This is a repository copy of *Treatment outcomes in trigeminal neuralgia–a systematic review of domains, dimensions and measures.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/159193/

Version: Published Version

Article:
Nova, C.V., Zakrzewska, J.M., Baker, S.R. et al. (1 more author) (2020) Treatment outcomes in trigeminal neuralgia–a systematic review of domains, dimensions and measures. World Neurosurgery: X, 6. 100070. ISSN 2590-1397

https://doi.org/10.1016/j.wnsx.2020.100070

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Treatment Outcomes in Trigeminal Neuralgia—A Systematic Review of Domains, Dimensions and Measures

Carolina Venda Nova¹, Joanna M. Zakrzewska¹, Sarah R. Baker², Richeal Ni Riordain¹,²

Key words
- Outcome measures
- Systematic review
- Treatment outcomes
- Trigeminal neuralgia

Abbreviations and Acronyms
BNI: The Barrow Neurological Institute Pain Intensity Scale
BPI: Brief Pain Inventory
COS: Core Outcome Set
MVD: Microvascular decompression
QOL: Quality of life
TN: Trigeminal neuralgia
VAS: Visual analogue scale

INTRODUCTION
The International Classification of Headache Disorders defines trigeminal neuralgia (TN) as “A disorder characterized by recurrent unilateral brief electric shock-like pain, abrupt in onset and termination, limited to the distribution of one or more divisions of the trigeminal nerve and triggered by innocuous stimuli.” It is a rare condition, and population-based studies estimate a prevalence ranging from 0.03% (95% confidence interval 0.01–0.08) to 0.3% (95% confidence interval 0.16–0.55). It remains one of the few neuropathic pain conditions for which multiple therapies, including medical and surgical, are available. However, the best treatment option has yet to be identified. The difficulty in defining what the most successful treatment for TN is relates to the fact that there are no clearly defined outcomes; therefore, comparison between treatments is challenging. Outcomes are defined as measures or observations, which are used to assess treatment effects. For the purpose of this review, outcome refers to clinical outcome, which is the result(s) of the medical or surgical treatment of TN on the patient’s health or well-being. To improve comparison of treatments, clearly defined outcomes (what is assessed) and outcomes measures (how to assess outcome magnitude) should be used. Outcome measures are tools used to assess the impact of treatment interventions.

BACKGROUND: Trigeminal neuralgia (TN) is a painful disorder characterized by sudden electric shock–like pain. It is a rare condition for which multiple treatments are available, including medical and surgical. The best treatment option is yet to be defined, and this is related to the lack of definition in the treatment outcomes and outcome measures. The aim of this systematic review was to summarize all the outcomes and outcomes measures that have been published to date and highlight variability in their use.

METHODS: We have conducted a literature search using a wide range of databases (1946–2019 for medical and 2008–2019 for surgical treatment), for all intervention studies in TN. Four hundred and sixty-seven studies were selected for data extraction on TN classification, data collection method, intervention, and treatment outcomes mapped to the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT guidelines).

RESULTS: Most studies collected data on pain (n = 459) and side effects (n = 386) domains; however, very few collected data on the impact of treatment on physical (n = 46) and emotional functioning (n = 17) and on patient satisfaction (n = 35). There was high variability on outcome measures used for pain relief (n = 10), pain intensity (n = 9), and frequency of pain episodes (n = 3).

CONCLUSIONS: A clear definition of what are the important outcomes for patients with TN is essential. The choice of standardized outcome measures allowing for consistent reporting in TN treatment will allow for comparison of studies and facilitate treatment choice for patients and clinicians thus, improving health outcomes and reducing health care cost.
date. The aim of this systematic review was, therefore, to summarize all the treatment outcomes used in the TN literature, to highlight the variability in their reporting, and, additionally, to summarize the instruments used to measure those outcomes.

METHODS

A protocol for the systematic review was published in the International Prospective Registry of Systematic Reviews (PROSPERO) (Registration CRD42018118675, December 2018) and followed recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses group.5

Search Strategy

A literature search was conducted to include all TN studies in which there was a medical and/or a surgical intervention with a view to capturing all treatment outcomes and the outcome measures used. The searches were performed electronically, with the help of a librarian, and by hand. We searched MEDLINE (Ovid) (1946 to October 2019 for medical treatment and 2008 to October 2019 for surgical treatment), EMBASE (1947 to October 2019 for medical treatment and 2008 to October 2019 for surgical treatment), Cochrane Oral Health Group’s Trials Register, CINAHL Plus with Full Text, and PsycINFO. The search of surgical papers was restricted to studies published from 2008 onwards, given that 2 systematic reviews had been published on surgical management of TN.6,7 Furthermore, international guidelines on the surgical management of TN3 and a review of quality of reporting of surgical studies, which reviewed the literature up to 2008,9 also had been published. The search strategy for MEDLINE AND EMBASE can be found in Appendix A.

Eligibility Criteria

The inclusion criteria were as follows: 1) intervention studies with a cohort of patients diagnosed with TN; 2) medical and/or surgical intervention; 3) TN cohort ≥10 patients; 4) subjects aged 18 years and older; 5) English language; and 6) full text available. No discrimination was made concerning the study design, as the aim was to capture all the treatment outcomes and outcomes measures published to date. Studies in which there were 2 or more cohorts (TN and hemifacial spasm, for example) were included but only data relevant to the TN cohort was evaluated.

Screening

The references were organized in EndNote X9 and duplicates removed. Initially, 25 study titles were piloted between 2 reviewers (C.V.N. and R.N.R.). The interrater agreement was 0.60. Following discussion and modification of the piloting sheet to include abstracts, the process was repeated with 50 further studies. The final Kappa coefficient was 0.80.

The body of references was then screened on title and abstract; if no consensus was reached, a third reviewer (J.M.Z.) made the final decision. Three reviewers (C.V.N., R.N.R., and J.M.Z.) subsequently screened full texts, if available, against eligibility criteria.

Data Collection and Synthesis

We have used EPPI-Reviewer 4 software10 to extract data from the final selected references. Data were extracted by 3 reviewers (C.V.N., R.N.R., and J.M.Z.) on TN classification (classical, idiopathic, and secondary to neurologic disease, Burchiel classification, and unspecified), cohort type (prospective, retrospective, and unspecified), intervention (medical and/or surgical), and treatment outcomes (domain, dimension, and instruments).

Data on outcome domains were captured according to the IMMPACT recommendations.4 This review includes studies that precede those recommendations, as well as study designs other than clinical trials, but it was decided to use their guidance for a clear and standardized organization of the results. Treatment outcome measures were identified, and where available, data were collected on outcome measure instruments. The complete data extraction code can be found in Appendix B.

Statistical Analysis

Descriptive statistical analysis was performed to summarize the number of times outcomes and outcome measures were reported in the TN literature.

RESULTS

Four hundred sixty-seven (n = 467) papers were included in the final review and grouped according to TN classification, method of data collection, treatment intervention, and treatment outcomes (domain, dimension, and instruments/ measures). Figure 1 illustrates the flow chart of references.11

TN Classification

Just less than one half of the papers (47%) described their TN cohort as classic, idiopathic, secondary to neurologic disease or used the Burchiel classification.12 One hundred twenty (n = 120) studies did not specify the type of TN in their cohort and 47 others used a nomenclature that was not clearly defined, e.g., refractory TN, medically unresponsive TN, and recurrent TN after microvascular decompression (MVD).

Method of Outcome Data Collection

More than one half of the studies reviewed (n = 254) collected their data retrospectively. Data were collected prospectively in 131 studies and 81 did not specify how their data were collected.

Intervention

Treatment interventions were divided into medical and surgical; however, data were not collected on the specific medical and surgical treatment modalities. The use of systemic and topical medicines and botulin toxin were included in medical management and all the ablative techniques,7 neurosurgical procedures (MVD), and laser treatment in surgical management. The majority of studies reviewed were surgical papers (n = 398) and a minority combined medical and surgical treatment (n = 10).

Outcome Domains, Dimensions, and Measures

For systematization and clarity, outcome data were organized and mapped to the IMMPACT outcome domain recommendations for clinical trials in chronic pain (Figure 2).4 Only 42 of the 467 reviewed studies were published during or before 2003, precluding the IMMPACT publication. The IMMPACT Outcome Domains are as follows: 1) Pain; 2) Physical functioning; 3) Emotional
Records identified through database searching: EMBASE, MEDLINE, COCHRANE DATABASE, CINAHL, PSYCHINFO (n = 6889)

Additional records identified through hand search (n = 5)

Records after duplicates removed (n = 5093)

Records excluded (n = 4376)
- Abstract not available (n=115)
- Age < 18ys (n=22)
- Anatomy studies (n=77)
- Animal studies/basic science (n=164)
- Cohort < 10 pts (n=911)
- Conference abstracts/proceedings/commentaries/editorials (n=972)
- Facial pain overview (n=352)
- Full text not in English (n=23)
- Imaging studies (n=154)
- Not TN (n=1127)
- Pharmacology (n=194)
- SRs, MA and protocols (n=49)
- Technical surgical papers (n=216)

Records screened by title and abstract (n = 5093)

Full-text articles assessed for eligibility (n = 717)

Records excluded (n = 250)
- Age < 18ys (n=1)
- Animal studies (n=1)
- Cohort < 10 pts (n=22)
- Conference abstracts/proceedings/commentaries/editorials (n=16)
- Full text not available (n=48)
- Full text not in English (n=2)
- Not intervention studies (n=59)
- Not TN (n=29)
- SRs, MA and protocols (n=33)
- Technical surgical papers (n=39)

Studies included in narrative synthesis (n=467)

Figure 1. Systematic review flow chart. (Adapted from Moher et al.)
functioning; 4) Participant ratings of global improvement/satisfaction; 5) Symptoms and adverse events; and 6) Participant disposition.

With the exception of 8 papers, all studies used pain as an outcome domain (Figure 2 and Table 1). Symptoms and adverse events also were described in a high number of papers (n = 386); however, the impact of treatment on physical and emotional functioning was significantly less evaluated, in 46 and 17 studies, respectively (Tables 2 and 3). Of the 334 surgical studies that described adverse events, only 62 mentioned mortality rates. Participant disposition was described in 16 studies (3%).

Pain

Pain Relief. Pain relief was used as an outcome dimension in the majority of studies (n = 314). Ten different outcome measures were used for pain relief and 78 of 314 (25%) studies did not use an outcome measure. The Barrow Neurology Institute Pain Intensity Scale (BNI) was the most used pain relief measure in 131 of studies (42%), followed by a Likert scale in 76 (24%) and the visual analogue scale (VAS) in 18 (6%).

Pain Intensity. Pain intensity was used as a treatment outcome dimension in 193 of the 459 studies describing pain as an outcome domain. There were 9 different measures used for pain intensity and 8 studies did not use any. The VAS was the most commonly used measure in 85 studies followed by the BNI (n = 45) and the use of qualitative pain descriptors (n = 32).

Pain Frequency. Only 27 of 459 studies (6%) used pain frequency as a treatment outcome dimension. The majority did not use an outcome measure (n = 15) and 10 indicated the use of a pain diary. One study used a pain vector diagram and another study used The Constant Face Pain Questionnaire.

Physical Functioning

Forty-six studies included at least 1 measure for evaluating physical functioning dimensions, such as quality of life (QOL; n = 34), daily activities (n = 9), pain interference (n = 4), ability to work (n = 2), and disability (n = 1). These are summarized in Table 2 with the references.

Quality of Life. The most used instrument for assessing impact on QOL was the 36-Item Short form Survey Instrument (n = 14), followed by the EQ-5D (5-Question Quality Of Life Instrument) (n = 4), Sickness Impact Profile (n = 2), and Brief Pain Inventory (BPI) (n = 2). The World Health Organization Quality of Life and 12-Item Short Form Health Survey were used in 1 study each. Of note, the BPI facial was used only once.

Two studies did not use an outcome measure and 8 used a different measure (Quality of Life Impact Scale, 0–100 scale (2 studies used this measure), Trigeminal Neuralgia Quality of Life Assessment Scale, Epilepsy Surgery Inventory-55, 10-point Quality of Life Scale, Wong Baker FACES scale, and a 5-Point Scale).

Daily Activities. Activities of daily living was the most commonly used instrument (n = 4) followed by the Penn Facial Pain scale (n = 1). One study did not use an outcome measure and 4 studies used different measures (Brief Fatigue Inventory, Karnofsky Performance Status Scale, Category Point Scale, yes/no questionnaire).

Pain Interference. The only instrument used to evaluate pain interference was the BPI facial (n = 4), which is the only instrument specific for facial pain.

Ability to Work. Only 2 measures were used to evaluate ability to work; one study used a Likert scale and a second study used the Self Perceived Productivity Scale.

Disability. The Pain Disability Index was used in 1 study only.

Emotional Functioning

Three dimensions were assessed in this domain: depression (n = 5), anxiety (n = 3), and catastrophizing (n = 1). Some studies combined anxiety and depression (n = 12). Please refer to Table 3 for references.

Anxiety and Depression. The combination of anxiety and depression was evaluated by the use of Hospital Anxiety and Depression Scale in 9 studies, and 1 study did not use an outcome measure. One other measure was found in 2 studies—the Research Diagnostic Criteria.

Depression. To evaluate depression alone, the Beck Depression Inventory was used in 3 studies followed by the Hamilton Depression Scale (n = 1) and the Patient Health Questionnaire-9 (n = 1).

Anxiety. To evaluate anxiety, only 2 instruments were used, the Beck Anxiety Inventory (n = 2) and the Hamilton Anxiety Scale (n = 1).

Catastrophizing. Only one study evaluated catastrophizing, with the aid of the Pain Catastrophizing Scale.
Table 1. Pain Dimensions and Outcome Measures Identified in the Systematic Review

Outcome Dimension	Outcome Measure	Reference Numbers
Pain relief (314)	Barrow Neurology Institute Pain Intensity Scale (BNI)	13-143
	No outcome measure	144-221
	Likert scale	66,219,222,295
	Visual analogue scale (VAS)	13,293,296,311
	Numeric Rating Scale (NRS)	296,312-316
	Modified BNI	317,318
	Marseille scale	47,61,319
	MVD evaluation score	320,321
	Regis classification	112,322
	Burchiel classification	323
	Other	324

Pain intensity (193)	VAS	32,42,96,123,124,146,164,168-170,195,215,235,241,248,295,298,309,302,304-307,309,310,325-383
	BNI	15,22,39,44,46,49,50,56,62,68,74,82,127,128,139,202,210,339,395,386-382,384-406
	Qualitative pain descriptors	150,184,186,188,191,192,218,295,366,385,407-428
	NRS	31,35,71,235,266,278,298,304,314-316,413,429-440
	Brief Pain Inventory (BPI)	34,48,127,311,438,441-447
	McGill Pain Questionnaire	22,214,241,278,344,357,446-448
	No outcome measure	116,117,225,292,449-452
	Verbal Pain Scale (VPS)	214,295,363,405,453,454
	Verbal Numeric Pain Scale (VNPS)	49,188,455
	Other	324
Pain frequency (27)	No outcome measure	150,160,207,208,349,350,354,373,432,433,444,452,458
	Pain diary	188,278,297,295,309,320,376,380,448,460
	Pain vector diagram	463
	The Constant Face Pain Questionnaire	241

MVD, microvascular decompression.

Satisfaction with Treatment

Only 35 studies (7%) reported on patient ratings of improvement and satisfaction with treatment. The majority of studies (n = 17) used a Likert Scale to rate their patient satisfaction with treatment, whereas 2 studies used a Patient Satisfaction Scale and one other a VAS scale. Nine studies used the Patient Global Impression of Change to rate change with treatment. Three studies did not use an outcome measure and 4 studies used 4 other outcome measures (QUASU - Satisfaction with Treatment and Medical Team; Satisfaction Survey; The Patient Global Rating of Efficacy and Safety; and The Wong Baker FACES scale).

Adverse Events

Data on adverse events and side effects were collected in 83% of the studies. Of the 59 medical studies, 85% described side effects. Outcome measures were used in only 3 studies—The Liverpool Adverse Event Profile (n = 2) and the A-B Neuropsychological Assessment Schedule (n = 1).

On the surgical studies group, side effects and adverse events were collected in 334 (84%). The most reported side effect was numbness (n = 220) and the Barrow Neurology Institute Numbness Scale was administered in 62 studies. A Likert scale was used once to assess degree of numbness. One other surgical study used the Landrieu Ibanez classification, but the majority of studies limited their reporting to the passive description of the cohort side effects opposed to using an instrument to collect the data.

Patient Disposition

Patient disposition is not considered a treatment outcome. This domain refers to the patient navigating through a study and often presented in a flow diagram.

Guidance on reporting for the different types of studies has been published by the EQUATOR Network (Enhancing the QUAlity and Transparency Of health Research) (https://www.equator-network.org/) and endorsed by medical and surgical journals. It has been accepted that the
reporting of the patient progression in clinical trials should be illustrated by a CONSORT diagram (Consolidated Standards of Reporting Trials)465 and, in the case of observational trials, the STROBE statement (Strengthening the Reporting of Observational studies in Epidemiology) should be followed.466

In this review, we have identified 16 studies in which there was information about patient progression—CONSORT diagram (n = 4), STROBE reporting (n = 5) and 7 illustrated their information with a diagram but did not follow any specific guidance.

DISCUSSION

This systematic review provides a summary of the outcomes and outcome measures that have been used in the medical and surgical treatment of TN to date, performed by clinicians from varied backgrounds, and it highlights the variability in the methodology of studies and choice of outcome measures employed.

Pain: Outcome Dimensions and Outcome Measures

The degree of pain relief as well as the level of pain intensity have been the most commonly used dimensions in chronic pain studies.467,468 Similar to what others have found in the TN surgical literature,5,6,7,9 the most common pain dimension reported was pain relief. In the context of TN, however, there seems to be no consensus in what should be the primary outcome dimension in trials of TN. Studies that use either pain intensity or pain relief as their outcome of interest are difficult to compare. Pain intensity refers to “how intense the pain is,” whereas pain relief refers to “how much pain relief” has resulted from a certain treatment and so requires a baseline assessment.469 Some authors have attempted to clarify if pain relief ratings and pain intensity ratings are comparable. For example, Jensen et al.470 looked at a cohort of 248 postsurgical patients (knee replacement vs. laparoscopy) whose outcomes were pain intensity (VAS and Verbal Rating Scale) and pain relief (VAS). They had hypothesized that the differences in sensitivity to detect change would be similar in both cohorts; however, this was not supported. They

Table 2. Physical Functioning Domain and Outcome Measures Identified in the Systematic Review
Outcome Dimension
Quality of life (34)
Daily activities (9)
Pain interference (4)
Ability to work (2)
Disability (1)
have confirmed that even though related, pain relief and intensity mean slightly different things, as patients report pain relief even when pain intensity ratings are the same or even greater than presurgery. Their conclusions point to the need of a clear definition of the primary outcome and a clear choice of a validated tool capable of capturing it. In addition, pain intensity may remain the same but patient’s ability to cope with it may change, and this would be reflected in measures looking at aspects such as activities of daily living. Baseline data before surgical procedures are rarely reported and yet they are crucial to determine the true impact of a treatment. TN is an episodic pain; it is interesting to see that little attention is given to this characteristic. To date, no instruments have been designed to capture the effects of treatment on the number and frequency of TN attacks. Dagn and Brennum have attempted to capture these data in a cohort of patients undergoing glycerol injection, MVD, and rhizotomy by plotting pain intensity (Verbal Numerical Rating Scale) with frequency of daily pain per month. Their data were used to design a pain vector diagram to illustrate, in a composite outcome, the effects of treatment. Another temporal aspect of pain is duration of pain-free status over time, which has been illustrated in the literature with Kaplan–Meier survival curves. It is almost certain that patients would value information about which treatment provides absence of pain for the longest period of time, and it might be that plotting pain relief outcome data over time is the correct way of doing it, however, rigorous reporting of follow-up times are essential for data accuracy.

The VAS and BNI intensity scales are the most used tools to capture data on pain intensity. Both scales also were used to retrieve information on pain relief. Given that VAS is a single-item scale and BNI is a composite scale, it is not possible to compare data captured by these instruments, especially as they are measuring different pain dimensions and the BNI includes data on medication use. Despite their wide use in TN, neither the VAS nor the BNI have been validated for their use in TN cohorts. It is not clear whether patients complete the scales or whether the data are retrieved from the medical records.

Finally, we should stress that the use of outcomes that are designed specifically for a single study, or which have been modified and derived from other instruments, for example modified BNI and have not been validated for TN are neither reliable nor reproducible and comparison of study results is flawed.

Data-Collection Method

The retrospective collection of data, specifically, the interviewing of patients, months or years after their treatments were done, raises the question of recall bias and it can be influenced, for example, by severity of pain at time of recall. Of note, in one of the studies, family members of deceased patients were contacted to obtain information about their condition. The experience of pain is a very personal one and it is unreasonable to expect that others can provide information, except if stated early on, that the outcome collected is not patient reported. If the information sought is related to effects of treatment on someone’s level of pain, then the patient is the only valid source of information.

Domains Other Than Pain

There has been extensive research highlighting the impact of chronic pain in mood and QOL. Tölle et al. and Zakrzewska et al. described the high impact of TN pain on activities of daily living as well as on emotional functioning; however, the reporting of TN impact on QOL has been sparse. Of the 8 different instruments used for emotional functioning, only one, the Hospital Anxiety and Depression Scale, has been validated for TN. The BPI facial has been validated in a cohort of patients with TN, but its uptake, in studies published since 2010 and included in this review, is low, being used in 4 studies to assess pain interference and in one to assess impact on QOL. Interpreting the effects of TN on the emotional and physical health will also depend on the appropriateness of these instruments for their use in a TN cohort.

The reporting of side effects should go beyond a narrative list and incorporate how individual side effects might affect patients’ QOL or what the impact on daily living is. As illustrated by Akram et al., the side effects of treatment might impact more on a patient’s QOL than the pain itself.

There might be a few practical explanations for the poor reporting on domains other than pain. First, reporting on multiple outcome domains would require more comprehensive questionnaire(s) that could be a burden to patients, risking a poor response rate and validity of results. Second, time might be a limiting factor for researchers who need to administer, collect and analyze all the data. Patients may not be made aware of their relevance and so not complete them. Finally, although attempts have been made to improve reporting of outcomes in studies on TN, journal editors have not insisted on more comprehensive reporting.

Table 3. Emotional Functioning Domain and Outcome Measures Identified in the Systematic Review

Outcome Dimension	Outcome Measure	Reference Number
Anxiety and depression (12)	Hospital Anxiety and Depression Scale (HADS)	214,364,356,432,446,488,493,463
	Research Diagnostic Criteria (RCD)	341,342
	No outcome measure	82
Depression (5)	Beck Depression Inventory (BDI)	335,372,444
	Hamilton Depression (HDRS)	354
	Patient Health Questionnaire-9 (PHQ9)	67
Anxiety (3)	Beck Anxiety Inventory (BAI)	335,372
	Hamilton Anxiety Scale (HARS)	354
Catastrophizing (1)	Pain Catastrophizing Scale (PCS)	447
Limitations
The inclusion of a large number of studies to summarize information on outcomes and outcome measures in the treatment of TN created a heterogeneous data set, which was challenging to organize. The studies were not appraised on their scientific rigor, as we wanted to capture the diversity of outcomes and outcome measures available in the literature. Due to the volume of results, our data extraction on outcomes was limited to identifying the outcome measure instrument used and for the majority of the studies we failed to retrieve information concerning the timing and method of questionnaire administration. Although guidance from IMMPACT is to be considered in clinical trials, due to the lack of available guidance for the reporting of outcomes in TN studies, we decided to map our results to their recommended 6 core domains. We acknowledge that these outcomes might not comprehensively reflect the ones patients with TN consider important and that fewer may be required when reporting other types of studies. Finally, our search included English-language literature only, and we might have left out relevant research published in other languages (language bias).

Recommendations for Future Research
Following this work, it is our aim to develop a Core Outcome Set (COS) for the treatment of TN. COS is a group of defined outcomes that should be consistently collected and measured in all trials of a specific condition.79 We aim to seek guidance from IMMPACT, where possible, but we will not limit it to this, as there might be other outcome dimensions relevant to the TN population, for example, frequency of pain episodes, duration of pain-free episodes, and fear of attacks in between episodes. We will also follow recommendation from COMET (Core Outcome Measures in Effectiveness Trials) and COSMIN (COnsensus-based Standards for the selection of health Measurement Instruments) initiatives for methodological guidance.480 One of the fundamental steps in the COS-development process will be to confirm whether patient’s views on outcomes map to the currently used instruments and if not, the validity of tools needs to be tested for their ability to detect change over time—what is the value of a composite measure opposed to a single item measure? For example, patient global impression of change may cover all the required features and has been shown to be useful in neuropathic pain.481

A TN COS could be used in all prospective trials and could consistently capture data that can be compared between studies improving patient health and reducing health care expenditure. We acknowledge the complexity of this process and that it will take time to take into account all stakeholders views.

CONCLUSIONS
Patients and clinicians currently have no reliable way of comparing outcomes in TN especially between medical or surgical treatments. Trials of medical therapies are said to be positive if 50% of patients are pain free,482 whereas surgical outcomes require 100% pain relief if they are said to be successful.

The variability in the reporting outcomes as well as the lack of validation of the instruments highlights the need for a partnership between different stakeholders—patients, patient groups, clinicians, researchers—in the preparation of a well-defined core set of outcomes and there are examples in the chronic pain field where this partnership has proved to be successful.483,484

Until there is a rigorous process for gathering TN treatment outcome data, which includes defining the primary outcome of importance to patients, the lack of consistency between studies will continue to account for the difficulties patients and clinicians have in identifying the best treatment option for each individual patient as this can vary significantly. This is of particular importance, given the range of treatments currently available for TN and, in addition, as not all patients opt for surgical therapies.

ACKNOWLEDGMENTS
We want to thank Mrs. Beata Coffey BSc (Hons) MSc MCLIP, Information Specialist, at the Royal Society of Medicine Library, for her support with the database searches.

DECLARATION OF COMPETING INTEREST
This work was supported by the Trigeminal Neuralgia Association UK (TNAUK) and by the Rosetrees Trust (grant A2327). J.Z. undertook this work at UCL/UCLHT, who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centre funding scheme. The founding sources had no role in the study design, in the collection, analysis and interpretation of the data, in the writing of the report and in the decision to submit the article for publication.

REFERENCES
1. Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33:609-688.
2. De Toledo IP, Conti Reus J, Fernandes M, et al. Prevalence of trigeminal neuralgia: a systematic review. J Am Dent Assoc. 2016;147:570-578.e572.
3. Williamson PR, Altman DG, Bagley H, et al. The COMET Handbook: version 1.0. Trials. 2017;18:280.
4. Turk DC, Dworkin RH, Allen RR, et al. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain. 2003;106:337-345.
5. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.
6. Lopez BC, Hamlyn PJ, Zakrzewska JM. Systematic review of ablative neurosurgical techniques for the treatment of trigeminal neuralgia. Neurosurg. 2004;54:973-982 [discussion: 973-982].
7. Zakrzewska JM, Akram H. Neurosurgical interventions for the treatment of classical trigeminal neuralgia. Cochrane Database Syst Rev. 2011;9:CD007312.
8. Cuccu G, Gronseth G, Alkone J, et al. AAN-EFNS guidelines on trigeminal neuralgia management. Eur J Neurol. 2006;13:1003-1008.
9. Akram H, Mirza B, Kitchen N, Zakrzewska JM. Proposal for evaluating the quality of reports of surgical interventions in the treatment of trigeminal neuralgia: the Surgical Trigeminal Neuralgia Score. Neurosurg Forum. 2013;55:73.
10. Thomas J, Graziosi S, O’Driscoll P. EPPI-Reviewer: Software for Research Synthesis. London: EPPI-Centre; 2019.
management for trigeminal neuralgia caused solely by venous compression. Acta Neurochir (Wien). 2017;159:681-688.

54. Inoue T, Hirai H, Shima A, et al. Long-term outcomes of microvascular decompression and Gamma Knife surgery for trigeminal neuralgia: a retrospective comparison study. Acta Neurochir (Wien). 2017;159:2127-2135.

55. Jung IH, Park CK, Jung NY, Kim M, Chang WS, Chang JW. Gamma knife radiosurgery for idiopathic trigeminal neuralgia: does the status of offending vessels influence pain control or side effects? World Neurosurg. 2017;104:587-593.

56. Kang IH, Park BJ, Park CK, Malla HP, Lee SH, Rhee BA. A Clinical analysis of secondary surgery in trigeminal neuralgia patients who failed prior treatment. J Korean Neurosurg Soc. 2016;59:837-842.

57. Kano H, Kondziolka D, Yang HC, et al. Outcome predictors after gamma knife radiosurgery for recurrent trigeminal neuralgia. Neurourosurg. 2010;67:837-844 [discussion: 835-844].

58. Kano H, Awan NR, Flannery TJ, et al. Stereotactic radiosurgery for patients with trigeminal neuralgia associated with perivascular meningiomas. Stereotact Funct Neurosurg. 2011;89:17-34.

59. Karam SD, Tai A, Snider JW, et al. Refractory trigeminal neuralgia treatment outcomes following CyberKnife radiosurgery. Radiat Oncol. 2014;9:257.

60. Karam SD, Tai A, Wooster M, et al. Trigeminal neuralgia treatment outcomes following Gamma Knife radiosurgery with a minimum 3-year follow-up. J Radiat Oncol. 2014;13:215-230.

61. Kerolou MG, Sen N, Mayekar S, et al. Truebeam radiosurgery for the treatment of trigeminal neuralgia: preliminary results at a single institution. Currus. 2017;9:1-12.

62. Kim SK, Kim DG, Se Y-B, et al. Gamma Knife surgery for tumor-related trigeminal neuralgia: targeting both the tumor and the trigeminal root exit zone in a single session. J Neurosurg. 2018;125:522-527.

63. Kimball BY, Sorensen JM, Cunningham D. Repeat Gamma Knife surgery for trigeminal neuralgia: long-term results. J Neurosurg. 2010;113(suppl):178-185.

64. Ko AL, Ozpinar A, Lee A, Raslan AM, McCartney S, Burchiel KJ. Long-term efficacy and safety of internal neurolysis for trigeminal neuralgia without neurovascular compression. J Neurosurg. 2015;122:1046-1057.

65. Kondziolka D, Zorzo O, Lobato-Polo J, et al. Gamma Knife stereotactic radiosurgery for idiopathic trigeminal neuralgia. J Neurosurg. 2000;112:759-765.

66. Kotecha R, Kotecha R, Modugula S, et al. Trigeminal neuralgia treated with stereotactic radiosurgery: the effect of dose escalation on pain control and treatment outcomes. Int J Radiat Oncol Biol Phys. 2015;96:142-148.

67. Kotecha R, Miller JA, Modugula S, et al. Stereotactic radiosurgery for trigeminal neuralgia improves patient-reported quality of life and reduces depression. Int J Radiat Oncol Biol Phys. 2017;98:1078-1086.

68. Lai GH, Tang YZ, Wang XP, Qin HJ, Ni JX. CT-guided percutaneous radiofrequency thermo-coagulation for recurrent trigeminal neuralgia after microvascular decompression: a cohort study. Medicine (Baltimore). 2015;94:e1736.

69. Lee CC, Chen CJ, Chong ST, et al. Early stereotactic radiosurgery for medically refractory trigeminal neuralgia. World Neurosurg. 2018;113:159-174.

70. Li P, Wang W, Liu Y, Zhong Q, Mao B. Clinical outcomes of 114 patients who underwent gamma-knife radiosurgery for medically refractory idiopathic trigeminal neuralgia. J Clin Neurosci. 2011;18:71-74.

71. Liang X, Dong X, Zhao S, Ying X, Du Y, Yu W. A retrospective study of neurocombing for the treatment of trigeminal neuralgia without neurovascular compression. Ir J Med Sci. 2017;186:1033-1039.

72. Little AS, Shetter AG, Shetter ME, Bay C, Rogers CL. Long-term pain response and quality of life in patients with typical trigeminal neuralgia treated with gamma knife stereotactic radiosurgery. Neurourosurg. 2008;58:935-937 [discussion: 937-939].

73. Little AS, Shetter AG, Shetter ME, Kakarla UK, Rogers CL. Salvage gamma knife stereotactic radiosurgery for surgically refractory trigeminal neuralgia. Int J Radiat Oncol Biol Phys. 2009;74:472-477.

74. Lloyd S, Chung DH, Colaco RJ, Goodrich I, Cardinale FS. The effect of dose and other parameters on outcomes in CyberKnife stereotactic radiosurgery for trigeminal neuralgia. J Radiat Oncol. 2013;1:39-44.

75. Marshall K, Chan MD, McCoy TP, et al. Predictive variables for the successful treatment of trigeminal neuralgia with gamma knife radiosurgery. Neurouosurg. 2012;70:566-572 [discussion: 571-573].

76. Mathieu D, Effendi K, Blanchard J, Seguin M. Comparative study of Gamma Knife surgery and Percutaneous retrogasserian Glycerol rhizotomy for trigeminal neuralgia in patients with multiple sclerosis. J Neurosurg. 2012;117(suppl):175-180.

77. Matsuda S, Nagano O, Serizawa T, Higuchi Y, Ono J. Trigeminal nerve dysfunction after Gamma Knife surgery for trigeminal neuralgia: a detailed analysis. J Neurosurg. 2010;113(suppl):178-180.

78. McLaughlin N, Buxey F, Chaw K, Martin NA. Value-based neurosurgery: the example of microvascular decompression surgery. J Neurosurg. 2014;120:642-647.

79. Montano N, Papacci F, Cioni B, Di Bonaventura R, Meglio M. The role of percutaneous balloon compression in the treatment of trigeminal neuralgia recurring after other surgical procedures. Acta Neurol Belg. 2014;114:59-64.

80. Moussali SH, Niranjan A, Huang MJ, et al. Early radiosurgery provides superior pain relief for trigeminal neuralgia patients. Neurology. 2015;85:2159-2165.

81. Moussali SH, Sekula RF, Gildengers A, Gardner P, Lunsford LD. Concomitant depression and anxiety negatively affect pain outcomes in surgically managed young patients with trigeminal neuralgia: long-term clinical outcome. Surg Neurol Int. 2016;7:98.

82. Moussali SH, Niranjan A, Alpinar B, et al. A proposed plan for personalized radiosurgery in patients with trigeminal neuralgia. J Neurosurg. 2018;128:457-459.

83. Nanda A, Javalkar V, Zhang S, Ahmed O. Long term efficacy and patient satisfaction of microvascular decompression and gamma knife radiosurgery for trigeminal neuralgia. J Clin Neurosci. 2015;22:818-823.

84. Niranjan A, Lunsford LD. Radiosurgery for the management of refractory trigeminal neuralgia. Neurol India. 2016;64:524-529.

85. Noorani I, Lodge A, Vajramani G, Sparrow O. Comparing percutaneous treatments of trigeminal neuralgia: 19 years of experience in a single centre. Stereotact Funct Neurosurg. 2016;94:75-93.

86. Park KJ, Kano H, Berkowitz O, et al. Computed tomography-guided gamma knife stereotactic radiosurgery for trigeminal neuralgia. Acta Neurol (Wien). 2011;123:260-269.

87. Park SH, Hwang SK. Outcomes of gamma knife radiosurgery for trigeminal neuralgia after a minimum 3-year follow-up. J Clin Neurosurg. 2011;85:645-648.

88. Park SH, Hwang SK, Kang DH, Park J, Hwang JK, Sung JK. The retroganglarian zone versus dorsal root entry zone: comparison of two targeting techniques of gamma knife radiosurgery for trigeminal neuralgia. Acta Neurochir (Wien). 2010;152:1165-1170.

89. Park YS, Kim JP, Chang WS, Kim HY, Park YG, Chang JW. Gamma knife radiosurgery for idiopathic trigeminal neuralgia as primary vs. secondary treatment option. Clin Neurol Neurosurg. 2011;113:447-452.

90. Park KJ, Kondziolka D, Berkowitz O, et al. Repeat gamma knife radiosurgery for trigeminal neuralgia. Neurourology. 2011;27:295-305 [discussion: 305].

91. Park KJ, Kondziolka D, Kano H, et al. Outcomes of Gamma Knife surgery for trigeminal neuralgia secondary to vertebrobasilar ectasia. J Neurosurg. 2012;116:75-81.

92. Park SC, Kwon DH, Lee DH, Lee JK. Repeat gamma-knife radiosurgery for refractory or recurrent trigeminal neuralgia with consideration about the optimal second dose. World Neurosurg. 2016;86:371-383.
94. Pokhrel D, Sood S, McClinton C, et al. Linac-based stereotactic radiosurgery (SRS) in the treatment of refractory trigeminal neuralgia: detailed description of SRS procedure and reported clinical outcomes. J Appl Clin Med Phys. 2017;18:126-143.

95. Ruygrok KP, Wang DD, Ward MM, Barbaro NM, Chang EF. Long-term pain outcomes for recurrent idiopathic trigeminal neuralgia after stereotactic radiotherapy: a prospective comparison of first-time microvascular decompression and repeat stereotactic radiosurgery [e-pub ahead of print]. J Neurosurg. 2018. https://doi.org/10.3171/2018.3.JNS172425, accessed May 25, 2019.

Regis J, Tuleasca C, Resseguier N, et al. The very long-term outcome of radiosurgery for classical trigeminal neuralgia. Stereotact Funct Neurosurg. 2016;94:42-52.

Regis J, Tuleasca C, Resseguier N, et al. Long-term safety and efficacy of Gamma Knife surgery in classical trigeminal neuralgia: a 497-patient historical cohort study. J Neurosurg. 2016;124:1079-1087.

Riesenburger RI, Hwang SW, Schirmer CM, et al. Outcomes following single-treatment Gamma Knife surgery for trigeminal neuralgia with a minimum 3-year follow-up. J Neurosurg. 2010;112:66-77.

Romanelli P, Conti A, Bianchi I, Berganini A, Martoninidis A, Beltramo G. Image-guided robotic radiosurgery for trigeminal neuralgia. Neurosurg. 2018;83:2023-2030.

Ruiz-Jurteschke F, Vargas AJ, Gonzalez-Quarante LH, Gil de Sagredo OL, Montalvo A, Fernandez-Carbajal C. Microsurgical treatment of trigeminal neuralgia in patients older than 70 years: an efficacy and safety study. Neurosurgery. 2017;81:424-430.

Setty P, Volkov AA, D'Andrea KP, Pieper DR. Endoscopic vascular decompression for the treatment of trigeminal neuralgia: clinical outcomes and technical note. World Neurosurg. 2014;81:603-608.

Sharin J, Lo WL, Kim W, et al. Radiosurgical target distance from the root entry zone in the treatment of trigeminal neuralgia. PLoS One. 2017;12:e219217.

Sheehan JP, Ray DK, Monteith S, et al. Gamma Knife radiosurgery for trigeminal neuralgia: the impact of magnetic resonance imaging-detected venous impingement of the affected nerve. J Neurosurg. 2000;93:53-58.

Shields LBE, Shanks TS, Shearer AJ, et al. Frameless image-guided radiosurgery for trigeminal neuralgia. Surg Neurol Int. 2017;8:37.

Son BC, Kim HS, Kim IS, Yang SH, Lee SW. Percutaneous radiofrequency thermocoagulation under fluoroscopic image-guidance for idiopathic trigeminal neuralgia. Korean J Neuroradiol. 2011;25:426-432.

Steinberg JA, Sack J, Wilson B, et al. Tentorial sling for microvascular decompression in patients with trigeminal neuralgia: a description of operative technique and clinical outcomes [e-pub ahead of print]. J Neurosurg. 2018. https://doi.org/10.3171/2018.5.JNS172243, accessed May 25, 2019.

Sun J, Jiang W, Wang J, et al. Clinical analysis and surgical treatment of trigeminal neuralgia caused by verteobasilar dolichoectasia: a retrospective study. Int J Surg. 2017;42:183-189.

Taich ZJ, Goetsch SJ, Monaco E, et al. Stereotactic radiosurgery treatment of trigeminal neuralgia: clinical outcomes and prognostic factors. World Neurosurg. 2016;90:604-612 e611. 10.3171/2015.8.JNS151875.

Tang YZ, Jin D, Li XY, Lai GH, Li N, Ni JX. Repeated CT-guided percutaneous radiofrequency thermocoagulation for recurrent trigeminal neuralgia. Eur Neurol. 2014;72:54-59.

Tuleasca C, Carron R, Resseguier N, et al. Decreased probability of initial pain cessation in classic trigeminal neuralgia treated with gamma knife surgery in case of previous microvascular decompression: a prospective series of 45 patients with >1 year of follow-up. Neurosurg. 2017;157:57-94 [discussion: 85-94].

Tuleasca C, Carron R, Resseguier N, et al. Repeat Gamma Knife surgery for recurrent trigeminal neuralgia: long-term outcomes and systematic review. J Neurosurg. 2014;121(suppl:21):210-211.

Tuleasca C, Carron R, Resseguier N, et al. Trigeminal neuralgia related to megadolichoanterior artery compression: a prospective series of twenty-nine patients treated with gamma knife surgery, with more than one year of follow-up. Stereotact Funct Neurosurg. 2014;92:170-177.

Tuleasca C, Carron R, Resseguier N, et al. Multiple sclerosis-related trigeminal neuralgia: a prospective series of 43 patients treated with gamma knife surgery with more than one year of follow-up. Stereotact Funct Neurosurg. 2014;92:203-210.

ul Haq N, Ali M, Khan HM, Ishaq M, Khattak MI. Immediate pain relief by microvascular decompression for idiopathic trigeminal neuralgia. J Ayub Med Coll Abbottabad. 2016;28:32-35.

Verheul IB, Hansens PE, Lie ST, Leenstra S, Perssma H, Beute GN. Gamma Knife surgery for trigeminal neuralgia: a review of 459 consecutive cases. J Neurosurg. 2010;113:185-190.

Wan Q, Zhang D, Cao X, Zhang Y, Zhu M, Zuo W. CT-guided selective percutaneous radio-frequency thermocoagulation via the foramen rotundum for isolated maxillary nerve idiopathic trigeminal neuralgia. J Neurosurg Anesthesiol. 2017;28:211-214.

Wang L, Zhao ZW, Qin HZ, et al. Repeat gamma knife radiosurgery for recurrent or refractory trigeminal neuralgia. Neurol India. 2008;56:9-14.

Wang Y, Zhang S, Wang W, et al. Gamma knife surgery for recurrent trigeminal neuralgia in cases with previous microvascular decompression. World Neurosurg. 2018;110:e453-e458.

Wei Y, Zhao W, Pu C, et al. Clinical features and long-term surgical outcomes in 59 patients with tumor-related trigeminal neuralgia compared with 360 patients with idiopathic trigeminal neuralgia. Br J Neurosurg. 2013;27:101-106.

Wei Y, Zhang S, Gong F, Yang S, Wang W. Effect of radiation dose on the outcomes of gamma knife treatment for trigeminal neuralgia: a multi-factor analysis. Neurol India. 2014;62:400-405.

Zhao H, Fan SQ, Wang XH, et al. Evaluation of microvascular decompression as rescue therapy for trigeminal neuralgia in patients with failed gamma knife surgery. World Neurosurg. 2019;125:540-545.

Zhao H, Lei D, You C, Mao BY, Wu B, Yang Y. The long-term outcome predictors of pure microvascular decompression for primary trigeminal neuralgia. World Neurosurg. 2013;79:756-762.

Zhao H, Li P, Zhang S, Gong F, Yang S, Wang W. Effect of radiation dose on the outcomes of gamma knife treatment for trigeminal neuralgia: a multi-factor analysis. Neurol India. 2014;62:400-405.

Zhang H, Lei D, You C, Mao BY, Wu B, Yang Y. The long-term outcome predictors of pure microvascular decompression for primary trigeminal neuralgia. World Neurosurg. 2013;79:756-762.
135. Zhao H, Shen Y, Yao D, Xiong N, Abdelmalak A, Wang H. Outcomes of twocenter gamma knife radiosurgery for patients with typical trigeminal neuralgia: pain response and quality of life. World Neurosurg. 2018;110: e1531-e1538.

136. Zorro O, Lobato-Polo J, Kano H, Flickinger JC, Lunsford LD, Kondziolka D. Gamma knife radiosurgery for multiple sclerosis-related trigeminal neuralgia. Neurology. 2009;73:1149-1154.

137. Bigder MG, Krishnan S, Cook EF, Kaufmann AM. Microsurgical rhizotomy for trigeminal neuralgia in MS patients: technique, patient satisfaction, and clinical outcomes [e-pub ahead of print]. J Neurosurg. 2018. https://doi.org/10.3171/2018.2.JNS173764, accessed May 25, 2019.

138. Cohen J, Moussavi SH, Faraji AH, et al. Stereotactic Radiosurgery as initial surgical management for elderly patients with trigeminal neuralgia. Stereotact Funct Neurosurg. 2017;95: 158-165.

139. Chen AY, Hsieh Y, McNair S, Li Q, Xu KY, Pappas C. Frame and frameless linear accelerator-based radiosurgery for idiopathic trigeminal neuralgia. J Radiosurg SBRT. 2017;3: 259-270.

140. Abdel-Rahman KA, Elawyamy AM, Mostafa MF, et al. Combined palatal and thermal radiofrequency versus thermal radiofrequency alone in the treatment of recurrent trigeminal neuralgia after microvascular decompression: a double blinded comparative study. Eur J Pain. 2020;24: 339-347.

141. Montano N, Gaudino S, Giordano C, et al. Possible prognostic role of magnetic resonance imaging findings in patients with trigeminal neuralgia and multiple sclerosis who underwent percutaneous balloon compression: report of our series and literature review. World Neurosurg. 2019; 125:e575-e581.

142. Panczykowsky DM, Jani RH, Hughes MA, Sekula RF. Development and evaluation of a preoperative trigeminal neuralgia scoring system to predict long-term outcome following microvascular decompression [e-pub ahead of print]. Neurosurgery. 2019. https://doi.org/10.1093/neuros/nyz376, accessed May 25, 2019.

143. Stuutd MD, Joswig H, Pickett GE, MacDougall KW, Parrent AG. Percutaneous glycerol rhizotomy for trigeminal neuralgia in patients with multiple sclerosis: a long-term retrospective cohort study [e-pub ahead of print]. J Neurosurg. 2019. https://doi.org/10.3171/2019.1.JNS181903, accessed May 25, 2019.

144. Stone LE, Falowski SM. A retrospective review of the outcomes and utility of percutaneous radiofrequency rhizotomy for trigeminal neuralgia using anatomic landmark guidance in asleep patients [e-pub ahead of print]. Oper Neurosurg (Hagerstown). 2019. https://doi.org/10.1093/ons/opy215, accessed May 25, 2019.

145. Xie E, Garzon-Muñoz T, Bender M, et al. Association between radiofrequency rhizotomy parameters and duration of pain relief in trigeminal neuralgia patients with recurrent pain. World Neurosurg. 2019;129:e228-e113.

146. Alahmadi H, Zadeh G, Laperriere N, et al. Trigeminal nerve integrated dose and pain outcome after gamma knife radiosurgery for trigeminal neuralgia. J Radiosurg SBRT. 2012; 2:265-301.

147. Alvarez-Pinzon AM, Wolf AL, Swedberg HN, et al. Comparison of percutaneous retrogasserian balloon compression and Gamma knife radiosurgery for the treatment of trigeminal neuralgia in multiple sclerosis. World Neurosurg. 2017;97: 590-594.

148. Arias MS, Mallory GW, Pollock BE. Outcomes after microvascular decompression for patients with trigeminal neuralgia and suspected multiple sclerosis. World Neurosurg. 2014;80:696-699.

149. Asplund P, Linderoth B, Bergenheim AT. The predictive power of balloon shape and change of sensory functions on outcome of percutaneous balloon compression for trigeminal neuralgia. J Neurosurg. 2010;113:498-507.

150. Aydossi A, Alkakaya MO, Aras Y, et al. Neuro-navigation-assisted percutaneous balloon compression for the treatment of trigeminal neuralgia: the technique and short-term clinical results. Br J Neurosurg. 2015;29:532-538.

151. Chai Y, Chen M, Zhang W, Zhang W. Predicting the outcome of microvascular decompression for primary trigeminal neuralgia by the use of magnetic resonance tomographic angiography. J Craniofac Surg. 2013;24:1699-1702.

152. Chakravorty PS, Ghanta R, Kattamini V. Microvascular decompression treatment for trigeminal neuralgia. J Craniofac Surg. 2011;22:894-898.

153. Chandan S, Halli R, Sane VD. Peripheral neuropathy: minimally invasive surgical modality for trigeminal neuralgia in Indian population: a retrospective analysis of 20 cases. J Maxillofac Oral Surg. 2014;13:295-299.

154. Chen JF, Lee S-T. Comparison of percutaneous trigeminal ganglion compression and microvascular decompression for the management of trigeminal neuralgia. Clin Neurosurg. 2003;105: 209-208.

155. Chen JF, Tu PH, Lee ST. Long-term follow-up of patients treated with percutaneous balloon compression for trigeminal neuralgia in Taiwan. World Neurosurg. 2011;76:596-599.

156. Chen JF, Tu PH, Lee ST. Repeated percutaneous balloon compression for recurrent trigeminal neuralgia: a long-term study. World Neurosurg. 2012;77:352-356.

157. Chen JN, Yu WH, Du HG, Jiang L, Dong XQ, Cao J. Prospective comparison of redo microvascular decompression and percutaneous balloon compression as primary surgery for recurrent trigeminal neuralgia. J Korean Neurosurg Soc. 2018;61:747-752.

158. Erdem E, Alkan A. Peripheral glycerol injections in the treatment of idiopathic trigeminal neuralgia: retrospective analysis of 157 cases. J Oral Maxillofac Surg. 2001;59:1576-1580.

159. Fraioli MF, Cristiano B, Moschetttoni L, Cacciotti G, Fraioli C. Validity of percutaneous controlled radiofrequency thermocoagulation in the treatment of isolated third division trigeminal neuralgia. Surg Neurol. 2009;71:180-185.

160. Fromm GH, Terrence CF, Chattah AS. Baclofen in the treatment of trigeminal neuralgia: double-blind study and long-term follow-up. Ann Neurol. 1984;15:240-244.

161. Fromm GH, Terrence CF. Comparison of L-baclofen and racemic baclofen in trigeminal neuralgia. Neurology. 1987;37:1725-1728.

162. Goodwin CR, Yang X, Betsegowda C, et al. Glycerol rhizotomy via a retrosigmoid approach as an alternative treatment for trigeminal neuralgia. Clin Neurol Neurosurg. 2013;115:2454-2456.

163. Gunther T, Gergazov VM, Steigliitz L, Ludemann W, Samii A, Samii M. Microvascular decompression for trigeminal neuralgia in the elderly: long-term treatment outcome and comparison with younger patients. Neuromurgy. 2009; 85:477-482 [discussion: 482].

164. Hamasaki T, Yano S, Nakamura K, Yamada K. Pregabalin as a salvage preoperative treatment for refractory trigeminal neuralgia. J Clin Neurosci. 2018;47:240-244.

165. Han KR, Chae YI, Lee JD, Kim C. Trigeminal nerve block with alcohol for medically intractable classic trigeminal neuralgia: long-term clinical effectiveness on pain. Int J Med Sci. 2017;14:219-226.

166. Harnies AM, Mitchell RD. Percutaneous glycerol rhizotomy for trigeminal neuralgia: safety and efficacy of repeat procedures. Br J Neurosurg. 2011; 25:268-272.

167. Hart MG, Nowell M, Coakham HB. Radiofrequency thermocoagulation for trigeminal neuralgia without intra-operative patient waking. Br J Neurosurg. 2012;26:392-396.

168. Hayashi M. Trigeminal neuralgia. Png Neurosurg. 2009;22:182-190.

169. Hayashi M, Chernov M, Tamura N, et al. Stereotactic radiosurgery of essential trigeminal neuralgia using Leksell Gamma Knife model C with automatic positioning system: technical nuances and evaluation of outcome in 130 patients with at least 2 years follow-up after treatment. Neurom Res. 2011;34:497-508.

170. Holland MT, Teferi N, Noeller J, et al. Stereotactic radio surgery and radio frequency rhizotomy for trigeminal neuralgia in multiple sclerosis: a single institution experience. Clin Neurosurg. 2017;65:80-84.
neuralgia with radiofrequency thermocoagulation of the peripheral branches compared to conventional radiofrequency. J Clin Neuroradiol. 2000;16:1435-1439.

172. Jafree DJ, Zakrzewska JM. Long-term pain relief at five years after medical, repeat surgical procedures or no management for recurrence of trigeminal neuralgia after microvascular decompression: analysis of a historical cohort. Br J Neurosurg. 2019;33;31-36.

173. Kabatara S, Albayrak SB, Cansever T, Heggie KT. Microvascular decompression as a surgical management for trigeminal neuralgia: a critical review of the literature. Neurol India. 2009;57;134-138.

174. Khan SA, Khan B, Khan AA, et al. Microvascular decompression for trigeminal neuralgia. J Appl Med Coll Abbottabad. 2015;27:539-542.

175. Kosugi S, Shiotsani M, Otuka Y, et al. Long-term outcome of persistent or recurrent trigeminal neuralgia: microvascular decompression of gasserian ganglion for 2nd- and multiple-division trigeminal neuralgia. Pain Prat. 2015;5:223-228.

176. Kouzounias K, Lind G, Schechtmann G, Winter J, Linderoth B. Comparison of percutaneous balloon compression and glycerol rhizotomy for the treatment of trigeminal neuralgia. J Neurol Surg. 2010;71:257-264; discussion: 934.

177. Kuncz A, Vornes E, Barzo P, et al. Comparison of clinical symptoms and magnetic resonance angiographic (MRA) results in patients with trigeminal neuralgia and persistent idiopathic facial pain. Medium-term outcome after microvascular decompression of cases with positive MRA findings. Cephalalgia. 2006;26:166-178.

178. Lazzara BM, Ortiz O, Bordia R, et al. Cyberknife radiosurgery in treating trigeminal neuralgia. J Neurol Neurosurg Psychiatry. 2015;86:971-975.

179. Liao C, Zhang W, Yang M, Zhang W, Liu P, Li S. Microvascular decompression for trigeminal neuralgia: the role of mechanical allodynia. World Neurosurg. 2016;94:468-472.

180. Lichtor T, Mullan JF. A 10-year follow-up review of percutaneous microcompression of the trigeminal ganglion. J Neurol Neurosurg Psychiatry. 1990;53:49-54.

181. Liu P, Zhong W, Liao C, Yang M, Zhang W. The role of percutaneous radiofrequency thermocoagulation of persistent or recurrent trigeminal neuralgia after surgery. J Craniofac Surg. 2015;27:675-679.

182. Loescher AR, Radatz M, Kemeny A, Rowe J. Stereotactic radiosurgery for trigeminal neuralgia: outcomes and complications. Br J Neurosurg. 2012;26:45-52.

183. Martinez-Anda JJ, Barges-Coll J, Ponce-Gomez JA, Perez-Pena N, Revuelta-Gutierrez R. Surgical management of trigeminal neuralgia in elderly patients using a small retrosigmoidal approach: analysis of efficacy and safety. J Neurol Surg A Cent Eur Neurosurg. 2015;76:39-45.

184. Meglio M, Cioni B, Molea A, Visocchi M. Microvascular decompression versus percutaneous procedures for typical trigeminal neuralgia: personal experience. Stereotact Funct Neurosurg. 1990;54:53-76;79.

185. Mizobuchi Y, Ohtani M, Satomi J, Fushimi K, Matsuda S, Nagahiro S. The current status of microvascular decompression for the treatment of trigeminal neuralgia in Japan: An analysis of 1619 patients using the Japanese Diagnosis Procedure Combination Database. Neurol Med Chir (Tokyo). 2013;53:10-16.

186. Nally FF. A 25-year study of paroxysmal trigeminal neuralgia in 211 patients with a 3-year appraisal of the role of cryotherapy. Oral Surg Oral Med Oral Pathol. 1984;58:17-23.

187. Obermann M, Yoon MS, Sensen K, Maschke M, Diener HC, Katsarava Z. Efficacy of pregabalin in the treatment of trigeminal neuralgia. Cephalalgia. 2008;28:17-24.

188. Oesman C, Moorj J. Long-term follow-up of microvascular decompression for trigeminal neuralgia. Skull Base. 2011;21:313-322.

189. Omes I, Smith D, Kim S, Murali R. Percutaneous balloon compression for the treatment of recurrent trigeminal neuralgia: long-term outcome in 29 patients. Stereotact Funct Neurosurg. 2008;86:259-265.

190. Pandia MP, Dash HH, Bithal PK, Choudhan RS, Jain V. Does egress of cerebrospinal fluid during percutaneous retrogasserian glycerol rhizotomy influence long term pain relief? Reg Anesth Pain Med. 2009;33:222-226.

191. Pathmanaban ON, O’Brien F, Al-Tamimi YZ, Hammerbeck-Ward CL, Rutherford SA, King AT. Safety of superior petrosal vein sacrifice during microvascular decompression of the trigeminal nerve. World Neurosurg. 2017;103:98-97.

192. Revuelta-Gutierrez R, Martinez-Anda JJ, Coll JR, Campoo-Romao A, Perez-Pena N. Efficacy and safety of root surgery and decompression of trigeminal nerve without evidence of vascular compression. World Neurosurg. 2015;80:85-89.

193. Ryo H, Yamamoto S, Sugiura K, Yokota N, Tanaka T. Neurovascular decompression for trigeminal neuralgia in elderly patients. Neurol Med Chir (Tokyo). 1999;39:217-223; discussion: 229-230.

194. Siwawetpikul P, Leang-Udom A. A “reposition technique” microvascular decompression in trigeminal neuralgia: clinical outcomes and complications. J Med Assoc Thai. 2016;99(suppl 3):S9-S46.

195. Son DW, Choi CH, Cha SH. Epidermoid tumors in the trigeminal ganglia. J Koron Neursurg Soc. 2010;49:271-277.

196. Song ZX, Qian W, Wu YQ, et al. Effect of the gamma knife treatment on the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia. Turk Neurosurg. 2014;24:183-186.

197. Stajic Z, Juniper RP, Todorovic L. Peripheral streptomycin/lidocaine injections versus lidocaine alone in the treatment of idiopathic trigeminal neuralgia. A double blind controlled trial. J Cunniamlofus Surg. 1990;18:243-246.

198. Summan RH, O’Brien FH. Non-surgical treatment of tic douloureux with carbamazepine (G32883). Headhach. 1969;59:88-91.

199. Taylor JC, Brauer S, Espir ML. Long-term treatment of trigeminal neuralgia with carbamaze- pine. Postgrad Med J. 1981;57:18-19.

200. Teixeira MJ, Siqueira SR, Almeida GM. Percuta- neous radiofrequency rhizotomy and neurovascular decompression of the trigeminal nerve for the treatment of facial pain. Arq Neuropsiquiatr. 2006;64:987-989.

201. Tempel ZI, Chivukula S, Monaco EA 3rd, et al. The results of a third Gamma Knife procedure for recurrent trigeminal neuralgia. J Neurol. 2015;212:169-173.

202. Teo MK, Suttner NJ. Effective management of lower divisional pain in trigeminal neuralgia using balloon traction. Br J Neurosurg. 2015;29;341-346.

203. Trojnik T, Smigoc T. Percutaneous trigeminal ganglion balloon compression rhizotomy: expe- rience in 27 patients. ScientificWorldJournal. 2012; 2012:138696.

204. Udipi BP, Chouhan RS, Dash IH, Bithal PK, Prabhakar H. Comparative evaluation of percu- taneous retrogasserian glycerol rhizolysis and radiofrequency thermocoagulation techniques in the management of trigeminal neuralgia. Neuro- surg. 2012;70:407-412; discussion: 403-412.

205. von Eckardstein KL, Mielke D, Akhavan-Sigari R, Rohde V. Enlightening the cerebellopontine angle: intraoperative indocyanine green angio- raphy in microvascular decompression for tri- geminal neuralgia. J Neurol Surg A Cent Eur Neurosurg. 2017;78:161-166.

206. Walsh TJ, Smith JL. Treatment of tic douloureux with tegretol. Am J Ophthalmol. 1966;59:532-535.

207. Walsh TJ, Smith JL. Tegretol—a new treatment for tic douloureux. Headache. 1968;8:62-64.

208. Xu SJ, Zhang WH, Chen T, Wu CY, Zhou MD. Neuronavigator-guided percutaneous radio- frequency thermocoagulation in the treatment of intractable trigeminal neuralgia. Chin Med J (Engl). 2006;119:1528-1533.

209. Xu Z, Schlesinger D, Moldovan K, et al. Impact of target location on the response of trigeminal neuralgia to stereotactic radiosurgery. J Neurol. 2004;120:716-724.

210. Xu W, Jiang C, Yu C, Liang W. Percutaneous balloon compression for persistent or recurrent trigeminal neuralgia after microvascular decompression: personal experience of 28 patients. Acta Neurol Belg. 2018;118:581-586.

211. Xu-Hui W, Chun Z, Guang-Jian S, et al. Long-term outcomes of percutaneous retrogasserian glycerol rhizotomy in 3370 patients with trigem- inal neuralgia. Turk Neurosurg. 2011;21:48-52.
autologous muscle graft: a five-year prospective study. Asian J Neurosurg. 2012;7:125-130.

257. Jie H, Xuanchen Z, Deheng L, et al. The long-term outcome of nerve combing for trigeminal neuralgia. Ana Neurosurg (Wien). 2013;155:1703-1708 [discussion: 1707].

258. Kang JH, Yoon YS, Kang DW, Chung SS, Chang JW. Gamma knife radiosurgery for medically refractory idiopathic trigeminal neuralgia. Ana Neurosurg Suppl. 2008;101:33-38.

259. Kanpolat Y, Savas A, Bekar A, Berk C. Percutaneous controlled radiofrequency trigeminal rhizotomy for the treatment of idiopathic trigeminal neuralgia: 25-year experience with 1,000 patients. Neurourology. 2001;18:524-532 [discussion: 524-532].

260. Kher Y, Yadav N, Yadav YR, Parihar V, Ratre S, Baijay J. Endoscopic vascular decomposition in trigeminal neuralgia. Turk Neurosurg. 2017;27:998-1006.

261. Knafo H, Kenny B, Mathieu D. Trigeminal neuralgia: outcomes after gamma knife radiosurgery. Can J Neurol Sci. 2009;36:78-82.

262. Kondziolka D, Lunsford LD, Flickinger JC. Stereotactic radiosurgery for the treatment of trigeminal neuralgia. Clin J Pain. 2001;18:42-47.

263. Koning MV, Koning NJ, Koning HM. Reduced effect of percutaneous retroganglial glycerol rhizotomy in trigeminal neuralgia affecting the third branch. Pain Pract. 2014;14:581-587.

264. Koning MV, Koning NJ, Koning HM. Correlation of clinical predictors of long-term success after microvascular decompression for trigeminal neuralgia patients older than 70 years of age. J Neurosurg. 2010;113:445.

265. Pollock BE, Schiefer TK, Stien KJ. Posterior fossa exploration for trigeminal neuralgia patients with recurrent or persistent pain despite three or more prior operations. World Neurosurg. 2010;73:523-528.

266. Rustagi A, Roychoudhury A, Bhutia O, Trikha A, Srivastava MV. Lamotrigine versus pregabalin in the management of refractory trigeminal neuralgia: a randomized open label crossover trial. J Maxillofac Oral Surg. 2014;13:409-418.

267. Safi MT, Ittiqkar M. Effectiveness of microvascular decompression of trigeminal nerve for the treatment of trigeminal neuralgia. J Med Sci (Peshawar). 2015;53:8-41.

268. Sarsam Z, Garcia-Finana M, Nurmikko TJ, Varma TR, Eldridge P. The long-term outcome of microvascular decompression for trigeminal neuralgia. Br J Neurosurg. 2010;24:18-25.

269. Sekula RF, Fredericksen AM, Jannetta PJ, Bhutia S, Quigley MR, Abeer Aeziz KM. Microvascular decompression in patients with isolated maxillary division trigeminal neuralgia, with particular attention to venous pathology. Neurosurg Focus. 2009;27:E10.

270. Sekula RF Jr, Fredericksen AM, Jannetta PJ, Bhutia S, Quigley MR. Microvascular decompression after failed Gamma Knife surgery for trigeminal neuralgia: a safe and effective rescue therapy? J Neurosurg. 2010;112:45-52.

271. Smith ZA, Gorgulho AA, Bezukny N, et al. Dedicated linear accelerator radiosurgery for trigeminal neuralgia: a single-center experience in 179 patients with varied dose prescriptions and treatment plans. Int J Radiat Oncol Biol Phys. 2011;81:225-231.

272. Stomal-Slowinska M, Slowinska J, Lee TK, et al. Correlation of clinical findings and results of percutaneous balloon compression for patients with trigeminal neuralgia. Clin Neurol Neurosurg. 2011;113:42-47.

273. Tang YZ, Wu BS, Yang LQ, et al. The long-term effective rate of different branches of idiopathic trigeminal neuralgia after single radiofrequency thermocoagulation: a cohort study. Medicine (Baltimore). 2015;94:e1994.

274. Tang YZ, Yang LQ, Yue JN, Wang XP, He LL, Ni JX. The optimal radiofrequency temperature in radiofrequency thermocoagulation for idiopathic trigeminal neuralgia: a cohort study. Medicine (Baltimore). 2018;97:e13293.

275. Terrier LM, Amelot A, Francois P, Destrieux C, Zemmoura I, Velut S. Therapeutic failure in trigeminal neuralgia: from a clarification of trigeminal nerve somatotopy to a targeted partial sensory rhizotomy. World Neurosurg. 2018;111:e118-e145.

276. Theodos O, Rody Goodwin C, Bendor MT, et al. Efficacy of primary microvascular decompression versus subsequent microvascular decompression for trigeminal neuralgia. J Neurosurg. 2017;126: 1691-1697.

277. Wongpisutan S. Short- and long-term effectiveness of keyhole microvascular decompression for trigeminal neuralgia. J Med Assoc Thai. 2018;101:209-216.

278. Wu A, Doshi T, Hung A, et al. Immediate and Long-Term Outcomes of Microvascular Decompression for Mixed Trigeminal Neuralgia. World Neurosurg. 2018;117:e350-e357.

279. Yang XS, Li ST, Zhong J, et al. Microvascular decompression on patients with trigeminal neuralgia caused by ectatic verteobasilar artery complex: technique notes. Acta Neurochir (Wien). 2021;153:791-797 [discussion: 797].

280. Zakrzewska JM, Chaudhry Z, Nurmikko TJ, Patton DW, Mullens EL, Lamotrigine (lamictal) in refractory trigeminal neuralgia: results from a double-blind placebo controlled crossover trial. Pain. 1997;73:233-236.

281. Zheng X, Feng B, Hong W, et al. Management of intraneural vessels during microvascular decompression surgery for trigeminal neuralgia. World Neurosurg. 2012;77:771-774.

282. Ali Eissa AA, Reyad RM, Saleh EG, El-Samam A. The efficacy and safety of combined pulsed and conventional radiofrequency treatment of refractory cases of idiopathic trigeminal neuralgia: a retrospective study. J Aneth. 2015;29:728-733.

283. Zhang YP, Wang Y, Xia W-G, Song A-Q. Triple puncture for primary trigeminal neuralgia: a randomized clinical trial. Curr Med Sci. 2019;39:698-644.

284. Lai G, Ni J, Wu B, et al. Computed tomography-guided percutaneous radiofrequency thermo-agulation for primary trigeminal neuralgia in older and younger patients. Neuro Rgen Res. 2011;6:888-893.

285. Ali FM, Peasant M, Pai D, Ahir VA, Kar S, Safiya T. Peripheral neuroectomies: a treatment option for trigeminal neuralgia in rural practice. J Neurol Surg. 2012;73:152-157.
pharmaceutical therapy for trigeminal neuralgia. J Laryn Med Sci. 2008;32:69-68.

318. Erdine S, Ozyalcin NS, Cimen A, Celik M, Tulu GK, Dici R. Comparison of pulsed radiofrequency with conventional radiofrequency in the treatment of idiopathic trigeminal neuralgia. Eur J Pain. 2007;11:309-312.

319. Guo H, Song G, Wang X, Bao Y. Surgical treatment of trigeminal neuralgia with no neurovascular compression: a retrospective study and literature review. J Clin Neurol. 2018;58:42-48.

320. Haider MN, Akther M, Molla MR, Hossain MA. Reddy VK, Parker SL, Lockney DT, Patrawala SA, Singla S, Prabhakar V, Singla RK. Role of Ichida MC, de Almeida AN, da Nobrega JC, Kanai A, Saito M, Hoka S. Subcutaneous sumatriptan for trigeminal neuralgia. Acta Neurol Scand. 2015;132:113-120.

322. Miles JB, Eldridge PR, Haggett CE, Bowsher D. Tang Y, Ma L, Li N, et al. Percutaneous trigeminal rhizotomy for the treatment of idiopathic trigeminal neuralgia. Headache. 2016;56:1371-1377.

324. Puri N, Rathore A, Dharmdeep G, et al. A clinical trial of gabapentin supplemented with ropivacain block for the treatment of trigeminal neuralgia. Pain. 2020;6:100070, A 2020.

326. Liu S. A comparative study of efficacy between acupuncture therapy and drug therapy for primary trigeminal neuralgia. Int J Clin Exp Med. 2018;11:854-8549.

328. Meybodi AT, Habibi Z, Miri M, Tafakhataie SA. Microvascular decompression for trigeminal neuralgia using the ‘Stitched Slit Retraction’ technique in recurrent cases after previous microvascular decompression. Acta Neurochir (Wien). 2014;156:1680-1687 [discussion: 1687].

330. Miles JB, Eldridge PR, Haggett CE, Bowsher D. Sensory effects of microvascular decompression in trigeminal neuralgia. J Neurol. 1997;24:193-198.

332. Mitsikostas DD, Davies GV, Avramidis TG, et al. An observational trial to investigate the efficacy and tolerability of leviteracetam in trigeminal neuralgia. Headache. 2010;50:1371-1377.

334. Pan HC, Sharan J, Huang CF, Shu ML, Yang DY, Chin WC. Quality-of-life outcomes after Gamma Knife surgery for trigeminal neuralgia. J Neurol. 2010;213:131-138.

336. Perez C, Navarro A, Saldana M, Martinez S, Rejas J. Patient-reported outcomes in subjects with painful trigeminal neuralgia receiving pregabalin: evidence from medical practice in primary care settings. Cephalalgia. 2009;29:787-790.

338. Perez C, Saldana MT, Navarro A, Martinez S, Rejas J. Trigeminal neuralgia treated with pregabalin in family medicine settings: its effect on pain alleviation and cost reduction. J Clin Pharmacol. 2009;49:352-359.

340. Piovesan EG, Teive HG, Kowacs PA, Della Coletta MV, Werneck LC, Silberstein SD. An open study of botulinum-A toxin treatment of idiopathic trigeminal neuralgia. Neurology. 2009;65:1206-1208.

342. Puri N, Rathore A, Dharmdeep G, et al. A clinical study on comparative evaluation of the effectiveness of carbamazepine and combination of carbamazepine with baclofen or diazepam in the management of trigeminal neuralgia. Niger J Surg. 2018;24:95-99.

344. Reddy VK, Parker SL, Lockney DT, Patrawala SA, Su PF, Mericle RA. Percutaneous stereotactic radiofrequency lesioning for trigeminal neuralgia: determination of minimum clinically important difference in pain improvement for patient-reported outcomes. Neurosurg. 2014;74:262-266 [discussion: 266].

346. Reddy VK, Parker SL, Patrawala SA, Lockney DT, Su PF, Mericle RA. Microvascular decompression for classic trigeminal neuralgia: determination of minimum clinically important difference in pain improvement for patient reported outcomes. Neurosurg. 2013;71:749-754 [discussion: 754].

348. Regis J, Metello P, Hayashi M, Roussel P, Donnet A, Bille-Turbé F. Prospective controlled trial of gamma knife surgery for essential trigeminal neuralgia. J Neurol. 2006;214:931-934.

350. Shaikh S, Yacob HB, Abd Rahman RB. Lamotrigine for trigeminal neuralgia: efficacy and safety in comparison with carbamazepine. J Clin Med Assoc. 2011;74:243-249.

352. Shehata HS, El-Tamawy MS, Shalaby NM, Ramzy G. Botulinum toxin-type A: could it be an effective treatment option in intractable trigeminal neuralgia? J Headache Pain. 2011;12:492.

354. Singh R, Davis J, Sharma S. Stereotactic Radio-surgery for Trigeminal Neuralgia: A Retrospective Multi-Institutional Examination of Treatment Outcomes. Curr. 2015;8:5545.

356. Singh S, Verma R, Kumar M, Rastogi V, Bopra J. Experience with conventional radiofrequency thermorhizotomy in patients with failed medical management for trigeminal neuralgia. Korean J Pain. 2014;27:286-295.

358. Singla S, Prabhakar V, Singla RK. Role of transcutaneous electric nerve stimulation in the management of trigeminal neuralgia. J Neurosci Rural Pract. 2011;2:150-152.

360. Stavropoulou E, Argyea E, Zis P, Vadalouca A, Siafaka I. The effect of intravenous lidocaine on trigeminal neuralgia: a randomized double blind placebo controlled trial. ISRN Pain. 2012;4014:854.66.

362. Suslu H, Suslu HT, Özdogan S, Guclu B, Duraklie AH. Percutaneous radiofrequency trigeminal rhizotomy for the treatment of idiopathic trigeminal neuralgia: experience in 106 patients. Neurol Sci Neurophys. 2018;35:91-96.

364. Taberi A, Firoozui-Marani S, Khoshbin M, Beygi M. A retrospective review of efficacy of combination therapy with pregabalin and carbamazepine versus pregabalin and amitriptyline in treatment of trigeminal neuralgia. An Afr Ther Int J. 2015;19:8-12.

366. Tanaka T, Shihia S, Yoshino N, et al. Predicting the therapeutic effect of carbamazepine in trigeminal neuralgia by analysis of neurovascular compression utilizing magnetic resonance cisternography. J Oral Maxillofac Surg. 2019;48:480-487.

368. Tang Y, Ma L, Li N, et al. Percutaneous trigeminal ganglion radiofrequency thermocoagulation alleviates anxiety and depression disorders in patients with classic trigeminal neuralgia: a cohort study. Medicine (Baltimore). 2016;95:75379.

370. Tsoeber B, Ekić MA, Demirel S, Basarasan SK, Koc RK, Guclu B. Microvascular decompression for primary trigeminal neuralgia: short-term follow-up results and prognostic factors. J Neurosurg Sci. 2012;52:42-57.

372. Weng Z, Halawa MA, Liu X, Zhou X, Yao S. Analogic effects of preoperative peripheral nerve block in patients with trigeminal neuralgia undergoing radiofrequency thermocoagulation of gasserian ganglion. J Craniofac Surg. 2013;24:479-482.

374. Yang JT, Lin M, Lee MH, Weng HH, Liao HH. Percutaneous trigeminal nerve radiofrequency rhizotomy guided by computerized tomography with three-dimensional image reconstruction. Chang Gung Med J. 2010;33:679-683.

376. Wu CJ, Lian YJ, Zheng YK, et al. Botulinum toxin type A for the treatment of trigeminal neuralgia: results from a randomized, double-blind,
placebo-controlled trial. Cephalalgia. 2002;22:443-459.

377. Xue T, Yang W, Guo Y, Yuan W, Dai J, Zhao Z. 3D image-guided percutaneous radiofrequency thermocoagulation of the maxillary branch of the trigeminal nerve through foramen rotundum for the treatment of trigeminal neuralgia. Medicine (Baltimore). 2015;94:e1934.

378. Yameen F, Shahbaz NN, Hasan Y, Faur R, Abdullah M. Efficacy of transcutaneous electrical nerve stimulation and its different modes in patients with trigeminal neuralgia. J Pak Med Assoc. 2011;61:477-483.

379. Zhang H, Lian Y, Ma Y, et al. Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: observation of therapeutic effect from a randomized, double-blind, placebo-controlled trial. J Headache Pain. 2014;15:65.

380. Zhang H, Lian Y, Xie N, Chen C, Zheng Y. Single-dose botulinum toxin type A compared with repeated-dose for treatment of trigeminal neuralgia: a pilot study. J Headache Pain. 2017;18:81.

381. Zhao WX, Wang Q, He MW, Yang LQ, Wu BS, Ni JX. Radiofrequency thermocoagulation combined with pulsed radiofrequency helps relieve postoperative complications of trigeminal neuralgia. Gnet Mol Res. 2015;14:705-702.

382. Zuniga C, Piedimonte F, Diaz S, Micheli F. Acute treatment of trigeminal neuralgia with onabotulinum toxin A. Clin Neuropharmacol. 2015;38:146-149.

383. Gao J, Zhao C, Jiang W, Zheng B, He Y. Effect of acupuncture on cognitive function and quality of life in patients with idiopathic trigeminal neuralgia. J Neurol Ment Dis. 2019;207:771-774.

384. Altinok A, Karanci T, Ozbek A, Albayrak SB. Instant and early efficacy of gamma knife treatment on trigeminal neuralgia. Turk J Oncol. 2018;32:154-158.

385. Dhople AA, Adams JR, Maggio WW, Naqvi SA, Regine WF, Kwok Y. Long-term outcomes of Gamma Knife radiosurgery for classic trigeminal neuralgia: implications of treatment and critical review of the literature. Clin article. J Neurosurg. 2009;111:351-356.

386. Huang CF, Chiao SY, Wu MF, Tu HT, Liu WS. Gamma Knife surgery for recurrent or residual trigeminal neuralgia after a failed initial procedure. J Neurosurg. 2010;113(suppl:1):172.

387. Hussain MA, Kontaes A, Sunderland G, et al. Exploration of microvascular decompression in recurrent trigeminal neuralgia and intraoperative management options. World Neurosurg. 2018;117:467-474.

388. Krishnan S, Bigder M, Kaufmann AM. Long-term follow-up of multimodality treatment for multiple sclerosis-related trigeminal neuralgia. Acta Neurol Scand. 2018;160:135-144.

389. Lucas JT Jr, Nida AM, Ioon S, et al. Predictive nomogram for the durability of pain relief from gamma knife radiation surgery in the treatment of trigeminal neuralgia. Int J Radiat Oncol Biol Phys. 2014;89:120-126.
453. Degn J, Bremmum J. Surgical treatment of trigeminal neuralgia. Results from the use of glycerol injection, microvascular decompression, and rhizotomy. Acta Neurochir (Wien). 2010;152:2125-2132.

454. Hagenacker T, Bude V, Naegel S, et al. Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J Neurol. 2014;261:157-168.

455. Verma S, Ravi Prakash SM, Patil RG, Singh U, Singh A. Dolutetan: an effective drug for the treatment of trigeminal neuralgia. Res J Pharm Biol Chem Sci. 2014;5:1060-1065.

456. Gomez-Arguelles JM, Dorado R, Sepulveda JM, et al. Occlusion of carotid and rhizotomia. J Clin Neurosci. 2007;14:358-361.

457. Parekh S, Shah K, Kotdawala H, Gandhi I, Baclofen in carbamazepine resistant trigeminal neuralgia—a double blind clinical trial. Cephalalgia. 1989;9(suppl 10):392-393.

458. Walker JB, Akhanjee LK, Cooney MM, Goldstein J, Tamayoshi S, Segal Gidan F. Laser stimulation of the motor cortex alleviates pain in peripheral neuropathic pain: clinical relevance and correlations in daily practice. Eur J Pain. 2019;23:1127-1128.

459. Court JE, Kase CS. Treatment of tic douloureux with a new anticonvulsant (clonazepam). J Neurol Neurosurg Psychiatry. 1976;39:297-299.

460. Azar M, Yahyavi ST, Bitaraf MA, et al. Gamma knife radiosurgery in patients with trigeminal neuralgia: quality of life, outcomes, and complications. Clin Neurol Neurosurg. 2009;111:174-178.

461. Guo J, Zhao C, Jiang W, Zheng B, He Y. Effect of acupuncture on cognitive function and quality of life in patients with idiopathic trigeminal neuralgia. J Neurol Ment Dis. 2019;209:171-174.

462. Tentolouris-Piparas V, Lee G, Reading I, O’Keeffe AG, Zakrzewska JM, Cregg R. Adverse effects of anti-epileptics in trigeminal neuralgia-iform pain. Acta Neurol Scand. 2018;137:576-574.

463. Jafree DJ, Williams AC, Zakrzewska JM. Impact of pain and postoperative complications on patient-reported outcome measures 5 years after microvascular decompression or partial sensory rhizotomy for trigeminal neuralgia. Acta Neurath (Wien). 2020;150:235-234.

464. Lee JYK, Pierce J, Sandhu SK, Petrov D, Yang AI. Endoscopic versus microscopic microvascular decompression for trigeminal neuralgia: equivalent pain outcomes with possibly decreased postoperative headache after endoscopic surgery. J Neurol. 2017;264:1676-1684.

465. Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c321.

466. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1455-1457.

467. Farrar JT. What is clinically meaningful: outcome measures in pain clinical trials. Clin J Pain. 2000;16(2 suppl):S106-112.

468. Angst MS, Brose WG, Dyck JB. The relationship between the visual analog pain intensity and pain relief scale changes during analgesic drug studies in chronic pain patients. Anesthesiology. 1999;91:314-41.

469. Jensen MP. Pain assessment in clinical trials. In: Carr DB, Wittink H, eds. Pain Management: Evidence, Outcomes and Quality of Life—A Sourcebook. New York: Elsevier; 2008:157-82.

470. Jensen MP, Chen C, Brugger AM. Postsurgical pain outcome assessment. Pain. 2002;99:201-219.

471. Zakrzewska JM, Ralton C. Future directions for surgical trial designs in trigeminal neuralgia. Neuroung Clin N Am. 2016;27:353-365.

472. Chen HI, Lee JY. The measurement of pain in patients with trigeminal neuralgia. Clin Neurosurg. 2010;57:129-133.

473. Turk DC, Melzack R, eds. Handbook of Pain Assessment. 2011

474. Carr DB, Wittink H, eds. Pain Management: Evidence, Outcomes and Quality of Life—A Sourcebook. New York: Guilford Press; 1992

475. Gotzsche PC, Vandenbroucke JP. The Strength of Evidence for Reporting Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1455-1457.

476. Schuller K, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c321.

477. Lee JY, Chen HI, Urban C, et al. Development of and psychometric testing for the Brief Pain Inventory-Facial in patients with facial pain syndromes. J Neurol. 2010;257:516-523.

478. Tunis SR, Clarke M, Gorst SL, et al. Improving the relevance and consistency of outcomes in comparative effectiveness research. J Comp Eff Res. 2016;5:193-205.

479. Prinsen CA, Vohra S, Rose MB, et al. How to select outcome measurement instruments for outcomes included in a “Core Outcome Set”—a practical guideline. Trials. 2016;17:45-51 [Electronic].

480. Perrot S, Lanteri-Minet M. Patients' Global Impression of Change in the management of peripheral neuropathic pain: clinical relevance and correlations in daily practice. Eur J Pain. 2019;23:1127-1128.

481. Dwarkin RH, Turk DC, Wyrwich KW, et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J Pain. 2008;9:105-121.

482. Chiapotto A, Deyo RA, Terwee CB, et al. Core outcome domains for clinical trials in non-specific low back pain. Eur Spine J. 2015;24:1127-1142.

483. Kaiser U, Kopkow C, Deckert S, et al. Developing a core outcome domain set to assessing effectiveness of interdisciplinary multimodal pain therapy; the VAPAIN consensus statement on core outcome domains. Pain. 2008;135:673-683.

Received 4 November 2019; accepted 16 January 2020

Citation: World Neurosurg. 2020;139:397-408. doi:10.1016/j.wneu.2020.100070

Journal homepage: www.journals.elsevier.com/world-neurosurgery-x

Available online: www.sciencedirect.com

2590-397/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).