EX VIVO TREATMENT WITH A POLYPHENOL-ENRICHED COCOA EXTRACT AMELIORATES MYOCARDIAL INFARCT AND POSTISCHEMIC MITOCHONDRIAL INJURY IN NORMOTENSIVE AND HYPERTENSIVE RATS.

Luisa F González Arbeláez, Alejandro Ciocci Pardo, Juliana C Fantinelli, Claudia I Caldiz, Jose Luis Rios, Guillermo R. Schinella, and Susana M Mosca

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.6b01669 • Publication Date (Web): 09 Jun 2016

Downloaded from http://pubs.acs.org on June 13, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
TOC graphic abstract

COCOA EXTRACT ISCHEMIA-REPERFUSION

Coronary artery constriction

INFARCT
EX VIVO TREATMENT WITH A POLYPHENOL-ENRICHED COCOA EXTRACT
AMELIORATES MYOCARDIAL INFARCT AND POSTISCHEMIC MITOCHONDRIAL INJURY IN NORMOTENSIVE AND HYPERTENSIVE RATS.

Luisa F González Arbeláez**, Alejandro Ciocci Pardo**, Juliana C Fantinelli*, Claudia Caldiz*, José Luis Ríos &, Guillermo R SchinellaΩ, Susana M Mosca*

*Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata, La Plata, Argentina.
& Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Spain
Ω Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CIC, Provincia de Buenos Aires, La Plata, Argentina.

* These authors contributed equally to the work

Corresponding author: Dr Susana M Mosca, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina. E-mail: smosca@med.unlp.edu.ar. Phone and Fax: 54-221-4834833

luisafgarbelaez@hotmail.com
aleciocci@gmail.com
julianafantinelli@hotmail.com
cacaldiz@med.unlp.edu.ar
Jose.L.Rios@uv.es
Guillermo.Schinella@uv.es

Conflict of Interest
The authors declare that they have no conflict of interest.
ABSTRACT

Our objective was to determine the effects of a polyphenol-enriched cocoa extract (PCE) on myocardial postischemic alterations in normotensive (Wistar rats, W) and spontaneously hypertensive rats (SHR). Isolated hearts were submitted to 110 min of perfusion or 20-min stabilization, 30-min global ischemia and 60-min reperfusion (R). Other hearts were treated with PCE at the onset of R. Infarct size, the reduced glutathione (GSH) and the expression of phospho-Akt, P-GSK-3β and P-eNOS were assessed. In isolated mitochondria the Ca$^{2+}$- mediated response of mitochondrial permeability transition pore (mPTP), membrane potential ($\Delta\psi_m$) and superoxide production were determined. PCE decreased infarct size, partly preserved GSH, increased the P-Akt, P-GSK-3β and P-eNOS contents, improved mPTP response to Ca$^{2+}$, decreased the superoxide production and restored $\Delta\psi_m$.

These data show that PCE decreases the cardiac postischemic damage in W rats and SHR and suggest that Akt/GSK-3β/eNOS dependent pathways are involved.

Key words: Wistar, SHR, infarct size, mitochondria, polyphenols
INTRODUCTION

Cocoa and chocolate are two products derived from processing of cocoa beans. This complex multistage process begins with spontaneous fermentation driven in the postharvest period by different microorganisms derived from the environment. After fermentation cocoa beans are roasted, shelled, and ground. The main difference between cocoa and chocolate is the absence or existence of cocoa butter. In cocoa, butter is little or non-existent. In contrast, chocolate has butter. Therefore, cocoa is considered as a healthy drink because it has less sugar and fat and besides possesses an important amount of flavanols, being catechins and epicatechins the main. There are many evidences regarding the beneficial actions of chocolate and cocoa on immune functions, ageing, blood pressure regulation, atherosclerosis, insulin resistance, physical performance or cardiovascular diseases development. However, the molecular mechanisms remain under investigation and the subject of ongoing discussion.

The ischemic heart disease is an important cause of death worldwide, being the high blood pressure an important risk factor. Although the reperfusion reduces the mortality, it introduces an additional injury. Thus, many studies demonstrate that drugs or strategies applied at the beginning of reperfusion are able to reduce infarct size. It has also been previously showed that hypertrophy consequent to chronically elevated blood pressure aggravates the reperfusion injury.

Mitochondrial integrity is critical in the maintenance of bioenergetics and Ca\(^{2+}\) homeostasis of the myocardium. Upon reperfusion the mitochondrial Ca\(^{2+}\) overload leads to myocyte death by multiple mechanisms including oxidative injury and opening of the mitochondrial permeability transition pore (mPTP). Therefore, the inhibition of mPTP at the beginning of reperfusion may prevent cell death and thus reduce infarct size.

Epidemiological evidences indicate that the consumption of flavonoids-rich foods or beverages decreases the incidence of cardiovascular disease. Different studies showed the benefits of cocoa on the prevention of CVD, the ability to modulate the blood pressure in hypertensive animals and the capacity to improve coronary circulation in healthy adults. Recently, Cienfuegos-Jovellanos et al. developed a cocoa powder with the highest flavonoid monomer content. The antihypertensive effect exerted by that cocoa powder (PCE) has been previously demonstrated by the same authors. However, its action during ischemia-reperfusion is still unknown.
The purpose of this study was to examine the actions of "ex vivo" treatment with PCE, administered at the beginning of reperfusion, on infarct size and mitochondrial state in hearts from normotensive and spontaneously hypertensive rats submitted to ischemia-reperfusion.
MATERIAL AND METHODS

Animals
Male SHR and W rats were used. The animals were housed 4 per cage, with food and drinking water "ad libitum". The room ventilation rate was 4-6 changes per h, at temperature of 22 ± 2 °C and with a light cycle/dark of 12 h. All procedures followed during this investigation were approved by the Institutional Animal Care and Use Committee (IACUC) of the Faculty of Medicine, University of La Plata (P-05-2014).

Systolic blood pressure measurement
Systolic blood pressure (SBP) was measured in alive and awake animals by a modified tail-cuff method.

Polyphenol-Enriched Cocoa Extract (PCE)
The preparation, characteristics and composition of PCE are described in a previous paper. Briefly, PCE was obtained from CocoanOX and produced from unfermented, blanch-treated, and roasted cocoa beans. By HPLC, the total polyphenol content was 547 ± 4 mg/dry matter being the 50% represented by the total flavan-3-ol content followed by (-)-epicatechin (26%) and procyanidin B2 (15%).

Isolated heart preparation
Rats were anesthetized with ketamine-diazepam (80-5 mg/Kg). Arreflexia appearance with loss of corneal reflex and the flexor reflex of escape in the lower limbs were verified before heart isolation. Isolated hearts were perfused following the instructions previously detailed.

Experimental protocols
After 20-min stabilization, the following experimental protocols were performed: Non-ischemic control hearts (NIC; n = 5 for each rat strain): hearts were perfused for 90 min without any treatment. Ischemic control hearts (IC, n = 7 for each rat strain): hearts were subjected to 30 min of global ischemia followed by 60 min of reperfusion. PCE (n = 7 for each rat strain): hearts were treated during 10 min at the onset of reperfusion with PCE (30 μg/mL). Other hearts (n = 4 for each rat strain and for each protocol) were used for biochemical determinations and others (n = 4 for each protocol and for each rat strain) for mitochondria isolation.

Infarct size determination
Infarct size was assessed by the triphenyltetrazolium chloride (TTC, Sigma-Aldrich, Munich, Germany) staining technique. At the end of reperfusion hearts were frozen, cut into six transverse slices and incubated in TTC. Infarct size was expressed as a percentage of total area (area at risk) \(^{33}\).

Lipid peroxidation

A portion of left ventricle (LV) was homogenized and centrifuged at 3000 rpm. In the supernatant, the concentration of thiobarbituric acid reactive substances (TBARS) was measured and expressed in nmol/mg of protein \(^{34}\).

Reduced glutathione (GSH)

GSH content was determined in the supernatant using the Ellman’s reagent \(^{35}\) and expressed as \(\mu g/mg\) of protein.

Immunoblotting

Other portion of LV was homogenized and cytosolic fraction was isolated by differential centrifugation. Briefly, supernatant proteins were resolved on SDS-PAGE, transferred to PVDF membrane, blocked and probed with antibodies against phosphorylated forms of GSK-3β-Ser9, Akt, eNOS-Ser1177, anti-MnSOD and anti-Cytochrome c. Protein bands were analyzed by a chemiluminescent system and total GSK-3β, Akt and eNOS content or GAPDH signal were used as a loading control \(^{13}\).

Isolation of mitochondria

LV of other sets of control and treated hearts from W rats and SHR were used to mitochondria isolation following the method previously described \(^{13}\).

\(Ca^{2+}\)-induced mPTP opening

The isolated mitochondria were energized and induced to swell with the addition of \(CaCl_2\). If mPTP opens the mitochondria swells. These changes are observed as decreases of light scattering (LSD) at 520 nm using a temperature-controlled Hitachi F4500 spectrofluorometer \(^{36}\). LSD was assessed in samples without any treatment and in those treated with PCE 10 \(\mu g/ml\).

Mitochondrial membrane potential

Mitochondrial potential (\(\Delta\Psi_m\)) was evaluated by measuring rhodamine-123 (RH-123) fluorescence quenching \(^{37}\) and calculated following the instructions previously detailed \(^{38}\).

Measurements of \(O_2^-\) production

Superoxide production was measured in intact mitochondria suspension with lucigenin-enhanced chemiluminiscence (CL) as previously described \(^{39}\). The CL in arbitrary units (a.u.) was recorded with a
luminometer (Chameleon, Hidex, Tuku, Finland) for 10 sec each one with 1 min interval during 10 min in
the presence or absence of succinate (6 mM/L) or PCE (10 µg/ml). Mitochondrial O$_2^-$ production was
expressed as a.u./min/mg protein.

Statistical analysis
Data were expressed as means ± SE. Differences between groups were assessed with a two-way analysis
of variance (ANOVA) test and Newman-Keul’s was used as a post hoc test. A value of p < 0.05 was
considered to be statistically significant.
RESULTS

Mean data of systolic blood pressure (SBP) plus the values of body weight (BW, g), left ventricular weight (LVW, mg) and hypertrophic index (HI, calculated as LVW and BW ratio) of W rats and SHR are displayed in Table 1. SBP, LVW and HI were significantly higher in SHR than W rats, indicating the presence of hypertrophy associated to high pressure as one recognized characteristic of hypertensive animals.

Infarct size

Hearts from W rats and SHR without any treatment caused an infarct size of ~30% of the risk area. When PCE was added to the perfusate a significant reduction in infarct size was obtained (Fig. 1).

TBARS and GSH

The TBARS concentration- as an index of lipid peroxidation- of IC hearts was 0.75 ± 0.06 and 0.97 ± 0.10 nmol/mg protein for W rats and SHR, respectively. These values were not significantly modified by PCE treatment (0.61 ± 0.08 and 0.70 ± 0.15 nmol/mg protein for W rats and SHR, respectively). The GSH content in non-ischemic control hearts from SHR was lower than that detected in hearts from W rats. After ischemia-reperfusion, GSH levels decreased to a similar value in hearts from SHR and W rats. The treatment with PCE partially or fully preserved the GSH content in hearts from normotensive and hypertensive rats, respectively (Fig. 2).

Expression of P-Akt, P-GSK-3β and P-eNOS

At the end of reperfusion period, homogenates of PCE treated hearts from W rats and SHR showed a significant increase of the expression of phosphorylated forms of Akt, e-NOS and GSK-3β (Fig. 3).

MnSOD and cytochrome c

The loss of internal mitochondrial membrane impermeability leads to the release of mitochondrial matrix components, as MnSOD and cytochrome c, to cytosol. Thus, the expression of both substances increased in ischemic control hearts from W rats and SHR and decreased in PCE treated hearts from both rats strains (Fig. 4).

Ca\(^{2+}\)-induced mPTP opening (LSD) and mitochondrial membrane potential (ΔΨm)

Figure 5 shows the typical traces (A panel) and mean values (B panel) of light scattering decrease (LSD) produced by the addition of 100 µmol/L Ca\(^{2+}\) to mitochondrial suspensions of untreated and treated hearts from W rats and SHR. LSD was significantly lesser in non-ischemic hearts from SHR in comparison to those of W rats. After ischemia-reperfusion, the LSD decreased to a similar value for hearts from both
rats strains. The treatment with PCE improved the response of mitochondria to Ca\(^{2+}\) showing greater LSD values than ischemic hearts but lesser than those observed in non-ischemic hearts. Figure 6 shows the changes of \(\Delta \psi_m\) in the three experimental protocols. The \(\Delta \psi_m\) of mitochondria isolated from SHR hearts was significantly lesser than those of W rats. After ischemia-reperfusion the \(\Delta \psi_m\) decreased in both rats strains. The treatment with PCE attenuated this depolarization reaching \(\Delta \psi_m\) values not statistically different to those obtained in non-ischemic control hearts but maintaining the difference between W rats and SHR.

Mitochondrial \(O_2^-\) production

As shown in Figure 7 the incubation of cardiac mitochondria with lucigenin elicited a basal \(O_2^-\) production in W and SHR. This response appears to be due to the presence of endogenous substrates in the freshly isolated mitochondria. The addition of succinate significantly enhanced the \(O_2^-\) production in mitochondria from both rats strains and decreased after treatment with PCE.
DISCUSSION

The present data showed that the "ex vivo" treatment at the onset of reperfusion with a polyphenol-enriched cocoa extract (PCE) decreased the cell death and attenuated the mitochondrial injury produced by ischemia-reperfusion in hearts from normotensive and spontaneously hypertensive rats.

Hypertension is an important cause of cardiovascular morbidity and mortality and it has been associated with impaired antioxidant defense and specially with disturbances in glutathione metabolism. This was evident in our study since we found lesser GSH values in non-ischemic control hearts from SHR in comparison to W rats. The treatment with PCE partially or fully preserved the level of GSH in hearts from W rats and SHR, respectively. Additionally, a decreased O$_2^-$ production in isolated mitochondria from PCE-treated hearts of both rats strains was showed. These results suggest that a reduced ROS production and/or higher scavenging could be taking place in cardiac tissue from normotensive and hypertensive animals when they were submitted to ischemia and reperfusion in presence of PCE.

On the other hand, and in agreement with a recent paper published by us, the $\Delta \Psi_m$ of mitochondria isolated from SHR hearts was less electronegative than that detected in hearts from W rats. After ischemia and reperfusion, the mitochondria suffered depolarization, reaching a similar $\Delta \Psi_m$ in both rats strains. The treatment with PCE normalized $\Delta \Psi_m$, maintaining the difference between W rats and SHR.

The mitochondrial permeability transition pore (mPTP) plays a critical role in determination of cell death and is the focal point of the various protective mechanisms. The mPTP opening leads to matrix swelling and efflux of cyc and other proapoptotic factors. Our data show that the Ca$^{2+}$-mediated response of mitochondria isolated from non-ischemic control hearts of W rats was higher than those of SHR, diminished to a similar value when hearts were submitted to ischemia-reperfusion and was partially restored in PCE treated hearts. Therefore, the restoration of $\Delta \Psi_m$ and the Ca$^{2+}$ response are indicators of an improvement of mitochondrial state mediated by PCE. In our conditions, we also detected an increase of MnSOD and cyc expression in ischemic control hearts from W rats and SHR which decreased after PCE treatment. All these data are evidence of the protective role of cocoa extract against mitochondria permeability and suggest that an attenuation of ROS production and a diminution of Ca$^{2+}$ uptake by mitochondria could be the responsible mechanisms.

A relevant piece of information is how processes occurring in the cytosol modulate mPTP opening. Which are the PCE targets? GSK-3β phosphorylation is a step to which multiple protective signaling pathways converge ending to avoid the mPTP opening. In our experimental conditions, the treatment...
with PCE increased the level of phospho-GSK-3β in both rats strains suggesting that the PCE-mediated cardioprotection is linked to GSK-3β-dependent mechanism. Among the kinases able to activate GSK-3β is the PI3K/Akt which has been involved in the beneficial actions during ischemia-reperfusion. We also observed a decrease of phospho-Akt level whereas opposite changes took place in PCE treated hearts. Several papers have demonstrated the protective role of NO during ischemia-reperfusion. It is recognized that the balance of NO concentration depends of its production by increase of eNOS expression and/or activity and the O_2^- formation in which the eNOS uncoupling plays an important role. In our experimental conditions, PCE increased the expression of phosphoSer1177-eNOS, which linked to the reduced O_2^- production could lead to a higher NO bioavailability in PCE-treated compared to untreated hearts. Therefore, the data present herein show, by the first time, that NO could be an important mediator of the infarct size limitation afforded by PCE.

PCE contains four times more procyanidins and eight times more epicatechin and procyanidin B2 than conventional cocoa powder. There is accumulating evidence that (-)-epicatechin and its derivatives have significant role in prevention of CVD in humans. Potent antioxidant action, modulation of cell signalling, reduction of the blood pressure, and protection of mitochondria, are being proposed as possible mechanisms of beneficial effects of (-)-epicatechin. The ability of (-)-epicatechin to prevent oxidative stress by restoring NO bioavailability was has been also showed. Recently, it was demonstrated that (-)-epicatechin and procyanidin B2 improve mitochondrial functions detecting a decrease of cyc release. As these compounds are present in high proportion in PCE, it might be responsible for the beneficial effects detected in PCE-treated hearts.

In summary, our findings show that the "ex vivo" treatment of PCE at the onset of reperfusion ameliorates the infarct size in hearts from W rats and SHR by attenuation of mPTP opening and suggest that Akt/eNOS and Akt/GSK-3β-dependent signaling pathways are involved. Thus, our data are providing arguments to establish the benefits of PCE against the mitochondrial impairment produced by ischemia-reperfusion. A decrease of ROS production by mitochondria plus to the scavenging activity of the extract which leads to the preservation of GSH levels could be contributing to the cardioprotective action (Fig. 8).

Limitations

In the current study we demonstrated, by the first time, in a model of heart "ex vivo" the beneficial action of a polyphenol-enriched cocoa extract against reperfusion injury. However, the complex composition of
the extract and the low intestinal absorption of its constituents determine that our findings could not be extrapolated directly to human. Furthermore, long-term trials will be needed to investigate the incidence of PCE addition to diet on clinical outcomes of patients suffering adverse cardiovascular events.

ABBREVIATIONS

- Cyc: Cytochrome c
- eNOS: Endothelial nitric oxide synthase
- GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
- GSK-3β: Glycogen synthase kinase-3 beta
- IC: Ischemic control hearts
- MnSOD: Manganese-dependent superoxide dismutase
- mPTP: Mitochondrial permeability transition pore
- ∆Ψm: Mitochondrial potential
- NIC: Non-ischemic hearts
- W: Normotensive Wistar rats
- PCE: Polyphenol-enriched cocoa extract
- ROS: Radical oxygen species
- GSH: Reduced glutathione
- Akt: Serine/threonine-specific protein kinase
- SHR: Spontaneously hypertensive rats
- O₂⁻: Superoxide anion
- TBARS: Thiobarbituric acid reactive substances
- TTC: Triphenyltetrazolium chloride

FUNDING SOURCES

This study was supported by the Grant M-169 from the National University of La Plata of Argentina to Dr. Susana Mosca.

REFERENCES
(1) Petyaev, I.M.; Bashmakov, Y.K. Cocobiota: Implications for Human Health. *J. Nutr. Metab.* 2016, 283, 7906927. doi: 10.1155/2016/7906927.

(2) Grassi, D.; Desideri, G.; Ferri, C. Blood pressure and cardiovascular risk: What about cocoa and chocolate? *Arch. Biochem. Biophys.* 2010, 501, 112-115.

(3) Adamson, G.E.; Lazarus, S.A.; Mitchell, A.E.; Prior, R.L.; Cao, G.; Jacobs, P.H.; Kremers, B.G.; Hammersone, J.F.; Rucker, R.B.; Ritter, K.A.; Schmitz, H.H. HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. *J. Agric. Food Chem.* 1999, 47, 4184-4188.

(4) Lotito, S.B.; Actis-Goretta, L.; Renart, M.L.; Caligiuri, M.; Rein, D.; Schmitz, H.H.; Steinberg, F.M.; Keen, C.L.; Fraga, C.G. Influence of oligomer chain length on the antioxidant activity of procyanidins. *Biochem. Biophys. Res. Commun.* 2000, 276, 945-951.

(5) Pérez-Cano, F.J.; Massot-Cladera, M.; Franch, A.; Castellote, C.; Castell, M. The effects of cocoa on the immune system. *Front. Pharmacol.* 2013, 4, Article 71.

(6) van Dam, R.M.; Naidoo, N.; Landberg, R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. *Curr. Opin. Lipidol.* 2013, 24(1), 25-33.

(7) Vinson, J.A.; Proch, J.; Bose, P.; Muchler, S.; Taffera, P.; Shuta, D.; Samman, N.; Agbor, G.A. Chocolate is a powerful ex vivo and in vivo antioxidant, an anti-atherosclerotic agent in an animal model, and significant contributor to antioxidants in European and American diets. *J. Agric. Food Chem.* 2006, 54, 8071-8076.

(8) Kerimi, A.; Williamson, G. The cardiovascular benefits of dark chocolate. *Vasc. Pharmacol.* 2015, 7, 11-15.

(9) Petyaev, I. M.; Dovgalevsky, P. Y.; Chalyk, N. E.; Klochkov, V.; Kyle, N. H. Reduction in blood pressure and serum lipids by lycosome formulation of dark chocolate and lycopene in prehypertension. *Food Sci. Nutr.* 2014, 2(6), 744-750.

(10) Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury. *N. Engl. J. Med.* 2007, 357, 1121-1135.

(11) Hanlon, P.R.; Fu, P., Wright, G.L.; Steenbergen, C.; Arcasoy, M.O.; Murphy, E. Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling. *Faseb J.* 2005, 19, 1323-1325.
(12) Hausenloy, D.J.; Mocanu, M.M.; Yellon, D.M. Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. *Cardiovasc. Res.* **2004**, *63*, 305-312.

(13) González Arbeláez, L.F.; Pérez Núñez, I.A.; Mosca, S.M. GSK-3β inhibitors mimic the cardioprotection mediated by ischemic pre-and postconditioning in hypertensive rats. *BioMed. Res. Inter.* **2013**, *2013*, ID 317456.

(14) Fantinelli, J.; González Arbeláez, L.F.; Mosca, S.M. Cardioprotective efficacy against reperfusion injury of EMD-87580: Comparison to ischemic postconditioning. *Eur. J. Pharmacol.* **2014**, *737*, 125-132.

(15) Yano, T.; Miki, T.; Tanno, M.; et al. Hypertensive hypertrophied myocardium is vulnerable to infarction and refractory to erythropoietin-induced protection. *Hypertension* **2011**, *57*, 110-115.

(16) Fantinelli, J.C.; Pérez Núñez, I.A.; González Arbeláez, L.F.; Schinella, G.R.; Mosca, S.M. Participation of mitochondrial permeability transition pore in the effects of ischemic preconditioning in hypertrophied hearts: role of NO and mito KATP. *Int. J. Cardiol.* **2013**, *166*, 173-180.

(17) Griffiths, E.J.; Halestrap, A.P. Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. *J. Mol. Cell. Cardiol.* **1993**, *25*, 1461-1469.

(18) Javadov, S.A.; Clarke, S.; Das, M.; Griffiths, E.J.; Lim, K.H.; Halestrap, A.P. Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. *J. Physiol.* **2003**, *549*, 513-524.

(19) Shanmuganathan, S.; Hausenloy, D.J.; Duchen, M.R.; Yellon, D.M. Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. *Am. J. Physiol. Heart Circ. Physiol.* **2005**, *289*, H237-H242.

(20) Hertog, M.G.; Kromhout, D.; Aravanis, C.; et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. *Arch. Intern. Med.* **1995**, *155*, 381-386.

(21) Knekt, P.; Jarvinen, R.; Reunanen, A.; Maatela, J. Flavonoid intake and coronary mortality in Finland: a cohort study. *BMJ* **1996**, *312*, 478-481.

(22) Joshipura, K.J.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Colditz, G.; Ascherio, A.; Rosner, B.; Spiegelman, D.; Willett, W.C. The effect of fruit and vegetable intake on risk for coronary heart disease. *Ann Intern Med.* **2001**, *134*, 1106-1114.

(23) Galleano, M.; Oteiza, P.I.; Fraga, C.G. Cocoa, chocolate, and cardiovascular disease. *J. Cardiovasc. Pharmacol.* **2009**, *54*(6), 483-490.
(24) Quiñones, M.; Margalef, M.; Arola-Arnal, A.; Muguerza, B.; Miguel, M.; Aleixandre, A. The blood pressure effect and related plasma levels of flavan-3-ols in spontaneously hypertensive rats. *Food Funct.* 2015, 6(11), 3479-3489.

(25) Ferri, C.; Desideri, G.; Ferri, L.; Proietti, I.; Di Agostino, S.; Martella, L.; Mai, F.; Di Giosia, P.; Grassi, D. Cocoa, Blood Pressure, and Cardiovascular Health. *J. Agric. Food Chem.* 2015, 63(45), 9901-9909.

(26) Shiina, Y.; Funabashi, N.; Lee, K.; Murayama, T.; Nakamura, K.; Wakatsuki, Y.; Daimon, M.; Komuro, I. Acute effect of oral flavonoid-rich dark chocolate intake on coronary circulation, as compared with non-flavonoid white chocolate, by transthoracic Doppler echocardiography in healthy adults. *Int. J. Cardiol.* 2009, 131 (3), 424-429.

(27) Galleano, M.; Bernatova, I.; Puzserova, A.; Balis, P.; Sestakova, N.; Pechanova, O.; Fraga, C.G. (-)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. *JUBMB Life* 2013, 65(8), 710-715.

(28) Cienfuegos-Jovellanos, E.; Pasamar, M.A.; Fritz, J.; Arcos, J.; Ramon, D.; Castilla, Y. Method for obtaining polyphenol-rich cocoa powder with a low fat content and cocoa thus obtained. Patent Coopération Treaty (PCT) WO 2007/096449A1; Nutraceutical Industrial, 2007, Spain.

(29) Quiñones, M.M.; Sánchez, D.; Muguerza, B.; Moulay, L.; Laghi, S.; Miguel, M.; Aleixandre, A. Long-term intake of CocoanOX attenuates the development of hypertension in spontaneously hypertensive rats. *Food Chem.* 2010, 122, 1013-1019.

(30) Fritz, M.; Rinaldi, G. Blood pressure measurement with the tail-cuff method in Wistar and spontaneously hypertensive rats: influence of adrenergic- and nitric oxide-mediated vasomotion. *J. Pharmacol. Toxicol. Methods* 2008, 58, 215-221.

(31) Andújar, I.; Recio, M.C.; Giner, R.M.; Cienfuegos-Jovellanos, E.; Laghi, S.; Muguerza, B.; Ríos, J.L. Inhibition of ulcerative colitis in mice after oral administration of a polyphenol-enriched cocoa extract is mediated by the inhibition of STAT1 and STAT3 phosphorylation in colon cells. *J. Agric. Food Chem.* 2011, 59(12), 6474-6483.

(32) Tomas-Barberan, F.A.; Cienfuegos-Jovellanos, E.; Marín, A.; Muguerza, B.; Gil-Izquierdo, A.; Cerda, B.; Zafrilla, P.; Morillas, J.; Mulero, J.; Ibarra, A.; Pasamar, M.A.; Ramón, D.; Espin, J.C. A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. *J. Agric. Food Chem.* 2007, 55 (10), 3926-3935.
(33) Suzuki, M.; Sasaki, N.; Miki, T.; Sakamoto, N.; Ohmoto-Sekine, Y.; Tamagawa, M.; Seino, S.; Marbán, E.; Nakaya, H. Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. *J. Clin. Invest.* 2002, 109, 509-516.

(34) Buege, A.J.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302-310.

(35) Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. *Anal. Biochem.* 1968, 25, 192-205.

(36) Facundo, H.T.; de Paula, J.G.; Kowaltowski, A.J. Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. *Free Rad. Biol. Med.* 2007, 42, 1039-1048.

(37) Emaus, R.K.; Grunwald, R.; Lemasters, J.J. Rhodamine 123 as a probe of transmembrane potential in isolated rat liver mitochondria: spectral and metabolic properties. *Biochim. Biophys. Acta* 1986, 850, 436-448.

(38) Scaduto, R.C.Jr; Grotyohann, L.W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. *Biophys. J.* 1999, 76, 469-477.

(39) Li, Y.; Zhu, H.; Trush, M.A. Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol. *Biochim. Biophys. Acta* 1999, 1428(1), 1-12.

(40) Harrison, D.G.; Gongora, M.C. Oxidative stress and hypertension. *Med. Clin. North Am.* 2009, 93(3), 621-635.

(41) Masella, R.; Di Benedetto, R.; Vari, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. *J. Nutr. Biochem.* 2005, 16, 577-586.

(42) Pardo, A.C.; Rinaldi, G.J.; Mosca, S.M. Mitochondrial calcium handling in normotensive and spontaneously hypertensive rats: correlation with systolic blood pressure levels. *Mitochondrion* 2015, 20, 75-81.

(43) Morin, D.; Assaly, R.; Paradis, S.; Berdeaux, A. Inhibition of mitochondrial membrane permeability as a putative pharmacological target for cardioprotection. *Curr Med Chem* 2009, 16, 4382-4398.

(44) Hausenloy, D.J.; Ong, S.B.; Yellon, D.M. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning *Basic Res Cardiol* 2009, 104, 189-202.

(45) Sedlic, F.; Sepac, A.; Pravdic, D.; Camara, A.K.; Bienengraeber, M.; Brzezinska, A.K.; Wakatsuki, T.; Bosnjak, Z.J. Mitochondrial depolarization underlies delay in permeability transition by
preconditioning with isoflurane: roles of ROS and Ca2+. Am. J. Physiol. Cell. Physiol. 2010, 299(2), C506-C515.

(46) Griffiths, E.J. Mitochondria and heart disease. Adv. Exp. Med. Biol. 2012, 942, 249-267.

(47) Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science 2012, 305, 626-629.

(48) Miura, T.; Miki, T. GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ. J. 2009, 73, 1184-1192.

(49) Pap, M.; Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol-3-kinase/Akt cell survival pathway. J. Biol. Chem. 1998, 273, 19929-19932.

(50) Kim, J.S.; Ohshima, S.; Pediatikakis, P.; Lemasters, J.J. (2004) Nitric oxide: a signaling molecule against mitochondrial permeability transition- and pH-dependent cell death after reperfusion. Free Rad. Biol. Med. 2004, 37(12), 1943-1950.

(51) Bolli, R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J. Mol. Cell Cardiol. 2001, 33(11), 1897-1918.

(52) Dudzinski, D.M.; Michel, T. Life history of eNOS: Partners and pathways. Cardiovasc. Res. 2007, 75, 247-260.

(53) Ruijters, E.J.B.; Weseler, A.R.; Kicken, C.; Haenen, G.R.M.M.; Bast, A. (2013) The flavanol (-)-epicatechin and its metabolites protect against oxidative stress in primary endothelial cells via a direct antioxidant effect. Eur. J. Pharmacol. 2013, 715(1–3), 147-153.

(54) Fraga, C.G.; Oteiza, P.I. Dietary flavonoids: role of (-)-epicatechin and related procyanidins in cell signaling. Free Rad. Biol. Med. 2011, 51(4), 813-823.

(55) Litterio, M.C.; Jaggers, G.; Sagdicoglu Celep, G.; Adamo, A.M.; Costa, M.A.; Oteiza, P.I.; Fraga, C.G.; Galleano, M. Blood pressure-lowering effect of dietary (-)-epicatechin administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radic. Biol. Med. 2012, 53(10), 1894-1902.

(56) Kopustinskiene, D.M.; Savickas, A.; Vetchy, D.; Masteikova, R.; Kasauskas, A.; Bernatoniene, J. Direct effects of (-)-epicatechin and procyanidin B2 on the respiration of rat heart mitochondria. Biomed. Res. Int. 2015, 2015: 232836.
Legends

Figure 1: A panel: Scheme of ischemic control (IC) and polyphenol-enriched cocoa extract (PCE) protocols and representative slices of hearts from normotensive (W) and spontaneously hypertensive rats (SHR) stained with TTC. B panel: Mean values of infarct size (IS), expressed as a percentage of risk area, in IC (n = 7) and PCE (n = 7) treated hearts from W rats (n = 14) and SHR (n = 14). Observe that the treatment with PCE decreased the IS detected in IC hearts of both rats strains. * p < 0.05 vs. IC

Figure 2: Reduced glutathione content (GSH, µg/mg protein) in non-ischemic control (NIC, n = 4), ischemic control (IC, n = 4) and PCE (n = 4) treated hearts from normotensive (W, n = 12) and spontaneously hypertensive rats (SHR, n = 12). The GSH content diminished in IC and it was partially or fully preserved in W rats and SHR, respectively, in PCE treated hearts. φ p < 0.05 SHR vs. W; * p< 0.05 vs. NIC; # p < 0.05 vs. IC.

Figure 3: Representative immunoblots of total and phosphorylated forms and summary of densitometry data of phospho-Akt (A panel), phospho-eNOS (B panel) and phospho-GSK-3β (C panel) in non-ischemic control (NIC, n = 4), ischemic control (IC, n = 4) and PCE (n = 4) treated hearts from W rats (n = 12) and SHR (n = 12). The P-Akt/Akt, P-eNOS/eNOS and P-GSK-3β/ GSK-3β ratios diminished in IC and increased in PCE treated hearts of both rats strains. * p< 0.05 vs. NIC; # p < 0.05 vs. IC.

Figure 4: Expression of MnSOD (A panel) and cytochrome c (cyt c, B panel) in non-ischemic control (NIC, n = 4), ischemic control (IC, n = 4) and PCE (n = 4) treated hearts from W rats (n = 12) and SHR (n = 12). Note that a significant increase of MnSOD and cyt c was detected in IC hearts from both rats strains which returned to basal values by PCE treatment. * p < 0.05 vs. NIC; # p < 0.05 vs. IC.

Figure 5: A panel: Typical traces produced by 100 µM Ca^{2+} addition to samples of mitochondria from W rats and SHR hearts. B panel: Mean values of the light scattering decreases (LSD) after Ca^{2+} addition, expressed in arbitrary units (a.u.), in non-ischemic control (NIC, n = 4), ischemic control (IC, n = 4), and PCE (n = 4) treated hearts from W rats (n = 12) and SHR (n = 12). The response of isolated mitochondria to Ca^{2+} significantly diminished in IC hearts and partially recovered after PCE treatment in both rats strains. φ p < 0.05 SHR vs. W; * p < 0.05 vs. NIC; # p < 0.05 vs. IC.

Figure 6: Mitochondrial membrane potential (∆Ψm, mV) measured in isolated mitochondria from normotensive (W, n = 12) and spontaneously hypertensive rats (SHR, n = 12) hearts of non-ischemic control (NIC, n = 4), ischemic control (IC, n = 4) and PCE treated group (n = 4). The depolarization
detected after ischemia and reperfusion was attenuated in PCE treated hearts. \(\phi p < 0.05 \) SHR vs. W; * \(p < 0.05 \) vs. NIC; # \(p < 0.05 \) vs. IC.

Figure 7: A and C panels: Time course of \(\text{O}_2^- \) production of cardiac mitochondria isolated from W rats and SHR, in presence or absence (C, \(n = 3 \) for W and \(n = 3 \) for SHR) of succinate (S, \(n = 3 \) for each rat strain) or S + PCE \(n = 3 \) for each rat strain). The chemiluminiscence response was initiated by adding of lucigenin. B and D panels: Mean values of \(\text{O}_2^- \) production at 3 min in C, S and S + PCE mitochondrial suspensions of W rats and SHR. PCE decreased the \(\text{O}_2^- \) production in both rats strains. * \(p < 0.05 \) vs. C; # \(p < 0.05 \) vs. PCE.

Figure 8: Scheme showing the signaling pathways that involve activation of kinases and enzyme leading to the polyphenol-enriched cocoa extract (PCE)-mediated cardioprotection highlighting the mitochondrial effects.
Table 1: Data of systolic blood pressure (SBP), body weight (BW), left ventricular weight (LVW) and hypertrophy index (IH) in W and SHR

	W	SHR
SBP (mmHg)	125 ± 2	219 ± 3**
BW (g)	309 ± 9	310 ± 8
LVW (mg)	780 ± 40	1330 ± 60**
HI	2.52 ± 0.12	4.17 ± 0.18**

**p < 0.01 n = 30 for each one
FIGURE 1

A

IC

W

SHR

PCE

W

SHR

B

Infarct size (%)

IC

PCE

Wistar

SHR

*
FIGURE 2

The figure shows the GSH (µg/mg protein) levels in W and SHR groups for NIC, IC, and PCE conditions. The data is represented as error bars with statistical significance indicated by symbols. The figure indicates a significant difference between the groups in each condition, with specific symbols indicating significance levels.
FIGURE 4

A

26 KDa

MnSOD

42 KDa

GAPDH

W SHR

W SHR

W SHR

MnSOD/GAPDH expression (% of control)

NIC

CI

PCE

B

15 KDa

Cyc

42 KDa

GAPDH

W SHR

W SHR

W SHR

Cyc/GAPDH expression (% of control)

NIC

CI

PCE
FIGURE 5

A

Ca^{2+}

B

Light scattering decrease (a.u.)

NIC IC PCE

W SHR

0 min 5 min

0.10 a.u.

*

* # * #

*

* # * #
FIGURE 6

[Bar graph showing Δψm (mV) for NIC, IC, and PCE. The graph compares W and SHR groups. Significant differences are indicated by symbols: φ and #.]

ACS Paragon Plus Environment
FIGURE 7

Wistar

A

B

SHR

C

D
FIGURE 8

ISCHEMIA- REPERFUSION

CONTROL

Ca$^{2+}$ ROS

Ca$^{2+}$ Δψ

Cyc ROS MnSOD

PCE

PI3K Akt

GSK-3β e-NOS NO

Ca$^{2+}$ Δψ

Cyc MnSOD ROS

INJURY

CARDIOPROTECTION