Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon

O. G. Miranda,1,∗ D. K. Papoulias,2,† G. Sanchez Garcia,1,‡ O. Sanders,1,§ M. Tórtola,3,¶ and J. W. F. Valle3,∗∗

1Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740 07000 Mexico, Distrito Federal, Mexico
2Division of Theoretical Physics, University of Ioannina, GR 45110 Ioannina, Greece
3AHEP Group, Institut de Física Corpuscular – CSIC/Universitat de València, Parc Científic de Paterna. C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia) - SPAIN

The CENNS-10 experiment of the COHERENT collaboration has recently reported the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in liquid Argon with more than 3σ significance. In this work, we exploit the new data in order to probe various interesting parameters which are of key importance to CEvNS within and beyond the Standard Model. A dedicated statistical analysis of these data shows that the current constraints are significantly improved in most cases. We derive a first measurement of the neutron rms charge radius of Argon, and also an improved determination of the weak mixing angle in the low energy regime. We also update the constraints on neutrino non-standard interactions, electromagnetic properties and light mediators with respect to those derived from the first COHERENT-CsI data.

1. INTRODUCTION

Over the past few decades, neutrino physics has entered the precision era and is steadily approaching a full description of the three neutrino oscillation picture [1]. Although the next generation of long-baseline experiments such as DUNE and Hyper-Kamiokande will play a key role in settling the open issues, some degeneracies are likely to remain. Moreover, beyond the challenges associated to the three-neutrino parameters, such as the atmospheric octant, the presence of leptonic CP violation, the neutrino mass ordering, and the absolute scale of the neutrino mass, there are a number of less standard, but important, neutrino properties to pin down.

∗ omr@fis.cinvestav.mx
† dimpap@cc.uoi.gr
‡ gsanchez@fis.cinvestav.mx
§ osanders@fis.cinvestav.mx
¶ mariam@ific.uv.es
∗∗ valle@ific.uv.es
The discovery of coherent elastic scattering of neutrinos off nuclei at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) using a CsI detector [2] has opened new ways to study key weak interaction parameters, such as the electroweak mixing angle [3, 4] and the nuclear form factors [5–7], as well as to probe novel neutrino properties beyond the Standard Model (SM) [8]. Among the most interesting possibilities, are those addressing non-standard interactions (NSI) [9–19], electromagnetic neutrino properties [20–24], sterile neutrinos [25–28], new light mediators [29–35] and dark matter [36, 37]. The study of these scenarios would provide important hints for physics beyond the current three-massive-neutrino paradigm of elementary particles. In fact, many of them may be regarded as implications of the very existence of neutrino masses themselves. Moreover, coherent elastic neutrino-nucleus scattering (CEvNS) experiments provide new ways to understand neutrino cross sections, crucial for establishing the robustness of oscillation experiments and their interpretation.

Here we show how the recent confirmation of the CEvNS process by the COHERENT collaboration using a 24 kg liquid Argon (LAr) detector at the SNS [38], after collecting 6.12 GWh data substantially improves the sensitivity of a number of key weak interaction measurements. The reported results have shown a greater than 3σ preference in favor of CEvNS.

This paper is organized as follows. In Sec. 2 we set up the notation and summarize briefly the CEvNS formalism. Then, in Sec. 3 we present the sensitivities on various parameters of the electroweak interaction in the SM and beyond, obtained using the recent CENNS-10 results. Finally, our main conclusions are summarized in Sec. 4.

2. BASICS

Proposed more than forty years ago by Freedman [39], this neutral current process is characterized by a cross section that increases as N^2, where N being the number of neutrons in the nucleus:

$$
\left(\frac{d\sigma}{dT_A} \right)_{SM} = \frac{G_F^2 m_A}{2\pi} (Q_W^V)^2 \left[2 - \frac{2T_A}{E_\nu} - \frac{m_A T_A}{E_\nu^2} \right],
$$

(1)

where G_F denotes the Fermi constant, T_A is the nucleus kinetic energy, E_ν the neutrino energy and Q_W^V the vector weak charge written in the form

$$
Q_W^V = [g_p^V Z F_p(Q^2) + g_n^V N F_n(Q^2)].
$$

(2)

Here, Z and N are the number of protons and neutrons in the nucleus while the neutral current vector couplings, $g_{V}^{p,n}$, are given by

$$
g_p^V = \frac{1}{2} - 2 \sin^2 \theta_W ,
$$

$$
g_n^V = -\frac{1}{2},
$$

(3)
with the weak mixing angle taken in the $\overline{\text{MS}}$ scheme, i.e. $\sin^2 \theta_W \equiv s_W^2 = 0.2312$. Finally, $F_{p,n}(Q^2)$ stands for the nuclear form factors for protons and neutrons respectively, for which we employ the well-known Helm parametrization

$$F_{p,n}(Q^2) = 3 j_1(Q R_0) \frac{Q R_0}{Q R_0} \exp(-Q^2 s^2/2),$$

(4)

where the magnitude of the three-momentum transfer is $Q = \sqrt{2 m_A T_A}$, j_1 denotes the spherical Bessel function of order one and $R_0^2 = \frac{5}{3}(R_{p,n}^2 - 3s^2)$ with $R_n = 3.36$ fm ($R_p = 3.14$ fm) denoting the neutron (proton) rms radius and $s = 0.9$ fm.

To analyze the recent results of the liquid Argon detector reported by the COHERENT collaboration, we will consider in this work a neutrino flux arriving to the detector from the SNS at ORNL, given by three different components from the π^+ decay at rest. These are a “prompt” monoenergetic muon neutrino signal given by

$$\frac{dN_{\nu_\mu}}{dE_{\nu}} = \eta \delta \left(E_{\nu} - \frac{m_\pi^2 - m_\mu^2}{2 m_\pi}\right),$$

(5)

and the “delayed” neutrino flux composed of muon antineutrinos

$$\frac{dN_{\bar{\nu}_\mu}}{dE_{\nu}} = \eta \frac{64 E^2_{\nu}}{m_\mu^3} \left(\frac{3}{4} - \frac{E_{\nu}}{m_\mu}\right),$$

(6)

and electron neutrinos

$$\frac{dN_{\nu_e}}{dE_{\nu}} = \eta \frac{192 E^2_{\nu}}{m_\mu^3} \left(\frac{1}{2} - \frac{E_{\nu}}{m_\mu}\right),$$

(7)

with the normalization factor η given by $\eta = r N_{\text{POT}}/4 \pi L^2$. The number of protons on target (POT) corresponding to the 6.12 GWh exposure is $N_{\text{POT}} = 1.37 \times 10^{23}$, $r = 0.08$ denotes the produced neutrinos per POT and $L = 27.5$ m is the CENNS-10 baseline.

In the present work, prompted by the importance of the liquid Argon detector of the COHERENT collaboration, we study relevant implications of the measurement for different standard and new physics scenarios.

3. THE ANALYSIS

As a first step, we simulate the CEvNS signal at the LAr detector using the efficiency function $^1 A(T_A)$, corresponding to the “Analysis A” of Ref. [38]. We then convert the nuclear recoil spectrum into electron recoil space through the reported quenching factor QF(T_A). Following Ref. [38], we evaluate the number of events in the region of interest, i.e. for recoil energies below 120 keV$_{ee} \approx 30$ keV$_{ee}$. Our simulated energy spectrum is shown in Fig. 1 as a function of the electron recoil energy, T_{er}.

1 Taken from Fig. 3 of Ref. [38].
FIG. 1: Simulated number of events at the CENNS-10 LAr detector as a function of the electron recoil energy T_{er}.

Given the reliability of our simulated CENNS-10 signal, we perform a statistical analysis of the recent liquid Argon CEvNS measurement with the ultimate goal of probing important observables such as the neutron mean radius, the electroweak mixing angle $\sin^2 \theta_W$, as well as to constrain new physics parameters. Before displaying our results in the next sections, here we discuss the general procedure we followed to investigate the different scenarios.

To test the sensitivity of the experiment to observables under study, we have performed a χ^2 analysis, minimizing the function:

$$\chi^2(X) = \min_{\alpha} \left[\frac{(N_{\text{meas}} - N_{\text{theor}}(X)[1 + \alpha])^2}{\sigma_{\text{stat}}^2} + \left(\frac{\alpha}{\sigma_{\alpha}} \right)^2 \right],$$

with $N_{\text{meas}} = 159$ denoting the number of the measured events from the fit of “Analysis A” in Ref. [38] and $N_{\text{theor}}(X)$ being the theoretical prediction. Here, the argument X represents the set of parameters to be tested, such as the weak mixing angle, the neutron rms radius or NSI parameters. Here we note that we have successfully calibrated our procedure with the one discussed in the recent CENNS-10 result. In Eq.(8), the statistical uncertainty is given by $\sigma_{\text{stat}} = \sqrt{N_{\text{meas}} + N_{\text{BRN}}}$, where $N_{\text{BRN}} = 563$ represents the number of background events due to beam related neutrons (BRN). The parameter α quantifies the normalization, that has a systematic error $\sigma_{\alpha} = 8.5\%$ (for details, see Ref. [38]).

3.1. Standard electroweak and nuclear physics

One of the most important parameters of the SM is the weak mixing angle, that is measured with great accuracy at the Z peak. At low energies, however, the existing measurements are less precise but still very relevant given the prediction of an increase of about
3% in its value due to radiative corrections. Moreover, any deviation from the SM prediction for this value would be a signature of new physics. With this motivation in mind, we have performed a χ^2 analysis for this SM parameter using the liquid Argon data. Our corresponding results are shown in the left panel of Fig. 2, where one can see a notable improvement with respect to the previous determination of $\sin^2 \theta_W$ from the COHERENT-CsI data (see Ref. [21]). The new measurement of the weak mixing angle, derived from the CENNS-10 data at 90% C.L. reads

$$\sin^2 \theta_W = 0.258^{+0.048}_{-0.050}$$

Another very useful standard information that can be obtained from the CEvNS interaction is the neutron mean radius R_n for the Argon isotope. Although there are theoretical predictions for this value, its direct determination can facilitate a better understanding of the CEvNS background at dark matter oriented experiments [40]. We have performed the corresponding analysis for this observable and the obtained result is illustrated in the right panel of Fig. 2. Although not directly comparable, the average neutron rms radius of CsI is also shown for the reader’s convenience. On the other hand, it is worthwhile to notice that R_n is more severely constrained for the case of Argon. The obtained 90% C.L. limit for the neutron rms radius for Argon reads

$$R_n < 4.33 \text{ fm}.$$

We should note that this provides the first experimental determination of the neutron radius in Argon. In addition, comparing with the previous result on CsI [5] (see also Refs. [6, 41]), one sees that the level of precision seems somewhat improved.
3.2. Non-standard Interactions

Most models that try to explain the neutrino mass pattern predict a modification of the $V - A$ couplings predicted by the SM. In many cases, the corrections are expected to be negligible, like in the most simple type I seesaw model while, in other cases, there could be a relatively larger signal, as for the linear and inverse seesaw cases. A large family of new physics models can be phenomenologically described using the formalism of NSI, that modify the neutral current SM Lagrangian through the contribution [42–44]

$$L_{NC}^{NSI} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon^{fP}_{\alpha\beta} (\bar{\nu}_\alpha \gamma^\mu P_L \nu_\beta)(\bar{f}_\gamma \mu P_X f),$$

(11)

where f corresponds to an elementary fermion that, in the case of CEvNS, reduces to the quarks of the first family, $f = \{u, d\}$. α and β denote the neutrino flavors $\{e, \mu, \tau\}$, P_X the left and right chirality projectors $P_{L,R}$, and $\varepsilon^{fP}_{\alpha\beta}$ are the couplings that quantify the relative strength of the NSI. Due to the presence of these new interactions, the weak charge of the CEvNS reaction is modified according to the substitution $Q^V_W \rightarrow Q^V_{NSI}$ in Eq. (1), with the NSI charge given by

$$Q^V_{NSI} = \left[(g^V_{\alpha\alpha} + 2\varepsilon^{uV}_{\alpha\alpha} + \varepsilon^{dV}_{\alpha\alpha}) ZF_p(Q^2) + (g^V_{\alpha\alpha} + \varepsilon^{uV}_{\alpha\alpha} + 2\varepsilon^{dV}_{\alpha\alpha}) NF_n(Q^2) \right]$$

$$+ \sum_{\alpha} \left[(2\varepsilon^{uV}_{\alpha\beta} + \varepsilon^{dV}_{\alpha\beta}) ZF_p(Q^2) + (\varepsilon^{uV}_{\alpha\beta} + 2\varepsilon^{dV}_{\alpha\beta}) NF_n(Q^2) \right].$$

(12)

As it has already been noticed [45], CEvNS reaction is sensitive to the NSI parameters and, therefore, it can provide important information to probe the so-called LMA-Dark so-
The left panel considers the simultaneous presence of non-universal and flavor-changing NSI with d quark, while the right panel corresponds to the case of simultaneous non-universal NSI couplings with u and d quarks. For comparison, we show the results from the analysis of CsI and LAr data.

The results of our χ^2 analysis, for one NSI parameter at a time, are shown in Fig. 3, both for the flavor changing (left panel) and the non-universal case (right panel). We can see from this figure that the sensitivities on the flavor changing NSI parameters are only marginally improved with respect to the previous CsI case. This is due to the detection of a larger number of events with respect to the SM prediction. Although the excess is below one standard deviation, still the preferred value for the flavor changing parameters are non-zero, as can be seen in Fig. 3. In the case of non-universal NSI, one can see the improvement in their restriction in comparison with the first CEvNS detection.

We can go one step further in the analysis and study more general restrictions on NSI parameters [45, 47]. For example, the new CENNS-10 measurement can be used to constrain pairs of NSI parameters, allowing us to seek for possible correlations between them, as shown in Fig. 4, where the constraints on the two-dimensional parameter space of non-universal and flavor-changing NSI couplings with d quark ($\varepsilon_{e\nu}^{dV}$, $\varepsilon_{\tau\nu}^{dV}$) are given (left panel), as well as those for the case of the non-universal NSI couplings with d and u quarks ($\varepsilon_{e\nu}^{dV}$, $\varepsilon_{e\nu}^{uV}$). In both cases one can appreciate the improvement in the determination of the parameters. The good consistency of our analysis with the available results of Ref. [38] is evident from the right panel of this figure.
3.3. Electromagnetic properties

The discovery of neutrino oscillations with solar, atmospheric, reactor and accelerator neutrinos [1] has set a new milestone in particle physics pointing to the existence of massive neutrinos, hence constituting the clearest signature of new physics beyond the SM. The non-vanishing neutrino mass stands out as the best motivation for non-trivial electromagnetic (EM) neutrino properties. Indeed, the expansion of the EM neutrino vertex (for details see Ref. [48]) yields two main phenomenological parameters, namely the neutrino magnetic moment and the neutrino charge radius [49].

The neutrino magnetic moment $\mu_{\nu_{\alpha}}$ with $\alpha = e, \mu, \tau$ is a flavor-dependent quantity which, for the case of scattering experiments, is usually expressed in the mass basis [50, 51]. Due to the helicity-violating nature of the EM cross section, there is no interference with the SM one given in Eq.(1) and yields an additive contribution of the form

$$\left(\frac{d\sigma}{dT_A}\right)_{EM} = \frac{\pi a_{EM}^2 \mu^2_{\nu} Z^2}{m^2_{\nu}} \left(1 - \frac{T_A}{E_{\nu}}\right) F_p^2(Q^2),$$

where the flavor index has been dropped. For sufficient low detection threshold, the latter cross section leads to an enhancement of the recoil spectrum, i.e. a feature that is not expected for the other types of new physics considered in this work. Note that, for the case of Majorana neutrinos, only transition magnetic moments are expected, and the corresponding sensitivities from the analysis of neutrino-electron scattering [52] and CEvNS [23] experiments have already been given in the literature. Here, for simplicity, we only consider flavor-dependent effective neutrino magnetic moments. The resulted sensitivity profiles relevant to μ_{ν_e}, μ_{ν_μ} and μ_{ν_τ} from the analysis of the recent CENNS-10 data are shown in the
FIG. 6: Upper panel: 90% C.L. allowed region in the parameter space of the neutrino magnetic moments \((\mu_{\nu_e}, \mu_{\nu_\mu}, \mu_{\bar{\nu}_\mu})\). Lower panel: 90% C.L. allowed region in the parameter space of neutrino charge radii \((\langle r_{\nu_e}^2 \rangle, \langle r_{\nu_\mu}^2 \rangle)\). The results are shown for different choices of neutrino flavours, with the undisplayed parameters in each case assumed to be vanishing. For comparison, we show the results from the analysis of CsI and LAr data.

The obtained constraints at 90% C.L. read

\[
(\mu_{\nu_e}, \mu_{\nu_\mu}, \mu_{\bar{\nu}_\mu}) < (94, 53, 78) \times 10^{-10} \mu_B.
\]

(14)

We notice that the LAr sensitivity on the effective neutrino magnetic moment is not drastically improved in comparison to the one reached with the first COHERENT-CsI data [21]. This is due to the fact that the CENNS-10 result of \(N_{\text{meas}} = 159\) events is by about 30 events larger than the 130 events expected in the Standard Model. Therefore, even though the systematic uncertainties of CENNS-10 experiment are better compared to the first CsI measurement, these extra 30 events in the \(\chi^2\) translate into a finite neutrino magnetic moment contribution, thus weakening the limits.

We now turn our attention to the neutrino charge radius \(\langle r_{\nu_\alpha}^2 \rangle\) with \(\alpha = e, \mu, \tau\) being the flavor index. Likewise the neutrino magnetic moment, \(\langle r_{\nu_\alpha}^2 \rangle\) is also required to be expressed in the mass basis through a rotation with the lepton mixing matrix [22]. Being a helicity-preserving quantity, its impact to the SM cross section is simply taken as a shift on the weak
mixing angle according to
\[\sin^2 \theta_W \rightarrow \hat{s}_W^2 \pm \frac{\sqrt{2} \pi \alpha_{\text{EM}}}{3 G_F} \langle r^2_{\nu_\alpha} \rangle. \] (15)

Note that only the proton coupling \(g^p_{\nu} \), proportional to the number of protons, interacts with the charge radius\(^2\). On the other hand, when antineutrinos are involved, both the \(g^p_{\nu} \) and \(\langle r^2_{\nu_\alpha} \rangle \) change sign and, therefore, Eq.(15) holds for both neutrinos and antineutrinos, a result that is consistent with Ref. [21]. From our analysis of the recent CENNS-10 data, we obtain the sensitivity to the neutrino charge radii corresponding to \(\langle r^2_{\nu_e} \rangle, \langle r^2_{\nu_\mu} \rangle \) and \(\langle r^2_{\bar{\nu}_\mu} \rangle \), as shown in the right panel of Fig. 5. The extracted constraints at 90\% C.L. read
\[\langle r^2_{\nu_e} \rangle = (-64, -41) \text{ and } (-7, 16), \]
\[\langle r^2_{\nu_\mu} \rangle = (-69, -37) \text{ and } (-10, 21), \]
\[\langle r^2_{\bar{\nu}_\mu} \rangle = (-60, -43) \text{ and } (-5, 12), \] (16)
in units of \(10^{-32}\text{cm}^2 \). Note that, comparing with the corresponding results extracted from the CsI case, the precision of the new determinations derived from the new LAr measurement are significantly improved since now the allowed regions are narrower, and appear as two separate intervals.

At this point, and as we did for the NSI case, we have performed a combined analysis allowing for several parameters being non-zero at a time. In particular, we have chosen to probe the parameter space of neutrino magnetic moments \((\mu_{\nu_\alpha}, \mu_{\nu_\beta}) \) and neutrino charge radii \((\langle r^2_{\nu_\alpha} \rangle, \langle r^2_{\nu_\beta} \rangle) \), by considering the simultaneous presence of two of them, i.e. \(\alpha \neq \beta \). The corresponding results are presented in Fig. 6, where we also compare with those derived from the 2017 data release of the COHERENT-CsI measurement. The improvement obtained with the most recent data is more than evident.

3.4. Light Mediators

It has been recently shown [53] that low energy scattering experiments are favorable facilities for probing the existence of light mediators, of both vector [54] and scalar [29] type. Indeed, by focusing on the \(Z' \) predicted within the context of string-inspired \(E_6 \) and Left-Right symmetries, the authors of Ref. [35] explored the potential of low-energy measurements at CEvNS experiments, concluding that complimentary information to high-energy collider searches can be achieved.

Here, we focus on simplified \(U(1)' \) scenarios with an additional vector \(Z' \) or a scalar \(\phi \)

\(^2\) We neglect the contribution of the term proportional to \(Z^2 \) corresponding to transition charge radii [22].
FIG. 7: Excluded region at 90% C.L in the parameter space \((M_{Z'}, g_{B-L}^2)\) for the vector mediator scenario (left) and \((M_\phi, g_\phi^2)\) for the scalar mediator scenario (right), from the analysis of the recent LAr data. In both cases, a comparison is given with the CsI data.

boson that arise from the generic Lagrangians [55]

\[
\mathcal{L}_{\text{vector}} = Z'_\mu \left(g_{Z'}^{\nu \gamma} \bar{q} \gamma^\mu q + g_{Z'}^{\nu \nu} \bar{\nu}_L \gamma^\mu \nu_L \right),
\]

\[
\mathcal{L}_{\text{scalar}} = \phi \left(g_\phi^{\nu \nu} \bar{q} \nu + g_\phi^{\nu \phi} \bar{\nu}_R \nu_L + \text{H.c.} \right),
\]

with \(M_{Z'}\) and \(M_\phi\) being the mass of the vector and scalar mediators, whereas \(g_{Z'}^{\nu \gamma}\) and \(g_\phi^{\nu \phi}\) are the respective vector and scalar couplings to the fermion \(f = u, d, \nu\). For the case of a \(Z'\) mediator, there is an interference with the SM vector couplings, and the corrections to the SM cross section are incorporated through the substitution \(Q_W^V \rightarrow Q_{Z'}^V\), i.e. replacing the SM weak charge with the \(Z'\) one in Eq.(1), as [41]

\[
Q_{Z'}^V = Q_W^V + \frac{g_{Z'}^{\nu \gamma}}{\sqrt{2}G_F} \left(2g_{Z'}^{\nu \nu} + g_{Z'}^{\nu \nu} \right) \frac{Z F_\nu(Q^2) + (g_{Z'}^{\nu \nu} + 2g_{Z'}^{\nu \nu}) N F_n(Q^2)}{2m_A T_A + M_{Z'}^2}.
\]

Turning to the case of a scalar boson mediating the CEvNS process, there is no interference and, then, the total cross section is given by \((d\sigma/dT_A)_{\text{tot}} = (d\sigma/dT_A)_{\text{SM}} + (d\sigma/dT_A)_{\text{scalar}}\), where the scalar contribution to the cross section is expressed as

\[
\frac{d\sigma}{dT_A}_{\text{scalar}} = \frac{g_\phi^{\nu \nu} Q_\phi T_A}{4\pi} \frac{g_\phi^{\nu \phi} Q_\phi T_A}{2m_A T_A + M_{Z'}^2},
\]

and the scalar charge is defined as [34]

\[
Q_\phi = Z F_\nu(Q^2) \sum_{q=u,d} g_\phi^{q S} \frac{m_p}{m_q} f_{T_q}^{p} + N F_n(Q^2) \sum_{q=u,d} g_\phi^{q S} \frac{m_n}{m_q} f_{T_q}^{n}.
\]
In the latter expression, the scalar charge is expressed in terms of the hadronic form factors $f_{T_q}^q$, obtained from chiral perturbation theory (see Ref. [56]), although here we use the updated values from [57]

$$f_{T_u}^p = (20.8 \pm 1.5) \times 10^{-3}, \quad f_{T_d}^p = (41.1 \pm 2.8) \times 10^{-3},$$

$$f_{T_u}^n = (18.9 \pm 1.4) \times 10^{-3}, \quad f_{T_d}^n = (45.1 \pm 2.7) \times 10^{-3}.$$

At this point, we should note that, for simplicity, we consider universal quark couplings for both vector and scalar cases, i.e. $g_{Z'}^{V_q} = g_{Z'}^{S_q}$ and $g_{L}^{V_q} = g_{L}^{S_q}$. Therefore, our sensitivity analysis will refer to the corresponding squared couplings entering in Eqs. (18) and (19) from the product of neutrino and quark couplings, i.e. $g_{L}^{V_q} g_{L}^{V_{
u}}$ and $g_{L}^{S_q} g_{L}^{S_{
u}}$. Here, we find it interesting to focus on the $U(1)_{B-L}$ extension of the Standard Model where $g_{Z'}^{V_q} = -g_{Z'}^{S_q}/3$ [32]. Using the latest data from the CENNS-10 measurement, we performed a combined analysis by varying simultaneously the vector (scalar) coupling and the corresponding vector (scalar) mediator mass. The corresponding excluded regions are illustrated in Fig. 7 and compared with the COHERENT-CsI case. For the vector mediator scenario, our results are also compared with existing limits placed by dielectron resonances at ATLAS [58], constraints from electron beam-dump fixed target experiments [59, 60] as well as with constraints from Dark Photon searches at BaBar [61, 62] and LHCb [63]. One sees that CEvNS searches are clearly complementary to the latter ones, excluding a large part of the available parameter space. Notice the slight improvement found with respect to the first COHERENT-CsI measurement.

3.5. Robustness of the constraints

Nuclear physics uncertainties place important limitations on the attainable sensitivities to physics observables extracted from coherent neutrino elastic scattering experiments. Indeed, as emphasized in Refs. [6, 7, 16], these may lead to a miss-interpretation of the relevant constraints derived from CEvNS measurements.

Therefore, before closing our present analysis, we find it useful to devote a separate paragraph in order to discuss the robustness of the constraints we have obtained with regards to the nuclear form factor. To this purpose, we performed a combined analysis of the weak mixing angle and the neutron rms radius simultaneously; we also performed a similar analysis for the case of a NSI parameter characterizing new physics. While many such combinations are possible, as a concrete example in Fig. 8 we show the allowed regions in the $(\sin^2 \theta_W, R_n)$ and $(\epsilon_{ee}^{Av}, R_n)$ planes at 90% C.L. As expected, in the left panel, one sees how the 90% C.L. determination of the weak mixing angle has a larger relative error for free R_n, in comparison to that of Eq. (9) obtained with the fixed value $R_n = 3.36$ fm. We find δs_{W}^2 (free R_n) = 0.128 vs. δs_{W}^2 (fixed R_n) = 0.097, where δs_{W}^2 corresponds to the width of the 90% C.L. band. On
the other hand, concerning new physics, we show in the right panel the allowed region on the NSI parameter ε_{ee}^{dV} for different values of the neutron rms radius R_n. One sees that, by using a free rms neutron radius R_n, the 90% C.L. leads to two disjoint ranges (for $R_n > 2.7$ fm) and a reduced sensitivity compared to the results obtained from the analysis with a fixed rms radius shown in Fig. 3. In both cases, it becomes evident that the limitations imposed due to the nuclear physics uncertainties must be treated with special care. In fact, this may require realistic nuclear structure calculations [6, 64].

4. CONCLUSIONS

We have analyzed the recent results of the CENNS-10 detector subsystem of the COHERENT collaboration that led to the first detection of CEvNS on LAr. Through a dedicated statistical analysis, taking into account the available information from Ref. [38], we have shown that this new measurement typically leads to improved sensitivities with respect to the first COHERENT-CsI measurement in 2017. Specifically, we have presented an improved determination of the weak mixing angle, as well as the first ever determination of the 40Ar neutron rms radius. Turning to new physics, we have derived the constraints on non-universal as well as flavor-changing NSI imposed by this new data release. Moreover, concerning neutrino electromagnetic properties, we have found only minor improvement of the sensitivity to neutrino magnetic moments. In contrast, we have found a positive indication for finite neutrino-charge radii. We have shown that the new CENNS-10 data provides somewhat better sensitivities on simplified scenarios involving new light mediators when

FIG. 8: Allowed region in the parameter space of $(\sin^2 \theta_W, R_n)$ (left) and $(\varepsilon_{ee}^{dV}, R_n)$ (right) planes at 90% C.L. For comparison, the neutron rms radii $R_n = 3.36$ fm (fixed value) and $R_n = 4.33$ fm [upper limit in Eq. (10)] are indicated with horizontal dashed lines.
compared to COHERENT-CsI data, discussing also the complementarity to high energy experiments. Finally, we have explored the impact of nuclear physics uncertainties and discussed the robustness of our results.

ACKNOWLEDGMENTS

This work is supported by the Spanish grants FPA2017-85216-P (AEI/FEDER, UE), PROMETEO/2018/165 (Generalitat Valenciana) and the Spanish Red Consolider MultiDark FPA2017-90566-REDC, and by CONACYT-Mexico under grant A1-S-23238. OGM has been supported by SNI (Sistema Nacional de Investigadores). The work of DKP is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (IKY). MT acknowledges financial support from MINECO through the Ramón y Cajal contract RYC-2013-12438.

[1] P. F. de Salas et al., “Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity,” Phys. Lett. B782 (2018) 633–640, arXiv:1708.01186 [hep-ph].

[2] COHERENT Collaboration, D. Akimov et al., “Observation of Coherent Elastic Neutrino-Nucleus Scattering,” Science 357 (2017) 1123–1126, arXiv:1708.01294 [nucl-ex].

[3] M. Cadeddu and F. Dordei, “Reinterpreting the weak mixing angle from atomic parity violation in view of the Cs neutron rms radius measurement from COHERENT,” Phys. Rev. D99 (2019) 033010, arXiv:1808.10202 [hep-ph].

[4] B. Cañas, E. Garcés, O. Miranda, and A. Parada, “Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments,” Phys. Lett. B784 (2018) 159–162, arXiv:1806.01310 [hep-ph].

[5] M. Cadeddu, C. Giunti, Y. Li, and Y. Zhang, “Average CsI neutron density distribution from COHERENT data,” Phys. Rev. Lett. 120 (2018) 072501, arXiv:1710.02730 [hep-ph].

[6] D. K. Papoulias, T. S. Kosmas, R. Sahu, V. K. B. Kota, and M. Hota, “Constraining nuclear physics parameters with current and future COHERENT data,” Phys. Lett. B800 (2020) 135133, arXiv:1903.03722 [hep-ph].

[7] D. Aristizabal Sierra, J. Liao, and D. Marfatia, “Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data,” JHEP 1906 (2019) 141, arXiv:1902.07398 [hep-ph].
[8] D. Papoulias, T. Kosmas, and Y. Kuno, “Recent probes of standard and non-standard neutrino physics with nuclei,” *Front.in Phys.* **7** (2019) 191, arXiv:1911.00916 [hep-ph].

[9] J. Liao and D. Marfatia, “COHERENT constraints on nonstandard neutrino interactions,” *Phys.Lett.* **B775** (2017) 54–57, arXiv:1708.04255 [hep-ph].

[10] J. B. Dent, B. Dutta, S. Liao, J. L. Newstead, L. E. Strigari, and J. W. Walker, “Accelerator and reactor complementarity in coherent neutrino-nucleus scattering,” *Phys.Rev.* **D97** (2018) 035009, arXiv:1711.03521 [hep-ph].

[11] D. Aristizabal Sierra, V. De Romeri, and N. Rojas, “COHERENT analysis of neutrino generalized interactions,” *Phys.Rev.* **D98** (2018) 075018, arXiv:1806.07424 [hep-ph].

[12] P. B. Denton, Y. Farzan, and I. M. Shoemaker, “Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data,” *JHEP* **1807** (2018) 037, arXiv:1804.03660 [hep-ph].

[13] B. Dutta, S. Liao, S. Sinha, and L. E. Strigari, “Searching for Beyond the Standard Model Physics with COHERENT Energy and Timing Data,” *Phys.Rev.Lett.* **123** (2019) 061801, arXiv:1903.10666 [hep-ph].

[14] P. Coloma, M. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, “COHERENT Enlightenment of the Neutrino Dark Side,” *Phys.Rev.* **D96** (2017) 115007, arXiv:1708.02899 [hep-ph].

[15] M. Gonzalez-Garcia, M. Maltoni, Y. F. Perez-Gonzalez, and R. Zukanovich Funchal, “Neutrino Discovery Limit of Dark Matter Direct Detection Experiments in the Presence of Non-Standard Interactions,” *JHEP* **1807** (2018) 019, arXiv:1803.03650 [hep-ph].

[16] B. Canas, E. Garces, O. Miranda, A. Parada, and G. Sanchez Garcia, “The interplay between non-standard and nuclear constraints in coherent elastic neutrino-nucleus scattering experiments,” arXiv:1911.09831 [hep-ph].

[17] P. Coloma, I. Esteban, M. C. Gonzalez-Garcia, and M. Maltoni, “Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data,” *JHEP* **02** (2020) 023, arXiv:1911.09109 [hep-ph].

[18] B. Dutta, R. F. Lang, S. Liao, S. Sinha, L. Strigari, and A. Thompson, “A global analysis strategy to resolve neutrino NSI degeneracies with scattering and oscillation data,” arXiv:2002.03066 [hep-ph].

[19] L. Flores, N. Nath, and E. Peinado, “Non-standard neutrino interactions in U(1)′ model after COHERENT data,” arXiv:2002.12342 [hep-ph].

[20] T. Kosmas, O. Miranda, D. Papoulias, M. Tortola, and J. W. F. Valle, “Probing neutrino magnetic moments at the Spallation Neutron Source facility,” *Phys.Rev.* **D92** (2015) 013011, arXiv:1505.03202 [hep-ph].

[21] D. Papoulias and T. Kosmas, “COHERENT constraints to conventional and exotic neutrino physics,” *Phys.Rev.* **D97** (2018) 033003, arXiv:1711.09773 [hep-ph].
[22] M. Cadeddu, C. Giunti, K. Kouzakov, Y. Li, A. Studenikin, and Y. Zhang, “Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering,” Phys.Rev. D98 (2018) 113010, arXiv:1810.05606 [hep-ph].

[23] O. Miranda, D. Papoulias, M. Tortola, and J. W. F. Valle, “Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering,” JHEP 1907 (2019) 103, arXiv:1905.03750 [hep-ph].

[24] A. Parada, “Constraints on neutrino electric millicharge from experiments of elastic neutrino-electron interaction and future experimental proposals involving coherent elastic neutrino-nucleus scattering,” arXiv:1907.04942 [hep-ph].

[25] T. Kosmas, D. Papoulias, M. Tortola, and J. W. F. Valle, “Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments,” Phys.Rev. D96 (2017) 063013, arXiv:1703.00054 [hep-ph].

[26] B. Cañas, E. Garcés, O. Miranda, and A. Parada, “The reactor antineutrino anomaly and low energy threshold neutrino experiments,” Phys.Lett. B776 (2018) 451–456, arXiv:1708.09518 [hep-ph].

[27] C. Blanco, D. Hooper, and P. Machado, “Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments,” arXiv:1901.08094 [hep-ph].

[28] O. Miranda, G. Sanchez Garcia, and O. Sanders, “Coherent elastic neutrino-nucleus scattering as a precision test for the Standard Model and beyond: the COHERENT proposal case,” Adv.High Energy Phys. 2019 (2019) 3902819, arXiv:1902.09036 [hep-ph].

[29] Y. Farzan, M. Lindner, W. Rodejohann, and X.-J. Xu, “Probing neutrino coupling to a light scalar with coherent neutrino scattering,” JHEP 1805 (2018) 066, arXiv:1802.05171 [hep-ph].

[30] M. Abdullah, J. B. Dent, B. Dutta, G. L. Kane, S. Liao, and L. E. Strigari, “Coherent elastic neutrino nucleus scattering as a probe of a Z’ through kinetic and mass mixing effects,” Phys.Rev. D98 (2018) 015005, arXiv:1803.01224 [hep-ph].

[31] V. Brdar, W. Rodejohann, and X.-J. Xu, “Producing a new Fermion in Coherent Elastic Neutrino-Nucleus Scattering: from Neutrino Mass to Dark Matter,” JHEP 1812 (2018) 024, arXiv:1810.03626 [hep-ph].

[32] J. Billard, J. Johnston, and B. J. Kavanagh, “Prospects for exploring New Physics in Coherent Elastic Neutrino-Nucleus Scattering,” JCAP 1811 (2018) 016, arXiv:1805.01798 [hep-ph].

[33] D. Aristizabal Sierra, V. De Romeri, and N. Rojas, “CP violating effects in coherent elastic neutrino-nucleus scattering processes,” JHEP 1909 (2019) 069, arXiv:1906.01156 [hep-ph].
[34] D. Aristizabal Sierra, B. Dutta, S. Liao, and L. E. Strigari, “Coherent elastic neutrino-nucleus scattering in multi-ton scale dark matter experiments: Classification of vector and scalar interactions new physics signals,” *JHEP* **1912** (2019) 124, arXiv:1910.12437 [hep-ph].

[35] O. G. Miranda, D. K. Papoulias, M. Tórtola, and J. W. F. Valle, “Probing new neutral gauge bosons with CEvNS and neutrino-electron scattering,” arXiv:2002.01482 [hep-ph].

[36] B. Dutta, D. Kim, S. Liao, J.-C. Park, S. Shin, and L. E. Strigari, “Dark matter signals from timing spectra at neutrino experiments,” arXiv:1906.10745 [hep-ph].

[37] **COHERENT** Collaboration, D. Akimov *et al.*, “Sensitivity of the COHERENT Experiment to Accelerator-Produced Dark Matter,” arXiv:1911.06422 [hep-ex].

[38] **COHERENT** Collaboration, D. Akimov *et al.*, “First Detection of Coherent Elastic Neutrino-Nucleus Scattering on Argon,” arXiv:2003.10630 [nucl-ex].

[39] D. Z. Freedman, “Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current,” *Phys. Rev.* **D9** (1974) 1389–1392.

[40] D. Papoulias, R. Sahu, T. Kosmas, V. Kota, and B. Nayak, “Novel neutrino-floor and dark matter searches with deformed shell model calculations,” *Adv. High Energy Phys.* **2018** (2018) 6031362, arXiv:1804.11319 [hep-ph].

[41] D. K. Papoulias, “**COHERENT** constraints after the Chicago-3 quenching factor measurement,” arXiv:1907.11644 [hep-ph].

[42] Y. Farzan and M. Tortola, “Neutrino oscillations and Non-Standard Interactions,” *Front. in Phys.* **6** (2018) 10, arXiv:1710.09360 [hep-ph].

[43] O. Miranda and H. Nunokawa, “Non standard neutrino interactions: current status and future prospects,” *New J. Phys.* **17** (2015) 095002, arXiv:1505.06254 [hep-ph].

[44] T. Ohlsson, “Status of non-standard neutrino interactions,” *Rept. Prog. Phys.* **76** (2013) 044201, arXiv:1209.2710 [hep-ph].

[45] J. Barranco, O. G. Miranda, and T. I. Rashba, “Probing new physics with coherent neutrino scattering off nuclei,” *JHEP* **12** (2005) 021, arXiv:hep-ph/0508299 [hep-ph].

[46] O. G. Miranda, M. A. Tortola, and J. W. F. Valle, “Are solar neutrino oscillations robust?,” *JHEP* **10** (2006) 008, arXiv:hep-ph/0406280 [hep-ph].

[47] K. Scholberg, “Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source,” *Phys. Rev.* **D73** (2006) 033005, arXiv:hep-ex/0511042 [hep-ex].

[48] C. Giunti and A. Studenikin, “Neutrino electromagnetic interactions: a window to new physics,” *Rev. Mod. Phys.* **87** (2015) 531, arXiv:1403.6344 [hep-ph].

[49] P. Vogel and J. Engel, “Neutrino Electromagnetic Form-Factors,” *Phys. Rev.* **D39** (1989) 3378.

[50] W. Grimus *et al.*, “Constraining Majorana neutrino electromagnetic properties from the LMA-MSW solution of the solar neutrino problem,” *Nucl. Phys.* **B648** (2003) 376–396.

[51] M. Tortola, “Constraining neutrino magnetic moment with solar and reactor neutrino data.”
[52] B. Canas et al., “Updating neutrino magnetic moment constraints,” Phys.Lett. B753 (2016) 191–198, arXiv:1510.01684 [hep-ph].
[53] D. G. Cerdeño, M. Fairbairn, T. Jubb, P. A. N. Machado, A. C. Vincent, and C. Böhm, “Physics from solar neutrinos in dark matter direct detection experiments,” JHEP 1605 (2016) 118, arXiv:1604.01025 [hep-ph].
[54] G. Arcadi, M. Lindner, J. Martins, and F. S. Queiroz, “New Physics Probes: Atomic Parity Violation, Polarized Electron Scattering and Neutrino-Nucleus Coherent Scattering,” arXiv:1906.04755 [hep-ph].
[55] E. Bertuzzo, F. F. Deppisch, S. Kulkarni, Y. F. Perez Gonzalez, and R. Zukanovich Funchal, “Dark Matter and Exotic Neutrino Interactions in Direct Detection Searches,” JHEP 1704 (2017) 073, arXiv:1701.07443 [hep-ph].
[56] J. Ellis, N. Nagata, and K. A. Olive, “Uncertainties in WIMP Dark Matter Scattering Revisited,” Eur.Phys.J. C78 (2018) 569, arXiv:1805.09795 [hep-ph].
[57] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meißen, “High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations,” Phys.Rev.Lett. 115 (2015) 092301, arXiv:1506.04142 [hep-ph].
[58] ATLAS Collaboration, M. Aaboud et al., “Search for high-mass new phenomena in the dilepton final state using proton-proton collisions at √s = 13 TeV with the ATLAS detector,” Phys.Lett. B761 (2016) 372–392, arXiv:1607.03669 [hep-ex].
[59] R. Harnik, J. Kopp, and P. A. Machado, “Exploring nu Signals in Dark Matter Detectors,” JCAP 1207 (2012) 026, arXiv:1202.6073 [hep-ph].
[60] P. Ilten, Y. Soreq, M. Williams, and W. Xue, “Serendipity in dark photon searches,” JHEP 06 (2018) 004, arXiv:1801.04847 [hep-ph].
[61] BaBar Collaboration, J. Lees et al., “Search for a Dark Photon in e+e− Collisions at BaBar,” Phys.Rev.Lett. 113 (2014) 201801, arXiv:1406.2980 [hep-ex].
[62] BaBar Collaboration, J. Lees et al., “Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar,” Phys.Rev.Lett. 119 (2017) 131804, arXiv:1702.03327 [hep-ex].
[63] LHCb Collaboration, R. Aaij et al., “Search for Dark Photons Produced in 13 TeV pp Collisions,” Phys.Rev.Lett. 120 (2018) 061801, arXiv:1710.02867 [hep-ex].
[64] D. Papoulias and T. Kosmas, “ Nuclear aspects of neutral current non-standard ν-nucleus reactions and the role of the exotic μ− → e− transitions experimental limits,” Phys.Lett. B728 (2014) 482–488, arXiv:1312.2460 [nucl-th].