A widely used sampling device in colorectal cancer screening programmes allows for large-scale microbiome studies

We read with interest the article by Passamonti et al., reporting the performance of two different faecal immunochemical tests (FITs) highlighting the importance of standardisation and validation of screening methodologies. Conventionally, laboratory-based FIT is the preferred approach in testing for occult blood in faeces, which includes colorectal cancer screening programmes. The potential of preserving stable faecal samples in a widely used FIT buffer for microbiome research would enable prospective microbiome studies in generally healthy subjects undergoing colorectal cancer screening.

For this purpose, we evaluated faecal sample stability in the commonly used OC-Sensor (Eiken Chemical, Tokyo, Japan) under various storage conditions. Faecal samples from five healthy adult individuals were used for the analysis and exposed to 16 different conditions: immediately frozen at −86°C (with FIT (wFIT)/without FIT (woFIT)); immediately frozen at −20°C (wFIT/woFIT); wFIT stored at 4°C for 1, 2, 7, 14 days; stored at 20°C for 1, 2, 7, 14 days; stored at 30°C for 1, 2, 7 days and lastly stored at 4°C for 2 days and at 20°C for additional 2 days. Shotgun metagenomic analysis was performed by Illumina 2500, while taxonomic compositions were determined by 16S rRNA analysis employing Illumina MiSeq and Ion Torrent PGM.

Our first attempt to extract DNA from wFIT samples failed due to low amount of DNA obtained. Thus, lyophilisation for all of the wFIT samples, except for woFIT samples, was applied, increasing the yield of DNA up to 30 times.

As shown by the figure 1, the Shannon index in both platforms displayed a clear pattern of decreased diversity during prolonged storage. While testing for differences between samples we discovered that woFIT samples, wFIT samples stored at 4°C for 1 and 2 days, wFIT samples stored at 20°C for 1 day from the Illumina MiSeq data significantly differ from wFIT samples stored at 30°C for 7 days (one-way analysis of variance; p<0.05).

The similarity matrix using unweighted principal coordinate analysis (PCoA, figure 2A,C) demonstrated that samples collected from each individual clustered together and was consistent in data gained from both sequencing platforms, suggesting that the biological effect outweighed the effect of the sample handling. Further, the weighted PCoA (figure 2B,D) displays that native samples tend to cluster closer while samples stored for prolonged periods tend to be located further away from the native ones.

Comparing observed operational taxonomic units (OTUs) between samples that were stored within various storage conditions, we were unable to identify any specific OTU cluster across all taxonomical levels that would significantly differ (Kruskal-Wallis test) between any storage condition. Nevertheless, we found that the relative abundances of Gram-negative bacteria tended to decrease while the abundances for most of the Gram-positive bacteria tended to increase over time. However, it is possible that even within native samples certain bacterial OTUs could fluctuate regardless of the sequencing platform employed.

Shotgun sequencing was performed on 12 samples (figure 2E) from four individuals: six woFIT samples (WO1–4) that were immediately stored at −86°C and six wFIT samples from three individuals (FIT1–4), stored for 2 days at 4°C and for 2 days at 20°C to imitate the typical sample treatment procedure when the material is being transported to a central laboratory by standard mail delivery. In addition to access the reproducibility of acquired data, technical replicates in the form of DNA that was extracted from independently collected samples from individuals 2 and 3 were included within
In this study, we sequenced microbiome samples employing two different sequencing platforms—Ion Torrent PGM that allows to analyse one variable region (V3) and to verify acquired results. β-diversity (panels A–D) analysis of GI tract bacterial communities between the individuals and storage conditions presented in a form of principal coordinate analysis (PCoA) plot of weighted and unweighted UniFrac distances. Panels A and C are coloured according to the conditions that samples were exposed to. Panels A and B represent the UniFrac metrics obtained from sequencing on the Illumina MiSeq platform, whereas panels C and D represent UniFrac metrics obtained from sequencing on the Ion Torrent PGM platform. The results of the metagenomics analysis at the species level are presented within panel E in a form of the heat-map profile for the most abundant entities in the metagenome samples. According to upper dendrogram, there is a consistency within the samples composition as the most from the same individual are clustering together. Samples W01, W02.1, W02.2, W03.1, W03.2, W04 were without faecal immunochemical test (woFIT) and immediately frozen at −86°C; while samples FIT1, FIT7.1, FIT7.2, FIT3.1, FIT3.2 and FIT4 were with FIT (wFIT) and stored at 4°C for 2 days and then at 20°C for additional 2 days. Samples FIT2.2 and FIT4 failed at the sequencing stage and therefore are not presented within the figure. Both sample groups include technical replicates for individuals 2 and 3 (eg, W02.1. and W02.2.; W03.1 and W03.2.; FIT2.1 and FIT2.2.; FIT3.1 and FIT3.2.).

Figure 2 Beta diversity (panels A–D) analysis of GI tract bacterial communities between the individuals and storage conditions presented in a form of principal coordinate analysis (PCoA) plot of weighted and unweighted UniFrac distances. Panels A and C are coloured according to the conditions that samples were exposed to. Panels A and B represent the UniFrac metrics obtained from sequencing on the Illumina MiSeq platform, whereas panels C and D represent UniFrac metrics obtained from sequencing on the Ion Torrent PGM platform. The results of the metagenomics analysis at the species level are presented within panel E in a form of the heat-map profile for the most abundant entities in the metagenome samples. According to upper dendrogram, there is a consistency within the samples composition as the most from the same individual are clustering together. Samples W01, W02.1, W02.2, W03.1, W03.2, W04 were without faecal immunochemical test (woFIT) and immediately frozen at −86°C; while samples FIT1, FIT7.1, FIT7.2, FIT3.1, FIT3.2 and FIT4 were with FIT (wFIT) and stored at 4°C for 2 days and then at 20°C for additional 2 days. Samples FIT2.2 and FIT4 failed at the sequencing stage and therefore are not presented within the figure. Both sample groups include technical replicates for individuals 2 and 3 (eg, W02.1. and W02.2.; W03.1 and W03.2.; FIT2.1 and FIT2.2.; FIT3.1 and FIT3.2.).
AUTHOR CONTRIBUTIONS

ML and LE contributed equally. DG and SS contributed equally.

REFERENCES

1. Passamonti B, Malaspina M, Fraser CG, et al. A comparative effectiveness trial of two faecal immunochemical tests for haemoglobin (FIT). Assessment of test performance and adherence in a single round of a population-based screening programme for colorectal cancer. Gut 2018;67:485–96.

2. Directorate-General for Health and Consumers (European Commission) EAHcC, World Health Organization. European guidelines for quality assurance in colorectal cancer screening and diagnosis. Luxemburg, 2010.

3. Young GP, Symonds EL, Allison JE, et al. Advances in fecal occult blood tests: the FIT revolution. Dig Dis Sci 2015;60:609–22.

4. Robertson DJ, Lee JK, Boland CR, et al. Recommendations on fecal immunochemical testing to screen for colorectal neoplasia: a consensus statement by the us multi-society task force on colorectal cancer. Am J Gastroenterol 2017;112:37–53.

5. Hale VL, Tan CI, Knight R, et al. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J Microbiol Methods 2015;113:16–26.

6. Carroll IM, Ringel-Kulka T, Siddle JP, et al. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One 2012;7:e46953.

7. Vlčková K, Mrázek J, Kopečný J, et al. Evaluation of different storage methods to characterize the fecal bacterial communities of captive western lowland gorillas (Gorilla gorilla gorilla). J Microbiol Methods 2012;91:45–51.

8. Cardona S, Eck A, Cassellas M, et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol 2012;12:158.

9. Vogtmann E, Chen J, Kibriya MG, et al. Comparison of fecal collection methods for microbiota studies in Bangladesh. Appl Environ Microbiol 2017;83:e00361–17.

10. Grow MA, Shah VD. Fecal sample immunoassay method testing for hemoglobin. European Patent Office, 1993.