1. Introduction

A Leibniz algebra, L, is an algebra with multiplication defined by the (left) Leibniz identity

$$a(bc) = (ab)c + b(ac).$$

This multiplication need not be antisymmetric. If this multiplication is, in fact, antisymmetric, then L is a Lie algebra. Leibniz algebras have been studied at length in [12], [3], [2], [10], and other works. In this paper, we consider L to be a finite-dimensional Leibniz algebra over an arbitrary field unless otherwise stated.

The Frattini subalgebra of L, denoted $F(L)$, is the intersection of all maximal subalgebras of L. Note that $F(L)$ need not be an ideal of L. Thus, we consider the Frattini ideal of L, denoted $\Phi(L)$, which is the largest ideal of L contained in the Frattini subalgebra of L. These structures have been studied at length in [5]. It is often especially useful to consider a Leibniz algebra whose Frattini ideal is 0. A particularly well-known Lie algebra result that carries over to the Leibniz case is the following: The Frattini ideal of $L/\Phi(L)$ is 0 for any Leibniz algebra L.

Date: December 18, 2015.
Let \mathcal{F} be a subalgebra closed formation of solvable Leibniz algebras (see [3] and [10] for an introduction to Leibniz algebras and [4] for results on formations). Examples of such formations are the classes of nilpotent, supersolvable, and strongly solvable Leibniz algebras. Let L be a solvable Leibniz algebra that is minimally not in \mathcal{F} with $\phi(L) = 0$. If A is a minimal ideal in L, then A is complemented in L by a subalgebra. We claim that there is a unique minimal ideal of L. Suppose that A and B are minimal ideals of L. They are complemented by subalgebras H and K, respectively. H and K are both in \mathcal{F} by the minimality of L. Then $L = L/(A \cap B)$, which is in \mathcal{F} since \mathcal{F} is a formation. This contradicts the assumption that L does not belong to \mathcal{F}. Hence, L has a unique minimal ideal, A. Thus, $\text{Soc}(L) = A$. Suppose that L is not Lie.

Let $N(L)$ denote the nilradical of L. Since $\phi(L) = 0$, $N(L) = A = Z_L(A) \subset \text{Leib}(L)$ [5]. Furthermore, consider the mapping $L: x \mapsto L_x|_A$. L is a homomorphism from L into the derivation algebra of A. L is the right centralizer of A (since $A \subset \text{Leib}(L)$), and $A = Z_L(A)$. Hence, A is the kernel of L. Hence, $H = L/A$ is Lie, and $A = \text{Leib}(L)$.

We construct a companion Lie algebra, C, for this Leibniz algebra, $L = A + H$, where A is the unique minimal ideal in L, and H is the subalgebra of L complementing A. Let C be the vector space direct sum of A and H with the product $[a+h, b+k] = [h, b] - [k, a] + [h, k]$, where the products on the right-hand side of this equation are the same as in L. It is verified that C is a Lie algebra. Note that such correspondences have been considered previously [1]. There the reverse construction is developed, obtaining a Leibniz algebra from a Lie algebra. Their conditions and purposes are different, but the construction is the inverse of ours.

Lemma 2.1. Let \mathcal{F} be a formation of solvable Leibniz algebras. Let L be minimally not in \mathcal{F}, and suppose that $\phi(L) = 0$. Then $L = A + H$, where A is the unique minimal ideal in L.

If L is not a Lie algebra, then $A = \text{Leib}(L)$ is self-centralizing in L, and H is a Lie algebra. Then the algebra C constructed as $C = A + H$ with product $[a+h, b+k] = [h, b] - [k, a] + [h, k]$, where the right-hand-side products are the same as in L, is a Lie algebra. We call C the companion Lie algebra of L.

2. Companion Lie Algebra
3. Strongly Solvable Leibniz Algebras

As in the case of Lie algebras, a Leibniz algebra L is called strongly solvable if L^2 is nilpotent. Suppose \mathcal{F} is the formation of strongly solvable Leibniz algebras with L, C, A, and H as in the previous section. Let $x \in L$, and let x also denote the corresponding element in C. Let L_x denote left multiplication of L by x, and let $\text{ad } x$ denote left multiplication of C by x under the above bracket. If x is in A, then L_x and $\text{ad } x$ are both nilpotent, although perhaps not equal. Suppose that L is a ϕ-free, solvable, minimally non strongly solvable Leibniz algebra. We claim that C also has these properties.

If x is in H^2, then L_x and $\text{ad } x$ are essentially the same, although acting on L and C, respectively, and are either both nilpotent or both non-nilpotent. If all $x \in H^2$ have $\text{ad } x$ nilpotent, then left multiplication by each element in the Lie set $H^2 \cup A$ is nilpotent on both L^2 and C^2. Thus, L^2 is nilpotent if and only if C^2 is nilpotent; hence, C is not strongly solvable.

A is self-centralizing in L, and hence, A is also self-centralizing in C. Thus, A is the unique minimal ideal in C. Then H is a maximal subalgebra in C and thus, contains $\phi(C)$. We claim that $\phi(C) = 0$. Suppose not. H is a maximal subalgebra of C, and hence, $\phi(C) \subset H$. A is the unique minimal ideal in C, and hence, A is contained in $\phi(C)$, which is a contradiction. Thus, the claim holds.

We also claim that any proper subalgebra, K, of C is strongly solvable. Suppose that $C = A + K$. Then $K \cap A$ is equal to either A or 0 since A is a minimal ideal of C.

In the former case, A is contained in K, and then K is equal to C, which contradicts K being a proper subalgebra of C. In the latter case, K is isomorphic to H, which is strongly solvable in L, and thus, in C. Thus, K is strongly solvable.

Now suppose that $C \neq A + K$. We will show that $A + K$ is strongly solvable, and hence, that K is also strongly solvable. Thus, we assume that $A \subseteq K$.

Then $K = K \cap (H + A) = (K \cap H) + A$, which is a subalgebra of L by the correspondence between L and C. Then $K^2 = (K \cap H)^2 + A$ in Leibniz algebra L, and analogously, $K^2 = (K \cap H)^2 + A$ in Lie algebra C. In L, both summands of K^2 are nilpotent Lie sets, and likewise, the corresponding summands are nilpotent in C. Thus, K^2 is nilpotent as a subalgebra of C. Hence, K is strongly solvable.
solvable for \(K \) any proper subalgebra of \(C \). Since \(C \) is itself not strongly solvable, \(C \) is a solvable, minimally non-strongly solvable Lie algebra.

Such Lie algebras have been described in Theorem 3.1 of [7].

Theorem 3.1. Let \(L \) be a solvable \(\phi \)-free minimally non-strongly solvable Leibniz algebra over field \(\mathbb{F} \). Then \(\mathbb{F} \) has characteristic \(p > 0 \), and \(L = A + H \) is a semidirect sum, where

1. \(A \) is the unique minimal ideal of \(L \),
2. \(\dim A \geq 2 \),
3. \(A^2 = 0 \), and
4. either \(H = M \oplus \mathbb{F}x \), where \(M \) is a minimal abelian ideal of \(H \), or \(H \) is the three-dimensional Heisenberg algebra.

Either \(L \) is Lie, or if not, then \(H \) is Lie, \(A = \text{Leib}(L) \), and \(AL = 0 \).

Proof. If \(L \) is a Lie algebra, then the result is Theorem 3.1 of [7]. If \(L \) is not Lie, then the companion Lie algebra, \(C \), satisfies the conditions and conclusions of this theorem. Thus, \(L \) does also by Lemma 2.1

[Proof]

In [7], Bowman, Towers, and Varea prove the Lie algebra version of the next result from Theorem 3.1. We obtain it from [8] instead.

Proposition 3.2. Let \(L \) be a solvable Leibniz algebra that is minimally non-strongly solvable. Then \(L \) is two-generated.

Proof. If \(L \) is not two-generated, then all two-generated subalgebras are strongly solvable. Then the result follows from Corollary 1 of Theorem 2 of [8].

Proposition 3.3. Let \(L \) be a solvable Leibniz algebra with each two-generated proper subalgebra strongly solvable. Then

1. \(L \) is either strongly solvable or two-generated, and
(2) Every proper subalgebra of \(L \) is strongly solvable.

Proof. The proof of (1) follows the proof of [3,2].

We now prove (2). Let \(S \) be a minimally non-strongly solvable subalgebra of \(L \). If \(S \) is two-generated, then \(S \) is strongly solvable by hypothesis. Hence, \(S \) is not two-generated. Thus, all two-generated subalgebras of \(S \) are strongly solvable, and \(S \) is strongly solvable also. \(\square \)

4. SUPERSolvable Leibniz Algebras

A Leibniz algebra \(L \) is called supersolvable if there exists a chain of ideals \(0 = L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_{n-1} \subset L_n = L \), where \(L_i \) is an \(i \)-dimensional ideal of \(L \). In this section, supersolvability will be considered in the same manner as was strong solvability in the previous section. Let \(L \) be a solvable, \(\phi \)-free, minimally non-supersolvable Leibniz algebra. Supersolvable Leibniz algebras form a formation; hence, Lemma 2.1 applies. Then \(L = A + H \) as in Lemma 2.1. Now, if \(L \) is Lie, then the structure of \(L \) has been determined in [11] and set forth in [7]. We state the result as

Theorem 4.1. Let \(L \) be a solvable, minimally non-supersolvable Lie algebra which is \(\phi \)-free. Then the candidates for \(L \) are:

1. If \(L \) is strongly solvable, \(L = A \oplus \langle x \rangle \), where \(A \) is the unique minimal ideal of \(L \) and \(\dim A > 1 \).

2. If \(L \) is not strongly solvable, then \(F \) is of characteristic \(p > 0 \), \(L \) has unique minimal ideal \(A \) with basis \(\{e_1, \ldots, e_p\} \), and one of the following holds:

 a. \(L = A + \langle x, y \rangle \) with antisymmetric multiplication \(xe_i = e_{i+1} \), \(ye_i = (\alpha + i)e_i \), with indices mod \(p \), \(yx = x \), and for all \(a \in F \), \(a = tp - t \) for some \(t \in F \), or

 b. \(L = A + \langle x, y, z \rangle \) with anti-symmetric multiplication \(xe_i = e_{i+1} \), \(ye_i = (i + 1)e_{i-1} \), \(ze_i = e_i \), with indices mod \(p \), \(yx = z \), \(xz = yz = 0 \), and \(F \) is perfect when \(p = 2 \).
The list of algebras in Theorem 4.1 are the possible minimally non-supersolvable Lie algebras, however, it is important to note that not all algebras of these forms have this property. However, if F is algebraically closed, the algebras in (2) are minimally non-supersolvable, while the algebra in (1) must be supersolvable. Hence, all minimally non-supersolvable Lie algebras over an algebraically closed field are as in (2).

Now suppose that L is not a Lie algebra. Then L is as in Lemma 2.1; $L = A \varoplus H$, where $A = \text{Leib}(L)$, and H is as in the lemma. Take C to be the companion Lie algebra defined in Lemma 2.1. A is the minimal ideal in C, and C is ϕ-free.

In Leibniz algebra L, H is supersolvable by assumption, and A is abelian. However, A is irreducible under the action of H acting on the left. Since L is not supersolvable by hypothesis, the dimension of A is greater than 1. The left action of H on A is the same in C as in L, and hence, $\dim A$ is greater than one and C is not supersolvable.

We show that all proper subalgebras of C are supersolvable, and hence, that C is a solvable, minimally non-supersolvable Lie algebra. Let K be a proper subalgebra of C. If $C = A + K$, then either $A \cap K = 0$ or $A \cap K = A$ since A is also a minimal ideal in C. In the former case, K is isomorphic to H and hence, is supersolvable. In the latter case, $K = C$, which is a contradiction.

Now suppose that $A + K$ is a proper subalgebra of C. We show that $A + K$ is supersolvable, and hence, that K is also supersolvable. We may assume that $A \subset K$. Then as above, $K = (K \cap H) + A$. Note that $K \cap H$ is the same in L and C.

In L, the action of $K \cap H$ on A is simultaneously triangularizable. The left action of $K \cap H$ on A in C is the same as in L, and hence, K is supersolvable in Lie algebra C. Then C is minimal non-supersolvable and is as in Theorem 4.1. Hence, we have the following theorem.

Theorem 4.2. Let L be a solvable, ϕ-free, minimally non-supersolvable Leibniz algebra. If L is a Lie algebra, then L is as in Theorem 4.1. If L is not Lie, then L is as in Theorem 4.1 with the added conditions that $A = \text{Leib}(L)$ and $AL = 0$. 6
Corollary 4.3. If \(L \) is as in Theorem 4.2 and \(F \) is algebraically closed, then the solvable, minimally non-supersolvable Leibniz algebras are precisely the algebras at characteristic \(p \) such that either

(a.) \(L = A + B \) where \(A = ((e_1, \ldots, e_p)) \) is the unique minimal ideal which is abelian, \(B = \langle x, y \rangle \) with \(ye_i = -ie_i \) and \(xe_i = -e_{i+1} \) (indices mod \(p \)), \(yx = x \), and either \(A = \text{Leib}(L) \) or \(L \) is Lie, or

(b.) \(L = A + B \) where \(A = ((e_1, \ldots, e_p)) \) is the unique minimal ideal which is abelian, \(B \) is the Heisenberg Lie algebra with basis \(\{x, y, z\} \) and multiplication \(ye_i = (i+1)e_{i-1}, xe_i = -e_{i+1}, ze_i = e_i, yx = z \), and either \(A = \text{Leib}(L) \) or \(L \) is Lie. Again, the index action is mod \(p \).

Several results similar to Theorem 3.5 in [7] are now obtained in the Leibniz algebra case. Note that if Leibniz algebra \(L \) is solvable and minimally non-supersolvable, then all two-generated proper subalgebras are supersolvable. If \(L \) is not two-generated, then all two-generated subalgebras are supersolvable, and hence \(L \) is supersolvable from Theorem 4 of [8], a contradiction. Thus, we have the following.

Theorem 4.4. If \(L \) is solvable and minimal non-supersolvable, then \(L \) is two-generated.

Theorem 4.5. If every two-generated proper subalgebra of \(L \) is supersolvable, \(L \) itself is not supersolvable, and \(L \) is \(\phi \)-free, then \(L \) has the structure of one of the algebras in Theorem 4.2.

Proof. Let \(S \) be a proper subalgebra of \(L \). If \(S \) is two-generated, then it is supersolvable by assumption. If \(S \) is non two-generated, then every two-generated subalgebra of \(S \) is supersolvable by assumption. Since supersolvability is two-recognizable [8], \(S \) is also supersolvable. Thus, all proper subalgebras of \(L \) are supersolvable, and \(L \) is minimally non-supersolvable. Hence, Theorem 4.2 applies. \(\square \)

5. Triangulable Leibniz Algebras

A Leibniz algebra \(L \) over a field \(F \) is triangulable on \(L \)-module \(M \) if when \(F \) is extended to \(K \), the algebraic closure of \(F, K \otimes M \) admits a basis such that the representing matrices of \(K \otimes L \) are upper triangular. \(L \) is said to be nil on \(M \) if left multiplication on \(M \) by each \(x \in L \) is nilpotent.
Then L acts nilpotently on M \([6]\). There is a maximal ideal of L that acts nilpotently on M. This ideal is denoted by \(\text{nil}(L)\). If \(L^2\) is contained in \(\text{nil}(L)\), then the same holds in the algebra and module over \(K\). By Theorem 1 of \([9]\), in the algebraically closed case, L is triangulable on M if \(L^2\) is contained in \(\text{nil}(L)\). Hence, in the general case, L is triangulable on M if \(L^2\) is in \(\text{nil}(L)\). Note that these definitions still apply in the special case that L is a subalgebra of M. We state them in this context.

Proposition 5.1. A subalgebra L of Leibniz algebra M is triangulable on M if and only if \(L^2\) is contained in \(\text{nil}(L)\). If L is an ideal of M, then L is triangulable on M if and only if \(L^2\) is nilpotent. M is triangulable on itself if and only if M is strongly solvable.

The following two propositions follow exactly as in their Lie algebra versions, with left multiplication replacing \(\text{ad}\) in the proofs as shown in Lemma 4.1 and Lemma 4.5 of \([7]\).

Proposition 5.2. Let L be a Leibniz algebra, and let S and T be subalgebras of L that are nil on S such that S is contained in the normalizer of T. Then \(S + T\) is nil on L.

Proposition 5.3. If S is a subalgebra of L such that \(\phi(L)\) is contained in S, then \(\text{nil}(S/\phi(L)) = \text{nil}(S)/\phi(L)\).

Proof. Clearly \(\phi(L)\) is contained in \(\text{nil}(L)\) since \(\phi(L)\) is a nilpotent ideal in L. Let \(\text{nil}(S/\phi(L)) = J/\phi(L)\). Clearly \(\text{nil}(S)\) is contained in J. Let \(x \in J\). Now \(L_x\) acts nilpotently on \(L/\phi(L)\), and \(L = \phi(L) + L_0(x)\), the Fitting null component of \(L_x\) acting on L. Since \(L_0(x)\) is a subalgebra of L supplementing the Frattini ideal, \(L_0(x)\) is equal to L. This holds for all such \(x\), and hence, J is contained in \(\text{nil}(S)\), and the result holds. \(\square\)

It is known that a solvable Leibniz algebra is triangulable on itself if all two-generated subalgebras of L are triangulable \([9]\). In \([7]\), Lie algebras all of whose proper two-generated subalgebras are triangulable are similarly investigated. Our purpose is to find Leibniz algebra analogues to this and related ideas.
Theorem 5.4. Let L be a solvable Leibniz algebra such that each two-generated proper subalgebra is triangulable on L. Then L is triangulable.

Proof. Each two-generated proper subalgebra of L is strongly solvable. Then by Proposition 3.3, every proper subalgebra of L is strongly solvable, as is each proper subalgebra of $L^* = L/\phi(L)$.

If L is not triangulable, then L is not strongly solvable, and neither is L^*. Thus, Theorem 3.1 applies, $L^* = A + B$ as in the theorem, and $(L^*)^2 = A + B^2$. B is two-generated. Hence B is triangulable on L^*. Thus, B^2 acts nilpotently on L^* and hence, on A. Thus, $(L^*)^2$ is nilpotent and L^* is strongly solvable, a contradiction. □

It is interesting to note that L is triangulable if and only if it is strongly solvable. If all two-generated subalgebras are triangulable on L, then L is triangulable (Theorem 5.4). However, if all two-generated subalgebras are strongly solvable, this does not guarantee that L is triangulable since a subalgebra can be strongly solvable without being triangulable on the algebra. The algebras in Theorem 3.1 are of this type.

Theorem 5.5. If L is minimally non-triangulable (every proper subalgebra of L is triangulable on L, but L itself is not), then L is two-generated and $L/\phi(L)$ is simple.

Proof. By Theorem 5.4, L is not solvable. If $L^* = L/\phi(L)$ is triangulable, then $(L^*)^2$ is nilpotent and L^* is solvable, a contradiction. Therefore, L^* is not triangulable, and hence not strongly solvable.

Consider a proper subalgebra S of L and the corresponding proper subalgebra $S^* = S/\phi(L)$ of L^*. S is triangulable on L, hence S^2 is contained in $\text{nil}(S)$ and $(S^*)^2$ is contained in $\text{nil}(S^*)$. Hence, S^* is strongly solvable.

Note that the nilradical of L^* is not 0. Since $\phi(L^*) = 0$, $\text{nil}(L^*)$ is complemented in L^* by a subalgebra T [5], which is strongly solvable. Hence, $L^* = \text{nil}(L^*) + T$ is solvable, a contradiction. Thus, L^* is semisimple. If L^* were to contain a proper ideal, that ideal would be strongly solvable and hence solvable, a contradiction. Thus, L^* contains no proper ideals, and L^* is simple. □
REFERENCES

[1] S. Abdykassymova and A. S. Dzhumadil’daev. Leibniz algebras in characteristic p. *C.R. Acad. Sci. Paris Sr. I Math.*, 332:1047–1052, 2001.

[2] Sh. A. Ayupov and B. A. Omirov. On Leibniz algebras. *Algebra and Operator Theory*, pages 1–12, 1998.

[3] D. Barnes. Some theorems on Leibniz algebras. *Communications in Algebra*, 39:2463–2472, 2011.

[4] D. Barnes. Schunck classes of soluble Leibniz algebras. *Communications in Algebra*, 41:4046–4065, 2013.

[5] C. Batten Ray, L. Bosko-Dunbar, A. Hedges, J. T. Hird, K. Stagg, and E. Stitzinger. A Frattini theory for Leibniz algebras. *Communications in Algebra*, 41:1547–1557, 2013.

[6] L. Bosko, A. Hedges, J. T. Hird, N. Schwartz, and K. Stagg. Jacobson’s refinement of Engel’s theorem for Leibniz algebras. *Involv*, 4:293–296, 2011.

[7] K. Bowman, D. Towers, and V. Varea. Two generated subalgebras of Lie algebras. *Linear and Multilinear Algebra*, 55:429–438, 2007.

[8] T. Burch, M. Harris, A. McAlister, E. Rogers, E. Stitzinger, and S. M. Sullivan. 2-recognizable classes of leibniz algebras. *Journal of Algebra*, 413:506–513, 2015.

[9] T. Burch and E. Stitzinger. Triangulable Leibniz algebras. *Communications in Algebra*. To appear.

[10] I. Demir, K. Misra, and E. Stitzinger. On some structures of Leibniz algebras. *Contemporary Math., Amer. Math. Soc.*, pages 41–54, 2014.

[11] A. Elduque and V. Varea. Lie algebras all of whose subalgebras are supersolvable. *Canad. Math. Soc. Conference Proceedings*, 5:209–218, 1986.

[12] J. Loday. Une version non commutative des algèbres de Lie: les algèbres de Leibniz. *Enseign Math.*, 39:269–293, 1993.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, HIGH POINT UNIVERSITY, HIGH POINT, NC 27268

E-mail address: amcalist@highpoint.edu

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC 27695

E-mail address: stitz@ncsu.edu

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC 27695

E-mail address: anwalls@ncsu.edu