FUNCTIONAL EQUATIONS RELATED TO THE DIRICHLET LAMBDA AND BETA FUNCTIONS

JEONWON KIM

Abstract. We give closed-form expressions for the Dirichlet beta function at even positive integers and for the Dirichlet lambda function at odd positive integers, based on the function $J(s)$ defined via convergent integral. We also show fundamental relations between Dirichlet lambda and beta functions and the function $J(s)$.

1. Introduction

We will use the definitions involving the Dirichlet lambda function and the Dirichlet beta function. The Dirichlet lambda and beta function are defined as

$$\lambda(s) = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^s} = \left(1 - \frac{1}{2^s}\right) \zeta(s) \quad \Re(s) > 1$$

$$\beta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^s} \quad \Re(s) > 0$$

where $\zeta(s)$ is the Riemann zeta function. The values of the Dirichlet lambda function at even positive integers and Dirichlet beta function at odd positive integers are given as

$$\lambda(2m) = (2^{2m} - 1) \frac{(-1)^{m-1} \pi^{2m}}{2(2m)!} B_{2m} \quad m \in \mathbb{N}$$

$$\beta(2m - 1) = \frac{(-1)^{m-1} E_{2m-2}}{2(2m-2)!} \left(\frac{\pi}{2}\right)^{2m-1} \quad m \in \mathbb{N}$$

where B_{2m} is Bernoulli number and E_{2m} is Euler number.

In this paper, we define the integral function $J(s)$ which can be written for all $\Re(s) > 0$

$$J(s) = \frac{1}{\Gamma(s+1)} \frac{2}{\pi} \int_{0}^{\pi} x^s \sin(x) \,dx$$

where Γ denotes the Gamma function.

The function $J(s)$ gives closed-form expressions for the Dirichlet lambda function at odd positive integers and for the Dirichlet beta function at even positive integers.

Theorem 1. The values of the Dirichlet lambda function at odd positive integers are denoted by $J(s)$ as follows:

$$\lambda(2m + 1) = \sum_{k=1}^{m} [(-1)^{k-1} \lambda(2m - 2k + 2)] + (-1)^m \beta(1) J(2m)$$

where for all $m \in \mathbb{N}$

Theorem 2. The values of the Dirichlet beta function at even positive integers are denoted by $J(s)$ as follows:

$$\beta(2m) = \sum_{k=1}^{m} (-1)^{k-1} \beta(2m - 2k + 1) J(2k - 1)$$

where for all $m \in \mathbb{N}$
For example,

\[
\begin{align*}
\beta(2) &= \beta(1)J(1) \\
\beta(4) &= \beta(3)J(1) - \beta(1)J(3) \\
\beta(6) &= \beta(5)J(1) - \beta(3)J(3) + \beta(1)J(5) \\
\beta(8) &= \beta(7)J(1) - \beta(5)J(3) + \beta(3)J(5) - \beta(1)J(7)
\end{align*}
\]

\[\vdots\]

and

\[
\begin{align*}
\lambda(3) &= \lambda(2)J(1) - \beta(1)J(2) \\
\lambda(5) &= \lambda(4)J(1) - \lambda(2)J(3) + \beta(1)J(4) \\
\lambda(7) &= \lambda(6)J(1) - \lambda(4)J(3) + \lambda(2)J(5) - \beta(1)J(6) \\
\lambda(9) &= \lambda(8)J(1) - \lambda(6)J(3) + \lambda(4)J(5) - \lambda(2)J(7) + \beta(1)J(8)
\end{align*}
\]

\[\vdots\]

2. Preliminary Lemmas

In this section, we start with several Lemmas used in proving Theorems 1 and 2.

Lemma 1. If \(n\) is a positive integer, then

\[
\begin{align*}
\sum_{k=1}^{n} \cos((2k-1)x) &= \frac{1}{2} \csc(x) \sin(2nx) \quad (8) \\
\sum_{k=1}^{n} \sin((2k-1)x) &= \csc(x) \sin^2(nx) \quad (9)
\end{align*}
\]

Proof. Consider the following sum,

\[
S = \sum_{k=1}^{n} \cos((2k-1)x) + i \sum_{k=1}^{n} \sin((2k-1)x) = \sum_{k=1}^{n} e^{i(2k-1)x}
\]

Since \(S\) is a geometric series with common ratio \(e^{2ix}\)

\[
S = \frac{e^{ix}(1 - e^{2nix})}{1 - e^{2ix}} = \frac{(e^{-nix} - e^{nix})e^{nix}}{e^{-ix} - e^{ix}} = \frac{-2i \sin(nx)(\cos(nx) + i \sin(nx))}{2i \sin(x)} = \frac{1}{2} \csc(x) \sin(2nx) + i \csc(x) \sin^2(nx)
\]

Therefore,

\[
\begin{align*}
\sum_{k=1}^{n} \cos((2k-1)x) &= \frac{1}{2} \csc(x) \sin(2nx) \\
\sum_{k=1}^{n} \sin((2k-1)x) &= \csc(x) \sin^2(nx)
\end{align*}
\]

\[\square\]

Lemma 2. If \(n\) is a positive integer, then

\[
\sum_{k=1}^{n} (-1)^{k-1} \cos((2k-1)x) = \sec(x) \sin^2 \left(\frac{n(\pi - 2x)}{2} \right) \quad (10)
\]
Proof. Consider the following sum,

\[
S = \sum_{k=1}^{n} (-1)^{k-1} \cos((2k-1)x) + i \sum_{k=1}^{n} (-1)^{k-1} \sin((2k-1)x) = \sum_{k=1}^{n} (-1)^{k-1} e^{i(2k-1)x} = e^{ix} \frac{1 - (-1)^n e^{2nx}}{1 + e^{2ix}} = \frac{1 - (-1)^n \cos(2nx) - (-1)^n i \sin(2nx)}{2 \cos(x)}
\]

Taking the real part,

\[
\Re(S) = \frac{1 - (-1)^n \cos(2nx)}{2 \cos(x)} = \frac{1 - \cos(n\pi) \cos(2nx)}{2 \cos(x)} = \frac{1 - \cos(n\pi - 2nx)}{2 \cos(x)} = \frac{\sin^2(n(\pi - 2x)/2)}{\cos(x)}
\]

Therefore,

\[
\sum_{k=1}^{n} (-1)^{k-1} \cos((2k-1)x) = \sec(x) \sin^2 \left(\frac{n(\pi - 2x)}{2} \right)
\]

\[\square\]

Lemma 3. Let \(A \) be a \(n \times n \) matrix, and \(A_{ij} = \sin \left(\frac{(2i - 1)(2j - 1)\pi}{4n} \right) \), then \(A^{-1} = \frac{2}{n} A \)

Proof. Note that \((i, j)\)th element of the matrix \(A^2 \). The \(A^2 \) is the \(n \times n \) matrix whose \((i, j)\)th entry is given by

\[
A_{ij}^2 = \sum_{m=1}^{n} \left[\sin \left(\frac{(2i - 1)(2m - 1)\pi}{4n} \right) \sin \left(\frac{(2j - 1)(2m - 1)\pi}{4n} \right) \right]
\]

If \(i = j \), we have

\[
A_{ij}^2 = \sum_{m=1}^{n} \sin^2 \left(\frac{(2i - 1)(2m - 1)\pi}{4n} \right)
\]

By using the identity \(\sin^2(x) = \frac{1}{2}(1 - \cos(2x)) \) and Lemma III

\[
A_{ij}^2 = \sum_{m=1}^{n} \left[\frac{1}{2} - \frac{1}{2} \cos \left(\frac{(2i - 1)(2m - 1)\pi}{2n} \right) \right] = \frac{n}{2} - \frac{1}{2} \sin((2i - 1)\pi) \csc \left(\frac{(2i - 1)\pi}{2n} \right)
\]

If \(i \neq j \), we have

\[
A_{ij}^2 = \frac{1}{2} \sum_{m=1}^{n} \left[\cos \left(\frac{(2i - 2j)(2m - 1)\pi}{4n} \right) - \cos \left(\frac{(2i + 2j - 2)(2m - 1)\pi}{4n} \right) \right]
\]

\[
= \frac{1}{4} \sin((i - j)\pi) \csc \left(\frac{(i - j)\pi}{2n} \right) - \frac{1}{4} \sin((i + j - 1)\pi) \csc \left(\frac{(i + j - 1)\pi}{2n} \right)
\]

Thus, if \(i = j \), the expression evaluates to \(n/2 \) and if \(i \neq j \), the this expression evaluates to 0. By the two cases above,

\[
A^2 = \frac{n}{2} I_n
\]

where \(I_n \) is \(n \times n \) identity matrix. Therefore \(A \) is non-singular and

\[
A^{-1} = \frac{2}{n} A
\]

\[\square\]

Lemma 4. Let \(B \) be a \(n \times n \) matrix, and \(B_{ij} = \cos \left(\frac{(2i - 1)(2j - 1)\pi}{4n} \right) \), then \(B^{-1} = \frac{2}{n} B \)
Proof. Note that \((i, j)\)th element of the matrix \(B^2\). The \(B^2\) is the \(n \times n\) matrix whose \((i, j)\)th entry is given by

\[
B_{ij}^2 = \sum_{m=1}^{n} \left[\cos \left(\frac{(2i - 1)(2m - 1)\pi}{4n} \right) \cos \left(\frac{(2j - 1)(2m - 1)\pi}{4n} \right) \right]
\]

If \(i = j\), we have

\[
B_{ij}^2 = \sum_{m=1}^{n} \left[\frac{1}{2} + \frac{1}{2} \cos \left(\frac{(2i - 1)(2m - 1)\pi}{2n} \right) \right] = \frac{n}{2} + \frac{1}{2} \sin((2i - 1)\pi) \csc \left(\frac{(2i - 1)\pi}{2n} \right)
\]

By using the identity \(\cos^2(x) = \frac{1}{2}(1 + \cos(2x))\) and Lemma 1,

\[
B_{ij}^2 = \sum_{m=1}^{n} \left[\frac{1}{2} + \frac{1}{2} \cos \left(\frac{(2i - 1)(2m - 1)\pi}{2n} \right) \right] = \frac{n}{2} + \frac{1}{2} \sin((2i - 1)\pi) \csc \left(\frac{(2i - 1)\pi}{2n} \right) = \frac{n}{2}
\]

If \(i \neq j\), we have

\[
B_{ij}^2 = \frac{1}{2} \sum_{m=1}^{n} \left[\cos \left(\frac{(2i - 2j)(2m - 1)\pi}{4n} \right) + \cos \left(\frac{(2i + 2j - 2)(2m - 1)\pi}{4n} \right) \right]
\]

\[
= \frac{1}{4} \sin((i - j)\pi) \csc \left(\frac{(j - i)\pi}{2n} \right) + \frac{1}{4} \sin((i + j - 1)\pi) \csc \left(\frac{(i + j - 1)\pi}{2n} \right) = 0
\]

Finally, the expression for \(i = j\) evaluates to \(n/2\), and the expression for \(i \neq j\) evaluates to 0. By the two cases above,

\[
B^2 = \frac{n}{2} I_n
\]

where \(I_n\) is \(n \times n\) identity matrix. Therefore \(B\) is non-singular and

\[
B^{-1} = \frac{2}{n} B
\]

\[\square\]

Lemma 5. Let \(f(s)\) be an infinite series defined by

\[
f(s) = \frac{1}{\Gamma(s + 1)} \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} \left(\frac{(2p - 1)\pi}{4n} \right)^{s} \sin \left(\frac{(2p - 1)\pi}{4n} \right)
\]

where \(\Re(s) > 0\), then \(f(s) = J(s)\).

Proof. \(f(s)\) is represented by difference of two infinite series as follows:

\[
f(s) = \frac{1}{\Gamma(s + 1)} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\pi}{2} \frac{k}{2n} \right)^{s} \sin \left(\frac{\pi}{2} \frac{k}{2n} \right) - \frac{1}{\Gamma(s + 1)} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\pi}{2} \frac{2k}{2n} \right)^{s} \sin \left(\frac{\pi}{2} \frac{2k}{2n} \right)
\]

By substituting \(2m = n\),

\[
f(s) = \frac{1}{\Gamma(s + 1)} \lim_{n \to \infty} \frac{2}{n} \sum_{k=1}^{n} \left(\frac{\pi}{2} \frac{k}{n} \right)^{s} \sin \left(\frac{\pi}{2} \frac{k}{n} \right) - \frac{1}{\Gamma(s + 1)} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\pi}{2} \frac{2k}{2n} \right)^{s} \sin \left(\frac{\pi}{2} \frac{2k}{2n} \right)
\]

\[
= \frac{1}{\Gamma(s + 1)} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\pi}{2} \frac{k}{n} \right)^{s} \sin \left(\frac{\pi}{2} \frac{k}{n} \right)
\]
Let $\Delta x = (\frac{\pi}{2}) \frac{1}{n}$, $x_k = (\frac{\pi}{2}) \frac{k}{n}$, $f(x) = \frac{x^s}{\sin(x)}$, then

$$f(s) = \frac{1}{\Gamma(s+1)} \lim_{n \to \infty} \frac{2}{n} \sum_{k=1}^{n} f(x_k) \Delta x = \frac{1}{\Gamma(s+1)} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} f(x) dx$$

$$= \frac{1}{\Gamma(s+1)} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{x^s}{\sin(x)} dx = J(s)$$

Lemma 6. Let $W(s)$ be a divergent function defined by

$$W(s) = \frac{1}{\Gamma(s+1)} \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} \left(\frac{(2p-1)\pi}{4n} \right)^s \cos \left(\frac{(2p-1)\pi}{4n} \right)$$

then $W(s)$ where $m \in \mathbb{N}$ is denoted by $J(s)$ as follows:

$$W(m) = \sum_{k=0}^{m} \frac{(-1)^k}{(m-k)!} \left(\frac{\pi}{2} \right)^{m-k} J(k)$$

3. Proof of the Theorems

The expression $x(\pi - x)$ where $0 \leq x \leq \pi$ can be expanded to a Fourier sine series as follows:

$$x(\pi - x) = \frac{8}{\pi} \left\{ \frac{\sin(x)}{1^3} + \frac{\sin(3x)}{3^3} + \frac{\sin(5x)}{5^3} + \cdots \right\}$$

Using the Dirichlet lambda and beta function values, we have

$$\sum_{k=1}^{\infty} \frac{\sin((2k-1)x)}{(2k-1)^3} = \lambda(2) x - \beta(1) \frac{x^2}{2!}$$
Let \(f_n(x) = \sum_{k=1}^{\infty} \frac{\sin((2k-1)x)}{(2k-1)^n} \) and \(g_n(x) = \sum_{k=1}^{\infty} \frac{\cos((2k-1)x)}{(2k-1)^n} \), then the multiple integrals on both sides of Eq. (15) with respect to \(x \) from 0 to \(x \) are given by the functional equations.

\[
f_{2m+1}(x) = \sum_{k=1}^{\infty} \frac{\sin((2k-1)x)}{(2k-1)^{2m+1}} = \sum_{k=1}^{m} \left\{ \lambda(2m - 2k + 2) \frac{(-1)^{k-1} x^{2k-1}}{(2k-1)!} \right\} + (-1)^m \beta(1) \frac{x^{2m}}{(2m)!} \tag{16}
\]

\[
g_{2m}(x) = \sum_{k=1}^{\infty} \frac{\cos((2k-1)x)}{(2k-1)^{2m}} = \sum_{k=1}^{m} \left\{ \lambda(2m - 2k + 2) \frac{(-1)^{k-1} x^{2k-2}}{(2k-2)!} \right\} + (-1)^m \beta(1) \frac{x^{2m-1}}{(2m-1)!} \tag{17}
\]

where \(m \in \mathbb{N} \). The constant of integration is determined by boundary conditions at \(f_n(0) = 0 \) and \(g_n(0) = \lambda(n) \).

If \(a_k = \sin \left(\frac{(2k-1)(2p-1)\pi}{4n} \right) \) and \(b_k = \cos \left(\frac{(2k-1)(2p-1)\pi}{4n} \right) \) where \(p = 1, 2, 3, \ldots, n \), periodic sequences \(a_k \) and \(b_k \) satisfy as follow:

\[
a_k = (-1)^{m+1} a_{2mn-(k-1)} = (-1)^m a_{2mn+k} \tag{18}
\]

\[
b_k = (-1)^{m} b_{2mn-(k-1)} = (-1)^m a_{2mn+k} \tag{19}
\]

where \((1 \leq k \leq n)\) and \(m \in \mathbb{N} \). For example, if \(n = 10 \) and \(k = 6 \), then \(a_6 = a_{15} = -a_{26} = -a_{35} = a_{46} = \ldots \) and \(b_6 = -b_{15} = -b_{26} = b_{35} = b_{46} = \ldots \).

Thus, \(f_{2m+1} \left(\frac{(2p-1)\pi}{4n} \right) \) and \(g_{2m} \left(\frac{(2p-1)\pi}{4n} \right) \) are given by the functional equations.

\[
f_{2m+1} \left(\frac{(2p-1)\pi}{4n} \right) = \sum_{q=1}^{n} \left[\sin \left(\frac{(2q-1)(2p-1)\pi}{4n} \right) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)(2n-(2n-(2q-1)))^{2m+1}} \right] \tag{20}
\]

\[
g_{2m} \left(\frac{(2p-1)\pi}{4n} \right) = \sum_{q=1}^{n} \left[\cos \left(\frac{(2q-1)(2p-1)\pi}{4n} \right) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)(2n-(2n-(2q-1)))^{2m}} \right] \tag{21}
\]

When \(p \) has the values \(1, 2, \ldots, n \), we get \(n \) functional equations which can be written as

\[
F = AX \tag{22}
\]

\[
G = BY \tag{23}
\]

where

\[
A = \begin{pmatrix}
\sin \left(\frac{\pi}{4n} \right) & \sin \left(\frac{3\pi}{4n} \right) & \ldots & \sin \left(\frac{(2n-1)\pi}{4n} \right) \\
\sin \left(\frac{3\pi}{4n} \right) & \sin \left(\frac{\pi}{4n} \right) & \ldots & \sin \left(\frac{3(2n-1)\pi}{4n} \right) \\
\vdots & \vdots & \ddots & \vdots \\
\sin \left(\frac{(2n-1)\pi}{4n} \right) & \sin \left(\frac{3(2n-1)\pi}{4n} \right) & \ldots & \sin \left(\frac{(2n-1)^2\pi}{4n} \right)
\end{pmatrix} \tag{24}
\]
To calculate \(X \) and \(Y \), we need to use Lemma 2 and Lemma 3. By Lemma 2 and 3, the \(X = A^{-1}F = \frac{2}{n}AF \) and \(Y = B^{-1}G = \frac{2}{n}BG \) as follows:

\[
X = \begin{pmatrix}
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n-(2n-1)}^{2m+1} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n+(2n-1)}^{2m+1} \\
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n-(2n-3)}^{2m+1} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n+(2n-3)}^{2m+1} \\
\vdots \\
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n-(2n-1)}^{2m+1} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n+(2n-1)}^{2m+1}
\end{pmatrix}
\]

(25)

(26)

(27)

(28)
\[Y = \left(\begin{array}{cccc}
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n - (2n - 1)} & \ldots & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n + (2n - 1)} \\
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n - (2n - 3)} & \ldots & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n + (2n - 3)} \\
\vdots & \ddots & \vdots \\
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n - (2n - (2n - 1))} & \ldots & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n + (2n - (2n - 1))} \\
\end{array} \right) \]

\[X = \left(\begin{array}{cccc}
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n - (2n - 1)} & \ldots & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n + (2n - 1)} \\
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n - (2n - 3)} & \ldots & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n + (2n - 3)} \\
\vdots & \ddots & \vdots \\
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n - (2n - (2n - 1))} & \ldots & \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)2n + (2n - (2n - 1))} \\
\end{array} \right) \]

\[\lambda(2m + 1) = \lim_{n \to \infty} \sum_{k=1}^{n} X_{k,1} \]

Thus, sum of all elements in a matrix \(X \) is represented as

\[\lambda(2m + 1) = \lim_{n \to \infty} \frac{2}{n} \sum_{p=1}^{n} \left[f_{2m+1}(\frac{p-1}{4n}) \sum_{q=1}^{n} \sin\left(\frac{(2p-1)(2q-1)\pi}{4n}\right) \right] \]
In order to obtain the expression β, using the Eq. (16), we have

$$\lambda(2m + 1) = \lim_{n \to \infty} \frac{2}{n} \sum_{p=1}^{n} f_{2m+1} \left(\frac{(2p-1)\pi}{4n}\right) \frac{\sin^2 \left(\frac{(2p-1)\pi}{4n}\right)}{\sin \left(\frac{(2p-1)\pi}{4n}\right)}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} f_{2m+1} \left(\frac{(2p-1)\pi}{4n}\right) \frac{1}{\sin \left(\frac{(2p-1)\pi}{4n}\right)}$$

Using the Eq. (16), we have

$$\lambda(2m + 1) = \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} \left[\sum_{k=1}^{m} (-1)^{k-1} \lambda(2m - 2k + 2) \frac{(2p-1)\pi}{(2k-1)!} \frac{1}{\sin \left(\frac{(2p-1)\pi}{4n}\right)} \right]^{2k-1}

+ \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} \left[(-1)^{m} \beta(1) \frac{(2p-1)\pi}{(2m)!} \frac{1}{\sin \left(\frac{(2p-1)\pi}{4n}\right)} \right]^{2m}$$

Using the Lemma [5] we have

$$\lambda(2m + 1) = \sum_{k=1}^{m} \left[(-1)^{k-1} \lambda(2m - 2k + 2)J(2k - 1) \right] + (-1)^{m} \beta(1)J(2m)$$

The proof of Theorem 1 was completed.

3.2. Dirichlet Beta Function at Even Positive Integers.

In Eq. (30), we know that sum of all elements in a matrix Y is equal to $\lambda(2m)$

$$\lambda(2m) = \sum_{k=1}^{\infty} \frac{1}{(2k-1)^{2m}} = \lim_{n \to \infty} \sum_{k=1}^{n} Y_{k,1}$$

where

$$Y = \begin{pmatrix}
\cos \left(\frac{\pi}{4n}\right) & \cos \left(\frac{3\pi}{4n}\right) & \ldots & \cos \left(\frac{(2n-1)\pi}{4n}\right) \\
\cos \left(\frac{3\pi}{4n}\right) & \cos \left(\frac{9\pi}{4n}\right) & \ldots & \cos \left(\frac{3(2n-1)\pi}{4n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\cos \left(\frac{(2n-1)\pi}{4n}\right) & \cos \left(\frac{3(2n-1)\pi}{4n}\right) & \ldots & \cos \left(\frac{(2n-1)^2\pi}{4n}\right)
\end{pmatrix}$$

$$g_{2m}(\pi) \begin{pmatrix}
\frac{\pi}{4n} \\
\frac{3\pi}{4n} \\
\vdots \\
\frac{(2n-1)\pi}{4n}
\end{pmatrix}$$

In order to obtain the expression $\beta(2m)$, we define the matrix Z as follows:

$$Z = \begin{pmatrix}
\begin{pmatrix}
\cos \left(\frac{\pi}{4n}\right) \\
-\cos \left(\frac{3\pi}{4n}\right) \\
\vdots \\
(-1)^{n-1} \cos \left(\frac{(2n-1)\pi}{4n}\right)
\end{pmatrix} & g_{2m}(\pi) & \ldots & g_{2m}(\frac{(2n-1)\pi}{4n}) \\
\end{pmatrix}$$

$$+ \begin{pmatrix}
\begin{pmatrix}
\cos \left(\frac{(2n-1)\pi}{4n}\right) \\
-\cos \left(\frac{3(2n-1)\pi}{4n}\right) \\
\vdots \\
(-1)^{n-1} \cos \left(\frac{(2n-1)^2\pi}{4n}\right)
\end{pmatrix} & g_{2m}(\frac{(2n-1)\pi}{4n}) & \ldots & g_{2m}(\frac{(2n-1)^2\pi}{4n})
\end{pmatrix}$$
Then sum of all elements in a matrix Z is equal to $\beta(2m)$.

$$
\beta(2m) = \lim_{n \to \infty} \sum_{p=1}^{n} g_{2m} \left(\frac{(2p-1)\pi}{4n} \right) \sum_{q=1}^{n} (-1)^{q-1} \cos \left(\frac{(2p-1)(2q-1)\pi}{4n} \right)
$$

By using the Lemma 6, we have

$$
\beta(2m) = \lim_{n \to \infty} \sum_{p=1}^{n} g_{2m} \left(\frac{(2p-1)\pi}{4n} \right) \sin^2 \left(\frac{n}{2} \left(\pi - \frac{(2p-1)\pi}{2n} \right) \right)
$$

$$
= \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} g_{2m} \left(\frac{(2p-1)\pi}{4n} \right) \sin^2 \left(\frac{(2p-1)\pi}{4n} \right)
$$

Using the Eq. (17), we have

$$
\beta(2m) = \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} \left[\sum_{k=1}^{\infty} \frac{(-1)^{k-1}\lambda(2m-2k+2)}{2k-1)!} \left(\frac{(2p-1)\pi}{4n} \right)^{2k-2} \frac{(2m-1)!}{\cos \left(\frac{(2p-1)\pi}{4n} \right)} \right]
$$

$$
+ \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} \left[(-1)^m \beta(1) \left(\frac{(2p-1)\pi}{4n} \right) \frac{(2m-1)!}{\cos \left(\frac{(2p-1)\pi}{4n} \right)} \right]
$$

Using the Lemma 6, we have

$$
\beta(2m) = \sum_{k=1}^{m} \left[(-1)^{k-1}\lambda(2m-2k+2)W(2k-2) \right] + (-1)^m \beta(1)W(2m-1)
$$

(31)

$$
= \sum_{k=1}^{m} \left[(-1)^{k-1}\lambda(2m-2k+2) \sum_{q=0}^{2k-2} \left\{ (-1)^q \frac{1}{{(2k-2)-q)!} \left(\frac{\pi}{2} \right)^{(2k-2)-q} J(q) \right\} \right]
$$

$$
+ (-1)^m \beta(1) \sum_{q=0}^{2m-1} \left\{ (-1)^q \frac{1}{(2m-1)-q)!} \left(\frac{\pi}{2} \right)^{(2m-1)-q} J(q) \right\}
$$

The index of summation q takes on integer values from 0 to $2k-2$.

Now, expand the inner summation(which involves q).

$$
\beta(2m) = \sum_{k=1}^{m} \left[(-1)^{k-1}\lambda(2m-2k+2) \left(\frac{\pi}{2} \right)^{2k-2} J(+0) \right] + (-1)^m \beta(1) \left(\frac{\pi}{2} \right)^{2m-1} J(+0)
$$

$$
+ \sum_{k=2}^{m} \left[(-1)^{k+1}\lambda(2m-2k+2) \left(\frac{\pi}{2} \right)^{(2k-2)-1} J(1) \right]
$$

$$
+ \sum_{k=2}^{m} \left[(-1)^{k+1}\lambda(2m-2k+2) \left(\frac{\pi}{2} \right)^{(2k-2)-2} J(2) \right]
$$

$$
+ \sum_{k=2}^{m} \left[(-1)^{k+1}\lambda(2m-2k+2) \left(\frac{\pi}{2} \right)^{(2k-2)-(2m-2)} J(2k-2) \right]
$$

$$
+ \sum_{k=m} \left[(-1)^{3m-1}\beta(1) \left(\frac{\pi}{2} \right)^{(2m-1)-(2m-1)} J(2m-1) \right]
$$
Change the index of summation k so that it would start from 1.

\[
\beta(2m) = \sum_{k=1}^{m} \left\{ (-1)^{k-1} \frac{\lambda(2m - 2k + 2)}{(2k - 2)!} \left(\frac{\pi}{2} \right)^{2k-2} \right\} + (-1)^m \beta(1) \left(\frac{\pi}{2} \right)^{2m-1} J(0) \\
+ \sum_{k=1}^{m-1} \left\{ (-1)^{k-1} \frac{\lambda(2m - 2k)}{(2k - 1)!} \left(\frac{\pi}{2} \right)^{2k-1} \right\} + (-1)^m \beta(1) \left(\frac{\pi}{2} \right)^{2m-2} J(1) \\
+ \sum_{k=1}^{m-1} \left\{ (-1)^k \frac{\lambda(2m - 2k)}{(2k - 2)!} \left(\frac{\pi}{2} \right)^{2k-2} \right\} + (-1)^m \beta(1) \left(\frac{\pi}{2} \right)^{2m-3} J(2) + \cdots \\
+ \left[(-1)^m \lambda(2) \beta(2m - 2) \right] \right\} + (-1)^m \beta(1) \beta(2m - 1)
\]

Using the Eq. (16) and Eq. (17)

\[
\beta(2m) = \sum_{k=1}^{m} \left\{ (-1)^{k-1} g_{2m - 2k + 2} \left(\frac{\pi}{2} \right) J(2k - 2) + (-1)^k f_{2m - 2k + 1} \left(\frac{\pi}{2} \right) J(2k - 1) \right\}
\]

Since $g_{2m} \left(\frac{\pi}{2} \right) = 0$ and $f_{2m+1} \left(\frac{\pi}{2} \right) = \beta(2m - 1)$ (See Eq. (16) and Eq. (17))

\[
\beta(2m) = \sum_{k=1}^{m} \left\{ (-1)^{k-1} \beta(2m - 2k + 1) \beta(2k - 1) \right\}
\]

The proof of Theorem 2 was completed.

4. THE INTEGRAL FUNCTION $J(n)$

Lemma 7. The function $\frac{1}{2} \ln \left(\tan \frac{x}{2} \right)$ can be expanded as an infinite series,

\[
\sum_{k=1}^{\infty} \frac{\cos((2k - 1)x)}{2k - 1} = -\frac{1}{2} \ln \left(\tan \frac{x}{2} \right)
\]

(32)

where $x \in \mathbb{R}$

Proof. Let $f(x) = \sum_{k=1}^{\infty} e^{i(2k-1)x}$, then we have

\[
f(x) = \sum_{k=1}^{\infty} e^{i(2k-1)x} = \frac{e^{ix}}{1 - e^{2ix}} = \frac{1}{2i} \frac{e^{ix}}{e^{-ix} - e^{ix}} = \frac{1}{2i} \frac{e^{2ix} + 1}{e^{ix} + 1} = \frac{1}{2} \csc(x)
\]

By integrating the $f(x)$, we have

\[
\frac{1}{i} e^{ix} + \frac{1}{3i} e^{3ix} + \frac{1}{5i} e^{5ix} + \cdots = \frac{1}{2} \ln \left(\tan \frac{x}{2} \right) + C
\]

\[
e^{ix} + \frac{1}{3} e^{3ix} + \frac{1}{5} e^{5ix} + \cdots = -\frac{1}{2} \ln \left(\tan \frac{x}{2} \right) + Ci
\]

where C is constant of integration.

Taking the real part,

\[
\cos(x) + \frac{1}{3} \cos(3x) + \frac{1}{5} \cos(5x) + \cdots = -\frac{1}{2} \ln \left(\tan \frac{x}{2} \right)
\]

\[
\square
\]

Lemma 8. The Euler number E_n is represented as

\[
\frac{d^{2n}}{dx^{2n}} \csc \left(\frac{\pi}{2} \right) = (-1)^n E_{2n}
\]

(33)

where $n \in \{\mathbb{N}, 0\}$
Proof. The expression for $\csc(x)$ can be expanded to a Taylor series at $x = \pi/2$ as follows:

$$
csc(x) = 1 + \frac{1}{2!} (x - \frac{\pi}{2})^2 + \frac{5}{4!} (x - \frac{\pi}{2})^4 + \frac{61}{6!} (x - \frac{\pi}{2})^6 + \cdots = \sum_{m=0}^{\infty} \frac{E_m}{m!} (x - \frac{\pi}{2})^m
$$

The definition of the m-th term of a Taylor series at $x = \pi/2$ is

$$
\left\{ \frac{d^m}{dx^m} f \left(\frac{\pi}{2} \right) \right\} \frac{1}{m!} (x - \frac{\pi}{2})^m
$$

If $m = 2n$, then $E_m = E_{2n}$ and if $m = 2n + 1$, then $E_{2n} = 0$.

Therefore,

$$
\frac{d^{2n}}{dx^{2n}} \csc \left(\frac{\pi}{2} \right) = (-1)^n E_{2n}
$$

Theorem 3. The function $J(n)$ where $n \in \mathbb{N}$ can be expressed as an infinite series,

$$
J(n) = \sum_{k=0}^{\infty} \frac{(-1)^k E_{2k}}{(n+2k+1)!} \left(\frac{\pi}{2} \right)^{n+2k}
$$

where E_k is Euler number.

Proof. The function $J(n)$ where $n \in \mathbb{N}$ is defined as

$$
J(n) = \frac{1}{n! \pi} \int_0^{\pi/2} x^n \sin(x) dx
$$

Integrating by parts,

$$
J(n) = \frac{1}{n! \pi} \left[x^{n+1} \{ \csc(x) \} - \frac{x^{n+2} \left\{ \frac{d}{dx} \csc(x) \right\}}{(n+1)(n+2)} + \frac{x^{n+3} \left\{ \frac{d^2}{dx^2} \csc(x) \right\}}{(n+1)(n+2)(n+3)} - \cdots \right]_{0}^{\pi/2}
$$

By using Lemma 8 we have

$$
J(n) = \frac{2}{\pi} \left[\frac{x^{n+1}}{(n+1)!} \{ \csc(x) \} - \frac{x^{n+2}}{(n+2)!} \left\{ \frac{d}{dx} \csc(x) \right\} + \frac{x^{n+3}}{(n+3)!} \left\{ \frac{d^2}{dx^2} \csc(x) \right\} - \cdots \right]_{0}^{\pi/2}

\begin{align*}
J(n) &= \frac{2}{\pi} \left[\frac{E_0}{(n+1)!} \left(\frac{\pi}{2} \right)^{n+1} - \frac{E_2}{(n+3)!} \left(\frac{\pi}{2} \right)^{n+3} + \frac{E_4}{(n+5)!} \left(\frac{\pi}{2} \right)^{n+5} - \cdots \right] \\
&= \sum_{k=0}^{\infty} \frac{(-1)^k E_{2k}}{(n+2k+1)!} \left(\frac{\pi}{2} \right)^{n+2k}
\end{align*}
$$

The proof of Theorem 3 was completed.

Theorem 4. The function $J(2n-1)$ and $J(2n)$ where $n \in \mathbb{N}$ can be calculated directly in special forms as

$$
\frac{\pi}{4} J(2n-1) = (-1)^n \sum_{k=0}^{n-1} \left\{ (-1)^k \beta(2n-2k) \frac{1}{(2k)!} \left(\frac{\pi}{2} \right)^{2k} \right\}
$$

$$
\frac{\pi}{4} J(2n) = (-1)^n \left[\lambda(2n+1) - \sum_{k=0}^{n-1} \left\{ (-1)^k \beta(2n-2k) \frac{1}{(2k+1)!} \left(\frac{\pi}{2} \right)^{2k+1} \right\} \right]
$$

where E_k is Euler number.
Proof. The expression for \(\csc(x) \) can be expanded to a Taylor series at \(x = \pi/2 \) as follows:

\[
\csc(x) = 1 + \frac{1}{2!} \left(x - \frac{\pi}{2} \right)^2 + \frac{5}{4!} \left(x - \frac{\pi}{2} \right)^4 + \frac{61}{6!} \left(x - \frac{\pi}{2} \right)^6 + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k E_{2k}}{(2k)!} \left(x - \frac{\pi}{2} \right)^{2k}
\]

Integrating both sides of the formula with respect to \(x \), we have

\[
\ln \left(\tan \frac{x}{2} \right) = \left(x - \frac{\pi}{2} \right) + \frac{1}{3!} \left(x - \frac{\pi}{2} \right)^3 + \frac{5}{5!} \left(x - \frac{\pi}{2} \right)^5 + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k E_{2k}}{(2k+1)!} \left(x - \frac{\pi}{2} \right)^{2k+1}
\]

The constant of integration is determined by \(x = \pi/2 \). By using Lemma [7] we have

\[
\sum_{k=0}^{\infty} \frac{(-1)^k E_{2k}}{(2k+1)!} \left(x - \frac{\pi}{2} \right)^{2k+1} = 2 \sum_{k=0}^{\infty} \frac{-\cos((2k+1)x)}{(2k+1)}
\]

The multiple integral on both sides with respect to \(x \) is given by the functional equations. The constant of integration is determined by \(x = \pi/2 \).

\[
\sum_{k=0}^{\infty} \frac{(-1)^k E_{2k}}{(2k+2n)!} \left(x - \frac{\pi}{2} \right)^{2k+2n} = 2(-1)^n \sum_{k=0}^{\infty} \frac{\cos((2k+1)x)}{(2k+1)^{2n+1}} + 2(-1)^{n-1} \sum_{k=0}^{n-1} \frac{(-1)^k \beta(2n-2k)}{(2k)!} \left(x - \frac{\pi}{2} \right)^{2k}
\]

By substituting \(x = \pi \), we have

\[
\sum_{k=0}^{\infty} \frac{(-1)^k E_{2k}}{(2k+2n+1)!} \left(\frac{\pi}{2} \right)^{2k+2n+1} = 2(-1)^n \left[\sum_{k=0}^{n-1} \frac{\lambda(2n+1) - \sum_{k=0}^{n-1} (-1)^k \beta(2n-2k)}{(2k+1)!} \left(\frac{\pi}{2} \right)^{2k+1} \right]
\]

Using the Theorem [3] we have

\[
\frac{\pi}{4} J(2n-1) = (-1)^n \sum_{k=0}^{n-1} \left[(-1)^k \beta(2n-2k) \frac{\lambda(2n+1) - \sum_{k=0}^{n-1} (-1)^k \beta(2n-2k)}{(2k)!} \left(\frac{\pi}{2} \right)^{2k+1} \right]
\]

The proof of Theorem 4 was completed.

\[\square\]

Remark 1. Similarly to the Theorem [3] the expressions \(\frac{1}{(2m-1)!} \left(\frac{\pi}{2} \right)^{2m-1} \) and \(\frac{1}{(2m)!} \left(\frac{\pi}{2} \right)^{2m} \), where \(m \in \mathbb{N} \) can be calculated directly special forms as

\[
\frac{\pi}{4} \left\{ \frac{1}{(2m-1)!} \left(\frac{\pi}{2} \right)^{2m-1} \right\} = (-1)^{m-1} \sum_{k=0}^{m-1} \left[(-1)^k \lambda(2m-2k) \frac{1}{(2k)!} \left(\frac{\pi}{2} \right)^{2k} \right]
\]

\[\text{(37)}\]

\[
\frac{\pi}{4} \left\{ \frac{1}{(2m)!} \left(\frac{\pi}{2} \right)^{2m} \right\} = (-1)^m \left[\beta(2m+1) - \sum_{k=0}^{m-1} \left[(-1)^k \lambda(2m-2k) \frac{1}{(2k+1)!} \left(\frac{\pi}{2} \right)^{2k+1} \right] \right]
\]

\[\text{(38)}\]
Proof. By substituting $x = \pi/2$ in Eq. (16) and Eq. (17), we have

$$\beta(2m + 1) = m \sum_{k=1}^{m} \left\{ \lambda(2m - 2k + 2) \frac{(-1)^{k-1} (\pi/2)^{2k-1}}{(2k-1)!} \right\} + (-1)^m \beta(1) \frac{(\pi/2)^{2m}}{(2m)!},$$

$$0 = \sum_{k=1}^{m} \left\{ \lambda(2m - 2k + 2) \frac{(-1)^{k-1} (\pi/2)^{2k-2}}{(2k-2)!} \right\} + (-1)^m \beta(1) \frac{(\pi/2)^{2m-1}}{(2m-1)!}.$$

Change the index of summation k so that it would start from 0.

$$\beta(2m + 1) = \sum_{k=0}^{m-1} \left\{ \lambda(2m - 2k) \frac{(-1)^{k} (\pi/2)^{2k+1}}{(2k+1)!} \right\} + (-1)^m \beta(1) \frac{(\pi/2)^{2m}}{(2m)!},$$

$$0 = \sum_{k=0}^{m-1} \left\{ \lambda(2m - 2k) \frac{(-1)^{k-1} (\pi/2)^{2k}}{(2k)!} \right\} + (-1)^m \beta(1) \frac{(\pi/2)^{2m-1}}{(2m-1)!}.$$

Therefore,

$$\frac{\pi}{4} \left\{ \frac{1}{(2m-1)!} \left(\frac{\pi}{2} \right)^{2m-1} \right\} = (-1)^m \sum_{k=0}^{m-1} \left\{ (-1)^k \lambda(2m - 2k) \frac{1}{(2k)!} \left(\frac{\pi}{2} \right)^{2k} \right\}$$

$$\frac{\pi}{4} \left\{ \frac{1}{(2m)!} \left(\frac{\pi}{2} \right)^{2m} \right\} = (-1)^m \beta(2m + 1) - \sum_{k=0}^{m-1} \left\{ (-1)^k \lambda(2m - 2k) \frac{1}{(2k+1)!} \left(\frac{\pi}{2} \right)^{2k+1} \right\}.$$

□

References

[1] Abramowitz, M. and Stegun, I. A. (Eds.), "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing", New York: Dover, pp. 807-808, 1972.

[2] Michael P. Knapp, Sines and cosines of angles in arithmetic progression", Mathematics Magazine, Vol. 82, pp. 371-372. Dec. 2009.