Supplemental Online Content

Goodman-Meza D, Shover CL, Medina JA, Tang AB, Shoptaw S, Bui AAT. Development and validation of machine models using natural language processing to classify substances involved in overdose deaths. *JAMA Netw Open.* 2022;5(8):e2225593. doi:10.1001/jamanetworkopen.2022.25593

eTable 1. Classifications and Keywords of Substances Related to Overdoses

eTable 2. Co-occurrence of Substances Involved in Overdose Deaths

eTable 3. Bootstrapped Diagnostic Metrics and 95% Confidence Intervals of Best Performing Models in Test Dataset (N = 7,087) Using TF-IDF as Feature Representations

eTable 4. Bootstrapped Diagnostic Metrics and 95% Confidence Intervals of Best Performing Models in Test Dataset (N = 7,087) Using Word Embedding (GloVe) as Feature Representations

eTable 5. Confusion Matrix for Any Opioids

eTable 6. Confusion Matrix for Heroin

eTable 7. Confusion Matrix for Fentanyl

eTable 8. Confusion Matrix for Prescription Opioids

eTable 9. Confusion Matrix for Methamphetamine

eTable 10. Confusion Matrix for Cocaine

eTable 11. Confusion Matrix for Benzodiazepines

eTable 12. Confusion Matrix for Alcohol

eTable 13. Confusion Matrix for Others

eTable 14. Error Analysis for Any Opioids

eTable 15. Error Analysis for Fentanyl

eTable 16. Error Analysis for Prescription Opioids
eTable 17. Error Analysis for Benzodiazepines

eTable 18. Error Analysis for Alcohol

eTable 19. Error Analysis for “Other” Substances

eFigure 1. Variable Importance Plot for Predicting Category “Any Opioids”

eFigure 2. Variable Importance Plot for Predicting Category “Heroin”

eFigure 3. Variable Importance Plot for Predicting Category “Fentanyl”

eFigure 4. Variable Importance Plot for Predicting Category “Prescription Opioids”

eFigure 5. Variable Importance Plot for Predicting Category “Methamphetamine”

eFigure 6. Variable Importance Plot for Predicting Category “Cocaine”

eFigure 7. Variable Importance Plot for Predicting Category “Benzodiazepines”

eFigure 8. Variable Importance Plot for Predicting Category “Alcohol”

eFigure 9. Variable Importance Plot for Predicting Category “Others”

This supplemental material has been provided by the authors to give readers additional information about their work.
Table 1. Classifications and keywords of substances related to overdoses.

Classification	Keywords
Alcohol	Alcohol, ethanol, ethanolism
Amphetamines	Amphetamine (only instances were amphetamine without methamphetamine were counted in this category)
Anticonvulsants	Carbamazepine, clobazam, oxcarbazepine, diazepam, ethosuxamide, phenytoin, gabapentin, lacosamide, levetiracetam, phenobarbital, pregabalin, lamotrigine, topiramate, valproate, valproic acid, zonisamide
Antidepressants	Citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, buproprion, venlafaxine, duloxetine, desvenlafaxine, levomilnacipran, imipramine, desipramine, nortriptyline, doxepin, trimipramine, amoxapine, protriptyline, trazodone, mirtazapine
Antihistamines	Diphenhydramine, cetirizine, chlorpheniramine, fexofenadine, loratadine, hydroxyzine, doxylamine, xylazine
Antipsychotics	Risperidone, quetiapine, olanzapine, aripiprazole, clozapine, haloperidol, chlorpromazine, ziprasidone, paliperidone, trifluoperazine, perphenazine, fluphenazine, lurasidone, pimozone
Barbiturates	Butalbital, phenobarbital, pentobarbital, butabarbital, amobarbital
Benzodiazepines	Benzodiazepine, etizolam, chlordiazepoxide, lorazepam, flubromazolam, nordiazepam, diazepam, pyrazolam, clonazepam, estazolam, xanax, alprazolam, flualprazolam
Cocaine	Cocaine, cocaethylene
Fentanyl	Fentanyl, 4-ANPP, carfentanil, acetylfentanyl
Hallucinogens	Phencyclidine, LSD, diethylamide, ketamine, PCP, methylenedioxyamphetamine
Heroin	Heroin
MDMA	3,4-methylenedioxymethamphetamine, MDMA, methylenedioxymethamphetamine, 3,4-methylenedioxymethamphetamine
MDA	Methylenedioxyamphetamine, methylenedioxymethamphetamine, MDA
Methamphetamine	Methamphetamine
Muscle relaxants	Cyclobenzaprine, baclofen, carisoprodol, metaxalone, methocarbamol, tizanidine, orphenadrine
Prescription opioids	Hydrocodone, oxycodone, hydromorphone, oxymorphine, codeine, oxycontin, methadone, percocet, buprenorphine, meperidine, morphine, tapentadol, tramadol, naltrexone, levorphanol

© 2022 Goodman-Meza D et al. JAMA Network Open.
Co-occurrence of substances involved in overdose deaths

Substance	Heroin	Fentanyl	Prescription opioids	Methamphetamine	Cocaine	Benzodiazepines	Alcohol	Others
Heroin	1,613	1,133	268	314	441	264	315	538
Fentanyl	1,133	4,758	736	724	1,478	788	1,070	1,501
Prescription opioids	268	736	1,197	120	256	363	229	491
Methamphetamine	314	724	120	1,876	193	85	131	1,876
Cocaine	441	1,478	256	193	2,247	266	551	518
Benzodiazepines	264	788	363	85	266	1,076	272	505
Alcohol	315	1,070	229	131	551	272	2,866	443
Others	538	1,501	491	1,876	518	505	443	3,019
eTable 3. Bootstrapped diagnostic metrics and 95% confidence intervals of best performing models in test dataset (n = 7,087) using TF-IDF as feature representations.

Metric	Any Opioids	Heroin	Fentanyl	Prescription Opioids	Methamphetamine	Cocaine	Benzodiazepines	Alcohol	Others
F-score	0.969	1.00	0.999	0.308	0.992	0.999	0.771	0.968	0.777
	(0.959-0.979)	(1.00-1.00)	(0.998-1.00)	(0.211-0.468)	(0.979-0.997)	(0.997-1.00)	(0.716-0.826)	(0.953-0.980)	(0.743-0.808)
Accuracy	0.990	1.00	1.00	0.964	0.999	1.00	0.986	0.995	0.967
	(0.987-0.993)	(1.00-1.00)	(1.00-1.00)	(0.958-0.974)	(0.998-1.00)	(1.00-1.00)	(0.983-0.99)	(0.992-0.997)	(0.962-0.972)
Kappa	0.963	1.00	0.999	0.290	0.991	0.999	0.764	0.965	0.76
	(0.951-0.974)	(1.00-1.00)	(0.998-1.00)	(0.193-0.455)	(0.978-0.996)	(0.996-1.00)	(0.708-0.821)	(0.949-0.978)	(0.723-0.792)
Sensitivity (Recall)	0.960	1.00	0.999	0.262	0.995	0.999	0.699	0.952	0.708
	(0.944-0.976)	(1.00-1.00)	(0.997-1.00)	(0.172-0.408)	(0.986-1.00)	(0.993-1.00)	(0.617-0.776)	(0.927-0.973)	(0.656-0.760)
Specificity	0.996	1.00	1.00	0.987	0.999	1.00	0.996	0.999	0.99
	(0.993-0.998)	(1.00-1.00)	(1.00-1.00)	(0.981-0.992)	(0.998-1.00)	(1.00-1.00)	(0.993-0.998)	(0.997-1.00)	(0.985-0.995)
Positive predictive value (Precision)	0.977	1.00	1.00	0.381	0.989	1.00	0.864	0.984	0.864
	(0.961-0.991)	(1.00-1.00)	(1.00-1.00)	(0.261-0.568)	(0.965-1.00)	(1.00-1.00)	(0.776-0.946)	(0.966-1.00)	(0.805-0.918)
Negative predictive value	0.993	1.00	1.00	0.977	1.00	1.00	0.990	0.996	0.974
	(0.99-0.995)	(1.00-1.00)	(1.00-1.00)	(0.972-0.983)	(0.999-1.00)	(1.00-1.00)	(0.986-0.993)	(0.993-0.998)	(0.969-0.980)
AUROC	0.998	1.00	1.00	0.893	0.997	1.00	0.981	0.991	0.98
	(0.996-0.999)	(1.00-1.00)	(1.00-1.00)	(0.851-0.931)	(0.993-1.00)	(0.994-1.00)	(0.97-0.99)	(0.984-0.998)	(0.976-0.985)

Values are means of 1,000 resamples bootstrapping procedure, values in parenthesis are lower and upper bounds of 95% percentiles for the bootstrapping procedure.
eTable 4. Bootstrapped diagnostic metrics and 95% confidence intervals of best performing models in test dataset (n = 7,087) using word embedding (GloVe) as feature representations.

Metric	Any Opioids	Heroin	Fentanyl	Prescription Opioids	Methamphetamine	Cocaine	Benzodiazepines	Alcohol	Others
F-score	0.966	1.00	0.999	0.378	0.998	0.999	0.525	0.942	0.750
(0.956 - 0.976)	(1.00 - 1.00)	(0.999 - 1.00)	(0.205 - 0.537)	(0.993 - 1.00)	(0.997 - 1.00)	(0.320 - 0.612)	(0.924 - 0.960)	(0.715 - 0.785)	
Accuracy	0.989	1.00	1.00	0.968	1.00	1.00	0.975	0.991	0.961
(0.985 - 0.992)	(1.00 - 1.00)	(1.00 - 1.00)	(0.959 - 0.977)	(0.999 - 1.00)	(1.00 - 1.00)	(0.966 - 0.980)	(0.988 - 0.994)	(0.955 - 0.966)	
Kappa	0.96	1.00	0.999	0.363	0.997	0.999	0.512	0.938	0.727
(0.947 - 0.971)	(1.00 - 1.00)	(0.998 - 1)	(0.189 - 0.525)	(0.992 - 1.00)	(0.997 - 1.00)	(0.289 - 0.601)	(0.918 - 0.956)	(0.691 - 0.767)	
Sensitivity (Recall)	0.957	1.00	0.999	0.296	0.995	0.999	0.501	0.926	0.718
(0.94 - 0.974)	(1.00 - 1.00)	(0.997 - 1.00)	(0.145 - 0.448)	(0.985 - 1.00)	(0.994 - 1.00)	(0.286 - 0.608)	(0.897 - 0.952)	(0.665 - 0.77)	
Specificity	0.995	1.00	1.00	0.991	1.00	1.00	0.989	0.997	0.982
(0.992 - 0.999)	(1.00 - 1.00)	(1.00 - 1.00)	(0.986 - 0.996)	(1.00 - 1.00)	(1.00 - 1.00)	(0.983 - 0.994)	(0.994 - 0.999)	(0.977 - 0.988)	
Positive predictive value (Precision)	0.976	0.999	1.00	0.537	1.00	0.999	0.56	0.96	0.786
(0.956 - 0.993)	(1.00 - 1.00)	(1.00 - 1.00)	(0.319 - 0.756)	(1.00 - 1.00)	(0.994 - 1.00)	(0.387 - 0.698)	(0.933 - 0.984)	(0.729 - 0.843)	
Negative predictive value	0.992	1.00	1.00	0.976	1.00	1.00	0.986	0.993	0.975
(0.988 - 0.995)	(1.00 - 1.00)	(1.00 - 1.00)	(0.969 - 0.983)	(0.999 - 1.00)	(1.00 - 1.00)	(0.978 - 0.990)	(0.991 - 0.996)	0.97 - 0.98	
AUROC	0.997	1.00	1.00	0.948	0.998	1.00	0.936	0.983	0.974
(0.994 - 0.999)	(1.00 - 1.00)	(1.00 - 1.00)	(0.932 - 0.963)	(0.993 - 1.00)	(0.994 - 1.00)	(0.900 - 0.966)	(0.972 - 0.993)	0.966 - 0.981	

Values are means of 1,000 resamples bootstrapping procedure, values in parenthesis are lower and upper bounds of 95% percentiles for the bootstrapping procedure. GloVe with 6 billion tokens and 100 dimensions was used in this analysis.
eTable 5. Confusion matrix for any opioids

Predicted	TF-IDF	Word embeddings (GloVe)	CUI embeddings (CUI2vec)			
Positive	1099	11	1095	6	1128	0
Negative	49	5928	53	5933	20	5939
Truth						
Positive	326	0	326	0	326	0
Negative	0	6761	0	6761	0	6761
Truth						

eTable 6. Confusion matrix for heroin

Predicted	TF-IDF	Word embeddings (GloVe)	CUI embeddings (CUI2vec)			
Positive	326	0	326	0	326	0
Negative	0	6761	0	6761	0	6761
Truth						
Positive	951	0	951	0	951	0
Negative	1	6135	1	6135	1	6135
Truth						

eTable 7. Confusion matrix for fentanyl

Predicted	TF-IDF	Word embeddings (GloVe)	CUI embeddings (CUI2vec)			
Positive	951	0	951	0	951	0
Negative	1	6135	1	6135	1	6135
Truth						

eTable 8. Confusion matrix for prescription opioids

Predicted	TF-IDF	Word embeddings (GloVe)	CUI embeddings (CUI2vec)			
Positive	94	19	89	15	235	0
Negative	142	6832	147	6836	1	6851
Truth						
eTable 9. Confusion matrix for methamphetamine

Predicted	TF-IDF	Word embeddings (GloVe)	CUI embeddings (CUI2vec)			
	Positive	369	369	369		
	Negative	0	6718	0	6717	
Truth	Positive	Negative	Positive	Negative	Positive	Negative

eTable 10. Confusion matrix for cocaine

Predicted	TF-IDF	Word embeddings (GloVe)	CUI embeddings (CUI2vec)			
	Positive	455	455	455		
	Negative	0	6632	0	6632	
Truth	Positive	Negative	Positive	Negative	Positive	Negative

eTable 11. Confusion matrix for benzodiazepines

Predicted	TF-IDF	Word embeddings (GloVe)	CUI embeddings (CUI2vec)			
	Positive	103	100	166		
	Negative	96	6875	33	6888	
Truth	Positive	Negative	Positive	Negative	Positive	Negative

eTable 12. Confusion matrix for alcohol

Predicted	TF-IDF	Word embeddings (GloVe)	CUI embeddings (CUI2vec)			
	Positive	545	539	440		
	Negative	29	6508	134	6513	
Truth	Positive	Negative	Positive	Negative	Positive	Negative

eTable 13. Confusion matrix for others

This table is not fully transcribed but appears to follow a similar format to the previous ones.
Predicted	Positive	75	448	85	546	1
Positive	428					
Negative	150	6434	130	6424	32	6508
Positive						
Negative						
Positive						
Negative						
Truth						
Truth						
Truth						
Truth						
eTable 14. Error analysis for any opioids.

Classification	n	%	Classification	n	%	Classification	n	%
Missed oxycodone	15	25.0	Misinterpreted other drugs as opioid	15	22.1	Missed opioid	19	95
Missed morphine	12	20.0	Missed oxycodone	15	22.1	Missed oxycontin	1	5
Missed classified as any opioid	11	18.3	Missed morphine	11	16.2			
Missed hydrocodone	9	15.0	Missed hydrocodone	8	11.8			
Missed opioid	7	11.7	Missed opioid	8	11.8			
Missed tramadol	2	3.3	Missed tramadol	2	2.9			
Missed codeine	1	1.7	Missed buprenorphine	1	1.5			
Missed hydrocodone and hydromorphone	1	1.7	Missed codeine	1	1.5			
Missed hydrocodone and morphine	1	1.7	Missed hydrocodone, dihydrocodeine	1	1.5			
Missed oxycontin	1	1.7	Missed hydrocodone, hydromorphone	1	1.5			
			Misssed hydrocodone, oxycodeone	1	1.5			
			Missed hydrocodone, tramadol	1	1.5			
			Missed methadone, morphine	1	1.5			
			Missed morphine, hydrocodone	1	1.5			
			Missed oxycontin	1	1.5			
eTable 15. Error analysis for fentanyl.

TF-IDF			GloVe			CUI2vec			
	Classification	n	%	Classification	n	%	Classification	n	%
Missed carfentanil	1	100	Missed carfentanil	1	100	Missed carfentanil	1	100	
eTable 16. Error analysis for prescription opioids.

Classification	TF-IDF n	%	Classification	GloVe n	%	Classification	CUI2vec n	%
Missed oxycodone	34	21.1	Missed oxycodone	34	21	Missed tramadol	1	100
Missed morphine	29	18.0	Missed tramadol	34	21	Missed oxycodone	34	21
Missed tramadol	27	16.8	Missed morphine	33	20.4	Missed oxycodone	34	21
Missed hydrocodone	23	14.2	Missed hydrocodone	20	12.3	Missed oxycodone	34	21
Misinterpreted as prescription opioid	19	11.8	Misclassified as prescription opioids	15	9.3	Missed oxycodone	34	21
Missed buprenorphine	13	8.1	Missed buprenorphine	11	6.8	Missed oxycodone	34	21
Missed tramadol and buprenorphine	4	2.5	Missed codeine	3	1.9	Missed oxycodone	34	21
Missed codeine	3	1.9	Missed hydromorphone	3	1.9	Missed oxycodone	34	21
Missed hydromorphone	3	1.9	Missed hydrocodone and oxycodone	2	1.2	Missed oxycodone	34	21
Missed hydrocodone and tramadol	1	0.6	Missed morphine and oxycodone	2	1.2	Missed oxycodone	34	21
Missed hydrocodone and oxycodone	1	0.6	Missed buprenorphine	1	0.6	Missed oxycodone	34	21
Missed morphine and buprenorphine and tramadol	1	0.6	Missed buprenorphine and tramadol	1	0.6	Missed oxycodone	34	21
Missed morphine and hydrocodone	1	0.6	Missed hydrocodone and morphine	1	0.6	Missed oxycodone	34	21
Missed morphine and oxycodone	1	0.6	Missed hydrocode and hydromorphone	1	0.6	Missed oxycodone	34	21
Missed oxycodone and tramadol	1	0.6	Missed morphine and hydrocodone	1	0.6	Missed oxycodone	34	21
eTable 17. Error analysis for benzodiazepines.

Classification	TF-IDF n	%	GloVe n	%	CUI2vec n	%
Missed clonazepam	31	28.4%	28	24.6%	24	72.7%
Missed diazepam	19	17.4%	20	17.5%	7	21.2%
Missed flualprazolam	16	14.7%	19	16.7%	1	3.0%
Misinterpreted other drugs for benzodiazepine	13	11.9%	15	13.2%	1	3.0%
Missed lorazepam	11	10.1%	11	9.6%	24	72.7%
Missed etizolam	7	6.4%	7	6.1%		
Missed nordiazepam	6	5.5%	6	5.3%		
Missed clonazepam, flualprazolam	1	0.9%	2	1.8%		
Missed flualprazolam and etizolam	1	0.9%	1	0.9%		
Missed flubromazolam	1	0.9%	1	0.9%		
Missed pyrazolam	1	0.9%	1	0.9%		
Missed temazepam	1	0.9%	1	0.9%		
Missed chlordiazepoxide	1	0.9%	1	0.9%		
Missed clonazepam and flualprazolam	1	0.9%	1	0.9%		
Missed chlordiazepoxide	1	0.9%	1	0.9%		
eTable 18. Error analysis for alcohol.

Classification	TF-IDF	%	Classification	GloVe	%	Classification	CUI2vec	%
Missed alcoholic	15	44.1	Misclassified as alcohol	18	34	Missed ethanolism	65	48.5
Missed alcoholism	11	32.4	Missed alcoholic	17	32.1	Missed alcoholism	51	38.1
Misclassified as alcohol	5	14.7	Missed alcoholism	6	11.3	Missed alcoholic	15	11.2
Coding error	3	8.8	Missed ethanolism	6	11.3	Coding error	3	2.2
			Coding error	3	5.7	Missed ethanolism	65	48.5
			Missed alcohol	2	3.8			
			Missed alcohol use disorder	1	1.9			
eTable 19. Error analysis for “other” substances.

Classification	TF-IDF		GloVe		CUI2vec			
Misclassified as "others"	75	33.3	85	39.5	Misclassified as others	18	54.5	
Missed gabapentin	16	7.1	Missed gabapentin	20	9.3	Missed MDMA	3	9.1
Missed amphetamine	13	5.8	Missed amphetamine	13	6	Missed duloxetine	2	6.1
Missed MDMA	10	4.4	Missed xylazine	12	5.6	Missed olanzapine	2	6.1
Missed diazepam as anticonvulsant	8	3.6	Coding error	11	5.1	Missed pentobarbital	2	6.1
Missed xylazine	7	3.1	Missed mdma	10	4.7	Misclassified as other	1	3.0
Missed citalopram	5	2.2	Missed citalopram	6	2.8	Missed clozapine	1	3.0
Missed diazepine as anticonvulsant	4	1.8	Missed hydroxyzine	5	2.3	Missed LSD	1	3.0
Missed quetiapine	4	1.8	Missed venlafaxine	3	1.4	Missed metaxalol	1	3.0
Missed venlafaxine	4	1.8	Missed doxepin	2	0.9	Missed orphenadrine	1	3.0
Missed cyclobenzaprine	3	1.3	Missed duloxetine	2	0.9	Missed pregabaline and diphenhydramine	1	3.0
Missed gabapentin and cyclobenzaprine	2	0.9	Missed lamotrigine	2	0.9			
Missed gabapentin and xylazine	2	0.9	Missed olanzapine	2	0.9			
Missed gabapentin, phenobarbital and diphenhydramine	2	0.9	Missed paroxetine	2	0.9			
Missed hydroxyzine	2	0.9	Missed quetiapine	2	0.9			
Missed lamotrigine	2	0.9	Missed sertraline	2	0.9			
Missed olanzapine	2	0.9	Missed trazadone	2	0.9			
Missed pentobarbital	2	0.9	Missed zolpidem	2	0.9			
Error	Count	Probability	Description	Count				
--	-------	-------------	--	-------				
Missed sertraline	2	0.9	Other errors with no more than one mention	4				
Other errors with no more than one mention	60							
eFigure 1: Variable importance plot for predicting category “Any opioids”.

Coefficients were extracted using TF-IDF and logistic regression. Tokens in the Positive (right) plot increase the probability that the text description will be classified to the substance. Tokens in the Negative (left) plot decrease the probability that the text description will be classified to the substance.
eFigure 2: Variable importance plot for predicting category “Heroin”.
Coefficients were extracted using TF-IDF and logistic regression.
eFigure 3: Variable importance plot for predicting category “Fentanyl”.
Coefficients were extracted using TF-IDF and logistic regression.
eFigure 4: Variable importance plot for predicting category “Prescription opioids”.

Coefficients were extracted using TF-IDF and logistic regression. Tokens in the Positive (right) plot increase the probability that the text description will be classified to the substance. Tokens in the Negative (left) plot decrease the probability that the text description will be classified to the substance.
eFigure 5: Variable importance plot for predicting category “Methamphetamine”.
Coefficients were extracted using TF-IDF and logistic regression.
eFigure 6: Variable importance plot for predicting category “Cocaine”.
Coefficients were extracted using TF-IDF and logistic regression.
eFigure 7: Variable importance plot for predicting category “Benzodiazepines”.

Coefficients were extracted using TF-IDF and logistic regression. Tokens in the Positive (right) plot increase the probability that the text description will be classified to the substance. Tokens in the Negative (left) plot decrease the probability that the text description will be classified to the substance.
eFigure 8: Variable importance plot for predicting category “Alcohol”.

Coefficients were extracted using TF-IDF and logistic regression. Tokens in the Positive (right) plot increase the probability that the text description will be classified to the substance. Tokens in the Negative (left) plot decrease the probability that the text description will be classified to the substance.
eFigure 9: Variable importance plot for predicting category “Others”.

Coefficients were extracted using TF-IDF and logistic regression. Tokens in the Positive (right) plot increase the probability that the text description will be classified to the substance. Tokens in the Negative (left) plot decrease the probability that the text description will be classified to the substance.