On the structure of S_2-ifications of complete local rings

Sean Sather-Wagstaff1 Sandra Spiroff2

1North Dakota State University
2University of Mississippi

12 April 2014
Special Session on Interactions between Commutative Algebra and Algebraic Geometry
AMS Central Section Meeting
Texas Tech University
arXiv:1401.6146
Assumption

\((R, m, k)\) is a commutative noetherian local ring that is complete, equidimensional, and unmixed with canonical module \(\omega\) and total ring of fractions \(Q(R)\).

Definition (Hochster and Huneke, ’94)

An \(R\)-subalgebra \(T \subseteq Q(R)\) is an \(S_2\)-ification of \(R\) if:

1. \(T\) is module finite and \((S_2)\) over \(R\); and
2. the inclusion \(R \rightarrow T\) is an isomorphism in codimension 2.

Fact (HH)

(a) \(R\) has a unique \(S_2\)-ification \(T\).
(b) If \(R\) is \((R_1)\), then \(T\) is the integral closure of \(R\) in \(Q(R)\).
(c) In general, one has \(T \cong \text{Hom}_R(\omega, \omega)\).
Local S_2-ifications

Definition (HH)

$Γ_R$ is the graph with vertex set $\text{Min}(R)$ such that distinct vertices p and q are adjacent in $Γ_R$ if and only if $\text{ht}_R(p + q) = 1$.

Fact (HH)

The following conditions are equivalent:

(i) T is local;
(ii) $ω$ is indecomposable;
(iii) $H^{\dim(R)}_m(R)$ is indecomposable;
(iv) For every ideal J of height at least two, $\text{Spec}(R) - V(J)$ is connected; and
(v) $Γ_R$ is connected.

Question

Can one similarly obtain more information about m-$\text{Spec}(T)$?
Maximal Ideals of S_2-ifications

Theorem (SW-Spiroff)

The following quantities are equal:

(i) $|m\text{-}\text{Spec}(T)|$;

(ii) the number of summands in an indecomposable decomposition of ω;

(iii) the number of summands in an indecomposable decomposition of $H_{m}^{\dim(R)}(R)$;

(iv) the maximum number of components of $\text{Spec}(R) - V(J)$ where J ranges through the ideals of height at least 2; and

(v) the number of connected components of Γ_R.

Remark (Lyubeznik ‘06, Zhang ‘07)

If R is the completion of the strict henselization of an equicharacteristic local ring A, then the above quantity is also the top “Lyubeznik number” $\lambda_{d,d}(A)$.

Sean Sather-Wagstaff, Sandra Spiroff
On the structure of S_2-ifications of complete local rings
Examples of Γ_R

Definition

Γ_R is the graph with vertex set $\text{Min}(R)$ such that distinct vertices p and q are adjacent in Γ_R if and only if $\text{ht}_R(p + q) = 1$.

Example (complete graphs)

If R is a hypersurface or $\text{dim}(R) \leq 1$, then $\Gamma_R = K_{|\text{Min}(R)|}$.

Example (2-vertex graphs)

\[
k[[X_1, X_2]]/(X_1 X_2)
\]

\[
(X_1) \quad \quad \quad \quad \quad \quad \quad \quad \quad (X_2)
\]

\[
k[[X_1, X_2, X_3, X_4]]/(X_1 X_2, X_2 X_3, X_3 X_4, X_1 X_4)
\]

\[
(X_1, X_3) \quad \quad (X_2, X_4)
\]
More Examples of Γ_R

Example (paths)

Let $n \geq 1$ and $R = k[[X_1, \ldots, X_n]]/J$ where

$$J = (X_1, X_2) \cap (X_2, X_3) \cap \cdots \cap (X_{n-1}, X_n).$$

Then $\Gamma_R \cong P_n$.

$$(X_1, X_2) \quad (X_2, X_3) \quad \cdots \quad (X_{n-1}, X_n)$$

Example (cycles)

Let $n \geq 3$ and $R = k[[X_1, \ldots, X_n]]/J$ where

$$J = (X_1, X_2) \cap (X_2, X_3) \cap \cdots \cap (X_{n-1}, X_n) \cap (X_n, X_1).$$

Then $\Gamma_R \cong C_n$.
Question

How to decide whether a graph G is of the form Γ_R?

Definition (address labeling of G, intuitive version)

Each vertex of G is assigned a distinct “address” of s distinct numbers from $[n] = \{1, \ldots, n\}$, so that two vertices are adjacent if and only if their addresses differ by exactly one number.

Example (paths)

$$\{1, 2\} \rightarrow \{2, 3\} \rightarrow \cdots \rightarrow \{n - 1, n\}$$
Theorem (SW-Spiroff)

If \(G \) admits an address labeling, then there is a complete local equidimensional unmixed ring \(R \) such that \(\Gamma_R \cong G \). Moreover, the ring \(R \) is of the form \(k[[X_1, \ldots, X_n]]/I \) where \(I \) is a square-free monomial ideal.

Example (paths)

\[
\begin{align*}
\{1, 2\} & \quad \{2, 3\} \quad \cdots \quad \{n-1, n\} \\
(X_1, X_2) & \quad (X_2, X_3) \quad \cdots \quad (X_{n-1}, X_n)
\end{align*}
\]

\(R = k[[X_1, \ldots, X_n]]/J \) where

\[
J = (X_1, X_2) \cap (X_2, X_3) \cap \cdots \cap (X_{n-1}, X_n).
\]
Graph Labelings, cont.

Example

The following graphs do not have address labelings.

Thus, one cannot realize these graphs as Γ_R for any unmixed equidimensional monomial ideal. Note that the first graph is chordal and the second one is complete bipartite.

Question

Can these graphs be realized as Γ_R?
Notation

Let G be a graph with vertex set V. Fix positive integers n and s, and let $\binom{[n]}{s}$ denote the set of subsets of $[n]$ with cardinality s.

Definition

An address labeling of G is an injective function $\phi : V \rightarrow \binom{[n]}{s}$, for some choice of n and s such that for all $v, w \in V$, we have v adjacent to w in G if and only if $|\phi(v) \cap \phi(w)| = s - 1$, that is, if and only if $|\phi(v) \cup \phi(w)| = s + 1$.