THE EXTREME TYPE I PLANETARY NEBULA M2-52

Miriam Peña and Selene Medina
Instituto de Astronomía, Universidad Nacional Autónoma de México

Received 2001; accepted 2002

RESUMEN

Se presentan los resultados obtenidos a partir de espectroscopía de alta resolución de la parte central de la nebulosa planetaria bipolar M2-52 que muestra un tipo morfológico Br. Hemos confirmado que M2-52 es una nebulosa de Tipo I de Peimbert, con un espectro rico en líneas de alto y bajo grado de ionización y un fuerte enriquecimiento de He y N. La composición química del gas ionizado es: He/H = 0.165 ± 0.010, O/H = (2.6 ± 0.5) × 10^{-4}, N/O = 2.3 ± 0.3, Ne/O = 0.37 ± 0.10, Ar/O = (9.2 ± 2.0) × 10^{-3} y S/O > 2.0 × 10^{-3}. La velocidad de expansión de la nebulosa es, en promedio, de 20 ± 2 km s^{-1} y varía ligeramente dependiendo del íon considerado.

ABSTRACT

High-resolution spectrophotometric data of the central zone of the Br-type planetary nebula M2-52 are presented. The nebula has a rich spectrum, with high and low excitation lines. The chemical composition derived from the spectra shows that He and N are very enhanced in M2-52. Thus, this object can be classified as an extreme Peimbert’s Type I PN. The chemical composition of the ionized gas is: He/H = 0.165 ± 0.010, O/H = (2.6 ± 0.5) × 10^{-4}, N/O = 2.3 ± 0.3, Ne/O = 0.37 ± 0.10, Ar/O = (9.2 ± 2.0) × 10^{-3} and S/O > 2.0 × 10^{-3}. The expansion velocity of the nebula is, on average, about 20 ± 2 km s^{-1}, but the low ionization species (N^+ and S^+) seem to show systematically slightly lower expansion velocities (18 km s^{-1}) than O^{++} and He^+ which have v_{exp} = 20 km s^{-1} while H^+ and He^{++} present v_{exp} ∼ 22 km s^{-1}. This behavior could indicate that the outer zones of the ionized gas are being decelerated by the molecular ring located around the central star.

Key Words: ISM: ABUNDANCES — ISM: KINEMATICS AND DYNAMICS — PLANETARY NEBULAE: INDIVIDUAL (M2-52)

1. INTRODUCTION

M2-52 (PN G 103.7+00.4) is a bipolar planetary nebula classified by Manchado et al. (1996) as a Br-type (bipolar with a ring) nebula. The nebula shows faint extensions beyond a central ring. According to Manchado et al. (1996) its dimensions are: total diameter of 60″ and central ring diameter of 23″. Acker et al. (1992) have reported a flux at Hβ, not corrected for reddening, F(Hβ) = 5.01 × 10^{-13} erg cm^{-2} s^{-1}; this flux was computed by assuming a diameter of 14″ for the whole nebula.

As other Br-type planetary nebulae (PNe) studied to the present, M2-52 has been found to have an important amount of molecular material in the ring. Guerrero et al. (2000) have found a large amount of H_2 with a total flux of F(H_2) = 1.98 × 10^{-12} erg cm^{-2} s^{-1}. The same authors established that, in comparison with the Brγ emission, M2-52 appears as an H_2-dominated PN, with a ratio F(H_2)/F(Brγ) = 8.6. In addition Zhang et al. (2000) have reported the detection of molecular CO(1–0) in this object, with an intensity corresponding to a molecular mass of about 0.085 M_⊙ if they assume a distance...
of 4.2 kpc. Guerrero et al. (2000) and Zhang et al. (2000) found that the molecular material is located in the ring and concentrated in two bright knots separated (from peak to peak) by about 7″. Zhang et al. derived a radial velocity of -63.2 km s$^{-1}$ for this object.

An expansion velocity of 7.5 km s$^{-1}$ has been measured by Sabbadin et al. (1985), by fitting two gaussian distributions to the [O III] 5007 line which appears single and broad.

Condon & Kaplan (1998) presented radio observations at 1.4 GHz of a great number of galactic planetary nebulae. For M2-52 they have reported a flux $S_\nu = 15.4 \pm 0.6$ mJy, which they combined with the total flux at Hβ to compute the logarithmic reddening correction at Hβ, obtaining a value of $c(H\beta) = 1.0$.

From optical spectroscopy, Kaler et al. (1996) found that M2-52 can be classified as a Peimbert’s Type I planetary nebula. Type I PNe are characterized for showing large He- and N-enrichment and presumably they evolve from the most massive PN progenitor stars. These objects are potentially an important source of He and N enrichment in the interstellar medium. A substantial fraction of Type I PNe shows bipolar morphology and a notorious filamentary structure (Peimbert 1978; Peimbert 1985 and references therein).

In this work we present high resolution spectrophotometric data for the central zone of M2-52 demonstrating that it is an extreme Type I planetary nebula, comparable to the outstanding NGC 2440 and NGC 2818. In section 2, we describe the observations and data reduction. The analysis of kinematics and photometric data is discussed in Section 3, and in Section 4 we present our results.

2. OBSERVATIONS AND DATA REDUCTION

Two high-resolution echelle spectra with exposure times of 10 min and 20 min, respectively, were obtained on 2000 November 2, with the 2.1-m telescope and the Thomson TH7398M CCD (2048×2048 pixels of $14\mu m \times 14\mu m$), at the Observatorio Astronómico Nacional (OAN), San Pedro Mártir, B.C., México. Slit dimensions were 4″ along the dispersion and 13.3″ along the spatial coordinate. The slit was E-W oriented, and the spectral range covered was from 3300 to 7300 Å, with a spectral resolution between 0.1 and 0.2 Å. Th-Ar comparison lamps were used for wavelength calibration and three standard stars from the list of Hamuy et al. (1992) were observed for flux calibration.

Due to the large extension of M2-52, our slit included only the central zone and part of the bright ring around the central star. The bipolar nature of M2-52 is evident in our bi-dimensional spectra. Figure 1 shows the structure of the [N II] 6583 emission line. The emission is extended, filling the slit along the spatial axis, and two bright knots are clearly detected, separated by 6.5″. The stellar continuum should be located between the knots, but the star is too faint to be detected in our echelle spectrum. All the nebular lines present in our spectrum show a similar structure, except He II 4686 for which the knots appear less defined. That is, the He II emission is more concentrated towards the central zone nearer the central star. The knotty structure we have detected agrees well with the morphology presented by Guerrero et al. (2000, see their Fig. 1b). The knots observed in [N II] almost coincide with the bright knots in H$_2$ found by them. Both emissions arise from the ring of the nebula.

Our bi-dimensional echelle spectra were bias-subtracted and flat-fielded using IRAF standard pro-
TABLE 1
OBSERVED AND DEREDDENED FLUXES OF M2-52, RELATIVE TO Hβ

Ion	λ	$f_λ$	$F_λ/F(\text{H}\beta)$	$I_λ/I(\text{H}\beta)$	$F_λ/F(\text{H}\beta)$	$I_λ/I(\text{H}\beta)$	$F_λ/F(\text{H}\beta)$	$I_λ/I(\text{H}\beta)$
[O II]	3726	0.256	0.42: 0.85:	0.56: 1.36:	0.50: 1.14:			
[O II]	3729	0.255	0.40: 0.81:	0.54: 1.30:	0.55: 1.25:			
[Ne III]	3869	0.223	0.90 1.67	1.02 2.16	0.93 1.91			
[Ne III]	3967	0.203	0.32 0.65					
[S II]	4069	0.178						
C II	4267	0.141						
Hγ	4340	0.125	0.34 0.47	0.30 0.46	0.32 0.46			
[O III]	4363	0.124	0.13 0.18	0.15 0.24	0.15 0.22			
He II	4686	0.042	0.83 0.93	0.75 0.87	0.72 0.83			
[Ar IV]	4711	0.039	0.11: 0.12:	0.12 0.13	0.09 0.10			
[Ne IV]	4725	0.035	0.02: 0.02:					
[Ar IV]	4741	0.031	0.09: 0.10:	0.10 0.11	0.08 0.08			
[O III]	4959	0.023	12.90 11.77	14.10 12.58	13.5 12.13			
[N I]	5200	0.073	0.11: 0.09:					
He II	5411	0.128	0.12 0.08	0.12 0.09	0.11 0.07			
[N II]	5755	0.185	0.22 0.13	0.40 0.21	0.34 0.19			
He I	5876	0.208	0.18 0.10	0.25 0.12	0.23 0.12			
[O I]	6300	0.284	0.14 0.06	0.25 0.09	0.36 0.14			
[S III]	6312	0.286	0.16 0.07	0.21 0.08	0.18 0.06			
Hα	6563	0.330	7.10 2.83	8.75 2.80	8.14 2.81			
[N II]	6583	0.335	15.14 6.00	27.92 8.78	23.90 8.13			
[S II]	6717	0.343	0.92 0.36	1.62 0.50	1.61 0.53			
[S II]	6731	0.344	0.92 0.35	1.69 0.52	1.61 0.53			
[Ar V]	7006	0.375	0.19 0.07	0.14 0.05	0.14 0.04			
[Ar IV]	7136	0.390	1.07 0.36	1.17 0.26	1.15 0.37			

$c(\text{H}\beta)$	$\log F(\text{H}\beta)$ (erg cm$^{-2}$ s$^{-1}$)
1.2±0.2	−14.00
1.5±0.2	−13.82
1.4±0.2	−13.25

Then we have proceeded to extract spectral data of three different zones: The central zone between the knots was extracted with an aperture of $4'' \times 3''$ (it would correspond to the zone nearest to the central star); the emission from the East knot was extracted with an aperture of also $4'' \times 3''$ and, finally, we extracted almost all the nebular emission in our slit, with an aperture of $4'' \times 13''$. Extracted spectra were wavelength and flux calibrated. Our procedures2 are average of the two observations.

In Table 1 we present the observed fluxes, $F_λ$, and the dedereddened fluxes, $I_λ$, relative to Hβ, for the most important lines detected in the three zones. The dedereddened fluxes were derived from the observed fluxes employing a logarithmic reddening correction at Hβ, $c(\text{Hβ})$, as derived for each zone, from the Balmer decrement by considering case B recombination theory (Hummer & Storey 1987). We used the reddening law given by Seaton (1979), which is listed in column 3 of Table 1 ($f_λ$). The values for $c(\text{Hβ})$ are given at the bottom of Table 1. In the

2IRAF is distributed by NOAO, which is operated by AURA, Inc., under contract with the NSF.
three regions we found similar reddening coefficients (within uncertainties), though it is interesting to notice that the knot presents a slightly larger reddening, probably due to the molecular material located near this region.

As expected from the ionization structure of photoionized nebulae, the line intensities of low ionization species appear larger in the knot, far from the central star, than in the central zone.

Uncertainties in line ratios were determined by comparing the measurements of our two spectra. In a general way, the uncertainties for lines with $F_\lambda/F(H\beta) \geq 0.2$ are better than 10% and improving with the line flux (for instance, the uncertainties for [O III] 5007 are about 3%). The exceptions are [O II] 3726 and 3729 for which uncertainties of about 20% are found. This is because the large reddening affecting M2-52 weakens the UV lines. Lines with $0.2 > F_\lambda/F(H\beta) > 0.05$ (such as the important [O III] 4363 and [N II] 5755), have uncertainties of about 20% and the uncertainties are larger for lines marked with a colon. The fluxes at $H\beta$, as measured with the different extraction apertures, are given at the end of Table 1.

Plasma diagnostics were performed from the emission line ratios in a standard way, using the same atomic data as listed in Stasińska & Leitherer (1996).

Electron densities were derived from [O II] 3726/3729, [S II] 6717/6731 and [Ar IV] 4711/4740 line ratios, electron temperatures were measured from [O III] 4363/5007 and [N II] 5755/6583 ratios. The density used for deriving the electron temperatures was that deduced from [S II] 6717/6731, which is more confident and equal within uncertainties to the density obtained from the [Ar IV] and [O II] lines.

The derived electron temperatures and densities are listed in Table 2, together with the errors based on the uncertainties of the line ratios described above. We do not find any systematic difference in the temperatures of the different regions. Temper-
atures and densities are equal in the central zone and the knot within uncertainties, although the knot could be slightly denser.

Ionic abundances were then obtained, for the three regions, using T[O III] for the high ionization species and T[N II] for the low ionization ones. Electron densities derived from [S II] 6717/6731 ratios were always used. The results are presented in Table 2, where we also indicate which emission line has been employed to derive the ionic abundance. No temperature fluctuations were considered in deriving the ionic abundances, therefore, they should be considered as lower limits of the true chemical abundances (See Peimbert et al. 1995 for a discussion of the effects of temperature fluctuations on chemical abundance determinations). However, due to the low density in the nebula, we do not expect very large deviations of the derived chemical abundances.

Elemental abundance ratios were computed from the ionic abundance ratios using the ionization correction factors of Kingsburgh & Barlow (1994). The abundance ratios He/H, O/H, N/O, Ne/O, S/H and Ar/H are given at the bottom of Table 2. The value for S/H is the addition of (S + S++)/H+, while the value for Ar/H is the addition of Ar++, Ar+3 and Ar+4 abundances, therefore only Ar/H can be considered a confident value. The error bars that are listed for O, N, Ne and Ar abundances take into account the uncertainties propagated from the uncertainties in the physical conditions (electron temperature and density).

3. DATA ANALYSIS AND DISCUSSION

3.1. Kinematics

Our echelle spectra have a resolution better than 10 km s⁻¹ in average, which is good enough to derive the radial and expansion velocities of the nebula. We find that the heliocentric radial velocity, as measured from all the available lines, is −73 ± 7 km s⁻¹, in good agreement with the values presented in previous works.

Analyzing the structure of [N II] 6583 line shown in Fig. 1, it is found that the knots, situated at each side of the central star, do not show a significant difference in velocity (they appear well aligned along the y axis) and the same is found for the other ions. If the knots belong to the ring which is forming the “waist” of the bipolar structure, as suggested by Guerrero et al. (2000), such a ring does not present important expansion nor rotation.

We have analyzed the line profiles of the ions present in the gas for the central zone spectra. All the lines appear single (not split) but well resolved and we have measured the FWHM of each line, proceeding then to subtract the instrumental width.

It is usual in the literature to interpret the separation of double-peak lines or the FWHM of single lines as expansion velocity of the nebular shell, although a certain amount of turbulence and other parameters like density and thermal structures, could also be contributing to the line shapes and widths. Gesicki et al. (1996) and Neiner et al. (2000) have demonstrated that for the case of PNe ionized by non-[WC] central stars (as the case of M2-52) the turbulent velocity field is negligible and the expansion velocity increases from high to low ionization species.

We have determined the expansion velocities of the different ions present in M2-52 from the FWHM of their lines. These values are listed in Table 3. The uncertainties in this table have been computed by taking into account the measurements, in both spectra, of the available emission lines for each ion.

ion	2νexp (km s⁻¹)
He II 4686,5411	45±4
He I 5876	38±7
[O III] 5007,4959	39±4
H I λλ6548,6583	45±4
[N II] 5755,6548,6583	36±3
[S II] 6717,6731	36±4

Within uncertainties all the ions present similar expansion velocities, and an average vexp ∼ 20 ± 2 km s⁻¹ could be adopted for the nebula. Nevertheless, it is notorious that low ionization species such as N⁺ and S⁺ show systematically lower expansion velocities (18 ± 3 km s⁻¹) than He⁺⁺ and H⁺, for which vexp ∼ 22±4 km s⁻¹. Also O⁺⁺ and He⁺ show lower expansion than He⁺⁺ and H⁺. This behavior is opposite to the one found by Gesicki et al. (1996) and Neiner et al. (2000) and should be verified with better resolution spectroscopic data. If real, it could be indicating that the less ionized zones of the nebula (where N⁺ and S⁺ are located) are being decelerated by the torus of molecular material around the central star. It would be interesting to verify if such a behavior is found in other Br-type PNe.

Our value of vexp for M2-52 is larger than the one reported by Sabbadin et al. (1985). This is due to the different methods employed for measuring. We have fit single gaussians to the line profiles because,
as we said before, the lines appear single and one
gaussian distribution is an adequate fit. Sabbadin et
al. (1985) have adjusted two gaussians to the single
profile, taking 2v_{exp} as equal to the difference in ve-
locity of the two maxima of both gaussians. Their
procedure produces a lower v_{exp}.

3.2. Ionic and total abundances

M2-52 shows an emission line pattern similar to
those of other Type I PNe, in the sense that high and
low ionization lines are present. We have detected
lines of Ar^+3 as well as of O^0 in the central zone and
also in the knot, although the knot presents a lower
excitation and the lines of low ionization species are
enhanced in this zone. This difference in excitation
is due to the normal ionization structure of a neb-
ula photoionized by a hot central star. The highly
ionized gas is closer to the star.

The ionization degree in M2-52 is very high, as it is
deduced by the large fraction of He twice ionized
(He^+/He = 0.50 in the knot and 0.56 in the cen-
ter). This indicates a high effective temperature for
the central star (certainly hotter than 80,000 K). Un-
fortunately the central star is faint and in our high-
resolution spectra we have not detected the stellar
emission, thus no Zanstra temperature could be de-

erived.

The elemental abundances of M2-52, presented in
Table 2, are equal within uncertainties in the central
zone and in the knot and, in the following, we will
adopt the values obtained for the whole nebula for
our analysis. As shown in Table 2, M2-52 is a very
He- and N-rich nebula. The high He/H ratio of 0.165
is one of the largest reported for Type I PNe and it is
only comparable to the values of NGC 2818 (Peim-
bert & Torres-Peimbert 1987) and He 2-111, the ex-

treme Type I PN reported by Kingsburgh & Barlow
(1994). Also the N/O ratio of 2.3 is one of the largest
reported, and it is similar to the large N/O value of
NGC 2440, considered as the prototype of Peim-
bert’s Type I PNe. For the latter nebula, Hyung
& Aller (1998) have computed a N/O ratio of 2.16,
which they consider that could be an artifact pro-
duced by an “abnormally” strengthened [N II] lines
in the blobs of NGC 2440. Other similarities between
M2-52, NGC 2818 and NGC 2440 are notorious, for
instance the electron temperatures are very similar
in these objects (Peimbert et al. 1995), indicating
similar heating and cooling processes. Also the mor-
phology of M2-52 is very similar to that of NGC 2818
and NGC 2440.

Comparing our values for M2-52 with those by
Kaler et al. (1996), we found that our line ratios and
physical conditions are similar to theirs, except for
the logarithmic reddening correction c(H\beta) for which
they derive a value of 1.6, larger than our 1.2 ± 0.2
for the center and 1.4 ± 0.2 for the whole nebula.
This discrepancy made that Kaler et al. have found
a lower N/O ratio, due to the larger extinction corre-
tion applied to their [O II] 3727 doublet. A value for
c(H\beta) can be estimated from the observed in-
tensity of Br\gamma (2.3 × 10^{-13} erg cm^{-2} s^{-1}) given by
Guerrero et al. (2000), relative to the total H\beta flux
given by Acker et al. (1992). By adopting a theo-
retical Br\gamma/H\beta ratio of 0.028 (Osterbrock 1989) and
a reddening correction factor for Br\gamma, f_{\lambda} = -0.901
(Cardelli et al. 1989) we have deduced c(H\beta) = 1.36,
in very good agreement with our value from the Bal-
mer decrement. Also our value of c(H\beta) is simi-
lar to the reddening reported by Condon & Kaplan
(1998) from radio observations of M2-52. Therefore
we are confident in our results.

As in other Type I PNe, the extreme He- and N-

enrichment in M2-52 indicate that the central star
experienced envelope-burning conversion to nitrogen
of primary carbon extracted during the third dredge-
up event. Unfortunately we were not able to deter-
mine the carbon abundance of M2-52, due to the
weakness of the C II 4267 emission line, for which
only an upper limit is given. It is possible that car-
bon is also enhanced in M2-52, as it is in NGC 2440
(Hyung & Aller 1998), due to the notorious simi-
larities between physical conditions and chemical com-
position in both nebulae.

4. CONCLUSIONS

The Br-type nebula M2-52 appears to be a high
excitation Type I PN with a rich spectrum includ-
ing high and low excitation lines. From high resolu-
tion spectrophotometry of the central zone, we have
found that the ionized shell shows an expansion ve-
locity of about 20 ± 2 km s^{-1}. The low ionization
species, however, seem to have slightly lower expan-
sion velocities than the high ionization ones. This
could indicate that the ring of molecular material,
detected around the central star, is decelerating the
expansion of the external zones of the ionized gas.
Better resolution spectroscopy is required to confirm
this result.

The physical conditions in the ionized gas are:
T[O III] = 14 600 ± 1 000 K, T[N II] = 12 500 ±
1 000 K, electron density ∼ 800 cm^{-3}, and the
classical composition is: He/H = 0.165±0.010, O/H
= (2.6±0.5)×10^{-4}, N/O = 2.3±0.3, Ne/O =
0.37±0.15, Ar/O = (9.2±2.0)×10^{-3}, and S/O
> 2.0×10^{-3}.
Our oxygen abundance for M2-52 is a relatively low value when compared with the O/H abundances derived for other Type I PNe by Peimbert et al. (1995). This is understandable when we consider that Peimbert et al. values include the effects of temperature fluctuations. On the other hand, the abundance ratios relative to oxygen are not as affected by this phenomenon because the ratios are not largely temperature dependent, therefore the N/O, Ne/O and Ar/O ratios are confident values. The large He/H and N/O ratios clearly establish that M2-52 is a Peimbert’s Type I PN presenting one of the largest He and N enrichments, similar to the values for NGC 2440 and NGC 2818. Neon and argon abundances in M2-52, relative to oxygen, are in very good agreement with the bulk of Type I PNe (Kingsburgh & Barlow 1994; Peimbert et al. 1995).

This work received partial support from DGAPA/UNAM (grant IN100799) and CONACYT (grant 35594-E). S.M. acknowledges scholarship from DGEP/UNAM and CONACYT.

REFERENCES
Acker A., Marcout J., Ochsenbein F., Stenholm B., Tylenda R. 1992, The Strasbourg-ESO Catalogue of Galactic Planetary Nebulae
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Condon, J. J., & Kaplan, D. L. 1998, ApJSS, 117, 361
Gesicki, K., Acker, A., & Szczerba, R. 1996, A&A, 309, 907
Guerrero, M. A., Villaver, E., Manchado, A., García-Lario, P., & Prada, F. 2000, ApJSS, 127, 125
Hamuy, M., Walker A. R., Suntzeff N. B., et al. 1992, PASP, 104, 533
Hummer, D. G., & Storey, P. J. 1987, MNRAS, 224, 609
Hyung, S., & Aller, L. H. 1998, PASP, 110, 466
Kaler, J. A., Kwitter, K. B., Shaw, R. A., & Browning, L. 1996, PASP, 108, 980
Kingsburgh, R. L., & Barlow, M. J. 1994, MNRAS, 271, 257
Manchado, A., Guerrero, M. A., Stanghellini, L., & Serradícart, M. 1996, The IAC Morphological Catalog of Northern Galactic Planetary Nebulae (Laguna: IAC)
Neiner, C., Acker, A., Gesicki, K, & Szczerba, R. 2000, A&A, 358, 321
Osterbrock, D. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: University Science Books)
Peimbert, M. 1978, in IAU Symp. No. 76, Planetary Nebulae: Observations and Theory, ed. Y. Terzian (Dordrecht: Reidel), 215
Peimbert, M. 1985, Rev. Mex. Astron. Astrof., 10, 125
Peimbert, M., & Torres-Peimbert, S. 1987, Rev. Mex. Astron. Astrof., 14, 540
Peimbert, M., Luridiana, V., & Torres-Peimbert, S. 1995, Rev. Mex. Astron. Astrof., 31, 147
Sabbadin, F., Ortolani, S., & Bianchini, A. 1985, MNRAS, 213, 563
Seaton, M. 1979, MNRAS, 185, 57p
Stasińska, G., & Leitherer, C. 1996, ApJS, 107, 661
Zhang H.-Y, Sun J., & Ping J.-S. 2000, Acta Astronomica Sinica, 41, 23