Topology of spaces of smooth functions and gradient-like flows with prescribed singularities on surfaces

Elena A. Kudryavtseva *

Abstract

By a gradient-like flow on a closed orientable surface M, we mean a closed 1-form β defined on M punctured at a finite set of points (sources and sinks of β) such that there exists a Morse function f on M, called an energy function of β, whose critical points coincide with equilibria of β, and the pair (f, β) has a canonical form near each critical point of f. Let $B = B(\beta_0)$ be the space of all gradient-like flows on M having the same types of local singularities as a flow β_0, and $F = F(f_0)$ the space of all Morse functions on M having the same types of local singularities as an energy function f_0 of β_0. We prove that the spaces F and B, equipped with C^∞ topologies, are homotopy equivalent to some manifold M_s, moreover their decompositions into $\text{Diff}^0(M)$-orbits are given by two transversal fibrations on M_s. Similar results are proved for topological equivalence classes on F and B, and for non-Morse singularities.

Key words: Morse flow, gradient-like flow, orbital topological equivalence, ADE singularities, moduli space of real-normalized meromorphic differentials

MSC: 58K05, 37E35, 37C15, 37B35, 37C86, 53C12, 58D27

1 Spaces of smooth functions with prescribed local singularities on surfaces

Let M be a smooth orientable connected closed two-dimensional surface, and $f_0 \in C^\infty(M)$ a function all whose critical points have types A_μ, D_μ, E_μ (e.g. a Morse function).

*Moscow State University, Moscow, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia. E-mail address: eakudr@mech.math.msu.su
Recall that a point \(P \in M \) is critical for \(f \in C^\infty \) if \(df(P) = 0 \). A function \(f \in C^\infty(M) \) is called Morse if all its critical points are non-degenerate (of type \(A_1 \)), i.e. \(d^2f(P) \) is non-degenerate. By the Morse lemma, locally \(f = \pm x^2 \pm y^2 + f(P) \) in suitable coordinates near each critical point \(P \).

Consider the set \(\mathcal{F} = \mathcal{F}(f_0) \) of all functions \(f \in C^\infty(M) \) having the same types of local singularities as \(f_0 \). Denote by \(D^0(M) \) the identity path component of the group \(D(M) = \text{Diff}^+(M) \) of orientation-preserving diffeomorphisms endowed with \(C^\infty \) topology. The group \(D(\mathbb{R}) \times D(M) \) acts on the space \(\mathcal{F} \) by “left-right changes of coordinates”.

We want to describe the topology of the space \(\mathcal{F} \), equipped with the \(C^\infty \)-topology, and its decomposition into \(D^0(\mathbb{R}) \times D^0(M) \)- and \(D^0(M) \)-orbits. This problem was solved by the author in the cases when either \(f_0 \) is a Morse function and \(\chi(M) < 0 \) [4, 5, 7], or all critical points of \(f_0 \) have \(A_\mu \) types, \(\mu \in \mathbb{N} \) [7]. Topology of the \(D^0(M) \)-orbits was studied by S.I. Maksymenko [8] (allowing some other types of degenerate singularities) and by the author [4, 5, 7] (for \(A_\mu \)-singularities).

For any function \(f \in \mathcal{F} \), consider the set \(C_f := \{ P \in M \mid df(P) = 0 \} \) of its critical points. These critical points form five classes of topological equivalence (some classes may be empty):

\[
C_f^{\min} = \bigcup_{i \geq 1} A^{+,+}_{2i-1}(f), \quad C_f^{\max} = \bigcup_{i \geq 1} A^{+,-}_{2i-1}(f), \quad C_f^{\text{saddle}} = A^{-,-}_1(f) \cup \bigcup_{\eta = \pm} \bigcup_{i \geq 2} (A^{-,\eta}_{2i-1}(f) \cup D^\eta_{2i+1}(f)) \cup E^\eta_1(f),
\]

\[
C_f^{\text{triv}} = (\bigcup_{i \geq 1, \eta = \pm} A^\eta_{2i}(f)) \cup (\bigcup_{i \geq 2} D^+_{2i}(f)) \cup E^+_0(f) \cup E^-_0(f) \cup E^+_8(f) \cup E^-_8(f), \quad C_f^{\text{mult}} = \bigcup_{i \geq 2} D^-_{2i}(f),
\]

i.e. the critical points of local minima, local maxima, saddle points, quasi- and multysaddle points, respectively. Here \(A^{\pm,\pm}_\mu(f), D^\pm_\mu(f) \) and \(E^\pm_\mu(f) \) denote the corresponding subsets of critical points of \(A - D - E \) types. In the set \(C_f^{\text{extr}} := C_f^{\min} \cup C_f^{\max} \) of local extremum points, consider the subset \(C_f^{\text{extr}} \) of degenerate (non-Morse) critical points.

Denote \(s := \max\{0, \chi(M) + 1\} \).

Theorem 1. For any function \(f_0 \in C^\infty(M) \), whose all critical points have \(A - D - E \) types (e.g. a Morse function), the space \(\mathcal{F} = \mathcal{F}(f_0) \) has the homotopy type of a manifold \(M_s = M_s(f_0) \) having dimension \(\dim M_s = 2s + |C_{f_0}| + |C_{f_0}^{\text{extr}}| + |C_{f_0}^{\text{triv}}| + 2|C_{f_0}^{\text{saddle}}| + 3|C_{f_0}^{\text{mult}}| \). Moreover:

(a) There exists a surjective submersion \(\kappa : \mathcal{F} \to M_s \) and a stratification [11] (respectively, a fibration of codimension \(|C_{f_0}| \)) on \(M_s \) such that every \(D^0(\mathbb{R}) \times D^0(M) \)-orbit (resp., \(D^0(M) \)-orbit) in \(\mathcal{F} \) is the \(\kappa \)-preimage of a stratum (resp., a fiber) in \(M_s \).

(b) The map \(\kappa \) provides a homotopy equivalence between every \(D^0(M) \)-invariant subset \(I \subseteq \mathcal{F} \) and its image \(\kappa(I) \subseteq M_s \). In particular, it provides homotopy
Denote by \(\pi_*(\mathcal{F}) \) the space of all functions \(f \in \mathcal{F} \) whose all local extrema equal \(\pm F \). Then an analogue of Theorem 1 holds when \(\mathcal{F} \) and the corresponding stratum (resp., fiber) in \(\mathcal{M}_s \).

In particular, \(\pi_k(\mathcal{F}) \cong \pi_k(\mathcal{M}_s) \), \(H_k(\mathcal{F}) \cong H_k(\mathcal{M}_s) \). Thus \(H_k(\mathcal{F}) = 0 \) for all \(k > \dim \mathcal{M}_s \).

Remark 1. Denote by \(\mathcal{F}^1 = \mathcal{F}^1(f_0) \) the space of all functions \(f \in \mathcal{F} \) whose all local extrema equal \(\pm F \) and the sum of values at all non-extremum critical points vanishes. Then an analogue of Theorem 1 holds when \(\mathcal{F} \) and \(\mathcal{M}_s \) are replaced by \(\mathcal{F}^1 \) and a submanifold \(\mathcal{M}_s^1 \subset \mathcal{M}_s \), respectively, where \(\mathcal{M}_s^1 \) is a union of fibres of \(\mathcal{M}_s \), \(\dim \mathcal{M}_s^1 = \dim \mathcal{M}_s - |C_{f_0}^{\text{extr}}| - 1 = 2s + |C_{f_0}^{\text{extr}}| + 2|C_{f_0}^{\text{triv}}| + 3|C_{f_0}^{\text{saddle}}| + 4|C_{f_0}^{\text{mult}}| - 1 \). Actually, \(\mathcal{M}_s^1 \) is a strong deformation retract of \(\mathcal{M}_s \), so it is homotopy equivalent to \(\mathcal{M}_s \).

Our proof of Theorem 1 uses results [2, 9] about a “uniform” reduction of a smooth function to a normal form near its critical points.

2 Morse flows and gradient-like flows on surfaces

Suppose \(\Omega \in \Lambda^n(M) \) is a volume form on a \(n \)-manifold \(M = M^n \). Let \(\mathcal{P} \subset M \) be a finite subset. For any vector field \(\xi \) on \(M' := M \setminus \mathcal{P} \), we assign the \((n - 1)\)-form \(\beta = i_{\xi} \Omega \in \Lambda^{n-1}(M') \). Clearly, this assignment is one-to-one, and \(\xi \in \operatorname{Ker} \beta \).

Furthermore, the flow of the vector field \(\xi \) is volume-preserving if and only if \(\beta \) is a closed form. Indeed: the Lie derivative \(L_{\xi} \Omega = (i_{\xi}d + di_{\xi})\Omega = di_{\xi} \Omega = d\beta \), so the Lie derivative vanishes if and only if \(d\beta = 0 \). By abusing language, we will call the \((n - 1)\)-form \(\beta \) a flow.

Suppose now that \(n = \dim M = 2 \). Denote \(\mathcal{Z}_\beta := \{ \rho \in M' \mid \beta(\rho) = 0 \} \).

A closed 1-form \(\beta \) on \(M' = M \setminus \mathcal{P} \) will be called a Morse flow on \(M \) if, in a neighbourhood of every point \(\rho \in \mathcal{P} \cup \mathcal{Z}_\beta \), there exist local coordinates \(x, y \) such that either \(\beta = d(2xy) = d(\operatorname{Im}(z^2)) \) and \(\rho \in \mathcal{Z}_\beta \), or \(\beta = \pm(xdy - ydx)/(x^2 + y^2) = \pm d(\operatorname{Im}(\ln z)) \) and \(\rho \in \mathcal{P} \), where \(z = x + iy \). Geometrically, the set \(\mathcal{P}_\beta := \mathcal{P} \) consists of sources and sinks of the flow \(\beta \), while the set \(\mathcal{Z}_\beta \) consists of saddle points of the flow \(\beta \).

A closed 1-form \(\beta \) on \(M' = M \setminus \mathcal{P} \) will be called a gradient-like flow on \(M \) if there exists a Morse function \(f \in C^\infty(M) \), called an energy function of \(\beta \), such that

(i) the set \(\mathcal{P} \) coincides with the set of local extremum points of \(f \),

(ii) the 2-form \(df \wedge \beta|_{M \setminus \mathcal{P}} \) has no zeros and defines a positive orientation on \(M \),
(iii) in a neighbourhood of every point \(P \in C_f \), there exist local coordinates \(x, y \) such that either
\[
f = f(P) + x^2 - y^2, \quad \beta = 2xy \quad \text{and} \quad P \in Z = C_f \setminus \mathcal{P},
\]
or
\[
f = f(P) \pm (x^2 + y^2), \quad \beta = (x dy - y dx)/(x^2 + y^2) \quad \text{and} \quad P \in \mathcal{P}.
\]

Geometrically, the set \(\mathcal{P}_\beta := \mathcal{P} \) of sources and sinks of the flow \(\beta \) coincides with the set of local extremum points of the energy function \(f \), while the set \(Z_\beta := Z = C_f \setminus \mathcal{P} \) of saddle points of the flow \(\beta \) coincides with the set of saddle critical points of \(f \).

Let \(\beta_0 \) be a Morse flow on \(M \). Consider the set \(\mathcal{B} = \mathcal{B}(\beta_0) \) of gradient-like flows \(\beta \) having the same types of local singularities as \(\beta_0 \) (in particular, \(|Z_\beta| = |Z_{\beta_0}| \) and \(|\mathcal{P}_\beta| = |\mathcal{P}_{\beta_0}|\)).

First of all, let us characterize gradient-like flows among all 2D Morse flows. The following theorem is similar to a result by S. Smale characterizing gradient-like flows among all Morse-Smale flows [10].

Theorem 2 (Characterization of 2D gradient-like flows). Let \(\beta_0 \) be a Morse flow on \(M \). Then:

(a) The space \(\mathcal{B} = \mathcal{B}(\beta_0) \) of gradient-like flows is nonempty if and only if \(\beta_0 \) has at least one sink and at least one source.

(b) A Morse flow \(\beta \) is gradient-like if and only if

(i) \(\beta \) has at least one sink and at least one source,

(ii) every separatrix of \(\beta \) has two endpoints belonging to \(Z_\beta \cup \mathcal{P}_\beta \), and

(iii) there is no an oriented closed curve \(P_1 P_2 \ldots P_{k-1} P_k \) (\(k \geq 2 \)) formed by oriented separatrices of \(\beta \), where \(P_i \in Z_\beta \) and \(P_k = P_1 \).

(c) The space \(\mathcal{B} \) of gradient-like flows is open in the space of Morse flows and is \(\mathcal{D}(M) \)-invariant. The orbit space \(\mathcal{B}_{num}/\mathcal{D}^0(M) \) is a \(2|Z_{\beta_0}| \)-dimensional manifold, where \(\mathcal{B}_{num} \) is the space of gradient-like flows with enumerated sinks and sources.

3 Spaces of gradient-like flows on surfaces

We want to describe the topology of the space \(\mathcal{B} = \mathcal{B}(\beta_0) \), equipped with the \(C^\infty \)-topology, and its decomposition into \(\mathcal{D}^0(M) \)-orbits and into classes of (orbital) topological equivalence.
Theorem 3. For any gradient-like flow β_0 on M, the space $\mathcal{B} = \mathcal{B}(\beta_0)$ has the homotopy type of the manifold $\mathcal{M}^1_s = \mathcal{M}^1_s(f_0)$ from Theorem 1 and Remark 1, where f_0 is an energy function of β_0. Moreover:

(a) There exists a surjective submersion $\lambda: \mathcal{B} \to \mathcal{M}^1_s$, a stratification and a $(|Z_{\beta_0}| + 2s - 1)$-dimensional fibration on \mathcal{M}^1_s such that every class of orbital topological equivalence (resp., $D^0(M)$-orbit) in \mathcal{B} is the λ-preimage of a stratum (resp., a fibre) from \mathcal{M}^1_s.

(b) The map λ provides a homotopy equivalence between every $D^0(M)$-invariant subset $I \subseteq \mathcal{B}$ and its image $\lambda(I) \subseteq \mathcal{M}^1_s$. In particular, it provides a homotopy equivalence between every class of topological equivalence (resp., $D^0(M)$-orbit) in \mathcal{B} and the corresponding stratum (resp., fibre) in \mathcal{M}^1_s.

(c) All fibres and strata in \mathcal{M}^1_s (and, thus, all classes of topological equivalence and all $D^0(M)$-orbits in \mathcal{B}) are homotopy equivalent either to a point, or to T^2, or to $SO(3)/G$ or to S^2, in dependence on whether $\chi(M) < 0$, or $\chi(M) = 0$, or $\chi(M) \cdot |Z_{\beta_0}| > 0$, or $\chi(M) > 0$ and $|Z_{\beta_0}| = 0$, respectively, where G is a finite subgroup of $SO(3)$.

In particular, $\pi_k(\mathcal{B}) \cong \pi_k(\mathcal{M}^1_s)$, $H_k(\mathcal{B}) \cong H_k(\mathcal{M}^1_s)$. Thus $H_k(\mathcal{B}) = 0$ for all $k > \dim \mathcal{M}^1_s$.

Remark 2. The fibrations on the manifold \mathcal{M}^1_s in Theorem 1 and Theorem 3 are transversal to each other, and intersections of their fibres are $2s$-dimensional submanifolds diffeomorphic to the space $M^s \setminus \Delta$ of s-point configurations on M, where $\Delta = \cup \Delta_{ij}$, $\Delta_{ij} = \{(P_1, \ldots, P_s) \in M^s \mid P_i = P_j\}$. Consider the topological space obtained from \mathcal{M}^1_s by contracting each such a $2s$-dimensional submanifold to a point. This space is known as the universal moduli space of real-normalized meromorphic 1-forms on M [1].

4 Describing the classifying manifolds \mathcal{M}_s and \mathcal{M}^1_s

The manifold $\mathcal{M}_s = \mathcal{M}_s(\beta_0)$ from Theorem 1 can be constructed as follows.

Let us consider the topological spaces

$$\mathcal{F} := \{(f, \beta) \in \mathcal{F} \times \mathcal{B} \mid f \text{ is an energy function of } \beta\}, \quad \mathcal{F}^1 := \{(f, \beta) \in \mathcal{F} \mid f \in \mathcal{F}^1\}$$

endowed with C^∞ topology [3].

Let us fix a s-point subset $N_s \subset M$, $|N_s| = s$. Consider the subgroup $D_s(M) := \{\phi \in \mathcal{D}(M) \mid N_s \subseteq \text{Fix}(\phi)\}$ of the group $\mathcal{D}(M)$ endowed with C^∞ topology. Denote by
\(\mathcal{D}_s^0(M) \) the identity path component of the group \(\mathcal{D}_s(M) \). Define the moduli spaces

\[
\mathcal{M}_s = \mathcal{M}_s(f_0) := \mathbb{F}/\mathcal{D}_s^0(M), \quad \mathcal{M}_s^1 = \mathcal{M}_s^1(f_0) := \mathbb{F}^1/\mathcal{D}_s^0(M)
\]

endowed with quotient topology.

One can show that \(\mathcal{M}_s^1 \) is a strong deformation retract of \(\mathcal{M}_s \). Furthermore, by using a “uniform” reduction of a smooth function to a normal form near its critical points \([2, 9]\), one can prove that the forgetful maps

\[
\text{Forg}_1 : \mathbb{F} \to \mathcal{F}, \quad \text{Forg}_1|_{\mathbb{F}^1} : \mathbb{F}^1 \to \mathcal{F}^1, \quad \text{Forg}_2 : \mathbb{F}^1 \to \mathcal{B}
\]

are homotopy equivalences (cf. \([3]\) for \(\mathcal{F} \) and Morse singularities, for other singularity types the proof is similar).

One can show that the group \(\mathcal{D}_s^0(M) \) acts freely on \(\mathbb{F} \). Since this group is contractible, we have homeomorphisms

\[
\mathbb{F} \approx \mathcal{D}_s^0(M) \times \mathcal{M}_s, \quad \mathbb{F}^1 \approx \mathcal{D}_s^0(M) \times \mathcal{M}_s^1.
\]

Therefore, the projections

\[
\mathbb{F} \to \mathcal{M}_s, \quad \mathbb{F}^1 \to \mathcal{M}_s^1
\]

are homotopy equivalences. It is easy to show that \(\mathcal{M}_s \) is a smooth manifold equipped with two transversal fibrations (whose fibres will be called “horizontal” and “vertical”, respectively), and \(\mathcal{M}_s^1 \) is its submanifold consisting of horizontal fibres. Namely, each horizontal fibre is the Forg\(_1\)-preimage of a \(\mathcal{D}_s^0(M) \)-orbit in \(\mathcal{F} \), while each vertical fibre is the Forg\(_2\)-preimage of a \(\mathcal{D}_s^0(M) \)-orbit in \(\mathcal{B} \).

Now, for proving Theorem 1 and Remark 1 one should consider the manifolds \(\mathcal{M}_s \) and \(\mathcal{M}_s^1 \) fibred by the horizontal fibres. For proving Theorem 3 one should consider the manifold \(\mathcal{M}_s^1 \) fibred by the vertical fibres. Then the theorems 1 and 3 follow from the homotopy equivalences (1) and (2).

Each horizontal fibre (from Theorem 1 and Remark 1) and each vertical fibre (from Theorem 3) on the manifold \(\mathcal{M}_s^1 \) are transversal to each other, and their intersection is a 2\(s \)-dimensional submanifold diffeomorphic to \(M^s \setminus \Delta \), the \(s \)-point configuration space on \(M \), where \(\Delta = \cup \Delta_{ij}, \Delta_{ij} = \{(P_1, \ldots, P_s) \in M^s \mid P_i = P_j\} \).

Remark 3. Let us consider the moduli spaces

\[
\mathcal{M} = \mathcal{M}(f_0) := \mathbb{F}/\mathcal{D}_s^0(M), \quad \mathcal{M}^1 = \mathcal{M}^1(f_0) := \mathbb{F}^1/\mathcal{D}_s^0(M)
\]

endowed with quotient topology. The space \(\mathcal{M}^1 \) is known as the universal moduli space of real-normalized meromorphic differentials (or meromorphic 1-forms) on \(M \). If \(\chi(M) < 0 \) then \(s = 0, \mathcal{M}_s = \mathcal{M}_0 = \mathcal{M} \) and \(\mathcal{M}_s^1 = \mathcal{M}_0^1 = \mathcal{M}^1 \), so \(\mathcal{M} \) and \(\mathcal{M}_s^1 \) are manifolds. If \(\chi(M) \geq 0 \), then \(\mathcal{M} \) and \(\mathcal{M}^1 \) are orbifolds in general, which can
be obtained from the manifolds \mathcal{M}_s and \mathcal{M}_s^1 (resp.) by contracting the intersection of each horizontal fibre with each vertical fibre to a point.

Suppose that at least s critical points of the function f_0 are enumerated (e.g., $\chi(M) < 0$ or the singularity type of each of these s points is different from the singularity type of any other critical point of f_0). Then:

- The orbifolds \mathcal{M} and \mathcal{M}^1 are in fact manifolds, and there exist homeomorphisms
 $$\mathcal{M}_s \approx (M^s \setminus \Delta) \times \mathcal{M}, \quad \mathcal{M}_s^1 \approx (M^s \setminus \Delta) \times \mathcal{M}^1$$
 (cf. [5, 6]). We remark that $M^s \setminus \Delta$ is homotopy equivalent to $D^0(M)$, which has the homotopy type of either a point or T^2 or $SO(3)$ in dependence on whether $\chi(M) < 0$ or $\chi(M) = 0$ or $\chi(M) > 0$.

- Each of the manifolds \mathcal{M} and \mathcal{M}^1 (more precisely, their strong deformation retracts \mathcal{K} and \mathcal{K}^1) is a “skew cylindric-polyhedral complex”, i.e. it can be represented as the union of “skew cylindric handles” glued to each other in a nice way [5, 6]. The skew cylindric handles of the manifold \mathcal{M} (resp., \mathcal{M}^1) are in one-to-one correspondence with the $D^0(\mathbb{R}) \times D^0(M)$-orbits in the space \mathcal{F} (resp., \mathcal{F}^1). The Morse index of each handle equals the codimension of the corresponding $D^0(\mathbb{R}) \times D^0(M)$-orbit in the space \mathcal{F} (resp., \mathcal{F}^1).

- Each skew cylindric handle of the manifold \mathcal{M} (resp., \mathcal{M}^1) is incompressible, i.e. the inclusion mapping of the handle into the manifold \mathcal{M} (resp., \mathcal{M}^1) induces a monomorphism of the fundamental groups.

This work was supported by the Russian Foundation for Basic Research, grant No. 19-01-00775-a (the results of §1) and the Russian Science Foundation, grant No. 17-11-01303 (the results of §§2–3).

References

[1] S. Grushevsky, I. Krichever. The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces // Surveys in Differential Geometry 14 (2010), 111–129 [L. Ji et al. (ed.), Geometry of Riemann surfaces and their moduli spaces. Somerville, MA: International Press, 2010. ISBN 978-1-57146-140-7; arXiv:0810.2139]

[2] E.A. Kudryavtseva. Uniform Morse lemma and isotope Morse functions on surfaces // Moscow Univ. Math. Bull., 64:4 (2009), 150–158.
[3] E.A. Kudryavtseva, D.A. Permyakov. Framed Morse functions on surfaces // Sbornik Math., 201:4 (2010), 501–567.

[4] E.A. Kudryavtseva. The Topology of Spaces of Morse Functions on Surfaces // Math. Notes, 92:2 (2012), 219–236. http://arxiv.org/abs/1104.4792.

[5] E.A. Kudryavtseva. Special framed Morse functions on surfaces // Moscow Univ. Math. Bull., 67:4 (2012), 14–20. arXiv:1106.3116.

[6] E.A. Kudryavtseva. On the homotopy type of spaces of Morse functions on surfaces // Sb. Math., 204:1 (2013), 75–113. math.GT/1104.4796.

[7] E.A. Kudryavtseva. Topology of the spaces of functions with prescribed singularities on surfaces // Doklady Mathematics, 93:3 (2016), 264–266.

[8] S.I. Maksymenko. Homotopy types of stabilizers and orbits of Morse functions on surfaces // Ann. Glob. Anal. Geom. 29:3 (2006), 241–285. arXiv:math.GT/0310067.

[9] A.S. Orevkova. Uniform reduction of singularities of smooth functions to normal forms // Arxiv (2021).

[10] S. Smale. On gradient dynamical systems // Ann. Math. 74 (1961), 199–206.

[11] H. Whitney. Tangents to an analytic variety // Ann. Math. 81 (1965), 496–549.