Psychiatric intervention and repeated admission to emergency centres due to drug overdose
Akiko Kanehara, Hayato Yamana, Hideo Yasunaga, Hiroki Matsui, Shuntaro Ando, Tsuyoshi Okamura, Yousuke Kumakura, Kiyohide Fushimi and Kyoyo Kasai

Background
Repeated drug overdose is a major risk factor for suicide. Data are lacking on the effect of psychiatric intervention on preventing repeated drug overdose.

Aims
To investigate whether psychiatric intervention was associated with reduced readmission to emergency centres due to drug overdose.

Method
Using a Japanese national in-patient database, we identified patients who were first admitted to emergency centres for drug overdose in 2010–2012. We used propensity score matching for patient and hospital factors to compare readmission rates between intervention (patients undergoing psychosocial assessment) and unexposed groups.

Results
Of 29 564 eligible patients, 13 035 underwent psychiatric intervention. In the propensity-matched 7938 pairs, 1304 patients were readmitted because of drug overdose. Readmission rate was lower in the intervention than in the unexposed group (7.3% v. 9.1% respectively, P<0.001).

Conclusions
Psychiatric intervention was associated with reduced readmission in patients who had taken a drug overdose.

Data source
The Diagnosis Procedure Combination (DPC) database is a national in-patient database in Japan that includes administrative claims data and detailed patient data. As of 2012, the database included the data of approximately 7 million in-patients from more than 1000 hospitals in Japan, representing around 50% of all acute care in-patient admissions. The database consists of the following information: unique hospital identifiers; age and gender main diagnoses, comorbidities present on admission, and complications that occurred after admission recorded with text data in Japanese and using ICD-10 codes; procedures; and discharge status. The responsible physicians are obliged to record the diagnoses with reference to medical charts on discharge. For the main diagnosis, the physicians have to enter only one ICD code.

Participant selection and data
We identified patients with a diagnosis of drug poisoning (ICD-10 codes: T360–T509) who were discharged from participating hospitals between 1 July 2010 and 31 March 2013 (33 months in total). We included patients aged 12 years or older with a first episode of drug overdose and who visited a hospital with at least one full-time psychiatrist during the study period. We excluded patients who died during admission to hospital.

We identified psychiatric intervention by means of procedure codes for ‘interview for assessment and/or psychotherapy by a psychiatrist’, coded using the Japanese Procedure Codes defined under the fee schedule of the national health insurance system. We divided the patients into two groups: (a) those who received a psychiatric intervention – the psychiatric intervention group; and (b) those who did not – the unexposed group.

Based on the protocol of Quan et al, we converted ICD-10 codes of comorbidities that were present on admission into scores for each patient to calculate the Charlson comorbidity index (CCI). This index is used to predict mortality by classifying or weighting comorbidities to assess disease burden and case mix. Hospital volume was defined as the number of patients with the diagnosis of drug overdose annually at each hospital; it was
Demographic and clinical characteristics of the psychiatric intervention and unexposed groups	All patients	Psychiatric intervention group	Absolute standardised difference	Propensity-matched patients	Psychiatric intervention group	Absolute standardised difference									
	Unexposed group	n=16 529			n=13 035										
		n	%	n	%	n	%	n	%	n	%	n	%	n	%
Female	10 944	66.2	9310	71.4	11.2	5520	70.8	5576	70.2	1.3					
Age, years	12–19	10 44	6.3	884	6.8	2.0	550	6.9	523	6.6	1.2				
	20–29	34 01	20.6	3181	24.4	9.1	1978	24.9	1877	23.6	3.0				
	30–39	32 93	19.9	3315	25.4	13.2	1955	24.6	1934	24.4	0.5				
	40–49	26 51	16.0	2564	19.7	9.7	1559	19.6	1558	19.6	0.0				
	50–59	14 68	8.9	1343	10.3	4.8	786	9.9	791	10.0	0.3				
	60–69	13 89	8.4	874	6.7	6.6	530	6.7	567	7.1	1.6				
	70–79	14 41	8.7	548	4.2	18.4	358	4.6	400	5.1	1.9				
	80–89	14 42	8.7	289	2.2	28.9	198	2.5	254	3.2	4.2				
	≥90	400	2.4	37	0.3	18.3	24	0.3	34	0.4	1.7				
Toxic agent	Non-opioid analgesics, anti-pyretics and anti-rheumatics	6 51	3.9	730	5.6	8.0	383	4.8	365	4.6	0.9				
	Anti-epileptic, sedative-hypnotic and anti-Parkinsonism drugs	4685	28.3	4109	31.5	7.0	2423	30.5	2469	31.1	1.3				
	Other psychotropic drugs	11 72	7.1	1186	9.1	7.3	701	8.8	697	8.8	0.0				
	Other drugs	2113	12.8	273	2.1	41.6	143	1.8	234	2.9	7.3				
	Unspecified drugs	7 908	47.8	6737	51.7	7.8	4288	54.0	4173	52.6	2.8				
Classification of mental disorder	Schizophrenia	1394	8.4	2210	17.0	26.0	1133	14.3	1154	14.5	0.6				
	Mood disorders	3845	23.3	584	4.2	40.9	3006	37.9	3070	38.7	1.6				
	Organic mental disorders	260	1.6	178	1.4	1.6	114	1.4	127	1.6	1.6				
	Mental disorders due to psychoactive substance use	451	2.7	251	2.7	0.0	260	3.3	271	3.4	0.6				
	Disorders of personality and behaviour	261	1.6	461	3.5	12.1	210	2.6	217	2.7	0.6				
	Other mental disorder	11 90	7.2	2042	15.7	26.9	1012	12.7	990	12.5	0.6				
	Not known	9128	55.2	2309	17.7	84.6	2203	27.8	2109	26.6	2.7				
Level of consciousness on admission	Alert	5299	32.1	2909	22.3	22.2	1983	25.0	1949	24.6	0.9				
	Dull	3746	22.7	3280	25.2	5.9	1866	23.8	1919	24.2	0.9				
	Somnolence	3416	20.7	2963	22.7	4.9	1846	23.3	1850	23.3	0.0				
	Coma	4068	24.6	3883	29.8	11.7	2223	28.0	2220	28.0	0.0				
Charlson comorbidity index	0	12 251	74.1	11 203	85.9	29.8	6775	85.3	6640	83.6	4.7				
	1	2624	15.3	1352	10.4	14.7	859	10.8	929	11.7	2.8				
	2	994	6.0	327	2.5	17.4	215	2.7	247	3.1	2.4				
	≥3	760	4.6	156	1.2	20.4	89	1.1	122	1.5	3.5				
classified into three categories (low, medium and high volume), with approximately equal numbers of patients in each group.

Outcome
The primary outcome was readmission to the same hospital due to repeated drug overdose.

Statistical analyses
We conducted one-to-one matching between the psychiatric intervention group and unexposed group based on the estimated propensity score of each patient. This approach avoided treatment selection bias, which is inherent in observational data analysis. In this approach, every patient in the intervention group was matched with a patient in the unexposed group based on the estimated propensity score, the probability of undergoing the intervention calculated using the observed potential confounders. The matched patients constituted two groups with similar characteristics, which resembled a randomised experiment-like situation. To estimate the propensity score, we fitted a logistic regression model with receipt of the psychiatric intervention as the outcome variable and the following as independent variables: age; gender; ICD-based information on toxic agents (non-opioid analgesics, anti-pyretics and anti-rheumatics [T39]; anti-epileptic, sedative, hypnotic and anti-Parkinsonian drugs [T42]; other psychotropic drugs [T43]; other drugs [T36–38, T41, T44–T49]; and unspecified drugs [T50]); ICD-based diagnoses of mental disorders (schizophrenia [F2]; mood disorders [F3]; organic mental disorders [F0]; mental disorders due to psychoactive substance use [F1]; disorders of personality and behaviour [F6]; and other mental disorder); Japan Coma Scale on admission; CCI; tracheal intubation; haemodialysis; type of hospital (academic or non-academic); hospital volume category and fiscal year of discharge. The C-statistic was calculated to evaluate the goodness of fit.

We conducted one-to-one matching between the psychiatric intervention and unexposed groups using nearest-neighbour matching within a calliper. One unexposed patient with the closest propensity score was selected for each intervention patient – provided that the difference in propensity score was within a certain amount (a calliper). We set a calliper as 0.20 of the standard deviation of the estimated propensity scores to achieve good balance between the intervention and unexposed groups. We used standardised differences to compare the prevalence of characteristics between the two groups. An absolute standardised difference of >10 has been suggested as signifying meaningful imbalance. We performed a chi-squared test to compare the proportions of readmission between the psychiatric intervention and unexposed groups among the propensity-matched patients. Logistic regression analysis for readmission was performed to calculate the odds ratio and 95% confidence interval (CI) of the psychiatric intervention group with respect to the unexposed group. We performed subgroup analysis on propensity-matched patients by age group. The threshold for significance was $P<0.05$. All statistical analyses were conducted using IBM SPSS Statistics, version 22.0 (IBM SPSS, Armonk, New York, USA).

Results
We identified 29,564 eligible patients from 368 hospitals during the study period; they comprised the psychiatric intervention group ($n=13,035$; 44.1%) and unexposed group ($n=16,529$; 55.9%). In total, 1961 patients (6.6%) required repeated admission due to drug overdose. Using one-to-one propensity score matching, we obtained 7938 pairs of the psychiatric intervention and unexposed groups. The C-statistic for goodness of fit was 0.768. Table 1...
shows the demographic characteristics of all patients (n=29 564) and the propensity score-matched patients (n=15 876). Patients in the psychiatric intervention group were more likely to have the following characteristics: be younger and female; have schizophrenia, mood disorder, or personality or behaviour disorders; take psychotropic drugs during their overdose episode; have a worse consciousness level; undergo tracheal intubation and haemodialysis; and be discharged after 2012. Academic hospitals and higher volume hospitals were more likely to perform psychiatric interventions. After propensity score matching, the patient distributions were closely balanced between the two groups.

Table 2 shows the proportion of readmissions due to drug overdose in each subgroup in the propensity score-matched groups. In the matched patients, 1304 patients (8.2%) required repeated admission due to drug overdose. Patients who were younger females, had personality disorders and took other psychotropic drugs during their overdose episode were more likely to be readmitted as a result of drug overdose. Patients who were admitted to higher volume hospitals or discharged before 2011 were also more likely to be readmitted.

The propensity score-matched analysis showed a significant difference in readmission due to drug overdose between the psychiatric intervention and unexposed groups (7.3% v. 9.1% respectively; P<0.001). Logistic regression analysis showed that the psychiatric intervention group had a significantly lower proportion of readmission through drug overdose than the unexposed group (adjusted odds ratio 0.79; 95% CI 0.71–0.89; P<0.001; Table 3).

Table 2	Proportions of readmission due to overdose in each subgroup in the propensity-matched patients (n=15 876)		
	No. of patients	Readmission	%
Total	15 876	1304	8.2
Female	11 196	1032	9.2
Age, years			
12–19	1073	91	8.5
20–29	3885	358	9.3
30–39	3889	389	10.0
40–49	3117	278	8.9
50–59	1577	109	6.9
60–69	1097	52	4.7
70–79	758	20	2.6
≥80	510	7	1.4
Toxic agent			
Non-opioid analgesics, anti-pyretics and anti-rheumatics	748	35	4.7
Anti-epileptic, sedative-hypnotic and anti-Parkinsonism drugs	4892	395	8.1
Other psychotropic drugs	1398	121	8.7
Other drugs	377	19	5.0
Unspecified drugs	8461	734	8.7
Classification of mental disorder			
Schizophrenia	2287	206	9.0
Mood disorders	6076	507	8.3
Organic mental disorders	241	10	4.1
Mental disorders due to psychoactive substance use	531	28	5.3
Disorders of personality and behaviour	427	57	13.3
Other mental disorders	2002	154	7.7
Not known	4312	342	7.9
Level of consciousness on admission			
Alert	3932	334	8.5
Dull	3805	318	8.4
Somnolence	3696	317	8.6
Coma	4443	335	7.5
Charlson comorbidity index			
0	13,415	1164	8.7
1	1788	103	5.8
2	462	27	5.8
≥3	211	10	4.7
Tracheal intubation	1603	98	6.1
Haemodialysis	208	12	5.8
Academic hospital	6517	529	8.1
Hospital volume groups, per year			
Low (≤38)	4935	358	7.3
Medium (39–84)	5339	463	8.7
High (≥85)	5602	483	8.6
Fiscal year of discharge			
2010	4873	572	11.7
2011	5908	507	8.6
2012	5095	225	4.4
Subgroup analysis showed that psychiatric intervention was significantly associated with lower readmission in two age groups – patients in their 20s and 40s (Table 4).

Discussion

Using a national in-patient database in Japan, this study compared repeated admission due to drug overdose between a psychiatric intervention and an unexposed group. Only 44% of the admitted patients underwent psychiatric intervention. A propensity-matched analysis demonstrated that the proportion of repeated admission through drug overdose was lower in the psychiatric intervention than in the unexposed group. Although not statistically significant for some age groups, the results were consistent across the various age groups. Psychiatric intervention was associated with lower readmission in younger subgroups, which is consistent with the findings of other reports.

Several studies have investigated the effect of psychiatric intervention before discharge on preventing repetition of self-harm. However, the generalisability of those reports was limited because they were based on small sample sizes or were restricted to data from highly advanced institutions with specialist self-harm teams. One strength of the present study was the generalisability of the general in-patient population, being based on nationwide data from various types of hospitals.

Previous investigations have shown mixed results on the effect of psychiatric intervention in preventing repetition of self-harm. However, the generalisability of those reports was limited because they were based on small sample sizes or were restricted to data from highly advanced institutions with specialist self-harm teams. One strength of the present study was the generalisability of the general in-patient population, being based on nationwide data from various types of hospitals.

In conclusion, our study demonstrated that psychiatric intervention following discharge was associated with reduced risk of readmission, which suggests that such interventions are effective. However, because we were unable to assess the effect of intervention by other specialists, our findings may not apply to hospitals without consultation liaison services provided by psychiatrists.

Several limitations of this study warrant consideration. First, the database used did not include the severity of mental disorder, which may have influenced the probability of undergoing psychiatric intervention. Second, the recorded diagnoses in administrative claims databases are less well validated than those based on prospective cohorts or registries. Third, a large proportion of unspecified drugs may have caused confounding bias and led to underestimating the true effect of the intervention.

In conclusion, our study demonstrated that psychiatric intervention by psychiatrists before discharge was associated with reduced risk of repeated admission to emergency centres. These findings indicate the importance of psychiatric intervention for drug overdose patients admitted to emergency centres in preventing repeated admission.

Table 3 Proportions of readmission due to overdose in the propensity-matched group (n=15,876)

Unexposed group (n=7938)	Psychiatric intervention group (n=7938)	Odds ratio (95% CI)			
n	%	n	%	P	
722	9.1	582	7.3	<0.001	0.79 (0.71-0.89)

The proportion of readmission within 1 year (4.4%) was lower than the proportions of repeated self-harm (16%) reported in one systematic review. A recent systematic review of brief contact interventions also found a higher rate of repeated self-harm (intervention 9.8%; unexposed 11.1%). The reviewed studies identified repeated episodes using various methods such as the use of catchment areas for including patients, follow-up interviews and checking medical records. In the present study, we were able to identify only same-hospital readmission due to overdose, and this was a potential source of underestimation.

Our findings suggest that psychiatric intervention following admission due to drug overdose was associated with reduced readmission. Clinical guidelines from the National Institute for Health and Care Excellence in 2004 and Royal College of Psychiatrists in 2004 recommend that a psychosocial assessment by a trained mental health specialist be carried out for all patients who self-harm. In the present study, interventions by psychiatrists were associated with reduced risk of readmission, which suggests that such interventions are effective. However, because we were unable to assess the effect of intervention by other specialists, our findings may not apply to hospitals without consultation liaison services provided by psychiatrists.

Using a national in-patient database in Japan, this study compared repeated admission due to drug overdose between a psychiatric intervention and an unexposed group. Only 44% of the admitted patients underwent psychiatric intervention. A propensity-matched analysis demonstrated that the proportion of repeated admission through drug overdose was lower in the psychiatric intervention than in the unexposed group. Although not statistically significant for some age groups, the results were consistent across the various age groups. Psychiatric intervention was associated with lower readmission in younger subgroups, which is consistent with the findings of other reports.

Table 4 Subgroup analysis with proportions of readmission due to overdose in the psychiatric intervention group (n=7938)

Age, years	Unexposed group			Intervention group				
Age, years	No. of patients	Readmission	%	No. of patients	Readmission	%	Odds ratio (95% confidence interval)	
12–19	550	47	8.5	523	44	8.4	1.000 (0.98–1.01)	
20–29	1978	204	10.3	1877	154	8.2	0.036 (0.02–0.05)	
30–39	1955	205	10.5	1934	184	9.5	0.336 (0.31–0.36)	
40–49	1559	164	10.6	1558	114	7.3	0.002 (0.00–0.05)	
50–59	786	62	7.9	791	47	5.9	0.137 (0.05–0.35)	
60–69	530	28	5.3	567	24	4.2	0.478 (0.45–0.49)	
≥70	580	12	2.1	688	15	2.2	1.000 (0.48–2.27)	
This study was supported by a grant from the Ministry of Health, Labour and Welfare, Japan (Research on Policy Planning and Evaluation Grant No. H26-Policy-011).

Funding

This study was supported by a grant from the Ministry of Health, Labour and Welfare, Japan (Research on Policy Planning and Evaluation Grant No. H26-Policy-011).

References

1. Brådvik L, Mattsson C, Bogren M, Nettelbladt P. Long-term suicide risk of depression in the Lundby cohort 1947–1997 — severity and gender. Acta Psychiatr Scand 2008; 117: 185–91.
2. Clandal C, Fullerton-Gleason L, Agudo R, Lalvaiy J. Subsequent suicide mortality among emergency department patients seen for suicidal behavior. Acad Emerg Med 2006; 13: 435–42.
3. Haukkia J, Suominen K, Partonen T, Lonnqvist J. Determinants and outcomes of serious attempted suicide: a nationwide study in Finland, 1996–2003. Am J Epidemiol 2008; 167: 1155–63.
4. Christiansen E, Jensen BF. Risk of repetition of suicide attempt, suicide or all deaths after an episode of attempted suicide: a register-based survival analysis. Aust NZ J Psychiatry 2007; 41: 257–65.
5. Cooper J, Kapur N, Webb R, Lawlor M, Guthrie E, Mackway-Jones K, et al. Suicide after deliberate self-harm: a 4-year cohort study. Am J Psychiatry 2005; 162: 297–303.
6. Hawton K, Zahn D, Weatherall R. Suicide following deliberate self-harm: long-term follow-up of patients who presented to a general hospital. Br J Psychiatry 2003; 182: 537–42.
7. Owens D, Horrocks J, House A. Fatal and non-fatal repetition of self-harm: systematic review. Br J Psychiatry 2002; 181: 193–9.
8. Zahn D, Hawton K. Repetition of deliberate self-harm and subsequent suicide risk: long-term follow-up study in 11,583 patients. Br J Psychiatry 2004; 185: 70–5.
9. Gunel D, Bennetwsh O, Peters T, Stocks N, Sharp DJ. Do patients who self-harm consult their general practitioner soon after hospital discharge? A cohort study. Soc Psychiatry Psychiatr Epidemiol 2002; 37: 599–602.
10. Runebro B, Tidemalm D, Dahlin M, Lichtenstein P, Längström N. Method of attempted suicide as predictor of subsequent successful suicide: national long term cohort study. BMJ 2010; 341: c2322.
11. Horrocks J, Price S, House A, Owens D. Self-injury attendances in the accident and emergency department: clinical database study. Br J Psychiatry 2003; 183: 34–9.
12. National Institute for Health and Clinical Excellence. Suicide and Self-harm in Over 18s: Short-term Management and Prevention of Recurrence. NICE, 2004 (http://www.nice.org.uk/guidance/CG16).
13. Royal College of Psychiatrists. Assessment Following Self-harm in Adults (Council Report CR122). Royal College of Psychiatrists, 2004.
14. Hickey L, Hawton K, Fagg J, Wetzel H. Deliberate self-harm patients who leave the accident and emergency department without a psychiatric assessment. A neglected population at risk of suicide. J Psychosom Res 2001; 50: 87–93.
15. Hughes L, Kosky N. Meeting NICE self-harm standards in an accident and emergency department. Psychiatry Bull 2007; 31: 255–8.
16. Jones R, Avies-Jones A. An audit of the NICE self-harm guidelines at a local accident and emergency department in North Wales. Accid Emerg Nurs 2007; 15: 217–22.
17. Kapur N, Murphy E, Cooper J, Bergen H, Hawton K, Simkin S, et al. Psychosocial assessment following self-harm: results from the multi-centre monitoring of self-harm project. J Affect Disord 2008; 106: 285–93.
18. Okumura Y, Shimizu S, Ishikawa KB, Matsuda S, Fushimi K, Ito H. Characteristics, procedural differences for defining, and costs of inpatients with drug poisoning in acute hospitals in Japan. Gen Hosp Psychiatry 2012; 34: 681–5.
19. Kapur N, House A, Dodgson K, May C, Creed F. Effect of general hospital management on repeat episodes of deliberate self-poisoning: cohort study. BMJ 2002; 325: 866–7.
20. Crawford MJ, Wessely S. Does initial management affect the rate of repetition of deliberate self-harm? Cohort study. BMJ 1998; 317: 985.
21. Kapur N, Cooper J, Hiroeh U, May C, Appleby L, House A. Emergency department management and outcome for self-poisoning: a cohort study. Gen Hosp Psychiatry 2004; 26: 36–41.
22. Bergen H, Hawton K, Waters K, Cooper J, Kapur N. Psychosocial assessment and repetition of self-harm: the significance of single and multiple repeat episode analyses. J Affect Disord 2010; 127: 257–65.
23. Kapur N, Steeg S, Webb R, Haigh M, Bergen H, Hawton K, et al. Does clinical management improve outcomes following self-harm? Results from the multi-centre study of self-harm in England. PLoS One 2013; 8: e70434.
24. Yasunaga H, Hiruguchi H, Kuwabara K, Matsuda S, Fushimi K, Hashimoto H, et al. Outcomes after lapaoroscopic or open distal gastrectomy for early-stage gastric cancer: a propensity-matched analysis. Ann Surg 2013; 257: 640–6.
25. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. WHO, 1992.
26. Quan H, Sundaranajan V, Haffon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining, and costs of inpatients with drug poisoning in acute hospitals in Japan. Gen Hosp Psychiatry 2005; 31: 131–39.
27. D’Agostino Jr RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 1998; 17: 2265–81.
28. Ohta T, Kikuchi H, Hashi K, Kudo Y. Nitrofeneone administration in the acute stage following subarachnoid hemorrhage. Results of a multi-center controlled double-blind clinical study. J Neurosurg 1986; 64: 420–6.
29. Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput 2009; 38: 1228–34.
30. Kawarishi C, Anuga T, Ichikawa N, Yonemoto N, Otsubo K, Kamiyo Y, et al. Assertive case management versus enhanced usual care for people with mental health problems who had attempted suicide and who were admitted to hospital emergency departments in Japan (ACTION-J): a multicentre, randomised controlled trial. Lancet Psychiatry 2014; 3: 193–201.
31. Erlangsen A, Lind B, Stuart E, Qin P, Stenerger E, Larsen K, et al. Short-term and long-term effects of psychosocial therapy for people after deliberate self-harm: a register-based, nationwide multicentre study using propensity score matching. Lancet Psychiatry 2015; 2: 49–58.
32. Mihener AJ, Carter G, Pirkis J, Robinson J, Spittal Ml. Letters, green cards, telephone calls and postcards: systematic and meta-analytic review of brief contact interventions for reducing self-harm, suicide attempts and suicide. Br J Psychiatry 2015; 206: 184–90.