + 1) \) contexts is at least \(2 \). However, \(E_0(x) \) across these contexts is exactly \(2 \) as exactly two contexts will be always charged (the first and last in the segment), and every other context will never be charged. This means such segments can be ignored in the upper bound analysis, as they can only decrease the total energy by \(\sum (E(x) - E_0(x)) \geq 0 \).

We now focus on the segments with more than one \(k \)-mer from \(A \) (see Fig. 2, bottom, for an example). Let \(n \) be the number of contexts from this segment, we have \(\sum E(x) \geq 2n/(w + 1) \) because we have assumed \(E(x) \geq 2/(w + 1) \) for every context. We next count the number of charged contexts, which is \(\sum E_0(x) \). Because every two \(k \)-mers in \(A \) are more than \(w/2 \) bases apart, for every \(k \)-mer \(m \) in \(A \), there is a window such that \(m \) is the only polar \(k \)-mer, and will be selected. Recall a context is charged if and only if a new \(k \)-mer is selected in its last window. Given that each of the \(d \) \(k \)-mers in \(A \) is selected, this corresponds to \(d \) charged contexts in the segment. However, there is an extra charged context: The last context \(c \) in the segment, of the last \(k \)-mer in \(A \) is the first \(k \)-mer of \(c \). In the second window of \(c \), a new \(k \)-mer outside \(A \) will be selected because being at the end of the segment, there are no more \(k \)-mers in \(A \) to choose from. Let \(d \) be the number of \(k \)-mers in \(A \) in this segment; we conclude that \(\sum E(x) = d + 1 \) regardless of the ordering, and \(\sum (E(x) - E_0(x)) \geq 2n/(w + 1) - d - 1 \).

Next, we calculate the total link energy. Recall the link energy is defined as \(2/(w + 1) - 1 \) for two polar \(k \)-mers \(l \leq w \) bases away. The total link energy is thus \(2 \sum l/(w + 1) - (\sum 1) \), summed across all \(k \)-mer links. The latter term is simply counting number of links, which resolves to \(d-1 \). The earlier term is summing up distance between adjacent \(k \)-mers in \(A \). As this is a segment where every two adjacent \(k \)-mers have a link, \(\sum l \) is the distance from the first \(k \)-mer in \(A \) to the last \(k \)-mer in \(A \). There are \(n \) contexts in the segment. The first \(k \)-mer in \(A \) is the last \(k \)-mer in the first context, and the last \(k \)-mer in \(A \) is the first \(k \)-mer in the last context. The first context and the last context are \(n-1 \) bases away. The first \(k \)-mer and the last \(k \)-mer in a context are \(w \) bases away. Thus, we have \(\sum l = n - 1 - w \).

Finally, we have the following, using \(S' \) to denote the sequence that contains the contexts in a segment:
Supplementary Section S2.4.

We will discuss the alternative definitions needed. Assuming no slackness, this means the number of links need to be a random sequence, and assume the slackness parameter

\[\text{slackness} \]

in expectation if a random minimizer, we can provably outperform random minimizers by previous layers. Formally:

\[L(S, A) = \sum (2j/(w + 1) - 1) \]

\[= 2(n - w - 1)/(w + 1) - (d - 1) \]

\[\leq \sum (E(x) - E_A(x)) \]

The summation is over each context in the segment. This inequality holds for every segment, and thus we have:

\[\sum E_A(x) = \sum E(x) + \sum (E_A(x) - E(x)) \]

\[\leq 1 + E_0(S) + D(S) - L(S, A). \]

As \(1 + E_0(S) \) is the expected number of selected \(k \)-mers with a completely random minimizer, we can provably perform random minimizers in expectation if \(L(S, A) > D(S) \). For a ballpark estimate, we assume \(S \) is a random sequence, and assume the slackness parameter \(s = 0 \) in construction of the polar set. In this setup, each link has exactly \(1 - 2/(w + 1) \approx 1 \) energy. As seen in Lemma 5, a context is an energy with probability \(w^{-s} \), and its deficit is at most \(2/(w + 1) - 1/w \approx 1/w \), meaning \(D(S) \approx w^{-s} \). This further means we need the number of links to be at least \(s^{1-|S|} \) to provably beat a random minimizer. On the other hand, ignoring the effect of \(D(S) \), in order to beat the specific density of a random minimizer by \(1/(w + 1) \), total link energy of \(s|S|/(w + 1) \) is needed. Assuming no slackness, this means the number of links need to be at least \(s|S|/(w - 1) \). Intuitively, \(s \) portion of the sequence needs to be covered by links between close enough \(k \)-mers in polar set.

A proper polar set requires \(s > 1/2 \) for the main theorem to hold. When \(s \leq 1/2 \), only the upper bound part of the theorem holds with an alternative definition of link energy. We will discuss the alternative definition in Section 2.3.4, and further discuss generalization of polar sets in Supplementary Section S2.4.

2.2.5 Hardness of optimizing polar sets

The link energy formulation of polar sets allows us to cast the problem in graph theoretical framework. Consider an undirected, weighted graph where every unique \(k \)-mer is a vertex. An edge connects two \(k \)-mers with the following: If these two \(k \)-mers ever appear within fewer than \(1 - s \) bases of each other in \(S \), the weight is \(-\infty \). Otherwise, the weight of this edge is the total link energy by selecting only those two \(k \)-mers, which might establish several links given each \(k \)-mer may appear in \(S \) multiple times. There can also be self-loops with weights, given a \(k \)-mer may appear close to itself on the reference sequence. The problem of finding optimal polar sets becomes the problem of finding an induced subgraph with maximum weight.

The general maximum induced subgraph problem is well known to be NP-hard via reduction from max-clique. In Supplementary Section S3, we provide an explicit proof that shows optimization of polar sets, even with an alphabet of three, is NP-Hard.

2.3 Constructing polar sets

In this section, we propose a practical extension to polar sets, and formally introduce our heuristics.

2.3.1 Layered polar sets

Assume we have already constructed a polar set \(A \) that covers some segments of the reference sequence. Here, covered means that every window contains a \(k \)-mer from the polar set, or equivalently, \(A \) acts as a universal hitting set on these segments.

Now, to cover the rest of the reference, we shall extend \(A \) so more \(k \)-mers become polar \(k \)-mers. It is natural to consider generating a polar set over the uncovered portion of the reference sequence, then merge this set with \(A \). This however leads to problems. Let \(A' \) be a polar set over the uncovered portion of the reference sequence. \(A \cup A' \) might not always be a valid polar set, because a \(k \)-mer \(m' \in A' \) may appear in the already-covered part of the reference sequence, and appear close to another \(k \)-mer \(m \in A \), thus violating the polar set condition for \(A \cup A' \).

On the other hand, the reason we set up the constraint for polar sets is to ensure that \(k \)-mers in the polar set will always be selected by any compatible minimizer. In other words, we want to ensure we know exactly the set of \(k \)-mers that will be selected. The issue was that \(m' \in A' \) might not always be selected by a compatible minimizer. However, from the perspective of constructing efficient minimizers, we do not need \(m' \) to be selected everywhere, as in some places the reference sequence is already covered with \(k \)-mers in \(A \). By forcing \(m < m' \) for any \(m \in A \), we ensure that \(m' \) will only be selected outside the segments covered by \(A \).

Applying this argument to all \(k \)-mers in \(A' \), we can essentially ignore the sequence segments already covered by \(A \) when constructing \(A' \), as long as the ordering is satisfied. This gives a way to progressively construct the layers of polar sets: at each layer we only need to consider regions of the reference sequence that are not yet covered by previous layers. Formally:

Definition 7A layered polar set is a list of sets of \(k \)-mers \(\{A_i\} \), for \(1 \leq i \leq m \). With slackness \(s \), the layered polar set condition is satisfied if for any \(k \)-mer in \(A_i \) for each of its appearance at location \(t \) in the reference sequence, either of the following holds:

- It is at least \((1 - s)w \) bases apart from any \(k \)-mer in \(\{A_1, A_2, \ldots, A_i\} \).

- It is covered: There are two \(k \)-mers in \(\{A_1, A_2, \ldots, A_i\} \) (importantly does not include \(A_i \)), appearing at location \(l \) and \(h \), satisfying \(l < t < h \) and \(h - l \leq w \).

Similarly, a compatible order for \(\{A_i\} \) is an order that places all \(k \)-mers from \(A_1 \) first in arbitrary order, then those in \(A_2 \), . . . , then those in \(A_m \), and finally those not in any of \(\{A_i\} \) in a random order. The link energy \(L(A_i, S) \) is similarly defined over the pairs of close \(k \)-mer appearances that are not covered. More formally:

Definition 8For a layered polar set, if two \(k \)-mers in the layered polar sets, not necessarily from the same layer, appear \(l \leq t \leq h \) bases apart in \(S \), and neither are covered, the link energy between them is \(2l/(w + 1) - 1 > 0 \). \(L(A_i, S) \) is the total link energy across all pairs.

These definitions of layered polar sets and link energy have two important properties. First the link energy is non-decreasing as more layers are added to the set. Second, an almost identical argument proves the same bounds for layered polar sets as for polar sets in Theorem 1. See Figure 3 for a concrete example of layered polar sets.

2.3.2 Polar set heuristic

We consider a simple heuristic to generate a polar set. The core idea is to select as many \(k \)-mers as possible from the set of \(k \)-mers that appear exactly \(w \) bases away from each other. We cannot select all of them as it may violate the polar set condition due to some \(k \)-mers appearing multiple times. Because reference sequences are long strings (in the range of billions of bases for mammalian genomes), we consider algorithms that scale well with the length of the reference sequence, preferably close to linear.
We construct layered polar sets with a similar algorithm. The properties of layered polar sets guarantee that new layers cannot decrease the final link energy of the polar set. We rerun the polar set heuristic multiple times, each time with a new random offset o. Each round is run with the current layers of polar sets, and the resulting polar set is added as a new layer. The algorithm for each layer is mostly identical to the single-layer version, with a few changes.

- When processing a k-mer, we skip all of its occurrences that are covered by existing layers of the polar set.
- We skip k-mers at non-covered locations t that are fewer than $(1 - s)w$ bases away from a k-mer in a previous layer. These k-mers cannot be in the layer without violating the layered polar set condition.
- At the end of each round, we remove all k-mers selected in the current layer that do not form a link with any k-mers.

We also gradually increase the threshold of k-mer frequency at each round to prioritize low frequency k-mers. In our experiments, we use a total of 7 rounds, with last two rounds being monotonic. The frequency threshold is set at the value to include 85% of locations of the reference in the first round, gradually increasing to 95% in the last round.

The slackness s is also a tunable parameter, which determines when a pair of k-mers is considered in collision. Lower value of s ensures the distance between adjacent polar k-mers are large and have higher link energy for every pair of linked k-mers, but results in smaller number of k-mers selected, implying fewer links. Higher value of s means larger polar sets covering more of the reference sequence and more links formed, but adjacent polar k-mers may be closer to each other resulting in lower energy per link.

In our experiments, we use a fixed slackness $s = 0.4$ after parameter search. This results in approximately 20% less efficient links (average link energy compared to theoretical maximum), but higher total link energy due to inclusion of more links. A more thorough parameter tuning might suggest a gradually increasing value of s between rounds.

2.3.4 Supporting data structures

Our heuristics require some data structures to operate efficiently both in theory and in practice.

Suffix array. In order to quickly index k-mers and obtain the list of occurrences of a k-mer, we precompute the suffix array, the inverse suffix array and the heights table (also known as the LCP array) of the reference sequence. All can be computed in linear time. This allows us to find the list of T locations that share the same k-mer as location t, in $O(T)$ time.

Linked blocks. The layered polar set property ensures that in any stretch of $w/2$ bases, at most one k-mer at one location is selected into any layer of the layered polar sets, excluding covered locations. We use a data structure called linked blocks to represent the set of these selected locations of k-mers. Let $b = \lfloor w/2 \rfloor$, we divide the locations in the reference sequence into b-long blocks, and use an array of length $|S|/b$ to represent these blocks. Each value in the array $G[b]$ is either -1, meaning there are no selected location within this block spanning location bh, $(b + 1)h$, or a non-negative integer j, indicating that the k-mer at location $bh + j$ is selected. With linked blocks we can do the following operation quickly:

Definition 9 $\text{SeekL}(t)$ returns the closest selected location to the left of t, up to w bases.

This is because we only need to query up to three blocks. Adding a location and removing a location also only involves a single block. Similarly we can define $\text{SeekR}(t)$. With this data structure, we can implement many critical operations in the aforementioned heuristics. The step of filtering k-mers, more specifically determining whether a k-mer collides with itself, is done using this data structure, in similar fashion to bucket sorting. By maintaining two linked blocks, one for the current layer and one for all previous layers, we can determine whether a location is covered by the previous layers, and list collisions on the current layer.

Algorithm 1 Pseudocode for Polar Set Heuristics

```plaintext
function POLARSET(S, w, k)
    Start with an empty set $A = \{\}$ and a random offset $o$
    Shuffle list of locations $t = o \mod w$ for $0 \leq t < |S|$ for each $t$ in the shuffled list and the $k$-mer $m_t$ at location $t$
        Skip if $m_t$ is filtered, or has been processed previously
        Obtain list $l$ of occurrences of $m_t$ via suffix array
        Obtain list of conflicting $k$-mers via linked blocks
        Remove all conflicting $k$-mers and add $m_t$ to the polar set $A$
    end for
    return $A$
end function
```
Calculating link energy. In the monotonic variant of our heuris-
tics, we need to calculate the total link energy before and after add-
ing a k-mer. In our implementation, we update the link energy of the
polar set as we add and remove locations to the linked blocks, using
the following alternative formula for link energy:
\[
L(A_1S) = 2A_{cov}((w+1) - A_{ele} - A_{seg}).
\]

Here, A_{cov} is the number of contexts that contain a k-mer from
the polar set, A_{ele} is the number of non-covered location of selected
k-mers, and A_{seg} is the number of continuous segments of windows
that contain a k-mer from the polar set. When adding and removing
a location to the linked blocks, the changes to these three values are
calculated using linked block primitives in constant time, so we can
update the link energy in constant overhead. In practice, the over-
head from maintaining these statistics is negligible. As a sanity
check, we see that when adding an isolated k-mer, A_{cov} increases
by $(w+1)$ and the other two values increase by 1, resulting in a net
link energy gain of zero, consistent with the original definition. We
can also compute the link energy of the polar k-mers in bottom part
of Figure 3 using this formula, where $A_{cov} = 13, A_{ele} = 3$ and
$A_{seg} = 1$, resulting in the total link energy of 1/3. In addition, this
definition of link energy extends to arbitrary sets of k-mers. In
Supplementary Section S2.4 we discuss this topic in more detail in
connection with universal hitting sets.

2.3.5 Time complexity analysis
We now analyze the time complexity of the layered polar sets heuris-
tics, assuming no monotonic rounds for now. Let n be the length of
the reference sequence, and assume a constant-sized alphabet. We
assume a word of constant size can hold an integer in $[0,n]$, and that
accessing an element in an array of length n takes constant time.
These conditions hold for human genomes and 64-bit machines. This
means the primitive operations on linked blocks take constant time,
and operations involving the suffix array also take constant time.

Consider a worst case scenario: By iterating k-mers that appear
exactly w bases away from each other, we iterate over all k-mers in
the reference sequence. Assume a k-mer m occurs T times in the
reference sequence. In filtering phase, we first fetch the list of T locations in $O(T)$
time using the suffix array, and we want to determine if there are two
elements whose difference is less than $(1 - s)w$. This can be done using
the linked blocks in $O(T)$ time. In the case of layered polar sets, we also
want to determine if each of the locations is covered by previous layers,
and if it is fewer than $(1 - s)w$ bases away from a location in a previ-
sous layer. As we use one linked block for all previous layers, this can be
done in $O(T)$ time. The filtering phase thus finishes in $O(T)$ time.

The main algorithm is split into three parts: detecting k-mers that
are close to m in the reference sequence, removing those k-mers
from the polar set, and adding m to the polar set. Detecting and list-
ing k-mers that are close to m takes $O(T)$ time, as each location
reports only four collisions at most, two to the left and two to the
right. Removing a k-mer that occurs T times takes $O(T^2)$ time, but
since each k-mer is only added and removed once in one round, this
amortizes to $O(T)$ time. Adding m to the polar set also takes $O(T)$
time. The singleton detection step (removing k-mers forming no links)
also takes $O(T)$ time for checking if m is a singleton.

As each k-mer is only visited once in the main algorithm, and in
the worst case scenario every k-mer in S is visited, we conclude that
the layered polar set heuristics runs in $\sum O(T) = O(n)$ time for
each layer, and as a special case the (non-layered) polar set heuristics
runs in $O(n)$. The monotonic variant of the heuristic can in theory
run in $O(n^2)$ time, but it is not significantly slower in practice.

3 Results
All the experiments are run using the human reference genome
hg38. To facilitate the performance comparison across a range of
parameter values of w and k, we report the density factor (Marcáis et al., 2017) instead of the density. The density factor is the density
multiplied by $(w + 1)$. Regardless of the value of w, the random
minimizer has an expected density factor of two and a perfect min-
imizer has a density factor of ≈ 1.

3.1 Energy deficit and energy surplus
First, we calculate the average energy deficit $X(S)/|S|$ and average
energy surplus $D(S)/|S|$. The results are in Figure 4A.

The reference genome is more repetitive than a purely random
sequence. However, empirically the energy surplus and deficit are
still small, well below 0.01 measured in density factor, implying a
relative error of at most 1% when estimating specific density with
link energy. Thus, when constructing efficient minimizers by (lay-
ered) polar sets, using link energy to estimate specific density is effi-
cient and accurate. For reference, on a random sequence the average
energy surplus and deficit are below 10^{-7} in absolute value, for the
parameter range we are interested in.

3.2 Evaluating polar set heuristics
We next evaluate our proposed algorithms for layered polar sets.
We implemented the algorithm with Python3. Experiments are run
in parallel and the longest ones ($w = 10, k = 15$ in our experiments)
finish within a day. The peak memory usage stands at 100 GB,
which happens at the start loading the precomputed suffix array using Python pickle.

We compare our results against some other candidates:

- Random Minimizers. Achieves density factor of two in theory and in practice, as indicated in last section.
- Fixed Interval Sampling. This method uses every \(w \) k-mer from \(S \) as the set \(U \) to define a compatible minimizer.
- The Miniception (Zheng et al., 2020), a practical algorithm that provably achieves lower density in many scenarios. The hyperparameter \(k_0 \) is set to max(5, \(k \) - \(w \)) for our experiments.

We also plot the theoretical lower bound, corresponding to the density factor for perfect minimizers. While our theory predicts existence of perfect minimizers matching the lower bound with large value of \(k \), this rarely happens with practical parameter values. We do not include existing algorithms for constructing compact universal hitting sets because these methods do not scale to values of \(k > 14 \). Our heuristics work the best when \(k \)-mers do not appear too frequently, or roughly speaking, when \(\sigma_h > w \) where \(\sigma_h \) is the length of the reference sequence. This choice of parameter is common in bioinformatics analysis. With the sequence at the size of human reference genome, our heuristics work well starting at \(k = 15 \). The Miniception achieves comparable performance with leading UHS-based heuristics, so its performance also serves as a viable proxy.

We consider two scenarios, first with short windows (\(w = 10 \)) and second with long windows (\(w = 100 \)). The results are shown in Figure 4B. Our experiments indicate that our simple heuristics yield efficient minimizers, greatly outperforming random minimizers and the Miniception, while maintaining a consistent edge over fixed interval sampling methods, in both short windows and long windows settings. The improvement is more pronounced when the windows are long. Given our layered polar set heuristics consist of multiple rounds, in Supplementary Section S5.1 we show the progression of density factors through rounds, demonstrating that the layered heuristics are particularly effective at low values of \(k \). We next show that in building sequence-specific minimizers using layered anchor sets, we do not sacrifice their performance in the general case measured by (expected) density. In Supplementary Section S5.2, we sketch a random sequence using the sequence-specific minimizers we built for hg38. As expected, the performance closely matches that of a random minimizer.

4 Discussion

4.1 Limits and future of polar sets

While the concept of polar sets is interesting and leads to improvements in state-of-the-art sequence-specific minimizer design, we should acknowledge its limitations. It cannot be used in designing non-sequence-specific minimizers when \(w > k \). Arguably, this means the method is more tailored for sequence-specific minimizers. See Supplementary Section S4 for proof and more discussion on non-sequence-specific polar sets.

Our experimental results show that the performance of minimizers based on polar sets greatly improves as \(k \) grows. When each \(k \)-mer appears many times in the reference sequence, it becomes hard to select many \(k \)-mers without violating the polar set condition. For comparison, in Supplementary Section S5.3 we show the results when we apply the heuristics to a complete assembly of human chromosome X (Miga et al., 2020), including the highly repetitive centromere. As expected, the performance (measured by density) significantly degrades over the centromere region, but is always no worse than a random minimizer.

With better computing power and more efficient algorithms, it is desirable to compute an optimal polar set. The optimal polar set can be found with integer linear programming using ideas introduced in Section 2.5 for moderately sized reference sequences. However, no convenient formulation exists for layered polar sets, and it is an interesting question whether there is a tractable optimization problem for minimizers in general.

4.2 Practicality of sketches-by-optimization

The polar sets can be used wherever universal hitting sets are used, in most cases. Given that our heuristics for layered polar sets only produce a small number of layers, implementation of a compatible minimizer with layered polar sets is not fundamentally different from that with a universal hitting set. The fixed interval sampling method is very similar to previously proposed methods (Almutairy and Torng, 2018; Frith et al., 2020; Khiste and Ilie, 2015), where the sketch of a reference sequence is simply the set of \(k \)-mers appearing at locations divisible by \(w \). Polar sets might not be able to directly replace fixed interval sampling, however it can be readily expanded into a set of seeds that covers the whole reference sequence.

These approaches are currently relatively underused, compared to more traditional approach of minimizers like lexicographical, random or slant variants of either one. A significant reason for their unpopularity is the fact that using these methods requires looking up a table of \(k \)-mers, be it a set of polar \(k \)-mers or universal hitting \(k \)-mers, for every \(k \)-mer in the query sequence. In contrast, for a random minimizer implemented using a hash function, no lookup is required during the sequence sketch generation process. Since these lookup tables are usually the result of sequence-specific optimization, we say these methods fall into the category of ‘sketches-by-optimization’. This contrast leads to interesting tradeoffs in efficiency. For example, using a polar-set-compatible minimizer generates a more compact sequence sketch, but might take more time at query compared to using a random minimizer, due to the time spent in loading and querying the set of polar \(k \)-mers.

We believe better implementation of \(k \)-mer lookup tables and better optimization of sequence sketches, possibly in a joint manner, will popularize sketches-by-optimization. Existing methods already take step toward this goal. Jain et al. (2020b) uses a compact lookup table to index frequent \(k \)-mers, and Liu et al. (2019) uses a Bloom filter to perform approximate query over fixed interval samples. Techniques like \(k \)-mer Bloom filters (Pellow et al., 2017) might also further help the performance.

4.3 Alternative measurements of efficiency

Throughout this manuscript our goal has been the optimization of specific density. Low density results in smaller sequence sketches, and for many applications this is desirable. However, depending on the way one uses the sequence sketch, alternative measurements of efficiency may be desirable [also see discussion in Edgar (2020)]. For example, in \(k \)-mer counting, minimizers are used to place \(k \)-mers into buckets. In this case, the specific density is less relevant, and we are more concerned about the number of buckets, and the load balance between different buckets (Marçais et al., 2017; Nyström-Persson et al., 2020). For read mapping, smaller sequence sketches have its own advantage, while some may prefer reducing the number of matches, or reducing the false positive seed matches in general. We believe many of these objectives are correlated with each other, and we are interested in both further exploring benefits of a small sequence sketch, and optimization techniques for alternative measurements of efficiency.
5 Conclusion

Inspired by deficiencies with current theory and practice around sequence-specific minimizers, we propose the concept of polar sets, a new approach to construct sequence-specific minimizers with the ability to directly optimize the specific density of the resulting sequence sketch. We also propose simple and efficient heuristics for constructing (layered) polar sets, and demonstrate via experiments on the human reference genome the superior performance of minimizers constructed by our proposed heuristics. While there are still concerns around the practical utility, we believe the polar set framework will be a valuable asset in design and analysis of efficient sequence sketches.

Funding

This work was supported in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative [GBMF4554 to C.K.], by the US National Institutes of Health [R01GM122935] and the US National Science Foundation [DBI-1937540]. This work was partially funded by The Shurl and Kay Curci Foundation. This project was funded, in part, under a grant #4100070287 with the Pennsylvania Department of Health. The Department specifically disclaims responsibility for any analyses, interpretations or conclusions.

Conflict of Interest: C.K. is a co-founder of Ocean Genomics, Inc. G.M. is V.P. of software development at Ocean Genomics, Inc.

References

Almutairy, M. and Torng, E. (2018) Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches. PLoS One, 13, e0189960.

Blackburn, S.R. (2015) Non-overlapping codes. IEEE Trans. Inf. Theory, 61, 4890–4894.

Chikhi, R. et al. (2016) Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics, 32, i201–i208.

DeBlasio, D. et al. (2019) Practical universal k-mer sets for minimizer schemes. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, RCB ’19, ACM, New York, NY, USA, pp. 167–176.

Deorowicz, S. et al. (2015) KMC 2: fast and resource-frugal k-mer counting. Bioinformatics, 31, 1569–1576.

Edgar, R. (2021) Synccmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences. PeerJ 9:e10805 10.7717/peerj.10805.

Elkin, B., Berger, B., Orenstein Y. et al. (2020) A randomized parallel algorithm for efficiently finding near-optimal universal hitting sets. In: Schwartz R. (eds) Research in Computational Molecular Biology. RECOMB 2020.

Lecture Notes in Computer Science, vol 12074, pp 37–53. Springer, Cham. 10.1007/978-3-030-45257-5_3.

Erbert, M. et al. (2017) Gerbil: a fast and memory-efficient k-mer counter with GPU-support. Algorithms Mol. Biol., 12, 9.

Firth, M.C., Noé, L., Kucherov, G. (2020) Minimally-overlapping words for sequence similarity search. Bioinformatics, 36, 5344–5350.

Jain, C. et al. (2020a) A long read mapping method for highly repetitive reference sequences. bioRxiv, page 2020.11.01.363887.

Jain, C. et al. (2020b) Weighted minimizer sampling improves long read mapping. Bioinformatics, 36, i111–i118.

Khiste, N. and Ilie, L. (2015) E-mem: efficient computation of maximal exact matches for very large genomes. Bioinformatics, 31, 509–514.

Levenshtein, V.I. (1970) Maximum number of words in codes without overlaps. Problemy Peredachi Informatsii, 6, 88–90.

Li, H. and Biorol, L. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094–3100.

Liu, Y. et al. (2019) Fast detection of maximal exact matches via fixed sampling of query k-mers and bloom filtering of index k-mers. Bioinformatics, 35, 4560–4567.

Marçais, G. et al. (2017) Improving the performance of minimizers and winnowing schemes. Bioinformatics, 33, i110–i117.

Marçais, G. et al. (2018) Asymptotically optimal minimizers schemes. Bioinformatics, 34, i13–i22.

Marçais, G. et al. (2019) Sketching and sublinear data structures in genomics. Ann. Rev. Biomed. Data Sci., 2, 93–118.

Miga, K.H. et al. (2020) Telomere-to-telomere assembly of a complete human x chromosome. Nature, 585, 79–84.

Mykkeltveit, J. (1972) A proof of Golomb’s conjecture for the de Bruijn graph. J. Comb. Theory Ser. B, 13, 40–45.

Nyström-Persson J, Kéeble-Gagnère G, Zawad N. Compact and evenly distributed k-mer binning for genomic sequences. Bioinformatics, 2021; 36:5344–5350.

Orenstein Y., Pellow D., Marçais G., Shamir R., Kingsford C. (2017) Designing small universal k-mer hitting sets for improved analysis of high-throughput sequencing. PLoS Comput Biol, 13: e1005777. 10.1371/ journal.pcbi.1005777.

Pellow, D. et al. (2017) Improving bloom filter performance on sequence data using k-mer bloom filters. J. Comput. Biol., 24, 547–557.

Roberts, M. et al. (2004a) A preprocessor for shotgun assembly of large genomes. J. Comput. Biol., 11, 734–752.

Roberts, M. et al. (2004b) Reducing storage requirements for biological sequence comparison. Bioinformatics, 20, 3363–3369.

Schleimer, S. et al. (2003) Winnowing: local algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03. San Diego, California, ACM, pp. 76–85.

Ye, C. et al. (2012) Exploiting sparseness in de novo genome assembly. BMC Bioinformatics, 13, 51.

Zheng, H. et al. (2020) Improved design and analysis of practical minimizers. Bioinformatics, 36, i119–i127.