Will the Inducing and Maintaining Remission of Non-biological Agents and Biological Agents Differ for Crohn’s Disease? The Evidence From the Network Meta-Analysis

Mingjun Rui¹,², Zhengyang Fei¹,², Yingcheng Wang¹,², Fenghao Shi¹,², Rui Meng¹,², Ye Shang¹,², Aixia Ma¹,²* and Hongchao Li¹,²*

¹ School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China, ² Center for Pharmacoconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China

Background: Several drugs currently are available for the treatment of Crohn’s disease, including non-biological agents such as anti-inflammatory agents, steroids, immunosuppressive agents, and biologic agents such as anti-tumor necrosis factor (TNF), anti-α4β7 integrin, anti-alpha-4 integrin and anti-interleukin 12/23. However, the choice of treatments for induction and maintenance is still a challenge. The relevant comparison between non-biologic agents and biologic agents is few. In our research, we aimed to help making decisions, as well as providing clinicians and patients with medication references.

Methods: We searched MEDLINE, Embase, and the Cochrane Central Register of controlled trials for relevant randomized controlled trials published through to July 2020 and systematic reviews published from January 2011 to December 2020. Search results were screened by 2 independent reviewers first by title and abstract and then by full text. Disagreements were resolved through discussion with a third reviewer.

Results: 54 randomized controlled trials were included in our analysis. For induction of remission, azathioprine (OR, 3.5; 95% CI, 1.4–8.9), infliximab (OR, 4.1; 95% CI, 1.2–16.0), infliximab + azathioprine (OR, 7.0; 95% CI, 1.2–41.0) and infliximab + methotrexate (OR, 7.8; 95% CI, 1.2–65.0) were more effective in first-line therapy than placebo. Adalimumab showed superiority to placebo in second-line therapy, but the range of SD was wide. For maintenance of remission, adalimumab (OR,2.24;95% CI,1.17–4.76) and azathioprine (OR,2.05; 95% CI, 1.14–3.96) were more effective than placebo. Adalimumab (OR,0.56; 95%Crl,0.27–1.2), budesonide (OR,0.63; 95%Crl,0.26–1.6) and natalizumab (OR,0.65; 95%Crl,0.30–1.4) was associated with less risk of withdrawals when compared with placebo.

Conclusion: For induction of remission, azathioprine, infliximab, and infliximab + azathioprine were more effective in first-line therapy. In second-line therapy, adalimumab was more effective but should be interpreted carefully. For maintenance of remission, adalimumab and azathioprine were more effective. Besides, adalimumab, budesonide,
INTRODUCTION

Crohn’s disease (CD) is a chronic inflammatory disease of the gastrointestinal tract with symptoms evolving in a relapsing and remitting manner (1). It is also a progressive disease that leads to bowel damage and disability (1). Among adult CD patients, there is no particularly significant difference in the distribution of prevalence between men and women, and this disease usually occurs in young and middle-aged groups who are between 20 and 40 years old (2). The incidence of CD is always increasing in most parts of the world. The incidence and prevalence of CD is higher in developed countries than in developing countries, which is also higher in urban areas than in rural areas (2). It is reported that in addition to intestinal damage and disability, CD can also lead patients to experience symptoms of anxiety and/or depression, which will have a significant impact on quality of life (3). As the disease mechanism of CD remains unknown, a curative therapy is not yet available (4). The purpose of current treatment is to keep patients in remission. There are several drugs currently available for the treatment of CD, including non-biological agents: anti-inflammatory agents (such as mesalazine (5ASA)), steroids [such as budesonide(BUD), prednisolone (PED)], immunosuppressive agents [such as azathioprine (AZA) and mercaptopurine (6MP), methotrexate (MTX)], and biologic therapies: anti-tumor necrosis factor (TNF) [such as infliximab (IFX), adalimumab (ADA), certolizumab pegol (CZP)], anti-α4β7 integrin [natalizumab (NTZ)], anti-alpha-4 integrin [vedolizumab(VDZ)] and anti-interleukin 12/23[ustekinumab (UST)] (5). However, the choice of treatments for induction and maintenance is still a challenge. Although there are currently many randomized clinical controlled trials (most of which are placebo-controlled) for traditional non-biological agents and those new biological agents (such as vedolizumab, ustekinumab), relevant head-to-head experiment comparison is few. The head-to-head comparison results can help making decisions, as well as providing clinicians and patients with medication reference.

Network Meta-analysis can help us conduct the integration of multiple clinical trials, especially in the absence of direct comparison evidence (6). Many previously published meta-analyses did not consider whether patients treated with biological agents had previously received treatment with anti-TNF agents, and the efficacy of patients treated with anti-TNF agents was significantly different from those who had not previously received treatment. Therefore, in our study, patients were divided into first-line treatment and second-line treatment according to whether they had received anti-TNF agents before. In addition, most of previously published researches (7–14) also focused on only biological agents, without considering the difference between the efficacy of traditional non-biological agents and biological agents. Some other researches (15, 16) only described the efficacy of immunosuppressants and didn’t include some new biological agents. Therefore, based on the direct and indirect evidence in clinical trials, we conducted a network meta-analysis to compare the efficacy of therapies for induction and maintenance of remission including anti-inflammatory drugs, immunosuppressive agents, steroids, anti-TNF drugs, anti-CD47 integrin, anti-alpha-4 integrin and anti-interleukin 12/23 or their combination in adult patients with CD.

METHODS

Eligibility Criteria

We included all randomized controlled trials that assessed treatments (mesalazine, budesonide, azathioprine, sulfasalazine (SSZ), everolimus (EVE), olsalazine (OLS), mercaptopurine, methotrexate, infliximab, adalimumab, certolizumab pegol, vedolizumab, ustekinumab, natalizumab) alone or in combination in adult patients with CD. We included trials assessing the induction of remission of non-biological and biological agents between 2 and 18 weeks. We include trials assessing the maintenance of remission of remission with at least 24 weeks in duration.

Trials studying only pediatric or postoperative patients and those trials without fixed treatments were excluded (such as standard of care). In addition, studies exclusively assessing fistulizing CD, and those didn’t report the clear remission as the outcome were also excluded.

The primary outcome was remission, which was defined as Crohn’s Disease Activity Index (CDAI)<150 or HBI (Harvey-Bradshaw index)<5. We chose the remission criteria defined in the research if the CDAI was not reported. Secondary end point was total withdrawals which was defined as the total number of patients who were withdrawn from the research after randomization for any reason. Eligibility criteria were established using the PICOS (see in the Supplementary Table 1). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were also followed (see in the Supplementary Table 2).

Literature Search and Study Selection

We searched the relevant systematic reviews from January 2011 to July 2020, and selected the included trials that meet the eligibility criteria. Besides, we performed the database search through to December 2020 in MEDLINE by Ovid, Embase, and the Cochrane Library. The database and systematic reviews search strategies were reported in the Supplementary Table 3. Search results were screened by two independent reviewers first.

Keywords: Crohn’s disease, network meta-analysis, anti-inflammatory agents, immunosuppressive agents, anti-tumor necrosis factor, biologic agents, steroids
by title and abstract and then by full text. Disagreements were resolved through discussion with a third reviewer.

Data Collection and Quality Appraisal

We extracted relevant characteristics from the relevant study. For induction, some articles reported results several time points, and we chose the result closest to 12 weeks as the primary outcome when the time point of the primary outcome was not specified or induction was not the primary goal of the study. For maintenance, we chose the time points closest to the end of the trial. Total withdrawals were extracted at the end of the trials for both induction and maintenance trials. Baseline disease severity was defined as CDAI (220-450) or HBI > 7.

We extracted the number of patients after randomization and those who experienced the outcome. If the outcomes were only reported in the graphic format, the software Engauge Digitizer 12.0 was used to get the percentages and the number would be calculated and rounded to the nearest whole number. The quality of trials was rated through the Cochrane Risk of Bias tool (17).

Synthesis of Results

We used a random-effects Bayesian network Meta-analysis to research treatment effects for remission and total withdrawals. For the clinical heterogeneity across trials, the random-effects model was more appropriate. R statistical software version 3.6.0 was used to do the statistical analyses with the gemtc package version 0.8-2 (www.r-project.org) and do the funnel plots with the netmeta package. The risk of bias graph was generated by Cochrane RevMan 5.3.

We chose uninformative prior probability distribution for all variables, each model uses 4 Markov chains to set the initial value, and the number of iterations is set to 20,000.

Sensitivity Analyses

In order to assess the robustness of the results, we did several sensitivity analyses for induction of remission, which was following: excluding trials with a high risk of bias; For maintenance of remission, the additional sensitivity analyses were following: including trials whose time points were 1 year or longer; For the withdrawal, the sensitivity analysis was following: including those withdrawal because of the adverse events.

RESULTS

Finally, we included 54 studies. PRISMA flow diagram could be found in Figure 1. Characteristics of included trials were
TABLE 1 | First-line therapy network meta-analysis results for induction of remission.

	5ASA	XIEMP	ADA	ADAAZA	AZA	BUD	CZP	EVE	IFX	IFXAZA	IFXMTX	MTX	NTZ	OLS	P	SSZ	SSZEMP	UST	VDZ								
5ASA	−0.13	−0.06	−0.06	−0.06	−0.26	−1.04	−0.59	0.80	−0.66	1.32	−0.59	−1.63	−0.66	0.44	−1.16	0.04	−1.15	−0.26	−1.11	−0.61	−0.85	0.47	1.43	0.18	1.71	0.17	1.35
XIEMP	−1.26	1.41	0.26	−1.47	−1.28	1.47	1.59	1.44	0.79	0.56	−1.47	−0.38	0.92	1.58	−2.51	2.3	3.23	3.66	2.45	1.25	−1.41	−2.72	2.29	0.02	1.63		
ADA	−0.01	−0.72	0.99	−2.19	−0.67	1.61	0.39	−0.45	0.93	0.76	−0.57	−0.77	0.57	1.77	−1.16	−2.04	0.9	0.35	0.9	−1.07	−0.72	0.31	1.88	0.3	1.59		
ADAZ	−0.14	−1.15	0.84	0.44	0.26	0.80	0.12	−0.53	0.98	0.36	−0.47	−0.47	0.32	0.76	−1.14	−2.11	−0.7	0.47	0.9	0.72	0.31	1.88	0.3	1.59			
AZA	−0.07	1.67	0.46	0.74	1.04	1.75	0.75	−0.61	0.16	0.06	0.02	0.06	0.59	0.24	−1.15	−0.61	−0.3	0.71	0.19	1.98	0.06	1.27	1.57	0.96	1.57		
BUD	−0.71	−0.82	−0.91	1.34	1.78	−1.57	−1.07	−0.53	0.85	0.46	−1.49	−0.52	0.19	1.02	−0.59	−2.45	−0.7	1.88	0.7	1.88	0.42	1.78	1.46	1.09	1.09		
CZP	−0.28	−0.32	−1.06	0.4	−0.14	0.88	0.12	−0.58	0.53	0.39	−0.47	0.21	0.29	0.23	−1.15	−2.43	1.32	1.05	0.5	0.88	0.42	1.78	1.46	1.09	1.09		
EVE	0.58	0.53	0.12	0.12	0.24	0.53	0.84	−1.16	0.82	0.59	−0.07	0.07	1.71	0.19	−1.58	−0.02	−0.28	0.06	−1.46	0.76	0.65	1.75	1.4	1.4			
IFX	−0.36	0.45	0.37	1.34	0.4	0.88	0.14	−0.85	0.08	0.54	0.58	0.92	0.46	0.79	1.65	0.79	0.62	0.62	−1.65	0.33	0.62	0.63	0.63	0.63			
IFXAZ	−1.32	1.46	0.99	0.51	0.57	0.51	0.92	0.46	0.98	0.39	1.22	1.65	0.98	1.22	1.65	0.79	0.62	0.62	−1.65	0.33	0.62	0.63	0.63	0.63			
IFXMTX	0.36	1.49	0.23	0.78	1.49	0.17	2.02	0.03	−0.03	0.1	−0.1	−0.08	0.03	2.45	0.7	0.79	0.47	0.79	0.47	−1.07	0.31	1.88	0.3	1.59			
MTX	0.53	1.76	0.52	0.29	1.57	0.52	0.47	0.07	0.74	0.23	0.23	1.25	0.23	0.23	0.23	0.23	0.23	0.23	1.25	0.23	0.23	0.23	0.23	0.23			
NTZ	0.44	1.88	0.54	0.28	0.21	0.54	0.47	0.07	0.74	0.23	0.23	1.25	0.23	0.23	0.23	0.23	0.23	0.23	1.25	0.23	0.23	0.23	0.23	0.23			

(Continued)
shown in Supplementary Data Sheet 1. There were 6 trials (18–23) evaluated adalimumab, 4 trials (24–27) evaluated infliximab, 4 trials (28–31) evaluated certolizumab, 3 trials (32–34) evaluated vedolizumab, 1 trial (35) evaluated ustekinumab, 5 trials (36–40) evaluated natalizumab, 9 trials (41–49) evaluated immunosuppressants, 7 trials (50–56) evaluated anti-inflammatory drugs, 9 trials (57–65) evaluated glucocorticoid, 6 trials (66–71) evaluated combination therapy. Forty-three trials provided data on induction of remission and 19 trials provided data on maintenance of remission. 46 trials provided the information about the concomitant therapy, which was reported in the Supplementary Data Sheet 1. CDAI was used to define remission in most trials except 1 trial (25) which used HBI. The risk of bias was judged to be high in the 7 trials (37, 38, 45, 46, 50, 53, 66). All these 7 trials evaluated the induction of remission and they were excluded in the sensitivity analyses. Model structures were shown in the Supplementary Table 4. A detailed assessment of the risk of bias was presented in Supplementary Table 5 and Supplementary Data Sheet 2.

To assess the consistency of the evidence, we used the node-splitting analysis to study whether the results could be jointly summarized and plotted (72). The node-splitting analysis would produce the results by the direct comparison and indirect comparison. If there was no difference between their results, they were consistency. This function could be available by the mtc.nodesplit command in the gemtc package.

Synthesis of Results

Induction of Remission

First-Line Therapy for CD

For the patients who did not receive anti-TNF agents, AZA, IFX, IFX+AZA, IFX+MTX were different from placebo for inducing remission, which could be seen in the Table 1. AZA, IFX, IFX+AZA, IFX+MTX had a 1.6, 1.8, 30.8, and 39.3% cumulative probability of ranking highest for induction of remission (Supplementary Table 6). The funnel plot showed no significant asymmetry in the Figure 2.

In the sensitivity analyses, when we excluded those trials with high bias risk, we could find that AZA, IFX, IFX+AZA were different from placebo for inducing remission, which was reported in the Supplementary Table 7.

The node-splitting analysis of inconsistency for induction of remission was reported in the Supplementary Table 8.

Second-Line Therapy for CD

For the patients who received anti-TNF agents, ADA, NTZ, UST, VDZ were not different form placebo for inducing remission, which could be found in the Table 2, but we could find that the ranges of SD were large, so the reliability of point estimates were low. Instead, the probability of ranking was more credible. We could find that ADA (60%) and UST (21%) might have a higher probability of ranking highest for induction of remission (Supplementary Table 9).
TABLE 2 | Second-line therapy network meta-analysis results for induction of remission.

	ADA	NTZ	P	UST	VDZ
ADA	0.84 (−0.96, 2.69)	0.47 (−1.23, 2.24)	0.94 (−0.79, 2.73)	0.10 (−1.81, 2.02)	0.10 (−1.81, 2.02)
NTZ	1.12 (0.01, 2.34)	0.28 (−1.1, 1.7)	P	0.64 (−0.65, 1.95)	0.18 (−1.14, 1.51)
P	NTZ	−0.28 (−1.7, 1.1)	0.37 (−1.55, 2.29)	UST	−0.46 (−2.32, 1.37)
UST	0.47 (−1.23, 2.24)	−0.37 (−2.29, 1.55)	0.64 (−1.95, 0.65)	UST	0.46 (−1.37, 2.32)
VDZ	0.94 (−0.79, 2.73)	0.10 (−1.81, 2.02)	−0.18 (−1.51, 1.14)	0.46 (−1.37, 2.32)	VDZ

ADA, adalimumab; NTZ, natalizumab; VDZ, vedolizumab; UST, ustekinumab; P, placebo.

Maintenance of Remission
ADA and AZA were different from placebo for maintenance of remission, and other treatments were not different from placebo, which could be found in the Table 3. Rank probability for maintenance of remission was shown in the Supplementary Table 10. The funnel plot showed no significant asymmetry in the Figure 3.

The node-splitting analysis of inconsistency for maintenance of remission was reported in the Supplementary Table 11.

In the sensitivity analyses, when we included those trials whose time points were 1 year or longer, we could find that ADA and AZA were different from placebo for maintenance of remission, which was reported in the Supplementary Table 12.

Withdrawals
For total withdrawals, ADA, BUD and NTZ were not different from placebo, because their 95% confidence intervals were wide, which could be seen in the Table 4. 6-MP and MTX were associated with more WDAEs than placebo, which could be seen in the Supplementary Table 13. The funnel plot showed no significant asymmetry in the Figure 4.

The node-splitting analysis of inconsistency for withdrawals was reported in the Supplementary Table 14.

DISCUSSION
We conducted a systematic review and network meta-analysis of non-biological agents and biological agents for induction and maintenance of remission in adults with CD. Only head-to-head trials were identified in our network meta-analysis, and the node-splitting analysis was used to assess the consistency of the evidence. The purpose of this research is to help making decisions, as well as providing clinicians and patients with medication reference. For patients with prior exposure
Network meta-analysis results for maintenance of remission.

Therapy	ADA	AZA	IFX	MTX	NTZ
ADA	0.26 (1.48, 1.73)	0.81 (1.56, 1.03)	0.28 (1.3, 1.77)	0.28 (1.3, 1.77)	0.81 (1.56, 1.03)
AZA	0.88, 1.91	1.01, 1.67	1.3, 1.77	1.3, 1.77	1.91, 2.52
IFX	0.43 (1.35, 1.81)	0.34 (1.25, 1.37)	0.34 (1.25, 1.37)	0.34 (1.25, 1.37)	0.43 (1.35, 1.81)
MTX	0.26 (1.89, 2.16)	0.38 (1.91, 1.99)	0.38 (1.91, 1.99)	0.38 (1.91, 1.99)	0.26 (1.89, 2.16)
NTZ	0.57 (1.64, 0.36)	0.61 (1.78, 1.61)	0.61 (1.78, 1.61)	0.61 (1.78, 1.61)	0.57 (1.64, 0.36)

The bold values meant that they were significantly different from the placebo.

AZA, azathioprine; MTX, methotrexate; IFX, infliximab; ADA, adalimumab; CZP, certolizumab pegol; NTZ, natalizumab; VDZ, vedolizumab; UST, ustekinumab; P, Placebo.

Rational drug use for CD can significantly improve the quality of life of patients and reduce hospitalizations and operations. The appearance of biological agents provides more drugs are available for patients, but it also increases the difficulty of choice. In recent years, various biological agents have been paid more attention. However, according to our research, we have found that non-biological agents also had very good effects in the treatment of CD. Even the combination use of biological agent and non-biological agent was better than biological agent monotherapy. One network meta-regression published previously by Singh et
al. (73) compared some biological agents for the induction and maintenance of remission, the results from their paper were consistent with our research.

For VDZ and UST, which have been approved for the treatment of CD recent years, we approved that they had significant efficacy compared with placebo in the induction and maintenance of remission, but due to insufficient sample size, their efficacy should be treated carefully. The highlight was that for patients who previously failed anti-TNF agents, these two drugs provided a new choice for patients because their mechanism was different from that of anti-TNF agents.

There also existed some limits in our research. Due to the lack of head-to-head trials and reliance on only indirect evidence (such as NTZ and ADA) resulted in wide 95% confidence intervals. In addition, in the node-splitting analysis of inconsistency, direct and indirect comparison results of 5ASA-6MP and 6MP-placebo were significantly different (Supplementary Table 8), which showed that for the induction of remission, the result about 6MP was questionable. Another concern with network meta-analysis was heterogeneity between trials, such as the inclusion criteria of patients, risk of bias, the severity of disease. Although we have divided the most important factors into subgroups, we could only perform descriptive analysis in the characteristics table for other heterogeneities. Finally, as our research was based on head-to-head clinical trials, both dosage and compliance were different from the real-world environment to a certain extent. For example, the different strategies of treating CD such as top-down approach and step-up approach could not be compared in our research.

CONCLUSION

For induction of remission, azathioprine, infliximab, infliximab + azathioprine were more effective in first-line therapy. In second-line therapy, adalimumab was more effective but should be interpreted carefully. For maintenance of remission adalimumab and azathioprine were more effective. Besides, adalimumab, budesonide, natalizumab had lower withdrawals.
TABLE 4	Network meta-analysis results for withdrawals.																	
	5ASA	6MP	ADA	ADAZASA	AZA	BUD	EVE	IFX	IFXAZA	MTX	NTZ	NTZIFX	P	PED	SSZ	SSZ6MP	UST	VDZ
5ASA	0.59	0.84	-0.54	-0.21	-0.73	-0.06	0.44	-1.33	0.95	-0.45	-1.29	0.86	0.02	0.87	-0.27	0.87	-0.42	0.36
	(-0.63)	(-1.19)	(-2.24)	(-1.38)	(-1.56)	(-1.19)	(-2.25)	(-2.12)	(-2.18)	(-2.37)	(-2.12)	(-1.39)	(-2.1)	(-1.75)	(-2.35)	(-1.86)	(-1.75)	(-1.84)
6MP	-0.59	1.06	-1.13	-0.8	-1.32	-0.65	-0.15	-0.36	-0.14	0.22	-1.27	0.29	-0.85	1.07	-0.39	0.01	-0.10	0.09
	(-1.81)	(-2.82)	(-2.33)	(-2.27)	(-2.11)	(-2.11)	(-2.13)	(-2.02)	(-2.51)	(-2.27)	(-2.17)	(-2.05)	(-2.87)	(-1.86)	(-1.45)	(-1.59)	(-2.25)	(-3.08)
ADA	0.63	-0.02	0.62	0.84	1.82	1.82	2.02	0.12	2.88	0.34	0.85	1.05	1.45	0.42	1.29	0.01	-0.01	-0.09
ADAZASA	0.44	1.43	0.02	0.39	-0.15	0.79	1.29	1.79	0.79	1.29	1.79	0.79	1.45	0.98	0.58	0.08	-0.23	2.82
AZA	-0.23	2.82	1.88	-0.42	-1.07	-0.34	1.98	2.98	2.94	3.15	-0.92	4.06	-0.17	1.33	-0.31	0.21	-0.19	-0.89
BUD	1.89	-1.14	1.65	1.29	2.96	1.81	2.10	1.98	2.57	1.91	1.91	2.10	1.98	2.57	1.91	1.98	2.10	1.98
EVE	0.54	1.13	-0.3	0.35	0.38	0.48	1.98	1.40	1.40	0.37	0.91	1.31	0.38	0.48	1.98	1.40	0.37	0.91
IFX	0.73	-0.12	-0.11	0.18	0.52	-0.76	1.67	1.07	1.32	1.83	2.38	2.45	3.05	2.38	2.45	3.05	2.38	2.45
IFXAZA	0.65	-0.79	-0.47	-0.15	-0.67	-0.51	-0.86	0.92	0.51	0.67	1.14	1.40	1.67	1.14	1.40	1.67	1.14	1.40
MTX	-0.81	-0.22	-0.16	-1.35	0.56	1.19	0.21	2.18	0.49	2.94	0.75	1.25	1.81	1.25	1.81	1.25	1.81	1.25
NTZ	0.68	1.52	-0.19	0.78	0.29	0.05	0.67	1.58	1.49	0.01	2.54	0.21	0.76	1.31	1.72	0.29	0.76	1.14
NTZIFX	0.68	1.27	-0.16	0.14	0.47	0.05	0.62	1.13	0.63	1.83	0.45	1.13	0.51	0.73	1.56	0.73	1.56	0.73
PED	0.25	0.85	-0.58	-0.28	-2.05	-0.47	0.19	0.70	0.76	0.01	2.23	2.38	2.28	2.38	2.28	2.38	2.28	2.38
PED6	1.07	0.37	-0.07	-0.27	0.25	0.41	0.92	1.42	0.93	1.28	0.63	2.15	1.25	3.10	0.73	3.10	0.73	3.10
P	1.14	-0.03	-0.17	0.09	0.74	0.00	0.02	0.10	0.02	0.07	0.02	0.07	0.02	0.07	0.02	0.07	0.02	0.07
SSZ	0.44	-2.33	-0.71	0.62	1.35	1.48	2.62	2.39	2.61	0.73	1.67	2.88	0.38	0.46	2.88	0.38	0.46	2.88
SSZ6MP	-0.01	1.14	-1.14	0.8	-1.33	-0.16	0.35	-0.21	1.28	0.85	-0.15	-0.42	-0.72	-0.97	-0.72	-0.97	-0.72	-0.97
UST	0.70	1.45	0.39	0.54	0.22	0.12	1.72	0.77	1.11	0.19	1.72	0.77	1.11	0.19	1.72	0.77	1.11	0.19
VDZ	0.32	-0.99	-0.53	0.22	-0.11	-0.27	0.88	2.14	2.03	0.90	1.05	0.16	0.51	-0.01	0.19	0.16	0.51	0.19

5ASA, mesalamine; 6MP, mercaptopurine; MTX, methotrexate; IFX, infliximab; ADA, adalimumab; CZP, certolizumab pegol; NTZ, natalizumab; VDZ, vedolizumab; UST, ustekinumab; SSZ, sulfasalazine; EVE, everolimus; PED, prednisolone; P, placebo.
Therefore, biological agents were not always better than non-biological agents and they have their own advantages in different treatment methods of Crohn’s disease.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

MR, AM, and HL: conception of the study. MR, ZF, and YW: literature search and data extraction. FS and RM: statistical analysis. MR and YS: drafting the manuscript. AM and HL: revising and completion of final work. All authors reviewed and approved the final manuscript.

FUNDING

The publishing fees were funded by the corresponding author.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2021.679258/full#supplementary-material

REFERENCES

1. Torres J, Mehandru S, Colombel J-F, Peyrin-Biroulet L. Crohn's disease. *Lancet*. (2017) 389:1741–55. doi: 10.1016/S0140-6736(16)31711-1
2. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases With Time, Based on Systematic Review. *Gastroenterology*. (2012) 142:46–54.e42. doi: 10.1053/j.gastro.2011.10.001
3. Tomazoni EI, Benvegnú DM. Symptoms of anxiety and depression, and quality of life of patients with Crohn’s disease. *Arq Gastroenterol*. (2018) 55:148–53. doi: 10.1590/s0004-2803.201800000-26
4. Gomollón F, Dignass A, Annese V, Tilg H, Van Assche G, Lindsay JO, et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part I: diagnosis and medical management. *J Crohn Colitis*. (2017) 11:3–25. doi: 10.1093/ecco-jcc/jjw168
5. Torres J, Bonovas S, Doherty G, Kucharzik T, Gisbert JP, Raine T, et al. ECCO guidelines on therapeutics in Crohn’s disease: medical treatment. *J Crohns Colitis*. (2020) 14:4–22. doi: 10.1093/ecco-jcc/jjz180
6. Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, et al. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect
22. Colombel J-F, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, Maclotnsh DG, et al. Adalimumab for maintenance treatment of Crohn's disease: results of the CLASSIC II trial. Gut. (2007) 56:1232–9. doi: 10.1136/gut.2006.106781

23. Targan SR, Hanauer SB, van Deventer SJH, Mayer L, Present DH, Braakman T, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for crohn's disease. N Engl J Med. (1997) 337:1029–36. doi: 10.1056/NEJM199709301502

24. Rutgeerts P, Sandborn WJ, von Deventer SJH, Mayer L, Present DH, et al. Adalimumab induction therapy for Crohn disease previously treated with infliximab and adalimumab in 362 patients with anti-TNF-α naïve Crohn's disease. Alimentary Pharmacol Ther. (2004) 19:1102–11.e2. doi: 10.1016/j.apth.2004.02.018

25. Narula N, Kainz S, Petritsch W, Haas T, Feichtenschlager T, Novacek G, et al. The efficacy and safety of either infliximab or adalimumab in 362 patients with anti-TNF-α naïve Crohn's disease. Alimentary Pharmacol Ther. (2004) 19:1470–80. doi: 10.1016/j.apth.2004.02.018

26. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer L, Feichtenschlager T, Novacek G, et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. (2002) 359:1541–9. doi: 10.1016/S0140-6736(02)10851-4

27. Rutgeerts P, Colombel J-F, Sandborn WJ, Hanauer SB, Present DH, et al. Efficacy and safety of retreatment with anti–tumor necrosis factor antibody (infliximab) to maintain remission in Crohn's disease. Gastroenterology. (1999) 117:761–9. doi: 10.1053/j.gastro.1999.70332-X

28. Sandborn WJ, Schreiber S, Feagan BG, Rutgeerts P, Yones ZH, Bloomfield R, et al. Cetolizumab pegol for active crohn's disease: a placebo-controlled, randomised trial. Clin Gastroenterol Hepatol. (2011) 9:670–8.e3. doi: 10.1016/j.cgh.2011.04.031

29. Schreiber S, Rutgeerts P, Fedorak RN, Khaliq-Kareemi M, Kamm MA, Boivin M, et al. A randomized, placebo-controlled trial of certolizumab pegol (cdp870) for treatment of Crohn's disease. Gastroenterology. (2005) 129:807–18. doi: 10.1053/j.gastro.2005.06.064

30. Winter TA, Wright J, Ghosh S, Jahnken S, Innes A, Round P. Intravenous CDP870, a PEglylated Fab fragment of a humantum antitumour necrosis factor antibody, in patients with moderate-to-severe Crohn's disease: an exploratory study. Aliment Pharmacol Ther. (2004) 20:1337–46. doi: 10.1111/j.1365-2036.2004.02285.x

31. Schreiber S, Khaliq-Kareemi M, Lawrence JG, Thomson OO, Hanauer SB, McCollin J, et al. Maintenance therapy with Cetolizumab Pegol for Crohn's Disease. N Engl J Med. (2007) 357:239–50. doi: 10.1056/NEJMoa062897

32. Feagan BG, Greenberg-Wilson SG, Fedorak RN, Paré P, McDonald JW, et al. Treatment of active Crohn's disease with MBL002, a human antibody to the α4β7 integrin. Clin Gastroenterol Hepatol. (2008) 6:1370–7. doi: 10.1016/j.cgh.2008.06.007

33. Sands BE, Feagan BG, Rutgeerts P, Colombel J-F, Sandborn WJ, Sj R, et al. Effects of vedolizumab induction therapy for patients with Crohn's disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology. (2014) 147:618–26. doi: 10.1053/j.gastro.2014.05.008

34. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel J-F, Sands BE, et al. Vedolizumab induction and maintenance therapy for Crohn’s disease: first- and second-line biologic therapies for moderate-severe Crohn’s disease. Aliment Pharmacol Ther. (2018) 48:394–409. doi: 10.1111/apt.14852

35. Hazlewood GS, Rezaie A, Borman M, Panaccione R, Ghosh S, Seow CH, et al. Comparative effectiveness of immunosuppressants and biologics for inducing and maintaining remission in Crohn's disease: a network meta-analysis. Gastroenterology. (2015) 148:344–54.e5. doi: 10.1053/j.gastro.2014.10.011

36. Mao EJ, Hazlewood GS, Kaplan GG, Peyrin-Biroulet L, Ananthakrishnan AN. Systematic review with meta-analysis: comparative efficacy of immunosuppressants and biologics for reducing hospitalisation and surgery in Crohn's disease and ulcerative colitis. (2017) 45:3–13. doi: 10.1053/j.apt.2017.02.001

37. Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. (2011) 343:d5928. doi: 10.1136/bmj.d5928

38. Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, Maclinsh D, et al. Human anti–tumor necrosis factor monoclonal antibody (adalimumab) in Crohn's disease: the CLASSIC-I trial. Gastroenterology. (2006) 130:323–33. doi: 10.1053/j.gastro.2005.11.030

39. Sandborn WJ, Rutgeerts P, Enns R, Hanauer S, Colombel J-F, Panaccione R, et al. Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial. Ann Intern Med. (2007) 146:829–38. doi: 10.7326/0003-4819-146-12-200706190-00159

40. Watanabe M, Hibi T, Lomas KG, Paulson SK, Chao J, Alam MS, et al. Adalimumab for the induction and maintenance of clinical remission in Japanese patients with Crohn’s disease. J Crohns Colitis. (2012) 6:610–73. doi: 10.1016/j.jcjo.2011.07.013

41. Rutgeerts P, Van Asche G, Sandborn WJ, Wolf DC, Geboes K, Colombel J-F, et al. Adalimumab induces and maintains mucosal healing in patients with Crohn's disease: data from the EXTEND trial. Gastroenterology. (2012) 142:1102–11.e2. doi: 10.1053/j.gastro.2012.01.035

42. Colombel J-F, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. (2007) 132:52–65. doi: 10.1053/j.gastro.2006.11.041
42. Feagan BG, Rochon J, Fedorak RN, Irvine EJ, Wild G, Sutherland L, et al. Methotrexate for the treatment of Crohn’s disease. N Engl J Med. (1995) 332:292–7. doi: 10.1056/NEJM199502233320503
43. Candy S, Wright J, Gerber M, Adams G, Gerig M, Goodman RJG. A controlled double blind study of azathioprine in the management of Crohn’s disease. Gut. (1979) 20:747–51. doi: 10.1136/gut.20.10.747
44. Reinsch W, Panés J, Lémann M, Schreiber S, Feagan B, Schmidt S, et al. A multicenter, randomized, double-blind trial of everolimus versus azathioprine and placebo to maintain steroid-induced remission in patients with moderate-to-severe active Crohn’s disease. Am J Gastroenterol. (2008) 103:2284–92. doi: 10.1111/j.1572-0241.2008.02024.x
45. Ardizzone S, Bollani S, Manzioni G, Imbesi V, Colombo E, Porro GBJD, et al. Comparison between methotrexate and azathioprine in the treatment of chronic active Crohn’s disease: a randomised, investigator-blind study. Dig Liver Dis. (2003) 35:619–27. doi: 10.1016/S1590-8658(03)00372-4
46. Panés J, López-SanRomán A, Bermejo F, García–Sánchez V, Esteve M, Torres Y, et al. Early azathioprine therapy is no more effective than placebo for newly diagnosed Crohn’s disease. Gastroenterology. (2013) 145:766–74. e1. doi: 10.1053/j.gastro.2013.06.009
47. Rosenberg JL, Levin B, Wall AJ, Kirsner JB. A controlled trial of azathioprine in Crohn’s disease. Am J Dig Dis. (1975) 20:721–6. doi: 10.1007/BF01070829
48. Willoughby J, Beckett J, Kumar P, Dawson AJTL. Controlled trial of azathioprine in Crohn’s disease. Lancet. (1971) 298:944–7. doi: 10.1016/S0140-6736(71)90268-6
49. Feagan BG, Fedorak RN, Irvine EJ, Wild G, Sutherland L, Steinhardt AH, et al. A comparison of methotrexate with placebo to maintain remission of Crohn’s disease. N Engl J Med. (2000) 342:1627–32. doi: 10.1056/NEJM200006133422202
50. Temtaine WJ, Schroeder KW, Harrison JM, Zinsmeister AR Jocz. A randomized, double-blind, placebo-controlled trial of the oral mesalamine (5-ASA) preparation, Asacol, in the treatment of symptomatic Crohn’s colitis and ileocolitis. J Clin Gastroenterol. (1994) 19:278–82. doi: 10.1097/00048366-199412000-00003
51. Wright JP, Jewell DP, Modigliani R, Malchow H, Disease fitOf50IB. A Randomized, Double-Blind, Placebo-Controlled Trial of Olsalazine for Active Crohn’s Disease. Inflamm Bowel Dis. (1995) 1:241–6. doi: 10.1097/00054725-199512000-00001
52. Malchow H, Ewe K, Brandes JW, Goebell H, Ehms H, Sommer H, et al. European Cooperative Crohn’s Disease Study (ECCDS): results of drug treatment. Gastrointestinal. (1998) 86:249–66. doi: 10.1053/gi.1998.00409-8
53. Singleton JW, Hanauer SB, Garg SK, Pardi DS, Wang Z, Hassan Murad M, et al. Comparing infliximab with methotrexate for the induction and maintenance of remission in refractory Crohn’s disease: a controlled pilot study. Eur J Gastroenterol Hepatol. (2006) 18:11–6. doi: 10.1002/ejgh.200500093
54. Lémann M, Mary JY, Duclos B, Veyrac M, Dupas JL, Delchier JC, et al. Infliximab plus azathioprine for steroid-dependent Crohn’s disease: a randomized placebo-controlled trial. Gastroenterology. (2006) 130:1054–61. doi: 10.1053/j.gastro.2006.02.014
55. Colombo JF, Sandborn WJ, Reinsch W, Manzaris GJ, Kornbluth A, Rachmilewitz D, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. (2010) 362:1383–95. doi: 10.1056/NEJMoa0904492
56. Feagan BG, McDonald JWD, Panaccione R, Enns RA, Bernstein CN, Ponich TP, et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology. (2014) 146:681–8. e1. doi: 10.1053/j.gastro.2013.11.024
57. Matsumoto T, Motoya S, Watanabe K, Hismatsu T, Nakase H, Yoshimura N, et al. Adalimumab monotherapy and a combination with azathioprine for crohn’s disease: a prospective, randomized trial. J Crohns Colitis. (2016) 10:1259–66. doi: 10.1093/ ecco-jcc/jpw152
58. Colombo JF, Reinsch W, Manzaris GJ, Kornbluth A, Rutgeerts P, Tang KL, et al. Randomised clinical trial: deep remission in biologic and immunomodulator naive patients with Crohn’s disease—a SONIC post hoc analysis. Aliment Pharmacol Ther. (2015) 41:734–46. doi: 10.1111/apt.13139
59. Dias S, Welton N, Sutton A, Caldwell D, Lu G, Ades A. Inconsistency in Networks of Evidence Based on Randomised Controlled Trials. London: National Institute for Health and Care Excellence (NICE) (2014).
60. Singh S, Garg SK, Pardi DS, Wang Z, Hassan Murad M, et al. Comparative efficacy of biologic therapy in biologic-naïve patients with crohn disease: a systematic review and network meta-analysis. Mayo Clin Proc. (2014) 89:1621–35. doi: 10.1016/j.mayocp.2014.08.019

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent the views of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Rui, Fei, Wang, Shi, Meng, Shang, Ma and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.