Generic smooth representations

Alexandre Pyvovarov

March 8, 2018

Abstract

Let F be a finite extension of \mathbb{Q}_p. Here we give a necessary and sufficient condition for an irreducible smooth representation of $GL_n(F)$ to be generic.

Contents

1 Introduction 1

2 Generic representations 5

References 12

1 Introduction

Let us start by recalling a few facts about the category of smooth representations. The Bernstein decomposition expresses the category of smooth \mathbb{Q}_p-valued representations of a p-adic reductive group G as the product of certain indecomposable full subcategories, called Bernstein components. Those components are parametrized by the inertial classes. Let me now recall the definition of an inertial class. Let M be a Levi subgroup of some parabolic subgroup of G and let ρ be an irreducible supercuspidal representation of M and consider a set of pairs (M, ρ) as above. We say that two pairs (M_1, ρ_1) and (M_2, ρ_2) are inertially equivalent if and only if there is $g \in G$ and an unramified character χ of M_2 such that:

$$M_2 = M_1^g \text{ and } \rho_2 \simeq \rho_1^g \otimes \chi$$

1
where $M_1 := g^{-1}M_1g$ and $\rho_1^g(x) = \rho_1(gxg^{-1}), \forall x \in M_1^g$. An equivalence class of all such pairs will be denoted $[M, \rho]_G$. The set of inertial class equivalences of all such pairs will be denoted by $\mathcal{B}(G)$.

Let F be a finite extension of \mathbb{Q}_p with a finite residue field k_F. Let \mathcal{O}_F be its complete discrete valuation ring, let p be the maximal ideal of \mathcal{O}_F with uniformizer ϖ, and let $q = |\mathcal{O}_F/\varpi\mathcal{O}_F|$. In this paper we only consider the case $G = GL_n(F)$. Let E be an algebraically closed field of characteristic zero.

Let $\mathcal{R}(G)$ be the category of all smooth E-representations of G. We denote by $i^G_P : \mathcal{R}(M) \to \mathcal{R}(G)$ the normalized parabolic induction functor, where $P = MN$ is a parabolic subgroup of G with Levi subgroup M. Let \overline{P} be the opposite parabolic with respect to M. We use the notation Ind and c–Ind to denote the induction and compact induction respectively.

We are given an inertial class $\Omega := [M, \rho]_G$; where ρ is a supercuspidal representation of M and $D := [M, \rho]_M$. To any inertial class Ω we may associate a full subcategory $\mathcal{R}^\Omega(G)$ of $\mathcal{R}(G)$, such that $(\pi, V) \in \text{Ob}(\mathcal{R}^\Omega(G))$ if and only if every irreducible G-subquotient π_0 of π appear as a composition factor of $i^G_P(\rho \otimes \omega)$ for ω some unramified character of M and P some parabolic subgroup of G with Levi factor M. The category $\mathcal{R}^\Omega(G)$ is called a Bernstein component of $\mathcal{R}(G)$. We will say that a representation π is in Ω if π is an object of $\mathcal{R}^\Omega(G)$. According to [Ber84], we have a decomposition:

$$\mathcal{R}(G) = \prod_{\Omega \in \mathcal{B}(G)} \mathcal{R}^\Omega(G)$$

So in order to understand the category $\mathcal{R}(G)$, it is enough to restrict our attention to the components. We may understand those components via the theory of types. This is a way to parametrize all the irreducible representations of G up to inertial equivalence using irreducible representations of compact open subgroups of G.

Let J be a compact open subgroup of G and let λ be an irreducible representation of J. We say that (J, λ) is an Ω-type if and only if for every irreducible representation $(\pi, V) \in \text{Ob}(\mathcal{R}^\Omega(G))$, V is generated by the λ-isotypical component of V as G-representation.

Let $\mathcal{R}_\lambda(G)$ be a full subcategory of $\mathcal{R}(G)$ such that $(\pi, V) \in \text{Ob}(\mathcal{R}_\lambda(G))$ if and only if V is generated by V^λ (the λ-isotypical component of V) as G-representation.
Define $\mathcal{H}(G, \lambda) := \mathcal{H}(G, J, \lambda) := \text{End}_G(c^{-\text{Ind}}_J^G \lambda)$. Then for any Ω-type (J, λ), by Theorem 4.2 (ii) [BK98], the functor:

$$
\mathcal{M}_\lambda : \mathcal{R}_\lambda(G) \to \mathcal{H}(G, \lambda) - \text{Mod}
$$

$$
\pi \mapsto \text{Hom}_J(\lambda, \pi) = \text{Hom}_G(c^{-\text{Ind}}_J^G \lambda, \pi)
$$

induces an equivalence of categories. Since (J, λ) is an Ω-type, we have $\mathcal{R}_\Omega(G) = \mathcal{R}_\lambda(G)$.

Denote by W the vector space on which the representation λ is realized. Next, let $(\bar{\lambda}, W^\vee)$ denote the contragradient of (λ, W). Then by (2.6) [BK99], the Hecke algebra $\mathcal{H}(G, \lambda) := \text{End}_G(c^{-\text{Ind}}_J^G \lambda)$ can be identified with the space of compactly supported functions $f : G \to \text{End}_E(W^\vee)$ such that $f(j_1, g, j_2) = \bar{\lambda}(j_1) \circ f(g) \circ \bar{\lambda}(j_2)$, with $j_1, j_2 \in \lambda$ and $g \in G$ and the multiplication of two elements f_1 and f_2 is given by the convolution:

$$
f_1 \ast f_2(g) = \int_G f_1(x) \circ f_2(x^{-1}g) dx
$$

For $u \in \text{End}_E(W^\vee)$, we write $\bar{u} \in \text{End}_E(W)$ for the transpose of u with respect of the canonical pairing between W and W^\vee. This gives $(\bar{\lambda}(j))^\vee = \lambda(j)$, for $j \in J$. For $f \in \mathcal{H}(G, \lambda)$, define $\bar{f} \in \mathcal{H}(G, \bar{\lambda})$, by $\bar{f}(g) = f(g^{-1})^\vee$, for all $g \in G$.

Write \mathfrak{Z}_Ω for the centre of category $\mathcal{R}_\Omega(G)$ and \mathfrak{Z}_D for the centre of category $\mathcal{R}_D(M)$, which is defined the same way as $\mathcal{R}_\Omega(G)$. Recall that the centre of a category is the ring of endomorphisms of the identity functor. For example the centre of the category $\mathcal{H}(G, \lambda) - \text{Mod}$ is $Z(\mathcal{H}(G, \lambda))$, where $Z(\mathcal{H}(G, \lambda))$ is the centre of the ring $\mathcal{H}(G, \lambda)$. We will call \mathfrak{Z}_Ω a Bernstein centre.

For $G = GL_n(F)$, the types can be constructed in an explicit manner (cf. [BK93], [BK98] and [BK99]) for every Bernstein component. Moreover, Bushnell and Kutzko have shown that $\mathcal{H}(G, \lambda)$ is naturally isomorphic to a tensor product of affine Hecke algebras of type A.

The simplest example of a type is $(I, 1)$, where I is Iwahori subgroup of G and 1 is the trivial representation of I. In this case $\Omega = [T, 1]_G$, where T is the subgroup of diagonal matrices and 1 denotes the trivial representation of T. We will refer to example as the Iwahori case.

Let K be a maximal compact open subgroup of G. In [SZ99] section 6 (just above proposition 2) the authors define irreducible K-representations
σ_P(λ), where P is partition valued functions with compact support (cf. section 2 [SZ99]). One has the decomposition:

$$\text{Ind}_J^K \lambda = \bigoplus_P \sigma_P(\lambda)^{\oplus m_{P,\lambda}}$$ \hspace{1cm} (1.1)$$

where the summation runs over partition valued functions with compact support. The integers $m_{P,\lambda}$ are finite and we call them multiplicity of $\sigma_P(\lambda)$.

There is a natural partial ordering, as defined in [SZ99], on the partition valued functions. Let P_{max} be the maximal partition valued function and let P_{min} the minimal one. Define $\sigma_{\text{max}}(\lambda) := \sigma_{P_{\text{max}}}(\lambda)$ and $\sigma_{\text{min}}(\lambda) := \sigma_{P_{\text{min}}}(\lambda)$. Both $\sigma_{\text{max}}(\lambda)$ and $\sigma_{\text{min}}(\lambda)$ occur in $\text{Ind}_J^K \lambda$ with multiplicity 1.

In the Iwahori case, $\sigma_{\text{min}}(\lambda)$ is the inflation of Steinberg representation of $GL_n(k_F)$ to K and $\sigma_{\text{max}}(\lambda)$ is the trivial representation. In this simplest case, we have $\Omega = [T, 1]_G$.

The classical local Langlands correspondence associates to an irreducible smooth representation of GL_n, denoted π, a Weil-Deligne representation denoted $WD(\pi)$. A consequence of Bernstein-Zelevinsky classification (cf. [BZ77]) of smooth irreducible representations of $GL_n(F)$ and the general form of Weil-Deligne representations (cf. 3.1.3 [Del75]) is that two smooth irreducible π and π' of G lie in the same Bernstein component if and only if $WD(\pi)|I_F \simeq WD(\pi')|I_F$, where I_F is the inertia subgroup of the absolute Galois group of F.

Let π be an irreducible smooth generic (i.e. admits a Whittaker model) representation. In my thesis I proved that knowledge of which of the $\sigma_P(\lambda)$’s are contained in π allow us to describe completely the monodromy of the associated Weil-Deligne representation. This statement will be made more precise in the Proposition 1.2 below.

It has been observed by Jack Shotton [Sho16, Thm.3.7] that by modifying the proof of [SZ99, Proposition 2 Section 6] and [BcC09, Proposition 6.5.3] in the tempered case, he gets the same result in the generic case. In our notation this result can be stated as follows:

Proposition 1.2. Let π be an absolutely irreducible generic representation, with semi-simple type (J, λ). The following statement are equivalent:

1. $\text{Hom}_K(\sigma_P(\lambda), \pi) \neq 0$ and $\text{Hom}_K(\sigma_{P'}(\lambda), \pi) = 0$, for all partitions valued functions P' such that $P < P'$.
2. \(\pi = i_p^G(Q(\Delta_1) \otimes \ldots \otimes Q(\Delta_k)) \), where \(P \) is the standard parabolic associated to the partition valued function \(\mathcal{P} \), all the segments \(\Delta_i \) are not pairwise linked and \(Q(\Delta_i) \) denotes the Langlands quotient (cf. section 1.2 [Kud94]).

Moreover if \(\sigma_\mathcal{P} \) satisfies the equivalent properties above, it occurs with multiplicity one in \(\pi \).

However in my thesis I use a different method to prove the proposition above. First using the theory of types of Bushnell-Kutzko, I reduce the statement to the Iwahori case. Then, in the Iwahori case, I use the results of Rogawski [Rog85] on modules over Iwahori-Hecke algebra. In this case the proof relies on some easy combinatorics on partitions.

The proposition above suggests that the representation \(\sigma_{\text{min}}(\lambda) \) has a very special role. The main result of this paper is that we can characterize the genericity via \(\sigma_{\text{min}}(\lambda) \). Indeed we will prove the following:

Theorem 1.3. Let \(\pi \) be an absolutely irreducible representation in the Bernstein component \(\Omega \), then \(\text{Hom}_K(\sigma_{\text{min}}(\lambda), \pi) \neq 0 \) if and only if \(\pi \) is generic.

The proof of this result illustrates, how we can reduce a statement about irreducible representations of general type to the Iwahori case. It was pointed out to me, recently, by Peter Schneider that the Iwahori case was already treated by [Ree02]. This allows me simplify a little the original proof in my thesis.

In the next section we will prove Theorem 1.3 and then by using a result of our previous work we will deduce that \(\sigma_{\text{min}}(\lambda) \) occurs with multiplicity at most one in an irreducible representation.

2 Generic representations

We are given an inertial class \(\Omega = [M, \rho]_G \), where \(\rho \) is a supercuspidal representation of \(M \) and an \(\Omega \)-type \((J, \lambda) \) with \(J \subset K \) a compact open subgroup of \(G \). Write \(Z_\Omega \) for the centre of Bernstein component of \(\Omega \). Choose a partition valued function \(\mathcal{P}^{\text{min}} \) which is minimal for partial ordering as in [SZ99]. From now on let \(\sigma_{\text{min}}(\lambda) := \sigma_{\mathcal{P}^{\text{min}}}(\lambda) \) with the notations of section 6 in [SZ99].

Theorem 2.1. Let \(\pi \) be an absolutely irreducible representation in the Bernstein component \(\Omega \), then \(\text{Hom}_K(\sigma_{\text{min}}(\lambda), \pi) \neq 0 \) if and only if \(\pi \) is generic.
Proof. In this proof \(\sigma := \sigma_{\min}(\lambda) \). Let’s first deal with a particular case before the general case.

1. **Simple type case.** If \(\pi \) is supercuspidal, it is generic and there is nothing to prove. So assume that \(\pi \) contains a simple type \((J, \lambda)\) which is not maximal. In this case \(\Omega = [GL_r(F)^e, \omega \otimes \ldots \otimes \omega]_G \) where the tensor product \(\rho := \omega \otimes \ldots \otimes \omega \) is taken \(e \) times and \(\omega \) is a supersupidal representation of \(GL_r(F) \). According to the description of Hecke algebras in section (5.6) of [BK93] there is a support preserving isomorphism of Hecke algebras \(H(GL_L, I_L, 1) \simeq H(G, J, \lambda) \), where \(L \) is a well defined extension of \(F \) (denoted by \(K \) in [BK93]), \(GL_L = GL_e(L) \) with \(I_L \) the Iwahori subgroup of \(GL_L \) and \(K_L \) be a maximal compact subgroup of \(G_L \).

We will recall now the results on supercuspidal representations from chapter 6 of [BK93] and describe the general form of the representation supercuspidal representation \(\omega \) of \(G_0 = GL_r(F) \). The representation \(\omega \) contains a maximal simple type \((J_0, \lambda_0)\). Then there is a finite extension \(\Gamma \) of \(F \) and a uniquely determined representation \(\Lambda_0 \) of \(\Gamma \times J_0 \) such that \(\omega = \text{c-Ind}_{\Gamma \times J_0}^{G_0} \Lambda_0 \) and \(\Lambda_0|_{J_0} = \lambda_0 \). Let \(V = F^n \) the \(F \)-vector space of dimension \(n \) viewed as \(\Gamma \) vector space of dimension \(R = \dim_F V \) and let \(f = R/e \). According to [BK93, Proposition 5.5.14], the extension \(L \) considered in the previous is unramified extension of degree \(f \) of \(\Gamma \). A special case of the support preserving isomorphism in the previous paragraph is the support preserving isomorphism \(\Phi_1 : \mathcal{H}(G_0, J_0, \lambda_0) \simeq \mathcal{H}(L^\times, O_L^\times, 1) \) sending a function supported to \(J_0 \omega_{\Gamma} J_0 = \omega_{\Gamma} J_0 \) to the function supported on \(\omega_{\Gamma} O_L^\times \), where \(O_L \) is the ring of integers of \(L \) and \(\omega_{\Gamma} \) a uniformizer of both \(\Gamma \) and \(L \). Further we observe that the unramified characters of \(G_0 \) are determined by the image of \(\omega_{\Gamma} \) so as are unramified characters of \(L^\times \). Therefore we way and we will identify the unramified characters of \(G_0 \) with the unramified characters of \(L^\times \).

The representation \(\pi \) is a Langlands quotient of the form \(Q(\Delta_1, \ldots, \Delta_s) \) (cf. section 1.2 [Kud94]) such that for \(i < j \) the segment \(\Delta_i \) does not precede \(\Delta_j \). After twisting \(\pi \) by some unramified character we may assume that all the segments are of the form \(\Delta_i = [\omega(\alpha_i), \omega(\alpha_i + e_i - 1)] \), where \(\alpha_i \) is some real number and \(e_i \) an integer such that \(\sum_{i=1}^s e_i = e \). Here the notation \(\omega(\alpha_i) \) means that \(\omega(\alpha_i) := \omega \otimes |\det|^{\alpha_i} \). If \(s = 1 \) then \(\pi \) is generic. Assume that \(s > 1 \).
According to Theorem 7.6.20 in [BK93], the diagram

\[
\begin{array}{c}
\mathcal{H}(G, J, \lambda) \xrightarrow{\Phi} \mathcal{H}(G_L, I_L, 1) \\
\mathcal{H}(M, J_M, \lambda_M) \xrightarrow{\Phi^e \otimes e_1} \mathcal{H}(T_L, T^o_L, 1)
\end{array}
\]

is commutative, where the horizontal arrows are support preserving isomorphisms and \(\lambda_M = \lambda_0 \otimes \ldots \otimes \lambda_0\) (e times), \(J_M = J_0^e\), \(T_L = (L^\times)^e\) and \(T^o_L = (\mathcal{O}_L^\times)^e\). In the book [BK93], the horizontal isomorphisms in the commutative diagram above are given in the other direction. This diagram in turn produces the following commutative diagram:

\[
\begin{array}{c}
\mathcal{R}_\lambda(G) \xrightarrow{\text{Hom}_J(\lambda, \bullet)} \mathcal{H}(G, J, \lambda) - \text{Mod} \xrightarrow{\text{Mod}} \mathcal{H}(G_L, I_L, 1) - \text{Mod} \xrightarrow{T_\lambda} \mathcal{R}_1(G_L) \\
\mathcal{R}_{\lambda_M}(M) \xrightarrow{\text{Hom}_{J_M}(\lambda_M, \lambda_M)} \mathcal{H}(M, J_M, \lambda_M) - \text{Mod} \xrightarrow{\text{Mod}} \mathcal{H}(T_L, T^o_L, 1) - \text{Mod} \xrightarrow{T_1} \mathcal{R}_1(T_L)
\end{array}
\]

where the horizontal arrows are equivalences of categories, \(T_\lambda = \bullet \otimes \mathcal{H}(G_L, I_L, 1)\) \(c\)-Ind\(_{T^o_L}\) 1 and \(T_1 = \bullet \otimes \mathcal{H}(T_L, T^o_L, 1)\) \(c\)-Ind\(_{T^o_L}\) 1. It follow from this commutative diagram that

\[
\Phi(\text{Hom}_J(\lambda, i^G_E(\rho))) \otimes \mathcal{H}(G_L, I_L, 1) \xrightarrow{\text{c-Ind}_I_L^G 1} \mathcal{H}(G, J, \lambda) - \text{Mod}
\]

\[
= i^G_E(\Phi^e \otimes \text{Hom}_{J_M}(\lambda_M, \rho)) \otimes \mathcal{H}(T_L, T^o_L, 1) \xrightarrow{\text{c-Ind}_T^E_L 1}
\]

Observe that the representation \(c\)-Ind\(_{T^o_L}\) 1 is canonically a rank 1 free \(\mathcal{H}(T_L, T^o_L, 1)\)-module. This observation allows to simplify the right hand side.

Since \((J, \lambda)\) is a simple type, \(\lambda_M = \lambda_0 \otimes \ldots \otimes \lambda_0\) (e times), \(J_M = J_0^e\) and \((J_0, \lambda_0)\) is a maximal simple type for the supercuspidal representation \(\omega\), we have:

\[
\text{Hom}_{J_M}(\lambda_M, \rho) = \text{Hom}_{J_M}(\lambda_0 \otimes \ldots \otimes \lambda_0, \omega| J_0 \otimes \ldots \otimes \omega| J_0)
\]

\[
= \text{Hom}_{J_0^e}(\lambda_0 \otimes \ldots \otimes \lambda_0, \lambda_0 \otimes \ldots \otimes \lambda_0) = \text{Hom}_{J_M}(\lambda_M, \lambda_M)
\]

Now notice that \(\text{Hom}_{J_M}(\lambda_M, \lambda_M)\) is the subspace of functions in \(\mathcal{H}(M, J_M, \lambda_M)\) supported on \(J_M\). By our choice of \(\lambda_0, \omega\) and \(\Phi_1\), the support preserving isomorphism \(\Phi^e_1\) maps this space isomorphically onto the space of functions in \(\mathcal{H}(T_L, T^o_L, 1)\) supported on \(T^o_L\). It follows that \(\Phi^e_1(\text{Hom}_{J_M}(\lambda_M, \rho)) = \)
Hom_{T_L}(1, 1). Thus, the representation \(\Phi \otimes \varepsilon_{1} \otimes H(T_{L}, T_{L}, 1) \) is a trivial character of \(T_L \). Then an object \(i_{G} \rho \) in \(\mathcal{R}_{\lambda}(G) \) corresponds to an object \(i_{G} \rho \) in \(\mathcal{R}_{1}(G_L) \).

Let \(F \) be the composition of all the top horizontal arrows. Hence the functor \(F : \mathcal{R}_{\lambda}(G) \rightarrow \mathcal{R}_{1}(G_L) \) from above, is an equivalence of categories. Then

\[
\text{Hom}_{G}(c-\text{Ind}_{K}^{G} \sigma, \pi) = \text{Hom}_{G_{L}}(F(c-\text{Ind}_{K}^{G} \sigma), F(\pi))
\]

We know that \(\pi \) is an irreducible subquotient of \(i_{G}(\omega \otimes \chi_{1} \otimes \ldots \otimes \omega \otimes \chi_{e}) \), where \(\chi_{1}, \ldots, \chi_{e} \) are some unramified characters of \(G_0 \) or \(L^{\times} \). Let \(\rho' = (\omega \otimes \chi_{1}) \otimes \ldots \otimes (\omega \otimes \chi_{e}) = \rho \otimes \chi \), where \(\chi \) is an unramified character of \(M \). According to the page 591 of [BK98] the action of \(H(M, J_{M}, \lambda_{M}) \) on \(\text{Hom}_{J_{M}}(\lambda_{M}, \rho') \) is given by:

\[
f.\phi(w) = \int_{M} \rho'(g).\phi(\check{f}(g^{-1})w)dg
\]

where \(f \in H(M, J_{M}, \lambda_{M}) \), \(\phi \in \text{Hom}_{J_{M}}(\lambda_{M}, \rho') \) and \(w \) is a vector in the underlying vector space of \(\lambda_{M} \). We want to understand the compatibility of this action with twisting and support preserving isomorphisms of Hecke algebras. Since \(f \) has a compact support, without loss of generality we may assume that \(f \) is supported on \(J_{M}.m.J_{M} \) for some \(m \in M \). The element \(m \) is block diagonal matrix with \(e \) blocs. Without loss of generality we may assume that each bloc is some power of the uniformizer \(\varpi_{T} \). For convenience we assume that \(\int_{0}^{j_{1}} dj = 1 \), this implies that \(\int_{J_{M}} dj = 1 \) and \(\int_{T_{L}} dt = 1 \). Then,

\[
f.\phi(w) = \int_{J_{M}.m.J_{M}} \rho'(g).\phi(f(g)^{\vee}w)dg
\]

\[
= \int_{j_{1} \in J_{M}} \int_{j_{2} \in J_{M}} \rho'(j_{1}.m.j_{2}).\phi(f(j_{1}.m.j_{2})^{\vee}w)dj_{1}dj_{2}
\]

By definition we have:

\[
f(j_{1}.m.j_{2})^{\vee} = (\check{\lambda}_{M}(j_{1}).f(m).\check{\lambda}_{M}(j_{2}))^{\vee} = \lambda_{M}(j_{2}^{-1}).f(m)^{\vee}.\lambda_{M}(j_{1}^{-1})
\]

Moreover \(\phi \) is \(J_{M} \)-equivariant, thus

\[
\phi(\lambda_{M}(j_{2}^{-1}).f(m)^{\vee}.\lambda_{M}(j_{1}^{-1})) = \rho'(j_{2}^{-1}).\phi(f(m)^{\vee}.\lambda_{M}(j_{1}^{-1}))
\]
This simplifies the integral:

\[\int_{j_1 \in J_M} \rho(j_1).\rho'(m).\phi(f(m)\chi_M(j_1^{-1})w) dj_1 = \int_{j_1 \in J_M} \rho(j_1).\rho'(m).\phi(f(j_1.m)\chi_M w) dg \]

\[= \int_{g \in M} 1_{J_M}(g)\rho(g).\rho'(m).\phi(f(g.m)\chi_M w) dg, \]

where \(1_{J_M}\) is the characteristic function of \(J_M\). Each bloc in the matrix \(m\) normalizes \(J_0\), hence \(m\) normalizes \(J_M\). The group \(M\) is reductive, hence unimodular. In the integral above we make a change of variables \(h = m^{-1}g\), this change of variables does not affect the Haar measure \(dg\). We write the integral above as

\[\int_{h \in M} 1_{J_M}(hm^{-1})\rho(mh^{-1}).\rho'(m).\phi(f(m.h)\chi_M w) dg \]

\[= \int_{j \in m^{-1}J_M} \rho'(m).\phi(f(m)\chi_M w) dj = \int_{j \in m^{-1}J_M} \rho'(m).\phi(\chi_M(j^{-1})f(m)\chi_M w) dj \]

\[= \rho'(m).\phi(f(m)\chi_M w) = \chi(m).\rho(m).\phi(f(m)\chi_M w) \]

in order to get the last equality we used \(J_M\)-equivariance of \(\phi\), the fact that \(m\) normalizes \(J_M\) and the normalization of the Haar measure. Observe that for a more general \(f\) we will not get a simple multiplication by a character, but a sum of integrals of the form above. The expression above is compatible with the support preserving isomorphism \(\Phi_1^{\otimes e}\), in a sense that:

\[\Phi_1^{\otimes e}(\chi(m).\rho(m).\phi(f(m)\chi_M w)) = \chi(m).\Phi_1^{\otimes e}(\phi)(\Phi_1^{\otimes e}(f)(m)\chi_M w), \]

where \(m\) is naturally seen as an element of \(T_L\) because its diagonal blocs are some powers of the uniformizer \(\varpi_T\) and \(\chi\) is seen as unramified character of \(T_L\). This is, of course, compatible with the same computation of the integral replacing \(H(M, J_M, \lambda_M)\) by \(H(T_L, T_L', 1)\) and \(\text{Hom}_{J_M}(\lambda_M, \rho')\) by \(\text{Hom}_{T_L}(1, \chi)\).

Then by the equivalence of categories described above, \(F(\pi)\) is an irreducible subquotient of \(F(\psi^G((\omega \otimes \chi_1) \otimes \ldots (\omega \otimes \chi_e))) = i_{B_L}(\chi_1 \otimes \ldots \otimes \chi_e).\)

Let now \(\Delta = [\omega(\alpha), \omega(\alpha + e - 1)]\), a segment in \(G\), where \(\alpha\) is a real number. Then the commutative diagram above shows that the \(G\)-representation
\[i^G_P(\Delta)\] corresponds to \(G_L\)-representation \(F(i^G_P(\Delta)) = i^{GL}_{BL}(\Delta_L)\), where \(\Delta_L = [1(\alpha), 1(\alpha + e - 1)]\) is a segment in \(G_L\) and 1 is the trivial character of \(L^\times\). We know that \(i^G_P(\Delta)\) admits a unique irreducible quotient \(Q(\Delta)\), so the \(G\)-representation \(Q(\Delta)\) corresponds to the \(G_L\) representation \(F(Q(\Delta)) = Q(\Delta_L)\).

The similar argument works with multiple segments. Therefore \(F(\pi) = Q(\Delta'_1, \ldots, \Delta'_s)\), where \(\Delta'_i = [1(\alpha_i), 1(\alpha_i + e_i - 1)]\) for all \(i\).

Since the isomorphisms of Hecke algebras are support preserving, we also have the following commutative diagram:

\[
\begin{array}{cccccc}
\mathcal{R}_\lambda(G)^{\text{Hom}_J(\lambda, \ast)} & \longrightarrow & \mathcal{H}(G, J, \lambda) - \text{Mod} & \longrightarrow & \mathcal{H}(G_L, I_L, 1) - \text{Mod} & \longrightarrow & \mathcal{R}_1(G_L) \\
c{-\text{Ind}}^G_K & \uparrow & \uparrow & & \uparrow & \uparrow & c{-\text{Ind}}^{GL}_{KL} \\
\mathcal{R}_\lambda(K)^{\text{Hom}_J(\lambda, \ast)} & \longrightarrow & \mathcal{H}(K, J, \lambda) - \text{Mod} & \longrightarrow & \mathcal{H}(K_L, I_L, 1) - \text{Mod} & \longrightarrow & \mathcal{T}_K \mathcal{R}_1(K_L)
\end{array}
\]

where \(T_{KL} = \ast \otimes_{\mathcal{H}(K_L, I_L, 1)} c{-\text{Ind}}^K_{I_L} 1\).

If we denote the composition of all the top horizontal arrow by \(F\) and the composition of all the bottom horizontal arrow by \(F_K\), then \(F(c{-\text{Ind}}^G_K \sigma) = c{-\text{Ind}}^{GL}_{KL} F_K(\sigma)\). The same argument that computes \(F(\pi)\) shows that we also have \(F_K(\sigma) = \sigma_{\text{p-min}}(\text{trivial}) = st\), where \(st\) denotes the inflation of Steinberg representation of \(GL_n\) over a finite field. Alltogether we have:

\[
\text{Hom}_G(c{-\text{Ind}}^G_K \sigma, \pi) = \text{Hom}_{GL}(F(c{-\text{Ind}}^G_K \sigma), F(\pi))
\]

\[
= \text{Hom}_{GL}(c{-\text{Ind}}^{GL}_{KL} F_K(\sigma), Q(\Delta'_1, \ldots, \Delta'_s))
\]

\[
= \text{Hom}_{KL}(F_K(\sigma), Q(\Delta'_1, \ldots, \Delta'_s)|K_L)
\]

Observe that \(Q(\Delta'_1, \ldots, \Delta'_s)\) is generic if and only if \(\pi\) is generic and \(\text{Hom}_{KL}(st, Q(\Delta'_1, \ldots, \Delta'_s)|K_L) \neq 0\) if and only if \(\text{Hom}_{KL}(\sigma, \pi|K) \neq 0\). So we are reduced to consider the case when \((J, \lambda) = (I, 1)\). However this was proven in section 7.2 [Ree02].

2. **Semi-simple type case (general case).** Let now \(\lambda\) be some general semi-simple type. The second part of Main Theorem of section 8 in [BK98] gives a support preserving Hecke algebra isomorphism \(j : \mathcal{H}(\overline{M}, \lambda_M) \rightarrow \mathcal{H}(G, \lambda)(\text{here } \overline{M} \text{ is a unique Levi subgroup of } G \text{ which contains the } N_G(M)\text{-stabilizer of the inertia class } D \text{ and is minimal for this property}), and the section 1.5 gives a tensor product decomposition \(\mathcal{H}(\overline{M}, \lambda_M) = \mathcal{H}_1 \otimes_{\mathcal{Q}_p} \ldots \otimes_{\mathcal{Q}_p}\)
\mathcal{H}_s, where $\mathcal{H}_i = \mathcal{H}(G_i, J_i, \lambda_i)$ is an affine Hecke algebras of type A and (J_i, λ_i) is some simple type with G_i some general linear group over a p-adic field.

Let M be a Levi subgroup of $P = MN$, then $K \cap M = \prod_{i=1}^{s} K_i$, where K_i is a maximal compact subgroup of i-th factor in M. By definition, see the end of section 6 in [SZ99], the restriction of K-representation σ to $K \cap N$ is trivial, and $\sigma|K \cap M \simeq \sigma_1 \otimes \ldots \otimes \sigma_s$ where $\sigma_i := \sigma_{P_{\min}}(\lambda_i)$ with obvious notations.

According to Theorem (8.5.1) in [BK93] the irreducible representation π is of the form

$$\pi \simeq \pi_1 \times \ldots \times \pi_s,$$

such that π_i is irreducible representation of G_i and contains the simple type (J_i, λ_i). Moreover the supersupidal support of π_i is disjoint from supersupidal support of π_j for $i \neq j$. Then

$$\text{Hom}_K(\sigma, \pi) = \text{Hom}_K(\sigma, \text{Ind}^K_{K \cap P}(\pi_1|K_1 \otimes \ldots \otimes \pi_s|K_s))$$

$$= \text{Hom}_{K \cap P}(\sigma_{K \cap M}, \pi_1|K_1 \otimes \ldots \otimes \pi_s|K_s)$$

$$= \text{Hom}_{K \cap M}(\sigma_1 \otimes \ldots \otimes \sigma_s, \pi_1|K_1 \otimes \ldots \otimes \pi_s|K_s)$$

is non zero if and only $\text{Hom}_K(\sigma, \pi)|K_i$ is non zero for all i. By simple type case π_i is a generalized steinberg representation. It follows that π is generic.

Lemma 2.2. We have $\dim \text{Hom}_K(\sigma_{\min}(\lambda), \pi) = 1$, for π an irreducible generic representation of G in Ω.

Proof. Let $x \in m\text{-Spec } \mathfrak{z}_\Omega$ a maximal ideal defined by π. Since π is generic we have that $\text{Hom}_K(\sigma_{\min}(\lambda), \pi) \neq 0$ by Proposition [2.1]. It follows that we have $c\text{–Ind}^G_K \sigma_{\min}(\lambda) \otimes \mathfrak{z}_\Omega \kappa(x) \rightarrow \pi$. Since the functor $\text{Hom}_K(\sigma_{\min}(\lambda),)$ is exact, we have $\text{Hom}_K(\sigma_{\min}(\lambda), c\text{–Ind}^G_K \sigma_{\min}(\lambda) \otimes \mathfrak{z}_\Omega \kappa(x)) \rightarrow \text{Hom}_K(\sigma_{\min}(\lambda), \pi)$. Moreover by Frobenius reciprocity we have that

$$\text{Hom}_K(\sigma_{\min}(\lambda), c\text{–Ind}^G_K \sigma_{\min}(\lambda) \otimes \mathfrak{z}_\Omega \kappa(x))$$

$$= \text{Hom}_G(c\text{–Ind}^G_K \sigma_{\min}(\lambda), c\text{–Ind}^G_K \sigma_{\min}(\lambda) \otimes \mathfrak{z}_\Omega \kappa(x))$$

and then by Lemma 5.2 [Pyv18]:

$$\text{Hom}_K(\sigma_{\min}(\lambda), c\text{–Ind}^G_K \sigma_{\min}(\lambda) \otimes \mathfrak{z}_\Omega \kappa(x))$$
\[\simeq \text{Hom}_K(\sigma_{\text{min}}(\lambda), c\text{-Ind}_K^G \sigma_{\text{min}}(\lambda)) \otimes \mathbb{Z}_\Omega \kappa(x) \]

Moreover by Corollary 7.2 [Pyv18], \(\text{Hom}_K(\sigma_{\text{min}}(\lambda), c\text{-Ind}_K^G \sigma_{\text{min}}(\lambda)) \simeq \mathbb{Z}_\Omega \). Hence we have a surjective map of \(\kappa(x) \)-vector spaces:

\[\kappa(x) \twoheadrightarrow \text{Hom}_K(\sigma_{\text{min}}(\lambda), \pi) \]

Then \(1 \geq \dim \text{Hom}_K(\sigma_{\text{min}}(\lambda), \pi) \) and this space is non-zero, hence it must be one-dimensional.

\[\square \]

Acknowledgments

The results of this paper are part of my PhD thesis. I'm tremendously grateful to my advisor Vytautas Paškinas for sharing his ideas with me and for many helpful discussions. I would like to thank Peter Schneider for pointing out the reference [Ree02], which allowed to simplify some of my arguments. This work was supported by SFB/TR 45 of the DFG.

References

[BcC09] Joël Bellaïche and Gaëtan Chenevier. Families of Galois representations and Selmer groups. Astérisque, (324):xii+314, 2009.

[Ber84] J. N. Bernstein. Le “centre” de Bernstein. In Representations of reductive groups over a local field, Travaux en Cours, pages 1–32. Hermann, Paris, 1984. Edited by P. Deligne.

[BH06] Colin J. Bushnell and Guy Henniart. The local Langlands conjecture for GL(2), volume 335 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.

[BK93] Colin J. Bushnell and Philip C. Kutzko. The admissible dual of GL(N) via compact open subgroups, volume 129 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993.

[BK98] Colin J. Bushnell and Philip C. Kutzko. Smooth representations of reductive p-adic groups: structure theory via types. Proc. London Math. Soc. (3), 77(3):582–634, 1998.
[BK99] Colin J. Bushnell and Philip C. Kutzko. Semisimple types in GL_n.
Compositio Math., 119(1):53–97, 1999.

[BZ77] I. N. Bernstein and A. V. Zelevinsky. Induced representations
of reductive p-adic groups. I. Ann. Sci. École Norm. Sup. (4),
10(4):441–472, 1977.

[CEG+16] Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty,
Vytautas Paškūnas, and Sug Woo Shin. Patching and the p-adic
local Langlands correspondence. Camb. J. Math., 4(2):197–287,
2016.

[Del75] P. Deligne. “Formes modulaires et représentations de GL(2)”
(modular functions of one variable, ii (Proc. Internat. Summer
School, Univ. Antwerp, Antwerp, 1972), pp. 55–105, Lecture
Notes in Math., Vol. 349, Springer, Berlin, 1973). pages p. 148.
Lecture Notes in Math., Vol. 476, 1975.

[Kud94] Stephen S. Kudla. The local Langlands correspondence: the non-
Archimedean case. In Motives (Seattle, WA, 1991), volume 55
of Proc. Sympos. Pure Math., pages 365–391. Amer. Math. Soc.,
Providence, RI, 1994.

[Pyv18] Alexandre Pyvovarov. Specialization of a projective generator.
Preprint, 2018.

[Ree02] Mark Reeder. Isogenies of Hecke algebras and a Langlands corre-
response for ramified principal series representations. Represent.
Theory, 6:101–126, 2002.

[Ren10] David Renard. Représentations des groupes réductifs p-adiques,
volume 17 of Cours Spécialisés [Specialized Courses]. Société
Mathématique de France, Paris, 2010.

[Rog85] J. D. Rogawski. On modules over the Hecke algebra of a p-adic
group. Invent. Math., 79(3):443–465, 1985.

[Sho16] Jack Shotton. Local deformation rings for GL_2 and a Breuil-
Mézard conjecture when ℓ ≠ p. Algebra Number Theory,
10(7):1437–1475, 2016.
[SZ99] P. Schneider and E.-W. Zink. \(K \)-types for the tempered components of a \(p \)-adic general linear group. *J. Reine Angew. Math.*, 517:161–208, 1999. With an appendix by Schneider and U. Stuhler.

[SZ16] Peter Schneider and Ernst-Wilhelm Zink. Tempered representations of \(p \)-adic groups: special idempotents and topology. *Selecta Math. (N.S.)*, 22(4):2209–2242, 2016.

[Zel80] A. V. Zelevinsky. Induced representations of reductive \(p \)-adic groups. II. On irreducible representations of \(\text{GL}(n) \). *Ann. Sci. École Norm. Sup. (4)*, 13(2):165–210, 1980.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT DUISBURG-ESSEN, THEA-LEYMANN-STRASSE 9, 45127 ESSEN, GERMANY.

E-mail address: alexandre.pyvovarov@stud.uni-due.de