VIRTUAL CLASPER ON LONG VIRTUAL KNOTS

YUKA KOTORII

Abstract. A C_n-move is a family of local moves on knots and links, which gives a topological characterization of finite type invariants of knots. We extend the C_n-move to (long) virtual knots by using the lower central series of the pure virtual braid, and call it an L_n-move. We then prove that for long virtual knots an L_n-equivalence generated by L_n-moves is equal to n-equivalence, which is an equivalence relation on (long) virtual knots defined by Goussarov-Polyak-Viro. Moreover we directly prove that two long virtual knots are not distinguished by any finite type invariants of degree $n−1$ if they are L_n-equivalent, for any positive integer n.

1. Introduction

The theory of finite type invariants of knots and links was introduced by Vassiliev [20] and Goussarov [4, 5] and developed by Birman-Lin [2]. Goussarov [6, 7] and Habiro [9, 10] independently introduced theories of surgery along embedded graphs in 3-manifolds, called Y-graphs or variation axes by Goussarov, and claspers by Habiro. An n-variation equivalence (called n-equivalence in [7]) or C_n-equivalence for links is generated by n-variations [7] or C_n-moves [10], respectively. Goussarov proved in [7] that for string links and knots in S^3, the n-variation (or C_n-) equivalence coincides with the Goussarov-Ohyama n-equivalence [4, 15]. Stanford proved in [18] that two links are not distinguished by any finite type invariant of degree n if one is obtained from the other by inserting an element of the $(n + 1)$-th lower central series subgroup of the pure braid group. Goussarov [7] and Habiro [9, 10] independently proved that two knots are not distinguished by any finite type invariant of degree n if and only if they are related by a finite sequence of C_n-moves and ambient isotopies. Moreover Stanford [19] translated Habiro’s result for C_n-moves into the pure braid setting.

On the other hand, a (long) virtual knot is defined by a (long) knot diagram with virtual crossings module Reidemeiser moves, introduced by Kauffman [11]. Goussarov-Polyak-Viro [8] showed that the (long) virtual knot can be redefined as Gauss diagram and also gave the theory of finite type invariants on Gauss diagrams. They also defined an n-equivalence on (long) virtual knots and notioned that the value of a finite type invariant of degree less than or equal to n depended only the n-equivalence class.

In this paper, we extend a C_n-move to (long) virtual knots, called an L_n-move, by using Stanford’s method. The L_n-moves generate the L_n-equivalence on (long) virtual knots. We prove that L_n-equivalence coincides with n-equivalence on long virtual knots. Moreover, we directly prove that, for any non-negative integer n, if two long virtual knots are L_n-equivalent, then they are not distinguished by any finite type invariants of degree $n−1$. Their extensions and results are also establish on virtual string links.

The author is partially supported by Grant-in-Aid for Young Scientists (B) (No. 16K17586), Japan Society for the Promotion of Science. This work was in part supported by RIKEN iTHEMS Program.

2010 Mathematics Subject Classification. 57M25, 57M27.
Acknowledgements

The author thanks Professor Kazuo Habiro for a lot of comments, discussions and suggestions. The author also thanks Professor Vassily Manturov for comments and suggestions.

2. Gauss diagram

A Gauss diagram on the interval is an oriented interval with several oriented chords having disjoint end points and equipped with sign as in Figure 1. Here, we call the chord an arrow.

![Figure 1. A Gauss diagram](image1)

Reidemeister moves among Gauss diagrams are the following three moves in Figure 2. First Reidemeister move (RI) is in the top row. Second Reidemeister move (RII) is in the second row. Third Reidemeister move (RIII) is in the remain two rows.

![Figure 2. The Reidemeister moves](image2)

Definition 2.1. Two Gauss diagrams D and D' are said to be equivalent if D and D' are related by Reidemeister moves. By $D \sim D'$ we mean that D and D' are equivalent. We define a long virtual knot to be the equivalence class of a Gauss diagram D, which is denoted by $[D]$. Similarly, the equivalence class of Gauss diagram on circle (k intervals) is virtual knot (k-component virtual string, respectively).

3. Finite type invariant of virtual knot

Goussarov Polyak and Viro defined a finite type invariant for (long) virtual knots in [8]. Similar way to classical knots, we can define Vassiliev-Goussarov filtration on \mathbb{Z}-module generated by the set of (long) virtual knots.
Definition 3.1. Let \mathcal{LVK} be the set of long virtual knots. For each $n \geq 0$, let \mathcal{SLVK}^n denote the set of equivalence classes of Gauss diagrams with n dashed arrows equipped with sign with fixing dashed arrows. We construct a map $\varphi : \mathcal{SLVK}^n \to \mathcal{LVK}$ as follows. Let D be a Gauss diagram with n dashed arrows. Let a_1, \ldots, a_n be the dashed arrows of D. For $\epsilon_1, \ldots, \epsilon_n$ in $\{\pm 1\}$, let $D_{\epsilon_1, \ldots, \epsilon_n}$ denote the Gauss diagram obtained from D by replacing each dashed arrow a_i with an arrow if $\epsilon_i = 1$ and removing each dashed arrow a_i if $\epsilon_i = -1$. We then define

$$\varphi([D]) = \sum_{\epsilon_1, \ldots, \epsilon_n \in \{\pm 1\}} \epsilon_1 \cdots \epsilon_n [D_{\epsilon_1, \ldots, \epsilon_n}].$$

Let f be an invariant of \mathcal{LVK} with values in an abelian group A. We extend it to \mathcal{SLVK} by linearly. Then f is said to be a finite type invariant of degree n if $f \circ \varphi$ vanishes for any long virtual knot with more than n dashed arrows.

Definition 3.2. Denote by J_n the subgroup of \mathcal{SLVK} generated by the set consisting of the element $\varphi([D])$, where $[D]$ is in \mathcal{SLVK}^n. It is easy to see that the J_n’s form a descending filtration of two-sided ideals of the monoid ring \mathcal{SLVK} under the composition:

$$\mathcal{LVK} = J_0 \supset J_1 \supset J_2 \supset \cdots,$$

which we call the Vassiliev-Goussarov filtration on \mathcal{LVK}. Here for Gauss diagrams (or virtual knots) D and D' $(K$ and $K')$, we denote by $D \cdot D'$ $(K \cdot K')$ their composition.

Later, we will redefine J_n by using claspers.

Remark 3.3. Let A be an abelian group and n a positive integer. The following two conditions are equivalent. A map is an A-valued finite type invariant of degree n on \mathcal{LVK} and the map is a homomorphism of \mathcal{SLVK} into A which vanishes on J_{n+1}.

Definition 3.4. For $n \geq 0$, two long virtual knots K and K' are said to be V_n-equivalent if K and K' are not distinguished by any finite type invariants of degree n with values in any abelian group, equivalently, $K \sim K' \in J_{n+1}$.

4. Definition of L_n-equivalence

By using the pure virtual braid group, we introduce a new equivalence relation on Gauss diagrams, called L_n-equivalence. Because the pure braid group is a subgroup of the pure virtual braid group (see [13]), this is an extension of C_n-equivalence. We then give properties of the set of L_n-equivalence classes.

Definition 4.1 ([12]). A pure virtual braid group PV_k on k strands is a group represented by the following group representation.

$$PV_k = \langle \mu_{ij} \mid 1 \leq i, j \leq k, i \neq j \rangle \quad \begin{cases} \mu_{ij} \mu_{ij} \mu_{ij} = \mu_{ij} \mu_{ij} \mu_{ij} & \text{(for all distinct } i, j, l) \\ \mu_{ij} \mu_{lm} = \mu_{lm} \mu_{ij} & \{i, j\} \cap \{l, m\} = \emptyset \end{cases}$$

Here, the element of the pure braid group is represented by a diagram as in Figure 3, where μ'_{ij} is correspondence with a horizontal arrow equipped with sign ϵ from the i-th strand to the j-th strand, and we determine that the orientation of the strand is from top to bottom. For example, the diagram in Figure 3 is correspondence with $\mu_{12} \mu_{31}^{-1} \mu_{23} \mu_{12}^{-1} \in PV_3$.

Let $h \in PV_k$ and $h' \in PV_{k'}$. We denote the composition and tensor product of two elements of the pure virtual braid group as $h \cdot h' \in PV_{k+k'} \in PV_{k+k'}$ for any k, k', respectively. By $\Gamma_n(G)$ we mean the n-th lower central subgroup of the group G, that is, $\Gamma_1(G) = G$ and $\Gamma_n(G) = \Gamma_{n-1}(G), G$, which is the commutator of $\Gamma_{n-1}(G)$ and G, that is $< a, b > a \in \Gamma_{n-1}(G), b \in G >$ where $[a, b] = aba^{-1}b^{-1}$.

Figure 3, where
Definition 4.2. Two Gauss diagrams D and D' are related by an L_n-move if there are a positive integer k, an element h in the n-th lower central subgroup $\Gamma_n(PV_k)$ of the pure virtual braid group PV_k on k strands and not in $\Gamma_{n+1}(PV_k)$, and an embedding e of k strands such that $D^{(h,e)} = D'$, where $D^{(h,e)}$ is obtained from D by attaching h by an embedding e of k strands of h in the interval of D except for the end points of all arrows of D as in Figure 4. By $D \xrightarrow{L_n} D'$ we mean that D' is obtained from D by L_n-move. In particular, we write $D^{(h,e)} \xrightarrow{L_n} D'$ if $D' = D^{(h,e)}$.

Figure 3. An element of pure virtual braid group

Figure 4. A clasper for a Gauss diagram

We call a pair (h, e) for D a clasper for D. We define that a clasper (h, e) is of degree n if $h \in \Gamma_n(PV_k)$ and $h \notin \Gamma_{n+1}(PV_k)$, where k is a positive integer, and denote the degree of the clasper (h, e) by $\deg((h, e))$. Hereinafter, we omit the number k of strands if it is not important. In particular, we call a pair (h, e) a tree clasper for D if $h \in \Gamma_n(PV_k)$ is an n-th commutator $[a_1, [a_2, \cdots [a_n, a_{n+1}] \cdots]$ where $a_i \in PV_k$ and a forest clasper otherwise. Two claspers for D are disjoint if the embeddings of all strands of claspers are disjoint in the interval of D. For disjoint claspers (h_1, e_1) and (h_2, e_2) for D, $D^{((h_1, e_1),(h_2, e_2))}$ means $(D^{(h_1, e_1)})^{(h_2, e_2)}$ or equivalently $(D^{(h_2, e_2)})^{(h_1, e_1)}$.

Definition 4.3. An L_n-equivalence is an equivalence relation on Gauss diagrams generated by the L_n-moves and Reidemeister moves. By $D \xRightarrow{L_n} D'$ we mean that D and D' are L_n-equivalent.

Proposition 4.4. The L_n-equivalence is an equivalence relation on Gauss diagrams.

Proof. First of all, we show the reflexive relation. For any $k \geq 1$ and $n \geq 1$, the identity element $1 \in \Gamma_n(PV_k)$ and $D^{(1,e)} = D$ for any embedding e. Therefore $D \xRightarrow{L_n} D$. Secondly, we show the symmetric relation. Let $D' = D^{(h,e)}$ where $h \in \Gamma_n(PV_k)$. Then there is an embedding e' of $h^{-1} \in \Gamma_n(PV_k)$ such that $D^{(h^{-1},e')} = D^{(h,h^{-1},e)}$.

Since the Gauss diagram $D^{(h, h^{-1}, e)}$ is D up to a sequence of second Reidemeister moves, we have that $D' \overset{L_2}{\sim} D$. Finally, the case of transitive relation is obvious. □

Proposition 4.5. If $1 \leq n \leq n'$, then an L_n-move is achieved by an $L_{n'}$-move. Therefore $L_{n'}$-equivalence implies L_n-equivalence.

Proof. By the property of the lower central series, $\Gamma_n(PV_k) < \Gamma_{n-1}(PV_k)$. □

Proposition 4.6. Two Gauss diagrams D and D' are L_n-equivalent if and only if there exists a clasper (h, e) of degree n such that $D^{(h, e)}$ equals to D' up to a sequence of Reidemeister moves.

Proof. A necessary condition is obvious. To prove a sufficient condition, we will show the following three statements (1), (2) and (3). (1) If D_2 is obtained from D_1 by a first (second or third, respectively) Reidemeister move and then an L_n-move (h_1, e_1) (or (h_2, e_2) or (h_3, e_3), respectively) $(n' \geq n)$, then there is an $L_{n'}$-move (h'_1, e'_1) or (h'_2, e'_2) or (h'_3, e'_3), respectively) and a sequence of Reidemeister moves such that D_2 is obtained from D_1 by the $L_{n'}$-move (h'_1, e'_1) or (h'_2, e'_2) or (h'_3, e'_3), respectively) and then the sequence of Reidemeister moves. (2) If D_2 is obtained from D_1 by an L_n-move (h, e) and then another L_n-move (h', e'), then there is an $L_{n'}$-move (h'', e'') $(n' \geq n)$ and two sequences of second Reidemeister moves such that D_2 is obtained from D_1 by one sequence of the second Reidemeister moves and then the $L_{n'}$-move (h'', e'') and then the other sequence of the second Reidemeister moves. (3) For any clasper (h, e) of degree more than or equal to n for D, there exists a clasper (h', e') of degree n for D such that $D^{(h, e)} = D^{(h', e')}$, because any $h \in \Gamma_{n+1}$ is represented by the product of elements in Γ_n. By (1), (2) and (3), if D and D' are L_n-equivalent, there is an L_n-move and a sequence of Reidemeister moves such that D' is obtained from D by the L_n-move and then the sequence of Reidemeister moves.

We show (1). We consider the case of the first Reidemeister move RI. In Figure 5 these Gauss diagrams are identical except in a local place of RI represented by this figure. By gray line we mean a clasper. Given a clasper (h_1, e_1), we can move the ends of chords of clasper out the arrow derived from RI by a sequence of second Reidemeister moves. We denote the obtained clasper by (h'_1, e'_1) (See Figure 5). Moreover similar considerations apply to the other first Reidemeister move.

```
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Change of an $L_n$-move and a first Reidemeister move}
\end{figure}
```

Similar way to RI, in the case of RII and $RIII$, we give claspers (h'_2, e'_2) and (h'_3, e'_3) as in Figure 6 and 7 which are one of RII and $RIII$. Here, in Figure 5 for simplicity we draw only one strand is embedding in each interval between endpoints of arrows derived from $RIII$.

We show (2). Given a Gauss diagram D_1 and a clasper (h, e) for D_1, we can transform D_1 to $D_1^{(h, h^{-1}, e)}$ by a sequence of the second Reidemeister moves. Let
$h \in \Gamma_n(PV_k)$ and $h' \in \Gamma_n(PV_{k'})$. There is an embedding \bar{e} of $h \otimes h'$ in $\Gamma_n(PV_{k+k'})$ such that $(D^h(h^{-1}, e))(h \otimes h', \bar{e}) = (D_1^h(h^{-1}, h', \bar{e}), \bar{e}_{h'})$. Moreover, $(D_1^h(h^{-1}, h', \bar{e})) \sim (D_2^h(h', \bar{e}_{h'})) = D_2$ up to a sequence of the second Reidemeister moves. We set $(h'', e'') = (h \otimes h', \bar{e})$. \Box

Remark 4.7. It is obvious that Proposition 4.6 is equivalent to the following statement. There exists the union H of disjoint claspers of degree n such that D^H equals to D'_{up} up to a sequence of the Reidemeister moves.

Remark 4.8. In [14], Meilhan and Yasuhara also extended the concept of the clasper to welded knots, which is a quotient of virtual knot.

Lemma 4.9. Let $n \geq 1$. Let D be a Gauss diagram and (h, e) a clasper of degree n for D. Then for any Gauss diagram D' which is equivalent to D there is a clasper (h', e') of degree n for D' such that D^h is equivalent to $D^{h'}$.

Proof. Since $D' \sim D$ and $D \overset{L2}{\sim} D^{(h, e)}$, we have that $D' \overset{L2}{\sim} D^{(h, e)}$. It is from Proposition 4.6 that there is a clasper (h', e') of degree n for D' such that $D^{(h, e)} \sim D^{(h', e')}$.

Remark 4.10. We can show Lemma 4.9 directly. If D' be obtained from D by Reidemeister move RI, RI or RIII, then given a clasper (h, e) for D we can construct a clasper (h', e') such that $D^h \sim D^{(h', e')}$ by similar method of Figure 5, 6 and 7 in the proof of Proposition 4.6.
Definition 4.11. A Gauss diagram D is L_n-trivial if D is L_n-equivalent to the trivial Gauss diagram D_0.

The next proposition is well-known fact of group theory.

Proposition 4.12. Let G be a group. Let x and y be elements in the n-th and n'-th lower central subgroup of G, respectively. Then the commutator $[x, y]$ of x and y is in $(n + n')$-th lower central subgroup of G.

Lemma 4.13. Let D be a Gauss diagram. Let $n_1, n_2 \geq 1$. Let (h_1, e_1) be a clasper of degree n_1 and (h_2, e_2) a clasper of degree n_2 for D, where they are disjoint. Let s_i be the i-th strand of h_1 and t_j the j-th one of h_2. Suppose that there is no end point of arrows and no embedding of another strands of claspsers on the interval between embeddings $e_1(s_i)$ and $e_2(t_j)$. Then, these embeddings may replace each other up to $L_{n_1 + n_2}$-equivalence as in Figure 8. Let (h_1, e_1') and (h_2, e_2') be claspsers of degree n_1 and n_2 obtained from (h_1, e_1) and (h_2, e_2) by replacing $e_1(s_i)$ and $e_2(t_j)$ as in Figure 8. Then, there exists a clasper (h, e) of degree $n_1 + n_2$ such that $(D((h_1, e_1'), (h_2, e_2'))) (h, e)$ is equivalent to $D((h_1, e_1), (h_2, e_2))$.

We call the transformation between two claspsers a sliding.

Proof. For $h_1 \in \Gamma_{n_1}(PV_{k_1})$ and $h_2 \in \Gamma_{n_2}(PV_{k_2})$, we construct $h \in \Gamma_{n_1 + n_2}(PV_{k_1 + k_2 - 1})$ and its embedding e. Let h_1 be an element of pure virtual braid $\Gamma_{n_1}(PV_{k_1 + k_2 - 1})$ from h_1 by adding $j - 1$ strands before 1st strand of h_1 and $k_2 - j$ strands after 1st strand of h_1. Let h_2 be an element of $\Gamma_{n_2}(PV_{k_1 + k_2 - 1})$ from h_2 by adding $i - 1$ strands between $(j - 1)$-th and j-th strand of h_2 and, $k_1 - i$ strands between j-th and $(j + 1)$-th strand of h_2. Then the i-th strand of h_1 and j-th strand of h_2 are the same order in h_1 and h_2.

If both of the orientations of s_i and t_j are compatible or not with the orientation of the interval of D, the product $\tilde{h}_1 \cdot \tilde{h}_2$ has a natural embedding e induced by e_1 and e_2. Let $h = [\tilde{h}_2, \tilde{h}_1]$. Then $h \in \Gamma_{n_1 + n_2}(PV_{k_1 + k_2 - 1})$ by Proposition 4.12. Since $h \cdot \tilde{h}_1 \cdot \tilde{h}_2 = \tilde{h}_2 \cdot \tilde{h}_1$, we may replace s_i and t_j each other and leave other embeddings up to $L_{n_1 + n_2}$-equivalence. If only one of the orientations of s_i and t_j is compatible with that of the interval of D, to adjust s_i and t_j the orientation we set $h = [\tilde{h}_2, \tilde{h}_1]$, where \tilde{h}_2 is the mirror image of h_2 for a horizontal line and its embedding e is induced by e_1 and e_2. \qed

Proposition 4.14. Let $n, n' \geq 1$. Let D be an L_n-trivial Gauss diagram and D' be an $L_{n'}$-trivial one. Then the Gauss diagram $D \cdot D'$ is $L_{n + n'}$-equivalent to $D' \cdot D$.

Proof. By assumption, there are two claspsers (h, e) and (h', e') with $h \in \Gamma_n(PV)$ and $h' \in \Gamma_{n'}(PV)$ such that $D_0^{(h, e)} \sim D$ and $D_0^{(h', e')} \sim D'$. Then by Lemma 4.13 we have $D \cdot D' \sim D_0^{(h, e)} \cdot D_0^{(h', e')} \sim L_{n + n'} D_0^{(h', e')} \cdot D_0^{(h, e)} \sim D' \cdot D$. \qed
Lemma 4.17. For any L_n-trivial Gauss diagram D, there is an L_n-trivial Gauss diagram D' such that both $D \cdot D'$ and $D' \cdot D$ are L_{2n}-trivial.

Proof. By assumption, there is a clasper $(h,e) \in \Gamma_n(PV_k)$ such that $D_0^{(h,e)} \sim D$. We define $D' = D_0^{(h^{-1},e)}$. Then by Lemma 4.13 we have $D \cdot D' \sim D_0^{(h,e)}$. $D_0^{(h^{-1},e)} \sim D_0$.

Notation 4.16. The set LVK_n of equivalence classes of Gauss diagrams has a monoid structure under the composition. For $n \geq 1$, let LVK_n denote the submonoid of LVK_n consisting of the equivalence classes of Gauss diagrams which are L_n-trivial. There is a descending filtration of monoids $LVK = LVK_1 \supset LVK_2 \supset LVK_3 \supset \cdots$.

For $l \geq n$, LVK_{n}/L_l denotes the quotient of LVK_n by L_l-equivalence. It is easy to see that the monoid structure on LVK_n induces that of LVK_n/L_l. There is a filtration on LVK_n/L_l of finite length $LVK/L_l = LVK_1/L_l \supset LVK_2/L_l \supset LVK_3/L_l \supset \cdots \supset LVK_l/L_l = \{1\}$.

Lemma 4.17. For $n \geq 1$, the monoid LVK_n/L_l ($1 \leq l \leq 2n$) is an abelian group.

Proof. By Proposition 4.15, for any $K \in LVK_n$ there exists $K' \in LVK_n$ such that both $K \cdot K'$ and $K \cdot K'$ are trivial up to L_{2n}-equivalence, and the monoid LVK_n/L_{2n} is a group. By Proposition 4.13 for any $K_1, K_2 \in LVK_n$, $K_1 \cdot K_2 = K_2 \cdot K_1$ up to L_{2n}-equivalence, and the group LVK_n/L_{2n} is abelian.

Proposition 4.18. Let $1 \leq n \leq l$. We then have as follows.

1. The monoid LVK_n/L_l is a group.
2. $[LVK_n/L_l, LVK_{n'}/L_l] \subset LVK_{n+n'}/L_l$ for $n, n' \geq 1$ with $n + n' \leq l$.
3. The group LVK_n/L_l is nilpotent.

Proof. (1) We fix l and prove it by induction on n. If $n = l$, it is obvious. Assume that LVK_{n+1}/L_l is a group for some n with $1 \leq n \leq l$. We then have a shot exact sequence of monoids:

$$1 \to LVK_{n+1}/L_l \to LVK_n/L_l \to LVK_{n+1}/L_l \to 1$$

Here, LVK_{n+1}/L_l and LVK_n/L_{n+1} are groups by the assumption of induction and Lemma 4.17. Therefore LVK_n/L_l is also a group.

(2) It is from Proposition 4.13 $a \in LVK_n/L_l$ and $b \in LVK_{n'}/L_l$ commute up to $L_{n+n'}$-equivalence. Here $[a, b] \sim_{L_{n+n'}} 1$. Therefore $[a, b] \subset LVK_{n+n'}/L_l$.

(3) From (2), it is easy to check.

5. L_n-equivalence and n-equivalence

In this section, we prove that L_n-equivalence coincides with n-equivalence defined by Goussarov-Polyak-Viro [8].

Definition 5.1. [8] Let $n \geq 0$. A Gauss diagram D on k strands is said to be n-trivial if the Gauss diagram satisfies the following condition. There exist $n + 1$ non-empty disjoint subsets $A_1, A_2, \cdots, A_{n+1}$ of the set of arrows of D such that for any non-empty subfamily of the set $\{A_1, A_2, \cdots, A_{n+1}\}$ the Gauss diagram obtained from D by removing all arrows which belongs to the subfamily is trivial up to a sequence of second Reidemeister moves.

Two Gauss diagrams D and D' are related by n-variation if D' is obtained from D by attaching an $(n-1)$-trivial Gauss diagram on several strands to segments of D without endpoints of any arrow. Two Gauss diagrams are said to be n-equivalent if they are related by $(n+1)$-variations and Reidemeister moves.
Theorem 5.2. For any \(n \geq 1 \), \(L_n \)-equivalence and \((n-1)\)-equivalence on long virtual knots are equal.

Proof. It is obvious that if two Gauss diagrams are \(L_n \)-equivalent, then they are \((n-1)\)-equivalent. Therefore it suffices to prove that if Gauss diagrams \(D \) and \(D' \) are related by an \(n \)-variation then they are \(L_n \)-equivalent.

Let \(D_t \) be an \((n-1)\)-trivial Gauss diagram such that \(D' \) is obtained from \(D \) by attaching \(D_t \). Let \(A_1, A_2, \cdots, A_n \) be disjoint sets of arrows of \(D \) satisfying the condition in Definition 5.1. By the property of \((n-1)\)-triviality, \(D \) coincides with the Gauss diagram obtained from \(D' \) by removing all arrows in \(A_1 \cup \cdots \cup A_n \) up to second Reidemeister move. Therefore, by the method of (1) in proof of Proposition 4.6, it is sufficient to consider the case that all arrows of \(D_t \) belong to \(A_1 \cup \cdots \cup A_n \). Let \(H \) be the set of tree claspers of degree 1 corresponding to the arrows in \(A_1 \cup \cdots \cup A_n \).

We define a weight for a clasper \(h \), which is a subset of \(\mathbb{N} \), and denote it by \(w(h) \). We consider \(H \) as a set of tree claspers each clasper of which assigns \(i \) as weight if the clasper corresponds with an arrow of \(A_i \). Let \(I \) be a finite subset of \(\mathbb{N} \). Then \(H(I) \) denote the subset of \(H \) each clasper of which has a subset of \(I \) as weight, and \(H_I \) denote the subset of \(H(I) \) each clasper of which has \(I \) as weight. Let \(N = \{1, 2, \cdots, n\} \). We then can regard \(D' \) as \(D^H(N) \). Moreover, by the property of \((n-1)\)-triviality if \(I \) is a proper subset of \(N \), then \(D^H(I) = D \) up to a sequence of second Reidemeister moves. We show the following claim, which proves the theorem.

Claim 5.3. Suppose that \(D \) and \(H \) are as above. Then there exists a set \(H' \) of tree claspers of degree \(\geq n \) with weight \(N \) such that \(D^{H'} \) is equivalent to \(D^H \).

Let us first prove the case that \(D \) is equivalent to the trivial Gauss diagram \(D_0 \). Then by Lemma 4.9, it is sufficient to show that the case that \(D \) is trivial. To prove this claim, we prove the following statement depending on a positive integer \(s \).

(A) There exists a set \(G = \{(h_1, e_1), \ldots, (h_k, e_k)\} \) of tree claspers \((h_i, e_i), \ldots, (h_k, e_k) \) \((k \geq 0)\) for \(D_0 \) such that for each \(i = 1, \ldots, k \) \(s \leq |w((h_i, e_i))| \leq \deg((h_i, e_i)) \) where \(\cdot \) means the number of a set, and \(D^{G(I)}_0 \sim D^{H(I)}_0 \) for every subset \(I \) of \(N \).

We prove it by induction on \(s \) for \(s = 1, 2, \cdots, n \). For \(s = 1 \), we can set \(G = H \). Under the assumption of the claim, assuming the statement (A) to hold for \(s < n \), we will prove it for \(s + 1 \). Let \(G \) be a set of tree claspers for \(D_0 \) satisfying (A) for \(s \). We take a subset \(I \) of \(N \) such that \(|I| = s \) and \(G_I \) is not empty. Then we shift all tree clasper in \(G_I \) to the ahead with fixing claspers in \(G \setminus G_I \) by sliding of claspers (Lemma 4.13) until all end points of all clasper in \(G_I \) are completely to the ahead of those in \(G \setminus G_I \). We denote the obtained set of tree claspers for \(D_0 \) by \(G' \). Here we define the weight of new tree claspers obtained by sliding in Lemma 4.13 as follows. If two claspers have the weight \(w_1 \) and \(w_2 \), then the new tree clasper \((h, e)\) has the weight \(w_1 \cup w_2 \). We remark that \(D^{G(I)}_0 \sim D^{G'(I)}_0 \) for every \(I \subset N \) and \(s < |w((h, e))| \leq \deg((h, e)) \) for any new tree \((h, e)\) \(G' \).

Let \(G'' \) be a set \(G \setminus G_I \) of tree claspers for the Gauss diagram \(D^{G_I}_0 \). We consider a subset \(J \) of \(N \). If \(J \supseteq I \), then it is clear that \(D^{G(J)}_0 = (D^{G_I}_0)^{(G(J))} \). If not, then the new tree claspers do not contain in \(G'' \). Hence \((D^{G_I}_0)^{(G(J))} = D^{G(J)}_0 \cdot D^{G_I}_0 \). By the assumption of claim, \(D^{G_I}_0 \) is equivalent to \(D_0 \). Therefore the Gauss diagrams \(D^{G(J)}_0 \) and \((D^{G_I}_0)^{(G(J))} \) are equivalent for every \(J \subset N \).

Repeating this procedure for \(I \) such that \(|I| = s \), we obtain a set of tree clasers \((h, e)\)'s with \(d((h, e)) \geq |w((h, e))| \geq s + 1 \) for a Gauss diagram which is equivalent to \(D_0 \). By Lemma 4.9, we obtain a set of tree clasers preserving above condition for \(D_0 \), which is the required set satisfying (A) for \(s + 1 \). This proves the claim for the case that \(D \sim D_0 \).
Next we prove the case that D is not equivalent to the trivial one. Since the set of L_n-equivalence classes has a group structure, there is an inverse D^{-1} of D up to L_n-equivalence. Then D is L_n-equivalent to $D \cdot D^{-1} \cdot D$. It is L_n-equivalent to $D' \cdot D^{-1} \cdot D$, since $D \cdot D^{-1}$ and $D' \cdot D^{-1}$ are L_n-equivalent. Because $D' \cdot D^{-1}$ is $(D \cdot D^{-1})^{H'}$, by Proposition 6.3 there exists a clasper h of degree $\geq n$ such that $(D \cdot D^{-1})^h \sim D_0$. Therefore it follows from the case $D \sim D_0$ that there exists a set H' of claspers of degree $\geq n$ such that $((D \cdot D^{-1})^h)^{H'} \sim ((D \cdot D^{-1})^h)^{H'}$. Hence D is L_n-equivalent to D'.

Remark 5.4. Even though we change “second Reidemeister moves” into “Reidemeister moves” in the definition of the n-trivial in Definition 5.1, we can show Theorem 5.2 similarly. Therefore it is concluded that these two n-equivalences coincide.

6. L_n-EQUIVALENCE AND V_n-EQUIVALENCE

Goussarov-Polyak-Viro \cite{GPV} mentioned that the value of a finite type invariant of degree less than or equal to n depends only on the n-equivalence classes. Therefore it follows from Theorem 5.2 that L_{n+1}-equivalence implies V_n-equivalently, indirectly. In this section, we give this relation directly, by redefining the two-sided ideal J_n of the monoid ring $\mathbb{Z}\mathcal{LVK}$ by using claspers.

Definition 6.1. Let $l \geq 1$. A scheme of size l, $H = \{(h_1, e_1), (h_2, e_2), \ldots , (h_l, e_l)\}$, for a Gauss diagram D is the set of disjoint claspers for D. Denote an element $[D, H]$ of $\mathbb{Z}\mathcal{LVK}$ by

$$[D, H] = \sum_{G \subseteq H} (-1)^{|G|} [DG],$$

where G runs over all 2^l subsets of H. The degree of a scheme $H = \{(h_1, e_1), (h_2, e_2), \ldots , (h_l, e_l)\}$ is the sum of the degree of its elements, denoted by $\deg(H)$.

Lemma 6.2. Let D be a Gauss diagram and H a scheme of size l for D of degree n. Then for any Gauss diagram D' which is equivalent to D there is a scheme H' of size l for D' of degree n such that $[D, H] = [D', H']$ in $\mathbb{Z}\mathcal{LVK}$.

Proof. If D' is obtained from D by Reidemeister move RI, RII or RIII, we can construct a scheme H' such that $D^h \sim D'^{H'}$ by similar method of Figure 5, 6 and 7 in the proof of Proposition 4.4. From the construction of H', for each $G \subseteq H'$, there is the corresponding $G' \subset H'$ such that $D^{G'} \sim D'^{G'}$. Therefore $[D, H] = [D', H']$ in $\mathbb{Z}\mathcal{LVK}$.

Lemma 6.3. (1) $[D, \emptyset] = [D]$.
(2) $[D, \{(h_1, e_1), (h_2, e_2), \ldots , (h_l, e_l)\}]$ = $[D,(h_1, e_1), \{(h_2, e_2), \ldots , (h_l, e_l)\}] = [D, \{(h_1, e_1), \ldots , (h_l, e_l)\}]$.
(3) $[D, \{(h_{i_1}, e_{i_1}), \ldots , (h_{i_m}, e_{i_m}), (h_{i_{m+1}}, e_{i_{m+1}}), \ldots , (h_{i_l}, e_{i_l})\}]$ = $\sum_{i=1}^m [D^{(h_{i_1}, e_{i_1}), \ldots , (h_{i_{m+1}}, e_{i_{m+1}}), \ldots , (h_{i_l}, e_{i_l})}]$.

Proof. It is easy to check.

Definition 6.4. Let n, l be integers with $1 \leq l \leq n$. Let $J_{n,l}$ denote the two-sided ideal of $\mathbb{Z}\mathcal{LVK}$ generated by the elements $[D, H]$ under the composition, where D is any Gauss diagram and H is any scheme of size l for D of degree n.

Remark 6.5. By Lemma 6.3(3), $J_{n,l}$ can be generated by schemes $[D, H]$ where H is the set of tree claspers for D.

Remark 6.6. The natural homomorphism $i : \mathbb{Z}\mathcal{LVK} \rightarrow \mathbb{Z}(\mathcal{LVK}/L_n)$ induces the ring isomorphism $\mathbb{Z}\mathcal{LVK}/J_{n,1} \approx \mathbb{Z}(\mathcal{LVK}/L_n)$.
Lemma 6.7. Let D be a Gauss diagram. We then have the following properties.

(1) For any integer $n \geq 1$ $J_{n,n} = J_n$
(2) For any integers n, l with $1 \leq l \leq n$, $J_{n,l} \subset J_{n,l+1}$
(3) For any integers n, n' with $1 \leq l \leq n$, $J_{n',l} \subset J_{n,l}$

Proof. (1) We show that

$$\varphi([\overbrace{\cdots}^{\nu_1} \overbrace{\cdots}^{\nu_{n-2}} \overbrace{\cdots}^{\nu_n}]) = [\overbrace{\cdots}^{\nu_1} \overbrace{\cdots}^{\nu_{n-2}} \overbrace{\cdots}^{\nu_n}]$$

where the left-hand side of the equation means the image of n dashed arrows by φ and the right-hand side of the equation means a Gauss diagram with a scheme of size n of degree n, which consists of n claspers of degree 1. If $n = 1$, $\varphi([\overbrace{\cdots}^{\nu_1} \overbrace{\cdots}^{\nu_{n-2}} \overbrace{\cdots}^{\nu_n}]) = [\overbrace{\cdots}^{\nu_1} \overbrace{\cdots}^{\nu_{n-2}} \overbrace{\cdots}^{\nu_n}]$. Assume the formula holds less than or equal to n, it is easy to check that the formula holds $n + 1$.

(2) It suffices to show that $J_{n,l} \subset J_{n,l+1}$ for n, l with $1 \leq l \leq n-1$. Let $[D, H] \in J_{n,l}$. By assumption, there is a clasper of degree d in H, say to (h_1, e_1), where $d \geq 2$. Then h_1 can be represented by a pure virtual braid $[h_{1,1}, h_{1,2}] \cdot [h_{2,1}, h_{2,2}] \cdot \cdots \cdot [h_{m,1}, h_{m,2}]$ where $\deg(h_{i,j}) = d_j$ for any i and j and $d_1 + d_2 = d$. Let $h_{i,j} = h_{i,j} \otimes h_{i,j}^{-1} \otimes h_{i,j}^{-1} \otimes \cdots \cdot h_{j,m} \otimes h_{j,m}^{-1}$ for $j = 1, 2$. Then $\deg(h_{i,j}^{-1}) = d_j$ and $D_{(h_{i,j}^{-1})} \sim D_0$, where e_{i}^{1} is induced by e_1. Therefore we have

$$[D_0, \{(h_1, e_1)\}] = [D_0^{(h_1, e_1)}] - [D_0]$$
$$= [D_0^{(h_1, e_1)}] - [D_0^{(h_2, e_1)}] + [D_0]$$

Hence

$$[D, H] = [D, \{(h_1, e_1), \cdots, (h_l, e_l)\}]$$
$$= [D, \{(h_1^{e_1}, e_1^{1}), (h_2^{e_1}, e_1^{2}), (h_2, e_2), \cdots, (h_l, e_l)\}]$$

$\in J_{n,l+1}$.

(3) It suffices to show that $J_{n+1,l} \subset J_{n,l}$ for n, l with $1 \leq l \leq n$. Let $[D, H] \in J_{n+1,l}$. By assumption, there is a clasper of degree d in H, say to (h_1, e_1), where $d \geq 2$. Since $h_1 \in \Gamma_d(PV_{m,k}) \subset \Gamma_{d-1}(PV_k)$ for some k, we have $[D, H] \in J_{n,l}$. By Lemma 6.7 we can redefine J_n as the ideal of $\mathbb{Z}[LVK]$ generated by elements $[D, H]$ where D is any Gauss diagram and H is any scheme for D of degree n.

Proposition 6.8. For any $n \geq 0$, if K and K' are L_{n+1}-equivalent, then K and K' are V_n-equivalent.

Proof. By Remark 6.6 and Lemma 6.7 if K and K' are L_{n+1}-equivalent, then $K - K' \in J_{n+1,1} \subset J_{n+1,n+1} = J_{n+1}$. It is equivalent to that K and K' are V_n-equivalent.

References

[1] V.G. Bardakov, The virtual and universal braids, Fund. Math. 184 (2004), 1–18.
[2] J.S. Birman, X.S. Lin, Knot polynomials and Vassiliev invariants, Invent. Math. 111 (1993) 225–270.
[3] R. Fenn, R. Rimanyi, and C. Rourke, Topology 36 (1), 123–135 (1997).
[4] M.N. Goussarov, On n-equivalence of knots and invariants of finite degree, from “Topology of manifolds and varieties”, Adv. Soviet Math. 18, Amer. Math. Soc. Providence, RI (1994) 173–192.
[5] M.N. Goussarov, A new form of the Conway-Jones polynomial of oriented links, from: “Topology of manifolds and varieties, Adv. Soviet Math. 18, Amer. Math. Soc. Providence, RI (1994) 167–172.
[6] M.N. Goussarov (Gusarov), Finite type invariants and n-equivalence of 3-manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) no. 6, 517–522.
[7] M.N. Goussarov, Variations of knotted graphs. The geometric technique of n-equivalence, (Russian), Algebra i Analiz 12 (2000), no. 4, 79–125; translation in St. Petersburg Math. J. 12 (2001), no. 4, 569–604.
[8] M. Goussarov, M. Polyak, and O. Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000), 1045–1068.
[9] K. Habiro, Claspers and the Vassiliev skein modules, PhD thesis, University of Tokyo (1997).
[10] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.
[11] L. H. Kauffman, Virtual knot theory, Europ. J. Combin. 20 (1999), no. 7, 663–691.
[12] L. H. Kauffman, S. Lambropoulou, A categorical structure for the virtual braid group, Communications in Algebra. 39, no. 12 (2011), 4679–4704.
[13] V. O. Manturov, An elementary proof of the embeddability of classical braids into virtual braids, Dokl. Akad. Nauk. 469 (2016), no. 5, 535–538.
[14] J. B. Meilhan, A. Yasuhara, Arrow calculus for welded and classical links, arXiv:1703.04658
[15] Y. Ohyama, A new numerical invariant of knots induced from their regular diagrams, Topology Appl. 37 (1990), no. 3, 249–255.
[16] M. Polyak and O. Viro, Gauss diagram formulas for Vassiliev invariants, International Math. Research Notices, (1994), No. 11, 445–453.
[17] T Stanford, Finite type invariants of knots, links, and graphs, Topology, 35 (1996) 1027–1050.
[18] T Stanford, Braid commutators and Vassiliev invariants, Pacific Jour. of Math. 174 (1996) 269–276.
[19] T. Stanford, Vassiliev invariants and knots modulo pure braid subgroups, preprint.
[20] V. A. Vassiliev, Cohomology of knot spaces, from: “Theory of Singularities and its Applications”, Adv. Soviet Math., Amer. Math. Soc. Providence, RI (1990) 23–69.