METHODS OF COMPARATIVE STATICS AND DYNAMICS IN THE THEORY OF ECONOMIC CYCLES

The subject of this work is the problem of describing the dynamic behavior of the price in the market of one product. The typical balance of interaction of supply and demand functions depending on the price is considered. The dynamic model of price evolution is based on the assumption that the demand function at a given time depends on the supply function at all previous points in time, i.e. there is a process with a aftereffect. The core of the integral transformation is a characteristic of the second order, which can initiate periodic regimes in price variables. The aim of the work is to synthesize a mathematical model of price changes in the market of one product and study the stability of its equilibrium states with the manifestation of the structure of marginal cycles. The task of the study is to demonstrate the degree of connection between the problem of stability of equilibrium and the problem of obtaining fruitful results in comparative statics. This duality is the principle of conformity of P. Samuelson. The basic mathematical model of the studied process of price dynamics is a system of two nonlinear differential equations of the first order. The research methods are the nonlinear theory of analysis of dynamical systems, the mathematical theory of stability of systems of differential equations, the conceptual apparatus of analysis of typical bifurcations of birth (death) of the boundary cycle, known as the Andronov-Hopf bifurcation. As a result of a detailed analysis of the properties and parameters of self-oscillating modes, a double cycle is revealed, i.e. there is a fact of coexistence around the equilibrium state of stable and unstable limit cycles. Subsequent mathematical transformations prove that the line of demarcation of these two cycles is completely determined by the static parameters of the studied system, which illustrates the mechanism of action of the principle of conformity of P. Samuelson. Conclusions: on the example of the functioning of the labor market, a comprehensive analysis of the stability of two positive equilibrium states, which characterize the effects of substitution and income. Computer simulations are used to perform computational experiments that demonstrate self-oscillating modes of price changes. As a result of the analysis of the obtained numerical results, it is possible to draw a conclusion about the stability of the limit cycle in the vicinity of the equilibrium state, which corresponds to the substitution effect.

Introduction

In each problem of economic theory, some variables, such as prices and quantities, are unknown, which must be determined. Their values arise as solutions of the given set of relations for finding the necessary unknowns. The most important thing is to conduct the analysis in such a way as to determine what quantitative and qualitative changes occur with our variables when the external data shifts in the functional ratios of economic balance sheets. The usefulness of our approach arises from the fact that with the help of analytical methods we can determine the nature of the evolution of unknown variables caused by the growth of one or more parameters. This is the narrative of the method of comparative statics, which means the study of changes in the economic system in the presence of a transition from one equilibrium to another without taking into account the transition process associated with its establishment. The task of comparative statics is to study the process of determining the equilibrium points of unknown variables with known functional relations and various parameters. Thus, in the simplest market of one product, two independent ratios of supply and demand by their intersection determine the equilibrium prices and volumes.

If we consider the pricing process as dynamic, then the problem of stability of equilibrium states of economic systems and objects comes to the fore. The interaction of these conditions with the problems of comparative statics is the phenomenon which, in connection with the historical tradition, is called the principle of conformity of P. Samuelson. But the problem of stability of the equilibrium state cannot be realized without recourse to the dynamic theory of systems. That is, comparative statistical analysis must be substantiated by dynamic considerations within the synergetic paradigm.

Analysis of previous publications

In the modern economic literature, it is reasonably believed that a significant contribution to the coverage of this issue belongs to the Nobel Laureate in Economics P. Samuelson, which is reflected in a large number of author's publications of the second half of the previous century. The most significant can be considered a series of works [1-3], which formulates the methodological principles of comparative statics and its relationship with the problem of stability of the equilibrium of the microeconomic system. The following development and the corresponding generalizations are reflected in the fundamental monograph [4], which is a classic work on this issue. It should be noted the works of Milgrom, Shannon [5], Sato, Yano [6, 7] and Savvateev, Kukushkin [8], which consider in addition to the ordinal approach to the problem of optimality and the relationship of advantage, the problem of stochastic description of models of comparative dynamics in the further development of methodology Samuelson. From domestic works it is possible to specify works of Alimpiev [9] and Matselyukh [10] who use in the researches the corresponding theoretical device.

As a result of the analysis of the considered works it can be considered that they use linearized mathematical models of economic systems, which do not take into account the cyclical nature of economic development, as well as nonlinearity, no equilibrium and multivariate evolution of complex systems. In addition, it should be noted the actual absence of scientific papers, which
consider the comparative dynamics and mathematical theory of economic cycles from the standpoint of a single formalism.

The aim of the work is to synthesize a mathematical model of price changes in the market of one product and study the stability of its equilibrium states with the manifestation of the structure of marginal cycles.

Research methods are focused on the conceptual apparatus of the theory of nonlinear dynamical systems and the use of the methodology of economic synergetics.

Results of the study.

The presentation of the main research results is focused on establishing a functional relationship between the principle of conformity of Samuelson and the theory of economic cycles. There are many interesting and fruitful aspects of dynamics, which are not always directly related to cyclicality, but important for understanding the processes classified within the general economic theory. The most significant among the various sectors of the dynamics was the one that examines the fluctuations of employment, income and general business activity.

In our time, the use of the terms "exogenous" and "endogenous" has become acceptable for the development of the theory of business cycles. The first term refers to theories that explain the reason for the existence of a cycle in some external non-economic phenomena with quasi-periodic changes that give rise to cyclical behavior of economic quantities. From an analytical point of view, the exogenous theory in its extreme form is similar to "forced" periodic motion, where the economic system reacts instantly to external perturbation.

On the other side is the endogenous theory of the cycle. This category includes various theories that distinguish between monetary factors, inventories, the principle of acceleration, etc. The components of the economic system are determined by dynamic equations that link different time periods with the corresponding generation of periodic fluctuations. If the cycle is realized, then the rise changes to decline, depression changes to recovery, etc. But it is important that purely endogenous theories cannot explain the exact or approximate value of the cycle amplitude other than the influence of the initial conditions. This interpretation of the parameters of the periodic process is characteristic of linear systems. An alternative to this may be to abandon the assumption of linearity, despite the associated certain mathematical difficulties. It is essential to us that only nonlinear systems lead to a theory that explains fluctuations of a fixed amplitude independent of the initial deviation. For example, a nonlinear system may have an unstable equilibrium state such that with a small deviation from the position of the stationary level, increasing oscillations begin. But instead of galloping to infinitude, a constant amplitude is eventually achieved and maintained. This periodic movement can be stable in the sense that each subsequent deviation can lead to a movement that will go to the given periodic mode, either from below or from above. A classic example of such behavior is a nonlinear "web" model of a single product market.

Let’s consider in more detail the dynamic model of interaction of supply and demand in the market of one product. That is, the basic variable is the price of the product \(p = p(t) \), where \(t \) is a continuous time. There are also supply \(D = D(p) \) and demand \(S = S(p) \) functions, depending on the price \(p \).

The dynamics of the interaction of supply and demand functions is determined using the following functional equation:

\[
D(p(t)) = \int_{0}^{\infty} K(t - \tau) S(p(\tau)) d\tau, \quad (1)
\]

where \(K(t - \tau) \) is the given function of two arguments.

Equation (1) means that demand at the appropriate moment depends on the weighted supply for all previous time. The function \(K(t, \tau) \) has the meaning of the weight function "dynamic memory" of previous moments of time and is descending. As a weight function we choose a linear combination of two exponents, which has a representation in operator form:

\[
K(\lambda) = \frac{b_\lambda + b_\alpha}{\lambda^2 + a_\lambda + a_\alpha}. \quad (2)
\]

To ensure normalization conditions \(\int_{0}^{\infty} K(x) dx = 1 \) and equality \(b_\alpha = a_\alpha \) must be fulfilled.

Thus, all coefficients \(a_\alpha, a_\lambda, b_\alpha \) should be considered positive numbers, and the function \(K(\lambda) \) is the operator form of the second-order process. If \(\lambda \) we can consider a differential operator, then (1) will take a form:

\[
\frac{d^2}{dt^2} \left(D(p(t)) \right) + a_\lambda \frac{d}{dt} \left(D(p(t)) \right) + a_\alpha D(p(t)) =
\]

\[
= b_\lambda \frac{d(S(p(t)))}{dt} + a_\alpha S(p(t)). \quad (3)
\]

Functional relation (3) is the basis for building a mathematical model of price changes in the market of one product, if there are explicit expressions for the supply \(S(p) \) and demand \(D(p) \) function.

With respect to the demand function \(D(p) \), we can assume that there is a linear decreasing function of the price argument \(D(p) = d_\alpha - d_\beta p \).

The supply function \(S(p) \) has a specific nonlinear nature of behavior in different price segments of the market and has intervals of growth and decline, which are due to the behavior of sellers (or producers) of goods. We will choose an explicit form in the form of a cubic parabola:

\[
S(p) = -\frac{S_1}{6} p^3 + S_2 \frac{p^2}{2} + S_3 p - S_4, \quad (5)
\]

where parameters \(S_0, S_1, S_2, S_3, S_4 \) are also positive numbers.
Functional equation (3) has stationary solutions that can be determined by the relation:

$$D(p) = S(p).$$

If we use explicit expressions for $S(p)$ and $D(p)$, i.e. formulas (4) and (5), we obtain an algebraic cubic equation with respect to the equilibrium price:

$$S_1 \frac{p^3}{6} - S_2 \frac{p^2}{2} - (S_1 + d_0) p + S_0 + d_0 = 0. \quad (6)$$

Equation (6) can have one or three real solutions depending on the ratios between the coefficients. To further develop the mathematical model of price evolution in the market of one product, it is advisable to introduce a new variable $\tilde{p}(t) = p(t) - p^\star$, which is the deviation of the price from its equilibrium state p^\star. The value p^\star is determined by the cubic formula (6). We also introduce the necessary notation of the derivatives of the supply function at the equilibrium point:

$$S'(p^\star) = -S_1 \frac{p^\star}{2} + S_2 p^\star + S_1,$$

$$S''(p^\star) = -S_1, \quad S''(p^\star) = -S_1.$$

After the necessary transformations of the functional relation (3) taking into account formulas (4), (5), (6) we obtain a nonlinear differential equation of the second order with respect to the variable $\tilde{p}(t)$:

$$\ddot{p} + \left(a_1 + b_1 \cdot \frac{S'}{d_1} \right) \dot{p} + a_0 \left(1 + \frac{S'}{d_1} \right) \dot{p} + a_0 \frac{S''}{d_1} + b_1 \frac{S'}{d_1} \cdot \ddot{p} + + a_0 \frac{S''}{6} + b_1 \frac{S'}{d_1} \cdot \ddot{p} = 0, \quad (7)$$

or

$$\ddot{p} + (a_1 - b_1 \cdot \eta_i) \dot{p} + a_0 (1 - \eta_i) \ddot{p} - a_0 \eta_i \ddot{p}^2 - b_1 \eta_i \cdot \dot{p} \ddot{p} - a_0 \eta_i \frac{S''}{6} - b_1 \eta_i \cdot \ddot{p} = 0. \quad (8)$$

where $\eta_i = -\frac{S'}{d_1}, \quad \eta_2 = -\frac{S'}{d_1}, \quad \eta_3 = -\frac{S''}{d_1}.$

The parameter η_i is essentially the relative elasticity of "supply" to "demand", and η_i and η_j, accordingly, its first and second derivative at price.

$$\begin{cases} \dot{p}_1 = p_1; \\ \dot{p}_2 = a_0 (\eta_i - 1) p_1 + (b_1 \eta_i - a_i) \cdot p_2 + a_0 \eta_i \cdot \frac{p_1^2}{2} + b_1 \eta_i \cdot \dot{p} \cdot \ddot{p} + a_0 \eta_i \cdot \frac{p_1^3}{6} - b_1 \eta_i \cdot \ddot{p}^2 \end{cases} \quad (9)$$

where $\omega = a_0 (1 - \eta_i) > 0.$

With the help of new variables $p_1 = \tilde{p}, \quad p_2 = \dot{\tilde{p}},$ differential equation (8) will be transformed into a system of two first-order differential equations.

Obviously, the state of equilibrium can be both stable and unstable focus. For the existence of a periodic regime such as a limit cycle in the vicinity of the equilibrium state p^\star, it is necessary to check the conditions of Hopf's theorem [11].

At $\mu = 0$ characteristic numbers (11)

$$\lambda_{1,2} = \pm i \omega, \quad \lambda = -1.$$

Let’s find the derivative of equation (11) by parameter μ:

$$2\lambda \frac{d\lambda}{d\mu} - \mu \frac{d\lambda}{d\mu} - \lambda = 0.$$

If $\mu = 0$, then $\frac{d\lambda}{d\mu} = -1 \neq 0$.

This means that in system (9) there may be a limit cycle in the vicinity of the equilibrium state p^\star, which is a composite focus.

Before applying bifurcation formulas to determine the required properties of the limit cycle, it is necessary to bring the system of two differential
The case when \(l_1(0) = 0 \) or \(\eta_1 = \eta^2_1 / (1 - \eta_1) \) is the most interesting in terms of the diversity of the dynamic behavior of the system (9) in the vicinity of the steady state \(p^* \). For further analysis, we need an analytical expression for the second Lyapunov quantity \(l_2(0) \). From [12] we obtain:

\[
l_2(0) = \frac{c_1}{48} \left(2c^2_{n1} - 11c_{n2} \right),
\]

\[
l_2(0) = \frac{b_1\eta_1}{96\omega} \left(\frac{2b^2_1\eta^2_1}{\omega^2} + \frac{11\eta^2_1}{6(1 - \eta_1)} \right).
\]

Suppose that \(l_1 = \nu \) is a small variable in the vicinity of zero. In expression (16) for \(l_1 \) the sign is determined by the parameter \(\eta_1 \). If \(\eta_1 = \frac{S}{d} > 0 \), then \(l_1 > 0 \) for all parameters of the formula (16).

In polar coordinates, there are two independent differential equations for the amplitude \(\rho \) and phase \(\Psi \) of cycles [12]:

\[
\dot{\rho} = \rho \left(\mu + \nu \rho^2 + l_1 \rho^4 \right),
\]

\[
\Psi = \omega.
\]

The positive stationary solutions for the first equation (17) satisfy the biquadratic equation

\[
\mu + \nu \rho^2 + l_1 \rho^4 = 0.
\]

Equation (18) may have zero, one or two positive solutions for the amplitudes of the cycles.

![Fig. 1. Bifurcation diagram of a double cycle](image)

Fig. 1 shows the corresponding bifurcation diagram. The line \(H_1 = \{ (\mu, \nu) : \mu = 0 \} \) refers to a typical bifurcation of the birth (death) of the boundary cycle, known as the Andronov-Hopf bifurcation [12]. The state of equilibrium is stable at \(\mu < 0 \) and unstable for \(\mu > 0 \). If we move along the line \(\mu = 0 \) to the points where \(\nu < 0 \), then on the phase plane from the composite focus of the second order an unstable boundary cycle (rough) will be born, and the focus itself becomes non-rough stable. When we leave, crossing the line \(H^- \), to region 2, a stable boundary cycle is born from a stable composite focus. In region 2, two cycles coexist simultaneously: stable and unstable, which merge and disappear on the line \(T = \{ (\mu, \nu) : \nu^2 = 4l_1\mu, \ \nu < 0 \} \). The \(T \) line
corresponds to the bifurcation of the double cycle. Further in region 3 boundary cycles are absent [13].

Fig. 2 shows the region of coexistence of two boundary cycles.

The outer cycle is unstable and the inner cycle is stable.

Let us return to the relation that ensures the equality of zero of the first Lyapunov quantity, i.e.

\[\eta_1 = \frac{\eta_2}{1-\eta_1}. \] \hspace{1cm} (19)

Using the explicit form \(\eta_1, \eta_2, \eta_3 \), it is easy to obtain:

\[\eta_3 = \frac{-\eta_2 + \eta_1}{1-\eta_1} \] \hspace{1cm} (20)

Given the dependence of all derivatives of the supply function on the equilibrium price \(p^* \), we have a quadratic algebraic equation to find \(p^* \).

\[\left(p - \frac{S_2}{S_3}\right)^2 = \frac{1}{3}\left(S_2^2 + 2(S_2 + d_1)\right). \] \hspace{1cm} (21)

We introduce the following notation \(\frac{S_2}{S_3} = \gamma, \frac{S_1 + d_1}{S_3} = \beta, \frac{S_2 + d_1}{S_3} = \alpha \). In this case, equation (21) is transformed into a form:

\[\left(p - \frac{S_2}{S_3}\right)^2 = \frac{1}{3}(\gamma^2 + 2\beta). \] \hspace{1cm} (22)

and the cubic equation (6) is written in the form.

\[p^3 - 3\gamma p^2 - 6\beta_0 + 6\alpha_0 = 0. \] \hspace{1cm} (23)

Let \(\bar{p} = p - \gamma \). Then (22) and (23) are transformed as follows:

\[\bar{p}^2 = \frac{1}{3}(\gamma^2 + 2\beta); \] \hspace{1cm} (24)

\[\bar{p}^3 - 3(\gamma^2 + 2\beta)\bar{p}^2 + 2(3\alpha - 3\beta_0 - \gamma^3) = 0. \] \hspace{1cm} (25)

From the two equations (24) and (25) it is quite easy to obtain an analytical solution for \(\bar{p} \) and to find the relationship between the positive coefficients \(\alpha, \beta, \gamma \). If we put \(\beta = \gamma^2 \), we get the first root \(\bar{p}_1 = \gamma \) leading to the connection \(\alpha = \frac{8\gamma^3}{3} \), and equation (25) can be factorized as follows:

\[(\bar{p} - \gamma)(\bar{p}^2 + \gamma\bar{p} - 8\gamma^2) = 0. \] \hspace{1cm} (26)

Solutions (26) are:

\[\bar{p}_1 = 2\gamma, \ \bar{p}_{2,3} = \gamma \left(\frac{1 \pm \sqrt{33}}{2}\right). \] \hspace{1cm} (27)

Returning to the variable \(p \), we have.

\[\bar{p}_1 = 2\gamma, \ \bar{p}_{2,3} = \gamma \left(\frac{1 \pm \sqrt{33}}{2}\right). \] \hspace{1cm} (28)

Among the solution (27) there is one negative, i.e. having no economic meaning. This fact can be explained by simple formalisms in the task of the analytical structure of supply and demand functions. Thus, two positive equilibrium states remain for further consideration:

\[\bar{p}_1 < \bar{p}_2, \ \bar{p}_1 < \bar{p}_2. \]

If, for example, the existence of these two stationary prices is interpreted in relation to the labor market, the following remarks should be made. For geometric reasons, it is clear that the supply function changes its behavior depending on the price \(p(t) \) (in this case, the level of wages). At the first stage, wage growth initiates an increase in labor supply (the number of people willing to work increases, labor intensity increases). There is a demonstration of the so-called "substitution effect". The logic of employee behavior is as follows: the higher the price of labor, the more profitable to sell it, reducing dependence on other income. The supply line \(S(p) \), after passing its maximum, changes its bow in the other direction. There is a slow decline in labor supply with a continuous increase in its price, which can be explained by the "income effect". The essence of this phenomenon is that the income received by the employee exceeds the amount needed to meet basic living needs. The demand function \(D(p) \) is a "traditionally" decreasing price function, which gives two positive points of intersection.
of a line D and a parabola S. That is, we have an equilibrium price $p^*_1 = 2\gamma$ that corresponds to the "substitution effect" and a price $p^*_2 = \frac{\gamma(1\pm\sqrt{33})}{2}$, that describes the "income effect".

It is here, analyzing the line separating the two graphical cycles, we found that its description depends entirely on the static parameters of the supply and demand functions. This is a clear connection between the methodology of comparative statics and the stability of nonlinear models of economic dynamics [14, 15].

For a system of two differential equations (12) for parameter values: $c_{20} = \frac{4}{3\gamma}, \ c_{11} = -\gamma \frac{b_1}{\omega}, \ c_{30} = -\frac{1}{9}\gamma^2,$

$c_{21} = \frac{b_1}{\omega}, \ \omega = \gamma, \ S = d_t.$

Computer calculations of transients and phase portraits of the dynamics of price changes at different values of parameters γ and b_1 were performed.

In fig. 3. a, 3.b, 3.c the values of the price, speed of change of the price and dependence of speed of change of the price on the price at parameters $\gamma = \frac{1}{2}, \ b_1 = \frac{8}{5}$ are given.

Fig. 4. a, 4.b, 4.c provide the characteristics of the limit cycle for the parameters $\gamma = \frac{1}{2}, \ b_1 = \frac{16}{5}$.

Fig. 3. a. Price fluctuations

Fig. 3. b. Fluctuations in the speed of price changes

Fig. 4. a. Price fluctuations

Fig. 4. b. Fluctuations in the speed of price changes

Fig. 4. c. Phase portrait of the boundary cycle
The graphical illustrations of self-oscillating modes in the vicinity of the equilibrium state, which corresponds to the substitution effect, demonstrate the stability of the observed two-fold limit cycle at different dynamic parameters.

Conclusions

Rejecting the assumption of linearity, this paper examines in detail the evolution of price changes in the market of one product within the model mechanism of "supply and demand". Using the methodology of stability analysis of nonlinear dynamical systems, the limit cycles around the equilibrium states are identified and their basic characteristics are given. The connection between the existence of double cycles and statistical parameters of equilibrium prices is found. Appropriate computer calculations of self-oscillating modes are made.

In further research, it is advisable to introduce an autonomous component into the demand-side model, which can be a characteristic of seasonal market fluctuations. In this case, the system under study becomes nonstationary, which provides a theoretical opportunity to observe the so-called bifurcations of the doubling of the period and chaotic behavior in price evolution.

References

1. Samuelson, P. (1953), "Price of Factors and Goods in General Equilibrium", Review of Economic Studies, Vol. 21, P. 1-20.
2. Samuelson, P. (1960), "An extension of the Le Chatelier Principle", Econometrica, Vol. 28, P. 368-379.
3. Samuelson, P. (1970), "Classical Orbital Stability Deduced for Discrete-Time Maximum Systems", Western Economic Journal, Vol. 8, P. 110-119.
4. Samuelson, P. (1983), Foundations of Economic Analysis, Enlarged edition, Harvard University Press, 632 p.
5. Milgram, P., Shanon, C. (1994), "Monotone Comparative Statics", Econometrica, Vol. 62, No. 1, P. 157–180.
6. Savateyev, A., Kukushkin, N. (2009), "Ordinal Comparative Statics: Continuous Case" ["Ordinalnaya sravnitelnaya statika: nepryervnyy sluchay"], Ekonomika i matematicheskiye metody, Vol. 45, No. 1, P. 95–98.
7. Sato, K., Yano, M. (2012), "Comparative Dynamics in Stochastic Models with Respect to the L∞ – L∞ Duality: A Differential Approach", Macroeconomic Dynamics, Vol. 16, Issue S1, No. 4, P. 127–138.
8. Yano, M., Sato, K. (2019), "Ergodic chaos for non-expansive economic models", International Journal of Economic Theory. The International Society for Economic Theory, Vol. 15 (3), No. 9, P. 311–320.
9. Alimpiiev, E. (2014), "The model of financial and monetary regulation of the economy has been dynamized" ["Dynamizovannaya model finansovo-monetarnogo reguluvannya ekonomiki"], Efficient economy, No. 5, available at: http://nbuv.gov.ua/URN/efec_2014_5_10 (last accessed: 16.05.2021).
10. Matselyukh, N. (2015), Theoretical and methodological foundations of prices for the market of valuable paperwork [Teoretiko-metodolohichni osnovy tsinoutvorennya na rinku tsinnikh papiriv]: monograph, ANTs GRUP, Kyiv, 324 p.
11. Hassard, B., Wan, Y. (1978), "Bifurcation formulae derived from center manifold theory", Journal of Mathematical Analysis and Applications, Vol. 63, P. 297–312.
12. Bautin, N., Leonovich, E. (1990), Methods and techniques for the qualitative study of dynamic systems on a plane [Metody i priemny kachestvennym isledovaniyu dinamicheskim sistem na ploskosti]: monograph, Nauka, Moscow, 488 p.
13. Voronin, A. (2006), Cycles in problems of nonlinear macroeconomics [Tsikly v zadachakh neelineynoy makroyekonomiki]: monograph, VD "INZhEK", Kharkov, 136 p.
14. Voronin, A., Gunko, O. (2017), "Labor market chaos" ["Khosa na rynke truda"], Infrastruktura rinka, Vol. 6, P. 254–257.
15. Chow, S., Chengzhi, L., Wang, D. (1994), Normal forms and bifurcations of planar vector fields, Cambridge University Press, 416 p.

Received 23.05.2021
МЕТОДИ ПОРІВНЯЛЬНОЇ СТАТИКИ І ДИНАМІКИ У ТЕОРІЇ ЕКОНОМІЧНИХ ЦИКЛІВ

Предметом наданої роботи є проблема опису динамічної поведінки ціни на ринку одного товару. Розглянуто типовий баланс взаємодії функцій попиту та пропозиції у залежності від ціни. Динамічна модель цінової еволюції базується на припущенні, що функція попиту у даному моменті часу залежить від функції пропозиції в усі попередні моменти часу, тобто має місце процес з підслідкою. У якості ядра інтегрального перетворення вібрана характеристика другого порядку, яка може ініціювати періодичні режими у цінових змін. Метою роботи є синтез математичної моделі цінових змін на ринку одного товару та дослідження стійкості її рівноважних станів з виходом структури гранічних циклів. Завданням наступного дослідження є демонстрування ступені зв'язку проблеми стійкості рівноваги з проблемою отримання плідних результатів у порівняльній статистіці. Ця даунліфт та статистична модель відповідної структурній моделі дослідження рівноважного стану, який відповідає ефекту заміщення. Основою математичної моделі досліджуваного процесу цінової динаміки є система двох нелінійних диференціальних рівнянь першого порядку. Методами досліджень є нелінійна теорія аналізу динамічних систем, математична теорія стійкості систем диференціальних рівнянь, поняттійний апарат аналізу типових біфуркацій народження (загибелі) гранічного циклу, відома як біфуркація Андронова-Хопфа. У результаті детального аналізу характеристик властивостей та параметрів автоколивальних режимів виявлений двохразовий цикл, тобто є факт сосучування навколо рівноважного стану устойчивого циклу в околі рівноважного стану, який відповідає ефект адемута синхронізації. Ключові слова: ринок; попит; пропозиція; ціна; динаміка; автоколивання; біфуркація; стійкість; принцип взаємодії.