RELATIVE HOMOLOGY AND MAXIMAL l-ORTHOGONAL MODULES

MAGDALINI LADA

INTRODUCTION

Maximal l-orthogonal modules for artin algebras were introduced by Iyama in [10] and [11], and were used to define a natural setting for developing a ‘higher dimensional’ Auslander-Reiten theory. In the second of these papers Iyama conjectures that the endomorphism ring of any two maximal l-orthogonal modules, M_1 and M_2, are derived equivalent. He proves the conjecture for $l = 1$, and for $l > 1$ he gives some orthogonality condition on M_1 and M_2, such that the $\text{End}_\Lambda(M_2)^{op}$-$\text{End}_\Lambda(M_1)$-bimodule $\text{Hom}_\Lambda(M_2, M_1)$ is tilting, which implies that the rings $\text{End}_\Lambda(M_2)$ and $\text{End}_\Lambda(M_1)$ are derived equivalent (see [9]). The purpose of this paper is to characterize tilting modules of the form $\text{Hom}_\Lambda(M_2, M_1)$ in terms of the relative theories induced by the Λ-modules M_1 and M_2, thus getting a generalization of Iyama’s result. Relative homological algebra, which we use throughout this paper, was developed by M. Auslander and Ø. Solberg in a series of three papers [1], [2], [3] and was used to study the representation theory of artin algebras.

Iyama’s conjecture for maximal l-orthogonal modules is motivated by the connection between maximal l-orthogonal modules and non-commutative crepant resolutions, which was shown in [11]. In particular Iyama proved that if R is a complete regular local ring of dimension $d \geq 2$ and Λ is an R-order which is not an isolated singularity, then a Cohen-Macaulay Λ-module M, which is a generator and cogenerator for $\text{mod} \, \Lambda$, gives a non-commutative crepant resolution if and only if M is maximal $(d - 2)$-orthogonal. Considering maximal l-orthogonal modules as analogs of modules giving crepant resolutions, Iyama’s conjecture for maximal l-orthogonal modules is the analog of the Bondal-Orlov-Van den Bergh conjecture for crepant resolutions (see [5], [13]).

Let us fix some notation that we will use in the rest of this paper. By Λ we will denote an artin algebra and by $\text{mod} \, \Lambda$ the category of finitely generated left Λ-modules. If M is in $\text{mod} \, \Lambda$, we denote by $\text{add} \, M$ the full subcategory of $\text{mod} \, \Lambda$, consisting of summands of direct sums of M. A $\text{generator-cogenerator}$ for $\text{mod} \, \Lambda$, is a Λ-module M.

Date: April 15, 2008.
Thanks .. for support.
such that add M contains all the indecomposable projective and the indecomposable injective Λ-modules. Maximal l-orthogonal modules have this property.

In the first section, we recall some concepts from relative homological algebra and we study further the relative theories induced by generator-cogenerators for mod Λ. In the second section we give Iyama’s definition for maximal l-orthogonal modules and state his conjecture. We prove our main theorem which is, as we already mentioned, a characterization of tilting modules of the form $\text{Hom}_\Lambda(M_2, M_1)$ and we apply it to maximal l-orthogonal modules. In this way we are able to give a condition on two maximal l-orthogonal modules, so that the conjecture is true. We prove that Iyama’s orthogonality condition implies our condition and give an example which shows that our condition is actually weaker.

1. Relative and absolute homology

The aim of this section is first to recall some basic definitions and results on relative homology, and second to look especially at the relative theory induced by a generator-cogenerator for mod Λ. In particular we relate the global dimension of the endomorphism ring of a generator-cogenerator M in mod Λ, with the relative - with respect to M - global dimension of Λ (it will be defined precisely later). Moreover we will compare the relative homology induced by such a module, with the ordinary absolute homology. For unexplained terminology and results, we refer to [1] and [2].

Let F be an additive sub-bifunctor of $\text{Ext}_\Lambda^1(-,-): \text{mod } \Lambda^{\text{op}} \times \text{mod } \Lambda \to \text{Ab}$, where Ab denotes the category of abelian groups. A short exact sequence $(\eta): 0 \to A \to B \to C \to 0$, in mod Λ, is called F-exact if η is in $F(C, A)$. A Λ-module P is called F-projective if for any F-exact sequence $0 \to A \to B \to C \to 0$, the sequence $\text{Hom}_\Lambda(P, B) \to \text{Hom}_\Lambda(P, C) \to 0$ is exact. Dually, a Λ-module I is called F-injective if for any F-exact sequence $0 \to A \to B \to C \to 0$, the sequence $\text{Hom}_\Lambda(B, I) \to \text{Hom}_\Lambda(A, I) \to 0$ is exact. We denote by $\mathcal{P}(F)$ the full subcategory of mod Λ consisting of all F-projective Λ-modules and by $\mathcal{I}(F)$ the one consisting of all F-injective Λ-modules. Note that if $\mathcal{P}(\Lambda)$ and $\mathcal{I}(\Lambda)$ denote the subcategories of projective and injective modules in mod Λ respectively, we have that $\mathcal{P}(\Lambda) \subseteq \mathcal{P}(F)$ and $\mathcal{I}(\Lambda) \subseteq \mathcal{I}(F)$.

In this paper we work with sub-bifunctors of $\text{Ext}_\Lambda^1(-,-)$ of the following special form. Let M be in mod Λ. For each pair of Λ-modules A and C we define

$$F_M(C, A) = \{0 \to A \to B \to C \to 0 \mid \text{Hom}_\Lambda(M, B) \to \text{Hom}_\Lambda(M, C) \to 0 \text{ is exact}\}$$
and dually

\[F^M(C, A) = \{ 0 \to A \to B \to C \to 0 \mid \text{Hom}_\Lambda(B, M) \to \text{Hom}_\Lambda(A, M) \to 0 \text{ is exact} \}. \]

It was shown in [1], that the above assignments give additive sub-bifunctors of Ext\(^1\)\(_\Lambda(\cdot, \cdot)\). It is straightforward that \(F^M = F^\text{DT r}M \), so \(P(F^M) = P(\Lambda) \cup \text{add} M \) and \(I(F^M) = I(\Lambda) \cup \text{add} M \). Moreover, it is known that for any short exact sequence \(0 \to A \to B \to C \to 0 \) and any \(\Lambda \)-module \(M \), the sequence \(\text{Hom}_\Lambda(M, B) \to \text{Hom}_\Lambda(M, C) \to 0 \) is exact if and only if the sequence \(\text{Hom}_\Lambda(B, \text{DT r}M) \to \text{Hom}_\Lambda(A, \text{DT r}M) \to 0 \) is exact. Using this fact it is easy to see that \(F^M = F^\text{DT r}M \), so \(I(F^M) = I(\Lambda) \cup \text{add} \text{DT r}M \), and \(F^M = F^\text{TrD}M \), so \(P(F^M) = P(\Lambda) \cup \text{add} \text{TrD}M \).

Hence we have a complete picture of the \(F^\cdot \)-projectives and \(F^\cdot \)-injectives for sub-bifunctors of the above form.

Another nice property of a sub-bifunctor \(F^M = F^\text{DT r}M \) of Ext\(^1\)\(_\Lambda(\cdot, \cdot)\) is that it has enough projectives, in the sense that for any \(\Lambda \)-module \(C \), there exists an \(F^\cdot \)-exact sequence \(0 \to K \to P \to C \to 0 \), with \(P \in P(F^M) \). Note that the map \(P \to C \) is nothing but a right \(P(F^M) \)-approximation of \(C \) which we know is an epimorphism since \(P(\Lambda) \subseteq P(F^M) \). Dually we see that \(F^M = F^\text{DT r}M \) has enough injectives.

Let \(F^M = F^\text{DT r}M \) and \(C \) in \(\text{mod} \Lambda \). An \(F^\cdot \)-projective resolution of \(C \) is an exact sequence

\[\cdots \to P_i \xrightarrow{f_i} P_{i-1} \to \cdots \to P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} C \to 0 \]

where \(P_i \) is in \(P(F) \) and each short exact sequence \(0 \to \text{Im} f_{i+1} \to P_i \to \text{Im} f_i \to 0 \) is \(F \)-exact. Note that such a sequence exists for any \(\Lambda \)-module since \(F = F^M \) has enough projectives. The sequence is called a minimal \(F^\cdot \)-projective resolution if in addition each \(P_i \to \text{Im} f_i \) is a minimal map. The \(F^\cdot \)-projective dimension of \(C \), which we denote by \(\text{pd}_F C \), is defined to be the smallest \(n \) such that there exists an \(F^\cdot \)-projective resolution

\[0 \to P_n \to \cdots \to P_1 \to P_0 \to C \to 0. \]

If such \(n \) does not exist we set \(\text{pd}_F C = \infty \). Dually, we can define the notion of a (minimal) \(F^\cdot \)-injective resolution and the \(F^\cdot \)-injective dimension, \(\text{id}_F C \), of \(C \). Then, the \(F^\cdot \)-global dimension of \(\Lambda \) is defined as:

\[\text{gldim}_F \Lambda = \sup \{ \text{pd}_F C \mid C \in \text{mod} \Lambda \} = \sup \{ \text{id}_F C \mid C \in \text{mod} \Lambda \}. \]

In the special case where \(M \) is a generator-cogenerator for \(\text{mod} \Lambda \), we have the following nice connection between the global dimension of the endomorphism ring of \(M \) and the relative global dimension of \(\Lambda \).

Proposition 1.1. Let \(M \) be a generator-cogenerator for \(\text{mod} \Lambda \). Then, for any positive integer \(l \), the following are equivalent:

(a) \(\text{gldim} \text{End}_\Lambda(M) \leq l + 2 \)
(b) $\text{gldim}_{F^M} \Lambda \leq l$

(c) $\text{gldim}_{F^M} \Lambda \leq l$.

Proof. (a) \Rightarrow (b) Let N be a Λ-module and let

$$
\cdots \rightarrow M_l \rightarrow M_{l-1} \xrightarrow{f_{l-1}} \cdots \rightarrow M_1 \rightarrow M_0 \rightarrow N \rightarrow 0
$$

be a minimal F_M-projective resolution of N. Set $K_{l-1} = \text{Ker} f_{l-1}$. We will show that K_{l-1} is in $\text{add} \ M$. Applying the functor $\text{Hom}_{\Lambda}(M, -)$ to the above sequence, we get the long exact sequence

$$
\eta_1 : \cdots \rightarrow \text{Hom}_\Lambda(M, M_l) \rightarrow \text{Hom}_\Lambda(M, M_{l-1}) \xrightarrow{\text{Hom}(M, f_{l-1})} \cdots \rightarrow \\
\text{Hom}_\Lambda(M, M_1) \rightarrow \text{Hom}_\Lambda(M, M_0) \rightarrow \text{Hom}_\Lambda(M, N) \rightarrow 0.
$$

Note that $\text{Ker} \text{Hom}(M, f_{l-1}) = \text{Hom}(M, K_{l-1})$. Let also

$$
0 \rightarrow N \rightarrow M^0 \xrightarrow{f} M^1 \rightarrow \cdots
$$

be the beginning of an F^M-injective resolution of N. Applying the functor $\text{Hom}_\Lambda(M, -)$ to this sequence, we get the long exact sequence

$$
\eta_2 : 0 \rightarrow \text{Hom}_\Lambda(M, N) \rightarrow \text{Hom}_\Lambda(M, M^0) \xrightarrow{\text{Hom}_\Lambda(M, f)} \text{Hom}_\Lambda(M, M^1) \rightarrow X \rightarrow 0
$$

where the $\text{End}_\Lambda(M)^{\text{op}}$-module X is the cokernel of the map $\text{Hom}_\Lambda(M, f)$. Combining now the sequences η_1 and η_2 we get the long exact sequence

$$
\cdots \rightarrow \text{Hom}_\Lambda(M, M_l) \rightarrow \text{Hom}_\Lambda(M, M_{l-1}) \rightarrow \cdots \rightarrow \text{Hom}_\Lambda(M, M_1) \rightarrow \\
\text{Hom}_\Lambda(M, M_0) \rightarrow \text{Hom}_\Lambda(M, M^0) \rightarrow \text{Hom}_\Lambda(M, M^1) \rightarrow X \rightarrow 0
$$

Since the Λ-modules M_i for $i = 0, 1, \ldots$ and M^j for $j = 0, 1$ are in $\text{add} \ M$, the $\text{End}_\Lambda(M)^{\text{op}}$-modules $\text{Hom}_\Lambda(M, M_i)$, $i = 0, 1, \ldots$ and $\text{Hom}_\Lambda(M, M^j)$, $j = 0, 1$ are projective. So the $\text{End}_\Lambda(M)^{\text{op}}$-module $\text{Hom}_\Lambda(M, K_{l-1})$ is an $(l + 2)$-th syzygy of the $\text{End}_\Lambda(M)^{\text{op}}$-module X. Since $\text{gldim} \text{End}_\Lambda(M) \leq l + 2$, the module $\text{Hom}_\Lambda(M, K_{l-1})$ has to be a projective $\text{End}_\Lambda(M)^{\text{op}}$-module, so K_{l-1} is in $\text{add} \ M$. Thus $\text{gldim}_{F^M} \Lambda \leq l$.

(b) \Rightarrow (a) Let X be an $\text{End}_\Lambda(M)^{\text{op}}$-module and let

$$
\cdots \rightarrow \text{Hom}_\Lambda(M, M_{l+2}) \xrightarrow{d_{l+2}} \text{Hom}_\Lambda(M, M_{l+1}) \rightarrow \cdots \rightarrow \text{Hom}_\Lambda(M, M_2) \xrightarrow{d_2} \\
\text{Hom}_\Lambda(M, M_1) \xrightarrow{d_1} \text{Hom}_\Lambda(M, M_0) \rightarrow X \rightarrow 0
$$

be a projective resolution of X. Since M is a generator for mod Λ, the functor $\text{Hom}_\Lambda(M, -)$ is full and faithful, hence we have that $\text{Ker} d_i = \text{Hom}_\Lambda(M, K_i)$ where K_i is the kernel of the morphism $f_i : M_i \rightarrow M_{i-1}$, with $\text{Hom}_\Lambda(M, f) = d_i$, for $i > 0$. We will show that $\text{Ker} d_{l+1}$ is a projective $\text{End}_\Lambda(M)^{\text{op}}$-module. The sequence

$$
\cdots \rightarrow M_{l+2} \xrightarrow{f_{l+2}} M_{l+1} \rightarrow \cdots \rightarrow M_2 \rightarrow K_1 \rightarrow 0
$$
is an F_M-projective resolution of K_1. Since $\text{gldim}_{F_M} \Lambda \leq l$, we have that K_{l+1} is in $\text{add} M$ and hence $\text{Hom}_\Lambda (M, K_{l+1})$ is a projective $\text{End}_\Lambda (M)^{\text{op}}$-module. So $\text{gldim} \text{End}_\Lambda (M) \leq l + 2$.

Thus we have proved the equivalence of (a) and (b). The proof of the equivalence of (a) and (c) is symmetric. □

Note that the above result was basically already known and can be found, for example in [8], in a different form. But, besides the fact that using relative homology helps in having a simpler statement, there is also the advantage of getting extra information about coresolutions of Λ-modules in $\text{add} \text{DTr} M$ and resolutions of Λ-modules in $\text{add} \text{TrD} M$, since $F_M = F^{\text{DTr}} M$ and $F^M = F^{\text{TrD}} M$. In particular, for selfinjective algebras, we have the following consequence.

Corollary 1.2. Let Λ be a selfinjective artin algebra and X be in $\text{mod} \Lambda$. Then, for any positive integer l, the following are equivalent:

(a) $\text{gldim} \text{End}_\Lambda (\Lambda \oplus X) \leq l + 2$,
(b) $\text{gldim} \text{End}_\Lambda (\Lambda \oplus \text{DTr} X) \leq l + 2$,
(c) $\text{gldim} \text{End}_\Lambda (\Lambda \oplus \text{TrD} X) \leq l + 2$.

Remark. A straightforward consequence of the above corollary is that if Λ is a selfinjective artin algebra, then $\Lambda \oplus X$ is an Auslander generator (that is, a generator-cogenerator for $\text{mod} \Lambda$ such that the global dimension of its endomorphism ring gives the representation dimension of Λ) if and only if $\Lambda \oplus \text{DTr} X$ is an Auslander generator.

Let A and C be in $\text{mod} \Lambda$. Knowing that for sub-bifunctors $F = F_M$ of $\text{Ext}^1_\Lambda (-,-)$ any Λ-module has an F-projective and an F-injective resolution, one can define the right derived functors $\text{Ext}_{F}^i (C,-)$ and $\text{Ext}_{F}^i (-, A)$ of $\text{Hom}_\Lambda (C,-)$ and $\text{Hom}_\Lambda (-, A)$ respectively, in the same way as in the case $\text{P}(F) = \text{P}(\Lambda)$. Moreover, it can be proved that $\text{Ext}_{F}^i (C,-)(A)$ is then isomorphic to $\text{Ext}_{F}^i (-, A)(C)$ and that for $i = 1$ we have that $\text{Ext}_{F}^1 (C, A) = F(C,A)$.

Although $\text{Ext}_{F}^1 (C, A)$ is a subgroup of $\text{Ext}^1_\Lambda (C, A)$, very little is known about how the $\text{Ext}^i_\Lambda (C, A)$-groups and the relative $\text{Ext}_{F}^i (C, A)$-groups are related for $i > 1$. In the next proposition we consider a case where these two coincide. This will help us in the next section to compare Iyama’s condition on maximal orthogonal modules to our result. For X and Y in $\text{mod} \Lambda$ we write $X \perp_k Y$ if $\text{Ext}^i_\Lambda (X,Y) = (0)$, for $0 < i \leq k$. Abusing the notation, we will write $X \perp_k Y$ even for $k = 0$ but this will mean no condition on X and Y.

Proposition 1.3. Let M_1 and M_2 be in $\text{mod} \Lambda$ such that M_2 is a generator for $\text{mod} \Lambda$ and M_1 is a cogenerator for $\text{mod} \Lambda$. The following are equivalent for a positive integer k:

(a) $M_2 \perp_k M_1$,
(b) For any C in $\text{mod} \Lambda$, $\text{Ext}^i_{F,M_2} (C, M_1) \simeq \text{Ext}^i_\Lambda (C, M_1)$, for $0 < i \leq k$
(c) For any D in $\mod \Lambda$, $\text{Ext}^i_{F,M_1}(M_2,D) \simeq \text{Ext}^i_\Lambda(M_2,D)$, for $0 < i \leq k$.

Proof. (a)\Rightarrow(b) Let C be in $\mod \Lambda$ and let

$$ \cdots \rightarrow P_i \xrightarrow{f_i} \cdots \rightarrow P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} C \rightarrow 0 $$

be a minimal F_{M_2}-projective resolution of M_1. Set $K_{-1} = M_1$ and $K_i = \text{Ker} f_i$, for $i = 0, 1, 2, \ldots$. We first show that for all $i = -1, 0, 1, 2, \ldots$ we have

$$ \text{Ext}^1_{F_{M_2}}(K_i, M_1) \simeq \text{Ext}^1_\Lambda(K_i, M_1). $$

Applying the functor $\text{Hom}_\Lambda(-, M_1)$ to the short exact sequence

$$ 0 \rightarrow K_{i+1} \rightarrow P_{i+1} \rightarrow K_i \rightarrow 0 $$

we get the long exact sequence

$$ \text{Hom}_\Lambda(P_{i+1}, M_1) \rightarrow \text{Hom}_\Lambda(K_{i+1}, M_1) \rightarrow \text{Ext}^1_\Lambda(K_i, M_1) \rightarrow \text{Ext}^1_\Lambda(P_{i+1}, M_1). $$

But since $M_2 \perp_k M_1$ and P_{i+1} is in $\text{add } M_2$, we have $\text{Ext}^1_\Lambda(P_{i+1}, M_1) = (0)$. So $\text{Ext}^1_\Lambda(K_i, M_1)$ is the cokernel of the map $\text{Hom}_\Lambda(K_{i+1}, M_1) \rightarrow \text{Hom}_\Lambda(P_{i+1}, M_1)$. The short exact sequence

$$ 0 \rightarrow K_{i+1} \rightarrow P_{i+1} \rightarrow K_i \rightarrow 0 $$

is F_{M_2}-exact so we also have the following long exact sequence

$$ \text{Hom}_\Lambda(P_{i+1}, M_1) \rightarrow \text{Hom}_\Lambda(K_{i+1}, M_1) \rightarrow \text{Ext}^1_{F_{M_2}}(K_i, M_1) \rightarrow \text{Ext}^1_{F_{M_2}}(P_{i+1}, M_1) $$

and since $\text{Ext}^1_{F_{M_2}}(P_{i+1}, M_1) = (0)$, $\text{Ext}^1_{F_{M_2}}(K_i, M_1)$ is the cokernel of the map $\text{Hom}_\Lambda(K_{i+1}, M_1) \rightarrow \text{Hom}_\Lambda(P_{i+1}, M_1)$. Hence

$$ \text{Ext}^1_{F_{M_2}}(K_i, M_1) \simeq \text{Ext}^1_\Lambda(K_i, M_1), $$

for all $i = -1, 0, 1, 2, \ldots$. In particular we have that

$$ \text{Ext}^1_{F_{M_2}}(C, M_1) \simeq \text{Ext}^1_\Lambda(C, M_1). $$

Next we show that for all $i = -1, 0, 1, 2, \ldots$ and $2 \leq j \leq k$

$$ \text{Ext}^{j-1}_\Lambda(K_{i+1}, M_1) \simeq \text{Ext}^{j}_\Lambda(K_i, M_1). $$

To do this, we apply the functor $\text{Hom}_\Lambda(-, M_1)$ to the short exact sequence

$$ 0 \rightarrow K_{i+1} \rightarrow P_{i+1} \rightarrow K_i \rightarrow 0 $$

and we get the long exact sequences

$$ \text{Ext}^{j-1}_\Lambda(P_{i+1}, M_1) \rightarrow \text{Ext}^{j-1}_\Lambda(K_{i+1}, M_1) \rightarrow \text{Ext}^{j}_\Lambda(K_i, M_1) \rightarrow \text{Ext}^{j}_\Lambda(P_{i+1}, M_1). $$

But since $M_2 \perp_k M_1$ and P_{i+1} is in $\text{add } M_2$, we have that $\text{Ext}^{j-1}_\Lambda(P_{i+1}, M_1) = 0$ and $\text{Ext}^{j}_\Lambda(P_{i+1}, M_1) = 0$ which implies that

$$ \text{Ext}^{j-1}_\Lambda(K_{i+1}, M_1) \simeq \text{Ext}^{j}_\Lambda(K_i, M_1). $$

Now using the above we can see that for all $2 \leq i \leq k$ we have

$$ \text{Ext}^i_{F_{M_2}}(C, M_1) \simeq \text{Ext}^{i-1}_{F_{M_2}}(K_0, M_1) \simeq \cdots \simeq \text{Ext}^1_{F_{M_2}}(K_{i-2}, M_1) \simeq$$
RELATIVE HOMOLOGY AND MAXIMAL l-ORTHOGONAL MODULES

$$\text{Ext}^1_\Lambda(K_{i-2}, M_1) \simeq \text{Ext}^2_\Lambda(K_{i-3}, M_1) \simeq \cdots \simeq \text{Ext}^i_\Lambda(C, M_1)$$
which completes the proof.

(b)\Rightarrow(a) Set $C = M_2$. Then we have that $\text{Ext}^i_{F_{M_2}}(M_2, M_1) = (0)$, since M_2 is F_{M_2}-projective, hence $\text{Ext}^i_\Lambda(C, M_1) = (0)$, for $0 < i \leq k$.

The proof of (a)\iff(c) is symmetric. □

2. Cotilting and maximal orthogonal modules

In this section we state and prove the main theorem and give the connections with Iyama’s result. But let us start by recalling Iyama’s definition for maximal l-orthogonal Λ-modules. Set $M \perp_k = \{ Y \in \text{mod } \Lambda \mid M \perp_k Y \}$ and $\perp_k M = \{ X \in \text{mod } \Lambda \mid X \perp_k M \}$.

Definition 2.1. A Λ-module M is called maximal l-orthogonal if $M \perp_l = \text{add } M = \perp_l M$.

The following conjecture was stated in [11].

Conjecture 2.2 (O. Iyama). Let M_1 and M_2 be maximal l-orthogonal in $\text{mod } \Lambda$. Then their endomorphism rings, $\text{End}_\Lambda(M_1)$ and $\text{End}_\Lambda(M_2)$, are derived equivalent.

Before we continue, we give a characterization of maximal orthogonal modules that can be found in a more general setting in [11, Proposition 2.2.2]. For convenience, we restate it and prove it here in the language of relative homology. We call a Λ-module k-selforthogonal if $M \perp_k M$ holds.

Proposition 2.3. Let M be in $\text{mod } \Lambda$ and l a positive integer. The following are equivalent for any integer k, such that $0 \leq k \leq l$.

(a) M is maximal l-orthogonal in $\text{mod } \Lambda$,
(b) M is a generator-cogenerator for $\text{mod } \Lambda$, M is l-selforthogonal and $\text{pd}_{F_M} X \leq l - k$ for any X in $\perp_k M$,
(c) M is a generator-cogenerator for $\text{mod } \Lambda$, M is l-selforthogonal and $\text{id}_{F_M} Y \leq l - k$ for any Y in $M \perp_k$.

Proof. (a)\Rightarrow(b) Let

$$\cdots \rightarrow M_{i-k} \xrightarrow{f_{i-k}} M_{i-k-1} \rightarrow \cdots \rightarrow M_1 \xrightarrow{f_1} M_0 \xrightarrow{f_0} C \rightarrow 0$$

be a minimal F_M-projective resolution of X. Set $K_{i-1} = X$ and $K_i = \text{Ker } f_i$, for $i = 0, 1, 2, \ldots$. We want to show that K_{i-k-1} is in $\text{add } M$.

In order to do this, we show that $\text{Ext}^j_\Lambda(M, K_{l-k-1}) = (0)$, for all $j = 1, 2, \ldots, l$. For all i, applying the functor $\text{Hom}_\Lambda(M, -)$ to the short exact sequence

$$0 \rightarrow K_{i+1} \rightarrow M_{i+1} \rightarrow K_i \rightarrow 0$$

we get the long exact sequence

$$\text{Hom}_\Lambda(M, M_{i+1}) \rightarrow \text{Hom}_\Lambda(M, K_i) \rightarrow \text{Ext}^1_\Lambda(M, K_{i+1}) \rightarrow \text{Ext}^1_\Lambda(M, M_{i+1})$$.
Since \(M \) is \(l \)-selforthogonal with \(l \geq 1 \) and \(M_{i+1} \) is in \(\text{add} \, M \), we have that \(\text{Ext}_{\Lambda}^{1}(M, M_{i+1}) = (0) \). Moreover, since the short exact sequence
\[0 \to K_{i+1} \to M_{i+1} \to K_i \to 0 \] is \(F_M \)-exact, the map \(\text{Hom}_{\Lambda}(M, M_{i+1}) \to \text{Hom}_{\Lambda}(M, K_i) \) is an epimorphism. Hence \(\text{Ext}_{\Lambda}^{1}(M, K_{i+1}) = (0) \). From the same short exact sequence we also get the long exact sequences

\[\text{Ext}_{\Lambda}^{j-1}(M, M_{i+1}) \to \text{Ext}_{\Lambda}^{j-1}(M, K_i) \to \text{Ext}_{\Lambda}^{j}(M, K_{i+1}) \to \text{Ext}_{\Lambda}^{j}(M, M_{i+1}). \]

For \(2 \leq j \leq l \), since \(M \) is \(l \)-selforthogonal and \(M_{i+1} \) is in \(\text{add} \, M \), we have that \(\text{Ext}_{\Lambda}^{j-1}(M, M_{i+1}) = (0) \) and \(\text{Ext}_{\Lambda}^{j}(M, M_{i+1}) = (0) \), which implies that

\[\text{Ext}_{\Lambda}^{j-1}(M, K_i) \simeq \text{Ext}_{\Lambda}^{j}(M, K_{i+1}), \quad 2 \leq j \leq l \]

Now, using the above, we can compute the groups \(\text{Ext}_{\Lambda}^{j}(M, K_{l-k-1}) \) as follows:

for \(2 \leq j \leq l-k \) we have

\[\text{Ext}_{\Lambda}^{j}(M, K_{l-k-1}) \simeq \text{Ext}_{\Lambda}^{1}(M, K_{l-k-j}) = (0) \]

and for \(j = l-k + s, 1 \leq s \leq k \) we have

\[\text{Ext}_{\Lambda}^{l-k+s}(M, K_{l-k-1}) \simeq \text{Ext}_{\Lambda}^{s}(M, X) = (0). \]

So we have

\[\text{Ext}_{\Lambda}^{j}(M, K_{l-k-1}) \simeq \text{Ext}_{\Lambda}^{1}(M, K_{l-k-j}) = (0), \quad 2 \leq j \leq l \]

and since \(M \) is maximal \(l \)-orthogonal this implies that \(K_{l-k-1} \) is in \(\text{add} \, M \). Hence \(\text{pd}_{F_M}X \leq l-k \).

(b) \(\Rightarrow \) (a) Let \(X \) be in \(\text{mod} \, \Lambda \) such that \(\text{Ext}_{\Lambda}^{i}(X, M) = (0) \), for \(0 < i \leq l \). We will show that \(X \) is then in \(\text{add} \, M \). Note that \(k \leq l \), so \(\text{Ext}_{\Lambda}^{1}(X, M) = (0) \), for \(0 < i \leq k \) or equivalently \(X \) is in \(\text{add} \, M \), hence by assumption \(\text{pd}_{F_M}X \leq l-k \). If \(k = 0 \), this will imply that \(X \) is \(F_M \)-projective, hence \(X \) is in \(\text{add} \, M \). Assume that \(k > 0 \) and let

\[0 \to M_{l-k} \xrightarrow{f_{l-k}} M_{l-k-1} \to \cdots \to M_1 \xrightarrow{f_1} M_0 \xrightarrow{f_0} X \to 0 \]

be a minimal \(F_M \)-projective resolution of \(X \). Set \(K_{l-1} = X \), \(K_i = \ker f_i \), for \(i = 0, 1, \ldots, l-k-2 \) and \(K_{l-k-1} = M_{l-k} \). Then, for any \(i \), applying the functor \(\text{Hom}_{\Lambda}(X, -) \) to the short exact sequence

\[0 \to K_i \to M_i \to K_{i-1} \to 0 \]

we get long exact sequences

\[\text{Ext}_{\Lambda}^{j}(X, M_i) \to \text{Ext}_{\Lambda}^{j}(X, K_{i-1}) \to \text{Ext}_{\Lambda}^{j+1}(X, K_i) \to \text{Ext}_{\Lambda}^{j+1}(X, M_i). \]

Since \(M \) is \(l \)-selforthogonal and \(M_i \) is in \(\text{add} \, M \) for all \(i \), we have that the first and last term of the above sequence vanish for all \(j = 1, 2, \ldots, l-1 \). So we have

\[\text{Ext}_{\Lambda}^{j}(X, K_{i-1}) \simeq \text{Ext}_{\Lambda}^{j+1}(X, K_i) \]

for all \(i \) and for \(j = 1, 2, \ldots, l-1 \). But then we have

\[\text{Ext}_{\Lambda}^{1}(X, K_0) \simeq \text{Ext}_{\Lambda}^{2}(X, K_1) \simeq \cdots \simeq \text{Ext}_{\Lambda}^{l-k}(X, K_{l-k-1}) = \text{Ext}_{\Lambda}^{l-k}(X, M_{l-k}) = (0) \].
This implies that the short exact sequence $0 \to K_0 \to M_0 \to X \to 0$ splits and hence X is in $\text{add} \ M$. So M is maximal l-orthogonal.

The proof of (a)\iff(c) is symmetric. □

Setting $k = 0$ in the above proposition, and using Lemma 1.1, we have the following nice characterization of maximal l-orthogonal modules.

Corollary 2.4. Let M be in $\text{mod} \ \Lambda$ and l a positive integer. The following are equivalent:

(a) M is maximal l-orthogonal,

(b) M is a generator-cogenerator for $\text{mod} \ \Lambda$, M is l-selforthogonal and $\text{gldim} \ \text{End}_\Lambda(M) \leq l + 2$.

Before we state and prove our main theorem we recall some definitions. A Λ-module M is called cotilting, if it has the following properties: (1) $\text{Ext}^i_\Lambda(M, M) = (0)$, for $i > 0$, (2) $\text{id}_M < \infty$ and (3) $\mathcal{I}(\Lambda) \subseteq \text{add} \ M$. Similarly, if $F = F_M$ is a sub-bifunctor of $\text{Ext}^1_\Lambda(\cdot, \cdot)$, a Λ-module M is called F-cotilting if: (1) $\text{Ext}^i_F(M, M) = (0)$, for $i > 0$, (2) $\text{id}_FM < \infty$ and (3) $\mathcal{I}(F) \subseteq \text{add}_FM$, where add_FM denotes the full subcategory of $\text{mod} \ \Lambda$ consisting of all modules that have a finite resolution in $\text{add} \ M$ which is in addition F-exact. The notions of tilting and F-tilting modules are defined dually.

For an artin algebra Λ it is known that when $\text{gldim} \ \Lambda < \infty$, a Λ-module M is tilting if and only if M it is cotilting. The proof is based on the one to one correspondences between equivalence classes of tilting or cotilting Λ-modules and certain subcategories of $\text{mod} \ \Lambda$ (see for example [12, Theorem 2.1]). A relative version of these correspondences is proved in [2] and using these one can prove the following:

Lemma 2.5. Let F be a sub-bifunctor of $\text{Ext}^1_\Lambda(\cdot, \cdot)$ with enough projectives and M a Λ-module. Assume that $\text{gldim}_F \Lambda < \infty$. Then M is F-tilting if and only if M is F-cotilting.

We are now in position to give the main theorem of this paper.

Theorem 2.6. Let Λ be an artin algebra with M_1 and M_2 two generator-cogenerators for $\text{mod} \ \Lambda$. Suppose that there exists some positive integer l such that $\text{gldim} \ \text{End}_\Lambda(M_i) \leq l + 2$ for $i = 1, 2$. The following are equivalent:

(a) $\text{Ext}^i_{F_{M_1}}(M_2, M_2) = (0)$ and $\text{Ext}^i_{F_{M_2}}(M_1, M_1) = (0)$ for $0 < i \leq l$,

(b) M_2 is an F^{M_1}-cotilting module,

(c) M_1 is an F^{M_2}-cotilting module,

(d) $\text{Hom}_\Lambda(M_2, M_1)$ is a cotilting $\text{End}_\Lambda(M_2)^{\text{op}} \cdot \text{End}_\Lambda(M_1)$-bimodule.

Proof. (a)\Rightarrow(b) First, since $\text{gldim} \ \text{End}_\Lambda(M_1) \leq l + 2$, applying Lemma 1.1, we see that $\text{id}_{F^{M_1}}M_2 \leq l$. Also, by assumption, we have $\text{Ext}^i_{F^{M_1}}(M_2, M_2)$,
Lemma 1.1 we see that the exact sequence of cotilting modules is exact and the map $\text{Hom}_\Lambda(\cdot, M_1)$ to this sequence we get a long exact sequence

$$0 \to \text{Hom}_\Lambda(M_1, M_1) \to \text{Hom}_\Lambda(P_0, M_1) \to \text{Hom}_\Lambda(P_1, M_1) \to \cdots$$

But, by assumption, $\text{Ext}_i^{\Lambda}(M_1, M_1) = (0)$ for $0 < i \leq l$, so the above sequence is exact and the map $\text{Hom}_\Lambda(P_{i-1}, M_1) \to \text{Hom}_\Lambda(K_{i-1}, M_1)$ is an epimorphism, which implies that the sequence

$$0 \to K_{i-1} \to P_{i-1} \xrightarrow{f_{i-1}} \cdots \to P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M_1 \to 0$$

is F^{M_1}-exact. Thus M_2 is an F^{M_1}-cotilting module.

$(b) \Rightarrow (a)$ Since M_2 is an F^{M_1}-cotilting module, $\text{Ext}_i^{\Lambda}(M_2, M_2) = (0)$ for $i > 0$. Moreover, $\mathcal{I}(F^{M_1})$ is contained in $\text{add}_{F^{M_1}} M_2$, so there exists an F^{M_1}-exact sequence

$$(\eta): 0 \to P_n \to P_{n-1} \xrightarrow{f_{n-1}} \cdots \to P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M_1 \to 0$$

with P_i in $\text{add} M_2$, for all i. We will show that (η) is also F_{M_2}-exact.

We set $K_i = \text{Ker} f_i$ for $i = 1, \ldots, n-2$, $K_0 = M_1$ and $K_{n-1} = P_n$. Then, for any i, applying the functor $\text{Hom}_\Lambda(M_2, \cdot)$ to the short exact sequence

$$(\eta_i): 0 \to K_i \to P_i \to K_{i-1}$$

we get long exact sequences

$$\text{Ext}_i^{F_{M_1}}(M_2, P_i) \to \text{Ext}_i^{F_{M_1}}(M_2, K_{i-1}) \to \text{Ext}_{i+1}^{F_{M_1}}(M_2, K_i) \to \text{Ext}_{i+1}^{F_{M_1}}(M_2, P_i)$$

for $j > 0$. But since P_i is in $\text{add} M_2$, for all i, the first and the last term of these sequences are zero, hence the two middle terms are isomorphic. So we have

$$\text{Ext}_i^{F_{M_1}}(M_2, K_i) \simeq \text{Ext}_i^{F_{M_1}}(M_2, K_{i+1}) \simeq \cdots \simeq \text{Ext}_{n-i}^{F_{M_1}}(M_2, K_{n-1}) = \text{Ext}_{n-i}^{F_{M_1}}(M_2, P_n) = (0).$$

for $i = 0, 1, \ldots, n-1$. But by applying the functor $\text{Hom}_\Lambda(M_2, \cdot)$ to the short exact sequences (η_i), we also get the long exact sequences

$$\text{Hom}_\Lambda(M_2, P_i) \to \text{Hom}_\Lambda(M_2, K_{i-1}) \to \text{Ext}_i^{F_{M_1}}(M_2, K_i)$$

and since $\text{Ext}_i^{F_{M_1}}(M_2, K_i) = (0)$ for all i, we have that the map $\text{Hom}_\Lambda(M_2, P_i) \to \text{Hom}_\Lambda(M_2, K_{i-1})$ is an epimorphism for all i, which implies that (η) is
We now apply the functor $\text{Hom}_\Lambda(-, M_1)$ to (η) and we get the complex

$$0 \to \text{Hom}_\Lambda(M_1, M_1) \to \text{Hom}_\Lambda(P_0, M_1) \to \text{Hom}_\Lambda(P_1, M_1) \to \cdots \to \text{Hom}_\Lambda(P_n, M_1) \to 0$$

Since (η) is F_{M_2}-exact, the i-th-homology of the above complex is $\text{Ext}^i_{F_{M_2}}(M_1, M_1)$. But since (η) is F_{M_2}-exact, the above complex is acyclic. Hence $\text{Ext}^i_{F_{M_2}}(M_1, M_1) = (0)$, for $i > 0$, which completes the proof.

(a)\iff(c) The proof is symmetric to the proof of (a)\iff(b)

(b)\Rightarrow(d) Since $\text{gldim} \text{End}_\Lambda(M_1) \leq l + 2$, by Lemma 1.1, we get $\text{gldim}_{F_{M_1}} \Lambda \leq l$ and then, by Lemma 2.5, we have that M_2 is an F_{M_1}-tilting Λ-module. But then, since $\mathcal{I}(F_{M_1}) = \text{add} M_1$, the module $\text{Hom}_\Lambda(M_2, M_1)$ is a cotilting $\text{End}_\Lambda(M_2)^{\text{op}}$-module, as shown in [2]. This is equivalent to $\text{Hom}_\Lambda(M_2, M_1)$ being a cotilting $\text{End}_\Lambda(M_2)^{\text{op}}$-$\text{End}_\Lambda(M_1)$-bimodule.

(d)\Rightarrow(a) We first show that $\text{Ext}^i_{F_{M_1}}(M_2, M_2) = (0)$ for $0 < i \leq l$. Recall that by Lemma 1.1 we have that $\text{gldim}_{F_{M_1}} \Lambda \leq l$ and let

$$0 \to M_2 \to I_0 \to I_1 \to \cdots \to I_l \to 0$$

be a minimal F_{M_1}-injective resolution of M_2. Then by applying the functor $\text{Hom}_\Lambda(-, M_1)$ we get a minimal projective resolution of the $\text{End}_\Lambda(M_1)$-module $\text{Hom}_\Lambda(M_2, M_1)$

$$0 \to \text{Hom}_\Lambda(I_l, M_1) \to \text{Hom}_\Lambda(I_{l-1}, M_1) \to \cdots \to \text{Hom}_\Lambda(I_1, M_1) \to \text{Hom}_\Lambda(I_0, M_1) \to \text{Hom}_\Lambda(M_2, M_1) \to 0$$

Applying the functor $\text{Hom}_{\text{End}_\Lambda(M_1)}(-, \text{Hom}_\Lambda(M_2, M_1))$ to the last sequence we get the following commutative exact diagram where the notation has been simplified

$$\begin{array}{ccc}
0 & \twoheadrightarrow & ((M_2, M_1), (M_2, M_1)) \\
\downarrow^{l} & & \downarrow^{l} \\
0 & \longrightarrow & (M_2, M_2) \longrightarrow (M_2, I_0) \longrightarrow \cdots \longrightarrow (M_2, I_l) \longrightarrow 0
\end{array}$$

From the above diagram we see that $\text{Ext}^i_{F_{M_1}}(M_2, M_2) \simeq \text{Ext}^i_{\text{End}_\Lambda(M_1)}(\text{Hom}_\Lambda(M_2, M_1), \text{Hom}_\Lambda(M_2, M_1)) = (0)$, for $i > 0$, since $\text{Hom}_\Lambda(M_2, M_1)$ is a cotilting $\text{End}_\Lambda(M_1)$-module.

Symmetrically, starting with a minimal F_{M_2}-projective resolution of M_1 and applying the functor $\text{Hom}_\Lambda(M_2, -)$ we can show that $\text{Ext}^i_{F_{M_2}}(M_1, M_1) \simeq \text{Ext}^i_{\text{End}_\Lambda(M_2)^{\text{op}}}(\text{Hom}_\Lambda(M_2, M_1), \text{Hom}_\Lambda(M_2, M_1)) = (0)$.
for $i > 0$. Here we are using that $\text{Hom}_\Lambda(M_2, M_1)$ is a cotilting $\text{End}_\Lambda(M_2)^\text{op}$-module.

The following easy consequence of the above theorem generalizes the Theorem 5.3.2 in [11].

Corollary 2.7. Let M_1 and M_2 be maximal l-orthogonal modules in mod Λ such that $\text{Ext}^i_{F,M_1}(M_2, M_2) = (0)$ and $\text{Ext}^i_{F,M_2}(M_1, M_1) = (0)$ for $0 < i \leq l$. Then their endomorphism rings, $\text{End}_\Lambda(M_1)$ and $\text{End}_\Lambda(M_2)$, are derived equivalent.

Proof. Let M_1 and M_2 be maximal l-orthogonal modules in mod Λ satisfying the assumption of the Corollary. By Proposition 2.4 and Proposition 1.1 we have that M_1 and M_2 are generator-cogenerators for mod Λ with $\text{gldim} \text{End}_\Lambda(M_i) \leq l + 2$, $i = 1, 2$. Then using Theorem 2.6 and we get that $\text{Hom}_\Lambda(M_2, M_1)$ is a cotilting $\text{End}_\Lambda(M_2)^\text{op}$-$\text{End}_\Lambda(M_1)$-bimodule and hence $\text{End}_\Lambda(M_1)$ and $\text{End}_\Lambda(M_2)$ are derived equivalent by a result of Happel [9].

Although it is obvious from our Theorem 2.6 that Iyama’s orthogonality condition on two maximal l-orthogonal modules M_1 and M_2 implies the vanishing of $\text{Ext}^i_{F,M_1}(M_2, M_2)$ and $\text{Ext}^i_{F,M_2}(M_1, M_1)$ for $0 < i \leq l$, it is interesting to give a direct proof of this fact. This is done in the next proposition.

Proposition 2.8. Let M_1 and M_2 be maximal l-orthogonal in mod Λ. Assume that there exists a positive integer k, such that $k \leq l \leq 2k + 1$ and $M_2 \perp_k M_1$. Then

(a) $\text{Ext}^i_{F,M_2}(M_1, M_1) = (0)$, $0 < i \leq l$,

(b) $\text{Ext}^i_{F,M_1}(M_2, M_2) = (0)$, $0 < i \leq l$.

Proof. (a) For $0 < i \leq k$, since $M_2 \perp_k M_1$, by Proposition 1.3 we have that

$$\text{Ext}^i_{F,M_2}(M_1, M_1) = \text{Ext}^i_{\Lambda}(M_1, M_1).$$

But M_1 is l-orthogonal, so $\text{Ext}^i_{\Lambda}(M_1, M_1) = (0)$, for $0 < i \leq k$. Hence $\text{Ext}^i_{F,M_2}(M_1, M_1) = (0)$, for $0 < i \leq k$.

For $i > k + 1$, since $l \leq 2k + 1$, we have that $i > l - k$. But since M_2 is maximal l-orthogonal, by Lemma 2.3 we have that $\text{pd}_{F,M_2}M_1 \leq l - k$. So $\text{Ext}^i_{F,M_2}(M_1, M_1) = (0)$, for $i > k + 1$.

For $i = k + 1$, if $l < 2k + 1$, we have again that $i > l - k$, so using the same argument as before we get that $\text{Ext}^{k+1}_{F,M_2}(M_1, M_1) = (0)$. It remains to show that $\text{Ext}^{k+1}_{F,M_2}(M_1, M_1) = (0)$, in the case where $l = 2k + 1$. In order to do this, consider a minimal F_{M_2}-projective resolution of M_1

$$\cdots \rightarrow P_k \xrightarrow{f_k} P_{k-1} \rightarrow \cdots \rightarrow P_1 \xrightarrow{f_1} P_0 \rightarrow M_1 \rightarrow 0$$
and set \(K_i = \text{Ker} \ f_i \), for \(i = 0, 1, \ldots \). Then we have
\[
\text{Ext}^{k+1}_{\Lambda}(M_1, M_1) \simeq \text{Ext}^k_{\Lambda}(K_0, M_1) \simeq \cdots \simeq \text{Ext}^1_{\Lambda}(K_{k-1}, M_1) \simeq \\
\text{Ext}^1_{\Lambda}(K_{k-1}, M_1) \simeq \cdots \simeq \text{Ext}^1_{\Lambda}(K_0, M_1).
\]
To show these isomorphisms we use the same arguments as in the proof of 1.3 and we omit here the details. Applying the functor \(\text{Hom}_{\Lambda}(\ - , M_1) \) to the short exact sequence
\[
0 \to K_0 \to P_0 \to M_1 \to 0
\]
we get the long exact sequence
\[
\text{Ext}^k_{\Lambda}(P_0, M_1) \to \text{Ext}^k_{\Lambda}(K_0, M_1) \to \text{Ext}^{k+1}_{\Lambda}(M_1, M_1).
\]
Since \(M_1 \) is \(l \)-orthogonal and \(k+1 < l \), we have that \(\text{Ext}^{k+1}_{\Lambda}(M_1, M_1) = (0) \) and since \(M_2 \perp_k M_1 \) and \(P_0 \) is in \(\text{add} \ M_2 \), we have that \(\text{Ext}^k_{\Lambda}(P_0, M_1) = (0) \). So \(\text{Ext}^k_{\Lambda}(K_0, M_1) = (0) \) and hence \(\text{Ext}^{k+1}_{\Lambda}(M_1, M_1) = (0) \), which completes the proof.

The proof of (b) is symmetric.

The converse of Proposition 2.8 is not in general true, as the following example shows.

Example 2.9. Let \(Q \) be the quiver
\[
\begin{array}{ccc}
1 & \xrightarrow{\alpha} & 2 \\
\gamma & & \beta \\
& \searrow & \\
& 3 & \\
\end{array}
\]
and \(KQ \) the path algebra of \(Q \) over some field \(K \). Let also \(I \) be the ideal of \(KQ \) generated by all paths of length 5 and consider the factor algebra \(\Lambda = KQ/I \). Set
\[
M_1 = P_1 \oplus P_2 \oplus P_3 \oplus S_1 \oplus P_3/\tau^2 P_3
\]
and
\[
M_2 = P_1 \oplus P_2 \oplus P_3 \oplus S_1 \oplus P_1/\tau^2 P_1,
\]
where \(P_i \) denotes the indecomposable projective \(\Lambda \)-module corresponding to vertex \(i \), for \(i = 1, 2, 3 \) and \(S_1 \) denotes the simple module in vertex 1. It is easy to verify that \(M_1 \) and \(M_2 \) are maximal 2-orthogonal modules in \(\text{mod} \ \Lambda \). Moreover, the modules \(M_1 \) and \(M_2 \) are connected via the following exact sequence:
\[
(\eta) : 0 \to P_1/\tau^2 P_1 \to S_1 \oplus P_1 \to S_1 \oplus P_3 \to P_3/\tau^2 P_3 \to 0.
\]
Observe that the above sequence is both an \(F_{M_2} \)-exact and an \(F_{M_1} \)-exact sequence. Hence \((\eta)\) can be viewed both as an \(F_{M_2} \)-projective resolution of \(P_3/\tau^2 P_3 \) and as an \(F_{M_1} \)-injective resolution of \(P_1/\tau^2 P_1 \). But then, if we apply the functor \(\text{Hom}_{\Lambda}(\ - , M_1) \) to \((\eta)\), the resulting
complex is acyclic, since \((\eta)\) is \(F_{M_1}\)-exact, so \(\text{Ext}_{F_{M_2}}^i(P_3/\tau^2P_3, M_1) = (0)\), for \(i > 0\) and hence \(\text{Ext}_{F_{M_2}}^i(M_1, M_1) = (0)\), for \(i > 0\). Also, if we apply the functor \(\text{Hom}_{\Lambda}(M_1, -)\) to \((\eta)\), the resulting complex is acyclic, since \((\eta)\) is \(F_{M_2}\)-exact, so \(\text{Ext}_{F_{M_1}}^i(M_2, P_1/\tau^2P_1) = (0)\), for \(i > 0\) and hence \(\text{Ext}_{F_{M_1}}^i(M_2, M_2) = (0)\), for \(i > 0\). Thus, we have shown that \(M_1\) and \(M_2\) satisfy the conclusions (a) and (b) of Proposition 2.8. Next we consider the short exact sequence

\[
0 \to P_3/\tau^2P_3 \to P_1/\text{Soc} \to P_1/\tau^2P_1 \to 0.
\]

The sequence is non split, so \(\text{Ext}_{\Lambda}^1(P_1/\tau^2P_1, P_3/\tau^2P_3) \neq (0)\), hence \(\text{Ext}_{\Lambda}^1(M_2, M_1) \neq (0)\) which implies that Iyama’s orthogonality condition does not hold for \(M_1\) and \(M_2\).

In fact, in the above example, we can compute all maximal 2-orthogonal \(\Lambda\)-modules and we can then see that they are all connected with sequences which have the properties of \((\eta)\), meaning that we can get one from the other by exchanging one indecomposable summand using approximations. Thus, for the above example, Iyama’s conjecture is true.

We complete this section with a proposition showing the connection between these exchange sequences and the vanishing of the relative \(\text{Ext}_F\).

Proposition 2.10. Let \(M_i = N \oplus X_i\) be in \(\text{mod} \Lambda\) such that \(N\) is a generator-cogenerator for \(\text{mod} \Lambda\) and \(X_i\) are indecomposable not contained in \(\text{add} \ N\), for \(i = 1, 2\). Assume that there exists a positive integer \(l\) such that \(\text{gldim} \text{End}_{\Lambda}(M_i) \leq l + 2\), for \(i = 1, 2\). Then the following are equivalent:

(a) \(\text{Ext}_{F_{M_1}}^i(M_2, M_2) = (0)\) and \(\text{Ext}_{F_{M_2}}^i(M_1, M_1) = (0)\) for \(0 < i < l\),

(b) there exists an exact sequence

\[
(\eta): 0 \to X_2 \to N_0 \xrightarrow{f_0} N_1 \to \cdots \to N_m \xrightarrow{f_m} X_1 \to 0
\]

where each map \(\text{Ker} f_j \to M_j\) is a minimal left \(\text{add} \ N\)-approximation, each map \(M_j \to \text{Im} f_j\) is a minimal right \(\text{add} \ N\)-approximation and \((\eta)\) is in addition \(F_{M_1}\)-exact and \(F_{M_2}\)-exact.

Proof. (a)⇒(b) Using Theorem 2.6 we have that \(\text{Hom}_{\Lambda}(M_2, M_1)\) is a cotilting \(\text{End}_{\Lambda}(M_1)\)-module. Also we know that \(\text{Hom}_{\Lambda}(M_1, M_1)\) is trivially a cotilting \(\text{End}_{\Lambda}(M_1)\)-module. So the \(\text{End}_{\Lambda}(M_1)\)-modules \(\text{Hom}_{\Lambda}(X_2, M_1)\) and \(\text{Hom}_{\Lambda}(X_1, M_1)\) are complements of the almost complete cotilting \(\text{End}_{\Lambda}(M_1)\)-module \(\text{Hom}_{\Lambda}(N, M_1)\). Then, by [7], there exists an exact sequence

\[
0 \to \text{Hom}_{\Lambda}(X_1, M_1) \xrightarrow{f_m} \text{Hom}_{\Lambda}(N, M_1) \to \cdots \to \text{Hom}_{\Lambda}(N, M_1) \xrightarrow{f_0} \text{Hom}_{\Lambda}(N, M_1) \xrightarrow{f_0} \text{Hom}_{\Lambda}(X_2, M_1) \to 0
\]
where each map $\text{Im} \ f^*_j \rightarrow \text{Hom}_\Lambda(N_j, M_1)$ is a minimal left add $\text{Hom}_\Lambda(N, M_1)$-approximation and each $\text{Hom}_\Lambda(N_j, M_1) \rightarrow \text{Coker} \ f^*_j$ is a minimal right add $\text{Hom}_\Lambda(N, M_1)$-approximation. Since M_1 is a cogenerator for $\text{mod} \Lambda$, we have that for all j, $f^*_j = \text{Hom}_\Lambda(f_j, M_1)$ for some $f_j : M_j \rightarrow M_{j+1}$ and the sequence

$$\eta : 0 \rightarrow X_2 \rightarrow N_0 \xrightarrow{f_0} N_1 \xrightarrow{f_1} \cdots \xrightarrow{f_m} N_m \xrightarrow{f_m} X_1 \rightarrow 0$$

is F^{M_1}-exact. Moreover each map $\text{Ker} \ f_j \rightarrow M_j$ is a minimal left add N-approximation, each map $M_j \rightarrow \text{Im} \ f_j$ is a minimal right add N-approximation. It remains to show that (η) is in also F_{M_2}-exact. To do this, we apply the functor $\text{Hom}_\Lambda(M_2, -)$ to (η) and we get the complex

$$0 \rightarrow \text{Hom}_\Lambda(M_2, X_2) \rightarrow \text{Hom}_\Lambda(M_2, N_0) \rightarrow \text{Hom}_\Lambda(M_2, N_1) \rightarrow \cdots \rightarrow \text{Hom}_\Lambda(M_2, N_m) \rightarrow \text{Hom}_\Lambda(M_2, X_1) \rightarrow 0.$$

But (η) can be viewed as an F^{M_1}-injective resolution of X_2 and then the j-th-homology of the above complex is $\text{Ext}^j_{F^{M_1}}(M_2, X_2)$ which is, by assumption, zero. So the complex is acyclic which implies that (η) is F_{M_2}-exact.

(b)\Rightarrow(a) Assume that there exists a sequence (η) as in (b). Then (η) can be viewed both as an F^{M_1}-injective resolution of X_2 and as an F_{M_2}-projective resolution of X_1. If we apply the functor $\text{Hom}_\Lambda(M_2, -)$ to (η), the resulting complex will be acyclic since (η) is F_{M_2}-exact, hence $\text{Ext}^i_{F^{M_1}}(M_2, X_2) = (0)$, for $i > 0$, which implies that $\text{Ext}^i_{\Lambda}(M_2, M_2) = (0)$, for $i > 0$, since N is F^{M_1}-injective. Similarly, if we apply the functor $\text{Hom}_\Lambda(-, M_1)$ to (η), the resulting complex will be acyclic since (η) is F^{M_1}-exact, hence $\text{Ext}^i_{F^{M_2}}(X_1, M_1) = (0)$, for $i > 0$, which implies that $\text{Ext}^i_{\Lambda}(M_2, M_2) = (0)$, for $i > 0$, since N is F_{M_2}-injective. \hfill \square

Note that the integer m that appears in the sequence (η) of the above proposition can be at most $l - 1$, by Proposition 1.1.

References

[1] Auslander, M.; Solberg, Ø.; Relative homology and representation theory I, *Relative homology and homologically finite subcategories*, Comm. Alg., 21 (9), 2995-3031 (1993).

[2] Auslander, M.; Solberg, Ø.; Relative homology and representation theory II, *Relative cotilting theory*, Comm. Alg., 21 (9), 3033-3079 (1993).

[3] Auslander, M.; Solberg, Ø.; Relative homology and representation theory III, *Cotilting modules and Wedderburn correspondence*, Comm. in Alg., 21(9), 3081-3097.

[4] Buan, A.; Closed subbifunctors of the extension bifunctor, Journal of Algebra, vol. 244, (2001), 407-428. and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.

[5] Bondal, A.; Orlov, D.; Semiorthogonal decomposition for algebraic varieties; preprint alg-geom/9506012.
[6] Buan, A.; Solberg, Ø.; Relative cotilting theory and almost complete cotilting modules, Algebras and modules II, I. Reiten, S. O. Smalø, Ø. Solberg, Editors, Cand. Math. Soc., Conference Proceedings, vol. 24, 77-92 (1998).

[7] Coelho, F.; Happel, D.; Unger, L.; Complements to partial tilting modules, Journal of Algebra 170 (1994), no. 1, 184-205.

[8] Erdmann, K.; Holm, T.; Iyama, O.; Schroer, J.; Radical embeddings and representation dimension; Advances in Mathematics 185 (2004), 159-177.

[9] Happel, D; Triangulated Categories in the Representation Theory of Finite-dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119, Cambridge Univ. Press, Cambridge, 1988.

[10] Iyama, O; Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Advances in Mathematics 210 (2007), 22-50.

[11] Iyama, O; Auslander correspondence, Advances in Mathematics 210(2007)51-82.

[12] Solberg, Ø; Infinite dimensional tilting modules over finite dimensional algebras, Handbook of Tilting, London Mathematical Society Lecture Note Series (No. 332), Cambridge Univ. Press, 2007.

[13] Van den Bergh, M.; Non-commutative crepant resolutions; The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 749-770.

Magdalini Lada, Institutt for matematiske fag, NTNU, N–7491 Trondheim, Norway

E-mail address: magdalin@math.ntnu.no