A note on the Petri loci

A. BRUNO – E. SERNESI*

Abstract

Let M_g be the coarse moduli space of complex projective nonsingular curves of genus g. We prove that when the Brill-Noether number $\rho(g, r, n)$ is non-negative every component of the Petri locus $P^r_{g,n} \subset M_g$ whose general member is a curve C such that $W^{r+1}_n(C) = \emptyset$, has codimension one in M_g.

1 Introduction

Let C be a nonsingular irreducible projective curve of genus $g \geq 2$ defined over \mathbb{C}. A pair (L, V) consisting of an invertible sheaf L on C and of an $(r + 1)$-dimensional vector subspace $V \subset H^0(L)$, $r \geq 0$, is called a linear series of dimension r and degree $n = \deg(L)$, or a g^r_n. If $V = H^0(L)$ then the g^r_n is said to be complete.

If (L, V) is a g^r_n then the Petri map for (L, V) is the natural multiplication map

$$\mu_0(L, V) : V \otimes H^0(\omega_C L^{-1}) \longrightarrow H^0(\omega_C)$$

The Petri map for L is

$$\mu_0(L) : H^0(L) \otimes H^0(\omega_C L^{-1}) \longrightarrow H^0(\omega_C)$$

Recall that C is called a Petri curve if the Petri map $\mu_0(L)$ is injective for every invertible sheaf L on C. By the Gieseker-Petri theorem \[5\] we know that in M_g, the coarse moduli space of nonsingular projective curves of genus g, the locus of curves which are not Petri is a proper closed subset P_g, called the Petri locus. This locus decomposes into several components, according to the numerical types and to other properties that linear series can have on a curve of genus g. We will say that C is Petri with respect to g^r_n’s if the Petri map $\mu_0(L,V)$ is injective for every g^r_n (L, V) on C.

We denote by $P^r_{g,n} \subset M_g$ the locus of curves which are not Petri w.r. to g^r_n’s. Then

$$P_g = \bigcup_{r,n} P^r_{g,n}$$

*Both authors are members of GNSAGA-INDAM
where the union is finite by obvious reasons. The structure of $P^r_{g,n}$ and of P_g is not known in general: both might a priori have several components and not be equidimensional. In some special cases $P^r_{g,n}$ is known to be of pure codimension one (notably in the obvious case $\rho(g, r, n) = 0$, and for $r = 1$ and $n = g - 1$ [12]). If the Brill-Noether number

$$\rho(g, r, n) := g - (r + 1)(g - n + r)$$

is nonnegative then it is natural to conjecture that $P^r_{g,n}$ has pure codimension one if it is non-empty. The evidence is the fact that $P^r_{g,n}$ is the image in M_g of a determinantal scheme $\tilde{P}^r_{g,n}$ inside the relative Brill-Noether scheme $W^r_n \to M_g$, and the expected dimension of $\tilde{P}^r_{g,n}$ is $3g - 4$. This is the point of view that we apply for the proof of our main theorem 1.1 (see below). One might ask if even P_g has pure codimension one: there is not much evidence for this, except that it can be directly checked to be true for low values of g (see the very recent preprint by M. Lelli-Chiesa [10]).

Before stating our result we recall what is known. Denote by \overline{M}_g the moduli space of stable curves, and let

$$\overline{M}_g \setminus M_g = \Delta_0 \cup \cdots \cup \Delta_{\lfloor \frac{g}{2} \rfloor}$$

be its boundary, in standard notation. In [2] G. Farkas has proved the existence of at least one divisorial component of $P^1_{g,n}$ in case $\rho(g, 1, n) \geq 0$ and $n \leq g - 1$, using the theory of limit linear series. He found a divisorial component which has a nonempty intersection with Δ_1. Another proof has been given in [1], by degeneration to a stable curve with g elliptic tails. The method of [2] has been extended in [3] to arbitrary r. In this note without using any degeneration argument we prove the following result:

Theorem 1.1 If $\rho(g, r, n) \geq 0$ then every component of $P^r_{g,n}$ whose general member is a curve C such that $W^{r+1}_n(C) = \emptyset$, has codimension one in M_g.

Note that a necessary numerical condition for the existence of a curve C as in the statement is that $\rho(g, r + 1, n) < 0$. This condition, together with $\rho(g, r, n) \geq 0$ gives:

$$0 \leq \rho(g, r, n) < g - n + 2(r + 1)$$

or, equivalently:

$$\frac{r}{r + 1}g + r \leq n < \frac{r + 1}{r + 2}g + r + 1$$

For the proof of the theorem we introduce a modular family $C \to B$ of curves of genus g (see (i) below for the definition) and we use the determinantal description of the relative locus $W^r_n(C/B)$ over B and of the naturally defined closed subscheme $\tilde{P}^r_{g,n} \subset W^r_n(C/B)$ whose image in M_g is $P^r_{g,n}$. Since it is a determinantal locus, every component of $\tilde{P}^r_{g,n}$ has dimension $\geq 3g - 4$. Then a theorem of F. Steffen [11] ensures that every component of $P^r_{g,n}$ has dimension $\geq 3g - 4$ as well, thus proving the result.
In a forthcoming paper (in preparation) we will show the existence of a divisorial component of \(P^1_{g,n} \) which has a non-empty intersection with \(\Delta_0 \), when \(\rho(g,1,n) \geq 1 \).

2 Proof of Theorem 1.1

In this section we fix \(g,r,n \) such that \(\rho(g,r,n) \geq 0 \) and \(\rho(g,r+1,n) < 0 \). Consider the following diagram:

\[
\begin{array}{ccc}
J_n(C/B) \times_B C & \longrightarrow & C \\
\downarrow & & \downarrow f \\
J_n(C/B) & \longrightarrow & B
\end{array}
\]

where:

(i) \(f \) is a smooth modular family of curves of genus \(g \) parametrized by a non-singular quasi-projective algebraic variety \(B \) of dimension \(3g - 3 \). This means that at each closed point \(b \in B \) the Kodaira-Spencer map \(\kappa_b : T_bB \rightarrow H^1(C(b), T_{C(b)}) \) is an isomorphism. In particular, the functorial morphism

\[\beta : B \longrightarrow \mathcal{M}_g \]

is finite and dominant. The existence of \(f \) is a standard fact, see e.g. [7], Theorem 27.2.

(ii) \(J_n(C/B) \) is the relative Picard variety parametrizing invertible sheaves of degree \(n \) on the fibres of \(f \).

(iii) For all closed points \(b \in B \) the fibre \(C(b) \) satisfies \(W^{r+1}_n(C(b)) = \emptyset \). This condition can be satisfied modulo replacing \(B \) by an open subset if necessary, because the condition \(W^{r+1}_n(C(b)) = \emptyset \) is open w.r. to \(b \in B \).

(iv) We may even assume that any given specific curve \(C \) of genus \(g \) satisfying \(W^{r+1}_n(C) = \emptyset \) appears among the fibres of \(f \). In particular we may assume that the dense subset \(\text{Im} (\beta) \subset \mathcal{M}_g \) has a non-empty intersection with all irreducible components of \(P^r_{g,n} \) whose general element parametrizes a curve \(C \) such that \(W^{r+1}_n(C) = \emptyset \).

Let \(\mathcal{P} \) be a Poincaré invertible sheaf on \(J_n(C/B) \times_B C \). Using \(\mathcal{P} \) in a well-known way one constructs the relative Brill-Noether scheme

\[W^{\nu}_n(C/B) \subset J_n(C/B) \]
Consider the restriction of diagram (1) over $W_n(C/B)$:

$$
\begin{array}{c}
W_n(C/B) \times_B C \\
p_1 \\
W_n(C/B)
\end{array}
\xrightarrow{p_2 \circ f} C
$$

Every irreducible component of $W_n(C/B)$ has dimension $\geq 3g - 3 + \rho(g, r, n)$ and, since $\rho(g, r, n) \geq 0$, there is a component which dominates B. A closed point $w \in W_n(C/B)$ represents an invertible sheaf L_w on the curve $C(q(w))$ such that $h^0(L_w) \geq r + 1$. Denoting again by P the restriction of P to $W_n(C/B) \times_B C$, we have a homomorphism of coherent sheaves on $W_n(C/B)$, induced by multiplication of sections along the fibres of p_1:

$$
\mu_0(P) : p_1^* P \otimes p_1^*[p_2^*(\omega_{C/B}) \otimes P^{-1}] \rightarrow p_1^*[p_2^*\omega_{C/B}]
$$

By condition (iii) above, these sheaves are locally free, of ranks $(r + 1)(g - n + r)$ and g respectively. Moreover, by definition, at each point $w \in W_n(C/B)$, the map $\mu_0(P)$ coincides with the Petri map $\mu_0(L_w) : H^0(C(q(w)), L_w) \otimes H^0(C(q(w)), \omega_{C(q(w))}L_w^{-1}) \rightarrow H^0(C(q(w)), \omega_{C(q(w))})$.

Claim: the vector bundle

$$
[p_1^* P \otimes p_1^*[p_2^*(\omega_{C/B}) \otimes P^{-1}]]^\vee \otimes p_1^*[p_2^*\omega_{C/B}]
$$

is q-relatively ample.

Proof of the Claim. If we restrict diagram (2) over any $b \in B$ and we let $C = C(b)$, we obtain:

$$
\begin{array}{c}
W_n(C) \times C \\
\pi_1 \\
W_n(C)
\end{array}
\xrightarrow{\pi_2} C
$$

and the map $\mu_0(P)$ restricts over $W_n(C)$ to

$$
m_P : \pi_1^* P \otimes \pi_1^*[\pi_2^*\omega_C \otimes P^{-1}] \rightarrow H^0(C, \omega_C) \otimes \mathcal{O}_{W_n}
$$

where $P = P|_{W_n(C) \times C}$ is a Poincaré sheaf on $W_n(C) \times C$. The dual of the source of m_P is an ample vector bundle (compare [3, §2]), while the target is a trivial vector bundle, and therefore

$$
[p_1^* P \otimes p_1^*[p_2^*(\omega_{C}) \otimes P^{-1}]]^\vee \otimes C H^0(C, \omega_C)
$$

is an ample vector bundle. This means that the vector bundle (3) restricts to an ample vector bundle on the fibres of q. This implies, by [6], Th. 4.7.1, applied
to the invertible sheaf $\mathcal{O}(1)$ on the projective bundle associated to (3), that (3) is q-relatively ample. This proves the Claim.

Consider the degeneracy scheme:

$$\tilde{P}_{g,n} := D_{(r+1)(g-n+r)-1}(\mu_0(\mathcal{P})) \subset W_n^r(C/B)$$

which is supported on the locus of $w \in W_n^r(C/B)$ such that $\mu_0(L_w)$ is not injective. By applying Theorem 0.3 of [11] to it we deduce that every irreducible component of $q(\tilde{P}_{g,n}) \subset B$ has dimension at least

$$\dim[W_n^r(C/B)] - [g - (r + 1)(g - n + r) + 1] = 3g - 4$$

Since f is a modular family, it follows that every irreducible component of $\beta(q(\tilde{P}_{g,n})) \subset M_g$ has dimension $\geq 3g - 4$ as well. But $\beta(q(\tilde{P}_{g,n})) \subset P^r_{g,n} \neq M_g$, and therefore all the components of $\beta(q(\tilde{P}_{g,n}))$ are divisorial. Since, by (iv), $\beta(q(\tilde{P}_{g,n}))$ is the union of all the components of $P^r_{g,n}$, whose general element parametrizes a curve C such that $W_n^{r+1}(C) = \emptyset$, the theorem is proved. \square

References

[1] A. Castorena, M. Teixidor i Bigas: Divisorial components of the Petri locus for pencils, J. Pure Appl. Algebra 212 (2008), 1500–1508.

[2] G. Farkas: Gaussian maps, Gieseker-Petri loci and large theta-characteristics, J. reine angew. Mathematik 581 (2005), 151-173.

[3] G. Farkas: Rational maps between moduli spaces of curves and Gieseker-Petri divisors, Journal of Algebraic Geometry 19 (2010), 243-284.

[4] W. Fulton - R. Lazarsfeld: On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), 271-283.

[5] D. Gieseker: Stable curves and special divisors, Inventiones Math. 66 (1982), 251-275.

[6] A. Grothendieck: Elements de Geometrie Algebrique III, 1. Inst. de Hautes Etudes Sci. Publ. Math. 11, 1961.

[7] R. Hartshorne: Deformation Theory, Springer GTM vol.257 (2010).

[8] Kempf G.: Schubert methods with an application to algebraic curves, Publication of Mathematisch Centrum, Amsterdam 1972.

[9] Kleiman S., Laksov D.: On the existence of special divisors, Amer. Math. J. 94 (1972), 431-436.

[10] M. Lelli-Chiesa: The Gieseker-Petri divisor in M_g for $g \leq 13$. arXiv preprint n. 1012.3061v1.
[11] F. Steffen: A generalized principal ideal theorem with an application to Brill-Noether theory. *Inventiones Math.* 132 (1998), 73-89.

[12] M. Teixidor: The divisor of curves with a vanishing theta null, *Compositio Math.* 66 (1988), 15-22.

ADDRESS OF THE AUTHORS:
Dipartimento di Matematica, Università Roma Tre
Largo S. L. Mirialdo 1, 00146 Roma, Italy.

bruno@mat.uniroma3.it
sernesi@mat.uniroma3.it