Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases

Oh Young Bang1,2,3,4,* & Ji-Eun Kim3,4

1Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, 2S&E bio, Inc, Seoul 06351, 3Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul 06351, 4Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea

Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm—1 μm) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidence evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer’s disease and Parkinson’s disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules.

The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics. [BMB Reports 2022; 55(1): 20-29]

INTRODUCTION

Stem cell-based therapy is a promising approach for treating acute brain insults such as stroke and traumatic brain injury (TBI), and neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), which carry several molecules such as proteins and microRNAs (miRNAs). Recent preclinical studies suggest that stem cell-derived EVs can be used to treat brain illness as an alternative to stem cell application.

This review presents evidence regarding the role of stem cell-derived EVs in acute and chronic neurological diseases in addition to discussing the advantages and disadvantages of EVs therapy versus other strategies. Major issues in the clinical application of EV therapeutics are discussed together with relevant advances in EV production/enrichment, isolation/purification, and quantification/characterization.

ADVANTAGES OF STEM CELL-DERIVED EXTRACELLULAR VESICLES OVER OTHER THERAPEUTIC STRATEGIES

Several therapeutic strategies have been introduced for preventing or slowing the progression of brain damages and each has its own advantages and disadvantages (Table 1).

Small chemicals or macromolecules showed a limited efficacy due to single mechanism of action and complex pathophysiology of brain diseases. For example, over 1,000 neuroprotective agents for acute stroke have been investigated in preclinical studies with promising results, but failed when tested in human (1). Similarly, trophic factors tested in various neurological diseases such as PD failed to show beneficial effects (2). For neuroprotection, a single target of neuroprotection will not provide the expected therapeutic effects, and signals that mediate cell death during the acute stage of ischemic insult might promote repair during the recovery phase (3). As a result, pleiotropic multi-target agents that act via multiple mechanisms of action to interrupt multiple steps may be more fruitful (4). In addition, almost no macromolecules and 98% of all small molecules do not cross the blood-brain barrier (BBB). Therefore, non-active vesicles such as adeno-associated virus capsids and polymer- or lipid-base nanoparticles were used to overcome the limitation. However, the use of drug delivery system increases the risk of toxicity, immunogenicity, and infection (5).
Exosomal therapy for acute and degenerative brain diseases
Oh Young Bang and Ji-Eun Kim

Table 1. Strategies for acute and degenerative brain diseases

	Small chemicals or macromolecules	Drug delivery system	Stem cells	Stem cell-derived EV therapy
Advantages	Manufacture on a large scale	Delivery of a therapeutic to its target site, minimizing off-target accumulation	Various paracrine effects	Pleiotropic multiple target regulatory components
				Better biocompatibility, immunogenicity, and safety
Disadvantages	Limited efficacy due to single MoA	Lack of intrinsic biological cargo beside the load	Possible cell-mediated adverse effects, such as complement activation-related pseudo-allergy (107)	Lack of standardization for EV production, isolation and storage
	Limitation in crossing the BBB	Possible adverse effects, such as complement activation-related pseudo-allergy (107)	Industrially unfeasible	Complex characterization of EV product
			Difficult to maintain cell viability and functionality	Donor variation
			Mixed long-term effects of MSCs in RCTs	No RCT available
Results of clinical trial	None of RCTs showed successful results	No RCTs available for acute and degenerative brain diseases		

EV, extracellular vesicle; MoA, mode of action; BBB, blood-brain barrier; MSCs, mesenchymal stem cells; FDA, Food and Drug Administration; RCT, randomized controlled trial.

Cell-based therapy is a promising therapeutic approach against a range of neurological diseases. Unlike to small chemicals or macromolecules, MSCs harbor specific functions, such as regenerative, cytoprotective, and immunomodulatory properties. Application of MSC transplantation was safe in patients with neurological diseases. However, the beneficial effects were diverse among patients. For example, four randomized clinical trials (RCTs) of stem cells have been conducted in stroke patients, with mixed results (6-9). There are several possible reasons for this inconsistent result, including heterogeneity of patients, timing of therapy, and donor-to-donor or batch-to-batch variations. Our pre-specified biomarker sub-study showed that circulating EVs were markedly increased immediately after intravenous injection of MSCs (10). In this study, the number of the circulating EVs varied among patients after the application of the same dose of MSCs, and was associated with motor function improvement, as assessed by clinical assessment and multimodal magnetic resonance imaging (MRI) as shown in Fig. 1 (10). These data raised the possibility of the use of MSC-EVs, instead of MSCs per se, given that the number of EVs determines the effects of MSC-based therapy. By contrast, plasma levels of trophic factors remained unchanged after the intravenous injection of autologous MSCs although the level of trophic factors in brain-derived EVs were increased. These findings suggest that the paracrine effects of MSCs are modulated by trophic factors in the brain indirectly via MSC-EVs.

EVs are circular membrane fragments measuring 30 nm to 1 μm in diameter that are shed from the cell surface. EVs represent a heterogeneous group of vesicles released from multiple cell types in the brain (neuron, astrocyte, oligodendrocyte, microglia, and endothelial cells/pericyte). EVs mediate cell-cell interaction and the complex and versatile EV signaling was shown to regulate neurogenesis, angiogenesis, and inflammation (11). EVs are important in sustaining the cellular function in the CNS, but they also participate in the pathophysiology of underlying neurodegenerative diseases. EVs are implicated in disease spreading by misfolded and pathological proteins engaged in transferring pathogenic molecules to neighboring cells, such as Aβ42 in AD, Huntingtin protein in HD, α-synuclein, leucine-rich receptor kinase 2, vacuolar-sorting protein 35 in PD, and prion proteins (PrPc and PrPsc) in Prion disease (12). For example, EVs are involved in complex mechanisms of secretion, diffusion and degradation of Aβ or tau proteins. A study analyzing the physical properties of individual EVs using electrostatic force microscopy showed that EVs carried higher levels of Aβ42 when treated with to neuroblastoma cells with higher concentrations of Aβ42 oligomers, implying that it acts as a transport vesicle (13).

STEM cell-derived EVs are considered as naturally therapeutic agents and innate drug delivery systems for therapy of brain diseases. Unlike a sole protein or small molecule, EVs contain molecules with heterogenous function. EVs contain cellular proteins, DNA, and RNA. Among them, most studies have focused on the regulatory roles of non-coding RNA components, such as miRNAs, in the CNS. EVs can also capture and transfer whole mitochondria or mitochondrial fragments, and mitochondrial transfer of stem cells to injured cells may be beneficial in ischemic diseases and mitochondria-related diseases, such as age-related neurodegenerative diseases (14-16). EVs exhibit multiple benefits related to biocompatibility, immunogenicity, stability, pharmacokinetics, biodistribution, and cellular uptake mechanism (17). EVs can transfer intravesicular cargo and vesicular membrane-bound receptors to recipient cells. EVs can cross the BBB and actively target specific cell types (18). Unlike to cell-based therapy, EVs can avoid the first pass effect and cell-mediated adverse effects, such as tumor forma-
Exosomal therapy for acute and degeneration brain diseases
Oh Young Bang and Ji-Eun Kim

Fig. 1. Association between elevated levels of circular extracellular vesicles (EVs) and stroke outcome after mesenchymal stem cell (MSC) injection. Modified from Bang et al. (10). The levels of circulating EVs increased immediately after intravenous injection of autologous MSCs (A and B), but not after placebo treatment (C, right lanes). Although patients of the MSC group received the same number of MSCs (1 × 10^6 cells/kg), the levels of circulating EVs varied among patients; (A) marked increase of EV levels in patients who showed clinically significant improvement, and (B) lesser degree of increase in those who showed no clinically significant improvement. The circulating EVs levels were correlated with improvement in MRI indices of neuroplasticity as well as in motor function.

Various cells have been used as a source of EVs. HEK293 cells are most commonly used as a source of EVs due to their high EV production capacity and easy transfection. However, HEK293 cells carry minimal intrinsic biological cargo, and the results of HEK293 cells cannot be translated to MSCs that are hard to transfect (24). MSCs represent a better source of EVs because the paracrine activity is responsible for at least 80% of their positive effects (25). As a result, most groups demonstrated therapeutic effects of MSC-EVs in preclinical models. However, EVs from different MSC sources exhibit different properties and carry cargo with distinct effects in the same diseases. The profile of miRNA within EVs varied greatly among the three common sources of MSCs, i.e., bone marrow, adipose, and umbilical cord (only 11 miRNAs were common), and the number of miRNAs was the highest in umbilical cord MSC-derived EVs (26). Compared with EVs derived from other MSC sources, EVs from umbilical cord showed superior therapeutic immunomodulation and protective effect (27). Further, fetal stem cells, such as umbilical cord/amniotic fluid stem exhibit a cellular phenotype intermediate between embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSC) and adult MSCs (28).

It remains unknown whether MSCs are the best EV source for treatment of neurological disease. MSCs may not be an ideal cell source for EV manufacture on a clinical scale due to their limited lifespan, heterogeneity and batch-to-batch or donor-to-donor variations (29). ESCs or iPSCs, or ESC/iPSC-derived MSCs show better profiles in terms of cell numbers, senescence, and donor variation, while ethical concerns of ESCs are the main disadvantage in addition to the risk of immune response and teratoma involving iPSCs. Upadhya et al. showed that EVs isolated from iPSC-derived NSCs were enriched with miRNAs and proteins involved in neuroprotective, anti-apoptotic, anti-inflammatory, BBB repairing, neurogenic, and Aβ reducing activities, and are used in treating neurodegenerative disorders (30). Webb and colleagues found differences between EVs derived from different cell sources. Compared with MSC-EVs, NSC-derived EVs were superior in terms of modulation of post-stroke systemic immune response, neuroprotection, and functional recovery (31).

APPLICATIONS OF EXTRACELLULAR VESICLES IN BRAIN DISEASES

Cerebrovascular disease
Many preclinical studies have recently shown that stem cell-derived EVs can be used in stroke therapy (32). In 2013, Xin et al. reported that intravenous injection of MSC-EVs in a rat model of stroke improved the neurological outcomes and increased angiogenesis and neurogenesis (33). Other investigators have also demonstrated the beneficial effects of stem cell-derived EVs in various animal models of stroke. Several advances in EV-based strategy have been reported: (a) the use of EVs derived from stem cells other than MSCs, such as ESCs, neural stem cells (NSCs), and iPSC-derived MSCs/NSCs (31,
of EVs in TBI are attributed to their miRNA content. Yin et al. showed that miR-873a-5p carried by astrocyte-derived EVs suppressed neuronal microglial M2 polarization to alleviate neuronal injury in a rat model of TBI (42). In a porcine model of TBI, administration of EVs proved functional recovery in rats after TBI, by promoting angiogenesis and neurogenesis and reducing neuroinflammation (43). In a porcine model of TBI, administration of EVs excreted from human MSCs reduced brain edema and lesion size, and improved BBB integrity (43). The therapeutic effects of EVs in TBI are attributed to their miRNA content. Yin et al. showed that miR-21-5p contained within EVs secreted from astrocytes carried gap junction protein alpha 1 (GJA1) transmitted to neurons reduced apoptosis, increased synaptogenesis, and rescued memory loss in animal models of stroke after TBI (44). In contrast, Long and colleagues showed that miR-124 was enriched in MSCs exposed to TBI, by promoting angiogenesis and neurogenesis and reducing neuroinflammation after TBI (44). In a porcine model of TBI, administration of EVs excreted from human MSCs reduced brain edema and lesion size, and improved BBB integrity (43). The therapeutic effects of EVs in TBI are attributed to their miRNA content. Yin et al. showed that miR-21-5p contained within EVs secreted from neurons promoted microglial M2 polarization to alleviate neuroinflammation after TBI (44). In contrast, Long and colleagues showed that miR-124 was enriched in MSCs exposed to TBI, by promoting angiogenesis and neurogenesis and reducing neuroinflammation after TBI (44).

Neurodegenerative diseases

Similar to acute brain insults, such as stroke and TBI, EVs play an important role in neurodegenerative diseases, as both disease biomarkers and therapeutic targets. Dysregulation of circulating levels of specific EV-miRNAs has been reported in patients with neurodegenerative diseases. Recent evidences implicate EVs in the etiology and spread of neurodegenerative disease. In preclinical models of AD, EVs reduced oxidative stress and neuroinflammation, inhibited the progression of neurodegeneration, and induced clearance of amyloid and neurofibrillary tangles (46, 47). Intranasal administration of MSC-derived EVs and iPSC-derived NSCs inhibited microglial activation, increased synaptogenesis, and rescued memory loss in animal models of AD (48, 49). The beneficial effects of EVs obtained from MSCs pre-conditioned by cytokines or hypoxia and 3D culture methods were also reported recently in animal models of AD (48, 50, 51). Narbute and colleagues showed that intranasal administration of stem cell-derived EVs from teeth improved motor symptoms and normalized tyrosine hydroxylase expression in a rat model of PD (52). Several EV-miRNAs have been reported to show potential effects in AD models, such as miR-124a, miR-146a, miR-21, and miR-29b (53). Katsuda et al. showed that adipose tissue-derived MSCs secrete EVs carrying enzymatically active noliprin, the most important Aβ-degrading enzyme in the brain (54).

Relatively few studies carried out to data have revealed the effects of stem cell-derived EV therapy in PD. Engineering EVs have been used to regulate specific proteins related to PD pathogenesis, such as antioxidant catalase, α-synuclein, and dopamine. The α-synuclein protein accumulates in brains of individuals with PD. Investigators have designed siRNA microparticles delivered by RVG EVs to treat dopaminergic neurons and reduce α-synuclein aggregation in PD (55, 56). Chen et al. showed that EVs from umbilical cord MSCs inhibited apoptosis by inducing autophagy in an in vitro model of PD (57). Up-regulation of autophagy may clear accumulated α-synuclein, and miRNAs play major regulators of autophagy pathway (58). In HD, EVs transport mutant huntingtin between cells and trigger HD-related behavior and pathology (59). Didiot et al. reported the efficacy of small-interfering RNAs-loaded EVs delivered to the brain of a HD model in silencing HD miRNA suggesting the role of EVs as a gene-modifying strategy (60).

LIMITATIONS OF CURRENT MSC-EV THERAPEUTICS

Although the use of stem cell-derived EV therapy has several benefits in preclinical studies, there exist some limitations of the use of EVs obtained from naive stem cells for patients with brain diseases.

Donor heterogeneity

One of the main obstacles hindering the clinical application of MSCs and EV therapeutics is the large variability in cell quality, due to the usage of different donors and their tissues, known as donor heterogeneity. Interestingly, Wang et al. showed that individual MSC-EV preparations from healthy human donors may differ in their therapeutic potency, suggesting donor-to-donor variation (61). The therapeutic potential of independent MSC-EV preparation may differ due to donor age, comorbidity (obesity and disease condition), artificial niche of MSCs (preconditioning or external stimuli), and culture methods used (62, 63). Along with the development of a production method that minimizes donor-to-donor and batch-to-batch variations, a robust quality control for each EV production lot is required.

Inherited undesirable features of MSC-EVs

Nalamolu et al. tested the efficacy of EVs secreted by MSCs under standard culture conditions against post-stroke brain damage and neurological outcomes in a rat model of stroke. The treatment attenuated ischemic brain damage without improving the post-stroke neurological outcome, suggesting the need for modification of MSC culture conditions (64).

Even though native EVs have potential in the treatment of brain disease, the successful clinical application is limited by...
the short half-life, limited targeting, rapid clearance after application, and insufficient payload (65). Although native EVs cross the BBB under stroke-like, inflamed conditions, whether they can cross the intact BBB has yet to be firmly established (66, 67). In both preclinical and human studies, blood levels of EVs decreased rapidly after systemic application of EVs, and EVs accumulated in the lung, liver, and spleen until day 10 after administration (68, 69). In addition, the circulation time of EVs is shortened by macrophage/microglial clearance.

ENHANCING THE EFFICACY OF THERAPEUTIC EXTRACELLULAR VESICLES

Two strategies to enhance the efficacy of EV therapeutics.

Production or selection of optimal EVs

Brain pharmacokinetics of EVs may differ among EVs of different origin (68) and may depend on the characteristics of EV membrane proteins or receptors. For example, CD46, integrins, and intercellular adhesion molecule-1 on the surface of EVs were associated with the rate and mechanisms of BBB crossing of EVs (70, 71). In addition to surface molecules, intravesicular miRNAs and VEGF-A may also influence the BBB integrity (72, 73). Caveolin-mediated endocytosis and integrins and phosphatidylinositol serine ligand-receptor interaction are involved in EV uptake by recipient cells in the brain (65). Membranous lipid-draft protein caveolin-1 and phosphatidylserine were highly expressed in microvesicles than in exosomes (74). CD47, a transmembrane protein that enables cancer cells to evade clearance by macrophages (‘don’t eat me signal’), prolongs the circulation time of EV after systemic administration (75). EV surface features, such as tetraspanin (CD63) and integrin profiles, may influence the targeting capacity (76). Selection of EVs with optimal characteristics in terms of surface and cargo molecules represents a safer alternative than bioengineered EVs. Ideal EVs for brain therapeutics exhibit the aforementioned characteristics of surface molecules and intravesicular cargo, as shown in Fig. 2.

Modification of EV culture conditions or exposure to external stimuli may enhance the therapeutic potential of MSC-EVs (77, 78). Preconditioning (hypoxia, ischemia or inflammation), supplementation of culture medium with bioactive factors, and modification of cell-cell interaction (spheroid culture) or cell-substrate interaction (collagen microgel) were used to enhance their therapeutic properties and possibly minimize donor variation. Interestingly, our and other studies showed that the cellular yield of EVs was increased compared with standard 2D culture and EV cargo undetected by standard 2D conditioning of cells were enriched in EVs obtained from 3D culture (36, 79).

Bioengineering of source cells or EVs

Engineered EVs may be used to enhance the efficacy of cell-derived EVs for treating neurological diseases. In this review, artificial engineering techniques for surface modification and cargo loading to enhance therapeutic efficacy of EVs are not discussed in detail because MSCs are hard to transfect and this topic was covered by other reviews (24, 80, 81). EV surface engineering can be achieved indirectly by genetic modification of the EV-secreting cells or via direct modification of EV surface to improve stability, targeting ability and EV tracking (82). However, such EV surface engineering techniques may be associated with toxicity and alteration of the characteristics of stem cell-derived EVs.

Nucleic acids, proteins, and small molecules can be loaded into EVs. To improve the loading efficacy, EV can be physically or chemically manipulated. However, most studies focused on specific EV-miRNAs or EV proteins to evaluate the mechanisms of EVs, and used engineered EVs from non-stem cells (e.g., HEK293) that contain selected EV cargos. It is likely that multi-
ple EV-associated cargos rather than a single candidate molecule eliciting therapeutic effects of MSC-EVs, in a synergistic manner. Further, active bioengineering techniques recently introduced may influence the characteristics of EVs and induce toxicity or be clinically undesirable. All the techniques can increase loading efficiency; however, they are often associated with negative effects such as loss of membrane integrity, aggregate formation and cargo impurity (83). Although bioengineering of EV-producing cells is attractive, most investigators prefer post-EV modification for rapid results and yield as well as viability for clinical feasibility (65).

EVs harbor bioactive molecules. Among them, miRNAs regulate gene expression and protein synthesis, while proteins have biochemical effects. The majority of RNAs found in EVs are less than 200 nucleotides in length. Unlike the abundance of ribosomal RNAs in the parent cells, EVs are mainly enriched in small RNAs, such as miRNAs, long non-coding RNAs, and circular RNAs (84). The miRNA is of prime importance in mediating therapeutic effects (32, 85). Differential miRNA expression in angiogenesis, neuroprotection, and immunomodulation may be associated with stroke and neurodegenerative diseases (32). For example, loading MSCs with miR-124, a neuroprotectant and inflammatory modulator induced cortical neurogenesis via EVs (86). Application of EVs from MSCs overexpressing miRNA-133b showed neurite remodeling and neuroprotection (87). In addition, the miRNA-17-92 cluster is associated with neuroplasticity, and treatment of EVs from MSCs loaded with these miRNAs increased neural plasticity and functional recovery in a rat model of stroke compared with EVs derived from naïve MSCs (88).

Brain-derived neurotrophic factor (BDNF) is a clinically relevant candidate for drug delivery, potentially for neuroprotective effects both at and across the BBB (89). BDNF plays important roles in a variety of brain diseases. BDNF rescues neurons from apoptotic cell death, promotes neuronal development and regeneration of synaptic connections, and improves the overall neuroplasticity of recovery from brain injury and cognitive processes (90). Further, BDNF is expressed in many different brain regions and is decreased during the aging process. The levels of BDNF and netrin-1 (a laminin-related hormone) are strongly reduced in Parkinson’s disease brains and gut tissues (91). D’Souza and colleagues successfully transferred the plasmid DNA expressing BDNF and mitochondria/mitochondrial DNA to brain endothelial cells (89). Yang et al. evaluated the potential therapeutic effects of EV-mediated targeted delivery of NGF in ischemic cortex (92). In this study, HEK293 cells were transfected with RVG-Lamp2b and NGF vectors. Systemic administration of EVs resulted in a burst of encapsulated NGF protein released in the brain. Similarly, Zha et al. encapsulated the VEGF gene into chondrogenic ATDC5-derived EVs, which induced vascularized bone regeneration (93).

Therapeutic agents such as curcumin and catalase can be loaded in EVs to enhance the therapeutic potential of naïve EVs. For example, catalase, a potent antioxidant, was loaded into EVs ex vivo using different methods, and treatment via EVs provided neuroprotective effects in both in vitro and in vivo models of PD (94). Conversely, curcumin which exhibits anti-inflammatory and anti-oxidant properties, was loaded by passive incubation into MSCs and HEK293 cells resulting in enhanced protective effects in models of osteoarthritis and myocardial infarction, respectively (95, 96).

CLINICAL SCALE PRODUCTION OF EXTRACELLULAR VESICLES

The clinical use of EVs requires mass production of EVs. Strategies to increase the yield of EV production include large-scale methods for EV generation, such as artificial EV generation (e.g., extrusion via porous membrane) and large-scale natural EV generation (e.g., bioreactor use) as well as aforementioned methods for modification of culture conditions or external stimuli (97, 98). Various methods of EV production, including different bioreactors and isolation methods, are being used for clinical trials of EV therapeutics (98). In addition to culture of EV source cells, isolation methods also affect the EV cargos. Therefore, selection and validation of isolation methods of choice are needed to avoid confounding results regarding EV-specific content and function.

Harasztí et al. showed that microcarrier-based 3D culture and tangential flow filtration (TFF) facilitate scalable production of biologically active EVs from umbilical cord-derived MSCs. The yield of EVs using this combination system was robust compared with 2D-cultures (99). We have recently introduced a novel method for clinical scale MSC-EV production using a micro-patterned well-based 3D-spheroid system. Using this culture method, we were able to upregulate miRNAs related to neurogenesis/axonal outgrowth and reduce the donor variation.

CONCLUSIONS

Stem cell-derived EV therapy represents a promising approach for patients with acute and degenerative brain disease, as MSC therapies have already been tested in clinical trials. EV-mediated therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles. However, continuous efforts are needed to control the heterogeneity of cargo, optimization of EV surface molecules, and increasing EV production yield.

Currently, MSC-EV therapy is still in the process of development. The results of clinical trials of the application of MSC-EVs have been reported in graft versus host disease, chronic kidney disease, and COVID-19, which showed no adverse effects related to the administration of MSC-EVs (100-102). In addition, clinical safety and possible beneficial effects of MSC-EVs or secretome were reported in patients with alveolar bone regeneration, alopecia, Meniere’s disease undergoing intracochlear application, and refractory macular degeneration (103-106). As of June 2021, only two clinical trials are evaluating the role of EV therapeutics in brain diseases including a small clinical trial.
of safety involving intravenous application of MSC-EVs engineered to express miR-124 in stroke patients (clinicalTrial.gov identifier NCT3384433) and a phase II/I clinical trial of safety and efficacy of EVs derived from allogeneic adipose MSCs administered for nasal drip in patients with AD (NCT0438982).

EV therapies have yet to be approved by the regulatory authorities. Therefore, further studies evaluating the efficacy of MSC-EVs in RCTs are required. In addition, the conventional 2D culture method has been used in the aforementioned clinical studies. EV characterization and isolation methods show substantial heterogeneity. Therefore, further clinical studies are needed to address the limitations of clinical progression of EV therapeutics, such as scalability and GMP of source cells and EV preparation, in addition to extensive quality control. Finally, the biodistribution of EVs and the route and dose of application should be defined as they differ depending on the characterization of target diseases, in terms of acute insults vs. chronic neurodegeneration and intact vs. inflamed BBB.

ACKNOWLEDGEMENTS

This research was in part supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI14C3484).

CONFLICTS OF INTEREST

The authors have no conflicting interests.

REFERENCES

1. Bang OY (2017) Neuroprotective strategies for acute ischemic stroke: recent progress and future perspectives. Precis Future Med 1, 115-121
2. Kordower JH and Bjorklund A (2013) Trophic factor gene therapy for Parkinson’s disease. Mov Disord 28, 96-109
3. Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14, 497-500
4. Lyden PD (2021) Cerebroprotection for acute ischemic stroke: looking ahead. Stroke 52, 3033-3044
5. Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ and Pereira de Almeida L (2017) Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release 262, 247-258
6. Lee JS, Hong JM, Moon GJ et al (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28, 1099-1106
7. Prasad K, Sharma A, Garg A et al (2014) Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke 45, 3618-3624
8. Hess DC, Wechsler LR, Clark WM et al (2017) Safety and efficacy of multipotent adult progenitor cells in acute ischemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 16, 360-368
9. Chung JW, Chang WH, Bang OY et al (2021) Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke. Neurology 96, e1012-e1023
10. Bang OY, Kim EH, Cho YH et al (2022) Circulating extracellular vesicles in stroke patients treated with mesenchymal stem cells: a biomarker analysis of a randomized trial. Stroke [Epub Ahead of Print], https://doi.org/10.1161/STROKEAHA.121.036545
11. Zagrean AM, Hermann DM, Opris I, Zagrean L and Popa-Wagner A (2018) Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic implications. Front Neurosci 12, 811
12. Brites D (2020) Regulatory function of microRNAs in microglia. Glia 68, 1631-1642
13. Choi Y, Kim SM, Heo Y, Lee G, Kang YJ and Yoon DS (2021) Nanoelectrical characterization of individual exosomes secreted by Abeta42-ingested cells using electrostatic force microscopy. Nanotechnology 32, 025705
14. Crewe C, Funcke JB, Li S et al (2021) Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab 33, 1853-1868 e1811
15. O’Brien CG, Ozen MO, Ikeda G et al (2021) Mitochondria-rich extracellular vesicles rescue patient-specific cardiomyocytes from doxorubicin injury: insights into the SENECA trial. JACC CardioOncol 3, 428-440
16. D’Souza A, Burch A, Dave KV et al (2021) Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. J Control Release 338, 505-526
17. Nam GH, Choi Y, Kim GB, Kim S, Kim SA and Kim IS (2020) Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv Mater 32, e2002440
18. Otero-Ortega L, Laso-Garcia F, Frutos MCC et al (2020) Low dose of extracellular vesicles identified that promote recovery after ischemic stroke. Stem Cell Res Ther 11, 70
19. Wen S, Dooner M, Papa E et al (2019) Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a radiation injury bone marrow murine model. Int J Mol Sci 20, 5468
20. Mirzaaghasi A, Han Y, Ahn SH, Choi C and Park JH (2021) Biodistribution and pharmacokinetics of liposomes and exosomes in a mouse model of sepsis. Pharmaceutics 13, 427
21. Lai RC, Tan SS, Teh BJ et al (2012) Proteolytic potential of the MSc exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012, 971907
22. Biancone L, Bruno S, Deregibus MC, Tetta C and Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27, 3037-3042
23. Karp JM and Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4, 206-216
24. Le Saux S, Aubert-Pouessel A, Mohamed KE et al (2021)
Interest of extracellular vesicles in regards to lipid nanoparticle based systems for intracellular protein delivery. Adv Drug Deliv Rev 176, 113837

25. Muhammad SA, Nordin N, Mehat MZ and Fukarazi S (2019) Comparative efficacy of stem cells and secretome in articular cartilage regeneration: a systematic review and meta-analysis. Cell Tissue Res 375, 329-344

26. Zheng X, Hemmann DM, Bahr M and Doepnner TR (2021) The role of small extracellular vesicles in cerebral and myocardial ischemia-Molecular signals, treatment targets, and future clinical translation. Stem Cells 39, 403-413

27. Cai J, Wu J, Wang J et al (2020) Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell Biosci 10, 69

28. Loukogeorgakis SP and De Coppi P (2017) Concise review: amniotic fluid stem cells: the known, the unknown, and potential regenerative medicine applications. Stem Cells 35, 1663-1673

29. Johnson J, Shojaee M, Mitchell Crow J and Khanabdali R (2021) From mesenchymal stromal cells to engineered extracellular vesicles: a new therapeutic paradigm. Front Cell Dev Biol 9, 705676

30. Upadhyra R, Madhu LN, Atalural S et al (2020) Extracellular vesicles from human iPSC-derived neural stem cells: miRNA and protein signatures, and anti-inflammatory and neurogenic properties. J Extracell Vesicles 9, 1809064

31. Webb RL, Kaiser EE, Scoville SL et al (2018) Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model. Transl Stroke Res 9, 530-539

32. Bang OY and Kim EH (2019) Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and progress. Front Neurol 10, 211

33. Xin H, Li Y, Cui Y, Yang Jj, Zhang ZG and Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33, 1711-1715

34. Kalani A, Chatuvetsi P, Kamat PK et al (2016) Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol 79, 360-369

35. Webb RL, Kaiser EE, Jungelwicz BJ et al (2018) Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischemic stroke. Stroke 49, 1248-1256

36. Cha JM, Shin EK, Sung JH et al (2018) Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep 8, 1171

37. Moon CJ, Sung JH, Kim DH et al (2019) Application of mesenchymal stem cell-derived extracellular vesicles for stroke: biodistribution and microRNA Study. Transl Stroke Res 10, 509-521

38. Lee JY, Kim E, Choi SM et al (2016) Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci Rep 6, 33038

39. Medalla M, Chang W, Calderazzo SM et al (2020) Treatment with mesenchymal-derived extracellular vesicles reduces injury-related pathology in pyramidal neurons of monkey perilesional ventral premotor cortex. J Neurosci 40, 3385-3407

40. Gao W, Li F, Liu L et al (2018) Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Exp Neurol 307, 99-108

41. Chen W, Zheng P, Hong T et al (2020) Astrocyte-derived exosomes induce neuronal recovery after traumatic brain injury via delivering gap junction alpha 1-20 k. J Tissue Eng Regen Med 14, 412-423

42. Zhang Y, Chopp M, Zhang ZG et al (2017) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 111, 69-81

43. Williams AM, Bhatti UF, Brown JF et al (2020) Early single-dose treatment with exosomes provides neuro-protection and improves blood-brain barrier integrity in swine model of traumatic brain injury and hemorrhagic shock. J Trauma Acute Care Surg 88, 207-218

44. Yin Z, Han Z, Hu T et al (2020) Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture. Brain Behav Immun 83, 270-282

45. Long X, Yao X, Jiang Q et al (2020) Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 17, 89

46. Soares Martins T, Trindade D, Vaz M et al (2021) Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J Neurochem 156, 162-181

47. Elia CA, Tamborini M, Rasile M et al (2019) Intracerebral injection of extracellular vesicles from mesenchymal stem cells corrects abeta plaque burden in early stages of a preclinical model of Alzheimer’s disease. Cells 8, 1059

48. Losurdo M, Pedrazzoli M, D’Agostino C et al (2020) Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer’s disease. Stem Cells Transl Med 9, 1068-1084

49. Ma X, Huang M, Zheng M et al (2020) ADSCS-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer’s disease. J Control Release 327, 688-702

50. Cone AS, Yuan X, Sun L et al (2021) Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics 11, 8129-8142

51. Cui GH, Wu J, Mou FF et al (2018) Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J 32, 654-668

52. NARBUTE K, PILIPENKO V, PUPURE J et al (2019) Intranasal administration of extracellular vesicles derived from...
human teeth stem cells improves motor symptoms and normalizes tyrosine hydroxylase expression in the substantia nigra and striatum of the 6-Hydroxydopamine-treated rats. Stem Cells Transl Med 8, 490-499
53. Cui GH, Zhu J, Wang YC, Wu J, Liu JR and Guo HD (2021) Effects of exosomal miRNAs in the diagnosis and treatment of Alzheimer’s disease. Mech Ageing Dev 200, 111593
54. Katsuda T, Tschiya R, Kosaka N et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional nephrilysin-bound exosomes. Sci Rep 3, 1197
55. Li X, Zhang J, Zhang X and Dong M (2020) Puerarin suppresses MPP+/-MPTP-induced oxidative stress through an Nrf2-dependent mechanism. Food Chem Toxicol 144, 111644
56. Izzo M, Blesa J, Schleef M et al (2019) Systemic exosomal delivery of shRNA minicircles prevents parkinsonian pathology. Mol Ther 27, 2111-2122
57. Chen HK, Liang FC, Gu P et al (2020) Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis 11, 288
58. Aksoc Y and Gozuacik D (2020) MicroRNAs as major regulators of the autophagy pathway. Biochem Biophys Acta Mol Cell Res 1867, 118662
59. Jeon I, Cicchetti F, Cisbani G et al (2016) Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol 132, 577-592
60. Didiot MC, Hall LM, Coles AH et al (2016) Exosome-mediated delivery of hydrophobically modified siRNA for Huntington mRNA silencing. Mol Ther 24, 1836-1847
61. Wang C, Borger V, Sardiari M et al (2020) Mesenchymal stromal cell-derived small extracellular vesicles induce ischemic neuroprotection by modulating leukocytes and specifically neutrophils. Stroke 51, 1825-1834
62. Costa LA, Eiro N, Fraile M et al (2021) Functional heterogeneity of mesenchymal stem cells from different niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 78, 447-467
63. de Almeida Fuzeta M, Bernardes N, Oliveira FD et al (2020) Scalable production of human mesenchymal stromal cell-derived extracellular vesicles under serum-xenofree conditions in a microcarrier-based bioreactor culture system. Front Cell Dev Biol 8, 533444
64. Nalamolu KR, Venkatesh I, Mohandass A et al (2019) Exosomes treatment mitigates ischemic brain damage but does not improve post-stroke neurological outcome. Cell Physiol Biochem 52, 1280-1291
65. Khan H, Pan JJ, Li Y, Zhang Z and Yang GY (2021) Native and bioengineered exosomes for ischemic stroke therapy. Front Cell Dev Biol 9, 619565
66. Chen CC, Liu L, Ma F et al (2016) Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 9, 509-529
67. Yuan D, Zhao Y, Banks WA et al (2017) Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142, 1-12
68. Wiklander OP, Nordin JZ, O‘Loughlin A et al (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4, 26316
69. Gholamrezanezhad A, Mirpour S, Bagheri M et al (2011) In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl Med Biol 38, 961-967
70. Banks WA, Sharma P, Bullock KM, Hansen KM, Ludwig N and Whiteside TL (2020) Transport of extracellular vesicles across the blood-brain barrier: brain pharmacokinetics and effects of inflammation. Int J Mol Sci 21, 4407
71. Saint-Pol J, Gossete F, Duban-Deweer S, Pottiez G and Karamanos Y (2020) Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells 9, 851
72. Zhao Z and Zlokovic BV (2017) Remote control of BBB: A tale of exosomes and microRNA. Cell Res 27, 849-850
73. Zhao C, Wang H, Xiong C and Liu Y (2018) Hypoxic glioblastoma release exosomal VEGF-A induce the permeability of blood-brain barrier. Biochem Biophys Res Commun 502, 324-331
74. Durcin M, Fleury A, Taillebois E et al (2017) Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles 6, 1305677
75. Wei Z, Chen Z, Zhao Y et al (2021) Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 275, 121000
76. Murphy DE, de Jong OG, Brouwer M et al (2019) Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Mol Med 51, 1-12
77. Cunningham C, Redondo-Castro E and Allan SM (2018) The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab 38, 1276-1292
78. Park KS, Bandeira E, Shelke GV, Lasser C and Lotvall J (2019) Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 10, 288
79. Millan C, Prause L, Vallmajo-Martin Q, Hensky N and Eberli D (2021) Extracellular vesicles from 3D engineered microtissues harbor disease-related cargo absent in EVs from 2D cultures. Adv Healthc Mater, e2002067
80. Pauwels MJ, Vandenriessche C and Vandenbroucke RE (2019) Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 11, eaaav8521
81. Wiklander OPB, Brennan MA, Lotvall J, Breakefield XO and El Andaloussi S (2019) Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 11, eaaav8521
82. Lino MM, Simoes S, Tomatis F et al (2021) Engineered extracellular vesicles as brain therapeutics. J Control Release 338, 472-485
83. Pedrioli G, Piovesana E, Vacchi E and Balbi C (2021) Extracellular vesicles as promising carriers in drug delivery: considerations from a cell biologist’s perspective. Biolog (Basel) 10, 376
84. Crescitelli R, Lasser C, Szabo TG et al (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2, 1-10
85. Zhang ZG, Buller B and Chopp M (2019) Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 15, 193-203
86. Yang J, Zhang X, Chen X, Wang L and Yang G (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 7, 278-287
87. Zhang ZG, Buller B and Chopp M (2019) Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 15, 193-203
88. Yang J, Zhang X, Chen X, Wang L and Yang G (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 7, 278-287