The SARS-CoV-2 arginine dimers

Antonio R. Romeu (antonioramon.romeu@iubilo.urv.cat)
University Rovira i Virgili

Enric Ollé
University Rovira i Virgili

Short Report

Keywords: SARS-CoV-2, Sarbecovirus, Arginine dimer, Arginine codons usage, Bioinformatics

DOI: https://doi.org/10.21203/rs.3.rs-770380/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
The SARS-CoV-2 arginine dimers

Antonio R. Romeu1 and Enric Ollé2

1: Chemist. Professor of Biochemistry and Molecular Biology. University Rovira i Virgili. Tarragona. Spain. Corresponding author. Email: antonioramon.romeu@iuibo.urv.cat

2: Veterinarian, Biochemist. Associate Professor of the Department of Biochemistry and Biotechnology. University Rovira i Virgili. Tarragona. Spain. Email: enric.olle@urv.cat

Abstract

Arginine is present, even as a dimer, in the viral polybasic furin cleavage sites, including that of SARS-CoV-2 in its protein S, whose acquisition is one of its characteristics that distinguishes it from the rest of the sarbecoviruses. The CGGCGG sequence encodes the SARS-CoV-2 furin site RR dimer. The aim of this work is to report the other SARS-CoV-2 arginine pairs, with particular emphasis in their codon usage. Here we show the presence of RR dimers in the orf1ab related non structural proteins nsp3, nsp4, nsp6, nsp13 and nsp14A2. Also, with a higher proportion in the structural protein nucleocapsid. All these RR dimers were strictly conserved in the sarbecovirus strains closest to SARS-CoV-2, and none of them was encoded by the CGGCGG sequence.

Key words

SARS-CoV-2, Sarbecovirus, Arginine dimer, Arginine codons usage, Bioinformatics

Introduction

Arginine (R) is a polar and non-hydrophobic amino acid, with a positive charged guanidine group, a physiological pH, linked a 3-hydrocarbon aliphatic chain. Arginine participates in the binding of negatively charged substrates and/or protein actives sites (1). Consistently, arginine is involved in viral polybasic proteolitic cleavage sites, even as a dimers, as substrate of the ubiquitously expressed serine protease furin (2,3).

In this context, a notable characteristic of the SARS-CoV-2 is the acquisition of a polybasic cleavage site (PRRAR) at the S1-S2 boundary of the S protein, which is recognized by the furin protease, that greatly mediates the fusion of human cell and viral membranes, and the rapid human-to-human virus transmission (4-7). That acquisition was achieved through an insertion of four amino acids (PRRA) in the S protein. Neither sarbecoviruses nor bat sarbecovirus strains closest to SARS-CoV-2, have a polybasic cleavage site (4).

However, this site is common in viral proteins, such as the hemagglutinin (H5) protein of the avian influenza viruses (2) or the S protein of some of the seventh coronavirus known to infect humans: HCoV-HKU1 (RRKRR-756, coordinate based on S protein), HCoV-OC43 (RRSRR-764) and MERS-CoV (MLKRR-700) (4).

Another notable characteristic of the SARS-CoV-2 is the CGG arginine codon used encoding the RR dimer of the polybasic furin site. The CGGCGG nucleotide sequence was not previously seen encoding RR pairs of viral furin sites (8). Arginine is encoded by the codons CGU, CGC, CGA, CGG, AGA, and AGG. In SARS-CoV-2 the arginine CGG codon is the less often used (frequency 0.03) (8).

The aim of this work is to report the other RR dimers in the SARS-CoV-2. That is, how many are there? In what proteins? How are they coded? And, going a little further, are these RR dimers conserved in the sarbecovirus strains closest to SARS-CoV-2? How are they encoded?
Methods

The source of information were NCBI GenBank and GISAID databases. The SARS-CoV-2 reference sequence (NCBI, GenBank NC_045512.2 and GISAID, EPI_ISL_402124), WIV04 isolate, was also used as reference sequence in this study. The sarbecoviruses used were the following: four human SARS-CoV-2 (WIV04, Wuhan-Hu-1, CDC-CruiseA-12, INMI1), nine bat closest to SARS-CoV-2 (RmYN02 (9), RatG13 (19), RShsTT200, RShsTT182 (11), RpYN06 (12), RacCS203 (13), PrC31, ZC45, ZXC21 (14)), six from pangolin (MP789, GX-P5L, GX-P4L, GX-P1E, GX-P5E, GX-P2V), two bat sarbecovirus more phylogenetically distant to SARS-CoV-2 (BM48-31, BtKY72) and two SARS-CoV sarbecovirus (human, HKU-39849; and ferret Tor 2/FP1-10912) (Table 1). First, it was identified the proteins of the SARS-CoV-2 having the RR pair. Second, for the sarbecovirus used in this study, it was created an in-house database of their genes and their orthologous. Since not all virus genomes were fully annotated, for each of these sarbecovirus, the gene sequences were obtained through successive pairwise BLASTn analyses, using gene sequences of the SARS-CoV-2 reference sequence as a query. The protein sequences were obtained by translating the gene sequences. Multiple sequence alignments were created by the EMBL Clustal Omega (v.1.2.4) using default parameters. Gene and protein multi-alignments were done separately. In the gene multi-alignments, the RR dimer codons were identified, from the position of the RR dimers in the corresponding protein multi-alignments multiplied by three (the RR pairs codons were not identified using codon multiple alignments). All Tables are sorted according the pairwise BLASTn identity percentage between the sarbecovirus genome sequence and the SARS-CoV-2 genome reference sequence.

Results and Discussion

According to the SARS-CoV-2 genome structure (5), from the 5' end, there are two large open reading (ORF1a and ORF1b) covering two-thirds of the RNA genome, and encoding 15 non-structural proteins (nsp) that compose the viral replication and transcription complex. It is followed by the other third of the genome, already in the region of the 3' end that the encodes structural proteins, namely spike (S), envelope (E), membrane (M), nucleocapsid (N). All these SARS-CoV-2 proteins were analysed for the presence of RR dimers. Results are shown in Table 2.

In the S protein, the only RR dimer is that of the polybasic furin cleavage site. However, RR pairs were found in some orf1ab related non-structural proteins that make up by the RNA polymerase complex. Also, RR pairs were found and in the structural protein nucleocapsid, encoded by the N gene. Among the non-structural proteins, RR pairs were in the papain-like protease (nsp3); the proteins involved in the formation of replication compartments (nsp3, nsp4 and nsp6); the helicase (nsp13); and, and in the 3'–5' exonuclease that assists RNA synthesis with a unique RNA proofreading function (nsp14) (5).

Regarding the nucleocapsid protein, it is involved in the package of the positive strand viral genome RNA into a helical ribonucleocapsid (15). Keeping in mind the positive charged of the arginine guanidine group, the presence of the four RR dimers in the SARS-CoV-2 nucleocapsid protein, agrees with what is known that arginine residues are essential in viral capsid assembly (1).

Interestingly, the RR dimers found in that SARS-CoV-2 proteins (apart from that of the S protein) were strictly conserved in the sarbecoviruses strains closely phylogenetically related to it. This suggests a fundamental biological role of these RR doublets. Table 3 shows again the sarbecoviruses used in this study, with the genomic coordinates of the genes, or part of them, that harbour the encoding RR dimers.

Table 4 shows these RR dimers in detail. However, in some orf1ab related non structural proteins from the more distant sarbecoviruses strains, the lysine (K) took the place of the arginine. Lysine, that is also amphipathic, is also highly present in viral polybasic fury cleavage sites (2).
However, the main meaning of table 4 was to show the triplets that encode the RR dimers. It was not a surprise that the AGA arginine majority codon in SARS-CoV-2 (frequency 0.445) (8) was the most frequent encoding the RR dimers. In few occasions the repetition of the same codon appeared, but when it took place, it was in the AGAAGA sequence. On the other hand, the CGGCGG sequence, encoding the RR dimer of the SARS-CoV-2 furin site, did not appear in any case.

Acknowledgements

This work has not been awarded grants by any research-supporting institution.

Competing interest declaration

All authors declare that they have no conflicts of interest.

References

1. Michael J. Harms, Jamie L. Schlessman, Gloria R. Sue, and Bertrand Garcia-Moreno E. Arginine residues at internal positions in a protein are always charged. Proceedings of the National Academy of Sciences of the United States of America (PNAS). 108(47):18954-18959, 2011. PMID: 22080604. doi:10.1073/pnas.1104808108.

2. Elisabeth Braun, Daniel Sauter. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. E1073, 2019. PMID: 31406574. doi.org/10.1002/cti2.1073.

3. Imène Kara, Marjorie Poggi, Bernadette Bonardo, Roland Govers, Jean-François Landrier, Sun Tian, Ingo Leibiger, Robert Day, John W M Creemers, Franck Peiretti. The Paired Basic Amino Acid-cleaving Enzyme 4 (PACE4) Is Involved in the Maturation of Insulin Receptor Isoform B. J. Biol. Chem. 290:2812-2821, 2015. PMID: 25527501. doi: 10.1074/jbc.M114.592543.

4. Kristian G. Andersen, Andrew Rambaut, W Ian Lipkin, Edward C Holmes, Robert F Garry. The proximal origin of SARS-CoV-2.

5. Philip V'kovski, Annika Kratzel, Silvio Steiner, Hanspeter Stalder, Volker Thiel. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. Oct 28;1-16, 2020. PMID: 33116300. doi: 10.1038/s41579-020-00468-6.

6. Shuai Xia, Qiaoshuai Lan, Shan Su, Xinling Wang, Wei Xu, Zezhong Liu, Yun Zhu, Qian Wang, Lu Lu, Shibo Jiang. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct. Target Ther. 5:92, 2020. PMID: 32532959. doi.org/10.1038/s41392-020-0184-0.

7. Markus Hoffmann, Hannah Kleine-Weber, Stefan Pöhlmann. Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 78:779-784, 2020. PMID: 32362314. doi: 10.1016/j.molcel.2020.04.022.

8. Antonio R. Romeu, Enric Ollé. SARS-CoV-2 and the Secret of the Furin Site. Preprints 2021, 2021020264 (doi: 10.20944/preprints202102.0264.v1).

9. Hong Zhou, Xing Chen, Tao Hu, Juan Li, Hao Song, Yanran Liu, Peihan Wang, Di Liu, Jing Yang, Edward C. Holmes, Alice C. Hughes, Yuhai Bi, Weifeng Shi. A Novel Bat Coronavirus Closely Related to SARS-CoV-2
Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current Biology. 30(11):P2196-2203.e3, 2020. PMID:34147139. doi: 10.1016/j.cell.2021.06.008.

10. Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, Hui-Dong Chen, Jing Chen, Yun Luo, Hua Guo, Ren-Di Jiang, Mei-Qin Liu, Ying Chen, Xu-Rui Shen, Xi Wang, Xiao-Shuang Zheng, Kai Zhao, Quan-Jiao Chen, Fei Deng, Lin-Lin Liu, Bing Yan, Fa-Xian Zhan, Yan-Yi Wang, Geng-Fu Xiao, Zheng-Li Shi. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273, 2020. PMID: 32015507. doi:10.1038/s41586-020-2012-7. (Addendum, 588(7836):E6, 2020. PMID: 3319918. doi:10.1038/s41586-020-2951-z).

11. Vibol Hul1, Deborah Delaune, Erik A Karlsson1, Alexandre Hassanin, Putita Ou Tey, Artem Baidaliuk, Fabiana Gámbaro, Vuong Tan Tu, Lucy Keatts, Jonna Mazet, Christine Johnson, Philippe Buchy, Philippe Dussart, Tracey Goldstein, Etienne Simon-Lorière, Veasna Duong. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. bioRxiv. January 26, 2021. doi.org/10.1101/2021.01.26.428212.

12. Hong Zhou, Jingkai Ji, Xing Chen, Yuhai Bi, Juan Li1, TaoHu, Hao Song, 3Yanhua Chen, Mingxue Cui, Yanyan Zhang, Alice C. Hughes, Edward C. 4Holmes, Weifeng Shi1. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. bioRxiv. March 8, 2021. doi/10.1101/2021.03.08.434390.

13. Supaporn Wacharapluesadee, Chee Wah Tan, Patarapol Maneenorn, Prateep Duengkae, Feng Zhu, Yutthana Joyjinda, Thongchai Kaewpom, Wan Ni Chia, Weenassarin Ampoot, Beng Lee Lim, Kanthita Worachotsueptrakun, Vivian Chih-Wei Chen, Nutthinee Sirichan, Chanida Ruchrisiarod, Apaporn Rodpan, Kirana Noradechanon, Thanawadee Phaihana, Niran Jantarat, Boonchu Thongnumchaima, Changchun Tu, Gary Crameri, Martha M Stokes, Thiravat Hemachudha, Lin-Fa Wang. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nature communications. 12(1):972, 2021. PMID: 33563978. doi: 10.1038/s41467-021-21240-1.

14. Dan Hu, Changqiang Zhu, Lele Ai, Ting He, Yi Wang, Fuqiang Ye, Lu Yang, Chenxi Ding, Xuhui Zhu, Ruicheng Lv, Jin Zhu, Bachar Hassan, Youjun Feng, Weilong Tan & Changjun Wang. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerging Microbes & Infections. 7:154, 2018. PMID: 30209269. doi: 10.1038/s41426-018-0155-5.

15. 12. UniProtKB - P0DTC9 (NCAP_SARS2). SARS-CoV-2 Nucleoprotein. Accessed July 25, 2021. https://www.uniprot.org/uniprot/P0DTC9.
Table 1. Sarbecovirus used in the analysis for the conserved SARS-CoV-2 arginine doublets

Sarbecovirus name	Host	Country	Year	Accession num.	% Identity*
WIV04	Human (SARS-CoV-2)	China	2019	MN906528.1	Reference
Wuhan-Hu-1	Human (SARS-CoV-2)	China	2019	NC_045512.2	100.00
CDC-CruiseA-12	Human (SARS-CoV-2)	USA	2020	MT159709.2	99.99
INMI1	Human (SARS-CoV-2)	Italy	2020	MT066156.1	99.99
RmYN02	Bat	China	2019	EPI_ISL_412977	97.19
RatG13	Bat	China	2013	MN996532.2	96.14
RShsTT200	Bat	Cambodia	2020	EPI_ISL_852604	94.57
RShsTT182	Bat	Cambodia	2020	EPI_ISL_852605	94.57
RpYN06	Bat	China	2020	EPI_ISL_699446	94.00
RacCS203	Bat	Tailandia	2020	Mw251308.1	94.00
PrC31	Bat	China	2018	Mw703458.1	94.00
MP789	Bat	China	2019	MT121216.1	90.11
ZC45	Bat	China	2017	MG772933.1	89.12
ZXC21	Bat	China	2015	MG772934.1	88.65
GX-P5L	Pangolin	China	2017	MT040335.1	85.98
GX-P4E	Pangolin	China	2017	MT040333.1	85.97
GX-P1E	Pangolin	China	2017	MT040334.1	85.95
GX-P5E	Pangolin	China	2017	MT040336.1	85.95
GX-P2V	Pangolin	China	2018	MT072864.1	85.94
BM48-31	Bat	Bulgaria	2008	NC_014470.1	89.79
BtKY72	Bat	Kenya	2007	KY352407.1	88.84
HKU-39849	Human (SARS-CoV)	China	2003	GU553363.1	82.30
Tor 2/FP1-10912	Ferret (SARS-CoV)	USA	2003	JX163926.1	82.30

* Pairwise NCBI-BLASTn percentage of identity, using the NC_045512.2 SARS-CoV-2 reference sequence (WIV04) as a query.
Table 2. The SARS-CoV-2 proteins having RR dimer(s) and their genes. The coordinates are based on the reference sequence. Data of the RR pair involved in the polybasic furin cleavage site of the S protein is highlighted in red.

Gene	Genome coord.	RR	Protein	Codons	Gene coord.
nsp3	2720-8553	GVRR	1614	GGTGTTAGAAGG	4842
nsp4	8555-10054	RFRR	306	AGGTGTGGAAGA	918
nsp6	10973-11842	LKRR	401	CTAAAGAGACGT	1203
nsp13	16237-18039	GARR	138	GGTGCTAGGAAGA	414
nsp14A2	18040-19620	CIRR	22	TGCTACAGTAGA	66
		TCRR	443	ACTTTGC6GCGT	1329
		IPRR	595	ATTCACG6TAGG	1785
S	21563-25384	TYRR	53	ACCTATAGAAAGA	159
ORF9 (N)	28274-29533	KQRR	41	AAACAACG6TCGG	123
		YTRR	89	TACTACCAGAAGA	267
		ATRR	93	GCTACACAGCGA	279
		FGRR	277	TCTCGACAGACGT	831

Nucleocapsid
Table 3. Selected sarbecovirus genes encoding proteins with the presence of the arginine doublet. For genes derived from the orf1ab polyprotein, it is shown the coordinates of the genomic region, that in the pairwise BLAST search matched with the corresponding gene of the reference genome (WIV04). For the N gene, structural nucleocapsid protein N, in the genomes which are annotated, the GenBank access number is shown.

Sarbecovirus name	nsp3	nsp4	nsp6	nsp13	nsp14A2	Nucleocapsid (N)
WIV04	2720-8553	8555-10054	10973-11842	16237-18039	18040-19620	QHR63268.1
Wuhan-Hu-1	2720-8553	8555-10054	10973-11842	16237-18039	18040-19620	YP_009724397.2
CDC-CruiseA-12	2720-8553	8555-10054	10973-11842	16237-18039	18040-19620	QII57215.1
INMI1	2720-8553	8555-10054	10973-11842	16237-18039	18040-19620	QIA98561.1
RmYN02	2708-8535	8537-10036	10955-11824	16219-18021	18022-19602	28104-29363
RatG13	2720-8550	8552-10051	10970-11839	16234-18036	18037-19617	QHR63398.1
RShsTT200	2720-8532	8534-10033	10952-11821	16216-18018	18019-19599	28177-29436
RShsTT182	2714-8526	8528-10027	10946-11815	16210-18012	18013-19593	28171-29430
RpYN06	2720-8550	8552-10051	10970-11839	16234-18036	18037-19617	28186-29445
Rac9S203	2762-8553	8555-10054	10973-11842	16237-18039	18040-19620	QQM18872.1
PrC31	2682-8512	8514-10013	10932-11801	16196-17997	17999-19579	QSQ26168.1
MP789	3127-8412	8414-9913	10832-11761	16096-17988	17899-19479	QIG59561.1
ZC45	2719-8540	8542-10041	10966-11829	16224-18026	18027-19601	AVP78038.1
ZXC21	2719-8474	8476-9975	10894-11763	16158-17960	17961-19535	AVP78049.1
GX-P5L	3312-8530	8601-10024	ns	16214-18016	18017-19597	QIA48639.1
GX-P4L	3312-8530	8601-10024	ns	16214-18016	18017-19597	QIA48621.1
GX-P1E	3312-8530	8601-10024	ns	16214-18016	18017-19597	QIA48630.1
GX-P5E	3312-8530	8601-10024	ns	16214-18016	18017-19597	QIA48648.1
GX-P2V	3294-8512	8583-10006	ns	16196-17998	17999-19579	QIQ54651.1
BM48-31	4063-8379	8569-9883	ns	16066-17858	17872-19439	YP_003858591.1
BtkY72	ns	ns	10850-11698	16903-17885	17896-19470	APO40586.1
HKU-39849	3843-8443	ns	ns	16127-17929	17930-19500	ADC35492.1
Tor 2/FP1-10912	3843-8443	ns	ns	16127-17929	17930-19500	AFR58723.1

ns: no significant similarity found in the pairwise BLASTn search using the corresponding gene of the NC_045512.2 SARS-CoV-2 reference s genome (WIV04) query
Table 4. Arginine doublet y their codons of SARS-CoV-2 and conserved in the closest sarbecovirus species to it. Data was extracted from del protein and encoding gene multiple alignment, respectively. Numbers on the right stand for the amino acid and nucleotide position in the reference genome (WIV04) sequences. * represents strictly conserved residues in the multiple alignment.

Sarbecovirus	Pair 1	nbecovirus	Pair 1	Pair 2	Sarbecovirus	Pair 1				
WIV04	RR 1614	AGAAGG 4842	WIV04	RR 306	AGAAGA 918	RR 401	AGACGT 1203	WIV04	RR 138	AGGAGA 414
Wuhan-Hu-1	RR AGAAGG	Wuhan-Hu-1	RR AGAAGA	RR AGACGT	Wuhan-Hu-1	RR AGGAGA				
CDC-CruiseA-12	RR AGAAGG	CDC-CruiseA-12	RR AGAAGA	RR AGACGT	CDC-CruiseA-12	RR AGGAGA				
INMI1	RR AGAAGG	INMI1	RR AGAAGA	RR AGACGT	INMI1	RR AGGAGA				
RmYN02	RR AGAAGG	RmYN02	RR AGAAGA	RR AGACGT	RmYN02	RR AGGAGA				
RaTG13	RR AGAAGG	RaTG13	RR AGAAGA	RR AGACGT	RaTG13	RR AGGAGA				
RShSTT200	KR AAAAGG	RShSTT200	RR AGAAGA	RR AGACGT	RShSTT200	RR AGGAGA				
RShSTT182	KR AAAAGG	RShSTT182	RR AGAAGA	RR AGACGT	RShSTT182	RR AGGAGA				
RpYN06	RR AGAAGG	RpYN06	RR AGAAGA	RR AGACGT	RpYN06	RR AGGAGA				
RacCS203	RR AGAAGG	RacCS203	RR AGAAGA	RR AGACGT	RacCS203	RR AGGAGA				
PrC31	RR AGAAGG	PrC31	RR AGAAGA	RR AGACGT	PrC31	RR AGGAGA				
MP789	RR AGAAGA	MP789	RR AGAAGA	RR AGACGT	MP789	RR AGGAGA				
ZC45	RR AGAAGG	ZC45	RR AGAAGA	RR AGACGT	ZC45	RR AGGAGA				
ZXC21	RR AGAAGG	ZXC21	RR AGAAGA	RR AGACGT	ZXC21	RR AGGAGA				
GX-P5L	RR AGAAGA	GX-P5L	RR AGAAGA	RR CGTAGA	BtKY72	** ** *				
GX-P4L	RR AGAAGA	GX-P4L	RR AGAAGA	RR CGTAGA	** ** *	** ** *				
GX-P1E	RR AGAAGA	GX-P1E	RR AGAAGA	RR CGTAGA	** ** *	** ** *				
GX-P5E	RR AGAAGA	GX-P5E	RR AGAAGA	RR CGTAGA	** ** *	** ** *				
GX-P2V	RR AGAAGA	GX-P2V	RR AGAAGA	RR CGTAGA	** ** *	** ** *				
BM48-31	KK AGAAGA	BM48-31	RR AGGCGT	KR AGAAGA	** ** *	** ** *				
HKU-39849	KR AGAAGA		** ** *	** ** *		** ** *				
Tor2-FP1-10912	KR AGAAGA		** ** *	** ** *		** ** *				
Table 4. continued

Table:

nsp13. Zinc-binding domain. Helicase, RNA 5’ triphosphatase	nsp14A2. Guanosine N7- methyltransferase. 3’ to 5’ exoribonuclease. Proofreading											
becovirus	**Pair 1**	**Pair 2**	**Pair 3**	**becovirus**	**Pair 1**	**Pair 2**						
WIV04	RR 22	CGTATA 66	RR 443	CGGCGT 1329	RR 595	CGTATG 1785	WIV04	RR 53	AGAAGA 159	RR 213	AGACGTG 639	
Wuhan-Hu-1	RR	CGTATA	RR	CGGCGT	RR	CGTATG	Wuhan-Hu-1	RR	AGAAGA	RR	AGAAGA	
CDC-CruiseA-12	RR	CGTATA	RR	CGGCGT	RR	CGTATG	CDC-CruiseA-12	RR	AGAAGA	RR	AGAAGA	
INM11	RR	CGTATA	RR	CGGCGT	RR	CGTATG	INM11	RR	AGAAGA	RR	AGAAGA	
RaYN02	RR	CGTATA	RR	CGGCGT	RR	CGTATG	RaYN02	RR	AGAAGA	RR	AGAAGA	
RShSTT200	RR	CGTATA	RR	CGGCGT	RR	CGTATG	RShSTT200	RR	AGAAGA	RR	AGAAGA	
RShSTT182	RR	CGTATA	RR	CGGCGT	RR	CGTATG	RShSTT182	RR	AGAAGA	RR	AGAAGA	
RpYN06	RR	CGTATA	RR	CGGCGT	RR	CGTATG	RpYN06	RR	AGAAGA	RR	AGAAGA	
RacCS203	RR	CGTATA	RR	CGGCGT	RR	CGTATG	RacCS203	RR	AGAAGA	RR	AGAAGA	
PrC31	RR	CGCAGA	RR	CGTCGC	RR	CGTATG	PrC31	RR	AGAAGA	RR	AGAAGA	
MP789	RR	AGGAGA	RR	CGGCGT	RR	CGTATG	MP789	RR	AGAAGA	RR	AGAAGA	
ZC45	RR	AGGAGA	RR	CGGCGT	RR	CGTATG	ZC45	RR	AGAAGA	RR	AGAAGA	
ZXC21	RR	AGGAGA	RR	CGGCGT	RR	CGTATG	ZXC21	RR	AGAAGA	RR	AGAAGA	
GX-P5L	RR	AGGAGA	RR	CGGCGT	RR	CGTATG	GX-P5L	RR	AGAAGA	RR	AGAAGA	
GX-P4L	RR	AGGAGA	RR	CGGCGT	RR	CGTATG	GX-P4L	RR	AGAAGA	RR	AGAAGA	
GX-P1E	RR	AGAAGA	RR	CGGCGT	RR	CGTATG	GX-P1E	RR	AGAAGA	RR	AGAAGA	
GX-P5E	RR	AGAAGA	RR	CGGCGT	RR	CGTATG	GX-P5E	RR	AGAAGA	RR	AGAAGA	
GX-P2V	RR	AGAAGA	RR	CGGCGT	RR	CGTATG	GX-P2V	RR	AGAAGA	RR	AGAAGA	
BM4S-31	RR	AGGCGA	RR	CGTAGG	RK	CGTAAA	BM4S-31	RR	AGAAGA	RR	AGAAGA	
BtKY72	RR	AGGCGA	RR	CGTAGG	RK	CGTAAA	BtKY72	RR	AGAAGA	RR	AGAAGA	
HKU-39849	RR	AGGAGA	RR	CGCCGT	RR	CGTATG	HKU-39849	RR	AGAAGA	RR	AGAAGA	
Tor2-FP1-10912	*	*	*	*	*	CGTCGC	Tor2-FP1-10912	*	*	*	*	*
orf9 N. Nucleocapsid
Packages the positive strand viral genome RNA. Virion assembly

Sarbecovirus	Pair 1	Pair 2	Pair 3	Pair 4				
WIV04	RR 41	CGTCGG	RR 89	CGAAGA	RR 93	AGACGA	RR 277	AGACGT 831
Wuhan-Hu-1	RR	CGTCGG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
CDC-CruiseA-12	RR	CGTCGG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
INMI1	RR	CGTCGG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
RpYN02	RR	CGTCGT	RR	CGAAGA	RR	AGACGA	RR	AGACGT
RatG13	RR	CGTCGG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
RshSTT200	RR	CGTCGT	RR	CGAAGA	RR	AGACGA	RR	AGACGT
RshSTT182	RR	CGTCGT	RR	CGAAGA	RR	AGACGA	RR	AGACGT
RpYN06	RR	CGTCGT	RR	CGAAGA	RR	AGACGA	RR	AGACGT
RacC3203	RR	CGTCGT	RR	CGAAGA	RR	AGACGA	RR	AGACGT
PrC31	RR	CGTCGT	RR	CGAAGA	RR	AGACGA	RR	AGACGT
MP789	RR	CGTCGT	RR	CGAAGA	RR	AGACGA	RR	AGACGT
ZC45	RR	CGTCGA	RR	CGTACA	RR	AGACGA	RR	AGACGT
ZXC21	RR	CGTCGA	RR	CGTACA	RR	AGACGA	RR	AGACGT
GXR-P5L	RR	CGAAAG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
GXR-P4L	RR	CGAAGG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
GXR-P1E	RR	CGAAAG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
GXR-P5E	RR	CGAAAG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
GXR-P2V	RR	CGAAAG	RR	CGAAGA	RR	AGACGA	RR	AGACGT
BM48-31	RR	AGAAGA	RR	CGAAGA	RR	CGACGA	RR	AGACGA
BtKY72	RR	AGAAGA	RR	AGAAGA	RR	CGACGA	RR	AGACGA
HKU-39849	RR	CGCCGA	RR	CGAAGA	RR	CGACGA	RR	AGACGT
Tor2-FP1-10912	RR	CGCCGA	RR	CGAAGA	RR	CGACGA	RR	AGACGT

** Note: CGTCGG and CGAAGA are common motifs.