Chimeric Antigen Receptor T-cell Therapy: Imaging Response Criteria and Relation to Progression-free and Overall Survival

Michael Winkelmann1, Kai Rejeski2, Viktoria Blumenberg2, Veit L. Bücklein2, Michael Ruzicka2, Marcus Unterrainer1, Christian Schmidt1, Franziska J. Dekorsy3, Peter Bartenstein3,4, Jens Ricke3,4, Michael von Bergwelt-Baildon1,4, Marion Subklewe2,4, Wolfgang G. Kunz1,4

Correspondence: Wolfgang G. Kunz (wolfgang.kunz@med.lmu.de).

Chimeric antigen receptor T-cell therapy (CART) uses patient-derived tumor antigen-directed T cells for targeted elimination of cancer cells. The most common form applies modified T cells expressing a chimeric antigen receptor specific for the CD19 antigen to treat relapsed or refractory (rr) lymphoma1 and leukemia, leading to high rates of durable responses. CART has significantly improved progression-free survival (PFS) and overall survival (OS). Imaging-based response assessment for determination of PFS has most frequently relied on positron emission tomography-computed tomography (PET/CT). The current and ongoing phase III trials are mostly based on the Lugano criteria from 2014.3,4 Earlier trials have relied on Cheson criteria as published in 2007.5 In recent years, novel lymphoma imaging response criteria have been proposed, among them the response evaluation criteria in lymphoma (RECIL),6 and lymphoma response to immunomodulatory therapy criteria (LYRIC).7 The scientific literature on structured comparisons of these imaging response criteria is scarce for conventional lymphoma treatments and only 2 studies indicate concordance of RECIL and Lugano criteria in previously untreated lymphoma.8,9 As there are no reports on the prognostic value for lymphoma patients treated with CART, we aimed to assess the different imaging response criteria, their impact on PFS, and their relation to OS.

The study population was based on a prospective registry of all consecutive patients who were treated at the Comprehensive Cancer Center Munich-Ludwig-Maximilian University Munich (CCCMLMU) with commercialized CD19-specific CART products. We included patients with refractory or relapsed lymphoma (DLBCL, FL, and MCL), any measurable disease on imaging according to Lugano criteria,1 and available (PET/CT) imaging studies at baseline and at least 2 follow-up timepoints (FU1 around 30 days and FU2 around 90 days). All medical records and imaging studies were reviewed with the approval of the LMU Munich Institutional Review Board (Ethikkommission der Medizinischen Fakultät der Ludwig-Maximilians-Universität München, Project Number 19-817) and informed patient consent. Patients received lymphodepletion with fludarabine and cyclophosphamide according to the approved study protocol (CCCMLMU) with commercialized CD19-specific CART products. We included patients with refractory or relapsed lymphoma (DLBCL, FL, and MCL), any measurable disease on imaging according to Lugano criteria,1 and available (PET/CT) imaging studies at baseline and at least 2 follow-up timepoints (FU1 around 30 days and FU2 around 90 days). All medical records and imaging studies were reviewed with the approval of the LMU Munich Institutional Review Board (Ethikkommission der Medizinischen Fakultät der Ludwig-Maximilians-Universität München, Project Number 19-817) and informed patient consent. Patients received lymphodepletion with fludarabine and cyclophosphamide according to the approved study protocol (CCCMLMU) with commercialized CD19-specific CART products.
The evaluation of overall response and response patterns, including the impact of pseudoprogression associated with CAR T-cell therapy, has not yet been studied in detail. Some studies described pseudoprogression after CART analogous to solid tumors under immunotherapy. To face the challenge of pseudoprogression, LYRIC introduced the category of IR, with 3 subcategories: IR1, increase in overall tumor burden within the first 12 weeks of therapy, without clinical deterioration; IR2, appearance of new lesions, or growth of one or more existing lesions ≥50% at any time during treatment in the absence of overall progression; IR3, increase in FDG uptake of one or more lesions without a concomitant increase in lesion size or number. LYRIC encouraged biopsy for IR1 and IR2 and advised to evaluate these intermediate features by follow-up in all cases after 12 weeks. In contrast to LYRIC, Lugano or RECIL do not provide recommendations for lesion follow-up. Therefore, patients with assigned PD solely based on newly appearing lesions should be further investigated with regard to clinical benefit and may represent a new response category. Novel imaging endpoints and response criteria in lymphoma will likely evolve from selected lesion-based assessments to whole tumor burden quantification. In the first-line setting, the recently published International Metabolic Prognostic Index (IMPI) additionally integrates metabolic tumor volume and has outperformed the conventional IPI in estimating outcome of DLBCL patients.

We investigated overall response by Lugano criteria, Cheson criteria, RECIL, and LYRIC. While the ORR was comparable between the different criteria, we found striking differences between the SD and PD response categories and thus discrepancies in the surrogate endpoint PFS. Response assessment by LYRIC exhibited superior association between PFS and OS. The response assessment method must therefore be considered when interpreting the impact of imaging endpoints on outcomes in clinical trials. Our study has limitations which need to be considered when interpreting the results. First, this is a single-center study with a limited number of subjects. Second, there were a few patients that were missed to follow up or had no measurable disease. Considering the heterogeneity, our results argue for standardization and harmonization across centers.

AUTHOR CONTRIBUTIONS

MW and WGK conceived and design the study; VLB, VB, KR, MR, MU, and CS collected the data; MW, VLB, VB, KR, and WGK analyzed and interpreted the data; and MW and WGK drafted the manuscript; and KR, FJD, PB, JR, MvB-B, and MS revised the manuscript.

DISCLOSURES

VB has received industry research support from BMS/Cellgene, Kite/Gilead, Janssen, Novartis, Roche, and Takeda. KR declares having received research funding and travel support from Kite/Gilead and honoraria from Novartis. CS received travel support from Kite/Gilead. MvB-B received...
research funding and honoraria from Novartis, Kite Pharma, Miltenyi Biotec, Mologen, MSD, Astellas, and Roche. MS received industry research support from Amgen, Gilead, Miltenyi Biotec, MorphoSys, Roche, and Seattle Genetics; served as a consultant or advisor to Amgen, Bristol Myers Squibb, Celgene, Gilead, Pfizer, Novartis, and Roche; is on the advisory boards of Amgen, Celgene, Gilead, Janssen, Novartis, Pfizer, and Seattle Genetics; and serves on the speaker’s bureau at Amgen, Celgene, Gilead, Janssen, and Pfizer. All the other authors have no conflicts of interest to disclose.

SOURCES OF FUNDING

The work was supported by funding from the research program “Förderung für Forschung und Lehre (FoFoLe) project number 1147” of the Medical Faculty of Ludwig Maximilian University (LMU) Munich and the Bavarian Cancer Research Center (BZKF) to MW. The work was further supported by the Else-Kröner-Fresenius Stiftung (to VB) and the German Cancer Consortium DKTK (to VB).

REFERENCES

1. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64–73.
2. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–2544.
3. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–3068.
4. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32:3048–3058.
5. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–586.
6. Younes A, Hilden P, Coutifri B, et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol. 2017;28:1436–1447.
7. Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128:2489–2496.
8. Berzaccy D, Haug A, Staber PB, et al. RECIL versus Lugano for treatment response assessment in FDG-avid non-Hodgkin lymphomas: a head-to-head comparison in 54 patients. Cancers (Basel). 2019;12:9.
9. Kostakoglu L, Martelli M, Sehn LH, et al. Complete response status according to RECIL 2017 criteria shows high concordance with Lugano 2014 criteria and is highly prognostic for outcome in previously untreated patients with CD20-positive diffuse large B-cell lymphoma (DLBCL). Blood. 2019;134:489–489.
10. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–247.
11. Shah NN, Nagle SJ, Torigian DA, et al. Early positron emission tomography/computed tomography as a predictor of response after CTL019 chimeric antigen receptor T-cell therapy in B-cell non-Hodgkin lymphomas. CytOTHERAPY. 2018;20:1415–1418.
12. Kuhnl A, Roddie C, Kirkwood AA, et al. Proposed new dynamic prognostic index for diffuse large B-cell lymphoma: the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2021;39:664688.
13. Vercellino L, de Jong D, di Blasi R, et al. Current and future role of medical imaging in guiding the management of patients with relapsed and refractory Non-Hodgkin lymphoma treated with CAR T-cell therapy. Front Oncol. 2021;11:664688.
14. Wang J, Hu Y, Yang S, et al. Role of fluorodeoxyglucose positron emission tomography/computed tomography in predicting the adverse effects of chimeric antigen receptor T cell therapy in patients with Non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 2019;25:1092–1098.
15. Mikhaeel NG, Heymans MW, Eertink JJ, et al. Proposed new dynamic prognostic index for diffuse large B-cell lymphoma: international metabolic prognostic index. J Clin Oncol. 2022;40:2352–2360.