PTPIP51 crosslinks the NFκB signaling and the MAPK pathway in SKBR3 cells and provides a bypass mechanism for NFκB inhibition

Eric Dietel (eric.dietel@med.uni-giessen.de)
Justus Liebig Universitat Giessen Fachbereich Medizin
https://orcid.org/0000-0001-7518-8691

Alexander Brobeil
Justus Liebig Universitat Giessen Fachbereich Medizin

Claudia Tag
Justus Liebig Universitat Giessen Fachbereich Medizin

Stefan Gattenloehner
Justus Liebig Universitat Giessen Fachbereich Medizin

Monika Wimmer
Johannes Kepler Universitat Linz

Research article

Keywords: PTPIP51, Protein-Protein Interactions, HER2, NFκB, PDTC, IKK-16, Breast Cancer

Posted Date: August 30th, 2019

DOI: https://doi.org/10.21203/rs.2.12070/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Previous studies of our group revealed an association of the scaffolding protein Protein Tyrosine Phosphatase Interacting Protein 51 (PTPIP51) with the NFκB signaling on the RelA and IκB level. The NFκB signaling plays a pivotal role in many different tumor entities. Especially HER2 amplified breast cancer cells frequently display activation of the NFκB signaling. Here, the NFκB signaling is linked to the initiation, progression, and the metastasis of the breast cancer. Furthermore, a large body of evidence associates the NFκB signaling with the development of therapy resistance. We aimed to clarify the effects of NFκB inhibition on the NFκB- and the MAPK-related interactome of PTPIP51 in HaCat cells and SKBR3 cells and their correlation with cell viability. Results Both NFκB signaling inhibitors, PDTC and IKK-16, reduced the cell viability of SKBR3 cells. IKK-16 selectively reduced the cell viability in SKBR3 cells at 5µM, while the viability of HaCat cells was not affected. PDTC impaired the cell viability of both cell lines and induced a formation of the Raf1/14-3-3/PTPIP51 complex in SKBR3 cells, indicating a shift of PTPIP51 into MAPK signaling. The MAPK-related interactome of PTPIP51 remained unaffected by IKK-16. Conclusion (1) The effectiveness and selectivity of NFκB inhibition in malignant and non-malignant signaling systems depends on the level of the targeted signaling molecule. (2) PTPIP51 might serve as the mediator between the NFκB signaling and the MAPK pathway in SKBR3 cells upon NFκB inhibition.

Background

The body of evidence stating the importance of NFκB signaling in the initiation, progression, and metastasis of several tumor entities is steadily growing (1–4). Alterations in the NFκB signaling can be the consequence of direct mutations of signaling molecules belonging to the NFκB signaling cascade, stimulation of the signaling via the inflammatory tumor microenvironment or the crosstalks between the NFκB signaling and other dysregulated signaling pathways (5–8).

The amplification and overactivation of the HER2 receptor in breast cancer represents a perfect example of the activation of NFκB signaling via crosstalks of different signaling pathways (8). About 20-30% of all breast cancers exhibit amplification of the HER2 receptor accompanied by more aggressive tumor growth and a reduced overall survival (9, 10). The HER2 receptor activates mainly two signaling pathways, the MAPK pathway, and the Akt signaling (9). Beside these two pathways, HER2 is also capable of activating IKKs (8). IKKs are essential for the activation of the NFκB signaling cascade via phosphorylation of IκB. The phosphorylation tags IκB for ubiquitinylation and thus triggers its degradation. After the degradation of IκB, the nuclear localization signal of RelA is exposed. Consequently, RelA can exert its transcriptional activity (11, 12). This HER2 induced NFκB activation contributes to the growth of the tumor, the development of therapy resistance, and the epithelial-mesenchymal transition, which represents a hallmark in the formation of metastasis (4, 8).

Noteworthy, the scaffold protein Protein Tyrosine Phosphatase Interacting Protein 51 (PTPIP51) interacts with both signaling structures, the HER2 receptor, and the NFκB signaling (13, 14). The interaction of PTPIP51 with the HER2 receptor seems crucial for the sensitivity of HER2 amplified breast cancer cell
lines to EGFR/HER2 targeted therapies (14). Besides the direct interaction with the HER2 receptor, PTPIP51 is involved in the titration of the MAPK signaling (15–17). Within this pathway, PTPIP51 exerts an activating effect via the binding of Raf1 and 14-3-3 (16). The formation of the Raf1/14-3-3/PTPIP51 complex is strictly regulated by the phosphorylation of PTPIP51. Phosphorylation of the tyrosine 176 leads to a dissolution of the complex and an omission of the MAPK pathway stimulating effect. In contrast, the phosphorylation of serine 212 enhances the formation of the ternary complex (15, 17, 18). Both phosphorylation sites are under the control of several kinases, including receptor tyrosine kinases (e.g., the EGFR) and nonreceptor kinases (e.g., c-Src), and phosphatases (15, 17, 18).

The regulation of PTPIP51 in NFκB signaling contradicts the observations made in the MAPK pathway. Here, the formation of the RelA/IκB/PTPIP51 complex inhibits the NFκB signaling (13). Due to the recency of PTPIP51 function in the NFκB signaling, the key phosphorylation sites, which regulate the binding of PTPIP51 with RelA and IκB are up to now unknown.

Basing on these findings this study aimed to elucidate the interaction shifts of PTPIP51 upon NFκB inhibition in NFκB signaling and their effects on the MAPK pathway using the Duolink proximity ligation assay. The impact of the applied agents on cell survival was analyzed by MTT assays. Thus, we were able to describe differential regulations in the HER2 amplified breast cancer cell line SKBR3 and the non-tumor keratinocyte cell line HaCat.

Results

All experiments were performed with the SKBR3 cell line; an Her2 amplified breast cancer cell line and the spontaneously immortalized keratinocyte HaCat cell line. This setting allows comparing the effects of NFκB inhibition on the malignantly transformed signaling system in the SKBR3 cell line with the normal signaling in the HaCat cell line.

Inhibition of NFκB signaling with PDTC or IKK-16 leads to differential regulations of the mitochondrial metabolic activity in SKBR3 cells and HaCat cells (Fig.1).

The effects of NFκB inhibition by the application of PDTC and IKK-16, respectively, were monitored using the MTT assay, which measures the mitochondrial metabolic activity through the formation of formazan crystals. The results were equalized/related to the control value equaling 1. Each experiment was performed using the same dilution of DMSO to exclude the cytotoxic effects of DMSO.

Applying PDTC in increasing concentrations to SKBR3 cells resulted in a significant decrease of the mitochondrial metabolic activity (0.5µM p<0.05, 5µM p<0.0001, 50µM p<0.0001). Comparable results were seen for the inhibition of the NFκB signaling using PDTC in the HaCat cell line (5µM p<0.0001, 50µM p<0.0001). The application of IKK-16 induced differing results. The treatment of SKBR3 cells with rising concentrations of IKK-16 resulted in a highly significant decrease in mitochondrial metabolic activity (5µM p<0.0001, 50µM p<0.0001). In contrast, applying IKK-16 to HaCat cells led to a slight but significant
increase of mitochondrial metabolic activity for the application of 5µM (p<0.05). Increasing the concentration resulted in a highly significant decrease in mitochondrial metabolic activity (p<0.0001).

NFκB inhibition in SKBR3 cells and HaCat cells induced interaction shifts of the RelA/IκB/PTPIP51 complex (Fig. 2).

Brobeil and coworkers showed that the formation of the RelA/IκB/PTPIP51 complex is essential for the titration of the NFκB signaling (13). To monitor the interaction shifts of the RelA/IκB/PTPIP51 interactome Duolink proximity ligation assays were performed. Interestingly, the regulation of the RelA/PTPIP51 interaction varied relative to the applied NFκB inhibitor and the used cell line. Of note, the application of 50µM IKK-16 to the SKBR3 cell line severely diminished the seeded cell population with the result, that only cell debris remained. Thus, an adequate evaluation of the Duolink proximity ligation assays for this setting was not possible.

Application of PDTC to SKBR3 cells induced a significant increase of the RelA/PTPIP51 interaction for the lowest and highest concentration used in this study (0.5µM p<0.01, 50µM p<0.05). In contrast, HaCat cells submitted to the same agent displayed a highly significant reduction in RelA/PTPIP51 interactions (0.5µM p<0.001, p<0.05). All applied concentrations of IKK-16 significantly reduced the RelA/PTPIP51 interaction (0.5µM p<0.01, 5µM p<0.05) in the breast cancer cell line SKBR3. In contrary, the application of IKK-16 to HaCat cells enhanced the interaction of RelA and PTPIP51 for the highest tested concentration (50µM p<0.05). The regulation of the RelA/IκB/PTPIP51 complex was further evaluated by monitoring the interaction of PTPIP51 and IκB in SKBR3 cells. None of the tested PDTC concentrations affected the interaction of PTPIP51 and IκB. In contrast, treatment with IKK-16 led to a significant reduction of PTPIP51/IκB interaction (0.5µM p<0.05).

Selective IKK inhibition by IKK-16 enhances the interaction of PTPIP51 and the HER2 receptor (Fig.3)

The amplified HER2 receptor activates the NFκB signaling via the canonical pathway and the activation of IKKa (8). PTPIP51 interacts with the HER2 receptor and seems to be crucial for the responsiveness of HER2 amplified breast cancer cells towards HER2 targeted therapies (14). Thus, we examined the interaction of PTPIP51 and the HER2 receptor under NFκB inhibition. Application of PDTC to SKBR3 cells for 6 h did not affect the interaction of PTPIP51 and HER2. In contrast, the IKK-16 treatment of SKBR3 cells significantly enhanced the interaction of PTPIP51 and the HER2 receptor (5µM p<0.01).

Inhibition of NFκB signaling induced interaction shifts in the MAPK-related PTPIP51 interactome (Fig. 4 and 5).

Besides the activation of the NFκB signaling, activation of the HER2 receptor is mainly channeled into the activation of the MAPK pathway, especially the ERK signaling (9). Furthermore, Brobeil and coworkers identified PTPIP51 as a crosslink between the NFκB signaling and the MAPK pathway (13). Therefore, we examined the influence of NFκB inhibition on the MAPK-related interactome of PTPIP51. Application of PDTC to SKBR3 cells resulted in a highly significant increase of PTPIP51/14-3-3 and PTPIP51/Raf1.
interaction (PTPIP51/14-3-3 5µM p<0.0001, 50µM p<0.0001; PTPIP51/Raf1 0.5µM p<0.0001, 5µM p<0.001, 50µM p<0.0001). Of note, inhibition of NFκB signaling using IKK-16 did not affect the interaction of PTPIP51 and Raf1. The PTPIP51/14-3-3 interaction was augmented for the highest applied IKK-16 concentration (5µM p<0.01). Inhibition of the NFκB signaling in HaCat cells did not severely affect the MAPK-related interactome of PTPIP51. Application of PDTC to HaCat cells reduced the PTPIP51/14-3-3 interaction for the lowest applied concentration (0.5µM p<0.01) and enhanced the PTPIP51/Raf1 interaction if 5µM PDTC were applied (p<0.01). Treating HaCat cells with IKK-16 only affected the PTPIP51/Raf1 interaction for the lowest applied concentration (0.5µM p<0.0001).

Sensitivity towards the IKK-16 induced NFκB inhibition correlates with the interaction changes of PTPIP51 and its crucial phosphatase PTP1B (Fig. 6)

To exert its scaffold protein properties, the phosphorylation of PTPIP51 is tightly regulated by several kinases and phosphatases. For the interaction of PTPIP51 with 14-3-3 and Raf1 especially the tyrosine residue 176 and the serine residue, 212 are needed. While the phosphorylation of Tyr176 prevents the interaction of PTPIP51 and Raf1, the phosphorylation of Ser212 augments the interaction. The critical phosphorylation sites for the interaction with RelA and IκB, respectively, are up to now not known. Since the NFκB related and the MAPK related interactome are affected by the inhibition of NFκB signaling, we examined the interaction of PTPIP51 and its crucial phosphatase PTP1B in SKBR3 and HaCat cells. Application of PDTC to SKBR3 and HaCat cells did not affect the interaction of PTPIP51 and PTP1B. Interestingly, the IKK-16 treatment of SKBR3 and HaCat cells led to divergent results. While, IKK-16 inhibited the interaction of PTPIP51 and PTP1B in SKBR3 cells (0.5µM p<0.0001, 5µM p<0.0001), in HaCat cells the interaction was augmented (0.5µM p<0.001, 5µM p<0.0001, 50µM p<0.0001).

Discussion

The role in tumor initiation, progression and the formation of metastasis makes the NFκB signaling an exciting target for novel therapeutic agents. By this study, we emphasize the importance of choosing the right agent for targeting the NFκB signaling in HER2 amplified breast cancer cells.

The selective inhibition of IKKs using the small molecule inhibitor IKK-16 induced severe impairments in the mitochondrial metabolic activity of the HER2 amplified breast cancer cell line SKBR3. Of note, the application of 5µM IKK-16 led to diametrically opposite results in the investigated cell lines. While the HaCat cells displayed an increase in mitochondrial metabolic activity, the mitochondrial metabolic activity of SKBR3 cells was highly significantly reduced. This disparity was further analyzed by the evaluation of the RelA/IκB/PTPIP51 complex using the Duolink proximity ligation assay. Here, the results differed not only between the cell lines but also between the applied agent. Brobeil and coworkers reported that the stimulation of the NFκB signaling via application of TNFα results in a dissolution of the RelA/IκB/PTPIP51 complex in HaCat cells, indicating an activation of the NFκB signaling (13). The inhibition of NFκB signaling via IKK-16 in HaCat cells led to results corroborating the thesis of a RelA/IκB/PTPIP51 complex formation and dissolution under inhibition and stimulation of NFκB.
signaling. Comparable observations were made for the application of PDTC to SKBR3 cells. The regulation under NFκB inhibition using IKK-16 in SKBR3 cells entirely opposes the known regulations of PTPIP51 in NFκB signaling. Here, the interaction of PTPIP51 with RelA and IkB, respectively, is reduced, implying activation of the NFκB signaling. These observations potentially depict an overshooting counter-regulation against the inhibition of IKKs. Up to now, it is unknown how these regulations are performed. The evaluation of the NFκB related interactome of PTPIP51 is not sufficient to explain the divergent effects on cell viability of the applied agents in the two cell lines.

The MAPK pathway is one of the essential growth and proliferation promoting pathway in HER2 amplified breast cancer cells (9). PTPIP51 plays a pivotal role in the titration of the MAPK pathway activation (15–18). The regulation of the MAPK related PTPIP51 interactome upon NFκB inhibition significantly differs between the two cell lines. The application of PDTC to SKBR3 cells shifted PTPIP51 into the Raf1/14-3-3/PTPIP51 complex, indicating activation of MAPK signaling. This shift could not be observed under IKK-16 treatment. Thereby, the non-activation of MAPK signaling explains the severe impairment of mitochondrial metabolic activity in SKBR3 cells under IKK-16 treatment. In the HaCat cell line, neither of the applied agents led to a remarkable shift of PTPIP51 into the MAPK pathway. These findings depict a potential evasion mechanism of SKBR3 cells against the PDTC mediated NFκB inhibition.

For the precise understanding of these regulations, the exact targets of the applied agents have to be identified. PDTC was thought to act as an antioxidant and thereby inhibiting the TNFα induced NFκB activation. However, Hayakawa and coworkers showed that PDTC could inhibit ubiquitin ligase activity in a cell-free system, which lacks reactive oxygen species (19). Thus, the antioxidative properties of PDTC are not needed for the inhibition of NFκB signaling (19, 20). IKK-16 acts as a small molecule inhibitor of the IKK1, the IKK2, and the IKK complex (21). Through the inhibition of these serine/threonine kinases the phosphorylation of IkB is not possible (12). Subsequently, IkB cannot be degraded, and RelA cannot exert its transcriptional activity (12). Of note, IKK2 is capable of phosphorylating both IkB and PTPIP51. The group-based prediction system (GPS 3.0; http://gps.biocuckoo.org/; (22)) revealed that IKK2 could phosphorylate PTPIP51 at serine 212, which enhances the interaction of PTPIP51 with MAPK signaling on the Raf1 level.

The application of PDTC to the HER2 amplified breast cancer cell line SKBR3 induces inhibition of the IkB ubiquitin ligase resulting in an enhanced interaction of PTPIP51 and RelA. Since IKK activity is not inhibited, but even enhanced in the HER2 overactivated setting, IKK2 is still capable of phosphorylating the serine 212 of PTPIP51. The phosphorylation of PTPIP51 at serine 212 forces PTPIP51 into the Raf1/14-3-3/PTPIP51 complex and subsequently leads to a stimulation of MAPK signaling (15, 17, 18). Thereby, SKBR3 cells potentially evade the NFκB inhibition via the crosstalk with the MAPK signaling mediated by PTPIP51.

The NFκB inhibition via IKK-16 blocks the phosphorylation of serine 212 of PTPIP51 through IKK2 and thereby the translocation of PTPIP51 into the MAPK signaling does not occur. These regulations explain
the severe reduction of cell viability of SKBR3 cells under IKK-16 treatment since the blocked NFκB signaling cannot be bypassed by PTPIP51 induced MAPK stimulation.

The interaction of PTPIP51 with Raf1 and 14-3-3 is not only subjected to the serine 212 phosphorylation of PTPIP51 but also to the tyrosine 176 phosphorylation of PTPIP51 (15, 17, 18). A crucial regulator of this phosphorylation site is the PTP1B (15, 17, 18, 23). Interestingly, the interaction of PTPIP51 and PTP1B depends on the level of NFκB inhibition. The inhibition of IKKs leads to different regulations of the PTPIP51/PTP1B interaction in SKBR3 cells and HaCat cells, respectively, which correlates with the effects on mitochondrial metabolic activity. The functional implications of these interaction shifts remain unclear since the observed reduction of PTPIP51/PTP1B interaction in SKBR3 cells implies a reduced interaction with the MAPK pathway due to the enhanced phosphorylation of tyrosine 176 of PTPIP51. In contrast, the interaction of PTPIP51 and 14-3-3 was even enhanced under IKK inhibition. The precise mechanisms of this regulation and the effects on phosphorylation of PTPIP51 need further investigation.

In HER2 amplified breast cancer cells, the activation of IKKs is tightly linked to the overactivation of the HER2 receptor (8). Recent studies of our group substantiated an interaction of PTPIP51 and the HER2 receptor. Interestingly, selective inhibition of the HER2 receptor using Mubritinib induced a formation of a ternary complex consisting of PTPIP51, c-Src, and HER2, which potentially depicts a resistance mechanism against HER2 targeted tyrosine kinase inhibitors (14). The inhibition of IKKs induced a similar enhanced interaction of HER2 and PTPIP51, whereas the PDTC mediated IkB ubiquitin ligase inhibition left the PTPIP51/HER2 interaction unaffected. A schematic overview of the mechanisms above is given in figure 7. The functional consequences of this interaction shift remain unknown and warrant ongoing studies.

To summarize, our study indicates 1) NFκB inhibition on IKK level using 5µM IKK-16 severely affects the mitochondrial metabolic activity of SKBR3 cell but does not affect HaCat cells, 2) PTPIP51 crosslinks the NFκB signaling to the MAPK pathway in SKBR3 cells, and 3) NFκB inhibition on IkB ubiquitin ligase level is bypassed by translocation of PTPIP51 into MAPK pathway in SKBR3 cells.

Material And Methods

Cell culture:

SKBR3 cells were purchased from Cell Line Service (Eppelheim, Germany). The cells were cultured in Dulbecco’s MEM (Biochrom) containing 10% fetal calf serum and 1% Penicillin/Streptomycin in a humidified chamber at 37°C and 5% CO2. The medium renewal was performed every 2-3 days. Cell harvesting was performed at a confluence of 70-80% with Accutase. The SKBR3 cells were seeded in culture slides (30.000 cells per well) (Falcon CultureSlides, Corning Life Science, New York, USA, Cat.# 354108) or used as indicated for other experiments.

The HaCaT cells were obtained and handled as described in previous publications of our group(13). Cells were harvested with Trypsin in a humidified chamber at 37°C and 5% CO2. Subsequently, the cells were
seeded on culture slides (Falcon CultureSlides, Corning Life Science, New York, USA, Cat.# 354108) or 96-well plates (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany, Cat.# CLS3340).

Treatment:

The cells were allowed to grow for 24h after seeding. Subsequently, they were treated with different concentrations of Ammonium pyrrolidine dithiocarbamate (PDTC) (Sigma-Aldrich, Cat.# P 8765, Munich, Germany) or IKK-16 (Cat.# S2882, Selleckchem, Munich, Germany) (diluted in culture medium) for either 6h or 24h. The reaction was stopped by removal of medium and addition of ice-cold phosphate buffered saline. The fixation was performed with ice-cold methanol for proximity ligation assays. The procedure for the MTT assays is described in the MTT subsection.

Antibodies

All antibodies used are listed in Supplementary Table 1.

- Duolink Proximity Ligation Assay:

For evaluation of the interactions of proteins, the Olink Duolink Proximity ligation assay (PLA probe antirabbit minus, Cat.# DUO92005, PLA probe anti-mouse plus, Cat.# DUO92001, anti-goat plus Cat.# DUO92003, Detection Kit Orange, Cat.# DUO92007, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) was used. The assay was carried out according to the manufacturers manual. Leuchowius and coworkers identified the Duolink proximity ligation assay as an adequate tool for the identification of small molecule effectors for protein-protein interactions (24).

Fluorescence microscopy:

The photo documentation was performed with Axioplan 2 fluorescence microscope equipped with Plan-Apochromat objectives (Carl Zeiss Jena, Jena, Germany).

Protein interaction analysis:

Quantification was carried out using the DuoLink Image Tool (Olink Bioscience, Uppsala, Sweden, v1.0.1.2). The software identifies Dapi positive nuclei and counts fluorescence dots in a user-defined cell diameter preset.

MTT assay:

HaCat and SKBR3 cells were seeded at a density of 10,000 cells per well in a 96-well plate. The cells were allowed to grow for 24h. Cells were treated as indicated. MTT solution was added 4h before the end of the incubation time. Formazan crystals were solubilized using a solubilization solution (10% SDS in
0.01M HCl). The solution of the crystals was performed overnight in a humidified chamber at 37°C and 5% CO₂. Assays were evaluated with the Berthold Tech TriStar ELISA Reader (Bad Wildbad, Germany).

Statistical analysis:

Data were evaluated using GraphPad Prism 6 software. Statistical significance was determined using ANOVA followed by the Dunnett’s multiple comparison tests. Results were considered significant with p<0.05. (*p<0.05), **(p<0.01), *** (p<0.001), ****(p<0.0001))

Declarations

Conflict of interest

The authors declare no conflict of interest.

Funding

No specific funding was received for this study.

Availability of data and materials

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Authors’ contributions

Eric Dietel designed the research, performed parts of the experiments, analyzed data, and wrote the manuscript. Alexander Brobeil performed parts of the experiments, analyzed data and corrected the manuscript. Claudia Tag performed parts of the experiments. Stefan Gattenlöhner analyzed data and corrected the manuscript. Monika Wimmer designed the research, analyzed data and wrote and corrected the manuscript.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Authors’ information
References

1. Buchholz TA, Garg AK, Chakravarti N, Aggarwal BB, Esteva FJ, Kuerer HM et al. The nuclear transcription factor kappaB/bcl-2 pathway correlates with pathologic complete response to doxorubicin-based neoadjuvant chemotherapy in human breast cancer. Clin Cancer Res 2005; 11(23):8398–402.

2. Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY et al. Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: Delineation of a novel pathway. Cancer Res 2006; 66(17):8788–95.

3. Wang DJ, Ratnam NM, Byrd JC, Guttridge DC. NF-κB functions in tumor initiation by suppressing the surveillance of both innate and adaptive immune cells. Cell Rep 2014; 9(1):90–103.

4. Pires BRB, Mencalha AL, Ferreira GM, Souza WF de, Morgado-Díaz JA, Maia AM et al. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells. PLoS ONE 2017; 12(1):e0169622.

5. Gilmore TD, Kalaitzidis D, Liang M-C, Starczynowski DT. The c-Rel transcription factor and B-cell proliferation: A deal with the devil. Oncogene 2004; 23(13):2275–86.

6. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138(6):2101-2114.e5.

7. Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res 2014; 2(9):823–30.

8. Merkhofer EC, Cogswell P, Baldwin AS. Her2 activates NF-kappaB and induces invasion through the canonical pathway involving IKKalpha. Oncogene 2010; 29(8):1238–48.

9. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 2007; 26(45):6469–87.

10. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235(4785):177–82.

11. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2(10):725–34.

12. Liu F, Xia Y, Parker AS, Verma IM. IKK biology. Immunol Rev 2012; 246(1):239–53.

13. Brobeil A, Kämmerer F, Tag C, Steger K, Gattenlöhner S, Wimmer M. PTPIP51—A New RelA-tionship with the NFκB Signaling Pathway. Biomolecules 2015; 5(2):485–504.

14. Dietel E, Brobeil A, Tag C, Gattenloehner S, Wimmer M. Effectiveness of EGFR/HER2-targeted drugs is influenced by the downstream interaction shifts of PTPIP51 in HER2-amplified breast cancer cells. Oncogenesis 2018; 7(8):64.

15. Brobeil A, Bobrich M, Tag C, Wimmer M. PTPIP51 in protein interactions: regulation and in situ interacting partners. Cell Biochem Biophys 2012; 63(3):211–22.
16. Yu C, Han W, Shi T, Lv B, He Q, Zhang Y et al. PTPIP51, a novel 14-3-3 binding protein, regulates cell morphology and motility via Raf-ERK pathway. Cell Signal 2008; 20(12):2208–20.
17. Brobeil A, Koch P, Eiber M, Tag C, Wimmer M. The known interactome of PTPIP51 in HaCaT cells - inhibition of kinases and receptors. Int J Biochem Cell Biol 2013.
18. Brobeil A, Bobrich M, Wimmer M. Protein tyrosine phosphatase interacting protein 51—a jack-of-all trades protein. Cell Tissue Res 2011; 344(2):189–205.
19. Hayakawa M, Miyashita H, Sakamoto I, Kitagawa M, Tanaka H, Yasuda H et al. Evidence that reactive oxygen species do not mediate NF-kappaB activation. EMBO J 2003; 22(13):3356–66.
20. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta 2010; 1799(10-12):775–87.
21. Waelchli R, Bollbuck B, Bruns C, Buhl T, Eder J, Feifel R et al. Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK. Bioorg Med Chem Lett 2006; 16(1):108–12.
22. Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 2008; 7(9):1598–608.
23. Brobeil A, Chehab R, Dietel E, Gattenlöhner S, Wimmer M. Altered Protein Interactions of the Endogenous Interactome of PTPIP51 towards MAPK Signaling. Biomolecules 2017; 7(3).
24. Leuchowius K-J, Jarvius M, Wickström M, Rickardson L, Landegren U, Larsson R et al. High content screening for inhibitors of protein interactions and post-translational modifications in primary cells by proximity ligation. Mol Cell Proteomics 2010; 9(1):178–83.

Figures
Cell viability of SKBR3 cells and HaCat cells treated with PDTC in concentrations of 0.5, 5 and 50µM and with IKK-16 in concentrations of 0.5, 5 and 50µM. SKBR3 cells treated with the indicated concentrations of PDTC for 24h (A). SKBR3 cells treated with the indicated concentrations of IKK-16 for 24h (B). HaCat cells treated with the indicated concentrations of PDTC for 24h (C). HaCat cells treated with the indicated concentrations of IKK-16 for 24h (D).

Figure 1
Figure 2

NFκB related interactome of PTPIP51 in SKBR3 cells and HaCat treated with PDTC in concentrations of 0.5, 5 and 50µM and with IKK-16 in concentrations of 0.5 and 5µM. Interaction of PTPIP51 and RelA in SKBR3 cells treated with PDTC in the indicated concentrations for 6h (A). Interaction of PTPIP51 and IκB in SKBR3 cells treated with PDTC in the indicated concentrations for 6h (B). Interaction of PTPIP51 and RelA in SKBR3 cells treated with IKK-16 in the indicated concentrations for 6h (C). Interaction of PTPIP51 and RelA in HaCat cells treated with PDTC in the indicated concentrations for 6h (D). Interaction of PTPIP51 and IκB in HaCat cells treated with IKK-16 in the indicated concentrations for 6h (E).
and IκB in SKBR3 cells treated with IKK-16 in the indicated concentrations for 6h (D). Interaction of PTPIP51 and RelA in HaCat cells treated with PDTC in the indicated concentrations for 6h (E). Interaction of PTPIP51 and RelA in HaCat cells treated with IKK-16 in concentrations of 0.5, 5 and 50µM for 6h (F).

Figure 3

Interaction of PTPIP51 and the HER2 receptor in SKBR3 cells treated with PDTC (0.5, 5 and 50 µM) and IKK-16 (0.5 and 5µM). Interaction of PTPIP51 and the HER2 receptor in SKBR3 cells treated with PDTC in
the indicated concentrations for 6h (A). Interaction of PTPIP51 and the HER2 receptor in SKBR3 cells treated with IKK-16 in the indicated concentrations for 6h (B).

Figure 4

MAPK related interactome of PTPIP51 in SKBR3 cells treated with PDTC (0.5, 5 and 50 µM) and IKK-16 (0.5 and 5µM). Interaction of PTPIP51 and 14-3-3 in SKBR3 cells treated with PDTC in the indicated concentrations for 6h (A). Interaction of PTPIP51 and 14-3-3 in SKBR3 cells treated with IKK-16 in the
indicated concentrations for 6h (B). Interaction of PTPIP51 and Raf1 in SKBR3 cells treated with PDTC in the indicated concentrations for 6h (C). Interaction of PTPIP51 and Raf1 in SKBR3 cells treated with IKK-16 in the indicated concentrations for 6h (D).

Figure 5

MAPK related interactome of PTPIP51 in HaCat cells treated with PDTC (0.5, 5 and 50 µM) and IKK-16 (0.5 and 5µM). Interaction of PTPIP51 and 14-3-3 in HaCat cells treated with PDTC in the indicated
concentrations for 6h (A). Interaction of PTPIP51 and 14-3-3 in HaCat cells treated with IKK-16 in the indicated concentrations for 6h (B). Interaction of PTPIP51 and Raf1 in HaCat cells treated with PDTC in the indicated concentrations for 6h (C). Interaction of PTPIP51 and Raf1 in HaCat cells treated with IKK-16 in the indicated concentrations for 6h (D).

Figure 6
Interaction of PTPIP51 and PTP1B in SKBR3 cells and HaCat cells treated with PDTC (0.5, 5 and 50 µM) and IKK-16 (0.5, 5 and 5µM). Interaction of PTPIP51 and PTP1B in SKBR3 cells treated with PDTC in the indicated concentrations for 6h (A). Interaction of PTPIP51 and PTP1B in HaCat cells treated with PDTC in the indicated concentrations for 6h (B). Interaction of PTPIP51 and PTP1B in SKBR3 cells treated with IKK-16 in the indicated concentrations for 6h (C). Interaction of PTPIP51 and PTP1B in HaCat cells treated with IKK-16 in the indicated concentrations for 6h (D).

Figure 7

Schematic overview of the interaction shifts in SKBR3 cells after application of PDTC and IKK-16. Application of PDTC to SKBR3 cells inhibits the IκB ubiquitin ligase, thus inhibiting the degradation of IκB. The activation of IKKs through the HER2 receptor potentially leads to phosphorylation of PTPIP51 at serine 212. This mechanism shifts PTPIP51 into MAPK signaling and induces the formation of the Raf1/14-3-3/PTPIP51 complex. The PTPIP51 induced activation of the MAPK pathway bypasses the blocked NFκB signaling (A). Selective inhibition of IKK1, IKK2, and the IKK complex with IKK-16 inhibits the phosphorylation of IκB. Likewise, IKK is not able to phosphorylate PTPIP51 at serine 212, and thus PTPIP51 is not shifted into MAPK signaling. Due to the blockage of the aforementioned bypass mechanism SKBR3 cell viability is severely reduced by IKK-16 (B).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTable1.xls