A Novel Group Decision-Making Approach for Hesitant Fuzzy Linguistic Term Sets and Its Application to VIKOR

Xiuli Geng, Yunting Jin, and Yongzheng Zhang

Business School, University of Shanghai for Science and Technology, Shanghai 200093, China

Correspondence should be addressed to Xiuli Geng; xiuliforever@163.com

Received 15 April 2020; Revised 19 June 2020; Accepted 27 June 2020; Published 27 July 2020

Guest Editor: Danielle Costa Morais

Copyright © 2020 Xiuli Geng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper develops a novel group decision-making (GDM) approach for solving multiple-criteria group decision-making (MCGDM) problems with uncertainty. The hesitant fuzzy linguistic term sets (HFLTSs) are applied to elicit the decision makers’ linguistic preferences due to their distinguished efficiency and flexibility in representing uncertainty. However, the existing context-free grammar for linguistic description cannot allow generating the linguistic expressions completely free to limit the richness of HFLTSs, and the related methods for dealing with HFLTSs also have limitations in aggregating HFLTSs with different lengths and types. Therefore, this paper proposes extended context-free grammar and a novel GDM approach for HFLTSs, considering the advantages of the rough set theory and OWA operators. The rough set theory can manage the uncertainty existing in the fuzzy representation and deal with HFLTSs represented by the 2-tuple fuzzy linguistic model to get rough number sets. The OWA operator can aggregate these sets with different numbers of elements into an interval simply and objectively. Then, an extended VIKOR method based on the proposed GDM approach for HFLTSs is presented to solve the MCGDM problems. Finally, two examples are given to illustrate the applicability and validity of the developed GDM approach and the hesitant VIKOR method through sensitivity and comparison analysis with other existing approaches.

1. Introduction

Decision-making is a common activity for human beings to select the desirable alternatives in many different fields such as evaluation [1], selection [2], and improvement [3]. Such problems are always presented as multicriteria decision-making (MCDM) problems. The complexity and importance of the real-world decision problems make the inclusion of multiple points of view necessary in order to achieve a solution from the knowledge provided by a group of experts [4]. Therefore, group decision-making (GDM) is a usual technique in MCDM practice. These problems having complex processes where several criteria must be satisfied to find the desirable alternative by multiple experts or decision makers (DMs) are called multiple criteria group decision-making (MCGDM) problems. How to solve MCGDM problems under fuzzy environment has been a challenging and attention-attracting topic in recent decades.

The judgments of experts are often vague and uncertain and cannot be expressed with exact numerical information. Since the introduction of the fuzzy set by Zadeh [5], the fuzzy set and its extensions have been widely used to express and model the fuzzy and vague information in the decision-making process. Fuzzy sets require a positive membership for each element and support the favoring evidence only. Intuitionistic fuzzy sets (IFSs) introduced by Atanassov [6] support both favoring and opposing evidences by means of the membership function and non-membership function and have the advantage that permits the experts having a margin of error in establishing the membership for each element. Type-2 fuzzy sets [7] and fuzzy multisets [8] are other extensions of fuzzy sets. Type-2 fuzzy sets have the advantage that permits the
membership of an element having some possible distributions on possible values, where the membership of each element is defined as a fuzzy set. When defining the membership of a given element, fuzzy multisets deal with uncertainty by allowing several values. However, the biggest difficulty of establishing the membership degree in the GDM process is that experts may have a set of possible values. Aiming at such a situation, Torra [9] introduced hesitant fuzzy sets (HFSs) in terms of a function that returns a set of membership values for each element in the domain. Recently, HFSs have been widely used in solving MCDM problems due to their distinguished efficiency and flexibility in modeling uncertainty and vagueness in the decision-making process. Zhang [10] presented hesitant fuzzy power aggregation operators for multiple attribute group decision-making. Xia and Xu [11] presented some aggregation operators of hesitant fuzzy information for GDM. Zhang and Wei [12] extended the VIKOR method based on HFSs for the decision-making problem. Some measures for HFSs have been presented for decision-making [13–15].

Based on the HFSs and fuzzy linguistic approach, Rodríguez et al. [16] introduced the concept of hesitant fuzzy linguistic term sets (HFLTSs) for richer expressions in MCDM. HFLTS complies with the situation that experts prefer adopting imprecise linguistic terms to express their judgments. It avoids the restriction for preference flexibility caused by using a single term or interval linguistic terms. The aim of this paper is to use and improve the operating method of HFLTSs to solve MCGDM problems under the linguistic environment.

The commonly used linguistic description approaches for HFLTSs are the ordered structure approach and the context-free grammar approach. Rodríguez et al. [16] presented how to generate comparative linguistic expressions by using context-free grammar. Context-free grammar can generate different linguistic expressions depending on the specific problem. Based on traditional context-free grammar, we consider similar but extended context-free grammar to support the completely free expression. For the linguistic GDM, the process of computing with words (CWW) is indispensable. In the HFLTS environment, free expression brings convenience for describing experts’ preferences. However, the CWW processes for HFLTSs become more complex due to each element having an arbitrary linguistic term subset. Some distance and similarity measures for HFLTSs were put forward and applied to solve MCDM problems [17–19], but these approaches assume that the HFLTSs have the same length. To aggregate or compute HFLTSs with different lengths in solving decision-making problems, many methods were put forward as shown in Table 1.

From the above reviews, we can conclude that the existing operating methods of HFLTSs with different lengths can be classified into three main categories. (1) The first category is the envelope-based method, and the envelope of the HFLTS is a linguistic interval. The HFLTSs can be aggregated or compared as intervals. Rodríguez et al. [16] first proposed the envelope concept to compare HFLTSs based on their envelopes, which are numerical intervals. The introduction of the concept of envelope can simplify the comparison operation and other operations. However, it is unreasonable to judge one HFLTS is absolutely superior to another if they have common elements. Although several extended research studies have been conducted, there still exist limitations of the envelope-based method. The one disadvantage of it is that the linguistic interval finally obtains crisp values, losing the initial fuzzy representation. The other disadvantage is that it seems unreasonable to support selecting the preferences from the predefined term sets completely free. If we give hesitant linguistic expressions out of context-free grammar, the envelope-based method may fail to work efficiently. For example, \([s_1, s_2, s_3]\) and \([s_1, s_3]\) have the same envelope \([s_1, s_3]\). (2) The second category includes the fuzzy envelope-based method and \(\alpha\)-cut method. Liu and Rodriguez [23] proposed a fuzzy envelope for the HFLTS. The fuzzy envelope can retain the vagueness of comparative linguistic expressions to a certain extent, but determining the parameters of the fuzzy membership function is fairly complicated, and considerable requisite calculations are required for an MCDM problem in the context of HFLTSs [32]. (3) The third category is the term-adding method, which is to extend the short HFLTSs by adding some linguistic terms until they have the same length as others. The disadvantage of the term-adding method is that it would change the information of the original hesitant fuzzy elements by filling some artificial values.

To support extended context-free grammar and operate HFLTSs with different lengths, we propose a novel GDM approach in the HFLTS environment. The contribution of this approach is transforming the HFLTSs into rough intervals by taking advantage of the 2-tuple linguistic representation model and the rough set theory. In the aggregation phase, the obtained rough numbers are grouped into an interval using the ordered weighted averaging (OWA) operator. In the exploitation phase, an extended VIKOR method based on the proposed GDM approach for HFLTSs is presented.

The 2-tuple linguistic representation model proposed by Herrera and Martínez [33] is based on the concept of symbolic translation, which is composed of a linguistic term and a real number. The main advantage of this representation is to be continuous in its domain. Therefore, it can express any counting of information in the universe of the discourse. Herrera and Martínez [33] pointed out that the computational technique based on the symbolic translation can deal with the 2-tuples without loss of information, such as comparison and aggregation. In recent studies, the 2-tuple linguistic representation model has been used in MCGDM problems successfully, e.g., material selection [34], product management [35], and computer network security system evaluation [36]. Rough set theory proposed by Pawlak [37] is a mathematical approach to manage uncertain data or problems of the information systems. Its main advantage is that it requires no external
parameters and uses the information presented in the given data only. The OWA operator proposed by Yager [38] provides an aggregation result lying between the max and min operators and has received increasing attention. The weight associated with each data depends on the position it takes in the descending arrangement of the data rather than the particular data. Due to the advantage that the OWA operator can provide a wide family of aggregation functions and aggregate a set of values regardless of their numbers, we apply the OWA operator to aggregate the elements in an HFLTS and multiple HFLTSs in the GDM process.

HFLTS has been combined with many MCDM methods, such as ELECTRE [39], extended ELECTRE [40], TOPSIS [41, 42], and VIKOR [28, 43]. The VIKOR method for compromise ranking determines a compromise solution by providing a maximum “group utility” for the “majority” and a minimum of an “individual regret” for the “opponent,” which is an effective tool for MCDM, particularly in a situation where the decision maker is not able or does not know how to express his/her preference at the beginning of system design. We pay attention to apply the proposed group decision-making approach to solve MCGDM problems using the VIKOR method.

This paper focuses on dealing with MCGDM problems in the context of linguistic evaluation using HFLTSs and the VIKOR method. The rest of the paper is organized as follows. In Section 2, we briefly review the concepts of HFLTSs and 2-tuple linguistic representation models and introduce how to apply the 2-tuple linguistic representation model to compute with the hesitant fuzzy linguistic information. In Section 3, a novel group decision-making approach for HFLTSs is presented based on the rough set theory and the OWA operator. In Section 4, we give out an extended VIKOR method based on the proposed GDM approach for HFLTSs. In Section 5, two application examples are provided to illustrate the efficiency of the proposed GDM approach and the extended VIKOR, respectively, and the results are compared with other existing methods. Finally, conclusions are drawn in Section 6.

Authors	Methods used for operating HFLTSs	Contributions to the field of the HFLTS
Rodriguez et al. [16]	Introducing the concept of envelope for an HFLTS to compare two HFLTSs	First introducing the concept of envelope
Farhadinia [13]	Using the envelope for each HFLTS to aggregate the preference of experts based on the 2-tuple linguistic representation model	Considering extended context-free grammar close to human beings’ cognitive models
Montes et al. [20]	Carrying out the computing with words processes using the envelope of an HFLTS and the 2-tuple linguistic representation model	Presenting a practical application in decision-making of a 2-tuple linguistic fuzzy model with hesitant information
Wu et al. [21]	Proposing a maximum support degree model based on the envelope of the HFLTS	Proposing a new linguistic group decision model by combining the linguistic distributions and HFLTSs
Boyaci [22]	Obtaining the envelope for each HFLTS and proposing the pessimistic and optimistic collective preference relations for comparison	Using the HFLTS-based additive ratio assessment (ARAS) method
Liu and Rodriguez [23]	Introducing a fuzzy envelope for the HFLTS whose representation is a fuzzy membership function for comparison	Presenting a new representation of the hesitant fuzzy linguistic term sets using a fuzzy envelope
Chen and Hong [24]	Aggregating the fuzzy sets in each HFLTS into a fuzzy set and performing α-cut to these aggregated fuzzy sets to get intervals	Considering the pessimistic attitude and the optimistic attitude of the decision maker
Lee and Chen [25]	Adopting 1-cut of hesitant fuzzy linguistic term sets for dealing with fuzzy decision-making	Proposing a new fuzzy group decision-making method based on the proposed likelihood-based comparison relations of HFLTSs
Dong et al. [26]	Proposing a new envelope of the HFLTS by using a Bonferroni mean operator	Proposing a new fuzzy envelope of the HFLTS and a new cosine similarity measure for HFLTSs
Zhu and Xu [27]	Introducing a method to add linguistic terms to HFLTSs to make sure that two HFLTSs have the same number of linguistic terms	Developing a concept of hesitant fuzzy linguistic preference relations (HFLPRs) as a tool to collect and present the DMs’ preferences
Liao et al. [17]; Liao and Xu [28]; Liao et al. [29]	Extending the short hesitant fuzzy linguistic element by adding the linguistic term which is the average of the maximal term and the minimal term	Proposing several different types of correlation coefficients for HFLTSs and cosine distance and similarity measures for HFLTSs
Liao et al. [30]	Enlarging the shorter HFLTS by adding a linguistic term which is between the maximum and the minimum linguistic term	Proposing two distinct methods to compare the HFLTSs and investigating the ELECTRE II method in the HFLTS environment
Lei et al. [31]	Extending the shorter HFLE by adding the maximum value	Proposing the behavioral multigranulation decision-theoretic rough set over two universes with HFL information

Table 1: Review of the operating methods of HFLTSs with different lengths.
2. Preliminaries

In this section, some concepts and operations of HFLTSs and the 2-tuple linguistic representation model are briefly reviewed, and then, how to apply the 2-tuple linguistic representation model for computing with the hesitant fuzzy linguistic information is introduced.

2.1. Concept and Basic Operations of HFLTSs

Definition 1 (see [16]) Let S be a linguistic term set, $S = \{s_0, \ldots, s_g\}$; an HFLTS, H_0, is an ordered finite subset of the consecutive linguistic terms of S.

The empty HFLTS and the full HFLTS for a linguistic variable \emptyset are defined as follows:

1. The empty HFLTS: $H_\emptyset(\emptyset) = \{\}$,
2. The full HFLTS: $H_\emptyset(\emptyset) = S$

Definition 2 (see [16]). Let $S = \{s_0, \ldots, s_g\}$ be a linguistic term set; H^0, H^1, and H^2 are three arbitrary HFLTSs on S. H^2 is the complement set of H^0. Three operations are defined as follows:

1. $H^C = S - H^0 = \{s_i | s_i \in S \text{ and } s_i \notin H^0\}$
2. $H^1 \cap H^2 = \{s_i | s_i \in H^1 \text{ and } s_i \in H^2\}$
3. $H^1 \cup H^2 = \{s_i | s_i \in H^1 \text{ or } s_i \in H^2\}$

Due to the present decision-making problems having higher uncertainty, experts in the decision-making group might hesitate among different linguistic terms to express their preferences. Context-free grammar is close to human beings’ cognitive model and can generate comparative linguistic expressions. Rodríguez et al. [16] pointed out how to generate comparative linguistic expressions by using context-free grammar. Rodríguez et al. [4] considered similar but extended context-free grammar to that defined in Rodríguez et al. [16] which might generate comparative linguistic expressions similar to the expressions used by experts in GDM problems. Extended context-free grammar refers to a set containing a single term or several adjacent linguistic terms and cannot support the arbitrarily linguistic term mix. One special case is omitted, that is, experts may be hesitant to choose a better evaluation or a worse evaluation. Therefore, this paper improves extended context-free grammar to introduce the binary relation “or.”

Definition 3. Let G_H be improved context-free grammar and $S = \{s_0, \ldots, s_g\}$ be a linguistic term set. The elements of $G_H = (V_N, V_T, I, P)$ are defined as follows:

$$V_N = \{<\text{primary term}>, <\text{composite term}>, <\text{unary relation}>, <\text{binary relation}>, <\text{conjunction}>\}$$

$$V_T = \{\text{lower than}, \text{greater than}, \text{at least}, \text{at most}, \text{or}, \text{and}, s_0, \ldots, s_g\}$$

$I \in V_N$

For context-free grammar, G_H, the production rules are as follows:

$P = I : = <\text{primary term}>|<\text{composite term}>
<\text{composite term}> ::= <\text{unary relation}|<\text{primary term}>|<\text{binary relation}>
<\text{primary term}|<\text{conjunction}|<\text{primary term}>
<\text{primary term}> ::= s_0|s_1|s_g$

$<\text{unary relation}> ::= \text{lower than}|\text{greater than}|\text{at least}|\text{at most}$

$<\text{binary relation}> ::= \text{between}|\text{or}$

$<\text{conjunction}> ::= \text{and}$

Definition 4. Let E_{GH} be a function that transforms linguistic expressions $\ll \in Sll$ obtained by context-free grammar G_H into a HFLTS H_S, where S is the linguistic term set used by G_H and Sll.

$$E_{GH}: Sll \rightarrow H_S$$

The comparative linguistic expressions generated by G_H can be converted into HFLTSs by means of the following:

1. $E_{GH}(s_j) = [s_j | s_j \in S]$,
2. E_{GH} (at most s_j) = $[s_j | s_j \in S \text{ and } s_j \leq s_i]$,
3. E_{GH} (lower than s_j) = $[s_j | s_j \in S \text{ and } s_j < s_i]$,
4. E_{GH} (at least s_j) = $[s_j | s_j \in S \text{ and } s_j \geq s_i]$,
5. E_{GH} (greater than s_j) = $[s_j | s_j \in S \text{ and } s_j > s_i]$,
6. E_{GH} (between s_i and s_j) = $[s_k | s_k \in S \text{ and } s_i \leq s_k \leq s_j]$,
7. E_{GH} (or s_j, s_j, s_j, s_j) = $[s_i, s_j, \ldots, s_k]$

Example 1. Let S be a linguistic term set.

$S = \{s_0: \text{nothing}, s_1: \text{very low}, s_2: \text{low}, s_3: \text{medium}, s_4: \text{high}, s_5: \text{very high}, s_6: \text{perfect}\}$

Three experts give their opinions aiming at the same evaluation object based on improved context-free grammar: ll^1: between low and high; ll^2: low or high; and ll^3: between medium and very high. According to the function E_{GH}, three different HFLTSs are obtained:

$H^1_S = \{s_2, s_3, s_4\}$, $H^2_S = \{s_3, s_4, s_5\}$, and $H^3_S = \{s_3, s_4, s_5\}$

2.2. Computing with HFLTSs Using the 2-Tuple Fuzzy Linguistic Representation Model. Let $S = \{s_i: i = 0, 1, 2, \ldots, g\}$ be a finite and ordered discrete linguistic term set, where s_i represents a possible value for a linguistic variable. The 2-tuple fuzzy linguistic representation model deals with linguistic information by introducing a new parameter called symbolic translation. The concept of symbolic translation is described in Definition 5. It is used to make the information representation continuous in its domain, and it is the foundation of the computation techniques of the 2 tuples. The concept and basic operations of the 2-tuple fuzzy linguistic representation model are as follows.
Definition 5 (see [33]) Let β be a value representing the result of an aggregation of the indices of a set of labels assessed in the linguistic term set S, i.e., the result of a symbolic aggregation operation $\beta \in [0, g]$, being $g + 1$, the cardinality of S. Let $i = \text{round } d(\beta)$ and $\alpha = \beta - i$ be two values such that $i \in [0, g]$ and $\alpha \in [-0.5, 0.5]$; then, α is called a symbolic translation.

The linguistic representation model 2-tuple (s_i, α_i), $s_i \in S$ and $\alpha_i \in [-0.5, 0.5]$, is developed from the above concept:

1. s_i represents the linguistic label center of the information
2. α_i is a numerical value expressing the value of the translation from the original result β to the closest index label, i, in the linguistic term set S, i.e., the symbolic translation

Definition 6 (see [33]) Let $S = \{s_0, s_1, \ldots, s_g\}$ be a linguistic term set and $\beta \in [0, g]$ be a value representing the result of a symbolic aggregation; then, the 2-tuple that expresses the equivalent information to β is obtained with the function Δ:

\[
\Delta: [0, g] \rightarrow S \times [0.5, -0.5],
\]

\[
\Delta(\beta) = (s_i, \alpha_i), \quad i = \text{round } d(\beta), \quad \alpha_i = \beta - i, \quad \alpha_i \in [-0.5, 0.5],
\]

where $\text{round } d(\cdot)$ is the usual round operation, s_i has the closest index label to β, and α_i is the value of the symbolic translation.

Conversely, let $S = \{s_0, s_1, \ldots, s_g\}$ be a linguistic term set and (s_i, α_i) be a 2-tuple. There is always a Δ^{-1} function:

\[
\Delta^{-1}: S \times [0.5, -0.5] \rightarrow [0, g],
\]

\[
\Delta^{-1}(s_i, \alpha_i) = i + \alpha_i = \beta.
\]

The original linguistic evaluation variable can be converted into a linguistic 2-tuple by adding value zero as symbolic translation: $s_i \in S \Rightarrow (s_i, 0)$.

Example 2. The decision information in Example 1 can be transformed into the following 2-tuple information:

\[
H^1 = \{(s_2, 0), (s_3, 0), (s_4, 0)\}, \quad H^2 = \{(s_2, 0), (s_4, 0)\}, \quad H^3 = \{(s_3, 0), (s_4, 0), (s_5, 0)\}
\]

\[
\Delta^{-1}(H^1) = \{2, 3, 4\}, \quad \Delta^{-1}(H^2) = \{2, 4\}, \quad \Delta^{-1}(H^3) = \{3, 4, 5\}
\]

3. A Novel Group Decision-Making Approach for Hesitant Fuzzy Linguistic Term Sets

This section describes a novel GDM approach based on HFLTs. Aggregation operators are the most widely used tool for combining individual preference information into overall preference information in the GDM process. The traditional operators are arithmetic average operators and geometric average operators. These operators consider the DMs’ preferences, and the weights are always determined subjectively. The OWA operator is a parameterized way of aggregating from “and” to “or.” The associated weights can be determined objectively. The classic method for determining the weights is quantifier-guided aggregation. Three fuzzy linguistic preferences, for the most (fuzzy majority), at least half, and as much as possible, are considered in this paper.

After obtaining the 2-tuple sets in Section 2.2, the rough set theory is introduced to transform these sets into rough numbers sets, and the obtained rough numbers sets can be aggregated into an interval using an OWA operator. Then, the GDM problem in the context of HFLTs degenerates into an information aggregation problem for interval numbers. The framework of the proposed group decision-making approach for hesitant fuzzy linguistic term sets is shown in Figure 1.

3.1. Elicitation of Linguistic Expressions in Decision-Making. Let X be a set of evaluation objects, $X = \{x_i | 1 \leq i \leq n\}$, let C be a set of evaluation criteria, $C = \{c_j | 1 \leq j \leq m\}$, and let E be a set of experts, $E = \{e_k | 1 \leq k \leq l\}$. According to the given linguistic term set, expert e_k uses proposed context-free grammar to give out the linguistic expression $l^i_k(x)$ concerning the criterion c_j evaluating x_i. The linguistic expression $l^i_k(x)$ can be transformed into an HFLTS $H^i_k(x)$ using the transformation function E_{GH}. The hesitant GDM information is presented as shown in Table 2.

3.2. Rough Number Enabled HFLTS Information Processing. Experts in the decision-making group have diversified opinions on the evaluated objects. Moreover, hesitant linguistic information given by all experts may have different lengths. Therefore, translating all the HFLTs into the information with the same length is a critical procedure for information aggregation. Computing the average value of all the elements in an HFLTS is unreasonable obviously, ignoring the uncertainty of each element. Each linguistic term in the predefined linguistic term set can be deemed as a class. The rough numbers can give the lower and upper approximations of the target class to describe the uncertainty of the class appearing in a group decision-making problem.

Example 3. Let HFLTs in Example 1 be the information given by three experts with respect to $H^k_S(x_i)$. $H^1_S(x_i) = \{s_2, s_3, s_4\}, H^2_S(x_i) = \{s_2, s_4\}$, and $H^3_S(x_i) = \{s_3, s_4, s_5\}$.

Taking s_2 for an example, s_2 in this group decision-making information has fuzziness and uncertainty for the inconsistent judgments of all experts. The boundary region of s_2, i.e., the difference between the lower and upper approximations of s_2, can imply that the knowledge about this term is better. Rough number is a concept proposed by Zhai et al. [44] for managing the imprecise design information, which is derived from the basic notions of the rough set. The basic notions of rough sets are as follows.
Rough set theory (RST) is an effective mathematical tool to deal with subjective and vague information using only the given information, which does not require any external information or additional subjective adjustment for data analysis. Furthermore, RST excels in handling imprecise information especially when the data set is small in size and other tools like statistics are not suitable [45]. RST uses the lower and upper approximations to form the approximation of a target set and expresses vagueness using the boundary region of a set. This is indeed the unique advantage of the rough set theory in dealing with vagueness and uncertainty.

Let U be a universe containing all the objects, and all the objects can be categorized into n classes. Assume that set R is the collection of these classes, $R = \{C_1, C_2, \ldots, C_n\}$. Let Y be an arbitrary object of U. If these classes are ordered in the manner of $C_1 < C_2 < \cdots < C_n$, then for any class $C_i \in R$, $1 \leq i \leq n$, the lower approximation of C_i can be defined as

$$A_{\text{pr}}(C_i) = \bigcup \{ Y \in U \mid R(Y) \leq C_i \}.$$

The upper approximation of C_i can be defined as
\[\overline{\text{Apr}}(C_i) = \bigcup \{ Y \in U \mid R(Y) \geq C_i \} . \] (4)

The boundary region of \(C_i \) can be expressed as
\[\text{Bnd}(C_i) = \{ Y \in U \mid R(Y) \neq C_i \} = \{ Y \in U \mid R(Y) > C_i \} \cup \{ Y \in U \mid R(Y) < C_i \} . \] (5)

Definition 7 (see [38]). A mapping \(F \) from \(I^n \rightarrow I \) is called an OWA operator of dimension \(n \) if associated with \(F \) is a weighting vector \(W \):
\[W = [w_1, w_2, \ldots, w_n]^T \] (10)
such that (1) \(w_i \in [0,1] \), \(1 \leq i \leq n \), and (2) \(\sum_{i=1}^{n} w_i = 1 \).

And
\[F(a_1, a_2, \ldots, a_n) = \sum_{j=1}^{n} w_j b_j = w_1 b_1 + w_2 b_2 + \cdots + w_n b_n, \] (11)
where \(b_j \) is the \(j \)th largest element in the collection \(a_1, a_2, \ldots, a_n \).

3.3. Rough Information Aggregation Based on the OWA Operator. The following job is to aggregate the elements in a rough number set into an interval number. As the elements in the rough number sets for all \(\Delta^{-1}(H^j_k(x_i)) \), \(1 \leq k \leq l \), are different, the traditional averaging operators with given weights are not flexible and reasonable. The OWA operator provides a parameterized family of aggregation operators that includes the maximum (or), the minimum (and), and the average, as special cases. The basic notions of OWA operators are as follows.

The rough boundary interval of \(C_i \) is the interval between the lower limit \(\text{Lim}(C_i) \) and the upper limit \(\overline{\text{Lim}}(C_i) \), which is denoted as \(R\text{Bnd}(C_i) \):
\[R\text{Bnd}(C_i) = \overline{\text{Lim}}(C_i) - \text{Lim}(C_i). \] (8)

Accordingly, the vague class \(C_i \) can be expressed by its lower limit and upper limit as follows:
\[R\text{N}(C_i) = [\text{Lim}(C_i), \overline{\text{Lim}}(C_i)]. \] (9)

The above definitions of the rough boundary interval and rough number can be used to deal with the imprecise evaluation information in group decision-making problems.

Example 4. \(H^1_5(x_i) = \{s_{2}, s_{3}, s_{4}\}, \ H^2_5(x_i) = \{s_{2}, s_{4}\}, \) and \(H^3_5(x_i) = \{s_{3}, s_{4}, s_{5}\} \) in Example 3 can be represented by the 2-tuple linguistic representation model first, and then, each element can be defined by its rough number to quantify and analyze the subjective evaluations:

\[H^1_5(x_i) = \{(s_{2}, 0), (s_{3}, 0), (s_{4}, 0)\}, \ H^2_5(x_i) = \{(s_{2}, 0), (s_{4}, 0)\}, \) and \(H^3_5(x_i) = \{(s_{3}, 0), (s_{4}, 0)\}. \)

\[\Delta^{-1}(H^1_5(x_i)) = [2, 3, 4], \ \Delta^{-1}(H^2_5(x_i)) = [2, 4], \) and \(\Delta^{-1}(H^3_5(x_i)) = [3, 4, 5]. \)

\[\Delta^{-1}(H^1_5(x_i)) = \{(\text{Lim}(2), \overline{\text{Lim}}(2)), \ (\text{Lim}(3), \overline{\text{Lim}}(3)), \ (\text{Lim}(4), \overline{\text{Lim}}(4))\} \]

where \(\text{Lim}(2) = (2+2)/2 = 2; \)
\[\overline{\text{Lim}}(2) = (2+3+4+2+4+3+4+5)/8 = 3.375; \]
\[\text{Lim}(3) = (2+3+2+3)/4 = 2.5; \]
\[\overline{\text{Lim}}(3) = (3+4+4+4+5)/5 = 4; \]
\[\text{Lim}(4) = (2+3+4+2+4+3+4)/7 = 3.143; \]
\[\overline{\text{Lim}}(4) = (4+4+4+5)/4 = 4.25; \]
\[\text{Lim}(5) = (2+3+4+2+4+3+4+5)/8 = 3.375; \]
\[\overline{\text{Lim}}(5) = 5/1 = 5; \]
\[\Delta^{-1}(H^1_5(x_i)) = \{(2, 3.375), (2.5, 4), (3.143, 4.25)\}; \]
\[\Delta^{-1}(H^2_5(x_i)) = \{(2, 3.375), (3.143, 4.25)\}; \]
\[\Delta^{-1}(H^3_5(x_i)) = \{(2.5, 4), (3.143, 4.25), (3.375, 5)\}. \]

We consider three fuzzy linguistic preferences: for the most (fuzzy majority), at least half, and as much as possible. These preferences indicate the degree to which the decision maker is satisfied with the number of criteria solved. The linguistic quantifier \(Q(x) \) is shown as Figure 2.

For the “for the most,” the linguistic quantifier \(Q(x) \) is defined as [48]
\[Q(x) = \begin{cases} 0, & \text{for } x \leq 0.3, \\ 2x - 0.6, & \text{for } 0.3 < x < 0.8, \\ 1, & \text{for } x \geq 0.8. \end{cases} \] (13)

For the “at least half,” the linguistic quantifier \(Q(x) \) is defined as
If the rough number set has three elements, $w_1 = 1 - Q(2/3) = 0.27$, $w_2 = Q(2/3) - Q(2/3) = 0.67$, and $w_3 = Q(1/3) = 0.06$.

If the rough number set has two elements, $w_1 = 1 - Q(1/2) = 0.6$ and $w_2 = Q(1/2) = 0.4$.

Concerning criterion c_j for evaluating object x_n the group decision-making information can be obtained by considering the experts' weights and weights associated with OWA operators.

For $\Delta^{-1}(H^k_j(x_i)) = \{[a_{ij}^k, a_{ij}^k]\}$, let w_{e_k} be the weight of expert e_k and $w_{o_k}^{ij}$ be the weight associated with the OWA operator according to the order of information e_k given. $w_{o_k}^{ij}$ is the normalized weight for the sum of w_{e_k} and $w_{o_k}^{ij}$:

$$
w_{o_k}^{ij} = \frac{w_{e_k} + w_{o_k}^{ij}}{\sum_{k=1}^{l} (w_{e_k} + w_{o_k}^{ij})}, \quad 1 \leq i \leq n, 1 \leq j \leq m. \quad (18)$$

The aggregated evaluation information is defined as $\Delta^{-1}(H^k_j(x_i))$, $\Delta^{-1}(H^k_j(x_i)) = \{[\bar{a}_{ij}, \bar{a}_{ij}]\}$:

$$
\bar{a}_{ij} = \sum_{k=1}^{l} w_{o_k}^{ij} \cdot a_{ij}^k, \quad (19)
$$

$$
\bar{a}_{ij} = \sum_{k=1}^{l} w_{o_k}^{ij} \cdot a_{ij}^k. \quad (20)
$$

The final decision matrix A for the MCGDM problem is as follows:
4. Extended VIKOR Method for MCGDM
Based on Hesitant Fuzzy Linguistic Term Sets

The VIKOR method introduces the multicriteria ranking index based on the particular measure of closeness to the ideal solution [49]. According to Opricovic and Tzeng [50], the multicriteria measure for compromise ranking is developed from the Lp-metric utilized as an aggregating function in a compromise programming method. For an alternative \(x_i \) (\(1 \leq i \leq n \)), the evaluating value of the \(j \)th criterion (\(1 \leq j \leq m \)) is denoted as \(f_{ij} \). The Lp-metric has the following form [51]:

\[
L_{pj} = \left(\sum_{j=1}^{n} \left(\frac{w_j(f^*_{ij} - f_{ij})}{f^*_j - f^*_j} \right)^p \right)^{1/p}, \quad 1 \leq p \leq \infty, \quad i = 1, 2, \ldots, n, \tag{22}
\]

where \(f^*_j = \max_{i} f_{ij} \) and \(f^*_j = \min_{i} f_{ij} \).

In the VIKOR method, \(L_{1ij} \) (or \(S_i \)) and \(L_{\infty i} \) (or \(R_i \)) are used to formulate ranking measurements. The solution gained by \(\min S_i \) is with a maximum group utility, and the solution gained by \(\min R_i \) is with a minimum individual regret of the opponent [50]. The compromise solution is a feasible solution that is the closest to the ideal, and compromise means an agreement established by mutual concessions. \(v \) is introduced as the compromise parameter between the group utility and the individual regret. \(Q_i = vf(S_i) + (1 - v)f(R_i) \). \(v > 0.5 \) represents concerning the group utility (or the majority). \(v < 0.5 \) represents concerning the individual regret.

The VIKOR method is used to treat the decision matrix to calculate \(S_i \), \(R_i \), and \(Q_i \) and then obtain the candidate ranking order. According to the summarized steps of the VIKOR method [50], the extended VIKOR approach proposed in this paper has the following five steps.

Step 1: determine the positive ideal solution \(A^+ \) and the negative ideal solution \(A^- \) of the final decision matrix \(A = ([a_{ij}, \bar{a}_{ij}])_{nm} \).

Criteria set \(B \) represents the “larger-the-better” category, and criteria set \(C \) represents the “small-the-better” category.

\[A^+ = \{a^+_j \mid 1 \leq j \leq m\}, \quad \text{where } a^+_j = \begin{cases} \max_{i \in B} \bar{a}_{ij} \mid c_j \in B, \\ \min_{i \in C} a_{ij} \mid c_j \in C, \end{cases} \]

\[A^- = \{a^-_j \mid 1 \leq j \leq m\}, \quad \text{where } a^-_j = \begin{cases} \min_{i \in B} \bar{a}_{ij} \mid c_j \in B, \\ \max_{i \in C} a_{ij} \mid c_j \in C. \end{cases} \tag{23} \]

Step 2: compute the values of \([S_i, \bar{S}_i]\) and \([R_i, \bar{R}_i]\) by the following formulas:

\[
S_i = \sum_{c_j \in B} w_{c_j} \frac{(a^+_j - \bar{a}_{ij})}{(a^+_j - a^-_j)} + \sum_{c_j \in C} w_{c_j} \frac{(\bar{a}_{ij} - a^-_j)}{(a^-_j - a^-_j)}, \tag{24}
\]

\[
\bar{S}_i = \sum_{c_j \in B} w_{c_j} \frac{(a^+_j - \bar{a}_{ij})}{(a^+_j - a^-_j)} + \sum_{c_j \in C} w_{c_j} \frac{(\bar{a}_{ij} - a^-_j)}{(a^-_j - a^-_j)}, \tag{25}
\]

\[
R_i = \max_j \begin{cases} w_{c_j} \frac{(a^+_j - \bar{a}_{ij})}{(a^+_j - a^-_j)} \quad \text{for } c_j \in B, \\ w_{c_j} \frac{(\bar{a}_{ij} - a^-_j)}{(a^-_j - a^-_j)} \quad \text{for } c_j \in C, \end{cases} \tag{26}
\]

\[
\bar{R}_i = \max_j \begin{cases} w_{c_j} \frac{(a^+_j - \bar{a}_{ij})}{(a^+_j - a^-_j)} \quad \text{for } c_j \in B, \\ w_{c_j} \frac{(\bar{a}_{ij} - a^-_j)}{(a^-_j - a^-_j)} \quad \text{for } c_j \in C, \end{cases} \tag{27}
\]

where \(w_{c_j} \) is the weight of criteria \(c_j \).

Step 3: compute the values of \([Q_i, \bar{Q}_i]\):

\[
Q_i = v S_i - \bar{S}_i + (1 - v) R_i - \bar{R}_i, \tag{28}
\]

\[
\bar{Q}_i = v S_i - \bar{S}_i + (1 - v) R_i - \bar{R}_i, \tag{29}
\]

where \(S_i = \min_{i \in B} S_i \), \(S_i = \max_{i \in B} S_i \), \(R_i = \min_{i \in C} R_i \), \(R_i = \max_{i \in C} R_i \), and \(v \) is the weight of the decision-making strategy of the maximum group utility. \(v > 0.5 \) represents “voting by majority rule,” \(v = 0.5 \) represents “by consensus,” and \(v < 0.5 \) represents “with veto.” Selection of \(v \) depends on the decision strategy of experts, and it may influence the compromise solution.
Step 4: rank the alternatives, sorting the values of \([Q_1, Q_2], [S_1, S_2], \) and \([R_1, R_2]\) in the ascending order, and then obtain three ranking lists.

For any two rough numbers, \(RN_1 = [L_1, U_1]\) and \(RN_2 = [L_2, U_2]\), where \(L_1\) and \(L_2\) represent their lower limits and \(U_1\) and \(U_2\) represent their upper limits, the ranking rules of two rough numbers are given as follows \([52]\):

(1)

(a) If \(U_1 > U_2\) and \(L_1 \geq L_2\) or \(U_1 \geq U_2\) and \(L_1 > L_2\), then \(RN_1 > RN_2\).
(b) If \(U_1 = U_2\) and \(L_1 = L_2\), then \(RN_1 = RN_2\).

(2) Let \(M_1 = (L_1 + U_1)/2\) and \(M_2 = (L_2 + U_2)/2\).

(a) If \(L_2 > L_1\) and \(U_1 > U_2\), if \(M_1 \leq M_2\), then \(RN_1 < RN_2\); if \(M_1 > M_2\), then \(RN_1 > RN_2\).
(b) If \(L_1 > L_2\) and \(U_2 > U_1\), if \(M_1 \leq M_2\), then \(RN_1 < RN_2\); if \(M_1 > M_2\), then \(RN_1 > RN_2\).

Step 5: propose a compromise solution:

Definition 8. For any two interval numbers \(A = [\overline{A}, \overline{\overline{A}}]\) and \(B = [\overline{B}, \overline{\overline{B}}]\), the distance between \(A\) and \(B\), \(D(A, B)\), is defined as

\[
D(A, B) = \sqrt{\frac{1}{2}[(\overline{B} - \overline{A})^2 + (\overline{\overline{B}} - \overline{\overline{A}})^2]},
\]

(30)

(1) If the following two conditions are satisfied, \(x^{(1)}\) is the best compromise solution. \(x^{(1)}\) is the object ranked first in the \([Q_1, Q_2]\) list.

Condition 1: acceptable advantage:
\[D([Q_1], [Q_1^{(1)}]) \geq DQ, DQ = 1/(n - 1)\]

Condition 2: acceptable stability in decision-making: \(x^{(1)}\) must also be the best object ranked according to \([S_1, S_2]\) or/and \([R_1, R_2]\).

(2) If one of the conditions is not satisfied, then a set of compromise solutions is obtained:

\(\circ\) If only condition 2 is not satisfied, \(x^{(1)}\) and \(x^{(2)}\) are both compromise solutions

\(\circ\) If condition 1 is not satisfied, maximized \(X\) can be obtained according to

\[D([Q_1], [Q_1^{(1)}], [Q_2^{(1)}, Q_2^{(2)}]) < 1/(n - 1), \] and \(x^{(1)}, x^{(2)}, \ldots, x^{(7)}\) are all near to the best compromise solution

5. Illustrative Examples

5.1. Example 1. In this section, a numerical example adopted from Rodriguez et al. \([4]\) is provided to validate the effectiveness of the proposed GDM approach based on HFLTSs. A conference committee, composed of 3 researchers \(E = \{e_1, e_2, e_3\}\), wants to grant the best paper award in an international conference. There are four selected papers, \(X = \{\text{John’s paper, Mike’s paper, David’s paper, Frank’s paper}\}\). The linguistic term set suitable to express such assessments shown in Rodriguez et al. \([4]\) can be given as follows:

\[S = \{\text{neither (s_0); very low (s_1); low (s_2); medium (s_3); high (s_4); very high (s_5); absolute (s_6)}\}\]

Step 1: transform the preferences provided by experts in Rodriguez et al. \([4]\) into HFLTSs:

\[
p_1 = \begin{pmatrix}
\ldots & \{s_0, s_1\} & \{s_2\} & \{s_3\} & \{s_0, s_1\} \\
\{s_5, s_6\} & \ldots & \{s_4, s_5\} & \{s_0, s_1, s_2, s_3\} \\
\{s_2\} & \{s_0, s_1, s_2\} & \ldots & \{s_5, s_6\} \\
\{s_4, s_5, s_6\} & \{s_2\} & \{s_0, s_1, s_2, s_3\} & \ldots
\end{pmatrix},
\]

\[
p_2 = \begin{pmatrix}
\ldots & \{s_0, s_1\} & \{s_2\} & \{s_3\} & \{s_0, s_1\} \\
\{s_5, s_6\} & \ldots & \{s_4, s_5, s_6\} & \{s_0, s_1, s_2, s_3\} \\
\{s_2\} & \{s_0, s_1, s_2\} & \ldots & \{s_5, s_6\} \\
\{s_4, s_5, s_6\} & \{s_2\} & \{s_0, s_1, s_2, s_3\} & \ldots
\end{pmatrix},
\]

\[
p_3 = \begin{pmatrix}
\ldots & \{s_0, s_1\} & \{s_2\} & \{s_3\} & \{s_0, s_1\} \\
\{s_5, s_6\} & \ldots & \{s_4, s_5, s_6\} & \{s_0, s_1, s_2, s_3\} \\
\{s_2\} & \{s_0, s_1, s_2\} & \ldots & \{s_5, s_6\} \\
\{s_4, s_5, s_6\} & \{s_2\} & \{s_0, s_1, s_2, s_3\} & \ldots
\end{pmatrix}.
\]

Step 2: deal with the assessment information based on the HFLTS using the 2-tuple linguistic representation model:

\[
\Delta^{-1}(p_1) = \begin{pmatrix}
\ldots & \{0, 1\} & \{5\} & \{0, 1\} \\
\{5, 6\} & \ldots & \{0, 1, 2, 3\} & \{4, 5, 6\} \\
\{2\} & \{0, 1, 2\} & \ldots & \{5, 6\} \\
\{4, 5, 6\} & \{4, 5, 6\} & \ldots & \{0, 1, 2\}
\end{pmatrix},
\]

\[
\Delta^{-1}(p_2) = \begin{pmatrix}
\ldots & \{4, 5, 6\} & \ldots & \{1\} \\
\{0, 1\} & \{2\} & \ldots & \{5, 6\} \\
\{4, 5\} & \{5\} & \ldots & \{0, 1, 2\} \\
\{0, 1, 2\} & \ldots & \{4, 5, 6\} & \ldots
\end{pmatrix},
\]

\[
\Delta^{-1}(p_3) = \begin{pmatrix}
\ldots & \{4, 5, 6\} & \ldots & \{1\} \\
\{0, 1, 2\} & \{0, 1, 2\} & \ldots & \{4\} \\
\{4\} & \{0, 1, 2\} & \ldots & \{1\}
\end{pmatrix}.
\]

Step 3: quantify the uncertainty in GDM information based on the rough set theory:
Rodríguez et al. [4]:

Step 5: obtain the preference relation based on the linguistic terms using the binary relation \(\text{or} \). The linguistic interval for each alternative is shown in Table 3.

Step 6: compute the pessimistic and optimistic collective preference for each alternative. The linguistic interval for each alternative is shown in Table 3.

\[
\Delta^{-1}(p^1) = \begin{pmatrix}
- & [0.2, 2.7] & [4.6, 5.25] & [0.2, 1.2] \\
[3.15, 5.7] & - & [4.16, 4.93] & [0.74, 3.45] \\
[1.2] & [0.4, 1.5] & - & [5.5, 7] \\
[4.31, 5.19] & [2.57, 5.28] & [0.7, 1.89] & - \\
\end{pmatrix}
\]

\[
\Delta^{-1}(p^2) = \begin{pmatrix}
- & [0.38, 3.02] & [4.45, 5.18] & [0.4, 1.4] \\
[2.59, 5.45] & - & [4.67, 3.14] & - \\
[0.2, 1.2] & [1.14, 2] & - & [5.5, 7] \\
[4.16, 4.93] & [2.83, 5.33] & [0.46, 1.6] & - \\
\end{pmatrix}
\]

\[
\Delta^{-1}(p^3) = \begin{pmatrix}
- & [0.4, 4.03] & [4.31, 5.11] & [2.19, 5.4] \\
[0.4, 1.4] & [0.4, 1.5] & - & [4.58, 5.47] \\
[4.467] & [0.42, 3.69] & [0.6, 1.67] & - \\
\end{pmatrix}
\]

Step 7: order the set of alternatives and select the best one as the solution to the GDM problem:

\[x_2 > x_4 > x_1 > x_3. \]

The best solution is similar with the work of Rodríguez et al. [4]. This example can illustrate the effectiveness of the proposed GDM approach for HFLTs. However, the envelope-based method for computing with HFLTs in Rodríguez et al. [4] cannot support experts to select nonadjacent linguistic terms. Next, we changed the preference provided by the three experts and compared the results obtained by the commonly used envelope-based method and the proposed GDM approach. We changed the preference referring to more than two linguistic terms to contain only two linguistic terms using the binary relation “or.” The revised preference provided by the first expert is as follows:

\[
p_{1'} = \begin{pmatrix}
- & \text{at most } vl & vl & \text{at most } vl \\
\text{at least } vh & - & \text{between } h \text{ and } vh & n \text{ or } m \\
\text{at least } l & \text{or } l & - & \text{greater than } h \\
\text{h or a} & \text{h or a} & \text{n or m} & - \\
\end{pmatrix}
\]

The corresponding HFLTs of the three experts are as follows:
Table 3: Linguistic intervals for all alternatives in Example 1.

	John	Mike	David	Frank
	$(s_2, -0.27), (s_3, 0.2)$	$(s_2, 0.32), (s_3, -0.52)$	$(s_2, -0.1), (s_3, -0.15)$	$(s_2, 0.23), (s_3, -0.2)$

$P_1^I = \left(\begin{array}{ccc}
- [s_2, s_3] & [s_0, s_1] & [s_0, s_1] \\
[s_2, s_3] & - [s_2, s_3] & [s_0, s_3] \\
[s_2, s_3] & [s_0, s_2] & - [s_2, s_3] \\
[s_0, s_2] & [s_2, s_3] & [s_0, s_3] \\
[s_0, s_2] & [s_2, s_3] & [s_0, s_3] \\
[s_0, s_2] & [s_2, s_3] & [s_0, s_3] \\
\end{array} \right)$

$P_2^I = \left(\begin{array}{ccc}
- [s_0, s_2] & [s_0, s_0] & [s_0, s_2] \\
[s_2, s_3] & - [s_0, s_2] & [s_0, s_2] \\
[s_0, s_2] & [s_2, s_3] & [s_0, s_2] \\
[s_0, s_2] & [s_2, s_3] & [s_0, s_2] \\
[s_0, s_2] & [s_2, s_3] & [s_0, s_2] \\
[s_0, s_2] & [s_2, s_3] & [s_0, s_2] \\
\end{array} \right)$

$P_3^I = \left(\begin{array}{ccc}
- [s_2, s_3] & [s_2, s_3] & [s_2, s_3] \\
[s_2, s_3] & - [s_2, s_3] & [s_2, s_3] \\
[s_2, s_3] & [s_2, s_3] & [s_2, s_3] \\
[s_2, s_3] & [s_2, s_3] & [s_2, s_3] \\
[s_2, s_3] & [s_2, s_3] & [s_2, s_3] \\
[s_2, s_3] & [s_2, s_3] & [s_2, s_3] \\
\end{array} \right)$

The envelope of P_1^I, P_2^I, and P_3^I does not change, and also, the ranking result of the envelope-based method does not change. However, the ranking result of the proposed GDM approach for HFLTSs changes as the change of preference given by the three experts. The linguistic interval for each alternative after preference change is shown in Table 4. The revised alternative order is $x_2 > x_3 > x_1 > x_4$. By contrast, we can see that the ranking position of x_3 and the position of x_1 have changed. The comparison illustrates that the proposed GDM approach for HFLTSs has higher sensitivity to the change of preference information and has much wider applicability under different linguistic decision-making environments.

5.2. Example 2. A real example of selecting logistics service suppliers is adopted in this section. Company W is a small and medium-sized electric product manufacturer. Its main products are refrigerators, freezers, and air conditioners. To focus on the core competition ability, reduce cost, and improve customer service, the company decides to adopt a logistics outsourcing strategy. After preliminary screening, five candidates (i.e., alternatives), x_1, x_2, x_3, x_4, and x_5, remain for further evaluation. Seven evaluation criteria are considered: $C = \{c_1 = \text{quality assurance}, c_2 = \text{operation efficiency}, c_3 = \text{logistics technology level}, c_4 = \text{logistics facility level}, c_5 = \text{price}, c_6 = \text{management ability}, c_7 = \text{development potential level}\}$. c_5 is the “small-the-better” criterion, and the other criteria are in the “larger-the-better” category. The weight vector of the criteria set is $W = (0.21, 0.19, 0.12, 0.14, 0.17, 0.09, 0.08)$. A committee composed of 3 experts $E = \{e_1, e_2, e_3\}$ evaluated the alternative service suppliers. The weights of the 3 experts are $\{w_{e1} = 0.4, w_{e2} = 0.3, w_{e3} = 0.3\}$.

5.2.1. Sensitivity Analysis. Parameter v is the weight of the strategy of the “majority of attributes,” and it plays an important role in determining the set of compromise solutions. As seen in Table 19, $[\overline{Q}_i, \overline{Q}_j]$ is determined by the value of v. When v is changed, $D([\overline{Q}_1, \overline{Q}_1], [\overline{Q}_2, \overline{Q}_2])$ is also changed. Aiming at the aggregated decision information obtained by the fuzzy linguistic preference “for the most,” when $0 \leq v \leq 0.8789$, $D([\overline{Q}_1, \overline{Q}_1], [\overline{Q}_2, \overline{Q}_2]) \geq 0.25$, and only x_3 is the compromise solution; when $0.8789 < v \leq 1$, $D([\overline{Q}_1, \overline{Q}_1], [\overline{Q}_2, \overline{Q}_2]) < 0.25$ and $D([\overline{Q}_1, \overline{Q}_1], [\overline{Q}_3, \overline{Q}_3]) \geq 0.25$, and both x_3 and x_4 are the compromise solutions. From the results in Table 19, we can see that the threshold values of v are different for different fuzzy
Table 4: Linguistic intervals for all alternatives after preference change in Example 1.

John	Mike	David	Frank
p^P_1	p^P_1	p^P_1	p^P_1
$[(s_2, -0.32), (s_3, 0.21)]$	$[(s_2, 0.45), (s_6, 0.62)]$	$[(s_2, 0.06), (s_6, 0)]$	$[(s_1, 0.34), (s_6, 0.05)]$

Table 5: The HFLTS information given by expert e_1 in Example 2.

c_1	c_2	c_3	c_4	c_5	c_6	c_7
$[s_2, s_3]$	$[s_1, s_2, s_3]$	$[s_3, s_5]$	$[s_4, s_5]$	$[s_3, s_4]$	$[s_1, s_3]$	$[s_2, s_3]$
$[s_2, s_3]$	$[s_1, s_2, s_3]$	$[s_3, s_5]$	$[s_4, s_5]$	$[s_3, s_4]$	$[s_1, s_3]$	$[s_2, s_3]$
$[s_2, s_3]$	$[s_1, s_2, s_3]$	$[s_3, s_5]$	$[s_4, s_5]$	$[s_3, s_4]$	$[s_1, s_3]$	$[s_2, s_3]$
$[s_2, s_3]$	$[s_1, s_2, s_3]$	$[s_3, s_5]$	$[s_4, s_5]$	$[s_3, s_4]$	$[s_1, s_3]$	$[s_2, s_3]$
$[s_2, s_3]$	$[s_1, s_2, s_3]$	$[s_3, s_5]$	$[s_4, s_5]$	$[s_3, s_4]$	$[s_1, s_3]$	$[s_2, s_3]$

Table 6: The HFLTS information given by expert e_2 in Example 2.

c_1	c_2	c_3	c_4	c_5	c_6	c_7
$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$
$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$
$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$
$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$
$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_2, s_3, s_4]$	$[s_3, s_5]$

Table 7: The HFLTS information given by expert e_3 in Example 2.

c_1	c_2	c_3	c_4	c_5	c_6	c_7
$[s_2, s_3, s_5]$						
$[s_2, s_3, s_5]$						
$[s_2, s_3, s_5]$						
$[s_2, s_3, s_5]$						
$[s_2, s_3, s_5]$						

Table 8: The information of $\Delta^{-1}(H_3^{c_5}(x_i))$ corresponding to Table 4.

x_1	x_2	x_3	x_4	x_5
[2]	[3, 4]	[4, 5]	[3, 4]	[4]
[2]	[3, 4]	[4, 5]	[3, 4]	[4]
[2]	[3, 4]	[4, 5]	[3, 4]	[4]
[2]	[3, 4]	[4, 5]	[3, 4]	[4]

Step 5: select the appropriate supplier using the proposed VIKOR method.

Aiming at the aggregated decision information according to the “for the most,” the positive ideal solution A^* and the negative ideal solution A^- are determined first, and then $[S, S]$, $[R, R]$, and $[Q, Q]$ are computed according to equations (25)–(30):

- $A^* = (5.44, 5.11, 4.23, 4.44, 0.60, 4.91, 4.76)$
- $A^- = (1.23, 1.07, 1.41, 1.20, 3.51, 0.65, 1.25)$

According to the verification rules of VIKOR, if the acceptable advantage and acceptable ability are satisfied, the best rank can be assigned as a compromise solution. Let $\nu = 0.5$, which represents selecting the appropriate object in compromise. First, the two conditions of the first case are considered.

Condition 1: $D \left((Q_i^{(1)}, Q_i^{(3)}), (Q_i^{(2)}, Q_i^{(2)}) \right) = \sqrt{0.5 \times [(0.208 - 0.000)^2 + (0.862 - 0.519)^2]} = 0.323$. Therefore, $x^{(1)}$, i.e., x_3, is the compromise solution.

Condition 2: $x^{(1)}$ is the best object ranked according to $[S, S]$ and $[R, R]$, and condition 2 is satisfied.

Considering all the possible values of ν, the final results are shown in Table 19.
Table 9: Evaluation information of expert \(e_1 \) represented as rough numbers.

\(x_1 \)	\(c_1 \)	\(c_2 \)	\(c_3 \)	\(c_4 \)	\(c_5 \)	\(c_6 \)	\(c_7 \)
\([1.25, 2.8]\)	\([1.83, 3.33], [2.14, 4]\)	\([2.5, 3.5], [3, 4]\)	\([2.33, 4.33], [3, 4]\)	\([2.6, 3.4], [3, 4]\)	\([2, 3.7], [2.75, 3.4]\)	\([1.6, 4, 3]\)	

Table 10: Evaluation information of expert \(e_2 \) represented as rough numbers.

\(x_2 \)	\(c_1 \)	\(c_2 \)	\(c_3 \)	\(c_4 \)	\(c_5 \)	\(c_6 \)	\(c_7 \)
\([3, 4.17], [3.5, 4.75]\)	\([2.5, 3.5], [3, 4]\)	\([2.33, 4.33], [3, 4]\)	\([2.6, 3.4], [3, 4]\)	\([2, 3.7], [2.75, 3.4]\)	\([1.6, 4, 3]\)		

Table 11: Evaluation information of expert \(e_3 \) represented as rough numbers.

\(x_3 \)	\(c_1 \)	\(c_2 \)	\(c_3 \)	\(c_4 \)	\(c_5 \)	\(c_6 \)	\(c_7 \)
\([1.4, 2.3, 1.86, 3.8], [2.33, 4.33]\)	\([2.5, 3.5], [3, 4]\)	\([2.33, 4.33], [3, 4]\)	\([2.6, 3.4], [3, 4]\)	\([2, 3.7], [2.75, 3.4]\)	\([1.6, 4, 3]\)		

Table 12: The successive element's weight in one set for different fuzzy linguistic preferences.

Set with 2 elements	Set with 3 elements	Set with 4 elements	
For the most	0.6, 0.4	0.27, 0.67, 0.06	0.1, 0.5, 0.4, 0
At least half	0, 1	0, 0.33, 0.67	0, 0, 0.5, 0.5
As much as possible	1, 0	0.67, 0.33, 0	0.5, 0.5, 0, 0
Table 13: The final evaluation information obtained from e_1 for “for the most.”

c_1	c_2	c_3	c_4	c_5	c_6	c_7
1.25, 2.8	0.42, 2.36	2.70, 3.70	2.48, 4.60	2.76, 3.64	4.00, 5.00	2.57, 3.37
3.20, 4.40	1.25, 2.33	2.40, 4.06	0.41, 2.74	1.54, 4.70	2.58, 3.47	1.39, 3.52
4.20, 5.20	4.09, 5.40	0.75, 3.34	3.33, 5.70	2.00, 3.00	2.38, 4.08	2.05, 3.70
1.76, 3.65	3.20, 5.70	2.81, 3.93	0.40, 3.40	1.80, 3.33	3.13, 4.60	3.80, 5.00
2.20, 3.09	0.40, 2.40	2.65, 4.15	2.43, 4.60	2.30, 3.26	0.40, 2.70	1.39, 4.03

Table 14: The final evaluation information obtained from e_2 for “for the most.”

c_1	c_2	c_3	c_4	c_5	c_6	c_7
1.95, 3.60	1.75, 3.19	2.24, 3.16	0.40, 3.48	2.92, 3.64		
3.95, 5.70	0.41, 1.91	1.39, 3.52	0.20, 2.16	2.97, 3.70	0.41, 2.74	
5.00, 6.00	4.40, 5.70	2.20, 3.82	1.67, 2.33	3.33, 5.70	1.71, 3.40	
0.42, 2.83	2.20, 3.80	2.75, 3.89	2.70, 5.70	1.95, 3.60	2.00, 3.33	2.40, 4.15
2.39, 3.30	1.50, 3.50	2.20, 3.70	0.41, 2.92	2.92, 3.64	0.40, 2.70	2.39, 5.70

Table 15: The final evaluation information obtained from e_3 for “for the most.”

c_1	c_2	c_3	c_4	c_5	c_6	c_7
0.75, 2.58	1.58, 2.93	1.83, 4.13	2.46, 3.33	2.64, 5.70	2.75, 3.40	
3.47, 4.00	1.60, 3.00	2.17, 4.70	0.38, 2.46	2.97, 3.70	2.17, 4.70	
4.40, 5.40	3.68, 4.20	2.38, 4.08	1.27, 2.13	2.20, 3.82	0.41, 2.64	
2.00, 3.95	2.20, 3.80	2.47, 3.64	1.70, 4.70	0.40, 2.51	2.28, 3.84	3.80, 5.00
2.39, 3.30	2.00, 4.00	3.20, 4.70	1.55, 3.84	2.92, 3.64	1.79, 5.70	0.41, 3.07

Table 16: The aggregated decision information for “for the most.”

c_1	c_2	c_3	c_4	c_5	c_6	c_7
1.23, 2.88	1.22, 2.79	2.35, 3.35	1.57, 3.94	2.47, 3.35	2.31, 4.91	2.72, 3.43
3.41, 4.52	1.07, 2.33	2.49, 4.23	1.20, 3.47	0.60, 2.89	2.84, 3.62	1.25, 3.51
4.44, 5.44	4.03, 5.11	1.41, 3.94	2.55, 4.38	1.63, 2.43	2.50, 4.30	1.42, 3.25
1.42, 3.47	2.43, 4.24	2.69, 3.83	1.44, 4.44	1.43, 3.14	2.40, 3.87	3.40, 4.76
2.32, 3.23	1.22, 3.22	2.62, 4.12	1.43, 3.75	2.71, 3.51	0.65, 3.24	1.29, 4.06

Table 17: The aggregated decision information for “at least half.”

c_1	c_2	c_3	c_4	c_5	c_6	c_7
1.77, 3.47	1.80, 3.40	2.80, 3.80	2.31, 4.56	2.90, 3.85	3.04, 5.34	3.06, 3.84
4.04, 5.36	1.38, 2.64	3.12, 5.12	1.88, 4.30	1.29, 4.11	3.25, 3.97	1.91, 4.35
4.85, 5.85	4.65, 5.79	2.22, 4.93	3.14, 5.33	1.85, 2.69	3.09, 5.27	2.12, 3.78
2.15, 4.24	3.04, 5.19	3.15, 4.41	2.25, 5.25	1.83, 3.59	2.96, 4.50	3.66, 4.93
2.70, 3.72	1.61, 3.61	3.26, 4.76	2.21, 4.49	3.09, 3.88	1.46, 4.68	2.05, 5.13

Table 18: The aggregated decision information for “as much as possible.”

c_1	c_2	c_3	c_4	c_5	c_6	c_7
0.85, 2.65	0.76, 2.47	2.15, 3.15	1.02, 3.51	2.18, 3.12	1.64, 4.28	2.48, 3.32
3.12, 4.04	0.78, 2.14	2.22, 3.90	0.78, 3.05	0.32, 2.46	2.48, 3.42	0.84, 3.09
4.20, 5.20	3.49, 4.49	0.87, 3.54	2.29, 4.02	1.41, 2.30	2.24, 3.94	0.90, 2.90
0.89, 3.05	2.20, 3.90	2.31, 3.53	0.94, 3.94	1.01, 2.84	2.23, 3.60	3.01, 4.49
2.08, 2.96	0.86, 2.86	2.24, 3.74	0.97, 3.32	2.35, 3.28	0.38, 2.83	0.86, 3.53
In this section, we changes some HFLTSs on the proposed in this paper is that it can support experts to give approach proposed in this paper is different from Tables 13–15 result obtained by the novel group decision-making ap-

for that the envelopes of the changed HFLTSs are the same as those of the original HFLTSs. However, the aggregation result obtained by the novel group decision-making approach proposed in this paper is different from Tables 13–15 as much as possible” for HFLTSs.

An obvious advantage of the GDM approach for HFLTSs proposed in this paper is that it can support experts to give arbitrarily term mix to increase the richness of linguistic expressions. In this section, we change some HFLTSs on the evaluation of x_i given by experts e_1 and e_2. Suppose the two experts tend to use the binary relation “or” and give non-adjective linguistic terms due to the uncertainty of the market. The original and changed information on the evaluation of x_i by e_1 and e_2 is shown in Table 20. Aiming at the changed evaluation information, the aggregation result obtained by the envelope-based approach would not change for that the envelopes of the changed HFLTSs are the same as those of the original HFLTSs. However, the aggregation result obtained by the novel group decision-making approach proposed in this paper is different from Tables 13–15 under conditions of three fuzzy linguistic preferences. Furthermore, the VIKOR results of the proposed method based on the changed information will also be different from Table 19, and the related result is shown in Table 21. We can see that the compromise solutions remain unchanged, but the threshold values of v vary for different fuzzy linguistic preferences.

5.2.2. Comparisons and Discussion

To illustrate the effectiveness of the proposed group decision-making approach for HFLTSs and the related VIKOR, we use the above case study to analyze the envelope-based approach for HFLTSs. We take the envelope-based approach proposed by Rodriguez et al. [4] as a comparable approach. The HFLTS information

Table 19: The results of the VIKOR method based on the proposed GDM approach.

\bar{S}	\bar{R}	\bar{Q}	
x_1	$[0.435, 0.859]$	$[0.128, 0.210]$	$[0.451–0.036v, 1–0.023v]$
x_2	$[0.274, 0.763]$	$[0.131, 0.190]$	$[0.471–0.270v, 0.867–0.017v]$
x_3	$[0.122, 0.536]$	$[0.060, 0.120]$	$[0, 0.399 + 0.150v]$
x_4	$[0.227, 0.754]$	$[0.098, 0.201]$	$[0.254–0.116v, 0.937–0.099v]$
x_5	$[0.408, 0.876]$	$[0.123, 0.183]$	$[0.421–0.042v, 0.819 + 0.181v]$

Ranking order $x_3 > x_4 > x_2 > x_5 > x_1$
Compromise solution set $\{x_3, x_4\}$, $0 \leq v \leq 0.8789$
x_3, x_4, $0.8789 < v \leq 1$

Table 20: The original and changed information on evaluation for x_i by e_1 and e_2.

e_1	e_2	e_3	e_4	e_5	e_6	e_7
$x_i(e_1)$	$[s_2, s_3, s_4]$	$[s_5, s_6]$	$[s_7, s_8]$	$[s_9, s_10]$	$[s_11, s_12]$	$[s_13, s_14]$
$x_i(e_2)$	$[s_2, s_3, s_4]$	$[s_5, s_6]$	$[s_7, s_8]$	$[s_9, s_10]$	$[s_11, s_12]$	$[s_13, s_14]$

An obvious advantage of the GDM approach for HFLTSs

proposed in this paper is that it can support experts to give arbitrarily term mix to increase the richness of linguistic expressions. In this section, we change some HFLTSs on the evaluation of x_i given by experts e_1 and e_2. Suppose the two experts tend to use the binary relation “or” and give non-adjective linguistic terms due to the uncertainty of the market. The original and changed information on the evaluation of x_i by e_1 and e_2 is shown in Table 20. Aiming at the changed evaluation information, the aggregation result obtained by the envelope-based approach would not change for that the envelopes of the changed HFLTSs are the same as those of the original HFLTSs. However, the aggregation result obtained by the novel group decision-making approach proposed in this paper is different from Tables 13–15 under conditions of three fuzzy linguistic preferences. Furthermore, the VIKOR results of the proposed method based on the changed information will also be different from Table 19, and the related result is shown in Table 21. We can see that the compromise solutions remain unchanged, but the threshold values of v vary for different fuzzy linguistic preferences.

5.2.2. Comparisons and Discussion

To illustrate the effectiveness of the proposed group decision-making approach for HFLTSs and the related VIKOR, we use the above case study to analyze the envelope-based approach for HFLTSs. We take the envelope-based approach proposed by Rodriguez et al. [4] as a comparable approach. The HFLTS information
The rough TOPSIS method [53] is also applied in the case of "at least half" from 0 to 1 in Table 23, which has a lower sensitivity.

To reveal the features of the proposed VIKOR method, the rough TOPSIS method [53] is also applied in the case study. The rough TOPSIS method is used to deal with the aggregated decision information for different fuzzy linguistic preferences (Tables 16–18). Table 24 shows the final ranking result of the rough TOPSIS.

In the case of "for the most," if the weight 0 ≤ v ≤ 0.8789, the compromise solution obtained by the rough TOPSIS is the same with the compromise solution of the extended VIKOR. If the weight 0.8789 < v ≤ 1, the compromise solution obtained by the rough TOPSIS is different from the compromise solution of the extended VIKOR. In the case of "as much as possible," if the weight 0 ≤ v ≤ 0.8614, the compromise solution obtained by the rough TOPSIS is the same with the compromise solution of the extended VIKOR. The rough TOPSIS can only obtain the distinct solution, and it cannot obtain the compromise solutions. The VIKOR

Table 21: The results of the proposed VIKOR method based on the changed information.

[S_i, S]	[R, R_i]	[Q, Q_i]	x_1 > x_4 > x_2 > x_3 > x_1	x_3 > x_4 > x_5 > x_2 > x_1
x_1 > x_4 > x_2 > x_3 > x_1	x_3 > x_4 > x_5 > x_2 > x_1			

Table 22: The aggregated decision information of the comparative method.

c_1	c_2	c_3	c_4	c_5	c_6	c_7	
x_1	[1.7, 2.9]	[1.2, 2.9]	[2.4, 3.4]	[2.5, 3.8]	[2.4, 3.7]	[3.1, 4.0]	[2.6, 3.7]
x_2	[3.6, 4.6]	[1.7, 2.3]	[2.6, 4.3]	[1.8, 3.2]	[1.6, 2.9]	[2.6, 4.0]	[2.0, 3.3]
x_3	[4.6, 5.6]	[4.0, 5.4]	[1.8, 3.9]	[3.2, 4.5]	[2.1, 2.4]	[2.9, 4.3]	[1.8, 3.4]
x_4	[1.4, 3.7]	[3.2, 4.2]	[2.4, 4.3]	[2.4, 3.8]	[2.1, 3.0]	[2.8, 3.8]	[4.1, 4.7]
x_5	[2.0, 2.6]	[2.1, 2.9]	[2.6, 4.4]	[2.2, 3.8]	[2.6, 3.6]	[1.5, 3.2]	[2.3, 3.6]

Table 23: The results of the VIKOR method based on the comparative GDM approach.

[S_i, S]	[R, R_i]	[Q, Q_i]	x_1 > x_4 > x_2 > x_3 > x_1	x_3 > x_4 > x_5 > x_2 > x_1
x_1	[0.433, 0.848]	[0.135, 0.195]	[0.558–0.114v, 0.912–0.085v]	[x_1], 0 ≤ v ≤ 0.7905
x_2	[0.311, 0.725]	[0.140, 0.167]	[0.588–0.307v, 0.749–0.085v]	[x_2], 0.7505 < v ≤ 1
x_3	[0.099, 0.491]	[0.040, 0.120]	[0, 0.469 + 0.052v]	[x_3], 0 ≤ v ≤ 0.8926
x_4	[0.247, 0.689]	[0.095, 0.210]	[0.322–0.126v, 1–0.214v]	[x_4], 0.8926 < v ≤ 1
x_5	[0.446, 0.850]	[0.150, 0.180]	[0.646–0.184v, 0.823 + 0.177v]	[x_5], 0 ≤ v ≤ 1

The decision result of Table 20 using the proposed VIKOR approach is shown in Table 23. The ranking order of the alternatives is x_3 > x_2 > x_1, which is the same as the ranking order in Table 20. However, the compromise solution set remains unchanged with the change of v from 0 to 1 in Table 23, which has a lower sensitivity.

To reveal the features of the proposed VIKOR method, the rough TOPSIS method [53] is also applied in the case study. The rough TOPSIS method is used to deal with the aggregated decision information for different fuzzy linguistic preferences (Tables 16–18). Table 24 shows the final ranking result of the rough TOPSIS.

In the case of "for the most," if the weight 0 ≤ v ≤ 0.8789, the compromise solution obtained by the rough TOPSIS is the same with the compromise solution of the extended VIKOR. If the weight 0.8789 < v ≤ 1, the compromise solution obtained by the rough TOPSIS is different from the compromise solution of the extended VIKOR. In the case of "at least half," if the weight 0 ≤ v ≤ 0.8113, the compromise solution obtained by the rough TOPSIS is the same with the compromise solution of the extended VIKOR. In the case of "as much as possible," if the weight 0 ≤ v ≤ 0.8614, the compromise solution obtained by the rough TOPSIS is the same with the compromise solution of the extended VIKOR. The rough TOPSIS can only obtain the distinct solution, and it cannot obtain the compromise solutions. The VIKOR
method focuses on ranking and selecting from a set of alternatives in the presence of conflicting criteria, and it determines a compromise solution that could be accepted by the decision makers. Thus, the obtained compromise solution is more robust and could be accepted by the decision makers.

6. Conclusions

Many practical issues in various fields can be formulated into MCGDM problems, which refer to the rank given alternatives by a group of decision makers. The challenge of solving these problems is intensified when considering the uncertain information environment. Decision makers may hesitate among several linguistic terms when expressing their preferences. HFLTS is an efficient fuzzy model to express hesitant information, but the flexibility brings obstacle of aggregating HFLTSs with different lengths. Therefore, reliable GDM methods in the hesitant environment have to be studied and extended to solve the MCGDM problems.

In the context of HFLTSs, this paper increases the richness of linguistic expressions by giving out improved context-free grammar and proposes a novel GDM approach based on the 2-tuple fuzzy linguistic representation model, the rough set theory, and the OWA operator. Finally, the GDM approach is extended, and a hesitant VIKOR approach is presented. The case study shows that (1) the novel GDM approach is much more flexible due to the fact that it allows decision makers to select nonadjacent linguistic terms and retains the vagueness in the decision-making information. (2) The novel GDM approach is sensitive to the variation of the information input. (3) Different fuzzy linguistic preferences for the OWA operator affect the associated weights and then contribute to different aggregation results. (4) The weight of strategy v in the hesitant VIKOR has an effect on the compromise solution, and its selection may influence the optimal solution or the number of compromise solutions. Further work may continue to apply the group decision-making approach for HFLTSs to other decision-making methods or solve specific problems.

Data Availability

The data in the case study are subjective and simulated, which are given by the invited experts. The data used to support the findings of this study are included within the article.

Table 24: The evaluation result of the rough TOPSIS approach.
Closeness coefficient in the rough TOPSIS
In the case of “for the most”
In the case of “at least half”
In the case of “as much as possible”
x_1
x_2
x_3
x_4
x_5

Ranking order $x_3 > x_4 > x_2 > x_1 > x_5$ $x_5 > x_4 > x_2 > x_1 > x_3$ $x_2 > x_4 > x_5 > x_1 > x_3$

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was funded by the National Natural Science Foundation, China (no. 71301104), the Humanity and Social Science Foundation of Ministry Education, China (no. 19YJA630021), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (no. 20133120120002).

References

[1] T.-H. Chang, "Fuzzy VIKOR method: a case study of the hospital service evaluation in Taiwan," *Information Sciences*, vol. 271, no. 1, pp. 196–212, 2014.
[2] D. Mehtap and E. E. Karsak, “A QFD-based fuzzy MCDM approach for supplier selection,” *Applied Mathematical Modelling*, vol. 37, no. 8, pp. 5864–5875, 2013.
[3] W.-Y. Chiu, G.-H. Tzeng, and H.-L. Li, “A new hybrid MCDM model combining DANTP with VIKOR to improve e-store business,” *Knowledge-Based Systems*, vol. 37, pp. 48–61, 2013.
[4] R. M. Rodrıguez, L. Martınez, and F. Herrera, “A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets,” *Information Sciences*, vol. 241, pp. 28–42, 2013.
[5] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning-I,” *Information Sciences*, vol. 8, no. 3, pp. 199–249, 1975.
[6] K. T. Atanassov, “Intuitionistic fuzzy sets,” *Fuzzy Sets and Systems*, vol. 20, pp. 87–96, 1986.
[7] M. Mizumoto and K. Tanaka, “Some properties of fuzzy sets of type 2,” *Information and Control*, vol. 37, no. 4, pp. 312–340, 1976.
[8] R. R. Yager, “On the theory of bags,” *International Journal of General Systems*, vol. 13, no. 1, pp. 23–37, 1986.
[9] V. Torra, “Hesitant fuzzy sets,” *International Journal of Intelligent Systems*, vol. 25, no. 6, pp. 529–539, 2010.
[10] Z. Zhang, “Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making,” *Information Sciences*, vol. 234, pp. 150–181, 2013.
[11] M. Xia and Z. Xu, “Hesitant fuzzy information aggregation in decision making,” *International Journal of Approximate Reasoning*, vol. 52, no. 3, pp. 395–407, 2011.
[12] N. Zhang and G. Wei, “Extension of VIKOR method for decision making problem based on hesitant fuzzy set,” *Applied Mathematical Modelling*, vol. 37, no. 7, pp. 4938–4947, 2013.
[13] B. Farhadinia, "Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets," Information Sciences, vol. 240, no. 10, pp. 129–144, 2013.

[14] D. Li, W. Zeng, and J. Li, "New distance and similarity measures on hesitant fuzzy sets and their applications in multiple criteria decision making," Engineering Applications of Artificial Intelligence, vol. 40, pp. 11–16, 2015.

[15] H. Liao, Z. Xu, and X.-J. Zeng, "Novel correlation coefficients between hesitant fuzzy sets and their application in decision making," Knowledge-Based Systems, vol. 82, pp. 115–127, 2015.

[16] R. M. Rodríguez, L. Martinez, and F. Herrera, "Hesitant fuzzy linguistic term sets for decision making," IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 109–119, 2012.

[17] H. Liao, Z. Xu, and X.-J. Zeng, "Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making," Information Sciences, vol. 271, no. 7, pp. 125–142, 2014.

[18] J.-Q. Wang, J.-T. Wu, J. Wang, H.-Y. Zhang, and X.-H. Chen, "Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers," Soft Computing, vol. 20, no. 4, pp. 1621–1633, 2016.

[19] H.-C. Huang and X. Yang, "Pairwise comparison and distance measure of hesitant fuzzy linguistic term sets," Mathematical Problems in Engineering, vol. 2014, pp. 1–8, 2014.

[20] R. Montes, A. M. Sánchez, P. Villar, and F. Herrera, "A web tool to support decision making in the housing market using hesitant fuzzy linguistic term sets," Applied Soft Computing, vol. 35, pp. 949–957, 2015.

[21] Y. Wu, C.-C. Li, X. Chen, and Y. Dong, "Group decision making based on linguistic distributions and hesitant assessments: maximizing the support degree with an accuracy constraint," Information Fusion, vol. 41, pp. 151–160, 2018.

[22] A. C. Boyacı, "Selection of eco-friendly cities in Turkey via a hybrid hesitant fuzzy decision making approach," Applied Soft Computing, vol. 89, Article ID 106090, 2020.

[23] H. Liu and R. M. Rodríguez, "A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making," Information Sciences, vol. 258, no. 10, pp. 220–238, 2014.

[24] S.-M. Chen and J.-A. Hong, "Multicriteria linguistic decision making based on hesitant fuzzy linguistic term sets and the aggregation of fuzzy sets," Information Sciences, vol. 286, no. 1, pp. 63–74, 2014.

[25] L.-W. Lee and S.-M. Chen, "Fuzzy decision making based on likelihood-based comparison relations of hesitant fuzzy linguistic term sets and hesitant fuzzy linguistic operators," Information Sciences, vol. 294, no. 10, pp. 513–529, 2015.

[26] J.-Y. Dong, Y. Chen, and S.-P. Wan, "A cosine similarity based QUALIFLEX approach with hesitant fuzzy linguistic term sets for financial performance evaluation," Applied Soft Computing, vol. 69, pp. 316–329, 2018.

[27] B. Zhu and Z. Xu, "Consistency measures for hesitant fuzzy linguistic preference relations," IEEE Transactions on Fuzzy Systems, vol. 22, no. 1, pp. 35–45, 2014.

[28] H. Liao and Z. Xu, "Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTs and their application in qualitative decision making," Expert Systems with Applications, vol. 42, no. 12, pp. 5328–5336, 2015.

[29] H. Liao, Z. Xu, X.-J. Zeng, and J. M. Merigó, "Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets," Knowledge-Based Systems, vol. 76, pp. 127–138, 2015.

[30] H. Liao, L. Yang, and Z. Xu, "Two new approaches based on ELECTRE II to solve the multiple criteria decision making problems with hesitant fuzzy linguistic term sets," Applied Soft Computing, vol. 63, pp. 223–234, 2018.

[31] W. J. Lei, W. M. Ma, and B. Z. Sun, "Multigranulation behavioral three-way group decisions under hesitant fuzzy linguistic environment," Information Sciences, vol. 337, pp. 91–115, 2020.

[32] J. Wang, J.-Q. Wang, H.-Y. Zhang, and X.-H. Chen, "Multi-criteria decision-making based on hesitant fuzzy linguistic term sets: an outranking approach," Knowledge-Based Systems, vol. 86, pp. 224–236, 2015.

[33] F. Herrera and L. Martinez, "A 2-tuple fuzzy linguistic representation model for computing with words," IEEE Transactions on Fuzzy Systems, vol. 8, no. 6, pp. 746–752, 2000.

[34] H.-C. Liu, L. Liu, and J. Wu, "Material selection using an interval 2-tuple linguistic VIKOR method considering subjective and objective weights," Materials & Design (1980-), vol. 52, pp. 158–167, 2013.

[35] J. M. Merigó and A. M. Gil-Lafuente, "Induced 2-tuple linguistic generalized aggregation operators and their application in decision making," Information Sciences, vol. 236, no. 1, pp. 1–16, 2013.

[36] S. Zhang, "A model for evaluating computer network security systems with 2-tuple linguistic information," Computers & Mathematics with Applications, vol. 62, no. 4, pp. 1916–1922, 2011.

[37] Z. A. Pawlak, "Rough sets," International Journal of Computer & Information Sciences, vol. 11, no. 5, pp. 341–356, 1982.

[38] R. R. Yager, "On ordered weighted averaging aggregation operators in multicriteria decisionmaking," IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.

[39] J.-Q. Wang, J. Wang, Q.-H. Chen, H.-Y. Zhang, and X.-H. Chen, "An outranking approach for multi-criteria decision-making with hesitant fuzzy linguistic term sets," Information Sciences, vol. 280, no. 1, pp. 338–351, 2014.

[40] N. Chen and Z. Xu, "Hesitant fuzzy ELECTRE II approach: a new way to handle multi-criteria decision making problems," Information Sciences, vol. 292, no. 20, pp. 175–197, 2015.

[41] S. Lalotra and S. Singh, "Knowledge measure of hesitant fuzzy set and its application in multi-attribute decision-making," Computational and Applied Mathematics, vol. 39, no. 86, 2020.

[42] J. Hu, X. Zhang, X. Chen, and Y. Liu, "Hesitant fuzzy information measures and their applications in multi-criteria decision making," International Journal of Systems Science, vol. 47, no. 1, pp. 62–76, 2015.

[43] R. Krishankumar, K. S. Ravichandran, M. Aggarwal, and S. K. Tyagi, "Extended hesitant fuzzy linguistic term set with fuzzy confidence for solving group decision-making problems," Neural Computing and Applications, vol. 32, no. 7, pp. 2879–2896, 2020.

[44] L. Y. Zhai, L. P. Khoo, and Z. W. Zhong, "A rough set enhanced fuzzy approach to quality function deployment," International Journal of Advanced Manufacturing Technology, vol. 37, no. 5-6, pp. 613–624, 2008.

[45] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishing, Dordrecht, Netherlands, 1991.

[46] L. A. Zadeh, "A computational approach to fuzzy quantifiers in natural languages," Computers & Mathematics with Applications, vol. 9, no. 1, pp. 149–184, 1983.
[47] R. R. Yager, "Connectives and quantifiers in fuzzy sets," *Fuzzy Sets and Systems*, vol. 40, no. 1, pp. 39–75, 1991.

[48] J. Kacprzyk and S. Zadrozny, "Linguistic summarization of the contents of Web server logs via the Ordered Weighted Averaging (OWA) operators," *Fuzzy Sets and Systems*, vol. 285, no. 15, pp. 182–198, 2016.

[49] S. Opricović, *Multi-criteria Optimization of Civil Engineering Systems*, Faculty of Civil Engineering, Belgrade, Serbia, 1998.

[50] S. Opricovic and G.-H. Tzeng, "Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS," *European Journal of Operational Research*, vol. 156, no. 2, pp. 445–455, 2004.

[51] M. Zeleny, *Multiple Criteria Decision Making*, Vol. 25, McGraw-Hill, New York, NY, USA, 1982.

[52] L.-Y. Zhai, L.-P. Khoo, and Z.-W. Zhong, "A rough set based QFD approach to the management of imprecise design information in product development," *Advanced Engineering Informatics*, vol. 23, no. 2, pp. 222–228, 2009.

[53] W. Song, X. Ming, Z. Wu, and B. Zhu, "A rough TOPSIS approach for failure mode and effects analysis in uncertain environments," *Quality and Reliability Engineering International*, vol. 30, no. 4, pp. 473–486, 2014.