GC-072: A Novel Therapeutic Candidate for Oral Treatment of Melioidosis and Infections Caused by Select Biothreat Pathogens.

RUNNING TITLE: A novel antibiotic for oral treatment of melioidosis.

Jeffry D. Shearera, Michelle L. Saylora, Christine M. Butlera, Anthony M. Trestona, Henry S. Heineb, Sunisa Chirakulc, Herbert P. Schweizerb, c, Arnold Louieb, George L. Drusanob, Steven D. Zumbrund, Kelly L. Warfielda, #

aEmergent BioSolutions, Gaithersburg, MD,

bInstitute for Therapeutic Innovation, University of Florida, College of Medicine, Orlando, FL,

cEmerging Pathogens Institute, University of Florida, College of Medicine, Gainesville, FL,

dUnited States Army Medical Research Institute of Infectious Diseases, Frederick MD

#Corresponding author: Kelly L. Warfield: warfieldk@ebsi.com

Key Words: melioidosis, Burkholderia, antibiotic, GC-072, biodefense
Abstract

Burkholderia pseudomallei (*B. pseudomallei*), the etiological agent of melioidosis, is a Gram-negative bacterium with additional concern as a biothreat pathogen. The mortality rate from *B. pseudomallei* varies depending on the type of infection and extent of available healthcare, but in the case of septicemia left untreated it can range from 50 – 90%. Current therapy for melioidosis is biphasic, consisting of parenteral acute-phase treatment for two weeks or longer, followed by oral eradication-phase treatment lasting several months. An effective oral therapeutic for outpatient treatment of acute-phase melioidosis is needed. GC-072 is a potent, 4-oxoquinolizine antibiotic with selective inhibitory activity against bacterial topoisomerases. GC-072 has demonstrated *in vitro* potency against susceptible and drug-resistant strains of *B. pseudomallei* and is also active against *Burkholderia mallei*, *Bacillus anthracis*, *Yersinia pestis*, and *Francisella tularensis*. GC-072 is bactericidal both extra- and intracellularly, with rapid killing noted within a few hours and reduced development of resistance compared to ceftazidime. GC-072, delivered intragastrically to mimic oral administration, promoted dose-dependent survival in mice using lethal inhalational models of *B. pseudomallei* infection following exposure to a 24 or 339 LD₅₀ challenge with *B. pseudomallei* strain 1026b. Overall, GC-072 appears to be a strong candidate for first-line, oral treatment of melioidosis.
Introduction

Burkholderia pseudomallei (*B. pseudomallei*) is a Gram-negative bacterium which is the etiological agent of melioidosis, a serious and sometimes fatal disease (1, 2). *B. pseudomallei* is endemic to southeast Asia and northern Australia where melioidosis is a particularly serious health problem associated with a mortality rate of approximately 50% in northeast Thailand and approximately 20% in Australia (2-5). The geographic distribution of *B. pseudomallei* is likely substantially larger than previously thought, encompassing many other tropical and sub-tropical regions where the disease has yet to be reported. In the countries where melioidosis is known to be endemic, it is suspected that the burden of disease is higher than estimated due to underdiagnosis and underreporting (1, 2, 4-6).

B. pseudomallei can be found in soil and water and infection typically occurs after environmental exposure during occupational or recreational activities, often following the rainy season and severe weather events. Most commonly, infections are acquired via percutaneous inoculation, inhalation of bacteria, or ingestion of contaminated water supply (5, 7-9). Infection following inhalation of *B. pseudomallei* often leads to more severe pneumonic illness (3, 10-12). Due to its infectivity via inhalation or contact with skin, as well as its moderate ease of dissemination and mortality rates, *B. pseudomallei* is a pathogen of interest for its potential to be weaponized and used as an agent of biowarfare. *B. pseudomallei* is classified as a Category B biothreat agent by the National Institute of Allergy and Infectious Diseases (NIAID) (13, 14) and a Tier 1 Select Agent by the Centers for Disease Control and Prevention (CDC) and United States Department of Agriculture (USDA) due to its potential to cause a severe threat to human health (15).
Melioidosis has a broad range of clinical presentations, including acute fulminant pneumonia, genitourinary infection, septicemia acquired by inhalation, and wound infections acquired by inoculation of bacteria from soil through abraded skin (1, 3, 6, 7, 16). Current therapy for melioidosis is prolonged and the risks of failure and relapse are high. Treatment is biphasic, requiring both intravenous and oral step-down treatment phases consisting of two or more weeks of parenteral acute-phase treatment with intravenous (i.v.) ceftazidime, followed by an eradication phase with oral amoxicillin-clavulanic acid or trimethoprim-sulfamethoxazole administered over several additional months (4, 17, 18). A major feature of *B. pseudomallei* is the ability to remain latent in the host causing relapse infections years after the initial infection (8). Between 6 – 13% of melioidosis cases occurring within a year of primary infection are due to relapse rather than reinfection (19). Trauma or immunosuppression are associated with emergence of bacteria that were dormant for prolonged periods (20-22). *B. pseudomallei* is believed to have the ability to enter a dormant state in an intracellular location where it can avoid immunological clearance (9).

Antibiotic resistance is currently a major global health concern and there is an immediate, unmet medical need to develop new effective treatments against resistant pathogens (23-25). While the incidence of melioidosis is relatively small in comparison to pathogens with more widespread antibiotic resistance, (e.g., *S. aureus*), an unmet medical need for effective treatment of melioidosis still exists as current treatment options are limited. Due to poor clinical performance, existing fluoroquinolones are currently not recommended for treatment of melioidosis except in cases where resistance or intolerance to other available antibiotics is known (26).

B. pseudomallei exhibits resistance to diverse antibiotics including first- and second-generation cephalosporins, penicillins, macrolides, and aminoglycosides (2, 3, 27-32). Ceftazidime
and clavulanic acid-resistant strains have been described and others continue to be identified (26, 31, 33-37). These strains, in particular, contain mutations in the penA gene resulting in a change to the amino acid sequence of PenA β-lactamase or affecting its expression (33-39). Although PenA is the major acquired ceftazidime resistance mechanism, other ceftazidime resistance mechanisms exist including deletion of penicillin-binding protein 3 (40). Efflux via pumps belonging to the resistance nodulation cell division family comprise the sole multidrug resistance mechanism documented thus far in B. pseudomallei (28, 41). Three efflux pumps have been characterized in some detail. AmrAB-OprA is expressed in most B. pseudomallei strains and has been implicated in intrinsic and acquired resistance to aminoglycosides and macrolides (27, 30, 37, 42-44). Although BpeAB-OprB is expressed at detectable levels in wild-type strains, its clinical significance remains unclear because of the modest levels of drug resistance it causes even in strains with increased pump expression (29, 41). Efflux via BpeEF-OprC is the main fluoroquinolone resistance mechanism in B. pseudomallei; the BpeEF-OprC substrate spectrum also includes tetracyclines, chloramphenicol, and both components of the preferred eradication-phase therapy, trimethoprim and sulfamethoxazole (28, 30, 41, 45-49).

Bacterial Type IIA topoisomerases are highly potent, clinically validated targets for antimicrobial agents, as demonstrated by the clinical and commercial success of the fluoroquinolone class of topoisomerase inhibitors, such as ciprofloxacin, levofloxacin, and moxifloxacin (50). However, fluoroquinolones are not currently recommended for treating melioidosis because of a high incidence of therapeutic failures in clinical studies (17, 51). Bacterial resistance to quinolone compounds is predominantly due to target protein mutations, although efflux- and plasmid-mediated resistance mechanisms are also known (52, 53). The amino acid changes in DNA gyrase and topoisomerase IV (Topo IV) leading to fluoroquinolone...
resistance occur mainly in the Quinolone Resistance-Determining Region (QRDR) of respective subunits, GyrA and ParC (54, 55).

Modifying the structure of existing antibiotics to increase potency and overcome mechanisms associated with resistance provides a more practical approach compared to finding new antibacterial agents with novel mechanisms of action (56). GC-072 (Figure 1) is a 4-oxoquinolizine—a class for which there were a number of publications and patents in the 1990s, mostly from Abbott Laboratories, but relatively little about this class has been recently reported. There are no available literature reports indicating clinical development of 4-oxoquioliizines. The therapeutic targets of oxoquinolizines, such as GC-072, are the bacterial DNA gyrase and Topo IV enzymes, collectively known as Type IIA topoisomerases. Oxoquinolizines, which include GC-072, possess potent antimicrobial activity against a broad spectrum of organisms including Gram-positive, Gram-negative, and resistant bacteria including those with mutations in the QRDR that confer quinolone resistance (57-60). The position of nitrogen in the heteroaromatic structure of GC-072 confers different physicochemical and biological properties compared to the fluoroquinolone class of antibiotics. The C-8 group has been demonstrated to have importance in terms of functionality for oxoquinolizines (also known as 2-pyridones) (57, 60).

The results presented here from in vivo studies indicate GC-072 is a promising candidate for the oral treatment of acute B. pseudomallei-associated pneumonic infection. Current first-line standard-of-care treatment for melioidosis is i.v. ceftazidime (17), which does not have an oral option. The replacement of acute-phase i.v. treatment with an effective oral alternate would greatly enhance healthcare options for melioidosis treatment, particularly in resource-constrained settings or in the event of an intentional release (biowarfare).
Results

In vitro selectivity of GC-072 for bacterial and human topoisomerases. GC-072 was tested in comparison to ciprofloxacin using gel-based topoisomerase assays (Table 1). Results of these assays are reported as the half-maximal inhibitory concentration (IC$_{50}$) for inhibiting activity of bacterial topoisomerases II (DNA gyrase) and IV and human topoisomerases I and II (Topo I, Topo II). GC-072 inhibited both *E. coli* and *S. aureus* gyrase and Topo IV at concentrations comparable to, or lower than, ciprofloxacin. GC-072 more actively inhibited DNA gyrase isolated from quinolone-resistant *E. coli* than ciprofloxacin, implying GC-072 has a different binding mode than fluoroquinolones such as ciprofloxacin. Furthermore, GC-072 demonstrated no detectable inhibition of human Topo I and II, comparable to that of ciprofloxacin, indicating that it is selective for bacterial topoisomerases and likely to have an acceptable genotoxicity profile.

In vitro susceptibility of *B. pseudomallei* to GC-072. Susceptibility testing was performed to determine the MIC of GC-072 for 100 strains of *B. pseudomallei*. These strains represent the geographic distribution across Southeast Asia. The majority are clinical isolates and include strains resistant against “front line” antibiotic therapies, including ceftazidime, carbapenem, and tetracycline. GC-072 demonstrated good activity against *B. pseudomallei* with an MIC$_{90}$ of 0.25 µg/ml and a range of ≤0.008 – 1 µg/ml (Table 2). This compares to an MIC$_{90}$ of 8, 8, 1, 64, and 4 µg/ml for ciprofloxacin, finafloxacin, meropenem, ceftazidime, and doxycycline, respectively. The quality control strain MIC results were all within CLSI ranges for the comparator antibiotics.

In vitro susceptibility of additional bacterial biothreat pathogens to GC-072. Susceptibility testing was performed to determine the activity of GC-072 and antibiotic comparators against four additional biothreat agents. GC-072 was tested against 30 geographically
biodiverse strains each of Category A biothreat agents, *Bacillus anthracis* (*B. anthracis*), *Yersinia pestis* (*Y. pestis*), and *Francisella tularensis* (*F. tularensis*) and Category B biothreat agent, *Burkholderia mallei* (*B. mallei*). Overall, GC-072 exhibited strong *in vitro* antimicrobial potency against all four biothreat pathogens. The results are summarized in Table 3. The MIC\(_{90}\) of GC-072 against *B. anthracis*, *Y. pestis*, *F. tularensis*, and *B. mallei* were 0.002, 0.015, ≤0.0005, and 0.12 µg/ml, respectively. GC-072 demonstrated increased activity compared to all antibiotic comparators, including the fluoroquinolone, finafloxacin, with lower MIC\(_{90}\) values for all pathogens tested. The quality control strain MIC results were all within CLSI ranges for the comparator antibiotics.

Mutation frequency. The mutation frequencies to 3× the MICs of GC-072 and ceftazidime for *B. pseudomallei* 1026b were determined in a total of 11 experiments (6 with GC-072 and 5 with ceftazidime in parallel). The mutation frequency for GC-072 ranged from -7.1 to -8.4 log CFU. The MICs of a subset of colonies that grew on GC-072-supplemented agar ranged from 0.5 to 2 mg/liter compared with an MIC of 0.125 to 0.25 mg/liter for the parent strain. The mutation frequency values for ceftazidime were -6.6 to -8.0 log CFU. The colonies that grew on the ceftazidime-supplemented agar plates had MICs of 4 to 32 mg/liter, compared to an MIC of 1 to 2 mg/liter for the parent strain.

Time-kill study. An *in vitro* time-kill assay was performed to measure the rate and activity of GC-072 in killing *B. pseudomallei* at different concentrations. Bacterial suspensions containing *B. pseudomallei* strain 1026b were left untreated or inoculated with GC-072 at concentrations of 1×, 2×, 4×, 8×, or 16× MIC and incubated over a 24-hour period. Samples were collected from each suspension at five timepoints and enumerated. Untreated bacteria in the control group grew to titers >1x10\(^9\) CFU/ml with maximal growth noted between 8 – 24 h (Figure 2). GC-072
provided a dose-response effect on the reduction of viable *B. pseudomallei* 1026b. GC-072 demonstrated rapid bactericidal activity at all concentrations. As shown in Figure 2, more than 75% of the full effect was observed within five hours. Regrowth was not seen in any of the treatment arms indicating that the killing effect of GC-072 was sustained. While complete killing was not observed at any of the GC-072 concentrations tested, at 24 hours, the 8× and 16× MIC bacterial counts were at, or near, the lower limit of quantitation (100 and 15 CFU/ml, respectively). The limits of solubility of GC-072 in aqueous media may have resulted in reduced incremental killing between the 8× and 16× concentrations compared with the increments in killing between the lower concentrations. Alternatively, slow precipitation of the drug out of solution over time may have contributed to the lack of additional killing past the 8-hour time point, and, hence, the lack of sterilization of the cultures. Bacterial samples of GC-072-supplemented agar were not plated after treatment; therefore, it is unknown if resistant subpopulations may have emerged as a result of drug exposure in this particular study.

GC-072 is active against drug-resistant B. pseudomallei. Two studies were conducted to investigate the activity of GC-072 against *B. pseudomallei* strains with characterized antibiotic resistance mechanisms. An isogenic panel of *B. pseudomallei* 1026b-based efflux proficient and compromised strains that either expressed or lacked defined efflux pumps were used to assess the efflux propensity of GC-072. Doxycycline and ciprofloxacin were used as control antibiotics as they are prone to efflux, particularly by the BpeEF-OprC pump in *B. pseudomallei* (41, 48). The observed MIC for GC-072 against *B. pseudomallei* strain 1026b was within the previously observed MIC range for diverse *B. pseudomallei* strains including other studies with 1026b (Table 4). As demonstrated by a comparable MIC to the parental 1026b strain, GC-072 does not appear to be effluxed by strains solely expressing AmrAB-OprA (e.g., Bp227) and efflux by BpeAB-OprB.
is barely discernable (e.g., Bp58). GC-072 appears to be a substrate of BpeEF-OprC, as indicated by the increased MIC in strain Bp282 when compared to strains either not expressing (e.g., 1026b) or lacking (e.g., Bp320) the BpeEF-OprC efflux system. However, the degree of efflux of GC-072 by BpEF-OprC is significantly lower than that observed with comparators ciprofloxacin and doxycycline and the observed susceptibility (MIC = 0.5 – 1 µg/ml) is within the range reported above for 100 clinical isolates.

In a separate study, a panel of select agent-excluded *B. pseudomallei* strain Bp82 derivatives was employed to assess single drug class resistance due to mutations causing β-lactam resistance (e.g., ceftazidime resistance due to PenA β-lactamase point mutations or overexpression or trimethoprim resistance due to *folA* mutation). The results show that GC-072 is fully active against the panel of drug-resistant *B. pseudomallei* strains tested (i.e., ceftazidime-, clavulanate- and trimethoprim-resistant strains) and its activity is superior to that of ciprofloxacin in this panel (Table 5).

GC-072 is active in a model of *B. pseudomallei* intracellular survival. The activity of GC-072 against intracellular *B. pseudomallei* 1026b was assessed via intracellular survival assays. The MIC for *B. pseudomallei* strain 1026b measured for this experiment was 0.25 µg/ml and was used to set the multiples of the MIC for the intracellular survival assay. Cells were either left untreated or treated with 0.25 µg/ml or 2.5 µg/ml of GC-072. The results from this study indicate GC-072 is effective at inhibiting growth of intracellular *B. pseudomallei* in murine macrophage cells in vitro. As shown in Figure 3, at dose levels close to the MIC (0.25 µg/ml) or about 10× the MIC (2.5 µg/ml), GC-072 effectively inhibits growth of intracellular *B. pseudomallei* in a rapid, time- and dose-dependent manner. After one hour, the number of bacteria were significantly reduced in cultures treated with the higher GC-072 concentration as compared to untreated.
cultures (P <0.0023; Supplementary Tables 1 – 2). At five hours, there was a significant reduction in *B. pseudomallei* at both GC-072 concentrations compared to untreated *B. pseudomallei*, both having a P value of <0.0001 for cultures treated with 0.25 and 2.5 µg/ml. Twenty-four hours after initiation of treatment, there were no viable bacteria detectable at either the lower (0.25 µg/ml) or higher (2.5 µg/ml) concentrations of GC-072 as compared to a mean of 3.5 × 10^5 bacteria per well in the untreated culture (Supplementary Tables 1 – 2). Ceftazidime is traditionally not employed as a comparator drug in intracellular survival models due to poor macrophage permeability—ceftazidime concentrations as high as 10 µg/ml have no effect on intracellular survival of *B. pseudomallei* in macrophages (61). Thus, ceftazidime was not used as a positive control in this study.

GC-072 is efficacious against B. pseudomallei aerosol infection in a mouse model following exposure to a 24 LD₅₀ bacterial challenge. An *in vivo* murine melioidosis model of pneumonic illness was employed to determine the efficacy of GC-072 against an aerosol challenge with *B. pseudomallei* strain 1026b. BALB/c mice (n = 10 mice/group) were treated starting at 8 or 24 hours post-challenge with either GC-072 (1, 3, 10, or 30 mg/kg) administered three times a day intragastrically (i.g.), 150 mg/kg of ceftazidime delivered intraperitoneally (i.p.) four times daily, or vehicle administered i.g. thrice daily. For the challenge, mice were divided into two exposure groups balanced such that each cohort received five animals from each of the two aerosol runs. The actual bacterial exposures were 6.37 × 10^4 and 1.08 × 10^5 CFU/mouse for each of the two groups. These represented 17.7 and 30 LD₅₀s, respectively, with a mean of 23.8 LD₅₀s. When treatment was initiated 8 hours post-challenge, 0%, 0%, 70% and 90% survival was observed in mice administered 1, 3, 10 or 30 mg/kg of GC-072, respectively, and 100% survival was observed in the positive control group receiving ceftazidime (Figure 4A). When treatment
with GC-072 was initiated 16 hours post-challenge (Figure 4B), 50% and 100% survival was observed in the 10 and 30 mg/kg groups, respectively. None of the placebo-treated animals survived the challenge.

The median survival times were 3.125 days for vehicle control and 3.25 and 4 days, respectively, for the 1 and 3 mg/kg GC-072 groups in the 8-hour treatment initiation condition. The median survival time for the 10 mg/kg GC-072 16-hour post-challenge treatment initiation group was 43 days. All of the animals in the ceftazidime group survived, as did the majority of the animals in the 8-hour 10 and 30 mg/kg GC-072, and 16-hour 30 mg/kg GC-072 treatment groups, so median survival times could not be calculated.

In the 8-hour treatment initiation condition, a statistically significant (P <0.0001) dose-response trend was observed for all doses of GC-072 (Supplementary Table 3). The 3, 10, and 30 mg/kg GC-072 groups showed significant efficacy over control (P = 0.0002, P <0.0001, and P <0.0001, respectively). Intraperitoneal treatment with ceftazidime showed a significant advantage over the groups administered 1 and 3 mg/kg GC-072 i.g. (P <0.0001) but was not significantly different to the 10 and 30 mg/kg groups. Survival of mice treated with either of the GC-072 dose levels (10 and 30 mg/kg) in the 16-hour treatment initiation group was superior to that of the vehicle-treated control group (P <0.0001). For the 16-hour initiation, administration of 30 mg/kg GC-072 showed a significant advantage over administration of 10 mg/kg GC-072 (P = 0.0164).

GC-072 is efficacious against *B. pseudomallei* aerosol infection in a mouse model following exposure to a 339 LD$_{50}$ bacterial challenge. The next study further investigated the efficacy of GC-072 against *B. pseudomallei* strain 1026b using a challenge level approximately 10-fold higher than the 24 LD$_{50}$ challenge. BALB/c mice (n=10/group) were treated i.g. with GC-072 (37.5, 75, or 150 mg/kg) thrice daily, 150 mg/kg of i.p. ceftazidime four times a day, or...
vehicle thrice daily, beginning 8 or 24 hours following inhalational challenge (Figure 5A). Mice were again divided into two challenge runs with actual bacterial exposure being 1.24×10^6 and 1.20×10^6 CFU/mouse, representing 345 and 333 LD$_{50}$s with a mean of 339 LD$_{50}$s. When initiated 8 hours post-exposure, the groups treated i.g. with GC-072 had a significant survival benefit compared to both the positive comparator ceftazidime ($P < 0.03$) and vehicle control ($P \leq 0.0006$) groups (Supplementary Table 4). Mice in the 37.5, 75, and 150 mg/kg GC-072 treatment groups demonstrated 90%, 90%, and 80% survival, respectively, compared to 30% in the ceftazidime and 0% in the vehicle control groups. Median survival time was 3.75 days for vehicle and 9.25 days for ceftazidime; median survival times could not be calculated for the three groups administered GC-072, as most animals survived to the end of the experiment. No dose-dependence was observed in this portion of the study, as there did not appear to be a significant difference in survival for any of the GC-072 doses tested.

In the 24-hour treatment initiation groups, overall survival was low; only four animals from the 150 mg/kg group survived to the end of the experiment (Figure 5B). However, each dose of GC-072 provided a significant survival advantage when compared to vehicle control ($P \leq 0.0006$). There did not appear to be a significant difference between the 37.5 and 75 mg/kg GC-072 groups, but treatment with 150 mg/kg GC-072 provided a significant advantage over both lower-dose groups. Median survival times were 4.5 days for both the groups treated with ceftazidime and 75 mg/kg GC-072, 4.75 days for the group treated with 37.5 mg/kg GC-072 group, and 5.63 days for the group treated with 150 mg/kg GC-072.

13
Discussion

GC-072 is a novel 4-oxoquinolizine antibiotic candidate with potent activity against Gram-positive and Gram-negative bacteria including quinolone-resistant strains. The antimicrobial data presented here and structure-based modeling with GC-072 and target topoisomerases (data not shown) indicate that the position of nitrogen in the heteroaromatic structure confers different physicochemical and biological properties compared to fluoroquinolone antibiotics. Additionally, the substituent in the C8-position of GC-072 also takes up a different conformation to that of the piperidine ring in ciprofloxacin, potentially contributing to the differential activities seen on fluoroquinolone-resistant bacterial strains. Consistent with modeling studies, results from in vitro topoisomerase assays indicate GC-072 more actively inhibits S. aureus topoisomerases than ciprofloxacin, which aligns with higher MICs for ciprofloxacin on Gram-positive bacteria that were observed in susceptibility studies (data not shown). Additionally, results from topoisomerase studies indicate that GC-072 and ciprofloxacin similarly inhibited quinolone-susceptible E. coli DNA gyrase and Topo IV; however, GC-072 was more active against quinolone-resistant E. coli gyrase than ciprofloxacin, consistent with a different binding mode for these molecules, as well as a potentially different binding site in the QRDR. These data are consistent with GC-072 having improved activity as compared to and a binding mode different from fluoroquinolones.

In vitro studies show GC-072 is highly effective against B. pseudomallei and other biothreat pathogens that are resistant to current standard-of-care antibiotics. GC-072 outperformed the comparator antibiotics when tested against all five sets of biothreat agents in Category A (B. anthracis, F. tularensis, and Y. pestis) and Category B (B. pseudomallei and B. mallei), which included strains with known resistance. B. pseudomallei is considered naturally refractory to treatment with ciprofloxacin and other fluoroquinolones. Of the strains evaluated in this study,
20% had MICs of 8 – 16 µg/ml for ciprofloxacin. Based on the activity observed for GC-072, only
7% of strains had MICs above 0.5 µg/ml for GC-072 and only a single strain, resistant to
ciprofloxacin, had an MIC of 1 µg/ml. The data also suggest that GC-072 is less affected by other
resistance mechanisms as a number of ceftazidime-, carbapenem-, and tetracycline-resistant strains
were also included in this study.

In mutational frequency studies, when *B. pseudomallei* strain 1026b was exposed to 3× the
MIC, mutations arose once out of every 7.1- to 8.4-log CFU compared to once out of every 6.6 to
8.0-log CFU when exposed to 3× the MIC of ceftazidime. The mutation frequencies for GC-072
were consistently lower than ceftazidime in all 5 experiments run in parallel with ceftazidime
having a 4.4-fold higher frequency of mutations than GC-072. The wild-type MICs for
ceftazidime were on average 7.2-fold higher than the MICs for GC-072 and the MICs of isolates
with reduced susceptibilities were on average 7.5-fold higher for ceftazidime than for GC-072. For
both antimicrobials, the frequency of mutation studies demonstrated emergence of subpopulations
with reduced susceptibilities to GC-072 and ceftazidime.

B. pseudomallei is known to have a number of efflux and other resistance mechanisms,
which render the organism naturally resistant to a number of classes of antibiotics. However, the
low MIC range observed for GC-072 in our studies indicates this candidate may be unaffected by
these specific mechanisms. This observation was further investigated in a study of GC-072’s
efflux propensity and resistance to strains with defined mutations. The results confirm that GC-
072 has *in vitro* activity against wild-type, multidrug resistant, and single-drug resistant *B.
pseudomallei* strains, and that this activity is superior to that of ciprofloxacin. Previous studies
showed that BpeEF-OprC-mediated efflux is the main fluoroquinolone resistance mechanism in *B.
pseudomallei* (48). Using a panel of isogenic efflux proficient and compromised *B. pseudomallei*
strains, we observed that GC-072 was less prone to efflux in comparison to the fluoroquinolone, ciprofloxacin, and doxycycline. Although GC-072 is a substrate of the BpeEF-OprC pump (which confers resistance to ciprofloxacin and doxycycline), efflux of GC-072 does not appear to confer significant resistance (MIC 0.25 – 1 µg/ml) and is likely well within the therapeutic range, even for an overexpressing strain.

Intragastric treatment with an R&D formulation of GC-072 demonstrated equivalent or improved efficacy over ceftazidime in an in vivo murine inhalational melioidosis model, indicating this compound may be a promising candidate for the oral treatment of acute melioidosis and other biodefense indications. In the 24 LD50 study, the 30 mg/kg dose of GC-072 given i.g., initiated at both 8- and 16-hours post-exposure, showed equivalence to 8-hour initiation of treatment with the positive control ceftazidime given i.p. In the context of exposure to a high-concentration bacterial challenge (~339 LD50s) with B. pseudomallei, GC-072 demonstrated superiority over the positive control ceftazidime in the 8-hour treatment initiation model, even at the lowest dose of 37.5 mg/kg (P <0.004). When treatment was initiated at 8-hours post-challenge, only 40% of the ceftazidime group survived, while groups treated with GC-072 had an overall survival rate of 87%, indicating treatment with GC-072 provided a significant advantage. Although very few animals survived in the 24-hour treatment initiation groups, there was a clear extension in survival time in the groups treated with GC-072, particularly in the 150 mg/kg group. In other studies using this animal model, a positive bacterial burden has been observed with lower bacterial counts, even when treatment was continued for an additional 7 days (62). The results from both efficacy studies indicate that treatment with GC-072 requires further investigation.

However, the oxoquinolizine, GC-072, shows promising results as an oral treatment for melioidosis, which would be advantageous in resource-constrained environments and necessary in
the context of a widespread, intentional, biothreat event or accidental exposure to *B. pseudomallei*. GC-072 was shown to have improved *in vitro* potency against fluoroquinolone-resistant *B. pseudomallei* strains. Isogenic *B. pseudomallei* strains expressing defined efflux pumps, a common mechanism of fluoroquinolone resistance, were also more susceptible to GC-072 than fluoroquinolones (Table 5) (48). These factors greatly improve the potential use of GC-072 as a first-line antibiotic treatment for melioidosis.

Future studies with this compound should aim to define the therapeutic window, further optimize the treatment regimen, define PK/PD relationships (unbound therapeutic exposure levels) for human treatment, and examine extended lengths of treatment in an effort to clear residual bacteria that may cause recurrence of disease through regrowth of the pathogen. Overall, even with an efficacy equivalent to that of current standard-of-care, oral treatment with GC-072 could provide an advantage as there are currently no approved oral treatment options for acute-phase melioidosis.
Materials and Methods

Antimicrobial compounds. GC-072 potassium salt was manufactured by AMRI (Albany, NY) and supplied by Emergent BioSolutions Inc (Gaithersburg, MD). Material was supplied as powder and stored at 4°C until use. Comparator antibiotics including ciprofloxacin, ceftazidime, meropenem, and doxycycline were purchased from U. S. Pharmacopoeia (Rockville, MD). Finafloxacin was purchased from MedChem Express (Monmouth Junction, NJ). All stocks were stored at -70°C until use.

Bacterial strains. A geographically and genetically diverse set of 100 strains of *B. pseudomallei* and 30 strains each of *B. anthracis*, *Y. pestis*, *F. tularensis*, and *B. mallei* were used for MIC determinations. Use of these sets establishes reasonable MIC90 and MIC50 values for each compound against the holistic diversity set. A compound’s performance against naturally occurring or unknown strains of each pathogen is expected to fall within these MIC90 and MIC50 values because the diversity set provides a good representation of isolates that may be encountered anywhere in the world. The majority are clinical isolates and reflect many of the common resistances encountered against “front-line” antibiotic therapies.

All procedures involving Select Agents were performed in Select Agent approved Biosafety Level 3 (BSL3) facilities at the University of Florida or USAMRIID using approved Select Agent compliant procedures and protocols. *B. pseudomallei* 1026b, obtained through the NIH Biodefense and Emerging Infections Research Resources Repository (NIAID, NIH), was used for the mutation frequency, time-kill, efflux propensity, activity against drug-resistant strains, invasion, and *in vivo* efficacy studies (45, 63). For assessing single drug class resistance, *B. pseudomallei* strain Bp82 (64) and its *penA* (37, 65) and *folA* (47) mutant derivatives were used. Bp82 is an attenuated derivative of strain 1026b and excluded from Select Agent regulations (15).
All experiments with strain Bp82 and its derivatives were conducted at BSL2 with Institutional Biosafety Committee approval at the University of Florida. Growth media used for Bp82 and its derivatives were supplemented with 40 µg/ml (broth) or 80 µg/ml (agar) adenine.

Topoisomerase assays. Gel-based topoisomerase assays were developed based on the TopoGEN Inc. and Inspiralis assay systems, where purified bacterial Topo IV and DNA gyrase from *E. coli* and *S. aureus* and human Topo I and II were exposed to different concentrations of the compounds in the presence of DNA. These assays were performed using methods previously described by Nitiss, *et al.*, 2012 (66).

In vitro susceptibility testing. Bacterial inocula were prepared by suspending colonies into cation-adjusted Mueller-Hinton broth (CAMHB) from 18 – 24 h *B. anthracis*, *B. pseudomallei* and *B. mallei* plates; or 42 – 48 h *F. tularensis* and *Y. pestis* plates that were incubated at 35°C. Sheep blood agar plates were used for *Y. pestis* and *B. anthracis*, and chocolate agar for *F. tularensis*, *B. pseudomallei*, and *B. mallei*. Suspended cultures were diluted with CAMHB to a bacterial cell density of 10^5 CFU/ml adjusted based on comparison to a 0.5 McFarland standard. MICs were determined by the microdilution method in 96-well plates according to CLSI (67). Antibiotics were serially diluted twofold in 50 µl of CAMHB. For all steps with *F. tularensis*, CAMHB was supplemented with 2% Isovitalex (Becton Dickinson).

B. pseudomallei, *B. anthracis*, and *B. mallei* plates were incubated at 35°C for 18 to 24 hours and *F. tularensis*, and *Y. pestis* were incubated for 42 to 48 hours. Antibiotic concentrations tested for the diverse set of *B. pseudomallei* ranged from 128 to 0.004 µg/ml for GC-072, ciprofloxacin, ceftazidime, and doxycycline, 16 to 0.008 µg/ml for finafloxacin and 63 to 0.03 µg/ml for meropenem. Tested concentration ranges for the diversity sets of *B. anthracis*, *F. tularensis*, and *Y. pestis* were 1 to 0.0005 µg/ml and 8 to 0.004 µg/ml for the diversity sets of *B.*
mallei. Quality control of antibiotic stocks was established using the recommended CLSI reference strains *E. coli* ATCC 25922, *S. aureus* ATCC 29213, and *Pseudomonas aeruginosa* (*P. aeruginosa*) ATCC 27853.

Mutation frequency. Microdilution broth and agar dilution MICs and mutation frequencies were determined for GC-072 and ceftazidime for *B. pseudomallei* 1026b. For this study, a 1 g/liter solution of ceftazidime was made by dissolving the drug powder in sterile water and passed through a 0.22-micron syringe. Similarly, GC-072 was solubilized in DMSO, diluted in sterile water before 0.22-micron filtration.

B. pseudomallei 1026b was grown overnight from frozen stock on a blood agar plate (BD Diagnostics, Sparks, MD) that was incubated at 35°C, ambient air. The following morning, colonies were taken from the culture and inoculated into BBL cation-adjusted Mueller-Hinton II broth (BD Diagnostics, Sparks, MD). The suspension was gently vortexed, and the density of the bacterial suspension was visually adjusted to a 0.5 McFarland standard and then diluted with medium to a concentration of approximately 10⁶ CFU/ml. Suspensions of *P. aeruginosa* ATCC 27853, used as an internal control for susceptibility studies with ceftazidime, were prepared using the same protocol. A 1 ml volume of the suspension was inoculated onto each of five Difco Mueller-Hinton agar plates (BD Diagnostics, Sparks, MD) supplemented with GC-072-K or ceftazidime at a concentration of 3× the agar MIC value observed with *B. pseudomallei* for the respective antibiotic agent. After the agar plates were incubated at 35°C for 48 hours, the colonies on the drug-free and drug-supplemented agar plates were counted. MICs were determined for a subset of colonies that grew on the GC-072- and ceftazidime-supplemented agar plates. The mutation frequency was calculated by dividing the number of
colonies per milliliter on the antibiotic-supplemented agar by the number of colonies per milliliter on the drug-free agar plates.

Time-kill study. Thirty milliliters of 10^6 CFU/ml of a *B. pseudomallei* 1026b suspension was added to each of 6 flasks. GC-072-K was added to the flasks to achieve final concentrations of 0, 1, 2, 4, 8, and 16 times the MIC (0.125 µg/ml) for *B. pseudomallei* 1026b. The flasks were placed on a shaker (200 rpm) in an ambient air incubator set at 35°C. At 0, 2, 5, 7.5, and 24 hours of incubation, 1 ml of the suspension was collected from each flask, washed, quantitatively cultured on blood agar plates (BD Diagnostics, Sparks, MD) and enumerated after 48 hours of incubation. Bacterial concentrations were log-transformed and graphed.

Efflux propensity and activity against drug-resistant strains. For these studies, working stocks of GC-072 solubilized in dimethyl sulfoxide (DMSO; Fisher BioReagent, Pittsburgh, PA) were made by further diluting in Mueller-Hinton broth and doxycycline and ciprofloxacin obtained from Gold Biotechnology, Saint Louis, MO were used as control antibiotics. The antimicrobial susceptibilities of strains to GC-072 were assessed by determining the MIC following CLSI guidelines (67, 68). A colony of the tester bacterium grown at 37°C on Lennox LB (MO BIO Laboratories, Carlsbad, CA) agar plates was selected and placed in 1 ml MHB. A sufficient volume of this suspension was added to 3 ml sterile saline (0.85% NaCl) to match a 0.5 McFarland turbidity standard. Media were supplemented with 80 µg/ml adenine for Bp82-derived strains. Expression from the *tac* promoter in Bp82-*P*_{ter}-*PenA⁺ was induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG; Gold Biotechnology, Saint Louis, MO). MIC data were determined in technical duplicate and biological triplicate on three separate days and plates were read after 20 h incubation at 37°C.

Intracellular activity. Intracellular growth assays were performed as previously described...
Briefly, RAW 264.7 cells (obtained from ATCC via Dr. David Pascual, UFL) were infected with *B. pseudomallei* 1026b at a multiplicity of infection (MOI) of 10 using an aminoglycoside protection assay. After co-incubation of bacteria and cells for 1 h at 37°C, the DMEM was then removed and the cells were washed three times with PBS. Extracellular bacteria, suspended in DMEM, were killed by the addition of 250 µg/ml amikacin (Gold Biotechnology) and 250 µg/ml kanamycin (Gold Biotechnology), and plates were incubated for 1 h at 37°C. After adding fresh medium containing amikacin and kanamycin and 0, 0.25 or 2.5 µg/ml of GC-072, the cells were incubated at 37°C. Samples were removed at 0, 1, 5, and 24 h after initiation of treatment, washed three times with PBS, and then lysed by addition of 0.2% Triton X-100 (Amresco, Solon, OH) diluted in PBS. The lysates were 10-fold serially diluted in PBS and three 10 µl samples of each dilution were spotted on Lennox LB agar plates. Bacterial cells growing on the plates were enumerated after overnight incubation at 37°C.

Animal care and use. Female BALB/c mice aged 6 – 8 weeks old (average weight 19.75 g) were obtained from the National Cancer Institute/Charles River Laboratories, Frederick, MD. Animals were acclimated for one week prior to the challenge and had free access to food and water (*ad libitum*) throughout the study. Guidelines in the Guide for the Care and Use of Laboratory Animals were adhered to for all experimental procedures. Research was conducted in the BSL3 laboratory at UFL in compliance with the Animal Welfare Act and other federal statutes and regulations. The facility is fully accredited by the American Association for the Accreditation of Laboratory Animal Care.

Aerosol infection. *B. pseudomallei* 1026b was grown overnight in BHI broth. For the aerosol challenge, the overnight culture was adjusted based on the OD_{600} to give a target-challenge aerosol dose, approximately 24 or 339 LD_{50}s. To verify final starting bacterial concentrations, the
adjusted bacterial cultures were serially diluted and plated on TSA plates. Colonies were enumerated following overnight incubation of the plates at 35°C.

The target inhaled dose of *B. pseudomallei* was administered to mice by whole-body aerosol, which was generated using a three-jet Collison nebulizer (70). In this model, one LD₅₀ was equivalent to approximately 3 × 10³ CFU/mouse. All aerosol procedures were controlled and monitored using the Automated Bioaerosol Exposure system (71) operated with a whole-body rodent exposure chamber. Integrated air samples were obtained from the chamber using an all-glass impinger (AGI) during each exposure. The AGI collections were serially diluted and plated on TSA, as described above. The inhaled dose (CFU/mouse) of *B. pseudomallei* was estimated using mouse respiratory rates per Guyton’s formula (72) and calculated according to Roy, *et al.*, 2006 (73).

24 LD₅₀ bacterial challenge efficacy study. In order to create a liquid solution for administration via oral gavage, the potassium salt of GC-072, which has modest aqueous solubility and good permeability, was homogenized in water containing 0.5% methylcellulose to enhance wetting of the surface of the particles. Eight groups of 10 mice each were included in this study. Beginning at 8 or 16 hours after challenge, GC-072 was administered as doses of 1, 3, 10, or 30 mg/kg every 8 hours (Q8h) by i.g. administration via oral gavage for 14 days. The positive comparator, ceftazidime (150 mg/kg) was administered i.p. every 6 hours (Q6h) for 14 days. A vehicle control group received 0.5% methylcellulose in sterile water for injection (SWFI) by oral gavage Q8h. Mortality was assessed and recorded every 6 hours during antibiotic administration for 14 days and at least twice a day thereafter for 45 days post-challenge. The experiment was terminated at day 45.
339 LD₅₀ bacterial challenge efficacy study. This experiment included 9 cohorts of 10 mice each. Beginning 8- or 24-hours post-challenge, GC-072 was administered as doses of 37.5, 75, or 150 mg/kg Q8h by oral gavage for 14 days. The positive comparator, ceftazidime, 150 mg/kg was administered i.p. Q6h for 14 days. A vehicle control group received SWFI by oral gavage Q8h. Mortality was assessed and recorded every 6 hours for 14 days during antibiotic administration and at least twice daily thereafter for 37 days after the challenge.

Statistical analysis. All graphs were generated using GraphPad Prism version 7.00 for Windows, GraphPad Software, La Jolla, California USA.

MIC₉₀ and MIC₅₀ values from *in vitro* susceptibility testing of 100 strains of *B. pseudomallei* were calculated by determining the 50th percentile (median) and 90th percentile, respectively, using Prism version 7.00. MIC₉₀ and MIC₅₀ values from *in vitro* susceptibility testing of additional biodefense pathogens (*B. anthracis*, *F. tularensis*, *Y. pestis*, and *B. mallei*) were determined by rank-ordering MIC values from highest to lowest in a Microsoft (Redmond, WA) Excel spreadsheet and identifying the 90%-highest MIC value (MIC₉₀) (corresponding to the 27th strain in the ranking of 30-strain sets), and the median MIC value (MIC₅₀, corresponding to the 15th strain in each rank-ordered set), respectively.

For analysis and graphing of efflux propensity, activity against drug resistant strains, and intracellular activity studies, GraphPad Prism version 6.00 and Excel 2016 for Windows were used. The error of the mean between three biological replicates for efflux propensity and activity against drug resistant strains was calculated using Microsoft Excel. Intracellular activity data was analyzed in Prism version 7.00 using a 2-way ANOVA and Tukey’s test for individual comparisons.
Analysis of survival data from *in vivo* efficacy studies was performed by employing a stratified Kaplan-Meyer analysis with a log-rank (Mantel-Cox) test as implemented in Prism version 7.00.
Acknowledgements

The authors would like to thank Dr. Jutta Heim, Dr. Timothy Babinchak, Dr. Paul-Andre de Lame, Preeya Lowe, Dr. Allison Hogg, Dr. Harriet Kamendi, Dr. Amanda Horstman Smith, and Dr. Patricia Bradford for helpful discussions. Dr. Michael Lacy, Andrea Harris, Dr. Jon Inglefield, Dr. Daniel C. Hill, Chloe E. Starr, Linnell B. Randall, Lara Chuvala, Renaldo Riggins, John Craig, Steven Fikes, Lynda L. Miller, Stephanie A. Halasohoris, Purvi D. Desai, and Sharon M. Int Veldt provided valuable technical support. This work was partially funded by the Defense Threat Reduction Agency (Contract HDTRA1-14-C-0122 to Emergent BioSolutions and DTRA JSTO CB-3848 funding to MAJ Steven Zumbrun at USAMRIID). Emergent authors (Jeffry Shearer, Michelle Saylor, Anthony Treston, Christine Butler, and Kelly Warfield) are employed by the company and may have corporate equity and/or stock options. Dr. Drusano is a consultant to Emergent BioSolutions for antibiotic development programs.
1. Suttisunhakul V, Hip P, Ouch P, Ly P, Supaprom C, Rachmat A, Prouty M, Vaughn A, Eltayeb A, Kheng S, Clark DV, Lawler JV, Chantratita N, Burtnick MN, Brett PJ, Schully KL. 2018. Retrospective analysis of fever and sepsis patients from Cambodia reveals serological evidence of melioidosis. Am J Trop Med Hyg 98(4):1039-1045. https://doi.org/10.4269/ajtmh.17-0885.

2. Wiersinga WJ, Virks HS, Torres AG, Currie BJ, Peacock SJ, Dance DAB, Limmathurotsakul D. 2018. Melioidosis. Nat Rev Dis Primers 4:17107. https://doi.org/10.1038/nrdp.2017.107.

3. Cheng AC, Currie BJ. 2005. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18:383-416. https://doi.org/10.1128/CMR.18.2.383-416.2005.

4. Wiersinga WJ, Currie BJ, Peacock SJ. 2012. Melioidosis. N Engl J Med 367:1035-44. https://doi.org/10.1056/NEJMra1204699.

5. Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NP, Peacock SJ, Hay SI. 2016. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 1:15008. https://doi.org/10.1038/nmicrobiol.2015.8.

6. Schully KL, Berjohn CM, Prouty AM, Fitkariwala A, Som T, Sieng D, Gregory MJ, Vaughn A, Kheng S, Te V, Duplessis CA, Lawler JV, Clark DV. 2017. Melioidosis in lower provincial Cambodia: A case series from a prospective study of sepsis in Takeo Province. PLoS Negl Trop Dis 11:e0005923. https://doi.org/10.1371/journal.pntd.0005923.
7. Currie BJ, Ward L, Cheng AC. 2010. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis 4:e900. https://doi.org/10.1371/journal.pntd.0000900.

8. Currie BJ, Fisher DA, Anstey NM, Jacups SP. 2000. Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg 94:301-4. https://doi.org/10.1016/S0035-9203(00)90333-X.

9. Lazar Adler NR, Govan B, Cullinan M, Harper M, Adler B, Boyce JD. 2009. The molecular and cellular basis of pathogenesis in melioidosis: how does *Burkholderia pseudomallei* cause disease? FEMS Microbiol Rev 33:1079-99. https://doi.org/10.1111/j.1574-6976.2009.00189.x.

10. Jeddeloh JA, Fritz DL, Waag DM, Hartings JM, Andrews GP. 2003. Biodefense-driven murine model of pneumonic melioidosis. Infect Immun 71:584-7. https://doi.org/10.1128/IAI.71.1.584-587.2003.

11. Gan YH, Chua KL, Chua HH, Liu B, Hii CS, Chong HL, Tan P. 2002. Characterization of *Burkholderia pseudomallei* infection and identification of novel virulence factors using a *Caenorhabditis elegans* host system. Mol Microbiol 44:1185-97. https://doi.org/10.1046/j.1365-2958.2002.02957.x.

12. Tan GY, Liu Y, Sivalingam SP, Sim SH, Wang D, Paucod JC, Gauthier Y, Ooi EE. 2008. *Burkholderia pseudomallei* aerosol infection results in differential inflammatory responses in BALB/c and C57Bl/6 mice. J Med Microbiol 57:508-15. https://doi.org/10.1099/jmm.0.47596-0.
13. NIAID. 2018. NIAID Emerging Infectious Disease/Pathogens, on NIH/NIAID. https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens. Accessed June 27, 2018.

14. Cheng AC, Dance DA, Currie BJ. 2005. Bioterrorism, glanders and melioidosis. Euro Surveill 10(3):pii=528; author reply E1-2. https://doi.org/10.2807/esm.10.03.00528-en.

15. CDC. 2018. Excluded Strains of HHS and USDA Select Agents and Toxins. Federal Select Agent Program, on CDC. https://www.selectagents.gov/SelectAgentsandToxinsExclusions.html. Accessed October 22, 2018.

16. Estes DM, Dow SW, Schweizer HP, Torres AG. 2010. Present and future therapeutic strategies for melioidosis and glanders. Expert Rev Anti Infect Ther 8:325-38. https://doi.org/10.1586/eri.10.4.

17. Dance D. 2014. Treatment and prophylaxis of melioidosis. Int J Antimicrob Agents 43:310-8. https://doi.org/10.1016/j.ijantimicag.2014.01.005.

18. Lipsitz R, Garges S, Aurigemma R, Baccam P, Blaney DD, Cheng AC, Currie BJ, Dance D, Gee JE, Larsen J, Limmathurotsakul D, Morrow MG, Norton R, O'Mara E, Peacock SJ, Pesik N, Rogers LP, Schweizer HP, Steinmetz I, Tan G, Tan P, Wiersinga WJ, Wuthiekanun V, Smith TL. 2012. Workshop on treatment of and postexposure prophylaxis for *Burkholderia pseudomallei* and *B. mallei* Infection, 2010. Emerg Infect Dis 18:e2. https://doi.org/10.3201/eid1812.120638.

19. Maharjan B, Chantratita N, Vesaratcavest M, Cheng A, Wuthiekanun V, Chierakul W, Chaowagul W, Day NP, Peacock SJ. 2005. Recurrent melioidosis in patients in northeast
Thailand is frequently due to reinfection rather than relapse. J Clin Microbiol 43:6032-4. https://doi.org/10.1128/JCM.43.12.6032-6034.2005.

20. Koponen MA, Zlock D, Palmer DL, Merlin TL. 1991. Melioidosis. Forgotten, but not gone! Arch Intern Med 151:605-8. https://doi.org/10.1001/archinte.1991.00400030135027.

21. Mays EE, Ricketts EA. 1975. Melioidosis: recrudescence associated with bronchogenic carcinoma twenty-six years following initial geographic exposure. Chest 68:261-3. https://doi.org/10.1378/chest.68.2.261.

22. Ngauy V, Lemeshev Y, Sadkowski L, Crawford G. 2005. Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43:970-2. https://doi.org/10.1128/JCM.43.2.970-972.2005.

23. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1-12. https://doi.org/10.1086/595011.

24. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. 2014. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22:438-45. https://doi.org/10.1016/j.tim.2014.04.007.

25. WHO. 5 February 2018. Antibiotic Resistance, on WHO. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance. Accessed January 10, 2019.

26. Dance DA, Davong V, Soeng S, Phetsouvanh R, Newton PN, Turner P. 2014. Trimethoprim/sulfamethoxazole resistance in *Burkholderia pseudomallei*. Int J Antimicrob Agents 44:368-9. https://doi.org/10.1016/j.ijantimicag.2014.06.003.
27. Moore RA, DeShazer D, Reckseidler S, Weissman A, Woods DE. 1999. Efflux-mediated aminoglycoside and macrolide resistance in *Burkholderia pseudomallei*. Antimicrob Agents Chemother 43:465-70. https://doi.org/10.1128/AAC.43.3.465.

28. Schweizer HP. 2012. Mechanisms of antibiotic resistance in *Burkholderia pseudomallei*: implications for treatment of melioidosis. Future Microbiol 7:1389-99. https://doi.org/10.2217/fmb.12.116.

29. Mima T, Schweizer HP. 2010. The BpeAB-OprB efflux pump of *Burkholderia pseudomallei* 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system. Antimicrob Agents Chemother 54:3113-20. https://doi.org/10.1128/AAC.01803-09.

30. Kumar A, Chua KL, Schweizer HP. 2006. Method for regulated expression of single-copy efflux pump genes in a surrogate *Pseudomonas aeruginosa* strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of *Burkholderia pseudomallei* 1026b. Antimicrob Agents Chemother 50:3460-3. https://doi.org/10.1128/AAC.00440-06.

31. Wuthiekanun V, Amornchai P, Saiprom N, Chantratita N, Chierakul W, Koh GC, Chaowagul W, Day NP, Limmathurotsakul D, Peacock SJ. 2011. Survey of antimicrobial resistance in clinical *Burkholderia pseudomallei* isolates over two decades in Northeast Thailand. Antimicrob Agents Chemother 55:5388-91. https://doi.org/10.1128/AAC.05517-11.

32. Rhodes KA, Schweizer HP. 2016. Antibiotic resistance in *Burkholderia* species. Drug Resist Updat 28:82-90. https://doi.org/10.1016/j.drup.2016.07.003.
33. Sam IC, See KH, Puthucheary SD. 2009. Variations in ceftazidime and amoxicillin-clavulanate susceptibilities within a clonal infection of *Burkholderia pseudomallei*. J Clin Microbiol 47:1556-8. https://doi.org/10.1128/JCM.01657-08.

34. Sarovich DS, Price EP, Limmathurotsakul D, Cook JM, Von Schulze AT, Wolken SR, Keim P, Peacock SJ, Pearson T. 2012. Development of ceftazidime resistance in an acute *Burkholderia pseudomallei* infection. Infect Drug Resist 5:129-32. https://doi.org/10.2147/IDR.S35529.

35. Sarovich DS, Price EP, Von Schulze AT, Cook JM, Mayo M, Watson LM, Richardson L, Seymour ML, Tuanyok A, Engelthaler DM, Pearson T, Peacock SJ, Currie BJ, Keim P, Wagner DM. 2012. Characterization of ceftazidime resistance mechanisms in clinical isolates of *Burkholderia pseudomallei* from Australia. PLoS One 7:e30789. https://doi.org/10.1371/journal.pone.0030789.

36. Tribuddharat C, Moore RA, Baker P, Woods DE. 2003. *Burkholderia pseudomallei* class A β-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition. Antimicrob Agents Chemother 47:2082-7. https://doi.org/10.1128/AAC.47.7.2082-2087.2003.

37. Bugrysheva JV, Sue D, Gee JE, Elrod MG, Hoffmaster AR, Randall LB, Chirakul S, Tuanyok A, Schweizer HP, Weigel LM. 2017. Antibiotic resistance markers in *Burkholderia pseudomallei* strain Bp1651 identified by genome sequence analysis. Antimicrob Agents Chemother 61(6). https://doi.org/10.1128/AAC.00010-17.

38. Viberg LT, Sarovich DS, Kidd TJ, Geake JB, Bell SC, Currie BJ, Price EP. 2017. Within-host evolution of *Burkholderia pseudomallei* during chronic infection of seven Australasian cystic fibrosis patients. MBio 8(2). https://doi.org/10.1128/mBio.00356-17.
39. Chirakul S, Norris MH, Pagdepanichkit S, Somprasong N, Randall LB, Shirley JF, Borlee BR, Lomovskaya O, Tuanyok A, Schweizer HP. 2018. Transcriptional and post-transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance. Sci Rep 8(1):10652. https://doi.org/10.1038/s41598-018-28843-7.

40. Chantratita N, Rholl DA, Sim B, Wuthiekanun V, Limmathurotsakul D, Amornchai P, Thanwisai A, Chua HH, Ooi WF, Holden MT, Day NP, Tan P, Schweizer HP, Peacock SJ. 2011. Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei. Proc Natl Acad Sci USA 108:17165–17170. https://doi.org/10.1073/pnas.1111020108.

41. Podnecky NL, Rhodes KA, Schweizer HP. 2015. Efflux pump-mediated drug resistance in Burkholderia. Front Microbiol 6:305. https://doi.org/10.3389/fmicb.2015.00305.

42. Trunck LA, Propst KL, Wuthiekanun V, Tuanyok A, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Peacock SJ, Keim P, Dow SW, Schweizer HP. 2009. Molecular basis of rare aminoglycoside susceptibility and pathogenesis of Burkholderia pseudomallei clinical isolates from Thailand. PLoS Negl Trop Dis 3:e519. https://doi.org/10.1371/journal.pntd.0000519.

43. Podin Y, Sarovich DS, Price EP, Kaestli M, Mayo M, Hii K, Ngian H, Wong S, Wong I, Wong J, Mohan A, Ooi M, Fam T, Wong J, Tuanyok A, Keim P, Giffard PM, Currie BJ. 2014. Burkholderia pseudomallei isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides. Antimicrob Agents Chemother 58:162-6. https://doi.org/10.1128/AAC.01842-13.
44. Sirijant N, Sermswan RW, Wongratanacheewin S. 2016. Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. J Med Microbiol 65:1296-1306. https://doi.org/10.1099/jmm.0.000358.

45. Hayden HS, Lim R, Brittnacher MJ, Sims EH, Ramage ER, Fong C, Wu Z, Crist E, Chang J, Zhou Y, Radey M, Rohmer L, Haugen E, Gillett W, Wuthiekanun V, Peacock SJ, Kaul R, Miller SI, Manoil C, Jacobs MA. 2012. Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One 7:e36507. https://doi.org/10.1371/journal.pone.0036507.

46. Podnecky NL, Wuthiekanun V, Peacock SJ, Schweizer HP. 2013. The BpeEF-OprC efflux pump is responsible for widespread trimethoprim resistance in clinical and environmental Burkholderia pseudomallei isolates. Antimicrob Agents Chemother 57:4381-6. https://doi.org/10.1128/AAC.00660-13.

47. Podnecky NL, Rhodes KA, Mima T, Drew HR, Chirakul S, Wuthiekanun V, Schupp JM, Sarovich DS, Currie BJ, Keim P, Schweizer HP. 2017. Mechanisms of resistance to folate pathway inhibitors in Burkholderia pseudomallei: Deviation from the norm. MBio 8(5). https://doi.org/10.1128/mBio.01357-17.

48. Randall LB, Georgi E, Genzel GH, Schweizer HP. 2017. Finafloxacin overcomes Burkholderia pseudomallei efflux-mediated fluoroquinolone resistance. J Antimicrob Chemother 72(4):1258-1260. https://doi.org/10.1093/jac/dkw529.

49. Schweizer HP. 2012. Mechanisms of Burkholderia pseudomallei antimicrobial resistance. Melioidosis -- A Century of Observation and Research. N. Keteesan, Elsevier:229-238. https://doi.org/10.2217/fmb.12.116.

50. Andriole VT. 2005. The quinolones: past, present, and future. Clin Infect Dis 41(Suppl 2):S113-9. https://doi.org/10.1086/428051.
51. Chaowagul W, Suputtamongkul Y, Smith MD, White NJ. 1997. Oral fluoroquinolones for maintenance treatment of melioidosis. Trans R Soc Trop Med Hyg 91:599-601. https://doi.org/10.1016/S0035-9203(97)90044-4.

52. Jacoby GA. 2005. Mechanisms of resistance to quinolones. Clin Infect Dis 41(Suppl 2):S120-6. https://doi.org/10.1086/428052.

53. Correia S, Poeta P, Hebraud M, Capelo JL, Igrejas G. 2017. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol 66(5):551-559. https://doi.org/10.1099/jmm.0.000475.

54. Piddock LJ. 1999. Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs 58(Suppl 2):11-8. https://doi.org/10.2165/00003495-199958002-00003.

55. Madurga S, Sanchez-Cespedes J, Belda I, Vila J, Giralt E. 2008. Mechanism of binding of fluoroquinolones to the quinolone resistance-determining region of DNA gyrase: towards an understanding of the molecular basis of quinolone resistance. Chembiochem 9(13):2081-6. https://doi.org/10.1002/cbic.200800041.

56. Li Q, Mitscher LA, Shen LL. 2000. The 2-pyridone antibacterial agents: bacterial topoisomerase inhibitors. Med Res Rev 20(4):231-293. https://doi.org/10.1002/1098-1128(200007)20:4<231::AID-MED1>3.0.CO;2-N.

57. Ma Z, Chu DT, Cooper CS, Li Q, Fung AK, Wang S, Shen LL, Flamm RK, Nilius AM, Alder JD, Meulbroek JA, Or YS. 1999. Synthesis and antimicrobial activity of 4H-4-oxoquinolizine derivatives: consequences of structural modification at the C-8 position. J Med Chem 42(20):4202-4213. https://doi.org/10.1021/jm990191k.

58. Shen LTSC, DTW. 1997. Quinolones, 2-pyridones and resistant Type II DNA topoisomerases. Current Pharmaceutical Design 3:169-176.
59. Na SJ, H; Kim, YJ; Kwon, HI; Selasi, GN; Nicholas, A; Yun, CS; Lee, SH; Lee, JC. 2017. Antimicrobial activity of novel 4H-4-oxoquinolizine compounds against extensively drug-resistant *Acinetobacter baumannii* strains. Int J Antimicrob Agents 49:107-111. https://doi.org/10.1016/j.ijantimicag.2016.10.008.

60. Li Q, Chu DTW, Claiborne A, Cooper CS, Lee CM, Raye K, Berst KB, Donner P, Wang W, Hasvold L, Fung A, Ma Z, Tufano M, Flamm R, Shen LL, Baranowski J, Nilius A, Alder J, Meulbroek J, Marsh K, Crowell D, Hui Y, Seif L, Melcher LM, Henry R, Spanton S, Faghih R, Klein LL, Tanaka SK, Plattner JJ. 1996. Synthesis and structure-activity relationships of 2-pyridones: a novel series of potent DNA gyrase inhibitors as antibacterial agents. J Med Chem 39(16):3070-3088. https://doi.org/10.1021/jm960207w.

61. Propst KL, Troyer RM, Kellihan LM, Schweizer HP, Dow SW. 2010. Immunotherapy markedly increases the effectiveness of antimicrobial therapy for treatment of *Burkholderia pseudomallei* infection. Antimicrob Agents Chemother 54:1785-92.

62. Heine H, Miller L, Halasohoris, S, Holman K, Zadeh, M. 2009. Assessment of *Burkholderia Pseudomallei* (*bp*) in vitro susceptibility and efficacy in a murine-aerosol challenge model for five antibiotic classes, abstr B-1333. 49th ICAAC Abstracts. September 12-15, 2009. American Society for Microbiology, San Francisco, CA.

63. DeShazer D, Brett P, Carlyon R, Woods D. 1997. Mutagenesis of *Burkholderia pseudomallei* with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol 179:2116-2125. https://doi.org/10.1128/jb.179.7.2116-2125.

64. Propst KL, Mima T, Choi KH, Dow SW, Schweizer HP. 2010. A *Burkholderia pseudomallei ΔpurM* mutant is avirulent in immune competent and immune deficient
animals: candidate strain for exclusion from Select Agent lists. Infect Immun 78:3136-3143. https://doi.org/10.1128/IAI.01313-09.

Rhoff DA, Papp-Wallace KM, Tomaras AP, Vasil ML, Bonomo RA, Schweizer HP. 2011. Molecular Investigations of PenA-mediated β-lactam Resistance in Burkholderia pseudomallei. Front Microbiol 2:139. https://doi.org/10.3389/fmicb.2011.00139.

Nitiss JL, Soans E, Rogojina A, Seth A, Mishina M. 2012. Topoisomerase assays. Curr Protoc Pharmacol Chapter 3:Unit 3.3. https://doi.org/10.1002/0471141755.ph0303s57.

CLSI. 2010. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria, 2nd ed., Vol. 30, no. 18. Clinical and Laboratory Standards Institute, Wayne, PA.

CLSI. 2015. Performance standards for antimicrobial susceptibility testing. Twenty-fifth Informal Supplement M100-S25. Clinical and Laboratory Standards Institute, Wayne, PA.

Norris MH, Rahman Khan MS, Schweizer HP, Tuanyok A. 2017. An avirulent Burkholderia pseudomallei ΔpurM strain with atypical type B LPS: expansion of the toolkit for biosafe studies of melioidosis. BMC Microbiol 17(1):132. https://doi.org/10.1186/s12866-017-1040-4.

May KR. 1973. The Collison Nebulizer: Description, Performance, and Application. Journal of Aerosol Science 4:235-243. The Collison nebulizer: Description, performance, and application. Journal of Aerosol Science 4:235-243. https://doi.org/10.1016/0021-8502(73)9006-2.

Hartings JM, Roy CJ. 2004. The automated bioaerosol exposure system: preclinical platform development and a respiratory dosimetry application with nonhuman primates. J...
72. Guyton AC. 1947. Measurement of the respiratory volumes of laboratory animals. Am J Physiol 150:70-7. https://doi.org/10.1152/ajplegacy.1947.150.1.70.

73. Roy CJ, Pitt LM. 2006. Infectious disease aerobiology: aerosol challenge methods, p 61-76, Biodefense: Research Methodology and Animal Models. https://doi.org/10.3201/eid1303.061488.
Figures Titles and Captions.

Figure 1. GC-072 is a novel topoisomerase inhibitor. The position of nitrogen in the heteroaromatic structure confers significantly different physicochemical and biological properties of GC-072 compared to fluoroquinolone-class antibiotics.

Figure 2. *In vitro* time-kill. Concentration-dependent activity of GC-072 against *B. pseudomallei* strain 1026b over a 24-h period. Bacterial suspensions containing *B. pseudomallei* strain 1026b were left untreated or inoculated with GC-072 at concentrations of 1, 2, 4, 8, or 16× MIC (0.125 mg/liter). At 0, 2, 5, 7.5, and 24 h of incubation, samples were collected from each suspension, quantitatively cultured, and enumerated after 48 h of incubation.

Figure 3. Intracellular activity. The activity of GC-072 against intracellular *B. pseudomallei* 1026b was assessed via intracellular survival assays. Murine RAW 264.7 macrophages were infected with *B. pseudomallei* strain 1026b with an MOI of ~10. Cells were either left untreated or treated with 0.25 mg/ml or 2.5 mg/ml of GC-072. Residual bacteria counts were assessed from lysed cells at 0, 1, 5, and 24 h after initiation of treatment. Error bars indicate the error of the mean between three biological replicates. * Indicates P ≤0.05, ** indicates P <0.01, *** indicates P <0.001, and **** indicates P <0.0001.

Figure 4. *In vivo* efficacy of GC-072 in a mouse melioidosis model following aerosol exposure to a 24 LD₅₀ bacterial challenge with *B. pseudomallei* strain 1026b. Treatment initiation is indicated in brackets on figure legend. Following a 24 LD₅₀ challenge with *B. pseudomallei* strain 1026b, female BALB/c mice (n = 10 per group except as noted below, age 6 – 8 weeks old) were
treated i.g. via oral gavage with vehicle (SWFI), GC-072 (1, 3, 10, or 30 mg/kg, formulated as suspension with 0.5% methylcellulose) Q8h, or ceftazidime (150 mg/kg via i.p. injection, Q6h).

(A) Survival of mice treated with GC-072, ceftazidime, or vehicle starting at 8 hours post-infection (hpi). (B) Survival of mice treated with GC-072 initiated 16 hpi. A single animal in the 30 mg/kg group with treatment initiated at 16 hpi died at the beginning of the study from causes deemed unrelated to exposure or drug; therefore, this group had a total of 9 mice. * Indicates $P \leq 0.05$.

Figure 5. *In vivo* efficacy of GC-072 in a mouse model of melioidosis following aerosol exposure to a 339 LD$_{50}$ bacterial challenge with *B. pseudomallei* strain 1026b. Treatment initiation is indicated in brackets on figure legend. Female BALB/c mice (n = 10/cohort, age 6 – 8 weeks old) were challenged with 339 LD$_{50}$s of *B. pseudomallei* 1026b. Beginning 8 or 24 hpi, mice were treated i.g. via oral gavage Q8h with either vehicle (SWFI) or GC-072 (37.5, 75, or 150 mg/kg), or Q6h via i.p. injection with 150 mg/kg of ceftazidime. (A) Survival of mice treated with GC-072, ceftazidime, or vehicle, initiated 8 hpi. (B) Survival of mice treated with GC-072 or ceftazidime, initiated 24 hpi. * Indicates $P \leq 0.05$ and ** indicates $P < 0.01$.

Downloaded from http://aac.asm.org/ on March 5, 2020 by guest
Table 1. *In vitro* selectivity of GC-072 for bacterial and human topoisomerases.

Compound	Bacterial Topoisomerases	Human Topoisomerases						
	S. aureus	*E. coli*		Topo IV	Topo I	Topo II		
GC-072	Gyrase	Topo IV	Gyrase	Quinolone-resistant Gyrase	Gyrase	Topo IV	Topo I	Topo II
	2	4 – 30	0.18 – 1.50	1.30 – 1.50	4.22 – 8.45	>100	>100	
Ciprofloxacin	62	15 – 30	0.16 – 1.68	35 – 130	2.35 – 4.71	>100	>100	
Table 2. *In vitro* susceptibility of *B. pseudomallei* to GC-072 and comparators: Range, MIC\textsubscript{50}, and MIC\textsubscript{90}.

Antibiotic	Number of strains	MIC Range (µg/ml)1	MIC\textsubscript{50} (µg/ml)	MIC\textsubscript{90} (µg/ml)
GC-072	100	≤0.008 – 1	0.12	0.25
Ciprofloxacin	100	0.25 – 16	2	8
Finafloxacin	50	1 – ≥16	4	8
Meropenem	100	≤0.06 – 4	0.5	1
Ceftazidime	100	0.25 – ≥128	1	64
Doxycycline	100	≤0.06 – 32	0.5	4

1 Antimicrobial activity was determined by the microdilution method in 96-well plates according to CLSI guidelines. All compounds were tested in parallel against the recommended CLSI reference quality control strains *E. coli* (ATCC 25922) and *P. aeruginosa* (ATCC 27853).
Table 3. *In vitro* antibiotic susceptibility of additional biodefense pathogens.

Antibiotic	MIC Range[^1]	MIC₅₀	MIC₉₀
B. anthracis (n = 30)			
GC-072	≤0.0005 – 0.004	0.001	0.002
Finafloxacin	0.03 – 0.12	0.06	0.12
Ciprofloxacin	0.015 – 0.06	0.03	0.06
F. tularensis (n = 30)			
GC-072	≤0.0005 – 0.015	≤0.0005	≤0.0005
Finafloxacin	≤0.004 – 0.12	≤0.004	0.008
Ciprofloxacin	≤0.004 – 1	0.008	0.015
Y. pestis (n = 30)			
GC-072	0.002 – 0.03	0.008	0.015
Finafloxacin	0.015 – 0.25	0.06	0.12
Ciprofloxacin	≤0.004 – 0.12	0.015	0.03
B. mallei (n = 30)			
GC-072	≤0.004 – 0.5	0.015	0.12
Finafloxacin	0.015 – 2	0.25	2
Azithromycin	0.12 – 1	0.5	0.5

[^1]: MICs were determined by the microdilution method in 96-well plates according to CLSI guidelines. All compounds were tested in parallel against the recommended CLSI reference quality control strains *E. coli* ATCC 25922, *S. aureus* ATCC 29213, and *P. aeruginosa* ATCC 27853.
Table 4. Activity of GC-072 and comparators against efflux-proficient strains of B. pseudomallei.

Strain	Genotype	Efflux Pump(s) Expressed	Minimal Inhibitory Concentration (µg/ml)²		
			Doxycycline	Ciprofloxacin	GC-072
1026b	Wild-type	AmrAB-OprA, BpeAB-OprB	0.5	2	0.25
Bp340	1026b ∆(amrAB-oprA)	BpeAB-OprB	0.125	0.5 – 1	0.063
Bp227	1026b ∆(bpeAB-oprB)	AmrAB-OprA	0.125	0.5	≤0.004 – 0.016
Bp207	1026b Δ(amrAB-oprA) Δ(bpeAB-oprB)	None known	≤0.008	0.25	≤0.004 – 0.031
Bp58	1026b ∆bpeR Δ(amrAB-oprA)	BpeAB-OprB	0.5	2	0.25
Bp282	Bp207 bpeT	BpeEF-OprC	4	16	1
Bp320	Bp282 Δ(bpeEF-oprC)	None known	≤0.0078125	0.25 – 0.5	≤0.004 – 0.125
ATCC 25922	E. coli ATCC 25922		1	≤0.008	≤0.004
ATCC 27853	P. aeruginosa ATCC 27853		>16	0.25	1

¹ All strains used in this study are derived from B. pseudomallei 1026b as previously described, with the exception of Bp282 and Bp320. The latter two strains were derived as follows: Bp282 is a ciprofloxacin-resistant derivative of Bp207 obtained using passive selection. It contains a bpeT point mutation causing an S280P BpeT amino acid substitution. The passive selection experiment was conducted prior to December 4, 2012 and its performance and mutant possession did not require US Federal Select Agent Program approval. Bp320 is a Δ(bpeEF-oprC) derivative of Δ(amrAB-oprA) Δ(bpeAB-oprB) strain Bp282 and was constructed using the previously described methods. This strain does not express any known efflux pumps (48).

² The MIC against each strain was determined using broth microdilution assays. The data shown represent three biological replicates, each in technical duplicate; reporting modes of 6 data points.
The control strains *E. coli* ATCC 25922 and *P. aeruginosa* ATCC 27853 were verified in parallel with all MIC testing to ensure that MICs for the control antibiotics were within the expected range, according to CLSI guidelines.
Table 5. Activity of GC-072 against drug resistant strains of *B. pseudomallei*.

Strain	MIC (µg/ml)	Phenotype	Ceftazidime	Ciprofloxacin	GC-072
Bp82 (penA⁺)	Wild-type	2	2	0.5	
Bp82 ΔpenA	PenA β-lactamase deficient	0.5	2	0.5	
Bp82 penA_{C69Y}	Ceftazidime resistant	64	2 – 4	0.5	
Bp82 penA_{P167S}	Ceftazidime resistant	8	4	0.5	
Bp82 penA_{D240G}	Ceftazidime resistant	8 – 16	2 – 4	0.25 – 1	
Bp82 folA_{I99L}	Clavulanate resistant	1	2 – 4	0.5	
Bp82 P_{sec}–penA⁺	PenA β-lactamase overproducer	16	2	0.5	
Bp82 folA_{I99L}	Trimethoprim resistant	1 – 2	4	0.5	
E. coli ATCC 25922³	Wild-type	0.25	≤0.016	0.008	
P. aeruginosa ATCC 27853³	Wild-type	4	0.25	1	

1The panel of select agent excluded Bp82 strains (47) was used to assess single drug class resistance due to target mutations causing β-lactam resistance (e.g., ceftazidime resistance due to PenA β-lactamase point mutations or overexpression) or trimethoprim resistance (due to *folA* point mutations).

2The MIC against each strain was determined using broth microdilution assays. The data shown represent three biological replicates, each in duplicate, reporting modes of 6 data points.

3Values for ceftazidime and ciprofloxacin obtained with *E. coli* and *P. aeruginosa* type strains are within expected CLSI range.
