ABSTRACT
We discuss the ability of the planned Euclid mission to detect deviations from General Relativity using its extensive redshift survey of more than 50 Million galaxies. Constraints on the gravity theory are placed measuring the growth rate of structure within 14 redshift bins between $z = 0.7$ and $z = 2$. The growth rate is measured from redshift-space distortions, i.e. the anisotropy of the clustering pattern induced by coherent peculiar motions. This is performed in the overall context of the Euclid spectroscopic survey, which will simultaneously measure the expansion history of the universe, using the power spectrum and its baryonic features as a standard ruler, accounting for the relative degeneracies of expansion and growth parameters. The resulting expected errors on the growth rate in the different redshift bins, expressed through the quantity $f\sigma_8$, range between 1.3% and 4.4%. We discuss the optimisation of the survey configuration and investigate the important dependence on the growth parameter γ and the assumed cosmological model. We show how a specific parameterisation could actually drive the design towards artificially restricted regions of the parameter space. Finally, in the framework of the popular γ-parameterisation, we show that the Euclid spectroscopic survey alone will already be able to provide substantial evidence (in Bayesian terms) if the growth index differs from the GR value $\gamma = 0.55$ by at least ~ 0.13. This will combine with the comparable inference power provided by the Euclid weak lensing survey, resulting in Euclid’s unique ability to provide a decisive test of modified gravity.

Key words: cosmology – dark energy – large-scale structure of universe.

1 INTRODUCTION
The current standard cosmological model, concordantly supported by virtually all available observations, tells us that we live in a low-density, expanding universe with a spatially flat geometry, that appears to have recently entered a phase of accelerated expansion. The data require an extra mass-energy contribution in the form of a fluid with equation of state $w \approx -1$. This corresponds to adding in the equations of General Relativity (GR) a cosmological constant Λ, i.e. the term originally introduced by Einstein to obtain a static solution, thus building the standard Lambda Cold Dark Matter model (LCDM). A cosmological constant, however, has a few disturbing features. The first feature is the fine tuning necessary to obtain its measured density value, which can be interpreted as the energy of the vacuum, that is extremely small compared to the corresponding scales of particle physics; the second issue is the so-
called coincidence problem: why, despite very different time evolutions, do dust-like matter and cosmological constant show comparable densities today? Among possible solutions, scenarios with evolving ‘dark energy’ density from a cosmological scalar field, have been proposed (see Frieman et al. 2008 for a review). Alternatively, however, observations could simply indicate that it is the theory of gravity that needs to be revised (see Copeland et al. 2006 for a review).

These two radically different explanations cannot be distinguished by measuring only the expansion history of the universe represented by the Hubble function $H(z)$. A way to break this degeneracy is to look at the linear growth rate of density perturbations. This can be expressed as $f(z) = \frac{\ln a H}{\ln a z}$, where $G(t)$ is the time-dependent part of the solution of the linear growth equation (Heath 1977) and a is the cosmic scale factor. Models with the same expansion history $H(z)$, but based on a different gravity theory predict a different growth rate $f(z)$ (Maartens 2007; Linder 2005; Polarski 2006) (although see also Kunz & Sapone 2007 for possible issues).

Measurements of galaxy clustering from large redshift surveys, quantified through the galaxy-galaxy correlation function (or its Fourier transform, the power spectrum $P(k)$), contain direct information on both $H(z)$ and $f(z)$.

Baryonic Acoustic Oscillations (BAO) within the last-scattering surface give rise to a characteristic feature in the galaxy distribution at comoving separations of ~ 150 Mpc (BAO have now been conclusively seen in the clustering of galaxies, e.g. Cole et al. 2005; Eisenstein et al. 2005 and more recently Kazin et al. 2010). This corresponds to the characteristic scale fixed by the comoving sound horizon at the drag epoch (shortly after recombination) and is accurately measured by Microwave Background (CMB) anisotropies (see recent measurements by Komatsu et al. 2009). Compared to the observed galaxy BAO peak position at different redshifts, this yields a measurement of $H(z)$ in the radial direction and of the comoving angular diameter distance $D_A(z)$ in the transverse direction.

Galaxy clustering as measured in redshift space also contains the imprint of the linear growth rate of structure, in the form of a measurable anisotropy. Such redshift-space distortion (RSD) is due to coherent flows of matter from low to high densities, linked to the growth of structure. When redshifts are used to measure galaxy distances, the contribution from peculiar velocities produces a distortion of the clustering pattern, which at linear scales is proportional to $f(z)$ (Kaiser 1987; Hamilton 1998). This can be measured by the anisotropy of redshift-space two-point statistics, defining a proper correlation function $\xi_{\parallel, \perp}(z)$ (or power spectrum $P(k_{\parallel, \perp})$), where k_{\parallel} and k_{\perp} are the components parallel (perpendicular) to the line of sight. The anisotropy is caused by an additive term proportional to the variance of the velocity field, which can be parameterised by $f(z)\sigma_8(z)$ (where σ_8 is the rms amplitude of galaxy clustering) and provides an excellent discriminator of cosmological models, particularly if σ_8 is normalised, for example using the CMB (Song & Percival 2009).

RSD were classically seen as a method to measure Ω_m (see references in Hamilton 1998 or more recently Hawkins et al. 2003; Ross et al. 2007, da Angela et al. 2008, Cabre & Gaztanaga 2009, Drinkwater et al. 2010). In the dark energy context, they were initially seen as simply an effect to be corrected for to extract the full BAO information (Seo & Eisenstein 2003). Still in the context of GR, Amendola et al. 2005 showed that the information contained in the GR growth function $f(z)$ could improve errors on $w(z)$ parameters by ~ 30% (see also Sapone & Amendola 2007). As pointed out by Guzzo et al. 2008, however, if no assumption is made on the gravity theory, RSD in fact provide us with a powerful test to test the dark energy vs modified gravity alternative by tracing the growth rate back in time. This was particularly interesting in the context of planned dark energy surveys, and stimulated new interest in this technique (Wang 2008; Linder 2008; Nesseris & Perivolaropoulos 2008; Acquaviva et al. 2008; Song & Percival 2009; White et al. 2008; Percival & White 2009). Following Guzzo et al. 2008, RSD were suggested as a primary probe in the SPACE satellite proposal (the forerunner of what is now the Euclid spectroscopic probe, described in more detail below) presented in response to the 2007 ESA Cosmic Vision Call (Cimatti et al. 2009).

Currently ongoing spectroscopic surveys such as WiggleZ (Blake et al. 2011), BOSS (White et al. 2011) and VIPERS (Guzzo et al. 2012, in preparation), are mapping significant volumes of the distant universe and will produce measurements of $f\sigma_8$ covering the redshift range out to $z \sim 1.3$. Even larger and deeper galaxy surveys are planned for the next ten years, both from ground and space. These are the proposed BigBOSS (Schlegel et al. 2011) project using the refurbished KPNO and CTIO 4m telescopes, and, most importantly, the ultimate redshift survey from space by the approved ESA mission Euclid (Laureijs 2009) we already mentioned above. Main aim of these projects is precisely the solution of the dark energy puzzle. In particular, Euclid is a medium-size (M-class) mission of the ESA Cosmic Vision programme, which has recently been selected for implementation, with launch planned for 2019. Euclid will perform both a photometric survey in the visible and in three near-infrared bands, to measure weak gravitational lensing by imaging ~ 1.5 billion galaxies, plus a spectroscopic slitless survey of ~ 65,000,000 galaxies. Both surveys will be able to constrain both the expansion and growth histories of the universe. Their combination makes Euclid a unique experiment, with superb precision and optimal cross-control of systematic effects (see Laureijs et al. 2011). In this paper we present the expected performances of the spectroscopic survey, as described in the Euclid Definition Study Report (Laureijs et al. 2011), in quantifying the growth history and test for possible modifications of gravity as the origin of cosmic acceleration.

We shall first explore the forecasted constraints on the growth rate both for the expected survey parameters, and for a pessimistic galaxy density reduced by a factor of two. We will use the well-known parameterisation of the growth rate $f(z) \sim \Omega_m(z)^{\gamma}$ (Peebles 1980; Fri 1985; Lightman & Schechter 1990; Wang & Steinhardt 1998), where $\Omega_m = \rho_m/\rho_{crit}$, ρ_{crit} is the matter energy density and ρ_{crit} is the critical density making the universe spatially flat, to look at future constraints on the parameter γ, which characterises the gravity model, and test degeneracies arising when making assumptions on the background cosmology.

We will then look at how constraints on growth are modified when survey specifications are changed, such as the total covered area and the corresponding galaxy number density (see discussion in Sec. 4) and the redshift range covered by the survey. In order to do this we need a measure of the quality of our growth constraint. For this reason we introduce a new simple Figure of Merit (FoM), analogous to the dark energy FoM defined in the Dark Energy Task Force Report (Albrecht et al. 2006). We then show how this FoM depends on the already mentioned survey specifications.

Expressing f as a function of γ when considering sub-horizon
Probing deviations from General Relativity with the Euclid spectroscopic survey

2 MEASURING GROWTH: REDSHIFT SPACE DISTORTIONS

Our observable, containing both BAO and RSD, is the galaxy power spectrum. We write the observed power spectrum P_{obs} as

$$ P_{\text{obs}}(k^\perp, k^\parallel) = \frac{\Delta^2(\gamma)}{D_A(z)^2} \left[\frac{H(z)}{H(z)^2} \right] (b \sigma_g + f \sigma_s m_4)^2 + P_{\text{shot}}. \quad (1) $$

where the subscript r indicates quantities in the reference cosmology chosen to compute the power spectrum, $k^\perp = k^2D_A(z)/D_A(z)^2$, $k^\parallel = k^2H(z)/H(z)^2$ are the wave modes perpendicular and parallel to the line-of-sight, $k = \sqrt{k^2 + k^2}$, $\mu = \mathbf{k} \cdot \mathbf{r}/k = k^\parallel/k$ and P_{shot} is a scale-independent offset due to imperfect removal of shot-noise. The term $[D_A(z)/D_A(z)^2][H(z)/H(z)^2]$ represents the distortion of the power spectrum due to the Alcock-Paczynski effect [Alcock & Paczynski 1979], which also has the impact of changing the true (k, μ) into reference (k_r, μ_r).

Notice here that the term $[P_{\text{matter}}(k)/\sigma_g^2]_{z=0}$ is independent of the normalisation of the matter power spectrum.

We allow for the growth of structure to vary away from that of a LCDM model in two directions. First we allow the growth rate, which is well approximated by $f = \Omega_m + (\gamma - 4/7)/\Omega_k$ for curved space, with $\gamma = 0.545$ in LCDM models, to have $\gamma \neq 0.545$. Second, we directly allow a modification of the standard equation for the time-like metric potential Ψ. This modification is described following [Pogosian et al. 2010; Song et al. 2011] by a constant parameter $\mu_s \neq 0$. This choice and its motivation are discussed in more detail in Appendix A. We will use these parameters to model growth from observations of redshift-space distortions.

3 FORECASTING THE ERRORS

In this section we give details of the method used to estimate the expected minimum errors obtainable on γ or μ_s and the other cosmological parameters from future redshift surveys, once the measurement error on the observables is known.

To perform our forecasts we use the standard Fisher matrix approach which was introduced to forecast errors on $P(k)$ and derived parameters [Tegmark 1997] and then adapted by [Seo & Eisenstein 2003] to the measurement of distances using the BAO position, avoiding the “noise” of RSD. A series of papers in the literature have then used and discussed this technique to extract the information on both expansion and growth (for example recently [Wang 2008; White et al. 2008]; [Simpson & Peacock 2010; Wang et al. 2010; Samushia et al. 2011; Di Porto et al. 2011]). Here we follow in particular the approximations discussed in [Samushia et al. 2011].

Briefly, the Fisher matrix is defined as (see e.g. Bassett et al. 2009)

$$ F_{ij} = -\left(\frac{\partial^2}{\partial \mathbf{p}_i \partial \mathbf{p}_j} L(\mathbf{p}) \right), $$

where L is the likelihood function and \mathbf{p}_i are the model parameters whose error one wishes to forecast. It is possible to show that the Fisher matrix is the inverse of the covariance matrix, $F_{ij} = C^{-1}_{ij}$, in the (strong) assumption that the likelihood is a Gaussian function of the parameters and not only of the data. The galaxy power spectrum Fisher matrix can be approximated as (Tegmark 1997)

$$ F_{ij} = \int_{k_{\text{min}}}^{k_{\text{max}}} \frac{\partial^2}{\partial \mathbf{p}_i \partial \mathbf{p}_j} \ln P_{\text{obs}}(k) V_{ef}^2 \frac{d^3k}{2(2\pi)^3} \quad (2) $$

where $P_{\text{obs}}(k)$ is the galaxy power spectrum, Eq. (1), and its derivatives are computed in a chosen fiducial model, $V_{ef} =$...
Following [Samushia et al. (2011)], we neglect P_{shot}, since this term should only introduce negligible error. We also neglect the dependence of $P_{matter}(k)$ on $\Omega_c h^2, \Omega_m h^2, h$ and n_s. This means that we do not use the information coming from the shape of the matter power spectrum. We finally multiply the integrand of the Fisher Matrix by a factor accounting for a possible error in redshift, $\exp[-(k_{red} \sigma_M \gamma_z/H_{red})^2]$, where $\sigma_z = 0.001(1+z)$ is the standard deviation of the redshift error expected in Euclid. In each redshift bin centred at $z = z_i$ we compute a Fisher matrix [See & Eisenstein (2003)] with parameters p_j

\[p_j = \{ f(z_i)\sigma_M(z_i), b(z_i)\sigma_M(z_i), \ln D_A(z_i), \ln H(z_i) \}, \]

where p_j in different redshift bins are considered to be independent; then all the matrices corresponding to all z_i are summed. From the total Fisher matrix it is possible to estimate the errors on each p_j in each redshift bin, by marginalising over all other parameters. To obtain errors on cosmological parameters, we marginalise over $b(z_i)\sigma_M(z_i)$ and project the obtained matrix into the final cosmological parameter set.

Regarding the latter, we test three nested models: 1) a simple quasi-LCDM with a constant w fixed to -0.95 instead of -1 as in LCDM, which we dub qLCDM; 2) a model where dark energy has constant equation of state w, dubbed wCDM and 3) a model where the equation of state of dark energy is allowed to vary, following the evolution $w = w_0 + w_a(1 - a)$, which we call CPL [Chevallier & Polarski (2001); Linde (2003)]. For all these models we consider both the flat and the curved space cases. The full set of parameters, from which we pick the appropriate subset according to the chosen model, is therefore

\[q_j = \{ h, \Omega_m, \Omega_k, w_0, w_a, \gamma or \mu_s, \sigma_M(z = 0) \}, \]

where $h = H_0/(100\text{ km s}^{-1}\text{ Mpc}^{-1})$. This is different from [Samushia et al. (2011)] since they do not consider $\sigma_M(z = 0)$ and their resulting errors will be consequently smaller with respect to this work, as we will see in Sec. 5.

Our fiducial model is, as in the Euclid Definition Report, a flat constant w cosmology with parameter values as the best-fit WMAP-7 [Komatsu et al. (2011)] results (except for w):

\[h = 0.703, \Omega_m = 0.271, \Omega_k = 0, \sigma_M(z = 0) = 0.809, w_0 = -0.95, w_a = 0, \gamma = 0.545/\mu_s = 0, \Omega_b = 0.045, n_s = 0.966 \]

The fiducial matter power spectrum for this cosmology is computed using CAMB [Lewis et al. (2000)].

We assume a scale-independent bias, which is a good approximation for large enough scales. As a fiducial bias, we take the bias function derived by [Orsi et al. (2009)] using a semi-analytical model of galaxy formation. For an analysis of how the bias can be constrained and of the impact of assuming a biasing model on the estimates of the growth factor we refer to the parallel work of [Di Porto et al. (2011)]. Number densities and biasing parameters are summarised in Table 1 together with the integration limits in k. The latter correspond to scales R such that $\sigma^2(R) = 0.25$, with an additional cut at $k_{max} = 0.20 h \text{ Mpc}^{-1}$.

In a separate paper, [Bianchi et al. (2012)] perform a detailed study of statistical and systematic errors in RSD measurements, using a large set of mock surveys built from numerical simulations. They compare their results with predictions from the Fisher matrix code used here, finding fairly good agreement when considering only linear scales.

4 MODELLING THE EUCLID SURVEY

Euclid will cover an area of $15,000 \text{ deg}^2$ in both imaging and spectroscopy [Laureijs et al. (2011)], measuring redshifts in the infrared band ($0.9-2 \mu\text{m}$) for ~ 65 Million galaxies, using a slitless spectrograph. With this technique, the redshift measurement relies on the detection of emission lines in the galaxy spectra, which in the chosen wavelength range in the vast majority of cases will be the Hα line, redshifted to $0.7 < z < 2$.

Intrinsic to the slitless technique is the impossibility to define a priori a survey flux limit (as normally done in a classical slit survey, which is based on a well defined target sample selected to a given magnitude or flux limit). Spectra are intrinsically confused by superpositions and the actual flux limit depends not only on the nominal signal-to-noise reachable through a given exposure, but also and fundamentally on the strategy devised as to resolve the confusion among the different spectra. In the case of Euclid, this is achieved first by splitting the wavelength range into two sub-exposures through a “blue” and a “red” grisms, covering respectively the wavelength ranges $0.9-1.4 \mu\text{m}$ and $1.4-2.0 \mu\text{m}$; this has the advantage of halving the length of the spectra on the detector, thus reducing superpositions. Secondly, the blue and red exposures are in turn split into two sub-exposures, observed rotating the field of view by 90°. This makes for four different exposures of a given field, which result in a sensible treatment of spectral confusion. To verify this and compute the success rate of the survey (i.e. the fraction of correctly measured redshifts over the total number of spectra), it was necessary to develop since the early stages of the project an advanced end-to-end simulation pipeline. An accurate description of these simulations is beyond the scope of this paper, and we refer the reader to the Euclid Definition Study Report [Laureijs et al. (2011)], and to the specific paper (Garilli et al. 2012, in preparation). Here we recall only the main concepts, which are relevant for the present analysis.

The end-to-end spectroscopic simulations take into account Euclid’s instrumental (point-spread function, resolution and instrumental background) and observational (exposure time, astrophysical background) parameters, to build an artificial “observation” of a realistic galaxy field. The input data set is built starting from the COSMOS catalogue of photometric redshifts [Ilbert et al. (2009)], which contains all relevant information (coordinates, redshift, luminosity, spectral energy distribution, stellar formation rate, etc.). Most importantly, the COSMOS depth and extensive wavelength coverage (over 30 spectral bands), allows us to assign a well-defined spectral type and thus a realistic distribution of Hα equivalent widths, down to large distances. It is also important that, being based on real observations, the catalogue includes also a realistic clustering of the sources. Stars are then added upon the galaxy catalogue. The package aXeSIM3 is then used to generate the four 2D dispersed images of the field and then extract the four 1D spectra for each target. Redshift are measured making use of RESS (Redshift Evaluation from Slitless Spectroscopy), an automatic software running within IRAF environment, which has been devised (Rossetti E. 2012, in preparation) to reduce and analyse highly contam-
5 STANDARD PREDICTIONS FOR EUCLID

For our computations here, we split the Euclid predicted redshift distribution over the range $0.7 < z < 2$, into 14 bins with $\Delta z = 0.1$. Using the predicted galaxy number density in each bin shown in Fig. 1, we obtain the error on our observable, the power spectrum, and estimate the resulting precision on the measurement of $f \sigma_8$ after marginalisation over the other parameters. We plot errors on $f \sigma_8$ in Fig. 2 (dark blue error bars), where we also show for comparison current measurements of $f \sigma_8$ (light pink and magenta error bars) and the pessimistic case of observing only half the number of galaxies forecasted in Geach et al. (2008) (light blue error bars), as the authors themselves claim that their counts may be wrong by a factor of 2.

Current measurements shown in Fig. 2 are listed in Table 2.

z	b	k_{max} (h Mpc$^{-1}$)
0.7	1.083	0.1590
0.8	1.125	0.1691
0.9	1.104	0.1804
1.0	1.126	0.1917
1.1	1.208	0.1958
1.2	1.243	0.2000
1.3	1.282	0.2000
1.4	1.292	0.2000
1.5	1.363	0.2000
1.6	1.497	0.2000
1.7	1.486	0.2000
1.8	1.491	0.2000
1.9	1.573	0.2000
2.0	1.568	0.2000

Table 1. Galaxy biasing parameter b and k_{max} of integration for each redshift bin centred in z for the Euclid spectroscopic survey baseline configuration, having an observed area of 15,000 deg2.

The values of $f \sigma_8$ are computed in the case of Guzzo et al. (2008) and Hawkins et al. (2003) by using the value of f/b given by the authors and computing $b \sigma_8$ from b and the reference cosmology they adopt for the computation of b (or of Lahav et al. 2002 in the case of Hawkins et al. 2003); in the case of Ross et al. (2007), $b \sigma_8$ was computed using the expression of Zehavi et al. (2005), $b \sigma_8 = f \sigma_8 (b \sigma_8)^2 = f \sigma_8 g(y) [3 - 9g(y)/4 + 3g(y)/16]$. Cabre & Gaztanaga (2009) indicate directly their value of $b \sigma_8$, while Blake et al. (2011) and Samushia et al. (2011) compute directly $f \sigma_8$. Error bars are obtained through the error propagation formula for uncorrelated data, when not directly specified in the papers.

Together with the (solid black) curve representing our fiducial $f \sigma_8$, we also show for comparison a (dashed green) line for flat DGP, (calculated by numerical integration of the corresponding equation for f) and a (dotted red) line for the coupled model of Di Porto et al. (2011), computed using the parameterisation of Di Porto & Amendola (2008) with a coupling $\beta_c = 0.2$ (both with $\Omega_m = 0.271$ and the same $\sigma_8(z_{\text{CMB}})$ of our fiducial model).

We notice that we reach accuracies between 1.3% and 4.4% in the measurement of $f \sigma_8$ depending on the redshift bin, where the highest precision is reached for redshifts $z \simeq 1.0$.

5.1 Comparison to other surveys

Together with Euclid, other ongoing and future surveys will constrain cosmology by measuring $f \sigma_8$. Here we compare the relative errors on $f \sigma_8$ obtained using different spectroscopic galaxy redshift surveys. In particular, we consider the BOSS survey (see Schlegel et al. 2009) and the BigBOSS (see Schlegel et al. 2009) Emission Line Galaxies

\[\text{This formula actually gives us the non-linear } b \sigma_8, \text{ since we have used the non linear estimate of } \xi \text{ of Ross et al. (2007) to compute it. What we needed to obtain the linear } f \sigma_8 \text{ would be the linear } b \sigma_8, \text{ but we do not have it. Therefore our estimate of } f \sigma_8 \text{ for the Ross et al. (2007) datapoint might be } 5 - 10\% \text{ higher than it should.} \]

\[\text{http://cosmology.lbl.gov/BOSS/} \]

\[\text{http://bigboss.lbl.gov/} \]
Figure 2. Fisher matrix forecasts of the errors expected on the growth rate (dark-blue error bars), expressed through the bias-free combination $f(z)\sigma_8(z)$, obtainable from the Euclid redshift survey through the combination of amplitude and redshift-space anisotropy of galaxy clustering. The light-blue error bars (shown with a slight offset in redshift for visualisation purposes) represent the case of a galaxy density reduced by a factor of two with respect to that forecasted for the galaxies observed by Euclid (Geach et al. 2008). The solid black line represents the fiducial $f\sigma_8$, computed for the cosmology shown in Eq. (5). The dashed green line shows the growth of a flat DGP model (calculated by numerical integration of the corresponding equation for $f(z)$). The red dotted line represents $f\sigma_8$ of a coupled model with coupling parameter $\beta_c = 0.2$. All models are computed for $\Omega_m = 0.271$ and for the same $\sigma_8(z_{CMB})$ as for the fiducial model. In the same plot we also show measurements of $f\sigma_8$ from past surveys (magenta error bars) and the recent WiggleZ survey (pink error bars), see explanation in the text.

survey	reference paper	z	$f\sigma_8$
VVDS F22 wide	Guzzo et al. (2008)	0.77	0.49 ± 0.19
2SLAQ galaxy	Ross et al. (2007)	0.55	0.50 ± 0.07
SDSS LRG	Cabre & Gaztanaga (2009)	0.34	0.53 ± 0.07
	Samushia et al. (2011)	0.25	0.35 ± 0.06
		0.37	0.46 ± 0.04
2dFGRS	Hawkins et al. (2003)	0.15	0.39 ± 0.08
WiggleZ	Blake et al. (2011)	0.22	0.49 ± 0.07
		0.41	0.45 ± 0.04
		0.6	0.43 ± 0.04
		0.78	0.78 ± 0.04

Table 2. Current measurements of $f\sigma_8$

(ELGs) and Luminous Red Galaxies (LRGs).7 Regarding the fiducial bias, we use the forecasts by Orsi et al. (2009) for BigBOSS ELGs. We use $b = 2G(0)/G(z)$ (where $G(z)$ is the standard linear growth rate) for BOSS and BigBOSS LRGs (see Reid et al. 2010). Table 3 summarises the main characteristics of these surveys.

7 We thank the BigBOSS consortium for providing their latest yet unpublished estimate of their expected galaxy densities, which we used in creating this plot.
We next look at how the errors on cosmological parameters. We only show results for two parameterisations, tailed error forecasts), while in the next section we will compare the two parameterisations μ and γ. In order to understand the model-dependence of these forecasts, we use the nested cosmologies described in Sec. 2: the more complicated model is a generalisation of the less complicated one, and the generalisation consists in the addition of one extra parameter. We also study the influence in the estimate of background parameters of assuming GR or allowing for a different constant γ. Results are shown in Figs. 4-7.

5.2 Cosmological parameters

We next look at how the errors on cosmological parameters. We only show results for γ and briefly mention results for μ_s (see Appendix B for more detailed error forecasts), while in the next section we will compare the two parameterisations γ and μ_s. In order to understand the model-dependence of these forecasts, we use the nested cosmologies described in Sec. 2: the more complicated model is a generalisation of the less complicated one, and the generalisation consists in the addition of one extra parameter. We also study the influence in the estimate of background parameters of assuming GR or allowing for a different constant γ. Results are shown in Figs. 4-7.

From Fig. 4 and 5 and by comparing left with right panel of Fig. 6 it is clear that what affects most strongly the error estimate, by enlarging the ellipses and even changing the degeneracy direction of parameters, is the assumption of different dark energy models. The assumption of zero curvature also has an influence. The less parameters the cosmological model possesses, the stronger is the assumption of zero curvature becomes. As regards the μ parameterisation, the error on μ_s is forecasted to be between ~ 0.5 and ~ 2, depending on the dark energy model. The assumptions on w and those on Ω_m affect more strongly constraints on this growth parameter, in the case of the $\mu_s - \Omega_m$ error ellipses.

As regards the μ parameterisation, the error on μ_s is forecasted to be between ~ 0.5 and ~ 2, depending on the dark energy model. The assumptions on w and those on Ω_m affect more strongly constraints on this growth parameter, in the case of the $\mu_s - \Omega_m$ error ellipses.

The assumption of GR has a different influence on different pairs of parameters. As regards $\Omega_m - \Omega_k$, we can see from Fig. 5 that fixing γ reduces only the error for Ω_k, while errors on w_m and w_a are very weakly affected by the assumption of GR and also of zero curvature (see Fig. 7), so that their determination is rather robust. This conclusion agrees with what obtained in Samushia et al. (2011) (see their Figs. 4 (a) and 5 (a) of the final published version), where the small

Table 3. Future and ongoing galaxy redshift surveys and their main properties

Survey	Redshift range	Area [deg2]	n [h3Mpc$^{-3}$]	Bias
BOSS LRG	$0.05 < z < 0.65$	10,000	3×10^{-4}	2.0 $G(0)/G(z)$
BigBOSS LRG	$0.1 < z < 1.1$	14,000	unpublished	2.0 $G(0)/G(z)$
BigBOSS ELG	$0.1 < z < 1.8$	14,000	unpublished	see Orsi et al. (2009)

Figure 4. Forecasted errors on cosmological parameters using the Euclid spectroscopic survey. Solid (black) lines correspond to qLCDM, dashed (red) lines to wCDM and dot-dashed (cyan) lines to CPL. Thick lines represent models with $\Omega_k = 0$, while thin lines represent curved models. Left plot: marginalised errors on Ω_m and γ. Right plot: marginalised errors on w_0 and γ.

The results are shown in Fig. 3. We first notice that Euclid (represented by dark-green circles) will obtain the most precise measurements of growth, even in the pessimistic situation of detecting only half the galaxies (light-green circles). In redshift coverage it will be perfectly complementary to BOSS. The partial overlap with BigBOSS, whose ELG sample will reach similar errors up to $z \sim 1.4$, will allow for interesting and useful independent measurements and cross-checks.

Figure 4. Forecasted errors on cosmological parameters using the Euclid spectroscopic survey. Solid (black) lines correspond to qLCDM, dashed (red) lines to wCDM and dot-dashed (cyan) lines to CPL. Thick lines represent models with $\Omega_k = 0$, while thin lines represent curved models. Left plot: marginalised errors on Ω_m and γ. Right plot: marginalised errors on w_0 and γ.
differences are due to the presence of an extra parameter in our analysis over which we marginalise, namely $\sigma_s(z = 0)$ and to the different survey specifications. The different degeneration direction of $\Omega_m - \Omega_b$ is due to the wrong sign convention being adopted in figure 5 of Samushia et al. (2011) which had the effect of inverting the Ω_m axis. We have checked that our code gives exactly the same results as Samushia et al. (2011) if the parameter $\sigma_s(z = 0)$ is fixed and the survey specifications are identical. The pair of parameters which is most affected by the choice of fixing γ is $\Omega_m - w_0$, more strongly in the case of wCDM, as can be seen in Fig. 6.

5.3 Adding Planck

We then quantify the impact of adding Planck constraints to the Euclid spectroscopic survey constraints, to check how much errors reduce. The Planck satellite (part of the Cosmic Vision programme by the European Space Agency) has been launched in 2009 and it is presently operating (Tauber et al. 2010). Its results on cosmology will be made public in the next years and will be the state-of-the-art data on CMB temperature and polarisation. It is natural and convenient to combine these data to Euclid galaxy survey data, first of all because these probes are highly complementary, observing the early and late universe respectively, and secondly because of the presence of the BAO feature in both datasets. As in Samushia et al. (2011), we utilise the Dark Energy Task Force Planck Fisher, computed for 8 parameters: h, Ω_m, Ω_k, w_0, w_a, $\sigma_s(z = 0)$, n_s and Ω_b. Since this Fisher matrix is computed assuming GR, to generalise it for arbitrary γ in order to sum it to our galaxy survey Fisher matrix, we use the same method as in Samushia et al. (2011) (see their Appendix B for details). In Figs. 8-11 we compare errors with (solid purple lines) and without (red-dashed or cyan dot-dashed lines) adding Planck, for a CPL dark energy. As can be seen from Fig. 8 Planck noticeably improves marginalised errors on γ, obviously by constraining the background parameters. The error most reduced by Planck is, as one expects, that on $\Omega_m - \Omega_k$ (see Fig. 9), quite independently of the assumptions on growth (compare thick lines—corresponding to assuming GR, to thin lines—where γ is not fixed). As regards constraints on the alternative μ parameterisation, here the impact of adding Planck data on combined $\mu_s - \Omega_m$ and $\mu_s - w_0$ constraints is stronger than for γ; the projected error on μ_s is reduced from ~ 2 to ~ 0.7. This is shown in more detail in Appendix B. Joint Euclid-Planck constraints on $\Omega_m - w_0$ (Fig. 10) and $w_0 - w_a$ (Fig. 11) depend more strongly on the assumption on γ, but are in any case a decisive improvement with respect to Euclid-only constraints. This is again consistent with what obtained by Samushia et al. (2011), who find slightly tighter constraints for the reason explained above.

6 A FIGURE OF MERIT FOR GROWTH

Having estimated errors on parameters in the fiducial Euclid configuration, in this section we move to investigating how well the growth of structure is measured when varying essential survey parameters, such as the observed area and the corresponding galaxy number densities observed, as well as the redshift range where galaxies are observed. To quantify the success in measuring growth, we resort to a dedicated Figure of Merit, analogous to the Dark Energy Task Force FoM. In the Dark Energy Task Force report Albrect et al. (2006), a FoM was introduced to quantify progress in measuring the properties of dark energy. This was defined as the inverse of the area enclosed in the 95% confidence level contour of the equation of state parameters $w_0 - w_a$.

6.1 Definition of the FoM

Here we introduce an analogous FoM aimed at quantifying the precision of the growth measurement. Our FoM is defined as the inverse of the area enclosed in the 95% c.l. contour of the growth
Probing deviations from General Relativity with the Euclid spectroscopic survey

Figure 6. Forecasted errors on Ω_m and w_0 with the Euclid spectroscopic survey. Solid (black) lines correspond to models with $\Omega_k = 0$ and dashed (red) lines to curved models. Thick lines refer to models where γ is fixed to the GR value, while thin lines represent models where γ is allowed to vary. **Left panel:** wCDM model. **Right panel:** CPL model.

Figure 8. Comparison of marginalised errors on curved CPL, obtained using Euclid only and joint Euclid and Planck data. Dot-dashed (cyan) contours correspond to error ellipses using Euclid data only, while solid (purple) contours show joint constraints from Euclid and Planck. **Left plot:** marginalised errors on Ω_m and γ. **Right plot:** marginalised errors on w_0 and γ.

parameter (γ or μ_s) and Ω_m. We choose Ω_m as our second parameter because we want the FoM to be usable for all models, while e.g. the equation of state, which could represent an alternative to Ω_m, is fixed to -0.95 in qLCDM and therefore cannot be used. Moreover, our main observable, the RSD, constrains Ω_m very accurately. The FoM as we define it can be computed through this simple formula:

$$\text{FoM} = \frac{\sqrt{\det F_{\gamma \Omega_m}}}{-2\pi \ln \left[\text{erfc} \left(\frac{\gamma}{\sqrt{2}} \right) \right]}, \quad (6)$$

or through an analogous one for μ_s.

6.2 Dependence of the FoM on survey specifications

We compare here γ and μ_s and explore three survey parameters: the survey area, corresponding to an associated galaxy number density, the maximum redshift z_{max}, and the redshifts range $z_{\text{min}} - z_{\text{max}}$.

If we wanted to vary the survey area independently of the other survey parameters, we would find a simple proportionality relation: FoM \propto area, independently of the parameterisation assumed. This can be easily understood by looking at Eq. (2) and knowing that V_{survey} is always proportional to the total survey area, which means that $F_{ij} \propto$ area. Therefore, $\det F_{\gamma \Omega_m} \propto$ area2 and from Eq. (5), FoM \propto area.

A more realistic question to be asked when planning a survey
is rather whether it is more convenient to invest the total survey
duration by mapping a smaller area for a longer time, so to increase
the number density of observed galaxies, or rather mapping a larger
region of the sky but collecting a sparser sample of galaxy spectra.

To understand this we have built a simple linear scaling on
how the number of galaxies per redshift bin increases when the
area is reduced and the exposure time per sky patch is increased but
the total available time is fixed. In particular, the same end-to-end
simulations described in Sec. 4 provide us also with an estimate of
the number density increase obtained when increasing the observing
time per observed patch by 25%. We assume that this increase
corresponds to a 25% decrease in survey area covered, given that
the total survey time available is constant, and that this relation is
linear. From these considerations, we derive the following formula:

\[n(z) = n_{15000}(z) \left(1 - C(z) + C(z) \frac{15,000 \, \text{deg}^2}{\text{area}} \right), \]

(7)

where \(n_{15000} \) is the number density corresponding to an area of
15,000 square degrees and the values of \(C(z) \) are listed in Table
4. More precise answers would be obtained using e.g. the method
of Bassett et al. (2005) but we expect this approximation to be suf-
ficient at this stage to roughly describe the trade-off between area
and number density. In Figure 12 we show the dependence of the
FoMs for \(\gamma \) and \(\mu_a \) (left and right panels respectively) on the area
galaxy number density. In order to better appreciate the functional
behaviour, we plot the relative improvement in the FoM when
varying the area with respect to the FoM of area = 12,000 deg^2:
(\(\text{FoM(area)} - \text{FoM(area = 12000deg}^2) \) /\(\text{FoM(area = 12000deg}^2 \)). Here we can see that the improvement in the growth
measurement is nearly linear, at least for the area interval con-
sidered (12,000deg^2 - 20,000deg^2), and mildly dependent on
the dark energy model considered, but also rather slow, so that a
large increase in area might not be favoured in case the cost for
obtaining it grows too fast. Comparing left to right plot, we also
note that in the case of the \(\mu_a \) parameterisation the improvement
of the FoM depends more strongly on the cosmological model one
has previously assumed. The largest improvement appears for flat
CPL.

As regards the dependence of the FoM on \(z_{\text{max}} \), we evalu-
ated it by calculating our total Fisher matrix as the sum of the
Fisher matrices computed for the redshift bins from \(z = 0.7 \) to \(z = z_{\text{max}} \) only (see Sec. 5 for further details on the gen-
eral Fisher matrix calculation technique). Fig. 13 shows the rel-
ative difference of the FoM(\(z_{\text{max}} \)) to the FoM for \(z_{\text{max}} = 1 \):
The amplitude of the spread due to model assumptions is much wider than for the area - galaxy number density dependence, and wider in the case of γ. The latter is because the derivative of our observable $f\sigma_8$ with respect to μ_γ decreases with redshift while its derivative with respect to γ increases (as we have checked numerically), so that at $z \simeq 1$ $f\sigma_8$ is more sensitive to changes in γ than in μ_γ. This explains why in the case of γ and for the CPL model, which has the strongest time-dependence of the background cosmology, there is more advantage from higher redshift bins than for the case of μ_γ.

In both parameterisations complex models gain more from higher redshift data, so e.g. by increasing z_{max}, wCDM’s FoM improves more than qLCDM’s does, and the FoM of models with $\Omega_k \neq 0$ improves more than the corresponding one for flat models (with the exception of CPL with γ). In the case of γ, this is easy to explain. We know that $f = \Omega_m(z)\gamma$. In the case of a flat qLCDM model $\Omega_m(z)$ approaches 1 as soon as matter starts dominating, and this happens already for small values of z. From such z on, the value of f becomes practically independent of γ so that higher redshift data do not help constraining it anymore. If instead the model is more complex, e.g. Ω_k is allowed to vary away from 0, then $\Omega_m(z)$ is more similar to f_{max} and so increasing z_{max} may improve more the FoM. Something similar also likely happens for μ_γ, but it is more difficult to illustrate it since we only have numerical solutions for f in this case. Note also that for μ_γ there is more difference between curved and flat models than for γ.

This and the fact that the FoM grows rapidly when increasing

\[\text{(FoM}(z_{\text{max}}) - \text{FoM}(z_{\text{max}} = 1)) / \text{FoM}(z_{\text{max}} = 1) \]. Here the amplitude of the spread due to model assumptions is much wider than for the area - galaxy number density dependence, and wider in the case of γ. The latter is because the derivative of our observable $f\sigma_8$ with respect to μ_γ decreases with redshift while its derivative with respect to γ increases (as we have checked numerically), so that at $z \simeq 1$ $f\sigma_8$ is more sensitive to changes in γ than in μ_γ. This explains why in the case of γ and for the CPL model, which has the strongest time-dependence of the background cosmology, there is more advantage from higher redshift bins than for the case of μ_γ.

In both parameterisations complex models gain more from higher redshift data, so e.g. by increasing z_{max}, wCDM’s FoM improves more than qLCDM’s does, and the FoM of models with $\Omega_k \neq 0$ improves more than the corresponding one for flat models (with the exception of CPL with γ). In the case of γ, this is easy to explain. We know that $f = \Omega_m(z)\gamma$. In the case of a flat qLCDM model $\Omega_m(z)$ approaches 1 as soon as matter starts dominating, and this happens already for small values of z. From such z on, the value of f becomes practically independent of γ so that higher redshift data do not help constraining it anymore. If instead the model is more complex, e.g. Ω_k is allowed to vary away from 0, then $\Omega_m(z)$ is more similar to f_{max} and so increasing z_{max} may improve more the FoM. Something similar also likely happens for μ_γ, but it is more difficult to illustrate it since we only have numerical solutions for f in this case. Note also that for μ_γ there is more difference between curved and flat models than for γ.

This and the fact that the FoM grows rapidly when increasing...
z_{max} encourages the effort to reach the highest possible maximum limiting redshift in future surveys.

Finally, we test the dependence of the growth FoM on the redshift interval covered by the survey. We plot in Figure 14 contours of constant FoM (in particular, FoM $= 10\%$, 25%, 50% and 75% of the maximum FoM reached in each case) as functions of z_{min} and z_{max}, where z_{min} varies between 0.5 and 1.1 and z_{max} between 0.9 and 2.0. We concentrate here only on CPL dark energy, since this is the most complex and complete of our set of models. We first note that for the μ_s parameterisation there is stronger dependence on curvature of the FoM than for the γ parameterisation (compare solid and dashed lines). We also note that the contours for γ (left panel) and μ_s (right plot) and normalised to the FoM at $z_{\text{max}} = 1.0$. The symbols have the same meaning as in Fig. 12 but here the green solid line joins symbols corresponding to the most general model, curved CPL.

$0.7 \leq z \leq 2.0$ for all combinations of cosmological models, both for the γ and the μ_s parameterisation. We also look at how the FoM is improved when adding data from a low-z galaxy survey (as may be BOSS) and further add Planck data. In square brackets we show how the FoMs are degraded in the pessimistic case of the galaxy number density being half that forecasted in Geach et al. (2008).

7 DISTINGUishing General Relativity FROM MODIFIED GRAVITY MODELS

We finally turn to trying and answering the question “is the Euclid spectroscopic survey able to distinguish between GR and modified gravity?” To do this we use model selection tools (aimed precisely at telling how strongly a set of data prefers a model over other models) from Bayesian statistics. In particular, we apply the method of Heavens et al. (2007), where the Fisher matrix approach is generalised to the context of model selection. The Bayesian tool for model selection is the Bayes’ factor B, defined as the ratio of probabilities of model M' to model M, given the same data D, independently of the values assumed by the model parameters θ' or θ:

$$B = \frac{p(M'|D)}{p(M|D)} = \frac{p(M')}{p(M)} \frac{\int d\theta' p(D|\theta', M') p(\theta'|M')}{\int d\theta p(D|\theta, M) p(\theta|M)}$$

where $p(M|D)$ is the probability of model M given the data D, $p(M)$ is the prior probability of model M (i.e. the probability that
model M is true before the experiment is done), which is unknown, and we will assume $p(M) = p(M')$: $p(D|\theta, M)$ is what is usually called the likelihood function (i.e. the probability that the data are true given the model M with parameters θ; $p(\theta|M)$ is the prior probability of the model parameters θ (i.e. the probability distribution that one believes the model parameters have before the experiment is done). As in Heavens et al. (2007), M' is here a dark energy model well described by the CPL parameterisation, while M is a modified gravity model whose background expansion can still be described by the same $H(z)$ of the CPL parameterisation, (not necessarily by the same fiducial parameters) but now the growth index γ is fixed to a fiducial value different from the GR value of 0.545. Our fiducial M' cosmology is that of Eqs. (5). For our case the forecasted Bayes’ factor is (Heavens et al. 2007)

$$ = (2\pi)^{-1/2} \sqrt{\text{det} F} \exp \left(-\frac{1}{2} \delta\theta_\alpha F_{\alpha\beta} \delta\theta_\beta \right) \Delta \gamma$$

Figure 14. Dependence of the growth FoM on the redshift range for the two different growth parameterisations considered: contours of FoM = 10%, 25%, 50% and 75% of the maximum FoM reached in each case (corresponding to the use of the maximum redshift range $0.7 \leq z \leq 2.0$) are shown as a function of the lowest (z_{\min}) and highest (z_{\max}) redshift bins used. Here, a CPL model (dark energy with variable equation of state $w = w_0 + \omega_a(1 - a)$) is assumed. Solid (dashed) lines correspond to a cosmology with $\Omega_k = 0$ ($\Omega_k \neq 0$) Left panel: γ parameterisation. Right panel: μ_a parameterisation.

Table 5. Figures of Merit for Ω_m and γ. Both the case of fixing $\Omega_k = 0$ (flat space) and allowing it to vary (curved space) were listed. All figures in square brackets represent the case of the galaxy number density being halved. The addition of other surveys at lower redshift was considered for all models, while the effect of adding Planck was computed only for one representative case, i.e. that of the most complex model (curved CPL).

γ	Euclid	+ low-z data	+ Planck	
	flat space	curved space	flat space	curved space
qLCDM	545 [361]	209 [135]	561 [376]	221 [137]
wCDM	217 [146]	74 [48]	225 [153]	75 [49]
CPL	35 [23]	30 [20]	35 [23]	30 [20]
				141 [140]

$\delta\theta_\alpha = -\left(F^{\alpha\beta} \right)_{\alpha\beta} G_{\beta} (\gamma - \gamma_{GR})$ (10) for α corresponding to all parameters but γ, while $\delta\theta_\gamma = (\gamma - \gamma_{GR})$ for γ associated to the γ parameter. Here G_{β} is the vector drawn from F by extracting the column corresponding to the parameter γ and the rows corresponding to all parameters except γ. From the above we see that $$ depends on the offset of γ with respect to the GR value, $(\gamma - \gamma_{GR})$, and on the prior on γ, $\Delta \gamma$.

In Figure 15 we show the dependence of the log of $$ on $|\gamma - \gamma_{GR}|$ for two different priors (represented by the solid and red dashed lines) in the case of our Euclid-like spectroscopic galaxy survey. The horizontal dotted lines describe values of $\log B$ which correspond to 'substantial' ($1 < \log B < 2.5$), 'strong' ($2.5 < \log B < 5$) and 'decisive' ($\log B > 5$) evidence in favour of one model with respect to the other (bottom to top) according to Jeffreys’ scale (Jeffreys 1998). As can be seen from the figure, the Euclid spectroscopic survey alone will be able to substantially distinguish between GR and a modified gravity model if $\gamma - \gamma_{GR} \geq 0.13$, while it will be able to decisively distinguish between models if

\[a \cdot Standard Library Name\]
Table 6. Figures of Merit for Ω_m and μ_s. Both the case of fixing $\Omega_k = 0$ (flat space) and allowing it to vary (curved space) were listed. All figures in square brackets represent the case of the galaxy number density being halved. The addition of other surveys at lower redshift was considered for all models, while the effect of adding Planck was computed only for one representative case, i.e. that of the most complex model (curved CPL).

μ_s	Euclid flat space	Euclid curved space	+ low-z data flat space	+ low-z data curved space	+ Planck curved space
qLCDM	244 [159]	93 [59]	251 [165]	94 [60]	
wCDM	82 [55]	28 [18]	85 [58]	29 [18]	
CPL	18 [13]	9 [6]	19 [13]	9 [6]	82 [82]

Figure 15. Dependence of $\ln(B)$ on $|\gamma - \gamma_{GR}|$ for different priors in the Euclid spectroscopic galaxy survey. The solid black line corresponds to a uniform prior distribution for γ with $\Delta\gamma = 1.0$, the red dotted line to $\Delta\gamma = 0.7$. The dotted red lines correspond to $\ln B = 1$, $\ln B = 2.5$ and $\ln B = 5$, delimiting the regions where evidence in favour of one model with respect to the other is ‘substantial’, ‘strong’ and ‘decisive’ according to Jeffreys’ scale. The cusp corresponds to the case where $B = 0$, i.e. there is no evidence in favour of one model with respect to the other. This means that to the left of the cusp GR is favoured with respect to modified gravity models, while to its right modified gravity models are favoured.

$\gamma - \gamma_{GR} \gtrsim 0.2$. We have also computed the evidence using the μ parameterisation, with uniform prior distributions in the interval $\Delta\mu_s = 3$ and $\Delta\mu_s = 5$. For both priors it results that with Euclid spectroscopic data alone ‘substantial’ (‘strong’) evidence can be obtained in favour of a modified gravity if the latter has $\mu_s \gtrsim 1$ ($\mu_s \gtrsim 1.4$). The addition of the weak lensing data from the Euclid photometric survey is expected to improve these results considerably.

8 CONCLUSIONS

In this paper we have investigated how strongly the Euclid galaxy spectroscopic survey in the current reference configuration can constrain the growth of structure and consequently how well it can differentiate a GR cosmology from alternatives to it.

We have found that we can reach precisions between 1.3% and 4.4% in the measurement of $f\sigma_8$ depending on the redshift bin, where the highest precision is reached for $z \simeq 1.0$.

Comparing the Euclid spectroscopic survey with other ongoing and future galaxy redshift surveys we note that Euclid will reach the highest precision in the growth rate measurement. Euclid will be perfectly complementary to BOSS and BigBOSS: the three surveys together will allow to cover an extremely large redshift range: $0.1 < z < 3.5$.

This precision in $f\sigma_8$ translates into a precision in the measurement of the growth index γ which depends on the specific background cosmology adopted. We have obtained marginalised errors on $\gamma - \Omega_m$ (or $\gamma - w_0$) between 5% and 10%. The parameterisation of the growth rate f we have adopted is $f = \Omega_m^\gamma$ (for curved space, $f = \Omega_m^\gamma + (\gamma - 4/7)\Omega_k$), where a departure from GR is represented by a deviation of γ from 0.545. We have considered nested background models: qLCDM (a model with constant $w = -0.95$), wCDM and CPL, both flat and curved.

We have compared the relative gain in growth FoM (quantifying the precision in the joint measurement of Ω_m and γ) for two different growth parameterisations, being the already mentioned γ and the parameter μ_s (Pogosian et al. [2010], Song et al. [2011]). We have found that when increasing the survey area (and correspondingly reducing the galaxy number density, having fixed the total
observing time) the FoM grows linearly. Moreover, this growth is quite mild.

The relative gain in FoM when increasing z_{max} is large, both using μ_s and γ. We also have noted that (for curved models) the relative improvement increasing z_{max} is approximately linear, encouraging the effort to reach the maximum possible limiting redshift. We then have examined the dependence of the FoM on the redshift interval covered by the survey. From Fig. 14 it is possible to notice that to reach a desired FoM improvement one needs lower z_{min} (or higher z_{max}) when considering μ_s than when choosing γ. This warns us against relying on one parameterisation only when optimising an experiment.

Finally we have forecasted the Bayesian evidence for Euclid and found that the spectroscopic survey alone will be able to substantially (decisively) distinguish between GR and modified gravity models having $\gamma - \gamma_{\text{GR}} \geq 0.13 (\geq 0.2)$. This result is expected to improve even further when adding data from the photometric survey of Euclid, which improve noticeably the precision in the measurement of γ (see e.g. Fig. 2.5 of Laureijs et al. 2011).

ACKNOWLEDGEMENTS

We wish to thank Domenico Sapone for essential and kind help in developing the Fisher code, Cinzia Di Porto for kindly providing details on coupled models, Ben Granett, Matteo Chiesa, Davide Bianchi and Alida Marchetti for enlightening discussions. EM was supported by INAF through PRIN 2007. by the Spanish MICINNs Juan de la Cierva programme (JCI-2010-08112), by CYT through the project FPA-2009 09017, by the Community of Madrid through the project HEFACOS (S2009/ESP-1473) under grant P-ESP-00346 and by the European Union FP7 ITN INVISIBLES (Marie Curie Actions, PITN- GA-2011- 289442). WJP is grateful for support from the UK Science and Technology Facilities Council (STFC). LS is grateful for support from the Georgian National Science Foundation grant GNSF ST08/4-442 and SNF SCOPES grant no. 128040. LS and WJP are grateful for support from the Georgian National Science Foundation grant CNSF ST08/4-442 and SNF SCOPES grant no. 128040. LS and WJP are grateful for support from the European Research Council (ERC). YW was supported in part by DOE grant DE-FG02-04ER41305. CC acknowledges PRIN MIUR “Dark energy and cosmology with large galaxy surveys”. EM, LG, BG, PF, ER, AC, CC, NR and GZ acknowledge support from ASI Euclid-NIS I/039/10/0 grants.

REFERENCES

Acquaviva V., Hajian A., Spergel D. N., Das S., 2008, Phys. Rev., D78, 043514
Albrecht A., et al., 2006, astro-ph/0609591
Alcock C., Paczynski B., 1979, Nature, 281, 358
Amendola L., 1999, Phys. Rev., D60, 043501
Amendola L., Kunz M., Sapone D., 2008, JCAP, 0804, 013
Amendola L., Quercellini C., Galliano E., 2005, Mon. Not. Roy. Astron. Soc., 357, 429
Amendola L., Tsujikawa S., 2008, Phys. Lett., B660, 125
Amendola L., Tsujikawa S., 2010, Dark Energy: Theory and Observations. Cambridge University Press
Bartolo N., Pietroni M., 2000, Phys. Rev., D61, 023518
Bassett B. A., Fantaye Y., Hlozek R., Kotze J., 2009, 0906.0993
Bassett B. A., Parkinson D., Nichol R. C., 2005, Astrophys.J., 626, L1
Belloso A. B., Garcia-Bellido J., Sapone D., 2011, JCAP, 1110, 010
Bianchi D., et al., 2012, arXiv:1203.1545
Blake C., et al., 2011, Mon. Not. Roy. Astron. Soc., 415, 2876
Cabre A., Gaztanaga E., 2009, Mon. Not. Roy. Astron. Soc., 393, 1183
Capozziello S., 2002, Int. J. Mod. Phys., D11, 483
Capozziello S., Cardone V. F., Carloni S., Troisi A., 2003, Int. J. Mod. Phys., D12, 1969
Carroll S. M., Duvvuri V., Trodden M., Turner M. S., 2004, Phys. Rev., D70, 043528
Chevallier M., Polarski D., 2001, Int. J. Mod. Phys., D10, 213
Chiba T., 1999, Phys. Rev., D60, 083508
Cimatti A., et al., 2009, Exper. Astron., 23, 39
Cole S., et al., 2005, Mon. Not. Roy. Astron. Soc., 362, 505
Copeland E. J., Sami M., Tsujikawa S., 2006, Int. J. Mod. Phys., D15, 1753
da Angela J., et al., 2008, Mon. Not. Roy. Astron. Soc., 383, 565
Di Porto C., Amendola L., 2008, Phys. Rev., D77, 083508
Di Porto C., Amendola L., Branchini E., 2011, arXiv:1101.2453
Drinkwater M. J., et al., 2010, Mon. Not. Roy. Astron. Soc., 401, 1429
Dvali G. R., Gabadadze G., Porrati M., 2000, Phys. Lett., B485, 208
Eisenstein D. J., et al., 2005, Astrophys. J., 633, 560
Frieman J., Turner M., Huterer D., 2008, Ann. Rev. Astron. Astrophys., 46, 385
Fry J. N., 1985, Phys. Lett., B158, 211
Gannouji R., Moraes B., Polarski D., 2009, JCAP, 0902, 034
Garilli B., Fumana M., Franzetti P., Paioro L., Scodeggio M., Le Fèvre O., Paltani S., Scaramella R., 2010, PASP, 122, 827
Geach J. E., et al., 2008, Mon. Not. Roy. Astron. Soc., 388, 1473
Gong Y., Ishak M., Wang A., 2009, Phys. Rev., D80, 023002
Guzzo L., et al., 2008, Nature, 451, 541
Hamilton A., 1998, The Evolving Universe. Vol. 321 of Astrophysics and Space Science Library, Kluwer Academic Publishers
Hawkins E., et al., 2003, Mon. Not. Roy. Astron. Soc., 346, 78
Heath D. J., 1977, Mon. Not. Roy. Astron. Soc., 179, 351
Heavens A. F., Kitching T. D., Verde L., 2007, Mon. Not. Roy. Astron. Soc., 380, 1029
Ilbert O., Capak P., Salvato M., Aussel H., McCracken H., et al., 2009, Astrophys.J., 690, 1236
Ishak M., Boschin W., Rosati P., 2008, Mon. Not. Roy. Astron. Soc., 389, 1725
Kazin E. A., et al., 2010, Astrophys.J., 716, 514
Kazin E. A., et al., 2010, Astrophys.J., 710, 1444
Kobayashi T., 1999, Phys. Rev., D60, 083508
Komatsu E., et al., 2009, Astrophys. J. Suppl., 180, 330
Komatsu E., et al., 2011, Astrophys.J., 736, 1183
Komatsu E., et al., 2010, Astrophys. J., 710, 1236
Koyama K., 2010, Phys. Rev., D81, 103533
Koyama K., Maartens R., 2006, JCAP, 0601, 016
Kunz M., 2007, Phys. Rev., D76, 023508
Kunz M., Sapone D., 2007, Phys. Rev. Lett., 98, 121301
Lahav O., et al., 2002, Mon. Not. Roy. Astron. Soc., 333, 961
Lahav O., et al., 2002, Mon. Not. Roy. Astron. Soc., 328, 128
Laureijs R., 2009, arXiv:0912.0914
Laureijs R., Amiaux J., Arduini S., Augueres J.-L., Brinchmann J., et al., 2011, arXiv:1110.3193
Lewis A., Challinor A., Lasenby A., 2000, Astrophys. J., 538, 473
Lightman A. P., Schechter P. L., 1990, Astrophys. J. Suppl., 74, 831
APPENDIX A: GROWTH OF STRUCTURES

In a Friedmann-Lemaître-Robertson-Walker (FLRW) universe, the growth of linear perturbations is described by the perturbed Einstein equations and conservation of the energy-momentum tensor equations. If we consider scalar perturbations about a FLRW background in the Newtonian gauge, in Fourier space and in the limit of small scales, an equation for the growth rate f can be derived:

$$\frac{df}{d\ln a} + f^2 + \left(\frac{2 + d\ln H}{d\ln a}\right) f = \frac{3}{2} \Omega_m .$$

(A1)

A solution for f has now to be found and depends on the form of H.

A1 Parameterisations of growth in GR and deviations from it: a constant growth index

A1.1 Flat LCDM and quintessence

If we assume a flat model with a simple cosmological constant or a dark energy with (quasi) constant equation of state w, with Friedmann equation $H^2 = H_0^2 [\Omega_m a^{-3} + (1 - \Omega_m) a^{-3(1+w)}]$, then it is possible to find a good solution of Eq. (A1) by assuming

$$f = \Omega_m(a)^\gamma ,$$

(A2)

where the growth index γ is a constant. This was first proposed by Peebles (1980), for a matter-dominated universe at $z = 0$, with $\gamma \approx 0.6$. A better approximation for the same model was found by Fry (1983) and Lightman & Schechter (1990), with $\gamma = 4/7$. For the case of LCDM, $\gamma = 0.545$ is a very good approximation, at least in the redshift range of interest here. As shown in Wang & Steinhardt (1998), if we consider, instead of a standard cosmological constant, a quintessence field with slowly varying w, then $\gamma = 0.545$ is still a good approximation, since the correction term has a weak dependence on w if this is close enough to -1.

For larger redshift ranges, from z_{CMB} to today, and demanding a very high precision, a different solution for LCDM was proposed by Ishak & Dossert (2009). For models with non-slowly varying w, Linder & Cahn (2007) and Linder (2005) propose different parameterisations.

We restrict ourselves to models with slowly varying w and decide not to use the large redshift range parameterisation since we do not require an accuracy that high. Instead, we are interested in parameterisations for models where curvature is present, since this parameter has been shown to be degenerate with dark energy and we wish to explore it in a consistent way.

A1.2 Generalisation to curved LCDM and quintessence

In the case of a curved LCDM model, the first attempts at modelling f were proposed by Martel (1991) and Lahav et al. (1991).

More recently, in Gong et al. (2009), two possible approaches are suggested. The first (less accurate) approach consists in still assuming $f(z) = \Omega_m(z)^\gamma$, but changing the form of γ. The second consists in taking $f(z) = \Omega_m(z)^\gamma + \alpha \Omega_k(z)$ (with $\Omega_k(z) = \rho_k(z)/\rho(z)$).

In the second case, which is found to be more accurate, the solution is

$$f(z) = \Omega_m(z)^\gamma + (\gamma - 4/7)\Omega_k(z) , \quad \gamma = 0.545 .$$

(A3)

We use the parameterisation (A3) for our forecasts.
A parameterisation as that of Eq. (A2) or (A3) is valid also for some modified gravity models (see Amendola & Tsujikawa 2010 for a complete review of viable alternatives to GR), when taking a different fiducial γ.

Let us first take the DGP model. For flat space, Linder & Cahn (2007) showed that the growth rate f is still well parameterised by Eq. (A2) with a constant γ. Wei (2008) and Gong et al. (2009) derived the expected value of γ by solving the modified growth equations of Luc et al. (2004), Kovama & Maaertens (2006): $\gamma = 11/16$. A constant γ still fits the curve well enough (Linder & Cahn 2007). If we include curvature, we can proceed, following Gong et al. (2009), as for curved quintessence, e.g. parameterising $f(z)$ as in Eq. (A3), and we find that the best fitting γ is again $\gamma = 11/16$.

Instead of adding extra dimensions, it is possible to modify gravity in four dimensions. This is done e.g. in $f(R)$ theories (Capozziello 2002; Capozziello et al. 2003; Carroll et al. 2004), where the Einstein-Hilbert Lagrangian density $R - 2\Lambda$ is modified into a different function, $R + f(R)$. The function $f(R)$ is strongly constrained by local gravity tests (Amendola & Tsujikawa 2008), nevertheless the phenomenology of the growth of structure for these models is still very rich. Their growth index γ is in general time- and scale-dependent (Tsujikawa 2007; Gannouji et al. 2008; Tsujikawa et al. 2009; Motohashi et al. 2010). As found in Tsujikawa et al. (2009) and Gannouji et al. (2009), the importance of scale-dependent dispersion of γ depends on the particular $f(R)$ model chosen and on its parameters. For some particular values of the parameters, there can be scale-independent growth. We do not consider scale dependence in this work, although it would be very interesting to examine this feature, as it might be a smoking gun for $f(R)$ models (Pogosian et al. 2010). Time dependence can arise in general. Forecasts on $\gamma(a)$ for Euclid-like galaxy redshift surveys have been computed in Di Porto et al. (2011) and we refer the reader to this paper for a full analysis of the topic. In this work we concentrate on a constant γ, which somehow corresponds to a $\gamma(a)$ averaged over the redshift range of the survey, weighted by the error on f in each redshift bin. Given that viable $f(R)$ models show a lower growth index $\gamma(z = 0) \sim 0.4$ with respect to GR, becoming even smaller at higher z, if one was to detect an unusually low averaged constant γ, this would point to $f(R)$ models. The use of a time and possibly scale dependent γ could then in principle allow to distinguish among different $f(R)$ models.

Scalar-tensor theories (Amendola 1999; Uzan 1999; Chiba 1999; Bartolo & Pietroni 2000; Perrotta et al. 2001) are a generalisation of $f(R)$ models, where the Lagrangian density is $1/2 f(\phi, R) - 1/2 \xi (\phi) (\nabla \phi)$, ξ. Given the generality of these theories, the phenomenology of their growth of structure is very rich. The growth of matter perturbations in some of these models has been studied e.g. in Di Porto & Amendola (2008); Gannouji et al. (2009); Kobayashi (2010). In general γ depends on time (and scale), but there are also specific cases where $\gamma \sim \text{const}$ for redshifts $z \lesssim 2$ (Kobayashi 2010).

A1.3 Modified gravity: the case of DGP, $f(R)$ gravity and scalar-tensor theories

A2 Parameterisations of growth in GR and deviations from it: physical parameters

Instead of parameterising the deviation from GR with γ, we can use a different approach, proposed by Amendola et al. (2008). This consists in directly parameterising the full Einstein equations in- stead of some already approximated version of them (e.g. for small scales). This approach may turn useful when combining constraints from different observational tools, which might need different approximations. This way, the parameters would always have a physical meaning and one would avoid difficulties in interpreting results, as pointed out very neatly in Pogosian et al. (2010). It is precisely the parameterisation (μ, η) proposed in Pogosian et al. (2010) that we use and compare to γ. The Einstein equations defining the parameterisation are:

\[k^2 \Psi = -4\pi G N a^2 \mu(a, k) \rho \delta, \quad \Phi \Psi = \eta(a, k), \quad (A4) \]

where Ψ and Φ are the metric perturbations in the Newtonian gauge:

\[ds^2 = -a^2 \left[(1 + 2\Psi) dt^2 - (1 - 2\Phi) dx^2 \right] . \quad (A5) \]

Since the galaxy power spectrum is sensitive to Ψ and not to the ansisotropic stress (which depends on the difference between the two potentials Ψ and Φ), the parameter μ is sufficient for our work and we do not use η at all.

For simplicity, we decide to assume again scale-independence: $\mu = \mu(a)$ (although see Pogosian et al. 2010 and Sec. A1.3 for reasons to keep scale-dependence). We model μ as in Song et al. (2011):

\[\mu(a) = 1 + \mu_s a, \quad (A6) \]

which is motivated by DGP and reduces to GR for $\mu_s = 0$. So, using again the function f defined previously, we obtain

\[\frac{df}{d \ln a} + f^2 + 2 \frac{d \ln H}{d \ln a} f - \frac{3}{2} \Omega_m (1 + \mu_s) = 0. \quad (A7) \]

We can solve this equation numerically, by imposing the initial condition at an initial redshift of matter domination z_{md}:

\[f(z_{md}) = \Omega(z_{md}) \gamma^2 \] (where γ can be determined from Eq. (32) of Pogosian et al. (2010)).

APPENDIX B: PREDICTIONS USING THE μ PARAMETERISATION

Here we present forecasts on the marginalised errors on cosmological parameters when, instead of using γ, the alternative μ parameterisation is used (see Appendix A2). As we can see from Figs. B1 and B2 with Euclid spectroscopic data alone the absolute marginalised error on μ_s and Ω_m, or w_0 will be ~ 2. Adding Planck will improve the measurement of μ_s by more than 50%, reducing the error to ~ 0.7 (see Figs. B3 and B4).

This paper has been typeset from a TeX/Latex file prepared by the author.
Figure B1. Forecasted marginalised errors on Ω_m and μ_s using the Euclid spectroscopic survey. Solid (black) lines correspond to qLCDM, dashed (red) lines to wCDM and dot-dashed (cyan) lines to CPL. Thick lines represent models with $\Omega_k = 0$, while thin lines indicate curved models.

Figure B2. Forecasted marginalised errors on w_0 and μ_s using the Euclid spectroscopic survey. Dashed (red) lines correspond to wCDM and dot-dashed (cyan) lines to CPL. Thick lines represent models with $\Omega_k = 0$, while thin lines represent curved models.

Figure B3. Comparison of marginalised errors on Ω_m and μ_s in curved CPL, obtained using Euclid only and joint Euclid and Planck data. Dot-dashed (cyan) contours correspond to error ellipses using Euclid data only, while solid (purple) contours show joint constraints from Euclid and Planck.

Figure B4. Comparison of marginalised errors on w_0 and μ_s in curved CPL, obtained using Euclid only and joint Euclid and Planck data. Dot-dashed (cyan) contours correspond to error ellipses using Euclid data only, while solid (purple) contours show joint constraints from Euclid and Planck.