Analysis of data mining classification by comparison of C4.5 and ID algorithms

R. Sudrajat¹, I. Irianingsih¹, D. Krisnawan²

¹Department of Computer Science, Padjadjaran University, Sumedang 45363, Indonesia
²Department of Mathematics, Padjadjaran University, Sumedang 45363, Indonesia

E-mails: r.sudrajat@unpad.ac.id, iinirianingsih@gmail.com, dillan.k@gmail.com

ABSTRACT. The rapid development of information technology, triggered by the intensive use of information technology. For example, data mining widely used in investment. Many techniques that can be used assisting in investment, the method that used for classification is decision tree. Decision tree has a variety of algorithms, such as C4.5 and ID3. Both algorithms can generate different models for similar data sets and different accuracy. C4.5 and ID3 algorithms with discrete data provide accuracy are 87.16% and 99.83% and C4.5 algorithm with numerical data is 89.69%. C4.5 and ID3 algorithms with discrete data provides 520 and 598 customers and C4.5 algorithm with numerical data is 546 customers. From the analysis of the both algorithm it can classified quite well because error rate less than 15%.

1. Introduction
Investment is currently growing very rapidly, public is interesting to do a form of investment such as deposits and mutual funds. On the other hand, the development of information technology has developed rapidly, many science informatics used in the banking sector, one of them is data mining. Data mining is used to explore large amounts of data into patterns/rules so as to simplify large data into parts more modest but has a precious value. C4.5 and ID3 algorithms are algorithms used in data mining to create decision tree, where decision tree is a classification method with an accurate prediction. Decision tree method to change the very large data into a decision tree that represents the rule.

1.1 Decision Tree
Classification by decision tree, a classification that is very reliable as a means of classification and prediction. In general, a decision tree is a modeling picture of a subject that is composed of a series of decisions that provide a solution. Classification rules can be easily presented in easy language so that users can understand it, or in its database as Microsoft Excel, Microsoft Access and SQL. In some applications, and prediction accuracy of classification is important, for example, predict potential customers in the business market. There are various algorithms to build a decision tree, the most popular is the ID3 and C4.5.

1.2 C4.5 Algorithm
C4.5 algorithm is an algorithm to form a decision tree by counting the value of the gain, where the biggest gains are to be used as an initial node or the root node. C4.5 algorithms step in building a decision tree as follows:
Select the attribute with the largest gain value as the root.
Create a branch for each value.
For the case of the branches.
Repeat the process for each branch until all cases the branches have the same class.

Entropy and gain search formula as follows:

\[
Gain(S) = Entropy(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} Entropy(S_i)
\]

where
- \(S \) = the set of cases
- \(n \) = number of partitions
- \(|S_i|\) = number of cases in the partition \(i \)
- \(|S|\) = number of cases in \(S \).

\[
Entropy(S) = \sum_{i=1}^{n} -p_i \log_2 p_i
\]

where
- \(S \) = The set of cases
- \(n \) = number of partitions
- \(p_i \) = proportion of \(S_i \) to \(S \).

1.3 ID3 Algorithm
ID3 (Iterative Dichotomiser3) algorithm is used to form a decision tree by calculating the entropy values, created by Ross Quinlan. Step ID3 algorithm to construct a decision tree as follows:
- Select all the existing attributes and calculate the entropy of each attribute.
- Select an attribute with the smallest entropy, then these attributes be the root node.
- Create an attribute node with the smallest entropy.
- Repeat the process for each branch until all cases the branches have the same class.

2. Analysis and System Design

2.1 Analysis Classification System
In the analysis stage of this system, which will be the topic of discussion is about what the problems faced as an analysis of the data and the accuracy of the analysis of algorithms C4.5 and ID3.

2.1.1 Data Analysis
The data used in the making of this program is the customer data a bank with attribute goal is PEP (Portfolio Evaluation Plan) or the planned investment, the investment data in the form of excel data which attributes the following selection \(id, age, sex, region, income, married, children, car, save act, current act and mortgage, \) and the attributes of the destination is pep. Total investment data as many as 600 data, the data is stored in csv (Comma Separated Values) format.

2.1.2 Analysis Software
Some of the software used in this study as follows: (1) The operating system used Microsoft Windows Vista Home Premium, (2) Net Beans Java programming as the software used to build the program, (3) Microsoft Excel as software that serves to change the data in .xls to .csv.

2.2 Designing Data Classification
Classification of data that will be discussed is divided into three parts, namely the classification of data using ID3 algorithm with discrete data, the algorithm C4.5 and C4.5 algorithms discrete data with numerical data. Data used in the calculation of investment manual 10 records.
Table 1. Experiment Data 1

ID	AGE	SEX	REGION	INCOME	MARRIED	CAR
1	MIDDLE	F	INNER_CITY	LOW	NO	NO
2	MIDDLE	F	TOWN	LOW	YES	NO
3	MIDDLE	F	RURAL	LOW	NO	YES
4	YOUNG	M	INNER_CITY	LOW	YES	NO
5	OLD	F	INNER_CITY	HIGH	YES	NO
6	OLD	F	TOWN	MID	YES	NO
7	YOUNG	M	RURAL	LOW	NO	NO
8	OLD	M	TOWN	MID	YES	NO
9	MIDDLE	F	SUBURBAN	MID	YES	YES
10	OLD	M	INNER_CITY	HIGH	YES	NO

Table 2. Experiment Data 2

CHILDREN	SAVE ACT	CURRENT ACT	MORTGAGE	PEP
ONE	NO	NO	NO	YES
ONE	NO	YES	NO	YES
NOL	NO	YES	NO	YES
NOL	YES	YES	NO	YES
NOL	YES	NO	NO	NO
TWO	YES	YES	NO	YES
NOL	NO	YES	NO	YES
NOL	NO	YES	YES	YES
TWO	NO	NO	NO	NO
TWO	YES	YES	YES	YES

Table 3. Gain Value Calculation and Entropy

Attribute	Sub-attribute	Number of Cases (S)	NO (S1)	YES (S2)	Entropy	Gain
Total		10	2	8	0.7219280946	0.0729055950
AGE	MIDDLE	4	1	3	0.8112781245	0.1709505941
	YOUNG	2	0	2	0	0.1709505942
	OLD	4	1	3	0.8112781245	0.2464393444
SEX	FEMALE	6	2	4	0.9182958341	0.1177436965
	MALE	4	0	4	0	0.0854752971
REGION	INNER_CITY	3	0	3	0	
	TOWN	3	1	2	0.9182958341	
	RURAL	3	1	2	0.9182958341	
	SUBURBAN	1	0	1	0	
INCOME	Low	5	0	5	0	
	Mid	3	1	2	0.9182958341	
	High	2	1	1	1	
MARRIED	YES	7	2	5	0.8631205687	0.1177436965
	NO	3	0	3	0	0.0854752971
CHILDREN	NOL	5	1	4	0.7219280946	
	ONE	2	0	2	0	
	TWO	3	1	2	0.9182958341	
Table 4. Calculation of Node Root for C4.5 Algorithm

Attribute	Sub-attribute	Number of Cases (S)	NO (S1)	YES (S2)	Entropy	Gain
INCOME-MID		3	1	2	0.9182958341	-
AGE	MIDDLE	1	1	0	0	
	YOUNG	0	0	0	0	
	OLD	2	0	2	0	
SEX	FEMALE	2	1	1	1	0.2516291674
	MALE	1	0	1	0	
REGION	INNER_CITY	0	0	0	0	0.2516291674
	TOWN	2	1	1	1	
	RURAL	0	0	0	0	
	SUBURBAN	1	0	1	0	
MARRIED	YES	3	1	2	0.9182958341	0
	NO	0	0	0	0	
CHILDREN	NOL	1	0	1	0	0.2516291674
	ONE	0	0	0	0	
	TWO	2	1	1	1	
	THREE	0	0	0	0	

Table 5. Calculation of Node Root for ID3 Algorithm

Attribute	Sub-Attribute	Number of Cases (S)	NO (S1)	YES (S2)	Entropy
CHILDREN-NOL		5	1	4	0.7219280946
Age	Middle	1	0	1	0
	Young	2	0	2	0
	Old	2	1	1	1
Sex	Female	2	1	1	1
	Male	3	0	3	0
Region	Inner_city	1	0	1	0
	Town	1	0	1	0
	Rural	3	1	2	0
	Suburban	0	0	0	0
Married	Yes	3	1	2	0.9182958341
	No	2	0	2	0
Income	Low	3	0	3	0
	Mid	1	0	1	0
	High	1	1	0	0
From the calculation of Table 4 it is obtained the decision tree as follows:

![Figure 1](https://example.com/figure1.png)

Figure 1. C4.5 Decision Tree Algorithm

Attribute	Sub-Attribute	Number of Cases (S)	NO (S1)	YES (S2)	Entropy
CHILDREN-	NO	3	1	2	0.9182958341
MARRIED-	YES				
Age					
Middle		0	0	1	0
Young		1	0	1	0
Old		2	1	1	1
Sex					
Female		1	1	0	0
Male		2	0	2	0
Region					
Inner_city		1	0	1	0
Town		1	0	1	0
Rural		1	1	0	0
Suburban		0	0	0	0
Income					
Low		1	0	1	0
Mid		1	0	1	0
High		1	1	0	0

From the calculation of Table 6 it is obtained the decision tree as follows:

![Figure 2](https://example.com/figure2.png)

Figure 2. Decision Tree ID3 Algorithm

3. Results and Discussion

In this experiment, use the data as much as 100 records, the data is tested again using ID3 algorithm with discrete data, the algorithm C4.5 and C4.5 algorithms discrete data with continuous data. The results of these experiments obtained a decision tree as follows:
Figure 3. Decision Tree ID3 Algorithm with Discrete Data

Figure 4. Decision Tree C4.5 Algorithm with Discrete Data
Figure 5. Decision Tree C4.5 Algorithm with Continuous Data

Table 7. Data classification results

	C4.5 Algorithm	Total	ID3 Algorithm	Total
YES	37	42	43	41
	42	39	244	41
	49	44	45	49
	44	44	272	
NO	53	50	52	40
	40	41	276	59
	52	56	56	52
	52	51	326	
Total	520		598	
Unclassified	80		2	

Table 8. Classified Customers with Discrete Data

	C4.5 Algorithm	Total
YES	35	43
	44	43
	43	37
	245	
NO	56	46
	52	50
	52	45
	301	
Total	546	
Unclassified	54	

Table 9. Classified Customers with Continuous Data

Trial	ID3 with discrete data (%)	Failure (%)	C4.5/J48 with discrete data (%)	Failure (%)	C4.5/J48 with numeric data (%)	Failure (%)
1	100	0	93	7	93	7
2	100	0	91	9	88	12
3	99	1	94	6	95	5
4	100	0	80	20	92	8
5	100	0	81	19	84	16
6	100	0	84	16	86	14
MEAN	99.83	0.16	87.16	12.83	89.69	10.33

4. Conclusion

1. ID3 Algorithm excellent classifying investment data with a discrete form for 99.83% of the data can be classified by degree of error 0.16%, while the C4.5 algorithm to classify well enough to form discrete investment data for 87.16% of the data can be classified by
an error rate of 12.83% and 89.69% in numerical form with an error rate of 10.33%. Algorithm ID3 classifying investment data better than C4.5 algorithm.

2. ID3 algorithm to classify as many as 598 discrete data to unclassified 2, the algorithm C4.5 with as many as 520 discrete data classifying the unclassified 80 and C4.5 algorithms with continuous data to classify as many as 546 Unclassified 54 customers.

3. The decision tree obtained in this study, has a decision tree ID3 algorithm is more complex than the C4.5 algorithm, so it can be viewed accuracy of ID3 algorithm can better classify. The more complex a decision tree algorithm, the better classifying data.

References
[1] Berry, Michael J.A. and Gordon S. Linoff. 2004. Data Mining Techniques for Marketing. Second Edition. Wiley Publishing, Inc.
[2] Chen, M., Han, J. and Yu, P. 1996. Data Mining: An Overview from a Database Perspective. IEEE Trans. Knowledge and Data Engineering. 8(6): 866-881.
[3] Larose, Daniel T. 2005. Discovering Knowledge in Data: An Introduction to Data Mining. John Willey & Sons, Inc.
[4] Mobasher, Bamshad. 2005. Clasification via Decision Trees in WEKA. http://maya.cs.depaul.edu/classes/ect584/weka/classify.html.
[5] Moertini, Veronica S. towards the Use of C4.5 Algorithm for Classifying Banking Dataset. http://home.unpar.ac.id/~integral/Volume%208/Integral%208%20No.%202/C45%20Algorithm.
[6] Sudjana. 2010. Klasifikasi Data Nasabah Sebuah Asuransi Menggunakan Algoritma C4.5. http://journal.uii.ac.id/index.php/Snati/article/view/1923.
[7] Sunni, Ismail. 2011. Perbedaan Algoritma ID3, C4.5 dan J48. http://webcache.googleusercontent.com/search?q=cache:http://codemath.wordpress.com/2011/06/20/perbedaan-algoritma-id3-c4-5-dan-j48.
[8] Quinlan, Ross. 2000. ID3 Algorithm. http://www.soc.napier.ac.uk/~peter/vldb/dm/node11.html.