Hemoglobin Toxicity in Experimental Bacterial Peritonitis Is Due to Production of Reactive Oxygen Species

YEONG-MIN YOO,1,2 KI-MO KIM,1 SUNG-SOO KIM,3 JEONG-A HAN,1 HO-ZOO LEA,2 AND YOUNG-MYEONG KIM1*

Departments of Molecular and Cellular Biochemistry1 and Pharmacology,3 College of Medicine, and Department of Biology, College of Natural Science,2 Kangwon National University, Chunchon, Kangwon-do, Korea

Received 9 December 1998/Returned for modification 31 March 1999/Accepted 12 July 1999

Hemoglobin (Hb) is a toxic molecule responsible for the extreme lethality associated with experimental Escherichia coli peritonitis, but the mechanism has yet to be elucidated. Hb, but not globin, showed toxic effects in a live E. coli model but not in a model using killed E. coli. Methemoglobin, hematin, and the well-known Fenton reagents iron and iron-EDTA demonstrated the same lethal effect in E. coli peritonitis as Hb, while the addition of the Fenton inhibitors desferrioxamine (DF) and diethylenetriamine pentaacetate removed most of the cytotoxic activity of iron. Administration of a combined dose of superoxide dismutase and catalase minimized the action of Hb and iron-EDTA, suggesting that both O_2^- and H_2O_2, are involved in the toxic action of Hb in this rat model. The combination of the antioxidative enzymes and DF further suppressed iron-mediated lethality. An electron spin resonance technique with the spin-trapping reagent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) showed O_2^- generation in the peritoneal fluid of rats injected with E. coli alone or E. coli plus iron-DF, and $\cdot\text{OH}$ generation was detected in the peritoneal fluid of the rats injected with iron-EDTA. Hb did not show any spin adduct of oxygen radicals, suggesting that Hb produces non-spin-trapping radical ferryl ion, which decayed the spin adduct of DMPO. In the presence of Hb or iron-EDTA, O_2^--generating activity and viability of phagocytes decreased, whereas lipid peroxidation of peritoneal phagocytes increased. Generation of oxygen radicals and lipid peroxidation did not differ in the live and dead bacterial models. Bacterial numbers in the peritoneal cavity and blood were markedly increased in the live bacterial model with Hb and iron-EDTA. The Fenton inhibitor iron-DF prevented the loss of phagocyte function, lipid peroxidation, and bacterial proliferation. These results led us to conclude that the lethal toxicity of Hb in bacterial peritonitis is associated with a Fenton-type reaction, the products of which decrease phagocyte viability, through the induction of lipid peroxidation, allowing bacterial proliferation and resulting in mortality.

Phagocytes (macrophages and neutrophils) are primary host defense systems against peritoneal infection. They induce an important biochemical pathway, a respiratory burst, which results in generation of O_2^- and H_2O_2, followed by the formation of more-toxic secondary oxidants such as hydroxyl radical (·OH) and HOCl. These oxidizing species are responsible for pathological events (29) such as destruction of biomolecules, killing of infected microorganisms, and autokilling of phagocytes. The hydroxyl radical is generated by transition metals, particularly iron, via the Fenton reaction in an O_2^--generating environment. This radical is thought to be a major species for oxygen toxicity in biological systems. Yamazaki and Piette (31) have stoichiometrically measured the formation of ·OH and confirmed the formation of not only ·OH but also ferryl ion from the Fenton reaction by using a spin-trapping technique.

Hemoglobin (Hb) may also act as a Fenton reagent in biological systems (22, 24). This possibility has been supported by many lines of evidence that show that Hb causes the oxidation of several organic molecules by producing ·OH and/or ferryl ion [Fe(IV)=O] in the presence of H_2O_2 (9, 23). Free Hb causes injury to the central nervous system through peroxida-

* Corresponding author. Mailing address: Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University, Chunchon, Kangwon-do, Korea. Phone: 82-361-250-8831. Fax: 82-361-242-7571. E-mail: ymkim@cc.kangwon.ac.kr.
Materials and methods

Materials. Catalase (CAT) (from bovine liver), superoxide dismutase (SOD) (from bovine erythrocytes), phosphor myristate acetate, cytochrome c (from horse heart), phosphate-buffered saline (PBS) (pH 7.4), 5,5-dimethyl-1-pyroline-N-oxide (DMPO), globin, and hemin were obtained from Sigma. DMPO was used after redistillation. Desferrioxamine B (deferoxamine) (DF) was from CIBA Pharmaceutical Co. Hematin solutions were prepared by dissolving hemin in a heart), phosphate-buffered saline (PBS) (pH 7.4), 5,5-dimethyl-1-pyroline-N-oxide (DMPO), globin, and hemin were obtained from Sigma. DMPO was used after redistillation. Desferrioxamine B (deferoxamine) (DF) was from CIBA Pharmaceutical Co. Hematin solutions were prepared by dissolving hemin in a heart), phosphate-buffered saline (PBS) (pH 7.4), 5,5-dimethyl-1-pyroline-N-oxide (DMPO), globin, and hemin were obtained from Sigma. DMPO was used after redistillation. Desferrioxamine B (deferoxamine) (DF) was from CIBA Pharmaceutical Co. Hematin solutions were prepared by dissolving hemin in a heart), phosphate-buffered saline (PBS) (pH 7.4), 5,5-dimethyl-1-pyroline-N-oxide (DMPO), globin, and hemin were obtained from Sigma. DMPO was used after redistillation. Desferrioxamine B (deferoxamine) (DF) was from CIBA Pharmaceutical Co. Hematin solutions were prepared by dissolving hemin in a heat), phosphate-buffered saline (PBS) (pH 7.4), 5,5-dimethyl-1-pyroline-N-oxide (DMPO), globin, and hemin were obtained from Sigma. DMPO was used after redistillation. Desferrioxamine B (deferoxamine) (DF) was from CIBA Pharmaceutical Co. Hematin solutions were prepared by dissolving hemin in a
diluting with PBS within 1 h of experiments. Hb was prepared from bovine erythrocytes by a one-step procedure with a DEAE-Sephadex A-50 column (30). Methemoglobin (MetHb) was prepared by oxidizing Hb with a slight excess of potassium ferriyanide and separated from the added components through a Sephadex G-25 column. Hb and MetHb were concentrated with a Centricon apparatus (Amicon). The Hb concentration was calculated as a heme concentration by spectrophotometry.

Preparation of bacterial solution. E. coli (ATCC 25922) was incubated on a blood agar plate at 37°C for 17 h, and a single colony was cultured in tryptic soy broth for an additional 18 h to produce a suspension of approximately 10^9 cells/ml. The bacteria were harvested by centrifugation, washed three times with saline, and resuspended in saline. The cell concentration was measured by spectrophotometry at 550 nm. The bacterial solution (absorbance = 1.0 at 550 nm) was diluted in PBS by 10^6- and 10^7-fold, inoculated on agar plates, and incubated at 37°C for 18 h (17). The number of viable bacteria was measured by counting developed colonies. Killed E. coli was prepared by treatment with formalin (5).

Animal mortality. Male Sprague-Dawley rats (180 to 200 g) were given standard rat pellets and water ad libitum. Experimental peritonitis was induced in rats by intraperitoneal injection (i.p.) injection of E. coli (4 x 10^6 CFU/kg of body weight) with or without iron complexes (12.4 mmol/kg of body weight). The total volume of the injection was 5 ml/kg of body weight. Mortality of rats was determined 24 h after administration.

Measurement of O_2^- generation in the peritoneal fluid. The rats injected i.p. with viable E. coli or with or without an iron complex were anesthetized with an intramuscular injection of Ketamine (44 mg/kg) at various time points. The rats were i.p. injected with 1 ml of saline and then physically shaken for 1 min to ensure adequate mixing of peritoneal contents. A milipore laporatomy was performed, and the fluid was obtained from all regions of the peritoneal cavity. O_2^- generation in an ex vivo system was measured by SOD (100 U/ml)-inhibitable cytochrome c reduction, monitored at 550 nm (M_O_2^- = 21 mM^-1 cm^-1 for reduced oxidized cytochrome c), in PBS (1 ml) containing cytochrome c (100 µM), peritoneal fluid (250 µl), and CAT (100 U). As shown by Simmons’ group (5, 6, 10, 11, 19, 22), purified Hb administered simultaneously with E. coli into the peritoneal cavity results in a potentiated lethal effect (Fig. 1). Viable E. coli at 8 x 10^9 bacteria/200 g of body weight, which is a nonlethal dose, resulted in more than 80% mortality when Hb was administered within 24 h of injection (Fig. 1A). However, formalin-killed E. coli, showing a similar dose-response mortality curve at a concentration about 100 times higher than that for live bacteria, did not show a synergistic effect on mortality at 5 x 10^10 bacteria/200 g of body weight when concomitantly injected with Hb (Fig. 1B), indicating that the viability of E. coli was an important factor for the synergism. **RESULTS**

As shown by Simmons’ group (5, 6, 10, 11, 19, 22), purified Hb administered simultaneously with E. coli into the peritoneal cavity results in a potentiated lethal effect (Fig. 1). Viable E. coli at 8 x 10^9 bacteria/200 g of body weight, which is a nonlethal dose, resulted in more than 80% mortality when Hb was administered within 24 h of injection (Fig. 1A). However, formalin-killed E. coli, showing a similar dose-response mortality curve at a concentration about 100 times higher than that for live bacteria, did not show a synergistic effect on mortality at 5 x 10^10 bacteria/200 g of body weight when concomitantly injected with Hb (Fig. 1B), indicating that the viability of E. coli is crucial for the synergistic effect.
coli is an important factor in the toxic effect of Hb in experimental peritonitis.

It is well known that iron from a variety of sources, including Hb, can enter into Fenton-type chemistry (25) and that neutrophils infiltrating the infectious site produce O$_2^\cdot$~ (13). It is therefore possible that Hb as a Fenton reagent produces a highly toxic oxidant in the peritoneal cavity during bacterial peritonitis. To test the hypothesis that a Fenton-type reaction is responsible for the lethal effect of Hb in bacterial peritonitis, we investigated the effects of globin, hematin, and several iron(II) chelates on mortality in the rat peritonitis model (Fig. 2). Hematin, iron itself, and iron-EDTA showed effects on mortality similar to those of Hb, whereas globin did not show a toxic effect. The initial valence state of iron, either ferrous or ferric, did not change the mortality (data not shown). Unlike EDTA, DF and diethylenetriamine pentaacetate (DTPA) significantly reduced the toxic effect of iron itself in experimental peritonitis. These data suggest that a Fenton-type reaction may be involved in the toxic effect of Hb in this animal model.

To test whether iron complexes play a role as a Fenton reagent in the rat peritonitis model, the effects of SOD and CAT on mortality and on generation of O$_2^\cdot$~ were investigated in the peritoneal cavity (since these oxygen metabolites are important reagents in Fenton chemistry) were investigated (25). It was found that the mixture of iron(II) and SOD-CAT reduced the toxic action of Hb (P < 0.01) and iron-EDTA (P < 0.01), though not completely (Fig. 3). Furthermore, the combination of the antioxidative enzymes and DF strongly suppressed iron-mediated lethality. The results suggest that phagocytes (resident macrophages and recruited neutrophils) produced activated oxygen species (O$_2^\cdot$~ and H$_2$O$_2$), which react with Hb and iron-EDTA to generate more-toxic species such as ferryl ion and 'OH.

To establish definitively the generation of reactive oxygen species in our experimental model, we used ESR spectroscopy to detect spin adducts of DMPO with oxygen radicals which were generated in the peritoneal fluid collected from rats at 4 h after injection with bacteria alone or bacteria plus iron chelates. As shown in Fig. 4A, DMPO spin adducts were not found in the peritoneal fluid of rats which received saline as a control. The mixtures of DMPO spin adducts of O$_2^\cdot$~ (DMPO-OOH) and 'OH (DMPO-OH), but mostly DMPO-OH, were detected directly in the peritoneal fluid of rats injected with bacteria alone (Fig. 4B). The spectrum obtained for the system of bacteria plus iron-DF was not different from that obtained for rats injected with bacteria alone (Fig. 4E). Under the same experimental conditions, the spectrum of DMPO-OH disappeared with the addition of SOD (data not shown), indicating that DMPO-OH was generated by decay of DMPO-OOH, as previously reported (20). However, the spectrum of only DMPO-OH was identified in the peritoneal fluid of rats injected with bacteria plus iron-EDTA (Fig. 4D), but no spin adduct was found in rats injected with bacteria plus Hb (Fig. 4C). Since DMPO spin adducts can be rapidly decayed by the reaction product of Hb and H$_2$O$_2$, the disappearance of the DMPO adduct of 'OH was examined. An ESR spectrum of DMPO-OH was detected in the mixture of iron-EDTA and H$_2$O$_2$ (Fig. 4F), and this spectrum disappeared with the addition of ferryl ion generated from the reaction of Hb with H$_2$O$_2$ (Fig. 4G).

Our previous data showed that neutrophils are inactivated by toxic oxidants generated from Fenton-type reagents, including Hb in an O$_2^\cdot$~ generating system (17). To test if peritoneal phagocytes are inactivated by iron complexes in experimental bacterial peritonitis, we examined the phagocyte population and its O$_2^\cdot$~ generating activity in the peritoneal cavity (Fig. 5). The numbers of peritoneal macrophages were nearly unchanged, while the neutrophil population was significantly increased after 4 h of bacterial injection (Fig. 5A). The O$_2^\cdot$~ generating activity of the peritoneal phagocytes isolated from rats injected with E. coli alone or E. coli plus iron-DF increased after 2 h and reached maximum levels after 7 h (P < 0.001) (Fig. 5B). Under the same conditions, however, treatment with iron-
EDTA or Hb attenuated the \(\text{O}_2^- \) -generating activity of peritoneal phagocytes.

Toxic oxidants produced from a Fenton-type reaction cause oxidative injury through lipid peroxidation (28), resulting in cell death and inactivation of neutrophil function (17). To address this concern, lipid peroxidation and phagocyte viability were measured in the peritoneal phagocytes of rats injected with \textit{E. coli} and iron complexes. Figure 6A shows that injection of \textit{E. coli} alone into the peritoneal cavity did not significantly increase lipid peroxidation in peritoneal phagocytes, but its injection with Hb or iron-EDTA markedly increased lipid peroxidation in peritoneal phagocytes \((P < 0.02 \text{ at } 15 \text{ h})\). Iron-DF had no effect on lipid peroxidation. Phagocyte viability in the peritoneal cavity decreased \((P < 0.01 \text{ at } 15 \text{ h})\) following injection with Hb or iron-EDTA but did not decrease significantly \((P > 0.1 \text{ at } 15 \text{ h})\) when bacteria were injected alone or with iron-DF (Fig. 6B). Furthermore, we examined the effects of live and dead \textit{E. coli} on reactive oxygen generation and lipid peroxidation in the peritoneal cavity. The formation of DMPO spin adducts and lipid peroxidation in the peritoneal cavity were not significantly different between these peritonitis models with or without Hb (Table 1). These results suggest that bacterial proliferation through phagocyte inactivation is a critical factor for Hb toxicity in \textit{E. coli} peritonitis.

From work performed by Dunn et al. (5) and O’Brien (21), one might conclude that an important role for Hb or any iron source in experimental peritonitis is to cause uncontrolled bacterial proliferation in the peritoneal cavity. Although for \textit{E. coli} alone the number of cells in the peritoneal cavity began to decrease after an initial weak increase, the number of \textit{E. coli} cells injected with Fenton-type reagents, Hb, or iron-EDTA rapidly increased in the peritoneal cavity, by about \(10^3\)-fold within 15 h \((P < 0.01)\) (Fig. 7A). The number of viable bacteria in blood was lower than that in the peritoneal cavity but its time dependence was identical to that in the peritoneal cavity (Fig. 7B). When Fe-DF (ratio of 1 to 2) was injected, the numbers of viable bacteria in the peritoneal cavity and blood
were similar to those in animals injected with bacteria alone until 10 h and thereafter were a little higher ($P < 0.05$ at 15 h), probably due to the suppression of phagocyte-dependent bacterial killing by the excessive amount of DF (27).

DISCUSSION

As reported previously (6, 18), Hb increased lethality in experimental bacterial peritonitis. The most prominent characteristic reported so far regarding the toxic effect of Hb in experimental peritonitis seems to be the significantly increased rate of bacterial proliferation in vivo (7, 11). Hb did not increase the lethality in a peritonitis model of killed *E. coli*, supporting a role for Hb in increasing bacterial growth. We previously reported that Hb diminished the microbicidal activity of neutrophils in an O_2^\cdot-generating system (17), and we postulated that a Fenton reaction producing toxic radicals played an important role in neutrophil inactivation. We here report that Hb and the Fenton reagent iron-EDTA, but not the Fenton inhibitor iron-DF, increased lethal toxicity by decreasing phagocyte viability and increasing bacterial growth in experimental bacterial peritonitis.

Peritoneal phagocytes such as resident macrophages and infiltrating neutrophils are the first line of defense against bacterial peritonitis. They produce O_2^\cdot and H_2O_2, which are

FIG. 5. Quantitation of peritoneal phagocytes and their O_2^\cdot-generating activity in experimental *E. coli* peritonitis. Numbers of total peritoneal phagocytes were determined by light spectroscopy with the trypan blue staining method. Macrophages were counted from adhered cells on culture plates. Subpopulations of neutrophils and macrophages (A) were calculated by the subtraction method. O_2^\cdot production (B) was measured by SOD-inhibitable cytochrome c reduction in peritoneal phagocytes obtained from the rats injected with bacteria in the absence of iron complex and in the presence of Hb, iron-EDTA, or iron-DF. Each point represents the mean ± standard deviation for three individual rats.

FIG. 6. Effects of Hb and iron chelates on lipid peroxidation (A) and viability (B) of peritoneal phagocytes during *E. coli* peritonitis. Peritoneal phagocytes were prepared by centrifugation immediately after collection of the peritoneal fluids and washed with PBS. Data represent the means ± standard deviations for three individual rats, with results obtained in duplicate for each experiment.
at each indicated time point after i.p. inoculation with
E. coli
the same as described in the legend to Fig. 5. Each point represents the mean
of H₂O₂, DF and DTPA, probably because of the slow oxida-
tion-reduction cycle of these iron chelates, are known inhibi-
tors of the Fenton reaction. Here, we will first focus our dis-
cussion on the possibility that the lethal effects of Hb and
Hb. Data are relative intensities of reactive oxygen spin adducts for three
animals.

TABLE 1. Effects of live and dead E. coli on reactive oxygen
generation and lipid peroxidation in bacterial peritonitis

E. coli	Injection	DMPO spin adducts* (mean ± SD)	Lipid peroxidation* (mean ± SD)
Live	Saline	100.0 ± 10.2	35.8 ± 5.3
	Hb	5.6 ± 2.1	76.5 ± 6.3
Dead	Saline	84.2 ± 11.5	28.8 ± 5.3
	Hb	4.2 ± 1.7	62.5 ± 7.4

* DMPO spin adducts were measured 4 h after peritoneal injection of E. coli
and Hb. Data are relative intensities of reactive oxygen spin adducts for three
animals.

** Lipid peroxidation was measured 12 h after injection. Data are nanomoles of
TBARS per milligram of protein.

implicated in bacterial killing. O₂⁻⁻ supplied by phagocytes
interacts with oxidized iron to generate the reduced form of
iron. The reduced forms of iron ion and its chelate complexes
are well-known Fenton reagents that react with H₂O₂ to pro-
duce strong oxidizing species such as •OH and Fe(IV)•=O,
which oxidize several cellular components (17, 24).

Many investigators (9, 23, 25, 26, 30) have reported that
Hb produces oxidizing species, •OH and/or Fe(IV)•=O, in
the presence of H₂O₂ through a Fenton-type reaction. It has been
suggested that these oxidizing species are responsible for oxy-
gen toxicity, including neutrophil inactivation (17) and protein
degradation (16), in various biological systems. Although
iron(II)-DF and iron(II)-DTPA produce •OH in the presence
of H₂O₂, iron(II)-DTPA, probably because of the slow oxida-
tion-reduction cycle of these iron chelates, are known inhibi-
tors of the Fenton reaction. Here, we will first focus our dis-
cussion on the possibility that the lethal effects of Hb and
iron-EDTA in our peritonitis model are associated with the
production of oxidizing species through a Fenton-type reaction
(Fig. 2). Dead bacteria or lipopolysaccharide can also stimulate
phagocytes and produce reactive oxygen species (12). The oxy-
gen radicals inactivate the O₂⁻⁻•-generating activity of neutro-
phils through lipid peroxidation in the presence of a Fenton
reagent in vitro (17). Although Hb also increases peroxidation
through oxygen radical generation in dead E. coli peritonitis to
a level similar to that in live E. coli peritonitis (Table 1), Hb did
not enhance the lethal effect (Fig. 1B). These results suggest
that bacterial proliferation through decreased phagocyte func-
tion in the peritoneal cavity is one critical factor for Hb-medi-
ated adjuvant mortality in bacterial peritonitis.

SOD and CAT are powerful scavengers of O₂⁻⁻ and H₂O₂.
Therefore, they are effective in inhibiting a Fenton reaction
(18) and neutralizing neutrophil-mediated tissue damage (8).
In our peritonitis model, administration of SOD and CAT
reduced the lethal effect of Hb and iron-EDTA (Fig. 3), and
the Fenton inhibitors DF and DTPA also suppressed the lethal
effect of iron (Fig. 2). Furthermore, the combination of SOD,
CAT, and DF strongly inhibited iron-mediated mortality in our
peritonitis model. These results suggest that O₂⁻⁻ and H₂O₂
are involved in the production of oxidizing species from the
Fenton reaction of Hb and cause the toxic effect of Hb in our
peritonitis model.

Phagocytes, i.e., macrophages and neutrophils, are known to
produce O₂⁻⁻ and H₂O₂, which normally are involved in the
killing of infectious bacteria, and such was the case when E. coli
alone was injected. These oxygen species can interact with
Fenton reagents such as iron-EDTA and Hb and produce
stronger oxidants such as •OH or ferryl ion, which are in-
volved in tissue injury through lipid peroxidation (17). ESR
spectroscopy showed direct evidence that peritoneal phago-
cytes produce reactive oxygen species during bacterial perito-
nitis, followed by the formation of more-autotoxic secondary
oxidants such as •OH or ferryl ion in the presence of Fenton
reagents. Neither O₂⁻⁻ nor •OH was detected in the perito-
neal cavities of the rats injected with bacteria plus Hb. A major
reactive species produced by the reaction of Hb with H₂O₂ is
thought to be ferryl ion (17), which is not directly trapped by
DMPO (31). The ferryl species rapidly decayed DMPO spin
adducts to other products that were not detected by ESR
spectroscopy (15). This evidence may explain why no ESR
spectrum was detected when Hb was injected into the perito-
eal cavity. These results indicate that the large number of
neutrophils which migrated into the peritoneal cavity 4 h
after bacterial injection appear to be the major source of O₂⁻⁻
and H$_2$O$_2$, participating in lipid peroxidation, inactivation of phagocytic function, and bacterial proliferation via a Fenton reaction.

OH and ferryl ion are highly reactive species and react with a variety of biological molecules such as protein, membrane lipid, and nucleic acids. Peroxidation of membrane lipid is a major cellular injury caused by these oxidizing species. This markedly decreased the O$_2^\cdot$ production in the peritoneal cavity in the presence of Hb or iron-EDTA (Fig. 5), probably because of the decreased phagocyte viability through Fenton-cavity reaction (Fig. 6B). Inactivation of phagocyte function allowed increased bacterial proliferation (Fig. 7). The protective effect of DF on O$_2^\cdot$ production suggests that the Fenton-type reaction causes inactivation of the peritoneal phagocytes. The results are in accordance with in vitro neutrophil inactivation by Fenton-type iron complexes in the O$_2^\cdot$-generating system (17).

Hb can interact with NO, synthesized from L-arginine by any of the three isotypes of NO synthase and oxidized to nitrate, which is a nontoxic stable product. Hb is known to be a biological scavenger of NO. NO interacts with O$_2^\cdot$ and then produces highly toxic peroxynitrite, which reacts against bacteria and host cells. Recent studies have reported that erythrocytes inhibit the formation of peroxynitrite and allow bacteria to proliferate in the peritoneal cavity, resulting in increased mortality (14). Purified Hb is very much different from erythrocytes, because erythrocytes contain many different types of antioxidative enzymes and antioxidants. The toxic mechanism of purified Hb may be different from that of Hb in erythrocytes. Like Hb, the Fenton inhibitor Fe-DTPA can interact with NO and neutralize the biological and pathological functions of NO (13). However, Fe-DTPA did not show a synergistic effect on mortality with bacteria in our animal model. The production of reactive oxygen species, but not NO, in the peritoneal cavity was detected by ESR 4 h after bacterial injection, because NO is produced in vivo by the induction of inducible NO synthase 8 to 10 h after injection of lipopolysaccharide or bacteria. These results suggest that inactivation of phagocyte function may be due to a reactive oxygen-dependent Fenton reaction.

The products formed by the Fenton reaction, ferryl ion and OH, may indiscriminately destroy biomolecules to kill not only host cells but also microorganisms in the infectious site. In our peritonitis model, however, apparently the host cells are destroyed and the numbers of viable bacteria in the peritoneal cavity and blood increase (Fig. 6). This finding could be explained by assuming that the phagocytes are more susceptible to the oxidizing species than the bacteria because of differences in the cell wall structures or proximity of the oxidant formation, resulting in bacterial proliferation. These phenomena are enhanced by the addition of Hb or iron-EDTA but not iron-DF, supporting the hypothesis that Hb in this rat model produces oxidizing species which decrease phagocyte viability in the peritoneal cavity to allow bacterial proliferation, resulting in lethality.

ACKNOWLEDGMENT

This work was supported by Korea Science and Engineering Foundation grant 981-0714-100-2 and Korea Research Foundation grant 1998-021-F008050.

REFERENCES

1. Bornside, G. H., P. J. Bouis, Jr., and J. Cohn, Jr. 1970. Enhancement of Escherichia coli infection and endotoxic activity by hemoglobin and ferric ammonium citrate. Surgery 68:350–355.

2. Buge, J. A., and S. D. Aust. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52:302–310.

3. Davis, J. H., and A. B. Yull. 1962. A possible toxic factor in abdominal injury. J. Trauma 2:291–300.

4. Davis, J. H., and A. B. Yull. 1964. A toxic factor in abdominal injury. II. The role of the red cell component. J. Trauma 4:84–90.

5. Dunn, D. L., R. A. Barke, J. T. Lee, Jr., R. M. Condie, E. W. Humphrey, and R. L. Simmons. 1983. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. VII. Hemoglobin does not inhibit clearance of Escherichia coli from the peritoneal cavity. Surgery 94:487–493.

6. Dunn, D. L., R. D. Nelson, R. M. Condie, and R. L. Simmons. 1983. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. VI. Effects of stroma-free hemoglobin and red blood cell stroma on mortality and neutrophil function. Surgery 93:653–659.

7. Filler, R. M., and H. K. Sleeman. 1967. Pathogenesis of peritonitis. I. The effect of Escherichia coli and hemoglobin on peritoneal absorption. Surgery 61:385–392.

8. Grisham, M. B., and D. N. Granger. 1988. Neutrophil-mediated mucosal injury. Dig. Dis. Sci. 33(Suppl.)1085–1088.

9. Gutteridge, J. M. C. 1986. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 201:291–295.

10. Hau, T., R. D. Nelson, V. D. Fiegel, R. Levenson, and R. L. Simmons. 1977. Mechanisms of the adjuvant action of hemoglobin in experimental peritonitis. II. Influence of hemoglobin on human leukocyte chemotaxis in vitro. J. Surg. Res. 22:174–180.

11. Hau, T., R. Hofman, and R. L. Simmons. 1978. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. I. In vivo inhibition of peritoneal leucocytosis. Surgery 83:223–229.

12. Jersmann, H. P., D. A. Rathjen, and A. Ferrante. 1998. Enhancement of lipopolysaccharide-induced neutrophil oxygen radical production by tumor necrosis factor alpha. Infect. Immun. 66:1744–1747.

13. Kazmierski, W. M., G. Wolberg, J. G. Wilson, S. R. Smith, D. S. Williams, H. H. Thorp, and L. Molina. 1996. Iron chelates bind nitric oxide and decrease mortality in an experimental model of septic shock. Proc. Natl. Acad. Sci. USA 93:9138–9141.

14. Kim, Y. M., S. J. Hong, T. R. Billiar, and R. L. Simmons. 1996. Counter-regulatory effect of erythrocytes in experimental bacterial peritonitis is due to scavenging of nitric oxide and reactive oxygen intermediates. Infect. Immun. 64:3074–3080.

15. Kim, Y. M., S. H. Jeong, I. Yamazaki, L. H. Pette, S. Han, and S. J. Hong. 1995. Decay studies of DMPO-spin adducts of free radicals produced by reactions of methemoglobin and methemoglobin with hydrogen peroxide. Free Radic. Res. 22:11–21.

16. Kim, Y. M., S. S. Kim, G. Kang, Y. M. Yoo, K. M. Kim, M. E. Lee, J. A. Han, and S. J. Hong. 1998. Comparative studies of protein modification mediated by Fenton-like reaction of iron, hematin, and hemoglobin: generation of different reactive oxidizing species. J. Biochem. Mol. Biol. 31:161–169.

17. Kim, Y. M., I. Yamazaki, and L. H. Pette. 1994. The effect of hemoglobin, hematin, and iron on neutrophil inactivation in superoxide generating system. Arch. Biochem. Biophys. 309:308–314.

18. Kuppusamy, P., and J. L. Zweier. 1989. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J. Biol. Chem. 264:9880–9886.

19. Lee, J. T., Jr., D. H. Ahrenholz, R. D. Nelson, and R. L. Simmons. 1979. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. V. The significance of the coordinated iron component. Surgery 86:41–48.

20. Lloyd, R. V., and R. P. Mason. 1990. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase. J. Biol. Chem. 265:16733–16736.

21. Ofenstein, A. D. 1982. Inmate resistance of mice to Salmonella typhii infection. Infect. Immun. 38:948–952.

22. Pruet, T. L., O. D. Rotstein, V. D. Fiegel, J. J. Sorenson, R. D. Nelson, and R. L. Simmons. 1984. Mechanism of the adjuvant effect of hemoglobin in experimental peritonitis. VIII. A leukotoxin is produced by Escherichia coli metabolism in hemoglobin. Surgery 96:375–383.

23. Pupo, A. and B. Halliwell. 1988. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Biochem. J. 249:185–190.

24. Rush, J. D., and W. H. Koppenol. 1986. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferricytochrome c. J. Biol. Chem. 261:6730–6733.

25. Sadrzadeh, S. M. H., E. Graf, S. S. Panter, P. E. Hallaway, and J. W. Eaton. 1984. Hemoglobin. A biological Fenton reagent. J. Biol. Chem. 259:14354–14356.

26. Sadrzadeh, S. M. H., and J. W. Eaton. 1988. Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate. J. Clin. Investig. 82:1510–1515.

27. Sane, A., S. Manzi, J. Perfect, A. J. Herzberg, and J. O. Moore. 1989.
Desferoxamine treatment as a risk factor for zygomycete infection. J. Infect. Dis. 159:151–152.
28. van-Bebber, I. P., W. K. Boekholtz, R. J. Goris, P. H. Schillings, H. P. Dinges, S. Bahrami, H. Redl, and G. Schlag. 1989. Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. J. Surg. Res. 47:471–475.
29. Weiss, S. J., and A. F. LoBuglio. 1982. Biology of disease. Phagocyte-generated oxygen metabolites and cellular injury. Lab. Investig. 47:5–18.
30. Winterbourn, C. C. 1985. Reaction with superoxide with hemoglobin. p. 137–141. In R. A. Greenwald (ed.), CRC handbook of methods for oxygen radical research. CRC Press Inc., Boca Raton, Fla.
31. Yamazaki, I., and L. H. Piette. 1990. ESR spin-trapping studies on the reaction of Fe²⁺ ions with H₂O₂-reactive species in oxygen toxicity in biology. J. Biol. Chem. 265:13589–13594.