Book reviews

The Grass Genera of the World. By L. WATSON and M. J. DALLWITZ. C.A.B. International, Wallingford, Oxford. 1992. 1024 pages. Hardback. £75.00. ISBN 0 85198 802 4.

Here is a welcome and wonderful, robustly manufactured encyclopaedia of the phenetics of grass genera. It is the first hard-copy version of the description sets of the Watson–Dallwitz DELTA system data base of the genera of the Gramineae. It will be a treasure-trove for hunters of data about grasses, for a substantial period. We must hope that resources and enthusiasm for maintaining and improving the material will always be forthcoming. Certainly Watson and Dallwitz seem likely never to flag or fail. Their work is a fine example of what can be achieved by inspired leaders and international collaboration, using some of the best technology available for taxonomists.

After an introduction to the project, the DELTA system and other programs compatible with it, the nature and shortcomings of the data and descriptions are very honestly reviewed. The point is well put that narrower generic concepts are most effectively used as the pattern for data assembly – data on more sensibly conceived and usable genera being easily assembled by coalescence. Ah! if John Hutchinson were living at this hour! One hopes that this narrowing quirk of information science will not gradually translate itself into a philosophy or fashion of taxonomic splitting, in minds less well informed, more arthritic or, simply, narrower than that of Leslie Watson. Roll on the day, as he implicitly indicates, when data bases are all completed on a species by species level. We have but a few centuries to wait.

The character list now runs to 496 possible entries per taxon, and the descriptions as printed start with synonymy and follow a standard pattern of vegetative and reproductive morphology, before passing into anatomical data (much of it originated within this project) and then cytological, ecogeographical and economic material. Chemical data are a prominent omission, though references appear – the data base in future will no doubt extend this area considerably given the flood of facts and near-facts now coming forward. References bring up the rear. The genera are in alphabetical order, obviating the need of pagination in the index, which thus functions as a useful guide to synonymy.

Clayton’s and Renvoize’s Genera Graminum will seem to many readers and potential customers as a close competitor of this work. In fact the two are rather different. Agrostologists will need both, just as theologists find value and recreation for the mind in other papers presented at the conference. This format works well, relieving the reader of many disjointed papers and adding constructive criticism.

Most of what is written seems sensible, but there have been escapees. For example, Hodges still (cf. my comments on volume 1) writes about cloned genes and argues that: ‘storing animal DNA from in-

Genetic Conservation of Domestic Livestock, Volume 2. Edited by LAWRENCE ALDERSO and IMRE BODO. Wallingford, Oxford: CAB International. 1992. 282 pages. £37.50. ISBN 0 85198 809 1.

This volume reports the proceedings of a conference held in Budapest in August, 1991. It was the first official conference of a new organization, Rare Breeds International, whose foundation illustrates the increasing interest being taken in domestic livestock conservation. The conference was a successor to one held in Britain in 1989 and reported in the first volume. (In my review of that work (1991, Genetic Research 57: 201), I aired, but will not reiterate, views on the value of breed conservation.) Not surprisingly, in view of the short time interval, the field has not advanced substantially. Thus there is little new and some repetition of old theory, but new conservation programmes have been organized and the volume enables those interested to keep informed.

The book is in four sections: Methodology, National and Regional Reports, Species and Breed Studies, and Biotechnology. Each comprises six or so individual chapters (papers) and a review chapter by the editors summarizing and discussing these and other papers presented at the conference. This format works well, relieving the reader of many disjointed papers and adding constructive criticism.
saturated map of random genetic markers is under-
data to see if there are indications of major genes. If
(segregation analysis, map construction, mapping
enough to be isolated in large cloning vectors. The
there are, the task of constructing a relatively well
perform a segregation analysis on a small pilot set of
basis of a complex trait. The general strategy that
performances (e.g. Knott and Haley, 1992) of the methods
favoured methods of analysis are based on general-
in both obtaining a useful experimental design and in
references that it is both genetically distant from
other British breeds and, despite its maintenance as a
small population, has higher heterozygosity. There
are certainly some interesting populations about.
Whilst breed conservation is mainly a topic for the
enthusiast, it does raise serious population genetic
interest. I noted Hedrick among the authors, for
e.g. I hope that more is done to integrate the
areas.

WILLIAM G. HILL
Institute of Cell, Animal and Population Biology
University of Edinburgh

Analysis of Human Genetic Linkage. By JURG OTT.
Second revised edition. Johns Hopkins University
Press, Baltimore. 1991. US $47.50.
The explosion of molecular markers that can be
readily detected in essentially any outbred species is
sparking a renaissance in genetic mapping. Much of
the excitement comes for the possibility of using these
maps to localize and eventually isolate genes under-
lying quantitative characters. These QTLs (quan-
titative trait loci) may range from the mundane, but
tasty, genes influencing pH and soluble fruit content
in tomatoes (Weller et al. 1988) to those with more
serious consequences for humans such as high blood
pressure (Hilbert et al. 1988). Detection of QTLs is
based on associations between marker classes and
phenotypic values, so that the more saturated the
map, the smaller the genetic interval that bounds a
QTL. While the idea of using marker-phenotype
associations is obvious, there are serious complications
in both obtaining a useful experimental design and in
the proper analysis of the resulting data. The current
favoured methods of analysis are based on general-
izations (e.g. Knott and Haley, 1992) of the methods
of segregation analysis developed by human geneticists
(Elston, 1990) to assess the most probable genetic
basis of a complex trait. The general strategy that
seems to be developing for isolating QTLs is first to
perform a segregation analysis on a small pilot set of
data to see if there are indications of major genes. If
there are, the task of constructing a relatively well
saturated map of random genetic markers is under-
taken and this map is subsequently used to localize the
putative major loci to chromosomal regions small
enough to be isolated in large cloning vectors. The
statistical thread that binds these methods of analysis
(seggregation analysis, map construction, mapping
QTLs) is that all, for the most part, rely very heavily
on maximum likelihood estimation.

Given this setting, it is timely that Jurg Ott has
chosen to revise his 1985 text on statistical methods of
human gene mapping. Ott focuses on maximum
likelihood methods, starting with the simplest models
and subsequently building on these to deal with
important complications such as different recom-
bination rates between sexes, ascertainment biases,
and incomplete penetrance. The last two chapters (10
and 11) on inconsistencies and linkage analysis with
disease loci are especially well done and are essential
reading for anyone engaged in any aspect of genetic
mapping. The author sticks entirely to his stated
objectives and has produced an exhaustive review of
methods for constructing genetic maps between known
markers in humans. This is both the strength and
weakness of the book. By limiting his attention to a
particularly well defined problem with a rich statistical
history, the author has, in effect, produced a wonderful
treatise that serves as a case study for the development
of other methods. The exciting area of mapping QTLs
is essentially not covered and the powerful tool of
segregation analysis is only briefly mentioned. This is
rather disappointing, but to be fair to the author, Ott
accomplishes his stated task – describing methods for
constructing maps of known markers – superbly.
Anyone with an interest in general aspects of genetic
mapping will do well to peruse this book.

References
Elston, R. C. (1990). Models for discrimination between
alternative modes of inheritance. In Advances in Statistical
Methods for Genetic Improvement of Livestock (ed.
D. Gianola and K. Hammond), pp. 41–57. Berlin:
Springer-Verlag.
Hilbert, P., Lindpainter, K., Beckman, J. S., Serikawa, T.,
Soubrier, F., Dubay, C., Cartwright, P., De Gouyoon, B.,
Julier, C., Takahashi, S., Vincent, M., Ganten, D.,
Georges, M. & Lathrop, G. M. (1991). Chromosomal
mapping of two genetic loci associated with blood-
pressure regulation in hereditary hypertensive rats.
Nature 353, 521–529.
Knott, S. A. & Haley, C. S. (1992). Aspects of maximum
likelihood methods for the mapping of quantitative trait
loci in line crosses. Genetical Research 60, 139–151.
Weller, J. I., Soller, M. & Brody, T. (1988). Linkage analysis
of quantitative traits in an interspecific cross of tomato
(Lycopersicon esculentum x Lycopersicon pimpinelli-
folium) by means of genetic markers. Genetics 118,
329–339.

J. BRUCE WALSH
Department of Ecology and Evolutionary Biology
University of Arizona
Tucson, AZ 85721