Pleocatenata chiangraensis gen. et. sp. nov. (Pleosporales, Dothideomycetes) from medicinal plants in northern Thailand

Ya-Ru Sun¹,2,3, Ning-Guo Liu²,5, Kevin D. Hyde²,3,4, Ruvishika S. Jayawardena²,3, Yong Wang¹

¹ Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
² Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
³ School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
⁴ Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510000, China
⁵ School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Yong Wang (yongwangbis@aliyun.com)

Academic editor: Nalin Wijayawardene | Received 16 December 2021 | Accepted 19 January 2022 | Published 11 February 2022

Citation: Sun Y-R, Liu N-G, Hyde KD, Jayawardena RS, Wang Y (2022) Pleocatenata chiangraensis gen. et. sp. nov. (Pleosporales, Dothideomycetes) from medicinal plants in northern Thailand. MycoKeys 87: 77–98. https://doi.org/10.3897/mycokeys.87.79433

Abstract

Pleocatenata, a new genus, is introduced with its type species, Pleocatenata chiangraensis, which was isolated from withered twigs of two medicinal plants, Clerodendrum quadriloculare (Blanco) Merr (Verbenaceae) and Tarenna stellulata (Hook.f.) Ridl (Rubiaceae) in northern Thailand. The genus is characterized by mononematous, septate, brown or dark brown conidiophores, monotretic conidiogenous cells and catenate, obclavate, olivaceous to blackish brown conidia. Phylogenetic analysis of combined LSU, SSU, tef1-α, rpb2 and ITS sequence data showed Pleocatenata forms a distinct phylogenetic lineage in Pleosporales, Dothideomycetes. Therefore, we treat Pleocatenata as Pleosporales genera incertae sedis based on morphology and phylogenetic analyses. Descriptions and illustrations of the new taxa are provided, and it is compared with morphologically similar genera.

Keywords

Genera incertae sedis, hyphomycetes, multi-gene phylogeny, taxonomy
Introduction

Medicinal plants are a rich source of natural products with biological and chemical properties. They are used in health care or treatment of human ailments and have been used since prehistoric times worldwide (Rasool-Hassan 2012). Many fungi have been found on medicinal plants and are members of Dothideomycetes and Sordariomycetes (Bhagat et al. 2012; Long et al. 2019; Ma et al. 2019; Hyde et al. 2020; Tennakoon et al. 2021). They form important associations with medicinal plants and as pathogens or saprobes (Long et al. 2019; Tennakoon et al. 2021), sources of medicines (Strobel et al. 1993; Huang et al. 2008; Hyde et al. 2019), involved in nutrient recycling (Bonnardeaux et al. 2007) and some are used in biological control (Hyde et al. 2019).

Pleosporales is the largest order in Dothideomycetes, which accounts for about a quarter of the class (Zhang et al. 2012; Hyde et al. 2013; Hongsanan et al. 2020a). They have a worldwide distribution with diverse lifestyles, including saprobes, pathogens of plants and humans, endophytes, epiphytes and hyperparasites (Ramesh 2003; Kirk et al. 2008; Zhang et al. 2012; Hyde et al. 2013; Sun et al. 2019; Ferdinandez et al. 2021). Many species in Alternaria Nees, Curvularia Boedijn and Corynespora Güßow, can invade medicinal plants and cause leaf spots and other diseases, as economically important plant pathogens (Mathiyazhagan et al. 2004; Abtahi and Nourani 2017; Zhang et al. 2020), and some also pose a threat to human health (Hyde et al. 2018; Iturrieta-González et al. 2020). Endophytes in Pleosporales also show important biocontrol value (Su et al. 2014; De Silva et al. 2019; Hyde et al. 2019), for example, an extract from Cochliobolus spicifer R.R. Nelson has mosquito-larvicidal activity (Abutaha et al. 2015).

The sexual morph of Pleosporales is characterized by uniloculate ascomata typically with papillae, ostioles and pseudoparaphyses, generally fissitunicate asci bearing mostly septate ascospores of different colours and shapes (Ramesh 2003; Kirk et al. 2008; Zhang et al. 2012; Hyde et al. 2013). Coelomycetes and hyphomycetes are the asexual morphs of pleosporalean taxa (Zhang et al. 2012; Hongsanan et al. 2020a). Recent comprehensive studies on Dothideomycetes treated 91 families in Pleosporales (Hongsanan et al. 2020a). More than 40 genera are recognized as genera incertae sedis in Pleosporales (Hongsanan et al. 2020a; Wijayawardene et al. 2020, 2021). This uncertainty in genetic placement occurs for the following reasons: 1) some genera lack sufficient collections even though molecular data is available, they are not included in any families in phylogenetic analyses, eg. Aegeanispora E.B.G. Jones & Abdel-Wahab, Antealophiotrema A. Hashim. & Kaz. Tanaka and Perthomyces Crous (Li et al. 2016; Abdel-Wahab et al. 2017; Crous et al. 2017); 2) due to the diverse morphology of hyphomycetous asexual morphs, it is difficult to determine their familial placement without the sexual morph and molecular data. Examples are Briansuttonia R.F. Castañeda, Minter & Saikawa, Cheiromoniliophora Tzean & J.L. Chen, Dangeardiella Sacc. & P. Syd and Pleosphaerellula Naumov & Czerepan (Obrist 1959; Tóth 1975; Tzean and Chen 1990; Castañeda-Ruiz et al. 2004).

During the examination of collections from medicinal plants in northern Thailand (Sun et al. 2021), two isolates representing a new species were obtained from
A new genus from medicinal plants in northern Thailand

Cladotremum quadriloculare and Tarenna stellulata. Morphology and phylogenetic analyses confirmed that it was distinct in Pleosporales, but its familial placement was uncertain. Thus, we introduced a new genus, Pleocatenata (Pleosporales, genera incertae sedis) to accommodate the new species, P. chiangraiensis.

Materials and methods

Collection, examination and isolation

The isolates used in this study were collected from decaying twigs of Cladotremum quadriloculare and Tarenna stellulata from Mae Fah Luang University, Chiang Rai, Thailand during June to July 2020 in terrestrial habitat. The samples were packaged in envelopes and returned to the laboratory as described in Senanayake et al. (2020). The fruiting bodies on natural substrates were observed and photographed using a stereo-microscope (SteREO Discovery, V12, Carl Zeiss Microscopy GmBH, Germany). Morphological characters were observed using a Nikon ECLIPSE Ni compound microscope (Nikon, Japan) and photographed with a Nikon DS-Ri2 digital camera (Nikon, Japan). The Adobe Photoshop CS6 Extended v. 13.0 software was used to make photo-plates. Measurements were done with the Tarosoft (R) Image Frame Work software.

Single spore isolations were used to obtain pure cultures following the methods described by Senanayake et al. (2020). Germinated conidia were transferred to new potato dextrose agar (PDA) plates and incubated at 26 °C for four weeks. The pure cultures obtained were deposited in Mae Fah Luang University Culture Collection (MFLUCC), Chiang Rai, Thailand. Herbaria materials were deposited in the herbarium of Mae Fah Luang University (MFLU), Chiang Rai, Thailand. Facesoffungi (FoF) and Index Fungorum numbers were acquired as described in Jayasiri et al. (2015) and Index Fungorum (2022).

DNA extraction, PCR amplification and sequencing

Fresh fungal mycelia grown on PDA medium for 4 weeks at 26 °C were scraped with a sterile scalpel. Genomic DNA was extracted from scraped mycelia using the BIOMIGA Fungus Genomic DNA Extraction Kit (GD2416, BIOMIGA, San Diego, California, USA) following the manufacturer’s protocol. Five genes were selected in this study: the 28S subunit rDNA (LSU), the 18S subunit rDNA (SSU), the internal transcribed spacers (ITS), the translation elongation factor 1 (tef1-α), and the RNA polymerase II subunit 2 (rpb2). Polymerase chain reaction (PCR) was carried out in 20 μL reaction volume which contained 10 μL 2 × PCR Master Mix, 7 μL ddH₂O, 1 μL of each primer, and 1 μL template DNA. The PCR thermal cycle program and primers are given (Table 1). Purification and sequencing of PCR products were carried out at SinoGenoMax (Beijing) Co., China.
Phylogenetic analyses

BLASTn (https://blast.ncbi.nlm.nih.gov//Blast.cgi) was used to evaluate closely related strains to our new taxa. Other sequences used in this study were obtained from GenBank referring to Zhang et al. (2012, 2018) and Hongsanan et al. (2020a, 2021) (Table 2). The single gene sequences were viewed using BioEdit v. 7.0.9.0 (Hall 1999). Alignments for each locus were generated with MAFFT v.7 (https://mafft.cbrc.jp/alignment/server/) and manually improved using AliView (Larsson 2014) for maximum alignment and minimum gaps. The final single gene alignments were combined by SequenceMatrix 1.7.8 (Vaidya et al. 2011).

The single locus and combined analyses were carried out for maximum likelihood (ML) and Bayesian posterior probability (BYPP). The ML analyses were carried out using IQ-TREE (Nguyen et al. 2015; Trifinopoulos et al. 2016) on the IQ-TREE web server (http://iqtree.cibiv.univie.ac.at, 30 September 2021) under partitioned models. The best-fit substitution models were determined by WIQ-TREE (Chernomor et al. 2016): SYM+I+G4 for LSU and SSU; TIM+F+I+G4 for tef1-α; GTR+F+I+G4 for rpb2; TIM2+F+I+G4 for ITS. Ultrafast bootstrap analysis was implemented with 1,000 replicates (Minh et al. 2013; Hoang et al. 2018).

The BYPP analyses were performed in CIPRES (Miller et al. 2010) with MrBayes on XSEDE 3.2.7a (Ronquist et al. 2012). The best nucleotide substitution model for each data partition was evaluated by MrModeltest 2.2 (Nylander 2004). The substitution model GTR+I+G was decided for LSU, SSU, ITS, tef1-α and rpb2 sequences. The Markov chain Monte Carlo (MCMC) sampling approach was used to calculate posterior probabilities (PP) (Rannala and Yang 1996). Six simultaneous Markov chains were run for 10 million generations and trees were sampled every 1,000th generation. The first 20% of trees, representing the burn-in phase of the analyses, were discarded and the remaining trees were used for calculating posterior probabilities (PP) in the majority rule consensus tree.

Table 1. Primers and PCR procedures used in this study.

Locus	Name	Sequence (5’–3’)	PCR procedures	References
Large subunit (LSU)	LR0R	ACCCGCTGAACCTTAAGC	94 °C 3 min; 35 cycles of 94 °C	Vilgalys and Hester (1990)
	LR5	TCCTGAGGGAACCTCG	30 s, 52 °C 30 s, 72 °C 1 min; 72 °C 8 min; 4 °C on hold	Rehner and Samuels (1994)
Small subunit (SSU)	NS1	GTAGCTCATAGCCTGCTGTC	94 °C 2 min; 36 cycles of 66 °C – 56 °C (touchdown 9 cycles), 94 °C 30 sec, 56 °C 1 min, 72 °C 1 min; 72 °C 10 min; 4 °C on hold	White et al. (1990)
Internal transcribed	ITS5	GGAAGTAAAAGCTGTAACAGG	94 °C 3 min; 40 cycles of 94 °C	Rehner and Buckley (2005)
space (ITS)	ITS4	TCCCTCAGTATTGATGATG	94 °C 3 min; 40 cycles of 94 °C	Liu et al. 1999
Elongation factor-1	EF1-983F	GCCYCCYGHCAYGCTGAYTTYAT	94 °C 2 min; 36 cycles of 66 °C – 56 °C (touchdown 9 cycles), 94 °C 30 sec, 56 °C 1 min, 72 °C 1 min; 72 °C 10 min; 4 °C on hold	Li et al. 1999
alpha (tef1-α)	EF1-2218R	ATGACACCRACRGCRACRGCTTGYTG	94 °C 2 min; 36 cycles of 66 °C – 56 °C (touchdown 9 cycles), 94 °C 30 sec, 56 °C 1 min, 72 °C 1 min; 72 °C 10 min; 4 °C on hold	Li et al. 1999
RNA polymerase II	RPB2-5F	GAYGAYMGWGATCAYTTYGG	94 °C 3 min; 40 cycles of 94 °C	Liu et al. 1999
subunit (rpb2)	RPB2-7cR	CCCATRGGCTTGYTTCCCAT	94 °C 3 min; 40 cycles of 94 °C	Liu et al. 1999
Table 2. Taxa of Pleosporales used in the phylogenetic analysis with the corresponding GenBank accession numbers. The newly generated strains are indicated in bold. N/A: Not available.

Species names	Strain number	LSU	SSU	ITS	tef1-α	rpb2
Acrocalymma aquatica	MFLUCC 11-0208	JX276952	JX276953	JX276951	N/A	N/A
Acrocalymma pterocarpi	MFLUCC 17-0926	MK347949	MK347840	MK347732	MK360040	N/A
Acuminatispora palmarum	MFLUCC 18-0564	MH390437	MH390401	MN749106	MH399249	N/A
Agitalis grandis	BCC 20000	GU479775	GU479739	N/A	GU479839	N/A
Alternaria alternata	AFTOL ID-1610	DQ678082	KC584507	KF65761	KC584634	KC584375
Aminiculicola aquatica	MFLUCC 16-1123	MK106096	MK106108	N/A	MK109800	N/A
Anomoeclophoma cassia	MFLUCC 17-2283	MK347796	NG_065775	MK347739	MK360041	MK348949
Angustinaurata lonicerae	MFLUCC 15-0087	KY496724	N/A	KY496759	N/A	N/A
Antagonialonium parvulum	SMHS223	GQ221909	N/A	GQ221918	N/A	N/A
Aquasubmersa japonica	HHUF 30469	NG_057138	NG_062426	N/A	LC194384	LC194421
Aquasubmersa micrensis	MFLUCC 11-0401	NG_042699	NG_061141	JX276954	N/A	N/A
Aigialus grandis	BCC 20000	GU479775	GU479739	N/A	GU479839	N/A
Alternaria alternata	AFTOL ID-1610	DQ678082	KC584507	KF65761	KC584634	KC584375
Aminiculicola aquatica	MFLUCC 16-1123	MK106096	MK106108	N/A	MK109800	N/A
Anomoeclophoma cassia	MFLUCC 17-2283	MK347796	NG_065775	MK347739	MK360041	MK348949
Angustinaurata lonicerae	MFLUCC 15-0087	KY496724	N/A	KY496759	N/A	N/A
Antagonialonium parvulum	SMHS223	GQ221909	N/A	GQ221918	N/A	N/A
Aquasubmersa japonica	HHUF 30469	NG_057138	NG_062426	N/A	LC194384	LC194421
Aquasubmersa micrensis	MFLUCC 11-0401	NG_042699	NG_061141	JX276954	N/A	N/A
Aigialus grandis	BCC 20000	GU479775	GU479739	N/A	GU479839	N/A
Alternaria alternata	AFTOL ID-1610	DQ678082	KC584507	KF65761	KC584634	KC584375
Aminiculicola aquatica	MFLUCC 16-1123	MK106096	MK106108	N/A	MK109800	N/A
Anomoeclophoma cassia	MFLUCC 17-2283	MK347796	NG_065775	MK347739	MK360041	MK348949
Angustinaurata lonicerae	MFLUCC 15-0087	KY496724	N/A	KY496759	N/A	N/A
Antagonialonium parvulum	SMHS223	GQ221909	N/A	GQ221918	N/A	N/A
Species names	Strain number	LSU	SSU	ITS	tef1-α	rpb2
--	---------------	---------	---------	----------	--------	------
Fuscostagonospora sasae	HHUF 29106	AB80754	AB979258	AB809636	AB808524	N/A
Fusculina eucalypti	CBS 120083	DQ923531	N/A	DQ923531	N/A	N/A
Fusculina eucalyptorum	CBS 145083	MK047499	N/A	NR161140	N/A	N/A
Halodiplodiopsis avicenniae	BCC 20173	GU371822	GU371830	N/A	GU371815	GU371786
Halothia pentoniae	BBH 22481	GU479786	GU479752	N/A	N/A	N/A
Hausera fuscata	CBS 136437	KF777198	N/A	KF777142	N/A	N/A
Heliophthora velutinum	L131	KY984352	KY984342	KY984352	KY984463	KY984413
Hermatomyces iriomotensis	HHUF 30518	LC194367	LC194325	LC194483	LC194394	LC194449
Hermatomyces tectonae	MFLUCC 11-1400	KU766495	KU712465	KU149417	KU827576	KU732686
Hypnopomma caimitidelense	GKM1165	GU358100	N/A	N/A	N/A	N/A
Hypnopomma caxiolaris	SMH5005	GU358181	N/A	N/A	N/A	N/A
Hypsostroma caimitalense	CBS 123334	FJ161207	N/A	N/A	N/A	N/A
Hypsostroma saxicola	CBS 114601	FJ161174	FJ161135	N/A	FJ161091	FJ161114
Latorua caligans	CBS 576.65	NG058180	N/A	N/A	N/A	N/A
Latorua grootfonteinensis	CBS 369.72	NG058181	N/A	N/A	N/A	N/A
Lentimurispora urifornis	MFLUCC 18-0497	MH179144	MH179160	MH179160	MH188055	N/A
Lentithecium clioninum	HHUF 28199	NG059391	NG064845	NR154137	AB808515	N/A
Lentithecium pseudoclioninum	HHUF 29055	NG059392	NG064847	AB809633	AB808521	N/A
Lepidophaeria nicotiae	AFTOL 1576	DQ678067	N/A	DQ677910	DQ677963	N/A
Lepidophaeria cichorium	MFLUCC 14-1063	KT454712	KT454728	KT454720	N/A	N/A
Leucosporidium phaeum	MFLUCC 18-0472	MK348003	NG056784	MK347785	MK360060	MK34867
Libertsea mycopori	CPC 27354	NG058241	N/A	N/A	N/A	N/A
Ligninophthora gongospora	MFLUCC 15-0641	NG059642	N/A	N/A	N/A	N/A
Lindalinae spicata	MFLUCC 12-0562	GU366470	N/A	GU371247	N/A	N/A
Longipediculata aptrootsi	MFLUCC 10-0297	KU238894	KU238893	KU238892	KU238892	N/A
Lophioatra macrostoma	KT082	AB619010	AB618691	N/A	LC001751	N/A
Lophiotremata eburnoides	KT4241	LC001707	LC001706	LC194403	LC194458	N/A
Macrodictaphisus derzhavinii	CBS 140062	NG058182	N/A	NR132924	N/A	N/A
Masaria anomia	CBS 59178	GU301839	GU296169	N/A	N/A	N/A
Masaria inquinae	M19	N/A	HQ599444	HQ599402	HQ599460	N/A
Melanoconiothyrium persooniae	MFLUCC 11-0180	KJ474839	N/A	KJ474827	KJ474836	N/A
Melanomma japonicum	MAFF 239634	NG060360	NG065120	NR154215	LC203367	LC203395
Melanomma pulvis pyrius	CBS 124080	MHH47873	GU456302	MH863349	GU456265	GU456350
Mieletaspora aurantonontata	GKM 1238	NG059927	N/A	GU327761	N/A	N/A
Morosphaeria muthupetensis	NFFCH4219	MF614796	MF614795	MF614795	MF614798	N/A
Morosphaeria undulata	KH221	AB807556	AB797266	LC014572	AB808532	N/A
Multicoccidium laevisiae	MFLUCC 11-0180	GU363438	GU363442	GU363446	N/A	N/A
Musriina galii	MFLUCC 13-0819	KT091175	KT091182	KT091189	KT091189	N/A
Neocamariospora goegapense	CPC 23676	KJ869220	N/A	KJ869163	N/A	N/A
Neocomiobolus peroniforme	CBS 143175	MG386099	N/A	MG386041	N/A	N/A
Neocasariopsis formana	MFLUCC 16-1875	KX524145	NG061245	N/A	KX524149	N/A
Neocasaria fuscidula	MFLUCC 17-007	MH174576	MH174579	MH174762	MH174765	N/A
Neocasaria thailandica	MFLUCC 17-1432	MFLUCC 17-0809	MG829033	MG828924	MG829217	N/A
Neopyrenochaeta roea	CPC 21264	NG059718	N/A	NR154244	N/A	N/A
Neopyrenochaeta filamentosa	CBS 102202	QC837577	QC837516	JF740259	GU349084	GU371773
Neopyrenochaeta phragmitisola	KUMCC 16-0210	MG837009	NG057357	N/A	MG838020	N/A
Neotestudina bambusae	MFLUCC 11-0180	KX693438	KX693442	KX693446	N/A	N/A
Nigrograna fuscidula	CPC 36068	MN567619	N/A	NR166316	N/A	N/A
Neotestudina bambusae	MFLUCC 12-0890	MC437932	MC437823	MC437718	MC439408	N/A
Neotestudina hominis	MFLUCC 11-0124	KJ474839	N/A	KJ474827	KJ474848	KJ474856
Neotestudina smutista	CBS 690.82	DQ384017	DQ384006	N/A	N/A	N/A
Neopyrenochaeta acicola	CBS 812.95	QC837502	QC837541	NR160055	N/A	N/A
Neopyrenochaeta fuscida	CBS 14555	KC650550	N/A	NR147653	KC65025	N/A
Species names	Strain number	LSU	SSU	ITS	tef1-α	rpb2
---------------	--------------	-----	-----	-----	--------	------
Nigrograna mackinnonii	CBS 674.75	GQ387613	NG_061081	NR_132037	KF407986	KF015703
Ocultibambusa bambusae	MFLUCC 13-0855	KU683112	N/A	KU940123	KU940193	KU940170
Ocultibambusa jonissi	GZCC 16-0117	KY628322	KY628324	N/A	KY814756	KY814758
Parabambusicola bambusana	KH 139	AB807537	AB799247	LC014579	AB808512	N/A
Paradictyoarthrinium aquatica	MFLUCC 16-1116	NG_064501	N/A	NR_158861	N/A	N/A
Paradictyoarthrinium diffusum	MFLUCC 13-0466	KP744498	KP753960	KP744455	N/A	KX437764
Paralophiostoma hysterioides	PUENI 17617	MT912850	MN582762	MN582875	N/A	MT926117
Parapyrenochaeta protonema	CBS 131315	JQ044453	N/A	JQ044434	N/A	LT717683
Pariconia delonicis	MFLUCC 17-2584	NG_068611	NG_065770	N/A	N/A	MK439001
Pariconia pseudodigitata	MFLUCC 13-0219	KT454717	KT454732	KT454725	N/A	N/A
Phaeoseptum mali	MFLUCC 17-2108	MK625197	N/A	MK659580	MK647990	MK647991
Phaeoseptum terricola	MFLUCC 10-0102	MH105770	MH105778	MH105781	MH105782	
Phaeosphaeria oryzae	CBS 110110	KF251689	GQ387530	KF251186	N/A	KF252193
Phaeosphaeriopsis triseptata	MFLUCC 13-0271	KJ522479	KJ522484	KJ522475	MG520919	KJ522485
Plenodomus salvia	MFLUCC 13-0219	KT454717	KT454732	KT454725	N/A	N/A
Pleohelicoon richonis	CBS 282.54	AY856952	MH857332	N/A	N/A	
Pleomonodictys descalsii	FMR 12716	KY853522	KY853461	N/A	N/A	
Preussia funiculate	CBS 659.74	GU301864	GU296187	GU349032	GU371799	
Pseudoastrosphaeriella longicolla	MFLUCC 11-0171	KT955478	N/A	KT955438	KT955420	
Pseudoastrosphaeriella thailandensis	MFLUCC 11-0144	MK131260	MK131259	MK131261	N/A	
Pseudodidymosphaeria spartii	MFLUCC 13-0273	KP325436	KP325438	KP325434	N/A	
Pseudopyrenochaeta lycopersici	FMR 15746	EU754205	NG_062728	NR_103580	LT623287	
Pseudopyrenochaeta terretris	FMR 15327	LT623216	LT623225	LT623228	N/A	LT623287
Pseudotetraploa longissima	HC 4933	AB524612	AB524471	AB524794	AB524827	N/A
Pseudoxylomyces elegans	KT 2887	AB524612	AB524471	AB524794	AB524827	N/A
Pyrenochaetopsis leptospora	CBS 101635	MK035992	MK035977	MK035980	MK035990	MK035988
Pyrenochaetopsis tabarestanensis	IBRC M 30051	MK035993	MK035978	MK035980	MK035991	MK035992
Quadricrura bicornis	CBS 166.73	MH872355	N/A	MH857332	N/A	
Quercicola fusiformis	MFLUCC 18-0479	MK348009	MK347898	MK347790	MK360085	MK343864
Quercicola gutulosa	MFLUCC 18-0481	MK348010	MK347898	MK347790	MK360085	MK343864
Quixadomyces cearensis	HU134	MG970695	N/A	MG970695	N/A	
Roussoella nitidula	MFLUCC 11-0185	KX534216	KX534222	KX534227	N/A	
Salsuginea phoenicis	MFLUCC 12-0385	KU764709	N/A	KU764709	N/A	
Salsuginea ramicola	MFLUCC 12-0565	KU764701	N/A	KU764701	N/A	
Seltsamia ulmi	MFLUCC 12-0004	KT454717	KT454717	KT454717	N/A	
Shiraia bambusicola	GZAAS2.629	KC460980	N/A	KC460980	N/A	
Splanchnonema platani	CBS 222.37	KJ474827	MG970695	N/A	MG970695	MG970695
Sporormia fimetaria	UPS Dissing Gr.81.194	MQ387613	MQ387613	MQ387613	MQ387613	MQ387613
Sporormia isomerobia	CBS 166.73	MH872355	N/A	MH857332	N/A	
Stemphylium herbarum	CBS 191.86	GU38160	GU38160	GU38160	GU38160	GU38160
Streptomyces hericus	MFLUCC 16-0286	MK035995	MK035977	MK035977	MK035977	MK035977
Subaphloia thailandica	MFLUCC 11-0185	KX534216	KX534222	KX534227	N/A	
Subplenodomus violicola	CBS 306.68	MBH0849	GU238231	MBH0849	N/A	
Sukatipsa acerina	KT 2982	LC014605	LC014605	LC014605	LC014605	LC014605
Sukatipsa bacchartica	KT 1607	AB807534	AB979244	AB809635	AB808509	N/A
Sulcoporum thailandica	MFLUCC 12-0004	KT426563	KT426564	MG520958	N/A	
Tetraploa sp.	C24	KE015191	N/A	KE015191	N/A	
Tetraploa sp.	CBS 131315	AB524631	AB524490	AB524807	AB524838	N/A
Species names	Strain number	LSU	SSU	ITS	tef1-α	rpb2
-------------------------	---------------	--------------	--------------	--------------	---------------	--------------
Thyridaria acaciae	CBS 138873	NG_058127	N/A	KP004469	N/A	N/A
Thyridaria bronsonetiae	TB1	KX650568	KX650515	KX650568	KX650539	KX650586
Torula aquatica	MFLUCC 16-1115	MG208146	N/A	MG208167	N/A	MG207977
Torula multispicata	MFLUCC 14-0437	KY197855	KY197862	MN061338	KY197875	KY197869
Trematocapsa arundinacea	MFLU 16-1275	KX274248	KX274254	KX274241	KX284706	N/A
Trematospora gracilis	CBS 332.50	NG_057979	NG_062930	NR_132039	KF015698	KF015720
Trematospora pertusa	CBS 122368	NG_057809	FJ201991	NR_132040	KF015701	FJ795476
Tzeanania taiwanensis	NTUCC 17-006	MH461121	MH461127	MH461124	MH461131	N/A
Wicklowia aquatica	CBS 125634	MH875044	NG_061099	N/A	N/A	N/A
Wicklowia submera	MFLUCC 18-0373	MK637644	MK637643	N/A	N/A	N/A
Xenopyrenochaetopsis pratorum	CBS 445.81	GU238136	NG_062792	MH861363	N/A	KT389671

Phylogenetic trees were viewed using FigTree v1.4.0 (Rambaut and Drummond 2008) and modified in Microsoft Office PowerPoint 2010 and converted to jpg file using Adobe Photoshop CS6 Extended 10.0 (Adobe Systems, San Jose, CA, USA). The new sequences derived from this study were deposited in GenBank. The final alignment and tree were deposited in TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S291999).

Results

Phylogenetic analyses

Blast searches of LSU, tef1-α, rpb2 and ITS sequences data in NCBI showed that our sequences were related to Acrocalymmaceae, Amorosiaceae, Sporormiaceae and Sublophiostomataceae. One hundred and seventy-six taxa, representing all families in Pleosporales, with *Hysterium angustatum* Alb. & Schwein (CBS 123334) and *Hysterobrevium smilacis* (Schwein.) E. Boehm & C.L. Schoch (CBS 114601) as the outgroups, were selected for the analyses. The final combined dataset consisted of 4,953 characters (LSU: 1–850 bp, SSU: 851–1,851 bp, tef1-α: 1,852–2,720 bp, rpb2: 2,721–3,701 bp, ITS: 3,702–4,953 bp), including alignment gaps. Among them, 2,336 characters were constant, 608 variable characters were parsimony-uninformative, and 2,009 characters were parsimony informative. The most likely tree (-ln = 98,965.704) is presented (Figure. 1) to show the phylogenetic placement of the newly introduced genus and its relationship with other members in Pleosporales.

Analyses of both ML and BYPP (not shown) yielded almost identical results, and the topology of the trees were similar to previous studies (Zhang et al. 2018; Hong-sanan et al. 2020a, 2021). The combined analyses showed that two suborders Massarineae and Pleosporineae were well-supported and formed an upper clade in Pleosporales. Our two newly obtained fungal isolates (MFLUCC 21-0222 and MFLUCC 21-0223) clustered together and formed a distinct clade with maximum support (ML-BS = 100%, BYPP = 1.00) and they grouped with Amorosiaceae, Sporormiaceae and Sublophiostomataceae with weak support.
A new genus from medicinal plants in northern Thailand

Figure 1. Maximum likelihood tree generated by IQ-Tre, based on analysis of a combined dataset of LSU, SSU, tef1-α, rpb2 and ITS sequence data. Bootstrap support values for ML greater than 75% and Bayesian posterior probabilities greater than 0.95 are given near nodes, respectively. Ex-type strains are in bold, the new isolates are in red.
Taxonomy

Pleocatenata Y.R. Sun, Yong Wang bis & K.D. Hyde, gen. nov.
Index Fungorum number: IF559457
Facesoffungi number: FoF 10630

Etymology. “Pleo-” an abbreviation of Pleosporales, the order in which this fungus is classified; “-catenata” refers to the catenate conidia of this fungus.

Description. Saprobic on decaying twigs in terrestrial habitats. **Asexual morph:** Hyphomycetous. Colonies on natural substrate effuse, dark, velvety. Conidiophores macronematous, mononematous, straight or slightly curved, cylindrical, unbranched, septate, brown or dark brown. Conidiogenous cells monotretic, integrated, terminal, cylindrical, brown to dark brown. Conidia catenate, formed in acropetal chains, straight or bent, obclavate, olivaceous to dark brown, multi-euseptate, slightly constricted at septa, distal conidia rounded at apex, truncate at base, intercalary conidia truncate at both ends, with thickened and darkened scars at base or both ends. **Sexual morph:** Undetermined.

Type species. *Pleocatenata chiangraiensis* Y.R. Sun, Yong Wang bis & K.D. Hyde

Notes. The morphology of *Pleocatenata* is distinguished from members in other families in Pleosporales by its tretic conidiogenous cells and catenate, euseptate conidia, and phylogenetic analyses indicated it does not belong to any existing families. To avoid establishing a new family with only one species, *Pleocatenata* is introduced as a new genus and assigned to Pleosporales, genera incertae sedis. *Pleocatenata* is a monotypic genus reported from terrestrial habitats but without a known sexual morph. Further discovery of other species in *Pleocatenata* or phylogenetic related genera with supported monophyly will determine the familial level of *Pleocatenata.*

Pleocatenata chiangraiensis Y.R. Sun, Yong Wang bis & K.D. Hyde, sp. nov.
Index Fungorum number: IF559458
Facesoffungi number: FoF 10631

Etymology. The epithet referring to the location in which the fungus was collected.

Holotype. MFLU: 22-0002

Description. Saprobic on twigs of *Clerodendrum quadriloculare* and *Tarenna stellulata.* **Asexual morph:** Hyphomycetous. Colonies on natural substrate effuse, dark, velvety. Mycelium immersed, composed of septate, branched, hyaline to subhyaline hyphae. Conidiophores macronematous, mononematous, erect, straight or slightly curved, cylindrical, unbranched, robust, 4–6-septate, brown or dark brown, rough, 35–100 μm long, 5.5–8.5 μm wide. Conidiogenous cells monotretic, integrated, terminal, determinate, cylindrical, dark brown. Conidia catenate, formed in acropetal chains of 2–3, straight or curved, obclavate, olivaceous to brown when young, blackish brown.
Figure 2. Pleocatenata chiangraiensis (MFLU 22-0002, holotype) a host (Tarenna stellulata) b, c colonies on natural substrate d, e conidiophores with conidia f conidiogenous cells g–k conidia l germinated conidium m, n colonies on PDA (upper view and lower view). Scale bars: 1 mm (b); 100 μm (c); 20 μm (d–l).
when mature, 5–8-euseptate, slightly constricted at septa, distal conidia rounded at apex, truncate at base, intercalary conidia truncate at both ends, with thickened and darkened scars at base or both ends, 34–70 μm long, 6.5–12 μm at the widest. **Sexual morph:** Unknown.

Culture characteristics. Conidia germinated on PDA within 12 hours at 26 °C. Germ tubes were produced from both ends. Colony reached 20–25 mm diameter after 4 weeks at room temperature on PDA media. Mycelia superficial, irregularly circular, entire edge, dark brown from above, black from below, pigment produced which turns the media reddish brown.

Material examined. Thailand, Chiang Rai Province, Mae Fah Luang University, on twigs of *Tarenna stellulata*, 3 July 2020, Y.R. Sun, MFU5 (MFLU 22-0002, holotype, ex-type living culture MFLUCC 21-0222). Thailand, Chiang Rai Province, Medicinal Plants Garden, on twigs of *Clerodendrum quadriloculare*, 7 June 2020, Y.R. Sun, B45 (MFLU 22-0001, living culture MFLUCC 21-0223).

Notes. Two isolates collected from different hosts share similar morphology and clustered together in the phylogenetic tree. There are no base pair differences in LSU and *tef1*-α genes between these two isolates. One base pair and two base pair differences (without gaps) are observed in ITS and *rpb2*, respectively. Therefore, the two isolates MFLUCC 21-0222 and MFLUCC 21-0223 are identified as conspecific.

Discussion

Pleocatenata is phylogenetically related to Amorosiaceae, Sporormiaceae, and Sublophiostomataceae in our multi-gene analyses, but their monophyly was not well-supported, indicating their uncertain phylogenetic affinities. No hyphomycetous asexual morph has been reported in Sporormiaceae or Sublophiostomataceae (Hongsanan et al. 2020a, 2021). However, in Amorosiaceae, only two known hyphomycetous genera, *Amorosia* and *Angustimassarina*, are characterized by micronematous to semimacronematous, pale brown conidiophores, monoblastic conidiogenous cells, and single, obclavate conidia (Mantle et al. 2006; Thambugala et al. 2015; Hongsanan et al. 2020a). *Pleocatenata* can be distinguished from these two genera by having monotretic conidiogenous cells and catenate, obclavate conidia.

A recently introduced species, *Corynespora sinensis* Jian Ma, X.G. Zhang & R.F. Castañeda, resembles *Pleocatenata* in its unbranched, cylindrical conidiophores and monotretic, terminal conidiogenous cells that produce catenate, obclavate conidia (Xu et al. 2020). Morphologically, *Corynespora sinensis* is more similar to *P. chiangratiensis* than to the type species of *Corynespora*, *C. cassiicola* (Berk. & M.A. Curtis) C.T. Wei (Wei 1950). Since *Corynespora* (Corynesporasaceae, Pleosporales) is a polyphyletic genus (Schoch et al. 2009; Voglmayr and Jaklitsch 2017), and there is no available sequence data for *C. sinensis*, we presume that *C. sinensis* may belong to *Pleocatenata*. However, due to lack of molecular data, and since morphology-based classification is not reliable for many hyphomycetous genera (Shenoy et al. 2006; Su et al. 2016; Yang...
et al. 2018), we retain the current classification. Sequences of *C. sinensis* are needed to resolve its phylogenetic placement. Detailed morphological comparison among *C. cassiicola*, *C. sinensis* and *P. chiangraiensis* is provided (Table 3).

Pleocatenata is similar to *Sporidesmium sensu stricto*, which is characterized by distinct, unbranched conidiophores, monoblastic, determinate or proliferating conidiogenous cells, and acrogenous, solitary, transversely septate conidia (Ellis 1958, 1971; Shenoy et al. 2006; Boonmee et al. 2012; Su et al. 2016; Yang et al. 2018). However, *Pleocatenata* is different from *Sporidesmium* by having catenate conidia. Additionally, *Pleocatenata* is phylogenetically distinct from *Sporidesmium*, supporting the introduction of the new genus.

The catenate, obclavate phragmoconidia of *P. chiangraiensis* are similar to capnodendron asexual morph of *Antennulariella* Woron (Antennulariellaceae, Capnodiales) (Hughes 1976, 2000; Seifert et al. 2011). Although sequence data of *Antennulariella* is not available, morphological characters, such as holoblastic conidiogenous cells and branched conidiophores of *Antennulariella*, support its separation from *P. chiangraiensis* (Hughes 1976, 2000; Seifert et al. 2011). *Pleocatenata* is also similar to *Corynesporina* Subram (Pezizomycotina, *incertae sedis*) in having unbranched, robust conidiophores and catenate conidia (Seifert et al. 2011). However, they differ in that the distoseptate conidia form in basipetal chains in *Corynesporina* and euseptate conidia form in acro-petal chains in *Pleocatenata*.

Acknowledgements

We would like to thank Dr. Shaun Pennycook for checking the nomenclature. Ya-Ru Sun thanks Mae Fah Luang University for the award of a fee-less scholarship. Ya-Ru Sun also thanks the director of the Mae Fah Luang University Botanical Garden, the botanist Dr. Jantrararuk Tovaranonte for her support. The study was funded by Guizhou Science Technology Department International Cooperation Basic project ([2018]5806), National Natural Science Foundation of China (No.31972222,
31560489), Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023), and Talent project of Guizhou Science and Technology Co-operation Platform ([2017]57885, [2019]5641 and [2020]5001).

References

Abtahi F, Nourani SL (2017) The most important fungal diseases associated with some useful medicinal plants. In: Ghorbanpour M, Varma A (Eds) Medicinal plants and environmental challenges. Springer International Publishing, Cham, 279–293. https://doi.org/10.1007/978-3-319-68717-9_16

Abutaha N, Mashaly AM, Al-Mekhlafi FA, Farooq M, Al-shami M, Wadaan MA (2015) Larvicidal activity of endophytic fungal extract of Cochliobolus spicifer (Pleosporales: Pleosporaceae) on Aedes caspius and Culex pipiens (Diptera: Culicidae). Applied Entomology and Zoology 50: 405–414. https://doi.org/10.1007/s13355-015-0347-6

Barghoorn ES (1944) Marine fungi: their taxonomy and biology. Farlowia 1: 395–467. https://doi.org/10.5962/p.315987

Barr ME (1987) Prodromus to class Loculoascomycetes. Amherst. University of Massachusetts, Massachusetts.

Bhagat J, Kaur A, Sharma M, Saxena AK, Chadha BS (2012) Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World Journal of Microbiology and Biotechnology 28: 963–971. https://doi.org/10.1007/s11274-011-0894-0

Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycological Research 111: 51–61. https://doi.org/10.1016/j.mycres.2006.11.006

Boonmee S, Ko TWK, Chukeatirote E, Hyde KD, Chen H, Cai L, McKenzie EHC, Jones EBG, Kodsueb R, Hassan BA (2012) Two new Kirschsteiniothelia species with Dendryphiopsis anamorphs cluster in Kirschsteiniotheliaceae fam. nov. Mycologia 104: 698–714. https://doi.org/10.3852/11-089

Castañeda-Ruiz RF, Heredia GP, Arias RM, Saikawa M, Minter DW, Stadler M, Guarro J, Decock C (2004) Two new hyphomycetes from rainforests of México, and Briansuttonia, a new genus to accommodate Corynespora alternarioides. Mycotaxon 89: 297–305.

Chernomor O, Von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65: 997–1008. https://doi.org/10.1093/sysbio/syw037

Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu JC, Liu XZ, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66: 1–36. https://doi.org/10.3825/11-089

Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R, van der Spuy S, Barili A, Barrett S, Cacciola SO, Cano-Lira JF, Crane C, Decock C, Gibertoni TB, Guarro J, Guevara-Suarez
M, Hubka V, Kolářík M, Lira CRS, Ordoñez ME, Padamsee M, Ryvarden L, Soares AM, Stschigel AM, Sutton DA, Vizzini A, Weir BS, Acharya K, Aloï F, Baseia IG, Blanchette RA, Bordallo JJ, Bratek Z, Butler T, Cano-Canals J, Carlavilla JR, Chander J, Cheewangkoon R, Cruz RHSSF, da Silva M, Dutta AK, Ercole E, Escobio V, Esteve-Raventós F, Flores JA, Gené J, Góis JS, Haines L, Held BW, Jung MH, Hosaka K, Jung T, Jurjević Ž, Kautman V, Kautmanova I, Kiyashko AA, Kozanek M, Kubátová A, Lafourcade M, La Spada F, Latha KPD, Madrid H, Malyshева EF, Manimohan P, Manjón JL, Martín MP, Mata M, Merényi Z, Morte A, Nagy I, Normand AC, Paloi S, Pattison N, Pawlowska J, Pereira OL, Petterson ME, Picillo B, Raj KNA, Roberts A, Rodríguez A, Rodríguez-Campo FJ, Romański M, Ruszkiewicz-Michalska M, Scanu B, Schena L, Semelbauer M, Sharma R, Shouche YS, Silva V, Staniszek-Kik M, Stiewol JB, Tapia C, Taylor PWJ, Toome-Heller M, Vabeikhokhei JMC, van Diepeningen AD, Van Hoa N, M VT, Wiedenhold NP, Wrzosek M, Zoňhanszája J, Groenewald JZ (2017) Fungal Planet description sheets: 558–624. Persoonia 38: 240–384. https://doi.org/10.3767/003158517X698941

Ellis MB (1958) *Clasterosporium* and some allied Dematiaceae Phragmosporae: I. Mycological Papers 7: 1–89.

Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew.

Ferdinandz HS, Manamgoda DS, Udayanga D, Deshappriya N, Munasinghe MS, Castlebury LA (2021) Molecular phylogeny and morphology reveal three novel species of *Curvularia* (Pleosporales, Pleosporaceae) associated with cereal crops and weedy grass hosts. Mycological Progress 20: 431–451. https://doi.org/10.1007/s11557-021-01681-0

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In, 95–98.

Hashimoto A, Matsumura M, Hirayama K, Tanaka K (2017) Revision of *Lophiotremataceae* (Pleosporales, Dothideomycetes): *Aquasubmersaceae, Cryptocoryneaceae, and Hermatomycetaceae* fam. nov. Persoonia 39: 51–73. https://doi.org/10.3767/persoonia.2017.39.03

Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV, Boonmee S, Lücking R, Bhat DJ, Liu NG, Tennakoon DS, Pem D, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe IS, Tibpromma S, Jayasiri SC, Sandamali DS, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Phukhamsakda C, Thambugala KM, Dai DQ, Chethana KWT, Samarakoon MC, Ertz D, Bao DF, Doilom M, Liu JK, Pérez-Ortega S, Suija A, Senwanna C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, Norphanphoum C, de Silva NI, Thiagaraja V, Zhang H, Bezerra JDP, Miranda-González R, Áptroot A, Kashiwadani H, Harishchandra D, Sérusiaux E, Aluthmuhandiram JVS, Abeywickrama PD, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Suetrong S, Chaiwan N, Dayaratne MC, Yang J, Rathnayaka AR, Bhunjun CS, Xu JC, Zheng JS, Liu G, Feng Y, Xie N (2020a) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11: 1553–2107. https://doi.org/10.5943/mycosphere/11/1/13
Kuo CH, McKenzie EHC, Wen TC, Yan JY, Zhao Q (2018) Mycosphere notes 169–224. Mycosphere 9: 271–430. https://doi.org/10.5943/mycosphere/9/2/8

Hyde KD, Xu JC, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Chethana KWT, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu JK, Liu NG, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O’Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakooc BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujaer K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Wei D, Wijesinghe SN, Winiski J, Yan J, Yasanthika E, Stadler M (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97: 1–136. https://doi.org/10.1007/s13225-019-00430-9

Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei DP, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayake AH, Bao DF, Li JF, Samarakooc MC, Chaiwan N, Lin CG, Phuthcharoen K, Zhang SN, Senanayake IC, Goonasekara ID, Thambugala KM, Phukhamsakda C, Tennakoon DS, Jiang HB, Yang J, Zeng M, Huanraluek N, Liu JK, Wijesinghe SN, Tian Q, Tibpromma S, Brahamanage RS, Boonmee S, Huang SK, Thiagaraja V, Lu YZ, Jayawardena RS, Dong W, Yang EF, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Pfieglger WP, Horváth E, Imre A, Alves AL, da Silva Santos AC, Tiago PV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doilom M, Elgornan AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu J, Sheng J (2020) Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100: 5–277. https://doi.org/10.1007/s13225-020-00439-5

Iturrieta-González I, Pujol I, Iftimie S, García D, Morente V, Queralt R, Guevara-Suarez M, Alastruey-Izquierdo A, Ballester F, Hernández-Restrepo M (2020) Polyphasic identification of three new species in Alternaria section Infectoriae causing human cutaneous infection. Mycoses 63: 212–224. https://doi.org/10.1111/myc.13026

Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangs-aard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Gbadon-Nejhad M, Nilsson H, Pang KL, Pereira OL, Phillips AJL, Rapšė O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Dananagama DA, Dissayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang JC, Promptutta I (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8
Kirk PM, Cannon PF, Minter DW, Staplers JA (2008) Dictionary of the Fungi 10th edn. CABI Bioscience, UK.

Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276–3278. https://doi.org/10.1093/bioinformatics/btu531

Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Ariyawansa HA, Baghela A, Bahkali AH, Beug M, Bhat DJ, Bojantchev D, Boonpratuang T, Bulgakov TS, Camporesi E, Boro MC, Ceska O, Chakraborty D, Chen JJ, Chethana KWT, Chomnunti P, Consiglio G, Cui BK, Dai DQ, Dai YC, Daranagama DA, Das K, Dayarathe MC, De Crop E, De Oliveira RJV, de Souza CAF, de Souza JI, Dentinger BTM, Dissanayake AJ, Doilom M, Drechsler-Santos ER, Ghabad-Nejhad M, Gilmore SP, Góes-Neto A (2016) Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78: 1–237. https://doi.org/10.1007/s13225-016-0366-9

Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

Long H, Zhang Q, Hao YY, Shao XQ, Wei XX, Hyde KD, Wang Y, Zhao DG (2019) Diaporthe species in south-western China. MycoKeys 57: 113–127. https://doi.org/10.3897/mycokeys.57.35448

Luttrell ES (1955) The ascostromatci Ascomycetes. Mycologia 47: 511–532. https://doi.org/10.2307/3755666

Ma XY, Maharachchikumbura SSN, Chen BW, Hyde KD, McKenzie EHC, Chomnunti P, Kang JC (2019) Endophytic pestalotiod taxa in Dendrobium orchids. Phytotaxa 419: 268–286. https://doi.org/10.11646/phytotaxa.419.3.2

Mantle PG, Hawksworth DL, Pazoutova S, Collinson LM, Rassing BR (2006) Amorosia littoralis gen. sp. nov., a new genus and species name for the scorpinone and caffeine-producing hyphomycete from the littoral zone in The Bahamas. Mycological Research 110: 1371–1378. https://doi.org/10.1016/j.mycres.2006.09.013

Mathiyazhagan S, Kavitha K, Nakkeeran S, Chandrasekar G, Manian K, Renukadevi P, Krishnamoorthy AS, Fernando WGD (2004) PGPR mediated management of stem blight of Phyllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) Wei. Archives of Phytopathology and Plant Protection 37: 183–199. https://doi.org/10.1080/03235400410001730658

Miller MA, Pfeiffer W, Schwartz T (2010) “Creating the CIPRES Science Gateway for inference of large phylogenetic trees” in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, 1–8. https://doi.org/10.1109/GCE.2010.5676129

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188–1195. https://doi.org/10.1093/molbev/mst024
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300

Nylander JAA (2004) MrModeltest v2.2. Program distributed by the author: 2. Evolutionary Biology Centre, Uppsala University, 1–2.

Obrist W (1959) Untersuchungen über einige” dothideale” Gattungen. Phytopathologische Zeitschrift 35: 357–388. https://doi.org/10.1111/j.1439-0434.1959.tb01833.x

Ramesh C (2003) Loculoascomycetes from India. Rao GP, Manoharachari C, Bhat DJ (Eds) Frontiers of Fungal Diversity in India, International Book Distributing Company, Lucknow, India, 457–479.

Rambaut A, Drummond A (2008) FigTree: Tree figure drawing tool, version 1.2. 2. Institute of Evolutionary Biology, University of Edinburgh.

Rannala B, Yang ZH (1996) Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution 43: 304–311. https://doi.org/10.1007/BF02338839

Rasool-Hassan BA (2012) Medicinal plants (importance and uses). Pharmaceut Anal Acta 3: 2153–2435. https://doi.org/10.4172/2153-2435.1000e139

Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634. https://doi.org/10.1016/S0953-7562(09)80409-7

Rehner SA, Buckley E (2005) A beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1): 84–98. https://doi.org/10.1080/15572536.2006.11832842

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Schoch C, Crous PW, Groenewald JZ, Boehm E, Burgess TI, De Gruyter J, De Hoog GS, Dixon L, Grube M, Gueidan C (2009) A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15. https://doi.org/10.3114/sim.2008.61.08

Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht.

Senanayake IC, Rathnayake AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, Hurdeal VG, Pem D, Dissanayake LS, Wijesinghe SN, Bundhun D, Nguyen TT, Goonasekara ID, Abeywickrama PD, Bhunjun CS, Jayawardena RS, Wanasighe DN, Jeewon R, Bhat DJ, Xiang MM (2020) Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11: 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20

Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research 110: 916–928. https://doi.org/10.1016/j.mycres.2006.06.004

Strobel G, Stierle A, Stierle D, Hess WM (1993) Taxomyces andreanae, a proposed new taxon for a bulbiliferous hyphomycete associated with Pacific Yew (Taxus brevifolia). Mycotaxon. 47: 71–80.
Su H, Kang JC, Cao JJ, Mo L, Hyde KD (2014) Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai Journal Science 41: 1–13.

Su HY, Hyde KD, Maharachchikumbura SSN, Ariyawansa HA, Luo ZL, Promputtha I, Tian Q, Lin CG, Shang QJ, Zhao YC, Chai HM, Liu XY, Bahkali AH, Bhat JD, McKenzie EHC, Zhou DQ (2016) The families Distoseptisporaceae fam. nov., Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae with new species from freshwater in Yunnan Province, China. Fungal Diversity 80: 375–409. https://doi.org/10.1007/s13225-016-0362-0

Sun JZ, Liu XZ, McKenzie EHC, Jeewon R, Liu JK, Zhang XL, Zhao Q, Hyde KD (2019) Fungiculous fungi: terminology, diversity, distribution, evolution, and species checklist. Fungal Diversity 95: 337–430. https://doi.org/10.1007/s13225-019-00422-9

Sun YR, Jayawardena RS, Hyde KD, Wang Y (2021) Kirschsteiniothelia thailandica sp. nov. (Kirschsteiniotheliaceae) from Thailand. Phytotaxa 490(2): 172–182. https://doi.org/10.11646/phytotaxa.490.2.3

Tan YP, Crous PW, Shivas RG (2016) Eight novel Bipolaris species identified from John L. Alcorn’s collections at the Queensland Plant Pathology Herbarium (BRIP). Mycological Progress 15: 1203–1214. https://doi.org/10.1007/s11557-016-1240-6

Tennakoon DS, Kuo CH, Maharachchikumbura SSN, Thambugala KM, Gentekaki E, Phillips AJL, Bhat DJ, Wanasinghe DN, de Silva NI, Promputtha I, Hyde KD (2021) Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity 108: 1–215. https://doi.org/10.1007/s13225-021-00474-w

Thambugala KM, Hyde KD, Tanaka K, Tian Q, Wanasinghe DN, Ariyawansa HA, Jayasiri SC, Boonmee S, Camporesi E, Hashimoto A, Hirayama K, Schumacher RK, Promputtha I, Liu ZY (2015) Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Diversity 74: 199–266. https://doi.org/10.1007/s13225-015-0348-3

Tóth S (1975) Some new microscopic fungi, III. Annales Historico-naturales Musel nationalis Hungarici 67: 31–35.

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232–W235. https://doi.org/10.1093/nar/gkw256

Tzean SS, Chen JL (1990) Cheiromoniliophora elegans gen. et sp. nov. (Hyphomycetes). Mycological Research 94: 424–427. https://doi.org/10.1016/S0953-7562(09)80373-0

Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Voglmyr H, Jaklitsch WM (2017) Corynespora, Exosporium and Helminthosporium revisited – New species and generic reclassification. Studies in Mycology 87: 43–76. https://doi.org/10.1016/j.simyco.2017.05.001

Wei CT (1950) Notes on Corynespora. Mycological Papers 34, 10 pp.
White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Shinsky J, White T (Eds) PCR protocols: a guide to methods and applications. Academic Press, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL, Boonmee S, Braun U, Dai DQ, D’soouza MJ, Diederich P, Dissankayake A, Doilom M, Hongsanan S, Jones EBG, Grootenwald JZ, Jayawardena R, Lawrey JD, Liu JK, Lücking R, Madrid H, Manamgoda DS, Muggia L, Nelsen MP, Phookamsak R, Suetrong S, Tanaka K, Thambugala KM, Wanasinghe DN, Wikee S, Zhang Y, Aptroot A, Ariyawansa HA, Bahkali AH, Bhat DJ, Gueidan C, Chomnunti P, De Hoog GS, Knudsen K, Li WJ, McKenzie EHC, Miller AN, Phillips AJL, Piątek M, Raja HA, Shivash S, Slippers B, Taylor JE, Tian Q, Wang Y, Woudenbergh JHC, Cai L, Jaklitsch WM, Hyde KD (2014) Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69: 1–55. https://doi.org/10.1007/s13225-014-0309-2

Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev D, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfieglser WP, Horváth E, Bensch K, Kirk PM, Kolafíková K, Raja HA, Radek R, Papp V, Dima V, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblova M, Doilom M, Dola-tabadi S, Pawłowska JZ, Humber RA, Koda’sueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiúza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Becerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbranken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodríguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğan D, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayaratne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11: 1060–1456. https://doi.org/10.5943/mycosphere/11/1/8

Wijayawardene NN, Hyde KD, Anand G, Dissanayake LS, Tang LZ, Dai DQ (2021) Towards incorporating asexually reproducing fungi in the natural classification and notes for pleomorphic genera. Mycosphere 12: 238–405. https://doi.org/10.5943/mycosphere/12/1/4

Xu ZH, Kuang WG, Qiu L, Zhang XG, Castañeda-Ruiz RF, Ma J (2020) Corynespora sinensis sp. nov. from Jiangxi, China. Mycotaxon 135: 803–809. https://doi.org/10.5248/135.803
Yang J, Maharachchikumbura SSN, Liu JK, Hyde KD, Jones EBG, Al-Sadi AM, Liu ZY (2018) *Pseudostanjehughesia aquitropica* gen. et sp. nov. and *Sporidesmium sensu lato* species from freshwater habitats. Mycological Progress 17: 591–616. https://doi.org/10.1007/s11557-017-1339-4

Zhang Q, Yang ZF, Cheng W, Wijayawardene NN, Hyde KD, Chen Z, Wang Y (2020) Diseases of *Cymbopogon citratus* (Poaceae) in China: *Curvularia nanningensis* sp. nov. MycoKeys 63: 49–67. https://doi.org/10.3897/mycokeys.63.49264

Zhang SN, Hyde KD, Gareth Jones EB, Cheewangkoon R, Liu JK (2018) *Acuminatispora palmarum* gen. et sp. nov. from mangrove habitats. Mycological Progress 17: 1173–1188. https://doi.org/10.1007/s11557-018-1433-2

Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Diversity 53: 1–221. https://doi.org/10.1007/s13225-011-0117-x