Paragangliomas arise through an autonomous vasculo-angio-neurogenic program inhibited by imatinib

Fabio Verginelli1,2, Silvia Perconti1,3, Simone Vespa1,3, Francesca Schiavi1, Sampath Chandra Prasat5, Paola Lanuti1, Alessandro Cama2, Lorenzo Tramontana6, Diana Liberata Esposito1,3, Simone Guarneri1, Artencia Sheu1,3, Mattia Russel Pantalone1,3, Rosalba Florio7, Annalisa Morgano1, Cosmo Rossi1, Giuseppina Bologna1, Marco Marchisio1, Andrea D’Argenio1, Elisa Taschin4, Rosa Visone1,3, Giuseppe Opocher4, Angelo Veronese1,3, Carlo T. Paties7, Vinalogu K. Rajasekhar8, Cecilia Söderberg-Nauclér9, Mario Sanna5, Lavinia Vittoria Lotti6, Renato Mariani-Costantini1,3*

1Center of Aging Science and Translational Medicine (CeSI-MeT), Gabriele d’Annunzio University, Via Luigi Polacchi 11, 66100 Chieti, Italy.
2Department of Pharmacy, Gabriele d’Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy.
3Department of Medical, Oral and Biotechnological Sciences, Gabriele d’Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy.
4Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IRCCS, Padua, Italy.
5Otolaryngology and Skull Base Unit, Gruppo Otologico Piacenza-Roma, Via Antonio Emmanueili, 42, 29121 Piacenza, Italy.
6Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
7Department of Oncology-Hematology, Service of Anatomic Pathology, Guglielmo da Saliceto Hospital, Via Taverna 49, 29100 Piacenza, Italy.
8Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
9Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Karolinska Institute, Solnavägen 1, 171 77 Solna, Stockholm, Sweden.

‡: Equal contribution.

*Corresponding author:
Professor Renato Mariani-Costantini, MD, Laboratory of General Pathology, Center of Aging Science and Translational Medicine (CeSI-MeT), Gabriele d’Annunzio University, Via Luigi Polacchi 11, 66100 Chieti, Italy.
ORCID ID: orcid.org/0000-0002-4440-1848
email address: rmc@unich.it
Tel. +393492914375, Fax +390871541495
Case	Sex/Age at surgery	PGL localization	SDHC carrier status	Predicted effect on protein	Mutation type	SDHB HIC
PT1**	F/25	left tympano-juglar	Noncarrier	-		
PT2	M/59	right tympano-juglar	Noncarrier	++		
PT4**	M/42	right tympano-juglar	Noncarrier	+		
PCS	F/42	right carotid body	SDHD c.445_448delCTT	p.(Cys150Tyrfs*42) small insertion -		
PCS	F/42	right carotid body	SDHD c.445_448delCTT	p.(Cys150Tyrfs*42) small insertion -		
PT36	F/52	right tympano-juglar	Noncarrier	++		
PT37	F/42	right carotid body	SDHA c.63+1G>A	p.? splicing substitution -		
PT38	M/51	right tympano-juglar	SDHB c.236+1_267+1delT	p.? gross deletion -		
PT41	M/57	left tympanic	Noncarrier	NA		
PT42	F/74	left tympano-juglar	Noncarrier	NA		
PT43	M/58	right tympano-juglar	Noncarrier	+		
PT49	F/74	right tympanic	Noncarrier	NA		
PT50	F/51	right tympanic	Noncarrier	++		
PT51	M/34	right tympano-juglar	SDHB c.574delT	p.(Cys192Leufs*2) small insertion -		
PT53	M/40	left tympano-juglar	Noncarrier	++		
PT54	M/34	left tympano-juglar	SDHD c.445_448delCTT	p.(Cys150Tyrfs*42) small insertion -		
PT55	F/41	left tympano-juglar	Noncarrier	++		
PT56	M/43	right tympano-juglar	SDHC c.241+1G>A	p.? splicing substitution -		
PT57	M/53	left tympano-juglar	Noncarrier	++		
PT60	F/45	right tympanic	Noncarrier	++		
PT62	F/58	right tympano-juglar	Noncarrier	++		
PT63	F/63	right tympanic	Noncarrier	++		
PT64	M/33	right tympano-juglar	SDHC c.43C>T	p.(Arg15*) nonsense +		
PV65	M/35	left vagal	SDHB c.778G>C	p.(Gly260Arg) mis sense -		
PT66	F/59	right tympano-juglar	Noncarrier	++		
PT67	F/39	left tympano-juglar	Noncarrier	++		
PT68	M/76	left tympano-juglar	Noncarrier	++		
PT69	F/43	right tympanic	SDHB c.778G>C	p.(Gly260Arg) mis sense -		
PT70	M/37	left tympanic	Noncarrier	+		
PT71	F/52	left tympano-juglar	Noncarrier	++		
PT72	F/43	left tympanic	SDHB c.218T>A	p.(Leu73*) nonsense +		
PT73	M/44	right tympano-juglar	Noncarrier	+		
PT74	F/57	right tympanic	Noncarrier	+		
PT76	M/51	left tympano-juglar	SDHB c.423+1G>T	p.? splicing substitution -		
PT77	F/63	right tympano-juglar	Noncarrier	-		
PT78	F/55	right tympano-juglar	Noncarrier	-		
PT79	M/36	tympano-juglar	Noncarrier	+		
PT80	M/55	right tympano-juglar	Noncarrier	++		
PT81	M/51	right tympanic	Noncarrier	++		
PT82	F/52	left tympanic	Noncarrier	++		
PT83	F/70	left tympanic	Noncarrier	++		
PT84	M/46	left tympano-juglar	Noncarrier	-		
PT85	M/53	right tympanic	Noncarrier	++		
PT86*	M/15	left tympano-juglar	SDHD c.23delec*4	p.(Val10Phes*5) small deletion ++		
PV87	F/43	right vagal	Noncarrier	++		
PV88	F/48	left vagal	Noncarrier	-		
PT89	F/49	right tympano-juglar	Noncarrier	++		
PT90	F/58	right tympanic	Noncarrier	++		
PC91	F/56	left carotid body	SDHA c.1607G>C	p.(Cys536Leufs*11) small deletion -		
PT92	M/51	right tympano-juglar	SDHC c.1379_1380delT	p.? gross deletion -		
PT93	M/44	left tympano-juglar	SDHC c.43C>T	p.(Arg15*) nonsense +		
PC94	F/37	left carotid body	Noncarrier	NA		

Continued
All the patients were admitted for elective surgery without any previous therapy. Clinical genetic testing for germline SDHx mutations, including large deletions and rearrangements, was performed as described [1] on blood for a subset of 70 patients recruited from 11-2009 to 3-2016. SDHx mutational data for the 7 cases recruited from 5-2016 to 6-2017 are at present not available. One case (PTJ34) had lymph node metastases, one case had two independent tumors (5PC/PV), 9 patients presented with paraganglioma recurrence. Preoperative urinary and plasma catecholamines were negative, in agreement with the mostly parasympathetic (non secretory) origin of head and neck paragangliomas [2, 3]. Only two patients (PTJ1 and PTJ86) reported a family history of paraganglioma, and none reported synchronous or metachronous thoracoabdominal paragangliomas or pheochromocytomas. Sites of tumor origin, encoded in the case acronyms, include carotid body (paraganglioma, carotid body: PC, 6 cases), cervical portion of the vagus nerve (paraganglioma, vagus nerve: PV, 7 cases), tympano-jugular region (paraganglioma, tympano-jugular: PTJ, 34 cases), carotid body (paraganglioma, tympano-jugular: PTJ, 45 cases), tympanic nerve (paraganglioma, tympanic: T, 19 cases). The median age at surgery for the series of 77 cases was 47.6 years (13-76 years), 30 patients (39.5%) were males, 46 patients (60.5%) females; median age at surgery for males was 47.8 (15-76), for females 47.6 (13-74). Overall, germline SDHx mutations were detected in 24/70 (34.3%) examined patients (5PC and 5PV are metachronous tumors of a single patient). Notably 10/24 mutations (41.6%) appear to be novel.

Table S1

Case	Sex/Age at surgery	PGL localization	SDHx carrier status	Predicted effect on protein	Mutation type	SDHB IHC
PTJ95	F/45	right tympano-jugular	SDHB c.781_180T	p.?	gross duplication	+
PTJ96	F/56	right tympano-jugular	Noncarrier		++	
PTJ97	F/73	right tympanic	Noncarrier		++	
PC98	F/44	right carotid body	Noncarrier		++	
PTJ99	F/45	left tympano-jugular	SDHC c.377_4>G	p.(Tyr126Cys)	missense	-
PV100	M/46	left vagal	SDHD c.242C>T	p.(Pro81Leu)	missense	NA
PTJ101	M/37	right tympano-jugular	Noncarrier		NA	
PTJ102	F/40	right vagal	SDHA c.889C>T	p.(Pro97Ser)	missense	+
PTJ103	M/38	left tympano-jugular	SDHAF2 c.261-246>A	p.?	splicing substitution	NA
PTJ104	F/55	right tympanic	Noncarrier		NA	
PV105	M/32	left vagal	SDHB c.72_151_72_1del	p.?	gross deletion	-
PTJ106	M/56	left tympano-jugular	Noncarrier		++	
PTJ107	F/44	left tympanic	Noncarrier		++	
PTJ114	F/50	left tympano-jugular	NA		NA	
PTJ118	F/13	left tympano-jugular	NA		NA	
PTJ119	M/40	right tympano-jugular	NA		NA	
PC120	F/43	left carotid body	NA		NA	
PTJ122	M/26	right tympano-jugular	NA		NA	
PTJ123	F/51	left tympano-jugular	NA		NA	

NA: not available; * documented paraganglioma family history; †: metastases in 4 out 17 lymph nodes; ‡: history of multiple/recurrent disease; §: novel mutation; ‡: variant present in ClinVar or LOVD3.0

Table S2

Sites of tumor origin, age, sex, SDHx germline mutation status and SDHB immunohistochemistry (IHC) in the subset of 71 independent paragangliomas from 70 patients analyzed for germline SDHx mutation status

PGL	Mean age (range)	Sex (F-M)	Total (71)
T	54.6 (37-74)	14F-5M	3/19 (15.8%)
T	47 (15-76)	19F-21M	3/19 (15.8%)
C	46.2 (37-56)	5F	3/19 (15.8%)
V	42.3 (32-52)	5F-2M	3/19 (15.8%)
Total	48.5 (15-76)	43F-28M	3/19 (15.8%)

NA: Not available; *: T, tympanic; TJ, tympano-jugular; C, carotid body; V, vagal; †: one case had two independent tumors (PC/PV5, carotid body and vagal paragangliomas respectively); ‡: eight cases could not be analyzed for SDHB IHC because the paraffin embedded samples were affected by embolization. Overall the comparatively high frequencies of tympanic and tympano-jugular paragangliomas reflects recruitment at a specialized skull base surgery center.
Table S3
Age, sex and tumor-associated SDHB protein loss in paraganglioma cases from SDHx mutation carriers and noncarriers (70 patients, 71 tumors)

SDHx status	Patients (%)	Mean age (min-max)	Sex (F-M)	SDHB loss (71 tumors)
SDHB	10/70 (14.3%)	38.9 (25-60)	5F-5M	8/10 (80%)
SDHC	6/70 (8.6%)	43.5 (33-51)	2F-4M	1/6 (1.66%)
SDHD	4/70 (5.7%)	36.7 (15-52)	1F-3M	3/4 (75%; 1 NA)
SDHA	3/70 (4.3%)	46 (40-56)	3F	2/3 (66.6%)
SDHAF2	1/70 (1.4%)	38		NA

SDHx carriers: 24/70 (34.3%) 40.5 (15-60) 12F-13M 1/423 (12.5%; 1 NA)
Noncarriers: 46/70 (65.7%) 52.6 (25-76) 31F-15M 5/40 (10.0%; 2 NA)

NA: not available; *: Seventy one paragangliomas were evaluated, as an SDHD carrier presented with two metachronous paragangliomas (PC/PV5). Eight paragangliomas could not be evaluated for SDHB immunostaining because the paraffin-embedded tissue was damaged by embolization.

Particular features of our case series include higher frequency of mutations in SDHB and not in SDHD [2] and relatively high frequency of mutations in SDHA, the latter also noted in a recent independent study [4]. These features might reflect the rarity of familial PGL/PC history (see Table S1) [2, 3]. Statistical differences were calculated using 2-tailed unpaired t-test (age) or 2-tailed Fisher exact test (SDHB loss).

Table S4
Flow cytometric analysis of dissociated total paraganglioma cells reveals cell populations positive for the mesenchymal surface markers CD73, CD90 and CD105

Case acronym	CD73+ (%)	CD90+ (%)	CD105 (%)	CD73+/CD105+ (%)
PC120	13.3	42.8	41.4	12.4
PTJ121	21.2	3.3	40.1	17.3
PTJ121	24.4	2.2	47.7	22.1
PTJ122	67.0	6.8	2.2	2.2
PTJ123	64.6	10.5	2.1	2.1

The columns in bold report the total fractions of dissociated cells positive for CD73, CD90, and CD105, the last column in italics reports the cell fractions positive for both CD73 and CD105 (CD73+/CD105+). PTJ121 and PTJ121 are distinct samples from a single tumor. Mutation status for these cases is currently not available.

Table S5
Flow cytometric analysis of dissociated total paraganglioma cells shows that the CD133+/CD44-positive subset contains variable fractions of cells with CD34+/CD45- phenotype

Case	Mut/SDHB IHC	CD34+/CD45- (%)	CD133+/CD44+ (%)	CD34+/CD45+/CD133+/CD44+ (%)
PTJ99	SDHC/SDHB-	1	82.3	0.3
PV100	SDHD/NA	0.1	79.1	0.1
PTJ101	Noncarrier/NA	1.4	65	0.8
PTJ103	SDHAF2/NA	4.1	5.5	0
PTJ106	Noncarrier/SDHB+	75.1	76.4	89
PTJ109	NA/NA	23	83.1	25.5
PTJ114	NA/NA	72.6	19.4	53.5
PTJ119	NA/NA	62	0.2	14.3

NA: not available.

The first two columns report the total fractions of cells positive for surface CD34 (CD34+/CD45-) and for CD133/CD44 (CD133+/CD44+). The last column reports the cell fractions with CD34+/CD45 phenotype found within the CD133+/CD44+ subset. Variability is expected, because of the heterogeneous cellular composition of the tumors and of preoperative embolization.
Flow cytometric analysis of dissociated total paraganglioma cells shows that the NCAM- and the GFAP-positive subsets contain variable fractions of cells with CD34++/CD45- phenotype

Case	Mut/HIC	CD34++/CD45- (%)	NCAM+ (%)	CD34+/CD45/NCAM+ (%)	GFAP+ (%)	CD34++/CD45/GFAP+ (%)
PTJ64	SDHC/SDHB+	2	25.4	23.3	1	3
PV65*	SDHB/SDHB-	7.5	61.6	0.4	7.4	0.4
PTJ67	Noncarrier/SDHB-	0.2	0.03	0.3	0.13	1
PTJ78	Noncarrier/SDHB+	22.6	41.6	1.7	NA	NA
PTJ79	Noncarrier/SDHB+	34.4	91.5	97.0	NA	NA
PTJ80	Noncarrier/SDHB+	12.8	23.5	25.6	NA	NA
PV87*	Noncarrier/SDHB+	36.6	39.7	35.0	96.2	92.5
PV88*	Noncarrier/SDHB-	0.2	70	0	7	0
PTJ89	Noncarrier/SDHB-	0	0.4	0	NA	N4

NA: not available; * also characterized for GFAP/NCAM double positivity (0.2%, 40.7%, 6.6% respectively). Furthermore, in PV87 and PV88 a fraction of the GFAP/NCAM double positive cells (14.3% and 22% respectively) was inside the CD34++ population.

The columns in bold report the total fractions of dissociated cells positive for surface CD34 (CD34++/CD45-), surface NCAM and, when available, intracellular GFAP (variability may reflect tissue embolization and heterogeneous vascular and neural tumor tissue composition). The columns in italics report the fractions of NCAM+ or GFAP+ cells found inside the CD34++ brilliant population.

Flow cytometry of paraganglioma cell cultures grown in adhesion

Case	Mut/HIC	CD73	CD90	CD105	CD133	SOX2	Nestin	PDGFRA	GFAP	NCAM	CD34
PTJ64p	SDHC/SDHB+	++	+++	++	NA	+	NA	NA	NA	NA	NA
PTJ64*	SDHC/SDHB+	++	+++	++	-	+++	+++	+	+++	+	-
PTJ67p	Noncarrier/SDHB-	NA	NA	NA	NA	NA	NA	NA	NA	NA	-
PTJ78p	Noncarrier/SDHB+	NA	NA	NA	NA	NA	NA	NA	NA	NA	-
PTJ79p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+++	-	-
PTJ80p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ81p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ82p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ83p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ84p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ85p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ86p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ87p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ88p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PTJ89p	Noncarrier/SDHB+	++	-	NA	NA	NA	NA	NA	+	-	-
PV10p	SDHB/SDHB-	++	+	+	-	+++	+++	+	+++	+	-
PTJ106p	Noncarrier/SDHB+	++	+	+	-	+++	+++	+	+++	+	-
PTJ114p	A/A NA	++	-	+	+	-	+	-	-	+	-
PTJ118p	A/A NA	++	-	+	+	-	+	-	-	+	-
PTJ119p	A/A NA	++	-	+	+	-	+	-	-	+	-
PC120p	A/A NA	++	-	+	+	-	+	-	-	+	-
PTJ112p	A/A NA	++	-	+	+	-	+	-	-	+	-

NA: Not assessed; *: Immortalized with SV40 and hTERT; ^: Immortalized with SV40; †: Positive cells =12.4%; ‡: Positive cells = 1.4%; †: Positive cells = 30%; ‡: Positive cells = 57.6%.

Twenty-two (22) cultures from 19 paragangliomas (18 primary and 4 immortalized), were analyzed by flow cytometry for putatively mesenchymal (CD73, CD90, CD105), stem cell (CD133, SOX2, nestin), developmental (PDGFRA), glial/neural (GFAP, NCAM) and endothelial (CD34+/CD45-) markers. Primary cells were analysed within passage 11, immortalized cells at passages 25 to 43. Matched primary and immortalized cultures are identified by shared background color (light blue). Given the prevalently homogeneous positivity of the cells, results are presented according to a semiquantitative scale based on the mean fluorescence intensity (MFI) ratio (MFIRs), i.e., the ratio between the MFI of the cells stained with the specific antibody and the MFI of the respective control, as follows: MFIR ≤ 2.5 = negative (-); MFIR 2.5–10 = weakly positive (+); MFIR 10 -100 = moderately positive (++; MFIR > 100 =
strongly positive (+++). Bimodal antigen distribution was observed only in 4 instances, for which % of positive cells are provided in the notes. The Mut/SDHB IHC column details if a germline SDHx mutation (Mut) was detected (affected gene) or not and if SDHB immunohistochemistry was positive (+) or negative (-) in the tumor from which the culture was developed. As evident here, germline SDHx mutation status did not affect the phenotype of the cell cultures. Low cell numbers precluded systematic testing of the primary cultures for all markers.

Table S8
Xenograft formation from patient-derived paraganglioma samples transplanted into NSG mice

Patient code (sex/age)	SDHx carrier status	Graft site(s)	Growth time (months)	Grafted PGL sample(s) (n°)	PDX formation (n°)
PV65 (M/35)	SDHB	Flank rt	5	1	1
PTJ79 (M/36)	Noncarrier	Flank rt	7	1	1
PV87 (F/43)	Noncarrier	Flanks, bilateral	5	2	2
PV88 (F/48)	Noncarrier	Flanks, bilateral	10	2	2
PTJ89 (F/49)	Noncarrier	Flank rt	8	1	1
PTJ90 (F/58)	Noncarrier	Flank rt	8	1	1
PTJ91 (F/51)	SDHC	Flanks, bilateral	8	4	4
PTJ93 (M/44)	SDHC	Neck, bilateral	6	4	3
PTJ96 (F/56)	Noncarrier	Neck, bilateral	5	2	2
PC98 (F/44)	Noncarrier	Neck, bilateral	6	4	4
PTJ101 (M/37)	Noncarrier	Flanks, bilateral	5	4	4
PTJ103 (M/38)	SDHAF2	Flanks posterior and anterior, bilateral	5	8	5
PV105 (F/32)	SDHB	Flanks and neck, bilateral	4.5	16	12
PTJ106 (M/56)	Noncarrier	Flanks and neck, bilateral	4.5	6	4
PTJ114 (F/50)	NA	Flanks, bilateral	6	30	30
PC120 (F/43)	NA	Flanks posterior and anterior, bilateral	3 weeks	4	4

NA: not available; *: gene specified for cases with identified SDHx mutation; #: PDX formation was always confirmed by epon-embedded semithin section light microscopy, electron microscopy and/or frozen section ApoTome immunofluorescence.

Relevant SDHx mutation status of the donor patient, graft sites, growth times, number of transplanted paraganglioma (PGL) samples and xenograft formation are indicated. PDX formation was obtained from 80/90 transplanted paraganglioma samples (89%). No significant differences in engraftment rates were observed between samples derived from SDHx mutation carriers versus noncarriers. The rates of engraftment were not affected by the anatomic localizations of the original tumors. Control normal tissue transplants (3 from abdominal skin of paraganglioma patients, not listed in the Table) underwent regression and calcification.

Supplemental references

1. von Dobschuetz E, Leijon H, Schalini-Jantti C, Schiavi F, Brauckhoff M, Peczkowska M, et al (2015) A registry-based study of thyroid paraganglioma: histological and genetic characteristics. Endocrine-related cancer 22:191-204. Doi 10.1530/ERC-14-0558
2. Pacak K, Wimalawansa SJ (2015) Pheochromocytoma and paraganglioma. Endocr Pract 21: 406-412. Doi 10.4158/EP14481.RA
3. Taieb D, Kaliski A, Boedecker CC, Martucci V, Fojo T, Adler JR, Jr., Pacak K (2014) Current approaches and recent developments in the management of head and neck paragangliomas. Endocr Rev 35: 795-819. Doi 10.1210/er.2014-1026
4. Bausch B, Schiavi F, Ni Y, Welander J, Patoces A, Ngeow J et al (2017) Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention. JAMA Oncol. 3:1204-1212. doi: 10.1001/jamaoncol.2017.0223.