The Start-Up of the first Hematopoietic Stem Cell Transplantation Center in the Iraqi Kurdistan: a Capacity-Building Cooperative Project by the Hiwa Cancer Hospital, Sulaymaniyah, and the Italian Agency for Development Cooperation: an Innovative Approach

Ignazio Majolino¹, Dosti Othman², Attilio Rovelli¹, Dastan Hassan², Luqman Rasool², Michele Vacca¹, Nigar Abdalrahman², Chra Abdullah³, Zhalla Ahmed³, Dlir Ali³, Kosar Ali³, Chiara Broggi¹, Cinzia Calabretta¹, Marta Canesi¹, Gloria Ciabatti¹, Claudia Del Fante¹, Elisabetta De Sapio¹, Giovanna Dore¹, Andrea Frigato¹, Marcela Gabriel¹, Francesco Ipsevich¹, Harem Kareem³, Dana Karim³, Rosa Leone¹, Tavan Mahmood³, Annunziata Manna¹, Maria Spennaz Massei¹, Andrea MASTRIA³, Dereen Mohammed², Rebar Mohammed², Khoshnaw Najmaddin², Diana Noori², Angelo Ostuni¹, Angelo Palmis¹, Marco Possenti¹, Ali Qadir¹, Giorgio Real¹, Rebwar Shrif², Caterina Valdatta¹, Stefania Vasta¹, Marta Verna¹, Mariangela Vittori¹, Awder Yousif², Francesco Zallio¹, Alessandro Calisti¹, Sergio Quattroccoli³ and Corrado Girmenia¹.

¹ Institute for University Cooperation (ICU), Rome Italy.
² Hiwa Cancer Hospital (HCH), Sulaymaniyah, Iraqi Kurdistan.
³ Italian Agency for Development Cooperation (AICS), Rome, Italy.

Competing interests: The authors have declared that no competing interests exist.

Abstract. We describe the entire process leading to the start-up of a hematopoietic stem cell transplantation center at the Hiwa Cancer Hospital, in the city of Sulaymaniyah, Kurdistan Iraqi Region. This capacity building project was funded by the Italian Development Cooperation Agency and implemented with the support of the volunteer work of Italian professionals, either physicians, nurses, biologists and technicians. The intervention started in April 2016, was based exclusively on training and coaching on site, that represent a significant innovative approach, and led to a first autologous transplant in June 2016 and to the first allogeneic transplant in October. At the time of reporting, 9 months from the initiation of the project, 18 patients have been transplanted, 15 with an autologous and 3 with an allogeneic graft. The center at the HCH represents the first transplantation center in Kurdistan and the second in wide Iraq. We conclude that international development cooperation may play an important role also in the field of high-technology medicine, and contribute to improved local centers capabilities through country to country scientific exchanges. The methodology to realize this project is innovative, since HSCT experts are brought as volunteers to the center(s) to be started, while traditionally it is the opposite, i.e. the local professionals to be trained are brought to the specialized center(s).

Keywords: Kurdistan, capacity building, bone marrow transplantation, global health.

Citation: Majolino I., Othman D., Rovelli A., Hassan D., Rasool L., Vacca M., Abdalrahman N., Abdullah C., Ahmed Z., Ali D., Ali K., Broggi C., Calabretta C., Canesi M., Ciabatti G., Del Fante C., De Sapio E., Dore G., Frigato A., Gabriel M., Ipsevich F., Kareem H., Karim D., Leon R., Mahmood T., Manna A., Massei M. S., MASTRIA A., Mohammed D., Mohammed R., Najmaddin K., Noori D., Ostuni A., Palmis A., Possenti M., Qadir A., Real G., Sadiq H., Valdatta C., Vasta S., Verna M., Vittori M., Yousif A., Zallio F., Calisti A., Quattroccoli S., Girmenia C. The start-up of the first hematopoietic stem cell transplantation center in the Iraqi Kurdistan: a capacity-building cooperative project by the Hiwa Cancer Hospital, Sulaymaniyah, and the Italian Agency for Development Cooperation: an innovative approach. Mediterr J Hematol Infect Dis 2017; 9(1): e2017031, DOI: http://dx.doi.org/10.4084/MJHID.2017.031

Published: April 15, 2017 Accepted: March 20, 2017

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence to: Ignazio Majolino, Via Antonio Cersi 22, 00152 Rome, Italy. Tel: +39-3381519277. E-mail: ignazio.majolino@gmail.com.
Introduction. Hemopoietic stem cell transplantation (HSCT), either autologous or allogeneic, is an effective treatment for many hematologic disorders. On a global basis, over 70,000 procedures are currently performed every year in more than 70 countries.\(^1\) Unfortunately, due to economical and/or political constraints, not all the countries and geographical areas have enough resources and expertise to establish a HSCT program. This implies that in many countries patients are forced to emigrate when a transplant is needed, with heavy social and economic problems for their families and the governments.

The Hiwa Cancer Hospital (HCH) of Sulaymaniyah is a leading oncology institution in Iraqi Kurdistan. In 2015, the Institute for University Cooperation (ICU) of Rome identified this center as a possible target for a project of high-technology medical intervention addressed to the development of a HSCT center devoted to the treatment of malignant and non-malignant hematologic disorders, in particular thalassemia major, which represents a major problem in the country. A transplantation expert from Italy made a preliminary visit to the HCH, confirming the feasibility of a stem cell transplantation program. A capacity-building project was designed and submitted to the Italian Development Cooperation Agency (AICS), which approved its funding on March 2016.

Capacity building is the process by which individuals, organizations, institutions and societies develop abilities to perform functions, solve problems and set and achieve objectives.\(^2\) In this paper we describe the entire process leading to the start-up of the Center, the results obtained 9 months after the start of the project and future perspectives. This is the first stem cell transplantation center established in the Kurdistan Region, and the second in Iraq. We conclude that international development cooperation may be of great value in the field of high-technology medicine and contribute to improved local centers’ capabilities, through country-to-country scientific exchanges. Moreover, on-site training and coaching proves an effective innovative method to establish a sustainable activity in developing countries, as alternative to a more traditional methodology, where local professionals to be trained are brought to the specialized center(s) with higher expenditure and less predictable final results.

Methods. Exploratory mission: A relationship between the HCH and the ICU started in July 2015, when an Italian HSCT expert conducted an exploratory mission on behalf of ICU in order to ascertain the feasibility of a stem cell transplantation project at the HCH. A transplantation unit (TU) with positive pressure single rooms had been previously built in the HCH, thanks to a donation of the Regione Toscana, Italy, but the unit was never activated due in part to limited availability of adequate skills and in part to economic problems.

During the first visit, an appropriate grid, already successfully employed in other circumstances and containing all the necessary questions, was applied to verify the adequacy of the hospital itself and of all the necessary services that are normally involved in HSCT. The areas involved in the process were those listed in **table 1**. The director of HCH and most of the single-sector responsible physicians or administrators were interviewed. Inspections were also conducted to better ascertain the availability and functioning of instrumentations and devices. At the end of the visit, a positive evaluation was released, confirming the feasibility of a capacity building project for the start-up of a stem cell transplantation activity. A simplified scheme of our project is shown in **figure 1**.

Project definition and funding: The second step was designing the project. This was done according to a call for proposal (n. 10548/02/0) by the Italian Ministry for Foreign Affairs – General Direction for Development Cooperation. A capacity building project was submitted by ICU, approved and funded in December 2015. The assigned budget was € 329,000. The contribution of HCH itself to the financial plan consisted of existing instrumentation and laboratory facilities, but the HCH also provided for the accommodation of the volunteers for the whole duration of the project.

Unfortunately, still in the month of December 2015 a fire accident suddenly developed in the TU, due to malfunctioning of the air-treatment unit, with severe damage to the whole TU for a cost of approx. $ 200,000. Though this obviously
Table 1. Areas of the Hiwa Hospital that were explored in the preliminary assessment. Hinari is a programme set up by WHO together with major publishers, that enables low- and middle- income countries to gain access to one of the world’s largest collections of biomedical and health literature (http://www.who.int/hinari/en/).

Area	Details
Personnel	Responsibility tree
	Qualification
	Training needs for physicians, nurses, biologists, technicians
Specific clinical programs	Thalassemia, leukemias, lymphomas, myeloma
Transplant ward	Size of the unit and presumptive future activity
	Technology and functioning (HEPA)
	Instrumentation (pumps, emergency equipment, etc)
	Sanitation
Blood bank and immunohematology	Blood products available
	Laboratory tests (viral, immunohematology)
	Blood irradiation facility
	Leukocyte filters
Bone marrow harvest facility	Surgery room
	Anesthesiology and devices
Apheresis facility	Cell separator (s) and kits
	Collection and depletion expertise
Cell enumeration, manipulation and	Flow-cytometry instrumentation and expertise
cryopreservation	Monoclonal antibodies and other reagents
	Cell manipulation lab, with centrifuge and sterile hood
	Cryopreservation storage tank and -80°C mechanical freezer
Central catheter insertion	Devices (atrial and femoral catheters)
	Insertion expertise
Pharmacy and drugs	Preparation policy
	General drugs including antibiotics, antivirals, antifungals
	Chemotherapy drugs
	High-dose drugs for conditioning
	Immunosuppressants
Hardware and Software	PC and internet facility
	Electronic notes software
Medical library and internet connection	Hinari access

Figure 1. Schematic representation of the capacity building project at the Hiwa Cancer Hospital. Agenzia Italiana per la Cooperazione allo Sviluppo Italian Agency for Development Cooperation (AICS).
represented a factor for a possible delay or even suspension of the project, the scientific advisor of ICU and the responsible for AICS prompted for a rapid restoration of the TU, that HCH started in April 2016. The delay was therefore minimal, and the team could begin the training activity the same month, while the restoration works were ended in July.

The capacity building process: To reach the target of a self-sustainable HSCT activity at the HCH, efforts were directed to the training of local personnel, in particular to perform functions, solve problems and set and achieve objectives. The scientific advisor of the project also coordinated the volunteers who delivered training with lectures and seminars, and were also in charge of editing clinical work and coaching the local personnel. Problems and set and achieve objectives. The capacity building process was represented a factor for a possible delay or even suspension of the project, the scientific advisor of ICU and the responsible for AICS prompted for a rapid restoration of the TU, that HCH started in April 2016. The delay was therefore minimal, and the team could begin the training activity the same month, while the restoration works were ended in July.

The capacity building process: To reach the target of a self-sustainable HSCT activity at the HCH, efforts were directed to the training of local personnel, in particular to perform functions, solve problems and set and achieve objectives. The scientific advisor of the project also coordinated the volunteers who delivered training with lectures and seminars, and were also in charge of editing clinical work and coaching the local personnel. Problems and set and achieve objectives.

Results. Project start-up: In April 2016, we decided to hold the preliminary training course addressed to doctors, nurses, biologists and technicians of the HCH. The course took approximately 3 weeks. A list of the covered subjects is reported in Table 2. Editing and

Table 2. List of the subjects/titles covered by the initial educational meeting entitled “Hematopoietic Stem Cell Transplantation at Hiwa Hospital” held April 3-12, 2016. At the end of the course, all participants received a certificate and a copy of the power-point slides presented by the speakers.

1. History of HSCT and rationale	30. Acute leukemias, adults and children
2. How to improve HSCT activity in emerging countries	31. Aplastic anemia
3. Transplant indications in adults	32. Stem cell infusion
4. Transplant indications in children	33. Chemotherapy: safe preparation and administration
5. The HLA system in stem cell transplantation	34. Management of mucositis
6. Type of donor: identical sibling or other	35. Nursing support in acute and chronic GVHD
7. Standard of care for thalassemia in Kurdistan	36. Monitoring vital parameters and alarm signs
8. Preparation for BMT of thalassemia patients	37. Nursing the critically ill patient
9. A dedicated software for BMT in developing countries	38. Nutritional aspects
10. Conditioning regimens	39. Special nursing issues:
11. Engraftment and immunological reconstitution after HSCT	a. Venous access and PICC
12. GVHD pathogenesis and prophylaxis	b. CVC management
13. Acute GVHD	c. CVC Infections
14. Chronic GVHD	d. Management of extravasation
15. GVHD staging system and treatment	e. Patient isolation rules and infection control
16. Early complications	f. Parents education
17. Late complications	g. Blood components: a standard for administration
18. Monitoring of chimerism	40. Donor and recipient work-up
19. Post-HSCT follow-up	41. Stem cell target
20. Transfusion support	42. Peripheral cell mobilization and collection
21. ABO incompatibility in HSCT	43. Marrow harvest procedure
22. Infection prophylaxis	44. Cell processing
23. Bacterial infections in HSCT	45. Cryopreservation and thawing
24. Fungal infections in HSCT	46. Liquid-phase autologous transplantation
25. Viral infections and pre-emptive treatment	47. Essential hematology for nurses:
26. Cryopreservation and thawing	a. Leukemia
27. Management of fever in neutropenic patients and HSCT	b. Lymphoma
28. Sepsis: changing scenario	c. Multiple Myeloma
29. Transplant practice in:	d. Thalassemia and SCD
a. Haemoglobinopathies	e. Aplastic anemia
b. Malignant lymphomas	f. The use of laboratory in hematology and transplantation
c. Multiple myeloma	g. Basic principles of chemotherapy
d. Myelodysplastic syndromes	h. Stem cells and their use in transplantation
Table 3. Protocols and procedures edited, verified and approved at the HCH by the joint efforts of Italian and Kurdish team. They are divided into 4 groups by the field of application. Some of them are accompanied by attachments as forms, calculation sheets, or algorithms to facilitate the use.

A) Collection and processing
- Take in charge of donor and stem cell collection
- Donor/patient clearance
- Release of product
- Processing of HPC-A
- Quality control on satellite vial
- Protocol of hemopoietic cells thawing
- Enumeration of CD34+ cells in the PB and apheresis product using true-count bead method
- Enumeration of CD34+ cells in the peripheral blood and apheresis (simplified protocol)
- Internal Quality Control IE Lab of Hiwa Hospital
- Collection Policy Typing Xmatch and Transfusion

B) Clinical Unit
- Proposal for Stem Cell Transplantation
- Donor work-up
- Recipient work-up
- Downstage of severe thalassemia
- Approach to fever in neutropenic patients
- Allogeneic matched sibling donor transplantation in patients with low-risk thalassemia
- High-dose melphalan for autologous transplantation in multiple myeloma (MEL200)
- BEAM for autologous transplantation in malignant lymphomas (BEAM)
- Progenitor cell mobilization with intermediate or high-dose cyclophosphamide (HD-CY) followed by G-CSF for autologous transplantation
- Reinfusion of peripheral blood or bone marrow stem cells
- Mobilization with G-CSF only
- Bu-Flu for allogeneic transplantation in AML in older patient
- Bu-Flu for allogeneic transplantation in AML in young patient
- ATG-Cy for transplantation in aplastic anemia under 30
- ATG-Cy for transplantation in aplastic anemia between 30 and 40 y
- Bone Marrow Collection
- Bone Marrow donor follow up policy

C) Nursing
- Management of mucositis
- Management of CVC
- Diet advise after BMT
- Recommendations for the prevention and treatment of drug extravasation
- Use of vital chart, fluid balance chart and drug chart
- Pain assessment tools
- Nurse job description
- Nursing care plan focuses
- Nursing management of a GVHD

D) Blood Bank
- Internal Quality Control
- Typing Policy Xmatch and Transfusion
- Donor and patient blood typing

Verification of clinical and laboratory protocols dedicated to the transplantation program (Table 3) were conducted during the same period. The hospital provided the dedicated staff, and the director also drew an organigram depicting the responsibility tree. This led to a substantial modification of the organization, also to cope with existing international standards, as those defined by JACIE at http://www.jacie.org/standards.

The apheresis facility was the first to be started with 2 new-generation cell separators, a Fresenius Comtec, and an Amicus Fenwall device. A reliable and easy to use flow-cytometry double platform technique for CD34+ cell enumeration was assessed, based on a well-established methodology. Three manipulation laboratories and a technique for cell cryopreservation were set up by the Italian team and implanted in the HCH. A well-equipped transplantation sterile ward, with 6 HEPA-filtered, positive pressure, conditioned-air single rooms was already present and ready for use. At the beginning the cryopreservation was carried out by means of a -80°C mechanical freezer alone, but later a fully equipped liquid nitrogen tank was supplied and cells were initially freezed in the -80°C to be later stored in the liquid phase of liquid nitrogen.

One month later, a series of patients underwent clinical selection procedures based on previously approved criteria and including age, general performance, organ function, disease phase and informed consent, and some of them were finally admitted for the stem cell collection and cryopreservation in view of the autologous transplantation. For stem cell mobilization, in patients with multiple myeloma we used a protocol with G-CSF alone (G-CSF 10 μg/kg/day until the CD34+ cell collection target was achieved, usually day 5), while in lymphoma patients harvest was done in the context of the advanced disease protocol itself. This was BeGeV5 in Hodgkin lymphoma, DHAP in non-Hodgkin’s lymphomas, always with addition of G-CSF 10 μg/kg/day since the end of chemotherapy to the day when CD34+ cell collection target was achieved. In some cases, also the intermediate-dose (2 to 4 g/m²) cyclophosphamide mobilization protocol was employed. Since in this phase of the program only single transplants were planned, a target of 5 x 10⁶/Kg CD34+ cells was set, using
an algorithm to have an accurate collection prediction,8 with an intention to increase the value as soon as the preliminary results would confirm us of the adequacy of the procedures in view of a double autologous transplantation program.

First autologous transplants: A first autologous transplant was carried out 3 months after the program was started in a multiple myeloma patient, using melphalan 140 mg/m2 as high-dose regimen and peripheral blood stem cells (PBSC) as autograft. The engraftment was prompt without major complications. The following month another myeloma patient was successfully autografted, and the program was therefore set out with a series of candidates either with myeloma or malignant lymphoma. Since July, when the HSCT Unit restoration was completed, the transplants were all carried out in the new ward. The clinical characteristics of the patients and the data of stem cell collection, transplantation and engraftment are reported in \textbf{table 4}. There were 15 patients, 11 males and 4 females. Median age was 40 years (range 20 to 60). MM patients were 7, HL were 6 and NHL were 2. Status of disease was CR1 in 4, CR2 in 5, PR1 in 3 and SR in 2. Following the high-dose therapy, all the patients received G-CSF 5 mcg/kg to speed engraftment. All received antiviral and antifungal prophylaxis. The median number of CD34+ cells infused was 5.5 x 106/Kg (range 4.6 to 20.0). All patients fully engrafted but one who died with an acute heart failure on day+19 with granulocyte engraftment but without platelet engraftment. In this series, granulocyte engraftment (\geq 0.5 x 109/L) occurred on (median) day +11 with a narrow range from 9 to 12. Platelet engraftment (\geq 20.0 x 109/L) occurred on (median) day +12, range 10 to 17. Thirteen out of the 15 patients underwent a febrile complication, with or without bacterial isolation. Only one patient had a life-threatening complication, with intestinal perforation, but underwent a successful surgical intervention. Data on disease reevaluation are not presented as follow-up is currently too short. All patients but one are alive at a median of 75 days from transplant (range 15-223).

First allogeneic transplants: The initial allogeneic program was set up with the aim to offer a cure to the most frequent hematological disease in the region,9 i.e. thalassemia.10 More than one thousand patients with thalassemia live in the area of Sulaymaniyah, most of them are children belonging to large families and having therefore a high probability of a matched family donor. Patients eligible to transplant were considered those with low-risk characteristics (age \leq 7 years, liver size \leq 2 cm below costal margin) and a HLA matched sibling donor.11,12 A downstaging protocol with hydroxyurea and deferoxamine or deferasirox was adopted in cooperation with the Thalassemia & Congenital Blood Diseases Center in Sulaymaniyah directed by LR. Conditioning regimen included iv busulfan and cyclophosphamide.13 GvHD and rejection prophylaxis included ATG,14 from day -12 to -10, and cyclosporin, methotrexate and methylprednisolone. The first allogeneic HSCT was performed on October 8th, 2016 and up to now overall 3 patients (2 females, 1 male) underwent HSCT. All of them received GCSF-primed bone marrow,15 from an HLA matched sibling. All donor/recipient couples shared the same blood group and were CMV concordant, i.e. all CMV positive. Engraftment occurred at a median time of 17 days. No major complications were observed in the early aplastic phase after HSCT. One patient developed grade II aGvHD and other potentially life-threatening complications (CMV enterocolitis, low grade microangiopathy, PRES) which resolved with proper treatment. All three patients have been already discharged at home (on day +25, +27 and +96, respectively); they are alive and well, continuing immunosuppression. Two of them are already transfusion independent, the third, though full donor chimera, having just recovered from many complications, not yet.

\textbf{Discussion.} Iraqi Kurdistan first gained autonomous status in 1970 following an agreement with the Iraqi government, and was re-confirmed as an autonomous entity in 2005. The region has considerable oil and mineral resources. However, due to the current conflict with the Islamic State, with more than a million Syrian and Iraqi refugees seeking shelter in the Kurdish territory, and also due to the fall of oil price, since 2012 the country entered a deep economic crisis that also involved the health system. The Italian Ministry of Foreign Affairs, through the AICS, is regularly supporting the Kurdish population also with health and social projects.
Table 4. Autologous transplantation: characteristics of the patients, time to engraftment and survival.

| Pt. | Sex | Age (years) | Disease | Disease status at HSCT | Conditioning Regimen | CD34+ x 10^6/kg | PMN ≥0.5 x10^9/L | PMN ≥1.0 x10^9/L | PMN ≥2.0 x10^9/L | PMN ≥5.0 x10^9/L | PLT ≥20 x10^9/L | PLT ≥50 x10^9/L | PLT ≥100 x10^9/L | Days of fever >38 | PLT transf (units) | RBC transf (units) | Survival after HSCT (+days) |
|-----|-----|-------------|---------|------------------------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1 | M | 40 | MM | CR1 | MEL140 | 4.6 | 11 | 12 | 15 | 17 | 27 | 2 | 2 | 2 | 2 | 223 |
| 2 | M | 59 | MM | CR1 | MEL140 | 5.2 | 12 | 13 | 14 | 31 | 52 | 1 | 5 | 2 | 193 |
| 3 | F | 53 | MM | CR1 | MEL140 | 5.0 | 11 | 13 | 11 | 18 | 26 | 1 | 1 | 1 | 176 |
| 4 | M | 33 | NHL | PR2 | BEAM | 5.1 | 11 | 12 | 17 | 44 | 67 | 11 | 5 | 6 | 162 |
| 5 | M | 36 | HL | CR2 | BEAM | 13.0 | 10 | 11 | 10 | 13 | 15 | 2 | 1 | 0 | 155 |
| 6 | M | 46 | MM | CR1 | MEL200 | 5.7 | 11 | 12 | 12 | 16 | 31 | 1 | 1 | 1 | 122 |
| 7 | M | 57 | MM | CR1 | MEL200 | 5.5 | 12 | 13 | 15 | 24 | 30 | 0 | 2 | 0 | 118 |
| 8 | F | 60 | NHL | CR2 | BEAM | 6.2 | 12 | 15 | na | na | na | 3 | 11 | 4 | 19 dead |
| 9 | M | 28 | HL | CR3 | CBV | 6.5 | 10 | 11 | 13 | 15 | 17 | 3 | 1 | 2 | 75 |
| 10 | M | 45 | MM | PR1 | MEL200 | 6.7 | 10 | 11 | 12 | 15 | na | 0 | 1 | 0 | 50 |
| 11 | M | 30 | HL | CR2 | BEAM | 5.1 | 9 | 10 | 15 | 18 | 20 | 2 | 1 | 1 | 46 |
| 12 | F | 20 | HL | CR2 | BEAM | 5.3 | 10 | 11 | 11 | 13 | 15 | 8 | 0 | 2 | 45 |
| 13 | F | 31 | HL | PR2 | BEAM | 12.0 | 8 | 9 | 10 | 13 | 19 | 9 | 0 | 1 | 39 |
| 14 | M | 48 | MM | CR1 | MEL200 | 5.0 | 10 | 11 | 12 | 12 | 18 | 4 | 3 | 1 | 18 |
| 15 | M | 28 | HL | CR2 | BEAM | 20.0 | 10 | 10 | 12 | 12 | 14 | 1 | 2 | 0 | 15 |
| median | | 40 | | | | 5.5 | 10 | 11 | 12 | 15.5 | 20 | 2 | 1 | 1 | 75 |
| range | | 20-60 | | | | 4.6-20.0 | 8-12 | 9-15 | 10-17 | 12-44 | 14-67 | 0-11 | 0-11 | 0-6 | 15-223 |

Pt. = patient; HSCT = hematopoietic stem cell transplantation; MM = multiple myeloma; NHL = non-Hodgkin lymphoma; HL = Hodgkin lymphoma; MEL = melphalan; BEAM = BCNU, etoposide, ara-C, melphalan; CBV = cyclophosphamide, BCNU, etoposide; PMN = polymorphonuclear cells; PLT transf = platelet transfusions; RBC transf = red blood cells transfusions; na = not achieved
We decided to dedicate our efforts to the development of HSCT at the HCH of Sulaymaniyah mainly for two reasons. First, HCH is today the main center in the Kurdish territory treating hematologic malignancies and congenital disorders as thalassemia major, the latter occurring at high frequency in Kurdistan. Second, at the time of our first visit the HCH counted already with most of the facilities necessary for an HSCT program, nevertheless an external support would be needed.

Specifically, in the project we developed at the HCH, the capacity-building methodology addressed the implementation of a sustainable HSCT program through the collaboration with experts in the field of adult hematology, pediatric hemato-oncology, transfusion medicine, apheresis, infectious diseases, nursing, cell manipulation, molecular biology and biophysics coming from different Italian institutions. Almost all these experts had a specific and long-lasting experience in the field of HSCT, and were selected not only on the basis of their competence, but also of their previous experience of cooperation with developing countries. All of them were volunteers, while the non-governmental organization ICU provided funds administration and reporting.

It is a common belief that among the main obstacles in the implementation of technically sophisticated procedures, as it is the case for HSCT, the most important are the frequent lack of a priority scale, the absence of teamwork as well as of appropriate methodology for problem-solving, decision-sharing and quality management. A tendency not to establish a transparent and effective responsibility tree is another factor. All these issues are more prominent in developing countries, where also procurement of resources and consequently of instrumentation and reagents is often critical.

Since the beginning our efforts were dedicated to training. Different techniques were used, not only the traditional lectures and seminars, but principally the coaching method. Written protocols and procedures were developed, and the method of shared decisions was adopted to solve the clinical and laboratory problems. This is a key function not only for the start-up but also for quality control and improvement.

On-site training and coaching represent an innovative method to establish a sustainable activity in developing countries, as alternative to a more traditional one, where local professionals to be trained are brought to the specialized center(s) with higher expenditure and less predictable final results. At present, we have no evidence that on-site training has more efficacy compared with the traditional methodology, and what are the situations where it would be more appropriate. With all the current limitations for immigration policies, in the future more projects based on capacity building on-site will probably be developed, and more data will be available.

With the start-up of the autologous transplantation program in June 2016 the HCH progressively developed an autonomous capacity, and consolidated the technical skills not only in the fields of apheresis, cell manipulation and immunohematology, but also in the infection control. In fact, by the end of 2016 among the 15 patients autografted, only one developed a life-threatening infectious complication, but was eventually rescued. Another patient died, due to sudden heart failure following initial engraftment, a complication likely to be in part linked to age and a borderline cardiac function. More severe criteria for admission were consequently setup. Overall, the preliminary results seem encouraging with prompt and stable hematologic recovery in all and few severe complications.

The allogeneic transplantation program for thalassemia at HCH, carries many advantages for the country: it reduces psychosocial and financial burden for families and allows significant saving for the government. The estimated costs of performing locally HSCT are lower than in the countries where patients were previously referred; a systematic analysis of this costs will soon be performed. Moreover, the new skills acquired together with the continuation of cooperation are paramount for further implementing the activity and extending the transplantation accessibility to children with other disorders, as leukemias, bone marrow failures, immune-deficiencies and others.

Here only the initial results of the HSCT activity at the HCH are reported. We are aware that, after start-up, transplantation activity needs resources and organization over the medium and long term to ensure full autonomy of the Center. To that purpose we also introduced the center to the international context registering it as full member in the EBMT, and promoted the search for scientific grants in order to allow medical doctors and other professionals to visit other
centers in Europe and the US. In addition, a new project on pediatric hematology was submitted to the AICS and recently funded. This new project, managed by the NGO AVSI, is aimed at improving biological and clinical aspects of childhood leukemia management at the HCH, but also to strengthen the transplantation program, especially in the allogeneic field.

Conclusions. Thanks to the cooperation initiative we described, the HCH is the only center performing also allogeneic HSCT in the Iraqi Kurdistan Region, and in the whole Iraq. We conclude that international cooperation may be of great value also in the field of high-technology medicine, and may contribute to improve the capabilities even of centers in critical contexts, representing a valuable instrument also in fostering country-to-country scientific exchanges.

Aknowledgments. We are greatly indebted to Miss Sham O. Hamawandi, of the HCH secretary, who made an incredible work coordinating the efforts of the Italian and Kurdish teams. We also thank Dr. Francesca Bonifazi (President of GITMO) for facilitating the recruitment of volunteer medical doctors. Dr. Aleksandra Babic (President of the EBMT nursing board) and Dr. Giampaolo Gargiulo (Responsible for the GITMO nurse group) contributed substantially to the success of the project by selecting the best professionals among the nurses in Italy and other countries in Europe. Dr. Giorgio Dini was of great help in the construction of the training program. A number of institutions provided supplementary resources to the project. Dr. Roberto Nannerini (Arcobaleno Association) and Prof. Alberto Ciferri (Jepa-Limmat Foundation) gave a fundamental contribution with dedicated grants for the stages of two biologists in Italian institutions. Under its Visitor Training Program the American Society of Hematology also funded a stage in Italy of a Kurdish medical doctor. We would never have succeeded without the help of many Kurdish authorities, in particular Dr. Rekawt H. Rashid Karim (Minister of Health) and Dr. Meran Mohamad Abas (Director of Health, Sulaimanyah). The Iraq Program Coordinator of the Italian NGO “Emergancy”, Eng. Hawar Mustafa, provided us a with a fraternal support and was often of incredible help with bureaucracy. We wish to thank him warmly. We want to tribute a special acknowledgment to the Italian Consul in Erbil, Dr Alessandra Di Pippo, and the Italian Ambassador in Baghdad Dr Marco Carnelos who assumed the project as a priority for the Italian diplomacy and personally did any effort to sustain its development also contributing to pose the cornerstone of the first Kurdish HSCT center at the Hiwa Cancer Hospital in Sulaymaniyah. A special thank for Prof Eduardo Missoni (Global Health and Development, Bocconi Management School) who reviewed the manuscript, we feel indebted for his criticism and encouragement.

References:

1. Gratwohl A, Pasquini MC, Aljurf M, Asutsu Y, Baldomero H, Foeken L, Gratwohl M, Bouzas LF7, Confer D, Frauendorfer K, Gluckman E, Greinix H, Horowitz M, Iida M, Lipton J, Madrigal A, Mohty M, Noel L, Novitzky N, Nunez J, Oudshoorn M, Passweg J, von Rood J, Szer J, Sperling K, Appelbaum FR, Kavur M, Luminari S, Annechini G, Gotti M, Peli A, Santoro A, Mazza R, Pulsoni A, Re A, Bonfichi M, Zilioli V. 2015 Mar;53(3):570-9. Epub 2015 Feb 27. https://doi.org/10.1016/S2352-3026(15)00028-9

2. Garriga M (2013): The Capacity Building Concept. Available from http://www.coastalwiki.org/wiki/The_Capacity_Building_Concept

3. Braindo B, Senna S, Bregni M, Gianni AM, Grillo P, Sommaruga E. A standardized flow cytometry protocol for mobilized peripheral CD34+ cells estimation and collection for autotransplantation in cancer patients. Eur J Histochem 1994; 38: 21-6. PMid:8547706

4. Calvet L, Cabrespine A, Boiret-Dupré N, Merlin E, Paillard C, Berger M, Bay JO, Tournilhac O, Halle P. Hematologic, immunologic reconstitution, and outcome of 342 autologous peripheral blood stem cell transplantations after cryopreservation in a -80°C mechanical freezer and preserved less than 6 months. Transfusion. 2013 Mar;53(3):570-8. https://doi.org/10.1111/tc.12295

5. Santoro A, Mazza R, Pulsoni A, Re A, Bonfichi M, Zilioli VR, Salvi F, Merli F, Anastasia A, Luminari S, Annecku G, Gotti M, Peli A, Liberati AM, Di Renzo N, Castagna L, Giordano L, Carlo-Stella C. Bendamustine in combination with gemcitabine and vinorelbine is an effective regimen as induction chemotherapy before autologous stem cell transplantation for relapsed or refractory Hodgkin lymphoma: final results of a multicenter phase II study. J Clin Oncol. 2016 Sep 20;34(27):3293-9. https://doi.org/10.1200/JCO.2016.66.4466

6. Indovina A, Liberti G, Majolino I, Buscemi F, Scimè R, Gentile S, Vasta S, Pampinella M, Cappuzzo V, Santoro A. Cyclophosphamide 4 g/m2 plus rh-GCSF for mobilization of circulating progenitor cells in malignant lymphomas. Int J Artif Organs. 1993 Dec;16 Suppl 5:30-4. PMid:7518545

7. Bashey A, Donohue M, Liu L, Medina B, Corrington S, Ihaz A, Carrier E, Castro JE, Holman PR, Xu R, Law P, Ball ED, Lane TA. Peripheral blood progenitor cell mobilization with intermediate-dose cyclophosphamide, sequential granulocyte-macrophage-colony-stimulating factor and granulocyte-colony-stimulating factor, and scheduled commencement of leukapheresis in 225 patients undergoing autologous transplantation. Transfusion. 2007 Nov;47(11):2153-60. https://doi.org/10.1111/j.1537-2995.2007.01440.x PMid:17958545

8. Pierelli L, Maresca M, Piccirillo N, Pupella S, Gozzer M, Fodda ML, Vacca M, Adorno G, Cappuccio U, Paladini U. Accurate prediction of graft versus host disease after autologous transplantation: a retrospective observational study. Lancet Haematol. 2015 Mar;2(3):e91-e96. https://doi.org/10.1016/S2352-3026(15)00028-9

9. Hamamy HA, Al-Allawi NA. Epidemiological profile of common haemoglobinopathies in Arab countries. J Community Genet. 2013, 4(4):299-305.
10. Lucarelli G, Galimberti M, Polchi P, Angelucci E, Baronciani D, Giardini C, Andreani M, Agostinelli F, Albertini F, Clift RA. Marrow transplantation in patients with thalassemia responsive to iron chelation therapy. N Engl J Med. 1993; 329: 840-4. https://doi.org/10.1056/NEJM199309163291204 PMid:8355742

11. Angelucci E, Mathies-Martin S, Baronciani D, Bernaudin F, Bonanomi S, Cappellini MD, Dalle JH, Di Bartolomeo P, de Heredia CD, Dickerhoff R, Giardini C, Gluckman E, Hussein AA, Kamani N, Minkov M, Locatelli F, Rocha V, Sediak P, Smiers F, Thuret I, Yaniv I, Cavazzana M, Peters C; EBMT Inborn Error and EBMT Paediatric Working Parties. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica. 2014, 99:811-20. https://doi.org/10.3324/haematol.2013.099747 PMid:24790059 PMCid:PMC4008115

12. Sabloff M, Chandy M, Wang Z, Logan BR, Ghavamzadeh A, Li CK, Irfan SM, Bredeson CN, Cowan MJ, Gale RP, Hale GA, Horan J, Hongeng S, Eapen M, Walters MC. HLA-matched sibling bone marrow transplantation for ß-thalassemia major. Blood. 2011; 117:1745-50. https://doi.org/10.1182/blood-2010-09-306829 PMid:21119108 PMCid:PMC3056598

13. Mathews V, Savani BN. Conditioning regimens in allo-SCT for thalassemia major. Bone Marrow Transplant, 2014; 49:607-10. https://doi.org/10.1038/bmt.2013.216 PMid:24442250

14. Goussetis E, Peristeri I, Kitra V, Vassalas G, Paissiou A, Theodosaki M, Petrakou E, Dimopoulou MN, Graphakos S. HLA-matched sibling stem cell transplantation in children with ß-thalassemia with anti-thymocyte globulin as part of the preparative regimen: the Greek experience. Bone Marrow Transplant, 2012;47:1061-6. https://doi.org/10.1038/bmt.2011.219 PMid:22080966

15. Deotare U, Al-Dawsari G, Couban S, Lipton JH. G-CSF-primed bone marrow as a source of stem cells for allografting: revisiting the concept. Bone Marrow Transplant, 2015; 50:1150-6. https://doi.org/10.1038/bmt.2015.80 PMid:25915812

16. Girmenia C, Viscoli C, Piciocchi A, Cudillo L, Botti S, Erizzo A, Sarmati L, Ciciri F, Locatelli F, Gianellina M, Bassetti M, Tascini C, Lombardini L, Majolino I, Farina C, Luzzaro F, Rossolini GM, Rambaldi A. Management of carbapenem resistant Klebsiella pneumoniae infections in stem cell transplant recipients: an Italian multidisciplinary consensus statement. Haematologica. 2015 Sep;100(9):e373-6. doi: 10.3324/haematol.2015.125484 https://doi.org/10.3324/haematol.2015.125484

17. Faulkner LB, Uderzo C, Masera G. International cooperation for the cure and prevention of severe hemoglobinopathies. J Pediatr Hematol Oncol. 2013; 35: 419-23. doi: 10.1097/MPH.0b013e318289cd920. Review. https://doi.org/10.1097/MPH.0b013e31829cd920