PLOS ONE

Evaluation of queen cell acceptance and royal jelly production between hygienic and non-hygienic honey bee (Apis mellifera) colonies

--Manuscript Draft--

Manuscript Number:	PONE-D-22-02471
Article Type:	Research Article
Full Title:	Evaluation of queen cell acceptance and royal jelly production between hygienic and non-hygienic honey bee (Apis mellifera) colonies
Short Title:	Queen cell acceptance and royal jelly production
Corresponding Author:	Khalid Ali Khan, PhD
	King Khalid University
	Abha, Aseer SAUDI ARABIA
Keywords:	uncapping and removal; pollen; plastic cell; queen cell acceptance; high production
Abstract:	Honey bees are crucial for pollination services globally and produce important hive products including honey, royal jelly, pollen, and propolis that are being used commercially in food, cosmetics, and alternative medicinal purposes. Among the bee products, royal jelly (RJ) has long attracted scientists’ interest because of its importance in honey case differentiation. The present research was carried out to determine the acceptance rate of queen cells, and RJ differentiates between the hygienic and non-hygienic lines. Further, to unveil the effect of pollen substitute diets on the queen cell acceptance rate and RJ yields between both bee stocks. Results showed that the uncapped brood cells and dead brood’s removal percentage was statistically more in hygienic bee colonies in comparison to non-hygienic bee colonies. The average percentage of larval acceptance was statistically higher in hygienic lines (64.33 ± 2.91%) compared to non-hygienic lines (29.67 ± 1.20%). Similarly, the RJ mean weight per colony differed statistically between both bee stocks (p<0.001), which were 12.23 ± 0.52 g and 6.72 ± 0.33 g, respectively. Moreover, our results demonstrated that a significant difference was observed in larval acceptance rate, RJ yields (per colony and per cup) between both bee stocks those fed on various diets. However, no significant difference was recorded in RJ yields (per colony and per cup) between both bee stock that feeds on either natural pollen source or pollen substitute. This study may provide future applications in helping bee breeders to choose the bees that carry a higher level of hygienic behavior with high RJ production traits.
Order of Authors:	Khalid Ali Khan, PhD
	Hamed A. Ghramh

Additional Information:

Question	Response
Financial Disclosure	The authors appreciate the support of the Research Center for Advanced Materials Science (RCAMS) at King Khalid University Abha, Saudi Arabia, through project number RCAMS/KKU/001-21. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate.
Unfunded studies
Enter: The author(s) received no specific funding for this work.

Funded studies
Enter a statement with the following details:
• Initials of the authors who received each award
• Grant numbers awarded to each author
• The full name of each funder
• URL of each funder website
• Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?
• NO - Include this sentence at the end of your statement: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
• YES - Specify the role(s) played.

Competing Interests
Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any competing interests that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or non-financial competing interests.

This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate and that any funding sources listed in your Funding Information later in the submission form are also declared in your Financial Disclosure statement.

View published research articles from PLOS ONE for specific examples.

The authors have declared that no competing interests exist.
NO authors have competing interests

Enter: *The authors have declared that no competing interests exist.*

Authors with competing interests

Enter competing interest details beginning with this statement:

I have read the journal’s policy and the authors of this manuscript have the following competing interests: [insert competing interests here]

* typeset

Ethics Statement

Enter an ethics statement for this submission. This statement is required if the study involved:

- Human participants
- Human specimens or tissue
- Vertebrate animals or cephalopods
- Vertebrate embryos or tissues
- Field research

Write "N/A" if the submission does not require an ethics statement.

General guidance is provided below. Consult the submission guidelines for detailed instructions. **Make sure that all information entered here is included in the Methods section of the manuscript.**

N/A
Format for specific study types
Human Subject Research (involving human participants and/or tissue)
• Give the name of the institutional review board or ethics committee that approved the study
• Include the approval number and/or a statement indicating approval of this research
• Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)
Animal Research (involving vertebrate animals, embryos or tissues)
• Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
• Include an approval number if one was obtained
• If the study involved non-human primates, add additional details about animal welfare and steps taken to ameliorate suffering
• If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied
Field Research
Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting:
• Field permit number
• Name of the institution or relevant body that granted permission
Data Availability
Yes - all data are fully available without restriction

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the PLOS Data Policy and FAQ for detailed information.
A Data Availability Statement describing where the data can be found is required at submission. Your answers to this question constitute the Data Availability Statement and will be published in the article, if accepted.

Important: Stating ‘data available on request from the author’ is not sufficient. If your data are only available upon request, select ‘No’ for the first question and explain your exceptional situation in the text box.

Do the authors confirm that all data underlying the findings described in their manuscript are fully available without restriction?

Describe where the data may be found in full sentences. If you are copying our sample text, replace any instances of XXX with the appropriate details.

- If the data are **held or will be held in a public repository**, include URLs, accession numbers or DOIs. If this information will only be available after acceptance, indicate this by ticking the box below. For example: *All XXX files are available from the XXX database (accession number(s) XXX, XXX).*
- If the data are all contained **within the manuscript and/or Supporting Information files**, enter the following: *All relevant data are within the manuscript and its Supporting Information files.*
- If neither of these applies but you are able to provide **details of access elsewhere**, with or without limitations, please do so. For example:

 Data cannot be shared publicly because of [XXX]. Data are available from the XXX Institutional Data Access / Ethics Committee (contact via XXX) for researchers who meet the criteria for access to confidential data.

 The data underlying the results presented in the study are available from (include the name of the third party)
and contact information or URL).

- This text is appropriate if the data are owned by a third party and authors do not have permission to share the data.

* typeset

Additional data availability information:
Evaluation of queen cell acceptance and royal jelly production between hygienic and non-hygienic honey bee (Apis mellifera) colonies

Khalid Ali Khan¹,²,³*, Hamed A. Ghramh¹,²,³

¹Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
²Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
³Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.

Corresponding author email: khalidtalpur@hotmail.com

Abstract

Honey bees are crucial for pollination services globally and produce important hive products including honey, royal jelly, pollen, and propolis that are being used commercially in food, cosmetics, and alternative medicinal purposes. Among the bee products, royal jelly (RJ) has long attracted scientists’ interest because of its importance in honey case differentiation. The present research was carried out to determine the acceptance rate of queen cells, and RJ differentiates between the hygienic and non-hygienic lines. Further, to unveil the effect of pollen substitute diets on the queen cell acceptance rate and RJ yields between both bee stocks. Results showed that the uncapped brood cells and dead brood’s removal percentage was statistically more in
hygienic bee colonies in comparison to non-hygienic bee colonies. The average percentage of larval acceptance was statistically higher in hygienic lines (64.33 ± 2.91%) compared to non-hygienic lines (29.67 ± 1.20%). Similarly, the RJ mean weight per colony differed statistically between both bee stocks (p<0.001), which were 12.23 ± 0.52 g and 6.72 ± 0.33 g, respectively. Moreover, our results demonstrated that a significant difference was observed in larval acceptance rate, RJ yields (per colony and per cup) between both bee stocks those fed on various diets. However, no significant difference was recorded in RJ yields (per colony and per cup) between both bee stock that feeds on either natural pollen source or pollen substitute. This study may provide future applications in helping bee breeders to choose the bees that carry a higher level of hygienic behavior with high RJ production traits.

Keywords: uncapping and removal, pollen, plastic cell, queen cell acceptance, high production

Short running title: Queen cell acceptance and royal jelly production

Introduction

Honey bees and other pollinators play a critical role in the ecosystem's health [1, 2]. Honey bees play a significant role in both agricultural and wild crop pollination due to their ease of transportation, enormous numbers, and level of domestication [3]. Approximately one-third of agricultural crops rely on bees pollinations [4]. The worth of these pollination services is generally calculated in billions of dollars, contributing roughly 9.5 percent to the global value of crops [5, 6]. Additionally, honey bees produce various natural products such as honey, royal jelly, bee bread, propolis, and wax that are used in food, cosmetics and the medicinal industries [7]. However, in the last two
decades, dramatic honey bee colonies have been recorded in various regions worldwide [8]. It was documented that the honey bee population declined because of several reasons such as destruction of habitat, pesticides, agricultural parasites and pathogens, industrial revolutions, global warming, and inadequate food supply [9-12]. Notably, pollen and nectar are the only sources of nutrition for honey bees during their annual colony cycle [13, 14]. In addition, pollen provides proteins, lipids, vitamins and minerals, while supplies primary carbohydrates [15]. Interestingly, first three days of larval growth, both queen and bee worker larvae are fed on the royal jelly (RJ), after, the worker bees larvae fed on combination of RJ and food store (pollen and honey) while queen continues to fed on RJ from worker nurse bees [16].

RJ is a yellowish or white pretentious substance which secreted from the various young worker bees’ glands including mandibular, hypopharyngeal, postcerebral, and thoracic glands [17, 18]. It was documented that RJ contributes to the distinct attribute of queens including their fertility, longevity and memory performance [19]. RJ is mainly comprised of water, protein (majority of proteins: major royal jelly protein (MRJPs) and the small number of proteins: royalism, jelleines, and aspinmin), lipids, carbohydrates, vitamins and minerals [20]. RJ has shown a wide range of health-promoting effects including antioxidant, antidiabetic, antitumor, antimicrobial, neurotrophic, antirheumatic, and anti-ageing [19]. Recently, RJ has also been documented as a medicinal agent used to ameliorate postmenopausal pathologies [21], Alzheimer’s disease [19]. RJ could be produced for commercial purposes and its demand is increasing every year, and economic value is significantly higher as compared to other honey bee products including honey, pollen, propolis, and venom [22-24]. For example, China is a major producer and seller of RJ, producing approximately 4000 tons per year and accounting for more than 90% of global RJ
production. RJ is mostly shipped to the United States, Japan, and European countries [16, 25, 26]. Additionally, some other countries are also the main producer and exporters of RJ including Japan, Korea, Spain, Italy, and France [16, 27].

The amount and quality of RJ production are affected by a variety of biotic and abiotic variables [28]. The most important among them are; honey bee races [26, 29], whether the colony is queenless or queenright [30], larval age [31], types of queen cell cups [32], grafting methods [33], queen cell position on grafting bar [34, 35], harvesting time [36], nutritional source [20, 37, 38], season [35, 39]. When bees feed sugar syrup, for example, the quantity and structure of essential RJ ingredients including amino acids, carbohydrates, and vitamins are significantly altered [40]. Although beekeepers are quite well in and equipped with this manufacturing method, technological improvements can help boost RJ production. To boost RJ output, apicultural scientists are putting in a lot of work to develop new equipment, grafting processes, and selecting high-producing honey bee types.

The current study was carried out to compare the uncapping and removal percentage between hygienic and non-hygienic colonies. Further, to determine the larval acceptance rate and RJ yields difference between hygienic and non-hygienic colonies. In addition, to unveil the effect of different pollen substitutes on RJ yield of both bee stocks. This study may be useful for the breeder in selecting better bee colonies that indicate a higher level of hygienic behavior and produce high RJ in the optimized honey bee’s population.
Materials and methods

Measuring of hygienic behavior by the freeze-killed method

Two different populations of *Apis mellifera* were compared regarding their hygienic behavior. The experiment was conducted in ten honey bee colonies with a one-year-old queen. All full-sized bee colonies had fertile queens, workers, capped and uncapped broods, excessive amounts of food store, and were kept in standard Langstroth hives. The degree of hygienic behavior was measured by minor modification in the method described by Spivak and Gilliam (41). Briefly, a pin-killed brood assay was performed by removing (5*8 cm) square section of comb containing almost 100 cells of capped brood. The brood larvae were killed, and then the brood frame was returned into their respective hives. The percentages of uncapped and dead brood removal in each colony were recorded after 12, 24, and 48 hours.

Measuring of acceptance rate of queen cells

Five colonies of both bee stock were selected for the experiment to investigate the larval acceptance rate between hygienic and non-hygienic colonies. Queenright colonies were created by rearranging the frames and utilizing a queen cage barrier, as in queenless builders. Before the grafting of 2 hours, the grafting frame was inserted in the rearing colonies for polishing, and worker larvae (less than one day) were grafted in one frame containing 126 plastic queen cell cups, then introduced to both hygienic or non-hygienic colonies. The frame was removed from the colony after 3 days to examine larval acceptance and RJ yield, as per usual procedure [42, 43]. This study was conducted three times with three-day gaps between each occasion.
Measuring of RJ production

As followed the above experiment, the wax on the plastic cells' tops and the larvae inside the cells were taken out. Microspatula was used to collect RJ from the cells into a plastic container, and its weight was calculated with an electronic scale (AL204-IC, Mettler Toledo, Switzerland). RJ was collected and stored in a box in the fridge.

The impact of different nutritional diets on RJ yield

To investigate the nutritional effect on larval acceptance and RJ yields divided into an equal group between hygienic and non-hygienic colonies. Pollen from natural sources was supplied to the first group, whereas pollen replacements (soybean flour + brewer's yeast powder) were fed to the second. Whereas, in control, only sugar syrup was supplied. The second and third groups received feeding ten days before the experiment.

Statistical analysis

The data about killed brood removal, larval acceptance and RJ yields were measured and analyzed using SPSS software (version 26). The significant difference between two group was determined by Student’s t-test and more than two by Tukey post-hoc test. The data were compared at the 0.05 level.

Results

Uncapping and removal percentage by freeze killed method

The uncapping and removal percentage of dead brood was recorded between hygienic and non-hygienic bee colonies (Fig 1a, b). Overall, the uncapping percentage
of broods differed significantly between hygienic and non-hygienic beelines over a period of time (F (2, 84) =6.570, p=0.002). After 24 hrs, the uncapping percentage of brood cells was 44.00 ± 3.59% in hygienic lines and 10.47 ± 3.32 in non-hygienic bee colonies. The uncapping percentage of dead brood was 68.00 ± 4.05% and 15.13 ± 3.74% after 24 hrs in both bee stocks, respectively. After 36 hrs, the uncapping percentage of hygienic lines was 83.27 ± 4.47, which was significantly different from the non-hygienic lines, which was 22.33 ± 4.03%.

Similarly, the result indicated (Fig 1 b) that dead broods removal percentage was statistically different between hygienic and non-hygienic bee colonies at the inspection (F (2, 84) =9.391, p=0.001). It was noticed that the dead broad removal percentage differed significantly between hygienic and non-hygienic colonies after 12 hrs, that was 39.73 ± 4.16% and 7.73 ± 2.54%, respectively. After 24 hrs, the removal percentage of dead brood was 62.67 ± 4.78% and 11.60 ± 2.93% between both bee stocks, respectively. After 36 hrs, the maximum removal percentage of dead broods was 81.53 ± 4.51% in hygienic lines while 16.87 ± 3.19% in non-hygienic lines.
Figure 1. The uncapping and removal percentage of dead brood between hygienic and non-hygienic bee line over time of inspection. (a) the uncapping percentage of brood cells between both bee stocks after, 12, 24, and 36 h, respectively. (b) the removal percentage of dead broods between both bee stocks after, 12, 24, and 36 h, respectively.

Larval acceptance rate

The difference in larval acceptance rates between the hygienic and non-hygienic colonies are described (Fig 2). The findings showed that larval acceptance rate was statistically more in hygienic colonies than non-hygienic lines ($t=21.977, p=0.001$). On the other hand, no significant difference was recorded in the larval cell acceptance rate within both bee stocks. The highest rate was 64.33 ± 2.91% in the case of hygienic colonies, while 29.67 ± 1.20% in non-hygienic bee colonies.
Figure 2. The mean larval acceptance rate of hygienic and non-hygienic bees from ten colonies (five each) over three collection time points.

RJ yields

The average weight of RJ per colony (g) and per cup (mg) between hygienic and non-hygienic bee lines is mentioned, respectively (Fig 3 a, b). The RJ yield was statistically greater in hygienic bee stock in comparison to non-hygienic bee colonies (t=9.005, p< 0.001). The maximum RJ yield was 12.23 ± 0.52 g in hygienic bee colonies, while in the case of non-hygienic colonies was 6.72 ± 0.33 g.

Similarly, the RJ yield per cell cup was statistically more in hygienic bee stock as compared to non-hygienic bee colonies (t=22.662, p< 0.001). In hygienic bee stocks, the highest RJ yield was 234. 99 ± 2.22 mg, whereas 158.87 ± 2.52 mg/ cell cup in non-hygienic bee colonies. Regarding RJ yield per colony and per cell cup, no significant difference was observed within both honey bee stocks.
Figure 3: The mean weight (shows as mean ± SE) of Royal Jelly (RJ) collection between hygienic and non-hygienic around 72 h after larval grafting. (a) RJ yield in grams/colony after 72 h harvesting. (b) RJ yield mg/cell cup between both bee colonies.

The effect of various nutritional diets on RJ yield

Nutritional effect on larval acceptance and RJ yield is mentioned (see Table 1). Larval acceptance rate differed statistically inside hygienic bee stocks by feeding different diets including natural pollen source, pollen substitute, and sugar solution (F (2,15) =110.368, P<0.001). Larval acceptance rate differed statistically within the non-hygienic bee stocks (F (2,15) =13.568, P<0.001).

But no significant difference was observed in non-hygienic beelines fed either on pollen or pollen substitute (Fig 4 a). Regarding natural pollen, the larval acceptance rate was greater in the hygienic bee stocks compared to non-hygienic bee stocks (t=14.066, p<0.001), which was 65.67 ± 1.45% and 32.17 ± 1.89%, respectively (Fig 4 b).
Table 1. The effect of nutritional diets on the queen cell acceptance rate, royal jelly/colony/cell cup between hygienic and non-hygienic bee colonies.

Diet	Hygienic bee colonies	Non-Hygienic bee colonies				
	Queen cell acceptance rate (%) (Mean ± SE)	Weight (g) of RJ/colony (Mean ± SE)	Weight (mg) of RJ/cell cup (Mean ± SE)	Queen cell acceptance rate (%) (Mean ± SE)	Weight (g) of RJ/colony (Mean ± SE)	Weight (mg) of RJ/cell cup (Mean ± SE)
Pollen	65.67 ± 1.45% a	13.62 ± 0.6 a	239.62 ± 2.74 a	32.17 ± 1.89% a	6.63 ± 0.52 a	160.39 ± 4.36 a
Pollen substitute	57.67 ± 1.64% b	12.17 ± 0.74 a	235.89 ± 3.55 a	28.33 ± 1.05% a	5.68 ± 0.28 a	153.45 ± 3.16 a
Sugar syrup	36.83 ± 1.08% c	8.63 ± 0.51 b	221.48 ± 2.55 b	21.83 ± 1.67% b	4.73 ± 0.13 b	141.54 ± 2.17 b

Results are means ± standard errors of triplicate determinations. Means in a column with different letters are significantly different (P< 0.05).
In pollen substitute groups, the larval acceptance rate differed significantly between hygienic and non-hygienic bee colonies (t=14.780, p=0.001). The larval acceptance rate was 57.67 ± 1.64% in hygienic bee colonies, whereas in hygienic bee colonies was 28.33 ± 1.05% (Fig 4 c). Similarly, the larval acceptance rate differed statistically between both beelines those fed on sugar solution (t=9.445, p<0.001) (Fig 4 d). The larval acceptance rate was 36.83 ± 1.08% and 21.83 ± 1.67% in both bee stocks.

Figure 4. The nutritional effect on the larval acceptance (shows as mean ± SE) between hygienic and non-hygienic colonies. (a) The overall effect of diet on queen cell acceptance rate between both bee stocks, (b) The effect of pollen diet on queen cell
acceptance rate between both bee stocks (c) The effect of pollen substitute diet on queen cell acceptance rate between both bee stocks (d) The effect of sugar syrup on queen cell acceptance rate between both beelines.

Nutritional effect on RJ production was investigated between both bee stocks (Fig 5a). The RJ yield differed statistically between hygienic bee stocks by feeding on various diets such as natural pollen sources, pollen substitute, and sugar solution (F (2, 15) =16.949, P< 0.001). In hygienic bee stocks, the RJ yield was 13.62 ± 0.6 g, 12.17 ± 0.74 g, and 8.63 ± 0.51g in the case of pollen diet, pollen substitute, sugar syrup, respectively (Fig 5a). In non-hygienic bees, no significant difference was found in the mean weight of RJ yield those bee colonies either fed on pollen (6.63 ± 0.52 g) or pollen substitute (5.68 ± 0.28 g), whereas 4.73 ± 0.13 g in sugar syrup feeding colonies (Fig 5a).

In addition, the nutritional effect on RJ yields per cell cup was investigated between hygienic and non-hygienic colonies (Fig 5b). In hygienic bee colonies, no significant difference is present in RJ production per cell cup those fed on either pollen diet or pollen substitute (Fig 5b). In hygienic beelines, the RJ yield was 239.62 ± 2.74 mg/cup cell, 235.89 ± 3.55 mg/cup, and 221.48 ± 2.55 mg/cup in the case of natural pollen diet, pollen substitute, and sugar syrup fed colonies, respectively. In non-hygienic bee stock, the maximum mean weight of RJ production was 160.39 ± 4.36 mg/cup in pollen diet, while 153.45 ± 3.16 mg in pollen substitute and less RJ yield was 141.54 ± 2.17 mg/cup in sugar syrup feeding colonies (Fig 5b).
Figure 5. The nutritional effect on royal jelly (shows as mean ± SE) production between hygienic and non-hygienic colonies. (a) RJ yield in grams/colony after 72 h of harvesting, (b) RJ yield in mg/cell cup between both bee stocks.

Discussion

This study is performed to identify the larval acceptance rate and mean weight of RJ production between hygienic and non-hygienic lines. Our results demonstrated that mean percentage of larval acceptance rate and mean weight of RJ yield was statistically greater in hygienic lines as compared to non-hygienic bee colonies. Past studies reported that production of bee product such as pollen and RJ does not seem to be incompatible with hygienic behavior [44, 45].

Our findings showed that the queen cell acceptance rate was 64.33 ± 2.91% in the hygienic bee stocks and 29.67 ± 1.20% in non-hygienic bee stocks. The RJ yield was 12.23 ± 0.52 g and 6.72 ± 0.33 g in hygienic and non-hygienic colonies, respectively. In addition, the highest RJ yield was 234.99 ± 2.22 mg/cell cup in hygienic bee colonies and, whereas 158.87 ± 2.52 mg/cell cup in non-hygienic bee colonies. Previous literature indicated a lot of variations in RJ production, larval
acceptance, and quality which affected my multiple factors including genetic variations, harvesting time, queen fecundity, and other environmental factor associated to weather condition and feeding conditions [20, 31, 36, 46-48]. For instance, a previous literature reported that Africanized honeybees have a lot of variation, which opens up the possibility of selecting these honeybees for any production, such as honey, wax, pollen, propolis, or RJ, as happened with European honeybees selected to pollinate alfalfa cultures in the United States [49, 50]. Another research investigated the larval acceptance and RJ yield between two races such as high royal jelly producing bees (RJBs) and Italian bees (ITBs), the mean RJ yield was 54.0 ± 3.4 g in RJBs while 3.7 ± 0.84 g in ITBs. The larval acceptance rate was (75%) was more in RJBs than ITBs that was (10%) [18]. These results are consistent with our findings, that showed that larval acceptance rate and RJ yield was low as compared to RJBs and more than ITBs. RJ production higher in RJBs suggested that honey bees’ lines effect on larval acceptance and RJ productions [18, 29]. Our results are in line with previous research, recorded that larval acceptance rate and per cell cup were 72.1% and 236.31 mg/cell cup for Italian bees and 65.43% and 187.24 mg/ cell cup in Carniolan bees [51]. Further, another study reported the mean larval acceptance rate and RJ yield was more in Carniolan than other races [39]. However, in our experiment, the RJ yield is lower than the other bees’ races that have been genetically engineered in other parts of regions worldwide.

Moreover, our result elucidates that the larval acceptance rate and RJ yield were significantly more in both bee stocks those fed on natural pollen diet. But larval acceptance rate and amount of RJ yield do not show statistically significant difference among both bee stocks those fed either natural pollen or pollen substitute diet. Therefore, artificial sugar supplementation during RJ yield is a typical beekeeping
method, especially in regions where the temperature is particularly hot and dry. However, artificial supplementation of bees during RJ production is still a contentious topic. Surprisingly, our findings did not reveal the effect of different diets on the quality of RJ and their composition. Interestingly, for RJ quality, its major ingredients including water, protein, and 10-HDA remain constant between the bee colonies that fed pollen substitute when compared with control RJ samples [52]. For international market prospective, all major components of RJ are very important parameters of its quality to attract consumers. For example, if RJ has low content of 10-HDA, resulting reduce the consumers attraction and price of RJ in the market [26].

However, more research is required for better understand how different biotic and abiotic factors affect the larval acceptance and RJ yields in different bees’ races.

Conclusions

Our result indicated that uncapped and removal percentage of dead broods was statistically more in hygienic lines as a comparison to non-hygienic bee colonies. Our results showed that larval acceptance rate, RJ yield per colony and per cell cup was significantly difference between both bee stocks. Moreover, the RJ yield per colony and per cell cup was not statistically significant between both bee stocks either fed on natural pollen source or pollen substitute diet. In future, more research is required to unveil the quality and ingredients of RJ that gained from various diet source between hygienic and non-hygienic bee colonies.

Declaration of Competing Interest

All authors declare that they have no known competing financial interests or personal relations that could have appeared to influence the work reported in this paper.
Acknowledgements

The authors appreciate the support of the Research Center for Advanced Materials Science (RCAMS) at King Khalid University Abha, Saudi Arabia, through project number RCAMS/KKU/001-21.

References

1. Nanetti A, Bortolotti L, Cilia G. Pathogens spillover from honey bees to other arthropods. Pathogens. 2021;10(8):1044.

2. Abbasi KH, Jamal M, Ahmad S, Ghramh HA, Khanum S, Khan KA, et al. Standardization of managed honey bee (Apis mellifera) hives for pollination of Sunflower (Helianthus annuus) crop. Journal of King Saud University-Science. 2021;33(8):101608.

3. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: biological sciences. 2007;274(1608):303-13.

4. T O’Neal S, Anderson TD, Wu-Smart JY. Interactions between pesticides and pathogen susceptibility in honey bees. Current opinion in insect science. 2018;26:57-62.

5. Goulson D, Nicholls E, Botías C, Rotheray EL. Combined stress from parasites, pesticides and lack of flowers drives bee declines. Science. 2015;347(6229):1255957.

6. Tantillo G, Bottaro M, Di Pinto A, Martella V, Di Pinto P, Terio V. Virus infections of honeybees Apis mellifera. Italian journal of food safety. 2015;4(3).
7. Jagdale YD, Mahale SV, Zohra B, Nayik GA, Dar AH, Khan KA, et al. Nutritional profile and potential health benefits of super foods: a review. Sustainability. 2021;13(16):9240.

8. Breeze TD, Vaissière BE, Bommarco R, Petanidou T, Seraphides N, Kozak L, et al. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS One. 2014;9(1):e82996.

9. Alburaki M, Chen D, Skinner JA, Meikle WG, Tarpy DR, Adamczyk J, et al. Honey bee survival and pathogen prevalence: from the perspective of landscape and exposure to pesticides. Insects. 2018;9(2):65.

10. Brutscher LM, McMenamin AJ, Flenniken ML. The buzz about honey bee viruses. PLoS Path. 2016;12(8):e1005757.

11. McMenamin AJ, Flenniken ML. Recently identified bee viruses and their impact on bee pollinators. Current opinion in insect science. 2018;26:120-9.

12. Dolezal AG, Carrillo-Tripp J, Judd TM, Allen Miller W, Bonning BC, Toth AL. Interacting stressors matter: diet quality and virus infection in honeybee health. Royal Society open science. 2019;6(2):181803.

13. DeGrandi-Hoffman G, Corby-Harris V, Carroll M, Toth AL, Gage S, Watkins deJong E, et al. The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees (Apis mellifera L.). Insects. 2021;12(3):235.

14. Khan KA, Ghramh HA. Pollen source preferences and pollination efficacy of honey bee, Apis mellifera (Apidae: Hymenoptera) on Brassica napus crop. Journal of King Saud University-Science. 2021:101487.

15. T’ai HR, Cane JH. Pollen nutritional content and digestibility for animals. Pollen and pollination. 2000:187-209.
16. Sabatini AG, Marcuzzan GL, Caboni MF, Bogdanov S, Almeida-Muradian L. Quality and standardisation of royal jelly. Journal of ApiProduct and ApiMedical Science. 2009;1(1):1-6.

17. Ahmad S, Campos MG, Fratini F, Altaye SZ, Li J. New insights into the biological and pharmaceutical properties of royal jelly. Int J Mol Sci. 2020;21(2):382.

18. Hu H, Bezabih G, Feng M, Wei Q, Zhang X, Wu F, et al. In-depth Proteome of the Hypopharyngeal Glands of Honeybee Workers Reveals Highly Activated Protein and Energy Metabolism in Priming the Secretion of Royal Jelly*. Mol Cell Proteomics. 2019;18(4):606-21.

19. Ali AM, Kunugi H. Royal Jelly as an Intelligent Anti-Aging Agent—A Focus on Cognitive Aging and Alzheimer’s Disease: A Review. Antioxidants. 2020;9(10):937.

20. Fratini F, Cilia G, Mancini S, Felicioli A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiological Research. 2016;192:130-41. Epub 2016/09/25. PubMed PMID: 27664731.

21. Bălan A, Moga MA, Dima L, Toma S, Elena Neculau A, Anastasiu CV. Royal Jelly—A Traditional and Natural Remedy for Postmenopausal Symptoms and Aging-Related Pathologies. Molecules. 2020;25(14):3291.

22. Ramadan MF, Al-Ghamdi A. Bioactive compounds and health-promoting properties of royal jelly: A review. J Funct Foods. 2012;4(1):39-52. doi: 10.1016/j.jff.2011.12.007.

23. Bogdanov S. Functional and Biological Properties of the Bee Products: a Review. Bee Products Science. 2011;4:1-30.
24. Clarke M, McDonald P. Australian Royal Jelly-Market Opportunity Assessment based on production that uses new labour saving technology. Rural Industries Research and Development Corporation. 2017:4.

25. Altaye SZ, Meng L, Li J. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee (Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie. 2019;50(4):436-53.

26. Cao L-F, Zheng H-Q, Pirk CW, Hu F-L, Xu Z-W. High royal jelly-producing honeybees (Apis mellifera ligustica)(Hymenoptera: Apidae) in China. J Econ Entomol. 2016;109(2):510-4.

27. Kanelis D, Tananaki C, Liolios V, Dimou M, Goras G, Rodopoulou MA, et al. A suggestion for royal jelly specifications. Arh Hig Rada Toksikol. 2015;66(4):275-84.

28. Murat E. Effect of harvesting period on chemical and bioactive properties of royal jelly from Turkey. European Food Science Engineering and Mining Journal. 2020;1(1):9-12.

29. Li J, Chen S, Zhong B, Su S. Genetic analysis for developmental behavior of honeybee colony's royal jelly production traits in western honeybees. Yi chuan xue bao= Acta genetica Sinica. 2003;30(6):547-54.

30. Van Toor R, Littlejohn R. Evaluation of hive management techniques in production of royal jelly by honey bees (Apis mellifera) in New Zealand. J Apic Res. 1994;33(3):160-6.
31. Sahinler N, Kaftanoglu O. Effects of feeding, age of the larvae, and queenlessness on the production of royal jelly. Bee Products: Springer; 1997. p. 173-8.

32. Sahinler N, Sahinler S. Effects of the number of queen cells and harvesting interval on the acceptance rates of the larvae, royal jelly quality and quantity. Journal of Veterinary Animal Sciences. 2002;1(3):120-2.

33. Gemeda M, Legesse G, Damto T, Kebaba D. Harvesting Royal Jelly Using Splitting and Grafting Queen Rearing Methods in Ethiopia. Bee World. 2020;97(4):114-6.

34. Fathy H, Zohair A, Hamada M. Effect of Bar Level and Queen Cells Position within Grafted Frame on the Quality of Produced Apis mellifera carnica Queen in Manzala Region. Journal of Plant Protection Pathology 2019;10(7):349-54.

35. Helaly K. Study of some factors affecting the production of royal jelly under Kafr El. Shaikh governorate conditions: PhD. Thesis, Fac. Agric., Al-Azhar Univ., 198p; 2018.

36. EL-Din HAS. Studies on royal jelly production in honeybee colonies: Cairo University; 2010.

37. Qi D, Ma C, Wang W, Zhang L, Li J. Gas Chromatography-Mass Spectrometry Analysis as a Tool to Reveal Differences Between the Volatile Compound Profile of Royal Jelly Produced from Tea and Pagoda Trees. Food Analytical Methods. 2020:1-15.

38. Xun L, Huang X, Li Q, Yang S, Wang Y. Effects of different bee pollens on expression of major royal jelly protein genes and yield, quality and composition of royal jelly of Apis mellifera. Chinese Journal of Animal Nutrition. 2020;32(2):856-69.
39. Şahinler N, Kaftanoğlu O. The effects of season and honeybee (Apis mellifera L.) genotype on acceptance rates and royal jelly production. Turkish Journal of Veterinary Animal Sciences. 2005;29(2):499-503.

40. Shi J-l, Liao C-h, Wang Z-l, Wu X-b. Effect of royal jelly on longevity and memory-related traits of Apis mellifera workers. J Asia-Pacific Entomol. 2018;21(4):1430-3.

41. Spivak M, Gilliam M. Hygienic behaviour of honey bees and its application for control of brood diseases and Varroa: Part II. Studies on hygienic behaviour since the Rothenbuhler era. Bee World. 1998;79(4):169-86.

42. Li J, Shenglu C, Boxiong Z, Songrun S. Optimizing Royal Jelly Production. Am Bee J. 2003;143(3):221-4.

43. Li J. Technology for royal jelly production. Am Bee J. 2000;140(6):469-72.

44. Ruvolo-Takasusuki MCC, Toledo VA, Lopes DA. Relationship between hygienic behavior and Varroa destructor mites in colonies producing honey or royal jelly. Sociobiology. 2014;59(1):251-74.

45. Garcia RC, Oliveira NTEd, Camargo SC, Pires BG, Oliveira CALd, Teixeira RdA, et al. Honey and propolis production, hygiene and defense behaviors of two generations of Africanized honey bees. 2013;70(2):74-81.

46. Li JK, Feng M, Begna D, Fang Y, Zheng AJ. Proteome Comparison of Hypopharyngeal Gland Development between Italian and Royal Jelly-Producing Worker Honeybees (Apis mellifera L.). J Proteome Res. 2010;9(12):6578-94. doi: 10.1021/pr100768t. PubMed PMID: WOS:000284856200041.
47. Sherif A, Gomaa M, Helaly K. Factors affecting the acceptance of honeybee queen cups and royal jelly production. Menoufia Journal of Plant Protection. 2018;3(4):115-21.

48. Khan KA, Ghramh HA, Ahmad Z, El-Niweiri MA, Ahamed Mohammed ME. Queen cells acceptance rate and royal jelly production in worker honey bees of two Apis mellifera races. PLoS One. 2021;16(4):e0248593.

49. Nye WP, Mackensen O. Selective breeding of honeybees for alfalfa pollen collection: with tests in high and low alfalfa pollen collection regions. J Apic Res. 1970;9(2):61-4.

50. Mouro GF, Toledo VdAA. Evaluation of Apis mellifera Carniolan and Africanized honey bees in royal jelly production. Braz Arch Biol Technol. 2004;47:469-76.

51. Hussain ARE, Abied MK, Abo Laban GF, Badwy A. Effect of Different Seasons on the Royal Jelly Production Under Nasr City Conditions–Cairo-Egypt. Egyptian Academic Journal of Biological Sciences A, Entomology. 2020;13(3):197-205.

52. Wytrychowski M, Chenavas S, Daniele G, Casabianca H, Batteau M, Guibert S, et al. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. Journal of Food Composition Analysis. 2013;29(2):126-33.