a

Rec114	N-Ter Gal binding domain	Empty vector		
	-LW	-LWH	-LWH+3AT	-LWA
	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)

b

TopoviBL	N-Ter Gal binding domain	Empty vector		
	-LW	-LWH	-LWH+3AT	-LWA
	![Image](image5.png)	![Image](image6.png)	![Image](image7.png)	![Image](image8.png)

c

TopoviBL	N-Ter Gal binding domain	Empty vector		
	-LW	-LWH	-LWH+3AT	-LWA
	![Image](image9.png)	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
Supplementary Figure 1. Controls for Y2H

a. Negative controls for Y2H assays for Fig. 1b

b. Negative controls for Y2H assays for Fig. 1c

c. Negative controls for Y2H assays for Fig. 2h.
Supplementary Figure 2. Properties of the REC114-TOPOVIBL complex

a. SDS-PAGE analysis of fractions 1-12 of the Superdex 200 gel filtration elution profiles of REC114159, TOPOVIBL452-579 and their complex shown in Fig. 1e. The red rectangle highlights fractions containing the REC114-TOPOVIBL complex. Source data are provided as a Source Data file.

b. Representative part of the 2Fo-Fc electron density map covering the TOPOVIBL-REC114 interface contoured at 1.0 σ.

c. Sequence alignment of the REC114 PH domain from *M. musculus, H. sapiens, B. mutus, Meleagris gallopavo, Aquila chrisaetos canadensis* and *Xenopus laevis* used to highlight the amino-acid conservation on the structure (Fig. 2c). Brown letters: equivalent amino acids; white letters: identical amino acids. The residues interacting with TOPOVIBL are shown as blue squares.
Supplementary Figure 3. Conservation of TOPOVIBL C-terminal region

Alignment of TOPOVIBL C-terminal region from nine metazoan species (as in Fig. 1f). The region aligned starts from the three conserved helices of the transducer domain (α5, α6 and α7) up to the C-terminal end. The position of S452 in *M. musculus* TOPOVIBL which defines the N-terminal border of the protein used in biochemical assays (452-579) is shown by an arrow. Brown letters: equivalent amino acids; white letters: identical amino acids.
Supplementary Figure 4. Properties of the TOPOVIBL-REC114 complex and mutants

a. The TOPOVIBL-REC114 complex models predicted by AlphaFold2. The structure of the REC114 PH domain is shown as surface in blue. Key interacting residues of TOPOVIBL are shown as sticks. Most of the interactions observed in the mouse crystal structure are conserved in the predicted complexes of other species. In D. rerio, the residue corresponding to mouse Val566 is Leu555. This mutation seems to be compensated by the valine to glutamine mutation at position 92 in REC114.

b. Pull-down experiments of Strep-tagged REC1141-159 mutants indicated above the lanes with TOPOVIBL452-579. All proteins were first purified by affinity chromatography and gel filtration. A total of 1.2% of the input (lanes 1–5) and 1.2% of the eluates (lanes 6–10) were analyzed on 12% SDS-PAGE gels stained with coomassie brilliant blue. Control lanes 1-2 and 6-7 show inputs and elutions of REC114 and TOPOVIBL alone, respectively.

c. Superdex 200 gel filtration elution profiles of WT and mutant Strep-REC1141-159. The elution profiles are similar, indicating that the REC114 mutations do not significantly affect the overall structure of this REC114 fragment.

d. SDS-PAGE analysis of fractions 1-6 of the Superdex 200 gel filtration elution profiles shown in c. I indicates input samples loaded onto the column.

e. ITC measurement of the interaction affinity between REC11415-159 and the TOPOVIBL559-576 peptide harbouring the W562A mutation (the wild-type control is in Fig. 1g).

f. ITC measurement of the interaction affinity between REC1141-159 and TOPOVIBL452-579 (W562A) (the wild-type control is in Fig. 1g). Source data are provided as a Source Data file.
Supplementary Figure 5. Properties of the TOPOVIBL-REC114-MEI4 complex and mutants

a. Superdex 200 gel filtration elution profiles of WT and mutant TOPOVIBL⁴⁵²⁻⁵⁷⁹. The elution profiles are similar, indicating that the TOPOVIBL mutations do not significantly affect the overall structure of this TOPOVIBL fragment.

b. SDS-PAGE analysis of fractions 1-6 of the Superdex 200 gel filtration elution profiles shown in a. I indicates input samples loaded onto the column.

c. SDS-PAGE analysis of fractions 1-13 of the Superose 6 gel filtration elution profiles shown in Fig. 2i. The red rectangle highlights fractions of containing the TOPOVIBL-REC114-MEI4 complex.

d. and e. Comparison of the REC114-TOPOVIBL (d) and the REC114-ANKRD31 (e) structures.

f. ITC measurement of the interaction between REC114¹⁵⁻¹⁵⁹ and TOPOVIBL⁴⁵²⁻⁵⁷⁹ shows the absence of binding when REC114 is pre-saturated with ANKRD31¹⁸⁰⁸⁻¹⁸⁵⁷. Source data are provided as a Source Data file.
a

CTGGAGGACTTGCTACAGGAGGTACCAAATCTGTCGGAGCTGCTAA

HR, allele Top6bw562A

CTGGAGGACTTGCTACAGGAGGTACCAAATCTGTCGGAGCTGCTAA

4 bp deletion, allele Top6bΔ17Ct

b

TOPOVIBL \ldots LEDLWQEVSNLSEWLNPHRS*
TOPOVIBL-W562A \ldots LEDLWQEVSNLSEWLNPHRS*
TOPOVIBL-Δ17Ct \ldots LEDLMRRYPICPSG*

c

	Top6b	Top6bw562A	Top6bΔ17Ct
PstI	569 bp	294 + 275 bp	569 bp
EcoI	517 + 52 bp	517 + 52 bp	280 + 233 + 52 bp

d

Superdex 200 gel filtration

- Hist-TOPOVIBL (450-579) WT
- Hist-TOPOVIBL (450-579) Δ17Ct

f

	16dpc ovary (Top6bΔ17Ct)	16dpc ovary (Top6bΔ17Ct)	
- RT	+ RT	- RT	+ RT
- EciI	+ EciI	- EciI	+ EciI

16dpc ovary (Top6bΔ17Ct)

- Top6bΔ17Ct + RT
- Top6bΔ17Ct - EciI

16dpc ovary (Top6bΔ17Ct)

- Top6bΔ17Ct + RT
- Top6bΔ17Ct - EciI

- RT + RT

Actin

Spo11α

Spo11β
Supplementary Figure 6. Generation and characterization of mice carrying Top6blW562A and Top6blΔ17Ct alleles.

a. Top6bl, Top6blW562A and Top6blΔ17Ct cDNA sequences. The top sequence corresponds to the 65 last nucleotides of the Top6bl open reading frame. Orange and blue letters mark exons 15 and 16, respectively. The TGG codon in green corresponds to the W562 residue in the protein sequence. Red arrows mark the position of the predicted CRISPR-Cas9 cleavage sites, corresponding to the three guide RNAs used. TAA in black: original stop codon.

The middle sequence corresponds to the repair product by homologous recombination (HR) following CRISPR-Cas9-mediated DSB formation. The TGG codon is replaced by the GCG codon (red letters). The G residue in purple corresponds to a silent substitution to create a PstI restriction site for genotyping. TAA in black: original stop codon.

The bottom sequence corresponds to the product of the deletion of four nucleotides in the sequence following DSB formation and repair (grey crossed letters). TGA in black: new stop codon due to frameshift.

b. Protein sequences of the C-terminal part of TOPOVIBL, TOPOVIBL-W562A and TOPOVIBL-Δ17Ct. Blue letters correspond to the original residues, bold red A to the mutant substitution of W562 in the TOPOVIBL-W562A sequence, and red letters to the nine-residue substitution in the TOPOVIBL-Δ17Ct sequence. *: Stop.

c. Genotyping strategy. Following DNA extraction from tails of Top6bl+/+, Top6blW562A, Top6blΔ17Ct, Top6blW562A/W562A and Top6blΔ17Ct/Δ17Ct mice, PCR amplification with the primer pair specific for a 569 bp region containing the mutations was performed. PCR products were digested with PstI or EciI. The top table presents the expected size following digestion of the different alleles (red correspond to PstI digestion, and dark blue to EciI digestion). Bottom panel: DNA fragments separated on agarose gels.

d. Left panel: Overlay of the Superdex 200 gel filtration elution profiles of wild-type TOPOVIBL452-579 and TOPOVIBL52-579 Δ17Ct. Both profiles are similar, indicating that the Δ17Ct mutation does not significantly affect the overall structure of this TOPOVIBL fragment. Right panel: SDS-PAGE analysis of the input and fractions 1-8 of the Superdex 200 gel filtration elution profiles. Gels were stained with coomassie brilliant blue.
e. TOPOVIBL immunoprecipitation. Following extraction of total protein from 14 dpp mouse testes obtained from $\text{Top6bl}^{+/+}$, $\text{Top6bl}^{W562A/W562A}$ $\text{Top6bl}^{\Delta17Ct/\Delta17Ct}$ and $\text{Top6bl}^{-/-}$ mice, TOPOVIBL was immunoprecipitated using the homemade anti-TOPOVIBL antibody. Six testes of each genotype were used for one immunoprecipitation. The immunoblot was revealed using the homemade anti-TOPOVIBL antibody. The red arrow shows the TOPOVIBL expected band. *corresponds to a non-specific band (immunoglobulin heavy chain).

f. Expression of Top6bl assessed by RT-PCR. RNA extracted from ovaries of 16 dpc $\text{Top6bl}^{\Delta17Ct/\Delta17Ct}$ or $\text{Top6bl}^{+/\Delta17Ct}$ mice was incubated with or without reverse transcriptase (RT), amplified by PCR and incubated with or without $EciI$ restriction enzyme. The size of the fragments after $EciI$ digestion are shown for the Top6bl^{+} and $\text{Top6bl}^{\Delta17Ct}$ alleles. Stars indicate non-specific amplification products. Control PCR assays for monitoring the expression of the two Spo11 splice variants (Spo11^{α} and Spo11^{β}) and of actin are shown. Source data are provided as a Source Data file.
Supplementary Figure 7. Immunocytochemistry on oocytes

a. Quantification of γH2AX signal intensity in leptotene (L)/zygotene (Z) oocytes from 16 and 18 dpc wild-type and 18dpc Top6bl^{Δ17Ct/Δ17Ct} mice. Number of nuclei: 64, 9, and 167, respectively. Grey bars show the mean values. P values were determined using the two-tailed unpaired Mann-Whitney test. Progression into prophase at 18dpc was: L 46%, Z 54%, Pachynema (P) 0% in Top6bl^{Δ17Ct/Δ17Ct}, and L 2%, Z 8%, P 90% in wild-type oocytes.

b. Immunostaining of RPA2, SYCP3 and γH2AX in oocytes from 16 dpc wild-type (+/+), Top6bl^{W562A/W562A}, and Top6bl^{Δ17Ct/Δ17Ct} ovaries. Scale bar, 10μm.

c. Quantification of RPA foci per nucleus in leptotene and zygotene oocytes from 16 dpc wild-type (+/+ or Top6bl^{Δ17Ct}), Top6bl^{W562A/W562A}, Top6bl^{Δ17Ct/Δ17Ct}, and Top6bl^Δ mice (n=4 wild-type and n=2 mice per mutant genotype). Number of nuclei per genotype at leptonema (157, 85, 14, and 29) and at zygonema (165, 55, 105, and 28). Grey bars show the mean value. P values were determined using the two-tailed unpaired Mann-Whitney test. Ratios of the wild-type and mutant mean values are shown.

d. Immunostaining of MEI4, SYCP3 and γH2AX in oocytes from 16 dpc wild-type (+/+), Top6bl^{W562A/W562A}, and Top6bl^{Δ17Ct/Δ17Ct} ovaries. Scale bar, 10μm.

e. Quantification of axis-associated MEI4 foci in leptotene and zygotene oocytes from 15 and 16 dpc wild-type (+/+ or Top6bl^{Δ17Ct}), Top6bl^{W562A/W562A}, and Top6bl^{Δ17Ct/Δ17Ct} mice (n=3 wild-type, n=1 Top6bl^{W562A/W562A}, and n=2 Top6bl^{Δ17Ct/Δ17Ct} mice). Number of nuclei per genotype at leptonema (139, 91, and 42) and at zygonema (106, 24, and 23). Grey bars show the mean values. P values were determined using the two-tailed unpaired Mann-Whitney test.

f. Quantification of axis-associated REC114 foci in leptotene and zygotene oocytes from 16 dpc wild-type (+/+) and Top6bl^Δ mice (n=1 mouse/genotype). Number of nuclei: 29 and 36 L, and 31 and 29 Z, respectively. Grey bars show the mean values. P values were determined using the two-tailed unpaired Mann-Whitney test. Source data are provided as a Source Data file.
a) Wild-type

ANKRD31	SYCP3	γH2AX	ANKRD31
Leptonema	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
Zygonema	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
Pachynema	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)

Top6β^{W652A/W652A}

ANKRD31	SYCP3	γH2AX	ANKRD31
Leptonema	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
Zygonema	![Image](image13.png)	![Image](image14.png)	![Image](image15.png)

Top6β^{Δ17Ct/Δ17Ct}

ANKRD31	SYCP3	γH2AX	ANKRD31
Leptonema	![Image](image16.png)	![Image](image17.png)	![Image](image18.png)
Zygonema	![Image](image19.png)	![Image](image20.png)	![Image](image21.png)

b) ANKRD31 foci per nucleus

- **Wild-type**
- **Top6β^{W652A/W652A}**
- **Top6β^{Δ17Ct/Δ17Ct}**

![Graph](image22.png)
Supplementary Figure 8. Immunocytochemistry of ANKRD31 on oocytes

a. Immunostaining of ANKRD31, SYCP3 and γH2AX in oocytes from 16 dpc wild-type (+/+), Top6blW562A/W562A, and Top6blΔ17Ct/Δ17Ct ovaries. Scale bar, 10μm.

b. Quantification of axis-associated ANKRD31 foci in leptotene and zygotene oocytes from 16 and 18 dpc wild-type (+/+ or Top6bl+/Δ17Ct), Top6blW562A/W562A, and Top6blΔ17Ct/Δ17Ct mice (n=3 wild-type, n=1 Top6blW562A/W562A, and n=2 Top6blΔ17Ct/Δ17Ct mice). Number of nuclei per genotype at leptonema (21, 74, and 56) and at zygonema (56, 57, and 108). Grey bars show the mean values. P values were determined using the two-tailed unpaired Mann-Whitney test. Source data are provided as a Source Data file.
Supplementary Figure 9. Histology on ovaries and testis

a. Quantification of primordial, primary, and growing follicles in ovaries from 20 dpp wild-type homozygous or heterozygous (+/+, Top6bl+/Δ17Ct, Top6bl+/W562A, +/ Top6bl), Top6blW562A/W562A, Top6blΔ17Ct/Δ17Ct, and Top6bl+/- mice. Each data point is the mean ± SD of at least 10 sections from one ovary.

Number of mice: 6, 2, 4, and 2, respectively. P values were determined using the two-tailed unpaired Mann-Whitney test.

b. Quantification of primordial, primary, and growing follicles in ovaries from 7-8-week-old wild-type (+/+ or Top6bl +/W562A), Top6blW562A/W562A, Top6blΔ17Ct/Δ17Ct, and Top6bl+/- mice. Each data point is the mean ± SD of 20 sections from one ovary. P values were determined using the two-tailed unpaired Mann-Whitney tests.

Number of mice: 7, 5, 3, and 2 respectively.

c. Fertility tests. Top6bl +/Δ17Ct, Top6blW562A/W562A and Top6blΔ17Ct/Δ17Ct females (n= 5, 4 and 4 respectively), from 2.3 to 10.6 months of age, were mated with heterozygous males (Top6bl +/Δ17Ct or Top6bl +/W562A). Each symbol refers to a female. Only two of the four Top6blW562A/W562A females were fertile (large circle, dark green, and small circle), and after the last progeny, they were not mated any longer. Breeding periods of non-productive females and for Top6bl+/Δ17Ct females are shown.

d. Haematoxylin and eosin-stained sections of ovaries from 20 dpp wild-type (+/+), Top6blW562A/W562A and Top6blΔ17Ct/Δ17Ct mice (samples from panel a). Scale bars, 250 and 50 μm in the left and right panel, respectively. Primordial (PriF), primary (PF), and growing (GF) follicles are indicated.

e. Sperm count in Top6bl mutants. Sperm in epididymis was counted in 2-month-old mice. Each data point is one epididymis (number of mice= 7, 5, 3 and 1 for wild-type (+/+ or +/-), Top6blW562A/W562A, Top6blΔ17Ct/Δ17Ct, and Top6bl+/-, respectively). The mean ± SD is shown. P values were determined using the two-tailed unpaired Mann-Whitney test.

f. Periodic acid-Schiff staining of testis sections from 2 month-old wild-type (+/+), Top6blW562A/W562A, and Top6blΔ17Ct/Δ17Ct mice. Scale bar, 250μm. Zoomed images of stage XII tubules are shown on the right.

g. Testis weight in Top6bl mutants. Testis weight was measured in 2 month-old mice. Each data point is one testis (number of mice= 5, 5, 3, and 1 for wild-type (+/+), Top6blW562A/W562A, Top6blΔ17Ct/Δ17Ct, and
The mean value ± SD is shown. P values were determined using the two-tailed unpaired Mann-Whitney test.

h. Staging of tubules in testis sections from 2-month-old wild-type and Top6blΔ17Ct/Δ17Ct mice (n=2 mice/genotype). Tubules were divided in five groups based on several criteria. I-VI: round spermatid with acrosomes, 0 to ~25% of the perimeter of the spermatid, elongated spermatids on the lumen; VII-VIII: round spermatids with acrosomes, ~50% of the perimeter; IX-X: elongated spermatids with acrosomes not hook-shaped; XI: elongated spermatids with a hook; XII: presence of metaphases. Number of staged tubules: 310 in wild-type and 366 in Top6blΔ17Ct/Δ17Ct mice. The horizontal bars show the mean value. The distributions are statistically different (Pearson’s Chi-Square: 36.028).

i. Detection of apoptosis and metaphase in testis sections. Sections were labelled with TUNEL (green) and H3pS10 (red), and stained with DAPI (blue). Scale bar, 100μm. White arrowheads indicate tubules positive for H3pS10 and TUNEL.

j. A stage XII tubule with metaphase spermatocytes (from Top6blΔ17Ct/Δ17Ct mice). Scale bar, 100μm. Several metaphases with condensed chromosomes are seen, and one (arrow) shows relatively more intense nuclear staining, suggesting apoptosis.

k. Detection of apoptosis by TUNEL assay. Tubules were classified in three categories: <3, 3 to 5, and >5 apoptotic nuclei. The mean values ± SD of the 3 to 5 and >5 categories are shown. Number of 2 month-old mice: 4 wild-type (+/+ and Top6bl+/Δ17Ct) and 2 mice per mutant. The percentage of tubules with <3, 3 to 5, and >5 apoptotic nuclei was significatively different between wild-type and Top6blW562AW562A and Top6blΔ17Ct/Δ17Ct mice (Chi-square Pearson: 354.03 and 811.63, respectively).

Source data are provided as a Source Data file.
Supplementary Figure 10. Staging and immunocytochemistry on spermatocytes

a. Identification of spermatocytes at early, mid, late leptonema and zygonema. Examples of wild-type nuclei at the different stages by staining with SYCP3 (green), SYCP1 (red) and γH2AX (magenta). Scale bar, 10μm.

b. Quantification of axis-associated RPA2 foci in early/mid and late leptonema, zygotene and pachytene spermatocytes from 12-14dpp wild-type (+/+ or Top6bl+/Δ17Ct; n=3), Top6blW562A/W562A (n=2), and Top6blΔ17Ct/Δ17Ct (n=2) mice. Number of nuclei per genotype at early/mid leptonema (105, 36, and 41), late leptonema (91, 38, and 131), zygotene (135, 62, and 85), and pachytene (178, 119, and 80). Grey bars show the mean values. P values were determined using the two-tailed unpaired Mann-Whitney test.

c. RPA2 focus variation during prophase. For each genotype (wild-type, Top6blW562A/W562A, and Top6blΔ17Ct/Δ17Ct), the number of RPA2 foci at the different stages (dataset as in panel b) was normalized to the mean number at zygonema (set to 1). The mean value ± SD is shown. Statistical significance between wild-type and each mutant (Top6blW562A/W562A; Top6blΔ17Ct/Δ17Ct) was tested at late leptonema using the two-tailed unpaired Mann-Whitney test.

d. Immunostaining of RPA2, SYCP3 and γH2AX in spermatocytes from 12-14dpp wild-type (+/+), Top6blW562A/W562A, and Top6blΔ17Ct/Δ17Ct spermatocytes. A white dotted circle highlights the unsynapsed X and Y chromosomes at pachynema (SYCP3 staining) in Top6blΔ17Ct/Δ17Ct mice. Scale bar, 10μm. Source data are provided as a Source Data file.
a
Wild-type ANKRD31/SYCP3
Early leptonema
Late leptonema
Zygonema
Pachynema

Top6bl\textsuperscript{\textit{W652A/W562A}}
Early leptonema
Late leptonema
Zygonema
Pachynema

Top6bl\textsuperscript{\textit{\Delta17Ct/\Delta17Ct}}
Early leptonema
Late leptonema
Zygonema
Pachynema

b
MEI4 wild-type MEI4/SYCP3
Early leptonema
Late leptonema
Zygonema
Pachynema

Top6bl\textsuperscript{\textit{W652A/W562A}}
Early leptonema
Late leptonema
Zygonema
Pachynema

Top6bl\textsuperscript{\textit{\Delta17Ct/\Delta17Ct}}
Early leptonema
Late leptonema
Zygonema
Pachynema

c
Graph showing the number of MEI4 foci per nucleus. The graph compares wild type, Top6bl\textsuperscript{\textit{W652A/W562A}}, and Top6bl\textsuperscript{\textit{\Delta17Ct/\Delta17Ct}}. The x-axis represents different stages of meiosis (Early/mid Leptonema, Late Leptonema, Zygonema). The y-axis represents the number of MEI4 foci per nucleus, ranging from 0 to 800. The graph includes data points for each condition, with significance indicated by asterisks (*) for statistical differences.
Supplementary Figure 11. Immunocytochemistry on spermatocytes

a. Immunostaining of ANKRD31 and SYCP3 in spermatocytes from 12-14dpp wild-type (+/+), *Top6bl*^{W562A/W562A}, and *Top6bl*^{Δ17C/Δ17C} mice. At zygonema, dotted white circles (merge panels) highlight ANKRD31 aggregates at the ends of some chromosome axes. Scale bar, 10μm.

b. Immunostaining of MEI4 and SYCP3 in spermatocytes from 12-14 dpp wild-type (+/+), *Top6bl*^{W562A/W562A}, and *Top6bl*^{Δ17C/Δ17C} mice. Scale bar, 10μm.

c. Quantification of axis-associated MEI4 foci in early/mid, late leptotene and zygotene spermatocytes from 12-14 dpp wild-type (+/+ or *Top6bl*^{+/Δ17C}; n=2), *Top6bl*^{W562A/W562A} (n=1), and *Top6bl*^{Δ17C/Δ17C} (n=2) mice. Number of nuclei: 97 early/mid L, 43 late L, 114 Z in wild-type; 26 early/mid L, 28 late L and 16 Z in *Top6bl*^{W562A/W562A}; 77 early/mid L, 68 late L and 103 Z in *Top6bl*^{Δ17C/Δ17C}. Grey bars show the mean values. P values were determined using the two-tailed unpaired Mann-Whitney test. Source data are provided as a Source Data file.
Supplementary Figure 12. Hotspot overlap analysis

a. Overlap between wild-type and Top6blΔ17Ct/Δ17Ct hotspots and the default hotspots used in the PRDM9KO mouse strain. The overlaps were restricted to the central 400bp around the estimated hotspot centre.

b. DMC1-SSDS signal (heatmap and average plots) from wild-type and Top6blΔ17Ct/Δ17Ct mice at PRDM9B6-, PRDM9RJ2- and PRDM9KO-defined hotspots.
Supplementary Figure 13. Hotspots signal quantification analysis

a. DMC1-SSDS signal from Top6blΔ17Ct/Δ17Ct and wild-type mice at wild-type hotspots (13562) and at hotspots specifically activated in Top6blΔ17Ct/Δ17Ct (3519), and H3K4me3 signal (heatmap and average plots) from B6 and RJ2 mice. Peaks are ranked as a function of the DMC1 or H3K4me3 signal intensity.

b. DMC1-SSDS signal in Top6blΔ17Ct/Δ17Ct, Ankrd31−/− and their respective wild-type control mice. Signal is represented as box plots (as defined in Methods) computed for hotspots (n= 13562) ranked according to increased DMC1-SSDS signal intensity and grouped into 10 bins (1 bin = 10% of the total hotspot number; bin 1 = weakest signal, bin 10 = strongest signal).

c. Control for the sub-telomeric effect. Quantification was done as in Fig. 6f, but with ratios calculated between two random pools of 10 non-sub-telomeric consecutive hotspots (box plot as defined in Methods).

d. Sub-telomeric/Non-sub-telomeric hotspot density ratios for unchanged, decreased, and increased hotspots, as defined by DESeq2 analysis, for sub-telomeric regions defined using various distances from the telomeric annotated ends (1-2-3-4-5-7-10Mb). The log2 ratio was plotted and showed excess (positive values) or lack (negative values) of hotspots at sub-telomeric regions compared with non-sub-telomeric regions.

e. Distribution of hotspots within 3 Mb from annotated telomeric ends and according to their DESeq2 category (unchanged, decreased, or low signal). Note the absence of increased hotspots within this sub-telomeric window size. The normalized wild-type DMC1-SSDS signal is shown on the y-axis.
Supplementary Figure 14. Browser windows of DMC1-SSDS

Browser windows of DMC1-SSDS in wild-type (blue) and Top6b^{AT7Ct/AT7Ct} (green) mice within the 10Mb q-arm telomere-proximal regions of chromosomes 1 to 10.
Supplementary Figure 15. Browser windows of DMC1-SSDS

Browser windows of DMC1-SSDS in wild-type (blue) and Top6bl\textDelta17Ct/\textDelta17Ct (green) mice within the 10Mb q-arm telomere-proximal regions of chromosomes 11 to X.
Supplementary Figure 16. Quantitative evaluations of AlphaFold2 models

a. AlphaFold2 model of the mouse TOPOVIBL¹⁻⁴⁵⁷, including the GHKL-like, linker and transducer domains coloured according to the AlphaFold2 per-residue estimate of confidence (pLDDT).

b. Detail of the TOPOVIBL GHKL-like domain shown in Fig. 8b and coloured according to pLDDT.

c. Predicted aligned error plot for the model shown in a.

d. AlphaFold2 model of the SPO11-TOPOVIBL³⁸⁹⁻⁴⁵⁷ complex coloured by protein chain.

e. AlphaFold2 model of the SPO11-TOPOVIBL³⁸⁹⁻⁴⁵⁷ complex coloured according to pLDDT.

f. Predicted aligned error plot for the model shown in d.

g-i Details of the SPO11-TOPOVIBL complex shown in Fig. 8c-e coloured according to pLDDT.
TOPVIBL-REC114

Data collection	
Space group	$P6_122$
Cell dimensions	
a, b, c (Å)	108.7, 108.7, 83
α, β, γ (°)	90, 90, 120
Resolution (Å)	62.3-2.26 (2.35-2.26)a
R_{merge} (%)	6.7(169)
$I/\sigma I$	23.9 (1.4)
$CC_{1/2}$ (%)	99.9 (57.8)
Completeness (%)	84.4 (38.9)
Redundancy	18 (12.2)

Refinement	
Resolution (Å)	94.03-2.26
No. reflections	11285
R_{work}/R_{free}	0.226/0.249
B-factors	70
R.m.s. deviations	
Bond lengths (Å)	0.006
Bond angles (°)	1.412

a Values in parentheses are for highest resolution shell.

Supplementary Table 1

Data collection and refinement statistics.
Chr	Subtel 1M	Subtel 2M	Subtel 3M	Subtel 4M	Subtel 5M	Subtel 1M	Subtel 2M	Subtel 3M	Subtel 4M	Subtel 5M	Subtel 1M	Subtel 2M	Subtel 3M	Subtel 4M	Subtel 5M
chr1	0.19688	1	1	1	1	0.337954	0.707152	0.95226	1	0.30121					
chr2	0.19688	1	0.9538	1	1	0.118562	0.728138	0.170249	0.26614	0.26614					
chr3	NA	0.09331	0.00059	0	0.00062	NA	0.209354	0.000178	1.00E-06	8.70E-05					
chr4	2.00E-05	0	0	0	0	1.20E-05	0	0	0	0					
chr5	NA	0.09472	1	1	1	NA	0.214951	0.530377	1	1					
chr6	0.1378	0.00765	1	1	1	0.275433	0.00955	0.263484	0.426418	0.848232					
chr7	NA	1	1	1	1	NA	0.867484	1	1	0.92624					
chr8	0.00204	9.00E-05	0.00548	0.2626	1	0.005766	5.00E-05	0.001712	0.039004	0.37051					
chr9	2.00E-05	0	0	0	0	5.00E-06	0	0	0	0					
chr10	0.07514	0.00201	0.06632	0.68638	1	0.213463	0.003835	0.016055	0.106033	0.211257					
chr11	0.00041	0.00046	0.13714	0.58528	1	0.000331	0.000331	0.022116	0.06639	0.301525					
chr12	NA	1	1	1	1	NA	1	1	0.877914	0.708196					
chr13	NA	0.00056	0	0	0	NA	0.000478	0	0	0					
chr14	0.00156	0.20581	0.25	1	1	0.004174	0.094238	0.094238	0.886754	0.784146					
chr15	0.00041	0.58244	0.25	1	1	0.001482	0.189291	0.0572	0.170896	0.329774					
chr16	0.85779	1	1	1	1	0.596137	1	1	0.932596	1					
chr17	NA	NA	NA	0.02142	1	NA	NA	NA	0.622188	0.003701					
chr18	NA	NA	1	1	1	NA	NA	1	0.644324	0.875619					
chr19	0	0	0.00162	0.05963	0.26777	0	0	0	0.00019	0.004521	0.020866				
chrX	NA	0	0	0	0	NA	0	0	0	0					

Supplementary Table 2.

Statistics to test the biased distribution of hotspot densities at sub-telomeric vs. non-sub-telomeric regions in *Top6bl Δ17Ct* samples: Pearson’s Chi square adjusted p-value for tests considering two (unchanged/decreased) or three (unchanged/decreased/increased) hotspot categories for different sizes of sub-telomeric regions. NA: not applicable due to the absence of hotspot with quantifiable signal.
Guides for CirspR	6509_Top6bl_sgRNA1	CCGCAGGACTTGGCTGCTAC
6510_Top6bl_sgRNA2	GCAGGACTTGGCTGCTACAGG	
6511_Top6bl_sgRNA3	TCCTGTAGCCCAAGTCTCTG	

Donor for CirspR	6512_Top6bl_donor1	TTCTTTGGCTTGTGGCCTGCTCAGAGAGAATGCTTAGGACCTGTGTCCCGGATTCAGCCACTCGGACAGATTGGATAACCTCCTGCAGCGCCAAGTCCTGCAGGAGGAGGAGGCGGTGGTGAGG
6513_Top6bl_donor2	GCGGCTTGGAGGTACCAGCAAGCAGAGGCGGGTGGCGGGCTGAGCTACCACCGCCGGGTCCTCACCACCCGCTCCTCTGCTCCCAGGACTTGGCGCTGCTGACGATGCCAGGTATGATCCATCTGTCGAG	

Genotyping	oliAN 320	CAACCATGGCAGGGAAGAAC
oliAN 3201	TACCCAGTAAACGCAGCC	
RT-PCR Top6bl	Oli63	GGACCAGCTCTGCTACTTT
	Oli70	CAGAGGAGATGCTTACGAC
RT-PCR Spo11	Spo11:116U22	CTGTGGCCATGGTGAAGAGAG
	Spo11:655L22	TGTGCGACTAATCAATCAAGGA

Supplementary Table 3

Oligonucleotides
Genotype	Pachytene with full autosomal synapsis (%)	Nuclei (n)
++	76.6	77
++/*Top6bl^{W562A}	86.7	30
wild-type	83.2	107
Top6bl^{W562A}/Top6bl^{W562A}	86.4	81
Top6bl^{W562A}/Top6bl^{W562A}	96.3	27
Top6bl^{W562A} mutant	88.9	108
++	91.0	79
++/*Top6bl^{Δ17Ct}	72.2	54
wild-type	88	133
Top6bl^{Δ17Ct}/Top6bl^{Δ17Ct}	84.4	96
Top6bl^{Δ17Ct}/Top6bl^{Δ17Ct}	85.2	108
Top6bl^{Δ17Ct} mutant	85	204

Supplementary Table 4

Percentage of pachytene spermatocytes with full synapsis