Understanding of and attitudes to genetic testing for inherited retinal disease: a patient perspective

T A Willis, B Potrata, M Ahmed, J Hewison, R Gale, L Downey, M McKibbin

ABSTRACT

Background/aims The views of people with inherited retinal disease are important to help develop health policy and plan services. This study aimed to record levels of understanding of and attitudes to genetic testing for inherited retinal disease, and views on the availability of testing.

Methods Telephone questionnaires comprising quantitative and qualitative items were completed with adults with inherited retinal disease. Participants were recruited via postal invitation (response rate 48%), approach at clinic or newsletters of relevant charitable organisations.

Results Questionnaires were completed with 200 participants. Responses indicated that participants’ perceived understanding of genetic testing for inherited retinal disease was variable. The majority (90%) considered testing to be good/very good and would be likely to undergo genetic testing (90%) if offered. Most supported the provision of diagnostic (97%) and predictive (92%) testing, but support was less strong for testing as part of reproductive planning. Most (87%) agreed with the statement that testing should be offered only after the individual has received genetic counselling from a professional. Subgroup analyses revealed differences associated with participant age, gender, education level and ethnicity (p<0.02). Participants reported a range of perceived benefits (eg, family planning, access to treatment) and risks (eg, impact upon family relationships, emotional consequences).

Conclusions Adults with inherited retinal disease strongly support the provision of publicly funded genetic testing. Support was stronger for diagnostic and predictive testing than for testing as part of reproductive planning.

INTRODUCTION

Inherited retinal diseases are an important cause of visual disability, leading to loss of visual field (peripheral vision), visual acuity (detailed, central vision) or both. Individual conditions are rare and the most common conditions, retinitis pigmentosa (RP) and Stargardt disease, occur in only 1:3700 and 1:10 000 individuals, respectively.1 2

To date, almost 250 disease-causing genes have been identified or mapped. The number of different genes involved makes genetic testing difficult but not impossible. Using the phenotype and family history to direct testing, screening for common mutations or with the use of next generation sequencing, it is possible to identify a faulty gene or mutation in 40%–70% of selected cases.3 4

The identification of the genetic basis of an inherited retinal disease has the potential to offer many advantages. It can provide a precise clinical diagnosis, confirm the condition is inherited and the pattern of inheritance, provide a more accurate guide to future visual function, assist marriage and family planning and may also allow patients to be added to disease registries, giving them early access to clinical trials and emerging treatments that are gene- or mutation-specific. Despite these potential benefits and support from clinicians and patient groups, the availability and uptake of genetic testing for inherited retinal diseases within the publicly funded National Health Service (NHS) are variable.5 This may be the result of several factors including cost, perceived clinical utility, variations in the commissioning and provision of specialised eye genetic services and a lack of evidence of demand from service users. We have completed preliminary research into these issues involving a survey of delegates at a national patient conference.6 This study aimed to investigate these issues further by investigating perceived understanding of and attitudes to genetic testing in a larger sample of individuals with inherited retinal disease and exploring potential differences between subgroups.

MATERIALS AND METHODS

Participants

Invitation letters were sent to patients who had previously attended eye clinics in Yorkshire. Participants were also recruited from the eye clinic or via newsletters of two national charities, RP Fighting Blindness and the Macular Society. At the time of recruitment, access to diagnostic genetic testing in a clinical laboratory was not routinely available locally. Patients aged over 16 years, with a clinical diagnosis of inherited retinal disease but without a significant hearing impairment, were eligible. Invitation letters were available in English and Urdu and the study information leaflet and consent forms were available in print, electronic and Braille formats. Ethical approval was received from the Leeds (East) Research Ethics Committee (10/H1306/90) and informed consent was obtained from all participants.

Questionnaire

Semistructured, telephone questionnaires were conducted with participants. Demographic information was collected, together with both quantitative and qualitative data on the level of understanding of, attitudes to and the availability of genetic testing for inherited retinal disease. Three Likert scale items explored understanding (‘Do you feel that you understand what a genetic test is?’), attitudes (‘Based on what you know right now, do you consider genetic testing for inherited eye disease to be good or bad?’) and willingness to undergo genetic testing.
testing (‘Based on what you know right now, how likely would you be to have a genetic test for inherited eye disease if offered tomorrow?’). All used a 5-point scale, with 1 indicating a strong negative response or level of support and 5 indicating a strong positive response. A further eight questions explored participants’ support for the availability of genetic testing for inherited retinal disease in general and for testing in specific circumstances namely diagnostic testing, testing in children under 18 years, predictive testing, carrier status testing for reproductive planning, preimplantation genetic diagnosis and prenatal diagnosis. For these questions, the choice of responses was limited to ‘yes’, ‘not sure’ or ‘no’. Responses to questions were followed by prompts or further questions to clarify or expand the initial answer. Questionnaires typically lasted approximately 30 min, were conducted in English, Urdu, Punjabi or Mirpuri by TAW, BP or MA and recorded.

Data analysis
Quantitative data were analysed for the whole sample and then according to each of seven, predetermined subgroups: age (≤50 years, 50.5% and <50 years, 48.9%), sex, ethnicity (White British/other), highest educational level (up to GCSE or O level/college or higher), sight impairment certification status, parenting status (current or planned parent/no parenting plans) and the presence/absence of other affected family members. (Prior exploratory analyses had revealed that participants with congenital conditions did not differ from those with acquired visual impairment in perceived understanding, attitude or the likelihood of undergoing testing (although numbers in the former group were small, precluding meaningful statistical comparisons)). Differences in responses to Likert scale items were analysed using the Mann–Whitney U test. The subgroups were compared in their responses to the items concerning the availability of testing for different purposes. This analysis was conducted using χ^2 or Fisher’s exact test, as appropriate. Where significant differences were observed, independence between subgroups was tested using χ^2 analysis. Due to the number of tests being conducted, a more stringent significance level of $p<0.02$ was applied.

Responses to open-ended questions were coded independently by two researchers (BP, TAW). Results were compared and differences resolved by consensus. The summarised statements, transcribed verbatim from the original recordings, were analysed using a thematic approach, a common analytical method in this area,7 8 and managed using NVivo 8. Selected responses were chosen to illustrate the differing levels of understanding of genetic testing, attitudes to and support for genetic testing.

RESULTS
The sample comprised 200 participants with a clinical diagnosis of inherited retinal disease. The majority (n=129) were recruited following postal invitation, for which the positive response rate was 48.1%. Other participants were recruited from clinic (n=41), newsletters (n=28) or via contact with affected relatives (n=2). There were 110 women (55%) and participants’ median age was 50 years (range 18–84 years). Demographic data and the most common clinical diagnoses are presented in table 1.

Responses to the Likert scale items are presented in figure 1. Overall, the level of self-reported understanding about genetic testing was variable: 33% of the sample reported that they had no or little understanding, while 41% perceived themselves to have a high level of understanding (figure 1; illustrative quotations are provided in box 1). Participants educated to college-level or beyond reported a greater level of understanding than those with lower educational attainment ($p=0.019$). Attitudes towards genetic testing for inherited eye disease were largely positive: 90% considered testing to be good/very good. Responses to the third Likert scale item (concerning willingness to undergo testing) were similarly positive, with 90% being likely/very likely to undergo genetic testing. Responses to these items did not differ significantly across subgroups. Participant views of potential benefits and risks of genetic testing are illustrated in boxes 2 and 3.

Table 1 Participant demographic data

Clinical diagnosis	90 (45%)
Retinitis pigmentosa	26 (13%)
Stargardt disease	8 (4%)
Cone dystrophy	6 (3%)
Sorsby fundus dystrophy	5 (2.5%)
X-linked retinoschisis	4 (2%)
Best disease	4 (2%)
Choroideremia	3 (1.5%)
Leber congenital amaurosis	1 (1%)
Doyne honeycomb dystrophy	2 (1%)
Achromatopsia	1 (1%)
Oculo-cutaneous albinism	1 (1%)
Other or unspecified macular dystrophy	0.5%
Other generalised retinal dystrophy	0.5%

Age range	101 (50.5%)
≥50 years	99 (49.5%)
<50 years	101 (50.5%)

Ethnicity	167 (83.5%)
White British	31 (15.5%)
British Asian	2 (1%)
Mixed or other ethnic origin	2 (1%)

Highest level of education	55 (27.5%)
Primary school/no qualifications	39 (19.5%)
O or GCSE level	48 (24%)
College—diploma	21 (10.5%)
University degree	50 (25%)
Postgraduate	11 (5.5%)
Not answered	50 (25%)

Sight impairment certification status	111 (55.5%)
Severely sight impaired	36 (18%)
Sight impaired	50 (25%)
Not certified	3 (1.5%)
Not known	1 (0.5%)

Parenting status	169 (84.5%)
Have or plan to have children	31 (15.5%)
Decision taken not to have children	0.5%
Other affected family members	0.5%

| Yes | 110 (55%)
| No | 90 (45%)

Views on the general availability of genetic testing and its use for particular purposes were examined with a series of categorical items (figure 2). The majority of participants supported diagnostic testing as a publicly funded service: 93% felt that the NHS should offer genetic testing for inherited retinal disease. Support was strong for both diagnostic (96.5%) and predictive testing (91.5%). Only 17% of participants thought that genetic testing should be limited to adults over the age of 18 years, while 87% felt that it should be offered only after the provision of information and genetic counselling. Support for genetic testing as part of reproductive planning was mixed: 65% were...
in favour of carrier status testing, 52% supported preimplantation genetic diagnosis and 45% were in favour of prenatal diagnosis.

Some subgroup differences emerged in responses to these items. First, age and sex effects were observed when asked whether genetic testing should be limited to those over 18. A χ^2 test indicated that responses were not equally distributed between younger and older participants ($\chi^2 (2, N=200)=12.24, p=0.002$). Inspection of the frequency data indicated that younger participants were more likely to disagree with the statement that testing should be limited to those over 18 years (80.2%) than older participants (57.6%). Men and women also differed in their views on this issue ($\chi^2 (2, N=200)=7.75, p=0.020$), with women more likely than men to agree with such an age limit (23.6% vs 8.9%). To assess the independence of the age and sex effects, a further χ^2 test was conducted and the two variables were found to be independent of each other ($\chi^2 (1, N=200)=1.02, p=0.324$).

Figure 1 Participant understanding of, attitude to and willingness to undergo genetic testing for inherited retinal disease.
Effects of age and education were observed in relation to the use of prenatal genetic testing. Here, younger participants were more likely to support the use of prenatal testing ($\chi^2 (2, N=200)=7.16, p=0.021; 50.5\% \text{ vs } 39.4\%$), although this result did not meet our stringent level of significance. Responses were not equally distributed between groups categorised by educational attainment ($\chi^2 (2, N=199)=13.21, p=0.001$). Those completing a higher level of education were more likely to oppose the option of prenatal testing ($50.9\% \text{ vs } 28.6\%$) and respondents with lower educational attainment reported a greater level of uncertainty around this issue (not sure: $22.0\% \text{ vs } 8.3\%$). The effects of age and education were also found to be independent ($\chi^2 (1, N=199)=2.18, p=0.156$).

Finally, responses to the availability of carrier status testing were not equally distributed between ethnic groups ($\chi^2 (2, N=200)=11.69, p=0.003$). Frequency data indicated that participants of British Asian, mixed or other ethnicity were more likely to support access to carrier status testing than White British participants ($90.9\% \text{ vs } 59.9\%$).

There were no differences between subgroups according to sight impairment certification, parenting status or the presence of other affected family members.

DISCUSSION

This study explored understanding of and attitudes to genetic testing for inherited retinal disease in a large sample of affected adults. The aim was to collect data to inform inherited retinal disease services, improve information provision and assess current demand for genetic testing.

When participants were asked to self-rate their level of understanding of genetic testing for inherited retinal disease, a wide range of responses was obtained. The only subgroup difference in perceived understanding was due to education: those educated to college level or above reported a significantly greater understanding. In general, public understanding of genetic science appears to be variable. Many people have difficulty explaining the meaning behind the concepts of ‘genetics’ and ‘genes’, despite being familiar with the terminology.

One study found that women, younger participants (18–44 years) and those with higher educational attainment were more likely to possess greater knowledge in this field. However, unlike this research, these studies were all conducted with the general public. Further exploration of understanding within patient samples is warranted to assess whether knowledge is greater in those affected by genetic conditions.

The majority of participants viewed genetic testing for inherited retinal disease very positively. Support was very strong for the provision of publicly funded diagnostic and predictive genetic testing. However, most participants were in favour of information provision and access to genetic counselling before genetic testing. These findings are consistent with existing research in similar patient groups. Support was less strong for genetic testing as part of reproductive planning. The use of preimplantation genetic diagnosis to achieve an unaffected pregnancy has been reported in cases.
of recessive Stargardt disease, severe RP and X-linked retinoschisis10-13 and prenatal testing has also been reported for Leber congenital amaurosis.3 Sizeable proportions of the current sample supported the use of genetic testing for reproductive planning purposes: 65% of participants supported carrier status testing, and 52% and 47% supported preimplantation and prenatal genetic testing for inherited retinal disease, respectively. Similar figures have been reported elsewhere.4,6

Participants’ comments provided additional important information on attitudes to preimplantation and prenatal testing. While approximately a half of the sample felt that these services should be available, they would not necessarily choose to use them themselves. This finding may help to explain the phenomenon of high hypothetical but low actual uptake of (predictive) genetic testing.16 This pattern has been consistently observed in populations affected by Huntington disease17,18 which has been considered a model of understanding the attitudes towards (predictive) testing for late-onset conditions with no treatment or cure19 such as many inherited retinal diseases.12 Our research suggests that when planning genetic testing services, patient attitudes should be explored in depth.

Of interest in our study was stronger support for carrier status testing and reproductive planning in British Asian participants. This may reflect greater awareness of the risk in communities in which inherited retinal disease is more common.20 For some participants, genetic status might be one of the considerations when arranging a marriage. Others have explored genetic testing issues in similar populations21,22 who might be marginally more affected by autosomal recessive genetic conditions due to a proportion of consanguineous marriages.

Several common themes emerged in describing the potential benefits of testing. Frequently cited benefits included greater understanding and knowledge about the genetic basis of the condition, as well as early access to emerging therapies. Participants also reported benefits to family members and future generations, as well as to society in general. They were often aware of limited personal benefit but felt that the information gained from testing may contribute to treatments of others in the future.

Participants were also asked about potential negative consequences of genetic testing. Several suggestions were offered, although a substantial number of respondents reported that they did not consider there to be any drawbacks. Reported disadvantages included the potential impact upon family relationships (ie, feelings of guilt from passing a condition on or blame in...
those who have inherited it) and the potential for results to be used to terminate pregnancies or increase insurance premiums. A substantial number of participants felt anxiety about their future. Many had ethical considerations. Emotional consequences of a result were frequently mentioned as disadvantageous. Other studies provide context to this finding. Mezer et al reported emotional distress in 57% of affected adults and their family members when recollecting their own predictive testing as children. By contrast, an investigation of a large family undergoing testing for hereditary myocilin glaucoma found no adverse impacts of predictive testing 5 years following initial counselling and a systematic review of various genetic conditions also showed no long-term sequelae either for carriers or non-carriers.

Some limitations of the study must be acknowledged. Our sample was self-selecting and it is therefore possible that participants were more motivated and held more favourable attitudes towards genetic testing than those who were invited but opted not to participate. Due to the recruitment methods employed, it is also acknowledged that study participants were currently engaged with the healthcare system and/or voluntary organisations. Several participants pointed out that whereas they wanted to know and were accepting of their diagnosis, other family members were not, and preferred ignorance of their genetic status. It is therefore to be expected that they may hold views different to those held by the participants in our research. Nevertheless, the strengths of the study include the large number of affected individuals, with a range of clinical diagnoses and demographic characteristics.

Individuals with inherited retinal disease had expressed strong support for the provision of genetic testing, particularly diagnostic and predictive testing. Most are aware of a number of possible benefits but not the potential negative consequences. There is a need for the provision of information, in a format accessible to those with visual impairment, and access to genetic counselling before testing and this would be in keeping with patients’ expectation. Our results indicated that information may be most effectively targeted toward less educated individuals who reported lower levels of understanding and greater uncertainty around prenatal testing. However, support for genetic testing for inherited retinal disease is not universal and many participants (typically those with a higher level of education) were in favour of access for others but not by themselves, particularly in relation to prenatal testing for reproductive planning.

Acknowledgements The authors would like to acknowledge the support of RP Fighting Blindness and the Macular Society in helping to identify participants.

Contributors TAW contributed to questionnaire design, analysis of results, prepared the manuscript and approved the final version. BP contributed to questionnaire design, analysis of qualitative results, commented on manuscript drafts and approved the final version. MA contributed to questionnaire design, helped to identify participants, commented on manuscript drafts and approved the final version. JH assisted with statistical analysis, commented on manuscript drafts and approved the final version. RG and LD helped to identify participants, commented on manuscript drafts and approved the final version. MM contributed to questionnaire design, helped to identify participants, analysis of results, commented on manuscript drafts and approved the final version.

Funding This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RfPB) Programme (Grant Reference Number PB-PG-0909-20228). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Competing interests None.

Ethics approval Leeds (East) Research Ethics Committee.
REFERENCES

1. Blacharski PA, Fundus flavimaculatus. In: Newsome DA, ed. Retinal dystrophies and degenerations. New York: Raven Press, 1998:135–59.
2. Boughman JA, Connelly PM, Nance WE. Population genetic studies of retinitis pigmentosa. Am J Hum Genet 1980;32:223–35.
3. Koenekoop RK, Lopez I, den Hollander AI, et al. Genetic ophthalmology in focus: a needs assessment and review of specialist services for genetic eye disorders. 2008, April. http://www.phgfoundation.org/reports/4984/ (last accessed February 2013).
4. Pradhan M, Hayes L, Vincent A. Exploring the public understanding of genetics and health. Am J Med Genet 2006;13:304–5.
5. Moore T, Burton H. Genetic ophthalmology in focus: a needs assessment and review of specialist services for genetic eye disorders. 2008, April. http://www.phgfoundation.org/reports/4984/ (last accessed February 2013).
6. Douglas HA, Hamilton RJ, Grubs RE. The effect of BRCA gene testing on family relationships: a thematic analysis of qualitative interviews. J Genet Couns 2009;18:418–35.
7. Birke SN, Mezer E, Wygnanski-Ieﬀe T. Ethical issues in ocular genetics. Curr Opin Ophthalmol 2009;20:382–6.
8. Lanie AD, Jayaratne TE, Sheldon JP, et al. Attitudes regarding predictive testing for retinitis pigmentosa. Br J Ophthalmol 2007;91:1416.
9. Condit CM. Public understandings of genetics and health. Clin Genet 2010;77:1–9.
10. Lanie AD, Jayaratne TE, Sheldon JP, et al. Exploring the public understanding of basic genetic concepts. J Genet Couns 2004;13:305–20.
11. Molster C, Charles T, Samanez A, et al. Australian study on public knowledge of human genetics and health. Public Health Genomics 2009;12:84–91.
12. Mezer E, Babul-Hirji R, Wise R, et al. Attitudes regarding predictive testing for retinitis pigmentosa. Ophthalmic Genet 2007;28:9–15.
13. Mezer E, Wygnanski-Ieﬀe T. Ethical issues in ocular genetics. Curr Opin Ophthalmol 2009;20:382–6.
14. Pavloviwitzki IH, Ruther K, Brunsmann F, et al. Acceptability of prenatal diagnosis for retinitis pigmentosa. Lancet 1986;2:1394–5.
15. Sohrab MA, Allikmets R, Guarnaccia MM, et al. Preimplantation genetic diagnosis for stargardt disease. Am J Ophthalmol 2010;149:651–5.e2.
16. Schoenfeld M, Myers RH, Berkman B, et al. Potential impact of a predictive test on the gene frequency of Huntington disease. Am J Med Genet 1984;18:423–9.
17. Decuyenaere M, Evers-Kiebooms G, Boogaerts A, et al. The complexity of reproductive decision-making in asymptomatic carriers of the Huntington mutation. Eur J Hum Genet 2007;15:453–62.
18. Tibben A, Niermeijer MF, Roos RA, et al. Understanding the low uptake of presymptomatic DNA testing for Huntington’s disease. Lancet 1992;340:1416.
19. Taylor SD. Predictive genetic test decisions for Huntington’s disease: context, appraisal and new moral imperatives. Soc Sci Med 2004;58:137–49.
20. Hamblion EL, Moore AT, Rahi JS, et al. Incidence and patterns of detection and management of childhood-onset hereditary retinal disorders in the UK. Br J Ophthalmol 2012;96:360–5.
21. Ahmed S, Ahmed M, Shafﬁ S, et al. Attitudes towards prenatal testing and termination of pregnancy in British Pakistani parents and relatives of children with recessive conditions in the UK. Prenatal Diag 2012;32:954–9.
22. Ahmed S, Hewison J, Green JM, et al. Decisions about testing and termination of pregnancy for different fetal conditions: a qualitative study of European White and Pakistani mothers of affected children. J Genet Couns 2008;17:560–72.
23. Heasley DL, Craig JE, Wilkinson CH, et al. Attitudes to predictive DNA testing for myocilin glaucoma: experience with a large Australian family. J Glaucoma 2004;13:304–11.
24. Heshka JT, Palleschi C, Howley H, et al. A systematic review of perceived risks, psychological and behavioral impacts of genetic testing. Genet Med 2008;10:19–32.
