Новые методы визуализации атеросклероза

M.B.J. Syed, A.J. Fletcher, R.O. Forsythe, J. Kaczynski, D.E. Newby, M.R. Dweck, E.J.R. van Beek

University of Edinburgh, Эдинбург, Великобритания

АННОТАЦИЯ
Атеросклероз — это хроническое иммунномодулируемое заболевание, которое поражает артерии и приводит к значительному времени болезней во всём мире. Традиционные методы визуализации сосредоточены на морфологических особенностях атеросклероза, таких как степень стеноза, вызванного поражением сосудов. С появлением современных компьютерных, магнитно-резонансных и позитронно-эмиссионных томографов повысилась скорость получения изображений и пространственное разрешение, что обеспечивает широкие возможности их применения в клинической практике. Комплексная визуализация способствует более точному прогнозированию сердечно-сосудистого риска и даёт развёрнутую информацию о состоянии и метаболических процессах в стенах сосудов. Конкретные этапы развития болезни можно выявить с помощью биологических индикаторов и «умных» контрастных веществ. Эти подходы позволяют врачам оценить метаболическое состояние атеросклеротической бляшки.

В обзоре представлены данные о современных методах визуализации атеросклероза, применение которых может выявить основные морфологические характеристики заболевания.

Данная публикация является перепечатанной версией статьи с переводом оригинала [Syed MB, Fletcher AJ, Forsythe RO, Kaczynski J, Newby DE, Dweck MR, van Beek EJ. Emerging techniques in atherosclerosis imaging. Br J Radiol. 2019;92(1103):20180309. doi: 10.1259/bjr.20180309] на русский язык.

Ключевые слова: атеросклероз; ультразвуковое исследование; лучевая диагностика; магнитно-резонансная томография; позитронно-эмиссионная томография; сердечно-сосудистый риск; оптическая когерентная томография; молекулярная визуализация.

Как цитировать
Syed M.B., Fletcher A.J., Forsythe R.O., Kaczynski J., Newby D.E., Dweck M.R., van Beek E.J. Новые методы визуализации атеросклероза // Digital Diagnostics. 2021. Т. 2, № 3. С. 386–409. DOI: https://doi.org/10.17816/DD71633
Emerging techniques in atherosclerosis imaging

Maaz B.J. Syed, Alexander J. Fletcher, Rachael O. Forsythe, Jakub Kaczynski, David E. Newby, Marc R. Dweck, Edwin J.R. van Beek

University of Edinburgh, Edinburgh, United Kingdom

ABSTRACT
Atherosclerosis is a chronic immunomodulated disease that affects multiple vascular beds and results in a significant worldwide disease burden. Conventional imaging modalities focus on the morphological features of atherosclerotic disease such as the degree of stenosis caused by a lesion. Modern CT, MR and positron emission tomography scanners have seen significant improvements in the rapidity of image acquisition and spatial resolution. This has increased the scope for the clinical application of these modalities. Multimodality imaging can improve cardiovascular risk prediction by informing on the constituency and metabolic processes within the vessel wall. Specific disease processes can be targeted using novel biological tracers and “smart” contrast agents. These approaches have the potential to inform clinicians of the metabolic state of atherosclerotic plaque.

This review will provide an overview of current imaging techniques for the imaging of atherosclerosis and how various modalities can provide information that enhances the depiction of basic morphology.

This publication is the reprint with Russian translation from original: Syed MB, Fletcher AJ, Forsythe RO, Kaczynski J, Newby DE, Dweck MR, van Beek EJ. Emerging techniques in atherosclerosis imaging. Br J Radiol. 2019;92(1103):20180309. doi: 10.1259/bjr.20180309.

Keywords: atherosclerosis; ultrasound diagnostics; radiology; magnetic resonance imaging; positron emission tomography; cardiovascular risk; optical coherence tomography; molecular imaging.

To cite this article
Syed MB, Fletcher AJ, Forsythe RO, Kaczynski J, Newby DE, Dweck MR, van Beek EJ. Emerging techniques in atherosclerosis imaging. Digital Diagnostics. 2021;2(3):386–409. DOI: https://doi.org/10.17816/DD71633
动脉粥样硬化成像的新方法

Maaz B.J. Syed, Alexander J. Fletcher, Rachael O. Forsythe, Jakub Kaczynski, David E. Newby, Marc R. Dweck, Edwin J.R. van Beek

University of Edinburgh, Edinburgh, United Kingdom

动脉粥样硬化是一种慢性免疫调节疾病，影响动脉，在全世界造成相当大的疾病负担。传统的影像学方法侧重于动脉粥样硬化的形态特征，如血管病变引起的狭窄程度。随着现代计算机、磁共振和正电子发射断层扫描的出现，图像获取率和空间分辨率都有所提高，为其在临床中的应用提供了广泛的可能性。集成成像有助于更准确地预测心血管风险，并提供有关血管壁状态和代谢过程的详细信息。可以使用生物指标和“智能”造影剂识别疾病发展的特定阶段。这些方法使医生能够评估动脉粥样硬化斑块的代谢状态。

综述介绍了现代动脉粥样硬化影像学方法的数据，应用这些方法将有助于揭示疾病的主要形态特征。

本出版物是该文章的重印版，并附有原文的翻译[Syed MB, Fletcher AJ, Forsythe RO, Kaczynski J, Newby DE, Dweck MR, van Beek EJ. Emerging techniques in atherosclerosis imaging. Br J Radiol 2019;92(1103):20180309. doi: 10.1259/bjr.20180309]成俄语。

关键词：动脉粥样硬化；超声程序；放射诊断；磁共振成像；正电子发射断层扫描；心血管风险；光学相干断层扫描；分子成像。

引用本文
Syed MB, Fletcher AJ, Forsythe RO, Kaczynski J, Newby DE, Dweck MR, van Beek EJ. 动脉粥样硬化成像的新方法. Digital Diagnostics. 2021;2(3):386-409. DOI: https://doi.org/10.17816/DD71633
Список сокращений

- КТ — компьютерная томография
- КТА — компьютерная томографическая ангиография
- МРС — магнитно-резонансная спектроскопия
- МРТ — магнитно-резонансная томография
- ОКТ — оптическая кохерентная томография
- ПЭТ — позитронно-эмиссионная томография
- УЗИ — ультразвуковое исследование
- 18F-FDG (fluorodeoxyglucose, 18F) — 18F-фтордезокси-глюкоза, радиофармпрепарат
- 18F-MISO (18F-flumisonidazole) — 18F-флумисонидазол, радиофармпрепарат
- 18F-NaF (18F-sodium fluoride) — 18F-фторид натрия, радиофармпрепарат
- USPIO (ultra-small superparamagnetic particles of iron oxide) — сверхмалые парамагнитные частицы оксида железа, радиофармпрепарат

ВВЕДЕНИЕ

Атеросклероз — хронический иммуномодулируемый патологический процесс с поражением сосудов — является основной причиной заболеваемости и смертности во всём мире [1]. Как правило, атеросклероз развивается медленно и характеризуется длительной бессимптомной фазой. На поздних стадиях из-за сужения просвета сосудов появляются симптомы при физической нагрузке, а в ряде случаев развиваются неблагоприятные события, обусловленные разрывом бляшки и формированием местной окклюзии, как при инфаркте миокарда. Кроме того, внезапный разрыв атеросклеротической бляшки способен вызвать дистальную эмболию, что обычно наблюдается при ишемическом инсульте. В высоком внутриклеточном содержании холестерина в макрофагах развивается гибель клеток. Их остатки вместе с некротическими эндотелиальными и гладкомышечными клетками являются основой составляющей богатого липидами ядра [8]. Атеросклеротические бляшки состоят из некротических тканей, образовавшихся в результате внешнего реновелирования, и фиброзной покрышки на поверхности интимы. Нестабильные бляшки склонны к разрыву и имеют некоторые патологоанатомические особенности, такие как богатые липидами некротические ядра (рис. 1) [8].

Отложение кальция при воспалении стенок сосудов — это опосредованный макрофагами репаративный ответ на отложение окисленных липидов и эндотелиальную дисфункцию. Однако кальцификация сосудов не является пассивным побочным продуктом деградации тканей, напротив, это активный и контролируемый процесс. Процесс кальцификации при атеросклерозе в первую очередь затрагивает интиму, что отличает его от медикаментозной кальцификации, обычно наблюдаемой у пациентов с диабетом или хронической болезнью почек и характеризующейся концентрической трансмуральной морфологией [11]. Кальцификация сосудов начинается на микроскопическом уровне (за пределами стандартной визуализации) и представляет собой отложение кристаллов гидроксиапатита, богатых кальция и фосфата [12].

БИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ АТЕРОСКЛЕРОЗА

Атеросклероз — это мультифокальное и иммуновоспалительное заболевание артерий среднего и крупного калибра [3]. Воздействие известных факторов риска, таких как гипертония, гиперхолестиремия и курение, создает системную среду, которая способствует эндотелиальной дисфункции [4], окислению липопротеинов [5], образованию свободных радикалов кислорода [6], миграции лейкоцитов [7]. В результате накопления окисленных липопротеинов в стенке сосуда образуются липидные полоски. Макрофаги мигрируют по эндотелию и фагоцитируют богатые липидами белки. Высокое внутриклеточное содержание холестерина в макрофагах вызывает гибель клеток. Их остатки вместе с некротическими эндотелиальными и гладкомышечными клетками являются основной составляющей богатого липидами ядра [8]. Окисленные липопротеины повышают уровень инсулина у пациентов и могут привести к развитию диабета [4]. Уровень трансаминаз у пациентов с атеросклерозом также находится на повышенном уровне, что указывает на нарушение метаболизма жиров [3]. Уровень холестерина в крови у пациентов с атеросклерозом также находится на повышенном уровне, что указывает на нарушение метаболизма жиров [3]. Уровень холестерина в крови у пациентов с атеросклерозом также находится на повышенном уровне, что указывает на нарушение метаболизма жиров [3].
ОБЗОРЫ

Рис. 1. Патофизиология атеросклероза. Поперечный срез артерии свидетельствует о том, что прогрессирующий атеросклероз характеризуется интенсивной биологической активностью, вызванной инфильтрацией макрофагов в ответ на субэндотелиальное накопление окисленных липопротеинов. Ряд процессов приводит к гибели клеток и образованию богатого липидами некротического ядра. Локальная гипоксия в области богатых липидами ядра вызывает экспрессию αvβ3-интегрина и ангиогенез. В результате инфильтрации макрофагами и потери сосудистых гладкомышечных клеток происходит истончение фиброзной покрышки, а вследствие гибели клеток вокруг некротического ядра возникают очаги микрокальцификации. Такая биологически активная бляшка подвержена высокому риску разрыва. Неактивная фаза атеросклероза, напротив, представляет собой хроническое излечившее воспаление с положительным ремоделированием. Для стабильной бляшки характерны кальцификация фиброзной покрышки и низкий риск разрыва.

DOI: https://doi.org/10.17816/DD71633
свидетельствует об интенсивной биологической активности и повышенной нестабильности бляшки. Впоследствии отложения, образованные в результате макроскопической кальцификации, становятся более крупными, бляшка — стабильной, а заболевание переходит в более спокойную fazу.

Нестабильные бляшки имеют тонкую фиброзную покрышку, лишённую сосудистых гладкомышечных клеток, и характеризуются интенсивным накоплением макрофагов [13]. Разрыв фиброзной покрышки приводит к попаданию богатого липидами некротического ядра в просвет сосуда, инициируя быстрый и агрессивный тромбоз, который может вызвать окклюзию артерии. Однако разрыв бляшки часто протекает бессимптомно. Со временем, в результате васкулярного ремоделирования в сосудах образуются тромбы, а степень тяжести стеноза становится более выраженной.

Ангиогенез и коллateralизация могут частично компенсировать снижение кровотока, вызванное усилением стеноза сосудов, однако если разрушение артерии происходит стремительно, действие компенсаторного ангиогенеза будет недостаточным, что может привести к тяжёлой форме ишемии. Разрыв нестабильной бляшки опасен внезапной артериальной окклюзией, уменьшением перфузии тканей и необратимым поражением органов-мишеней, поэтому с целью минимизации некроза тканей требуется своевременное проведение терапевтической реперфузии [14].

АНАТОМИЧЕСКАЯ ВИЗУАЛИЗАЦИЯ

Анатомическая визуализация разнообразна и гибка, её основные цели — выявление сужения просвета и определение характеристик атеросклеротической бляшки. Визуализация также позволяет глобально оценить степень атеросклеротического поражения сосудистого бассейна, что позволяет врачам стратифицировать риск будущих неблагоприятных событий.

Катетерная контрастная ангиография — наиболее распространённый метод визуализации коронарных сосудов, который позволяет получить изображение высокого пространственно-временного разрешения. Катетерная ангиография, являясь чем-то вроде «люменограммы» коронарного кровообращения, открывает широкие возможности для медицинских вмешательств.

Определение характеристик атеросклеротической бляшки возможно, но для этого требуется специальное оборудование. Внутрисосудистая оптическая и ультразвуковая визуализация позволяют детально оценить морфологические изменения бляшки. Эти методы — оптимальный выбор для обследования пациентов из групп высокого риска, которым могут потребоваться вмешательства одновременно на двух и более сосудах.

В некоторых случаях возникает необходимость выявления неблагоприятных характеристик бляшки с помощью неинвазивных методов визуализации. Это особенно актуально для пациентов группы низко- и среднего риска. В современной медицине всё чаще используют неинвазивные методы визуализации для выявления сердечно-сосудистых заболеваний. Компьютерная и магнитно-резонансная ангиография достаточно безопасны и представляют собой надёжную альтернативу катетерной ангиографии. Эти методы визуализации позволяют одновременно получить изображение стенки сосуда и любых окружающих её поражённых участков. Аналогичным образом с помощью ультразвука можно определить кровоток через поражённый участок для количественной оценки стеноза, при этом состояние бляшки можно оценить с помощью спектрального анализа и специализированных контрастных веществ. Кроме того, неинвазивные методы визуализации положительно влияют на принятие клинических решений, позволяя проводить диагностику без соответствующих вмешательств, а многопрофильной команде специалистов — принимать наиболее рациональные решения.

В данной статье мы рассматриваем доступные методы визуализации морфологических особенностей сосудов с атеросклеротическим поражением и кратко останавливаемся на том, как эти методы помогают в определении характеристик бляшки.

Внутрисосудистая визуализация

Методы внутрисосудистой визуализации позволяют получать изображения в непосредственной близости от бляшки, т.е. изображения с чрезвычайно высоким разрешением.

Оптическая когерентная томография

Оптическая когерентная томография (ОКТ) позволяет получить исключительно детальные изображения фибrozной покрышки с помощью оптического излучения ближнего инфракрасного диапазона, передаваемого через оптоволоконный провод (рис. 2, с). При ОКТ катетер размещают над проводником, а в обескровленный сосудистый бассейн вводят физиологический раствор около катетера. Эти методы визуализации обеспечены разработками, проводимыми ведущими специалистами в данной области.

ОБЗОРЫ

Digital Diagnostics

Визуализация атеросклероза коронарных сосудов у пациента с инфарктом миокарда без подъёма сегмента ST. a — катетерная ангиография демонстрирует неравномерное поражение в проксимальном отделе левой передней нисходящей коронарной артерии (стрелка). b — трансаксиальное изображение, полученное при компьютерной томографии (i), свидетельствует о поражении коронарного русла с образованием сложной структуры, состоящей из кальцинированной (белой) бляшки и фиброзно-жировой ткани (*) вокруг центрального протока (*). c — при оптической когерентной томографии выявлены тонкая фиброзная покрышка (стрелка) и липидные пятна (*). d — спектроскопия в ближней инфракрасной области и внутрисосудистое ультразвуковое исследование подтверждают высокую липидную нагрузку в бляшке (жёлтый цвет). e — при реконструкции линии левой передней нисходящей артерии визуализируются очаги кальцификации и бляшки вдоль всего сосуда (стрелка). f — позитронно-эмиссионная томография, совмещённая с компьютерной томографией, выявляет высокое поглощение 18F-фторида натрия в атеросклеротической бляшке (стрелка) [18].

Спектроскопия в ближней инфракрасной области / внутрисосудистое ультразвуковое исследование

Спектроскопия в ближней инфракрасной области — ещё один инвазивный метод визуализации с использованием катетера, который не требует обескровливания сосуда и использует рассеяние волн для создания картины градиента, соответствующей вероятности накопления липидов (рис. 2, d). Полученный в результате индекс нагрузки на липидные ядра указывает на соотношение высокого содержания липидов в прилежащих структурах к общей площади исследования. Современные датчики сочетаются с внутрисосудистым ультразвуковым исследованием (УЗИ) для обеспечения структурного контекста морфологических данных [21].

Внутрисосудистое УЗИ — давно применяемый и, следовательно, более рентабельный метод визуализации, чем ОКТ и спектроскопия ближней инфракрасной области. Высокочастотный ультразвуковой зонд помещается в катетер, что позволяет непосредственно визуализировать атеросклеротическую бляшку в просвете сосуда (см. рис. 2, d). На изображениях с высоким разрешением и нейтральным цветовым пространством видна структура атеросклеротической бляшки и прилегающей стенки сосуда. Особенности компонентов бляшки можно определить путём анализа обратного рассеяния и достоверно выявить богатое липидами некротическое ядро, очаги кальцификации и фиброзно-жировую бляшку [22, 23]. Несмотря на достаточную глубину проникновения в ткани, внутрисосудистое УЗИ не имеет соответствующего пространственного разрешения для измерения толщины фиброзной покрышки. Как и при обычном ультразвуковом сканировании, минерализованные отложения кальция отбрасывают акустические тени, скрывая тем самым детали подлежащих тканей.

Спектроскопия ближней инфракрасной области и внутрисосудистое УЗИ хорошо зарекомендовали себя в выявлении и лечении заболеваний коронарных сосудов [15, 24], сонных артерий [25] и артерий нижних конечностей [26].

НЕИНВАЗИВНАЯ ВИЗУАЛИЗАЦИЯ

Ультразвуковое исследование

В поверхностных сосудах, таких как сонные артерии и артерии конечностей, дуплексное УЗИ объединяет структурные и функциональные данные для количественной оценки степени стеноза, вызванного атеросклеротической бляшкой. При этом оценивается соотношение пиковой систолической скорости проксимальной и дистальной предполагаемого поражения. Ультразвук можно использовать для измерения общей площади бляшки [27],
а интенсивность пикселей серой шкалы на изображениях атеросклеротических бляшек, как было показано, соответствует гистологическим характеристикам [28]. Ультразвуковые аппараты неинвазивны, портативны и нерадиоактивны, следовательно, этот метод визуализации часто используют в первую очередь для количественной оценки стеноза сосудистого дерева периферических артерий.

УЗИ высокого разрешения позволяет différencierовать компоненты артериальной стенки в поверхностных сосудах. Патологическая пролиферация слоя интимы-медиа — признак раннего субклинического формирования бляшки [29], т.е. показатель, по которому можно судить об общем состоянии сердечно-сосудистой системы человека. Фактически, увеличение толщины интимы-медиа связано со значительным повышением риска инфаркта миокарда, инсульта и летального исхода [30].

Контрастные вещества, содержащие однородную суспензию микропузырьков инертного газа (например, SF6), вводимые в венозное пространство, могут выявить специфические особенности артериальных атеросклеротических бляшек. В сонных артериях микропузырьки выявляют неоваскуляризацию при серьезных поражениях, вызывающих острое состояние, с чувствительностью и специфичностью более 80% [31]. У пациентов с аневризмами брюшной аорты УЗИ с контрастным усилением позволяет охарактеризовать кровоток в просвете сосуда в режиме реального времени. Этот метод также позволяет визуализировать осложнения после эндоваскулярной коррекции, в частности эндоподтекание [19, 32]. За счёт отсутствия ионизирующего излучения УЗИ с контрастным усилением является идеальным методом в тех случаях, когда требуется повторная визуализация.

Стандартизация ультразвуковой оценки сосудистых русел снижает риск вариабельности результатов у разных исследователей-аналитиков. Оценка сосудов не всегда возможна, если обзор затруднён из-за плотно расположенных очагов кальцификации. Аналогичным образом кость или газ, закрывающие обзор целевого сосуда, препятствуют адекватной визуализации с помощью УЗИ, ограничивая его использование исследованием легкодоступных артерий.

Компьютерная томография (КТ)

Использование КТ-ангиографии (КТА) хорошо зарекомендовало себя в оценке состояния сердечно-сосудистой системы. Этот метод неинвазивен и доступен. Дополнительное преимущество КТА — визуализация всего сосуда от его начала до целевой области, в том числе извилистой артерий. Среди многочисленных преимуществ КТА следует отметить пространственное разрешение, позволяющее выявлять очаговый стеноз просвета сосудов и проводить глобальную оценку сосудистых заболеваний. Благодаря короткому времени сканирования на компьютерных томографах нового поколения стало возможным получение детальных изображений коронарных сосудов. Так, КТА с высокой точностью определяет степень выраженности коронарного стеноза и включена во многие клинические рекомендации как метод визуализации первой линии для лиц с подозрением на боль в области сердца. КТА используется на всех участках сосудистого дерева. При выявлении стеноза сонных артерий площадью более 70% чувствительность КТА приближается к 100%, а специфичность — к 63% (95% доверительный интервал 25–88) [22, 33, 34].

Помимо оценки люминального стеноза, КТ может охарактеризовать морфологические особенности бляшек, в частности признаки высокого риска образования бляшек, такие как положительное ремоделирование, точечная кальцификация, фиброзные бляшки с высокой степенью затухания и некротические, богатые липидами бляшки с низкой степенью затухания [35–37]. Признак «папеточного вольта» при реконструкции центральной линии коронарных сосудов свидетельствует о дифференциации между фиброзной бляшкой и некротическим ядром [38]. При этом визуализируется отражающая гистологическую структуру бляшки морфологическая картина — серповидный рисунок с высокой степенью затухания вокруг атеросклеротического поражения с низким затуханием, отличным от просвета сосуда.

КТ хорошо подходит для визуализации сосудистой кальцификации. Однако увеличение жёсткости излучения по отношению к плотно кальцинированной бляшке приводит к расплывчатости изображения и, следовательно, визуальному увеличению размера бляшки и затемнению просвета, в частности в сосудах малого калибра с высокой степенью кальцификации. При острой форме заболевания КТ не даёт возможность différencierовать компоненты мягких тканей бляшки. Например, невозможно напрямую отличить стабильное фибротеротоматозное поражение от остrego кровоизлияния в бляшку или тромбоза. Идентификация «виновых» бляшек основана на сочетании радиологических характеристик, а также клинических проявлений и характера повреждения органов-мишеней.

Магнитно-резонансная томография (МРТ)

Ангиография с использованием МРТ лучше всего подходит для визуализации крупных стабильных сосудов, таких как сонные артерии. МРТ с мультиконтрастной визуализацией (T1- и T2-взвешенные изображения, T1-ВИ, T2-ВИ; протонная плотность) обеспечивает превосходное различение между кровяным депо и стенкой сосуда. Введение контрастного вещества на основе гадолиния (Gd) улучшает время получения изображения и даёт дополнительную структурную информацию, очерчивающую различные строения в общей порции изображения. Стандартизация магнитно-резонансной ангиографии — серповидный рисунок с высокой степенью затухания вокруг атеросклеротического поражения с низким затуханием, отличным от просвета сосуда. КТ хорошо подходит для визуализации сосудистой кальцификации. Однако увеличение жёсткости излучения по отношению к плотно кальцинированной бляшке приводит к расплывчатости изображения и, следовательно, визуальному увеличению размера бляшки и затемнению просвета, в частности в сосудах малого калибра с высокой степенью кальцификации. При острой форме заболевания КТ не даёт возможность différencierовать компоненты мягких тканей бляшки. Например, невозможно напрямую отличить стабильное фибротеротоматозное поражение от остrego кровоизлияния в бляшку или тромбоза. Идентификация «виновых» бляшек основана на сочетании радиологических характеристик, а также клинических проявлений и характера повреждения органов-мишеней.

REVIEWS

DOI: https://doi.org/10.17816/DD71633

Vol 2 (3) 2021

Digital Diagnostics
Двигательный артефакт в области сердца затрудняет визуализацию мелких сосудов. Достижения в области МРТ позволили устранить это ограничение. За счёт усовершенствования технологии получения изображения уменьшаются двигательный артефакт и шумы [40]. При использовании методов "яркой крови" в качестве контрастного вещества используется сама кровь, что снижает потребность в контрастных веществах на основе Gd. Двигательный артефакт в области сердца затрудняет визуализацию мелких сосудов. Достижения в области МРТ позволили устранить это ограничение.

Несмотря на более низкое качество изображений, получаемых при МРТ, в сравнении с КТ-коронарографией, магнитно-резонансная ангиография может быть полезна при оценке аневризм и устьев aberrantных коронарных артерий [42]. Кроме того, режим T1-ВИ позволяет обнаруживать внутрипросветные тромбы или кровоизлияния в бляшку. МРТ имеет дополнительное преимущество в оценке сердечной динамики, а также перфузии и жизнеспособности миокарда. Постоянные достижения в области МРТ сердца обеспечивают перспективность методу в будущем.

МРТ позволяет измерять толщину фиброзной покрышки и визуализировать некротическое ядро за счёт высокочастотной дискриминации мягких тканей сонных артерий [43]. Чувствительность обнаружения богатых липидами ядер может быть дополнительно улучшена с использованием контрастных веществ на основе Gd [44]. При остром нарушении, таком как вызванная разрывом бляшки внутренней сонной артерии трансформированной ишемической атаки, МРТ в режиме T1-ВИ может выявить кровоизлияние в бляшку и тромб, что связано с риском дальнейшего развития ишемических событий [45, 46]. Более высокая напряжённость электрического поля снижает фоновый шум и артефакты [40]. При использовании "яркой крови" в качестве контрастного вещества используется сама кровь, что снижает потребность в контрастных веществах на основе Gd. Двигательный артефакт в области сердца затрудняет визуализацию мелких сосудов. Достижения в области МРТ позволили устранить это ограничение.

В области магнитно-резонансной ангиографии (МРС) использование "умных" контрастных веществ при МРТ имеет огромные перспективы в области визуализации клеточной активности в сосудистом русле. Эти методы, в конечном итоге, могут привести к обнаружению нестабильных бляшек и риска неминуемых событий и проведению последующей корректирующей терапии.

Магнитно-резонансная спектроскопия (МРС)

МРС сочетает пространственную визуализацию, полученную с помощью МРТ, со спектральным анализом для определения химического состава и метаболического состояния сердечно-сосудистой ткани. МРС способна определять ряд атомов, включая водород-1 (H), фосфор-31 (31P) и углерод-13 (13C) [51]. Исследования сонных артерий in vivo с использованием МРС позволили успешно определить количественные значения холестериловых эфиров в атеросклеротических бляшках [46, 52]. Холестериловые эфиры — это основной класс липидов, присутствующий в богатом липидами некротическом ядре нестабильных бляшек. Химический состав структур оценивается с помощью последовательной визуализации химического сдвига, что позволяет получить спектры над бляшкой и вокруг неё. Амплитуды МРС для конкретных метаболитов, таких как липиды, затем интерпретируются как отношение к амплитуде колебаний внутренней жидкости [53, 54]. Окончательный анализ позволяет обнаружить и количественно оценить содержание липидов в атеросклеротической бляшке.

Молекулярная визуализация

Биологически активные атеросклеротические поражения по своей природе нестабильны и склонны к разрыву [55]. Определённые биологические трассирующие вещества позволяют с помощью позитронно-эмиссионной томографии (ПЭТ) и однофотонной эмиссионной КТ выявлять активные стадии заболевания, например повышенную гликополитическую активность или микро¬кальцификацию.

Молекулы биологических радиоактивных индикаторов обычно состоят из двух компонентов. Одна часть содержит лиганд, который нацелен на участки специфической активности в сосудистом русле. Эти методы, в конечном итоге, могут привести к обнаружению нестабильных бляшек и риска неминуемых событий и проведению последующей корректирующей терапии.

Молекулярная визуализация при оценке сердечно-сосудистых заболеваний в последнее время достигла значительных успехов благодаря постоянно расширяющемуся набору биологических индикаторов, направленных на разные процессы. Подходы к стандартизации количественной оценки поглощения радиоактивных веществ улучшили отчётность и воспроизводимость результатов [56].

DOI: https://doi.org/10.17816/DD71633
Глюкоза и гликолиз

18F-фтордезоксилигукузор (18F-FDG) является аналогом глюкозы и биологическим индикатором, наиболее часто используемым в клинической практике. 18F-FDG поглощается метаболически активными клетками, а её непосредственный метаболит задерживается внутри клетки в результате фосфорилирования, что позволяет получить количественную оценку гликолитической активности в клетках. При воспалении сосудов интенсивное поглощение 18F-FDG происходит в макрофагах, гладкомышечных и эндотелиальных клетках [57]. Повышенное поглощение 18F-FDG при каротидном и коронарном атеросклерозе свидетельствует о нестабильности бляшек и гистологических признаках их уязвимости [58, 59], включая повышенную плотность CD68-позитивных макрофагов [60].

Поскольку 18F-FDG отражает гликолитическую активность, процесс его поглощения неспецифичен, что ограничивает при ПЭТ интерпретацию признаков заболевания в структурах, смежных с теми, где отмечается высокое физиологическое сродство к глюкозе, например в миокарде. Для того чтобы визуализировать поглощение индикатора 18F-FDG при ПЭТ коронарных артерий, необходимо подавить его поглощение миокардом с помощью подготовительной диеты с низким содержанием углеводов и высоким содержанием жиров. Однако такие попытки подавления активности миокарда неэффективны примерно у 1/4 пациентов, что чрезвычайно усложняет оценку состояния бляшек в коронарных сосудах [61].

Макрофаги и воспаление

Индикаторы, направленные непосредственно на макрофаги, такие как аналоги рецептора соматостина 2, преодолевают ограничения, вызванные низкой специфичностью 18F-FDG. В данном случае комбинация лиганда соматостатина с хелаторами DOTA (1,4,7,10-тетраазациклододекан-1,4,7,10-тетрауксусная кислота) или NOTA (1,4,7-трикарбоксиметил-1,4,7-триазациклононан) привела к разработке новых индикаторов, в частности с содержанием позитрон-излучающих изотопов, таких как галлий-68 (68Ga) или медь-64 (64Cu). ПЭТ-исследования показывают, что эти вещества
демонстрируют преимущественно высокую степень поглощения в сосудах у пациентов с установленными факторами сердечно-сосудистого риска и неблагоприятными показателями риска по Фреймингхемской шкале оценки риска (Framingham risk score) [62].

Гистологическое сравнение бляшек сонных артерий с высоким поглощением 18Ga-DOTA-TATE (1,4,7,10-тетраазациклогексан-Н,N',N,N'-тетрауксусная кислота-D-Phe1, Tyr2-октреотат) выявляет избирательное связывание радиоактивного вещества с CD68-позитивными макрофагами. Так, в экспериментальном исследовании с помощью 63Ga-DOTA-TATE удалось правильно определить метаболически активные поражения коронарных и сонных артерий с хорошей воспроизводимостью и более высокой чувствительностью, чем при использовании индикатора 18F-FDG [64].

К другим индикаторам, направленным на выявление активности макрофагов, относятся молекула адреналина сосудистых клеток-1 (VCAM-1), 18F-платиновый комплекс. Главными среди этих являются лиганды транслокаторного белка TPSO (11C-PK11195), которые представляют собой 18 кДа-белки, экспрессируемые в митохондриях большинства клеток. Активированные макрофаги демонстрируют значительное повышение уровня транслокаторных белков. Предварительные исследования показывают, что при проведении ПЭТ/КТ с индикатором 11C-PK11195 подозрительные поражения сонных артерий идентифицируются правильно и с более благоприятным соотношением очаг/фон по сравнению с использованием индикатора 18F-FDG [65].

Активированные воспалительные клетки в атеросклеротической бляшке имеют рецепторы CXCR-4. Для воздействия на эти рецепторы можно использовать новые ПЭТ-индикаторы, такие как 63Ga-пентаксифор [66]. 63Ga-пентаксифор имеет высокую концентрацию в «виновных» коронарных сосудах после острого инфаркта миокарда (среднее максимальное стандартизованное значение поглощения — 1,56; интерквартильный размах — 2,31). При таких поражениях также наблюдается высокая концентрация CD68-позитивных макрофагов [67].

Микрокальцификация

18F-фторид натрия (18F-NaF) связывается с открытыми кристаллами гидроксиапатита. Благодаря воздействию на всю площадь исследуемой поверхности, этот индикатор преимущественно связывается с очагами развивающейся микрокальцификации, которые находятся за пределами разрешения КТ [63, 68]. С учётом низкого уровня фонового сигнала и что 18F-NaF не поглощается миокардом, это даёт возможность визуализировать сигнал даже относительно низкой интенсивности внутри коронарных сосудов (см. рис. 2, f), что является значительным преимуществом по сравнению с использованием индикатора 18F-FDG.

Исследования in vivo продемонстрировали способность 18F-NaF связываться с очагами активной кальцификации, свидетельствующими о нестабильности бляшек. В проспективных исследованиях обнаружена высокая степень поглощения 18F-NaF в бляшках «виновых» коронарных и сонных артерий [69]. Данные, полученные в ходе исследования бляшек сонных артерий, в значительной степени коррелировали с гистологическими особенностями бляшек высокого риска, включая инфилтрацию макрофагов, некроз и апоптоз. В «виновых» коронарных сосудах высокая степень поглощения 18F-NaF во многом согласуется с признаками высокого риска, выявляемыми, к примеру, при внутрисосудистом УЗИ [69].

Применение индикатора 18F-NaF при ПЭТ/КТ подходит для исследования сосудистой кальцификации в более разветвлённом артериальном дереве. В проспективном исследовании с участием 72 пациентов с аневризмами брюшной аорты отмечалось значительное поглощение 18F-NaF в стенках аневризмы по сравнению с неаневризматическими участками аорты в контрольной группе условно здоровых людей. Высокое поглощение 18F-NaF свидетельствовало о снижении стенки аорты и значительном расширении или разрыве аневризмы [70]. Эти данные указывают на связь между метаболически активными аневризмами брюшной аорты и морфологическими особенностями прогрессирующего заболевания.

Гипоксия и ангииогенез

18F-флюмисонидазол (18F-MISO) — это биологический индикатор, который концентрируется в жизнеспособных гипоксических клетках вследствие накопления его метаболитов в среде, лишённой кислорода. Результаты исследований на животных показали, что 18F-MISO позволяет определить аортальный атеросклероз и участки поглощения радиоактивного вещества в контрастных моделях повышенной плотности макрофагов и поглощения 18F-FDG при симптоматических заболеваниях сонных артерий [68, 72].

Ангиогенные эндотелиальные клетки и макрофаги в гипоксических областях атеросклеротической бляшки экспрессируют гликопротеины αvβ3-интегрина. Применение индикатора 18F-MISO в ПЭТ/КТ-исследованиях вида активность αvβ3-интегрина и макрофагов в проспективных исследованиях подтверждает связь между метаболически активными аневризмами брюшной аорты и морфологическими особенностями прогрессирующего заболевания.
бляшки сонных артерий демонстрируют высокую степень поглощения 18F-Galacto-RGD при ПЭТ/КТ-исследованиях, проводимых в ходе предоперационной подготовки и ауторадиографического анализа в послеоперационном периоде. В небольшой выборке пациентов обнаружена тенденция к связыванию 18F-Galacto-RGD с бляшками, богатыми макрофагами с характерной повышенной плотностью vasa vasaorum [76].

ПРИМЕНЕНИЕ В КЛИНИЧЕСКОЙ ПРАКТИКЕ

Анатомическая визуализация является частью по- вседневной клинической практики. Достижения в об- ласти визуализации сердечно-сосудистой системы по- зволяют определять характеристики бляшек не только по степени стеноза сосудов. Комбинированные методы позволяют в естественных условиях выявлять признаки высокого риска и «виновные» бляшки (таблица). Био- логические ПЭТ-индикаторы позволяют выявить и ко- личественно оценить специфические процессы заболе- вания до того, как они проявятся в виде структурных изменений или вызовут клинически значимые события. Улучшение диагностики, точное прогнозирование риска и целенаправленное лечение остаются важнейшей за- дачей в лечении атеросклеротических заболеваний.

Атеросклеротическая болезнь сердца

Клиническая картина окклюзии коронарных арте- рий разнообразна. Современная визуализация коро- нарных сосудов решает две важные задачи — оцен- ка общего состояния бляшек и выявление ишемии

Таблица. Методы визуализации атеросклеротических бляшек с признаками высокого риска

Признаки бляшек высокого риска	Оптическая визуализация	УЗИ	КТ	МРТ	ПЭТ
Стеноз или окклюзия сосудов	ОКТ	Дуплексное сканирование	КТА	МР	-
Истончение фиброзной покрышки	ОКТ	-	-	-	-
Большое некротическое ядро	ОКТ, БИК	Внутрисосудистое УЗИ, виртуальная гистология	Реконструкция центральной линии артерии	Визуализация бляшек с высокointенсивным MP-сигналом в режиме Т1-ВИ	-
Ангиогенез и кровоизлияние в бляшку	ОКТ	Дуплексное сканирование, внутрисосудистое УЗИ	-	Визуализация бляшек с высокointенсивным MP-сигналом в режиме T1-ВИ, парамагнитные частицы, нацеленные на выявление αβ3-интегрина	18F-MISO, 18F-Galacto-RGD
Разрыв бляшки при субклиническом атеросклерозе	ОКТ, БИК	Дуплексное сканирование, внутрисосудистое УЗИ	-	Визуализация бляшек с высокointенсивным MP-сигналом в режиме T1-ВИ	-
Гликолитическая активность	-	-	-	-	18F-FDG
Инфильтрация макрофагов	ОКТ	-	-	USPIO	18F-DOTA-TATE, 11C-холин, 11C-PK11195
Микрокальцификация	-	-	-	-	18F-фторид натрия (NaF)

Примечание. УЗИ — ультразвуковое исследование; КТ — компьютерная томография; МРТ — магнитно-резонансная томография; ПЭТ — позитронная эмиссионная томография; ОКТ — оптическая когерентная томография; КТА — компьютерная томографическая ангиография; МРА — магнитно-резонансная ангиография; БИК — спектроскопия в ближней инфракрасной области; USPIO — сверхмалые парамагнитные частицы оксида железа.
органов-мишеней. Дополнительные методы визуализации позволяют оценить функциональное и метаболическое состояние атеросклеротических бляшек, что открывает новые перспективы в исследовании атеросклероза.

Диагностическая визуализация играет важную роль в оценке пациентов со стабильной болью в груди. Традиционно риск развития ишемической болезни сердца оценивался с помощью соответствующих клинических инструментов. При подозрении на клинический диагноз рекомендовались тестирование с физической нагрузкой и перфузionale исследования миокарда. В соответствии с правилами от 2016 года, внесёнными Национальным институтом здоровья и клинического совершенствования Великобритании в рекомендации о преимуществах КТ-ангиографии коронарных артерий, данный метод визуализации теперь рекомендуется в качестве исследования первой линии у пациентов со стабильной болью в груди предположительно сердечного происхождения. Исследование SCOT-HEART показало, что КТА коронарных артерий позволяет переклассифицировать диагноз ишемической болезни сердца примерно у 1/4 таких пациентов и повышает точность диагностики стенокардии [77]. Так, чувствительность и отрицательная прогностическая значимость при КТА коронарных артерий составляют 99% с пороговым значением выраженности стеноза 50% [78]. Таким образом, КТА коронарных артерий предлагает на-дёжный подход с низким уровнем риска, позволяющий исключить серьёзные поражения коронарных артерий у пациентов низкого и среднего риска.

Стеноз коронарных сосудов сам по себе не является индикатором риска последующего развития сердечно-сосудистых заболеваний. Напротив, на подобные риски указывают неблагоприятные характеристики бляшек и общая ишемическая нагрузка: при большом количестве бляшек увеличивается вероятность их разрыва и возникновения ишемии миокарда [79]. Оценка индекса коронарного кальция — этот метод неконтрастной КТ, который позволяет оценить общую кальцификацию сосудистого русла и способствует более точному прогнозированию будущих сердечно-сосудистых событий у пациентов со средним риском развития ишемической болезни сердца (менее 10% по шкале Framingham) [80]. В частности, индекс коронарного кальция позволяет выявить пациентов с высокой степенью риска, которые в противном случае были бы неправильно классифицированы при использовании традиционных методов [81].

Комплексная визуализация позволяет получить ещё один показатель при оценке пациентов с болью в груди. Например, у пациентов с острым коронарным синдромом индекс липидного ядра, полученный в ходе спектроскопии ближней инфракрасной области, независимо предсказывает будущие сердечно-сосудистые события (отношение рисков 1,19; 95% доверительный интервал 1,07–1,32; p=0,001) [82]. Использование ПЭТ в кардиологической диагностике сопряжено со сложностями вследствие неспецифического поглощения индикатора 18F-FDG окружающим миокардом [69], тогда как в случае с индикатором 18F-NaF отмечается более избирательное его поглощение в очагах микрокальцификации, что делает его идеальным контрастным веществом для исследования коронарных артерий. В исследовании с участием 80 пациентов 18F-NaF преимущественно связывался с «виновными» бляшками коронарных сосудов, выявленным методом внутрисосудистого УЗИ [69]. Аналогичным образом, исследование с участием 119 участников показало, что результаты ПЭТ/КТ с использованием 18F-NaF коррелировали со стенокардией в качестве первопричина заболевания (p=0,023), предшествующими сердечно-сосудистыми событиями (p=0,016) и оценкой по шкале риска Framingham (p=0,011) [83]. Прогностическая способность индикатора 18F-NaF в определении «виновых» бляшек коронарных сосудов находится в центре внимания текущего проспективного многоцентрового исследования PRE18FFIR (NCT02782811), где участвуют пациенты с недавно перенесённым острым коронарным синдромом и многососудистым поражением. Можно ли улучшить диагностическую точность с помощью других современных радиоактивных индикаторов, таких как 68Ga-DOTATATE [84], ещё предстоит выяснить.

Неинвазивная комплексная визуализация позволяет выявлять признаки высокого риска in vivo и способствует более точному прогнозированию риска. Группы высокого риска могут стать объектом более интенсивной корректирующей терапии, например с использованием новых ингибиторов пропротеиновой конвертазы субтилизин/кексин типа 9. Однако дополнительные преимущества такого метода визуализации должны быть установлены в ходе проспективных исследований, таких как DIAMOND (NCT02110303), где оценивается польза двойной антитромбоцитарной терапии у пациентов с высоким уровнем поглощения 18F-NaF при ПЭТ коронарных сосудов.

Атеросклероз сонных артерий

Разрыв бляшки в экстракраниальном отделе сонной артерии приводит к интенсивному образованию тромба, который может окклюзировать внутреннюю сонную артерию или спровоцировать её дальнейшее расслоение. Тромб может эмболизировать в мозг или глаз, вызывая необратимую потерю тканей. Целью лечения заболевания является предотвращение тромботических событий в будущем. Визуализация сонных артерий играет важную роль в прогнозировании цереброваскулярного риска. В исследованиях NASCET [85] и ECST [86] доказана польза эндартерэктомии при симптоматическом стенозе сонных артерий высокой степени [87]. При этом УЗИ является основным методом стратификации риска развития симптоматического стеноза сонных артерий [88].

На сегодняшний день известно, что хирургическое вмешательство необходимо проводить на раннем этапе...
после неблагоприятных событий, что позволяет снизить частоту повторных эмболических эпизодов при поражении сонных артерий. У пациентов может быть несколько сопутствующих заболеваний. Группа таких пациентов была исключена на начальном этапе исследования NASCET. Многие руководства по этой причине не рекомендуют использовать дуплексное ультразвуковое сканирование в качестве единственного метода визуализации в предоперационный период. В этом случае преимущество имеют КТ и магнитно-резонансная ангиография, поскольку позволяют предложить извилистость сосудов и визуализировать всю артерию [89]. Однако примерно 1/3 повторных инсультов с потерей трудоспособности или смертельным исходом происходит у пациентов со стенозом внутренней сонной артерии, составляющим менее 50% [86]. УЗИ, КТ и МРТ ограничиваются исследованием морфологических особенностей атросклеротической бляшки и не могут достоверно прогнозировать будущие цереброваскулярные события в группах «низкого» риска с меньшей степенью стеноза [89].

Дополнительные методы визуализации, такие как УЗИ с контрастным усилением, многоучасточная или USPIO-усиленная МРТ, могут выявлять нестабильные и «виновные» атросклеротические бляшки. Более того, ПЭТ-исследование с использованием индикаторов 18F-FDG или 18F-NaF позволяет выявить биологическую активность «виновных» бляшек, при этом 18F-NaF, в частности, связывается с поражёнными участками сонных артерий, характеризующимися богатым липидами некротическим ядром (рис. 4) [69]. Комбинация ПЭТ/МРТ даёт гораздо лучшие результаты, позволяя одновременно оценить кровоток, тромб, липидное ядро, разрыв бляшки и нестабильную бляшку некротического типа с очагами микрокальцификации.

Вопрос лечения бессимптомных пациентов с заболеваниями сонных артерий остаётся спорным [90]. Не существует также единого мнения о том, как лучше лечить симптоматических пациентов с заболеваниями внутренних сонных артерий, степень которых не достигает порога для вмешательства. Комплексная визуализация способна обеспечить более точное прогнозирование риска неинвазивным и мощным способом. В исследованиях SAFFIRE (NCT03215563 и NCT03215550) планируют оценить клиническую значимость ПЭТ/МРТ с использованием 18F-NaF в отношении уязвимости бляшек, необходимости хирургического вмешательства и клинических исходов. Это даст возможность улучшить стратификацию рисков у пациентов с инсультом и определить характер последующего оперативного вмешательства. У мужчин этот диаметр составляет 55 мм [91], для женщин этот порог, по мнению многих, должен быть меньше. Необходимость

Рис. 4. Позитронно-эмиссионная томография с 18F-фторидом натрия и магнитно-резонансная ангиография симптоматического поражения правой внутренней сонной артерии. a — комбинированная позитронно-эмиссионная томография с 18F-фторидом натрия, наложенная на магнитно-резонансную ангиограмму, показывает очаговое поглощение радиоактивного вещества в «виновой» бляшке правой внутренней сонной артерии (стрелка). b — хирургическая эндартерэктомия подтверждает наличие сильно изъязвлённого поражения с положительным ремоделированием и выраженной неравномерностью интимы.
Заболевания периферических сосудов

Заболевания периферических сосудов — гетерогенная группа окклюзивных заболеваний артерий нижних конечностей. Атеросклероз в первую очередь вызывает кальцификацию интимы, тогда как сахарный диабет и хроническая болезнь почек — артериальную жёсткость, усиливающую трансмуральную кальцификацию медиального слоя артерии. Оба процесса инициируются микрокальцификацией.

Дуплексное сканирование артерий, магнитно-резонансная angiография и КТА позволяют визуализировать просвет крупных сосудов, но могут либо переоценить, либо недооценивать степень стеноза в более узких артериях, например ниже колена. Так, кальцификация в мелких сосудах вызывает расплывчатость изображения на КТ-ангиограммах, что приводит к затемнению просвета. Если кальцификация отсутствует, остаточный просвет, усиленный контрастом, может быть переоценин при КТ за счёт больших массов веноселей. Таким образом, angiография остаётся наиболее приемлемым методом диагностики и визуализации сужения просвета нижних конечностей благодаря высокому пространственно-му разрешению. Однако при этом подходе невозможно получить изображение артериальной стенки или данные о биологической активности сосудов.

Что касается биологических индикаторов, 18F-фторид хорошо связывается с бляшками бедренной артерии и лучше выявляет воспалительный процесс по сравнению с 18F-FDG [95]. В исследовании 409 онкологических пациентов, прошедших PET/CT с 18F-NaF, случайно обнаружено значительное поглощение 18F-фторида в бедренной артерии. Степень поглощения сильно коррелировала с гипертонией, гиперхолестеринемией, курением, сахарным диабетом и предшествующими сердечно-сосудистыми событиями [96]. Клиническое течение такого поглощения ещё предстоит подтвердить в продольных исследованиях.

ОЦЕНКА ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ

Комплексная визуализация может обеспечить объективные суррогатные конечные точки для подтверждения воздействия на цель и эффективности лечения в относительно небольших популяциях.

Одним из примеров является изучение действия статинов при сердечно-сосудистых заболеваниях. Влияние статинов при атеросклерозе широко изучалось с помощью инвазивных [97—99] и неинвазивных [100–102] методов визуализации. Внутрисосудистая визуализация с использованием ОКТ и внутрисосудистого УЗИ использовалась для изучения влияния статинов на атерому в таких исследованиях, как ASTEROID [97], ESTABLISH [99], REVERSAL [103]. Аналогичным образом MRT использовали для количественной оценки снижения...
ЗАКЛЮЧЕНИЕ

Детальная структурная и функциональная оценка сосудистого дерева возможна с помощью стандартных методов визуализации. Однако перспективы выявления нестабильных атеросклеротических бляшек, приводящих к сердечно-сосудистым событиям, по-прежнему неясны. Комплексная визуализация сердечно-сосудистой системы даёт клиницисту ценную информацию о её морфологических особенностях и метаболическом состоянии при атеросклеротических заболеваниях. Сочетание методов визуализации предлагает мощные инструменты для изучения конкретных процессов заболевания в контексте диагностики, прогнозирования риска и целенаправленного вмешательства.

Для того чтобы уйти от оценки лишь степени тяжести стеноза, требуется смена парадигмы. Выявление особенностей бляшки с высокой степенью риска позволит переклассифицировать лиц с низким и средним риском, которые на самом деле подвержены высокому риску развития неблагоприятных сердечно-сосудистых событий. Корректное определение этой группы лиц является самой большой неудовлетворённой клинической потребностью в области современной визуализации сердечно-сосудистой системы. Использование новых методов позволяет устранить ограничения современных подходов, основанных на оценке степени выраженности стеноза. Внедрение широкого спектра методов визуализации в клиническую практику является следующим важным шагом в оценке атеросклеротических бляшек. Текущие исследования, посвящённые визуализации метаболических процессов, имеют целью выявить и прогнозировать развитие сердечно-сосудистых заболеваний, что позволит получить более полное представление о внедрении новых методов визуализации в клиническую практику.

СПИСОК ЛИТЕРАТУРЫ

1. Herrington W., Lacey B., Sherliker P., et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease // Circ. Res. 2016. Vol. 118, N 4. P. 535–546. doi: 10.1161/CIRCRESAHA.115.307611
2. Puchner S.B., Liu T., Mayrhofer T., et al. High-Risk plaque detected on coronary ct angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain // J Am Coll Cardiol. 2014. Vol. 64, N 7. P. 684–692. doi: 10.1016/j.jacc.2014.05.039
3. Teague H.L., Ahman M.A., Alavi A., et al. Unraveling vascular inflammation: from immunology to imaging // J Am Coll Cardiol. 2017. Vol. 70, N 11. P. 1403–1412. doi: 10.1016/j.jacc.2017.07.750
4. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis // Circulation 2000. Vol. 109, N 23, Suppl. 1. P. III–27–20. doi: 10.1161/01.CIR.0000131515.03336.8
5. Pirillo A., Bonacina F., Norata G.D., Catapano A.L. The interplay of lipids, lipoproteins, and immunity in atherosclerosis // Curr Atheroscler Rep. 2018. Vol. 20, N 3. P. 12. doi: 10.1007/s11883-018-0715-0
6. Mullick A.E., Soldau K., Kisses W.B., et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events // J Exp Med. 2008. Vol. 205, N 2. P. 373–383. doi: 10.1084/jem.20071096
7. Newby A.C. Metalloproteinase production from macrophages — a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction // Exp Physiol. 2016. Vol. 101, N 11. P. 1327–1337. doi: 10.1113/EP085567
8. Stary H.C., Chandler A.B., Dinsmore R.E., et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on vascular lesions of the Council on arteriosclerosis, American heart association // Circulation. 1995. Vol. 92, N 5. P. 1355–1374. doi: 10.1161/01.cir.92.5.1355
9. Virmani R., Burke A.P., Kolodgie F.D., Farb A. Pathology of the thin-cap fibroatheroma // J Intervent Cardiol. 2003. Vol. 16, N 3. P. 267–272. doi: 10.1034/j.1600-0854.2003.8042.x
10. Sluimer J.C., Gasc J.M., van Wanroij J.L., et al. Hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis // J Am Coll Cardiol. 2008. Vol. 51, N 3. P. 1258–1265. doi: 10.1016/j.jacc.2007.12.025
11. Fuery M.A., Liang L., Kaplan F.S., Ohlendorf E.R. Vascular ossification: pathology, mechanisms, and clinical implications // Bone. 2018. Vol. 109. P. 28–34. doi: 10.1016/j.bone.2017.07.006
12. Hirsch D., Azoury R., Sarig S., Kruth H.S. Colocalization of cholesterol and hydroxyapatite in human atherosclerotic...
lesions // Calcif Tissue Int. 1993. Vol. 52, N 2. P. 94–98. doi: 10.1007/BF00308315
13. Virmani R., Burke A.P., Kolodgie F.D., Farb A. Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque // J Interv Cardiol. 2003. Vol. 16, N 3. P. 267–272. doi: 10.1034/j.1600-0854.2003.8042.x
14. Emberson J., Lees K.R., Lyden P., et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials // Lancet. 2014. Vol. 384, N 9958. P. 1929–1933. doi: 10.1016/S0140-6736(14)60586-5
15. Jang I.K., Tearney G.J., MacNeil B., et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography // Circulation. 2005. Vol. 111, N 12. P. 1551–1555. doi: 10.1161/01.CIR.0000159354.43778.69
16. Tearney G.J., Yabushita H., Houser S.L., et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography // Circulation. 2003. Vol. 107, N 1. P. 113–119. doi: 10.1161/01.CIR.0000044384.41037.43
17. Bouma B.E., Tearney G.J., Yabushita H., et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography // Heart. 2003. Vol. 89, N 3. P. 317–320. doi: 10.1136/heart.89.3.317
18. Jang I.K., Bouma B.E., Kang D.H., et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound // J Am Coll Cardiol. 2002. Vol. 39, N 4. P. 604–609. doi: 10.1016/S0735-1097(01)01799-5
19. Dohad S., Zhu A., Krishnan S., et al. Optical coherence tomography guided carotid artery stent procedure: technique and potential applications // Catheter Cardiovasc Interv. 2018. Vol. 91, N 3. P. 521–530. doi: 10.1002/ccd.27344
20. Schwindt A.G., Bennett J.G., Crowder W.H., et al. Lower extremity revascularization using optical coherence tomography — guided directional atherectomy: final results of the evaluatio on of the pantheris optical coherence tomography imaging atherectomy system for use in the peripheral vasculature (VISION) study // J Endovasc Ther. 2017. Vol. 24, N 3. P. 355–366. doi: 10.1177/1526602817701720
21. Waxman S., Dixon S.R., L’Allier P., et al. In vivo validation of a Catheter-Based near-infrared spectroscopy system for detection of lipid core coronary plaques // JACC Cardiovascular Imaging. 2009. Vol. 2, N 7. P. 858–868. doi: 10.1016/j.jcmg.2009.05.001
22. Voros S., Rinehart S., Qian Z., et al. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency Backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the Atlanta (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study // JACC Cardiovascular Imaging. 2011. Vol. 4, N 2. P. 198–208. doi: 10.1016/j.jcmg.2010.10.008
23. Broersen A., de Graaf M.A., Eggermont J., et al. Enhanced characterization of calcified areas in intravascular ultrasound virtual histology images by quantification of the acoustic shadow: validation against computed tomography coronary angiography // Int J Cardiovasc Imaging. 2016. Vol. 32, N 4. P. 543–552. doi: 10.1007/s10554-015-0820-x
24. Brugaletta S., Garcia-Garcia H.M., Serruys P.W., et al. Nirs and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography // JACC Cardiovascular Imaging. 2011. Vol. 4, N 6. P. 647–655. doi: 10.1016/j.jcmg.2011.03.013
25. Štěchovský C., Hájek P., Horváth M., et al. Near-Infrared spectroscopy combined with intravascular ultrasound in carotid arteries // Int J Cardiovasc Imaging. 2016. Vol. 32, N 1. P. 181–188. doi: 10.1007/s10554-015-0687-x
26. Yin D., Matsumura M., Rundback J., et al. Comparison of plaque morphology between peripheral and coronary artery disease (from the clarity and ADAPT-DES IVUS substudies // Coron Artery Dis. 2017. Vol. 28, N 5. P. 369–375. doi: 10.1097/MCA.0000000000000469
27. Mitchell C., Korcarz C.E., Gepner A.D., et al. Ultrasound coronary plaque features. cardiovascular disease risk factors and events: the multi-ethnic study of atherosclerosis // Atherosclerosis. 2018. Vol. 276. P. 195–202. doi: 10.1016/j.atherosclerosis.2018.06.005
28. Lal B.K., Hobson R.W., Pappas P.J., et al. Pixel distribution analysis of B-mode ultrasound scan images predicts histologic features of atherosclerotic carotid plaques // J Vasc Surg. 2002. Vol. 35, N 6. P. 1210–1217. doi: 10.1016/mva.2002.122288
29. Finn A.V., Kolodgie F.D., Virmani R. Correlation between carotid intimal/medial thickness and atherosclerosis: a point of view from pathology // Arterioscler Thromb Vasc Biol. 2010. Vol. 30, N 2. P. 177–181. doi: 10.1161/ATVBAHA.108.173609
30. Stein J.H., Korcarz C.E., Hurst R.T., et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of echocardiography carotid intima-media thickness Task force endorsed by the Society for vascular medicine // J Am Soc Echocardiogr. 2008. Vol. 21, N 2. P. 93–111. doi: 10.1016/j.echo.2007.11.011
31. Huang R., Abdelmonem S.S., Ball C.A., et al. Detection of carotid atherosclerotic plaque neovascularization using contrast enhanced ultrasound: a systematic review and meta-analysis of diagnostic accuracy studies // J Am Soc Echocardiogr. 2016. Vol. 29, N 6. P. 491–502. doi: 10.1016/j.echo.2016.02.012
32. Mirza T.A., Karthikesalingam A., Jackson D., et al. Duplex ultrasound and contrast-enhanced ultrasound versus computed tomography for the detection of endoleak after EVAR: systematic review and bivariate meta-analysis // Eur J Vasc Endovasc Surg. 2010. Vol. 39, N 4. P. 418–428. doi: 10.1016/j.ejvs.2010.01.001
33. Moneta G.L., Edwards J.M., Chitwood R.W., et al. Correlation of North American Symptomatic Carotid Endarterectomy Trial (NASCET) angiographic definition of 70% to 99% internal carotid artery stenosis with duplex scanning // J Vasc Surg. 1993. Vol. 17, N 1. P. 152–159. doi: 10.1016/0741-5214(93)90019-I
34. Josephson S.A., Bryant S.O., Mak H.K., et al. Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA // Neurology. 2004. Vol. 63, N 5. P. 457–460. doi: 10.1212/01.WNL.0000135154.53953.2C
35. Maurovich-Horvat P., Ferencik M., Voros S., et al. Comprehensive plaque assessment by coronary CT angiography // Nat Rev Cardiol. 2014. Vol. 11, N 7. P. 390–402. doi: 10.1038/nrcardio.2014.60
36. Divakaran S., Cheezum M.K., Hulten E.A., et al. Use of cardiac CT and calcium scoring for detecting coronary plaque: implications on prognosis and patient management // Br J Radiol. 2015. Vol. 88, N 1046. P. 20140594. doi: 10.1259/bjr.20140594
37. Motoyama S., Ito H., Sarai M., et al. Plaque characterization by coronary computed tomography angiography and the likelihood of...
acute coronary events in mid-term follow-up // J Am Coll Cardiol. 2015. Vol. 66, N 4. P. 337–346. doi: 10.1016/j.jacc.2015.05.069
38. Maurovich-Horvat P., Hoffmann U., Vorpahl M., et al. The Napkin-Ring sign: CT signature of high-risk coronary plaques? // JACC Cardiovascular Imaging. 2010. Vol. 3, N 4. P. 440–444. doi: 10.1016/j.jcmg.2010.02.003
39. Fathi A., Weir-McCall J.R., Struthers A.D., et al. Effects of contrast administration on cardiac MRI volumetric, flow and pulse wave velocity quantification using manual and software-based analysis // Br J Radiol. 2018. Vol. 91, N 1084. P. 20170717. doi: 10.1259/bjr.20170717
40. Akçakaya M., Basha T.A., Chan R.H., et al. Accelerated isotropic sub-millimeter whole-heart coronary MRI: compressed sensing versus parallel imaging // Magn Reson Med. 2014. Vol. 71, N 2. P. 815–822. doi: 10.1002/mrm.26483
41. Kim W.Y., Danias P.G., Stuber M., et al. Coronary magnetic resonance angiography for the detection of coronary stenoses // N Engl J Med. 2001. Vol. 345, N 26. P. 1863–1869. doi: 10.1056/NEJMoa010866
42. Dweck M.R., Williams M.C., Moss A.J., et al. Computed tomography and magnetic cardiac resonance in ischemic heart disease // J Am Coll Cardiol. 2016. Vol. 68, N 20. P. 2201–2216. doi: 10.1016/j.jacc.2016.08.047
43. Hatsumaki T.S., Ross R., Polissar N.L., Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging // Circulation. 2000. Vol. 102, N 9. P. 959–964. doi: 10.1161/01.CIR.102.9.959
44. Kerwin W.S., Zhao X., Yuan C., et al. Contrast-Enhanced MRI of carotid atherosclerosis: dependence on contrast agent // J Magn Reson Imaging. 2009. Vol. 30, N 1. P. 35–40. doi: 10.1002/jmri.21826
45. Chu B., Kampschulte A., Ferguson M.S., et al. Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study // Stroke. 2004, Vol. 35, N 5. P. 1079–1084. doi: 10.1161/01.STR.010025856.25309.86
46. Saam T., Hetterich H., Hoffmann V., et al. Meta-Analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging // J Am Coll Cardiol. 2013. Vol. 62, N 12. P. 1081–1091. doi: 10.1016/j.jacc.2013.06.015
47. Kooi M.E., Cappendijk V.C., Cleutjens K.B., et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging // Circulation. 2000. Vol. 102, N 9. P. 959–964. doi: 10.1161/01.CIR.0000036831.97805.CC
48. Richards J.M., Semple S.I., MacGillivray T.J., et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide // Circulation. 2011. Vol. 4, N 3. P. 274–281. doi: 10.1161/CIRCIMAGING.110.959866
49. Trivedi R.A., U-King-Im J.M., Graves M.J., et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI // Stroke. 2004. Vol. 35, N 5. P. 1631–1635. doi: 10.1161/01.STR.0100131268.50418.b7
50. McBride O.M., Berry C., Burns P., et al. MRI using ultrasmall superparamagnetic particles of iron oxide in patients under surveillance for abdominal aortic aneurysms to predict rupture or surgical repair: MRI for abdominal aortic aneurysms to predict rupture or surgery — the MA 3 RS study // Open Heart. 2015. Vol. 2, N 1. P. e000190. doi: 10.1136/openhrt-2014-000190
51. Neubauer S. Cardiac magnetic resonance spectroscopy // Curr Cardiol Rep. 2003. Vol. 5, N 1. P. 75–82. doi: 10.1007/s11886-003-0041-0
52. Zajicek J., Pearlman J.D., Merckel M.B., et al. High-Resolution proton NMR spectra of human arterial plaque // Biochem Biophys Res Commun. 1987. Vol. 149, N 2. P. 437–442. doi: 10.1016/0006-291X(87)90386-X
53. Xin L., Lanz B., Lei H, Gruetter R. Assessment of metabolic fluxes in the mouse brain in vivo using 11 H-[13 C] NMR Spectroscopy at 14.1 Tesla // J Cereb Blood Flow Metab. 2011. Vol. 35, N 5. P. 759–765. doi: 10.1038/jcbfm.2014.251
54. Deelchand D.K., Moortelee P.F., Adriany G., et al. In vivo 1H NMR spectroscopy of the human brain at 9.4T: initial results // J Magn Reson. 2010. Vol. 206, N 1. P. 74–80. doi: 10.1016/j.jmr.2010.06.006
55. Benton J.F., Otisuka F., Virmani R., Falk E. Mechanisms of plaque formation and rupture // Circ Res. 2014. Vol. 114, N 12. P. 1852–1866. doi: 10.1161/CIRCRESAHA.114.302721
56. Gholami S., Salavati A., Houshmand S., et al. Assessment of atherosclerosis in large vessel walls: a comprehensive review of FDG-PET/CT image acquisition protocols and methods for uptake quantification // J Nucl Cardiol. 2015. Vol. 22, N 3. P. 468–479. doi: 10.1007/s12350-015-0069-8
57. Folco E.J., Shekine Y., Rocha V.Z., et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-Labeled 2-deoxy-D-glucose positron emission tomography // J Am Coll Cardiol. 2011. Vol. 58, N 6. P. 603–614. doi: 10.1016/j.jacc.2011.03.044
58. Menezes L.J., Kotze C.W., Agu O., et al. Investigating vulnerable atheroma using combined 18F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation // J Nucl Med. 2011. Vol. 52, N 11. P. 1698–1703. doi: 10.2967/jnumed.111.093724
59. Wykryczewska J., Lehman S., Williams G., et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation // J Nucl Med. 2009. Vol. 50, N 4. P. 563–568. doi: 10.2967/jnumed.108.055616
60. Graeve M., Pedersen S.F., Borgwardt L., et al. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET) // Eur J Vasc Endovasc Surg. 2009. Vol. 37, N 6. P. 714–721. doi: 10.1016/j.ejvs.2008.11.018
61. Tarkin J.M., Dweck M.R., Evans N.R., et al. Imaging atherosclerosis // Circ Res. 2016. Vol. 118, N 4. P. 750–769. doi: 10.1161/CIRCRESAHA.115.306247
62. Malmberg C., Ripa R.S., Johnbeck C.B., et al. 64Cu-DOTATATE for noninvasive assessment of atherosclerosis in large arteries and its correlation with risk factors: head-to-head comparison with 68Ga-DOTATOC in 60 patients // J Nucl Med. 2015. Vol. 56, N 12. P. 1895–1900. doi: 10.2967/jnumed.115.161216
63. Dweck M.R., Aikawa E., Newby D.E., et al. Noninvasive molecular imaging of disease activity in atherosclerosis // Circ Res. 2016. Vol. 119, N 2. P. 330–340. doi: 10.1161/CIRCRESAHA.116.307971
64. Tarkin J.M., Joshi F.R., Evans N.R., et al. Detection of Atherosclerotic Inflammation by 68 Ga-DOTATATE PET Compared to [18 F] FDG PET Imaging // J Am Coll Cardiol. 2017. Vol. 69, N 14. P. 1774–1791. doi: 10.1016/j.jacc.2017.01.060
65. Gaemperli O., Shalhoub J., Owen D.R., et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography // Eur Heart J. 2012. Vol. 33, N 15. P. 1902–1910. doi: 10.1093/eurheartj/eht367

66. Weibel D., Thackeray J.T., Daum G., et al. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 88 Ga-Pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden // J Nucl Med. 2018. Vol. 59, N 2. P. 266–272. doi: 10.2967/jnumed.117.196485

67. Derlin T., Sedding D.G., Dutzmann J., et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected 68Galpentixafor PET/CT // Eur J Nucl Med Mol Imaging. 2018. Vol. 45, N 11. P. 1934–1944. doi: 10.1007/s00259-018-4076-2

68. Vesey A.T., Jenkins W.S., Irkle A., et al. 18F-Fluoride and 18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: Case-Control study // Circ Cardiovasc Imaging. 2017. Vol. 10, N 3. P. e004976–e004976. doi: 10.1161/CIRCIMAGING.116.004976

69. Joshi N.V., Vesey A.T., Williams M.C., et al. 18F-Fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial // Lancet. 2014. Vol. 383, N 9918. P. 705–713. doi: 10.1016/S0140-6736(13)61754-7

70. Forsythe R.O., Dweck M.R., McBride O.M., et al. 18F-Sodium fluoride uptake in abdominal aortic aneurysms: the SoFA3 study // J Am Coll Cardiol. 2018. Vol. 71, N 5. P. 513–523. doi: 10.1016/j.jacc.2017.11.053

71. Mateo J., Izquierdo-Garcia D., Badimon J.J., et al. Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using 18 F-fluoromisonidazole positron emission tomographic imaging // Circulation. 2014. Vol. 7, N 2. P. 312–320. doi: 10.1161/CIRCIMAGING.113.001084

72. Joshi F.R., Manavaki R., Fryer T.D., et al. Imaging of hypoxia and inflammation in carotid atherosclerosis with 18F-fluoromisonidazole and 18F-fluorodeoxyglucose positron emission tomography // Circulation. 2013. Vol. 128. P. A14673.

73. Winter P.M., Morawski A.M., Caruthers S.D., et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with av33-integron–targeted nanoparticles // Circulation. 2003. Vol. 108, N 18. P. 2270–2274. doi: 10.1161/01.CIR.0000093185.16083.95

74. Hauber R., Kuhnast B., Mang C., et al. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells // Am J Physiol Endocrinol Metab. 2003. Vol. 285, N 2. P. E344–E353. doi: 10.1152/ajpendo.00048.2003

75. Gasecki A.P., Eliaziw M., Ferguson G.G., et al. Long-Term prognosis and effect of endarterectomy in patients with symptomatic severe carotid stenosis and contralateral carotid stenosis or occlusion: results from NASCET. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group // J Neurosurg. 1995. Vol. 83, N 5. P. 778–782. doi: 10.3171/jns.1995.83.5.0778

76. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European carotid surgery trial (ECST) // Lancet. 1998. Vol. 351, N 9113. P. 1379–1387. doi: 10.1016/S0140-6736(97)09292-1

77. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial // Lancet. 2015. Vol. 385, N 9985. P. 2383–2391. doi: 10.1016/S0140-6736(15)60291-4
for cardiovascular angiography and interventions, society of interventional radiology, society of NeuroInterventional surgery, Society for vascular medicine, and Society for vascular surgery developed in collaboration with the American Academy of Neurology and society of cardiovascular computed tomography // J Am Coll Cardiol. 2011. Vol. 57, N 8. P. e16–94. doi: 10.1016/j.jacc.2010.11.006
90. Spence J.D., Naylor A.R., Endarterectomy N.A. Endarterectomy, stenting, or neither for asymptomatic carotid-artery stenosis // N Engl J Med. 2016. Vol. 374, N 11. P. 1087–1088. doi: 10.1056/NEJMe1600123
91. Forsythe R.O., Newby D.E., Robson J.M. Monitoring the biological activity of abdominal aortic aneurysms Beyond Ultrasound // Heart. 2016. Vol. 102, N 11. P. 817–824. doi: 10.1136/heartjnl-2015-308779
92. Duddalwar V.A. Multislice CT angiography: a practical guide to CT angiography in vascular imaging and intervention // Br J Radiol. 2004. Vol. 77, Suppl 1. P. S27–S38. doi: 10.1259/bjr/25652856
93. Castrucci M., Mellone R., Vanzulli A., et al. Mural thrombi in abdominal aortic aneurysms: MR imaging characterization—useful before endovascular treatment? // Radiology. 1995. Vol. 197, N 1. P. 135–139. doi: 10.1148/radiology.197.1.7558811
94. Nguyen V.L., Leiner T., Hellenthal F.A., et al. Abdominal aortic aneurysms with high thrombus signal intensity on magnetic resonance imaging are associated with high growth rate // Eur J Vasc Endovasc Surg. 2014. Vol. 48, N 6. P. 676–684. doi: 10.1016/j.ejvs.2014.04.025
95. Derlin T., Töth Z., Papp L., et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study // J Nucl Med. 2011. Vol. 52, N 7. P. 1020–1027. doi: 10.2967/jnumed.111.087452
96. Janssen T., Bannas P., Herrmann J., et al. Association of linear 18F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/CT study // J Nucl Cardiol. 2013. Vol. 20, N 4. P. 569–577. doi: 10.1007/s12350-013-9680-8
97. Chhatriwalla A.K., Nicholls S.J., Nissen S.E. The asteroid trial: coronary plaque regression with high-dose statin therapy // Future Cardiol. 2006. Vol. 2, N 6. P. 651–654. doi: 10.2217/14796678.2.6.651
98. Nissen S.E., Tuzcu E.M., Schoenhagen P., et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis // JAMA. 2004. Vol. 291, N 9. P. 1071–1080. doi: 10.1001/jama.291.9.1071
99. Okazaki S., Yokoyama T., Miyauchi K., et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherothrombotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the establish study // Circulation. 2004. Vol. 110, N 9. P. 1061–1068. doi: 10.1161/01.CIR.0000140261.58966.A4
100. Underhill H.R., Yuan C., Zhao X.Q., et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial // Am Heart J. 2008. Vol. 155, N 3. P. 584.e1–584.e8. doi: 10.1016/j.ahj.2007.11.018
101. Zhao X.Q., Dong L., Hatsuoki T., et al. Mr imaging of carotid plaque composition during lipid-lowering therapy: a prospective assessment of effect and time course // JACC Cardiovasc Imaging. 2011. Vol. 4, N 9. P. 977–986. doi: 10.1016/j.jcmg.2011.06.013
102. Tang T.Y., Howarth S.P., Miller S.R., et al. The atheroma (atorvastatin therapy: effects on reduction of macrophage activity) study: evaluation using ultraslim superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease // J Am Coll Cardiol. 2009. Vol. 53, N 22. P. 2039–2050. doi: 10.1016/j.jacc.2009.03.018
103. Schoenhagen P., Tuzcu E.M., Apperson-Hansen C., et al. Determinants of arterial wall remodeling during lipid-lowering therapy: serial intravascular ultrasound observations from the reversal of atherosclerosis with aggressive lipid lowering therapy (reversal) trial // Circulation. 2006. Vol. 113, N 24. P. 2826–2834. doi: 10.1161/CIRCULATIONAHA.105.585703
104. Zimarro M., Angeramo F., Prasad A., et al. Reduction of atherothrombotic burden before stent deployment in non-ST elevation acute coronary syndromes: reduction of myocardial necrosis achieved with nose-dive manual thrombus aspiration (remnant) trial. A volumetric intravascular ultrasound study // Cathet Cardiovasc Intervent. 2016. Vol. 88, N 5. P. 716–725. doi: 10.1002/ccd.26301
105. Fayad Z.A., Mani V., Woodward M., et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial // Lancet. 2011. Vol. 378, N 9802. P. 1547–1559. doi: 10.1016/S0140-6736(11)61383-4

REFERENCES

1. Herrington W, Lacey B, Sherliker P, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–546. doi: https://doi.org/10.1161/CIRCRESAHA.115.307611
2. Puchner SB, Liu T, Mayrhofer T, et al. High-Risk plaque detected on coronary ct angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain. J Am Coll Cardiol. 2014;64(7):684–692. doi: 10.1016/j.jacc.2014.05.039
3. Teague HL, Ahlman MA, Alavi A, et al. Unraveling vascular inflammation: from immunology to imaging. J Am Coll Cardiol. 2017;70(11):1403–1412. doi: 10.1016/j.jacc.2017.07.750
4. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1): III-27–20. doi: 10.1161/01.CIR.0000131515.03366.f8
5. Pirillo A, Bonacina F, Norata GD, Catapano AL. The interplay of lipids, lipoproteins, and immunity in atherosclerosis. Curr Atheroscler Rep. 2018;20(3):12. doi: 10.1007/s11883-018-0715-0
6. Mullick AE, Soldau K, Kiosses WB, et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J Exp Med. 2008;205(2):373–383. doi: 10.1084/jem.20071096
7. Newby AC. Metalloproteinase production from macrophages — a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp Physiol. 2016;101(11):1327–1337. doi: 10.1113/EP085567
8. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee
on vascular lesions of the Council on arteriosclerosis, American heart association. Circulation. 1995;92(5):1355–1374. doi: 10.1161/01.cir.92.5.1355
9. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the thin-cap fibroatheroma. J Interv Cardiol. 2003;16(3):267–272. doi: 10.1034/j.1600-0854.2003.8042.x
10. Sliuimer JC, Gasc JM, van Wanoij JL, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008;51(13):1258–1265. doi: 10.1016/j.jacc.2007.12.025
11. Fuery MA, Liang L, Kaplan FS, Mohler ER. Vascular ossification: pathology, mechanisms, and clinical implications. Bone. 2018;109:28–34. doi: https://doi.org/10.1016/j.bone.2017.07.006
12. Hirsch D, Azoury R, Sang S, Kruth HS. Colocalization of cholesterol and hydroxyapatite in human atherosclerotic lesions. Calcif Tissue Int. 1993;52(2):94–98. doi: 10.1007/BF0038315
13. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the Thin-Cap Fibroatheroma: A type of vulnerable plaque. J Interv Cardiol. 2003;16(3):267–272. doi: 10.1034/j.1600-0854.2003.8042.x
14. Emberson J, Lees KR, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384(9958):1929–1935. doi: 10.1016/S0140-6736(01)01799-5
15. Jang I-K, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–1555. doi: 10.1161/01.CIR.0000189354.43778.69
16. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–119. doi: 10.1161/01.CIR.0000044384.41037.43
17. Bouma BE, Tearney GJ, Yabushita H, et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart. 2003;89(3):317–320. doi: 10.1136/heart.beat.89.3.317
18. Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39(4):604–609. doi: 10.1016/S0735-1097(01)01799-5
19. Dohad S, Zhu A, Krishnan S, et al. Optical coherence tomography guided carotid artery stent procedure: technique and potential applications. Catheter Cardiovasc Interv. 2018;91(3):521–530. doi: 10.1002/ccd.27344
20. Schwindt AG, Bennett JG, Crowder WH, et al. Lower extremity revascularization using optical coherence tomography-guided directional atherectomy: final results of the評准的 optical coherence tomography imaging atherectomy system for use in the peripheral vasculature (VISION) study. J Endovasc Ther. 2017;24(3):355–366. doi: 10.1177/1525870417701720
21. Waxman S, Dixon SR, L’Allier P, et al. In vivo validation of a Catheter-Based near-infrared spectroscopy system for detection of lipid core coronary plaques. JACC Cardiovascular Imaging. 2009;2(7):858–868. doi: 10.1016/j.jcmg.2009.05.001
22. Voros S, Rinherat S, Qian Z, et al. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency Backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the Atlanta assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques (I study. JACC Cardiovascular Interv. 2011;4(2):198–208. doi: 10.1016/j.jcin.2010.10.008
23. Broersen A, de Graaf MA, Eggermont J, et al. Enhanced characterization of calcified areas in intravascular ultrasound virtual histology images by quantification of the acoustic shadow: validation against computed tomography coronary angiography. Int J Cardiovasc Imaging. 2016;32(4):543–552. doi: 10.1007/s10554-015-0820-x
24. Brugaletta S, Garcia-Garcia HM, Serruys PW, et al. Nirs and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. JACC Cardiovascular Imaging. 2011;4(6): 647–655. doi: 10.1016/j.jcmg.2011.03.013
25. Stéchovský C, Hájek P, Horváth M, et al. Near-Infrared spectroscopy combined with intravascular ultrasound in carotid arteries. Near-Infrared spectroscopy combined with intravascular ultrasound in carotid arteries. Int J Cardiovasc Imaging. 2016;32(1):181–188. doi: 10.1007/s10554-015-0687-x
26. Yin D, Matsumura M, Rundback J, et al. Comparison of plaque morphology between peripheral and coronary artery disease (from the clarity and ADAPT-DES IVUS substudies. Coron Artery Dis. 2017;28(5):369–375. doi: 10.1097/MCA.0000000000000469
27. Mitchell C, Korcacz CE, Gepner AD, et al. Ultrasound carotid plaque features. cardiovascular disease risk factors and events: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2018;276:195–202. doi: 10.1016/j.atherosclerosis.2018.06.005
28. Lal BK, Hobson RW, Pappas PJ, et al. Pixel distribution analysis of B-mode ultrasound scan images predicts histologic features of atherosclerotic carotid plaques. J Vasc Surg. 2002;35(6):1210–1217. doi: 10.1067/mva.2002.122888
29. Finn AV, Kolodgie FD, Virmani R. Correlation between carotid intimal/medial thickness and atherosclerosis: a point of view from pathology. Arterioscler Thromb Vasc Biol. 2010;30(2):177–181. doi: 10.1161/ATVBAHA.108.173609
30. Stein JH, Korcacz CE, Hurst RT, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of echocardiography carotid intima-media thickness Task force endorsed by the Society for vascular medicine. J Am Soc Echocardiogr. 2008;21(2):93–111. doi: 10.1016/j.echo.2007.11.011
31. Huang R, Abdelmoniem SS, Ball CA, et al. Detection of carotid atherosclerotic plaque neovascularization using contrast enhanced ultrasound: a systematic review and meta-analysis of diagnostic accuracy studies. J Am Soc Echocardiogr. 2016;29(6):491–502. doi: 10.1016/j.echo.2016.02.012
32. Mirza TA, Karthikesalingam A, Jackson D, et al. Duplex ultrasound and contrast-enhanced ultrasound versus computed tomography for the detection of endoleak after EVAR: systematic review and bivariate meta-analysis. Eur J Vasc Endovasc Surg. 2010;39(4):418–428. doi: 10.1016/j.ejvs.2010.01.001
33. Moneta GL, Edwards JM, Chitwood RW, et al. Correlation of North American Symptomatic Carotid Endarterectomy Trial (NASCET) angiographic definition of 70% to 99% internal carotid artery stenosis with duplex scanning. J Vasc Surg. 1993;17(1): 152–159. doi: 10.1016/0741-5214(93)90019-I
40. Mitchell CR, White Jr JW, Kurz AJ, et al. Hemorrhage in the carotid plaque: a high-resolution MRI study. Stroke. 2016;47(8):2201–2216. doi: 10.1161/STROKEAHA.116.014875

41. Saxena S, Salavati A, Houshmand S, et al. Assessment of atherosclerosis in large vessel walls: a comprehensive review of FDG-PET/CT image acquisition protocols and methods for uptake quantification. J Nucl Cardiol. 2015;22(3):468–479. doi: 10.1007/s12350-015-0069-8

42. Yamao H, Hattori A, Ito Y, et al. Inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18F-fluorine-Labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol. 2011;58(6):603–614. doi: 10.1016/j.jacc.2011.03.044

43. Menezes LJ, Kotze CW, Agu O, et al. Investigating vulnerable atheroma using combined 18F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation. J Nucl Med. 2011;52(11):1699–1703. doi: 10.2967/jnumed.110.079724

44. Wykrzykowska J, Lehmans S, Williams G, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50(4):563–568. doi: 10.2967/jnumed.108.055616

45. Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107(19):2453–2458. doi: 10.1161/01.CIR.000008315.98705.CC

46. Richards JM, Semple SJ, MacGillivray TJ, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide. Circulation. 2011;123(18):2437–2445. doi: 10.1161/CIRCULATIONAHA.110.959866

47. Trivedi RA, U-King-Im J-M, Graves MJ, et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide–enhanced MRI. 2004;35(7):1631–1635. doi: 10.1161/01.STR.0000131268.50418.b7

48. McBride OM, Berry C, Burns P, et al. MRI using ultrasmall superparamagnetic particles of iron oxide in patients under surveillance for abdominal aortic aneurysms to predict rupture or surgical repair: MRI for abdominal aortic aneurysms to predict rupture or surgery — the MA 3 RS study. Open Heart. 2015;2(1):e000190. doi: 10.1136/openhrt-2014-000190

49. Neubauer S. Cardiac magnetic resonance spectroscopy. Curr Cardiol Rep. 2003;5(1):75–82. doi: 10.1007/s11886-003-0041-0

50. Zajic J, Pearlman JD, Merickel MB, et al. High-Resolution proton NMR spectra of human arterial plaque. Biochem Biophys Res Commun. 1987;149(2):437–442. doi: 10.1016/0006-291X(87)90386-X

51. Xin L, Lanz B, Lei H, Gruetter R. Assessment of metabolic fluxes in the mouse brain in vivo using 11 H-[13C] NMR Spectroscopy at 14.1 Tesla. J Cereb Blood Flow Metab. 2015;35(5):759–765. doi: 10.1038/jcbfm.2014.251

52. Deelchand DK, Moortele PF, Adriany G, et al. In vivo 1H NMR spectroscopy of the human brain at 9.4T: initial results. J Magn Reson. 2010;206(1):74–80. doi: 10.1016/j.jmr.2010.06.006

53. Gholami S, Salavati A, Houshmand S, et al. Assessment of atherosclerosis in large vessel walls: a comprehensive review of FDG-PET/CT image acquisition protocols and methods for uptake quantification. J Nucl Cardiol. 2015;22(3):468–479. doi: 10.1007/s12350-015-0069-8

54. Sokol RJ, Robb RA, Hirth J, et al. Inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18F-fluorine-Labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol. 2011;58(6):603–614. doi: 10.1016/j.jacc.2011.03.044

55. Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107(19):2453–2458. doi: 10.1161/01.CIR.000008315.98705.CC

56. Richards JM, Semple SJ, MacGillivray TJ, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide. Circulation. 2011;123(18):2437–2445. doi: 10.1161/CIRCULATIONAHA.110.959866

57. Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107(19):2453–2458. doi: 10.1161/01.CIR.000008315.98705.CC

58. Richards JM, Semple SJ, MacGillivray TJ, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide. Circulation. 2011;123(18):2437–2445. doi: 10.1161/CIRCULATIONAHA.110.959866

59. Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107(19):2453–2458. doi: 10.1161/01.CIR.000008315.98705.CC

60. Richards JM, Semple SJ, MacGillivray TJ, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide. Circulation. 2011;123(18):2437–2445. doi: 10.1161/CIRCULATIONAHA.110.959866

61. Terrin JM, Dweck MR, Evans NR, et al. Imaging atherosclerosis. Circ Res. 2016;118(4):750–769. doi: 10.1161/CIRCRESAHA.115.305247

62. Dweck MR, Aikawa E, Newby DE, et al. Noninvasive molecular imaging of disease activity in atherosclerosis. J Nucl Med. 2015;56(12):1895–1900. doi: 10.2967/jnumed.106.563018

63. Dweck MR, Aikawa E, Newby DE, et al. Noninvasive molecular imaging of disease activity in atherosclerosis. J Nucl Med. 2015;56(12):1895–1900. doi: 10.2967/jnumed.106.563018

64. Dweck MR, Aikawa E, Newby DE, et al. Noninvasive molecular imaging of disease activity in atherosclerosis. J Nucl Med. 2015;56(12):1895–1900. doi: 10.2967/jnumed.106.563018

65. Dweck MR, Aikawa E, Newby DE, et al. Noninvasive molecular imaging of disease activity in atherosclerosis. J Nucl Med. 2015;56(12):1895–1900. doi: 10.2967/jnumed.106.563018
PET Imaging. J Am Coll Cardiol. 2017;69(14):1774–1791. doi: 10.1016/j.jacc.2017.01.040
65. Gaemperli O, Shalhoub J, Owen DR, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33(15):1902–1910. doi: 10.1093/eurheartj/het367
66. Weiberg D, Thackeray JT, Daum G, et al. Clinical molecular imaging of chemokine receptor cxcr4 expression in atherosclerotic plaque using 88Ga-Pentixafor PET: correlation with cardiovascular risk factors and calciﬁed plaque burden. J Nucl Med. 2018;59(2):266–272. doi: 10.2967/jnumed.117.196885
67. Derlin T, Sedding DG, Dutzmann J, et al. Imaging of chemokine receptor CXCR4 expression in culprit and non-culprit coronary atherosclerotic plaque using motion-corrected [68Ga]Pentixafor PET/CT. Eur J Nucl Med Mol Imaging. 2018;45(11):1934–1944. doi: 10.1007/s00259-018-4076-2
68. Vesey AT, Jenkins WS, Irlke A, et al. 18F-ﬂuoride and 18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: Case-Control study. Circ Cardiovasc Imaging. 2017;10(3):e004976. doi: 10.1161/CIRCIMAGING.116.004976
69. Joshi NV, Vesey AT, Williams MC, et al. 18F-ﬂuoride positron emission tomography for identiﬁcation of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383(9918):705–713. doi: 10.1016/S0140-6736(13)61754-7
70. Forsythe RD, Dweck MR, McBride OM, et al. 18F–Sodium fluoride uptake in abdominal aortic aneurysms: the SoFIA3 study. J Am Coll Cardiol. 2018;71(5):513–523. doi: 10.1016/j.jacc.2017.11.053
71. Mateo J, Izquierdo-Garcia D, Badimon JJ, et al. Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using 18 f-fluoromisonidazole positron emission tomographic imaging. Circulation. 2014;72(3):312–320. doi: 10.1161/CIRCIMAGING.113.001084
72. Joshi FR, Manavaki R, Fryer TD, et al. Imaging of hypoxia and inﬂammation in carotid atherosclerosis with 18F-fluoromisonidazole and 18F-fluorodeoxyglucose positron emission tomography. Circulation. 2013;128:A16673.
73. Winter PM, Morawski AM, Caruthers SD, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with avβ3-integrin-targeted nanoparticles. Circulation. 2003;108(18):2270–2274. doi: 10.1161/01.CIR.0000093185.16083.95
74. Haubner R, Kuhnast B, Mang C, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem. 2004;15(1):61–69. doi: 10.1021/bc034170n
75. Laitinen I, Saraste A, Weidt E, et al. Evaluation of avβ3 integrin-targeted positron emission tomography tracer 18F-Galacto-RGD for imaging of vascular inﬂammation in atherosclerotic MiceCLINICAL perspective. Circ Cardiovasc Imaging. 2009;2(4):331–338. doi: 10.1161/CIRCIMAGING.108.946865
76. Beer AJ, Pelsiek J, Heider P, et al. Pet/Ct imaging of integrin avβ3 expression in human carotid atherosclerosis. JACC Cardiovascular Imaging. 2014;7(2):178–187. doi: 10.1016/j.jcmg.2013.12.003
77. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385(9985):2383–2391. doi: 10.1016/S0140-6736(15)60291-4
78. Pugliese F, Mollet NR, Runza G, et al. Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol. 2006;16(3):575–582. doi: 10.1007/s00330-005-0041-0
79. Williams MC, Moss AJ, Dweck M, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol. 2019;73(3):291–301. doi: https://doi.org/10.1016/j.jacc.2018.10.066
80. Greenland P, LaBree L, Azen SP, et al. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291(2):210–215. doi: 10.1001/jama.291.2.210
81. Polonsky TS, McClelland RL, Jorgensen NW, et al. Coronary artery calcium score and risk classiﬁcation for coronary heart disease prediction. JAMA. 2010;303(16):1610–1616. doi: 10.1001/jama.2010.661
82. Schuerman AS, Vroegindewey M, Kardys I, et al. Near-Infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up. Eur Heart J. 2018;39(4):295–302. doi: 10.1093/eurheartj/ehx247
83. Dweck MR, Chow MW, Joshi NV, et al. Coronary arterial 18F–Sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(17):1539–1548. doi: 10.1016/j.jacc.2011.12.037
84. Dalm VA, van Hagen PM, van Koetsveld PM, et al. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells. Am J Physiol Endocrinol Metab. 2003;285(2):E344–E353. doi: 10.1152/ajpendo.00048.2003
85. Gasecki AP, Elaiiszow M, Ferguson GG, et al. Long-term prognosis and effect of endarterectomy in patients with symptomatic severe carotid stenosis and contralateral carotid stenosis or occlusion: results from NASCET. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. J Neurosurg. 1995;83(5):778–782. doi: 10.3171/jns.1995.83.5.0778
86. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European carotid surgery trial (ECST). Lancet. 1998;351(9113):1379–1387. doi: 10.1016/S0140-6736(97)09292-1
87. Rothwell PM, Elaiiszow M, Gustinok SA, et al. Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet. 2004;363(9413):915–924. doi: 10.1016/S0140-6736(04)15785-1
88. Bates CP, Naylor AR, Hartshorne T, et al. Joint recommendations for reporting carotid ultrasound investigations in the United Kingdom. Eur J Vasc Endovasc Surg. 2009;37(3):251–261. doi: 10.1016/j.ejvs.2008.10.015
89. Brott TG, Halperin JL, Abbara S, et al. ASA/ACCF/AHA/ANNS/ AANS/ACR/ASNR/CNS/SAIP/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: a report of the American College of cardiology Foundation/American heart association Task force on practice guidelines, and the American stroke association, American association of neuroscience nurses, American association of neurological Surgeons, American College of radiology, American Society of Neuroradiology, Congress of neurological Surgeons, society of atherosclerosis imaging and prevention, Society for cardiovascular angiography and interventions, society of interventional radiology, society of NeuroInterventional surgery, Society for vascular medicine, and Society for vascular surgery
developed in collaboration with the American Academy of Neurology and society of cardiovascular computed tomography, J Am Coll Cardiol. 2011;57(8):e16–94. doi: 10.1016/j.jacc.2010.11.006
98. Spence JD, Naylor AR, Endarterectomy NA. Endarterectomy, stenting, or neither for asymptomatic carotid-artery stenosis. N Engl J Med. 2016;374(11):1087–1088. doi: 10.1056/NEJMe1600123
99. Okazaki S, Yokoyama T, Miyachi K, et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the establish study. Circulation. 2004;110(9):1061–1068. doi: 10.1161/01.CIR.0000140261.58966.A4
100. Underhill HR, Yuan C, Zhao XQ, et al. Effect of rosvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am Heart J. 2008;155(3):584, e1–584.e8. doi: 10.1016/j.ahj.2007.11.018
101. Zhao XQ, Dong L, Hatsukami T, et al. Mrim imaging of carotid plaque composition during lipid-lowering therapy: a prospective assessment of effect and time course. JACC Cardiovasc Imaging. 2011;4(9):977–986. doi: 10.1016/j.jcmg.2011.06.013
102. Tang TY, Howarth SP, Miller SR, et al. The atheroma (atorvastatin therapy: effects on reduction of macrophage activity) study: evaluation using ultrasmall superparamagnetic iron oxide–enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039–2050. doi: 10.1016/j.jacc.2009.03.018
103. Schoenhagen P, Tuzcu EM, Apperson-Hansen C, et al. Determinants of arterial wall remodeling during lipid-lowering therapy: serial intravascular ultrasound observations from the reversal of atherosclerosis with aggressive lipid lowering therapy (reversal) trial. Circulation. 2006;113(24):2826–2834. doi: 10.1161/CIRCULATIONAHA.105.585703
104. Zimmarino M, Angeramo F, Prasad A, et al. Reduction of atherothrombotic burden after stent deployment in non-ST elevation acute coronary syndromes: reduction of myocardial necrosis achieved with nose-dive manual thrombus aspiration (remnant) trial. A volumetric intravascular ultrasound study. Cathet Cardiovasc Intervent. 2016;88(5):716–725. doi: 10.1002/ccd.26301
105. Fayad ZA, Mani V, Woodward M, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378(9802):1547–1559. doi: 10.1016/S0140-6736(11)61383-4

Authors’ Info

* Maaz B.J. Syed; address: 49 Little France Crescent, Edinburgh EH16 4SB, UK; ORCID: https://orcid.org/0000-0003-0530-8306; e-mail: maaz.syed@ed.ac.uk

Alexander J. Fletcher; ORCID: https://orcid.org/0000-0001-9984-8391

Rachael O. Forsythe; ORCID: https://orcid.org/0000-0002-3311-9599

Jakub Kaczynski; ORCID: https://orcid.org/0000-0002-3005-6860

David E. Newby; ORCID: http://orcid.org/0000-0001-7971-4628

Marc R. Dweck; ORCID: https://orcid.org/0000-0001-9847-5917

Edwin J.R. van Beek; ORCID: https://orcid.org/0000-0002-2777-5071

* Автор, ответственный за переписку / Corresponding author

DOI: https://doi.org/10.17816/DD71633