Degradability, *in vitro* fermentation parameters and kinetic degradation of diets with increasing levels of forage and chitosan

Amanna Gonzaga Jacaúna*, Rafael Henrique de Tonissi e Buschinelli de Goes*, Leonardo de Oliveira Seno*, Luis Carlos Vinhas Ítavo‡, Jefferson Rodrigues Gandra†, Nayara Gonçalves da Silva*, Douglas Gabriel Anschau*, Raquel Tenório de Oliveira*, Leilson Rocha Bezerra§, Ronaldo Lopes Oliveira‖

*Federal University of Grande Dourados. Faculty of Agricultural Sciences. Rod. Dourados-Itahum, km 12. POBox 364. 79804-970, Dourados – Mato Grosso do Sul. Brazil.
‡ Federal University of Mato Grosso do Sul. Faculty of Veterinary Medicine and Animal Science, Av. Senador Felinto Muller, 2443, 79070-900. Campo Grande, Mato Grosso do Sul. Brazil
† Federal University of the South and Southeast of Pará. Department of Animal Science, 68555-016. Marabá, Para. Brazil
§Federal University of Campina Grande, Center for Rural Health and Technology, Avenida Universitária, Jatobá, 58708110, Patos, Paraíba. Brazil.
‖Federal University of Bahia, Department of Animal Science, Av. Adhemar de Barros, 500, Ondina, 40170110, Salvador, Bahia, Brazil.
*Corresponding author: rafaelgoes@ufgd.edu.br
Abstract

Chitosan is the second most important natural biopolymer in the world, extracted from crustaceans, shrimps, and crabs; and can modulate rumen fermentation. Our hypothesis is that the addition of chitosan alters the fermentation patterns of different diets for ruminants. This study aimed to evaluate the effects of different levels of chitosan and forage on in vitro dry degradation kinetics and fermentation in a gas production system. The chitosan levels (0, 1625, 3500 or 7500 mg/kg of DM) were arranged in a completely randomized block design, and for in vitro ruminal fermentation assay we used a split splot arrangement. Into the incubator, all chitosan levels were distributed in the four jars, and the forage levels varying on 100, 65, 50, 35 and 20 on DM basis. Chitosan and roughage levels interaction effect (P≤0.05) on IVDMD; IVOMD, IVDCP and IVDNDF. Chitosan negatively affected IVDMD in all roughage levels evaluated. The pH and ammonia concentration present effect only for roughage levels and incubation hours. The chitosan didn’t change (P=0.3631) the total short-chain fatty acid concentration (overall mean = 21.19 mmol/L) and the C2:C3 ratio (overall mean = 5.85). The IVDCP showed the same decreasing quadratic behavior (P<0.0001). The increasing chitosan addition increases (P<0.0001) the gas production and decreases the (P<0.0001) the lag time (parameter C) of diets with greater concentrate participation, characterizing greater efficiency in the degradability of the diet, confirming its potential use in diets for ruminants. Chitosan changes in vitro dry degradation kinetics and fermentation at the minimum dose of 1722 mg/kg DM for all diets. The roughage level influenced the in vitro nutrients degradability and cumulative gas production.

Additional keywords: digestibility, ruminal digestion, ruminant nutrition
Introduction

Chitosan is a natural polysaccharide derived from the deacetylation of chitin which is a component of the invertebrate exoskeletons (insects, crustaceans and mollusks) and cell walls of some fungi and algae (Senel et al., 2004). It is a non-toxic, biodegradable biopolymer with great potential for applications in medicine and food preservation and for its antimicrobial property (Shahidi et al., 1999; Jeon et al., 2002) against bacteria, fungi and yeasts (Sudarshan et al., 1992; Fang et al., 1994). In the last decades, the use of this polymer has grown significantly due to its bioactivity and biocompatibility, and because it is a renewable and biodegradable source, representing great opportunity for the scientific and industrial community (Belanche et al., 2016a). However, it is necessary to know the levels of chitosan to be inserted in the diet of animals (Hirano et al., 1990).

Goiri et al. (2009a) and Li et al. (2013) evaluating chitosan in vitro and indicated its possible use as a modulatory additive to ruminal fermentation in order to improve propionate and altered the feed efficiency of ruminant animals. Chitosan could cause a reduction of the fibrolytic bacteria (predominantly Gram-positive) along with the increase of the amylolytic (predominantly Gram-negative) bacteria and the amylolytic activity, thus supporting the idea that the mode of action of chitosan is based on the electrostatic interaction with the cell wall of bacteria (Sudarshan et al., 1992).

In vitro studies show negative effects of chitosan on the degradability of DM and NDF in forage-based diets (Wencelova et al., 2014), this effect is associated with the adverse effects of chitosan on cellulolytic protozoa; but Belanche et al. (2016b) have demonstrated negative effects on cellulolytic bacteria such as Fibrobacter, Butyrivibrio and Ruminococcus and Eubacterium. The hydrolysis of chitosan by bacterial amylases may favor its use as a source of energy, altering the bacterial population and the final products of the fermentation (Wu, 2011).
Chitosan is a non-toxic and a biodegradable biopolymer, therefore, we hypothesized that addition of chitosan alters the fermentation patterns of different diets for ruminants. The objective of this work is to evaluate the effect of chitosan levels as a modulatory additive of \textit{in vitro}, fermentation and degradability of nutrients in diets with different roughage levels.

\textbf{Materials and methods}

\textit{Ethical considerations and study location}

The \textit{In vitro} degradability experiment (trial 1 and 2) were conducted at the Laboratory for the evaluation of oilseed by-products, at the Center of Research Laboratories in Agroenergy and Environmental Conservation (LAPAC/FINEP) and the chemical analyses were conducted at Laboratory of Animal Nutrition, Faculty of Agrarian Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul. The total gas production and ruminal fermentation kinetics (trial 3), were conducted in a Laboratory of Applied Nutrition of the Federal University of Mato Grosso do Sul, Faculty of Veterinary Medicine and Animal Science, Campo Grande, Mato Grosso do Sul. These trials were conducted in accordance with the recommendation’s the Ethics Committee on Animal Experimentation in this institution, (approval protocol: 023/2015 CEUA/UFGD).

\textbf{Chitosan and diets}

Chitosan (CHI) (> 85% deacetylation, viscosity: 50 cPs at 20°C, LVt 31,11.7% torque) was used from Polymar Company® (Ceará State, Brazil), presents a 91.60%DM, 0.27% of ash and 39.41%CP; and added in the concentrations of 0, 1625, 3500 or 7500 mg/kg of DM. Tifton 85 hay (\textit{Cynodon} spp) was used as the only forage, being evaluated five different diets consisting of different levels (100, 65, 50, 35, 20%); and concentrated (maize, 60%, soybean meal, 35% and mineral mixture, 5% - Table 1). Mineral mixture contained per kg active elements: 120 g Ca, 88 g P, 75 mg I, 1300 mg Mn, 126 g Na, 15 mg Se, 12 mg Se, 3630 mg Zn, 55 mg Co, 1530 mg Cu, and 1800 mg Fe.
Animals and rumen fluid

The ruminal fluid (4.0 L) was collected at morning from two Jersey cattle (350 ± 6.86 kg), provided with ruminal cannula, grazing *Urochloa brizantha* (syn *Brachiaria*), and receiving only mineral supplementation. Collected rumen digesta was processed in a blender and filtered through 4 layers of cheesecloth into a warm (39°C) insulated flask, and purged with CO₂.

The buffer solution, consisting of solution A and B, was prepared with the following reagents: Solution A (g L⁻¹) composed of: 10.0 g potassium dihydrogen phosphate (KH₂PO₄); 0.5 g magnesium sulfate (MgSO₄·7H₂O); 0.5 g Sodium chloride (NaCl); 0.1 g calcium chloride dehydrate (CaCl₂·2H₂O); 0.5 g urea. Solution B (g/100 mL) was composed of: 15.0 g sodium carbonate (Na₂CO₃) and 1.0 g sodium sulfide (Na₂S·9H₂O). The solutions were mixed in the ratio 1:5 reaching pH 6.8 at the constant temperature of 39°C (Silva and Queiroz, 2002; Camacho et al., 2019).

In vitro degradability experiment (trial 1)

In vitro degradability was determined according to a methodology described by Tilley and Terry (1963) modified by Holden et al. (1999); using two *in vitro* incubators (TE-150-Teclal®, São Paulo, Brazil). The treatments evaluated were arranged in a randomized complete block design (three blocks), were each block have two repetition, in subdivided factorial arrangements with roughage levels (Roughage: concentrated – R:C) at 100:0, 65:35, 50:50, 35:65, 20:80 and chitosan were added in the concentrations of 0, 1625, 3500 or 7500 mg/kg of DM, in the jar. Each jar contained a dose of chitosan and all R:C in a total of 22 bags, four replicates for each R:C and two blank bags.

Preparation of the non-woven bags (TNT-100 g/cm²), 5.0 × 5.0 cm (0.5 g DM) was performed as described by Casali et al. (2008). The jars remained in the artificial rumen for 48 h under continuous agitation. After that period, the fermentative phase was stopped and 40
mL of hydrochloric acid (6N HCl) and eight grams of pepsin (Sigma 1:10000) were added, as described by Holden (1999).

Samples were pre-dried in a forced-ventilation oven at 55°C for 72 h. Then, samples of ingredients were ground in a Wiley knife mill with a sieve size of 3 mm. The samples were stored in plastic jars with lids, labelled, and subjected to analyses to determine their Dry matter (DM; method 967.03), Ash (method 942.05, ignition at 600°C for 2 h), Organic matter (OM = 100-ash), Crude Protein (CP, Nx6.25; method 981.10) content according to AOAC (1990). Fractions of neutral detergent fiber (NDF) were determined according to Van Soest et al., (1991), using a fiber determiner (TE-149 - Tecnal® Piracicaba – Brazil).

In vitro dry matter degradability (IVDMD), organic matter (IVOMD), neutral detergent fiber (IVNDFD), and crude protein (IVCPD) were obtained by calculating the difference between the nutrient concentration in the sample before and after incubation. The degradability coefficients (DC) were determined from the equation: CD = [(P1 – (P2 – B))/P1] × (100), where: P1 = initial weight of the sample; P2 = Sample weight after in vitro degradability; B = correction of the blank bag.

pH, ruminal ammoniacal nitrogen and short chain fatty acids (trial 2)

To determine ruminal fermentation parameters: pH, ruminal ammoniacal nitrogen (N-NH₃) and short chain fatty acids (SCFA), caps were fitted with a three-way system to allow the collection of buffered rumen fluid and a Büssem valve to release gases produced during fermentation. In each vial was weighed 10 g sample from each diet, together with 1600 mL buffer solution and 400 mL rumen inoculum. Jars were kept in an environment at 39°C under continuous stirring for 10 h incubation.

The rumen fluid (40 mL) of collections were performed, in triplicate, shortly after incubation (time "0"), and at the time 2, 4, 6, 8 and 10 h, using a syringe and the three-way...
tap installed in the cap of each jar. Values of pH were measured immediately after the collection by means of a portable digital pH meter (Instrutherm®, pH-1500, São Paulo, Brazil), and for the determination of ammonia nitrogen, a 20 mL aliquot was separated, which was fixed with 1 mL H₂SO₄ 1: 1, stored in a glass with polyethylene lid, identified for further analysis. Determination of the levels of NH3-N was carried out according to the INCT-CA N-007/1 method, described by Detmann et al., (2012).

For the determination of short chain fatty acids (SCFA), another 20 mL aliquot was used, in which the samples were allocated in test tubes and destined to centrifugation for 10 min, 10°C and 3000 × g. From these samples, 2.0 mL of the supernatant were removed and transferred to other test vials, where 400 μL of formic acid (88%) was added per tube and again centrifuged for 10 min, 10°C and 3000 rpm.

The samples were analyzed in a Gas Chromatograph (Mark SHIMADZU, model GC-2014) with automatic injector model AOC-20i. T Injector = 200°C; T Column = 80°C/3 min to 240°C (20°C/min); Column = HP INNOWax - 19091N (30 m long, 0.32 mm ID, 0.50 m film); T Detector = 250°C; Detector = Flame Ionization; Injected volume = 1 μL; Drag gas = Nitrogen; Drag gas flow = 3.18 mL/min; Split rate = 15.

Total gas production and ruminal fermentation kinetics (trial 3)

For the determination of the total gas production and the parameters of the kinetics of rumen fermentation, we used a chitosan levels according Dias et al. (2017). An experiment was carried out in a completely randomized design with a factorial arrangement 6 × 5, considering roughage levels (100: 0, 80:20, 65:35, 50:50, 35:65, 20:80), and five doses of chitosan (0, 400, 800, 1200, 1600 mg/kg DM), in triplicates.

The *in vitro* automatic technique, was conducted using the same procedures as described in trial 1; using flasks with a capacity of 250 mL, with addition of 1.0 grams of the volumetric sample: concentrate in 100 mL of the buffer solution, 25 mL of ruminal inoculum
and purged with CO\textsubscript{2}. For each incubation two flasks were used as blank, containing only ruminal inoculum and buffer solution, in order to adjust the pressure values.

The increase in pressure produced inside the flasks during incubation was measured in pounds per square inch (psi) using the automatic RF - Gas Production System (Ankom® Technology Corp., Fairport, NY, USA) system. The gas pressure inside the vials was recorded by pressure sensors located on the bottle caps or modules, which transferred the information from each vial by means of a coordinating base connected to a computer, at 5 min intervals, totaling 216 readings during 48 h incubation.

The data obtained from gas production were measured in psi and transformed to moles of gas by means of the ideal gas equation: $n = VP / RT$, where n = amount of gas in moles; V = volume of gas occupied in liters; P = pascal pressure (KPa); T = Kelvin temperature (°K); R = gas constant (8.314472 kPa x L x K-1 mol-1).

Subsequently, the moles were converted in mL of gas produced (V) under normal conditions of temperature and pressure (CTP) using the following equation: $V = n RT/P$. The following reference values of the CTP conditions were used: 273.15°K (0°C) and 101 325 Pa (1 atm = 760 mmHg). To calculate the gas production in mL, the corrected pressure of the flasks, the atmospheric pressure of the region (96,538 kPa) and the atmospheric pressure under normal conditions (101,325 kPa) were used, this being the value of P.

In determining the extent and rate of gas production due to food degradation, we used an exponential bicompartamental logistic model proposed by Pell et al. (1994): $y = [A/(1 + \text{Exp.}[2 + 4 \times B \times (C - T)]) + D/(1 + \text{Exp.}[2 + 4 \times E \times (C - T)])]$, which y = Total volume of gas at time T (extent of degradation); A and D = gas volume (mL) of the rapid degradation fractions (soluble sugars and starch) and slow digestion (cellulose, hemicellulose), respectively; B and E = rates of degradation of the fast and slow digestion fractions (/h), respectively; and C = time of colonization of the bacteria.
Statistical Analysis

The computer program R (R Core Team 2014) was used to analyze the data obtained in the experimental tests. The data related to the in vitro degradability variables of DM, CP, OM, and NDF were adjusted by means of covariance analysis for the incubation effect. After the adjustments, the data were submitted to exploratory analyzes to eliminate the existence of outliers and the bases of analysis of variance (linearity, homocessance and error normality). After the preliminary analysis, analyzes of variance, using p>0.005; were performed following the statistical model:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + e_{ij} + \gamma_k + (\alpha\beta)_{ij} + e_{ijk} \]

where: i = 1, ..., a; j = 1, ..., b; k = 1 ..., r, where \(Y_{ijk} \) = variables studied (DM, CP, OM, and NDF); \(\mu \) = general mean of the response variable, \(\alpha_i \) = effect of the \(i^{th} \) chitosan concentration; \(\beta_j \) = effect of \(j^{th} \) block (incubation effect); \(e_{ij} \) = effect of the error associated with the parcel (ij); \(\gamma_k \) = effect of the \(k^{th} \) roughage level ; \((\alpha\beta)_{ij} \) = effect of the interaction of the \(i^{th} \) chitosan concentration with the \(k^{th} \) roughage level ; \(e_{ijk} \) = effect of the error associated with the subplot (ijk). For the analyzes of variance the procedure psub2.dbc of the ExpDes.pt package was used (Ferreira et al., 2013); in the computational environment R (R Core Team, 2014). The means were compared by the Tukey test.

Significant interactions (CHI: RC) have been dismembered and isolated effects were evaluated through polynomial regressions models of chitosan within each forage levels, and forage levels within each chitosan level.

Ruminal parameters (pH, N-NH₃ and SCFA), trial 2; were collected for each experimental unit, following a sequence of measurements over time. In the case of this study, the assumption of the use of ANOVA was verified by means of the Mauchly sphericity test, in which the covariance matrix satisfies the HF condition (nonsignificant sphericity test) subdivided parcel form. Thus, the following statistical model was adopted:
$$Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \gamma_k + \omega_l + (\alpha\omega)_{il} + (\beta\omega)_{jl} + (\alpha\beta\omega)_{ijl} + e_{ijkl}$$

where: $i = 1, ..., a; j = 1, ..., b; k = 1, ..., n_i; l = 1$, where $Y_{ijkl} = \text{the ruminal variables studied (pH, N-NH}_3\text{ and SCFA)}; \mu = \text{general mean of the response variable; } \alpha_i = \text{effect of the } i^{th} \text{ chitosan concentration; } \beta_j = \text{effect of the } j^{th} \text{ roughage level; } (\alpha\beta)_{ij} = \text{effect of the interaction of the } i^{th} \text{ chitosan concentration with the } j^{th} \text{ roughage level; } \gamma_k = \text{effect of the error associated with the plots; } (\omega{l}) = \text{effect of } l^{th} \text{ time of collection; } (\alpha\omega)_{il} = \text{effect of the interaction of } i^{th} \text{ chitosan level with } l^{th} \text{ of collection time; } (\beta\omega)_{jl} = \text{effect of the interaction of the } j^{th} \text{ roughage level with } l^{th} \text{ of collection time; } (\alpha\beta\omega)_{ijl} = \text{effect of triple interaction of the } i^{th} \text{ chitosan concentration with the } j^{th} \text{ roughage level, and } l^{th} \text{ of collection time, } e_{ijkl} = \text{effect of errors associated with any observation.}$

The statistic used to test the sphericity of the matrix model was the Mauchly - W test (1940), as well as the corrections of the number of degrees of freedom, GG - Geisser and Greenhouse (1958) and HF - Huynh and Feldt (1970). The statistics to test the hypothesis of absence of the effects of chitosan levels, volumetric ratio levels:concentrate, time and their interactions, for the multivariate case were Lambda de Wilks, Pillai Trait, Lawley-Hotelling Trait and Larger Root characteristic of Roy. All analyzes were performed using the ANOVA procedure of the computational car package (Fox and Weisberg, 2011), where the parameters i data and i design were used to specify the time factor in the model.

For the trial 3, the kinetic parameters of the ruminal fermentation through the gas production technique, were submitted to preliminary analyzes, followed by the analysis of variance following the statistical model:

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + e_{ij}$$

where: $Y_{ijk} = \text{variables responses (kinetic parameters of ruminal fermentation), } \mu = \text{average overall response variable; } \alpha_i = \text{effect of the } i^{th} \text{ chitosan concentration; } \beta_j = \text{effect of the } j^{th} \text{ roughage level; } (\alpha\beta)_{ij} = \text{effect of the interaction } i^{th} \text{ chitosan concentration with the } j^{th}$
roughage level; eij = error effect associated with the sub-portion (ij). For the analysis of variance was used the procedure of fat2.dic ExpDes.pt package (Ferreira et al. 2013); in the computational environment R (R Core Team, 2014).

Results

There was an interaction between the chitosan and roughage level (CHI × RC; P < 0.001); for dry matter (Figure 1a; 1b) and crude protein (Figure 1c; 1d) degradability.

There was effect (P < 0.001), and a linear decrease in IVDMD (Y = 80.31 - 2.7x, \(r^2=0.81 \)) for chitosan doses and an increase, as the levels of roughage were reduced (Y = 52.91 + 6.88x; \(r^2 = 0.93 \)). For the forage levels (R:C) 100:0 and 65:35, the maximum degradability of 59.7 and 72.8 was obtained at the chitosan concentration of 1578 and 1867 mg/kg of DM, respectively, according to the equations derived from the data.

There was a quadratic function of the DIVCP in the R:C of 50:50, 35:65 and 20:80, with a minimum degradability point of 35.27, 29.45, 24.75, at the levels of 3945, 1933 and 4415 mg/kg of DMS, respectively, according to the equations derived from the data. At the 100:0 and 65:35 R:C, the degradability averages were statistically equal.

There was no interaction effect, but the effect of the main factors in the IVDMO and IVDNDF was observed, in which the R:C presented a linear increasing effect for IVDMO (P = 0.047; Y = 51.91 + 7.88x; \(r^2=0.92 \)) and quadratic effect for chitosan doses (P < 0.001) by IVDNDF (Y = 52.44 +11.36x – 3.03 x^2; \(r^2=0.97 \)).

pH was effect by time and time*R:C, were both rejected by all tests (Table 2), and at time * CHI was only rejected by the Roy Maximum Root test; for the parameter N-NH₃, only the hypothesis that tests time was rejected by all tests, with time * R: C and time * R:C * CHI only being rejected by Roy's maximum root. This rejection indicates, by the hypothesis of parallelism, that at least a combination of R: C ratio and time interacts in a dependent way for the parameters.
There was a significant effect of time \((P<0.0001)\) and the forage levels \((R: C)\) \((P=0.0067)\) for ruminal pH data (Table 3). Thus, we compared the means of the R:C within each time. The R:C 65:35 showed pH values closer to neutrality (pH 7), while the 100:0 R:C presented the lowest values range to neutrality.

Significant effect was observed for the time \((P<0.0001)\) and the time×R:C interaction \((P=0.0010)\) for the N-NH\(_3\) data. The concentrations of ruminal ammonia presented a quadratic increase for all R:C ratios (Figure 2).

There was a non-significant effect of chitosan and roughage levels \((R:C)\) for molar concentrations of short fain fatty acids acetic \((C2)\), propionic \((C3)\), butyric, isobutyric, isovaleric, valeric, C2:C3 ratio and total short fatty acids in mmol/L (Table 4 - \(P=0.3631\)).

There was a significant effect of chitosan levels \((P<0.001)\) for production of fast gas fraction (parameter A), lag time (parameter C), and a production of slow gas fraction (D) and cumulative gas production \((A + D)\). The R:C levels affect \((P < 0.001)\) the parameters A, C, D, E and cumulative gas production; and the interaction of the factors \((P < 0.001)\) presents significance for parameters A, C, D, E and A + D (Table 5). Chitosan \((P < 0.001)\) affect the cumulative gas production for different R:C (100:0; 35:65 and 20:80), and linearly the 50:50 R: C.

Discussion

Diets composed exclusively of roughage tend to have a lower IVDMD with the use of chitosan, compared to diets with a higher proportion of concentrate. Thus, the present study is in agreement with the studies conducted by Wencelová et al. (2014), who found that chitosan tends to decrease IVDMD in high forage diets.

Chitosan has an adverse effect on the rumen cellulolytic population, affecting the microbial ecosystem of the rumen through cellulolytic bacteria for high diets forage (Wencelová et al., 2014). Belanche et al. (2016a) demonstrated the effects of chitosan on
cellulolytic bacteria such as *Fibrobacter*, *Butyrivibrio* and *Ruminococcus* and *Hemicellulolytic* bacteria (*Eubacterium*).

Changes in the composition of the diets, mainly in NDF and CP, as the increasing inclusion of concentrate reduces NDF and increases CP, improving nutrient degradability. The same reduction was also observed in previous studies with chitosan levels (1625, 3500, 7500 mg/kg DM) and diets with corn silage and diets with different R:C (Goiri et al., 2009a; Goiri et al., 2009b).

Chitosan could cause a reduction of the fibrolytic bacteria (predominantly Gram-positive) along with the increase of the amylolytic (predominantly Gram-negative) bacteria and the amylolytic activity, thus supporting the idea that the mode of action of chitosan is based on the electrostatic interaction with the cell wall of bacteria (Sudarshan et al., 1992). Alternatively, the potential for hydrolysis of chitosan by amylases (Wu, 2011) could also promote proliferation of these bacteria capable of using chitosan as an energy source (for example, amylolytic bacteria) leading to changes in the structure of the bacterial community and the products of fermentation. Belanche et al. (2016a) demonstrated these effects are correlated with the total of bacteria and can be compensated by the low abundance of cellulolytic bacteria. Thus, it was observed a more evident action in the IVDMD of diets containing a greater proportion of concentrate, when compared to diets containing only roughage.

The inclusion of chitosan leads to a reduction in the IVCPD regardless of the use of concentrate, however, with the maximum dose of 7500 mg/kg DM of chitosan, the IVCPD tends to increase. The inclusion of chitosan had no effect on N-NH$_3$, however Belanche et al. (2016b) pointed out that chitosan increases ammonia concentration two hours after feeding. However, degradation of the amine group (R-NH$_2$) in ammonia may explain the higher concentrations of ammonia (Beier and Bertilsson, 2013) in diets with chitosan. Belanche et
al. (2016b) emphasized that the extra supply of N provided by chitosan deamination and low ammonia retention by ruminal microorganism’s led to higher rumen ammonia peaks, rather than increasing proteolysis of feed.

The structure of chitosan also undergoes losses of nitrogen (amide and amino) groups, which may be indicative of its possible use as non-protein nitrogen for protein synthesis (Fadel El Seed et al., 2003). Goiri et al. (2010), identified the reduction in NH₃-N concentrations by the inclusion of chitosan (136 mg/kg of BW of CHI). The fact that NH₃-N decrease may be indicative of a lower rate of deamination of the CP of the diet by the ruminal microbiota and, consequently, a greater flow of amino acids to the small intestine and better utilization of nitrogen by the tissues (Schelling, 1984). The impact of lower ruminal ammonia rates may cause changes in the population of cellulolytic bacteria, providing negative effects on diets with a higher proportion of forages, which is in line with what occurred in this work.

However, it is important to note that this reduction in ammonia concentration the reduction of amino acid degradation, due to the microbial properties associated with chitosan, or an increase in the use of microbial protein synthesis.

According to Kong et al. (2010), when the pH is below the pka of chitosan, the electrostatic interaction between the polycationic and anionic structures of the surface components of the microorganisms plays an important role in the antibacterial activity. This is because the chitosan molecules become polycationic at a pH below the pka of the molecules (range 6.3 at 6.5) according Lim and Hudson (2004).

In contrast, chelating and hydrophobic effects are responsible for the antibacterial activity of chitosan when the pH of the environment is above the pka of the molecules (Kong et al., 2010). In the ruminal environment with pH close to neutrality, the -NH₂⁺ groups of chitosan may interact electrostatically with the negative charge of the carboxyl group of AA, protecting against ruminal degradation (Chiang et al., 2009). In the present study, it was
observed that pH values remained high (average 6.7), values higher than the minimum limit of 6.2 proposed by Russell and Wilson (1996), so that the maximum activity, as well as microbial growth, ruminal fermentation and degradation of NDF.

In this study, chitosan did not alter the concentrations of SCFA, different from diets. Some studies with chitosan have shown results that vary from no effect on ruminal parameters and increases in propionate concentrations (Goiri et al., 2010; Araújo et al., 2015, Paiva et al., 2016). Dias et al. (2017) observed that chitosan caused a linear increase in propionate concentrations, for cattle supplemented (0.3%BW), at pasture. Belanche et al. (2016a) in a dose-response assessment of chitosan in culture reported a quadratic effect of chitosan on propionate concentrations, where the highest value was observed when the 2 g/L dose of chitosan was added. This effect was further confirmed in a study using the Rusitec system, where the addition of chitosan increased the propionate concentration to 36.8% (Belanche et al., 2016b).

From the observed results, it was verified that diets containing more forage present a greater production of gas of the slow fraction (parameter D), in a time (parameter C-lag time) greater of colonization and degradation by the microorganisms, showing a low rate of gas production per hour, characteristic behavior of more fibrous feeds.

In diets with higher concentrate proportions, the degradability of nutrients increases, increasing the fast fraction gas production (parameter A), with the shortest fermentation time, characteristic of more soluble diets. With the increasing addition of chitosan, the gas production increases and the fermentation time decreases, resulting in a greater efficiency of the degradability of the diet.

In the cumulative production (A + D) of gases, the diets containing the highest amount of concentrate combined with chitosan showed higher yields compared to diets with high volume, confirming the efficiency of chitosan use in more energetic diets.
Conclusion

Chitosan altered the *in vitro* ruminal degradability, increased the total cumulative gas production of the diets. Chitosan changes the most efficiently evaluated parameters at the minimum dose of 1722 mg/kg DM for all diets. The roughage level influenced the in vitro nutrients degradability and cumulative gas production.

Conflict of interest

There is no conflict of interest.
References

AOAC. 1990. Official methods of analysis. 15th ed. Assoc. Off. Anal. Chem., Arlington, VA.

Araújo, A. P. C., B. C. Venturelli, M. C. B. Santos, R. Gardinal, N. R. B. Consolo, G.D. Calomeni, J. E. Freitas, R. V. Barletta, J. R. Gandra, P. G. Paiva, and F. P. Rennó. 2015. Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Anim. Feed Sci. Technol. 206:114–118. doi: 10.1016/j.anifeedsci.2015.05.016

Beier, S., and S. Bertilsson. 2013. Bacterial chitin degradation mechanisms and ecophysiological strategies. Frontiers in Microb. 4:1–12. doi:10.3389/fmicb.2013.00149

Belanche, A., E. R. Morales, and C. J. Newbold. 2016a. In vitro screening of natural feed additives from crustaceans, diatoms, seaweeds and plant extracts to manipulate rumen fermentation. J. Sci. Food Agric. 96:3069–3078. doi: 10. 1002/jsfa.7481

Belanche, A., E. Pinloche, D. Preskett, and C. J. Newbold. 2016b. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. Fems. Microbiology Ecol. 92:1–14. doi: 10.1093/femsec/fiv160

Camacho, L. F., T. E. Silva, M. N. N. Palma, A. Assunção, J. P. Rodrigues, L. F. Costa e Silva, and E. Detmann. 2019. Evaluation of buffer solutions and urea addition for estimating the in vitro digestibility of feeds. J. Anim. Sci. 97:922–931. doi: 10.1093/jas/sky464

Casali, A. O., E. Detmann, S. C. Valadares Filho, J. C. Pereira, L. T. Henriques, S. G. Freitas, and M. F. Paulino. 2008. Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures. R. Bras. Zootec. 37:335–342. doi: 10.1590/S1516-35982008000200021
Chiang, Y. W., T. H. Wang, and W. C. Lee. 2009. Chitosan coating for the protection of amino acids that were entrapped within hydrogenated fat. Food Hydrocolloids 23:1057–1061. doi: 10.1016/j.foodhyd.2008.04.007

Detmann, E., N. K. P. Souza, V. A. C. Costa. 2012. Avaliação do nitrogênio amoniacal em fluido ruminal. In: Métodos para análise de alimentos. Ed. Detmann, E. et al. – Visconde do Rio Branco-MG: Suprema. p.193-204.

Dias, A. O. C., R. H. T. B. Goes, J. R. Gandra, C. Takiya, A. F. Branco, A. G. Jacauna, R. T. Oliveira, C. J. S. Souza, and M. S. M. Vaz. 2017. Increasing doses of chitosan to grazing beef steers: Nutrient intake and digestibility, ruminal fermentation, and nitrogen utilization. Anim. Feed Sci. Technol. 225:73-80. doi:10.1016/j.anifeedsci.2017.01.015

Fadel El-Seed, A., H. Kamel, J. Sekine, M. Hishinuma, and K. Hamana. 2003. Chitin and chitosan as possible novel nitrogen sources for ruminants. Canadian J. Anim. Sci. 83:161–163. doi: 10.4141/a02-063

Fang, S.W., C. F. Li, and D. Y. C. Shih. 1994. Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Protec. 57:136–140. doi: 10.4315/0362-028X-57.2.136

Ferreira, E. B., P. P. Cavalcanti, and D. A. Nogueira. 2013. ExpDes.pt: Experimental Designs Package (portuguese). R package version 1.1.2.

Fox, J., and S. Weisberg. 2011. Na ‘R’ companion to applied regression. In: F. Jonh, W. Sanford, editor, Thousand Oaks CA: Sage. p. 608.

Geisser, J., and S. W. Greenhouse. 1958. Na extension of Box’s results on the use of the F-distribution in multivariate analysis. The Annals of Mathematical Statistics. 29:855–891.
Goiri, I., A. García-Rodríguez, and L. M. Oregui. 2009a. Effects of chitosans on in vitro rumen digestion and fermentation of maize silage. Anim. Feed Sci. Technol. 148:276–287. doi: 10.1016/j.anifeedsci.2008.04.007

Goiri I., A. García-Rodríguez, and L. M. Oregui. 2009b. Effect of chitosan on mixed ruminal microorganism fermentation using the rumen simulation technique (Rusitec). Anim. Feed Sci. Technol. 152:92–102. doi: 10.1016/j.anifeedsci.2009.04.005

Goiri I., L. M. Oregui, and A. García-Rodríguez. 2010. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. Anim. Feed Sci. Technol. 88:749–755. doi: 10.1016/j.anifeedsci.2009.04.005

Hirano, S., C. Itakura, H. Seino, Y. Akiyama, I. Nonaka, N. Kanbara, and T. Kawakami. 1990. Chitosan as an ingredient for domestic animal feeds. J. Agric. Food Chem. 38:1214–1217. doi: 10.1021/jf000095a012

Holden, L. A. 1999. Comparison of methods of in vitro matter digestibility for ten feeds. J. Dairy Sci. 82:1791–1794. doi:10.3168/jds.s0022-0302(99)75409-3

Huynh, H., and L. S. Feldt. 1970. Conditions under which mean square rations in repeated measurements designs have exacy F-distributions. J. American Statistical Assoc. 65:1582–1589. doi: 10.2307/2284340

Jeon, Y. L., J. Y. V. A. Kamil, and F. Shahidi. 2002. Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. J. Agric. Food Chem. 20:5167–5178. doi: doi:10.1021/jf011693l

Kong, M., X. G. Chen, K. Xing, and H. J. Park. 2010. Antimicrobial properties of chitosan and mode of action: A state of the art review. Inter. J. Food Micro. 144:51–63. doi: 10.1016/j.ijfoodmicro.2010.09.012
Li, Y. C., X. H. Zhao, Y. C. Cao, Y. G. Lei, C. J. Liu, H. X. Wang, and J. H. Yao. 2013. Effects of chitosan on in vitro ruminal fermentation in diets with different to concentrate ratios. J. Anim. Vet Adv. 12: 839-845. doi: 10.36478/javaa.2013.839.845

Lim, S. H, and S. M. Hudson. 2004. Synthesis and antimicrobial activity of water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate Research. 339:313–319. doi: 10.1016/j.carres.2003.10.024

Mauchly, J. M. 1940. Significance test for sphericity of a normal n-variate distribution. The Annals of Mathematical Statistics. 11:204–209. doi: 10.1214/aoms/1177731915

Paiva, P. G., E. F. Jesus, T. A. Del Valle, G. F. Almeida, A. G. B. V. B. Costa, C. E. C. Consentini, F. Zanferari, C. S. Takiya, I. C. S. Bueno, and F. P. Rennó. 2016. Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim. Prod. Sci. 57:301–307. doi: 10.1071/an15329

Pell, A. N., P. Schofield, and W. C. Stone. 1994. Rates of digestion of feeds measured in vitro with computers. Proceedings Cornell Nutrition Conference for Feed Manufacturers. 13:74–81.

R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Russel, J. B., and D. B. Wilson. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 79:1503–1509. doi: 10.3168/jds.S0022-0302(96)76510-4

Schelling, G. T. 1984. Monensin Mode of Action in the Rumen. J. Anim. Sci. 58:1518–1527. doi: 10.2527/jas1984.5861518x

Senel, S., S. J. Mcclure. 2004. Potential applications of chitosan in veterinary medicine. Advance Drug Delivery Reviews. 56:1467–1480. doi: 10.1016/j.addr.2004.02.007
Shahidi, F., J. K. V. Arachchi, and Y. Jeon. 1999. Food applications of chitin and chitosans. Trends in Food Science & Technology. 10:37–51. doi: 10.1016/s0924-2244(99)00017-5

Silva, D. J., and A. C. Queiroz. 2002. Análise de alimentos: métodos químicos e biológicos. In: 3.ed. Viçosa, MG: Universidade Federal de Viçosa. p. 235.

Sudarshan, N. R., D. G. Hoover, and D. Knorr D. 1992. Antibacterial action of chitosan. Food Biotechnology. 6:257–272. doi: 10.1080/08905439209549838

Tilley, J. M. A., and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage. 18:104–111. doi: i:10.1111/j.1365-2494.1963.tb00335.x

Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polyssacharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. doi: 10.3168/jds.S0022

Wencelová, M., Z. Varadyova, K. Mihalikova, S. Kišidayová, and D. Jalc. 2014. Evaluating the effects of chitosan, plant oils, and different diets on rumen metabolism and protozoan population in sheep. Turkish J. Vet. Anim. Sci. 38:26–33. doi: 10.3906/vet-1307-19

Wu, S. 2011. Preparation of water-soluble chitosan by hydrolysis with commercial alpha-amylase containing chitosanase activity. Food Chemistry. 128:769–72. doi: 10.1016/j.foodchem.2011.03.111
List of Figures

Figure 1. *in vitro* degradability (P<0.0001) of dry matter (IVDMD – a, b), crude protein (IVCPD c, d), organic matter (IVOMD P=0.0047, e, -□) and neutral detergent fiber (IVNDFD P<0.0001, f, -○) in relation to the chitosan (mg/kg of DM) concentration (0 -x; 1625 -●; 3500 -●; 7500 -■) and roughage levels (R:C; 100 -●; 65 -■; 50 -▲, 35 --; 20-).

Figure 2. Mean values of N-NH₃ (mg/ L) in vitro of the ruminal liquid (P=0.0010) of the different roughage levels (R:C) ratios in time. (100:0 -x-) ŷ= 5,4957 + 3,3544*T - 0.2245*T²; R²= 0.95; (65:35 ---) ŷ= 4,8816 + 3,1802*T - 0.2261*T²; R²= 0.94; (50:50) ŷ= 3,6658 + 1,5866*T - 0.0836*T²; R²= 0.95; (35:65 -) ŷ= 3,6672 + 2,5464*T - 0.1725*T²; R²= 0.93; and (20:80 -■-) 5ŷ= 6,2453 + 3,7786*T - 0.2660*T²; R²= 0.83.
Table 1. Dry matter, crude protein and neutral detergent fiber contents of diets

Roughage levels	Dry matter, g/kg as fed	Crude protein g/kg DM	NDF2 g/kg DM
100:0	895	97.2	762
80:20	889	126	637
65:35	883	147	544
50:50	878	168	450
35:65	872	189	357
20:80	867	211	263

1Roughage:concentrated ratio at 1000 g/kg DM.

2NDF: Neutral detergente fiber.
Table 2. Result of multivariate analysis of the variables pH and N-NH3, considering the completely randomized design and testing the effects of time, roughage levels (R:C), chitosan levels (CHI) and R:C x CHI

Estatistic	Values				
	pH	Time	Time * R:C	Time*CHI	Time*R:C*CHI
Lambda de Wilks	0.1128***	0.2968***	0.5772ns	0.3466ns	
Pillai trace	0.8872***	0.9881***	0.4821ns	0.9310ns	
Hotelling – Lawley trace	7.8624***	1.5325**	0.6310ns	1.2159ns	
Roy maximum root	7.8624***	0.7991***	0.3752*	0.4427ns	

	NH3-N			
Lambda de Wilks	0.0761***	0.5382ns	0.6592ns	0.3249ns
Pillai trace	0.9238***	0.5337ns	0.3798ns	0.9410ns
Hotelling – Lawley trace	12.1329***	0.7288ns	0.4588ns	1.3722ns
Roy maximum root	12.1329***	0.4944**	0.2386ns	0.6983*

ns: no significance.

ammonia nitrogen in the rumen fluid.
*p < 0.05; **p < 0.01; ***p < 0.001.
Table 3. Mean ruminal pH to roughage levels within each incubation time in rumen

Roughage levels	0	2	4	6	8	10	SEM*
100:0	6.52b	6.60b	6.60b	6.66b	6.71b	6.74a	0.021
65:35	6.81a	6.82a	6.82a	6.89a	6.92a	6.96a	0.025
50:50	6.69a	6.75ab	6.75ab	6.81ab	6.83ab	6.96a	0.035
35:65	6.71a	6.72ab	6.72ab	6.79ab	6.88ab	6.92a	0.054
20:80	6.71a	6.75a	6.75a	6.80ab	6.83ab	6.85a	0.032

1Roughage:concentrated ratio at 1000 g/kg DM.
a,bMeans followed by equal letters in the columns do not differ by Tukey test at the 5% probability level.
* standard error of the mean (SEM).
Table 4. Means and standard error of the mean (SEM) of the kinetic parameters of ruminal fermentation of diets with chitosan concentration of the diets, roughage levels (R:C) and interaction between the two factors (Chitosan × R:C)

R:C	Chitosan levels mg/kg de DM	Acetic, mmol/L	Propionic, mmol/L	Butyric, mmol/L	Isobutyric, mmol/L	Isovaleric, mmol/L	Valeric, mmol/L	Total, mmol/L	C2: C3
	0	1635	3500	7500	SEM	CHIT	R:C	CH×R:C	
100:0	13.85	14.11	14.13	14.08	0.010	0.3326	0.3868	0.7989	
65:35	15.15	15.00	14.98	15.05	1.575	0.010	0.3326	0.3868	0.7989
50:50	15.32	14.82	34.66	14.80	4.797	0.010	0.3326	0.3868	0.7989
35:65	14.56	15.85	14.34	15.19	1.502	0.010	0.3326	0.3868	0.7989
20:80	15.64	15.24	15.68	15.89	2.595	0.010	0.3326	0.3868	0.7989

1Roughage: concentrated ratio at 1000 g/kg DM.
2Significance at $P < 0.05$.

Downloaded from https://academic.oup.com/tas/advance-article/doi/10.1093/tas/txab086/6274902 by guest on 14 May 2021
Table 5. Means and standard error of the mean (± SEM) of the kinetic parameters of ruminal fermentation of diets with chitosan concentration of the diets, roughage levels (R:C) and interaction between the two factors (Chitosan × R:C)

R: C	Chitosan concentration mg/kg de DM	Parameter A - Production of fast gas fraction, mL/100 mg of DM	Parameter B - Production rate of fraction A, (h)	Parameter C - Lag time (h)	Parameter D - Production of slow gas fraction, mL/100mg of DM	Parameter E - Production rate of fraction D (h)	Cumulative (A + D) gas production									
		SEM	CHI	R:C	CH×R:C	P-value²	SEM	CHI	R:C	CH×R:C	P-value²	SEM	CHI	R:C	CH×R:C	P-value²
100:0	0.0	1.06	0.54	0.34	1.42	2.45	0.048									
80:20	0.78	0.61	0.33	2.17	0.65	0.206										
65:35	0.33	4.16	1.34	2.03	0.74	1.278										
50:50	2.76	7.61	1.83	2.08	1.70	4.002										
35:65	2.64	1.97	1.53	1.621	1.97	1.196										
20:80	4.33	5.12	0.64	2.78	5.84	2.480										
		0.048	0.048		0.048		0.048		0.048		0.048		0.048		0.048	

1Roughage:concentrated ratio at 1000 g/kg DM.
2Significance at P < 0.05.
Figure 1
Figure 2