1. Introduction

The Po plain is the most extensive plain in Italy with a surface of approximately 46,000 km² and an average population density of 450 inhabitants/km². Main roads and highways cross it, with many urban centres and industrial settlements widely developed, while the rest of the plain is characterized by intensive farming activities. The production carried out in the plain and surrounding regions constitutes more than 50% of the Gross Domestic Product (GDP) of Italy (Marchetti, 2002); the production carried out in the plain and surrounding regions constitutes more than 50% of the Gross Domestic Product (GDP) of Italy (Marchetti, 2017).

The updated and large-scale geomorphological map of the central Po Plain is presented with the intent of laying the basis for territorial management and planning. These geomorphological data are of paramount importance for the correct identification of areas susceptible to floods and areas that may be affected by liquefaction and other coseismic effects during earthquakes potentially threatening human lives and activities. This is particularly important for the areas struck by the seismic sequence of May 2012 which affected the central sector of the Po Plain. The sequence was dominated by two main events (Mw = 5.9 of May 20th and Mw = 5.8 of May 29th) that caused 27 deaths, over 400 persons injured, the evacuation of 14,000 people and considerable damage to houses, economic activities and cultural heritage. The environmental effects of the earthquakes mainly consisted of liquefaction-related phenomena such as sand boils or sand water ejections, ground cracks and soil subsidence (Di Manna et al., 2012; Emergeo, 2013; Ravazzi et al., 2013).

2. Geological and geomorphological outline of the study area

The Po Plain is located between the Alps and the Apennines (Figure 1). It was the foreland basin of the Northern Apennines and of the Southern Alps during the Paleogene (Turrini, Toscani, Lacombe, & Roure, 2016, and reference therein). The River Po, the longest watercourse of Italy (652 km) with a 74,970 km² wide catchment, flows eastward within a completely embanked meandering course, from the western Alps to the Adriatic Sea. In the central portion of the Po Plain, the Po abruptly turns northward between the provinces of Parma and Mantua (Figure 2).

Five physiographic units can be distinguished in the Po Plain (Figure 1; Marchetti, 2002), they are listed below in stratigraphic order.

(1) Holocene deposits in the central sector of the plain constitute the Holocene Floodplain unit, formed by aggradation of the River Po (Figure 3a) and its right tributaries. The Holocene Floodplain unit is found in the south-western, central and eastern sectors of the study area, on the left and right sides of the River Po (Figure 1).

(2) A less extensive surface is located near the Apennine boundary of the Po Plain. It is made up of a system of coalescent fluvial fans developing at the Apennine foothills, the so-called Late Pleistocene bajada unit, related to the great amount of sediments produced during the LGM (Marchetti, 2002);
In the northern part of the Po Plain, adjacent to the glacial amphitheatres, the Main Level of the Plain unit has been identified (Marchetti, 2002). It consists of a complex of alluvial fans with their apex located on the Alpine foothill, coeval with the Late Pleistocene bajada unit, slightly inclined towards the River Po, made up of fluvioglacial and fluvial sediments. The latter were emplaced during the LGM, when rivers flowing from the Alps carried more water and sediment than today, as witnessed by abandoned riverbeds, which are oversized with respect to present-day hydrography (Marchetti, 1990). At present, the Alpine rivers flow in deep entrenched valleys carved into this unit because of

Figure 1. The physiographic units of the Po Plain (modified after Marchetti, 2002). Legend: 1) Holocene Floodplain unit; 2) Late Pleistocene bajada unit; 3) Main Level of the Plain unit; 4) old terraces unit; 5) glacial amphitheatres unit; 6) bedrock; 7) hydrography; 8) study area; 9) geomorphological map subdivisions: western sector (W), central sector (C) and eastern sector (E).

Figure 2. Main structural lineaments and Quaternary sedimentary cover in the central and eastern Po Plain (modified after Ravazzi et al., 2013). The modern hydrographic network is represented together with the thickness of Pliocene-Quaternary sedimentary cover and the main tectonic elements. Legend: 1) Quaternary sedimentary cover <2 km; 2) Quaternary sedimentary cover from 2 to 4 km thick; 3) Quaternary sedimentary cover from 4 to 6 km thick; 4) Quaternary sedimentary cover from 6 to 8 km thick; 5) Quaternary sedimentary cover >8 km; 6) main overthrusts; 7) main faults; 8) glacial amphitheatres; 9) Alpine and Apennine reliefs; 10) main hydrography.
an intense erosional phase occurring during the Lateglacial. The southern boundary of the Main Level of the Plain is constituted by an escarpment resulting from fluvial erosion, due to the northward migration of the River Po during the Holocene. The Main Level of the Plain can be found in the northwestern sector of the mapped area (Figure 1).

(4) At the margin of the Alps and Apennines, a series of fluvioglacial and fluvial terraces have been included in the old terraces unit. These terraces have rubified soils and polygenetic loess covers, which constitute the remnants of the ancient Po Plain surface, prior to the Last Glacial Maximum (LGM), they were isolated by intense erosional phases resulting from deglaciation (e.g. Marchetti, 2002).

(5) At the foothills of the Alps, the glacial amphitheatres unit is found. This physiographic unit includes moraines and valleys scoured by glaciers during the Pleistocene.

Extensive seismic reflection data, used for oil exploration (Pieri & Groppi, 1981) and further structural models (e.g. Ghielmi et al., 2010; Turrini et al., 2016), show the presence of two main compressive tectonic structures: the Pede-Apennine thrust front, in the foothills of the chain, and three buried arcs constituting the most advanced thrusts of the Apennine chain. The most active of these thrusts below the plain surface, named Ferrara Folds or Ferrara Arc, has a curved trend stretching beneath the towns of Reggio Emilia, Mirandola, Finale Emilia and Cento (Figure 2). The two earthquakes, occurring on 20th and 29th May 2012 (Mw = 5.9 and 5.8 Mw = respectively), which caused the uplift of 10–15 cm of the areas close to the epicentre, have been associated with the Ferrara folds (Bignami et al., 2012; Caputo et al., 2015). North of the River Po, the frontal part of the Southern Alps is buried under the Po Plain sediments and forms the Pede-Alpine homocline between Verona and Ostiglia (Figure 2).
The geomorphological evolution of the Po Plain has been mainly driven by tectonic uplift and climate change interplay. In particular, the activity of the Apennine thrusts has produced a generalized northward shifting of the River Po and its tributaries between Brescello and Ferrara (Figure 2) (Panizza & Castaldini, 1987; Vannoli, Burato, & Valensise, 2014 and references therein). In fact, a large number of abandoned riverbeds attributable to the River Po, have been recognized (e.g. Castiglioni et al., 1997; Castiglioni & Pellegrini, 2001, and references therein). In addition, climate change has caused significant sea level variations, which directly influence fluvial dynamics (e.g. Bruno, Piccin, Sammartino, & Amorosi, 2018). Anthropogenic activities, especially in past centuries, are an important factor modifying the landscape. In particular, fluvial and hydraulic interventions (such as meander cutting), channelization, quarrying activities, land use changes and deforestation have increased over time (Ravazzi et al., 2013).

3. Map overview

3.1. Methods

Remote sensing and altimetric terrain data, field surveys, sampling and grain size analysis of superficial deposits were used in order to interpret and map the geomorphological features of the study area.

Remote sensing interpretation has been fundamental for identifying landforms with reliefs higher than one metre and with shapes delimited by surfaces with very different slope angles, such as fluvial scarps and V-shaped valleys. The remote sensing dataset included: i) aerial photos at the analogic scales of 1:33,000 (IGMI, 1955), 1:20,000 (Lombardy Region, 1981) and 1:70,000 (CGR, 1994); ii) multitemporal ortho-photos (since 1955), 1:20,000 (Lombardy Region, 1981) and 1:70,000 (Lombardy Region, 1981) and 1:10,000 scale (Lombardy Region, 1981). All remote sensing, fieldwork and laboratory data have been stored in a spatial database and processed by means of a Geographic Information System (GIS) in order to obtain the maps described in the following sections.

3.2. Micro-relief map

Micro-relief analysis has proved to be a fundamental tool in the elaboration of the geomorphological map (cf. Section 3.3) and useful for outlining many inconspicuous landforms (e.g. fluvial ridges, Figure 3b).

The micro-relief map shows that in the north-western sector of the study area the topographic surface consists of a gentle south-south-eastward dipping plain at 20–30 m a.s.l., which is the top of the Main Level of the Plain unit (cf. Section 2). This surface has an average slope of about 0.08% and is crossed by a series of north-south V-shaped small valleys.

A change in topography in the south of the western sector, occurring along a small scarp, marks the northern boundary of the Holocene Floodplain unit, characterized by a gentler (0.03% average slope) eastward dipping surface at 25–17 m a.s.l. At the south-western end of the central sector, the elevation of the alluvial plain slightly increases, defining an east-west fluvial ridge hosting some of the main urban settlements (e.g. Casalmaggiore and Viadana).

Further to the east, the micro-relief map shows lower altitudes of the Holocene Floodplain unit, ranging from 20 to 21 m a.s.l. near Suzzara and Gonzaga, to 6–7 m a.s.l. at the eastern end of the study area near Felonica. This gentle, eastward sloping sector of the alluvial plain (average slope of 0.03%) corresponds to the ‘Oltrepò Mantovano’ (the area of Mantua province south of the R. Po) and is crossed by mainly sinuous east-west fluvial ridges, along large depressions, clearly identifiable in the micro-relief map.

3.3. Geomorphological map

The geomorphological map at a 1:25,000 scale has been divided into three sectors (western, central and eastern) and includes the hydrographic network, fluvial landforms, anthropogenic landforms and texture of superficial alluvial deposits.
3.3.1. Hydrographic network

The main elements of the hydrographic network are the River Po, flowing from west to east, its left tributaries, the Rivers Oglio (western and central sector) and Mincio (central and eastern sector) flowing from the Alps, and the River Secchia (eastern sector), a right tributary flowing from the Apennines. The western and eastern stretches of the Po are sinuous and slightly sinuous; in the central part the river shows an evident northward bend near Dosolo determined by river diversions occurring in the eighth century BCE and twelfth century CE (Castaldini, 1989).

The Po is hanging inside areas subject to river flooding in correspondence with highwater beds that reach a width of more than 2 km. The highwater beds are located between a system of outer main river embankments that can be 5–6 m higher than the surrounding plain. The abundant solid load accumulated since the mid-Holocene up to the 1950s mainly determined the hanging of the Po riverbed over the plain, which was favoured by the constriction of the river within a system of embankments implemented since Roman times (Marchetti et al., 2017). Between the 1960s and 1970s, the Po began to erode its own alluvial sediments, causing a deepening of its bed (Marchetti, 2002). The sector is also crossed by a dense network of totally or partially artificial irrigation canals. Worthy of notice for their significant dimensions, are the man-made canals located to the south of the confluence between the Rivers Oglio and Po (central sector). Near this area, both natural and artificial ponds, with sub-circular or elongated shapes, are present in correspondence with highwater bed areas. These features outline abandoned riverbeds and highwater bed channels (cf. section 3.3.2); the sub-circular ones can be related to piping phenomena occurring during floods (e.g. Pellegri & Castaldini, 2008). Various rectangular artificial ponds, mainly in the depressed areas, are also found on the western and eastern side of the area.

3.3.2. Fluvial landforms

Important features in the map are crevasse splays, which bear witness to the occurrence of bank breaches and floods in space and time. They were mapped as active those occurred after the year 2000 CE, when the latest major highwater event affecting the River Po occurred (Figure 3c).

Inactive crevasse splays were identified all along the Po embankments and in correspondence with the relict fluvial ridges located on its right side (central and eastern sector of the Main Map). Worthy of notice are the inactive crevasse splays located on relict fluvial ridges between Suzzara and Pegognaga, and near Motteggiana, which are located on the outer side of the former meanders, where stream flow was inferred to have been higher.

Numerous inactive crevasse splays were mapped along the River Po testifying floods occurring in historical times along the investigated river stretch, as reported in literature (e.g. Autorità di Bacino del Fiume Po, 2014; Castiglioni & Pellegri, 2001; Govi & Turitto, 2000; Luino, 2013).

Two active crevasse splays were mapped within the inner part of the highwater bed, west of San Benedetto Po (northeastern part of the central sector). Both originated from the 2000 overflow (Marchetti, 2008). Another active crevasse splay was mapped east of San Matteo delle Chiaviche (western part of the central sector), which originated during the 2014 Po overflow (e.g. Zanichelli, Pavan, Pecora, & Ricciardi, 2015; Figure 3d).

V-shaped valleys were mapped in the north-western part of the area. These valleys, carved at the escarpment of the Main Level of the Plain unit (Figure 3e), were formed by the erosive action of the hydrographic network formed after the Last Glacial Maximum glacier retreat, and evolved by northwards regressive erosion (Castiglioni & Pellegri, 2001; Cremaschi & Marchetti, 1995).

In the mapped area there are extensive traces left by the relict hydrographic network, in the form of abandoned riverbeds at the plain level or slightly below. On the Main Level of the Plain, the traces of abandoned riverbeds have a north-south direction and low continuity; they are slightly sinuous and often slightly recessed within the surrounding plain.

The most striking geomorphological features on left side of the River Po (western and central sectors) are the numerous, close and intersecting traces of abandoned riverbeds at the plain level or slightly below. Flow directions of these paleo-channels, corresponding to ancient traces of the River Po, were generally oriented from west to east. On the right side of the River Po (central and eastern sectors), the traces of abandoned riverbeds at plain level or slightly below are clearly outlined. Among them, worthy of notice are the abandoned meandering riverbeds between the River Po and Suzzara and Pegognaga, originating between the twelfth and sixteenth centuries CE (Castaldini, 1989).

Fluvial ridges, related to the abandoned hydrographic network, are the most common geomorphological features of the area on the right side of the River Po (within the central and eastern sectors). The west-east meandering fluvial ridges between the River Po, Suzzara and Pegognaga and the fluvial ridges with approximate meandering south to north direction, on the left side of the River Secchia, are linked to the fluvial dynamics of an ancient River Po path that was active between the Roman period and the Late Middle Ages (Figure 3f). Today it corresponds to a secondary stream called ‘Po Vecchio’ which means ‘Old Po’ (Castaldini, 1989).
On the right side of the River Secchia (eastern sector) discontinuous fluvial ridges with west-east direction are found. They are related to the fluvial dynamics of an ancient Po branch active during the Bronze Age. In the same area, a continuous fluvial ridge was mapped crossing the locality of San Giacomo delle Segnate and dividing near Poggio Rusco. This fluvial ridge is one of the ancient courses of the River Secchia, which started following its present path after the fourteenth-fifteenth century CE (Castaldini, 1989).

Channels within the main embankments inside the highwater bed, occasionally occupied by the River Po during overflow events, were mapped as highwater bed channels.

A few depressions were mapped by means of the micro-relief map; they are located south of the fluvial escarpment at the northern boundary of the Holocene Floodplain unit. A large depressed area, corresponding to an interfluvial basin, is located between San Matteo delle Chiaviche and Bugno di Cavallara, on the left-hand side of the Po riverbed. Another depressed area is located north-east of the confluence between the Rivers Oglio and Po, around an extensive crevasse splay.

On the left side of the River Secchia, the depressed areas are numerous but not extensive and they are bounded by fluvial ridges. The largest depressed area, with a north-south axis, is located between San Benedetto Po and Moglia and is split in two by a large reclamation channel, which was built inside embankments following the same axis as the depressed area. Extensive depressions, located on the right side of the River Secchia, attain a minimum elevation of 6–7 m a.s.l. These depression areas are the traces of the presence – from the Middle Ages to the 1900s – of extensive marshes, later reclaimed (cf. Marchetti et al., 2017).

Among river erosional features, in addition to V-shaped valleys, it was also possible to recognize fluvial scarp. The active ones are limited to highwater beds along the River Po. Evident from the micro-relief map are: a) the north-facing fluvial scarp located on the right side of the River Oglio (northern part of the western sector) and b) the fluvial scarp, partially remodelled by man, bordering to the south the Main Level of the Plain. Worthy of note is the slope identified in correspondence with the abandoned riverbed between SABBIONETA and Compressagio. The environmental co-seismic effects induced by the 2012 seismic sequence, as well as the damage to structures and infrastructures, appeared concentrated and aligned along specific patterns. Their spatial distribution was mostly controlled by the presence of paleo-riverbeds, highwater bed channels and crevasse splays of the main rivers crossing the epicentral area. In particular, the most affected zones in the study area were near the River Secchia and the villages of Quistello (Figure 4a) and Moglia (Figure 4b).

3.3.3. Texture of alluvial superficial deposits

In the investigated area, superficial deposits are those located at depths varying from 0.5 to 1 m, that are immediately below the layer affected by paedogenesis and modified by agricultural practices. The superficial textures of the deposits are influenced by the same processes that originated the Po Plain.

Surface deposits have been classified by their texture: i) mainly sandy deposits (sand > 40%); ii) mainly silty deposits (silt > 40%); iii) mainly clayey deposits (clay > 40%). Only one peat deposit was found to the east of the village of Calvatone.

Spatial alternations of sandy and silty deposits characterize the northern part of the western sector, which corresponds to the Main Level of the Plain. These superficial deposits were interpreted as the distal portions of megafans created by intense sedimentation during the LGM (Marchetti, 2002).

The area on the left side of the River Po (western and central sectors) is mainly characterized by a uniform cover of silty and clayey deposits emplaced by recurrent flooding of the River Po (e.g. Castiglioni & Pellegrini, 2001; Luino, 2013). There are extensive areas consisting of mainly clayey deposits between Vicomoscano and

Figure 4. Examples of liquefaction induced by the earthquake of 29th May 2012 in the surroundings of Quistello (a) and in the urban centre of Moglia (b), respectively within the eastern and central sectors of the Main Map.
San Matteo delle Chiaviche, north of Sabbioneta and in correspondence with Commessaggio.

Between Martignana di Po and Viadana, the area is characterized by a certain variability of textures conditioned by many abandoned riverbeds at plain level or slightly below and by fine sediments left by the recurring floods of the Po.

On the right side of the River Po (central and eastern sectors) the textural distribution depends on the presence of traces of the abandoned hydrography. Mainly sandy deposits can be found in correspondence with fluvial ridges, abandoned riverbeds at the plain level or slightly below and crevasse splays. Mainly silty deposits prevail in the sector on the left side of the River Secchia and they are located along the traces of relict hydrography. Mainly clayey deposits prevail on the right side of the River Secchia. Their origin can be attributed to the main flooding events occurring up to the nineteenth century in the lowland areas of the provinces of Mantua, Modena and Ferrara (Castiglioni & Pellegrini, 2001; Luino, 2013).

3.3.4. Anthropogenic landforms

In the mapped area, anthropic interventions have played a considerable role in the modification of the hydrographic network, mainly owing to the construction of levees, artificial canals for reclamation or for agricultural/industrial water provision and bank protection structures. The levees systems relevant to the investigated stretches of the rivers Po, Oglio, Mincio and Secchia are depicted in the geomorphological map.

The anthropic influence over the study area is also due to the progressive spreading of urban centres. By comparing the current extension of urban settlements with those of the past, inferred from multi-temporal aerial photographs, it can be assumed that the biggest urban development took place after the 1950s.

Past and almost abandoned quarrying activities also produced landscape changes. While in the past the quarrying activities were developed all over the plain, at present, the extraction of aggregates affects only the Po riverbed. The active quarry areas are confined in the highwater beds of the River Po and are represented by screening plants (Castaldini, Giusti, & Marchetti, 2003). In the geomorphological map, quarries with a dry bottom are those in which excavation has not reached the water table. Reclaimed quarries were largely turned into agricultural fields, masking the former use of the area.

4. Conclusions

The maps presented in this paper provide a comprehensive representation of the landscape features of the central Po Plain.

The geomorphological map shows the following features:

(a) elements characterizing present-day hydrographic network (hydrography, highwater beds, ponds);
(b) alluvial landforms (e.g. abandoned riverbeds, fluvial ridges, crevasse splays) which are representative of fluvial evolution over time;
(c) spatial distribution of texture of superficial deposits, distinguished in four classes: mainly sandy, silty, clayey and peat deposits;
(d) anthropogenic landforms (quarries, bank protection structures, main levees, etc.) from which it can be perceived how strong the anthropogenic imprint has been on the landscape.

This geomorphological map is an important tool for land use policy, geological hazard assessment and development of specific civil protection plans, with particular reference to fluvial and peri-fluvial environments exposed to flood-related hazards.

In addition, as previously stated, liquefaction and other environmental co-seismic effects caused by the two earthquakes that affected the central Po Plain in May 2012 have highlighted that hazardous phenomena were concentrated along paleo-hydrographic features (e.g. Emergeo, 2013). In conclusion, the geomorphological and textural data reported in the maps provide public boards with fundamental information for the subsequent assessment and reduction of seismic- and flood-related risks.

Software

Cartographic data are stored in a personal geodatabase and the final maps were produced in ESRI ArcMap 10.1.

Acknowledgements

This work is part of a study promoted by Regione Lombardia within the framework of the EU Project ‘GeoMol’ Alpine Space Programme, coordinated by Andrea Piccin. We thank Peter Craig Almond, Tullio Urbano, Makram Murad-al-shaikh, Brooke E. Marston, Bradley Johnson and Shubhra Sharma for providing valuable comments.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Gianluca Norini http://orcid.org/0000-0003-2021-683X

References

Autorità di Bacino del Fiume Po. (2014). Fiume Po da Torino al mare. Censimento delle rotte storiche [River Po from Turin to the sea. Inventory of river overflows in historical times]. 36 pp. Parma.
Castaldini, D. (1989). Evoluzione della rete idrografica centropadana in epoca protostorica e storica [Evolution of the hydrographic network of the Central Po Plain in protohistorical and historical times]. In Proceedings of Convegno Nazionale di Studi “Insediamenti e viabilità nell’alto Ferrarese dall’Età Romana al Medioevo” (Cento, 8–9 May 1987) (pp. 115–134). Ferrara: Accademia delle Scienze.

Castaldini, D., Giusti, C., & Marchetti, M. (2003). La geomorfologia del corso del Po e del territorio nel tratto foce Enza – foce Oglio [Geomorphology of the River Po between Enza and Oglio mouths]. In S. Venturi, & N. Bacchi (Eds.), L’animma del Po. Terra, acqua e uomini tra Enza e Oglio (pp. 5–31). Parma: Bottei.

Castiglioni, G., Ajassa, R., Baroni, C., Biancotti, A., Bondesan, A., Bondesan, M.,…Cortemiglia, F. (1997). Carta Geomorfologica della Pianura Padana – F. 250.000 [Geomorphological map of the Po Plain – 1:250,000]. Florence: S.EL.CA.

Castiglioni, G. B., & Pellegrini, G. B. (Eds.). (2001). Note illustrative della carta geomorfologica della Pianura Padana [Illustrative notes of the geomorphological map of Po Plain, Italy]. Supplementi di Geografia Fisica e Dinamica Quaternaria, 4, 7–12.

CGR. (1994). 1:70,000 scale aerial photos. Compagnia Generale Ripreseeree SpA.

Cremaschi, M., & Marchetti, M. (1995). Changes in fluvial dynamics in the Central Po Plain (Italy) between Lateglacial and Early Holocene. In B. Frenzel (Ed.), European river activity and climatic change during the Lateglacial and early Holocene (Vol. 14, pp. 173–190). Strasbourg: Paläoklimaforschung [Palaeoclimate Research].

Di Manna, P., Guerrieri, L., Piccardi, L., Vittori, E., Castaldini, D., Berlusconi, A.,…Michetti, A. M. (2012). Ground effects induced by the 2012 seismic sequence in Emilia: Implications for seismic hazard assessment in the Po Plain. Annales of Geophysics, 55(4), 697–703. doi:10.4401/ag-6143

Emergo Working Group. (2013). Liquefaction phenomena associated with the Emilia earthquake sequence of May–June 2012 (Northern Italy). Natural Hazards and Earth System Sciences, 13, 935–947. doi:10.5194/nhess-13-935-2013

Gasperi, G., & Gelmini, R. (1976). Determinazione speditiva delle granulometrie di rocce sciolte. Gruppo di Studio del Quaternario Padano, Quaderno 3, 21–24.

Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., Rossi, M., & Vignoli, A. (2010). Sedimentary and tectonic evolution in the eastern Po Plain and northern Adriatic Sea area from Messinian to Middle Pleistocene (Italy). Rendiconti Lincei, 21(1), 131–166. doi:10.1007/s11222-010-0110-5

Govi, M., & Turitto, O. (2000). Casistica storica sui processi d’interazione delle correnti di piena del Po con arginature e con elementi morfotopografici del territorio adiacente [Historical case studies on the interaction processes of the flood currents of the River Po with embankments and with morphotopographic elements of the adjacent territory]. Istituto Lombardo Accademia di Scienze e Lettere, 5, 105–160.

IGMI. (1955). 1:33,000 scale aerial photos of Flight GAI. Istituto Geografico Militare Italiano.

Lombardy Region. (1981). Color aerial photographs, flight TEM 1 (scale 1:20,000).

Luino, F. (2013). Le inondazioni storiche del Fiume Po in particolare dal 1861 a oggi [Historical flood events of the River Po between 1861 till today]. In E. Guidoboni, & G. Valensise (Eds.), L’italia dei disastri: dati e relazioni sull’impatto degli eventi naturali 1861–2013 (pp. 109–158). Bologna: Bononia University Press.

Marchetti, M. (1990). Cambiamenti idrologici nella Pianura Padana Centrale a nord del Fiume Po: i casi di «underfit streams» dei fiumi Mincio, Oglio e Adda [Hydrological changes in the Central Po Plain north of River Po. The cases of «underfit streams» of Mincio, Oglio and Adda rivers]. Geografia Fisica e Dinamica Quaternaria, 13, 53–62.

Marchetti, M. (2002). Environmental changes in the central Po Plain (Northern Italy) due to fluvial modifications and anthropogenic activities. Geomorphology, 44(3), 361–373. doi:10.1016/S0169-555X(01)00183-0

Marchetti, M. (2008). Corsi d’acqua e bacinid idrografici [Water courses and hydrographic basins]. In M. G. Grillotti Di Giacomo (Ed.), Atlante Tematico delle Acque d’Italia (pp. 47–58). Genova: Brigati.

Marchetti, M., Soldati, M., & Vandelli, V. (2017). The great diversity of Italian landscapes and landforms: Their origin and human imprint. In M. Soldati, & M. Marchetti (Eds.), Landscapes and landforms of Italy (pp. 7–20). Cham: Springer International Publishing AG.

Panizza, M., & Castaldini, D. (1987). Neotectonic research in applied geomorphological studies. Zeitschrift fur Geomorphologie Supplementband, 63, 173–211.

Pellegrini, M., & Castaldini, D. (2008). Sorgenti di pianura: risorgive e fontanili [Plain springs: risorgive and fontanili]. In M. G. Grillotti Di Giacomo (Ed.), Atlante tematico delle acque d’Italia (pp. 87–90). Genova: Brigati.

Pieri, M., & Groppi, G. (1981). Subsurface geological structure of the Po Plain, Italy. CNR, Progr. Fin. Geodin., Sottoprogramma Modello strutturale, 414, 1–13.

Ravazzi, C., Marchetti, M., Zanon, M., Pereggi, R., Quirino, T., Deaddis, M., …Margaritotta, D. (2013). Lake evolution and landscape history in the lower Mincio River valley, unravelling drainage changes in the central Po Plain (N-Italy) since the Bronze Age. Quaternary International, 288, 195–205. doi:10.1016/j.quaint.2011.11.031

Turrini, C., Toscani, G., Lacombe, O., & Roure, F. (2016). Influence of structural inheritance on foreland-folded system evolution: An example from the Po valley region (Northern Italy). Marine and Petroleum Geology, 77, 376–398. doi:10.1016/j.marpetgeo.2016.06.022

Vannoli, P., Burrato, P., & Valensise, G. (2014). The seismotectonics of the Po Plain (Northern Italy): tectonic diversity in a blind faulting domain. Pure and Applied Geophysics, 172, 1105–1142. doi:10.1007/s00024-014-0873-0

Zanichelli, G., Pavan, S., Pecora, S., & Ricciardi, G. (2015). Gli insediamenti e viabilità nell’interazione delle correnti di piena del Po con arginature sull’impatto degli eventi naturali 2014-un approfondimento [Po River flood events in November 2014: insights]. Retrieved from http://iononrischio.protezionecivile.it/en/...