MAXIMAL SUBGROUPS OF THE MATHIEU GROUP M_{23} AND SYMPLECTIC AUTOMORPHISMS OF SUPERSINGULAR K3 SURFACES

SHIGEYUKI KONDÔ

ABSTRACT. We show that the Mathieu groups M_{22} and M_{11} can act on the supersingular K3 surface with Artin invariant 1 in characteristic 11 as symplectic automorphisms. More generally we show that all maximal subgroups of the Mathieu group M_{23} with three orbits on 24 letters act on a supersingular K3 surface with Artin invariant 1 in a suitable characteristic.

1. INTRODUCTION

Let X be a K3 surface defined over an algebraically closed field. By definition, the irregularity of X vanishes and there exists a unique (up to constants) non-zero regular 2-form on X. An automorphism g of X is called symplectic if g fixes a non-zero regular 2-form on X. In case of complex K3 surfaces, Mukai [M] showed that any finite group of symplectic automorphisms of a K3 surface is a subgroup of the Mathieu group M_{23} with at least five orbits in its natural action on 24 letters. However in case of positive characteristic, this does not hold. For example, the projective unitary group $PU(4, \mathbb{F}_9)$ acts on the Fermat quartic surface in characteristic 3 as projective transformations. By comparing their orders we can see that the group $PU(4, \mathbb{F}_9)$ is not a subgroup of M_{23}. Note that the Fermat quartic surface in characteristic 3 is a supersingular K3 surface with Artin invariant 1 (Shioda [S]). Also Dolgachev and the author [DKo] proved that the group $L_3(4) : 2$ acts on a supersingular K3 surface with Artin invariant 1 in characteristic 2. In this case $L_3(4) : 2$ is not a subgroup of M_{23}, too. Recently Dolgachev and Keum [DKe1], [DKe2] studied the details in case of positive characteristic. In particular they are trying to extend Mukai’s theorem to the case of positive characteristic.

In this note, inspired by Dolgachev and Keum [DKe2], we shall show that each maximal subgroup of M_{23} with three orbits on 24 letters can act as automorphisms on a supersingular K3 surface with Artin invariant 1 by using Ogus’s Torelli type theorem for supersingular K3 surfaces (Ogus [O1], [O2]) (see Theorem 3.1). The simpleness of M_{22} and M_{11} imply that these actions are symplectic (Corollary 3.3). The idea of the proof comes from Mukai’s one in the appendix of [K]. Let N be the Niemeier lattice with root sublattice A_24^1. Here we consider the negative definite one as N. The Mathieu group M_{24} naturally acts on the set of 24 positive roots of A_24^1 as permutations and M_{23} is the stabilizer of a fixed positive root. Let G be a maximal subgroup of M_{23} with 3 orbits on 24 letters. We can consider G as a subgroup of the orthogonal group of N. Let N^G be the invariant sublattice. Then by assumption N^G is of rank 3, and hence the orthogonal complement N_G of N^G in N is an even negative definite lattice of rank 21 and N_G contains no (-2)-vectors. We can see that there exists an even positive definite lattice $<h>$ of rank 1 such that $<h> \oplus N_G$ can be embedded into the Néron-Severi lattice S_X of a supersingular K3 surface X with Artin invariant 1 in a suitable characteristic p. The action of G on N_G can be extended to the one on S_X acting trivially on $<h>$.

Research of the author is partially supported by Grant-in-Aid for Scientific Research A-14204001 and Hoga-17654004, Japan.
Since N_G contains no (-2)-vectors, we may assume that G preserves the ample cone of X. Moreover G acts trivially on $N_G^*/N_G \cong (N^G)^*/N^G$ and hence acts trivially on S_X^*/S_X. This implies that G preserves the "period" of X. Therefore it follows from Ogus’s Torelli theorem [O2] that G is realized as a subgroup of $\text{Aut}(X)$.

We use the following symbols of finite groups in this paper:

- n: a cyclic group of order n.
- n^k: an n-elementary abelian group of order n^k.
- $S_n (A_n)$: a symmetric (alternating) group of degree n.
- $L_n(q)$: the projective special linear group $\text{PSL}(n,q)$.
- $M_k (k=11,12,22,23,24)$: the Mathieu group.

We shall say that a group G is a group $N \cdot H$ when we mean that G has a normal subgroup N whose quotient is isomorphic to H. We denote by $N : H$ the semi-direct product.

Acknowledgments. The author thanks to JongHae Keum for stimulating discussions.

2. LATTICES

2.1. Preliminaries. A lattice is a a free \mathbb{Z}-module L of finite rank endowed with a \mathbb{Z}-valued symmetric bilinear form $\langle \cdot, \cdot \rangle$. If L_1 and L_2 are lattices, then $L_1 \oplus L_2$ denotes the orthogonal direct sum of L_1 and L_2. Also we denote by L^m the orthogonal direct sum of m-copies of L. An isomorphism of lattices preserving the bilinear forms is called an isometry. For a lattice L, we denote by $O(L)$ the group of self-isometries of L. A sublattice S of L is called primitive if L/S is torsion free.

A lattice L is even if $\langle x, x \rangle$ is even for each $x \in L$. A lattice L is non-degenerate if the discriminant $d(L)$ of its bilinear form is non zero, and unimodular if $d(L) = \pm 1$. If L is a non-degenerate lattice, the signature of L is a pair (t_+, t_-) where t_\pm denotes the multiplicity of the eigenvalues ± 1 for the quadratic form on $L \otimes \mathbb{R}$.

Let L be a non-degenerate even lattice. The bilinear form of L determines a canonical embedding $L \subset L^* = \text{Hom}(L, \mathbb{Z})$. The factor group L^*/L, which is denoted by A_L, is an abelian group of order $|d(L)|$. We denote by $l(L)$ the number of minimal generators of A_L. We extend the bilinear form on L to the one on L^*, taking value in \mathbb{Q}, and define

$$q_L : A_L \to \mathbb{Q}/2\mathbb{Z}, \quad q_L(x + L) = \langle x, x \rangle + 2\mathbb{Z} \quad (x \in L^*)$$

We call q_L the discriminant quadratic form of L.

Let S be an even lattice. Let L be an even lattice containing S as a sublattice of finite index. We call L an overlattice of S. Note that L is determined by the isotropic subgroup L/S in A_S with respect to q_S.

We denote by U the even lattice defined by the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and by A_m, D_n or E_l the even negative definite lattice defined by the Dynkin matrix of type A_m, D_n or E_l respectively.
2.2. The Néron-Severi lattice of a supersingular $K3$ surface. A supersingular $K3$ surface is a $K3$ surface with the Picard number 22. A supersingular $K3$ surface exists only in positive characteristic p. Let X be a supersingular $K3$ surface in characteristic p and let S_X be the Néron-Severi lattice of X. It is known that $\det(S_X) = -p^{2\sigma}$, $(1 \leq \sigma \leq 10)$ where the number σ is called Artin invariant of X (Artin [A]). A generic supersingular $K3$ surface has Artin invariant 10 and a supersingular $K3$ surface with $\sigma = 1$ is unique. Moreover the Néron-Severi lattice $S = S_X$ is uniquely determined by σ (Rudakov-Shafarevich [RS], Ogus [O1]). For example,

$$S = U \oplus E_8 \oplus A_6 \oplus A_6 \quad (p = 7, \sigma = 1);$$

$$S = U \oplus A_{10} \oplus A_{10} \quad (p = 11, \sigma = 1).$$

In case $p = 5$ and $\sigma = 1$, S is obtained as follows. Let $K = U \oplus E_7 \oplus A_4 \oplus A_9$. Then $K^*/K \cong (\mathbb{Z}/5\mathbb{Z})^2 \oplus (\mathbb{Z}/2\mathbb{Z})^2$. Let x be a generator of E_7^*/E_7 and y a generator of A_9^*/A_9. Then $q_S(x) = 1/2$ and $q_S(5y) = -1/2$. The isotropic vector $x + y$ of K^*/K determines an even lattice S which contains K of index 2 and is with $\det(S) = -5^2$.

The discriminant form of the above S is as follows:

$$\langle A_S, q_S \rangle = ((\mathbb{Z}/5\mathbb{Z})^2, (-2/5) \oplus (-6/5)) \quad (p = 5, \sigma = 1);$$

$$\langle A_S, q_S \rangle = ((\mathbb{Z}/7\mathbb{Z})^2, (-6/7) \oplus (-6/7)) \quad (p = 7, \sigma = 1);$$

$$\langle A_S, q_S \rangle = ((\mathbb{Z}/11\mathbb{Z})^2, (-10/11) \oplus (-10/11)) \quad (p = 11, \sigma = 1).$$

2.3. Niemeier lattices and Mathieu groups. A Niemeier lattice is an even negative definite unimodular lattice of rank 24. The isomorphism class of a Niemeier lattice is determined by the sublattice R generated by all (-2)-vectors in it. It is known that there exists a Niemeier lattice N with $R = A_{24}^1$. Moreover the orthogonal group $O(N)$ is isomorphic to $2^{24} : M_{24}$. The subgroup 2^{24} is generated by reflections associated to 24 positive roots in A_{24}^1 and M_{24} naturally acts on the set of 24 positive roots of A_{24}^1. Then M_{24} is the stabilizer of a fixed positive root. The following is the table of all maximal subgroups of M_{23} ([C], page 71, [CS], Chap. 10).

Maximal subgroup	Order	Orbit Decomposition
1) M_{22}	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$	[1, 1, 22]
2) $L_3(4) : 2$	$2^7 \cdot 3^2 \cdot 5 \cdot 7$	[1, 2, 21]
3) $2^4 : A_7$	$2^7 \cdot 3^2 \cdot 5 \cdot 7$	[1, 7, 16]
4) A_8	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	[1, 8, 15]
5) M_{11}	$2^4 \cdot 3^2 \cdot 5 \cdot 11$	[1, 11, 12]
6) $2^4 : (3 \times A_5) : 2$	$2^7 \cdot 3^2 \cdot 5$	[1, 3, 20]
7) $23 : 11$	$11 \cdot 23$	[1, 23]

Table 1.
2.4. Remark. The group $L_3(4) : 2$ in the Table 1 is different from the one mentioned in Introduction which appeared in the paper [DKo]. In the case of Table 1, the involution 2 is 2_2 given in [C], page 71, and in the case of [DKo], the involution 2 is 2_1 given in [C], page 80.

We recall that the Niemeier lattice N is obtained from A_1^{24} as follows. Let C be the binary Golay code which is a subspace of $(A_1^*/A_1)^{24} \cong \mathbb{F}_2^{24}$ of dimension 12. Then

$$N = \{ x \in (A_1^*)^{24} \mid x \text{ mod } A_1^{24} \in C \}.$$

It is known that the length of non-zero entries of $x \in C$ is 8, 12, 16 or 24. The set of non-zero entries of length 8 is called an octad and one of length 12 a dodecad. In the case 3 on the Table 1, the union of orbits of length 1 and 7 is an octad. Also in case 4, the orbit of length 8 is an octad. In case 5, the orbit of length 12 and its complement are dodecad. For more details, we refer the reader to Conway-Sloane [CS].

3. Wild symplectic automorphisms

In this section we shall prove the following:

3.1. Theorem. Let G be a maximal subgroup of M_{23} with three orbits. Then there exists a prime number p such that G acts as automorphisms on a supersingular $K3$ surface with Artin invariant 1 in characteristic p.

First we shall show the following Lemma.

3.2. Lemma. Let G be a maximal subgroup of M_{23} with three orbits. Then there exists a prime number p such that G acts on the Néron-Severi lattice S of a supersingular $K3$ surface with Artin invariant 1 in characteristic p. Moreover G acts trivially on S^*/S and the orthogonal complement of the invariant sublattice S^G in S contains no (-2)-vectors.

Proof. Let N be the Niemeier lattice with the root sublattice A_1^{24} on which M_{23} naturally acts. Let N^G be the invariant sublattice. Since G has three orbits, $\text{rank}(N^G) = 3$. Let N_G be the orthogonal complement of N^G in N. Then $\text{rank}(N_G) = 21$. For each G in the Table 1, we shall show the following: First we calculate the discriminant forms $q_{N_G} = -q_{N^G}$. Next we take a vector h with $h^2 = |\text{det}(N_G)|$ and consider the lattice $< h > \oplus N_G$. Then we shall show that there exists an over lattice S of $< h > \oplus N_G$ which is isomorphic to the Néron-Severi lattice of a supersingular $K3$ surface X. Moreover the action of G on N_G can be extended to the one on S acting trivially on $< h >$. Since G acts on $< h >^* / < h > \oplus N_G^*/N_G$ trivially, G acts on S^*/S trivially.

Note that N contains exactly 24 positive roots ((-2)-vectors) and G acts on the set of positive roots as permutations. Hence N_G contains no (-2)-vectors.

In the following we denote by $\{ x_1, \ldots, x_{24} \}$ the set of positive roots of A_1^{24}.

Case 1: $G = M_{22}$.

We assume that $x_1, x_2, x_3 + \cdots + x_{24}$ are invariant under the action of G. Then N^G is generated by $x_1, x_2, x_3 + \cdots + x_{24}$ and $(x_1 + x_2 + x_3 + \cdots + x_{24})/2$. Hence $\text{det}(N^G) = 2 \cdot 2 \cdot 44/2^2 = 44$. By using Nikulin [N1], Proposition 1.5.1, we can easily see that $q_{N_G} = (5/4) \oplus (-4/11)$. Hence $q_{N_G} = (5/4) \oplus (4/11)$ (Nikulin [N1], Corollary 1.6.2). Take a vector h with $h^2 = 44$. Consider the subgroup H of order 4 in $< h >^* / < h > \oplus N_G^*/N_G$ generated by $h/4 + \theta$, where θ is a generator of 2-Sylow subgroup of N_G^*/N_G. Since H is totally isotropic with respect to $q_{h^2} \oplus q_{N_G}$, it determines the overlattice S with the discriminant form $q_S = (10/11) \oplus (10/11)$ (Nikulin [N1],}
Case 2: $G = L_3(4) : 2$.

We assume that $x_1, x_2 + x_3, x_4 + \cdots + x_{24}$ are invariant under the action of G. Then N^G is generated by $x_1, x_2 + x_3, x_4 + \cdots + x_{24}$ and $(x_1 + x_2 + x_3 + \cdots + x_{24})/2$. Hence $\det(N^G) = 2 \cdot 2^2 \cdot 42/2^2 = 84$ and $q_{N^G} = (-3/4) \oplus (-2/3) \oplus (-6/7)$. Hence $q_{N_G} = (3/4) \oplus (2/3) \oplus (6/7)$. Take a vector h with $h^2 = 84$. We consider the totally isotropic subspace H of order 12 generated by $h/12 + \theta$ where θ is a generator of the subgroup of order 12 in N_G^*/N_G. Then as in the Case 1, H determines the overlattice S isomorphic to the Néron-Severi lattice of a supersingular $K3$ surface with Artin invariant 1 in characteristic 7.

Case 3: $G = 2^4 : A_7$.

We assume that $x_1, x_2 + \cdots + x_8, x_9 + \cdots + x_{24}$ are invariant under the action of G. Then N^G is generated by $x_1, x_2 + \cdots + x_8, x_9 + \cdots + x_{24}, (x_1 + x_2 + x_3 + \cdots + x_{24})/2$ and $(x_2 + \cdots + x_9)/2$. Hence $\det(N^G) = 2 \cdot 14 \cdot 32/2^4 = 56$ and $q_{N^G} = (-1/8) \oplus (-2/7)$. Hence $q_{N_G} = (1/8) \oplus (2/7)$. Take a vector h with $h^2 = 56$. We consider the totally isotropic subspace H of order 8 generated by $h/8 + \theta$ where θ is a generator of the 2-Sylow subgroup of order 8 in N_G^*/N_G. Then as in the Case 1, H determines the overlattice S isomorphic to the Néron-Severi lattice of a supersingular $K3$ surface with Artin invariant 1 in characteristic 7.

Case 4: $G = A_8$.

We assume that $x_1, x_2 + \cdots + x_9, x_{10} + \cdots + x_{24}$ are invariant under the action of G. Then N^G is generated by $x_1, x_2 + \cdots + x_9, x_{10} + \cdots + x_{24}, (x_1 + x_2 + x_3 + \cdots + x_{24})/2$ and $(x_2 + \cdots + x_9)/2$. Hence $\det(N^G) = 2 \cdot 16 \cdot 30/2^4 = 60$ and $q_{N^G} = (-1/4) \oplus (-4/3) \oplus (-6/5)$. Hence $q_{N_G} = (1/4) \oplus (4/3) \oplus (6/5)$. Take a vector h with $h^2 = 60$. We consider the totally isotropic subspace H of order 12 generated by $h/12 + \theta$ where θ is a generator of the subgroup of order 12 in N_G^*/N_G. Then as in the Case 1, H determines the overlattice S isomorphic to the Néron-Severi lattice of a supersingular $K3$ surface with Artin invariant 1 in characteristic 5.

Case 5: $G = M_{11}$.

We assume that $x_1, x_2 + \cdots + x_{12}, x_{13} + \cdots + x_{24}$ are invariant under the action of G. Then N^G is generated by $x_1, x_2 + \cdots + x_{12}, x_{13} + \cdots + x_{24}, (x_1 + x_2 + x_3 + \cdots + x_{24})/2$ and $(x_2 + \cdots + x_{12})/2$. Hence $\det(N^G) = 2 \cdot 22 \cdot 24/2^4 = 66$ and $q_{N^G} = (-3/2) \oplus (-2/3) \oplus (-2/11)$. Hence $q_{N_G} = (3/2) \oplus (2/3) \oplus (2/11)$. Take a vector h with $h^2 = 66$. We consider the totally isotropic subspace H of order 6 generated by $h/6 + \theta$ where θ is a generator of the subgroup of order 6 in N_G^*/N_G. Then as in the Case 1, H determines the overlattice S isomorphic to the Néron-Severi lattice of a supersingular $K3$ surface with Artin invariant 1 in characteristic 11.

Case 6: $G = 2^4 : (3 \times A_5) : 2$.

We assume that $x_1, x_2 + x_3 + x_4, x_5 + \cdots + x_{24}$ are invariant under the action of G. Then N^G is generated by $x_1, x_2 + x_3 + x_4, x_5 + \cdots + x_{24}$ and $(x_1 + x_2 + x_3 + \cdots + x_{24})/2$. Hence $\det(N^G) = 2 \cdot 6 \cdot 40/2^2 = 120$ and $q_{N^G} = (-9/8) \oplus (-2/3) \oplus (-5/8)$. Hence $q_{N_G} = (9/8) \oplus (2/3) \oplus (8/5)$. Take a vector h with $h^2 = 120$. We consider the totally isotropic subspace H of order 24 generated by $h/24 + \theta$ where θ is a generator of the subgroup of order 24 in N_G^*/N_G. Then as in the Case 1, H determines the overlattice S isomorphic to the Néron-Severi lattice of a supersingular $K3$ surface with Artin invariant 1 in characteristic 5.
Proof. (Theorem 3.1) Let G and S be as in Lemma 3.2. Let X be the supersingular $K3$ surface with Artin invariant 1 in characteristic p satisfying $S_X \cong S$. Since N_G contains no (-2)-vectors, h is contained in a fundamental chamber of the reflection subgroup $W(X)$ of $O(S_X)$ generated by (-2)-reflections. Hence there exists a $w \in W(X)$ so that $w(h)$ is an ample class. Thus wGw^{-1} preserves the ample cone of X. Since both G and $W(X)$ act trivially on S^*/S, so is wGw^{-1}, and hence wGw^{-1} preserves the characteristic subspace ("Period") of X (see Ogus [O2], page 366). Now the assertion follows from Ogus [O2], Corollary of Theorem II' (page 371).

3.3. Corollary. The Mathieu groups M_{22}, M_{11} and the alternating group A_8 act as symplectic automorphisms on a supersingular $K3$ surface with Artin invariant 1.

Proof. Since automorphisms act on a regular 2-form on a $K3$ surface as a multiplicative group, the symplecticness follows from the simpleness of M_{22}, M_{11}, A_8.

We summarize the prime number p and the degree h^2 of the invariant polarization h under G in the following Table 2:

G	p	h^2
1) M_{22}	11	44
2) $L_3(4):2$	7	84
3) $2^4:A_7$	7	56
4) A_8	5	60
5) M_{11}	11	66
6) $2^4:(3\times A_5):2$	5	120

Table 2.

It would be interesting to realize these actions geometrically.

3.4. Problem. Let g be an automorphism of a $K3$ surface X. In case that X is a complex $K3$ surface, if g is symplectic, then g acts trivially on the transcendental lattice of X and hence trivially on the discriminant group S^*_X/S_X of the Néron-Severi lattice of X (Nikulin [N2], Theorem 3.1). Moreover if G is a finite group of symplectic automorphisms of a complex $K3$ surface X, denote by L_G the orthogonal complement of the invariant sublattice of $H^2(X, \mathbb{Z})$. Then

$$l(L_G) \leq 22 - \text{rank}(L_G)$$

where $l(L_G)$ is the number of minimal generator of L^*_G/L_G ([K], Proposition 2). This means that if G becomes bigger, then L_G becomes bigger, too, and hence $l(L_G)$ becomes smaller.

In case of positive characteristic, does any symplectic automorphism of a supersingular $K3$ surface act trivially on the discriminant group of the Néron-Severi lattice A_8? And if G becomes bigger, then does the Artin invariant become smaller?
REFERENCES

[A] M. Artin, *Supersingular K3 surfaces*, Ann. Sci. Éc. Norm. Sup., 7 (1974), 543–568.

[C] J. H. Conway et. al, *Atlas of Finite Groups*, Oxford Univ. Press, Oxford, 1985.

[CS] J. H. Conway, N. J. A. Sloane, *Sphere packings, lattices and groups*, Grundlehen Math. Wiss. Bd 290, 3rd ed., Springer-Verlag, Berlin, Heidelberg, New York 1999).

[DKe1] I. Dolgachev, J. Keum, *Wild p-cyclic actions on K3 surfaces*, J. Algebraic Geometry 10(2001), 101–131.

[DKe2] I. Dolgachev, J. Keum, *Finite groups of symplectic automorphisms of K3 surfaces in positive characteristic*, math.AG/0403478.

[DKo] I. Dolgachev, S. Kondō, *A supersingular K3 surface in characteristic 2 and the Leech lattice*, Int. Math. Res. Notices 2003 (2003), 1–23.

[K] S. Kondō, *Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces (with an Appendix by Shigeru Mukai)*, Duke Math. J. 92(1998), 593–603.

[M] S. Mukai, *Finite groups of automorphisms of K3 surfaces and the Mathieu group*, Invent. Math., 94 (1988), 183–221.

[N1] V. V. Nikulin, *Integral symmetric bilinear forms and its applications*, Math. USSR Izv., 14 (1980), 103–167.

[N2] V. V. Nikulin, *Finite automorphism groups of Kahler K3 surfaces*, Trans. Moscow Math. Soc., 38 (1980), 71–135.

[O1] A. Ogus, *Supersingular K3 crystals*, Astérisque 64 (1979), 3-86.

[O2] A. Ogus, *Crystalline Torelli theorem for supersingular K3 surfaces*, in ”Arithmetic and Geometry”, papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday, Vol. II, pp 361–394, Birkhäuser 1983.

[RS] A. Rudakov, I. Shafarevich, *Surfaces of type K3 over fields of finite characteristic*, Ito gi Nauki Tekh, Ser. Sovrem Problems Mat. 18 (1981), 115–207

[S] T. Shioda, *Supersingular K3 surfaces*, Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen 1978), pp 564–591, Lecture Notes in Math., 732 Springer, Berlin 1979.

March 8, 2022

Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan

E-mail address: kondo@math.nagoya-u.ac.jp