Endophytic actinobacteria of medicinal plants: diversity and bioactivity

Patrycja Golinska · Magdalena Wypij · Gauravi Agarkar · Dnyaneshwar Rathod · Hanna Dahm · Mahendra Rai

Received: 17 April 2015 / Accepted: 4 June 2015 / Published online: 21 June 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

Keywords Actinobacteria · Antimicrobial activity · Bioactive compounds · Endophytes · Medicinal plants

Introduction

Many types of microbial population such as bacteria and fungi have been found to be associated with the internal tissues of plant as endophytes. The term endophyte was coined by De Bary (1866), which involves the existence of microorganisms inside the infested plant tissues without having negative effects on host plant (Schulz and Boyle 2006). Almost all the plants have been found to be infested with one or more endophytes (Petrini et al. 1992). The microbes are producers of growth promoting metabolites, insect and pest repellents, antimicrobials against plant pathogens, protectors in stress conditions and many more (Rya et al. 2007; Staniek et al. 2008; Rai et al. 2014a, b). They also possess the potential to produce unique secondary metabolites, which can be exploited in pharmaceutical, agricultural and other industries. Thus, there is a growing interest of researchers in bioprospecting of endophytic microbial communities inhabiting the plants from various ecosystems.

Actinobacteria are Gram-positive typically filamentous bacteria, and is a major phylum in the domain Bacteria (Ludwig and Klenk 2005). Actinobacteria are widely distributed in both terrestrial and aquatic ecosystems. They play important roles in decomposition of complex materials from dead plants, animals, algae and fungi and in recycling of the nutrients resulting in humus formation (Sharma 2014). Actinobacteria are an important and a large group of soil
microbes with high potential of producing different bioactive metabolites including antimicrobial, anticancer and other pharmaceutical compounds (Fiedler et al. 2008; Schulz et al. 2009). These microbes have been the largest producers of different antibiotics since the discovery of Penicillin in 1928 and provided the vast diversity of antibiotics against many deadly diseases. Total number of bioactive metabolites produced by microorganisms are around 23,000 out of which 10,000 (45 % of all bioactive metabolites) are produced by actinobacteria alone and among this group of bacteria, 7600 (76 %) compounds are reported from a single genus Streptomyces (Berdy 2012). This signifies their prime importance in the world of pharmaceuticals.

It is well known that the medicinal plants are the rich sources of precious bioactive compounds. As a consequence of long term association of endophytes with such plants, the former may also participate in metabolic pathways and enhance its own natural bioactivity or may gain some genetic information to produce specific biologically active compound similar to the host plant (Stierle et al. 1993; Eyberger et al. 2006; Mitchell et al. 2010; Kumar et al. 2013; Chithra et al. 2014; Rai et al. 2014a, b). Therefore, the endophytes isolated from medicinal plants are of immense significance.

The beneficial interactions of endophytic actinobacteria with plants are being considered as an important area of research. These endophytic actinobacteria are attractive source of novel bioactive compounds and therefore, many research groups are involved in the study of their bioactivities and industrial applications. The present review is focused on the advances in endophytic actinobacteria isolated from medicinal plants including their diversity and broad-spectrum bioactivities.

Isolation of endophytic actinobacteria

Different methods have been used by researchers for isolation of endophytic actinobacteria. Takahashi and Omura (2003) emphasized that the diversity of actinobacteria depend mainly on the methods of isolation. The most frequently employed method for their detection and enumeration involves isolation from surface-sterilized host plant tissue. Isolation of endophytic actinobacteria depend on various factors, which include- host plant species, age and type of tissue, geographical and habitat distribution, sampling season, surface sterilants, selective media and culture conditions (Hallmann 2001; Gaiero et al. 2013).

In general, the isolation protocol involves the collection of plant parts such as leaves, stem, roots that should be processed freshly or stored at 4 °C until isolation within 24 h. These explants are washed in running tap water to remove adhered epiphytes, soil debris or dust particles on the surface, followed by surface sterilization using one or more different surface sterilizing agents. The most commonly used surface sterilants include ethanol and a strong oxidant or general disinfectant like household bleach (NaOCl) with 2–5 % (w/v), available chlorine (for 2–4 min). Qin et al. (2008b) and Dochhil et al. (2013) applied combination of 5 % sodium chlorate (NaClO 3), 2.5 % sodium thiosulfate (Na 2S 2O 3), 75 % ethanol and 10 % sodium bicarbonate (NaHCO 3) as sterilizing agents to inhibit the growth of fungal endophytes. The strength of sterilizing chemicals depends on permeability of the sample. Otherwise, the internal tissues will be sterilized (Hallmann et al. 2006). All the explants are finally rinsed with sterile distilled water, divided into small fragments (1 cm for steam or roots and 1 cm 2 for leaves) and inoculated on appropriate agar medium. The media are supplemented with antifungal antibiotics such as nystatin and cycloheximide (50 or 100 μg/ml) to suppress the fungal growth. After incubation at 26 ± 2 °C for 15–30 days, individual colonies with characteristic actinomycete morphology emerging out from the plant tissue are isolated. The pure cultures of the isolates are obtained by streaking on fresh media plates. The efficacy of the surface sterilization method, resulting from lack of microbial growth, can be authenticated by inoculating the last washing water into the same media plates.

Various types of growth media have been described by the authors for the isolation of endophytic actinobacteria such as starch casein (Küster and Williams 1964), starch casein nitrate (SCNA), actinomycetes isolation, soybean (Williams and Davies 1965), chitin-vitamin B (Hayakawa and Nonomura 1987), tap water-yeast extract (TWYE; Crawford et al. 1993) agars and humic acid vitamin B (HV), yeast
extract casamino acid (YECA), synthetic (Mincer et al. 2002), modified Gausse (Ivantiskaya et al. 1978) and glycine–glycerol (Küster 1959) media. Zhao et al. (2011) also underlined the need of using wider range of isolation methods to acquire more knowledge about species diversity of actinobacteria within medicinal plants. A modified method employed by Machavariani et al. (2014) describes the pre-treatment of leaves with solutions of heteroauxin and zircon, which helped to isolate and increase the numbers of rare actinobacteria from medicinal plants.

Diversity of endophytic actinobacteria in medicinal plants

Current identification and classification of actinobacteria are based a polyphasic approach, comprising morphological, physiological and molecular studies (Goodfellow et al. 2012) based on each taxon should be described and differentiated from related taxa. The sequencing of highly conserved macromolecules, notably 16S rRNA genes, has provided valuable data for constructing phylogenies at and above the genus level (Ludwig and Klenk 2005). The DNA: DNA relatedness, molecular fingerprinting and phenotypic techniques are methods of choice for delineating taxa at and below the rank of species (Rossello-Mora and Amann 2001). Distinguishing phenotypic differences are required for the description of a new species (Wayne et al. 1987). Exploring the diversity of endophytic actinobacteria is indispensable for screening of beneficial strains and understanding their ecological niche.

Endophytic actinobacteria are able to associate with their host at a very early stage of the plant development (Hasegawa et al. 2006). Minamiyama et al. (2003) noticed in SEM studies that mycelia of *Streptomyces galbus*, which was spread on the surface of the tissue-culture medium in which rhododendron seedlings were growing, grew on leaf surfaces and entered into the leaf tissues via stomata. Further, they also observed that the internal mycelia grew out of stomata after internal multiplication within host leaves. Moreover, the authors observed that within host leaves, hyphae of *S. galbus* were present individually or in colonies in intercellular spaces but not inside epidermal or mesophyll cells.

The maximum endophytic actinobacteria have been recovered from roots followed by stems and least in leaves (Qin et al. 2009; Gangwar et al. 2014). The woody plants conferred far greater diversity of actinobacteria in comparison to herbaceous plants. The high rate of occurrence of actinobacteria in roots as compared to other tissues is very common. This underlines the fact that the actinobacteria are natural dwellers of soil that easily come in contact with the roots of plants and may form the symbiotic association with them by entering the plant tissues. The results obtained by Nimnoi et al. (2010) suggested that different locations within the plant also differ in the diversity of actinomycete flora. Strobel and Daisy (2003) reported that the greater diversity of endophytes is probable to occur in the tropical and temperate regions. Du et al. (2013a) analyzed the endophytic diversity of 37 medicinal plants and reported 600 actinobacteria belonging to 34 genera and 7 unknown taxa. The authors depicted that there was no direct relationship between host plants and their endophytic flora regarding the utilization of sole carbon source, fermentation of carbon sources for production of acids and enzymes, rather the physiological characteristics of endophytic isolates were related to the geographical distribution of their host plants.

The measures of functional biodiversity may be more reliable and powerful than the taxonomic measures in order to recognize mechanistic basis of diversity and its effects on the plant-endophyte interactions (Parrent et al. 2010). Species distribution and biological diversity of endophytic actinobacteria of medicinal plants are extensively influenced by ecological environment (Hou et al. 2009). El-Shatoury et al. (2013) interpreted that the plant species can be separated into three clusters representing high, moderate and low endophytic diversity on the basis of generic diversity analysis of endophytes. The authors also reported that the endophytes represent high functional diversity, based on forty four different traits including catabolic and plant growth promotion traits and such traits may characterize a key criteria for successful habitation of endophytes within the endosphere. Furthermore, the stress-tolerance traits were more predictive measure of functional diversity of endophytic actinobacteria (El-Shatoury et al. 2013).

Hasegawa et al. (1978) reported a new genus of actinobacteria namely *Actinosynnema*, from a grass blade, which was probably the first report of an actinomycete of plant origin. A comprehensive literature survey has revealed the huge diversity of
endophytic actinobacteria isolated from interior tissues of stem, leaves and roots of medicinal plants (Table 1). Taechowisan et al. (2003) studied the diversity of actinobacteria residing in medicinal plants based on their morphology and the amino acid composition of the whole-cell extract and analysed the percentage of endophytic actinobacteria recovered from different explants: 64 % isolates from roots, 29 % from leaves, and 6 % from stems of 36 different plant species.

Janso and Carter (2010) also assessed the diversity of endophytic actinobacteria, including those from medicinal plants, albeit by ribotyping with Pvu II restriction enzyme to digest the genomic DNA. Ribotypes were then compared to each other using appropriate software (Janso and Carter 2010). The authors have found that 85 % of 123 isolates studied were determined to be unique at the strain level. The isolates were classified to six families and 17 different genera. Streptomyces accounts for the dominant genus, which is most commonly isolated as endophytic actinomycete (Qin et al. 2009; Zhao et al. 2011; Shutsrirung et al. 2014; Gangwar et al. 2014) while others include genera such as Micromonospora, Actinopolyspora, Saccharopolyspora, Nocardia, Oerskavia, Nonomuraea, Steptoverticillium, Microbispora, Streptosporangium, Promicromonospora and Rhodococcus (Verma et al. 2009; Zhao et al. 2011). Some rare actinobacteria like Dietzia, Blastococcus, Dactylosporangium, Actinocorallia, Jiangella, Promicromonospora, Oerskavia, Microtetrarspora and Intrasporangium were also reported as endophytes (Qin et al. 2009; Zhao et al. 2011; Qin et al. 2012b; El-Shatoury et al. 2013). A novel halotolerant actinomycete was isolated from a salt marsh plant Dendranthema indicum collected from the coastal region of China (Zhang et al. 2013). New species of endophytic actinobacteria such as Rhodococcus ceridiphylli and Saccharopolyspora endophylica were isolated from leaf of Cercidiphyllum japonicum (Li et al. 2008) and root of Maytenus austroyunnanensis (Qin et al. 2008a), respectively. Du et al. (2013b) proposed a new genus and species, Allonocardiosis opalescens gen. nov., sp. nov., based on the polyphasic taxonomic study, within the suborder Streptosporangineae. Wang et al. (2008) studied the diversity of uncultured microbes associated with medicinal plant Mallotus nudiflorus and concluded that actinobacteria were the most dominant microbes, covering about 37.7 % of whole endophytic isolates.

In 2012b, Qin and co-workers studied the diversity of endophytic actinobacteria recovered from root, stem and leaf tissues of Maytenus austroyunnanensis which was collected from tropical rainforest in Xishuangbanna, China. Later the authors concluded the diversity of isolates by combination of cultivation and culture-independent analysis and based on 16S rRNA gene sequencing. Further by using different selective isolation media and methods total of 312 actinobacteria were isolated from above plants which were affiliated with the order Actinomycetales (distributed into 21 genera). Based on a protocol for endophytes enrichment, three 16S rRNA gene clone libraries were constructed and 84 distinct operational taxonomic units were identified and they distributed among the orders Actinomycetales and Acidimicrobiales, including eight suborders and at least 38 genera with a number of rare actinobacteria genera. Moreover, six genera from the order Actinomycetales and uncultured clones from Acidimicrobiales were found to be unknown and reported as first time endophytes. This study confirms abundant endophytic actinobacterial consortium in tropical rainforest native plant and suggests that this special habitat still represents an underexplored reservoir of diverse and novel actinobacteria of potential interest for bioactive compounds discovery.

Bioactivities of endophytic actinobacteria

The plant endosphere consists of a large variety of microbial endophytes, which constitute a complex micro-ecosystem (El-Shatoury et al. 2013). A vast diversity of secondary metabolites in actinobacteria may occur due to the natural adaptations to environment, as a part of competition for common resources such as plant matter in soil. It has been observed that the genes responsible for the production of individual secondary metabolites were found almost always located as a cluster in the genome and referred to as biosynthetic gene clusters (Doroghazi and Metcalf 2013). Although, there is no data available about full genome sequencing on actinobacteria from medicinal plants it has been known, that whole genomes of Streptomyces sp. and non-Streptomyces non-endophytic actinobacteria such as Streptomyces avermitilis MA-4680 (Ômura et al. 2001; Ikeda et al. 2003) and Streptomyces coelicolor A(3)2 (Bentley et al. 2002) as
Table 1 Endophytic actinobacteria isolated from medicinal plants

Species of actinomycetes	Host plant	Tissue	Bioactive compounds	Reference
Streptomyces longisporoflavus, *Streptomyces* sp.	Rauwolfia densiflora	Stem, leaf, inflorescence	ND	Akshatha et al. (2014)
Amycolatopsis sp., *Micromonospora* sp., *Streptomyces* sp.	*Siparuna crassifolia*, *Calycophyllum acreanum*, *Capirona decoricicans*, *Ocotea longifolia*, *Aspidosperma* sp., *Palicourea longifolia*, *Monstera spruceana*, *Croton lechleri*, *Cantua buxifolia*, *Banisteriopsis caapi*, *Iryanthera laevis*, *Eucharis cyaneosperma*	Stem	ND	Bascom-Slack et al. (2009)
Kineococcus endophytica	Limonium sinensis	ND	ND	Bian et al. (2012b)
Streptomyces phytohabitans	Curcuma phaeocaulis	Root	ND	Bian et al. (2012a)
Kitasatospora sp.	Taxus baccata	Wood/inner cortical tissues	Paclitaxel	Canaso et al. (2000)
Streptomyces sp. NRRL 30562	Kennedia nigriscans	Stem	Munumbicins A, B, C and D	Castillo et al. (2002)
Streptomyces sp. NRRL 30566	Grevillea pteridifolia	Stem	Kakadumycins	Castillo et al. (2003)
Streptomyces sp. NRRL 30562	Kennedia nigriscans	ND	Munumbicins E-4 and E-5	Castillo et al. (2006)
Pseudonocardia endophytica	Lobelia clavatum	Inner tissue	ND	Chen et al. (2009)
Micromonospora sp., *Nonomuraea* sp., *Plantotetrsspor* sp., *Pseudonocardia* sp.	Elaeagnus angustifolia	Root nodules	ND	Chen et al. (2011)
Microbispora sp.	Spermacoce verticillata	Leaf	ND	Conti et al. (2012)
Streptomyces sp.	Centella asiatica	Root, stem, leaf	Indole acetic acid (IAA)	Dochhiil et al. (2013)
Allonocardiopsis opalescens	Lonicer maackii	Fruit	ND	Du et al. (2013b)
Streptomyces sp. Hedaya48	Aplysina fistularis	Inner healthy tissue	Vanillin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin, Saadamycin	El-Gendy and EL-Bondkly (2010)
Species of actinomycetes	Host plant	Tissue	Bioactive compounds	Reference
--------------------------	------------	--------	---------------------	-----------
Streptomyces sp.	*Artemisia herba-alba,*			
 | *Echinops spinosus,*
 | *Mentha longifolia,*
 | *Ballota undulate* | *Siderophores, Chitinase* | El-Shatoury et al. (2006) |
| *Kibdelosporangium* sp.,
Kitasatosporia sp.,
Nocardia sp.,
Nocardoides sp.,
Promicromonospora sp.,
Pseudonocardia sp.,
Streptomyces sp. | *Achillea fragrantissima* | *ND* | *ND* | El-Shatoury et al. (2009) |
| *Streptomyces* sp. MSU-2110 | *Monstera* sp. | *Stem* | *Coronamycin* | Ezra et al. (2004) |
| *Actinopolyspora* sp.,
Micromonospora sp.,
Saccharopolyspora sp.,
Streptomyces sp. | *Aloe vera,*
| *Mentha* | *Root, stem, leaf* | *ND* | Gangwar et al. (2011) |
| *Actinopolyspora* sp.,
Micromonospora sp.,
Saccharopolyspora sp.,
Streptomyces sp. | *Aloe vera,*
| *Mentha arvensis,*
| *Ocimum sanctum* | *Root, stem, leaf* | *Hydroxamate-type of siderophore,*
| | | | | *Catechol-type of siderophore,*
| | | | | *Indole acetic acid (IAA)* | Gangwar et al. (2014) |
| *Streptomyces* sp. TP-A0569,
Streptomyces sp. | *Allium fistulosum* | *Leaf* | *Fistupyrone*
| | | | | 7'-Demethylnovobiocin,
| | | | | 5''-demethylnovobiocin, Novobiocin,
| | | | | 6-Prenylindole,
| | | | | Anicemycin
| | | | | Pteridic acids A and B | Igarashi (2004) |
| *Streptomyces hygroscopicus* TP-A0451 | *Pteridium aquilinum* | Stem | *Clethramycin* | | |
| *Streptomyces hygroscopicus* TP-A0326,
Streptomyces sp. TP-A0456 | *ND* | *ND* | *ND* | Cedarmycins A and B | Igarashi et al. (2006) |
| *Streptomyces hygroscopicus* TP-A0451 | *Cryptomeria japonica* | *Twig* | *Pterocidin* | | |
Table 1 continued

Species of actinomycetes	Host plant	Tissue	Bioactive compounds	Reference
Micromonospora lupini	ND	ND	Lupinacidins	Igarashi et al. (2007)
Streptomyces cavourens	*Catharanthes roseus*	Leaf	ND	Kafur and Khan (2011)
Streptomyces laceyi MS53	*Ricinus communis*	Stem	6-Alkylsalicylic acids (salaceyins A and B)	Kim et al. (2006)
Actinomycetes sp.	*Emblica officinalis*	Twig, leaf	Tyrosol (possible ligand for GPR12)	Kumar et al. (2011)
Streptomyces sp.	*Cistanches deserticola*	Root	Phenylethylamine derivatives, Cyclic dipeptides, Nucleosides and their aglycones, N-acetyltryptamine and Pyrrole-2-carboxylic acid	Lin et al. (2008)
Streptomyces sp. CS	*Maytenus hookeri*	ND	24-demethyl-bafilomycin C1 (Naphthomycin A)	Lu and Shen (2003)
Streptomyces sp. CS	*Maytenus hookeri*	Tissue cultures	Naphthomycin K, A and E	Lu and Shen (2007)
Micromonospora sp., *Nocardiopsis sp.*, *Streptomyces sp.*	*Achillea millefolium*, *Aloe arborescens*, *Anthoxantum odoratum*, *Arctium lappa*, *Convallaria majalis*, *Fragaria vesca*, *Geranium pretense*, *Hippophae rhamnoides*, *Lysimachia nummularia*, *Matricaria matricarioides*, *Melilotus officinalis*, *Menta arvensis*, *Plantago major*, *Rosa cinnamomea*, *Rubus idaeus*, *Tanacetum vulgare*, *Taraxacum officinale*, *Trifolium pretense*, *Urtica dioica*, *Viola odorata*	Leaf	ND	Machavariani et al. (2014)
Species of actinomycetes	Host plant	Tissue	Bioactive compounds	Reference
-------------------------	------------	--------	---------------------	-----------
Actinomadura sp.	Phyllanthus niruri, Withania somnifera, Catharanthus roseus, Hemidesmus indicus	Root	Volatile organic compounds (VOCs), Diffusible metabolites	Mini Phya (2012)
Kibdelosporangium sp.				
Kitasatospora sp.				
Nocardia sp.				
Nocardioides sp.				
Pseudonocardia sp.				
Streptomycetes sp.				
Undefinied actinomycetes				
Actinomadura sp.	Achillea fragrantissima, Catharanthus roseus, Hemidesmus indicus	Leaf, stem, root, flower	ND	Moussa et al. (2011)
Kibdelosporangium sp.				
Kitasatospora sp.				
Nocardia sp.				
Nocardioides sp.				
Pseudonocardia sp.				
Streptomycetes sp.				
Undefinied actinomycetes				
Actinomadura sp.	Mirabilis jalapa, Cleome spinosa, Cleome hederifolia, Cleome hederifolia, Cleome hederifolia	Leaf, stem, root, flower	ND	Passari et al. (2015)
Kibdelosporangium sp.				
Kitasatospora sp.				
Nocardia sp.				
Nocardioides sp.				
Pseudonocardia sp.				
Streptomycetes sp.				
Undefinied actinomycetes				
Species of actinomycetes	Host plant	Tissue	Bioactive compound	Reference
--------------------------	------------	--------	-------------------	-----------
Streptomyces setonii, Streptomyces sampsonii, Streptomyces sp. Q21, Streptomyces sp. MaB- QuH-8	Maytenus saquifolia, Putterickia retrospinososa	ND	Celastramycins A and B	Pullen et al. (2002)
Glycomyces endophyticus	Carex baccans	Root	ND	Qin et al. (2008b)
Glycomyces mayteni, Glycomyces scopariae	Scoparia dulcis, Maytenus austroynanensis	Root	ND	Qin et al. (2011)
Pseudonocardia sichuanensis	Jatropha curcas	Root	ND	Qin et al. (2011)
Nocardioides panzhihuaensis	Jatropha curcas	Root	ND	Qin et al. (2012a)
Actinomadura sp., Amycolatopsis sp., Cellulosimicrobium sp., Glycomyces sp., Gordonia sp., Janibacter sp., Jiangella sp., Microbacterium sp., Micromonospora sp., Mycobacterium sp., Nocardia sp., Nocardiopsis sp., Nonomuraea sp., Plantactinospora sp., Polymorphopilus sp., Promicromonospora sp., Psuedonocardia sp., Saccharopolyspora sp., Streptosporangium sp., Tsukamurella sp.	Maytenus austroynanensis	Root, stem, leaf	Qin et al. (2012b)	
Species of actinomycetes	Host plant	Tissue	Bioactive compounds	Reference
--------------------------	------------	--------	---------------------	-----------
Streptomyces sp.	*Azadiracta indica,* *Ocimum sanctum,* *Phyllanthus amarus*	Root, leaf	ND	Shenpagam et al. (2012)
Streptomyces antibioticus	*Curcuma domestica,* *Phaleria macrocarpa,* *Isotoma longiflora,* *Symplciocos cochinensis*	Root, stem, leaf	ND	Sunaryanto and Mahsunah (2013)
Streptomyces aureofaciens	*Zingiber officinale,* *Alpinia galanga*	Root	ND	Taechowisan and Lumyong, (2003)
Microbispora sp., *Micromonospora* sp., *Nocardia* sp., *Streptomyces* sp., Unidentified isolates	*Zingiber officinale,* *Alpinia galanga*	Root, stem, leaf	ND	Taechowisan et al. (2005, 2007)
Streptomyces aureofaciens CMU Ac130	*Zingiber officinale*	Root	5,7- dimethox y-4- p-methoxylphenylcoumarin, 5,7-dimethoxy-4-phenylcoumarin	Taechowisan et al. (2005, 2007)
Microbispora sp., *Micromonospora* sp., *Nocardia* sp., *Streptomyces* sp., Tc022, Unidentified isolates	*Alpinia galanga*	Root	Actinomycin D	Taechowisan et al. (2006)
Microbispora sp., *Nocardia* sp., *Saccharomonospora* sp., *Streptomyces* sp., *Streptosporangium* sp., *Streptoverticillium* sp.	*Azadirachta indica*	Root, stem, leaf,	ND	Verma et al. (2009)
Jishengella endophytica 161111	*Xylocarpus granatum*	Root	Alkaloids	Wang et al. (2014)
Saccharopolyspora dendranthema	*Dendranthema indicum*	Stem	ND	Zhang et al. (2013)
Species of actinomycetes	Host plant	Tissue	Bioactive compounds	Reference
--------------------------	------------	--------	---------------------	-----------
Streptomyces sp. neau-D50	Soybean	Root	3-acetonylidene-7-prenylindolin-2-one (isoprenoids, 7-isoprenylindole-3-carboxylic acid, 3-cyanomethyl-6-prenylindole, 6-isoprenylindole-3-carboxylic acid and 7,40-dihydroxy-5-methoxy-8-(g,g-dimethylallyl)-flavanone)	Zhang et al. (2014)
Micromonospora sp., *Nonomuraea* sp., *Oerskovia* sp., *Promicromonospora* sp., *Rhodococcus* sp., *Streptomyces* sp., *Potentilla discolor*, *Ainsliaea henryi*, *Impatiens chinensis*, *Rhizoma Arisaematis*, *Dioscorea opposita*, *Stellera chamaejasme*, *Salvia miltiorrhiza*, *Drosera peltata*, var.multisepala, *Artemisia annua*, *Achyranthes aspera*, *Cynanchum auriculatum*, *Gnaphalium hypoleucum*, *Mosla dianthera*, *Cassyytha filiformis*, *Vaccinium bracteatum*	Root, stem, leaf	ND	Zhao et al. (2011)	
Streptomyces sp. YIM66017	*Alpinia oxyphylla*	ND	2,6-dimethoxy terephthalic acid, yangjinhualine A, 3-hydroxyacetovanillone and cyclo(Gly-Trp)	Zhou et al. (2014)

ND no data
well as *Saccharopolyspora erythraea* NRRL 23338 (Oliynyk et al. 2007), *Salinispora tropica* CNB-440 (Udwary et al. 2007) contain around 20 or more natural product biosynthetic gene clusters for the production of known or predicted secondary metabolites (Goodfellow and Fiedler 2010). The potential of production of known or predicted secondary metabolic gene clusters for the natural product biosynthetic gene clusters for the production of known or predicted secondary metabolites can be estimated by detection of polyketide synthase (PKS) (both I and II type) and nonribosomal peptide synthetase (NRPS) genes (Janso and Carter 2010). The authors studied 29 strains and all of them produced bands of the expected size for NRPS and majority of them possessed PKS (66 % of PKSI and 79 % of PKSII type) genes. However, some of the pathways encoded by these genes may not be functional. The above study suggests that the non-productive actinobacteria possess the genetic capacity to produce secondary metabolites, if cultivated under proper growth conditions (Janso and Carter 2010).

Amongst prokaryotes, members of Actinobacteria, notably the genus *Streptomyces*, remains the richest source of valuable natural products (Pandey et al. 2004; Newman and Cragg 2007; Lu and Shen 2007; Olano et al. 2009; Berdy 2012). The diverse arrays of bioactivities of endophytic actinobacteria are further classified into pharmaceutical and agricultural applications and are illustrated below in detail.

Pharmaceutical applications

Antimicrobial and antiviral activity

In recent years, many of novel antibiotics synthesized by endophytic actinobacteria recovered from medicinal plants found to be active against bacteria, fungi and viruses. Moreover, these antibiotics demonstrated their activity at significantly lower concentrations (Table 2). This indicates the strong and broad spectrum microbicidal potential of the antibiotics originating from endophytic actinobacteria, mainly of the genus *Streptomyces*.

Day by day due to excessive use of antibiotics, the multi-drug resistance capacity of pathogens is becoming more and more severe. The scientists all over the world are endeavouring continuously to search new antibiotic compounds in order to tackle this problem. Here endophytic microbes, especially actinobacteria appear as a source of novel and active compounds to combat the increasing number of multidrug-resistant pathogens. Out of 65 strains of endophytic actinobacteria 12 strains were able to suppress penicillin-resistant *Staphylococcus aureus*, belonging to the genus *Glycomyces* and majority of them were *Streptomyces* isolated from plants *Achyranthes bidentata*, *Paenion lactiflora*, *Radix platycodi* and *Artemisia argyi* (Zhang et al. 2012). Wang et al. (2014) displayed moderate antiviral activity against influenza virus type A subtype H1N1 of perlolyrine, 1-hydroxy-β-carboline, lumichrome, 1H-indole-3-carboxaldehyde from *Jishengella endophytica* with IC50 value of 38.3, 25.0, 39.7, and 45.9 μg ml⁻¹, respectively. Further, they also suggested that 1-hydroxy-β-carboline could be a promising new hit for anti-H1N1 drugs.

Larvicidal and antimalarial activity

Larvicidal activity of *Streptomyces* sp. isolated from *Artemisia herba-alba*, *Echinops spinosus*, *Balotta undulate* and *Mentha longifolia* was observed by El-Shatoury et al. (2006). The authors studied cytotoxic effect against larvae of *Artemia salina* was positive for 27 out of 41 endophytic actinobacteria and of these, nine isolates, mainly from *Artemisia* and *Echinops* exhibited high mortality rate reaching to 100 % death after 12 h. Similarly, *Streptomyces albovinaceus* and *S. badius* isolated from plants of family *Asteraceae* were also found to have significant larvicidal potential against first and fourth instar stages of *Culex quinquefasciatus* (mosquito larvae) (Tanvir et al. 2014). They illustrated strong larvicidal activity (80–100 % mortality) of six isolates while four isolates showed potent larvicidal activity (100 % mortality) at the fourth instar stage.

Castillo et al. (2002) have found that one of the tested munumbicins type D was considerably active against the parasite *Plasmodium falciparum*, the most pathogenic plasmodium causing malaria, with IC50 of 4.5 ng ml⁻¹. They also described that outstanding activity of each of the munumbicins against *P. falciparum* were within the range to be pharmacologically interesting with IC50 of 175,130, 6.5 and 4.5 ng ml⁻¹ in munumbicin A–D, respectively. Authors emphasized special interest of the munumbicins C and D because of their extremely low IC50 values. Furthermore, they also reported that munumbicins B, C and D...
Table 2 Bioactivity of compounds from endophytic actinobacteria isolated from medicinal plants

Compound	Target cells/microorganism	MIC (µg ml⁻¹)	Reference
Munumbicins A, B, C and D from *Streptomyces* sp. NRRL 30562	*Pseudomonas aeruginosa*	–	Castillo et al. (2002)
	Vibrio fischeri	–	
	Enterococcus faecalis	–	
	Staphylococcus aureus	–	
	Actinobacter sp.	–	
	Neisseria gonorrhoeae	–	
	Streptococcus pneumoniae	–	
	Bacillus anthracis	–	
	Escherichia coli	–	
	Pythium ultimum	0.2–4.0	
	Rhizoctonia solani	1.5–15.6	
	Phytophthora cinnamomi	1.5–15.6	
	Geotrichum candidum	15.5–31.2	
	Sclerotinia sclerotiorum	0.2–8.0	
	Pseudomonas syringe	0.2–15.6	
	Cryptococcus neoformans	10	
	Candida albicans	10	
	Aspergillus fumigates	20	
	Staphylococcus aureus ATCC 33591 (methicillin resistant)	No activity– 2.5	
	Staphylococcus aureus MH II (vancomycin sensitive)	0.4	
	Enterococcus faecalis ATCC 51299	No activity—16	
	Mycobacterium tuberculosis MDR-P (drug resistant)	10–125	
	Mycobacterium tuberculosis H37Rv (ATCC 25618) (drug sensitive)	46–150	
Kakadumycin A from *Streptomyces* sp. NRRL 30566	*Bacillus anthracis* 40/BA 100	0.3	Castillo et al. (2003)
	Bacillus anthracis 14578	0.55	
	Bacillus anthracis 28	0.43	
	Bacillus anthracis 62-8	0.41	
	Staphylococcus simulans ATCC 11631	0.25	
	Enterococcus faecalis ATCC 29212	0.062	
	Enterococcus faecalis VRE, ATCC 51299	0.062	
	Enterococcus faecium ATCC 49624	0.062	
	Listeria monocytogenes ATCC 19114	0.25	
	Listeria monocytogenes ATCC 19115	0.25	
	Shigella dysenteriae ATCC 11835	4.0	
	Staphylococcus epidermidis ATCC 12228	0.125	
	Staphylococcus aureus ATCC 29213	0.125	
	Staphylococcus aureus MRSA, ATCC 33591	0.5	
	Staphylococcus aureus GISA, ATCC 700787	0.5	
Compound	Target cells/microorganism	MIC (µg ml\(^{-1}\))	Reference
----------	---------------------------	----------------------	-----------
Staphylococcus aureus ATCC 27734	0.125		
Streptococcus pneumoniae ATCC 49619	<0.0325		
Streptococcus pneumoniae ATCC 70674	<0.0325		
Streptococcus pneumoniae ATCC 70676	<0.0325		
Inhibitor of human breast cancer cell line BT20	n/a		
Munumbicins E-4 and E-5 from Streptomyces sp. NRRL 30562			
Burkholderia thailandensis	192–256	Castillo et al. (2006)	
Escherichia coli	16		
Staphylococcus aureus ATCC 29213	4–8		
Staphylococcus aureus 43000 (MRSA)	8–16		
Staphylococcus aureus	32		
Pythium ultimum	5		
Bacillus subtilis	5		
Rhizoctonia solani	80		
Cytotoxic activity against Plasmodium falciparum	n/a		
Saadamycin/5,7-Dimethoxy-4-p-methoxylphenyl coumarin from Streptomyces sp. Hedaya48			
Trichophyton rubrum	5.0/7.5	El-Gendy and EL-Bondkly (2010)	
Trichophyton mentagrophytes	1.5/90		
Microsporum gypseum	1.25/100		
Epidermophyton floccosum	1.0/50		
Aspergillus niger	1.0/20		
Aspergillus fumigates	1.6/10		
Fusarium oxysporum	1.2/22		
Candida albicans	2.22/15		
Cryptococcus humicolus	5.15/10		
Coronamycin from Streptomyces sp. MSU-2110			
Pythium ultimum	2	Ezra et al. (2004)	
Phytophthora cinnamomi	16		
Aphanomyces cocklioides	4		
Geotrichum candidum	>500		
Aspergillus fumigates	>500		
Aspergillus ochraceus	>500		
Fusarium solani	>500		
Rhizoctonia solani	>500		
Cryptococcus neoformans (ATCC 32045)	4		
Candida parapsilosis (ATCC 90018)	>32		
Candida albicans (ATCC 90028)	16–32		
Saccharomyces cerevisiae (ATCC 9763)	>32		
Candida parapsilosis (ATCC 22019)	>32		
Candida albicans (ATCC 24433)	>32		
Candida krusei (ATCC 6258)	>32		
Candida tropicalis (ATCC 750)	>32		
6-prenylindole from Streptomyces sp. TP-A0595			
Alternaria brassicola	Data not given	Igarashi (2004)	
Compound	Target cells/microorganism	MIC (μg ml$^{-1}$)	Reference
----------	---------------------------	------------------------	-----------
Fistupyrone from *Streptomyces* sp. TP-A0569	Suppressing spore germination of *Alternaria brassicicola*	n/a	
Clethramycin from *Streptomyces hygroscopicus* TP-A0326	*Candida albicans*	1.0	Igarashi et al. (2006)
Cedarmycin from *Streptomyces* sp. TP-A0456	*Cryptococcus neoformans*	1.0	
Anicemycin from *Streptomyces thermoviolaceus* TP-A0648	Cytocidal activity against tumor cell lines	n/a	
Pterocidin from *Streptomyces hygroscopicus* TP-A0451	Cytotoxicity against human cancer cell lines NCI-H522, OVCAR-3, SF539, and LOX-IMVI	n/a	Igarashi et al. (2006)
Lupinacidins A and B from *Micromonospora lupini* sp.	Inhibitor of in vitro invasion of colon 26-L5 cells	n/a	Igarashi et al. (2007)
6-Alkalsalicylic acids (Salaceyins A and B) from *Streptomyces lacyei* MS53	Cytotoxicity against human breast cancer cell line SKBR3	n/a	Kim et al. (2006)
Naphthomycin K from *Streptomyces* sp. CS	*Penicillium avellaneum* UC-4376	–	Lu and Shen (2003, 2007)
	Staphylococcus aureus		
	Mycobacterium tuberculosis		
	Cytotoxicity against P388 and A-549 human tumor cells	n/a	
Celastramycins A/B from *Streptomyces* MaB-QuH-8	*Staphylococcus aureus* MRSA 134/93	0.1/no activity	Pullen et al. (2002)
	Staphylococcus aureus MR 994/93	0.2/no activity	
	Enterococcus faecalis V-r 1528	0.8/no activity	
	Mycobacterium smegmatis SG 987	1.6/no activity	
	Mycobacterium aurum SB 66	0.4/no activity	
	Mycobacterium vaccae IMET 10670	0.05/no activity	
	Mycobacterium fortuitum	3.1/no activity	
	Bacillus subtilis ATCC 6633	0.05/no activity	
5,7-dimethoxy-4-pmethoxylphenylcoumarin; 5,7-dimethoxy-4-phenylcoumarin from *Streptomyces aureofaciens* CMUAc130	*Colletorichum musae*	120	Taechowisan et al. (2005)
		150	
Actinomycin D from *Streptomyces* sp. Tc022	*Colletotrichum musae*	10	Taechowisan et al. (2006)
	Candida albicans	20	
5,7-Dimethoxy-4-pmethoxylphenylcoumarin; 5,7-dimethoxy-4-phenylcoumarin from *Streptomyces aureofaciens* CMUAc130	Antitumor activity	n/a	Taechowisan et al. (2007)
Perlolyrine, 1-hydroxy-β-carboline, lumichrome, 1H-indole-3-carboxaldehyde from *Jishengella endophytica* 161111	Antiviral activity	n/a	Wang et al. (2014)
did not cause any detectable lysis of human red blood cells up to a concentration of 80 µg ml\(^{-1}\). Therefore, they suggested that the ultimate development of these compounds as antimalarial or anti-infectious drugs may have to depend upon the synthesis of munumbicin derivatives that have reduced toxicity (Castillo et al. 2002, 2006).

Cytotoxicity

Among the range of bioactive compounds from endophytic actinobacteria of medicinal plants those with anticancer activity were also found. Castillo et al. (2003) extracted kacakudmicin A, which inhibited the human breast cancer cell line BT20 with IC\(_{50}\) of 4.5 ng ml\(^{-1}\). Similarly, Igarashi et al. (2006) reported that human cancer cell lines NCI-H522, OVCAR-3, SF539, and LOX-IMVI were inhibited with IC\(_{50}\) in the presence of 2.9, 3.9, 5.0 and 7.1 mM of pterocidin extracted from \textit{Streptomyces hygroscopicus} TP-A0451 isolated from \textit{Pteridium aquilinum}. Lu and Shen (2003; 2007) reported cytotoxic activity of naphtomycin A from \textit{Streptomyces} sp. CS isolated from \textit{Maytenus hookeri} against P388 and A549 human tumor cells with IC\(_{50}\) 0.07 and 3.17 mM, respectively. The cytotoxicity against A549 human tumor cells was also studied by Zhang et al. (2014). The cell line was inhibited with value of 3.3 and 5.1 mg ml\(^{-1}\) in presence of 3-acetonylidene-7-prenylindolin-2-one and 7-isoprenylindole-3-carboxylic acid, respectively. Cytotoxic activity of 6-alkalysalicilic acids, salaceyins A and B from \textit{Streptomyces laceyi} MS53 against human breast cancer cell line, SKBR3 with IC\(_{50}\) values of 3.0 and 5.5 mg ml\(^{-1}\) was noticed by Kim et al. (2006). Anthraquinones named lupinacidins from \textit{Micromonospora lupine} sp. were reported to inhibit growth of colon 26-L5 carcinoma cells in mice (Igarashi et al. 2007). Furthermore, anti-invasive effects of lupinacidins were also examined at non-cytotoxic concentrations. The authors reported lupinacidin A as more potent both in cytotoxic and anti-invasive activities than lupinacidin B, suggesting that the alkyl substituent present in lupinacidin A was involved in these activities (Igarashi et al. 2007).

Caruso et al. (2000) reported an anticancerous drug paclitaxel from endophytic actinomycete \textit{Kittasatospora} sp. isolated from inner cortical tissues of \textit{Taxus baccata}. Another novel anticancer compound named brartemicin, a trehalose-derived metabolite, was extracted from the actinomycete \textit{Nonomuraea} sp. isolated from \textit{Artemisia vulgaris}. This new compound was capable of inhibiting the invasion of murine colon carcinoma 26-L5 cells with an IC\(_{50}\) value of 0.39 µM without any cytotoxicity (Igarashi et al. 2009). Taechowisan et al. (2007) evaluated 4-phenylcoumarins on human lung cancer cell lines, which was extracted from \textit{Streptomyces aureofaciens} and found that 5,7-dimethoxy-4-phenylcoumarin can inhibit cell proliferations more actively when compared with 5,7-dimethoxy-4-p-methoxylphenylcoumarin. Moreover, the screening of 4-arylocoumarins for inhibitory effect on transplanted Lewis lung carcinoma (LLC) by intraperitonite administration has showed antitumor activity with T/C values of 80.08 and 50.0 % at doses
of 1 and 10 mg kg$^{-1}$ of 5,7-dimethoxy-4-p-methoxyphenylcoumarin and 81.5 and 44.9 % at doses of 1 and 10 mg kg$^{-1}$ of 5,7-dimethoxy-4-phenylcoumarin. Authors have concluded that 5,7-dimethoxy-4-phenylcoumarin might be preventing or delaying formation of metastases and both 4-arylo-coumarins by their low cytotoxicity to normal cells and effect in malignant cells could be recommended as chemopreventatives and in combined antitumor treatment (Taechowisan et al. 2007).

Antidiabetics

Another important group of compounds, which were found in endophytic actinobacteria from medicinal plants were alpha-glucosidase inhibitors (Pujiyanto et al. 2012). Twelve out of 65 isolates obtained from *Tinospora crispa*, *Caesalpinia sappans* and *Curcuma aeruginosa* were able to produce it. This inhibitor showed antidiabetic property by which it can retard the release of glucose from dietary complex carbohydrates and also delay absorption of glucose. Interestingly, it was observed that endophytic actinomycete BWA65 produced these inhibitors which showed doubled activity than its host plant (*Tinospora crispa*). Furthermore, the tissue cultured plants that were devoid of any endophyte had very low capability to produce inhibitor compounds (Pujiyanto et al. 2012). This indicates that the production of alpha-glucosidase inhibitors by this plant is largely due to the contribution of its endophytic actinobacteria. It also strengthens the hypothesis that there may be a phenomenon of inter-kingdom genetic transfer of some specific traits between the host plant and its endophytic counterpart. Similarly, Akshatha et al. (2014) isolated alpha-amylase inhibitor secreting endophytic actinobacteria *S. longisporoflavus* and *Streptomyces* sp. from well-known antidiabetic medicinal plants *Leucas ciliata* and *Rauwolfia densiflora*. Alpha-amylase inhibitors demonstrated antidiabetic activity similar to alpha-glucosidase inhibitors. The extracts obtained from these actinobacteria did not show insulin-releasing ability, instead it improved the ability of available insulin to pass glucose into muscles.

Other bioactive compounds

Phenolic compounds are known as natural antioxidants, which provide protection by scavenging harmful free radicals. Endophytic *Streptomyces* sp. isolated from *Alpinia oxyphylla* produced two active compounds 2,6-dimethoxy terephthalic acid and yangjinhuainine A, which demonstrated considerable antioxidant activity (Zhou et al. 2013; 2014). Out of the total endophytic actinobacteria isolated from medicinal plants, 66.6 % isolates demonstrated potent antioxidant activity (Tanvir et al. 2014). Antiinflammatory drugs are used to reduce the inflammations and this property was also shown by one of the endophytic actinomycete. Taechowisan et al. (2006) demonstrated the successful application of 5,7-dimethoxy-4-p-methoxyphenylcoumarin and 5,7-dimethoxy-4-phenylcoumarin produced by *Streptomyces aureofaciens* as an antiinflammatory agents.

Agricultural applications

Plant growth promoters

The endophytic actinomycetes can also be a source of metabolites, which promote or improve host plant growth as well as reduce disease symptoms caused by plant pathogens or various environmental stresses (Shimizu 2011). Several scientific investigations evidenced the plant growth promotion activity and secretion of plant growth hormones from endophytic actinobacteria. Dochhil et al. (2013) demonstrated the plant growth enhancement and higher seed germination percentage by the application of two *Streptomyces* sp. isolated from *Centella asiatica*. These strains were also evaluated for production of a plant growth promoter, indole acetic acid (IAA) which was found in much higher concentration as 71 g/ml and 197 g/ml. The isolates of the genus *Nocardiopsis* presented highest IAA production ability among all other actinomycete genera (Shutsrirung et al. 2014). In the field trials conducted by El-Tarabily et al. (2010), *Actinoplanes campanulatus*, *Micromonospora chalceea* and *Streptomyces spiralis* were applied individually and in combination to cucumber seedlings, which enhanced plant growth and yield.

Igarashi (2004) and Igarashi et al. (2002) isolated pteridic acids A and B from *Streptomyces hygroscopicus* isolated from a stem of bracken (*Pteridium aquilinum*) as plant growth promoters with auxin-like activity. They found that pteridic acids induced the formation of adventitious roots in hypocotyl of kidney
beans at 1 mM as effectively as auxin (indole acetic acid; IAA), a natural plant growth hormone. Additionally, authors noticed that pteridic acid A promotes the root elongation at 20 ppm. However, the rice germination was inhibited at 100 ppm of IAA. Gangwar et al. (2014) also found actinobacteria, mostly Streptomyces sp, capable of producing IAA. Plant growth promoters were produced within the range of 9.0–38.8 μg ml⁻¹.

Endophytic actinobacteria are able to employ additional means of fungal antagonism such as chitin enzymes and siderophores. Chitin is the most characteristic polysaccharide of the fungal cell wall. Endophytic actinobacteria are able to produce fungal cell wall degrading enzymes especially by the production of chitinase (El-Tarabily and Sivasithamparam 2006). The role of siderophores produced by endophytic microorganisms has been paid more attention because these metabolites are suggested to be involved in promoting the growth of host plants as well as antagonism to phytopathogen (Cao et al. 2005; Tan et al. 2006; Rungin et al. 2012). El-Shatoury et al. (2009) reported actinobacteria from Achillea fragrantissima which were either capable of producing chitinases or siderophores and also showed remarkable inhibitory activity against phytopathogenic fungi. Chitinases produced by the endophytic actinomycete Actinoplanes missouriensis (El-Tarabily 2003; El-Tarabily and Sivasithamparam 2006). The role of siderophores produced by endophytic microorganisms has been paid more attention because these metabolites are suggested to be involved in promoting the growth of host plants as well as antagonism to phytopathogen (Cao et al. 2005; Tan et al. 2006; Rungin et al. 2012). El-Shatoury et al. (2009) reported actinobacteria from Achillea fragrantissima which were either capable of producing chitinases or siderophores and also showed remarkable inhibitory activity against phytopathogenic fungi. Chitinases produced by the endophytic actinomycete Actinoplanes missouriensis (El-Tarabily 2003; El-Tarabily and Sivasithamparam 2006) were reported to cause hyphal lysis and reduction in conidial germination. The studies by El-Shatoury et al. (2009) were supported by Gangwar et al. (2014) where authors recorded production of hydroxamate-type of siderophore ranging between 5.9 and 64.9 μg ml⁻¹ and catechol-type of siderophore in the range of 11.2–23.1 μg ml⁻¹ by actinobacteria from Aloe vera, Mentha arvensis and Ocimum sanctum. In another investigation, El-Tarabily et al. (2010) applied endophytic Actinoplanes campanulatus, Micromonomospora chalcea and Streptomyces spiralis to cucumber seedlings. As it reduced seedling damping-off as well as root- and crown- rot of mature cucumber plants caused by Pythium aphanidermatum successfully, authors suggested that these strains of endophytic actinobacteria can be employed as biological control agents.

The 6-prenylindole, a new bioactive compound from Streptomyces sp. was studied by Igarashi (2004). This simple molecule showed significant antifungal activity against plant pathogens, Alternaria brassicicola and Fusarium oxysporum. 6-prenylindole was first reported as a component of the liverwort (Hepaticae). This is an interesting example of the isolation of the same compound from plant and microorganism (Igarashi 2004). Similarly, Zhang et al. (2014) showed antifungal activity of one new prenylated indole derivative and tree known hybrid isoprenoids with IC₅₀ values in range of 30.55–89.62 against phytopathogenic fungi Colletotrichum orbiculare, Phytophthora capsici, Corynespora cassiicola and Fusarium oxysporum. Lu and Shen (2003; 2007) reported antifungal activity of naphthomycins A and K extracted from Streptomyces sp. CS against Penicillium avellaneum UC-4376. Igarashi (2004) reported the compound fistupyrone from Streptomyces sp. isolated from a leaf of spring onion (Allium fistulosum) and determined as an inhibitor of spore germination of Alternaria brassicicola. The latter is the cause of black leaf- spot, a major disease of cultivated Brassica plant. Although fistupyrone did not show in vitro antifungal activity against A. brassicicola, it completely inhibited the infection of A. brassicicola by pretreating the seedlings with 100 ppm of the compound. Studies by Igarashi et al. (2002) revealed that fistupyrone did not give any effect on the growing hyphae but specifically suppresses the spore germination at 0.1 ppm.

Thus, the metabolites obtained from these actinobacteria inhibit the phytopathogenic fungi and can be better and safer alternatives to the chemical fungicides, which pose potential environmental threat and mammalian toxicities. In terms of the availability, the endophytic actinobacteria are the rich and cost-effective source of numerous agro-based biological agents. So, it is desirable to evaluate more such compounds that might have different modes of action to protect the crops than the existing chemical fungicides and will also avoid the problems of cross-resistance.

Conclusion and future perspectives

There is a pressing need to search for new therapeutic drugs, particularly anti-infective compounds due to the rapid increase of resistance in major known pathogens to front line antibiotics. Therefore, screening and isolation of promising strains of endophytic actinobacteria with antimicrobial properties which are
relatively poorly investigated has increased the interest of researchers in both basic and applied fields. Clearly, more research on the formulation, development of novel technologies and methodologies is needed for employing them in the agricultural, medical and pharmaceutical fields.

An extensive characterization and identification of the diverse population of endophytic actinobacteria associated with medicinal plants may also provide greater insight into the plant-endophyte interaction and evolution of mutualism. It is also important to understand the mechanism that enables these microbes to interact with their host plants may be of biotechnological potential. Several questions are yet to be answered. Is there any combination between the metabolic pathways of plants and endophytes, which together constitutes for particular bioactivity? What genetic control exists for synthesis of secondary metabolites similar to the host plants? In order to address this research area in depth, it is necessary to understand the physiology and biochemistry of endophytic actinobacteria as well as their defensive role and secondary metabolite producing ability inside the plants.

Acknowledgments Support from The National Science Centre (NCN) “Grant Symphony 1” No. 2013/08/W/NZ8/00701 and from the project of “Enhancing Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences-visiting professors for Professor Mahendra Rai from Amravati University, India” conducted under Sub-measure 4.1.1 Human Capital Operational Programme—Task 7 (Project No. POKL.04.01.01-00-811/10) are acknowledged.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Akshatha VJ, Nalini MS, D’Souza C, Prakash HS (2014) Streptomyces endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake. Lett Appl Microbiol 58:433–439

Bascom- Slack CA, Ma C, Moore E, Babbs B, Fenn K, Greene JS, Hann BD, Keehner J, Kelley-Swift EG, Kembayan V, Lee SJ, Li P, Light DY, Lin EH, Schorn MA, Vekhter D, Boulanger LA, Hess WM, Vargas PN, Strobel GA, Strobel SA (2009) Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microbiol Ecol 58:374–383

Bentley SD, Chater KF, Cerdano-Tarraga AM, Challis GL, Thomson NR, James KD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

Bian G-K, Qin S, Yuan B, Zhang Y-J, Xing K, Ju X-J, Li W-J, Jiang J-H (2012a) Streptomyces phytohabitans sp. nov., a novel endophytic actinomycete isolated from medicinal plant Curcuma phaeacaulis. Ant van Leeuw 102:289–296

Bian G-K, Feng ZZ, Qin S, Xing K, Wang Z, Cao CL, Liu CH, Dai CC, Jiang J-H (2012b) Kineococcus endophyticus sp. nov., a novel endophytic actinomycete isolated from a coastal halophyte in Jiangsu. Ant van Leeuw 102(4):621–628

Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic Streptomyces antagonists of Fusarium wilt pathogen from surface sterilized banana roots. FEMS Microbiol Lett 247:147–152

Caruso M, Colombo AL, Fedeli L, Pavesi A, Quaroni S, Saracchi M et al (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50:3–13

Castillo U, Strobel G, Ford E, Hess W, Porter H, Jensen J et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiol 148:2675–2685

Castillo U, Harper J, Strobel G, Sears J, Aleski K, Ford E et al (2003) Kakudumycin, novel anti biotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224(2):183–190

Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V et al (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255:296–300

Chen H-H, Qin S, Li J, Zhang Y-Q, Xu L-H, Jiang C-L, Kim C-J, Li W-J (2009) Pseudonocardia endophytica sp. nov., isolated from the pharmaceutical plant Lobelia clavata. Int J Syst Evolut Microbiol 59:559–563

Chen M, Zhang L, Zhang X (2011) Isolation and inoculation of endophytic actinomycetes in root nodules of Elaeagnus angustifolia. Mod Appl Sci 5(2):p264

Chithra S, Jasima B, Sachidanandab P, Jyothisa M, Radhakrishnana EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. S Phytomed 21:534–540

Conti R, Cunha IGB, Siqueira VM, Souza-Motta CM, Amorim ELC, Araujo JM (2012) Endophytic microorganisms from leaves of Spermacoce verticillata (L.): diversity and antimicrobial activity. J Appl Pharm Sci 2(12):17–22

Crawford DL, Lynch JM, Whipp JM, Ousley MA (1993) Isolation and characterization of actinomycyte antagonists of a fungal root pathogen. Appl Environ Microbiol 59(11):3889–3905

De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Hofmeister’s handbook of physiological Botany. W.Engelmann, Leipzig
Dochhile H, Dhkar MS, Barman D (2013) Seed germination enhancing activity of endophytic Streptomyces isolated from indigenous ethno-medicinal plant Centella asiatica. Int J Pharm Biol Sci 4(1):256–262

Doroghazi JR, Metcalf WW (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomic 14:611

Du H, Su J, Yu L, Zhang Y (2013a) Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants. Wei Sheng Wu Xue Bao 53(15):15–23

Du HJ, Zhang YQ, Liu HY, Su J, Wei YZ, Ma BP et al (2013b) Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangiineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 63:900–904

El-Gendy MMA, EL-Bondkly AMA (2010) Production and genetic improvement of a novel antimycotic agent, saadamycin, against dermatophytes and other clinical fungi from endophytic Streptomyces sp. Hedaya48. J Ind Microbiol Biotechnol 37:831–841

El-Shatoury S, Abdulla H, EL-Karaaly O, EL-Kazzaz W, Dewedar A (2006) Bioactivities of endophytic actinomycetes from selected medicinal plants in the world heritage site of Saint Katherine. Egypt Int J Bot 2(3):307–312

El-Shatoury S, EL-Kraly O, EL-Kazzaz W, Dewedar A (2009) Antimicrobial activities of Actinomycites inhabiting Achillea fragrantissima (Family: Compositae). Egypt J Nat Toxins 6(2):1–15

El-Shatoury SA, El-Kraly OA, Trujillo ME, EL-Kazzaz WM, El-Din E-SG, Dewedar A (2013) Generic and functional diversity in endophytic actinomycetes from wild Compositae plant species at South Sinai—Egypt. Res Microbiol 164:761–769

El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plecotosporium tabacinum. Aust J Bot 51:257–266

El-Tarabily KA, Sivasithamparam K (2006) Nonstreptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

El-Tarabily KA, Hardy GESU, Sivasithamparam K (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128:527–539

Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophytoxin. J Nat Prod 69:1121–1124

Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MAM, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

Fiedler H, Brunnter C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M et al (2008) Proximycin A, B and C, novel aminofuran antibiotic and antitumor compounds isolated from marine strains of the actinomycetes Verrucosiphora. J Antibiot 61:158–163

Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

Gangwar M, Dogra S, Sharma N (2011) Antagonistic bioactivity of endophytic actinomycetes isolated from medicinal plants. J Advanced Lab Res Biol 2(4):154–157

Gangwar M, Dogra S, Gupta UP, Kharwar RN (2014) Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. African J Microbiol Res 8(2):184–191

Goodfellow M, Fiedler HP (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Ant van Leeuw 98:119–142

Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (2012) Bergey’s manual of systematic bacteriology, 2nd edn, vol 5 The Actinobacteria, Part A, Springer, New York

Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant-pathogen association. CAB International, Wallingford, pp 87–119

Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz B, Boyle C, Sieber TN (eds) Soil biology, vol 9., Microbial Root Endophytes Springer-Verlag, Berlin Heidelberg, pp 299–319

Hasegawa T, Lechevalier MP, Lechevalier HA (1978) New genus of the Actinomycetales: Actinosynnema gen. nov. Int J Syst Bacteriol 28:304–310

Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20:72–81

Hayakawa M, Nonomura H (1987) Efficacy of artificial humic acid is a selective nutrient in HV agar used for the isolation of actinomycetes. J Ferment Technol 65:609–616

Hou BC, Wang ET, Li Y, Jia RZ, Chen WF, Man CX et al (2009) Rhizobial resource associated with epidemic legumes in Tibet. Microb Ecol 57:69–81

Igarashi Y (2004) Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetolog 18:63–66

Igarashi Y, Iida T, Sasaki T, Saito N, Yoshida R, Furumai T (2002) Isolation of actinomycetes from live plants and evaluation of antiphytopathogenic activity of their metabolites. Actinomycetologica 16:9–13

Igarashi Y, Miura S, Fujita T, Furumai T (2006) Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiот 59(3):193–195

Igarashi Y, Trujillo ME, Martinez-Molina E, Yanase S, Miyanaga S, Obata T et al (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett 17:3702–3705

Igarashi Y, Mogi T, Yanase S, Miyanaga S, Fujita T, Sakurai H et al (2009) Brartemicin, an inhibitor of tumor cell invasion from the actinomycete Nonomuraea sp. J Nat Prod 72:980–982

Ikeda H, Ishikawa J, Hanamoto A, Shinose H, Kikuchi T, Shibay et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531
Ivantskaya LP, Singal SM, Bibikova MV, Vostrov SN (1978) Direct isolation of Microconomospora on selective media with gentamicin. Antimicrob. Agents Chemother. 23:690–692

Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386

Kafur A, Khan AB (2011) Isolation of endophytic actinomycetes from Catharanthus roseus (L.) G. Don leaves and their antimicrobial activity. Iranian J Biotechnol 9(4):301–306

Kim N, Shin JC, KimW Hwang BY, Kim BS, Hong YS et al (2006) Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces lacyei. J Antibiot 59(12):797–800

Kumar U, Singh A, Sivakumar T (2011) Isolation and screening of endophytic actinomycetes from different parts of Emblica officinalis. Ann Biol Res 2(4):423–436

Kumar A, Patil D, Rajamohan PR, Ahmad A (2013) Isolation, purification and characterization of from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8(9):e71805

Küster E (1959) Outline of a comparative study of criteria used for deducing the ability of producing secondary metabolites. Proc Natl Acad Sci 98:12215–12220

Küster E, Williams ST (1964) Selection of media for isolation of endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386

Küster E, Williams ST (1964) Selection of media for isolation of endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386

Kumar A, Patil D, Rajamohan PR, Ahmad A (2013) Isolation, purification and characterization of from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8(9):e71805

Küster E (1959) Outline of a comparative study of criteria used in characterization of the actinomycetes. Int Bull Bacteriol Nomencl Taxon 9:97–104

Küster E, Williams ST (1964) Selection of media for isolation of Streptomyces. Nature 202:928–929

Li J, Zhao GZ, Chen HH, Qin S, Xu LH, Jiang CL (2008) Rhodococcus cedrophielli sp. nov., a new endophytic actinobacterium isolated from a Cercidiphyllum japonicum leaf. Syst Appl Microbiol 31:108–113

Lin ZJ, Lu XM, Zhu TJ, Fang YC, Gu QQ, Zhu W (2008) GPR12 selections of the metabolites from an endophytic Streptomyces sp. associated with Cistanches deserticola. Arch Pharm Res 31(9):1108–1114

Lu C, Shen Y (2003) A new macrolide antibiotic with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri. J Antibiot 56(4):415–418

Lu C, Shen Y (2007) A novel ansamycin, naphthomycin k from Streptomyces sp. J Antibiot 60(10):649–653

Ludwig W, Klenk HP (2005) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol A, introductory essays. Springer, New York pp 49–65

Machavariani NG, Ivankova TD, Sineva ON, Terekhova LP (2014) Isolation of endophytic actinomycetes from medicinal plants of the Moscow region, Russia. World Appl Sci J 30(11):1599–1604

Minamiyama H, Shimizu M, Kunoh H, Furumai T, Igarashi Y, Onaka H et al (2003) Multiplication of isolate R-5 of Streptomyces galbus on rhododendron leaves and its production of cell wall-degrading enzymes. J Gen Plant Pathol 69:65–70

Mincr TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

Mini Priya R (2012) Endophytic actinomycetes from Indian medicinal plants as antagonists to some phytopathogenic fungi. Open Access Sci Rep 1(4):259

Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

Moussa HE, El-Shatoury SA, Wahid OAA, Dawed A (2011) Characterization of endophytic actinomycetes from wild Egyptian plants as antagonists to some phytopathogenic fungi. Egyptian J Nat Toxins 8(1, 2):32–48

Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

Nimmo P, Pongsilp N, Lumyong S (2010) Genetic diversity and community of endophytic actinomycetes within the roots of Aquilaria crassna Pierre ex Lec assessed by actinomycetes-specific PCR and PCR-DGGE of 16S rRNA gene. Biochem Syst Ecol 38(4):595–601

Olanfo C, Méndez C, Salas JA (2009) Antitumor compounds from actinomycetes from gene clusters to new derivatives by combinatorial synthesis. Nat Prod Rep 26:628–660

Olinsky M, Samborsky M, Lester JB, Mironenko T, Scott N, Dickens S et al (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL 23338. Nat Biotechnol 25:447–453

Ömura S, Ikeda H, Ishikawa J et al (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci 98:12215–12220

Pandey B, Ghimire P, Agrawal VP (2004) Studies on the antibacterial activity of the actinomycetes isolated from the Khumbu Region of Nepal. International Conference on the Great Himalayas: Climate, Health, Ecology, Management and Conservation, Kathmandu, Organized by Kathmandu University and the Aquatic Ecosystem Health and Management Society, Canada

Parrent JL, Peay K, Arnold AE, Comas L, Avis P, Tuininga A (2010) Moving from pattern to process in fungal symbioses: linking functional traits, community ecology, and phylogenetics. New Phytol 185:882–886

Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273. doi:10.3389/fmicb.2015.00273

Petriini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Tox 1:185–196

Pujiyanto S, Lestari Y, Suwanto A, Budiarti S, Darusman LK (2012) Alpha-glucosidase inhibitor activity and characterization of endophytic actinomycetes isolated from some Indonesian diabetic medicinal plants. Int J Pharm Pharm Sci 4(1):327–333

Pullen C, Schmitz P, Meurer K, Bamberg DD, Lohnam S, De Castro Franca S, Grotth U, Schlegel B, Mollmann U, Gollnick F, Grafe U, Leistner E (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta 216:162–167

Qin S, Li J, Zhao GZ, Chen HH, Xu LH, Li WJ (2008a) Saccharopolyspora endophytica sp. nov., an endophytic actinomycete isolated from the root of Maytenus austroyunnanensis. Syst Appl Microbiol 31:352–357

Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL, Xu LH et al (2008b) Glycomyces endophyticus sp. nov., an endophytic fungus from the roots of Celastrus bidentatus. Antonie van Leeuwenhoek (2015) 108:267–289 287
actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58:2525–2528
Qin S, Jie L, Hua-Hong C, Guo-Zhen Z, Wen-Yong Z, Cheng-Lin J et al (2009) Isolation diversity and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. China App Environ Microbiol 75:6176–6186
Qin S, Xing K, Jiang J, Xu L, Li W (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473
Qin S, Yuan B, Zhang YJ, Bian GK, Tamura T, Sun BZ, Li WJ, Jiang JH (2012a) Nocardoides panzhihuaensis sp. nov., a novel endophytic actinomycete isolated from medicinal plant Jatropha curcas L. Ant van Leeuw 102:353–360
Qin S, Chen HH, Zhao GZ, Li J, Zhu WY, Xu LH et al (2012b) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroymannensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4(5):522–531
Rai M, Agarkar G, Rathod D (2014a) Multiple applications of endophytic Colletotrichum species occurring in medicinal plants, in novel plant bioresources: Applications in food, medicine and cosmetics. In: Gurib-Fakim A (ed) Novel bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. FEMS Microbiol Biotechnol 104:10376–10381
Rajeev KG, Srinivasan R, Maheswari DK (eds) Bacteria in agrobiology: plant growth responses. Elsevier Academic Press, San Diego, pp 201–220
Shutsirun A, Chromkaw Y, Pathom-Aree W, Choonluchanon S, Boonkerd N (2014) Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. Soil Sci Plant Nutr 59(3):322–330
Staniek A, Woerdenberg HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75–98
Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216
Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502
Sunaryanto R, Mahsunah AH (2013) Isolation, purification, and characterization of antimicrobial substances from endophytic actinomycetes. Makara J Sci 17(3):87–92
Taechowisan T, Lumyong S (2003) Activity of endophytic actinomycetes from roots of Zingiber officinale and Alpinia galanga against phytopathogenic fungi. Ann Microbiol 53(3):291–298
Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385
Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695
Taechowisan T, Wanbanjob A, Tuntiwachwutikul P, Taylor WC (2006) Identification of Streptomyces sp. Tc022, an endophyte in Alpinia galanga, and the isolation of actinomycin D. Ann Microbiol 56:113–117
Taechowisan T, Lu C, Shen Y, Lumyong S (2007) Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. J Cancer Res Ther 3(2):86–91
Takahashi Y, Oshima S (2003) Isolation of new actinomycete strains for the screening of new bioactive compounds. J Gen Appl Microbiol 49:141–154
Tan HM, Cao LX, He ZF, Su GJ, Lin B, Zhou SN (2006) Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J Microbiol Biotechnol 22:1275–1280
Tanvir R, Sajid J, Hasnain S (2014) Larvicidal potential of Astaraceae family endophytic actinomycetes against Culex quinquefasciatus mosquito larvae. Nat Prod Res 28(22):2048–2052
Udware DW, Ziegler L, Asolbar HN, Simgan V, Lapidas A, Fenical W et al (2007) Genome sequencing reveals complete secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381
Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gnage A (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microbiol Ecol 57:749–756
Wang HX, Geng ZL, Zeng Y, Shen YM (2008) Enrichment plant microbiota for a metagenomic libraryconstruction. Environ Microbiol 10:2684–2691
Wang P, Kong F, Wei J, Wang Y, Wang W, Hong K et al (2014) Alkaloids from the mangrove-derived actinomycete Jshengella endophytica 161111. Mar Drug 12:477–490
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky ML et al (1987) Report of the ad hoc
committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
Williams ST, Davies FL (1965) Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 38:251–262
Zhang X, Ren K, Zhang L (2012) Screening and preliminary identification of medicinal plants endophytic actinomycetes used for inhibiting penicillin-resistant Staphylococcus aureus. Int J Biol 4(2):119–124
Zhang YJ, Zhang WD, Qin S, Bian GK, Xing K, Li YF et al (2013) Saccharopolyspora dendranthemiae sp. nov. a halotolerant endophytic actinomycete isolated from a coastal salt marsh plant in Jiangsu, China. Ant van Leeuw 103:1369–1376

Zhang J, Wang JD, Liu CX, Yuan JH, Wang XJ, Xiang WS (2014) A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat Prod Res 28(7):431–437
Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau China. Curr Microbiol 62:182–190
Zhou H, Yang Y, Zhang J, Peng T, Zhao L, Xu L et al (2013) Alkaloids from an endophytic Streptomyces sp. YIM66017. Nat Prod Commun 8(10):1393–1396
Zhou H, Yang Y, Peng T, Li W, Zhao L, Xu L, Ding Z (2014) Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat Prod Res 28(4):265–267