A short review on the use of coconut shell powder as filler in cement concrete

S N I H A Nadzri1, M T H Sultan1,2,3 *, A U M Shah1,2, and S N A Safri2

1Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, 63000 Cyberjaya, Selangor Darul Ehsan, Malaysia

*Corresponding author
E-mail: thariq@upm.edu.my

Abstract. Environmentally-friendly composites had been the interest of researchers nowadays. Therefore the use of natural sources to gradually replace the conventional materials had been rapidly developed. Besides the use of natural fibres as reinforcement in polymer matrix composites, the use of fillers from natural sources, such as rice husk and corn cobs, was implemented in ceramic matrix composites. Solid waste like coconut shell is one of the potential material to be used as filler in these composites. Coconut shell in powder forms is usually used together with cement to produce high strength, more durability and lightweight concrete for structural component in construction area. Based on this review paper, coconut shell concrete showed comparable mechanical properties to the conventional concrete, in terms of its compressive strength. These properties suggested coconut shell powder as potential material to replace course aggregate in concrete.

1. Introduction
In 21st century, many sectors receiving challenges to develop new innovation by using eco-friendly materials from agricultural waste products to be converted into biocomposites [1][2]. One of the sector is ceramic matrices composites (CMC) [3]. CMC is a compound ceramic substrate which are blended together with ceramic fibers. Producing an eco-friendly CMC, some natural fibers such as rice husk, groundnut husk and corn cobs is added to the fabrication [3].

Coconut tree, known as an economical plant, is one of the beneficial raw material to be embedded with CMC to develop an environmental friendly product. Every single part of this economical plant can be benefited which provides foods from its fruit and soft trunk, water and oil from its fruit, roof and broom from its leaves, and bridges from its trunk [3]. Furthermore, in construction sector, timber and wood can be replaced by coconut trunk as the main structure. Husk, leaves and shell of coconut can also be being used as low cost materials since they are known as agriculture waste products [3].

Compared to husk and leaves, coconut shell can be more effective to be used in composites, since it is a solid agro waste products [4][5]. Coconut shell can be used as filler material to produce a high
strength to weight ratio CMC while reducing the use of conventional fillers [4]. Coconut shell has comparable mechanical properties to the mineral filler, which this plant sources also benefits in low cost, low density and renewability [6]. The use of coconut shell also can reduce the health hazard to a minimal level [6]. In addition, coconut shell has favourable properties in manufacturing fields, which it causes less abrasion to the machine leads to less possibility of machinery break down [6].

Since coconut shell is good in abrasive, which cause less damage to the machinery, it is known as one of the potential material for long lasting use. In terms of chemical composition, coconut shell properties are almost similar to hard wood [6][7][8]. Therefore, it was possible for the coconut shell powder to be used as a potential material in the development of hardwood industries, to improve the strength of building structure [6][7].

2. Coconut shell powder (CSP)

Coconut shells are generally found as waste materials in a semi sphere shape, which the water and inner soft part of the fruit had been removed. There are several processes in preparing coconut shell powder (CSP) from the waste coconut shell to be used as fillers in CMC. Figure 1 shows the preparation process of CSP cement.

![Figure 1. Procedures to prepare coconut shell powder (CSP) cement.](image)

Hairy fibres surround the coconut shell was removed before the dry coconut shell was crushed into small pieces of coconut shell chips, [9][10][11]. A crusher machine was then used to produce CSP from the chips, continue with the sieving of CSP to obtain the desired size. The sieved CSP was oven dried at 105 °C to remove moisture [9][10][12]. The properties of prepared CSP were listed in Table 1. These properties suggested CSP as a potential material in developing a coconut shell concrete.

Properties	Result
Specific gravity	1.33
Water absorption	23
Impact value	15.6%
Crushing value	2.58%

Table 1. Properties of coconut shell powder. [10]

It was reported from the X-Ray Fluorescence (XRF) analysis that the chemical compound found in the CSP was also normally found in the concrete. Therefore, the use of CSP in concrete can be beneficial to the properties of concrete. Table 2 shows the chemical composition of CSP obtained from the XRF analysis [13].
Table 2. XRF analysis of coconut shell powder. [13]

COMPOUND	FULL NAME	CONCENTRATION
Coconut shell powder (g)		5
Wax (g)		5
C	Carbon	10.00 %
K₂O	Potassium Oxide	1.21%
SiO₂	Silicon Dioxide	0.98%
Cl	Chlorine	0.79%
Fe₂O₃	Iron (III) Oxide	0.35%
MgO	Magnesium Oxide	0.31%
Na₂O	Sodium Oxide	0.29%
CaO	Calcium Oxide	0.23%
MoO₃	Molybdenum (VI) Oxide	0.17%
S	Sulphur	0<LLD
Al	Aluminium	0<LLD
P	Phosphorus	0<LLD

3. Mechanical properties of coconut shell powder (CSP) composites

The IS 10262-1982 standard method was applied in blending CSP with cement in the laboratory to ensure the fabrication achieved the standard concrete grade M-20 [14]. A mixer was used to blend all together CSP, sand and water to produce the coconut shell (CS) concrete in various ratio of each material. Fabricated CS concrete can be used not only as construction material, but also in replacing the conventional pipelines. The properties evaluation of concrete need to be carried out on the 7th and 28th days in terms of compressive strength [15] [16] [17]. The coconut shell powder was normally used to replace the coarse aggregate in concrete. Table 3 shows the compressive strength of CS concrete reported by previous researchers.

Table 3. Compressive strength of coconut shell (CS) concrete.

Ratio CA:CS (%)	Compressive strength (N/mm²)	Ref.	
	7 days	28 days	
100:0 (C)	24.6	28.3	[18]
95:5	15.7	25.6	
80:20	9.2	22.2	
100:0 (C)	11.11	22.33	[19]
90:10	5.16	13.56	
80:20	7.82	9.33	
100:0 (C)	20.53	27.58	[20]
90:10	18.14	23.46	
50:50	11.05	15.48	
100:0 (C)	21.25	28.54	[21]
90:10	18.17	25.47	
50:50	10.15	14.63	

Control sample was not reported [22]

90:10 | 18.87 | 21.25 |
70:30 | 8.88 | 9.88 |

Control sample was not reported [23]

90:10 | 19.98 | 21.79 |
80:20 | 13.56 | 15.25 |
It was depicted from Table 3 that replacement of aggregate at 5% and 10% marked slightly lower compressive strength compared to the conventional 100% course aggregate concrete. Except one study reported a distinct lower value to the conventional [23] [24], which is more than 40% difference, other studies showed bright potential of replacing the course aggregate with CSP. Although the minimum percentage replacement used could not achieve the conventional strength, the small difference can be overcome in the next future [25] [26]. In all studies, several ratios were tested to analyse their effects to the compression properties. The table also listed the maximum percentage replacement of CSP in each study, to give the overview of the lowest compressive strength of concrete being produced with the respective amount of CSP [27].

4. Conclusion

The compressive strength of coconut shell concrete is comparable to the conventional, leads to a bright potential for its use as replacement to the course aggregate in concrete. The use of coconut shell powder will result in a more environmentally friendly composites, which its applications especially in pipeline under the water can reduce the harm to the living things in the sea. A lightweight composite can also be being produced, as well as increasing the market value of the waste material from the coconut shell. Future studies need to be carried out to enhance the properties of these CS concrete and further its applications in other types of ceramic matrix composites.

Acknowledgment

This work is supported by UPM under GP-IPS grant, 9647100 and Newton Fund, 6300896. The authors would like to express their gratitude and sincere appreciation to the Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia and Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (HiCOE) for the close collaboration in this research.

References

[1] Shah A U M, Sultan M T H, Cardona F, Jawaid M, Talib A R A and Yidris N 2017 Thermal analysis of bamboo fibre and its composites BioRes. 12 2394-2406.
[2] Leman A S, Shahidan S, Nasir A J, Senin M J, Zuki S S M, Ibrahim W M H, Deraman R, Khalid F S and Azhar A T S 2017 Properties of concrete containing coconut shell powder (CSP) as a filler IOP Conf. Ser. Mater. Sci. Eng. 271 012006
[3] Utsev and Taku J K 2012 Coconut shell ash as partial replacement of ordinary portland cement in concrete production Int. J. Sci. Tech. Res. 18 86–89
[4] Salmah H, Koay S C and Hakimah O 2012 Surface modification of coconut shell powder filled polylactic acid biocomposites J. Thermoplast. Compos. Mater. 26 (6) 809–819
[5] Mostafa N H, Ismarrubie Z N, Sapuan S M and Sultan M T H 2017 Fibre prestressed composites: Theoretical and numerical modelling of unidirectional and plain-weave fibre reinforcement forms Compos. Struct. 159 410-423.
[6] Gunasekaran K, Kumar P S and Lakshmipathy M 2010 Compatibility studies on the coconut shell cement composites ICT J. 0972 (2998) 11-1
[7] Thanyakon S and Amnart S 2016 A study on coconut shell powder filled in epoxy resin: a remedy for electrical tree growth inhibition Key Eng. Mater. 718 36-39
[8] Jacob O A, Ayogu H and Olawale M S 2014 Evaluation of mechanical properties of coconut shell fibres as reinforcement material in epoxy matrix Int. J. Eng. Res. Tech. (IJERT). 3 (2) 2337-2348
[9] Mostafa N H, Ismarrubie Z N, Sapuan S M and Sultan M T H 2016 Effect of equi-biaxially fabric prestressing on the tensile performance of woven E-glass/polyester reinforced composites J. Reinf. Plast. Comp. 35 1093-103.

[10] Chary G H M and Ahmed K S 2018 Development and testing of coconut shell particle reinforced epoxy composite for power transmission applications J. Eng. Res. App. 26-35.

[11] Apeksha K and Sarvesh K J 2017 Performance of coconut shell as coarse aggregate in concrete Const. Build. Mater. 140 150-156

[12] Leman A S, Shahidan S, Senin M S and Hannan N I R R 2016 A preliminary study on chemical and physical properties of coconut shell powder as a filler in concrete IOP Conf. Ser.: Mater. Sci. Eng. 160 012059

[13] Lavanya B A, Sunitha M S, Umesh P and Chethan H H 2018 Experimental study of partial replacement of cement and coarse aggregate with fly ash and coconut shell Int. Res. J. Eng. Tech. 5 (4) 194-198

[14] Alok S, Savita S and Aditya K 2013 Study of mechanical properties and absorption behavior of coconut shell powder-epoxy composites Int. J. Mater. Sci. App. 2 (5) 157-161

[15] Salman S D, Leman Z, Sultan M T H, Ishak M R and Cardona F 2017 Effect of kenaf fibers on trauma penetration depth and ballistic impact resistance for laminated composites Text. Res. J. 87 2051-2065.

[16] Salman S D, Sharha M J, Leman Z, Sultan M T H, Ishak M R and Cardona F 2016 Tension-compression fatigue behavior of plain woven kenaf/kevlar hybrid composites BioRes. 11 3575-3586

[17] Salman S D, Leman Z, Sultan M T H, Ishak M R and Cardona F 2016 Influence of fiber content on mechanical and morphological properties of woven kenaf reinforced PVB film produced using a hot press technique Int. J. Polym. Sci. 2016 1-11

[18] Karolina H, Petr V, Miroslav M, Robert D A and Alessandro R 2019 Experimental description of the aging of the coconut shell powder epoxy composite IC MEM 2018, LNME, 456–464

[19] Gunasekaran K, Annadurai R, Prakash C S and Anandh S 2017 Study for the relevance of coconut shell aggregate concrete non-pressure pipe Ain Shams Eng. J. 8 523–530

[20] Amarnath Y and Ramachandrudu C 2012 Properties of concrete with coconut shells as aggregate replacement Int. J. Eng. Inv. 1 (6) 21-31

[21] Palak P Arora Dr N K and Shraddha R V 2015 Experiments on partial replacement of coconut shell as coarse aggregate in concrete Int. J. Inno. Res. Sci. Tech. 2 (1) 78-87

[22] Sourab Er S and Anish Er T 2017 A review on using coconut shell as coarse aggregate in concrete Int. J. Adv. Res. Sci. Eng. 2319 8354

[23] Shambharkar R D, Aditya S, Kunal R and Dolly W 2018 Study on light weight characteristics of self compacting concrete using fine pumice powder and coconut shell Int. Res. J. Eng. Tech. 5 (3) 1379-1382

[24] Dodda N 2017 An experimental study on partial replacement of coconut shell in coarse aggregate Int. J. Prof. Eng. Stud. 8 (5) 36-46

[25] Parag S K and Sandhiya R M 2014 Application of coconut shell as coarse aggregate in concrete a technical review J. Eng. Res. App. 4 (3) 498-501

[26] Dewanshu A and Kalurkar L G 2014 Coconut shell as partial replacement of coarse aggregate in concrete IOSR J. Mech. Civ. Eng. 1 (4) 100-103

[27] Mohan K, Abhishek B, Prithviraj M, Raghavendra and Vinay P 2018 Study on the effect of varying volume fraction on mechanical properties of coconut shell powder reinforced epoxy matrix composites IOP Conf. Ser.: Mater. Sci. Eng. 376 012097