NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer

Valentina Audrito 1,2*, Antonella Managò 1,2, Federica Gaudino 1,2, Leonardo Sorci 3, Vincenzo Gianluca Messana 1,2, Nadia Raffaelli 4 and Silvia Deaglio 1,2*

1 Department of Medical Sciences, University of Turin, Turin, Italy, 2 Italian Institute for Genomic Medicine, Turin, Italy, 3 Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy, 4 Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy

Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements, including endothelial and stromal cells, as well as cells of immune origin, which can support tumor growth by providing the right conditions. On the other hand, local hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order to survive, proliferate, and disseminate: the same conditions are also responsible for building a tumor-suppressive microenvironment. In addition to tumor cells, it is now well-recognized that metabolic rewiring occurs in all cellular components of the tumor microenvironment, affecting epigenetic regulation of gene expression and influencing differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor for energy transduction in metabolic processes. It is also a key component of signaling pathways, through the regulation of NAD-consuming enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility. In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the extracellular environment, adding a new layer of complexity to the system. In this review we will discuss the role of the “NADome” in the metabolic cross-talk between cancer and infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye to therapeutic implications.

Keywords: immunometabolism, metabolic reprogramming, immune cell regulation, NAD, tumor microenvironment

COMPOSITION OF THE TUMOR MICROENVIRONMENT: SUPPORTIVE AND IMMUNOREGULATORY CELLS

The solid tumor microenvironment (TME), as well as the lymphoid niche, is a dynamic and multicellular ecosystem with complex interactions (1, 2). Intercellular crosstalk within this niche is driven by multiple receptor-ligand systems, as well as by locally synthesized soluble proteins, including chemokines/cytokines, interleukins, interferons, growth, and angiogenic factors (3, 4). This unique environment is essential for tumor growth, metastatic dissemination, and
drug-resistance. Furthermore, the cellular and soluble components of the TME have an important role in shaping metabolic reprogramming of cancer cells, an established hallmark of cancer, and in creating an immunosuppressive environment (5–8), as shown in Figure 1.

The formation of the TME and the regulation of immune responses are orchestrated by different types of host cells, including endothelial cells (ECs), mesenchymal stem/stromal cells [MSCs, including cancer-associated fibroblasts (CAFs) and tumor-associated MSCs (TA-MSCs)], and tumor-infiltrating immune cells [i.e., tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and tumor-associated neutrophils (TANs)]. Their concerted action promotes tumor growth and spreading (1, 2, 9, 10) (Figure 1).

Endothelial Cells (ECs)
ECs support blood supply, nutrient transport, metabolic homeostasis, and immune cell trafficking, and are involved in inflammatory response (11).

To provide nutrients to the growing tumor, ECs form tumor-associated (angiogenic) vessels originating from locally pre-existing vessels or recruiting bone marrow-derived endothelial progenitors. They also represent the first interface between circulating blood cells, tumor cells, and the extracellular matrix, thereby playing a central role in regulating leukocyte recruitment, tumor cell features, and metastasis dissemination (12). Tumor-associated EC are dysfunctional, partly as a consequence of local hypoxia, which induces the production of soluble factors promoting neo-angiogenesis and contributing to tumor dissemination and chemoresistance (13, 14). Among these factors, vascular endothelial growth factor A (VEGF-A) can also play a critical role in the control of immune tolerance, linking immune suppression with angiogenesis (15).

Mesenchymal Stem/Stromal Cells (MSCs)
MSCs strongly affect the development and progression of various cancers (16). Stromal cells represent the main cell component with both supportive and immunoregulatory functions; they derived from multipotent cells of mesodermal origin which virtually reside in all tissues with an important role in tissue regeneration (16). MSCs have been found to migrate to tumors and to evolve into TA-MSCs and CAFs with an active role in tumor survival, proliferation, migration and drug resistance, and therefore, recently emerged as attractive targets or tools for anticancer approaches (17, 18).

CAFs are the most abundant resident cells of the TME. Numerous studies have demonstrated that CAFs have prominent roles in cancer pathogenesis (19, 20). Mechanistically, CAFs shape the extracellular matrix (ECM) structure, which supports the tumor cells (i) to invade and interact with stromal cells through the secretion of growth factors, cytokines and chemokines including interleukin-6 (IL-6), transforming growth factor-β (TGF-β) and CC-chemokine ligand 2 (CCL2); (ii) to amplify immune evasion recruiting immune cells, especially immunosuppressive cells into the tumor stroma; (iii) to promote the establishment of an intratumoral vascular network through proinflammatory and proangiogenic mediators (21). CAFs also activate epithelial-mesenchymal transition (EMT) in cancer cells, conferring their pro-invasive and stem-like features (22). In addition, CAFs are plastic cells that co-evolve with cancer cells and acquire a pro-tumor phenotype, contributing to tumor evolution (23). Due to the pro-tumor role of CAFs in support cancer development they become promising therapeutic targets for cancer therapy (21).

Tumor-Infiltrating Lymphocytes (TILs)
TILs are additional immune components, crucial in driving immune responses within the TME, adding more complexity in the composition of the TME (3). TILs are white blood cells, including T and B cells, that have left the bloodstream and migrated toward a tumor or tissue resident (1, 24). Their abundance varies according to tumor type and stage and in some cases relates to disease prognosis, tumor progression, and response to anticancer therapy (1, 25, 26). T cell differentiation status, survival, activation or “stemness properties” are determining factors of antitumor potency (27) and functions of TILs dynamically change within the TME (28). Sometimes TILs, specifically cytotoxic CD8+ memory T cells and CD4+ T helper 1 (Th1), which are normally antigen “experienced,” kill tumor cells (29), and the presence of lymphocytes in tumors is often associated with a better prognosis during immunotherapy treatment, including the adoptive transfer of naturally- TIL or genetically-engineered T cells and the use of immune-checkpoint inhibitors (26, 30). However, very often, during cancer progression and chronic inflammation, T cells become exhausted due to the persistent antigen exposure. T cell exhaustion is a state of T cell dysfunction defined by poor effector function, sustained expression of inhibitory receptors, such as programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte antigen 4 (CTLA4), and transcriptional programs altered compared with functional effector or memory T cells (31).

Regulatory T (Treg) cells are another TME cell type that has immunosuppressive functions in cancer, inhibiting recognition, and clearance of tumor cells by the immune system (30, 32, 33). Tregs are characterized by the expression of CD4, CD25, and forkhead box P3 (FOXP3) as their master regulator. Foxp3Treg can originate in the thymus (naturally occurring Treg) or can be induced (iTreg) in the periphery by soluble cytokines and cell-cell contact (34) and are essential for maintaining peripheral tolerance and limiting auto-immune diseases. However, the proportions of Tregs are much higher in the circulation of patients with solid and hematologic malignancies and accumulation of Tregs in the tumor microenvironment is associated with disease progression and reduced survival (35, 36). From a functional point of view, Tregs inhibit both cellular and humoral immune responses by suppressing expansion and activation of conventional CD4+ and cytotoxic CD8+ T cells, and natural killer cells, mainly through the secretion of suppressive cytokines, such as TGF-β and IL-10. The development of agents that specifically inhibit Treg functions or remove them from the TME will permit new approaches for anticancer immunotherapy (37).
Tumor-Associated Macrophages (TAMs)

TAMs are important mediators of tumorigenesis, resident in the tissue or deriving from peripheral reservoirs such as the bone marrow (BM) and spleen (2). Macrophages are functionally plastic and can be polarized into the immune stimulating and antitumor M1 subtype, or into “alternatively activated” M2 macrophages producing type II cytokines, promoting anti-inflammatory responses, and having pro-tumorigenic functions (38, 39). Macrophage polarization is finely tuned in response to different microenvironmental stimuli (40). For example, hypoxia may mediate this transition from tumor suppressing to tumor promoting macrophages (41). Furthermore, it has been shown a reciprocal regulation between CAFs and M2 macrophages: CAFs promote monocyte recruitment and polarization toward the M2 phenotype, leading to the enhancement of proangiogenic features, in parallel M2 macrophages are able to induce fibroblast activation (42). It is well-known that TAMs have a clear role in supporting multiple aspects of tumor progression (43). For example, TAMs promote tumor cell invasion through a paracrine loop that involves tumor-derived colony-stimulating factor 1 (CSF-1) and macrophage-derived epidermal growth factor (EGF) (43, 44). Moreover, TAMs induce immune suppression [reviewed in (45)] mediated by (i) expression of inhibitory receptors, including human leukocyte antigens (HLA)-E and HLA-G and T cell immune checkpoint ligands, such as PDL1, PDL2, CD80 and CD86, which directly inhibit T cell functions and NK cells; (ii) release of several cytokines, such as IL-10 and transforming growth factor-β (TGFβ), that contribute to feed a strong immunosuppressive microenvironment by inhibiting CD4+ (Th1 and Th2 cells) and CD8+ T cells and inducing Treg cell expansion and recruitment through CCL2, CCL3, and CCL20. Lastly, they induce depletion of essential aminoacids for cytotoxic activity of T cells including l-arginine and tryptophan, or production of kynurenine by indoleamine 2,3-dioxygenase (IDO) that inhibits T cell cytotoxicity.
Reversion of TAMs back to an M1 phenotype has also been reported (46), highlighting a potential therapeutic opportunity in which re-education of TME-resident macrophages might have beneficial anti-tumorigenic effects (45).

Myeloid-Derived Suppressor Cells (MDSCs)

Along with TAMs, MDSCs are considered major promoters of tumor immune evasion (47). This population of myeloid cells, functionally defined as immunosuppressive, arises as a consequence of aberrant myelopoiesis typical of cancer (48). During tumorigenesis, MDSCs are mobilized from BM, via CXCR4/CXCL12 axis (49) and infiltrate tumors, where they promote tumor neoangiogenesis, producing endothelial growth factors [e.g., VEGF, basic fibroblast growth factor (bFGF)] (47). At the same time, they disrupt the major mechanisms of immunosurveillance, including antigen presentation by dendritic cells (DCs), T cell activation, M1 macrophage polarization and NK cell cytotoxicity, as reviewed in Safari et al. (50) and Wang et al. (51). Pharmacological inhibitors of CXCR4, are now under clinical investigation for the mobilization of immune and hematopoietic stem cells (52). Noteworthy, depletion of MDSCs by chemotherapeutic agents (e.g., gemcitabine, cyclophosphamide) can efficiently contribute to their anticancer action (48, 50, 53).

Tumor-Associated Neutrophils (TANs)

More recently, a population of neutrophils, known as TANs, has been identified as tumor supporter promoting growth, invasion, and angiogenesis of cancer cells, although they have been classically considered to exhibit a defensive response against tumor cells. Like all other leukocytes, they migrate into tissues under the effect of specific chemokines, cytokines and cell adhesion molecules for example TGF-β and IL-8 induce the formation of a pro-tumorigenic (N2) phenotype capable of supporting tumor growth and suppressing the antitumor immune responses (54, 55). Accordingly, TGF-β blocking results in the recruitment and activation of TAN with an anti-tumor phenotype (54). The main tumor-promoting mechanisms of TANs include secretion of chemokines and/or cytokines, reactive oxygen species (ROS), and matrix-degrading proteases, among others, conditioning tumor immune surveillance, metastasis, invasion, angiogenesis, and cellular proliferation (55, 56).

TUMOR-STROMA METABOLIC CROSS-TALK IN TME

It has been shown that the environment surrounding tumor cells is characterized by low oxygen tension (i.e., hypoxia) due to the abnormal blood vessel formation, defective blood perfusion, and unlimited cancer cell proliferation (14). The progression of hypoxia over time is a consequence of increased oxygen consumption and high glycolytic rate of aberrantly proliferating cancer cells (aerobic glycolysis or Warburg metabolism), leading to lactate dehydrogenase (LDH) activity, lactate excretion and TME acidosis, which alters the tumor-stroma “metabolic cross-talk” (Figure 1). **Vice versa**, hypoxia rapidly fosters energy production in tumor cells via glycolysis through hypoxia-inducible factor 1-alpha (HIF-1α)-mediated transcriptional control (57, 58). In addition, a hypoxic environment also modulates tumor-associated immune and stromal cells metabolism and fate. The rapid consumption of extracellular glucose and glutamine by tumor cells, especially in hypoxic conditions, leads to the accumulation of extracellular lactate, which was shown to affect several cell types within the TME (59). Increased lactate levels promote the insurance of an immune-permissive microenvironment by attenuating DCs and T cell activation, monocyte migration, and polarization of resident macrophages to TAMs (60–63). Furthermore, lactate accumulation promotes angiogenesis, stabilizes HIF-1α and activates NF-kB and PI-3 kinase signaling in endothelial cells, as well as inducing secretion of the proangiogenic factor VEGF from tumor-associated stromal cells (64–66). The secretion of lactate via the monocarboxylate transporter (MCT3) is coupled to the cotransport of H⁺, which supports acidification of the cellular microenvironment (59). The surplus of CO₂ generated in mitochondrial decarboxylation reactions contributes to extracellular acidification as well (67). Then, a class of extracellular carbonic anhydrases (CA) can convert CO₂ to H⁺ and HCO₃⁻. Accordingly, expression of CAIX isoforms is elevated during hypoxia and can be considered a proxy for HIF-1α signaling (68). A consequence of increased extracellular acidification is the stimulation of the proteolytic activity of MMPs that promotes the degradation of the extracellular matrix components enhancing tumor invasion (69).

Lactate in TME can be also recycled, as occurs in the Cori cycle in the liver. In this reciprocal metabolite changes between cancer cells and immune/stromal cells, lactate produced under hypoxic conditions by glycolytic cells can be re-uptaken by aerobic cells, via MCT1, and utilized for mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) (70, 71). This well-characterized mechanism is known as the “reverse Warburg effect” (70, 72). In a model of epithelial cancer, tumor cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich microenvironment for facilitating tumor growth and angiogenesis (72, 73). This metabolic cross-talk is evident in breast, prostate and ovarian cancer (74–76).

Both innate and adaptive immune cells increase their metabolic capacity upon stimulation, promoting energy generation, and biosynthesis supporting proliferation, effector molecule production, and differentiation (77). The impact of such altered metabolic state and levels of metabolites in TME on immune cell function is emerging. For example, a competition between tumor cells and T cells for the glucose pool in the aerobic microenvironment is linked to suppressed effector T-cell functions. In fact, activated T cells rely on glucose metabolism, up-regulating GLUT1 transporter via T cell receptor (TCR) and CD28-induced Akt activation (78, 79). Critical concentrations and/or lack of two amino acids, glutamine and arginine, necessary for T-cell activation, differentiation and proliferation, are therefore inhibitory to T cell functions (79).
The TME shows high levels of immunosuppressive metabolic byproducts, including a turnover in the TME release of adenosine triphosphate (ATP) and nicotinamide dinucleotide (NAD) which are metabolized by the ectoenzymes CD39, CD73, and the NADase CD38 to adenosine (80, 81). Adenosine binds to the T-cell adenosine A2R receptor inhibiting effector T-cell functions and stimulating Treg cells (82, 83). Furthermore, the adenosinergic axis is over-functional in hypoxic conditions, connecting adenosine-mediated immunosuppression to low oxygen tension (84, 85).

Overall, a better understanding of the critical players within the TME and their specific roles in immuneregulation will help design of metabolism-targeted therapeutic strategies for improving immunotherapy regimens in cancer.

Recently, NAD pathway enzymes and metabolites were shown to affect immune-cell functions and fate and alter the cancer cell-TME crosstalk. The following paragraphs are focused on describing these molecular circuits and their therapeutic implications.

NAD HOMEOSTASIS: AN OVERVIEW

NAD is a vital molecule governing many metabolic processes. It is used as a redox coenzyme by several dehydrogenases, and as a co-substrate by various NAD-consuming enzymes (86, 87). Among them are (i) mono- or poly-ADP ribosyltransferases (including ARTs and PARPs), which transfer the ADP ribose moiety to acceptor proteins resulting in their modification and function regulation, (ii) sirtuins, which catalyze the NAD-dependent deacetylation of metabolic enzymes and transcription factors, thus controlling their activity; (iii) NAD glycohydrolase that generates different NAD metabolites, including ADP ribose (ADPR), cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), with calcium (Ca\(^{2+}\)) mobilizing activity. These enzymes are involved in the control of a wide range of biological processes, including transcription, DNA repair, cell adaptation to stress signals, and immune response (88). By catalyzing their reactions, they render NAD continuous re-synthesis an indispensable process. Various NAD biosynthetic routes guarantee the coenzyme regeneration, in different combination and with different efficiency depending on the cell-type and metabolic status (89, 90). A schematic overview of NAD homeostasis is shown in Figure 2 and reviewed in Sharif et al. (87), Magni et al. (91), and Houtkooper et al. (92).

The route which recycles nicotinamide (Nam), produced by the breakage of the N-glyosidic bond in the various NAD-consuming reactions, back to NAD that is considered the major pathway ensuring NAD homeostasis. It involves the phosphoribosylation of Nam to nicotinamide mononucleotide (NMN) by the enzyme Nam phosphoribosyltransferase (NAMPT) and the subsequent adenylation of NMN to NAD by NMN adenyltransferase (NMNATs). This same route also salvages extracellular Nam that can be of dietary origin or can be formed in the extracellular space by the NAD glycohydrolase activity of the CD38 ectoenzyme acting on extracellular NAD and/or NMN. NAD can also be synthetized from exogenous nicotinamide riboside (NR) and nicotinic acid (NA) through distinct routes that are initiated by NR kinase (NRK) and NA phosphoribosyltransferase (NAPRT), respectively. The former enzyme phosphorylates NR to NMN, whereas the latter enzyme phosphoribosylates NA to nicotinamine mononucleotide (NAMN). NMNATs convert NMN to NAD, and NAMN to nicotinamine adenine dinucleotide (NAAD). NAAD is finally amidated to NAD by the enzyme NAD synthetase. A de novo biosynthetic route, which starts from tryptophan and enters the amidated route from NA, is also operative in several tissues and cell-types. The first and rate-limiting step in this pathway is the conversion of tryptophan to N-formylkynurenine by either IDO or tryptophan 2,3 -dioxygenase (TDI). Four reactions are then required to transform N-formylkynurenine to an unstable intermediate, α-amino-β-carboxymuconate-ε-semialdehyde (ACMS), which undergoes either decarboxylation, directed toward oxidation, or spontaneous cyclization to quinolinic acid (QA) directed toward NAD formation. Indeed, QA is phosphoribosylated to NAMN by the enzyme QA phosphoribosyltransferase (QAPRT), and the formed NAMN enters the NA salvage pathway. Among the enzymes involved in NAD homeostasis, NAMPT, CD38, sirtuins, and IDO are overexpressed in different types of cancer (93) and have been shown to play a role in cancer immune tolerance (94, 95). In the following sections, we will review what is known about their expression and function in the TME.

NAMPT IN METABOLIC REGULATION AND ACTIVATION OF MYELOID CELLS

As the first and rate-limiting enzyme, NAMPT plays a pivotal role in the biosynthesis pathway of NAD from its nicotinamide precursor. It converts Nam and 5-phosphoribosyl-1-pyrophosphate (PRPP) into NMN in a complex reaction that can be significantly improved by a non-stoichiometric ATP hydrolysis (96). NAMPT is found both intracellularly and extracellularly (97, 98). Intracellular NAMPT (iNAMPT) is primarily located in the nucleus and cytosol. Previous studies reported NAMPT in mitochondria as well (99), but this remains a controversial finding (100, 101). As one of the main regulators of NAD intracellular level, NAMPT plays a crucial role in cellular metabolism (102). Conversely, the extracellular form of NAMPT (eNAMPT) has emerged as an important mediator of inflammatory programs (103). eNAMPT has been found in plasma and other extracellular fluids, including the supernatants of numerous cell types (103); however, while the mechanisms behind eNAMPT secretion remain unknown, they do not seem to rely on the classic pathway (104). Notably, the cytokine-like functions appear independent of the protein catalytic activity (105). In keeping with this view, NAMPT substrates PRPP and ATP are apparently unavailable in the extracellular space to sustain the enzymatic activity (106).

eNAMPT was originally found to be secreted by activated lymphocytes and bone marrow stromal cells by Samal et al. (107) and called pre-B-cell colony enhancing factor (PBEF (107). In 2005, Fukuhara (108) identified eNAMPT...
as an adipokine and called it visfatin. These different
types reflect its role in immune system and adipose
tissue regulation.

Independent studies have conclusively shown that NAMPT
expression and secretion can be induced by inflammatory signals
in immune cells, in particular neutrophils, monocytes and
macrophages (109). Both pathogen-derived lipopolysaccharide
(LPS) and host-derived inflammatory stimuli, including tumor
necrosis factor-α (TNF-α), IL-1β, IL-6, and leptin, can up-
regulate NAMPT transcription in macrophages and other several
types of cells (110–113). Several studies showed stimulation of
cytokine release after exposure of cells to exogenous NAMPT,
highlighting a role of eNAMPT as an inflammatory mediator as
reviewed in Garten et al. (103). Following NAMPT treatment,
IL-1β, IL-6, TNF-α, and IL-10 are up-regulated in peripheral
blood mononuclear cells (PBMCs) and CD14+ monocytes (114).
Co-stimulatory molecules such as CD54, CD40, and CD80 are
also up-regulated in response to NAMPT treatment, an effect
mediated through PI3-kinase and MAPKs p38, MEK1, and JNK
(114). Furthermore, in macrophages NAMPT increases MMPs
expression and activity (115). In vitro, eNAMPT promotes cell
survival in macrophages subjected to endoplasmic reticulum
(ER) stress, a frequent event in obesity and obesity-associated
diseases. eNAMPT induces IL-6 secretion, followed by IL-6-
mediated autocrine/paracrine activation of the pro-survival signal
transducer STAT3, with a mechanism that is independent of the
enzymatic activity (112).

Emerging evidence supports a role of NAMPT in regulating
the differentiation program and the metabolic adaptation of
myeloid cells. As described previously, activated macrophages
can be divided in two subgroups in vitro: those with pro-
inflammatory activity (M1) involved in first line of defense
against bacterial infection, and those with anti-inflammatory
activity (M2) that regulate tissue repair and wound healing (116),
even if this is an oversimplification of the functional diversity
occurring in vivo. Metabolic reprogramming of immune cells is
required for both pro- and anti-inflammatory responses and a
vast spectrum of metabolic statuses accompanies the complexity
of phenotypes [reviewed in (117, 118)]. In general, an increase
in glycolysis and in glucose uptake is typically associated to an
M1 phenotype (119), while M2 macrophages rely on intact TCA
cycle and OXPHOS as major source of ATP via electron transport
chain and ATP synthase (120, 121). However, in addition to
an augmented mitochondrial metabolism, alternatively activated
macrophages can also use glycolysis when OXPHOS is disrupted
(122). Another important pathway is the pentose phosphate
pathway (PPP), which generates pentoses, 5-ribose phosphate
and nicotinamide adenine dinucleotide phosphate (NADPH).
NADPH is essential in activated M1 macrophages because it
fuels ROS production by NADPH oxidase (123), even if
other groups demonstrated that NADPH and NADPH oxidase play a role even in M2 differentiation (124). Concerning lipid metabolism, fatty acid synthesis is coupled to pro-inflammatory activity of macrophages, while beta-oxidation is typical of anti-inflammatory macrophages (117).

The increase of glycolysis associated with M1 activation of macrophages is orchestrated by the transcription factor HIF-1α. When cells experience low oxygen levels HIF-1α is stabilized and, upon binding of the HIF-1β subunit, initiates the transcription of genes such as glucose transporter and glycolytic enzymes (125, 126). NF-κB is required for transcriptional activation of HIF-1α (127); whereas, in M2 macrophages, genes involved in metabolic reprogramming are largely controlled by STAT6 and peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1β) (128).

Both iNAMPT and eNAMPT influence fundamental monocyte/macrophage processes such as differentiation, polarization and migration, even if the exact role of iNAMPT/eNAMPT in the process of myelopoiesis is incompletely elucidated so far (129–131) as summarized in Figure 3. For example, NAMPT has a role in the induction of an immunosuppressive and tumor-promoting microenvironment in chronic lymphocytic leukemia, where eNAMPT is important for the differentiation of monocytes toward tumor-supporting immunosuppressive M2 macrophage, promoting their differentiation, and polarization in tumor-supportive cells including TAMs (130). Recently, it was demonstrated that iNAMPT acts also on MDSCs, where NAMPT inhibits CXCR4 transcription, via NAD/SIRT1/HIF-1α axis, and this, in turn, leads to a mobilization of MDSCs and enhances their production of suppressive nitric oxide (132).

Changes in NAD levels characterize different stage of macrophage polarization: in general, higher levels of NAD are typical of classically activated pro-inflammatory macrophages (M1), while NAD levels are lower in alternatively activated anti-inflammatory macrophages (M2). The NAMPT/NAD/SIRT1 axis seems to play a relevant role in myeloid cell functions as shown by the fact that efficient activation of M1 macrophages needs an increase of both NAMPT expression and cytosolic NAD (133). NAMPT-dependent generation of NAD is also crucial in the metabolic switch characterizing the transition from the early initiation phase of acute inflammation, which is anabolic and primarily requires glycolysis, to the later adaptation phase which is catabolic and relies on fatty acid oxidation (FAO) for energy (134). During these processes, also NAD-consuming deacetylases enzymes SIRT1 and SIRT6 have a role in regulating metabolism, increasing fatty oxidation and reducing glycolysis, respectively, coupling metabolic polarity with the inflammatory response, as described with more details later (135, 136). These data support the notion that NAD homeostasis has a crucial role in connecting bioenergetics and inflammation (134). A further feedback loop that links NAD to polarization of myeloid component has been suggested in monocytes, where NAMPT expression is induced by TNF-α via HIF-1α. In turn, NAMPT signaling involving NF-κB pathway activates activating protein 1 (AP1), inducing IL6 and TNFA transcription modulating myeloid cell activation (137).

In congenital neutropenia, a disorder in which patients display accumulation of granulocytic progenitors and no mature neutrophils in bone marrow, it has been shown that granulocyte colony-stimulating factor (G-CSF) is effective as it up-regulates NAMPT, which in turn triggers NAD/SIRT1 dependent granulopoiesis via CCAAT/enhancer-binding protein α/β (C/EBPα/β) up-regulation (129). On the contrary, GM-CSF is not effective in congenital neutropenia because it is unable to activate iNAMPT upregulation and NAD/SIRT1 axis (138). Following the induction of myeloid differentiation with G-CSF, the NAD-consuming enzyme SIRT1 deacetylates C/EBPα at position Lys 161 (129, 138). NAMPT inhibition with FK866 led to the dramatic elevation of acetylated C/EBPα levels and reduced amounts of total C/EBPα protein, accompanied by diminished mRNA expression of C/EBPα target genes (G-CSF, G-CSFR, and ELANE). Moreover, treatment of acute myeloid leukemia cell line HL-60 with recombinant NAMPT or transduction of HL-60 cells with NAMPT-expressing lentiviral construct induced myeloid differentiation of these cells per sé (138).

An open question is whether the cytokine-like actions that eNAMPT exerts on myeloid cells are related to its enzymatic activity or are mediated by the binding to a cell surface receptor. The fact that treatment with low concentrations of recombinant eNAMPT is sufficient to activate specific intracellular signaling pathways suggests that eNAMPT has cytokine-like properties and binds to and activates a cell surface receptor. In 2015, Camp et al. identified eNAMPT as a new ligand of the Toll-like receptor 4 (TLR4) (105). The authors demonstrated that in human lung endothelial cells, eNAMPT activates an inflammatory response via activation of NF-κB signaling pathway by binding TLR4-MD2 (105). However, the fact that recombinant eNAMPT is often produced in E. Coli strains renders the interpretation of these results controversial for the possible contamination of LPS, the natural ligand of TLR4, and activator of inflammatory programs. New studies have to confirm the TLR4 engagement by eNAMPT and correlate this with myeloid differentiation and plasticity.

The evidence linking myeloid cell fate and NAD/NAMPT could open the way to pharmacological inhibition of either iNAMPT and/or eNAMPT for re-education of myeloid cells. This could be useful in the context of acute inflammation, but also in cancer to force a reversion of immunosuppressive microenvironment, in combination with immunotherapy, as summarized in Figure 3.

For iNAMPT specific small molecules inhibitors exist, most known FK866 (also known as APO866) and GMX1778 (also known as CHS-828), among others (Table 1) (139–143, 159–161). However, most of the data on these drugs describe their effect on the tumor itself, and not on cells of the microenvironment (141, 161). Whether these inhibitors could also affect also eNAMPT activity is unknown, even if, as mentioned before, the enzymatic activity of eNAMPT is controversial. On the other hand, for eNAMPT, the group of Garcia, in order to block only the cytokine-like activity of eNAMPT, has devised a polyclonal eNAMPT neutralizing antibody (130, 144), that could be useful in those condition in which only the extracellular form of eNAMPT is detrimental and intracellular enzymatic activity needs to be preserved.
CD38 IN METABOLIC DYNAMICS OF T CELLS ACTIVATION

Cluster of differentiation (CD) protein CD38, first identified as a lymphocyte antigen, is a cell surface glycohydrolase that cleaves a glycosidic bond within NAD to yield Nam, ADP-ribose (ADPR), and cyclic ADPR (cADPR), and converts NAD phosphate (NADP) to NAADP, all calcium (Ca^{2+}) mobilizing molecules (162, 163). These molecules bind specific receptors, like the ryanodine receptor on endoplasmic reticulum, the lysosomal two-pore channel and the plasma membrane calcium channel transient receptor (TRPM2), activating calcium signaling, which in turn affects gene expression, cell cycle control, cell survival, energy metabolism, leukocyte trafficking, and inflammation (87).

CD38 is a transmembrane protein with four different forms, according to the cellular localization (164). The most common form of CD38 has a type II membrane orientation, i.e., with the catalytic domain facing the extracellular space. By contrast, the less abundant type III transmembrane form has its catalytic site facing the inside. Intriguingly, soluble intracellular and extracellular forms of CD38 have also been ascribed (165, 166). CD38 is widely expressed both in immune cell types (bone marrow progenitors, natural killer cells, monocytes, and activated T- and B-lymphocytes) and in non-hematopoietic cells (167).
CD38 is also an unquestionable contributor to intracellular NAD homeostasis (168, 169) and this apparent “paradox” has been in part reconciled by recent reports demonstrating that CD38 can also degrade circulating NAD precursors such as NMN and NR, thus preventing their fueling of NAD biosynthesis (170, 171). Notably, CD38 enzymatic activity mediates many roles which include metabolism regulation and pathogenesis of heart disease, obesity, aging and inflammation, among the others. Nevertheless, it is well-established that CD38 overexpression is correlated to different hematological malignancies including myelomas and leukemias (172). In this contest, a broad immune regulatory role for NAD and CD38 on T cell behavior has been reported (87, 145, 173) and summarized in Figure 4. In order to elucidate the impact of CD38 modulation of NAD homeostasis in T cell, a brief synthesis of T cell metabolism is necessary, as metabolism drives T cell life (36, 174, 175). One of the main challenges of the field in a translational perspective is to manipulate T cell metabolism in order to improve their immune response capacity. Defined metabolic pathways orchestrate T cell development, differentiation, function and persistence (176). TCA/OXPHOS-mediated ATP production is instrumental for the maturation of Naïve T (T\textsubscript{N}) lymphocytes, a population of quiescent non-proliferative cells, in primary lymphoid organs (177). T cell activation is initiated after antigen recognition and TCR ligation. This step, requiring major histocompatibility complex, and co-stimulatory molecules, activates T lymphocytes inducing both a rapid proliferation rate and a differentiation program toward effector functions (176). To sustain both clonal expansion and active immune response, T cells shift to an anabolic metabolism which provides faster ATP production and nutrients supply. While cytolytic CD8+ T (Tc) cells dominantly shift metabolism to glycolysis, activated CD4+ T helper (Th) cells increase both glycolysis and FAO (178). FAO also supports metabolism of iTreg and long living memory T-cell (Tm) (178). All these T cell subsets, to achieve their metabolic profile, require a coordinated transcriptional program together with a specific system of nutrient uptake. T cells depend on the import of substrates such as glucose, amino-acids (especially glutamine), and glycerol. In T\textsubscript{N} and Tm cells, increased expression of glucose transporters is controlled by the transcription factor c-Myc (36) and regulated by a specific cytokine, IL-7 (175). AKT-mTOR and TLR signaling, as well as the transcription factors HIF-1\textalpha, c-Myc and FoxP3, have been shown to directly regulate Treg metabolic programming and development, while HIF-1\textalpha and mTOR control the glycolytic phenotype and activation (IFN-\gamma production) of effector T-cells, Th1, Th2, and Th17 lineages (36). Metabolism underpins T cell cycle through quiescence and activation states and T-cells failure to engage specific metabolic programs is a biological

Table 1

Agent	Mechanism of action	Indication	Trial Stage	References
APO866 (FK866)	NAMPTi	T/IC	Clinical phase I	(139)
CHS-828 (GMLX 1778)	NAMPTi	T/IC	Clinical phase I	(140)
GNE-617, GNE-618	NAMPTi	T	Pre-clinical	(141)
KPT-9274	Dual NAMPTi/PAX4i	T	Clinical phase I	(142)
OT-82	NAMPTi	T	Clinical phase I	(143)
Blocking antibody	eNAMPT neutralization	T/IC	Pre-clinical	(144)
CD38 INHIBITORS				
Daratumumab	Blocking antibody	MM/ALL	Clinical phase III	(145)
Isatuximab	Blocking antibody	MM	Clinical phase II-III	(146)
MOR202	Blocking antibody	MM	Clinical phase II	(147)
Apigenin	CD38i	MD	Pre-clinical	(148)
SIRTUINS INHIBITORS				
Cambinol	SIRT1/2i	T/ND	Pre-clinical	(149)
Sirtinol	SIRT1/2i	T/ND	Pre-clinical	(150)
Selermide	SIRT1/2i	T/ND	Pre-clinical	(151)
Tenovins	SIRT1i	T/ND	Pre-clinical	(152)
EX-527	SIRT1i	T/ND	Pre-clinical	(153)
Nicotinamide	SIRT1/2i/NAD precursor	T/ND	Pre-clinical, phase I-II	(154)
IDO INHIBITORS				
Indoximod	IDOi	T	Clinical phase I-II	(155)
Epacadostat (NC6B024360)	IDOi	T	Clinical phase II-III	(156)
Navoximod	IDOi	T	Clinical phase I	(157)
BMS-986205	IDOi	T	Clinical phase I-II	(158)

i, inhibitor; T, solid and/or hematological tumors; IC, inflammatory conditions; MM, multiple myeloma; ALL, acute lymphoblastic leukemia; MD, metabolic diseases; ND, neurodegenerative diseases.
FIGURE 4 | CD38/NAD axis regulates T cell phenotype and responses. The ectoenzyme CD38, expressed by tumor cells and immune cells, is involved in the activation of calcium (Ca^{2+}) signaling through the generated metabolite cADPR/ADPR/NAADP. Moreover, it metabolizes NAD, releasing Nam, rendering the substrate of NAMPT available for continuous NAD regeneration. These reactions occur also in immune cells modifying NAD concentrations and affecting sirtuins activities. The NAD/CD38/SIRTUINS axis regulates T cell immune cell fate, metabolism, and gene transcription. Evidence of high CD38 expressing immune suppressive cells have been reported in several tumors. CD38 inhibition was sufficient to re-establish T cell proliferation, antitumor cytokine secretion, and killing capability. ADPR, ADP-ribose; cADPR, cyclic ADPR; NADP, NAD phosphate; NAADP, nicotinic acid adenine dinucleotide phosphate; Ca^{2+}, calcium; NR, nicotinamide riboside; NMN, nicotinamide mononucleotide; Nam, nicotinamide; MDSC, myeloid-derived suppressive cells; PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand.

phenomenon accompanying tumor aggressiveness and T cell exhaustions (176). The crosstalk between cancer cell and tumor TILs is played at different levels. As already mentioned, it has been shown that the establishment of nutrients competition between tumor cells and TILs has a primary role in influencing T cell fate and dysfunctions (34, 179–181). Malignant cells push their metabolism toward a Warburg phenotype. The consequent induction of a hypoxic and nutrient-deprived environment (low glucose, glutamine, glycine, and serine) shapes a tumor sustaining microenvironment and immune tolerance (179). Indeed, T cells migrating to tumors sites must adapt to both (i) nutrient-depleted environments (182) and contemporarily to (ii) the presence of hypoxic tumor-derived metabolites including lactate, adenosine, cyclic adenosine monophosphate (cAMP), IDO/kynurenine.

In this context, CD38-mediated Ca^{2+} mobilization can directly affect T cell metabolism. In the physiology of a T lymphocyte, Ca^{2+} controls T cell gene expression and consequently differentiation, development and cytotoxicity (183). Alteration of Ca^{2+} signaling affects immune deregulation and consequently tumor initiation and progression (183–186). A second level of T cell metabolic reprogramming control by the CD38/NAD axis also involves sirtuins (173). Indeed, a lot of literature has been produced on the role of SIRT1, as a key modulator of immune cell functions, as described in a dedicated section of this review (166, 187, 188). In this case, the inverse
correlation between expression of CD38 and intracellular NAD contents, act on SIRT1-mediated post-transcriptional control of key genes involved in T cell functions (173). Furthermore, it was recently shown that CD38 is highly expressed by specific subsets of immunosuppressive TILs (i.e., Treg and Th17) (34, 36, 173, 189) and by MDSC, another key immunosuppressive cellular component of tumor milieu represented (190). Both, CD38highMDSC cells-mediated suppression of activated T-cells and the concomitant expression of CD38 with exhaustion markers on T cells, for example PD1, pointed to an active role of CD38 in modulating T cell metabolism and fate toward the generation of an immune tolerant landscape in tumor (173). Evidence of high CD38 expressing Treg have been reported for multiple myeloma and acute lymphoblastic leukemia, where the use of mAbs against CD38 (daratumumab, isatuximab, and MOR202, Table 1) is more than a promising therapeutic option to reestablish a functional immune surveillance (145–147, 189, 191, 192). In these tumor models, suppression of CD38+ cancer cells associate with an increase in T-helper and cytotoxic T lymphocytes, T-cell functional response and TCR clonality (191, 192). A functional relationship between CD38 and Th17 has also been highlighted (173). Th17 is a CD4+ T cell subpopulation secreting IL17, which gained interest in the field of immunotherapy due to their self-renewal, plasticity and hematopoietic stem-like phenotype (173, 193). Adaptive T cell transfer (ACT) therapy is a powerful strategy developed for controlling cancer (194, 195). The emerged stimanal potential of Th17, together with their ability to persist for long times at tumor sites, made of this T cell subset an ideal candidate to improve ACT efficacy (173, 196, 197). Chatterjee et al. recently demonstrated that, SIRT1-dependent deacetylation of the transcription factor forkhead box O1 (FOXO1) drives the functional homing in different organs of a hybrid Th1/Th17 population 24 h after ACT. Most importantly, they reported that, the decrease of CD38 expression on Th17 cells leads to the increase of intracellular NAD concentration, reinforcing the SIRT1-dependent immune efficacy of this T cell population (173). For these reasons, the inhibition of CD38 has been proposed not only to specifically target CD38high immune suppressive cell populations (MDSCs, Treg), but also to improve tumor control via ACT therapy or using immunomodulatory drugs (173, 191, 192).

Lastly, very recently CD38 was considered as major acquired mechanism of resistance to PD-1/PD-L1 blockade, causing CD8+ T cell suppression. Co-targeting of CD38 and PD-L1 improves anti-tumor immune response. CD38 manipulation was sufficient to regulate CD8+ T cell proliferation, antitumor cytokine secretion, and killing capability (198).

SIRTUINS AND EPIGENETIC REGULATION OF IMMUNE RESPONSE

Sirtuins, initially described as transcriptional silencers in yeast (199), represent a class of NAD-dependent enzymes with deacetylase activity. So far, seven isoforms (SIRT1-7) constitute the family of mammalian sirtuins, which differ in subcellular compartmentment, enzymatic activity, and in vivo substrate selectivity (200). As a primary cellular location, SIRT1, SIRT6, and SIRT7 are found in the nucleus, SIRT2 in the cytoplasm, and SIRT3-SIRT5 in mitochondria (201). However, recent reports have shown that sirtuins are not anchored to precise subcellular compartments, and may shuttle between them, depending on cell type or physio-pathological conditions (202–205). The canonical reaction catalyzed by sirtuins is the transfer of an acetyl group from protein lysine residues to the ADPR moiety of NAD. As a result, the reaction produces Nam, first released, the deacetylated lysine, and 2’-O-acetyl-ADP ribose (206). Although lysine deacetylation is the primary activity of sirtuins, recent studies have shown that these enzymes can remove a variety of other acyl-lysine groups (207). Some sirtuins act as ADP-riboseyltransferases, although the biological relevance of such activity is incompletely understood. Mammalian sirtuins target different proteins in an isoform-specific fashion (207, 208), allowing their regulation of multiple processes like energy metabolism, epigenetic regulation of gene expression, DNA repair, inflammation, cellular stress resistance, healthy aging, tumorogenesis, autophagy, and apoptosis as reviewed in Haigis and Sinclair (208), Finkel et al. (209), and Houtkooper et al. (210).

Emerging evidence demonstrated that sirtuins are key regulators of inflammatory stress response in immune and non-immune cells (95, 211–213). Sirtuins are involved in epigenetic regulation, through deacetylation of histones and/or non-histone proteins, of metabolic, phenotypic, and bioenergetics reprogramming of immune cells (immuno-metabolism) (210, 212–214).

SIRT1 is the most extensively studied sirtuins, especially for its role in aging (210, 214). In addition, SIRT1 is involved in controlling stem cell development, cell differentiation and autophagy, metabolic reprogramming and inflammation (209, 215). SIRT1 is also the most studied among sirtuins involved in immune regulation and here we summarized some SIRT1 activities in epigenetic regulation of metabolism and immune response (Figure 5).

Epigenetic mechanisms are essential to the development and differentiation of the immune system, as well as in related pathologies (216–218). Epigenetic mechanisms include multilevel intracellular events that influence chromatin structure and gene expression such as histone methylation and acetylation, as well as DNA methylation, non-coding RNAs and chromatin remodeling (219). Further, numerous signals (i.e., TCR, TLRs, inhibitory receptors, and cytokines) drive changes in the epigenome that result in downstream modulation of immune responses (77). TLR signaling in macrophages regulates differentiation/polarization and activation in response to pathogens affecting gene expression and metabolic reprogramming (220, 221). In particular, TLR4 engagement by LPS in macrophages drives a shift toward a glycolytic metabolism impairing mitochondrial respiration (222), resulting in a marked shifts in NAD/NADH ratios, which influence the activities of SIRT1, potentially altering deacetylation of histone and non-histone substrates (134, 223). Liu et al. found in TLR4-stimulated THP-1 monocytes that SIRT1 support a switch from increased glycolysis to increased FAO as early inflammation converts to late inflammation (134). The shift to late acute inflammation and elevated FAO required...
Sirtuins and epigenetic regulation of immune cell functions. Sirtuins are a family of 7 members with different subcellular localization. These NAD-dependent deacetylases are involved in epigenetic regulation of metabolic reprogramming of cancer and immune cells and in promoting T cell differentiation and function. Particularly, in myeloid cells SIRT1 decreases inflammation negatively regulating NF-κB pathway, and inducing a metabolic rewiring mediated by its activity on AMPK/PGC-1α and HIF-1α stabilization. In T cell populations, SIRT1 modifies the phenotypic plasticity of Thelper and Treg and induces T cell tolerance. The manipulation of the Sirtuins/NAD axis is an important area of study for therapeutic implications in cancer research to re polarization of immune cell responses and to block tumor progression. TLR4, Toll-like receptor 4; AMPK, AMP-activated protein kinase; HIF, Hypoxia-inducible factor; PD-1, programmed cell death protein 1; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

Recent studies have showed that the regulation of innate immunity and energy metabolism are connected through antagonistic crosstalk between NF-κB and SIRT1 signaling pathways (228). NF-κB signaling has a major role in innate immunity defense, while SIRT1 regulates the oxidative respiration and cellular survival (229). However, NF-κB activation can stimulate glycolysis during acute inflammation, whereas SIRT1 activation inhibits NF-κB signaling and enhances oxidative metabolism and the resolution of inflammation. SIRT1 inhibits NF-κB signaling directly by deacetylating the p65 subunit of NF-κB complex (230). SIRT1 stimulates oxidative energy production via the activation of AMPK, peroxisome proliferator activated receptor (PPARα) and PGC-1α and simultaneously, these factors inhibit NF-κB pathway and suppress inflammation (225, 226, 231). Using a myeloid cell-specific SIRT1 knockout (Mac-SIRT1 KO) mouse model, Schug et al. show that ablation of SIRT1 in macrophages renders NF-κB hyperacetylated, resulting in increased transcription of proinflammatory target genes. Consistent with increased proinflammatory gene expression, Mac-SIRT1 KO mice challenged with a high-fat diet display high levels of activated macrophages in liver and adipose tissue, predisposing the animals to development of systemic insulin resistance and metabolic derangement (232). In some cases, the effects of SIRT1 in regulating metabolism of immune cells are mediated by HIF-1α (233). SIRT1 can bind and deacetylate HIF-1α resulting in a stabilization or in an inhibition of the protein, depending on...
the cells and context (234, 235). The SIRT1-HIF-1α axis bridges the innate immune signal to an adaptive immune response by directing affecting metabolism, cytokines production, and differentiation of immune cells (236). For example, (i) SIRT1 can limit the function and differentiation of MDSCs through HIF-1α-induced glycolytic metabolic reprogramming (237), (ii) SIRT1 can regulate T helper 9 (Th9) cell differentiation through the mTOR/HIF-1α-dependent glycolytic pathway (238). The interplay between HIFs and sirtuins may also extend to stress settings such as hypoxic tumors, in which cellular redox balance is perturbed (64, 239).

For adaptive immune cells, SIRT1 has a key role in mediating the differentiation of T cell subsets in a NAD-dependent manner. T cells exhibit remarkable phenotypic and functional plasticity during immune responses (240). SIRT1 is involved in (i) Th and Treg cell differentiation (238, 241); (ii) SIRT1 signals in DCs can repress PPARγ activity and promote T helper 2 (Th2) cell responses in airway allergy through metabolism-independent manners (242); (iii) SIRT1 interacts with c-Jun and inhibits CD4 T cells to mediate T cell tolerance (243); (iv) SIRT1 regulates CD8 T-cell differentiation interacting with basic leuciner zip transcription factor ATF-like (BATF) and regulating both epigenetic remodeling and energy metabolism of T cells (244). Furthermore, (v) SIRT1/FOXO1 axis regulates metabolic reprogramming of terminally differentiated memory T cells, as previously described (188).

Finally, SIRT1 has been shown to play also important roles in physiological processes affecting organismal longevity as well as stem cell function and self-renewal (245, 246). In macrophages, SIRT1 is emerging as critical positive modulator of self-renewal, regulating G1/S transition, cell cycle progression, and a network of self-renewal genes (247).

Similar functions in regulating inflammation and metabolism are exerted also by SIRT2 and SIRT6 (134, 213, 248).

Interactions of cellular metabolic and epigenetic pathways and how these two key biological processes interplay to feedback modulate immune cell function is attracting in cancer therapy. Sirtuins/NAD axis has proven to be a crucial link between epigenetics and metabolism, and hence, it is an important area of study for therapeutic implications (215). While there are only specific activators or inhibitors for SIRT1 exist, drugs that affect NAD levels or NAD precursors offer the possibility to regulate all seven sirtuins coordinately (239). These compounds can be used alone or in combination with existing cancer therapies. The effects of SIRT1 inhibitors (e.g., cambinol, sirtinol, tenovins, Ex-527, Table 1) are currently studied mainly in the context of cancer (239). Very recent data show the impact of SIRT1 inhibition or genetic deletion on T cell responses, particularly on Treg differentiation. Genetic deletion or pharmacologic inhibition of SIRT1 through EX-527 improves Foxp3+ Treg number and function through increased Foxp3 transcription its acetylation, leading to decreased Foxp3 turnover from ubiquitination and poly(ADP)ribosylation. As a result, targeting SIRT1 increases both central and inducible Foxp3+ Tregs and promotes their suppressive functions, as summarized in Chadha et al. (249). SIRT1 inhibition is therefore useful in the context of graft-vs.-host disease (GVHD), to extend allograft survival (249–251). However, there are a number of studies in which SIRT1 deletion or inhibition led to proinflammatory conditions, indicating that regulation of the system is still incompletely understood (249, 252). Interestingly, the Nam generated in deacetylase reactions by SIRTs acts as a negative feedback regulator of SIRT activity (253, 254). This Nam is converted back to NAD by the action of NAMPT and NMNATs. Hence, NAD-biosynthetic enzymes, in particular NAMPT, also regulate sirtuins signaling (255) providing the rational to use NAMPT inhibitors to interfere with Sirtuins functions.

Overall these results indicate that sirtuins broadly coordinate innate and adaptive immune reprogramming and represent druggable immunometabolic enhancement targets, useful also to repolarize immune cells in TME.

IMMUNOSUPPRESSION VIA TRYPTOPHAN CATABOLISM: THE ROLE OF KYNURENINE PATHWAY ENZYMES

Amino acid catabolism is a key effector in driving immune tolerance. IDO is a cytosolic, heme-dependent enzyme responsible for the rate-limiting step of de novo NAD synthesis from tryptophan in extracellular tissues. The catalyzed-reaction yields N-formylkynurenine and commits the aminoacid toward its conversion to QA through the kynurenine pathway (90), which accounts for >90% of tryptophan catabolism (256). Tryptophan is an essential amino acid in protein metabolism, a precursor for the synthesis of the neurotransmitter serotonin and tryptamine, as well as for the synthesis of NAD and the hormone melatonin (257, 258).

In recent years, IDO has drawn enormous attention due to its immune regulatory functions (259–261) and summarized in Figure 6. IDO is not constitutively expressed in immune cells. Rather, various stimuli, and signaling pathways induce transcription and translation of metabolically-active IDO enzyme protein. Among them, TLRs, tumor necrosis factor superfamily members (TNFRs), interferon beta receptor (IFNBR), the interferon gamma receptor (IFNGR), transforming growth factor beta receptors (TGFβR) and the aryl hydrocarbon receptor (Ah) all can activate signaling mechanisms that either induce or maintain IDO expression. NF-KB activation is a central downstream signal of these pathways regulating IDO expression (262).

By catalyzing the initial and rate-limiting step of tryptophan degradation, IDO reduces the local tryptophan concentration and produces immune modulatory tryptophan metabolites (263). In particular, cells expressing IDO and TDO produce the tryptophan catabolite kynurenine that, by interacting with the aryl hydrocarbon receptor expressed by T cells, Tregs and DCs, regulates immunity (264). Additionally, inhibition of CD8+ T-cell-mediated cytotoxic function was found to be an important mechanism behind IDO’s immune-modulating property (264). Due to the role in regulating T cell response and fate, IDO function is critical in organ and tissue graft survival, in viral infection, in tissue-specific autoimmunity and the promotion of cancer cell survival (265). The biologic function of the IDO pathway was originally described as both counter-regulatory
FIGURE 6 | The role of IDO/kynurenine in cancer immunoediting. IDO1 is an enzyme involved in the catabolism of tryptophan (kynurenine pathway). IDO and kynurenine can be secreted by tumor and tolerogenic immune cells in the microenvironment where exert an immunosuppressive function polarizing myeloid cell toward M2 phenotype (TAM; MDSC) and suppressing effector T cell functions, while stimulating expansion and activation of permissive Treg population, increasing immune escape mechanisms (PD-1/PD-L1; CTLA-4/B7-1 crosstalk). Moreover, in the extracellular space, IDO1 depletes the essential amino acid tryptophan from the tumor microenvironment, favoring tumor growth. IDO1 inhibitors in combination with Immunotherapy aim to reverse immunoediting (backward arrow) by inhibiting and activating local immunosuppressive and tumor eradication mechanisms, respectively. PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; Foxp3, forkhead box P3; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

(controlling inflammation) and tolerogenic (creating acquired antigen-specific tolerance in T cells) (257).

Escape from the immune response is essential for cancer progression, however, mechanisms underlying this process remain unclear. Kynurenine in the tumor microenvironment was recently shown to favor immunosuppression (265, 266). Tryptophan catabolism was shown to create an immunosuppressive milieu in tumors and in tumor-draining lymph nodes through accumulation and secretion of immunosuppressive tryptophan catabolites that bind and activate AhR (267), leading to induction of T-cell anergy, apoptosis, increased conversion of naïve CD4⁺ T cells into Tregs and polarization of DCs and macrophages toward an immunosuppressive phenotype (190, 261, 265, 268).

Clinically, studies of ovarian, lung, colorectal, breast cancer, brain tumors, melanoma, and others have shown that increased expression of IDO was associated with poor survival outcomes (258, 265, 269, 270). In most studies, the ratio of kynurenine to tryptophan was measured in patient plasma as a measure of IDO and TDO activity (156, 267). Moreover, not only tumor can express IDO, but also immune cells including both TAM and MDSC express high levels of IDO, in response to inflammatory cytokines, of which IFN-γ is the most potent inducer, amplifying the circuit of immunosuppression (190, 271, 272).

According to the role of IDO in driving immunosuppression, in the last years IDO became a valid target in cancer therapy (273, 274). Competitive inhibitors of IDO are currently
being tested in clinical trials in patients with solid cancer, with the aim of enhancing the efficacy of conventional chemotherapy, vaccine or checkpoint inhibitors (275). Agents currently account for the majority of the trials: indoximod (1-methyl-D-tryptophan), an inhibitor of the IDO pathway (155, 276), epacadostat (INCB024360) (156) and BMS-986205 (158) (Table 1), with encouraging results. Importantly, the use of IDO inhibitors can be also overcome the resistance to immunotherapies targeting immune checkpoints, strongly supporting the combination therapies with IDO inhibitors irrespective of IDO expression by the tumor cells (277). Additional IDO inhibitors are in the development pipeline, as well as agents that may target TDO, or a second isoform of IDO (IDO2) (275).

CONCLUDING REMARKS

Anticancer strategies targeting simultaneously oncogenic and metabolic pathways, de-regulated in cancer cells, seem to be ideal and have shown some promising results. Interestingly, local conditions in the tumor microenvironment affect also metabolic responses of immune cells, favoring immune-tolerance, and immune-escape mechanisms. One of the goals of immunotherapy could be to re-educate the immune system to kill tumors, by reprogramming their metabolism. The network of immunosuppressive mechanisms in the TME is complex, multifactorial, and mutually reinforcing. A better knowledge of the main players of this cross-talk can help in designing more effective combination therapies. In this picture, NAD-metabolizing enzymes are receiving increasing attention due to their role in conditioning several aspects of immune cell fate and functions. It is foreseeable that modulators/inhibitors of the NADome (summarized in Table 1) will become useful alone or in combination with current anti-cancer therapeutic strategies to regulate both tumor growth and immune populations of TME.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by the Italian Institute for Genomic Medicine Institutional funds, by Gilead Fellowship program 2018, by the Ministry of Education University and Research-MIUR, PRIN Project 2017CBNCYT and Progetto strategico di Eccellenza Dipartimentale #D15D1800414001 (the latter awarded to the Dept. of Medical Sciences, University of Turin) and ITN INTEGRATA program (grant agreement 813284).

REFERENCES

1. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. (2012) 21:309–22. doi: 10.1016/j.ccr.2012.02.022
2. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. (2013) 19:1423–37. doi: 10.1038/nm.3394
3. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. (2012) 12:298–306. doi: 10.1038/nrc3245
4. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. (2017) 17:559–72. doi: 10.1038/nri.2017.49
5. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. (2011) 11:85–95. doi: 10.1038/nrc2981
6. Kareva I, Hahnfeldt P. The emerging “hallmarks” of metabolic reprogramming and immune evasion: distinct or linked? Cancer Res. (2013) 73:2737–42. doi: 10.1158/0008-5472.CAN-12-3696
7. Boroughs LK, Deberardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. (2015) 17:351–9. doi: 10.1038/nch3124
8. Morandi A, Giannoni E, Chiarugi P. Nutrient exploitation within the tumor-stroma metabolic crosstalk. Trends Cancer. (2016) 2:736–46. doi: 10.1016/j.trecan.2016.11.001
9. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. (2012) 72:3125–30. doi: 10.1158/0008-5472.CAN-11-4094
10. Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for multiple players. Front Oncol. (2013) 3:90. doi: 10.3389/fonc.2013.00090
11. Armulik A, Abramsson A, Betscholtz C. Endothelial/pericyte interactions. Circ Res. (2005) 97:512–23. doi: 10.1161/01.RES.0000182903.16652.47
12. Chouaib S, Kieda C, Benlalam H, Noman MZ, Mami-Chouaib F, Ruegg C. Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells. Crit Rev Immunol. (2010) 30:529–45. doi: 10.1615/CritRevImmunol.v30.i6.30
24. Molodtsov A, Turk MJ. Tissue resident CD8 memory T cell responses in cancer and autoimmunity. *Front Immunol*. (2018) 9:2810. doi: 10.3389/fimmu.2018.02810

25. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. *Nat Med*. (2013) 21:938–45. doi: 10.1038/nm.3909

26. Speiser DE, Ho PC, Verdeli G. Regulatory circuits of T cell function in cancer. *Nat Rev Immunol*. (2016) 16:599–611. doi: 10.1038/nr2016.80

27. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, et al. Regulation of regulatory T cells by cellular metabolism protein by lysine acetylation. *Science*. (2010) 327:1000–4. doi: 10.1126/science.1179689

28. Gooden MJ, De Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. *Br J Cancer*. (2011) 105:93–103. doi: 10.1038/bjc.2011.189

29. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Klebanoff CA, et al. Selection of regulatory T cells in the thymus. *Cell* (2008) 133:775–87. doi: 10.1016/j.cell.2008.05.009

30. Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the thymus. *Nat Rev Immunol*. (2012) 12:157–67. doi: 10.1038/nri31515

31. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. *Cell* (2010) 141:39–51. doi: 10.1016/j.cell.2010.03.014

32. Biswas SK, Mantovani A. Macrophage plasticity and interaction with the tumor microenvironment: potential novel strategies for cancer immunotherapy. *Cell Mol Immunol*. (2018) 15:428–37. doi: 10.1016/cmi.2018.04.4

33. Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. *Nat Immunol*. (2016) 17:618–25. doi: 10.1038/ni.3466

34. Shang B, Liu Y, Jiang SJ, Liu Y. Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in cancers: a systematic review and meta-analysis. *Sci Rep*. (2015) 5:15179. doi: 10.1038/srep15179

35. Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: a potential novel strategy for cancer immunotherapy. *Cancer Immunol Immunother*. (2020) 69:1029–43. doi: 10.1007/s00262-019-02542-9

36. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. *Nat Rev Cancer*. (2015) 15:366–71. doi: 10.1038/nrc.2014.107

37. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. TLR-mediated metabolic reprogramming of macrophages synergizes during prostate carcinoma progression. *Oncogene*. (2014) 33:2423–31. doi: 10.1038/onc.2013.214

38. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells and tumor: current knowledge and future perspectives. *J Cell Physiol*. (2018) 234:9966–81. doi: 10.1002/jcp.27923

39. Wang Y, Ding Y, Guo N, Wang S. MDSCs: key criminals of tumor pre-metastatic niche formation. *Front Immunol*. (2019) 10:1722. doi: 10.3389/fimmu.2019.00172

40. Fedorova IR, Zhang Y, Wanner WC, Eichhorn DL, Jassal SB, et al. Reduced inhibitory effect of tumor cell-derived lactic acid on human T cells. *Blood*. (2006) 107:3812–9. doi: 10.1182/blood-2006-07-035972

41. Miettinen JP, Huhtala TK, Jussila L, Lehtonen J, Lehto S, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription in superficial and ischemic wounds in mice. *Cell Metab*. (2007) 6:178–86. doi: 10.1016/j.cmet.2007.01.002

42. Sanz M, Arias-Vazquez R, Carnero O, et al. Lactate stimulates angiogenesis and accelerates the healing of severe burns in mice. *Blood*. (2007) 109:3812–9. doi: 10.1182/blood-2006-07-035972

43. Espanol R, Soriano A, Bellocq C, et al. Hypoxia- and lactate-induced transcriptional responses in tumor-associated neutrophils. *Blood*. (2007) 109:3812–9. doi: 10.1182/blood-2006-07-035972

44. Rottossiporn P, Payen VL, De Saedeleer CJ, Preat V, Thissen JP, Feron O, et al. Hypoxia stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. *Angiogenesis*. (2012) 15:581–92. doi: 10.1007/s10451-012-9282-0

45. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. *Cancer Cell Int*. (2013) 13:89. doi: 10.1186/1475-2867-13-89

46. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. *Nat Rev Immunol*. (2012) 12:253–68. doi: 10.1038/nri3175

47. Fouda A, Jarrier P, Zhang Y, Geay JF, Lecluse Y, et al. Reduced inhibitory effect of tumor cell-derived lactic acid on human T cells. *Blood*. (2006) 107:3812–9. doi: 10.1182/blood-2006-07-035972

48. Audrito G, Ostrand-Rosenberg S, Caruso A, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. *Blood*. (2006) 107:3812–9. doi: 10.1182/blood-2006-07-035972
68. Swietach P, Hulikova A, Vaughan-Jones RD, Harris AL. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene. (2010) 29:6509–21. doi: 10.1038/onc.2010.455

69. Chiche J, Brahim-Horn MC, Pouysegu J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. (2010) 14:771–94. doi: 10.1111/j.1742-4658.2010.00859.x

70. Pavlidis S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Chiche J, Brahimi-Horn MC, Pouyssegur J. Tumour hypoxia induces metabolic shift causing acidosis: a common feature in cancer. J Cell Cycle. (2009) 3:8984–4001. doi: 10.4161/cc.8.23.10238

71. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. (2004) 558:5–30. doi: 10.1113/jphysiol.2003.058701

72. Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. Elucidating the pathophysiological role of carbonic anhydrase IX in tumour pH regulation. Front Immunol. (2017) 8:1887. doi: 10.3389/fimmu.2017.01175

73. Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumour microenvironment: the physiological role of carbonic anhydrase IX in tumour pH regulation. Biochem Pharmacol. (2014) 92:43–54. doi: 10.1016/j.bcp.2013.10.022

74. Penkert J, Ripperger T, Schieck M, Schlegelberger B, Steinemann D, Illig T. On metabolic reprogramming and tumor biology: a comprehensive survey of metabolic activity in breast cancer. Oncotarget. (2017) 8:57813–25. doi: 10.18632/oncotarget.18175

75. Riad A, Dolle C, Felici R, Ziegler M. The NAD metabolome—a key determinant of cancer cell biology. Nat Rev Cancer. (2012) 12:741–52. doi: 10.1038/nrc3340

76. Serra S, Vaisitti T, Audrito V, Bologna C, Buonincontri R, Chen SS, Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular adenosine signaling mediates hypoxic responses in the chronic hypoxic pulmonary microenvironment. Blood Adv. (2016) 1:37–61. doi: 10.1182/bloodadvances.201600984

77. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

78. Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome—a key determinant of cancer cell biology. Nat Rev Cancer. (2012) 12:741–52. doi: 10.1038/nrc3340

79. Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell metabolism in the tumor microenvironment. Front Immunol. (2015) 212:1277–1283. doi: 10.18632/oncotarget.11759

80. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular adenosine signaling mediates hypoxic responses in the chronic hypoxic pulmonary microenvironment. Blood Adv. (2016) 1:37–61. doi: 10.1182/bloodadvances.201600984

81. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

82. Serra S, Vaisitti T, Audrito V, Bologna C, Buonincontri R, Chen SS, Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular adenosine signaling mediates hypoxic responses in the chronic hypoxic pulmonary microenvironment. Blood Adv. (2016) 1:37–61. doi: 10.1182/bloodadvances.201600984

83. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

84. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

85. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

86. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

87. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

88. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

89. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857

90. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling in human microvascular endothelial cells. Immunology. (2017) 154:284–97. doi: 10.1111/imj.12857
108. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. *Science*. (2005) 307:426–40. doi: 10.1126/science.1107924

109. Sun Z, Lei H, Zhang Z. Pre-B cell colony enhancing factor. (PBEF), a cytokine with multiple physiological functions. *Cytokine Growth Factor Rev*. (2013) 24:433–42. doi: 10.1016/j.cytogfr.2013.05.006

110. Ognjanovic S, Bao S, Yamamoto SY, Garibay-Tupas J, Samal B, Bryant-Greenwood GD. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. *J Mol Endocrinol*. (2001) 26:107–17. doi: 10.1677/jme.0.0261017

111. Ishbab J, Zaidi M. TNF regulates cellular NAD+ metabolism in primary macrophages. *Biochem Biophys Res Commun*. (2006) 342:1312–8. doi: 10.1016/j.bbrc.2006.02.109

112. Nowell MA, Richards PJ, Fielding CA, Ognjanovic S, Topley N, Williams AS, et al. Regulation of pre-B cell colony-enhancing factor by STAT3-dependent interleukin-6 trans-signaling: implications in the pathogenesis of rheumatoid arthritis. *Arthritis Rheum*. (2006) 54:2084–95. doi: 10.1002/art.21942

113. Gosset M, Benenbaum F, Salvat C, Sautet A, Pigenet A, Tahrir K, et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in dendrocytes: possible influence on osteoarthritis. *Arthritis Rheum*. (2008) 58:1399–409. doi: 10.1002/art.23431

114. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. *J Immunol*. (2007) 178:1748–58. doi: 10.4049/jimmunol.178.3.1748

115. Fan Y, Meng S, Wang Y, Cao J, Wang C. Visfatin/PREF/Nampt induces EMMPRIN and MMP-9 production in macrophages via the NAMPT-MAPK. (p38, ERK1/2)-NfκB signaling pathway. *Int J Mol Med*. (2011) 27:607–15. doi: 10.3892/imj.2011.261

116. Murray PJ, Allen JE, Biswas SK, Fisher EA, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. *Immunity*. (2014) 41:14–20. doi: 10.1016/j.immuni.2014.06.008

117. Diskin C, Palsson-Mcdermott EM. Metabolic modulation in macrophase effector function. *Front Immunol*. (2018) 9:270. doi: 10.3389/fimmu.2018.00270

118. Stunault MI, Bories G, Guinamard RR, Ivanov S. Metabolism plays a key role of visfatin/pre-B cell colony-enhancing factor. *Mol Cancer Ther*. (2019) 18:5342–4. doi: 10.1158/1538-7445.AM2019-5477

119. Watson M, Roulston A, Belec L, Billot X, Marcellus R, Bedard RH. Dual and specific inhibition of NAMPT and PAK4 By KPT-9274 01.001

120. Liu TF, Vachharajani VT, Yoa BK, Mccall CE. NAD+-dependent sirtuin-1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. *J Biol Chem*. (2012) 287:25758–69. doi: 10.1074/jbc.M112.362343

121. Vielfahrt A, Johnson RS, Biology of HIF-1alpha. *Cell Death Differ*. (2008) 15:612–7. doi: 10.1038/cdd.2008.12

122. Gleyzer N, Scarpulla RC. PGC-1-related coactivator. (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. *J Biol Chem*. (2011) 286:39715–25. doi: 10.1074/jbc.M111.291575

123. Li Y, Zhang Y, Dorweiler B, Cui D, Wang T, Woo CW, et al. Extracellular nicotinamide phosphoribosyltransferase. (NAMPT) promotes M2 macrophase polarization in chronic lymphocytic leukemia. *Blood*. (2015) 125:111–23. doi: 10.1182/blood-2014-07-589069

124. Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: a pleiotropic modulator of monocytes and macrophages. *Pharmacol Res*. (2018) 135:25–36. doi: 10.1016/j.phrs.2018.06.022

125. Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G, et al. Nicotinamide phosphoribosyltransferase. (NAMPT) acts as a metabolic gate for mobilization of myeloid-derived suppressor cells. *Cancer Res*. (2019) 79:1938–51. doi: 10.1158/0008-5472.CAN-18-1544

126. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, et al. Extracellular nicotinamide phosphoribosyltransferase. (NAMPT) promotes M2 macrophase polarization in chronic lymphocytic leukemia. *Blood*. (2015) 125:111–23. doi: 10.1182/blood-2014-07-589069

127. Rius J, Guma M, Schachturp C, Akassoglou K, Zinkernagel AS, Niset V, et al. Nf-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. *Nature*. (2008) 455:807–11. doi: 10.1038/nature06905

128. Vats D, Mukundan L, Odegaard J, Zhang L, Smith KL, Morol CR, et al. Oxidative metabolism and PGC-1beta enhance macrophase-mediated inflammation. *Cell Metab*. (2006) 4:13–24. doi: 10.1016/j.cmet.2006.05.011

129. Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G, et al. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. *Nat Med*. (2009) 15:151–8. doi: 10.1038/nm.1913

130. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, et al. Extracellular nicotinamide phosphoribosyltransferase. (NAMPT) promotes M2 macrophase polarization in chronic lymphocytic leukemia. *Blood*. (2015) 125:111–23. doi: 10.1182/blood-2014-07-589069

131. Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: a pleiotropic modulator of monocytes and macrophages. *Pharmacol Res*. (2018) 135:25–36. doi: 10.1016/j.phrs.2018.06.022

132. Travelli C, Consonni FM, Sangaletti S, Storto M, Morlacchi S, Grolla AA, et al. Nicotinamide phosphoribosyltransferase. (NAMPT) acts as a metabolic gate for mobilization of myeloid-derived suppressor cells. *Cancer Res*. (2019) 79:1938–51. doi: 10.1158/0008-5472.CAN-18-1544

133. Fernandes CA, Fievez L, Neyrinck AM, Delzenne NM, Bureau F, Vanbever R. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages. *Biochem Biophys Res Commun*. (2012) 420:857–61. doi: 10.1016/j.bbrc.2012.03.088

134. Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G, et al. Nicotinamide phosphoribosyltransferase. (NAMPT) promotes M2 macrophase polarization in chronic lymphocytic leukemia. *Blood*. (2015) 125:111–23. doi: 10.1182/blood-2014-07-589069

135. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. *Cell Metab*. (2006) 3:177–85. doi: 10.1016/j.cmet.2006.02.002
144. Pilli VB, Sundaresan NR, Kim G, Samant S, Moreno-Vinasco L, Garcia JG, et al. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and abnormal ventricular remodeling. Am J Physiol Heart Circ Physiol. (2013) 304:H415–26. doi: 10.1152/ajpheart.00468.2012

145. Krejcik J, Canseuf T, Nijhof IS, Verbist B, Bald J, Plems T, et al. Daratumumab-depleted CD38+ immune regulatory cells promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. (2016) 128:384–94. doi: 10.1182/blood-2015-12-687749

146. Martin T, Baz R, Benson DM, Lendvai N, Wolf J, Munster P, et al. A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma. Blood. (2017) 129:3294–303. doi: 10.1182/blood-2016-09-740787

147. Boxhammer R, Weirather J, Steidl S, Endell J. MOR202, a human anti-CD38 monoclonal antibody, mediates potent tumoridicial activity in vivo and shows synergistic efficacy in combination with different antineoplastic compounds. Blood. (2015) 126:3015.

148. Escande C, Nin V, Price NL, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML, et al. NAD-Dependent Enzymes in Immune Regulation. Int Rev Cell Mol Biol. (2018) 336:175–203. doi: 10.1016/bs.ircmb.2017.08.016

149. Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle AS, et al. CD38-NAD(+)-dependent immune regulatory mechanisms. Front Immunol. (2016) 7:341. doi: 10.3389/fimmu.2016.00341

150. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. (2008) 88:84–91. doi: 10.1152/physrev.00035.2007

151. Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML, et al. Indoleamine 2,3-Dioxygenase and its therapeutic inhibition in cancer. Blood. (2014) 123:69–78. doi: 10.1182/blood-2013-07-512956

152. Martin T, Baz R, Benson DM, Lendvai N, Wolf J, Munster P, et al. CD38-NAD(+) axis regulates immunotherapeutic combination efficacy in human bladder cancer cells. J Natl Cancer Inst. (2014) 106:1906–11. doi: 10.1093/jnci/dju140

153. Chatterjee S, Daenthanasanmak A, Chakraborty P, Wyatt MW, Dhar HK, et al. Durable therapeutic efficacy utilizing combinatorial blockade against CD38 and PD-1 in multiple myeloma. J Clin Oncol. (2013) 31:8543–52. doi: 10.1200/JCO.2013.51.1135

154. Howard M, Grimaldi JC, Bazar JF, Lund FE, Santos-Armugendo L, Parkhouse RM, et al. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. (1993) 262:1056–9. doi: 10.1126/science.2325624

155. Saue AA, Munshi C, Lee HC, Schramm VL. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry. (1997) 38:13239–49. doi: 10.1021/bi9718248

156. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. (2008) 88:84–91. doi: 10.1152/physrev.00035.2007

157. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. (2008) 88:84–91. doi: 10.1152/physrev.00035.2007

158. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. (2008) 88:84–91. doi: 10.1152/physrev.00035.2007

159. Martínez-Dominguez B, Schuler A, Posakony J, Zhang H, Goehle AS, et al. Targeting of CD38 in combination with anti-PD-1 antibody shows synergistic antitumor activity in preclinical tumor models. J Immunother Cancer. (2018) 6:13. doi: 10.1186/s40425-018-0366-0

160. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. (2007) 25:171–92. doi: 10.1146/annurev.immunol.25.022006.141548

161. Sinclair LV, Rolf J, Ensline E, Shi YR, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. (2013) 14:500–8. doi: 10.1038/ni.2556

162. Chang CH, Qiu J, O’Sullivan D, Buck MD, Nguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. (2015) 162:1229–41. doi: 10.1016/j.cell.2015.08.016

163. Sukumar M, Roychoudhuri R, Restifo NP. Nutrient competition: a new axis of tumor immunosuppression. Cell. (2015) 162:1206–8. doi: 10.1016/j.cell.2015.08.064

164. Chang CH, Pearce EL. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol. (2016) 17:364–8. doi: 10.1038/ni.3415

165. NAD-Dependent Enzymes in Immune Regulation. Int Rev Cell Mol Biol. (2018) 336:175–203. doi: 10.1016/bs.ircmb.2017.07.004

166. Taberner J, Luke JJ, Joshua AM, Varga A, Moreno V, Desai J, BMS-986205, an indoleamine 2,3-dioxygenase 1 inhibitor (IDO1), in combination with nivolumab (NIVO): Updated safety across all tumor cohorts and efficacy in pts with advanced bladder cancer (advBC). J Clin Oncol. (2018) 36(15_suppl):4512. doi: 10.1200/JCO.2018.36.15_suppl.4512

167. Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. (2003) 63:7436–42.

168. Olesen UH, Christensen MK, Bjorkling F, Jaattela M, Jensen PB, Sehested M, et al. Anticancer agent CHS-828 inhibits cellular synthesis of NAD. Biochem J. (2008) 407:979–84. doi: 10.1042/BJ20080109

169. Audrito V, Manago A, Gaudino F, Deaglio S. Targeting metabolic reprogramming in metastatic melanoma: the key role of nicotinamide phosphoribosyltransferase. (NAMPT). Semin Cell Dev Biol. (2019). doi: 10.1016/j.semcdb.2019.05.001. [Epub ahead of print].

170. Audrito V, Manago A, Gaudino F, Deaglio S. Targeting metabolic reprogramming in metastatic melanoma: the key role of nicotinamide phosphoribosyltransferase. (NAMPT). Semin Cell Dev Biol. (2019). doi: 10.1016/j.semcdb.2019.05.001. [Epub ahead of print].
Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammatory and metabolic disorders. *Cell Signal.* (2013) 25:1939–48. doi: 10.1016/j.cellsig.2013.06.007.

Salminen A, Kaarniranta K, Kaarniranta L, Salminen A. SIRT1 metabolic actions: integrating oxidative stress and SIRT1 impact on the aging process. *Int J Mol Sci.* (2013) 14:3834–59. doi: 10.3390/ijms14023834.

Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. *EMBO J.* (2004) 23:2369–80. doi: 10.1038/sj.emboj.7600244.

Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-kappaB activity. *PLoS ONE.* (2012) 7:e46364. doi: 10.1371/journal.pone.0046364.

Schug TT, Xu Q, Gao H, Peres-Da-Silva A, Draper DW, Fessler MB, et al. SIRT1 regulates macrophage self-renewal. *EMBO J.* (2017) 36:2533–72. doi: 10.15252/embj.201695737.

Gomes P, Fleming Outeiro T, Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. *Trends Pharmacol Sci.* (2015) 36:756–68. doi: 10.1016/j.tips.2015.08.001.

Chadha S, Wang L, Hancock WW, Beier UH. Sirtuin-1 in immunotherapy: a Janus-headed target. *J Leukoc Biol.* (2019). doi: 10.1002/jlb.201118-422R.

Beier UH, Wang L, Bhatti TR, Liu Y, Han R, Ge G, et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. *Mol Cell Biol.* (2011) 31:1022–9. doi: 10.1128/MCB.01206-10.

Daenthanasannak A, Lamsawat S, Chakraborty P, Nguyen HD, Bastian D, Liu C, et al. Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. *Blood.* (2019) 133:266–79. doi: 10.1182/blood-2018-07-863233.

Chadha S, Wang L, Hancock WW, Beier UH. Sirtuin-1 in immunotherapy: a Janus-headed target. *J Leukoc Biol.* (2019). doi: 10.1002/jlb.201118-422R.
269. Hornyak L, Dobos N, Koncz G, Karanyi Z, Pall D, Szabo Z, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. *Front Immunol.* (2018) 9:151. doi: 10.3389/fimmu.2018.00151

270. Yu CP, Fu SF, Chen X, Ye J, Ye Y, Kong LD, et al. The clinicopathological and prognostic significance of IDO1 expression in human solid tumors: evidence from a systematic review and meta-analysis. *Cell Physiol Biochem.* (2018) 49:134–43. doi: 10.1159/000492849

271. Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ, et al. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. *J Immunol.* (2012) 188:1117–24. doi: 10.4049/jimmunol.1100164

272. Pinton L, Solito S, Damuzzo V, Francescato S, Pozzuoli A, Berizzi A, et al. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression. *Oncotarget.* (2016) 7:1168–84. doi: 10.18632/oncotarget.6662

273. Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? *Nat Rev Cancer.* (2009) 9:445–52. doi: 10.1038/nrc2639

274. Brochez L, Chevolet I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. *Eur J Cancer.* (2017) 76:167–82. doi: 10.1016/j.ejca.2017.01.011

275. Prendergast GC, Malachowski WP, Duhadaway JB, Muller AJ. Discovery of IDO1 inhibitors: from bench to bedside. "Cancer Res." (2017) 77:6795–811. doi: 10.1158/0008-5472.CAN-17-2285

276. Hou DY, Muller AJ, Sharma MD, Duhadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. *Cancer Res.* (2007) 67:792–801. doi: 10.1158/0008-5472.CAN-06-2925

277. Holmgard RR, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. *J Exp Med.* (2013) 210:1389–402. doi: 10.1084/jem.20130066

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Audrito, Managò, Gaudino, Sorci, Messana, Raffaelli and Deaglio. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.