Supersymmetric structure of the bosonic string theory in the Beltrami parametrization

M. Werneck de Oliveira
International School for Advanced Studies
Via Beirut 2-4, Trieste 34014, Italy

and

M. Schweda, S.P. Sorella
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10
A-1040 Wien (Austria)

Abstract

We show that the bosonic string theory quantized in the Beltrami parametrization possesses a supersymmetric structure like the vector-supersymmetry already observed in topological field theories.

1Supported in part by the "Fonds zur Förderung der Wissenschaftlichen Forschung", M008-Lise Meitner Fellowship.
1 Introduction

One of the most interesting features of the topological models [1, 2, 3] is represented by the existence of a supersymmetric algebra whose generators describe the \(BRS \) symmetry and the vector supersymmetry carrying a Lorentz index [4].

Actually this supersymmetric structure turns out to be extremely useful in discussing the renormalization of the topological models to all orders of perturbation theory. Indeed, as shown in [5], it provides an elegant and simple way for solving the descent equations associated to the integrated \(BRS \) cohomology; yielding then a complete characterization of all possible anomalies and invariant counterterms for both Schwarz [6] and Witten’s type [7] topological models.

The aim of this work is to show that this supersymmetric structure is present also in the bosonic string quantized in a conformal gauge parametrized by a Beltrami differential. This parametrization, introduced by [8], allows to use a quantization procedure analogue to that of the Yang-Mills theories. Moreover, as shown by [9], the Beltrami parametrization turns out to be the most natural parametrization which exhibits the holomorphic factorization of the Green functions according to the Belavin-Polyakov-Zamolodchikov scheme [10].

The work is organized as follows: in Sect. 2 we briefly recall the \(BRS \) quantization procedure; Sect. 3 is devoted to discuss the supersymmetric algebra and the related Ward identities. Finally, in Sect. 4 we use the aforementioned supersymmetry to solve the Wess-Zumino consistency conditions for the Slavnov anomaly. In this letter we will limit ourselves only to present the results without entering into technical computations; a more complete and detailed version is in preparation [11].
2 Quantization and Slavnov identity

Let us start with the bosonic string action

\[S_{\text{inv}} = \frac{1}{2} \int_{\mathcal{M}} d^2 x \sqrt{g} g^{\alpha \beta} \partial_\alpha X \cdot \partial_\beta X , \]

where \(g_{\alpha \beta} \) \((\alpha, \beta = 1, 2)\) is a metric on the two-dimensional string world sheet \(\mathcal{M} \) and \(\{X\} \) are the string coordinates mapping \(\mathcal{M} \) into the \(D \)-dimensional real plane \(\mathbb{R}^D \).

Denoting with \((z, \bar{z})\) a system of complex coordinates, the world sheet metric \(g \) can be parametrized by a Beltrami differential \(\mu \)[8, 9]

\[ds^2 = g_{\alpha \beta} dx^\alpha dx^\beta \propto |dz + \mu d\bar{z}|^2 , \]

in terms of which the action (2.1) takes the form

\[S_{\text{inv}} = \int dz d\bar{z} \frac{1}{1 - \mu \bar{\mu}} \left((1 + \mu \bar{\mu}) \partial X \cdot \bar{\partial} X - \mu \partial X \cdot \partial X - \bar{\mu} \bar{\partial} X \cdot \bar{\partial} X \right) , \]

with

\[\partial = \partial_z , \quad \bar{\partial} = \partial_{\bar{z}} . \]

As one can easily check \(S_{\text{inv}} \) is invariant under an infinitesimal diffeomorphism transformation generated by a two-components vector field \((\gamma, \bar{\gamma})\):

\[\delta X = \gamma \partial X + \bar{\gamma} \bar{\partial} X , \]

\[\delta \mu = \gamma \partial \mu + \bar{\gamma} \bar{\partial} \mu + \mu \partial \bar{\gamma} + \bar{\mu} \bar{\partial} \gamma - \mu \partial \gamma - \mu^2 \partial \bar{\gamma} . \]

Following [8, 9], the quantization of \(S_{\text{inv}} \) is done by introducing the \((b, c)\) ghost system

\[S_{bc} = \int dz d\bar{z} \ b (\partial c + c \partial \mu - \mu \partial c) + \int dz d\bar{z} \ \bar{b} (\bar{\partial} \bar{c} + \bar{c} \bar{\partial} \bar{\mu} - \bar{\mu} \bar{\partial} \bar{c}) , \]

so that the gauge fixed action

\[S_{gf} = S_{\text{inv}} + S_{bc} , \]
is invariant under the nilpotent \(BRS \) transformations [8, 9]:

\[
\begin{align*}
 sX &= c\frac{\mu}{1-\mu\bar{\mu}} \partial X + \bar{c}\frac{\bar{\mu}}{1-\mu\bar{\mu}} \partial X, \\
 sc &= c\partial c, \\
 s\bar{c} &= \bar{c}\partial \bar{c}, \\
 s\mu &= \bar{\partial}c + c\partial \mu - \mu\partial c, \\
 s\bar{\mu} &= \partial \bar{c} + \bar{c}\partial \bar{\mu} - \bar{\mu}\partial \bar{c}, \\
 sb &= s\bar{b} = 0, \\
 s^2 &= 0.
\end{align*}
\]

(2.8)

The ghosts \((c, \bar{c})\) in eqs.(2.6), (2.8) have been introduced by C. Becchi [9] and are related to the diffeomorphism variables \((\gamma, \bar{\gamma})\) of eq. (2.5) by

\[
c = \gamma + \mu\bar{\gamma}, \quad \bar{c} = \bar{\gamma} + \bar{\mu}\gamma.
\]

(2.9)

To translate the \(BRS \) invariance of \(S_{gf} \) into a Slavnov identity we introduce a set of invariant external sources \((Y, L, \bar{L})\) coupled to the non-linear variations of the \(BRS \) transformations of the quantized fields (2.8):

\[
S_{ext} = \int dzd\bar{z} \left(Y \cdot sX + Lc\partial c + \bar{L}\bar{c}\partial \bar{c} \right).
\]

(2.10)

As explained in [8] \(\mu \) and \(\bar{\mu} \) are treated as external unquantized fields playing the role of a background metric.

Thanks to the algebraic property

\[
s\mu = \frac{\delta S_{gf}}{\delta b},
\]

(2.11)

the complete action

\[
\Sigma = S_{inv} + S_{bc} + S_{ext},
\]

(2.12)

obeys the Slavnov identity

\[
S(\Sigma) = 0,
\]

(2.13)

with

\[
S(\Sigma) = \int dzd\bar{z} \left(\frac{\delta \Sigma}{\delta Y} \cdot \frac{\delta \Sigma}{\delta X} + \frac{\delta \Sigma}{\delta \mu} \frac{\delta \Sigma}{\delta b} + \frac{\delta \Sigma}{\delta L} \frac{\delta \Sigma}{\delta c} + \frac{\delta \Sigma}{\delta \bar{\mu}} \frac{\delta \Sigma}{\delta \bar{b}} + \frac{\delta \Sigma}{\delta \bar{L}} \frac{\delta \Sigma}{\delta \bar{c}} \right).
\]

(2.14)
Let us introduce also, for further use, the linearized Slavnov operator B

$$B = \int dz d\bar{z} \left(\frac{\delta \Sigma}{\delta Y} \cdot \frac{\delta}{\delta X} + \frac{\delta \Sigma}{\delta X} \cdot \frac{\delta}{\delta Y} + \frac{\delta \Sigma}{\delta \mu} \cdot \frac{\delta}{\delta b} + \frac{\delta \Sigma}{\delta b} \cdot \frac{\delta}{\delta \mu} + \frac{\delta \Sigma}{\delta \bar{\mu}} \cdot \frac{\delta}{\delta \bar{b}} + \frac{\delta \Sigma}{\delta \bar{b}} \cdot \frac{\delta}{\delta \bar{\mu}} + \frac{\delta \Sigma}{\delta c} \cdot \frac{\delta}{\delta L} + \frac{\delta \Sigma}{\delta \bar{c}} \cdot \frac{\delta}{\delta \bar{L}} \right),$$

(2.15)

which, as a consequence of (2.13), turns out to be nilpotent

$$BB = 0.$$

(2.16)

In this framework the Beltrami differential μ has a very simple physical interpretation [8, 9, 12, 13]: it is the classical source for the $(T_{zz}, T_{\bar{z}\bar{z}})$-components of the energy-momentum tensor, i.e.:

$$T_{zz} = \frac{\delta \Sigma}{\delta \mu}, \quad T_{\bar{z}\bar{z}} = \frac{\delta \Sigma}{\delta \bar{\mu}}.$$

(2.17)

The Slavnov identity (2.13) is then the starting point for a field theory characterization of the energy-momentum current algebra [10]. From the expression (2.15) for the linearized operator B it follows also:

$$T_{zz} = \mathcal{B}b,$$

(2.18)

which shows that the energy-momentum tensor is cohomologically trivial. This property, as discussed by [4], is one of the basic ingredients for the construction of topological field models.

Let us conclude this section by noticing that, actually, not only the energy-momentum tensor but also the full string action Σ in (2.12) is cohomologically trivial. Indeed it is easily verified that

$$\Sigma = \mathcal{B} \int dz d\bar{z} \left(\frac{1}{2} \mathbf{X} \cdot \mathbf{Y} - Lc - \bar{L}\bar{c} \right).$$

(2.19)

This property, together with eq.(2.18), allows to interpret in a suggestive way the bosonic string as a topological model of the Witten’s type [4].
3 Supersymmetric algebra

To discuss the symmetry content of the model and to show the existence of a supersymmetric structure let us introduce the two functional operators \((\mathcal{W}, \bar{\mathcal{W}})\):

\[
\mathcal{W} = \int dzd\bar{z} \left(\mu \frac{\delta}{\delta \bar{c}} + \frac{\delta}{\delta c} + L \frac{\delta}{\delta b} \right),
\]

(3.1)

\[
\bar{\mathcal{W}} = \int dzd\bar{z} \left(\bar{\mu} \frac{\delta}{\delta c} + \frac{\delta}{\delta \bar{c}} + \bar{L} \frac{\delta}{\delta \bar{b}} \right),
\]

(3.2)

which, together with the linearized Slavnov operator (2.15), obey the following algebraic relations

\[
\{ \mathcal{B}, \mathcal{W} \} = \partial,
\]

\[
\{ \mathcal{B}, \bar{\mathcal{W}} \} = \bar{\partial},
\]

(3.3)

\[
\{ \mathcal{W}, \mathcal{W} \} = \{ \mathcal{W}, \bar{\mathcal{W}} \} = \{ \bar{\mathcal{W}}, \bar{\mathcal{W}} \} = 0.
\]

(3.4)

From eq.(3.3) one sees that the algebra between \((\mathcal{W}, \bar{\mathcal{W}})\) and \(\mathcal{B}\) closes on the translations, thus allowing for a supersymmetric interpretation of the model.

In addition, one has also the linearly broken Ward identities:

\[
\mathcal{W}\Sigma = \Delta, \quad \bar{\mathcal{W}}\Sigma = \bar{\Delta},
\]

(3.5)

with \((\Delta, \bar{\Delta})\) given by

\[
\Delta = \int dzd\bar{z} \left(\bar{L}\partial\bar{c} + L\partial c - \bar{b}\partial\bar{\mu} - b\partial\mu - Y \cdot \partial X \right),
\]

(3.6)

and

\[
\bar{\Delta} = \int dzd\bar{z} \left(L\partial c + \bar{L}\partial\bar{c} - b\partial\mu - \bar{b}\partial\bar{\mu} - Y \cdot \bar{\partial}X \right).
\]

(3.7)

Expressions (3.6)-(3.7), being linear in the quantum fields, represent classical breakings. This property seems to be a common feature of the models with a non-linearly realized supersymmetry [14].
4 The diffeomorphism anomaly

In this section we use the supersymmetric structure (3.3) in order to solve the descent equations associated with the integrated cohomology of the linearized operator \mathcal{B}; giving then an algebraic characterization of all possible anomalies of the Slavnov identity (2.13) at the quantum level.

In what follows we identify, for simplicity, the string world sheet \mathcal{M} with the whole complex plane \mathbb{C}; the result being adaptable, modulo the infrared problem of the global zero modes [12], to an arbitrary Riemann surface by means of a projective connection [13, 15].

To the quantum level the classical action (2.12) is replaced by a one-loop effective action Γ [8, 9, 12]

$$\Gamma = \Sigma + \hbar \Gamma^{(1)} ,$$

(4.1)

which obeys the anomalous Slavnov identity

$$S(\Gamma) = \hbar \mathcal{A} ,$$

(4.2)

where the diffeomorphism anomaly \mathcal{A} is an integrated local two-form of ghost number one 1

$$\mathcal{A} = \int \mathcal{A}^1_2 ,$$

(4.3)

constrained by the Wess-Zumino consistency condition

$$\mathcal{B} \mathcal{A} = 0 .$$

(4.4)

As it is well known this equation, when translated to the local level, yields a tower of descent equations:

$$\mathcal{B} \mathcal{A}^1_2 + d \mathcal{A}^2_1 = 0 ,$$

$$\mathcal{B} \mathcal{A}^2_1 + d \mathcal{A}^3_0 = 0 ,$$

$$\mathcal{B} \mathcal{A}^3_0 = 0 ,$$

(4.5)

where d denotes the exterior derivative

$$d = dz \partial + d\bar{z} \bar{\partial} ,$$

(4.6)

1 We adopt here the usual convention of denoting with \mathcal{A}^p_q a q-form with ghost number equal to p.

and
\[d^2 = 0 \quad , \quad \{ B \ , \ d \} = 0 \ . \quad (4.7) \]

Thanks to the supersymmetric operators \((\mathcal{W}, \bar{\mathcal{W}})\), to solve the ladder (4.5) it is sufficient to know only the non-trivial solution of the last equation (which is a problem of local cohomology instead of a modulo-\(d\) one). It is easy to check indeed that, once \(A^3_0\) is known, the remanent cocycles \(A^2_1\) and \(A^1_2\) are identified with the \((\mathcal{W}, \bar{\mathcal{W}})\)-transform of \(A^3_0\), i.e.
\[
A^2_1 = (\mathcal{W}A^3_0) \, dz + (\bar{\mathcal{W}}A^3_0) \, d\bar{z} , \quad \quad (4.8)
\]

It is worthwhile to mention also that, due to the vanishing of the local cohomology of \(B\) in the one-form sector with ghost number two and in the two-form sector with ghost number one \([\text{14}, \text{16}]\), expression (4.8) is, modulo trivial cocycles, the most general solution of the ladder (4.5).

For what concerns the local cohomology of \(B\) in the zero-form sector with ghost number three it turns out \([\text{14}, \text{16}]\) that the most general non-trivial solution for \(A^3_0\) contains only two elements:
\[
A^3_0 = (\Omega^{(1)} , \Omega^{(2)}) , \quad (4.9)
\]
which, modulo a \(B\)-coboundary, can be written as:
\[
\Omega^{(1)} = (c \partial c \partial^2 c + \text{comp. conj.}) , \quad (4.10)
\]
and
\[
\Omega^{(2)} = (c \bar{c} \partial c (DX \cdot \bar{D}X) f(X) + \text{comp. conj.}) , \quad (4.11)
\]
where \(D\) is the "covariant derivative" \([\text{12}, \text{13}]\)
\[
D = \frac{1}{1 - \mu \bar{\mu}} (\partial - \bar{\mu} \bar{\partial}) , \quad (4.12)
\]
and \(f(X)\) is an arbitrary formal power series in the matter fields \(\{X\}\) which does not contain constant term:
\[
f(X) = \sum_{n=1}^{\infty} f_n (X \cdot X)^n . \quad (4.13)
\]
Using equations (4.8) it is immediate to show that to the cocycle $\Omega^{(1)}$ of eq.(4.10) it corresponds the diffeomorphism anomaly
\[
\mathcal{A}_2^1 = \left(-\partial \mu \partial^2 c + \partial c \partial^2 \mu \right) dz \wedge d\bar{z} + \text{comp. conj.} , \tag{4.14}
\]
i.e.
\[
\mathcal{A} \propto \int dzd\bar{z} \left(\mu \partial^3 c + \text{comp. conj.} \right) . \tag{4.15}
\]
This anomaly, whose numerical coefficient turns out to be proportional to $(D - 26)$ \cite{9}, corresponds to the well known central term of the energy-momentum current algebra \cite{10} and fixes the critical dimensions of the bosonic string. Moreover it is completely equivalent \cite{17}, via a Bardeen-Zumino action, to the more popular string Weyl anomaly.

The $\Omega^{(2)}$-cocycle of eq.(4.11) gives rise to a matter dependent cocycle \mathcal{A}_X whose expression reads:
\[
\mathcal{A}_X = - \int dzd\bar{z} \left(1 - \mu \bar{\mu} \right) \left((\partial + \mu \bar{\partial}) \gamma + (\bar{\partial} + \mu \partial) \bar{\gamma} \right) (D\mathbf{X} \cdot \bar{D}\mathbf{X}) f(\mathbf{X}) , \tag{4.16}
\]
where
\[
\gamma = \frac{c - \mu \bar{c}}{1 - \mu \bar{\mu}} , \tag{4.17}
\]
is the diffeomorphism variable of eqs.(2.5), (2.9). Actually to \mathcal{A}_X one cannot associate a true anomaly. Indeed, from the absence in the classical action (2.12) of a self-interaction term in the matter fields, it is easily seen that, in spite of the fact that \mathcal{A}_X is cohomologically non-trivial, the numerical coefficient of the corresponding Feynman diagrams automatically vanishes. It follows then that expression (4.15) represents the unique breaking of the Slavnov identity (2.13) at the quantum level.

Acknowledgements We are grateful to O. Piguet, S. Lazzarini and R. Stora for useful discussions and comments.
References

[1] E. Witten, *Comm. Math. Phys.* 117 (1988) 353;
Comm. Math. Phys. 121 (1989) 351;

[2] A. S. Schwarz, *Lett. Math. Phys.* 2 (1978) 247;
A. S. Schwarz, Baku International Topological Conference, Abstract, vol. 2, p. 345 (87);

[3] D. Birmingham, M. Blau, M. Rakowski and G. Thompson, *Phys. Rev.* 209 (1991) 129;

[4] F. Delduc, F. Gieres and S. P. Sorella, *Phys. Lett.* B225 (1989) 367;
F. Delduc, C. Lucchesi, O. Piguet and S. P. Sorella, *Nucl. Phys.* B346 (1990) 313;

[5] E. Guadagnini, N. Maggiore and S. P. Sorella, *Phys. Lett.* B255 (1991) 65;
S. P. Sorella, prep. UGVA-DPT 92/08-781; to appear in Comm. Math. Phys.;

[6] C. Lucchesi, O. Piguet and S. P. Sorella; prep. MPI-Ph/92-57,
UGVA-DPT 92/07-773; to appear in NUCl. Phys. B;

[7] D. Birmingham and M. Rakowski, *Phys. Lett.* B269 (1991) 103;
Phys. Lett. B272 (1991) 217;
Phys. Lett. B275 (1992) 271;
Phys. Lett. B289 (1992) 271;

[8] L. Baulieu, C. Becchi and R. Stora, *Phys. Lett.* B180 (1986) 55;
L. Baulieu and M. Bellon, *Phys. Lett.* B196 (1987) 142;

[9] C. Becchi, *Nucl. Phys.* B304 (1988) 513;

[10] A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, *Nucl. Phys.* 241 (1984) 333;

[11] M. Werneck de Oliveira, M. Schweda and S. P. Sorella, in prep.;
[12] R. Stora, in *Non Perturbative Quantum Field Theory*, G. ’t Hooft and al. eds., Nato ASI series B, vol. 185, Plenum Press (88); S. Lazzarini and R. Stora, *Ward Identities for Lagrangian Conformal Models*, in *Knots, Topology and Quantum Field Theory, 13th John Hopkins Workshop*, L. Lusanna ed, World Scientific (89);

[13] S. Lazzarini, *On Bidimensional Lagrangian Conformal Models*, Thesis LAPP-Annecy, France, (90) unpublished;

[14] O. Piguet and S. P. Sorella, *Helv. Phys. Acta* 63 (1990) 683;

[15] R. Zucchini, *Comm. Math. Phys.* 152 (1993) 269;

[16] G. Bandelloni and S. Lazzarini, *Diffeomorphism Cohomology in Beltrami Parametrization*, PAR-LPTM-93; GEF-TH/93;

[17] M. Knecht, S. Lazzarini and F. Thuillier; *Phys. Lett.* B251 (1990) 279; M. Knecht, S. Lazzarini and R. Stora; *Phys. Lett.* B262 (1991) 25;