FIG S1. Lysis of the ∆ail mutant was regulated by components of the RpoE regulon. (A) H198PDegSΔPDZ protein increases rpoE expression in the ∆ail mutant. Y. pestis KIM6+ wild-type, the ∆ail mutant, the ∆ail mutant expressing H198PDegSΔPDZ protein in trans, or its vector control were transformed with the lux operon reporter under control of the Y. pestis rpoE promoters. Strains were grown with aeration to OD₆₀₀ = 1.0 at 37° C in Luria-Bertani (LB) broth with 1 mM IPTG. Expression was measured spectrophotometrically as luminescence activity units (L.U.). Results are means±SE from at least three assays performed in triplicate on separate days; asterisk (*) indicates p < 0.05 (ANOVA). (B) H198PDegSΔPDZ protein enhanced lysis phenotype of the ∆ail mutant and was inhibited in the ∆ail∆pldA background. Y. pestis KIM6+ wild-type, the ∆ail mutant, the ∆pldA mutant, double ∆ail∆pldA mutant, corresponding strains expressing H198PDegSΔPDZ protein in trans, or their vector controls were incubated overnight at 28° C in Luria-Bertani (LB) broth with aeration and spotted on the LB agar plates amended with 1 mM IPTG. Plates were incubated at 37° C for 2 and 5 days. The ∆ail mutant expressing H198PDegSΔPDZ had enhanced lysis manifested by colony disappearance (black arrow). This phenotype was suppressed by deletion of pldA (white arrow). (C) pldA expression was not part of the RpoE regulon. The ∆ail mutant, the ∆ail mutant expressing H198PDegSΔPDZ protein in trans, or its vector control were transformed with the lux operon reporter under control of the Y. pestis pldA promoters. Strains were grown and pldA expression was measured spectrophotometrically as luminescence activity units (L.U.) as indicated in (A). No statistical difference (p = 0.120) in the pldA expression among strains was found.