On the electron agyrotropy during rapid asymmetric magnetic island coalescence in presence of a guide field

E. Cazzola1, M. E. Innocenti1, M. V. Goldman2, D. L. Newman2, S. Markidis3, and G. Lapenta1

1Department of Mathematics, KU Leuven University, Leuven, Belgium, 2Center for Integrated Plasma Studies, University of Colorado Boulder, Boulder, Colorado, USA, 3PDC Center for high Performance Computing, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract We present an analysis of the properties of the electron velocity distribution during island coalescence in asymmetric reconnection with and without guide field. In a previous study, three main domains were identified, in the case without guide field, as X, D, and M regions featuring different reconnection evolutions. These regions are also identified here in the case with guide field. We study the departure from isotropic and gyrotropic behavior by means of different robust detection algorithms proposed in the literature. While in the case without guide field these metrics show an overall agreement, when the guide field is present, a discrepancy in the agyrotropy within some relevant regions is observed, such as at the separatrices and inside magnetic islands. Moreover, in light of the new observations from the Multiscale Magnetospheric mission, an analysis of the electron velocity phase-space in these domains is presented.

1. Introduction

Magnetic reconnection is a highly multiscale physical process occurring in plasmas when magnetic field lines with opposite polarity come in contact. The process releases a large amount of the stored magnetic energy after a complete restructuring of the magnetic field topology. This effect makes reconnection one of the most important sources of accelerated particles in space. However, magnetic reconnection alone cannot explain the high-energy particles measured in some regions in space, and other accelerating processes have to be taken into account alongside reconnection. One of the most solid explanations involves multiple acceleration mechanisms during the formation, growth, and coalescence of magnetic islands [Drake et al., 2006; Oka et al., 2010]. While the effects of island coalescence in symmetric reconnection have been sufficiently studied over the decades, the same process in asymmetric configuration is still poorly investigated, especially when a strong guide field is present.

In a previous work, Cazzola et al. [2015] have shown that during rapid island coalescence with no guide field, three different reconnection regions can be observed. These regions have been identified as X regions, where similar traces as the traditional asymmetric X-point are observed, D regions, where reconnection occurs between two diverging islands and reveals an opposite behavior with respect the X regions, and M regions, where the reconnection event occurs between two merging magnetic islands. In this work, a similar analysis leads to the identification of these three types of regions also in the case with guide field. It is important to identify parameters that allow high-resolution satellites, such as the Magnetospheric MultiScale (MMS) NASA mission [Burch et al., 2014], to distinguish between these three regions.

This work intends to give more insights into the electron behavior in these three specific regions, in support of future comparisons with observational data. Particular attention will be given to the departure of particles from the initial isotropy and gyrotropy. In particle-in-cell (PIC) simulations, the departure from gyrotropy is quantified from information collected in the pressure tensor. Several methodologies are available. Hereafter, we will refer to these methodologies as detection algorithms to underline their numerical nature based on a precise mathematical algorithm. The algorithms used in this work are those proposed by Scudder and Daughton [2008] (A_y), Aunai et al. [2013] (D_{agy} shown in the supporting information), and Swisdak [2016] (\sqrt{Q}). The first method focuses on particle agyrotropy in the plane perpendicular to the local magnetic field. It relies on the diagonalization of a pressure tensor specifically built upon the perpendicular velocity direction and easily retrievable from traditional PIC pressure tensors after some mathematical manipulation. The other
two methods propose different algorithms which also include the parallel component in the computation. The mathematical formulation of these three metrics is summarized in the supporting information. None of these methods has been applied, so far, to the case of asymmetric island coalescence, either with or without guide field.

In addition to the previous quantities, we visualize electron agyrotropy by carrying out an analysis of the electron temperature in the frame of reference based on the local magnetic field. The parallel and the two orthogonal perpendicular directions to the local magnetic field T_{\parallel} and T_{\perp} are identified according to the definition given in Goldman et al. [2015] and recalled in section 2. The analysis of agyrotropy is addressed with the ratio $\frac{T_{\perp}}{T_{\parallel}}$, while the ratio $\frac{T_{\parallel}}{T_{\perp}}$ is used to study the anisotropy. $\frac{T_{\parallel}}{T_{\perp}}$ gives insight into relative departure from agyrotropy in the two direction \perp_1 and \perp_2, which are not necessarily the directions where the temperature differs more. Notice that the latter approach is strictly simulation-frame dependent, whereas quantities A_{χ}, Q, and $D_{\chi n}$ instead address the perpendicular components independently of the simulation frame adopted. These quantities are computed from simulations results only, by not directly involving the simulation axis. A systematic comparison between the aforementioned metrics will be given to remark on their principal differences. Since the method proposed in Aunai et al. [2013] is conceptually similar to Swisdak [2016] (they both aim at highlighting nongyrotropies in the 3-D space) and gives similar results, it will be only shown in the supporting information.

In addition to the analysis, the electron velocity distributions for some particular region are given, including the X, O, and M regions in order to reveal their characterizing signatures.

The paper is structured as follows. Section 2 gives further details on the simulation setup. Section 3 describes the most interesting results. Finally, the main conclusions are summarized in section 4.

2. Simulation Setup

Results are shown for a set of 2.5-D simulations performed with the fully kinetic massively parallel implicit moment method particle-in-cell code iPIC3D [Markidis et al., 2010; Innocenti et al., 2016]. In 2.5-D simulations all the vector quantities are three dimensional, but their spatial variation is assumed to be independent of the dawn-dusk (Z) direction. A Cartesian frame of reference is adopted, with the X coordinate parallel to the initial current sheet (north-south direction in GSM), the Y the direction parallel to the reversing B (Earth-Sun direction in GSM), and the Z the direction to complete the set accordingly (dawn-dusk direction in GSM). The simulated domain is a $40 \times 40 \ d_i$ box with 2048×2048 cells, where $d_i = \frac{c}{\omega_p}$ is the ion skin depth referred to the magnetosheath conditions, to which all lengths in the code are normalized. The boundary conditions are periodic in all directions. The temporal step is $\omega_{ce} \cdot \Delta t = 0.128$, where ω_{ce} is the electron cyclofrequency.

The ion-electron mass ratio is $\frac{m_i}{m_e} = 256$. The plasma temperature across the layer is kept constant with an ion-electron temperature ratio $T_i = 2 T_e$. The initial electron velocity is $\frac{V_{se}}{c} = 0.1$, and $\frac{V_A}{c} = 113.6$, where V_A is the Alfvén speed. The initial ion drift is neglected, and the initial current density is fully carried by electrons, as done in the literature [Pritchett, 2007]. With the parameter here considered, we simulate a plasma with plasma beta $\beta_{ih} \sim 1.2$ in the magnetosheath side and $\beta_{ip} \sim 0.05$ in the magnetosphere side. These values are compatible with those commonly observed in these regions, e.g., $\beta_{ih} \sim 2.4$ and $\beta_{ip} \sim 0.27$ [Cassak and Fuselier, 2016]. Two current sheets are configured at $y_1 = \frac{1}{4} L_y = 10 \ d_i$ and $y_2 = \frac{3}{4} L_y = 30 \ d_i$, with a current sheet half thickness $L = 0.5 \ d_i$. The magnetic field and density profiles across the current sheets are shown and described in the supporting information. We simulate two different current sheets to compare two different reconnection mechanisms.

The upper layer (i.e., the one centered at $y_2 = 30 \ d_i$) is described by a continuous hyperbolic function [e.g., Quest and Coroniti, 1981; Pritchett, 2008; Pritchett and Mozer, 2009]. An initial out-of-plane current density is initialized according to $\nabla \times B \ = \ J$. An initial perturbation identical to that used in Lapenta et al. [2010] is set in the middle of the layer to produce a single X-point. In contrast, the lower layer (i.e., the one centered at $y = 10 \ d_i$) is configured as a pure tangential discontinuity under an extremely steep gradient, with the same asymmetric profiles as the upper layer. No current density is initially set, causing this layer to be intrinsically highly unstable and suitable to gain more insights into physics of island coalescence in asymmetric reconnection. No initial perturbation is added to this layer. A strong current density is naturally formed during the very first stages of the simulation to counteract the initial imbalance. The same simulation is carried out with and without an initial guide field $B_g = B_{0x}$.

CAZZOLA ET AL. AGYROTROPY IN ASYMMETRIC RECONNECTION 7841
3. Results

Figure 1 shows four different quantities in the two current sheets at $\omega_{ce} \cdot t \sim 21$, for the case with no guide field (left-hand panels) and the case with guide field (right-hand panels).

As already pointed out in Cazzola et al. [2015], at this time step the upper layer features a typical asymmetric reconnection site [e.g., Pritchett, 2007, 2008; Cassak and Shay, 2007; Swisdak et al., 2003]. Meanwhile, the lower layer has rapidly evolved in the formation and growth of several magnetic islands, which in time progressively coalesce.

A first analysis is carried out in a frame of reference based upon the local magnetic field direction, as suggested in Goldman et al. [2015]. The parallel and perpendicular directions are identified as follows:

$$\hat{e}_|| \cdot \mathbf{B} \times \hat{e}_|| = 0$$
$$\hat{e}_{1_2} = \mathbf{B} \times \hat{e}_z$$
$$\hat{e}_{2_1} = \mathbf{B} \times \hat{e}_{1_2} = -\hat{e}_z \mathbf{B}^2 + \mathbf{B} (\hat{e}_z \cdot \mathbf{B}).$$

(1)

Figures 1a–1h display the departure from the initial electron isotropy and gyrotropy by plotting the ratio $\frac{n_{1_2}}{n_{1_1}}$ and $\frac{T_{1_2}}{T_{1_1}}$ (T is the electron temperature). As $\frac{n_{1_2}}{n_{1_1}}$ and $\frac{n_{1_1}}{n_{1_2}}$ are very similar, the latter is not plotted here. The $\frac{T_{1_2}}{T_{1_1}}$ and $\frac{T_{1_1}}{T_{1_2}}$ ratios give a quick information on the anisotropy and agyrotropy based on the simulation frame (notice the z dependence in equations (1)). Quantities A_X [Scudder and Daughton, 2008, panels i–l] and \sqrt{Q} [Swisdak, 2016, panels m–p] are instead computed to be independent of the simulation frame. As A_X varies between 0 and 2, here the range is normalized to $[0, 1]$ for a better comparison with the quantity \sqrt{Q}, which ranges $[0, 1]$.

One can see that some regions are highlighted in all the panels in the case without guide field, such as the upper separatrices in the single reconnection point, the lower separatrices in the lower current sheet and, to a lesser extent, the reconnection exhausts (i.e., at $x \sim 14$ and $y \sim 29.5 \, \text{d}$) of the single X-point. These regions then show both anisotropic and agyrotropic behavior. Some other regions are instead only highlighted by $\frac{T_{1_1}}{T_{1_2}}$, A_X, and \sqrt{Q} and not seen in $\frac{n_{1_2}}{n_{1_1}}$, including the following: (1) the separatrices bordering the weaker field side, (2) the inflow region from the stronger field side (i.e., $x \sim 20, y \sim 30.5 \, \text{d}$), and (3) the particular outflow observed between the islands near $x \sim 37 \, \text{d}$ in the lower current sheet. The reason is that \hat{e}_{1_2} is, by definition, in the simulation plane, but \hat{e}_{2_1} is perpendicular to both \hat{e}_{1_1} and \mathbf{B}. Hence, when \mathbf{B} is mostly in the plane (as it preferentially happens in the case without guide field as opposed to the case with guide field), the perpendicular to \mathbf{B} plane is nearly perpendicular to the simulation plane also. $\frac{T_{1_1}}{T_{1_2}}$ shows the projection of temperature agyrotropy in the simulation plane. Thus, when $B_z = 0$, $\frac{T_{1_1}}{T_{1_2}}$ captures some, but not all, of the agyrotropic regions. A_X and \sqrt{Q} do a better job. Notice also that A_X and \sqrt{Q} are quite similar in the case without guide field.

Remarkable differences are identified in the case with guide field. The quantities A_X, \sqrt{Q}, and $\frac{T_{1_1}}{T_{1_2}}$ show a different agyrotropic behavior in some peculiar regions. Examples are at separatrices, which are highlighted both in $\frac{T_{1_2}}{T_{1_1}}$ and A_X plots, but very weakly displayed in \sqrt{Q}, and the area within the magnetic islands, which are more powerfully marked by the quantity \sqrt{Q} than A_X. Given the importance of separatrices in magnetic reconnection [e.g., Lapenta et al., 2015, 2016], this difference is of fundamental importance for satellite observations. One can notice that the areas within the islands highlighted by \sqrt{Q} show a clear similarity with the anisotropy regions highlighted by $\frac{T_{1_2}}{T_{1_1}}$ (Figures 1b and 1d). This fact can be explained because in the formula for \sqrt{Q} the parallel pressure is accounted, while A_X is constructed considering only the plane perpendicular to the local magnetic field. This is also the reason why the A_X and $\frac{T_{1_1}}{T_{1_2}}$ metrics show, in general, more similar results than \sqrt{Q} in $\frac{T_{1_1}}{T_{1_2}}$ and A_X parallel pressure is not considered. Also, in the case with guide field, the $\hat{e}_{1_1} - \hat{e}_{2_1}$ plane considered in $\frac{T_{1_1}}{T_{1_2}}$ and the perpendicular plane used in A_X mostly superimpose.

Interesting is the analysis of the X, D, and M regions mentioned earlier, which can help distinguish the three regions during satellite observations. In Cazzola et al. [2015], X and D regions were identified by comparing
Figure 1. Plot of T_1/T_2, $A\chi$, and \sqrt{Q} for the two current sheets at $t \sim 21\omega_0^{-1}$, for the case (a, c, e, g, i, k, m, and o) with no guide field and (b, d, f, h, j, l, n, and p) with guide field. Black boxes indicate the domains considered for the phase-spaces.
the $\frac{I_{11}}{I_{22}}$ and $\frac{I_{12}}{I_{22}}$ plots with the corresponding plots of the single X-point. M regions were instead identified with the reconnection exhaust flowing out from an observed island merging. Here a similar analysis is performed for the case with guide field. By observing Figures 1d and 1h, we notice that all the reconnection sites resemble the traces depicted in Figures 1b and 1f, with the only exception of the domain between $x \sim 35$ and $40 \, d_i$, which shows an opposite behavior. The latter is typical of a D region, so it can be identified accordingly. However, the upward moving quadripolar structure seen in the D regions in Cazzola et al. [2015] and here visible in the case with no guide field (e.g., at $x \sim 15 \, d_i$ in Figure 1g) is no longer observed with guide field. Moreover, the agyrotropic structures seen in the plasmoid centers are also absent.

In light of the upcoming satellite observations, we show the electron phase-space for the domains marked with a black box in Figure 1. Two different sets of electron phase-spaces are shown in Figure 2, respectively, for the case without guide field (Figures 2a1 – 2n1) and with guide field (Figures 2a2 – 2n2). Each box (which is not to scale for a clearer representation), represents a physical domain of $0.12 \times 0.12 \, d_i$, as a compromise between exact localization (which would require a smaller bin) and lack of noise in the representation. Notice that the same box number corresponds to comparable features in the case without and with guide field. Domains 1, 2, and 3 correspond to X, D, and M regions for guide field values. Domain 4 represents the situation at the outflow of the M regions. Domain 5 represents the situation at the separatrices. Finally, Domains 6 and 7 study the situation, respectively, in the O-point and the inner region within a magnetic island. Box numbers are replicated over all the plots for a better readability. To represent velocity, we introduce the coordinate system $\mathbf{V} = V_{||}\hat{b} + V_{\perp}\hat{\Omega}$, where \hat{b} is the magnetic field direction and $\hat{\Omega}$ is the direction in the perpendicular plane. We plot the velocity distribution in the $V_{||} - V_{\perp}$ and $V_{\perp} - \theta$ plane, where $\theta \in [-\pi, \pi]$ is the angle between the direction \hat{e}_θ and V_{\perp} in the plane normal to \hat{b}. Figure S2 in the supporting information gives a visual representation of how θ is calculated and why it spans the $[-\pi, \pi]$ range. Alongside these plots, we represent the phase-spaces in the same regions in the $V_{||} - V_{\perp}$ plane for a direct comparison (panels ending with cross in Figure 2). The color scale in Figure 2 indicates the logarithm of the number of particles over the infinitesimal volume-velocity domain.

Regions of type X, Domains 1, show a very remarkable agyrotropy for both the case with no guide field (Figure 2b1), and, less marked, with guide field (Figure 2b2), as expected [Hesse et al., 2016; Chen et al., 2016]. Additionally, in the case without guide field we notice the presence of a crescent-shape velocity distribution in the $V_{\perp} - \theta$ plane (Figure 2b1+). The same is not seen clearly in the case with guide field (Figure 2b2+), although expected [Hesse et al., 2016; Chen et al., 2016; Burch et al., 2016]. This effect is probably due to the presence of a relatively strong guide field, which tends to dampening the particles agyrotropic behavior, by smearing out any possible crescent outcome. The latter also explains the lower agyrotropic rate observed in Figure 2b2 compared to the case without guide field in Figure 2b1. Finally, the case with guide field shows a relevant particle anisotropy (panel Figure 2a2), noticeable also from the $\frac{I_{||}}{I_{\perp}}$ plot. In the case with guide field, only the metric \sqrt{Q} shows a relevant agyrotropy, mostly extended from the left outflow, whereas the trace in A_X results very moderate. We explain this effect with the particle anisotropy in the computation of \sqrt{Q}.

The situation in the D regions, Domains 2, are similar with and without guide field (Figures 2c1 – 2c2 and 2d1 – 2d2). The flat-top velocity distribution typical of these regions [Cazzola et al., 2015] appears even more remarked in the case with guide field, associated with a strong anisotropy. The same agyrotropic features are detected in A_X and \sqrt{Q}.

Interesting is the situation in the M regions, i.e., Domains 3. The velocity distributions in Figures 2f1 and 2f2 do not show any relevant agyrotropic features in neither case. The algorithms $\frac{I_{12}}{I_{11}}$, A_X, and \sqrt{Q} for the case with no guide field also do not show any agyrotropy. However, the case with guide field is slightly different. While a null agyrotropy value is predicted by algorithms $\frac{I_{12}}{I_{11}}$, A_X, and \sqrt{Q} instead indicates that certain agyrotropy is present close to the merging point. We believe that this effect can be explained by the presence of a strong parallel component in the region, as confirmed by $\frac{I_{||}}{I_{\perp}}$. \sqrt{Q} shows that the electron distribution is not isotropic. With the help of A_X and the phase-spaces, we understand that the lack of isotropy is mostly driven by a strong anisotropy, which, however, does not exclude a moderate agyrotropy be present. Concerning the M regions, we analyze their vertical reconnection outflow in Domains 4. In the case without guide field we observe all the quantities to highlight the presence of a strong agyrotropy, also confirmed by
Figure 2. Set of electron velocity distributions for the domain pointed out with black boxes in Figure 1. Color scale indicates the number of particles, in logarithmic scale, over the infinitesimal volume-velocity domain. Panels ending with 1 describe the case with no guide field, while those ending with 2 the case with guide field. Over the axis $V_{\|}$, $V_{\perp} = \sqrt{V^2 - V_{\|}^2}$ and θ as explained in the text. Finally, panels ending with cross represent phase-space in the $V_{\perp_1} - V_{\perp_2}$ plane.
the corresponding phase-space (Figure 2h1). In the case with guide field, a clear reconnection outflow is not seen, stressing the atypical behavior being held during the island merging in presence of a strong guide field.

We formerly mentioned that the main difference between \(A\chi \) and \(\sqrt{Q} \) lies in the case with guide field at the separatrices and within the islands. The separatrix is studied in Domain 5, while Domains 6 and 7 focus on the situation within the magnetic islands. From Figures 2j1 and 2j2, we observe that in the case without guide field, the separatrix shows a very moderate agyrotropy, similar to what pointed out by \(\sqrt{Q} \). In the case with guide field, the agyrotropy is much better highlighted in Figure 2j2, which confirms what represented in \(\frac{T_{11}}{T_{12}} \) and \(A\chi \).

Conversely, the quantity \(\sqrt{Q} \) shows a much weaker agyrotropic signature in this region. Finally, the situation within the islands is analyzed in Domains 6 and 7. Domain 6 gives some insight into the island center, i.e., the O-point. In the case without guide field, signatures of agyrotropy are detected by \(\frac{T_{11}}{T_{12}} \) and \(A\chi \) and less remarked in \(\sqrt{Q} \). The phase-space analysis confirms the presence of agyrotropy mainly shown for midenergy electrons (greenish band). Instead, in the case with guide field no agyrotropy is highlighted by either quantities nor is by the corresponding phase-space (Figure 2i2). This indicates that O-points in presence of a strong guide field show a different behavior compared to the traditional case without guide field. Finally, Domain 7 analyzes the agyrotropic patch visible in the case without guide field and already pointed out in Cazzola et al. [2015]. In the case with guide field, the same domain gives information on the inner agyrotropic structure predominantly highlighted in \(\sqrt{Q} \). From Figures 2k1 and 2k2 we observe that an agyrotropic signature is present in the case without guide field, mostly confined for midenergy electrons (yellowish band), while the case with guide field does not show any clear agyrotropy, showing however a remarkable anisotropy.

4. Conclusions

This work presents a systematic comparison of the electron agyrotropic behavior from PIC simulations of asymmetric magnetic reconnection during rapid island coalescence, with particular focus on the \(X, D, \) and \(M \) regions identified in Cazzola et al. [2015]. Cases with and without guide field have been addressed. Three detection algorithms for highlighting agyrotropy have been compared: the ratio between the perpendicular temperature components, the method proposed in Scudder and Daughton [2008], and that in Swisdak [2016] (Figure 1). Additionally, the ratio between the parallel and perpendicular components \(\frac{T_{11}}{T_{12}} \) is used to highlight anisotropic regions. Different regions have been analyzed in terms of the electron velocity phase-space for a helpful comparison with observational data, including the \(X, D, \) and \(M \) regions pointed out in Cazzola et al. [2015] as well as other relevant regions. A new representation method is adopted here to better represent the relation between the velocity perpendicular components \(V_{\perp 1} \) and \(V_{\perp 2} \). The phase-space in the same regions on the \(V_{\perp 1} - V_{\perp 2} \) plane are also plotted in Figure 2. Unlike the \(V_{\perp} - \theta \) representation, the latter seems less suited to highlighting agyrotropy features, except for the case in the \(X \) regions, where important features are particularly detected.

Below we provide a summary description of the main findings for each region analyzed, as well as a brief comment on the performance of the different algorithms compared. Additionally, Table 1 gives a wider and quicker summary of the features.

\textbf{Methodology remarks:} We observe that the ratios \(\frac{T_{11}}{T_{12}} \) and \(\frac{T_{11}}{T_{12}} \) give a quick and reliable initial insight into the anisotropy and agyrotropy. However, these algorithms are simulation-frame dependent, unlike those from such as Scudder and Daughton [2008] and Swisdak [2016].

A noticeable discrepancy is detected between the two metrics \(A\chi \) and \(\sqrt{Q} \) in some regions in the case with guide field. We observe that the detection of \(\frac{T_{11}}{T_{12}} \) is closer to \(A\chi \) than \(\sqrt{Q} \). We interpret this difference as due to a strong relevance of the parallel component. The parallel component is not included in the computation of \(A\chi \), while it enters the calculation of \(\sqrt{Q} \). Since \(\frac{T_{11}}{T_{12}} \) does not consider the parallel component also, \(\frac{T_{11}}{T_{12}} \) and \(A\chi \) are tendentially similar. It is interesting to comment on how similar \(\frac{T_{11}}{T_{12}} \) and \(A\chi \) plots are in the case with and without guide field. In the case with guide field, the presence of a relevant parallel component in the out-of-plane direction makes the plane perpendicular to the magnetic field nearly parallel to the simulation plane. This fact leads the representation of \(\frac{T_{11}}{T_{12}} \) to be particularly similar to \(A\chi \). In the case without guide field, the plane perpendicular to the local magnetic field can take different directions with respect to the simulation plane. Hence, \(\frac{T_{11}}{T_{12}} \) and \(A\chi \) are more different in the case without guide field.
Table 1. Comparison Table Among the Different Detection Algorithms, Including the Velocity Distribution Analysis

Region	Without Guide Field	With Guide Field
Method features	Frame dependent	Frame dependent
Qualitative results	Use for quick assessments	Use for quick assessments
Quantitative results		
Without Guide Field		
Qualitative results	Results similar to both χ_A and \sqrt{Q}	Results similar to both χ_A and \sqrt{Q} in some regions, such as separatrices
Region X (Domain 1)	$T_{\parallel} < T_{\perp}$	
$T_{\parallel,1} > T_{\parallel,2}$		
15%		
10–15%		
Low		
Remarked		
Crescent-shaped distribution		
on $V_{\parallel,1} - V_{\parallel,2}$ plane	$T_{\parallel} < T_{\perp}$	
$T_{\parallel,1} > T_{\parallel,2}$		
5%		
15% only on one side		
Low		
Remarked		
Double beam		
Flat-top distribution		
Region D (Domain 2)	$T_{\parallel} > T_{\perp}$	
$T_{\parallel,1} > T_{\parallel,2}$		
15%		
15%		
Remarked		
Remarked	$T_{\parallel} > T_{\perp}$	
$T_{\parallel,1} > T_{\parallel,2}$		
15%		
15%		
Double beam		
Remarked		
Region M (Domain 3)	$T_{\parallel} \sim T_{\perp}$	
$T_{\parallel,1} \sim T_{\parallel,2}$		
Not detected		
Not detected		
Low		
Not detected	$T_{\parallel} > T_{\perp}$	
$T_{\parallel,1} > T_{\parallel,2}$		
10%		
5–10%		
Low		
Remarked		
Magnet		
Medium for midenergy electrons		
Region M—Outflow (Domain 4)	$T_{\parallel} < T_{\perp}$	
$T_{\parallel,1} \sim T_{\parallel,2}$		
15%		
15%		
Relevant for slow electrons		
Medium	$T_{\parallel} < T_{\perp}$	
$T_{\parallel,1} \sim T_{\parallel,2}$		
10–15%		
Relevant for slow electrons		
Low		
Separatrix (Domain 5)	$T_{\parallel} < T_{\perp}$	
$T_{\parallel,1} \sim T_{\parallel,2}$		
15%		
15%		
Relevant for slow electrons		
Low	$T_{\parallel} > T_{\perp}$	
$T_{\parallel,1} > T_{\parallel,2}$		
10%		
5–10%		
Low		
Remarked		
Magnet		
Medium for midenergy electrons		
Magnetic Island	$T_{\parallel} > T_{\perp}$	
$T_{\parallel,1} < T_{\parallel,2}$		
15%		
5–10%		
Low		
Remarked		
Magnet		
Medium for midenergy electrons	$T_{\parallel} > T_{\perp}$	
$T_{\parallel,1} > T_{\parallel,2}$		
10%		
5–10%		
Low		
Remarked		
Magnet		
Medium for midenergy electrons		
Center—O-point (Domain 6)	$T_{\parallel} < T_{\perp}$	
$T_{\parallel,1} \sim T_{\parallel,2}$		
Not detected		
Not detected		
Low		
Not detected	$T_{\parallel} > T_{\perp}$	
$T_{\parallel,1} > T_{\parallel,2}$		
10–15%		
Relevant for slow electrons		
Medium		
Magnetic		
Not detected		
Magnetic Island—Inner patch (Domain 7)	$T_{\parallel} < T_{\perp}$	
 $T_{\parallel,1} < T_{\parallel,2}$
 15%
 5–10%
 Low
 Remarked
 Magnet
 Medium for midenergy electrons | $T_{\parallel} > T_{\perp}$
 $T_{\parallel,1} > T_{\parallel,2}$
 10–15%
 Relevant for slow electrons
 Low
 Magnetic
 Not detected |

aQuantities $\frac{T_{\parallel}}{T_{\perp}}, T_{\parallel,1}, A_X$, and \sqrt{Q} are described quantitatively; the distributions are described qualitatively as not detected, low, medium, and remarked.
We now focus on specific regions.

Separatrices: The agyrotropy in the separatrices is differently represented in the case with guide field. Separatrices are weakly highlighted in \sqrt{Q} compared to A_y. This is probably due to the parallel component accounted in the computation of \sqrt{Q}. The velocity distributions analysis confirmed the presence of a clear agyrotropic behavior along the separatrices in Domain 5 for the case with guide field in Figure 2j1. However, the separatix in Domain 5 in the case without guide field shows a very moderate agyrotropy (Figure 2j1), in line with the prediction of \sqrt{Q}.

X regions: These regions are present in both the cases with and without guide field. A relevant agyrotropy is observed in both the cases (Figures 2b1 and 2b2). The strong anisotropy drives a detection of nongyrotropy from the \sqrt{Q} metric. A_y does not show agyrotropy (Figure 1). Interestingly, the analysis of the phase-space on the $V_{\perp,1} - V_{\perp,2}$ plane shows a crescent shape in the case without field. However, the same is not seen in the case with guide field, as instead expected [Hesse et al., 2016; Chen et al., 2016].

D regions: Signatures of D regions are observed also in the case with guide field. The agyrotropy in these regions is well represented by all the models. The velocity distributions additionally reveal agyrotropy in the cases with and without guide field (Figures 2d1 and 2d2). The first case shows a strong anisotropy and the typical flat-top velocity distribution pointed out in Cazzola et al. [2015] (Figure 2c1 and 2c2).

M regions and outflow: M regions are found in the cases with and without guide field. While the only noticeable agyrotropy is revealed by \sqrt{Q} for the case with guide field, velocity distributions show no presence of agyrotropy in either case. A remarked anisotropy is observed in these regions for the case with guide field. We attribute the signature in \sqrt{Q} to this latter. Domain 4 has been considered to analyze the reconnection outflow from the M regions. In the case without guide field, a sharp agyrotropy trace is highlighted by all the quantities and further confirmed by the corresponding phase-space (Figure 2h1). The same domain with guide field instead does not show any agyrotropy signature, neither from the detection algorithms nor from the phase-space.

Magnetic islands: The agyrotropic behavior within magnetic islands has been studied in Domains 6 and 7. In particular, Domain 6 represents the typical O-point. In the case without guide field, $T_{\perp,1}$, A_y, and \sqrt{Q} all show an agyrotropic signature in the center of the islands, even though with a different degree. This agyrotropy is confirmed by the velocity distribution in Figure 2i1. The same domain with guide field instead does not show any relevant agyrotropy nor it does in the phase-space. This effect suggests that the O-points in the case with strong guide fields tend to behave differently than when a guide field is absent. Concerning the case with guide field, we observe important differences between A_y and \sqrt{Q} within the islands: while A_y detects a moderate agyrotropy only around specific closed magnetic field lines, \sqrt{Q} shows a more extended agyrotropic region within the islands (Figures 11 and 1p). Domain 7 intends to analyze this situation. In the case without guide field, it represents the situation at the agyrotropic patch already observed in Cazzola et al. [2015]. The presence of agyrotropy is confirmed by all the algorithms, as well as the corresponding phase-space (Figure 2n1). In the case with guide field, the corresponding phase-space shows that no relevant agyrotropy is present in this region.

Acknowledgments
The present work is supported by the NASA MMS grant NN008A064G. Additional support for the KU Leuven team is provided by the European Commission DEEP-ER project, by the Onderzoeksfonds KU Leuven (Research Fund KU Leuven), and by the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office (IAP P7/08 CHARM).
M.E.I. is funded by the FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen) postdoctoral fellowship reference 1205215N. The simulations were conducted on the Pleiades supercomputer of the NASA Advanced Supercomputing Division (NAS), on the Discover supercomputer of the NASA Center for Climate Simulation (NCCS), on the computational resources provided by the PRACE Tier-0 framework, and on the Flemish Supercomputing Center (VSC-VIC3). The data produced by the simulations are stored in HDF5 format on the NASA-NAS data servers.

References
Aunai, N., M. Hesse, and M. Kuznetsova (2013), Electron nongyrotropy in the context of collisionless magnetic reconnection, Phys. Plasmas, 20(9), 92903.
Burch, J., T. Moore, R. Torbert, and B. Giles (2014), Magnetospheric Multiscale overview and science objectives, Space Sci. Rev., 199, 5–21.
Burch, J., et al. (2016), Electron-scale measurements of magnetic reconnection in space, Science, 352(6290), aaf2939.
Cassak, P., and S. Fuseller (2016), Reconnection at Earth's dayside magnetopause, in Magnetic Reconnection, pp. 213–276, Springer, Switzerland.
Cassak, P., and M. Shay (2007), Scaling of asymmetric magnetic reconnection: General theory and collisional simulations, Phys. Plasmas, 14(10), 102114.
Cazzola, E., M. E. Innocenti, S. Markidis, M. V. Goldman, D. L. Newman, and G. Lapenta (2015), On the electron dynamics during island coalescence in asymmetric magnetic reconnection, Phys. Plasmas, 22(9), 92901.
Chen, L.-J., M. Hesse, S. Wang, N. Bessho, and W. Daughton (2016), Electron energization and structure of the diffusion region during asymmetric reconnection, Geophys. Res. Lett., 43, 2405–2412, doi:10.1002/2016GL068243.
Drake, J., M. Swisdak, H. Che, and M. Shay (2006), Electron acceleration from contracting magnetic islands during reconnection, Nature, 443(7111), 553–556.
Goldman, M., D. Newman, and G. Lapenta (2015), What can we learn about magnetotail reconnection from 2D pic Harris-sheet simulations?, Space Sci. Rev., 199, 651–688.
Hesse, M., Y.-H. Liu, L.-J. Chen, N. Bessho, M. Kuznetsova, J. Birn, and J. L. Burch (2016), On the electron diffusion region in asymmetric reconnection with a guide magnetic field, Geophys. Res. Lett., 43, 2359–2364, doi:10.1002/2016GL068373.
Innocenti, M. E., A. Johnson, S. Markidis, J. Amaya, J. Deca, V. Olshevsky, and G. Lapenta (2016), Progress towards physics-based space weather forecasting with exascale computing, Adv. Eng. Software, doi:10.1016/j.advengsoft.2016.06.011, in press.

Lapenta, G., S. Markidis, A. Divin, M. Goldman, and D. Newman (2010), Scales of guide field reconnection at the hydrogen mass ratio, Phys. Plasmas, 17(8), 08106.

Lapenta, G., S. Markidis, A. Divin, D. Newman, and M. Goldman (2015), Separatrices: The crux of reconnection, J. Plasma Phys., 81(1), 332810109.

Lapenta, G., R. Wang, and E. Cazzola (2016), Reconnection separatrices: Simulations and spacecraft measurements in Magnetic Reconnection: Concepts and Applications, edited by W. Gonzalez and E. Parker, pp. 315–344, Springer, Switzerland, doi:10.1007/978-3-319-26432-5_8.

Markidis, S., G. Lapenta, and R. Uddin (2010), Multi-scale simulations of plasma with iPIC3D, Math. Comput. Simul., 80(7), 1509–1519.

Oka, M., T.-D. Phan, S. Krucker, M. Fujimoto, and I. Shinohara (2010), Electron acceleration by multi-island coalescence, Astrophys. J., 714(1), 915–926.

Pritchett, P. (2007), Kinetic properties of magnetic merging in the coalescence process, Phys. Plasmas, 14(5), 052102.

Pritchett, P. (2008), Collisionless magnetic reconnection in an asymmetric current sheet, J. Geophys. Res., 113, A06210, doi:10.1029/2007JA012930.

Pritchett, P. and F. Mozer (2009), Asymmetric magnetic reconnection in the presence of a guide field, J. Geophys. Res., 114, A11210, doi:10.1029/2009JA014343.

Quest, K. B., and F. V. Coroniti (1981), Tearing at the dayside magnetopause, J. Geophys. Res., 86(A5), 3289–3298.

Scudder, J., and W. Daughton (2008), “Illuminating” electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy, J. Geophys. Res., 113, A06222, doi:10.1029/2008JA013035.

Swisdak, M. (2016), Quantifying gyrotrety in magnetic reconnection, Geophys. Res. Lett., 43, 43–49, doi:10.1002/2015GL066980.

Swisdak, M., B. Rogers, J. Drake, and M. Shay (2003), Diaphragmatic suppression of component magnetic reconnection at the magnetopause, J. Geophys. Res., 108(A5), 1218, doi:10.1029/2001JA005404.