Cardiac Magnetic Resonance Imaging versus Computed Tomography to Guide Transcatheter Aortic Valve Replacement: Study Protocol for a Randomized Trial (TAVR-CMR)

Gert Klug (gert.klug@tirol-kliniken.at)
Medical University of Innsbruck: Medizinische Universitat Innsbruck
https://orcid.org/0000-0002-4737-0979

Sebastian Reinstadler
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Felix Troger
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Magdalena Holzknecht
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Martin Reindl
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Christina Tiller
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Ivan Lechner
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Priscilla Fink
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Mathias Pamminger
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Christian Kremser
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Hanno Ulmer
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Axel Bauer
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Bernhard Metzler
Medical University of Innsbruck: Medizinische Universitat Innsbruck

Agnes Mayr
Medical University of Innsbruck: Medizinische Universitat Innsbruck
Abstract

Background

The standard procedure for the planning of transcatheter aortic valve replacement (TAVR) is the combination of echocardiography, coronary angiography and cardiovascular computed tomography (TAVR-CT) for the exact determination of the aortic valve dimensions, valve size and implantation route. However, up to 80% of the patients undergoing TAVR suffer from chronic renal insufficiency. Alternatives to reduce the need for iodinated contrast agents are desirable. Cardiac magnetic resonance (CMR) imaging recently has emerged as such an alternative. Therefore, we aim to investigate, for the first time, the non-inferiority of TAVR-CMR to TAVR-CT regarding efficacy and safety end-points.

Methods

This is a prospective, randomized, open-label trial. It is planned to include 250 patients with symptomatic severe aortic stenosis scheduled for TAVR based on a local heart-team decision. Patients will be randomized in a 1:1 fashion to receive a predefined TAVR-CMR protocol or to receive a standard TAVR-CT protocol within two weeks after inclusion. Follow-up will be performed at hospital discharge after TAVR and after one and two years. The primary efficacy outcome is device implantation success at discharge. The secondary endpoints are a combined safety endpoint and a combined clinical efficacy endpoint at baseline and at one and two years, as well as a comparison of imaging procedure related variables. Endpoint definitions are based on the updated 2012 VARC-2 consensus document.

Discussion

TAVR-CMR might be an alternative to TAVR-CT for planning a TAVR procedure. If proven to be effective and safe, a broader application of TAVR-CMR might reduce the incidence of acute kidney injury after TAVR and thus improve outcomes.

Trial registration:

The trial is registered at ClinicalTrials.gov (NCT03831087). The results will be disseminated at scientific meetings and publication in peer-reviewed journals.

Administrative Information

Note

the numbers in curly brackets in this protocol refer to SPIRIT checklist item numbers. The order of the items has been modified to group similar items (see http://www.equator-network.org/reporting-
guidelines/spirit-2013-statement-defining-standard-protocol-items-for-clinical-trials/).
Title (1)	Cardiac Magnetic Resonance Imaging Versus Computed Tomography to Guide Transcatheter Aortic Valve Replacement: A Randomized Trial (TAVR-CMR)
Trial registration (2a and 2b).	ClinicalTrials.gov (NCT03831087)
Protocol version (1)	29th of July 2019. Version 4.0
Funding (4)	Applied.
Author details (5a)	Klug Gert, MD¹
Reinstadler Sebastian, MD, PhD¹
Troger Felix, MD¹
Holzknecht Magdalena, MD¹
Reindl Martin, MD, PhD¹
Tiller Christina, MD, PhD¹
Lechner Ivan, MD¹
Fink Priscilla, MD¹
Pamminger Mathias, MD²
Kremser Christian, PhD²
Ulmer Hanno, PhD³
Bauer Axel, MD¹
Metzler Bernhard, MD, MSc, FESC²
Mayr Agnes, MD² |

¹ University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Austria
² University Clinic of Radiology, Medical University of Innsbruck, Austria
³ Department for Medical Statistics, Informatics and Health Economy, Medical University of Innsbruck, Austria
Introduction

Background and rationale

Severe aortic stenosis is defined as an aortic valve area (AVA) of ≤1.0cm² and a mean transaortic valve gradient of ≤40mmHg (2). The treatment of symptomatic patients with aortic valve replacement (AVR) is an accepted and well validated (3–7) class I B indication in ESC and ACC/AHA guidelines (1, 2). Recent randomized controlled trials have proven the benefits of transcatheter aortic valve replacement (TAVR) in patients with symptomatic severe aortic stenosis and intermediate to very-high surgical risk (8–10).

Accordingly, the most recent guidelines recommend TAVR in patients with severe symptomatic aortic stenosis and a predicted life expectancy >12 months with a class I B if surgical risk is prohibitive and a class IIa C indication if patients are at high surgical risk (1). The decision for TAVR must be based on the agreement of the “Heart Valve Team” (2). Since its introduction, more than 350,000 patients have undergone TAVR and its utilization rapidly increases. In some countries more than 50% of isolated AVRIs are performed via transcatheter techniques (11).

The standard procedure for the evaluation of patients for TAVR is the combination of transthoracic and transesophageal echocardiography (TTE and TEE), coronary angiography and cardiovascular computed tomography (TAVR-CT) for the exact determination of the aortic valve dimensions, valve size and implantation route (12). This approach is based on the use of ionated contrast agents in three different occasions (angiography, CT and implantation). However, up to 80% of the patients undergoing TAVR suffer from chronic renal insufficiency (13). Reduced renal function and the amount of contrast agent used for CT have been linked to contrast induced acute kidney injury (14). Acute kidney injury occurs in 12% of TAVR procedures and is an independent predictor of in-hospital mortality (odds ratio (OR): 4.14, CI 1.42-12.13) (15). In Austria, 1426 (~17/100.000/year) TAVR procedures were performed in 2019 (16) and 24,386 (~29/100.000/year) TAVRs were performed in Germany in 2019, respectively (17). Based on this data more than 17,000 patients with impaired renal function undergo TAVR each year in Austria and
Germany. It can be estimated that near on 3000 of these patients will suffer from periprocedural acute kidney injury. As recent data have shown that 3% need in-hospital renal replacement therapy and 2% need chronic renal replacement therapy 6 months after TAVR, this sums up to 750 and 500 patients per year (18, 19). Therefore, alternatives to reduce the need for iodinated contrast agents are desirable (20, 21). Cardiac magnetic resonance (CMR) imaging recently has emerged as such an alternative (22, 23).

La Manna et al. investigated 49 patients that were planned to undergo TAVR with TEE and cine steady-state free precession (SSFP) CMR and found a moderate correlation of both methods (r^2: 0.58) regarding aortic annulus size and CMR showed a significant trend to overestimation (TEE 21.4 ± 1.9 mm CMR: 23.7 ± 2.2 mm) (22). However, annulus sizing was only performed in one dimension in this study. Jabbour et al. investigated 202 consecutive patients, which were scheduled for TAVR with CMR, CT and TEE and demonstrated a small bias between CMR and CT (0.39 mm) but a large bias between CMR or CT and TEE (4.52 mm and 4.1 mm) for the largest aortic valve (AV) annulus diameter. The authors conclude that CMR and CT are both reliable methods for the sizing of the AV annulus before TAVR (24). However, in this study no assessment of peripheral arteries and vascular access routes has been performed. To study the impact of calcification on the agreement of CMR and CT for the sizing of the aortic annulus Tsang et al. performed ex vivo scans on calcium containing aortic rings and demonstrated that CMR and CT both have a very good correlation with known ring diameters and near zero biases. CMR, however, had smaller limits of agreement than CT (-0.94 to 1.30 versus -1.08 to 1.79). Furthermore, an increase in calcification leads to an increase in measurement variability for TEE and CT (25). Koos et al. compared CMR and CT in 58 patients which were evaluated for TAVR and found no relevant difference between CMR and CT regarding annulus diameter (23.4 ± 1.8 mm and 23.6 ± 1.8 mm, p=0.86), left coronary ostial height (13.2 ± 1.8 mm and 13.3 ± 1.7 mm, p=0.86) and the length of the left coronary leaflet (12.3 ± 1.4 mm and 12.3 ± 1.4 mm, p=0.81). The authors conclude however, “in absence of gold standard a randomized prospective study may give insight into the imaging modality resulting in best procedural outcome” (26).

Recently, Ruile et al. investigated the aortic roots of 69 patients who underwent pre-TAVR CT with 3D non-contrast fast low angle shot (FLASH) CMR and found good agreement of both methods regarding the measurement of aortic annulus area (intraclass correlation 0.961) as well as the distance to the right and left coronary artery (intraclass correlation 0.894 and 0.797) (27). Promising results have been achieved by Renker et al. in 10 healthy volunteers when comparing a non-contrast self-navigated 3D sequence to a standard 2D-SSFP CMR protocol to study aortic dimensions form the aortic root to the iliac arteries. This study promises a completely contrast-free CMR protocol for the planning of valve size and access routes before TAVR. However, further feasibility studies in patients with aortic stenosis and calcified peripheral vessels are needed (28). Novel approaches even utilize real-time CMR for the guidance of TAVR and report easy and effective deployment with the use of the CoreValve and a minimally modified catheter system, which opens the field for a further reduction in contrast and radiation dose during the course of a TAVR procedure (29, 30). Furthermore, the use of CMR in patients with degenerated bioprosthetic aortic valves before TAVR was shown to be feasible (31).

We have previously presented a fully CMR guided approach to TAVR planning including aortic root sizing, determination of ostial and leaflet distances and the evaluation of peripheral vascular access routes (32).
Moreover, we showed for the first time the feasibility of a completely non-contrast enhanced CMR protocol and presented a prototype, navigator-free “whole-heart” CMR angiography for TAVR planning (33, 34). According to the presented data, CMR is considered as a safe alternative to CT and TEE in the planning of TAVR procedures by leading experts in the field (12, 35, 36). However, no randomized trial has shown the non-inferiority of CMR to CT in terms of efficacy and safety.

Objectives {7}

The primary objective of the present study is (a) to prove the non-inferiority of TAVR-CMR compared to TAVR-CT to plan TAVR according to clinical efficacy, defined as implantation success based on the VARC-2 criteria (37). Secondary objectives are to prove the non-inferiority of TAVR-CMR compared to TAVR-CT to plan TAVR with regard of (b) a combined safety endpoint, based on the VARC-2 criteria (37). Furthermore, (c) an extended clinical efficacy and safety follow-up for the non-inferiority of TAVR-CMR versus CT after 2 years as well as (d) assess imaging procedure related variables and (e) to study the accuracy of TAVR-CMR and TAVR-CT for the evaluation of patients undergoing TAVR compared to TAVR-TEE measurements.

Trial design {8}

The present trial is a prospective, randomized, open-label trial to prove the non-inferiority of TAVR-CMR compared to TAVR-CT to guide TAVR. The final analysis will include 226 consecutive patients scheduled for TAVR. According to previous studies, approximately 45% of the patients are female (9). Therefore, to guarantee gender equity we aim to enroll at least 80 female patients. Patients will be randomized in a 1:1 fashion to receive a predefined TAVR-CMR protocol or to receive a standard contrast-enhanced TAVR-CT protocol within two weeks after inclusion. Inclusion and exclusion criteria are presented below. A detailed study flowchart is presented by figure 3. Follow-up for the primary objective will be performed before discharge after TAVR. Extended analysis and clinical follow-up is planned after 2 years.

Methods

Study setting {9}

This project will be carried out as a single-centre study located at the University Clinic for Internal Medicine III (Cardiology) and the University Clinic of Radiology at Innsbruck Medical University (Radiology Core Lab). Moreover, the infrastructure available at Innsbruck Medical University including the Department of Medical Statistics, Informatics and Health Economics as well as the Clinical Trial Center will assist the conduct of the study and warranting the successful accomplishment of the project.

Table 1: Individual Study Time-Table. *Abbreviations: TAVR = transcatheter aortic valve replacement; CMR = Cardiovascular magnetic resonance; CT = Computed tomography.*
Eligibility criteria (10)

Patients aged from 19 to 99 years with a decision for TAVR for symptomatic severe aortic stenosis according to the decision of the local “heart valve team”. Screening will be performed during the “heart valve team” meetings, which are conducted once a week. Eligible patients will then be asked for study participation and checked for the following inclusion and exclusion criteria.

Inclusion criteria:

1. Signed informed consent
2. Severe aortic stenosis according to recent guidelines (aortic valve area ≤1.0cm² or aortic valve index ≤0.6 cm²/m²) (2)
3. Typical symptoms of severe aortic stenosis like shortness of breath, angina or syncope
4. Decision for TAVR according to the local “heart valve team” including cardiologists and cardiac surgeons

Exclusion criteria:

1. Contraindications to perform CMR
2. Contraindications to perform CT
3. Contraindications for TAVR or reduced life expectancy <1 year.
4. Known hypersensitivity to CMR or CT contrast agents
5. Killip class ≥3
6. Childbearing potential or inability to exclude pregnancy
7. Inability to understand and follow study-related instructions
8. Severe renal insufficiency requiring renal replacement therapy
9. Severe hepatic insufficiency (Child-Pugh class B or C)
10. Post organ transplantation
11. Participation in another clinical study

Withdrawal criteria:

1. Patients request without giving reasons
2. Administrative decision by the investigator
3. Pregnancy
4. Significant protocol deviation
5. Subject noncompliance
6. Adverse event
7. Other safety concern of the investigator or sponsor
8. Lost to follow-up

Who will take informed consent? {26a}

After the identification of the individual patient, he will be asked by a senior physician of the study team to give informed consent to the participation in the study.

Additional consent provisions for collection and use of participant data and biological specimens {26b}

In this study the patient consents to the performance of all study procedures including the study intervention, blood samples and further investigations. No storage or biobanking of biological specimens is planned.

Interventions

Explanation for the choice of comparators {6b}

Currently, only few publications investigated the role of CMR to guide TAVR planning. So far, only small trials have been published and they investigate only one aspect (aortic root dimensions or peripheral arteries) of the whole planning procedure (32, 33). What is more, these studies have not been performed in a randomized fashion.

Intervention description {11a}

Cardiovascular Magnetic Resonance (CMR)
All CMR examinations will be performed with a 1.5T clinical MR imaging unit (AVANTO; Siemens, Erlangen, Germany). The MR protocol consists of a Navigator-gated free breathing 3D “whole-heart” coronary magnetic resonance angiography (MRA), axial 2D true fast imaging with steady-state free precession (true-FISP) during free breathing covering whole body trunk and a coronal 3D fast low-angle shot (FLASH) Gd-MRA.

- **Navigator-gated free breathing 3D “whole-heart” coronary MRA:**

Planning of the whole-heart acquisition includes the placement of a cubic field of view at the level of the bulbus aortae as identified at axial, coronal and parasagittal localizers. The acquisition method is both cardiac triggered and respiratory gated. For an accurate respiratory gating real-time position of the diaphragm is monitored by the use of navigator echos. A line of signal is reconstructed from each navigator echo and displayed as a trace. The boundary between the low signal intensity in the lung and the relatively high signal intensity in the liver creates an edge that can easily be detected and used as a gating signal, which accurately reflects the diaphragm position and is used to determine whether the data is accepted or rejected. The accuracy of this method allows narrow gating windows (3.5 mm) to be set for high resolution applications. Following MR parameters will be used for this “whole-heart technique”: repetition time (TR) [ms] / echo time (TE) [ms]: 356 / 1.57; field of view (FOV): 350 × 262 x 58mm; matrix: 148 × 256 x 72; acquired voxel size: 1.36 × 1.36 × 0.8mm; flip angle: 90°; and receiver bandwidth: 592 Hz/pixel.

- **3D fast low-angle shot (FLASH) Gd-MRA**

Coronal breath-hold fast low-angle shot (FLASH) 3D-MRA will be acquired before and after the intravenous administration of 0.2mmol/kg of Gd-D03A-butriol (Gadovist™, Schering, Berlin, Germany) at 2ml/s, followed by 20ml of saline flush, administered using an automatic injector (Spectris Injection System, Medrad, Pittsburgh, USA). To define the time delay between contrast injection and image acquisition, we use a semi-automatic synchronization protocol based on the visual inspection of the contrast bolus arrival in the left ventricle (care-bolus). Following MR parameters will be used: TR / TE: 3 / 1 ms; flip angle: 30°; one excitation; 112 partitions; slice thickness: 1.25mm; pixel size, 1.3mm × 1.3mm x 1.3mm; acquisition time: 12s.

Computed Tomography (CT)

All CT examinations will be performed on a 128-slice dual-source CT (128 mm × 0.6 mm detector collimation, 0.28 second gantry rotation time) and high-pitch factor (3.2; Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany). Prospective electrocardiographic synchronization will be applied, triggered into the diastolic phase for the heart. An injected bolus of 70 to 110 mL of nonionic iodine contrast agent will be applied with 370 mg/mL iodine concentration (Iopromide, Ultravist 370, Bayer Schering Pharma, Berlin, Germany), using an automatic injector at a flow rate of 5mL/s, followed by 40mL saline solution. Contrast agent volume for each patient will be calculated by scan time and body
weight. Patients will be placed supine with arms overhead. The scan length range from supraaortic branches to the groin.

CMR and CT Data Analysis

Both, an experienced cardiologist and radiologist rate CMR and CT data in a blinded manner. Measurements will be performed at reconstructed 3D “whole-heart” coronary MRA and aortic CTA by rotating the segmented aortic root and left ventricular chamber:

- Rating of aortic valve morphology (bicuspid vs tricuspid)
- Measurements of the aortic annulus at the 3 connection points (“hinge points”) of the aortic valve cusp insertion (“deepest coronary sinus points”)
- Measurements of coronary ostia heights of the left and right coronary artery (= distance from the annulus)

At true-FISP and contrast-enhanced MRA as well as CTA:

- Complete standardized peripheral TAVR-planning including aortic and iliac artery sizing

The choice of prosthesis size for both Edwards Sapien and CoreValve as well as the suitability of the TAVR procedure via femoroiliac access is made for each imaging modality separately, based on manufacturer’s recommendations. Sapien 23mm is chosen for an annulus perimeter range of 60–70.5mm, the 26mm valve for a perimeter range of 70.5–80mm, and the 29mm valve for a perimeter range of 80–90mm, whereas perimeter ranges (69-72mm) and (78.5-81.5mm) is considered to fit for both, lower and larger valve size. CoreValve 23mm is chosen for an annulus perimeter range of 56.5-62.8mm, the 26mm valve for a perimeter range of 62.8–72.3mm, the 29mm valve for a perimeter range of 72.3-84.8mm and CoreValve 31mm for a perimeter range of 81.7-91.1, whereas perimeter range (81.7-91.1mm) was considered to fit for both, CoreValve 29mm and CoreValve 31mm.

Criteria for discontinuing or modifying allocated interventions (11b)

In this study, following withdrawal criteria apply:

1. Patients request without giving reasons
2. Administrative decision by the investigator
3. Pregnancy
4. Significant protocol deviation
5. Subject noncompliance
6. Adverse event
7. Other safety concern of the investigator or sponsor
8. Lost to follow-up
The sponsor is authorized to discontinue the study due to relevant medical/administrative causes. The reasons for the discontinuation of the study have to be documented in detail. Patients, who are still under treatment at the time of discontinuation, have to be examined for a final investigation, which will be documented in the CRF. If the investigator has any ethical qualms concerning the continuation of the study, this has to be immediately reported to the sponsor.

The sponsor is authorized to discontinue the study, if

- The recruitment rate of patients is not sufficient
- Serious, non-resolvable problems of quality of the collected data evolve
- Unpredictable circumstances in the particular study centers appear, which do not allow a continuation of the study
- New scientific findings during the study’s run-time do not allow a continuation of the study

The study administration is able to decide about the discontinuation of the study in agreement with the sponsor, the Data Safety Monitoring Board or the protocol committee.

The study must be closed on completion. As far as possible, premature closure should occur after mutual consultation. Depending on local legislation, it may be necessary to inform the ethics committees and the regulatory authorities when the study site is closed.

Upon closure of the entire study or a single center, all study materials (completed, partially completed and blank CRFs, study medication, etc.) must be returned to the sponsor and disposed or archived as directed by the sponsor.

Strategies to improve adherence to interventions (11c) and relevant concomitant care permitted or prohibited during the trial (11d)

Cross-over between allocated groups because of clinical reasons should be minimized and will be documented. Non-contrast CT scans to assess calcium load if CMR is not sufficient should also be minimized especially by discussing special cases within the TAVR team including TAVR operators and radiologists. Patients included in the study are informed that they should not participate in another experimental study during the study period. Furthermore, no restrictions are made regarding clinical care of the patients.

Outcomes (12)

Follow-up will be conducted at discharge as well as 2 years after TAVR. Follow-up study investigations are summarized in table 1. End-point definitions will be based on the updated 2012 VARC-2 consensus document (37).

Primary Endpoint:
The primary outcome will be a composite clinical efficacy end-point related to implantation success at hospital discharge, based on the VARC-2 criteria (37):

- Absence of procedural mortality AND
- Correct positioning of the prosthetic valve AND
- Intended performance of the prosthetic valve (mean aortic valve gradient <20mmHg and no valve regurgitation > mild)

Secondary Endpoints:

Secondary end-points consist of clinical efficacy and safety end-points at discharge and 2 years.

Combined Safety End-point:

- All-cause mortality
- All strokes
- Life-threatening bleeding
- Acute kidney injury – Stage 2 or 3 (including renal replacement therapy)
- Coronary artery obstruction requiring intervention
- Major vascular complications
- Valve-related dysfunction requiring repeat procedure

Combined Clinical efficacy End-point:

- All-cause mortality
- All stroke
- Hospitalization for aortic valve related symptoms or heart failure
- NYHA class III or IV
- Prosthetic valve related dysfunction (mean gradient >20mmHg or regurgitation > mild)

Furthermore, the two imaging strategies will be compared regarding imaging procedure related variables:

- Percentage of interpretable scans and scoring of image quality.
- Percentage of patients with need for an alternative imaging method.
- Duration of imaging and patient comfort.
- Cumulative radiation dose during TAVR planning.
- Cumulative amount of contrast agent used for TAVR planning
- Imaging related safety parameters as contrast extravasation, allergic reactions et cetera.

Finally, biomarker levels at baseline as well as at follow-up visits will be investigated.
Participant timeline (13) and Provisions for post-trial care (30)

The time-table for the individual participant is presented in table 1. After individual completion of the study period, patients are advised to seek regular follow-up examinations at their referring physician. A patient insurance covers cost for compensation of harm.

Sample size (14) and Recruitment (15)

Sample size estimation for the primary endpoint is based on previous data indicating a rate of 4% of early deaths, 4% of valve regurgitation >mild and 0.4% of reinterventions after TAVR (10). Therefore, we estimate an implantation success rate of 92% in both study groups. For a non-inferiority margin of 9%, hence 113 patients per group should be included to achieve a statistical power of 80%. A drop-out rate of 10% is assumed. Therefore, it is planned to include a total of 250 patients in the trial.

Assignment of interventions: allocation

Sequence generation (16a), Concealment mechanism (16b), Implementation (16c)

Patients will undergo randomization after informed consent is given. Randomization will be performed with the randomization module of the web-based database program REDCap (Research Electronic Data Capture, REDCap, Vanderbilt University 2016). The allocation sequence is based on computer-generated random numbers without stratification. The allocation table is generated in a separate file uploaded to the REDCap randomization module before the database is going to the production status.

Assignment of interventions: Blinding

Who will be blinded (17a), Procedure for unblinding if needed (17b)

The randomizing physicians are blinded to the allocation table. Due to the nature of the study, the assignment to the study intervention (diagnostic test) and the image interpretation will be performed open-label. Furthermore, TAVR operators are not blinded. Study personnel responsible for the evaluation of end-points will be blinded regarding the allocated intervention. Unblinding procedures are not necessary due to the open-label design of the study.

Data collection and management

Plans for assessment and collection of outcomes (18a) and plans to promote participant retention and complete follow-up (18b)

Patient data will be pseudonymized for study purposes. All patient data will be assessed on a paper based CRF. Variables will be entered from clinical available source data (patient record) or via direct entry
based on the information given by patients or the clinical examination. For the purpose of electronic data processing the data will then be transferred into a database (Research Electronic Data Capture, REDCap, Vanderbilt University 2016).

If a patient does not return for a scheduled visit, every effort will be made to contact the patient. In any circumstance, every effort will be made to document patient outcome, if possible. If a patient decides to withdraw from the study, he/she will be contacted in order to obtain information about the reason for discontinuation if the patient agrees. The date and reason for the withdrawal will be recorded in the case report form (CRF). The study is registered at www.clinicaltrials.gov (NCT03831087).

Data management (19), Confidentiality (27)

Principal investigator and co-investigators will monitor observational and medical record data throughout the duration of the study and will operate independently from the funder. The principal investigator will be responsible for all aspects of the trial. All data files will be stored in a locked file cabinet inside our institution. Only the staff listed in the application will have access to the files and at no time will data files be shared with collaborators outside the institution. Patient medical record numbers will be assigned a study ID number in a master key, and study IDs will be used on all research documents. Only the principal investigator, co-investigators, and data manager will have access to the master key. We assure that any publications and presentations of the data will not allow for the identification of patients, hospitals, or physicians.

Statistical methods

Statistical analysis will be performed with SPSS 26.0. (IBM, Armonk, NY, USA) for Windows.

Statistical analysis will be supervised by an independent statistician from the Department of Medical Statistics, Informatics and Health Economics (Innsbruck Medical University). Normally distributed continuous variables will be presented as mean ± standard deviation, not normally distributed continuous variables as median with corresponding interquartile range (IQR). Categorical variables will be displayed as the number and percentage of patients. Pearson or Spearman correlations will be calculated as appropriate. χ²-test will be used to compare categorical variables between groups. ANOVA with Bonferroni post-hoc testing (if ND) and Mann-Whitney-U (if not ND) will be used to determine differences in continuous variables between groups. Time-to-event is defined as time from the TAVR procedure to the date of the first end-point. Kaplan-Meier survival curves will be determined and log-rank comparison will be used between groups. Uni- and multivariate Cox-regression analysis will be used to estimate hazard ratios for all left ventricular variables. Factors with univariate association with the primary end-points with significance <0.1 will be entered in multivariate analysis. For all data a 2-tailed p-value of p <0.05 will be considered to indicate statistical significance. No interim analysis is planned.
Discussion

This research is highly significant, as a broader usage of CMR in the planning of TAVR might have an immense impact on the incidence of postinterventional kidney injury and might furthermore improve clinical outcome. Thus, TAVR-CMR could represent a reasonable alternative to the current routine standard of TAVR-CT. With increasing age, aortic stenosis is a major burden for affected patients and, thus, represents a huge challenge for Western health care systems. With growing postoperative risk, patients are more likely to benefit from TAVR; however, especially these patients are at higher risk of suffering periinterventional kidney failure due to a high cumulative dose of contrast agent (13). This patient population seems to be the main target group to profit from the alternative use of TAVR-CMR. What is more, CMR appeared to show higher accuracy than CT and 3D-echocardiography in assessing aortic annulus dimensions ex vivo as well as in vivo, while CT seemingly tends to underestimate annular size (25). Due to the potential prevention of postinterventional kidney injury, CMR can also be expected to reduce costs albeit being more expensive upfront. Furthermore, chronic kidney disease and consequential renal replacement therapy have a massive impact on quality of life in terms of physical, functional, metabolic, social and mental conditions (38), which again adds to treatment costs.

Anyway, we do acknowledge that our study bears some limitations. Firstly, TAVR-CMR is still not widely available and for now can be performed primarily in tertiary-care centres. Additionally, CT surpasses MRI especially in the characterization of aortic and valvular calcification, which indeed is a common concomitant feature of AV stenosis. Lastly, in patients with claustrophobia or other contraindications for MRI, TAVR-CMR can hardly be performed.

Trial status

The trial protocol has been approved by Ethics Committee of Medical University Innsbruck The study initiation was held in July 2019. Current study protocol version number 4.0 is basis for this manuscript and written in accordance with the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Statement.

Abbreviations
Declarations

Acknowledgements

Not applicable

Author's contribution

All listed authors contribute to this work in terms of a) conception, design, analysis or interpretation of data; b) manuscript drafting and revising; and c) final manuscript approval.

Funding

Applied.
Availability of data and material

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval, Consent for publication

This study will be conducted in accordance with the ethical principles of the 1975 Declaration of Helsinki. Before starting with the examinations, the patient will be informed of the nature of the study. All the procedures to which the patient will be exposed to, will be explained in the information sheet for patients. Written informed consent must be obtained from each subject and each subject must receive a copy of the signed informed consent statement. A patient can be withdrawn from the study at any time if it is the wish of the patient, or if it is medically necessary, as judged by the investigator.

Competing interests

The authors declare that they have no competing interests.

References

1. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2014;63(22):e57-185.
2. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012). European heart journal. 2012;33(19):2451-96.
3. Otto CM, Pearlman AS. Doppler echocardiography in adults with symptomatic aortic stenosis. Diagnostic utility and cost-effectiveness. Archives of internal medicine. 1988;148(12):2553-60.
4. Brown JM, O’Brien SM, Wu C, Sikora JA, Griffith BP, Gammie JS. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. The Journal of thoracic and cardiovascular surgery. 2009;137(1):82-90.
5. Rosenhek R, Binder T, Porenta G, Lang I, Christ G, Schemper M, et al. Predictors of outcome in severe, asymptomatic aortic stenosis. The New England journal of medicine. 2000;343(9):611-7.
6. Turina J, Hess O, Sepulcri F, Krayenbuehl HP. Spontaneous course of aortic valve disease. European heart journal. 1987;8(5):471-83.
7. Kelly TA, Rothbart RM, Cooper CM, Kaiser DL, Smucker ML, Gibson RS. Comparison of outcome of asymptomatic to symptomatic patients older than 20 years of age with valvular aortic stenosis. The American journal of cardiology. 1988;61(1):123-30.
8. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. The New England journal of medicine. 2011;364(23):2187-98.

9. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. The New England journal of medicine. 2016;374(17):1609-20.

10. Mack MJ, Leon MB, Smith CR, Miller DC, Moses JW, Tuzcu EM, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2477-84.

11. Institut für angewandte Qualitätsförderung und Forschung im Gesundheitswesen A. Qualitätsreport 2014. Göttingen.; 2015.

12. Zamorano JL, Goncalves A, Lang R. Imaging to select and guide transcatheter aortic valve implantation. European heart journal. 2014;35(24):1578-87.

13. Barbash IM, Ben-Dor I, Dvir D, Maluenda G, Xue Z, Torguson R, et al. Incidence and predictors of acute kidney injury after transcatheter aortic valve replacement. American heart journal. 2012;163(6):1031-6.

14. Weisbord SD, Mor MK, Resnick AL, Hartwig KC, Palevsky PM, Fine MJ. Incidence and outcomes of contrast-induced AKI following computed tomography. Clinical journal of the American Society of Nephrology : CJASN. 2008;3(5):1274-81.

15. Bagur R, Webb JG, Nietlispach F, Dumont E, De Larochelliere R, Doyle D, et al. Acute kidney injury following transcatheter aortic valve implantation: predictive factors, prognostic value, and comparison with surgical aortic valve replacement. European heart journal. 2010;31(7):865-74.

16. Huber K, Ulmer H, Lang IM, Muhlberger V. Coronary interventions in Austria, Germany, and Switzerland. Eur Heart J. 2020;41(27):2599-600.

17. A. IfaQuFiG. Institut für angewandte Qualitätsförderung und Forschung im Gesundheitswesen A. Qualitätsreport 2020. Göttingen. 2020.

18. Thongprayoon C, Cheungpasitporn W, Srivali N, Harrison AM, Gunderson TM, Kittanamongkolchai W, et al. AKI after Transcatheter or Surgical Aortic Valve Replacement. Journal of the American Society of Nephrology : JASN. 2016;27(6):1854-60.

19. Thongprayoon C, Cheungpasitporn W, Srivali N, Ungprasert P, Kittanamongkolchai W, Greason KL, et al. Acute kidney injury after transcatheter aortic valve replacement: a systematic review and meta-analysis. American journal of nephrology. 2015;41(4-5):372-82.

20. Chieffo A, Giustino G, Spagnolo P, Panoulas VF, Montorfano M, Latib A, et al. Routine Screening of Coronary Artery Disease With Computed Tomographic Coronary Angiography in Place of Invasive Coronary Angiography in Patients Undergoing Transcatheter Aortic Valve Replacement. Circulation Cardiovascular interventions. 2015;8(7):e002025.
21. Spagnolo P, Giglio M, Di Marco D, Latib A, Besana F, Chieffo A, et al. Feasibility of ultra-low contrast 64-slice computed tomography angiography before transcatheter aortic valve implantation: a real-world experience. European heart journal cardiovascular Imaging. 2016;17(1):24-33.

22. La Manna A, Sanfilippo A, Capodanno D, Salemi A, Polizzi G, Deste W, et al. Cardiovascular magnetic resonance for the assessment of patients undergoing transcatheter aortic valve implantation: a pilot study. J Cardiovasc Magn Reson. 2011;13:82.

23. Bernhardt P, Rodewald C, Seeger J, Gonska B, Buckert D, Radermacher M, et al. Non-contrast-enhanced magnetic resonance angiography is equal to contrast-enhanced multislice computed tomography for correct aortic sizing before transcatheter aortic valve implantation. Clinical research in cardiology: official journal of the German Cardiac Society. 2016;105(3):273-8.

24. Jabbour A, Ismail TF, Moat N, Gulati A, Roussin I, Alpendurada F, et al. Multimodality imaging in transcatheter aortic valve implantation and post-procedural aortic regurgitation: comparison among cardiovascular magnetic resonance, cardiac computed tomography, and echocardiography. Journal of the American College of Cardiology. 2011;58(21):2165-73.

25. Tsang W, Bateman MG, Weinert L, Pellegrini G, Mor-Avi V, Sugeng L, et al. Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart. 2012;98(15):1146-52.

26. Koos R, Altiok E, Mahnken AH, Neizel M, Dohmen G, Marx N, et al. Evaluation of aortic root for definition of prosthesis size by magnetic resonance imaging and cardiac computed tomography: implications for transcatheter aortic valve implantation. International journal of cardiology. 2012;158(3):353-8.

27. Ruile P, Blanke P, Krauss T, Dorfs S, Jung B, Jander N, et al. Pre-procedural assessment of aortic annulus dimensions for transcatheter aortic valve replacement: comparison of a non-contrast 3D MRA protocol with contrast-enhanced cardiac dual-source CT angiography. European heart journal cardiovascular Imaging. 2016;17(4):458-66.

28. Renker M, Varga-Szemes A, Schoepf UJ, Baumann S, Piccini D, Zenge MO, et al. A non-contrast self-navigated 3-dimensional MR technique for aortic root and vascular access route assessment in the context of transcatheter aortic valve replacement: proof of concept. European radiology. 2016;26(4):951-8.

29. Chan JL, Mazilu D, Miller JG, Hunt T, Horvath KA, Li M. Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model. International journal of computer assisted radiology and surgery. 2016.

30. Miller JG, Li M, Mazilu D, Hunt T, Horvath KA. Robot-assisted real-time magnetic resonance image-guided transcatheter aortic valve replacement. The Journal of thoracic and cardiovascular surgery. 2016;151(5):1407-12.

31. Quail MA, Nordmeyer J, Schievano S, Reinthaler M, Mullen MJ, Taylor AM. Use of cardiovascular magnetic resonance imaging for TAVR assessment in patients with bioprosthetic aortic valves: comparison with computed tomography. European journal of radiology. 2012;81(12):3912-7.
32. Mayr A, Klug G, Reinstadler SJ, Feistritzer HJ, Reindl M, Kremser C, et al. Is MRI equivalent to CT in the guidance of TAVR? A pilot study. Eur Radiol. 2018;28(11):4625-34.

33. Pamminger M, Klug G, Kranewitter C, Reindl M, Reinstadler SJ, Henninger B, et al. Non-contrast MRI protocol for TAVI guidance: quiescent-interval single-shot angiography in comparison with contrast-enhanced CT. Eur Radiol. 2020.

34. Pamminger M, Kranewitter C, Kremser C, Reindl M, Reinstadler SJ, Henninger B, et al. Self-navigated versus navigator-gated 3D MRI sequence for non-enhanced aortic root measurement in transcatheter aortic valve implantation. Eur J Radiol. 2021;137:109573.

35. Chaturvedi A, Hobbs SK, Ling FS, Knight P. MRI evaluation prior to Transcatheter Aortic Valve Implantation (TAVI): When to acquire and how to interpret. Insights into imaging. 2016;7(2):245-54.

36. Gopal A, Grayburn PA, Mack M, Chacon I, Kim R, Montenegro D, et al. Noncontrast 3D CMR imaging for aortic valve annulus sizing in TAVR. JACC Cardiovascular imaging. 2015;8(3):375-8.

37. Kappetein AP, Head SJ, Genereux P, Piazza N, van Mieghem NM, Blackstone EH, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. Journal of the American College of Cardiology. 2012;60(15):1438-54.

38. Al Wakeel J, Al Harbi A, Bayoumi M, Al-Suwaida K, Al Ghonaim M, Mishkiry A. Quality of life in hemodialysis and peritoneal dialysis patients in Saudi Arabia. Ann Saudi Med. 2012;32(6):570-4.

Figures
Figure 1

Study design flow chart. TAVR = transcatheter aortic valve replacement; CMR = Cardiovascular magnetic resonance; CT = Computed tomography.