THE QUATERNION GROUP HAS GHOST NUMBER THREE

FATMA ALTUNBULAK AKSU AND DAVID J. GREEN

Abstract. We prove that the group algebra of the quaternion group Q_8 over any field of characteristic two has ghost number three.

1. Introduction

The study of ghost maps in stable categories originated with Freyd’s generating hypothesis in homotopy theory [6], which is still an open question. In this paper we are concerned with ghosts in modular representation theory. Let G be a group and K a field of characteristic p. A map $f: M \to N$ in the stable category $\text{stmod}(KG)$ of finitely generated KG-modules is called a ghost if it vanishes under Tate cohomology, that is if $f_*: \check{H}^*(G, M) \to \check{H}^*(G, N)$ is zero. The ghost maps then form an ideal in $\text{stmod}(KG)$, and Chebolu, Christensen and Mináč [3] define the ghost number of KG to be the nilpotency degree of this ideal.

Determining the exact value of the ghost number is hard in all but the simplest cases. In [4], Christensen and Wang studied ghost numbers for p-group algebras. They gave conjectural upper and lower bounds for the ghost number of an arbitrary p-group, and also showed that the ghost number (over a field of characteristic two) of the quaternion group Q_8 is either three or four. In our earlier paper [1], we established most cases of their conjectural bounds. In this paper, we shall prove the following theorem.

Theorem 1.1. Let K be any field of characteristic two. Then the group algebra KQ_8 has ghost number three.

We claim therefore that every threefold ghost map $M \xrightarrow{f} N$ is stably trivial. To show this, we take any embedding $M \hookrightarrow I$ of M in a finitely generated KQ_8-module and show that f factors through I.

In Section 2 we recall Dade’s presentation of the group algebra KQ_8 and derive some properties of ghost maps, including the crucial Lemma 2.4. In Section 3 we recall a theorem of Kronecker which classifies the linear relations on a vector
space V. This leads us to the construction of the lift in Section 4. We have $I = KQ_8 \otimes_K V$ for some K-vector space V. As we may assume M to be projective-free, we have $M \subseteq J \otimes_K V$ for J the Jacobson radical $J = J(KQ_8)$. Since a threefold ghost kills $\text{soc}^3(M)$, it follows that f factors through $M/\text{soc}^3(M)$, which is a subspace of $(J/J^2) \otimes_K V \cong V^2$. That is, $M/\text{soc}^3(M)$ is a linear relation on V; and using Lemma 2.4 we are able to construct a lift for each indecomposable summand in its Kronecker decomposition, thus proving the theorem.

Acknowledgements The first author would like to thank the Institute for Mathematics of the University of Jena for their hospitality.

2. Ghost maps and Dade’s generators

We only need the following property of ghost maps.

Lemma 2.1 ([3], Proposition 2.1). Let G be a p-group, K a field of characteristic p, and $M \xrightarrow{f} N$ a ghost map between projective-free KG-modules. Then $\text{Im}(f) \subseteq \text{rad}(N)$ and $\text{soc}(M) \subseteq \ker(f)$. □

The next result is presumably well-known.

Lemma 2.2. Let G be a finite group, K/k a finite field extension, and $M \xrightarrow{f} N$ a map in $\text{stmod}(kG)$. If $K \otimes_k M \xrightarrow{\text{Id}_K \otimes f} K \otimes_k N$ is trivial in $\text{stmod}(KG)$, then f is trivial in $\text{stmod}(kG)$. Hence $\text{ghost number}(kG) \leq \text{ghost number}(KG)$.

Proof. As a map of k-vector spaces, inclusion $k \xrightarrow{i} K$ is a split monomorphism; let $K \xrightarrow{\pi} k$ be a splitting. Suppose that $\text{Id}_K \otimes f$ factors through a finitely generated KG-projective module P. Then $f = (\pi \otimes \text{Id}_N) \circ (\text{Id}_K \otimes f) \circ (i \otimes \text{Id}_M)$ also factors through P, which is also a finitely generated kG-projective module. The last part follows, since extending scalars preserves ghost maps. □

Consider now the quaternion group $Q_8 = \langle i, j \rangle$. Let K be a field of characteristic 2 which contains $\mathbb{F}_4 = \{0, 1, \omega, \bar{\omega}\}$. In [32, (1.2)], Dade defines $x, y \in J(KQ_8)$ by

$$x = \omega i + \omega j + ij \quad y = \bar{\omega} i + \omega j + ij.$$

He then shows that KQ_8 is the K-algebra generated by x, y with relations

$$x^2 = yxy \quad y^2 = xyx \quad xy^2 = y^2x = x^2y = yx^2 = 0.$$

Hence $1, x, y, xy, yx, xyx, xyy, yxy$ is a K-basis of KQ_8.

Notation. From now on, we write $R = KQ_8$ and $J = J(R) = \text{rad}(R) = \langle x, y \rangle \trianglelefteq R$.

Lemma 2.3. Suppose that $[t + J^2(R)] \in \mathbb{P}(J/J^2)$ is neither $[x + J^2]$ nor $[y + J^2]$. Then for all R-modules M, the map $\text{rad}(M) \rightarrow \text{rad}^2(M)$, $m \mapsto tm$ is surjective.
Proof. It is enough to prove the case $M = R$; and by Nakayama it suffices to prove that the map $J/J^2 \rightarrow J^2/J^3$, $r \mapsto tr + J^3$ is surjective. As J/J^2 and J^2/J^3 are both two-dimensional, $r \mapsto tr$ is surjective if and only if it is injective.

If $t \in ax + \beta y + J^2(R)$ and $r \in \lambda x + \mu y + J^2(R)$ and then $tr \in \alpha \mu xy + \beta \lambda yx + J^3(R)$. So if $tr \in J^3$ then $\alpha \mu = 0 = \beta \lambda$. But the assumption on t means that α, β are both non-zero: so $r \in 0 + J^2$. \hfill \Box

Lemma 2.4. Suppose that $M \xrightarrow{f} N$ is a threefold ghost for KQ_8, with M, N projective-free. Embedding M in an injective module $R \otimes_K V$ for some K-vector space V, we have $M \subseteq J \otimes_K V$. Suppose further that $m \in M$ satisfies $m \in t \otimes v + J^2 \otimes_K V$ with $v \in V$ and $t \in \{x, y\}$. Then there is an $n \in N$ such that

$$f(m) = \begin{cases} xyxn & t = x \\ yxyn & t = y \end{cases}.$$

Proof. We treat the case $t = x$; the other case is analogous. Hence $m = x \otimes v + xyu + yxw$ for some $u, w \in R \otimes_K V$, and so $yxm = xyxyw \in \text{soc}(M)$. Let

$$M = N_0 \xrightarrow{f_0} N_1 \xrightarrow{f_2} N_2 \xrightarrow{f_3} N_3 = N$$

be a realisation of f as a threefold ghost, with N_1 and N_2 projective-free. Recall from Lemma 2.3 that $\text{soc}(N_{i-1}) \subseteq \text{ker}(f_i)$ and $\text{Im}(f_i) \subseteq \text{rad}(N_i)$.

Since $\text{soc}(M) \subseteq \text{ker}(f_1)$ it follows that $yx f_1(m) = 0$. As $\text{Im}(f_1) \subseteq \text{rad}(N_1)$ there are $\alpha, \beta \in N_1$ with $f_1(m) = xa + y \beta$. Since $yx f_1(m) = 0$, we deduce that $xy \beta = 0$ and hence $xy \beta \in \text{soc}(N_1) \subseteq \text{ker}(f_2)$.

Therefore $yx f_2(\beta) = 0$. But $\text{Im}(f_2) \subseteq \text{rad}(N_2)$, and so $f_2(\beta) = x \gamma + y \delta$ with $\gamma, \delta \in N_2$. From $yx f_2(\beta) = 0$ it follows that $xy \gamma = 0$, hence $yx \gamma \in \text{soc}(N_2) \subseteq \text{ker}(f_3)$ and $yx f_3(\gamma) = 0$. It follows that

$$f(m) = xf_3f_2(\alpha) + yxf_3(\gamma) + yxf_3(\delta) = xf_3f_2(\alpha),$$

since $f_3(\delta) \in \text{rad}(N)$ and therefore $yx f_3(\delta) \in \text{rad}^4(N) = 0$. So $f(m) = xny'$ for $n' = f_3f_2(\alpha) \in \text{rad}^2(N)$. But then $n' = xny_1' + yx n_2'$ for some $n_1', n_2' \in N$, and so $f(m) = xyn_1'$. \hfill \Box

3. Kronecker’s Theorem

Theorem 3.1 (Kronecker). Let K be a field, V a finite-dimensional K-vector space, and $L \subseteq V^2$ a subspace. Suppose further that the pair (V, L) is indecomposable, in the following sense: $V \neq 0$, and there is no proper direct sum decomposition $V = V_1 \oplus V_2$ such that $L = (L \cap V_1^2) \oplus (L \cap V_2^2)$. Then there is a basis e_1, \ldots, e_n of V such that one of the following cases holds:

1. L has basis $(e_1, 0), (e_2, e_1), (e_3, e_2), \ldots, (e_n, e_{n-1}), (0, e_n)$.
2. L either has basis $(e_1, 0), (e_2, e_1), (e_3, e_2), \ldots, (e_n, e_{n-1})$ or it has basis $(0, e_1), (e_1, e_2), (e_2, e_3), \ldots, (e_{n-1}, e_n)$.
3. L has basis $(e_2, e_1), (e_3, e_2), \ldots, (e_n, e_{n-1})$.

THE QUATERNION GROUP HAS GHOST NUMBER THREE
(4) \(L = \{(v, F(v)) \mid v \in V\} \) for an automorphism \(F \) of \(V \) which has indecomposable rational canonical form with respect to the basis \(e_1, \ldots, e_n \). A rational canonical form is indecomposable if it consists of only one block, whose characteristic polynomial is moreover a power of an irreducible element of \(K[X] \).

Proof. In the language of [2, p. 112], the assumptions say that \(L \) is an indecomposable linear relation on \(V \), which is the same thing as an indecomposable representation of the Kronecker quiver with \(\ker(a) \cap \ker(b) \neq 0 \). So the result can be read off from Kronecker’s Theorem (Theorem 4.3.2 of [2]): note that Case (i) in [2] corresponds to our cases (2) and (4). □

Corollary 3.2. For every subspace \(L \subseteq V^2 \) there is a direct sum decomposition \(V = \bigoplus_{i=1}^r V_i \) such that

1. \(L = \bigoplus_{i=1}^r L_i \) for \(L_i = L \cap V_i^2 \).
2. For each \(1 \leq i \leq r \) the pair \((V_i, L_i) \) is indecomposable in the sense of Theorem 3.1.

We write \((V, L) = \bigoplus_{i=1}^r (V_i, L_i) \). □

4. **Constructing the lift**

Recall that \(x + J^2, y + J^2 \) is a basis of \(J/J^2 \). Let \(V \) be a finite dimensional \(K \)-vector space. Then any submodule \(M \subseteq J \otimes_K V \) defines a subspace of \(V^2 \):

\[
L_{x,y}(M) := \{(u, v) \in V^2 \mid x \otimes u + y \otimes v \in M + J^2 \otimes_K V\}.
\]

The proof of the following result is then immediate.

Lemma 4.1. Let \(M \subseteq J \otimes_K V \). Then

1. \(\text{soc}^3(M) = M \cap (J^2 \otimes_K V) \).
2. Set \(L = L_{x,y}(M) \), and let \((V, L) = \bigoplus_{i=1}^r (V_i, L_i) \) be the direct sum decomposition of Corollary 3.2. If each \(L_i \) has basis \((u_{i1}, w_{i1}), \ldots, (u_{id_i}, w_{id_i}) \), then for any choice of elements

\[
m_{ij} \in M \cap (x \otimes u_{ij} + y \otimes w_{ij} + J^2 \otimes_K V),
\]

we have \(M = \text{soc}^3(M) + \sum_{i=1}^N M_i \), where \(M_i = \sum_{j=1}^{d_i} Rm_{ij} \). □

Proposition 4.2. For \(M \subseteq J \otimes_K V \) set \(L = L_{x,y}(M) \). Let \((V, L) = \bigoplus_{i=1}^r (V_i, L_i) \) be a decomposition into indecomposables. Suppose additionally that for each indecomposable pair \((V_i, L_i) \) which satisfies Case (i) of Theorem 3.1, the roots of the characteristic polynomial of the automorphism \(F \) all lie in \(K \).

Suppose further that \(N \) is projective-free. Then every threefold ghost \(M \xrightarrow{f} N \) extends to a map \(R \otimes_K V \xrightarrow{f'} \text{rad}^2(N) \).
Proof. Suppose first that the indecomposable \((V_i, L_i)\) satisfies Case (1) of Theorem 3.1. Then \(V_i\) has a basis \(e_1, \ldots, e_n\) such that \(L_i\) has basis \((0, e_1), (e_1, e_2), (e_2, e_3), \ldots, (e_{n-1}, e_n), (e_n, 0)\). By construction of \(L\), there are \(m_0, \ldots, m_n \in M\) such that \(m_j \in x \otimes e_j + y \otimes e_{j+1} + J^2 \otimes_K V\), where \(e_0 = e_{n+1} = 0\). Since \(\text{Im}(f) \subseteq \text{rad}^2(N)\) there are \(a_j, b_j \in N\) for \(0 \leq j \leq n\) such that
\[
f(m_j) = xy a_j + yx b_j;
\]
and by Lemma 2.4 we may take \(a_0 = b_n = 0\). We then define \(\bar{f}\) on \(R \otimes_K V_i\) by
\[
\bar{f}(1 \otimes e_j) = xy b_{j-1} + yx a_j.
\]
The two subcases of Case (2) are analogous to each other, so we only consider the case where \(L_i\) has basis \((0, e_1), (e_1, e_2), (e_2, e_3), \ldots, (e_{n-1}, e_n)\). This corresponds to the case \(f(m_n) = 0\) of Case (1) above, where we may take \(a_n = 0\).

Case (3) is even simpler: this time we have \(f(m_0) = f(m_n) = 0\) and therefore \(b_0 = a_n = 0\).

Case (4): By assumption, the matrix of \(F\) with respect to the basis \(e_1, \ldots, e_n\) of \(V_i\) is a rational canonical form which has only one block, and the minimal polynomial of this block is \((X - \lambda)^n\) for some \(\lambda \in K^*\). It follows that there is a basis \(e'_1, \ldots, e'_n\) of \(V_i\) with respect to which the matrix of \(F\) is the \((n \times n)\) Jordan block for the eigenvalue \(\lambda\). Consequently, \(L_i\) has basis
\[
(e_1', \lambda e_1'), \quad (e_j', e_{j-1}' + \lambda e_j')\quad \text{for } 2 \leq j \leq n.
\]
We may therefore pick elements \(m_1, \ldots, m_n \in M\) such that
\[
m_1 \in (x + \lambda y) \otimes e_1' + J^2 \otimes_K V
\]
\[
m_j \in y \otimes e_{j-1}' + (x + \lambda y) \otimes e_j' + J^2 \otimes_K V\quad \text{for } 2 \leq j \leq n.
\]
So since \(f(m_j) \in \text{rad}^2(N)\) for all \(j\), and since \([x + \lambda y + J^2] \text{ is neither } [x + J^2]\) nor \([y + J^2]\), Lemma 2.3 tells us that we can inductively pick \(\bar{f}(1 \otimes e_1'), \ldots, \bar{f}(1 \otimes e_n') \in \text{rad}^2(N)\) such that
\[
\bar{f}((x + \lambda y) \otimes e_1') = f(m_1)
\]
\[
\bar{f}((x + \lambda y) \otimes e_j') = f(m_j) + \bar{f}(y \otimes e_{j-1}')\quad \text{for } 2 \leq j \leq n.
\]
Treating each summand \((V_i, L_i)\) in this way we obtain a map \(\bar{f}: R \otimes_K V \to \text{rad}^2(N)\), which therefore satisfies \(\bar{f}(J^2 \otimes_K V) = 0\). It follows that all the equations above such as \(\bar{f}(x \otimes e_j + y \otimes e_{j+1}) = f(m_j)\) can be simplified to \(\bar{f}(m_j) = f(m_j)\). As \(f\) and \(\bar{f}\) are also both zero on \(\text{soc}^3(M) \subseteq J^2 \otimes_K V\), it follows by Lemma 4.1 that \(\bar{f}|_M = f\).

Proof of Theorem 1.1. By [3], the ghost number is at least three. So we have to show that every threefold ghost \(M \xrightarrow{f} N\) is stably trivial. Stripping projective summands if necessary, we may assume that \(M, N\) are projective free. Taking
an injective hull, we see that \(M \) embeds in \(R \otimes_K V \) for some finite-dimensional \(K \)-vector space \(V \). Since \(M \) is projective free, we actually have \(M \subseteq J \otimes_K V \).

By Lemma 2.2, we may replace \(K \) by a finite extension field: so we may assume that \(\mathbb{F}_4 \subseteq K \). Set \(L = L_{x,y}(M) \). Corollary 3.2 says that \((V, L)\) is a direct sum of indecomposables. Replacing \(K \) by a finite extension field again if necessary, we may assume in Case (1) of Theorem 3.1 that the characteristic polynomial of the automorphism \(F \) always splits over \(K \). By Proposition 4.2, it follows that \(f \) extends to a map \(\bar{f}: R \otimes_K V \rightarrow \text{rad}^2(N) \), meaning that \(f \) is stably trivial. \(\square \)

References

[1] F. Altunbulak Aksu and D. J. Green. On the Christensen–Wang bounds for the ghost number of a \(p \)-group algebra. *J. Group Theory*, accepted, 2015. arXiv:1502.05727 [math.GR].
[2] D. J. Benson. *Representations and Cohomology. I*. Cambridge Studies in Advanced Math., vol. 30. Cambridge University Press, Cambridge, second edition, 1998.
[3] S. K. Chebolu, J. D. Christensen, and J. Mináč. Ghosts in modular representation theory. *Adv. Math.*, 217(6):2782–2799, 2008.
[4] J. D. Christensen and G. Wang. Ghost numbers of group algebras. *Algebr. Represent. Theory*, 18(1):1–33, 2015.
[5] E. C. Dade. Une extension de la théorie de Hall et Higman. *J. Algebra*, 20:570–609, 1972.
[6] P. Freyd. Stable homotopy. In *Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965)*, pages 121–172. Springer, New York, 1966.

E-mail address: altunbulak@cankaya.edu.tr

DEPT OF MATHEMATICS AND COMPUTER SCIENCE, ÇANKAYA UNIVERSITY, ANKARA, TURKEY

E-mail address: david.green@uni-jena.de

INSTITUT FÜR MATHEMATIK, FRIEDRICH-SCHILLER-UNIVERSITÄT JENA, 07737 JENA, GERMANY