Some matrix inequalities related to J_S– normal matrices

K. Jaikumar1* and K. Sindhu2

Abstract
In this paper, we introduced the concept of # partial ordering and derived some results related to J_S– Normal matrices.

Keywords
partial ordering, J_S– normal, J_S– unitary matrices, J_S– eigen values.

AMS Subject Classification:
15B99, 15A24

12P.G and Research Department of Mathematics, A.V.C.College(Autonomous)(Affiliated to Bharathidasan University,Trichy), Mannampandal, Mayiladuthurai,Tamil Nadu, India.

*Corresponding author: 1 drkjkavcc@gmail.com

Article History: Received 01 February 2020; Accepted 29 March 2020

Contents
1 Introduction .. 448
2 Main Results ... 448
References .. 450

1. Introduction

The J_S– Normal matrices and results related to J_S Normal matrices was introduced and discussed in [1-4]. Here we extended this results of [5] in this context of J_S– Normal matrices.

Definition 1.1. The # partial order denoted by $\leq#$ is a relation on \mathbb{C} defined by $A \leq# B$ if there exists a $A^#A = A^#B$.

Notation 1.2. Let $M_n(\mathbb{C})$ be the $n \times n$ matrices over the complex field; \mathcal{N}_{J_S} be the set of all J_S normal matrices; \mathcal{U}_{J_S} be the set of all J_S unitary matrices; \mathcal{D} be the set of all diagonal matrix and throughout this paper D is a nonsingular diagonal matrix.

2. Main Results

Theorem 2.1. Let $A,B \in \mathcal{N}_{J_S}$ with $1 \leq \text{rank}(A) \leq \text{rank}(B)$. Then the following conditions are equivalent.

1. $A \leq# B$

2. There is a matrix $U \in \mathcal{U}_{J_S}$ such that $U^#AU = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}, U^#BU = \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix}$ with $E \neq 0$, is a diagonal matrix.

3. There is a matrix $U \in \mathcal{U}_{J_S}$ such that $U^#AU = \begin{pmatrix} F & 0 \\ 0 & 0 \end{pmatrix}, U^#BU = \begin{pmatrix} F & 0 \\ 0 & G \end{pmatrix}$, where F is a nonsingular square matrix and $G \neq 0$.

4. If a matrix $U \in \mathcal{U}_{J_S}$ satisfies $U^#AU = \begin{pmatrix} F & 0 \\ 0 & 0 \end{pmatrix}$, $U^#BU = \begin{pmatrix} F' & 0 \\ 0 & G \end{pmatrix}$, where F is a square matrix with $|F| \neq 0$, F' is a square matrix of the same order, and $G \neq 0$ then $F = F'$.

5. If a matrix $U \in \mathcal{U}_{J_S}$ satisfies $U^#AU = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, $U^#BU = \begin{pmatrix} D' & 0 \\ 0 & E \end{pmatrix}$, where $D' \in \mathcal{D}$ and of the same order and $E \neq 0$, is a diagonal matrix, then $D = D'$.

6. If a matrix $U \in \mathcal{U}_{J_S}$ satisfies $U^#AU = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, then $U^#BU = \begin{pmatrix} D & 0 \\ 0 & G \end{pmatrix}$, where $G \neq 0$.

7. All J_S– eigen vectors corresponding to nonzero J_S– eigen values of A are J_S– eigen vector of B corresponding to the same J_S– eigen values.
Proof. We split the proof of the theorem into four parts.

Part 1: (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2): Assume (1). Then by normality, \(A^*B = BA^* \) and therefore simultaneously diagonalizable. Since \(A^\# \) and \(A \) have the same \(J_5 \) eigen vectors, also \(A \) and \(B \) are simultaneously diagonalizable, then \(AB = BA \).

Suppose, let \(D' \in D \) of \(B \) there exist a matrix \(U \in \mathcal{U}_{J_5} \) such that \(A = U \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} U^*, B = U \begin{pmatrix} D' & 0 \\ 0 & E \end{pmatrix} U^* \), where \(D \in D \) and \(|D| \neq 0, E \neq 0 \). Now, \(A^* = U \begin{pmatrix} D^* & 0 \\ 0 & 0 \end{pmatrix} U^* \). Therefore,

\[
A^*A = U \begin{pmatrix} D^*D & 0 \\ 0 & 0 \end{pmatrix} U^* \tag{2.1}
\]

and

\[
AB = U \begin{pmatrix} D^*D' & 0 \\ 0 & 0 \end{pmatrix} U^* \tag{2.2}
\]

From 2.1 and 2.2 we get \(A^*A = A^*B \) implies \(D^*D = D^*D' \) implies \(D = D' \). Therefore, \(D \in D \) with \(|D| \neq 0 \) and \(D' \in D \) and of the same order and \(E \neq 0 \).

(2) ⇒ (3): Trivial.

(3) ⇒ (1): Direct calculation

Part 2: (1) ⇒ (4) ⇒ (5) ⇒ (1)

This is a trivial modification of part-1.

Part 3: (2) ⇒ (6).

(2) ⇒ (6): Assume (2),

Let \(U \in \mathcal{U}_{J_5} \) satisfies \(U^*AU = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \).

By (b), \(\exists V \in \mathcal{U}_{J_5} \) such that \(V^*AV = \begin{pmatrix} D' & 0 \\ 0 & E \end{pmatrix} \). Interchanging the columns of \(V \) if necessary, we assume \(D = D' \). Let \(U = (U_1U_2) \) be such a partition that,

\[
U^*AU = \begin{pmatrix} U_1^*AU_1 & U_1^*AU_2 \\ U_2^*AU_1 & U_2^*AU_2 \end{pmatrix} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \tag{2.3}
\]

Then, for the corresponding partition \(V = (V_1V_2) \) we have

\[
V^*AV = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \tag{2.4}
\]

and

\[
V^*BV = \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} \tag{2.5}
\]

Noting that, \((4) \Rightarrow A = V \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} V^* \)

\[
(5) \Rightarrow B = V \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} V^*
\]

\[
U^*BU = U^*V \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} V^*U
\]

\[
U^*BU = U^*V \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} V^*U
\]

\[
U^*BU = \begin{pmatrix} U_1^*V_1 & U_2^*V_1 \\ U_1^*V_2 & U_2^*V_2 \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} V_1^*V_2 \tag{2.2}
\]

By the normality condition,

\[
U^*BU = \begin{pmatrix} U_1^*V_1 & U_2^*V_1 \\ U_1^*V_2 & U_2^*V_2 \end{pmatrix} V_1^*V_2 \tag{2.2}
\]

Since \(U_1^*AU_1 = D \) let us take \(U_2^*V_2E_2V_2U_2 = G, G \neq 0 \).

Therefore, \(U^*BU = \begin{pmatrix} D & 0 \\ 0 & G \end{pmatrix} \), where \(D \) is a nonsingular and \(G \neq 0 \).

Hence the proof (6).

(6) ⇒ (2): Assume(6), Let \(U \in \mathcal{U}_{J_5} \) such that \(U^*AU = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \). Then by (6) \(U^*BU = \begin{pmatrix} D & 0 \\ 0 & G \end{pmatrix} \), where \(G \neq 0 \). Since \(G \in \mathcal{N}_{J_5} \), \(\exists W \in \mathcal{U}_{J_5} \) such that \(E = W^*GW \in D \).

Let \(V = U \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow V^* = V \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \)

Then, \(V^*AV = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \) and \(V^*BV = \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} \)

Hence the proof (2).

Part 4: (1) ⇔ (7).

Proof is obvious.

Theorem 2.2. Let \(A, B \in \mathcal{N}_{J_5} \) and \(A \preceq B \), then \(A \) and \(B \) commutes.

Proof. Let \(A, B \in \mathcal{N}_{J_5} \). Then \(AA^* = A^*A \) and \(BB^* = B^*B \).

Let, \(U^*AU = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \) and \(U^*BV = \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} \).

\(\Rightarrow A = U \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} U^* \) and \(B = U \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} U^* \)

\(\Rightarrow A^* = U \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} U^* \)

Therefore, \(A^*A = A*B = U \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} U^* \Rightarrow A \preceq B \).

Similarly, we can prove \(AB = BA \).

Theorem 2.3. Let \(A, B \in \mathcal{N}_{J_5} \) with \(1 \leq \text{rank}(A) < \text{rank}(B) \). Then
1. \(A \preceq^h B \) is equivalent to the following.

2. \(A^2 \preceq^h B^2 \) and if \(A \) and \(B \) have nonzero \(J_S \) eigen values \(\alpha \) and respectively \(\beta \) such that \(\alpha^2 \) and \(\beta^2 \) are \(J_S \) eigen values of \(A^2 \) and respectively \(B^2 \) with common \(J_S \) eigenvector of \(A \) and \(B \).

Proof. Assume (1) \(A \preceq^h B \Rightarrow A^h A = A^h B \).

Let \(U \in U_{2n} \) such that
\[
U^h A U = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad U^h B U = \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix}
\]
and also, by the (2).1 of (2), \(U^h A^2 U = \begin{pmatrix} D^2 & 0 \\ 0 & 0 \end{pmatrix} \) and \(U^h B^2 U = \begin{pmatrix} D^2 & 0 \\ 0 & E^2 \end{pmatrix} \)

\(\alpha \) and \(\beta \) have nonzero \(J_S \) eigen values of \(A \) and \(B \) respectively. Therefore \(\alpha^2 \) and \(\beta^2 \) nonzero \(J_S \) eigen values of \(A^2 \) and \(B^2 \) respectively. Suppose, \(X \) be the common \(J_S \)-eigenvector of \(A^2 \) and \(B^2 \), then \(\alpha = \beta \) and \(X \) is a common \(J_S \) eigenvector of \(A \) and \(B \).

Conversely, Assume (2). Then \(U^h A^2 U = \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} \) and
\[
U^h B^2 U = \begin{pmatrix} \Delta & 0 \\ 0 & \Gamma \end{pmatrix}, \quad \text{where} \quad U, \Delta, \Gamma \text{ are matrices obtained by applying (2) of Theorem 2.1 to} \ A^2 \text{ and } B^2.
\]

Let \(u_{(i)} \) by the column vectors of \(U \) and denote \(r = \text{rank}(A) \).

For \(i = 1, 2, 3, \ldots, r \), we have \(A^2 u_{(i)} = B^2 u_{(i)} = \delta_{(i)} u_{(i)} \), where \(\delta_{(i)} = \text{diag} A \).

So by the second part of (1), there exist complex numbers \(d_{(i)} \) such that for all \(i = 1, 2, \ldots, r \). We have \(d_{(i)}^2 = \delta_{(i)} \) and \(A u_{(i)} = B u_{(i)} \).

Let \(D \) be the diagonal matrix with \(d_{(i)} = \text{diag} D \).

For \(i = r + 1, \ldots, n \), we have \(B^2 u_{(i)} = \gamma_{(i-r)} u_{(i)} \), where \(\gamma_{(i)} = \text{diag} G \). Take complex numbers \(e_{(1)}, \ldots, e_{(n-r)} \) satisfying \(e_{(i)}^2 = \gamma_{(i)} \), for \(i = 1, 2, \ldots, n - r \).

Let \(E \in D \) with \(e_{(i)} = \text{diag} E \).

Then \(U^h A U = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \) and \(U^h B U = \begin{pmatrix} D & 0 \\ 0 & E \end{pmatrix} \).

This equation satisfies condition (1). Therefore, \(A^2 \preceq^h B^2 \Rightarrow A \preceq^h B \).

\(\square \)

Corollary 2.4. Let \(A, B \in N_{J_S} \) whose all \(J_S \) eigen values have nonnegative real parts. Then \(A^2 \preceq^h B^2 \) if and only if \(A \preceq^h B \).

Theorem 2.5. Let \(A, B \in N_{J_S} \) with \(1 \leq \text{rank}(A) < \text{rank}(B) \).

Then

1. \(A \preceq^h B \) is equivalent to the following.

2. \(A^2 \preceq^h B^2 \) and if \(U^h A U = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \) and \(U^h B U = \begin{pmatrix} DH & 0 \\ 0 & E \end{pmatrix} \), where \(U \in U_{2n} \), \(D \in D \) with \(|D| \neq 0, H \in U_{2n} \) diagonal matrix and \(E \neq 0 \) is a diagonal matrix, then \(H = I \).

Proof. For (1)\(\Rightarrow \) the first part of (2), see the proof of Theorem 2.3. For (1)\(\Rightarrow \) the second part of (2), see (5) of Theorem 2.1.