IF THE PROSPECT OF SOME OCCUPATIONS ARE STAGNATING WITH TECHNOLOGICAL ADVANCEMENT? A TASK ATTRIBUTE APPROACH TO DETECT EMPLOYMENT VULNERABILITY

Iftekhairul Islam
School of Economics, Public Policy, and Political Science
The University of Texas at Dallas
E-mail: iftekhairul.islam@utdallas.edu

Fahad Shaon
Erik Jonsson School of Engineering and Computer Science
The University of Texas at Dallas
Email: fahad.shaon@utdallas.edu

Abstract

Two distinct trends can prove the existence of technological unemployment in the US. First, there are more open jobs than the number of unemployed persons looking for a job, and second, the shift of the Beveridge curve. There have been many attempts to find the cause of technological unemployment. However, all of these approaches fail when it comes to evaluating the impact of modern technologies on employment future. This study hypothesizes that rather than looking into skill requirement or routine non-routine discrimination of tasks, a holistic approach is required to predict which occupations are going to be vulnerable with the advent of this 4th industrial revolution, i.e., widespread application of AI, ML algorithms, and Robotics. Three critical attributes are considered: bottleneck, hazardous, and routine. Forty-five relevant attributes are chosen from the O*NET database that can define these three types of tasks. Performing Principal Axis Factor Analysis, and K-medoid clustering, the study discovers a list of 367 vulnerable occupations. The study further analyzes the last nine years of national employment data and finds that over the previous four years, the growth of vulnerable occupations is only half than that of non-vulnerable ones despite the long rally of economic expansion.

Keywords: technological unemployment, innovation, skill gap, K-medoid clustering

1. Introduction

Unemployment has been a crucial issue for governments as well as policymakers around the world for quite a long time. It has a consequence not only for the social, political and economic life of individuals but also for the overall economy and development of a country (Dickens et al. 1994). The social and political enterprise of people surrounding an unemployed person are also adversely affected. (McClelland et al. 2000). As unemployment has extensive ramifications in different policy areas ranging from welfare, education, tax and investment to health, crime, and other social issues as well as to political stability, both federal and state governments are keen to address this problem with all the tools within their arsenal, i.e., fiscal and monetary policies and other administrative strategies and schemes. However, without an effective and robust prediction mechanism concerning future employment scenarios, such policies would be pointless.

Therefore it is necessary to have a deep understanding of why unemployment occurs in the first place. There could be multifaceted reasons. According to Krugman (1994), the causes of unemployment can be separated into two broad categories: cyclical and structural. The former depends on fluctuations of aggregate demand and the latter on demographic shifts, changes in labor market institutions, or technological innovations.

Unlike cyclical unemployment, which is typically short term, easily predictable, and dependent on market forces, structural unemployment is longer lasting and caused by different externalities which may or may not be directly related to economic indicators (Mocan 1999). Such externalities could be policy shifts, globalization, or new product and process innovations. When there is an initiation of new business or production process, a severe skill mismatch can emerge; companies need competent workers, but the existing workers lack the necessary skills (Manacorda et al. 1999). As it takes substantial time to learn new skills, structural unemployment can last for a long time unless some radical initiatives in training and education are taken.

Lack of skill is not the only reason for structural unemployment. Sometimes a whole region can be affected because of a lack of farsightedness and vision from governments and policymakers. Fagerberg et al. (1997) investigate the causes of structural unemployment in different European countries and find that it prevails more in those countries with less investment in research and development. In these countries the diffusion of technology in production and manufacturing sectors is limited.

We can find a trace of structural unemployment in the US. As of the latest ‘Job opening and labor turnout summary’ published by BLS in November 2019, the number of job openings is 6.9 million, hires is 5.8 million, and separations (quits, layoffs, and discharges) is 5.3 million. The situation is there is a job for everyone, but still, there is a persistent unemployment rate of 3.8%. Most of these unemployed...
people are active job seekers but without any success. This scenario is a telltale sign of structural unemployment.

![Figure 1: Number of unemployed persons per job opening](image)

Source: US Bureau of Labor Statistics

For the first time since this Job Openings and Labor Turnover Survey (JOLTS) has been published, the ratio has fallen below 1, meaning more number of jobs are offered in the economy than the number of unemployed persons. The shaded area represents recession, as determined by the National Bureau of Economic Research.

There is another way to find out if an economy is facing structural unemployment, the Beveridge curve which shows an inverse relationship between labor demand and labor supply over time. The curve plots job opening rates on the vertical axis and unemployment rate on the horizontal axis. A shift of this curve to the right provides evidence of structural unemployment (Nickell et al. 2001). We can detect an apparent shift of this curve from early 2010 to the end of 2018 comparing to the 2000-2009 period. With further observation, we identify that in the last few months of 2018 the unemployment rate was lower than the job openings rate, confirming the existence of structural unemployment. There is thus a clear indication of skill mismatch between what employers want and what prospective workers can provide.

![Figure 2: The Beveridge curve](image)

Source: US Bureau of Labor Statistics

2. Causes of structural unemployment

There have been many efforts to find the cause of structural unemployment, but none of them has provided conclusions that hold true under every scenario or time frame. The most popular attempt is called the Skill-Biased Technological Change (SBTC) hypothesis, according to which the diffusion of technology increases the demand for high-skilled and educated workers and less-skilled workers become underemployed or sometimes completely out of employment. (Acemoglu 1995). SBTC involves a shift towards capital intensive production techniques that bolstered relative wages of skilled laborers by enhancing relative productivity. This phenomenon was conspicuous in the years after the 2nd World War when the widespread application of technology in production and manufacturing became commonplace (Violante, 2016).

A ‘hollowing out of the middle’ effect introduced doubts concerning the validity of SBTC theory. The overall demand for jobs is not perfectly linear with skill level and the demand for workers with mid-level skill or mid-ranked jobs has been declining in overall market share since the late 1970s relative to low-skilled and high-skilled workers, as shown by figure 3 and 4.

This phenomenon of job polarization could not be explained by the SBTC hypothesis. To overcome this drawback, Autor et al. (2001) advanced a Routine-Replacing Technological Change (RRTC) or Routine-biased Technological Change (RBTC) hypothesis. As per this theory, job susceptibility due to technological change is not a function of skill. Instead, it is directly related to the types of tasks one performs in doing one’s job, as suggested by Table 1.
This phenomenon of job polarization could not be explained by the SBTC hypothesis. To overcome this drawback, Autor et al. (2001) advanced a Routine-Replacing Technological Change (RRTC) or Routine-biased Technological Change (RBTC) hypothesis. As per this theory, job susceptibility due to technological change is not a function of skill. Instead, it is directly related to the types of tasks one performs in doing one’s job, as suggested by Table 1.

Job type	Manual	Cognitive		
		Analytical	Interpersonal	
Routine	Most	Vulnerable	Moderate	
Non-routine	Moderate	Vulnerable	Least	

The hypothesis postulates that routine-manual jobs are the most vulnerable and jobs that demand cognitive input and non-routine maneuvering are the least vulnerable to new and more advanced technology in the production and service sectors. Figure 5 supports of their claim.

While Autor’s hypothesis explain why the number of middle-ranked jobs is declining they have become irrelevant with the advent of Artificial Intelligence (AI), Machine Learning Algorithms, and high-end, agile robots. The tasks the new machines and algorithms perform cannot be defined by limited routine, non-routine or cognitive, manual task metrics. To predict job vulnerability due to this latest technology, it is necessary to take into consideration not only the skill level of workers or task constituents of a job, but all job requirement variables, i.e., abilities, capacities, experience, training and education, job context, etc. (Frey et al., 2017). A holistic approach has to be taken to grasp the true impact of the latest trends in technology on the overall job market.

There has been no recent attempt to pinpoint which jobs are susceptible and which are not, taking into account this very recent trends in innovation i.e., AI and Robotics. The previous literature has tried to detect vulnerability by sector (manufacturing, service, agriculture), or industries (health,
education, finance, management, etc.) or types of jobs (routine or non-routine), or skill requirement of jobs (high or low)

We know of no undertaking that investigates why the prospect of some employments are diminishing over the past several years despite the long rally of economic expansion. This study would like to shed some light on this issue in the line with ‘task-attribute’ approach, which is an amalgamation (broadly) of the classical hypotheses and present-day analysis and findings.

3. Material and methods

3.1. Datasets

For the study, two sources of datasets have been used, Bureau of Labor Statistics (BLS) and Occupational Information Network (O*NET). BLS provides full-spectrum employment data from all the USA states and its territories. It also categorizes the data in terms of sectors and industries. This study has used employment data from 2010 to 2018. It is only concerned with the total number of national-level employment from each SOC (Standardized Occupational Code) and how its distribution changed each year. O*NET contains detailed occupational definitions of all the SOC-coded employments of BLS. O*NET explains all the jobs using more than 180 job features, under the broad categories of abilities, context, skills, knowledge, interests, work style, and work activities. The defining process is extremely elaborative and exhaustive. For each job and corresponding features, O*NET provides with an importance level of the feature for that particular job. In Figure 6, the study shows a standardized importance score of selected features for some occupations.

For this analysis, all the occupations that are present in both O*NET and BLS databases and with relevant SOC codes are considered. After leaving the occupations with missing data, the study is left with 966 occupations. These occupations are the observations for this study.

3.2. Variables selection

Most of the relevant variables are initially chosen from the 180 odd variables listed in occupational characteristics based on the ‘engineering bottleneck’ concept. According to this concept even though AI and robots can perform different non-routine cognitive and non-routine manual tasks, contemporary technology still falls short of expectation when it comes to such tasks as perception and manipulation, creative intelligence, social intelligence, etc. (Frey et al. 2013). The basic premise of the hypothesis is that there are some choke points that cannot be resolved by the current level of technological development when it comes to imitating human behavior, skill, and intuition that are critical for performing some occupational tasks, i.e., judgment, coordination, social perceptiveness, teamwork, etc. On top of these ‘bottleneck’ variables, we take into account contemporary research and articles on AI and robotics to decide on the occupational attributes that are going to be or already being emulated by AI or robots with higher precision and effectiveness, i.e., pattern recognition, repetitive motion, manual dexterity, etc. These attributes fall into routine work category, i.e., not much critical thinking, complex problem solving, or originality is required, rather following a well-defined set of rules is enough to perform the job properly. The database provides 41 attributes, which are either very difficult to emulate (engineering bottlenecks) or already being in the process of replacement (routine and repetitive) by AI and robots.

There are some contextual attributes of some professions that could be detrimental for human lives, i.e., working in hazardous conditions, exposure to contamination and radiation, etc. As no one can take chances with human lives, these kinds of jobs are sure to be replaced by robots as soon as
technology reaches the threshold level. (Takayama et al. 2008), Maney (2018), Clay (2014). For this reason, we have introduced 4 more variables that are related to hazardous and risky tasks. In the end, we have 45 relevant variables to further our analysis of understanding vulnerable occupations due to AI and robots. Finally, our database now constitutes a 966X45 matrix reduced from the initial 1110X180 matrix due to data availability and relevancy issue.

Table 6, gives an example of some variables as per these three types of broad features. Table 6: Features and contexts

Relevant Features	Selected variables
Engineering bottleneck	Negotiation, Critical thinking, Empathy, Persuasion etc.
Hazardous context	Exposed to Contaminants, Very Hot or Cold Temperatures etc.
Routine work	Finger Dexterity, Repetitive motions etc.

3.3. Data reduction using Principal Axis Factor Analysis

After merging and cleaning the dataset, 966 occupations remain, along with the 45 necessary and relevant variables scaled by their respective importance levels. As many of these variables were correlated (both Barlett sphericity and Kyser-Meyer-Olkin tests are performed), a principal axis factor analysis (PAFA) is undertaken to isolate the independent dimensions of variation. Principal axis factor analysis is a statistical technique that helps to reduce a large set of independent variables to a smaller and meaningful set of summary variables. It assists in exploring the latent construct of a phenomenon that may be present in several independent variables simultaneously.

3.3.1. Number of factors

Before performing the factor analysis, the study has performed ‘Parallel Analysis’ to find the optimum number of factors. In this case, the number could be from 6 to 8.

After performing the analysis, the best result is 7 factors, a solution that has the highest Tucker-Lewis value of 0.83. The root mean square of residuals (RMSR) is 0.02. This is acceptable as this value should be close to 0. The RMSEA index is 0.092, and BIC is 1477.06. Both these values are better than factor results with other factor numbers.

3.3.2. Factor loadings

Figure 8 shows how the original variables loaded onto each factor in the 7-factor orthogonally rotated PAFA solution.

3.3.3. Interpretation of factors

We interpret the six basic skill-dimensions as follows:

Problem-solving and repetitive work

At one end, this factor involves spotting complex problems and assessing relevant information to develop and evaluate different options and implement the best solution. It also requires the performance of cost-benefit analysis of potential actions using logic and reasoning. This factor is important for identifying the strengths and weaknesses of alternative solutions, conclusions or approaches to problems. At the opposite end of the scale is repetitive work, doing a ‘patterned’ job that doesn’t require out of the box thinking. Such jobs can be very easily codified, as there is not much dispersion from the linear and well-defined job description. As per the Occupational Safety and Health Administration (OSHA), “a highly repetitive job can be characterized by one of the following: A cycle time less than 30 seconds. Over 1,000 parts per shift, or more than 50% of the cycle time involving the same kind of fundamental cycle”. Repetitive work can be harmful to a worker as it could be instrumental to musculoskeletal disorders. (PISHA, 2010)

Negotiation and leadership capacity

This factor involves getting others onto the same page and trying to bridge the gaps in opinions and attitudes. It also requires adjusting one’s actions in tandem to the counterpart’s actions. Sometimes it could also demand to persuade others to change action or behavior as per the changing contexts. This factor is also important in handling and resolving complaints, discontents, and grievances.
Exposure to hazard

This factor requires doing a job that is exposed to contaminants (such as pollutants, gases, dust or odors), radiation (gamma, X-rays), risky machineries (moving parts, overhead cranes), very hot (above 90 F degrees) or very cold (below 32 F degrees) temperatures, loud noise (construction sites). Some jobs involve working in a high, uneven places (tree pruning, roofing). Few professions i.e., soldiers, deep-sea explorers, and firefighters are inherently exposed to various vulnerable scenarios. All such jobs that are exposed to hazardous conditions require a high level of depth perception (distinguishing between near and distant objects) and manual dexterity (agile body movement).

Empathy
This factor means being conscious of others' reactions and grasping why they react this way. It also requires being sensitive to others' needs and accommodating any legitimate demand. This factor involves being amiable to others on the job and demonstrating a cooperative, gracious attitude. It entails deep comprehension of human behavior and conduct and individual differences in ability, performance, personality, and interests.

Artistic ability
This factor involves researching and developing new applications, processes or products. Sometimes it also requires the worker to design, create and implement unique, state-of-the-art ideas and schemes.

Coordination/Leading capacity
This factor entails engaging everyone to pursue a common goal. Coordination involves funneling and optimizing everyone’s effort to achieve the target of the team as a whole. This factor helps in creating synergy among all the team players so that they can deliver what is expected from them. Knowledge over other team member’s limitations and strengths is also a key component of this factor.

Figure 8: Factor loadings
3.4 Susceptibility to AI and Robotics

If we observe closely we see that the factor ‘Hazard’ i.e., risk exposure (Ford 2015), and dexterity (Strickland 2016) is the most susceptible characteristic in terms of the scope and capacity of modern AI algorithms and robotics. Factor ‘problem solving’ displays an inverse relation between problem-solving and robotics-susceptible repetitive motion. Occupations with low or negative scores on this factor are vulnerable. Other factors i.e., negotiation capacity, empathy, coordination and artistic are not vulnerable. (Russel et al. 2016). They are extremely difficult for AI and robots to emulate with the current level of research and development. This study then focuses on these susceptible factors to derive the list of occupations that are most likely to be affected by contemporary technological innovation. The list is created by taking the top 20 percent of occupations that scored high on the ‘Hazard’ factor and the bottom 20 percent of occupations that scored low on the ‘Problem-solving’ factor. Seven types of susceptibility are found based on these factors. (Figure 9)

3.5 Conditioned Vulnerability: K-Medoid Clustering

Not all occupations with similar vulnerabilities are equally at risk from technological change. Vulnerabilities need to be adjusted by accounting for other factors. For example, we can take the cases of barbers and surgeons. Both these professions are heavily dependent on dexterity with factor scores of 2.85 and 1.55 respectively. These occupations might be at risk due to cutting-edge development in robotic arms. But to perform the job of a surgeon unlike a barber, other factors are also critical. If we take into account other occupational attributes (critical thinking, coordination, judgment and decision, empathy), we can understand how distinct these two professions are in terms of replicability. We, therefore, need an adjusted classification of occupations that merges vulnerability with conditioning characteristics. For that we must take into consideration the ‘bottleneck’ attributes that are difficult to emulate.

To that end, we use k-medoid clustering (PAM, as Partitioning around Medoids), in the full 7-factor space that took into consideration all the relevant factors, vulnerable and ‘anti’ vulnerable.

3.5.1. Optimum Number of Clusters

To proceed with the k-medoid clustering procedure, we have to first decide on the number of optimum clusters. The fundamental characteristics of any clustering algorithm are that distance (similarity) of elements of the same cluster should be minimum and the intra-cluster distance (dissimilarity) should be maximum. (Rousseeuw P. J., 1987). The ‘Silhouette Coefficient’ technique is used to derive an initial number of clusters in the 6-space. Silhouette, s(i) is calculated using the following function:

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

where,

- $a(i)$ is average dissimilarity of an element i to all other elements within a cluster,
- $d(I,C)$ is average dissimilarity of I to all the elements of another cluster C,
- $b(i)$ is minimum $d(i,C)$

The above function can be rewritten as the following

$$s(i) = \begin{cases}
\frac{1-a(i)}{b(i)} & \text{if } a(i) < b(i), \\
0 & \text{if } a(i) = b(i), \\
\frac{b(i)}{a(i)} - 1 & \text{if } a(i) > b(i),
\end{cases}$$
We can see silhouette value is highest for 7 number of clusters. If we take more than or less than 7 clusters silhouette value decreases. (Figure 11)

Figure 13 is a silhouette of the 7 clusters in the 7-space, with medoid results and sample occupations detailed in the appendix. Of the 8 clusters of occupations, only 3 have an immediate vulnerability (3, 6 and 7), located on one side of the red ‘vulnerability bisector’ in the figure.

3.5.2. K-Medoid Clustering
This algorithm (known as Partitioning around medoid) was first proposed in 1987 by two famous mathematicians, Kaufman and Rousseeuw. It is more robust to outliers and noises (Han et al. 2011) than the more popular clustering algorithm k-means clustering. While k-means uses a mean point as the center of the cluster (which may not be a real point in that cluster), k-medoid uses an actual point (medoid) or member in the cluster to categorize it. A medoid of a particular cluster is the most representative element of the cluster, i.e., a medoid’s similarities with the other member of the same cluster is the minimum.

3.5.3. Procedure for K-Medoid Clustering
K-medoid initiates with selecting a random element for each number of cluster, i.e. k number of medoids for k number of clusters. All other elements are included in the nearby cluster in terms of the features or factor scores for the current scenario. After the initial point, a new medoid is chosen for every cluster and it is tested against the current medoid to see if the value cost function (dissimilarities between each data item and its corresponding medoid) is less or more. If cost is less than the previous medoid than the new point becomes the medoid for that cluster. After a sufficient number of iterations, the algorithm converges.
\[Z = \sum_{l=1}^{k} \sum \left| x - m_{l} \right| \]

\(Z \): Sum of error (absolute) for all the points of the dataset
\(x \): A data point in the data space
\(m_{l} \): Medoid for cluster \(C_{l} \)

A cursory look of the occupations gives us the idea that most of the jobs are low paid, highly repetitive, low skilled, and doesn’t require more than a high school degree. Most of the occupations are from mining, agriculture, transportation, retail, and manufacturing industries. On the other hand, not surprisingly health care, hospitality, and education industries seem to be immune to these trends of prolific application of AI, and Robotics in workplace. Professional and business industries and state and federal government employees are also not so vulnerable.

3.5.4. K-Medoid Result

Of the 8 clusters of occupations, we can find only 3 of them have an immediate vulnerability because these clusters have high factor scores on susceptible factors or very low scores on ‘bottle-neck’ factors. (Figure 14). On the contrary, 5 clusters have high factor scores in more than 2 ‘bottle-neck’ factors making them not immediately vulnerable. (Figure 15). There are altogether 408 occupations in these 3 clusters. A list of the occupations is provided in the appendix. One thing we must understand, here no attempt is made to make a ranking of vulnerability, i.e., high-mid-low vulnerability. Rather the study just looks at the vulnerable factors and segregates the occupations in terms of factor scores using k-medoid clustering algorithms.

3.6 Real Job Trends

The study further looks at the change of a number of jobs from all the occupations mentioned both in O*NET and BLS for the past 8 years. Initially, I measured the change in demand for jobs for all occupations. The study found that on average, the increase in jobs for the vulnerable occupations was only a little
Figure 14: Factor scores of non-vulnerable clusters over 1%, whereas the increase in demand for the non-vulnerable jobs was almost 2.4% in these years. When I looked at this trend further, I noticed something interesting. I detected that the number of jobs that were more affected by AI and ML algorithms was decreasing at a higher rate (1.8% precisely). But, many of the vulnerable occupations that would mostly depend on dexterity or other ‘Robotic’ input were increasing, i.e., truck driver, firefighter etc. Again, not surprisingly number of warehouse helpers decreased two folds during the same period. My conclusion was that, even though current trends in robotics might put many jobs in a vulnerable condition, the threshold point of technology to replace human labor is still far away, and as of now, robots can replace them only in a ‘controlled’ environment.

4. Conclusion

We can see the demand for quite a handful of occupations is decreasing over the past several years. As, the US economy has not been experiencing an economic downturn, or no major trade agreement or disruptions has taken place during these years (trade war with China is rather a contemporary issue and any major impact is yet to be seen), we can conclude this phenomenon is due to the technological shift in businesses and manufacturing sectors. We must figure out what occupations will be in demand and what relevant skills are required to fill up the positions. Otherwise, the US economy could hit a sudden roadblock, which could end up in a catastrophe.

References

1. Acemoglu, D. (1995). Reward structures and the allocation of talent. European Economic Review, 39(1), 17-33. doi:10.1016/0014-2921(94)00014-q
2. Acemoglu, D. (2002). Technology and the labor market. Journal of Economic Literature 40, 7–72.
3. Acemoglu, D., & Autor, D. (2010). Skills, Tasks and Technologies: Implications for Employment and Earnings. doi:10.3386/w16082
4. Acemoglu, D., & Restrepo, P. (2016). The Race Between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment. doi:10.3386/w22252
5. Acemoglu, D., & Restrepo, P. (2018). Artificial Intelligence, Automation and Work. doi:10.3386/w24196
6. Arntz, M., T. Gregory and U. Zierahn (2016), The Risk of Automation for Jobs in OECD Countries: A
Disappearing routine jobs: Who, how, and why? Evidence from Spain. OECD countries. Discussion Paper 10.3917/rel.681.0148.

Recherches économiques de Louvain. 68. 148-384, DOI: 10.2753/PKE0160-3477360209

Bekar, C., Carlaw, K. & Lipsey, R. J Evol Econ (2018) 28:1005 https://doi.org/10.1007/s00191-017-0546-0

Benzell, S., Kotlikoff, L., Lagarda, G., and Sachs, J. (2015). Robots Are Us: Some Economics of Human Replacement. doi:10.3386/w20941

Berg, M. (1980). The machinery Question and the Social Question. New York: Cambridge University Press.

Bessen, J. (2015). How Computer Automation Affects Occupations: Technology, Jobs, and Skills. SSRN Electronic Journal. doi:10.2139/ssrn.2690435

Berger, T., Chen, C., and Frey, B. (2018). Drivers of disruption? Estimating the Uber effect. European Economic Review, 110, 197-210. doi:10.1016/j.euroecorev.2018.05.006

Bessen, J. (2015). How Computer Automation Affects Occupations: Technology, Jobs, and Skills. SSRN Electronic Journal. doi:10.2139/ssrn.2690435

Brand J. E. (2015). The Far-Reaching Impact of Job Loss and Unemployment. Annual review of sociology, 41, 359-375. doi:10.1146/annurev-soc-071913-043237

Bruno, F., Falzoni, A., and Helg, R.(2003). Measuring the effect of globalization on labour demand elasticity: An empirical application to OECD countries. Discussion Paper

César, A., and Dolores, C. (2002). Innovation and Job Creation and Destruction . Evidence from Spain. Recherches économiques de Louvain. 68. 148-168. 10.3917/rel.681.0148.

Christensen, M. (1997). The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail. University of Illinois at Urbana-Champaign's Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship. Available at SSRN: https://ssrn.com/abstract=1496206

Clay, K. (2014). Robots in Risky Jobs: On the Battlefield and Beyond. ISBN 978-1-4765-3972-0. Publisher Capstone Press.

Cortes, G. M., Jaimovich, N., and Siu, H. E. (2017). Disappearing routine jobs: Who, how, and why? Journal of Monetary Economics, 91:69–87.

Daniel, G. (2016). U.S. Farms Still Feed the World, But Farm Jobs Dwindle. https://www.strategy-business.com/blog/US-Farms-Still-Feed-the-World-But-Farm-Jobs-Dwindle?gko=92886

David, B. (2017). Computer technology and probable job destructions in Japan: An evaluation. Journal of the Japanese and International Economies, 43, 77-87. doi:10.1016/j.jjie.2017.01.001

Davidson, P. (2013) Income inequality and hollowing out the middle class, Journal of Post Keynesian Economics, 36:2, 381-384, DOI: 10.2753/PKE0160-3477360209

Dickens, R., Machin, S., & Manning, A. (1994). The Effects of Minimum Wages on Employment: Theory and Evidence from the US. doi:10.3386/w4742

Edquist, C., Hommen, L., and Mckelvey, M. (2001). Innovation and Employment: Process Versus Product Innovation. 10.4337/9781843762874.

Feldmann, H. (2013), Technological unemployment in industrial countries, Journal of Evolutionary Economics, 23, issue 5, p. 1099-1126 https://EconPapers.repec.org/RePEc:spr:joevec:v:23:y:2013:i:5:p:1099-1126.

Ford, M. (2009). The Lights in the Tunnel: Automation, Accelerating Technology, and the Economy of the Future, 2009.

Ford, M., (2015). Rise of the Robots: Technology and the Threat of a Jobless Future, Basic Books.

Frey, C., & Osborne, M. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254-280. doi:10.1016/j.techfore.2016.08.019

Galar, O., and O. Moav. (2000). "Ability Biased Technological Transition, Wage Inequality Within and Across Groups, and Economic Growth," Quarterly Journal of Economics 115, 469-497.

Garud, R., Praveen, N., and Zur, S. (1997). Technological Innovation: Oversights and Foresights. New York: Cambridge University Press. ISBN 0-521-55299-0.

Georg, G. and Guy, M. (2015). Robots at Work. London School of Economics & Political Science (LSE). IZA Discussion Paper No. 8938

Goldin, C., & Katz, L. (2007). The Race between Education and Technology: The Evolution of U.S. Educational Wage Differentials, 1890 to 2005. doi:10.3386/w12984

Goos, M., and Manning, A. (2007). Lousy and Lovely Jobs: The Rising Polarization of Work in Britain. Review of Economics and Statistics, 89(1), 118-133

Goos, M., Konings, J., and Vandeweyer, M. (2015). Employment Growth in Europe: The Roles of Innovation, Local Job Multipliers and Institutions.
37. Henderson J.P. (1992) Introduction to Thomas Robert Malthus, Principals of Political Economy, 1820. In: Essays in the History of Mainstream Political Economy. Palgrave Macmillan, London

38. Machin, S., and Van, J. (1998), Technology and Changes in Skill Structure: Evidence from Seven OECD Countries, The Quarterly Journal of Economics, 113, issue 4, p. 1215-1244.

39. Manacorda, M., Manning, A., and Wadsworth, J. (2006), The Impact of Immigration on the Structure of Male Wages: Theory and Evidence from Britain, CREoAM Discussion Paper No. 08/06.

40. Maney, K. (2019). The Upside to Robots Stealing Jobs? They’ll Take the Deadliest Ones. https://www.strategy-business.com/blog/The-Upside-to-Robots-Stealing-Jobs-Theyll-Take-the-Deadliest-Ones?gko=9aea8

41. Matuzeviciute, K., Butkus, M., and Karaliute, A. (2017). Do technological innovations affect unemployment? Some empirical evidence from European countries. Economies 5(4), 1–19 (2017). https://www.mdpi.com/2227-7099/5/4/48.

42. Paul R. Krugman, 1994. Past and prospective causes of high unemployment. Economic Review, Federal Reserve Bank of Kansas City, issue Q IV, 23-43.

43. Pramudita, Y., Putro, S., Rochman, E., Rofiqi, A., Jauhari, A., Sузanti, I., & Rachmad, A. (2018). Clustering Sports News in Indonesian Using Modified K-Medoid Method. Proceedings of the The 1st International Conference on Computer Science and Engineering Technology Universitas Muria Kudus. doi:10.4108/eai.24-10-2018.2280569

44. RBC (2017). Humans Wanted: How Canadian youth can thrive in the age of disruption? http://www.rbc.com/newsroom/_assets-custom/pdf/03-2018-rbc-future-skills-report.pdf

45. Rotman, D. (2013). How Technology Is Destroying Jobs. MIT Technology Review. June 12, 2013. http://www.technologyreview.com/featuredstory/515926/how-technology-is-destroying-jobs/

46. Rousseeuw,P. J. (1987), Silhouettes: A graphical aid to the interpretation and validation of cluster analysis

47. Author links open overlay panelPeter J.Rousseeuw

48. Russell, S., and Norvig, P. (2010), Artificial Intelligence: A Modern Approach, 3rd edition, Pearson.

49. Smith, Adam. (2001). Wealth of Nations, edited by C. J. Bullock. Vol. X. The Harvard Classics. New York: P.F. Collier & Son, 1909–14; Bartleby.com, www.bartleby.com/10/.

50. Smith, M., Mikulecky, L., Kibby, M., Dreher, M., and Dole, J. (2000). RRQ Snippet: What Will Be the Demands of Literacy in the Workplace in the Next Millennium? Reading Research Quarterly, 35(3), 378-383. Retrieved from http://www.jstor.org/stable/748223

51. Spitz- Oener, A. (2006). Technical Change, Job Tasks, and Rising Educational Demands: Looking outside the Wage Structure. Journal of Labor Economics, 24(2), 235-270. doi:10.1086/499972

52. Strickland, E. (2016). Would You Trust a Robot Surgeon to Operate on You? Retrieved from https://spectrum.ieee.org/robotics/medical-robots/would-you-trust-a-robot-surgeon-to-operate-on-you

53. Takayama, L., and Nass, C. (2008). Beyond dirty, dangerous and dull: What everyday people think robots should do. HRI 2008 - Proceedings of the 3rd ACM/IEEE International Conference on Human-Robot Interaction: Living with Robots. 25-32. 10.1145/1349822.1349827.

54. Violante, G. L. (2016). Skill-biased Technical Change. The New Palgrave Dictionary of Economics, 2012 Version. doi:10.1057/9781137336583.1655
Appendix: List of Vulnerable Occupations

Cluster	Occupations
3	Nursery and Greenhouse Managers
3	Farm and Ranch Managers
3	Licensing Examiners and Inspectors
3	Industrial Safety and Health Engineers
3	Nuclear Equipment Operation Technicians
3	Forest and Conservation Technicians
3	Occupational Health and Safety Specialists
3	First-Line Supervisors of Correctional Officers
3	Forest Fire Fighting and Prevention Supervisors
3	Municipal Fire Fighting and Prevention Supervisors
3	Municipal Firefighters
3	Forest Firefighters
3	Immigration and Customs Inspectors
3	Fish and Game Wardens
3	Police Patrol Officers
3	Sheriffs and Deputy Sheriffs
3	Transit and Railroad Police
3	Animal Control Workers
3	First-Line Supervisors of Landscaping, Landscaping and Groundskeeping Workers
3	Pesticide Handlers, Sprayers, and Applicators, Vegetation
3	Tree Trimmers and Pruners
3	Morticians, Undertakers, Production, Planning,
3	First-Line Supervisors of Logging Workers
3	First-Line Supervisors of Aquacultural
3	First-Line Supervisors of Agricultural
3	Agricultural Equipment Operators
3	Farmworkers, Farm, Ranch, and Aquacultural Animals
3	Fallers
3	First-Line Supervisors of Construction
3	Boilermakers
3	Brickmasons and Blockmasons
3	Construction Carpenters
3	Rough Carpenters
3	Cement Masons and Concrete Finishers
3	Construction Laborers
3	Paving, Surfacing, and Tamping Equipment
3	Pile-Driver Operators
3	Operating Engineers and Other Construction
3	Electricians
3	Insulation Workers, Mechanical
3	Pipefitters
3	Rebar Workers
3	Roofers
3	Structural Iron and Steel Workers
3	Helpers--Brickmasons, Blockmasons, Helpers--Carpenters
3	Elevator Installers and Repairers
3	Highway Maintenance Workers
3	Rail-Track Laying
3	Septic Tank Servicers and Sewer Pipe Cleaners
3	Weatherization Installers and Technicians
3	Derrick Operators, Oil and Gas
3	Rotary Drill Operators, Oil and Gas
3	Service Unit Operators, Oil, Gas, and Mining
3	Earth Drillers, Except Oil and Gas
3	Explosives Workers, Ordnance Handling Experts
3	Continuous Mining Machine Operators
3	Mine Cutting and Channeling Machine Operators
3	Rock Splitters, Quarry
3	Roof Bolters, Mining
3	Roustabouts, Oil and Gas
3	Helpers--Extraction Workers
3	First-Line Supervisors of Mechanics, Installers
3	First-Line Supervisors of Mechanics, Installers
3	Electric Motor, Power Tool, Electrical and Electronics Repairans, Powerhouse, Aircraft Mechanics and Service Technicians
3	Automotive Master Mechanics
3	Automotive Specialty Technicians
3	Bus and Truck Mechanics
3	Farm Equipment Mechanics
3	Mobile Heavy Equipment Mechanics
3	Motorboat Mechanics and Service Technicians
3	Outdoor Power Equipment and Other Mechanics
3	Recreational Vehicle Service Technicians
3	Tire Repairers and Changers
3	Control and Valve Installers and Repairers, Door
3	Heating and Air Conditioning Mechanics
3	Refrigeration Mechanics and Installers
3	Industrial Machinery Mechanics
3	Maintenance Workers, Machinery
Job Title	

Millwrights	
Refractory Materials Repairers, Except	
Electrical Power-Line Installers and Repairers	
Telecommunications Line Installers and Repairers	
Maintenance and Repair Workers, General	
Wind Turbine Service Technicians	
Commercial Divers	
Manufactured Building and Installers	
Riggers	
Signal and Track Switch Repairers	
Geothermal Technicians	
Fiberglass Laminators and Fabricators	
Rolling Machine Setters, Operators	
Cutting, Punching, and Press Machine	
Metal-Refining Furnace Operators	
Pourers and Casters, Metal	
Model Makers, Metal and Plastic	
Patternmakers, Metal and Plastic	
Molding, Coremaking, and Casting	
Multiple Machine Tool Setters,	
Tool and Die Makers	
Heat Treating Equipment Setters,	
Layout Workers, Metal and Plastic	
Plating and Coating Machine Setters	
Printing Press Operators	
Extruding and Forming Machine Setters	
Model Makers, Wood	
Patternmakers, Wood	
Sawing Machine Setters, Operators,	
Woodworking Machine Setters, Operators, and Tenders, Except Sawing	
Power Plant Operators	
Stationary Engineers and Boiler Operators	
Water and Wastewater Treatment Plant	
Chemical Plant and System Operators	
Gas Plant Operators	
Petroleum Pump System Operators, Refinery Operators, and Gaugers	
Biofuels Processing Technicians	
Biomass Plant Technicians	
Hydroelectric Plant Technicians	
Chemical Equipment Operators	
Separating, Filtering, Clarifying,	
Crushing, Grinding, and Polishing Machine Setters	
Mixing and Blending Machine Setters, Tenders	
Extruding, Forming, Pressing, Setters, Tenders	
Cutters and Trimmers, Hand	
Cutting and Slicing Machine Setters, Furnace, Kiln, Oven, Drier, and Kettle	
Inspectors, Testers, Sorters, Samplers	
Segmental Pavers	
Medical Appliance Technicians	
Cooling and Freezing Equipment	
Glass Blowers, Molders, Benders, and Finishers	
Aircraft Cargo Handling Supervisors	
First-Line Supervisors of Helpers Movers, Hand	
Recycling Coordinators	
Airline Pilots, Copilots, and Flight Engineers	
Commercial Pilots	
Airfield Operations Specialists	
Locomotive Engineers	
Locomotive Firers	
Rail Yard Engineers, Dinkey Operators,	
Railroad Brake, Signal, and Switch Operators	
Railroad Conductors and Yardmasters	
Sailors and Marine Oilers	
Ship and Boat Captains	
Mates- Ship, Boat, and Barge	
Pilots, Ship	
Motorboat Operators	
Ship Engineers	
Automotive and Watercraft Service Attendants	
Crane and Tower Operators	
Excavating and Loading Machine and Dragline	
Loading Machine Operators, Underground	
Hoist and Winch Operators	
Industrial Truck and Tractor Operators	
Gas Compressor and Gas Pumping Station	
Pump Operators, Except Wellhead Pumpers	
Wellhead Pumpers	
Refuse and Recyclable Material Collectors	
Mine Shuttle Car Operators	
Tank Car, Truck, and Ship Loaders	
Dredge Operators	
Cleaners of Vehicles and Equipment	
Machine Feeders and Offbearers	
Fishers and Related Fishing Workers	
Hunters and Trappers	
Forest and Conservation Workers	
Log Graders and Scalers	
Logging Equipment Operators	
Loan Counselors	
Computer Network Support Specialists	
Electrical Drafters
Paralegals and Legal Assistants
Court Reporters
Title Examiners, Abstractors, and Searchers
Library Technicians
Technical Writers
Radio Operators
Pharmacy Technicians
Ophthalmic Medical Technicians
Medical Records and Health Information
Ophthalmic Medical Technologists
Orderlies
Medical Transcriptionists
Pharmacy Aides
Bailiffs
Transportation Security Screeners
Cooks, Fast Food
Cooks, Short Order
Bartenders
Combined Food Preparation and Serving
Counter Attendants, Cafeteria, Food Concession, and Coffee Shop
Baristas
Waiters and Waitresses
Food Servers, Nonrestaurant
Dining Room and Cafeteria Attendants and Bartender Helpers
Hosts and Hostesses, Restaurant, Lounge, and Coffee Shop
Gaming Supervisors
Slot Supervisors
Gaming Dealers
Gaming and Sports Book Writers and Runners
Ushers, Lobby Attendants, and Ticket Takers
Amusement and Recreation Attendants
Locker Room, Coatroom, and Dressing Room Attendants
Barbers
Manicurists and Pedicurists
Shampooers
Skincare Specialists
First-Line Supervisors of Retail Sales Workers
Cashiers
Gaming Change Persons and Booth Cashiers
Counter and Rental Clerks
Demonstrators and Product Promoters
Models
Telemarketers
Switchboard Operators
Telephone Operators
Statement Clerks
Billing, Cost, and Rate Clerks
Bookkeeping, Accounting, and Auditing Clerks
Gaming Cage Workers
Payroll and Timekeeping Clerks
Procurement Clerks
Tellers
Brokerage Clerks
Correspondence Clerks
Court Clerks
Municipal Clerks
License Clerks
Credit Authorizers
Credit Checkers
Customer Service Representatives
Eligibility Interviewers, Government Programs
File Clerks
Hotel, Motel, and Resort Desk Clerks
Interviewers, Except Eligibility and Loan
Library Assistants, Clerical
Order Clerks
Human Resources Assistants,
Receptionists and Information Clerks
Reservation and Transportation Ticket
Couriers and Messengers
Police, Fire, and Ambulance Dispatchers
Postal Service Clerks
Postal Service Mail Carriers
Postal Service Mail Sorters, Processors
Stock Clerks, Sales Floor
Marking Clerks
Stock Clerks- Stockroom, Warehouse,
Order Fillers, Wholesale and Retail Sales
Executive Secretaries and Executive Administrative Assistants
Legal Secretaries
Medical Secretaries
Secretaries and Administrative Assistants, Except Legal, Medical, and Executive
Data Entry Keyers
Word Processors and Typists
Insurance Claims Clerks
Insurance Policy Processing Clerks
Mail Clerks and Mail Machine Operators, Except Postal Service 7
Office Clerks, General 7
Proofreaders and Copy Markers 7
Graders and Sorters, Agricultural Products 7
Nursery Workers 7
Slaughterers and Meat Packers 7
Laundry and Dry-Cleaning Workers 7
Ophthalmic Laboratory Technicians 7
Laborers and Freight, Stock 7
Environmental Compliance Inspectors 7
Farm Labor Contractors 7
Energy Auditors 7
Environmental Engineering Technicians 7
Non-Destructive Testing Specialists 7
Electrical Engineering Technologists 7
Industrial Engineering Technologists 7
Manufacturing Production Technicians 7
Surveying Technicians 7
Agricultural Technicians 7
Food Science Technicians 7
Environmental Science and Protection Technicians, Including Health 7
Athletes and Sports Competitors 7
Histotechnologists and Histologic Technicians 7
Dietetic Technicians 7
Home Health Aides 7
Fire Inspectors 7
Police Identification and Records Officers 7
Parking Enforcement Workers 7
Gaming Surveillance Officers and Gaming Investigators 7
Security Guards 7
Crossing Guards 7
First-Line Supervisors of Food Preparation and Serving Workers 7
Cooks, Institution and Cafeteria 7
Food Preparation Workers 7
Dishwashers 7
First-Line Supervisors of Housekeeping and Janitorial Workers 7
Janitors and Cleaners, Except Maids and Housekeeping Cleaners 7
Maids and Housekeeping Cleaners 7
Pest Control Workers 7
Animal Trainers 7
Nonfarm Animal Caretakers 7
Motion Picture Projectionists 7
Funeral Attendants 7
Baggage Porters and Bellhops 7
Meter Readers, Utilities 7
Shipping, Receiving, and Traffic Clerks 7
Weighers, Measurers, Checkers, Office Machine Operators, Except Computer 7
First-Line Supervisors of Animal Husbandry 7
Agricultural Inspectors 7
Animal Breeders 7
Farmworkers and Laborers, Crop 7
Fishers and Related Fishing Workers 7
Hunters and Trappers 7
Forest and Conservation Workers 7
Logging Equipment Operators 7
Log Graders and Scaleers 7
Stonemasons 7
Carpet Installers 7
Floor Layers, Except Carpet, Wood, Floor Sanders and Finishers 7
Tile and Marble Setters 7
Terrazzo Workers and Finishers 7
Drywall and Ceiling Tile Installers 7
Tapers 7
Glaziers 7
Insulation Workers, Floor, Ceiling, and Wall 7
Painters, Construction and Maintenance 7
Paperhangers 7
Plasterers and Stucco Masons 7
Sheet Metal Workers 7
Solar Photovoltaic Installers 7
Helpers--Electricians 7
Helpers--Painters, Paperhangers, Plasterers 7
Helpers--Pipelayers, Plumbers, Pipefitters 7
Helpers--Roofers 7
Construction and Building Inspectors 7
Fence Erectors 7
Segmental Pavers 7
Solar Thermal Installers and Technicians 7
Radio, Cellular, and Tower Equipment 7
Radio Mechanics 7
Telecommunications Equipment Installers and Repairers, Except Line Installers 7
Avionics Technicians 7
Electrical and Electronics Installers and Repairers, Transportation Equipment 7
Electrical and Electronics Repairers, Commercial and Industrial Equipment 7
Electronic Equipment Installers and Repairers, Motor Vehicles
Security and Fire Alarm Systems Installers
Automotive Body and Related Repairers
Automotive Glass Installers and Repairers
Rail Car Repairers
Motorcycle Mechanics
Bicycle Repairers
Mechanical Door Repairers
Home Appliance Repairers
Medical Equipment Repairers
Musical Instrument Repairers and Tuners
Watch Repairers
Coin, Vending, and Amusement Machine Servicers and Repairers
Fabric Menders, Except Garment
Locksmiths and Safe Repairers
Electromechanical Equipment Assemblers
Engine and Other Machine Assemblers
Structural Metal Fabricators and Fitters
Team Assemblers
Timing Device Assemblers and Adjusters
Bakers
Butchers and Meat Cutters
Meat, Poultry, and Fish Cutters and Trimmers
Food and Tobacco Roasting, Baking
Food Batchmakers
Food Cooking Machine Operators
Computer-Controled Machine Tool
Computer Numerically Controlled
Extruding and Drawing Machine
Forging Machine Setters, Operators,
Drilling and Boring Machine Tool Setters
Grinding, Lapping, Polishing,
Lathe and Turning Machine Tool Setters,
Milling and Planing Machine Setters,
Machinists
Foundry Mold and Coremakers
Welders, Cutters, and Welder Fitters
Solderers and Brazers
Welding, Soldering, and Brazing Machine
Tool Grinders, Filers, and Sharpeners
Prepress Technicians and Workers
Print Binding and Finishing Workers
Pressers, Textile, Garment, and Related Materials
Sewing Machine Operators
Shoe and Leather Workers and Repairers
Shoe Machine Operators and Tenders
Upholsterers
Cabinetmakers and Bench Carpenters
Furniture Finishers
Grinding and Polishing Workers, Hand
Cutters and Trimmers, Hand
Gem and Diamond Workers
Precious Metal Workers
Dental Laboratory Technicians
Etchers and Engravers
Stone Cutters and Carvers, Manufacturing
Molding and Casting Workers
Paper Goods Machine Setters, Operators,
Tire Builders
Helpers--Production Workers
Recycling and Reclamation Workers
Ambulance Drivers and Attendants,
Bus Drivers, Transit and Intercity
Bus Drivers, School or Special Client
Driver/Sales Workers
Heavy and Tractor-Trailer Truck Drivers
Light Truck or Delivery Services Drivers
Taxi Drivers and Chauffeurs
Subway and Streetcar Operators
Bridge and Lock Tenders
Parking Lot Attendants
Traffic Technicians
Aviation Inspectors
Transportation Vehicle, Equipment Inspectors,
Freight and Cargo Inspectors
Conveyor Operators and Tenders
Dredge Operators
Cleaners of Vehicles and Equipment
Machine Feeders and Offbearers
Packers and Packagers, Hand