Supporting Information

for Adv. Healthcare Mater., DOI: 10.1002/adhm.202001448

Discovery of a Novel Polymer for Xeno-free, Long-term Culture of Human Pluripotent Stem Cell Expansion

Aishah Nasir#1, Jordan Thorpe#1, Laurence Burroughs#2, Joris Meurs2, Sara Pijuan-Galito1, Derek J. Irvine3, Morgan R. Alexander*2 and Chris Denning*1
Discovery of a Novel Polymer for Xeno-free, Long-term Culture of Human Pluripotent Stem Cell Expansion

Aishah Nasir#1, Jordan Thorpe#1, Laurence Burroughs#2, Joris Meurs2, Sara Pijuan-Galito1, Derek J. Irvine3, Morgan R. Alexander*2 and Chris Denning*1

#Joint first authors
*Joint senior and corresponding authors

Dr. A. Nasir, Dr. J. Thorpe, Dr. L. Burroughs, J. Meurs, Dr. S. Pijuan-Galito, Prof. D. J. Irvine, Prof. M. R. Alexander, Prof. C. Denning.

1Division of Cancer & Stem Cells, Biodiscovery Institute, 2School of Pharmacy, 3Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

Corresponding author emails: morgan.alexander@nottingham.ac.uk, chris.denning@nottingham.ac.uk

Supporting Information

Routine cell culture

All cell culture experiments were performed in a type II Biological Safety Cabinet, and cells were incubated in a humidified incubator, at 37°C and 5% CO2 (Heracell). Three hPSC lines used in this study, including the hESC line, HUES7 (used between passages 25-35) and the hiPSC cell lines: ReBl- PAT (used between passages 20-30) derived from a skin punch biopsy from a male subject and AT1 (used between passages 20-30) derived from dental pulp of a female subject (as previously described),[1] were routinely maintained on 1:100 Matrigel coating (BD Biosciences, UK) in Essential 8™ medium (E8, LifeTechnologies). In brief, cells were passaged at 70-80% confluency every 3 days by washing once with Ca²⁺/Mg²⁺-free Phosphate Buffer Saline (PBS, Gibco #14190-094), followed by incubation with TrypLE Select (LifeTechnologies) for 2-3 minutes at 37°C, with tapping of flasks to dissociate cells. Afterwards, hPSC were resuspended in E8 supplemented with 10μM Y-27632 (ROCKi, Tocris Bioscience #1254/10) and seeded into new MT-coated flasks at approximately 20000 cells/cm². Medium was changed every day.
Polymer microarray synthesis and preparation

Polymer microarrays were fabricated using methods previously described.\[^{2,3}\] Briefly, polymer microarrays were printed onto polyHEMA (4% w/v Sigma, in ethanol (95% v/v in water)) dip coated glass slides using a XYZ3200 dispensing station (Biodot) and quilled metal pins (946MP6B, Arrayit) under an argon atmosphere maintaining $O_2 < 2000$ ppm, $25^\circ C$ and 35% humidity. Polymerization solutions consisted of monomer (50% v/v) in dimethylformamide with photoinitiator 2,2-dimethoxy-2-phenyl acetophenone (1% w/v), and were polymerized in-situ using UV light irradiation. Three replicates of 284 monomers were printed per slide for the first generation array (see Figure S1 for structures and Table S1 for monomer list). For the second generation array, the polymerisation solutions consisted of major and minor monomers in a 2:1 (v/v) ratio. Three replicates of 342 co-polymers combinations were printed per slide. Monomers were purchased from Sigma, Scientific Polymers and Polysciences and were used as received. Top and bottom array surfaces were sterilised with UV light for 15 minutes and washed with sterile Ca^{2+}/Mg^{2+}-free Phosphate Buffer Saline (PBS, Gibco) before culturing with hPSCs.

Microarray screening and data acquisition

0.75×10^6 REBl-PAT cells were seeded in E8 medium supplemented with 10μM Y-27632 (ROCKi, Tocris Bioscience) on each array and incubated at $37^\circ C$ with $5\% \ CO_2$ for 24 h and 48 h timepoints at which point array samples were fixed with 4% paraformaldehyde for quantification. Arrays were immunostained for OCT4 expression and counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (see immunostaining methods for full details) before being mounted with Vectashield Antifade mounting medium (Vector Laboratories and imaged using automated fluorescence microscopy (IMSTAR). Attachment was analysed in CellProfiler ver. 2.2.0 (Broad Institute).\[^{4}\] Manual background correction was also applied to images prior to using in-built “identify primary objects” algorithm using a three-class Otsu adaptive thresholding method to identify and quantify nuclei in DAPI and OCT4 channels with manual check for quality control. Assessment of co-polymer
combinations for second generation screen can be readily performed using a synergy ratio (SR). Taking the response of major \((y_1)\) and minor \((y_2)\) monomers alone, normalised to the fraction \((m)\) present in the co-polymer \((y_{12})\), the SR can be calculated using the equation:

\[
SR = \frac{y_{12}}{(m \times y_1) + (m \times y_2)}
\]

A synergistic combination, \(SR > 1\), indicates that the cell response for the co-polymer is greater than the response of the individual monomers. Whilst an additive/counteractive combination, \(SR < 1\), indicates that the cell response for the co-polymers is less than the response of the individual monomers.

hPSC assessment of polymer candidates coated on 96-well plates

ReBl-PAT hPSCs were seeded at \(4.5 \times 10^4\) cells/cm\(^2\) on co-polymers selected for scale-up in E8 medium supplemented with Y-27632 where each co-polymer was tested in triplicate wells. Matrigel controls were also included for comparison. Images of five separate fields were obtained per well \((n=3\) independent repeat) using the Operetta high-content imaging system (Perkin Elmer). Images were analysed using Harmony high-content image analysis software (Perkin Elmer) developed with PhenoLOGIC machine learning algorithms to quantify percentage cell coverage (relative to total areas imaged per well) and mean area of colonies (total cell coverage/no. of colonies). Adhered cells at 72 h were fixed in 4% paraformaldehyde and immunostained for OCT4 and fluorescence microscopy using the Operetta and Harmony was used to quantify total and OCT4+ nuclei (5 fields/well).

Production of polymer coated 6-well plates

Monomers for polymerisation, consisting of individual monomers or 2 monomers mixed at 2:1 \((v/v)\), were mixed in a 9:1 \((v:v)\) ratio with a 10 wt % solution of photoinitiator 2,2-dimethoxy-2-phenyl acetophenone in isopropyl alcohol and coated onto oxygen plasma treated \((p_i=0.09\) mbar, 100 W, 13.56 MHz RF generator for 10 minutes) tissue culture plastic well-plates. These were then polymerised by exposure to UV light \((365\) nm, 2 x 15 W, 10 cm distance) for 1 h in an argon glovebox.
(<2000 ppm O₂). After polymerization, well-plates were washed three times with isopropanol to remove unreacted polymer, and soaked in dH₂O for 48 h at 37°C. Well-plates were subsequently sterilized with 70% IMS and washed three times with sterile PBS before use.

Surface chemistry analysis

The surface chemistry of array slides and 6-well plates was assessed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM).

ToFSIMS

Measurements were taken using a TOF-SIMS 4 (IONTOF GmbH) instrument using a 25kV Bi³⁺ primary ion source with a pulsed target current of ~1pA and analysed using SurfaceLab 6, IONTOF as previously described.²

AFM

Hydrated AFM measurements were acquired using a Bruker Dimension FastScan in PeakForce™ mode using SCANASYST-FLUID+ probes. Samples assessed for surface analysis were incubated in ultrapure MilliQ water (18.2 Ohm) and the probes were calibrated using a 2.6 GPa Bruker polystyrene film sample.²

Protein adsorption analysis

Sterilized and washed polymer coated 6 well-plates were incubated in E8 medium supplemented with 10μM Y-27632 dihydrochloride for 1 h at 37°C. Plates were washed with dH₂O (18.2 MΩ, ElgaPure LabWater). Proteins were digested in-situ using microwave-assisted techniques using 0.05 μg/μL trypsin (sequencing grade; Promega, UK) in 100mM ammonium bicarbonate (BioUltra,≥99.5%, Sigma-Aldrich) adapted from previously described methods.⁵ Standard methods were used to extract proteins using an extraction solution consisting of acetonitrile (CHROMASOLV®, Riedel-de Haen) and 200 mM ammonium acetate (≥99.0%; Sigma-Aldrich, Gillingham, UK) (1:9 v/v) in LC-MS grade water (CHROMASOLV®, Riedel-de Haen). Samples were analysed by liquid extraction
surface analysis-mass spectrometry (LESA-MS) and introduced to a TriVersa Nanomate (Advion Biosciences, Ithaca, NY) coupled to a Q Exactive plus mass spectrometer (Thermo, San Jose, CA) via nanoelectrospray ionisation (ESI Chip™, Advion Biosciences) using 1.6 kV voltage and 0.6 psi gas pressure (N₂).

hPSC serial passaging on polymer coated 6-well plates

hPSCs were seeded at 7x10⁴ cells/cm² in E8 medium supplemented with 10μM Y-27632 dihydrochloride for the initial 24 h of culture. Medium was exchanged every 24 h until cells reached 70-80% confluence at 72 h when cells were fixed or passaged by dissociating with TryPLE select (as described above). hPSCs growth was assessed using an automated cell-viability counter (CEDEX Hi Res Analyser) at each passage (every 72 h). Doubling time ([duration of culture x log₂] / [log₁₀ (final cell concentration/seeding concentration)]) was calculated for hPSCs and was plotted cumulatively. After 5 serial passages HPSC were karyotyped as previously described.[¹]

Flow cytometry

hPSCs serially passaged on polymer substrate (≥ 3 passages) were dissociated into single-cell suspension and fixed with 4% paraformaldehyde. Samples were permeabilized with 0.1% Tween-20 in PBS for intracellular markers and incubated with primary antibodies NANOG (1:100, APCH7 conjugated, BD Biosciences, 560109), SOX2 (1:20, Alexa Fluor 647-conjugated, R&D Systems, IC2018R), TRA181 (1:100, PE-conjugated, Invitrogen, 12-8883-82) and SSEA4 (1:20, fluorescein-conjugated, R&D Systems, FAB1435F) diluted in PBS for 1hr at RT. The FC500 flow cytometer (Beckman Coulter) was used to acquire measurements and expression was quantified with Kaluza analysis software (Beckman Coulter).
Attachment blocking

hPSCs were harvested and re-seeded in E8 medium with the addition of integrin blocking antibodies (10μg/ml for each antibody) or RGD-blocking peptides (15μg/ml) for 24 h (see table S2). Cells were washed three times with PBS, fixed with 4% paraformaldehyde and counterstained with DAPI. Fluorescence images acquired using the Operetta (Perkin Elmer) were quantified for total nuclei count per condition in Harmony image analysis software (Perkin Elmer).

Integrin expression by Western Blot

hPSCs serially passaged on polymer (≥ 3 passages) were lysed using RIPA buffer (Cell Signalling Technologies #9806) supplemented with PMSF (Phenylmethylsulfonyl fluoride, Sigma 10837091001). Total lysate protein was determined using Pierce BCA Protein Assay Kit (Thermo Fisher Scientific # 23225) following manufacturer’s instructions. LDS NuPAGE Sample Buffer (4X) with 2.5% 2-mercaptoethanol was added to 30μg of protein lysate and run on NuPAGE NOVEX Bis-Tris Gels with MOPS SDS Running Buffer (Thermo Fisher Scientific #NP0008, #NP0001). Samples were transferred to an Amersham Protran 0.45m nitrocellulose blotting membrane (GE Healthcare Life Science #10600124). Membranes were incubated with following antibodies α5 (#4705), αv (#4711), β1 (#9699), β4 (#14803) and β5 (#3629) integrins (all purchased from Cell Signalling Technology and diluted 1:500), Nanog (clone 7F7.1, Millipore, MABD24, 1:500) and β-actin (Millipore, MA1140, 1:2000). Membranes were developed using West Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific #34577) on an LAS-400 Imaging system.

Proteome Profiler Array

Human Phospho-Kinase Array (R&D systems, ARY003B) was performed according to manufacturer’s instructions (www.rndsystems.com) on hPSCs serially passaged on polymer and Matrigel™ in parallel (≥ 3 passages). Array blots were imaged using ImageQuant LAS-4000 (Fujitsu
Life Sciences) and analysed using Image Studio Software (LI-COR, version 5.2.5) where individual total signal intensity was measured by manual gating. All intensity values were normalized to background intensity and HSP60 internal control according to manufacturer’s instructions. Changes were quantified by comparison between MatrigelTM and polymer conditions.

Tri-lineage differentiation

hPSCs serially passaged (≥ 3 passages) were harvested and seeded at 2x10\(^4\) – 1x10\(^5\) cell/cm\(^2\) and expanded in E8 medium for 2 days with daily media exchanges. All directed differentiation protocols were performed on hPSCs at day 2. For definitive endoderm differentiation, media was replaced by RPMI supplemented with B27 without insulin (LifeTechnologies 0080085-SA) and CHIR99021 (2μM; STEMCELL Technologies, 72052) for a further 2 days with daily media exchanges. To produce neural progenitors of the ectoderm lineage, media was replaced by Advanced DMEM/F-12 (LifeTechnologies) supplemented with 1% L-glutamine (Life Technologies), 1% CD Lipid Concentrate (Life Technologies) 7.5μg/ml Transferrin (Sigma-Aldrich), 14μg/ml Insulin (Sigma Aldrich), 0.1mM β-mercapto-ethanol, 10μM SB431542 (Tocris) and 1μM Dorsomorphin-1 (Tocris) and 2μM XAV939 (STEMCELL Technologies) for 5 days with daily media exchanges. Differentiation to cardiomyocytes was achieved using methods previously described.\cite{1}

Immunostaining

Adherent cells were fixed in 4% paraformaldehyde (Sigma-Aldrich, UK) at room temperature (RT) for 20 minutes and permeabilized with 0.1% Triton-X100 (Sigma-Aldrich, UK) in PBS at RT for 15 minutes. Non-specific binding was blocked with 4% serum (Sigma-Aldrich, UK) in PBS at RT for 1 h. Samples were incubated overnight at 4°C with primary antibodies OCT4 (1:200, Santa Cruz Biotechnology, SC-5279), TRA181 (1:200, Millipore, MAB4381), SSEA4 (1:100, Millipore), FOXA2 (1:500, Sigma-Aldrich 07-633), SOX17 (1:100, R&D AF1924), SOX1 (1:100, R&D AF3369), PAX6 (1:100, R&D AF8150) and cardiac α-actinin (1:800, Sigma-Aldrich A7811) diluted in blocking solution with the addition of 0.1% Triton X-100 for nuclear stains. Samples were washed
with 0.1% Tween-20 (Sigma-Aldrich, UK) and incubated with Alexa Fluor secondary antibodies (Life Technologies) 1:400 in blocking solution for 1 h at RT in the dark. Cells were washed with 0.1% Tween-20 and nuclei were counterstained with 0.5μg/ml DAPI (4’,6-diamidino-2-phenylindole, Sigma-Aldrich D9542).

RNA Extraction, cDNA Synthesis and qPCR

Total RNA was extracted from cell pellets using the NucleoSpin® RNA kit (Machery-Nagel), and reverse transcribed using SuperScript™ III Reverse Transcriptase kit (ThermoFisher), according to manufacturer’s instructions.

Real-time qPCR experiments were performed with GoTaq® qPCR Gene Expression assays (Promega) following manufacturer’s instructions. Briefly, GoTaq® mastermix (A6001) including the primers of interest (hOCT4 (Forward Primer (FP): GCTCGAGAAGGATGGGTGTTCC , Reverse Primer (RP): CGTTGTCATAGTGGCTGTGCT), hNANOG (FP: GCAGAAGCCTGACGAC, RP: AGGTTCAGTCGGGTCA) and hSOX2 (FP: CACTGCCCTCTCAGACATG, RP: TCCCATTTCCCTCAGTTTCT)) was added to a MicroAmp Fast 96 well plate (#4346907). Subsequently, DNA samples (from initial 500 ng of reverse-transcribed RNA) were added to the plate which was thereafter sealed with a film (#4360954). Amplification was performed in ABI 7500 Real-Time PCR system (Applied Biosystems). Normalisation was performed using the house keeping gene hHPRT (FP: TGACACTGGAACAAATACTGCA, RP: GGTCTTTCACCAGCACCGCT) and the ΔΔCT method was applied for quantification. [6]

Statistical tests

Experiments were performed in at least three independent experiments unless otherwise stated. Statistical tests (as stated in text) were performed using GraphPad Prism (version 8.1.2, San Diego CA). Statistical outliers were identified and excluded using the robust regression and outlier remover (ROUT) analysis with Q=1%. [7] Heatmaps were plotted using the heatmap.2 function from the gplots
package version 3.1.0.2 in combination with the RColorBrewer package version 1.1-2. Clustering and dendrograms for heatmaps were produced using the complete method with Euclidean distance measure.\(^8\) Assay suitability of co-polymer screen was determined by applying Z-factor statistical calculation:\(^9\)

\[Z\text{-factor} = 1 - \frac{3(\sigma_p + \sigma_n)}{\mu_p - \mu_n} \]

where \(\mu\) represents the mean value, \(\sigma\) represents the standard deviation value.

Matrigel was used as the positive (p) sample whilst HEMA (background chemistry) was used as the negative (n) control.

References

1. D. Mosqueira, I. Mannhardt, J. R. Bhagwan, K. Lis-Slimak, P. Katili, E. Scott, M. Hassan, M. Prondzynski, S. C. Harmer, A. Tinker, G. W. Smith, L. Carrier, P. M. Williams, D. Gaffney, T. Eschenhagen, A. Hansen, C. Denning, Human Gene Therapy. 2018. 29, 12 A93-A94.
2. A. D. Celiz, J. G. W. Smith, A. K. Patel, R. Langer, D. G. Anderson, D. A. Barrett, L. E. Young, M. C. Davies, C. Denning, M. R. Alexander, Biomat. Sci. 2014. 2, 11, 1604-1611.
3. A. D. Celiz, J. G. Smith, A. K. Patel, A. L. Hook, D. Rajamohan, V. T. George, L. Flatt, M. J. Patel, V. C. Epa, T. Singh, R. Langer, D. G. Anderson, N. D. Allen, D. C. Hay, D. A. Winkler, D. A. Barrett, M. C. Davies, L. E. Young, C. Denning, M. R. Alexander, Adv Mater. 2015. 27, 27, 4006-12.
4. M.R. Lamprecht, D.M. Sabatini, A.E. Carpenter, Biotechniques, 2007. 42, 1, 71-5.
5. W. Rao, A. D. Celiz, D. J. Scurr, M. R. Alexander, D. A. Barrett. J Am Soc Mass Spectrom. 2013. 24, 1927-36.
6. T.D. Schmittgen, K.J. Livak, Nat. Protocols. 2008. 3, 6, 1101-1108.
7. HJ Motulsky, R.E. Brown, BMC Bioinformatics. 2006. 7, 123.
8. B.S. Everitt, S. Landau, M. Leese, Cluster Analysis. Fourth ed. 2001.
9. J. H. Zhang, T. D. Chung, K.R. Oldenburg, J. Biomol. Screening. 1999. 4, 2, 67-73.
Figure S1: Monomer structures of materials used for the first generation microarray screen. Each structure has been labelled and full IUPAC names are summarised in table S1.
Figure S2 (a) Total cell number (DAPI count) (b) with outlier data points (denoted in red) were calculated using ROUT analysis (Q=1%) c) and OCT4+ count of REBl-PAT hPSCs on 284 monomer microarray ranked high to low (denoted light to dark, see legend) after 24 h. (See Table S2 for rank order 1-284)
Figure S3: Monomer structures of 19 materials selected for second generation co-polymer screen labelled A-S as referred to in main text.
Figure S4: (a) Synergy of co-polymer combinations were quantified as a ratio of OCT4+ attachment for co-polymer to their corresponding homopolymer components (see supplementary information for methods) clustered by Euclidean distance measure. Synergy ratios (SR) >1 are synergistic combinations (denoted yellow - red), SR values = 1 are additive combinations (denoted in white) and SR values <1 are antagonistic combinations (denoted in grey). All letter IDs mentioned are defined in Figure S2. (b) SR scores were plotted against average total cell number (n=9, where n represents the no. of polymer spots). Data has been defined as synergistic (red), additive (grey) or antagonistic. Data points to the right of dotted line represent high attachment polymers. Highlighted data points (blue) are co-polymer candidates selected for scale-up experiments. All attachment data is summarized in table S3.
Figure S5: Representative images of OCT4 and DAPI stained REBI-PAT attachment on candidate polymers for scale-up on second generation polymer arrayed slides seeded at 0.75 x10⁶ cells/ array at 24 h and 48 h time points in rank order (left to right; quantified from second generation co-polymer array). See Figure S3 for polymer IDs. Scale bar represents 100µm.
Figure S6: Time-lapse representative brightfield images of REBI-PAT attachment on candidate polymers scaled-up on 96 well plates in rank order (top to bottom) at 24 h and 72 h time-points. Scale bar represents 200µm.
Figure S7: TOFSIMS analysis of poly(TCDMDA-blend-BA) surface on poly(styrene) based tissue culture six well-plates. Ions characteristic of polyBA ([C$_4$H$_9$]$^+$ m/z = 57.07, polyTCDMDA ([C$_5$H$_7$]$^+$ m/z = 67.05) and poly(styrene) ([C$_2$H$_7$]$^+$ m/z = 91.06). (N=3, area analysed =3x3mm, constituent monomers shown for references)
Figure S8: Karyograms observed after 5 serial passages on poly (TCDMDA-blend-BA) for (a) hESC HUES7 (46,XY), (b) hiPSC AT1 (46,XX) and (c) hiPSC REBl-PAT (46,XY) cultured in E8 medium.
Figure S9: hPSCs (hiPSC AT1 and REBl-PAT lines and hESC HUES7 line) were assessed for pluripotency markers after 18 days (5 serial passages) on poly(TCDMDA-blend-BA) and compared to Matrigel by (a) flow cytometry (b) quantitative real-time PCR, (c) and immunostaining (ReBl-PAT). Scale bar represents 200μm.
Figure S10: Protein expression of integrin subunits in hiPSC AT1 cells cultured on Matrigel and D:Q (poly(TCDMDA-blend-BA)) for at least three serial passages assessed by western blot analysis. (a) Representative images of Western Blotting bands for integrin subunits α_v, α_δ, β_1, β_4, β_5; stem cell marker Nanog, and house-keeping protein β-actin, (n=3). (b) Quantification of band intensity for integrin expression in AT-1 hiPSCs (n \geq 3), bars show Mean \pm STDEV; black bars show Matrigel control and grey bars show AT-1 on the hit Polymer. Unpaired t-test were performed, and statistical significance is represented as: *P<0.05, **P<0.01, ***P<0.001.
Figure S11: Tri-lineage differentiation of REBI-PAT hPSCs cultured on poly (TCDMDA-blend-BA) for five passages. (a) Definitive endoderm differentiation induced early-stage marker expression of FOXA2 and SOX17 after 2 days. (b) Ectoderm differentiation induced neurogenesis marker expression after 5 days. (c) Mesoderm differentiation induced positive α-actinin expression after 8 days. Scale bars represent 100μm.
Table S1: Full list of monomers included for microarray screens with acronyms and full IUPAC names. Number IDs refer to structures in Figure S1.

No.	ID	Acronym	Name
1	13BDDA	Butanediol-1,3 diacrylate	
2	THFuA	Tetrahydrofurfuryl acrylate	
3	EGDPEA	Ethylene glycol decyclopentenyl ether acrylate	
4	MAAH	Methacrylic anhydride	
5	MAPtMA	Methacrylamidopropyltrimethylammonium chloride,	
6	MAEA	Methacryloxy(ethyl) acetoacetate	
7	13BDDMA	1,3-Butanediol dimethacrylate	
8	EGDA	Ethylene glycol diacrylate	
9	TMPETE	Trimethylolpropane ethoxylate triacrylate	
10	TMCHMA	Trimethylcyclohexyl methacrylate	
11	TMBpDA	Trimethylolpropane benzole diacrylate	
12	DMAEMA	Dimethylamino-ethyl methacrylate	
13	BDDA	Butanediol diacrylate	
14	SolA	Solketal acrylate	
15	HBOPBA	Hexanediylbis[oxy(2-hydroxy-3,1-propanediyl)] bisacrylate	
16	E3GDA	Triethylene glycol diacrylate	
17	DVAd	Divinyl Adipate	
18	PDDMA	1,5-Pentanediol dimethacrylate	
19	TAHTA	1,3,5-Triacyroylhexahydro-1,3,5-triazine	
20	CNEA	Cyanoethyl acrylate	
21	EGDCMA	Ethylene glycol decyclopentenyl ether methacrylate	
22	OFFA	Octafluoropentyl acrylate	
23	DPEPHA	Dipentaerythritol penta/hexa-acrylate	
24	ZBNCTA	Zirconium bromonorbornanelactone carboxylate triacrylate	
25	HEODA	Hexanediol ethoxylate diacrylate	
26	HDMPDA	Hydroxy-2,2-dimethylpropyl 3-hydroxy-2,2-dimethyl propionate diacrylate	
27	PETA	Pentaerythritol triacrylate	
28	MAEACl	[2-(Methacryloyloxy)ethyl]trimethylammonium chloride solution	
29	DEGDA	Di(ethylene glycol) diacrylate	
30	NpMA	Naphthyl methacrylate	
31	TBnpMA	Tribromoneopentyl methacrylate	
32	14BDDMA	1,4-Butanediol dimethacrylate	
33	TMHA	Trimethylhexyl acrylate	
34	mMAOEM	mono-2-(Methacryloyloxy)ethyl maleate	
35	DMAPA	Dimethylamino-propyl acrylate	
36	DDDMA	1,10-Decanediol dimethacrylate	
37	NGDA	Neopentyl glycol diacrylate	
38	TAC	Tris[2-acryloyloxy]ethyl isocyanurate	
39	tBAEMA	Tert-butylamino-ethyl methacrylate	
40	NpA	Naphthyl acrylate	
41	EGPEA	Ethylene glycol phenyl ether acrylate	
42	AEMA.C	2-Aminoethyl methacrylate hydrochloride,	
43	LaA	Lauryl acrylate	
44	BAPODA	Bisphenol A propoxylate diacrylate	
45	APMAM.C	N-(3-Aminopropyl) methacrylamide hydrochloride	
46	HFPDA	Hexafluoropent-1,5-diyl diacrylate	
47	tBCHA	Tert-butylcyclohexyl acrylate	
48	TMPTA	Trimethylolpropane triacrylate	
49	DFHA	Dodecafluoroheptyl acrylate	

No.	Monomer Name	Functional Group and Description	
50	AOHPMA	Acryloyloxy-2-hydroxypropyl methacrylate	
51	EGDMA	Ethylene glycol dimethacrylate	
52	NDDMA	1,9-Nonanediol dimethacrylate	
53	PhA	Phenyl acrylate	
54	TPGDA	Tri(propylene glycol) diacylate	
55	BnA	Benzyl acrylate	
56	HDDMA	1,6-Hexanediol dimethacrylate	
57	FuMA	Furfuryl methacrylate	
58	BzHPEA	Benzoyl-3-hydroxy-phenoxyethyl acrylate	
59	ExA	Epoxidized acrylate	
60	CHMA	Cyclohexyl methacrylate	
61	TMOPTMA	1,1,1-Trimethylolpropane trimethacrylate	
62	BPAPGDA	Bisphenol A propoxylate glycerolate diacylate	
63	iBMA	Isobornyl methacrylate	
64	PhMA	Phenyl methacrylate	
65	BHMA	Benzhydryl methacrylate	
66	DEGEEA	Di(ethylene glycol) ethyl ether acrylate	
67	BAGDA	Bisphenol A glycerolate diacylate	
68	SMA	Stearyl methacrylate	
69	nEEMA	Isocyanatoethyl methacrylate	
70	DMPMAm	N-[3-(Dimethylamino)propyl]methacrylamide	
71	HFPA	Hexafluorosopropyl acrylate	
72	BnMA	Benzyl methacrylate	
73	HPhOPA	Hydroxy-3-phenoxypropyl acrylate	
74	iOA	Isooctyl acrylate	
75	FDA	1,4-Phenylenediacylate	
76	PETA	Pentaerythritol tetraacrylate	
77	TEGDA	Tetra(ethylene glycol) diacylate	
78	GIDMA	Glycerol dimethacrylate	
79	TCIDMDA	Tricyclodecane-dimethanol diacylate	
80	MAHBP	4-Methacryloxy-2-hydroxybenzophenone	
81	BTHPhMA	Benzotrazol-2-yl)-4-hydroxyphenyl)ethyl methacrylate	
82	NGPDA	Neopentyl glycol propoxylate diacylate	
83	DMEMAm	N-[2-(N,N-Dimethylamino)ethyl]methacrylamide	
84	DEAEA	Diethy lamino ethyl acrylate	
85	pEGPhEA	Poly(ethylene glycol) phenyl ether acrylate	
86	PhEMA	2-Phenylethyl methacrylate	
87	pPGDMA	Poly(propylene glycol) (400) dimethacrylate	
88	MAAHS	Methacrylic acid N-hydroxy succinimide ester	
89	HPHPBAH	Hydroxypivalyl hydroxyipivalate bis[6-(acryloyloxy)hexanoate]	
90	PPPhA	Pentafluorophenyl acrylate	
91	DEAEMA	Diethylaminoethyl methacrylate	
92	TBPhA	2,4,6-Tribromophenyl acrylate	
93	PMMA	1-Pyrenylmethy1 methacrylate	
94	MAPU	2-methacryloxyethyl phenyl urethane	
95	NBMA	Norbornyl methacrylate	
96	PhMAm	N-Phenylethacrylamide	
97	DEGEHA	Di(ethylene glycol) 2-ethylhexyl ether acrylate	
98	HBMA	Hydroxybutyl methacrylate	
99	pPGMEA	Poly(propylene glycol) methyl ether acrylate	
100	iDMA	Isodecyl methacrylate	
101	DiPEMA	2-Diisopropylaminoethyl methacrylate	
102	AEMAm.C	N-(2-aminoethyl) methacrylamide hydrochloride	
No.	Chemical	Name	
-----	----------	------	
103	HPMAP	Hydroxypropyl 2-(methacyryloxy)ethyl phthalate	
104	MTEMA	Methylthioethyl methacrylate	
105	PEDAM	Pentacyrthritol diacrylate monostearate	
106	MHMB	Methyl 3-hydroxy-2-methylenebutyrate	
107	EG3DMA	Tri(ethylene glycol) dimethacrylate	
108	HDFHUA	Heptadecafluoro-2-hydroxyundecyl acrylate	
109	HPA	Hydroxypropyl acrylate	
110	NaPhA	Sodium 3-phenyl-acrylate	
111	ZCea	Zirconium carboxyethyl acrylate	
112	BPEODA	Bisphenol A ethoxylate diacrylate	
113	COEA	2-Cinnamoyloxyethyl acrylate	
114	DEG DMA	Diethylene glycol dimethacrylate	
115	OFHMA	Octafluoro-2-hydroxy-6-(trifluoromethyl)heptyl methacrylate	
116	tBuMA	Isobutyl methacrylate	
117	GMA	Glycidyl methacrylate	
118	iDA	Isodecyl acrylate	
119	SPAK	Sultopropyl acrylate potassium salt	
120	BFEODA	Bisphenol F ethoxylate diacrylate	
121	BnPA	Benzyl 2-n-propyl acrylate	
122	CeEA	Carbazol-9-yl ethyl acrylate	
123	tBCHMA	Tertbutycyclohexyl methacrylate	
124	TFPMA	Tetrafluoropropyl methacrylate	
125	MA	Methyl acrylate	
126	TDOcA	Tridecafluorooctyl acrylate	
127	MAETA	4-Methacryloxyethyl trimellitic anhydride	
128	DVSeb	Divinyl sebacate	
129	TMPOTA	Trimethylolpropane propoxylate triacrylate	
130	BMENBC	Bis(2-methacryloyloxy) N,N’-1,9-nonylene biscarbamate	
131	nBuMA	o-Nitrobenzyl methacrylate	
132	oCMA	n-Octyl methacrylate,	
133	HHUMA	Hexadecafluoro-2-hydroxy-10-(trifluoromethyl)undecyl methacrylate	
134	MAEP	Monoacryloyethyl phosphate	
135	CHA	Cyclohexyl acrylate	
136	tBOA	Isobornyl acrylate	
137	THFuMA	Tetrahydrofurfuryl methacrylate	
138	DMAEA	Dimethylamino-ethyl acrylate	
139	PhEA	2-Phenylethyl acrylate	
140	PAHEMA	Phosphoric acid 2-hydroxyethyl methacrylate ester	
141	BOEMA	Butoxyethyl methacrylate	
142	HDFDA	Heptadecafluorodecyl acrylate	
143	HHiPMA	Hexafluoropropyl methacrylate	
144	BMA	Butyl methacrylate	
145	DMPAm	N-[3-(Dimethylamino)propyl]acrylamide	
146	GDIDA	Glycerol 1,3-diglycerolate diacrylate	
147	EHMA	Ethylhexyl methacrylate	
148	DFFMOA	Dodecafluoro-7-(trifluoromethyl)-octyl acrylate	
149	BAC	N,N’-Bis(acryloyloxy)cystamine	
150	HEAm	N-Hydroxyethyl acrylamide	
151	mMAOES	mono-2-(Methacyryloxy)ethyl succinate	
152	BA	Butyl acrylate	
153	BMAM	N-Benzylmethacrylamide	
154	FMHPNMA	Trifluoro-2’-(trifluoromethyl)-2’-hydroxypropyl]-3-norbornyl methacrylate	
Compound	Description		
---------------	---		
MMA	Methyl methacrylate		
BACOEA	Butylamino carbonyl oxy ethyl acrylate		
EOEAl	Ethoxyethyl acrylate		
iBA	Isobutyl acrylate		
SPMK	3-Sulfopropyl methacrylate potassium salt		
DHPA	2,3-dihydroxypropyl acrylate		
F6BMA	Hexafluorobutyl methacrylate		
BEBMA	1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 6-(methacryloyloxy)-4-oxohexanoate		
HDFDMA	Heptadecafluorodecyl methacrylate		
TFCAm	7-[4-(Trifluoromethyl)coumarin]acrylamide		
AODMBA	(R)-α-Acryloyloxy-[β,β-dimethyl-γ-butyrolactone		
PA	Propargyl acrylate		
OFFMA	Octafluoropentyl methacrylate		
iBOMAm	N-(Isobutoxymethyl)acrylamide		
BAFA	1,4-Bis(acryloyl)piperazine		
DHFNMMA	Dodecafluoro-2-hydroxy-8-(trifluoromethyl)mononyl methacrylate		
F6BA	Hexafluorobutyl acrylate		
MAEPC	2-Methacryloyoxyethyl phosphorylcholine		
pPGNEA	Poly(propylene glycol) 4-nonylphenyl ether acrylate		
SEMA	2-Sulfoethyl methacrylate		
VMA	Vinyl methacrylate		
HMA	Hexyl methacrylate		
EBCNA	Ethyl-cis-cyano-acrylate		
THMMAm	N-[Tris(hydroxymethyl)methyl]acrylamide		
HA	Hexyl acrylate		
iBMAm	N-t-butylmethacrylamide		
HTFDA	Hexadecafluoro-9-(trifluoromethyl)decyl acrylate		
AMA	Allyl methacrylate		
EEMA	Ethoxyethyl methacrylate		
EHA	Ethylhexyl acrylate		
PMAm	N-(Phthalimidomethyl)acrylamide		
tBMA	Tert-butyl methacrylate		
TMBAm	N-(1,1,3,3-Tetramethylbutyl)acrylamide		
DEGMA	Di(ethylene glycol) methyl ether methacrylate		
TBPMA	Tribromophenyl methacrylate		
EGMA	Ethylene glycol methyl ether methacrylate		
EEA	Ethyl 2-ethylacrylate		
LMA	Lauryl methacrylate		
MPDSAH	Methacryloylamino[propyl]dimethyl(3-sulfopropyl)ammonium hydroxide inner salt		
AnMA	Anthracenymethacrylate		
EBAM	N,N'-Ethylenebisacrylamide		
F7BA	Heptafluorobutyl acrylate		
HFDA	Heneicosanfluorododecyl acrylate		
HPMAm	N-(2-Hydroxypropyl)methacrylamide		
MEDMSAH	[2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide		
PBPhMA	Pentabromophenyl methacrylate		
PPPDMA	PEO(5800)-b-PPO(3000)-b-PEO(5800) dimethacrylate		
iBAm	N-t-butylacrylamide		
CEA	Carboxyethyl acrylate		
HCEA	Hafnium carboxyethyl acrylate		
---	---	---	
206	TMPDAE	Trimethyl propane diallyl ether	
207	TPhMAm	N-(Triphenylmethyl) methacrylamide	
208	DAAM	N,N-Diallylacrylamide	
209	EMA	Ethyl methacrylate	
210	EPA	Ethyl 2-propylacrylate	
211	HMBMAm	N,N'-Hexamethylenebis(methacrylamide)	
212	TDFOMA	Tridecafluorooctyl methacrylate	
213	DRA	Disperse red 1 acrylate	
214	HPMA	N-(4-Hydroxyphenyl)methacrylamide	
215	MAL	Methacryloyl-L-Lysine	
216	NDMAm	N-Dodecylmethacrylamide	
217	PBBA	Pentabromobenzyl acrylate	
218	pEGMEMA	Poly(ethylene glycol) methyl ether methacrylate	
219	DMMAm	N,N-Dimethylethacrylamide	
220	DYAm	Disperse yellow 7 acrylate	
221	EG4DMA	Tetraethylene glycol dimethacrylate	
222	Mam	Methacrylamide	
223	pPGA	Poly(propylene glycol) acrylate	
224	DOAm	Disperse Orange 3 acrylamide	
225	HPMA	Hydroxypropyl methacrylate	
226	ROMAm	N-(Butoxymethyl)acrylamide	
227	NMEMAm	2-N-Morpholinoethyl methacrylate	
228	tBA	Tert-butyl acrylate	
229	BMAOEP	Bis[2-(methacryloxyethyl)] phosphate	
230	ECNTA	Ethyl-2-cyano-3-(2-thienyl)acrylate	
231	F7BMA	Heptafluorobutyl methacrylate	
232	NAM	N-Acryloylmorpholine	
233	pEGMEA	Poly(ethylene glycol) methyl ether acrylate	
234	FPPMA	Pentafluoropropyl methacrylate	
235	EGMEA	Ethylene glycol methyl ether acrylate	
236	HMAm	N-(Hydroxymethyl)acrylamide	
237	iPAM	N-Isopropylacrylamide	
238	GMMA	Glycerol monomethacrylate	
239	AAm	Acrylamide	
240	MAAm	N-Methylmethacrylamide	
241	PMA	Propargyl methacrylate	
242	ZrA	Zirconium acrylate	
243	AA	Allyl acrylate	
244	CMAOE	Caprolactone 2-(methacryloyloxy)ethyl ester	
245	DMAm	N,N'-Dimethyleacylamide	
246	EGPhMA	Ethylene glycol phenyl ether methacrylate	
247	HEA	Hydroxyethyl acrylate	
248	MBMAm	N,N'-Methylenebismethacrylamide	
249	NAS	N-Acryloxysuccinimide	
250	tBOCAPAm	N-(t-BOC-aminopropyl)methacrylamide	
251	TEGMA	Tri(ethylene glycol) methyl ether methacrylate	
252	ZnA	Zinc acrylate	
253	HMBAM	N,N'-Hexamethylenebisacrylamide	
254	PBPhA	Pentabromophenyl acrylate	
255	PFPMA	Pentafluoropropyl acrylate	
256	AAcAm	Diacetone acrylamide	
257	AcAPAm	N-[2-(Acryloylamino)phenyl]acrylamide	
258	DHEBAM	N,N'-(1,2-Dihydroxyethylene)bisacrylamide	
Rank	Polymer ID	DAPI count	OCT4+ count
------	--------------	------------	-------------
1	13BDDA	60	13BDDA 56
2	THFuA	55	THFuA 52
3	EGDPEA	51	EGDPEA 48
4	MAAH	49	MAAH 47
5	MAPtMA	43	MAPtMA 40
6	TMPETA	42	TMPETA 37
7	TMOBDA	40	TMOBDA 36
8	BDDA	40	BDDA 37
9	MAAE	39	MAAE 38
10	13BDDMA	39	13BDDMA 38
11	TMCHMA	38	TMCHMA 36
12	EGDA	38	DMAEMA 36
13	DMAEMA	37	DMAEMA 36
14	DVAd	35	SolA 32
15	E3GDA	35	HBOPBA 31
16	SolA	35	E3GDA 31
17	PDDMA	34	DVAd 31
18	DMEMAm	33	PDDMA 30
19	HBOPBA	32	TAHTA 30
20	TAHTA	31	CNEA 29
21	MAEACI	31	EGDCMA 28
22	DMAPA	30	OFPA 28
23	CNEA	30	DPEPHA 27
24	EGDCMA	29	ZrBNCTA 26
25	OFPA	29	HEODA 26

Table S2: hPSC attachment on monomer screen at 24 h ranked (high to low) by total cell number (DAPI nuclei count) and OCT4+ nuclei count.
	DPEPHA	29	33	HDMPDA	26	11
27	HDMPDA	28	12	PETrA	25	26
28	HEODA	28	30	MAEAC1	25	22
29	PETrA	28	30	DEGDA	24	15
30	ZrBNCTA	27	17	NpMA	24	13
31	DEGDA	27	17	TBNpMA	24	14
32	NpMA	26	15	14BDDMA	24	24
33	tBAEMA	26	51	TMHA	24	43
34	14BDDMA	26	26	mMAOEM	23	15
35	TBNpMA	25	15	DMAPA	23	30
36	NGDA	24	25	DDDMA	23	21
37	TMHA	24	45	NGDA	23	24
38	mMAOEM	24	16	TAIC	22	29
39	DMPMAm	23	9	tBAEMA	22	43
40	NpA	23	22	NpA	21	20
41	DDDMA	23	21	EGPEA	21	20
42	TAIC	22	29	AEMA.C	20	22
43	EGPEA	22	20	LaA	19	22
44	TMPTA	22	21	BAPODA	19	16
45	AEMA.C	22	24	APMAm.C	19	30
46	HFIPA	21	20	HFPDA	19	12
47	DFHA	20	12	tBCHA	18	20
48	APMAm.C	20	32	TMPTA	18	18
49	NDDMA	20	19	DFHA	18	11
50	tBCHA	20	21	AOHPMA	17	21
51	BAPODA	20	16	EGDMA	17	20
52	LaA	19	22	NDDMA	17	16
53	HFPDA	19	12	PhA	17	24
54	BzHPEA	19	19	TPGDA	17	21
55	TPGDA	19	21	BnA	17	15
56	BnA	19	17	HDDMA	17	13
57	PhA	18	25	FuMA	17	27
58	HDDMA	18	15	BzHPEA	17	16
59	pEGDMA	18	17	ExA	16	26
60	EGDMA	18	21	CHMA	16	16
61	FuMA	18	29	TMOPTMA	16	11
62	PhMA	18	21	BPAPGDA	16	26
63	AOHPMA	18	21	IBMA/tBAEMA	16	27
64	CHMA	17	16	PhMA	15	19
65	BAGDA	17	25	BHMA	15	19
66	ExA	16	26	pEGDMA	15	15
67	BHMOPhP	16	12	DEGEEA	15	22
68	TMOPTMA	16	12	BAGDA	15	22
69	IBMA/tBAEMA	16	27	ODA	15	8
70	ODA	16	9	iCEMA	14	12
71	BHMA	16	19	BHMOPhP	14	11
---	---	---	---	---	---	
72	BPAPGDA	16	27	DMPMAm	14	
73	GPOTA	16	9	GPOTA	14	
74	iBMA	15	29	HFIPA	14	
75	BnMA	15	14	iBMA	13	
76	DEGEEA	15	22	BnMA	13	
77	iCEMA	15	12	HPhOPA	13	
78	NGPDA	15	18	iOA	13	
79	DMA	15	19	PDA	13	
80	MAHBp	15	7	PETA	13	
81	HDMA	14	26	TEGDA	13	
82	PETA	14	8	GDMA	13	
83	DEAEA	14	20	HDMA	13	
84	HPhOPA	14	20	TCDMDA	13	
85	PHPMA	14	17	MAHBp	12	
86	TCDMDA	14	19	BTHPhMA	12	
87	PDA	14	10	DMA	12	
88	GDMA	13	10	NGPDA	12	
89	iOA	13	12	DMEMAm	12	
90	TEGDA	13	19	DEAEA	12	
91	MAAHS	13	23	pEGPhEA	12	
92	HHPBBAH	13	10	PhEMA	12	
93	BTHPhMA	13	11	pPGDMA	12	
94	TBPhA	13	13	MAAHS	12	
95	HEODA/EEMA	12	22	PPDDA	11	
96	PhEMA	12	20	PHPMA	11	
97	pEGPhEA	12	18	HEODA/EEMA	11	
98	PPDDA	12	15	HHPBBAH	11	
99	pPGDMA	12	13	PFPhA	11	
100	iDMA	12	20	DEAEAMA	11	
101	HBMA	11	34	TBPhA	11	
102	PFPhA	11	9	PMMA	11	
103	DEGEEA	11	16	MAPU	10	
104	MAPU	11	14	NBMA	10	
105	NBMA	11	15	PhMAm	10	
106	PhMAm	11	15	DEGEEA	10	
107	PMMA	11	15	HBMA	10	
108	DEAEMA	11	13	pPGMEA	10	
109	pPGMEA	11	15	iDMA	10	
110	HPA	10	17	DiPEMA	10	
111	PEDAM	10	24	AEMAm.C	9	
112	MTEMA	10	13	HPMAP	9	
113	DiPEMA	10	11	BPDMA	9	
114	AEMAm.C	10	16	MTEMA	9	
115	HPMAP	10	12	PEDAM	8	
116	EG3DMA	9	15	MHMB	8	
117	BPDMA	9	10	EG3DMA	8	
---	---	---	---	---	---	
118	HDFHUA	9	15	HDFHUA	8	14
119	COEA	9	12	HPA	8	16
120	DEGDMA	9	9	NaPhA	8	8
121	DMPAm	9	12	ZrCEA	8	8
122	IDA	9	11	BPEODA	8	9
123	MHMB	9	8	COEA	8	11
124	BPEODA	9	10	DEGDMA	8	8
125	NaPhA	8	8	OFHMA	8	8
126	iBuMA	8	10	iBuMA	7	9
127	SPAK	8	6	GMA	7	14
128	ZrCEA	8	8	iDA	7	9
129	OFHMA	8	8	SPAK	7	6
130	TDFoCA	8	8	BPEODA	7	7
131	GMA	7	14	BnPA	7	7
132	MA	7	10	CzEA	7	7
133	TFPMA	7	10	tBCHMA	7	6
134	BPEODA	7	7	TFPMA	7	10
135	BnPA	7	7	MA	7	9
136	MAETA	7	9	TDFoCA	7	7
137	tBCHMA	7	7	MAETA	6	9
138	CzEA	7	7	DVSeb	6	6
139	SMA	7	10	TMPoTA	6	12
140	BMENBC	7	2	BMENBC	6	2
141	DVSeb	7	6	NBnMA	6	18
142	HFHUMA	7	5	nOcMA	6	9
143	PAHEMA	7	7	SMA	6	9
144	HDFDA	6	8	HFHUMA	6	5
145	TMPoTA	6	12	MAEP	6	8
146	nOcMA	6	9	CHA	5	8
147	IBOA	6	7	IBOA	5	6
148	NBnMA	6	18	THFuMA	5	7
149	PhEA	6	14	DMAEA	5	11
150	BOEMA	6	8	PhEA	5	12
151	BMA	6	10	PAHEMA	5	5
152	THFuMA	6	7	BOEMA	5	7
153	CHA	6	9	HDFDA	5	5
154	MAEP	6	8	HFIPMA	5	7
155	GDGDGA	5	5	BMA	5	8
156	HEAm	5	7	DMPAm	5	6
157	DMAEA	5	11	GDGDGA	5	4
158	BMAM	5	6	EHMA	4	4
159	HFIPMA	5	7	DFFMOA	4	7
160	DFFMOA	5	8	BAC	4	5
161	BACoEA	5	6	HEAm	4	6
162	EHMA	4	4	mAoES	4	4
163	BAC	4	5	BA	4	8
---	---	---	---	---		
164	mMAOES	4	4	BMAM	4	6
165	pPGDA	4	5	FMHPNMA	4	4
166	BA	4	8	MMA	4	6
167	MMA	4	6	CHPMA	4	7
168	FMHPNMA	4	4	pPGDA	4	4
169	SPMAK	4	7	BACOEAE	4	5
170	CHPMA	4	7	EOEAE	4	6
171	DHPA	4	6	iBA	4	3
172	PMAm	4	6	SPMAK	3	6
173	OFPMA	4	7	DHPA	3	6
174	EOEAE	4	6	F6BMA	3	3
175	iBA	4	3	pFDA	3	3
176	pFDA	4	3	IBESMA	3	4
177	TFCam	4	5	HDFDMA	3	4
178	F6BMA	3	3	TFCam	3	5
179	IBESMA	3	4	AODMBA	3	4
180	HDFDMA	3	4	PA	3	6
181	PA	3	7	OFPMA	3	5
182	EbCNA	3	7	iBOMAm	3	2
183	AODMBA	3	4	BAPA	3	3
184	pPGNEA	3	6	DFHNMA	3	3
185	iBOMAm	3	2	F6BA	3	4
186	HMA	3	6	MAEPC	3	5
187	SEMA	3	5	pPGNEA	3	6
188	BAPA	3	3	SEMA	3	5
189	DFHNMA	3	3	VMA	3	2
190	F6BA	3	4	HMA	2	5
191	MAEPC	3	5	EbCNA	2	6
192	EEMA	3	5	THMMAm	2	4
193	tBMAm	3	3	HA	2	3
194	VMAM	3	2	tBMAm	2	3
195	HA	2	3	HTFDA	2	3
196	EHA	2	6	AMA	2	4
197	THMMAm	2	4	EEMA	2	5
198	AMA	2	4	EHA	2	5
199	EGMMMA	2	4	FuMA/tBAEMA	2	2
200	HTFDA	2	3	PMAm	2	3
201	DEGMA	2	3	tBMA	2	4
202	FuMA/tBAEMA	2	2	TMBAm	2	4
203	tBMA	2	4	DEGMA	2	3
204	TMBAm	2	4	TBPMA	2	3
205	TBPMA	2	3	EGMMA	2	3
206	HDFA	2	3	EEA	2	2
207	LMA	2	2	LMA	2	2
208	tBAm	2	4	MPDSAH	2	2
209	AnMA	2	2	AnMA	2	2
	EEA	2	2	EBAM	1	2
---	-------	-----	-----	--------	-----	-----
211	MPDSAH	2	2	F7BA	1	2
212	EBAM	2	2	HFDA	1	3
213	PPPhMA	2	3	HPMAm	1	3
214	F7BA	1	2	MEDMSAH	1	2
215	HPMAm	1	3	PPPhMA	1	2
216	MEDMSAH	1	2	PPPhMA	1	3
217	PBPhMA	1	2	HBA	1	3
218	TMPDae	1	4	PPPDMA	1	2
219	DAAM	1	2	tBAm	1	3
220	HBA	1	3	CEA	1	3
221	MAL	1	2	HFCEA	1	3
222	NDMAm	1	2	TmpDae	1	4
223	PPPDMA	1	2	TPhMAm	1	2
224	CEA	1	3	DAAM	1	1
225	HFCEA	1	3	EMA	1	3
226	PBBA	1	4	EPA	1	2
227	TPhMAm	1	2	HMBMAm	1	3
228	EMA	1	3	TDFOMA	1	2
229	EPA	1	2	DRA	1	2
230	DYA	1	3	HPhMA	1	2
231	HMBMAm	1	3	MAL	1	2
232	pEGMEMA	1	2	NDMAm	1	1
233	TDFOMA	1	2	PBBA	1	3
234	DRA	1	2	pEGMEMA	1	2
235	HPPhMA	1	2	DMMAm	1	2
236	pPGA	1	1	DYA	1	2
237	DHEBAM	1	3	EG4DMA	1	1
238	DMMAm	1	2	Mam	1	2
239	EG4DMA	1	1	pPGA	1	1
240	Mam	1	2	DOAm	1	1
241	DOAm	1	1	HPMA	1	1
242	HPMA	1	1	BOMAm	1	2
243	BOMAm	1	2	NMEMAm	1	1
244	NMEMAm	1	1	tBA	1	1
245	tBA	1	1	BMAOEP	1	2
246	BMAOEP	1	2	ECNTA	1	1
247	ECNTA	1	1	F7BMA	1	2
248	EGMEA	1	1	NAM	1	2
249	F7BMA	1	2	pEGMEA	1	1
250	NAM	1	2	pPFPMA	1	1
251	pEGMEA	1	1	EGMEA	1	1
252	pPFPMA	1	1	HMAm	1	2
253	ZnA	1	1	iPAM	1	1
254	HMAm	1	2	GMMA	1	1
255	iPAM	1	1	AAm	0	1
----	----	----	----	----	----	
256	ZrA	1	1	MMAm	0	1
257	GMMA	1	1	PMA	0	1
258	AAm	0	1	tBEMAm	0	1
259	MMAm	0	1	ZrA	0	1
260	PMA	0	1	AA	0	1
261	tBEMAm	0	1	CMAOE	0	1
262	AA	0	1	DMAm	0	1
263	CMAOE	0	1	EGPhMA	0	1
264	DMAm	0	1	HEA	0	1
265	EGPhMA	0	1	MBMAm	0	1
266	HEA	0	1	NAS	0	1
267	MBMAm	0	1	tBOCAPAm	0	1
268	NAS	0	1	TEGMA	0	1
269	tBOCAPAm	0	1	ZnA	0	1
270	TEGMA	0	1	HMBAM	0	1
271	HMBAM	0	1	PBPhA	0	1
272	PBPhA	0	1	PFPA	0	1
273	PFPA	0	1	AAcAm	0	0
274	pEGDA	0	0	AcAPAm	0	0
275	AAcAm	0	0	DHEBAM	0	0
276	AcAPAm	0	0	EA	0	0
277	EA	0	0	EaNIa	0	0
278	EaNIa	0	0	GA	0	0
279	GA	0	0	MAA	0	0
280	MAA	0	0	MBAm	0	0
281	MBAm	0	0	MOPAm	0	0
282	MOPAm	0	0	NPhPMA	0	0
283	NPhPMA	0	0	pEGDA	0	0
284	pEGMA	0	0	pEGMA	0	0
Table S3 hPSC attachment on co-polymer arrays after 24 h ranked (high-low) by OCT4+ nuclei count

Rank order*	Letter ID	Polymer ID	Average OCT4 count	STDEV			
1	D:O	TCDMDA:MAETA	164	80			
2	P:E	THFuA:EG4DMA	153	153			
3	F:G	BDDA:EGDA	151	90			
4	H:Q	GDMA:BA	135	119			
5	P:B	THFuA:NGDA	134	127			
6	P:C	THFuA:BHMOPhP	131	122			
7	P:H	THFuA:GDMA	129	108			
8	O:D	MAETA:TCDMDA	124	96			
9	G:F	EGDA:BDDA	123	85			
10	H:F	GDMA:BDDA	123	87			
11	B:J	NGDA:mMAOES	122	70			
12	D:G	TCDMDA:EG4DMA	120	74			
13	F:P	BDDA:THFuA	117	96			
14	H:D	GDMA:TCDMDA	117	94			
15	M:C	EGDPEA:BHMOPhP	115	87			
16	P	THFuA	112	154			
17	C	BHMOPhP	112	141			
18	D:N	TCDMDA:FuMA	112	103			
19	I:B	DEAMEA:NGDA	111	90			
20	L:D	HEMA:TCDMDA	110	91			
21	D:P	TCDMDA:THFuA	110	57			
22	L:E	HEMA:EG4DMA	109	145			
23	E:A	EG4DMA:HBOPBA	104	71			
24	D:Q	TCDMDA:BA	104	102			
25	H:R	GDMA:TDFOMA	103	106			
26	D	TCDMDA	102	85			
27	D:B	TCDMDA:NGDA	102	125			
28	F:J	BDDA:mMAOES	101	54			
29	M:E	EGDPEA:EG4DMA	101	101			
30	P:N	THFuA:FuMA	100	89			
31	D:J	TCDMDA:mMAOES	98	46			
32	H:C	GDMA:BHMOPhP	98	64			
33	H:N	GDMA:FuMA	98	41			
34	F:O	BDDA:mMAOES	98	51			
35	O:B	MAETA:NGDA	98	127			
36	G	EGDA	97	86			
37	F:K	BDDA:tBAEMA	95	141			
38	L:B	HEMA:NGDA	95	145			
39	B:F	NGDA:BDDA	94	83			
40	H:B	GDMA:NGDA	94	74			
41	B:H	NGDA:GDMA	94	68			
42	B:L	NGDA:HEMA	94	52			
	O:A	MAETA:HBOPBA					
---	-----	-------------	---	---			
43	O:A	MAETA:HBOPBA	93	132			
44	N:F	FuMA:BDDA	93	93			
45	R:G	TDFOMA:EGDA	92	192			
46	P:F	THFuA:BDDA	90	88			
47	H:G	GDMA:EGDA	90	50			
48	O:H	MAETA:GDMA	90	83			
49	I:E	DEAMEA:EG4DMA	90	79			
50	N	FuMA	90	96			
51	F:E	BDDA:EG4DMA	88	66			
52	O:H	MAETA:GDMA	90	83			
53	D:C	TCDMDA:BHMOPhP	87	74			
54	N:D	FuMA:TCDMDA	86	85			
55	A:B	HBOPBA:NGDA	86	107			
56	P:D	THFuA:TCDMDA	85	65			
57	H:K	GDMA:tBAEMA	85	57			
58	M:B	EGDEPA:NGDA	84	73			
59	G:C	EGDA:BHMOPhP	83	109			
60	N:I	FuMA:DEAEMA	82	82			
61	P:R	THFuA:TDFOMA	82	67			
62	N:C	FuMA:BHMOPhP	82	72			
63	F:H	BDDA:GkDMA	81	68			
64	G:D	EGDA:TCDMDA	80	80			
65	R:B	TDFOMA:NGDA	80	173			
66	D:F	TCDMDA:BDDA	79	45			
67	B:D	NGDA:TCDMDA	78	97			
68	H:P	GDMA:THFuA	78	72			
69	M:Q	EGDEPA:BA	78	98			
70	M:I	EGDEPA:DEAEMA	77	89			
71	A:G	HBOPBA:EGDA	76	74			
72	C:D	BHMOPhP:TCDMDA	76	83			
73	H:A	GDMA:HBOPBA	73	64			
74	B:O	NGDA:MAETA	72	45			
75	N:H	FuMA:GDMA	72	48			
76	N:E	FuMA:EG4DMA	72	47			
77	F:M	BDDA:EGDEPA	70	82			
78	F	BDDA	70	68			
79	M:R	EGDEPA:hTDFOMA	69	116			
80	O:F	MAETA:BDDA	68	57			
81	B:I	NGDA:DEAEMA	68	40			
82	P:Q	THFuA:BA	68	107			
83	I:D	DEAMEA:TCDMDA	68	38			
84	G:O	EGDA:MAETA	67	75			
85	B:M	NGDA:EGDEPA	67	75			
86	H:E	GDMA:EG4DIMA	66	54			
87	L:M	HEMA:EGDEPA	65	68			
#	A:C	HBOPBA:BHMOPhP	#	#			
----	-------	----------------	----	--------			
88		65	90	63			
89	F:D	BDDA:TCDMDA	65	64			
90	F:I	BDDA:DEAEMA	65	45			
91	H:O	GDMA:MAETA	64	80			
92	O:E	MAETA:EG4DMA	63	55			
93	M:F	EGDPEA:BDDA	62	69			
94	J:B	mMAOES:NGDA	62	110			
95	D:L	TCDMDA:HEMA	62	51			
96	B	NGDA	62	75			
97	F:B	BDDA:NGDA	62	51			
98	H:I	GDMA:DEAEMA	61	76			
99	C:B	BHMOPhP:NGDA	61	74			
100	D:M	TCDMDA:EGDPEA	61	74			
101	F:L	BDDA:HEMA	60	58			
102	D:A	TCDMDA:HBOPBA	60	48			
103	E:F	EG4DMA:BDDA	59	63			
104	G:A	EGDA:HBOPBA	59	129			
105	B:G	NGDA:EGDA	59	71			
106	N:Q	FuMA:BA	59	127			
107	H:M	GDMA:EGDPEA	59	45			
108	O:G	MAETA:EGDA	59	64			
109	E:B	EG4DMA:NGDA	58	64			
110	M:H	EGDPEA:GDMA	57	76			
111	E:G	EG4DMA:EGDA	57	56			
112	A	HBOPBA	56	43			
113	A:F	HBOPBA:BDDA	56	58			
114	D:H	TCDMDA:GDMA	56	52			
115	N:K	FuMA:tBAEMA	56	38			
116	F:C	BDDA:BHMOPhP	56	56			
117	A:D	HBOPBA:TCDMDA	56	53			
118	F:R	BDDA:TDFOMA	55	46			
119	G:J	EGDA:mMAOES	55	67			
120	D:I	TCDMDA:DEAEMA	55	49			
121	P:G	THFuA:EGDA	55	73			
122	L:A	HEMA:HBOPBA	55	56			
123	A:E	HBOPBA:EG4DMA	55	70			
124	M:D	EGDPEA:TCDMDA	54	53			
125	M:K	EGDPEA:tBAEMA	54	71			
126	Q:D	BA:TCDMDA	54	63			
127	I:F	DEAMEA:BDDA	54	70			
128	J:D	mMAOES:TCDMDA	53	37			
129	K:O	tBAEMA:MAETA	53	41			
130	R:F	TDFOMA:BDDA	53	65			
131	M:A	EGDPEA:HBOPBA	53	45			
132	A:H	HBOPBA:GDMA	52	84			
133	Q:B	BA:NGDA	52	52			
---	---	---	---	---			
134	B:C	NGDA:BHMOPhP	52	25			
135	E:C	EG4DMA:BHMOPhP	52	51			
136	I:H	DEAMEA:GDMA	51	122			
137	O:M	MAETA:EGDPEA	51	62			
138	C:J	BHMOPhP:mMAOES	49	52			
139	C:L	BHMOPhP:HEMA	48	84			
140	C:F	BHMOPhP:BDDA	48	61			
141	M:O	EGDPEA:MAETA	48	89			
142	C:E	BHMOPhP:EG4DMA	47	49			
143	D:E	TCDMDA:EG4DMA	47	50			
144	E:J	EG4DMA:mMAOES	47	56			
145	K:M	tBAEMA:EGDPEA	47	74			
146	R:A	TDFOMA:HBOPBA	46	77			
147	G:R	EGDA:TDFOMA	45	106			
148	C:O	BHMOPhP:MAETA	45	57			
149	Q:G	BA:EGDA	45	53			
150	P:M	THFuA:EGDPEA	45	42			
151	I:G	DEAMEA:EGDA	44	37			
152	I:Q	DEAMEA:BA	44	62			
153	M:L	EGDPEA:HEMA	44	41			
154	C:G	BHMOPhP:BA	44	40			
155	G:E	EGDA:EG4DMA	43	51			
156	E:D	EG4DMA:TCDMDA	43	47			
157	B:S	NGDA:HMAm	42	71			
158	I:N	DEAMEA:FuMA	42	44			
159	O:N	MAETA:FuMA	41	51			
160	N:A	FuMA:HBOPBA	41	37			
161	O:Q	MAETA:BA	41	41			
162	H:L	GDMA:HEMA	40	30			
163	E	EG4DMA	40	49			
164	H	GDMA	40	38			
165	E:S	EG4DMA:HMAm	40	59			
166	F:S	BDDA:HMAm	40	51			
167	G:B	EGDA:NGDA	38	41			
168	Q:C	BA:BHMOPhP	38	47			
169	L:G	HEMA:EGDA	37	50			
170	P:A	THFuA:HBOPBA	36	31			
171	B:E	NGDA:EG4DMA	36	25			
172	O:P	MAETA:THFuA	36	32			
173	N:B	FuMA:NGDA	36	40			
174	A:J	HBOPBA:mMAOES	35	45			
175	P:S	THFuA:HMAm	35	28			
176	L:O	HEMA:MAETA	34	47			
177	Q:A	BA:HBOPBA	34	48			
178	R:H	TDFOMA:GDMA	34	54			
179	M:N	EGDPEA:FuMA	34	76			
---	---	---	---	---			
180	D:S	TCDMDA:HMAm	34	35			
181	K:A	tBAEMA:HBOPBA	34	79			
182	H:J	GDMA:mMAOES	33	58			
183	C:S	BHMOPhP:HMAm	33	67			
184	E:H	EG4DMA:GDMA	33	53			
185	R:D	TDFOMA:TCDMDA	33	26			
186	L:I	HEMA:DEAEMA	32	39			
187	N:P	FuMA:THFuA	32	31			
188	K:B	tBAEMA:NGDA	32	39			
189	K:E	tBAEMA:EG4DMA	31	46			
190	P:O	THFuA:MAETA	31	40			
191	O	MAETA	31	15			
192	Q:O	BA:MAETA	31	25			
193	B:A	NGDA:HBOPBA	31	50			
194	B:P	NGDA:THFuA	30	34			
195	K:L	tBAEMA:HEMA	30	23			
196	R:N	TDFOMA:FuMA	29	21			
197	K:P	tBAEMA:THFuA	29	24			
198	Q	BA	29	59			
199	E:O	EG4DMA:MAETA	29	39			
200	O:S	MAETA:HMAm	29	20			
201	C:I	BHMOPhP:DEAEMA	28	57			
202	K:F	tBAEMA:BDDA	28	38			
203	Q:R	BA:TDFOMA	28	37			
204	S:F	HMAm:BDDA	28	67			
205	Q:H	BA:GDMA	27	48			
206	N:G	FuMA:EGDA	27	32			
207	Q:F	BA:BDDA	27	27			
208	A:I	HBOPBA:DEAEMA	26	40			
209	N:L	FuMA:HEMA	26	34			
210	K:Q	tBAEMA:BA	26	23			
211	J:E	mMAOES:EG4DMA	26	23			
212	E:Q	EG4DMA:BA	26	46			
213	R:E	TDFOMA:EG4DMA	25	24			
214	A:S	HBOPBA:HMAm	25	30			
215	J:F	mMAOES:BDDA	25	34			
216	C:Q	BHMOPhP:BA	24	40			
217	K:C	tBAEMA:BHMOPhP	23	25			
218	J:G	mMAOES:EGDA	23	31			
219	A:N	HBOPBA:FuMA	23	52			
220	P:J	THFuA:mMAOES	22	25			
221	Q:N	BA:FuMA	22	25			
222	I:C	DEAMEA:BHMOPhP	22	27			
223	I:A	DEAMEA:HBOPBA	21	20			
224	Q:M	BA:EGDPEA	21	40			
225	A:M	HBOPBA:EGDPEA	21	36			
---	---	---					
E:K	EG4DMA:tBAEMA	21					
R:P	TDFOMA:THFuA	21					
I:K	DEAMEA:tBAEMA	21					
I:M	DEAMEA:EGDPEA	21					
C:N	BHMOPhP:FuMA	20					
H:S	GDMA:HMAm	20					
Q:P	BA:THFuA	20					
E:M	EG4DMA:EGDPEA	20					
L:S	HEMA:HMAm	19					
S:G	HMAm:EGDA	19					
G:M	EGDA:EGDPEA	19					
D:K	TCDMDA:tBAEMA	19					
C:H	BHMOPhP:GDMA	19					
S:N	HMAm:FuMA	18					
F:A	BDDA:HBOPBA	18					
Q:L	BA:HEMA	18					
P:L	THFuA:HEMA	18					
G:S	EGDA:HMAm	18					
M:P	EGDPEA:THFuA	18					
J	mMAOES	18					
P:I	THFuA:DEAEMA	18					
S:E	HMAm:EG4DMA	18					
J:A	mMAOES:HBOPBA	17					
I:O	DEAMEA:MAETA	17					
K:G	tBAEMA:EGDA	17					
L:F	HEMA:BDDA	17					
K:R	tBAEMA:TDFOMA	17					
I:L	DEAMEA:HEMA	17					
A:P	HBOPBA:THFuA	17					
L:P	HEMA:THFuA	17					
B:Q	NGDA:BA	16					
E:I	EG4DMA:DEAEMA	16					
R:M	TDFOMA:EGDPEA	16					
K:N	tBAEMA:FuMA	16					
I:R	DEAMEA:TDFOMA	16					
R:J	TDFOMA:mMAOES	16					
B:K	NGDA:tBAEMA	16					
M:S	EGDPEA:HMAm	16					
C:A	BHMOPhP:HBOPBA	16					
M:G	EGDPEA:EGDA	16					
R:S	TDFOMA:HMAm	16					
E:N	EG4DMA:FuMA	16					
S:D	HMAm:TCDMDA	16					
L:C	HEMA:BHMOPhP	16					
A:O	HBOPBA:MAETA	15					
L:H	HEMA:GDMA	15					
---	---	---	---	---	---	---	---
272	M	EGDPEA	15	18			
273	K	tBAEMA	15	8			
274	S:M	HMam:EGDPEA	15	7			
275	J:P	mMAOES:THFuA	15	18			
276	K:H	tBAEMA:GDMA	14	14			
277	G:I	EGDA:DEAEMA	14	19			
278	R:K	TDFOMA:tBAEMA	14	12			
279	G:H	EGDA:GDMA	14	15			
280	A:Q	HBOPBA:BA	13	23			
281	K:I	tBAEMA:DEAEMA	13	10			
282	S:K	HMam:tBAEMA	13	27			
283	P:K	THFuA:tBAEMA	13	23			
284	J:M	mMAOES:EGDPEA	13	11			
285	B:N	NGDA:FuMA	13	11			
286	O:R	MAETA:TDFOma	13	13			
287	R:O	TDFOMA:MAETA	12	9			
288	G:K	EGDA:tBAEMA	12	19			
289	R:L	TDFOMA:HEMA	12	10			
290	R:Q	TDFOMA:BA	11	13			
291	S:C	HMam:BHMOPhP	11	11			
292	L:N	HEMA:FuMA	11	8			
293	R	TDFOMA	11	11			
294	I	DEAEMA	11	12			
295	O:L	MAETA:HEMA	11	13			
296	G:L	EGDA:HEMA	10	12			
297	S:O	HMam:MAETA	10	11			
298	C:P	BHMOPhP:THFuA	10	9			
299	L:Q	HEMA:BA	10	9			
300	N:R	FuMA:TDFOma	10	14			
301	N:M	FuMA:EGDPEA	10	13			
302	N:S	FuMA:HMam	10	10			
303	K:D	tBAEMA:TCDMDA	10	9			
304	S:J	HMam:mMAOES	9	7			
305	J:N	mMAOES:FuMA	9	16			
306	J:C	mMAOES:BHMOPhP	9	9			
307	I:J	DEAMEA:mMAOES	9	10			
308	S:L	HMam:HEMA	9	7			
309	O:I	MAETA:DEAEMA	9	16			
310	S:B	HMam:NGDA	9	8			
311	S:I	HMam:DEAEMA	9	5			
312	I:S	DEAEMA:HMam	9	8			
313	M:J	EGDPEA:mMAOES	9	8			
314	C:M	BHMOPhP:EGDPEA	8	12			
315	S:H	HMam:GDMA	8	6			
316	A:K	HBOPBA:tBAEMA	8	13			
317	G:N	EGDA:FuMA	8	7			
---	---	---	---	---			
	S:P	HMAm:THFuA	8	14			
318	L:K	HEMA:tBAEMA	8	6			
319	K:S	tBAEMA:HMAm	8	6			
320	E:L	EG4DMA:HEMA	8	16			
321	R:C	TDFOMA:BHMOPhP	8	10			
322	J:K	mMAOES:tBAEMA	8	7			
323	Q:K	BA:tBAEMA	8	6			
324	S:A	HMAm:HBOPBA	8	9			
325	Q:J	BA:mMAOES	7	13			
326	L	HEMA	7	6			
327	Q:S	BA:HMAm	7	12			
328	O:K	MAETA:tBAEMA	7	10			
329	R:I	TDFOMA:DEAEMA	7	5			
330	A:L	HBOPBA:HEMA	7	7			
331	O:J	MAETA:mMAOES	6	9			
332	L:J	HEMA:mMAOES	6	7			
333	E:R	EG4DMA:TDFOMA	6	15			
334	F:Q	BDMA:BA	6	8			
335	E:P	EG4DMA:THFuA	6	9			
336	K:J	tBAEMA:mMAOES	6	8			
337	F:N	BDMA:FuMA	6	7			
338	N:O	FuMA:MAETA	6	8			
339	G:P	EGDA:THFuA	6	5			
340	Q:I	BA:DEAEMA	6	5			
341	O:C	MAETA:BHMOPhP	5	7			
342	J:H	mMAOES:GDMA	5	8			
343	J:O	mMAOES:MAETA	5	8			
344	L:R	HEMA:TDFOMA	5	6			
345	S:R	HMAm:TDFOMA	4	4			
346	N:J	FuMA:mMAOES	4	6			
347	S:Q	HMAm:BA	4	4			
348	G:Q	EGDA:BA	4	5			
349	J:L	mMAOES:HEMA	3	4			
350	J:S	mMAOES:HMAm	3	6			
351	I:P	DEAMEA:THFuA	3	3			
352	J:I	mMAOES:DEAEMA	3	4			
353	D:R	TCDMDA:TDFOMA	3	4			
354	J:Q	mMAOES:BA	2	3			
355	J:R	mMAOES:TDFOMA	2	3			
356	S	HMAm	2	3			
357	C:K	BHMOPhP:tBAEMA	2	1			
358	C:R	BHMOPhP:TDFOMA	2	3			
Table S4: Integrin blocking antibodies and peptides.

Product Name	Cat. No.	Description
Integrin-blocking antibodies (R&D Systems)		
Anti - α2(CD49b)	MAB1233	Binds to α2 integrin receptor
Anti - α5(CD49e)	MAB1864	Binds to α5 integrin receptor
Anti - α6 (CD49f)	MAB1350	Binds to α6 integrin receptor
Anti - αvβ3	MAB3050	Binds to αvβ3 integrin receptor
Anti - αvβ5	MAB2528	Binds to αvβ5 integrin receptor
Anti - β1	MAB17782	Binds to β1 integrin receptor
Integrin-blocking peptides (BACHEM)		
H-1830	4009173	RGD: Linear peptide (Mw:346.35 Da)
H-4088	4027886	c(RADfV): Control peptide for H-2574.(Mw: 588.66 Da)
H-2574	4026200	c(RGDFV): Binds αvβ3 and αvβ5 integrin receptors. (Mw: 574.64 Da)
H-7232	4070810	C(RADfC): Control peptide for H-7226. (Mw:592.68 Da)
H-7226	4069272	c(RGDfC): Binds αvβ3 integrin receptors. (Mw: 578.64 Da)
H-3164	4030598	GRGDsP: Inhibits binding to fibronectin. (Mw: 587.59 Da)