GLOBAL EXISTENCE AND ENERGY DECAY ESTIMATE OF SOLUTIONS FOR A CLASS OF NONLINEAR HIGHER-ORDER WAVE EQUATION WITH GENERAL NONLINEAR DISSIPATION AND SOURCE TERM

JUN ZHOU
School of Mathematics and Statistics
Southwest University
Chongqing 400715, China

Abstract. This paper deals with a higher-order wave equation with general nonlinear dissipation and source term

\[u'' + (-\Delta)^m u + g(u') = b|u|^{p-2}u, \]

which was studied extensively when \(m = 1, 2 \) and the nonlinear dissipative term \(g(u') \) is a polynomial, i.e., \(g(u') = a|u'|^{q-2}u' \). We obtain the global existence of solutions and show the energy decay estimate when \(m \geq 1 \) is a positive integer and the nonlinear dissipative term \(g \) does not necessarily have a polynomial growth near the origin.

1. Introduction. In this paper we consider the following higher-order wave equation

\[
\begin{aligned}
& u'' + Au + g(u') = b|u|^{p-2}u, & x \in \Omega, t > 0, \\
& u(x, 0) = u_0(x), & u'(x, 0) = u_1(x), & x \in \Omega, \\
& u(x, t) = \frac{\partial^i}{\partial x^i} u(x, t) = 0, & i = 1, \cdots, m - 1, & x \in \partial \Omega, t > 0,
\end{aligned}
\]

where \(A = (-\Delta)^m \), \(m \geq 1 \) is a positive integer and \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) \((n \geq 1)\) with a smooth boundary \(\partial \Omega \), \(\nu \) is a unit outward normal vector on \(\partial \Omega \), and \(\frac{\partial^i}{\partial x^i} u \) denotes the \(i \)-order normal derivation of \(u \), \(b > 0 \) and \(p > 2 \) are constants. Furthermore, \(p \) and \(g \) are assumed to satisfy

\((H1) \): \(2 < p < \infty \) when \(n \leq 2m \) or \(2 < p \leq \frac{2(n-m)}{n-2m} \) when \(n > 2m \);

\((H2) \): \(g \) is an odd increasing \(C^1 \) function and \(c_1|s| \leq |g(s)| \leq c_2|s|^r \) for \(|s| > 1 \)

where \(c_1 \) and \(c_2 \) are two positive constants, \(1 \leq r < \infty \) when \(n \leq 2m \) or \(1 \leq r \leq \frac{n+2m}{n-2m} \) when \(n > 2m \).

Models of this type are interest in applications in various areas in mathematical physics, as well as in geophysics and ocean acoustics [12, 17].

2010 Mathematics Subject Classification. Primary: 35L20, 35L70; Secondary: 58G16.

Key words and phrases. Higher-order wave equation, general nonlinear dissipation, global existence, decay.

This work is partially supported by the the Basic and Advanced Research Project of CQSTC grant cstc2016jcyjA0018, NSFC grant 11201380, Fundamental Research Funds for the Central Universities grant XDJK2015A16, XDJK2016E120, Project funded by China Postdoctoral Science Foundation grant 2014M550453, 2015T80948.
For $m = 1$ and $g(s) = a(s)$ $(a > 0)$, problem (1) was first studied by Levine [8, 7]. He showed that solutions with negative initial energy blow up in finite time. Ikehata and Suzuki [4] showed that for sufficiently small initial data (u_0, u_1), the solution trajectory $(u(t), u'(t))$ tends to $(0, 0)$ in $H^m_0(\Omega) \times L^2(\Omega)$ as $t \to \infty$. When $m = 1$ and $g(s) = a|s|^{-2s}$ $(r \geq 2)$, Georgiev and Todorova [3] showed that if the damping term dominates over the source, then a global solution exists for any initial data. By using the stable set method due to Sattinger [13], Ikehata [5] proved that an energy decay rate is $E(t) \leq (1 + t)^{-2/(r-2)}$ for $t \geq 0$, which he used the general method on energy decay introduced by Nakao [10]. Assila [1] proved that an energy decay rate is exponentially if $p > r$ and showed that the solution decays algebraically by the method introduced by Nakao [10]. Moreover, the blow-up properties of the local solution blows up in finite time if $p > r$ and the initial energy is nonnegative.

For general $m \geq 2$ and $g(s) = a|s|^{-2s}$ $(r \geq 2)$, problem (1) was studied in [16, 18]. Ye [16] showed the solution exists global if the initial energy is sufficiently small. Zhou et al. [18] proved the global existence result without the relation between p and r. Moreover, they showed that the solution decays exponentially if $r = 2$ whereas the decay is of a polynomial order if $r > 2$. They also proved that the local solution blows up in finite time if $p > r$ and the initial energy is nonnegative.

Our purpose in this paper is to give a global solvability in the class $H^m_0(\Omega) \cap H^{2m}(\Omega)$ and energy decay estimates of the solutions for problem (1) for a general nonlinear damping g. We use some new techniques introduced in [8] to derive a decay rate of the solutions. So we use the argument combining the method in [8] with the concept of stable set in $H^m_0(\Omega)$.

We conclude this section by stating our plan and giving some notations. In Section 2 we formulate some lemmas need for our arguments. Sections 3 and 4 are devoted the proof of global existence and decay estimates for the problem (1).

2. Preliminaries. Firstly, we state a local existence result of problem (1), which can be obtained in a similar way as done in [2, 9, 11].

Theorem 2.1. Suppose (H1) and (H2) hold. If $u_0 \in H^m(\Omega) \cap H^{2m}(\Omega)$ and $u_1 \in H^m_0(\Omega)$, then there exists $T > 0$ such that problem (1) has a unique local solution $u(t)$ in the class $u \in C([0, T); H^m_0(\Omega) \cap H^{2m}(\Omega))$, $u' \in C([0, T); L^2(\Omega))$. Moreover, at least one of the following statements holds true:

1. $\|u\| + \|A^{1/2}u\| \to \infty$ as $t \to T^-$;
Let $u(t)$ be the solution of (1) got in Theorem 2.1, we introduce some functional as in [18]

\begin{align*}
I(t) &= I(u(t)) = \left\| A^{\frac{1}{2}}u \right\|^2 - b \|u\|^p_p, \\
J(t) &= J(u(t)) = \frac{1}{2} \left\| A^{\frac{1}{2}}u \right\|^2 - \frac{b}{p} \|u\|^p_p, \\
E(t) &= E(u(t), u'(t)) = \frac{1}{2} \|u'\|^2 + J(t), \\
E(0) &= E(u_0, u_1) = \frac{1}{2} \|u_1\|^2 + \frac{1}{2} \left\| A^{\frac{1}{2}}u_0 \right\|^2 - \frac{b}{p} \|u_0\|^p_p.
\end{align*}

Next we state three well known lemmas that will be needed later.

Lemma 2.2. (Sobolev-Poincaré’s inequality) Let λ be a number with $2 \leq \lambda < \infty$ when $n \leq 2m$ or $2 \leq \lambda \leq \frac{2n}{n-2m}$ when $n > 2m$. Then there is a constant C_λ depending on Ω and λ such that

\[
\|u\|_\lambda \leq C_\lambda \left\| A^{\frac{1}{2}}u \right\|, \quad \forall u \in H^m_0(\Omega).
\]

Lemma 2.3. [8, Lemma 1] Let $E: \mathbb{R}^+ \to \mathbb{R}^+$ be a non-increasing function and $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ a strictly increasing function of class C^1 such that

\[
\phi(t) \to \infty \text{ as } t \to \infty.
\]

Assume that there exist $\sigma \geq 0$ and $\omega > 0$ such that

\[
\forall S \geq 1, \quad \int_S^\infty E(t)^{1+\sigma} \phi'(t)dt \leq \frac{1}{\omega} E(S).
\]

Then there exists $C_* > 0$ depending on $E(1)$ such that

1. if $\sigma = 0$, then $E(t) \leq C_* e^{-\omega \phi(t)}$ for $t \geq 1$;
2. if $\sigma > 0$, then $E(t) \leq C_*(\phi(t))^{-1/\sigma}$ for $t \geq 1$.

Lemma 2.4. [S (6.23)-(6.25)] Assume $(H2)$ holds. Then there exists a strictly increasing function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the following conditions

1. ϕ is concave and $\phi(t) \to \infty$ as $t \to \infty$,
2. $\phi'(t) \to 0$ as $t \to \infty$,
3. $\int_1^\infty \phi'(t) \left(g^{-1}(\phi'(t)) \right)^2 dt < \infty$.

3. Global existence. Since g is an odd increasing function, a direct calculation shows that

\[
E'(t) = -\int_\Omega g(u'(t))u'(t) \leq 0. \tag{2}
\]

Hence the energy is non-increasing and in particular $E(t) \leq E(0)$ for all $t \geq 0$.

Let

\[
H = \{ u \in H_0^m(\Omega) : I(u) > 0 \} \cup \{0\}. \tag{3}
\]

The main result of this section is the following theorem:
Theorem 3.1. Assume the assumptions in Theorem 2.1 hold. Let $u(t)$ be the solution of problem (1) with initial data satisfying

$$I(u_0) = \|A^{\frac{1}{2}}u_0\|^2 - b\|u_0\|^p > 0. \quad (4)$$

If $E(0)$ satisfies

$$\eta := 1 - bC_p \left(\frac{2p}{p-2}E(0)\right)^{\frac{p-2}{2}} > 0, \quad (5)$$

where C_p is the positive constant defined in Lemma 2.2, then $u(t)$ exists globally.

Proof. Let $u \in C([0,T);H_0^m(\Omega) \cap H^2_m(\Omega))$ with $u' \in C([0,T);L^2(\Omega))$ be the solution got in Theorem 2.1. Since $I(u_0) > 0$, it follows from the continuity of $u(t)$ that

$$I(u(t)) \geq 0, \quad (7)$$

for some interval near $t = 0$. Let t_{max} be the maximal time when such that (7) holds.

Next we will prove $t_{\text{max}} = T$ by contradiction. Assume $t_{\text{max}} < T$. Then (7) holds for $t \in [0,t_{\text{max}}]$ and

$$I(u(t_{\text{max}})) = 0. \quad (8)$$

So,

$$J(t) = \frac{1}{2} \left\|A^{\frac{1}{2}}u\right\|^2 - \frac{b}{p}\|u\|^p$$

$$= \frac{p-2}{2p} \left\|A^{\frac{1}{2}}u\right\|^2 + \frac{1}{p}I(t)$$

$$\geq \frac{p-2}{2p} \left\|A^{\frac{1}{2}}u\right\|^2$$

for $t \in [0,t_{\text{max}}]$. Hence, by (2), we get

$$\left\|A^{\frac{1}{2}}u\right\| \leq \left(\frac{2p}{p-2}J(t)\right)^{\frac{1}{2}}$$

$$\leq \left(\frac{2p}{p-2}E(t)\right)^{\frac{1}{2}}$$

$$\leq \left(\frac{2p}{p-2}E(0)\right)^{\frac{1}{2}}$$

for $t \in [0,t_{\text{max}}]$. Using (H1), Lemma 2.2, (5), (6), we deduce that

$$b\|u\|^p \leq bC_p \left\|A^{\frac{1}{2}}u\right\|^p$$

$$= bC_p \left\|A^{\frac{1}{2}}u\right\|^{p-2} \left\|A^{\frac{1}{2}}u\right\|^2$$
\[\leq bC_p^p \left(\frac{2p}{p-2} E(0) \right)^{\frac{p^2}{2}} \| A^\frac{1}{2} u \|^2 \]

\[\left\| A^\frac{1}{2} u \right\|^2 \]

for \(t \in [0,t_{\text{max}}] \). In particular, we get

\[I(u(t_{\text{max}})) > 0, \]

which contradicts to (8).

The above discussions imply \(u(t) \in H \) for \(t \in [0,T] \). Next, we prove \(T = \infty \) and (6) to complete the proof. By the fact that the energy \(E(t) \) is non-increasing, we have

\[E(0) \geq E(t) \]

\[= \frac{1}{2} \| u' \|^2 + \frac{1}{2} \left\| A^\frac{1}{2} u \right\|^2 - \frac{b}{p} \| u \|^p_p \]

\[= \frac{1}{2} \| u' \|^2 + \frac{p-2}{2p} \left\| A^\frac{1}{2} u \right\|^2 + \frac{1}{p} I(t) \]

\[\geq \frac{1}{2} \| u' \|^2 + \frac{p-2}{2p} \left\| A^\frac{1}{2} u \right\|^2 \]

for \(t \in [0,T] \) since \(I(t) \geq 0 \), and hence

\[\| u' \| + \left\| A^\frac{1}{2} u \right\| \leq \sqrt{2E(0)} + \sqrt{\frac{2p}{p-2} E(0)}. \]

The above estimate implies \(T = \infty \). Furthermore, it follows from (2) that

\[\int_0^t \int_\Omega g(u'(s))u'(s)ds = -\int_0^t E'(s)ds = E(0) - E(t) \leq 2E(0). \]

By choosing

\[M = \max \left\{ \sqrt{2E(0)} + \sqrt{\frac{2p}{p-2} E(0)}, 2E(0) \right\}, \]

we complete the proof. \(\square \)

4. Energy decay estimate.

Theorem 4.1. Assume the assumptions in Theorem 3.1 hold. Then the energy \(E(t) \) of the solution \(u(t) \) of problem (1) satisfies the decay estimates

\[E(t) \leq C_1 g^{-1} \left(\frac{1}{t} \right), \quad t \geq \frac{1}{G(1/s_1)}, \]

where \(G(t) := t g(t) \), \(C_1 \) is a positive constant only depending on \(g'(0) = 0 \), \(E(0) \) in a continuous way, \(s_1 \geq \max \{ 1, \frac{1}{G(1)} \} \) be such that \(G(1/s_1) \leq 1 \). If, in addition, \(t \mapsto g(t)/t \) is non-decreasing in \([0,1]\) and \(g'(0) = 0 \), then we have

\[E(t) \leq C_2 g^{-1} \left(\frac{1}{t} \right), \quad t \geq \frac{1}{g(1/s_2)}, \]

where \(C_2 \) is a positive constant only depending on \(g'(0) = 0 \), \(E(0) \) in a continuous way, \(s_2 \geq \max \{ 1, \frac{1}{g(1)} \} \) be such that \(g(1/s_2) \leq 1 \).
Proof. Let \(u \in C \left([0, \infty); H^m_0(\Omega) \cap H^{2m}(\Omega) \right) \) with \(u' \in C \left([0, \infty); L^2(\Omega) \right) \) be the global solution of (1). Similar to the proof of (10), we get

\[
b \| u \|_p^p \leq (1 - \eta) \left\| A^{\frac{1}{2}} u \right\|^2,
\]

where \(\eta \) is given in (5). So,

\[
b \left(1 - \frac{2}{p} \right) \| u \|_p^p \leq (1 - \eta) \left(1 - \frac{2}{p} \right) \left\| A^{\frac{1}{2}} u \right\|^2 \leq (1 - \eta) \left(1 - \frac{2}{p} \right) \frac{2p}{p - 2} E(t) = 2(1 - \eta)E(t).
\]

We multiply the first equation of (1) by \(E\phi' u \), where \(\phi \) is a function satisfying all hypotheses of Lemma 2.4, and then integrate the result over \(\Omega \times (S, T), \forall 0 \leq S < T < \infty \). We obtain

\[
0 = \int_S^T \int_{\Omega} E\phi' \left(u'' + Au + g(u') - b|u|^{p-2} u \right) \, dx \, dt
\]

\[
= \left[E\phi' \int_{\Omega} u' \, dx \right]_S^T - \int_S^T (E' \phi' + E\phi'') \int_{\Omega} u' \, dx \, dt - 2 \int_S^T E\phi' \int_{\Omega} u^2 \, dx \, dt
\]

\[
+ \int_S^T E\phi' \int_{\Omega} \left(u^2 + \left| A^{\frac{1}{2}} u \right|^2 - \frac{2b}{p} |u|^p \right) \, dx \, dt
\]

\[
+ \int_S^T E\phi' \int_{\Omega} u g(u') \, dx \, dt + \int_S^T E\phi' \int_{\Omega} b \left(\frac{2}{p} - 1 \right) |u|^p \, dx \, dt
\]

\[
\geq \left[E\phi' \int_{\Omega} u' \, dx \right]_S^T - \int_S^T (E' \phi' + E\phi'') \int_{\Omega} u' \, dx \, dt
\]

\[
- 2 \int_S^T E\phi' \int_{\Omega} u^2 \, dx \, dt + 2 \int_S^T E^2 \phi' \, dt
\]

\[
+ \int_S^T E\phi' \int_{\Omega} u g(u') \, dx \, dt + 2(\eta - 1) \int_S^T E^2 \phi' \, dt.
\]

The above inequality with Young’s inequality imply

\[
2\eta \int_S^T E^2 \phi' \, dt
\]

\[
\leq - \left[E\phi' \int_{\Omega} u' \, dx \right]_S^T + \int_S^T (E' \phi' + E\phi'') \int_{\Omega} u' \, dx \, dt
\]

\[
+ 2 \int_S^T E\phi' \int_{\Omega} u^2 \, dx \, dt + \int_S^T E\phi' \int_{\Omega} |u g(u')| \, dx \, dt
\]

\[
\leq - \left[E\phi' \int_{\Omega} u' \, dx \right]_S^T + \int_S^T (E' \phi' + E\phi'') \int_{\Omega} u' \, dx \, dt
\]

\[
+ 2 \int_S^T E\phi' \int_{\Omega} u^2 \, dx \, dt + \epsilon \int_S^T E\phi' \int_{|u| \leq 1} u^2 \, dx \, dt
\]

\[
+ \frac{1}{4\epsilon} \int_S^T E\phi' \int_{|u| > 1} g(u')^2 \, dx \, dt + \int_S^T E\phi' \int_{|u| > 1} |u g(u')| \, dx \, dt.
\]
By Lemma 2.2 and the definition of E, we get
\[\int_s^T E\phi' \int_{|u'|\leq 1} u^2 \, dx \, dt \leq \frac{2pC_2^2}{p-2} \int_s^T E^2 \phi' \, dt. \tag{13} \]

By $(H2)$, we know that
\[\tilde{C} := \sup_{|s| \leq 1} \left| \frac{g(s)}{s} \right|^2 < \infty. \]

Then
\[\int_s^T E\phi' \int_{|u'|\leq 1} g(u')^2 \, dx \, dt \leq \tilde{C} \int_s^T E\phi' \int_{\Omega} u'^2 \, dx \, dt. \tag{14} \]

Choosing ε small enough such that $2pC_2^2 \varepsilon/(p-2) = \eta$, we get from (13)-(14) that
\[\eta \int_s^T E^2 \phi' \, dt \leq - \left[E\phi' \int_{\Omega} uu' \, dx \right]_s^T + \int_s^T (E'\phi' + E\phi'') \int_{\Omega} uu' \, dx \, dt \]
\[+ \tilde{C} \int_s^T E\phi' \int_{\Omega} u'^2 \, dx \, dt + \int_s^T E\phi' \int_{|u'|>1} |ug(u')| \, dx \, dt, \tag{15} \]

where $\tilde{C} = 2 + \tilde{C}/(4\varepsilon)$.

By (2), (9), (12), (H2), Hölder’s inequality and Young’s inequality, we get
\[\int_s^T E\phi' \int_{|u'|>1} |ug(u')| \, dx \, dt \]
\[\leq \int_s^T E\phi' \left(\int_{\Omega} |u|^{r+1} \right)^{1/r+1} \left(\int_{|u'|>1} |g(u')|^{r+1} \, dx \right)^{1/r} \, dt \]
\[\leq C_{r+1} C_2^{r+1} \int_s^T E\phi' \left\| A^{\frac{1}{2}} u \right\| \left(\int_{|u'|>1} |g(u')u'| \, dx \right)^{1/r} \, dt \]
\[\leq C_{r+1} C_2^{r+1} \left(\frac{2p}{p-2} \right)^{1/2} \int_s^T E^{1+\frac{1}{r+1}} \phi' \left(\int_{\Omega} g(u')u' \, dx \right)^{1/r} \, dt \]
\[= \tilde{C} \int_s^T \phi' E^{1+\frac{1}{r+1}} (-E')^{\frac{1}{r+1}} \, dt = \tilde{C} \int_s^T \phi' E^{1+\frac{1}{r+1}} (-E')^{\frac{1}{r+1}} \, dt \]
\[\leq \epsilon \int_s^T \phi' E^{1+\frac{1}{r+1}} \, dt + C(\epsilon) \int_s^T \phi' (-E') \, dt \]
\[\leq \epsilon \int_s^T \phi' E^{1+\frac{1}{r+1}} \, dt + C(\epsilon) \int_s^T \phi' (-E') \, dt \]
\[\leq \epsilon \int_s^T \phi' E^{1+\frac{1}{r+1}} \, dt + C(\epsilon) \int_s^T \phi' (-E') \, dt \]

for any $\epsilon > 0$, where
\[\tilde{C} = C_{r+1} C_2^{r+1} \left(\frac{2p}{p-2} \right)^{1/2(r+1)}, \quad C(\epsilon) = \frac{r}{r+1} \left(\frac{r+1}{\epsilon} \right)^{-\frac{1}{2}}. \]

The decreasing property of $E(t)$ and the fact that $r \geq 2q + 1$ implies
\[\int_s^T \phi' E^{1+\frac{1}{r+1}} \, dt = \int_s^T \phi' E^2 \frac{1}{r+1} \, dt \]
\[\leq E(0) \frac{1}{r+1} \int_s^T E^2 \phi' \, dt. \tag{17} \]
Since ϕ is increasing and concave, we have
\[
\int_S^T \phi'(t)E'dt = \left[-\frac{1}{2}\phi'E'(t)^2 \right]_S^T + \frac{1}{2} \int_S^T E''E'dt \leq \frac{1}{2} \phi'(0)E(S)^2.
\] (18)

Choosing ϵ small enough such that $\epsilon E(0)^{\frac{1}{2}} < \eta$, we get from (15)-(18) that there exist positive constants C_1, C_2, C_3 such that
\[
\int_S^T E^2 \phi'dt \leq -C_1 \left[E\phi' \int_{\Omega} u'dx \right]_S^T + C_1 \int_S^T (E'\phi' + E\phi'') \int_{\Omega} u'dxdt + C_2 \int_S^T E\phi' \int_{\Omega} u'^2 dx + C_3 E(S)^2.
\] (19)

Next we estimate the first three terms on the right-hand side of above inequality. Firstly, we consider $-[E\phi' \int_{\Omega} u'dx]^T$. By Lemma 2.2 [9] and the properties of E and ϕ, we get
\[
\leq E(S)\phi'(0) \left(\int_{\Omega} |u(T)| u'(T)|dx + \int_{\Omega} |u(S)| u'(S)|dx \right)
\leq \frac{1}{2} E(S)\phi'(0) \left(||u(T)||^2 + ||u(S)||^2 + ||u'(T)||^2 + ||u'(S)||^2 \right)
\leq \frac{1}{2} E(S)\phi'(0) \left(C_2^2 \left(\|A^\frac{1}{2} u(T)\|^2 + \|A^\frac{1}{2} u(S)\|^2 \right) + 4E(S) \right)
\leq E(S)\phi'(0) \left(C_2^2 \left(\frac{2p}{p-2} \right) E(S) + 2E(S) \right)
= C_2^2 \left(\frac{2p}{p-2} \right) \phi'(0)E(S)^2 + 2\phi'(0)E(S)^2.
\] (20)

Secondly, we study the term $\int_S^T (E'\phi' + E\phi'') \int_{\Omega} u'^2 dx$. Similar to above inequality, we have
\[
\int_S^T (E'\phi' + E\phi'') \int_{\Omega} u'dx dt
\leq - \frac{1}{2} \int_S^T (E'\phi'(0) + E\phi'') \left(C_2^2 \left(\frac{2p}{p-2} \right) E + 2E \right) dt.
\]

Then
\[
\int_S^T (E'\phi' + E\phi'') \int_{\Omega} u'dx dt
\leq - \frac{1}{2} C_2^2 \left(\frac{2p}{p-2} \right) \phi'(0) \int_S^T E'E'dt - \phi'(0) \int_S^T E'E'dt - \frac{1}{2} C_2^2 \left(\frac{2p}{p-2} \right)^2 \int_S^T \phi'' dt - E(S) \int_S^T \phi'' dt
\leq C_2^2 \left(\frac{2p}{p-2} \right) \phi'(0)E(S)^2 + 3\phi'(0)E(S)^2.
\] (21)
At last, we consider the term \(\int_S^T \mathcal{E} \phi' \int_\Omega u^2 dx \, dt \). By [8] page 278], for \(t \geq 1 \), we can choose
\[
\psi(t) = 1 + \int_1^t \frac{1}{g \left(\frac{t}{s} \right)} \, ds.
\]
We introduce \(h(t) = g^{-1}(\phi'(t)) \), then \(h \) is a decreasing positive function and satisfies \(h(t) \to 0 \) as \(t \to \infty \). Fix \(t \geq 1 \) we define
\[
\Omega_1 := \{ x \in \Omega : |u'| \leq h(t) \},
\]
\[
\Omega_2 := \{ x \in \Omega : h(t) \leq |u'| \leq h(1) \},
\]
\[
\Omega_3 := \{ x \in \Omega : |u'| > h(1) \}.
\]
Fix \(S \geq 1 \), we can write \(\int_S^T \mathcal{E} \phi' \int_\Omega u^2 dx \, dt \) as
\[
\int_S^T \mathcal{E} \phi' \int_\Omega u^2 dx \, dt = \int_S^T \mathcal{E} \phi' \int_{\Omega_1} u^2 dx \, dt + \int_S^T \mathcal{E} \phi' \int_{\Omega_2} u^2 dx \, dt + \int_S^T \mathcal{E} \phi' \int_{\Omega_3} u^2 dx \, dt.
\]
First we look at the part on \(\Omega_1 \)
\[
\int_S^T \mathcal{E} \phi' \int_{\Omega_1} u^2 dx \, dt \leq \int_S^T \int_{\Omega_3} h(t)^2 dx \leq |\Omega|E(S) \int_S^T \phi' (g^{-1}(\phi'))^2 \, dt. \tag{22}
\]
Next we look at the part on \(\Omega_2 \). By monotonicity, if \(x \in \Omega_2 \), we obtain
\[
\phi'(t) = g(h(t)) \leq g(|u'|) = |g(u')|.
\]
Then we get
\[
\int_S^T \mathcal{E} \phi' \int_{\Omega_2} u^2 dx \, dt \leq \int_S^T E \int_{\Omega_2} |g(u')|u^2 dx \, dt \leq h(1) \int_S^T E \int_{\Omega_2} g(u')u' dx \, dt \leq h(1)E(S)^2. \tag{23}
\]
At last we look at the part on \(\Omega_3 \). If \(h(1) \geq 1 \), we get from (H2) that
\[
|g(u')| = g(|u'|) \geq c_1 |u'|.
\]
If \(h(1) < 1 \), it follows from (H2) and the monotone of \(g \) and \(h \) that
\[
|g(u')| \geq \begin{cases} \frac{c_1 |u'|}{g(|u'|)} & \text{if } |u'| \geq 1; \\ \frac{|u'|}{|u'|} & \text{if } h(1) |u'| \geq g(h(1)) |u'| = \phi'(1) |u'|, & h(1) |u'| < 1.
\end{cases}
\]
So there exists a positive constant \(\overline{C}_1 \) such that \(|g(u')| \geq \overline{C}_1 |u'| \) if \(|u'| > h(1) \). Then we have
\[
\int_S^T \mathcal{E} \phi' \int_{\Omega_3} u^2 dx \, dt \leq \frac{1}{\overline{C}_1} \int_S^T \mathcal{E} \phi' \int_{\Omega_3} u' g(u') dx \, dt \leq \frac{1}{\overline{C}_1} \int_S^T \phi' (-E') dt
\]
By (22)-(24), we obtain
\[
\int_0^T E \phi' \int_\Omega u^2 dx dt \leq \left(h(s) + \frac{\phi'(s)}{C_1} \right) E(S)^2 + |\Omega| \int_0^T \phi' (g^{-1}(\phi'))^2 dt E(S). \tag{25}
\]

Finally, by Lemma 2.4, (19), (20), (21) and (25), we know there exist two positive constant \(\hat{C}_1 \) and \(\hat{C}_2 \) such that
\[
\int_0^T E \phi' dt \leq \hat{C}_1 E(S) + \hat{C}_2 E(S)^2 \leq \left(\hat{C}_1 + \hat{C}_2 E(0) \right) E(S).
\]

Since \(\hat{C} := \left(\hat{C}_1 + \hat{C}_2 E(0) \right) \) is independent of \(T \), we get
\[
\int_0^\infty E \phi' dt \leq \hat{C} E(S), \quad \forall S \geq 1.
\]

Thanks to Lemma 2.3, we deduce
\[
E(t) \leq \frac{C_{s_1}}{\phi(t)}, \quad \forall t \geq 1, \tag{26}
\]
where \(C_{s_1} \) is a positive constant only depending on initial energy \(E(0) \) in a continuous way.

It remains to estimate the growth of \(\phi \). This is equivalent to consider the function \(\psi := \phi^{-1} \). Let \(s_1 \geq \max\{ 1, \frac{1}{G(1)} \} \) be such that \(G(1/s_1) \leq 1 \). By monotonicity of \(g \), we have
\[
\psi(s) \leq 1 + (s - 1) \frac{1}{g(1/s)} \leq \frac{s}{g(1/s)} = \frac{1}{G(1/s)}, \quad \forall s \geq s_1,
\]
hence \(s \leq \phi(t) \) with \(t = 1/G(1/s) \). It follows \(t = 1/G(1/s) \) that \(1/s = G^{-1}(1/t) \). Thus
\[
\frac{1}{\phi(t)} \leq G^{-1} \left(\frac{1}{t} \right), \quad t \geq \frac{1}{G(1/s_1)} \geq 1.
\]

Then it follows from (26) that
\[
E(t) \leq C_{s_1} G^{-1} \left(\frac{1}{t} \right), \quad t \geq \frac{1}{G(1/s_1)}.
\]

If \(H(t) := g(t)/t \) in an increasing function in \([0, 1]\) such that \(H(0) = 0 \). By [8 page 280], we can define \(h(t) = H^{-1}(\phi(t)) \) with
\[
\psi(t) = \phi^{-1}(t) = 1 + \int_1^t \frac{1}{H(1/s)} ds.
\]
On Ω_2 it holds that $\varphi'(t)u'^2 \leq |H(u')|u'^2 = u'g(u')$. Then the same calculations as above yield

$$E(t) \leq C_{*2}g^{-1} \left(\frac{1}{t} \right), \quad t \geq \frac{1}{g(1/s_2)},$$

where C_{*2} is a positive constant only depending on initial energy $E(0)$ in a continuous way, $s_2 \geq \max \{ 1, \frac{1}{g(1)} \}$ be such that $g(1/s_2) \leq 1$.

REFERENCES

[1] M. Aassila, Global existence of solutions to a wave equation with damping and source terms, *Diff. Inte. Equations*, 14 (2001), 1301–1314.
[2] Q. Gao, F. Li and Y. Wang, Blow up of solution for higher-order Kirchhoff-type equations with nonlinear dissipation, *Cent. Euro. J. Math.*, 9 (2011), 686–698.
[3] V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, *J. Differential Equations*, 109 (1994), 295–308.
[4] R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, *Hiroshima Math. J.*, 26 (1996), 475–491.
[5] R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, *Nonlinear Anal.*, 27 (1996), 1165–1175.
[6] H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $D_{tt} u = Au + f(u)$, *Trans. Am. Math. Soc.*, 192 (1974), 1–21.
[7] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, *SIAM J. Math. Anal.*, 5 (1974), 138–146.
[8] P. Martinez, A new method to obtain decay rate estimates for dissipative systems, *ESAIM. Cont. Opt. Cal. Var.*, 4 (1999), 419–444.
[9] S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, *J. Math. Anal. Appl.*, 265 (2002), 296–308.
[10] M. Nako, Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, *J. Math. Anal. Appl.*, 58 (1977), 336–343.
[11] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, *J. Math. Anal. Appl.*, 216 (1997), 321–342.
[12] M. Reed and B. Simon, *Methods of Modern Mathematical Physics*, in: *Scattering Theory*, vol. III, Academic Press, New York, London, 1979.
[13] D. H. Sattinger, On global solutions of nonlinear hyperbolic equations *Arch. Rational Mech. Anal.*, 30 (1968), 148–172.
[14] G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, *J. Math. Anal. Appl.*, 239 (1999), 213–226.
[15] S. T. Wu and L. Y. Tsai, On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, *Taiwanese J. Math.*, 13 (2009), 545–558.
[16] Y. Ye, Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation, *J. Ineq. Appl.*, 2010 (2010), Art. ID 394859, 14 pp.
[17] E. Zauderer, *Partial Differential Equations of Applied Mathematics*, in: *Pure and Applied Mathematics*, second edition, A Wiley-inter science Publication, John Wiely & Sons, Inc., New York, 1989.
[18] J. Zhou, X. R. Wang, X. J. Song and C. L. Mu, Global existence and blowup of solutions for a class of nonlinear higher-order wave equations, *Z. Angew. Math. Phys.*, 63 (2012), 461–473.

Received September 2016; revised February 2017.

E-mail address: jzhouwm@163.com