CAR-T 19 combined with reduced-dose PD-1 blockade therapy for treatment of refractory follicular lymphoma: A case report

JIA WANG, QI DENG, YAN-YU JIANG, RUI ZHANG, HAI-BO ZHU, JUAN-XIA MENG and YU-MING LI

Department of Hematology, Tianjin First Central Hospital, Nankai, Tianjin 300192, P.R. China

Received September 5, 2018; Accepted May 22, 2019

DOI: 10.3892/ol.2019.10783

Abstract. Anti-CD19 chimeric antigen receptor T cell (CAR-T) therapy has changed the typical outcomes of relapsed/refractory B-cell leukemia and lymphoma. However, treatment effectiveness for patients with relapsed/refractory B-cell non-Hodgkin lymphoma has been less satisfactory compared with patients with B-cell acute lymphoblastic leukemia. The present study described a case of refractory follicular lymphoma. A high expression of programmed cell death 1 (PD-1) was measured on CD3+ T cells (80.90%) in peripheral blood samples obtained from the patient enrolled in this study, indicating that treatment with autologous CAR-T 19 cell therapy may not be successful. Therefore, a therapy regimen consisting of CAR-T 19 cells in combination with a reduced dose of nivolumab (1.5 mg/kg) for PD-1 blockade was used. A low dose of PD-1 blockade therapy was used to reduce the adverse effects associated with the combination of a PD-1 inhibitor and CAR-T 19 cells. This salvage therapy resulted in remission that lasted for >10 months.

Introduction

Although refined chemotherapy, including rituximab (an anti-CD20 monoclonal antibody), and autologous stem cell transplantation have improved the prognosis for B-cell non-Hodgkin lymphoma (B-NHL), patients with refractory B-NHL still have a poor prognosis (1,2). Approximately 19-26% of patients with follicular lymphoma (FL) receiving first-line immunotherapy with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) experienced progression of disease within 24 months (2). Chimeric antigen receptor (CAR) T cells are a remedial treatment for these patients. Anti-CD19 CAR T cell (CAR-T 19) therapies have exhibited potent activity against numerous subtypes of B-NHL, including FL (3). Nivolumab, the human immunoglobulin G4 programmed death-1 (PD-1) immune checkpoint inhibitor antibody with high affinity to PD-1 receptors on T cells, could block their interaction with PD ligands 1 and 2 (PD-L1/PD-L2) and restore T-cell function (4). A significant association between the expression levels of PD-1 on T cells and the immunosuppression of T cells has previously been reported (5). A study that focused on the use of Nivolumab in a cohort of 10 patients with relapsed or refractory FL, reported the overall response rate was four patients (40%), and one achieved complete response (6). Meanwhile, PD-1 inhibitors may lead to an imbalance in immune tolerance and uncontrolled immune response, even fatal myocarditis (7). The present study describes a patient with successfully treated refractory FL, who received anti-CD19 CAR-T cells combined with decreased dose PD-1 inhibitor regimen.

Case report

A 70-year-old female patient was admitted to the Tianjin First Central Hospital (Tianjin, China) in July 2017, presenting with fever and lower back pain, which had persisted for 10 days. A number of inpatient laboratory tests were performed. A bone marrow biopsy revealed lymphocyte dysplasia, small cell bodies, slightly irregular nuclei and thicker chromatin. The biopsy was fixed for 16-18 h with 10% formaldehyde, which was composed of 90 ml distilled water and 40% formaldehyde 10 ml and incubated for 18-20 h in Richman decalcification solution at room temperature which composed of 8% hydrochloric acid 40 ml and 10% formaldehyde 60 ml and embedded in paraffin. Subsequently, the 3-µm thin sections were cut and incubated with the following blocking reagents: Peroxide Block (ready to use; cat. no. DS9263; Leica Microsystems, Inc.) or EnVsion FLEX Peroxidase-Blocking Reagent (ready to use; cat. no. DM821; Dako; Agilent Technologies, Inc.), at room temperature for 3-5 min. Immunohistochemical staining was performed using commercially available primary antibodies at room temperature for 20-30 min according to the manufacturer’s protocol to the following antigens: CD20 (1:100; cat. no. RTU-CDC20-7D1-QH; Beijing Xin’ao Medical Technology Co., Ltd.), CD138 (1:100; cat. no. RTU-CDC138-QH; Beijing Xin’ao Medical Technology Co., Ltd.), PAX-5 (1:100; cat. no. PM-0111; Shanghai Ruijing Biotechnology Co., Ltd.), CD10 (1:100; cat. no. CRM-0191; Shanghai Ruijing Biotechnology
Co., Ltd.) and Bcl-2 (1:100; cat. no. RTU-BCL-2-486-QH;
Beijing Xin’ao Medical Technology Co., Ltd.). All antibodies
were observed under an Olympus light microscope at x100,
x400 and x1,000 magnification. Abnormal lymphocytes were
observed in the bone marrow morphology (Fig. 1A-C). The results
of the immunohistochemistry revealed that samples were
CD20+, PAX5+, CD138+, CD10 partially positive and
BCL2+. Approximately 10% nucleated cells were resuspended per
100 µl of buffer. The nucleated cells were incubated with
the human FcR Blocking Reagent (dilution, ready to use;
cat. no. 130-059-901, Miltenyi Biotec GmbH) in the dark at
2-8°C for 10 min No fixative was used for the bone marrow
fluid samples. Staining was performed using commercially
available antibodies at room temperature for 15 min according
to the manufacturer’s protocol: Anti-Skappa (ready to use;
cat. no. 349516; BD Biosciences), anti-Slambda (ready to use;
cat. no. 349516; BD Biosciences), CD19 (ready to use; cat.
no. 130-113-647; Miltenyi Biotec GmbH), anti-CD34 (ready to
use; cat. no. 340853; BD Biosciences), anti-CD10 (ready to use;
cat. no. IM3633; Beckman Coulter, Inc.), anti-CD45 (ready to
use; cat. no. 347463; BD Biosciences), anti-CD20 (ready to use;
cat. no. 347573; BD Biosciences). Flow cytometry was performed
using the Beckman Coulter cell telescopic flow cytometer and
cells were assessed using CytExpert software (version 2.3.0.84;
Beckman Coulter, Inc.). There were 7.6% abnormal mono-
clonal small B lymphocytes expressing CD19+, CD20+, CD22+,
FMC7+, CD23-, CD38-, CD71-, CD5-, CD10-, CD11c- detected
by flow cytometry in the bone marrow (Fig. 2). The IgH/BCL2
gene rearrangement was 4.8% detected by fluorescence in situ
hybridization (FISH), as analyzed by Tianjin Sino-US-Diagnostics
Technology Co., Ltd. in bone marrow (Fig. 1D). MYD88-L265P
gene examination was negative, detected by direct sequencing
as performed by Tianjin Sino-US-Diagnostics Technology Co., Ltd.) (Fig. 1D). Positron emission tomography-computed
tomography (PET-CT) examination revealed that bone density
was not uniform, with partial bone destruction. Additionally,
PET-CT revealed that bone metabolism was increased [L3
vertebral body local maximum standardized uptake value
(SUVmax), 28.20; bilateral neck, right suprachavicular fossa
enlarged lymph node SUVmax, 8.59] and that the metabolism of
a soft tissue mass in the left mesenteric region of lumbar 2-3
disc level was increased (SUVmax, 8.57; Fig. 3A). The patient
was diagnosed with advanced-stage IV FL, and treated with a
combination regimen of rituximab, cyclophosphamide, doxo-
rubicin, vincristine and prednisolone (R-CHOP). Following six
cycles of R-CHOP treatment, the patient presented with gener-
alized weakness, lower back pain and intermittent abdominal
pain. No abnormal phenotype B lymphocytes were observed in
the bone marrow at this time. A PET-CT examination revealed
that the increased metabolism of the bones and the soft tissue
mass in the left mesenteric region was decreased; however,
the density of mesenteric lymph nodes at the lumbar 1-5 level
was increased (SUVmax, 6.70; Fig. 3B). PET-CT examination
revealed a maximum probability that the mesenteric lymph
nodes were new lymphoma lesions. However, the patient had
comorbid hypertension and diabetes, and was therefore unable
to undergo a further biopsy to confirm this result. In addition,
high expression of PD-1 in CD3+ T cells (80.76%) was detected in
the peripheral blood samples from this patient by flow
cytometry.

The patient was diagnosed as having refractory lymphoma. The Eastern Cooperative Oncology Group Performance Status
condition of the patient was 2 points with hypertension and
diabetes (8). Following the initial R-CHOP, the patient was
subsequently enrolled in a clinical trial at the Department of
Hematology, Tianjin First Center Hospital with autologous
anti-CD19 CAR-T cell expressing murine anti-CD19 single
chain fragment variable and 4-1BB-CD3ζ costimulatory-activa-
tion domains (ChiCTR-ONN-16009862) in Jan 2018. The patient
received lymphodepleting chemotherapy with fludara-
bine (30 mg/m²) and cyclophosphamide (400 mg/m²) daily
from day -4 to day -2. Autologous anti-CD19 CAR-T cells
were infused (1x10⁶ cells/kg) on day 0. Because of the high
expression of PD-1 in her peripheral blood, a combination of
PD-1 blockade therapy and anti-CD19 CAR-T cell treatment
was used to improve the efficacy of CAR-T cell therapy and
to avoid anti-CD19 CAR-T cell treatment failure for the high
expression of PD-1. As PD-1 blockade therapy may result in
adverse effects especially for a 70-year-old patient, following
the infusion of CAR-T 19 cells, a reduced dose of the PD-1
inhibitor Opdivo® (Nivolumab; 1.5 mg/kg) was administered
on day 1. Other than fever and chills, a slight headache, mild
low blood pressure and low blood oxygen, the combination
therapy was well tolerated (Table I). These adverse effects
abated after 14 days. No severe adverse effects of the PD-1
inhibitor were observed during the treatment period. The
levels of PD-1 expression on T cells were monitored in periph-
eral blood samples from the patient and PD-1 expression
was maintained at <5% over the following 60 days. The patient
did not receive Nivolumab infusion in order to avoid adverse
effects in the following therapy. The expression levels of PD-1
remained low for 6 months after the salvage treatment and the
patient received no further treatment with a PD-1 inhibitor in
the next round of therapy.

After 30 days of combined therapy, significant clinical
improvement was observed. The weakness and lower back
pain gradually abated, and the patient resumed normal activi-
ities. A PET-CT examination was conducted and reviewed
after 60 days of combined therapy. On the PET-CT scan, the
density of mesenteric lymph nodes at the lumbar 1-5 level was
decreased compared with that of the previous scan (Fig. 3C).
The patient achieved complete response (CR) after 60 days of
the anti-CD19 CAR-T cells combined with reduced-dose PD-1
blockade treatment. Until now, the patient maintained CR for
16 months following the combination therapy.

During treatment, the percentage of anti-CD19 CAR-T
cells and the expression of PD-1 on CD3+ T cells in peripheral
blood samples were detected by flow cytometry. The anti-CD19
CAR DNA was detected by the quantitative PCR in peripheral
blood. DNA was obtained from the peripheral blood of the
patient. The mRNA level of CD19 CAR was detected via
reverse transcription-quantitative PCR (RT-qPCR) analysis.
After 24 or 48 h of co-culture, total RNA was extracted from
the cells using TRIzol® reagent (Invitrogen; Thermo Fisher
Scientific, Inc.) as the template for the reactions. cDNA was
synthesized with random primers from 10 µl total RNA with
the aid of the Revert Aid™ First Strand cDNA Synthesis
kit (Fermentas; Thermo Fisher Scientific, Inc.). Following
the protocol of the manufacturer, RT-qPCR was performed
to characterize the mRNA levels of specific genes using Fast
SYBR-Green Master Mix (Applied Biosystems; Thermo
Fisher Scientific, Inc.) with a Biosystems StepOne Real-Time
PCR machine (Applied Biosystems; Thermo Fisher Scientific,
Inc). The primer sequences were restricted by company patents and could not be provided. Each PCR reaction was performed in triplicate as follows: In order to prevent any non-specific PCR, amplification and contamination was performed at 50°C for 2 min. Denaturation was performed at 95°C for 10 min. Annealing and elongation was performed with 35 cycles at 95°C for 15 sec and final extension was performed at 60°C for 1 min. The levels of interleukin-6 (IL-6) in the serum were detected via ELISA, using the one-step sandwich method (Shanghai Renjie Biotechnology Co., Ltd.). Other indicators were measured, including serum ferritin using the chemiluminescence immunoassay method (Beckman Inc.) and C-reactive protein (CRP) using the Latex enhanced immunoturbidimetric method, performed by the Nanjing Jiancheng Bioengineering Institute. The highest percentage of anti-CD19 CAR-T cells among CD3+ T cells was 9.22% on day 7 of combination therapy (day 0 was set as the day of CD19 CAR-T cell infusion). Approximately 90 days after combination therapy, the percentage of anti-CD19 CAR-T cells had decreased to ~0.01% (Fig. 4A). The highest anti-CD19 CAR DNA copy number was 3,560 copies/µg of DNA on day 7 after combination therapy. Approximately 90 days after therapy, it had decreased to 320 copies/µg of DNA (Fig. 4B). Notably, the expression of PD-1 in CD3+ T cells was decreased from 80.90% prior to combination therapy, which was 80.76% on day 0 of this therapy, to 0.05% on day 7 following combination therapy. PD-1 expression remained <5% over the following 60 days, and <7% for 180 days following the salvage treatment (Fig. 4C). The highest level of IL-6 in the serum was 110.2 pg/ml on day 4 of combination therapy. The level of IL-6 in serum had decreased to a normal level, whereas symptoms such as fever and headache had abated on day 14 (Fig. 4D). Serum ferritin and CRP levels had similar changes to IL-6 (Fig. 4E and F). Cytokine release syndrome following treatment with CAR-T 19 cells was grade II (5).

Discussion

B-NHL is the most frequent hematological malignancy. Chemotherapy, anti-CD20 monoclonal antibodies and autologous stem cell transplantation have improved the prognosis of patients with B-NHL in recent decades; however, the prognosis of patients with refractory B-NHL remains poor (9). Anti-CD19 CAR-T cell therapy may improve remission rates and prolong survival time in patients with relapsed/refractory B-lineage hematological malignancies (10,11).

The immunosuppressive PD-1 pathway prevents T cells from entering the tumor area and blocks the effects of T-cell immunotherapy (12,13). Although the effects of the PD-1 inhibitor were significant, it requires regular and repeated administration (14). Anti-CD19 CAR-T cells cultured from PD-1 high expression T cells exhibited decreased anti-tumor immune responses and result in failure of CAR-T cell therapy (15). According to the beneficial effects of PD-1 inhibitors on the clinical treatment of tumors (16), PD-1 inhibitors may be able to partially rescue the deterioration of anti-CD19 CAR-T cell function. Anti-CD19 CAR-T cell in combination with PD-1 blockade may overcome the immunosuppressive effects of high PD-1 expression on T cells, thereby improving the therapeutic efficacy in relapsed/refractory B-NHL.

A number of adverse effects are associated with PD-1 blockade, particularly immune-associated adverse events.
in the respiratory and circulatory systems (17). The mechanisms underlying these effects remain unclear; however, they may result in mortality. Additionally, the adverse effects of anti-CD19 CAR-T cells, including cytokine release syndrome, must be taken into account (18). The present study hypothesized that CAR-T 19 cell therapy combined with decreased-dose PD-1 blockade may be effective in treating B-NHL. This combination decreased the adverse effects associated with PD-1 inhibitors and anti-CD19 CAR-T cell, and led to improved therapeutic efficacy.

The present case study demonstrated the therapeutic feasibility of decreased-dose PD-1 inhibitor in combination with CAR-T 19 cells to overcome immnosuppression. A decreased dose of PD-1 inhibitor may decrease its adverse effects, whilst still ensuring efficacy. Future studies are required in order to test the combination of decreased-dose PD-1 inhibitor and CAR-T 19 cells in more patients with refractory lymphoma and high expression of PD-1 in peripheral blood samples. In addition, further studies are required to elucidate the molecular mechanisms underlying this combination therapy and to design a clinical trial to test the efficacy of PD-1 inhibitors combined with CAR-T 19 cells in patients with refractory B-NHL.

Acknowledgements

Not applicable.

Funding

The present study was supported by the Hospital Funding Project (grant no. CM201805).

Table I. Adverse effects following salvage treatment with anti-CD19 CAR-T cell combined with reduced-dose programmed cell death 1 blockade therapy.

Variable	-12	0	4	7	14	21
Temperature (°C)	36.7	38.0	37.6	38.8	36.4	36.5
Chills	No	Yes	No	No	No	No
Blood pressure (mmHg)	100/60	110/74	156/89	89/52	125/76	105/70
Blood oxygen (%)	95	93	91	84	89	94
Neurological symptoms	-	N	Headache	Headache	N	N
White blood cell count (x10⁹/l)	4.27	2.37	1.04	4.01	2.55	5.16
Hemoglobin (g/l)	114	106	94	89	105	109
Blood platelet count (x10⁹/l)	155	68	47	104	127	173

Other than fever and chills, a slight headache, mild low blood pressure and low blood oxygen, the combined therapy was well tolerated. The adverse effects were abated 14 days after the combined therapy. -, not applicable; N, normal.

Figure 4. Expression of PD-1 on anti-CD19 CAR T cells and cytokine secretion. (A) The highest percentage of anti-CD19 CAR T cells in CD3⁺ T cells was 9.22% on day 7 following combination therapy; these cells were almost undetectable on day 90. (B) The highest anti-CD19 CAR DNA copy number was 3,560 copies/µg DNA on day 7 and was decreased to 320 copies on day 90. (C) The expression of PD-1 in CD3⁺ T cells decreased from 80.76%, detected on the day 0 of the combination therapy, to 0.05% on day 7 and was maintained at a low level. (D) The highest level of IL-6 in the serum was 110.2 pg/ml on day 4 and was decreased to a normal level on day 14. (E) Serum ferritin and (F) C-reactive protein exhibited similar changes to IL-6. PD-1, programmed cell death 1; CAR, chimeric antigen receptor; CAR-T 19, anti-CD19 CAR T cell; CD, cluster of differentiation; IL-6, interleukin-6.
Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Authors' contributions

QD conceptualized and designed the study. JW, YJ, HZ and YL performed the clinical trial. RZ acquired the data. JM analyzed and interpreted the data. All authors contributed to the writing and revision of the manuscript.

Ethics approval and consent to participate

The study protocol was approved by the Ethics Committee of Tianjin First Center Hospital and written informed consent was obtained from the patient.

Patient consent for publication

Informed consent for publication was obtained from the patient.

Competing interests

The authors declare that they have no conflicts of interest.

References

1. Van Den Neste E, Schmitz N, Mounier N, Gill D, Linch D, Truyen M, Bouabdallah R, Radford J, Bargetzi M, Ribrag V, et al.: Outcomes of diffuse large B-cell lymphoma patients relapsing after autologous stem cell transplantation: An analysis of patients included in the CORAL study. Bone Marrow Transplant 52: 216-221, 2017.
2. Jurinovic V, Kridel R, Staiger AM, Szczepanowski M, Horn H, Dreyling MH, Rosenwald A, Ott G, Klapper W, Zelenetz AD, et al.: Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunotherapy. Blood 128: 1112-1120, 2016.
3. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, Brogdon JL, Pruteanu-Malinici I, Bhoj V, Landsburg D, et al.: Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377: 2545-2554, 2017.
4. Wang C, Thudium KB, Han M, Wang XT, Huang H, Feingersh D, Garcia C, Wu Y, Kuhne M, Srivinasan M, et al.: In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicity in non-human primates. Cancer Immunol Res 2: 846-856, 2014.
5. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Solsona JA, Atkins MB, et al.: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366: 2443-2454, 2012.
6. Annibali O, Crescenzi A, Tomarchio V, Pagano A, Bianchi A, Grifoni A and Avvisati G: PD-1/PD-L1 checkpoint in hematological malignancies. Leuk Res 67: 45-55, 2018.
7. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA and Wolchok JD: Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26: 2375-2391, 2015.
8. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET and Carbone PP: Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol 5: 649-655, 1982.
9. Martelli M, Ferreri AJ, Agostinelli C, Di Rocco A, Pfreundschuh M and Pileri SA: Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol 87: 146-171, 2013.
10. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, et al.: Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33: 540-549, 2015.
11. Batlevi CL, Matsuki E, Brentjens RJ and Younes A: Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol 13: 25-40, 2016.
12. Davila ML, Riviere I, Wang X, Birtido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olaszewska M, et al.: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6: 224-225, 2014.
13. Jaspers JE and Brentjens RJ: Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther 178: 83-91, 2017.
14. Huang AC, Postow MA, Orlofsky RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, et al.: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545: 60-65, 2017.
15. Li S, Siriwon N, Zhang X, Yang S, Jin T, He F, Kim YJ, Mac I, Lu Z, Wang S, et al.: Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res 23: 6982-6992, 2017.
16. Zou W, Wolchok JD and Chen L: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med 8: 328-324, 2016.
17. Läubli H, Balmelli C, Bossard M, Pfister O, Glatz K and Zippelius A: Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. Am J Cardiol 114: 2242-2247, 2014.
18. Brudno JN and Kochenderfer JN: Toxicities of chimeric antigen receptor T cells engineered to secrete PD-1 antibody in cancer. N Engl J Med 366: 2443-2454, 2012.
19. Atkins MB, McDermott DF, Powderly JD, Carvajal RD, Solson JA, Atkins MB, et al.: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366: 2443-2454, 2012.