Imbalance of Peripheral Lymphocyte Subsets in Patients With Ankylosing Spondylitis: A Meta-Analysis

Dong Liu¹, Budian Liu¹, Churong Lin² and Jieruo Gu¹*

¹ Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, ² Radiology Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China

Ankylosing spondylitis is a complicated consequence of genetic predisposition and environmental factors. Enthesitis is believed to be the hallmark of ankylosing spondylitis, and the chronic inflammatory state of this disease is perpetuated by the disturbances of both the innate immune system and the acquired immune system. To clarify the alteration of immune system in patients with AS, we conducted a meta-analysis concerning the proportions of major lymphocyte subsets in the peripheral blood of AS patients. We systematically searched PubMed and China National Knowledge Infrastructure (CNKI) for articles related to this subject. A total of 95 articles involving 4,020 AS patients and 3,065 healthy controls were included in the analysis. This meta-analysis is performed on R platform using R package “meta”, and Egger’s tests were used to determine the presence of publication bias. Results showed that the percentages of T cells, NK cells and NKT cells were not significantly different between AS patients and healthy controls, but B cells were significantly increased. Among the subsets of T cells, the proportions of CD4+ T cells, Th17 cells, Tfh cells as well as Th1/Th2 ratio were significantly increased, while Tregs were significantly decreased. Subgroup analysis showed that the proportions of Th17 among both PBMCs, T cells and CD4+ T cells were significantly elevated, while Tregs were only significantly lower in PBMCs. Subgroup analysis also demonstrated that Tregs defined by “CD4+CD25+FoxP3+”, “CD4+CD25+CD127low” or “CD4+CD25+CD127-” were significantly downregulated, indicating that the selection of markers could be critical. Further study is warranted in order to elucidate the complicated interactions between different lymphocyte subsets in AS patients. This study implied that the disequilibrium between Th17 and Tregs, as well as between Th1 and Th2 could contribute to the pathogenesis of ankylosing spondylitis, further cementing the understanding that ankylosing spondylitis is a consequence of disrupted balance of innate immune system and acquired immune system.

Keywords: Ankylosing spondylitis, lymphocyte, immune system, flow cytometry, Th17 & Treg cells
INTRODUCTION

Ankylosing spondylitis belong to the group of diseases known as spondyloarthopathies, which is a spectrum of diseases encompassing psoriatic arthritis, reactive arthritis and undifferentiated spondyloarthritis (1). Clinical manifestations of ankylosing spondylitis include articular manifestations and extra-articular manifestations. The articular manifestations mainly involve axial skeleton presenting as inflammatory back pain, with peripheral oligoarthritis present in some of the patients, while the extra-articular manifestations include uveitis, gut inflammation and dactylitis (2–4). To date, the pathogenesis of ankylosing spondylitis has not yet been fully elucidated. Previous studies have revealed that ankylosing spondylitis is a consequence of genetic background and environmental factors, with HLA-B27 stepping into the limelight of research upon the discovery that HLA-B27 can be present in as many as 90% of patients with AS (5).

How HLA-B27 causes the disease of ankylosing spondylitis remains unclear, though several hypotheses have been put forward attempting to connect the dots (6, 7). Yet, it is undisputed that the disturbances of the immune system eventually perpetuate this disease (8–10). Unlike autoimmune diseases like systemic lupus erythematosus and rheumatoid arthritis, it is not the autoreactive B cells secreting auto-antibodies that should be held accountable, since no antibody is widely acknowledged to be detected in patients with ankylosing spondylitis (11). Instead, such disturbances in the immune system in patients with AS are the result of complicated interactions between the innate immune system and the adaptive immune systems (10). The successful application of biologics, especially TNF-α inhibitors, provide substantial evidence that by blocking cytokines characteristic of the innate immune system, the inflammatory status can be greatly alleviated (12, 13). On the other hand, numerous studies have added to the confirmation of the fact that AS is driven by the imbalances of lymphocyte subsets, especially the Th17/Tregs and Th1/Th2 imbalances, disrupting the equilibrium of the immune system (14, 15). The specific CD4+ T cell subset of Tregs possess immunosuppressive features (16), and the incapability of Tregs may allow the over-secretion of pro-inflammatory cytokines, especially IL-17, which is a potent pro-inflammatory cytokine secreted by Th17 and plays an important role in mediating bone damage (17).

Meanwhile, the hyperactivation of the Th1 effector T cell lineage may secrete abundant IFNγ and TNF-α (18), leading to the chronic inflammatory state of the disease. However, different studies have provided conflicting data regarding the direction and extent of the imbalance of lymphocytes. Most studies suggested that the percentages of Tregs were significantly decreased in patients with AS, yet a few studies found that Tregs might be increased in the peripheral blood of AS patients, arguing that the increase of Tregs might be the result of an attempt to enhance immune tolerance to control the immune response. More intriguingly, the proportions of NK cells is the peripheral blood of AS patients were heavily debated. It has been hypothesized that KIR3DL2, an inhibitory receptor expressed on NK cells, might inhibit apoptosis of NK cells once ligated with HLA-B27, leading to an excess of NK cells in the peripheral blood. In the meanwhile, a few studies observed a significant decrease in the proportions of NK cells in AS patients. Based on previous studies, we hypothesized that the elevation of Th17 and the downregulation of Tregs were pivotal in the pathogenesis of AS, while the th1/th2 polarization might also be involved. In order to clarify the actual proportions of different subsets of lymphocytes, we conducted a meta-analysis concerning the lymphocyte imbalances in the peripheral blood in patients with AS, with healthy donors as the control.

METHODS

Data Sources and Searches

We searched the relevant studies using PubMed, Cochrane, Medline and China National Knowledge Infrastructure (CNKI). The literature search strategy used the following terms: (“ankylosing spondylitis”) AND (“lymphocyte subsets” OR “T cell” OR “B cell” OR “Th1” OR “Th2” OR “Th17” OR “Treg” OR “NK cell” OR “NKT cell” OR “gamma delta T cell” OR “flow cytometry”). The publication date was set before April 1, 2021, and all potential eligible studies were screened except for animal experiments or reviews. Some of the studies listed in the reference were retrieved through reference literature in related articles.

Study Selection

The inclusion criteria were as follows: (a) original research; (b) human research; (c) studies with full text available; (d) studies that provided data concerning proportions of certain lymphocyte subsets in peripheral blood of AS patients; (e) studies that provided information concerning flow cytometry experiment protocol and subject characteristics. The following criteria is used to exclude studies from the final analysis: (a) Studies that did not provide data in the form of mean and standard deviation, or data that could not be transformed; (b) Studies focusing on certain tissue instead of peripheral blood; (c) Duplicates already included once in the analysis.

Two independent researchers (Dong Liu and Budian Liu) extracted data from eligible articles according to the inclusion criteria, while a third investigator settled any disagreements (Churong Lin). Extracted data included author’s name, publication year, baseline characteristics, number of patients and healthy controls, markers of lymphocytes, diagnostic criteria and proportions of each lymphocyte subset in PBMC or T cells or CD4+ T cells. Data were recorded as mean and standard deviation, or data that could not be transformed.

Statistical Analysis

This meta-analysis was performed on the R platform, using R package “meta” [v4.13-0; (19)]. The Cochrane chi-squared
test was used to assess the heterogeneity of the included studies. If the heterogeneity of the studies were high, then the random-effects model was employed to conduct the analysis. Subgroup analysis was performed when it was deemed necessary to break down the analysis on levels of comparison (PBMC, T cells or CD4+ T cells) or based on different markers. Considering the heterogeneity of the literature since different classification criteria were applied, and disease activity of the patients varied across studies, we also conducted subgroup analysis based on classification criteria and disease activity. Publication bias was assessed by the Egger’s test (p ≥ 0.05). Sensitivity analyses was conducted to test the robustness of the results.

RESULTS

Study Characteristics
Based on the methods stated above, a total of 2,982 articles were retrieved. We excluded 700 articles since they were duplicates. Next, through screening the abstracts of the articles, a total of 384 articles were included. After carefully examining the articles, articles without full text or failing to provide original data were excluded, leaving 95 articles eligible to be included in the final meta-analysis. Flow chart of the literature search process can be seen in Figure 1.

This meta-analysis included 4020 AS patients and 3065 healthy controls from 95 eligible studies. The features of these studies can be seen in Table 1. Of all the studies, 19, 19, 13 and 3 studies provided data on the proportion of T cells, B cells, NK cells and NKT cells. As for the subsets of T cells, 37, 32 and 3 studies focused on CD4+ T cells, CD8+ T cells and γδ T cells. Delving into the CD4+ T cells, 19, 12, 28, 46 and 3 studies presented data on the proportions of Th1, Th2, Th17, Tregs and TfH cells. Six and 7 studies further discussed the Th1/Th2 proportions and Th17/Treg proportions. All studies had a NOS score of 3-7; the qualities of these studies were moderate. The original data can be seen in Supplemental Material 1.

Proportions of T Cells
Firstly, we conducted a meta-analysis on the proportions of T cells in PBMC between AS patients and healthy controls, as well as the subsets of T cells in the corresponding category (Figure 2). Results showed that there is no significant difference in the T cell
TABLE 1 | Characteristics of 95 studies included in this meta-analysis.

Author (Ref.)	Publish year	Country	Case numbers (AS/HC)	Lymphocyte subsets discussed	Age (year) AS/HC	Disease activity	Diagnosis criteria	NOS score	Database
An et al. (20)	2019	China	73/85	Th17/Treg ratio	nr	nr	mNY1984	5	Medline; PubMed
Appel et al. (21)	2011	Germany	19/20	Th17; Treg	40.9 ± 13.8/nr	nr	mNY1984	4	Medline; PubMed
Bautista et al. (22)	2014	Norway	25/50	Th17; Treg	56 ± 14.8/nr	nr	mNY1984	5	Medline; PubMed
Bidad et al. (23)	2013	Iran	18/18	Th17; Treg	34 ± 2/33 ± 1	BASDAI≥4	mNY1984	6	Medline; PubMed
Brand et al. (24)	1997	Germany	21/29	B; CD4+T; CD8+T	42 ± 14/47 ± 16	nr	mNY1984	5	Medline; PubMed
Cai and Xiao (25)	2011	China	40/20	Treg	29 ± 9.4/28.4 ± 10.3	nr	mNY1984	7	CNKI
Cao et al. (26)	2013	Iran	23/25	Th17; Treg	25 ± 8.2/25 ± 7	nr	mNY1984	7	CNKI
Cheng (27)	2007	China	25/21	CD4+T	28 ± 9.2/7 ± 6	nr	mNY1984	6	CNKI
Dejaco et al. (28)	2010	Austria	22/17	Treg	40.9 ± 12.7/nr	nr	mNY1984	6	CNKI
Deng et al. (29)	2019	China	49/100	Th1; Th2; Th1/Th2 ratio	28.3 ± 6.72/27.3 ± 6.39	nr	mNY1984	7	CNKI
Deng et al. (30)	2018	China	91/50	Th17; Treg	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI
Dong et al. (31)	2009	China	23/25	B; CD4+T; CD8+T	25 ± 8.2/25 ± 7	nr	mNY1984	7	CNKI
Duan et al. (32)	2012	Iran	20/9	Th17; Treg	36.4 ± 10.8/34.9 ± 9	nr	mNY1984	6	CNKI
Dulic et al. (33)	2017	Hungary	7/10	CD4+T; CD8+T; Th1; Th2; Th1/Th2 ratio; Th17; Treg; Th17/Treg ratio	31.4 ± 9.1/32.1 ± 8.3	BASDAI≥4	mNY1984	6	CNKI
Fattahi et al. (34)	2018	Sweden	10/29	Th17; Treg	25 ± 8.2/25 ± 7	nr	mNY1984	7	CNKI
Forbes et al. (35)	2013	China	60/36	Th17; Treg	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI
Guo et al. (36)	2012	China	98/76	CD4+T; CD8+T	25 ± 8.2/25 ± 7	nr	mNY1984	7	CNKI
Haji et al. (37)	2008	Iran	20/9	Th17; Treg	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI
Han et al. (38)	2015	China	69/50	B; CD4+T; CD8+T	42 ± 14/47 ± 16	nr	mNY1984	5	Medline; PubMed
He et al. (39)	2012	China	60/40	Th17; Treg	34 ± 3.89/36 ± 3.76	nr	mNY1984	6	CNKI
Hu et al. (40)	2013	China	32/30	CD4+T; CD8+T; Th1; Th2	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI
Huang et al. (41)	2009	China	20/9	CD4+T; Th17	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI
Huang et al. (42)	1990	China	9/9	CD4+T; CD8+T	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI
Ji et al. (43)	2014	China	20/20	Th17; Treg	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI
Kenna et al. (44)	2012	Australia	17/20	y8T; Th17	39.47 ± 13.8/36.4 ± 10.8	mNY1984	6	Medline; PubMed	
Kim et al. (45)	2019	South Korea	49/53	CD4+T; CD8+T; NK	42.7 ± 3.15/nr	mNY1984	5	Medline; PubMed	
Klases et al. (46)	2019	Germany	14/5	Th17; Treg	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI
Li (47)	2019	China	64/60	Th17; Treg	37 ± 9.8/34.6 ± 10.1	BASDAI≥4	mNY1984	6	CNKI

(Continued)
TABLE 1 | Continued

Author (Ref.)	Publish year	Country	Case numbers (AS/HC)	Lymphocyte subsets discussed	Age (year)	Disease activity	Diagnosis criteria	NOS score	Database
Li et al. (52)	2013	China	222/68	Th17; Treg	33.6 ± 8/34.1	BASDAI > 4	mNY1984	6	Medline; PubMed
Li et al. (53)	2009	China	30/10	Th1; Th2; Th1/Th2 ratio	nr	BASDAI > 4	mNY1984	5	CNKI
Li et al. (54)	2008	China	50/21	T; CD8+T	25 ± 8/25 ± 5	nr	mNY1984	6	CNKI
Liao et al. (55)	2015	Taiwan (China)	69/30	Treg	39.6 ± 12.7/44.3 ± 10.5	nr	mNY1984	7	Medline; PubMed
Limon-Camacho et al. (56)	2012	Mexico	39/25	Th1; Th2; Th17; Treg	32 ± 13/32 ± 8	BASDAI > 4	mNY1984	4	PubMed
Lin et al. (57)	2008	China	66/30	CD4+T; CD8+T	29.7 ± 9.6/26.7 ± 6.7	nr	mNY1984	6	CNKI
Lin et al. (58)	2009	China	66/30	B	29.7 ± 9.6/26.7 ± 6.7	nr	mNY1984	6	Cochrane; Medline; PubMed
Liu et al. (59)	2016	China	50/21	T; CD8+T	25 ± 8/25 ± 5	nr	mNY1984	6	CNKI
Liao et al. (60)	2015	Taiwan (China)	69/30	Treg	39.6 ± 12.7/44.3 ± 10.5	nr	mNY1984	7	Medline; PubMed
Limon-Camacho et al. (61)	2012	Mexico	39/25	Th1; Th2; Th17; Treg	32 ± 13/32 ± 8	BASDAI > 4	mNY1984	4	PubMed
Lin et al. (62)	2008	China	66/30	CD4+T; CD8+T	29.7 ± 9.6/26.7 ± 6.7	nr	mNY1984	6	CNKI
Lin et al. (63)	2009	China	66/30	B	29.7 ± 9.6/26.7 ± 6.7	nr	mNY1984	6	Cochrane; Medline; PubMed
Liu et al. (64)	2010	China	30/20	Th1/Th2	26 ± 3.6/25.1 ± 3.79	nr	mNY1984	6	CNKI
Long et al. (65)	2018	China	65/20	CD4+T; T	27.8 ± 8.5/31.4 ± 7.4	nr	mNY1984	6	Medline; PubMed
Ma et al. (66)	2011	China	36/32	CD4+T; CD8+T; NK	23.1 ± 4.8/25.9 ± 3.8	nr	mNY1984	5	CNKI
Ma et al. (67)	2012	China	43/20	B; T; CD4+T; CD8+T; NK	nr	mNY1984	4	CNKI	
Ma et al. (68)	2008	China	25/30	B; T; CD4+T; CD8+T; NK	nr	mNY1984	5	CNKI	
Meng et al. (69)	2015	Taiwan (China)	42/20	CD8+T; T	32.4 ± 9.3/29.5 ± 8.4	nr	mNY1984	6	CNKI
Mo et al. (70)	2019	China	30/23	CD4+T; CD8+T; γδT; NK	40.7 ± 3.18/45.71 ± 2.6	nr	mNY1984	7	CNKI
Pishgahi et al. (71)	2020	Iran	31/35	Th17; Treg	46.05 ± 11.5/11.29	nr	ASAS2009	5	Medline; PubMed
Shan et al. (72)	2015	China	20/10	Treg	nr	mNY1984	6	Medline; PubMed	
Shen et al. (73)	2009	China	10/16	Th17	46.05 ± 11.5/11.29	nr	mNY1984	3	Medline; PubMed
Suen et al. (74)	2008	China	23/26	Treg	43 ± 12/37 ± 12	nr	mNY1984	4	Medline; PubMed
Szalay et al. (75)	2008	Hungary	13/9	CD4+T; CD8+T; Th1; Th2; Th1/Th2 ratio; Th17/Treg ratio	43.7 ± 9.2/nr	BASDAI > 4	mNY1984	4	Medline; PubMed
Szanto et al. (76)	2008	Hungary	42/52	B; T; CD4+T; CD8+T; Th1; Th2; NK	nr	BASDAI > 4	mNY1984	5	Medline; PubMed
Thoen et al. (77)	1987	Norway	31/15	CD4+T; CD8+T	32 ± 1.8/nr	mNY1984	3	Medline; PubMed	
Toussiot et al. (78)	2009	France	32/15	Treg	42.9 ± 1.1/44.4 ± 0.8	nr	mNY1984	4	Medline; PubMed
Wang et al. (79)	2020	China	90/90	Th17; Treg; Th17/Treg ratio	43.27 ± 8.19/43.55 ± 8.6	nr	mNY1984	5	CNKI
Wang et al. (80)	2018	China	30/30	Th1; Th17; Treg	31.2 ± 4.1/nr	mNY1984	6	CNKI	
Wang et al. (81)	2018	China	26/26	Treg	33.5 ± 8.4/31.5 ± 10.2	nr	mNY1984	4	Medline; PubMed
Wang et al. (82)	2016	China	50/50	CD4+T; γδT	28.53 ± 8.15/27.93 ± 8.52	nr	mNY1984	7	Medline; PubMed
Wang et al. (83)	2015	China	78/30	Treg; Th17/Treg ratio	26 ± 8/25 ± 8	nr	mNY1984	6	Medline; PubMed
Wang et al. (84)	2015	China	45/20	T; CD8+T; Th17; Treg	nr/55.05 ± 6.42	nr	mNY1984	5	Medline; PubMed
Wang et al. (85)	2012	China	60/44	B; T; CD4+T; CD8+T; NK	43.27 ± 8.19/43.55 ± 8.6	nr	mNY1984	6	CNKI
proportion between AS patients and healthy controls \([4.43, (-2.41,11.26)], \text{p}<0.01\); however, the proportion of CD4+ T cells was significantly elevated \([3.32, (1.21,5.43)], \text{p}<0.01\).

When examining the subsets of the CD4+ T cells, we identified significant increases in the proportion of Th17 cells\([1.49, (1.03,1.65)], \text{p}<0.01\), Tfh cells\([3.65, (0.31,7.38)], \text{p}<0.01\] and Th1/Th2 ratio\([1.02, (0.39,1.65)], \text{p}<0.01\], while the proportion of Tregs was significantly decreased\([-0.43, (-0.71,-0.15)], \text{p}<0.01\]. However, sensitivity analysis indicated that the significantly lower proportions of Tfh cells could be insignificantly by omitting either Long et al, or Wu et al. No significant difference was found in the level of Th1, Th2 cells.

TABLE 1 | Continued

Author (Ref.)	Publish year	Country	Case numbers (AS/HC)	Lymphocyte subsets discussed	Age (year) AS/HC	Disease activity	Diagnosis criteria	NOS score	Database
Wang et al. (83)	2008	China	30/20	CD4+T; CD8+T; Th1; Th2	26 ± 3.69/25.15 ± 3.79	nr	mNY1984	6	CNKI
Wei et al. (84)	2017	China	131/127	B; T; CD4+T; CD8+T; Treg; NK	27 ± 8/26 ± 9	nr	mNY1984	6	CNKI
Wu (85)	2014	China	60/60	Tfh	26.9 ± 7.8/24.3 ± 5.8	nr	mNY1984	6	CNKI
Wu et al. (86)	2011	China	51/49	Treg	nr	BASDAI >4	mNY1984	6	Medline; PubMed
Wu et al. (87)	2011	China	24/30	B	35 ± 14/33 ± 12	nr	mNY1984	6	CNKI
Xu et al. (88)	2019	China	18/9	Th17; Treg	39.4 ± 2.3/42.6 ± 4.3	nr	mNY1984	6	Medline; PubMed
Xu et al. (89)	2018	China	69/22	CD4+T; CD8+T; NKT	nr	mNY1984	6	CNKI	
Xu (90)	2013	China	24/22	Th1; Th17; Treg	24.3 ± 8.5/27.9 ± 8.6	nr	mNY1984	6	CNKI
Xu et al. (91)	2011	China	78/50	B; CD4+T; CD8+T; Th1; Th2	nr	nr	5	CNKI	
Xue et al. (92)	2015	China	38/30	Th17; Treg	29.93 ± 9.82/30.58 ± 8.39	nr	mNY1984	6	CNKI
Xue et al. (93)	2008	China	89/42	T; CD4+T; CD8+T	nr	nr	5	CNKI	
Yang et al. (94)	2020	China	67/50	B; Th1; Th2; Th17	36.6 ± 10.2/37.9 ± 9.1	nr	mNY1984	6	Medline; PubMed
Yang et al. (95)	2019	China	30/30	T; NK	29.3 ± 5.9/31.1 ± 6.7	nr	mNY1984	6	CNKI
Yang et al. (96)	2017	China	40/40	Th1	32.53 ± 9.76/33.7 ± 10.06	nr	mNY1984	6	CNKI
Yang et al. (97)	2016	China	38/31	Th2	28.9 ± 10.8/29.1 ± 8.1	nr	mNY1984	7	CNKI
Yang et al. (98)	2008	China	60/30	B; Th1; Th2; Th17	nr	nr	5	CNKI	
Ye et al. (99)	2013	China	21/27	Th1; Th2; Th17	36.6 ± 10.2/37.9 ± 9.1	nr	mNY1984	6	Medline; PubMed
Zhang et al. (100)	2019	China	60/30	Th17; Treg; Th17/Treg ratio	43 ± 11/32 ± 12	nr	mNY1984	5	CNKI
Zhang et al. (101)	2019	China	39/41	B; T; CD4+T; CD8+T; NK	28.87 ± 8.31/27.05 ± 6.83	nr	mNY1984	6	CNKI
Zhang et al. (102)	2014	China	60/60	Th1; Th17; Treg	39 ± 3.2/39.2 ± 3.1	nr	mNY1984	6	CNKI
Zhang et al. (103)	2014	China	10/10	Th17	nr	nr	4	CNKI	
Zhang et al. (104)	2012	China	32/20	Th1; Th17	36.6 ± 10.2/37.9 ± 9.1	nr	mNY1984	6	Medline; PubMed
Zhang et al. (105)	2008	China	78/50	Th17; Treg; NK	26.1 ± 8.8/25.5 ± 3.8	BASDAI >4	mNY1984	7	CNKI
Zhao and Li (106)	2013	China	21/20	Th17; Treg; Th17/Treg ratio	nr/26 ± 8	BASDAI >5	mNY1984	5	CNKI
Zhao et al. (107)	2011	China	14/18	Treg	26.4 ± 6.1/28.2 ± 9.4	nr	mNY1984	5	Medline; PubMed
Zhao et al. (108)	2009	China	30/30	CD4+T; CD8+T	nr	nr	5	CNKI	
Zhong and Ma (109)	2014	China	78/30	Th1; Th2; Th17	nr	nr	mNY1984	6	CNKI
Zhu et al. (110)	2017	China	42/42	CD4+T	nr	nr	3	CNKI	
Zhu et al. (111)	2016	China	30/30	NK	nr	nr	mNY1984	5	CNKI
Zhu et al. (112)	2000	China	14/7	Th1; Th2; Th2/T1 ratio	nr	nr	mNY1984	4	CNKI

Notes:
- AS, ankylosing spondylitis; HC, healthy control; nr, not reported; BASDAI, Bath Ankylosing Spondylitis Activity Disease Activity Index; ASDAS: Ankylosing Spondylitis Disease Activity Score; mNY1984: 1984 Modified New York AS Criteria; ASAS2009: 2009 Assessment of SpondyloArthritis international Society (ASAS) Criteria.
Noteworthy, Th17/Treg ratio was increased but did not reach statistical significance [0.60, (-0.04,1.24), p<0.01]. According to the sensitivity analysis, if omitting Wang et al, the Th17/Treg ratio could be significantly elevated (See Supplemental Material 2).

Considering that the proportions of these lymphocytes were compared to PBMCs, T cells or CD4+ cells, we deemed it necessary to conduct subgroup analysis based on the level of comparisons. Subgroup analysis revealed that Th17 cells were increased on all the levels of PBMC, T cells and CD4+ cells (Figure 3), while Tregs were only significantly decreased on the level of PBMC (Figure 4). Still no significant difference was found in the proportions of Th1 and Th2 cells on all levels (Figures 5, 6). On the other hand, due to the heterogeneity of the markers used to define Tregs, we also conducted a subgroup analysis of Tregs (Table 2). Results showed that Tregs defined by “CD4+CD25+FoxP3+”, “CD4+CD25+CD127low” or “CD4+CD25+CD127-” were significantly downregulated. No significant difference was detected in the proportions of CD8+ T cells and γδ T cells.

Subgroup analysis further suggested that T cells were significantly elevated in patients with high disease activity, and that CD4+ T cells were still significantly increased in AS patients strictly defined by 1984 modified New York criteria. Furthermore, the proportion of Th17 cells remained elevated regardless of the classification criteria or disease activity, indicating the robustness of this result. Tregs were only significantly decreased in AS patients strictly defined by 1984 modified New York criteria. Intriguingly, though previous analysis failed to detect any alterations of Th1 proportions, subgroup analysis revealed that the Th1 lineage was elevated in AS patients with high disease activity. Still no alterations were observed in the proportions of Th2 cells and CD8+ T cells in AS patients (See Supplemental Material 2).

Egger’s tests showed that there was no obvious publication bias in all the subgroups of lymphocytes (Table 3).

Proportion of B cells
According to the results of the meta-analysis, the proportion of B cells was significantly increased [2.00, (1.00,3.00), p<0.01]. Egger’s test found no publication bias in this result (Table 3). Sensitivity analysis indicated that this result was robust.

Proportions of NK Cells and NKT Cells
No significant difference was found in the proportions of NK cells [-2.67, (-6.05,0.71)] and NKT cells [-1.54, (-3.51,0.42)].
Subgroup analysis based on classification criteria and disease activity still failed to detect any differences in the proportions of NK cells between AS patients and healthy controls (See Supplemental Material 2). Egger’s test found no publication bias in this result (Table 3).

Results of the sensitivity analyses can be found in the Supplemental Material 2.

DISCUSSION

This is the first meta-analysis to systemically examine the skewing of functional subgroups of lymphocytes, encompassing the major lymphocyte subsets, namely T cells, B cells, NK cells and NKT cells. Previous meta-analyses done by Li et al. and Lai et al. focused on regulatory T cells, arriving at the conclusion that the proportions of Tregs are significantly lower in both PBMCs and CD4+ T cells in patients with AS, though the markers used to define Tregs may have an impact on the proportions of Tregs (113, 114). In line with the results of previous studies, our study further confirmed that the levels of Tregs significantly decreased in patients with AS in PBMCs.

Tregs have been recognized as the essential subgroup of lymphocytes in charge of maintaining immune homeostasis and preventing autoimmunity. Immunosuppressive cytokines such as TGF-β and IL-10 secreted by Tregs may function as a negative regulator of immune responses and down-regulate excessive inflammatory status (115). For example, IL-10 secreted by Tregs may act directly on the IL-10 receptor on Th17 cells, thereby inhibiting the expansion of the inflammatory Th17 cells, or suppress the antigen-presenting cells and eventually suppress the responses of effector T cells (116). It has been reported that in patients with active AS, Tregs in peripheral blood fail to utilize IL-2 and cannot suppress naïve T cell proliferation (117). Moreover, application of TNF-α inhibitors can restore the proportion of Tregs, and the increase in Tregs is positively correlated with the decrease in CRP levels (94). Of note, different markers have been employed to identify the subgroup of Tregs, which may exert an influence on the proportions of Tregs measured in different studies, sometimes yielding contradictory results. Initially, Tregs is defined as CD4+CD25+, yet it was disputed since CD25 may also be expressed on cells without regulatory functions (118). Afterwards, the intracellular transcription factor (FOXP3) was proved to be exclusively expressed in Tregs and indispensable in the development of Tregs (119). The most common marker used to identify Tregs currently is CD4+CD25highCD127low or CD4+CD25highCD127-, of which CD127 is considered to be down-regulated on Tregs (113, 120). In our meta-analysis, we discovered that merely CD4+CD25+ did not produce significant outcomes regarding the proportions of Tregs, while Tregs defined by CD4+CD25+FoxP3+ and CD4+CD25+CD127low
or CD4+CD25+CD127- were significantly lowered. This result of the subgroup analysis indicated that the CD127 could be a specific marker when trying to identify Tregs.

Upon the discovery of IL-23/IL-17 axis, the Th17 cells are moving center stage in the research of pathogenesis of spondyloarthropathies (121, 122). It has been widely acknowledged that enthesitis is the hallmark of spondyloarthropathies including AS, and recent research revealed that enthesitis is likely to be driven by the IL-23/IL-17 axis (123). IL-23, produced by myeloid cells either enthesis-resident or tissue infiltrating, may bind to the IL-23 receptors on Th17 cells as well as other lymphoid populations, and the activated Th17 cells can secrete IL-17, a powerful pro-inflammatory cytokine (123). Of the IL-17 family, IL-17A/IL-17F may act on stromal cells and other lymphocytes, which initiates the inflammatory process (17). It has also been reported that IL-17A may mediate bone damage by inducing the expression of RANK on the cell surface of osteoclasts, while also increasing the production of RANKL from mesenchymal stem cells (124). Apart from IL-17, Th17 lymphocytes are known to produce other pro-inflammatory mediators, such as IL-22, GM-CSF and TNF (125). All these studies further cemented the significance of Th17 cells in the pathogenesis of enthesitis, and, in a bigger picture, spondyloarthropathies. Our study substantiated that the levels of Th17 cells were significantly elevated, adding more concrete evidence to the critical role Th17 lineage plays in the pathogenesis in AS. Subgroup analysis further verified the robustness of this result, since Th17 cells were elevated on all levels of comparison, regardless of the classification criteria applied or disease activity of the patients.

In addition to Th17 cells, gd T cells may also participate in the IL-23/IL-17 axis (123). gd T cells are a specific population of T

Lymphocytes characterized by the highly diverse TCR on the cell surface, formulating TCR repertoire (126). Studies show that there is a 3-fold increase in the proportions of IL-23R-positive γδ T cells in AS patients, and such γδ T cells are also heavily skewed towards IL-17 production (48). Another study shows that IL-23R+ γδ T cells are the main producers of IL-17 in a mice model (127). More recent studies have revealed that IL-17 may also be produced in an IL-23-independent fashion (128). Therapies targeting IL-23 have failed in patients with SpA, while the downstream inhibition of IL-17 by IL-17A inhibitor Secukinumab and IL-17A/IL-17F inhibitor bimekizumab has yielded promising results in patients with SpA (129–131). Such phenomenon pointed to a possible pathway that IL-17 may be secreted without the stimulus of IL-23. It has been proved that γδ T cells may still secrete IL-17 despite the homozygous deletion of IL-23R (128). However, our study failed to recognize any alteration in the levels of γδ T cells. It could be attributed to the limited number of studies included, or that it was not the elevated number but the hyperactivity that was to blame for the IL-23 independent IL-17 secretion. Furthermore, RORγt+ iNKT cells were also reported to be able to secrete IL-17 with and without the effect of IL-23 (132).

In the meanwhile, the Th1/Th2 polarization of T helper cells is also a widely researched area in the immunity of AS (9). Th1 cells are known to mount immune responses against intracellular pathogens via secretion of IFNγ, which acts as a macrophage-activating factor (133). In addition to IFNγ, Th1 cells are also capable of producing IL-2, IL-10 and TNF-α, many of which...
our meta-analysis concluded that there was no significant alteration in the proportions of Th1 and Th2 cells overall, yet a subgroup analysis revealed a significant increase in the proportions of Th17 cells overall, indicating suppressed function of NK cells (144). Another possible mechanism of the lymphocyte involvement in the pathogenesis of AS is that B lymphocytes might mediate bone destruction through production of RANKL, as was previously reported in rheumatoid arthritis (140). How Th17 cells and B cells are involved in the pathogenesis of AS still requires more research. As a pivotal component in the innate immunity, NK cells possess cytotoxic activity and the ability of producing pro-inflammatory cytokines, such as IFN-γ (141). There is mounting evidence that NK cells, with its expression of KIR superfamily on the cell surface, may contribute to the pathogenesis of ankylosing spondylitis. Different KIRs may interact with HLA alleles in various forms, creating sophisticated genotypes of NK cells. It is hypothesized that the HLA-Bw4 group of alleles, notably HLA-B27, may bind to the KIR antigens with varying affinities, displaying inhibitory or stimulatory activities through downstream signal pathways (141–143). In particular, being an inhibitory receptor, KIR3DL2 ligation with HLA-B27 may inhibit apoptosis of NK cells and protect them from activation-induced cell death (142). However, studies regarding the frequency of NK cells in the peripheral blood of AS patients have been highly inconsistent. Some studies reported that T helper cells in AS were skewed towards Th1 lineage suggesting that Th1 cells contributed to the excessive inflammation (56), while others failed to observe such elevations in proportions of Th1 cells (73). Our meta-analysis concluded that there was no significant alteration in the proportions of Th1 and Th2 cells overall, yet subgroup analysis revealed a significant increase in the percentages in AS patients with high disease activity, indicating that the Th1 lineage might be relevant in the acute phase. Meanwhile, the Th1/Th2 ratio was also significantly elevated. More recent research provides evidence that the plasticity of Th17 cells allows this subset of CD4+ T cells to partly assume phenotype of Th1 lineage or Th2 lineage, blurring the boundaries between Th1, Th2 and Th17 cells. It has been argued that the categorical dichotomy of Th1/Th2 should be rendered obsolete.

Another intriguing finding of our study is that the proportions of Th17 cells and B cells are significantly elevated in the peripheral blood of AS patients. Both Th17 cells and B cells participate in humoral immunity (136). After migrating to the B cell follicles, CD40L expressed on the cell surface of Th17 cells may interact with the CD40 on B cells serving as a stimulus signal, thereby facilitating the formation of germinal center, differentiation of B cells and ultimately the production of antibodies (63, 138). The relevance of humoral immunity in the pathogenesis of ankylosing spondylitis has long been underestimated, since no auto-antibody is universally acknowledged as the specific marker of AS (11). Although several studies have put forward that anti-CD74 antibody may serve as a potential biomarker for AS, its diagnostic utility awaits further confirmation (139). Another possible mechanism of the lymphocyte involvement in the pathogenesis of AS is that B lymphocytes might mediate bone destruction through production of RANKL, as was previously reported in rheumatoid arthritis (140). How Th17 cells and B cells are involved in the pathogenesis of AS still requires more research.

As a pivotal component in the innate immunity, NK cells possess cytotoxic activity and the ability of producing pro-inflammatory cytokines, such as IFN-γ (141). There is mounting evidence that NK cells, with its expression of KIR superfamily on the cell surface, may contribute to the pathogenesis of ankylosing spondylitis. Different KIRs may interact with HLA alleles in various forms, creating sophisticated genotypes of NK cells. It is hypothesized that the HLA-Bw4 group of alleles, notably HLA-B27, may bind to the KIR antigens with varying affinities, displaying inhibitory or stimulatory activities through downstream signal pathways (141–143). In particular, being an inhibitory receptor, KIR3DL2 ligation with HLA-B27 may inhibit apoptosis of NK cells and protect them from activation-induced cell death (142). However, studies regarding the frequency of NK cells in the peripheral blood of AS patients have been highly inconsistent. Azuz-Lieberman et al. found that AS patients have significantly higher percentages of NK cells in PB, while the inhibitory receptor CEACAM1 is highly expressed on the surface indicating suppressed function of NK cells (144). Another study also confirmed a higher frequency of NK cells expressing KIR3DL1 in SpA patients, with an impaired IFN-γ intracellular production in stimulated NK cells (145). However, such

TABLE 2 | Egger’s tests by different lymphocyte subsets.

Lymphocyte subset	t	df	p-value
T cells	0.49132	17	0.6295
CD4+ T cells	-1.9812	34	0.0557
Th1 cells	-1.6584	16	0.1167
Th2 cells	0.82077	10	0.4399
Th1/Th2 ratio	-0.55844	4	0.8063
Th17	0.23055	26	0.8195
Tregs	-0.096137	42	0.9318
Th17/Tregs	0.71323	5	0.5076
Th1	0.16692	1	0.8963
CD6+ T cells	1.1247	30	0.2696
γδ T cells	-0.55802	1	0.676
B cells	1.7184	17	0.1039
NK cells	1.812	11	0.09735
NKT cells	-1.51	1	0.3724

TABLE 3 | Subgroup analysis of Tregs proportions based on markers.

Treg definition	Number of studies (n)	SMD	95%CI (%)	P
CD4+CD25+	3	1.11	(-1.77,3.98)	97 <0.01
CD4+CD25HI	6	0.23	(-2.60,0.71)	72 <0.01
CD4+FoxP3+	3	-1.32	(-6.12,3.49)	98 <0.01
CD4+CD25+FoxP3+	12	-0.75	(-1.28,-0.22)	99 <0.01
CD4+CD25+CD127LO	6	-2.18	(-3.55,-0.81)	97 <0.01
CD4+CD25+CD127-	4	-0.74	(-0.91,-0.57)	8 0.36
CD4+CD25H4FoxP3+	2	0.55	(-0.33,1.42)	95 <0.01
CD4+CD25+	4	-0.57	(-1.46,0.32)	84 <0.01
CD4+CD25+FoxP3+	1	0.88	(0.18,1.58)	/ /
CD4+CD25+	1	-1.51	(-1.86,-1.42)	/ /
alteration of NK cell proportions was not observed in another study by Park, et al. (146) A more recent study found that NK cells in the peripheral blood was significantly reduced (84). Due to the inconsistencies of the data, our study failed to recognize a shift in the proportions of NK cells in the peripheral blood of AS patients.

There is no denying that there were some limitations to this study. Though being an all-encompassing meta-analysis attempting to include all the major subsets of lymphocytes, this study failed to conduct a more in-depth look into the more subtle minor subsets of lymphocytes, such as Th22 in CD4+ T cells, Tc1 and Tc2 in CD8+ T cells, Bregs, naïve B cells and memory B cells in the B cell lineage. This study originally intended to include Th22 subset in the meta-analysis, considering recent discovery that Th22 cells might have the capacity to promote osteoclast differentiation though production of IL-22 (147). To our chagrin, there were not enough studies to conduct an appropriate analysis.

Second, lymphocytes may assume complicated phenotypes by expressing various antigens on the cell surface. Therefore, this crude classification of lymphocytes may not be adequate to explain the exact shifting of immune system in AS patients. However, further investigation was impeded by the insufficiency of the data. Third, there was notable heterogeneity in the studies considering the selected patients might have undergone different treatments and might be in different phases, it might be more appropriate to look into the effects of different treatments on the lymphocyte subsets. Moreover, this study only targeted lymphocytes in the peripheral blood, which could not adequately reflect the inflammatory status of the tissue.

In conclusion, our meta-analysis concluded that CD4+ T, Th17, ThB and B cells were significantly elevated in the peripheral blood of AS patients, while Tregs were significantly reduced. Our study further cemented the understanding that the nature of ankylosing spondylitis is a hybrid of innate immunity and acquired immunity dysfunction.

DATA AVAILABILITY STATEMENT

The original contributions presented in this study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JG conceived of the presented idea. DL and BL conducted the literature search, while DL performed the analytic calculation and drafted the final version of this manuscript. CL settled any disagreements concerning the inclusion of literature. All authors contributed to the article and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.696973/full#supplementary-material

REFERENCES

1. Rudwaleit M, van der Heijde D, Landewé R, Listing J, Akkoc N, Brandt J, et al. The Development of Assessment of SpondyloArthritis International Society Classification Criteria for Axial Spondyloarthritis (Part II): Validation and Final Selection. *Ann Rheum Dis* (2009) 68(6):777–83. doi: 10.1136/ard.2009.108233

2. Choi EY, Lee M, Lee CS. Uveitis Occurrence in Patients With Ankylosing Spondylitis According to the Type of Tumour Necrosis Factor Inhibitor: A Cohort Study of 175 Patients. *Clin Exp Rheumatol* (2020) 38(6):1132–7.

3. Rudwaleit M, Baeten D. Ankylosing Spondylitis and Bowel Disease. *Best Pract Res Clin Rheumatol* (2006) 20(3):451–71. doi: 10.1016/j.berh.2006.03.010

4. Rudwaleit M, Metter A, Listing J, Sieper J, Braun J. Inflammatory Back Pain in Ankylosing Spondylitis: A Reassessment of the Clinical History for Application as Classification and Diagnostic Criteria. *Arthritis Rheum* (2006) 54(2):369–78. doi: 10.1002/art.21619

5. Brown MA, Kenna T, Wordsworth BP. Genetics of Ankylosing Spondylitis - Insights Into Pathogenesis. *Nat Rev Rheumatol* (2016) 12(2):81–91. doi: 10.1038/nrrheum.2015.133

6. Bowness P, Ridley A, Shaw J, Chan AT, Wong–Baaza I, Fleming M, et al. Th17 Cells Expressing KIR3DL1+ and Responsive to HLA-B27 Homodimers are Increased in Ankylosing Spondylitis. *J Immunol* (2011) 186(4):2672–80. doi: 10.4049/jimmunol.1002653

7. Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, Smith JA, et al. HLA-B27 Misfolding in Transgenic Rats is Associated With Activation of the Unfolded Protein Response. *J Immunol* (2005) 175(4):2438–48. doi: 10.4049/jimmunol.175.4.2438

8. Ranganathan V, Gracey E, Brown MA, Imman RD, Haroon N. Pathogenesis of Ankylosing Spondylitis - Recent Advances and Future Directions. *Nat Rev Rheumatol* (2017) 13(6):359–67. doi: 10.1038/nrrheum.2017.56

9. Rezaianemaneh A, Abdulmaleki M, Abdulmohammadi K, Aghaei H, Pakdel FD, Fatahi Y, et al. Immune Cells Involved in the Pathogenesis of Ankylosing Spondylitis. *BioMed Pharmacother* (2018) 100:198–204. doi: 10.1016/j.biopha.2018.01.108

10. Watad A, Bridgewood C, Russell T, Marzo–Ortega H, Cuthbert R, WaMcGonagle TD. The Early Phases of Ankylosing Spondylitis: Emerging Insights From Clinical and Basic Science. *Front Immunol* (2018) 9:2668. doi: 10.3389/fimmu.2018.02668

11. Brown MA, Li Z, Cao KL. Biomarker Development for Axial Spondyloarthritis. *Nat Rev Rheumatol* (2020) 16(6):448–63. doi: 10.1038/s41584-020-0450-0

12. Callhoff J, Sieper J, Weiss A, Zink A, Listing J. Efficacy of TNFα Blockers in Patients With Ankylosing Spondylitis and non-Radiographic Axial Spondyloarthritis: A Meta-Analysis. *Ann Rheum Dis* (2015) 74(6):1241–8. doi: 10.1136/annrheumdis-2014-205322

13. Landewe RB, van der Heijde D, Dougados M, Baraliakos X, Van den Bosch FE, Gaffney K, et al. Maintenance of Clinical Remission in Early Axial Spondyloarthritis Following Certolizumab Pegol Dose Reduction. *Ann Rheum Dis* (2020) 79(7):920–8. doi: 10.1136/annrheumdis-2019-216839

14. Dulic S, Varsarheyli Z, Bajok N, Szalay B, Toldi G, Kovacs L, et al. The Impact of Anti-TNF Therapy on CD4+ and CD8+ Cell Subsets in Ankylosing Spondylitis. *Pathobiology* (2018) 85(3):201–10. doi: 10.1159/000484250

15. Szalay B, Meszaros G, Cseh A, Acz L, Deak M, Kovacs L, et al. Adaptive Immunity in Ankylosing Spondylitis: Phenotype and Functional Alterations of T-cells Before and During Infliximab Therapy. *Clin Dev Immunol* (2012) 2012:808724. doi: 10.1155/2012/808724

16. Guo H, Zheng M, Zhang K, Yang F, Zhang X, Han Q, et al. Functional Defects in CD4(+) CD25(+) FoxP3(+) Regulatory Cells in Ankylosing Spondylitis. *Sci Rep* (2016) 6:37559. doi: 10.1038/srep37559

17. Schinocca C, Rizzo C, Pasano S, Grasso G, La Barbera L, Caccia F, et al. Role of the IL-23/IL-17 Pathway in Rheumatic Diseases: An Overview. *Front Immunol* (2021) 12:637829. doi: 10.3389/fimmu.2021.637829
Lymphocyte Subsets in Ankylosing Spondylitis

18. Butcher MJ, Zhu J. Recent Advances in Understanding the Th1/Th2 Effector Choice. Fac Rev (2021) 10:30. doi: 10.12705/rf/10-30

19. Baldusse M, Müller K, Schümann CM, Seemann M. How to Perform a Meta-Analysis with R: A Practical Tutorial. Eval Base Ment Health (2019) 22(4):153–60. doi: 10.1136/ebmental-2019-300117

20. An H, Li X, Li F, Gao C, Li X, Luo J. The Absolute Counts of Peripheral T Lymphocyte Subsets in Patients With Ankylosing Spondylitis and the Effect of Low-Dose Interleukin-2. Med (Baltimore) (2019) 98(15):e15094. doi: 10.1097/MD.0000000000001537

21. Appel H, Wu P, Scheer R, Kedor C, Sawitzki B, Thiel A, et al. Synovial and Peripheral Blood CD4+Foxp3+ T Cells in Spondyloarthritis. J Rheumatol (2011) 38(11):2445–51. doi: 10.3899/jrheum.110377

22. Bautista-Caro MB, Arroyo–Villa I, Castillo–Gallego C, de Miguel E, Peitteado D, Plasencia–Rodríguez C, et al. Decreased Frequencies of Circulating Follicular Helper T Cell Counterparts and Plasmablasts in Ankylosing Spondylitis Patients Naive for TNF Blockers. PloS One (2014) 9(9):e107086. doi: 10.1371/journal.pone.0107086

23. Brand JM, Neustock P, Kruse A, Alvarez I, de Lemos L, Eghbal M, et al. Oral Administration Effects of Beta-D Mannuronic Acid (M2000) on Th17 and Regulatory T Cells in Patients With Ankylosing Spondylitis. BioMed Pharmacother (2018) 100:195–500. doi: 10.1016/j.biopha.2018.07.007

24. Gao Y, Song Y, Fan YX, Chen M, Xiao N, Pan LZ, et al. The Alteration of TH17 cells and CD4+CD25+Foxp3+ Regulatory T Cell in Patients With Ankylosing Spondylitis. Chin J Microbiol Immunol (2012) 32(04):318–22. doi: 10.3760/cma.j.issn.0254-5101.2012.04.006

25. Cai CS, Xiao P. Expression of Regulatory T Cells in the Peripheral Blood of Patients With Ankylosing Spondylitis. J Rheumatol (2013) 40(4):476–83. doi: 10.3899/jrheum.121100

26. Duan Z, Gui Y, Li C, Lin J, Gober HJ, Qin J, et al. The Immune Dysfunction in Ankylosing Spondylitis Patients. Biosci Trends (2017) 11(1):69–76. doi: 10.5582/bst.2016.01171

27. Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmstrom V. Follicular Helper T Cell Counterparts and Plasmablasts in Ankylosing Spondylitis Patients Naïve for TNF Blockers. J Cell Biochem (2019) 120(07):2027–38. doi: 10.1002/jcb.28488

28. Dejaco C, Duftner C, Klauser A, Schirmer M. Altered T-cell Subtypes in Ankylosing Spondylitis by a Mitogen Derived From Mycoplasma Arthritidis (MAS) and Other Mitogens. Immunol J (1997) 16(5):207–11. doi: 10.1080/81330297

29. Chen MH, Chen WS, Lee HT, Tsai CY, Chou CT. Inverse Correlation of Programmed Death 1 (PD-1) Expression in T Cells to the Spinal Radiologic Changes in Taiwanese Patients With Ankylosing Spondylitis. Clin Exp Rheumatol (2019) 37(11):1721–6. doi: 10.18780/1674-3474.2013.12.018

30. Chen SZ, Bai JP, Xie YH, You YQ, Su ML, Xu XX, et al. Expression of Transcription Factor Th17, Treg and Th1 in Peripheral Blood From Patients With Ankylosing Spondylitis and its Correlation With Disease Activity. Chin J Immunol (2013) 29(08):834–8. doi: 10.3969/j.issn.1000-484X.2013.08.012

31. Cao D, van Vollenhoven R, Klareskog L, Treharre V, Cai CS, Xiao P. Expression of Regulatory T Cells in the Peripheral Blood of Patients With Ankylosing Spondylitis. J Rheumatol (2013) 40(4):476–83. doi: 10.3899/jrheum.121100

32. Chen MN, Chen WS, Lee HT, Tsai CY, Chou CT. Inverse Correlation of Programmed Death 1 (PD-1) Expression in T Cells to the Spinal Radiologic Changes in Taiwanese Patients With Ankylosing Spondylitis. Clin Rheumatol (2011) 30(9):1181–7. doi: 10.1007/s10067-011-1721-6

33. Feng C. CD4+CD25+ Regulatory T Cells in Peripheral Blood of Patients With Ankylosing Spondylitis. The Second Military Medical University (2007).

34. Deng L, Yang DR, Liu H. The Test of Immune Function and Hemorheologic Changes in HLA-B27 Positive Patients With Ankylosing Spondylitis. Chin J Hemorheol (2006) 16(2):273–4. doi: 10.3969/j.issn.1009-881X.2006.02.046

35. Liu et al. Lymphocyte Subsets in Ankylosing Spondylitis
Lymphocyte Subsets in Ankylosing Spondylitis

55. Liao HT, Lin YF, Tsai CY, Chou CT. Regulatory T Cells in Ankylosing Spondylitis and the Response After Adalimumab Treatment. *Joint Bone Spine* (2015) 82(6):423–7. doi: 10.1016/j.jbspin.2015.03.003

56. Limón-Camacho L, Vargas-Rojas M, Vázquez-Mellado J, Casasola-Vargas J, Motezuma JF, Burgos-Vargas R, et al. In Vivo Peripheral Blood Proinflammatory T Cells in Patients With Ankylosing Spondylitis. *J Rheumatol* (2012) 39(4):830–5. doi: 10.3899/jrheum.110862

57. Lin Q, Lin ZM, Gu JR, Huang F, Li TW, Wei QI, et al. Changes of T Lymphocyte Subsets and Expression of Costimulatory Molecule CD154 on T-cells in Peripheral Blood From Patients With Ankylosing Spondylitis. *Chin J Rheumatol* (2008) 12(05):509–13. doi: 10.3332/j.cnki.issn.1007-7480.2008.05.006

58. Liu J, Wang SH, Wan L, Zhang JS, Yang J, Zong RK, et al. Changes of the Peripheral Blood B-cells Subsets in Patients With Ankylosing Spondylitis. *Chin Med Clin* (Engl) (2009) 122(15):1784–9. doi: 10.3760/cma.j.issn.0366-6999.2009.15.013

59. Liu EC, Feng YX. Relationship of the Balance Between Leptin and Th17 and Its Meaning. *Clin Exp Pharmacol Physiol* (2016) 43(1):250. doi: 10.1111/cep.12330

60. Liu L, Liu J, Wan L. The Changes of Platelet Parameters, BTLA and Treg in Peripheral Blood of Patients With Ankylosing Spondylitis. *Med Recapitulate* (2017) 23(01):187–9. doi: 10.3969/j.issn.1006-2084.2017.01.044

61. Liu L, Liu J, Wan L. The Changes of Platelet Parameters, BTLA and Treg in Peripheral Blood in Patients With Ankylosing Spondylitis. "Chin J Rheumatol Healthcare" (2016) 19(01):8–11. doi: 10.3969/j.issn.1672.6790.2016.01.003

62. Liu J, Wang SH, Wan L, Zhang JS, Yang J, Zong RK, et al. Changes of Regulatory T-Cells in Peripheral Blood in Ankylosing Spondylitis Patients and the Influence of Chinese Medicine Spleen-Strengthening Unit Therapy. *Chin J Clin Healthcare* (2012) 15(01):3–4+113. doi: 10.3969/j.issn.1672-6790.2012.01.001

63. Liu XC, Wang JX, Wei P. The Function of Helper T Lymphocytes in Ankylosing Spondylitis. *Tianjin Med* (2010) 38(12):1047–9. doi: 10.3969/j.issn.0253-9896.2010.12.009

64. Long S, Zhang X, Zhang N, Zhao Y, Song LT, et al. High Frequency of Circulating Follicular Helper T Cells is Correlated With B Cell Subtypes in Patients With Ankylosing Spondylitis. *Exp Ther Med* (2018) 15(5):4785–86. doi: 10.3822/etm.2018.5991

65. Ma XH, Zhang X, Wang N, Gu Y, Gu LT, et al. Detection of Lymphocyte Subsets in Peripheral Blood in Patients With Ankylosing Spondylitis and its Clinical Meaning. *Chin J Lab Diagnosis* (2011) 15(10):1765–6. doi: 10.3969/j.issn.1007-4287.2011.10.060

66. Ma L, Zhang Y, Wang ZQ, Gu J, et al. A Study of Subsets and Activation of Lymphocytes in Patients With Ankylosing Spondylitis. *J Clin Res* (2011) 28(10):1963–4. doi: 10.3969/j.issn.1671-7171.2011.10.044

67. Ma L, Yang J, Li H. Study of the Activated State of Th1/Th2 Cytokines on Ankylosing Spondylitis. *Chin J Immunol* (2004) 20(08):572–4.

68. Meng JH, Wei P, Chen HY, Wang JX, Xie JH, Zhang Y, et al. Change of Cytokine T-lymphocytes in Patients With Ankylosing Spondylitis Patients and the Influence of Chinese Medicine Spleen-Strengthening Unit Therapy. *J Hebei Med Univ* (2015) 36(05):543–6. doi: 10.3969/j.issn.1007-3205.2015.05.015

69. Mo JF, Shan DP, Bao Y, Ye Q, Yan WH, et al. Percentages of Immune Cells in Peripheral Blood in Patients With Ankylosing Spondylitis and the Expression Level of CXCR6. *Carr Immunol* (2019) 39(03):217–21.

70. Pishghaigh A, Abolhasan R, Danaii S, Amanifar B, Soltani–Zangbar MS, Zamani M, et al. Immunomodulatory and Oxidative Stress Biomarkers in Ankylosing Spondylitis Patients With or Without Metabolic Syndrome. *Cytokine* (2020) 128:155002. doi: 10.1016/j.cytok.2020.155002

71. Shan Y, Qi C, Zhao J, Liu Y, Gao H, Zhao D, et al. Higher Frequency of Peripheral Blood Follicular Regulatory T Cells in Patients With New Onset Ankylosing Spondylitis. *Clin Exp Pharmacol Physiol* (2015) 42(2):154–61. doi: 10.1111/1440-1681.12330

72. Shen H, Goodall JC, Hill Gaston J. Frequency and Phenotype of Peripheral Blood Th17 Cells in Ankylosing Spondylitis and Rheumatoid Arthritis. *Arthritis Rheum* (2009) 60(6):1647–56. doi: 10.1002/art.24568

73. Suen JL, Li HT, Jeng YJ, Chiang BL, Yen JH, et al. Altered Homeostasis of CD4(+) FoxP3(+) Regulatory T-cell Subpopulations in Systemic Lupus Erythematosus. *Immunology* (2009) 127(2):196–205. doi: 10.1111/j.1365-2664.2008.02937.x

74. Szántó S, Aleksza M, Mihály E, Lakos G, Szabó Z, Végvári Á, et al. Intracytoplasmic Cytokine Expression and T Cell Subset Distribution in the Peripheral Blood of Patients With Ankylosing Spondylitis. *J Rheumatol* (2008) 35(12):2372–5. doi: 10.3899/jrheum.070839
Lymphocyte Subsets in Ankylosing Spondylitis

Liu et al.

Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 69697

111. Zhu JY, Yang WJ, Yu P, Wang J, Li N, Wang JR, et al. Expression of Natural Killer Cell in Patients With Ankylosing Spondylitis and its Significance. Chin J Coal Ind Med (2016) 19(07):989–92. doi: 10.11723/mgtsys1007-9564201607014

112. Zhu J, Liu XY, Huang F. Th1/Th2 Balance and Ankylosing Spondylitis. Chin J Rheumatol (2000) 4(04):202–5. doi: 10.3760/j.issn:1007-7480.2000.04.003

113. Lai NL, Zhang SX, Wang J, Zhang JQ, Wang CH, Gao C, et al. The Proportion of Regulatory T Cells in Patients With Ankylosing Spondylitis: A Meta-Analysis. J Immunol Res (2019) 2019:1058738. doi: 10.1155/2019/1058738

114. Li M, Zhou X, Zhou L, Yu Z, Fu L, Yang P, et al. Meta-Analysis of Changes in the Number and Proportion of Regulatory T Cells in Patients With Ankylosing Spondylitis. BioMed Res Int (2020) 2020:8709804. doi: 10.1155/2020/8709804

115. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T Cells: Mechanisms of Differentiation and Function. Annu Rev Immunol (2012) 30:53–64. doi: 10.1146/annurev.immunol.25.022106.141623

116. Neumann C, Scheffold A, Rutz S. Functions and Regulation of T Cell-Derived Interleukin-10. Semin Immunol (2019) 44:101344. doi: 10.1016/j.smim.2019.101344

117. Ge L, Wang J, Zhu BQ, Zhang ZS, et al. Effect of Abnormal Activated B Cells in Patients With Ankylosing Spondylitis and its Molecular Mechanism. Eur Rev Med Pharmacol Sci (2018) 22(9):2527–33. doi: 10.26355/ermedpharmacol.2209.2018.1491

118. Letourneau S, Krieg C, Pantaleo G, Boyman O, et al. IL-2- and CD25-dependent Immunoregulatory Mechanisms in the Homeostasis of T-cell Subsets. J Allergy Clin Immunol (2009) 123(4):758–62. doi: 10.1016/j.jaci.2009.02.011

119. Lu L, Barbi J, Pan F. The Regulation of Immune Tolerance by FOXP3. Nat Rev Immunol (2017) 17(11):703–17. doi: 10.1038/nri.2017.75

120. Sun J, Tang DN, Fu T, Sharma P, et al. Identification of Human Regulatory T Cells in the Setting of T-cell Activation and anti-CTLA-4 Immunotherapy on the Basis of Expression of Latency-Associated Peptide. Cancer Discov (2012) 2(2):122–30. doi: 10.1158/2159-8290.CD-11-0236

121. Gravallese EM, Schett G. Effects of the IL-23-IL-17 Pathway on Bone in Rheumatoid Arthritis. Nat Rev Rheumatol (2018) 14(11):631–40. doi: 10.1038/s41584-018-0091-8

122. Yasuda K, Takeuchi Y, Hirota K. The Pathogenicity of Th17 Cells to Autoimmune Diseases. Semin Immunopathol (2019) 41(3):283–97. doi: 10.1007/s00281-019-00773-8

123. Bridgewood C, Sharif K, Sherlock J, Wadat A, McGonagle D, et al. Interleukin-23 Pathway at the Enthesis: The Emerging Story of Enthesitis in Spondyloarthropathy. Imunol Rev (2020) 294(1):27–47. doi: 10.1111/imr.12840

124. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 Functions as an Osteoclastogenic Helper T Cell Subset That Links T Cell Activation and Bone Destruction. J Exp Med (2006) 203(12):2673–82. doi: 10.1084/jem.20061775

125. Xu S, Cao X. Interleukin-17 and its Expanding Biological Functions. Cell Mol Immunol (2010) 7(3):164–74. doi: 10.1080/15428760903240510

126. Hayday AC. Gammadelta T Cell Update: Adaptate Orchestrators of Immune Surveillance. J Immunol (2019) 203(23):311–20. doi: 10.4049/jimmunol.1800934

127. Reinald A, Yevsa T, Worbs T, Lienenklaus S, Sandrock I, Oberdorfer L, et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Immunity. J Immunol (2018) 202(2):1227–34. doi: 10.4049/jimmunol.1702869

128. Lee JS, Tato CM, Joyce-Shaikh B, Galen MF, Cayatte C, Chen Y, et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity (2015) 43(4):277–83. doi: 10.1016/j.immuni.2015.09.003

129. Deodhar A, Gensler LS, Sieper J, Clark M, Calderon C, Wang Y, et al. Three Multicenter, Randomized, Double-Blind, Placebo-Controlled Studies Evaluating the Efficacy and Safety of Ustekinumab in Patients With Active Ankylosing Spondylitis. Arthritis Rheumatol (2019) 71(2):258–70. doi: 10.1002/art.40728

130. Pavella K, Kvizit A, Dokoupilova E, Blanco R, Maradiaga M, Tahir H, et al. Efficacy, Safety, and Tolerability of Secukinumab in Patients With Active Ankylosing Spondylitis: A Randomized, Double-Blind Phase 3 Study, MEASURE 3. Arthritis Res Ther (2017) 19(1):285. doi: 10.1186/s13075-017-1490-y
131. van der Heijde D, Gensler LS, Deodhar A, Baraliakos X, Poddubnyy D, Kivitz A, et al. Dual Neutralisation of interleukin-17A and interleukin-17F With Bimekizumab in Patients With Active Ankylosing Spondylitis: Results From a 48-Week Phase Ib, Randomised, Double-Blind, Placebo-Controlled, Dose-Ranging Study. *Ann Rheum Dis* (2020) 79(5):595–604. doi: 10.1136/annrheumdis-2020-216980

132. Venken J, Jacques P, Mortier C, Labadia ME, Decruy T, Coudens J, et al. Rpgmmt Inhibition Selectively Targets IL-17 Producing iNKT and Gammadelta-T Cells Enriched in Spondyloarthritis Patients. *Nat Commun* (2019) 10(1):9. doi: 10.1038/s41467-018-07991-6

133. Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH, et al. Distinct Effects of T-bet in TH1 Lineage Commitment and IFN-gamma Production in CD4 and CD8 T Cells. *Science* (2002) 295(5553):338–42. doi: 10.1126/science.1065543

134. Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG, et al. The Majority of Epidermal T Cells in Psoriasis Vulgaris Lesions can Produce Type 1 Cytokines, Interferon-Gamma, interleukin-2, and Tumor Necrosis Factor-Alpha, Defining TC1 (Cytotoxic T Lymphocyte) and TH1 Effector Populations: A Type 1 Differentiation Bias is Also Measured in Circulating Blood T Cells in Psoriatic Patients. *J Invest Dermatol* (1999) 113(5):752–9. doi: 10.1046/j.1523-1747.1999.00749.x

135. Mitchell RE, Hassan M, Burton BR, Britton G, Hill EV, Verhagen J, et al. IL-4 Enhances IL-10 Production in TH1 Cells: Implications for TH1 and TH2 Regulation. *Sci Rep* (2017) 7(1):11315. doi: 10.1038/s41598-017-11803-y

136. Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ, et al. The Many Faces of CD4(+) T Cells: Immunological and Structural Characteristics. *Int J Mol Sci* (2020) 22(1). doi: 10.3390/ijms22010073

137. Fulkerson PC, Schollaert KL, Bousfi C, Rothenberg ME, et al. IL-5 Triggers a Cooperative Cytokine Network That Promotes Eosinophil Precursor Maturation. *J Immunol* (2014) 193(8):4043–52. doi: 10.4049/jimmunol.1400732

138. Crofty S, T Follicular Helper Cell Differentiation, Function, and Roles in Disease. *Immunity* (2014) 41(4):529–42. doi: 10.1016/j.immuni.2014.10.004

139. Rööckers E, Baerlecken N, Baraliakos X, Achilles–Mehr Baksh K, Aries P, Bannert B, et al. Sensitivity and Specificity of Autoantibodies Against CD74 in Nonradiographic Axial Spondyloarthritis. *Arthritis Rheumatol* (2019) 71(5):729–35. doi: 10.1002/art.40777

140. Iwata S, Zhang M, Hajime M, Ohkubo N, Sonomoto K, Torimoto K, et al. Pathological Role of Activated mTOR in CXCRI5+ Memory B Cells of Rheumatoid Arthritis. *Rheumatol (Oxford)* (2021). doi: 10.1093/rheumatology/keab229

141. Kucukcezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz UN, Gelmey MY, et al. The Role of Natural Killer Cells in Autoimmune Diseases. *Front Immunol* (2021) 12:622306. doi: 10.3389/fimmu.2021.622306

142. Chan AT, Kollnberger SD, Wedderburn LR, Bowness P, et al. Expansion and Enhanced Survival of Natural Killer Cells Expressing the Killer Immunoglobulin-Like Receptor KIR3DL2 in Spondyloarthritis. *Arthritis Rheum* (2005) 52(11):3586–95. doi: 10.1002/art.21195

143. Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. *Annu Rev Immunol* (2018) 36:519–48. doi: 10.1146/annurev-immunol-042617-053149

144. Azuz-Lieberman N, Markel G, Mizrahi S, Gazit R, Hanna J, Achdout H, et al. The Involvement of NK Cells in Ankylosing Spondylitis. *Int Immunol* (2005) 17(7):837–45. doi: 10.1093/intimm/dxh270

145. Scrivo R, Morrone S, Spadaro A, Santoni A, Valesini G, et al. Evaluation of Degranulation and Cytokine Production in Natural Killer Cells From Spondyloarthritis Patients at Single-Cell Level. *Cytometry B Clin Cytom* (2011) 80(1):22–7. doi: 10.1002/cyto.b.20549

146. Park YW, Kee SJ, Cho YN, Lee EH, Lee HY, Kim EM, et al. Impaired Differentiation and Cytotoxicity of Natural Killer Cells in Systemic Lupus Erythematosus. *Arthritis Rheum* (2009) 60(6):1753–63. doi: 10.1002/art.24556

147. Miyazaki Y, Nakayama S, Kubo S, Nakano K, Iwata S, Miyagawa I, et al. Th22 Cells Promote Osteoclast Differentiation Via Production of IL-22 in Rheumatoid Arthritis. *Front Immunol* (2018) 9:2901. doi: 10.3389/fimmu.2018.02901

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Liu, Liu, Lin and Gu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.