ОЦЕНКА УРОВНЕЙ РИСКОВ ПРИ ВОЗДЕЙСТВИИ НА ОРГАНИЗМ ЧЕЛОВЕКА НИТРАТНОГО КOMPONENTA ПИЩЕВОГО РАЦИОНА

И.П. Салдан, О.И. Швед, Б.А. Баландович, А.С. Нагорняк, О.Н. Мазко, О.Г. Макарова, С.П. Филиппова, О.В. Жукова, Н.Ю. Поцелуев

Алтайский государственный медицинский университет, Россия, 656038, г. Барнаул, проспект Ленина, 40

Контаминация продуктов питания ксенобиотиками различного происхождения оказывает негативное влияние на состояние здоровья населения. Нитраты являются одним из основных загрязнителей пищевых продуктов по данным многих исследований, проведенных на различных территориях нашей страны, и вносят значительный вклад в повышение уровня заболеваемости определенными нозологическими формами, для которых пищевой фактор является ведущим в развитии патологического процесса.

Проанализированы данные лабораторных исследований по концентрациям нитратов в продуктах питания на территории Алтайского края, содержащиеся в протоколах аккредитованных испытательных лабораторий. Процедура соблюдения лабораторных исследований на базе Института гигиены труда и промышленной экологии ФГБОУ ВО «Алтайский государственный медицинский университет» Минздрава России, которые позволяют сделать вывод о том, что повышенное содержание нитратов в продуктах питания является актуальной проблемой, требующей дальнейшего изучения и проведения исследований с помощью высокоточных лабораторных методов.

Выполнена оценка коэффициентов опасности (HQ) нитратов, содержащихся в овощной продукции и бахчевых культурах, индивидуального канцерогенного риска (ICR), популяционного канцерогенного риска (PCR). Проведенная гиgienическая оценка содержания нитратов в пищевой продукции позволила показать границы вариабельности рисковых характеристик.

На территории региона необходима разработка предложений по снижению экспозиции населения нитратным компонентом и обоснование приоритетных подходов в принятии решений на административном уровне по снижению риска здоровью населения от употребления в пищу продуктов питания, загрязненных нитратами.

Ключевые слова: гигиеническая оценка, контаминация нитратами, мониторинг, безопасность, качество продуктов питания, оценка уровня риска.

© Салдан И.П., Швед О.И., Баландович Б.А., Нагорняк А.С., Мазко О.Н., Макарова О.Г., Филиппова С.П., Жукова О.В., Поцелуев Н.Ю., 2018

Салдан Игорь Петрович – доктор медицинских наук, профессор (e-mail: rector@agmu.ru; тел.: 8 (3852) 56-68-02).
Швед Ольга Ивановна – аспирант (e-mail: laukhina_olga@mail.ru; тел.: 8 (3852) 56-69-36).
Баландович Борис Анатольевич – доктор медицинских наук, профессор (e-mail: dr.balandovich@mail.ru; тел.: 8 (3852) 56-69-95).
Нагорняк Алексей Сергеевич – аспирант (e-mail: tezaurismosis@gmail.com; тел.: 8 (3852) 56-69-36).
Мазко Олеся Николаевна – кандидат медицинских наук, старший научный сотрудник (e-mail: noemail@agmu.ru; тел.: 8 (3852) 66-99-27).
Макарова Олеся Геннадьевна – кандидат медицинских наук, старший научный сотрудник (e-mail: noemail@agmu.ru; тел.: 8 (3852) 66-99-27).
Филиппова Софья Петровна – кандидат медицинских наук, доцент (e-mail: sofya.filippova@mail.ru; тел.: 8 (3852) 56-69-36).
Жукова Ольга Викторовна – кандидат медицинских наук, доцент (e-mail: oov-@mail.ru; тел.: 8 (3852) 56-69-36).
Поцелуев Николай Юрьевич – кандидат медицинских наук, доцент (e-mail: pocelueff@mail.ru; тел.: 8 (3852) 56-69-36).
ция посредством рационализации и оптимизации питания.

Положения различных исследований и публикаций наиболее подвержены загрязнению нитратами овощи, бахчевые культуры и картофель [1-3]. Избыточное поступление нитратов с пищевыми продуктами из-за применения высоких доз азотных удобрений, используемых в современных технологиях выращивания растительных культур, и повышенное поступление нитратных соединений из-за применения их в пищевой промышленности в качестве консервантов и пищевых добавок отрицательно влияют на организм человека и его здоровье [2-4]. Оценка концентрации нитратов продуктов питания, реализуемых на территории Алтайского края, даст возможность оценить уровень их содержания в употребляемых в пищу продуктах. Что в дальнейшем позволяет проводить профилактические мероприятия, направленные на снижение содержания нитратов в пищевых продуктах. Известно, что часть нитратов (около 5-7%) при содержании их в продуктах питания в количествах, превышающих допустимые нормативы, в желудочно-кишечном тракте может перейти в нитриты, которые и оказывают вредное воздействие на состояние здоровья живого организма [5, 6]. Попадая в кровь, нитриты способствуют окислению двухвалентного железа в трехвалентное, что приводит к образованию метемоглобина, не способного передавать кислород к органам и тканям. Основной путь поступления нитратов в организм человека реализуется через продукты питания, прежде всего это продукты растительного происхождения (до 80% нитратов поступает в организм человека с овощами, в том числе с картофелем, бахчевыми культурами и фруктами). Кроме того, нитраты могут поступать в организм с питьевой водой и через лекарственные препараты [2, 4, 7].

Нитраты занимают особое место среди химических веществ, обладающих канцерогенной активностью. В ходе исследований доказано, что они связаны с возникновением злокачественных опухолей в желудочно-кишечном тракте [7]. Нитраты и нитриты относятся к достоверным факторам, повышающим риск развития рака желудка, – по данным исследований авторов, занимающихся проблемой влияния пищевого фактора на развитие канцерогенеза [8-10]. Результаты исследований показывают значимую связь частоты онкогенетических опухолей с суммарной нагрузкой минеральными удобрениями, а следовательно, и нитратами [11, 12].

Гигиеническую оценку продуктов питания, как правило, проводят в специализированных аккредитованных лабораториях, что способствует продвижению на рынок высококачественной продукции, безопасной для потребления. Гигиеническая оценка продукции проводится на соответствие продуктов питания Техническим регламентам Таможенного союза. В Алтайском крае исследования, связанные с содержанием нитратов в продуктах питания, периодически проводятся соответствующими испытательными лабораториями.

Таким образом, проведение гигиенической оценки нитратной контаминации пищевых продуктов на территории Алтайского края и расчет уровней риска развития канцерогенных и неканцерогенных эффектов, связанных с употреблением исследуемых продуктов, являются актуальными задачами специалистов в настоящее время.

Цель исследования – анализ нитратной контаминации пищевых продуктов, реализуемых и производимых на территории Алтайского края, и оценка уровней рисков при употреблении в пищу населения этой продукции с целью профилактики негативного воздействия на организм человека.

Задачи:
1. Оценить уровень загрязнения нитратами продуктов питания, производимых и реализуемых на территории Алтайского края, с помощью метода капиллярного электрофореза.
2. Оценить риски возникновения и прирост риска определенных онкологических единиц при воздействии нитратного фактора.
3. Разработать научно обоснованные рекомендации по совершенствованию системы лабораторного контроля и профилактике алиментарно-зависимых заболеваний.

Материалы и методы. Материалами для ретроспективного анализа послужили данные официальной статистики Управления Роспотребнадзора по Алтайскому краю, собранные за 2011-2015 гг. Выполнен анализ более 70 тысяч результатов лабораторных исследований, из них более 13 тысяч на соответствие гигиеническим нормативам по содержанию в продуктах питания нитратов. Статистическая обработка данных по стандартизированным методикам выполнена в программе Microsoft Excel 2013.

Для определения содержания нитратов на базе Института гигиены труда и промышленной экологии Алтайского государственного медицинского университета (АГМУ) было проведено исследование...

1 МР 2.1.10.0062-12. Количество оценка неканцерогенного риска при воздействии химических веществ на основе построения эволюционных моделей: методические рекомендации [Электронный ресурс]. – 2012. – С. 22. – URL: http://docs.cntd.ru/document/1200095225 (дата обращения: 22.02.2018).
2 О состоянии санитарно-эпидемиологического благополучия в Российской Федерации в 2013 году: Государственный доклад [Электронный ресурс]. – URL: http://rosptorenbndzor.ru/documents/details.php?ELEMENT_ID=1984 (дата обращения: 22.02.2018).
3 О состоянии санитарно-эпидемиологического благополучия в Российской Федерации в 2015 году: Государственный доклад [Электронный ресурс]. – URL: http://rosptorenbndzor.ru/documents/details.php?ELEMENT_ID=6851 (дата обращения: 22.02.2018).
Оценка уровней рисков при воздействии на организм человека нитратного компонента пищевого рациона

нине различных видов овощей: огурец, томат, капуста, свекла, лук, картофель, кабачок, поступивших из различных территорий Алтайского края (г. Барнаул, Усть-Пристанский, Петропавловский и Завьяловский районы), методом капиллярного электрофореза (КЭ) [13–15]. Метод основан на разделении компонентов сложной смеси в квазивом капилляре под действием приложенного электрического поля, позволяет исследовать микрообъемы пробы. Качественной характеристикой вещества является параметр удерживания (время миграции), а количественной — высота или площадь пика, пропорциональные концентрации вещества [13]. Диапазон измерений нитрат-ионов методом капиллярного электрофореза составляет 5,0–50,0 мг/л при значении, расширенном относительно неопределенности измерений 10%. На территории региона исследование нитратов в пищевых продуктах с помощью данного метода было проведено впервые. Описанным методом исследовано 189 проб пищевых продуктов, отобранных в рамках проведения научно-исследовательской работы НИР № 02-18, запланированной в соответствии с рабочим планом подготовки аспиранта и планом научно-исследовательских работ Института гигиены труда и промышленной экологии ФБУЗ МУ.

Оценку уровня канцерогенного риска воздействия нитратов на организм человека выполняли в соответствии с П 2.2.1.10.1920-04 «Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду». В качестве сценария рассматривали среднее потребление пищевых продуктов в регионе. Параметры потребления принимали в соответствии с официальными данными Федеральной службы государственной статистики по Алтайскому краю и Республике Алтай [16]. Рассчитано среднее потребление каждого продукта на человека в год. Средняя масса взрослого человека принятия за 70 кг. Среднесуточные дозы нитратов рассчитывали, исходя из среднего для выборки содержания нитратов в используемых продуктах.

Индивидуальный канцерогенный риск рассчитан с помощью модифицированной экспоненциальной модели2,3 [5, 7]:

\[
ICR = exp\left(1,44 \cdot 10^{-7} \cdot K \right)^{-1}
\]

где ICR – индивидуальный канцерогенный риск;
K – количество поступивших в организм нитратов, мг/человек/день.

Популяционный канцерогенный риск рассчитан по общепринятой методике [7]:

\[
PCR = ICR \cdot POP,
\]

где PCR – популяционный канцерогенный риск;
POP – численность исследуемой популяции, человек.

Для оценки неканцерогенного риска использованы коэффициент опасности (HQ)1 [7] и математическая модель2,3 [5, 7]:

\[
\Delta R = 0,00052 \left(\frac{1}{1 + e^{(-6,89 + 0,04 K) \cdot POP}} - \frac{1}{1 + e^{(-6,89 - 0,04 K) \cdot POP}}\right),
\]

где ΔR – прирост неканцерогенного риска.

Результаты и их обсуждение. Установлено, что за пять лет – с 2011 по 2015 г. – испытательным лабораторным центром (ИЛЦ) ФБУЗ «Центр гигиены и эпидемиологии в Алтайском крае» из исследованных 70 тысяч проб пищевой продукции от 0,1 до 2,0 % проб были квалифицированы как нестандартные по гигиеническим нормативам. В 2011 г. превышение гигиенических нормативов содержания нитратов в продуктах было обнаружено в 0,3 % проб (овощи, картофель, столовая зелень). Все нестандартные пробы были зафиксированы при анализе товаров отечественного производства. В 2012 г. отмечалось увеличение удельного веса проб пищевых продуктов, не соответствующих гигиеническим нормативам по содержанию нитратов, – 0,4 %. В 2013 г. было выявлено 14 проб плодово-овощной продукции из исследованных 2800 с превышением по содержанию нитратов, что составило 0,5 % от общего количества исследованных на нитраты проб. В 2014 г. 28 от 2333 проб не соответствовало нормативным показателям по содержанию нитратов. Среди групп пищевых продуктов, не соответствовавших гигиеническим нормативам, преобладала плодово-овощная продукция и бахчевые культуры. Все нестандартные образцы 2014 г. относились к продукции отечественного производства. Удельный вес проб пищевых продуктов и продовольственного сырья, не соответствующих гигиеническим нормативам по содержанию нитратов, в 2014 г. составил 1,2 %. В 2015 г. не соответствовало нормативам по содержанию нитратов четыре пробы плодово-овощной продукции из 2289 отобранных и исследованных, что составило 0,2 % 2,3.

Методом капиллярного электрофореза на базе Института гигиены труда и промышленной экологии было исследовано 189 проб растительной продукции. Диапазон концентраций нитратов, определяемых при исследовании продуктов питания, колебался в пределах от 21,2 ± 2,4 до 1619,0 ± 12,3 мг/кг массы продукта, при этом интервал средних зна-

1 П 2.2.1.10.1920-04. Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих среду обитания. – М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004. – 143 с.

2 МУ 2.3.7.2519-09. Определение экзопозиции и оценка риска воздействия химических кантаминантов пищевых продуктов на население: методические указания. – М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2010. – 27 с.
ченний составил от 46,0 ± 1,7 мг/кг в кабачке до 678,3 ± 15,8 мг/кг в свекле (рис. 1).

В рационе питания населения Алтайского края, согласно статистическим данным Федеральной службы государственной статистики по Алтайскому краю и Республике Алтай, овощи и бахчевые, картофель, фрукты и ягоды составляют значительную долю от общего объема потребляемых продуктов (рис. 2). Доля их в среднеурожайном рационе составляет 31,6 %, из них доля картофеля – 10,8 %, овощей и бахчевых – 12,4 %.

Рассчитаны среднеурожайные дозы поступления нитратов с овощами и картофелем, для этого определены средние концентрации нитратов в исследованных видах овощей (рис. 3).

Среднесуточные дозы поступления нитратов в организм человека составили в среднем по Алтайскому краю 170 мг/сут (77,4 мг/сут поступает с картофелем, 92,6 мг/сут – с остальными овощами).

Установлено, что наибольший вклад в экспозицию нитратами на территории Алтайского края вносят следующие виды растительной продукции: огурцы, лук, картофель. В перечисленных пищевых продуктах была обнаружена наибольшая кратность превышения предельно допустимой концентрации (ПДК) по содержанию нитратов, а также превышение ПДК регистрировалось наиболее часто (рис. 4).

Расчет индивидуальных канцерогенных рисков (ICR) показвает дополнительную вероятность развития у индивидуума на протяжении его жизни злокачественных новообразований. Уровень канцерогенного риска для всех исследуемых территорий Алтайского края можно оценить как низкий (1·10⁻⁶–1·10⁻⁸), при этом максимальный уровень индивидуального канцерогенного риска был получен на исследуемой территории – Петровановский район (3,2·10⁻⁷). Хотя уровень ICR можно оценить как низкий, тем не менее он выше допустимого (менее 1·10⁻⁶) и вносит определенный вклад в вероятность возникновения у отдельного человека такого патологического состояния, как злокачественное новообразование, что видно на рис. 5.

Популяционный канцерогенный риск показывает количество случаев заболевания злокачественными новообразованиями, возникающих в исследуемой

Ваш напильник	ваш напилок	напилок	напильник	ваш напильник
ваш напильник	ваш напилок	напилок	напильник	ваш напильник
ваш напильник	ваш напилок	напилок	напильник	ваш напильник
ваш напильник	ваш напилок	напилок	напильник	ваш напильник

Рис. 1. Среднее содержание нитратов в различных видах овощной продукции

Рис. 2. Доля отдельных видов продуктов в рационе населения Алтайского края, %

Рис. 3. Средняя концентрация нитратов в продуктах питания, мг/кг

Рис. 4. Удельный вес (%) различных видов овощей в общем объеме нестандартной продукции по нитратному фактору

Рис. 5. Уровни индивидуального канцерогенного риска (ICR/год), обусловленные нитратной концентрацией овощной продукции в различных территориях Алтайского края
популяции дополнительно к фоновому риску. Индивидуальный и популяционный канцерогенные риски характеризуют вероятность возникновения канцерогенного риска на протяжении периода, соответствующего средней продолжительности жизни человека (70 лет) [5, 7].

В связи со стихастическим характером канцерогенного процесса, длительным латентным периодом, различиями в возрастной чувствительности и сложным характером временной и возрастной зависимости вероятности смерти человека точно предсказать сроки развития злокачественных новообразований на основе имеющейся научной информации в популяции не представляется возможным.

Из рис. 6 видно, что интратная контаминация продуктов овощеводства вносит определенный вклад в уровень заболеваемости злокачественными новообразованиями за счет дополнительных случаев возникновения у жителей населенных пунктов и районов данной патологии. На территории г. Барнаула – это дополнительные 14 случаев в год к фоновому уровню, на территории Усть-Пристанского, Петропавловского и Завьяловского районов ориентировочно один случай за три года за счет того, что численность населения в трех вышеуказанных районах значительно уступает численности населения г. Барнаула (более чем в 20 раз).

Оценка коэффициентов опасности (HQ) нитратов, содержащихся в плодово-ягодной продукции, показывает, что величины HQ не превышают единицу, что характеризует воздействие нитратного компонента на здоровье человека как допустимое при поступлении в рассчитанном количестве в течение жизни. Тем не менее при превышении рассчитанных доз нитратов, поступающих с плодово-ягодной продукцией в организм человека, возможно превышение допустимой величины HQ. Согласно данным лабораторных исследований, относятся такие овощи, как лук, репа, черешня.

Рис. 6. Уровни популяционного канцерогенного риска (сл./год), обусловленные нитратным фактором, в различных территориях Алтайского края

Рис. 7. Коэффициенты опасности (HQ) при поступлении нитратов в г. Барнауле и районах Алтайского края

Выводы. Проанализированы имеющиеся данные лабораторных исследований по содержанию нитратов в продуктах питания на территории Алтайского края. Установлено определенное количество овощной продукции с превышением допустимого уровня ПДК по нитратному компоненту. Превышение содержания нитратов обнаружено в овощах (в том числе в картофеле, луке репчатом), столовой зелени, бахчевых культурах (дьявах, арбузах). К продуктам, наиболее загрязненным нитратами, согласно данным собственных исследований, относятся такие овощи, как огурец, томат, лук.

Оценка коэффициентов опасности (HQ) нитратов, содержащихся в овощной продукции и бахчевых культурах, характеризует воздействие нитратного компонента на здоровье человека как допустимое при поступлении в рассчитанном количестве в течение жизни. В то же время при превышении рассчитанных доз нитратов, поступающих с плодово-ягодной продукцией в организм человека, возможно превышение допустимой величины HQ.

Индивидуальный канцерогенный риск, обусловленный содержанием в пищевых продуктах нитратов, оценивается как низкий. Величина ICR, детерминированного содержанием в пищевых продуктах нитратов, находится в пределах от 1,89·10^-5 до 3,2·10^-5. Такой уровень риска не требует специальных дополнительных мероприятий по его снижению, но подлежит выборочному периодическому контролю, так как вносит определенный вклад в вероятность возникновения злокачественных новообразований у человека.

Величина популяционного канцерогенного риска (PCR), обусловленного содержанием в пищевых продуктах нитратов, показывает возможность появления у населения территорий от 0,28 до 14,33 дополнительных случае злокачественных новообразований к фоновому уровню онкологической заболеваемости.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Список литературы

1. Кислицына Л.В. Оценка содержания химических контаминантов в продуктах питания жителей Приморского края // Здоровье. Медицинская экология. Наука. – 2011. – Т. 46, № 3. – С. 36–42.
2. Nitrate and nitrite in the diet: how to assess their benefit and risk for human health / M. Habermeyer, A. Roth, S. Guth, G. Eisenbrand, P. Dietl [et al.] // Molecular Nutrition and Food Research. – 2015. – Vol. 59, № 1. – P. 106–128.
3. Lucas Reijnders, Food safety, environmental improvement and economic efficiency in the Netherlands // British Food Journal. – 2004. – Vol. 106, № 5. – P. 388–405.
4. Poortmans J.R., Carpenter A., Gualano B. Nitrate supplementation and human exercise performance: too much of a good thing? // Current Opinion in Clinical Nutrition and Metabolic Care. – 2015. – Vol. 18, № 6. – P. 599–604. DOI: 10/1097/MCO.0000000000000222
5. Анализ риска здоровья в стратегии государственного социально-экономического развития: монография / Г.Г. Онищенко, Н.В. Зайцева, И.В. Май [и др.]; под ред. Г.Г. Онищенко, Н.В. Зайцевой. – М., Пермь: Изд-во Перм. нац. исслед. политехни. ун-та, 2014. – 738 с.
6. Ximenes M.I., Rath S., Reyes F.G. Polarographic determination of nitrate in vegetables // Talanta. – 2000. – Vol. 51, № 1. – P. 49–56.
7. Обоснование допустимых уровней содержания нитратов в растениеводческой продукции по критериям риска здоровья / П.З. Шур, Д.А. Кирьянов, Н.Г. Атискова, В.М. Чигвинцев, Е.В. Хрущева // Здоровье населения и среды обитания. – 2013. – Т. 248, № 11. – С. 47–48.
8. Лазарев Б.В. Проблема заболеваемости злокачественными новообразованиями в Омской области // Безопасность городской среды: материалы межрегиональной научно-практической конференции с международным участием. – 2016. – С. 209–211.
9. Механизмы реализации модифицирующего действия нитритов на канцерогенез / В.П. Дерягина, Л.В. Криюшева, Л.А. Савлюченская, И.С. Голубева, Н.И. Рыкова // Новые информационные технологии в медицине, биологии, фармакологии и экологии: материалы международной конференции / под ред. Е.Л. Глуховской. – Гурзуф–Ялта, 2017. – С. 185–191.
10. Воен В.М., Куксов В.Ф., Быстрые В.В. Химические канцерогены среды обитания и злокачественные новообразования. – М.: Медицина, 2002. – 175 с.
11. Сулейманова Н.Д. Эколого-географические аспекты злокачественных новообразований женских половых органов // Вестник Дагестанской государственной медицинской академии. – 2016. – Т. 18, № 1. – С. 75–79.
12. Давыдов М., Демидов Л., Поляков Б. Современное состояние и проблемы онкологии // Врач. – 2006. – № 13. – С. 3–7.
13. Хомов Ю.А., Фомин А.Н. Капиллярный электрофорез как высокоэффективный аналитический метод (обзор литературы) // Современные проблемы науки и образования. – 2012. – № 5. – С. 349.
14. Comparison of capillary zone electrophoresis and high performance liquid chromatography methods for quantitative determination of ketoconazole in drug formulations / I. Velikinac, O. Cudina, I. Janković, D. Agbaba, S. Vladimirov // Farmaco. – 2004. – Vol. 59, № 5. – P. 419–424. DOI: 10.1016/j.farmac.2003.11.019
15. Determination of fenticonazole and its impurities by capillary electrophoresis and high performance liquid chromatography / M. Giovanna Quaglia [et al.] // J. of High Resolution Chromatography. – 2001. – Vol. 24, № 5. – P. 392–396.
16. Потребление продуктов питания в домашних хозяйствах Алтайского края [Электронный ресурс] / Федеральная служба государственной статистики по Алтайскому краю и Республике Алтай: Официальный сайт. – URL: http://akstat.gks.ru/wps/wcm/connect/rosstat_ts/akstat/resources/929513804e9856abb99c8ba636c2bbf1/%D0%9F%D0%BE% D1%82%D1%80.%D0%BF%D1%80%D0%BE%D0%B4.%D0%BF%D0%B8%D1%82%D0%B0%D0%BD%D0%B8%D1%8F.htm (дата обращения: 10.02.2018).

Оценка уровней рисков при воздействии на организм человека нитратного компонента пищевого рациона / И.П. Салдан, О.И. Швед, Б.А. Баландович, А.С. Нагорняк, О.Н. Мазко, О.Г. Макарова, С.П. Филиппова, О.В. Жукова, Н.Ю. Попелуев // Анализ риска здоровью. – 2018. – № 2. – С. 81–88. DOI: 10.21668/health.risk/2018.4.09
ASSESSMENT OF RISKS CAUSED BY IMPACTS EXERTED ON A HUMAN BODY BY NITRATES CONTAINED IN FOOD PRODUCTS

I.P. Saldan, O.I. Shved, B.A. Balandovich, A.S. Nagornyak, O.N. Mazko, O.G. Makarova, S.P. Filippova, O.V. Zhukova, N.Yu. Potseluev

Altai State Medical University, 40 Lenina avenue, Barnaul, 656038, Russian Federation

Food products contamination with xenobiotics of various genesis exerts negative influence on population health. According to multiple research performed on various territories in Russia, nitrates are basic contaminants occurring in food products and they make a considerable contribution into higher morbidity with specific nosologic forms, notably pathologies which are primarily caused by factors related to nutrition. The paper focuses on analysis of laboratory research data on nitrates concentrations in food products; the data were collected in Altai region and they are taken from research reports issued by certified test laboratories. The authors also performed their own laboratory research at the Institute for Occupational Hygiene and Industrial Ecology of the RF Public Healthcare Ministry; it allowed to conclude that increased nitrates contents in food products were a vital issue which requires further examination and research performed with high precision laboratory research techniques.

We assessed hazard quotients (HQ) for nitrates occurring in vegetables and melons, individual carcinogenic risks (ICR), and population carcinogenic risks (PCR). Our hygienic assessment of nitrates concentrations in food products allowed us to reveal boundaries of risk properties variability.

It is necessary to work out recommendations how to reduce exposure of Altai region population to nitrates and to give grounds for priority approaches to administrative decision-making aimed at lowering population risks caused by consumption of nitrates-contaminated food products.

Key words: hygienic assessment, contamination with nitrates, monitoring, safety, food products quality, risk assessment.

References

1. Kislitsyna L.V. Otsenka s oderzhaniya khimicheskikh kontaminant v produkakh pitaniya zhitelei Primorskogo kraya [Assessment of chemical contaminants concentrations in food products consumed by Primorskiy region population]. Zdorov'e. Meditsinskaya ekologiya. Nauka, 2011, vol. 46, no. 3, pp. 36–42 (in Russian).

2. Habermeyer M., Roth A., Guth S., Eisenbrand G., Diel P. [et al.] Nitrate and nitrite in the diet: how to assess their benefit and risk for human health. Molecular Nutrition and Food Research, 2015, vol. 59, no. 1, pp. 106–128.

3. Lucas Reijnders, Food safety, environmental improvement and economic efficiency in the Nethertlands. British Food Journal, 2004, vol. 106, no. 5, pp. 388–405.

4. Poortmans J.R., Carpentier A., Gualano B. Nitrate supplementation and human exercise performance: too much of a good thing? Current Opinion in Clinical Nutrition and Metabolic Care, 2015, vol. 18, no. 6, pp. 599–604. DOI: 10.1097/MCO.0000000000000222.

5. Onishchenko G.G., Zaitseva N.V., MayI.V. [et al.]. Analiz riska zdrav'yu v strategii gosudarstvennoy socio-ekonomicheskogo razvitiya: monografiya [Health risk analysis in the strategy of state social and economical development: monograph]. In: G.G. Onishchenko, N.V. Zaitseva eds. Moscow, Perm, Perm National Research Polytechnic University Publ., 2014, 738 p. (in Russian).

6. Ximenes M.I., Rath S., Reyes F.G. Polarographic determination of nitrate in vegetables. Talanta, 2000, vol. 51, no. 1, pp. 49–56.
7. Shur P.Z., Kir'yanov D.A., Atiskova N.G., Chigvintsev V.M., Khrushcheva E.V. Obosnovanie dopustimykh urovnei soderzhanija nitratov v rastenievodcheskoj produktii po kriterijam riska zdorov'yu [Justification of acceptable nitrate levels in crop product using health risk criteria]. Zdorov'e naseleния i sreda obitaniya, 2013, vol. 248, no. 11, pp. 47–48 (in Russian).

8. Lazarev V.V. Problema zabolovaemosti zlokachestvennymi novoobrazovaniyami v Omskoi oblasti [Morbidity with malignant neoplasms in Omsk region]. Bezopasnost' gorodskoi sredy: materialy mezhegional'noi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem [Urban environment safety: materials of theoretical and practical conference with international participation]. 2016, pp. 209–211 (in Russian).

9. Deryagina V.P., Krivosheeva L.V., Savluchinskaya L.A., Golubeva I.S., Ryzhova N.I. Mehanizmy realizatsii modifitsiruyushchego deistviya nitritov na kanstserogenez [Modifying impacts exerted by nitrates on carcinogenesis: implementation mechanisms]. Novye informacionnye tekhnologii v meditsine, biologii, farmakologii i ekologii: Materialy Mezhdunarodnoi konferentsii [New information technologies in medicine, biology, pharmacology and ecology: International conference materials]. In: E.L. Gloriozova ed. Gursul–Yalta, 2017, pp. 185–191 (in Russian).

10. Boev V.M., Kuksanov V.F., Bystrykh V.V. Khimicheskie kanstserogeny sredy obitaniya i zlokachestvennye novoobrazovaniya [Chemical carcinogens in the environment and malignant neoplasms]. Moscow, Meditsina Publ., 2002, 175 p. (in Russian).

11. Suleimanova N.D. Ekologicheskie aspekty zlokachestvennykh novoobrazovani zhenskikh polovykh organov [Environmental aspects of malignant neoplasms of female genital organs]. Vestnik Dagestanskoj gosudarstvennoi meditsinskoi akademii, 2016, vol. 18, no. 1, pp. 75–79 (in Russian).

12. Davydov M., Demidov L., Polyakov B. Sovremennoe sostoyanie i problemy onkologii [Oncology: contemporary state and issues]. Vrach, 2006, no. 13, pp. 3–7 (in Russian).

13. Komlev Yu.A., Fomin A.N. Kapillyarnyi elektroforez kak vyyskoeffektivnyi analiticheskii metod (obzor literatury) [Capillary electrophoresis as the high effective analytical method (review of the literature)]. Sovremenneye problemy nauki i obrazovaniya, 2012, no. 5, p. 349 (in Russian).

14. Velikinac I., Cudina O., Janković I., Agbaba D., Vladimir S. Comparison of capillary zone electrophoresis and high performance liquid chromatography methods for quantitative determination of ketoconazole in drug formulations. Farmaco, 2004, vol. 59, no. 5, pp. 419–424. DOI: 10.1016/j.farmac.2003.11.019.

15. Quaglia Giovanna M. [et al.]. Determination of fenticonazole and its impurities by capillary electrophoresis and high performance liquid chromatography. J. of High Resolution Chromatography, 2001, vol. 24, no. 5, pp. 392–396.

16. Potreblenie produktov pitaniya v domashnikh khozyaistvakh Altai region households. Federal'naya služba gosudarstvennoy statistiki po Altai region households. Available at: http://akstat.gks.ru/wps/wcm/connect/rosstat_ts/akstat/resources/929513804e9856abb99cbb9638c2bb1/%D0%9F%D0%BE%D1%82%D1%80.%D0%BF%D1%80%D0%BE%D0%B4.%D0%BF%D0%B8%D1%82%D0%B0%D0%BD%D0%88%D1%8F.htm (10.02.2018) (in Russian).

Saldan I.P., Shved O.I., Balandovich B.A., Nagornyak A.S., Mazko O.N., Makarova O.G., Filippova S.P., Zhukova O.V., Potseluev N.Yu. Assessment of risks caused by impacts exerted on a human body by nitrates contained in food products. Health Risk Analysis, 2018, no. 2, pp. 81–88. DOI: 10.21668/health.risk/2018.4.09.eng

Получена: 02.03.2018
Принята: 01.06.2018
Опубликована: 30.12.2018