I. INTRODUCTION

The study of liquid-crystalline phases formed by banana-shaped molecules opens the door to generate polar directions in a partially or completely fluid system due to a collective alignment of the polar axis of the banana-shaped (or bent-core) molecules \(1\). So far, most of the liquid-crystalline phases formed by banana-shaped molecules are smectic \(2–6\), but there have also been a few reports of nematic phases in this area \(6–9\). In parallel, there has been a considerable amount of work in Watanabe’s group to generate polar nematic and cholesteric phases in liquid-crystalline polymers \(10–14\). Among the polar nematic phases, a nematic phase with a symmetry as low as \(C_{1h}\) (or \(C_{1}\)) was found \(13\) confirming earlier predictions about polar nematic phases with low symmetry \(15\).

About 25 years ago, there has already been an early effort to synthesize polar nematics in systems composed of fairly large plate-like molecules \(10\) (to avoid the flipping and thus to generate a lack of \(\hat{n} \rightarrow -\hat{n}\) symmetry, with \(\hat{n}\) being the average preferred direction usually called the director \(17\)). About the same time, compounds composed of pyramidal molecules were synthesized with the same goal \(18\), but clear-cut evidence for a polar nematic could not be provided in either case. This early work, however, triggered early modeling in the framework of a Ginzburg-Landau description \(19\) and it was pointed out that phases with defects, in particular with spontaneous splay, should play an important role in such systems. It was predicted that a phase with defects would occur first in the vicinity of the phase transition to the polar nematic phase.

In 2003 the group of Y. Tabe \(20\) found a two-dimensional polar nematic phase in Langmuir monolayers using the measurements of ferroelectric response and optical investigations in a low molecular weight compound composed of rod-like molecules. Very recently, there were two additional reports on a ferroelectric response of a nematic phase in three-dimensional samples in compounds composed of bent-core molecules \(21, 22\), but it is open whether the ferroelectric response was due to a field-induced reorganization of cybotactic clusters – as suggested by the authors – or due to a bulk polar nematic behavior of a phase containing defects of the type outlined above.

Triggered by the reports of nematic phases in banana-shaped molecules, a macroscopic description of polar nematic phases in three spatial dimensions was derived \(23, 24\). It turned out that the absence of parity symmetry leads in such a fluid system to a number of cross-coupling terms between the macroscopic polarization and the other hydrodynamic variables, both statically and in the dissipative dynamic regime. In addition, it was found, both for reversible as well as for irreversible dynamics, that there are new cross-coupling terms not present in typical liquid-crystalline systems not breaking parity symmetry, such as, for example, reversible dynamic cross-coupling terms between flow and temperature or concentration gradients.

Therefore, it is of high interest to have a more microscopic description evaluating the new cross-coupling terms quantitatively in order to aid synthesis of new materials for which corresponding effects can be substantial. In this paper we start such a program using a phase-field-crystal (PFC) model \(25–27\) to analyze the static behavior of polar phases in two spatial dimensions. This approach can be used as a bridge from microscopic to macroscopic modeling. We will systematically compare the results obtained from the PFC model to those obtained using symmetry based approaches such as the Ginzburg-Landau approach, a mean-field descrip-
tion of phase transitions neglecting fluctuations, and the approach of generalized hydrodynamics or macroscopic dynamics \[28\].

While in the former only variables are taken into account that lead to an infinite lifetime for excitations in the long wavelength limit, the approach of macroscopic dynamics also incorporates variables, which relax on a sufficiently long, but finite time scale in the limit of vanishing wave number. On realizing our program we strongly build on the foundations given for the static PFC model for nematics and other phases with orientational order in two \[29\] and three \[30\] spatial dimensions. In carrying out this program it turns out that it is of crucial importance for polar orientational order to go beyond the Ramakrishnan-Yussouff approximation \[29\], which is usually used in the area of PFC models. As a matter of fact many of the cross-coupling terms would not be obtained if the Ramakrishnan-Yussouff approximation were implemented. The proposed model can be used as a starting point to explore phase transitions and interfaces for various polar liquid-crystalline sheets, in particular including plastic and full crystalline phases where the translational density shows a strong ordering.

The paper is organized as follows: in Sec. \[\text{II}\] we derive a PFC model for polar liquid crystals. Then, in Sec. \[\text{III}\] we discuss the relation of the two symmetry-based approaches with the PFC model studied in Sec. \[\text{II}\] and show that many of the coefficients arising in the symmetry-based approaches can be linked to microscopic expressions via the PFC model. We finally discuss possible extensions of the model to more complicated situations and give final conclusions in Sec. \[\text{IV}\].

\section{Phase-Field-Crystal Model for Polar Liquid Crystals}

In general, a theory for polar liquid-crystalline phases can be constructed on three different levels. First of all, a full \emph{microscopic} theory where the particle interactions and the thermodynamic conditions are the only input is provided by classical density functional theory (DFT) \[30\]–\[32\]. DFT is typically used for isotropic particles \[29\], \[34\]–\[36\] but analogously holds for anisotropic particles \[30\]–\[33\]. The polar particles with the center-of-mass positions \(\vec{r}_i\) and orientations \(\hat{u}_i\) are supposed to interact in accordance with a prescribed pair-interaction potential \(V(\vec{r}_1 - \vec{r}_2, \hat{u}_1, \hat{u}_2)\). Typical examples include particles with an embedded dipole moment \[57\]–\[59\] modeled by a dipolar hard disk potential, colloidal pear-like particles \[60\]–\[62\] with corresponding excluded volume interactions, Janus particles \[62\]–\[63\] which possess two different sides, and asymmetric brush polymers modeled by Gaussian segment potentials \[64\].

We define the one-particle density field as

\[
\rho(\vec{r}, \hat{u}) = \left\langle \sum_{i=1}^{N} \delta(\vec{r} - \vec{r}_i) \delta(\hat{u} - \hat{u}_i) \right\rangle
\]

with the mean particle number density

\[
\bar{\rho} = \frac{N}{A},
\]

where

\[
\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int_A d^N \vec{r} \int_{S_1} d^N \hat{u} \; \mathcal{O} \; e^{-\beta \sum_{i<j=1}^{N} V(\vec{r}_i - \vec{r}_j, \hat{u}_i, \hat{u}_j)}
\]

is the classical canonical average of the observable \(\mathcal{O}\). Here, we introduced the notation \(d^n \vec{x} = d\vec{x}_1 \cdots d\vec{x}_n\) for an arbitrary vector \(\vec{x}\) and \(n \in \mathbb{N}\). \(\mathcal{Z}\) denotes the classical canonical partition function and guarantees correct normalization such that \(\langle 1 \rangle = 1\). Furthermore, \(\beta = 1/(k_B T)\) is the inverse temperature with the Boltzmann constant.
order-parameter fields are the reduced orientationally
less order-parameter fields where the Fourier series is truncated at second or-
uality that measures the local degree of orientational order. A collective ordering of a set of particles may lead to a macroscopic polarization whose local direction can be expressed by the space-dependent dimensionless unit vector \(\hat{p}(\vec{r}) = \hat{u}(\phi_0(\vec{r})) \), that is parametrized by a scalar order-parameter field \(\phi_0(\vec{r}) \).

Under the assumption of small anisotropies in the orient-
ition, it is now possible to expand the one-particle
density \(\rho(\vec{r}, \hat{u}) \) with respect to the angle \(\phi - \phi_0(\vec{r}) \) be-
tween the particular orientation \(\hat{u} \) and the macroscopic polarization \(\hat{p}(\vec{r}) \) into a Fourier series. Throughout this paper we will assume explicitly that the preferred direction associated with dipolar order, \(\hat{p} \), and the direction associated with quadrupolar order, \(\hat{n} \), are parallel. We will therefore use \(\hat{p} \) in the following. In general, these two types of order can be associated with two different preferred directions (compare, e.g., reference \([12]\)). The expansion with respect to orientation results in the approximation

\[
\rho(\vec{r}, \hat{u}) \approx \hat{p} \left(1 + \psi_1(\vec{r}) + P(\vec{r}) (\hat{p}(\vec{r}) \cdot \hat{u}) + S(\vec{r}) \left[(\hat{p}(\vec{r}) \cdot \hat{u})^2 - \frac{1}{2} \right] \right),
\]

(5)

where the Fourier series is truncated at second or-
der. Here, we introduced three additional dimension-
less order-parameter fields \(\psi_1(\vec{r}) \), \(P(\vec{r}) \), and \(S(\vec{r}) \). These order-parameter fields are the reduced orientationally averaged translational density

\[
\psi_1(\vec{r}) = \frac{1}{2\pi\hat{p}^2} \int_{S_1} d\hat{u} \left(\rho(\vec{r}, \hat{u}) - \hat{p} \right),
\]

(6)

the strength of the polarization

\[
P(\vec{r}) = \frac{1}{\hat{p}^2} \int_{S_1} d\hat{u} \rho(\vec{r}, \hat{u}) (\hat{p}(\vec{r}) \cdot \hat{u})
\]

(7)

and the nematic order parameter

\[
S(\vec{r}) = \frac{4}{\hat{p}^2} \int_{S_1} d\hat{u} \rho(\vec{r}, \hat{u}) \left((\hat{p}(\vec{r}) \cdot \hat{u})^2 - \frac{1}{2} \right)
\]

(8)

that measures the local degree of orientational order. The strength \(P(\vec{r}) \) of the polarization and the director \(\hat{p}(\vec{r}) \) are modulus and orientation of the polarization \(\hat{P}(\vec{r}) = P(\vec{r}) \hat{p}(\vec{r}) \). Note that for apolar particles \(P(\vec{r}) = 0 \) such that apolar particles result as a special limit from the present theory.

Now we refer to microscopic density functional theory which is typically formulated for spherical systems \([30, 32]\) but can also be constructed for anisotropic particle interactions (which dates back to Onsager \([33, 40]\). Density functional theory establishes the existence of a free-energy functional \(\mathcal{F}[\rho(\vec{r}, \hat{u})] \) of the one-particle density \(\rho(\vec{r}, \hat{u}) \) which becomes minimal for the equilibrium density. The total functional can be split into an ideal rotator gas functional and an excess functional:

\[
\mathcal{F}[\rho(\vec{r}, \hat{u})] = \mathcal{F}_{id}[\rho(\vec{r}, \hat{u})] + \mathcal{F}_{ex}[\rho(\vec{r}, \hat{u})].
\]

(9)

The ideal gas functional is local and nonlinear, it is ex-
actly given by

\[
\beta \mathcal{F}_{id}[\rho(\vec{r}, \hat{u})] = \int_{A} d\vec{r} \int_{S_1} d\hat{u} \rho(\vec{r}, \hat{u}) \left(\ln(\Lambda^2 \rho(\vec{r}, \hat{u})) - 1 \right)
\]

(10)

where \(\Lambda \) denotes the thermal de-Broglie-wavelength. The excess functional \(\mathcal{F}_{ex}[\rho(\vec{r}, \hat{u})] \) on the other hand, is in general (i.e., for a non-vanishing \(V(\vec{r}_1 - \vec{r}_2, \hat{u}_1, \hat{u}_2) \) unknown and approximations are needed. However, there is a formally exact expression gained from a functional Taylor expansion in the density variations \(\Delta \rho(\vec{r}, \hat{u}) = \rho(\vec{r}, \hat{u}) - \hat{p} \) around a homogeneous reference density \(\hat{p} \) \([30]\):

\[
\beta \mathcal{F}_{ex}[\rho(\vec{r}, \hat{u})] = \beta \mathcal{F}_{ex}^{(0)}(\hat{p}) - \sum_{n=2}^{\infty} \frac{1}{n!} \mathcal{F}_{ex}^{(n)}(\rho(\vec{r}, \hat{u}))
\]

(11)

with the \(n \)-th order contributions

\[
\mathcal{F}_{ex}^{(n)}[\rho(\vec{r}, \hat{u})] = \int_{A} d\vec{r} \int_{S_1} d\hat{u} c^{(n)}(\vec{r}, \hat{u}) \prod_{i=1}^{n} \Delta \rho(\vec{r}_i, \hat{u}_i).
\]

(12)

Here, \(c^{(n)}(\vec{r}, \hat{u}) \) denotes the \(n \)-particle direct correlation function, and the notation \(\vec{x} = (x_1, \ldots, x_n) \) for an arbitrary vector \(\vec{x} \) is used. The first term on the right-hand side of Eq. (11) corresponds to \(n = 0 \) and is an irrelevant constant that can be neglected. We remark that also the first-order term (\(n = 1 \) in Eq. (12)) vanishes since in a homo-
genous reference state \(c^{(1)}(\vec{r}_1, \hat{u}_1) \) must be constant due to translational and orientational symmetry.

For isotropic particles, various approximations based on expression (11) have been proposed. The theory of Ramakrishnan and Yussouff \([29]\) keeps only second-order terms in the expansion. This provides a microscopic theory for freezing both in three \([29]\) and two spatial dimensions \([63]\). More refined approaches include the third-order term \([60]\) with an approximate triplet direct correlation function \([63, 68]\), but a perturbative fourth-
order theory has never been considered. Complementary, non-perturbative approaches like the recently proposed fundamental-measure theory for arbitrarily shaped hard particles \([34]\) include direct correlation functions of arbitrary order.

We now insert the parametrization \([5] \) of the one-particle density into Eqs. (10) and (11) in order to ob-
tain a free-energy functional of the order-parameter fields \(\psi_1(\vec{r}), P(\vec{r}), S(\vec{r}), \text{ and } \hat{p}(\vec{r}) \). First, after inserting the density parameterization \([5] \) into the ideal gas functional (10), we expand the logarithm and truncate the expan-
sion of the integrand at fourth order. This order guar-
antees stabilization of the solutions (similar to the tradi-
tional Ginzburg-Landau theory of phase transitions).

Performing the angular integration results in the approxi-
mation

\[
\beta \mathcal{F}_{id}[\rho(\vec{r}, \hat{u})] \approx F_{id} + \pi \hat{p} \int_{A} d\vec{r} f_{id}
\]

(13)
with the local ideal rotator gas free-energy density

\[
 f_{id} = 2\psi_1 + \psi_1^2 - \frac{\psi_1^3}{3} + \frac{\psi_1^4}{6} + \frac{P_2^2}{2} - \psi_1 P_2 + \frac{\psi_2^2 P_2^2}{8} - \frac{P_2^4 S}{8} + \frac{\psi_1 P_2^3 S}{4} + \frac{P_4^4}{16} + \frac{S^2}{8} - \frac{\psi_1 S^2}{8} + \frac{\psi_2^2 S^2}{8} + \frac{P_2^2 S^2}{16} + \frac{S^4}{256}
\]

(14)

and the abbreviation

\[
 F_{id} = 2\pi \bar{\rho} A (\ln(\Lambda^2 \bar{\rho}) - 1)
\]

(15)

for a constant and therefore irrelevant term.

Secondly, we insert the density parametrization \(\psi_1^2\) into Eq. (11). We will truncate this expansion at fourth order. Since the \(n\)-th order direct correlation function \(c^{(n)}\) in Eq. (11) is not known in general, we expand it into a Fourier series with respect to its orientational degrees of freedom. By considering the translational and rotational invariance of the direct correlation function, we can use the parametrization \(c^{(n+1)}(\vec{R}, \phi_R, \phi)\) with \(\vec{R} = (R_1, \ldots, R_n)\), \(\phi_R = (\phi_{R_1}, \ldots, \phi_{R_n})\), and \(\phi = (\phi_1, \ldots, \phi_n)\) for the direct correlation function \(c^{(n+1)}\) to reduce its orientational degrees of freedoms from \(2n + 2 \rightarrow 2n\). Here, the new variables are related to the previous ones by \(\vec{r}_i - \vec{r}_{i+1} = R_i \vec{u}(\phi_{R_i})\), \(\vec{u}_i = \vec{u}(\phi_i)\), \(\phi_{R_i} = \phi_{1} - \phi_{R_{i-1}}\), and \(\phi_{i} = \phi_{1} - \phi_{i+1}\). With this parametrization, the Fourier expansion of the direct correlation function reads

\[
 c^{(n+1)}(\vec{R}, \phi_R, \phi) = \sum_{l, m_j = -\infty}^{\infty} c^{(n+1)}_l(\vec{R}) e^{i(l \phi_R + m \phi)}
\]

(16)

with the expansion coefficients

\[
 c^{(n+1)}_l(\vec{R}) = \frac{1}{(2\pi)^{2n}} \int_0^{2\pi} d\phi_R \int_0^{2\pi} d\phi \left(\hat{R}^{(n+1)}(\vec{R}, \phi_R, \phi) e^{-i(l \phi_R + m \phi)} \right)
\]

(17)

Next, we set \(A = \mathbb{R}^2\) and perform a gradient expansion \(23, 60, 72\) in the order-parameter fields. For the term \(12\) corresponding to \(n = 2\), this gradient expansion is performed up to fourth order in \(\psi_1^2(\vec{r})\) to allow stable crystalline phases and up to second order in all other order-parameter products, where we assume that the highest-order gradient terms ensure stability. However, for \(n = 3\) and \(n = 4\) we truncate the gradient expansion at first and zeroth order, respectively. This results in the components

\[
 F_{exc}^{(2)}[\psi_1, P, S, \bar{\rho}] \approx \int_{\mathbb{R}^2} d^2 r f_{exc}^{(2)}
\]

(18)

of the static excess free-energy functional. In this equation, the excess free-energy densities \(f_{exc}^{(n)}(\vec{r})\) are local and given by

\[
 f_{exc}^{(2)} = A_1 \psi_1^2 + A_2 \nabla^2 \psi_1 + A_3 (\Delta^2 \psi_1) + B_1 \psi_1 \nabla \cdot (\bar{\rho} P) + B_2 S \left(\nabla \cdot (\bar{\rho} \nabla P) - P \nabla \cdot (\bar{\rho} \nabla \hat{\psi}) \right) + B_3 \left(\nabla \psi \cdot \nabla S - 2 (\bar{\rho} \nabla \psi) \left(\nabla \cdot (\bar{\rho} \nabla P) - 2 S \nabla \psi \cdot (\bar{\rho} \nabla \hat{\psi}) \right) + P^2 \left(C_1 - C_2 (\bar{\rho} \cdot \nabla P) - C_3 (\bar{\rho} \cdot \nabla \hat{\psi}) \right) + C_2 (\nabla P)^2 + C_3 (\bar{\rho} \cdot \nabla P)^2 + S^2 \left(D_1 - 4 D_2 (\nabla \cdot (\bar{\rho} \nabla \hat{\psi})) \right) + D_2 (\nabla S)^2
\]

(19)

\[
 f_{exc}^{(3)} = E_1 \psi_1^3 + E_2 \psi_1 P^2 + E_3 \psi_1 S^2 + E_4 S P^2 + (F_1 \psi_1 + F_2 S) P (\nabla \psi \cdot \nabla P) + (2 F_3 \psi_1 S + F_4 P^2 + F_5 S^2) (\bar{\rho} \cdot \nabla P) + (F_3 \psi_1 + F_6 S) P (\bar{\rho} \cdot \nabla S)
\]

(20)

\[
 f_{exc}^{(4)} = G_1 \psi_1^4 + G_2 \psi_1^2 P^2 + G_3 \psi_1^2 S^2 + G_4 \psi_1 P^2 S + G_5 P^2 S^2 + G_6 P^4 + G_7 S^4
\]

(21)

with the coefficients

\[
 A_1 = 8 M_0^0(1), \quad A_2 = -2 M_0^0(3), \quad A_3 = \frac{1}{8} M_0^0(5)
\]

(22)

and co-workers \(23\). The coefficients

\[
 B_1 = 4 \left(M_0^0(2) - M_1^1(2) \right),
\]

(23)

\[
 B_2 = M_1^1(2) - M_1^1(2),
\]

(24)

\[
 B_3 = \frac{1}{2} \left(M_2^2(3) + M_1^1(3) \right)
\]

(25)
belong to the terms that contain gradients and the modulus of the polarization $P(\vec{r})$ in first order or that describe the coupling between gradients in the translational density $\psi_1(\vec{r})$ and gradients in the nematic order parameter $S(\vec{r})$, respectively. The following three coefficients

\begin{align}
C_1 &= 4 M_0^2(1) , \\
C_2 &= \frac{1}{2} M_2^2(3) - M_0^4(3) , \\
C_3 &= -M_2^1(3)
\end{align}

appear in the gradient expansion regarding $P^2(\vec{r})$ and

\begin{align}
D_1 &= M_0^2(1), \\
D_2 &= -\frac{1}{4} M_0^2(3)
\end{align}

are the coefficients of the gradient expansion in $S^2(\vec{r})$. So far, all these coefficients can also be obtained by using the second-order Ramakrishnan-Yussouff functional for the excess free energy. The remaining coefficients, however, result from higher-order contributions in our functional Taylor expansion. In third order, we find for the homogeneous terms the coefficients

\begin{align}
E_1 &= 32 \tilde{M}_{00}^{00} , \\
E_2 &= 16 \left(\tilde{M}_{01}^{01} + 2 \tilde{M}_{00}^{01} \right) , \\
E_3 &= 4 \left(\tilde{M}_{02}^{10} + 2 \tilde{M}_{00}^{02} \right) , \\
E_4 &= 4 \left(2 \tilde{M}_{20}^{01} + \tilde{M}_{01}^{10} \right)
\end{align}

and for the terms containing a gradient we find the coefficients

\begin{align}
F_1 &= -32 \left(\tilde{M}_{01}^{00} - 2 \tilde{M}_{01}^{01} + \tilde{M}_{01}^{00} \right) , \\
F_2 &= -8 \left(\tilde{M}_{01}^{10} - 2 \tilde{M}_{01}^{11} - 2 \tilde{M}_{01}^{01} + 2 \tilde{M}_{01}^{20} + \tilde{M}_{01}^{01} \right) , \\
F_3 &= -8 \left(\tilde{M}_{01}^{21} - \tilde{M}_{01}^{02} + \tilde{M}_{01}^{11} + 2 \tilde{M}_{01}^{11} \right) , \\
F_4 &= 16 \left(\tilde{M}_{01}^{01} - 2 \tilde{M}_{01}^{01} + \tilde{M}_{01}^{01} - 2 \tilde{M}_{01}^{12} + \tilde{M}_{01}^{22} - \tilde{M}_{01}^{22} \right) , \\
F_5 &= 2 \left(2 \tilde{M}_{01}^{01} - 2 \tilde{M}_{01}^{21} - 2 \tilde{M}_{01}^{01} + 2 \tilde{M}_{01}^{21} - \tilde{M}_{01}^{22} + \tilde{M}_{01}^{22} \right) , \\
F_6 &= 2 \left(2 \tilde{M}_{01}^{01} - 2 \tilde{M}_{01}^{21} - 2 \tilde{M}_{01}^{01} + 2 \tilde{M}_{01}^{21} - \tilde{M}_{01}^{22} + \tilde{M}_{01}^{22} \right) .
\end{align}

In fourth order, we only kept homogeneous terms. The corresponding coefficients are

\begin{align}
G_1 &= 128 \tilde{M}_{00}^{00} , \\
G_2 &= 192 \left(\tilde{M}_{00}^{01} + \tilde{M}_{00}^{01} \right) , \\
G_3 &= 48 \left(\tilde{M}_{00}^{02} + \tilde{M}_{00}^{02} \right) , \\
G_4 &= 48 \left(\tilde{M}_{00}^{01} + \tilde{M}_{00}^{01} + \tilde{M}_{00}^{01} \right) , \\
G_5 &= 24 \left(\tilde{M}_{000}^{22} + \tilde{M}_{000}^{11} \right) , \\
G_6 &= 48 \tilde{M}_{000}^{11} , \\
G_7 &= 3 \tilde{M}_{000}^{22} .
\end{align}

All the coefficients from above are linear combinations of moments of the direct correlation functions. These moments are defined through

\begin{equation}
\tilde{M}_{\mathbf{p}}^{\mathbf{q}}(\mathbf{r}) = \pi^{2n+1} \rho^{n+1} \left(\prod_{i=1}^{n} \int_0^\infty \frac{dR_i}{R_i} R_i^{\alpha_i} \right) \rho^{(n+1)}(\mathbf{R}).
\end{equation}

To shorten the notation, we introduced the abbreviations $\tilde{M}_{\mathbf{1}} = \tilde{M}_{\mathbf{2}} = \tilde{M}_{\mathbf{4}} = 1$ and $M_{l1}^{m_1} = M_{l2}^{m_2}$ for spherical particles.

B. Special cases of the phase-field-crystal model

We now discuss special cases of our model. First of all, Eqs. (19)-(21) constitute the main result of the paper: it is a systematic gradient expansion of order-parameter fields in the free-energy functional. The prefactors are moments of various direct correlation functions and therefore provide the link towards microscopic correlations. This is similar in spirit to PFC models for isotropic particles.

Eqs. (19)-(21) constitute the main result of the paper: it is a systematic gradient expansion of order-parameter fields in the free-energy functional. The prefactors are moments of various direct correlation functions and therefore provide the link towards microscopic correlations. This is similar in spirit to PFC models for spherical particles.

B. Special cases of the phase-field-crystal model

We now discuss special cases of our model. First of all, Eqs. (19)-(21) constitute an extension of the excess free-energy density for apolar particles, that was recently proposed in reference [26]. This extension comprises a possible polarization of liquid-crystalline particles as well as an enlarged functional Taylor expansion that is beyond the scope of the second-order (Ramakrishnan-Yussouff) approximation. Because of that, our free-energy functional contains a few simpler models as special cases and is therefore the main result of this paper. Two special models that are known from literature and can be obtained from our model by setting some of the order-parameter fields to zero are the traditional PFC model of Elder and co-workers for isotropic particles without orientational degrees of freedom and the PFC model of Löwen for apolar anisotropic liquid crystals in two spatial dimensions. In comparison with our free-energy functional, the two mentioned models base on the Ramakrishnan-Yussouff approximation. The traditional PFC model has only one order-parameter field. This is the translational density which corresponds to $\psi_1(\vec{r})$ in...
our model. If we set all order-parameter fields that are related to orientational degrees of freedom in our PFC model to zero, i.e., \(P(\vec{r}) = 0 \) and \(S(\vec{r}) = 0 \), and neglect all higher-order contributions for \(n \geq 2 \) in the functional Taylor expansion \([11]\), then we obtain the traditional PFC model of Elder and co-workers. The PFC model of Löwen considers anisotropic particles with one orientational degree of freedom but no polarization. Therefore, this PFC model results from our model for a vanishing polarization \(P(\vec{r}) = 0 \). Also here, we have to neglect all contributions \([12]\) for \(n \geq 2 \).

III. Macroscopic Approaches

In this section, we investigate the bridge between the PFC model presented in detail in the last section for polar liquid crystals in two spatial dimensions and the symmetry-based macroscopic approaches: Ginzburg-Landau and generalized continuum description. In addition, we can also compare these results obtained for polar liquid crystals in two spatial dimensions with those obtained previously for non-polar liquid crystals in two \([20]\) as well as in three \([27]\) spatial dimensions.

The general PFC results of this paper have been summarized in Eqs. \([19]-[21]\). We first analyze the terms given in Eq. \([19]\), which are quadratic in the variables and their gradients.

We start with terms containing only the translational density and its gradients in Eq. \([17]\). In the vicinity of the smectic-A-isotropic transition one has for the smectic order parameter \([55]\)

\[
\psi(\vec{r}) = \psi_0 e^{i\varphi(\vec{r})}
\]

and for the density

\[
\rho(\vec{r}) = \bar{\rho} + \psi_0 [e^{i\varphi(\vec{r})} + e^{-i\varphi(\vec{r})}]
\]

with the average homogeneous density \(\bar{\rho} \) (compare also section 6.3 of reference \([56]\) for a detailed discussion). Since the total free energy must be a good scalar, the smectic order parameter can enter the free energy only quadratically. For the lowest-order terms in the energy density \(f(\vec{r}) \), which we define as the integrand of the free-energy functional

\[
F[\rho, P, S] = \int_{\mathbb{R}^2} d\vec{r} f(\rho, P, S),
\]

we have \([73]\)

\[
\frac{1}{2} \alpha |\psi|^2 + \frac{1}{2} b_1 |\nabla \psi|^2 + \frac{1}{2} b_2 |\Delta \psi|^2.
\]

Comparing Eq. \([53]\) and the first three terms in Eq. \([19]\), we can make the identifications \(A_1, A_2, \) and \(A_3 \) with \(-\alpha, -b_1, \) and \(-b_2 \), respectively. This situation is similar for non-polar nematics in three spatial dimensions \([27]\), where \(A_1, A_2, \) and \(A_3 \) are defined with different signs, and for non-polar nematics in two spatial dimensions \([20]\), where one must identify \(4\pi^2 \bar{\rho} A, -4\pi^2 \bar{\rho} B, \) and \(4\pi^2 \bar{\rho} C \) with \(A_1, A_2, \) and \(A_3 \), respectively.

For the terms containing only the non-polar orientational order \(S(\vec{r}) \) in Eq. \([19]\), we have two contributions to compare to other approaches. One is spatially homogeneous \(\sim D_1 \) and the other one is quadratic in the gradients of the orientational order \(\sim D_2 \). The first contribution can be directly compared with the term \(\frac{1}{2} Q_{ij} Q_{ij} \) in de Gennes’ pioneering paper \([54]\). Using the structure \(Q_{ij} = S(p_ip_j - \frac{1}{3} \delta_{ij}) \) for the conventional nematic orientational parameter in two spatial dimensions, we find \(D_1 = -A \) using the original notation of reference \([54]\). For the gradient terms in the Ginzburg-Landau approximation one has at first sight two contributions to the energy density just using the three-dimensional expression \([54]\)

\[
L_1(\nabla_i Q_{jk})(\nabla_j Q_{ik}) + L_2(\nabla_i Q_{ij})(\nabla_j Q_{jk})
\]

for two spatial dimensions. A straightforward calculation shows that the two contributions are in two dimensions identical, however, with \(L_1 = 2L_2 \) and thus one independent coefficient just as for the PFC model where one has the contribution \(\sim D_2 \).

For the terms associated exclusively with orientational order we have, when specialized to two spatial dimensions, in the continuum description in the energy density

\[
K_1(\vec{\nabla} \cdot \vec{p})^2 + K_3(\vec{p} \times [\vec{\nabla} \times \vec{p}])^2
\]

\[
+ L_1(p_i \nabla_i S)^2 + L_2 \delta_{ij}(\nabla_i S)(\nabla_j S)
\]

\[
+ M(\nabla_i S)[\delta_{ik} p_j + \delta_{jk} p_i] (\nabla_j p_k),
\]

where \(\delta_{ij} = \delta_{ij} - p_i p_j \) is the transverse Kronecker symbol projecting onto the direction perpendicular to the preferred direction \(\vec{p}(\vec{r}) \). In Eq. \([55]\), the first line is connected to gradients of the director field \(\vec{p}(\vec{r}) \). It contains in two spatial dimensions only splay and bend and no twist and goes back to Frank’s pioneering paper \([17, 18]\). Lines 2 and 3 in Eq. \([55]\) are associated with gradients of the nematic modulus, \(S(\vec{r}) \), and with a coupling term \(\sim M \) between gradients of the director and gradients of the modulus \([73, 76]\). We finally note that the gradient terms in Eq. \([19]\) are identical to the ones given in reference \([20]\), where we must identify \(-D_2/2 \) in the present paper with \(2\pi^2 \bar{\rho} E \) in reference \([20]\). This must indeed be the case, since polar nematics contain the case of non-polar nematics as a special case in the PFC approach.

Next, we come to the terms containing only contributions of the macroscopic polarization \(\vec{P}(\vec{r}) \), or equivalently, its magnitude (modulus) \(P(\vec{r}) \) and its direction \(\vec{p}(\vec{r}) \). The term \(\sim C_1 \) in Eq. \([19]\) is the standard quadratic term for a Landau expansion near, for example, the paraelectric-ferroelectric transition \([77]\). It also emerges when the phase transition isotropic to polar nematic is studied in Ginzburg-Landau approximation \([19]\). The terms that are quadratic in gradients of \(\vec{P}(\vec{r}) \), i.e., the contributions \(\sim C_2 \) and \(\sim C_3 \) in Eq. \([19]\), can be compared to the result of a Ginzburg-Landau approach

\[
\tilde{D}_1(\nabla_i P_i)(\nabla_j P_j) + \tilde{D}_2(\nabla_i P_j)(\nabla_j P_i)
\]

\([56]\).
and contain two independent contributions even in the isotropic phase \([14]\) in two spatial dimensions as is easily checked explicitly.

The gradient terms for the macroscopic polarization, or equivalently, for its magnitude \(\bar{\rho}(\vec{r})\) and its direction \(\hat{\rho}(\vec{r})\), can also be compared to the macroscopic description of polar nematics \([23, 24]\). For the corresponding terms we have

\[
\frac{1}{2} K_{ij}^{(2)} (\nabla_i \delta P)(\nabla_j \delta P) + \frac{1}{2} K_{ijkl}(\nabla_i \rho_j)(\nabla_k \rho_l) + K_{ij}^{(3)} (\nabla_i \delta P)(\nabla_j \rho_k)
\]

(57)

where \(\delta\) denotes deviations from the equilibrium value, in particular \(\delta P = P - P_0\) and where the tensors are of the form

\[
K_{ijkl} = \frac{1}{2} K_1 (\delta_i^{\perp} \delta_k^{\perp} + \delta_j^{\perp} \delta_l^{\perp}) + K_3 \delta_{ik} \delta_{jl}
\]

(58)

\[
K_{ij}^{(2)} = K_4 \delta_i \delta_j + K_5 \delta_i^{\perp}
\]

(59)

\[
K_{ij}^{(3)} = K_6 (\rho_i \delta_j^{\perp} + \rho_j \delta_i^{\perp})
\]

(60)

Eq. (57) represents the analogue of the Frank orientational elastic energy \((\sim K_{ijkl})\) with splay and bend, the energy associated with gradients of the modulus \((\sim K_{ij}^{(2)})\), and a cross-coupling term between gradients of the preferred direction to gradients of the order-parameter modulus \((\sim K_{ij}^{(3)})\) – the analogue of the corresponding term in non-polar nematics \([25, 26]\).

The contributions \(\sim C_2\) and \(\sim C_3\) in Eq. (19) are the PFC analogues of the contributions \(\sim K_{ij}^{(2)}\) and \(\sim K_{ijkl}\) in Eq. (57). Instead of four independent coefficients in the macroscopic description in two spatial dimensions, the PFC model gives rise to two. The contribution \(\sim K_6\) has no direct analogue in the PFC model.

Next, we start to compare cross-coupling terms between gradients of the variables. The discussion for the coupling terms between gradients of the density and gradients of the orientational order closely parallels that for the three-dimensional non-polar nematic case. In Eq. (19), the terms of interest are proportional to \(B_3\). In reference \([27]\), these are the terms \(\sim B_2\). A comparison of these two expressions reveals that they are identical in structure and that one has just to take into account the change in dimensionality. For spatial gradients in the director field coupling to spatial variations in the density \(\rho(\vec{r})\) we find in the energy density \([27, 28]\)

\[
\lambda^\rho (\nabla_i \rho)(\delta_i^{\perp} \rho_j + \delta_j^{\perp} \rho_i)(\nabla_j \rho_k)
\]

(61)

By comparison with Eq. (19) we find \(\lambda^\rho \bar{\rho} = B_3 S\). Finally, we have for the terms coupling gradients of the order-parameter modulus \(S(\vec{r})\) to gradients of the density \([76]\)

\[
N_{ij}^\rho (\nabla_i S)(\nabla_j \rho)
\]

(62)

where the second rank tensor \(N^\rho\) is of the standard uniaxial form \(N_{ij}^\rho = N_{ij}^\rho \rho_i \rho_j + N_{ij}^\rho \delta_i^{\perp} \delta_j^{\perp}\). A comparison with Eq. (19) yields \(2N_{ij}^\rho \bar{\rho} = B_3\) and \(2N_{ij}^\rho \rho = -B_3\). The coupling terms listed in Eqs. (61) and (62) exist in both two and three spatial dimensions. Thus, in comparison to the hydrodynamic description of the bulk behavior, which is characterized by three independent coefficients, we find one independent coefficient in the PFC model.

In the framework of a Ginzburg-Landau approach using the orientational order parameter \(Q_{ij}(\vec{r})\) we find in the isotropic phase

\[
P^\xi (\nabla_i Q_{jk})(\nabla_j \rho)(\delta_i \delta_j \delta_k + \delta_i \delta_k \delta_j)
\]

(63)

and thus one independent coefficient – as has also been the case for the non-polar PFC model in three dimensions \([27]\) as well as in two dimensions \([24]\). The contributions \(\sim B_1\) and \(\sim B_2\) are containing gradients of the macroscopic polarization \(\vec{P}(\vec{r})\) and couple to density and quadrupolar order. They are unique to systems with polar order, or more generally, to systems with broken parity symmetry, since they contain one gradient and one factor \(\vec{P}(\vec{r})\). Such coupling terms are not possible, for example, in non-polar nematics or smectic A phases. The term \(\sim B_1\) can easily be compared with the macroscopic description of polar nematics given in reference \([23]\). The relevant terms from Eq. (1) of reference \([23]\) read

\[
\beta_1 \delta \rho (\rho_i \nabla_i \rho) + \tilde{\beta}_1 \delta \rho (\nabla_i \rho_j)
\]

(64)

where \(\delta \rho = \rho - \bar{\rho}\). We thus read off immediately that when comparing to the PFC model we have \(2\beta_1 \bar{\rho} = -B_1\) and \(2\tilde{\beta}_1 \bar{\rho} = -B_1 P\), that is one independent coefficient in the PFC model and two in the macroscopic description. For the term \(\sim B_2\) the situation is similar. One has to replace in Eq. (61) \(\delta \rho\) by \(\delta S\), where \(S(\vec{r})\) is the modulus of the quadrupolar nematic order parameter with coefficients denoted by \(\beta_4\) and \(\tilde{\beta}_4\). Then one makes the identifications \(2\beta_i = -B_2\) and \(2\tilde{\beta}_i = B_2 P\). For the contribution \(\sim B_2\) we can also make easily contact with the Ginzburg-Landau picture. For the coupling of \(P_i(\vec{r})\) and its gradients to quadrupolar orientational order we obtain to lowest order in the Ginzburg-Landau energy density

\[
g_{ijkl} P_i (\nabla_k Q_{ij})
\]

(65)

with \(g_{ijkl} = g(\delta_i \delta_j \delta_k + \delta_i \delta_k \delta_j)\). This term has been given before for the isotropic-smectic-C\(^\ast\) phase transition in liquid crystals \([30]\) for which the polarization \(P_i(\vec{r})\) is a secondary-order parameter. We note that the contribution \(\sim B_2\) in Eq. (19) can be brought into a form identical to that of Eq. (65), when it is rewritten in terms of \(Q_{ij}(\vec{r})\) and \(\vec{F}(\vec{r})\). This shows once more the close structural connection between PFC modeling and the Ginzburg-Landau approach.

The spatially homogeneous contributions in Eq. (20) can all be interpreted in the symmetry-based framework as well. The term \(\sim E_2\) arises near the smectic-C\(^\ast\)-isotropic phase transition \([31]\): \(Q_{ij}P_i P_j\). The terms \(\sim E_2\) and \(\sim E_3\) can be interpreted as the density dependence
of the terms $\sim \bar{F}^2$ and $\sim Q_{ij}Q_{ij}$ in the Landau description of the polar nematic-isotropic [19] and the non-polar nematic-isotropic [54] phase transitions. Finally, the contribution $\sim E_1$ would arise in a macroscopic description as a term cubic in the density variations: $(\delta \rho)^3$. Typically, such terms are considered to be of higher order in a macroscopic approach. The physical interpretation of this term is a density dependence of the compressibility.

Most of the terms in Eq. (20) containing one gradient, namely all terms containing F_i, except for F_{1i}, can be interpreted in the framework of macroscopic dynamics as higher-order corrections to the terms $\sim \beta_1, \sim \beta_2, \sim \beta_3$ discussed above. They correspond in this picture to the dependence of the coefficients β_i and β_4 on the density changes $\delta \rho(\vec{r})$ and variations in the modulus of the quadrupolar order parameter $\delta S(\vec{r})$. There is one exception to this picture and this is the term $\sim F_{1}$ in Eq. (20). It is also this term, which has an analogue in the field of the Ginzburg-Landau description of ferroelectric materials:

$$P_i P_i (\nabla_j P_j) .$$

This nonlinear gradient term has been introduced in reference [81] and it was demonstrated by Felix et al. [82] that this term leads to qualitative changes in the phase diagram near the paraelectric-ferroelectric transition giving rise also to incommensurate structures.

In Eq. (21), spatially homogeneous terms that are of fourth order in the order parameters are presented. Most of them are familiar from Landau energies near phase transitions. The first contribution, the term $\sim G_1$, arises for all isotropic-smectic phase transitions [77, 82] as well as for the nematic-smectic-A and the nematic-smectic-C transitions [17, 53, $\sim |\psi|^4$. The contribution $\sim G_6$ arises near the paraelectric-ferroelectric phase transition [77, 82] and has also been used near the isotropic-polar-nematic transition [19]: $\sim \bar{F}^4$. The term $\sim G_7$ is familiar from the non-polar nematic to isotropic [53] and the smectic A to isotropic [77, 82] transitions: $\sim (Q_{ij}Q_{ij})^2$. The cross-coupling term $\sim G_3$ corresponds to an analogous term for isotropic-smectic transitions [77, 80, 83]: $|\psi|^2 Q_{ij}Q_{ij}$. For the Ginzburg-Landau description of the smectic-C*-isotropic transition, the term $\sim G_2$ arises [80]: $|\psi|^2 \bar{F}^2$. The term $\sim G_5$ has also an analogue at the smectic-C*-isotropic transition, where it has not been discussed before. However, for the non-polar nematic to isotropic phase transition in an electric field one has shown in reference [51] that there are two contributions:

$$\chi_1 E_k E_k Q_{kl}Q_{ml} + \chi_2 E_n E_n Q_{kl}Q_{kl} .$$

The same contributions are relevant here when the external electric field is replaced by the polarization $\bar{P}(\vec{r})$.

IV. CONCLUSIONS AND POSSIBLE EXTENSIONS

In conclusion, we systematically derived a phase-field-crystal model for polar liquid crystals in two spatial dimensions from microscopic density functional theory. Two basic approximations are involved: first, the density functional is approximated by a truncated functional Taylor expansion which we considered here up to fourth order. Then a generalized gradient expansion in the order parameters is performed which leads to a local free-energy functional. The density is parameterized by four order-parameter fields, namely the translational density $\psi_1(\vec{r})$ which corresponds to the scalar phase-field variable in the traditional phase-field-crystal model, the strength of polarization $P(\vec{r})$, an orientational direction given by a two-dimensional unit vector \bar{p}, and the nematic order parameter $S(\vec{r})$. In the three latter quantities, the gradient expansion is performed up to second order, while it is done to fourth order in $\psi_1(\vec{r})$ for stability reasons. The traditional phase-field-crystal model [12, 43] and the recently proposed phase-field-crystal model for apolar liquid crystals [20] are recovered as special cases. The additional terms are all in accordance with macroscopic approaches based on symmetry considerations [28, 74]. The prefactors are generalized moments of various direct correlation functions and therefore provide a bridge between microscopic and macroscopic approaches.

As a general feature, we find that typically the number of independent coefficients for the phase-field-crystal and the Ginzburg-Landau approaches is the same, while in many cases the macroscopic hydrodynamics description valid inside the two-dimensional polar phase leads to a larger number of independent coefficients. This appears to be a general trend, which was also found to hold before for the comparison of phases with three-dimensional non-polar orientational order [27]. In fact, it also applies to the two-dimensional phase-field-crystal model for systems with orientational order studied in reference [26].

The proposed functional, as embodied in Eqs. (19)-(21), can be used to study phenomenologically phase transformations, for example, in polar nematic sheets, interfaces between coexisting phases [55, 57], and certain biological systems that exhibit polar order [88, 87]. Since our model has more parameters, we expect even more complicated phase diagrams than recently numerically discovered in the apolar phase-field-crystal model [90].

One could also do in principle microscopic calculations of the bulk phase diagram for a given interparticle potential $V(\vec{r}_1 - \vec{r}_2, \bar{u}_1, \bar{u}_2)$ which needs the full direct correlations of the isotropic phase as an input. The simplest idea is to neglect all direct correlation functions for $n \geq 3$ and to rely on a second-order virial expression [51], where $c^{(2)}(\vec{r}_1 - \vec{r}_2, \bar{u}_1, \bar{u}_2) = e^{-\beta V(\vec{r}_1 - \vec{r}_2, \bar{u}_1, \bar{u}_2)} - 1$, or the random-phase approximation for mean-field fluids [64], where $c^{(2)}(\vec{r}_1 - \vec{r}_2, \bar{u}_1, \bar{u}_2) = -\beta V(\vec{r}_1 - \vec{r}_2, \bar{u}_1, \bar{u}_2)$. In a next step, the analysis can be done for Brownian dynamics based on dynamical density functional theory
which was generalized to orientational dynamics \cite{92,93} and can be used as a starting point to derive the order-parameter dynamics \cite{28}. This can then be applied to describe the translational and orientational relaxation dynamics, for example, for an orientational glass \cite{94} or system exposed to a periodic driving field \cite{95}. Finally, it would be interesting to generalize the analysis to self-propelled particles which are driven along their orientation \cite{99,100}. These particles are polar by definition and therefore the generalization to dynamics of the present theory is mandatory to derive microscopic theories \cite{101,102} for their collective swarming behavior. A dynamical theory could for example be used to investigate the dynamical properties of bacterial growth patterns of proteus mirabilis \cite{103}.

Acknowledgments

We thank Michael Schmiedeberg and Yuka Tabe for helpful discussions. This work has been supported by the Deutsche Forschungsgemeinschaft within SPP 1296. H.R.B. thanks the Deutsche Forschungsgemeinschaft for partial support of his work through the Forschergruppe FOR 608 "Nichtlineare Dynamik komplexer Kontinuum".

Appendix A: Symmetry considerations

In the derivation of the approximation for the excess free-energy functional, a large number of expansion coefficients $\tilde{c}^{(n)}(R)$ of the direct correlation functions and moments $M^{(m)}(\alpha)$ of these expansion coefficients appear. To reduce their total number, we used basic symmetry considerations that base on four invariances of the direct correlation functions and showed that many of the expansion coefficients and moments are equal. This is why only a few moments of all possible moments for different index combinations are present in the equations \[(22)-(48)\] for the coefficients in our model. These invariances are the translational and rotational invariance of the direct correlation functions, which are considered by an appropriate parametrization $c^{(n+1)}(\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_n)$ and a Fourier expansion \cite{15} of the latter, as well as the invariance of the direct correlation functions concerning the renumbering of particles,

\[
c^{(n)}(\ldots, \vec{r}_i, \ldots, \vec{r}_j, \ldots, \ldots, \hat{u}_i, \ldots, \hat{u}_j, \ldots) = c^{(n)}(\ldots, \vec{r}_j, \ldots, \vec{r}_i, \ldots, \ldots, \hat{u}_j, \ldots, \hat{u}_i, \ldots), \tag{A1}
\]

which implies that moments that arise from each other by simultaneous permutations of the elements in l, m, and α are equal,

\[
M^{\cdots m_i, \ldots, m_j, \ldots}(\ldots, \alpha_i, \ldots, \alpha_j, \ldots) = M^{\cdots m_j, \ldots, m_i, \ldots}(\ldots, \alpha_j, \ldots, \alpha_i, \ldots), \tag{A2}
\]

and the invariance of the expansion coefficients \cite{17} against complex conjugation:

\[
\tilde{c}^{(n)}_{l \rightarrow m}(R) = \tilde{c}^{(n)}_{l \rightarrow m}(R). \tag{A3}
\]

The last assumption is necessary to obtain physical terms with real coefficients in the approximation for the excess free-energy functional. It involves the invariance of $\tilde{c}^{(n)}_{l \rightarrow m}(R)$ against simultaneous reversal of the signs of the elements in l and m,

\[
\begin{align*}
\tilde{c}^{(n)}_{l_1, \ldots, l_n, m_1, \ldots, m_n}(R_1, \ldots, R_n) &= \tilde{c}^{(n)}_{l_1, \ldots, l_n, m_1, \ldots, m_n}(R_1, \ldots, R_n), \tag{A4}
\end{align*}
\]

and is equivalent to the invariance of the direct correlation functions against reflection of the system at the first axis of coordinates.

When the system is apolar, the liquid-crystalline particles have head-tail symmetry. In this case, the modulus $P(\vec{r})$ of the polarization is zero and its orientation $\hat{p}(\vec{r})$ is not defined, while the direction $\hat{n}(\vec{r})$ associated with quadrupolar order still exists. Then, further symmetry considerations lead to the following equalities between expansion coefficients of the direct pair-correlation function:

\[
\begin{align*}
\tilde{c}^{(2)}_{-1,1}(R) &= \tilde{c}^{(2)}_{1,1}(R), \\
\tilde{c}^{(2)}_{-1,2}(R) &= \tilde{c}^{(2)}_{1,2}(R), \\
\tilde{c}^{(2)}_{-2,2}(R) &= \tilde{c}^{(2)}_{2,2}(R). \tag{A5}
\end{align*}
\]

The consequence of these equations is, that the coefficients B_1 and B_2 vanish and B_3 becomes more simple.

References

[1] H. R. Brand, P. E. Cladis, and H. Pleiner, Macromolecules 25, 7223 (1992).
[2] T. Niori, T. Sekine, J. Watanabe, T. Furukawa, and H. Takezoe, Journal of Materials Chemistry 6, 1231 (1996).
[3] D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, Science 278, 1924 (1997).
[4] H. R. Brand, P. E. Cladis, and H. Pleiner, European Physical Journal B 6, 347 (1998).
[5] H. R. Brand, P. E. Cladis, and H. Pleiner, European Physical Journal B 31, 147 (2003).
[6] G. Pelzl, S. Diele, and W. Weissflog, Advanced Materials 11, 707 (1999).
[7] D. Shen, S. Diele, G. Pelzl, I. Wirth, and C. Tschiess, Journal of Materials Chemistry 9, 661 (1999).
[8] W. Weissflog, H. Nádas, U. Dunemann, G. Pelzl, S. Diele, A. Eremin, and H. Kresse, Journal of Materials Chemistry 11, 2748 (2001).
[9] T. Niori, J. Yamamoto, and H. Yokoyama, Molecular Crystals and Liquid Crystals 409, 475 (2004).
[10] S. Choi, Y. Kinoshita, B. Park, H. Takezoe, T. Niori, and J. Watanabe, Japanese Journal of Applied Physics 37, 3408 (1998).
[11] J. Watanabe, Y. Hirose, M. Tokita, T. Watanabe, and S. Miyata, Macromolecules 31, 937 (1998).
[12] C. Yen, M. Tokita, B. Park, H. Takezoe, and J. Watanabe, Macromolecules 39, 1313 (2006).
[13] M. Koike, C. Yen, L. Yuqing, H. Tsuchiya, M. Tokita, S. Kawauchi, H. Takezoe, and J. Watanabe, Macromolecules 40, 2524 (2007).
[14] Y. Taguchi, C. Yen, S. Kang, M. Tokita, and J. Watanabe, Journal of Physical Chemistry B 113, 5341 (2009).
[15] H. R. Brand, P. E. Cladis, and H. Pleiner, International Journal of Engineering Science 38, 1009 (2000).
[16] H. Hsiung, T. Rasing, Y. R. Shen, F. P. Shvartsman, I. R. Cabrera, and V. A. Kröpflau, Journal of Chemical Physics 87, 3127 (1987).
[17] P. de Gennes and J. Prost, The Physics of Liquid Crystals, vol. 1 of 83 of International Series of Monographs on Physics (Oxford University Press, Oxford, 1995), 2nd ed., ISBN 0-19-851785-8.
[18] H. Zimmermann, R. Poupolo, Z. Luz, and J. Billard, Zeitschrift für Naturforschung Teil A 40, 149 (1985).
[19] H. Pleiner and H. R. Brand, Europhysics Letters 9, 243 (1989).
[20] Y. Tabe, T. Yamamoto, I. Nishiyama, M. Yoneya, and J. Watanabe, Journal of Applied Physics 42, L406 (2003).
[21] O. Francescangeli, V. Stanic, S. Torgov, A. Strigazzi, N. Scaramuzza, C. Ferrero, I. Dobnya, T. Weiss, R. Berardini, L. Muccioli, et al., Advanced Functional Materials 19, 2592 (2009).
[22] O. Francescangeli and E. Samulski, Soft Matter 6, 2413 (2010).
[23] H. R. Brand, H. Pleiner, and F. Ziebert, Physical Review E 74, 2 (2006).
[24] H. R. Brand, P. E. Cladis, and H. Pleiner, Physical Review E 79, 032701 (2009).
[25] K. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, Physical Review B 75, 064107 (2007).
[26] H. Löwen, Journal of Physics: Condensed Matter 22, 364105 (2010).
[27] R. Wittkowski, H. Löwen, and H. Brand, Physical Review E 82, 031708 (2010).
[28] H. Pleiner and H. Brand, in Pattern Formation in Liquid Crystals, edited by A. Buka and L. Kramer (Springer, New York, 1996), vol. 9 of Partially Ordered Systems, chapter 2, pp. 15–67, 1st ed., ISBN 0-387-94064-7.
[29] T. Ramakrishnan and M. Yussouff, Physical Review B 19, 2775 (1979).
[30] R. Evans, Advances in Physics 28, 143 (1979).
[31] Y. Singh, Physics Reports 207, 351 (1991).
[32] H. Löwen, Physics Reports 237, 249 (1994).
[33] R. Roth, Journal of Physics: Condensed Matter 22, 063102 (2010).
[34] Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, Physical Review E 55, 4245 (1997).
[35] R. Roth, R. Evans, A. Lang, and G. Kahl, Journal of Physics: Condensed Matter 14, 12063 (2002).
[36] H. Hansen-Goos and K. Mecke, Physical Review Letters 102, 018302 (2009).
[37] A. Poniewierski and R. Holyst, Physical Review Letters 61, 2461 (1988).
[38] H. Graf and H. Löwen, Journal of Physics: Condensed Matter 11, 1435 (1999).
[39] H. Graf and H. Löwen, Physical Review E 57, 5744 (1998).
[40] For a recent review, see: H. Löwen, Applications of Density Functional Theory in Soft Condensed Matter, invited book chapter, in: "Understanding Soft Condensed Matter via Modeling and Computation", Series in Soft Condensed Matter, vol. 3, pp. 9-45 (2011), edited by W. Hu and A.-C. Shi, World Scientific.
[41] H. Emmerich, Advances in Physics 57, 1 (2008).
[42] K. Elder, M. Katakowski, M. Haataja, and M. Grant, Physical Review Letters 88, 245701 (2002).
[43] K. Elder and M. Grant, Physical Review E 70, 051605 (2004).
[44] H. Emmerich, Journal of Physics: Condensed Matter 21, 4103 (2009).
[45] S. van Teeffelen, R. Backofen, A. Voigt, and H. Löwen, Physical Review E 79, 051404 (2009).
[46] G. Tegze, L. Gránásy, G. Tóth, F. Podmániczky, A. Jaatinen, T. Ala-Nissila, and T. Pusztai, Physical Review Letters 103, 035702 (2009).
[47] J. Mellenthin, A. Karma, and M. Plapp, Physical Review B 78, 184110 (2008).
[48] I. M. McKenna, M. P. Gururajan, and P. W. Voorhees, Journal of Materials Science 44, 2206 (2009).
[49] Z. Huang and K. Elder, Physical Review Letters 101, 158701 (2008).
[50] K. Wu and P. Voorhees, Physical Review B 80, 125408 (2009).
[51] Y. Yu, B. Liu, and A. Voigt, Physical Review B 79, 235317 (2009).
[52] A. Jaatinen, C. Achim, K. Elder, and T. Ala-Nissila, Physical Review B 80, 031602 (2009).
[53] A. Jaatinen and T. Ala-Nissila, Journal of Physics: Condensed Matter 22, 205402 (2010).
[54] P. de Gennes, Molecular Crystals and Liquid Crystals 12, 193 (1971).
[55] P. de Gennes, Molecular Crystals and Liquid Crystals 21, 49 (1973).
[56] P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995), 1st ed., ISBN 0-521-79450-1.
[57] E. Lomba, F. Lado, and J. J. Weis, Physical Review E 61, 3838 (2000).
[58] V. A. Frolov, R. Blaak, C. N. Likos, and H. Löwen, Physical Review E 68, 061406 (2003).
[59] C. Alvarez, M. Mazzars, and J. Weis, Physical Review E 77, 051501 (2008).
[60] W. Kegel, D. Breed, M. Elsesser, and D. Pine, Langmuir 22, 7135 (2006).
[61] I. Hosein, B. John, S. Lee, F. Escobedo, and C. Liddell, Journal of Materials Chemistry 19, 344 (2009).
[62] L. Hong, A. Cacciuto, E. Luijten, and S. Granick, Nano Letters 6, 2510 (2006).
[63] C. Ho, W. Chen, T. Shie, J. Lin, and C. Kuo, Langmuir 24, 5663 (2008).
[64] M. Rex, H. Wensink, and H. Löwen, Physical Review E 76, 021403 (2007).
[65] S. van Teeffelen, C. N. Likos, N. Hoffmann, and H. Löwen, Europhysics Letters 75, 583 (2006).
[66] J. Barrat, Europhysics Letters 3, 523 (1987).
[67] J. Barrat, J. Hansen, and G. Pastore, Physical Review Letters 58, 2075 (1987).
[68] J. L. Barrat, J. P. Hansen, and G. Pastore, Molecular Physics 63, 747 (1988).
[69] H. Löwen, T. Beier, and H. Wagner, Europhysics Letters 9, 791 (1989).
[70] H. Löwen, T. Beier, and H. Wagner, Zeitschrift für Physik B: Condensed Matter 79, 109 (1990).
[71] R. Ohnesorge, H. Löwen, and H. Wagner, Physical Review A 43, 2870 (1991).
[72] J. Lutsko, Physica A 366, 229 (2006).
[73] P. K. Mukherjee, H. Pleiner, and H. R. Brand, European Physical Journal E 4, 293 (2001).
[74] F. Frank, Discussions of the Faraday Society 25, 19 (1958).
[75] H. R. Brand and K. Kawasaki, Journal of Physics C 19, 937 (1986).
[76] H. Brand and H. Pleiner, Physical Review A 35, 3122 (1987).
[77] C. Kittel, *Introduction to Solid State Physics*, vol. 1 (John Wiley & Sons, New York, 1995), 7th ed., ISBN 0-471-11181-3.
[78] K. Kawasaki and H. R. Brand, Annalen der Physik 160, 420 (1985).
[79] H. Pleiner and H. R. Brand, Journal de Physique Letters 41, 491 (1980).
[80] P. K Mukherjee, H. Pleiner, and H. R. Brand, European Physical Journal E 17, 501 (2005).
[81] T. A. Aslanyan and A. P. Levanyuk, Soviet Physics - Solid State 20, 466 (1978).
[82] J. W. Felix, D. Mukamel, and R. M. Hornreich, Physical Review Letters 57, 2180 (1986).
[83] P. K. Mukherjee, H. Pleiner, and H. R. Brand, Journal of Chemical Physics 117, 7788 (2002).
[84] H. R. Brand, Molecular Crystals and Liquid Crystals 3, 147 (1986).
[85] A. J. McDonald, M. P. Allen, and F. Schmid, Physical Review E 63, 010701 (2001).
[86] D. van der Beek, H. Reich, P. van der Schoot, M. Dijkstra, T. Schilling, R. Vink, M. Schmidt, R. van Roij, and H. Lekkerkerker, Physical Review Letters 97, 087801 (2006).
[87] M. Bier, L. Harunau, and S. Dietrich, Journal of Chemical Physics 123, 114906 (2005).
[88] A. Verkhovsky, T. Svitan, and G. Borisy, Current Biology 9, 11 (1999).
[89] L. Cisneros, C. Dombrowski, R. E. Goldstein, and J. O. Kessler, Physical Review E 73, 030901 (2006).
[90] C. Achim, R. Wittkowski, and H. Löwen, Stability of liquid crystalline phases in the phase-field-crystal model (2011), submitted to Physical Review E.
[91] R. van Roij, P. Bolhuis, B. Mulder, and D. Frenkel, Physical Review E 52, R1277 (1995).
[92] U. Marini, B. Marconi, and P. Tarazona, Journal of Chemical Physics 110, 8032 (1999).
[93] A. Archer and R. Evans, Journal of Chemical Physics 121, 4246 (2004).
[94] P. Español and H. Löwen, Journal of Chemical Physics 131, 244101 (2009).
[95] M. Rex and H. Löwen, Physical Review Letters 101, 148302 (2008).
[96] C. Renner, H. Löwen, and J. L. Barrat, Physical Review E 52, 5091 (1995).
[97] A. Härtel, R. Blaak, and H. Löwen, Physical Review E 81, 051703 (2010).
[98] J. Toner, Y. Tu, and S. Ramaswamy, Annals of Physics 318, 170 (2005).
[99] S. Ramaswamy, Annual Review of Condensed Matter Physics 1, 323 (2010).
[100] F. Peruani, A. Deutsch, and M. Bär, Physical Review E 74, 030904 (2006).
[101] H. Wensink and H. Löwen, Physical Review E 78, 031409 (2008).
[102] J. Elgeti and G. Gompper, Europhysics Letters 85, 38002 (2009).
[103] K. Watanabe, J. Wakita, H. Itoh, H. Shimada, S. Kurowsu, T. Ikeda, Y. Yamazaki, T. Matsuyama, and M. Matsushita, Journal of the Pysical Society of Japan 71, 650 (2002).