Fibrodynamics-elucidation of the mechanisms and sites of liver fibrogenesis

Catherine H. Wu, Ph.D.

See article on page 397

Subject headings liver cirrhosis/pathology; liver cirrhosis/etiology; liver cirrhosis/physiopathology; fibrodynamics; hepatic stellate cells

ORIGINAL ARTICLE
Dynamic changes of type I, III and IV collagen synthesis and distribution of collagen-producing cells in carbon tetrachloride-induced rat liver fibrosis.

MAJOR POINTS OF THE COMMENTED ARTICLE
In their article that appears in this issue, Du and colleagues used a combination of immunohistochemistry and in situ hybridization to demonstrate increased levels of collagen types I, III and IV in CCl₄/choline deficient rat model of hepatic fibrosis. Over the course of 20 weeks of treatment mRNA levels for all three types of collagen were increased, but there was a preferential increase of type III collagen mRNA over the other two types. This is consistent with the results of previous investigators[1,2] where increases in protein levels of collagen types I, III and IV were found in CCl₄ induced liver fibrosis. The authors clearly demonstrated that collagen type I, III and IV mRNAs were localized on sinusoidal cells using in situ hybridization. This result is also consistent with previous work of Maher and co-workers[3,4] who used the same technique to demonstrate the localization of both interstitial and basement collagen mRNAs in hepatic stellate cells in normal rat and human livers. The authors have utilized state-of-the-art technology to examine an important question in liver fibrosis—the cells responsible for overproduction of liver biomatrix components. Their results are consistent with the results of other investigators in the field. However, caution should be taken not to overinterpret results.

Additional controls in which the in situ localization of collagen mRNAs in untreated normal liver as compared to that seen in fibrotic liver could have given a clearer picture of changes in the fibrotic liver. Nevertheless, the results add strong confirmation to the temporal course of fibrogenesis, and localization of the products in an important model.

COMMENTARY
Liver fibrosis is the common result of chronic hepatic injury of diverse origins such as chronic viral infections (HBV, HCV), metabolic/storage diseases (hemochromatosis), helminthic infections (schistosomiasis), chronic toxin exposure (alcohol and environmental poisons) and biliary obstruction (biliary cirrhosis). In end stage liver fibrosis or cirrhosis, the liver biomatrix may contain up to six to ten times more collagen and proteoglycans than in the normal state[5,6]. Because the connective tissue support of the liver parenchyma is particularly critical to its function, research that emphasizes the nature of liver biomatrix, the molecular regulation of the turnover of components of the biomatrix, and identification of liver cells responsible for the synthesis of biomatrix proteins are especially crucial for the ultimate design of effective therapies for liver fibrosis.

In the late 50’s, Hans Popper, the eminent hepatologist, observed a correlation between the histomorphology and biochemistry of liver collagens in chronic liver diseases[7]. In the four decades following Dr. Popper’s original observation, a great deal of research on liver biomatrix has resulted in our current knowledge of the pathogenesis of liver fibrosis. Progress has been made in three areas of liver fibrosis: characterization and quantitation of matrix components in normal and fibrotic liver; identification of hepatic cells responsible for the increased synthesis of matrix proteins; and the role of cellular mediators of fibrogenesis.

Quantitation of matrix proteins in normal and fibrotic livers
The use of animal models of liver fibrosis such as the administration of liver toxins CCl₄[8], dimethylnitrosamine[9], alcohol[10], helminthic infections
infections11,12 have greatly helped in the characterization of the temporal expression of various components of the biomatrix during fibrogenesis. There is increase in the amounts of collagens types I, III, IV, V and VI1. In early fibrosis, the amounts of types III and IV collagens increase relative to other collagens. In late fibrosis, type I collagen predominates13. Other components of liver biomatrix such as laminin, fibronectin and proteoglycans are also increased in fibrosis14,15. Although most investigations have shown changes at the protein and mRNA levels of various biomatrix components, the significance of the changes in the fibrogenic process remain hotly debated16. The biomatrix in the normal liver changes from being rich in basement membrane collagens to interstitial collagens during fibrogenesis.

Hepatic stellate cells is the major effector cell type in hepatic fibrosis

The search for effector cells in the liver responsible for collagen synthesis became feasible with the development of molecular probes17 and antibodies14,18 to components of liver biomatrix. Stellate cells are responsible for the increased synthesis in liver biomatrix proteins such as basement membrane collagens, interstitial collagens, fibronectin, laminin and proteoglycans13,4. Activation of hepatic stellate cells is the earliest response to liver injury. Upon activation, stellate cells lose stored lipids and retinoids19 and rapidly undergo morphological changes to myofibroblast-like phenotypes20. Other phenotypic changes of activated stellate cells include stimulation of \(\alpha\)-actin gene expression21,22 and increased synthesis of hepatic biomatrix components3. Activation also results in loss of an important feedback regulation of collagen synthesis by its terminal propeptides. In the normal liver, stellate cells are capable of controlling the amount of collagen needed for normal biomatrix formation by a feedback inhibition of collagen synthesis by its terminal propeptides23,24. Following activation, stellate cells lose their normal feedback regulation of collagen synthesis leading to increased accumulation of collagen25. In particular, there is an increased synthesis of types I and III collagen resulting in a biomatrix rich in interstitial collagens. There is increasing evidence that accumulation of fibers in the sinusoids is not only due to increased synthesis of collagens, but also is a result of decreased synthesis of tissue collagenases and increased synthesis of inhibitors of collagenase (TIMP-1: tissue inhibitors of metalloproteinase)26. Thus fibrogenesis is a net result of increased synthesis and decreased degradation of interstitial collagens of activated stellate cells.

Cellular mediators of hepatic fibrosis

Understanding the underlying molecular mechanisms responsible for hepatic fibrosis became feasible with the availability of molecular probes to cytokines. It is now accepted that the initial liver injury results in a host of cytokine responses from liver cells. Specifically, TGF\(\beta\)27, TNF\(\alpha\)28, PDGF29 and Kupffer cell soluble factors30 have been implicated in stellate cell activation and proliferation. TGF\(\beta\) mRNA and protein levels are increased in activated stellate cells27. Over-expression of TGF\(\beta\) gene in cultured fibroblasts27 and in stellate cells31 results in increased synthesis of collagens. Inhibitors of TGF\(\beta\) decrease collagen synthesis in vivo32,33 while transgenic mice over expressing TGF\(\beta\) have kidney and liver fibrosis34. Both PDGF29 and TNF\(\alpha\)35 are stellate cell mitogens. PDGF-induced stellate cell proliferation and matrix protein synthesis is mediated by factors secreted by Kupffer cells30. TNF\(\alpha\) acts via transcription regulation of tissue collagenase and TIMP-1 genes in activated stellate cells28.

Current research

The elucidation of the molecular mechanisms of cytokine regulation of liver biomatrix protein synthesis continue to be a focus of current research efforts. There is increasing evidence that cytokines may act via interactions with DNA binding proteins to affect matrix proteins synthesis. Both TGF\(\beta\) and TNF\(\alpha\) interact with known transcription factors such as C/EBP36 and NFKappaB37,38. Transcription factors are DNA binding proteins which act as regulators of gene transcription37,38. There is continued interest in the search for regulatory elements within genes of matrix proteins41. Research on interactions of DNA binding proteins to regulatory elements on matrix protein genes are underway and may provide a link between cytokines and regulation of liver biomatrix.

Future directions

Effective therapy for chronic hepatic fibrosis can be designed only with complete understanding of the molecular mechanisms that regulate matrix protein gene expression. Future research may be centered on the application of gene therapy to control hepatic fibrosis42. Over-expression of tissue collagenase gene, inhibition of TGF\(\beta\) gene expression are potential approach in controlling and regulating hepatic fibrosis43.

Catherine H. Wu, Ph.D. Fibrodynamics-elicitation of the mechanisms and sites of liver fibrogenesis
REFERENCES

1 Schuppan D. Structure of the extracellular matrix in normal and fibrotic livers: collagens and glycoproteins. Sem Liver Dis, 1990; 10:1-10

2 Greenwel P, Rojkind M. Accelerated development of liver fibrosis in CCl4 treated rats by the introduction of acute phase response cDNAs: upregulation of alpha (I) procollagen and tissue inhibitor of metalloproteinase-1 mRNAs. Biochim et Biophys Acta, 1997;1361:177-184

3 Maher JJ, McGurie RF. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J Clin Invest, 1980;86:1641-1648

4 Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen producing cells of normal rat liver. Proc Natl Acad Sci USA, 1985;82:8681-8685

5 Rojkind M, Kershenobich D. Hepatic fibrosis. Progress in Liver Diseases, 1976;5:294-310

6 Schuppan D. Structure of the extracellular matrix in normal and fibrotic livers: collagens and glycoproteins. Sem Liver Dis, 1990; 10:1-10

7 Kent G, Fels IG, Dubin A, Popper H. Collagen content based on hydroxyproline determinations in human and rat livers: its relation to morphologically demonstrable reticulum and collagen fibers. Lab Invest, 1959;9:8-48

8 Rojkind M, Gimbrone MA, Ehrenpreis M. Proline oxidase activity and the availability of proline for collagen biosynthesis in livers of CCl4 treated rats. Gastroenterology, 1977;73:1243

9 Risteli J, Tuderman L, Kivirikko KI. Intracellular enzymes of collagen biosynthesis in rat liver as a function of age and in hepatic injury produced by dimethylnitrosamine. Biochem Biophys Res Commun, 1976;75:369-376

10 Mezey E, Potter JJ, Maddrey WC. Hepatic collagen proline hydroxylase activity in alcoholic liver disease. Clin Chem Acta, 1984;138:313-320

11 Dunn MA, Rojkind M, Warren KS, Hait PK, Rifas L, Seifter S. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nature Med, 1996;2:418-423

12 Wu CH, Gimbrone MA, Howard DJ, Rojkind M, Wu GY. The nature of collagen of hepatic fibrosis in advanced murine schistosomiasis. Hepatology, 1982;2:366-371

13 Rojkind M, Gimbrone MA, Biempica L. Collagen types in normal and cirrhotic liver. Gastroenterology, 1979;76:710-719

14 Geerts A, Geutz HJ, Slot JW. Immunogold localization of procollagen III, fibronectin and heparan sulfate proteoglycan on ultrathin frozen sections of the normal rat liver. Histochemistry, 1986;84:355-362

15 Reid LM, Fiorino AS, Sigal SH, Brill, Holst PA. Extracellular matrix gradients in the space of Disse: relevance to liver biology. Histochemistry, 1987;68:313-320

16 Iredale JP. Matrix turnover to morphologically demonstrable reticulum and collagen fibers. Lab Invest, 1959;10:1-10

17 Adams SI. Regulation of collagen gene expression. In: Extracellular Matrix: Chemistry, Biology, and Pathobiology with emphasis on the liver. Zern MA and Reid LM (eds). Marcel Dekker, Inc. New York, 1998;1993:p91-119

18 Becker J, Schuppan D, Benzian H. Immunohistochemical distribution of collagen types IV, V, VI and procollagen types I and III in human alveolar bone and dentine. J Histochem Cytochem, 1987; 34:1417-1429

19 Mak KM, Leo AM, Lieber CS. Alcoholic liver injury in baboons: transformation of lipocytes to transitional cells. Gastroenterology, 1984;87:188-200

20 Mak KM, Leo AM, Lieber CS. Alcoholic liver injury in baboons: transformation of lipocytes to transitional cells. Gastroenterology, 1984;87:188-200

21 Tanaka Y, Nouchi T, Yamane M, Irie T, Miyakawa H, Sato C, Marumo F. Phenotypic modulation in lipocytes in experimental liver fibrosis. J Pathol, 1991;164:273-278

22 Rockey DC, Bylles JK, Gabbiani G, Friedman SL. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. J Submicrosc Cytol Pathol, 1992;24:193-203

23 Wu CH, Donovan CB, Wu GY. Evidence for pre translational regulation of collagen synthesis by procollagen propeptides. J Biol Chem, 1986;261:10482-10484

24 Wu CH, Walton CM, Wu GY. Propeptide-mediated regulation of procollagen synthesis in IMR-90 human lung fibroblast cell cultures. J Biol Chem, 1991;266:3323-3329

25 Ikeda H, Wu GY, Wu CH. Lipocytes from fibrotic rat liver have an impaired feedback response to procollagen propeptides. Am J Physiol, 1993;27:G157-162

26 Iredale JP, Murhy G, Hemery RM, Friedman SL, Arther MP. Human hepatic lipocytes synthesize tissue inhibitor of metalloproteinases-1 (TIMP-1): implications for regulation of matrix degradation in liver. J Clin Invest, 1992;90:282-287

27 Roberts AB, Sporn MB, Assian RK, Smith JM, Roche NS, Wakefield LM, Heintz F, Liptoa LA, Falanga V, Kehrl JH, Fauci AS. Transforming growth factor type II: Rapid induction of fibro- sis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA, 1986;83:4167-4171

28 Iredale JP. Matrix turnover in fibrogenesis. Hepato-Gastroenterology, 1996;43:56-71

29 Pinzani M, Gesukado L, Aabbb GM and Abbood HE. Effects of platelet derived growth factor and other polypeptide mitogens on DNA synthesis and survival of cultured rat liver fat storing cells. J Clin Invest, 1989;84:1786-1793

30 Friedman SL, Arthur MP. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet derived growth factor receptors. J Clin Invest, 1989;84:1780-1785

31 Milani S, Schupan D, Herbst H, Surrenti C. Expression of trans- forming-growth-factor-beta1 in normal and fibrotic human liver. In: Gressner A, Ramadori G, eds. Molecular and cell biology of liver fibrogenesis. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1992:254-263

32 Border WA, Noble NA, Yamamoto T. Natural inhibitor of transforming growth factor beta protects against scarring in experimental animal disease. Nature (London), 1990;360:361-364

33 Shah M, Foreman DM, Ferguson MWJ. Control of scarring in adult wounds by neutralizing antibody to transforming growth factor-beta 2. Lancet, 1992;339:213-214

34 Sanderson N, Factor V, Nagy P. Hepatic expression of mature transforming growth factor-beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA, 1995;92:2572-2576

35 Camussi G, Albano E, Tetta C and Bussolino F. The molecular action of tumor necrosis factor-a. Eur J Biochem, 1991;202:3-14

36 Garcia-Trevijano ER, Ibarra MJ, Fontana L, Dominguez-Rosales JA, Auster A, Covarrubias-Finedo A, Rojkind M. Transforming growth factor beta 1 induces the expression of alphal (I) procollagen mRNA by a hydrogen peroxide-CBP/p30-dependent mechanism in rat hepatocellular stellate cells. Hepatology, 1999;29:960-970

37 Zeldin G, Yang SQ, Yin M, Lin HZ, Rai R, Diehl AM. Alcohol and cytokine-inducible transcription factors. Alcoholism, Clinical & Experimental Research, 1996;20:1639-1645

38 Yang SQ, Lin HZ, Yin M, Albrecht JH, Diehl AM. Effects of chronic ethanol consumption on cytokine regulation of liver regeneration. Am J Physiol, 1998;275:G269-278

39 Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFbeta 1 in initiating hepatic stellate cell activation in vivo. J Hepatology, 1999;30:77-87

40 Hellerbrand C, Jobin C, Licato LL, Sartor RB, Brenner DA. Cytokines induce NF-kappa B in activated but not in quiescent rat hepatocellular stellate cells. Am J Physiol, 1998;275:G269-278

41 Stefancic B, Hellerbrand C, Holmik M, Brennli MA, Alleshebber S and Brenner DA. Post transcriptional regulation of collagen alpha 1(I) mRNA in hepatocellular stellate cells. Molec Cell Biol, 1997;17:5201-5209

42 Hellerbrand C, Jobin C, Limmuyu L, Latico L, Sartor RB, Brenner DA. Inhibition of NFkappaB in activated rat hepatocellular stellate cells by proteasome inhibitors and an IkappaB super repressor. Hepatology, 1998;27:1285-1295

43 Isaka Y, Brees DK, Ikégaya K, Kaneda Y, Imai E, Nobac NA, Border WA. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nature Med, 1996;2:418-423