Design and Modeling of Klann Mechanism Based Paired Four Legged Amphibious Robot

MOHAMMED RAFFEEQ¹, SITI FAUZIAH TOHA¹, (SM, IEEE), SALMIAH AHMAD ², (SM, IEEE), MUHAMMAD SYAFIQ MOHD YUSOF¹,MOHID ASHRAF RAZIB¹ AND MOHAMMAD IKMAL HAKIM¹

¹ Department of Mechatronics Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia.
² Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia.

Corresponding author: Siti Fauziah Toha (e-mail: tsfauziah@iium.edu.my).

The author would like to acknowledge financial assistance from the ministry of education Malaysia under the FRGS Grant FRGS17-031-10597. We would like to thank financial support by IIUM under the KOE post graduate Tuition fee waiver scheme 2019 (TFW-2019).”

ABSTRACT The ability of the amphibious robot to walk on dry land and swim in the water motivates many researchers to explore the structural design strategies and control methods of the system. In this research, the paired four-legged amphibious robot is designed and modeled. The optimized Klann linkage mechanism is applied as the mechanism of the robot’s leg. The kinematic analysis of the designed model is performed in SAM (Simulation and Analysis of Mechanisms) to study the motion trajectory of the system. The inverse dynamic analysis is used to obtain the driving torque of the actuator for the designed amphibious robot. The results demonstrate that the trajectory path of the lower part of the foot in the Klann mechanism is more horizontal than the four-bar mechanism and resulting in higher propulsion of the Klann mechanism than the four-bar mechanism. The simulation also reveals that the amphibious robot has the capability to maneuver and thus validate the ability of the designed model.

INDEX TERMS Amphibious Robot, Dynamic modeling, Klann mechanism, Kinematic modeling

I. INTRODUCTION

NATURE inspires to design and develop robotic platforms with improved functionality and performance. Biologically inspired amphibious robots take inspiration from living creatures because they possess excellent characteristics. One of the characteristics of amphibious creatures is locomotion in diverse environments like water, ground, and aerial. Insects such as gecko and basilisk lizard inspire extraordinary locomotion capabilities to develop robotic systems [1]. Roboticists are exploring animals’ designs and dynamic locomotion performance that can maneuver and adapt to a different environment. However, the robotic platforms developed for diverse environments have adaptive limitations, pose control challenges, and the nonlinear system behavior problems for these systems are non-trivial. These reasons have attracted the attention of researchers in this research area of amphibious robots.

In the past two decades, there has been significant development in propulsive mechanism for amphibious robot locomotion that exhibits excellent ability of locomotion on multiple media surfaces like land, water, and the transition area between the media [2]. The amphibious robots have demonstrated potential locomotion capabilities, sophisticated unstructured land, and in the dynamic underwater environment [3]. The prospective application of these amphibious robots involves monitoring and locomotion in the complex environment that is difficult to maneuver in the areas like post-disaster are affected due to floods, cyclones, and landslides. The advanced applications involve dynamically changing underwater environments like deep-sea exploration, pipeline inspection, and structure monitoring. The reconnaissance and search and rescue operation also involves the locomotion capabilities of these mechanisms to change their locomotion at the transition region [4]. The challenging environment has motivated researchers in robotics to explore research avenues for locomotion and propulsive mechanism design and development of the amphibious robot.

Hybrid amphibious robots utilize a combination of mech-
anisms for locomotion on multiple media exploiting the advantage of each mechanism at different media. Li et al. [5] proposed an amphibious spherical robot that utilizes a leg mechanism for locomotion on land surface and a water-jet mechanism for propulsion on the water surface. Li [6] modified the amphibious spherical robot leg mechanism by appending a passive wheel at each leg, increasing the mobility on the smooth land surface. The researchers studied kinematic and dynamic models in detail to optimize the design, increasing the performance metrics of amphibious spherical robots [7]. Hi et al. [8] presents multiple amphibious robot working in coordination that involves applications like box pushing. He successfully developed the father-son configuration of amphibious spherical robots. The other hybrid mechanism reported in the literature utilizes spherical configuration to increase the performance on the water. The propulsion on the water’s surface is achieved by a hybrid mechanism involving a flywheel, propeller, and pendulum [2].

Legged amphibious robots are employed for maneuvering on irregular land terrains [9], and for running on the surface of water [10] or underwater swimming [11] or seabed crawling [12] with the same leg mechanism. Zhong et al. [13] investigate the stiffness effect on the motion performance of an amphibious robot. The amphibious robot locomotion mechanism utilizes flexible flipper legs. Variable stiffness allows the legs to change stiffness for arc-shaped legs for locomotion on land and a straight flipper for water locomotion. Klien et al. [14] discussed a locomotion mechanism that uses four thrusters for aquatic locomotion, and terrestrial locomotion employs four standard wheels. Zhong et al. [15] presents a novel design that utilizes transformable legs for locomotion on land and water. On land, motion is achieved using a rigid fan-shaped frame, and on water, propulsion is achieved using legs transformed to flippers. Xing et al. [16] proposed a novel design that incorporates a driving system consisting of mechanical legs with a waterjet thruster, lifting and supporting wheel mechanism for locomotion on water and land.

Insects and amphibious animals inspire walking and swimming mechanisms for traversing in these environments. Legged locomotion is a prominent motion strategy for maneuverability over irregular terrains and surfaces. Legged amphibious robots have gained momentum in recent years because of diverse gait patterns and maneuverability. Search and rescue operations employ legged amphibious robots [1]. The early study at the nanorobotics Carnegie melon university concentrated on the locomotion capabilities of legged lizards running on water and developed a robot platform that utilizes drag forces for propulsion. The developed robot had an advantage in running speed and energy consumption [17]. The robot developed by ijspreet et al. [18] takes inspiration from the salamander; the flexible body movement makes smooth locomotion in the water, and legs are utilized for walking on the ground. The robot inspired by the water strider utilizes surface tension to locomote on the water surface [4]. yusuf et al. [19] presents an amphibious robot focusing on optimized path planning of amphibious robot using ant colony optimization technique and also, identifies walking gaits of amphibious robot to manueve on-land and underwater environment.

Mechanisms are widely employed as legs for amphibious locomotion. Kim et al. [20] uses the Klann mechanism with a tripod gait and spherical Styrofoam for buoyancy creation is utilized for a robot to work on the land and water. Leg mechanism with spherical Styrofoam allows the robot to operate in two environments. The experiment results demonstrate that on the land surfaces, the speed of the robot is higher, and also with an increase of frequency of the motor decreases pitching of an amphibious robot. Giri et al. [21] utilized the Newton-Euler formalism dynamic modeling approach for open kinematic chain mechanism. Kinematic analysis of the three mechanisms and comparison of four-bar, Klann, and Watt-I, which closely resembles locomotion of basilisk lizard for stable and water running, is studied by [22]. Kim et al. [23] present the amphibious robot that utilizes the dynamic tail with a bang-bang controller that controls the yawing locomotion of the robotic platform. To calculate the yawing angle and position of a robot, the dynamic analysis utilizes the differential equation during steering operation. Komoda et al. [24] introduce the multi-body dynamic analysis approach to compare the performances of closed-loop linkages. The mechanism considered for analysis involves Klann, Chebyshev, and Theo-Jansen mechanism. Sheba et al. [25], [26] presents a reconfigurable design of four-legged amphibious robot. The reconfigurable links can generate five different gait locomotion configurations. However, to increase the propulsion and stability of the robot, both on land and water optimized mechanism modeling and its analysis have to be performed.

Thus a Klann based paired four-leg amphibious robot is designed and modeled to operate both on land and water. The robot uses the Klann mechanism as a leg mechanism of the robot because of closed planar mechanism simplicity design and control complexity that can operate for multimodal locomotion. The Klann mechanism is optimized and kinematically analyzed. The mechanism end-effector optimized trajectory reveals a close flat path at the lower part of the trajectory, parallel to the surface that maximizes the robot’s propulsion, making it suitable for stable and fast running on aquatic and terrestrial surfaces. The Klann mechanism leg frequency can be increased for high-speed locomotion.

The paper is organized into four sections, section one introduces legged amphibious robots and associated literature work Section two describes the system integration of paired four-legged amphibious robots. Section three details forward kinematic and dynamic modeling of paired four-legged amphibious robots, and section four presents results and discussion. Finally, the conclusion and future work is discussed.

II. SYSTEM ARCHITECTURE
A. AMPHIBIOUS ROBOT SYSTEM STRUCTURE

The water running aquatic locomotion of the basilisk lizard inspires the design of the legged amphibious robot. Lizard utilizes drag force from the water for swimming and walking legs for ground locomotion. In the current design architecture of a paired four-legged amphibious robot, the Klann mechanism is used as a leg mechanism for locomotion. The system architecture comprises of four paired legs and main base. Figure 1 shows the CAD design amphibious legged robot. The robot consists of a total of eight legs arranged in pairs of four, two at the front and two at the rear end. The robot is designed to maneuver on land surface and water environments. The controller of the robotic system is arduino 3.0 robot and navigation of the system is provided by Global Positioning System(GPS) sensor Ublox Module. The gears speed and rotation is controlled using an ASLONG DC motor connected on each side through set of five gears. The gear ratio selected for the leg mechanism is achieved by DC motor connected on each side of set of five gears.

The locomotion of amphibious robot is achieved using paired four legs attached to the base of the robot (B1). The design of amphibious robot incorporates fixed main base and paired two legs on each side controlled by a DC Motor (M). 3D solidworks environment with motion study feature is utilized for modeling of amphibious robot. Figure 1 illustrates the CAD design front view of paired legs on one side appended to fixed base using joints. Figure 2 demonstrated leg position with two links ends at the top of each leg appended to main base and at the bottom free link end scrolls over the land surface. The motor provides rotational motion attached to gears with the gear ratio of 1:4, where the gear is mounted or shifted from a ratio of 1:2 to 1:4. Figure 3 illustrates the leg mechanism is combination of links arranged in Klann linkage pattern. The minimum length of leg position estimates to 37.88mm at the initial position and maximum length covered by fully extended links is 116.33 mm.

The leg mechanism of amphibious robot exploits Klann mechanism as in Figure 6 that is a combination of two four-bar mechanisms. Figure 5 illustrates a four-bar mechanism schematic. The Klann mechanism model as in Figure 6 comprises of links \(L_{12}, L_{24}, L_{34}, L_{25}, \) and \(L_{45} \). Here, \(L_{12} \) is the link length between length nodes 1 and 2. The link lengths and angles between the links determine the end effector position. The driving side parameters are \(L_{12} \) and \(L_{24} \), and \(\beta, L_{34}, L_{45} \), are the driven side parameters. The location of the driving crank pivot remains attached at the base link. The angle \(\theta \) and \(\delta \) are measured relative to the X-axis and the angles \(\phi \) and \(\psi \) are measured to the base link \(L_{12} \). The coupler angle \(\beta \) is measured relative to link \(L_{24} \).

\[
k_{21} = \frac{r_b}{r_3} \tag{2}
\]

\[
k_{31} = \frac{r_1^2 - r_2^2 + r_3^2 + r_b^2}{2 \cdot r_1 \cdot r_3} \tag{3}
\]

\[
P = \cos(\theta_2) - k_{11} - k_{21} \cdot \cos(\theta_2) + k_{21} \tag{4}
\]

\[
Q = -2 \cdot \sin(\theta_2) \tag{5}
\]

\[
R = k_{11} - (k_{21} + 1) \cdot \cos(\theta_2) + k_{31} \tag{6}
\]

For the first four-bar mechanism, the end effector position \(\theta_4 \) is obtained solving equation 1 to 7.

\[
\theta_4 = 2 \cdot \tan^{-1}\left(\frac{-Q - \sqrt{Q^2 - 4 \cdot P \cdot R}}{2 \cdot P}\right) \tag{7}
\]

The output from the first four-bar mechanism is used as input to obtain the second four-bar end effector output parameters

\[
\theta_3 = \tan^{-1}\left(\frac{B_y - A_y}{B_x - A_x}\right) \tag{8}
\]

\[
\theta_5 = 90 - \tan^{-1}\left(\frac{C_y - F_y}{C_x - F_x}\right) \tag{9}
\]

\[
r_v = \sqrt{(C_x - F_x)^2 - (C_y - F_y)^2} \tag{10}
\]
\[k_{12} = \frac{d_1}{r_v} \]
\[k_{22} = \frac{d_1}{r_6} \]
\[k_{32} = \frac{d_1^2 - r_v^2 + r_5^2 + r_6^2}{2 * r_6 * r_v} \]
\[P_1 = \cos(\theta_5) - k_{12} - k_{22} * \cos(\theta_5) + k_{32} \]
\[Q = -2 * \sin(\theta_5) \]
\[R_1 = k_{12} - (k_{22} + 1) * \cos(\theta_5) + k_{32} \]

The end effector position of second four bar position is as in equation 17
\[\theta_6 = 2 * \arctan\left(\frac{-Q_1 - \sqrt{Q_1^2 - 4 * P_1 * R_1}}{2 * P}\right) \]
The position and velocity of the end effector, the triangular line vector \(L_{47} \) is fixed in the vertical direction and the vector summation of \(L_{84}, L_{43}, L_{32} \) and \(L_{21} \) is performed.

B. DYNAMIC MODELING

The dynamic modeling is performed using differential algebraic equations (DAE) we use the method of komoda et al. [24]. For the dynamic modeling of klann mechanism the vectors \(q \) with 39 elements are defined as the generalized coordinates, placements and attitude angles are considered in this model. For the dynamic modeling 13 links are considered 12 links in original Klann mechanism and an end effector attached as an extension with a normalized stride length. In the present analysis a total of 39 (= 13 \(\times \) 3) elements are obtained in the generalized coordinates.

\[
q = [q_{1T}, q_{2T}, q_{3T}, q_{4T}, q_{5T}, q_{6T}, q_{7T}, q_{8T}, q_{9T}, q_{10T}, q_{11T}, q_{12T}, q_{13T}]^T
\]

The column matrix \(K(q) \) of kinematic constraint equation 27 gives first 38 elements. In the equation 27 for easy notion we use \(L_1 = L_{68} \), other notations as shown in Table 1 in sequential order, where \(t \) is time, and \(\omega \) is the angular velocity of the crank in the mechanism. The calculation of Jacobian matrix \(\phi_q \) is performed using equation

\[
\phi_q = \begin{bmatrix} \delta(q, t) \\ \delta(\phi, t) \end{bmatrix}_{39 \times 39}
\]

Diffential Algebraic Equation’s approach is utilized for the inverse dynamic analysis, since the system has only one degree of freedom, and the driving torque \(\tau \) is calculated using equation 28.
and ride. The type mechanism chosen for the design of leg
Legged robot locomote on the smooth and uneven surface of
velocity and acceleration of the mechanism.

with four-bar link mechanism in terms of motion trajectory,
end effector. Additionally, the klann mechanism is compared
leg tracing, the foot locus, velocity and acceleration of the
The SAM software is utilized for the kinematic analysis
the actual velocity components of the system.

A. LOCOMOTION TRAJECTORY OF AMPHIBIOUS LEG

Legged robot locomote on the smooth and uneven surface of
land. The locomotion cycle of leg undergoes stroke, stride
and ride. The type mechanism chosen for the design of leg
mechanism define the shape and coverage of legged robot over
the surface. Klann mechanism with full trajectory tracking at the tip of end effector chosen for our design is shown in Figure 7. The trajectory path is close to pattern of amphibious leg. The stride length and height, and frequency of rotating cycle of defines the locomotion performance of leg mechanism on the land surface. The trajectory path is tracked at the node 1 of mechanism and driving trajectory of full cycle at node 8 where the crank connects to the main base of robot.

The complete cycle of 0-10 sec trajectory is obtained by
varying the drive 0-360° of angle at the driving node 8
connected to the drive motor. Figure 14 shows trajectory path
from T=1 to T=10 at time intervals two steps. The trajectory
path is tracked for the shape of the stride and measures stride
length and height with optimized link length and joint angles.
The desired path for leg motion is triangular in shape that
closely mimics leg’s locomotion pattern of legged animals,
as one side of triangle is parallel to surface it provide smooth
locomotion performance on flat land surface. The trajectory
path is obtained and compared with desired path, and the

\[
\phi(q, t) = \begin{bmatrix}
 x_{1} - l_{1}\cos\theta_{1} \\
 y_{1} - l_{1}\sin\theta_{1} \\
 x_{2} + l_{2}\cos\theta_{2} - x_{1} - l_{1}\cos\theta_{1} \\
 y_{2} - l_{2}\sin\theta_{2} - y_{1} - l_{1}\sin\theta_{1} \\
 x_{3} - l_{3}\cos\theta_{3} - x_{2} + l_{2}\cos\theta_{2} \\
 y_{3} - l_{3}\sin\theta_{3} - y_{2} + l_{2}\sin\theta_{2} \\
 x_{4} - l_{4}\cos\theta_{4} - x_{3} - l_{3}\cos\theta_{3} \\
 y_{4} - l_{4}\sin\theta_{4} - y_{3} - l_{3}\sin\theta_{3} \\
 x_{5} + l_{5}\cos\theta_{5} - x_{4} + l_{4}\cos\theta_{4} \\
 y_{5} + l_{5}\sin\theta_{5} - y_{4} + l_{4}\sin\theta_{4} \\
 x_{6} + l_{6}\cos\theta_{6} - x_{5} - l_{5}\cos\theta_{5} \\
 y_{6} + l_{6}\sin\theta_{6} - y_{5} - l_{5}\sin\theta_{5} \\
 x_{7} + l_{7}\cos\theta_{7} - x_{6} - l_{6}\cos\theta_{6} \\
 y_{7} + l_{7}\sin\theta_{7} - y_{6} - l_{6}\sin\theta_{6} \\
 x_{8} - l_{8}\cos\theta_{8} - x_{7} + l_{7}\cos\theta_{7} \\
 y_{8} - l_{8}\sin\theta_{8} - y_{7} + l_{7}\sin\theta_{7} \\
 x_{9} - l_{9}\cos\theta_{9} - x_{8} + l_{8}\cos\theta_{8} \\
 y_{9} - l_{9}\sin\theta_{9} - y_{8} + l_{8}\sin\theta_{8} \\
 x_{10} - l_{10}\cos\theta_{10} \\
 y_{10} - l_{10}\sin\theta_{10} \\
 x_{11} - l_{11}\cos\theta_{11} - x_{10} + l_{10}\cos\theta_{10} \\
 y_{11} - l_{11}\sin\theta_{11} - x_{10} + l_{10}\sin\theta_{10} \\
 x_{12} + l_{12}\cos\theta_{12} \\
 y_{12} + l_{12}\sin\theta_{12} \\
 x_{13} - l_{13}\cos\theta_{13} - x_{9} + l_{9}\cos\theta_{9} \\
 y_{13} - l_{13}\sin\theta_{13} - x_{9} + l_{9}\sin\theta_{9} \\
\end{bmatrix}
\]

\[\dot{q} = \frac{q(M\ddot{q} - g)}{(d)D - \dot{q}}\]

Where \((d)D\) is the Jacobian of the driver constraints. It
should be noted here that the array \(\dot{q}\) need not have to contain
the actual velocity components of the system.

IV. RESULT ANALYSIS

The SAM software is utilized for the kinematic analysis
of the Klann mechanism. The analysis aims to obtain the
leg tracing, the foot locus, velocity and acceleration of the
end effector. Additionally, the klann mechanism is compared
with four-bar link mechanism in terms of motion trajectory,
velocity and acceleration of the mechanism.

A. LOCOMOTION TRAJECTORY OF AMPHIBIOUS LEG

The stride shape facilitates gait identification of amphibious
robot locomotion. Figure 8 demonstrates the stride shape
with length 180 mm and height of the stride at 35 mm (swing
and stance phase) of klann leg mechanism.

The complete cycle of 0-10 sec trajectory is obtained by
varying the drive 0-360° of angle at the driving node 8
connected to the drive motor. Figure 14 shows trajectory path
from T=1 to T=10 at time intervals two steps. The trajectory
path is tracked for the shape of the stride and measures stride
length and height with optimized link length and joint angles.
The desired path for leg motion is triangular in shape that
closely mimics leg’s locomotion pattern of legged animals,
as one side of triangle is parallel to surface it provide smooth
locomotion performance on flat land surface. The trajectory
path is obtained and compared with desired path, and the
error is calculated. The error is utilized as objective function for optimization. In the optimization process, link lengths are considered as design variables to achieve desired trajectory path at the end effector. The optimization of mechanism provides optimized parameters as enlisted in Table 1. The optimized trajectory pattern of klann mechanism is similar to the trajectory pattern of four-bar mechanism. However, the klann mechanism trajectory pattern has advantages over the parallel trajectory. The water stroke cycle requires lesser lifting forces, hence the four-bar mechanism based leg mechanism finds advantageous in such applications.

B. VELOCITY AND ACCELERATION ANALYSIS

The velocity and acceleration of the four-bar mechanism is shown in Figure 9 and 10. The kinematic analysis results demonstrate four-bar mechanism has maximum velocity of \(0.227\text{ms}^{-1}\) and acceleration of \(0.833\text{ms}^{-2}\). The velocity vector for the klann mechanism is calculated with respect to the point of origin by summing vectors \(V_k\) (k = 84, 43, 32, and 21). Figure 11 and 12 show position and velocity results through kinematic analysis of klann mechanism. The maximum velocity from simulation is \(0.52\text{ms}^{-1}\) and acceleration range is \(0.29\text{ms}^{-2}\). The higher velocity of foot reduces the drag force on water and for the ground surface, no slip is assumed so velocity of feet is same as velocity of the robot.

C. TORQUE ANALYSIS

Driving Torque is an important design parameter, its drive cycle effects the locomotion performance of leg mechanism effecting the frequency of stroke step and stride shape. The analysis of driving torque determines optimized swing cycle of leg mechanism reducing the energy consumption. Figure 12 demonstrates torque analysis of klann mechanisms reflecting the maximum and minimum torque requirement of the drive cycle at the driving node. The Figure 12 demonstrates the torque in the range -0.45 to 0.707 the magnitude of amplitude is high increasing the energy consumption due to high lift forces of leg during swing phase. The klann mechanism torque waveform confirms the common property.
The proposed klann mechanism based paired four legged amphibious robot is modeled for the locomotion on land and water surfaces. The designed robot has four feet in pair with Klann based mechanism as legs of the robot. Kinematic analysis and simulation is performed using SAM. The Klann mechanism simulation results confirmed the trajectory is parallel to surface suitable for water running and ground traversing of the robot. In this work optimized Klann mechanism is utilized as leg mechanism to improve the speed performance of the amphibious robot. Kinematic analysis of klann based leg mechanism confirms that position and velocity of the end effector generates trajectory that is parallel to surface. The klann based mechanism in comparison with watt I and Cheychew mechanism are more efficient with same actuated frequency and foot velocity. The propulsion of the Klann mechanism is higher than the four-bar mechanism. However, due to smaller lifting forces of the four-bar mechanism has more efficient locomotion on the surface of water. The designed Klann leg mechanism velocity and acceleration of the proposed amphibious robot are analysed by simulation to validate the performance of the platform facilitating prototype development. Future studies will optimize the shape of the foot to increase the thrust and mobility performance on the water. Also, the prototype development and its control strategy for paired four legged with klann mechanism will be investigated.

ACKNOWLEDGMENT

The author would like to acknowledge financial assistance from the ministry of education Malaysia under the FRGS Grant FRGS17-031-10597. We would like to thank financial support by IIUM under the KOE post graduate Tuition fee waiver scheme 2019 (TFW-2019).

REFERENCES

[1] M. Rafeeq, S. F. Toha, S. Ahmad, and M. A. Razib, “Locomotion strategies for amphibious robots—a review,” IEEE Access, vol. 9, pp. 26 323–26 342, 2021.
[2] Y. Li, M. Yang, H. Sun, Z. Liu, and Y. Zhang, “A Novel Amphibious Spherical Robot Equipped with Flywheel, Pendulum, and Propeller,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 89, no. 3-4, pp. 485–501, 2018.
[3] B. B. Dey, S. Manjanna, and G. Dudek, “Ninja legs: Amphibious one degree of freedom robotic legs,” in IEEE International Conference on Intelligent Robots and Systems, 2013.
[4] L. Wang, T. Gao, F. Gao, Y. Xue, and Y. Wang, “Experimental research on locomotion characteristics of water strider and movement realization on a water strider robot,” 2010 IEEE International Conference on Robotics and Biomimetics, ROBIO 2010, pp. 585–590, 2010.
[5] M. Li, S. Guo, and C. Yue, “A roller skating mode-based amphibious spherical robot,” 2014 IEEE International Conference on Mechatronics and Automation, IEEE-ICMA 2014, pp. 1957–1961, 2014.
[6] M. Li, S. Guo, H. Hirata, and H. Ishihara, “A roller-skating/walking mode-based amphibious robot,” Robotics and Computer-Integrated Manufacturing, vol. 44, pp. 17–29, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rcim.2016.06.005
[7] ———, “Design and performance evaluation of an amphibious spherical robot,” Robotics and Autonomous Systems, vol. 64, pp. 21–34, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.robot.2014.11.007
[8] Y. He, L. Shi, S. Guo, S. Pan, and Z. Wang, “Preliminary mechanical analysis of an improved amphibious spherical father robot,” Microsystem Technologies, vol. 22, no. 8, pp. 2051–2066, 2016. [Online]. Available: http://dx.doi.org/10.1007/s00542-015-2504-9
[9] J. Machado and M. Silva, “An overview of legged robots,” Proceedings of the International Symposium on Mathematical Methods in Engineering (MME), no. April 2006, 2006. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download;doi=10.1.1.106.8192;type=pdf;id=18
[10] U. Sanati, M. Buehler, and D. E. Koditschek, “RHex: A simple and highly mobile hexapod robot,” International Journal of Robotics Research, vol. 20, no. 7, pp. 616–631, 2001.
[11] A. German and M. Jenkin, “Gait synthesis for legged underwater vehicles,” Proceedings of the 5th International Conference on Autonomic and Autonomous Systems, ICAS 2009, pp. 189–194, 2009.
[12] H. Shim, S. Y. Yoo, H. Kang, and B. H. Jun, “Development of arm and leg for seabed walking robot CRABSTER200,” Ocean Engineering, vol. 116, pp. 55–67, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.oceaneng.2016.02.028
[13] B. Zhong, Y. Zhou, X. Li, M. Xu, and S. Zhang, “Locomotion Performance of the Amphibious Robot on Various Terrains and Underwater with Flexible Flipper Legs,” Journal of Bionic Engineering, vol. 13, no. 4, pp. 525–536, 2016. [Online]. Available: http://dx.doi.org/10.1016/S1672-6529(16)60325-6
[14] M. A. Klein, A. S. Boxerbaum, R. D. Quinn, R. Harkins, and R. Vaidyanathan, “SeaDog: A rugged mobile robot for surf-zone applications,” Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1335–1340, 2012.
[15] B. Zhong, S. Zhang, M. Xu, Y. Zhou, T. Fang, and W. Li, “On a CPG-Based Hexapod Robot: AmphibHex-II with Variable Stiffness Legs,” IEEE/ASME Transactions on Mechatronics, 2018.
[16] H. Xing, S. Guo, L. Shi, Y. He, S. Su, Z. Chen, and X. Hou, “Hybrid locomotion evaluation for a novel amphibious spherical robot,” Applied Sciences (Switzerland), vol. 8, no. 2, 2018.
[17] S. Floyd and M. Sitti, “Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot,” IEEE Transactions on Robotics, 2008.
[18] K. Karakasiliotis, R. Thandiaclakal, K. Melo, T. Horvat, N. K. Mahabadi, S. Tsikov, J. M. Cabelguen, and A. J. Issepeet, “From cineradiography to biorobots: An approach for designing robots to emulate and study animal locomotion,” Journal of the Royal Society Interface, vol. 13, no. 119, 2016.
[19] M. S. bin Mohd Yusof, “Gait identification and optimisation for amphibious underwater robot by using ant colony algorithm,” Master’s thesis, Kuala Lumpur: International Islamic University Malaysia, 2018, 2018.
MOHAMMED RAFEEQ is currently pursuing his PhD at the Department of Mechatronics Engineering, International Islamic University Malaysia (IIUM). He received B. Eng in Electronics and communication engineering from visveswariah technological University Technology and later received M.Tech from visveswariah technological University Technology in Industrial Automation and Robotics engineering. He worked as an assistant professor at P A College of Engineering. His current research interest is amphibious robot locomotion, facial expression recognition, automation, and control.

IR. DR. SITI FAUZIAH TOHA is currently an Associate Professor at the Department of Mechatronics Engineering, International Islamic University Malaysia (IIUM). She received B. Eng (Hons) in Electrical and Electronics Engineering from the University Technology Petronas and later received MSc from Universiti Sains Malaysia in electrical engineering. She was then completed her Ph.D in Automatic Control and Systems Engineering from The University of Sheffield in 2010. She was later join the Perusahaan Otomobil Nasional Berhad (PROTON) Malaysia as a control expert consultant, working on AI-based battery management system for electric vehicle. Her current research interest spanning over the field of electric vehicle. Her current research interest is in the field of computer vision systems and assistive devices for disabled people.

MUHAMMAD SYAFIQ MOHD YUSOF (B. Eng '15-Msc '19), is currently a Product Development Engineer at Intel Technology Sdn Bhd. He received his B. Eng (Hons) in Mechatronics Engineering and completed his MSc (Science) in Mechatronics Engineering from International Islamic University Malaysia. He joined Intel Technology Sdn Bhd as a Graduate Trainee, his work focuses on creating programs for tests validation and production test to guarantee the component margin met the specification. Later on, he received the offer to work as Product Development Engineer, which he works on debugging and validating test content. Other than that, his job scope also needs him to drive test optimizations to reduce test cost, enhance product quality, improve manufacturing efficiency, and accelerate manufacturing stability. Muhammad Syafiq is a member of Board of Engineer Malaysia (BEM) and also The Institution Engineer of Malaysia (IEM).

IR. DR. SALMIAH AHMAD started her career as a Project Engineer at Toyo Engineering and Construction (M) Sdn. Bhd, after received her B.Eng in Mechatronics Engineering from International Islamic University Malaysia in 2001. Later she received her M.EngSc in Electrical Engineering from Curtin University of Technology, Australia in 2004. She was then completed her Ph.D in Automatic Control and Systems Engineering from The University of Sheffield in 2010, and currently she is an Associate Professor at the Department of Mechanical Engineering, International Islamic University Malaysia, Kuala Lumpur. In 2012, she has been appointed as a panel for Engineering Accreditation Council (EAC), to evaluate degree programme in Mechatronics and its related fields at universities in Malaysia. She is also a Professional Engineer (P.Eng) obtained in 2016, a Chartered Engineer (CEng) and a member of The Institution of Engineering and Technology (IET), senior member of Institute of Electronic and Electrical Engineering (SMIEEE), a graduate member of the Institution of Engineers Malaysia (IEM), life member of MySET (Malaysian Society of Engineering and Technology) and PERINTIS (Muslim Scientist Organization of Malaysia). Her current research interests include; Electric Vehicle, Intelligent Systems and Control, Mobile Robot, Rehabilitation and Biosignals, Instrumentation and Signal Processing.

MUHAMMAD IKMAL HAKIM SHAMSUL BAHRIN (B.Eng'17-M'20), is currently a PhD student in Department of Mechatronics Engineering, International Islamic University Malaysia (IIUM), Malaysia. He obtained B. Eng (Hons) in Mechatronics Engineering and MSc (Mechtronics Engineering) from the same university. His research interests are in the field of computer vision systems and assistive devices for disabled people.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3135706, IEEE Access
FIGURE 14. Trajectory of end effector at various time intervals of kinematic analysis.