NOT ALL PURE STATES ON $\mathcal{B}(H)$ ARE DIAGONALIZABLE

CHARLES AKEMANN AND NIK WEAVER

Abstract. Assuming the continuum hypothesis, we prove that $\mathcal{B}(H)$ has a pure state whose restriction to any masa is not pure. This resolves negatively an old conjecture of Anderson.

Let H be a separable infinite-dimensional Hilbert space and let $\mathcal{B}(H)$ be the algebra of bounded operators on H. Anderson [4] conjectured that every pure state on $\mathcal{B}(H)$ is diagonalizable, i.e., of the form $f(A) = \lim U \langle Ae_n, e_n \rangle$ for some orthonormal basis (e_n) and some ultrafilter U over \mathbb{N}.

A masa of $\mathcal{B}(H)$ is a maximal abelian self-adjoint subalgebra, and an atomic masa is the set of all operators which are diagonalized with respect to some given orthonormal basis of H. Anderson’s conjecture is related to a fundamental problem in C*-algebra, the Kadison-Singer problem [6], which asks whether every pure state on an atomic masa of $\mathcal{B}(H)$ has a unique extension to a pure state on $\mathcal{B}(H)$. If (e_n) is an orthonormal basis of H, then every pure state f_0 on the corresponding atomic masa \mathcal{M} has the form $f_0(A) = \lim U \langle Ae_n, e_n \rangle$ for some ultrafilter U over \mathbb{N} and all $A \in \mathcal{M}$, and Anderson [3] showed that the same formula, now for $A \in \mathcal{B}(H)$, defines a pure state f on $\mathcal{B}(H)$. Thus, a positive solution to the Kadison-Singer problem would say that f is the only pure state on $\mathcal{B}(H)$ which extends f_0.

In the presence of a positive solution to the Kadison-Singer problem, Anderson’s conjecture is equivalent to the weaker statement that every pure state on $\mathcal{B}(H)$ restricts to a pure state on some atomic masa. However, assuming the continuum hypothesis, we show that this weaker statement is false: in fact, there exist pure states on $\mathcal{B}(H)$ whose restriction to any masa is not pure. It follows that there are pure states on $\mathcal{B}(H)$ that are not diagonalizable. It seems likely that the statement “every pure state on $\mathcal{B}(H)$ restricts to a pure state on some atomic masa” is also consistent with standard set theory. This together with a positive solution to the Kadison-Singer problem would imply the consistency of a positive answer to Anderson’s conjecture.

The key lemma we need is the following. Let $\mathcal{K}(H)$ be the algebra of compact operators on H, let $\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$ be the Calkin algebra, and let $\pi : \mathcal{B}(H) \to \mathcal{C}(H)$ be the natural quotient map. We also write \dot{a} for $\pi(a)$, for any $a \in \mathcal{B}(H)$.

Lemma 0.1. Let \mathcal{A} be a separable C*-subalgebra of $\mathcal{B}(H)$ which contains $\mathcal{K}(H)$, let f be a pure state on \mathcal{A} that annihilates $\mathcal{K}(H)$, and let \mathcal{M} be a masa of $\mathcal{B}(H)$. Then there is a pure state g on $\mathcal{B}(H)$ that extends f and whose restriction to \mathcal{M} is not pure.

Date: June 6, 2006.

1991 *Mathematics Subject Classification.* Primary 46A32; Secondary 46L30, 47L05, 03E50.
Proof. By Proposition 6 of [2] we can find an infinite-rank projection \(p \in \mathcal{B}(H) \) such that
\[
\hat{p}\hat{p} = f(a)\hat{p}
\]
for all \(a \in \mathcal{A} \).

Lemma 1.4 and Theorem 2.1 of [5] imply that \(\pi(M) \) is a masa of \(\mathcal{C}(H) \). It follows that there is a projection \(q \in M \) such that \(\hat{q} \) neither contains nor is orthogonal to \(\hat{p} \). Otherwise \(\hat{p} \) would be in the commutant of \(\pi(M) \), and hence would belong to \(\pi(M) \) by maximality. But this would mean \(\hat{p} \) is minimal in \(\pi(M) \) because any nonzero projection below \(\hat{p} \) neither contains nor is orthogonal to \(\hat{p} \), and \(\pi(M) \) has no minimal projections.

Let \(\phi : \mathcal{C}(H) \to \mathcal{B}(K) \) be an irreducible representation of the Calkin algebra. It is faithful because \(\mathcal{C}(H) \) is simple. Therefore \(\phi(\hat{q}) \) neither contains nor is orthogonal to \(\phi(\hat{p}) \), so we can find a unit vector \(v \in K \) in the range of \(\phi(\hat{p}) \) which is neither contained in nor orthogonal to the range of \(\phi(\hat{q}) \). Finally, define \(g(a) = \langle \phi(a)v, v \rangle \) for all \(a \in \mathcal{B}(H) \). This is a pure state on \(\mathcal{B}(H) \) because \(\phi \circ \pi \) is an irreducible representation of \(\mathcal{B}(H) \). It extends \(f \) because, using (1),
\[
g(a) = \langle \phi(a)v, v \rangle = \langle \phi(\hat{a})\phi(\hat{p})v, \phi(\hat{p})v \rangle = \langle \phi(\hat{p}\hat{a}\hat{p})v, v \rangle = (f(a)\phi(\hat{p})v, v) = f(a)
\]
for all \(a \in \mathcal{A} \). Finally, its restriction to \(M \) is not pure because the projection \(q \in M \) has the property that
\[
g(q) = \langle \phi(\hat{q})v, v \rangle
\]
is strictly between 0 and 1, since \(v \) is neither contained in nor orthogonal to the range of \(\phi(\hat{q}) \).

Theorem 0.2. Assume the continuum hypothesis. Then there is a pure state on \(\mathcal{B}(H) \) whose restriction to any masa is not pure.

Proof. Let \((a_{\alpha})\), \(\alpha < \aleph_1 \), enumerate the elements of \(\mathcal{B}(H) \). Since every von Neumann subalgebra of \(\mathcal{B}(H) \) is countably generated, a simple cardinality argument shows that there are only \(\aleph_1 \) such subalgebras. Hence \(\mathcal{B}(H) \) has only \(\aleph_1 \) masas. Let \((M_{\alpha})\), \(\alpha < \aleph_1 \), enumerate the masas of \(\mathcal{B}(H) \).

We now inductively construct a nested transfinite sequence of unital separable \(C^* \)-subalgebras \(A_{\alpha} \) of \(\mathcal{B}(H) \) together with pure states \(f_{\alpha} \) on \(A_{\alpha} \) such that for all \(\alpha < \aleph_1 \)
\[
(1) a_{\alpha} \in A_{\alpha+1}
(2) \text{if } \beta < \alpha \text{ then } f_{\alpha} \text{ restricted to } A_{\beta} \text{ equals } f_{\beta}
(3) A_{\alpha+1} \text{ contains a projection } q_{\alpha} \in M_{\alpha} \text{ such that } 0 < f_{\alpha+1}(q_{\alpha}) < 1.
\]
Begin by letting \(A_0 \) be any separable \(C^* \)-subalgebra of \(\mathcal{B}(H) \) that is unital and contains \(\mathcal{K}(H) \) and let \(f_0 \) be any pure state on \(A_0 \) that annihilates \(\mathcal{K}(H) \). At successor stages, use the lemma to find a projection \(q_{\alpha} \in M_{\alpha} \) and a pure state \(g \) on \(\mathcal{B}(H) \) such that \(g|_{A_{\alpha}} = f_{\alpha} \) and \(0 < g(q_{\alpha}) < 1 \). By (1), Lemma 4) there is a separable \(C^* \)-algebra \(A_{\alpha+1} \subseteq \mathcal{B}(H) \) which contains \(A_{\alpha}, a_{\alpha}, \) and \(q_{\alpha} \) such that the restriction \(f_{\alpha+1} \) of \(g \) to \(A_{\alpha+1} \) is pure. Thus the construction may proceed. At limit ordinals \(\alpha \), let \(A_{\alpha} \) be the closure of \(\bigcup_{\beta < \alpha} A_{\beta} \). The state \(f_{\alpha} \) is determined by the condition \(f_{\alpha}|_{A_{\beta}} = f_{\beta} \), and it is easy to see that \(f_{\alpha} \) must be pure. (If \(g_1 \) and \(g_2 \) are states on \(A_{\alpha} \) such that \(f_{\alpha} = (g_1 + g_2)/2 \), then for all \(\beta < \alpha \) purity of \(f_{\beta} \) implies that \(g_1 \) and \(g_2 \) agree when restricted to \(A_{\beta} \); thus \(g_1 = g_2 \).) This completes the description of the construction.
Now define a state f on $B(H)$ by letting $f|_{A_\alpha} = f_\alpha$. By the reasoning used immediately above, f is pure, and since $0 < f(q_\alpha) < 1$ for all α, the restriction of f to any masa is not pure.

It is interesting to contrast Theorem 0.2 with Theorem 9 of [2], which states that (assuming the continuum hypothesis) any state on $C(H)$ restricts to a pure state on some masa of $C(H)$. This does not conflict with our result because there are many masas of $C(H)$ which do not come from masas of $B(H)$ (regardless of the truth of the continuum hypothesis). Indeed, $B(H)$ has 2^{\aleph_0} masas but $C(H)$ has $2^{2^{\aleph_0}}$ masas. This can be seen by first finding 2^{\aleph_0} mutually orthogonal nonzero projections p_α in $C(H)$ [7], then finding projections $q^{1}_\alpha, q^{2}_\alpha < p_\alpha$ such that $q^{1}_\alpha q^{2}_\alpha \neq q^{2}_\alpha q^{1}_\alpha$ for each α, and finally for each set $S \subseteq 2^{\aleph_0}$ choosing a masa of $C(H)$ that contains $\{q^{1}_\alpha : \alpha \in S\}$ and $\{q^{2}_\alpha : \alpha \notin S\}$. It is easy to see that this produces $2^{2^{\aleph_0}}$ distinct masas.

References

[1] C. Akemann and N. Weaver, Consistency of a counterexample to Naimark’s problem, Proc. Nat. Acad. Sci. USA 101 (2004), 7522-7525.
[2] J. Anderson, Pathology in the Calkin Algebra, J. Operator Theory 2 (1979), 159-167.
[3] ———, Extreme points in sets of positive linear maps on $B(H)$, J. Funct. Anal. 31 (1979), 195-217.
[4] ———, A conjecture concerning the pure states of $B(H)$ and a related theorem, in Topics in Modern Operator Theory, pp. 27-43, Birkhäuser, 1981.
[5] B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. 11 (1972), 39-61.
[6] R. V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383-400.
[7] E. Wofsey, $P(\omega)/\text{fin}$ and projections in the Calkin algebra, manuscript.

Department of Mathematics, University of California, Santa Barbara, CA 93106

Department of Mathematics, Washington University in Saint Louis, Saint Louis, MO 63130

E-mail address: akemann@math.ucsb.edu, nweaver@math.wustl.edu