Mutation and deletion analysis of GFRα-1, encoding the co-receptor for the GDNF/RET complex, in human brain tumours

O Gimm1,2*, A Gössling1,2*, DJ Marsh1, PLM Dahia1, LM Mulligan3, A von Deimling2 and C Eng4

1Translational Research Laboratory, Department of Adult Oncology, Charles A Dana Human Cancer Genetics Unit, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney St, SM822C, Boston, MA 02115, and Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, 420 W 12th Avenue, 690C MRF, Columbus, OH 43210, USA; 2Institut für Neuropathologie, Sigmund-Freud-Straße 25, Universitätsskliniken Bonn, 53105 Bonn, Germany; 3Departments of Pathology and Paediatrics, 20 Barrie St., Queen’s University, Kingston, ON K7L 3N6, Canada; 4Cancer Research Campaign Human Cancer Genetics Research Group, University of Cambridge, Cambridge CB2 2QQ, UK

Summary Glial cell line-derived neurotrophic factor (GDNF) plays a key role in the control of vertebrate neuron survival and differentiation in both the central and peripheral nervous systems. GDNF preferentially binds to GFRα-1 which then interacts with the receptor tyrosine kinase RET. We investigated a panel of 36 independent cases of mainly advanced sporadic brain tumours for the presence of mutations in GDNF and GFRα-1. No mutations were found in the coding region of GDNF. We identified six previously described GFRα-1 polymorphisms, two of which lead to an amino acid change. In 15 of 36 brain tumours, all polymorphic variants appeared to be homozygous. Of these 15 tumours, one also had a rare, apparently homozygous, sequence variant at codon 361. Because of the rarity of the combination of homozygous sequence variants, analysis for hemizygous deletion was pursued in the 15 samples and loss of heterozygosity was found in 11 tumours. Our data suggest that intragenic point mutations of GDNF or GFRα-1 are not a common aetiologic event in brain tumours. However, either deletion of GFRα-1 and/or nearby genes may contribute to the pathogenesis of these tumours.

Keywords: GDNF; GDNFRα; GFRα-1; RET; brain tumours

Several receptor molecules, and their growth factor ligands, are expressed in the embryonic brain and are thought to play central roles in the development and differentiation of the nervous system (Weiner, 1995). In addition, altered function, or loss of function, of either receptor or ligand may lead to the development of malignancies of the nervous system (Weiner, 1995). Oncogenes (e.g. the gene encoding the epidermal growth factor receptor, EGFR) as well as tumour suppressor genes (e.g. p53, PTEN) are known to be involved in the development of brain tumours (Bogler et al, 1995; von Deimling et al, 1995; Wang et al, 1997; Duerr et al, 1998; Peters et al, 1998). Members of one broad class of growth factor receptors, the receptor tyrosine kinases (RTKs), have been shown to be involved in proliferation and differentiation during central nervous system (CNS) development (Weiner, 1995). The RET proto-oncogene encodes a RTK expressed in neural and neuroendocrine tissues (Takahashi and Cooper, 1987). To date, three related ligands for RET have been identified: glial cell line derived neurotrophic factor (GDNF), neurturin (NTN) and persephin (Durbec et al, 1996; Jing et al, 1996; Kotzbauer et al, 1996; Treanor et al, 1996; Trupp et al, 1996; Vega et al, 1996; Sanicola et al, 1996). A third co-receptor belonging to the same family, GFRα-3, has been identified, although formal binding studies have yet to be reported (Jing et al, 1997; Naveilhan et al, 1998; Worby et al, 1998). Recently, a fourth co-receptor, GFRα-4, was isolated that seems to be more closely related to GFRα-1 and GFRα-2 than to GFRα-3 (Thompson et al, 1998). GFRα preferentially binds GFRα-1 (GDNF Family Receptor alpha one, also known as GDNFR-α, RETL1 and TmR1) with high affinity before this complex can interact with RET to effect downstream signalling (Jing et al, 1996; Treanor et al, 1996; Trupp et al, 1996; Vega et al, 1996; Davies et al, 1997; Sanicola et al, 1997). Similarly, NTN binds a membrane-bound adaptor GFRα-2 (related to GFRα-1 and also known as GDNFR-β, NTNR-α, RETL2 and TrnR2) with subsequent binding of RET (Baloh et al, 1997; Buj-Bello et al, 1997; Klein et al, 1997; Sanicola et al, 1997). GDNF can bind GFRα-2 as well, but with lower affinity, just as NTN can also bind GFRα-1 (Jing et al, 1997; Sanicola et al, 1997). A third co-receptor belonging to the same family, GFRα-3, has been identified, although formal binding studies have yet to be reported (Jing et al, 1997; Naveilhan et al, 1998; Worby et al, 1998). Recently, a fourth co-receptor, GFRα-4, was isolated that seems to be more closely related to GFRα-1 and GFRα-2 than to GFRα-3 (Thompson et al, 1998). Together with RET, GFRα-4 forms a functional receptor complex for persephin (Enokido et al, 1998).

Mice lacking RET or GDNF have been shown to have defects in the enteric nervous system and components of the peripheral nervous system (Schuchardt et al, 1994; Moore et al, 1996; Pichel et al, 1996; Sanchez et al, 1996). GDNF, like NTN, was initially isolated due to its ability to sustain the survival of embryonic dopaminergic neurons in vitro (Lin et al, 1993). In vivo studies subsequently demonstrated that GDNF was a target-derived trophic factor for dopaminergic neurons (Stromberg et al, 1993; Hudson et al, 1995; Tomac et al, 1998). In several animal models of Parkinson’s

Received 25 June 1998
Revised 8 November 1998
Accepted 25 November 1998

Correspondence to: C Eng, Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, 420 W 12th Avenue, 690C MRF, Columbus, OH 43210, USA

*Joint first authors.
MATERIALS AND METHODS

Patient samples

A panel of 36 sporadic brain tumours of various histologies and WHO grades (Table 1), from 36 unrelated German patients, was analysed. Tumour DNA was extracted from fresh frozen tissue and corresponding germline DNA from peripheral blood leucocytes, using standard protocols (Sambrook et al, 1989).

Mutation analyses

Polymerase chain reaction (PCR) conditions and primers to amplify GDNF have been described (Dahia et al, 1997; Marsh et al, 1997). PCR of GFRα-1 was carried out using 1 μM each of forward and reverse primer pairs (see below) in 1 × PCR buffer (Perkin-Elmer Corp.), 200 μM dNTP, 2.5 U Taq polymerase (Perkin-Elmer Corp.), TaqStart™ Antibodies (Clontech, San Francisco, CA, USA), and 100–200 ng of DNA template in a final volume of 50 μl. Reactions were subjected to 40 cycles of 94°C for 1 min, 58–62°C for 1 min and 72°C for 1 min followed by 10 min at 72°C. The PCR amplicons were then fractionated on 1% agarose gel and visualized with UV transillumination after ethidium bromide staining. Before sequencing, these products were column purified (Wizard PCR Prep, Promega, Madison, WI, USA). Semi-automated sequencing was performed using either the forward or reverse primer and the ABI dye terminator cycle sequencing ready reaction kit as previously described (Liaw et al, 1997).

GFRα-1 primers

Primers used to amplify GFRα-1 for sequencing are:

Exon 1: RA-1F (5'-GTCGACCTGAACCCCTAAA-3') (f) RA-1R (5'-CCAAAGAAACTTTCTTCTTCC-3') (r)

Exon 2: RAF22 (5'-GCAGATCTTGCTCTTGCGC-3') (f) RAF7 (5'-GCAGCAGGCTAAGGGCAAGTGGT-3') (f) HRAR2N (5'-GCGTCGTCAGATGCTCGC-3') (r) HRAR2 (5'-CTGGTGACATGCTCCAGTA-3') (r)

Exon 3: RA-3F (5'-CAGCAAAAACCTGTGTTAAATA-3') (f) RA-3F (5'-CAGCAAAAACCTGTGTTAAATA-3') (f) RA-3R (5'-TGCCCTCTCTCAATATCACATCTCT-3') (r) RA-3R (5'-TTCAAGCAACACAAAGGCATC-3') (r)

Exon 4: RA-4F (5'-TGTGACATCGTGTCCTTTT-3') (f) RA-4R (5'-TCTATTATACATACAGCCTGCAA-3') (r)

Exon 5: RA-5F (5'-CCCTCTTTCTTTCTTTT-3') (f) RA-5R (5'-CAGGCAATGCTCTCAAGGATT-3') (r)

Table 1 WHO histologic classification of the 36 brain tumours

| Tumour                        | WHO grade | n   |
|-------------------------------|-----------|-----|
| Glioblastoma                  | IV        | 18  |
| Glioblastoma (recurrence)     | IV        | 3   |
| Oligodendroglioma anaplastic  | III       | 1   |
| Astrocytoma anaplastic        | III       | 1   |
| Ependymoma                    | I         | 1   |
| Ependymoma (recurrence)       | I         | 1   |
| Malignant peripheral nerve sheath tumour (MPNST) | I | 2 |
| Meningioma                    | I         | 1   |
| Meningioma anaplastic         | I         | 1   |
| Medulloblastoma               | I         | 2   |
| Medulloblastoma (recurrence)  | I         | 2   |
| Haemangiopericytoma           | I         | 1   |
| Primitive neuroectodermal tumour (PNET, recurrence) | I | 2 |

Deletion analysis

DNA samples derived from brain tumours which were apparently homozygous for all GFRα-1 polymorphisms underwent further analysis to determine if this represented hemizygous whole gene deletion. Corresponding germline DNA was examined for the presence of heterozygosity at the intragenic polymorphic sites that were apparently homozygous either by direct sequencing or differential restriction enzyme digestion. If the germline DNA was heterozygous for any one sequence variant, that tumour was defined as having loss of heterozygosity (LOH) of that marker, representing hemizygous gene deletion. If all intragenic polymorphisms were also homozygously present in the germline DNA, the result was not informative. In those cases, we performed a semi-quantitative duplex PCR using the tumour-derived DNA and primers for exon 2 of GFRα-1 (RAF7, HRAR2) and those for the housekeeping gene beta-glucuronidase (GUSB) (Ivanchuk et al, 1997). The relative amount of the GUSB fragments versus that of GFRα-1 was carried out using 0.5 μl of the tumour-derived DNA and 0.5 μl of the germline DNA.

RESULTS AND DISCUSSION

We analysed GDNF and GFRα-1 for DNA sequence variants in a panel of 36 mainly high-grade human brain tumours by direct sequencing. No mutations were found in the coding region of GDNF. Analysing GFRα-1, we detected six distinct single nucleotide polymorphisms (Table 2) that have been previously
found in the normal population (Myers et al, 1998). Two of these were in the 5’ untranslated region 106 bp (–106G>A) and 78 bp (–78T>C) upstream of the translational start site. One silent base-pair substitution at codon 179 (c.537T>C) and a non-coding sequence polymorphism within intron 5 (IVS5+21G>A) were also observed. The remaining two polymorphisms were in exon 2 and exon 7 and resulted in amino acid substitutions (Y85N, T361A, 1081A>G). For codon 85, both the amino acids tyrosine and asparagine are neutral and polar. However, tyrosine is an aromatic, polar residue while the polymorphic asparagine is small and non-aromatic. Similarly, the substitution of threonine (neutral and polar) with alanine (neutral and hydrophobic) at codon 361 could also change the structure of GFRα-1. In those cases harbouring rare and/or apparently homozygous polymorphisms that lead to amino acid substitutions, it is conceivable that the steric structure, and presumably, function, of GFRα-1 could be subtly altered such that the other co-receptors of RET (e.g. GFRα-2 or GFRα-3) may bind preferentially to GDNF and RET, thus leading to altered activation and/or specificity. We, therefore, examined the frequency of each of the GFRα-1 single nucleotide polymorphisms in this series of patients with brain tumours and found them to be no different from those in normal controls or in non-cancer patients (Myers et al, 1999).

In addition to the six previously described single nucleotide polymorphisms, we also detected a homozygous non-coding sequence variant within intron 8, 28 basepairs downstream of the exon 8–intron 8 boundary (IVS8+28T>A) in the brain tumours of two unrelated patients (one glioblastoma multiforme, one anaplastic oligoastrocytoma). Interestingly, these two samples, together with 13 others, appeared to be homozygous at all six polymorphic sites. Further, the gliblastoma multiforme with the IVS8 sequence variant was apparently homozygous for the rare polymorphism at codon 361 (Table 2). Subsequent analyses of these 15 samples revealed somatic hemizygous deletion of GFRα-1 in 11 of these 15 tumours (73% of 15; 31% of total), including both tumours with the intrinsic sequence variant.

In the present study, we did not find any obvious disease-associated somatic GDNF or GFRα-1 intragenic mutations in DNA from human brain tumours from 36 individuals. We found seven single nucleotide polymorphisms within the genomic sequence of GFRα-1 in this series, six of which have been previously noted (Myers et al, 1999). Of interest, we identified a novel intronic sequence variant in IVS8 in two patients. Our results indicate that intragenic mutations of GDNF and GFRα-1 are not common aetiologic events in brain tumorigenesis. However, we did find that 31% of the 36 brain tumours had hemizygous GFRα-1 deletion. This datum may support either of two postulates. First, it might well be possible that hemizygous deletion of GFRα-1 is aetiologic in the pathogenesis of brain tumours. Second, the deletion of GFRα-1 might be merely coincidental, an innocent bystander when large segments of chromosome 10q become deleted (Dalrymple et al, 1995; Simon et al, 1995; Albarosa et al, 1996). Putative tumour suppressor genes like PTEN or DMBT have been mapped in this region (Li et al, 1997; Mollenhauer et al, 1997; Steck et al, 1997; Duer et al, 1999).

While it is obvious that ‘high penetrance’ mutations of GDNF and GFRα-1 are not associated with brain tumorigenesis, it is becoming more and more evident that development of a cancer can result from an interplay of either a few ‘high penetrance’ mutations in key genes or from several, or many, sequence variants of unknown significance (Storey et al, 1998). In this respect, variant–variant interactions and/or variant–environment interactions may all be involved in predisposing to many common tumours. It is, therefore, intriguing that a few of these sequence variants in GFRα-1 involve amino acids (Y85N, T361A) that are highly conserved among species (rat, chicken and human) [Genbank accession #U90541, #U59486, #U97144]. Further informatics-based and functional studies need to be performed to investigate whether these ‘polymorphic’ amino acid changes and seemingly neutral sequence variants have any impact on the function of this receptor.

### ACKNOWLEDGEMENTS

The Dana-Farber Cancer Institute Molecular Biology Core Facility is acknowledged for running the sequencing gels. OG is a recipient of a fellowship from the Deutsche Forschungsgesellschaft (DFG). CE is the Lawrence and Susan Marx Investigator in Human Cancer Genetics and a Barr Investigator.

### REFERENCES

Albarosa R, Colombo BM, Roz L, Magnani L, Pollo B, Cirenei N, Giani C, Conti AM, DiDonato S and Finocchiaro G (1996) Deletion mapping of gliomas suggest the presence of two small regions for candidate tumor-suppressor genes in a 17-cM interval on chromosome 10q. *Am J Hum Genet* 58: 1260–1267

Balogh RH, Tansey MG, Golden JP, Creedon DJ, Heuckeroth RO, Keck CL, Zimonjic DB, Popescu NC, Johnson EM Jr. and Milbrandt J (1997) TmR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. *Neuron* 18: 793–802

Bogler O, Huang HJ, Kleihues P and Cavenee WK (1995) The p53 gene and its role in human brain tumors. *Glia* 15: 308–327

Buj-Bello A, Audo J, Pinog LN, Horton A, Thompson J, Rosenthal A, Chinchetru M, Buchman VL and Davies AM (1997) Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. *Nature* 387: 721–724

Dahia PL, Toledo SP, Mulligan LM, Maher ER, Grossman AB and Eng C (1997) Mutation analysis of glial cell line-derived neurotrophic factor (GDNF) gene in sporadic phaeochromocytomas. *Cancer Res.*, 57: 310–313

Dalrymple SJ, Herath JF, Ritland SR, Moertel CA and Jenkins RB (1995) Use of fluorescence in situ hybridization to detect loss of chromosome 10 in astrocytoma. *J Neurosurg* 83: 316–323

Davies AM, Dixon JE, Fox GM, Ibanez CF, Jing S, Johnson E, Milbrandt J, Phillips H, Rosenthal A, Saarna M, Sanicola M, Treanor J and Vega QC (1997)

© Cancer Research Campaign 1999

**British Journal of Cancer** (1999) 80(3/4), 383–386

**Table 2.** GFRα-1 germline frequencies of sequence variants in patients with brain tumours, HSCR disease and control DNA (Myers et al, 1999)

| Amino acid change | Nucleotide | Frequency |
|------------------|------------|-----------|
|                  | Brain tumors | HSCR | Control |
| N/A –106 G       | 0.93        | 0.96     | ND       |
| N/A –78 T        | 0.67        | 0.69     | 0.68     |
| N/A –106 C       | 0.33        | 0.31     | 0.32     |
| Y85N             | 0.96        | 0.98     | 0.96     |
| N179N            | 0.54        | 0.60     | 0.59     |
| T361A            | 0.54        | 0.60     | 0.59     |
| N/A IVS8+21 G    | 0.85        | 0.92     | 0.82     |
| N/A IVS8+21 A    | 0.15        | 0.08     | 0.18     |
| N/A IVS8+28 T    | 0.97        | ND       | ND       |
| N/A IVS8+28 A    | 0.03        | ND       | ND       |

N/A = not applicable, ND = not done.
Nomenclature of GPI-linked receptors for the GDNF ligand family.

GFR(alpha) Nomenclature Committee [letter]. Neuron 19: 485

Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B, Louis DN, Schramm J, Wiessler OD, Parsons R, Eng C and von Deimiling A (1998) PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16: 2259–2264

Durbeej P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto I, Ivanchuk SM, Eng C, Cavenee WK and Mulligan LM (1997) The expression of GDNF: a glial cell line-derived neurotrophic factor family receptor. Proc Natl Acad Sci USA 95: 1295–1300

Peters N, Wellenreuther B, Nutter B, Hayashi Y, Meyer-Puttlitz B, Duerr EM, Lenartz D, Marsh DJ, Schramm J, Wiessler OD, Parsons R, Eng C and von Deimiling A (1998) Analysis of the PTEN gene in human meningiomas. Neuronal Apoptol Neurol 24: 3–8

Pichet JG, Shen HZ, Granholm AC, Drago J, Grimberg A, Lee JH, Huang SP, Saarna M, Hoffer BJ, Saroila H and Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382: 73–76

Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A laboratory Manual. Cold Spring Harbor Laboratories: Cold Spring Harbor

Sanada M, Hessian C, Worley D, Carmillo P, Ehrenfelds C, Walus L, Robinson S, Jaworski G, Wei H, Tizard R, Whitty A, Pepinsky RB and Cate RL (1997) Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc Natl Acad Sci USA 94: 6238–6243

Schuchardt A, D’Agiati V, Larsson-Blomberg L, Costantini F and Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367: 380–383

Simon M, von Deimiling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick, RE, Tew WM Jr. and Menon AG (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55: 4696–4701

Steck PA, Pershouse MA, Jasser SA, Wang YK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Fyce C, Hu R, Swedlund B, Tong DH and Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362

Storey A, Thomas M, Kalita A, Harwood C, Gardidol D, Mantovani F, Breuer J, Leigh IM, Matlashewski G and Banks L (1998) Role of a p53 polymorphism in the development of human papillomavirus-associated cancer [see comments]. Nature 393: 229–234

Stromberg I, Bjorklund L, Johansson M, Tomac A, Collins F, Olson L, Hoffer B and Humpel C (1993) Glial cell line-derived neurotrophic factor is expressed in the developing and adult striatum and stimulates dopamine neurons in vivo. Exp Neurol 124: 401–412

Takeda K and Cooperman B (1995) Ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 7: 1378–1385

Trimp M, Arenas E, Fineiheil M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar-Grueso E, Pachnis V, Arumaa U, Saroila H, Saarma M and Bunez CF (1996) Functional receptor for GDNF encoded by the c-ret protooncogene [see comments]. Nature 381: 785–788

Vega QC, Worby CA, Lechner MS, Dixon JJ and Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93: 10657–10661

von Deimiling A, Louis DN and Wiessler OD (1995) Molecular pathways in the development and neoplasia.

Worby CA, Vega QC, Chao HH, Seasholt AF, Thompson RC and Dixon JJ (1996) Identification and characterization of GFR alpha-3, a novel Co-receptor belonging to the glial cell line-derived neurotrophic receptor family. J Biol Chem 273: 3502–3508