Sektion 43
Vorratsschutz/Nachernteschutz

43-1 - Fortschritte bei den Versuchen zur insektendichten Langzeitlagerung von Getreide

Progress in the experiments on insect-proof long-term storage of grain

Cornel Adler, Agnès Ndome-Moualeu
Julius Kühn-Institut, Institut für ökologische Chemie, Pflanzenanalytik und Vorratsschutz

Bei der Lagerung von Getreide über längere Zeiträume ist es seit dem Wegfall Dichlorvos-abgebender Verdunstungsstrips (zum Ende 2007) in der Vergangenheit in Sommermonaten immer wieder einmal zu Befall gekommen, vornehmlich durch verratsschädliche Motten. Seit Ende 2012 wird im Rahmen eines von der Bundesregierung geförderten Innovationsprojektes untersucht, wie aufwändig und wirksam ein insektendichter Umbau bei Getreidelägern ist. Ziel dieser Maßnahme ist die Unterbrechung einer chemotaktischen Orientierung der Schadinsekten aus der Umgebung hinein in den Lagerraum und den lagernden Weizen. Hierzu wurden im Rahmen der Bundesreserve Getreide kommerziell betriebene Flachläger an drei Standorten abgedichtet, Umdichtungen in Türen und Toren, Dachbereich und Mauerwerk weitgehend gasdicht versiegelt. Die Eingänge zu dem geschützt gelagerten Weizen wurden mit einer Schleuse versehen, und zur Belüftung ein Gebläse in die Giebelwand eingebaut. Temperatur- und Feuchtedaten aus dem lagernden Getreide sowie die Ergebnisse aus den üblichen Fallen zur Befallskontrolle werden aufgenommen. Über Fallen wird der Befallsdruck in der Umgebung und die Anwesenheit von Schadinsekten in der Lagerhalle kontrolliert. Pheromonrichterfallen für verratsschädliche Motten mit Sexualpheromonködern wurden verteilt außen unter dem Dach und in den Flachlägern aufgehängt, um zusätzlich zu den üblichen, unbeköderten Fallen den Schädlingsdruck und tatsächlichen Befall zu dokumentieren. Ein mobiles Sammelgerät für die Erfassung flüchtiger Getreideinhaltstoffe wurde konzipiert und gebaut, um einen Duftstoffgradienten anhand eines oder weniger Schlüsselsubstanzen in Abwindrichtung unveränderter Kontroll-Getreidelager bestimmen zu können. Laborversuche zur Getreidelagerung in Folienbeuteln mit Vakuum wurden im Juli 2013 begonnen. Dies wäre eine Alternative zur baulichen Abdichtung. Untersucht wurde Weizen mit unterschiedlichen Kornwassergehalten zwischen 9,5 und 15,5 Prozent, ein Besatz mit 30 Kornkäfern zu Versuchsbeginn und 0,5 bar Vakuum ohne bzw. mit ein- bis dreimaliger Zwischenspülung mit Stickstoff zur Reduzierung des anfänglichen Sauерstoffrestgehalts. Die kommerziell zur Lagerung für Lebensmittel angebotenen Vakuumbeutel erwiesen sich als nicht in allen Fällen ausreichend gasdicht. Käfer aus Beuteln mit Vakuumverpackung überlebten die Lagerung schon nach der kürzesten untersuchten Einwirkszeit (drei Monate) nicht. Der Einfluss der gewählten Parameter auf die Getreidequalität wird in Kooperation mit dem Max-Rubner-Institut untersucht.
43-2 - Effect of fungal colonization of wheat grains with *Fusarium* spp. on food choice, weight gain and mortality of meal beetle larvae (*Tenebrio molitor*)

Zhiqing Guo, Katharina Döll2, Raana Dastjerdi2, Petr Karlovsky2, Heinz-Wilhelm Dehne, Boran Altincicek

Rheinische Friedrich-Wilhelms-University of Bonn, Institute of Crop Science and Resource Conservation (INRES-Phytomedicine), Meckenheimer Allee 116a, 53115 Bonn, Germany

2Georg-August-University Göttingen, Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, 37077 Göttingen, Germany

Species of *Fusarium* have significant agro-economic and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding *Tenebrio molitor* larvae with four grain-colonizing *Fusarium* species on wheat kernels. Since numerous metabolites produced by *Fusarium* spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids *Fusarium*-colonized grains. We found that only kernels colonized with *F. avenaceum* or *Beauveria bassiana* (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with *F. proliferatum*, *F. poae* or *F. culmorum* attracted *T. molitor* larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed *F. proliferatum*- or *F. poae*-colonized kernels had similar survival rates as control. Larvae fed on *F. culmorum*-*, F. avenaceum*- or *B. bassiana*-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by *F. proliferatum*, enniatins and beauvericin by *F. poae*, enniatins by *F. avenaceum*, and deoxynivalenol and zearalenone by *F. culmorum*. Our results indicate that *T. molitor* larvae have the ability to sense potential survival threats of kernels colonized with *F. avenaceum* or *B. bassiana*, but not with *F. culmorum*. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although *F. proliferatum* or *F. poae* produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of *F. avenaceum*-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than *F. proliferatum* or *F. poae*-colonized ones suggesting that *T. molitor* can tolerate or metabolize those toxins.

43-3 - Chemical ecology in stored product protection: The impact of host odor cues on host location by *Holepyris sylvanidis*, a natural enemy of *Tribolium confusum*

Chemische Ökologie im Vorratsschutz: Der Einfluss von Wirtsgeruch bei der Wirtssuche von *Holepyris sylvanidis*, einem natürlichen Antagonisten von *Tribolium confusum*

Benjamin Fürstenau, Cornel Adler2, Hartwig Schulz2, Monika Hilker

Applied Zoology/Animal Ecology, Institute for Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Deutschland, fuerstenau@zedat.fu-berlin.de

2Julius Kühn-Institut, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection

Most stored food products are highly endangered by insect infestation which often is followed by fungal or bacterial infection provoking global losses of food every year (Adler, 2010). Instead of using harmful pesticides which can cause tremendous costs, food contamination and pest resistance, novel and environmentally-friendly control methods for management of stored product pests are required. Parasitoids are able to control and regulate the population density of many host species (Jervis et al., 2008), and their application as biological control agent against pest insects has been shown to be a promising approach (i.a. Flinn and Schöller, 2012). In order to
improve such biological control methods for protection of stored food products it is essential to
depth and broaden our knowledge of the factors that drive the parasitoid’s host location.
In the present study we investigated how naturally occurring chemicals mediate interactions
between the larval parasitoid *Holepyris sylvanidis* (Hymenoptera: Bethylidae) and the confused-
flour beetle *Tribolium confusum* (Coleoptera: Tenebrionidae). *T. confusum* is one of the most
important stored product pests in the food processing industry, and its larvae are the preferred host
of *H. sylvanidis*. Preliminary studies indicated that *H. sylvanidis* females are attracted to volatiles
from *T. confusum* larval feces and infested wheat grit. We aimed to identify the chemicals which
mediate the host location behavior of *H. sylvanidis* and which could be useful for biological control
of *T. confusum*.

Host odors (larval feces, infested wheat grit) and habitat odors (non-infested wheat grit) were
collected and analyzed by coupled gas chromatography–mass spectrometry (GC-MS). The parasiti-
toid’s physiological response to host and habitat odors was tested by coupled gas chromatog-
raphy-electroantennographic detection (GC-EAD). Active compounds were additionally analyzed
by electroantennography (EAG). Behavioral responses of naïve *H. sylvanidis* females to host and
habitat odor samples and authentic compounds were monitored in a static 4-field olfactometer
according to Steidle and Schöller (1997).

Conclusion
We identified several volatiles common in host and habitat odor, and some compounds that were
detected exclusively in host odor. One electrophysiologically active host odor compound also
attracted *H. sylvanidis* in olfactometer bioassays and therefore, is considered as key component to
guide the parasitoid to its host.

Literatur
Adler, C. 2010: Biologische Schädlingsbekämpfung im Vorratsschutz: Besonderheiten rund um den Schutz gelagerter
Lebensmittel. Journal für Kulturpflanzen 62 (3), 93-96.
Flinn, P.W., and M. Scholler. 2012. Biological control: Insect pathogens, parasitoid and predators, pp. 203-212. In: Stored
Product Protection. Hagstrum, D.W., T.W. Phillips, and G. Cuperus (eds.). Kansas State University, Manhattan.
Jervis, M. A., Ellers, J. and Harvey, J. A. (2008.). Resource acquisition, allocation, and utilization in parasitoid reproductive
strategies. Annu. Rev. Entomol. 53, 361-85.
Steidle, J. L. M. and Schöller, M. (1997). Olfactory host location and learning in the granary weevil parasitoid
Lariophagus distinguendus (Hymenoptera: Pteromalidae). J. Insect Behav. 10, 331-342.

43-4 - Chemotaktische Orientierung der Eilarve der Dörrobstmotte *Plodia interpunctella* hin zu Pflanzenerzeugnissen und Lebensmitteln

Chemotactic orientation of neonate larvae of the Indianmeal moth *Plodia interpunctella* towards
stored products and food items

Cornel Adler, Norah Efosa2
Julius Kühn-Institut, Institut für ökologische Chemie, Pflanzenanalytik und Vorratsschutz
2Freie Universität Berlin

Vorratsschädliche Insekten finden gelagerte Pflanzenerzeugnisse, Lebens- oder Futtermittel nach
den von diesen abgegebenen typischen Duftstoffprofilen. Die chemotaktische Orientierung adul-
ter Dörrobstmotten wurde nachgewiesen und gasförmige Reinsubstanzen identifiziert, die durch
Sensillen auf den Antennen der Motten wahrgenommen werden können (Olson et al. 2005, Uechi
et al. 2008, Ndomo et al. 2012). Mit Eilarven wurde in der Vergangenheit wiederholt versucht, eine
Orientierung nachzuweisen. Dies ist nun in Versuchen erstmals gelungen. Dazu wurde eine Petrischale mit 184 mm Innendurchmesser in vier gleich große Sektoren eingeteilt. Am Rand eines
Sektors wurden in einer Breite von 10 mm potenziell attraktive Pflanzenerzeugnisse (z.B. Weizen-
kleie, Hibiskustee, Mandelbruch) oder Lebensmittel (Bruch von Nusschokekolate) ausgebracht.
Eilarven im Alter von ca. 12-48 Stunden wurden einzeln im Zentrum der Petrischale ausgesetzt
und bei 25±1°C (60±5% r.Lf.) für 5 min laufen gelassen (N=200). Der Deckel der Petrischale war von außen mit roter, transparenter Kunststofffolie beklebt, um einen Einfluss von Licht auf das Verhalten der Eilarve zu reduzieren. Beeinflussungen, z.B. durch den Winkel des Lichteinfalls, wurden durch das Drehen der Schale nach jedem Versuch um 90° im Uhrzeigersinn ausgeglichen. Am Ende des Versuchszeitraums wurde der Sektor notiert, in dem sich die Eilarve befand und der Abstand zum Substrat bestimmt. Es ergab sich eine signifikant deutliche Häufung an Larven in dem Sektor mit Substrat, weniger Larven wurden links und rechts von diesem Sektor und noch einmal deutlich weniger Tiere im Sektor gegenüber dem Substrat gefunden. Wurden statt Substrat Glaskugeln ausgebracht, fand wie bei Versuchen ohne Substratzugabe keine zielgerichtete Bewegung statt, was eine optische Orientierung unwahrscheinlich macht. Substrate waren unterschiedlich attraktiv. Die Ergebnisse zeigen, dass sich Eilarven auf kurze Distanz, wie den hier untersuchten 82 mm, zielgerichtet auf Duftstoffe zu bewegen können. Dies erklärt, warum es bei geeigneten, original verpackten Lebensmitteln mit großer Sicherheit zu Befall kommt, auch wenn die Weibchen Eier z.B. nur auf eine Perforationsnaht oder unidichte Stellen rund um punktverklebte Laschen in einer Faltschachtel ablegen konnten.

Literatur
NDOMO, A.F., WEISSBÄCKER, B, SCHÜTZ, S., V. FRAGSTEIN, M. REICHMUTH, CH., ULRICH, C., ADLER, C. (2012): Olfactory responses of *Plodia interpunctella* (Hübner) (Lepidoptera: Pyralidae) to dried apricot volatiles. In: Navarro, S. Banks, H.J., Jayas, D.S., Bell, C.H., Noyes, R.T., Ferizli, A.G., Emekci, M., Isikber, A.A., Alagusundaram K (eds.) Proc. 9th Int. Conf. on Controlled Atmosphere and Fumigation in Stored Products, Antalya, Turkey. 15-19 October 2012, 728-733.
OLSSON, CP-O., ANDERBRANT, O., LÖFSTEDT, C., BORG-KARLSON, A.-K., LIBlJKAS, I. (2005): Electrophysiological and behavioral responses to chocolate volatiles in both sexes of the pyralid moths, *Ephestia cautella* and *Plodia interpunctella*. J Chem Ecol 31(12): 2947-2961.
UECHI, K, MATSUYAMA S., T. SUZUKI, 2007: Oviposition attractants for *Plodia interpunctella* (Hübner) (Lepidoptera: Pyralidae) in the volatiles of whole wheat flour. J Stored Prod Res 43: 193–201.

43-5 - Zur mikroskopischen Aufklärung des peripheren olfaktorischen Systems der Dörrrostmotte *Plodia interpunctella* (Hübner, 1813) (Lepidoptera: Pyralidae)

Study of the peripheral olfactory system of Plodia interpunctella (Lepidoptera: Pyralidae)

Agnès Flore Ndomo-Moualeu, Christian Ulrichs², Renate Radek³, Cornel Adler

Julius Kühn-Institut, Institut für ökologische Chemie, Pflanzenanalytik und Vorratsschutz
Humboldt-Universität zu Berlin
Frei Universität Berlin

Die Dörrrostmotte, *Plodia interpunctella*, ist ein wichtiger Primärschädling an Vorräten weltweit. Sie befallt lagerndes Getreide, Hülsenfrüchte, Trockenfrüchte, usw. (Hagstrum und Subramanyam, 2009). Um die chemotaktische Orientierung dieses Insektes mit den Vorräten besser zu verstehen, ist es notwendig, den peripheren Teil des olfaktorischen Systems von *P. interpunctella* zu untersuchen (Schneider, 1964; Callahan, 1975). Dafür wurden die Antennen von weiblichen und männlichen Tieren betrachtet. Die Untersuchungen wurden mit einem Lichtmikroskop und einem Rasterelektronenmikroskop durchgeführt. Die Antennen weiblicher und männlicher Motte bestehen aus drei Hauptteilen: einem Scapus, einem Pedicellus und einem Flagellum mit 44 bis 47 Segmenten. Es wurde festgestellt, dass die weibliche Antenne etwas länger (5,20 mm) als die männliche (4,37 mm) ist. Unter dem Rasterelektronenmikroskop ließen sich verschiedene Sensillentypen unterscheiden. Bei beiden Geschlechtern wurden acht morphologisch unterschiedliche Sensillentypen identifiziert: Böhm's Bristle, Sensilla (S.) basiconica, S.chaetica, S. coeloconica, S. styloconica, S. auricillica, S. squamiformia und S. trichodea. Letztere ließen sich in drei Untertypen nach ihrer Länge in kurze, mittlere und lange S. trichodea einteilen. Der Geschlechtsdimorphismus in der Antenne von *P. interpunctella* äußerte sich vor allem als eine Variation in der Länge des Flagellums sowie in der Größe und Verteilung der Sensillen (Tab. 1).
Tab. 1 Zahl der verschiedenen Sensillen auf den Antennen der männlichen und weiblichen *P. interpunctella*

Sensillen-typen	Männchen	Weibchen
Böhm’s Bristle	Nicht gezählt	
S. trichodea kurz	143.50 ± 5.49a	102.00 ± 1.48b
S. trichodea mittel	1536.17 ± 45.46a	1047.40 ± 10.23b
S. trichodea lang	55.17 ± 5.82a	0.00 ± 0.00b
S. chaetica	138.33 ± 6.596a	151.40 ± 2.40a
S. coeloconica	133.00 ± 8.524a	147.00 ± 0.84a
S. styloconica	46.17 ± 0.95a	44.80 ± 0.37a
S. auricillica	148.67 ± 4.47a	171.20 ± 1.49b
S. basiconica	116.33 ± 4.07a	133.80 ± 1.16a
S. squamiforma	72.17 ± 3.38a	70.00 ± 2.59a

Werte sind Mittelwerte (± SA) der verschiedenen Sensillentypen auf den Segmenten des Flagellums (N = 6 ♂ und 5 ♀). Verschiedene Buchstaben zeigen signifikante Unterschiede zwischen männlichen und weiblichen Tieren (t-Test, P <0.05).

Literatur

CALLAHAN, P.S., 1975: Insect antennae with special reference to the mechanism of scent detection and the evolution of sensilla. Int. J. Insect Morphol. Embryol. 4, 381-430.

HAGSTROM, D., B. SUBRAMANYAM, 2009: Stored-product insect ressource. AACC International Inc, St. Paul, Minnesota.

SCHNEIDER, D., 1964: Insect antennae. Ann. Rev. Entomol. 9, 103-122.

43-6 - Nahrungsmittelverluste in der Wertschöpfungskette von Kartoffeln in Kenia

Food Losses in the value chain of potatoes in Kenya

Wachira Kaguongo, Sigrid Giencke, Bruno Schuler

National Potato Council of Kenya (Kenia), Consultant, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH (Ländliche Entwicklung und Agrarwirtschaft)

Kartoffeln sind nach Mais das wichtigste Grundnahrungsmittel in Kenia. Aufgrund ihres vergleichsweise hohen Ertrags in Kilokalorien pro ha und der sinkenden Produktivität von Mais, nehmen Kartoffeln eine Schlüsselrolle für die Ernährungssicherung in Kenia ein. Gegenwärtig werden Kartoffeln überwiegend durch Kleinbauern mit relativ geringem Ertrag (7-10t/ha) angebaut. Als Hauptgründe dafür wurden die mangelnde Verfügbarkeit und der Zugang zu zertifiziertem Saatgut sowie steigende Kosten für Betriebsmittel identifiziert. Im Rahmen einer Serie von Studien zu Nachernteverlusten hat die GIZ eine Analyse der Wertschöpfungskette (WSK) von Kartoffeln in Kenia durchgeführt. Dem fünfstufigen Ansatz der FAO zur Erhebung von Lebensmittelverlusten folgend, wurden die Produktionsschritte mit qualitativen und quantitativen Methoden untersucht. Es wurden u. a. Befragungen von über 300 Akteuren entlang der WSK vorgenommen und Kartoffelchargen von der Ernte bis zur Vermarktung nachverfolgt.

Pro Saison gehen etwa 19 % der gesamten kenianischen Kartoffelernte verloren. Der volkswirtschaftliche Schaden beläuft sich auf jährlich 815.000t (109 Mio. Euro). Mehr als 95 % dieser Verluste ereignen sich bei der betrieblichen Produktion und Ernte. Hier sind insbesondere Verluste durch den unsachgemäßen Einsatz von Erntegeräten zu nennen. Zusätzlich führen verfrühte Ernten oder solche, die unter feuchten Wetterbedingungen stattfinden, zu hohen Anteilen von grünen und faulenden Kartoffeln. Die Lagerung der Kartoffeln auf den Betrieben trägt mit etwa einem Zehntel zum Gesamtverlust bei (2/3 durch Fäulnis, 1/3 durch Fressschäden, Frost, Krankheiten u. a.). Bekannte und lokal angepasste Lagermöglichkeiten werden aufgrund mangelnden Wissens nicht genutzt. Um Verluste im Bereich der betrieblichen Produktion zu reduzieren sind folgende Ansätze erfolgversprechend: a) Verbreitung und Verbesserung des Zugangs zu weniger krankheitsanfälligen Sorten; b) gemeinschaftliche Nutzung von Maschinen und geeigneten Lagern; c) verantwortungsvoller Vertragsanbau, der Anreize schafft, qualitativ hochwertige Kartoffeln zu produzieren. Wie in der Studie gezeigt werden konnte, sind Vertragsbetriebe unabhängig von fluktuieren-

59. Deutsche Pflanzenschutztagung "Forschen – Wissen – Pflanzen schützen: Ernährung sichern!" 23. bis 26. September 2014, Freiburg
den Marktpreisen, die häufig Ursache für ungünstige Erntezeitpunkte sind. Die Umsetzung dieser Ansätze muss aber beratend begleitet werden. Qualitative Mängel in der Produktion setzen sich in Verlusten beim Transport und der Vermarkterung fort. Kartoffeln werden unsortiert in unhandliche Säcke mit einem Gewicht bis zu 200kg ge packt und unter schlechten Bedingungen transportiert. Etwa ¼ aller Kartoffeln, die auf den Markt gelangen, sind beschädigt (gequetscht, angefault, grün). Aufgrund hoher Nachfrage ist der Absatz dennoch gewährleistet, allerdings müssen neben quantitativen auch monetäre Verluste hingenommen werden, da schadhafte Kartoffeln geringere Preise erzielen. Die Einführung von standardisierten Verpackungsgrößen und -materialien scheiterte bislang aufgrund fehlender Marktsignale. Eine Bezahlung, die sich an Qualität statt wie bisher üblich an der Größeneinheit orientiert, ist anzustreben. Insgesamt gestaltet sich die Wertschöpfungskette von Kartoffeln kurz. Der überwiegende Teil wird über Händler direkt an den Endverbraucher vermarktet. Weniger als 10% der Frischware wird weiterverarbeitet, die Tendenz hierfür ist aber steigend. Modelle des Vertragsanbaus bieten hier eine weitere Chance Kleinbauern in den Markt zu integrieren und mit dem wachsenden Verarbeitungssektor zu verknüpfen.

43-7 - Nahrungsmittelverluste und deren ökologischer Fußabdruck in der Wertschöpfungskette von Reis in Nigeria

Food losses and their ecological footprint in the value chain of rice in Nigeria

Adegboyega Eyitayo Oguntade, Daniel Thylmann, Bruno Schuler

Federal University of Technology (Akure, Nigeria); PE International AG; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH (Ländliche Entwicklung und Agrarwirtschaft)

Der Reisanbau spielt in Westafrika eine immer größere Rolle. In Nigeria wird Reis zu über 90% von Kleinbauern in Form von Regenfeldbau auf kleinen Flächen mit geringen Erträgen angebaut. Auch die am meisten verbreitete Form der Weiterverarbeitung von Reis zu Mehl erfolgt überwiegend in Kleinmühlen unter qualitativen und quantitativen Verlusten. Angebotsmenge und Qualität von Rohreis (Paddy) und Mehl bleiben damit deutlich unter dem Potenzial. Verarbeitungsbetriebe und Konsumenten beziehen Reis bevorzugt von kommerziellen landwirtschaftlichen Betrieben oder kaufen Ware, die zur Deckung der steigenden Nachfrage importiert wird. Im Rahmen einer Serie von Studien zu Nachernteverlusten hat die GIZ eine Analyse von Wertschöpfungsketten (WSK) von Reis vorgenommen. Untersucht wurden eine traditionelle und eine – bislang nur schwach ausgeprägte – industrielle WSK. In Form einer Lebenszyklusanalyse wurde in einem zweiten Schritt anhand der Indikatoren Treibhausgasemissionen, Wassernutzung und Landverbrauch der ökologische Fußabdruck der WSK ermittelt. Auf der Basis dieser Studie werden fachliche und organisatorische Maßnahmen einschließlich einer verstärkten Zusammenarbeit mit CARI (Comprehensive African Rice Initiative) für die Reduzierung der Nachernteverluste zur Förderung der Ernährungssicherheit diskutiert.

Die Nachernteverluste in den untersuchten WSK belaufen sich auf durchschnittlich 23,5 % des Gesamtenertrags. Der dadurch entstehende volkswirtschaftliche Schaden beträgt 125,8 Mio. Euro. Pilzerkrankungen und Nager verursachen Verluste entlang der gesamten Wertschöpfungskette. Darüberhinaus sind bestimmte Stadien der WSK zusätzlich verlustanfällig, so vor allem das Ernten und Dreschen. Die WSK unterscheiden sich ab dem Wertschöpfungsfeld des Parboiling (Reisbehandlung in mehreren Schritten). In der industriellen WSK wird gedroschener Reis von Kleinbauern abgekauft und in einer integrierten Anlage ohne weitere Verluste gekocht, getrocknet und gemahlen. Reststoffe, wie Spelzen werden zum Heizen der Anlage verwendet. In der traditionellen WSK hingegen kommen weitere qualitative und quantitative Verluste bis zum Endprodukt Reismehl durch Kochen, Trocken auf Planen am Straßenrand sowie Mahlen in ineffizienten Kleinmüh-
len hinzu. Ansatzpunkte zur Reduktion der Verluste sind vor allem im Einsatz verbesserter Technik oder von bisher nicht genutzter Technik sowie in der Lagerhaltung zu sehen. Maßnahmen wie investitionsfördernde Kleinkredite, die gemeinsame Nutzung von Maschinen sowie der Einsatz verbesserter Kleinöfen, bei denen Reststoffe als Brennmaterial genutzt werden, müssen unterstützt werden. Vor allem aber besteht hoher Beratungsbedarf bei der Umsetzung von standardisierten Verfahren des Reisanbaus, der Lagerung und der Weiterverarbeitung. Der ökologische Fußabdruck der WSK ist maßgeblich von den im Anbau entstehenden Methangasen dominiert, Wasser- und Landverbrauch spielen nur eine nachgeordnete Rolle. Unterschiede zwischen der traditionellen und industriellen WSK in ihrem Beitrag zu Treibhausgasemissionen sind fast ausschließlich durch die unterschiedlichen Arten des Parboiling begründet. Traditionell wird Reis auf offenem Feuer gekocht, wobei u. a. Methan und damit ein negativer Effekt auf die Klimabilanz entsteht. Eine Halbierung der Nahrungsmittelverluste entlang der WSK könnte zu einer Reduktion der gesamten Treibhausgasemissionen Nigerias um 0,4 % führen. Die Verminderung von Lebensmittelverlusten trägt nicht nur zur Ernährungssicherung bei, sondern hat auf verschiedenen Ebenen auch signifikant positive Effekte auf die Umwelt.

43-8 - Pflanzenschutzmittel und Biozidprodukte im Vorratsschutz – eine Koexistenz oder Konkurrenz?

Plant Protection Products and Biocides in Stored Product Protection – a Coexistence or Competition?

Garnet Marlen Kroos
Julius Kühn-Institut, Institut für ökologische Chemie, Pflanzenanalytik und Vorratsschutz

Um erzeugte Agrargüter pflanzlicher Herkunft aus Sicht des Verbraucherschutzes und der Ertragsicherung zu sichern, müssen die Erzeugnisse nach der Ernte ausreichend vor Schadorganismen geschützt werden. Neben allgemeinen vorbeugenden Hygiene- und Abwehrmaßnahmen werden immer auch chemische Verfahren zur Bekämpfung von Schädlingen notwendig sein, um die Waren verkehrsfähig zu halten.

Das Pflanzenschutzgesetz in der Fassung vom 6. Februar 2012 beschreibt den Vorratsschutz als den Schutz von Pflanzenerzeugnissen. Zum Schutz dieser unverarbeiteten oder nur durch einfache Verfahren bearbeiteten Pflanzenerzeugnisse stehen Pflanzenschutzmittel (PSM) zur Verfügung. Die Verordnung 1107/2009/EG führt in Artikel 2 weiter aus, dass der Hauptzweck beim Einsatz dieser Mittel dabei jedoch nicht die hygienischen Erwägungen sind.

Stehen dagegen der Schutz der Gesundheit von Mensch und Tier oder der Schutz von Materialien bei der Bekämpfung von Schädlingen im Vordergrund, werden bei chemischen Bekämpfungsmaßnahmen Biozidprodukte (BP) eingesetzt. Hier leitet sich der sogenannte hygienebedingte Vorratsschutz von verarbeiteten pflanzlichen Erzeugnissen ab.

Durchführungsbeschlüsse der Europäischen Kommission im Rahmen der Biozidzulassung, besagen ausserdem, dass bestimmte Rodentizide und Insektizide im Einzelfall auch in Pflanzen und Pflanzenerzeugnissen eingesetzt werden dürfen, vorausgesetzt der Hygienezweck steht im Vordergrund.

Die Entscheidung, ob ein PSM oder ein BP zur Bekämpfung von Schaderregern in Pflanzenerzeugnissen oder in Leerräumen einzusetzen ist, wird somit jeweils durch den ausgelobten Zweck und den Anwendungsort der Maßnahme bestimmt. Dabei werden teilweise dieselben Schaderreger bekämpft, die sich unabhängig von den Rechtsbereichen in pflanzlichen Erntegütern bewegen.

In den Einsatzgebieten, in denen die hygienischen Anwendungen überwiegen, kann sicher davon ausgegangen werden, dass die BP aufgrund des breiteren Anwendungsspektrums im Marksegment ‘Vorratsschutz‘ zahlenmäßig überwiegen werden, wie dies bei der Nagerbekämpfung derzeit deutlich wird.
Dort jedoch, wo eindeutig der Schutz der Pflanzenerzeugnisse verfolgt werden soll, bleiben PSM allein anwendbar und im Vorteil, nicht zuletzt durch die Erfahrungen einer oft jahrzehntelangen Zulassungshistorie und Anwendungspraxis sowie dann, wenn gesicherte und geregelte Rückstandsdaten die Sicherheit und Qualität der Pflanzenerzeugnisse ausweisen müssen. Insgesamt betrachtet können PSM im Vorratschutz und BP im Bereich des hygienebedingten Vorratsschutzes zunächst ggf. mit nur gewissen Marktverschiebungen weiter nebeneinander und in Doppelzulassungen ihre Berechtigung und Anwendung behalten und wirtschaftlich tragbar sein, wenn z. B. interzonale Zulassungen im Pflanzenschutz und Unionszulassungen im Biozidbereich greifen und zukünftig die Zulassungsanforderungen und -verfahren für Innenraumanwendungen europaweit weiter harmonisiert werden könnten.