Bacterial Vaginosis, *Atopobium vaginae* and Nifuratel

Franco Polatti*

Department of Obstetrics and Gynecology, Policlinico San Matteo, University of Pavia, Pavia, Italy

Abstract: As bacterial vaginosis (BV) is a potential cause of obstetric complications and gynecological disorders, there is substantial interest in establishing the most effective treatment. Standard treatment - metronidazole or clindamycin, by either vaginal or oral route – is followed by relapses in about 30% of cases, within a month from treatment completion. This inability to prevent recurrences reflects our lack of knowledge on the origins of BV. *Atopobium vaginae* has been recently reported to be associated with BV in around 80% of the cases and might be involved in the therapeutic failures. This review looks at the potential benefits of nifuratel against *A. vaginae* compared to the standard treatments with metronidazole and clindamycin. In *vitro*, nifuratel is able to inhibit the growth of *A. vaginae*, with a MIC range of 0.125-1 µg/mL; it is active against *G. vaginalis* and does not affect lactobacilli. Metronidazole is active against *A. vaginae* only at very high concentrations (8-256 µg/mL); it is partially active against *G. vaginalis* and also has no effect on lactobacilli. Clindamycin acts against *A. vaginae* with an MIC lower than 0.125 µg/mL and is active on *G. vaginalis* but it also affects lactobacilli, altering the vaginal environment. These observations suggest that nifuratel is probably the most valid therapeutic agent for BV treatment.

Keywords: Antibiotic resistance, *Atopobium vaginae*, bacterial vaginosis, nifuratel, review.

BACTERIAL VAGINOSIS

Epidemiology and Pathogenesis

Bacterial vaginosis (BV) is one of the most frequent female lower genital tract infections, not only in pregnancy but throughout the reproductive life. Studies from Europe and the USA have found prevalence between 4.9% and 36.0% [1]. The first signs of BV are radical changes in the vaginal ecosystem. H2O2-producing lactobacilli, and 36.0% [1]. The first signs of BV are radical changes and the USA have found prevalence between 4.9%

This inability to prevent recurrences reflects our lack of knowledge on the origins of BV. *Atopobium vaginae* has been recently reported to be associated with BV in around 80% of the cases and might be involved in the therapeutic failures. This review looks at the potential benefits of nifuratel against *A. vaginae* compared to the standard treatments with metronidazole and clindamycin. In *vitro*, nifuratel is able to inhibit the growth of *A. vaginae*, with a MIC range of 0.125-1 µg/mL; it is active against *G. vaginalis* and does not affect lactobacilli. Metronidazole is active against *A. vaginae* only at very high concentrations (8-256 µg/mL); it is partially active against *G. vaginalis* and also has no effect on lactobacilli. Clindamycin acts against *A. vaginae* with an MIC lower than 0.125 µg/mL and is active on *G. vaginalis* but it also affects lactobacilli, altering the vaginal environment. These observations suggest that nifuratel is probably the most valid therapeutic agent for BV treatment.

Complications of BV

BV has aroused interest in the last few years being considered as a predisposing factor for HIV, Type II *Herpes simplex* virus, *Chlamydia trachomatis* infections, as well as for trichomoniasis and gonorrhrea [13, 14]; BV can be also a cause for complications like late abortion [15], premature rupture of the amniotic membrane [16], chorio-amnionitis [17], *post-partum* endometritis [18, 19, 20], and failure of in *vitro* fertilization and embryo transfer [13, 14]. Particular attention has been recently paid to *Atopobium vaginae*, a newly identified bacterium, belonging to the *Coriobacteriaceae* family, which is believed to be at least a partial cause of the above mentioned complications [13]. The genus *Atopobium*, described for the first time in 1992, includes bacteria previously classified as lactobacilli. Rodriguez first identified *A. vaginae* in a study on vaginal lactobacilli [21]. *A. vaginae* 16s rRNA gene differs from the other species belonging to *Atopobium* genus by approximately 3-8% [22, 23]; this enabled Rodriguez to identify it as a new species. The isolate can be distinguished from *A. minutum*, *A. parvulum*,

Address correspondence to this author at the Department of Obstetrics and Gynecology, Policlinico San Matteo, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Pavia, Italy; Tel: +39 524309; Fax: +39 524309; E-mail: polattif@libero.it
Bacterial Vaginosis, Atopobium vaginae and Nifuratel

Current Clinical Pharmacology, 2012, Vol. 7, No. 1

37

and A. rimae by biochemical tests and protein electrophoresis of the whole cell (Table 1). Gram stain shows A. vaginae as a small coccus, rounded or oval, or rods, visible as single cells, in pairs or in short chains (Fig. 1).

![Fig. (1). A) Grey-white colonies of A. vaginae after 48h culture in anaerobic conditions. B) Gram staining shows Gram-positive bacteria, with A. vaginae visible as single cells, in pairs or short chains. Geissdorfer et al. 2003 [41].](image)

Enzyme	A. vaginae	A. minutum	A. parvulum	A. rimae
Acid phosphatase	+	-	+	+
Alanine arylaminidase	-	-	+	-
Arginine dihydrolase	+	+	-	-
Arginine arylaminidase	+	+	+	-
Histidine arylaminidase	+	-	-	-
B-Galactosidase	-	-	+	-
Leucine arylaminidase	+	+	-	-
Proline arylaminidase	+	+	-	-
Pyroglutamic acid arylaminidase	-	v	+	+
Glycine arylaminidase	+	-	+	-
Serine arylaminidase	+	-	-	-
Thyroxine arylaminidase	-	-	+	-

+, the enzyme is expressed constitutively; -, the enzyme is absent and cannot be induced; v, expression of the enzyme is variable Modified, from Rodriguez et al. 1999 [21].

This aerobic facultative, gram-positive bacterium cannot be easily isolated by classical microbiological methods [14, 24]. It is hardly detected in healthy women vaginal fluid but is commonly found in the vagina of patients with BV: 50% according to Burton [25, 26], 70% according to Ferris [27], and more than 95% according to Verhelst et al. [24] and Verstraeten et al. [28]. In symptomatic BV it has been detected together with Gardnerella vaginalis in the biofilm adherent to the vaginal mucosa [24]. This was confirmed by Swidsinski et al. [7] who, by examining the composition and structural organization of the biofilm, found that Gardnerella vaginalis accounted for 60-95% of the film mass. In addition, in 70% of biopic samples, Atopobium vaginae accounted for the 1-40% of the film mass. Lactobacillus concentrations were lower than 10^6 CFU/mL, making up only 5% of the biofilm (Fig. 2).

Therapy

Concerning the pharmacological therapy, CDC recommends either oral or topical (vaginal gel) metronidazole once a day for 5 days as first choice for BV. Efficacy is comparable to topical clindamycin [29]. Cure rates, following intravaginal treatment with metronidazole or clindamycin, account for 80-90% at the end of treatment and one month after the end of therapy [13, 14, 30]. However, three months after the end of therapy the rate of relapses can overcome 30%. Persistence of an adherent bacterial biofilm, containing mostly G. vaginalis and A. vaginae, seems to be the main reason for failure of BV treatment [30]. Suppressive treatment with metronidazole gel and physiological approaches (use of probiotics or acidifying) have been investigated with variable results [31]. Moreover, long-term treatment with metronidazole is not recommended because of the high incidence of gastrointestinal adverse reactions, the risk of peripheral neuropathy, and Candida super infection [32].
Current Clinical Pharmacology, 2012, Vol. 7, No. 1

Antibiotic Sensitivity

Failures with metronidazole in patients with recurrent or persistent BV [33, 34] might conceivably reflect the newly found mechanism of formation of a biofilm containing G. vaginalis together with A. vaginae [7, 9, 13, 28] (Fig. 3). The fact that A. vaginae is resistant to metronidazole, and that the bacterium creates a biofilm in which it is associated with G. vaginalis, complicates the response to the antibiotic [9, 13, 28]. Though clindamycin is more active than metronidazole against both G. vaginalis and A. vaginae, its negative effects on lactobacilli leave the way open to microbial disorders that can cause frequent super infections and recurrences. Moreover, an increasing resistance to antibiotics that act like clindamycin, by blocking protein synthesis has been reported. A randomized prospective trial compared 119 women assigned to two therapeutic regimens for BV: either metronidazole vaginal gel for five days, or clindamycin vaginal tablets for three days. The clinical efficacy was comparable in the two arms: after 7-12 days about 80% of the patients were cured, but this percentage fell down to about 50% after 35-45 days. Following clindamycin treatment – but not metronidazole - there was a steep rise in the percentage of women with at least one clindamycin resistant strain isolated. Moreover, 70-90 days after the end of treatment, about 80% of the women who received clindamycin presented in their vaginal swabs anaerobic bacteria resistant to that drug [35].

Togni et al. [36] compared the in vitro susceptibility of A. vaginae to nifuratel, metronidazole and clindamycin. Susceptibility to metronidazole was variable, with MIC ranging from 8 to 256 µg/mL. Nifuratel and clindamycin inhibited the growth of all the tested strains, with MIC from 0.125 to 1 µg/mL and below 0.125 µg/mL, respectively (Table 2). The findings related to metronidazole and clindamycin are in line with previously published studies [37].

Table 2. MIC Ranges (µg/mL) and MIC₅₀ (µg/mL) of Metronidazole, Clindamycin and Nifuratel against Atopobium vaginae

Antimicrobial Agent	MIC Range (µg/ml)	MIC₅₀ (µg/ml)
Metronidazole	8 - 256	32
Clindamycin	< 0.125	< 0.125
Nifuratel	0.125 - 1	0.5

Togni et al. 2011 [30].

In the same study, the activity of these antibiotics was assayed on lactobacilli and G. vaginalis. Either nifuratel and metronidazole did not affect the normal lactobacterial flora, while clindamycin inhibited all tested strains of lactobacilli. Nifuratel and metronidazole were both highly active against G. vaginalis (Fig. 4). The susceptibility of Atopobium vaginae to metronidazole and clindamycin, and the action on lactobacilli and G. vaginalis were in line with previous reports [37-39]. To summarise, nifuratel was active against A. vaginae and G. vaginalis strains without affecting lactobacilli; metronidazole was active against A. vaginae, but only at very high concentrations, partially active against G. vaginalis, and did not affect lactobacilli; clindamycin was extremely effective against A. vaginae and G. vaginalis, but it also affected the lactobacilli, altering the vaginal ecosystem.

CONCLUSIONS

The discovery of the presence of Atopobium vaginae in the vaginal ecosystem improves the basic understanding of
the pathogenesis of BV [28]. This bacterium is presumably the main reason for failures or recurrences after BV treatment with metronidazole, since it is found in 80-90% of cases of relapse [40]. Prospective studies are now needed to show whether metronidazole-resistant microorganisms, such as *Atopobium vaginae*, are involved in recurrences. Information to date suggests that nifuratel is probably the most valid therapeutic agent for BV, as it is highly active against *Gardnerella vaginalis* and *Atopobium vaginae*, without affecting lactobacilli which are fundamental for the system health and balance [30].

CONFLICT OF INTEREST

Declared none.

ACKNOWLEDGEMENT

Declared none.

REFERENCES

[1] Morris M, Nicoll A, Simms I, Wilson J, Catchpole M. Bacterial vaginosis: a public health review. BJOG 2001; 108: 439-50.
[2] Nam H, Whang K, Lee Y. Analysis of vaginal lactic acid producing bacteria in healthy women. J Microbiol 2007; 45: 515-20.
[3] Caucci S, Monte R, Driussi S, LanzaFame P, QuadriFoglio F. Impairment of the mucosal immune system: IgA and IgM cleavage detected in vaginal washing of a subgroup of patients with bacterial vaginosis. J Infect Dis 1998; 178: 1698-1706.
[4] Sobel JD. Bacterial vaginosis. Annu Rev Med 2000; 51: 349-56.
[5] van der Meijden WI, Koerten H, van Mourik W, de Bruijn WC. Descriptive light and electron microscopy of normal and clue-cell-positive discharge. Gynecol Obstet Invest 1988; 25: 47-57.
[6] Scott TG, Curran B, Smyth CJ. Electron microscopy of adhesive interactions between *Gardnerella vaginalis* and vaginal epithelial cells, McCoy cells and human red blood cells. J Gen Microbiol 1989; 135: 475-80.
[7] Swidsinski A, Mending W, Loening-Baucke V, Ladhoff A, Swidsinski S, Hale LP, Lochs H. Adherent biofilms in bacterial vaginosis. Obstet Gynecol 2005; 106: 1013-23.
[8] Costerton W, Yee R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 2003; 112: 1466-77.
[9] Swidsinski A, Mending W, Loening-Baucke V, Swidsinski S, Dorfler Y, Scholze J, Lochs H, Verstraalen H. An adherent *Gardnerella vaginalis* biofilm persists on the vaginal epithelium after standard therapy with metronidazole. Am J Obstet Gynecol 2008; 198: 97.e1-6.
[10] Hay P. Recurrent bacterial vaginosis. Curr Infect Dis Rep 2000; 2: 506-12.
[11] Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35: 322-32.
[12] Pirotta M, Fethers KA, Bradshaw CS. Bacterial vaginosis - More questions than answers. Aust Fam Physician 2009; 38: 394-7.
[13] Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 2005; 353: 1899-911.
[14] Livengood CH. Bacterial vaginosis: an overview for 2009. Rev Obset Gynecol 2006; 2: 28-37.
[15] Donati L, Di Vico A, Nucci M, Quagliozzi L, Spagnuolo T, Labianca A, Bramaglia M, Ianniello F, Caruso A, Paradisi G. Vaginal microflora and outcome of pregnancy. Arch Gynecol Obstet 2010; 281: 589-600.
[16] McDonald HM, Brocklehurst P, Gordon A. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev 2007; 24 (1): CD000262.
[17] Fahey JO. Clinical management of intra-amniotic infection and chorioamnionitis: a review of the literature. J Midwifery Women’s Health 2008; 53: 227-35.
[18] Hillier SL, Kiviat NB, Hawes SE, Hasselquist MB, Hanssen PW, Eschenbach DA, Holmes KK. Role of bacterial vaginosis-associated microorganisms in endometritis. Am J Obstet Gynecol 1996; 175: 435-41.
[19] Sweet RL. Role of bacterial vaginosis in pelvic inflammatory disease. Clin Infect Dis 1995; 20: 2271-5.
[20] Pellati D, Mylonakis I, Bertoloni G, Fiore C, Andrisani A, Ambrosini G, Armanini D. Genital tract infections and infertility. Eurl J Obset Gynecol Reprod Biol 2008; 140: 3-11.
[21] Rodriguez Jovita M, Collins MD, Sjoden B, Falsen E. Characterization of a novel *Atopobium* isolate from the human vagina: description of *Atopobium vaginale* sp. nov. Int J Syst Bacteriol 1999; 49: 1573-76.
[22] Collins MD, Wallbanks S. Comparative sequence analysis of the 16s rRNA genes of *Lactobacillus minutus, Lactobacillus rima* and *Streptococcus parvulus*: proposal for the creation of a new genus *Atopobium*. FEMS Microbiol Lett 1992; 74: 235-40.
[23] Stackebrandt E, Ludwig W. The importance of using outgroup reference organisms in phylogenetic studies: the *Atopobium* case. Syst Appl Microbiol 1994; 17: 3943.
[24] Verhelst R, Vestaert H, Claeyts G, Verschraegen G, Delanghe J, Van Simaey L, De Gaeck C, Temmerman M, Vanechouette M. Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between *Atopobium vaginale, Gardnerella vaginalis* and bacterial vaginosis. BMC Microbiol 2004; 4: 16.
[25] Burton JP, Devillard E, Cadieux PA, Hammond JA, Reid G. Detection of *Atopobium vaginae* in postmenopausal women: cultivation-independent methods warrants further investigation. J Clin Microbiol 2004; 42: 1829-31.
[26] Burton JP, Chilcott CN, Al-Qumber M, Brooks HJ, Wilson D, Tagg JR, Devenish C. A preliminary survey of *Atopobium vaginae* in women attending the Dunedin gynaecology out-patients clinic: is
the contribution of the hard-to-culture microbiota overlooked in gynaecological disorders? Aust N Z J Obstet Gynaecol 2005; 45: 450-2.

[27] Ferris MJ, Masztal A, Martin DH. Use of species-directed 16S rRNA gene PCR primers for detection of Atopobium vaginae in patients with bacterial vaginosis. J Clin Microbiol 2004; 42: 5892-4.

[28] Vestroelens H, Verhelst R, Claeyts G, Temmerman M, Vaneechoutte M. Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. Am J Obstet Gynecol 2004; 191: 1130-2.

[29] Workowski KA, Berman S. Centers for Disease Control and Prevention. Sexually transmitted disease treatment guidelines 2010. Recommendation and Reports, December 17, 2010 59 (RR12); 1-110.

[30] Togni G, Battini V, Bulgheroni A, Mailland F, Caserini M, Mendling W. In vitro activity of nitfuratol on vaginal bacteria: could it be a good candidate for the treatment of bacterial vaginosis? Antimicrob Agents Chemother 2011; 55: 2490-2.

[31] Hay P. Recurrent bacterial vaginosis. Current Opinion in infectious diseases 2009; 22: 82-86.

[32] Dickey LJ, Nailor MD, Sobel JD. Guidelines for the treatment of bacterial vaginosis: focus on tinidazole. Ther Clin Risk Management 2009; 5: 485-9.

[33] Ferris DG, Litaker MS, Woodward L, Mathis D, Hendrich J. Treatment of bacterial vaginosis: a comparison of oral metronidazole, metronidazole vaginal gel and clindamycin vaginal cream. J Fam Pract 1995; 41: 443-9.

[34] Larsson PG, Forsum U. Bacterial vaginosis: a disturbed bacterial flora and treatment enigma. APMIS 2005; 113: 305-16.

[35] Fredricks DN, Fiedler TL, Thomas KK, Mitchell CM, Marrazzo JM. Changes in vaginal bacterial concentrations with intravaginal metronidazole therapy for bacterial vaginosis as assessed by quantitative PCR. J Clin Microbiol 2009; 47: 721-26.

[36] Beigi RH, Austin MN, Meyn LA, Krohn MA, Hillier SL. Antimicrobial resistance associated with the treatment of bacterial vaginosis. Am J Obstet Gynecol 2004; 191: 1124-9.

[37] De Backer E, Verhelst R, Vestroelens H, et al. Antimicrobial susceptibility of Atopobium vaginae. BMC Infect Dis 2006; 6: 51.

[38] Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT. In vitro activities of Garenoxacin (BMS 284756) against 108 clinical isolates of Gardnerella vaginalis. Antimicrob Agents Chemother 2002; 46: 3995-6.

[39] Nagaraja P. Antibiotic resistance of Gardnerella vaginalis in recurrent bacterial vaginosis. Indian J Med Microbiol 2008; 26: 155-7.

[40] Hillier SL., Homes KK. Bacterial vaginosis, in Sexually Transmitted Diseases. Edited by Homes KK, Sparling PF, Mardh PA, Lemon SM, Stamm WE, Piot P and Wasserheit. New York Mcgraw-Hill 1999; 563-86.

[41] Geissdorfer W, Bohmer C, Pelz K, Schoerner C, Frobenius W, Bogdan C. Tubo-ovarian abscess caused by Atopobium vaginae following transvaginal oocyte recovery. J Clin Microbiol 2003; 41: 2788-90.