COMPLEXITY OF OM FACTORIZATIONS OF POLYNOMIALS OVER LOCAL FIELDS

JENS-DIETRICH BAUCH, ENRIC NART, AND HAYDEN D. STAINSBY

Abstract. Let \(k \) be a locally compact complete field with respect to a discrete valuation \(v \). Let \(\mathcal{O} \) be the valuation ring, \(m \) the maximal ideal and \(F(x) \in \mathcal{O}[x] \) a monic separable polynomial of degree \(n \). Let \(\delta = v(\text{Disc}(F)) \). The Montes algorithm computes an OM factorization of \(F \). The single-factor lifting algorithm derives from this data a factorization of \(F \pmod{m^\nu} \), for a prescribed precision \(\nu \). In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of \(O(n^2 + \nu^2 + n\delta^2 + n^2\nu) \) word operations for the complexity of the computation of a factorization of \(F \pmod{m^\nu} \), assuming that the residue field of \(k \) is small.

Introduction

Let \(A \) be a Dedekind domain whose field of fractions \(K \) is a global field. Let \(L/K \) be a finite separable extension and \(B \) the integral closure of \(A \) in \(L \). Let \(\theta \in L \) be a primitive element of \(L/K \), with minimal polynomial \(f(x) \in A[x] \).

Let \(p \) be a non-zero prime ideal of \(A \), \(v_p \) the canonical \(p \)-adic valuation, \(K_p \) the completion of \(K \) at \(p \), and \(\mathcal{O}_p \) the valuation ring of \(K_p \).

The Montes algorithm [GMN11, GMN12] computes an OM representation of every prime ideal \(\mathfrak{P} \) of \(B \) lying over \(p \) [GMN12a]. This algorithm carries out a program suggested by Ø. Ore [Ore23, Ore28], and developed by S. MacLane in the context of valuation theory [McL36, McL36a]. An OM representation is a computational object supporting several data and operators, linked to one of the irreducible factors (say) \(F(x) \) of \(f(x) \) in \(\mathcal{O}_p[x] \). Among these data, the OM representation contains all the Okutsu invariants of \(F \), which reveal a lot of arithmetic information about the finite extension of \(K_p \) determined by \(F \) [Oku82, GMN10]. The initials OM stand indistinctly for Ore-MacLane or Okutsu-Montes.

The Montes algorithm has been used as the core of several arithmetic routines to compute prime ideal decomposition, integral bases and the discriminant of \(L/K \); generators of prime ideals, the \(\mathfrak{P} \)-adic valuation, \(v_\mathfrak{P} : L^* \to \mathbb{Z} \), the reduction mapping, \(B \to B/\mathfrak{P} \), the Chinese remainder algorithm in \(B \), and the \(p \)-valuation of discriminants and resultants of polynomials with coefficients in \(K \) [GMN11, GMN12b, GMN12a, Nar12].

Also, if the Montes algorithm is combined with the single-factor lifting algorithm [GNP12], they yield a fast factorization routine for polynomials over local fields, which turns into an acceleration of some of the above mentioned routines.

2010 Mathematics Subject Classification. Primary 11Y40; Secondary 11Y05, 11R04, 11R27.

Key words and phrases. discriminant, global field, local field, Montes algorithm, Newton polygon, Okutsu discriminant, OM factorization, OM representation.

Partially supported by MTM2009-10359 from the Spanish MEC.
The complexity of the Montes algorithm was analyzed by D. Ford-O. Veres [FV10] and S. Pauli [Paul10]. Assuming p small, they obtained an estimation of $O(n^{2+\epsilon})$ word operations for the algorithm used as an irreducibility test for polynomials over local fields, where $n = [L: K]$ and $\delta = \nu_p(\text{Disc}(f))$. Then, by natural extrapolation arguments they concluded that this estimation is valid for the general algorithm too.

In this paper, we present a new estimation for the complexity of the Montes algorithm. To this end, we find the least precision ν such that the polynomial $f(x) \pmod{p^\nu}$ contains sufficient information to detect that $f(x)$ is irreducible over O_p, and the least precision such that a factorization of $f(x) \pmod{p^\nu}$ determines a “sufficiently good” approximate factorization of $f(x)$ over O_p.

In section 1 we review the role of the Okutsu invariants of the irreducible factors of $f(x)$ over O_p, which are essential for our purposes. In section 2, we introduce a new Okutsu invariant, the exponent of the Okutsu discriminant, which is a key ingredient to prove that the irreducibility of $f(x)$ over O_p may be tested by working at precision $\nu = [2\delta/n] + 1$ (Theorem 2.3). In section 3 we introduce the concept of OM factorization, giving a precise sense to what we mean by a “sufficiently good” approximate factorization. We show that the OM representations satisfying certain properties are the adequate objects to deal with OM factorizations from a computational perspective, and we prove that an OM factorization of $f(x)$ over O_p can be found by working at precision $\nu = \delta + 1$ (Theorem 3.14). In section 4 we review the Montes algorithm as a device to compute an OM factorization of $f(x)$ over O_p. Finally, in section 5 we use these results to obtain an estimation of $O(n^{2+\epsilon + \delta^{2+\epsilon}})$ word operations for the complexity of the Montes algorithm used as a polynomial irreducibility test, and an estimation of $O(n^{2+\epsilon} + n^{1+\epsilon}\delta^{2+\epsilon})$ word operations for the complexity of the general algorithm. This estimation yields improved estimations for the complexity of all the arithmetic routines mentioned above. For instance, we deduce an estimation of $O(n^{2+\epsilon} + n^{1+\epsilon}\delta^{2+\epsilon} + n^{2+\epsilon})$ word operations for the complexity of the factorization of $f(x)$ over $O_p[x]$, with an arbitrary prescribed precision ν (Theorem 5.18). The best known previous estimation for the factorization of polynomials over local fields had total degree $4 + \epsilon$ in n, δ and ν [GNP12].

1. Okutsu invariants of an irreducible polynomial over a local field

Let k be a local field, i.e. a locally compact and complete field with respect to a discrete valuation ν. Let O be the valuation ring of k, m the maximal ideal, $\pi \in m$ a generator of m and $F = O/m$ the residue field, which is a finite field. Let p be the characteristic of F.

Let $k^{sep} \subset \overline{k}$ be the separable closure of k inside a fixed algebraic closure. Let $\nu: \overline{k} \to \mathbb{Q} \cup \{\infty\}$, be the canonical extension of the discrete valuation ν to \overline{k}, normalized by $\nu(k) = Z$.

Let $F(x) \in O[x]$ be a monic irreducible separable polynomial, $\theta \in k^{sep}$ a root of $F(x)$, and $L = k(\theta)$ the finite separable extension of k generated by θ. Denote $n := [L: k] = \deg F$. Let O_L be the ring of integers of L, m_L the maximal ideal and F_L the residue field. We indicate with a bar, $\bar{\cdot}: O[x] \to F[x]$, the canonical homomorphism of reduction of polynomials modulo m.

Let $[\phi_1, \ldots, \phi_r]$ be an Okutsu frame of $F(x)$, and let ϕ_{r+1} be an Okutsu approximation to $F(x)$. That is, $\phi_1, \ldots, \phi_{r+1} \in O[x]$ are monic separable polynomials of
strictly increasing degree:

\[1 \leq m_1 := \deg \phi_1 < \cdots < m_r := \deg \phi_r < m_{r+1} := \deg \phi_{r+1} = n, \]

and for any monic polynomial \(g(x) \in \mathcal{O}[x] \) we have:

\[m_i \leq \deg g < m_{i+1} \implies \frac{v(g(\theta))}{\deg g} \leq \frac{v(\phi_i(\theta))}{m_i} < \frac{v(\phi_{i+1}(\theta))}{m_{i+1}}, \]

for \(0 \leq i \leq r \), with the convention that \(m_0 = 1 \) and \(\phi_0(x) = 1 \). It is easy to deduce from (1) that the polynomials \(\phi_1(x), \ldots, \phi_{r+1}(x) \) are all irreducible in \(\mathcal{O}[x] \).

The length \(r \) of the frame is called the Okutsu depth of \(F(x) \). Okutsu frames were introduced by K. Okutsu in [Oku82] as a tool to construct integral bases. Okutsu approximations were introduced in [GMN10], where it is shown that the family \(\phi_1, \ldots, \phi_r, \phi_{r+1} \) determines an optimal \(F \)-complete type of order \(r+1 \):

\[\text{Type } t_F = \left\{ (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_r, \lambda_r, \psi_r); (\phi_{r+1}, \lambda_{r+1}, \psi_{r+1})), \right\} \]

or

\[\left\{ (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_r, \lambda_r, \psi_r); (F, -\infty, -)), \right\}, \]

according to \(\phi_{r+1} \neq F \) or \(\phi_{r+1} = F \), respectively. We call \(t_F \) an OM representation of \(F \). In the case \(\phi_{r+1} = F \), we say that the OM representation is exact.

Any OM representation of the polynomial \(F \) carries (stores) several invariants and operators yielding strong arithmetic information about \(F \) and the extension \(L/k \). Let us recall some of these invariants and operators.

Attached to the type \(t_F \), there is a family of discrete valuations of the rational function field \(k(x) \), the MacLane valuations:

\[v_i: k(x) \rightarrow \mathbb{Z} \cup \{\infty\}, \quad 1 \leq i \leq r+1, \]

such that \(0 = v_1(F) < \cdots < v_{r+1}(F) \). The \(v_1 \)-value of a polynomial in \(k[x] \) is the minimum of the \(v \)-values of its coefficients.

Also, \(t_F \) determines a family of Newton polygon operators:

\[N_i: k[x] \rightarrow 2^{\mathbb{Z}^2}, \quad 1 \leq i \leq r+1, \]

where \(2^{\mathbb{Z}^2} \) is the set of subsets of the Euclidean plane. Any non-zero polynomial \(g(x) \in k[x] \) has a canonical \(v_i \)-development:

\[g(x) = \sum_{a_s \leq m_i} a_s(x)\phi_i(x)^{s}, \quad \deg a_s < m_i, \]

and the polygon \(N_i(g) \) is the lower convex hull of the set of points \((s, v_i(a_s\phi_i^s)) \).

Usually, we are only interested in the principal polygon \(N_i^-(g) \subset N_i(g) \) formed by the sides of negative slope. For all \(1 \leq i \leq r \), the Newton polygons \(N_i(F) \) and \(N_i(\phi_{i+1}) \) are one-sided and they have the same slope, which is a negative rational number \(\lambda_i \in \mathbb{Q}_{<0} \). The Newton polygon \(N_{r+1}(F) \) is one-sided and it has an (extended) integer negative slope, which we denote by \(\lambda_{r+1} \in \mathbb{Z} \cup \{-\infty\} \).

The triple \((\phi_i, v_i, \lambda_i) \) determines the discrete valuation \(v_{i+1} \) as follows: for any non-zero polynomial \(g(x) \in K[x] \), take a line of slope \(\lambda_i \) far below \(N_i(g) \) and let it shift upwards till it touches the polygon for the first time; if \(u \) is the ordinate of the point of intersection of this line with the vertical axis, then \(v_{i+1}(g) = e_iu \).

There is a chain of finite extensions: \(F = F_0 \subset F_1 \subset \cdots \subset F_{r+1} = F_L \). The type \(t_F \) stores monic irreducible polynomials \(\psi_i(y) \in F_i[y] \) such that \(F_{i+1} \simeq F_i[y]/(\psi_i(y)) \). We have \(\psi_i(y) \neq y \), for all \(i > 0 \). Finally, for every negative rational number \(\lambda \), there are residual polynomial operators:

\[R_{\lambda, i}: k[x] \rightarrow F_i[y], \quad 0 \leq i \leq r+1. \]
We define $R_i := R_{\lambda_i, t}$. For all $0 \leq i \leq r$, we have $R_i(F) \sim \psi_i^{\omega_i+1}$ and $R_i(\phi_{i+1}) \sim \psi_i$, where the symbol \sim indicates that the polynomials coincide up to a multiplicative constant in F^*. For $i = 0$ we have $R_0(F) = F = \psi_0^{\omega_0}$ and $R_0(\phi_1) = \phi_1 = \psi_0$. The exponents ω_i+1 are all positive and $\omega_{r+1} = 1$. The operator R_{r+1} is defined only when $\phi_{r+1} \neq F$; in this case, we have also $R_{r+1}(F) \sim \psi_{r+1}$, with $\psi_{r+1}(y) \in F_{r+1}[y]$ monic of degree one such that $\psi_{r+1}(y) \neq y$.

From these data some more numerical invariants are deduced. Initially we take:

$$m_0 := 1, \quad f_0 := \deg \psi_0, \quad e_0 := 1, \quad h_0 := V_0 := \mu_0 := \nu_0 = 0.$$

Then, we define for all $1 \leq i \leq r+1$:

$$h_i, e_i \text{ positive coprime integers such that } \lambda_i = -h_i/e_i,$$

$$f_i := \deg \psi_i,$$

$$m_i := \deg \phi_i = e_{i-1}f_{i-1}m_{i-1} = (e_0 e_1 \cdots e_{i-1})(f_0 f_1 \cdots f_{i-1}),$$

$$\mu_i := \sum_{1 \leq j \leq i} (e_j f_j \cdots e_{i-1} - 1)h_j/(e_1 \cdots e_j),$$

$$\nu_i := \sum_{1 \leq j \leq i} h_j/(e_1 \cdots e_j),$$

$$V_i := v_i(\phi_i) = e_{i-1}f_{i-1}(e_{i-1}V_{i-1} + h_{i-1}) = (e_0 \cdots e_{i-1})(\mu_{i-1} + \nu_{i-1}).$$

The general definition of a type may be found in \cite[Sec. 2.1]{GMN12}. In later sections, we shall consider types which are not necessarily optimal nor F-complete. So, it may be convenient to distinguish these two properties among all features of a type that we have just mentioned.

Definition 1.1. Let $t = (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_i, \lambda_i, \psi_i))$ be a type of order i and denote $m_{i+1} := e_if_im_i$. Let $g(x) \in K[x]$ be a polynomial.

- We say that t is optimal if $m_1 < \cdots < m_i$. We say that t is strongly optimal if $m_1 < \cdots < m_i < m_{i+1}$.

- We define $\text{ord}_t(g) := \text{ord}_\psi, R_i(g)$ in $F_t[y]$. If $\text{ord}_t(g) > 0$, we say that t divides $g(x)$, and we write $t \mid g(x)$. This function ord_t behaves well with respect to products: $\text{ord}_t(gh) = \text{ord}_t(g) + \text{ord}_t(h)$.

- We say that t is g-complete if $\text{ord}_t(g) = 1$.

- A representative of t is a monic polynomial $\phi(x) \in O[x]$ of degree m_{i+1}, such that $\text{ord}_t(\phi) = 1$. This polynomial is necessarily irreducible in $O[x]$. The degree m_{i+1} is minimal among all polynomials satisfying this condition.

- For any $0 \leq j \leq i$, the truncation of t at level j, $\text{Trunc}_j(t)$, is the type of order j obtained from t by dropping all levels higher than j. We have $\text{ord}_{\text{Trunc}_j(t)}(g) \geq (e_{j+1}f_{j+1}) \cdots (e_if_i) \text{ord}_t(g)$.

Thus, for a general type of order i dividing F, we have $m_1 | \cdots | m_i$ and $\omega_i > 0$, but not necessarily $m_1 < \cdots < m_i = \deg F$, and $\omega_i = 1$. These were particular properties of our optimal and F-complete type t_F of order $i = r + 1$, constructed from an Okutsu frame and an Okutsu approximation to F.

An irreducible polynomial F admits infinitely many different OM representations. However, the numerical invariants e_i, f_i, h_i, for $0 \leq i \leq r$, and the MacLane valuations ν_1, \cdots, ν_{r+1} attached to t_F, are canonical invariants of F.

The data $\lambda_{r+1}, \psi_{r+1}$ are not invariants of F; they depend on the choice of the Okutsu approximation ϕ_{r+1}. The integer slope $\lambda_{r+1} = -h_{r+1}$ measures how close is ϕ_{r+1} to F. We have $\phi_{r+1} = F$ if and only if $h_{r+1} = \infty$.
Definition 1.2. An Okutsu invariant of $F(x)$ is a rational number that depends only on $e_1, \ldots, e_r, f_0, f_1, \ldots, f_r, h_1, \ldots, h_r$.

We are specially interested in the following invariants of the polynomial $F(x)$:
\[
e(F) := e(L/k), \text{ the ramification index of } L/k, \\
f(F) := f(L/k), \text{ the residual degree of } L/k, \\
\mu(F) := \max\{v(g(\theta)) \mid g(x) \in \mathcal{O}[x] \text{ monic of degree less than } n\}, \\
\delta(F) := v(Disc(F)).
\]

The different ideal of L/k is $\text{Diff}(L/k) = (mL)^{-1+\rho}$, for some integer $\rho \geq 0$, which is not an Okutsu invariant. Also, $\rho = 0$ if and only if L/k is tamely ramified.

Proposition 1.3. \textbf{[GMN12] Cor. 3.8, [Nar12] Cor. 1.8]}
\[
e(F) = e_0 e_1 \cdots e_r, \quad f(F) = f_0 f_1 \cdots f_r, \\
\mu(F) = \mu_r = \sum_{1 \leq j \leq r} (e_j f_j \cdots e_r f_r - 1) h_j / (e_1 \cdots e_j), \\
\delta(F) = n \mu(F) + f(F) \rho.
\]

Thus, $e(F)$, $f(F)$ and $\mu(F)$ are Okutsu invariants of F, but $\delta(F)$ is not. Nevertheless, the lower bound by an Okutsu invariant, $\delta(F) \geq n \mu(F)$, will be essential for our purposes.

Definition 1.4. The length of a Newton polygon N is the abscissa of its right end point; we denote it by $\ell(N)$.

The following lemma will be frequently used.

Lemma 1.5. \textbf{[GMN12] Prop. 2.7, Lem. 2.17, Thm. 3.1]}
\[
(1) \quad v_i(a) = e_0 \cdots e_{i-1} v(a), \text{ for all } a \in k \text{ and all } 1 \leq i \leq r + 1. \\
(2) \quad \ell(N_{r+1}(g)) = \text{ord}_e(g), \text{ for any non-zero polynomial } g(x) \in k[x]. \\
(3) \quad v(\phi_i(\theta)) = (V_i + |\lambda_i|) / (e_0 \cdots e_{i-1}) = \mu_{i-1} + \nu_i, \text{ for all } 1 \leq i \leq r + 1. \\
(4) \quad v(\phi_i(\theta)) / m_i = V_{i+1} / (m_{i+1} e_0 \cdots e_i), \text{ for all } 1 \leq i \leq r.
\]

We end this background section by recalling the Okutsu equivalence of irreducible separable polynomials over \mathcal{O}, and the concept of width of such a polynomial.

Lemma 1.6. \textbf{[GNP12] Lem. 3.1]}
\[
\text{Let } \phi \in \mathcal{O}[x] \text{ be a monic polynomial of degree } m_{r+1}. \text{ Let } F \in \mathcal{O}[x] \text{ be an irreducible separable polynomial such that } \phi | F, \text{ and let } \theta \in k^{\text{sep}} \text{ be a root of } F. \text{ Then, the following conditions are equivalent:}
\]
\[
(a) \quad \phi \text{ is a representative of } t. \\
(b) \quad v(\phi(\theta)) > V_{r+1} / (e_0 \cdots e_r) = (m_{r+1} / m_r) v(\phi_r(\theta)).
\]

Definition 1.7. \textit{Let } F \in \mathcal{O}[x] \text{ be a monic irreducible separable polynomial of Okutsu depth } r, \text{ and let } f_F \text{ be an OM representation of } F \text{ as in } [2]. \text{ Let } t := \text{Trunc}_r(t_F). \text{ We say that a monic polynomial } G \in \mathcal{O}[x] \text{ is an Okutsu approximation to } F, \text{ and we write } F \approx G, \text{ if } G \text{ is a representative of } t.

We also say that } F \text{ and } G \text{ are Okutsu equivalent polynomials.}

By Lemma 1.6, this definition does not depend on the choice of the OM representation of F. The binary relation \approx is an equivalence relation on the set of all monic irreducible separable polynomials in $\mathcal{O}[x]$ \textbf{[GMN10] Lem. 4.3]. Okutsu equivalent polynomials have the same Okutsu invariants and the same MacLane valuations \textbf{[GMN10] Cor. 3.7].}
For F as above, and $1 \leq i \leq r + 1$, let $\text{Rep}_i(F) \subseteq \mathcal{O}[x]$ be the set of all representatives of $\text{Trunc}_{i-1}(t_F)$. Consider:

$$V_i := \{ v(\phi(\theta)) \mid \phi \in \text{Rep}_i(F) \} \subseteq \mathbb{Q} \cup \{ \infty \}.$$

By the formula (1), $\phi_i \in \text{Rep}_i(F)$ and $v(\phi_i(\theta)) = \max(V_i)$, for all $1 \leq i \leq r$. By definition, $\text{Rep}_{r+1}(F)$ is the set of all Okutsu approximations to $F(x)$. The set V_{r+1} is not finite, and it contains ∞, because $F \in \text{Rep}_{r+1}(F)$.

The sets V_1, \ldots, V_r are finite and easy to describe [GNP12 Prop. 3.4].

Proposition 1.8. For any $\lambda \in \mathbb{Q}$, let $M_\lambda := \{ m \in \mathbb{Z} \mid 1 \leq m < |\lambda| \} \cup \{ |\lambda| \}$. Then,

$$V_i = \{ (V_i + m)/(e_0 \cdots e_{i-1}) \mid m \in M_\lambda \},$$

for all $1 \leq i \leq r$. In particular, $\# V_i = |\lambda_i| = [h_i/e_i]$.

The width of $F(x)$ is defined to be the vector of positive integers,

$$\text{(}\#V_1, \ldots, \#V_r) = ([h_1/e_1], \cdots, [h_r/e_r]).$$

As we shall see in section 5 it is a fundamental invariant for the analysis of the complexity of the Montes algorithm.

2. The Okutsu discriminant

We keep all notation from the previous section. In this section we introduce a new Okutsu invariant of an irreducible polynomial $F(x) \in \mathcal{O}[x]$, linked to the problem of determining the least exponent ν such that all polynomials of degree $n = \deg F$, belonging to $F(x) + m^r[x]$, are irreducible in $\mathcal{O}[x]$.

Definition 2.1. Let $F(x) \in \mathcal{O}[x]$ be a monic irreducible separable polynomial of degree n and t_F an OM representation of F as in (2). If r is the Okutsu depth of $F(x)$, we define the Okutsu discriminant of $F(x)$ as the ideal $\mathfrak{m}^{\delta_0(F)}$, where

$$\delta_0(F) := \frac{V_{r+1}}{e(F)} = \mu_r + \nu_r = \sum_{1 \leq i \leq r} \frac{|\lambda_i|}{e_0 \cdots e_{i-1}} \frac{n}{m_i}.$$

The exponent $\delta_0(F)$ of the Okutsu discriminant coincides, up to a certain normalization, with the ordinate of the left end point of $N_r(F)$.

Lemma 2.2. With the above notation, denote $u_i := v_i(a_{0,i}(F))$, for $1 \leq i \leq r$, where $a_{0,i}(F) \in \mathcal{O}[x]$ is the 0-th coefficient of the ϕ_i-development of F. Then,

1. $u_1 < u_2/e_1 < \cdots < u_r/(e_0 \cdots e_{r-1}) = \delta_0(F)$.

2. $\delta_0(F) \leq 2\delta(F)/n$, and equality holds if and only if either $r = 0$, or $r = 1$, $e_1 f_1 = 2$, $p > e_1$.

Proof. Denote $\omega_i = n/m_i = (e_i f_i) \cdots (e_r f_r)$. The Newton polygon $N_i(F)$ is one-sided, with end points $(0, u_i)$ and $(\omega_i, v_i(F))$ [GNM12 Lem. 2.17]. Also, the leading term of the ϕ_i-adic expansion of F is $\phi_i^{\omega_i}$. Thus, $v_i(F) = \omega_i V_i$ and

$$\frac{u_i}{e_0 \cdots e_{i-1}} = \frac{v_i(F) + \omega_i |\lambda_i|}{e_0 \cdots e_{i-1}} = \frac{\omega_i (V_i + |\lambda_i|)}{e_0 \cdots e_{i-1}} = \frac{n}{m_i} v(\phi_i(\theta)),$$

the last equality by Lemma 1.5(3). By the properties (1) of the Okutsu frame, $u_1 < u_2/e_1 < \cdots < u_r/(e_0 \cdots e_{r-1})$. Also, by Lemma 1.3(4),

$$u_r/(e_0 \cdots e_{r-1}) = (n/m_r) v(\phi_r(\theta)) = V_{r+1}/e(F) = \delta_0(F).$$

On the other hand, since $e_i f_i > 1$, for all $1 \leq i \leq r$, we have $\nu_r \leq \mu_r = \mu(F)$. Thus, $\delta_0(F) \leq 2\mu(F) = 2\delta(F)/n$, by Proposition 1.3. Also, equality holds if and
Lemma 2.7. Let polynomials, both divisible by \(t \). In this case, we have \(N = \mathbf{F} \) such that \(\mu \equiv \nu \) if and only if \(t \) has isomorphic maximal tamely ramified subextensions.

Lemma 2.6. Let \(F(x), G(x) \in \mathcal{O}[x] \) be monic separable polynomials of degree \(n \), such that \(F = G \pmod{m^\nu} \), for some positive exponent \(\nu \).

1. If \(F \) is irreducible and \(\nu > \delta_0(F) \), then \(G \) is irreducible and \(G \simeq F \).

2. If \(G \) is irreducible and \(\nu > 2\delta(F)/n \), then \(F \) is irreducible and \(F \simeq G \).

Corollary 2.4. Let \(F(x), G(x) \in \mathcal{O}[x] \) be monic separable polynomials of degree \(n \), such that \(F = G \pmod{m^\nu} \), for \(\nu > 2\delta(F)/n \). Then, \(F \) is irreducible if and only if \(G \) is irreducible. If this is the case, the extensions of \(k \) determined by \(F \) and \(G \) have isomorphic maximal tamely ramified subextensions.

Proof. By Theorem 2.3 and Lemma 2.2, \(F \) is irreducible if and only if \(G \) is irreducible, and in this case \(F \simeq G \). Also, if \(F \simeq G \), then for adequate choices of roots \(\theta, \theta' \in k^{\text{sep}} \) of \(F \) and \(G \), respectively, the fields \(k(\theta) \) and \(k(\theta') \) have the same maximal tamely ramified subextension [Oku82, GMN10 Prop. 2.7].

The first item of Theorem 2.3 follows immediately from Lemma 2.2. In fact, for \(\theta \in k^{\text{sep}} \) a root of \(F \), the assumptions of the first item imply that \(v(G(\theta)) > \delta_0(F) = nv(\phi_r(\theta))/m_r \), and this is precisely the condition to be an Okutsu approximation to \(F \) (cf. Lemma 1.6). As mentioned in Definition 1.1, this implies that \(G \) is irreducible.

The second item is more subtle and its proof more involved. We need some previous results.

Definition 2.5. Let \(t = (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_{i-1}, \lambda_{i-1}, \psi_{i-1})) \) be a type of order \(i - 1 \geq 0 \), and let \(F(x) \in \mathcal{O}[x] \) be a monic polynomial. We say that \(F(x) \) is a polynomial of type \(t \) if it satisfies the following conditions:

1. \(R_0(F) = F = \psi_0^a_0 \), for a certain positive exponent \(a_0 \),

2. \(N_j(F) \) is one-sided of slope \(\lambda_j \), for all \(1 \leq j < i \),

3. \(R_j(F) \sim \psi_j^{a_j} \), for a certain positive exponent \(a_j \), for all \(1 \leq j < i \).

For instance, if \(F \) is irreducible and \(t_F \) is an OM representation of \(F \), then \(F \) is of type \(t_F \). The following properties of the polynomials of a certain type are taken from [GMN12 Lem. 2.4, Cor. 2.18].

Lemma 2.6. Let \(t \) be a type of order \(i - 1 \geq 0 \), and let \(F(x) \in \mathcal{O}[x] \) be a monic polynomial of positive degree. Then, the following conditions are equivalent:

1. \(F \) is of type \(t \).

2. \(\deg F = m_i \text{ord}_t(F) \).

3. All irreducible factors of \(F \) in \(\mathcal{O}[x] \) are divisible by \(t \).

In this case, we have \(N_i(F) = N_{i-1}^\gamma(F) \).

Lemma 2.7. Let \(t \) be as above and let \(F, G \in \mathcal{O}[x] \) be monic irreducible separable polynomials, both divisible by \(t \). Let \(\ell(F), \ell(G), \lambda(F), \lambda(G) \) be the lengths and the slopes of the Newton polygons \(N_i(F), N_i(G) \), respectively. Then,

\[v(\text{Res}(F, G)) \geq f_0 \cdots f_{i-1} \ell(F)\ell(G) \left(V_i + \min(|\lambda(F)|, |\lambda(G)|) \right). \]
Proof. For all $0 \leq j < i$, denote $\ell_{j+1}(F) := \ell(N_{j+1}(F)) = \text{ord}_{\text{Trunc}(t)}(F) = \text{ord}_{\psi_j} R_j(F)$, the last equalities by Lemma 1.3 (2). Since $R_j(F) \sim \psi_j^{\ell_{j+1}(F)}$ and deg $R_j(F)$ coincides with the degree $\ell_j(F)/e_j$ of the unique side of $N_j(F)$, we have

$$\ell_j(F) = e_j \deg R_j(F) = e_j f_j \ell_{j+1}(F) = (e_j f_j) \cdots (e_i f_i) \ell(F), \quad 1 \leq j < i.$$

We consider an analogous notation and equality for the polynomial G.

We now apply an inequality concerning the v-value of the resultant of two polynomials in terms of their Newton polygons \cite[Thm. 4.10]{GMN12}:

$$v(\text{Res}(F,G)) \geq \text{Res}_1(F,G) + \cdots + \text{Res}_s(F,G) := \sum_{1 \leq j < s} f_0 \cdots f_{j-1} \ell_j(F) \ell_j(G) |\lambda_j| + f_0 \cdots f_{i-1} \ell(F) \ell(G) \min\{|\lambda(F)|, |\lambda(G)|\} = f_0 \cdots f_{i-1} \ell(F) \ell(G) (V_i + \min\{|\lambda(F)|, |\lambda(G)|\}).$$

the last equality by (5) and the explicit formula for V_i in section 1 \hfill \Box

Lemma 2.8. Let $t = (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_{i-1}, \lambda_{i-1}, \psi_{i-1}))$ be a strongly optimal type of order $i - 1 \geq 0$, and $\phi(x) \in \mathcal{O}[x]$ a representative of t. Let $F(x) \in \mathcal{O}[x]$ be a monic polynomial of type t and degree $n > m_i$. Then,

$$v_i(F) + |\lambda_{\min}| \leq \frac{2\delta(F)}{e_0 \cdots e_{i-1}} \leq \frac{2\delta(F)}{n},$$

where $\delta(F) := v(\text{Disc}(F))$, ℓ is the length of the Newton polygon $N_i(F)$ with respect to the pair (t, ϕ), and λ_{\min} is the slope of $N_i(F)$ for which $|\lambda_{\min}|$ is minimal.

Proof. Let $F = F_1 \cdots F_g$ be the factorization of F into a product of monic irreducible polynomials in $\mathcal{O}[x]$, with degrees n_1, \ldots, n_g, respectively. By Lemma 2.6 all factors $F_s(x)$ are of type t, $N_i(F) = N_i^{-}(F)$, and $N_i(F_s) = N_i^{-}(F_s)$.

For $1 \leq s \leq g$ and $1 \leq j \leq i$, we introduce the following notation (see Figure 1):

- $\ell := \ell(N_i(F))$, $\ell_{j,s} := \ell(N_j(F_s))$, $\ell_s := \ell_{i,s} = \ell(N_i(F_s))$,
- $u_{i,s} :=$ the ordinate of the left end point of $N_i(F_s)$,
- $\mu_s :=$ the slope of $N_i(F_s)$.

We may have $F_s(x) = \phi(x)$ for some factors. In this case, $N_i(F_s)$ is one-sided of slope $\mu_s = -\infty$ \cite[Sec. 1.1]{GMN12}, and $u_{i,s} = \infty$, $\ell_s = 1$.

By Lemmas 1.5 and 2.6 we have $n = m_i \ell$ and $n_s = m_i \ell_s$, for all $1 \leq s \leq g$. By the theorem of the product \cite[Thm. 2.26]{GMN12},

$$N_i(F) = N_i(F_1) + \cdots + N_i(F_g),$$

so that $\ell = \ell_1 + \cdots + \ell_g$ and $|\lambda_{\min}| = \min_{1 \leq s \leq g}\{|\mu_s|\}$. Now, we divide the factors F_s into two categories, according to $\ell_s > 1$ or $\ell_s = 1$.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{Figure1}
\caption{Newton polygons $N_j(F_s), N_i(F_s)$, for $1 \leq j < i$.}
\end{figure}
If $\ell_s > 1$, then $\deg \phi = m_i < n_s$. Let $\theta_s \in \overline{K}$ be a root of F_s and choose a representative ϕ_i of t such that the value $v(\phi_i(\theta_s))$ is maximal (cf. Proposition 1.8). Denote by N'_i the Newton polygon with respect to the pair (t, ϕ_i); let $\delta_{i,s}$ be the slope of the one-sided polygon $N'_i(F_s)$, and let $\psi_{i,s}$ be the irreducible factor of the corresponding residual polynomial $R'_i(F_s)$. By [GMN10] Thm. 3.9], the Okutsu depth of F_s is greater than or equal to i, and the type

$$(\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_{i-1}, \lambda_{i-1}, \psi_{i-1}); (\phi_i, \lambda_i, s_i, \psi_{i,s})),$$

is the truncation of an OM representation (2) of F_s. On the other hand, [GMN11] Thm. 3.1] shows that the Newton polygons $N_i(F_s), N'_i(F_s)$ have the same right end point, and $|\mu_{i,s}| \leq |\lambda_{i,s}|$. Thus, $u_{i,s}$ is less than or equal to the ordinate of the left end point of $N'_i(F_s)$, and Lemma 2.2] and [4] show that:

$$(7) \quad 2\delta(F_s) \geq \frac{n_s u_{i,s}}{e_0 \cdots e_{i-1}} = \frac{n_s \ell_s (V_i + |\mu_s|)}{e_0 \cdots e_{i-1}} \geq \frac{(\ell_s)^2 m_i (V_i + |\lambda_{i,s}|)}{e_0 \cdots e_{i-1}}.$$

On the other hand, if $\ell_s = 1$, the type t is F_s-complete (cf. Definition 1.1], $\deg F_s = m_i$ and the Okutsu depth of F_s is $i - 1$. In this case, the ordinate $u_{i,s}$ is not a canonical invariant of F_s; for instance, we may have $u_{i,s} = \infty$, if $F_s = \phi$. Nevertheless, if $i > 1$, let us denote by $u_{i-1,s}$ the ordinate of the left end point of $N_{i-1}(F_s)$; by the very definition of the MacLane valuation v_i, we have $\ell_s V_i = v_i(F_s) = e_{i-1} u_{i-1,s}$ and Lemma 2.2] shows that:

$$(8) \quad 2\delta(F_s) \geq \frac{n_s u_{i-1,s}}{e_0 \cdots e_{i-2}} = \frac{n_s \ell_s V_i}{e_0 \cdots e_{i-2}} = \frac{(\ell_s)^2 m_i V_i}{e_0 \cdots e_{i-2}}.$$

If $i = 1$, we have $V_1 = 0$, so that (8) holds in this case too.

We are ready to prove the lemma. On one hand, since $v_i(F) = \ell V_i$, we have

$$n(v_i(F) + \ell |\lambda_{\min}|) = n(\ell (V_i + |\lambda_{\min}|)) = m_i \ell^2 (V_i + |\lambda_{\min}|).$$

On the other hand, since $f_0 \cdots f_{i-1} = m_i / (e_0 \cdots e_{i-1})$ and

$$\delta(F) = \sum_{1 \leq s \leq g} \delta(F_s) + 2 \sum_{1 \leq s < t \leq g} v(\text{Res}(F_s, F_t)),$$

by (7), (8] and Lemma 2.7] we get:

$$2e_0 \cdots e_{i-1} \delta(F) \geq m_i V_i \left(\sum_{1 \leq s \leq g} (\ell_s)^2 + 4 \sum_{1 \leq s < t \leq g} \ell_s \ell_t \right) + m_i |\lambda_{\min}| \left(\sum_{s \in I} (\ell_s)^2 + 4 \sum_{1 \leq s < t < g} \ell_s \ell_t \right),$$

where $I := \{1 \leq s \leq g \mid \ell_s > 1\}$. Thus, in order to prove the lemma it is sufficient to check that:

$$\sum_{s \in I} (\ell_s)^2 + 4 \sum_{1 \leq s < t \leq g} \ell_s \ell_t \geq (\ell_1 + \cdots + \ell_g)^2.$$

It is an easy exercise to show that this is always the case, with the only exception $g = 1, \ell_1 = 1$. But in this case, deg $F = m_i$, against our assumption. □

Lemma 2.9. Let t be a type of order $i - 1$ and ϕ a representative of t. Let $F, G \in \mathcal{O}[x]$ be two polynomials such that $F \equiv G \pmod{m^\nu}$, for some positive integer ν. Let S be a side of $N^{-}_i(F)$ of slope λ and right end point (ℓ, u), such that $u + \ell |\lambda| < e_0 \cdots e_{i-1} \nu$. Then, S is a side of $N^{-}_i(G)$ and $R_{\lambda,i}(F) = R_{\lambda,i}(G)$.

Proof. Let \(F(x) = \sum_{0 \leq s} a_s(x)\phi(x)^s \), \(G(x) = \sum_{0 \leq s} b_s(x)\phi(x)^s \), be the canonical \(\phi \)-expansions of \(F \) and \(G \), respectively. For the elements \(a \in \mathcal{O} \), Lemma 1.3 shows that \(v_i(a) = e_0 \cdots e_{i-1}v(a) \); thus, \(v_i(F - G) \geq e_0 \cdots e_{i-1}\nu \), by hypothesis. Since \(F(x) - G(x) = \sum_{0 \leq s}(a_s(x) - b_s(x))\phi(x)^s \) is the canonical \(\phi \)-expansion of \(F - G \), [GMN12, Lem. 2.17] shows that
\[
e_0 \cdots e_{i-1}\nu \leq v_i(F - G) = \min\{v_i((a_s - b_s)\phi^s) \mid 0 \leq s\}.
\]
Therefore, the two clouds of points \(\{(s, v_i(a_s\phi^s)) \mid 0 \leq s\}, \{(s, v_i(b_s\phi^s)) \mid 0 \leq s\} \), have the same points with ordinate less than \(e_0 \cdots e_{i-1}\nu \). Let \(L \) be the line of slope \(\lambda \) containing \(S \). No point of the cloud of \(F \) lies below the line \(L \), and only the points of \(S \) lie on this line. The condition \(u + \ell|\lambda| < e_0 \cdots e_{i-1}\nu \) implies that the cloud of points of \(G \) has the same properties. Thus, \(S \) is also a side of \(N_i^-(G) \).

Let \(\lambda = -h/e \), with \(h, e \) positive coprime integers. Let \(v_{i+1} \) be the MacLane valuation determined by \(t, \phi, \lambda \). By the definition of \(v_{i+1} \) (cf. section 1),
\[
v_{i+1}(F - G) \geq e_0 \cdots e_{i-1}\nu v > e(u + \ell|\lambda|) = v_{i+1}(F) = v_{i+1}(G).
\]
Therefore, \(R_{\lambda,i}(F) = R_{\lambda,i}(G) \), by [GMN12, Prop. 2.8].

Proof of Theorem 2.3. The first item of Theorem 2.3 was proved right after Corollary 2.1. Let us prove the second item. Let \(r \) be the Okutsu depth of \(G(x) \). Consider an OM representation \(t_G \) of \(G(x) \) as in (2), and let
\[
t := \text{Trunc}_e(t_G) = (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_r, \lambda_r, \psi_r)).
\]
Note that \(t \) is a strongly optimal type that admits \(G \) as a representative.

In order to prove the theorem, it is sufficient to show that
\[
(9) \quad N_i(F) = N_i(G), \quad R_i(F) = R_i(G), \quad 1 \leq i \leq r.
\]
In fact, \(R_i(F) = R_i(G) \) implies that \(t \) is \(F \)-complete too; thus, \(F \) is a representative of \(t \) and \(F \approx G \), by the definition of \(F \).

By hypothesis, \(F \equiv G \equiv \psi_0^{a_0} \mod m \), for a certain positive exponent \(a_0 \). Let us prove (9) by induction on \(i \). We assume that it is true for all \(1 \leq j < i \) (thus, we make an empty assumption if \(i = 1 \)). Since \(G \) is a polynomial of type \(t \), our assumption implies that \(F \) satisfies the conditions of Lemma 2.3, thus,
\[
(10) \quad \frac{v_i(F) + \ell|\lambda_{\min}|}{e_0 \cdots e_{i-1}} \leq \frac{2\delta(F)}{n} < \nu,
\]
where \(\ell = \ell(N_i(F)) \) and \(\lambda_{\min} \) is the largest slope of this polygon (\(|\lambda_{\min}| \) is minimal).

Let \(S_{\min} \) be the side of \(N_i(F) \) of slope \(\lambda_{\min} \). By Lemma 2.3, \(S_{\min} \) is one of the sides of \(N_i(G) \) (see Figure 2). Since \(G \) is irreducible, \(N_i(G) \) is one-sided, so
that $N_i(G) = S_{\min}$. Thus, the left end point of S_{\min} has abscissa zero, so that $N_i(F) = S_{\min} = N_i(G)$. Also, $R_i(F) = R_i(G)$, again by Lemma 2.9.

Remark 2.10. In [FPR02], the reduced discriminant $m^\delta(F)$ of an arbitrary polynomial $F(x) \in \mathcal{O}[x]$ is introduced, and it is shown that Corollary 2.4 holds with $2\delta^*(F)$ in the place of $2\delta(F)/n$. However, the reduced discriminant does not satisfy $\delta^*(F) \leq \delta(F)/n$, so that Theorem 2.3 cannot be deduced from this result.

For instance, suppose p odd and consider $F(x) = x^4 + a\pi x^2 + b\pi^2 \in \mathcal{O}[x]$, with $ab(a^2 - 4b) \not\in m$. This polynomial is irreducible; in fact, if we choose $\phi_1(x) = x$ as a lift of the irreducible factor of F, the Newton polygon $N_1(F)$ is one-sided of slope $-1/2$ and $R_{-1/2,1}(F)(y) = y^2 + \pi y + \overline{t}$ is irreducible in $F[y]$. One checks easily that

$$\delta_0(F) = 2, \quad \delta^*(F) = 3, \quad \delta(F) = 6.$$

By the first item of Theorem 2.3, any monic polynomial $G(x) \in \mathcal{O}[x]$ of degree four such that $F \equiv G \pmod{m^3}$, is irreducible. If we did not know the irreducibility of F, then Corollary 2.4 shows that we can test its irreducibility by working modulo m^4. However, according to the criterion of the reduced discriminant, we should work modulo m^2 to test the irreducibility of F.

3. OM factorizations of polynomials

In this section, we deal with the problem of finding “sufficiently good” approximations to the irreducible factors of a polynomial in $\mathcal{O}[x]$. We first extend the notion of Okutsu equivalence in section 1 to non-irreducible polynomials.

Definition 3.1. Let $F, G \in \mathcal{O}[x]$ be monic separable polynomials, and let $F = F_1 \cdots F_g, G = G_1 \cdots G_g$ be their factorization into a product of monic irreducible polynomials in $\mathcal{O}[x]$. We say that F and G are Okutsu equivalent, and we write $F \approx G$, if $g = g'$ and $F_s \approx G_s$ for all $1 \leq s \leq g$, up to ordering.

An expression of the form, $F \approx P_1 \cdots P_g$, with $P_1, \ldots, P_g \in \mathcal{O}[x]$ irreducible, is called an Okutsu factorization of F.

Clearly, every $F \in \mathcal{O}[x]$ admits a unique (up to \approx) Okutsu factorization. However, this concept is too weak for our purposes. For instance, if all factors of F are Okutsu equivalent to P, then $F \approx P^g$ is an Okutsu factorization of F which is unable to distinguish the true irreducible factors of F.

Definition 3.2. Let $F \approx P_1 \cdots P_g$ be an Okutsu factorization of a monic separable polynomial $F \in \mathcal{O}[x]$. For each $1 \leq s \leq g$, let F_s be the irreducible factor of F which is Okutsu equivalent to P_s, and let $\theta_s \in k^{sep}$ be a root of F_s.

We say that $F \approx P_1 \cdots P_g$ is an OM factorization of F if

$$v(P_s(\theta_t)) > v(P_s(\theta_t)), \quad \forall 1 \leq s \neq t \leq g.$$

3.1. OM factorizations and OM representations

This section is devoted to study basic properties of the OM factorizations and to find a characterization of the condition (11) in terms of OM representations of the factors of F, which facilitates the computation of these factorizations in practice.

We denote by $\phi_i^t, \lambda_i^t, \psi_i^t, V_i^t$, etc. the data at the i-th level of a type t. Also, $\text{Rep}(t)$ denotes the set of representatives of the type t.

Lemma-Definition 3.3. Let t, t' be two strongly optimal types over \mathcal{O}. The following conditions are equivalent:
(a) $\text{Rep}(t) = \text{Rep}(t')$.
(b) There exist representatives ϕ, ϕ' of t, t', respectively, such that $\phi \approx \phi'$.
(c) $\text{ord}_t(F) = \text{ord}_{t'}(F)$, for all polynomials $F \in \mathcal{O}[x]$.

When these conditions are satisfied, we say that the types t and t' are equivalent.

Proof. By Definition 1.7, (a) and (b) are equivalent. Suppose that t and t' admit a common representative ϕ. By [GMN10, Thms. 3.9], $[\phi_1^t, \ldots, \phi_r^t]$ and $[\phi_1^{t'}, \ldots, \phi_r^{t'}]$, are Okutsu frames of ϕ; thus, $r = r'$ and the two types have the same Okutsu invariants and MacLane valuations v_1, \ldots, v_{r+1} [GMN10, Cor. 3.7]. Hence, the two types have the same Newton operators N_{r+1}, and (c) follows from Lemma 1.5 (2). Finally, since the representatives of t are monic polynomials ϕ of degree m_{r+1} such that $\text{ord}_t(\phi) = 1$, (c) trivially implies (a).

If two strongly optimal types t, t' of order r are equivalent, then Lemmas 1.6 show that $\phi_i^t \approx \phi_i^{t'}$, for all $1 \leq i \leq r$. Since ϕ_i^t is a representative of $\text{Trunc}_{i-1}(t)$, the truncations of t and t' of any order $0 \leq i \leq r$ are equivalent too.

By [GMN10] Thms. 3.5, 3.9, the mapping, $t \mapsto \text{Rep}(t)$, induces a 1-1 correspondence between equivalence classes of strongly optimal types and equivalence classes of monic irreducible separable polynomials in $\mathcal{O}[x]$, under Okutsu equivalence.

Let $F \in \mathcal{O}[x]$ be a monic irreducible separable polynomial, and let r be its Okutsu depth. We recall that an *OM representation* of F is just an optimal type t_F of order $r + 1$, satisfying any of the following equivalent conditions:

- t_F is F-complete; i.e. $\text{ord}_{t_F}(F) = 1$,
- $t_F \mid F$ and $F \approx \phi_{e_{r+1}}^t$.

By Lemma-Definition 3.3, if t_F and t'_F are OM representations of F, the types $\text{Trunc}_r(t_F)$ and $\text{Trunc}_r(t'_F)$ are equivalent.

Definition 3.4. Let $F, G \in \mathcal{O}[x]$ be monic irreducible separable polynomials of Okutsu depth r_F, r_G, and let t_F, t_G be OM representations of F, G. Take $\phi_0^F = 1 = \phi_0^G$, by convention. The index of coincidence of F and G is the maximal index $0 \leq j \leq \min\{r_F + 1, r_G + 1\}$, such that $\phi_j^{t_F} \approx \phi_j^{t_G}$. We denote this index by $i(F, G)$.

The following properties of $i(F, G)$ are easy to check:

- $i(F, G)$ does not depend on the chosen OM representations t_F, t_G.
- $i(F, G)$ depends only on the classes of F and G modulo \approx.
- $F \cong G$ if and only if $i(F, G) = r_F + 1 = r_G + 1$.

The next result is easily deduced from [GMN12] Prop. 3.5, (5).

Proposition 3.5. Let $F, G \in \mathcal{O}[x]$ be monic irreducible separable polynomials, and let $\theta \in k^{\text{sep}}$ be a root of F. Let t be a type of order $i \geq 1$ over \mathcal{O}, such that $t \mid F$ and $\text{Trunc}_{i-1}(t) \mid G$. Let $\lambda(G)$ be the slope of (the one-sided polygon) $N_i(G)$. Then,

$$v(G(\theta)) \mid \deg G \geq \{V_i + \min\{\lfloor \lambda_i \rfloor, \lceil \lambda(G) \rceil\}\}/(m_i e_0 \cdots e_{i-1}),$$

and equality holds if and only if $t \mid G$.

Lemma 3.6. Let $F, G \in \mathcal{O}[x]$ be monic irreducible separable polynomials, and let $\theta \in k^{\text{sep}}$ be a root of F. Let t be a strongly optimal type of order i over \mathcal{O}, such that $t \mid F$. Then, the following conditions are equivalent:

(a) $t \mid G$.
(b) $i(F, G) > i$.
(c) $v(G(\theta)) \mid \deg G > V_{i+1}/(m_{i+1} e_0 \cdots e_i) = v(\phi_i(\theta))/m_i$.
Proof. By [GMN12, GMN11], the type \(t \) may be extended to an OM representation \(t_F \) of \(F \). If \(t \mid G \), it may be extended to an OM representation \(t_G \) of \(G \) too; thus, \(\psi_{i+1}^{t_F} \approx \psi_{i+1}^{t_G} \), because they are both a representative of \(t \). Thus, (a) implies (b). Conversely, let \(t_G \) be an arbitrary OM representation of \(G \), and suppose \(\phi_{i+1}^{t_F} \approx \psi_{i+1}^{t_G} \). This implies that \(\phi_{i+1}^{t_G} \) is a representative of \(t \); thus, the types \(t \) and \(\text{Trunc}_i(t_G) \) are equivalent. By the last item of Definition 3.5 \(0 < \text{ord}_{\text{Trunc}_i(t_G)}(G) \leq \text{ord}_{\text{Trunc}_i(t_G)}(G) = \text{ord}_t(G). \) Therefore, (a) and (b) are equivalent.

Let us now show that (a) and (c) are equivalent. If \(\psi_0^t \not\mid G \), then \(v(G(\theta)) = 0 \) and \(t \not\mid G \); thus (a) and (c) are both false in this case. Suppose \(\psi_0^t \mid G \) and let \(1 \leq j \leq i + 1 \) be maximal such that \(\text{Trunc}_{j-1}(t) \mid G \). Let \(\lambda_{i+1} \) be the slope of \(N_{i+1}(F) \). The Newton polygon \(N_j^-(G) \) with respect to \(t \) has a positive length by Lemma 3.7. Let \(\lambda(G) \in \mathbb{Q}_{<0} \) be its slope. By Proposition 3.5

\[
v(G(\theta))/\deg G \geq (V_j + \min\{|\lambda_j|,|\lambda(G)|\})/(m_j e_0 \cdot \ldots \cdot e_{j-1}),
\]

and equality holds if \(j \leq i \), because \(\text{Trunc}_i(t) \not\mid G \). If \(t \mid G \), then \(j = i + 1 \), and

\[
v(G(\theta))/\deg G = (V_j + |\lambda_j|)/m_j e_0 \cdot \ldots \cdot e_{j-1} = v(\phi_j(\theta))/m_i = V_{i+1}/m_{i+1} e_0 \cdot \ldots \cdot e_i,
\]

by Lemma 3.5 and the properties of the Okutsu polynomials. \(\square \)

Lemma 3.7. Let \(P, Q \in \mathcal{O}[x] \) be monic irreducible separable polynomials such that \(P \approx Q \). Let \(t = (\psi_0; (\phi_1, \lambda_1, \psi_1); \ldots; (\phi_r, \lambda_r, \psi_r)) \) be a strongly optimal type admitting \(P \) as a representative. Then, there exist unique data \((\lambda_Q, \psi_Q) \) (or \((-\infty, -) \), if \(P = Q \)), such that \(t_Q := (\psi_0; (\phi_1, \lambda_1, \psi_1); \ldots; (\phi_r, \lambda_r, \psi_r); (P, \lambda_Q, \psi_Q)) \), is an OM representation of \(Q \).

Proof. Since \(Q \) is also a representative of \(t \), we have \(\text{ord}_t(Q) = 1 \), and the Newton polygon \(N_{i+1}(Q) \) with respect to \(t \) and \(P \) has length one by Lemma 3.5. Let \(\lambda_Q \in \mathbb{Z} \cup \{-\infty\} \) be the slope of this polygon. If \(\lambda_Q \neq -\infty \) (i.e. \(P \neq Q \)), the residual polynomial \(R_{\lambda_Q, r+1}(Q) \) has degree one; let \(\psi_Q \) be the monic polynomial obtained by dividing this polynomial by its leading coefficient. By construction, \(t_Q \mid Q \). By the last item of Definition 3.5 \(0 < \text{ord}_{t_Q}(Q) \leq \text{ord}_t(Q) = 1 \); thus, \(\text{ord}_{t_Q}(Q) = 1 \), so that \(t_Q \) is an OM representation of \(Q \). Also, once we choose \(P \) as a representative of \(t \), the condition \(t_Q \mid Q \) uniquely determines these data \((\lambda_Q, \psi_Q) \). \(\square \)

The computation of an Okutsu factorization \(F \approx P_1 \cdots P_g \) of a monic separable polynomial \(F \) is equivalent to the computation of a family \(t_{F_1}, \ldots, t_{F_g} \) of OM representations of the irreducible factors of \(F \). In fact, from the Okutsu factors \(P_1, \ldots, P_g \) and strongly optimal types \(t_1, \ldots, t_g \) such that each \(t_s \) admits \(P_s \) as a representative, we may construct the OM representations of \(F_1, \ldots, F_g \), as shown in Lemma 3.7. Conversely, from the family \(t_{F_1}, \ldots, t_{F_g} \) we may take \(P_s := \phi_{r_s+1}^{t_s} \approx F_s \), as Okutsu factors, where \(r_s \) is the Okutsu depth of \(F_s \).

We now describe the property of being an OM factorization in terms of the family \(t_{F_1}, \ldots, t_{F_g} \) of OM representations.

Proposition 3.8. Let \(F \in \mathcal{O}[x] \) be a monic separable polynomial and \(F_1, \ldots, F_g \in \mathcal{O}[x] \) its monic irreducible factors, with Okutsu depth \(r_1, \ldots, r_g \), respectively. Let \(t_{F_1}, \ldots, t_{F_g} \) be a family of OM representations of the factors, and let \(P_s := \phi_{r_s+1}^{t_s} \). Let \(I \) be the set of ordered pairs \((s, t)\) of indices such that \(i(F_s, F_t) = r_s + 1 \), and for
each \((s, t) \in I\), let \(\lambda_{s,t}\) be the slope of \(N_{r_{s+1}} t_{F_{s}}(F_1)\). Then, the Okutsu factorization \(F \approx P_1 \cdots P_g\) is an OM factorization of \(F\) if and only if

\[(12) \quad |\lambda_{s,t}| > |\lambda_{s,t}|, \quad \forall (s, t) \in I, \ s \neq t.
\]

Proof. Denote \(t_s := \text{Trunc}_{r_s}(t_{F_s})\), and choose a root \(\theta_s \in k^{	ext{sep}}\) of \(F_s\), for each \(1 \leq s \leq g\). Let \((s, t)\) be an ordered pair of indices, \(1 \leq s, t \leq g\). Suppose \(i(F_s, F_t) = r_s + 1\). Then, Lemma 3.6 shows that \(t_s \mid F_t\), and

\[v(P_s(\theta_t)) = (V_{r_{s+1}} + |\lambda_{s,t}|) / e(F_s),\]

by Lemma 1.8. Suppose now \(i := i(F_s, F_t) \leq r_s\). Since \(i(P_s, F_t) = i(F_s, F_t) = i\), Lemma 3.6 shows that \(\text{Trunc}_t(t_{F_t}) \mid P_s\). By Proposition 3.5,

\[v(P_s(\theta_t)) = \frac{m_{r_{s+1}}}{m_i} V_i + \min\{|\lambda_{1,s}^t|, |\lambda_{s,s}^t|\} \leq \frac{m_{r_{s+1}}}{m_i} V_i + |\lambda_{s,t}^t| / e(F_s),\]

the last inequality by the explicit formulas of \(V_j\) in section 1. Hence, the condition (11) is equivalent to (12). \(\blacksquare\)

Definition 3.9. Let \(F \in \mathcal{O}[x]\) be a monic separable polynomial and \(F_1, \ldots, F_g \in \mathcal{O}[x]\) the monic irreducible factors of \(F\). We say that a family \(t_{F_1}, \ldots, t_{F_g}\) of OM representations of the factors faithfully represents \(F\) if any of the two following equivalent conditions is satisfied:

(a) \(t_{F_s} \parallel F_t\), \quad \forall 1 \leq s \neq t \leq g.

(b) \(\text{ord}_{t_{F_s}}(F_t) = 1\), \quad \forall 1 \leq s \leq g.

By construction, \(\text{ord}_{t_{F_s}}(F_s) = 1\); hence, the conditions (a) and (b) are equivalent because \(\text{ord}_{t_{F_s}}(F_s) = \sum_{1 \leq t \leq g} \text{ord}_{t_{F_s}}(F_t)\).

Corollary 3.10. With the notation in Proposition 3.8, if \(F \approx P_1 \cdots P_g\) is an OM factorization, then the family \(t_{F_1}, \ldots, t_{F_g}\) faithfully represents \(F\).

Proof. If \(t_{F_s} \parallel F_t\), then \(F_t\) is a polynomial of type \(t_{F_s}\) (Lemma 2.6) and this implies \(\lambda_{s,t} = \lambda_{s,s}\) (Definition 2.5). \(\blacksquare\)

Finally, we show that any family of OM representations that faithfully represents a polynomial \(F\), leads immediately to an OM factorization of \(F\).

Lemma 3.11. Let \(F \in \mathcal{O}[x]\) be a monic separable polynomial and \(t_{F_1}, \ldots, t_{F_g}\) a family of OM representations of the irreducible factors of \(F\), that faithfully represents \(F\). Then, if we take arbitrary representatives \(Q_1, \ldots, Q_g\) of these types, we get an OM factorization, \(F \approx Q_1 \cdots Q_g\), of \(F\).

Proof. We keep the notation from Proposition 3.8. Consider an index \(1 \leq s \leq g\). All data \(e_j, f_j, h_j, V_j\) we are going to use correspond to the type \(t_{F_s}\). Since \(\text{ord}_{t_{F_s}}(F_s) = 1\), the Newton polygon \(N_{r_{s+2}} t_{F_s}(F_s)\) has length one and slope \(-h_s \in \mathbb{Z}_{\leq 0} \cup \{-\infty\}\). By [GMN12, Thm. 3.1],

\[v(Q_s(\theta_s)) = (V_{r_{s+2}} + h_s) / e(F_s) = (V_{r_{s+1}} + |\lambda_{s,s}| + h_s) / e(F_s),\]

the last equality by the recurrence \(V_{r_{s+2}} = e_{r_{s+1}} f_{r_{s+1}} (e_{r_{s+1}} V_{r_{s+1}} + h_{r_{s+1}})\), in section 1 having in mind that \(e_{r_{s+1}} = f_{r_{s+1}} = 1\) and \(h_{r_{s+1}} = |\lambda_{s,s}|\).
For all \(t \neq s \), we have \(t_{F_1} \mid F_1 \). If \(t_s \mid F_s \), then Proposition 3.3 shows that \(v(Q_s(\theta_t)) = (V_{r+1} + \min\{|\lambda_{s,t}|, |\lambda_{s,t}|\})/c(F_s) < v(Q_s(\theta_s)) \).

If \(t_s \mid F_s \), then \(i := i(F_s, F_t) = i(Q_s, F_t) \leq r_s \), and \(\text{Trunc}_i(t_{F_t}) \mid Q_s \), by Lemma 3.6. Thus, \(v(Q_s(\theta_t)) \leq V_{r+1}/c(F_s) < v(Q_s(\theta_s)) \), as in the proof of Proposition 3.3.

Let us see an example. Take \(a, b \in \mathcal{O} \) such that \(v(ab) = 0 \) and consider

\[F_1 = x + \pi + \pi^2 + \pi^3 a, \quad F_2 = x + \pi + \pi^3 + \pi^4 b, \quad F = F_1F_2. \]

The Okutsu factorizations, \(F \approx x^2 \approx x(x + \pi) \), are not OM factorizations of \(F \), because they lead both to \(t_{F_1} = (y; (x, -1, y + 1)) \mid F_2 \).

The Okutsu factorization \(F \approx (x + \pi)^2 \) leads to a family of OM representations that faithfully represents \(F \), because these Okutsu factors are sufficiently close to the true factors to distinguish them:

\[t_{F_1} = (y; (x + \pi, -2, y + 1)) \mid F_2, \quad t_{F_2} = (y; (x + \pi, -3, y + 1)) \mid F_1. \]

Let us choose as representatives of the above types \(t_{F_1}, t_{F_2} \), the polynomials \(Q_1 = x + \pi + \pi^2, \quad Q_2 = x + \pi + \pi^3 \). By Lemma 3.11, \(F \approx Q_1Q_2 \) is an OM factorization. The new OM representations of \(F_1, F_2 \) determined by \(Q_1, Q_2 \) are:

\[t_{F_1} = (y; (x + \pi, \pi^2, -4, y + \pi^7)), \quad t_{F_2} = (y; (x + \pi + \pi^3, -4, y + \pi^7)). \]

The Montes algorithm computes a family \(t_{F_1}, \ldots, t_{F_g} \) of OM representations faithfully representing \(F \), and derives from it an OM factorization \(F \approx P_1 \cdots P_g \), as indicated in Lemma 3.11 (cf. section 4). This is the starting point for the fast computation of an approximate factorization of \(F \) with a prescribed precision, by means of the single-factor algorithm [GNP12].

3.2. Polynomials having the same OM factorizations

The aim of this section is to prove Theorem 3.14, where we find the least precision \(\nu \) such that two polynomials congruent modulo \(m^\nu \) have the same OM factorizations. To this end, we need a result similar in spirit to Lemma 2.8.

Lemma 3.12. Let \(\mathbf{t} \) be a strongly optimal type of order \(i - 1 \geq 0 \), and \(\phi \in \mathcal{O}[x] \) a representative of \(\mathbf{t} \). Let \(F \in \mathcal{O}[x] \) be a monic polynomial such that \(\ell(N_j^{-}(F)) > 1 \).

Let \(S_{\text{max}} \) be the first side (from left to right) of \(N_j^{-}(F) \) and let \(\lambda_{\text{max}} \) be its slope.

Let \(u > u' \) be the ordinates of the end points of \(S_{\text{max}} \). If \(\ell(S_{\text{max}}) = 1 \), let \(S_{\text{next}} \) be the second side of \(N_j^{-}(F) \) and let \(\lambda_{\text{next}} \) be its slope. Then,

\[\delta(F) \geq \begin{cases} u, & \text{if } \ell(S_{\text{max}}) > 1, \\ u' + |\lambda_{\text{next}}|, & \text{if } \ell(S_{\text{max}}) = 1. \end{cases} \]

Proof. Let \(F = F_1 \cdots F_g \) be the factorization of \(F \) into a product of monic irreducible polynomials in \(\mathcal{O}[x] \). For all \(1 \leq j \leq i, \ 1 \leq s \leq g \), denote:

\[t_{j-1} := \text{Trunc}_{j-1}(t), \]

\[\ell_{j,s} := \ell(N_j^{-}(F_s)) = \text{ord}_{t_{j-1}}(F_s), \]

the abscissa of the right end point of \(N_j^{-}(F_s) \),

\[u_{j,s} := \text{the ordinate of the left end point of } N_j^{-}(F_s). \]

By [GMN12] Lem. 2.17, the right end point of \(N_j^{-}(F_s) \) is \((\ell_{j,s}, v_j(F_s)) \). If \(t_{j-1} \mid F_s \), then Lemma 2.6 shows that \(\deg F_s = m_j \ell_{j,s} \). In particular, \(v_j(F_s) = \ell_{j,s} V_j + u_{j,s} \).

By [GMN12] Lem. 2.17, the right end point of \(N_j^{-}(F_s) \) is \((\ell_{j,s}, v_j(F_s)) \). If \(t_{j-1} \mid F_s \), then \(\ell_{j,s} = 0 \) and \(u_{j,s} = v_j(F_s) \).
For all \(v = 0 \), then

Claim. For all \(F \), suppose first that there is at least one \(F \). In this case, the Claim shows by symmetry that

\[\delta(F) = \sum_{1 \leq s \leq g} \delta(F_s) + \sum_{1 \leq s, i \leq g} \rho_{s,i}. \]

Suppose first that there is at least one \(F_{s_1} \neq F_{s_2} \), such that \(t \mid F_{s_1} \) and \(\lambda_{s_1} = \lambda_{s_2} = \lambda \). In this case, the Claim shows by symmetry that \(\rho_{s_1,s_2} \geq u_{i,s} \); hence,

\[\delta(F) \geq 2 \rho_{s_1,s_2} + \sum_{s \neq s_1,s_2} \rho_{s,s_0} \geq \sum_{1 \leq s \leq g} \rho_{s,s_0} \geq 2 \rho_{s_1,s_2} \geq u_{i,s} = u. \]

Suppose now that for all \(F \neq F_{s_0} \), such that \(t \mid F_s \), we have \(\lambda_{i,s} \neq \lambda_{i,s_0} \). In this case, \(\ell_{i,s_0} = \ell(S_{s_0}) \) and \(\ell_i = \ell_i \lambda_{s_0} \lambda_{s_0} \). If \(\ell_i \geq 1 \), then \(\lambda_{s_0} \leq \lambda_{s_0} \lambda_{s_0} \), so that the Okutsu depth of \(F_{s_0} \) is greater than or equal to \(i \).

Lemma 2.2 shows that \(\delta(F_{s_0}) / \deg F_{s_0} \geq u_{i,s_0} / (\ell_i \lambda_{s_0} \lambda_{s_0} - 1) \), and we deduce that

\[\delta(F_{s_0}) \geq m_{i,s_0} u_{i,s_0} / (\ell_i \lambda_{s_0} \lambda_{s_0} - 1) \geq u_{i,s_0}. \]

Hence,

\[\delta(F) \geq \delta(F_{s_0}) + \sum_{s \neq s_0} \rho_{s,s_0} \geq \sum_{1 \leq s \leq g} \rho_{s,s_0} \geq 2 \rho_{s_1,s_0} \geq u_{i,s} = u. \]

Finally, suppose that \(\ell_{i,s_0} = \ell(S_{s_0}) = 1 \). In this case, \(\ell_i = \ell_i \lambda_{s_0} \lambda_{s_0} \), \(v_i(F_{s_0}) = \ell_{i,s_0} V_i = V_i \), and \(u_{i,s} = V_i + \ell_i \lambda_{s_0} \lambda_{s_0} \). Since \(\ell(N^-_{s_0}(F)) > 1 \), this polygon has at least a second side \(S_{s_0} \) of slope \(\lambda_{s_0} \) next. Let \(I \) be the set of all indices \(1 \leq t \leq g \) such that \(N^-_{s_0}(F_t) \) has slope \(\lambda_{s_0} \). By the Claim, for all \(t \in I \), we have

\[2 \rho_{t,s_0} \geq 2 u_{i,t} = \ell_i,t V_i + \ell_{i,t} V_i + u_{i,t} \geq \ell_i,t V_i + \ell_i,t V_i + \ell_{i,t} V_i + u_{i,t}, \]

so that

\[\delta(F) \geq 2 \sum_{t \in I} \rho_{t,s_0} + \sum_{s \neq t \in I} \rho_{s,s_0} \geq v_i(F_{s_0}) + \ell_{i,t} V_i + \ell_{i,t} V_i + u_{i,t}, \]

which is the required inequality.

\[\square \]
Remark 3.13. In Lemma 3.12, if \(\phi \) divides \(F \), then we understand that \(S_{\max} \) is a side of slope \(\lambda_{\max} = -\infty \), and \(u = \infty \) \cite{GNN12, Sec. 1.1}. The statement of the lemma and all arguments in the proof remain valid in this case.

It is easy to construct examples showing that the inequalities of Lemma 3.12 are sharp. For instance, \(F(x) = x^2 + \pi^r \) has \(u = \delta = \nu \) (if \(\nu(2) = 0 \)); while \(F(x) = (x + \pi^r)(x + \pi) \) has \(u' = |\lambda_{\max}| = 1 \) and \(\delta = 2 \), if \(\nu > 1 \).

Theorem 3.14. Let \(F, G \in \mathcal{O}[x] \) be monic separable polynomials such that \(F \equiv G \pmod{m^{g(F) + 1}} \). Then, \(F \approx G \) and any OM factorization \(F \approx P_1 \cdots P_g \) of \(F \) is also an OM factorization \(G \approx P_1 \cdots P_g \) of \(G \).

Proof. Let \(F_1, \ldots, F_g \) be the monic irreducible factors of \(F \), ordered so that \(F_s \approx P_s \), for all \(1 \leq s \leq g \). Our aim is to attach to every \(P_s \) an irreducible factor \(G_s \) of \(G \), such that \(G_s \approx P_s \) and either (11) or (12) are satisfied for the pair \(P_s, G_s \).

Let us fix an index \(1 \leq s \leq g \). Let \(r \) be the Okutsu depth of \(P_s \) and let

\[
\mathbf{t}_{P_s} = (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_r, \lambda_r, \psi_r); (P_s, \lambda_{P_s}, \psi_{P_s}))
\]

be the OM representation of \(F_s \), determined by \(P_s \), satisfying \(\mathbf{t}_{P_s} \uparrow F_s \) for all \(t \neq s \). We admit exact OM representations in which \(\lambda_{P_s} = -\infty \) and \(\psi_{P_s} \) is not defined.

Consider the strongly optimal type \(\mathbf{t} := \text{Trunc}_{r}(\mathbf{t}_{P_s}) \). Since \(F_s \approx P_s \), the polynomial \(F_s \) is a representative of \(\mathbf{t} \) too; thus, \(\text{ord}_t(F_s) = 1 \). The proof of the theorem requires different arguments according to \(\text{ord}_t(F) = 1 \) or \(\text{ord}_t(F) > 1 \).

Case \(\text{ord}_t(F) = 1 \). Since \(1 = \text{ord}_t(F) = \sum_{1 \leq t \leq g} \text{ord}_t(F_i) \), we have \(\text{ord}_t(F_i) = 0 \), for all \(t \neq s \). By Definition (17), \(F_i \neq F_s \approx P_s \), for all \(t \neq s \).

For monic polynomials \(P, Q \in \mathcal{O}[x] \) of Okutsu depth zero we have \(P \equiv Q \) if and only if \(\overline{P} = \overline{Q} \). Thus, if \(r = 0 \), then \(\overline{F}_s = \overline{F}_s = \psi_0 \) is coprime to \(\overline{F}_s \), for all \(t \neq s \). By hypothesis, \(\overline{G} = \overline{F} = \overline{F}_1 \cdots \overline{F}_g \); thus, by Hensel’s lemma, \(G \) has a unique irreducible factor (say) \(G_s \), such that \(\overline{G}_s = \psi_0 \) is coprime to \(\overline{G}/G_s \). Hence, \(P_s \approx G_s \), \(v(P_s(\theta_s)) > 0 \) and \(v(P_s(\theta)) = 0 \), for any choice of roots \(\theta_s, \theta \in k^{\text{sep}} \) of \(G_s \) and \(G/G_s \), respectively. Thus, (11) is satisfied for the pair \(P_s, G_s \).

If \(r > 0 \), we may consider \(\mathbf{t}_{r-1} := \text{Trunc}_{r-1}(\mathbf{t}) \). By the last item of Definition (11) \(\text{ord}_{t_{r-1}}(F) \geq \text{ord}_{t_{r-1}}(F_s) \geq e_r f_r \text{ord}_t(F_s) > 1 \). Since \(\mathbf{t} \mid F_s \), the polygon \(N^-_{\mathbf{t}}(F_s) \) is one-sided of slope \(\lambda_r \) and it has length \(\text{ord}_{t_{r-1}}(F_s) > 1 \), by Lemma (13). By (6),

\[\delta(F) + 1 \]

\[u' + |\lambda_{\max}| \]

\[v_1(F) \]

\[\delta(F) + 1 \]

\[u \]

\[v_1(F) \]

\[0 \]

\[1 \]

\[t \]

Figure 3. Newton polygon \(N^-_{\mathbf{t}}(F) \) in the context of Lemma 3.12.
$N_r^-(F)$ has a side S of slope λ_r and length $\ell(S) > 1$, where $\ell(S)$ is the length of the projection of S to the horizontal axis.

We now apply Lemma 3.12 to the pair t_{r-1}, F. If $\ell(S_{\text{max}}) = 1$, then $S \neq S_{\text{max}}$, because $\ell(S) > 1$. In any case, Lemma 3.12 shows that $\delta(F) + 1$ is greater than the ordinate of the point of the vertical axis lying on the line determined by S. By Lemma 2.9, the Newton polygon $N_r^-(G)$ has a side of slope λ_r and $R_r(G) = R_r(F)$; thus, $\ord_{\psi_r} R_r(G) = \ord_{\psi_r} R_r(F) =: \ord F = 1$. Hence, there is a unique irreducible factor (say) G_s of G, such that $\ord_\psi(G_s) = 1$, and $\ord F = 0$, for any other irreducible factor G_0 of G. By Lemma 2.6, $\deg G_s = m_{r,+1} \ord F(G_s) = m_{r,+1}$; thus, G_s is a representative of t, and $G_s \approx P_s$. Finally, the set I in Proposition 3.8 contains only the pair (s, s), so that (12) is trivially satisfied.

Case $\ord F > 1$. Since $F_s \approx P_s$ is a representative of t, we have $\ord F = 1$, so that $N_{r,+1}(F_s)$ has length one and slope $\lambda_{s,s}$, in the notation from Proposition 3.8. Since $F \approx P_1 \cdots P_s$ is an OM factorization, (12) holds; this implies that $N_{r,+1}(F)$ indeed has a side S_{max} of slope $\lambda_{\text{max}} = \lambda_{s,s}$ and end points $(0, u)$ and $(1, 1)$, by the theorem of the product (6).

We now apply Lemma 3.12 to the pair t, F. Arguing as before, $N_{r,+1}(G)$ coincides with $N_{r,+1}(F)$, except for, eventually, the ordinate u of the point of abscissa zero (see Figure 3). Thus, $N_{r,+1}(G)$ has also a first side $S_{\text{max}}(G)$ of length one and slope $\lambda_{s,s}(G)$, with $|\lambda_{s,s}(G)| > |\lambda_{s,s}|$, for all t such that $t | F_1$. The equality of the Newton polygons (up to the first side) and the theorem of the product, show that all irreducible factors $G_0 \neq G_s$ of G, which are divisible by t, have $N_{r,+1}(G_0)$ one-sided of slope $\lambda_{s,t}$ for some $t \neq s$. Hence, (12) is satisfied for P_s, G as well. \hfill \Box

4. The factorization algorithm of Ore, MacLane and Montes

Let us go back to the global setting of the Introduction. Let A be a Dedekind domain whose field of fractions K is a global field. Let L/K be a finite separable extension and B the integral closure of A in L. Let $\theta \in L$ be a primitive element of L/K, with minimal polynomial $F(x) \in A[x]$.

Let p be a non-zero prime ideal of A, $v := v_p$ the canonical p-adic valuation, K_p the completion of K at p, and O_p the valuation ring of K_p. We denote by $F = A/p$ the residue field of p. We fix a local generator π of p; that is, an element $\pi \in A$, whose image in the local ring A_p generates the maximal ideal. If A is a principal domain, we assume moreover that $\pi = \pi A$.

The Montes algorithm was developed by J. Montes in his PhD thesis, inspired by the ideas of Ø. Ore and S. MacLane. It is fully described in [GMN11], in terms of the theoretical background developed in [GMN12]. For a short review the reader may check the survey [Nar11].

The algorithm is based on four routines: Factorization, Newton, Residual Polynomial and Representative. Let us briefly review them.

Routine Factorization(F, φ)

INPUT:
- A finite field F.
- A monic polynomial $\varphi(y) \in F[y]$.

OUTPUT:
- The factorization of $\varphi(y)$ into a product of irreducible polynomials of $F[y]$.
Routine Construct($\mathbf{t,\lambda,\varphi,V}$)

INPUT:
- A type \mathbf{t} over A, of order $i - 1 \geq 0$, and a representative $\mathbf{\phi} \in A[x]$ of \mathbf{t}.
- A non-negative integer λ.
- A non-zero polynomial $g(x) \in K[x]$.

OUTPUT:
- $N_i(g) := N$ is the i-th order Newton polygon of g with respect to the pair $(\mathbf{t}, \mathbf{\phi})$.

Definition 4.1. Let $\lambda \in \mathbb{Q}_{> 0}$ and N a Newton polygon. We define the λ-component of N to be $S_\lambda(N) := \{(x, y) \in N \mid y - \lambda x$ is minimal$\}$. If N has a side S of slope λ, then $S_\lambda(N) = S$; otherwise, $S_\lambda(N)$ is a vertex of N (see Figure 4).

Routine ResidualPolynomial($\mathbf{t,\lambda,g}$)

INPUT
- A type \mathbf{t} over A, of order $i - 1 \geq 0$, and a representative $\mathbf{\phi} \in A[x]$ of \mathbf{t}.
- A slope $\lambda = -\alpha/\beta \in \mathbb{Q}_{< 0}$, with α, β positive coprime integers.
- A non-zero polynomial $g(x) \in K[x]$.

Let $g(x) = \sum_{0 \leq s} a_s(x)\phi(x)^s$ be the canonical ϕ-adic expansion of $g(x)$. Let S be the λ-component of $N_i(g)$, and let s_0 be the abscissa of the left end point of S. Let $d := d(S)$ be the degree of S, so that $s_0 + de$ is the right end point of S. The points of integer coordinates lying on S have abscissa $s_j := s_0 + je$, $0 \leq j \leq d$.

Compute, for each abscissa s_j, the residual coefficient $c_j \in \mathbb{F}_i$ defined as:

$$c_j := \begin{cases} 0, & \text{if } (s_j,v_i(a_{s_j}\phi^{s_j})) \text{ lies above } S, \\
\frac{\epsilon_{i-1}(s_j)}{\epsilon_{i-1}(s_0)} R_{i-1}(a_{s_j})(z_{i-1}), & \text{if } (s_j,v_i(a_{s_j}\phi^{s_j})) \text{ lies on } S, \end{cases}$$

where $t_0(s_j) := 0$, $t_{i-1}(s_j)$ is described in [GMN12] Def. 2.19 for $i > 1$, and $z_{i-1} \in \mathbb{F}_i$ is the image of y through the isomorphism $\mathbb{F}_i \simeq \mathbb{F}_{i-1}[y]/(\psi_{i-1}(y))$.

OUTPUT:
- The residual polynomial $R_{\lambda,i}(g)(y) := c_0 + c_1y + \cdots + c_dy^d \in \mathbb{F}_i[y]$, with respect to the triple $(\mathbf{t}, \mathbf{\phi}, \lambda)$.

The routine Construct carries out the procedure described in [GMN12] Prop. 2.10. It will only be used to construct representatives of the types.

Figure 4. λ-component of a polygon. L_λ is the line of slope λ having first contact with the polygon from below.
all three fundamental invariants \((\phi, \lambda, \psi)\) do not affect the complexity.

The order of a type \(t\) was used in some occasions (cf. [GMN10, Thm. 4.2]).

Let \(g\) where \(\phi\) adequate polynomials \(p\) corresponding \((\phi, \psi, \lambda)\) are assigned.

The changes we introduce in \(t\) are optimal and left end point \((s, u)\) (see Figure 5), and having moreover a prescribed residual polynomial.

Let \(\varphi(y) = a_0 + a_1 y + \cdots + a_d y^d \in \mathbb{F}_i[y]\). If \(i = 1\), the coefficients \(a_j \in \mathbb{F}_1 = \mathbb{F}[y]/(\psi_0(y))\) can be expressed as polynomials in \(z_0\) of degree less than \(f_0\), with coefficients in \(\mathbb{F}\). If we denote by \(a_j(x)\) their arbitrary liftings to \(A[x]\), we take:

\[
g(x) = \phi(x)^n (a_0(x)\pi^n + a_1(x)\pi^{n-1}\phi(x)^e + \cdots + a_d(x)\pi^{n-dh}\phi(x)^{de}).
\]

If \(i > 1\), the polynomial we are looking for is:

\[
g(x) = \phi(x)^n (g_0(x) + g_1(x)\phi(x)^e + \cdots + g_d(x)\phi(x)^{de}),
\]

where \(g_j(x) \in A[x]\) are the output of \(\text{Construct}(\text{Trunc}_{i-1}(t), \lambda_{i-1}, \varphi_j, w_j)\), for adequate polynomials \(\varphi_j(y) \in \mathbb{F}_i[y]\) with \(\deg \varphi_j < f_{i-1}\), and integers \(w_j \geq V_i\).

OUTPUT:

- A polynomial \(g(x) \in A[x]\) such that \(v_{i+1}(g) = V\) and \(y^{ord_\psi(\varphi)}R_{\lambda,i}(g)(y) = \varphi(y)\).

Routine Representative

INPUT:
- A type \(t\) over \(A\), of order \(i \geq 1\).

Express \(\psi_i(y) = y^{f_i} + \varphi(y) \in \mathbb{F}_i[y]\), for some polynomial \(\varphi(y)\) of degree less than \(f_i\).

Let \(g(x)\) be the output of \(\text{Construct}(t, \lambda_i, c\varphi, V_{i+1})\), for an adequate constant \(c \in \mathbb{F}_i\) (cf. the proof of [GMN12 Thm. 2.11]).

OUTPUT:
- A representative of \(t\), constructed as: \(\phi(x) = \phi_i(x)^{r,f_i} + g(x)\).

We now describe the Montes algorithm in pseudocode. Our design is slightly different from the original one. The output OM representations are optimal and complete types of order \(r+1\), as described in [2], where \(r\) is the Okutsu depth of the corresponding \(p\)-adic irreducible factor. In the original version, types of order \(r + 2\) were used in some occasions (cf. [GMN10 Thm. 4.2]). The changes we introduce do not affect the complexity. The order of a type \(t\) is the largest level \(i\) for which all three fundamental invariants \((\phi_i, \lambda_i, \psi_i)\) are assigned.
MONTES’ ALGORITHM

INPUT:
− A monic separable polynomial \(F(x) \in A[x] \).
− A non-zero prime ideal \(p \) of \(A \).

1 Initialize an empty list \(\text{OMReps} \).
2 \text{Factorization}(F, \overline{F})).
3 FOR each monic irreducible factor \(\varphi \) of \(\overline{F} \) DO
4 Take a monic lift, \(\phi(x) \in A[x] \), of \(\varphi \) and create a type \(t \) of order zero with
 \(\psi_t^0 \leftarrow \varphi \), \(\omega_t^1 \leftarrow \text{ord}_p \overline{F} \), \(\phi_t^1 \leftarrow \phi \).
5 Initialize an empty list \(\text{Leaves} \), and the list \(\text{Stack} = [t] \).
 WHILE \(\# \text{Stack} > 0 \) DO
6 Extract (and delete) the last type \(t_0 \) from \(\text{Stack} \). Let \(i - 1 \) be its order.
7 \text{Newton}(t_0, \omega_t^0, F). \) Let \(N \) be the Newton polygon.
8 FOR every side \(S \) of \(N \) DO
9 Set \(\lambda_i^0 \leftarrow \text{slope of } S. \) IF \(\lambda_i^0 = -\infty \), THEN add \(t := (t_0; (\phi_i^0, -\infty, -)) \)
 to \(\text{Leaves} \) and continue to the next side \(S \).
10 \text{ResidualPolynomial}(t_0, \lambda_i^0, F).
11 \text{Factorization}(F_i, R_i(F)).
12 FOR every monic irreducible factor \(\psi \) of \(R_i(F) \) DO
13 Set \(t \leftarrow t_0 \), and extend \(t \) to an order \(i \) type by setting \(\psi_t^i \leftarrow \psi \).
14 IF \(\omega_t^i = 1 \), THEN add \(t \) to \(\text{Leaves} \) and go to 6.
15 Set \(\omega_{i+1}^i \leftarrow \text{ord}_p R_i(F) \), and call \text{Representative}(t) \) to fill \(\phi_{i+1}^t \).
16 IF \(\text{deg} \phi_{i+1}^t = \text{deg} \phi_t^i \) THEN set \(\phi_t^i \leftarrow \phi_{i+1}^t \), \(\omega_t^i \leftarrow \omega_{i+1}^i \), and
 delete all data in the \((i+1) \)-th level of \(t \).
17 Add \(t \) to \(\text{Stack} \).
 END WHILE
18 Add all elements of \(\text{Leaves} \) to the list \(\text{OMReps} \).

OUTPUT:
− An OM factorization of \(F \) over \(O_p[x] \), and the corresponding family \(t_{F_1}, \ldots, t_{F_g} \)
 of OM representations of the irreducible factors of \(F \). The Okutsu factors are the \(\phi \)-polynomials at the last level of these types.

When the WHILE loop (corresponding to some irreducible factor \(\varphi \) of \(\overline{F} \)) ends,
the list \(\text{Leaves} \) contains a tree of \(F \)-complete optimal types in 1-1 correspondence
with all irreducible factors of \(F(x) \) over \(O_p[x] \), which are congruent to a power of \(\varphi \) modulo \(p \). The nodes of this tree (except for the root node) are labelled with a
triple of fundamental invariants \((\phi_i, \lambda_i, \psi_i) \). Each leaf of the tree determines the
type obtained by gathering the invariants of all nodes in the unique path joining
the leaf to the root node. See Figure 6.

Step 16 takes care of the optimization. The list \(\text{Stack} \) stores only strongly
optimal types. If the enlarged type \(t \) of order \(i \) of step 13 has still this property,
then it is sent to \(\text{Stack} \). Otherwise, we send again to \(\text{Stack} \) the \((i-1) \)-th order
type t_0, but equipped with a different (and better) representative; this is called a refinement step \cite[Sec. 3.2]{GMN11}.

When the algorithm ends, the list OMReps contains a forest (disjoint union of trees) of optimal F-complete types. Nevertheless, the list OMReps is only a sequence of the leaves of all these trees, and the tree structure is not preserved.

The Montes algorithm as an irreducibility test. For any level i, the existence of two sides of different slope in $N_i^-(F)$, or two coprime factors of $R_i(F)$ in $F_i[y]$, implies that $F(x)$ is not irreducible \cite[Thms. 3.1.3,7]{GMN12}. On the other hand, if no factorization has been detected in lower levels, the Newton polygon $N_i^-(F)$ is one-sided and the corresponding residual polynomial $R_i(F)$ is irreducible in $F_i[y]$, then $F(x)$ is irreducible \cite[Cor. 3.8]{GMN12}.

Therefore, we can use the following version of the Montes algorithm as an irreducibility test for polynomials over $\mathcal{O}_p[x]$.

IRREDUCIBILITY TEST

INPUT:

- A monic separable polynomial $F(x) \in A[x]$.
- A non-zero prime ideal \mathfrak{p} of A.

1 Factorization(F, \overline{F}). IF there are at least two irreducible factors THEN return false.

2 Consider a monic lift, $\phi(x) \in A[x]$, of the unique irreducible factor φ of \overline{F} and create a type t of order zero with: $\psi_t^0 \leftarrow \varphi$, $\omega_t^0 \leftarrow \text{ord}_F \overline{F}$, $\phi_t^0 \leftarrow \phi$.

3 Initialize the list $\text{Stack} = [t]$.

WHILE $\#\text{Stack} > 0$ DO

4 Extract (and delete) the last type t_0 from Stack. Let $i-1$ be its order.

5 Set $\lambda_t^{t_0} = \text{Newton}(t_0, \omega_t^{t_0}, F)$. IF $\lambda_t^{t_0}$ has at least two sides THEN return false.

6 Set $\lambda_t^{t_0} \leftarrow$ slope of the unique side of N. IF $\lambda_t^{t_0} = -\infty$, THEN return true.

7 ResidualPolynomial($t_0, \lambda_t^{t_0}, F$).

8 Factorization($F_i, R_i(F)$). IF there are at least two irreducible factors THEN return false, ELSE let ψ be the unique irreducible factor of $R_i(F)$.

9 Set $t \leftarrow t_0$, and extend t to an order i type by setting $\psi_t^i \leftarrow \psi$.

10 IF $\text{ord}_F R_i(F) = 1$, THEN return true.

11 Set $\omega_{i+1}^t \leftarrow \text{ord}_F R_i(F)$, and call $\text{Representative}(t)$ to fill ϕ_t^{i+1}.

12 IF $\deg \phi_{i+1}^t = \deg \phi_t^i$ THEN set $\phi_t^i \leftarrow \phi_{i+1}^t$, $\omega_t^i \leftarrow \omega_{i+1}^t$, and delete all data in the $(i + 1)$-th level of t. **
Add t to Stack.

END WHILE

OUTPUT:
true if $F(x)$ is irreducible over $\mathcal{O}_p[x]$ and false otherwise.

5. COMPLEXITY ANALYSIS OF THE MONTES ALGORITHM

All tasks we are interested in may be performed modulo p^n, for a sufficiently high precision ν. Thus, we may assume that the elements of A are finite π-adic developments. In particular, the computation of the p-adic valuation $v = v_p$ has a negligible cost.

Definition 5.1. An operation of A is called p-small if it involves two elements belonging to a fixed system of representatives of A/p.

Working at precision ν, each multiplication in A costs $O(\nu^{1+\epsilon})$ p-small operations if we assume the fast multiplications techniques of Schönhage-Strassen [SS71].

Let $q := \#F$. We assume that a p-small operation is equivalent to $O((\log(q))^{1+\epsilon})$ word operations, the cost of an operation in the residue field $F = A/p$. This is the case in most of the Dedekind rings that naturally arise in practice.

5.1. Complexity of the basic subroutines.

Lemma 5.2. [vzGG93] Cor. 14.30] Let F be a finite field with qF elements, and $g(x) \in F[x]$ a polynomial of degree d. The cost of the routine $\text{Factorization}(F, g)$ is $O((q^2 + d^{1+\epsilon}) \log(qF))$ operations in F.

The following observation is easy to prove by an inductive argument.

Lemma 5.3. Let m_1, \ldots, m_i be positive integers such that $m_1 \mid \cdots \mid m_i$ and $m_1 < \cdots < m_i$. Then, $m_1 + \cdots + m_i \leq 2m_i$.

Lemma 5.4. [Pau10] Lem. 18] Let t be a strongly optimal type of order $i - 1 \geq 1$. Let $a(x) \in \mathcal{O}[x]$ be a polynomial of degree less than m_i. The computation of the multiaic expansion of $a(x)$,

$$a(x) = \sum_{j=(j_1, \ldots, j_{i-1})} a_j(x)\phi_1(x)^{j_1} \cdots \phi_{i-1}(x)^{j_{i-1}}, \quad \deg a_j < m_1,$$

where $0 \leq j_k < e_k f_k$, for all $1 \leq k < i$, has a cost of $O((m_i)^{1+\epsilon})$ operations in A.

Actually, in [Pau10] it was proved an estimation of $O(m_i^2)$ operations in A, assuming ordinary arithmetic. If we assume fast multiplication, the cost of the computation of the ϕ_{i-1}-expansion of $a(x)$ may be estimated in $O((m_i)^{1+\epsilon})$ operations in A [vzGG93] Thm. 9.15]. By using this estimation, the proof of [Pau10] Lem. 18 leads to Lemma 5.4.

Lemma 5.5. Let t be a strongly optimal type of order $i - 1 \geq 0$, with representative $\phi(x)$. Let ω be a positive integer and $g(x) \in A[x]$ a polynomial of degree $d \geq \omega m_i$. Then, the cost of the routine $\text{Newton}(t, \omega, g)$ is $O(\omega^{1+\epsilon})$ operations in A.

Proof. The computation of the first $\omega + 1$ coefficients of the ϕ-development of $g(x)$ requires $\omega + 1$ divisions with remainder:

$$g = \phi \cdot q_1 + a_0, \quad q_1 = \phi \cdot q_2 + a_1, \quad \cdots, \quad q_\omega = \phi \cdot q_{\omega+1} + a_\omega.$$
The number of operations in A that are necessary to carry out each one of these divisions is $O(d^{1+\epsilon})$ [vzGG03 Thm. 9.6]. Thus, the lemma states that the cost of this initial step dominates the whole routine.

The next step is the computation of $v_i(a_k)$, for $0 \leq k \leq \omega$. Denote by $a(x) = a_k(x)$ any one of these $\omega + 1$ coefficients, and consider the multiadic development (13) of $a(x)$. By [GMN12b Lem. 4.2], we have

$$v_i(a(x)) = \min_{j_1, \ldots, j_{i-1}} \{v_i(a_{j_1}) + j_1 v_i(\phi_1) + \cdots + j_{i-1} v_i(\phi_{i-1})\}.$$

By [GMN12 Prop. 2.15], we may use closed formulas for the values $v_i(\phi_j)$ in terms of the Okutsu invariants, and since $\deg a_j < m_1$, [GMN12 Prop. 2.7] shows that:

$$v_i(a_{j_1}) = e_0 \cdots e_{i-1} \min \{v_p(c) \mid c \text{ coefficient of } a_j(x)\}.$$

Thus, the cost of computing $v_i(a_k)$ is dominated by the cost of the computation of the multiadic development of a_k. By Lemma 5.4, the total cost of this step is $(\omega + 1)O((m_i)^{1+\epsilon})$ operations in A. This cost is clearly dominated by the cost of the first divisions with remainder.

Finally, the computation of the Newton polygon has a cost of $O((\omega + 1)^2)$ multiplications of integers. If we work at precision ν, (13) shows that $e_0 \cdots e_{i-1} \nu$ is an upper bound of $v_i(a_k)$; hence, each multiplication of integers of this size requires $O(\log(m_i \nu)^{1+\epsilon})$ word operations. Since $\omega \leq d/m_i$, the complexity of this task is also dominated by that of the first divisions with remainder, obtained by multiplying by $(\nu \log(q))^{1+\epsilon}$ the cost in number of operations in A. □

Lemma 5.6. Let t be a strongly optimal type of order $i-1 \geq 0$, with representative $\phi(x)$, and take $\lambda \in \mathbb{Q}_{<0}, g(x) \in A[x]$. Let S be the λ-component of $N_i(g)$, and let $d = d(S)$ be the degree of S. Then, the cost of $\text{ResidualPolynomial}(t, \lambda, g)$ is $O\left(d(f_0 \cdots f_{i-1})(m_i)^{1+\epsilon} \log(q)\right)$ p-small operations.

Proof. Let e be the least positive denominator of λ. Let s_0 be the abcissa of the left end point of S, and take $s_j := s_0 + je$, for $0 \leq j \leq d$. We assume that in a previous call to the routine Newton, we computed (and stored) the coefficients a_{s_j} of the ϕ-adic expansion of $g(x)$, and their $(\phi_1, \ldots, \phi_{i-1})$-multiadic expansion. Also, along this computation it is easy to store the necessary data to compute the exponents $t_{i-1}(s_j)$ at zero cost [GMN12 Def. 2.19].

Thus, the computation of the coefficients $c_0, \ldots, c_d \in F_i$ of the residual polynomial $R_{\lambda,i}(g)(y)$, requires two tasks:

(a) compute $R_{i-1}(a_{s_j})(y) \in F_{i-1}[y]$, for each $0 \leq j \leq d$,

(b) compute $c_j := z_{t_{i-1}(s_j)} R_{i-1}(a_{s_j})(z_{i-1}) \in F_i$, for each $0 \leq j \leq d$.

Denote by $C_i(d)$ the cost of the computation of $R_{\lambda,i}(g)$, measured in number of p-small operations. Since $\deg a_{s_j} < m_i = e_{i-1} f_{i-1} m_{i-1}$, the Newton polygon $N_{i-1}(a_{s_j})$ has length less than $e_{i-1} f_{i-1}$; hence, the λ_{i-1}-component of this polygon has degree less than f_{i-1}. Therefore, the cost of task (a) is dominated by $C_{i-1}(f_{i-1})$.

The computation of $z_{t_{i-1}(s_j)}$ requires $O(\log(\# F_i))$ multiplications in F_i. Since $\# F_i = q^{f_0 \cdots f_{i-1}}$, the cost is $O\left((f_0 \cdots f_{i-1})^{2+\epsilon} \log(q)\right)$ p-small operations.

Since $\deg R_{i-1}(a_{s_j}) < f_{i-1}$, the cost of the computation of $R_{i-1}(a_{s_j})(z_{i-1})$ by Horner’s rule is $O(f_{i-1})$ multiplications in F_i; thus, it is dominated by the computation of a power of z_{i-1}. Altogether, we get

$$C_i(d) \leq (d + 1) \left(C_{i-1}(f_{i-1}) + (f_0 \cdots f_{i-1})^{2+\epsilon} \log(q)\right).$$
From this recurrence, it is easy to derive:
\[C_i(d) = (d + 1)O \left(f_0 \cdots f_{i-1} \log(q) \left(f_0^{1+\epsilon} + (f_0 f_1)^{1+\epsilon} + \cdots + (f_0 \cdots f_{i-1})^{1+\epsilon} \right) \right). \]

Finally, we may use Lemma 5.3 to estimate: \(f_0^{1+\epsilon} + \cdots + (f_0 \cdots f_{i-1})^{1+\epsilon} \leq (m_0)^{1+\epsilon} + \cdots + (m_i)^{1+\epsilon} = O \left(m_i^{1+\epsilon} \right). \)

Lemma 5.7. Let \(t \) be a strongly optimal type of order \(i - 1 \geq 0 \), with representative \(\phi(x) \). Let \(\lambda = -h/e \), where \(h, e \) are positive coprime integers. Let \(\varphi(y) \in \mathbb{F}_1[y] \) be a polynomial of degree \(d \), and \(V \geq ed(eV + h) \) a positive integer. Then, the cost of \(\text{Construct}(t, \lambda, \varphi, V) \) is \(O \left((f_0 \cdots f_{i-1} d)^{2+\epsilon} V^{1+\epsilon} \right) \) \(p \)-small operations.

Proof. The output polynomial is constructed as:
\[g(x) = \phi(x)^s \left(g_0(x) + g_1(x) \phi(x)^e + \cdots + g_d(x) \phi(x)^{de} \right), \]
where \(0 \leq s < e \), and the polynomials \(g_j(x) \in A[x] \) may be taken as the output of an adequate call to \(\text{Construct} \) at level \(i - 1 \). In particular, \(\deg g_j < m_i \), for all \(j \).

We must compute the polynomials \(\phi(x)^s, \phi(x)^e, g_0(x), \ldots, g_d(x) \), and finally compute \(g(x) \) by Horner’s rule. This latter task requires \(d + 1 \) multiplications of polynomials. In each multiplication, the two factors have degree (bounded by)
\[(m_i, em_i), ((e + 1)m_i, em_i), ((2e + 1)m_i, em_i), \ldots, ((d + 1)e + 1)m_i, em_i, \]
respectively. The multiplication of two polynomials of degrees \(m' \leq m \) requires \(O(m') \) operations in \(A \). Thus, if we denote \(m_{i+1} := edm_i \), the number of operations in \(A \) required for the final evaluation of \(g(x) \) is of the order of:
\[(edm_i)^{1+\epsilon}(1+\epsilon + 2^{1+\epsilon} + \cdots + d^{1+\epsilon}) = O((edm_i)^{1+\epsilon}d^{2+\epsilon}) = O(d(m_{i+1})^{1+\epsilon}). \]

This estimation clearly dominates the cost of the computation of \(\phi(x)^s \) and \(\phi(x)^e \). Thus, we analyze only the cost of the computation of \(g_0(x), \ldots, g_d(x) \).

Denote by \(C_i(d) \) the total cost of \(\text{Construct} \), measured in number of operations in \(A \). We have seen that \(C_i(d) = d \left(C_{i-1}(f_{i-1}) + O((m_{i+1})^{1+\epsilon}) \right) \). By using Lemma 5.3, this recurrence leads to:
\[
C_i(d) = O \left(d(m_{i+1})^{1+\epsilon} + d f_{i-1}(m_i)^{1+\epsilon} + \cdots + d f_{i-1} \cdots f_0(m_0)^{1+\epsilon} \right)
= O \left(d f_{i-1} \cdots f_0 \left((m_{i+1})^{1+\epsilon} + (m_i)^{1+\epsilon} + \cdots + (m_0)^{1+\epsilon} \right) \right)
= O \left(d f_{i-1} \cdots f_0 (m_{i+1})^{1+\epsilon} \right).
\]

Finally, we may work with precision \(\nu := [V/(e_0 \cdots e_{i-1}e)] + 1 \), without changing the desired properties for \(g(x) \):
\[v_{i+1}(g) = V; \quad y^{\ord y} \varphi R_{\lambda,i}(g)(y) = \varphi(y), \]
where \(v_{i+1} \) is the MacLane valuation determined by \(t, \phi \) and \(\lambda \). In fact, suppose \(G(x) = g(x) + h(x) \), for a polynomial \(h(x) \in A[x] \), all whose coefficients \(c \) satisfy \(v_p(c) > V/(e_0 \cdots e_{i-1}e) \). Then, \(v_{i+1}(c) = (e_0 \cdots e_{i-1}e)v_p(c) > V \), by Lemma 1.5, so that \(v_{i+1}(h) > v_{i+1}(g) \), and \(v_{i+1}(G) = v_{i+1}(g) \). Also, we get \(R_{\lambda,i}(G)(y) = R_{\lambda,i}(g)(y) \) by CMN12 Prop. 2.8).

Therefore, the total cost of \(\text{Construct} \), measured in number of \(p \)-small operations, is obtained by multiplying the estimation of \(15 \) by \(\nu^{1+\epsilon} \).

Corollary 5.8. Let \(t' = (\nu_1, (\phi_1, \lambda_1, \psi_1): \cdots : (\phi_{i-1}, \lambda_{i-1}, \psi_{i-1}); (\phi, \lambda, \psi)) \) be an optimal type of order \(i \geq 1 \), where \(\lambda = -h/e \) for some positive coprime integers \(h, e \), and \(y \neq \psi(y) \in \mathbb{F}_1[y] \) is a monic irreducible polynomial of degree \(f \). Let
The cost of the computation of a representative ϕ' of t' is $O\left(\left(f_0 \cdots f_{i-1} f\right)^{2+\epsilon} V^{1+\epsilon}\right)$ p-small operations.

Proof. The polynomial $\phi'(x)$ is constructed as $\phi(x)^{g_1} + g(x)$, where $g(x)$ is the output of the routine $\text{Construct}(t, \lambda, \psi(y) - g, V)$. The computation of ϕ^{g_1} by repeated squarings costs $O((efm_i)^{1+\epsilon})$ operations in A; this cost is dominated by the estimation (13) of the cost of the computation of $g(x)$. Thus, the corollary is an immediate consequence of Lemma 5.7.

5.2. Complexity of the polynomial irreducibility test. The aim of this section is to prove a new estimation for the complexity of the polynomial irreducibility test based on the Montes algorithm. In comparison with previous estimations [FV10], the total degree in n and δ is reduced from $4 + \epsilon$ to $2 + \epsilon$.

Theorem 5.9. The cost of the irreducibility test over $\mathcal{O}_p[x]$, applied to a monic separable polynomial $F \in A[x]$ of degree n is $O\left(n^{2+\epsilon} + n^{1+\epsilon}(1 + \delta) \log(q) + \delta^{2+\epsilon}\right)$ p-small operations, where $\delta := v_p(\text{Disc}(F))$.

Corollary 5.10. If we assume p small (i.e. $\log(q) = O(1)$), we obtain an estimation of $O(n^{2+\epsilon} + \delta^{2+\epsilon})$ word operations.

Before proving this theorem, we discuss some features of the flow of the algorithm. The irreducibility test provides as a by-product an optimal type t of order r, represented by a tree with unibranch nodes and a unique leaf:

\[
\psi_0 \langle \phi_1, \lambda_1, \psi_1 \rangle \cdots \langle \phi_{r-1}, \lambda_{r-1}, \psi_{r-1} \rangle \langle \phi_r, \lambda_r, \psi_r \rangle \rightsquigarrow t
\]

If $\text{ord}_F(F) = 1$, then F was recognized to be irreducible. Otherwise, after eventually several refinement steps, a representative ϕ_{r+1} of t was found, such that $N_{r+1}(F)$ had more than one side, or $R_{r+1}(F)$ had more than one irreducible factor; then, F was recognized to be reducible. In this latter case, all irreducible factors of F are of type t (Definition 2.5), and they have degree a multiple of m_{r+1}, by Lemma 5.4. In particular, $n = fm_{r+1}$, for some integer $f \geq 2$.

We may choose a monic irreducible polynomial $\psi \in \mathbb{F}_{r+1}[y]$ of degree f and use Representative to construct a representative $\phi \in A[x]$ of the type of order $r + 1$:

\[
t' = (\psi_0; \langle \phi_1, \lambda_1, \psi_1 \rangle; \cdots; \langle \phi_r, \lambda_r, \psi_r \rangle; (\phi_{r+1}, -1, \psi)).
\]

The polynomial ϕ is irreducible over \mathcal{O}_p and it has degree $m_{r+2} = fm_{r+1} = n$. The irreducibility test applied to ϕ performs the same steps at all levels $i \leq r$, the same refinement steps at level $r + 1$ to find ϕ_{r+1}, and it will compute $N_{r+1}(\phi)$ and $R_{r+1}(\phi)$, to deduce the irreducibility of ϕ from the property $R_{r+1}(\phi) \sim \psi$. We shall see below that the cost of reaching ϕ_{r+1} depends only on n and ϕ_{r+1}. By Lemmas 5.5, 5.6 the cost of the computation of $N_{r+1}(\phi)$, $R_{r+1}(\phi)$ is not lower than the cost of the computation of $N_{r+1}(F)$, $R_{r+1}(F)$, respectively.

Remark 5.11. For the estimation of the complexity of the irreducibility test, we may assume that the input polynomial is irreducible.

For the estimation of the complexity we need to estimate the cost of advancing from the $(i-1)$-th node of the tree to the i-th node. This step may require several iterations of the WHILE loop, because of the refinement steps at the i-th level.
Thus, the crucial questions are the evaluation of the cost of each iteration at the i-th level and to find an upper bound for the number of these iterations.

Lemma 5.12. The width of F at the i-th level, $\lceil|\lambda_i|\rceil$, is an upper bound for the number of iterations of the WHILE loop at the i-th level, that are necessary to reach the right values of $(\phi_i, \lambda_i, \psi_i)$.

Proof. The first WHILE loop at the i-th level picks the type of order $i-1 \geq 0$:

$$t = (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_{i-1}, \lambda_{i-1}, \psi_{i-1})),$$

and a representative ϕ of degree m_i (a first candidate to be the polynomial ϕ_i), from the Stack. Then, it computes the slope $\lambda = -h/e$, with h,e positive coprime integers, of the one-sided Newton polygon $N_i(F)$ with respect to (t, ϕ), and the unique irreducible factor $\psi \in F[y]$ of the residual polynomial $R_{\lambda,i}(F)$. Finally, it constructs a representative ϕ' of the type

$$t' = (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_{i-1}, \lambda_{i-1}, \psi_{i-1}); (\phi, \lambda, \psi)).$$

Let $f = \deg \psi$, $V = ef(vV_1 + h)$. By [GMN2] Thms. 2.11,3.1, $\deg \phi' = efm_i$, and

$$v(\phi(\theta)) = (V_i + |\lambda|)/(e_0 \cdots e_{i-1}) < v(\phi'(\theta)) = (V + |\lambda'|)/(e_0 \cdots e_{i-1}),$$

where θ is a root of F in \mathbb{K}_p, v is the canonical extension of V to \mathbb{K}_p, and λ' is the slope of the Newton polygon $N_{i+1}(F)$, computed with respect to (t', ϕ').

The loop is a refinement step if and only if $\deg \phi' = m_i$, or equivalently, $e = f = 1$. In this case, ϕ' is also a representative of t, and we proceed to a new iteration of the WHILE loop at the i-th level, with the pair (t, ϕ') as starting data. Otherwise, [GMN1] Thm. 3.1 shows that $v(\phi(\theta))$ is maximal among all other representatives of t; thus, it may be taken as an Okutsu polynomial of the i-th level. We take $\phi_i := \phi$, $\lambda_i := \lambda$, $\psi_i := \psi$, and we proceed to a new iteration of the WHILE loop at the $(i+1)$-th level with the pair (t', ϕ') as starting data.

Therefore, the number of iterations of the WHILE loop at the i-th level is bounded from above by the number of values of $v(\phi(\theta))$, where ϕ runs on all possible representatives of t. This number of values is $\lceil|\lambda_i|\rceil$ by Proposition 1.8. \hfill \Box

Proof of Theorem 5.3. By Remark 5.11 we may assume that the input polynomial F is irreducible over $\mathcal{O}_p[x]$. Let r be the Okutsu depth of F and $t_{F,r} = (\psi_0; (\phi_1, \lambda_1, \psi_1); \cdots; (\phi_r, \lambda_r, \psi_r))$ the strongly optimal type of order r computed along the flow of the algorithm.

We shall frequently use an estimation that is an immediate consequence of formula (15) and the inequality $\delta_0(F) \leq 2\delta/n$ of Lemma 2.24

$$\sum_{1 \leq i \leq r} \frac{|\lambda_i|}{e_0 \cdots e_{i-1}} m_i = O(\delta). \tag{16}$$

The initial steps compute the pair (t, ϕ), where $t = (\psi_0)$ is the type of order zero determined by the unique irreducible factor of F modulo p and ϕ is a monic lift to $A[x]$ of ψ_0. The cost of these operations is dominated by the factorization of F modulo p, which costs $O(\delta^{n^2+2} + \delta^{n^2+2} \log(q))$ p-small operations.

Each iteration of the WHILE loop calls only once each subroutine Newton, ResidualPolynomial, Factorization and Representative. Let R be one of these subroutines; by Lemma 5.12 the total cost of the calls to R of all iterations of the WHILE loop is:

$$\sum_{1 \leq i \leq r} |\lambda_i| C_R, \tag{17}$$
where $C_{R,i}$ is an upper bound of the cost of any call to R along the different iterations of the WHILE loop at the i-th level. We proceed to estimate $C_{R,i}$ and (17), for each subroutine. We keep the notation introduced in the proof of Lemma 5.12 for the data t, ϕ, λ, ψ, e, f, ϕ', V, t', used in any of these iterations.

R = Newton. By Lemma [5.5] the cost of one call to Newton depends only on $n = \deg F$ and $\omega := \ell(N_i(F)) = n / \deg \phi$. Since $\deg \phi = m_i = e_{i-1} f_{i-1} m_{i-1}$ does not depend on the choice of ϕ, the cost is constant for all the iterations at the i-th level. By Lemma 5.2, this cost is $O((n/m_i)n^{1+\varepsilon})$ operations in A.

By Theorem 2.3, we may work at any precision $\nu > 2\delta/n$, so that we may take $C_{R,i} = O((n/m_i)\nu^{1+\varepsilon}(\delta/n)^{1+\varepsilon}) = O((n/m_i)^{1+\varepsilon})$ p-small operations. By (10), we get:

$$
\sum_{1 \leq i \leq r} |\lambda_i| C_{R,i} = \sum_{1 \leq i \leq r} |\lambda_i| \frac{n}{m_i} \leq \delta^{1+\varepsilon} \sum_{1 \leq i \leq r} |\lambda_i| \frac{n^2}{e_0 \cdots e_{i-1} m_i} = O(\delta^{2+\varepsilon}).
$$

R = ResidualPolynomial. By Lemma 5.6, the cost of one call to ResidualPolynomial depends only on f_0, \ldots, f_{i-1} and the degree of the side $d(N_i(F)) = \omega / e = n / (m_i e)$. Thus, the cost is constant for all refinement steps ($e = 1$) and eventually lower in the last iteration of WHILE ($e > 1$). By Lemma 5.6, we may take

$$(18) \quad C_{R,i} = O((n/m_i)(f_0 \cdots f_{i-1}) n^{1+\varepsilon} \log(q)) = O((n/e_0 \cdots e_{i-1}) n^{1+\varepsilon} \log(q))$$

p-small operations. By (10), we get:

$$
\sum_{1 \leq i \leq r} |\lambda_i| C_{R,i} \leq n^{1+\varepsilon} \log(q) \sum_{1 \leq i \leq r} \frac{|\lambda_i| n}{e_0 \cdots e_{i-1}} = O(n^{1+\varepsilon} \log(q) \delta).
$$

R = Factorization. By Lemma 5.2, the cost of one call to Factorization depends only on f_0, \ldots, f_{i-1} and the degree $d(N_i(F)) = \omega / e = n / (m_i e)$, and it is bounded from above by $O((n/m_i)^{2+\varepsilon} + (n/m_i)^{1+\varepsilon}(f_0 \cdots f_{i-1}) \log(q))$ operations in \mathbb{F}_i. We may estimate

$$
C_{R,i} = O((n/m_i)^{2+\varepsilon}(f_0 \cdots f_{i-1})^{1+\varepsilon} + (n/m_i)^{1+\varepsilon}(f_0 \cdots f_{i-1})^{2+\varepsilon} \log(q))
$$

$$
= O(n^{2+\varepsilon} / (m_i e_0 \cdots e_{i-1})^{1+\varepsilon} + (n/e_0 \cdots e_{i-1})^{1+\varepsilon} f_0 \cdots f_{i-1} \log(q))
$$

p-small operations. Both summands of this expression are dominated by the estimation of (18). Thus, the total cost of Factorization is dominated by the total cost of ResidualPolynomial.

R = Representative. By Corollary 5.8, the cost of one call to Representative is $O((f_0 \cdots f_{i-1} f)^{2+\varepsilon} V^{1+\varepsilon})$ p-small operations. Along the refinement steps, we have $f = 1$, $V = V_t + h$; since the value of $h = |\lambda|$ grows at each iteration, the cost is dominated by the cost of the last iteration, where $f = f_i$, $V = V_{i+1} = e_i f_i (e_i V_t + h_i)$. Thus, we may take

$$
C_{R,i} = O((f_0 \cdots f_{i-1} f_i)^{2+\varepsilon} (V_{i+1})^{1+\varepsilon})
$$

p-small operations. By the recurrent formulas for V_t in section 1 and Lemma 2.2, $V_{i+1}/(e_0 \cdots e_i) \leq V_{r+1}/(e_0 \cdots e_r) \leq 2\delta/n$. Hence, $f_0 \cdots f_i V_{i+1} \leq 2\delta$. By (15), we get:

$$
\sum_{1 \leq i \leq r} |\lambda_i| C_{R,i} \leq (2\delta)^{1+\varepsilon} \sum_{1 \leq i \leq r} |\lambda_i| f_0 \cdots f_i = (2\delta)^{1+\varepsilon} \sum_{1 \leq i \leq r} \frac{|\lambda_i|}{e_0 \cdots e_{i-1}} m_i f_i
$$

$$
 \leq (2\delta)^{1+\varepsilon} \sum_{1 \leq i \leq r} \frac{|\lambda_i|}{e_0 \cdots e_{i-1}} n^2 m_i = O(\delta^{2+\varepsilon}).
$$
This completes the proof of the theorem. □

5.3. Complexity of the general factorization algorithm.

Let \(F_1, \ldots, F_g \in \mathcal{O}_p[x] \) be the monic irreducible factors of the input polynomial \(F \in A[x] \). Denote \(n_s = \deg F_s, \delta_s = \delta(F_s) \), and let \(r_s \) be the Okutsu depth of \(F_s \), for all \(1 \leq s \leq g \).

The output of the Montes algorithm is a forest \(T = T_1 \cup \cdots \cup T_k \), disjoint union of \(k \) connected trees, one for each irreducible factor of \(F \). Let \(R \subset T \) be the set of the \(k \) root nodes of \(T \), each one labelled by an irreducible factor \(\psi_0 \) of \(F \) (see Figure 6). If we convene that the root nodes have level zero, the level of a node \(n \in T \setminus R \) is, by definition, the level of its unique previous node plus one. These nodes are labelled by a triple of fundamental invariants, \(n = (\phi_n, \lambda_n, \psi_n) \).

Notation. For each \(n \in T \) of level \(i \), we denote:

- \(t_n := \) the type of order \(i \) obtained by gathering the fundamental invariants of all nodes in the unique path joining \(n \) with its root node.
- \(F_n := \) the product of all irreducible factors of \(F \) which are divisible by \(t_n \).
- \(B_n := \) the set of nodes of level \(i + 1 \) whose previous node is \(n \). We say that the nodes of \(B_n \) are branches of \(n \).

Let \(L \subset T \) be the set of all leaves of \(T \). These leaves are in 1-1 correspondence with the \(g \) irreducible factors of \(F \) over \(\mathcal{O}_p \). Suppose that \(n \) is the leaf attached to \(F_s \). The level of \(n \) is \(r_s + 1 \), and we denote by \(t_s := t_n \) the corresponding type of order \(r_s + 1 \). By construction, \(t_s \) is an OM representation of \(F_s \), and the family of the \(\phi_{r_s+1} \) polynomials of \(t_1, \ldots, t_g \) is an OM factorization of \(F \) over \(\mathcal{O}_p \). In particular, \(F_n = F_s \), by Corollary 3.10.

The root nodes are determined by the factorization of \(F \) over \(\mathbb{F}[y] \). Hence, their computation has a cost of \(O(n^{2+\epsilon} + n^{1+\epsilon} \log(q)) \) \(p \)-small operations. Let

\[\text{Rout} := \{ \text{Newton, ResidualPolynomial, Factorization, Representative} \} \]

be the family of the four fundamental subroutines of the Montes algorithm. For each routine \(R \in \text{Rout} \) and each node \(m \in T \setminus L \), let \(B_{R,m} \) be an upper bound of the cost, measured in number of \(p \)-small operations, of any call to \(R \) along the different iterations of the WHILE loop that are necessary to compute all nodes of \(B_m \). Then, the total cost of the Montes algorithm is

\[
O \left(n^{2+\epsilon} + n^{1+\epsilon} \log(q) + \sum_{R \in \text{Rout}} \sum_{m \in T \setminus L} B_{R,m} \right).
\]

Our first task is to find estimations for these upper bounds \(B_{R,m} \).

Lemma 5.13. For all \(m \in T \setminus L \), we have \(F_m = \prod_{n \in B_m} F_n \).

Proof. For an arbitrary node \(n \in T \), let \(L_n \subset L \) be the set of leaves that are connected to \(n \). By definition, \(F_n \) is the product of all irreducible factors of \(F \) attached to the leaves in \(L_n \). On the other hand, \(L_m \) is clearly the disjoint union of all \(L_n \), for \(n \in B_m \). □
Lemma 5.14. Let \(\mathbf{m} \in \mathcal{T} \setminus \mathcal{L} \) be a node of level \(i - 1 \geq 0 \). Let \(e_j, f_j, h_j, 0 \leq j < i \) be the Okutsu invariants of the type \(t_{\mathbf{m}} \), and take \(m_i := e_{i-1} f_{i-1} m_{i-1} \). Denote

\[
B := \sum_{n \in B_{\mathbf{m}} \setminus \mathcal{L}} |\lambda_n| \frac{\deg F_n}{m_i} + \sum_{n \in B_{\mathbf{m}} \cap \mathcal{L}} v_n (\text{Res}(F_n, F_i)) \cdot \frac{1}{f_0 \cdots f_{i-1}},
\]

where, for each \(n \in B_{\mathbf{m}} \cap \mathcal{L} \), \(F_i \neq F_n \) is an adequate choice of an irreducible factor of \(F \) such that \(t_{\mathbf{m}} | F_i \). Then, for \(\mathbf{R} = \text{Newton} \) or \(\text{Representative} \), we have \(B_{\mathbf{m}} | F \mathbf{m} = O \left(\frac{n^{1+\epsilon} \delta^{1+\epsilon}}{B} \right) \), whereas for \(\mathbf{R} = \text{ResidualPolynomial} \) or Factorization, we have \(B_{\mathbf{m}} | F \mathbf{m} = O \left(\frac{n^{1+\epsilon} f_0 \cdots f_{i-1} \log(q) B}{m_i} \right) \).

Proof. Denote for simplicity \(\mathbf{t} = t_{\mathbf{m}}, \mathcal{B} = B_{\mathbf{m}} \). Since \(\mathbf{m} \) is not a leaf, the type \(\mathbf{t} \) is strongly optimal. Along the construction of the node \(\mathbf{m} \), the algorithm computes an initial representative \(\phi \) of \(\mathbf{t} \) (of degree \(m_i \)) and the positive integer \(\omega := \text{ord}_\phi(F) \).

By the definition of \(F_{\mathbf{m}} \), and Lemmas 2.6, 5.13

\begin{equation}
(20) \quad \omega = \text{ord}_\phi(F) = \text{ord}_\phi(F_{\mathbf{m}}) = \deg F_{\mathbf{m}} / m_i = \left(\sum_{n \in B_{\mathbf{m}}} \deg F_n \right) / m_i.
\end{equation}

Suppose \(\mathbf{R} = \text{Newton} \). In the first iteration of the WHILE loop concerning \(\mathbf{m} \), the routine \(\text{Newton}(\mathbf{t}, \omega, F) \) is called to compute the polygon \(N_{i,\omega}(F) \) determined by the first \(\omega + 1 \) coefficients of the \(\phi \)-expansion of \(F \). By Lemma 5.5 this has a cost of \(O(\omega n^{1+\epsilon}) \) operations in \(A \). By Theorem 3.14 we may work with precision \(\delta + 1 \), so that the computation requires \(O(\omega n^{1+\epsilon} \delta^{1+\epsilon}) \) \(p \)-small operations. By (20), this cost may be distributed into a cost of \(O((\deg F_{\mathbf{m}} / m_i) n^{1+\epsilon} \delta^{1+\epsilon}) \) \(p \)-small operations for each node \(n \in \mathcal{B} \).

The WHILE loop yields a factorization, \(F_{\mathbf{m}} = \prod_{\lambda, \psi} F_{\lambda, \psi} \), where \(\lambda \) runs on all slopes of \(N_{i,\omega}(F) \) and, for each \(\lambda \), the polynomial \(\psi \) runs on the monic irreducible factors of \(R_{\lambda}(F) \). For each “branch” \((\lambda, \psi) \), a representative \(\phi_{\lambda, \psi} \) of the type \(t_{\lambda, \psi} := (\mathbf{t}; (\phi, \lambda, \psi)) \) is computed, and the positive integer \(\omega_{\lambda, \psi} := \text{ord}_{\phi_{\lambda, \psi}}(F) \) is determined. The polynomial \(F_{\lambda, \psi} \) is, by definition, the product of all irreducible factors of \(F \) that are divisible by \(t_{\lambda, \psi} \). The factorization of \(F_{\mathbf{m}} \) determines in turn a partition, \(\mathcal{B} = \prod_{\lambda, \psi} \mathcal{B}_{\lambda, \psi} \), where \(\mathcal{B}_{\lambda, \psi} \) contains all nodes \(n \in \mathcal{B} \) such that \(t_{\lambda, \psi} | F_n \).

If \(e_{\lambda} \) is the least positive denominator of \(\lambda \) and \(f_{\psi} = \deg \psi \), we have

\begin{equation}
(21) \quad \deg \phi_{\lambda, \psi} = e_{\lambda} f_{\psi} m_i, \quad \omega = \sum_{\lambda, \psi} e_{\lambda} f_{\psi} \omega_{\lambda, \psi}.
\end{equation}

In order to analyze these branches, there are four different situations to consider.

(a) \(\lambda = -\infty \). Then, \(\mathcal{B}_{\lambda, \psi} = \{ n \} \) has a single node, which is a leaf of \(\mathcal{T} \). The irreducible factor attached to this leaf is \(F_\phi = \phi \), and we take \(n = (\phi, -\infty, -) \).

(b) \(\omega = 1 \). There is only one branch \((\lambda, \psi) \), with \(e_{\lambda} = f_{\psi} = \omega_{\lambda, \psi} = 1 \). The set \(\mathcal{B}_{\lambda, \psi} = \{ n \} \) has a single node, which is a leaf of \(\mathcal{T} \), and we take \(n = (\phi, \lambda, \psi) \).

(c) \(e_{\lambda} f_{\psi} \geq 1 \). Then, \(n := (\phi, \lambda, \psi) \in \mathcal{B} \) is already a node of level \(i \) of \(\mathcal{T} \setminus \mathcal{L} \). In other words, \(\mathcal{B}_{\lambda, \psi} = \{ n \} \) singles out already a node of \(\mathcal{B} \), which is not a leaf of \(\mathcal{T} \).

(d) \(\omega > 1, e_{\lambda} f_{\psi} = 1 \). We fall in a refinement step; the slope \(\lambda \) is a negative integer \((e_{\lambda} = 1) \), and \(\psi \) has degree \(f_{\psi} = 1 \). We consider \(\phi_{\lambda, \psi} \) as a new representative of \(t \), and \(\omega_{\lambda, \psi} \) as the new future length of the Newton polygons of \(i \)-th order to analyze.

In case (d), we take \((t, \phi_{\lambda, \psi}, \omega_{\lambda, \psi}) \) as the input data of a future call of the WHILE loop, yielding a further factorization of \(F_{\lambda, \psi} \) and a further partition of \(\mathcal{B}_{\lambda, \psi} \). This loop will follow the same pattern as above, with a minor difference. In the first iteration, \(\mathbf{N}_{i,\omega}(F) = \mathbf{N}_{i-1}(F) \) is the principal Newton polygon of \(F \) with respect to
Note that if \(n \) is the number of iterations. The discussion is different for the \(O \) loop where this node was concerned (i.e. \(n \) is the Newton type \(f \) of the type \(F \)).

We may assume that there are at least two iterations of the WHILE loop \(\omega > 1 \). Since we do not fall in case (b), we have necessarily \(\omega > 1 + \delta \). By Proposition 1.8, the total number of iterations before we reach the node \(n \) is bounded from above by \(\langle \lambda, n \rangle \).

Suppose now \(n \in B \cap L \), and let \(F_n \) be the irreducible factor attached to this leaf. We may assume that there are at least two iterations of the WHILE loop concerning \(n \). Let \((t, \phi, \omega) \) be the input data of the penultimate of these iterations. Since we do not fall in case (b), we have necessarily \(\omega > 1 \). Let \(\langle \lambda, \psi \rangle \) be the branch such that \(n \in B_{\lambda, \psi} \). If \(\#B_{\lambda, \psi} > 1 \), we take \(F_{t, \phi, \omega} \) to be an irreducible factor of \(F_{\lambda, \psi} \) such that \(F_{t, \phi, \omega} \neq F_n \). If \(B_{\lambda, \psi} = \{ n \} \), then \(F_{\lambda, \psi} = F_n \), and the formula (20) shows that \(\omega_{\lambda, \psi} = \deg F_{\lambda, \psi}/m_i = 1 \). By (21), there is some branch \((\lambda', \psi') \neq (\lambda, \psi) \), because \(\omega > 1 \) and \(e_{\lambda} = f_{\lambda} = 1 \); in this case we take \(F_{t, \phi, \omega} \) to be one of the irreducible factors of \(F_{\lambda', \psi'} \).

Lemma 2.7 shows in any case that

\[
v(\text{Res}(F_n, F_t))/(f_0 \cdots f_{i-1}) \geq \ell(F_n)\ell(F_t)/(V_i + \min\{|\lambda|, |\lambda'|\}) \geq \min\{|\lambda|, |\lambda'|\},
\]

where \(\ell(F_n), \ell(F_t) \) are the lengths of \(N_i(F_n), N_i(F_t) \), respectively. In all previous iterations of WHILE, the branch concerning \(n \) was a refinement step, and the absolute size of the corresponding slope was an integer that grows strictly in each iteration; thus, the total number of iterations concerning \(n \) is bounded from above by \(1 + |\mu| \), for every slope \(\mu \) of the Newton polygon of the penultimate iteration.

Therefore, all estimations of the lemma about the contributions of the different nodes \(n \in B \) to the total cost of Newton are correct. This ends the proof of the lemma in the case \(R = \text{Newton} \).

Assume now \(R \neq \text{Newton} \). In every iteration of the WHILE loop, with input data \((t, \phi, \omega) \), we compute the residual polynomials \(R_{\lambda, i}(F) \), for \(\lambda \) running on all slopes of \(N_i(F) \). Then we factorize these polynomials over \(\bar{F_i} \), and for each monic irreducible factor \(\psi \) of \(R_{\lambda, i}(F) \), we compute a representative of the type \(t_{\lambda, \psi} \).

Let \(\ell(\lambda), d(\lambda) \) be the length and degree of the side of slope \(\lambda \). Lemma 3.0 shows that the cost of the computation of \(R_{\lambda, i}(F) \) is \(O(d(\lambda)(f_0 \cdots f_{i-1})(m_i)^{1+\epsilon}\log(q)) \) \(p \)-small operations. Since \(\omega \) is the length of \(N_{i, \omega}(F) \), we have

\[
\omega = \sum_{\lambda} \ell(\lambda) = \sum_{\lambda} e_{\lambda}d(\lambda) \geq \sum_{\lambda} d(\lambda).
\]

Therefore, the total cost of all calls to ResidualPolynomial during this iteration is bounded from above by \(O(\omega(f_0 \cdots f_{i-1})(m_i)^{1+\epsilon}\log(q)) \). As in the case \(R = \text{Newton} \), this cost is the product of a constant part, \((f_0 \cdots f_{i-1})(m_i)^{1+\epsilon}\log(q) \), times a variable part, \(\omega \). As before, we can distribute \(\omega \) into a cost of \(\deg F_n/m_i \), for every
node of \(B \), and the same arguments lead to an analogous estimation for \(B_{R,m} \) for \(R = \text{ResidualPolynomial} \), just by changing the constant part.

Assume now \(R = \text{Factorization} \). By Lemma 5.18, the cost of the factorization of \(R_{\lambda,i}(F) \) over \(\mathbb{F}_p \) is \(O\left(d(\lambda)^{2+\epsilon}(f_0 \cdots f_{i-1})^{1+\epsilon} + d(\lambda)^{1+\epsilon}(f_0 \cdots f_{i-1})^{2+\epsilon} \log(q) \right) \) \(p \)-small operations. Since \(d(\lambda) \leq \omega = \deg F_{m}/m_i \leq n/m_i \leq n/(f_0 \cdots f_{i-1}) \), this cost is \(O\left(d(\lambda)^{1+\epsilon}f_0 \cdots f_{i-1} \log(q) \right) \). Thus, the cost of all calls to \(\text{Factorization} \) during this iteration is \(O\left(\omega^{n+\epsilon}f_0 \cdots f_{i-1} \log(q) \right) \). We obtain the estimation of \(B_{R,m} \) by the same arguments of the previous cases.

Finally, let \(R = \text{Representative} \). Let \(V_{\lambda,\psi} := (e\lambda)^2 f_\psi(V_i + |\lambda|) \). By Lemma 5.8, the cost of the computation of a representative of \(t_{\lambda,\psi} \) is

\[
O\left((f_0 \cdots f_{i-1} f_\psi)^{2+\epsilon}(V_{\lambda,\psi})^{1+\epsilon} \right) \quad \text{\(p \)-small operations.}
\]

Instead of distributing this cost, we now attach the whole cost (22) to every node \(n \in B_{\lambda,\psi} \), so that our estimation is sharp only when \(\#B_{\lambda,\psi} = 1 \).

Let us estimate the accumulated cost of every node \(n \in B \). Along all refinement steps, we have \(f_\psi = 1 \) and \(V_{\lambda,\psi} = V_i + |\lambda| \), where \(|\lambda| \) is a positive integer that grows strictly at each iteration; thus, the higher cost of (22) occurs at the last iteration.

Suppose \(n \in B \setminus L \). After eventually some refinement steps, in the last iteration, \(f_\psi = f_i,n \), \(V_{\lambda,\psi} = V_{i+1,n} \), are Okutsu data of the type \(t_n \). Let \(F_\delta \) be any irreducible factor of \(F_n \). As in the proof of Theorem 5.9, \(f_0 \cdots f_{i-1} f_i,n V_{i+1,n} \leq 2\delta(F_\delta) \leq 2\delta \). Since there are at most \(|\lambda_n| \) iterations (Proposition 1.3), the accumulated cost of the computation of \(n \) is bounded from above by

\[
|\lambda_n| (f_0 \cdots f_{i-1} f_i,n)^{1+\epsilon}(V_{i+1,n})^{1+\epsilon} = O\left(|\lambda_n| n^{\delta+1+\epsilon} \right).
\]

Finally, let \(n \in B \cap L \). In the last iteration there is no call to \(\text{Representative} \). Let \((t, \phi, \omega) \) be the input data of the penultimate iteration, and let \((\lambda, \psi) \) be the branch concerning \(n \). Let \(u \) be the ordinate of the left end point of the side of slope \(\lambda \) of \(N_{i+1}(F) \). Since \(u \neq 0 \) and we work with precision \(\delta + 1 \), we have necessarily \(u \leq \delta e_0 \cdots e_{i-1} \). Now, \(V_i + |\lambda| \) is the ordinate of the left end point of \(N_i(F_n) \); by the theorem of the product, \(V_i + |\lambda| \leq u \leq \delta e_0 \cdots e_{i-1} \). As we saw along the proof of the case \(R = \text{Newton} \), the total number of all-but-last iterations is bounded from above by \(v(\text{Res}(F_n, F_{i}))/(f_0 \cdots f_{i-1}) \); thus, the accumulated cost of all calls to \(\text{Representative} \) along the computation of \(n \) is

\[
O\left((f_0 \cdots f_{i-1})^{1+\epsilon}(V_i + |\lambda|)^{1+\epsilon}v(\text{Res}(F_n, F_{i})) \right) = O\left((m_i)^{1+\delta+1+\epsilon}v(\text{Res}(F_n, F_{i})) \right).
\]

This ends the proof of the lemma.

\[\square\]

Theorem 5.15. The cost of the Montes algorithm over \(\mathcal{O}_p \), applied to a monic separable polynomial \(F \in \mathcal{A}[x] \) of degree \(n \) is \(O\left(n^{2+\epsilon} + n^{1+\epsilon}(1 + \delta) \log(q) + n^{1+\epsilon}\delta^{2+\epsilon} \right) \) \(p \)-small operations, where \(\delta := v_p(\text{Disc}(F)) \).

Proof. Let \(\mathcal{N} := \mathcal{T} \setminus (R \cup L) \) be the set of nodes that are neither a root nor a leaf of \(\mathcal{T} \). Let us denote \(\lambda_{i,s}, e_{i,s}, f_{i,s}, m_{i,s} \), etc. for the Okutsu invariants of \(t_n \) at level \(i \leq r_s \). Also, we denote \(\rho_{s,t} := v(\text{Res}(F_s, F_t)) \), for all \(1 \leq s \neq t \leq g \).

We shall use the estimation (10), and two obvious identities:

\[
\sum_{n \in \mathcal{N}} |\lambda_n| \frac{\deg F_n}{m_n} = \sum_{1 \leq i \leq g} \sum_{1 \leq s \leq g} |\lambda_{i,s}| \frac{n_s}{m_{i,s}}, \quad \sum_{1 \leq s \leq g} (\delta_s + \rho_{s,t}) = O(\delta).
\]

By (10), we need only to estimate \(\sum_{m \in \mathcal{T} \setminus L} B_{R,m} \), for each subroutine \(R \in \text{Rout} \).
R = Newton or Representative. By Lemma 5.14 (10) and (23).

$$\sum_{m \in T \setminus \mathcal{L}} B_{R,m} \leq n^{1+\epsilon} \delta^{1+\epsilon} \left(\sum_{\ell \in \mathbb{N}} |\lambda_{m}| \frac{\deg F_{n}}{m_{n}} + \sum_{m \in \mathcal{L}} \rho_{s,t} \right)$$

$$= n^{1+\epsilon} \delta^{1+\epsilon} \left(\sum_{1 \leq s \leq g} \left(\sum_{1 \leq i \leq r_{s}} |\lambda_{i,s}| \frac{n_{s}}{m_{i,s}} \right) + \rho_{s,t} \right)$$

$$= n^{1+\epsilon} \delta^{1+\epsilon} O \left(\sum_{1 \leq s \leq g} \delta_{s} + \rho_{s,t} \right) = O \left(n^{1+\epsilon} \delta^{2+\epsilon} \right).$$

R = ResidualPolynomial or Factorization. The argument is analogous.

$$\sum_{m \in T \setminus \mathcal{L}} B_{R,m} \leq n^{1+\epsilon} \log(q) \left(\sum_{\ell \in \mathbb{N}} |\lambda_{m}| f_{0} \cdots f_{i-1} \frac{\deg F_{n}}{m_{n}} + \sum_{m \in \mathcal{L}} \rho_{s,t} \right)$$

$$= n^{1+\epsilon} \log(q) \left(\sum_{1 \leq s \leq g} \left(\sum_{1 \leq i \leq r_{s}} |\lambda_{i,s}| \frac{f_{0} \cdots f_{i-1} n_{s}}{m_{i,s}} \right) + \rho_{s,t} \right)$$

$$= n^{1+\epsilon} \log(q) O \left(\sum_{1 \leq s \leq g} \delta_{s} + \rho_{s,t} \right) = O \left(n^{1+\epsilon} \delta \log(q) \right).$$

\[\square\]

Corollary 5.16. The complexity of the Montes algorithm is \(O(n^{2+\epsilon} + n^{1+\epsilon} \delta^{2+\epsilon})\) word operations, if \(p\) is small.

5.4. Approximate factorization of polynomials over local fields. Theorem 5.15 leads to an improvement of the complexity estimates of all routines mentioned in the Introduction. In this section, we discuss the new estimation obtained for the factorization of polynomials over local fields, up to a prescribed precision.

Let \(F \in A[x]\) be a monic separable polynomial of degree \(n\), and denote \(\delta := \nu_{p}(\text{Disc}(F))\). Let \(p\) be a non-zero prime ideal of \(A\), and \(F_{1}, \ldots, F_{g} \in \mathcal{O}_{p}[x]\) the irreducible factors of \(F\) over \(\mathcal{O}_{p}\). Suppose an OM factorization of \(F\) over \(\mathcal{O}_{p}[x]\) has been computed, in the form of a family \(t_{F_{1}}, \ldots, t_{F_{g}}\) of OM representations of the irreducible factors, that faithfully represents \(F\), and satisfies [12]. Then, the single-factor lifting algorithm (SFL) derives from each \(t_{F_{s}}\) a monic polynomial \(P_{s} \in A[x]\), irreducible over \(\mathcal{O}_{p}\), such that \(P_{s} \approx F_{s}\) and \(P_{s} \equiv F_{s} \pmod{m^{\nu}}\), for an arbitrary prescribed precision \(\nu\).

Theorem 5.17. The SFL algorithm requires \(O(n \nu^{1+\epsilon} + n^{1+\epsilon} \delta^{1+\epsilon})\) \(p\)-small operations, where \(n_{s} := \deg F_{s}, \delta_{s} := \delta(F_{s})\).

Proof. Let \(r_{s}\) be the Okutsu depth of \(F_{s}\). Along the proof of [GPN12] Lem. 6.5, it is obtained an estimation of \(O \left(n \nu^{1+\epsilon} + (V_{r_{s}+1/\epsilon(F_{s}))^{1+\epsilon}} \right)\) \(p\)-small operations. In Lemma 2.2 we have seen that the Okutsu discriminant \(\delta_{0}(F_{s}) := V_{r_{s}+1/\epsilon(F_{s})}\) is bounded from above by \(2\delta/n_{s}\). This proves the theorem.

By applying the SFL routine to each OM representation \(t_{F_{1}}, \ldots, t_{F_{g}}\), we get an OM factorization, \(F \approx P_{1} \cdots P_{g}\), such that \(P_{s} \equiv F_{s} \pmod{m^{\nu}}\), for all \(1 \leq s \leq g\).

Theorem 5.18. A combined application of the Montes and SFL algorithms, computes an OM factorization of \(F\) with prescribed precision \(\nu\), at the cost of

\(O \left(n^{2+\epsilon} + n^{1+\epsilon}(1 + \delta) \log q + n^{1+\epsilon} \delta^{2+\epsilon} + n^{2} \nu^{1+\epsilon} \right)\) \(p\)-small operations.

If \(p\) is small, we obtain a cost of \(O \left(n^{2+\epsilon} + n^{1+\epsilon} \delta^{2+\epsilon} + n^{2} \nu^{1+\epsilon} \right)\) word operations.
Proof: The estimation is obtained by adding to the cost of the Montes algorithm, given in Theorem 5.15, the sum of the costs of SFL given in Theorem 5.17, for $1 \leq s \leq g$, having in mind that $n_1 + \cdots + n_g = n$, $\delta_1 + \cdots + \delta_g \leq \delta$. \hfill \Box

In comparison with previous estimations, the total degree in n, δ and ν is reduced from $4 + \varepsilon$ to $3 + \varepsilon$.

References

[FPR02] D. Ford, S. Pauli, and X.-F. Roblot, A Fast Algorithm for Polynomial Factorization over \mathbb{Q}_p, Journal de Théorie des Nombres de Bordeaux 14 (2002), 151–169.

[FV10] D. Ford, O. Veres, On the Complexity of the Montes Ideal Factorization Algorithm, in G. Hanrot and F. Morain and E. Thomé, Algorithmic Number Theory, 9th International Symposium, ANTS-IX, Nancy, France, July 19-23, 2010, LNCS, Springer Verlag 2010.

[vzGG03] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, second Edition, Cambridge University Press, 2003.

[GMN10] J. Guàrdia, J. Montes, E. Nart, Okutsu invariants and Newton polygons, Acta Arithmetica 145 (2010), 83–108.

[GMN11] J. Guàrdia, J. Montes, E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, Journal de Théorie des Nombres de Bordeaux 23 (2011), no. 3, 667–696.

[GMN12] J. Guàrdia, J. Montes, E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416.

[GMN12a] J. Guàrdia, J. Montes, E. Nart, A new computational approach to ideal theory in number fields, [arXiv:1005.1126v1[math.NT]].

[GMN12b] J. Guàrdia, J. Montes, E. Nart, Higher Newton polygons and integral bases, arXiv: 0902.3428v2[math.NT].

[GNP12] J. Guàrdia, E. Nart, S. Pauli, Single-factor lifting and factorization of polynomials over local fields, Journal of Symbolic Computation (2012), doi:10.1016/j.jsc.2012.03.001.

[McL36] S. MacLane, A construction for absolute values in polynomial rings, Transactions of the American Mathematical Society, 40 (1936), pp. 363–395.

[McL36a] S. MacLane, A construction for prime ideals as absolute values of an algebraic field, Duke Mathematical Journal 2 (1936), pp. 492–510.

[Nar11] E. Nart, Okutsu-Montes representations of prime ideals of one-dimensional closures, Publicacions Matemàtiques 55 (2011), no. 3, 261–294.

[Nar12] E. Nart, Local computation of different and discriminants, in preparation.

[Oku82] K. Okutsu, Construction of integral basis, I, II, Proceedings of the Japan Academy 58, Ser. A (1982), 47–49, 87–89.

[Ore23] Ø. Ore, Zur Theorie der algebraischen Körper, Acta Mathematica 44 (1923), pp. 219–314.

[Ore28] Ø. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Mathematische Annalen 99 (1929), pp. 84–117.

[Pau10] S. Pauli, Factoring polynomials over local fields, II, in G. Hanrot and F. Morain and E. Thomé, Algorithmic Number Theory, 9th International Symposium, ANTS-IX, Nancy, France, July 19-23, 2010, LNCS, Springer Verlag 2010.

[SS71] A. Schönhage, V. Strassen, Schnelle Multiplikation großer Zahlen, Computing, 7 (1971), 281–292.