MAINTENANCE MANAGEMENT ANALYSIS OF INDUCE DRAFT FAN (IDF) EQUIPMENT OF COAL FIRE POWER PLANT (CFPP) LONTAR USING LIFE CYCLE COST ANALYSIS APPROACH

Nova Ardyanto, Winda Nur Cahyo*
Industrial Engineering Department, Faculty of Industrial Technology, Universitas Islam Indonesia
Jl. Kaliurang Km 14,5 Sleman, 55584, Indonesia

ABSTRACT
To maintain the performance to optimization operating at Coal Fire Power Plant (CFPP) the reliability of power plant equipment needs to be maintained especially on critical equipment. Based on CFPP failure data during 2012 – 2017, one of the critical equipment is the Induce Draft Fan (IDF). The Journal will analyse the reliability, availability and maintainability for the IDF equipment with the approach of Life Cycle Cost Analysis (LCCA). Using the IDF equipment failure data during 2012 - 2017 which is processed using Minitab 17 application with Weibull Analysis method, the results obtained the mean value (µ) for MTTF and shape parameters (β) and scale parameters (η) for calculation MTTR. That data combined with the hours of annual routine maintenance periods for each unit, used to calculate the operating and maintenance (O&M) hours of IDF in a year and then combined with operational cost data so the total O&M costs for the IDF during 15 years period obtained. Consider with assumptions for the calculation, the final results can provide input for management to making appropriate maintenance decisions. The results of LCCA approach for 15 years obtained the lowest total maintenance cost is IDF unit 1 of 527.68 billion.

INTRODUCTION
To meet the growing needs for electricity in Indonesia, the government issued a policy of the 10,000 MW Fast Track Program Phase 1 (FTP-1). To achieve the energy needs in 2008 the government began to build power plants program and it is expected that the power plants will be ready to operate in 2009 (Admin, 2008).

Lontar CFPP is the one of the government Fast Track Program power plants that uses coal as the main fuel. At the coal fire power plant, coal is burned to heat the water in the boiler pipe
until it turns into steam with a certain pressure. In the coal combustion process the air pressure is maintained at certain set points (under atmospheric pressure). To maintain the set-point, the combustion system is equipped with Force Draft Fan (FDF) and Induce Draft Fan (IDF) equipment. Under these conditions the reliability of the FDF and IDF equipment becomes very critical because if there is interference with the equipment it will have an impact on the loss of production opportunities.

In the CFPP generating system, IDF equipment is included in the Boiler Air and Gas System. The failure data equipment of Lontar CFPP from 2012 - 2017 as shown in Figure 1, Boiler Air and Gas System are in the top 5 causes of loss production, so to reduce the loss of production in the Boiler Air and Gas System in the next period the reliability of IDF equipment needs to be optimized.

![Figure 1. Lost production rank each CFPP system (GWh)](image)

To maintain the reliability of the IDF equipment, maintenance must be optimal. In the study (Wardoyo, 2017) applying periodic maintenance interval optimization based on an analysis of Reliability, Availability and Maintainability (RAM) in the Saguling Hydroelectric Power Plant, while (Nugraha, Silalahi, & Sinisuka, 2016) implemented Reliability, Availability, Maintainability and Security (RAMS) for maintenance of 150-kV Power Transmission Submarine cables. (Bhakti & Kromodihardjo, 2015) designed a maintenance system using the Reliability Centered Maintenance method on medium pulverized coal (Eliyus, Alhilman, & Sutrisno, 2014) to estimate maintenance costs and determine machine life and number of maintenance personnel using the Life Cycle Cost method and (Madiyansah, 2018) conduct an economic analysis on the pulverizer equipment at the power plant with the Life Cycle Cost Analysis approach.

There is still not much research for the reliability of IDF equipment. Therefore, researchers try to make a study of the reliability, availability and maintainability for the Induce Draft Fan (IDF) with a Life Cycle Cost Analysis (LCCA) approach. The final result of this analysis is to provide an input to management for making appropriate decisions in optimizing the maintenance costs of Induce Draft Fan (IDF) equipment.

RESEARCH METHOD

This research was conducted with literature studies and field studies to determine the condition of the Induce Draft Fan (IDF) equipment in the Lontar CFPP so that data obtained for research from the year of operation during 2012 to 2017, then the data is processed using Minitab 17 application with Weibull analysis until we get the value of shape parameter (β), scale parameter (η) and mean (μ).

From the above parameters then used to calculate the Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR) values for each IDF equipment. The data processing then performed to calculate the costs for each IDF equipment’s in accordance with the life cycle cost analysis (LCCA) approach to obtain the total value of the operating and maintenance costs for the IDF equipment’s during the operating period. From the total cost, it is obtained that the most
optimal Maintenance Management between each IDF equipment by considering the assumptions that exist. The research can be described as shown in Figure 2.

(1) Problem Identifications
- Failure Data of Equipment
- Pareto Loss of Equipment

(2) Problem Analysis
- MTTF & MTTR
- Minitab Simulation

(3) Problem Solving Analysis
- Life Cycle Cost Analysis (LCCA)

(4) Analysis Results and Recommendation

Generally, Life-Cycle Cost (LCC) is the total cost during an asset operating from research, planning, design, testing, production processes, certification, operation, maintenance, until disposal of asset. The general formula for calculating the Life Cycle Cost for an equipment/system can be formulated as follows:

\[LCC = CI + CO + CM + CF + CD \]

(1)

Where’s:
CI: Investment Cost; CO: Operational Cost; CM: Maintenance Cost; CF: Failure Cost; CD: Disposal Cost.

RESULTS AND DISCUSSION
1. The Calculation of Mean Time to Failure (MTTF)

From the data of failures that occur on each IDF equipment from starting to operate (2012) until 2017 can be recap in table 1 as follows:

No.	Unit 1	Unit 2	Unit 3			
	A	B	A	B	A	B
1	28.560,00	33.970,00	11.536,63	11.616,83	1.968,00	1.968,00
2	10.301,63	4.128,87	10.882,01	10.882,01	7.535,28	8.613,78
3	1.946,97	159,72	81,00	81,00	1.022,73	84,17
4	139,20	801,62	11.786,72	14.316,87	11,50	6.369,65
5	10.952,18	862,62	2.520,30	1.808,67	84,17	19.302,65
6	1.915,28	3.538,95	6.161,38	10.665,67	6.414,70	
7	179,40	767,82	4.534,53	1,00		
8	3.387,37	0,63				
9	2.694,93	13.362,38				
10	318,23					

From the above data then processed to get the MTTF value on each unit of IDF equipment using Minitab 17 software. In this study the distribution analysis used is Weibull Analysis. From the results of the software analysis, the data for each IDF equipment obtained as follows:
From the simulation results of the IDF equipment using software, the value is obtained shape parameter (β), scale parameter (η) and mean (µ) which can be recapitulated in table 2 as follows:
From table 2 above, the MTTF (μ) value is obtained for each IDF equipment. For IDF 1A machines, the time span for disruption is 10,726.6 hours or 447 days, for IDF 1B machines it is 4,891.07 hours (204 days), for IDF 2A machines it is 5,961.44 hours (248 days), for IDF 2B machines are 7,047.26 hours (294 days), for IDF 3A machines it is 5.59.77 hours (211 days) and for IDF 3B machines is 7218.89 hours (301 days).

2. The Calculation of Mean Time to Repair (MTTR)

The time data used to repair IDF equipment during the specified period is summarized in table 3 as follows:

No.	Unit 1	Unit 2	Unit 3
	Hour	Hour	Hour
1	206,67	0,15	729,86
2	19,63	6,15	8,00
3	2,48	0,90	0,93
4	4,63	19,63	9,85
5	6,07	0,90	9,30
6	0,87	1,38	4,20
7	11,13	1,08	486,97
8	7,00	332,92	
9	1,57	13,20	
10	4,10	9,05	

From the above data then processed to get the MTTR value on each unit of IDF equipment using Minitab 17 software. In this study the distribution analysis used is Weibull Analysis. From the results of the software analysis, the data for each IDF equipment obtained as follows:
From the simulation above obtained data shape parameter (β) and scale parameter (η) in table 4.

Description	Unit 1	Unit 2	Unit 3			
Shape Parameter	A	B	A	B	A	B
(β)	0.59	0.78	0.40	0.43	0.61	0.46
Scale Parameter	A	B	A	B	A	B
(η)	28.56	4.62	22.45	60.09	140.68	43.72

Furthermore, from the above data table then processed using the MTTR formula of Weibull distribution, the calculations for IDF 1A units can be obtained as follows:

\[
MTTR = \eta \Gamma \left(1 + \frac{1}{\beta} \right)
\]

\[
= 28.56 \times \Gamma \times \left(1 + \frac{1}{0.59} \right)
\]

\[
= 28.56 \times \Gamma \times 2.69
\]

\[
= 28.56 \times 1.5353 = 43.84 \text{ hour}
\]

For other IDF equipment’s, can be calculated using the same method so that the results of the each IDF equipment calculations can be recapitulated in excel as in table 5.
From table 5 above, for the IDF 1A, the time to repair for each time a failures occurs is 43.84 hours or 1.83 days, the IDF 1B is 5.35 hours (0.22 days), the IDF 2A is 75.45 hours (3.14 days), IDF 2B is 163.70 hours (6.82 days), IDF 3A is 220.86 hours (9.2 days) and IDF 3B is 101.14 hour (4.21 days).

3. Cost Analysis

a. Investment Cost (CI)

The initial investment costs for processing the initial contract data during the construction of the plant for the installation for unit #1 of IDF equipment can be calculated as follows:

- Price 1 Unit IDF (a) = Rp. 2,977
- Assurance Unit (b) = Rp. 81
- Transport Cost (c) = Rp. 7
- Install Cost (d) = Rp. 168
- Total = Rp. 3,255

(All calculated in Million)

The calculation assumptions:
- Units made abroad (China)
- The price of goods includes tax
- Goods are purchased using US Dollars and when purchasing goods, the exchange rate of rupiah used (KURS) is Rp. 9,000.

b. Operational Cost (CO)

Operating Costs are routine operating costs occurred in accordance with operating hours reduced by annual routine maintenance hours according to the power plant maintenance cycle. One unit consists of 2 IDF equipment so each IDF equipment operates 50% of the maximum capacity of the equipment. The operational cost analysis for 1 IDF machine is as follows:

- Power Consumption (a) = 215 kW
- Operating efficiency (b) = 50%
- Electricity cost (c) = 680 (Rp/kWh)
- Hourly production costs per unit = Rp. 4,386 million

c. Maintenance cost (CM)

Maintenance costs are routine maintenance costs occurred every year to maintain the performance of IDF equipment in normal conditions. Routine maintenance schedule (periodic inspection) for each unit in table 6 as follows:
The duration of FYI (First Year Inspection) maintenance is 60 days, SI (Simple Inspection) is 30 days, ME (Mean Inspection) is 45 days and SE (Serious Inspection) is 60 days. From the routine maintenance we get operating hours for each unit as shown in table 7.

Table 7. Operation hour for each IDF

Year	Unit 1 FYI	Unit 2 ME	Unit 3 SI	Unit 4 SE
2012	7.344	8.040	7.680	8.040
2013	7.680	8.040	7.344	8.040
2014	8.040	7.344	8.064	7.680
2015	7.320	8.064	8.040	7.680
2016	8.040	7.680	8.064	7.344
2017	7.680	8.040	7.344	8.040
2018	8.064	7.344	8.040	7.680
2019	7.344	8.040	7.680	8.040
2020	8.040	7.344	8.064	7.680
2021	7.680	8.040	7.344	8.040
2022	8.064	7.344	8.040	7.680
2023	7.344	8.040	7.680	8.040
2024	8.040	7.344	8.064	7.680
2025	7.680	8.040	7.344	8.040
2026	8.064	7.344	8.040	7.680

The maintenance costs for each work each IDF equipment are as follows:

Table 8. The maintenance costs for FYI

No.	Description	Unit 1	Unit 2	Unit 3	Unit 4
1	Labor	FYI	SI	ME	SI
2	Tools	SI	SE	SI	SE
3	Consumable	SI	SE	SI	SE
4	Safety Tools	SI	SE	SI	SE
5	Administration	SI	SE	SI	SE
Total Cost	189,541,000,00				

Table 9. The maintenance costs for SI

No.	Description	Unit 1	Unit 2	Unit 3	Unit 4
1	Labor	SI	SE	SI	SE
2	Tools	SI	SE	SI	SE
3	Consumable	SI	SE	SI	SE
4	Safety Tools	SI	SE	SI	SE
5	Administration	SI	SE	SI	SE
Total Cost	124,786,000,00				

Table 10. The maintenance costs for ME

No.	Description	Unit 1	Unit 2	Unit 3	Unit 4
1	Labor	ME	ME	ME	ME
2	Tools	ME	ME	ME	ME
3	Consumable	ME	ME	ME	ME
4	Safety Tools	ME	ME	ME	ME
5	Administration	ME	ME	ME	ME
Total Cost	157,163,500,00				

Table 11. The maintenance costs for SE

No.	Description	Unit 1	Unit 2	Unit 3	Unit 4
1	Labor	SE	SE	SE	SE
2	Tools	SE	SE	SE	SE
3	Consumable	SE	SE	SE	SE
4	Safety Tools	SE	SE	SE	SE
5	Administration	SE	SE	SE	SE
Total Cost	189,541,000,00				
d. Failure Cost (CF)

Represents the costs occurred to repair damage that occurred on the IDF machine in each unit during 15 years’ operation. From the simulation results of MTTF calculations for each IDF equipment, an estimated time of the damage occurrence for each IDF equipment was obtained. Then from the time of the incident the simulation of the damage event time was carried out for 15 years to obtain the damage event for 15 years as shown in table 12.

Table 12. Failure event simulation for IDF

Unit IDF	n-Year	Total
1A	0 1 1 1 0 1 1 1 0 1 1 1 1 1 12	
1B	1 2 2 1 2 2 2 2 1 2 2 2 2 1 26	
2A	1 1 2 2 1 2 2 1 2 1 2 1 2 1 22	
2B	1 1 1 1 1 2 1 1 1 2 1 1 1 1 18	
3A	1 2 2 1 2 2 2 2 1 2 2 1 1 1 24	
3B	1 1 1 1 2 2 1 1 2 1 1 1 1 1 18	

From the simulation of failure events for 15 years as in the above table, the total incidence for each IDF equipment is obtained. For IDF 1A machines, 15 times of damage occurred 12 times, damage for IDF 1B engine occurred 26 times, damage for IDF 2A engine occurred 22 times, damage for IDF 2B engine occurred 18 times damage, for IDF 3A engine occurred 24 times damage and for IDF 3B engine occurred 18 times failures.

The duration of failure repair time for each IDF equipment accordance with the simulation of Mean Time to Repair (MTTR) calculation in table 5. The cost for repairing an IDF equipment per day is as shown in table 13.

Table 13. Repair cost calculation of IDF equipment each day

No.	Description	Unit	Days	Total
1	Labor	Mandays	1.00	1,905,000,00
2	Tools	Days	1.00	253,500,00
3	Consumable	Set	1.00	48,921,000,00
4	Safety Tools	Set	1.00	410,000,00
5	Administration	Set	1.00	10,700,000,00
	Total Repair Cost per days		62,189,500,00	

For labor calculations in table 13 the number of days adjusts to the MTTR value each IDF equipment’s according to table 5. For example, for IDF 1A equipment’s, according to table 12 there was failures in the second year and then the repair time for IDF 1A according to table 5 was 43.84 hour or 1.83 days. The calculation of repair costs for IDF 1A is as shown in table 14. In the same way used to calculate the engine IDF 1B, IDF 2A, IDF 2B, IDF 3A and IDF 3B so that the cost of repairing IDF machines is obtained as shown in table 15.
Table 14. Repair Cost Calculation of IDF 1A

No.	Description	Unit	Days	Total
1	Labor	Mandays	1.83	3.479.799,88
2	Tools	Days	1.83	463.059,98
3	Consumable	Set	1.00	48.921.000,00
4	Safety Tools	Set	1.00	410.000,00
5	Administration	Set	1.00	10.700.000,00
	Total Repair Cost IDF 1A			63.973.859,87

Table 15. Total Repair Cost Calculation of each

Description	Cost
Repair Cost IDF 1A	63.973.859,87
Repair Cost IDF 1B	60.512.039,16
Repair Cost IDF 2A	66.817.019,71
Repair Cost IDF 2B	74.754.109,10
Repair Cost IDF 3A	79.895.044,97
Repair Cost IDF 3B	69.127.578,83

e. Life Cycle Cost Analysis

From the calculations per component investment costs, operating costs, routine maintenance costs, repair costs and depreciation costs are then recapitulated in excel and continued with the LCC analysis as shown in table 16.

Table 16. LCCA for IDF unit 1 (in billion)

No.	Description	ID	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
1	Investment Cost	CI	6,51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6,51
2	Operation Cost	CO	-	32,21	35,26	33,68	35,24	32,20	35,26	33,68	35,26	32,21	35,26	33,68	35,26	32,21	35,26	33,68	531,40
3	Maintenance Cost	CM	-	0,38	0,25	0,31	0,25	0,31	0,25	0,31	0,25	0,31	0,25	0,31	0,25	0,31	0,25	0,31	4,52
4	Repair Cost	CF	-	0,06	0,18	0,18	0,12	0,12	0,18	0,18	0,12	0,12	0,18	0,18	0,12	0,18	0,12	0,18	2,34
5	Disposal Cost	CD	-	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	3,91
6	Total Cost		6,51	32,91	35,96	34,44	35,94	32,97	35,89	34,44	35,96	33,04	35,90	34,38	35,96	33,04	35,96	34,38	527,68
7	Sells		-	64,04	70,11	66,97	70,07	64,03	70,11	66,97	70,11	64,04	70,11	66,97	70,11	64,04	70,11	66,97	1,014,79
8	Cash Flow		-	-6,51	31,13	34,15	32,53	34,11	31,06	34,22	32,53	34,15	31,01	34,23	32,59	34,15	31,01	34,23	487,12
9	Interest Rate		10%	-6,51	28,20	28,23	24,44	23,31	19,29	19,31	16,69	15,93	13,15	11,42	10,88	9,89	7,80	243,42	

From table 16, the total cost of unit 1 IDF equipment simulation for 15 years is Rp. 527.68 billion, assuming the selling price of electricity is 1,352 Rp / kWh, the electricity sales for 15 years is 1,014.79 billion. Assuming the bank interest rate in 2017 is 10%, the NPV value = 243.42 will be obtained then IRR = 4.85 and B / C = 75.82.
The rate in 2017 is 10%, the NPV value

No.	Description	ID	Year	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
1	Investment Cost	CI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.51
2	Operation Cost	CO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.38
3	Maintenance Cost	CM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.25
4	Repair Cost	CF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.28
5	Disposal Cost	CD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.26
6	Total Cost	-	243.42	527.68																
7	Cash Flow	-	34.24	35.37																
8	Interest Rate	-	0.21	0.26																

From table 17, a simulation of the total cost of the unit 2 IDF equipment for 15 years is Rp. 532.42 billion, assuming the selling price of electricity is 1,352 Rp / kWh, the electricity sales for 15 years is 1,023.91 billion. Assuming the bank interest rate in 2017 is 10%, the NPV = 247.44 will be obtained, then IRR = 5.64 and B / C = 76.49

From table 18, a simulation of the total cost of the unit 1 IDF equipment for 15 years is Rp. 532.70 billion, assuming the selling price of electricity is 1,352 Rp / kWh, the electricity sales for 15 years is 1,023.77 billion. Assuming the bank interest rate in 2017 is 10%, the NPV = 247.14, then IRR = 5.64 and B / C = 76.43.

From the LCC analysis results of the IDF equipment’s in unit 1, unit 2 and unit 3 then recapitulated in table 19.

Table 19. Recapitulation of IDF equipment LCC analysis (in billions)

No.	Unit	NPV	IRR	B/C	LCC
1	Unit 1	243.42	4,855	75.82	527.68
2	Unit 2	247.44	5,639	76.49	532.42
3	Unit 3	247.14	5,635	76.43	532.70

CONCLUSIONS

From the qualitative data analysis with Life Cycle Cost calculation for 15 years the lowest total cost is IDF unit 1 of 527.68 billion then IDF unit 2 of 532.42 billion and IDF unit 3 of 532.7 billion. From the above calculation with the same periodic maintenance cycle (SI-ME-SI-SE) for each unit, the total cost of maintaining an IDF equipment’s for each unit for 15 years is different. The lowest total maintenance costs are on IDF unit 1. For the optimal maintenance cost, we recommended to simulate the equipment failure using data IDF unit 1 to prepare the predictive and preventive maintenance for each IDF unit then we can immediately anticipate the equipment failure with spare part preparation and quick equipment repair.
REFERENCES
Admin. (2008, Juni 16). Listrik. Retrieved from Kementrian Energi dan Sumber Daya Mineral Website:www3.esdm.go.id/berita/listrik/39-listrik/1807-perkembangan-program-percepatan-10000-mw.html
Asset Management - An Anatomy Version 3. (2015). The Institute of Asset Management.
Bangun, I. H., Rahman, A., & Darmawan, Z. (2014). 1. Perencanaan Pemeliharaan Mesin Produksi dengan Menggunakan Metode Reliability Centered Maintenance (RCM) II pada Mesin Blowing OM. Jurnal Rekayasa dan Manajemen Sistem Industri, 997-1008.
Barringer, H., & Webber, D. P. (1996). Life Cycle Cost Tutorial. Fifth International Conference on Process Plant Reliability. Houston, Texas: Gulf Publishing Company & Hydrocarbon Processing.
Bhakti, R., & Kromodihardjo, S. (2015). Perancangan Sistem Pemeliharaan Menggunakan Metode Reliability Centered Maintenance (RCM) pada Pulverized. Jurnal Teknik ITS Vol.6 No.1.
Borghagen, L. (2004). Life Cycle Cost Analysis. In K. B. Zandin, Maynard’s Industrial Engineering Handbook Fifth Edition (p. 3.95). Stockholm, Sweden: The McGraw-Hill Companies.
Corder, A. (1992). Teknik Manajemen Pemeliharaan. Jakarta: Erlangga.
Dewi, N. C., & Rinawati, D. I. (2015). Analisa Penerapan Total Productive Maintenance (TPM) dengan Perhitungan Overall Equipment Effectiveness (OEE) dan Six Big Losses Mesin Cavitec. Undip E-Jurnal System Portal Vol.4 No.4.
Eliyus, A. R., Alhilman, J., & Sutrisno. (2014). Estimasi Biaya Maintenance dengan Metode Markov Chain dan Penentuan Umur Mesin serta Jumlah Maintenance Crew yang Optimal dengan Metode Life Cycle Cost. Jurnal Rekayasa Sistem & Industri Vol 1 No 02.
F.B.B, R. J., Santoso, P. B., & Soenoko, R. (2013). Analisa dan Penerapan Model Maintenance Quality Function Deployment (MQFD) untuk Meningkatkan Kualitas Sistem Pemeliharaan Mesin Gilingan. Jurnal Rekayasa Mesin Vol.4, 67-78.
Farr, J. V. (2011). Systems Life Cycle Costing. New York: CRC Press.
I.A Firstantara, d. (2014). Manajemen Aset Fisik Strategis. Yogyakarta: LeutikaPrio.
ISO 55000. (2014). Asset Management - Overview, Principles and Terminology. Switzerland: ISO.
Kawauchi, Y., & Rausand, M. (1999). Life Cycle Cost (LCC) Analysis in Oil and Chemical Process Industries. Japan.
Komarasakti, D. (2008). Analisa Biaya Pemeliharaan Mesin terhadap Kualitas Produksi pada PT X. Jurnal Computech & Bisnis, Vol.2, No.1, Juni 2008, 52-59.
Livia, K., & Fewidarto, P. D. (2016). Evaluasi Peningkatan Kinerja Produksi melalui Penerapan Total Productive Maintenance di PT Xacti Indonesia. Jurnal Management dan Organisasi Vol. 7, No. 1.
Madiyansah, R. F. (2018). Analisa Ekonomis Peralatan Pulverizer untuk Optimalisasi Keandalan PLTU dengan Simulasi Monte Carlo dan Pendekatan Analisa Biaya Siklus Hidup (Studi Kasus : PLTU Rembang). Yogyakarta: Universitas Islam Indonesia.
Muhtahadi, M. Z. (2009). Manajemen Pemeliharaan Untuk Optimasi Laba Perusahaan. Jurnal Pendidikan Akutansi Indonesia Vol. VIII No.1, 35-43.
Narang, M. S. (2001). Production Management. Nai Sarak: Dhanpahat Rai Co.
Nisa, C., Alhilman, J., & Athari, N. (2016). Perancangan Kebijakan Maintenance pada Mesin Komori LS440 dengan menggunakan Metode Life Cycle Cost (LCC) dan Overall Equipment Effectiveness (OEE). e-Proceeding of Engineering Vol.3 No.2 Agustus 2016, 3037.
Render, J. H. (2001). Operation Management 6th edition. New Jersey: Prentice-Hall Inc.
Rochmoeljati, R. (2016). Perencanaan Perawatan Mesin Menggunakan Metode Markov Chain untuk Meminimumkan Biaya Perawatan. Journal of Industrial Engineering and Mangangement Vol 11 UPN Veteran Jatim.
S, D. I., Ruliana, T., & Herianto. (2016). Pengendalian Biaya Pemeliharaan Mesin pada PT Fastfood Indonesia Tbk Cabang Mulawarman Samarinda. *E-Journal Universitas 17 Agustus 1945 Samarinda* Vol 5.

Setiawan, F. (2008). *Perawatan Mekanikal Mesin Produksi*. Yogyakarta: Maximus.

Sihombing, I., Susanto, N., & Suliantoro, H. (2017). Analisa Efektivitas Mesin Reng dengan Menggunakan Metode Overall Equipment Effectiveness (OEE) dan Fault Tree Analysis (FTA). *Undip E-Jurnal System Portal* Vol.6 No.2.

Suliantoro, H., Prastawa, H., Sihombing, I., & M, A. (2017). Penerapan Metode Overall Equipment Effectiveness (OEE) dan Fault Tree Analysis (FTA) untuk mengukur Efektifitas Mesin Reng. *Undip E-Jurnal Portal System* Vol.12, No.2 Mei 2017.

Tarigan, P., Ginting, E., & Siregar, I. (2013). Perawatan Mesin secara Preventive Maintenance dengan Modularity Design pada PT RXZ. *e-Jurnal Teknik Industri FT USU* Vol 3, 35-39.