Synthesis of Ni2P/CdS and Pt/TiO2 nanocomposite for photoreduction of CO2 into methanol

Penumaka Nagababu1,2*, Sehba Anjum Mumtaz Ahmed1,2, Y. Taraka Prabhu2,4, Ankush kularkar3,2, Subhamoy Bhowmick2,3 & Sadhana S. Rayalu1,2

It is a great challenge to convert thermochemically stable CO2 into value-added products such as CH4, CH3OH, CO via utilizing solar energy. It is also a difficult task to develop an efficient catalyst for the reduction of CO2. We have designed and synthesized noble metal-free photocatalytic nanostructure Ni2P/CdS and Pt/TiO2 for conversion of CO2 to methanol in the presence of sacrificial donor triethylamine (TEA) and hydrogen peroxide. The synthesised catalysts physicochemical properties were studied by using several spectroscopic techniques like; XRD, UV-DRS, XPS, TEM, SEM and PL. Quantification of methanol by GC–MS showed encouraging results of 1424.8 and 2843 μmol g−1 of catalyst for Pt/TiO2 and 5 wt% Ni2P/CdS composites, respectively. Thus, Ni2P/CdS is a promising catalyst with higher productivity and significant selectivity than in-vogue catalysts.

From the past few decades, substantial changes have been witnessed in the atmosphere due to the burning of fossil fuels1 leading to an increase in the demand for renewable energy2. Also, the natural resources of fossil fuels are decreasing day by day, thus increasing the demand for an alternate source of energy3,4. At present, much of our energy demands are met by fossil fuel, but this resource is not a renewable source and is associated with contemporary environmental issues. Thus, renewable sources of energy shall play a critical role in fulfilling the requirement of energy demand3. More efforts have been focused on substituting renewable biomass sources for chemicals and fuels, which possess high energy density and environmentally friendly properties5. Mixing alcohol with petroleum products increases the fuel's combustion efficiency due to oxygen and reduces the emission of pollutants into the atmosphere7,8. The regular trend for methanol synthesis uses syngas conversion with high pressure and high thermal energy with heterogeneous catalytic reaction over alumina supported Cu/ZnO catalyst9. In the petrochemical industry, the production of methanol from CO2 reduction an important achievement. In this research area, efforts are continuing to increase the selectivity for methanol by reverse-water–gas-shift (RWGS) reaction in thermal catalytic CO2 hydrogenation via Cu/ZnO-based catalyst. The great challenge in this reaction is to maintain the operating temperature and pressure. Due to the competing RWGS reaction, the exothermic nature of methanol synthesis, equilibrium-limited conversion, and the very high activation energy barrier of the CO2 hydrogenation to methanol reaction, the process must balance operation temperature megapascal pressures to achieve high selectivity and production rate10,11. Fujishima first reported the photocatalysis study in 1972; in recent years, it's become a common word in chemistry and also various technology products12. The theoretical target is to get chemical energy by using light energy with semiconductor materials. The electron present on the conduction band gets activated and migrates to the valance band of the semiconductor with the holes in the conduction band. Thus, the charge carriers facilitate the reaction wherein the electrons react with dissolved CO2 present in the reactant stream13. The reduction of CO2 is mainly depending on the highly reducing electron, which has a high reduction ability to convert CO2 into useful methanol14. As per Gibb's free energy values, the CO2 and methanol having − 394.4 and − 166.4 kJ/mol energy indicating that the reduction of CO2 is an exothermic reaction15. Many processes are used for the conversion of CO2 into methanol such as (1) chemical conversion method, (2) electrochemical conversion method, (3) photochemical reduction method and (4) photoelectrochemical reduction method (Eq. 1).

\[\text{CO}_2 + 3\text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad \Delta H_{298} = -49.51 \text{ kJ/mol} \] (1)

1Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India. 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. 3Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Calcutta, West Bengal 700107, India. 4Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. 5email: p.nagababu@neeri.res.in; s_rayalu@neeri.res.in
performance. With this background, we have synthesized two nano-systems Pt/TiO$_2$ and Ni$_2$P/CdS to convert increasing concentration of Ni$_2$P from 1 to 5% weight to find the optimum concentration of Ni$_2$P. H$_2$O$_2$ can act as was purged within a glass reactor to withdraw the air for 25 to 30 min (Scheme 1)$_{29}$. About 30–45 min to accomplish complete dispersion. Before starting the photo-deposition reaction, nitrogen of aqueous reactant solution with 150 mg of titanium dioxide and was continuously stirred magnetically for cooled to room temperature with cold circulating water. This photochemical reaction was performed in 400 ml titanium dioxide using hydro chloroplatinic acid. The experiment was conducted in a 500 ml irradiation type Pt/TiO$_2$ a TiO$_2$ has been detected at 47.44°. The absence of diffraction peak of the Pt on the Pt/TiO$_2$ composite heat the mixture at 140 °C for 12 h. The yellow-green colored product obtained was collected from the cooled phide and synthesized cadmium sulphide were dissolved in ethylenediamine. The same autoclave is used to CO$_2$ into methanol in the presence of sacrificial donor triethylamine. The loading Ni$_2$P on CdS is also studied by ZnO catalyst, reported 100% selectivity for MeOH at ambient pressure but these gave a low yield of conversion. TiO$_2$ is widely studied as a photocatalyst with a wide bandgap semiconductor (3.2 eV) which can only be excited by UV light. CdS has a narrow bandgap of 2.4 eV and has received considerable interest in the field of water splitting and environmental remediation$_{19}$. It can be a suitable candidate for visible light absorption and fits the thermodynamics requirements for H$_2$O/H$_2$.$_{20–22}$ However, the photocatalytic activity over pure CdS is relatively low due to the instability and recombination of the electron–hole pairs. To overcome the above-mentioned problems, investigators are making a series of approaches that can be applied to improve the photocatalytic activity of CdS and TiO$_2$.$_{23–25}$ Combining Ni$_2$P with CdS has proved to be an efficient way to enhance photocatalytic performance. With this background, we have synthesized two nano-systems Pt/TiO$_2$ and Ni$_2$P/CdS to convert CO$_2$ into methanol in the presence of sacrificial donor triethylamine. The loading Ni$_2$P on CdS is also studied by increasing concentration of Ni$_2$P from 1 to 5% weight to find the optimum concentration of Ni$_2$P. H$_2$O$_2$ can act as a reducing as well as oxidizing agent depending on pH value. It works as a potent reducing agent in the presence of a basic medium and produces O$_2$ and 2H$^+$ ions. The present manuscript discusses the significant conversion of CO$_2$ to methanol with H$_2$O$_2$, the selectivity of methanol production (no by-products were observed) and the excellent yield of methanol (2843 μmol/g cat using 5 wt%-Ni$_2$P/CdS catalyst). The finding of this has been compared with the conventional catalyst reported in the literature$_{26}$.

Material and methods

Thiourea (NH$_2$CSNH$_2$), cadmium nitrate tetrahydrate Cd(NO$_3$)$_2$·4H$_2$O, ethylenediamine, Nickel phosphide (Ni$_2$P) and H$_2$O$_2$ 34%. These chemicals are of analytical grade and used directly without further purification.

Synthesis of Ni$_2$P/CdS.

The solvothermal method was used to prepare cadmium sulphide nanorods. 10 mmol and 30 mmol of cadmium nitrate tetrahydrate and thiourea were dissolved in ethylenediamine (30 ml) respectively. These were transferred into 80 ml of Teflon-lined autoclave (stainless steel), which was then kept for 48 h at 160 °C in a hot air oven. After 48 h, an autoclave is set aside to cool at ambient temperature. The yellow colored product is rinsed with deionized (DI-water) water and ethyl alcohol several times. The yellow-colored cadmium sulphide was dried in a vacuum oven at around 60 °C for 6 h$_{27,28}$. Preweighed quantity of nickel phosphate and synthesized cadmium sulphide were dissolved in ethylenediamine. The same autoclave is used to heat the mixture at 140 °C for 12 h. The yellow-green colored product obtained was collected from the cooled autoclave, which was rinsed with ethanol and DI-water several times. The final Ni$_2$P/CdS catalyst was dried into a vacuum oven at around 60 °C for 5 h.

Synthesis of Pt/TiO$_2$ nanoparticles.

The photo-deposition technique was used to deposit platinum over titanium dioxide using hydro chloroplatinic acid. The experiment was conducted in a 500 ml irradiation type (inner) reactor. A 350 w medium pressure mercury vapor lamp was used as an irradiation light source and cooled to room temperature with cold circulating water. This photochemical reaction was performed in 400 ml of aqueous reactant solution with 150 mg of titanium dioxide and was continuously stirred magnetically for about 30–45 min to accomplish complete dispersion. Before starting the photo-deposition reaction, nitrogen was purged within a glass reactor to withdraw the air for 25 to 30 min (Scheme 1)$_{29}$.

Characterization.

Morphology of the photocatalysts was determined by scanning electron microscope (SEM) (Tescan, HiPace 10) and HRTEM using JEM-2100F JEOL Japan. The XRD patterns were recorded by using a benchtop X-ray Diffractometer (Model: Rigaku Miniflex II at 30 kV) having a scintillation counter detector. X-ray photoelectron spectroscopy (XPS) analysis has been done by using KRATOS AXIS 165 with Mg Kα irradiation. An Agilent Cary 5000 UV/VIS/NIR spectrophotometer was used to determine the UV/VIS absorption at ambient conditions. Photoluminescence was recorded at Hitachi F-7000 spectrophotometer. Liquid samples were taken at a different time interval with an airtight syringe and separated by offline GC detected by a flame ionized detector (FID) using helium as carrier gas (Perkin Elmer Clarus 680).

Results and discussion

XRD studies.

The XRD patterns of the TiO$_2$, Ni$_2$P, CdS, Pt/TiO$_2$, CdS, 1 wt% Ni$_2$P/CdS, 3 wt% Ni$_2$P/CdS, 5 wt% Ni$_2$P/CdS and 6 wt% Ni$_2$P/CdS are shown in Fig. 1. It is observed that synthesized CdS nanorods have prominent diffraction peaks located at 25.04°, 26.66°, 28.39°, and 43.94° corresponding to the (100), (002), (101) and (110) planes of pure CdS with the hexagonal phase structure (JCPDS file no. 65-3414), respectively, suggesting that CdS has good crystallinity. In the case of Ni$_2$P used in the preparation of Ni$_2$P/CdS composite diffraction peaks at 40.58°, 44.39°, 47.18°, and 54.08° are observed which matches well with the hexagonal phase standard card of Ni$_2$P (JCPDS file no. 65-3544) with (111), (201), (210) and (300) planes, respectively$.^{38}$ Besides, the XRD pattern of Ni$_2$P/CdS shows prominent diffraction peaks at 25.11°, 26.77°, 28.46°, 36.84°, 43.95°, 48.14° and 51.89° for CdS and Ni$_2$P, clearly showing that crystallinity of CdS and Ni$_2$P is retained in Ni$_2$P/CdS composite$.^{31}$ The deposition of Ni$_2$P onto CdS shifted the diffraction angle from 43.8° to 43.9°, as indicated in the diffraction patterns of Ni$_2$P doped CdS. The diffraction peak shift towards the higher angle for the doped material induces the expansion in the crystal lattice that increases the interplanar spacing. The XRD pattern of Pt/TiO$_2$ shows diffraction peaks at 25.30°, 37.79° and 48.03° corresponds to (101), (004) and (200) of the anatase phase of TiO$_2$, respectively. In Pt/TiO$_2$ a TiO$_2$ has been detected at 47.44°. The absence of diffraction peak of the Pt on the Pt/TiO$_2$ composite indicated that the platinum was well dispersed in TiO$_2$. The high degree of dispersion was also confirmed by the...
Scheme 1. Diagrammatic representation of the synthesis of (A) Ni₃P/CdS and (B) Pt/TiO₂.

Figure 1. (A) XRD patterns of TiO₂, Ni₃P, CdS, Pt/TiO₂, CdS, 1 wt% Ni₃P/CdS, 3 wt% Ni₃P/CdS, 5 wt% Ni₃P/CdS and 6 wt% Ni₃P/CdS.
HR-TEM image of the TiO₂ and Pt/TiO₂ in Fig. 2H, in which a clear lattice image of TiO₂ and Pt particles on TiO₂ are evident. The amount of doped Pt was less than 2.0% which is very less concentration to be detected by the XRD instrument significantly.

SEM and HRTEM studies. SEM and HRTEM analysis were carried out to investigate the morphology and microstructure of prepared photocatalysts. In Fig. 2a–d shows crystalline CdS nanorods with an average diameter of 100–5 nm while nickle phosphide deposited over CdS via solvothermal process showed similar geometry of nanorods and their diameter has not apparent change. The distance of lattice fringe of 0.33 and 0.22 nm for CdS and Ni₂P, respectively, clearly shows that they are in close contact. The images clearly showed that the length of Ni₂P/CdS is a little smaller than pure CdS while the structure and the results confirmed that morphology had no effect of the deposition of Ni₂P on CdS. In Fig. 2e–h Pt/TiO₂ crystal clearly shows platinum deposited on the TiO₂ crystals which are seen as black spots at high resolution in TEM images. In Fig. 2 SEM images of CdS (a–d) and Ni₂P/CdS (e–h) from 200 to 1 μm indicates that there is no change after deposition of Ni₂P on CdS. In Fig. 3 SEM images of CdS (a–d) and Ni₂P/CdS (e–h) from 200 to 1 μm indicates that there is no change after deposition of Ni₂P on CdS. In Fig. 4A, it is seen that CdS shows an absorption edge of approximately 490 nm. The UV and visible light absorption intensity increased compared to pure CdS and 1–6 wt% Ni₂P/CdS samples, which was attributed to the reduction of reflectivity. The photoabsorption property has been increased by increasing the amount of Ni₂P because of its dark colour. A slight redshift is seen in the samples of Ni₂P/CdS and thus, the Ni₂P is loaded onto the surface.
rather than the crystal lattice. In the present work, the optimal value was attained in 5 wt% Ni₂P/CdS sample. In addition, as the diameter grows, it takes longer for the electrons to pass nanoparticles into the surface of Ni₂P and less electrons to produce methanol. The maximum yield of methanol was obtained (2843 μmol/g cat) by using 5 wt% Ni₂P/CdS catalyst under a visible light source of 300 W Xe lamp with 420 nm cutoff filter and 300 W tungsten light for 1 h. The Hg lamp with 300 W was the light source for Pt/TiO₂ catalyst. As expected, increased Ni₂P loading resulted in increased photoactivity. Ni₂P served as an active centre for the production of methanol by electron trapping to decrease the recombination rate of electron–hole pairs during photocatalyst excitation. The adsorption of reactant CO₂ can be supported by surface hydroxyl (OH) of CdS to improve photoreaction. The amount of hydroxyl on the surface of CdS increased with increasing Ni₂P loading, and the total CO₂ photoreduction increased significantly. However, excess of Ni₂P on the CdS surface (6 wt%-Ni₂P/CdS), resulted in less catalyst light exposure. As a result, electron and hole pair photoexcitation was decreased because less photo-energy was absorbed. Therefore, an optimal Ni₂P loading on the catalyst is a 5 wt% Ni₂P and the highest methanol yields were found at this percentage under experimental conditions.

The photoluminescence (PL) is obtained from the radiative recombination of the photo-generated electron–hole pair. The (PL) emission experiment was carried out at an excitation wavelength of 350 nm. A series of studies includes loading of Ni₂P on CdS (1 wt% Ni₂P/CdS, 3 wt% Ni₂P/CdS, 3 wt% Ni₂P/CdS, 5 wt% Ni₂P/CdS, and 6 wt% Ni₂P/CdS) as shown in Fig. 4C were restricted to the recombination of photoexcited electron–hole pairs. It appears that all samples exhibit a high emission at 535 nm because free electrons are radially recombined with free holes.

Figure 3. SEM images of Ni₂P/CdS (a–d) and Pt/TiO₂ (e–h).

Figure 4. UV–Vis diffuse reflectance spectrum (A), Tauc plots (B) and photoluminescence spectrum of (C) of synthesized catalysts CdS, 1 wt% Ni₂P/CdS, 3 wt% Ni₂P/CdS, 3 wt% Ni₂P/CdS, 5 wt% Ni₂P/CdS and 6 wt% Ni₂P/CdS.
at the valence bands. Due to the increase in Ni$_2$P concentration on CdS the PL strength compared to bare CdS was noticeably reduced. The lowest intensity was attained with a 5 wt% Ni$_2$P/CdS composite which suggested that co-catalysts Ni$_2$P was able to substantially reduce the population of single-excitons with the presence of an intimate interface of Ni$_2$P and CdS composites.

XPS spectra. The valence state of the elements and the chemical composition of Ni$_2$P/CdS photocatalyst were studied through XPS measurements. Figure 5 represents the binding energy (BE) curve for the core level spectra of Cd 3d, S 2p, Ni 2p, and P 2p constituent elements in the photocatalyst. Figure 5a displays the core level spectrum of Cd 3d area where 403.04 eV and 408.80 eV peaks correspond to Cd 3d$_{5/2}$ and Cd 3d$_{3/2}$, respectively. These values are close to earlier reported values. In Fig. 5b, S 2p has two peaks positioned at 160.54 eV and 159.38 eV corresponding to S 2p$_{1/2}$ and S 2p$_{3/2}$ orbitals of divalent sulfide ions (S$^2-$), respectively, which are in line with the formation of CdS. The characteristic binding energies of peaks located at 854.35 eV, 871.72 eV, 130.82 eV and 131.15 eV correspond to Ni 2p$_{3/2}$, Ni 2p$_{1/2}$, P 2p$_{3/2}$ and P 2p$_{1/2}$ respectively, shown in Fig. 5c,d. These results clearly demonstrate the existence and strong interaction between Ni$_2$P and CdS, which is in good agreement with the TEM analysis.

Photocatalytic reduction of CO$_2$ to methanol. A known amount of CO$_2$ is purged into DMF after removal of moisture from the solvent with nitrogen purging at least for 30 min. 20 mg of the prepared photocatalyst was well dispersed in the mixture of DMF with TEA as a sacrificial electron donor. Carbon dioxide is added to the reaction mixture, followed by hydrogen peroxide and irradiated with light for the different time intervals. Liquid samples were filtered with a microsyringe filter and injected in offline GC to detect products (Scheme 2).

The photocatalytic reduction of CO$_2$ to methanol was performed for both prepared catalysts. The catalysis test results showed that Ni$_2$P/CdS is highly active than Pt/TiO$_2$ under the influence of light (Fig. 6). An increment in the concentration of H$_2$O$_2$ shows a positive effect on methanol generation until the concentration researches 1.5 ml. There is no detection of methanol over oxidation products like formaldehyde and formic acid etc., in the GC and GC–MS spectrum indicating high selectivity towards methanol. There is less variation in methanol formation between 1 and 1.5 ml of H$_2$O$_2$, indicating that the reaction is completed at this point. However, the additional increment in H$_2$O$_2$ concentration of more than 1.5 ml shows the reduction in the formation of methanol. This may be attributed to a decrease in the availability of CO$_2$ in the reaction mixture.

Therefore the ideal concentration of H$_2$O$_2$ for the reduction of CO$_2$ is 1.5 ml/20 mg of catalyst. The effect of light over a different time is also done using the same catalyst. It is concluded that as the time duration increases the concentration of methanol increases. After an hour, no significant impact on the generation of methanol.
Scheme 2. A diagrammatical representation of photocatalytic reduction of CO$_2$ to methanol process.

Figure 6. Effect of increasing concentration of H$_2$O$_2$ from 0.2 to 1.6 ml on the conversion of CO$_2$ to MeOH generation.

Figure 7. The plots against reaction time in minutes (10–1440) and methanol produced from the CO$_2$ with catalyst Ni$_2$P/CdS and Pt/TiO$_2$ (A) and reproducibility of catalyst Ni$_2$P/CdS for 3 cycles at 1 h time (B).
suggesting the catalyst can get exhausted (Fig. 7A). Nanocomposites typically have specific features that support the catalyst and are reusable. To illustrate this characteristic, we have studied the performance of selected catalyst 5 wt%-Ni2P/CdS to reduce CO2 to CH3OH. The obtained results were strongly supporting to the production of methanol after 3-cycle at 1 h time. After completion of 1 h reaction, the catalyst was removed from the reaction mix and dried and the next reaction was conducted. Based on the findings, the formation of CH3OH after each run does not effect a significant loss in efficiency of catalyst (Fig. 7B).

Quantum efficiency for CO2 reduction. Photochemical efficiency describes the percent of absorbed photons that reduce CO2 to products. CO2 adsorption on photocatalysts affects the efficacy of photochemical efficiency. The quantum outcome of the reaction is widely called photochemical efficiency. The photo-reduction of CO2 to methanol requires two electrons, the photochemical efficiency of the reaction is obtained by the equation given below41.

Here we calculate the quantum efficiency at λ = 420 ± 15 nm. The catalyst mixture was irradiated by a 300 W Xe lamp for 1 h. The average incident irradiation was determined to be 2.75 W/cm² and the area was 17.59 cm². The amount of methanol produced in 1 h was 2843 μmol. All the calculations are given below.

The number of incident photons (N) in 1 h over 17.59 cm² area:

\[
N = \frac{E_{a}}{h} = \frac{2.75 \times 17.59 \times 3600 \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 3.679405 \times 10^{20}
\]

\[
QE = 6 \times \frac{\text{the number of product molecules produced}}{\text{the number of incident photons}} = \frac{6 \times 2843 \times 10^{-6} \times 6.02 \times 10^{23}}{3.679405 \times 10^{20}} = 2843
\]

Photochemical efficiency depends on the intensity and wavelength of radiation. According to experiment results, a maximum quantum yield of 27.91% was obtained by 5 wt% Ni2P/CdS (Table 1).

Mechanism. Based on the experimental results a plausible schematic mechanism basic the robust methanol production over 5 wt%-Ni2P/CdS composite was proposed (Fig. 8). It is well known that the CB edge of CdS is more negative than that of Ni2P. Thus on irradiation with visible light the photogenerated electrons can efficiently transfer from the conduction band (CB) of CdS to Ni2P. The electrons accumulating on the Ni2P particles can reduce CO₂ into CO₂⁻ while the holes on CdS can oxidize H₂O₂ to produce O₂ and H⁺. Then CO₂⁻ reacts with H⁺ to produce CH₃OH in presence of sacrificial electron donor TEA (Eq. 2). The effective separation of the photo-generated electrons and holes in CdS further improves photocatalytic activity.

Conclusion

The reduction of CO₂ via visible light to methanol is achieved successfully. Here we are reporting methanol generation over noble metal-free hybrid semiconductor photocatalyst (Ni2P/CdS) under visible-light-driven CO₂ reduction. The photocatalytic activity of the catalyst was enhanced by the homogenous dispersion of the co-catalyst. The synthesized Pt/TiO₂ photocatalyst was adopted as the reference for comparison of the photocatalytic activity of the Ni2P/CdS nanocomposites under similar experimental conditions with an increase in Ni2P loading, the photocatalysts showed increased crystallinity. The CdS loaded with Ni2P showed greater efficiency than CdS for the formation of methanol from CO₂. The 5 wt% loading of Ni2P on CdS was found to be optimal among the different compositions and afforded the highest product yield (2843 μmol/g cat). The reaction was found to be completely photocatalytic, as in the absence of visible light, no conversion was observed. The synthesized photocatalyst was heterogeneous and showed clear 3 recycle runs with no change in catalytic efficiency and also no significant leaching and change in morphology was observed. Also, the reduction rate of CO₂ is much higher than the previously reported catalysts. These results may provide a new avenue for various photocatalytic applications.

S. No	Catalysts	Yield	AQY
1	1 wt% Ni2P/CdS	542	5.32070756
2	3 wt% Ni2P/CdS	1623	15.9326723
3	5 wt% Ni2P/CdS	2843	27.9091727
4	6 wt% Ni2P/CdS	981	9.63028436
5	Pt/TiO₂	1425	13.9889452

Table 1. Quantum yield obtained by catalysts 1–5. Bold is indicating present work which we are reporting in this manuscript, with significant yield.
References

1. Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. *Int. J. Environ. Res. Public Health* https://doi.org/10.3390/ijerph15010016 (2018).
2. Owusu, P. A. & Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. *Cogent Eng.* 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990 (2016).
3. He, X. & Liu, H. Efficient synthesis of 1,1-diethoxyethane via sequential ethanol reactions on silica-supported copper and H-Y zeolite catalysts. *Catal. Today* 233, 133–139. https://doi.org/10.1016/j.cattod.2014.01.023 (2014).
4. Zhang, H., Yupeng, W., Li, L. & Zhu, Z. Photocatalytic direct conversion of ethanol to 1,1-diethoxyethane over noble-metal-loaded TiO2 nanotubes and nanorods. *ChemSusChem* 8, 1226–1231. https://doi.org/10.1002/cssc.201403305 (2015).
5. Gielanek, D. et al. The role of renewable energy in the global energy transformation. *Energy Strat. Rev.* 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006 (2019).
6. Sharma, A., Erdenedelger, G., Jeong, H. M., Jeong, H. M. & Lee, B. K. Controlled oxygen functional groups on reduced graphene using rate of temperature for advanced sorption process. *J. Environ. Chem. Eng.* 8(10374), 9. https://doi.org/10.1016/j.jece.2020.103749 (2020).
7. Surisetty, V. R., Dalai, A. K. & Kozinski, J. Alcohols as alternative fuels: An overview. *Appl. Catal. A Gener.* 404, 1–11. https://doi.org/10.1016/j.apcata.2011.07.021 (2011).
8. Nguyen, T. D. et al. Tuyen Van Nguyen’s BiVO₄ photocatalysis design and applications to oxygen production and degradation of organic compounds: A review. Environ. Chem. Lett. https://doi.org/10.1007/s13205-021-01039-3 (2021).

9. Martinez-Suarez, L., Siemer, N., Frenzel, J. & Marx, D. Reaction network of methanol synthesis over Cu/ZnO nanocatalysts. ACS Catal. 5, 4201–4218. https://doi.org/10.1021/acscatal.5b00442 (2015).

10. Wang, L. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2, 1369–1381. https://doi.org/10.1016/j.joule.2018.03.007 (2018).

11. Daza, V. A. CO₂ conversion by reverse water gas shift catalysis: Comparison of catalysts, mechanisms and their consequences for CO₂ conversion to liquid fuels. RSC Adv. 6, 49675–49691. https://doi.org/10.1039/C6RA0514E (2016).

12. Hashimoto, K., Irie, H. & Fujishima, A. TiO₂ photocatalysis: A historical overview and future prospects. Jpn. Soc. Appl. Phys. 44, 8269–8283. https://doi.org/10.1143/JJAP.44.8269 (2005).

13. Taraka, T. P. Y., Gautam, A., Jain, S. L., Bojja, S. & Pal, U. Controlled addition of Cu/Zn in hierarchical CuO/ZnO p–n heterojunction photocatalyst for high photoreduction of CO₂ to MeOH. J. CO2 Util. 31, 207–214. https://doi.org/10.1016/j.jcou.2019.03.012 (2019).

14. Chai, N. N., Wang, H. X., Hu, C. X., Wang, Q. & Zhang, H. L. Well-controlled layerby-layer assembly of carbon dots/Cds heterojunction for efficient visible-light-driven photocatalyst. J. Mater. Chem. A 3, 16613–16620 (2015).

15. Chao, Y. et al. Photocatalytic hydrogen generation on bifunctional ternary heterostructured In₅₃/Co₂O₃/Cds composite with high activity and stability under visible light irradiation. J. Mater. Chem. A 3, 18406–18412 (2015).

16. Reddy, D. A. et al. Heterostructured W52-CoMo2 ultrathin nanosheets integrated on Cds nanorods to promote charge separation and migration and improve solar-driven photocatalytic hydrogen evolution. ChemSusChem 10, 1563–1570 (2017).

17. Wu, X. Q. et al. Carbon dots as solid-state electron mediator for BiVO₄/CdS/Cds Z-scheme photocatalyst working under visible light. Appl. Catal. B 206, 501–509 (2017).

18. Han, B., Liu, S., Zhang, N., Xu, Y. J. & Tang, Z. R. One-dimensional Cds@MoS2 core-shell nanowires for boosted photocatalytic hydrogentotan dioxide evolution under visible light. Appl. Catal. B 202, 298–304 (2017).

19. Hong, S., Kumar, D. P., Reddy, D. A., Choi, J. & Kim, T. K. Excellent photocatalytic hydrogen production over Cds nanorods via using noble metal-free copper molybdenum sulfide (Cu₉Mo₉S₈) nanosheets as co-catalysts. Appl. Surf. Sci. 396, 421–429 (2016).

20. Chao, Y. et al. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 6, 1890–1895. https://doi.org/10.1039/C3NR05380F (2014).

21. Chang, H. et al. Highly efficient visible light-driven hydrogen production of precious metal-free hybrid photocatalyst: Cds/ NiMoS core–shell nanorod. Catal. Sci. Technol. https://doi.org/10.1039/C7CY00964J (2017).

22. Amalshree, A., Priti Mangalkaruka, A. C., Moinuddin, A. A., Nagababu, P. & Rayala, S. In-situ Cl⁻ ions formation during photocatalytic reaction of platinized nanocomposite for hydrogen generation. Sol. Energy 174, 1019–1025. https://doi.org/10.1016/j.solener.2018.09.047 (2018).

23. Pal, K., Maiti, U. N., Majumder, T. P. & Deb Nath, S. A facile strategy for the fabrication of uniform Cds nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route. Appl. Surf. Sci. 258, 163–168. https://doi.org/10.1016/j.apsusc.2011.08.024 (2011).

24. Wang, Q. et al. Highly efficient photocatalytic hydrogen production of flower-like cadmium sulfide decorated by histidine. Sci. Rep. 4, 1–9. https://doi.org/10.1038/srep013593 (2015).

25. Lakshminarasimhan, N., Bokare, A. D. & Choi, W. Effect of agglomerated state in mesoporous TiO₂ on the morphology of photo-deposited Pt and photocatalytic activity. J. Phys. Chem. C 116(33), 17531–17539 (2012).

26. Song, B., Luo, B., Geng, L., Song, D. & Jing, D. Photothermocatalytic hydrogen evolution over Ni₃P/TiO₂ for full-spectrum solar energy conversion. Ind. Eng. Chem. Res. 57(23), 7846–7858 (2018).

27. Zhao, D. et al. Promoting visible-light-driven hydrogen evolution over Cds nanorods using earth-abundant CoP as a cocatalyst. RSC Adv. 6, 33120–33125 (2016).

28. Wu, Y. et al. Noble-metal-free nickel phosphide modified Cds/Cu₃N₄ nanorods for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation. Dalton Trans. 46, 13793–13801 (2017).

29. Kong, T., Jiang, Y. & Xiong, Y. Photocatalytic CO₂ conversion: What can we learn from conventional CO₂ hydrogenation?. Chem. Soc. Rev. 49, 6579–6591 (2020).

30. Tang, Y. et al. Snowflake-like Cu₉S/Zn₁₂Cd₆S₈ p–n heterojunction photocatalyst for enhanced visible light photocatalytic H₂ evolution activity. J. Taiwan Inst. Chem. Eng. 96, 487–495. https://doi.org/10.1016/j.jtice.2018.12.021 (2019).

31. Han, A., Chen, H., Zhang, H., Sun, Z. & Du, P. Ternary metal phosphide nanosheets as a highly efficient photocatalyst for water reduction to hydrogen over a wide pH range from 0 to 14. J. Mater. Chem. A 4, 10195–10202. https://doi.org/10.1039/C6TA02297A (2018).

32. Zhu, D. et al. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem. Commun. 53, 10906–10909. https://doi.org/10.1039/C7CC06378D (2017).

33. Yin, X. et al. A novel structure of Ni-(MoS2/GO) composite coatings deposited on Ni foam under supergravity field as efficient hydrogen evolution reaction catalysts in alkaline solution. Electrochim. Acta 249, 52–63. https://doi.org/10.1016/j.electacta.2017.08.010 (2017).

34. Kong, X. et al. Titanium dioxide: From engineering to applications. Catalysts 9, 1–32. https://doi.org/10.3390/catal9020191 (2019).

35. Razaq, F. et al. Enhanced cocatalyst-free visible-light activities for photocatalytic fuel production of g-C₃N₄ by trapping holes and ion transferring electrons. J. Phys. Chem. C 120(1), 98–107. https://doi.org/10.1021/acs.jpcc.5b03133 (2016).

36. Abdollahi, H., Ismail, N. A., Yaakob, Z., Khan, M. R. & Rahim, S. A. CeO₂–TiO₂ for photoreduction of CO2 to methanol under visible light: Effect of ceria loading. Malays. J. Anal. Sci. 21, 166–172. https://doi.org/10.17576/mjas-2017-2101-19 (2017).

37. Li, H., Li, C., Han, L., Li, C. & Zhang, S. Photocatalytic reduction of CO₂ with H₂O on CuO/TiO₂ catalysts. UTL. Environ. Eff. 38, 420–426. https://doi.org/10.1080/15567036.2011.598910 (2016).

38. Xie, Y. P., Yang, Y., Wang, G. & Liu, G. Oxygen vacancies promoted interfacial charge carrier transfer of Cds/ZnO heterostructure for photocatalytic hydrogen generation. J. Colloid Interface Sci. 503, 198–204. https://doi.org/10.1016/j.jcis.2017.05.006 (2017).

39. Liu, S., Zhao, Z. & Wang, Z. Photocatalytic reduction of carbon dioxide using sol–gel derived tinia-supported CoP catalysts. Photochem. Photobiol. Sci. 6, 695–700. https://doi.org/10.1039/B613098D (2007).
46. Gusain, R., Kumar, P., Sharma, O. P., Jain, S. L. & Khatri, O. P. Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. *Appl. Catal. B* **181**, 352–362. https://doi.org/10.1016/j.apcatb.2015.08.012 (2016).

47. Wesselbaum, S., vom Stein, T., Klankermayer, J. & Leitner, W. Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium–phosphine catalyst. *Angew. Chem. Int. Ed.* **51**, 7499–7502. https://doi.org/10.1002/anie.201202320 (2012).

48. Kumar, P., Chauhan, R. K., Sain, B. & Jain, S. L. Photo-induced reduction of CO2 using a magnetically separable Ru-CoPc@TiO2@SiO2@Fe3O4 catalyst under visible light irradiation. *Dalton Trans.* **44**, 4546–4553. https://doi.org/10.1039/C4DT02461C (2015).

49. Lu, X. L. et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. *J. Mater. Chem. A* **2**, 18924–18928. https://doi.org/10.1039/C4TA04487H (2014).

50. Kumar, P. et al. Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. *Appl. Catal. B* **205**, 654–665. https://doi.org/10.1016/j.apcatb.2016.11.060 (2017).

Acknowledgements

This project is supported by CSIR-New Delhi under the category of NCP/E3OW-Theme project (no. CSIR-NEERI/PMPD/FBR/NCP Project-2018-19-6) and Demonstration and validation of hydrogen ecosystem for stationary power backup application for telecommunication towers - Hybrid Broad Band Absorption PV Cell based Water Electrolysis for Solar Hydrogen technology (GAP-2536). KRC no.: CSIR-NEERI/KRC/2020/MARCH/EMD/2.

Author contributions

N.B. conceived the idea and conceptualized the research work. N.B. also prepared the catalyst, few experiments, and prepared the original draft. S.A.M.A., Y.T.P., S.B. and A.K conducted experiments related to catalytic conversion of CO2 to methanol and GC and GC-MS studies and manuscript writing SR.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to P.N. or S.S.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021