The pattern of body growth and intestinal development of female Chinese native geese from 1 to 10 weeks of age

Chuang Liu, Jing Yang, Shufeng Liu, Wei Geng, Shi Wei, Wen Ce Wang, Lin Yang and Yongwen Zhu

ABSTRACT

The aim of this study was to investigate the pattern of body growth and intestinal development of female Chinese native geese from 1 to 10 weeks of age. At weekly intervals, from hatch through 10 weeks of age, ten geese were sampled to measure the absolute and relative weight and length of the intestinal segments and overall intestine of geese. The body weight of Bertalanffy ($R^2 = 0.989$), Gompertz ($R^2 = 0.990$), Logistic ($R^2 = 0.980$) and Richards ($R^2 = 0.982$) models showed an increase in the asymptotes at 1–10 weeks old, while the inflection points were at 30.53, 28.56, and 25.59 d, respectively. The relative weight and length of the intestinal segments and overall intestine were decreased linearly ($P < 0.01$), while the absolute weight and length of the intestinal segments and overall intestine were increased linearly ($P < 0.01$) during 1–7 weeks old, but significantly decreased ($P < 0.01$) during 8–10 weeks old, suggesting that the intestinal system was developing rapidly at the starter period based on the intestinal weight and length, but was declining at the later period. The knowledge of growth curve and intestinal development pattern could provide some useful information on the optimum management practices and breeding strategies in geese production.

Introduction

To meet the requirement of animal protein due to the increase of population, the production of poultry other than chicken and ducks, such as geese, was increasing year by year in China (Kozák 2021). The size of the geese population in China increased to 639 million heads in 2020 (Hou and Liu 2021). In addition, the meat products of geese were regarded as one of the most valuable protein co-products and were increasingly popular in the Chinese market. Growth traits were important characteristics of both economic profitability and population dynamics in poultry production (Kenny et al. 2018). Growth curve models can be used for predicting body weight (BW) changes with age, which provide a visual assessment of growth as a function of time (Narinc et al. 2017). Therefore, knowledge about the growth pattern of meat goose was necessary to optimize the digestive system (e.g. by selection, feeding management and marketing strategies) (Boz et al. 2017). For example, it was unclear how much of an impact on growth production was the semi-intensive and intensive production systems, instead of the free-range backyard type (Boz et al. 2021). Therefore, the relationship between body weight and age depended on the different breeds and sexes (Uhlířová et al. 2018). To explain the growth curve of poultry, Logistic, Bertalanffy and Gompertz models were often used in male and female chicken, turkeys and ducks (Rogers 1987; Cigdem and Hulya 2001; Maruyama et al. 2001; Vitezica et al. 2010; Thinh et al. 2021). Moreover, precision feeding was separately performed for geese according to gender, in China. These models were applied to Chinese native geese of mixed gender (Zhao et al. 2007; Liu et al. 2017), but rarely to female geese. The intestinal system is the primary site to perform the functions of digestion, absorption, and protection (de Carvalho et al. 2021). The intestinal developmental patterns had positive effects on growth performance in poultry (González-Alvarado et al. 2008; Wang et al. 2014; Zhang et al. 2020). The knowledge of growth curve and intestinal developmental patterns could provide some useful information on the design of optimum management practices and breeding strategies in geese production. However, little information was available concerning the pattern of intestinal development in geese. Therefore, the purpose of this study was to investigate the developmental pattern of body weight and intestinal tract of female native Magang geese under the intensive production system, in favour of the breeding strategy to modify the trajectory of growth.

Methods and materials

Animals, management and housing

All procedures of this study were approved by the animal care and welfare committee institute of South China Agricultural
University (SCAU-10564), and the study was performed following the Regulations for the Administration of Affairs Concerning Experimental Animals. The study was conducted at the South China Agricultural University Agricultural Faculty’s Experimental Farm.

A total of one hundred and eighty female Magang goslings were assigned randomly to ten pens and eighteen birds per pen were raised in the environmental chambers under an intensive production system. Pens were separated by a wire mesh. Each pen contained one round feeder and one round drinker. The temperature started at 30 ± 1°C and was reduced by 3 ± 1°C each week until 21.1°C was attained at week 10. All birds were fed a starter diet from 0 to 4 weeks, and a grower diet from 4 to 10 weeks that met or exceeded the nutrient recommendations for geese (Table 1) by National Research Council (1994). Feed and water were provided ad libitum and economic white bulbs were used for lighting. The feeding and lighting programme were performed according to the guideline of management for Magang goose. The birds were weighed, and killed by carbon dioxide asphyxiation. One bird based on the average BW per pen was selected, weighed, and killed by carbon dioxide asphyxiation. The gastrointestinal tract and organs were carefully excised and determined with a modified method (Amerah et al. 2008). In brief, the empty weights of digestive tract segments from the duodenum to the caeca of each bird were determined. The length of each intestinal segment was determined with a flexible tape on a glass surface to prevent inadvertent stretching. After division and freeing of each intestinal segment, separating all connective tissue and fat, and removing the content with ice-cold saline flushing, empty weights (± 0.01 g) were determined. The relative values were calculated as a ratio of live body weight.

Statistical analyses

The non-linear regression models of Logistic, Gompert, Bertalanffy, Richard, Brody and Weibull were fitted using the NLIN models of SAS software (SAS Institute 2000). The forms of equations (Table 2) for the Logistic, Gompert, Bertalanffy, Richard, Brody and Weibull models were: where W is the weight corresponding to age (t) with 3 parameters: A = asymptotic or maximum growth response, B = intercept, or weight when age (t) = 0 and K = rate constant. For digestive tract measurements, individual birds were considered as the experimental unit. All data were subjected to a one-way analysis of variance by using PROC GLM of SAS software. Orthogonal polynomials were applied for linear and quadratic effects on the parameters of intestinal development corresponding to age. Differences were considered to be significant at P < 0.05, and significant differences between means were separated by the least significant difference test.

Results and discussion

The development of the meat goose industry requires further knowledge of the overall growth patterns for different breeds and sexes (Uhlířová et al. 2018). However, there was limited information on the growth curve for some native geese lines (Nder et al. 2017). In the present study, the growth curve analysis for female Chinese native Magang goose showed an increase in the asymptotes during the selection period of 1–10 weeks of age, and the age to reach the inflection point was estimated at 30.53, 28.56, 25.59, and 29.2 d, using the Logistic, Gompertz, Bertalanffy and Richards models, respectively (Table 1). The ages to reach the inflection points provided the estimates of maturity of the growth processes. In the current study, estimation of the inflection points was close to that reported in Chinese Sichuang white goose with mixed gender using the Gompertz model (27.51 d) (Liu et al. 2017) and female Turkish native geese using the Logistic model (32.9 d) (Nder et al. 2017) and shorter than that reported in Lion-head geese with mixed gender using the Gompertz model (52.5 d) (Zhao et al. 2007). In the present study, the accuracy of Bertalanffy ($R^2 = 0.990$) and Gompertz ($R^2 = 0.989$) models fitted body weights was higher than the Logistic ($R^2 = 0.980$) and Richards ($R^2 = 0.982$) models, indicating that the Gompertz and Bertalanffy models with high coefficients of determination could be suitable models for female Chinese native Magang goose growth. Laird (1966) reported that the Gompertz function has been preferred over the logistic

Sample collections

One bird based on the average BW per pen was selected, weighed, and killed by carbon dioxide asphyxiation. The

Table 1. Composition and nutrient levels of the experimental diets (as-fed basis).

Ingredient	Starter (week 0–4)	Grower (week 5–10)
CBC	60.00	60.00
Soybean meal	18.50	9.39
Corn gluten meal	7.50	4.00
Wheat bran	8.10	20.58
Oil/Fat powder	1.25	1.85
Lysine	0.35	0.25
Sodium chloride	0.55 me	0.35 me
DL-Methionine	0.12	0.13
L-lysine.HCl (98.5%)	0.78	0.35
Vitamin and mineral premix¹	0.1	0.1
Total	98.00	100
Nutrient composition		
ME, MJ/kg	12.37	11.84
Crude protein	19.8	15.3
Lysine	1.33	0.8
Methionine	0.44	0.36
Methionine + cysteine	0.75	0.61
Calcium	0.93	0.91
Total phosphorus	0.75	0.81
Non-phytic phosphorus	0.5	0.53

¹Provided per kilogram of diet for geese at week 0–4: vitamin A, 10,000 IU; vitamin D3, 1, 500 IU; vitamin E, 10 IU; thiamine, 1.8 mg; riboflavin, 3.6 mg; pyridoxine, 3.0 mg; vitamin B12, 0.003 mg; calcium pantothenate, 10 mg; folate, 0.25 mg; niacin, 35 mg; biotin, 0.10 mg; choline (Choline chloride), 500 mg; Cu (CuSO4·5H2O), 8 mg; Fe (FeSO4·7H2O), 100 mg; Zn (ZnSO4·7H2O), 100 mg; Mn (MnSO4·H2O), 50 mg; Se (NaSeO3), 0.5 mg; I (KI), 0.3 mg.

Table 2. Non-linear regression models for body weight growth of female Chinese native Magang goose.

Model	Regression equations	Parameters (as-fed basis)	Coefficient of determination (R^2)
Logistic	$y = \frac{A}{1 + e^{-(t-K)/B}}$	A, B, K	0.980
Gompertz	$y = A e^{-K^{B/K}e^{-t/(B/K)}}$	A, B, K	0.990
Bertalanffy	$y = A (1 - e^{-t/\sqrt{K}})$	A, K	0.982
Richards	$y = \frac{A}{1 + \left(\frac{B}{t-K}\right)^{1/\alpha}}$	A, B, C, \alpha	0.989

Footnotes

1 Provided per kilogram of diet for geese at week 0–4: vitamin A, 10,000 IU; vitamin D3, 1,500 IU; vitamin E, 10 IU; thiamine, 1.8 mg; riboflavin, 3.6 mg; pyridoxine, 3.0 mg; vitamin B12, 0.003 mg; calcium pantothenate, 10 mg; folate, 0.25 mg; niacin, 35 mg; biotin, 0.10 mg; choline (Choline chloride), 500 mg; Cu (CuSO4·5H2O), 8 mg; Fe (FeSO4·7H2O), 100 mg; Zn (ZnSO4·7H2O), 100 mg; Mn (MnSO4·H2O), 50 mg; Se (NaSeO3), 0.5 mg; I (KI), 0.3 mg.
function for fitting monophasic growth curves of chickens. When analysed by growth curves derived from the Bertalanffy model, the body weight of Magang geese during the periods of 2–4 weeks (521 g/week) and 7–8 weeks (483 g/week) of age was faster than the other growth period (Figure 1). The greatest body weight gain appeared at 4 weeks of age (581 g/week), which was similar to the data obtained from female Bohemian and Italian White geese (Knizetova et al. 1994). As reported in ducks, the age of the inflection point that remained constant was 26 d for Pekin ducks, 21 d for Mallard ducks and 37 d for Muscovy ducks (Gille and Salomon 1994). It was inferred that the geese were characterized by an early maturing rate, nearly as early as ducks (Knizetova et al. 1991b) and earlier than chickens (Knizetova et al. 1991a). It was apparent that the selection programme, without a delay in maturity, reduced the time to reach the market weight to achieve more efficient goose production.

The intestinal system was the primary site of entry for any orally administered compound, including dietary ingredients. There was a growing interest on the influence of diet on the development of the gastrointestinal tract in poultry (González-Alvarado et al. 2008; Jiménez-Moreno et al. 2009; Wang et al. 2014; Zhang et al. 2020). In the present study, the relative weight and length of the intestinal segments and overall intestine decreased linearly with the increased week of age (Tables 3 and 4). The greatest relative weight and length of the intestine were observed during the first three weeks. It was suggested that the intestinal system of a hatchling must undergo tremendous change before it was capable of efficiently digesting the dietary nutrients. Previous studies demonstrated that the growth of the intestinal system may exceed that of the rest of the body by as much as five-fold in chickens during the first 5–7 days of post-hatch (Uni et al. 1999; Sklan 2001). A previous study reported that avian species with high growth rate capacities at the starter period were also characterized by a rapid development of the digestive organs (Lilja 1983), which was confirmed in geese of the current study. The absolute weight and length of the duodenum, jejunum and ileum segments and overall intestine were increased quadratically in response to the increased age (Tables 5 and 6). The absolute length of the intestinal segments and overall intestine was increased as observed over the 1–5 week period in geese, which was in agreement with those reported in broilers from post-hatching to 21 days old (Uni et al. 1999). No significant changes were observed in the absolute length of the intestine during 6–10 weeks of age. It was suggested that the intestines tend to be mature by 5–6 weeks of age. Some interesting patterns were observed in the absolute weight of the digestive system during the growth period. The absolute weight and length of the intestinal segments and overall intestine increased linearly during 1–7 weeks and the age to reach the inflection points was at 7 weeks of age. However, there was a significant decrease in the absolute weight of the duodenum, jejunum and ileum segments and overall intestine during 8–10 weeks old. It was implied that the shrinking of gastrointestinal system development occurred during the later growth period, which resulted in the lower growth rate capacity in geese during 8–10 weeks. The reduced weight of the small intestine was in line with the results that the absolute mass of the small intestine

Table 2. Growth curve parameters in different models for Magang geese (n = 10).

Model	Function	Weight at point of inflection (kg)	Age of maximum growth (d)	Mean squared residue	Adjusted coefficient of determination
Logistic	$W_t = A/(1 + Be^{-kt})^n$	3.827	0.980	0.013	296.065
Gompertz	$W_t = Ae^{-Be^{-kt}}$	3.522	0.990	0.031	29.224
Bertalanffy	$W_t = A(1 - Be^{-kt})^3$	4.181	0.745	0.031	296.065
Brody	$W_t = A(1 - Be^{-kt})^{1/2}$	5.193	1.038	0.006	29.224
Weibull	$W_t = A - Be^{-kt}$	5.043	5.159	0.002	296.065
Richards	$W_t = A/(1 + Be^{-kt})^n$	3.827	0.980	0.013	296.065

Notes: MSR, mean squared residue, calculated by dividing the sum of the squares of the residue by the number of observations; R^2, adjusted coefficient of determination.
Figure 1. Predicted average body weight and observed growth curves for the Logistic, Gompertz, Bertalanffy, Richard, Brody and Weibull models.

Table 3. Effect of age on the relative weight of intestine of Magang geese from 1 to 10 weeks of age (g/kg)A.

Age (week)	Duodenum	Jejunum	Ileum	Caecum	Rectum	Overall intestine
1	10.03a	20.48a	18.91a	2.09dea	4.82a	56.33a
2	7.61b	18.24b	16.47b	3.11b	4.47a	49.89b
3	6.29c	15.49c	13.90c	3.69d	3.61b	43.92c
4	4.25d	8.38d	9.09d	2.17dea	2.58c	26.03d
5	5.45e	13.48e	10.25e	2.71bc	2.57de	34.46e
6	4.07f	9.36f	7.72f	2.34bcd	2.34c	25.82f
7	4.64g	11.43g	8.09g	2.54bc	2.66c	29.35g
8	3.16h	7.24h	5.06h	1.62dea	2.34c	19.18h
9	3.00h	6.65h	5.01h	1.93dea	1.54d	18.02h
10	2.76h	6.91h	4.89h	1.44h	1.42d	17.42h
SEM	0.25	0.44	0.65	0.25	0.14	1.14
P value	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Linear	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Quadratic	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

ALacking common letters (a or h) significant differences at \(P < 0.05 \).
BMean represented the average value of 10 replicates (\(n = 10 \)).

Table 4. Effect of age on the relative length of the intestine of Magang geese from 1 to 10 weeks of age (cm/kg)A.

Age (week)	Duodenum	Jejunum	Ileum	Caecum	Rectum	Overall intestine
1	86.44a	177.2a	162.08a	32.35a	23.63a	481.72a
2	44.34b	100.0b	90.98b	20.35b	12.41b	268.08b
3	27.68c	62.33c	53.95c	13.14c	7.91c	161.40c
4	23.09d	43.61d	45.36d	10.80d	6.04d	126.24d
5	18.34e	37.83e	37.43e	6.89e	5.56e	113.06e
6	18.22f	36.10f	32.79f	9.3f	4.34f	102.21f
7	15.17g	31.65g	27.98g	7.51g	3.99g	86.31g
8	12.34h	26.39h	23.81h	6.88h	3.81h	73.22h
9	12.43i	25.65i	22.63i	7.29i	3.63i	71.62i
10	11.05j	23.78j	19.97j	5.74j	3.44j	64.16j
SEM	1.43	2.80	2.05	0.97	0.63	5.83
P value	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Linear	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Quadratic	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

ALacking common letters (a or h) significant differences at \(P < 0.05 \).
BMean represented the average value of 10 replicates (\(n = 10 \)).
in domesticated ducks declined by 38% at 5 weeks post-hatching (Watkins et al. 2004). This reduction of the intestinal segments can be due more to the changes in the intestinal thickness rather than the intestinal length, which could be associated with the alteration of bioavailability and utilization of nutrients. There is no obvious explanation for this decline because it does not appear to optimize digestion.

Conclusion

Considering that the R^2 values of the Gompertz and Bertalanffy models were higher than for the Logistic and Richards models, Gompertz and Bertalanffy models with high coefficients of determination could be suitable models for female Chinese native Magang goose growth, and the age of the infection points was estimated at 30.53 and 28.56 d, respectively. It was suggested that the intestinal system was well developed during 1–7 weeks old in terms of the intestinal weight and length, but displayed a decline in geese during 8–10 weeks old. The knowledge of growth curve models and intestinal development pattern could provide some useful information on the design of optimum management practices and breeding strategies in goose production.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Table 5. Effect of age on the absolute weight of the intestine of Magang geese from 1 to 10 weeks of age (g/kg)

Age (week)	Duodenum	Jejunum	Ileum	Caecum	Rectum	Overall intestine
1	2.33f	4.75g	4.37a	0.48f	1.11a	13.03f
2	3.96a	9.51i	8.59f	1.62a	2.33d	26.01a
3	6.14d	15.22a	13.63ab	3.62d	3.55c	41.15c
4	6.51d	12.88b	14.25a	3.32d	4.16bc	50.48b
5	9.58b	22.34a	18.33ab	4.79bc	4.53b	61.12b
6	7.51c	17.19d	14.09g	4.31cd	4.26bc	47.36aw
7	11.53a	28.42a	20.19g	6.20a	6.58a	72.93a
8	9.14g	20.61bc	14.68b	4.66bc	6.45a	55.53bc
9	8.76bc	19.45bc	14.67b	5.55bc	4.45b	51.96cd
10	8.90ac	20.61bc	15.75bc	4.66bc	4.59b	56.22bc
SEM	0.37	0.92	0.64	0.24	0.22	2.25

P value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 6. Effect of age on the absolute length of the intestine of Magang geese from 1 to 10 weeks of age (cm/kg)

Age (week)	Duodenum	Jejunum	Ileum	Caecum	Rectum	Overall intestine
1	19.96d	40.96d	37.50c	7.47d	5.44g	111.33d
2	23.01d	52.08c	47.43a	10.60a	6.47g	139.65a
3	27.18	61.20b	49.10b	12.91cd	7.08d	158.50a
4	35.75ab	66.90a	70.41b	14.54bc	9.02cd	198.13bc
5	34.37ab	77.05a	65.92b	11.69de	9.38bc	198.40bc
6	33.16ab	66.08b	62.40a	17.05ab	7.96de	186.65
7	37.67ab	78.25a	69.17b	18.40ab	9.82ab	213.30
8	35.73ab	76.33a	68.97b	19.79a	11.08a	211.91ab
9	36.05ab	74.37a	65.55a	21.08a	10.42ab	207.47ab
10	36.67a	76.67a	64.33a	18.50ab	10.67ab	206.83ab
SEM	0.86	1.18	1.59	0.70	0.28	0.54

P value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Funding

This study was sponsored by the National Natural Science Foundation of China [grant number 31972584], Guangdong Provincial Science and Technology Special Foundation [grants number 2017023106900762 and 2021020103-2], the Foundation for Cooperation with WENS Group [grant number 2019B1515210031], and China Agriculture Research System [grant number CARS-42-15].

Data availability

The data that support this study are available in the article.

References

Amerah AM, Ravindran V, Lentle RG, Thomas DG. 2008. Influence of feed particle size on the performance, energy utilization, digestive tract development, and digesta parameters of broiler starters fed wheat- and corn-based diets. Poult Sci. 87(11):2320–2328.

Boz M, Sarica M, Yamak U. 2017. Production traits of artificially and naturally hatched geese in intensive and free-range systems: I. Growth traits. Br Poult Sci. 58(2):132–138.

Boz MA, Sarica M, Yamak US, Erensoy K. 2021. Behavioral traits of artificially and naturally hatched geese in intensive and free-range production systems. Appl Anim Behav Sci. 236:105273.

Cigdem Y, Hulya A. 2001. Comparison of growth curve models on broilers growth curve I: parameters estimation. J Bioloc Sci. 1(7):682–684.

de Carvalho NM, Oliveira DL, Saleh MAD, Pintado ME, Madureira AR. 2021. Importance of gastrointestinal in vitro models for the poultry industry and feed formulations. Anim Feed Sci Technol. 271:114730.
