Determinants of Genetic Structure in a Nonequilibrium Metapopulation of the Plant *Silene latifolia*

Peter D. Fields, Douglas R. Taylor

Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America

Abstract

Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, *Silene latifolia*, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase *F*ST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. *F*ST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.

Introduction

Sewall Wright [1] introduced the study of geographic population structure and its genetic consequences with the Island Model. In the Island Model, populations are assumed to be stable and interconnected by migration, with population differentiation (*F*ST) at neutral loci generated by drift and diminished by gene flow among populations. When the simplifying assumptions of the island model are violated, a number of additional factors are necessary to understand population genetic differentiation [2,3]. In metapopulations, where demes experience extinction and recolonization, there are broad conditions under which the founder effect can be a powerful structuring mechanism [4], and population differentiation can occur despite high levels of gene flow. The importance of founder effects depends on several parameters including migration, extinction and colonization rates, the number of founding propagules, as well as the fraction of demes from which the colonists originate [2,3].

Empirical evidence that founder effects can drive population differentiation has been gathered from age-structured populations. For example, elevated population structure among newly established demes in metapopulations is consistent with founder effects generating increased population structure, with subsequent gene flow reducing genetic differentiation among populations as they age [5–9]. Although these classic studies demonstrate that metapopulation processes (extinction and recolonization) can influence genetic differentiation, it is important to estimate their importance relative to other structuring mechanisms such as local adaptation, which will also contributed to increased population genetic structure [10,11].

Recent advances in evaluating the causes and consequences of population structure have benefited from the development of a Bayesian model-based approach known as the *F*-model [12–17]. This approach has an advantage over previous methods in that rather than estimating “global” values of genetic differentiation, it takes into account the biological reality that local populations differ in their effective sizes and migration rates and, therefore, their degree of differentiation from other populations [12]. Foll and Gaggiotti [18] introduced a hierarchical formulation of the *F*-model that uses population-specific measurements to obtain priors for *F*ST, then estimates the proportional contribution of population-specific variables generating among population variance in allele frequencies.

We used the hierarchical Bayesian approach of Foll and Gaggiotti [18] to understand variation the causes *F*ST in a well studied plant metapopulation. Our objective was to estimate how population structure results from equilibrium process such as those in the island model (e.g. drift, migration) versus non-equilibrium factors that operate in metapopulations (e.g. extinction and...
recolonization with founder effects). To accomplish this, we applied the \( F \) model formulation to a long-term data set of the plant, *Silene latifolia*, where the size and spatial distribution of demes was known, and could be combined with information about their demographic history and age structure. We used fine-scale sampling, microsatellite genotyping, and the application of an \( F \) model based approach to explore the spatial and temporal features of populations that affect their contributions to the observed distribution of \( F_{ST} \), including simultaneous estimates of the magnitude and direction of these effects.

**Materials and Methods**

**Study Organism**

*Silene latifolia* Poir. (= *S. alba*, Caryophyllaceae) is a short-lived perennial plant that is broadly used as a model system for studying sex determination, sex chromosome evolution, host-pathogen dynamics, biological invasions, organelle evolution, sexual dimorphism, sex ratio evolution, and evolution in structured populations [19].

We studied a *S. latifolia* metapopulation located in Giles and Craig Counties, Virginia, USA (Figure 1). This region has been the subject of a 20+ year study of population dynamics and genetic structure in more than 800 populations [5,20–25]. An annual census of an approximately 25×25-km area adjacent to Mountain Lake Biological Station has been conducted since 1988, recording the location and sex of *S. latifolia* individuals along ~150 km of predominantly roadside habitat. The structure of the data and how it was collected is reported in Antonovics et al. [20]. Briefly, the roadside habitat is divided up into ~40 m grid units which we classify as populations. Previous studies have indicated that the utilized grid system may encompass one or two genetic neighborhoods on average [26,27], levels of extinction and colonization scale consistently with grid segment size [20,28], and that dispersal distances are such that populations separated by 20 meters were almost panmictic, while populations separated by 80 meters were nearly isolated [24]. Dispersal of pollen is insect mediated, primarily noctuid moths, and seed dispersal is passive and happens at a much smaller scale [22]. Much longer distance dispersal is likely mediated by human activity [29], with road grading and mowing as possible mechanisms [24]. Which units are occupied and the number of plants in each occupied population are recorded annually. Important phase transitions, such as extinction and colonization events, are confirmed with a second census during the same season. Time since colonization (or population age) is based on the year plants were first observed in a given grid unit. We identified extinction as the disappearance of plants from a grid unit for a single year. A previous study has indicated that seeds can remain viable in the soil for approximately four years, raising the possibility of a seed bank [30]. For our purposes, we treat the recolonization of a population by propagules in the seed bank as roughly equivalent as recolonization by propagules from a nearby site. The census data provide the demographic data, spatial relationships among populations, and extinction/recolonization dynamics used in this study (Table 1).

**Spatiotemporal Data**

We estimated characteristics of populations that are thought to significantly influence the magnitude of genetic differentiation among demes in a metapopulation, including population size, population connectivity (a characteristic that will influence gene flow between populations), and population age (a factor that estimates the when founder effects occurred and opportunities for subsequent migration).

---

**Figure 1. Map of the focal populations of the *S. latifolia* metapopulation located in Giles and Craig County, VA, USA sampled in the presented analysis.** Circles represent individual populations, where the size of the circle indicates the total number of plants located within our grid. Black lines represent both the assumed grid of population arrangement and small country roads. Due to the topology of the focal area (mountain, valley systems), it was assumed that pollinators move along the linear grid, rather than crossing over ridges. doi:10.1371/journal.pone.0104575.g001

Given our incomplete knowledge of the contribution and lifespan of an individual population’s seed bank, we estimated harmonic mean population size (hereafter population size) based upon the number of plants (both flowering and vegetative) occupying a given grid unit throughout the time of the annual census as:

\[
\frac{1}{N_c} = \frac{1}{t} \left( \frac{1}{N_0} + \frac{1}{N_1} + \ldots + \frac{1}{N_{t-1}} \right)
\]

Population size estimates derive from the occupancy of a given site throughout the full census period. Detailed surveys on a subset of the metapopulation have been conducted to estimate the extent that our non-invasive census protocol sacrifices precision and accuracy. In the survey, we carefully searched the vegetation and when plants were found, the shoots were carefully traced down to the ground to distinguish individuals that were rooted close together. Non-flowering plants were also counted. Population sizes in the detailed survey were highly correlated with population size from the metapopulation census as assessed with a Pearson Product Moment Correlation (0.74, \( P<0.001 \)). Population size in the metapopulation census (\( \bar{N} = 14.32 \)) is lower than in the detailed survey (\( \bar{N} = 36.91 \)) because clustered plants many be counted as single individuals in the annual census. The census, therefore, accurately measures relative population sizes, but likely underestimates absolute size.
Table 1. S. latifolia populations used in the genetic analysis.

| Population ID | Sample Size | Mean | Mode | 95% HPDI        | Age | Population Size |
|---------------|-------------|------|------|-----------------|-----|-----------------|
| Population 1  | 24          | 0.183| 0.174| [0.128, 0.248]  | 3   | 1.246           |
| Population 2  | 12          | 0.188| 0.186| [0.111, 0.282]  | 3   | 1.246           |
| Population 3  | 7           | 0.198| 0.196| [0.147, 0.251]  | 3   | 1.246           |
| Population 4  | 5           | 0.177| 0.175| [0.134, 0.228]  | 3   | 1.246           |
| Population 5  | 19          | 0.064| 0.063| [0.0298, 0.1]   | 21  | 2.153           |
| Population 6  | 50          | 0.056| 0.051| [0.0227, 0.086] | 18  | 2.391           |
| Population 7  | 22          | 0.068| 0.065| [0.0348, 0.074] | 21  | 2.153           |
| Population 8  | 24          | 0.085| 0.082| [0.0425, 0.1]   | 4   | 2.488           |
| Population 9  | 3           | 0.147| 0.145| [0.0919, 0.200] | 12  | 2.794           |
| Population 10 | 21          | 0.044| 0.043| [0.0199, 0.071] | 12  | 2.794           |
| Population 11 | 18          | 0.038| 0.038| [0.0199, 0.071] | 12  | 2.794           |
| Population 12 | 11          | 0.039| 0.039| [0.0199, 0.071] | 12  | 2.794           |
| Population 13 | 8           | 0.038| 0.038| [0.0199, 0.071] | 12  | 2.794           |
| Population 14 | 8           | 0.038| 0.038| [0.0199, 0.071] | 12  | 2.794           |
| Population 15 | 10          | 0.156| 0.156| [0.1137, 0.245] | 12  | 2.153           |
| Population 16 | 8           | 0.088| 0.088| [0.0371, 0.165] | 12  | 2.153           |
| Population 17 | 8           | 0.099| 0.099| [0.0371, 0.165] | 12  | 2.153           |
| Population 18 | 19          | 0.129| 0.129| [0.0784, 0.205] | 12  | 2.153           |
| Population 19 | 19          | 0.129| 0.129| [0.0784, 0.205] | 12  | 2.153           |
| Population 20 | 10          | 0.143| 0.143| [0.107, 0.203]  | 12  | 2.153           |
| Population 21 | 16          | 0.133| 0.133| [0.0962, 0.224] | 12  | 2.153           |
| Population 22 | 16          | 0.133| 0.133| [0.0962, 0.224] | 12  | 2.153           |
| Population 23 | 21          | 0.156| 0.156| [0.1119, 0.234] | 12  | 2.153           |
| Population 24 | 21          | 0.156| 0.156| [0.1119, 0.234] | 12  | 2.153           |
| Population 25 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |
| Population 26 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |
| Population 27 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |
| Population 28 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |
| Population 29 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |
| Population 30 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |
| Population 31 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |
| Population 32 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |
| Population 33 | 8           | 0.218| 0.218| [0.168, 0.325]  | 12  | 2.153           |

Population ID = census ID of individual populations, Mean, Mode, and 95% HPDI of the RJ-MCMC derived posterior model estimates, Age = number of continuously occupied years of individual populations, Population Size = harmonic mean population size of each sampled population, C = composite character composed of the sum distance between a focal population to all other extant populations, and a focal population’s size. doi:10.1371/journal.pone.0104575.t001
To estimate population age, we assumed sites unoccupied for a single year went extinct, and that plants occupying that site in the future were classified as colonizations. This reflects the conservative assumption that recolonization from neighboring sites and recolonization from the seed bank involve similar bottlenecks of genetic diversity; if this assumption were violated, and new recolonization from a seed bank did not involve the same degree of bottleneck, this would tend to obscure any differences we observed between younger and older populations. Following extinction and re-colonization, age is calculated as the number of years a site has been occupied up to the time of collection. Given this operational definition of population age, individual sites could vary in age from one to 21 years (the extent of the demographic census started in 1988). Populations in the age class of 21 years might reasonably be considered as a heterogeneous grouping of extant populations given that some populations may actually be older than the extent of the current long-term census.

There are a number of methods described in the literature that have been used to estimate population connectivity. The majority of ecological studies have used a nearest neighbor/patch approach, or distance to multiple neighbors within a limited neighborhood of a focal patch (or buffer) [31]. However, these methods have been shown to be poor predictors of ecologically important metapopulation dynamics such as colonization potential. To measure population connectivity, we generated two composite variables, each of which includes a negative exponential dispersal kernel and accounts for distance to all other potential extant populations for gene flow [32]. Each variable has the following structure:

\[
C_j = \sum_{j \neq i} p_j \exp(-zd_j),
\]

where \(p_j\) is in \(C_{Age}\), the proportion of the censuses for which a given site was occupied (1/21 - 1) or in \(C_T\), the population size over the life span of the population, of some population \(j\); \(z\) is a parameter scaling the effect of distance on dispersal, and \(d_{ij}\) is the road network based distance between a target population \(i\) and source population \(j\) [31,32]. Pair-wise distances were calculated using a network constructed based upon the public roadway system, using ArcGIS (ESRI) Network Analyst tool. Given the mountain-valley geographic topology of the area, and is consistent with the expectation of some populations may actually be older than the extent of the current long-term census.

Statistical Methods

Overall, the data involved 730 plants each with a multi-locus genotype derived from eight microsatellite markers. The plants were associated with one of 33 populations that had size, age and connectivity data collected from the long-term demographic dataset.

We used the program GenoDive [39] to estimate global summary statistics of population structure for our molecular markers, including observed (\(H_o\)) and expected (\(H_e\)) heterozygosity, \(F_{ST}\), and Jost’s \(D\) [40]. We used the the analytical software R [41] and the package hierfstat v. 0.4-10 [42] to calculate rarefied allelic richness. We used the hierarchical Bayesian method of Foll and Gaggiotti [18], implemented in the program GESTE v. 2, to evaluate the effect of spatial and temporal characteristics of populations on the magnitude of genetic differentiation among populations. The method implemented in GESTE estimates \(F_{ST}\) values for each sampled population using the approach first proposed by [14] and relates them to environmental factors using a generalized linear model framework [43]. Specifically, \(\log(1 - F_{ST})\) is related to models of the form \(\alpha_0 + \sum_{j=1}^F \alpha_j G_j\), where \(\alpha_0\) is a constant, \(\alpha_j\) is a regression coefficient of the effect of factor \(G_j\) from some pop \(j\) affecting the response variable, in this case individual population \(F_{ST}\) values. We considered four factors, thus generating 16 alternative regression models The simplest null model included only a constant term, whereas the most complex model included a constant and all four factors. Because the two connectivity variables, \(C_{Age}\) and \(C_T\), were found to be significantly correlated with a Pearson product-moment correlation coefficient of 0.6141 (95% confidence interval (CI) 0.3432–0.797; \(P = 0.0001\)), we additionally ran GESTE excluding one of the other connectivity measure. GESTE does not allow for testing a full model that would include all four pairwise interactions. The method provides posterior probabilities for the alternative models using a RJ-MCMC approach [18].

Under this framework, the model with the highest posterior probability is the one that best explains the data [18,43]. We followed the method of Gaggiotti et al. [43], using 10 pilot runs of 1000 iterations to obtain parameters of the proposal distributions used by the MCMC, followed by an additional burn-in of 5×10^6 iterations and a thinning interval of 50, with a final iteration sample size of 60,000 on which the model fit probability was based. Convergence was assessed visually using the Plot GESTE.exe function included in the GESTE v.2 distribution. Using this method, we identified the model that best explained the observed genetic structuring. The magnitude and direction of a spatiotemporal character on genetic structuring was inferred from estimates of the regression coefficients from the model with the highest posterior probability.
affecting the distribution of expectations concerning the role of spatial-temporal dynamics. The four parameters affected genetic differentiation was inferred from the estimates of the regression coefficients for the most probable model. Our lowest $F_{ST}$ corresponded to the only marker composed of a dinucleotide repeat. 1\[34\], 2\[35\], 3\[36\].

### Results

Global summary statistics (Table 2) revealed a high degree of population structure, with an overall $F_{ST} = 0.103$, and a range among markers of 0.055 to 0.231. This was similar to previous estimates in this metapopulation using allozymes [0.134, 21]. The observed levels of population genetic structure are also consistent with other published datasets on plant metapopulations using microsatellite markers, including other Silene species. Previous research has shown that the sub-structuring of alleles is not the consequence of PCR artifacts such as null alleles [34–36]. We estimated a significantly negative Pearson product-moment correlation coefficient between the genetic diversity of individual populations and that population's contribution to $F_{ST}$ (Table 2). The 14 other factors contribution to variation in $F_{ST}$ across individual models, i.e. all models including a given factor, showed that population age was the most important determinant of population genetic structure, followed by population size, and that each of these were influenced by the degree of connectivity. GESTE analyses run excluding population size, $C_{N}$, resulted in the $C_{Age}$ factor remaining the dominant factor increasing $F_{ST}$ (Table S2.a). The reverse analysis, which excluded $C_{Age}$ and included $C_{N}$, resulted in a model with a low posterior probability (Table S2.b).

Posterior estimates of the regression parameters of the model that only included Constant + $C_{Age}$ were significantly negative ($\pi = -0.439$, mode = $-0.447$, 95% HPDI $[-0.680, -0.200]$), indicating that the initial increase in $F_{ST}$ resulting from founder effects is reduced over time, presumably by subsequent migration (Table 5; Fig. S3). Posterior estimates of the regression parameters of the next best model indicated a consistent effect of population age, $C_{Age}$ ($\pi = -0.575$, mode = $-0.600$, 95% HPDI $[-0.857, -0.200]$).

### Table 2. Global estimates of genetic diversity and variation in allele frequencies.

| Locus | $N$ | $H_S$ | $H_E$ | $D$ | $F_{ST}$ |
|-------|-----|-------|-------|-----|---------|
| slat_18\[5\] | 10 | 0.338 | 0.592 | 0.158 | 0.09 |
| slat_32\[5\] | 9 | 0.303 | 0.673 | 0.337 | 0.135 |
| slat_33\[5\] | 3 | 0.07 | 0.13 | 0.051 | 0.231 |
| slat_48\[5\] | 2 | 0.078 | 0.202 | 0.047 | 0.143 |
| slat_72\[5\] | 12 | 0.325 | 0.593 | 0.103 | 0.055 |
| slat_85\[5\] | 16 | 0.324 | 0.538 | 0.178 | 0.125 |
| SL_g\[5\] | 43 | 0.693 | 0.819 | 0.245 | 0.051 |
| SV_H1\[5\] | 11 | 0.305 | 0.573 | 0.19 | 0.122 |
| Overall | 13.25 | 0.304 | 0.515 | 0.131 | 0.103 |

Variables are the number of alleles ($N$), observed heterozygosity ($H_S$), Expected heterozygosity ($H_E$), Jost’s $D$ ($D$) and global variation in allele frequencies ($F_{ST}$). Overall, populations showed a high degree of substructure, as has been observed in other Silene metapopulations. Population structure was high for each marker. Our lowest $F_{ST}$ corresponded to the only marker composed of a dinucleotide repeat. 1\[34\], 2\[35\], 3\[36\].

### Table 3. Sum of posterior probabilities of models that include a given factor.

| Factor | Sum of the posterior probabilities |
|--------|-----------------------------------|
| Population Age | 0.0935 |
| $\tau$ | 0.0541 |
| $C_{Age}$ | 0.994 |
| $C_{\tau}$ | 0.124 |

Bold value indicates factor with highest score.

doi:10.1371/journal.pone.0104575.0002
and a positive effect of populations size, $C_\gamma$ ($R = 0.207$, mode = 0.201, 95% HPDI $[-0.079; 0.472]$) indicating that younger and smaller populations contributed proportionately greater to the overall magnitude of genetic differentiation, and that proportional effects were modulated through population connectivity. Regression parameters for models excluding one or the other connectivity factor were of similar direction and magnitude (Table S3a, S3b).

**Discussion**

In the present study, we simultaneously identified several important spatiotemporal parameters that contributed to population genetic differentiation. While previous research on other plant metapopulations has shown that founder effects contribute to population differentiation [5-7,21,22,44-46], none of these previous studies have been capable of quantifying the relative magnitudes of these effects.

In the *Silene latifolia* metapopulation, population size, degree of connectivity and population age were each important determinants of population structure, but composite characters (so-called connectivity scores; [31]) were most important. This implicates the extinction and recolonization of demes, followed by subsequent opportunities for gene flow as a population ages, as the most important driving force in the genetic differentiation among populations in this system. This point is particularly clear when observing Population 1 which is part of the oldest age class but also observing Population 1 which is part of the oldest age class but also maintains one of the higher $F_{ST}$ values due to isolation (Figure 2; upper right quadrant). The genetic consequences of founder effects and within-population genetic drift, as modulated by long-term population size, were influenced by the degree of population connectivity and hence the opportunities for gene flow.

The *S. latifolia* metapopulation is neither a true Island Model, nor an idealized metapopulation [47]; populations are characterized by frequent colonizations and extinctions, on the order of 5-20% per year [20,27,48,49], but populations vary in size, dispersal is limited, and within population dynamics are important relative to the time scale of the study. Colonizations are likely to be source-size and distance dependent, as is typical in other metapopulation systems [50-52], though this point has not been explicitly tested. Our findings support the general notion that founder effects during colonization can enhance genetic differentiation among populations [5], but we additionally show that the magnitude of these effects are large (Figure 2) relative to the structuring mechanism assumed in most models, i.e. genetic drift among extant demes as described by Wright’s Island Model [1].

It is a nearly universal observation that a given species range will be composed of populations that are patchily distributed in space. There are clear similarities in the extinction/colonization and incidence parameters in *Silene* versus other model systems; e.g. the Glanville fritillary (*Melitaea cinxia*) metapopulation in Finland [53]. Spatial patterns of colonization and extinction responded similarly to scaling in regional studies of sunflowers in the mid-west (*Helianthus annuus*; [27]);(*Helianthus annuus*; [28]). Metapopulation dynamics have also been documented in the fresh water crustacean *Daphnia longispina* and *D. magna* (Cladocera), where the founding of new populations by single or few individuals was followed by predominantly clonal reproduction. This lead to an initially large increase in $F_{ST}$ in newly founded populations followed by the gradual dissolution of variation in allele frequencies through limited gene flow [9]. While the direct quantitative values will obviously vary from system to system, one might expect that non-equilibrium dynamics that result from the extinction and recolonization of local demes would be most important in systems like these, where there is a high turnover of demes. On the other hand, drift can be expected to be a less powerful structuring mechanism when demes are larger and more permanent. For example, Cosentino [32] show that connectivity and wetland area were the most important factors driving

---

**Table 4.** Posterior probabilities of all 16 models.

| Model | Pr | Factors included |
|-------|----|------------------|
| 5     | 0.75 | $C_{\gamma}$ |
| 13    | 0.10 | $C_{\gamma}$, $C_\tau$ |
| 6     | 0.08 | $C_{\gamma}$, Population Age |
| 7     | 0.04 | $C_{\gamma}$ |
| 15    | 0.01 | $C_{\gamma}$, $C_\tau$ |
| 14    | 0.01 | $C_{\gamma}$, Population Age |
| 1     | 0.00 | Null(OnlyConstant) |
| 8     | 0.00 | $C_{\gamma}$, Population Age |
| 16    | 0.00 | $C_{\gamma}$, $C_\tau$, Population Age |
| 2     | 0.00 | Population Age |
| 9     | 0.00 | $C_\gamma$ |
| 3     | 0.00 | $\gamma$ |
| 10    | 0.00 | $C_\gamma$, Population Age |
| 4     | 0.00 | Population Age |
| 11    | 0.00 | $C_\gamma$, $\gamma$ |
| 12    | 0.00 | $C_\gamma$, Population Age |

Our most probable model (bolded) included the composite variable of population age and population connectivity. The second most probable model includes composite variables of population age and connectivity, and population size and connectivity. doi:10.1371/journal.pone.0104575.t004
variation in allele frequencies amongst populations of the tiger salamander *Ambystoma tigrinum*.

The observed global $F_{ST}$ in the present study was lower than has been previously reported. Specifically, McCauley [21,44] reported mean estimates $F_{ST} = 0.134$ in seven allozyme markers.

Previous research has suggested that the $F_{ST}$ of microsatellite markers will be smaller than for allozymes due to the higher heterozygosity of microsatellite markers and the inverse relationship of $F_{ST}$ and marker heterozygosity [54]. In addition, the estimated $F_{ST}$ in the present study is likely an underestimate due to our sampling scheme, which include almost all individuals rather than a small sample. Specifically, Whitlock [8] describes the sampling scheme used on a metapopulation of the forked fungus beetle (*Bolitotherus cornutus*) as encompassing almost the entirety of the population. In such cases Whitlock [8] suggests the use of a hypergeometric sampling correction to account for the sampling error normally assumed by a binomial sampling error. Recently Wood et al. [55] describe a more recent analysis of the same focal *Bolitotherus cornutus* metapopulation, though not exactly the same section as Whitlock [8]. Wood et al. [55] report much lower values of $F_{ST}$ values for microsatellite markers, which might be similarly affected by the issues described by Edelaar et al. [54] wherein markers showing larger numbers of alleles, e.g. microsatellites, will show a general trend towards smaller values of $F_{ST}$ compared to markers that have fewer alleles (allozymes), but also because a multinomial-hypergeometric correction was not included for the estimation of $F_{ST}$.

Theoretical explorations of metapopulation dynamics have shown that spatiotemporal characters should have direct effects on each other, and we found empirical evidence for this. For example, we found a significant positive pairwise correlation (Pearson Product Moment Correlation $= 0.478$, $P<0.01$) between population size and population age; older populations also tended to be larger. Thus, while we show that both of these effects are potentially important in generating genetic divergence, our ability to fully disentangle the effects of age and population size is limited. Neither population size nor age was significantly correlated with population connectivity ($P>0.05$).

While the present approach provides insights into the biology of the *Silene* metapopulation, additional insights would be gained from sampling populations over time. Lamy et al. [56], longitudinally sampled populations of the freshwater snail, *Drepanotrema depressissimum*, to show that demographic survey-derived assessments of extinction were incorrect; rather than a true metapopulation, they detected persistent demes with genetic diversity driven by different population sizes and rates of immigration. Similarly, Robinson et al. [57] applied a novel use of approximate Bayesian computation (ABC; [58]) to genetic data from a *Daphnia magna* metapopulation described by Haag et al. [9]. They concluded that some populations act as persistent sources, similar to a continent-island model.

Discernment of presence/absence of extant populations within a census is highly efficient in *S. latifolia* (see above). However, previous research has also suggested the presence of a seed bank [30], though allele frequencies observed in the seed bank are

### Table 5. Posterior estimates of regression parameters for the model with the highest posterior probability.

| Regression coefficient | Factor    | Mean    | Mode    | 95% HPDI          |
|------------------------|-----------|---------|---------|-------------------|
| $\alpha$               | Constant  | -2.26   | -2.25   | [-2.50; -2.00]    |
| $\gamma$               | $C_{Age}$ | -0.435  | -0.445  | [-0.687; -0.193]  |
| $\rho^2$               |           | 0.369   | 0.316   | [0.168; 0.617]    |

Parameter estimates are consistent with theoretical expectations (e.g. older and larger populations contribute proportionately less to the global $F_{ST}$).

doi:10.1371/journal.pone.0104575.t005

**Figure 2. The effect of population age, connectivity, and population size on $F_{ST}$.** Individual population $F_{ST}$ is represented by the size of the circle, where larger circles represent larger $F_{ST}$ (A) Simultaneous effect of population connectivity and population age effects on $F_{ST}$, and (B) of population connectivity and population size on $F_{ST}$.

doi:10.1371/journal.pone.0104575.g002
highly consistent with above ground cohorts [30]. We believe our a\textit{d hoc} measure of population extinction is consistent with the theoretical expectations of the effect of founder effects on the distribution of variation in allele frequencies [6]. Temporally spaced samples as in Lamy et al. [56] could more conclusively confirm this particular hypothesis, as well analyses such as the one presented by Robinson et al. [57]. Further investigations such as those carried out by Lamy et al. [59] and Fréville et al. [60], where the expectation of a seed bank/resting form is assumed as part of larger model of demographic dynamics, will allow for a better understanding misidentification of extinctions would effect our inference of metapopulation dynamics.

Thus far, we have focused on evolutionary processes that are driven by non-selective, drift related processes. However, previous studies have indicated the potential for metapopulation structure driven by non-selective, drift related processes. However, previous studies have indicated the potential for metapopulation structure in generating variation in allele frequencies among populations.

The present study demonstrates that the appropriate combination of long term ecological data and population genetic analyses may be a powerful tool for studying the mechanisms that generate population structure. Spatiotemporal characters of populations have long been hypothesized to have significant effects in generating population genetic differentiation, and its selective consequences. This fact seems to be particularly true in the \textit{S. latifolia} metapopulation, where population connectivity, age and population size all combine to drive population genetic differentiation.

**Supporting Information**

**Figure S1** Posterior 95% HPDI estimates of individual population’s \textit{F}-model based estimate of \textit{F}_{ST}.

**Figure S2** Posterior model probabilities for GESTE run including all four factors.

**Figure S3** Plots of the GESTE estimated ln(\textit{F}_{ST}/1-\textit{F}_{ST}) against (A) population age, (B) Population Size, (C) \textit{C}_{Age}, and (D) \textit{C}_{N}. Each cross represents a single population.

**Table S1** Population genetic summaries of rarified allelic richness (\textit{Ar}) and genetic diversity (\textit{H}_{S}).

**Table S2** Posterior probabilities models excluding one or the other connectivity score. Our most probable model (bolded) a) included the composite variable \textit{C}_{Age} when the composite variable of \textit{C}_{N} was excluded, while b) the exclusion of the \textit{C}_{Age} resulted in the null model having the highest posterior probability.

**Table S3** Posterior estimates of regression parameters for the model with the highest posterior probability when either (a) \textit{C}_{N} or (b) \textit{C}_{Age}Variable is excluded from the model comparisons.

**Acknowledgments**

Comments from members of the Taylor lab, as well as two anonymous reviewers, improved the manuscript substantially. We would also like to thank the Mountain Lake Biological Station for logistical support. Genotype and demographic data are archived at Dryad (doi:10.5061/dryad.5n2s7).

**Author Contributions**

Conceived and designed the experiments: PDF DRT. Performed the experiments: PDF. Analyzed the data: PDF. Contributed reagents/materials/analysis tools: PDF DRT. Wrote the paper: PDF DRT.

**References**

1. Wright S (1931) Evolution in mendelian populations. Genetics 16: 97–159.
2. Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42: 995–1005.
3. Whitham MC, McCauley DE, Dittley G (1996) Some population genetic consequences of colony formation and extinction: genetic correlations within founding groups. Evolution 44: 1717–1724.
4. Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theoretical Population Biology 12: 253–262.
5. McCauley DE, Ravell J, Antonovics J (1995) Local founding events as determinants of genetic structure in a plant metapopulation. Heredity 75: 630–636.
6. Giles BE, Goudet J (1997) Genetic differentiation in \textit{Silene dioica} metapopulations: estimation of spatiotemporal effects in a successional plant species. American Naturalist 149: 507–526.
7. Ingvarsson PK, Giles BE (1999) Kin-structured colonization and small-scale genetic differentiation in \textit{Silene dioica}. Evolution 53: 605–611.
8. Whitlock MC (1992) Nonequilibrium population-structure in forked fungus beetles - extinction, colonization, and the genetic variance among populations. American Naturalist 139: 952–970.
9. Haag CR, Rick M, Hottinger JW, Pajunen VI, Ebert D (2005) Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age. Genetics 170: 1809–1820.
10. Gaggiotti OE, Brooks SP, Amos W, Harwood J (2004) Combining demographic, environmental and genetic data to test hypotheses about colonization events in metapopulations. Molecular Ecology 13: 811–825.
11. Pannell JR, Fields PD (2014) Evolution in subdivided plant populations: concepts, recent advances and future directions. New Phytologist 201: 417–432.
12. Gaggiotti OE, Foll M (2010) Quantifying population structure using the \textit{F}-model. Molecular Ecology Resources 10: 821–830.
13. Falush D, Stephens M, Pritchard J (2003) Inference of population structure using \textit{admixture} models: estimation of spatiotemporal effects in a successional plant species. Wrote the paper: PDF DRT.
14. Balding DJ, Nichols RA (1995) A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. Genetics 96: 3–12
15. Karhunen M, Ovaskainen O (2012) Estimating population-level coancestry coefficients by admixture F model. Genetics 192: 609–617
16. Nicholson G, Smith A, Jonsou F, Guatstofon O, Stefansson K, et al. (2002) Assessing Population Differentiation and Isolation from Single-Nucleotide Polymorphism Data. Journal of the Royal Statistical Society Series B (Statistical Methodology). pp. 695–715.
17. Bhata G, Patterson NJ, Sankaranam S, Price AL. (2013) Estimating and interpreting F: the impact of rare variants. Genome Research.
18. Fol M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174: 875-891
19. Bernasconi G, Antonovics J, Bierer A, Charlesworth D, Delph LF, et al. (2009) Silene as a model system in ecology and evolution. Heredity 103: 5–14
20. Antonovics J, Thrall P, Jarosz A, Straton D (1994) Ecological genetics of metapopulations: the Silene-Ustilago plant-pathogen system. In: Real L, editor. Ecological genetics: Princeton University Press, NJ. pp. 146–170.
21. McCalla DE (1994) Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba: implications for studies of gene flow in plants. Proceedings of the National Academy of Sciences of the United States of America 91: 8127–8131.
22. McCalla DE (1997) The relative contributions of seed and pollen movement to the local genetic structure of Silene alba. Journal of Heredity 88: 257–263.
23. Richards CM, Emery SN, McCalla DE (2003) Genetic and demographic dynamics of small populations of Silene latifolia. Heredity 90: 181–196.
24. Richards CM, Church S, McCalla D (1999) The Influence of Population Size and Isolation on Gene Flow by Pollen in Silene alba. Evolution 53: 63–73.
25. Richards CM (2000) Inbreeding depression and genetic rescue in a plant metapopulation. American Naturalist 155: 383–394.
26. Alexander HM (1990) Epidemiology of anthracnose infection of Silene alba caused by Ustilago violeata: patterns of spore deposition and disease incidence. Journal of Ecology 78: 166–179.
27. Antonovics J (2004) Long term study of a plant-pathogen metapopulation. In: Real L, editor. Spatially realistic models of metapopulation dynamics and their conceptual domain and application to conservation. In: Hanski I, editors. Metapopulation Biology: Ecology, Genetics and Evolution: San Diego Academic Press. pp. 5–26.
28. Hanski I, Gaggiotti O (2004) Metapopulation biology: past, present and future. In: Hanski I, Gaggiotti O, editors. Metapopulation Ecology, Genetics and Evolution: San Diego Academic Press. pp. 471–488.
29. Moody-Weis J, Antonovics J, Alexander H, Pilson D (2008) Predicting local colonization and extinction dynamics from coarsescale aggregations. Ecology 91: 67–75.
30. Barluenga M, Austerlitz F, Elzinga JA, Teixeira S, Goudet J, et al. (2011) Fine-resolution population genetics: Academic Press. pp. 471–488.
31. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial Polymorphism Data. Journal of the Royal Statistical Society Series B (Statistical Methodology). pp. 695–715.
32. Cosentino BJ, Phillips CA, Schooley RL, Lowe WH, Douglas MR (2012) Binning into genetics and genomics workflows. Bioinformatics 30: 1988–1992.
33. Meinmann PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4: 792–796.
34. Abdoullaye D, Acevedo I, Adebayo AA, Behrmann-Godel J, Benjamin RC, et al. (2008) Heterosis increases the effective migration rate. Proceedings of the Royal Society of London Series B-Biological Sciences 275: S1249–S1258.
35. Whitlock MC (2002) Selection, load and inbreeding depression in a large heterozygous population. Genetics 160: 1191–1202.
36. Beaumont MA (2010) Approximate Bayesian Computation in Evolution and Ecology. Annual Review of Ecology, Evolution, and Systematics 41: 379–406.
37. Lamy T, Pointier JP, Jarne P, David P (2012) Testing metapopulation dynamics of multiple hosts. Ecology and Evolution 3: 1484–1494.
38. Lamy T, Pointier JP, Jarne P, David P (2012) Testing metapopulation dynamics using genetic, demographic and ecological data. Molecular Ecology 21: 1394–1410.
39. Robinson JD, Hall DW, Wares JP (2013) Approximate Bayesian estimation of extinction rate in the Finnish Daphnia magna metapopulation. Molecular Ecology 22: 2627–2639.
40. Whitlock MC (2002) Selection, load and inbreeding depression in a large metapopulation. Genetics 160: 1191–1202.
41. R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
42. Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes 5: 184–186.
43. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4: 792–796.
44. McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends in Ecology & Evolution 10: 198–202.
45. McCauley DE, Stevens J, Peroni P, Ravel J (1996) The spatial distribution of chloroplast DNA and allozyme polymorphisms within a population of Silene alba (Caryophyllaceae). American Journal of Botany 83: 727–731.
46. Giles B, Landquist E, Goudet J (1998) Restricted gene flow and subpopulation differentiation in Silene dioica. Heredity 80: 715–723.
47. Levin R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15: 237–240.
48. Antonovics J, Thrall P, Jarosz A (1990) Genetics and the spatial ecology of species interactions: the Silene-Ustilago system. In: Tilman D, Kareiva P, editors. Spatial ecology: the role of space in population dynamics and interspecific interactions: Princeton University Press. pp. 150–180.
49. Thrall PH, Antonovics J (1995) Theoretical and Empirical Studies of Metapopulations - Population and Genetic Dynamics of the Silene-Ustilago System. Canadian Journal of Botany-Revue Canadienne De Botanique 73: S1249–S1258.
50. Hanski I, Sutherland D (1997) The metapopulation approach, its history, conceptual domain and application to conservation. In: Hanski I, Gilpin M, editors. Metapopulation Biology: Ecology, Genetics and Evolution: San Diego Academic Press. pp. 5–26.
51. Hanski I, Gaggiotti O (2004) Metapopulation biology: past, present and future. In: Hanski I, Gaggiotti O, editors. Metapopulation Ecology, Genetics and Evolution: San Diego Academic Press. pp. 3–22.
52. Alexander HM, Foster BL, Ballantyne F, Collins CD, Antonovics J, et al. (2012) Metapopulations and metacommunities: combining spatial and temporal perspectives in plant ecology. Journal of Ecology 100: 88–103.
53. Hanski I (2001) Spatially realistic models of metapopulation dynamics and their implications for ecological, genetic and evolutionary processes. In: Silvertown J, Antonovics J, editors. Integrating ecology and evolution in a spatial context: Blackwell Science, Oxford. pp. 139–156.
54. Edelaar P, Burrago P, Gomez-Mestre I (2011) Comparisons between QST and FST–how wrong have we been? Molecular Ecology 20: 4830–4839.
55. Wood CW, Donald HM, Formica VA, Brodie ED (2013) Surprisingly little population genetic structure in a fungus-associated beetle despite its exploitation of multiple hosts. Ecology and Evolution 3: 1484–1494.
56. Lamy T, Pointier JP, Jarne P, David P (2012) Testing metapopulation dynamics using genetic, demographic and ecological data. Molecular Ecology 21: 1394–1410.
57. Robinson JD, Hall DW, Wares JP (2013) Approximate Bayesian estimation of extinction rate in the Finnish Daphnia magna metapopulation. Molecular Ecology 22: 2627–2639.
58. Beaumont MA (2010) Approximate Bayesian Computation in Evolution and Ecology. Annual Review of Ecology, Evolution, and Systematics 41: 379–406.
59. Lamy T, Gimenez O, Pointier J-P, Jarne P, David P (2013) Metapopulation Dynamics of Species with Cyclical Life Stages. The American Naturalist 181: 475–491.
60. Fréville H, Choquet R, Pradel R, Cheptou P-O (2011) Inferring seed bank from hidden Markov models: new insights into metapopulation dynamics in plants. Journal of Ecology 101: 1572–1580.
61. Whitlock MC (2002) Selection, load and inbreeding depression in a large metapopulation. Genetics 160: 1191–1202.
62. Narum SR, Hess JE (2011) Comparison of FST outlier tests for SNP loci under selection. Molecular Ecology Resources 11: 184–194.
63. Ingvarsson PK, Whitlock MC (2000) Heterosis increases the effective migration rate. Proceedings of the Royal Society of London Series B-Biological Sciences 267: 1321–1326.
64. Whitlock MC, Ingvarsson PK, Hatfield T (2000) Local drift load and the heterosis of interconnected populations. Evolution 54: 452–457.