Incidence of Complications for Different Approaches in Gynecomastia Correction: A Systematic Review of the Literature

Alessandro Innocenti\(^1\) • Dario Melita\(^1\) • Emanuela Dreassi\(^2\)

Abstract

Background Gynecomastia is nowadays a very common disease, affecting a large cohort of patients with different ages. The aim of this literature review is to assess the incidence of complications with all proposed techniques and for combined procedures versus single approach procedures in gynecomastia correction.

Materials and Methods A systematic review of the literature was performed to identify all reported techniques for gynecomastia correction covering a period from January 1, 1987 to November 1, 2020. For all selected papers, demographic data, proposed technique, and complications’ incidence have been recorded.

Results A total number of 3970 results was obtained from database analysis. A final total number of 94 articles was obtained for 7294 patients analyzed. Patients have been divided into three groups: aspiration techniques, consisting in 874 patients (11.98%), surgical excision techniques, consisting in 2764 patients (37.90%), and combined techniques, consisting in 3656 patients (50.12%). Complications have been recorded for all groups, for a total number of 1407, of which 130 among “Aspiration techniques” group (14.87%), 847 among “Surgical excision techniques” group (30.64%), and 430 in “Combined techniques” group (11.76%).

Conclusions Several techniques have been proposed in the literature to address gynecomastia, with the potential to greatly improve self-confidence and overall appearance of affected patients. The combined use of surgical excision and aspiration techniques seems to reduce the rate of complications compared to surgical excision alone, but the lack of unique classification and the presence of several surgical techniques still represents a bias in the literature review.

Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

Keywords Gynecomastia • Gynecomastia review • Surgical gland excision • Liposuction • Literature analysis

Introduction

Gynecomastia is defined as a benign enlargement of the mammary glands, commonly diffused among men. The prevalence of gynecomastia ranges from 38 to 64 percent in the male population \([1]\). Prevalence figures vary highly between age groups. Among male neonates, 60–90% have some amount of palpable breast tissue. The next chronological peak occurs during puberty with reported prevalence figures of 4–69% that decrease again by age 17 to approximately 10%. The third and last peak occurs in elderly men \([2]\).

The etiology of gynecomastia is heterogeneous. More than 80% can be classified as idiopathic, since a well-established cause is not determined. Medical drugs, addictive drugs, and anabolic substance abuse, mostly among bodybuilders, have been identified as secondary causes for gynecomastia. The gynecomastia

\(^1\) Plastic and Reconstructive Microsurgery, Careggi University Hospital, Largo Palagi 1, 50127 Florence, Italy

\(^2\) Department of Statistica, Informatica, Applicazioni (DiSIA), University of Florence, Florence, Italy

© The Author(s) 2022

Received: 13 November 2021 / Accepted: 9 January 2022 / Published online: 9 February 2022

https://doi.org/10.1007/s00266-022-02782-1
pathophysiology is due to a hormonal imbalance with decreased testosterone production, increased estrogen production, mainly from the peripheral conversion of androgens, and increased availability of estrogen precursors. In men, estrogen production results through aromatase activity to estradiol and estrone. In patients affected by gynecomastia, an increased local tissue sensitivity to estrogen metabolites is present [3].

Gynecomastia can affect normal self-esteem and sexual identity and often patients feel ashamed of their bodies during normal social activities.

Being a very popular item in the present literature, several surgical techniques have been proposed for gynecomastia correction. The aim of this systematic review is to assess the rate of reported complications with all proposed techniques and the evaluation of the complications’ rate in combined procedures versus single procedures.

Material and Methods

Literature Search

The searched databases included Medline, EMBASE, Cochrane and PubMed, covering a period from January 1, 1987 to November 1, 2020.

A detailed search was performed starting from the general topics to avoid overlooking the studies in the databases. Based on this, the keywords used for detailed investigation were “gynecomastia,” “gynecomastia surgery,” “gynecomastia correction,” “gynecomastia surgical correction”.

Inclusion and Exclusion Criteria

Our predefined inclusion criteria included articles that included any age patients’ cohort, including pediatric population; included surgical techniques for the correction of gynecomastia (defined as any enlargement of the breast tissue); were English-language articles; were published between 1987 and 2020. Exclusion criteria were as follows: article considering non-surgical or therapeutic treatment for gynecomastia; articles about pseudogynecomastia; non-comparative studies, systematic reviews, case reports, expert opinions, conference and abstracts, review, letters to editors, and non-English articles.

Data Extraction and Quality Assessment

Two authors independently reviewed the titles and abstracts to assess eligibility for potential inclusion. The full-text papers were reviewed by two authors and inclusion was made on a consensus basis. Disagreement was resolved through a discussion between the reviewers. Literature analysis is reported in Fig. 1.

All articles have been separately analyzed for the following data:

1. Number of patients
2. Age range or, when the range was not indicated, mean age value
3. Proposed technique(s)
4. Complications

Since not all articles included patients’ satisfaction and gynecomastia’s grades, the authors decided not to collect those data to avoid bias.

The accurate analysis of all selected papers was conducted by both authors simultaneously. Proposed techniques have been categorized into three major groups according to their characteristics:

1. Aspiration, including techniques involving suction device(s), consisting in
2. Traditional liposuction
3. Ultrasound-assisted liposuction (UAL)
4. Suction-assisted liposuction (SAL)
5. Power-assisted liposuction (PAL)
6. Laser Lipolysis
7. Sharp cutting Liposuction
8. Mixed techniques
9. Surgical excision, including techniques with glandular removal, consisting in
10. Open excision
11. Endoscopically assisted surgical excision
12. Transaxillary excision
13. Microdebrider
14. Vacuum-assisted/Mammotome
15. Combined techniques, consisting in the combination of surgical excision and aspiration, including
16. Open excision and Liposuction/UAL/PAL
17. Pull-trough and Liposuction
18. Fragmentation and Liposuction
19. Cartilage shaver and Liposuction
20. Endoscopic adenectomy and Liposuction
21. Suction-Assisted excision and Liposuction

Complications have been statistically analyzed for all selected papers. In particular, the following complications have been recorded for each paper and grouped according to the proposed technique: hematoma, seroma, over-resection, under-resection, hypo- or hyperesthesia, wound dehiscence, infection, pathological scar, asymmetries, irregularities/redundant skin, NAC necrosis (partial or total)/abrasion and revision/recurrence.
Statistical Analysis

For each study, the overall complication rate and the rate of each complication type was calculated. The complication rate across all studies, grouped according to the technique, was then calculated. Chi-square tests were used to compare complication rates between the groups. Data are shown in Table 1.

Results

A total number of 3970 results was obtained from database analysis. A final total number of 94 articles was obtained, according to predefined inclusion and exclusion criteria, for a total number of 7294 patients analyzed [4–97].

Patients, according to previously mentioned criteria, have been divided into three groups:

- Aspiration techniques, consisting in 874 patients (11.98%)
- Surgical excision techniques, consisting in 2764 patients (37.90%)
- Combined techniques, consisting in 3656 patients (50.12%)

Among patients belonging to “Aspiration techniques” group, a further division into subgroups has been reported. Of these, 241 patients underwent traditional liposuction, 31 ultrasound-assisted liposuction, 21 suction-assisted liposuction, 71 laser lipolysis, 57 sharp cutting liposuction and 453 mixed techniques.

Among the 2764 patients belonging to “Surgical excision techniques” group, 2560 underwent traditional open excision, 138 endoscopically assisted adenectomy, 5 transaxillary excision, 8 microdebrider excision, and 73 vacuum-assisted/mammotome excision.

Of the 3656 patients belonging to “Combined techniques” group, 2396 underwent open excision and liposuction (either tradition, ultrasound-assisted or power-assisted), 713 pull-trough and liposuction, 301 excision by fragmentation and liposuction, 186 excision by cartilage shaver and liposuction, 24 endoscopic adenectomy and liposuction, and 36 suction-assisted excision and liposuction.

Complications have been recorded for all groups, for a total number of 1407, of which 130 among “Aspiration techniques” group (14.87%), 847 among “Surgical excision techniques” group (30.64%) and 430 in “Combined techniques” group (11.76%). Complications rate for each group is reported in Table 2. Most common complication
| Authors            | Patients | Age | Surgical technique                        | Complications |
|--------------------|----------|-----|------------------------------------------|----------------|
| Courtiss et al.    | 101      | 16-61 | SURGICAL EXCISION (hemperiareolar)        | HE 31 SE 18 OR 36 UR 42 HH 21 IN 0 PS 0 AS 0 IS 0 NN 0 RR 0 Total 184 |
|                    | 20       |      | LIPOSUCTION                               | 0 2 0 3 5 0 0 0 0 0 0 0 0 10 |
|                    | 38       |      | SURGICAL EXCISION (hemperiareolar)        | 4 5 0 2 0 0 0 9 0 0 0 0 0 20 |
| Aiache et al.      | 38       | NR  | SURGICAL EXCISION (hemperiareolar)        | 4 0 0 0 0 0 0 0 0 0 0 0 0 4 |
| Ward et al.        | 6        | NR  | SURGICAL EXCISION (horizontal ellipse with vertical pedicle) | 1 0 0 0 0 0 0 0 0 0 0 0 0 1 |
| Varma et al.       | 20       | 23.5 | SURGICAL EXCISION (hemperiareolar)        | 2 1 0 0 0 0 0 0 0 0 0 0 3 |
| Apesos et al.      | 4        | NR  | LIPOSUCTION                               | 0 0 0 1 0 0 0 0 0 0 0 0 0 1 |
|                    | 2        |      | SURGICAL EXCISION (hemperiareolar)        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Stark et al.       | 14       | 16-34| LIPOSUCTION                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                    | 9        |      | SURGICAL EXCISION + LIPOSUCTION           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Brenner et al.     | 44       | NR  | SURGICAL EXCISION (37 hemperiareolar and 7 transverse) | 0 0 0 0 2 0 0 4 0 0 0 0 6 |
| Abramo et al.      | 10       | NR  | SURGICAL EXCISION (hemperiareolar)        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                    |          |     | LIPOSUCTION                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Samdal et al.      | 3        | 16-69| SURGICAL EXCISION (hemperiareolar)        | 1 0 0 0 0 0 0 0 0 0 0 0 0 1 |
|                    | 33       |      | SURGICAL EXCISION (hemperi- or circumareolar) + LIPOSUCTION | 2 0 2 1 0 0 0 0 0 0 0 0 0 5 |
|                    | 31       |      | LIPOSUCTION                               | 0 0 0 5 0 0 0 0 0 0 0 2 7 |
| Morselli et al.    | 11       | NR  | SURGICAL EXCISION (pull-through) + LIPOSUCTION | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Aiache et al.      | 18       | 24-46| SURGICAL EXCISION (hemperiareolar)        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Peters et al.      | 11       | 13-18| SURGICAL EXCISION (bipedicled flap)       | 0 1 0 0 1 0 0 2 0 0 0 0 4 |
| Hamas et al.       | 31       | 12-67| SURGICAL EXCISION (hemperiareolar)        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                    |          |     | Sharp cutting LIPOSUCTION                 | 0 0 0 0 0 0 0 0 0 0 0 4 4 |
| Smoot 3rd et al.   | 20       | NR  | Purse-string SURGICAL EXCISION            | 0 0 0 0 0 0 0 0 0 0 0 2 2 |
| Colombo-Benkmann et al. | 81  | 15-78| SURGICAL EXCISION (73 hemperiareolar, 4 circumareolar, 4 submammary) | 15 0 0 0 17 0 0 60 0 8 0 9 109 |
| Authors       | Patients | Age | Surgical technique                                      | Complications |
|--------------|----------|-----|--------------------------------------------------------|----------------|
| Gasperoni et al. [19] | 64       | 16-62 | SURGICAL EXCISION (hemiperiareolar)+LIPOSUCTION        | 1 0 0 3 0 0 0 0 0 0 0 0 4 |
| Javaid et al. [20]     | 4        | NR   | SURGICAL EXCISION (transareolar)                       | 0 0 0 0 0 0 0 1 0 0 0 0 1 |
| Babigian et al. [21]   | 2        | NR   | SURGICAL EXCISION (hemiperiareolar)                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                        |          | 18   | SURGICAL EXCISION (hemiperiareolar)+LIPOSUCTION       | 2 1 0 3 0 0 0 0 0 0 0 0 6 |
| Persichetti et al. [22] | 28       | 16-33 | SURGICAL EXCISION (circumareolar)                      | 0 1 0 0 0 0 2 0 0 0 0 0 3 |
| Coskun et al. [23]     | 32       | 20-36| SURGICAL EXCISION (hemiperiareolar, in 10 cases extended)| 7 0 0 0 1 0 0 9 0 3 1 0 21 |
| Rohrich et al. [24]    | 61       | NR   | UAL or LIPOSUCTION                                     | 0 0 0 0 0 0 0 0 0 12 12 |
| Boljanovic et al. [25] | 3        | NR   | LIPOSUCTION                                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                        |          | 25   | SURGICAL EXCISION (circumareolar)                      | 1 0 0 0 0 0 0 0 0 1 2 |
| Fruhstorfer et al. [26] | 31       | 13-57| UAL, SAL or LIPOSUCTION                                | 0 0 0 3 1 0 0 0 0 2 1 7 |
|                        |          | 16   | SURGICAL EXCISION + LIPOSUCTION                        | 0 0 0 0 0 0 0 1 0 0 0 0 1 |
|                        |          | 1    | SURGICAL EXCISION                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Hammond et al. [27]    | 15       | 12-69| SURGICAL EXCISION (pull-through)+LIPOSUCTION           | 0 1 0 0 1 0 0 1 0 0 0 0 3 |
| Iwuagwu et al. [28]    | 5        | 16-88| SURGICAL EXCISION (mammotome)                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Tashkandi et al. [29]  | 24       | NR   | SURGICAL EXCISION (purse-string)                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Walden et al. [30]     | 12       | 25   | LIPOSUCTION                                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                        |          | 6    | SURGICAL EXCISION (hemiperiareolar)                    | 1 0 0 0 0 0 0 0 0 0 0 0 1 |
|                        |          | 16   | SURGICAL EXCISION (hemiperiareolar)+LIPOSUCTION       | 0 0 0 0 2 0 0 0 0 0 0 0 2 |
| Gabra et al. [31]      | 39       | 9.5-17| SURGICAL EXCISION (circumareolar)                      | 3 1 0 1 0 0 1 0 3 1 0 1 11 |
| Bracaglia et al. [32]  | 45       | 21-65| SURGICAL EXCISION (pull-through)+LIPOSUCTION           | 2 0 0 1 0 0 0 0 0 0 0 0 4 |
| Celebioglu et al. [33] | 9        | 15-21| SURGICAL EXCISION (circumareolar with subareolar glandular pedicle) | 0 0 0 0 9 0 0 1 0 0 1 1 12 |
| Authors          | Patients | Age | Surgical technique                                      | Complications |
|------------------|----------|-----|--------------------------------------------------------|---------------|
| Aslan et al.     | 15       | NR  | SURGICAL EXCISION (periareolar–transareolar)          | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 |
| Prado et al.     | 25       | 17-38| CARTILAGE SHAVER + LIPOSUCTION                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Hodgson et al.   | 31       | 16-57| UAL                                                   | 0 0 0 0 0 0 0 0 1 0 1 2 |
| Ramon et al.     | 17       | 17-39| SURGICAL EXCISION (endoscopic pull-through) + LIPOSUCTION | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Boni et al.      | 38       | 23-64| LIPOSUCTION                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Yavuz et al.     | 5        | 18-24| Transaxillary SURGICAL EXCISION (Lighted Retractor-Assisted) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Haddad Filho et al. | 12   | 15-26| SURGICAL EXCISION (circumareolar)                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Mentz et al.     | 200      | 13-78| SURGICAL EXCISION (single puncture) + LIPOSUCTION     | 2 0 0 2 0 0 0 0 1 0 0 5 |
| Esme et al.      | 28       | 17-80| SURGICAL EXCISION (hemperiareolar)+ LIPOSUCTION       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Lista et al.     | 96       | 17-46| SURGICAL EXCISION (pull-through) + LIPOSUCTION        | 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 |
| Zhu et al.       | 2        | 24-25| Endoscopically assisted SURGICAL EXCISION             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Gheita et al.    | 8        | NR  | SURGICAL EXCISION (Horizontal excision ellipse and superior pedicle flap) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Lanitis et al.   | 102      | 11-82| SURGICAL EXCISION (56 circumareolar, 20 Inframammary fold, 10 concentric circumareolar, 12 inverted “T” reduction mastopexy, 4 extended circumareolar incision) | 9 31 0 0 0 2 1 0 0 0 0 0 43 |
| Cannistra et al. | 58       | NR  | SURGICAL EXCISION (Periareolar Incision and Dermal Double Areolar Pedicle) + SURGICAL EXCISION | 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 6 |
| Goh et al.       | 8        | NR  | SURGICAL EXCISION (microdebrider)                     | 0 0 0 0 0 0 0 0 1 0 0 1 0 2 |
| Tu et al.        | 22       | 13-63| SURGICAL EXCISION (periareolar zig-zag incision) + SURGICAL EXCISION | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
| Scuderi et al.   | 23       | 16-39| SURGICAL EXCISION (transareolar) + Power-assisted LIPOSUCTION | 1 2 0 0 0 0 0 1 0 0 0 0 4 |
| Fan et al.       | 65       | 14-28| Endoscopically assisted SURGICAL EXCISION             | 0 1 0 0 0 0 0 2 0 0 3 |
| Authors                | Patients | Age  | Surgical technique                          | Complications |
|-----------------------|----------|------|---------------------------------------------|---------------|
| Benito-Ruiz et al.    | 40       | 19-57| CARTILAGE SHAVER + LIPOSUCTION              | 3 0 0 0 0 0 0 2 0 0 0 3 8 |
| Rho et al.            | 5        | 30-33| LASER LIPOLYSIS                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Laituri et al.        | 20       | 14-18| SURGICAL EXCISION (circumareolar or inferior pedicle reduction) | 0 1 0 0 0 0 0 0 0 0 0 0 1 |
| Petty et al.          | 45       | 11-77| SURGICAL EXCISION                          | 0 1 0 0 0 0 1 0 0 0 1 3 6 |
| El Noamani et al.     | 15       | 22-30| SURGICAL EXCISION (inferior pedicle without vertical scar) | 0 0 0 0 0 0 1 0 3 0 0 1 0 5 |
| Qutob et al.          | 36       | 16-88| SURGICAL EXCISION (mammotome) + LIPOSUCTION | 3 0 0 0 0 0 0 0 0 0 0 1 0 4 |
| Cigna et al.          | 37       | 18-43| SURGICAL EXCISION (hemiperiareolar) + Power-assisted LIPOSUCTION | 1 0 0 0 0 0 0 0 0 0 0 0 1 |
| He et al.             | 20       | 18-47| SURGICAL EXCISION (mammotome)               | 1 0 0 0 0 0 0 0 0 0 0 0 0 1 |
| Jarrar et al.         | 1        | 18-44| Endoscopically assisted SURGICAL EXCISION   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                      |          |      | Endoscopically assisted SURGICAL EXCISION + LIPOSUCTION | 0 1 0 0 0 0 1 0 0 0 0 0 2 |
|                      |          |      | LIPOSUCTION                                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Morselli et al.       | 260      | 10-59| SURGICAL EXCISION (pull-through) + LIPOSUCTION | 8 0 0 0 0 0 0 13 0 12 0 24 57 |
| Trelles et al.        | 28       | 24-56| LASER LIPOLYSIS                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Zampieri et al.       | 5        | NR   | SURGICAL EXCISION (circumareolar)           | 0 2 0 0 0 0 0 0 0 0 0 0 0 2 |
| Lee et al.            | 15       | 13-55| CARTILAGE SHAVER + LIPOSUCTION              | 1 0 0 0 0 0 0 3 0 0 0 4 |
| Cao et al.            | 58       | 17-52| Endoscopically assisted SURGICAL EXCISION   | 0 0 0 0 0 0 0 0 0 0 0 3 0 3 |
| Hosnutter et al.      | 23       | 15-42| SURGICAL EXCISION (superior periareolar) + LIPOSUCTION | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
| Kasielecka et al.     | 113      | 17-54| SURGICAL EXCISION (94 circumareolar; 9 skin excision mastectomy; 6 inverted-T reduction mastopexy with NAC transposition; 4 inframammary fold approach with NAC graft) | 8 4 0 0 11 0 1 0 0 0 1 0 25 |
| Authors          | Patients | Age   | Surgical technique                                      | Complications |
|------------------|----------|-------|---------------------------------------------------------|---------------|
|                  |          |       |                                                         | HE    | SE   | OR  | UR  | HH  | WD  | IN  | PS  | AS  | IS  | NN  | RR  | Total |
| Song et al. [68] | 402      | 17-82 | Periareolar incision, 97 complete concentric periareolar, 45 Inframammary fold incision, 26 Inverted-T incision, 53 Mammatome excision | 7     | 10   | 0   | 0   | 2   | 0   | 0   | 10  | 0   | 9   | 6   | 44   |
| Blau et al. [69] | 1073     | 18-51 | SURGICAL EXCISION (hemiperiareolar)                       | 64    | 128  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 192  |
| Yoo et al. [70]  | 13       | 20-28 | 1,444-nm Nd:YAG LAL                                       | 0     | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    |
| Schroder et al.  | 53       | 13-66 | SURGICAL EXCISION (hemiperiareolar) + LIPOSUCTION         | 2     | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2    |
| Ibrahim et al.  | 27       | 18-53 | SURGICAL EXCISION (circumareolar with superior pedicle) + UAL | 1     | 0    | 0   | 0   | 0   | 1   | 0   | 5   | 0   | 0   | 1    | 8    |
| El-Sabbagh et al. | 18      | 13-33 | SURGICAL EXCISION (hemiperiareolar) + LIPOSUCTION         | 0     | 0    | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 2   | 0    |
| Shirol et al.    | 20       | 16-36 | SURGICAL EXCISION (orange pell hemi- or circumareolar) + LIPOSUCTION | 1     | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    |
| Bailey et al.    | 75       | NR    | SURGICAL EXCISION (pull-through) + Power-assisted LIPOSUCTION | 0     | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    |
| Kim et al. [76]  | 16       | 18-30 | LIPOSUCTION                                              | 0     | 0    | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    |
| Innocenti et al. | 312      | 18-52 | SURGICAL EXCISION (hemiperiareolar) + LIPOSUCTION         | 4     | 6    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 47  | 0    | 3    | 60  |
| Taheri et al.    | 27       | 17-36 | SURGICAL EXCISION (hemiperiareolar) + LIPOSUCTION         | 0     | 0    | 0   | 0   | 9   | 0   | 0   | 1   | 1   | 0   | 4   | 0   | 15   |
| Khalil et al.    | 52       | 26.9  | SURGICAL EXCISION (pull-through) + LIPOSUCTION            | 0     | 0    | 0   | 0   | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 1    | 11   |
| Sönmez Ergün et al. [80] | 25 | 18-33 | 980 nm LASER LIPOLYSIS                                    | 0     | 2    | 0   | 0   | 0   | 0   | 0   | 4   | 0   | 0   | 0   | 6    |
| Thienot et al.   | 9        | 19-67 | SURGICAL EXCISION (Postero-Inferior Pedicle) + LIPOSUCTION | 1     | 0    | 0   | 0   | 0   | 1   | 0   | 1   | 0   | 0   | 0   | 0    | 3    |
| Choi et al. [82] | 71       | 16-18 | SURGICAL EXCISION (hemiperiareolar) + LIPOSUCTION         | 2     | 3    | 0   | 0   | 4   | 0   | 0   | 2   | 0   | 0   | 0   | 11   |
| Authors                  | Patients | Age | Surgical technique                        | Complications |
|-------------------------|----------|-----|-------------------------------------------|----------------|
| Ozalp et al. [83]       | 21       | 19-34 | SAL                                       | HE 2 SE 4 OR 0 UR 8 HH 0 WD 0 PS 0 AS 0 IS 1 NN 0 RR 18 |
| Lee et al. [84]         | 30       | 13-56 | Cutting edge tip cannula +                | 0 1 0 0 0 0 0 0 0 0 0 0 0 1 |
|                         |          |      | Power-assisted LIPOSUCTION (hemperiareolar)+LIPOSUCTION | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Wyrick et al. [85]      | 52       | 23-73 | SURGICAL EXCISION (hemi- or circumareolar)+LIPOSUCTION | 2 4 0 0 0 0 0 0 0 0 0 0 0 6 |
| Abdelrahman et al. [86] | 18       | 28-34 | LIPOSUCTION                               | 0 0 0 2 0 0 1 0 0 0 0 0 3 |
| Tarallo et al. [87]     | 15       | 18-28 | SURGICAL EXCISION (hemperiareolar)+LIPOSUCTION | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Yao et al. [88]         | 22       | 15-45 | SURGICAL EXCISION (Vacuum-assisted)       | 1 0 0 0 1 0 0 0 0 1 0 0 3 |
| Mohamad Hasan et al. [89]| 150     | NR   | SURGICAL EXCISION (hemperiareolar or Benelli) | 40 29 0 0 24 8 0 2 0 0 15 0 118 |
| Sim et al. [90]         | 101      | 26   | SURGICAL EXCISION (microdebrider) + LIPOSUCTION | 7 0 0 18 0 0 0 3 0 0 0 0 28 |
|                         | 31       | 27   | LIPOSUCTION                               | 3 0 0 10 0 0 0 0 0 0 0 0 13 |
|                         | 21       | 30   | SURGICAL EXCISION (circumareolar)         | 4 0 0 6 0 0 0 1 0 0 0 0 11 |
|                         | 18       | 25   | SURGICAL EXCISION (circumareolar) + LIPOSUCTION | 4 0 0 4 0 0 0 1 0 0 0 0 9 |
| Murugesan et al. [91]   | 149      | 19-57 | SURGICAL EXCISION (pull-through) + LIPOSUCTION | 2 0 0 0 0 0 0 0 0 0 0 0 0 2 |
| Akhtar et al. [92]      | 30       | 17-38 | SURGICAL EXCISION (hemperiareolar)+LIPOSUCTION | 2 0 0 0 0 0 0 0 0 0 0 0 0 12 |
|                         | 30       |      | SURGICAL EXCISION (arthroscopic shaver) + LIPOSUCTION | 3 0 0 0 0 0 0 0 0 0 0 0 0 17 |
| Tripathy et al. [93]    | 10       | 21-30 | SURGICAL EXCISION (hemperiareolar)+LIPOSUCTION | 2 0 0 0 0 0 0 0 0 0 0 0 0 2 |
|                         | 10       |      | SURGICAL EXCISION (pull-through) + LIPOSUCTION | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Harinatha et al. [94]   | 1159     | NR   | SURGICAL EXCISION (superior pedicle) + LIPOSUCTION | 27 0 0 0 32 0 0 7 0 0 66 |
| Jian et al. [95]        | 12       | 19-40 | Endoscopically assisted SURGICAL EXCISION | 0 0 0 0 1 0 0 0 0 0 0 0 0 1 |
| Qu et al. [96]          | 56       | NR   | SURGICAL EXCISION (periareolar or inframammary fold) | 1 0 0 0 5 0 0 0 0 0 0 0 0 6 |
|                         | 26       |      | Vacuum-assisted SURGICAL EXCISION         | 3 0 0 0 2 0 0 0 0 0 0 0 0 5 |
recorded was hematoma (322 cases, 22.88%), mainly present in “surgical excision” techniques. This element could be addressed to the use of surgical excision alone in more severe forms, with a higher incidence of possible complications. For the same reasons, seroma rate is higher in “surgical excision” group.

From statistical descriptive analysis, we observe that using different techniques we obtain different percentages of patients with no complications and with the considered complications (Figs. 2 and 3).

Follow a statistical inference approach, we test, using Pearson’s Chi-squared test, the null hypothesis of independence between technique and outcome; we observe a value of 760.49 for the test statistic with 24 degrees of freedom, with a very small \( p \)-value \( p\text{-value} < 2.2 \times 10^{-16} \). This suggests us to reject the null hypothesis, confirming that different techniques give different outcomes.

Discussion

Several techniques have been described throughout the years for treating gynecomastia. Aspiration techniques, including liposuction and its modern variations, base their principles on removing trough a minimal access to the redundant fatty and breast tissues by fragmentation and suction. Since gynecomastia in most cases is defined as mixed, aspiration of the gland cannot permit histopathological analysis and skin redistribution is limited. Moreover, these techniques do not permit a direct hemostasis [98–101].

Aspiration techniques vary according to the modality used for fat and glandular tissue removal. In suction-assisted liposuction, after tumescent solution infiltration, localized areas of unwanted fat are removed through the combination of a high-vacuum blunt-tipped cannula and longitudinal motion. In ultrasound-assisted liposuction, ultrasound frequencies produced by specific cannulas primarily affect tissues with the lowest density, such as fat tissues, whose density is further reduced by previous wetting with tumescent solution. Interactions between adipose tissue and ultrasound waves lead to adipocyte fragmentation through cavitation and, therefore, this technique has a high degree of selectivity for fat cells resulting in a high degree of selectivity for fat cells, and thus reducing blood loss, postoperative edema, and ecchymosis and avoiding contour irregularities. In power-assisted liposuction, oscillating rotational and translational movements of cannula tip are produced, mimicking the motion of the operator’s arm with lower amplitude and allowing an easier penetration of fibrous fat and glandular tissue, while generating no thermal energy and therefore reducing the risk of cutaneous burns. Laser lipolysis utilizes the principles of selective photothermolysis to preferentially lyse adipocytes while leaving surrounding structures unaffected. Different laser wavelengths may vary in their relative effectiveness in targeting substances present in the subcutaneous environment. Thus, lasers achieve their desired effect via photolysis of adipose cells, photocoagulation of small vessels, liberation of adipocyte lipases, and contraction of dermal collagen.

More challenging cases, such as male tuberous breast, can hardly be corrected only with aspiration techniques since an open excision is required to manage the deformity [102–105].

Open excision techniques base their principle on a direct view and management of the gland, through several types of surgical accesses according to the surgeon’s preference and entity of the defect [106, 107]. The main advantage of open excision is the direct control of the hemostasis and redundant skin control, with the main disadvantage of permanent scars, whose quality cannot be predicted. Furthermore, gland excision can permit histopathological analysis since male breast carcinoma, even if rare, can occur only in patients affected by gynecomastia [108].

Combined techniques are usually composed of an open excision phase followed by an aspiration phase: the combination of these techniques can permit a limited scar extension since, after open excision, the wide undermining

| Authors           | Patients | Age | Surgical technique       | Complications |
|-------------------|----------|-----|--------------------------|---------------|
|                   |          |     |                          | HE | SE | OR | UR | HH | WD | IN | PS | AS | IS | NN | RR | Total |
| Pfeiler et al. [97]| 34       | NR  | SURGICAL EXCISION       | 8  | 1  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 11 |
|                   |          |     | (hemiperiareolar)        | 21 | SURGICAL EXCISION       | 3  | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 5  |
|                   |          |     | LIPOSUCTION             |   |     |    |    |    |    |    |    |    |    |    |    |

*HE* hematoma(s); *SE* seroma; *OR* over-resection; *UR* under-resection; *HH* hypo-or hyperesthesia; *WD* wound dehiscence; *IN* infection; *PS* pathological scar; *AS* asymmetries; *IS* irregularities or redundant skin; *NN* NAC necrosis (partial or total) or abrasion; *RR* revision or recurrences
Table 2  Complications rate for each group according to the inclusion criteria.

| Technique                                | No. | Hematoma | Seroma | Over-resection | Under-resection | Hypo- or Hyperesthesia | Wound delinence | Infection | Pathological scar | Asymmetries | Irregularities or redundant skin | NAC necrosis (partial or total)/abrasion | Revision/ recurrence | Total |
|------------------------------------------|-----|----------|--------|----------------|------------------|------------------------|----------------|-----------|------------------|-------------|-----------------------------------|------------------------------------------|----------------------|-------|
| Aspiration                               | 874 | 11       | 15     | 4              | 25               | 40                     | 0              | 1         | 0                | 4           | 3                                 | 1                         | 26                   | 130   |
| Traditional Liposuction                  | 241 | 4        | 3      | 0              | 22               | 5                      | 0              | 1         | 0                | 0           | 0                                 | 0                         | 6                    | 41    |
| Ultrasound-Assisted Liposuction          | 31  | 0        | 0      | 0              | 0                | 0                      | 0              | 0         | 0                | 1           | 0                                 | 0                         | 1                    | 2     |
| Suction-Assisted Liposuction             | 21  | 3        | 2      | 4              | 0                | 8                      | 0              | 0         | 0                | 0           | 0                                 | 1                         | 0                    | 18    |
| Laser Lipolysis                          | 71  | 0        | 2      | 0              | 0                | 0                      | 0              | 0         | 0                | 4           | 0                                 | 0                         | 0                    | 6     |
| Sharp cutting                            | 57  | 0        | 0      | 0              | 0                | 0                      | 0              | 0         | 0                | 0           | 0                                 | 0                         | 4                    | 4     |
| Mixed techniques                         | 453 | 4        | 8      | 0              | 3                | 27                     | 0              | 0         | 0                | 2           | 0                                 | 15                        | 6                    | 59    |
| Surgical Excision                        | 2764| 213      | 230    | 36             | 49               | 97                     | 13             | 6         | 130              | 3           | 13                               | 35                         | 22                   | 847   |
| Open excision                            | 2540| 208      | 229    | 36             | 49               | 93                     | 13             | 6         | 129              | 3           | 12                               | 29                         | 22                   | 829   |
| Endoscopically assisted Liposuction       | 138 | 0        | 1      | 0              | 0                | 1                      | 0              | 0         | 0                | 0           | 0                                 | 5                         | 0                    | 7     |
| Transaxillary excision                   | 5   | 0        | 0      | 0              | 0                | 0                      | 0              | 0         | 0                | 0           | 0                                 | 0                         | 0                    | 0     |
| Microdebrider                            | 8   | 0        | 0      | 0              | 0                | 0                      | 0              | 1         | 0                | 0           | 1                                 | 1                         | 0                    | 2     |
| Vacuum-assisted/mammotome Liposuction    | 73  | 5        | 0      | 0              | 0                | 0                      | 0              | 0         | 0                | 0           | 1                                 | 0                         | 0                    | 9     |
| Combined techniques                      | 3656| 98       | 34     | 4              | 35               | 32                     | 35             | 3         | 42               | 29          | 64                               | 16                         | 38                   | 430   |
| Open excision and Liposuction/UAL/PAL    | 2396| 66       | 28     | 3              | 14               | 21                     | 35             | 2         | 22               | 16          | 49                               | 8                          | 9                    | 273   |
| Pull-trough and Liposuction              | 713 | 12       | 3      | 0              | 1                | 11                     | 0              | 0         | 14               | 0           | 12                               | 0                          | 27                   | 80    |
| Fragmentation and Liposuction            | 301 | 9        | 0      | 0              | 20               | 0                      | 0              | 0         | 3                | 0           | 1                                 | 0                          | 0                    | 33    |
| Cartilage shaver and Liposuction         | 186 | 8        | 2      | 1              | 0                | 0                      | 0              | 0         | 3                | 13          | 2                                 | 7                          | 2                    | 38    |
| Endoscopic adenectomy and Liposuction    | 24  | 0        | 1      | 0              | 0                | 0                      | 0              | 1         | 0                | 0           | 0                                 | 0                          | 0                    | 2     |
| Suction-Assisted excision and Liposuction| 36  | 3        | 0      | 0              | 0                | 0                      | 0              | 0         | 0                | 0           | 1                                 | 0                          | 0                    | 4     |
| Total                                    | 7294| 322      | 279    | 44             | 109              | 169                    | 48             | 10        | 172              | 36          | 80                               | 52                         | 86                   | 1407  |

PERCENTAGE

| Technique                                | Aspiration | 11,98 | 3,42 | 5,38 | 9,10 | 22,94 | 23,67 | 0,00 | 10,00 | 0,00 | 11,11 | 3,75 | 1,92 | 30,23 | 9,24 |
|------------------------------------------| Aspiration | Surgical Excision | 37,90 | 66,15 | 82,44 | 81,81 | 44,95 | 57,40 | 27,08 | 60,00 | 75,58 | 8,33 | 16,25 | 67,31 | 25,58 | 60,20 |
| Combined techniques                      | 50,12 | 30,43 | 12,18 | 9,09 | 32,11 | 18,93 | 72,92 | 30,00 | 24,42 | 80,56 | 80,00 | 30,77 | 44,19 | 30,56 |       |

UAL ultrasound-assisted liposuction; PAL power-assisted liposuction.
of the skin flap onto a larger area can often permit a sufficient skin redistribution [109–112].

Since gynecomastia represents a disease commonly diffused worldwide, an updated systematic review that focuses not only on the different types of proposed treatment but also on complications rate, is a useful tool for plastic surgeons [113]. Several biases can be found, mostly related to the high variations in proposed treatments and clinical classifications. In fact, several articles proposed specific treatments for graded gynecomastia patients, but the large variations of gynecomastia classifications cannot guarantee a statistical comparison and therefore only the type of surgical approach, despite the grade of the disease, have been considered [114–116]. Moreover, no comparison

of patients’ postoperative satisfaction has been performed because of the absence of evaluation in some papers and for the different used methods for evaluation [117–121]. Besides those biases, that are strictly relative to the large discussion on this topic in literature, this review, as previously stated, confirms that the combined approach with traditional surgical excision of glandular tissue combined with liposuction provides the lowest rate of complications, compared to aspiration techniques alone and surgical excision techniques alone [4–97]. As an adjunctive element for discussion, authors retain that, despite its rare incidence, breast cancer in male affected by gynecomastia can occur, and therefore, histopathological analysis is mandatory and can be performed only with surgical excision.

Fig. 2. Percentages distribution of patients subjected to a technique for each outcome

Fig. 3. Graphic representation of percentages distribution of patient’s outcome for each technique
rather than with aspiration techniques [122, 123]. Since psychological assessments have been largely discussed in literature, this aspect, even if fundamental, have not been included in this review. Focusing on surgical treatment, articles including medical treatment for gynecomastia have been excluded from this review. This review evidences the need for a single classification method, including also minor forms, and for a validated and universal method for the evaluation of satisfaction [124]. In this review, the male tuberous breast has not been included. Even if it presents peculiar clinical hallmarks, it is still poorly investigated in literature and often misdiagnosed with other forms of gynecomastia [125]. A general consensus on this condition, and its inclusion in gynecomastia classification, will help plastic surgeons in the diagnosis and management of this condition. To avoid bias, also pseudogynecomastia, due to massive weight loss, has not been included since its treatment and rate of complications differ from gynecomastia surgery [126, 127]. We personally retain that the higher incidence of complications among patients who underwent surgical excision is strictly related to the high number of patients and to the fact that these techniques are often used to treat the most severe forms, compared to aspiration techniques and combined techniques [128]. Moreover, surgical excision techniques have been early described in the literature, and the evolution of techniques has reduced the complications rate.

**Conclusion**

Several techniques have been proposed in the literature to address gynecomastia, with the potential to greatly improve the self-confidence and overall appearance of affected patients. The combined use of surgical excision and aspiration techniques seems to reduce the rate of complications compared to surgical excision alone, but lack of unique classification and the presence of several surgical techniques still represents a bias in the literature review.

**Declaration**

**Conflict of interest** The authors have no financial interest or conflict of interest to declare in relation to the content of this article.

**Statement of human and animal rights, or ethical approval** This article does not contain any studies with human participants or animals performed by any of the authors.

**Informed consent** For this type of study, informed consent is not required.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

**References**

1. Fruhstorfer BH, Malata CM (2003) A systematic approach to the surgical treatment of gynecomastia. Br J Plast Surg 56:237–246
2. Cuhaci N, Polat SB, Evranos B, Ersoy R, Cakir B (2014) Gynecomastia: Clinical evaluation and management. Indian J Endocrinol Metab 18(2):150–158. https://doi.org/10.4103/2230-8210.129104
3. Wolllna U, Goldman A (2011) Minimally invasive esthetic procedures of the male breast. J Cosmet Dermatol 10(2):150–155. https://doi.org/10.1111/j.1473-2165.2011.00548.x
4. Courtiss EH (1987) Gynecomastia: analysis of 159 patients and current recommendations for treatment. Plast Reconstr Surg 79(5):740–753. https://doi.org/10.1097/00006534-198705000-00010
5. Aiache AE (1989) Surgical treatment of gynecomastia in the body builder. Plast Reconstr Surg 83(1):61–66. https://doi.org/10.1097/00006534-198901000-00011
6. Ward CM, Khalid K (1989) Surgical treatment of grade III gynaecomastia. Ann R Coll Surg Engl 71(4):226–228
7. Varma SK, Henderson HP (1990) A prospective trial of adrenaline infiltration for controlling bleeding during surgery for gynaecomastia. Br J Plast Surg 43(5):590–593. https://doi.org/10.1016/0007-1226(90)90125-j
8. Apesos J, Chami R (1991) Functional applications of suction-assisted lipectomy: a new treatment for old disorders. Aesth Plast Surg 15(1):73–79. https://doi.org/10.1007/BF02273837
9. Stark GB, Grandel S, Spilker G (1992) Tissue suction of the male and female breast. Aesth Plast Surg 16(4):317–324. https://doi.org/10.1007/BF01570694
10. Brenner P, Berger A, Schneider W, Axmann HD (1992) Male reduction mammoplasty: a new treatment for old disorders. Aesth Plast Surg 16(4):325–330. https://doi.org/10.1007/BF01570695
11. Abramo AC (1994) Axillary approach for gynecomastia liposuction. Aesth Plast Surg 18(3):265–268. https://doi.org/10.1016/0007-1226(94)90125-j
12. Samdal F, Kleppe G, Amland PF, Abyholm F (1994) Surgical treatment of gynecomastia. Five years’ experience with liposuction. Scand J Plast Reconstr Surg Hand Surg 28(2):123–130. https://doi.org/10.3109/02844319409071189
13. Morselli AE (1996) ‘Pull-through’: a new technique for breast reduction in gynaecomastia. Plast Reconstr Surg 97(2):450–454. https://doi.org/10.1097/00006534-199602000-00028
14. Aiache AE (1998) Secondary surgery for failed gynaecomastia correction from liposuction. Aesthetic Surg J 18(2):95–98. https://doi.org/10.1016/s1090-820x(98)80002-2
15. Peters MH, Vastine V, Knox L, Morgan RF (1998) Treatment of adolescent gynecomastia using a bipedicle technique. Ann Plast Surg 40(3):241–245. https://doi.org/10.1097/00000637-199803000-00008
26. Fruhstorfer BH, Malata CM (2003) A systematic approach to the surgical management of gynecomastia. Ann Plast Surg 41(4):378–383. https://doi.org/10.1097/00000637-199810000-00005

27. Hammond DC, Arnold JF, Simon AM, Capraro PA (2003) Modified technique for correction of gynecomastia. Eur J Surg 167(11):822–824. https://doi.org/10.1080/10424150152717643

28. Rohrich RJ, Ha RY, Kenkel JM, Adams WP (2003) Classification and management of gynecomastia: defining the role of ultrasonic-assisted liposuction. Plast Reconstr Surg 112(2):909–923. https://doi.org/10.1097/01.prs.0000042146.40379.25

29. Tashkandi M, Al-Qattan MM, Hassanain JM, Hawary MB, Sultan M (2004) The surgical management of high-grade gynecomastia. Ann Plast Surg 53(1):17–20. https://doi.org/10.1097/01.sap.0000099544.40759.1f

30. Haddad Filho D, Arruda RG, Alonso N (2006) Treatment of severe gynecomastia (Grade III) by resection of periareolar skin. Aesthet Surg J 26(6):669–673. https://doi.org/10.1016/j.asj.2006.10.009

31. Gabra HO, Morabito A, Bianchi A, Bowen J (2004) Gynecomastia in the adolescent: a surgically relevant condition. Eur J Pediatr Surg 14(1):3–6. https://doi.org/10.1055/s-2004-815772

32. Bracaglia R, Fortunato R, Gentilesci S, Scuccia A, Farallo E (2004) Our experience with the so-called pull-through technique combined with liposuction for management of gynecomastia. Ann Plast Surg 53(1):22–26. https://doi.org/10.1097/01.sap.0000016429.37110.cf

33. Celebioglu S, Ertas N, Ozdil K, Oktem F (2004) Gynecomastia treatment with subareolar glandular pedicle. Aesthetic Plast Surg 28(5):281–286. https://doi.org/10.1007/s00266-004-1300-1

34. Aslan G, Tuncali D, Terzioğlu A, Bingul F (2005) Periareolar-transareolar-perithelial incision for the surgical treatment of gynecomastia. Ann Plast Surg 54(2):130–134. https://doi.org/10.1097/01.sap.0000143513.77819.7a

35. Prado AC, Castillo PF (2005) Minimal surgical access to treat gynecomastia with the use of a power-assisted arthroscopic-endoscopic cartilage shaver. Plast Reconstr Surg 115(3):939–942. https://doi.org/10.1097/01.pr.s.0b013e318038f762

36. Hodgson EL, Fruhstorfer BH, Malata CM (2005) Ultrasonic liposuction in the treatment of gynecomastia. Plast Reconstr Surg 116(2):646–653. https://doi.org/10.1097/01.pr.s.0000173441.57812.e8

37. Ramon Y, Fodor L, Peled JJ, Eldor L, Egozi D, Ullman Y (2005) Multimodality gynecomastia repair by cross-crest power-assisted superficial liposuction combined with endoscopic-assisted pull-through excision. Ann Plast Surg 56(6):591–594. https://doi.org/10.1097/01.sap.0000189664.88464.34

38. Boni R (2006) Tumescent power liposuction in the treatment of the enlarged male breast. Dermatology 213(2):140–143. https://doi.org/10.1159/0000903853

39. Yavuz M, Kesiktas E, Kesiktas NN, Acartürk S (2006) Lighted retractor-assisted transaxillary approach in gynecomastia correction. Ann Plast Surg 57(4):370–373. https://doi.org/10.1097/01.sap.0000222567.04653.3b

40. Sultan M (2004) The surgical management of high-grade gynecomastia. Ann Plast Surg 53(6):629–634. https://doi.org/10.1097/01.sap.0b013e318038f762

41. Lista F, Ahmad J (2008) Power-assisted liposuction and the pull-through technique for the treatment of gynecomastia. Plast Reconstr Surg 121(3):740–747. https://doi.org/10.1097/prs.0b013e318038f762

42. Esme DL, Beekman WH, Hage JJ, Nipshagen MD (2007) Combined use of ultrasonic-assisted liposuction and semicircular periareolar incision for the treatment of gynecomastia. Ann Plast Surg 59(6):629–634. https://doi.org/10.1097/SAP.0b013e318038f762

43. Lindqvist P, Einarsson B (2008) Correction of gynecomastia with severe ptosis: periareolar incision and dermal double areolar pedicle technique. Aesthet Plast Surg 32(5):834–837. https://doi.org/10.1007/s00266-008-9278-8

44. Lanitis S, Starren E, Read J, Heymann T, Tekkis P, Hadjiminas DJ, Al Mutiri R (2008) Surgical management of Gynaecomastia: outcomes from our experience. Breast 17(3):596–603. https://doi.org/10.1016/j.breast.2008.06.003

45. Cannistra C, Piedimonte A, Albonico F (2009) Surgical treatment of gynecomastia with severe ptosis: periareolar incision and dermal double areolar pedicle technique. Aesthetic Plast Surg 33(6):834–837. https://doi.org/10.1007/s00266-008-9278-8

46. Gheita A (2008) Gynecomastia: the horizontal ellipse method. Aesthetic Plast Surg 32(5):795–801. https://doi.org/10.1007/s00266-008-9190-2

47. Lanitis S, Starren E, Read J, Heymann T, Tekkis P, Hadjiminas DJ, Al Mutiri R (2008) Surgical management of Gynaecomastia: outcomes from our experience. Breast 17(6):596–603. https://doi.org/10.1016/j.breast.2008.06.003

48. Goh T, Tan BK (2010) Song C (2010) Use of the microdebrider for treatment of fibrous gynaecomastia. J Plast Reconstr Aesthet Surg 63(3):506–510. https://doi.org/10.1016/j.bjps.2008.11.050
50. Scuderi N, Dessy LA, Tempesta M, Bistoni G, Mazzocchi M (2010) Combined use of power-assisted liposuction and transareolar incision for gynaecomastia treatment. J Plast Reconstr Aesthet Surg 63(1):e93–e95. https://doi.org/10.1016/j.bjps.2009.01.025

51. Fan L, Yang X, Zhang Y, Jiang J (2009) Endoscopic subcutaneous mastectomy for the treatment of gynaecomastia: a report of 65 cases. Surg Laparosc Endosc Percutan Tech 19(3):e85-90. https://doi.org/10.1097/SLE.0b013e3181a2fbd

52. Benito-Ruiz J, Raigosa M, Manzano M, Salvador L (2009) Assessment of a suction-assisted cartilage shaver plus liposuction for the treatment of gynaecomastia. Aesthet Surg J 29(4):302–309. https://doi.org/10.1016/j.asj.2009.02.020

53. Rho YK, Kim BJ, Kim MN, Kang KS, Han HJ (2009) Laser lipolysis with pulsed 1064 nm Nd:YAG laser for the treatment of gynaecomastia. Int J Dermatol 48(12):1353–1359. https://doi.org/10.1111/j.1365-4632.2009.04213.x

54. Petty PM, Solomon M, Buchel EW, Tran NV (2010) Gynaecomastia: evolving paradigm of management and comparison of techniques. Plast Reconstr Surg 125(5):1301–1308. https://doi.org/10.1097/PRS.0b013e3181f62962

55. He Q, Zheng L, Zhuang D, Fan Z, Xi C, Zhou P (2011) Surgical treatment of gynaecomastia by vacuum-assisted biopsy device. J Laparoendosc Adv Surg Tech A 21(5):431–434. https://doi.org/10.1089/lap.2011.0019

56. Jarrar G, Peal A, Fahmy R, Deol H, Salih V, Mostafa A (2011) Single incision endoscopic surgery for gynaecomastia. J Plast Reconstr Aesthet Surg 64(9):e231–e236. https://doi.org/10.1016/j.bjps.2011.04.016

57. Trelles MA, Mordon SR, Bonanad E, Moreno Moraga J, Heckmann A, Unglaub F, Betrouni N, Leclère FM (2013) Laser-assisted lipolysis in the treatment of gynaecomastia: a prospective study in 28 patients. Lasers Med Sci 28(2):375–382. https://doi.org/10.1007/s10103-013-1043-6

58. Zampieri N, Castellani R, Modena S, Camoglio FS (2012) Class III gynaecomastia in pediatric age: a new modified surgical treatment. Pediatr Surg Int 28(10):1015–1019. https://doi.org/10.1007/s00383-012-1505-x

59. Lee JH, Kim IK, Kim TG, Kim YH (2012) Surgical correction of gynaecomastia with minimal scarring. Aesthet Plast Surg 36(6):1302–1306. https://doi.org/10.1007/s00266-012-9970-6

60. Cao H, Yang ZX, Sun YH, Wu HR, Jiang GQ (2013) Endoscopic subcutaneous mastectomy: a novel and effective treatment for gynaecomastia. Exp Ther Med 5(6):1683–1686. https://doi.org/10.3892/etm.2013.1032

61. Morselli PG, Morellini A (2012) Breast reshaping in gynaecomastia type: considerations on 312 consecutive treated cases. Ann Plast Surg 70(6):615–619. https://doi.org/10.1097/SAP.0b013e3182f0717

62. Hollingsworth AR, Farahvash MR, Fatih RR, Ghanbarzadeh K, Faridniya B (2016) The satisfaction rate among patients and surgeons after periareolar surgical approach to gynaecomastia along with liposuction. World J Surg 40(3):287–292. https://doi.org/10.1007/s00268-015-3505-z

63. Khalil AA, Ibrahim A, Afifi AM (2017) No-drain single incision liposuction pull-through technique for gynaecomastia. Aesthetic Plast Surg 41(2):298–303. https://doi.org/10.1007/s00266-016-0749-z
112. Innocenti A, Ghezzi S, Melita D, Innocenti M (2018) Clinical characteristics of asymmetric bilateral gynecomastia: suggestion of desirable surgical method based on a single-institution experience. Aesthet Plast Surg 42(6):1716–1717
113. Innocenti A, Melita D, Ciancio F, Innocenti M (2017) Discussion: “long-term follow-up of recurrence and patient satisfaction after surgical treatment of gynecomastia.” Aesthet Plast Surg 41(5):1242–1243. https://doi.org/10.1007/s00266-017-0866-3
114. Innocenti A, Melita D, Mori F, Ciancio F, Innocenti M (2017) Comment to “postero-inferior pedicle surgical technique for the treatment of grade III gynecomastia.” Aesthet Plast Surg 41(3):747–748. https://doi.org/10.1007/s00266-017-0849-4
115. Innocenti A, Melita D, Innocenti M (2018) Evaluation of glandular liposculpture as a single treatment for grades I and II gynecomastia. Aesthet Plast Surg 42(6):1707–1708. https://doi.org/10.1007/s00266-018-1156-4
116. Innocenti A, Melita D, Ghezzi S (2019) Closed-suction drains after subcutaneous mastectomy for gynecomastia: do they reduce complications? Aesthet Plast Surg 43(4):1124–1125. https://doi.org/10.1007/s00266-017-1060-3
117. Ciancio F, Innocenti A, Parisi D, Portincasa A (2017) Gynecomastia -classification for surgical management: a systematic review and novel classification system. Plast Reconstr Surg 140(4):620e–621e
118. Innocenti A, Ghezzi S, Melita D, Innocenti M (2017) Comment on: “surgical masculinization of the breast: clinical classification and surgical procedures.” Aesthet Plast Surg 41(6):1475–1476
119. Innocenti A, Melita D, Ghezzi S, Ciancio F, Innocenti M (2017) Comment to: “the characteristics and short-term surgical outcomes of adolescent gynecomastia.” Aesthet Plast Surg 41(6):1467–1468
120. Innocenti A, Melita D (2021) Patients decision-making characteristics affects gynecomastia treatment satisfaction: a multicenter study using the BODY-Q chest module. Aesthet Plast Surg. https://doi.org/10.1007/s00266-021-02688-4
121. Innocenti A, Melita D (2021) Endoscopic axillary approach improves patient satisfaction of gynecomastia subcutaneous mastectomy: a cross-sectional study using the BODY-Q chest module. Aesthet Plast Surg. https://doi.org/10.1007/s00266-020-02086-2
122. Innocenti A, Melita D, Mori F, Innocenti M, Ciancio F (2018) Discussion on “gynecomastia surgery-impact on life quality: a prospective case-control study.” Ann Plast Surg 80(2):193–194. https://doi.org/10.1097/SAP.0000000000001172
123. Melita D, Innocenti A (2020) Prospective analysis and comparison of periareolar excision (delivery) and pull-through technique for the treatment of gynecomastia. Aesthet Plast Surg 44(3):1089–1090. https://doi.org/10.1007/s00266-020-01676-4
124. Fagerlund A, Lewin R, Rufolo G, Elander A, Santanelli di Pompeo F, Selvaggi G (2015) Gynecomastia: a systematic review. J Plast Surg Hand Surg 49(6):311–318. https://doi.org/10.3109/2000656X.2015.1053398
125. Innocenti A, Melita D, Innocenti M (2021) Gynecomastia and chest masculinization: an updated comprehensive reconstructive algorithm. Aesthet Plast Surg 45(5):2118–2126. https://doi.org/10.1007/s00266-021-02275-7
126. Barone M, Cogliandro A, Tsangaris E, Salzillo R, Morelli Coppola M, Ciarrocchi S, Brunetti B, Tenna S, Tambone V, Persichetti P (2018) Treatment of severe gynecomastia after massive weight loss: analysis of long-term outcomes measured with the italian version of the BODY-Q. Aesthet Plast Surg 42(6):1506–1518. https://doi.org/10.1007/s00266-018-1232-9
127. Barone M, Cogliandro A, Persichetti P (2019) Innovative technique to improve chest shape following gynecomastia correction in post-bariatric surgery patients. Plast Reconstr Surg 144(2):324e–325e. https://doi.org/10.1097/PRS.0000000000005819
128. Innocenti A, Ciancio F, Francesco M, Melita D, Innocenti M (2017) Comment to “no-drain single incision liposuction pull-through technique for gynecomastia.” Aesthet Plast Surg 41(4):990–991. https://doi.org/10.1007/s00266-017-0821-3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.