Use of the Syrian Hamster Embryo Cell Transformation Assay for Carcinogenicity Prediction of Chemicals Currently Being Tested by the National Toxicology Program in Rodent Bioassays

Gary A. Kerckaert,1 Roger Brauning,2 Robert A. LeBoeuf,1 and Robert J. Isfort1

1The Procter & Gamble Co., Cincinnati, Ohio; 2Corning Hazleton, Vienna, Virginia

The Syrian hamster embryo (SHE) cell transformation assay was used to predict the carcinogenicity of 26 chemicals currently being tested in the rodent bioassay by the National Toxicology Program as part of its program titled “Strategies for Predicting Chemical Carcinogenesis in Rodents.” Of these 26 chemicals, 17 were found to be positive in the SHE cell transformation assay while 9 were negative. Carcinogenicity predictions were made for these chemicals, based upon the SHE cell transformation assay results. Our predictions will be compared with the rodent bioassay results as they become available. — Environ Health Perspect 104(Suppl 5):1075–1084 (1996)

Key words: SHE assay, cell transformation, carcinogenicity prediction, rodent bioassay

Introduction

Since the seminal work of Berwald and Sachs (1), Syrian hamster embryo (SHE) cells have been used to evaluate the potential of a wide variety of chemical and physical agents to induce morphological transformation (2). SHE cells are diploid, genetically stable, of finite lifespan, and capable of metabolizing many chemicals to their ultimate carcinogenic form (3). SHE cells have also been used in a number of laboratories to study mechanisms of carcinogenesis (4). Following carcinogen exposure, SHE cells display a multistage pattern of progression to neoplasia that is similar to the multistage progression of in vivo carcinogenesis (4–6). Because of these factors, SHE cells are an attractive model for determining the neoplastic transformation potential of chemical agents.

More than 472 chemical/physical agents have been tested in the SHE cell transformation assay (2). Of these 472 agents, 213 have in vivo rodent carcinogenicity data available. Of these 213 agents, 177 were rodent carcinogens and 36 were noncarcinogens. For these agents, the SHE cell transformation assay has a concordance with the rodent bioassay of 80% (171/213), a sensitivity of 82% (146/177), and a specificity of 69% (25/36). Recently, we have modified the methodology used to conduct the SHE cell transformation assay, principally by reducing the culture medium pH from 7.5 to 6.7 (7). Using this modified protocol, we have tested over 56 chemicals, including 30 carcinogens and 18 noncarcinogens (8). The SHE cell transformation assay conducted with the reduced pH methodology has an overall concordance with the rodent bioassay of 85% (41/48), a sensitivity of 87% (26/30), and a specificity of 83% (15/18). It is our current position that SHE cell transformation assay data, in combination with other information such as structure-activity relationship analysis, genetic toxicity results, and when available subchronic toxicity data and metabolism considerations, can be used for predicting rodent carcinogenicity.

Twenty-six of the chemicals currently being tested for rodent carcinogenicity by the National Toxicology Program (NTP) were provided to us for predicting the outcome of these bioassays using the SHE cell transformation assay. We submit our predictions based upon SHE cell transformation assay results in the hope that the SHE cell transformation assay will become a method used for improved carcinogenicity prediction and risk assessment.

Methods

A description of the protocol for conduct of the reduced pH SHE cell transformation assay was originally published in 1989 (9). A more detailed description of this protocol is currently in press (7). Briefly, the methods we use are as follows: A cytotoxicity screen is done initially to determine a dose level that produces 50% or greater cytotoxicity, based on reduction in cloning efficiency. This is the top dose tested, with at least four additional doses tested, down to a dose level that causes minimal cytotoxicity. The SHE cell transformation assay is typically done in two individual trials, each consisting of the five test chemical doses and a solvent control (usually dimethyl sulfoxide [DMSO] or culture medium) plus a positive control (benzo[a]pyrene). Each trial consists of 20 culture dishes/test-chemical treatment group, with between 25 and 45 SHE cell colonies per culture dish to generate the approximately 1000 or more colonies necessary for adequate assay sensitivity. The cells are exposed to test chemical for either 24 hr followed by 6 to 7 days of growth or for 7 days, after which the colonies are fixed with methanol and stained with Giemsa and scored for morphological transformation with a stereo microscope. With pooled data from at least two trials, morphological transformation (MT) frequencies (number of MTs/total colonies scored × 100) are determined for each dose level, and a Fisher’s exact test (10) is conducted comparing the transformation frequency of the solvent control pairwise with each test chemical dose group. A trend test (11) is also conducted on the pooled transformation frequency/dose group data. A test chemical is considered positive in the SHE cell transformation assay if it causes a statistically significant (p<0.05) increase in MT (relative to the solvent control) in at least two dose groups, or if it causes a statistically significant increase in MT in one dose with a statistically significant (p<0.05) positive dose–response trend test. If either the 24-hr or the 7-day exposure is positive, the overall SHE cell transformation assay call for a test chemical is positive. Our predictions of carcinogenicity for the chemicals tested in this study are based
Table 1. Syrian hamster embryo (SHE) cell transformation assay results for 26 chemicals currently being tested in the rodent bioassay.

Chemical [CAS no.]	Dose (µg/ml)	RPE, %a	Number of MTF/total colonies	MTF, %c	Fisher’s exact test, p-value
Anthraquinone [84-65-1]					
24-hr					
Control	100(43)d	6/1404	0.43	0.1951#	
0.5	108	4/1139	0.35	0.5986	
1	105	6/1051	0.57	0.3657	
3	111	6/1162	0.52	0.4526	
5	93	7/1320	0.53	0.4548	
6	88	10/1264	0.80	0.1604	
7	95	9/1328	0.68	0.2659	
8	100	9/1396	0.64	0.3002	
9	100	6/1403	0.43	0.6126	
4.25	80	5/1362	0.37	0.5068	
4.5	74	6/1217	0.66	0.1363	
5	41	8/1051	0.76	0.0860	
5.25	32	4/1022	0.39	0.4783	
7-day					
Control	100(48)d	5/1636	0.31	0.1567*	
r-Butylhydroquinone [11948-33-0]					
24-hr					
Control	100(44)d	4/1243	0.32	0.1530#	
1	96	8/1189	0.67	0.1725	
2	100	10/1227	0.82	0.0853	
3	90	5/1038	0.48	0.3904	
5	82	7/1427	0.49	0.3568	
7	48	2/1317	0.15	0.3154	
7-day					
Control	100(43)d	6/1417	0.42	0.1030*	
3	107	6/1562	0.38	0.5457	
4	98	9/1476	0.63	0.3075	
5	94	3/1395	0.22	0.2746	
6	53	7/1406	0.50	0.4943	
7	25	10/1083	0.92	0.0973	
1-Chloro-2-propanol + 2-chloro-1-propanol(75:25)[127-00-4]					
24-hr					
Control	100(44)d	3/1330	0.23	0.0009**	
1000	93	3/1231	0.73	0.0566	
2000	89	3/1169	0.67	0.0807	
3000	84	14/1113	1.26	0.0021*	
4000	80	13/1050	1.24	0.0027*	
5000	77	19/1031	1.84	0.0000**	
Cobalt sulfate hydrate [10026-24-1]					
24-hr					
Control	100(44)d	4/1484	0.27	0.0739*	
0.125	88	18/1276	1.41	0.0077*	
0.250	62	14/1217	1.15	0.0049*	
0.375	70	12/1041	1.15	0.0064*	
0.5	45	12/1095	1.10	0.0085*	
1	34	12/1148	1.05	0.0110*	
Codeine [76-57-3]					
24-hr					
Control	100 (45)d	4/1603	0.25	0.1012*	
1000	95	5/1480	0.34	0.4509	
1225	96	5/1475	0.41	0.3195	
1450	88	9/1380	0.60	0.1293	
1675	56	5/1240	0.40	0.3460	
1900	39	9/1493	0.54	0.1699	
7-day					
Control	100(36)d	4/1155	0.35	0.4894*	
200	91	5/1045	0.57	0.3168	
250	90	3/1033	0.67	0.0937	
300	88	5/1017	0.59	0.3012	
350	63	4/1080	0.37	0.5996	
400	55	6/1117	0.54	0.3562	

(Continued)
Table 1. (Continued)

Chemical	Dose (µg/ml)	RPE, % a	Number of MTb/total colonies	MTF, % c	Fisher’s exact test, p-value
D & C Yellow no. 11 [8003-22-3]					
24-hr	Control	100 (45)d	2/1245	0.16	0.0113**
0.1	96	10/1214		0.82	0.0171*
1	91	13/1149		1.13	0.0023*
2.5	93	15/1170		1.28	0.0007*
5	76	14/1484		0.94	0.0067*
7.5	62	15/1366		1.10	0.0021*
Diethanolamine [111-42-2]					
24-hr	Control	100 (42)d	4/1404	0.29	0.0053**
2500	102	3/1454	0.14	0.4974	
3000	90	11/1227	0.90	0.0337*	
3500	83	9/1184	0.76	0.0770	
4000	60	8/1227	0.55	0.1380	
4500	40	12/1262	0.95	0.0234*	
7-day	Control	100 (47)d	4/1309	0.31	0.4056*
250	89	13/1174	1.11	0.0139*	
500	77	14/1014	1.38	0.0034*	
1000	57	18/1096	1.64	0.0005*	
1500	49	13/1078	1.21	0.0067*	
2500	36	1/961	0.10	0.2976	
1,2-Dihydro-2,2,4-trimethylquinoline [147-47-7]					
24-hr	Control	100 (50)d	3/1439	0.21	0.0000**
70	98	2/1447	0.14	0.4974	
80	106	4/1559	0.26	0.5436	
90	84	6/1227	0.49	0.1817	
100	72	11/1045	1.05	0.0061*	
115	30	10/941	1.06	0.0069*	
Emodin [518-82-1]					
24-hr	Control	100 (41)d	3/1369	0.22	0.0014**
2.5	90	7/1237	0.57	0.1330	
0.25	85	7/1138	0.62	0.1062	
10	73	7/993	0.71	0.0711	
13.75	51	9/2021	0.75	0.0430*	
17.5	37	14/1096	1.28	0.0016*	
Ethylbenzene [100-41-4]					
24-hr	Control	100 (45)d	3/1511	0.20	0.3595*
100	84	3/1279	0.24	0.5755	
200	76	4/1136	0.35	0.3480	
300	69	4/1039	0.39	0.3041	
400	62	6/1405	0.43	0.2191	
500	51	3/1574	0.19	0.6361	
7-day	Control	100 (41)d	8/3358	0.59	0.0076**
100	96	11/340	0.82	0.3127	
125	90	8/1252	0.64	0.5335	
150	89	16/1246	1.28	0.0491*	
175	59	15/1222	1.21	0.0089*	
200	37	16/1164	1.38	0.0342*	
Ethylene glycol monobutyl ether [111-76-2]					
24-hr	Control	100 (53)d	6/1474	0.41	0.1256*
500	79	7/1179	0.59	0.3406	
750	75	8/1112	0.72	0.2108	
1000	70	11/1044	1.05	0.0451*	
1250	53	15/1222	1.23	0.0139*	
1500	42	8/1517	0.53	0.4163	

(Continued)
Table 1. (Continued)

Chemical	Dose (µg/ml)	RPE, %a	Number of MTb/total colonies	MTF, %c	Fisher’s exact test, p-value
Furfuryl alcohol [98-00-0]					
24-hr	Control	100 (47)	4/1325	0.30	0.2389*
	5	102	6/1342	0.45	0.3846
	7.5	91	7/1212	0.58	0.2200
	10	96	8/1249	0.64	0.1600
	12.5	91	6/1212	0.50	0.3232
	15	81	5/1068	0.47	0.3897
	17.5	30	8/1433	0.56	0.2334
7-day	Control	100 (36)	4/1295	0.31	0.3278*
	25	99	3/1287	0.23	0.5034
	37.5	99	5/1277	0.39	0.4914
	50	81	3/1043	0.29	0.6167
	62.5	75	3/951	0.32	0.6302
	75	40	5/1213	0.41	0.4598
Gallium arsenide [1303-00-0]					
24-hr	Control	100 (48)	3/1459	0.21	0.0000**
	0.25	108	21/1579	1.33	0.0003*
	0.50	96	37/1383	2.68	0.0000*
	0.75	83	27/1219	2.22	0.0000*
	1.0	71	35/1040	3.57	0.0000*
	1.25	58	35/1173	2.98	0.0000*
	1.50	29	33/1016	3.25	0.0000*
Isobutyraldehyde [78-84-2]					
24-hr	Control	100 (42)	4/1184	0.34	0.2192*
	200	102	8/1195	0.67	0.1977
	300	88	5/1023	0.49	0.4119
	400	86	6/1008	0.60	0.2614
	575	55	6/1080	0.56	0.3215
	750	50	8/1168	0.69	0.1867
7-day	Control	100 (34)	6/1374	0.44	0.2833*
	200	95	5/1302	0.38	0.5364
	375	81	5/1112	0.45	0.5960
	500	74	6/1012	0.58	0.4002
	725	55	10/1059	0.94	0.1003
	900	49	4/1258	0.32	0.4321
Methyleugenol [93-15-2]					
24-hr	Control	100 (44)	3/1224	0.25	0.0521*
	165	98	12/1201	1.00	0.0156*
	200	95	9/1166	0.77	0.0615
	210	89	14/1448	0.97	0.0154*
	220	67	12/1522	0.79	0.0450*
	235	58	15/1427	1.05	0.0091*
	250	48	13/1370	0.95	0.0184*
Molybdenum trioxide [1313-27-5]					
24-hr	Control	100 (42)	4/1399	0.29	0.0006**
	50	95	8/1344	0.60	0.1745
	75	83	10/1172	0.53	0.0486*
	100	74	17/1026	1.68	0.0003*
	125	57	17/1136	1.50	0.0008*
	200	33	10/970	1.03	0.0207*
Nitromethane [75-52-5]					
24-hr	Control	100 (50)	5/1534	0.33	0.0010**
	2000	86	10/1520	0.76	0.0817
	2500	86	7/1319	0.53	0.2896
	3000	92	8/1375	0.58	0.2253
	3500	84	10/1259	0.79	0.0737
	4000	84	12/1250	0.96	0.0291*
	5000	76	14/949	1.48	0.0027*
Table 1. (Continued)

Chemical [CAS no.]	Dose (µg/ml)	RPE, %a	Number of MTb/total colonies	MTF, %c	Fisher's exact test, p-value
Oxymetholone [434-07-1]					
24-hr					
Control	100 (44)af	8/1749	0.46	0.2375*	
7.5	91	11/1594	0.69	0.2534	
10	90	11/1567	0.70	0.2415	
12.5	84	14/1462	0.96	0.0674	
15	54	9/1679	0.54	0.4659	
17.5	37	10/1370	0.73	0.2232	
7-day					
Control	100 (44)af	6/1572	0.38	0.0075**	
15	98	15/1542	0.97	0.0351*	
16.5	91	20/1432	1.40	0.0022*	
18	91	24/1428	1.68	0.0003*	
20	73	15/1141	1.32	0.0061*	
22.5	45	17/1402	1.21	0.0083*	
Phenolphthalein [77-09-8]					
24-hr					
Control	100 (45)af	6/1323	0.45	0.0021**	
15	107	13/1337	0.97	0.0664	
17.5	93	13/1276	1.02	0.0713	
20	78	17/1054	1.61	0.0038*	
22.5	47	18/959	1.88	0.0010*	
25	31	10/902	1.25	0.0388*	
Primactone [125-33-7]					
24-hr					
Control	100 (39)af	6/1315	0.46	0.2895*	
200	103	6/1299	0.46	0.6047	
250	97	7/1280	0.55	0.4802	
300	100	9/1323	0.45	0.0089	
350	100	9/1294	0.39	0.5109	
400	95	4/1229	0.33	0.4190	
7-day					
Control	100 (40)af	8/1374	0.58	0.3861*	
200	105	9/1435	0.63	0.5363	
250	102	11/1394	0.79	0.3348	
300	104	9/1431	0.56	0.5662	
350	105	10/1445	0.69	0.4496	
400	109	11/1499	0.73	0.3961	
Pyridine [110-86-1]					
24-hr					
Control	100 (43)af	5/1206	0.42	0.0752*	
500	98	6/1169	0.51	0.4789	
1650	107	7/1278	0.55	0.4268	
2750	105	6/1246	0.48	0.5221	
3875	93	9/1114	0.81	0.1703	
5600	79	8/9956	0.84	0.1628	
7-day					
Control	100 (47)af	3/1307	0.23	0.1381*	
3250	94	5/1211	0.41	0.3222	
3500	91	7/1195	0.59	0.1371	
3750	81	6/1053	0.57	0.1595	
4000	62	7/1320	0.53	0.1755	
4250	51	7/1331	0.53	0.1790	
Scopolamine hydrobromide [6533-68-2]					
24-hr					
Control	100 (44)af	2/1405	0.14	0.0015**	
1000	111	5/1470	0.34	0.2452	
2000	91	15/1228	1.22	0.0004*	
3000	77	14/1068	1.31	0.0003*	
4000	52	12/1379	0.87	0.0058*	
5000	43	14/1227	0.98	0.0022*	

(Continued)
Table 1. (Continued)

Chemical	Dose (µg/ml)	Number of MTb/total colonies	Fisher’s exact test, p-value	
Sodium nitrite				
(7632-00-0)				
24-hr				
Control	100 (44) d	4/1220	0.33	0.0061**
375	91	12/1115	1.08	0.0252*
500	73	22/1320	1.67	0.0005*
625	68	15/1148	1.31	0.0065*
750	61	17/1112	1.53	0.0018*
875	50	17/1144	1.49	0.0022*
Sodium xylenesulfonate				
(1300-72-7)				
24-hr				
Control	100 (40) d	5/1337	0.37	0.3434*
100	98	7/1286	0.54	0.3691
500	75	10/1391	0.72	0.1691
1000	60	5/1309	0.38	0.6102
1500	55	5/1329	0.39	0.6020
2000	48	5/1281	0.39	0.5967
7-day				
Control	100 (45) d	3/1255	0.24	0.4365*
100	93	5/1160	0.43	0.3209
250	89	7/1114	0.63	0.1269
500	80	4/998	0.40	0.3767
750	53	5/1155	0.43	0.3186
875	47	4/1239	0.32	0.4930
Tetrahydrofuran				
(109-99-9)				
24-hr				
Control	100 (42) d	4/1275	0.31	0.4062*
1000	102	6/1322	0.45	0.3862
2000	102	6/1294	0.46	0.3859
3000	105	5/1393	0.37	0.5365
4000	105	4/1345	0.30	0.6073
5000	112	5/1434	0.35	0.5720
7-day				
Control	100 (42) d	3/1432	0.21	0.5165*
1000	100	3/1438	0.21	0.6584
2000	103	6/1467	0.41	0.2656
3000	96	4/1366	0.29	0.4742
4000	107	4/1537	0.26	0.5387
5000	100	3/1425	0.21	0.6541
Vanadium pentoxide				
(1314-02-1)				
24-hr				
Control	100 (45) d	4/1356	0.30	0.2771*
0.05	91	6/1259	0.48	0.3324
0.125	93	8/1221	0.66	0.1469
0.375	76	8/1023	0.78	0.0865
0.625	67	9/1337	0.67	0.1277
0.75	51	5/1342	0.37	0.4941
7-day				
Control	100 (35) d	5/1161	0.43	0.0000**
0.125	95	15/1124	1.34	0.0170*
0.375	91	28/1080	2.59	0.0000*
0.625	83	46/986	4.67	0.0000*
0.75	66	70/1071	6.54	0.0000*
0.875	57	91/1150	7.91	0.0000*

RPE, relative plating efficiency; MT, morphological transformed colony; MTF, morphological transformation frequency. *Relative plating efficiency = (test group plating efficiency × solvent control plating efficiency) × 100. **Morphologically transformed colony. †Morphological transformation frequency = (number of MT colonies + total number of colonies) × 100. *Actual target cell plating efficiency in = (number of colonies/dish + number of cells seeded) × 100. *MTF values are significantly greater than control MTF values at p<0.05 as determined by the Fisher’s exact test. *MTF values are not trend test positive at p<0.05 as determined by an unstratified binomial exact permutation trend test (Cytel Software Corp., Cambridge, MA). **MTF values are trend test positive at p<0.05 as determined by an unstratified binomial exact permutation trend test (Cytel Software Corp., Cambridge, MA).
Table 2. Carcinogenicity predictions for 26 chemicals currently being tested in the rodent bioassay.

Chemical, mol. wt., CAS no., purity	NTP rodent bioassay	SHE assay results	Carcinogenicity prediction	
Ellagic acid	Feed		Noncarcinogen	
204.2	1875 1875	-		
84-65-1	7500 7500	24-hr		
99%		All doses (-)		
		Trend test (-)		
		7-day		
		All doses (-)		
		Trend test (-)		
Anthraquinone	Feed		Noncarcinogen	
208.2	1875 1875	-		
84-65-1	7500 7500	24-hr		
99%		All doses (-)		
t-Butylhydroquinone	Feed		Noncarcinogen	
166.2	182 210	-		
1948-33-0	563 545	24-hr		
99%		All doses (-)		
		Trend test (-)		
1-Chloro-2-propanol + 2-chloro-1-propanol (75:25 mix)	Water	34 35 152 159	+ N/A +	Carcinogen
		24-hr		
		3 of 5 doses (+)		
		Trend test (+)		
Cobalt sulfate hydrate	Inhalation	0.47 0.54 0.98 1.00	+ N/A +	Carcinogen
		24-hr		
		5 of 5 doses (+)		
		Trend test (-)		
Codeine	Feed	58 67 338 327	-	
299.4		24-hr		
76-57-3		All doses (-)		
99.8%		Trend test (-)		
		7-day		
		All doses (-)		
		Trend test (-)		
D&C Yellow no. 11	Feed	182 210 NA NA	+ N/A +	Carcinogen
273.3		24-hr		
9003-22-3		5 of 5 doses (+)		
-99%		Trend test (+)		
Diethanolamine	Skin paint	64 32 160 160	+ + +	Carcinogen
105.1		24-hr		
111-42-2		2 of 5 doses (+)		
98.8%		Trend test (+)		
		7-day		
		4 of 5 doses (+)		
		Trend test (+)		
1,2-Dihydro-2,2,4-trimethyquinol (monomer)	Skin paint	100 100 10 10	+ N/A +	Carcinogen
173.3		24-hr		
147-47-7		2 of 5 doses (+)		
>97%		Trend test (+)		
Emodin	Feed	45 53 68 65	+ + +	Carcinogen
270.2		24-hr		
518-82-1		2 of 5 doses (+)		
94.5%		Trend test (+)		

(Continued)
Chemical, mol. wt., CAS no., purity	Route	High dose, mg/kg/day	NTP rodent bioassay	SHE assay results	Carcinogenicity prediction		
Ethylbenzene 106.2 100-41-4 99%	Inhalation	511 586 1063 1083	24-hr +	+	7-day 2 of 5 doses (+) Trend test (+)	Carcinogen	
Ethylene glycol monobutyl ether (monomer) 118.2 111-76-2 99%	Inhalation	95 109 394 402	24-hr +	N/A		Carcinogen	
Furfuryl alcohol 98.1 98-00-0 98%	Inhalation	20 23 42 43	24-hr	—	—	Noncarcinogen	
Gallium arsenide 144.6 1303-00-0 99.9%	Inhalation	0.16 0.18 0.33 0.33	24-hr	+	N/A		Carcinogen
Isobutyraldehyde 72.1 78-84-2 >98%	Inhalation	925 1061 1925 1963	7-day	All doses (−) Trend test (−)	Noncarcinogen		
Methylmaleonitrile 178.2 93-15-2 99%	Gavage	150 150 75 75	24-hr	+	N/A		Carcinogen
Molybdenum trioxide 144.0 1313-27-5 99%	Inhalation	16 18 33 33	24-hr	+	N/A		Carcinogen
Nitromethane 61.0 75-52-5 98%	Inhalation	147 169 612 624	24-hr	+	N/A		Carcinogen
Oxymetholone 332.5 434-07-1 >95%	Gavage	150 100 NA NA	7-day 5 of 5 doses (+) Trend test (+)	+	+	Carcinogen	

(Continued)
Table 2. (Continued)

Chemical, mol. wt., CAS no., purity	NTP rodent bioassay	SHE assay results	Carcinogenicity prediction
Phenolphthalein 318.3 77-09-8 ~98%	Feed 1817 2100 1351 1308 + N/A + 24-hr 3 of 5 doses (+) Trend test (+)	Carcinogen	
Primaclone 218.3 125-33-7 >99%	Feed 91 105 146 142 — — — 24-hr All doses (-) Trend test (-)	Noncarcinogen	
Pyridine 79.1 110-86-1 >99%	Water 21 21 152 80 — — — 24-hr All doses (-) Trend test (-)	Noncarcinogen	
Scopolamine hydrobromide trihydrate 438.3 6533-88-2 ~85%	Gavage 25 25 25 25 + N/A + 24-hr 4 of 5 doses (+) Trend test (+)	Carcinogen	
Sodium nitrite 69.0 7632-00-0 100%	Water 155 160 456 478 + N/A + 24-hr 5 of 5 doses (+) Trend test (+)	Carcinogen	
Sodium xylenesulfonate 208.2 1300-72-7 93%	Skin painting 240 240 727 727 — — — 24-hr All doses (-) Trend test (-)	Noncarcinogen	
Tetrahydrofuran 72.1 109-99-9 >98%	Inhalation 833 955 1733 1767 — — — 24-hr All doses (-) Trend test (-)	Noncarcinogen	
Vanadium pentoxide 181.9 1314-82-1 98%	Inhalation 0.31 0.36 1.96 2.0 — + + 24-hr All doses (-) Trend test (-)	Carcinogen	
exclusively on the SHE cell transformation assay results.

Results and Discussion

As part of the NTP program “Strategies for Predicting Chemical Carcinogenesis in Rodents,” we tested in the SHE cell transformation assay 26 of the chemicals being evaluated by the NTP in the rodent bioassay. Overall, 17 of the 26 chemicals gave a positive response in the SHE cell transformation assay, while 9 chemicals gave a negative response (Table 1). Initially, a 24-h test chemical exposure SHE cell transformation assay was conducted on each of the 26 chemicals. Using this exposure regimen, 14 chemicals were positive (Table 1). For those chemicals that were negative with a 24-h exposure SHE cell transformation assay, an additional 7-day exposure SHE cell transformation assay was performed. Of the 12 chemicals that were negative in the 24-h exposure SHE cell transformation assay, 3 were positive in the 7-day exposure assay, resulting in an overall SHE cell transformation assay call of positive for these three chemicals. We have previously seen this response (24-h negative, 7-day positive) with several chemicals in the SHE cell transformation assay (8). Evidently, chemicals that give a negative 24-h exposure SHE cell transformation assay result and a positive 7-day exposure result must be continuously present in the culture medium for the induction of morphological transformation. As discussed previously (8), this pattern (24-h negative, 7-day positive) indicates a reversible transformation effect that may result from a promotionlike mechanism of action compared to a 24-h positive SHE cell transformation assay result, which reflects a stable, transforming event.

In addition to SHE results, Table 2 includes rodent bioassay predictions for the 26 chemicals based exclusively on SHE cell transformation assay results (Table 2, column 4). The predictions presented in this report are an attempt to demonstrate the usefulness and validity of the SHE assay in chemical carcinogenicity prediction and risk assessment. Our predictions will be compared with the rodent bioassay results when they become available.

REFERENCES

1. Berwald Y, Sachs L. *In vitro* transformation of normal cells to tumor cells by carcinogenic hydrocarbons. J Natl Cancer Inst 35:641–661 (1965).
2. Isfort RJ, Kerckaert GA, LeBoeuf RA. Comparison of the standard and reduced pH Syrian hamster embryo (SHE) cell transformation assays to predict the carcinogenic potential of chemicals. Mutat Res (in press).
3. Barrett JC, Ts’o POP. Mechanistic studies of neoplastic transformation of cells in culture. In: Polycyclic Hydrocarbons and Cancer (Gelboin H, Ts’o POP, eds). New York: Academic Press, 1978:235–267.
4. Isfort RJ, Cody DB, Kerckaert GA, LeBoeuf RA. Growth factor responsiveness and alterations in growth factor homeostasis in Syrian hamster embryo cells during *in vitro* transformation. Carcinogenesis 15:1203–1209 (1994).
5. Barrett JC. The progressive nature of neoplastic transformation of Syrian hamster embryo cells in culture. Prog Exp Tumor Res 24:17–27 (1979).
6. Barrett JC, Hesterberg TW, Thomassen DG. Use of cell transformation systems for carcinogenicity testing and mechanistic studies of carcinogenesis. Pharmacol Rev 36:53–70s (1984).
7. Kerckaert GA, Isfort RJ, Carr GJ, Aardema MJ, LeBoeuf RA. A comprehensive protocol for conducting the Syrian hamster embryo cell transformation assay at pH 6.7. Mutat Res (in press).
8. LeBoeuf RA, Kerckaert GA, Aardema MJ, Gibson DP, Brauninger R. The pH 6.7 Syrian hamster embryo cell transformation assay for assessing the carcinogenic potential of chemicals. Mutat Res (in press).
9. LeBoeuf RA, Kerckaert GA, Poiley JA, Raineri R. An interlaboratory comparison of enhanced morphological transformation of Syrian hamster embryo cells cultured under conditions of reduced bicarbonate concentration and pH. Mutat Res 222:205–218 (1989).
10. Armitage P. Statistical Methods in Medical Research. Oxford: Blackwell Scientific, 1971.
11. CYTEL Software Corporation, StatXact, Cambridge, MA: Cytel Software Corp., 1991.