Polarizabilities of Si\(^{2+}\): A benchmark test of theory and experiment

M. S. Safronova, S. G. Porsev, M. G. Kozlov, and Charles W. Clark

Phys. Rev. A 85, 052506 — Published 14 May 2012

DOI: 10.1103/PhysRevA.85.052506
Polarizabilities of Si$^{2+}$: a benchmark test of theory and experiment

M. S. Safronova1, S. G. Porsev$^{1, 2}$, M. G. Kozlov2, and Charles W. Clark3

1Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
2Petersburg Nuclear Physics Institute, Gatchina, Leningrad District, 188300, Russia
3Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland, 20899-8410, USA

We have calculated electric-dipole polarizabilities of the 3s^2 1S_0, 3$s 3p$ 3P_0, and 3$s 3p$ 1P_1 states of the Si$^{2+}$ ion using recently developed configuration interaction + all-order method. Detailed evaluation of the uncertainties of the final results is carried out. Our value for the ground state electric-dipole polarizability 11.670(13) a.u. is in excellent agreement with the resonant excitation Stark ionization spectroscopy value 11.669(9) a.u. [Komara et al., J. Phys. B 38, 87 (2005); Mitroy, Phys. Rev. A 78, 052515 (2008)]. This work represents the most precise benchmark test to date of theory and experiment in divalent atoms. The near cancellation of the nsnp 3P_0 polarizabilities previously observed in B$^+$, Al$^+$, In$^+$, Ti$^+$, and Pb$^{2+}$ is also found in Si$^{2+}$ ion.

PACS numbers: 31.15.ac, 31.15.ap, 31.15.am, 06.30.Ft

I. INTRODUCTION

The atomic dipole polarizability describes the first-order response of an atom to an applied electric field. Atomic polarizabilities have been the subject of considerable interest and heightened importance in recent years due to a number of applications, including development of next-generation optical atomic clocks, optical cooling and trapping schemes, quantum information with atoms and ions, tests of fundamental symmetries, studies of cold degenerate gases, thermometry and other macroscopic order response of an atom to an applied electric field. Atomic polarizabilities have been the subject of considerable interest and heightened importance in recent years due to a number of applications, including development of next-generation optical atomic clocks, optical cooling and trapping schemes, quantum information with atoms and ions, tests of fundamental symmetries, studies of cold degenerate gases, thermometry and other macroscopic

A. Experimental determination of polarizabilities from Rydberg spectra

The polarizability of an ion can be extracted from the energies of the non-penetrating Rydberg series of the corresponding parent system (see [19] and references therein). The polarization interaction between the ionic core and the Rydberg electron shifts the energy levels away from their hydrogenic values. If the Rydberg electron is in a high angular momentum state, it has negligible overlap with the core. In such cases, the polarization interaction provides the dominant contribution to the energy shift. This effect is utilized in resonant excitation Stark ionization spectroscopy (RESIS) [19–28]. RESIS experiments have been extremely successful in high-precision determination of the ground state polarizabilities of H$_2^+$ and D$_2^+$ [21], Ne$^+$ [19], Na-like Mg$^+$ [22], Na-like Si$^{3+}$ [23], Mg-like Si$^{2+}$ [20], Zn-like K$^{6+}$ [28], Ba$^+$ [24], Hg-like Pb$^{2+}$ [25], Fr-like Th$^{3+}$ [26], and Ru-like Th$^{3+}$ [27]. Quadrupole polarizabilities and transition matrix elements have also been determined for some of these systems.

To the best of our knowledge, RESIS experiments provide the most precise values known to date of the polarizability of any divalent atomic system. The most precise measurement has been carried out for the 3s^2 1S_0 ground state of the Si$^{2+}$ ion; $\alpha_0 = 11.666(4)$ a.u [20]. Later analysis of the RESIS data that included additional terms in the polarization expansion yielded $\alpha_0 = 11.669(9)$ a.u [29]. Therefore, the Si$^{2+}$ RESIS experiment presents an excellent opportunity for a high-precision benchmark comparison of theory and experiment.

In this work, we use a recently developed configuration iteration (CI)+ all-order method [30–32] to calculate properties of Si$^{2+}$. Our value for the ground state electric-dipole polarizability of 11.670(13) a.u. is in excellent agreement with the RESIS result. Our previous calculation of the Hg-like Pb$^{2+}$ ground state polarizabil-
ity [33] was also in agreement with the RESIS value (accurate to 0.6%) within our estimated accuracy.

We note that Mg-like Si$^{2+}$ is a particularly interesting test system due to its similarity with Mg-like Al$^+$, which was used to construct an optical clock with a fractional frequency uncertainty of 8.6×10^{-18} [35], the smallest such uncertainty yet attained. At room temperature, one of the largest contributions to the uncertainty budget of this clock is the blackbody radiation (BBR) shift. The BBR frequency shift of a clock transition is related to the difference of the static electric-dipole polarizabilities between the two clock states [36]. We have recently calculated this effect in Al$^+$ using the same CI+all-order approach. Excellent agreement of our present calculation with the experiment in the ground state of Si$^{2+}$ provides an additional test of the approach. At the present time, there are no experimental data on the polarizabilities of the excited states of Si$^{2+}$ to the best of our knowledge.

II. METHOD

To evaluate uncertainties of the final results, we carry out three calculations in different approximations: CI [37], CI+many-body perturbation theory (MBPT) [38], and CI+all-order [30–32]. These methods have been described in a number of papers [30, 31, 37, 38] and we provide only a brief outline of these approaches and a few details relevant to this particular work.

Our point of departure is a solution of the Dirac-Fock (DF) equations

$$
\hat{H}_0 \psi_c = \varepsilon_c \psi_c,
$$

where H_0 is the relativistic DF Hamiltonian [31, 38] and ψ_c and ε_c are single-electron wave functions and energies. Self-consistent calculations were performed for the $[1s^22s^22p^6]$ closed core, and the 3s, 3p, 3d, 4s, 4p, and 4d orbitals were formed in this potential. We constructed the B-spline basis set consisting of $N = 35$ orbitals for each of the s, p$_{1/2}$, p$_{3/2}$, ... partial waves up to $l \leq 5$. The basis set is formed in a spherical cavity with radius 60 a.u. The CI space is effectively complete and includes 23 orbitals for each partial wave with $l = 0 \ldots 4$.

The wave functions and the low-lying energy levels are determined by solving the multiparticle relativistic equation for two valence electrons [37]:

$$
H_{\text{eff}}(E_n) \Phi_n = E_n \Phi_n.
$$

The effective Hamiltonian is defined as

$$
H_{\text{eff}}(E) = H_{\text{FC}} + \Sigma(E),
$$

where H_{FC} is the Hamiltonian in the frozen-core approximation. The energy-dependent operator $\Sigma(E)$ takes into account virtual core excitations. It is zero in a pure CI calculation. The $\Sigma(E)$ part of the effective Hamiltonian is constructed using second-order perturbation theory in the CI+MBPT approach [38] and linearized coupled-cluster single-double method in the CI+all-order approach [31]. Construction of the effective Hamiltonian in the CI+MBPT and CI+all-order approximations is described in detail in Refs. [31, 38]. The dominant part of the Breit interaction is included as described in Ref. [39].

The scalar polarizability α_0 is separated into a valence polarizability α_v^{eff}, ionic core polarizability α_c, and a small term α_{vc} that modifies ionic core polarizability due to the presence of two valence electrons. The last two terms are evaluated in the random-phase approximation (RPA). Their uncertainty is determined by comparing the DF and RPA values. The small α_{vc} term is calculated by adding vc contributions from the individual electrons, i.e.

$$
\alpha_{vc}(3s^2) = 2 \alpha_{vc}(3s), \quad \text{and} \quad \alpha_{vc}(3s3p) = \alpha_{vc}(3s) + \alpha_{vc}(3p).
$$

The valence part of the polarizability is determined by solving the inhomogeneous equation in valence space, which is approximated as [40]

$$
(E_n - H_{\text{eff}}) | \Psi(v, M') \rangle = D_{\text{eff}} | \Psi_0(v, J, M) \rangle
$$

for the state v with total angular momentum J and projection M. The wave function $\Psi(v, M')$ is composed of parts that have angular momenta of $J' = J \pm 1$ that allows us to determine the scalar and tensor polarizability of the state $|v, J, M \rangle$ [40]. The effective dipole operator D_{eff} includes RPA corrections.

Unless stated otherwise, we use atomic units (a.u.) for all matrix elements and polarizabilities throughout this paper: the numerical values of the elementary charge, e, the reduced Planck constant, $\hbar = \hbar/2\pi$, and the electron mass, m_e, are set equal to 1. The atomic unit for polarizability can be converted to SI units via $\alpha/\hbar \left[\text{Hz}/(\text{V/m})^2 \right] = 2.48832 \times 10^{-6} \alpha$ (a.u.), where the conversion coefficient is $4\pi\varepsilon_0 a_0^3/\hbar$ and the Planck constant \hbar is factored out in order to provide direct conversion into frequency units; a_0 is the Bohr radius and ε_0 is the electric constant.

III. RESULTS

Comparison of the energy levels (in cm$^{-1}$) obtained in the CI, CI+MBPT, and CI+all-order approximations with experimental values [34] is given in Table I. Corresponding relative differences of these three calculations from experiment are given in the last three columns. Two-electron binding energies are given in the first row of Table I, energies in other rows are measured from the ground state. For a few of the levels, the accuracy of the CI+MBPT calculation is already on the order of our expected precision. The accuracy of the ground state two-electron binding energy is significantly improved in the CI+all-order calculation in comparison with the CI+MBPT one; the CI+MBPT value differs from the experiment by -123 cm$^{-1}$, while our all-order value differs from the experiment by only -7 cm$^{-1}$ (see line one of Table I). The inclusion of the all-order correlation coefficients significantly improves the differences
TABLE I: Comparison of experimental [34] and theoretical energy levels in cm$^{-1}$. Two-electron binding energies are given in the first row, energies in other rows are given relative to the ground state. Results of the CI, CI+MBPT, and CI+all-order calculations are given in columns labeled CI, CI+MBPT, and CI+All. Corresponding relative differences of these three calculations with experiment are given in the last three columns in %.

State	Expt.	CI	CI+MBPT	CI+All	Differences (cm$^{-1}$)	Differences (%)				
3s^2 1S_0	634232	628511	634110	634226	-5722	-123	-7	-0.9%	-0.019%	-0.001%
3p2 1D_2	122215	120224	122225	122294	-1901	10	80	-1.6%	0.088%	0.065%
3p2 3P_0	129708	128589	129745	129753	-1119	36	45	-0.9%	0.028%	0.035%
3p2 3P_1	129842	128717	129878	129887	-1125	36	45	-0.9%	0.028%	0.035%
3p2 3P_2	130101	128964	130136	130145	-1137	35	44	-0.9%	0.027%	0.034%
3s^2 3D_3	142944	141676	142953	142944	-1268	10	1	-0.9%	0.007%	0.000%
3s^2 3D_2	142946	141678	142955	142946	-1267	10	1	-0.9%	0.007%	0.000%
3s^2 3D_1	142948	141681	142957	142948	-1268	9	0	-0.9%	0.006%	0.000%
3s^2 3S_1	153377	151756	153357	153403	-1621	20	26	-1.1%	0.013%	0.017%
3p2 1S_0	153444	152674	153631	153613	-771	187	169	-0.5%	0.122%	0.110%
3s^2 1S_0	159070	157543	159079	159116	-1527	9	47	-1.0%	0.006%	0.029%
3s^2 1D_2	165765	165071	165937	165898	-694	172	133	-0.4%	0.104%	0.080%
3s^2 3D_3	52725	51559	52722	52770	-1166	-3	3	-2.2%	-0.006%	0.086%
3s^2 3P_0	52853	51682	52849	52897	-1171	-4	4	-2.2%	-0.008%	0.083%
3s^2 3P_1	53115	51934	53110	53159	-1181	-5	4	-2.2%	-0.010%	0.082%
3s^2 3P_2	82884	82998	82969	82933	113	84	48	0.1%	0.102%	0.058%
3s^2 3D_0	175230	173409	175202	175249	-1821	-28	19	-1.0%	-0.016%	0.011%
3s^2 3D_1	175263	173441	175235	175282	-1822	-28	19	-1.0%	-0.016%	0.011%
3s^2 3P_2	175336	173511	175308	175355	-1825	-28	18	-1.0%	-0.016%	0.011%
3s^2 3D_1	176487	174807	176469	176511	-1680	-18	23	-1.0%	-0.010%	0.013%

between the singlet and triplet states. For example, the CI+all-order value of the 3s^2 1S_0, 3s^2 3D_3, and 3s^2 3P_0 energy splittings are 136 cm$^{-1}$ and 413 cm$^{-1}$, respectively. The differences between the CI+all-order and experimental values are given in the last three columns in %.

We separated the effect of the Breit interaction by comparing the results of the calculations with and without the Breit. The Breit contribution to the energies is very small, 0.01% or less. However, the inclusion of the Breit interaction significantly improves the splittings of all triplet states. For example, the 3s^2 3P_1-3s^2 3P_0 and 3s^2 3P_2-3s^2 3P_1 splittings are 136 cm$^{-1}$ and 413 cm$^{-1}$ without Breit, respectively. The values of these splittings in our final calculations include Breit, are 128 cm$^{-1}$ and 389 cm$^{-1}$, in excellent agreement with the experimental values, 129 cm$^{-1}$ and 390 cm$^{-1}$.

We note that the transition energies relevant to the calculations of the 3s^2 3P_0 polarizabilities are more accurate than the energies relative to the ground state listed in Table I.

While we do not use the sum-over-state approach in the calculation of the polarizabilities, it is useful to establish the dominant contributions to the final values. We combine our CI+all-order results for the electric-dipole matrix elements and energies according to the sum-over-states formula for the valence polarizability [1]:

$$\alpha_v(A) = \frac{2}{3(2J+1)} \sum_n \frac{|\langle v|D|n\rangle|^2}{E_n - E_v}$$

(2)
to calculate the contribution of specific transitions. Here, J is the total angular momentum of the state v, D is the electric-dipole operator, and E_i is the energy of the state i. The breakdown of the contributions to the 3s^2 1S_0, 3s^2 3D_0, and 3s^2 3P_0 scalar polarizabilities α_v of Si$^{2+}$ in a.u. is given in Table II. Absolute values of the corresponding reduced electric-dipole matrix elements are listed in column labeled “D” in α_v. The theoretical and experimental [34] transition energies are given in columns ΔE_{th} and ΔE_{expt}. The remaining valence contributions are given in rows. The contributions from the core and v-terms are listed in rows with “ cores”, respectively.

The dominant contributions to α_v listed in columns $\alpha_v(A)$ and $\alpha_v(B)$ are calculated with CI + all-order energies and experimental [34] energies, respectively. The differences between $\alpha_v(A)$ and $\alpha_v(B)$ values are small due to excellent agreement of the corresponding transition energies with experiment. We take $\alpha_v(B)$ results as final. Our study of the Breit interaction shows that it contributes only 0.03-0.07% to the ab initio values of polarizabilities.
The dominant contributions to the valence polarizabilities are listed separately with the corresponding absolute values of electric-dipole reduced matrix elements given in columns labeled D. The theoretical and experimental [34] transition energies are given in columns ΔE_{th} and ΔE_{expt}. The remaining contributions to valence polarizability are given in rows Other. The contributions from the core and vc terms are given in rows α_0 and α_{vc}, respectively. The dominant contributions to α_0 listed in columns $\alpha_0(A)$ and $\alpha_0(B)$ are calculated with CI + all-order and experimental energies [34], respectively.

TABLE II: Contributions to the $3s^2 1S_0$, $3s3p^3 P_0$, and $3s3p^1 P_1$ polarizabilities of Si$^{2+}$ in a.u. The dominant contributions to the valence polarizabilities are listed separately with the corresponding absolute values of electric-dipole reduced matrix elements given in columns labeled D. The theoretical and experimental [34] transition energies are given in columns ΔE_{th} and ΔE_{expt}. The remaining contributions to valence polarizability are given in rows Other. The contributions from the core and vc terms are given in rows α_0 and α_{vc}, respectively. The dominant contributions to α_0 listed in columns $\alpha_0(A)$ and $\alpha_0(B)$ are calculated with CI + all-order and experimental energies [34], respectively.

State	Contribution	ΔE_{expt}	ΔE_{th}	D	$\alpha_0(A)$	$\alpha_0(B)$
$3s^2 1S_0$	$3s^2 1S_0 - 3s3p^1 P_1$	82884	82933	2.539	11.375	11.382
$3s^2 1S_0$	$3s^2 1S_0 - 3s3p^1 P_1$	176477	176511	0.198	0.032	0.032
Other					0.105	0.105
α_e					0.162	0.162
α_{vc}					-0.011	-0.011
Total					11.664	11.670
$3s3p^3 P_0$	$3s3p^3 P_0 - 3p^2 3P_1$	77117	77117	1.516	4.359	4.359
$3s3p^3 P_0$	$3s3p^3 P_0 - 3s3d 3D_1$	90224	90179	1.779	5.137	5.135
$3s3p^3 P_0$	$3s3p^3 P_0 - 3s4s 3S_1$	100652	100633	0.628	0.573	0.573
Other					0.201	0.201
α_e					0.162	0.162
α_{vc}					-0.006	-0.006
Total					10.427	10.425
$3s3p^1 P_1$	$3s3p^1 P_1 - 3s^2 1S_0$	-82884	-82933	2.539	-3.792	-3.794
$3s3p^1 P_1$	$3s3p^1 P_1 - 3p^2 1D_2$	39330	39361	1.074	1.428	1.429
$3s3p^1 P_1$	$3s3p^1 P_1 - 3s^2 1S_0$	70560	70680	1.776	2.178	2.181
$3s3p^1 P_1$	$3s3p^1 P_1 - 3s4s 1S_0$	76185	76184	0.996	0.634	0.634
$3s3p^1 P_1$	$3s3p^1 P_1 - 3s3d 1D_2$	82881	82965	4.450	11.642	11.654
Other					0.440	0.440
α_e					0.162	0.162
α_{vc}					-0.006	-0.006
Total					12.686	12.701

IV. EVALUATION OF THE UNCERTAINTY AND CONCLUSION

There are three contributions to the uncertainties in the final polarizability values that arise from the uncertainties in the valence α_0^v, core α_e, and $\text{vc} \alpha_{\text{vc}}$ polarizability terms. To evaluate uncertainty in the valence polarizabilities, we compare the results of the CI, CI+MBPT, CI+all-order calculations with our final CI+all-order calculation in which energies in the dominant contributions are replaced by their experimental values. The results of the last two calculations are given in Table II in columns $\alpha_0(A)$ and $\alpha_0(B)$. We summarize the results of all four calculations in Table III. For consistency, we refer to these calculations as CI (A), CI+MBPT (A), CI+All (A), and CI+All (B) since only theoretical energies (in the corresponding approximation) were used in the first three calculations. We evaluate the uncertainty of the final results in two different ways: (1) as the difference between the CI+all-order and CI+MBPT calculations, listed in row labeled Diff. (All-MBPT), and (2) as the difference between the CI+all-order results with theoretical and experimental energies, listed in row labeled Diff. (B)-(A). We take the largest of the two uncertainties as the final uncertainty in the valence polarizability α_0^v. The uncertainty analysis is carried out separately for each state.

aThis value is a result of revised analysis [29] of the RESIS experiment [20].
To evaluate the uncertainty in the α_c and α_{nc} contribution to the polarizability, we calculate these terms in both DF and RPA approximations. The DF values for the α_c and $\alpha_{nc}(3s^2)$ are 0.153 a.u. and -0.0086 a.u., respectively. The difference between the RPA and DF results is taken to be the uncertainty. Uncertainties of the core and valence polarizabilities are added in quadrature to obtain uncertainties of the final values.

The final results listed in row labelled “Total α_0” are compared with other theory [29, 41] and experiment [20, 29]. Our value for the ground state polarizability is in excellent agreement with both original RESIS value [20] value and the revised RESIS analysis [29]. Our values for the ground and $3s3p \, ^1P_1$ state polarizabilities are in excellent agreement with theoretical values obtained with large-scale CI calculation with semiempirical inclusion of the core polarization [29]. The CI result of [41] is consistent with other values; the small difference is probably due to omission of the highly-excited states in the valence CI and restricted treatment of the core excitations in [41].

We note that the values of the 1S_0 and 3P_0 polarizabilities given in Table III are very similar, their difference is only 10% of the ground state polarizability.

In summary, we have carried out a benchmark test of the theoretical and experimental determination of the ground state polarizability of the Si$^{2+}$ ion. Our final result is in excellent agreement with the RESIS experimental value [20, 29]. High-precision recommended values are provided for the excited state $3s3p \, ^3P_0$ and $3s3p \, ^1P_1$ polarizabilities. The near cancellation of the $ns^2 \, ^1S_0$ ground state and the lowest $nsnp \, ^1P_0$ polarizabilities reported for B$^+$, Al$^+$, In$^+$, Tl$^+$, and Pb$^{2+}$ is also observed for the Si$^{2+}$ ion.

ACKNOWLEDGEMENTS

We thank J. Mitroy for bringing our attention to this problem. This research was performed in part under the sponsorship of the US Department of Commerce, National Institute of Standards and Technology, and was supported by the National Science Foundation under Physics Frontiers Center Grant PHY-0822671. The work of SGP was supported in part by US NSF Grants No. PHY-1068699 and No. PHY-0758088. The work of MGK was supported in part by RFBR grant No. 11-02-00943.

[1] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43, 202001 (2010).
[2] M. S. Safronova, D. Jiang, B. Arora, C. W. Clark, M. G. Kozlov, U. I. Safronova, and W. R. Johnson, IEEE Trans. Ultrason. Ferroelectrics and Frequency Control 57, 94 (2010).
[3] C. R. Ekstrom, J. Schmiedmayer, M. S. Chapman, T. D. Hammond, and D. E. Pritchard, Phys. Rev. A 51, 3883 (1995).
[4] A. Derevianko, W. R. Johnson, M. S. Safronova, and J. P. Babb, Phys. Rev. Lett. 82, 3589 (1999).
[5] J. M. Amini and H. Gould, Phys. Rev. Lett. 91, 153001 (2003).
[6] M. S. Safronova and C. W. Clark, Phys. Rev. A 69, 40501 (2004).
[7] M. Auzinsh, K. Bluss, R. Ferber, F. Gahbauer, A. Jarmola, M. S. Safronova, U. I. Safronova, and M. Tamanis, Phys. Rev. A 75, 22502 (2007).
[8] M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. I. Safronova, Phys. Rev. A 75, 22507 (2007).
[9] E. Iskrenova-Tchoukova and M. S. Safronova, Phys. Rev. A 78, 012508 (2008).
[10] J. Mitroy and M. S. Safronova, Phys. Rev. A 79, 012513 (2009).
[11] W. F. Holmgren, M. C. Revelle, V. P. A. Lonij, and A. D. Cronin, Phys. Rev. A 81, 053607 (2010).
[12] A. Kortyna, C. Tinsman, J. Grab, M. S. Safronova, and U. I. Safronova, Phys. Rev. A 83, 042511 (2011).
[13] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Phys. Rev. A 78, 032508 (2008).
[14] T. Rosenband et al., Science 319, 1808 (2008).
[15] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[16] H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[17] A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 102, 110503 (2009).
[18] G. Maroulis, ed., Atoms, Molecules and Clusters in Electric Fields. Theoretical Approaches to the Calculation of Electric Polarizability (Imperial College Press, 2006).
[19] R. F. Ward, Jr., W. G. Sturrus, and S. R. Lundeen, Phys. Rev. A 53, 113 (1996).
[20] R. A. Komara, M. A. Gearba, C. W. Fehrenbach, and S. R. Lundeen, J. Phys. B 38, 87 (2005).
[21] P. L. Jacobson, R. A. Komara, W. G. Sturrus, and S. R. Lundeen, Phys. Rev. A 62, 012509 (2000).
[22] E. L. Snow and S. R. Lundeen, Phys. Rev. A 77, 052501 (2008).
[23] R. A. Komara, M. A. Gearba, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 67, 062502 (2003).
[24] E. L. Snow, M. A. Gearba, R. A. Komara, S. R. Lundeen, and W. G. Sturrus, Phys. Rev. A 71, 022510 (2005).
[25] M. E. Hanni, J. A. Keele, S. R. Lundeen, C. W. Fehrenbach, and W. G. Sturrus, Phys. Rev. A 81, 042512 (2010).
[26] J. A. Keele, M. E. Hanni, S. L. Woods, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 83, 062501 (2011).
[27] J. A. Keele, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 83, 062509 (2011).
[28] S. R. Lundeen and C. W. Fehrenbach, Phys. Rev. A 75, 032523 (2007).
[29] J. Mitroy, Phys. Rev. A 78, 052515 (2008).
[30] M. S. Safronova, M. G. Kozlov, and C. W. Clark, Phys.
Rev. Lett. 107, 143006 (2011).
[31] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, Phys. Rev. A 80, 012516 (2009).
[32] M. G. Kozlov, Int. J. Quant. Chem. 100, 336 (2004).
[33] M. S. Safronova, M. G. Kozlov, and V. I. Safronova, Phys. Rev. A 85, 012507 (2012).
[34] Yu. Ralchenko, A. Kramida, J. Reader, and NIST ASD Team (2011). NIST Atomic Spectra Database (version 4.1), [Online]. Available: http://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD.
[35] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, Phys. Rev. Lett. p. 070802 (2010).
[36] S. G. Porsev and A. Derevianko, Phys. Rev. A 74, 020502(R) (2006).
[37] S. A. Kotochigova and I. I. Tupitsyn, J. Phys. B 20, 4759 (1987).
[38] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 54, 3948 (1996).
[39] M. G. Kozlov, S. G. Porsev, and I. I. Tupitsyn, arXiv:physics/0004076 (2000).
[40] M. G. Kozlov and S. G. Porsev, Eur. Phys. J. D 5, 59 (1999).
[41] L. Hamonou and A. Hibbert, J. Phys. B 41, 245004 (2008).