I. INTRODUCTION

Low-dimensional systems with strong electron-electron correlations may lead to an anomalous Aharonov-Bohm (AB) effect [1] with ground-state energy oscillations versus flux \(\phi \) having a period shorter than the fundamental one, given by \(\phi_0 = \hbar c/e \). However, as we shall see below, a fractional period \(\phi_0/N \) does not generally mean that the current is carried by particles with an effective charge \(e' = N e \). In particular, if \(N = 2 \) the half-integer AB effect is not equivalent to the superconducting flux quantization (SFQ). The data are understood in terms of a cell-perturbation theory scheme which is very accurate for weak links. This low-energy approach leads to an effective hard core boson Hamiltonian which naturally describes itinerant pairs and SFQ in mesoscopic rings. For the numerical calculations, we take advantage of a recently proposed exact diagonalization technique which can be generally applied to many-fermion problems and drastically reduces the size of the matrices to be handled.

71.27.+a Strongly correlated electron systems; heavy fermions
74.20.Mn Nonconventional mechanisms
73.22-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

In purely repulsive, \(C_{4v} \)-symmetric Hubbard clusters a correlation effect produces an effective two-body attraction and pairing; the key ingredient is the availability of \(W = 0 \) pairs, that is, two-body solutions of appropriate symmetry. We study the tunneling of bound pairs in rings of 5-site units connected by weak intercell links; each unit has the topology of a CuO\(_4\) cluster and a repulsive interaction is included on every site. Further, we test the superconducting nature of the response of this model to a threading magnetic field. We present a detailed numerical study of the two-unit ring filled with 6 particles and the three-unit ring with 8 particles; in both cases a lower filling yields normal behavior. In previous studies on 1d Hubbard chains, level crossings were reported (half-integer or fractional Aharonov-Bohm effect) which however cannot be due to superconducting pairs. In contrast, the nontrivial basis of clusters carrying \(W = 0 \) pairs leads to genuine Superconducting Flux Quantization (SFQ). The half-integer AB effect caused by the existence of confined pairs has been observed in the framework of extended 1d Hubbard models. Sudbø et al. [10] studied an alternating Cu-O ring with a charge-gap between Cu and O (which favours the particles to occupy O sites) and an on-site repulsion is allowed on Cu’s but not on O’s. In this way a half-integer
flux quantization needs a strong off-site repulsion; pair confinement is achieved by allowing for repulsion-free sites, and not by producing an effective attraction. Other authors considered modified 1d models with bond-charge interactions so that the number of doubly occupied sites is an extra conserved quantity [11]. Turning on a term breaking the extra symmetry gives rise to an effective attractive interaction and to the SFQ for moderate on-site repulsion. However, the pairing mechanism is not driven by the Hubbard interaction as witnessed by the presence of SFQ even at $U = 0$ [12] [13].

Few data are available in 2d Hubbard systems, since no exact solutions exist in this case and numerical explorations are possible only for small clusters. Long ago Canright and Girvin [14] discussed the magnetic response of the Hubbard model showing SFQ in the attractive case by threading a magnetic field into a cylindrical probe. Assaad et al. [15] computed numerically the magnetic response of the repulsive Hubbard model in the same geometry at quarter filling, but the flux quantization was found to be normal. Signatures of anomalous flux quantization in a 4×4 geometry have been provided by Arrachea et al. [16]; however they studied an extended Hubbard model with nearest-neighbour correlated, e.g. occupation-dependent, hopping.

All these results would suggest that the half-integer AB effect cannot be interpreted as SFQ in the context of repulsive Hubbard systems. However, Anderson [17] first advocated the non-conventional superconductivity arising from repulsive interactions, proposing the one-band Hubbard Hamiltonian as a prototype model. Evidence for pairing has then been obtained by several authors by a variety of methods. Analytic approaches based on a renormalization method [18] [19] and on various implementations of the renormalization group technique [20] [21] [22], generalized conserving approximation theories like FLEX [23], as well as Quantum Monte Carlo studies on supercells [24] lead to this conclusion. In Refs. [25] [26] [27] [28] we show that pairing occurs also in purely repulsive, C_{4v}-symmetric Hubbard clusters.

In this paper we wish to study the tunneling of bound pairs in rings of 5-site units with a CuO$_4$ topology, see Fig.(1).

![Diagram](image)

FIG. 1. Illustration of the ring topology described in the main text. τ and τ_{Cu} represent O-O and Cu-Cu links, respectively, as explained in detail in Section III below.

In the following we shall refer to the central site as Cu and to the four external sites as O just to distinguish their position in the unit cell. We shall see that numerical solutions of such a model clearly show superconducting pair hopping if the total number of particles is $2|\Lambda| + 2p$ where $|\Lambda|$ is the number of units and $0 < p < |\Lambda|$; in particular, once a magnetic field is switched on into the ring, SFQ is unambiguously observed. We note that in our model no superconducting response is obtained with less than 2 particles per 5-site unit [CuO$_4$]. This means that the Zhang-Rice picture [29] for the two-dimensional $d - p$ model does not work in the present context and we wish to explore a scenario with a larger number of particles. The data are interpreted by implementing a cell-perturbation theory which is very accurate for weak links. This low-energy approach leads to an effective hard core boson Hamiltonian which naturally describes itinerant pairs and SFQ in mesoscopic rings as well. We feel that SFQ from purely repulsive Hubbard models is interesting by itself even if it may have no direct relevance for high-T_c cuprates.

The tunneling of pairs has been studied in the context of the t-J model too [30], but here we wish to study symmetric Hubbard clusters for a broad range of U/t including the weak coupling limit.

The plan of the paper is the following. In Section II we recall that the CuO$_4$ cluster has two-body singlet eigenstates without double occupation called $W = 0$ pairs. By exploiting a symmetry driven configuration interaction mechanism they get bound once dressed by the virtual electron-hole excitations; the binding is due to an effective attraction among the particles of the $W = 0$ pair. In Section III we introduce the model Hamiltonian with symmetric clusters, as units of an arbitrary graph, linked by intercell hoppings. For any given graph, we deduce a low-energy effective Hamiltonian in Section IV. Partial results presented elsewhere [31] are extended to any number of conducting pairs and we show that the effective Hamiltonian is equivalent to the 1d antiferromagnetic Heisenberg-Ising model for a ring topology. In Section V we recall a recently proposed spin-disentangled diagonalization technique that allowed us to carry out the numerical calculations. We also give practical details on the performance of this novel approach. Results are presented and interpreted physically in Section VI for the two-unit ring and in Section VII for the three-unit ring and compared with the analytic predictions. For the larger ring, after reviewing from Ref. [31] the flux dependence of the energy levels in the case of O-O intercell bonds we analyze the current and show that it is a discontinuous function of the flux and can be paramagnetic as well as diamagnetic. Novel results for the case of Cu-Cu bonds are presented, and this case is definitely more exotic: the bound pairs have an infinite effective mass and the flux quantization is normal. Our main conclusions are summarized in Section VIII.

II. $W = 0$ PAIRING IN HUBBARD MODELS

The repulsive Hubbard Hamiltonian has two-body singlet eigenstates without double occupation [25] [26] [27] [28] called $W = 0$ pairs. Such solutions are also allowed in the fully symmetric clusters C. In the many-body ground state these pairs get dressed and bound, and this is signaled by $\Delta_C(N) < \Delta_C(0)$.
0 where $\Delta_c(N) = E_c^{(0)}(N) + E_c^{(0)}(N-2) - 2E_c^{(0)}(N-1); E_c^{(0)}(N)$ is the interacting ground state energy of the cluster C with N particles. By means of a non-perturbative canonical transformation [18] [19], it can also be shown that $\Delta_c(N) < 0$ is due to an attractive effective interaction and at weak coupling $|\Delta_c(N)|$ is just the binding energy of the pair. The extension of the theory to the full plane was also put forth in Ref. [18].

The C_{4v} symmetric 5-site cluster is the smallest one where the $W = 0$ pairing mechanism works. We have already described $W = 0$ pairing in great detail as a function of the one-body and interaction parameters on all sites; the study was extended to larger clusters too [27] [32]. The 5-site unit has the same topology of the CuO$_4$ cluster; thus, we label the central site by the Cu symbol and the four external ones by the O symbol. The 5-site cluster will be also called CuO$_4$. In order to simplify the analytical formulas, we neglect the O-O hopping term and the only nonvanishing hopping matrix elements are those between an O site and the central Cu site; they are all equal to t. For the sake of simplicity, we parametrize the Hubbard model in such a way that actually everything depends only on the ratio U/t. Thus, we consider the Hubbard Hamiltonian

$$H_{\text{CuO}_4} = t \sum_{i} \left(d_{i\sigma}^\dagger p_{i\sigma} + p_{i\sigma}^\dagger d_{i\sigma} \right) + U \sum_{i} \left(n_{i\uparrow} n_{i\downarrow} + n_{i\downarrow} n_{i\uparrow} \right)$$

(1)

where $p_{i\sigma}^\dagger$ and $p_{i\sigma}$ are the creation and annihilation operators onto the O site $i = 1, \ldots, 4$ with spin $\sigma = \uparrow, \downarrow$, $d_{i\sigma}^\dagger$ and $d_{i\sigma}$ are the creation and annihilation operators onto the Cu site, while $n_{i\sigma}^\dagger = p_{i\sigma}^\dagger p_{i\sigma}$ and $n_{i\sigma} = d_{i\sigma}^\dagger d_{i\sigma}$ are the corresponding number operators. H_{CuO_4} is invariant under the permutation group S_4. The classes of S_4 can be labelled with the quatern (n_1, n_2, n_3, n_4). Each class contains all the permutations where n_i is the maximum number of sets of i elements that remain unchanged after the permutation. For example (4,0,0,0) contains all the permutations such that 4 sets containing one element remain unchanged, that is the identity. On the other hand (2,1,0,0) contains all the permutations such that 2 sets containing one element and one set containing 2 elements remain unchanged. Starting from the configuration 1234, this class contains the permutations 1243, 1432, 1324, 4231, 3214, 2134. S_4 has the irreducible representations (irreps) A_1 (total-symmetric), B_2 (total-antisymmetric), E (self-dual), T_1 and its dual T_2, of dimensions 1, 1, 2, 3 and 3, respectively, see Table I. The model admits a $W = 0$ pair belonging to the irrep E and formed by mixing degenerate one-body states.

S_4	(4, 0, 0, 0)	(2, 1, 0, 0)	(0, 2, 0, 0)	(1, 0, 1, 0)	(0, 0, 0, 1)
A_1	1	1	1	1	1
B_2	1	-1	1	-1	0
E	2	0	2	-1	0
T_1	3	1	-1	0	1
T_2	3	-1	-1	0	1

Table I: Character Table of the S_4 group. Each quatern (n_1, n_2, n_3, n_4) labels a class of S_4.

For later use, we recall how the irrep $\Gamma \in \{ A_1, T_1, E, T_2, B_2 \}$ of S_4 breaks in C_{4v}, that is the point symmetry group of the square. C_{4v} is a subgroup of S_4 and its Character Table is shown in Table II. From Table I and II we have

$$A_1 = A_1, \quad T_1 = B_1 \oplus E, \quad T_2 = A_2 \oplus E, \quad B_2 = B_2,$$

$$\mathcal{E} = A_1 \oplus B_2.$$

(2)

Table II: Character table of the C_{4v} symmetry group. Here 1 denotes the identity, C_2 the 180 degrees rotation, $C_4^{(+)}$, $C_4^{(-)}$, the counterclockwise and clockwise 90 degrees rotation, σ_x, σ_y the reflection with respect to the $y = 0$ and $x = 0$ axis and σ_z, the reflection with respect to the $x = y$ and $-y$ diagonals. In the last column we show typical basis functions.

\[\frac{1}{\sqrt{2}} \left(p_{x,\sigma}^\dagger p_{y,\sigma}^\dagger + p_{y,\sigma} p_{x,\sigma} \right) \]

(3)

on the vacuum.

The ground state of CuO$_4$ belongs to the A_1 representation and that of CuO$_4^+$ is in the E representation. The notation implies that the ground state of CuO$_4$ [3] is a $2T_1$ doublet. $\Delta_{\text{CuO}_4}(4)$ has a minimum at $U \approx 5t$ for this model, as shown in Fig.2, and it is negative when $0 < U < 34.77t$. We emphasize that $\Delta_{\text{CuO}_4}(4)$ becomes positive for large values of U/t and hence pairing disappears in the strong coupling regime. In the present problem U must exceed several tens of times t before the asymptotic strong coupling regime sets in. A perturbation theory will strictly apply at weak coupling where the second derivative of the curve is negative; however, qualitatively a weak coupling approach is rewarding in all the physically interesting range of parameters. The above pairing mechanism does not work in the neighborhood of the infinite U limit.
We analyzed the pairing mechanism in detail in Ref. [28]: for the sake of simplicity here we report in Fig.(3) the leading, second-order two-body amplitude for particles of opposite spins in the degenerate \((x,y)\) orbitals of \(\text{CuO}_4\). We demonstrated [28] that this produces an effective interaction, which pushes down the singlet in Eq.(3) and up the triplet by \(|\Delta_{\text{CuO}_4}(4)|\). In this way, \(\Delta_{\text{CuO}_4}(4)\) can be redefined without any reference to the ground state of clusters with a different number of particles, and we are free from the objections based on a possible Jahn-Teller distortion of odd-N clusters [33].

\[
\begin{array}{c}
\hat{c}_{\alpha,i\sigma}^\dagger & \hat{c}_{\alpha,i\sigma} & \hat{c}_{\beta,i\sigma}^\dagger & \hat{c}_{\beta,i\sigma} \\
\uparrow & x & \downarrow & y \\
\hline
\downarrow & \hat{c}_{\alpha,i\sigma}^\dagger & \hat{c}_{\beta,i\sigma} & \hat{c}_{\alpha,i\sigma} \\
x & \downarrow & \uparrow & y
\end{array}
\]

FIG. 3. The second order spin-flip diagrams for the two-body amplitude.

The formation of bound pairs from purely repulsive interactions was first proposed in a pioneering paper [34] by Kohn and Luttinger. They showed that any three-dimensional Fermi liquid undergoes a superconducting transition by Cooper pairs of very large angular momentum \(l\). A simplified view of the Kohn-Luttinger effect is given by considering one particle of the pair as an external charge. Then, the screening function at \(2\pi F\); here \(k_F\) is the Fermi wavevector. The strict reasoning exploits the fact that the Legendre expansion coefficients of any regular direct interaction between particles of opposite momentum drops off exponentially in \(l\). On the other hand, the second-order contribution to the scattering amplitude falls as \(1/l^4\) and at least for odd \(l\) leads to an attractive interaction. In the modern renormalization group language [35], the second-order correction is obtained by summing up the marginal scattering amplitudes of the isotropic Fermi liquid coming from the so-called Forward channels, including, for antiparallel spins, a spin-flip diagram. This scenario does not work in the two-dimensional Fermi liquid, but going beyond the second-order perturbation theory the Kohn-Luttinger effect is recovered [36]. In the Hubbard model, there is first-order interaction only for antiparallel spins, but it vanishes for \(W = 0\) pairs; in second-order, in the singlet channel, the spin-flip diagram is the only one that survives. We found pairing in the singlet channel in a variety of models including carbon nanotubes [37]. Hence, the \(W = 0\) pairing mechanism in the Hubbard model belongs to the broad category of Kohn-Luttinger effects with no direct interaction and a second-order correction coming from the spin-flip channel only, as shown in Fig.(3).

III. MODELLING INTERCELL HOPPING

We use \(\text{CuO}_4\) units as nodes of a graph \(\Lambda\). The total Hamiltonian is

\[
H_{\text{tot}} = H_0 + H_r, \tag{4}
\]

with

\[
H_0 = \sum_{\alpha \in \Lambda} [t \sum_{\sigma} (\hat{p}^{\dagger}_{\alpha,\sigma} \hat{p}_{\alpha,\sigma} + \hat{p}^{\dagger}_{\alpha,\sigma} \hat{p}_{\alpha,\sigma}) + U(\hat{n}^{(d)}_{\alpha} \hat{n}^{(d)}_{\alpha} + \sum_{\sigma} \hat{n}^{(p)}_{\alpha,\sigma} \hat{n}^{(p)}_{\alpha,\sigma})] \tag{5}
\]

where \(p^{\dagger}_{\alpha,\sigma}\) is the creation operator onto the O \(i = 1,\ldots,4\) of the \(\alpha\)-th cell and so on, while \(H_r\) is an intercell hopping Hamiltonian. The point symmetry group of \(H_0\) includes \(S_4^{d} \sim \Lambda\), with \(|\Lambda|\) the number of nodes.

There are many different ways to add an intercell hopping. Nevertheless, to preserve the symmetry that produces the \(\Delta_{\text{CuO}_4}(4) < 0\) property, we take \(H_r\) invariant under the \(S_4\) subgroup of \(S_4^{d}\). In the following we shall consider a hopping term that allows a particle in the \(i\)-th O site of the \(\alpha\)-th unit to move towards the \(i\)-th O site of the \(\beta\)-th unit with hopping integral \(\tau_{\alpha\beta} \equiv |\tau_{\alpha\beta}| e^{i\phi_{\alpha\beta}}:\)

\[
H_r = \sum_{\alpha,\beta \in \Lambda} \sum_{i\sigma} [\tau_{\alpha\beta} p^{\dagger}_{\alpha,i\sigma} p_{\beta,i\sigma} + h.c.]. \tag{6}
\]

For \(N = 2|\Lambda|\) and \(\tau_{\alpha\beta} \equiv 0\), the unique ground state consists of 2 particles in each \(\text{CuO}_4\) unit. Section IV (theory) and Subsection VII A (numerical) are devoted to the intercell hopping produced by small \(|\tau_{\alpha\beta}| \ll |\Delta_{\text{CuO}_4}(4)|\); to study the propagation of \(p\) pairs we consider a total number of \(N = 2|\Lambda| + 2p\) particles. When \(U/t\) is such that \(\Delta_{\text{CuO}_4}(4) < 0\), each pair prefers to lie on a single \(\text{CuO}_4\) and for \(N = 2|\Lambda| + 2p\) the unperturbed ground state is \(2^p \times (1^p)\) times degenerate (since \(\tau\) has dimension 2). On the other hand, Subsection VII B reports the effects of an intercell hopping \(\tau_{\text{CuO}_4}\) between Cu sites only; this does not break the \(S_4^{d}\) symmetry and therefore its consequences on pair propagation and SFQ are drastically different. By this sort of models one can study the interaction of several pairs in the same system. We are using \(\text{CuO}_4\) as the unit just for the sake of simplicity, but the \(W = 0\) mechanism produces bound pairs at different fillings for larger clusters [28] too. By replacing \(\text{CuO}_4\) by larger units one can model other ranges of filling fraction.

IV. LOW-ENERGY EFFECTIVE HAMILTONIAN FOR O-O INTERCELL HOPPING

In order to study the propagation of the \(p\) added pairs, we obtain an effective Hamiltonian by the cell-perturbation method with \(H_0\), Eq.(5), the “cell-Hamiltonian” and \(H_r\),
Eq.(6), the “intercell perturbation” and by taking into account only the low-energy singlet sector. We note that the cell-perturbation method was already used in Ref. [38] and in Ref. [39] to support the original Anderson’s conjecture [17] on the “low-energy equivalence” between the d – p model (proposed by Emery [40]) and the single-band Hubbard model. Despite the analogies with Ref. [39] (like the same cell-Hamiltonian and weak O-O links between different cells) our intercell perturbation is different and, more importantly, it is the low-energy sector which differs (one needs to consider CuO$_4$ units with 2, 3 and 4 bodies, in contrast to 0, 1 and 2 bodies of Ref. [39]).

Let us introduce some useful notation. Let $|\Psi^{(N)}_0(\alpha)\rangle$, $\alpha = 1, \ldots, |\Lambda|$ be the ground state of the α – th CuO$_4$ unit with 2 $\leq N$ \leq 4 particles and $E^{(0)}(N)$ the corresponding energies. Let $S \subset \Lambda$, with $|S| = p$, be the set of p CuO$_4$ units occupied by four particles and \tilde{S} its complement in Λ, that is $\tilde{S} = \Lambda \setminus S$. When $\Delta_{CuO_4}^{(4)} < 0$, the unperturbed ground state with 2$|\Lambda|$ + 2p particles can be written as

$$|\Phi^S_0\rangle = \prod_{\alpha \in S}|\Psi^{(4)}_0(\alpha)\rangle \prod_{\beta \in \tilde{S}}|\Psi^{(2)}_0(\beta)\rangle$$

and its unperturbed eigenenergy is given by

$$H_0|\Phi^S_0\rangle = \left[pE^{(0)}(4) + (|\Lambda| - p)E^{(0)}(2)\right]|\Phi^S_0\rangle \equiv E^{(0)}_p|\Phi^S_0\rangle.$$

The energies needed to excite the CuO$_4$ cluster from the ground state for $U = 5 \div 6 t$ [when $\Delta_{CuO_4}^{(4)}(4) \approx -0.04 t$, see Fig.(2)] is t with 2 bodies and $\approx 0.1 t$ with 4 bodies; both are large compared with $\Delta_{CuO_4}^{(4)}(4)$ and no level crossings take place if $|\tau_{\alpha\beta}| \ll |\Delta_{CuO_4}^{(4)}(4)|$.

The perturbation H_r in second order will remove part of the $2^p \times (|\Lambda|^3)$ degeneracy. Let $|\Phi_0\rangle$ be an exact eigenstate with eigenenergy E. Expanding $|\Phi_0\rangle$ as

$$|\Phi_0\rangle \simeq \sum_{S'} a_{S'}|\Phi^S_0\rangle$$

one gets

$$(E - E^{(0)}_p)a_{S'} = \sum_{S''} \sum_m \frac{\langle \Phi^S_m|H_r|\Phi^S_0\rangle \langle \Phi^S_m|H_r|\Phi^S_0\rangle}{E - E^{(0)}_p} a_{S''}$$

(10)

where $\{ |\Phi_m\rangle \}$ is a complete set of excited eigenstates of H_0 and $\{ E^{(0)}_m \}$ their eigenenergies.

Our crucial approximation is now to truncate the sum over the excited states $\{ |\Phi_m\rangle \}$ considering only the low-energy states of the form

$$|\Phi^{T,D}_0\rangle = \prod_{\alpha \in T}|\Psi^{(4)}_0(\alpha)\rangle \prod_{\gamma \in D}|\Psi^{(3)}_0(\gamma)\rangle \prod_{\beta \in \tilde{T} \cup \tilde{D}}|\Psi^{(2)}_0(\beta)\rangle,$$

(11)

where $T \subset \Lambda$ is the set of $|S| - 1 \equiv |T|$ CuO$_4$ units with 4 particles, obtained by removing one particle in one of the previous $|S|$ units with 4 particles; in this way we get $|D| = 2$ cells with 3 particles; the remaining $|\Lambda| - |S| - 1 \equiv |T| \cup \tilde{D}$ cells have 2 particles. This approximation is legitimated by the fact that the first excited state with 3 particles is $\approx t$ above the ground state for U in the range $5 \div 6 t$.

The energy of the excited states in Eq.(11) is

$$E^{(0)}_p = (|S| - 1)E^{(0)}(4) + 2E^{(0)}(3) + (|\Lambda| - |S| - 1)E^{(0)}(2)$$

and does not depend on the sets T and D. Within this approximation the Schrödinger equation (10) reduces to

$$\frac{1}{\Delta_{CuO_4}^{(4)}(4)} \sum_{T, D} \sum_{S'} \langle \Phi^S_0|H_r|\Phi^{T,D}_0\rangle \langle \Phi^{T,D}_0|H_r|\Phi^S_0\rangle a_{S'} = \varepsilon a_S,$$

(12)

where $\varepsilon \equiv E - E^{(0)}_p$ and we have disregarded contributions of higher order in ε.

The amplitude $a_S \equiv a(\alpha_1, \ldots, \alpha_p)$ is totally symmetric with respect the permutations of the distinct indices $\alpha_1, \ldots, \alpha_p$. Letting $K(\alpha) = \{ \beta \in \Lambda : \tau_{\alpha\beta} \neq 0 \}$, after some algebra Eq.(12) may be written in the form:

$$\sum_p \sum_{\beta \in K(\alpha)} \prod_{j=1}^p \left(1 - \delta_{\beta\alpha_j}\right) a(\alpha_1, \ldots, \alpha_p) + e^{2\eta_{\alpha\beta}a(\alpha_1, \ldots, \alpha_{j=1}, \beta, \alpha_{j+1}, \ldots, \alpha_p)} = \varepsilon a(\alpha_1, \ldots, \alpha_p).$$

This is a Schrödinger equation for p hard-core bosons with a complex effective hopping integral; below the J coefficients will be calculated analytically and studied as a function of the ratio U/t. In Eq.(13), the second term in the l.h.s. describes pair propagation, e.g. from unit α_j to an unoccupied unit β; in the first term, the system gets back to the initial state after virtually exploring unit β; $\prod_{j \neq \beta}(1 - \delta_{\beta\alpha_j})$ takes into account that if β is one of the occupied units, the particle cannot move toward it.

A. Evaluation of the Effective Hopping Integral and Selection Rules

In Eqs.(7)-(11) we omitted the irrep labels of $|\Psi^{(2)}_0\rangle$, $|\Psi^{(3)}_0\rangle$ and $|\Psi^{(4)}_0\rangle$ in order to avoid a proliferation of indices. Nevertheless, to calculate the J’s we need to reintroduce them. The ground state with two particles is non-degenerate; it belongs to the irrep A_1 of S_4 that coincides with A_1 in C_{4v}, and the change in notation is:

$$|\Psi^{(2)}_0\rangle \rightarrow |\Psi^{(2),A_1}_0\rangle = |\Psi^{(2),A_1}_0\rangle.$$

(14)

As far as the ground state with three particles is concerned, we recall that it is three times degenerate (apart from the trivial spin degeneracy) and belongs to the irrep T_1 of S_4 that in C_{4v} breaks into $B_1 \oplus E$:

$$|\Psi^{(3)}_0\rangle \rightarrow |\Psi^{(3),T_1^{(r)}}_0\rangle \quad r = 1, 2, 3$$

(15)

where we may set up our basis such that $T_1^{(1)} = B_1$, $T_1^{(2)} = E_x$, and $T_1^{(3)} = E_y$.

Finally, the ground state with four particles is two times degenerate and belongs to the irrep E of S_4 that in C_{4v} breaks into $A_1 \oplus B_2$:
where $E^{(1)} = A_1$ and $E^{(2)} = B_2$. Useful selection rules may be obtained using group theory. By exploiting the invariance of H_τ under the group S_4 and omitting, for the sake of clarity, the spin indices in the states $|\Psi_0^{(3)}\rangle$, it follows that

$$
\langle \Psi_0^{(4)} E^{(s)} (\alpha)|\langle \Psi_0^{(3)} E^{(s)} (\beta)|H_\tau|\Psi_0^{(3)} E^{(s)} (\alpha)||\Psi_0^{(4)} E^{(s)} (\beta)\rangle
$$

(17)

is non-vanishing if and only if

$$
T_1^{(r_\alpha)} = T_1^{(r_\beta)}
$$

(18)

for $E^{(s)} = A_1$; instead for $E^{(s)} = B_2$,

$$
T_1^{(r_\alpha)} = E_x, \quad T_1^{(r_\beta)} = E_y
$$

(19)

or

$$
T_1^{(r_\alpha)} = E_y, \quad T_1^{(r_\beta)} = E_x.
$$

(20)

In the case $s = 1$, we have $E^{(1)} = A_1$ and hence by using the selection rules in Eq.(18), the matrix element in Eq.(17) consists of three different contributions coming from the virtual 3-body states of symmetry $B_1 \otimes B_1$, $E_x \otimes E_x$ and $E_y \otimes E_y$:

$$
\tau_0^{\mathrm{eff}}[B_1, B_1] \equiv -\tau_{0\alpha\beta} \sum_i \langle \Psi_0^{(3)} E^{(1)} (\alpha)|p_{\beta, i}|\Psi_0^{(2)} E^{(1)} (\alpha)\rangle \times \langle \Psi_0^{(3)} E^{(1)} (\beta)|p_{\alpha, i}|\Psi_0^{(4)} E^{(1)} (\beta)\rangle
$$

$$
\tau_0^{\mathrm{eff}}[E_x, E_x] \equiv -\tau_{0\alpha\beta} \sum_i \langle \Psi_0^{(3)} E^{(1)} (\alpha)|p_{\beta, i}|\Psi_0^{(2)} E^{(1)} (\alpha)\rangle \times \langle \Psi_0^{(3)} E^{(1)} (\beta)|p_{\alpha, i}|\Psi_0^{(4)} E^{(1)} (\beta)\rangle
$$

$$
\tau_0^{\mathrm{eff}}[E_y, E_y] \equiv -\tau_{0\alpha\beta} \sum_i \langle \Psi_0^{(3)} E^{(1)} (\alpha)|p_{\beta, i}|\Psi_0^{(2)} E^{(1)} (\alpha)\rangle \times \langle \Psi_0^{(3)} E^{(1)} (\beta)|p_{\alpha, i}|\Psi_0^{(4)} E^{(1)} (\beta)\rangle
$$

with $\mu = x, y$. Therefore one can solve the Schrödinger equation (13) with

$$
J_{\alpha, \beta} = 2 \times \frac{\sum_k \tau_0^{\mathrm{eff}}[B_1, B_1]^2 + \sum_k \tau_0^{\mathrm{eff}}[E_x, E_x]^2 + \sum_k \tau_0^{\mathrm{eff}}[E_y, E_y]^2}{\Delta_{\mathrm{CuO}_4}(4)}
$$

(21)

where the factor 2 comes from the spin degeneracy. In Fig.(4) we show the trend of J in units of $|\tau|^2$ versus U/t. The case $E^{(2)} = B_2$ is similar and may be obtained by group theory.

The above treatment holds for any Λ; in the next subsection we shall specialize to the case of a one-dimensional chain with hopping integrals $\tau_{\alpha\beta}$ only between nearest neighbors.

B. Ring Shaped System

In order to discuss the propagation of bound pairs and the quantization of a magnetic flux, we use a chain with periodic boundary conditions and nearest neighbors hopping matrix elements $\tau_{\alpha\beta}$:

$$
\tau_{\alpha\beta} = \begin{cases}
\tau & \text{if } \beta = \alpha + 1, \\
\tau^* & \text{if } \beta = \alpha - 1, \\
0 & \text{otherwise}
\end{cases}
$$

(22)

For the sake of simplicity we first analyze the case with just one added pair ($p=1$) in detail. If the pair belongs to the A_1 component of the E irrep the zeroth-order ground-state is $|\Lambda\rangle$ times degenerate. The effective Schrödinger equation (13) reads

$$
\varepsilon a(\alpha) = J \left[2a(\alpha) + e^{2\pi i/|\Lambda|} a(\alpha + 1) + e^{-2\pi i/|\Lambda|} a(\alpha - 1) \right]
$$

which is readily solved by Fourier transforming and yields the following eigenvalues

$$
\varepsilon_k = 2J \left[1 + \cos \frac{2\pi}{|\Lambda|} \left(k + 2\frac{\phi}{\phi_0} \right) \right], \quad k = 1, \ldots, |\Lambda|.
$$

(23)

The presence of the factor 2 in front of ϕ/ϕ_0 implies that the model quantizes the flux in units of $\phi_0/2$, like superconducting pairs do. Indeed, the ground state energy $E_1^{(0)}(|\Lambda| + 2) = \min_k \varepsilon_k$ is strictly periodic in ϕ with period $\phi_0/2$ for any $|\Lambda| > 2$.

The case $|\Lambda| = 3$ will be used below for a numerical test of Eq.(23). The lowest state energies for every quasimomentum in the three-unit ring will be discussed in detail.

![FIG. 5. Results of Eq.(13) for the three-unit ring with $|\tau| = 0.001$ t, $U = 5$ t. Lowest-energy eigenvalues labeled by their intercell quasi-momentum are shown versus flux ϕ. All energies are in t units.](image)
In the case of \(p \) pairs, Eq.(13) yields
\[
\sum_{j=1}^{p} \sum_{\beta=\pm 1 \neq j} \prod (1 - \delta_{\alpha_j + \beta, \alpha_i}) J [a(\alpha_1, \ldots, \alpha_p) + e^{\frac{\pi i}{\hbar} \alpha_j} a(\alpha_1, \ldots, \alpha + \beta, \ldots, \alpha_p)] = \varepsilon(\alpha_1, \ldots, \alpha_p) \tag{24}
\]
and the model is equivalent to the Heisenberg-Ising spin chain governed by the Hamiltonian
\[
H_{HI} = \sum_{\alpha=1}^{\left| \Lambda \right|} J [2 \eta \sigma^+_{\alpha} \sigma^-_{\alpha+1} + e^{\frac{i}{\hbar} \alpha_j} \phi \sigma^+_{\alpha} \sigma^-_{\alpha+1} + e^{\frac{-i}{\hbar} \alpha_j} \phi \sigma^+_{\alpha} \sigma^-_{\alpha+1}]
\tag{25}
\]
where the \(\sigma^+ \)'s are Pauli matrices, spin up represents an empty site and spin down represents a pair. \(\eta \) is the so-called anisotropy parameter and to reproduce Eq.(24) we must choose \(\eta = -1 \). For \(\eta = 1 \), we have the isotropic Heisenberg interaction. By performing a Jordan-Wigner transformation, the Hamiltonian in Eq.(25) can also be mapped into a model of spinless fermions on the ring. In the absence of a threading magnetic field (\(\phi = 0 \)) the problem was originally studied by Bloch [41] and then exactly solved by Hulthen [42] [in the case \(\eta = -1 \)] and Orbach [43] [in the case \(\eta \leq -1 \)] using the Bethe’s hypothesis [44]. A systematic analysis in the whole range of parameters was given by Yang and Yang in a self-contained series of papers [45]. Here we just recall that the model has a gapless phase if \(|\eta| \leq 1 \), corresponding to the conducting state, while an insulating phase sets in for \(\eta < -1 \). As in the 1d Hubbard model, the “magnetic perturbation” (\(\phi \neq 0 \)) does not spoil the integrability and the Heisenberg-Ising Hamiltonian remains exactly solvable by the Bethe-ansatz method. Let us write an eigenfunction of \(H_{HI} \) as
\[
a(\alpha_1, \ldots, \alpha_p) = \sum_{P} A_P e^{i \sum_{j} k_{P,j} \alpha_j} \tag{26}
\]
where \(P \) is a permutation of the integers 1, \ldots, \(p \) and \(A_P \) are \(p! \) coefficients. Shastry and Sutherland [46] have shown that the variables \(k_j \) are given by
\[
|\Lambda| k_j = 2 \pi I_j + 4 \pi \phi_0 \frac{\eta}{|\phi_0|^2} - \sum_{l \neq j} \theta(k_j, k_l) \tag{27}
\]
with a phase shift
\[
\theta(k, q) = 2 \tan^{-1} \left[\frac{\eta \sin((k - q)/2)}{\cos((k + q)/2) - \eta \cos((k - q)/2)} \right]. \tag{28}
\]
From Eqs.(25)-(27) we readily see that the ground state energy of the low-energy effective Hamiltonian \(H_{HI} \) is periodic with period \(\phi_0/2 \), independent of the number of added pairs. Moreover \(H_{HI} \) is also the appropriate effective model for the strong-negative \(U \) Hubbard model [47], for which evidence of superconductivity is clear [48]. Thus we conclude that the purely repulsive CuO\(_2\)-Hubbard ring threaded by a magnetic field quantizes the flux in a superconducting fashion if the number of particles is \(2|\Lambda| + 2p \) with \(0 \leq p \leq |\Lambda| \).

V. SPIN-DISENTANDED DIAGONALIZATION

In order to find the lowest energy eigenvalues and eigenfunctions when the dimension \(N \) of the Hilbert space is very large, one must avoid storing the \(N \times N \) Hamiltonian matrix \(H_{N \times N} \). The obvious recipe for sparse matrices, which are best handled by the Lanczos method, prescribes storing the nonzero elements and their row and column addresses in arrays. However for big problems this process is slow, since the matrix elements must be referenced to their position in \(H_{N \times N} \) and must be retrieved each time for later use. One can try to improve the situation by projecting on the irreps of the symmetry group in order to reduce \(N \); however this involves building the projected basis and then new Hamiltonian matrix elements, and the new Hamiltonian is much less sparse than before, which destroys much of the benefit gained by the symmetry.

Here we exactly diagonalize the \(|\Lambda| = 2 \) and \(|\Lambda| = 3 \) ring Hamiltonian by the Spin-Disentangled technique, which we briefly introduced recently [31], but deserves a fuller illustration. This allows to solve the \(N \times N \) many-electron problem by storing and handling \(\sqrt{N} \times \sqrt{N} \) matrices. One of its clear advantages is that it does not require the Hamiltonian to be sparse. The method is also much more convenient than the usual one, since the \(\sqrt{N} \times \sqrt{N} \) matrices are directly used by matrix multiplication, which is a fast process, and no mapping back onto \(H_{N \times N} \) is involved. All the advantages of symmetry are gained simply by using a projected starting state of the Lanczos chain. To the best of our knowledge, the Spin-Disentangled technique was not invented earlier, which is somewhat surprising, being a very general method.

We let \(M_\uparrow + M_\downarrow = N \) where \(M_\sigma \) is the number of particles of spin \(\sigma \); \(\{ \phi_{\alpha\sigma} \} \) is a real orthonormal basis, that is, each vector is a homogeneous polynomial in the \(p! \) and \(d! \) of degree \(M_\sigma \) acting on the vacuum. We write the ground state wave function in the form
\[
|\Psi\rangle = \sum_{\alpha\beta} L_{\alpha\beta} |\phi_{\alpha\uparrow}\rangle \otimes |\phi_{\beta\downarrow}\rangle \tag{29}
\]
which shows how the \(\uparrow \) and \(\downarrow \) configurations are entangled. The particles of one spin are treated as the “bath” for those of the opposite spin: this form also enters the proof of a famous theorem by Lieb [49]. In Eq.(29) \(L_{\alpha\beta} \) is an \(M_\uparrow \times M_\downarrow \) rectangular matrix with \(m_\sigma = \langle \alpha | \hat{n}_\sigma | \beta \rangle \). We let \(K_\sigma \) denote the kinetic energy \(m_\sigma \times m_\sigma \) square matrix of \(H_{tot} \) in the basis \(\{ |\phi_{\alpha\sigma}\rangle \} \), and \(N_\sigma^{(s)} \) the spin-\(\sigma \) occupation number matrix at site \(s \) in the same basis \((N_\sigma^{(s)}) \) is a symmetric matrix since the \(\{ \phi_{\alpha\sigma}\} \)’s are real. Then, \(L \) is acted upon by the Hamiltonian \(H_{tot} \) according to the rule
\[
H_{tot} L = [K_\uparrow L + L K_\downarrow] + U \sum_s N_\sigma^{(s)} L N_\sigma^{(s)} L \tag{30}
\]
In particular for \(M_\uparrow = M_\downarrow \) (\(S_z = 0 \) sector) it holds \(K_\uparrow = K_\downarrow \) and \(N_\sigma^{(s)} = N_\sigma^{(s)} \). Thus, the action of \(H \) is obtained in a spin-disentangled way. The generality of the method is not spoiled by the fact that it is fastest in the \(S_z = 0 \) sector, because it is useful provided that the spins are not totally lined up; on the other hand, \(S_z = 0 \) can always be assumed, as long as the Hamiltonian is \(SU(2) \) invariant.
For illustration, consider the Hubbard model with two sites a and b and two electrons (H_2 molecule) each in the ϕ_a or ϕ_b orbital. The intersite hopping is t and the on-site repulsion U. In the standard method, one sets up basis vectors for the $S_z = 0$ sector

$$|\psi_1\rangle = |\phi_{a\uparrow}\rangle \otimes |\phi_{a\downarrow}\rangle, \quad |\psi_2\rangle = |\phi_{a\uparrow}\rangle \otimes |\phi_{b\downarrow}\rangle,$$

$$|\psi_3\rangle = |\phi_{b\uparrow}\rangle \otimes |\phi_{a\downarrow}\rangle, \quad |\psi_4\rangle = |\phi_{b\uparrow}\rangle \otimes |\phi_{b\downarrow}\rangle.$$

One then looks for eigenstates (three singlets and one triplet)

$$|\Psi\rangle = \sum_{i=1}^{4} \psi_i |\psi_i\rangle$$

of the Hamiltonian

$$H_{H_2} = \begin{pmatrix} U & t & t & 0 \\ t & 0 & 0 & t \\ t & 0 & 0 & t \\ 0 & t & t & U \end{pmatrix}.$$

In the form of Eq.(29) and then casting the result in the form of Eq.(29),

$$\begin{pmatrix} \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ by the spin-disentangled method using the form in Eq.}(29) \text{ with}$$

$$L = \begin{pmatrix} \psi_1 & \psi_2 \\ \psi_2 & \psi_4 \end{pmatrix}, \quad K_\sigma = \begin{pmatrix} 0 & t & t \\ t & 0 & t \\ t & t & 0 \end{pmatrix},$$

$$N^{(\sigma)}_a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad N^{(\sigma)}_b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Using Eq.(30), one finds

$$H_{H_2} |\psi\rangle = \sum_{i=a,b} \sum_{j=a,b} (H_{H_2}[L]_{ij\sigma} |\phi_{i\sigma}\rangle \otimes |\phi_{j\sigma}\rangle.$$

with

$$H_{H_2}[L] = \begin{pmatrix} U \psi_1 + t(\psi_2 + \psi_3) & t(\psi_1 + \psi_4) \\ t(\psi_1 + \psi_4) & U \psi_4 + t(\psi_2 + \psi_3) \end{pmatrix}.$$

The reader can readily verify that this is the same as applying H_{H_2} in the form of Eq.(32) to the standard wave function in Eq.(31) and then casting the result in the form of Eq.(29). Since we can apply H_{H_2} we can also diagonalize it.

$N = 4$ for the H_2 toy model, but in the $S_z = 0$ sector for the $|\Lambda|=3$ ring, $N = 1863225$ and $\sqrt{N} = 1365$, which is a clear advantage. Here we have implemented this method for the Hubbard Hamiltonian. We emphasize, however, that this approach will be generally useful for the many-fermion problem, even with a realistic Coulomb interaction, which can be suitably discretized.

A. The practical numerical recipe

We put a symmetry-adapted trial wave function in the form in Eq.(29) and operate the Hamiltonian matrix by Eq.(30); each new application introduces a new Lanczos site and we can proceed by generating a Lanczos chain. To this end we need to orthogonalize to the previous sites by the scalar product given by $\langle \Psi_1 | W_2 \rangle = \text{Tr}(L_1^\dagger L_2)$. In this way we put the Hamiltonian matrix in a tri-diagonal form. This method is well suited since we are mainly interested in the low-lying part of the spectrum. A severe numerical instability sets in when the chain exceeds a few tens of sites, i.e. well before the Lanczos method converges. Therefore we use repeated two-site chains alternated with moderate-size ones.

In the basis of the sites (of the original cluster) the occupation matrices $N^{(\sigma)}_a$ are diagonal with elements equal to 0 or 1, simplifying the calculation of the interaction term. Moreover, in choosing the trial wave function for small τ we take full advantage from our knowledge of the S_z irrep of the $\tau = 0$ ground state. This speeds the calculation by a factor of the order of 2 or 3 compared to a random starting state (or even more, if U is large). Typically, starting from a $\tau = 0$ ground state for the three-unit ring, 24 short Lanczos chains were enough to obtain a roughly correct energy and a 20-site chain achieved an accurate eigenvalue and an already stabilized eigenvector. In limiting cases when the results could be checked against analytic ones, using double precision routines an accuracy better than 12 significant digits was readily obtained. On a personal computer with a Celeron CPU the three-unit ring with 8 particles required 40 minutes for the eigenvalue, and an accurate wave function required less than an hour.

VI. NUMERICAL RESULTS AND DISCUSSION: THE TWO-UNIT “RING”

In this section we analyze the two-unit ring with $\Delta_{CuO_4}(4) < 0$. Here a complex τ is equivalent to a real one, i.e. no magnetic field can thread the system. This is peculiar of the ring with two clusters, since each CuO$_4$ is on the right as well as on the left of the other. Indeed, we have

$$H_{\tau} = (\tau + \tau^*) \sum_{j\sigma} (p_{j\sigma}^1 p_{j\sigma} + p_{j\sigma}^1 p_{j\sigma}),$$

$$= 2|\tau| \cos \frac{\pi \phi}{\phi_0} \sum_{j\sigma} (p_{j+\sigma}^1 p_{j\sigma} + p_{j\sigma}^1 p_{j+\sigma}),$$

hence, the ground state energy $E^{(0)}(\phi, |\tau|)$ as a function of the flux ϕ and of the modulus of τ satisfies

$$E^{(0)}(\phi, |\tau|) = E^{(0)}(0, |\tau| \cos \frac{\pi \phi}{\phi_0}).$$

$E^{(0)}(\phi, |\tau|)$ has a local maximum at $\phi = \phi_0/2$ (a property which is independent of the number of particles in the two-unit ring) since H_{τ} in Eq.(35) vanishes; see Fig.(6) for the case of 2$|\Lambda| = 2 + 6$ particles.

The translational invariance allows to label any state by the crystal momentum $p = \pi k$, $k = 0, 1$. We introduce the short-hand notation $|+\rangle$ and $|-\rangle$ for the components of the 6-body non-interacting ground-state multiplet with $k = 0$ and $k = 1$ respectively

$$|\pm\rangle = \frac{1}{\sqrt{2}} \left[|\Psi_0^{(4)}(1)\rangle |\Psi_0^{(2)}(2)\rangle \pm |\Psi_0^{(2)}(1)\rangle |\Psi_0^{(4)}(2)\rangle \right].$$

We have

$$\langle \Psi_0^{(3)}(1) | \Psi_0^{(3)}(2) | H_{\tau} | -\rangle = 0.$$

8
(the singlet projection of $|\Psi^{(3)}_0(1)|\Psi^{(3)}_0(2)$) has $k = 0$ quantum number and there is no second order correction in the $k = 1$ subspace as shown in Fig.(6). In the $k = 0$ subspace the correction is proportional to $|\tau|^2/\Delta_{\text{CuO}_4}$ for small $|\tau|$, in agreement with the analytical predictions. As shown in Fig.(6), the maximum at $\phi = \phi_0/2$ is not a cusp, as there no level crossing is found.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig6.png}
\caption{Energy of the ground state ($k = 0$) and of the first excited state ($k = 1$) with $2|\Lambda|+2 = 6$ particles as a function of ϕ/ϕ_0. Here $U = 5t$, ($\Delta_{\text{CuO}_4}(4) \approx -0.04258t$) and $|\tau| = 0.001t$. The energies are in units of t.}
\end{figure}

\section*{VII. NUMERICAL RESULTS AND DISCUSSION: THE THREE-UNIT RING}

\subsection*{A. O-O intercell hopping}

In this section we consider the three-unit ring focusing the attention on the case $\Delta_{\text{CuO}_4}(4) < 0$ and total number of particles $2|\Lambda|+2 = 8$. The switching on of the hopping τ between the O sites breaks the symmetry group $C_{3v} \otimes S_4$ into $C_{3v} \otimes S_4$ for real τ; in a magnetic field (complex τ), this further breaks into $C_{3v} \otimes S_4$. Real τ lifts the degeneracy between the $k = 0$ subspace and the subspaces $k = 1$ and $k = 2$ of C_{3v} (as usual k is related to the crystal momentum $p \approx 2\pi\hbar k/3$ in this case), but cannot split $k = 1$ and 2 because they belong to the degenerate irrep of C_{3v}; complex τ resolves this degeneracy.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig7.png}
\caption{Energies of the ground state ($k = 0$) and of the first excited state ($k = 1$ and 2) of the three-unit ring with 8 particles versus $|\tau|$ for $U = 5t$. The energies are in units of t, the parameter $|\tau|$ is in units of $10^{-3}t$.}
\end{figure}

In Fig.(7) we report the numerically exact results for a ring with three clusters, with $U = 5t$ and $|\tau|$ in the range from 0 to 0.006t. The ground state energy and the first excited level depend quadratically on $|\tau|$ for small $|\tau|$. As expected from Eq.(23), the lower eigenspace has $k = 0$, while the first excited one contains the states with $k = 1$ and 2. Differently from the two-unit ring, the first excited level receives a second-order correction.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig8.png}
\caption{Numerical results for the low energy states of the three-unit ring, as a function of the concatenated magnetic flux. Here $U = 5t$, ($\Delta_{\text{CuO}_4}(4) \approx -0.04258t$) $|\tau| = 0.001t$. The energy is in units of t.}
\end{figure}

The three-unit ring is the smallest ring where we can insert a magnetic flux ϕ by $\tau = |\tau|e^{i\phi}$, $\theta = \frac{\pi}{4}(\phi/\phi_0)$. The energies of the three ground-state multiplet components are reported in Fig.(8) for $|\tau| \ll |\Delta_{\text{CuO}_4}(4)|$ and $U = 5t$. At $\phi = 0$ the ground state belongs to the $k = 0$ subspace, while the first excited levels have $k = 1$ and 2. Their spatial degeneration is fully lifted: the $k = 1$ level increases while the $k = 2$ level decreases up to $\phi = \phi_0/2$. As ϕ increases, the ground state energy grows quadratically in ϕ (diamagnetic behaviour). Near $\phi = \phi_0/4$ we find a level crossing between $k = 0$ and $k = 2$, while at $\phi = \phi_0/2$, $k = 0$ becomes degenerate with $k = 1$ and the ground state energy is in a new minimum belonging to the $k = 2$ subspace: a sort of “restoring” of the $\phi = 0$ situation is taking place as in the BCS theory [50]. Indeed, at $\phi = \phi_0/2$ the symmetry group is $C_{6v} \otimes S_4$ where C_{6v} is isomorphous to C_{3v} (reflections σ are replaced by σ_g, where g is a suitable gauge transformation). This feature was also found in other geometries [18] [32]. In the region from $\phi = \phi_0/2$ and $\phi = \phi_0$ we numerically verified that $E_{k=2}(\phi) = E_{k=2}(\phi_0 - \phi)$, $E_{k=0}(\phi) = E_{k=1}(\phi_0 - \phi)$ and $E_{k=1}(\phi) = E_{k=0}(\phi_0 - \phi)$, where $E_{k}(\phi)$ is the ground state energy in the k sector. The comparison of the numerical results shown in Fig.(8) with the analytic ones in Fig.(5) supports the accuracy of the cell-perturbation scheme proposed in Section IV. Thus, the dressed $W = 0$ pair screens the vector potential as a particle with an effective charge $e^* = 2e$ does. At both minima of $E^{(0)}(\phi)$ we have computed $\Delta_{3\text{-unit}}(8) \approx -10^{-2}t$. Here, the half-integer AB effect is actually SFQ.

Filling the conditions $\Delta_{\text{CuO}_4}(4) < 0$ and $|\tau| \ll |\Delta_{\text{CuO}_4}(4)|$, we varied U and $|\tau|$ and found analogous trends for the ground state energy. Increasing $|\tau|$ with fixed $\Delta_{\text{CuO}_4}(4)$ lowers the central minimum and depresses the two maxima. On the other hand, if $|\Delta_{\text{CuO}_4}(4)|$ decreases at fixed $|\tau|$ the central minimum and the side peaks are affected in a
similar way. This is reasonable since the perturbative parameter is \(|\tau|/|\Delta_{\text{CuO}}(4)| \).

The three-unit ring also enables us to study persistent diamagnetic currents carried by bound pairs screening the magnetic flux. We calculated the expectation value for each \(k \) of the total current operator as a function of the flux. The current operator [51]

\[
\hat{I} = e \frac{\partial H_{\text{tot}}}{\partial \phi} = \frac{e}{\hbar |\Lambda|} \sum_{i,\alpha,\sigma} i(\tau \hat{p}_{\alpha+1,i} \hat{p}_{\alpha,\sigma} - \tau^* \hat{p}_{\alpha,i} \hat{p}_{\alpha+1,\sigma})
\]

(39)
yields a gauge invariant average \(I \). By expanding \(\hat{I} \) in Eq.(39) in powers of \(\phi \) near \(\phi = 0 \) one may identify the paramagnetic and the diamagnetic contributions with the zeroth and the first order terms respectively [52]. The results are reported in Fig.(9); the current is proportional to the flux derivative of the ground-state energy [see Fig.(8)] according to the Hellmann-Feynman theorem. Near \(\phi = 0 \) the system generates a diamagnetic current which screens the threaded magnetic field. When \(\phi \) exceeds a critical value \(|\phi_0|/4 \), a breakdown of the ground state occurs. This corresponds to a discontinuity of the current which changes sign; then the current enhances the external field. At \(\phi = \phi_0/2 \) the current vanishes again. Indeed, like at \(\phi = 0 \), the eigenfunctions may be chosen real \(|H_\tau| \) at \(\phi = \phi_0/2 \) is obtained from \(H_\tau \) at \(\phi = 0 \) by reversing the sign of four O-O bonds connecting two nearest neighbors units. Thus, near \(\phi_0/2 \) the magnetic flux is still a small perturbation with respect to a new real intercell hopping Hamiltonian and the current correctly screens the new magnetic field. From Fig.(9) we see that the maximum value of the diamagnetic current is of the order of \(1 \div 10 \) nano Ampere if \(t = 1 \) eV and the ratio \(I/(\phi/\phi_0) \approx e|\tau|/h \) near \(\phi = 0 \).

![Fig. 9. Total current for the three-CuO\(_4\) ring, as a function of the magnetic flux. Here \(U = 5 \) \(t \), \(|\tau| = 0.001 \) \(t \). The current is in units of \(e|\tau|/h \). The thick line marks the ground state current.](image)

In Fig.(10) we show the trend of the ground state energy in each \(k \) sector for the non-interacting \((U = 0)\) three-unit ring. In this case there is no pairing in CuO\(_4\) and indeed the ground state energy is linear in the field at small fields (normal Zeeman effect). The lowest state is \(k = 2 \) throughout. Interestingly, the three-unit ring \textit{concatenated with half a flux quantum} would be diamagnetic, but the absence of a second minimum shows that it would be Larmor diamagnetism.

![Fig. 10. Low energy states of the three-unit ring versus \(\phi/\phi_0 \). Here \(U = 0 \) and \(|\tau| = 0.001 \) \(t \). The energy is in units of \(t \).](image)

The absence of SFQ in Fig.(10) is a further evidence of the repulsion-driven pairing mechanism discussed in Section II.

B. Cu-Cu intercell hopping

We can alternatively model the three-unit ring by connecting only the central Cu sites of the constituent CuO\(_4\) units with a hopping term \(\tau_{\text{Cu}} \); in order to study the propagation of a bound pair we again assume the total number of particles \(2|\Lambda| + 2 = 8 \). The full system threaded by the flux has a \(C_3 \otimes S_4 \) symmetry because the O sites are not involved in the intercell Hamiltonian. Again, we consider the case \(\Delta_{\text{CuO}}(4) < 0 \) and ask if now the \(W \) = 0 bound pair can screen out the magnetic flux.

![Fig. 11. Ground state energy \(E \) of the three-unit ring in units of \(t \), as a function of the concatenated magnetic flux. \(E \) is \(k \)-independent (see text). Here \(U = 5 \) \(t \), \(|\tau_{\text{Cu}}| = 0.1t \).](image)

We find that \(\tau_{\text{Cu}} \) produces much smaller effects than \(\tau \); for \(|\tau_{\text{Cu}}| < |\Delta_{\text{CuO}}(4)|\) the energy eigenvalues are outright \(\phi \) independent to great accuracy. Therefore we considered \(|\tau_{\text{Cu}}| = 0.1t \): still the dependence of the ground state energy is weak, see Fig.(11). At \(\phi = 0 \), the correction [53] due to \(|\tau_{\text{Cu}}| \) to ground state energy is \(\sim 10^{-3}t \). Moreover, remarkably, the system behaves as a paramagnet.

The reason of this unusual behavior is the following. There is no flux-induced splitting of the three \(k \) levels because the \(W = 0 \) pair is strictly localized by the local symmetry. Indeed the \(S_4 \) label of each CuO\(_4\) unit is a good quantum number.
No SFQ is observed because the screening of the magnetic field by the bound pair is forbidden. The small correction to the ground state energy comes from a second-order process. Starting e.g. with an unperturbed state \(|4, 2, 2, 1\rangle\), in which the bound pair is localized on the first cluster, the correction involves virtual states \(|3, 3, 2\rangle\) and \(|3, 2, 3\rangle\) in which a totally symmetric particle jumps forth and back on the nearby clusters. This process occurs with a small amplitude because of a severe energy misfit. This is particularly clear at weak clusters. This process occurs with a small amplitude because the screening of the magnetic field. This is why a paramagnetic dependence on the flux is seen in Fig.(11) and the correction goes like \(-\phi^2\) at small \(\phi\). This is interesting because it shows how the local symmetry can hinder the tunneling of bound pairs carrying conserved quantum numbers; SFQ is not a necessary consequence of superconductivity if the pairs are not totally symmetric.

VIII. CONCLUSIONS

We propose a Hubbard model with on-site repulsion defined on a graph \(\Lambda\) with 5-site \(C_5\)-symmetric clusters as nodes in order to study the response of the system to a threading magnetic flux. For ring-shaped systems and weak O-O links we find a half-integer AB effect which is unambiguously interpreted as SFQ. The key ingredient is the \(W = 0\) pair which is a two-body singlet eigenstate of \(H_{CuO_4}\) without double occupation and is formed by mixing degenerate one-body states. In the interacting problem the \(W = 0\) pair becomes a bound pair when four particles lie in the CuO_4 cluster. The pairing mechanism is due to an effective attractive interaction mediated by repeated electron-hole exchanges with the Fermi sea. Thus, SFQ may be found in purely repulsive 1d Hubbard models if the nodes are represented by a non-trivial basis. Focussing on the low-energy sector, we find a simplified description of the model in terms of an effective hard-core boson Hamiltonian that can be solved exactly for ring-shaped systems and arbitrary filling. Further, we show that the boson Hamiltonian is equivalent to the well-known [42] Heisenberg-Ising spin chain with an antiferromagnetic anisotropy parameter \(\eta = -1\).

The analytic results are well confirmed by the numerical findings for the two- and three-unit ring (14,400 and 1,863,225 configurations). To this end, we have recently introduced a new exact-diagonalization technique. By disentangling spin-up and spin-down we reduce the size of the matrices that must be handled considerably; for spin-unpolarized systems the matrix dimension is the square root of the overall size of the Hilbert space. The method allows large further reductions by exploiting the symmetry; this can be done in several ways. One can first diagonalize Dirac’s characters and then apply the spin-disentangled technique with a smaller function space; alternatively, one can set up the spin-disentangled technique by a variational approach, a projection operator (\(H^\prime\)) or Lanczos method, starting with a trial state belonging to a well defined symmetry.

We have computed the ground state energy and the induced supercurrent as a function of the trapped flux in the case of weak O-O links. We have also studied the effect of direct intercell Cu-Cu links; in this case, bound pair propagation is hindered by symmetry, because each unit must keep its own \(S_z\) irrep. Hence, the unusual situation arises when the threading flux is not screened by the superconducting pairs and a paramagnetic response prevails.

[1] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959); R.G. Chambers, Phys. Rev. Lett. 5, 3 (1960).
[2] R. M. Fye, M. J. Martins, D. J. Scalapino, J. Wagner and W. Hanke, Phys. Rev. B 44, 6909 (1991).
[3] F. V. Kusmartsev, J. Phys.: Condens. Matter 3, 3199 (1991).
[4] A. J. Schofield, J. M. Wheatley and T. Xiang, Phys. Rev. B 44, 8349 (1991).
[5] N. Yu and M. Fowler, Phys. Rev. B 45, 11795 (1992).
[6] F. V. Kusmartsev, J. F. Weisz, R. Kishore and M. Takanashi, Phys. Rev. B 49, 16234 (1994); F. V. Kusmartsev, Phys. Rev. B 52, 14445 (1995).
[7] E. H. Lieb and F. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[8] A. Ferretti, I. O. Kulik and A. Lami, Phys. Rev. B 45, 5486 (1992).
[9] F. Nakano, J. Phys. A 33, 5429 (2000).
[10] A. Sudbo, C. M. Varma, T. Giamarchi, E. B. Stechel and R. T. Scalettar, Phys. Rev. Lett. 70, 987 (1993); E. B. Stechel, A. Sudbo, T. Giamarchi and C. M. Varma, Phys. Rev. B 51, 553 (1995).
[11] L. Arrachea and A. A. Aligia, Phys. Rev. Lett. 73, 2240 (1994).
[12] L. Arrachea, A. A. Aligia and E. Gagliano, Phys. Rev. Lett. 76, 4396 (1996).
[13] A. Ferretti, I. O. Kulik and A. Lami, Phys. Rev. B 47, 12235 (1993).
[14] G. S. Cankir and S. M. Girvin, Int. J. Mod. Phys. B 3, 1943 (1989).
[15] F. F. Assaad, W. Hanke and D. J. Scalapino, Phys. Rev. Lett. 71, 1915 (1993).
[16] L. Arrachea and A. A. Aligia, Phys. Rev. B 61, 9686 (2000).
[17] P. W. Anderson, Science 235, 1196 (1987).
[18] Michele Cini, Gianluca Stefkanucci and Adalberto Balzarotti, Eur. Phys. J. B 10, 293 (1999).
[19] Michele Cini, Gianluca Stefkanucci and Adalberto Balzarotti, Solid State Commun. 109, 229 (1999).
[20] D. Zanchi and H. J. Schulz, Z. Phys.: Condens. Matter B 103, 339 (1997); D. Zanchi and H. J. Schulz, Europhys. Lett. 44, 235 (1998).
[21] C. J. Halboth and W. Metzner, Phys. Rev. B 61, 7364 (2000).
[22] C. Honerkamp, M. Salmhofer, N. Furukawa and T. M. Rice, Phys. Rev. B 63, 035109 (2001); C. Honerkamp, Eur. Phys. J. B 21, 81 (2001).
[23] N. E. Bickers, D. J. Scalapino and S. R. White, Phys. Rev. Lett. 62, 961 (1989); N. E. Bickers and S. R. White, Phys. Rev. B 43, 8044 (1991); G. Esirgen and N. E. Bickers, Phys. Rev. B 57, 5376 (1998) and references therein.
[24] W. Fettes and I. Morgensten, Eur. Phys. B 9, 635 (1999) and references therein.
[25] Michele Cini and Adalberto Balzarotti, Il Nuovo Cimento D 18, 89 (1996).
[26] Michele Cini and Adalberto Balzarotti, J. Phys. C 8, L265 (1996).
[27] Michele Cini and Adalberto Balzarotti, Solid State Comm. 101, 671 (1997); Michele Cini, Adalberto Balzarotti, J. Tinka Gammel and A. R. Bishop, Il Nuovo Cimento D 19, 1329 (1997).
[28] Michele Cini and Adalberto Balzarotti, Phys. Rev. B 56, 14711 (1997).
[29] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
[30] M. Arjunwadkar, G. Baskaran, R. Basu and V. N. Mathur, Phys. Rev. Lett. 70, 674 (1993).
[31] Michele Cini, Gianluca Stefanucci, Enrico Perfetto and Agnese Callegari, J. Phys.: Condens Matter 14, L709 (2002).
[32] Michele Cini Adalberto Balzarotti and Gianluca Stefanucci, Eur. Phys. J. B 14, 269 (2000).
[33] S. Mazumdar, F. Guo, D. Guo, K. C. Ung and J. T. Gammel, Proceeding of the “Discussion meeting on strongly correlated electron systems in chemistry, Bangalore, India, (Springer Verlag 1996).
[34] W. Kohn and J. Luttinger, Phys. Rev. Lett. 15, 524 (1965).
[35] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
[36] A. V. Chubukov, Phys. Rev. B 48, 1097 (1993).
[37] Enrico Perfetto, Gianluca Stefanucci and Michele Cini, Phys. Rev. B 66, 165434 (2002).
[38] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243 (1990); B. Sutherland and B. S. Shastry, Phys. Rev. Lett. 65, 1833 (1990).
[39] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[40] W. A. Little and R. D. Parks, Phys. Rev. Lett. 9, 9 (1962).
[41] W. Kohn, Phys. Rev. 112, 309 (1958).
[42] H. A. Bethe, Z. Physik 71, 205 (1931).
[43] C. N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966); C. N. Yang and C. P. Yang, Phys. Rev. 150, 321 (1966); C. N. Yang and C. P. Yang, Phys. Rev. 150, 327 (1966); C. N. Yang and C. P. Yang, Phys. Rev. 151, 258 (1966).
[44] R. Shankar, Rev. Mod. Phys. 62, 113 (1990).
[45] A. A. Aligia, Phys. Rev. B 61, 7028 (2000).