Enhancing the Electrochemical Properties of Ti-Doped LiMn$_2$O$_4$ Spinel Cathode Materials Using a One-Step Hydrothermal Method

Yaqing Zhang, Hongyan Xie, Huixin Jin, Xiaohui Li, Qiang Zhang, Yezhu Li, KaiFeng Li, Fenglan Luo, Wenlei Li, and Chenzhe Li

ABSTRACT: In this study, LiMn$_{1-x}$Ti$_x$O$_4$ cathode materials were synthesized by a simple one-step hydrothermal method, and the effects of Ti doping on the sample structure and electrochemical properties were examined. The results indicated that Ti doping did not affect the spinel structure of LiMn$_2$O$_4$ and no other hybrid phases were produced. Furthermore, appropriate doping with Ti improved the particle uniformity of the samples. The electrochemical performance results showed that LiMn$_{1.97}$Ti$_{0.03}$O$_4$ exhibited much better cycling performance than the undoped sample. The discharge capacity of LiMn$_{1-x}$Ti$_x$O$_4$ reached 136 mAh g$^{-1}$ at 25 °C at 0.2C, and the specific capacity reached 106.2 mAh g$^{-1}$ after 300 cycles, with a capacity retention rate of 78.09%. Additionally, the specific capacity of LiMn$_{1-x}$Ti$_x$O$_4$ was 102.3 mAh g$^{-1}$ after 100 cycles at 55 °C, with a capacity retention rate of 75.44%. The Ti-doped samples thus exhibited an impressive high-rate performance. The discharge capacity of LiMn$_2$O$_4$ was only 31.3 mAh g$^{-1}$, thus exhibiting an impressive high-rate performance. The discharge capacity of LiMn$_{1.97}$Ti$_{0.03}$O$_4$ reached 73.4 mAh g$^{-1}$ at 25 °C at 0.2C, and the specific capacity reached 106.2 mAh g$^{-1}$ after 300 cycles, with a capacity retention rate of 78.09%. Additionally, the specific capacity of LiMn$_{1-x}$Ti$_x$O$_4$ was 102.3 mAh g$^{-1}$ after 100 cycles at 55 °C, with a capacity retention rate of 75.44%. The Ti-doped samples thus exhibited an impressive high-rate performance. The discharge capacity of LiMn$_2$O$_4$ was only 31.3 mAh g$^{-1}$ at 10C, while the discharge-specific capacity of LiMn$_{1-x}$Ti$_x$O$_4$ reached 73.4 mAh g$^{-1}$. Furthermore, to assess the higher Li$^+$ diffusion coefficient and lower internal resistance of the Ti-doped samples, cyclic voltammetry and impedance spectra data were obtained. Our results showed that Ti doping enhanced the crystal structure of LiMn$_2$O$_4$ and improved Li$^+$ diffusion, resulting in significant improvements in the cycling and rate performance of Ti-doped samples.

1. INTRODUCTION

Safe and portable lithium-ion batteries are one of the newest rechargeable energy storage devices that are frequently used in everyday life. Characterized by high energy density and high cycle life, lithium-ion batteries have attracted considerable attention.$^{1-6}$ Compared to other cathode materials, spinel LiMn$_2$O$_4$ has the advantages of abundant resources, low cost, safety, nontoxicity, environmental friendliness, and superior performance.7,8 However, its commercial applications are limited due to issues with rapid capacity decay, which is mainly caused by Mn$^{3+}$ ion Jahn–Teller distortion.$^9-13$ This distortion occurs when the LiMn$_2$O$_4$ crystal structure changes from cubic to quadratic rock salt during the final discharging process, blocking the Li$^+$ ion diffusion channel.14,15 Additionally, due to the disproportionation of the manganese ions, Mn inevitably dissolves in the electrolyte solution,16 resulting in a decrease in the active substance and attenuation capacity.

To solve the aforementioned problems, many methods have been studied and utilized. Element doping is an effective method to improve the cycling performance of LiMn$_2$O$_4$ and includes metal-ion doping ($\text{Al}^{3+}, \text{Cr}^{3+}, \text{Mg}^{2+}, \text{Ni}^{2+}$)$^{17-21}$ nonmetal ion doping ($\text{Si}^{4+}, \text{F}^-$)22,23 and ionic codoping.$^{24-26}$ Gu et al.27 studied the electrochemical performance of LiMn$_{2-x}$M$_x$O$_4$ ($\text{M} = \text{Mn}, \text{Co}, \text{Ni}, \text{Fe}, \text{Cr}, \text{Al}; x = 0.05, 0.1, 0.15,$ and 0.2) and showed that doping of metal ions effectively blocks the crystal phase transition, reducing the microstrain and volume contractions during the cycling process. Furthermore, LiMn$_{2-x}$M$_x$O$_4$ exhibited better electrochemical stability and less capacity fading than LiMn$_2$O$_4$. Numerous previous studies$^{28-30}$ have also shown that low-priced metal ions can replace Mn compounds and can also enter the 16d octahedral sites, thus improving the average Mn valence state in spinel LiMn$_2$O$_4$ while reducing the amount of Mn$^{3+}$ ions. This method inhibits Jahn–Teller distortion, stabilizes the structure during the charging and discharging processes, and improves the cycling performance. However, few studies have examined the electrochemical performance of Ti$^{4+}$-doped LiMn$_2$O$_4$. Furthermore, because the Ti–O bond has stronger binding energy than Mn–O, it can form a more stable [Mn$_2$–Ti]$_4$O$_4$ skeleton and potentially improve the material cycling performance.

Received: March 22, 2021
Accepted: June 10, 2021
Published: August 10, 2021
Additionally, choosing a synthetic method significantly impacts the use of spinel LiMn$_2$O$_4$ in Li-ion batteries, as material performance is closely related to morphology, size, and structure. Various high-capacity and high-cycling performance methods for the preparation of spinel LiMn$_2$O$_4$ have been proposed, including the Pechini, sol–gel, and hydrothermal methods. Tian et al. proposed a rapid synthesis of LiMn$_2$O$_4$ using a microwave-induced flameless combustion solution method. The heat treatment of lithium nitrate, manganese acetate, tetrahydrate, and nitric acid at 105 °C formed a eutectic solution. Following this, the solution underwent a flameless combustion reaction at temperatures between 300 and 700 °C, and the final synthesized LiMn$_2$O$_4$ structure was composed of submicron polyhedral crystals. The

Figure 1. (a) XPS full spectrum of the T0 and T3 samples, (b) Ti 2p peaks of T3, (c) Mn 3s peaks of T0 and T3, (d) Mn 2p peaks of T0 and T3, (e) fitted Mn 2p$_{3/2}$ peaks of T0, and (f) fitted Mn 2p$_{3/2}$ peaks of T3.
Figure 2. continued
discharge capacity reached 114.4 mAh g\(^{-1}\) at 1C, with a capacity retention of 45.4% after 1000 cycles. Chen et al.\(^{38}\) synthesized mesoporous spinel LiMn\(_2\)O\(_4\) with high crystallinity via a soft-templating method that used a two-step heat-treatment process. The results showed that the mesoporous spinel LiMn\(_2\)O\(_4\) exhibited higher Li\(^+\) diffusion, and the mesoporous structure promoted the rapid transport and intercalation dynamics of Li\(^+\), giving it good cycle capabilities at a high current density.

However, most of these studies adopted a complicated two-step synthesis, where the precursor (MnCO\(_3\), MnO\(_2\), and Mn\(_3\)O\(_4\)) was first synthesized using a liquid phase method, followed by high-temperature calcination (700–900 °C) for secondary grain growth.

In this work, Ti-doped spinel LiMn\(_2\)O\(_4\) was prepared using a simple one-step hydrothermal method that was quick, direct, and effective and did not require any preprocessing. Supporting the existing research, we found that doping Ti ions significantly slowed the capacity decay problem of spinel LiMn\(_2\)O\(_4\) and improved its electrochemical performance.

2. RESULTS AND DISCUSSION

2.1. Structure and Morphology. Figure 1 shows the X-ray photoelectron spectra (XPS) of the T0 and T3 samples. A full-range XPS spectrum is shown in Figure 1a, and the characteristic peaks of C 1s, O 1s, Mn 2p, and Mn 3s are visible in both T0 and T3 samples. Specifically, detection of the Ti 2p peak confirmed the presence of the Ti element in the T3 sample. Figure 1b shows the Ti 2p XPS spectrum, and the Ti 2p was split into two peaks, which were Ti 2p\(_{3/2}\) (457.8 eV) and Ti 2p\(_{1/2}\) (463.3 eV). The binding energy between 2p\(_{3/2}\) and 2p\(_{1/2}\) differed by 5.5 eV, indicating that the Ti ions were in a tetravalent oxidation state. To confirm the oxidation state of the Mn ions, a Mn 3s spectrum analysis was performed on the sample, as shown in Figure 1c, and the energy intervals of the 3s multiple splitting peaks for Mn\(^{2+}\), Mn\(^{3+}\), and Mn\(^{4+}\) were 6.1, 5.5, and 4.5 eV, respectively. The energy split of the samples was 4.8 eV, which was between Mn\(^{3+}\) (5.5 eV) and Mn\(^{4+}\) (4.5 eV), confirming that the oxidation states of the Mn ions in the T0 and T3 samples were +3 and +4.

Figure 1d shows the Mn 2p spectrum, for which the binding energies of Mn 2p\(_{3/2}\) and Mn 2p\(_{1/2}\) were 642.1 and 653.8 eV, with a separation of 11.7 eV. As shown in Figure 1e,f, the Mn 2p\(_{3/2}\) curves fit the two peaks at approximately 642.8 and 641.7 eV, corresponding to Mn\(^{3+}\) and Mn\(^{4+}\), respectively.\(^{39}\) The Mn\(^{3+}\)/Mn\(^{4+}\) percentage ratios for the T0 and T3 samples were 49.8/50.2 and 52.9/7.1%, respectively, as obtained from the different photoelectron peak area ratios. Thus, the results showed that the Ti\(^{4+}\) ions increased the Mn\(^{3+}\)/Mn\(^{4+}\) ratio, indicating that Ti\(^{4+}\) replaced the Mn\(^{4+}\) sites in the material crystal structure.

Figure 2a shows the X-ray diffraction (XRD) patterns for all of the samples. The samples showed the characteristic cubic spinel structure diffraction peaks with Fd\(_3\)m symmetry and no other impurity phase peaks, indicating that introducing trace amounts of Ti\(^{4+}\) did not change the inherent spinel structure. Moreover, the diffraction peak strength of the doped Ti sample was higher than that of the undoped sample, indicating that Ti doping moderately enhanced the crystallinity of the material. Rietveld refinement using the FULLPROF software was also conducted as part of the XRD data analysis, as shown in Figure 2b–g. The results are listed in Tables 1 and 2. The small confidence profile R-factor, R\(_{\text{ref}}\), confirmed that the results were credible. Table 1 shows the atom occupancy parameters, indicating that the Ti\(^{4+}\) ions that occupied the Mn position as a result of Ti doping, forming a stable \([\text{Mn}_{2-x}\text{Ti}_x]\)O\(_4\) skeleton. Table 2 shows the lattice parameters and cell volumes of the samples. Table 2 shows the sample lattice parameters, as well as the cell volumes,
which increased as the Ti doping amount increased. This likely occurred because Ti$^{4+}$ ions have a larger radius (0.61 Å), replacing the smaller-radius Mn$^{4+}$ ions (0.53 Å). The increase in the cell volume was also moderately beneficial for Li$^+$ diffusion, as it reduced the polarization and internal resistance of the material during charging and discharging. Furthermore, because the binding energy of the Ti–O bond (662 kJ mol$^{-1}$) was higher than that of the Mn–O bond (402 kJ mol$^{-1}$), Ti doping made the structure more stable.

The morphology and particle sizes of the samples were observed by scanning electron microscopy (SEM), as shown in Figure 3, and octahedron or polyhedron morphology is clearly visible. Furthermore, the samples contained smaller particles, resulting in larger contact areas between the particles and the electrolyte, a shorter Li$^+$ diffusion path, and a higher utilization rate of the active substances.41,42 Doping of the Ti ions had little effect on the morphology and particle sizes of the obtained samples. However, it should be noted that the particle size distribution of the undoped LiMn$_2$O$_4$ was not uniform and the particles appeared to agglomerate, as shown in Figure 3a. Thus, doping of Ti likely improved the dispersion of the particles. Figure 3g shows the energy-dispersive spectrum of T3, where the presence of Ti element is clearly visible. This further confirmed the replacement of Ti ions into spinel LiMn$_2$O$_4$ as previously described.

2.2. Electrochemical Characterization

Figure 4 shows the initial discharge curves of LiMn$_{2-x}$Ti$_x$O$_4$ as well as the cycling performance curves at 0.2C at room temperature (RT). Figure 4a shows that two charging/discharging voltage platforms appeared at approximately 4.1 and 3.95 V on the charging/discharging curves, which corresponded to the two different stages of Li$^+$ insertion/extraction.43,44 As shown in Figure 4a, the initial discharge capacities of samples T0, T1, T2, T3, T4, and T5 were 139.9, 129.5, 131.2, 136, 133.4, and 123 mAh g$^{-1}$, respectively. The discharge capacity of the undoped LiMn$_2$O$_4$ was the highest, and unlike the discharge capacities of the undoped sample, those of the doped Ti samples decreased to varying degrees. The T1 sample, which contained a small amount of Ti ions, exhibited a lower discharge capacity and may be due to the introduction of Ti ions into the material lattices. As a result, the Ti ions replaced part of the active Mn compounds, thus reducing the discharge capacity of the sample. However, when the Ti doping amount increased, the first discharge capacity initially increased and then decreased. As the Ti doping content increased, the particle structure of the sample became more regular, while the skeleton became more stable. This was conducive to the Li$^+$ insertion/extraction process. As a result, the electrochemical transformation between the trivalent manganese ions and tetravalent manganese ions could better adapt to the charge–discharge process. However, it should be noted that a relatively large Ti$^{4+}$ doping amount resulted in a significant reduction in capacity. This likely occurred because the introduction of more Ti ions significantly reduced Mn ion content, producing numerous tiny agglomerated particles that could prevent the conduction and block the lithium-ion diffusion channel. Figure 4b shows the cycling performance of the samples at 0.2C, where the cycling performance of undoped LiMn$_2$O$_4$ was poor. After 300 cycles, the specific capacity of LiMn$_2$O$_4$ was only 52.5 mAh g$^{-1}$, with a capacity retention rate of 37.53%. Thus, the cycling performance of the doped Ti samples improved. After 300 cycles, the discharge-specific capacities of the T1, T2, T3, T4, and T5 samples were 62.4, 81.2, 106.2, 92.6, and 86.2 mAh g$^{-1}$, while the corresponding capacity retention rates were 48.19, 61.89, 78.09, 69.42, and 70.08%, respectively. In all of the doped samples, the T3 sample had the best capacity and cycling performance. Therefore, appropriate doping with Ti ions can effectively improve the electrochemical performance of the material.

Figure 5 shows the cycling performance curves of LiMn$_{2-x}$Ti$_x$O$_4$ ($x = 0, 0.03$) at 0.2C at 55 °C, whereby the capacity decay problem of LiMn$_2$O$_4$ was more serious at higher temperatures, as capacity was only 61.6 mAh g$^{-1}$ after 100 cycles, while the capacity retention rate was 44.48%. However, the specific capacity of LiMn$_{2.97}$Ti$_{0.03}$O$_4$ was 102.3 mAh g$^{-1}$ after 100 cycles at 55 °C, with a capacity retention rate of 75.44%, indicating that the Ti-doped materials performed better at higher temperatures.

Figure 6 shows the rate performance curves of LiMn$_{2-x}$Ti$_x$O$_4$ at different current densities from 0.2 to 10C at RT. This illustrates that the specific discharge capacities of the sample decreased as the current density increased. This occurred because the physical resistance and concentration polarization caused an overvoltage, which lowered the actual cutoff voltage during charging and discharging below the set value.45 In particular, the rate performance of the undoped T0 sample was very poor under the large current density, with a discharge capacity of 31.3 mAh g$^{-1}$ at 10C. However, the Ti-doped samples exhibited an enhanced rate performance, which was consistent with the results of the T1–T5 samples, as they had larger lattice constants and cell volumes. Of them, the T3 sample had the best rate performance, with specific capacities of 96.5 and 73.4 mAh g$^{-1}$ at 5 and 10C, respectively. When the current density reverted to 0.2C, its specific capacity still reached 128 mAh g$^{-1}$, indicating that the T3 sample had good electrochemical reversibility. Moreover, the T3 sample retained good cycling performance under high current density. This indicated that Ti doping improved the high-rate discharge performance and utility of the active material.

To further investigate the effects of Ti doping on the structural stability of spinel LiMn$_2$O$_4$, the structures and morphologies of the T0 and T3 samples were characterized after 100 cycles at 0.5C at RT. Figure 7a shows the XRD patterns of the electrode samples, as well as pure LiMn$_2$O$_4$ before the electrochemical cycle, which was included for comparison. Except for the A1 and C peaks, both the T0 and T3 sample diffraction peaks indicated spinel LiMn$_2$O$_4$, which were unchanged after 100 cycles. The peak intensity for T3 was stronger than that for T0, indicating that T3 had better crystallinity. The lattice parameters and cell volumes of the T0 and T3 samples after 100 cycles were calculated, and the results were compared with the parameters before the electrochemical cycle, as shown in Table 3. The internal stress caused by volume changes was not conducive to the structural stability of the material.46 After 100 cycles, the volume shrinkage of the T3 sample was smaller, indicating that Ti doping enhanced the

Table 2. Crystallographic Data Obtained from Rietveld Refinement

sample	a (Å)	V (Å3)	R_p (%)
T0	8.2267	556.775	8.42
T1	8.2301	557.464	8.14
T2	8.2328	558.018	7.75
T3	8.2333	558.107	7.92
T4	8.2343	558.309	9.17
T5	8.2349	558.437	8.85

ACS Omega http://pubs.acs.org/journal/acsoa2d Article

ACS Omega 2021, 6, 21304–21315

Table 2. Crystallographic Data Obtained from Rietveld Refinement

sample	a (Å)	V (Å3)	R_p (%)
T0	8.2267	556.775	8.42
T1	8.2301	557.464	8.14
T2	8.2328	558.018	7.75
T3	8.2333	558.107	7.92
T4	8.2343	558.309	9.17
T5	8.2349	558.437	8.85
structure of the material and alleviated the cycle capacity reduction issues. As shown in the T0 and T3 electrode SEM images, after 100 cycles at 0.5C (Figure 7b,c), the T0 surface contained more byproducts, while the T3 surface was relatively clean and intact. Therefore, doping with an appropriate amount of Ti appeared to be conducive to reducing the erosion of the electrolyte and maintaining the integrity of particles, thus improving the electrochemical performance of the material.

To further confirm the electrochemical behavior of the Ti-doped samples, cyclic voltammetry (CV) curves were recorded by scanning the T3 sample, which had the best electrochemical performance, along with the undoped T0 sample at 0.1−0.8 mV s\(^{-1}\), as shown in Figure 8. The CV curves of LiMn\(_2\)O\(_4\) and LiMn\(_{1.97}\)Ti\(_{0.03}\)O\(_4\) were similar in shape, with both observing two pairs of redox peaks, indicating that Li-ion intercalation and deintercalation processes occurred in two steps\(^{47}\), which was consistent with the charging/discharging curves described in Figure 3.

Figure 3. SEM images of the samples (a) T0, (b) T1, (c) T2, (d) T3, (e) T4, and (f) T5. (g) Energy-dispersive X-ray spectroscopy (EDS) mapping of T3.
above. As shown in Figure 8a,b, the peak potential of the samples moved to both sides as the scanning rate increased, reflecting the polarization reversibility. Figure 8c shows a good linear relationship between the square root of the scanning rate ($\nu^{1/2}$) and the peak current of the ipa2 peak (I_p), indicating that the charging and discharging processes of the lithium ions were diffusion-controlled processes. The diffusion coefficient of Li$^+$ (D_{Li^+}) can be calculated according to the following formula:

$$I_p = 2.69 \times 10^5 \times s^{3/2} \times A \times D_{Li^+}^{1/2} \times C_{Li^+} \times \nu^{1/2}$$

where I_p is the peak current (mA), n is the electron transfer number ($n = 1$), A is the electrode surface area (cm2), C_{Li^+} is the concentration of Li$^+$ (0.02378 mol cm$^{-3}$), and ν is the scanning rate (mV s$^{-1}$). Therefore, the resulting D_{Li^+} values of T0 and T3 were 3.64×10^{-12} and 5.23×10^{-12} cm2 s$^{-1}$, respectively. The T3 sample had a large Li-ion diffusion coefficient, indicating that the Li-ion diffusion rate was faster, which was consistent with the rate performance results.

To study the reaction kinetics of the Ti-doped LiMn$_2$O$_4$ cathode material in the cell, electrochemical impedance spectroscopy (EIS) measurements were performed on the T0 and T3 samples. Figure 9 shows the EIS spectra of the T0 and T3 samples after 1 and 100 cycles, respectively. The intercept between the semicircle and the x-coordinate in the high-frequency region represented the solution resistance of the electrolyte (R_s), while the semicircle of the intermediate frequency region was generated by the interaction of two resistors. These were denoted by solid electrolyte interface impedance (R_{f}) and charge-transfer impedance (R_{ct}), which are typically associated with the electronic conductivity of materials. The increase in the semicircle indicated that the capacity for the partial charge transfer and the material transfer was reduced on the interface between the cathode and the electrolyte. The sloped line represented the Warburg impedance (W_1), which was related to the rate of Li$^+$ diffusion in the electrode. As shown in Figure 9, the semicircle for the T0 sample was larger than that for the T3 sample, while the lithium-ion diffusion rate was faster in the T3 sample. Based on the principle of least square fitting, an equivalent circuit model was established to fit the experimental data, and the simulated impedance curves were in good agreement with the experimental data. Table 4 shows the fitted resistance values in the electrochemical impedance spectrum. After one cycle, the R_s and R_{ct} fitted values of T3 (36.22 and 46.19 Ω) were smaller than those of T0 (54.90 and 44.29 Ω). This showed that the T0
sample had a large charge-transfer impedance and that doping with Ti improved the electron conductivity. After 100 cycles, the impedance difference between the T0 and T3 samples was more obvious, as the R_f and R_{ct} values for the T0 sample increased to 323.30 and 212.60 Ω and increased to 202.50 and 117.40 Ω for the T3 sample, respectively. The results indicated that after 100 cycles, the impedance inside the LiMn$_2$O$_4$ cathode material increased due to the distortion of the crystal structure. However, the Ti-doped LiMn$_2$O$_4$ material had a more stable crystal lattice, a more stable Li$^+$ diffusion channel, and lower charge-transfer resistance. Therefore, the T3 sample had better cycling performance and rate performance.

3. CONCLUSIONS

In this work, LiMn$_{2-x}$Ti$_x$O$_4$ was prepared using a one-step hydrothermal method. The structural characterization results showed that Ti was successfully doped into the samples, and Ti$^{4+}$ replaced Mn$^{4+}$ at the octahedral sites. All of the samples contained spinel structures, sharp diffraction peaks, and no impurity phases. The Ti doping has no significant effect on the morphology and size. Electrochemical tests showed that LiMn$_{1.97}$Ti$_{0.03}$O$_4$ exhibited better cycling performance and rate performance, where the first discharge-specific capacity was 136 mAh g$^{-1}$ at 0.2C, and the discharge-specific capacity was 106.2 mAh g$^{-1}$ after 300 cycles at 25 °C with a capacity retention of 78.09%. Additionally, the specific capacity of LiMn$_{1.97}$Ti$_{0.03}$O$_4$ was 102.3 mAh g$^{-1}$ after 100 cycles at 55 °C, with a capacity retention rate of 75.44%. The structure and morphology of the samples after cycling also indicated that Ti doping enhanced the stability of the material’s crystal structure, reducing the side reactions between the particle surface and the electrolyte. The CV and EIS spectra also showed that appropriate doping with Ti increased Li$^+$ diffusion while reducing the internal resistance of the electrode during charging and discharging. Therefore, our results indicated that the doping of Ti improved the electrochemical performance of spinel LiMn$_2$O$_4$.

4. EXPERIMENTAL SECTION

4.1. Synthesis of Materials. All samples were prepared using a hydrothermal method, where 0.21 g of LiOH·H$_2$O (AR, Aladdin), 0.79 g of KMnO$_4$ and TiO$_2$ (AR, Aladdin) were dissolved in 50 mL of deionized water, producing a 1:1 molar ratio of Li/Mn. Aniline was added to the mixture as a reducing agent and the solution was continuously stirred for 30 min. The aniline amount was calculated by controlling the molar ratio of aniline/KMnO$_4$ producing a 1:5 molar ratio of aniline/KMnO$_4$. Afterward, the resulting solution was moved into an autoclave, where it chemically reacted at 200 °C for 12 h, and the resulting mixture was filtered, dried, and ground to obtain LiMn$_{2-x}$Ti$_x$O$_4$ ($x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05$) samples, which were denoted by T0, T1, T2, T3, T4, and T5, respectively.

4.2. Structural Characterization. X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) was used to
analyze the elemental surface composition and valence of the samples. The sample crystal structures were characterized via a X-ray diffractometer (XRD, Bruker D8 ADVANCE, Germany), where the radiation source was Cu Kα with a wavelength of 0.15406 nm, and diffraction peaks were obtained from 10 to 80°.

Figure 8. Cyclic voltammetry curves with various sweeping rates from 0.1 to 0.8 mV s⁻¹: (a) T0, (b) T3, and (c) peak current (I_p) of ipa2 as a function of the square root of the sweeping rate (ν¹/₂).

Figure 9. Electrochemical impedance spectroscopy plots for T0 and T3 (a) after 1 cycle and (b) after 100 cycles. Inset: the corresponding equivalent circuit diagram.
assembled into a button cell in an argon gas-filled glovebox. A battery test system (LAND-CT2001A, China) was then used to conduct a current constant charge-discharge experiment on the prepared semibattery. The charge-discharge cutoff potential was set between 2.9 and 4.3 V, while cyclic voltammetry and impedance were obtained using an electrochemical workstation.

Electrochemical Impedance Spectroscopy

Table 4. Fitted R_1, R_2, and R_3 Values as Obtained from Electrochemical Impedance Spectroscopy

Sample	R_1 (Ω)	R_2 (Ω)	R_3 (Ω)	R_1 (Ω)	R_2 (Ω)	R_3 (Ω)
T0	4.63	54.90	44.29	2.72	323.30	212.60
T3	3.89	36.22	46.19	2.46	202.50	117.40

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of China [grant no. 51764007].

REFERENCES

1. Xia, H.; Luo, Z.; Xie, J. Nanostructured LiMn$_2$O$_4$ and their composites as high-performance cathodes for lithium-ion batteries. *Prog. Nat. Sci.: Mater. Int.* 2013, 22, 572–584.
2. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? *Chem. Rev.* 2004, 104, 4245–4270.
3. Bao, L.; Li, L.; Xu, G.; Wang, J.; Zhao, R.; Shen, G.; Han, G.; Zhou, S. Olivine LiFePO$_4$ nanocrystals embedded in carbon-coating matrix for high power Li-ion batteries. *Electrochem. Acta* 2016, 222, 685–692.
4. Yao, J.; Lv, L.; Shen, C.; Zhang, P.; Aguey-Zinsou, K.; Wang, L. Nano-sized spinel LiMn$_2$O$_4$ powder fabricated via modified dynamic hydrothermal synthesis. *Ceram. Int.* 2013, 39, 3359–3364.
5. Wang, Y.; Zhi, B.; Wang, Y.; Wang, F. Solvothermal synthesis of LiFePO$_4$ nanorods as high-performance cathode materials for lithium-ion batteries. *Ceram. Int.* 2016, 42, 10297–10303.
6. Liu, Y.; Zhi, H.; Ren, Y.; Zhu, Y.; Huang, Y.; Dai, L.; Dou, S.; Xu, J.; Sun, C.; Wang, X.; Deng, Y.; Yuan, Q.; Liu, X.; Wu, J.; Chen, Y.; Liu, Q. Modulating the Surface Ligand Orientation for Stabilized Anionic Redox in Li-Rich Oxide Cathodes. *Adv. Energy Mater.* 2021, 11, No. 2003479.
7. Lv, X.; Chen, S.; Chen, C.; Liu, L.; Liu, F.; Liu, G. One-step hydrothermal synthesis of LiMn$_2$O$_4$ cathode materials for rechargeable lithium batteries. *Solid State Sci.* 2014, 31, 16–23.
8. Kim, D. K.; Muralidharan, P.; Lee, H.; Ruffo, R.; Yang, Y.; Chan, C.; Peng, H.; Huggins, R.; Cui, Y. Spinel LiMn$_2$O$_4$ nanorods as lithium-ion battery cathodes. *Nano Lett.* 2008, 8, 3948–3952.
9. Xu, C.; Li, J.; Feng, X.; Zhao, J.; Tang, C.; Ji, B.; Hu, J.; Cao, C.; Zhu, Y.; Butt, F. K. The improved performance of spinel LiMn$_2$O$_4$ cathode with micro-nanostructured sphere-interconnected-tube morphology and surface orientation at extreme conditions for lithium-ion batteries. *Electrochem. Acta* 2020, 358, No. 136901.
10. Liu, D.; Sun, S.; Yu, J. A new high-efficiency process for Li$^+$ recovery from solutions based on LiMn$_2$O$_4$/λ-MnO$_2$ materials. *Chem. Eng. J.* 2018, 377, No. 119825.
11. Mao, F.; Guo, W.; Ma, J. Research progress on design strategies, synthesis and performance of LiMn$_2$O$_4$-based cathodes. *RSC Adv.* 2015, 5, 105248–105258.
12. Huang, W.; Wang, G.; Luo, C.; Xu, Y.; Xu, Y.; Eckstein, B.; Chen, Y.; Wang, B.; Huang, J.; Kang, Y.; Wu, J.; Dravid, V.; Faccietti, A.;
Surface-orientation for boosting the high-rate and cyclability of spinel

Miller, D. J.; Elam, J. W.; Sun, Y.; Qiu, X.; Amine, K. Effectively

Vacuum high-temperature battery.

oxalate coprecipitation.

2020

Acta electrolyte with optimal concentration and components.

process by neutron and synchrotron X-ray.

2014

Electrochim. Acta cathode materials for Li-ion batteries.

Ming, H.; Cao, G.; Tang, G. Stabilizing LiMn2O4 cathode in aqueous

combustion synthesis.

LiCrxMn2−xAlxO4 in charge-discharge process by neutron and synchrotron X-ray. J. Power Sources 2019, 410–411, 38–44.

Feng, X.; Tian, Y.; Zhang, J.; Yin, L. The effect of aluminum precursors on the structural and electrochemical properties of spinel LiMn4−xAlxO4 (x = 0, 0.05, 0.1, 0.15) cathode materials. Powder Technol. 2014, 253, 35–40.

Song, H.; Zhao, Y.; Niu, Y.; Wu, Z.; Hou, J. Applications of LiCr3Mn3−xAlxO4 cathode material with high capacity and high rate in high-temperature battery. Solid State Ions 2018, 325, 67–73.

Xiang, M.; Ye, L.; Peng, C.; Zhong, L.; Bai, H.; Su, C.; Guo, J. Study on the electrochemical performance of high-cycle LiMn0.52Mn0.48O4 cathode material prepared by a solid-state combustion synthesis. Ceram. Int. 2014, 40, 10839–10845.

Luo, X.; Xiang, M.; Li, Y.; Guo, J.; Liu, X.; Bai, H.; Bai, W.; Su, C. Surface-orientation for boosting the high-rate and cyclability of spinel LiNi0.6Mn0.4O2 cathode material. Vaccum 2020, 179, No. 109505.

Wang, M.; Yang, M.; Zhao, X.; Ma, L.; Cao, G. Spinel LiNi0.55Mn0.45O2 (x < 1) through Si4+ substitution as a potential cathode material for lithium-ion batteries. Sci. China Mater. 2016, 59, 558–566.

Son, J. T.; Kim, H. G. New investigation of fluorine-substituted spinel LiMn2−xO4xF4 by using sol-gel process. J. Power Sources 2005, 147, 220–225.

Li, G.; Zhang, Z.; Huang, Z.; Yang, C.; Zuo, Z.; Zhou, H. Understanding the accumulated cycle capacity fade caused by the secondary particle fracture of LiNi0.6Co0.2Mn0.2O4 cathode for lithium-ion batteries. J. Solid State Electrochem. 2017, 21, 673–682.

Venkateswara Rao, A.; Ranjith Kumar, B. Structural, electrical and electrochemical studies on doubly doped LiMn0.5(Gd)Ni0.5O4 cathode materials for Li-ion batteries. Mater. Lett. 2018, 227, 250–253.

Gao, R.; Sun, C.; Xu, L.; Zhou, T.; Zhang, L.; Xie, H. Recycling LiNi0.45Co0.2Mn0.35O4 material from spent lithium-ion batteries by oxalate coprecipitation. Vaccum 2020, 173, No. 109181.

Soll, S.; Sun, G.; Zha, C.; Hu, Y.; Zhang, X.; Wen, W.; Yang, X.; Wang, Y.; Gao, X.; Zhang, X.; Li, J.; Ma, Z.; He, Q. Correlating cycle performance improvement and structural alleviation in LiMn2O4 spinel cathode materials: A systematic study on the effects of metal-ion doping. Electrochim. Acta 2019, 298, 806–817.

Peng, C.; Huang, J.; Guo, Y.; Li, Q.; Bai, H.; He, Y.; Su, C.; Guo, J. Electrochemical performance of spinel LiAlMn2O4 prepared rapidly by glucose-assisted solid-state combustion synthesis. Vaccum 2015, 120, 121–126.

Ram, P.; Gören, A.; Fedrov, S.; Silva, M.; Choudhary, G.; Singhal, R.; Costa, C. M.; Sharma, R. K.; Lancers-Méndez, S. Synthesis and improved electrochemical performance of LiMn2−xGd3O4 based cathodes. Solid State Ions 2017, 300, 18–25.

Lu, J.; Zhan, C.; Wu, T.; Wen, J.; Lei, Y.; Kropf, A. J.; Wu, H. M.; Miller, D. J.; Elam, J. W.; Sun, Y.; Qiu, X.; Amine, K. Effectively suppressing dissolution of manganese from spinel lithium manganese via a nanoscale surface-doping approach. Nat. Commun. 2014, 5, No. 5693.

Liu, J.; Li, G.; Bai, H.; Shao, M.; Su, C.; Guo, J.; Liu, X.; Bai, W. Enhanced cycle and rate performances of Li[Li0.05Al0.05Mn1.95]O4 cathode material prepared via a solution combustion method for lithium-ion batteries. Solid State Ionics 2017, 307, 79–89.

Guo, D.; Chang, Z.; Tang, H.; Li, B.; Xu, X.; Yuan, X.; Wang, H. Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical MnO2. Electrochim. Acta 2014, 123, 254–259.

Liu, H.; Tian, R.; Jiang, Y.; Tan, X.; Chen, J.; Zhang, L.; Guo, Y.; Wang, S.; Sun, L.; Chu, W. On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route. Electrochim. Acta 2015, 180, 138–146.

Jiang, Q.; Wang, X.; Zhang, H. One-pot hydrothermal synthesis of LiMn4O7 cathode material with excellent high-rate and cycling properties. J. Electron. Mater. 2016, 45, 4350–4356.

Chen, K.; Donahoe, A.; Noh, Y. D.; Li, K.; Komarneni, S.; Xue, D. Conventional and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances. Ceram. Int. 2014, 40, 3155–3163.

Waller, G. H.; Lai, S. Y.; Rainwater, B. H.; Liu, M. Hydrothermal synthesis of LiMn4O7 onto carbon fiber paper current collector for binder free lithium-ion battery positive electrodes. J. Power Sources 2014, 251, 411–416.

Tian, L.; Su, C.; Wang, Y.; Wen, B.; Bai, W.; Guo, J. Electrochemical properties of spinel LiMn2O4 cathode material prepared by a microwave-induced solution flameless combustion method. Vaccum 2019, 164, 153–157.

Chen, S.; Chen, Z.; Cao, C. Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochem. Acta 2016, 199, S1–S8.

Liu, Y.; Wang, J.; Wu, J.; Ding, Z.; Yao, P.; Zhang, S.; Chen, Y. 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of Lithium-Ion batteries. Adv. Energy Mater. 2019, 10, No. 1903139.

Xiong, L.; Xu, Y.; Zhang, C.; Zhang, Z.; Li, J. Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4. J. Solid State Electrochem. 2011, 15, 1263–1269.

Zhao, H.; Liu, S.; Wang, Z.; Cai, Y.; Tan, M.; Liu, X. LiSi3Mn3O9 (x≤0.10) cathode materials with improved electrochemical properties prepared via a simple solid-state method for high-performance lithium-ion batteries. Ceram. Int. 2016, 42, 13442–13448.

Zhang, H.; Xu, Y.; Liu, D.; Zhang, X.; Zhao, C. Structure and performance of dual-doped LiDoped Mn2−xAlxO4 cathode materials prepared via microwave synthesis method. Electrochim. Acta 2014, 125, 225–231.

Prabu, M.; Reddy, M. V.; Selvasekarapandian, S.; Subba Rao, G. V.; Chowdary, B. V. R. (Li, Al)-co-doped spinel Li(Li0.1Al0.1Mn1.8)O4 as high performance cathode for lithium-ion batteries. Electrochim. Acta 2013, 88, 745–755.

Wu, X.; Li, X.; Xiao, Z.; Liu, J.; Yan, W.; Ma, M. Synthesis and characterization of LiMn2O4 powders by the combustion-assisted sol-gel technique. Mater. Chem. Phys. 2004, 84, 182–186.

Xu, Y.; Chen, G.; Fu, E.; Zhou, M.; Dunwell, M.; Fei, L.; Deng, S.; Andersen, P.; Wang, Y.; Jia, Q.; Luo, H. Nickel substituted LiMn2O4 cathode with durable high-capacity requirement for Li-ion batteries. RSC Adv. 2013, 3, 18441–18445.

Cheng, X.; Liu, M.; Yin, J.; Ma, C.; Dai, Y.; Wang, D.; Mi, S.; Qiang, W.; Huang, B.; Chen, Y. Regulating Surface and Grain-Boundary Structures of Ni-Rich Layered Cathodes for Ultrahigh Cycle Stability. Small 2020, 16, No. 1906433.

Cai, Y.; Huang, Y.; Wang, X.; Jia, D.; Pang, W.; Guo, Z.; Du, Y.; Tang, X. Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. J. Power Sources 2015, 278, 574–581.

Zhang, C.; Su, J.; Wang, T.; Yuan, K.; Chen, L.; Liu, S.; Huang, T.; Wu, J.; Lu, H.; Yu, A. Significant improvement on electrochemical performance of LiMn2O4 at elevated temperature by atomic layer deposition of TiO2 nanocoating. ACS Sustainable Chem. Eng. 2018, 6, 7890–7901.

Yu, Y.; Xiang, M.; Guo, J.; Su, C.; Liu, X.; Bai, H.; Bai, W.; Duan, K. Enhancing high-rate and elevated-temperature properties of Ni-Mg...
co-doped LiMn$_2$O$_4$ cathodes for Li-ion batteries. J. Colloid Interface Sci. 2019, 555, 64–71.

(50) Lu, Y.; Luo, X.; Bai, H.; Guo, J.; Xiang, M.; Su, C.; Liu, X.; Bai, W.; Wang, R. Investigating the enhanced kinetics of LiNi$_{0.06}$Mn$_{1.92}$O$_4$ cathode material by regulating calcination temperature for long life lithium-ion battery. Vacuum 2018, 158, 223–230.

(51) Xie, Y.; Wu, F.; Dai, X.; Mai, Y.; Gu, Y.; Jin, H.; Li, J. Excellent electrochemical performance of LiNi$_{0.5}$Co$_{0.2}$Mn$_{0.3}$O$_2$ with good crystallinity and submicron primary dispersed particles. Int. J. Energy Res. 2021, 45, 6041–6053.

(52) Ran, Q.; Zhao, H.; Hu, Y.; Shen, Q.; Liu, W.; Liu, J.; Shu, X.; Zhang, M.; Liu, S.; Tan, M.; Li, H.; Liu, X. Enhanced electrochemical performance of dualconductive layers coated Ni-rich Li-Ni$_{0.6}$Co$_{0.2}$Mn$_{0.2}$O$_2$ cathode for Li-ion batteries at high cut-off voltage. Electrochim. Acta 2018, 289, 82–93.

(53) Snyders, C.; Ferg, E. Electrochemical Impedance Spectroscopy (EIS) study of doped spinel manganese cathode oxide materials synthesized for Li-ion batteries. Mater. Today: Proc. 2018, 5, 10450–10459.