Search for Dark Photons from Supersymmetric Hidden Valleys

V. M. Abazov
Joint Institute for Nuclear Research, Dubna, Russia

Kenneth A. Bloom
University of Nebraska-Lincoln, kbloom2@unl.edu

Gregory Snow
University of Nebraska-Lincoln, gsnow1@unl.edu

D0 Collaboration

Follow this and additional works at: https://digitalcommons.unl.edu/physicsbloom

Part of the Physics Commons

Abazov, V. M.; Bloom, Kenneth A.; Snow, Gregory; and Collaboration, D0, "Search for Dark Photons from Supersymmetric Hidden Valleys" (2009). Kenneth Bloom Publications. 310.
https://digitalcommons.unl.edu/physicsbloom/310

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Search for Dark Photons from Supersymmetric Hidden Valleys

V. M. Abazov,
B. Abbott,
M. Abolins,
B. S. Acharya,
M. Adams,
T. Adams,
E. Aguilo,
M. Ahsan,
G. D. Alexeev,
G. Alkhazov,
A. Alton,
G. Alves,
L. S. Anu,
T. Andeen,
M. S. Anzelc,
M. Aoki,
Y. Arnoud,
M. Arov,
M. Arthaud,
J. Askew,
B. Åsman,
O. Atrakchiev,
A. Avila,
J. Backus-Myers,
F. Badrini,
D. Baldin,
D. V. Bandurin,
S. Banerjee,
E. Barberis,
P. Bargassa,
P. Baris,
J. Barreto,
J. F. Bartlett,
U. Bassler,
D. Bauer,
S. Beale,
M. Begalli,
M. Begel,
C. Belanger-Champagne,
L. Ballantoni,
A. Bellavance,
J. A. Benitez,
S. B. Beri,
G. Bernardi,
R. Bernhard,
I. Bertram,
M. Besanccon,
R. Beuselinck,
V. A. Bezzubov,
V. Bhatnagar,
G. Blazey,
J. Backus-Mayes,
F. Badaud,
L. Bagby,
B. Baldin,
S. Baldini,
D. Bachholz,
M. Buehler,
V. Buescher,
V. Bunichev,
S. Burdin,
T. H. Burnett,
C. Buszello,
P. Calfayan,
B. Calvat,
J. Cammin,
M. A. Carrasco-Lizarra,
E. Carrera,
W. Carvalho,
J. F. Bartlett,
B. Carro,
L. Hoyt,
D. Carosi,
W. Carson,
E. Karali,
E. Kajfasz,
D. Karmanov,
P. A. Kasper,
I. Katsanos,
V. Kaushik,
R. Kehoe,
S. Kermiche,
A. P. Heinson,
U. Heintz,
C. Hensel,
I. Heredia-De La Cruz,
K. Hennig,
G. Hesketh,
M. D. Hildreth,
A. Juste,
E. Kajfasz,
M. Arthaud,
A. Askew,
B. A˚sman,
O. Atramentov,
C. Avila,
M. Rominsky,
C. Royon,
P. Rubinov,
R. Ruchti,
G. Safronov,
G. Sajot,
A. Sanchez-Hernandez,
M. P. Sanders,
B. Sanghi,
G. Savage,
L. Sawyer,
T. Schaile,
R. D. Schamberger,
Y. Scheglov,
A. Sa´nchez-Herna´ndez,
A. Sa´nchez-Herna´ndez,
A. S. Saddleman,
A. S. Saddleman,
A. S. Saddleman,
We search for a new light gauge boson, a dark photon, with the D0 experiment. In the model we consider, supersymmetric partners are pair produced and cascade to the lightest neutralinos that can decay into the hidden sector state plus either a photon or a dark photon. The dark photon decays through its mixing with a photon into fermion pairs. We therefore investigate a previously unexplored final state that contains a photon, two spatially close leptons, and large missing transverse energy. We do not observe any evidence for dark photons and set a limit on their production.

DOI: 10.1103/PhysRevLett.103.081802
PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Qk, 95.35.+d

Hidden valley models [1] introduce a new hidden sector, which is very weakly coupled to the standard model (SM) particles, and therefore can easily escape detection. An important subset of hidden valley models also contain supersymmetry (SUSY), a fundamental symmetry between fermions and bosons postulating the existence of SUSY partners. At colliders, in the case of R-parity conservation [2], superpartners are produced in pairs and decay to the

081802-3
SM particles and the lightest superpartner (LSP). The LSP is a stable, weakly interacting particle, and cannot be detected in collider detectors.

Recently, these models were called upon to explain the results of several cosmic ray detection experiments [3,4]. Taken together with other experiments, including new results from Fermi/LAT [5], there is evidence of an excess of high energy positrons and no excessive production of antiprotons or photons. The excess can be attributed [6] to the dark matter particles annihilating into pairs of new light gauge bosons, dark photons, which are force carriers in the hidden sector. The dark photon mass cannot be much larger than 1 GeV to give rise to Sommerfeld enhancement [7] of the dark matter annihilation cross section, and not to decay into neutral pions and/or baryons. The masses of the hidden sector states are around 1 GeV, with mass splitting around MeV, thus providing a possible explanation of the DAMA experiment [8] signal through "inelastic dark matter" scenarios. Dark photons decay through mixing with SM fermions with branching fractions that can be calculated from the measurements [9] of $R = \sigma(e^+e^- \rightarrow \text{hadrons})/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$, and strongly depend on the dark photon mass. For dark photon masses (m_{γ_0}) below the dimuon threshold of ≈ 200 MeV, only decays into electrons are possible. For $m_{\gamma_0} \approx 0.5$ GeV the decay rates into electrons and muons are approximately 40% each. The lowest value of the leptonic branching (3.7%) occurs if the dark photon mass is accidentally equal to that of the ϕ meson.

In this Letter we will follow the phenomenological scenario developed in [10]. A diagram of a possible process at the Fermilab Tevatron Collider is shown in Fig. 1. Gauginos are pair produced and decay into SM particles and the lightest neutralino (neutralino, $\tilde{\chi}^0$), which in turn decays with comparable branching ratios into either a hidden sector dark neutralino \tilde{X} (which is the LSP), and a photon, or into dark neutralino and a dark photon (γ_D).

Hadronic dark photon decays are overwhelmed by SM jet backgrounds. Thus, we only consider dark photon decays into isolated electron or muon pairs. Both dark neutralinos escape detection and result in large missing transverse energy (E_T). The branching fraction of the neutralino into the dark photon, $B = \text{Br}(\tilde{\chi}_1^0 \rightarrow \gamma_D \tilde{X})$, is a free parameter of the model. If it is small, the decays into a photon dominate, and signature is the same as of SUSY with gauge-mediated breaking [11] with the neutralino as next-to-lightest superpartner (NLSP). Larger values of B give rise to events where one of the two neutralinos decays into a dark photon, resulting in a final state with one photon, two spatially close (and therefore not satisfying traditional isolation requirements) leptons and large E_T.

This Letter describes a search for this, so far unexplored, final state in $p\bar{p}$ collisions at a center of mass energy of 1.96 TeV recorded by the D0 detector [12] at the Fermilab Tevatron Collider. As is described below, our search is optimized for low dark photon masses, $m_{\gamma_D} < 2.5$ GeV. We consider prompt dark photon decays. Although the experimental analysis is sensitive to macroscopic lifetimes, the expectation is that the neutralino decays to a photon are negligible for small couplings between photon and a dark photon [10], making this channel unfavorable for searches for long-lived dark photons. Another theoretical scenario is the case where the neutralino decays into a hidden state \tilde{Y} with somewhat higher mass than the dark neutralino. The \tilde{Y} may cascade down to the dark neutralino through other hidden states which may be long-lived and can result in the emission of highly collimated low energy SM particles, some of which could be leptons. Most of the energy of the \tilde{Y} will stay in the hidden sector and therefore the high E_T should not be substantially reduced. This analysis is also sensitive to another possible scenario, proposed in [13], in which a light axion that decays into muon pairs takes the place of the dark photon in the decays described above.

Data for this analysis correspond to an integrated luminosity of 4.1 fb$^{-1}$ after application of data quality and trigger requirements. Events must satisfy a set of high transverse energy (E_T), single electromagnetic (EM) cluster triggers which are fully efficient for photons with $E_T > 30$ GeV.

EM clusters are selected from calorimeter clusters, built using the simple cone algorithm of radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ [14], by requiring that the fraction of the energy deposited in the EM section of the calorimeter, E_{frac}, is above 95% and the calorimeter isolation variable $I = (E_{\text{tot}}(0.4) - E_{\text{EM}}(0.2))/E_{\text{EM}}(0.2)$ is less than 0.2, where $E_{\text{tot}}(0.4)$ is the total energy in a cone of radius $R = 0.4$, corrected for the underlying event contribution, and $E_{\text{EM}}(0.2)$ is the EM energy in a cone of radius $R = 0.2$, which is taken to be the EM cluster energy.

Photon candidates are selected from central calorimeter (|η| < 1.1) EM clusters which have (i) $E_{\text{frac}} > 97\%$,
(ii) $I < 0.07$, (iii) a shower shape consistent with that of a photon, and (iv) the scalar sum of the transverse momenta (p_T) of all tracks originating from the primary vertex in an annulus $0.05 < R < 0.4$ around the cluster less than 2 GeV. Additionally, we require that photon candidates are not spatially matched to activity in the tracker. The tracker activity can either be a reconstructed charged particle’s track or a density of hits in the silicon microstrip and central fiber trackers consistent with a track. The EM clusters that do not have matched activity in the tracker, but fail other photon selection criteria, are dominated by jets that have fragmented into neutral pions, and are referred to below as fake photons.

We search for dark photons in events with at least one photon with $E_T > 30$ GeV and $E_T > 20$ GeV (E_T is computed using all calorimeter cells and corrected for EM and jet energy scales). Dark photon candidates are formed by selecting pairs of oppositely charged spatially close ($R < 0.2$) tracks that originate from the same point ($|d\alpha| < 2$ cm) along the beam line. The leading (trailing) track p_T is required to exceed 10 (5) GeV, which is highly efficient for the signal and suppresses the multijet background. We then require the scalar sum of p_T of all tracks excluding the pair in a cone of radius 0.4 centered on the pair momentum direction to be less than 2 GeV. To further reduce the multijet background we require that each track must have its azimuthal angle not aligned with a photon, $0.4 < \Delta \phi_{\gamma,\text{track}} < 2.74$. In rare cases, when there is more than one such pair in the event, we select the one with the highest trailing track p_T.

For a dark photon decaying into a pair of electrons, the calorimeter depositions overlap, so we require that the dark photon candidate matches an EM cluster with $E_T > 10$ GeV, $E_{\text{Mtrack}} > 97\%$, and $I < 0.1$. For the dimuon decay mode, we require that at least one of the tracks is matched to a reconstructed muon, and the energy deposited in the calorimeter in the annulus $0.1 < R < 0.4$ is below 3 GeV.

Dark photons would manifest themselves as a narrow peak in the lepton pair invariant mass distribution. We use a Monte Carlo simulation to characterize the mass resolution, as well as the efficiency to reconstruct the events. SUSYHIT [15] is used to calculate masses and decay probabilities for the SUSY [16] model, known as Snowmass Slope SPS 8, and produce the Les Houches Accord [17] card files. These files are modified to introduce neutralino contributions from B1, although the relative fraction of multijets, single photon production, and diphoton production varies among the three control samples. Backgrounds B2 and B3, however, can only significantly contribute to the QCD$_w$ sample. We observe no difference between the dark photon candidate mass distributions in the three control samples. We therefore conclude that the background to dark photon production is dominated by B1, and use the average shape of the dark photon candidates mass distributions in all control samples as our background model.

The dark photon candidate invariant mass distributions in the signal sample are shown in Fig. 2 separately for the electron and muon channels, together with the expected contribution from dark photons with a mass of 1.4 GeV.

We see no evidence of a dark photon signal and proceed to set limits on its production. To set limits we use the standard D0 likelihood fitter [23] that incorporates a log-
The diphoton search exclusion

to the signal and background predictions for each
mass distributions in data for the muon and electron channel is set by simultaneously fitting dilepton invariant
propagated to the outcome with their proper weights. The
ensures that the uncertainties and their correlations are
not the outcomes of the limit calculations. This approach
on the expected number of signal and background events,
tics. Systematic uncertainties are treated as uncertainties
ation populated by simulating outcomes via Poisson statis-
likelihood ratio (LLR) statistic method [24]. The value of
CLs is defined as $CL_s = CL_{z+b}/CL_b$, where CL_{z+b} and
CLb are the confidence levels for the signal plus back-
ground hypothesis and the background-only (null) hy-
thesis, respectively. These confidence levels are evaluated by integrating the corresponding LLR distribution populated by simulating outcomes via Poisson statistics. Systematic uncertainties are treated as uncertainties on the expected number of signal and background events, not the outcomes of the limit calculations. This approach ensures that the uncertainties and their correlations are propagated to the outcome with their proper weights. The limit is set by simultaneously fitting dilepton invariant mass distributions in data for the muon and electron channels to the signal and background predictions for each

FIG. 3 (color online). The excluded region of possible masses of the lightest chargino and the dark photon for $B = 0.5$ are shown as the shaded region. The expected limit is illustrated as the dash-dotted line. The vertical black line corresponds to the exclusion from the diphoton search [21].

The systematic uncertainty on the signal reconstruction

efficiency (25%) is dominated by the uncertainty to recon-
account the uncertainty on the total integrated luminosity
(6.1%) and the effect of varying the dark photon mass resolution by 10%.

We interpret the cross section limits as limits on the lightest chargino mass as a function of the dark photon mass and the neutralino branching fraction. For $B = 0.5$ the excluded region of chargino and dark photon masses is shown in Fig. 3. The difference between the observed and expected limits never exceeds 2 standard deviations over the whole dark photon mass range. In Fig. 4 we display the chargino mass limit as a function of B for three representative dark photon masses: 0.2 GeV (only the electron channel is open), 0.782 GeV (low branching fraction into leptons due to ω and ρ mesons), and 1.5 GeV. Our previous limit on the SUSY in the diphoton final state [21] is directly applicable to the model considered in this Letter, although it does not probe the dark photon mass. The corresponding exclusion contours are shown in Figs. 3 and 4.

To summarize, we search for a previously unexplored final state consisting of a photon, two spatially close lep-
tons from hypothetical dark photon decays and large miss-
ing energy. We find no evidence for such events, and set
limits on their production in a benchmark model [10]. For dark photon masses of 0.2, 0.782, and 1.5 GeV we exclude chargino masses of 230, 142, and 200 GeV, respectively.

We would like to thank Scott Thomas and David Shih for many inspiring discussions and help with the signal simulation. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U.S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

*Visitor from Augustana College, Sioux Falls, SD, USA.
†Visitor from Rutgers University, Piscataway, NJ, USA.
‡Visitor from The University of Liverpool, Liverpool, United Kingdom.
§Visitor from Centro de Investigacion en Computacion–IPN, Mexico City, Mexico.
‖Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacan, Mexico.
¶Visitor from Helsinki Institute of Physics, Helsinki, Finland.
**Visitor from Universitaet Bern, Bern, Switzerland.
††Visitor from Universitaet Zurich, Zürich, Switzerland.
‡‡Deceased.

[1] T. Han, Z. Si, K. Zurek, and M. Strassler, J. High Energy Phys. 07 (2008) 008; M. Strassler and K. Zurek, Phys. Lett. B 651, 374 (2007).
[2] G. R. Farrar and P. Fayet, Phys. Lett. B 79, 442 (1978).
[3] O. Adriani et al., Nature (London) 458, 607 (2009).
[4] J. Chang et al., Nature (London) 456, 362 (2008).
[5] A. A. Abdo et al., Phys. Rev. Lett. 102, 181101 (2009).
[6] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009); N. Arkani-Hamed and N. Weiner, J. High Energy Phys. 12 (2008) 104.
[7] A. Sommerfeld, Ann. Phys. (Leipzig) 403, 257 (1931).
[8] R. Bernabi et al. (DAMA/LIBRA Collaboration), Eur. Phys. J. C 56, 333 (2008).
[9] C. Amsler et al., Phys. Lett. B 667, 1 (2008).
[10] D. Shih and S. Thomas (to be published).
[11] P. Fayet, Phys. Lett. 70B, 461 (1977); 86B, 272 (1979); 175, 471 (1986); see also a review by G. F. Giudice and R. Rattazzi, in Perspectives on Supersymmetry, edited by G. L. Kane (World Scientific, Singapore, 1998), pp. 355–377, and references therein.