Supplementary materials for:

RNase Y-mediated regulation of the streptococcal pyrogenic exotoxin B

Laura Broglio1,2,3,4, Solange Materne1,2, Anne-Laure Lécrivain1,2,5, Karin Hahnke1,2, Anaïs Le Rhun1,2,4,5,* and Emmanuelle Charpentier1,2,3,4,5,*

1Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany

2Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, D-10117 Berlin, Germany

3Institute for Biology, Humboldt University, D-10115 Berlin, Germany

4Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany

5The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden

*Co-corresponding authors

Correspondence:

Anaïs Le Rhun, Email: lerhun@mpiib-berlin.mpg.de

Emmanuelle Charpentier, Email: research-charpentier@mpiib-berlin.mpg.de

Supplementary materials include:

Supplementary Figures

Supplementary Table I

Supplementary Table II
 Supplementary Figures

 Figure S1. ropB-speB intergenic region

 A-B. Total and 5’ end coverages (black for positive strand, grey for negative strand) are indicated between brackets.

 A. Zoom on speB promoters, P (top panel) and P1 (bottom panel). The predicted −35 and −10 motifs were mapped for P and P1. The putative RopB binding sites, consisting
of inverted repeats (dark blue boxes and arrows) located within direct repeats (light blue boxes), are annotated upstream of P and P1 [1,2]. B. Characterization of the ropB-speB intergenic region by RNA sequencing analysis. The ropB (P_{ropB}) and speB (P1) TSSs are shown with black bent arrows. P_{ropB} is located –369 nt relative to the ropB start codon (not indicated here). In the experimental conditions used in this study, SPy_2041 is not transcribed.
Figure S2. Unknown RNase(s) process the speB mRNA 5’ UTR

A. Schematic drawing of speB mRNA 5’ UTR. Processing by RNase Y (orange scissors) and unknown RNase(s) (grey scissors) are indicated (left panel). The primer used (black arrow) for primer extension (right panel) and the expected cDNA sizes (green lines) are depicted. The processed 5’ ends of speB mRNA 5’ UTR were identified using primer extension analyses (right panel) in WT, my (RNase Y) deletion mutant (Δmy), mrc (RNase III) deletion mutant (Δmrc), mrnc (Mini-III) deletion mutant (Δmrnc), rhnb (RNase HII) deletion mutant (Δrhnb), pnpA (PNPase) deletion mutant (ΔpnpA), yhAM (YhaM) deletion mutant (ΔyhAM) and mr (RNase R) deletion mutant (Δmr) at early-stationary growth phase. B. Zoom on the processing sites (grey triangles) of speB mRNA 5’ UTR at positions −77 nt and −78 nt (relative to the speB start codon) retrieved by RNA sequencing analysis. The total and the 5’ end coverages are indicated between brackets.
Figure S3. Secondary structure prediction of the speB mRNA 5’ UTR

A. Schematic drawing of speB mRNA 5’ UTR (containing SpeB Inducing Peptide (SIP), orf2, SPy_2040) and speB coding DNA sequence (CDS). The positions corresponding to the cleavage sites of RNase Y and of unidentified RNase(s) are represented with orange and grey triangles, respectively. The two Gs located upstream of the RNase Y processing sites at positions – 137 nt (G₁) and – 131 nt (G₂) are indicated. The minimal folding energy (MFE, ΔG in Kcal/mol) was calculated both 100 nt upstream and downstream of the RNase Y cleavage site (– 137 nt). The numbers indicate the
distance in nt to speB start codon. **B.** RNA folding of a portion of speB 5’ UTR (from position –153 nt to the speB start codon). The free energy of the thermodynamic ensemble is –31.48 kcal/mol. The cleavages by RNase Y and unidentified RNase(s) are indicated by orange and grey scissors, respectively (right panel). The speB ribosome binding site (RBS) and start codon are represented in purple (left panel). The same structure was colored by base-pairing probabilities (right panel). The color of the unpaired regions indicates the probability of being unpaired.
Figure S4. Isoforms of speB mRNA

Expression profile of speB locus and surrounding genes resulting from RNA sequencing analysis. The 5’ ends retrieved are depicted with black bars. The genes (arrows) with the putative promoters (P and P1) and terminators are indicated. Putative ORFs (SPy_2040 and orf-2) and the sequence encoding the SpeB Inducing Peptide (SIP) are annotated in the speB 5’ UTR. speB is co-transcribed with the SPy_2038 and prsA genes [3]. The cleavages by RNase Y and by unknown RNase(s) are depicted with orange and grey triangles, respectively. The primers used in the Northern blot
analyses (Figure 4A and 4B) are indicated below the locus. The expected transcript isoforms detectable with the primers targeting the 5' UTR (T1, T2 and T3) (Figure 4A) and the CDS (T1, T2, T4, T5) (Figure 4B) are shown as black curved lines and the sizes in nt are indicated.
Figure S5. Study of speB promoter activity

A. Schematic representation of luciferase (ffluc) fusion plasmids used in Figure 4A and S4B. The speB promoters were cloned upstream of the ffluc gene (PspeB-ffluc). The –10 and –35 motifs of P and P1 are depicted with green boxes. The putative RopB binding sites are indicated in blue. A control vector with ffluc expression under the control of a constitutive promoters (P23) was included in the analysis (P23-ffluc).

B. The speB promoter activity was examined by luminescence assay performed in the WT and speB deletion mutant (ΔspeB) containing the luciferase fusion plasmids (P23-ffluc and PspeB-ffluc) at mid-logarithmic (ML) and early-stationary (ES) growth phases. Values indicate luminescence intensity of the samples relative to the control plasmid (P23-ffluc), normalized to the OD_{620 nm}. Mean and standard deviations (error bars) were calculated from three independent experiments, each with technical triplicates.
Figure S6. *covR* mRNA stability is affected by RNase Y

Study of the *covR* transcript stability by rifampicin assay at mid-logarithmic phase of growth in WT and *rny* (RNase Y) deletion mutant (Δ*rny*) (lower panel). The minutes after stopping transcription upon the addition of antibiotic are indicated. 16S rRNA was used as a loading control. The primer used is indicated by a black arrow.
Figure S7. An sRNA arises from speB mRNA 5’ UTR processing

Expression profile of a small RNA (sRNA) previously identified in speB 5’ UTR by sRNA sequencing (Spy_sRNA1699993) [4]. Total, 5’ end and 3’ end coverages are indicated between brackets. Orange and grey bars pinpoint the positions of RNase Y and unidentified RNase(s) cleavage sites annotated in this study, respectively. The green bar denotes the putative sRNA 3’ end.
Supplementary Table I. Strains, plasmids and oligos used in this study.

Strain	Relevant characteristics	Source
Streptococcus pyogenes		
WT		
EC2224	SF370 (M1 serotype)	ATCC 700294
Δrny	EC2246 EC2224Δrny::lox72	[5]
Δrnc	EC2249 EC2224Δrnc::lox72	[5]
Δrnr	EC2254 EC2224Δrnr::lox72	This study
ΔpnpA	EC2297 EC2224ΔpnpA::lox72	This study
Δrny::rny	EC2298 EC2246Δlox72::rny-TT3-lox72	This study
ΔyhaM	EC2347 EC2224ΔSPy_0267::lox71-ermAM/B-ermAM/B-lox66	This study
ΔrnhB	EC2251 EC2224ΔrnhB::lox72	This study
Δmrnc	EC2271 EC2224Δmrnc::lox72	This study
ΔspeB	EC2356 EC2224ΔspeB::lox72	This study
Saccharomyces cerevisiae		
S228C	BY4741 (Host for cloning)	Euroscarf, Frankfurt
Escherichia coli		
RDN204	Top10 (Host for cloning)	Invitrogen

Plasmid	Relevant characteristics	Source
Plasmids used for gene deletion in S. pyogenes		
pEC454	pUC19Δlox71-ermAM/B-lox66	Laboratory collection
pEC455	pEC85QgyrA-cre	Laboratory collection
pEC707	pUC19, pMB1, ampR	New England Biolabs
Oligo | Sequence 5’-3’ * | F/R a | Usage a | Target a
--- | --- | --- | --- | ---
rny | | | | |
OLEC3584 | GTAACGCCAGGTTTTCCCAGTCACGACGCTCTTCAAAACGAA AAGAGG | F | Cloning | Up fragment (pEC802)
OLEC3579 | CGAGAAAAAAGGCCCACTTTTGTGGGCCTTTTTACGCAA GCACTACTTGGCATTAACCCGCCTCATT CT | R | Cloning | Iox71-ermAM/B-lox66 (pEC454)
OLEC3480 | AAGGGGGCTTTTTTCGGAATTACCGATTCGTAATGCA CATTATAGTTATCCCG | F | Cloning | Down fragment (pEC802)
OLEC3572 | TACGTTTGCATATAATGTTATGCTATACGAAAGTTATTT TTTTCTTCC | R | Cloning | Upstream *my*
OLEC2000 | ATAGCATAAGATTACGAAACGGTAAAAGAGGAATTATC CCTCTTTTATGA | F | LM-PCR | Up fragment (pEC749)
OLEC3585 | GGGGATAAATTTTCACACACGAAACACGGCTAAAAATCACAAGT GAATACCTGG | R | LM-PCR | Dw fragment (pEC749)
OLEC2785 | TGCCAAATCGTTGAAAATCAT | F | PCR, SEQ | Upstream *my*
OLEC2503 | GACAGCTCATCGGTAGTGAAG | R | PCR, SEQ | Downstream *my*

mnhB | | | | |
OLEC3340 | GGGTGTGGAGTCGCGAAGTGAAAGCTAATCATGC | F | Cloning | Up fragment (pEC748)
OLEC2517 | TATAATGATATGCTATACGGAACGGTAAATACGTGCCGATCCATA TCCC | R | LM-PCR | Cloning (pEC748)
OLEC2518 | ATAGCATAAGATTACGAAACGGTAAAAGAGGAATTATC CCTCTTTTATGA | F | LM-PCR | Dw fragment (pEC748)
OLEC3341 | GGGTGTGGAGTCGCGAAGTGAAAGCTAATCATGC | R | Cloning | Cloning (pEC748)

Note: a uppercase letters indicate PCR primers.

Chromosomal complementation of *rny* in *S. pyogenes*

pEC802 | pRS426*omyr-rny*-TT3-lox71-PermAM/B-ermAM/B-lox66-mydw | This study

speB ectopic expression in *S. pyogenes*

pEC85 | repDEG-pAMB1, aphIII-Pjhl1, ColeE1 | Laboratory collection
pEC2146 | pEC85PgyrAspeB | This study
pEC2249 | pEC85PgyrA-speB(G-137A) | This study
pEC2250 | pEC85PgyrA-speB(G-131A) | This study
pEC2263 | pEC85PgyrA-speB(G-137A_G-131A) | This study
pEC2264 | pEC85PgyrA-speB(Δ-147-121) | This study
pEC2265 | pEC85PgyrA-speB(Δ-157-111) | This study

Luminescence assay in *S. pyogenes*

pEC2173 | pLZ12Km2-P23R:TA:ffluc | Addgene plasmid # 88900
pEC2248 | pEC2173PspeB | This study
Oligo	Sequence 5'-3'	F/R	Usage	Target
OLEC2520	TGTACAAGCAGAAAACTGATAAGACTTTAAGG	F	SEQ	Upstream mhB
OLEC2521	CATAATATCTATTTTTAGGAAACTGTCATTA	R	SEQ	Downstream mhB

mrnc

OLEC2034	GATGATGAGCTCCCTGTCAGAACTTTGAAGGTGAGG	F	Cloning	Up fragment (pEC749)	
OLEC3353	TAGCATACTATATCGAACCTGAATTTTATACCATCCTTTGAAATTTCATTGTAACCTGAAC	R	LM-PCR	Dw fragment (pEC749)	
OLEC2033	GGTGCTAGCTCAGAATAGTATTTTTCTTCATGAG	F	LM-PCR	R	Cloning
OLEC2006	CCTCGTGTATTGAATTATAGCA	F	SEQ	Upstream mrnc	

speB

OLEC7565	AAAAGATCCAGTCTCAAATACGTTAGCATG	F	Cloning	Up fragment (pEC2145)
OLEC7566	CATAATGATGTCAGAACAGCTGAATATTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	R	LM-PCR	Dw fragment (pEC2145)
OLEC7569	AAAAGATCGTGTGTTGTTATGAGATTCAAGCTGAAAGG	R	Cloning	
OLEC7563	TGAATGCCTCATGAAATTTACGCGG	F	PCR, SEQ	Upstream speB
OLEC7570	GTTGGTTGGCTCTATTGGTAAGGT	R	PCR, SEQ	Downstream speB

mr

OLEC2897	AAAAGATCCAGTGATTGGCTGAAATTTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	F	Cloning	Up fragment (pEC545)	
OLEC2535	TATAATGATGTCAGAACAGCTGAATATTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	R	LM-PCR	Dw fragment (pEC545)	
OLEC2536	ATAGCATACATATATCGAACCTGAATTTTATACCATCCTTTGAAATTTCATTGTAACCTGAAC	F	LM-PCR	R	Cloning
OLEC2898	AAAAGATCCAGTGATTGGCTGAAATTTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	R	PCR, SEQ	Upstream mr	
OLEC2538	CTGAGTTGGCATTGAGATTGGCAGGTAAGG	R	PCR, SEQ	Downstream mr	
OLEC2539	TATGGCGATAGAGAATAACCATCCTCACAT	R	PCR, SEQ		

pnpA

OLEC3350	GCTAGGGATCCGATCCCTTTCTGTGCTCCGGCAATTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	F	Cloning	Up fragment (pEC750)	
OLEC2541	TATAATGATGTCAGAACAGCTGAATATTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	R	LM-PCR	Dw fragment (pEC750)	
OLEC2542	ATAGCATACATATATCGAACCTGAATTTTATACCATCCTTTGAAATTTCATTGTAACCTGAAC	F	LM-PCR	R	Cloning
OLEC3351	GCTAGGGATCCGATCCCTTTCTGTGCTCCGGCAATTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	R	PCR, SEQ	Upstream pnpA	
OLEC2544	CTAGGAGTTGGCATTGAGATTGGCAGGTAAGG	R	PCR, SEQ	Downstream pnpA	
OLEC2545	ATAGAGACTCCAGGAGCGATTTTG	R	PCR, SEQ		

syhA (SpEc0267)

OLEC3361	GAAGCTAGGCCCTTTCTCTTTCTTGCTCCCG	F	Cloning	Up fragment (pEC822)	
OLEC2529	TATAATGATGTCAGAACAGCTGAATATTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	R	LM-PCR	Dw fragment (pEC822)	
OLEC2530	ATAGCATACATATATCGAACCTGAATTTTATACCATCCTTTGAAATTTCATTGTAACCTGAAC	F	LM-PCR	R	Cloning
OLEC3362	GAAGCTAGGCCCTTTCTCTTTCTTGCTCCCG	R	PCR, SEQ	Upstream SyhA	SpEc0267
OLEC2532	GAGCCTGCTGAAACCGCTTA	R	PCR, SEQ	Downstream SyhA	SpEc0267
OLEC2533	GTCTATTGGCCTGAGGCGTTGTA	R	PCR, SEQ		

pEC2146

OLEC7968	CTCTTCTCTCTCTCTGATA	F	Cloning	PgyR (pEC455)
OLEC7969	CATAATGATGTCAGAACAGCTGAATATTTCATTCTTCTTTGAAATTTCATTGTAACCTGAAC	R	LM-PCR	speB
OLEC7970	ATCATAGGCTATCATTAATGCTCGTAATTCTTTCTTTGAAATTTCATTGTAACCTGAAC	F	LM-PCR	
OLEC7971	CCCAGATTCTAAGGCTTTGTAGCCTCCTCAACAGACCAC	R	LM-PCR	
Oligo	Sequence 5’-3’ a	F/R b	Usage c	Target d
pEC2249				
OLEC8388	GTCAACTAACCCTATTATTTGCTATTACCAT	F	TS-PCR	speB 5’ UTR (pEC2146)
OLEC8389	GTCAACTAACCCTATTATTTGCTATTACCAT	R	TS-PCR	
pEC2250				
OLEC8390	GTCAACTAACCCTATTATTTGCTATTACCAT	F	TS-PCR	speB 5’ UTR (pEC2146)
OLEC8391	ATGGTAATAGATAAAATACACGTTTAGGTGAC	R	TS-PCR	
pEC2263				
OLEC8392	GTCAACTAACCCTATTATTTGCTATTACCAT	F	TS-PCR	speB 5’ UTR (pEC2146)
OLEC8393	ATGGTAATAGATAAAATACACGTTTAGGTGAC	R	TS-PCR	
pEC2264				
OLEC8394	GTTGGGTTGTCAGTGTACATGATCAGCGACAT	F	TS-PCR	speB 5’ UTR (pEC2146)
OLEC8395	ATGTCGCTGATACCATGATGACACTGACAACCCAACAC	R	TS-PCR	
pEC2265				
OLEC8396	GAATAATTGGGTTGGTATTACCAT	F	TS-PCR	pEC2146
OLEC8397	TTATCATACGATGCTACTGCTAACCCCAATTTATTC	R	TS-PCR	
pEC2248				
OLEC8386	GGAACGAAAACTCACGTTAA	F	Cloning	speB 5’ UTR
OLEC8387	TACCGCGGGTGCTATTATCATAGCTGCTTATTTTGCAATTTGCT	R	Cloning	
Sequencing				
OIRC228	GGAACGAAAACCTACGTTAA	F	SEQ	pEC85
OLEC87	TGTGTTTACGTTGTTTTTAAAC	R	SEQ	pEC707
OLEC3224	TGTAAGGCAACGCCGCGT	F	SEQ	pEC2173
OLEC3225	CAGAGAAAGCTAGTACCC	R	SEQ	
OLEC3600	CCAGGTTTCTCCAGTCACGAC	F	SEQ	
OLEC3590	AGCCGATGACGATACCATACAGGA	R	SEQ	
OLEC1938	TCATCGAGATGCAATCGTACTGCTATTTAAGAAAAACACACAGC	F	SEQ	
OLEC1937	TTGCTGTTCATTTTATATGTGATGTC	R	SEQ	
OLEC5336	GGGGGATGTCGTGAGGGG	F	SEQ	pEC802
OLEC5337	TCCGGCTCCTATGTCGTGTTT	R	SEQ	
Primer extension analyses				
OLEC2406	ACTACCTATTGGCAAAAGGAAC	R	PE	speB 5’ UTR
OLEC3903	TACCGGGCTACCTGGAACACAACCCTCC	R	PE	
OLEC3904	TATACCTCTTTTCAATATTGATATTGC	R	PE	
OLEC3970	TGGTATTGACAGAACAAATTCC	R	PE	speB CDS
Northern blot analyses				
OLEC5802	AACCCATAGTAGGCGCCCTC	R	NB	speB 5’ UTR
OLEC7431	GCACACATGCTGACACG	R	NB	speB CDS
OLEC1542	CATGACGGATTTCTCATATAGTC	R	NB	covR CDS
OIRC243	CGTGTACCAACCATTGACG	R	NB	16S rRNA

a italic: sequence annealing to the template; underlined: restriction site.
b F: forward primer; R: reverse primer.
c LM-PCR: ligation-mediated PCR; TS-PCR: two-stage PCR; SEQ: sequencing; PE: primer extension; NB: Northern blot;
d 5’ UTR: 5’ untranslated region; CDS: coding DNA sequence
Supplementary Table II. speB regulators potentially affected by RNase Y.

speB regulators	Function	References
Direct transcriptional regulators		
ropB	Activator	[1,6–8]
covRS	Repressor	[9–11]
ccpA	Activator	[11–13]
Indirect transcriptional regulators via RopB		
LacD.1	Repressor	[14]
vfr	Repressor	[15,16]
SIP	Activator	[2,17]

Except for vfr abundance [18] and ropB stability [19], which were shown to be affected by RNase Y, the effect of RNase Y on the other regulators is to be confirmed [20]. SpeB Inducing Peptide (SIP) is encoded by the speB transcript, and therefore its expression is downregulated in the my deletion strain.
References

[1] Neely MN, Lyon WR, Runft DL, et al. Role of RopB in growth phase expression of the SpeB cysteine protease of *Streptococcus pyogenes*. J Bacteriol. 2003;185:5166–5174.

[2] Do H, Makthal N, VanderWal AR, et al. Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proc Natl Acad Sci USA. 2017;114:E8498–E8507.

[3] Ma Y, Bryant AE, Salmi DB, et al. Identification and characterization of bicistronic *speB* and *prsA* gene expression in the Group A Streptococcus. J Bacteriol. 2006;188:7626–7634.

[4] Le Rhun A, Beer YY, Reimegård J, et al. RNA sequencing uncovers antisense RNAs and novel small RNAs in *Streptococcus pyogenes*. RNA Biol. 2016;13:177–195.

[5] Le Rhun A, Lécrivain A-L, Reimegård J, et al. Identification of endoribonuclease specific cleavage positions reveals novel targets of RNase III in *Streptococcus pyogenes*. Nucleic Acids Res. 2017;45:2329–2340.

[6] Lyon WR, Gibson CM, Caparon MG. A role for trigger factor and an Rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of *Streptococcus pyogenes*. EMBO J. 1998;17:6263–6275.

[7] Chaussee MS, Ajdic D, Ferretti JJ. The *rgg* gene of *Streptococcus pyogenes* NZ131 positively influences extracellular SPE B production. Infect Immun. 1999;67:1715–1722.

[8] Anbalagan S, McShan WM, Dunman PM, et al. Identification of Rgg binding sites in the *Streptococcus pyogenes* chromosome. J Bacteriol. 2011;193:4933–4942.

[9] Heath A, DiRita VJ, Barg NL, et al. A two-component regulatory system, CsrR-CsrS, represses expression of three *Streptococcus pyogenes* virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect Immun. 1999;67:5298–5305.

[10] Miller AA, Engleberg NC, DiRita VJ. Repression of virulence genes by phosphorylation-dependent oligomerization of CsrR at target promoters in *S. pyogenes*. Mol Microbiol. 2001;40:976–990.

[11] Graham MR, Smoot LM, Migliaccio CAL, et al. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci USA. 2002;99:13855–13860.

[12] Kietzman CC, Caparon MG. CcpA and LacD.1 affect temporal regulation of *Streptococcus pyogenes* virulence genes. Infect Immun. 2010;78:241–252.
[13] Shelburne SA, Keith D, Horstmann N, et al. A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci USA. 2008;105:1698–1703.

[14] Loughman JA, Caparon MG. A novel adaptation of aldolase regulates virulence in *Streptococcus pyogenes*. EMBO J. 2006;25:5414–5422.

[15] Ma Y, Bryant AE, Salmi DB, et al. vfr, a novel locus affecting cysteine protease production in *Streptococcus pyogenes*. J Bacteriol. 2009;191:3189–3194.

[16] Shelburne SA, Olsen RJ, Makthal N, et al. An N-Terminal signal peptide of Vfr protein negatively influences RopB-dependent SpeB expression and attenuates virulence in *Streptococcus pyogenes*. Mol Microbiol. 2011;82:1481–1495.

[17] Makthal N, Gavagan M, Do H, et al. Structural and functional analysis of RopB: a major virulence regulator in *Streptococcus pyogenes*. Mol Microbiol. 2016;99:1119–1133.

[18] Kang SO, Caparon MG, Cho KH. Virulence gene regulation by CvfA, a putative RNase: the CvfA-Enolase complex in *Streptococcus pyogenes* links nutritional stress, growth-phase control, and virulence gene expression. Infect Immun. 2010;78:2754–2767.

[19] Chen Z, Mashburn-Warren L, Merritt J, et al. Interference of a speB 5′ untranslated region partial deletion with mRNA degradation in *Streptococcus pyogenes*. Mol Oral Microbiol. 2017;32:390–403.

[20] Chen Z, Itzek A, Malke H, et al. Multiple roles of RNase Y in *Streptococcus pyogenes* mRNA processing and degradation. J Bacteriol. 2013;195:2585–2594.