A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker for the identification of *Amaranthus cruentus* species

Young-Jun Park1), Tomotaro Nishikawa2), Kenichi Matsushima1), Mineo Minami1) and Kazuhiro Nemoto*1)

1) Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4598, Japan
2) Genetic Resources Center, National Institute of Agrobiological Sciences, 2-1-2 Tsukuba, Ibaraki 305-8602, Japan

A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker was developed to identify the *Amaranthus cruentus* species by comparing sequences of the starch branching enzyme (*SBE*) locus among the three cultivated grain amaranths. We determined the partial *SBE* genomic sequence in 72 accessions collected from diverse locations around the world by direct sequence analysis. Then, we aligned the gene sequences and searched for restriction enzyme cleavage sites specific to each species for use in the PCR-RFLP analysis. The result indicated that *MseI* would recognize the sequence 5′-T/TAA-3′ in intron 11 from *A. cruentus SBE*. A restriction analysis of the amplified 278-bp portion of the *SBE* gene using the *MseI* restriction enzyme resulted in species-specific RFLP patterns among *A. cruentus*, *Amaranthus caudatus* and *Amaranthus hypochondriacus*. Two different bands, 174-bp and 104-bp, were generated in *A. cruentus*, while *A. caudatus* and *A. hypochondriacus* remained undigested (278-bp). Thus, we propose that the PCR-RFLP analysis of the amaranth *SBE* gene provides a sensitive, rapid, simple and useful technique for identifying the *A. cruentus* species among the cultivated grain amaranths.

Key Words: PCR-RFLP, *Amaranthus cruentus*, species identification, *SBE* gene.
Materials and Methods

Plant materials

A total of 72 accessions from three species of grain amaranths were used (Table 1). All accessions were obtained from collections at the United States Department of Agriculture (USDA), USA and Shinshu University, Japan. The samples in these collections originated in the Americas (Argentina, Bolivia, Brazil, Chile, Guatemala, Mexico, Peru, Puerto Rico and the United States), Africa (Ghana, Nigeria, Uganda, Zaire and Zambia) and Asia (Afghanistan, Bhutan, China, India, Nepal, Pakistan and Sri Lanka).

Genomic DNA extraction and PCR amplification

Genomic DNA was extracted from young leaves using the CTAB method (Murray and Thompson 1980) or the DNeasy Plant Mini kit (Qiagen, Hilden, Germany). The quality and concentration of the DNA were evaluated by viewing samples in agarose gels and by a ND-1000 Nanodrop spectrophotometer (Nanodrop Technologies). A fragment of the SBE genomic DNA was amplified by using gene-specific primers, which have been designed previously (Table 2). PCR reactions were conducted in 50 μl volumes containing 2 μl of total DNA, 5 μl of 10× PCR buffer, 4 μl of 2.5 mM dNTP mixture, 10 pmol of each primers and 0.5 μl of EX Taq polymerase. Amplification conditions were as follows: 30 cycles of 98°C for 10 s, 58°C for 30 s and 72°C for 1 min. The PCR products were purified using MultiScreen PCRμ96 plates (Millipore), according to the manufacturer’s instructions. The size of the PCR products was assessed by electrophoresis. The agarose gels were stained with ethidium bromide and visualized under UV light.

Selection of restriction enzymes and PCR-RFLP analysis

Based on the DNA sequence information obtained in this study, we surveyed the restriction sites of the SBE locus extensively using Geneious Pro 7.1.5 (Biomatters Ltd.). The restriction enzymes with digestion sites that were conserved within a species and variable among other species in a given sequence were selected. The intron 11 of the SBE gene was used for the identification of A. cruentus. A fragment from the SBE gene of 278 bp (position 3,536 to 3,240) containing an MseI restriction site was amplified by PCR using the primers crsbe-F: 5’-AGCGAATTGCGACGAATTATGTTA CAT-3’ and crsbe-R: 5’-TTCCTTTTCCACCGAACATCAA TGCAT-3’. PCR conditions were as follows: 30 cycles of 98°C for 10 s, 55°C for 30 s and 72°C for 30 s. PCR products were digested with the MseI (RspRSII) restriction enzymes (Takara) in a total volume of 20 μl at 60°C for 1 h based on the manufacturer’s instructions, with some modifications. The digested fragments were separated in 2% agarose gels by electrophoresis in TBE buffer for approximately 45 min and visualized by staining with ethidium bromide.

Sequence analyses

The DNA sequences of the amplified products were determined in both directions using the BigDye Terminator Cycle Sequencing Kit (version 3.1, Applied Biosystems) on an ABI 3130xl Genetic Analyzer (Applied Biosystems). The sequencing primer (3.2 pmol) and dye terminator ready-reaction sequencing premix (8 μl) were added to each template. Following a denaturation step at 96°C for 2 min, the dye terminator reaction was performed for 25 cycles of 96°C for 15 s, 50°C for 1 s and 60°C for 4 min. A multiple sequence alignment and analyses of the deduced amino acid and nucleotide sequences were performed using ClustalW 2.1 as a module of Geneious Pro 7.0.5 (Biomatters). Polymorphic site candidates were identified using CodonCode Aligner 4.2.5 (CodonCode Co., Dedham, MA, USA).

Results and Discussion

Previous analyses of the genetic relationships in the genus Amaranthus have used several techniques, including the chromosome number and hybrid fertility (Gupta and Gudu 1991, Pal and Khoshoo 1974), isozymes (Chan and Sun 1997, Hauptli and Jain 1984), random amplified polymorphic DNAs (Chan and Sun 1997, Das 2012, Transue et al. 1994), restriction-site variation of chloroplasts and nuclear DNAs (Lanoue et al. 1996), DNA fingerprints (Sun et al. 1999), amplified fragment-length polymorphisms and inter-sequence simple repeats (Xu and Sun 2001), micromorphology (Costea et al. 2006), microsatellite markers (Mallory et al. 2008) and protein markers (Džunková et al. 2011). However, most of these studies focused on genetic diversity and/or evolutionary relationships among the cultivated species and their wild ancestors. We therefore wanted to provide a rapid molecular technique to distinguish among the cultivated grain species that are typically widely used around the world. Recently, molecular techniques, based on PCR-RFLP marker analysis, were developed for the identification of two cultivated species, A. caudatus and A. hypochondriacus (Park and Nishikawa 2012b). This was the first study using molecular techniques to identify species among the cultivated grain amaranths within the genus Amaranthus. The use of molecular techniques for species identification is very uncommon for this crop and a rapid molecular technique to identify the A. cruentus species is required.

In this study, we first developed a PCR-RFLP marker, which was able to identify the A. cruentus species, by comparing SBE locus sequences among the grain amaranth
Table 1. Summary of sampled the cultivated grain amaranth accessions and their polymorphism in species-specific sites from the SBE locus

Species	No.	Accession no.	Origin	T-C polymorphism in intron 11 of the SBE locus
A. cruentus	cr1	Ames 22000	Guatemala	T
	cr2	Ames 22004	Guatemala	T
	cr3	Ames 5676	Guatemala	T
	cr4	PI 511715	Guatemala	T
	cr5	PI 511718	Guatemala	T
	cr6	Ames 5165	United States	T
	cr7	Ames 5318	United States	T
	cr8	Ames 5677	United States	T
	cr9	Ames 5480	Mexico	T
	cr10	Ames 15189	Mexico	T
	cr11	PI 451710	Mexico	T
	cr12	PI 490662	Mexico	T
	cr13	PI 517226	Mexico	T
	cr14	PI 576481	Mexico	T
	cr15	PI 604558	Mexico	T
	cr16	PI 511713	Peru	T
	cr17	Ames 1977	India	T
	cr18	Ames 2037	India	T
	cr19	PI 566897	India	T
	cr20	PI 576448	Nigeria	T
	cr21	PI 536996	Ghana	T
	cr22	Ames 1968	Zaire	T
	cr23	Ames 5369	Zaire	T
	cr24	PI 494774	Zambia	T
A. caudatus	ca1	Ames 15176	Argentina	C
	ca2	Ames 15177	Argentina	C
	ca3	Ames 15179	Argentina	C
	ca4	PI 481607	Bhutan	C
	ca5	PI 490604	Bolivia	C
	ca6	PI 490607	Bolivia	C
	ca7	PI 568139	Bolivia	C
	ca8	PI 568153	Bolivia	C
	ca9	PI 166107	India	C
	ca10	PI 175039	India	C
	ca11	Ames 10176	Pakistan	C
	ca12	PI 490614	Peru	C
	ca13	PI 490621	Peru	C
	ca14	PI 490626	Peru	C
	ca15	PI 568139	Peru	C
	ca16	PI 490639	Peru	C
	ca17	PI 516853	Peru	C
	ca18	PI 516863	Peru	C
	ca19	PI 516893	Peru	C
	ca20	PI 511705	Peru	C
	ca21	PI 511705	Peru	C
	ca22	IB 85-3291*	Nepal	C
A. hypochondriacus	hy1	Ames 5436	Mexico	C
	hy2	Ames 5467	Mexico	C
	hy5	Ames 5132	Mexico	C
	hy8	PI 477917	Mexico	C
	hy9	PI 560476	Mexico	C
	hy10	PI 490755	Mexico	C
	hy11	PI 564560	Mexico	C
	hy12	PI 560794	Mexico	C
	hy13	Ames 5158	Puerto Rico	C
	hy14	Ames 5689	Brazil	C
	hy15	Ames 5355	Chile	C
	hy16	Ames 21766	China	C
	hy17	PI 542595	China	C
	hy18	PI 590891	China	C
	hy19	PI 337611	Uganda	C
	hy20	Ames 1972	Nigeria	C
	hy21	Ames 1975	Nigeria	C
	hy22	PI 558499	United States	C
	hy23	PI 274229	India	C
	hy24	85-10-10-3-15*	India	C
	hy25	Almora*	India	C
	hy26	85-10-27-3-5*	India	C
	hy27	AC#00406*	Sri Lanka	C
	hy28	PI 540446	Pakistan	C
	hy29	Ames 5609	Afghanistan	C
	hy30	BU 95007*	Bhutan	C
	hy31	Ames 5660	Zambia	C
	hy32	TMN-638*	Nepal	C
	hy33	TMN-647*	Nepal	C
	hy34	SU87-871478*	Nepal	C

* The collection in Shinshu University, Japan.
PCR-RFLP marker for the identification of *A. cruentus* species. We determined the partial *SBE* genomic sequence in 72 accessions of the cultivated grain amaranths by direct sequence analysis. The alignments of the 72 *SBE* sequences produced a matrix of 7,453 bp. Comparisons of the aligned *SBE* sequences revealed several substitutions and insertions/deletions. On the basis of DNA sequence data, the digestion patterns were predicted for various restriction enzymes using Geneious Pro 7.0.5 software. Finally, the *Mse*I enzyme was selected to achieve the best species-specific pattern for identification of *A. cruentus*. The sequence data for the *SBE* locus in all *A. cruentus* accessions contained 5′-T/T-3′ in intron 11, while the other two species, *A. caudatus* and *A. hypochondriacus* contained 5′-T/C-3′ in intron 11 (Fig. 1). This result indicated that the *SBE* gene is highly conserved and, consequently, a good molecular marker for diagnostic studies. Thus, the comparative analysis of *SBE* sequences from 72 amaranth accessions provided the basis for the design of diagnostic primers having the potential for the species-specific identification of *A. cruentus* by the PCR-RFLP method. In this study, we designated this one-base substitution as the “T-C polymorphism” (Table 1).

Table 2. Primer sequences and annealing temperatures used for amplification of fragments from *SBE* locus

Fragment	Primer pairs	Forward and reverse PCR primer sequences (5′→3′)	Amplified region	Expected length	Annealing temperature
1	SBEg-F3/SBEg-R3	F: TGCAGCACCCTATGCAAGATATGCACTGGAGGAAACAGGCTTAT CAGGCTTATGCAAGATATGCACTGGAGGAAACAGGCTTAT	partial exon 5–partial exon 6	853	58°C
2	SBEg-F4/SBEg-R4	F: ATGGGGCTAGCCTTAGATGCAAGATATGCACTGGAGGAAACAGGCTTAT CAGGCTTATGCAAGATATGCACTGGAGGAAACAGGCTTAT	partial exon 6–partial exon 7	924	58°C
3	SBEg-F5/SBEg-R5	F: AGTGGAGGGAATTCTGCTTCAATACTGGAGGAAACAGGCTTAT CAGGCTTATGCAAGATATGCACTGGAGGAAACAGGCTTAT	partial exon 7–partial exon 8	954	58°C
4	SBEg-F6/SBEg-R6	F: AGGCTACTTAAACTTATGCAAGATATGCACTGGAGGAAACAGGCTTAT CAGGCTTATGCAAGATATGCACTGGAGGAAACAGGCTTAT	partial exon 8–partial exon 9	1,134	58°C
5	SBEg-F7/SBEg-R2	F: ATGGGAATCTTCTTCTGTGCAAGATATGCACTGGAGGAAACAGGCTTAT CAGGCTTATGCAAGATATGCACTGGAGGAAACAGGCTTAT	partial exon 9–partial exon 10	1,124	58°C
6	SBEg-F8/SBEg-R8	F: ATGGGAATCTTCTTCTGTGCAAGATATGCACTGGAGGAAACAGGCTTAT CAGGCTTATGCAAGATATGCACTGGAGGAAACAGGCTTAT	partial exon 10–partial exon 11	936	58°C
7	SBEg-F9a/SBEg-R3	F: TGCAGCATTGGTTCTCCTGCAATGGGGAAACAGGCTTAT CAGGCTTATGCAAGATATGCACTGGAGGAAACAGGCTTAT	partial exon 12–exon 14	1,181	58°C

Fig. 1. Partial sequence alignment of the *SBE* locus from *A. cruentus*, *A. caudatus* and *A. hypochondriacus*. Solid black box shows the species-specific restriction cleavage site for the enzyme *Mse*I. Major SNP, T-C polymorphism is underlined. Shaded area is partial exon 12.

Next, we examined the genetic variation in intron 11 of the *SBE* locus from 72 accessions using the PCR-RFLP method (Fig. 2). The primer set crsbe-F/crsbe-R successfully amplified a control region using DNA extracts from all samples. This PCR product, located from 3,240-bp (intron 11) to 3,536-bp (exon 12), was approximately 278 bp (Fig. 2a). After restriction enzyme digestion, the results indicated that PCR-RFLP was a suitable tool for identifying *A. cruentus* accessions. As shown in Fig. 2b, digestion of the control region in *A. cruentus* by *Mse*I produced two fragments, 174 bp and 104 bp, whereas *A. caudatus* and *A. hypochondriacus* produced the original PCR fragment of approximately 278 bp. This result indicated that the fragment of *A. cruentus* species contained an *Mse*I site, while the fragments of the other two amaranths had no *Mse*I sites. Thus, our results clearly showed that this PCR-RFLP method was highly reliable for identifying *A. cruentus* from among the cultivated grain amaranths. Finally, the PCR-RFLP method developed here will save a significant amount of time and reagents when identifying the *A. cruentus* species within the cultivated grain amaranths.
Literature Cited

Chan, K. and M. Sun (1997) Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of *Amaranthus*. Theor. Appl. Genet. 95: 865–873.

Costea, M., D.M. Brenner, F.J. Tardif, Y.F. Tan and M. Sun (2006) Delimitation of *Amaranthus cruentus* L. and *Amaranthus caudatus* L. using micromorphology and AFLP analysis: an application in germplasm identification. Genet. Resour. Crop Evol. 53: 1625–1633.

Das, S. (2012) Systematics and taxonomic delimitation of vegetable, grain and weed amaranths: a morphological and biochemical approach. Genet. Resour. Crop Evol. 59: 289–303.

Džunková, M., D. Janovská, P.H. Čepková, A. Prohasková and M. Kolář (2011) Glutelin protein fraction as a tool for clear identification of Amaranth accessions. J. Cereal Sci. 53: 198–205.

Gupta, V.K. and S. Giud (1991) Interspecific hybrids and possible phylogenetic relations in grain amaranths. Euphytica 52: 33–38.

Haupti, H. and S. Jain (1984) Allozyme variation and evolutionary relationships of grain amaranths (*Amaranthus* spp.). Theor. Appl. Genet. 69: 153–165.

Lanoue, K.Z., P.G. Wolf, S. Browning and E.E. Hood (1996) Phylogenetic analysis of restriction-site variation in wild and cultivated *Amaranthus* species (*Amaranthaceae*). Theor. Appl. Genet. 93: 722–732.

Mallory, M.A., R.V. Hall, A.R. McNabb, D.B. Pratt, E.N. Jellen and P.J. Maughan (2008) Development and characterization of microsatellite markers for the grain amaranths. Crop Sci. 48: 1098–1106.

Maundu, P., E. Achigan-Dako and Y. Morimoto (2009) Biodiversity of African vegetables. In: Shackleton, C.M., M.W. Pasquini and A.W. Drescher (eds.) African Indigenous Vegetables in Urban Agriculture, Earthscan, London, pp. 65–104.

Murray, M.G. and W.F. Thompson (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321–4325.

Pal, M. and T. Khoshoo (1974) Grain amaranths. In: Hutchinson, J. (ed.) Evolutionary Studies in World Crops: Diversity and Change in the Indian Subcontinent, Cambridge University Press, London, pp. 129–137.

Park, Y.J. and T. Nishikawa (2012a) Characterization and expression analysis of the starch synthase gene family in grain amaranth (*Amaranthus cruentus* L.). Genes Genet. Syst. 87: 281–289.

Park, Y.J. and T. Nishikawa (2012b) Rapid identification of *Amaranthus caudatus* and *Amaranthus hypochondriacus* by sequencing and PCR-RFLP analysis of two starch synthase genes. Genome 55: 623–628.

Sauer, J.D. (1967) The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann. Missouri Bot. Gard. 54: 103–137.

Saunders, R.M. and R. Becker (1984) *Amaranthus*: a potential food and feed resource. Adv. Cereal Sci. Technol. 6: 357–396.

Sun, M., H. Chen and F.C. Leung (1999) Low-Cot DNA sequences for fingerprinting analysis of germplasm diversity and relationships in Amaranthus. Theor. Appl. Genet. 99: 464–472.

Transue, D.K., D.J. Fairbanks, L.R. Robison and W.R. Andersen (1994) Species identification by RAPD analysis of grain amaranth genetic resources. Crop Sci. 34: 1385–1389.

Wetzel, D.K., M.J. Horak and D.Z. Skinner (1999) Use of PCR-based molecular markers to identify weedy *Amaranthus* species. Weed Sci. 47: 518–523.

Xu, F. and M. Sun (2001) Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (*Amaranthus; Amaranthaceae*) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol. Phylogenet. Evol. 21: 372–387.

Fig. 2. PCR-RFLP method to identify *A. cruentus*. a. A single 278-bp fragment was amplified from three cultivated grain species of *Amaranthus* using primers specific for the SBE locus (see Materials and Methods for details). Markers represent a 100-bp DNA ladder. b. Schematic and result of PCR-RFLP for identifying *A. cruentus* using intron 11 of the SBE locus. Restriction profiles of PCR amplification of intron 11 of SBE followed by digestion with *Mse* I. Restriction enzyme cleavage site is shown in bold, and one-base substitution, T-C polymorphism is underlined. Markers represent a 100-bp DNA ladder.