Effects of Point Defects Introduced by Co-doping and Proton Irradiation in CaKFe$_4$As$_4$

Y Kobayashi¹, S Pyon¹, A Takahashi¹ and T Tamegai¹

¹Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

E-mail: y-kobayashi@g.ecc.u-tokyo.ac.jp

Abstract. Introduction of point defects into superconductors through proton irradiation enhances their critical current density (J_c). Similarly, chemical doping can also produce point defects, leading to the enhancement of J_c. Iron-based superconductors (IBSs) have been investigated as promising materials for practical applications because of their large J_c at high magnetic fields and temperatures. Recently, another promising IBS CaKFe$_4$As$_4$ (1144-type) was found, and attracts much interest due to its characteristic feature such as stoichiometric superconductivity and the presence of novel planar defects. We have grown single crystals of Co-doped CaKFe$_4$As$_4$ and clarified the effect of chemically-introduced point defects on J_c. We also introduced point defects through 3 MeV proton irradiation, and compared the effect of point defects to J_c.

1. Introduction
The critical current density (J_c) is determined by pinning of vortices in superconductors. In addition to the intrinsic pinning, pinning centers can be artificially engineered into superconductors through defects prompted by particle irradiations [1–4]. In 122-type iron-based superconductors (IBSs) point defects generated through proton irradiation have been recognized as effectively pinning centers, which enhance their J_c [5–8].

IBSs have been investigated as promising materials for practical applications because of their large J_c at high magnetic fields and temperatures. Recently, another promising IBS CaKFe$_4$As$_4$ (1144-type) was found [9]. Its crystal structure is similar to 122-type IBSs. CaKFe$_4$As$_4$ has a tetragonal structure (P4/mmm), where Ca and K layers stack alternatively along the c-axis [9, 10]. CaKFe$_4$As$_4$ shows similar superconducting properties to those in optimally doped 122-type IBSs [11–13], such as critical temperature (T_c) and upper critical field (H_{c2}) [14].

Here, we have successfully grown single crystals of Co-doped CaKFe$_4$As$_4$ with various doping levels, and characterized superconducting properties including the effect of chemically introduced point defects on J_c. We also investigated the effect of point defects generated by 3MeV proton irradiation into CaKFe$_4$As$_4$. We compare effects of two kinds of point defects, chemically and physically introduced, on J_c characteristics in CaKFe$_4$As$_4$.

2. Experimental Methods
CaKFe$_4$As$_4$ and Ca(Fe$_{1-x}$Co$_x$)$_4$As$_4$ single crystals were synthesized by FeAs self-flux method. Ca granules (99.5%), K ingots (99.5%), FeAs powder, and CoAs powder were used as starting materials. FeAs was prepared by sealing stoichiometric amounts of As grains (7N) and Fe powder (99.9%) in an evacuated quartz tube and reacting them at 700 °C for 40 h after heating at 500 °C for 10 h. We kept the
temperature ramp rate always at 100 °C/h. CoAs was prepared by sealing stoichiometric amounts of As grains (7N) and Co powder (99%) in an evacuated quartz tube. It was heated up to 700 °C for 7 h and held for 6 h and then heated up to 1065 °C for 4 h and held for 10 h. A mixture with a ratio of Ca : K : FeAs : CoAs = 1: 1: 10(1-x) : 10x was placed in a zirconia crucible in an argon-filled glove box. The alumina crucible was then sealed in a niobium tube using arc welding method. The niobium tube was sealed in an evacuated quartz tube. The whole assembly was heated up to 650 °C for 5 h and held for 5 h, and then heated up to 1180 °C for 5 h and held for 5 h. It was cooled down to 1050 °C for 5 h and slowly cooled down to 930 °C at a rate of 1.5 °C/h.

3 MeV proton irradiations were performed at room temperature at NIRS-HIMAC up to 5x10^16 cm^-2. For this purpose, crystals were thinned down to 10-15 μm so that all protons pass through them.

Magnetization of the crystal was measured by a superconducting quantum interference device (SQUID) magnetometer (MPMS-5XL, Quantum Design). The single crystal was placed in a quartz sample holder and fixed with Apiezon N grease. T_c was estimated from zero-field cooling (ZFC) and field-cooling (FC) magnetization measurements for field perpendicular to the ab-plane. J_c was evaluated from the results of the magnetization measurements using the extended Bean model.

3. Results and Discussion

![Figure 1](image_url)

Figure 1. (a) Temperature dependence of normalized magnetization in CaK(Fe_{1-x}Co_{x})_4As_4. (b) T_c as a function of Co-doping level in CaK(Fe_{1-x}Co_{x})_4As_4.

Figure 1(a) shows the temperature dependence of magnetization in CaK(Fe_{1-x}Co_{x})_4As_4. The superconducting transition is sharp even after Co-doping, and the magnetization at low temperatures is flat, indicating that quality of the grown crystals is high. It has been demonstrated that T_c in CaK(Fe_{1-x}Co_{x})_4As_4, which is determined by the onset of diamagnetism, decreases with Co content. Co-doping level dependence of T_c is shown in figure 1(b). At small Co-doping levels, T_c decreases roughly at 1 K/(Co9%). For the sample with $x = 0.11$, superconductivity does not show up above $T = 2$ K.

Figures 2(a)-(f) show the magnetic field dependence of J_c in CaK(Fe_{1-x}Co_{x})_4As_4 with different x at different temperatures. In the pristine crystal, $x = 0$, non-monotonic temperature dependence of J_c at high magnetic fields is reproduced as reported in [14-15]. It is demonstrated that J_c at low temperatures increases with Co content, up to $x = 0.07$. It means that the substituted Co-doping introduces point defects. Figures 2(a)-(f) show that J_c is the largest when the Co-doping level is 0.03-0.07.

A close inspection of figures 2(a)-(f) show that the magnetic field dependence of J_c at low temperatures changes with Co-doing level. For the sample with $x = 0$, J_c at $T = 2$ K rapidly decreases with the field and it becomes less than that at $T = 15$ K at $H = 50$ kOe. On the other hand, for samples with $x > 0.03$, J_c does not decreases so much at $T = 2$ K, and the non-monotonic temperature dependence of J_c does not show up at high fields. In many superconductors, J_c changes as H^a at low temperatures.
and high fields. This feature can be more clearly seen by making double-logarithmic plot of J_c - H as shown in the figures 2(g)-(i). Actually, in the case of pristine crystal, α at 2 K and 10 K are 0.84 and 0.62, respectively. On the other hand, for the sample with $x = 0.03$, α at 2 K and 10 K are 0.65 and 0.56, respectively, and for $x = 0.07$, α at 2 K and 10 K are 0.55 and 0.53, respectively. These values are closer to the value in the case of strong point pinning of 5/8–0.62 [16]. Hence, we speculate that the introduced Co atoms work as strong pinning centers.

![Figure 2](image-url)

Figure 2. Magnetic field dependences of J_c at different temperatures in CaK(Fe$_{1-x}$Co$_x$)$_4$As$_4$ (a) $x = 0$, (b) $x = 0.01$, (c) $x = 0.03$, (d) $x = 0.05$, (e) $x = 0.07$, and (f) $x = 0.09$. (g)-(i) are the double logarithmic plot of J_c - H. Lines are fitting to the data at 2 K and 10 K in CaK(Fe$_{1-x}$Co$_x$)$_4$As$_4$ (g) $x = 0$, (h) $x = 0.03$, and (i) $x = 0.07$.

Figures 3(a)-(c) show that magnetic field dependences of J_c at different temperatures in CaKFe$_4$As$_4$ irradiated by 3 MeV protons at doses of (a) $0.01 \times 10^{16} \text{ cm}^2$, (b) $0.05 \times 10^{16} \text{ cm}^2$, and (c) $0.1 \times 10^{16} \text{ cm}^2$. They clearly demonstrate that J_c is enhanced by increasing proton dose up to $0.1 \times 10^{16} \text{ cm}^2$ in almost all magnetic field and temperature range. In particular, J_c is enhanced more than a factor of 4 compared with the pristine sample at a dose of $0.1 \times 10^{16} \text{ cm}^2$ at low temperatures and high fields. The power-law magnetic field dependence of J_c, $J_c \propto H^\alpha$, is analyzed in figures 3(d)-(e). At a dose of $0.01 \times 10^{16} \text{ cm}^2$, $\alpha = 0.60$ ($T = 2$ K) and $\alpha = 0.55$ ($T = 10$ K), while it changes to $\alpha = 0.54$ ($T = 2$ K) and $\alpha = 0.52$ ($T = 10$ K) at a dose of $0.1 \times 10^{16} \text{ cm}^2$. It should be noted that T_c does not change at this low proton doses. This fact suggests that the origin of the non-monotonic temperature dependence of J_c at high fields is not due to the presence of secondary phase with low T_c, since proton irradiation at this low dose.
is not expected to destroy the secondary phase. It is remarkable that the anomalous non-monotonic temperature dependence of J_c at high fields is completely wiped out at a relatively low dose of 0.1×10^{16} cm2.

3 MeV H$^+$ 0.01 $\times 10^{16}$ cm2	3 MeV H$^+$ 0.05 $\times 10^{16}$ cm2	3 MeV H$^+$ 0.1 $\times 10^{16}$ cm2

(Figure 3) Magnetic field dependences of J_c at different temperatures in CaKFe$_4$As$_4$ irradiated with 3 MeV protons at doses of (a) 0.01 $\times 10^{16}$ cm2, (b) 0.05 $\times 10^{16}$ cm2, and (c) 0.1 $\times 10^{16}$ cm2. (d)-(e) are the double logarithmic plot of J_c vs. H. Lines are fitting to the data at 2 K and 10 K at doses of (d) 0.01 $\times 10^{16}$ cm2 and (e) 0.1 $\times 10^{16}$ cm2.

Figures 4 and 5 show the magnetic field dependence of J_c at different temperatures in CaK(Fe$_{1-x}$Co$_x$)$_4$As$_4$ irradiated by 3 MeV protons. It demonstrates that J_c enhancement with the proton irradiation is weaker than that in CaKFe$_4$As$_4$. Actually, with 3 MeV proton irradiation up to 0.1×10^{16} cm2, J_c at $T = 5$ K is enhanced by a factor of ~2 for $x = 0.03$, while J_c is enhanced only by ~20 % for $x = 0.07$. The power-law exponent α of J_c is summarized in Table 1. α in most of the cases is close to 0.5, suggesting that the strong point pinning is dominant. Previous studies of 3 MeV irradiation into IBSs up to 1×10^{16} /cm2 or more demonstrated that α changes from ~0.5 to ~0.3 [6,8]. These observations were reproduced by the large-scale TDGL simulation with large strong pinning centers [11]. However, in the present case, α remains ~0.5 in spite of the 3 MeV proton irradiation. This is probably due to the insufficient dose of protons. Further studies with much larger proton doses are desired.

Table 1. Values of the power-law exponent α of J_c.

	pristine	3 MeV H$^+$ 0.01 $\times 10^{16}$ /cm2	3 MeV H$^+$ 0.1 $\times 10^{16}$ /cm2				
	$T = 2$ K	$T = 10$ K	$T = 2$ K	$T = 10$ K			
CaKFe$_4$As$_4$	0.84	0.62	0.60	0.55	0.54	0.52	
CaK(Fe$_{1-x}$Co$_x$)$_4$As$_4$	$x = 0.03$	0.65	0.56	0.51	0.53	0.54	0.52
CaK(Fe$_{1-x}$Co$_x$)$_4$As$_4$	$x = 0.07$	0.55	0.53	0.52	0.48	0.48	0.48
Figure 4. Magnetic field dependences of J_c at different temperatures in CaK(Fe$_{1-x}$Co$_x$)$_2$As$_4$ irradiated by 3 MeV protons at doses of (a) 0.01×10^{16} cm$^{-2}$ ($x = 0.03$), (b) 0.05×10^{16} cm$^{-2}$ ($x = 0.03$), (c) 0.1×10^{16} cm$^{-2}$ ($x = 0.03$), (d) 0.01×10^{16} cm$^{-2}$ ($x = 0.07$), (e) 0.05×10^{16} cm$^{-2}$ ($x = 0.07$), and (f) 0.1×10^{16} cm$^{-2}$ ($x = 0.07$). (g)-(j) are the double logarithmic plot of $J_c - H$ in CaK(Fe$_{1-x}$Co$_x$)$_2$As$_4$ irradiated by 3 MeV protons at doses of (g) 0.01×10^{16} cm$^{-2}$ ($x = 0.03$), (h) 0.1×10^{16} cm$^{-2}$ ($x = 0.03$), (i) 0.01×10^{16} cm$^{-2}$ ($x = 0.07$), and (j) 0.1×10^{16} cm$^{-2}$ ($x = 0.07$). Lines in (g)-(j) are fitting to $J_c - H$ at 2 K and 10 K.

Figure 5. J_c at $T = 5$ K and $H = 40$ kOe for CaK(Fe$_{1-x}$Co$_x$)$_2$As$_4$ ($x = 0, 0.03$, and 0.07) as functions of 3 MeV proton dose.
4. Summary
We have studied the effect of point defects on J_c in CaK(Fe$_{1-x}$Co$_x$)$_4$As$_4$. While substitution of Co for Fe suppresses T_c, it enhances J_c by a factor of up to ~4 at low temperatures. In addition, the non-monotonic temperature dependence of J_c at high fields disappears for samples with $x > 0.03$. After Co substitution, the magnetic field dependence of J_c becomes weaker and shows a dependence characteristic of strong pinning centers. 3 MeV proton irradiation also introduces pinning centers in CaKFe$_4$As$_4$, and J_c is enhanced by a factor of 4 even at a dose of 0.1×10^{16} ions/cm2. It also suppresses the non-monotonic temperature dependence of J_c at high fields. When CaK(Fe$_{1-x}$Co$_x$)$_4$As$_4$ is irradiated by 3 MeV protons, at a dose of 0.1×10^{16}/cm2, J_c is enhanced by a factor of 2 for the sample with $x = 0.03$, while J_c is not enhanced for the sample with $x = 0.07$.

References
[1] van Dover R B, Gyorgy E M, Schneemeyer L F, Mitchell J W, Rao K V, Puzniak R and Waszczak J V 1989 Nature 342 6245
[2] Tamegai T, Taen T, Yagyuda H, Tsuchiya Y, Mohan S, Taniguchi T, Nakajima Y, Okayasu S, Sasase M, Kitamura H, Murakami T, Kambara T, and Kanai Y 2012 Supercond. Sci. Technol. 25 084008
[3] Civale L, Marwick A D, McElfresh M W, Worthington T K, Malozemoff A P, Holtzberg F H, Thompson J R and Kirk M A 1990 Phys. Rev. Lett. 65 1164
[4] Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Krusin-Elbaum L, Sun Y, Clem J R and Holtzberg F 1991 Phys. Rev. Lett. 67 648
[5] Taen T, Nakajima Y, Tamegai T, Kitamura H and Murakami T 2011 Physica C: Superconductivity 471 784
[6] Taen T, Nakajima Y, Tamegai T and Kitamura H 2012 Phys. Rev. B 86 094527
[7] Haberkorn N, Maiorov B, Usov I O, Weigand M, Hirata W, Miyasaka S, Tajima S, Chikumoto N, Tanabe K and Civale L 2012 Phys. Rev. B 85 014522
[8] Taen T, Ohtake F, Pyon S, Tamegai T and Kitamura H 2015 Supercond. Sci. Technol. 28 085003
[9] Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 1410
[10] Meier W R, Kong T, Kaluarachchi U S, Taufour V, Jo N H, Drachuck G, Böhmer A E, Saunders S M, Sapkota A, Kreyszig A, Tanatar M A, Prozorov R, Goldman A I, Balakirev F F, Gurevich A, Bud’ko S L and Canfield P C 2016 Phys. Rev. B 94 064501
[11] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[12] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565
[13] Altarawneh M M, Collar K, Mielke C H, Ni N, Bud’ko S L and Canfield P C 2008 Phys. Rev. B 78 220505
[14] Pyon S, Takahashi A, Veshchunov I, Tamegai T, Ishida S, Iyo A, Eisaki H, Imai M, Abe H, Terashima T and Ichinose A 2019 Phys. Rev. B 99 104506
[15] Ishida S, Iyo A, Ogino H, Eisaki H, Takeshita N, Kawashima K, Yanagisawa K, Kobayashi Y, Kimoto K, Abe H, Imai M, Shimoyama J and Eisterer M 2019 npj Quantum Materials 27 4
[16] Willa R, Koshelev A E, Sadovskyy I A and Glatz A 2018 Supercond. Sci. Technol. 31 014001