Micro-analysis of Marine Sand From Zhoushan Seas

WU Di¹, YAN Qian¹, WANG Ya-jun¹*, GAN Xiao-qing ², Dong Zhi-hong ², WANG Jin-bao¹, CHEN Jing-jin¹

¹School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan 316002, China
²Yangtze River Scientific Research Institute, Wuhan, 430010, China
*Corresponding author’s e-mail: Wang Yajun, Professor, aegis68004@163.com

Abstract: The main salt components and ion content of seawater were qualitatively and quantitatively analyzed. The results show that the seawater in this region has low ion content and low salt content, and direct application is relatively beneficial to engineering. Meantime, the property test was carried out to investigate the basic physical behavior of the goal sea sand. The results show that Zhoushan sea sand has low chloride ion content, uniform particle size and low mud content.

1. Research Background:
Under the background of China’s transformation of a maritime power into a maritime power, research on marine engineering structural materials has become a frontier topic in international material science research. At the same time, with the sustainable development of the marine economy, the tourism industry is booming, the number of migrants is increasing, and the infrastructure construction is increasing, which leads to the continuous increase in the demand for sand and gravel fresh water. The contradiction between supply and demand will increasingly highlight the composition of sea sand and river sand. There is a big difference in the microscopic structure, which leads to its macro performance not meeting the requirements for use. Therefore, multi-scale research methods are applied to the constituent materials of marine cement-based materials to find the bridge relationship between macroscopic and microscopic composition, so as to analyze the influence of microscopic and chemical combination of such materials on macroscopic phenomena, for seawater and sea sand. Provide scientific reference for the practical engineering application and improvement of marine phase cement materials.

2. Seawater Test
2.1 Sampling And Composition Testing
The sample was taken from the Lincheng District of Zhoushan, about 1 km away from the island. The annex has no sewage from the river. Because of the large amount of seawater in the area, the precipitation phenomenon after retrieving must be evenly tested before it can be tested.

2.2 Composition Test
The composition of seawater is relatively complex, containing a large amount of inorganic salts and free ions. The laboratory internal test method is used to calibrate the chemical components with high
content and great influence on concrete performance. (eg. ions: chloride, sulfate, bromide, sodium, potassium, magnesium, calcium, carbonate and salts)

2.3 Test Results And Analysis
There are differences in the salinity of seawater in various areas of the ocean, and the overall trend is from nearshore to ocean. Because the river has played a role in dilution, the performance of rivers and rivers into the sea is more obvious. The offshore waters of China's coastal areas are generally weakly alkaline, and there is a large difference in ion concentration. The overall percentage does not change much [1]. Specification ASTM D1141-98 gives the basis for artificially configured seawater, see Table 1

Table 1 Composition of Seawater Chemical Composition

Ingredient	NaCl	MgCl₂	Na₂SO₄	CaCl₂	KCl	NaHCO₃	KBr	H₃BO₃
Concentration mg·L⁻¹	24530	5200	4090	1160	695	201	101	27

Ingredient	SrCl₂	NaF	Ba(NO₃)₂	Mn(NO₂)₂	Cu(NO₃)₂	Zn(NO₃)₂	Pb(NO₃)₂	AgNO₃
Concentration mg·L⁻¹	25	3	0.0994	0.034	0.0308	0.0096	0.0066	0.00049

Fig 1 Seawater Ion And Salt Content Distribution in Zhoushan
The ionic content and salt content of Zhoushan seawater are relatively low, and direct application and engineering construction are most beneficial. It can be seen from Fig. 1 that the salt with the highest content in seawater has a NaCl content of 18 g/kg and a Cl⁻ content of 13.718 g/kg, but has a large decrease compared with the artificial seawater configuration and other ion contents. Ye Dongzhong [3] pointed out that the hydration reaction and strength of cement will increase with the increase of sodium chloride. When the content of sodium chloride reaches 2%, the content reaches the maximum and the setting time will also be shortened. Liu Jian [6] et al. believed that Cl⁻ participated in the early reaction of cement to form a small volume of chloride salt. When the salt content reached

![Ion species graph](image_url)
12%, the maximum compressive strength of the paste consistency was the highest. It can be seen from the above that the Cl$^{-}$ content has a certain promoting effect on the performance improvement of different configurations of concrete in an appropriate range.

Secondly, the content of MgCl reaches 3.6g\cdotkg$^{-1}$. When MgCl is produced in excess, the formation of Mg(OH)$_2$ and CaCl$_2$·12H$_2$O will cause the concrete to swell and block the hydration reaction. Scholars such as Gong Yufeng[5] believe that Mg$^{2+}$ participates in the reaction and reacts with SiO$_2$ to form Mg·SiO$_2$·H$_2$O in the middle stage of hydration reaction to make C-S-H gelation worse. Zhoushan seawater has the lowest magnesium ion content relative to other regions, which is relatively favorable for concrete preparation.

The presence of a certain amount of SO$_4^{2-}$ in the sample reacts with C$_3$A in the cement to form more crystalline ettringite. The expansion of ettringite inevitably leads to uniformity of the concrete and reduces the strength of the concrete. However, studies have shown that the water-cement ratio has a significant effect on the growth of ettringite. Under the same conditions, the larger the water-cement ratio, the looser the cement stone structure, and the more space the ettringite is formed. The water-cement ratio is small, the cement stone structure is relatively tight, the pores are small, the amount of ettringite formed is small, and the crystal is anisotropically grown and needle-like.

3 Sea sand Test

3.1 Property Test

The sea sand of the sample was taken from the sand of Nansha in the Putuo District of Zhoushan and the “Beach” of Dongsha. The sample was tested for eds, xrd, sem, particle size and conventional performance (refer to GB/T14684-2010 “Building Sand”).

The sand was subjected to a grain size test using a Malvern laser particle size analyzer, and the apparent density, bulk density, mud content, and shellfish content of the sand were tested in accordance with "Building Sand" GB/T 14684-2011.

3.2 Analysis of Test Results

![Fig 2 Distributions of The Marine Sand Sizes From The Sieving Analysis](image)
The sieving test data was analyzed. The total fineness modulus of the sea sand sample used in this study was Fm=1.21, which was ultrafine sand. According to the Malvern laser particle size analyzer test, the specific surface area of Dongsha sample is 23.41m²/kg, and the specific surface area of Nansha sample is 30.12m²/kg. According to the cumulative volume distribution curve, the Dongsha sample has slightly larger particle size than the Nansha sample, but two sea sand samples. The distribution of grain size in the mesoscale range of 200μm~1mm is basically the same. In addition to the bulk density of less than 1400Kg / m², the stone powder content is higher than others.

4. Conclusion
In the relatively national scale of Zhoushan seawater, the lowest ion and salt content has the least impact on concrete performance and the lowest desalination cost. The exact content of the ionic salt can be precisely improved in the actual application of the project. Through the basic performance test of the sea sand sample, other properties are satisfied in addition to the void ratio. Combined with microscopic image analysis, the Zhoushan sea sand has the characteristics of rough surface, large void ratio, uniform distribution, elliptical shape and elongated strip shape.

Acknowledgements
Fund Project: National Natural Science Foundation of China (51879236, 51109118); State Key Laboratory of Water and Sediment Science and Hydropower Engineering, Tsinghua University (sklhse-2018-E-03); Yan Qian, (1994-), Chengdu, Sichuan, mainly engaged in hydraulic structure and materials research.

References
[1] Santhanam, M. and Otieno, M., 2016, Deterioration of concrete in the marine environment, Design, Durability and Performance, Marine Concrete Structures, Woodhead Publishing, 137~149.
[2] Hamed, F., Mohd Yassin, A.Y., Nasir, S. and Wee, T., 2018, Effective bond length of CFRP
sheets externally bonded to concrete beams under marine environment, Construction and Building Materials, 167, 726-738.

[3] Fu J.B. Research on several key technologies for the recycling of sea sand building materials. Wuhan: Wuhan University, 2005

[4] American Society for Testing and Materials International. Standardpractice for the preparation of substitute ocean water: ASTMD1141—98. West Conshohochen: ASTM, 2013

[5] Ye D.Z. The effect of sodium chloride on the performance and hydration degree of fly ash cement. Journal of Fuzhou University, 2010; 38(3): 437-441

[6] Liu Jian, Guo X.Y, Li Z.Y, et al. Study on the chemical mechanism of chloride ion on the hydration of G-grade cement, drilling fluid and completion fluid, 2009; 26(6): 40-42

[7] Xing Y.F, Xu Chao, Ye G.B, et al. Mechanism Analysis of Influence of Soluble Salt Ions on Strength of High-salt Cement Soil[J]. China Journal of Highway and Transport, 2008, 21(6): 26–30.

[8] Pembe, O. E., Basar, H. M., Ibrahim, E. and Leyla, T., 2016, Beneficial use of marine dredged materials as a fine aggregate in ready-mixed concrete: Turkey example, Construction and Building Materials, 124, 690~704.

[9] Tarek, U. M., Hidenori, H. and Toru. Y., 2004, Performance of seawater-mixed concrete in the tidal environment, Cement and Concrete Research, 34(4), 593–601.

[10] YAN Qian, WANG Y.J., WANG Y.B, et al. Seismic safety evaluation of panel filling rockfill dam in Zhoushan area[J]. Hydroelectric Engineering, 2018, v.44; No.529(5): 54-56+97.

[11] Yan Gan, Ke J.W, Wang Y.J, et al. Stability analysis of Zhoushan seawall settlement[J]. People's Pearl River, 2018(9).

[12] Chalmers, D.W., 1988, The properties and uses of marine structural materials, Marine Structures, 1(1), 47~70.