Supplementary material

Endothelial to mesenchymal transition contributes to nicotine-induced atherosclerosis

Wei Qin, Longyin Zhang, Zhange Li, Dan Xiao, Yue Zhang, Haiying Zhang, Justine Nyakango Mokembo, Seth Mikaye Mokembo, Nabanit Kumar Jha, Philipp Kopylov, Dmitri Shchekochikhin, Yong Zhang

Supplementary figures 1-6

Supplementary table 1
Figure S1

Figure S1. Oil Red O staining of aorta reveals the increase of atherosclerotic lesions induced by nicotine in ApoE$^{−/−}$ mice fed with high fat diet.
Nicotine increases mRNA levels of leukocyte adhesion molecules (ICAM1 and VCAM1), monocyte chemotactic protein 1 (MCP1), proinflammatory protein plasminogen activator inhibitor-1 (PAI1), matrix metalloproteinases (MMP1, 9 and 10), and TIMP metallopeptidase inhibitors (TIMP2 and 4) and decreases mRNA level of protective protein endothelial NOS (eNOS) in human aortic endothelial cells (HAECs). n = 4. *P < 0.05, **P < 0.01, ***P < 0.001.
Figure S3. Blocking α7 nicotine acetylcholine receptor (α7nAChR) by α-BTX has no obvious effect on the expression of EndMT-related markers and stem cell markers in HAECs. The mRNA levels of VE-cadherin (A), CD31 (B), α-SMA (C), FSP1 (D), Oct4 (E), Nanog (F), Sox2 (G), CD44 (H) and Bmi1 (I) were determined by RT-PCR. n = 4.
Figure S4. Blocking α7 nicotine acetylcholine receptor (α7nAChR) by α-BTX exhibited no significant changes in atherosclerotic lesions in ApoE−/− mice. All animals were fed with high fat diet for 8 weeks to establish atherosclerosis. Mice in α-BTX group received intraperitoneal injection of α-BTX 0.05 mg/kg once daily for 8 weeks. Mice in control group received phosphate buffered saline. (A) Hematoxylin-eosin (HE) staining of aortic root sections. Scale bar indicates 600 μm. Arrows indicate atherosclerotic plaques. (B) Quantification of the lesion area per section in the control and α-BTX groups. n = 4 mice in each group.
Figure S5

Figure S5. Transcription factors Snail was upregulated in HAECs after treatment with nicotine (500 nM). The mRNA levels of Snail (A), Slug (B), Zeb1 (C), Zeb2 (D), Twist1 (E) and Twist2 (F) were determined by RT-PCR. n = 3-4. **P < 0.01.**
Figure S6. Snail knockdown decreases mRNA levels of ICAM1, VCAM1, MCP1, PAI1, MMP1, MMP9, MMP10, TIMP2, and TIMP4 and increases mRNA level of eNOS in nicotine-treated human aortic endothelial cells (HAECs). n = 3-4. *P < 0.05, ***P < 0.001.
Table S1. Primers used for qRT-PCR.

Gene	Species	Primer Sequence (5’→3’)		
CD31	Mouse	F ACGCAGTGGTCTCTATGCAAG R TCAGTGGTCTGGCCATCA		
VE-cadherin	Mouse	F TCAACGCATCTGGCCAGAGAT R CACGATTGGTACAAGACAGT		
α-SMA	Mouse	F CCACCGCAAAATGCTCTAAGT R GGCAGGAAAGATTGGAAAGG		
smMHC	Mouse	F AAGCTGGCTAGAGGTCAGA R CCCTCCCTTGTAGCTGAG		
VE-cadherin	Human	F CAGCCCCAGTGTTGAGGAA R TGATGTTGGCAGCGTGTTAT		
CD31	Human	F GAGTCCAGCCGCATCC R TGACACAAATCGTACCTCCT		
α-SMA	Human	F TGACAAATGCTCTGCTCTTGA R TGGTGCTGAGACTGCTGTTTT		
FSP1	Human	F GTCCACCTCTCAACAGTAC R TGTCAGATGCTCATCAG		
Oct4	Human	F GCAAAGCAGAAACCCTGTGC R ACCACACTCGGACCACATCCT		
Nanog	Human	F CAAAGGCACAAACCCACTT R TCTGCTGGAGGCTGAGGAT		
Sox2	Human	F ATGGGTTCCGTTGTCAGGT R GCTCTGAGTGGCTGGAGCA		
CD44	Human	F AAGGTTGGAGCAACACACAAACC R ACTGCAATGCAAACATCGAAG		
Bmi1	Human	F TCCACAAAGCACAACATCA R TTTTATTGTCTTTGGCC		
α1 nAchR	Human	F GCTCTGCTGAGGCTGCAA R CCGGAAAGCAGCGACGAGA		
α2 nAchR	Human	F GTGGAGGAAGGAGGACAGA R CTTCTGATGGTGGGTA		
α3 nAchR	Human	F CAGAGTCCAAAGGCTGCAAG R AGAGGGGACAGCAGCAT		
α4 nAchR	Human	F CTCACCAGCTCTTCTGTGT R CTTGCTTCAGCTCAG		
α5 nAchR	Human	F CCTTCAACGCTTCCAACACT R CTTCAACACCTCACAGAC		
α6 nAchR	Human	F TCCATCGTGAGTACTGTTG R AGGCAACCTCATCAGAG		
α7 nAchR	Human	F GTAGCAGCTGTTCCCTTGTG R CCACTAGGTCCCATC		
α9 nAchR	Human	F GAAAGCAGGCCAGGAAACAA R GCAGTTGCCAGTGATCTCA		
α10 nAchR	Human	F ACAAATGGCTCAGACCT R TCACGACAGCCAGTGACCATC		
β1 nAchR	Human	F GTAGCAGCTGTTCCCTTGTG R CCACTAGGTCCCATC		
gene	organism	type	forward primer sequence	reverse primer sequence
---------	----------	------	-------------------------	-------------------------
β2 nAchR	Human	F	GGCATGTACGAGGTGTCCTT	CACCTCAGCTTCAGCACCCA
β3 nAchR	Human	F	AACAGTTCCGTGATTTCAGCAT	CCCTGATGACCAAAGGTGAC
β4 nAchR	Human	F	TCCCTGGTCCTTTCTTTCTTCT	TGCACTGACTGAGTAGATGAG
γ nAchR	Human	F	CGCCTGCTCCTACTTCTAGTCA	GGAGACATGACACAAACCA
δ nAchR	Human	F	CAGATCTCACTCTCTGCAAA	CCACCTGATGCTTCACACCA
ε nAchR	Human	F	TCAAGGTGTTTCTGAGCAAT	GTGAGTCTGACTTGGTAAT
ICAM1	Human	F	CTTTCATTGTCTTTTTCCGCC	ATGCCCAACACATCCTTCC
VCAM1	Human	F	GGGAAATGTTGCTGATCTCTT	TCTGGGATGGGCTCGATTTTA
MCP1	Human	F	CAGCCAGATACATCAATGCC	TTGAATCCTGAAACCCTCTT
PAI-1	Human	F	ACCGCAAGTGGTGGTTTCTCA	TTGAATCCCATAGCTGATTTA
MMP1	Human	F	AAAATTACACCGCAGATTTGCC	GTGTTGACTACCTCAGATGG
MMP9	Human	F	TGTTCCGGTATGGTACACCTCG	GGGAGGCAAGGCTGGTCTCT
MMP10	Human	F	TGCTTCTGACTCTGAGT	TGACATCCTTTCTGAGTTGATAG
TIMP2	Human	F	AAGCGGTCACTGAGAAGGAAG	GGGGCCGCTGTTAGATAAAGCTCT
TIMP4	Human	F	CCACTCGGCACTTGAGATC	CATCCCTGACTTTCTAAACCTC
eNOS	Human	F	TGATGGGCGAAGGGGATGAGA	ACTCATCCCATACAGGACCC
Snail	Human	F	GCTCTCACTGTGCAATACTGC	CTCTTCTGACATCGAGTTGTC
Slug	Human	F	CGAACTTGGAACACACATACAGT	CTGAGGATCTCTGTTGTTG
Zeb1	Human	F	GATGATGAAATGCGCTGAGATG	AACAGCAGTGCTTGTGTTG
Zeb2	Human	F	CAAGAGGCGCAAACAAAGCC	GCTGGGCAATACCCGATCC
Twist1	Human	F	TCGGACAGGCTGAGCAAGATT	GCAGCCTGACACCTTGGAGT
Twist2	Human	F	GGCCTGAGAGATTTGGGAGT	CCGGGTCTCTTGGCTTGATG
GADPH	Mouse	F	AAGAAGGTGTTGAGCAGGCG	TCCACCAAGTTGCTGTA