Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser\(^{157}\) phosphorylation on thrombin-induced platelet aggregation

Dong-Ha Lee\(^1\), Hyun-Jeong Cho\(^2\), Hyun-Hong Kim\(^1\), Man Hee Rhee\(^3\), Jin-Hyeob Ryu\(^{1,1}\), and Hwa-Jin Park\(^{1,*}\)

\(^1\)Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University, Gimhae 621-749, Korea
\(^2\)Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 302-718, Korea
\(^3\)Laboratory of Veterinary Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea

Edited by Jong-Hoon Kim, Chonbuk National University, Korea

In this study, we have investigated the effects of total saponin from Korean red ginseng (TSKRG) on thrombin-induced platelet aggregation. TSKRG dose-dependently inhibited thrombin-induced platelet aggregation with IC\(_{50}\) value of about 81.1 \(\mu\)g/mL. In addition, TSKRG dose-dependently decreased thrombin-elevated the level of cytosolic-free \(\text{Ca}^{2+}\) one of aggregation-inducing molecules. Of two \(\text{Ca}^{2+}\)-antagonistic cyclic nucleotides as aggregation-inhibiting molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), TSKRG significantly dose-dependently elevated intracellular level of cAMP, but not cGMP. In addition, TSKRG dose-dependently inhibited thrombin-elevated adenosine triphosphate (ATP) release from platelets. These results suggest that the suppression of \([\text{Ca}^{2+}]\) elevation, and of ATP release by TSKRG are associated with upregulation of cAMP. TSKRG elevated the phosphorylation of vasodilator-stimulated phosphoprotein (VASP)-Ser\(^{157}\), a cAMP-dependent protein kinase (A-kinase) substrate, but not the phosphorylation of VASP-Ser\(^{239}\), a cGMP-dependent protein kinase substrate, in thrombin-activated platelets. We demonstrate that TSKRG involves in increase of cAMP level and subsequent elevation of VASP-Ser\(^{157}\) phosphorylation through A-kinase activation to inhibit [Ca\(^{2+}\)] mobilization and ATP release in thrombin-induced platelet aggregation. These results strongly indicate that TSKRG is a beneficial herbal substance elevating cAMP level in thrombin-platelet interaction, which may result in preventing of platelet aggregation-mediated thrombotic diseases.

Keywords: Panax ginseng, Cytosolic-free \(\text{Ca}^{2+}\), Cyclic adenosine monophosphate, Adenosine triphosphate release, Vasodilator-stimulated phosphoprotein

INTRODUCTION

Platelet aggregation is essential for normal haemostatic process when blood vessels are injured. However, it can also cause cardiovascular disease such as thrombosis, atherosclerosis and myocardial infarction [1]. Hence,
inhibition of platelet aggregation might be a promising
target to the development of anti-thrombotic drugs and an
approach for the prevention of cardiovascular disease.
When platelets are activated by agonists such as collagen,
thrombin, and adenosine diphosphate, phosphatidylinosi-
tol 4, 5-bisphosphate (PIP\textsubscript{2}) is broken down by phospho-
lipase C which is activated through G-protein coupled
receptor or glycoprotein VI. At this time, diacylglycerol
and inositol-1,4,5-trisphosphate (IP\textsubscript{3}) are generated from
PIP\textsubscript{2} \cite{2,3}. IP\textsubscript{3} mobilizes Ca2+ from dense tubular system
into cytoplasm. Ca2+/calmodulin complex activates myo-
sin light chain kinase, which in turn phosphorylates the
myosin light chain to activate platelets \cite{4,5}. On the other
hand, both intracellular cyscylic adenosine monophosphate
(cAMP) and cyclic guanosine monophosphate (cGMP)
as anti-platelet regulators decrease the cytosolic-free Ca2+ ([Ca2+], an essential factor for platelet aggregation.
Therefore, inhibition of [Ca2+], or increase of cAMP and
cGMP is very useful to evaluate an antiplatelet effect of
any substance or compound. It is known that the effects
of cAMP and cGMP in platelets are mediated via cAMP- and
cGMP-dependent protein kinases (A-kinase and G-
kinase), which phosphorylate substrate protein IP\textsubscript{3} receptor
and vasodilator-stimulated phosphoprotein (VASP) [6-8]. IP\textsubscript{3} receptor phosphorylation involves in inhibition of [Ca2+], mobilization [9,10], and VASP phosphorylation involves in inhibition of VASP affinity for contractile protein filamentous actin [11] to inhibit platelet aggregation.
VASP is composed of 46 kDa-dephosphoprotein
and 50 kDa-phosphoprotein \cite{7}. If VASP is phosphory-
lated by A-kinase or G-kinase, phosphorylation of VASP
(p-VASP) shifts from 46 kDa-dephosphoprotein to 50
kDa-phosphoprotein \cite{6,7}. Ser157 at 50 kDa of VASP is
phosphorylated by cAMP/A-kinase pathway, on the other
hand, Ser239 at 50 kDa of VASP is phosphorylated by
cGMP/G-kinase pathway \cite{12,13}. Therefore, phosphory-
lations of Ser157 or Ser239 at 50 kDa of VASP are useful
indicators for monitoring cAMP/A-kinase and cGMP/G-
kinase pathways.

Ginseng, the root of Panax ginseng Meyer, has been
used frequently in traditional oriental medicine, and is
known to have various pharmacological activities such as
anti-inflammatory action, anti-oxidation, antitumor,
anti-diabetes, and anti-hepatotoxicity \cite{14,15}. In recent, it
is reported that Korean red ginseng has an effect on car-
diovascular disease, which is characterized with regard
to reduction of blood pressure and arterial stiffness by in-
hibition of Rho kinase \cite{16}, anti-coagulation by prolong
of prothrombin time and activated partial thromboplastin
time \cite{17}, endothelium relaxation by nitric oxide-cGMP
pathway \cite{18}, and inhibition of hypercholesterolemia-
induced platelet aggregation \cite{19}. In our previous report,
we demonstrated that total saponin from Korean red gin-
seng (TSKRG) is a beneficial traditional oriental medi-
cine in platelet-mediated thrombotic disease via suppres-
sion of cyclooxygenase-1 (COX-1) and TXA\textsubscript{2} synthase
(TXAS) to inhibit production of TXA\textsubscript{2} \cite{20}. As described
above, since TXA\textsubscript{2} is produced when [Ca2+], level is
increased by agonists, TSKRG that decreases TXA\textsubscript{2}
production must decline [Ca2+], level to have antiplatelet
effect. In this study, we investigated whether TSKRG
reduces thrombin-elevated [Ca2+], level, increases Ca2+-
antagonistic cAMP and cGMP level, stimulates the p-
VASP, and inhibits the release of ATP, a cAMP precursor,
to evaluate antiplatelet effect of TSKRG.

MATERIALS AND METHODS

Materials

TSKRG was obtained from R&D Headquarter, Korea
Ginseng Corporation (Daejeon, Korea). Thrombin was
purchased from Chrono-Log Corporation (Havertown,
PA, USA). cAMP and cGMP enzyme immunoassay
(ELA) kits were purchased from GE Healthcare
(Buckinghamshire, UK). Fura 2-AM, and other reagents were
obtained from Sigma Chemical Co. (St. Louis, MO,
USA). ATP assay kit is purchased from Biomedical Research
Service Center (Buffalo, NY, USA). Anti-VASP,
anti-phosphor-VASP (Ser157), anti-phosphor-VASP
(Ser239), and anti-rabbit IgG-horseradish peroxidase
conjugate (HRP) or anti-goat IgG-HRP were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Polyvinylidene difluoride (PVDF) membrane was from
GE Healthcare (Piscataway, NJ, USA). Enhanced chemi-
oluminesence solution (ECL) was from GE Healthcare.

Preparation of washed rat platelets

Blood was collected from Sprague-Dawley rats (6 to
7 weeks old, male), and anti-coagulated with acid-
citrate-dextrose solution (0.8% citric acid, 2.2% sodium
citrate, 2.45% glucose). Platelet-rich plasma (PRP) was
centrifuged at 125 xg for 10 min to remove red blood
cells, and the platelets were washed twice with washing
buffer (138 mM NaCl, 2.7 mM KCl, 12 mM NaHCO\textsubscript{3},
0.36 mM Na\textsubscript{2}HPO\textsubscript{4}, 5.5 mM glucose, and 1 mM EDTA,
pH 6.9). The washed platelets were then resuspended in
suspension buffer (138 mM NaCl, 2.7 mM KCl, 12 mM
NaHCO\textsubscript{3}, 0.36 mM Na\textsubscript{2}HPO\textsubscript{4}, 0.49 mM MgCl\textsubscript{2},
5.5 mM glucose, 0.25% gelatin, pH 7.4) to a final concentration
of 5x105/mL. All of the above procedures were carried
Measurement of platelet aggregation
Washed platelets (10^7/mL) were preincubated for 3 min at 37°C in the presence of 2 mM exogenous CaCl₂ with or without TSKRG, then stimulated with thrombin (0.5 U/mL) for 5 min. Aggregation was monitored using an aggregometer (Chrono-Log Corporation) at a constant stirring speed of 1,000 rpm. Each aggregation rate was calculated as an increase in light transmission. The suspension buffer was used as the reference (transmission 0). TSKRG was dissolved in distilled water.

Determination of cytosolic-free Ca²⁺
PRP was incubated with 5 μM fura 2-AM at 37°C for 60 min. Because fura 2-AM is light sensitive, the tube containing the PRP was covered with aluminum foil during loading. The fura 2-loaded washed platelets were prepared using the procedure described above and platelets 10^7/mL were preincubated for 3 min at 37°C with or without various concentrations of TSKRG in the presence of 2 mM CaCl₂, then stimulated with thrombin (0.5 U/mL) for 5 min for evaluation of [Ca²⁺]. Fura 2 fluorescence was measured with a spectrofluorometer (SFM 25; Bio-Teck Instrument, Milan, Italy) with an excitation wavelength that was changed every 0.5 s from 340 to 380 nm; the emission wavelength was set at 510 nm. The [Ca²⁺] values were calculated using the method of Schaeffer [21].

Measurement of cyclic adenosine monophosphate and cyclic guanosine monophosphate
Washed platelets (10^7/mL) were preincubated for 3 min at 37°C with or without various concentrations of TSKRG in the presence of 2 mM CaCl₂, then stimulated with thrombin (0.5 U/mL) for 5 min for platelet aggregation. The aggregation was terminated by the addition of 80% ice-cold ethanol. cAMP and cGMP were measured with Synergy HT Multi-Mode Microplate Reader (BioTek Instruments, Winooski, VT, USA) using cAMP and cGMP EIA kits.

Determination of adenosine triphosphate release
Washed platelets (10^7/mL) were preincubated for 3 min at 37°C with or without various concentrations of TSKRG in the presence of 2 mM CaCl₂, then stimulated with thrombin (0.5 U/mL). The reaction was terminated by the addition of ice-cold 2mM EDTA, the samples were centrifuged and supernatants were used for the assay of ATP release from dense body. ATP release was measured in a luminometer (BioTek Instruments) using an ATP assay kit.

Western blot for analysis of vasodilator-stimulated phosphoprotein phosphorylation
Platelet lysates containing the same protein (15 μg) were used for analysis. Protein concentrations were measured using bicinchoninic acid protein assay kit (Pierce Biotechnology, Rockford, IL, USA). An 8% to 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used for electrophoresis and a PVDF membrane was used for protein transfer from the gel. The dilutions for anti-VASP, anti-phospho-VASP (Ser239), anti-phospho-VASP (Ser388), and anti-rabbit IgG-HRP were 1:1,000, 1:1,000, 1:1,000, and 1:10,000, respectively. The membranes were visualized using ECL. Blots were analyzed by using the Quantity One ver. 4.5 (Bio-Rad, Hercules, CA, USA).

Analysis of ginsenosides in total saponin from Korean red ginseng with HPLC-evaporative light scattering detection
TSKRG was dissolved with 100% methanol and then analyzed by HPLC [22,23]. An Dionex-Ultimate 3000 series HPLC apparatus (Dionex, Sunnyvale, CA, USA), equipped with vacuum degaser, quaternary gradient pump, and autosampler was used. A Zorbax ODS C₁₈ column (250 mm×4.6 mm id, 5 μm) and a Zorbax ODS C₁₃ guard column (12.5 mm×4.6 mm id, 5 μm) were used at a column temperature of 35°C. The mobile phase consisted of water (a) and acetonitrile (b) using the following gradient program: 0 to 30 min, 18% to 19% b; 30 to 40 min, 19% to 31% b; 40 to 60 min, 31% to 56% b. The flow rate was at 1.5 mL/min and sample injection volume was 10 μL. Evaporative light scattering detection (ELSD) was set to a probe temperature of 70°C and nebulizer nitrogen gas flow rate was at 1.4 L/min [24]. Due to the distinct variation on contents of ginsenosides in TSKRG, the two methanol stock solutions of standards, one containing Rg₁, Rb₁, Rg₂, and Rd; the other containing Re, Rc, Rb₂, and Rg₃, were prepared and diluted with methanol in appropriate concentration for calibration curves. Three concentrations of the 8 ginsenosides solutions were injected in duplicate, then the calibration curves were constructed by plotting the peak area against the concentration of each analyte.

Statistical analysis
The experimental results are expressed as means±SEM accompanied by the number of observations. Data were assessed by ANOVA. If this analysis indicated significant
differences among the group means, then each group was compared by the Newman-Keuls method. A *p*-value less than 0.05 was considered statistically significant.

RESULTS

Effects of total saponin from Korean red ginseng on thrombin-induced platelet aggregation

In our previous report [20], thrombin concentration that maximally generates platelet aggregation is observed to 0.25 U/mL. However, we used the 0.5 U/mL of thrombin to aggregate platelets. When washed platelets (10^8/mL) were preincubated with or without various concentrations of TSKRG (25 to 150 μg/mL) in the presence of 2 mM CaCl_2, for 3 min at 37°C, and then stimulated with thrombin (0.5 U/mL) for 5 min. Platelet aggregation (%) was recorded as an increase in light transmission. Inhibition rate by TSKRG was recorded as percentage of the thrombin-induced aggregation rate. IC_{50} value of TSKRG was calculated by 4-parameter log fit method [25]. Data are expressed as means±SEM (n=4). **p<0.01.

Effects of total saponin from Korean red ginseng on the down-regulation of aggregation-inducing molecule, cytosolic-free Ca^{2+}

When washed platelets were stimulated by thrombin, the level of [Ca^{2+}], increased from 121.3 nM, the basal level, to 477.5±48.7 nM (Fig. 2). However, this was significantly reduced by various concentrations (25 to 150 μg/mL) of TSKRG in a dose-dependent manner. Thrombin-elevated [Ca^{2+}], (477.5±48.7 nM) was decreased to 218.0±11.3 nM by 150 μg/mL of TSKRG, and its inhibitory degree was 54.3% as compared with that by thrombin (Fig. 2, small table). We next investigated whether TSKRG up-regulates the level of intracellular cAMP and cGMP, Ca^{2+}-antagonistic molecules, in thrombin-induced platelet aggregation.

Effects of total saponin from Korean red ginseng on the up-regulation of aggregation-inhibiting molecules, cyclic adenosine monophosphate and cyclic guanosine monophosphate

As shown in Fig. 3A, thrombin decreased intracellular...
cAMP level from 3.82±0.12 pmol/10^9 platelets (basal level) to 3.02±0.27 pmol/10^9 platelets, which was reduced to 20.9% as compared with that of basal level (Fig. 3A, small table). When the platelets, however, were incubated in the presence of both TSKRG and thrombin, TSKRG increased cAMP level in a dose dependent, and 150 μg/mL of TSKRG increased from 3.02±0.27 pmol/10^9 platelets to 9.42±0.68 pmol/10^9 platelets (Fig. 3A). This result suggests that TSKRG increased thrombin-decreased cAMP level to 211.9% (Fig. 3A, small table).

On the other hand, thrombin decreased intracellular cGMP level from 2.24±0.14 pmol/10^9 platelets (basal level) to 1.66±0.22 pmol/10^9 platelets. This means that thrombin reduced basal cGMP level to 25.9% to aggregate platelets (Fig. 3B, small table). When the platelets, however, were incubated in the presence of both TSKRG and thrombin, the cGMP level was not significantly increased (Fig. 3B).
Effects of total saponin from Korean red ginseng on adenosine triphosphate release

Because ATP release out of dense body in platelets is critical marker of platelet aggregation [26], which reflects inhibition of intracellular cAMP production, we investigated the effects of TSKRG on thrombin-elevated ATP release. As shown in Fig. 4A, ATP level in supernatant from the thrombin-activated platelets was 3.48±0.03 μM, which is 69.6 fold as compared with that (0.05±0.01 μM) in intact cell, control. This reflects that thrombin-elevated ATP release is resulted from thrombin-aggregated platelets (Fig. 4B-a). However, TSKRG (25 to 150 μg/mL) dose dependently inhibited thrombin-elevated ATP release (3.48±0.03 μM) (Fig. 4A), and TSKRG (150 μg/mL) inhibited ATP release to 80.2% (0.69±0.02 μM) as compared with that (3.48±0.03 μM) by thrombin (Fig. 4A, small table). In addition, the dose dependent-inhibition of ATP release by TSKRG (25 to 150 μg/mL) was accompanied with dose dependent-inhibition of platelet aggregation (Fig. 4B-b, c, d, and e).

Effects of total saponin from Korean red ginseng on vasodilator-stimulated phosphoprotein phosphorylation

In intact platelets, basal 46 kDa dephosphoprotein of VASP only was observed (Fig. 5A, lane 1) and was shifted to 50 kDa phosphoprotein of VASP in thrombin-induced platelet aggregation (Fig. 5A, lane 2). Thrombin increased weakly the p-VASP (Ser¹⁵⁷) at 50 kDa phosphoprotein of VASP (Fig. 5A, lane 2). It is known that thrombin and collagen, agonists of platelets, involve in a feedback inhibition by elevating p-VASP (Ser¹⁵⁷ and Ser²³⁹) [27]. The ratio of VASP (46+50 kDa) to β-actin was dose dependently increased in the presence of both thrombin and TSKRG (Fig. 5B). The p-VASP (Ser¹⁵⁷) at 50 kDa phosphoprotein of VASP (Fig. 5A; lanes 3, 4), and the ratio of p-VASP (Ser¹⁵⁷) to β-actin (Fig. 5C) were dose dependently increased in the presence of both thrombin and TSKRG. Even though the ratio of VASP (46+50 kDa) to β-actin was dose dependently increased in the presence of both thrombin and TSKRG.

Fig. 5. Effects of total saponin from Korean red ginseng (TSKRG) on vasodilator-stimulated phosphoprotein (VASP) phosphorylation of resting or thrombin-stimulated platelets. (A) Effects of TSKRG on phosphorylations of VASP, VASP (Ser¹⁵⁷), VASP (Ser²³⁹). Lane 1, intact platelets (base); lane 2, thrombin; lane 3, thrombin+TSKRG (100 μg/mL); lane 4, thrombin+TSKRG (150 μg/mL). (B) The ratio of VASP (46+50 kDa) to β-actin by TSKRG. (C) The ratio of phosphorylation of VASP (p-VASP) (Ser¹⁵⁷-50 kDa) to β-actin by TSKRG. (D) The ratio of p-VASP (Ser²³⁹-50 kDa) to β-actin by TSKRG. Washed platelets (10⁸/mL) were preincubated with or without TSKRG for 3 min in the presence of 2 mM CaCl₂ and then stimulated with thrombin (0.5 U/mL) for 5 min at 37°C in an aggregometer. The reactions were terminated by adding an equal volume of lysis buffer. Proteins were extracted, separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) transferred to polyvinylidene difluoride and immunoblotted with the indicated corresponding antibodies, anti-phospho-VASP Ser¹⁵⁷ or Ser²³⁹. Blots were visualized by ECL plus kit (Amersham, Buckinghamshire, UK) and the immunoblot panels are representative of 3-4 similar experiments. Blots were analyzed by using the Quantity One ver. 4.5 program, and units were expressed density/mm².

http://ginsengres.org
(Fig. 5B), the ratio of p-VASP (Ser\(^{239}\))-50 kDa to β-actin (Fig. 5D) was not significantly increased in the presence of both thrombin and TSKRG.

Ginsenoside composition of total saponin from Korean red ginseng

As shown in Fig. 6, in HPLC-ELSD, eight internal standards, ginsenosides Rg1, Re, Rb1, Rc, Rg2, Rb2, Rd, and Rg3 in order, were observed in HPLC-ELSD chromatograms (Fig. 6B). The retention time of eight peaks was in accord with those of internal standard ginsenosides, which were 20(S)-protopanaxadiol group of ginsenoside (Rb1, Rb2, Rc, Rd, and Rg3), and 20(S)-protopanaxatriol (PPT) group of ginsenoside (Re, Rg1, and Rg2) (Fig. 6B). Calibration curves were linear over the range of 125 to 1,000 µg/mL for Rg1, Re, Rb1, Rc, Rg2, Rb2, Rd, and Rg3 with \(r^2 > 0.99 \) (Table 1). In contents of ginsenosides calculated from calibration curve, as shown
DISCUSSION

IC_{50} value of about 81.1 μg/mL of TSKRG that inhibited thrombin-induced platelet aggregation is about 21 fold lower than that (1.7 mg/mL) of aqueous extract from of P. notoginseng [28]. Of several aggregation-inducing molecules, Ca^{2+} and TXA_{2} are known to be essential for platelet aggregation [29]. Since TSKRG significantly blocked [Ca^{2+}]_{i} elevation (Fig. 2) and TXA_{2} production [20], but increased cAMP production (Fig. 3A), it is suggested that TSKRG-elevated Ca^{2+}-antagonistic cAMP (Fig. 3B) may involve in the inhibition of TXA_{2} production by suppressing [Ca^{2+}]-mobilization. In special, as shown in Fig. 7A, TSKRG that dose dependently elevated cAMP level attenuated [Ca^{2+}]_{i} level, which means that TSKRG regulates cAMP and Ca^{2+} as mutual antagonistic molecules to inhibit platelet aggregation. TSKRG that elevated cAMP level attenuated ATP release in a dose dependently manner (Fig. 7B), which means that TSKRG used ATP to produce cAMP (Fig. 3A), and subsequently involves in reduction of [Ca^{2+}]-mobilization (Fig. 2) to inhibit platelet aggregation (Fig. 1A). cAMP and cGMP involve in inhibition of platelet aggregation by phosphorylating IP_{3} receptor or VASP via A-kinase or G-kinase pathway [9,10]. In present study, it is unknown whether the inhibitory effect of [Ca^{2+}] by TSKRG due to phosphorylation of IP_{3} receptor by cAMP or cGMP. Because, however, panaxatriol, which is known to form by acid hydrolysis of ginsenosides (ex. ginsenoside Rg1), inhibited thrombin-elevated PIP_{2} breakdown in platelets [30], and TSKRG contains PPT (Rg1, Rg2, and Re) having antiplatelet effect [31-33] (Table 1), it is thought that the inhibition of [Ca^{2+}]-mobilization by TSKRG (Fig. 2) may be due to the inhibition of PIP_{2} breakdown.

Table 1. Calibration curves and contents of eight ginsenosides in TSKRG

Ginsenosides	RT (min)	Calibration curve\(^1\)	\(r^2\)	Test range (μg/mL)	\(x^2\) (μg/mL)	Contents (mg/g-TSKRG)
PPD Rb1	47.1	\(y=0.0542x-0.008\)	0.9929	125-1,000	700.23±33.39	70.02±3.34
Rb2	48.6	\(y=0.0517x-0.0072\)	0.9935	125-1,000	339.70±4.97	33.97±0.50
Re	47.9	\(y=0.134x-0.017\)	0.9957	125-1,000	390.13±3.50	39.01±0.35
Rd	50.3	\(y=0.077x-0.010\)	0.9965	125-1,000	229.40±1.54	22.94±0.15
Rg3	58.9	\(y=0.0555x-0.0017\)	0.9904	25-200	207.63±3.10	20.76±0.31
Sum						186.80±4.65
PPT Re	38.5	\(y=0.103x-0.0135\)	0.9957	125-1,000	148.73±0.46	14.87±0.05
Rg1	38.2	\(y=0.139x-0.0171\)	0.9973	125-1,000	129.90±0.17	12.99±0.02
Rg2	48.3	\(y=0.0165x-0.0023\)	0.9941	125-1,000	815.13±22.15	81.51±2.22
Sum						109.37±2.29

TSKRG, total saponin from Korean red ginseng; RT, retention time; PPD, 20(S)-protopanaxadiol; PPT, 20(S)-protopanaxatriol.

\(^1\)\(^2\) y, peak area of analyte; x, concentration of ginsenoside in 10 mg/mL TSKRG (μg/mL).

in Table 1, the total contents of Rb1, Rb2, Rc, Rd, and Rg3 were 186.80±4.65 mg/g, and the total contents of Re, Rg1, and Rg2 were 109.37±2.29 mg/g.
In VASP phosphorylation, TSKRG phosphorylated potently A-kinase substrate VASP (Ser\(^{157}\)) (Fig. 5A, C), but did not phosphorylated G-kinase substrate VASP (Ser\(^{239}\)) (Fig. 5A, D). These results are in accord with the result that TSKRG potently enhanced cAMP only in thrombin-stimulated platelets (Fig. 3A). Eigenthaler et al. [34] reported that small elevation in cAMP level is enough to activate most of A-kinase, whereas even several fold elevation in cGMP level may stimulate only a small fraction of total G-kinase. This previous report [34] reflects that even a little cAMP is enough to phosphorylate VASP (Ser\(^{157}\), a A-kinase substrate, and a lot of cGMP is required to phosphorylate VASP (Ser\(^{239}\)), a G-kinase substrate. In our other report [35], using epigallocatechin-3-gallate, we reported a similar result to our present finding, and suggested that its antiplatelet effect is mediated through an increase of cAMP level, A-kinase activity, and VASP-(Ser\(^{157}\)) phosphorylation. The levels of intracellular cAMP and cGMP are regulated by the balance between cyclic nucleotide-producing enzymes, adenylyl/guanylate cyclases, and hydrolyzing enzymes, cAMP/cGMP phosphodiesterases (PDEs). If TSKRG inhibited the activity of PDE2 to produce cAMP and cGMP in thrombin-stimulated platelets, because PDE2 hydrolyzes both cAMP and cGMP [36], TSKRG would increase the level of both cAMP and cGMP in thrombin-stimulated platelets, however, TSKRG potently increased the cAMP level only, but did not increased quickly the cGMP level (Fig. 3B). Accordingly, it is thought that TSKRG-elevated cAMP (Fig. 3A) is not due to the regulation of cGMP-stimulated PDE2, cGMP-inhibited PDE3, and cGMP-binding-cGMP-specific PDE5. If so, these results suggest that TSKRG produced cAMP from ATP by activating adenylyl cyclase, and phosphorylated VASP (Ser\(^{157}\))-50 kDa by activating A-kinase to inhibit thrombin-induced platelet aggregation.

TXA\(_2\) is produced via COX-1 and TXAS pathway from arachidonic acid (20:4). In our previous report, TSKRG inhibited the microsomal COX-1 and TXAS activities in thrombin-induced platelet aggregation. It is thought that TSKRG has multiple actions that reduce [Ca\(^{2+}\)], mobilization (Fig. 2) by elevating cAMP, and inhibit TXA\(_2\) production by suppressing activities of both COX-1 and TXAS [20]. 20:4 is also metabolized to prostaglandin E\(_2\), an inflammatory mediator, by cyclooxygenase-2 (COX-2). Because 20:4 is a substrate of both COX-1 and COX-2, it is nature that TSKRG and ginsenoside Rp1 have an anti-inflammatory effect by inhibiting COX-2 activity [37-39]. Because both platelet aggregation and inflammation are the cause of atherosclerosis, it is thought that TSKRG could contribute to treatment of cardiovascular disease. It is reported that collagen-induced platelet aggregation, and blood coagulation were inhibited in the subjects who have taken red ginseng products (e.g., water extract, tea, and drink) containing TSKRG as compared with those of control subjects, who did not take ginseng products [40]. Using Korean red ginseng extract, Jin et al. [41] reported similar results to effects of dietary red ginseng products, which inhibited U46619-, 20:4-, collagen-, and thrombin-induced platelet aggregation, prolonged prothrombin time and activated partial thromboplastin time, coagulation indicators. In addition, TSKRG contains Rg1, Rg2, and Rg3 (Table 1) known to inhibit platelet aggregation [31-33]. However, saponins in American ginseng do not contain Rg2 and Rg3 [42]. Accordingly, with regard to antiplatelet effects, it is thought that Korean red ginseng would be outstanding as compared with American.

In conclusion, the most important result of this study is that TSKRG significantly decreases the level of [Ca\(^{2+}\)], platelet-aggregating molecule, and inhibition of [Ca\(^{2+}\)] by TSKRG depends on up-regulation of Ca\(^{2+}\)-antagonistic intracellular cAMP level. Furthermore, our findings showed that TSKRG-elevated cAMP stimulates the phosphorylation of an A-kinase substrate VASP (Ser\(^{157}\))-50 kDa, which may contribute to attenuating [Ca\(^{2+}\)] level to inhibit thrombin-induced platelet aggregation. Therefore, these results suggest that TSKRG may be a physiologically effective negative feedback regulator during platelet aggregation, a cause of thrombosis, atherosclerosis, and myocardial infarction.

ACKNOWLEDGEMENTS

This study was supported by a grant (2012-0002802 to Hwa-Jin Park) from the Basic Science Research Program via the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

REFERENCES

1. Schwartz SM, Heimark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev 1990;70:1177-1209.
2. Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984;312:315-321.
3. Jennings LK. Role of platelets in atherothrombosis. Am J Cardiol 2009;103:4A-10A.
4. Pasqui AL, Capecchi PL, Ceccatelli L, Mazza S, Gistri A,
Laghi Pasini F, Di Perri T. Nitroprusside in vitro inhibits platelet aggregation and intracellular calcium translocation. Effect of haemoglobin. Thromb Res 1991;61:113-122.

5. Nishikawa M, Tanaka T, Hidaka H. Ca\(^{2+}\)-calmodulin-dependent phosphorylation and platelet secretion. Nature 1980;287:863-865.

6. Halbrugge M, Walter U. Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur J Biochem 1989;185:41-50.

7. Halbrugge M, Friedrich C, Eigenthaler M, Schanzenbach M, Walter U. Purification of a vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 1994;269:14509-14517.

8. Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J, Walter U. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 1999;265:3088-3093.

9. Homer KL, Wan stall JC. Inhibition of rat platelet aggregation by the diazeniumdiolate nitric oxide donor MAHMA NONOate. Br J Pharmacol 2002;137:1071-1081.

10. Park WH, Kim HK, Nam KS, Shon YH, Jeon BH, Moon SK, Kim MG, Kim CH. Inhibitory effect of GBH on platelet aggregation through inhibition of intracellular Ca\(^{2+}\) mobilization in activated human platelets. Life Sci 2004;75:3063-3076.

11. Laurent V, Loisel TP, Harbeck B, Wehman A, Grobe L, Jockusch BM, Wehland J, Gertler FB, Carlier MF. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J Cell Biol 1999;144:1245-1258.

12. Smolenski A, Bachmann C, Reinhard K, Honig-Liedl P, Jarchau T, Hoschuetzky H, Walter U. Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 1998;273:20029-20035.

13. Horstrup K, Jablonka B, Honig-Liedl P, Just M, Kochsieck K, Walter U. Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 1994;225:21-27.

14. Ernst E. Panax ginseng: an overview of the clinical evidence. J Ginseng Res 2010;34:259-263.

15. Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2011;35:389-398.

16. Chung IM, Lim JW, Pyun WB, Kim H. Korean red ginseng improves vascular stiffness in patients with coronary artery disease. J Ginseng Res 2010;34:212-218.

17. Wee JJ, Kim YS, Kyung JS, Song YB, Do JH, Kim DC, Lee SD. Identification of anticoagulant components in Korean red ginseng. J Ginseng Res 2010;34:355-362.

18. Jung YH, Park KY, Jeon JH, Kwak YS, Song YB, Wee JJ, Rhee MH, Kim TW. Red ginseng saponin fraction A isolated from Korean red ginseng by ultrafiltration on the porcine coronary artery. J Ginseng Res 2011;35:325-330.

19. Hwang SY, Son DJ, Kim IW, Kim DM, Sohn SH, Lee JJ, Kim SK. Korean red ginseng attenuates hypercholesterolemia-enhanced platelet aggregation through suppression of diacylglycerol liberation in high-cholesterol-diet-fed rabbits. Phytother Res 2008;22:778-783.

20. Lee DH, Cho HJ, Kang HY, Rhee MH, Park HJ. Total saponin from Korean red ginseng inhibits thromboxane A\(_2\) production associated microsomal enzyme activity in platelets. J Ginseng Res 2012;36:40-46.

21. Schaeffer J, Blaustein MP. Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium 1989;10:101-113.

22. Kim SN, Ha YW, Shin H, Son SH, Wu SJ, Kim YS. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharm Biomed Anal 2007;45:164-170.

23. Wan JB, Lai CM, Li SP, Lee MY, Kong LY, Wang YT. Simultaneous determination of nine saponins from Panax notoginseng using HPLC and pressurized liquid extraction. J Pharm Biomed Anal 2006;41:274-279.

24. Wan JB, Li P, Li S, Wang Y, Dong TT, Tsim KW. Simultaneous determination of 11 saponins in Panax notoginseng using HPLC-ELSD and pressurized liquid extraction. J Sep Sci 2006;29:2190-2196.

25. Cao H, Yu R, Choi Y, Ma ZZ, Zhang H, Xiang W, Lee DY, Berman BM, Moudgil KD, Fong HH et al. Discovery of cyclooxygenase inhibitors from medicinal plants used to treat inflammation. Pharmacol Res 2010;61:519-524.

26. Mackman N. Triggers, targets and treatments for thrombosis. Nature 2008;451:914-918.

27. Gambaryan S, Kobsar A, Rukoyatkina N, Herterich S, Geiger J, Smolenski A, Lohmann SM, Walter U. Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J Biol Chem 2010;285:18352-18363.

28. Wang J, Huang ZG, Cao H, Wang YT, Hui P, Hoo C, Li SP. Screening of anti-platelet aggregation agents from Panax notoginseng using human platelet extraction and HPLC-DAD-ESI-MS/MS. J Sep Sci 2008;31:1173-1180.

29. Charo IF, Feinman RD, Detwiler TC. Interrelations...
of platelet aggregation and secretion. J Clin Invest 1977;60:866-873.
30. Park KM, Rhee MH, Shin HJ, Song YB, Hyun HC, Park KH, Cho HJ, Choi SA, Kang HC, Kim KJ et al. Inhibitory effects of panaxtriol from *Panax ginseng* C. A. Meyer on phosphoinositide breakdown induced by thrombin in platelets. J Ginseng Res 2008;32:107-113.
31. Kimura Y, Okuda H, Arichi S. Effects of various ginseng saponins on 5-hydroxytryptamine release and aggregation in human platelets. J Pharm Pharmacol 1988;40:838-843.
32. Kuo SC, Teng CM, Lee JC, Ko FN, Chen SC, Wu TS. Antiplatelet components in *Panax ginseng*. Planta Med 1990;56:164-167.
33. Lee SR, Park JH, Choi KJ, Kim ND. Inhibitory effects of ginsenoside Rg3 on platelet aggregation and its mechanism of action. Korean J Ginseng Sci 1997;21:132-140.
34. Eigenthaler M, Nolte C, Halbrugge M, Walter U. Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets. Estimating the rate of cAMP-regulated and cGMP-regulated protein phosphorylation in intact cells. Eur J Biochem 1992;205:471-481.
35. Ok WJ, Cho HJ, Kim HH, Lee DH, Kang HY, Kwon HW, Rhee MH, Kim M, Park HJ. Epigallocatechin-3-gallate has an anti-platelet effect in a cyclic AMP-dependent manner. J Atheroscler Thromb 2012;19:337-348.
36. Schwarz UR, Walter U, Eigenthaler M. Taming platelets with cyclic nucleotides. Biochem Pharmacol 2001;62:1153-1161.
37. Kim S, Shim S, Choi DS, Kim JH, Kwon YB, Kwon J. Modulation of LPS-stimulated astroglial activation by ginseng total saponins. J Ginseng Res 2011;35:80-85.
38. Shen T, Lee J, Park MH, Lee YG, Rho HS, Kwak YS, Rhee MH, Park YC, Cho JY. Ginsenoside Rp1, a ginsenoside derivative, blocks promoter activation of iNOS and COX-2 genes by suppression of an IKKb-mediated NF-kB pathway in HEK293 cells. J Ginseng Res 2011;35:200-208.
39. Yayeh T, Jung KH, Jeong HY, Park JH, Song YB, Kwak YS, Kang HS, Cho JY, Oh JW, Kim SK et al. Korean red ginseng saponin fraction downregulates proinflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J Ginseng Res 2012;36:263-269.
40. Lee JH, Park HJ. Effects of intake of red ginseng products on human platelet aggregation and blood lipids. J Ginseng Res 1998;22:173-180.
41. Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Im JH, Han XH, Kim TJ, Shin KS et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 2007;100:170-175.
42. Yuan CS, Wang CZ, Wicks SM, Qi LW. Chemical and pharmacological studies of saponins with a focus on American ginseng. J Ginseng Res 2010;34:160-167.