Barriers to Insulin Initiation

The Translating Research Into Action for Diabetes Insulin Starts Project

Jesse C. Crosson, PhD5
Usa Subramanian, MD, MS3
Andrew J. Karter, PhD1,2
Melissa M. Parker, MS1
Bix E. Swain, MS1
Howard H. Moffet, MPH1
David G. Marrero, PhD6

OBJECTIVE — Reasons for failing to initiate prescribed insulin (primary nonadherence) are poorly understood. We investigated barriers to insulin initiation following a new prescription.

RESEARCH DESIGN AND METHODS — We surveyed insulin-naïve patients with poorly controlled type 2 diabetes, already treated with two or more oral agents who were recently prescribed insulin. We compared responses for respondents prescribed, but never initiating, insulin (n = 69) with those dispensed insulin (n = 100).

RESULTS — Subjects failing to initiate prescribed insulin commonly reported misconceptions regarding insulin risk (35% believed that insulin causes blindness, renal failure, amputations, heart attacks, strokes, or early death), plans to instead work harder on behavioral goals, sense of personal failure, low self-efficacy, injection phobia, hypoglycemia concerns, negative impact on social life and job, inadequate health literacy, health care provider inadequately explaining risks/benefits, and limited insulin self-management training.

CONCLUSIONS — Primary adherence for insulin may be improved through better provider communication regarding risks, shared decision making, and insulin self-management training.

Diabetes Care 33:733–735, 2010

Insulin is typically recommended for patients with type 2 diabetes if they have failed to achieve adequate glycemic control despite treatment with multiple oral agents at maximal dose (1), especially when β-cell function declines (2,3). Despite the known benefits of insulin, many patients fail to begin insulin treatment (4). In a previous study (5), we followed a cohort of patients with diabetes who were prescribed new glucose-lowering medications. We observed that 4.5% of insulin-naïve patients who were prescribed insulin never filled that prescription (were primary nonadherent) and an additional 25.5% had zero refills (early-stage nonpersistence). Thus, one in three insulin-naïve patients who were prescribed insulin never became ongoing users.

A patient’s reluctance to initiate insulin has been dubbed psychological insulin resistance (PIR) (6). Current understanding of PIR is based largely on surveys of insulin-naïve patients queried about their hypothetical willingness to initiate insulin (7,8). However, the reasons why patients fail to initiate therapy after actually agreeing to and receiving a first prescription for insulin have not been explored. In this study, we evaluate barriers and attitudes among insulin-naïve patients who had failed to initiate newly prescribed insulin therapy (i.e., primary nonadherent) versus those who did initiate insulin therapy (i.e., primary adherent).
Opinion Research (AAPOR) algorithms for calculating response rates (10). The human subjects review boards in the TRIAD translational research centers involved with this study (Kaiser, the University of Medicine and Dentistry of New Jersey, and Indiana University) approved this study.

RESULTS — We mailed an invitation letter to 195 and 186 primary nonadherent and adherent subjects, respectively, following approval of their providers. Sixty-nine nonadherent and 100 adherent patients responded to the survey and are the basis for this study. The AAPOR response rate, which assumes that those who could not be contacted for eligibility confirmation had the same proportion of eligibility as those contacted, was 60% overall (50% in the nonadherent and 68% in adherent group). The cooperation rate (percent survey completion among eligible subjects we were able to reach) was 98% (100% in the nonadherent and 92% in adherent group). None of the patient characteristics differed significantly between adherent and nonadherent subjects. Nonadherent subjects had a mean age of 61 years and 35% were women, 49% were of a minority ethnic heritage, 37% had an income <$40,000, 33% had no college education, and 48% were retired or unemployed. Adherent subjects had a mean age of 58 years and 47% were women, 54% were of minority ethnic heritage, 22% had an income <$40,000, 31% had no college education, and 33% were retired or unemployed.

Among nonadherent patients, the most commonly cited reasons for failing to initiate insulin included the following reasons: The patient planned to change health behaviors instead of starting insulin (25%), injection phobia (13%), negative impact on work (9%), concerns about long-term medication use (9%), inconvenience (6%), and not believing insulin was needed (6%). Nonadherent patients believed that people who require insulin “have not taken care of themselves in the past” (47%), and that “taking insulin can cause…” blindness (20%), renal failure (32%), amputations (15%), heart attacks or strokes (19%), and early death (19%). In all, 35% of the insulin-nonadherent group reported that they believed insulin causes harm (at least one of the possible complications listed above).

Compared with adherent patients, nonadherent patients expressed significantly more concern about their inability to adjust insulin dosage, the impact on social life and work, injection pain, and side effects, particularly hypoglycemia (Table 1). Significantly more nonadherent patients reported problems learning about their medical condition because of difficulty understanding written information (inadequate health literacy) and claimed providers failed to adequately explain insulin’s risk and benefits. Substantially fewer nonadherent patients reported receiving insulin self-management training from their doctor, nurse, health educator, or a class.

CONCLUSIONS — Among poorly controlled patients with type 2 diabetes newly prescribed insulin, the major predictors of insulin nonadherence included plans to improve health behaviors in lieu of starting insulin, negative impact on social and work life, injection phobia, and concerns about side effects or hypoglycemia. Nonadherent patients often blamed themselves, believing prior poor self-management caused the current need for insulin and erroneously conceptualized insulin as itself the cause of future complications. These patient-level findings are consistent with previous studies of attitudes about insulin (11,12).

Not previously reported is our finding that nonadherent patients frequently felt their provider had not adequately explained the risks and benefits of insulin. The importance of provider communication is underscored by the association between insulin initiation and health literacy (13). Primary nonadherence

| Table 1—Comparisons of survey responses for primary nonadherent and adherent patients newly prescribed insulin* |
|---|------------------|
| Stated moderate/extreme concerns (versus not at all or a little concerned) regarding: |
The cost of insulin shots	Nonadherent	Adherent
12/51 (24)	22/82 (27)	
How insulin shots might restrict your activities or “hold back” your lifestyle	20/54 (37)	20/82 (24)
The additional burden associated with home monitoring of blood sugar	15/59 (23)	19/82 (23)
Difficulty giving insulin due to things like poor eyesight, shakiness, or arthritis	23/55 (42)	24/81 (30)
Your ability to make dose adjustments†	22/54 (41)	10/82 (12)
How insulin shots may negatively impact your social life†	21/56 (38)	15/82 (18)
A negative impact on your job (if you work outside the home)†	15/45 (33)	6/72 (8)
The insulin shots being painful†	17/56 (30)	12/82 (15)
Possible side effects of giving yourself shots†	24/55 (44)	10/81 (12)
Insulin shots causing you to have low blood glucose†	22/51 (43)	13/81 (16)

Patient-provider interactions and communication

Never or only sometimes (versus usually or always) felt confidence or trust in personal physician that manages diabetes | Nonadherent | Adherent |
| 11/68 (16) | 11/97 (11) |

Moderately or extremely difficult (versus not at all difficult or a little difficult) to talk with doctor about concerns about diabetes medication or insulin | 9/66 (14) | 10/100 (10) |

Risks and benefits were not very well or not well at all (versus somewhat well or very well) explained† | 37/67 (55) | 37/96 (39) |

Inadequate health literacy: sometimes, often, or always (versus never or rarely); have problems learning about medical condition because of difficulty understanding written information (not including problems due to poor vision)† | 35/69 (51) | 30/99 (30) |

How was the insulin self-management training provided

Doctor trained† | 1/66 (2) | 13/77 (17) |

Insulin self-management class† | 5/66 (8) | 31/77 (40) |

Nurse trained† | 4/66 (6) | 33/77 (43) |

Data are n/N (%). *N takes into account missing responses. †Significant contrasts (P < 0.05).
likely also reflects inadequate shared decision making or lack of self-management training. Interventions for PIR need to address both provider- and system-level factors (14–16).

Acknowledgments — This research was funded jointly through TRIAD (program announcement no. 04005 from the Division of Diabetes Translation, Centers for Disease Control and Prevention, and the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health [R01 DK065664 and R01 DK080726, RC1 DK086178]).

No potential conflicts of interest relevant to this article were reported.

The authors acknowledge the participation of the two health plan partners (Kaiser Permanente Northern California and Horizon Blue Cross Blue Shield of New Jersey) and the TRIAD staff and participants who made this study possible.

References

1. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006;29:1963–1972

2. Holman RR, Thorne KI, Farmer AJ, Davies MJ, Keenan JF, Paul S, Levy JC. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med 2007;357:1716–1730

3. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999;281:2005–2012

4. Brunton SA, Davis SN, Renda SM. Overcoming psychological barriers to insulin use in type 2 diabetes. Clin Cornerstone 2006;8(Suppl. 2):S19–S26

5. Karter AJ, Parker MM, Moffet HH, Ahmed AT, Schmittdiel JA, Selby JV. New prescription medication gaps: a comprehensive measure of adherence to new prescriptions. Health Services Research 2009;44:1640–1661

6. Leslie CA, Satin-Rapaport W. Psychological insulin resistance: a challenge for diabetes patients and health care professionals. J New Developments Clin Med 1995;13:21–27

7. TRIAD Study Group. The Translating Research Into Action for Diabetes (TRIAD) Study: a multicenter study of diabetes in managed care. Diabetes Care 2002;25:386–389

8. Chew LD, Bradley KA, Boyko EJ. Brief questions to identify patients with inadequate health literacy. Fam Med 2004;36:588–594

9. Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study: primary care evaluation of mental disorders: patient health questionnaire. JAMA 1999;282:1737–1744

10. The American Association for Public Opinion Research. 2008. Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys. 5th ed. Lenexa, Kansas

11. Polonsky WH, Fisher L, Guzman S, Villa-Caballero L, Edelman SV. Psychological insulin resistance in patients with type 2 diabetes: the scope of the problem. Diabetes Care 2003;26:2543–2545

12. Larkin ME, Capasso VA, Chen CL, Mahoney EK, Hazard B, Cagliero E, Nathan DM. Measuring psychological insulin resistance: barriers to insulin use. Diabetes Educ 2008;34:511–517

13. Schillinger D, Piette J, Grumbach K, Wang F, Wilson C, Daher C, Leong-Grotz K, Castro C, Bindman AB. Closing the loop: physician communication with diabetic patients who have low health literacy. Arch Intern Med 2003;163:83–90

14. Pound P, Britten N, Morgan M, Yardley L, Pope C, Daker-White G, Campbell R. Resisting medicines: a synthesis of qualitative studies of medicine taking. Soc Sci Med 2005;61:133–155

15. Huang ES, Brown SE, Thakur N, Carlisle L, Foley E, Ewigman B, Meltzer DO. Racial/ethnic differences in concerns about current and future medications among patients with type 2 diabetes. Diabetes Care 2009;32:311–316

16. Polonsky W. Psychological insulin resistance: the patient perspective. Diabetes Educ 2007;33(Suppl. 7):241S–244S