Opinionated Practices for Teaching Reproducibility: Motivation, Guided Instruction and Practice

Joel Ostblom and Tiffany Timbers

ABSTRACT

In the data science courses at the University of British Columbia, we define data science as the study, development and practice of reproducible and auditable processes to obtain insight from data. While reproducibility is core to our definition, most data science learners enter the field with other aspects of data science in mind, for example predictive modeling, which is often one of the most interesting topics to novices. This fact, along with the highly technical nature of the industry standard reproducibility tools currently employed in data science, present out-of-the gate challenges in teaching reproducibility in the data science classroom. Put simply, students are not as intrinsically motivated to learn this topic, and it is not an easy one for them to learn. What can a data science educator do? Over several iterations of teaching courses focused on reproducible data science tools and workflows, we have found that providing extra motivation, guided instruction and lots of practice are key to effectively teaching this challenging, yet important subject. Here we present examples of how we motivate, guide, and provide ample practice opportunities to data science students to effectively engage them in learning about this topic.

ARTICLE HISTORY

Received September 2021
Accepted April 2022

KEYWORDS

Curriculum; Data science; Education; Reproducibility

1. Introduction

In the graduate and undergraduate data science courses that we teach at the University of British Columbia (UBC), we define data science as the study, development, and practice of reproducible and auditable processes to extract insight from data. Using this definition requires that we also define what is meant by a reproducible and auditable analysis. Although the specific definition of reproducibility varies between research domains (Committee on Reproducibility and Replicability in Science et al. 2019), in our data science courses we have chosen to embrace the National Academy of Sciences definition of reproducible analysis, which is reaching the same result given the same input, computational methods, and conditions (National Academies of Sciences, Engineering, and Medicine 2019). For auditable or transparent analysis, we follow how it has been defined by others (Ram 2013; Parker 2017), which is that there should be a readable record of the steps used to carry out the analysis (i.e., computer code) as well as a record of how the analysis methods evolved (i.e., a version controlled project history). This history is important for recording how and why decisions to use one method or another were made, among other things.

The reason we embrace this definition of data science is that we believe data science work should both bring insight (e.g., answer an important research question) and employ reproducible and auditable methods so that trustworthy results and data products can be created. Results and data products can be generated without reproducible and auditable methods, however, when they are built this way there is less confidence in how the results or products were created. We believe this stems from nonreproducible and nonauditable analyses:

1. lacking evidence that the results or product could be regenerated given the same input, computational methods, and conditions
2. lacking evidence of the steps taken during creation
3. having an incomplete record of how and why analysis decisions were made

In addition to contributing to the trustworthiness of data science work, employing reproducible and auditable methods and workflows bring additional benefits to data scientists, such as more effective collaboration. Data science is an inherently collaborative discipline, and adhering to reproducible and auditable data science methods greatly facilitates the act of collaborating in many contexts, further emphasizing the importance of learning this skill well.

Although the many benefits of reproducible and auditable analyses discussed above may make this seem like an exciting topic for incoming students, the experience when entering a classroom of curious data scientists in training is quite often the opposite. Students are usually keen to learn about data science but what they are most often excited about is the second part of its definition: extracting insights from the data. Commonly, students are not even aware of the reproducible and auditable
processes of data science, and when they first hear about them, they tend to regard them as an inconvenient means to an end rather than an important skill to master. This outlook is likely at least in part motivated by the fact that these processes do not directly lead to novel insights in the same way as a predictive model might, which is what many students have in mind when they envision the work of a data scientist. This negative predisposition creates another barrier to overcome when teaching the reproducible and auditable aspects of data science.

An additional pedagogical challenge is that the tools that we use for reproducibility are not necessarily smooth and easy to learn, but often have a steep learning curve. Over our five years of teaching these topics at UBC we have found three pedagogical strategies that are particularly effective for teaching reproducibility successfully:

1. placing extra emphasis on motivation
2. guided instruction
3. lots of practice

In this article, we will discuss why we believe each of these are important, and provide examples of how to incorporate these in your teaching.

1.1. Academic Setting and Background

The specific teaching pedagogies we present in this article have been tested over five years, in classrooms of 20–200 learners from varying educational backgrounds, including undergraduate students taking their first data science course and graduate students looking to specialize in data science. Most of the courses where we teach reproducibility are part of UBC’s professional Master of Data Science program. This course-based program consists of 24 one-credit courses taught over an eight month period, which culminates in a six-credit-capstone course. As a prerequisite for this program students are generally required to have taken at least one course in each of calculus or linear algebra, computer programming, and introductory statistics or probability. Most of these graduate students have several years of professional work experience (or equivalent), however, our cohorts also include both recent graduates from Bachelor’s degrees as well as learners from senior positions in industry who are looking to bend their career trajectories toward data science. From in-class polls, we have learned that these graduate students rarely have any prior experience with reproducible workflows.

The teaching team for our reproducibility courses include a mix of postdoctoral teaching and learning fellows, lecturers, and assistant professors of teaching from the Departments of Statistics and Computer Science. A handful of the core members of the program’s teaching team have been with the program since its inception in 2016, and the remainder of the team has been with the program for 1–3 years. Members of the teaching team developed their data science expertise through graduate and postdoctoral studies in a diverse set of research domains, including computational linguistics, ecotoxicology, learning analytics, machine learning, neuroscience, physics, statistics, and stem cell engineering. Our pedagogies are influenced not only by our formal training at UBC, but also by initiatives such as The Carpentries (The Carpentries n.d.), RStudio education (RStudio Education n.d.), Teaching Tech Together (Wilson 2018), and the Instructional Skills Workshop (Day 2005).

Since the launch of the program six years ago, our teaching strategies have evolved in response to student feedback on our teaching practices obtained through: (a) student-led surveys and face-to-face meetings, (b) instructor-led course surveys, (c) formal university course evaluations, and (d) surveys of alumni of the program. An example of a direct improvement in the program from the collection and implementation of student feedback was the addition of lecture worksheets with simpler and often autograded questions. This was done to address common feedback we received across the program’s curriculum about the difficulty-level of lab homework assessments. Specifically, students reported that they perceived there to be too large of a jump in difficulty from what was learned in the lecture to what was expected from them on the lab homework assessments. Implementing lecture worksheets in several of our courses decreased the amount of feedback we received about the difference in difficulty between the lectures and assessments in those courses. We hypothesize this is particularly true for students’ who have less interest, experience, or skills in the area of reproducibility, and we have been incorporating these worksheets across more and more courses in the program to continue to address this.

One of the key reproducibility-related takeaways from our student feedback is that practice matters and that more is better. In the capstone projects from the first year of the program, instructors observed that students could easily do the things we gave them lots of practice on (e.g., basic version control and working linearly on the default branch), but did not attempt or struggled with other reproducibility concepts, skills and workflows where they were provided formal instructions but less practice (e.g., more advanced version control topics such as branching, pull-requests, and advanced usage of reproducible reports and presentations). In response to this, we implemented project-based course-work for several reproducibility related topics across the program so that students had more opportunity to practice these. The instructors observed that the capstone projects in the years following this change had less technical debt and included more, and higher quality reproducible practices. Encouragingly, our capstone partners also noticed this improvement in the quality of the student projects, which was reflected in the feedback we collected from them.

2. Placing Extra Emphasis on Motivation

Why do we need extra motivation when teaching reproducibility, compared to some other data science topics, such as machine learning? Our experience is that this stems from students’ lack of intrinsic excitement or motivation for the topic of reproducibility, that they have little prior knowledge on this topic, and that reproducibility concepts and in particular tools are challenging to learn.

One example is that the most commonly used version control software, Git, is notorious for being difficult to learn (Figure 1). There are many anecdotes attesting that most people do not learn Git deeply and instead work by trying a variety of commands until they find some that work. This can lead to learners...
getting themselves into challenging or perplexing version control situations, with difficult to interpret outputs (e.g., “You are in ‘detached HEAD’ state. You can look around, make experimental changes and commit them, and you can discard any commits you make in this state without impacting any branches by performing another checkout”). Sometimes these situations are so difficult to get out of, that even professional data scientists and data science educators recommend the practice of “burning it all down,” which is deleting the local copy of the repository and starting over from the latest uploaded version from GitHub (Bryan et al. n.d.). While this guarantees to reset the state of the git repository locally, it may cause the version control workflow to be perceived as unnecessarily clunky and serve as barrier to learning more sophisticated version control strategies that would be advantageous in the long run.

Another example is R Markdown, which is a implementation of literate code documents (Knuth 1984), that are useful for generating reproducible reports. Many aspects of R Markdown are quite user friendly, however, rendering the source R Markdown document to PDF depends on LaTeX. If users make formatting errors that impact LaTeX’s job in the rendering the resulting error messages can be cryptic and are often not clear to learners about where the error is coming from or how to resolve it. An example is the error message from including a “\” character with a reserved LaTeX word outside of a mathematical equation, which is shown in Figure 2. This error message is interpretable by intermediate and experienced R Markdown users, but is challenging for novice learners to parse.

Yet another example of a popular reproducibility tool that is challenging to learn is Docker. Docker is containerization software that extends computational environment management beyond the programming language and package dependencies of your analysis workflow, and instead creates a versioned copy of your entire computational environment including any additional software and operating system dependencies that your analysis may depend on. This means that you can share an exact copy of your computational environment with your collaborators, even if you work on different operating systems. Recording and sharing computational environments via containerization is currently viewed as the most robust, yet also light-weight strategy, for ensuring an analysis will be reproducible. It is also widely used in industry for deploying software. Thus, for several reasons, it is a highly beneficial technology for students to learn. Unfortunately, containerization tools such as Docker are especially challenging to teach and motivate students to learn because they are so different from writing code for analysis. This largely stems from software installation being a time consuming process, which means that writing and debugging code to automate installation is a slow and painstaking process. This issue is further exacerbated by the fact that this is not an exciting part of a data analysis, as things already work on the student’s own computer. Together, these issues make it difficult to convince students to put effort into learning and using this tool.

So what can we do to motivate learning reproducibility concepts and tools in our classrooms? We have found the following three strategies helpful:

1. Tell stories from the trenches
2. Study cases of failures with real world consequences
3. Let them fail (in a controlled manner)

2.1. Telling Stories from the Trenches

One successful strategy that we have used is telling stories from the trenches. The instructors who teach these courses at UBC usually have had some experience performing data analyses in their Ph.D’s or postdoctoral studies, or are still currently engaged in research where they do this. Through these lived experiences of learning reproducibility tools and applying them to our research, we have both made our own mistakes and witnessed those of our collaborators, and thus we can share these experiences with our students. In the Master of Data Science program, many of the students have work experience involving data in the past, so they also have stories from the trenches. In a classroom with such students, you can carry out think-pair-share exercises around these stories and get the students to talk about their stories as well as hear yours. Think-pair-share is a cooperative discussion exercise where students first think about a prompt on their own, then pair up to discuss their response with a few classmates, and finally share their thinking with the rest of the class afterwards (Lyman 1981). We think this pedagogy is particularly effective in this context as it allows students to share their past mistakes in a smaller group first. There they can hear their peers’ similar stories, and they will observe that reproducibility challenges are widespread and virtually everyone who has previously worked with data has experienced these. This can support them in feeling more confident and secure before choosing whether to share their story with the entire class.

A specific example of how we instruct students to run a think-pair-share exercise on the topic of reproducibility follows:

1. Students are prompted to think about a nonreproducible or nonauditable workflow they have used before at work, on a personal project, or in course work, and that negatively impacted their work somehow (make sure to include this in the story).
2. The instructor shares their own example to get the students started.
3. Students share their story and how it negatively impacted their workflow with the person beside them.
4. Students are then asked to share their story in a course forum or collaborative note-taking document that other students
could read (in smaller classes all groups could share one of their stories aloud with the class).

In addition to sharing some consequences of nonreproducible analysis with students without them having to experience the negative impact themselves over a long and drawn out process of self-discovery, these stories come from people the students know (their instructors and peers). This highlights how common and easy it is for such mistakes to happen to anyone practicing data analysis, unless care is taken to follow reproducible workflows and practices. This sharing of stories helps make the practice of reproducibility seem more relatable and applicable to the students’ own data analysis (which at this stage in their career, may not end up in a published paper).

**Examples of Stories from the Trenches**

As a Masters student, I started to use R to do my statistical analysis. I obtained the results I needed from running my code in the R console and copying the results into the word document that was my manuscript. Six months later we were working on revisions requested by the reviewers and I could not remember which version of the code I ran to get my results. I eventually figured it out through much trial and error, but the process was inefficient and very stressful.

– Tiffany Timbers

I was involved in a project where we used version control for the code, but didn't keep track of which input/output was analyzed/produced with which version of the code base. This happened because the data was too big for a simple solution like GitHub/GitLab, and I was under time pressure to produce results so I didn't prioritize looking into an appropriate solution. When I returned to this project after a long absence, I could not easily combine the outputs from my earlier analysis with the newly generated ones, and instead had to reanalyze all the data with the latest version of the code to reduce the chance for issues from using conflicting code bases. This was very time-consuming.

As often is the case in projects where code is only seen as a means to an end and not part of the final product, there was also no time dedicated to write tests for the code in this project, so there was no guarantee that there were not unintended side effects introduced when new changes were made.

– Joel Ostblohm
2.2. Study Cases of Failures with Significant Real World Consequences

A second way to create motivation is through using case studies of irreproducible data analyses that have had significant real world consequences. Such case studies can be used to illustrate the importance and impact of reproducible data analyses. Although we are currently in the process of building case-based teaching into our reproducibility courses and currently only have limited experience with this pedagogy, we think the idea has strong merit and wish to present it here. Notably, case-based teaching has been widely used in business, law, and medical education for many years (J. A. Carlson and Schodt 1995; Garvin 2003; Bonney 2015), where it has been shown to motivate students to participate in class activities to a higher extent, which boosts student assessment performance (Flynn and Klein 2001; Yadav et al. 2007). The benefits of case studies have also been reported on in STEM fields (Yadav et al. 2007; Bonney 2015) and we believe that this pedagogical strategy may be particularly important for teaching reproducibility, since the impact and significance of the consequences of not using reproducible practices are not obvious to novices. By presenting case studies where failure to adhere to reproducible practices has led to costly mistakes, we aim to give learners a chance to directly appreciate the connection between the lack of reproducible workflows and the downstream consequences.

While there are many articles outlining recommendations on which reproducible practices to adhere to (Sandve et al. 2013; Wilson et al. 2017; Lowndes et al. 2017), case studies of failures are not as frequent in the literature. We think this partly stems from the fact that such errors are often only discovered internally and never reported, and that there are few incentives for people to spend their time performing proper forensic informatic analysis on the work of others. Even so, there are several such examples reported in the literature; one of the most striking led to putting patients at risk in incorrectly administered clinical trials (B. Carlson 2012).

These clinical trials took place at Duke in 2006 and involved 110 cancer patients hoping that using personalized gene signatures would identify which treatments were more effective for individuals (B. Carlson 2012). The series of scientific papers that formed the basis of these trials were all published in highly regarded “high-impact” journals, however, they also raised some concerns among researchers in the field (B. Carlson 2012). When put under a thorough independent review, these papers were found to contain multiple errors, several related to the use of nonreproducible tools and workflows (Baggerly and Coombes 2009). In the review analysis it was highlighted that the most common problems were simple and included mistakes such as: (a) “off-by-one” errors where a cell might have been inadvertently deleted in a spreadsheet leading to a shift of all remaining values, (b) labeling mix-ups where the treated and not treated groups were assigned labels 0 and 1 instead of meaningful names which can lead to confusion as to which is the treated and control group, and (c) poor documentation practices leading to lack of transparency which makes it harder and more time-consuming to identify errors (both for the original authors and the reviewers). These clinical trials were eventually terminated about four years after they started, around 25 papers related to these trials were retracted, and the lead investigators were put under investigation for malpractice. This example highlights the enormous cost associated with not adhering to reproducible practices and having workflows that are opaque and hard to review.

As illustrated in the case we have highlighted above, reproducibility errors are not isolated to novices performing data analyses. They also occur in analyses performed by seasoned professionals and can have substantial real-world consequences. When selecting failures to share with students, it can be beneficial to focus on those that students can easily identify with, those that have had a big impact, and those that come from well-known researchers/companies. This is to illustrate that these errors can happen to anyone and emphasize that we are not sharing them to cast blame, but to highlight the importance of reproducible practices on all levels. Another example of an impactful reproducibility mistake from a well-known research team is the misreporting of the relationship between public debt and gross domestic product (GDP) growth, which was published in what was regarded as a seminal paper at the time (Herndon, Ash, and Pollin 2013; Bailey and Borwein 2013). These findings came from prominent economists and were used as motivation for political decision making, until a few years later when it was discovered that an error had been made when selecting the range of cells to be included in one of the Excel formulas, which exaggerated the conclusions in the paper (Herndon, Ash, and Pollin 2013; Bailey and Borwein 2013). Other examples of case studies that could be used to illustrate the significant real world consequences of reproducibility failures in data analyses are listed in Table 1.

### Table 1. Case studies that illustrate the significant real world consequences of reproducibility failures in data analyses.

| Reproducibility error                                      | Consequence                                                                 | Source(s)                  |
|------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------|
| Limitations in Excel data formats                          | Loss of 16,000 COVID case records in the UK                                | Kelion 2020                |
| Automatic formatting in Excel                              | Important genes disregarded in scientific studies                          | Zeeberg et al. 2004; Ziemann, Eren, and El-Osta 2016 |
| Deletion of a cell caused rows to shift                    | Mix-up of which patient group received the treatment                       | Wallenstein et al. 2018    |
| Using binary instead of explanatory labels                 | Mix-up of the intervention with the control group                          | Aboumatar and Wise 2019    |
| Using the same notation for missing data and zero values   | Paper retraction                                                            | Whitehouse et al. 2021     |
| Incorrectly copying data in a spreadsheet                  | Delay in the opening of a hospital                                          | Picken 2020                |

2.3. Letting them Fail (in a Controlled Manner)

Many instructors (including the authors of this work) have themselves experienced failure in graduate school and during their postdoctoral research in regards to reproducibility, which
negatively impacted their work. While these experiences motivate teaching and using reproducibility concepts and tools for instructors, most undergraduates and new graduate students cannot draw on similar professional experiences. Rather than letting new students live through the full perils of irreproducible research, we can set up controlled scenarios to expose them to these downsides in a controlled, accelerated manner while still embodying much of the same motivational benefits.

One way we have done this is providing students an analysis that is not reproducible (i.e., it depends on rare/obscure software packages or specific package versions), and thus will likely fail on someone else's machine. We then ask them to try to run it, and if they cannot run it, we ask them to fix the code or install missing software so they can. Then we provide them the same analysis that has been made reproducible, through the use of shareable compute environments (i.e., `renv`, `conda`, or `Docker`), and instructions on how to use the shared compute environment. The students then experience running the same analysis on their machines without any change of code or software installation. Under these controlled circumstances failure and frustration can have a positive impact on students overall learning as they experience the many benefits of reproducibility first hand. This exercise usually only takes around 20–30 minutes and helps provide motivation to endure the steep learning curves of reproducibility concepts and tools. We teach this in our data science workflows course, which occurs in the first third of the Master of Data Science program. When we have implemented this activity we have run it as an in-class exercise that is not counted toward the course grades. We do however, use polls to assess where the students are at in regards to completing the activity, so that we can allot an appropriate amount of time for each group of learners.

The example discussed above was inspired by Jenny Bryan's teaching of STAT 545 at UBC. In her version of this task, she pairs students up and asks them to run each other's code projects that they have been working on in her course. Most usually fail to be able to do this on the first try for the same reasons discussed above. We adapted her teaching method so that students experience this in a more limited, controlled manner by picking an obscure package (e.g., the R-package cowsay (Chamberlain and Dobbyn 2020)) that none of the students should have installed, so that they will all have trouble running the project without reproducibility tools. We then provide them with a project using reproducibility tools so that they can have success and contrast the two experiences. This has allowed us to scale this exercise to larger classes with more homogeneous student experiences.

### 3. Guided Instruction

In our teaching we primarily seek to facilitate students’ active learning and encourage them to take initiative and responsibility for their own learning experience. Here, we suggest that guided instruction is helpful to set students off on the right path as they take an active role in their own learning, particularly when teaching reproducibility. From our experience, reproducibility is not something that most people figure out on their own, and if they do, it is an inefficient time-consuming process. We hypothesize that this could be at least partially explained by the fact that reproducibility practices borrow knowledge, workflows, and tools from software engineering and repurpose them for data science. Thus, much of the getting up and getting started with reproducibility has a lot of assumed knowledge behind it, and at present there are not many clear and easy on-ramps for learners who do not have a software engineering background. Part of this may stem from the field being still fairly new and not-yet as widely embraced as we might hope. This means that there is not a lot of culture surrounding reproducibility tools in data science and statistics, and it is not yet as obvious how to get started.

Furthermore, similar to why we need extra motivation, the challenge of learning to use the tools due to their steep learning curves suggests that having some guided instruction is beneficial to learners. These points are well stated in a blog post and essay on The Role of Theory in Data Analysis by Roger Peng (Peng and Matsui 2020):

> There is no need for a new data analyst to learn about reproducibility “from experience.” We don’t need to lead a junior data analysis down a months-long winding path of nonreproducible analysis until they are finally bitten by the nonreproducibility bug (and “therefore learn their lesson”). We can just tell them “In the past, we’ve found it useful to make our data analysis reproducible. Here’s a workflow to guide you in your own analysis.” Within that one statement, we can “compress” over 20 years of experience.

While we believe that there are pedagogical advantages to letting students fail briefly in a controlled manner (as elaborated on in the previous section), we agree with the statement above in the sense that it is important for educators to present the best practices that the reproducibility community has arrived on to date and explicitly show learners how to use these. If we instead relied solely on students learning reproducibility through their own mistakes we would set them up for a frustrating and time-consuming learning experience.

At UBC, we primarily employ guided instructions through three pedagogical strategies:

1. **Live demonstration**
2. **Pre-lecture activities**
3. **Worksheets**

#### 3.1. Live Demonstration

In data science programming classes it is becoming more common to use demonstration to show how to code in R and Python. This is referred to in the data science literature as live coding (Raj, Patel, Halverson, and Halverson 2018; Nederbragt et al. 2020). We have observed that a similar pedagogy of live demonstration works well for reproducibility tools, including R Markdown (Allaire et al. 2021) or Jupyter notebooks (Kluyver et al. 2016) for reproducible reports, using version control with Git and GitHub, and using tools like `renv` (Ushey 2021), `conda` (Anaconda 2020), and Docker (Merkel 2014) to create reproducible and shareable computational environments. We believe that live demonstration makes it more obvious to the
students how to use these tools in practice, and facilitates lateral knowledge transfer where learners absorb additional material by observing how we work, which would not have been possible from learning about these concepts and tools in a traditional lecture that uses a slide deck to present new knowledge and concepts. Additionally, when you make mistakes as an instructor in these live demonstrations, it humanizes the reality of working with these tools that are somewhat challenging even for experts, and intentional mistakes can provide opportunities to spend more time on that area of the topic and explain the gotchas of a common mistake, and how to fix it (Wilson 2018).

A word of caution with live demonstration when teaching reproducibility; because teaching these workflows and tools often involves the demonstrations of graphical user interfaces and tools that come from software engineering, the tech stack moves very fast. This means that each semester we teach these tools, we need to test drive the materials before we share them with the students to see if something has changed—as often it has. A relatively recent example of this is from fall 2020, when GitHub decided to change the name of their default branch from master to main (rightfully so) (GitHub 2020). This change broke several of our teaching demonstrations, guided worksheets, and lab homework. It also caused parts of our lecture notes on this topic to have to be rewritten. These rewrites happen less frequently when teaching fundamental data science concepts, as that part of the data science software stack has now become fairly stable. For example, teaching dataframes as the basic structure for encoding data for analysis has remained constant since the inception of the program and is unlikely to change any time soon. In general, changes in novice courses are often on details such as new syntax or new naming conventions, whereas changes in more advanced topics can involve rewriting the entire coding component of a course because there has been a notable shift in that domain and there is now a more effective package or approach to teach.

For the reasons argued above, we believe that it is integral to use guided instruction when teaching reproducibility, however, this should be done with the awareness and the acceptance that these kinds of changes are going to happen relatively frequently. Which means reproducibility instructors are going to have to update or make new live demonstrations, and other teaching resources, each year. Without this, the course resources will quickly fall out of usefulness. There may come a time when these tools also stabilize, but the authors of this manuscript anticipate that to lie many years in the future.

3.2. Pre-lecture Activities

Although live demonstration is important for the reasons outlined above, it is critical that it does not dominate the time spent in the classroom, so that students have ample time to engage in active learning activities. There is evidence that active learning can increase student performance, at least on summative assessments (Freeman et al. 2014). To ensure that students have sufficient background knowledge to start, we complement our live demonstration with assigned pre-lecture activities. These can consist of material that we have created ourselves or external resources and is usually in the form of reading material or videos. Encouraging students to learn the basics before class allows us to have more meaningful live demonstrations and sets students up for a more effective learning experience by spacing out their exposure to the course material. To assess whether students are understanding the material in the pre-readings (and what we are covering during class), we use in-class polls, which allow us to adjust and spend more time on concepts that had a lower percentage of correct answers.

3.3. Worksheets

After guiding students through the fundamentals through live demonstration and pre-lecture activities, we challenge them to take a more active learning role by solving worksheet problems on their own in the classroom. This activity occupies most of the in-class time, so that students can engage actively with the material in an environment where they can easily be supported by their peers and the teaching team, before working on the homework assignments on their own. Worksheets are low stakes assessments that provide students with many short problems on which to practice and receive feedback. In data science, this works well in literate code documents (either Jupyter notebooks or R Markdown) that have automated tests in them to provide feedback. Two tools that we have used for this are nbgrader (Jupyter et al. 2019) and otter-grader (Pyles and Program 2021). Compared to in-class exercises, worksheets give learners an additional chance to actively engage with the material while still providing structured exercises focused on key learning outcomes. Worksheets are also key for giving students ample opportunity to practice, a topic we discuss in the last section of this article.

3.4. Example Lesson Using Guided Instruction

Here we provide an example of how we use guided instruction to teach version control in our first year introduction to data science course at UBC, DSCI 100. In this course, we take a three-pronged approach for guided instruction.

First, we provide students an assigned textbook reading for them to review before class. For this particular topic, it is an introductory chapter on collaboration with version control. When the students arrive in class, we then do a live demonstration, where they watch us use the GitHub website, and the Jupyter Git graphical user interface to add, commit, push and pull changes. A recording of one of these live demonstrations is available on YouTube at this link. Finally we ask the students to work through a guided worksheet, which is a Jupyter notebook with narration, questions and automated software tests to give automated feedback about their answers. The worksheet asks the students to perform the same task that we just demonstrated, and asks them questions along the way to test their understanding of the reproducibility concepts related to the skills and tools they are practicing. For example, in the version control worksheet, we ask questions to assess if they understand what the purpose of adding something to the Git staging area is, how adding differs from committing in Git, and where the work goes when it is pushed to a remote repository. A version of this worksheet can be accessed here as part of the actively
maintained repository of worksheets that act as a companion to the textbook we use for DSCI 100: *Data Science: A First Introduction* (Timbers, Campbell, and Lee 2022).

The challenge or limitation with this lesson in particular is that due to the very novice level of the learners in this course we have chosen to teach Git using a graphical user interface, specifically the JupyterLab Git Extension, as opposed to the Git command line tool. Using a graphical user interface, and a newer one, means that we need to more frequently update and fix our lesson as the tool changes. Command line tools in general tend to be more stable (i.e., change less frequently) compared to graphical user interfaces, and are thus, generally a more stable tool to build a lesson around. However, the tradeoff in this situation would be that the Git command line tool is less intuitive for new learners, especially those who are also new to Git and fix our url changes. Common line tools

4. Lots of Practice

The third pedagogy we argue for when teaching reproducibility is lots and lots of practice. Mastery of a subject often involves consolidating ideas, concepts and theories into long-term memory, which requires repetition (Ebbinghaus 1913). When we teach reproducibility topics, we want students to also go a step further, beyond knowledge of ideas, concepts and theories, and induce a change in their behavior. In other words we want our students to form new habits around how they perform data analyses—ones that are reproducible.

Habit formation can be defined as the triggering of behavior from contextual cues (Gardner and Rebar 2019). In the context of reproducible workflows these cues are the tasks that students desire to execute, such as saving a file after adding new content or wanting to share a document with a colleague. Importantly, habitual behavior has been proposed to protect individuals from motivational lapses, where a desired good behavior is not expressed due to a momentary lack of willpower (Gardner and Rebar 2019). By promoting the formation of habits in students, we aim to change their behavior so that they opt for the reproducible workflow “by default,” shielding them from relying on willpower to not “take the easy way out” and employ a familiar, but irreproducible workflow strategy.

In contrast to many other data science topics, students often already have behavioral patterns in place for reproducibility-related tasks, such as how they organize and name their files, and for how they collaborate with their colleagues. However, most often these practices are not following a reproducible workflow and can interfere with learning the new behaviors we want our students to adopt. When teaching reproducible workflows we therefore, need to replace the old behavior with a more reproducible version as a response to the same cue. Although it might sound like a complex task to unlearn an old behavior, as well as learn a new one, studies has shown that behavioral change is in fact facilitated when substituting a desirable habit for an existing, undesirable one rather than simply trying to unlearn the existing, undesirable habit (Adriaanse et al. 2011).

Since habits are best learned through frequent, regular, and sustained cue exposure, we argue that reproducibility requires more practice compared to other data science topics. To support the formation of reproducible workflow habits, we therefore, complement guided instruction with plenty of embedded practice in the classroom, where we intentionally pause during the demos and say “okay students your turn, do what I just did.” This is a more controlled form of practice, which sets students up for practicing these habits on their own. As mentioned above, we also provide students with worksheets that can be used both in the classroom and at home, as students receive feedback through automated software tests.

It is important to note that habit formation is not a linear process. Instead, each successful action following a cue adds to the formation of a new habit in an asymptotic fashion, where the initial events are the most important and the learning rate eventually plateaus as the habitual pattern solidifies. While popular literature often refers to around 30 days as “all it takes” to develop a new habit, studies have reported that the median is at least around 70 days before reaching the plateau phase of habit development (Lally et al. 2010; Fournier et al. 2017). We therefore, believe it is paramount that learners have sustained frequent practice in reproducible workflows, which is interleaved with other topics where they would employ and benefit from these skills in real life.

To give students adequate time and practice to cement their reproducible workflow habits, we have made intentional choices of which learning technologies and platforms are used throughout the UBC Master of Data Science program and when they are taught. This ensures that students are practicing using reproducible tools for the full 10 months as part of the course learning technology mechanics (homework submission, grading, etc). Students learn these basic reproducibility practices in the first few weeks of class and we interleave them as “mechanical assignment requirements” worth a small percentage of their grade while completing assignments focused on other data science topics. This strategy parallels how they will employ reproducibility habits later in their careers (a detailed example follows in the next section). To challenge students who have more interest, experience, or skills in the area of reproducibility, we routinely include demanding optional questions in our homework assignments in the reproducibility courses that allow these students to engage more deeply with the material for a small amount of bonus points. The feedback we have received indicates that these strategies help to engage students across the wide range of interest, experience and skills in the area of reproducibility that we see in our classrooms.

The decision to give students plenty of opportunities to practice reproducible habits by adopting version control for student homework submission was implemented across the Master of Data Science program from year one. To make this feasible, postdoctoral teaching and learning fellows were hired to help faculty implement this in their courses even if those faculty themselves were not familiar with version control. The teaching team model in the Master of Data Science program greatly facilitates us doing program-wide changes like this. This stems from our shared vision for the program (which was drafted collaboratively by the team), our once-per term academic retreats where we reflect on how things went in each course, and our frequent communication and collaboration at our weekly academic meetings.
### 4.1. Example Lesson(s) of Lots of Practice

A specific example of how lots of practice is used in almost all of the UBC Master of Data Science courses, includes the use of version control, particularly Git and GitHub, as our course management system. In these courses, the homework instructions and assignments are distributed to the students as GitHub repositories and the only way that they can submit their homework is via their assigned GitHub repository. Thus, to complete and submit their assessments on any data science topic, students must go through the cloning procedure (or at least be able to somehow download their assignments from the GitHub website) and upload their work back to their respective GitHub repository. The tool we use to administer GitHub repositories in this way is called [rhomboid](https://happygitwithr.com/burn.html), but there are other tools that can do this, including [GitHub Classroom](https://docs.anaconda.com/) and [Classy](https://cran.r-project.org/package=cowsay).

To incentivize students to submit their assignment using Git (as opposed to the GitHub web user interface) we also assign some marks of each assignment (about 5%) to a mechanics grade. For this we assess whether they have at least three commits associated with every single assignment and have written meaningful commit messages. By the end of this program the students have version controlled their work in over 80 different GitHub repositories. We hope this results in version control becoming a habit, to the point that when they go to work on a project in the future they will put the project under version control by default—even when they leave the program and are no longer receiving grades for doing this. We choose tools such as Git and GitHub when teaching version control (and other data science reproducibility aspects) since they are very popular in academia and industry—meaning that students are likely to encounter them in their future work. This sustained practice with real tools not only enforces students’ habits, but also increases their proficiency using authentic reproducibility software. When they run into problems, it is in an environment where they can easily reach out for help without feeling intimidated to ask.

One exciting technology that we have recently started incorporating in our teaching of reproducible workflows is GitHub actions, a tool for automating software workflows that can be configured to be triggered by many different version control tasks, including pushing new code to a GitHub repository. This has allowed us to automate the building of individual “playgrounds” of complex Git scenarios that would take much effort and typically fail to stage in a large classroom. One of the GitHub repositories that we created for these activities, called [review-my-pull-request](https://docs.anaconda.com/), serves the purpose of providing a playground where students can explore and practice to learn how to use GitHub's code review feature for pull requests. To use it, students create their own copy of the repository on GitHub, create a branch named `PR` and then a pull request is automatically created for them by a bot. After this quick and simple setup, the students can spend the rest of the exercise exploring how to perform code reviews on GitHub.

### 5. Conclusions

Over the past six years of teaching in the UBC Master of Data Science and the UBC introductory undergraduate data science course, we have identified the following key strategies for effectively teaching reproducibility in the data science classroom: (1) providing extra emphasis on motivation so that students understand why reproducibility is important and buy into learning about it and practicing it, (2) providing guided instruction so that it is not a mystery of how you get started and what you need to do, as well as (3) lots and lots of practice so that we do not only teach them the ideas and the concepts behind reproducibility, but so that students actually change their data analysis habits and workflows into reproducible ones that they can rely on after leaving the classroom.

### Acknowledgments

We are grateful to the Master of Data Science and DSCI 100 teaching teams who helped shape these opinionated practices for teaching reproducibility.

### Disclosure Statement

The authors declare no conflict of interest.

### ORCID

Joel Ostblom [http://orcid.org/0000-0003-0051-3239](https://orcid.org/0000-0003-0051-3239)

### References

Aboumatar, H., and Wise, R. A. (2019), “Notice of Retraction. Aboumatar et al. Effect of a Program Combining Transitional Care and Long-term Self-management Support on Outcomes of Hospitalized Patients With Chronic Obstructive Pulmonary Disease: A Randomized Clinical Trial. JAMA. 2018;320(22):2335–2343,” *JAMA*, 322, 1417–1418.

Adriaanse, M. A., van Oosten, J. M. E., de Ridder, D. T. D., de Wit, J. B. F., and Evers, C. (2011), “Planning What not to Eat: Ironic Effects of Implementation Intentions Negating Unhealthy Habits,” *Personality & Social Psychology Bulletin*, 37, 69–81.

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., Iannone, R. (2021), “rmarkdown: Dynamic Documents for R [Computer software manual],” available at [https://github.com/rstudio/rmarkdown](https://github.com/rstudio/rmarkdown) (R package version 2.8).

Anaconda (2020), Anaconda Software Distribution, Anaconda Inc. Available at [https://docs.anaconda.com/](https://docs.anaconda.com/).

Baggerly, K. A., and Coombes, K. R. (2009), “Deriving Chemosensitivity from Cell Lines: Forensic Bioinformatics and Reproducible Research in High-throughput Biology,” *The Annals of Applied Statistics*, 3, 1309–1334.

Bailey, D. H., and Borwein, J. J. (2013). *The Reinhart-Rogoff Error – or How Not to Excel at Economics*. Available at [http://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646](http://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646).

Bonney, K. M. (2015), “Case Study: Teaching Method Improves Student Performance and Perceptions of Learning Gains,” *Journal of Microbiology & Biology Education*, 16, 21–28.

Bryan, J., Attali, D., Konrad, B., Jackman, S., and Hester, J. (n.d.). Chapter 36 Burn It All down | Happy Git and GitHub for the useR. Available at [https://happyprompt.com/burn.html](https://happyprompt.com/burn.html).

Carlson, B. (2012), “Putting Oncology Patients at Risk,” *Biotecnology Healthcare*, 9, 17–21.

Carlson, J. A., and Schodt, D. W. (1995), “Beyond the Lecture: Case Teaching and the Learning of Economic Theory,” *The Journal of Economic Education*, 26, 17–28.

The Carpentries (n.d.), [https://carpentries.org/index.html](https://carpentries.org/index.html).

Chamberlain, S., and Dobyns, A. (2020), “coway: Messages, Warnings, Strings with ASCII Animals [Computer Software Manual],” [https://CRAN.R-project.org/package=coway](https://CRAN.R-project.org/package=coway) (R package version 0.8.0)

Committee on Reproducibility and Replicability in Science; Board on Behavioral, Cognitive, and Sensory Sciences; Committee on National...
Statistics; Division of Behavioral and Social Sciences and Education; Nuclear and Radiation Studies Board; Division on Earth and Life Studies; Board on Mathematical Sciences and Analytics; Committee on Applied and Theoretical Statistics; Division on Engineering and Physical Sciences; Board on Research Data and Information; Committee on Science, Engineering, Medicine, and Public Policy; Policy and Global Affairs; National Academies of Sciences, Engineering, and Medicine (2019), Reproducibility and Replication in Science, Washington, D.C.: National Academies Press.

Niederbrag, A., Harris, R. M., Hill, A. P., and Wilson, G. (2020), "Ten Quick Tips for Teaching with Participatory Live Coding," PLOS Computational Biology, 16, e1008090.

Parker, H. (2017), "Opinionated Analysis Development," PeerJ Preprints, 5, e3210v1.

Peng, R. D., and Matsui. (2020), Essays on Data Analysis, Victoria, British Columbia, Canada: LeanPub.

Picken, A. (2020), Spreadsheet Error led to Edinburgh Hospital Opening Delay, BBC News.

Pyles, C., and Program, U. B. D. S. E. (2021), Otter-grader: A python and r autograding solution. (If you use this software, please cite it as below.)

Raj, A. G. S., Patel, J. M., Halverson, R., and Halverson, E. R. (2018), "Role of Live-Coding in Learning Introductory Programming," in Proceedings of the 18th Koli Calling International Conference on Computing Education Research (pp. 1–8).

Ram, K. (2013), "Git Can Facilitate Greater Reproducibility and Increased Transparency in Science," Source code for Biology and Medicine, 8, 1–8.

RStudio Education (n.d.), https://education.rstudio.com/.

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E. (2013), "Ten Simple Rules for Reproducible Computational Research," PLOS Computational Biology, 9, e1003285.

Timbers, T.-A., Campbell, T., and Lee, M. (2022), Data Science: An Introduction (1st ed.), Boca Raton, FL: CRC Press. Available at https://datasciencemba.ca/.

Ushey, K. (2021), renv: Project environments [Computer software manual]. Available at https://CRAN.R-project.org/package=renv (R package version 0.14.0)

Wallenstein, L., Zimmermann, M., Sandberg, M. T., Gezelius, A., Nordenström, A., Hirvikoski, T., Lajic, S. (2018), "Retraction notice to 'Evaluation of Behavioral Problems after Prenatal Dexamethasone Treatment in Swedish Adolescents at Risk of cleft' [Hormones and Behavior 85c (2016) 5–11]," Hormones and Behavior, 103, 140.

Whitehouse, H., François, P., Savage, P. E., Currie, T. E., Feeney, K. C., Cioni, E., Purcell, R., Ross, R. M. Larson, J., Baines, J., ter Haar, B., Covey, A., Turchin, P. (2021), "Retraction Note: Complex Societies Precede Moralizing Gods Throughout World History," Nature, 595, 320–320.

Wilson, G. (2018), Teaching Tech Together: How to Design and Deliver Lessons That Work and Build a Teaching Community around Them, Leipzig: Amazon Distribution GmbH.

Wilson, G., Bryan, J., Cranston, K., Kittes, J., Niederbragt, L., and Teal, T. K. (2017), "Good Enough Practices in Scientific Computing," PLOS Computational Biology, 13, e1005510.

Yadav, A., Lundeberg, M., DeSchryver, M., Dirkin, K., Schiller, N. A., Maier, K., et al. (2007), "Teaching Science with Case Studies: A National Survey of Faculty Perceptions of the Benefits and Challenges of Using Cases," Journal of College Science Teaching, 37, 34–38.

Zeeb, B. R., Riss, J., Kane, D. W., Buskey, K. J., Uchio, E., Linehan, W. M., et al. (2004), "Mistaken Identifiers: Gene Name Errors can be Introduced Inadvertently When Using Excel in Bioinformatics," BMC Bioinformatics, 5, 80.

Ziemann, M., Eren, Y., and El-Osta, A. (2016), "Gene Name Errors are Widespread in the Scientific Literature," Genome biology, 17, 1–3.