miR-424-5p combined with miR-17-5p has high diagnostic efficacy for endometriosis

Chunli Lin\(^1\) · Saili Zeng\(^2\) · Miaojie Li\(^3\)

Received: 1 December 2021 / Accepted: 25 February 2022 / Published online: 3 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Purpose Endometriosis (EMT) is a chronic benign disease with high prevalence. This study investigated the diagnostic value of serum miR-17-5p, miR-424-5p, and their combined expressions for EMT.

Methods Total 80 EMT patients of reproductive age who underwent laparoscopy or laparotomy and were confirmed by pathological examination were included as the study subjects, and another 80 healthy women of reproductive age receiving gynecological examination and ultrasonography with no pelvic abnormalities were selected as the control group. The whole blood samples of enrolled subjects were collected and clinical characteristics were recorded. The miR-17-5p, miR-424-5p, VEGFA, IL-4, and IL-6 levels in the serum were measured. ROC curve was used to evaluate the diagnostic efficacy of miR-17-5p and miR-424-5p expressions for EMT. Pearson correlation was performed to analyze the correlation of miR-17-5p and miR-424-5p with clinical indexes in EMT patients.

Results miR-17-5p and miR-424-5p were downregulated in EMT patients. For diagnosing EMT, the AUC of miR-17-5p was 0.865 and cutoff value was 0.890 (91.3% sensitivity and 85% specificity), the AUC of miR-424-5p was 0.737, and cutoff value was 0.915 (98.8% sensitivity and 61.2% specificity), and the AUC of miR-424-5p combined with miR-17-5p was 0.938 and cutoff value was 2.205 (93.8% sensitivity and 88.7% specificity), with the diagnostic efficacy higher than miR-424-5p or miR-17-5p alone. miR-17-5p and miR-424-5p expressions were negatively correlated with dysmenorrhea, infertility, pelvic pain, and rASRM stage, but not with age, BMI, menstrual disorder, and nulliparity. VEGFA, IL-4, IL-6, and CA-125 were increased in EMT patients and were inversely associated with miR-17-5p and miR-424-5p.

Conclusion miR-424-5p combined with miR-17-5p has high diagnostic efficacy for EMT.

Keywords Endometriosis · miR-424-5p · miR-17-5p · Combined diagnosis · Receiver operating characteristic curve · VEGFA · Inflammatory cytokines

Introduction

Endometriosis (EMT) is a commonly diagnosed, chronic, and hormone-dependent gynecological disease featured by the endometrial stroma and glands in the outside of the uterine cavity [1, 2]. Since various inflammatory biomarkers such as interleukin (IL)-4, IL-6, IL-8, C-reactive protein, and tumor necrosis factor-α are increased in the serum of women with EMT, EMT is also regarded as an inflammatory disorder [3]. EMT affects 6–10% of reproductive women and 1–4% of postmenopausal women [4]. About 3.8–37% among the EMT patients will suffer from bowel involvement, mainly the rectosigmoid colon [5]. Chronic pelvic pain, dysmenorrhea, dyspareunia, infertility, deep dyspareunia, cyclical intestinal complaints, and fatigue/weariness are common symptoms [6, 7]. Advanced EMT may cause gynecological
malignancies, including ovarian cancer [8]. Diagnosis is a great challenge in EMT, whose diagnostic time is prolonged by an average of 6–12 years due to the lack of specific symptoms and noninvasive diagnostic tests [9]. EMT not only affects the physical and mental health of patients and their spouses but also brings great economic and medical burdens to society [10]. Therefore, it is extremely important to find effective diagnostic markers with strong specificity and high sensitivity for EMT.

MicroRNAs (miRNAs) are small, single-stranded, and non-coding RNAs, with a length of 20–24 nucleotides, which mediate the level of messenger RNA in numerous eukaryotic lineages [11, 12]. Abnormal miRNA expression is linked with various human disorders, including cardiovascular diseases, cancer, inflammatory diseases, and gynecologic pathology [13]. The differentially expressed miRNAs are key players in the occurrence of EMT and the associated infertility, with miR-17-5p being downregulated in the plasma from women with EMT [14]. The expression of miR-424-5p is reduced in the endometriotic mesenchymal cells, indicating its potential regulatory effect on EMT [15]. Since the sensitivity and specificity of a single miRNA as a biomarker to distinguish EMT patients from healthy women are relatively low [16], a combined diagnosis of miR-17-5p and miR-424-5p for EMT was investigated in this study.

Angiogenesis is an important step in the development of endometriotic lesions, hence EMT is also regarded as an angiogenic disease [17]. Vascular endothelial growth factor A (VEGFA) is described as an essential mediator of angiogenesis, which refers to the occurrence of new vessels from pre-existent ones [18]. VEGFA plays a pivotal role in the pathogenesis of EMT [19]. miR-17-5p can promote angiogenesis and inversely modulates the expression of VEGFA in EMT [20, 21]. miR-424-5p negatively targets VEGFA and lowers the angiogenic activity of VEGFA protein [22]. However, there is no report about the diagnostic value of miR-17-5p combined with miR-424-5p for EMT. This study therein explored their combined diagnosis of EMT to improve diagnostic accuracy and efficacy.

Methods

Ethics statement

This study was approved by the academic ethics committee of Hunan Province Maternal and Child Health care Hospital. All participants were fully informed and voluntarily signed the informed consent before sampling.

Study subjects

This study included 80 patients with EMT of reproductive age who underwent laparoscopy or laparotomy in the Department of Gynecology in Hunan Province Maternal and Child Health care Hospital from January 2019 to December 2020 and were confirmed by pathological examination as the experimental group (EMT group). Another 80 women of reproductive age with the healthy physical examination at the same period who underwent gynecological examination and ultrasonography with no pelvic abnormalities were selected as the control group. The fasting venous blood was collected from EMT patients before surgery and health controls, and the clinical characteristics were recorded, including age, body mass index (BMI), dysmenorrhea, menstrual disorder, infertility, parity, and pelvic pain. The diagnostic criteria referred to the Specifications for the Diagnosis and Treatment of Endometriosis [Chinese Journal of Obstetrics and Gynecology, 2015(3)] issued by the Obstetrics and Gynecology Branch of Chinese Medical Association. Endometriosis was classified as mild (stages I and II), moderate to severe (stages III and IV) according to the American Society for Reproductive Medicine (ASRM) staging criteria.

Inclusion criteria included: EMT patients confirmed by surgery and pathology; women of reproductive age, aged 24–46 years; first-time admissions without a history of surgery; not using hormonal drugs within 3 months and without other inflammatory diseases.

Exclusion criteria referred to the women: with adenomyosis, endometrial carcinoma, endometrial hyperplasia or polyps, chronic or acute inflammation, infectious diseases, malignancy, autoimmune diseases, and cardiovascular diseases.

Reverse transcription quantitative polymerase chain reaction (RT-qPCR)

RT-qPCR was used to determine the expression of miR-17-5p and miR-424-5p in the serum of the study population. The whole blood sample was placed in the 1.5 mL microcentrifuge tube without RNase, centrifuged at 3000 rpm for 20 min, and then the supernatant was stored in a 1.5 mL microcentrifuge tube without RNase and placed in a freezer at – 80 °C. Total RNA was extracted from samples according to the instructions of the TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA). cDNA was synthesized using the PrimeScript RT reagent kit (Takara, Tokyo, Japan). RT-qPCR was performed using the SYBR PCR Green Master Mix kit (Qiagen, Hilden, Germany) under the following reaction conditions: at
95 °C for 10 min, and then 40 cycles of 95 °C for 15 s, 55 °C for 30 s, and 70 °C for 30 s. U6 was used as an internal reference. The relative levels of miR-17-5p and miR-424-5p after normalization to U6 were calculated using the 2−ΔΔCt method. The primer sequences are shown in Table 1.

Enzyme-linked immunosorbent assay (ELISA)

The corresponding Quantikine ELISA kits of VEGFA (ab119566, Abcam, Cambridge, UK), IL-4 (ab215089, Abcam), IL-6 (EK0410, Boster, Pleasanton, CA, USA), and cancer antigen 125 (CA-125, XY-EH0361, X–Y Biotechnology, Shanghai, China) were employed to quantify their concentrations in serum samples.

Dual-luciferase assay

The binding sites of miR-17-5p or miR-424-5p with VEGFA were predicted by the online database (http://www.targetscan.org/vert_71/). The wild type (WT) or mutant (MUT) of VEGFA 3’-UTR were constructed and cloned into the pMIR vector (Ribobio, Guangzhou, China). HEK293T cells (CL-0005, Procell, Wuhan, China) were seeded into 48-well plates, and the constructed luciferase reporter vectors were co-transfected with miR-424-5p mimics, miR-17-5p mimics, or mimics NC using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). After 48 h of transfection, cells were collected and detected using the dual-luciferase assay kit (Promega, Madison, WI, USA).

Statistical analysis

SPSS 21.0 statistical software (IBM Corp. Armonk, NY, USA) and GraphPad Prism 8.0.1 software (GraphPad Software Inc., San Diego, CA, USA) were employed for the statistical analysis and mapping. Shapiro–Wilk test was used to verify the normal distribution. Measurement data of normal distribution were expressed as mean ± standard deviation (SD) and independent sample t test was adopted for comparisons between groups. Measurement data of non-normal distribution were presented as quartile and Mann–Whitney U test was used for comparisons between groups. The enumeration data were exhibited as cases and percentages, and Chi-square test was performed for comparisons between groups. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of miRNAs and obtain the cutoff values. MedCalc was introduced to compare and analyze the differences of the area under the curve (AUC). The correlation between the expressions of miRNAs and indexes was analyzed using Pearson correlation.

Results

Comparative analysis of general data and characteristics of participants

A total of 160 subjects were included in this study, including 80 healthy controls and 80 EMT patients. We compared and analyzed the general data and clinicopathological characteristics of EMT patients and healthy controls. The results showed no statistical differences in age, BMI, menstrual disorder, and nulliparity between EMT patients and healthy controls (all \(P > 0.05 \)), while the proportions of dysmenorrhea, infertility, and pelvic pain were remarkably increased in EMT patients (\(P < 0.05 \)) (Table 2).

	Control (\(N=80\))	EMT (\(N=80\))	\(P\)
Age (years)	32.40 ± 2.67	31.50 ± 4.73	0.140
BMI (kg/m²)	26.76 ± 6.25	27.39 ± 5.63	0.504
Dysmenorrhea	8 (10.00%)	36 (45.00%)	< 0.001
Menstrual disorder	16 (20.00%)	21 (26.25%)	0.454
Infertility	12 (15.00%)	53 (66.25%)	< 0.001
Nulliparity	39 (48.75%)	42 (52.50%)	0.752
Pelvic pain	25 (31.25%)	47 (58.75%)	0.001
rASRM stage			
Stage I/II	–	32 (40.00%)	–
Stage III/IV	–	48 (60.00%)	–

EMT endometriosis, BMI body mass index, rASRM revised American Society for Reproductive Medicine

Table 1 Primer sequences

Gene	Forward 5’–3’	Reverse 5’–3’
miR-17-5p	GCCGCCCAAAAGTGCTTACAGTG	CAGCCACAAAAGAGCACACAAT
miR-424-5p	GGCTAGTCAGCAGCAATTCATGT	GTGCAAGGGTGTCGAGGT
U6	GCTTCGCGACGACATAATCTAAAAT	CGCTTCAGAATTTGCGTGTCAT

\(miR-17-5p\) microRNA-17-5p, \(miR-424-5p\) microRNA-424-5p
miR-17-5p and miR-424-5p were downregulated in the serum of EMT patients

RT-qPCR results showed that the miR-17-5p and miR-424-5p levels in EMT patients were markedly diminished (Fig. 1A, B, all \(P < 0.05 \)).

miR-17-5p combined with miR-424-5p had a high diagnostic value for EMT

To further explore the clinical diagnostic efficacy of miR-17-5p and miR-424-5p in EMT, the ROC curve was plotted to distinguish EMT patients from healthy controls by the expression of miR-17-5p, miR-424-5p, or miR-17-5p combined with miR-424-5p. The results showed that for the diagnosis of EMT, the AUC of miR-17-5p was 0.865 and the cutoff value was 0.890 (91.3% sensitivity and 85% specificity) (Fig. 2A); the AUC of miR-424-5p was 0.737 and the cutoff value was 0.915 (98.8% sensitivity and 61.2% specificity) (Fig. 2B). The diagnostic efficacy of miR-17-5p combined with miR-424-5p for EMT was further evaluated, and the results indicated an AUC of 0.939 and a cutoff value of 2.205 (93.8% sensitivity and 88.7% specificity) for combined diagnosis (Fig. 2C). MedCalc was employed to compare and analyze the AUC, and the results illustrated that miR-17-5p combined with miR-424-5p had prominently higher diagnostic efficacy than miR-424-5p or miR-17-5p alone (Fig. 2D) (all \(P < 0.05 \)). Altogether, serum miR-17-5p and miR-424-5p could be used as biomarkers for EMT diagnosis, and their combination had a high diagnostic efficacy for EMT.

Correlation analysis of serum miR-17-5p and miR-424-5p expressions with clinical indexes in EMT patients

To investigate the correlation of serum miR-17-5p and miR-424-5p levels with clinical indicators of EMT patients, Pearson correlation analysis was performed and it demonstrated that the serum expressions of miR-17-5p and miR-424-5p were significantly inversely correlated with dysmenorrhea, infertility, pelvic pain, and revised ASRM (rASRM) stage in EMT patients (all \(P < 0.05 \)), but not associated with age, BMI, menstrual disorder, and nulliparity (Table 3).

miR-17-5p and miR-424-5p were negatively correlated with VEGFA, IL-4, IL-6, and CA-125 in the serum of EMT patients

EMT is an inflammatory disease and the levels of inflammatory cytokines IL-4 and IL-6 are increased in the serum and tissues of EMT patients [23]. CA-125 is identified as a biomarker for EMT detection, late recurrence, and treatment [24, 25]. Therefore, we subsequently validated the correlation of miR-17-5p and miR-424-5p with VEGFA, IL-4, IL-6, and CA-125 in the serum of EMT patients. First, the expressions of VEGFA, IL-4, IL-6, and CA-125 in the serum were measured using ELISA, and the results revealed remarkably increased levels of VEGFA, IL-4, IL-6, and CA-125 in the serum of EMT patients compared with healthy controls (all \(P < 0.05 \)) (Fig. 3A). Next, the correlations of miR-17-5p and miR-424-5p expressions with VEGFA, IL-4, IL-6, and CA-125 concentrations were assessed. Pearson correlation scatter plot showed a negative correlation of miR-17-5p expression...
VEGFA (P < 0.0001; r = −0.8853), IL-4 (P < 0.0001; r = −0.6552), IL-6 (P < 0.0001; r = −0.7438), and CA-125 (P < 0.0001; r = −0.8405) concentrations (Fig. 3B). Similarly, miR-424-5p expression was negatively related with VEGFA (P < 0.0001; r = −0.8314), IL-4 (P < 0.0001; r = −0.6167), IL-6 (P < 0.0001; r = −0.6870), and CA-125 (P < 0.0001; r = −0.8531) concentrations (Fig. 3C). The binding sites of miR-17-5p or miR-424-5p with VEGFA were predicted, respectively, through the online database (http://www.targetscan.org/vert_71/). The constructed VEGFA 3′-UTR vectors (WT or MUT) were co-transfected with miRNA or NC to verify the targeted inhibitory relationship of miR-17-5p and miR-424-5p with VEGFA. The dual-luciferase assay suggested that the cell luciferase activities of miR-17-5p mimics or miR-424-5p mimics co-transfection with VEGFA-WT were markedly lowered relative to the mimics NC group (all P < 0.05), while the cell luciferase activities of co-transfection with VEGFA-MUT expressed no apparent change (Fig. 3D–E), confirming the targeted relationship of miR-17-5p and miR-424-5p with VEGFA. Collectively, both miR-17-5p and miR-424-5p might play a regulatory role in EMT by targeting VEGFA.

Table 3 Correlation analysis of serum miR-17-5p and miR-424-5p expression with clinical indexes in EMT patients

EMT (N=80)	miR-17-5p	miR-424-5p			
Age (years)	31.5 ± 4.73	0.086	0.447	0.124	0.274
BMI (kg/m²)	27.39 ± 5.63	0.045	0.692	0.015	0.892
Dysmenorrhea	36 (45.00%)	−0.334	0.003	0.295	0.008
Menstrual disorder	21 (26.25%)	0.068	0.552	0.080	0.479
Infertility	53 (66.25%)	−0.301	0.007	−0.271	0.015
Nulliparity	42 (52.50%)	0.108	0.340	0.119	0.292
Pelvic pain	47 (58.75%)	−0.541	<0.001	−0.534	<0.001
rASRM stage					
Stage I/II	32 (40.00%)				
Stage III/IV	48 (60.00%)	−0.601	<0.001	−0.585	<0.001

miR-17-5p microRNA-17-5p, miR-424-5p microRNA-424-5p, EMT endometriosis, BMI body mass index, rASRM revised American Society for Reproductive Medicine
Discussion

EMT emerges as a common gynecologic disease with complicated pathogenesis, which mainly impacts women of reproductive age [26], and influences female fertility, life quality and long-term health [27]. miRNAs, which are normally found in exosomes, are implicated in the nosogenesis of EMT and can be proposed as potential markers in EMT [10, 28]. This study evaluated the diagnostic efficacy of miR-17-5p and miR-424-5p for EMT.

Fig. 3 miR-17-5p and miR-424-5p were negatively correlated with VEGFA, IL-4, IL-6, and CA-125 in the serum of EMT patients. A The expressions of serum VEGFA, IL-4, IL-6, and CA-125 were measured using ELISA; B The correlation of miR-17-5p with serum VEGFA, IL-4, IL-6, and CA-125 in EMT patients was assessed by Person analysis; C The association of miR-424-5p with serum VEGFA, IL-4, IL-6, and CA-125 in EMT patients was evaluated by Person analysis; D The targeted inhibitory relationship of miR-17-5p and VEGFA was verified using the dual-luciferase reporter assay; E The targeted relationship of miR-424-5p and VEGFA was elucidated by the dual-luciferase assay. Independent sample t test was performed for comparisons between panels (D, E). **P < 0.01, ***P < 0.001
Aberrant levels of miRNAs are implicated in the occurrence and progression of EMT [29] and proposed as biomarkers for early diagnosis and prediction of EMT [30]. First, the RT-qPCR revealed decreased expressions of miR-17-5p and miR-424-5p in women with EMT. Consistently, increasing reports unveil that miR-17-5p is weakly expressed in EMT patients, indicating its potential utility in the clinical diagnosis of EMT [31, 32]. miR-424-5p is involved in the development of EMT and is lowered in EMT lesions [15, 33]. Thus, weak expression of miR-17-5p and miR-424-5p in EMT patients may be potential biomarkers.

Next, we further investigated the diagnostic value of miR-17-5p and miR-424-5p for EMT. Our results revealed that miR-17-5p and miR-424-5p expression both had diagnostic values for EMT, and the diagnostic value of miR-17-5p combined with miR-424-5p for EMT was higher. Previous studies also elicit that the combination of several different miRNAs, with improved sensitivity and specificity, has elevated diagnostic accuracy relative to individual miRNA [16, 34]. Altogether, miR-17-5p and miR-424-5p both could be considered biomarkers for EMT, and their combination had amplified this diagnostic efficacy.

Infertility, chronic pelvic pain, and dysmenorrhea are primary symptoms of EMT [35]. Initially, the analysis of general data and clinic characteristics of EMT patients and healthy women unraveled the elevated proportions of dysmenorrhea, infertility, and pelvic pain in EMT patients. EMT individuals usually have a prolonged history of dysmenorrhea [36], and 30–50% of women with EMT also suffer from pelvic pain and infertility [37]. These clinical parameters could assist the diagnosis of EMT. Moreover, Pearson correlation analysis demonstrated a remarkable inverse correlation between miR-17-5p and miR-424-5p expression with dysmenorrhea, infertility, pelvic pain, and rASRM stage in women with EMT. miR-17-5p is related to tubal factor infertility [38]. miR-424 is involved in the human estrogen receptor and progesterone receptor pathways [39]. There are limited studies about the relationship of miR-17-5p and miR-424-5p levels with clinical indicators in EMT patients. Our results initially identified the strong association of miR-17-5p and miR-424-5p with EMT.

EMT is an inflammatory disease with autoimmune and chronic features, and EMT-related pain is often caused by inflammation [40, 41]. The abnormal expression of inflammatory factor IL-4 occurs in EMT patients [42]. IL-6 is a potential indicator for EMT and is positively related to the disease stage [43]. Angiogenesis is of great importance for the engraftment and development of endometriotic lesions [44]. VEGFA is an effective angiogenic factor and is regarded as a leading element in uterine angiogenesis [45], which is highly expressed in plasma and peritoneal fluid of EMT individuals [44, 46]. Preoperative CA-125 is identified as an effective marker for diagnosing EMT [25], and CA-125 expression is upregulated in EMT patients [47]. The previous studies have illustrated the increased concentration of IL-4 and IL-6, and the levels will increase as the disease progression [48–50]. miR-17-5p is an inflammation-associated miRNA and its overexpression can suppress the lipopolysaccharide-induced inflammatory response, including IL-6 level [51]. Consistently, there is a negative correlation between miR-17 level with IL-4 and IL-6 in EMT [23]. Our results showed that VEGFA, IL-4, IL-6, and CA-125 were upregulated in the serum of EMT patients, and miR-17-5p and miR-424-5p were negatively related with VEGFA, IL-4, IL-6, and CA-125, respectively. VEGFA is a target of miR-17-5p and miR-17-5p can repress cell migration, proliferation, and invasion in EMT by directly inhibiting VEGFA expression [21]. miR-424-5p upregulation leads to the reduced IL-6 level [52]. miR-424 is inversely linked with the levels of serum IL-4 and IL-6 [53]. miR-424-5p can bind to the VEGFA mRNA and miR-424-5p overexpression significantly reduces the expression of VEGFA protein in primary cells cultured from EMT patients [22, 54]. Briefly, miR-17-5p and miR-424-5p could regulate EMT by targeting VEGFA.

In conclusion, this study first determined the expression of miR-424-5p in the serum of EMT patients and explored the diagnostic efficacy of miR-17-5p combined with miR-424-5p expression for EMT using the ROC curve. Moreover, we analyzed the correlation of miR-17-5p and miR-424-5p levels with clinical indicators in EMT patients by Pearson correlation to provide a new entry point for clinical judgment. However, this study only investigated these two miRNAs. In addition, our study included a small number of cases and events. Addressing these deficiencies requires us to carry out the study of multiple miRNAs with significant expression differences, and expand the sample size to enhance the reliability of results. Furthermore, prognostic studies can be continued to further clarify the diagnostic value of miR-17-5p and miR-424-5p. The regulatory mechanism of miR-17-5p and miR-424-5p to target VEGFA in EMT is also worth exploring.

Acknowledgements Not applicable.

Author contributions CLL is the guarantor of integrity of the entire study; CLL contributed to the study concepts, study design, definition of intellectual content, literature research, clinical studies, experimental studies, data acquisition, data analysis, statistical analysis, manuscript preparation, manuscript editing and manuscript review; SLZ contributed to the study concepts, study design, definition of intellectual content, literature research, clinical studies, data acquisition, data analysis, manuscript preparation, manuscript editing and manuscript review; MJL contributed to the study design, clinical studies, experimental studies, data acquisition, data analysis, statistical analysis, manuscript preparation, manuscript editing and manuscript review; all authors read and approved the final manuscript.
11. Fridrich A, Hazan Y, Moran Y (2019) Too many false targets participants included in the study. Informed consent was obtained from all individual voluntarily signed the informed consent before sampling.

12. Mirna M, Paar V, Rezar R, Topf A, Eber M, Hoppe UC, Lichteraru M, Jung C (2019) MicroRNAs in inflammatory heart diseases and sepsis-induced cardiac dysfunction: a potential scope for the future? Cells. https://doi.org/10.3390/cells 8111352

13. Cho S, Mutlu L, Grechukhina O, Taylor HS (2015) Circulating microRNAs as potential biomarkers for endometriosis. Fertil Steril 103(1252–60):e1. https://doi.org/10.1016/j.fertnstert.2015.02.013

14. Cosar E, Mamillapalli R, Ersoy GS, Cho S, Seifer B, Taylor HS (2016) Serum microRNAs as diagnostic markers of endometriosis: a comprehensive array-based analysis. Fertil Steril 106:402–409. https://doi.org/10.1016/j.fertnstert.2016.04.013

15. Huan Q, Cheng SC, Du ZH, Ma HF, Li C (2021) lncRNA AFAPI-AS1 regulates proliferation and apoptosis of endometriosis through activating STAT3/TGF-beta/Smad signaling via miR-424-5p. J Obstet Gynaecol Res 47:2394–2405. https://doi.org/10.1111/jog.14801

16. Papari E, Noruzinia M, Kashani L, Foster WG (2020) Identification of candidate microRNA markers of endometriosis with the use of next-generation sequencing and quantitative real-time polymerase chain reaction. Fertil Steril 113:1232–1241. https://doi.org/10.1016/j.fertnstert.2020.01.026

17. Hsu CY, Hsieh TH, Tsai CF et al. (2014) miRNA-199a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. J Pathol 232:330–343. https://doi.org/10.1002/path.4295

18. Bourhis M, Palle J, Galy-Fauvreur I, Termé M (2021) Direct and indirect modulation of T Cells by VEGF-A counteracted by anti-angiogenic treatment. Front Immunol 12:616837. https://doi.org/10.3389/fimmu.2021.616837

19. Ma Y, Huang YX, Chen YY (2017) miRNA34a5p downregulation of VEGFA in endometrial stem cells contributes to the pathogenesis of endometriosis. Mol Med Rep 16:8259–8264. https://doi.org/10.3892/mmr.2017.7677

20. Braza-Boils A, Gilabert-Estelles J, Ramon LA, Gilabert J, Mari-Alexandre J, Chirivella M, Espana F, Estelles A (2013) Peritoneal fluid reduces angiogenesis-related microRNA expression in cell cultures of endometrial and endometriotic tissues from women with endometriosis. PLoS ONE 8:e628370. https://doi.org/10.1371/journal.pone.00628370

21. Pang QX, Liu Z (2020) miR-17–5p mitigates endometriosis by directly regulating VEGFA. J Biosci 45. https://www.ncbi.nlm.nih.gov/pubmed/32515360

22. Braza-Boils A, Mari-Alexandre J, Gilabert J, Sanchez-Izquierdo D, Espana F, Estelles A, Gilabert-Estelles J (2014) MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod 29:978–988. https://doi.org/10.1093/humrep/deu019

23. Wang F, Wang H, Jin D, Zhang Y (2018) Serum miR-17, IL-4, and IL-6 levels for diagnosis of endometriosis. Medicine (Baltimore) 97:e10853. https://doi.org/10.1097/MD.0000000000010853

24. Acien P, Shaw RW, Irvine L, Burford G, Gardner R (1989) CA 125 levels in endometriosis patients before, during and after treatment with danazol or LHRH agonists. Eur J Obstet Gynecol Reprod Biol 32:241–246. https://doi.org/10.1016/0012-2393(89)90042-7

25. Knific T, Vouk K, Vogler A, Osredkar J, Gstottner M, Wenzl R, Rizner TL (2018) Models including serum CA-125, BMI, cyst pathology, dysmenorrhea or dyspareunia for diagnosis of endometriosis. Biomark Med 12:737–747. https://doi.org/10.2217/bmm-2017-0426
26. Bazot M, Kermarrec E, Bendifallah S, Darabi E (2021) MRI of intestinal endometriosis. Best Pract Res Clin Obstet Gynaecol 71:51–63. https://doi.org/10.1016/j.bpobyn.2020.05.013

27. Shan J, Ni Z, Cheng W, Zhou L, Zhai D, Sun S, Yu C (2021) Gut microbiota imbalance and its correlations with hormone and inflammatory factors in patients with stage 3/4 endometriosis. Arch Gynecol Obstet 304:1363–1373. https://doi.org/10.1007/s00404-021-06057-z

28. Wu Y, Yuan W, Ding H, Wu X (2022) Serum exosomal miRNA from endometriosis patients correlates with disease severity. Arch Gynecol Obstet 305:117–127. https://doi.org/10.1007/s00404-021-06227-z

29. Zhao L, Gu C, Ye M, Zhang Z, Li L, Fan W, Meng Y (2018) Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis. Reprod Biol Endocrinol 16:4. https://doi.org/10.1186/s12958-017-0319-5

30. Pateisky P, Pils D, Szabo L, Kussel L, Husslein H, Schmitz A, Wenzl R, Yotova I (2018) has-miRNA-154-5p expression in plasma of endometriosis patients is a potential diagnostic marker for the disease. Reprod Biomed Online 37:449–466. https://doi.org/10.1016/j.rbmo.2018.05.007

31. Jia SZ, Yang Y, Lang J, Sun P, Leng J (2013) Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum Reprod 28:322–330. https://doi.org/10.1093/humrep/des413

32. Wu J, Cui SH, Li HZ, Li QH, Yuan R, Zhang YP, Zhao TW (2016) Ultrasound diagnosis in gynecological acute abdomen. J Biol Regul Homeost Agents 30:211–7. https://www.ncbi.nlm.nih.gov/pubmed/27049094

33. Wang S, Yi M, Zhang X, Zhang Z, Liang L, Cao L, Zhou Y, Fang X (2021) Effects of CDKN2B-AS1 on cellular proliferation, invasion and AKT3 expression are attenuated by miR-424-5p in a model of ovarian endometriosis. Reprod Biomed Online 42:1057–1066. https://doi.org/10.1016/j.rbmo.2021.02.004

34. Xu SL, Tian YY, Zhou Y, Liu LQ (2020) Diagnostic value of circulating microRNAs in thyroid carcinoma: A systematic review and meta-analysis. Clin Endocrinol (Oxf) 93:489–498. https://doi.org/10.1111/cen.14217

35. Wu XG, Chen JJ, Zhou HL, Wu Y, Lin F, Shi J, Wu HZ, Xiao HQ, Wang W (2021) Identification and validation of the signatures of infiltrating immune cells in the eutopic endometrium endometria of women with endometriosis. Front Immunol 12:671201. https://doi.org/10.3389/fimmu.2021.671201

36. Knox B, Ong YC, Bakar MA, Grover SR (2019) A longitudinal study of adolescent dysmenorrhea into adulthood. Eur J Pediatr 178:1325–1332. https://doi.org/10.1007/s00431-019-03419-3

37. Esfandiari F, Chitsazian F, Jahromi MG, Favaedi R, Bazrgar M, Aflatoonian R, Afsharian P, Aflatoonian A, Shahhoseini M (2021) HOX cluster and their cofactors showed an altered expression pattern in eutopic and ectopic endometriosis tissues. Reprod Biol Endocrinol 19:132. https://doi.org/10.1186/s12958-021-00816-y

38. Li J, Ren L, Li M, Yang C, Chen J, Chen Q (2021) Screening of potential key genes related to tubal factor infertility based on competitive endogenous RNA network. Genet Test Mol Biomarkers 25:325–333. https://doi.org/10.1089/gtmb.2020.0083

39. Feng Y, Zou S, Weijedarg B, Chen J, Cong Q, Fernandez-Rodriguez J, Wang L, Billig H, Shao R (2014) The onset of human ectopic pregnancy demonstrates a differential expression of miRNAs and their cognate targets in the Fallopian tube. Int J Clin Exp Pathol 7:64–79. https://www.ncbi.nlm.nih.gov/pubmed/24427327

40. Karadadas E, Hortu I, Ak H, Ergenoglu AM, Karadadas N, Aydin HH (2020) Evaluation of complement system proteins C5a, C5a and C6 in patients of endometriosis. Clin Biochem 81:15–19. https://doi.org/10.1016/jClinbiochem.2020.04.005

41. Wei Y, Liang Y, Lin H, Dai Y, Yao S (2020) Autonomic nervous system and inflammation interaction in endometriosis-associated pain. J Neuroinflammation 17:80. https://doi.org/10.1186/s12974-020-01752-1

42. Zhou WJ, Yang HL, Shao J, Mei J, Chang KK, Zhu R, Li MQ (2019) Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci 76:2111–2132. https://doi.org/10.1007/s00018-019-03056-x

43. Mosbah A, Nabiyl E, Khashaba E (2016) Interleukin-6, intracellular adhesion molecule-1, and glycoerydin A levels in serum and peritoneal fluid as biomarkers for endometriosis. Int J Gynaecol Obstet 134:247–251. https://doi.org/10.1016/j.ijgo.2016.01.018

44. Korbel C, Gerstner MD, Menger MD, Laschke MW (2018) Notch signaling controls sprouting angiogenesis of endometriotic lesions. Angiogenesis 21:37–46. https://doi.org/10.1007/s10456-017-9580-7

45. Delbandi AA, Mahmoudi M, Shervin A, Heidari S, Kolahdouz-Mohammadi R, Zarnani AH (2020) Evaluation of apoptosis and angiogenesis in ectopic and eutopic stromal cells of patients with endometriosis compared to non-endometriotic controls. BMC Womens Health 20:3. https://doi.org/10.1186/s12909-019-0865-4

46. Hortu I, Ozeltik G, Karadadas E, Erbas O, Yigitturk G, Ulukus M (2020) The role of ankaferd blood stopper and oxytocin as potential therapeutic agents in endometriosis: a rat model. Curr Med Sci 40:556–562. https://doi.org/10.1007/s11596-020-2213-1

47. Kokot I, Pswowar A, Jedryka M, Sulkiewicz K, Kratz EM (2021) Diagnostic significance of selected serum inflammatory markers in women with advanced endometriosis. Int J Mol Sci. https://doi.org/10.3390/ijms22052929

48. Malutan AM, Drugan C, Drugan T, Ciortea R, Mihu D (2016) The association between interleukin-4 -590C/T genetic polymorphism, IL-4 serum level, and advanced endometriosis. Cent Eur J Immunol 41:176–181. https://doi.org/10.5114/ciej.2016.60992

49. Volpato LK, Horewicz VV, Bobinski F, Martins DF, Piovezan AP (2018) Annexin A1, FPR2/ALX, and inflammatory cytokine expression in peritoneal endometriosis. J Reprod Immunol 129:30–35. https://doi.org/10.1016/j.jri.2018.08.002

50. Jiang J, Jiang Z, Xue M (2019) Serum and peritoneal fluid levels of interleukin-6 and interleukin-37 as biomarkers for endometriosis. Gynecol Endocrinol 35:571–575. https://doi.org/10.1080/09513590.2018.1554034

51. Li Y, Guo W, Cai Y (2020) NEAT1 promotes LPS-induced inflammatory injury in macrophages by regulating MiR-17-5p/TLR4. Open Med (Wars) 15:38–49. https://doi.org/10.1515/med-2020-0007

52. Li C, Zhang M, Dai Y, Xu Z (2020) MicroRNA-424-5p regulates aortic smooth muscle cell function in atherosclerosis by blocking APOC3-mediated nuclear factor-kappaB signalling pathway. Exp Physiol 105:1035–1049. https://doi.org/10.1113/EP088088

53. Zhang YZ, Wang J, Xu F (2017) Circulating mir-29b and miR-424 as prognostic markers in patients with acute cerebral infarction. Clin Lab 63:1667–1674. https://doi.org/10.7754/Clin.Lab.2017.170420

54. Braza-Boils A, Salloun-Asfar S, Mari-Alexandre J et al (2015) Peritoneal fluid modifies the microRNA expression profile in endometrial and endometriotic cells from women with endometriosis. Hum Reprod 30:2292–2302. https://doi.org/10.1093/humrepdey204

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.