Faithful tissue-specific expression of the human chromosome 21-linked COL6A1 gene in BAC-transgenic mice

Luzhou Xing, Martha Salas, Chyuan-Sheng Lin, Warren Zigman, Wayne Silverman, Shivakumar Subramaniyam, Vundavalli V. Murty, Benjamin Tycko

1Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032, USA
2Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
3Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
4Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, USA
5Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, New York, New York 10314, USA
6Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA

Received: 27 June 2006 / Accepted: 27 November 2006

Abstract

We created transgenic mice with a bacterial artificial chromosome (BAC) containing the human COL6A1 gene. In high-copy and low-copy transgenic lines, we found correct temporal and spatial expression of COL6A1 mRNA, paralleling the expression of the murine Col6a1 gene in a panel of nine adult and four fetal organs. The only exception was the fetal lung, in which the transgene was expressed poorly compared with the endogenous gene. Expression of COL6A1 mRNA from the transgene was copy number-dependent, and the increased gene dosage correlated with increased production of collagen VI alpha 1 in skin and heart, as indicated by Western blotting and immunohistochemistry. COL6A1 maps to Chromosome 21 and this gene has been a candidate for contributing to cardiac defects and skin abnormalities in Down syndrome. The low-copy and high-copy COL6A1 transgenics were born and survived in normal Mendelian proportions, without cardiac malformations or altered skin histology. These data indicate that the major promoter and enhancer sequences regulating COL6A1 expression are present in this 167-kb BAC clone. The lack of a strong cardiac or skin phenotype in the COL6A1 BAC-transgenic mice suggests that the increased expression of this gene does not, by itself, account for these phenotypes in Down syndrome.

Introduction

The COL6A1 gene, on human Chromosome 21, encodes one of the three polypeptide chains in trimeric alpha (VI) collagen, a major component of extracellular microfibrils in various fetal and adult organs, including heart, skeletal muscle, skin, and others. This gene is of interest for the phenotypic consequences of both its deficiency and its overexpression. Mutations in COL6A1 or in the other two genes encoding polypeptides in alpha (VI) collagen (COL6A2 and COL6A3) cause two musculoskeletal disorders: Ulrich congenital muscular dystrophy and Bethlem myopathy. These genetic diseases are often inherited in a dominant pattern via transmission of missense mutations, and their pathophysiology involves a deficiency of functional alpha [VI] collagen trimers [Jobsis et al. 1996]. Mice with a germline deletion [knockout, KO] of the Col6a1 gene have skeletal muscle defects and are an animal model for Bethlem myopathy [Bonaldo et al. 1998].

The opposite situation, gain of gene dosage and overexpression of COL6A1 and the closely linked COL6A2 gene, occurs in Down syndrome [DS] due to trisomy 21. Overexpression of COL6A1 mRNA and alpha [VI] collagen protein has been found in fetal hearts from DS patients, particularly when the region of the endocardial cushions is specifically examined [Gittenberger-de Groot et al. 2003]. The preferential expression of COL6A1 in the region of the endocardial cushions has motivated the hypothesis that increased dosage of this gene might contribute to the high frequency (~20%) of atrioventricular septal defect [AVSD] in people with DS.
Materials and methods

BAC DNA and creation of transgenic mice. BAC DNA was prepared by double KAc precipitation followed by CsCl gradient separation [Gong et al. 2003]. BAC host cells were streaked on an agar plate with chloramphenicol (20 μg/ml). A single colony was picked and inoculated with 3 ml of Luria Broth medium containing chloramphenicol and grown at 30°C to a final optical density (OD600) of 1.0. The cells were centrifuged at 12,000 rpm (Sorvall SS34) for 30 min at 4°C. The supernatant was collected and mixed with 2.5 volumes of ethanol and centrifuged at 12,000 rpm (Sorvall SS34) for 10 min at 4°C. The solution was thawed and centrifuged at 5000 rpm (Sorvall SLA3000 rotor) for 30 min at 4°C. The DNA pellet was dissolved in 18 ml of 10:50 TE solution (0.2 N NaOH, 1 M Tris, 50 mM EDTA), and 9 ml of 7.5 M KAc was added, mixed, and incubated for 5 min at room temperature. Cold 2 M KAc, 60 ml was added, mixed, and incubated on ice for 5 min. The lysate was harvested by centrifugation at 4000 rpm (Sorvall SLA3000 rotor) for 20 min at 4°C. The pellet was suspended with 40 ml of 10 mM EDTA, pH 8.0, with 100 μg/ml RNAase and 5 mg/ml lysozyme. Lysis solution (0.2 N NaOH, 1% SDS), 80 ml, was added, mixed, and incubated for 5 min at room temperature. Cold 2 M KAc, 60 ml was added, mixed, and incubated on ice for 5 min. The lysate was centrifuged at 10,000 rpm for 30 min at 4°C in a Sorvall SLA3000 rotor. The supernatant was collected and mixed with an equal volume of isopropanol, then centrifuged at 5000 rpm (Sorvall SLA3000 rotor) for 30 min at 4°C. The DNA pellet was dissolved in 18 ml of 10:50 TE (10 mM Tris, 50 mM EDTA), and 9 ml of 7.5 M KAc was added, mixed, and incubated at −70°C for 30 min. The solution was thawed and centrifuged at 6000 rpm (Sorvall SS34) for 10 min at 4°C. The supernatant was collected and mixed with 2.5 volumes of ethanol and centrifuged at 12,000 rpm (Sorvall SS34) for 30 min at 4°C to precipitate the DNA. The DNA pellet was resuspended in 4.4 ml of TE, mixed with another 4.4 ml of TE containing 10.2 g of dissolved CsCl, and 0.2 ml of ethidium bromide solution (10 mg/ml) was added. The solution was centrifuged at 65,000 rpm in a Beckman VTI 65 rotor overnight at 18°C. The BAC DNA band (bottom band) was removed with an 18-gauge needle and was brought up to 2 ml with TE. The solution was extracted 4-5 times with NaCl-saturated butanol and the DNA was precipitated with ethanol. The DNA was resuspended in 0.5 ml of 0.3 M sodium acetate and precipitated with ethanol once more, followed by washing with 70% ethanol. The DNA was dialyzed on a 25-mm, 0.025-μm filter (Millipore) by floating it on oocyte injection buffer (5 mM Tris, pH 7.4, 0.2 mM EDTA, 100 mM NaCl). The BAC DNA (1 ng/ml) was injected into 200 pronuclei of fertilized oocytes of B6CBA mice, and the oocytes were transferred to pseudopregnant Swiss Webster foster mothers. The transgenic lines were expanded by crossing to C57BL6 and were maintained as both heterozygotes and homozygous lines.

Southern and Northern blotting. Total RNA was prepared after solubilizing tissues in Trizol reagent (Invitrogen, Carlsbad, CA) according to the protocol of the manufacturer. The RNA was electrophoresed on 1.0% agarose gels containing formamide and then transferred to Nytran membranes (Schleicher & Schuell, Keene, NH). The blots were hybridized at 42°C in Ultrahyb solution (Ambion, Austin, TX), with DNA probes specific for the last exon of human COL6A1 or mouse Col6a1, and washed at high stringency in 0.1% SDS and 0.1× SSC for 1 h at 64°C. The blots were stripped and rehybridized with a probe for glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as a loading control when required. Genomic DNA was prepared by lysing the tissue in SDS/proteinase K and incubating for several hours at 50°C, followed by phenol/chloroform extraction and precipitation in ethanol. The DNA, 2.5 μg, was digested overnight with restriction enzymes, and the digested DNA was resolved on 0.7% agarose gels, denatured, and neutralized under standard conditions and transferred to Nytran membranes. The Southern blots were hybridized with genomic probes for human COL6A1 or mouse Col6a1. Primers for synthesizing the human COL6A1 5′ region, intron region, and 3′ region probes and the mouse Col6a1 probe were as follows: 5'termFor, 5′-GCTCTGAATCCCCACTCGGT-3′; 5'termRev, 5′-GCCACTGTAGTCCATCCAC-3′; intronFor, 5′-CAGCGCTTTCGTGCTTCC-3′; intronRev, 5′-AGCTACAGGTTCTGAGCA-3′; 3'termFor, 5′-CTCCTCCTAGGCCACCTCT-3′;
Western blotting. Tissues were lysed in cold RIPA buffer and centrifuged to remove the debris. Total cell extracts normalized for protein content were boiled at 100°C for 5 min in a denaturing solution containing 12 mmol/L Tris (pH 6.8), 5% glycerol, 0.4% SDS, 3 mmol/L 2-mercaptoethanol, and 0.02% bromophenol blue. Total protein lysates, 50 µg, were electrophoresed on 8% polyacrylamide gradient/SDS gels (Invitrogen). After transferring to Immobilon membranes (Millipore, Bedford, MA) and blocking by 5% milk in 1× TBST, the membranes were hybridized with a polyclonal antibody (H-200, sc-20649, Santa Cruz Biotechnology) that recognizes the N-terminus of collagen VI alpha 1 protein of both human and mouse origin, or by a mouse monoclonal antibody against α-actin (Sigma, St. Louis, MO) as a loading control, in 1× TBST containing 5% dry milk overnight at 4°C. After washing, the signal was amplified and detected using a peroxidase-conjugated goat anti-rabbit or anti-mouse immunoglobulin G (IgG; Amersham Pharmacia Biotech, Piscataway, NJ) and ECL-Plus detection system (Amersham Pharmacia Biotech).

Histology and immunohistochemistry. Mouse embryos at 13.5 and 14.5 days post coitum (dpc) were fixed in formalin and processed by standard paraffin embedding. Tissue sections of heart and skin were stained with hematoxylin and eosin (H&E). Procedures for immunohistochemistry were essentially as previously described (Li et al. 2002). Antigen retrieval was done by boiling the deparaffinized sections on slides for 10 min in 1 mM EDTA (pH 8.0) in a microwave oven. The anti-collagen VI alpha 1 polyclonal antibody (H-200, sc-20649, Santa Cruz Biotechnology) was used at a dilution of 1:500. The secondary antibody (biotinylated horse anti-mouse; Vector Laboratories, Burlingame, CA) was used at a dilution of 1:400.

Chromosomal fluorescence in situ hybridization (FISH). Bone marrow cells obtained from femur of the transgenic mice were washed with RPMI medium, dissolved in RPMI complete bone marrow medium, and exposed to colcemid for 2 h. Pelleted cells were treated with 0.56% KCl hypotonic solution for 20 min, and fixed in three parts methanol and one part acetic acid. Metaphase spreads were prepared by standard methods. Human BAC clone RP11-640F21 containing the COL6A1 gene was used in transgenic mice to generate a FISH probe. The BAC DNA was labeled by nick-translation using spectrum green dUTP fluorochrome (Vysis, Downers Grove, IL). Cy3-labeled mouse pan-centromeric probe (Cambio, UK) was utilized as control to identify chromosomes. FISH was performed using standard methods and hybridization signals were scored for at least 20 metaphase spreads on DAPI-stained slides.

Results

Creation of BAC-transgenic mice carrying the human COL6A1 locus. As shown in Fig. 1, the RP11-640F21 BAC, from the library described by Osoegawa et al. (2001), is a 167-kb clone that contains the entire COL6A1 gene, flanked by 82 kb of upstream DNA and 62 kb of downstream DNA. The BAC does not include any other complete genes, but it does include one third of the 3′ end of the PCBP3 gene. COL6A1 maps to the distal portion of chromosome band 21q22.3.

![Fig. 1. Diagram of the COL6A1 gene on human Chromosome 21 and the BAC clone used in this study. The RP11-640F21 BAC contains the complete COL6A1 gene and one third of the 3′ end of the PCBP3 gene. COL6A1 maps to the distal portion of chromosome band 21q22.3.](image-url)
genomic PCR and Southern blotting to identify three transgenic founders. As shown by Southern blotting with probes for the 5′, middle, and 3′ portions of the COL6A1 gene, in all three founders the BAC DNA was intact and appeared nonrearranged (Fig. 2). Of these founders, No. 4 died during the first pregnancy.

Fig. 2. Southern blots showing that the human COL6A1 transgene is intact in three BAC-transgenic founder mice. Mouse tail DNA was digested with the indicated restriction enzymes and analyzed by Southern blotting. The blots were hybridized with human COL6A1-specific probes, as indicated on the map (top panel). The 5′ probe, intron probe, and 3′ probe are predicted based on the human genome sequence to recognize 4.3 kb, 3.1 kb, and 3.1 kb restriction fragments, respectively, and these fragments are seen in the blots. The lines derived from No. 1 and No. 7 founders are COL6A1low and COL6A1high, respectively. The lanes without specific bands contain DNA from wild-type littermates.

Fig. 3. Copy number analysis of the BAC transgene in F1 progeny. (A) Mouse tail DNA and control human genomic DNA were digested with EcoRV and used for Southern blotting. Human COL6A1- and mouse Col6a1-specific probes were used together to hybridize the blot. The human probe (767 bp long, 57% GC content) recognizes a 4.3-kb restriction fragment, while the mouse probe (550 bp long, 58% GC) recognizes an 8.9-kb restriction fragment. F0-low: low-copy founder DNA (No. 1); F0-hi: high-copy founder DNA (No. 7); F1-low: low-copy F1 DNA; F1-hi: high-copy F1 DNA. The F1 DNAs are from progeny of Tg × wild-type crosses. Phosphorimaging of the blot allowed an estimate of the BAC copy number as 1 for the COL6A1low line and approximately 15 for the COL6A1high line. (B) FISH analysis of metaphase preparations using the COL6A1 BAC as a probe. The cells are from heterozygotes, and the results indicate that the COL6A1-containing BAC (white arrows; green signals) has undergone single-site integration in both lines. Consistent with the copy-number analysis by Southern blotting, the FISH signals are stronger in the high-copy line than in the low-copy line. To orient the chromosomes and to control for uniformity of the hybridization, the FISH procedure was repeated for the high-copy line with a pan-centromere probe (red signal).
and therefore did not transmit the transgene, while founders No. 1 and No. 7 transmitted the transgene, allowing the establishment of two mouse lines. As shown in Fig. 3A, phosphorimaging of Southern blots simultaneously hybridized with similarly sized DNA probes specific for the human \textit{COL6A1} and mouse \textit{Col6a1} genes allowed us to estimate that the BAC copy number in the line derived from founder No. 1 was 1, while the copy number in the line derived from founder No. 7 was approximately 15. Below we refer to these transgenic lines as \textit{COL6A1}\textsubscript{low} and \textit{COL6A1}\textsubscript{high}, respectively. For our interpretation of transmission in these mice, by performing FISH with the \textit{COL6A1} BAC DNA as a probe we found that in each line the transgene was inserted at a single site. A single FISH signal was found on only one homolog of the chromosome detected in metaphase preparations of heterozygous cells, in both lines, with the site of insertion being near a chromosome telomere for the \textit{COL6A1}\textsubscript{low} line and in the midregion of a chromosome in the \textit{COL6A1}\textsubscript{high} line [Fig. 3B]. We have not determined the specific identities of these chromosomes. As shown in Fig. 3, the relative intensities of the FISH signals qualitatively confirmed the differences in transgene copy number between the \textit{COL6A1}\textsubscript{low} and \textit{COL6A1}\textsubscript{high} lines [Fig. 3B]. As shown in Table 1, both lines transmitted the transgene in Mendelian proportions, with no evidence of embryonic mortality. We have not observed any deaths or morbidity in cohorts of ten adult mice from each line that we have maintained up to 10 months of age.

\textit{Faithful tissue-specific expression of the human \textit{COL6A1} transgene in high- and low-copy \textit{COL6A1} BAC-transgenic mice.} To ask whether the major regulatory elements for \textit{COL6A1} expression are present on the RP11-640F21 BAC transgene, we surveyed mRNA expression in multiple adult and fetal tissues of the \textit{COL6A1}\textsubscript{low} and \textit{COL6A1}\textsubscript{high} transgenic mice. We hybridized Northern blots sequentially with partial-length cDNA probes matching the human (Hs) and murine (Mm) \textit{COL6A1} and \textit{Col6a1} genes (since we designed the probes to span regions of these genes that have divergent nucleotide sequences, there was no cross-hybridization on the Northern blots). As shown in Fig. 4 for the \textit{COL6A1}\textsubscript{low} line and in Fig. 5 for the \textit{COL6A1}\textsubscript{high} line, the mRNA expression pattern of the human \textit{COL6A1} gene in the BAC-transgenic mice was found to be very similar to that of the endogenous murine \textit{Col6a1} gene in all organs except the fetal lung, which showed proportionately less expression of the transgene compared with the endogenous gene. From these data we conclude that the major regulatory elements (promoter and enhancer sequences) required for tissue-specific expression of \textit{COL6A1} are present on the RP11-640F21 BAC, i.e., these elements are all encompassed within the chromosomal region including the gene itself and 82 kb of upstream DNA and 62 kb of downstream DNA. The discordant expression seen in the fetal lung suggests that an additional lung-specific enhancer element may be present outside of this region.

\textbf{Table 1. Transmission of the \textit{COL6A1} BAC transgene in \textit{Tg} × wild-type crosses}\n
F1 generation	Copy number	Transgenic pups/total F2 pups
\textit{COL6A1}\textsubscript{low}	1X	23/44 [52%]
\textit{COL6A1}\textsubscript{high}	15X	30/62 [48%]

As a further control, in these crosses we did not observe any difference in the frequency of transmission of the transgenes via the female vs. the male germline. For example, in the high-copy line, 8/17 offspring inherited the transgene via maternal transmission and 22/45 offspring inherited the transgene via paternal transmission.

\textbf{Fig. 4. Faithful tissue-specific expression of human \textit{COL6A1} in adult low-copy BAC-transgenic mice.} Total RNA was prepared from the indicated organs of the low-copy BAC-transgenic and wild-type littermate adult mice and used for Northern blotting. Human \textit{COL6A1}- and mouse \textit{Col6a1}-specific probes were used to recognize human \textit{COL6A1} mRNA and endogenous mouse \textit{Col6a1} mRNA, respectively. The blot was exposed for four days after hybridization with the human probe and one day after hybridization with the murine probe. The expression pattern of the human gene carried on the BAC is similar to that of the endogenous murine gene. Ethidium bromide staining of 28S and 18S rRNA is shown as a loading control. Br: brain; Ht: heart; Lu: lung; Li: liver; Sp: spleen; Ki: kidney; Mu: muscle; Sk: skin; Tl: tail.
Copy number-dependent expression of COL6A1 in the BAC-transgenic mice. Another criterion for testing the inclusion of key regulatory elements in a transgenic construct is copy number-dependent expression of the gene under consideration. If the observed expression increases with increased copy number, this suggests that the transgene is at least partially insulated from the cis effects of chromatin at its sites of integration. By Northern blotting of total RNA from adult hearts, we in fact observed copy number-dependent expression, with the steady-state COL6A1 mRNA levels entirely consistent with the known BAC copy numbers [1X, 15X] in these two lines [Fig. 6A]. Comparison of the expression with the endogenous mouse Col6a1 mRNA further supported this conclusion, with roughly equal expression of the human and mouse genes found in the low-copy line and greater relative expression of the human gene in the high-copy line (data not shown).

Increased collagen VI alpha 1 protein expression in COL6A1^{hi}G transgenic mice. To verify that the observed expression of COL6A1 mRNA in the transgenic mice in fact led to overproduction of collagen VI alpha 1 polypeptide, we performed Western blots using total protein lysates from adult heart
and skin of the \textit{COL6A1}^{high} transgenic mice and their wild-type littermates. We probed these blots with a polyclonal antibody recognizing the N-terminus of collagen VI alpha 1 of both human and mouse origin. Comparing the intensities of the specific bands on these blots confirmed the increase in net collagen VI alpha 1 in both of these organs from the transgenic mice (Fig. 6B). Moreover, by immunohistochemistry we observed stronger collagen alpha VI immunoreactivity in the extracellular matrix of the mitral valves and in or immediately below the basement lamina as well as in the dermis of the high-copy transgenic fetuses, compared with their wild-type littermates (Fig. 7A-D). While more intense, the immunostaining was present in a pattern identical to that of the native collagen alpha VI. This finding, and the strong similarity between the amino acid sequences of human and mouse collagen VI alpha 1 polypeptides, suggests that the overexpressed human collagen VI alpha 1 chain is probably participating in collagen fibril formation with the other two isoforms (alpha 2 and alpha 3) of mouse collagen VI. However, the extent of protein overexpression appeared less strong than would be predicted from the degree of mRNA overexpression in these mice. This finding suggests that there may be a post-transcriptional mechanism for regulating the levels of collagen VI alpha 1 polypeptide, perhaps related to the biological necessity for forming stoichiometric trimers of the three polypeptide chains, each of which is encoded by a separate gene.

Normal histology of heart and skin in \textit{COL6A1}^{high} BAC-transgenic mice. We compared heart development in BAC-transgenic embryos and their wild-type littermates at 13.5 and 14.5 dpc and found no cardiac defects or other qualitative anatomical differences in 14 \textit{COL6A1}^{high} transgenic vs. 10 wild-type control mouse embryos at 14.5 dpc (Fig. 7C) and no defects or differences in two transgenic vs. two wild-type 13.5 dpc embryos [data not shown]. We also examined nuchal and chest skin in these embryos at both stages, focusing on possible abnormalities of the thickness or staining properties of the dermis, and found no genotype-specific differences.

Discussion

Type VI collagen forms poorly structured fibrils in many tissues, including skin, heart, and skeletal muscle, and mutations in the polypeptides of this heterotrimeric protein produce myopathies—Bethlem myopathy and Ullrich muscular dystrophy—in both humans and mice [Lampe and Bushby 2005]. The \textit{COL6A1} gene, which encodes one of the collagen VI chains, is implicated by linkage and genetic association data in a rare inherited syndrome of ossification of the posterior spinal ligament in the Japanese population [Tanaka et al. 2003; Tsukahara et al. 2005], and it has been considered a candidate for contributing to cardiac defects and skin abnormalities in DS. Such defects, frequently atrioventricular defects due to anomalous development of
structures derived from the endocardial cushions, occur more frequently in DS, but the basis for abnormal heart development in this condition has remained unclear. Molecular candidates include proteins expressed in cardiac development that are encoded by Chromosome 21 genes such as the adhesion protein gene \textit{DSCAM} (Barlow et al. 2001; Kosaki et al. 2005), collagen VI (C21orf18, \textit{COL6A1} and \textit{COL6A2} genes), the calcineurin pathway modulator \textit{DSCR1} (Arron et al. 2006; Lange et al. 2004, 2005), and the \textit{SH3BGR} gene (Egeo et al. 2000). Another interesting Chromosome 21-linked gene that is circumstantially implicated as a candidate for contributing to heart anomalies is \textit{GART}, which encodes a metabolic enzyme and is nonlinearly overexpressed at the mRNA level in whole fetal hearts with trisomy 21 (Li et al. 2006).

To test for phenotypes from overexpression of the human \textit{COL6A1} gene in a controlled animal model, we created low-copy and high-copy lines of \textit{COL6A1} BAC-transgenic mice. Our analysis of viability, gene expression, and anatomy in these mice, as reported here, leads us to two conclusions. First, most of the promoter/enhancer elements responsible for tissue-specific expression of \textit{COL6A1} are within the BAC, thus mapping within a 167-kb region containing the gene itself plus 82 kb of upstream and 62 kb of downstream DNA. However, an enhancer element for expression in fetal lung may lie outside this region. In this study, with only two independent integration sites, thereby leaving open the possibility that insulators may exist in the DNA encompassed by this BAC clone. Second, overexpression of human collagen VI alpha 1 protein in mice due to the addition of the human BAC transgene does not cause major developmental abnormalities in the heart or skin, and it has no detrimental effect on pre- or postnatal viability.

These findings argue against a major role for \textit{COL6A1} overexpression in producing cardiac defects in DS, but there are a number of important caveats. In our anatomical studies, we assessed a substantial number of conceptuses by manually viewing the histological sections of skin and heart; however, because we did not carry out morphometry, we cannot exclude a subtle quantitative phenotype. Although our findings with immunohistochemistry show that the transgene-derived collagen VI alpha 1 polypeptide is deposited in the extracellular matrix of the heart and skin, we have not proven that this polypeptide chain is giving rise to a stoichiometric excess of complete collagen VI heterotrimers. In addition, we cannot exclude early biological selection in our founder mice, such that viability was preserved in subsequent generations. More generally, our data do not exclude the possibility that an extra copy of \textit{COL6A1} might contribute to cardiac or skin abnormalities in DS, but only in concert with extra copies of other genes on human chromosome 21. In the future it may be possible to test this possibility by crossing multiple BAC-transgenic lines. In fact, as highlighted in Table 2, the \textit{COL6A1} BAC-transgenic lines described here add to a growing list of large-insert transgenic mice that carry Chromosome 21-linked

Transgene	Types of clones	Phenotype of transgenic mice	References
\textit{APP}	YAC	No abnormalities reported	Lamb et al. 1993, Murai et al. 1998, Pearson and Choi 1993, Smith et al. 1997
\textit{DYRK1A}	multiple YACs	Behavioral abnormalities	Branchi et al. 2004
\textit{DYRK1A}	YAC	Behavioral abnormalities in \textit{DYRK1A} Tg	Chrast et al., 2000
\textit{Sim2}	BAC	Behavioral abnormalities	Branchi et al., 2004
\textit{OLIG2}	BAC	Rescue of glial cell deficiency due to \textit{Olig2} gene knockout. Phenotype due to the transgene alone not yet described	Ligon et al., 2006
\textit{SOD1}	\lambda phage clone	Thymus and bone marrow abnormalities	Epstein et al., 1987, Peled-Kamar et al., 1995
\textit{COL6A1}	BAC	Normal cardiac and skin anatomy and histology	This report

aSeries of four YAC transgenic lines containing C21orf18 → PSMD4, DSCR6 → TT3, DSCR3+DYRK1A, KCNJ6.
genes cloned in BAC, yeast artificial chromosome (YAC), or phage vectors, which can be used to dissect the contributions of individual Chromosome 21-linked genes to the various phenotypic features of Down syndrome. Additional lines are being made, including in our own laboratory, and crosses among these lines may be useful for creating phenotypes that depend on increased expression of multiple Chromosome 21-linked genes.

Acknowledgments
This work was supported by NIH grant 5P01HD035897. Tissue processing and histology was supported by a core facility of the Columbia University Comprehensive Cancer Center.

References
1. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 5, 725–738
2. Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, et al. (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441, 595–600
3. Barlow GM, Chen XN, Shi ZY, Lyons GE, Kurnit DM, et al. (2001) Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med 3, 91–101
4. Bonaldo P, Braghetta P, Zanetti M, Piccolo S, Volpin D, et al. (1998) Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum Mol Genet 7, 2135–2140
5. Branchi I, Bichler Z, Minghetti L, Delabar JM, Malchiodi-Albedi F, et al. (2004) Transgenic mouse in vivo library of human Down syndrome critical region 1: association between DYRK1A overexpression, brain development abnormalities, and cell cycle protein alteration. J Neuropathol Exp Neurol 63, 429–440
6. Brand-Saberi B, Epperlein HH, Romanos GE, Christ B [1994a] Distribution of extracellular matrix components in nuchal skin from fetuses carrying trisomy 18 and trisomy 21. Cell Tissue Res 277, 465–475
7. Brand-Saberi B, Floel H, Christ B, Schulte-Vallentin M, Schindler H [1994b] Alterations of the fetal extracellular matrix in the nuchal oedema of Down’s syndrome. Ann Anat 176, 539–547
8. Chrast R, Scott HS, Madani R, Huber L, Wolfer DP, et al. (2000) Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to those of some present in the partial trisomy 16 mouse models of Down syndrome. Hum Mol Genet 9, 1853–1864
9. Egeo A, Di Lisi R, Sandri C, Mazzocchi M, Lapide M, et al. (2000) Developmental expression of the SH3BGR gene, mapping to the Down syndrome heart critical region. Mech Dev 90, 313–316
10. Epstein CJ (2001) Down syndrome. In Scriver CR, et al., eds. The Metabolic and Molecular Basis of Inherited Disease, [New York: McGraw-Hill], pp. 1223–1256
11. Epstein CJ, Avraham KB, Lovett M, Smith S, Elroy-Stein O, et al. (1987) Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci USA 84, 8044–8048
12. Gittenberger-de Groot AC, Bartram U, Oosthoek PW, Bartelings MM, Hogers B, et al. (2003) Collagen type VI expression during cardiac development and in human fetuses with trisomy 21. Anat Rec A Discov Mol Cell Evol Biol 275, 1109–1116
13. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, et al. (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925
14. Jobbsis GJ, Keizers H, Vreijiling JP, de Visser M, Speer MC, et al. (1996) Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 14, 113–115
15. Kosaki R, Kosaki K, Matsushima K, Matsuura N, Matsumoto N, et al. (2005) Refining chromosomal region critical for Down syndrome-related heart defects with a case of cryptic 21q22.2 duplication. Congenit Anom (Kyoto) 45, 62–64
16. Lamb BT, Sisodia SS, Lawler AM, Slunt HH, Kitt CA, et al. (1993) Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice [corrected]. Nat Genet 5, 22–30
17. Lampe AK, Bushby KM (2005) Collagen VI related muscle disorders. J Med Genet 42, 673–685
18. Lange AW, Molkentin JD, Yutzey KE (2004) DSCR1 gene expression is dependent on NFATc1 during cardiac valve formation and colocalizes with anomalous organ development in trisomy 16 mice. Dev Biol 266, 346–360
19. Lange AW, Rothermel BA, Yutzey KE (2005) Restoration of DSCR1 to disomy in the trisomy 16 mouse model of Down syndrome does not correct cardiac or craniofacial development anomalies. Dev Dyn 233, 954–963
20. Li CM, Guo M, Borczuk A, Powell CA, Wei M, et al. [2002] Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol 160, 2181–2190
21. Li CM, Guo M, Salas M, Schupf N, Silverman W, et al. [2006] Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Med Genet 7, 24
22. Ligon KL, Kesari S, Kitada M, Sun T, Arnett HA, et al. [2006] Development of NG2 neural progenitor cells requires Olig gene function. Proc Natl Acad Sci USA 103, 7853–7858
23. Murai H, Pierce JE, Raghuopathi R, Smith DH, Saatman KE, et al. [1998] Twofold overexpression of human
beta-amyloid precursor proteins in transgenic mice does not affect the neuromotor, cognitive, or neuro-degenerative sequelae following experimental brain injury. J Comp Neurol 392, 428–438

24. Osoegawa K, Mammoser AG, Wu C, Frangen E, Zeng C, et al. (2001) A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res 11, 483–496

25. Pearson BE, Choi TK (1993) Expression of the human beta-amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice. Proc Natl Acad Sci USA 90, 10578–10582

26. Peled-Kamar M, Lotem J, Okon E, Sachs L, Groner Y (1995) Thymic abnormalities and enhanced apoptosis of thymocytes and bone marrow cells in transgenic mice overexpressing Cu/Zn-superoxide dismutase: implications for Down syndrome. EMBO J 14, 4985–4993

27. Smith DJ, Stevens ME, Sudanagunta SP, Bronson RT, Makhinson M, et al. (1997) Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet 16, 28–36

28. Tanaka T, Ikari K, Furushima K, Okada A, Tanaka H, et al. (2003) Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 73, 812–822

29. Tsukahara S, Miyazawa N, Akagawa H, Forejtova S, Pavelka K, et al. [2005] COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine 30, 2321–2324

30. von Kaisenberg CS, Brand-Saberi B, Christ B, Vallian S, Farzaneh F, et al. [1998a] Collagen type VI gene expression in the skin of trisomy 21 fetuses. Obstet Gynecol 91, 319–323

31. von Kaisenberg CS, Krenn V, Ludwig M, Nicolaides KH, Brand-Saberi B [1998b] Morphological classification of nuchal skin in human fetuses with trisomy 21, 18, and 13 at 12–18 weeks and in a trisomy 16 mouse. Anat Embryol [Berl] 197, 105–124