Genome editing using a versatile vector-based CRISPR/Cas9 system in *Fusarium* species

Sota Shinkado1,5, Hiroki Saito2,4,5, Masaya Yamazaki1,5, Shunsuke Kotera2, Takayuki Arazoe1*, Tsutomu Arie3* & Takashi Kamakura1*

*Fusarium* species include important filamentous fungal pathogens that can infect plants, animals, and humans. Meanwhile, some nonpathogenic *Fusarium* species are promising biocontrol agents against plant pathogens. Here, we developed a genome editing technology using a vector-based CRISPR/Cas9 system for *Fusarium oxysporum* f. sp. *lycopersici* (*Fol*). This optimized CRISPR/Cas9 system, harboring an endogenous U6 small nuclear RNA promoter for the expression of single-guide RNA and an endogenous H2B nuclear localization signal for the localization of Cas9, enabled efficient targeted gene knock-out, including in the accessory chromosomal regions in *Fol*. We further demonstrated single crossover-mediated targeted base editing and endogenous gene tagging. This system was also applicable for genome editing in *F. oxysporum* f. sp. *spinaciae* and *F. commune* without any modifications, suggesting that this CRISPR/Cas9 vector has a potential application for a broad range of researches on other *Fusarium* species.

The genus *Fusarium* belongs to ascomycetes, and the genus includes over 1500 species1. *Fusarium* species are widely distributed in the environment, and its several strains are capable of causing serious diseases in plants, animals, and humans1. *F. oxysporum*, a species of the genus *Fusarium*, is also widely distributed in various environments, including the phytosphere and rhizosphere, and the species again includes strains that are plant, human, and animal pathogens and many nonpathogens. Plant pathogenic *F. oxysporum* is famous as a soilborne pathogen that infects host plants via the roots. The pathogen eventually colonizes the vascular tissues and causes systemic yellowing, wilting, and death in plants by blocking the vessel translocation of water and nutrients1. Although *F. oxysporum* causes diseases in various plants, individual strains show selective pathogenicity and are classified into forms (forma speciales, f. sp.) based on their host species2. For example, *F. oxysporum* isolates responsible for tomato (*Solanum lycopersicum*) wilt belong to the f. sp. *lycopersici*; similarly, those causing wilting on spinach (*Spinacia oleracea*) belong to the f. sp. *spinaceae*. These pathogenic *F. oxysporum* strains carry accessory chromosomes (ACs), which are nonessential for their growth in contrast to the core chromosomes3. ACs harbor lineage- or strain-specific genomic and structural compositions, such as unique genes, different codon usage biases, and rich transposable elements (TEs)3. In addition, ACs have many pathogenicity-related factors, and are directly linked to host-specific pathogenicity in some plant pathogenic *F. oxysporum*4–7. ACs of pathogenic strains are capable of being horizontally transferred to nonpathogenic strains, which lead the nonpathogenic strains to gain pathogenicity. However, little is known about the molecular mechanisms of host specificity, and functional analysis of these genes in ACs is often hampered by TE-enriched traits.

Nonpathogenic *Fusarium* strains are often isolated from asymptomatic crop plants and are capable of colonizing plant roots without inducing any disease symptoms. Recently, a novel technique to control Bakanae disease, caused by *F. fujikuroi*, using the nonpathogenic *F. commune* isolate W5 was reported8. Spray treatment with W5 reduced pathogen invasion of rice flowers, and W5 was transmitted to the next plant generation via seeds. However, the detailed molecular mechanisms of the biocontrol capacity of the nonpathogenic fungus have not been elucidated. Efficient and versatile genome manipulation tools would facilitate the study of the capacity of nonpathogenic biological agents.

1Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan. 2United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-0054, Japan. 3Faculty of Agriculture, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-0054, Japan. 4Present address: Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan. 5These authors contributed equally: Sota Shinkado, Hiroki Saito and Masaya Yamazaki. *Email: arazoe@rs.tus.ac.jp; arie@cc.tuat.ac.jp; kamakura@rs.tus.ac.jp*
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have revolutionized RNA-guided genome editing technology. The type II CRISPR/Cas9 system from Streptococcus pyogenes (SpCas9) is widely used as a genome editing tool in various organisms. The single-guide (sg) RNA/Cas9 ribonucleoprotein (RNP) complex can introduce a site-specific DNA double-strand break (DSB) at the hybridizing locus of the sgRNA/target DNA. In the case of SpCas9, protospacer-adjacent motif (PAM), the 5′-NGG-3′ motif, is required for effective cleavage of the target site. DSBs are repaired by two competing pathways in most filamentous fungal cells: non-homologous end joining (NHEJ) repair and homologous recombination (HR) repair. NHEJ-mediated genome editing can introduce insertions and/or deletions (indels) at the target site without donor DNAs; however, the mutation type cannot be controlled, and large deletions often occur during DNA repair in the absence of donor sequences in the filamentous fungal genome. In contrast, HR repair can be induced by DNA cleavages in many filamentous fungi, which enables to introduce precise mutations, such as targeted gene knock-out, knock-in, and replacement. In the rice blast fungus Pyricularia oryzae (Magnaporthe oryzae), site-specific DSB could induce single-crossover-type HR, which occurs DNA strand exchanges between the cleaved DNA and donor plasmid DNA. Single-crossover-mediated genome editing enabled efficient targeted gene disruption, base editing, and endogenous gene tagging, but the feasibility of this strategy in other fungi has not been validated. Genome editing using the CRISPR/Cas9 system has rapidly developed in filamentous fungi, including Fusarium species. In F. oxysporum f. sp. vasinfectum (Fov), which causes destructive diseases in cotton, an in vitro-assembled Cas9 RNP complex was used as a genome editing tool, and the maximum efficiency of targeted gene disruption and endogenous gene tagging was elevated up to 50%–80%. However, efficient genome editing in the AC regions has not been validated. To the best of our knowledge, CRISPR/Cas9-based genome editing has been applied to F. solani var. petrophilum, F. proliferatum, F. venenatum, and F. graminearum. In F. solani and F. proliferatum, an in vitro-assembled Cas9 RNP complex has also been used for genome editing. In F. graminearum, a vector-based CRISPR/Cas9 system was used, but its efficiency was very low without counter selection. In F. venenatum, an AMA1-based self-replication plasmid was used for the transient expression of the CRISPR/Cas9 system, but this system and strategy can be used for limited fungal species. In this study, we developed a vector-based CRISPR/Cas9 system and demonstrated highly efficient targeted gene knock-out, knock-in, and replacement, including in AC regions in F. oxysporum f. sp. lycopersici (Fol). The developed system was also applied to genome editing in F. oxysporum f. sp. spinaciae (Fos) and F. commune without any modifications to the CRISPR/Cas9 vector.

Results

Development of optimized CRISPR/Cas9 vector and HR-mediated targeted gene knock-out. We previously established a vector-based CRISPR/Cas9 system for the rice blast fungus P. oryzae (pCRISPR/Cas9 U6-1) (Fig. 1a). To optimize this system for Fol, an endogenous U6 promoter was isolated and exchanged for that of P. oryzae on the vector (Fig. 1a; pCRISPR/Cas9-FoU6). Further, a nuclear localization signal derived from Simian virus 40 (Sv40 NLS) at the N-terminus of Cas9 was replaced by the endogenous histone H2B NLS (H2B NLS) in Fol (pCRISPR/Cas9-FoU6-FoNLS) (Fig. 1a), because Sv40 NLS was not suitable for translocation of Cas9 into the nucleus in some fungi. The nuclease activity of these CRISPR/Cas9 vectors were evaluated by the efficiency of HR-mediated targeted gene knock-out of the Ku80, Ka70, and Lige genes (Fig. 1b), which are involved in NHEJ-mediated repair. CRISPR/Cas9 and donor vectors targeting each gene were simultaneously introduced into the protoplasts. The number of hygromycin B-resistant colonies was dramatically increased by co-introduction of CRISPR/Cas9 and donor vectors, compared with that of only donor vectors (Fig. 1c). PCR analysis showed that the use of the CRISPR/Cas9 vectors including CRISPR/Cas9 U6-1 for P. oryzae increased the knock-out efficiency of Ku80 (100%), Ka70 (90–100%), and Lige (80–100%) (Fig. 1c). Using CRISPR/Cas9-FoU6-FoNLS, knock-out efficiencies were elevated up to 100% for all three genes (Fig. 1c), but the introduction with only donor vectors also showed high disruption efficiencies (42–50%) in these experiments. Thus, we further evaluated the system by disrupting the bacterial alpha/beta hydrolase-like protein (ABHIL) gene, which is located in the AC region (contig14) of the Fol isolate 4287 genome. In the case of ABHIL, 1000 bp homology arms were used for the disruption. The knock-out efficiency of ABHIL using the CRISPR/Cas9 systems were 93–100%, respectively (Fig. 1c). The use of CRISPR/Cas9-FoU6-FoNLS also exhibited the highest knock-out efficiency (100%). From these results, we used pCRISPR/Cas9-FoU6-FoNLS for further analysis. To evaluate the feasibility of this system, SIX1, located in the AC region (contig14), was selected as the target gene. In the case of SIX1, the homology arms (FL: 706 bp; FR: 896 bp) were used for the deletion of a part of SIX1 (Fig. S1), because many TEs and repetitive elements are located around the gene. The knock-out of SIX1 using CRISPR/Cas9 system also showed high efficiency (86%) (Figs. 1d, S2). These results demonstrated that the optimized CRISPR/Cas9 system enabled the effective introduction of DSBs into the targeted genes and was applicable for efficient genome editing, including in the AC regions in Fol.

Although HR-mediated genome editing was effective in Fol, the acquisition of homology arms of sufficient length is often prevented by existing TEs and/or repetitive elements. Thus, we attempted to develop a short homology arm-mediated gene disruption strategy. We truncated the homology arms (1000, 750, 500, 250, 100, or 50 bp) of the donor vector by PCR (Fig. 2a). The amplified fragments and CRISPR/Cas9 vector targeting Ku80, Lige, or ABHIL were co-introduced into the protoplasts. PCR analysis showed that the shortened fragment type donor DNA could be used for targeted gene disruption, although the number of transformations and disruption efficiencies tended to depend on the length of the homology arms and the target gene locus (Fig. 2b).

Single crossover-mediated targeted base editing and endogenous gene tagging. We previously succeeded in single crossover-mediated targeted base editing and endogenous gene tagging in P. oryzae. To evaluate this strategy in Fol, the Ku80 region containing point mutations (silent mutations) at the CRISPR/Cas9...
Cas9 target site was obtained as a single homology arm (Fig. 3a). CRISPR/Cas9 and donor vectors were simultaneously introduced into the protoplasts, and 24 independent hygromycin B-resistant colonies were obtained. Ten randomly picked up colonies were sequenced around the CRISPR target site, and the analysis showed that all the colonies (100%) contained the desired mutations at the target site (Fig. 3b and Fig. S3). To investigate whether the single crossover-type HR can also be exploited for endogenous gene tagging in 

Fol

, GFP-fused Ku80 with silent mutations was used for the homology arm (Fig. 3c). All 10 of the randomly selected independent hygromycin B-resistant colonies contained the desired mutations at the target site (100%) (Fig. S3) and showed nuclear-localized GFP fluorescence (Fig. 3d). These results indicated that the CRISPR/Cas9-mediated DSBs enabled efficient single crossover-mediated targeted base editing and endogenous gene tagging in 

Fol

.

Genome editing using the vector-based CRISPR/Cas9 system in other 

Fusarium

species. To investigate whether the developed CRISPR/Cas9 system can be used for other 

Fusarium

species, we conducted genome editing in 

Fos

isolate Spin2SA, the causal agent of Fusarium wilt of spinach, and 

F. commune

isolate W5, a nonpathogenic biological control agent for 

F. fujikuroi

. In these isolates, the transformation efficiency was lower than that of 

Fol

. First, we evaluated the nuclease activity of the CRISPR/Cas9 vector by HR-mediated genome editing in 

Fos

Spin2SA (Fig. 4a). The co-introduction with donor and CRISPR/Cas9 vectors increased the number of transformants, and the knock-out efficiencies of 

Ku80

, 

Ku70

, and 

Lig4

were 63%, 64%, and 79%, respectively (Fig. 4b). Next, we employed the same strategy for 

F. commune

W5 genome editing. In 

F. graminearum

, the secondary metabolite biosynthesis cluster 

fg3_54

has been identified as a virulence factor required for cell-to-cell invasion of wheat. Interestingly, we identified an 

fg3_53

-like gene cluster in the nonpathogenic 

F. commune

W5, and an 

fgm4

-like gene (W5-fgm4), a homolog of a pathway-specific bANK-like regulatory gene in 

F. graminearum

, was selected as the target gene (Fig. 4c). The introduction with only the donor vector could not produce any hygromycin B-resistant colonies, while 12 resistant colonies were obtained by the co-introduction with CRISPR/Cas9 and donor vectors. In addition, 10 out of 12 transformants (83.3%) were identified as disrupted mutants (Fig. 4d). These results indicated that the CRISPR/Cas9-mediated DSBs enabled efficient single crossover-mediated targeted base editing and endogenous gene tagging in 

Fol

.

Discussion

Of the three CRISPR/Cas9 vectors evaluated in this study, the vector optimized for 

P. oryzae

efficiently functioned in 

Fol

also. Because the Tef promoter used for 

Cas9

expression functions in both 

P. oryzae

and 

Fol

, the 

P. oryzae

U6 promoter would also be effective in 

Fol

. This result is consistent with a previous report describing the utility of the

P. oryzae

U6 promoter in 

Fusarium

species.
of the unmodified system for genome editing in the ATCC20542 filamentous fungal species. On the other hand, the optimized vector, pCRISPR/Cas9-FoU6-FoNLS, dramatically increased the number of transformants.

Figure 2. Short homology arm-mediated targeted gene disruption using CRISPR/Cas9. (a) Schematic representation of HR-mediated targeted gene knock-out using donor DNA fragments with short homology arms. (b) The efficiencies of HR-mediated targeted Ku80, Lig4, and ABHL knock-outs using donor DNA fragments with short homology arms.

| Gene   | Transgene (homology length) | Total no. | Checked no. | Positive no. | Efficiency (%) |
|--------|-----------------------------|-----------|-------------|--------------|----------------|
| Ku80   | Donor only (1000-bp)        | 21        | 18          | 6            | 30             |
|        | Donor (1000-bp) + CRISPR/Cas9 | 48        | 20          | 14           | 70             |
|        | Donor only (750-bp)         | 38        | 20          | 7            | 35             |
|        | Donor (750-bp) + CRISPR/Cas9 | 30        | 19          | 12           | 63             |
|        | Donor only (500-bp)         | 10        | 10          | 2            | 20             |
|        | Donor (500-bp) + CRISPR/Cas9 | 11        | 11          | 4            | 36             |
|        | Donor only (250-bp)         | 13        | 13          | 0            | 0              |
|        | Donor (250-bp) + CRISPR/Cas9 | 12        | 12          | 2            | 17             |
|        | Donor only (100-bp)         | 17        | 15          | 0            | 0              |
|        | Donor (100-bp) + CRISPR/Cas9 | 9         | 9           | 3            | 33             |
|        | Donor only (50-bp)          | 9         | 9           | 0            | 0              |
|        | Donor (50-bp) + CRISPR/Cas9 | 2         | 2           | 0            | 0              |
| Lig4   | Donor only (1000-bp)        | 24        | 24          | 8            | 33             |
|        | Donor (1000-bp) + CRISPR/Cas9 | 27        | 22          | 16           | 72             |
|        | Donor only (750-bp)         | 82        | 30          | 5            | 16             |
|        | Donor (750-bp) + CRISPR/Cas9 | 24        | 24          | 17           | 71             |
|        | Donor only (500-bp)         | 50        | 30          | 3            | 10             |
|        | Donor (500-bp) + CRISPR/Cas9 | 35        | 29          | 15           | 52             |
|        | Donor only (250-bp)         | 49        | 30          | 0            | 0              |
|        | Donor (250-bp) + CRISPR/Cas9 | 42        | 25          | 5            | 20             |
|        | Donor only (100-bp)         | 41        | 22          | 0            | 0              |
|        | Donor (100-bp) + CRISPR/Cas9 | 25        | 14          | 0            | 0              |
|        | Donor only (50-bp)          | 45        | 30          | 0            | 0              |
|        | Donor (50-bp) + CRISPR/Cas9 | 20        | 19          | 1            | 5              |
| ABHL   | Donor only (1000-bp)        | 3         | 3           | 0            | 0              |
|        | Donor (1000-bp) + CRISPR/Cas9 | 15        | 15          | 9            | 60             |
|        | Donor only (750-bp)         | 1         | 1           | 0            | 0              |
|        | Donor (750-bp) + CRISPR/Cas9 | 13        | 13          | 6            | 46             |
|        | Donor only (500-bp)         | 4         | 4           | 0            | 0              |
|        | Donor (500-bp) + CRISPR/Cas9 | 11        | 11          | 5            | 45.5           |
|        | Donor only (250-bp)         | 9         | 9           | 0            | 0              |
|        | Donor (250-bp) + CRISPR/Cas9 | 19        | 19          | 1            | 5.3            |
|        | Donor only (100-bp)         | 10        | 10          | 0            | 0              |
|        | Donor (100-bp) + CRISPR/Cas9 | 21        | 21          | 0            | 0              |
|        | Donor only (50-bp)          | 2         | 2           | 0            | 0              |
|        | Donor (50-bp) + CRISPR/Cas9 | 16        | 16          | 0            | 0              |
**Figure 3.** Single crossover-mediated targeted base editing and endogenous gene tagging using CRISPR/Cas9. (a) Schematic representation of the single crossover-mediated Ku80 base editing. Silent mutations were introduced into the CRISPR/Cas9 target site of Ku80 homologous sequence to evade CRISPR/Cas9 cleavage. (b) Sequences around the CRISPR/Cas9 target site in the wild type, donor vector, and transformants #1–10. The chromat data obtained by sequencing analysis of WT and transformant #1 were shown under the sequences. (c) Schematic representation of single crossover-mediated Ku80 gene tagging with the GFP reporter gene. The stop codon was removed from the Ku80 homologous sequence, and the GFP gene was fused at the C-terminus. (d) GFP fluorescence in the GFP-tagged transformants. The bars are 20 µm.

**Figure 4.** HR-mediated targeted gene knock-out using the developed CRISPR/Cas9 system in *Fusarium oxysporum* f. sp. *spinaciae* (Fos) Spin2SA and *F. commune* W5. (a) Schematic representation of HR-mediated targeted gene knock-outs in Fos Spin2SA. (b) The efficiencies of HR-mediated Ku80, Ku70, and Lig4 knock-outs in Fos Spin2SA. (c) Schematic representation of HR-mediated W5-fgm4 knock-out in F. commune W5. (d) PCR band-shift assay to detect the fgm4-like gene (W5-fgm4) knock-out mutants. Expected fragment sizes: wild type = 3200 bp and knock-out mutants = 4780 bp. M: 1 kb DNA ladder marker.
and exhibited the highest editing efficiencies (100%) at the Ku80, Ku70, Lig4, and ABHL loci in Fol. These results indicated that the optimization process improved nuclease activity of the system, which would be capable of providing advanced genome editing in Fusarium species. In Fol, the efficient gene disruptions of Ku80, Ku70, and Lig4 were also observed by introducing only the donor vector. As these genes are involved in the NHEJ repair, the donor vector may silence their expressions or functions during transformation; however, such events were not observed in the case of Fos.

We demonstrated highly efficient targeted gene knock-out, knock-in, and replacement strategies, including a part of AC regions. Short homology arm-mediated targeted gene disruption allows for the disruption of genes located in TE-enriched AC regions using short homologous sequences. Pathogenicity-related ACs have been analyzed using the chromosome-deficient strains that completely or partially lost ACs5,29–31. The developed CRISPR system would provide the additional strategy for efficient functional analysis of the individual genes on ACs. We also demonstrated the application of the CRISPR/Cas9 system for genome editing in Fol and F. commune without any modifications to the vector, suggesting that this system functions in a broad range of Fusarium species. We have confirmed the activity of this vector in F. oxysporum ff. spp. conglutinans, pisi, and raphani (data not shown). As the transient expression of CRISPR/Cas9 vector in fungal protoplasts not only improved the genome editing efficiency but also increased the number of transformants32,33,34, this strategy would be effective in Fusarium species with low protoplast isolation and/or transformation efficiencies.

We succeeded in efficient single-crossover-mediated targeted base editing and gene tagging in Fol. This strategy enables the introduction of perfectly designed mutations and one-step reporter gene knock-in at the desired genomic locus. Recently, a novel base editing technology, called prime editing (PE), was developed by using a nickase type Cas9 (Cas9NHEJ)-fused reverse transcriptase and a modified sgRNA (pegRNA)32. PE can introduce desired mutations at the nicked site without DSBs and donor DNAs but the expression of reverse transcriptase, insertion of the donor template at the 3' end of pegRNA, and adequate PAM sequence are required. The donor vector for single crossover-mediated base editing can be constructed by one-step cloning, and any modifications of CRISPR/Cas9 are not needed. Further, this strategy can avoid the limitation of PAM sequence, though efficient HR induction is required. In Fov, homology-independent targeted integration (HITI) and homology-dependent recombination integration (HDRi) strategies have been established for endogenous gene tagging35. HITI enabled a large DNA fragment (~ 8 kb) integration including reporter genes but this strategy depends on a precise NHEJ repair at the cleaved DNA ends. Therefore, this process may cause frame shift mutations by incorrect ligation at the junction points of the products and cannot designate the direction of donor DNA fragments. HDRi depends on the double crossover-type or gene conversion-type HR. This strategy enabled the precise integration of donor DNA at the target locus but it may be difficult to integrate large DNA fragments. Single crossover-mediated strategy enables an efficient and precise knock-in including large DNA integrations. Because single crossover-type HR was also detected in F. oxysporum ff. spp. spinaceae and raphani, and F. commune (data not shown), this repair mechanism might be conserved in many filamentous fungi and would be applicable for a wide range of fungal genome editing.

Various CRISPR/Cas homologs and orthologs have been identified from a broad range of bacteria and archaea, and their application in flexible genome editing is now expanding31. In addition to genome editing, novel CRISPR systems and tools have been developed to perform gene regulation, epigenetic editing, and RNA editing32. One of the advantages of the vector-based CRISPR system is that it can be quickly modified and optimized for various types of CRISPR tools and organisms. Furthermore, the vector-based CRISPR system enables us to skip the procedures of in vitro sgRNA synthesis and Cas protein purification. Therefore, this system would be an additional tool for simple and effective genome editing in Fusarium species. We selected target sequences with low off-target effects and ensured efficient editing of all the tested genes. Further analysis, such as evaluation of more target loci, on-target effects, and multiple targets within a single gene, is required for further improvement of the CRISPR system and genome editing strategy in filamentous fungi. Our approach for optimization of the CRISPR/Cas9 system and the development of genome editing strategies would help progress other fungal genome editing studies. We anticipate that the development of genome editing strategies can expand the scope of a variety of basic and applied biological studies on Fusarium species and other filamentous fungi.

**Methods**

**Fungal isolates, growth conditions, and DNA analysis.** Fol isolate MAFF 103036 (race 1), Fos isolate Spin2SA, and F. commune isolate W5 were used in this study. These isolates were cultured on potato dextrose agar (PDA; 200 g/L potato broth, 0.5% (w/v) glucose, 1.5% (w/v) agar or Nissui Pharmaceutical Co.) or YG agar medium (0.5% (w/v) yeast extract, 2% (w/v) glucose, 1.5% agar) and stored in 25% (v/v) glycerol at −80 °C. PCR and sequencing analyses were performed using standard procedures18,19,35–37. The primers and oligonucleotides used in this study are listed in Table S1.

**Optimization and construction of CRISPR/Cas9 vectors.** The endogenous U6 promoter region of Fol with the Esp3 I site was synthesized and inserted into the Not I and Sph I sites of pCRISPR/Cas U6-1,25, resulting in pCRISPR/Cas9-FoU6. The full sequence of the sgRNA expression cassette is shown in Fig. S4. The N-terminal Cas9 region attached to the NLS of histone H2B in Fol was created using fusion PCR. For the first PCR, the N-terminal Cas9 and NLS regions were amplified from pCRISPR/Cas9-FoU6 using an NLSCas9-1/-2 primer set and from the Fol genome using an NLSCas9-3/-4 primer set, respectively. The PCR products obtained from the first PCR were mixed and fused by a second PCR performed using an NLSCas9-1/-4 primer set. The N-terminal Cas9 region with NLS generated by fusion PCR was cloned between the F. oxysporum ff. spp. conglutinans, pisi, and raphani (data not shown). As the transient expression of CRISPR/Cas9 vector in fungal protoplasts not only improved the genome editing efficiency but also increased the number of transformants32-34, this strategy would be effective in Fusarium species with low protoplast isolation and/or transformation efficiencies.
For the construction of CRISPR/Cas9 expression vectors targeting endogenous genes, each oligonucleotide set of Ku80-gRNA-1/Ku80-pogRNA-2, Ku80-gRNA-1/-2, Ku70-gRNA-1/Ku70-pogRNA-2, Ku70-gRNA-1/-2, Lig4-gRNA-1/Lig4-pogRNA-2, Lig4-gRNA-1/-2, ABHL-gRNA-1/ABHL-pogRNA-2, ABHL-gRNA-1/-2, SIX1-gRNA-1/-2, or Fgm4-gRNA-1/-2 was annealed according to the procedures of a previous report. The annealed oligonucleotides were inserted into pCRISSP/Cas U6-1, pCRISSP/Cas9-U6-FoU6 or pCRISSP/Cas9-U6-FoU6-FoNLS via the Golden Gate cloning method according to a previous report. CRISPR/Cas9 expression vectors for Ku80, Ku70, and Lig4 were also used for Fos genome editing.

**Construction of donor vectors and DNA fragments.** For the construction of the knock-out vector for Ku80, the flanking regions were amplified using the primer sets of TKu80-1/-2 and TKu80-3/-4. The PCR product generated by the TKu80-1/-2 primer set was inserted between the Sph I and Xho I sites of pMK-dGFP, resulting in pMK-Ku80-FL. The PCR product generated by the TKu80-3/-4 primer set was inserted between the Hind III and Spe I sites of pMK-Ku80-FL, which produced the donor vector for the knock-out of Ku80 (pMK-Ku80-FLFR). For the construction of the knock-out vector for Ku70, the flanking regions were amplified using each primer set of TKu70-1/-2 or TKu70-3/-4. The PCR product generated by the TKu70-1/-2 or TKu70-3/-4 primer set was inserted between the Kpn I and Sph I sites of pMK-dGFP (pMK-Ku70-FL). The PCR product generated by the TKu70-3/-4 primer set was inserted between the Hind III and Not I sites of pMK-Ku80-FL, which produced the donor vector for the knock-out of Ku70 (pMK-Ku70-FLFR). For the construction of the knock-out vector for Lig4, the flanking regions were amplified using each primer set of Tliq4-1/-2 or Tliq4-3/-4. The PCR product generated by the Tliq4-1/-2 primer set was inserted between the Kpn I and Sph I sites of pMK-dGFP (pMK-Lig4-FL). The PCR product generated by the Tliq4-3/-4 primer set was inserted between the Sal I and Spe I sites of pMK-Lig4-FL, which produced the donor vector for the knock-out of Lig4 (pMK-Lig4-FLFR). For the construction of the knock-out vector for ABHL, the flanking regions were amplified using each primer set of TABHL1-1/-2 or TABHL-3/-4. The PCR product generated by the TABHL-1/-2 primer set was inserted between the Kpn I and Xho I sites of pMK-dGFP (pMK-ABHL-FL). The PCR product generated by the TABHL-3/-4 primer set was inserted between the Hind III and Spe I sites of pMK-dGFP (pMK-ABHL-FLFR). For the construction of the knock-out vector for SIXI, the PCR products generated by each primer set of SIX1_P1/P2 or SIX1_P3/P4 were mixed with the hph cassette, amplified from pCSN43 using a SIX1_pCSN_F/R primer set and fused by PCR using a SIX1_P1/P4 primer set. The PCR product was attached to an adenine at the ends using a 10× A-attachment mix (TOYOBO) according to the manufacturer’s protocol and cloned into pCR-TOPO (Thermo Fisher Scientific), which produced in the donor vector for the knock-out of SIXI (pCSN43-SIXI-FLFR). For the construction of the knock-out vector for W5-fgm4, the PCR products generated by each primer set of Fgm4_P1/P2 or Fgm4_P3/P4 were mixed with the hph cassette, amplified from pCSN43 using a Fgm4_pCSN43_F/R primer set and fused by PCR using an Fgm4_P1/P4 primer set. The PCR product was attached to adenine at the ends by the 10× A-attachment mix and cloned into pCR-TOPO, which produced in the donor vector for the knock-out of W5-fgm4 (pCSN43-W5-fgm4-FLFR).

For the construction of the donor DNA fragments with truncated short homology arms, fragments with 1000, 750, 500, 250, 100, and 50 bp homology arms for Ku80 were amplified from pMK-Ku80-FL using Ku80-1000-1/-2, Ku80-750-1/-2, Ku80-500-1/-2, Ku80-250-1/-2, Ku80-100-1/-2, and Ku80-50-1/-2, respectively. Similarly, donor fragments with 1000, 750, 500, 250, 100, and 50 bp homology arms for Lig4 were amplified from pMK-Lig4-FL using the primer sets Lig4-1000-1/-2, Lig4-750-1/-2, Lig4-500-1/-2, Lig4-250-1/-2, Lig4-100-1/-2, or Lig4-50-1/-2, respectively. Donor fragments with 1000, 750, 500, 250, 100, and 50 bp homology arms for ABHL were amplified from pMK-ABHL-FL using the primer sets of ABHL-1000-1/-2, ABHL-750-1/-2, ABHL-500-1/-2, ABHL-250-1/-2, ABHL-100-1/-2, and ABHL-50-1/-2, respectively.

For the construction of the donor vector of the single crossover-mediated Ku80 base editing, the Ku80 gene region comprising point mutations was generated by fusion PCR. For the first PCR, the Ku80 gene regions were amplified from the genome of Fusarium using each primer set of SKu80-1/-2 or SKu80-3/-4. The PCR products obtained from the first PCR were mixed and fused by the second PCR using the SKu80-1/-4 primer set. The Ku80 gene region with point mutations obtained by fusion PCR was inserted between the HindIII and SpeI sites of pMK-dGFP, which produced in pMK-SKu80.

For the construction of the donor vector of the single crossover-mediated Ku80 gene tagging, GFP-fused Ku80 gene was generated by fusion PCR. For the first PCR, the Ku80 gene regions with silent mutations, with deleted start and stop codons, were amplified from pMK-SKu80 using SKu80-1/KKu80-2. The amplified Ku80 gene region was inserted between the HindIII and SpeI sites of pMK-dGFP (pMK-KKu80). The GFP gene amplified from pMK412 using a KKH80-3/KKH80-4 primer set was cloned between the SpeI and SacI sites of pMK-KKu80, resulting in pMK-KKu80-GFP.

**Protoplasts preparation and transformation of Fusarium species.** Protoplasts of *F. commune* were prepared as previously described. In the case of *Fol* and *Fos*, protoplasts were isolated similar to previous reports with some modifications. *Fol* or *Fos* was cultured in 30 mL of YT liquid medium at 28 °C for 1 day at 180 rpm. One milliliter of the culture was transferred into 100 mL fresh YT medium and incubated at 28 °C and 180 rpm overnight. The mycelia were collected by centrifugation at 12,000 rpm for 10 min and washed twice with 1.2 M MgSO4. In the case of *Fol*, the mycelia were treated with a mixture of 20 mg/mL Yatalase (Takara bio, Japan), 20 mg/mL lysing enzyme (Sigma, USA), and 20 mg/mL cellulase (Yakult Pharmaceutical Industry, Japan) in 1.2 M MgSO4 for 3–4 h. In the case of *Fos*, the mycelia were treated with a mixture of 40 mg/mL Yatalase, 40 mg/mL Driserase (ASKA Animal Health, Japan), 40 mg/mL lysing enzyme (Sigma), and 40 mg/mL cellulase in 1.2 M MgSO4 for 16 h. The fungal protoplasts were collected and washed twice with STC (1.2 M...
sorbitol, 50 mM CaCl$_2$, and 10 mM Tris-HCl pH 7.5). Then, the protoplasts were diluted to a concentration of 5 × 10$^{10}$/mL with STC buffer.

Approximately 2.5 μg each of CRISPR/Cas9 and donor vectors were mixed (total volume 5 μL) and added to 50 μL of the protoplast suspension. Approximately 2.5 μg of donor vectors (total volume 5 μL) were used as a control (donor only). In the case of the donor DNA fragments obtained by the truncation of homology arms, approximately 1 μg of CRISPR/Cas9 vectors and 500 ng of donor DNA fragments were mixed (total volume 5 μL) and added to 50 μL of the protoplast suspension. Approximately 500 ng of the donor fragments (total volume 5 μL) were used as a control (donor only). For the disruption of SIX1 and W5-fgm4, approximately 15 μg of each donor vector and CRISPR/Cas9 vector were mixed (total volume 15 μL) and added to 150 μL of the protoplast suspensions. Approximately 15 μg of donor vectors (total volume 15 μL) were used as a control (donor only). The transformants were selected and maintained on YG solid medium containing hygromycin B (100 μg/mL). The primers used for the PCR analysis to check the disrupted mutants are listed in Table S1. To check the SIX1 and W5-fgm4 disruptions, the primer sets of SIX1_P1/P4 and fgm4_P1/P4 were used, respectively. To check the sequences obtained by single crossovers-mediated genome editing, a Kus80-check-1/Kus80-seq-2 primer set was used for the PCR, and Kus80-seq-2 was also used for the sequencing analysis.

Data availability

The datasets generated and/or analyzed during the current study are available in the NCBI (https://www.ncbi.nlm.nih.gov) under the following accession numbers: Ku80, FOXG_02215; Ku70, FOXG_06386; Li47, FOXG_11480; ABH1, FOXG_14298; SIX1, FOXG_16418; W5-fgm4, LC708252; Fus genome, GCA_013347345.1. All data generated or analyzed during this study are available from the corresponding author upon reasonable request.

Received: 25 April 2022; Accepted: 16 September 2022
Published online: 28 September 2022

References

1. Arie, T. *Fusarium* diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. *J. Pestic. Sci.* **44**, 275–281 (2019).
2. Edel-Hermann, V. & Lecomte, C. Current status of *Fusarium oxysporum* f. sp. species and races. *Phytopathology* **109**, 512–530 (2019).
3. Yang, H., Yu, H. & Ma, L.-J. Accessory chromosomes in *Fusarium oxysporum* for adaptive immunity in bacteria. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 15539–15540 (2012).
4. Arazoe, T. et al. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. *Fungal Genet. Biol.* **126**, 15 (2019).
5. Wilson, F. M. & Harrison, R. J. CRISPR/Cas9 mediated editing of the Quorn fungus *Fusarium graminearum* A3/5 by transient *Fusarium venenatum* A3/5 by transient.
6. Wang, Q. & Cobine, P. A. & Coleman, J. Efficient genome editing in *Fusarium oxysporum* based on CRISPR/Cas9 ribonucleoprotein complexes. *Fungal Genet. Biol.* **117**, 21–29 (2018).
7. Wang, Q. & Coleman, J. CRISPR/Cas9-mediated endogenous gene tagging in *Fusarium oxysporum*. *Fungal Genet. Biol.* **126**, 17–24 (2019).
8. Lightfoot, J. D. & Fuller, K. K. CRISPR/Cas9-mediated gene replacement in the fungal keratitis pathogen *Fusarium solani* var. *petroliphilum*. *Microorganisms* **7**, 457 (2019).
9. Ferrara, M., Haidukowski, M., Logrieco, A. F., Leslie, J. F. & Mulé, G. A CRISPR-Cas9 system for genome editing of *Fusarium proliferatum*. *Sci. Rep.* **9**, 19836 (2019).
10. Wilson, F. M. & Harrison, R. J. CRISPR/Cas9 mediated editing of the Quorn fungus *Fusarium venenatum* A3/5 by transient expression of Cas9 and sgRNAs targeting endogenous marker gene PKS12. *Fungal Biol. Biotechnol.* **8**, 15 (2019).
11. Gardiner, D. M. & Kazan, K. Selection is required for efficient Cas9-mediated genome editing in *Fusarium graminearum*. *Fungal Biol.* **122**, 131–137 (2018).
12. Arazoe, T. et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. *Biotechnol. Bioeng.* **112**, 2543–2554 (2015).
13. Leisen, T. et al. CRISPR/Cas with ribonucleoprotein complexes and transiently selected template vectors allows highly efficient marker-free and multiple genome editing in *Botrytis cinerea*. *PLoS Pathog.* **16**, e1008326 (2020).
14. Ninomiya, Y., Suzuki, K., Ishii, C. & Inoue, H. Highly efficient gene replacements in *Neurospora crassa* strains deficient for nonhomologous end-joining. *Proc. Natl. Acad. Sci. U.S.A.* **101**, 12248–12253 (2004).
15. Kito, H. et al. A homolog of Neurospora crassa Mus-53 (DNA ligase IV), is involved in, but not essential for, nonhomologous end-joining events in *Magnaporthopsis grisea*. *Fungal Genet. Biol.* **45**, 1543–1551 (2008).
16. Ila, L.-J. et al. A linear nonribosomal octapeptide from *Fusarium graminearum* facilitates cell-to-cell invasion of wheat. *Nat. Commun.* **10**, 922 (2019).
28. Itoh, H. et al. Knockout of the SREBP system increases production of the polyketide FR901512 in filamentous fungal sp. No. 14919 and lovastatin in Aspergillus terreus ATCC20542. Appl. Microbiol. Biotechnol. 102, 1393–1405 (2019).
29. Vlaardingerbroek, I., Beerens, B., Schmidt, S. M., Cornelissen, B. J. & Rep, M. Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici. Mol. Plant Pathol. 17, 1455–1466 (2016).
30. Li, J., Fokkens, L., Conneely, L. J. & Rep, M. Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred. Environ. Microbiol. 22, 4985–5004 (2020).
31. Ayukawa, Y. et al. A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity. Commun. Biol. 4, 707 (2021).
32. Andrew, V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
33. Collias, D. & Beisel, C. L. CRISPR technologies and the search for the PAM-free nuclease. Nat. Commun. 12, 555 (2021).
34. Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).
35. Arazoe, T., Ohsato, S., Arie, T., Yoneyama, K. & Kuwata, S. Construction of a system for exploring mitotic homologous recombination in the genome of Pyricularia oryzae. J. Gen. Plant Pathol. 79, 422–430 (2013).
36. Arazoe, T. et al. Site-specific DNA double-strand break generated by I-SceI endonuclease enhances ectopic homologous recombination in Pyricularia oryzae. FEMS Microbiol. Lett. 352, 221–229 (2014).
37. Arazoe, T. et al. Tailor-made TALEN system for highly efficient targetted gene replacement in the rice blast fungus. Biotechnol. Bioeng. 112, 1335–1342 (2014).
38. Kashiwa, T. et al., An avirulence gene homologue in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici race 1 functions as a virulence gene in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. J. Gen. Plant Pathol. 79, 412–421 (2013).
39. Kawabe, M. et al. Cloning of the pathogenicity-related gene FPD1 in Fusarium oxysporum f. sp. lycopersici. J. Gen. Plant Pathol. 70, 16–20 (2004).
40. Staben, C. et al. Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet. Newslett. 70, 79–81 (1989).

Acknowledgements

We gratefully thank Dr. Shuta Asai (RIKEN, The Institute of Physical and Chemical Research) for providing Fos isolate Spin2SA. This work was supported in part by the Japan Society for the promotion of Science (JSPS) Grant-in-Aid for Scientific Research (A) (Grant number 19H00939), Grant-in-Aid for JSPS Research Fellows (Grant number 20J13846), Grant-in-Aid for Young Scientists (A) (Grant number 17H05021), and Grant-in-Aid for Challenging Exploratory Research (Grant number 18K19218).

Author contributions

TA.A., TS.A., and T.K designed the experiments and oversaw the study. TA.A and H.S. wrote the manuscript. S.S., H.S., S.K., M.Y., TA.A. carried out experimental work and data analysis.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-20697-4.

Correspondence and requests for materials should be addressed to T.A., T.A. or T.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022