Two coupled Josephson junctions: dc voltage controlled by biharmonic current

L Machura, J Spiechowicz, M Kostur and J Łuczka

Institute of Physics, University of Silesia, Katowice, Poland

E-mail: Jerzy.Luczka@us.edu.pl

Received 7 September 2011, in final form 3 January 2012
Published 26 January 2012
Online at stacks.iop.org/JPhysCM/24/085702

Abstract

We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa.

(Some figures may appear in colour only in the online journal)

1. Introduction

Transport phenomena in periodic structures by harvesting the unbiased external time-periodic stimuli and thermal equilibrium fluctuations have been one of the hottest topics in modern science. Examples range from biology and biophysics [1] to explain directed motion of biological motors [2] and particle transport in ion channels [3], or to design new separation techniques [4], to meso- and nanophysics covering the newest and most up-to-date experiments with optical lattices [5], persistent currents in quantum rings [6] and Josephson junctions [7], to mention only a few. The physics of the latter has been studied for almost five decades now [8]. Devices with Josephson junctions constitute a paradigm of nonlinear systems exhibiting many interesting phenomena in classical and quantum regimes. Yet new and interesting phenomena arise as researchers are able to use the advantage of powerful computer simulations followed by real experiments on junctions proving theoretically predicted findings [9–11]. In this paper we study a system of two coupled Josephson junctions driven by an external ac current having two harmonics. Such driving has been considered as a source of energy pumped into the system and as an agent transferring the system to non-equilibrium states. Transport phenomena in non-equilibrium states are of prominent interest from both theoretical and experimental points of view. For example, transport processes driven by biharmonic driving have been intensively studied in a variety of systems and in various regimes. We can quote: Hamiltonian systems [13], systems in the overdamped regime [12, 14] and for moderate damping [15, 16], dissipative quantum systems [17], electronic quantum pumps [18] and quantum control of exciton states [19], cold atoms in optical lattices [5, 20, 21], soliton physics [22] and driven Josephson junctions [23]. Here we intend to consider another aspect of transport in the system which consists of two coupled elements (subsystems). In particular, we take into consideration two coupled Josephson junctions. In a more general context it is a system which can be described by two degrees of freedom (it can consist of two interacting particles or one particle moving on a two-dimensional substrate) [24]. The question is: what new properties of transport can be induced by interaction between two elements and under what conditions can transport be generated in the second element if the driving is applied only to the first element.

The layout of the paper is as follows: in section 2, we detail the system of two Josephson junctions coupled by an external shunt resistance. Next, in section 3, we specify external driving applied to one of the junctions. In section 4, we analyze generic properties of dc voltages across the first and second junctions, and we elaborate on the voltage control. Section 5 provides a summary and conclusions.
The system of two resistively shunted Josephson junctions coupled by an external shunt resistance R_3 and driven by the currents $I_1(t)$ and $I_2(t)$.

2. Model and its dynamics

Let us consider a system of two coupled resistively shunted Josephson junctions. The equivalent circuit representation of the system is illustrated in Figure 1. The junctions are characterized by the critical currents (I_{c1}, I_{c2}), resistances (R_1, R_2), and phases (ϕ_1, ϕ_2) (more precisely, the phase differences of the Cooper pair wavefunctions across the junctions). The junctions are externally shunted by the resistance R_3 and driven by external currents $I_1(t)$ and $I_2(t)$. We also include in our considerations Johnson thermal noise sources $\xi_1(t)$, $\xi_2(t)$, and $\xi_3(t)$ associated with the corresponding resistances R_1, R_2, and R_3.

From the Kirchhoff current and voltage laws and two Josephson relations one can obtain the following equations:

\[
\begin{align*}
\frac{R_1}{\hbar} \dot{\phi}_1 &= (R_2 + R_3)[I_1(t) - I_{c1} \sin \phi_1] + R_2[I_2(t) - I_{c2} \sin \phi_2] - I_{c2} \sin \phi_2, \\
\frac{R_2}{\hbar} \dot{\phi}_2 &= (R_1 + R_3)[I_2(t) - I_{c2} \sin \phi_2] + R_1[I_1(t) - I_{c1} \sin \phi_1] - I_{c1} \sin \phi_1,
\end{align*}
\]

where the dot denotes a derivative of $\phi_i = \phi_i(t)$ ($i = 1, 2$) with respect to time t and the thermal equilibrium noise sources are represented by zero-mean Gaussian white noises $\xi_i(t)$ ($i = 1–3$) which are delta-correlated, i.e. $\langle \xi_i(t) \xi_j(s) \rangle \propto \delta_{ij} \delta(t-s)$ for $i, j \in \{1, 2, 3\}$. Note a symmetry property of equations (1) with respect to the change $R_1 \leftrightarrow R_2$.

The limitations of the model (1) and its range of validity are discussed e.g. in [25]. In particular, we work within the semi-classical regime of small junctions for which a spatial dependence of characteristics can be neglected, a displacement current accompanied with the junction capacitance is sufficiently small and can be ignored, and photon-assisted tunneling phenomena do not contribute.

The dimensionless variables and parameters can be introduced in various ways. Here, we follow [26] and define the dimensionless time τ as:

\[
\tau = \frac{2eV_0}{\hbar} t,
\]

where

\[
V_0 = I_c \frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3}, \quad I_c = \frac{I_{c1} + I_{c2}}{2}
\]

are the characteristic voltage and averaged critical current, respectively. The corresponding dimensionless form of equations (1) reads

\[
\dot{\phi}_1 = I_1(\tau) - I_{c1} \sin \phi_1 + \alpha[I_2(\tau) - I_{c2} \sin \phi_2] + \sqrt{D} \eta_{1}(\tau), \\
\dot{\phi}_2 = \alpha \beta[I_2(\tau) - I_{c2} \sin \phi_2] + \alpha[I_1(\tau) - I_{c1} \sin \phi_1] + \sqrt{\alpha \beta D} \eta_{2}(\tau),
\]

where now the dot denotes a derivative with respect to dimensionless time τ and all dimensionless currents are in units of I_c, e.g. $I_1 \leftrightarrow I_{c1}/I_c$. The parameter

\[
\alpha = \frac{R_2}{R_2 + R_3} \in [0, 1]
\]

is the coupling constant between two junctions and can be controlled by the external resistance R_3. The parameter $\beta = 1 + (R_3/R_1)$. The noises $\eta_{1}(\tau)$ and $\eta_{2}(\tau)$ are zero-mean δ-correlated Gaussian white noises, i.e. $\langle \eta_i(\tau) \eta_j(\tau) \rangle = \delta_{ij} \delta(\tau - \tau')$ for $i, j \in \{1, 2\}$ and are linear combinations of noises $\xi_i(t)$, $i = 1–3$. The dimensionless noise strength is $D = 4ek_B T/\hbar I_c$, where k_B is the Boltzmann constant.

Note that the dimensionless form (4) is not symmetrical with respect to the change $R_1 \leftrightarrow R_2$. This is because of the definition of the dimensionless time (2) which is extracted from the first equation of the set (1) and, in consequence, the asymmetry of V_0 in equation (3) with respect to R_1 and R_2.

3. System driven by biharmonic current

The dynamic behavior of two Josephson junctions described by equations (4) is analogous to the overdamped dynamics of two interacting Brownian particles moving in spatially symmetric periodic structures and driven by external time-dependent forces. However, it is not a potential system.

If we think of $\dot{\phi}_1$ and $\dot{\phi}_2$ as position coordinates of two particles, then $\dot{\phi}_1$ and $\dot{\phi}_2$ correspond to the velocity of the first and second particles, respectively. In this mechanical analog, junction voltage is represented by particle velocity and time-dependent current $I_i(\tau)$ is represented by external force. We can use this analog to visualize junction dynamics.

The main transport characteristics of such mechanical systems are: the long-time averaged velocity $v_1 = \langle \dot{\phi}_1 \rangle$ of the first particle and the long-time averaged velocity $v_2 = \langle \dot{\phi}_2 \rangle$ of the second particle. The question is under what circumstances one can induce transport characterized by directed motion of both particles in the stationary regime, i.e. when $v_1 \neq 0$ and $v_2 \neq 0$. In terms of the Josephson junction system (4)
Figure 2. Illustration of the biharmonic current (7) for $a_1 = 1$ and selected values of other parameters. Only symmetric ($\theta = 0, \pi$) and antisymmetric ($\theta = \pi/2, 3\pi/2$) forms of the current are displayed for specific values of the relative phase θ. For clarity, the curves are offset vertically from one another to facilitate comparison.

It corresponds to the dimensionless long-time averaged dc voltages $v_1 = \langle \dot{\phi}_1 \rangle$ and $v_2 = \langle \dot{\phi}_2 \rangle$ across the first and second junction, respectively.

Transport in symmetric periodic systems like (4) can be trivially induced by biased external drivings $I_1(\tau)$ or/and $I_2(\tau)$. A non-trivial case is when zero-mean (non-biased) driving can induce transport. An example of zero-mean driving is the simplest harmonic signal $I(\tau) = A \cos(\omega \tau)$. From the symmetry property of equations (4) it follows that such a current source is unable to induce non-zero averaged voltages, for details see [14, 16, 21, 27–29]. However, when the system is driven by external currents having two harmonics, i.e. when [30]

$$I_i(\tau) = A_i[\cos(\omega \tau) + \epsilon_i \cos(2\omega \tau + \theta)], \quad i = 1, 2, \quad (6)$$

then transport can be induced within tailored parameter regimes.

In this paper, we will study a particular case when the biharmonic ac current (6) is applied only to one (say, the first) junction, and has the form

$$I_1(\tau) = a_1[\cos(\omega \tau) + \epsilon_1 \cos(2\omega \tau + \theta)], \quad I_2(\tau) = 0. \quad (7)$$

It is known that without coupling to the second junction (i.e. when $\alpha = 0$), the averaged dc voltage v_2 across the second junction is zero while the dc voltage v_1 across the first junction is non-zero in some regions of the parameters’ space. We can formulate several fundamental questions. (a) What is the influence of coupling α on the voltage v_1? (b) Can the voltage across the second junction be induced by coupling (5) and how it depends on its strength? (c) Can the voltage reversal be obtained by changing the control parameters? (d) Can the voltages v_1 and v_2 have opposite signs? Properties of the ac current $I_1(\tau)$ determine whether the voltages v_1 and v_2 display the above-mentioned features. One can distinguish two special cases of the two-harmonics ac current $I_1(\tau)$.

(i) The first case is where there is such τ_0 that $I_1(\tau_0 + \tau) = I_1(\tau_0 - \tau)$. It means that the driving is symmetric or invariant under the time-inversion transformation. It is the case when $\theta = [0, \pi]$, see dashed and dotted–dashed lines in figure 2.
I. To reduce the number of parameters of the model, we consider

The analysis of a similar system biased by a dc current and driven by an unbiased harmonic ac signal has been recently presented in [31]. The main difference between these two set-ups is a constant dc current which in turn may lead to the phenomenon of the negative mobility (resistance) [9]. Here, there is no such constant current applied to the system. However, by applying asymmetric ac signals we hope to be able to control the behavior of the first and second junctions. We would like to convince readers that transport across the junction can be qualitatively controlled just by adjusting the shape of the external signal applied to one junction only.

4. Voltage response to biharmonic current

To reduce the number of parameters of the model, we consider a special case of two identical junctions. In such a case $I_{e1} = I_{e2} = 1$, $R_1 = R_2$, $a\beta = 1$ and equations (4) take the form

\begin{equation}
\begin{aligned}
\phi_1 &= I_1(\tau) - \sin \phi_1 - \alpha \sin \phi_2 + \sqrt{D_i}(\tau), \\
\phi_2 &= -\sin \phi_2 + \alpha [I_1(\tau) - \sin \phi_1] + \sqrt{D_i}(\tau),
\end{aligned}
\end{equation}

where the driving current $I_1(\tau) = I_1(\tau; a_1, \epsilon_1, \theta)$ is given by the relation (7).

Now, we make four general conclusions about the dc voltages as a consequence of the symmetry properties of the ac driving current $I_1(\tau)$:

(A) Let us consider the voltages $v_1 = v_1(\epsilon_1)$ and $v_2 = v_2(\epsilon_1)$ as functions of the amplitude ϵ_1 of the second harmonic.

If we make the transformation $\epsilon_1 \rightarrow -\epsilon_1$ to equations (8), then it follows that

\begin{equation}
\begin{aligned}
v_1(-\epsilon_1) &= -v_1(\epsilon_1), \\
v_2(-\epsilon_1) &= -v_2(\epsilon_1).
\end{aligned}
\end{equation}

These relations yield $v_1(0) = -v_1(0)$, $v_2(0) = -v_2(0)$ and we conclude that $v_1(0) = 0$ and $v_2(0) = 0$ when the second harmonic is zero, i.e. when $\epsilon_1 = 0$.

(B) The sign of voltages $v_1 = v_1(\theta)$ and $v_2 = v_2(\theta)$ can be controlled by the phase θ. Indeed, if one changes the phase $\theta \rightarrow \theta + \pi$ then $\epsilon_1 \cos(2\omega \tau + \theta + \pi) \rightarrow -\epsilon_1 \cos(2\omega \tau + \theta)$ and from the relations (9) one gets

\begin{equation}
\begin{aligned}
v_1(\theta + \pi) &= -v_1(\theta), \\
v_2(\theta + \pi) &= -v_2(\theta).
\end{aligned}
\end{equation}

(C) Because the driving $I_1(\tau)$ is the same for $\theta \rightarrow \pi - \theta$ and for $\theta \rightarrow \pi + \theta$, the symmetry relations

\begin{equation}
\begin{aligned}
v_1(\pi - \theta) &= v_1(\pi + \theta), \\
v_2(\pi - \theta) &= v_2(\pi + \theta)
\end{aligned}
\end{equation}

hold for any value of the phase θ.

(D) For the antisymmetric ac current, equations (8) are invariant under the time reversal transformation $t \rightarrow -t$.

As a consequence [14, 21, 28]

\begin{equation}
\begin{aligned}
v_1(\pi/2) &= v_1(3\pi/2) = 0, \\
v_2(\pi/2) &= v_2(3\pi/2) = 0.
\end{aligned}
\end{equation}

The above set of equations (8) cannot be handled by standard analytical methods used in ordinary differential equations. Therefore we have carried out comprehensive numerical simulations. We have employed a stochastic Runge–Kutta algorithm of the second order with the time step of $[10^{-3} - 10^{-4}]/(2\pi/\omega)$. We have chosen initial phases $\phi_1(0)$ and $\phi_2(0)$ equally distributed over one period $[0, 2\pi]$. Averaging was performed over $10^3 - 10^6$ different realizations and over one period of the external driving $2\pi/\omega$. All numerical calculations have been performed using CUDA environment on desktop computing processor NVIDIA GeForce GTX 285. This gave us the possibility to speed the numerical calculations up to a few hundreds of times more than on typical modern CPUs [32].

We begin the analysis of transport properties of the system (8) by some general comments about its long-time behavior. In the long-time limit, the averaged voltages $\langle \phi_i(\tau) \rangle$ can be presented in the form of a series of all possible harmonics, namely,

\begin{equation}
\lim_{t \rightarrow \infty} \langle \phi_i(\tau) \rangle = v_i + \sum_{n=1}^{\infty} v_i(n\omega \tau),
\end{equation}

where v_i is a dc (time-independent) component and $v_i(n\omega \tau)$ are time-periodic functions of zero average over a basic period.

When both a_1 and ϵ_1 are small, the dc components v_1 and v_2 of averaged voltages are zero in the long-time limit. It can be inferred from the structure of equations (8) that at least one of the amplitudes of the driving current $I_1(\tau)$ should be greater than the amplitude $I_{e1} = 1$ of the Josephson supercurrent. Also for high frequency ω, the averaged dc voltages are zero: very fast positive and negative changes of the driving current cannot induce the dc voltage and only multi-harmonic components of the voltages can survive. For smaller values of the frequency and higher values of amplitude, one can observe a stripe-like structure of non-zero values of both voltages v_1 and v_2.

We can identify four remarkable and distinct parameter regimes where:

(I) $v_1 > 0$ and $v_2 > 0$,
(II) $v_1 < 0$ and $v_2 < 0$,
(III) $v_1 < 0$ and $v_2 > 0$,
(IV) $v_1 > 0$ and $v_2 < 0$.

Regimes (I) and (II) dominate in the parameter space. If regime (I) is detected then regime (II) can be obtained from the relations (10) by changing the relative phase θ of the biharmonic current $I_1(\tau)$. Likewise, if regime (III) is found then regime (IV) can be determined from the relations (10).
Figure 3. Transport properties of the system of two Josephson junctions driven by the ac current acting on the first junction. In panels (a) and (b) averaged dc voltages v_1 and v_2 across the first and second junction are shown for the coupling constant $\alpha = 0.25$, temperature $D = 0.001$, relative amplitude of the second harmonic $\varepsilon_1 = 0.5$ and the relative phase $\theta = 0$.

Figure 4. The stationary averaged dc voltages v_1 and v_2 across the first (blue solid line) and second (green dashed line) junction, respectively. The parameters are: the dimensionless temperature $D = 0.01$, the frequency $\omega = 0.01$ and strength of the second harmonic $\varepsilon_1 = 0.2$. The dependence on the external ac current amplitude a_1 is presented in panels: (a) for the relative phase $\theta = 0$ and (b) for $\theta = \pi/3$, and fixed coupling constant $\alpha = 0.25$. In panel (c) the dependence of voltages on the coupling constant α is depicted for fixed amplitude $a_1 = 5.15$ and phase $\theta = 0$. In panel (d) the role of the driving current symmetry controlled by the phase θ is shown for $a = 5.15$ and $\alpha = 0.25$.

4.1. Dominated regime: the same sign of dc voltages v_1 and v_2

In figure 3 we present regime (I) in the parameter plane (a_1, ω) which illustrates how voltages v_1 and v_2 depend on the amplitude a_1 and frequency ω of the biharmonic current $I_1(\tau)$ when other parameters are fixed. In this regime, both voltages always take non-negative values.

The dependence of voltages v_1 and v_2 on the current amplitude a_1 is depicted in panels (a) and (b) of figure 4. We observe that for smaller amplitudes of external ac current the transport is activated only on the first junction while the voltage across the second junction is zero. We can identify non-zero response of the first junction at the amplitude around $a_1 = 1$. The second junction is activated for larger values of amplitude (the threshold is a little bit less than $a_1 = 4$). One can note non-monotonic behavior of all the presented curves. After the initial burst, the amplitude of the voltage of the first junction decreases, revealing next enhancement together with the appearance of the non-zero voltage excited on the second junction (green dashed lines). For larger amplitude of the ac driving, voltages of both junctions decrease. In panels (a) and (b) of this figure, the phase θ of the second harmonic of the external signal is different: $\theta = 0$ in panel (a) and $\theta = \pi/3$ in panel (b). The inspection of the results reveals that the change of the phase from $\theta = 0$ to $\pi/3$ reduces the dc voltages more than twice.

In panel (c) of figure 4, the role of coupling is illustrated: for small values of the coupling constant α the voltage v_2 is zero. There is a threshold value α_c of coupling above which
the voltage across the second junction can be generated. In the regime presented in figure 4, the threshold value \(\alpha_c \approx 0.152 \).

From equation (5) it follows that the external shunt resistance \(R_3 \) can be a good control parameter which decides whether \(v_2 \) takes non-zero or zero values. For fixed remaining system parameters, one can induce non-zero voltage across the second junction by decreasing the resistance \(R_3 \) to values \(R_3 < R_c = (\alpha_c^{-1} - 1)R_2 \). For \(R_3 > R_c \), the voltage \(v_2 \) diminishes.

In panel (d) of figure 4, the influence of the relative phase \(\theta \) of two harmonic signals on the dc voltages is depicted. It is numerical evidence for our consideration on symmetry relations (9)–(12). We can deduce two conclusions.

(i) The maximal absolute values of voltages \(v_1 \) and \(v_2 \) are generated by the symmetric ac current, i.e. when \(\theta = 0 \) or \(\pi \).

(ii) Both dc voltages \(v_1 \) and \(v_2 \) are zero when the ac current is antisymmetric, i.e. when \(\theta = \pi/2 \) or \(3\pi/2 \).

From [14, 28] it follows that for small amplitudes of both harmonics of the driving current (7) the dc voltages depend on the phase as \(v_i \propto \cos \theta \) \((i = 1, 2)\). Such behavior is universal and does not depend on details of systems or models, e.g. it has been observed in transport of flux quanta in superconducting films, see panel (b) in figure 1 of [33].

As follows from equations (10), regime (II) can be obtained from regime (I) by change of the phase \(\theta \rightarrow \theta \pm \pi \). Then the corresponding figures can be obtained from figures 3 and 4 by the reflection with respect to the horizontal axis. Therefore we do not discuss this regime and we do not show corresponding figures.

4.2. Regime of the opposite sign of dc voltages \(v_1 \) and \(v_2 \)

Now, we address the question of whether we can identify parameter regimes (III) and (IV) where the dc voltages \(v_1 \) and \(v_2 \) take opposite sign. An illustrative example of such a regime is depicted in figure 5. We can identify a fine stripe-like structure of regions of non-zero dc voltages sparsely distributed in the parameter space. Outside the stripes, in large regions of parameter space, the voltages \(v_1 \) and \(v_2 \) are negligibly small or zero.

Inspection of figure 5 suggests we should perform a more accurate search for the horizontal section \(a_1 = \text{const.} \) and the vertical section \(\omega = \text{const.} \). In panels (a) and (b) of figure 6 we present results for the section \(a_1 = 3 \). One can note the unique feature of the occurrence of windows of the frequency \(\omega \) where the voltage \(v_2 \) takes the opposite sign to the voltage \(v_1 \). The voltages as a function of \(\omega \) display non-monotonic dependence exhibiting maxima and minima.

We can detect the interval where absolute values of voltages operate synchronously: simultaneous increase and decrease of both of them. For higher temperature \(D = 10^{-2} \) and within the presented range of the base frequency \(\omega \) the voltages across both junctions alternate showing very interesting and rare curves of opposite voltage reversals [34]. However, if we consider ten times lower temperature, i.e. \(D = 10^{-3} \), then only one window of the states working contrary-wise survives. It means that other windows are created by thermal equilibrium fluctuations.

Two panels (c) and (d) in figure 6 illustrate the section \(\omega = 0.1139 \) and the section \(\omega = 0.1288 \) to show the influence of the amplitude \(a_1 \) of the ac driving. The voltages as a function of \(a_1 \) are non-monotonic and local maxima and minima can be detected.

The influence of the relative amplitude \(\varepsilon_1 \) of the second harmonic is depicted in figure 7 for two values of the driving frequency \(\omega = 0.1139 \) (a) and \(\omega = 0.1288 \) (b). In the vicinity of \(\varepsilon_1 = 0.1 \) we can notice previous findings where the voltages have the opposite sign for both junctions. However, if we increase \(\varepsilon_1 \) then both voltages diminish and next take negative values followed by positive signs for large \(\varepsilon_1 \), see panel (a) for details. For faster current \(\omega = 0.1288 \) the situation is the opposite—for larger \(\varepsilon_1 \) voltages become positive, next negative and end up with locked state for relatively large \(\varepsilon_1 \). It is worth mentioning that \(\varepsilon_1 = 0 \) relates to the situation where the second harmonic is zero resulting in a pure symmetric driving with no possible net transport. On the other hand, if \(\varepsilon_1 = 1 \) then both harmonics of the signal (7) are equally strong and we are not able to say which part of it influences the dynamics of junctions more effectively.

In panel (c) we show the influence of interaction between two junctions on the voltage characteristics. The first observation is that there are optimal values of the coupling strength \(\alpha \) for which absolute values of voltages are locally maximal. The second observation is that variation of the coupling strength can lead to the phenomenon of
Figure 6. The stationary averaged dc voltages v_1 and v_2 across the first (blue solid line) and second (green dashed line) junction, respectively. The dependence on the frequency ω of the ac driving is presented in panels (a) and (b) at a fixed amplitude $a_1 = 3.0$. The temperature reads $D = 10^{-3}$ on panel (a) and 10^{-2} on panel (b). In the two lower panels (c) and (d) the dependence on the external ac current amplitude a_1 is presented at fixed frequency $\omega = 0.1139$ (c) and 0.1288 (d) for temperature $D = 10^{-2}$. Parameters used in all panels are: the coupling constant $\alpha = 0.5$, the relative amplitude of the second harmonic $\varepsilon_1 = 0.1$ and the relative phase $\theta = \pi/2$.

Figure 7. The stationary averaged voltages v_1 and v_2 across the first (blue solid line) and second (green dashed line) junction, respectively. The dependence on the relative amplitude ε_1 of the second harmonic of the ac driving is presented in panels (a) and (b) for fixed coupling $\alpha = 0.5$ and for two frequencies $\omega = 0.1139$ (a) and 0.1288 (b). In panel (c) the dependence of voltages on the coupling constant α is depicted for $\varepsilon_1 = 0.2$ and $\omega = 0.1288$. In panel (d) the role of temperature controlled by the dimensionless parameter D is shown for $\varepsilon_1 = 0.2$, $\omega = 0.1288$ and $\alpha = 0.5$. Parameters used in all panels read: relative phase $\theta = \pi/2$ and amplitude $a_1 = 3.0$. In panels (a)–(c) temperature $D = 10^{-2}$.
voltage reversal [34]: the voltage changes its values from positive (negative) values to negative (positive) ones. The third observation is the same as presented in panel (c) of figure 4; there is a threshold value of coupling $\alpha = \alpha_c$ (or the resistance $R_1 = R_c$) such that for $\alpha < \alpha_c$ (or for $R_1 > R_c$) the voltage v_2 is reduced to zero.

In panel (d) we depict the influence of temperature. Most remarkably, transport is solely induced by thermal noise. Indeed, in the deterministic case (i.e. for $D = 0$), when no thermal fluctuations act, the dc voltages vanish. With increasing temperature, the voltage v_1 starts to increase to a positive-valued local maximum. Next, it decreases, crossing zero, and reaches a negative-valued local minimum. For further increase of temperature, the voltage v_1 tends to zero. In turn, the voltage v_2 takes negative values reaching minimal value as temperature starts to increase. Next, it increases, crossing zero, and reaches a local maximum. Finally, it monotonically decreases toward zero. We observe that optimal temperature occurs when the voltage v_1 is maximal. There is also another optimal temperature at which in turn the absolute value of v_2 is maximal. Moreover, one can identify the voltage reversal phenomenon: both voltages change their sign as temperature is varied.

From the presented analysis it follows that a biharmonic drive allows one to conveniently manipulate transport with high efficiency by changing the system parameters.

5. Summary

This paper presents a detailed study of the system of two coupled noisy Josephson junctions which undergoes the influence of the external ac biharmonic current applied to one of the junctions only. The dependence of voltages across the first and second junctions upon ac driving exhibits a rich diversity of transport characteristics. In particular, it is possible to control both junctions to operate simultaneously with positive or negative voltages of the same sign or, more interestingly, with the opposite sign. Moreover, the phenomenon of the voltage reversals is revealed: the voltages change sign as one of the parameters is varied. Our findings can be experimentally verified in an accessible set-up of two Josephson junctions coupled by an external resistance. The work can open the perspective of a new type of electronic element which is tunable between positive and negative dc voltages via external control parameters such as the amplitudes and relative phases of an ac current. The straightforward extension of the ideas presented here would cover an increasing number of coupled junctions to three (or more) as well as a study of other types of driving.

Acknowledgment

The work was supported in part by the grant N202 052940.

References

[1] Neimann A, Hänggi P, Jung P and Schimansky-Geier L 2004 Noise in biophysical systems Fluct. Noise Lett. 4 1

[2] Astumian R D 2002 Sci. Am. 285 56

[3] Astumian R D and Hänggi P 2002 Phys. Today 55 33

[4] Burada P S, Schmid G, Talkner P, Hänggi P, Reguera D and Rubi J M 2008 Biosystems 93 16

[5] Kostur M, Machura L and Łuczka J 2010 Phys. Rev. Lett. 104 090601

[6] Marchesi R 1964 Rev. Mod. Phys. 117 361

[7] Machura L, Kostur M, Talkner P, Luchkova J and Hänggi P 2007 Phys. Rev. Lett. 98 100401

[8] Machura L, Kostur M, Talkner P, Luchkova J and Hänggi P 2007 Physica A 371 20

[9] Machura L, Kostur M, Talkner P, Hänggi P and Lücke J 2010 Phys. Rev. E 82 045104

[10] Machura L, Kostur M, Talkner P, Hänggi P and Lücke J 2008 Phys. Rev. B 77 045104

[11] Machura L, Kostur M, Talkner P, Hänggi P and Lücke J 2008 Phys. Rev. B 77 045104

[12] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. Lett. 98 040401

[13] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Physica A 371 20

[14] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. E 82 045104

[15] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. E 82 045104

[16] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. E 82 045104

[17] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. E 82 045104

[18] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. E 82 045104

[19] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. E 82 045104

[20] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. E 82 045104

[21] Machura L, Kostur M, Talkner P, Lücke J and Hänggi P 2007 Phys. Rev. E 82 045104
Guantes R and Miret-Artés S 2003 Phys. Rev. E 67 046212
Romero A H, Lacasta A M and Sancho J M 2004 Phys. Rev. E 69 051105
Heinsalu E, Patriarca M and Marchesoni F 2008 Phys. Rev. E 77 021129
Speer D, Eichhorn R and Reimann P 2009 Phys. Rev. Lett. 102 124101
[25] Kautz R L 1996 Rep. Prog. Phys. 59 935
[26] Nerenberg M A H, Blackburn J A and Jillie D W 1980 Phys. Rev. B 21 118
[27] Neumann E and Pikovsky A 2002 Eur. Phys. J. B 26 219
Chacón R and Quintero N R 2007 BioSystems 88 308
[28] Quintero N R, Cuesta J A and Alvarez-Nodarse R 2010 Phys. Rev. E 81 030102R
[29] Kolton A B and Renzoni F 2010 Phys. Rev. A 81 013416 (and references therein)
[30] Skov C E and Pearlstein E 1964 Rev. Sci. Instrum. 35 962
Schnerder W and Seeger K 1966 Appl. Phys. Lett. 8 133
[31] Januszewski M and Łuczka J 2011 Phys. Rev. E 83 051117
[32] Januszewski M and Kostur M 2010 Comput. Phys. Commun. 181 183
[33] Ooi S, Savel’ev S, Gaifullin M B, Mochiku T, Hirata K and Nori F 2007 Phys. Rev. Lett. 99 207003
[34] Kostur M and Łuczka J 2001 Phys. Rev. E 63 021101