abstract. Several cubature formulas on the cubic domains are derived using the discrete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Chebyshev weight functions and associated interpolation polynomials on $[-1, 1]^2$, as well as new results on $[-1, 1]^3$. In particular, compact formulas for the fundamental interpolation polynomials are derived, based on $n^3/4 + O(n^2)$ nodes of a cubature formula on $[-1, 1]^3$.

1. introduction

For a given weight function W supported on a set $\Omega \subset \mathbb{R}^d$, a cubature formula of degree $2n - 1$ is a finite sum, $L_n f$, that provides an approximation to the integral and preserves polynomials of degree up to $2n - 1$; that is,

$$\int_{\Omega} f(x)W(x)dx = \sum_{k=1}^{N} \lambda_k f(x_k) =: L_n f$$

for all $f \in \Pi^d_{2n-1}$,

where Π^d_M denotes the space of polynomials of total degree at most n in d variables. The points $x_k \in \mathbb{R}^d$ are called nodes and the numbers $\lambda_k \in \mathbb{R} \setminus \{0\}$ are called weights of the cubature.

Our primary interests are Gaussian type cubature, which has minimal or nearer minimal number of nodes. For $d = 1$, it is well known that Gaussian quadrature of degree $2n - 1$ needs merely $N = n$ nodes and these nodes are precisely the zeros of the orthogonal polynomial of degree n with respect to W. The situation for $d \geq 1$, however, is much more complicated and not well understood in general. As in the case of $d = 1$, it is known that a cubature of degree $2n - 1$ needs at least $N \geq \dim \Pi^d_{n-1}$ number of nodes, but few formulas are known to attain this lower bound (see, for example, [11]). In fact, for the centrally symmetric weight function (symmetric with respect to the origin), it is known that the number of nodes, N, of a cubature of degree $2n - 1$ in two dimension satisfies the lower bound

$$N \geq \dim \Pi^2_{n-1} + \left\lfloor \frac{n}{2} \right\rfloor,$$

(1.1)

known as Möller’s lower bound [11]. It is also known that the nodes of a cubature that attains the lower bound (1.1), if it exists, are necessarily the common zeros
of \(n + 1 - \left\lfloor \frac{d}{2} \right\rfloor \) orthogonal polynomials of degree \(n \) with respect to \(W \). Similar statements on the nodes hold for cubature formulas that have number of nodes slightly above Möller’s lower bound, which we shall call cubature of Gaussian type. These definitions also hold in \(d \)-dimension, where the lower bound for the number of nodes for the centrally symmetric weight function is given in [12].

There are, however, only a few examples of such formulas that are explicitly constructed and fewer still can be useful for practical computation. The best known example is \(\Omega = [-1,1]^d \) with the weight function

\[
W_0(x) := \prod_{i=1}^{d} \frac{1}{\sqrt{1-x_i^2}} \quad \text{or} \quad W_1(x) := \prod_{i=1}^{d} \sqrt{1-x_i^2}
\]

and only when \(d = 2 \). In this case, several families of Gaussian type cubature are explicitly known, they were constructed ([13], [17]) by studying the common zeros of corresponding orthogonal polynomials, which are product Chebyshev polynomials of the first kind and the second kind, respectively. Furthermore, interpolation polynomials bases on the nodes of these cubature formulas turn out to possess several desirable features ([18], and also [5]). On the other hand, studying common zeros of orthogonal polynomials of several variables is in general notoriously difficult.

In the case of (1.2), the product Chebyshev polynomials have the simplest structure among all orthogonal polynomials, which permits us to study their common zeros and construct cubature formulas in the case \(d = 2 \), but not yet for the case \(d = 3 \) or higher.

The purpose of the present paper is to provide a completely different method for constructing cubature formulas with respect to \(W_0 \) and \(W_1 \). It uses the discrete Fourier analysis associated with lattice tiling, developed recently in [10]. This method has been used in [10] to establish cubature for trigonometric functions on the regular hexagon and triangle in \(\mathbb{R}^2 \), a topic that has been studied in [15], and on the rhombic dodecahedron and tetrahedron of \(\mathbb{R}^3 \) in [9]. The cubature on the hexagon can be transformed, by symmetry, to a cubature on the equilateral triangle that generates the hexagon by reflection, which can in turn be further transformed, by a nontrivial change of variables, to Gaussian cubature formula for algebraic polynomials on the domain bounded by Steiner’s hypocycloid. The theory developed in [10] uses two lattices, one determines the domain of integral and the points that defined the discrete inner product, the other determines the space of exponentials or trigonometric functions that are integrated exactly by the cubature. In [10] the two lattices are taken to be the same. In this paper we shall choose one as \(\mathbb{Z}^d \) itself, so that the integral domain is fixed as the cube, while we choose the other one differently. In \(d = 2 \), we choose the second lattice so that its spectral set is a rhombus, which allows us to establish cubature formulas for trigonometric functions that are equivalent to Gaussian type cubature formulas for \(W_0 \) and \(W_1 \).

In the case of \(d = 3 \), we choose the rhombic dodecahedron as a tiling set and obtain a cubature of degree \(2n - 1 \) that uses \(n^3/4 + O(n^2) \) nodes, worse than the expected lower bound of \(n^3/6 + O(n^2) \) but far better than the product Gaussian cubature of \(n^3 \) nodes. This cubature with \(n^3/4 + O(n^2) \) nodes has appeared recently and tested numerically in [7]. We will further study the Lagrange interpolation based on its nodes, for which the first task is to identify the subspace that the interpolation polynomials belongs. We will not only identify the interpolation space, but also give the compact formulas for the fundamental interpolation polynomials.
One immediate question arising from this study is if there exist cubature formulas of degree \(2n - 1\) with \(n^3/6 + O(n^2)\) nodes on the cube. Although examples of cubature formulas of degree \(2n - 1\) with \(N = \dim \Pi_{n-1} = n^d/d! + O(n^{d-1})\) nodes are known to exist for special non-centrally symmetric regions ([1]), we are not aware of any examples for symmetric domains that use \(\frac{n^d}{d!} + O(\frac{n^{d-1}}{d})\) nodes. From our approach of tiling and discrete Fourier analysis, it appears that the rhombic dodecahedron gives the smallest number of nodes among all other fundamental domains that tile \(\mathbb{R}^3\) by translation. Giving the fact that this approach yields the cubature formulas with optimal order for the number of nodes, it is tempting to make the conjecture that a cubature formula of degree \(2n - 1\) on \([-1, 1]^3\) needs at least \(\frac{n^3}{4} + O(n^2)\) nodes.

The paper is organized as follows. In the following section we recall the result on discrete Fourier analysis and lattice tiling in [10]. Cubature and interpolation for \(d = 2\) are developed in Section 3 and those for \(d = 3\) are discussed in Section 4, both the latter two sections are divided into several subsections.

2. Discrete Fourier Analysis with lattice Tiling

We recall basic results in [10] on the discrete Fourier analysis associated with a lattice. A lattice of \(\mathbb{R}^d\) is a discrete subgroup that can be written as \(A\mathbb{Z}^d = \{Ak : k \in \mathbb{Z}^d\}\), where \(A\) is a \(d \times d\) invertible matrix, called the generator of the lattice. A bounded set \(\Omega \subset \mathbb{R}^d\) is said to tile \(\mathbb{R}^d\) with the lattice \(A\mathbb{Z}^d\) if

\[
\sum_{k \in \mathbb{Z}^d} \chi_{\Omega}(x + Ak) = 1 \quad \text{for almost all } x \in \mathbb{R}^d,
\]

where \(\chi_E\) denotes the characteristic function of the set \(E\). The simplest lattice is \(\mathbb{Z}^d\) itself, for which the set that tiles \(\mathbb{R}^d\) is

\[
\Omega := [-\frac{1}{2}, \frac{1}{2})^d.
\]

We reserve the notation \(\Omega\) as above throughout the rest of this paper. The set \(\Omega\) is chosen as half open so that its translations by \(\mathbb{Z}^d\) tile \(\mathbb{R}^d\) without overlapping. It is well known that the exponential functions

\[
ed_k(x) := e^{2\pi ik \cdot x}, \quad k \in \mathbb{Z}^d, \quad x \in \mathbb{R}^d,
\]

form an orthonormal basis for \(L^2(\Omega)\). These functions are periodic with respect to \(\mathbb{Z}^d\); that is, they satisfy

\[
f(x + k) = f(x) \quad \text{for all } k \in \mathbb{Z}^d.
\]

Let \(B\) be a \(d \times d\) matrix such that all entries of \(B\) are integers. Denote

\[
\Lambda_B = \{k \in \mathbb{Z}^d : B^{-\tau}k \in \Omega\} \quad \text{and} \quad \Lambda_B^\perp = \{k \in \mathbb{Z}^d : k \in \Omega_B\}.
\]

It is known that \(|\Lambda_B| = |\Lambda_B^\perp| = |\det B|\), where \(|E|\) denotes the cardinality of the set \(E\). We need the following theorem ([10] Theorem 2.5).

Theorem 2.1. Let \(B\) be a \(d \times d\) matrix with integer entries. Define the discrete inner product

\[
(f, g)_B := \frac{1}{|\det(B)|} \sum_{j \in \Lambda_B} f(B^{-\tau}j)g(B^{-\tau}j)
\]
for \(f, g \in C(\Omega) \), the space of continuous functions on \(\Omega \). Then
\[
\langle f, g \rangle_B = \langle f, g \rangle := \int_{\Omega} f(x)g(x)dx,
\]
for all \(f, g \) in the finite dimensional subspace
\[
T_B := \text{span} \left\{ e^{2\pi i k \cdot x} : k \in \Lambda^d_B \right\}.
\]
The dimension of \(T_B \) is \(|\Lambda^d_B| = |\text{det}(B)| \).

This result is a special case of a general result in [10], in which \(\Omega \) is replaced by \(\Omega_A \) for an invertible matrix \(A \), and the set \(\Lambda_B \) is replaced by \(\Lambda_N \) with \(N = B^\nu A \) and \(N \) is assumed to have integer entries. Since we are interested only at the cube \([-\frac{1}{2}, \frac{1}{2}]^d\) in this paper, we have chosen \(A \) as the identity matrix.

We can also use the discrete Fourier analysis to study interpolation based on the points in \(\Lambda_B \). We say two points \(x, y \in \mathbb{R}^d \) congruent with respect to the lattice \(BZ^d \), if \(x - y \in BZ^d \), and we write \(x \equiv y \mod B \). We then have the following result:

Theorem 2.2. For a generic function \(f \) defined in \(C(\Omega) \), the unique interpolation function \(I_B f \) in \(T_B \) that satisfies
\[
I_B f(B^{-\nu}j) = f(B^{-\nu}j), \quad \forall j \in \Lambda_B
\]
is given by
\[
I_B f(x) = \sum_{k \in \Lambda^d_B} \langle f, e_k \rangle e_k(x) = \sum_{k \in \Lambda_B} f(B^{-\nu}k)\Psi_{\Omega_B}(x - B^{-\nu}k),
\]
where
\[
\Psi_{\Omega_B}(x) = \frac{1}{|\text{det}(B)|} \sum_{j \in \Lambda^d_B} e^{2\pi i j \cdot x}.
\]

The proof of this result is based on the second one of the following two relations that are of independent interests:
\[
\frac{1}{|\text{det}(B)|} \sum_{j \in \Lambda^d_B} e^{2\pi i k \cdot B^{-\nu}j} = \begin{cases} 1, & \text{if } k \equiv 0 \mod B, \\ 0, & \text{otherwise}, \end{cases}
\]
and
\[
\frac{1}{|\text{det}(B)|} \sum_{k \in \Lambda^d_B} e^{-2\pi i k \cdot B^{-\nu}j} = \begin{cases} 1, & \text{if } j \equiv 0 \mod B^\nu, \\ 0, & \text{otherwise}. \end{cases}
\]

For proofs and further results we refer to [10] [9]. Throughout this paper we will write, for \(k \in \mathbb{Z}^d \), \(2k = (2k_1, \ldots, 2k_d) \) and \(2k + 1 = (2k_1 + 1, \ldots, 2k_d + 1) \).

3. Cubature and Interpolation on the square

In this section we consider the case \(d = 2 \). In the first subsection, the general results in the previous section is specialized to a special case and cubature formulas are derived for a class of trigonometric functions. These results are converted to results for algebraic polynomials in the second subsection. Results on polynomial interpolation are derived in the third subsection.
3.1. Discrete Fourier analysis and cubature formulas on the plane. We choose the matrix B as

$$B = n \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad B^{-1} = \frac{1}{2n} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Since B is a rotation, by 45 degree, of a constant multiple of the diagonal matrix, it is easy to see that the domain Ω_B is defined by

$$\Omega_B = \{ x \in \mathbb{R}^2 : -n \leq x_1 + x_2 < n, \ -n \leq x_2 - x_1 < n \},$$

which is depicted in Figure 1 below.

![Figure 1. Rhombus Ω_B](attachment:image.png)

From the expression of $B^{-\text{tr}}$, it follows readily that $\Lambda_B = \Lambda_B^\dagger =: \Lambda_n$, where

$$\Lambda_n = \{ j \in \mathbb{Z}^2 : -n \leq j_1 + j_2 < n, \ -n \leq j_2 - j_1 < n \}.$$

The cardinality of Λ_n is $|\Lambda_n| = 2n^2$. We further denote the space T_B by T_n, which is given by

$$T_n := \text{span} \{ e^{2\pi i k \cdot x} : k \in \Lambda_n \}.$$

Theorem 3.1. Define the set

$$X_n := \{ 2k : -\frac{n}{2} \leq k_1, k_2 < \frac{n}{2} \} \cup \{ 2k + 1 : -\frac{n+1}{2} \leq k_1, k_2 < \frac{n-1}{2} \}.$$

Then for all $f, g \in T_n$,

$$\langle f, g \rangle_n := \frac{1}{2n^2} \sum_{k \in X_n} f \left(\frac{k}{2n} \right) \overline{g \left(\frac{k}{2n} \right)} = \int_{[-\frac{1}{2}, \frac{1}{2}]^2} f(x) \overline{g(x)} dx.$$

Proof. Changing variables from j to $k = 2nB^{-\text{tr}}j$, or $k_1 = j_1 + j_2$ and $k_2 = j_2 - j_1$, then, as j_1 and j_2 need to be integers and $j_1 = \frac{k_1 - k_2}{2}$, $j_2 = \frac{k_1 + k_2}{2}$, we see that

$$j \in \Lambda_n \iff k = 2nB^{-\text{tr}}j \in X_n.$$

Hence, as $\det(B) = 2n^2$, we conclude that $\langle f, g \rangle_n = \langle f, g \rangle_B$ and this theorem follows as a special case of Theorem [2.1] \hfill \Box

The set Λ_n lacks symmetry as the inequalities in its definition are half open and half closed. We denote its symmetric counterpart by Λ^*_n, which is defined by

$$\Lambda^*_n := \{ j \in \mathbb{Z}^2 : -n \leq j_1 + j_2 \leq n, \ -n \leq j_1 - j_2 \leq n \}.$$
We also denote the counterpart of T_n by T_n^*, which is defined by
\[T_n^* := \text{span} \left\{ e^{2\pi i k x} : k \in \Lambda_n^* \right\}. \]

Along the same line, we also define the counterpart of X_n as
\[X_n^* := \left\{ 2k : -\frac{n}{2} \leq k_1, k_2 \leq \frac{n}{2} \right\} \cup \left\{ 2k + 1 : -\frac{n+1}{2} \leq k_1, k_2 \leq \frac{n+1}{2} \right\}. \]
It is easy to see that $|X_n| = |\Lambda_n| = 2n^2$, whereas $|X_n^*| = 2n^2 + 2n + 1$. We further partition the set X_n^* into three parts,
\[X_n^* = X_n^0 \cup X_n^e \cup X_n^v, \]
where $X_n^o = X_n^* \cap (-n,n)^2$ is the set of interior points of X_n^*, X_n^e consists of those points in X_n^* that are on the edges of $[-n,n]^2$ but not on the 4 vertices or corners, while X_n^v consists of those points of X_n^* at the vertices of $[-n,n]^2$.

Theorem 3.2. Define the inner product
\[(f, g)^* := \frac{1}{2n^2} \sum_{k \in X_n^*} c_k^{(n)} f(k/n, g(k/n)), \quad \text{where} \quad c_k^{(n)} = \begin{cases} 1, & k \in X_n^0 \\ \frac{1}{2}, & k \in X_n^e \\ \frac{1}{4}, & k \in X_n^v \end{cases}. \]

Then for all $f, g \in T_n$,
\[\int_{[-\frac{n}{2}, \frac{n}{2}]^2} f(x) g(x) dx = (f, g) = (f, g)^*. \]

Proof. Evidently we only need to show that $(f, g) = (f, g)^*$. Since $c_k^{(n)} = 1$ for $k \in X_n^0$, the partial sums over interior points of the two sums agree. The set X_n^e of boundary points can be divided into two parts, $X_n^e = X_n^{e,1} \cup X_n^{e,2}$, where $X_n^{e,1}$ consists of points in X_n that are on the edges of $[-n,n]^2$, but not equal to $(-n,-n)$, and $X_n^{e,2}$ is the complementary of $X_n^{e,1}$ in X_n^e. Evidently, if $x \in X_n^{e,1}$, then either $x + (2n, 0)$ or $x + (0, 2n)$ belongs to $X_n^{e,2}$. Hence, if f is a periodic function, $f(x+k) = f(x)$ for $k \in \mathbb{Z}^2$, then
\[\sum_{k \in X_n^e} c_k^{(n)} f(k/2n) = \frac{1}{2} \sum_{k \in X_n} f(k/2n) = \sum_{k \in X_n^{e,1}} f(k/2n). \]

Furthermore, for $(-n,-n) \in X_n$, X_n^e contains all four vertices $(\pm n, \pm n)$. Since a periodic function takes the same value on all four points, $\sum_{k \in X_n} c_k^{(n)} f(k/2n) = f(-\frac{n}{2}, -\frac{n}{2})$. Consequently, we have proved that $(f, g) = (f, g)^*$ if f, g are periodic functions. \hfill \Box

As a consequence of the above two theorems, we deduce the following two cubature formulas:

Theorem 3.3. For $n \geq 2$, the cubature formulas
\[(3.3) \int_{[-\frac{n}{2}, \frac{n}{2}]^2} f(x) dx = \frac{1}{2n^2} \sum_{k \in X_n^e} c_k^{(n)} f(k/2n) \quad \text{and} \quad \int_{[-\frac{n}{2}, \frac{n}{2}]^2} f(x) dx = \frac{1}{2n^2} \sum_{k \in X_n} f(k/2n), \]
are exact for $f \in T_{2n-1}^*$.

Proof. It suffices to proof that both cubature formulas in (3.3) are exact for every e_j with $j \in \Lambda_{2n-1}$. For this purpose, we first claim that for any $j \in \mathbb{Z}^2$, there exist $\nu \in \Lambda_n$ and $l \in \mathbb{Z}^2$ such that $j = \nu + Bl$. Indeed, the translations of Ω_B by $B\mathbb{Z}^2$ tile \mathbb{R}^2, thus we have $j = x + Bl$ for certain $x \in \Omega_B$ and $l \in \mathbb{Z}^2$. Since all entries of the matrix B are integers, we further deduce that $\nu := x - Bl \in \mathbb{Z}^2 \cap \Omega_B = \Lambda_n$.

Next assume $j \in \Lambda_{2n-1}$. Clearly the integral of e_j over Ω is $\delta_{j,0}$. On the other hand, let us suppose $j = \nu + Bl$ with $\nu \in \Lambda_n$ and $l \in \mathbb{Z}^2$. Then it is easy to see that $e_j(D_x) = e_{\nu}(D_x)$ for each $k \in X_n^*$. Consequently, we obtain from Theorem 3.2 that
\[
\sum_{k \in X_n^*} e_k^{(n)}(j) e_j(k) = \sum_{k \in X_n^*} e_k^{(n)}(j) e_{\nu}(k) = \sum_{k \in X_n} e_{\nu}(k) = \sum_{k \in X_n} e_j(k) = \int_{\Omega} e_{\nu}(x) dx = \delta_{\nu,0}.
\]
Since $\nu = 0$ implies $j = Bl \in \mathbb{Z}^2$ which gives $j = l = 0$, we further obtain that $\delta_{\nu,0} = \delta_{j,0}$. This completes the proof of (3.3). □

We note that the second cubature in (3.3) is a so-called Chebyshev cubature; that is, all its weights are equal.

3.2. Cubature for algebraic polynomials. The set Λ_n^* is symmetric with respect to the mappings $(x_1, x_2) \mapsto (-x_1, x_2)$ and $(x_1, x_2) \mapsto (x_1, -x_2)$. It follows that both the spaces
\[
T_n^{\text{even}} := \text{span}\{\cos 2\pi j_1 x_1 \cos 2\pi j_2 x_2 : 0 \leq j_1 + j_2 \leq n\},
\]
\[
T_n^{\text{odd}} := \text{span}\{\sin 2\pi j_1 x_1 \sin 2\pi j_2 x_2 : 1 \leq j_1 + j_2 \leq n\}
\]
are subspaces of T_n^*. Recall that Chebyshev polynomials of the first kind, $T_n(t)$, and the second kind, $U_n(t)$, are defined, respectively, by
\[
T_n(t) = \cos n \theta \quad \text{and} \quad U_n(t) = \frac{\sin(n+1)\theta}{\sin \theta}, \quad t = \cos \theta.
\]
They are orthogonal with respect to $w_0(t) = 1/\sqrt{1-t^2}$ and $w_1(t) = \sqrt{1-t^2}$ over $[-1, 1]$, respectively. Both are algebraic polynomials of degree n in t. Recall the definition of W_0 and W_1 in (1.2). Under the changing of variables
\[
t_1 = \cos 2\pi x_1, \quad t_2 = \cos 2\pi x_2, \quad (x_1, x_2) \in [-\frac{1}{2}, \frac{1}{2}]^2,
\]
the subspace T_n^{even} becomes the space Π_n^2 of polynomials of degree n in the variables (t_1, t_2),
\[
\Pi_n^2 = \text{span}\{T_j(t_1)T_k(t_2) : 0 \leq j \leq k \leq n\}
\]
and the orthogonality of e_k over Ω implies that $T_j^{(k)} := T_j(t_1)T_{k-j}(t_2)$ are orthogonal polynomials of two variables,
\[
\frac{1}{\pi^2} \int_{[-1,1]^2} T_j^{(k)}(t)T_{j'}^{(k')}(t)W_0(t) dt = \begin{cases} 1, & k = k' = j = j' = 0, \\ \frac{1}{2}, & (k, j) = (k', j') \text{ and } (k - j)j = 0, \\ \frac{1}{4}, & k = k' > j = j' > 0, \\ 0, & (k, j) \neq (k', j'). \end{cases}
\]
We note also that the subspace T_n^{odd} becomes the space $\{\sqrt{1-t_1^2}\sqrt{1-t_2^2}p(t) : p \in \Pi_{n-1}^2\}$ in the variables $t = (t_1, t_2)$, and the orthogonality of e_k also implies that
The lower bound \((1.1) \). We can also write \((3.8)\) into a form that is more explicit.

To prove this identity, let \(k\sigma \) implies \((3.7) \). The number of nodes of the cubature formula \((3.8)\) is just one more than the lower bound \((1.1) \). We can also write \((3.8)\) into a form that is more explicit.
Indeed, if \(n = 2m \), then (3.8) can be written as

\[
(3.9) \quad \frac{1}{\pi^2} \int_{[-1,1]^2} f(t)W_0(t)dt = \frac{2}{n^2} \sum_{i=0}^{m''} \sum_{j=0}^{m''} f(z_{2i}, z_{2j}) + \frac{2}{n^2} \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} f(z_{2i+1}, z_{2j+1}),
\]

where \(\sum'' \) means that the first and the last terms in the summation are halved. If \(n = 2m + 1 \), then (3.9) can be written as

\[
(3.10) \quad \frac{1}{\pi^2} \int_{[-1,1]^2} f(t)W_0(t)dt = \frac{2}{n^2} \sum_{i=0}^{m'} \sum_{j=0}^{m'} f(z_{2i}, z_{2j}) + \frac{2}{n^2} \sum_{i=0}^{m'} \sum_{j=0}^{m'} f(z_{n-2i}, z_{n-2j}),
\]

where \(\sum' \) means that the first term in the sum is divided by 2. The formula (3.10) appeared in [17], where it was constructed by considering the common zeros of orthogonal polynomials of two variables.

From the cubature formula (3.3), we can also derive cubature formulas for the Chebyshev weight \(W_1 \) of the second kind.

Theorem 3.5. The cubature formula

\[
(3.11) \quad \frac{1}{\pi^2} \int_{[-1,1]^2} f(t)W_1(t)dt = \frac{2}{n^2} \sum_{k \in \Xi_n} \sin^2 \frac{k_1\pi}{n} \sin^2 \frac{k_2\pi}{n} f(z_{k_1}, z_{k_2})
\]

is exact for \(\Pi_{2n-5}^2 \).

Proof. We apply the first cubature formula in (3.3) on the functions

\[
\sin(2\pi(k_1 + 1)x_1)\sin(2\pi(k_2 + 1)x_2)\sin 2\pi x_1 \sin 2\pi x_2
\]

for \(0 \leq k_1 + k_2 \leq 2n - 5 \), where \(t_1 = \cos 2\pi x_1 \) and \(t_2 = \cos 2\pi x_2 \) as in (3.4). Clearly these functions are even in both \(x_1 \) and \(x_2 \) and they are functions in \(T_{2n-1} \). Furthermore, they are zero when \(x_1 = 0 \) or \(x_2 = 0 \), or when \((x_1, x_2) \) are on the boundary of \(X_n^+ \). Hence, the change of variables (3.4) shows that the first cubature in (3.3) becomes (3.11) for \(U_{k_1}(t_1)U_{k_2}(t_2) \). \(\square \)

A simple counting shows that \(|\Xi_n^+| = \frac{n}{4} - \frac{1}{2} \cdot \frac{n-1}{4} + \frac{1}{4} \cdot \frac{n-2}{4} = \frac{(n-1)(n-2)}{4} + \frac{n}{4} \). The number of nodes of the cubature formula (3.11) is also one more than the lower bound (1.1). In this case, this formula appeared already in [13].

3.3. Interpolation by polynomials

As shown in [10], there is a close relation between interpolation and discrete Fourier transform. We start with a simple result on interpolation by trigonometric functions in \(T_n \).

Proposition 3.6. For \(n \geq 1 \) define

\[
(3.12) \quad I_n f(x) := \sum_{k \in \Lambda_n} f\left(\frac{k}{2n}\right)\Phi_n(x - \frac{k}{2n}), \quad \Phi_n(x) := \frac{1}{2n^2} \sum_{\nu \in \Lambda_n} e_{\nu}(x).
\]

Then \(I_n f\left(\frac{k}{2n}\right) = f\left(\frac{k}{2n}\right) \) for all \(k \in X_n \).
Lemma 3.7. Furthermore, we denote by j the opposite edge of (3.14) and the interpolation means $I_n f(x) = f(B^{-tr} j)$ for $j \in \Lambda_n$. For $k, j \in \Lambda_n$,

$$
\Phi_n(B^{-tr}(j - k)) = \frac{1}{2n^2} \sum_{\nu \in \Lambda_n} e_\nu(B^{-tr}(j - k)) = \delta_{k,j}
$$

by (2.6). □

For our main result, we need a lemma on the symmetric set X^*_n and Λ^*_n. Recall that $c_k^{(n)}$ is defined for $k \in X^*_n$. Since the relation (3.1) clearly extends to (3.13), we have shown that Φ of (3.13), we have shown that Φ for all $j \in \Lambda^*_n \iff k = 2nB^{-tr} j \in X^*_n$, we define $\tilde{c}^{(n)}_j = c_k^{(n)}$ whenever k and j are so related. Comparing to (3.12), we then define

(3.14) $I^*_n f(x) := \sum_{k \in X^*_n} f(\frac{k}{2n}) \Phi^*_n(x - \frac{k}{2n})$, where $\Phi^*_n(x) := \frac{1}{2n^2} \sum_{\nu \in \Lambda^*_n} \tilde{c}^{(n)}_\nu e_\nu(x)$.

We also introduce the following notation: for $k \in X^*_n$, we denote by k' the point on the opposite edge of X^*_n; that is, $k' \in X^*_n$ and $k = k' \pm (2n, 0)$ or $k' = k \pm (0, 2n)$. Furthermore, we denote by j' the index corresponding to k' under (3.13).

Lemma 3.7. The function $I^*_n f \in \mathcal{T}^*_n$ satisfies

$$
I^*_n f\left(\frac{k}{2n}\right) = \begin{cases}
 f\left(\frac{k}{2n}\right), & k \in X^*_0, \\
 f\left(\frac{k}{2n}\right) + f\left(\frac{k'}{2n}\right), & k \in X^*_c, \\
 f\left(\frac{k}{2n}\right) + f\left(\frac{k - k'}{2n}\right), & k \in X^*_n.
\end{cases}
$$

Proof. As in the proof of the previous theorem, we can write $I^*_n f$ as

$$
I^*_n f(x) = \sum_{j \in \Lambda^*_n} f(B^{-tr} j) \Phi^*_n(x - B^{-tr} j)
$$

by using (3.13). Let $S_k(x) = \Phi^*_n(B^{-tr} j)$. For all $k, j \in \Lambda^*_n$,

$$
S_k(B^{-tr} j) = \frac{1}{2n^2} \sum_{\nu \in \Lambda^*_n} \tilde{c}^{(n)}_\nu e_\nu(B^{-tr}(j - k)).
$$

Since $e_\nu(B^{-tr} j) = e_\nu(B^{-tr} j')$ for any $\mu \equiv \nu \mod B$, we derive by using a similar argument as in Theorem 3.2 that

$$
S_k(B^{-tr} j) = \frac{1}{2n^2} \sum_{\nu \in \Lambda^*_n} e_\nu(B^{-tr}(j - k)).
$$

By (2.6), $S_k(B^{-tr} j) = \delta_{k,j}$ if $k, j \in \Lambda_n$. If $j \in \Lambda^*_n \setminus \Lambda_n$ then $j' \in \Lambda_n$, so that if $k \in \Lambda_n$ then $S_k(B^{-tr} j) = \delta_{k,j'}$. The same holds for the case of $j \in \Lambda_n$ and $k \in \Lambda^*_n \setminus \Lambda_n$. If both $k, j \in \Lambda^*_n \setminus \Lambda_n$, then $S_k(B^{-tr} j) = \delta_{k,j'}$. Using the relation (3.13), we have shown that $\Phi^*_n(\frac{k - j}{2n}) = 1$ when $k \equiv j \mod 2n\mathbb{Z}^2$ and 0 otherwise, from which the stated result follows. □
It turns out that the function Φ_n^* satisfies a compact formula. Let us define an operator \mathcal{P} by

$$\mathcal{P}(f)(x) = \frac{1}{4} \left[f(x_1, x_2) + f(-x_1, x_2) + f(x_1, -x_2) + f(-x_1, -x_2) \right].$$

For $e_k(x) = e^{2\pi i k \cdot x}$, it follows immediately that

$$\mathcal{P}e_k(x) = \cos(2\pi k_1 x_1) \cos(2\pi k_2 x_2) \quad \text{for all } k \in \mathbb{Z}^2.$$

Lemma 3.8. For $n \geq 0$,

$$\Phi_n^*(x) = 2 \left[D_n(x) + D_{n-1}(x) \right] - \frac{1}{4} \left(\cos 2\pi n x_1 + \cos 2\pi n x_2 \right),$$

where

$$D_n(x) := \frac{1}{4} \sum_{\nu \in \Lambda_n^*} e_{\nu}(x) = \frac{1}{2} \frac{\cos \pi (2n+1)x_1 \cos \pi x_2}{\cos 2\pi x_1 - \cos 2\pi x_2}.$$

Proof. Using the values of $\tilde{c}_{n}^{(n)}$ and the definition of D_n, it is easy to see that

$$\Phi_n^*(x) = 2 \left[D_n(x) + D_{n-1}(x) \right] - \sum_{\nu \in \Lambda^*} e_{\nu}(x).$$

Since Λ_n^* contains four terms, $(\pm n, 0)$ and $(0, \pm n)$, the sum over Λ_n^* becomes the second term in (3.16). On the other hand, using the symmetry of Λ_n^* and (3.15),

$$D_n(x) = \frac{1}{4} \sum_{\nu \in \Lambda_n^*} (\mathcal{P}e_{\nu})(x) = \sum_{0 \leq j_1 + j_2 \leq n} \cos 2\pi j_1 x_1 \cos 2\pi j_2 x_2,$$

where \sum' means that the terms in the sum are halved whenever either $j_1 = 0$ or $j_2 = 0$, from which the second equal sign in (3.17) follows from [18] (4.2.1) and (4.2.7).

Our main result in this section is interpolation over points in $\left\{ \frac{k}{2n} : k \in \Xi_n \right\}$ with Ξ_n defined in (3.1).

Theorem 3.9. For $n \geq 0$ define

$$\mathcal{L}_n f(x) = \sum_{k \in \Xi_n} f(\frac{k}{2n}) \ell_k(x), \quad \ell_k(x) := \lambda_k^{(n)} \mathcal{P} \left[\Phi_n^*(\cdot - \frac{k}{2n}) \right](x)$$

with $\lambda_k^{(n)}$ given in (3.1). Then $\mathcal{L}_n f \in \mathcal{T}_n$ is even in both variables and it satisfies

$$\mathcal{L}_n f(\frac{\cdot}{2n}) = f(\frac{\cdot}{2n}) \quad \text{for all } j \in \Xi_n.$$

Proof. As shown in the proof of Proposition 3.7, $R_k(x) := \Phi_n^*(x - \frac{k}{2n})$ satisfies $R_k(\frac{k}{2n}) = 1$ when $k \equiv j \mod 2n\mathbb{Z}^2$ and 0 otherwise. Hence, if $j \in \Xi_n^v$ then

$$(\mathcal{P}R_k)(\frac{\cdot}{2n}) = \frac{1}{4} R_k(\frac{\cdot}{2n}) = [\lambda_k^{(n)}]^{-1} \delta_{k,j}.$$ If $j \in \Xi_n^e$ then the number of terms in the sum of $(\mathcal{P}R_k)(\frac{\cdot}{2n})$ depends on whether j_1j_2 is zero; if $j_1j_2 \neq 0$ then

$$(\mathcal{P}R_k)(\frac{\cdot}{2n}) = \frac{1}{4} \left[R_k(\frac{\cdot}{2n}) + R_k(\frac{j_1}{2n}) \right] = \frac{1}{2} \delta_{k,j} = [\lambda_k^{(n)}]^{-1} \delta_{k,j},$$ whereas if $j_1j_2 = 0$ then

$$(\mathcal{P}R_k)(\frac{\cdot}{2n}) = \frac{1}{4} \left[R_k(\frac{\cdot}{2n}) + R_k(\frac{j_1}{2n}) \right] = [\lambda_k^{(n)}]^{-1} \delta_{k,j}.\quad \text{For } j = (n, 0) \text{ or } (0, n) \text{ in } \Xi_n^v, \text{ we have }$$

$$(\mathcal{P}R_k)(\frac{\cdot}{2n}) = \frac{1}{4} \left[R_k(\frac{(n,n)}{2n}) + R_k(\frac{(-n,n)}{2n}) + R_k(\frac{(n,-n)}{2n}) + R_k(\frac{(-n,-n)}{2n}) \right] = \delta_{k,j}; \text{ for } j = (n, n) \in \Xi_n^v \text{ we have }$$

$$(\mathcal{P}R_k)(\frac{\cdot}{2n}) = \frac{1}{4} \left[R_k(\frac{(n,n)}{2n}) + R_k(\frac{(-n,n)}{2n}) + R_k(\frac{(n,-n)}{2n}) + R_k(\frac{(-n,-n)}{2n}) \right] = \delta_{k,j}; \text{ finally for } j = 0 \in \Xi_n^v, \text{ it is evident that } (\mathcal{P}R_k)(0) = \delta_{k,0}. \text{ Putting these together, we}$$
have verified that \(\ell_k(\frac{j}{2n}) = \delta_{k,j} \) for all \(j, k \in \Xi_n^* \), which verifies the interpolation of \(\mathcal{L}_n f \).

As in the case of cubature, we can translate the above theorem to interpolation by algebraic polynomials by applying the change of variables (3.4). Recall \(\Gamma_n \), defined in (3.6).

Theorem 3.10. For \(n \geq 0 \), let

\[
\mathcal{L}_n f(t) = \sum_{z_k \in \Gamma_n} f(z_k) \ell_k^*(t), \quad \ell_k^*(t) = \ell_k(x) \quad \text{with} \quad t_i = \cos 2\pi x_i, \ i = 1, 2.
\]

Then \(\mathcal{L}_n f \in \Pi_n^2 \) and it satisfies \(\mathcal{L}_n f(z_k) = f(z_k) \) for all \(z_k \in \Gamma_n \). Furthermore, under the change of variables (3.4), the fundamental polynomial \(\ell_k^*(t) \) satisfies

\[
\ell_k^*(t) = \frac{1}{2} \mathcal{P} \left[D_n \left(-\frac{k}{2n + 1} \right) + D_{n-1} \left(-\frac{k}{2n} \right) \right](x) - \frac{1}{4} \left[(-1)^{k_1} T_{k_1}(t_1) + (-1)^{k_2} T_{k_2}(t_2) \right].
\]

Proof. That \(\mathcal{L}_n f \) interpolates at \(z_k \in \Gamma_n \) is an immediate consequence of the change of variables, which also shows that \(\mathcal{L}_n f \in \Pi_n^2 \). Moreover, \(\cos 2\pi n(x_1 - \frac{k_1}{2n}) = (-1)^{k_1} \cos 2\pi x_1 = \cos 2\pi x_1 \), which verifies the formula of \(\ell_k^*(t) \).

The polynomial \(\mathcal{L}_n f \) belongs, in fact, to a subspace \(\Pi_n^* \subset \Pi_n^2 \) of dimension \(|\Xi_n| = \dim \Pi_n^* - 1 + \left\lfloor \frac{n}{2} \right\rfloor + 1 \), and it is the unique interpolation polynomial in \(\Pi_n^* \). In the case of \(n \) is odd, this interpolation polynomial was defined and studied in [19], where a slightly different scheme with one point less was studied in the case of even \(n \). Recently the interpolation polynomials in [19] have been tested and studied numerically in [3, 4]; the results show that these polynomials can be evaluated efficiently and provide valuable tools for numerical computation.

4. Cubature and Interpolation on the Cube

For \(d = 2 \), the choice of our spectral set \(\Omega_B \) and lattice in the previous section ensures that we end up with a space close to the polynomial subspace \(\Pi_n^2 \); indeed, monomials in \(\Pi_n^2 \) are indexed by \(0 \leq j_1 + j_2 \leq n \), a quarter of \(\Lambda_n^* \). For \(d = 3 \), the same consideration indicates that we should choose the spectral set as the octahedron \(\{ x : -n \leq x_1 \pm x_2 \pm x_3 \leq n \} \). The octahedron, however, does not tile \(\mathbb{R}^3 \) by lattice translation (see, for example, [6, p. 452]). As an alternative, we choose the spectral set as the **rhombic dodecahedron**, which tiles \(\mathbb{R}^3 \) by lattice translation with **face centered cubic (fcc) lattice**. In [9], a discrete Fourier analysis on the rhombic dodecahedron is developed and used to study cubature and interpolation on the rhombic dodecahedron, which also leads to results on tetrahedron. In contrast, our results will be established on the cube \([-\frac{1}{2}, \frac{1}{2}]^3 \), but our set \(\Omega_B \) is chosen to be a rhombic dodecahedron.

4.1. Discrete Fourier analysis and cubature formula on the cube. We choose our matrix \(B \) as the generator matrix of fcc lattice,

\[
B = n \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \text{and} \quad B^{-1} = \frac{1}{2n} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.
\]

The spectral set of the fcc lattice is the rhombic dodecahedron (see Figure 2). Thus,

\[
\Omega_B = \{ x \in \mathbb{R}^3 : -n \leq x_\nu \pm x_\mu < n, 1 \leq \nu < \mu \leq 3 \}.
\]
The strict inequality in the definition of Ω_B reflects our requirement that the tiling of the spectral set has no overlapping. From the expression of $B^{-\nu}$, it follows that $\Lambda_B := \Lambda_n$ is given by

$$\Lambda_n := \{ j \in \mathbb{Z}^3 : -n \leq -j_1 + j_2 + j_3, j_1 - j_2 + j_3, j_1 + j_2 - j_3 < n \}.$$

It is known that $|\Lambda_n| = \det(B) = 2n^3$. Furthermore, $\Lambda_B =: \Lambda_n^\dagger$ is given by

$$\Lambda_n^\dagger = \mathbb{Z}^3 \cap \Omega_B = \{ k \in \mathbb{Z}^3 : -n \leq k_\nu \pm k_\mu < n, 1 \leq \nu < \mu \leq 3 \}.$$

We denote the space \mathcal{T}_B by \mathcal{T}_n, which is given by

$$\mathcal{T}_n := \text{span} \{ e^{2\pi i k \cdot x} : k \in \Lambda_n^\dagger \}.$$

Then $\dim \mathcal{T}_n = |\Lambda_n^\dagger| = \det(B) = 2n^3$.

Theorem 4.1. Define the set

$$X_n := \{ 2k : -\frac{n}{2} \leq k_1, k_2, k_3 < \frac{n}{2} \} \cup \{ 2k + 1 : -\frac{n+1}{2} \leq k_1, k_2, k_3 < \frac{n-1}{2} \}.$$

Then for all $f, g \in \mathcal{T}_n$,

$$\langle f, g \rangle_n := \frac{1}{2n^3} \sum_{k \in X_n} f\left(\frac{k}{2n}\right) g\left(\frac{k}{2n}\right) = \int_{[-\frac{1}{2}, \frac{1}{2}]^3} f(x) g(x) dx.$$

Proof. Changing variables from j to $k = 2nB^{-\nu}j$, or $j = B^{\nu}k/(2n)$, then, as j_1, j_2, j_3 are integers and $j_1 = \frac{k_1 + j_2 - j_3}{2}, j_2 = \frac{k_2 - j_2 + j_3}{2}, j_3 = \frac{k_3 + j_2 - j_1}{2}$, we see that

$$j \in \Lambda_n \iff 2nB^{-\nu}j \in X_n \quad \text{and} \quad \sum_{j \in \Lambda_n} f(B^{-\nu}j) = \sum_{k \in X_n} f\left(\frac{k}{2n}\right),$$

from which we conclude that $\langle f, g \rangle_n = \langle f, g \rangle_B$. Consequently, this theorem is a special case of Theorem 2.1. \qed

Just like the case of $d = 2$, we denote the symmetric counterpart of X_n by X_n^* which is defined by

$$X_n^* := \{ 2k : -\frac{n}{2} \leq k_1, k_2, k_3 \leq \frac{n}{2} \} \cup \{ 2k + 1 : -\frac{n+1}{2} \leq k_1, k_2, k_3 \leq \frac{n-1}{2} \}.$$

A simple counting shows that $|X_n^*| = n^3 + (n+1)^3$. The set X_n^* is further partitioned into four parts,

$$X_n^* = X_n^o \cup X_n^f \cup X_n^c \cup X_n^v,$$
where \(X^o = X^* \cap (-n, n)^2\) is the set of interior points, \(X^f_n\) contains the points in \(X^*_n\) that are on the faces of \([-n, n]^3\) but not on the edges or vertices, \(X^e_n\) contains the points in \(X^*_n\) that are on the edges of \([-n, n]^3\) but not on the corners or vertices, while \(X^u_n\) denotes the points of \(X^*_n\) at the vertices of \([-n, n]^3\).

Theorem 4.2. Define the inner product

\[
\langle f, g \rangle_n^* := \frac{1}{2n^3} \sum_{k \in X^*_n} c_k^{(n)} f\left(\frac{k}{2n}\right) g\left(\frac{k}{2n}\right),
\]

where

\[
c_k^{(n)} = \begin{cases}
 1, & k \in X^o_n \\
 \frac{1}{2}, & k \in X^f_n \\
 \frac{1}{4}, & k \in X^e_n \\
 \frac{1}{8}, & k \in X^u_n
\end{cases}
\]

Then for all \(f, g \in T_n\),

\[
\int_{[-\frac{1}{2}, \frac{1}{2}]^3} f(x)g(x)dx = \langle f, g \rangle_n = \langle f, g \rangle_n^*.
\]

Proof. The proof follows along the same line as the proof of Theorem 3.2. We only need to show \(\langle f, g \rangle_n = \langle f, g \rangle_n^*\) if \(\mathbf{T}\) is periodic. The interior points of \(X_n\) and \(X^*_n\) are the same, so that \(c_k^{(n)} = 1\) for \(k \in X^o_n\). Let \(\varepsilon_1 = (1, 0, 0)\), \(\varepsilon_2 = (0, 1, 0)\), and \(\varepsilon_3 = (0, 0, 1)\). Each point \(k\) in \(X^f_n\) has exactly one opposite point \(k^*\) in \(X^f_n\) under translation by \(\pm n\varepsilon_i\) and only one of them is in \(X_n\), so that \(f(x_k) = \frac{1}{2}[f(x_k) + f(x_k^*)]\) if \(f\) is periodic, which is why we define \(c_k^{(n)} = \frac{1}{2}\) for \(k \in X^f_n\). Evidently, only three edges of \(X^*_n\) are in \(X^o_n\setminus X_n\). Each point in \(X^e_n\) corresponds to exactly four points in \(X^*_n\) under integer translations \(\pm n\varepsilon_i\) and only one among the four is in \(X_n\), so we define \(c_k^{(n)} = \frac{1}{4}\) for \(k \in X^e_n\). Finally, all eight corner points can be derived from translations \(n\varepsilon_i\) points, used repeatedly, and exactly one, \((-n, -n, -n)\), is in \(X^*_n\setminus X_n\), so that we define \(c_k^{(n)} = \frac{1}{8}\) for \(k \in X^u_n\). \(\square\)

We also denote the symmetric counterpart of \(\Lambda^l_n\) by \(\Lambda_n^{l*}\),

\[
\Lambda_n^{l*} := \{j \in \mathbb{Z}^3 : \text{integer translations } j, 0 \text{ points, used repeatedly, and exactly one, } (-n, -n, -n), \text{ is in } X^*_n\setminus X_n, \text{ so that we define } c_k^{(n)} = \frac{1}{8} \text{ for } k \in X^u_n\).
\]

and denote the counterpart of \(T_n\) by \(T_n^{*}\), which is defined accordingly by

\[
T_n^{*} := \text{span}\{e^{2\pi i k \cdot x} : k \in \Lambda_n^{l*}\}.
\]

Theorem 4.3. For \(n \geq 2\), the cubature formulas

\[
\int_{[-\frac{1}{2}, \frac{1}{2}]^3} f(x)dx = \frac{1}{2n^3} \sum_{k \in X^*_n} c_k^{(n)} f\left(\frac{k}{2n}\right) \text{ and } \int_{[-\frac{1}{2}, \frac{1}{2}]^3} f(x)dx = \frac{1}{2n^3} \sum_{k \in X_n} f\left(\frac{k}{2n}\right)
\]

are exact for \(f \in T_{2n-1}^{*}\).

Proof. As in the proof of Theorem 3.3 for any \(j \in \mathbb{Z}^3\), there exist \(\nu \in \Lambda_n^l\) and \(l \in \mathbb{Z}^3\) such that \(j = \nu + Bl\).

Assume now \(j \in \Lambda_n^{l*}\). Clearly the integral of \(e_j\) over \(\Omega\) is \(\delta_{j, 0}\). On the other hand, let us suppose \(j = \nu + Bl\) with \(\nu \in \Lambda_n\) and \(l \in \mathbb{Z}^3\). Then it is easy to see that \(e_j(\frac{k}{2n}) = e_\nu(\frac{k}{2n})\) for each \(k \in X^*_n\). Consequently, we get from Theorem 4.2 that

\[
\sum_{k \in X^*_n} c_k^{(n)} e_j(\frac{k}{2n}) = \sum_{k \in X^*_n} c_k^{(n)} e_\nu(\frac{k}{2n}) = \sum_{k \in X_n} e_\nu(\frac{k}{2n}) = \sum_{k \in X_n} e_j(\frac{k}{2n}) = \int_{\Omega} e_j(x)dx = \delta_{j, 0}.
\]
Since $\nu = 0$ implies $j = l = 0$, we further obtain that $\delta_{\nu,0} = \delta_{j,0}$. This states that the cubature formulas (4.4) are exact for each e_j with $j \in \Lambda_{2n-1}^1$, which completes the proof. \qed

4.2. Cubature formula for algebraic polynomials. We can also translate the cubature in Theorem 4.3 into one for algebraic polynomials. For this we use the change of variables

$$\begin{align*}
t_1 &= \cos 2\pi x_1, \\
t_2 &= \cos 2\pi x_2, \\
t_3 &= \cos 2\pi x_3, \\
x &\in [-\frac{1}{2}, \frac{1}{2}]^3.
\end{align*}$$

Under (4.5), the functions $\cos 2\pi k_1 x_1 \cos 2\pi k_2 x_2 \cos 2\pi k_3 x_3$ become algebraic polynomials $T_{k_1}(t_1)T_{k_2}(t_2)T_{k_3}(t_3)$, which are even in each of its variables. The subspace of T_n^* that consists of functions that are even in each of its variables corresponds to the polynomial subspace

$$\Pi_n^* := \text{span}(T_{k_1}(x_1)T_{k_2}(x_2)T_{k_3}(x_3) : k_1, k_2, k_3 \geq 0, k_\nu + k_\mu \leq n, 1 \leq \nu < \mu \leq n).$$

Notice that X_n^* is symmetric in the sense that if $x \in X_n^*$ then $\sigma x \in X_n^*$ for all $\sigma \in \{-1, 1\}^3$, where $(\sigma x)_i = \sigma x_i$. In order to evaluate functions that are even in each of its variables on X_n^* we only need to consider $X_n^* \cap \{x : x_1, x_2, x_3 \geq 0\}$. Hence, we define,

$$\Xi_n := \{2k : 0 \leq k_1, k_2, k_3 \leq \frac{n}{3}\} \cup \{2k + 1 : 0 \leq k_1, k_2, k_3 \leq \frac{n-1}{3}\}$$

and, under the change of variables (4.5), define

$$\Gamma_n := \{(z_{k_1}, z_{k_2}, z_{k_3}) : k \in \Xi_n\}, \quad z_k = \frac{k}{2n}.$$

Moreover, we denote by Γ^o_n, Γ^f_n, Γ^e_n and Γ^w_n the subsets of Γ_n that contains interior points, points on the faces but not on the edges, points on the edges but not on the vertices, and points on the vertices, of $[-1, 1]^3$, respectively, and we define Ξ^o_n, Ξ^f_n, Ξ^e_n and Ξ^w_n accordingly. A simple counting shows that

$$|\Xi_n| = (\lfloor \frac{n}{2} \rfloor + 1)^3 + \left(\lfloor \frac{n-1}{2} \rfloor + 1\right)^3 = \begin{cases} \frac{(n+1)^3}{4} + \frac{3(n+1)}{4}, & n \text{ is even}, \\ \frac{(n+1)^3}{4}, & n \text{ is odd}. \end{cases}$$

Theorem 4.4. Write $z_k = (z_{k_1}, z_{k_2}, z_{k_3})$. The cubature formula

$$\frac{1}{\pi^3} \int_{[-1,1]^3} f(t)W_0(t)dt = \frac{1}{2n^2} \sum_{n} \lambda_k^{(n)} f(z_k), \quad \lambda_k^{(n)} := \begin{cases} 8, & k \in \Xi^o_n, \\ 4, & k \in \Xi^f_n, \\ 2, & k \in \Xi^e_n, \\ 1, & k \in \Xi^w_n. \end{cases}$$

is exact for Π_{2n-1}^*. In particular, it is exact for Π_{2n-1}^3.

Proof. Let $g(x) = f(\cos 2\pi x_1, \cos 2\pi x_2, \cos 2\pi x_3)$. Then g is even in each of its variables and $g\left(\frac{k}{2n}\right) = f(z_k)$. Applying the first cubature formula in (5.3) to $g(x)$, we see that (5.8) follows from the following identity,

$$\sum_{k \in X_n^*} c_k^{(n)} g\left(\frac{k}{2n}\right) = \sum_{k \in \Xi_n} \lambda_k^{(n)} f(z_k).$$

This identity is proved in the same way that the corresponding identity in Theorem 4.4 is proved. Let $k\sigma$ denote the set of distinct elements in $\{k\sigma : \sigma \in \{-1, 1\}^3\}$; then $g\left(\frac{k}{2n}\right)$ takes the same value on all points in $k\sigma$. If $k \in X_n^*$, $k_i \neq 0$ for $i = 1, 2, 3$, then $k\sigma$ contains 8 points; if exactly one k_i is zero then $k\sigma$ contains 4 points; if exactly two k_i are zero then $k\sigma$ contains one point; and, finally, if $k = (0, 0, 0)$ then $k\sigma$
contains one point. In the case of \(k_i \neq 0 \) for \(i = 1, 2, 3 \), \(\sum_{j \in k} c_k^{(n)} g(\tfrac{k}{2n}) = 8g(\tfrac{k}{2n}) \).

if \(k \in X_n^o \), \(\sum_{j \in k} c_k^{(n)} g(\tfrac{k}{2n}) = 4g(\tfrac{k}{2n}) \) if \(k \in X_n^f \), and \(\sum_{j \in k} c_k^{(n)} g(\tfrac{k}{2n}) = 2g(\tfrac{k}{2n}) \) if \(k \in X_n^c \). The other cases are treated similarly. Thus, (4.9) holds for \(\Pi_{2n-1}^3 \).

Finally, the definition of \(\Pi_n^3 \) shows readily that it contains \(\Pi_{2n-1}^3 \) as a subspace. In particular, \(\Pi_{2n-1}^3 \) contains \(\Pi_{2n-1}^3 \) as a subset.

We note that \(\Pi_{2n-1}^2 \) contains \(\Pi_{2n-1}^3 \) as a subspace, but it does not contain \(\Pi_{2n}^3 \) since \(T_n(x_1)T_n(x_2) \) is in \(\Pi_{2n}^3 \) but not in \(\Pi_{2n-1}^3 \). Hence, the cubature (4.9) is of degree \(2n-1 \). A trivial cubature formula of degree \(2n-1 \) for \(W_0 \) can be derived by taking the product of Gaussian quadrature of degree \(2n-1 \) in one variable, which has exactly \(n^3 \) nodes. In contrast, according to (4.8), the number of nodes of our cubature (3.8) is in the order of \(n^3/4 + \mathcal{O}(n^2) \), about a quarter of the product formula. As far as we know, this is the best that is available at the present time. On the other hand, the lower bound for the number of nodes states that a cubature formula of degree \(2n-1 \) needs at least \(n^3/6 + \mathcal{O}(n^2) \) nodes. It is, however, an open question if there exist formulas with number of nodes attaining this theoretic lower bound.

Recall the cubature (4.9) is derived by choosing the spectral set as a rhombic dodecahedron. One natural question is how to choose a spectral set that tiles \(\mathbb{R}^3 \) by translation so that the resulted cubature formula is of degree 2 and has the smallest number of nodes possible. Among the regular lattice tilings, the rhombic dodecahedron appears to lead to the smallest number of nodes.

Just as Theorem 3.5, we can also derive a cubature formula of degree \(2n-5 \) for \(W_1 \) from Theorem 4.3. We omit the proof as it follows exactly as in Theorem 3.5.

Theorem 4.5. The cubature formula

\[
\int_{[-1,1]^3} f(t) W_1(t) dt = \frac{4}{n^3} \sum_{k \in \mathbb{Z}_n^3} \sin^2 \left(\frac{2\pi k_1}{n} \right) \sin^2 \left(\frac{2\pi k_2}{n} \right) \sin^2 \left(\frac{2\pi k_3}{n} \right) f(z_k) \tag{4.10}
\]

is exact for \(\Pi_{2n-5}^2 \); in particular, it is exact for \(\Pi_{2n-5}^3 \).

4.3. A compact formula for a partial sum. In order to obtain the compact formula for the interpolation function, we follow [9] and use homogeneous coordinates and embed the rhombic dodecahedron into the plane \(t_1 + t_2 + t_3 + t_4 = 0 \) of \(\mathbb{R}^4 \). Throughout the rest of this paper, we adopt the convention of using bold letters, such as \(t \), to denote the points in the space

\[
\mathbb{R}_H^4 := \left\{ t = (t_1, t_2, t_3, t_4) \in \mathbb{R}^4 : t_1 + t_2 + t_3 + t_4 = 0 \right\}.
\]

In other words, the bold letters such as \(t \) and \(k \) will always mean homogeneous coordinates. The transformation between \(x \in \mathbb{R}^3 \) and \(t \in \mathbb{R}_H^4 \) is defined by

\[
\begin{align*}
&x_1 = t_2 + t_3, \\
&x_2 = t_1 + t_3, \\
&x_3 = t_2 + t_1
\end{align*} \iff \begin{align*}
&t_1 = \frac{1}{2}(-x_1 + x_2 + x_3) \\
&t_2 = \frac{1}{2}(x_1 - x_2 + x_3) \\
&t_3 = \frac{1}{2}(x_1 + x_2 - x_3) \\
&t_4 = \frac{1}{2}(-x_1 - x_2 - x_3).
\end{align*}
\tag{4.11}
\]

In this homogeneous coordinates, the spectral set \(\Omega_B \) becomes

\[
\Omega_B = \left\{ t \in \mathbb{R}_H^4 : -1 < t_i - t_j \leq 1, 1 \leq i < j \leq 4 \right\}.
\tag{4.12}
\]
We now use homogeneous coordinates to describe \(\Lambda_n^{1*} \) defined in (4.13). Let
\[\mathbb{Z}_H^4 := \mathbb{Z}^4 \cap \mathbb{R}_H^4 \] and
\[\mathbb{H} := \{ j \in \mathbb{Z}_H^4 : j_1 \equiv j_2 \equiv j_3 \equiv j_4 \mod 4 \} . \]
In order to keep the elements as integers, we make the change of variables
\[
\begin{align*}
j_1 &= 2(-k_1 + k_2 + k_3), & j_2 &= 2(k_1 - k_2 + k_3), \\
j_3 &= 2(k_1 + k_2 - k_3), & j_4 &= 2(-k_1 - k_2 - k_3)
\end{align*}
\]
for \(k = (k_1, k_2, k_3) \in \Lambda_n^{1*} \). It then follows that \(\Lambda_n^{1*} \) in homogeneous coordinates becomes
\[\mathbb{G}_n := \{ j \in \mathbb{H} : j_1 \equiv j_2 \equiv j_3 \equiv j_4 \equiv 0 \mod 2, -4n \leq j_\nu - j_\mu \leq 4n, 1 \leq \nu, \mu \leq 4 \} . \]
We could have changed variables without the factor 2, setting \(j_1 = -k_1 + k_2 + k_3 \) etc. We choose the current change of variables so that we can use some of the computations in \[9\]. In fact, the set
\[\mathbb{H}_n^* := \{ j \in \mathbb{H} : -4n \leq j_\nu - j_\mu \leq 4n, 1 \leq \nu, \mu \leq 4 \} \]
is used in \[9\]. The main result of this subsection is a compact formula for the partial sum
\[
D_n(x) := \sum_{k \in \Lambda_n^{1*}} e_k(x) = \sum_{j \in \mathbb{G}_n} e_j(x) =: D_n^*(x), \quad e_j(x) := e^{2\pi i j \cdot t},
\]
where \(x \) and \(t \) are related by (4.11) and the middle equality follows from the fact that \(\Lambda_n^{1*} = \mathbb{G}_n \) under this change of variables. In fact, by (4.11) and (4.13), we have
\[
k \cdot x = k_1(t_2 + t_3) + k_2(t_1 + t_3) + k_3(t_1 + t_2) \\
= (k_2 + k_3)t_1 + (k_1 + k_3)t_2 + (k_1 + k_2)t_3 \\
= \frac{1}{4}(j_1 - j_4)t_1 + (j_2 - j_4)t_2 + (j_3 - j_4)t_3 = \frac{1}{4}j \cdot t
\]
where in the last step we have used the fact that \(t \in \mathbb{R}_H^n \). The compact formula of \(D_n(t) \) is an essential part of the compact formula for the interpolation function.

Theorem 4.6. For \(n \geq 1 \),
\[
D_n^*(t) = \Theta_{n+1}(t) - \Theta_n(t) - (\Theta_n^{\text{odd}}(t) - \Theta_{n-2}^{\text{odd}}(t)),
\]
where
\[
\Theta_n(t) = \prod_{i=1}^{\frac{n}{2}} \frac{\sin nt_i}{\sin \frac{n}{2}t_i},
\]
and for \(n \geq 1 \),
\[
\Theta_n^{\text{odd}}(t) = \prod_{i=1}^{\frac{n}{2}} \sin \frac{(n+2)i}{2}t_i \sum_{j=1}^{\frac{n}{2}} \frac{\sin nt_j}{\sin (n+2)t_j}, \quad \text{if } n = \text{even},
\]
and
\[
\Theta_n^{\text{odd}}(t) = \prod_{i=1}^{\frac{n}{2}} \sin \frac{(n+1)i}{2}t_i \sum_{j=1}^{\frac{n}{2}} \frac{\sin (n+3)t_j}{\sin (n+1)t_j}, \quad \text{if } n = \text{odd}.
\]
Proof. By definition, \(G_n \) is a subset of \(\mathbb{H}_n^* \) that contains elements with all indices being even integers. For technical reasons, it turns out to be easier to work with \(\mathbb{H}_n^* \setminus G_n \). In fact, the sum over \(\mathbb{H}_n^* \) has already been worked out in \(\text{T} \), which is

\[
\sum_{j \in \mathbb{H}_n^*} \phi_j(t) = 4 \prod_{i=1}^{n} \frac{\sin(n+1)\pi t_i}{\sin\pi t_i} - 4 \prod_{i=1}^{n} \frac{\sin n\pi t_i}{\sin\pi t_i} = \Theta_{n+1}(t) - \Theta_n(t).
\]

Thus, we need to find only the sum over odd indices, that is, the sum

\[D_n^{\text{odd}}(t) := \sum_{j \in \mathbb{H}_n^{\text{odd}}} \phi_j(t), \quad \mathbb{H}_n^{\text{odd}} := \mathbb{H}_n^* \setminus G_n. \]

Just as in \(\text{T} \), the index set \(\mathbb{H}_n^{\text{odd}} \) can be partitioned into four congruent parts, each within a parallelepiped, defined by

\[\mathbb{H}_n^{(k)} := \{ j \in \mathbb{H}_n^{\text{odd}} : 0 \leq j_k - j_l \leq 4n, l \in \mathbb{N}_4 \} \]

for \(k \in \mathbb{N}_4 \). Furthermore, for each index set \(J, \emptyset \subset J \subseteq \mathbb{N}_4 \), define

\[\mathbb{H}_n^J := \{ k \in \mathbb{H}_n^{\text{odd}} : k_i = j_k, \forall i, j \in J; \text{ and } 0 \leq k_i - k_j \leq 4n, \forall j \in J, \forall i \in \mathbb{N}_4 \setminus J \}. \]

Then we have

\[\mathbb{H}_n^{\text{odd}} = \bigcup_{j \in \mathbb{N}_4} \mathbb{H}_n^{(j)} \quad \text{and} \quad \mathbb{H}_n^J = \bigcap_{j \in J} \mathbb{H}_n^{(j)}. \]

Using the inclusion-exclusion relation of subsets, we have

\[D_n^{\text{odd}}(t) = \sum_{\emptyset \subset J \subseteq \mathbb{N}_4} (-1)^{|J|+1} \sum_{k \in \mathbb{H}_n^J} e^{\frac{\pi i}{2} \cdot k \cdot t}. \]

Fix \(j \in J \), using the fact that \(t_j = -\sum_{i \neq j} t_i \), we have

\[\sum_{k \in \mathbb{H}_n^J} e^{\frac{\pi i}{2} \cdot k \cdot t} = \sum_{k \in \mathbb{H}_n^J} e^{\frac{\pi i}{2} \cdot \sum_{i \in \mathbb{N}_4 \setminus J} (k_i - j_k) t_i} = \prod_{k \in \mathbb{H}_n^J} e^{\frac{\pi i}{2} \cdot (k_i - j_k) t_i}. \]

Since \(k \in \mathbb{H}_n^J \) implies, in particular, \(k_i \equiv j_k \mod 4 \), we obtain

\[\sum_{k \in \mathbb{H}_n^J} e^{\frac{\pi i}{2} \cdot k \cdot t} = \prod_{i \in \mathbb{N}_4 \setminus J} \sum_{0 \leq k_i - j_k \leq 4n} e^{\frac{\pi i}{2} \cdot (k_i - j_k) t_i} = \prod_{i \in \mathbb{N}_4 \setminus J} e^{\frac{\pi i}{2} \cdot k_i t_i}, \]

where \(|k|_J := \sum_{i \in \mathbb{N}_4 \setminus J} k_i \). The last equation needs a few words of explanation: if \(4k_i' = k_i - k_j \), then using the fact that \(k_i = j_k, \forall i, j \in J \) for \(k \in \mathbb{H}_n^J \) and \(k_1 + k_2 + k_3 + k_4 = 0 \), we see that \(\frac{1}{4} \sum_{i \in \mathbb{N}_4 \setminus J} (k_i - j_k) = -k_j \), which is odd by the definition of \(\mathbb{H}_n^J \); on the other hand, assume that \(\sum_{i \in \mathbb{N}_4 \setminus J} k_i \) is odd, then we define \(k_j = -\sum_{i \in \mathbb{N}_4 \setminus J} k_i' \) for all \(j \in J \) and define \(k_i = 4k_i' + k_j \), so that all components of \(k \) are odd and \(k \in \mathbb{H}_n^J \).

The condition that \(|k|_J \) is an odd integer means that the last term is not a simple product of sums. Setting

\[D_n^O(t) := \sum_{j=0, j \text{ odd}}^{n} e^{2\pi ij t}, \quad D_n^E(t) := \sum_{i=0, j \text{ even}}^{n} e^{2\pi ij t}, \]

we have

\[D_n^O(t) \quad \text{and} \quad D_n^E(t)\]
we see that, up to a permutation, only products $D_n^O D_n^O D_n^O$ and $D_n^OD_n^ED_n^E$ are possible for triple products ($|J| = 3$), only $D_n^O D_n^E$ is possible for double products ($|J| = 2$), only D_n^O is possible ($|J| = 1$), and there is a constant term. Thus, using the fact that $abc - (a - 1)(b - 1)(c - 1) = ab + ac + bc - a - b - c + 1$, we conclude that

\[
\begin{align*}
D_n^{odd}(t) &= \sum_{(t_1,t_2,t_3) \in \mathbb{N}_4} D_n^O(t_1)D_n^O(t_2)D_n^O(t_3) \\
&= D_n^O(t_1)\left[D_n^E(t_2)D_n^E(t_3)D_n^E(t_4) - (D_n^E(t_2) - 1)(D_n^E(t_3) - 1)(D_n^E(t_4) - 1)\right] \\
&+ D_n^O(t_2)\left[D_n^E(t_1)D_n^E(t_3)D_n^E(t_4) - (D_n^E(t_1) - 1)(D_n^E(t_3) - 1)(D_n^E(t_4) - 1)\right] \\
&+ D_n^O(t_3)\left[D_n^E(t_1)D_n^E(t_2)D_n^E(t_4) - (D_n^E(t_1) - 1)(D_n^E(t_2) - 1)(D_n^E(t_4) - 1)\right] \\
&+ D_n^O(t_4)\left[D_n^E(t_1)D_n^E(t_2)D_n^E(t_3) - (D_n^E(t_1) - 1)(D_n^E(t_2) - 1)(D_n^E(t_3) - 1)\right],
\end{align*}
\]

where the first sum is over all distinct triple integers in \mathbb{N}_4.

Assume that n is an even integer. A quick computation shows that

\[
D_n^O(t_1)D_n^E(t_2)D_n^E(t_2)D_n^E(t_4) = \prod_{j=2}^{4} \frac{\sin \pi(n + 2)t_i \sin \pi nt_1}{\sin 2\pi t_i}.
\]

Furthermore, we see that

\[
D_n^O(t_2)D_n^O(t_3)D_n^O(t_4) - D_n^O(t_1)(D_n^E(t_2) - 1)(D_n^E(t_3) - 1)(D_n^E(t_4) - 1) \\
= \prod_{j=2}^{4} \frac{\sin \pi nt_i}{\sin 2\pi t_i} \left[e^{i\pi nt_1} - e^{-2\pi n t_1} - ei\pi nt_1\right] = -\prod_{j=2}^{4} \frac{\sin \pi nt_i \sin \pi (n - 2)t_1}{\sin 2\pi t_i \sin 2\pi t_1}.
\]

Adding the two terms together and then summing over the permutation of the sum, we end up the formula for $D_n^{odd}(t)$ when n is even. The case of n odd can be handled similarly.

Let us write down explicitly the function $D_n(x)$ defined in (4.15) in x-variables. Using the elementary trigonometric identity and (4.11), we see that

\[
4 \prod_{i=1}^{4} \sin \alpha x_i = (\cos \alpha x_2 - x_1) - \cos \alpha x_3 (\cos \alpha x_2 + x_1) - \cos \alpha x_3 \\
= \cos^2 \alpha x_1 + \cos^2 \alpha x_2 + \cos^2 \alpha x_3 - 2 \cos \alpha x_1 \cos \alpha x_2 \cos \alpha x_3 - 1,
\]

so that we end up with the compact formula

\[
D_n(x) = \tilde{\Theta}_{n+1}(x) - \tilde{\Theta}_n(x) - \left(\tilde{\Theta}_n^{odd}(x) - \tilde{\Theta}_{n-2}^{odd}(x)\right),
\]

where

\[
\tilde{\Theta}_n(x) = \frac{\cos^2 n\pi x_1 + \cos^2 n\pi x_2 + \cos^2 n\pi x_3 - 2 \cos n\pi x_1 \cos n\pi x_2 \cos n\pi x_3 - 1}{\cos^2 \pi x_1 + \cos^2 \pi x_2 + \cos^2 \pi x_3 - 2 \cos \pi x_1 \cos \pi x_2 \cos \pi x_3 - 1},
\]

\[
\tilde{\Theta}_n^{odd}(x) = \tilde{\Theta}_{n+2}(2x) \sum_{j=1}^{4} \frac{\sin n\pi t_j}{\sin(n + 2)\pi t_j}, \quad \text{if } n = \text{even},
\]

and

\[
\tilde{\Theta}_n^{odd}(t) = \tilde{\Theta}_{n+2}(2x) \sum_{j=1}^{4} \frac{\sin (n + 3)\pi t_j}{\sin(n + 1)\pi t_j}, \quad \text{if } n = \text{odd},
\]
in which t_i is given in terms of x_j in (4.11). As a result of this explicit expression, we see that $D_n(x)$ is an even function in each x_i.

4.4. Boundary of the rhombic dodecahedron. In order to develop the interpolation on the set X_n^*, we will need to understand the structure of the points on the boundary of $X_n^* = \mathbb{Z}^3 \cap \Omega_B$. As Ω_B is a rhombic dodecahedron, we need to understand the boundary of this 12-face polyhedron, which has been studied in detail in [9]. In this subsection, we state the necessary definitions and notations on the boundary of Ω_B, so that the exposition is self-contained. We refer to further details and proofs to [9].

Again we use homogeneous coordinates. For $i, j \in \mathbb{N}_4 := \{1, 2, 3, 4\}$ and $i \neq j$, the (closed) faces of Ω_B are

$$F_{i,j} = \{ t \in \mathbb{P}_H : t_i - t_j = 1 \}.$$

There are a total $2^{|J|} = 12$ distinct $F_{i,j}$, each represents one face of the rhombic dodecahedron. For nonempty subsets I, J of \mathbb{N}_4, define

$$\Omega_{I,J} := \bigcap_{i \in I, j \in J} F_{i,j} = \{ t \in \mathbb{P}_H : t_j = t_i - 1, \text{ for all } i \in I, j \in J \}.$$

It is shown in [9] that $\Omega_{I,J} = \emptyset$ if and only if $I \cap J \neq \emptyset$, and $\Omega_{I_1,J_1} \cap \Omega_{I_2,J_2} = \Omega_{I,J}$ if $I_1 \cup I_2 = I$ and $J_1 \cup J_2 = J$. These sets describe the intersections of faces, which can then be used to describe the edges, which are intersections of faces, and vertices, which are intersections of edges. Let

$$\mathcal{K} := \{(I, J) : I, J \subset \mathbb{N}_4; I \cap J = \emptyset\},$$

and

$$\mathcal{K}_0 := \{(I, J) : (i, j) \in (I, J) \}.$$

We now define, for each $(I, J) \in \mathcal{K}$, the boundary element $B_{I,J}$ of the dodecahedron,

$$B_{I,J} := \{ t \in \Omega_{I,J} : t \notin \Omega_{I_1,J_1} \text{ for all } (I_1, J_1) \in \mathcal{K} \text{ with } |I| + |J| < |I_1| + |J_1| \};$$

it is called a face if $|I| + |J| = 2$, an edge if $|I| + |J| = 3$, and a vertex if $|I| + |J| = 4$. By definition, the elements for faces and edges are without boundary, which implies that $B_{I,J} \cap B_{I',J'} = \emptyset$ if $I \neq I'$ and $J \neq J'$. In particular, it follows that $B_{\{i\},\{j\}} = F_{i,j}^0$ and for distinct integers $i, j, k \in \mathbb{N}_4$.

Let S_4 denote the permutation group of four elements and let $\sigma_{i,j}$ denote the element in S_4 that interchanges i and j; then $t \sigma_{i,j} = t - (t_i - t_j) e_{i,j}$. For a nonempty set $I \subset \mathbb{N}_4$, define $\mathcal{G}_I := \{ \sigma_{i,j} : i, j \in I \}$, where we take $\sigma_{i,j} = \sigma_{j,i}$ and take $\sigma_{j,i}$ as the identity element. It follows that \mathcal{G}_I forms a subgroup of \mathcal{G} of order $|I|$. For $(I, J) \in \mathcal{K}$, we then define

$$[B_{I,J}] := \bigcup_{\sigma \in \mathcal{G}_{I,J}} B_{I,J} \sigma. \quad (4.17)$$

It turns out that $[B_{I,J}]$ consists of exactly those boundary elements that can be obtained from $B_{I,J}$ by congruent modulus B, and $[B_{I,J}] \cap [B_{I_1,J_1}] = \emptyset$ if $(I, J) \neq (I_1, J_1)$ for $(I, J) \in \mathcal{K}_0$ and $(I_1, J_1) \in \mathcal{K}_0$. More importantly, we define, for $0 < i, j < i + j \leq 4$,

$$B^{i,j} := \bigcup_{(I, J) \in \mathcal{K}_0^{i,j}} [B_{I,J}] \quad \text{with} \quad \mathcal{K}_0^{i,j} := \{(I, J) \in \mathcal{K}_0 : |I| = i, |J| = j\}. \quad (4.18)$$
Then the boundary of $\overline{\Omega_B}$ can be decomposed as
\[
\overline{\Omega_B} \setminus \Omega_B = \bigcup_{(I,J) \in \mathcal{K}} B_{I,J} = \bigcup_{0 < i,j < i+j \leq 4} B_{i,j}.
\]

The main complication is the case of $|I|+|J| = 2$, for which we have, for example,
\[
|B_{\{1\},\{2\},3}] = B_{\{1\},\{2\},3} \cup B_{\{2\},\{1\},3} \cup B_{\{3\},\{1\},2}.
\]
The other cases can be written down similarly. Furthermore, we have
\[
B_{\{1\},\{2\},4} = B_{\{1\},\{2\},3}\sigma_{34}, \quad B_{\{1\},\{2\},4} = B_{\{1\},\{2\},3}\sigma_{34},
\]
\[
B_{\{1\},\{3\},4} = B_{\{1\},\{2\},3}\sigma_{24}, \quad B_{\{1\},\{3\},4} = B_{\{1\},\{2\},3}\sigma_{24},
\]
\[
B_{\{2\},\{3\},4} = B_{\{1\},\{2\},3}\sigma_{12}\sigma_{24}, \quad B_{\{2\},\{3\},4} = B_{\{1\},\{2\},3}\sigma_{12}\sigma_{24},
\]
with
\[
B_{\{1\},\{2\},3} = \{(t,t-1,t-1,2-3t) : \frac{1}{3} < t < \frac{2}{3}\},
\]
\[
B_{\{1\},\{2\},3} = \{(1-t,1-t,-t,3t-2) : \frac{1}{2} < t < \frac{2}{3}\}.
\]
If $|I|+|J| = 2$ then $B_{I,J}$ is a face and
\[
B_{1,1} = B_{\{1\},\{2\}} \cup B_{\{1\},\{3\}} \cup B_{\{1\},\{4\}} \cup B_{\{2\},\{3\}} \cup B_{\{2\},\{4\}} \cup B_{\{3\},\{4\}}.
\]
If $|I|+|J| = 3$ then $B_{I,J}$ is an edge and we have
\[
B_{1,2} = B_{\{1\},\{2\},\{3\}} \cup B_{\{1\},\{2\},\{4\}} \cup B_{\{1\},\{3\},\{4\}} \cup B_{\{2\},\{3\},\{4\}},
\]
\[
B_{2,1} = B_{\{1\},\{2\},\{3\}} \cup B_{\{1\},\{2\},\{4\}} \cup B_{\{1\},\{3\},\{4\}} \cup B_{\{2\},\{3\},\{4\}}.
\]
If $|I|+|J| = 4$, then
\[
B_{1,3} = \{(\frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{3}{4})\}, \quad B_{2,2} = \{(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2})\}
\]
\[
B_{3,1} = \{(\frac{1}{2},\frac{3}{4},\frac{1}{4},\frac{1}{4})\}.
\]

Recall that G_n is $\Lambda^n = Z^3 \cap \overline{\Omega_B}$ in homogeneous coordinates. We now consider the decomposition of the boundary of G_n according to the boundary elements of the rhombic dodecahedron. First we denote by G_n° the points inside G_n,
\[
G_n^\circ := \{j \in G_n : -4n < j_\nu - j_\mu < 4n, 1 \leq \nu, \mu \leq 4\} = \{j \in G_n : \frac{1}{4n} \in \Omega_B^0\}.
\]
We further define, for $0 < i,j < i+j \leq 4$,
\[
G_n^{i,j} := \{k \in G_n : \frac{k}{4n} \in B_{i,j}\}
\]
The set $G_n^{i,j}$ describes those points j in G_n such that $\frac{j}{4n}$ are in $B_{i,j}$ of $\partial \Omega_B$. It is easy to see that $G_n^{i,j} \cap G_n^{k,l} = \emptyset$ if $i \neq k, j \neq l$ and
\[
\bigcup_{0 < i,j < i+j \leq 4} G_n^{i,j} = G_n \setminus G_n^\circ.
\]

4.5. Interpolation by trigonometric polynomials. We first apply the general theory from Section 2 to our set up with Ω_B as a rhombic dodecahedron.

Theorem 4.7. For $n \geq 1$ define
\[
I_n f(x) := \sum_{k \in \Lambda^n} f(\frac{k}{4n}) \Phi_n(x - \frac{k}{2n}), \quad \Phi_n(x) := \frac{1}{2n^3} \sum_{\nu \in \Lambda^n} e_\nu(x).
\]
Then for each $j \in X_n$, $I_n(\frac{j}{2n}) = f(\frac{j}{2n})$.

Proof. By (4.11), \(I_n f \left(\frac{k}{2n} \right) = f \left(\frac{k}{2n} \right) \) for \(j \in X_n \) is equivalent to \(I_n f (B^{-u} l) = f (B^{-u} l) \) for \(l \in \Lambda_n \). Moreover, \(I_n f \) can be rewritten as

\[
I_n f(x) = \sum_{j \in \Lambda_n} f(B^{-u} j) \Phi_n(x - B^{-u} j).
\]

Hence, this theorem is a special case of Theorem 2.2. □

Next we consider interpolation on the symmetric set of points \(X_n^* \). For this we need to modify the kernel function \(\Phi_n \). Recall that, under the change of variables (4.13), \(\Lambda_n^+ \) becomes \(G_n \) in homogeneous coordinates. We define

\[
\Phi_n^*(x) := \frac{1}{2n^3} \sum_{\nu \in \Lambda_n^+} \tilde{\mu}_\nu^{(n)} \nu(x) = \frac{1}{2n^3} \sum_{j \in G_n} \mu_j^{(n)} j(x),
\]

where \(x \) and \(t \) are related by (4.11), \(\tilde{\mu}_\nu^{(n)} \) is defined by \(\mu_k^{(n)} \) under the change of indices (4.13), and \(\mu_j^{(n)} = 1 \) if \(j \in G_{n^*}^0; \) more explicitly

\[
\mu_j^{(n)} := \begin{cases} 1, & j \in G_{n^*}^0 \\ \frac{1}{2}, & j \in G_{n^*}^{1,1} \\ \frac{1}{2}, & j \in G_{n^*}^{1,2} \cup G_{n^*}^{2,1} \\ \frac{1}{2}, & j \in G_{n^*}^{1,3} \cup G_{n^*}^{3,1} \\ \frac{1}{2}, & j \in G_{n^*}^{2,2} \end{cases}
\]

For each \(k \) on the boundary of \(X_n^* \), that is, \(\frac{k}{2n} \) on the boundary of \([-\frac{1}{2}, \frac{1}{2}]^3 \), let

(4.26) \[\mathcal{S}_k := \{ j \in X_n^*: \frac{k}{2n} \equiv \frac{j}{2n} \mod \mathbb{Z}^3 \}, \]

which contains the points on the boundary of \(X_n^* \) that are congruent to \(k \) under integer translations.

Theorem 4.8. For \(n \geq 1 \) define

(4.27) \[I_n^* f(x) := \sum_{k \in X_n^*} f \left(\frac{k}{2n} \right) R_k(x), \quad R_k(x) := \Phi_n^* \left(x - \frac{k}{2n} \right). \]

Then for each \(j \in X_n^* \),

(4.28) \[I_n^* f \left(\frac{j}{2n} \right) = \begin{cases} f \left(\frac{j}{2n} \right), & j \in X_n^0, \\ \sum_{k \in \mathcal{S}_j} f \left(\frac{k}{2n} \right), & j \in X_n^* \setminus X_n^0. \end{cases} \]

In homogeneous coordinates, the function \(\Phi_n^*(x) = \Phi_n^*(t) \) is a real function and it satisfies

(4.29) \[
\bar{\Phi}_n(t) = \frac{1}{4n^3} \left[\frac{1}{2} \left(D_n^*(t) + D_n^{*-1}(t) \right) - \frac{1}{2} \sum_{\nu=1}^{4} \frac{\sin 2\pi \left(\frac{n-1}{2} \right) t_\nu}{\sin 2\pi t_\nu} \sum_{j=1}^{4} \cos 2\pi (n t_j + \left\lfloor \frac{n}{2} \right\rfloor t_\nu) \right]
\]

\[-\frac{1}{3} \sum_{1 \leq \mu < \nu \leq 4} \cos 2\pi \nu t_\mu + t_\nu - \frac{1}{2} \begin{cases} \sum_{j=1}^{3} \cos 2\pi nt_j, & \text{if } n \text{ even}, \\ 0 & \text{if } n \text{ odd} \end{cases},
\]
from which the formula for $\Phi_n^*(x)$ follows from (4.11) and (4.10).

Proof. By (4.1), we need to verify the interpolation at the points $B^{-\nu}l$ for $l \in \Lambda_n^*$. By definition, we can write

$$R_k(B^{-\nu}l) = \frac{1}{2n^3} \sum_{\nu \in \Lambda_n^*} \tilde{\mu}_\nu(n) c_\nu(B^{-\nu}(l - k)).$$

It is easy to see that $\nu^\nu B^{-\nu}l = \frac{1}{2n}(j_1l_1 + j_2l_2 + j_3l_3)$ if ν is related to j by (4.13). Hence, as in the proof of Theorem 3.15 in [9], we conclude that

$$R_k(B^{-\nu}l) = \frac{1}{2n^3} \sum_{\nu \in \Lambda_n^*} c_\nu(B^{-\nu}(l - k)),$$

Now, for $l, k \in \Lambda_n^*$, there exist $p \in \Lambda_n$ and $q \in \mathbb{Z}^3$ such that $l - k \equiv p \pm B^\nu q$. Consequently, it follows from (2.6) that

$$R_k(B^{-\nu}l) = \frac{1}{2n^3} \sum_{\nu \in \Lambda_n^*} c_\nu(B^{-\nu}p) = \delta_{p,0}.$$

By (4.1), we have verified that

$$(4.30) \quad R_k \left(\frac{2\pi}{n} \right) = \begin{cases} 1, & \frac{j}{2n} = \frac{k}{2n} \mod \mathbb{Z}^3, \\ 0, & \text{otherwise}, \end{cases}$$

which proves the interpolation part of the theorem.

In order to prove the compact formula, we start with the following formula that can be established exactly as in the proof of Theorem 3.15 in [9]:

$$(4.31) \quad \Phi_n^*(t) = \frac{1}{4n^3} \left[\frac{1}{2} (D_n^* (t) + D_n^{-1} (t)) - \frac{1}{6} \sum_{k \in G_n^1 \cup G_n^2, k \neq 0} \phi_k (t) - \frac{1}{4} \sum_{k \in G_n^3 \cup G_n^4} \phi_k (t) - \frac{1}{6} \sum_{k \in G_n^3, k \neq 0} \phi_k (t) \right].$$

Let us define $G_n^{I,J} := \{ k \in G_n : \frac{k}{2n} \in B_{I,J} \}$ for $I, J \in \mathbb{N}_4$ and also define $[G_n^{I,J}] := \{ k \in G_n : \frac{k}{2n} \in B_{I,J} \}$. It follows from (4.13), and (4.22) that

$$G_n^{I,J} = \bigcup_{I,J \in \mathbb{N}_4} [G_n^{I,J}] \quad \text{and} \quad [G_n^{I,J}] = \bigcup_{\sigma \in \mathbb{N}_4} G_n^I \sigma.$$

In order to compute the sums in (4.31), we need to use the detail description of the boundary elements of Ω_B in the previous subsection. The computation is parallel to the proof of Theorem 3.15 in [9], in which the similar computation with \mathbb{G}_n replaced by \mathbb{H}_n is carried out. Thus, we shall be brief.

Using $t_1 + t_2 + t_3 + t_4 = 0$ and the explicit description of $B^{(1,2,3)}$, we get

$$\sum_{k \in [G_n^{(1)} \cup (2,3)]} \phi_k (t) = \sum_{k \in G_n^{(1)} \cup (2,3)} e^{\frac{2\pi}{n} k \cdot t} + \sum_{k \in G_n^{(2)} \cup (1,3)} e^{\frac{2\pi}{n} k \cdot t} + \sum_{k \in G_n^{(3)} \cup (1,2)} e^{\frac{2\pi}{n} k \cdot t}$$

$$= \sum_{j=1, j \text{ even}}^{n-1} e^{-2\pi j t_4} \left(e^{2n\pi i(t_1 + t_4)} + e^{2n\pi i(t_2 + t_4)} + e^{2n\pi i(t_3 + t_4)} \right)$$

$$= \frac{\sin 2\pi |\frac{n-1}{2}| t_4}{2\pi t_4} e^{-2\pi j |\frac{n-1}{2}| t_4} \left(e^{2\pi i(t_1 + t_4)} + e^{2\pi i(t_2 + t_4)} + e^{2\pi i(t_3 + t_4)} \right),$$

$$= \frac{\sin 2\pi |\frac{n-1}{2}| t_4}{2\pi t_4} e^{-2\pi j |\frac{n-1}{2}| t_4} \left(e^{2\pi i(t_1 + t_4)} + e^{2\pi i(t_2 + t_4)} + e^{2\pi i(t_3 + t_4)} \right),$$

$$= \frac{\sin 2\pi |\frac{n-1}{2}| t_4}{2\pi t_4} e^{-2\pi j |\frac{n-1}{2}| t_4} \left(e^{2\pi i(t_1 + t_4)} + e^{2\pi i(t_2 + t_4)} + e^{2\pi i(t_3 + t_4)} \right),$$

$$= \frac{\sin 2\pi |\frac{n-1}{2}| t_4}{2\pi t_4} e^{-2\pi j |\frac{n-1}{2}| t_4} \left(e^{2\pi i(t_1 + t_4)} + e^{2\pi i(t_2 + t_4)} + e^{2\pi i(t_3 + t_4)} \right),$$

$$= \frac{\sin 2\pi |\frac{n-1}{2}| t_4}{2\pi t_4} e^{-2\pi j |\frac{n-1}{2}| t_4} \left(e^{2\pi i(t_1 + t_4)} + e^{2\pi i(t_2 + t_4)} + e^{2\pi i(t_3 + t_4)} \right).$$
Putting them together, we obtain
\[
\sum_{k \in \mathbb{G}_n^{1, 2}(3)} \phi_k(t) = \sum_{k \in \mathbb{G}_n^{1, 2}(2, 3)} e^{\frac{2\pi i k \cdot t}{2}} + \sum_{k \in \mathbb{G}_n^{2, 1}(1, 3)} e^{\frac{2\pi i k \cdot t}{2}} + \sum_{k \in \mathbb{G}_n^{3, 1}(1, 2)} e^{\frac{2\pi i k \cdot t}{2}}
\]
\[
= \sin \frac{2\pi | \frac{n-1}{2} | t_4}{\sin 2\pi t_4} \left(e^{-2\pi n(t_1 + t_4)} + e^{-2\pi n(t_2 + t_4)} + e^{-2\pi n(t_3 + t_4)} \right).
\]
From these and their permutations, we can compute the sum over $\mathbb{G}_n^{1, 2}$ and $\mathbb{G}_n^{2, 1}$. Putting them together, we obtain
\[
\sum_{k \in \mathbb{G}_n^{1, 2} \cup \mathbb{G}_n^{2, 1}} \phi_k(t) = 2 \sum_{\nu = 1}^{4} \frac{\sin 2\pi | \frac{n-1}{2} | t_\nu}{\sin 2\pi t_\nu} \sum_{j = 1}^{4} \cos 2\pi n(t_j + \lfloor \frac{n}{2} \rfloor t_\nu).
\]
Using (1.29), we see that, $\mathbb{G}_n^{2, 2} = \{(2n, 2n, -2n, -2n) : \sigma \in \mathcal{G} \}$ and, if n is even
then $\mathbb{G}_n^{1, 3} = \{(n, n, n, -3n) : \sigma \in \mathcal{G} \}$
and $\mathbb{G}_n^{3, 1} = \{(3n, -n, -n, n) : \sigma \in \mathcal{G} \}$,
whereas if n is odd, then $\mathbb{G}_n^{1, 3} = \mathbb{G}_n^{3, 1} = \emptyset$. As a result, it follows that
\[
\sum_{k \in \mathbb{G}_n^{2, 2}} \phi_k(t) = \sum_{1 \leq \mu < \nu \leq 4} e^{2\pi i n(t_\mu + t_\nu)} = \sum_{1 \leq \mu < \nu \leq 4} \cos 2\pi n(t_\mu + t_\nu),
\]
where we have used the fact that $t_1 + t_2 + t_3 + t_4 = 0$, and
\[
\sum_{k \in \mathbb{G}_n^{1, 3} \cup \mathbb{G}_n^{3, 1}} \phi_k(t) = 4 \sum_{j = 1}^{4} \left(e^{2\pi i n t_j} + e^{-2\pi i n t_j} \right) = 2 \sum_{j = 1}^{4} \cos 2\pi n t_j,
\]
if n is even, whereas it is equal to 0 if n is odd.

Putting all these into (1.31) completes the proof. \qed

Theorem 4.9. Let $\|I_n^*\|_\infty$ denote the norm of the operator $I_n^* : C\left([-\frac{1}{2}, \frac{1}{2}]^3\right) \rightarrow C\left([-\frac{1}{2}, \frac{1}{2}]^3\right)$.
Then there is a constant c, independent of n, such that
\[
\|I_n^*\|_\infty \leq c (\log n)^3.
\]

Proof. Following the standard procedure, we see that
\[
\|I_n^*\|_\infty = \max_{x \in [-\frac{1}{2}, \frac{1}{2}]^3} \frac{1}{\mathcal{G}_n} \sum_{k \in \mathcal{G}_n} \left| \Phi_k(x - \frac{k}{2n}) \right|.
\]
Using the formula of Φ_k^\ast in (1.29), it is easy to see that it suffices to prove that
\[
\max_{x \in [-\frac{1}{2}, \frac{1}{2}]^3} \sum_{k \in X_n^*} \left| D_n^*(x - \frac{k}{2n}) \right| \leq c (\log n)^3, \quad n \geq 0.
\]
Furthermore, using the explicit formula of $D_n^{{\text{odd}}}(t)$ and (3.19) in [9], we see that
our main task is to estimate the sums in the form of
\[
I_{(1, 2, 3)} := \frac{1}{2n^3} \max_{x \in \mathcal{Q}} \sum_{k \in X_n^*} \left| \frac{\sin \pi n(t_1 - \frac{k + 3}{2n}) \sin \pi n(t_2 - \frac{k + 3}{2n}) \sin \pi n(t_3 - \frac{k + 3}{2n})}{\sin \pi (t_1 - \frac{k + 1}{2n}) \sin \pi (t_2 - \frac{k + 1}{2n}) \sin \pi (t_3 - \frac{k + 1}{2n})} \right|
\]
and three other similar estimates $I_{(1, 2, 4)}$, $I_{(1, 3, 4)}$ and $I_{(2, 3, 4)}$, respectively, as well as similar sums in which the denominator becomes product of $\sin 2\pi (t_i - \frac{k}{2n})$ and n in the numerator is replace by $n + 1$ or $n + 2$. Here Q is the image of $[-1, 1]^3$ under the mapping (4.11), that is,
\[
Q = \{ t \in \mathbb{R}^3 : -\frac{1}{2} \leq t_1 + t_2 + t_3, t_3 + t_4 \leq \frac{1}{2} \}.
\]
Changing the summation indices and enlarging the set X_n^\ast, we see that

$$I_{1,2,3} \leq 4 \max_{t \in [-1,1]} \left(\frac{1}{2n} \sum_{k=0}^{2n} \left| \frac{\sin n\pi(t - \frac{k}{2n})}{\sin \pi(t - \frac{k}{2n})} \right|^3 \right) \leq c(\log n)^3,$$

where the last step follows from the standard estimate of one variable (cf. [20 Vol. II, p. 19]).

4.6. Interpolation by algebraic polynomials. The main outcome of Theorem 4.7 in the previous section is that we can derive a genuine interpolation by trigonometric polynomials based on the set of points in $\{ \frac{k}{2n} : k \in \Xi_n \}$ defined at (4.6). The development below is similar to the case of $d = 2$. We define

$$\mathcal{P}f(x) := \frac{1}{8} \sum_{\varepsilon \in \{-1,1\}^3} f(\varepsilon_1 x_1, \varepsilon_2 x_2, \varepsilon_3 x_3).$$

Theorem 4.10. For $n \geq 0$ define

$$\mathcal{L}_n f(x) = \sum_{k \in \Xi_n} f(\frac{2k}{n})\ell_k(x), \quad \ell_k(x) := \lambda_k^{(n)} \mathcal{P} \left[\Phi_k^{(n)}(\cdot - \frac{k}{n}) \right](x)$$

with $\lambda_k^{(n)}$ given in (4.9). Then $\mathcal{L}_n f \in \mathcal{T}_n$ is even in each of its variables and it satisfies

$$\mathcal{L}_n f(\frac{2k}{n}) = f(\frac{2k}{n}) \quad \text{for all} \quad j \in \Xi_n.$$

Proof. As shown in (4.30), $R_k(x) := \Phi_k^{(n)}(x - \frac{k}{n})$ satisfies $R_k(\frac{2k}{n}) = 1$ when $k \equiv j$ mod $2n\mathbb{Z}^3$ and 0 otherwise. Hence, if $j \in \Xi_n$ then $(\mathcal{P}R_k)(\frac{2k}{n}) = \frac{1}{8} R_k(\frac{2k}{n}) = [\lambda_k^{(n)}]^{-1} \delta_{k,j}$. If $j \in \Xi_n \setminus \Xi_n$, then we need to consider several cases, depending on how many components of j are zero, which determines how many distinct terms are in the sum $(\mathcal{P}R_k)(\frac{2k}{n})$ and how many distinct k can be obtained from j by congruent in \mathbb{Z}^3. For example, if $j \in \Xi_n^0$ and none of the components of j are zero, then there are 2 elements in S_j, j and the one in the opposite face, and the sum $\mathcal{P}R_k(\frac{2k}{n})$ contains 8 terms, so that $\mathcal{P}R_k(\frac{2k}{n}) = \frac{1}{8} \delta_{j,k} = [\lambda_k^{(n)}]^{-1} \delta_{k,j}$. The other cases can be verified similarly, just as in the case of $d = 2$. We omit the details. \square

The above theorem yields immediately interpolation by algebraic polynomials upon applying the change of variables (4.6). Recall Γ_n defined in (4.7) and the polynomial subspace

$$\Pi_n^\ast = \text{span}\{ s_1^{k_1} s_2^{k_2} s_3^{k_3} : k_1, k_2, k_3 \geq 0, k_i + k_j \leq n, 1 \leq i, j \leq 3 \}. $$

Theorem 4.11. For $n \geq 0$, let

$$\mathcal{L}_n f(s) = \sum_{z_k \in \Gamma_n} f(z_k)\ell_k^\ast(s), \quad \ell_k^\ast(s) = \ell_k(x) \quad \text{with} \quad s = \cos 2\pi x.$$

Then $\mathcal{L}_n f \in \Pi_n^\ast$ and it satisfies $\mathcal{L}_n f(z_k) = f(z_k)$ for all $z_k \in \Gamma_n$.

This theorem follows immediately from the change of variables (4.6). The explicit compact formula of $\ell_k(x)$, thus $\ell_k^\ast(s)$, can be derived from Theorem 4.8.

The theorem states that the interpolation space for the point set Γ_n is exactly Π_n^\ast, which consists of monomials that have indices in the positive quadrant of the rhombohedral dodecahedron, as depicted in Figure 3 below.

The set Γ_n consists of roughly $n^3/4(1 + O(n^{-1})$ points. The interpolation polynomial $\mathcal{L}_n f \in \Pi_n^\ast$ is about a total degree of $3n/2$. The compact formula of the
fundamental interpolation polynomial provides a convenient way of evaluating the interpolation polynomial. Furthermore, the Lebesgue constant of this interpolation process remains at the order of \((\log n)^3\), as the consequence of Theorem 4.9 and the change of variables.

Corollary 4.12. Let \(\|L_n\|_\infty\) denote the operator norm of \(L_n : C([-1,1]^3) \rightarrow C([-1,1]^3)\). Then there is a constant \(c\), independent of \(n\), such that \(\|L_n\|_\infty \leq c(\log n)^3\).

References

[1] H. Berens, H. Schmid and Yuan Xu, Multivariate Gaussian cubature formula, *Arch. Math.* 64 (1995), 26 - 32.
[2] B. Bojanov and G. Petrova, On minimal cubature formulae for product weight function, *J. Comput. Appl. Math.* 85 (1997), 113 -121.
[3] L. Bos, M. Caliari, S. De Marchi, and M. Vianello, A numerical study of the Xu polynomial interpolation formula in two variables, *Computing* 76 (2006), 311-324.
[4] L. Bos, M. Caliari, S. De Marchi, and M. Vianello, Bivariate interpolation at Xu points: results, extensions and applications, *Electron. Trans. Numer. Anal.* 25 (2006), 1-16.
[5] L. Bos, S. De Marchi and M. Vianello, On the Lebesgue constant for the Xu interpolation formula. *J. Approx. Theory* 141 (2006), 134-141.
[6] J. H. Conway and N. J. A. Sloane, *Sphere Packings, Lattices and Groups*, 3rd ed. Springer, New York, 1999.
[7] De Marchi, M. Vianello and Yuan Xu, New cubature formulae and hyperinterpolation in three variables, preprint, (arXiv:math/0805.3529).
[8] C. Dunkl and Yuan Xu, *Orthogonal polynomials of several variables*, Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge Univ. Press, Cambridge, 2001.
[9] H. Li and Yuan Xu, Discrete Fourier Analysis on a dodecahedron and a tetrahedron, *Math. Comp.* to appear.
[10] H. Li, J. Sun and Yuan Xu, Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle, *SIAM J. Numer. Anal.* 46 (2008), 1653-1681.
[11] H. Möller, Kubaturformeln mit minimaler Knotenzahl, *Numer. Math.* 25 (1976), p. 185-200.
[12] H. Möller, Lower bounds for the number of nodes in cubature formulae, in *Numerical Integration*, 221-230, ISNM vol. 45, 1979, Birkhauser, Basel.
[13] C. R. Morrow and T. N. L. Patterson, Construction of algebraic cubature rules using polynomial ideal theory, *SIAM J. Numer. Anal.*, 15 (1978), 953-976.
[14] A. Stroud, *Approximate calculation of multiple integrals*, Prentice-Hall, Englewood Cliffs, NJ, 1971.
[15] J. Sun, Multivariate Fourier series over a class of non tensor-product partition domains, *J. Comput. Math.* 21 (2003), 53-62.

[16] J. Sun and H. Li, Generalized Fourier transform on an arbitrary triangular domain, *Adv. Comp. Math.* 22 (2005), 223-248.

[17] Yuan Xu, *Common Zeros of Polynomials in Several Variables and Higher Dimensional Quadrature*, Pitman Research Notes in Mathematics Series, Longman, Essex, 1994.

[18] Yuan Xu, Christoffel Functions and Fourier Series for multivariate orthogonal polynomials, *J. Approx. Theory*, 82 (1995), 205-239.

[19] Yuan Xu, Lagrange interpolation on Chebyshev points of two variables, *J. Approx. Theory*, 87 (1996), 220-238.

[20] A. Zygmund, *Trigonometric series*, Cambridge Univ. Press, Cambridge, 1959.

Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
E-mail address: hynli@mail.rdcps.ac.cn

Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
E-mail address: sun@mail.rdcps.ac.cn

Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222.
E-mail address: yuan@math.uoregon.edu