Precise Measurement of the Spin Parameter of the Stellar-Mass Black Hole M33 X-7

Citation
Liu, Jifeng, Jeffrey E. McClintock, Ramesh Narayan, Shane W. Davis, and Jerome A. Orosz. 2008. “Precise Measurement of the Spin Parameter of the Stellar-Mass Black Hole M33 X-7.” The Astrophysical Journal 679 (1): L37–40. https://doi.org/10.1086/588840.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384872

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Precise Measurement of the Spin Parameter of the Stellar-Mass Black Hole M33 X-7

Jifeng Liu\(^1\), Jeffrey E. McClintock\(^1\), Ramesh Narayan\(^1\), Shane W. Davis\(^2\), and Jerome A. Orosz\(^3\)

ABSTRACT

In prior work, Chandra and Gemini-North observations of the eclipsing X-ray binary M33 X-7 have yielded measurements of the mass of its black hole primary and the system’s orbital inclination angle of unprecedented accuracy. Likewise, the distance to the binary is known to a few percent. In an analysis based on these precise results, fifteen Chandra and XMM-Newton X-ray spectra, and our fully relativistic accretion disk model, we find that the dimensionless spin parameter of the black hole primary is \(a_* = 0.77 \pm 0.05\). The quoted 1-\(\sigma\) error includes all sources of observational uncertainty. Four Chandra spectra of the highest quality, which were obtained over a span of several years, all lead to the same estimate of spin to within statistical errors (2\%), and this estimate is confirmed by 11 spectra of lower quality. There are two remaining uncertainties: (1) the validity of the relativistic model used to analyze the observations, which is being addressed in ongoing theoretical work; and (2) our assumption that the black hole spin is approximately aligned with the angular momentum vector of the binary, which can be addressed by a future X-ray polarimetry mission.

Subject headings: Galaxies: individual(M33) — X-rays: binaries — black hole physics — binaries: individual (M33 X-7)

1. INTRODUCTION

M33 X-7 is the first stellar-mass black hole to be discovered that is eclipsed by its companion (Pietsch et al. 2006). The X-ray eclipse and the precisely known distance of

\(^1\)Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138

\(^2\)Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540

\(^3\)Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
this system, $D = 840 \pm 20$ kpc, underpin the most accurate dynamical model that has been achieved for any of the 21 known black hole binaries (Orosz et al. 2007, hereafter O07). The two dynamical parameters of interest in this Letter are the black hole mass $M = 15.65 \pm 1.45 M_\odot$ and the orbital inclination angle $i = 74.6^\circ \pm 1.0^\circ$ (O07).

Our group has published spin estimates for three stellar-mass blackholes using the X-ray continuum fitting method: GRO J1655-40, $a_* = 0.65 - 0.75$; 4U 1543-47, $a_* = 0.75 - 0.85$; and GRS 1915+105, $a_* = 0.98 - 1.0$ (Shafee et al. 2006, hereafter S06; McClintock et al. 2006, hereafter M06). For LMC X-3, Davis et al. (2006) find $a_* < 0.26$. Meanwhile, the Fe line method has been used to obtain two additional estimates of black hole spin (Brenneman and Reynolds 2006; Miller et al. 2008). The dimensionless spin parameter $a_* \equiv a/M = cJ/GM^2$, where M and J are the mass and angular momentum of the black hole; $-1 \leq a_* \leq 1$ (Shapiro and Teukolsky 1986).

The continuum-fitting method, which was pioneered by (Zhang et al. 1997) (also see Gierliński et al. 2001), is based on the existence of an innermost stable circular orbit (ISCO) for a particle orbiting a black hole, inside which the particle suddenly plunges into the hole. In the continuum-fitting method, one identifies the inner edge of the black hole’s accretion disk with the ISCO and estimates the radius R_{ISCO} of this orbit by fitting the X-ray continuum spectrum. Since the dimensionless radius $r_{\text{isco}} \equiv R_{\text{ISCO}}/(GM/c^2)$ is solely a monotonic function of the black hole spin parameter ($Shapiro$ and Teukolsky 1986), knowing its value allows one to immediately infer the black hole spin parameter a_*. Our estimates of spin are based on our fully relativistic accretion disk model (Li et al. 2005) and an advanced treatment of spectral hardening (Davis et al. 2005). We consider only rigorously-selected thermal-state data (Remillard and McClintock 2006), which are largely free of the effects of Comptonization. Furthermore, we only accept data for which the bolometric disk luminosity is moderate, $L/L_{\text{Edd}} < 0.3$, in order to ensure that the standard geometrically-thin thermal disk model is applicable (Shafee et al. 2008; M06).

For the continuum-fitting method to succeed, it is essential to have accurate values of the black hole mass, orbital inclination and distance (M06), quantities that are known precisely in the case of M33 X-7. Other virtues of M33 X-7 for the determination of spin, are the abundance of Chandra and XMM data, the remarkably thermal and featureless spectrum of the X-ray source, and its moderate luminosity (§3).
2. DATA SELECTION AND REDUCTION

There have been 17 Chandra ACIS observations and 12 XMM-Newton EPIC observations of M33 X-7. We analyzed Chandra observations (downloaded from the Chandra Data Archive) with CIAO 3.4 and extracted the spectra from source ellipses enclosing 95% of the source photons as reported by wavdetect. The XMM observations were downloaded from the HEASARC archive and analyzed with SAS 7.0.0 (Gabriel et al. 2004). Using the standard procedures and excluding intervals of high background, we extracted separate spectra from the PN and two MOS chips using radii of 400 pixels (i.e., 20") and fitted them independently.

The resultant count rate data were folded on the M33 X-7 X-ray eclipse ephemeris (Pietsch et al. 2006): HJD (2453639.119 ± 0.005) ± N(3.453014 ± 0.000020). The folded light curve for all the Chandra data are shown in Figure 2a in O07. For the purpose of measuring the spin of M33 X-7, we excluded (1) spectra obtained in the phase range –0.3 to 0.2, i.e., during the eclipse or the pre-eclipse period of erratic X-ray variability (which is presumably caused by the accretion stream; O07); (2) four ACIS spectra (ObsIDs 6384, 6385, 7170, 7171) that are severely affected by pile-up; and (3) all spectra that contain less than 1000 counts. The 15 spectra so selected are listed in Table 1 and comprise eight Chandra ACIS spectra and seven EPIC PN/MOS spectra from five XMM observations. We refer throughout to the four ACIS spectra with ≳ 5,000 counts as the “gold” spectra and to the rest as the “silver” spectra.

3. ANALYSIS AND RESULTS

The procedures used here are precisely the same as those that are described fully in M06. Briefly, the relativistic accretion disk model kerrbb2 has just two fit parameters, namely the black hole spin a_* and the mass accretion rate \dot{M} (or equivalently, a_* and the Eddington-scaled bolometric luminosity, $l \equiv L_{\text{bol}}(a_*, \dot{M})/L_{\text{Edd}}$; M06). In the case of M33 X-7, we also fit for a third parameter, N_H, the hydrogen column density (PHABS in XSPEC).

The spectral hardening factor $f \equiv T_{\text{col}}/T_{\text{eff}}$ was computed as a function of l for the appropriate metallicity of M33 X-7 ($Z = 0.1Z_\odot$; O07) using the model of Davis and Hubeny 2006 (bhspec in XSPEC). These values of f are contained in a pair of lookup tables, which correspond to two representative values of the viscosity parameter ($\alpha = 0.01, 0.1$; M06) for a wide range of the spin parameter (e.g., $0 < a_* < 0.99$). We find that our results are quite insensitive to the choice of α or an increase in metallicity. We have also experimented with varying the input parameters M, D, i and N_H, and we find that the values of f are scarcely
affected.

All of the spectra were well-fitted using a simple absorbed KERRBB2 model [i.e., PHABS(KERRBB2) in XSPEC]. Notably, neither Fe line/edge components nor an additional nonthermal component was required, as they were in our earlier work (R06, M06). We fitted each spectrum for a_*, the mass accretion rate \dot{M}, and the neutral hydrogen column density N_H with the input parameters fixed at their baseline values (see §1; O07). The normalization was fixed at unity (as appropriate when M, i and D are held fixed). We included the effects of limb darkening (lflag = 1) and returning radiation effects (rflag = 1), and we set the torque at the inner boundary of the accretion disk to zero ($\eta = 0$).

The fits obtained for all 15 spectra are quite acceptable with $\chi^2_\nu < 1.2$; results for fits over the energy range 0.3–8 keV are summarized in Table 1. An inspection of the fitting residuals for all the spectra show them to be free of any systematic effects, as illustrated in Figure 1. Given the modest luminosities, $0.07 < l < 0.11$ (Table 1), which are well below our selection limit of $l = 0.3$, the accretion disk in M33 X-7 is quite thin, $H/R \leq 0.04$ (see Fig. 17 in Shafee et al. 2008), and our assumption of zero torque at the inner boundary is likely to be valid.

Figure 2 shows plots of a_* for all 15 observations, which are ordered by the number of counts detected. Each of the four panels corresponds to a different choice for the energy interval used in fitting the data (e.g., 0.3–8 keV, 0.5–8 keV, etc.); a comparison of the results in the four panels shows that this choice is quite unimportant. The four gold spectra with $\geq 5,000$ counts each (solid symbols) yield spin estimates that agree with their mean value (indicated by the dotted lines) typically to within their $\approx 2\%$ statistical uncertainties. The stability of these four gold spectra is especially remarkable given that three of the observations were separated by 3-month intervals in 2005–2006, and one of them was obtained five years earlier in 2000 (Table 1). The dispersion for the 11 silver spectra that have $\lesssim 3,000$ counts (open symbols) is much larger. However, in each panel, the mean of these 11 spin values agrees with the mean determined using the gold spectra to within $\approx 1\%$. As concluded in the caption of Figure 2, our adopted average spin for the four gold spectra is $\bar{a}_* = 0.77$ with a standard deviation of $\Delta a_* = 0.02$.

In order to determine the error in a_* due to the combined uncertainties in M, i and D (§1), we performed Monte Carlo simulations assuming that the uncertainties in these parameters are normally and independently distributed. The results for 3,000 simulation runs are plotted in Figure 3. The histogram of $\bar{a}_* - \bar{a}_{i0}$ shows that the 1σ error in the spin due to the combined uncertainties of the three input parameters is about $\Delta a_* = 0.05$. The error is dominated by the uncertainty in M; the uncertainties in i and D are relatively unimportant. This error is based on a readily available table that was computed for solar
metallicity. Despite this limitation, we believe that our error estimate is accurate because the effects of going from \(Z = 0.1Z_\odot \) to \(Z = Z_\odot \) are very small at the luminosities in question, \(l \approx 0.1 \).

4. DISCUSSION

The largest error in our spin estimate arises from the uncertainties in the validity of the disk model we employ. For example, the spin depends on accurate model determinations of the hardening factor \(f \); this problem is quite tractable and vigorous theoretical efforts are underway \cite{Davis2005, Davis2006, Blaes2006}. Possibly more problematic is our assumption that the viscous torque vanishes at the ISCO and that there is no significant emission from the gas inside the ISCO.

Hydrodynamic models of the accretion disk indicate that the viscous torque at the ISCO as well as emission from inside the ISCO should both be negligible for the geometrically thin disks and low luminosities \((l \leq 0.3) \) that we restrict ourselves to \cite{Afshordi2003, S08}. The emission from inside the ISCO causes rather modest errors in spin estimates; in the case of M33 X-7, the estimated error is \(\Delta a_* \leq 0.01 \) since \(l \leq 0.1 \) and hence \(R/H \leq 0.04 \) \cite{M06, S08}. On the other hand, MHD simulations of accretion flows around black holes \cite{Hawley2002, Beckwith2008} find a large torque at the ISCO and substantial dissipation inside the ISCO. We note, however, that these simulations carried out so far are for geometrically thick systems, with \(H/R \sim 0.2 \); these flows are nearly an order of magnitude thicker than the disk in M33 X-7. In the hydrodynamic models of \cite{Shafee2008} the stress at the ISCO increases rapidly with increasing disk thickness, so it is conceivable that there is no serious disagreement between the hydrodynamic and MHD results. Numerical MHD simulations of truly thin disks are necessary to resolve this issue. We note that a recent MHD simulation of a geometrically thin accretion disk for a pseudo-Newtonian potential does show a dramatic drop in the mid-plane density and vertical column density over a narrow range of radii close to the ISCO \cite{Reynolds2008}.

Although there is theoretical uncertainty about conditions near the ISCO, there is a long history of evidence suggesting that fitting the X-ray continuum is a promising approach to measuring black hole spin. This history begins in the mid-1980s with the simple non-relativistic multicolor disk model \cite{Mitsuda1984}, which returns the color temperature \(T_{in} \) at the inner-disk radius \(R_{in} \). \cite{Tanaka1995} summarize examples of the steady decay (by factors of 10–100) of the thermal flux of transient sources during which \(R_{in} \) remains quite constant (see their Fig. 3.14). More recently, this evidence for a constant inner radius in the thermal state has been presented for a number of sources in several papers via plots
showing that the bolometric luminosity of the thermal component is approximately proportional to T^4 (McClintock et al. 2007, and references therein). Obviously, this non-relativistic analysis cannot provide a secure value for the radius of the ISCO nor even establish that this stable radius is the ISCO. Nevertheless, the presence of a fixed radius indicates that the continuum-fitting method is a well-founded approach to measuring black hole spin.

It is reasonable to assume that the inner X-ray-emitting portion of the disk is aligned with the spin axis of the black hole by the Bardeen-Petterson effect (Bardeen et al. 1972). Throughout, in making use of the orbital inclination angle, we have assumed that the black hole spin is aligned with the angular momentum vector of the binary system. As Figure 3 indicates, if any misalignment is $\lesssim 3^\circ$, then it will contribute an error in a_* that is no larger than our total observational error of $\Delta a_*=0.05$. There is no evidence for significant misalignments despite the often-cited examples of GRO J1655-40 and SAX J1819.3-2525 (see §2.2 in Narayan and McClintock 2005; but see Maccarone 2002). The clear-cut way to assess the degree of alignment is via X-ray polarimetric observations of black hole systems in the thermal state (Li et al. 2008, in preparation).

What is the origin of the spin of M33 X-7? Was the black hole born with its present spin, or was it torqued up gradually via the accretion flow supplied by its companion? In order to achieve a spin of $a_*=0.77$ via disk accretion, an initially non-spinning black hole must accrete 4.9M_\odot from its donor (King and Kolb 1999) in becoming the $M=15.65M_\odot$ that we observe today (O07). However, to transfer this much mass even in the case of Eddington-limited accretion ($\dot{M}_{\text{Edd}} \equiv L_{\text{Edd}}/c^2 \approx 4 \times 10^{-8}M_\odot/\text{yr}$) requires ~ 120 million years, whereas the age of the system is only 2–3 million years (O07). Thus, it appears that the spin of M33 X-7 must be natal, which is the same conclusion that has been reached for two other stellar black holes (S06, M06; but see Bethe et al. 2003 on the possibility of hypercritical accretion).

M33 X-7’s secure dynamical data and distance, the X-ray source’s clean thermal-state spectrum and moderate luminosity, and an abundance of Chandra and XMM data have provided arguably the most secure estimate of black hole spin that has been achieved to date: $a_*=0.77 \pm 0.05$, where the error estimate includes all sources of observational error. Since an astrophysical black hole can be described by just the two parameters that specify its mass and spin (Shapiro and Teukolsky 1986), we now have a complete description of an asteroid-size object that is situated at a distance of about one Mpc.

JFL and SWD acknowledge support from NASA through the Chandra Fellowship Program, grants PF6-70043 and PF6-70045. JEM acknowledges support from NASA grant AR8-9006X. We thank Rebecca Shafee for technical advice and Jack Steiner for critical comments on the manuscript.
Erratum: “Precise Measurement of the Spin Parameter of the Stellar-mass Black Hole M33 X-7” (ApJL, 679, 37L [2008])

In the paper “Precise Measurement of the Spin Parameter of the Stellar-Mass Black Hole M33 X-7” by Jifeng Liu, Jeffrey E. McClintock, Ramesh Narayan, Shane W. Davis, and Jerome A. Orosz (ApJ, 679, L37 [2008]), the reported value of the black-hole spin parameter $a_\ast = 0.77 \pm 0.05$ is in error. The correct value is larger by 0.068 and is $a_\ast = 0.84 \pm 0.05$. The error is the result of a bug in the XSPEC accretion-disk model kerrbb. Prior to 1 December 2008, the model’s two parameter flags that switch limb darkening and self-irradiation of the disk on/off were reversed (e.g., “par8” incorrectly controlled limb darkening rather than self-irradiation). In computing tables of the spectral hardening factor f, we use both kerrbb and the disk atmosphere model bhspec (McClintock et al. 2006). Because the latter model does not include the effect of self-irradiation, we switch this feature off in kerrbb when computing the f-tables. In this instance, because of the bug we switched off limb darkening instead of self-irradiation, which corrupted our results. Meanwhile, our earlier spin results for GRS 1915+105 (McClintock et al. 2006) and for 4U 1543–47 and GRO J1655–40 (Shafee et al. 2006) are unaffected by the bug.

The figures and tabular data in the paper are essentially unaffected, apart from the increase in a_\ast and corresponding decreases in f and the Eddington-scaled luminosity L (8.7% and 4.5%, respectively, for the four gold spectra). The higher spin increases somewhat our estimate of how much mass ($4.9 M_\odot$) and time (~ 120 million years) would be required to spin up an initially nonspinning black hole to the present spin of M33 X-7. In order to achieve $a_\ast = 0.84$, the black hole must accrete $5.7 M_\odot$, which would require ~ 140 million years. Because the age of the binary system is only 2–3 million years this change does not at all affect our conclusion that the spin of M33 X-7 is natal.

REFERENCES

N. Afshordi and B. Paczyński. Geometrically Thin Disk Accreting into a Black Hole. ApJ, 592:354–367, July 2003. doi: 10.1086/375559.

K. Beckwith, J. F. Hawley, and J. H. Krolik. Where is the radiation edge in magnetized black hole accretion discs? MNRAS, 390:21–38, October 2008. doi: 10.1111/j.1365-2966.2008.13710.x.

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/issues/archive/issues.12.5.0an.html (patch 12.5.0a).
H. A. Bethe, G. E. Brown, and C.-H. Lee. *Formation and evolution of black holes in the Galaxy: selected papers with commentary*. 2003.

O. M. Blaes, S. W. Davis, S. Hirose, J. H. Krolik, and J. M. Stone. Magnetic Pressure Support and Accretion Disk Spectra. *ApJ*, 645:1402–1407, July 2006. doi: 10.1086/503741.

L. W. Brenneman and C. S. Reynolds. Constraining Black Hole Spin via X-Ray Spectroscopy. *ApJ*, 652:1028–1043, December 2006. doi: 10.1086/508146.

S. W. Davis and I. Hubeny. A Grid of Relativistic, Non-LTE Accretion Disk Models for Spectral Fitting of Black Hole Binaries. *ApJS*, 164:530–535, June 2006. doi: 10.1086/503549.

S. W. Davis, O. M. Blaes, I. Hubeny, and N. J. Turner. Relativistic Accretion Disk Models of High-State Black Hole X-Ray Binary Spectra. *ApJ*, 621:372–387, March 2005. doi: 10.1086/427278.

S. W. Davis, C. Done, and O. M. Blaes. Testing Accretion Disk Theory in Black Hole X-Ray Binaries. *ApJ*, 647:525–538, August 2006. doi: 10.1086/505386.

C. Gabriel, M. Denby, D. J. Fyfe, J. Hoar, A. Ibarra, E. Ojero, J. Osborne, R. D. Saxton, U. Lammers, and G. Vacanti. The XMM-Newton SAS - Distributed Development and Maintenance of a Large Science Analysis System: A Critical Analysis. In F. Ochsenbein, M. G. Allen, & D. Egret, editor, *Astronomical Data Analysis Software and Systems (ADASS) XIII*, volume 314 of *Astronomical Society of the Pacific Conference Series*, pages 759–+, July 2004.

M. Gierliński, A. Maciolek-Niedźwiecki, and K. Ebisawa. Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40. *MNRAS*, 325:1253–1265, August 2001. doi: 10.1046/j.1365-8711.2001.04540.x.

J. F. Hawley and J. H. Krolik. High-Resolution Simulations of the Plunging Region in a Pseudo-Newtonian Potential: Dependence on Numerical Resolution and Field Topology. *ApJ*, 566:164–180, February 2002. doi: 10.1086/338059.

A. R. King and U. Kolb. The evolution of black hole mass and angular momentum. *MNRAS*, 305:654–660, May 1999. doi: 10.1046/j.1365-8711.1999.02482.x.

L.-X. Li, E. R. Zimmerman, R. Narayan, and J. E. McClintock. Multitemperature Blackbody Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations. *ApJS*, 157:335–370, April 2005. doi: 10.1086/428089.
T. J. Maccarone. On the misalignment of jets in microquasars. *MNRAS*, 336:1371–1376, November 2002. doi: 10.1046/j.1365-8711.2002.05876.x.

J. E. McClintock, R. Shafee, R. Narayan, R. A. Remillard, S. W. Davis, and L.-X. Li. The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105. *ApJ*, 652:518–539, November 2006. doi: 10.1086/508457.

J. E. McClintock, R. Narayan, and R. Shafee. Estimating the Spins of Stellar-Mass Black Holes. *ArXiv e-prints*, July 2007.

J. M. Miller, C. S. Reynolds, A. C. Fabian, E. M. Cackett, G. Miniutti, J. Raymond, D. Steeghs, R. Reis, and J. Homan. Initial Measurements of Black Hole Spin in GX 339-4 from Suzaku Spectroscopy. *ApJ*, 679:L113–L116, June 2008. doi: 10.1086/589446.

K. Mitsuda, H. Inoue, K. Koyama, K. Makishima, M. Matsuoka, Y. Ogawara, K. Suzuki, Y. Tanaka, N. Shibazaki, and T. Hirano. Energy spectra of low-mass binary X-ray sources observed from TENMA. *PASJ*, 36:741–759, 1984.

R. Narayan and J. E. McClintock. Inclination Effects and Beaming in Black Hole X-Ray Binaries. *ApJ*, 623:1017–1025, April 2005. doi: 10.1086/428709.

J. A. Orosz, J. E. McClintock, R. Narayan, C. D. Bailyn, J. D. Hartman, L. Macri, J. Liu, W. Pietsch, R. A. Remillard, A. Shporer, and T. Mazeh. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33. *Nature*, 449:872–875, October 2007. doi: 10.1038/nature06218.

W. Pietsch, F. Haberl, M. Sasaki, T. J. Gaetz, P. P. Plucinsky, P. Ghavamian, K. S. Long, and T. G. Pannuti. M33 X-7: ChASeM33 Reveals the First Eclipsing Black Hole X-Ray Binary. *ApJ*, 646:420–428, July 2006. doi: 10.1086/504704.

R. Remillard and J. E. McClintock. X-Ray Properties of Black-Hole Binaries. *ARA&A*, 44:49–92, September 2006. doi: 10.1146/annurev.astro.44.051905.092532.

C. S. Reynolds and A. C. Fabian. Broad Iron-Kα Emission Lines as a Diagnostic of Black Hole Spin. *ApJ*, 675:1048–1056, March 2008. doi: 10.1086/527344.

R. Shafee, J. E. McClintock, R. Narayan, S. W. Davis, L.-X. Li, and R. A. Remillard. Estimating the Spin of Stellar-Mass Black Holes by Spectral Fitting of the X-Ray Continuum. *ApJ*, 636:L113–L116, January 2006. doi: 10.1086/498938.
R. Shafee, R. Narayan, and J. E. McClintock. Viscous Torque and Dissipation in the Inner Regions of a Thin Accretion Disk: Implications for Measuring Black Hole Spin. *ApJ*, 676:549–561, March 2008. doi: 10.1086/527346.

S. L. Shapiro and S. A. Teukolsky. *Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects*. June 1986.

Y. Tanaka and W. H. G. Lewin. Black hole binaries. In W. H. G. Lewin, J. van Paradijs, & E. P. J. van den Heuvel, editor, *X-ray binaries, p. 126 - 174*, pages 126–174, 1995.

S. N. Zhang, W. Cui, and W. Chen. Black Hole Spin in X-Ray Binaries: Observational Consequences. *ApJ*, 482:L155+, June 1997. doi: 10.1086/310705.
Table 1. **KerrBB2** fit results for M33 X-7 in 0.3-8 keV

spectrum	ob-date	Texp	counts	a_*	\dot{M}	n_H	f_{col}	$lg l$	χ^2/dof			
acis6376	2006-03-03	93.1	9748	0.751	0.026	1.88	±0.12	11.1	±1.1	1.78	-1.01	1.07/180
acis6387	2006-06-26	77.3	7271	0.782	0.019	1.64	±0.10	11.4	±1.2	1.76	-1.05	0.93/157
acis6382	2005-11-23	72.3	6515	0.772	0.030	1.72	±0.14	9.9	±1.4	1.78	-1.04	1.17/152
acis1730	2000-07-12	49.5	4855	0.800	0.026	1.37	±0.11	6.1	±1.3	1.77	-1.12	1.15/126
acis7344	2006-07-01	21.5	1711	0.873	0.031	1.05	±0.14	8.6	±2.8	1.75	-1.16	0.69/55
acis6386	2005-10-31	14.9	1491	0.786	0.041	1.55	±0.21	12.8	±3.2	1.77	-1.07	0.95/49
acis7197	2005-11-03	12.7	1117	0.892	0.043	0.97	±0.20	9.1	±4.1	1.75	-1.17	0.99/37
acis7208	2005-11-21	11.5	1014	0.678	0.110	1.73	±0.39	13.9	±4.6	1.78	-1.10	0.81/33
PN0102642301	2002-01-27	10.0	2724	0.832	0.031	1.34	±0.14	7.3	±1.0	1.75	-1.09	0.84/103
PN0102641201	2000-08-02	10.3	1836	0.618	0.056	2.51	±0.29	12.0	±1.5	1.78	-0.97	0.87/69
PN0141980801	2003-02-12	8.4	1596	0.636	0.074	2.50	±0.36	10.7	±1.5	1.78	-0.96	0.90/60
PN0141980601	2003-01-23	11.6	1545	0.656	0.077	2.21	±0.32	12.5	±1.6	1.77	-1.00	1.00/59
M10102642301	2002-01-27	12.3	1199	0.841	0.042	1.30	±0.20	6.7	±2.1	1.75	-1.10	0.89/40
PN0102644001	2000-08-02	9.2	1136	0.838	0.039	1.42	±0.20	6.8	±1.8	1.75	-1.06	1.15/44
M20102642301	2002-01-27	12.3	1135	0.839	0.043	1.25	±0.20	7.2	±2.2	1.75	-1.12	0.83/39

The columns are: (1) ID number; (2) date of observation; (3) exposure time in ksec; (4) no. of counts; (5) spin parameter; (6) mass accretion rate in 10^{18} g s$^{-1}$; (7) hydrogen column density in 10^{20} cm$^{-2}$; (8) spectral hardening factor; (9) Eddington-scaled bolometric luminosity; and (10) reduced χ^2 per dof.
Fig. 1.— X-ray spectrum of M33 X-7. (upper panel) This spectrum (ObsID 6376) is representative of the four gold spectra (see text). The histogram shows a model that has been fitted to the spectrum (0.3–8.0 keV), which is comprised of only the thermal disk component (KERRBB2) and a low-energy absorption model (PHABS). The fit parameters are summarized in Table 1. (lower panel) The fit is good ($\chi^2_{\nu}/dof = 1.074/180$) and the fit residuals show no systematic structure; in particular, there is no evidence for an Fe-line, absorption edges, or a nonthermal power-law/Comptonization component of emission at higher energies.
Fig. 2.— Spin results for all 15 spectra ordered by total 0.3–8 keV counts. (a) Results based on spectral fits over the energy interval 0.3–8 keV. Filled circles are for the gold Chandra spectra, and the other plotting symbols are for the 11 silver spectra, which include both Chandra ACIS spectra (open circles) and XMM-Newton EPIC spectra (crosses). The indicated uncertainties are at the 90% level of confidence. The dotted line indicates the average spin for the 4 gold spectra, $\bar{\alpha} = 0.776 \pm 0.018$. The average for the 11 silver spectra is almost identical, although the dispersion is much greater, $\bar{\alpha} = 0.772 \pm 0.098$. (b–d) Same as panel a except the fit interval is as indicated rather than 0.3–8 keV.
Fig. 3.— Effect on the spin parameter a_* of varying the input parameters M, i and D. (a) Spin versus mass M for 3,000 sets of parameters drawn at random. The black filled circle indicate our final adopted estimate of the spin ($\bar{a}_{*0} = 0.77 \pm 0.02$) for M, i and D at their baseline values. (b) Spin versus distance D. (c) Spin versus inclination angle i. (d) Histogram of spin displacements for 3,000 parameters sets. The vertical solid line indicates the average spin ($\bar{a}_* = 0.77$). The two dotted lines enclose 68.3% of the spin values centered on the solid line; the half-separation, $\Delta(\bar{a}_* - \bar{a}_{*0}) = 0.053$, represents the 1σ error in the average spin of $\bar{a}_{*0} = 0.77$.