Spectroscopy of 28Na: shell evolution toward the drip line

A. Lepailleur,1 K. Wimmer,2,3,4 A. Mutschler,5 O. Sorlin,1 V. Bader,6 C. Bancroft,3 D. Barofsky,3 B. Bastin,1 T. Baugher,6 D. Bazin,6 V. Bildstein,7 C. Borcea,8 R. Borcea,8 B. A. Brown,9 L. Caceres,1 A. Gade,6 L. Gaudrefroy,9 S. Grévy,10 G. F. Grinyer,1 H. Iwasaki,6 E. Khan,5 T. Kröll,1 C. Langer,4 A. Lemasson,1,6 O. Lidoo,1 J. Lloyd,3 F. Negroita,8 F. de Oliveira Santos,1 G. Perdikakis,3,4 F. Recchia,6 T. Redpath,3 T. Roger,1 F. Rotaru,8 S. Saenz,5 M.-G. Saint-Laurent,5 D. Smalley,4 D. Sohler,12 M. Stanoiu,8 S. R. Strober,6 J.C. Thomas,1 M. Vandenbroucke,5 D. Weisshaa,6 and A. Westerberg3

1Grand Accélérateur National d’Ions Lourds (GANIL),
CEA/DSM - CNRS/IN2P3, B. P. 55027, F-14076 Caen Cedex 5, France
2Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
3Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
4National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
5Institut de Physique Nucléaire, IN2P3-CNRS, F-91406 Orsay Cedex, France
6Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, 48824-1321, USA
7Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
8IFIN-HH, P. O. Box MG-6, 76900 Bucharest-Magurele, Romania
9CEA, DAM, DIF, F-91297 Arpajon, France
10Centre d’ Études Nucléaires de Bordeaux Gradignan-UMR 5797, CNRS/IN2P3, Université de Bordeaux 1, Chemin du Solarium, BP 120, 33175 Gradignan, France
11Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
12Institute of Nuclear Research of the Hungarian Academy for Sciences, P. O. Box 51, Debrecen, H-4001, Hungary

Excited states in 28Na have been studied using the β-decay of implanted 28Ne ions at GANIL/LISE as well as the in-beam γ-ray spectroscopy at the NSCL/S800 facility. New states of positive ($J^\pi=3,4^+$) and negative ($J^\pi=1-5^-$) parity are proposed. The former arise from the coupling between $0d_{5/2}$ protons and a $0d_{3/2}$ neutron, while the latter are due to couplings with $1p_{3/2}$ or $0f_{7/2}$ neutrons. While the relative energies between the $J^\pi=1-4^+$ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between 26F and 30Al. This points to a possible change in the proton-neutron $0d_{3/2}$-$0d_{5/2}$ effective interaction when moving from stability to the drip line. The presence of $J^\pi=1-4^-$ negative parity states around 1.5 MeV as well as of a candidate for a $J^\pi=5^-$ state around 2.5 MeV give further support to the collapse of the N=20 gap and to the inversion between the $0f_{7/2}$ and $1p_{3/2}$ levels below Z=12. These features are discussed in the framework of Shell Model and EDF calculations, leading to predicted negative parity states in the low energy spectra of the 26F and 28O nuclei.

PACS numbers: 21.60.Cs, 23.20.Lv, 27.30.+t

I. INTRODUCTION

The first appearance of a magic shell was proposed more than 30 years ago for the neutron magic number N=20. This discovery arose from the combined works on atomic masses1, nuclear radii2 and nuclear spectra3,4 of nuclei around 32Mg. This discovery was later confirmed by complementary measurements on the reduced transition probability values B(E2;0+ \rightarrow 2+)5, on the quadrupole and magnetic moments6, as well as on the neutron knock-out cross sections7, to quote a few. Theoretically the works of Refs.8,11 described this onset of collectivity at N=20 as due to the combination of a shell gap reduction and the excitations of particles from the normally occupied orbital to the first orbital of the upper shell. These excitations lead to a significant increase of correlations, eventually bringing the intruder configuration from the upper shell below the normal configuration. The nuclei for which the ordering of the intruder and normal configurations is inverted belong to the so-called 'Island of Inversion'10. Their configurations are often strongly mixed.

The shell evolution of neutron orbits as a function of the proton number is illustrated in Fig.1 for the N=20 isotones. This figure has been elaborated with the monopole proton-neutron interactions obtained in the shell model approach of Ref.11 that include the few experimental observations made at that time. At Z=8, the neutron 0d$_{3/2}$, 1p$_{3/2}$ and 0f$_{7/2}$ orbits are unbound, the N=20 is weaker than the N=16 gap, and the ordering of the 1p$_{3/2}$ and 0f$_{7/2}$ orbits is reversed compared to what is observed in the valley of stability. While filling the proton 0d$_{5/2}$ orbit from Z=8 (28O) to Z=14 (34Si), the N=20 gap increases as the N=16 gap is reduced. After Z=14, the filling of the 1s$_{1/2}$ and 0d$_{3/2}$ proton orbits keeps the N=20 gap unchanged between Z=14 and Z=20. The formation of the N=20 shell gap, as well as the inversion between the neutron 0f$_{7/2}$ and 1p$_{3/2}$ orbits are profound structural changes in the shells that
The N=20 gap is small. In addition, the works of [18–20] have proven that the N=16 shell gap is large at Z=8, while Ref. [24] suggests that the N=16 gap somehow persists at Z=10 in 26Ne, as witnessed by its vibrational behavior.

The best way to extract information about the aforementioned monopole and multipole parts of the nuclear interaction is therefore to study odd-odd nuclei in the N=17 isotones. The coupling of protons and neutrons in the $d_{5/2}$ and $d_{3/2}$ orbits will lead to $J^π=1^-\,4^+$ states in the 30Al, 28Ne, and 26F isotones that span from near stability to the neutron drip line. In a similar manner, the coupling of the protons in the $d_{5/2}$ orbit with neutrons in the $1p_{3/2}$ orbit leads to $J^π=1^-\,4^+$ (J$^π=1^-\,6^-$) negative parity states in the same nuclei. However such studies are tedious as several experimental methods are often required to produce all the states of these multiplets for nuclei that are not so easily produced at radioactive ion beam facilities. The first J=1–4 positive parity states in 30Al have been obtained recently using the Gammasphere array [24]. Negative parity states are proposed from 2.29 MeV on, but they were assumed to originate from the neutron $f_{7/2}$ orbital. In 26F three different experimental techniques were required to study the bound J$^π=2,4^+$ states [25] and the unbound J$^π=3^+$ state [28]. So far there is no evidence of negative parity states in 26F below the neutron emission threshold of 1.070(62) MeV [25]. As for the 28Na nucleus, there are only candidates for the J$^π=1^-$ and J$^π=2^+$ states that were derived from a previous β-decay study of 28Ne [29]. The present study aims at determining the energy of the missing J$^π=3^+$ and J$^π=4^+$ states and providing information on the presence of negative parity states in 28Na to confirm the lowering of the $1p_{3/2}$ and $0f_{7/2}$ orbits toward Z=8. To achieve these goals two complementary experimental techniques were required. We first repeated the β-decay experiment of 28Ne at the GANIL/LISE facility with a larger statistics as compared to [29] and we secondly used the in-beam spectroscopy technique at the NSCL/MSU facility to detect the γ-rays of 28Na in the GRETINA Ge detector array [30] produced in the neutron and proton removal reactions from 31,32Mg.

II. β-DECAY EXPERIMENT

A. Experimental technique

The 28Ne nuclei were produced at the GANIL facility through the fragmentation of a 77.6 A MeV 36S$^{16+}$ beam with an intensity of 2 μAe on a 237 mg/cm2 Be target. Nuclei of interest were selected by the LISE [31] spectrometer, in which a wedge-shaped Be degrader of 1066 μm was inserted at the intermediate focal plane. They were identified from their energy losses in a stack of three 500 μm Si detectors and from their time-of-flight referenced to the cyclotron radio frequency. The spectrometer set-up was optimized for 26F, but a fraction of the 28Ne ions were also transmitted at a rate of 10 pps, corre-
sponding to 22% of the implanted nuclei shown in Fig. 2. A total of 3.24×10^6 28Ne nuclei were implanted in a 1 mm-thick double-sided Si stripped detector (DSSSD) composed of 256 pixels (16 strips in both the X and Y directions) of 3×3 mm2 located at the final focal point of LISE. β-particles were detected in the same strip of the DSSSD as the precursor nucleus 28Ne.

Four Ge detectors of the EXOGAM array [32] surrounded the DSSSD to detect the γ-rays with an efficiency of 6.5(3)% at 1 MeV. A total β-efficiency of 60(1)% has been determined from the comparison of the intensity of a given γ-ray belonging to the decay of 28Ne gated or not on a β-ray. A Si-Li detector of 5 mm thickness was placed downstream of the DSSSD for three purposes: i) to ensure that the 28Ne ions were implanted in the DSSSD and not passing through it, ii) to discriminate very light particles in the beam that pass through the telescopes and iii) to determine the β energy threshold in each strip using the coincidence with the β-particles detected in Si-Li detector.

B. Beta-decay scheme of 28Ne

The upper (bottom) spectrum of Fig. 3 displays the γ-ray energy spectrum obtained with a β-particle correlated in space and time up to 40 ms (between 120 and 1000 ms) after the implantation of a 28Ne precursor. Owing to the short lifetime of 28Ne (see below), the transitions from Fig. 3 belonging to its β-decay are more intense in the upper (blue) spectrum, while those caused by daughter decays or other implanted nuclei are dominating the bottom (red) spectrum. Consistent half-lives values of $T_{1/2}=18.2(5)$ ms and $18.6(2)$ ms are found from the β-decay time spectrum of 28Ne gated on the 863 keV and 2063 transitions seen in Fig. 3 respectively. These values are also in accordance with $T_{1/2}(^{28}\text{Ne}) = 18.4 (5)$ ms derived in Ref. [29].

The level scheme shown in the left part of Fig. 8 is established from β-gated γ-γ coincidences following the implantation of a 28Ne nucleus. Based on their direct β-decay feeding from the 0^+ ground state of 28Ne and Gamow-Teller β-decay selection rules, we propose a $J^π=1^+$ spin parity value to the states at 2714, 2118 keV and to the ground state of 28Na. The β feedings to the 28Na ground state as well as to unbound states (leading to the β-delayed neutron emission) are derived from the intensities of the observed lines seen in Fig. 3 populating excited states in the 28Mg and 27Mg nuclei, respectively. They agree with the experimental feedings determined in Ref. [29] for most of the states, including for unbound states. As shown in Fig. 8, these β feedings compare reasonably well with shell model calculations. However, as for the β-decay of 26Ne [33] the feeding of only three of the four predicted 1^+ states is observed in the β-decay of 28Ne below the neutron separation energy.

With the exception of the 3231 keV and 3457 keV transitions, all the transitions belonging to the 28Ne decay to 28Na observed in [29] are observed here. With β feedings of $\simeq 2\%$ for the 3231 keV and 3457 keV transitions given in Ref. [29], they should have been seen in our data with a confidence level of 10 σ. As the spatial correlation was not used in Ref. [29], it is possible that these γ rays were wrongly assigned to the 28Ne decay. We observe two new γ rays at 564(1) keV and 636(1) keV of similar weak intensity that are in mutual coincidence (see Fig. 4) as well as in coincidence with the 863(1) keV γ rays de-exciting the 2118(1) keV level in 28Na. The summed energy of these two γ transitions, 1200(2) keV, matches the energy of the 1200(1) keV transition coming from the decay of the 1255(1) keV to 55.2(5) keV states in 28Na. We therefore propose a new level in 28Na, the placement of which (691(2) keV) was derived using the information obtained in a second experiment described below. The list of states, γ-ray energies and relative intensities observed in the β-decay experiment is given in Table I.

To propose spin parity assignments to the identified

E_1 (keV)	E_1 (keV)	E_γ (keV)	I^{rel} (%)
55	0	55	-
691(1)	55	636(1)	0.3(1)
1131(1)	0	1131(1)	0.2(1)
1255(1)	0	1255(1)	2.7(2)
55	1200(1)	0.5(1)	
691	564(1)	0.3(1)	
1932(1)	0	1932(1)	0.5(1)
2118(1)	0	2118(2)	0.8(1)
55	2063(1)	14.2(12)	
55	863(1)	3.6(3)	
2714(1)	0	2714(2)	0.9(1)
55	2659(1)	0.9(1)	
1131	1583(1)	0.7(1)	
1932	782(1)	1.1(1)	
2118	596(1)	0.6(1)	

a taken from Ref. [29]
states, we start with the fact the ground state of 28Na has $J^\pi=1^+$, which is deduced from its large direct feeding from the 0^+ ground state of 28Ne. The excited state at 55 keV is likely to have $J^\pi=0,2^+$ as a larger spin difference between this 55 keV state and the ground state would have resulted in a long-lived isomer transition neither observed in the β-decay part of our work nor in Ref. [29]. Between the $J^\pi=0,2^+$ candidates, the $J^\pi=2^+$ value seems the most reasonable, considering that the USDA [31] prediction gives the first 2$^+$ state around 100 keV and the first 0$^+$ state at a much higher energy of about 2 MeV. Based on the comparison to shell model calculations and their respective feeding from higher energy states and decay branches to the 55 keV or ground state, the state at 691 keV is a good candidate for $J^\pi=3^+$. Indeed a $J^\pi=3^+$ state mainly decays through an M1 transition to the $J^\pi=2^+$ at 55 keV with a γ-ray of 636 keV rather than through an E2 transition to the $J^\pi=1^+$ ground state. We propose spin parity assignments $J^\pi=3^+_2$ and $J^\pi=2^+_2$ to the states at 1131 keV and 1255 keV from the comparison to shell model calculations as well as from their feeding and decay branching ratios in E2 and M1 transitions. The 1932 keV state likely has a $J^\pi=2^+_2$ configuration as it decays equally to the 1^+ ground state and to the 2^+ state at 55 keV. Most of the states predicted by the shell model calculations using the USDA interaction have their experimental equivalent up to 1255 keV.

III. IN-BEAM γ-RAY SPECTROSCOPY

A. Experimental technique

In-beam γ-ray spectroscopy of the neutron-rich 28Na isotope was performed in a second experiment at the Coupled Cyclotron Facility of NSCL at Michigan State University. The 28Na nuclei were produced in the secondary fragmentation reactions from 31Mg and 32Mg beams impinging at about 95 MeV/u on a 375 mg/cm2 9Be target. In total about $7.7 \cdot 10^5 \gamma -^{28}$Na coincidences were recorded in the two settings together. The outgoing particles were identified based on the time-of-flight and energy-loss measurements using the focal-plane detection system of the S800 spectrograph [35]. Trajectories of recoiling ions were tracked in the S800 using two sets of Cathode Readout Drift Chambers measuring their position and angle values at the focal plane allowing the
reconstruction of their velocity ($\beta \simeq 0.41$) and position at the target. The target was surrounded by seven modules of the GRETINA array [30], each module consisting in four HPGe segmented crystals. Four modules were placed at the most forward angles around 58$^\circ$ and three around 90$^\circ$ to detect γ rays induced by the de-excitation of the nuclei in-flight with an efficiency of about 6% at 1 MeV. The γ-ray detection threshold has been lowered to about 50 keV in order to be able to observe the low-lying transition from the first excited state in 28Na at 55 keV. The threshold and energy resolutions were modeled using the GEANT4 [36] simulation of the GRETINA setup [37]. The 28Na velocity vector and position were used to apply an event-by-event Doppler correction to the γ-ray spectrum of the 28Na nuclei shown in Fig. 5. A γ-ray energy resolution (FWHM) of about 2% at 1 MeV was achieved. The list of γ-ray energies and intensities observed in this experiment is given in Table II.

TABLE II: List of states, γ-ray energies and intensities observed in the in-beam experiment. Systematic uncertainties $\sigma(E)$ of about 3 keV should be considered on the proposed γ-ray energies.

E_1 (keV)	E_1 (keV)	E_γ (keV)	I^{rel} (%)a
55	0	55	380(50)
688	55	633	100(2)
968	55	912	7(1)
688	0	277	52(3)
1131	0	1131	1.9(6)
55	1075	16.6(8)	
1233	0	1233	1.9(6)
55	1177	29(1)	
688	542	8.3(6)	
1255	0	1255	15.7(8)
1353	55	1298	33(1)
1481	0	1481	8.2(8)a
1636	688	948	11.6(8)
1233	403	16.7(7)	
1353	282	10(2)	
1740	55	1694	5.2(7)
1792	0	1792	6.9(9)
1929	0	1929	8.5(9)c
2121	55	2066	8.2(8)c
2378	0	2378	5.2(8)d
2493	965	1527	4(1)
1636	858	14.8(8)	
2605	2605	10(1)d	
2650	2650	7(1)d	
2874	2874	4(1)d	
480	480	5.7(6)d	

anormalized to the 633 keV transition
bplacement uncertain
cplacement based on β decay
dunplaced

The systematic uncertainty for the intensity of the 55 keV transition is particularly large because of the vicinity of the threshold. Additionally, this state exhibits a relatively long lifetime as deduced from its low energy tail. It follows that the Doppler shifted energy measured in GRETINA lies partially below the detection threshold. The lifetime of the 2$^+$ state has been simulated, and the resulting response function has been fitted to the experimental spectrum. This way a lower limit for the lifetime of $\tau > 1$ ns is obtained. An additional constraint on the lifetime can be obtained from the fact that 100% of the 633 keV γ-ray yield has to proceed through the 55 keV transition. Consistent yields in the 633-55 keV coincidence are obtained for simulated lifetimes of $\tau = 1.4(4)$ ns. Shell model calculations using the USDA effective interaction predict the 2$^+$ state at 182 keV. Using the shell model reduced transition probabilities, B(E2) and B(M1) values, for the decay to the ground state, and the experimental transition energy of 55 keV, a theoretical lifetime of $\tau_{theo} = 1.42$ ns is obtained. This validates our assumption of a relatively long lifetime of the 2$^+$ state at 55 keV.

Due to the high detection efficiency of the GRETINA array it was possible to construct $\gamma - \gamma$ coincidence spectra by gating on several transitions. Fig. 6 shows the spectrum observed in coincidence with the 55 keV transition. This spectrum shows which of the observed γ transitions are directly or indirectly populating the first excited state at 55 keV.

FIG. 5: (color on line) Doppler-reconstructed γ-ray energy spectrum obtained from in-beam β-decay spectroscopy of 28Na. The solid green line is the response obtained from the GEANT4 simulation if individual transitions (blue lines) and a continuous background (orange line) are considered. The inset shows the high energy part of the spectrum with in particular the doublet of transitions at 2605 and 2650 keV.

B. Level scheme of 28Na

The level scheme of 28Na as well as tentative spin assignments derived from this part of the experiment are based on the single γ-ray energy spectrum of Fig. 5. $\gamma - \gamma$ coincidence spectra of Fig. 6 and 7 as well as γ branching ratios from Table I. Two almost overlapping γ transitions are present at 277 and 282 keV. The 633(3) keV γ-ray is compatible with the 636(1) keV γ-ray observed in the β-decay experiment. As the 564(1) keV γ-ray...
found in the β-decay experiment is not observed here, it is placed above the 636(1) keV transition. The 277(1) keV γ-transition is in coincidence with the 636 keV one. As the intensity of the latter is larger, it is placed below the 277 keV transition, establishing a new state at 968(3) keV as seen in Fig. 8. A tentative $J^\pi=4^+$ assignment is proposed for this level as it mainly decays by a 277 keV γ-ray to the previously assigned 3^+ state at 691 keV, very weakly to the 55 keV 2^+ state and not to the ground state with $J^\pi=1^+$. With this newly proposed $J^\pi=4^+$ state, all positive parity states but the $J^\pi=0^+$ state that are predicted by the shell model calculations below 2.2 MeV are observed experimentally. As candidates for $J^\pi=0^+$ state are proposed in the following paragraph most of the other states populated in this reaction and shown in the right part of Fig. 8 are proposed to be candidates for intruder states, arising from the neutron fp shells.

A tentative $J^\pi=2^-$ assignment is proposed to the 1233 keV level from the fact that it decays to the $J^\pi=1^+$ ground state and to the $J^\pi=2^+$ state at 55 keV. A $J^\pi=3^-$ assignment is proposed to the 1353 keV level on the basis of its sole decay to the $J^\pi=2^+$ state through a 1298 keV transition. Owing to the fact that the 1481 KeV state exclusively decays to the ground state, its spin assignment could be $J=0-2$, providing a good candidate to the missing $J^\pi=0^+$ state. A new level is firmly established at 1636 (2) keV from its observed three γ decay branches 282 + 1298 + 55, 403 + 1177 and 948 + 636 +55 keV. As this level decays to the $J^\pi=3^-$, $J^\pi=2^-$ and $J^\pi=3^+$ states and not to the $J=1,2$ positive parity states at lower energy, it is likely to have $J^\pi=4^-$. Two levels with tentative spin $J^\pi=1^-$ and $J^\pi=2^-$ are proposed at 1749 and 1792 keV, respectively. The level at 1792 keV could as well be a candidate for the $J^\pi=0^+$ state predicted at a similar energy by the shell model calculations. A $J^\pi=5^-$ level is proposed at 2493 keV from
its 858 and 1527 keV γ branches to the previously assigned $J^\pi=4^-\,$ and $J^\pi=1^-\,$ states at 1636 and 968 keV, respectively. Though less probable, a $J^\pi=3^-\,$ assignment cannot be ruled out. Other high energy γ-rays are observed at 2378, 2605, 2650 and 2874 keV. However, their placement in the level scheme is uncertain by 55 keV as there is not enough statistics to ensure that a coincidence with the 55 keV γ-ray is present or not. Finally, the 489 keV γ-ray could not be placed without ambiguity in the level scheme as well.

IV. DISCUSSION

A. Positive parity states along the N=17 isotones

The level scheme of 28Na shown in Fig. 5 has been obtained by combining the results from the β-decay (left part) and in-beam γ spectroscopy (right part) experiments. The middle part of the spectrum displays transitions that were common to the two experiments. The two new levels with configurations $J^\pi=3^-\,$ and $4^-\,$ complete the quadruplet of $J^\pi=1^-\,$ states resulting from the $\pi d_{5/2} \otimes \nu d_{3/2} \,$ coupling in 28Na. Added to the recently discovered $J^\pi=1^-\,$ states at low energy in the N=17 isotones of 26F 25,27,28 and 30Al 29, a systematics of their binding energies as a function of the proton-to-neutron binding energy asymmetry can be obtained and is compared to shell model calculations in Fig. 6. The energy difference between proton and neutron separation energies $S_p-S_n\,$ ranges from 15 MeV in the close-to-drip-line nucleus 26F to 7 MeV in 30Al. For each nucleus the calculated binding energy of the ground state (using the USDA interaction) is taken as the reference value for Fig. 6. The $J^\pi=1^-\,$ states in the 26F nucleus can be described as a proton $\pi d_{5/2}\,$ coupled to a neutron in the $\nu d_{3/2}\,$ on top of a 24O core nucleus. In this particle-particle coupling scheme, the multiplet of states in 26F displays an upward pointing parabola in binding energy value as a function of J as seen in Fig. 6. The present case the amplitude of the parabola scales to a first order with the strength of the residual interaction that splits the different components of the $J^\pi=1^-\,$ multiplet. With the exception of the $J^\pi=3^-\,$ state that is unbound and therefore may need a specific treatment, the ordering of the states in 26F is well reproduced by the USDA interaction but their calculated binding energies are too large by about 200 keV. Even if the $J^\pi=1^-\,$ states in 30Al do not have a pure configuration, they can be viewed as hole-particle coupling ($\pi d_{5/2}^{\perp} \otimes \nu d_{3/2}\,$ states with respect to the full occupancy of the proton $d_{5/2}\,$ orbit. This leads to the downward pointing parabola as a function of J shown in Fig. 6. The amplitude and shape of the parabola is extremely well reproduced using the USDA interaction. However, the calculated absolute binding energies are this time smaller than the experimental values by about 300 keV. The pattern of the binding energy of the $J^\pi=1^-\,$ states in 28Na is intermediate between 26F and 30Al owing to the fact that the $d_{5/2}\,$ orbit is only half-filled. The spectrum of 28Na is well reproduced by the calculations. It is worth to notice here that a similar shift in binding energy is observed along the N=17 isotones when using the USDB interaction. However such calculation proved to be less precise, predicting the binding energy of the $J^\pi=4^-\,$ state wrong by about 600 keV in 26F and 400 keV in 30Al and a $J^\pi=2^+\,$ ground state of 28Na instead of J=1+.

Gathering all results along the N=17 isotonic chain, a systematic deviation between experimental and theoretical binding energies is observed: as compared to experimental values the 26F is over bound, the 28Na is perfectly well reproduced, while the 30Al is under bound. A total shift in energy of about 500 keV is found between these three isotones. Being a global shift in energy of the whole multiplet, this change in binding energy is likely carried by the monopole part of the $\pi d_{5/2} \otimes \nu d_{3/2}\,$ nuclear interaction rather than by multipoles. We propose three reasons that may explain this systematic deviation.

First, on the experimental side, the atomic mass of 26F derived in 35, that has been corrected in Ref. 25 to account for the possible contamination from the 4+ isomeric state, may not be correct. This would account for the shift observed in 26F but not in 30Al. Second, the shell model interaction of 34 does not use an explicit isospin dependence of the Coulomb energy contribution to the binding energy of the nuclei as it should probably be done to account for the change of nuclear radii for a wide range of isotopes. This part is therefore taken only implicitly in the fitting procedure to determine TBME from the experimental data, a feature that can cause some bias in the calculation of the binding energies if the suitable data to constrain this isospin dependent part are not available experimentally or if they are not included in the fitting procedure. Third, the scaling law of the monopole interaction in A−1/3 may not be appropriate, and more realistic interactions should be developed for nuclei spanning over a large proton-to-neutron binding energy asymmetry.

B. Negative parity states in the N=17 isotones

In the odd-even nuclei N=17 isotones, negative parity states 7/2− and 3/2− originating from the 0f7/2 and 1p3/2 orbits have been populated at about 3 MeV through (d,p) reactions: in 33S, the first 7/2− and 3/2− states lie at 2.934 and 3.220 MeV with C2S values of 0.53 and 0.87, respectively 39. In 33Si, C2S values for the first 7/2− and 3/2− at 3.133 and 3.535 MeV are 0.6 and 0.4, respectively 39. Recently, negative parity states have been observed in 29Mg and 27Ne. Their excitation energies are much lower, and their ordering are reversed compared to nuclei in the valley of stability. States with L=1 and L=3 have been populated in 28Mg at energies of 1096 and 1432 keV using the one neutron
FIG. 8: (color on line) The very right part displays shell model predictions using the USDA (WBA-M) interaction for the positive (negative) parity states. The rest shows the experimental level scheme of 28Na derived by adding information from the β-decay of 28Ne (left) and from the in-beam gamma-ray spectroscopy (right). The middle part displays γ-lines that are observed in the two experiments. The energies and uncertainties of the levels are derived from the β-decay when possible (Table I), from the in-beam experiment (Table II), or from a combination of the two experiments otherwise.

FIG. 9: (color on line) Comparison between the experimental binding energies of the $J^\pi=1^+ - 4^+$ states in 30Al [26, 40] (red), 28Na [29, 40] and present work (green), and in 26F [29, 27, 28, 45] (blue) and the USDA shell model predictions (in black, with the g.s. value written for each nucleus). The reference value for each nucleus is the calculated binding energy of the ground state. Experimental binding energy uncertainties for the 30Al, 28Na and 26F ground states are 14, 10 and about 130 keV, respectively.

 knocking-out reaction from 30Mg [41]. Similar L assignments have been proposed to the states at 0.765 (3/2$^-$, L=1) and 1.74 MeV (7/2$^-$, L=3) that are populated in the 26Ne(d,p)27Ne reaction with C2S values of 0.64(33) and 0.35(10), respectively [22]. Globally as protons are removed from the $0d_5/2$ orbit from 31Si, the excitation energy of the two negative parity states 7/2$^-$ and 3/2$^-$ is decreasing relatively to the 3/2$^+$ ground state, and their ordering is reversed around Z=12. It is derived that the N=20 gap between the 0$d_5/2$ and 0$f_7/2$ is collapsing and the traditional N=28 gap between the 0$f_7/2$ and 1$p_3/2$ is upside down. These features have been qualitatively attributed to the hierarchy of the proton nuclear forces in Ref. [13]. In the odd-odd nuclei such as 28Na, multiplet of negative parity states $J^\pi=1^-, 2^-, 3^-$ and 4 are expected to be formed by the proton-neutron coupling $0d_5/2$-$1p_3/2$ and $0d_5/2$-$0f_7/2$, respectively. The present observation of tentatively assigned negative parity states $J^\pi=5^-$ at 2496 keV (calculated at 2867 keV) is in accordance with the presence of the $0f_7/2$ orbit at relatively low energy at Z=10 [22]. Actually the J=1-4 negative parity states are systematically more bound than predictions by about 300 keV, hinting at a possibly stronger proton-neutron $0d_5/2$-$1p_3/2$ interaction than calculated. The tentatively assigned $J^\pi=5^-$ state at 2496 keV (calculated at 2867 keV) is in accordance with the presence of the $0f_7/2$ orbit about 1 MeV above...
the 1p_{3/2} orbit, as proposed in 27Ne \[22\].

C. Evolution of nuclear structure toward drip-line

In order to understand the evolution of the 1p_{3/2} orbit and of the N=20 gap toward the neutron drip line, configuration-interaction (CI) calculations have been carried out with a Hamiltonian called WBA. It is the same as the WBP Hamiltonian from \[22\], but the older USD sd-shell Hamiltonian \[43\] part has been replaced by the more recent USDA Hamiltonian \[34\] that was used in the previous section to calculate the energy of positive-parity states. The required basis to model the N=17 isotones is the full (1s0d) for positive parity states with a core of 16O. Moreover it allows for one neutron to be excited to the (1p0f) valence space for negative parity states. While this basis can be used for low-lying negative-parity states in 25O, 26F or 27Ne, the dimension of the calculation is at the limit for 28Na and too large for 29Mg and 31Si. Such calculations might be possible in the future.

The WBA interaction is used to calculate the energies of negative-parity states in 27Ne. As they are too high by 0.4 MeV, the single-particle energies of the 1p-0f shell orbitals have been modified by 0.4 MeV, leading to the WBA-M interaction. In Table III excitation energies of low-lying negative-parity states are given for the N=17 isotones that the model can handle. As used to constrain the WBA interaction, the spectroscopy of 27Ne is well reproduced. Negative parity states are present at low energy in 28Na, as found experimentally. The wave functions of the first J_{π}=1^{-} are composed by 60-75% of a neutron in the 1p_{3/2} and by 20-30% of a neutron in the 0f_{7/2} orbital, the remaining weak fraction being distribution in the 1p_{1/2} and 0f_{5/2} orbitals. All calculated negative parity states in 26F lie above the neutron emission threshold of S_{n} = 1.070(62) MeV \[25\], a feature that agrees with the observation of only two bound excited states of positive parity in this nucleus. In 25O, the 3/2^{-} is expected to lie only 493 keV above the 3/2^{+} resonance \[19\]. The three negative-parity states 3/2^{-}, 7/2^{-} and 1^{-} in 25O have large 24O+n spectroscopic factors. With the proximity in energy between the 3/2^{+} and 3/2^{-} states in 25O, 26O likely contains a significant amount of negative parity contribution in its ground and first excited states. The reliability of this extrapolation far from stability depends on the confirmation of spin assignments of negative parity states in 28Na, on the possibility to model higher Z isotones in this large valence space, as well as on the possibility to observe of negative parity states in 26F in the future.

The present shell evolution towards the neutron drip line is made in an Harmonic Oscillator basis in which bound and unbound states are treated on the same footing. Therefore we look at trends of ESPE in the framework of energy density functional (EDF) calculations that do not use a Harmonic Oscillator basis. The single-particle energies obtained with the Skx \[44\] and Skxtb

TABLE III: Excitation energies of some low-lying negative-parity states obtained with the WBA-M Hamiltonian are compared to experimental values. Note that the spin assignments of the highest energy states in 28Na are tentative, see text and Fig. 8 for details.

Nucleus	J^{π}	E_{x} (MeV)	E_{x} (MeV)
		theory	experiment
25O	3/2	0.493	
	1/2	1.898	
	7/2	2.611	
26F	4^{-}	1.339	
	2^{-}	1.384	
	1^{-}	1.952	
	3^{-}	2.485	
27Ne	3/2	0.825	0.765
	7/2	1.710	1.74
	1/2	1.834	
28Na	2^{-}	1.552	1.233
	3^{-}	1.715	1.353
	4^{-}	1.888	1.636
	1^{-}	2.100	(1.749)
	2^{-}	2.341	(1.792)
	3^{-}	2.821	
	0^{-}	2.836	
	5^{-}	2.867	2.493
for Z=14 since the Skxtb tensor interaction for protons and neutrons cancel for the doubly jj closed shells in 28Si. From Z=14 to Z=8 protons are removed from the 0d$_{5/2}$ orbital. The tensor interaction between the 0d$_{5/2}$ protons and the 0d$_{3/2}$ neutrons increases to its maximum for Z=8. This increases the ESPE of the 0d$_{3/2}$ orbital and makes it unbound at Z=8. It also decreases the ESPE of the 0f$_{7/2}$ orbital. Thus, in the EDF model the N=20 shell gap at Z=8 is reduced due to a combination of the tensor-interaction effect for the 0d$_{1/2}-0f_{7/2}$ ESPE spacing and the weak binding effect for the 0d$_{3/2}-1p_{3/2}$ ESPE spacing.

The ESPE have been evaluated for the WBA-M interaction at Z=8 and Z=14 by restricting the neutron core to have a $(0d_{5/2})^6(1s_{1/2})^2$ neutron configuration. The CI and EDF (Skxxtb) results are compared in Table IV. Results are relatively close for 24O. But the CI shell gap for 30Si is larger than with EDF, explaining the earlier observation that states in 28Na are calculated at too high energy (see Table IV).

V. SUMMARY

The spectroscopy of 28Na has been investigated by means of the β-decay of 28Ne at GANIL/LISE and the in-beam γ spectroscopy through the fragmentation of 31,32Mg beams at NSCL/S800. New positive parity states with $J^e=3^+$ and 4^+ are proposed at 691 and 968 keV, respectively, while new negative parity states are proposed at 1233, 1353, 1636 and 2493 keV with likely spin assignments $J^e=2^-$, 3^-, 4^- and 5^- respectively. Other negative parity states are tentatively proposed at 1481, 1749 and 1792 keV, the spin and parity assignments of which is more uncertain. Using these complementary methods all components belonging to the multiplet of states $J^e=1-4^+$ arising from the proton-neutron 0d$_{5/2}-0d_{3/2}$ coupling have been discovered. With the recent studies of the same multiplet of states in the 26F and 30Al isotones, the evolution of the binding energy of the $J^e=1-4^+$ multiplet has been compared to shell model predictions using the USDA interaction. While the relative energies of the $J^e=1-4^+$ states are well reproduced with the USDA interaction in the N=17 isotones, a systematic global shift in binding energy by about 500 keV is observed when moving from the valley of stability in 30Al to the drip line in 26F. The origin of this change may arise from a change in the proton-neutron 0d$_{5/2}-0d_{3/2}$ effective interaction when exploring large proton to neutron binding energy asymmetry. Other possible reasons are proposed as well in the text.

The presence of a multiplet of negative parity states $J^e=1-4^-$ around 1.5 MeV, likely arising from the $\pi d_{5/2}-\nu p_{3/2}$ coupling, as well as a tentative observation of a $J=5^-$ state around 2.5 MeV, likely arising from the $\pi d_{5/2}-\nu f_{7/2}$ coupling, confirm the collapse of the N=20 gap and the inversion between the neutron $f_{7/2}$ and $p_{3/2}$ levels when removing protons in the $d_{5/2}$ orbital toward the drip line. These states are globally more bound than calculated by about 300 keV, a feature that may be due the high dimensionality of the basis or/and to an slightly wrong determination of the effective interactions. These features have been discussed in the framework of Shell Model and EDF calculations, leading to the conclusions that no bound negative parity state would be present in 26F and that the $3/2^-$ ground state and $3/2^+$ first excited states would be separated by only about 500 keV in 25O. It is important in the future to confirm the spin assignments as well as the structure of the proposed negative parity states in 28Na using for instance the 27Na(d,p)28Na reaction.
VI. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation (NSF) under Grant Nos. PHY-1102511, PHY-1306297 and PHY-1404442, by the OTKA contract K100835, the German BMBF (Grant No. 05P12RDFN8) and HIC for FAIR. GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511 (NSCL) and DOE under grant DE-AC02-05CH11231 (LBNL). F. Nowacki is acknowledged for fruitful discussions.

[1] C. Thibault et al., Phys. Rev. C 12, 644 (1975).
[2] G. Hubert et al., Phys. Rev. C 18, 2342 (1978).
[3] C. Détraz et al., Phys. Rev. C 19, 164 (1979).
[4] D. Guillemaud-Mueller et al., Nucl. Phys. A 426, 37 (1984).
[5] T. Motobayashi et al., Phys. Lett. B 346, 9 (1995); H. Iwasaki et al., Phys. Lett. B 522, 9 (2001); B. V. Pritychenko et al., Phys. Rev. C 63, 011305(R) (2000); J.A. Church et al., Phys. Lett. B 74, 054320 (2005); Y. Yanagisawa et al., Phys. Lett. B 566, 84 (2003).
[6] R. Neugart, G. Neyens, Lect. Notes Phys. 700, 135 (2006); M. Kowalska, et al., Phys. Rev. C 77, 034307 (2008); G. Neyens, et al., Phys. Rev. Lett. 94, 022501 (2005); D. Yordanov, et al., Phys. Rev. Lett. 99, 212501 (2007).
[7] J. Terry et al., Phys. Rev. C 77, 014316 (2008).
[8] X. Campi et al., Nucl. Phys. A 251, 193 (1975).
[9] A. Poves and J. Retamosa, Phys. Lett. B 184, 311 (1987).
[10] E.K. Warburton, J. A. Becker and B. A. Brown, Phys. Rev. C 41, 1147 (1990).
[11] Y. Utsuno et al., Phys. Rev. C 60, 054315 (1999).
[12] T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).
[13] O. Sorlin, proceedings of the INPC 2013 conference, Florence, Italy 2013, EPJ Web of Conferences 66, 01016 (2014).
[14] P.G. Thirolf et al., Phys. Lett. B 485, 16 (2000).
[15] M. Stanoiu et al., Phys. Rev. C 69, 034312 (2004).
[16] A. Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000).
[17] E. Becheva et al. Phys. Rev. Lett. 96, 012501 (2006).
[18] C. R. Hoffman et al., Phys. Lett. B 672, 17 (2009).
[19] C. R. Hoffman et al., Phys. Rev. Lett. 100, 152502 (2008).
[20] K. Tshoo et al., Phys. Rev. Lett. 109, 022501 (2012).
[21] W.N. Catford et al., Phys. Rev. Lett. 104, 192501 (2010).
[22] S. M. Brown et al., Phys. Rev. C 85, 011302 (R) (2012).
[23] A. Obertelli, et al., Phys. Lett. B 633, 33 (2006).
[24] J. R. Terry, et al., Phys. Lett. B 640, 86 (2006).
[25] A. Lepailleur et al., Phys. Rev. Lett. 110, 082502 (2013).
[26] D. Steppenbeck et al., Nucl. Phys. A 847, 149 (2010).
[27] M. Stanoiu et al., Phys. Rev. C 85, 017303 (2012).
[28] N. Frank et al., Phys. Rev. C 84, 037302 (2011).
[29] V. Tripathi et al., Phys. Rev. Lett. 94, 162501 (2005); Phys. Rev. C 73, 054303 (2006).
[30] S. Paschalis et al., Nucl. Instr. and Meth. in Phys. Res. A 709, 44 (2013).
[31] R. Anne and A.C. Mueller, Nucl. Inst. Meth. B 70, 276 (1999).
[32] J. Simpson et al., Acta Phys. Hung., New Series, Heavy Ion Physics 11, 159 (2000).
[33] L. Weissman et al., Phys. Rev. C 70, 057306 (2004).
[34] B.A. Brown and W.A. Richter, Phys. Rev. C 74, 034315 (2006).
[35] D. Bazin et al., Nucl. Instr. and Meth. in Phys. Res. B 204, 629 (2003).
[36] S. Agostinelli et al., Nucl. Inst. Meth. A 506, 250 (2003).
[37] L. A. Riley, UCGretna, unpublished.
[38] B. Jurado et al., Phys. Lett. B 649, 43 (2007).
[39] Evaluated Nuclear Structure Data File (ENSDF), Brookhaven National Laboratory, http://www.nndc.bnl.gov/ensdf/.
[40] M. Wang et al., Chinese. Physics C 36, 1603 (2012).
[41] J. R. Terry et al., Phys. Rev. C 77, 014316 (2008).
[42] E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).
[43] B. A. Brown and B. H. Wildenthal, Ann. Rev. of Nucl. Part. Sci. 38, 29 (1988).
[44] B. A. Brown, Phys. Rev. C 58, 220 (1998).
[45] B. A. Brown, T. Duguet, T. Otsuka, D. Abe and T. Suzuki, Phys. Rev. C 74, 061303(R) (2006).
[46] I. Hamamoto, Phys. Rev. C 76, 054319 (2007).
[47] H. Sagawa, B. A. Brown and H. Esbensen, Phys. Lett. B309 1, (1993).
[48] C. R. Hoffman, B. P. Kay and J. P. Schiffer, Phys. Rev. C 89, 061305(R) (2014).