Coding theory and cryptography
A conference in the honor of Joachim Rosenthal’s 60th birthday

Cyclic Orbit Flag Codes

Miguel Ángel Navarro-Pérez

Joint work with Clementa Alonso-González

July 15, 2022

mnavarro@edem.es
Outline

1. Cyclic orbit subspace codes
2. Cyclic orbit flag codes and their best friend
3. Flag codes with prescribed best friend
Notation

Let...

- \(q \) be a prime power,
- \(\mathbb{F}_q \) denote the finite field with \(q \) elements,
- \(n \) be a positive integer,
- \(\mathbb{F}_{q^n} \) is the extension field with \(q^n \) elements.
Outline

1. Cyclic orbit subspace codes
2. Cyclic orbit flag codes and their best friend
3. Flag codes with prescribed best friend
Subspace codes

Metric space

Given two \mathbb{F}_q-subspaces \mathcal{U}, \mathcal{V} of \mathbb{F}_{q^n}, their subspace distance is

$$d_S(\mathcal{U}, \mathcal{V}) = \dim_q(\mathcal{U} + \mathcal{V}) - \dim_q(\mathcal{U} \cap \mathcal{V}).$$

Definition

A subspace code (of length n) is a nonempty collection \mathcal{C} of \mathbb{F}_q-subspaces of \mathbb{F}_{q^n}. Its minimum distance is

$$d_S(\mathcal{C}) = \min\{d_S(\mathcal{U}, \mathcal{V}) \mid \mathcal{U}, \mathcal{V} \in \mathcal{C}, \mathcal{U} \neq \mathcal{V}\}.$$

If every element in a subspace code has the same dimension, it is a constant dimension code.
Subspace codes

Metric space

Given two \mathbb{F}_q-subspaces U, V of \mathbb{F}_q^n, their subspace distance is

$$d_S(U, V) = \dim_q(U + V) - \dim_q(U \cap V).$$

Definition

A **subspace code** (of length n) is a nonempty collection C of \mathbb{F}_q-subspaces of \mathbb{F}_q^n. Its minimum distance is

$$d_S(C) = \min\{d_S(U, V) \mid U, V \in C, U \neq V\}.$$

If every element in a subspace code has the same dimension the code is called a **constant dimension code**.
Subspace codes

Metric space

Given two \mathbb{F}_q-subspaces U, V of \mathbb{F}_{q^n}, their **subspace distance** is

$$d_S(U, V) = \dim_q(U + V) - \dim_q(U \cap V).$$

Definition

A **subspace code** (of length n) is a nonempty collection C of \mathbb{F}_q-subspaces of \mathbb{F}_{q^n}. Its **minimum distance** is

$$d_S(C) = \min\{d_S(U, V) \mid U, V \in C, U \neq V\}.$$

If every element in a subspace code has the same dimension, it is a **constant dimension code**.
Subspace codes

Metric space

Given two \mathbb{F}_q-subspaces U, V of \mathbb{F}_q^n, their subspace distance is

$$d_S(U, V) = \dim_q(U + V) - \dim_q(U \cap V).$$

Definition

A **subspace code** (of length n) is a nonempty collection C of \mathbb{F}_q-subspaces of \mathbb{F}_q^n. Its minimum distance is

$$d_S(C) = \min\{d_S(U, V) \mid U, V \in C, U \neq V\}.$$

If every element in a subspace code has the same dimension

constant dimension code.
Cyclic orbit codes

Group action

Given an \mathbb{F}_q-subspace \mathcal{U} of \mathbb{F}_q^n with $\text{dim}_q(\mathcal{U}) = k$,

- and $\beta \in \mathbb{F}_q^*$, then

$$\mathcal{U} \cdot \beta = \{ u\beta \mid u \in \mathcal{U} \}$$

is an \mathbb{F}_q-subspace of \mathbb{F}_q^n of dimension $\text{dim}_q(\mathcal{U} \cdot \beta) = \text{dim}_q(\mathcal{U}) = k$.

- For every $\beta \in \mathbb{F}_q^*$, the β-cyclic orbit code generated by \mathcal{U} is

$$\text{Orb}_\beta(\mathcal{U}) = \{ \mathcal{U} \cdot \beta^i \mid 0 \leq i \leq |\beta| - 1 \}.$$

- If $\langle \beta \rangle = \mathbb{F}_q^*$: cyclic orbit code generated by \mathcal{U}, $\text{Orb}(\mathcal{U})$.

Cyclic orbit codes

Group action

Given an \mathbb{F}_q-subspace \mathcal{U} of \mathbb{F}_{q^n} with $\dim_q(\mathcal{U}) = k$,

- and $\beta \in \mathbb{F}_{q^n}^*$, then

$$\mathcal{U} \cdot \beta = \{u\beta \mid u \in \mathcal{U}\}$$

is an \mathbb{F}_q-subspace of \mathbb{F}_{q^n} of dimension $\dim_q(\mathcal{U} \cdot \beta) = \dim_q(\mathcal{U}) = k$.

- For every $\beta \in \mathbb{F}_{q^n}^*$, the β-cyclic orbit code generated by \mathcal{U} is

$$\text{Orb}_\beta(\mathcal{U}) = \{\mathcal{U} \cdot \beta^i \mid 0 \leq i \leq |\beta| - 1\}.$$

- If $\langle \beta \rangle = \mathbb{F}_{q^n}^*$: cyclic orbit code generated by \mathcal{U}, $\text{Orb}(\mathcal{U})$.

Miguel Ángel Navarro-Pérez
Parameters of a cyclic orbit code

- The orbit $\text{Orb}_\beta(U)$ has associated:

$$\text{Stab}_\beta(U) = \{ \beta^i \mid U \cdot \beta^i = U \} \subseteq \langle \beta \rangle$$

and it holds

$$|\text{Orb}_\beta(U)| = \frac{|\beta|}{|\text{Stab}_\beta(U)|}.$$

- The minimum distance is

$$d_S(\text{Orb}_\beta(U)) = \min\{ d_S(U, U \cdot \beta^i) \mid \beta^i \notin \text{Stab}_\beta(U) \}$$

is an even integer between 0 and $\min\{2k, 2(n - k)\}$.

For every divisor k of n, the code $\text{Orb}(\mathbb{F}_{q^k})$ is a k-spread of \mathbb{F}_{q^n}.

- The orbit $\text{Orb}_\beta(U)$ has associated:

$$\text{Stab}_\beta(U) = \{ \beta^i \mid U \cdot \beta^i = U \} \subseteq \langle \beta \rangle$$

and it holds

$$|\text{Orb}_\beta(U)| = \frac{|\beta|}{|\text{Stab}_\beta(U)|}.$$
Best friend of a subspace

Definition

Let U be an \mathbb{F}_q-subspace of \mathbb{F}_{q^n}. A subfield \mathbb{F}_{q^m} of \mathbb{F}_{q^n} is a friend of U if U is an \mathbb{F}_{q^m}-vector space. The largest friend of U is called its best friend.

Let U be a subspace of \mathbb{F}_{q^n} with \mathbb{F}_{q^m} as its best friend, then:

- m divides $k = \dim_q(U) = m \dim_{q^m}(U)$.
- $\text{Stab}_\beta(U) = \langle \beta \rangle \cap \mathbb{F}_{q^m}^*$
- and $2m$ divides $d_S(\text{Orb}_\beta(U))$, $\forall \beta \in \mathbb{F}_{q^n}^*$.
Best friend of a subspace

Definition

Let \mathcal{U} be an \mathbb{F}_q-subspace of \mathbb{F}_{q^n}. A subfield \mathbb{F}_{q^m} of \mathbb{F}_{q^n} is a friend of \mathcal{U} if \mathcal{U} is an \mathbb{F}_{q^m}-vector space. The largest friend of \mathcal{U} is called its best friend.

Let \mathcal{U} be a subspace of \mathbb{F}_{q^n} with \mathbb{F}_{q^m} as its best friend, then:

- m divides $k = \dim_q(\mathcal{U}) = m \dim_{q^m}(\mathcal{U})$.
- $\text{Stab}_\beta(\mathcal{U}) = \langle \beta \rangle \cap \mathbb{F}_{q^m}^*$
- and $2m$ divides $d_S(\text{Orb}_\beta(\mathcal{U})), \forall \beta \in \mathbb{F}_{q^n}^*$.
Cyclic orbit subspace codes

Cyclic orbit flag codes and their best friend

Flag codes with prescribed best friend
A **flag** of length r on \mathbb{F}_{q^n} is a sequence

$$\mathcal{F} = (\mathcal{F}_1, \ldots, \mathcal{F}_r)$$

of \mathbb{F}_q-subspaces of \mathbb{F}_{q^n} satisfying

$$\{0\} \subseteq \mathcal{F}_1 \subsetneq \mathcal{F}_2 \subsetneq \cdots \subsetneq \mathcal{F}_r \subsetneq \mathbb{F}_{q^n}.$$

The increasing sequence of dimensions

$$(\dim_q(\mathcal{F}_1), \ldots, \dim_q(\mathcal{F}_r))$$

is called the **type** of \mathcal{F}.
Let $\mathcal{F}, \mathcal{F}'$ be flags of type (t_1, \ldots, t_r) on \mathbb{F}_{q^n}. Their flag distance is

$$d_f(\mathcal{F}, \mathcal{F}') = \sum_{i=1}^{r} d_S(\mathcal{F}_i, \mathcal{F}'_i).$$

Definition

A flag code of type (t_1, \ldots, t_r) on \mathbb{F}_{q^n} is a nonempty set of flags of this type and its minimum (flag) distance is

$$d_f(\mathcal{C}) = \min\{d_f(\mathcal{F}, \mathcal{F}') \mid \mathcal{F}, \mathcal{F}' \in \mathcal{C}, \mathcal{F} \neq \mathcal{F}'\}.$$
Projected codes

Definition

Given a flag code C of type (t_1, \ldots, t_r) on \mathbb{F}_q^n. For every $1 \leq i \leq r$, its i-th projected code is the constant dimension code of dimension t_i:

$$C_i = \{ \mathcal{F}_i \mid \mathcal{F} \in C \}.$$
Cyclic orbit codes

Group action
Given a flag $\mathcal{F} = (\mathcal{F}_1, \ldots, \mathcal{F}_r)$ of type (t_1, \ldots, t_r) on \mathbb{F}_{q^n}
- If $\beta \in \mathbb{F}_{q^n}^*$, then
 $$\mathcal{F} \cdot \beta = (\mathcal{F}_1 \cdot \beta, \ldots, \mathcal{F}_r \cdot \beta)$$
is a flag of the same type.

Definition
Given a flag \mathcal{F} on \mathbb{F}_{q^n} and $\beta \in \mathbb{F}_{q^n}^*$, the β-cyclic orbit flag code generated by \mathcal{F} is
$$\text{Orb}_\beta(\mathcal{F}) = \{ \mathcal{F} \cdot \beta^i \mid 0 \leq i \leq |\beta| - 1 \}.$$In case $\langle \beta \rangle = \mathbb{F}_{q^n}^* \rightarrow$ cyclic orbit flag code $\text{Orb}(\mathcal{F})$.
Remark:

Let $\mathcal{F} = (\mathcal{F}_1, \ldots, \mathcal{F}_r)$ be a flag on \mathbb{F}_{q^n} and $\beta \in \mathbb{F}_{q^n}^*$, then

$$(\text{Orb}_\beta(\mathcal{F}))[i] = \text{Orb}_\beta(\mathcal{F}_i).$$

Information about cyclic orbit flag codes in terms of cyclic orbit (subspace) codes.
Let $\mathcal{F} = (\mathcal{F}_1, \ldots, \mathcal{F}_r)$ be a flag of type (t_1, \ldots, t_r) on \mathbb{F}_q^n:

- The code $\text{Orb}_\beta(\mathcal{F})$ has associated:

$$\text{Stab}_\beta(\mathcal{F}) = \{ \beta^i \mid \mathcal{F} \cdot \beta^i = \mathcal{F} \} \subseteq \langle \beta \rangle$$

and it holds

$$\text{Stab}_\beta(\mathcal{F}) = \bigcap_{i=1}^{r} \text{Stab}_\beta(\mathcal{F}_i).$$
The best friend of a flag

Definition

A subfield \mathbb{F}_{q^m} of \mathbb{F}_{q^n} is said to be a friend of \mathcal{F} if it is a friend of all its subspaces. The largest friend of \mathcal{F} is called its best friend.

Theorem (Alonso-González, Navarro-Pérez, 2021)

Let \mathcal{F} be a flag on \mathbb{F}_{q^n}. Its best friend is the intersection of the best friends of its subspaces. Moreover, if \mathbb{F}_{q^m} is the best friend of \mathcal{F}, then

$$|\text{Orb}_\beta(\mathcal{F})| = \frac{|\beta|}{|\langle \beta \rangle \cap \mathbb{F}_{q^m}^*|}.$$
Let \mathcal{F} be a flag of type (t_1, \ldots, t_r) on \mathbb{F}_{q^n} with \mathbb{F}_{q^m} as its best friend, then:

- m divides $\gcd(t_1, \ldots, t_r, n)$.
- $2m$ divides the minimum distance of $\text{Orb}_\beta(\mathcal{F})$.

In particular,

$$2m \leq d_f(\text{Orb}_\beta(\mathcal{F})) \leq 2 \left(\sum_{t_i \leq n/2} t_i + \sum_{t_i > n/2} (n - t_i) \right).$$
Cyclic orbit subspace codes

Cyclic orbit flag codes and their best friend

Flag codes with prescribed best friend
Theorem (Alonso-González, Navarro-Pérez, 2021)

Let \mathcal{F} be a flag on \mathbb{F}_{q^n} with \mathbb{F}_{q^m} as its best friend. The orbit $\text{Orb}(\mathcal{F})$ is an ODFC if, and only if, its type vector is one of the following ones:

- (m),
- $(n-m)$ or
- $(m, n-m)$.
Theorem (Alonso-González, Navarro-Pérez, 2021)

Let \mathcal{F} be a flag on \mathbb{F}_{q^n} with \mathbb{F}_{q^m} as its best friend and consider $\beta \in \mathbb{F}_{q^n}^* = \langle \alpha \rangle$. Write $\langle \beta \rangle = \langle \alpha^\ell \rangle$, for some divisor ℓ of $q^n - 1$. If $\text{Orb}_\beta(\mathcal{F})$ is an ODFC, then for every dimension t in the type vector, it is satisfied:

$$\frac{\text{lcm}(\ell, q^n - 1)}{\ell} \leq \begin{cases}
\left\lfloor \frac{q^n - 1}{q^t - 1} \right\rfloor & \text{if } 2t \leq n, \\
\left\lfloor \frac{q^n - 1}{q^{n-t} - 1} \right\rfloor & \text{if } 2t > n.
\end{cases}$$
On $\mathbb{F}_{2^{12}}$ and with \mathbb{F}_{2^2} as best friend...

| β | $|\beta|$ | $\langle\beta\rangle \cap \mathbb{F}^*_m$ | $|\text{Orb}_\beta(\mathcal{F})|$ | Allowed dimensions | Max. distance |
|---------|-----------|-----------------|-----------------|-------------------|--------------|
| α | 4095 | $\mathbb{F}^*_{2^2}$ | 1365 | 2, 10 | 8 |
| α^5 | 819 | $\mathbb{F}^*_{2^2}$ | 273 | 2, 4, 8, 10 | 24 |
| α^9 | 455 | $\{1\}$ | 455 | 2, 10 | 8 |
| α^{13} | 315 | \mathbb{F}^*_2 | 105 | 2, 4, 8, 10 | 24 |
| α^{39} | 105 | \mathbb{F}^*_2 | 35 | 2, 4, 6, 8, 10 | 36 |
| α^{45} | 91 | $\{1\}$ | 91 | 2, 4, 8, 10 | 24 |
| α^{63} | 65 | $\{1\}$ | 65 | 2, 4, 6, 8, 10 | 36 |

Table: Values for $q = 2$, $n = 12$, $m = 2$.
Cyclic orbit subspace codes

Cyclic orbit flag codes and their best friend

Galois cyclic orbit flag codes

Definition

Let t_1, \ldots, t_r be a sequence of divisors of n such that t_i divides t_{i+1}, for $1 \leq i \leq r - 1$. The sequence of nested subfields

$$\mathcal{F} = (\mathbb{F}_{q^{t_1}}, \ldots, \mathbb{F}_{q^{t_r}})$$

is the Galois flag of type (t_1, \ldots, t_r) on \mathbb{F}_q^n.

For every $\beta \in \mathbb{F}_q^*$, the code

$$\text{Orb}_\beta((\mathbb{F}_{q^{t_1}}, \ldots, \mathbb{F}_{q^{t_r}}))$$

is the Galois β-cyclic flag code of type (t_1, \ldots, t_r).
Definition

Let t_1, \ldots, t_r be a sequence of divisors of n such that t_i divides t_{i+1}, for $1 \leq i \leq r - 1$. The sequence of nested subfields

$$\mathcal{F} = (\mathbb{F}_{q^{t_1}}, \ldots, \mathbb{F}_{q^{t_r}})$$

is the Galois flag of type (t_1, \ldots, t_r) on \mathbb{F}_q^n. For every $\beta \in \mathbb{F}_{q^n}^*$, the code

$$\text{Orb}_\beta((\mathbb{F}_{q^{t_1}}, \ldots, \mathbb{F}_{q^{t_r}}))$$

is the Galois β-cyclic flag code of type (t_1, \ldots, t_r).
Let $\mathcal{F} = (\mathbb{F}_{q^{t_1}}, \ldots, \mathbb{F}_{q^{t_r}})$, then:

- every subspace $\mathcal{F}_i = \mathbb{F}_{q^{t_i}}$ is its own best friend and
- $\mathcal{F}_1 = \mathbb{F}_{q^{t_1}}$ is the best friend of the flag.
- The i-th projected code of $\text{Orb}_\beta(\mathcal{F})$ is the (partial) t_i-spread $\text{Orb}_\beta(\mathbb{F}_{q^{t_i}})$.

Moreover:

$$\text{Stab}_\beta(\mathcal{F}) = \text{Stab}_\beta(\mathbb{F}_{q^{t_1}}) \subseteq \text{Stab}_\beta(\mathbb{F}_{q^{t_2}}) \subseteq \cdots \subseteq \text{Stab}_\beta(\mathbb{F}_{q^{t_r}}) \subseteq \langle \beta \rangle.$$
Theorem (Alonso-González, Navarro-Pérez, 2021)

Let \mathcal{F} be the Galois flag of type (t_1, \ldots, t_r) on \mathbb{F}_{q^n} and take $\beta \in \mathbb{F}_{q^n}^*$. Then

$$d_f(\text{Orb}_\beta(\mathcal{F})) \in \{2t_1, 2(t_1 + t_2), \ldots, 2(t_1 + \cdots + t_r)\}.$$

Moreover,

Subgroups of $\mathbb{F}_{q^n}^*$ \leftrightarrow distance values.
Galois cyclic orbit flag codes

- $q = 2$, $n = 16$ and type $(2, 4, 8)$:

 $$\mathcal{F} = (\mathbb{F}_2^2, \mathbb{F}_2^4, \mathbb{F}_2^8)$$

- Possible values for the distance: \{4, 12, 28\} and:

| β | $|\beta|$ | $|\text{Orb}_\beta(\mathcal{F})|$ | d_β |
|-----------|-----------|-------------------------------|-----------|
| α | 65535 | 21845 | 4 |
| α^5| 13107 | 4369 | 12 |
| α^{17} | 3855 | 1285 | 4 |
| α^{85} | 771 | 257 | 28 |
| α^{257} | 255 | 85 | 4 |
| α^{1285} | 51 | 17 | 12 |
| α^{4369} | 15 | 5 | 4 |

where $\langle \alpha \rangle = \mathbb{F}_2^{*16}$.
Definition

A flag \mathcal{F} on \mathbb{F}_{q^n} is said to be a generalized Galois flag if:

1. it contains subfields among its subspaces,
2. but not all its subspaces are subfields of \mathbb{F}_{q^n}.

Example

Consider a flag of type $(2, 3, 4)$ on \mathbb{F}_{q^8} of the form

$$\mathcal{F} = (\mathbb{F}_{q^2}, \mathcal{U}, \mathbb{F}_{q^4}).$$

- The subspace \mathcal{U} cannot be a subfield.
- The sequence of best friends is $(\mathbb{F}_{q^2}, \mathbb{F}_q, \mathbb{F}_{q^4})$.
- The best friend of \mathcal{F} is \mathbb{F}_q.

Miguel Ángel Navarro-Pérez
The presence of subfields (partial spreads)

set of potential values for the distance

Open question

subgroups of $\mathbb{F}_{q^n}^*$ \leftrightarrow distance values
Cyclic Orbit Flag Codes

Miguel Ángel Navarro-Pérez

Joint work with Clementa Alonso-González

July 15, 2022