Proterozoic VanDieland in central Victoria: ages, compositions and source depths for Late Devonian silicic magmas

J. D. Clemens* and I. S. Buick
Department of Earth Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

* e-mail: jclemens@sun.ac.za

SUPPLEMENTARY PAPERS
Australian Journal of Earth Sciences (2019) 66, https://doi.org/10.1080/08120099.2018.1554603

Copies of Supplementary Papers may be obtained from the Geological Society of Australia's website (www.gsa.org.au), the Australian Journal of Earth Sciences website (www.ajes.com.au) or from the National Library of Australia's Pandora archive (https://pandora.nla.gov.au/tep/150555).

Supplementary papers
Paper 1. Pseudosection calculations using the Domino program of the TheriaK/Domino software suite.
Paper 2. Table SP1. Calculation of the compositions for use in the TheriaK-Domino modelling.
Paper 1 Pseudoosection calculations using the Domino program of the Theriak/Domino software suite

Pressure–Temperature (P–T) and isobaric Temperature–H₂O content (T–Mᵢₑₒ) pseudosections were calculated using the Domino program of the Theriak/Domino software suite (de Capitani & Petrakakis, 2010), using an unpublished, updated version of the internally-consistent thermodynamic database of Holland and Powell (1998). Pseudosections were calculated in the Na₂O–K₂O–CaO–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂ (NCKFMASSH) system. Fe₂O₃ was not considered, due to the lack of Fe₃⁺-rich oxide phases in the samples of interest, and MnO was omitted due to its negligible effect on phase relationships at hypersolidus temperatures (White, Powell & Clarke, 2007). Prior to calculations, whole-rock bulk CaO contents were modified by assuming that the P₂O₅ content of the bulk rock was accommodated in apatite. The modified bulk composition was then recast as atomic % of the cation of interest and the oxygen content was balanced automatically by the program Domino. Table SP1 shows these calculations.

The following activity–composition (a–X) models were used to calculate the P–T and T–Mᵢₑₒ pseudosections: plagioclase (Pl C1; Holland & Powell, 2003), garnet (White et al., 2007), biotite (White et al., 2007), chlorite (Holland & Powell, 1998, as modified by Tinkham, Zuluaga & Stowell, 2001), white mica (Coggon & Holland, 2002, as modified by Tinkham et al., 2001), ilmenite (White, Pomroy & Powell, 2005), hercynitic spinel (White, Powell & Clarke, 2002), orthopyroxene (White et al., 2002), cordierite (Holland & Powell, 1998), staurolite (Holland & Powell, 1998), chloritoid (Holland & Powell, 1998), olivine (ideal mixing on sites), haplogranitic silicate liquid (White et al., 2007) and H₂O (Holland & Powell, 1998).

References
Coggon, R., & Holland, T. J. B. (2002). Mixing properties of phengitic micas and revised garnet–phengite thermobarometers. Journal of Metamorphic Geology, 20, 683–696.
de Capitani, C., & Petrakakis, K. (2010). The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist, 95, 1006–1016.
Holland, T. J. B., & Powell, R. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–344.
Holland, T. J. B., & Powell, R. (2003). Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145, 492–501.
Tinkham, D. K., Zuluaga, C. A., & Stowell, H. H. (2001). Metapelitic phase equilibria modelling in M₀NCKFMASSH: the effect of variable Al₂O₃ and MgO/(MgO + FeO) on mineral stability. Geological Materials Research, 3, 1–42.
White, R. W., Pomroy, N. E., & Powell, R. (2005). An in-situ metatexite–diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. Journal of Metamorphic Geology, 23, 579–602.
White, R. W., Powell, R., & Holland, T. J. B. (2007). Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511–527.
White, R. W, Powell, R., Holland, T. J. B., & Worley, B. A. (2000). The effect of TiO2 and Fe₂O₃ on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–Fe₂O₃. Journal of Metamorphic Geology, 18, 497–511.
White, R. W., Powell, R., & Clarke, G. L. (2002). The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–Fe₂O₃. Journal of Metamorphic Geology, 20, 41–55.
Table SP1. Calculation of the compositions for use in the Theriak-Domino modelling.

	Mol wt	Mol/ 100 g	Apatite	Apatite-corrected	Mass fraction	Renormalised	Atom %
S9	67.95	60.08	1.1310	1.1310	67.95	68.23	64.50
SiO2	72.74	60.08	1.2107	1.2107	72.74	72.99	68.66
TiO2	0.39	79.87	0.0049	0.0049	0.39	0.39	0.28
Al2O3	14.28	101.96	0.1401	0.1401	14.28	14.33	15.89
FeOT	3.02	71.85	0.0420	0.0420	3.02	3.03	2.38
MnO	0.02	70.94	0.0003	0.0003	0.00	0.00	0.00
MgO	1.04	40.31	0.0258	0.0258	1.04	1.04	1.46
CaO	1.49	56.08	0.0233	0.0233	1.31	1.31	1.32
Na2O	2.76	61.98	0.0445	0.0445	2.76	2.77	5.05
K2O	4.12	94.2	0.0437	0.0437	4.12	4.13	4.96
P2O5	0.14	141.94	0.0101	0.0101	0.14	0.14	0.14
Totals	100.00	100.00	100.00	100.00	check	100.00	

9446

	Mol wt	Mol/ 100 g	Apatite	Apatite-corrected	Mass fraction	Renormalised	Atom %
SiO2	73.00	60.08	1.2150	1.2150	73.00	73.25	68.80
TiO2	0.42	79.87	0.0053	0.0053	0.42	0.42	0.30
Al2O3	13.82	101.96	0.1355	0.1355	13.82	13.87	15.36
FeOT	3.12	71.85	0.0434	0.0434	3.12	3.13	2.46
MnO	0.07	70.94	0.0010	0.0010	0.00	0.00	0.00
MgO	0.43	40.31	0.0107	0.0107	0.43	0.43	0.43
CaO	0.51	56.08	0.0091	0.0026	0.51	0.51	0.51
Na2O	3.05	61.98	0.0492	0.0492	3.05	3.06	5.57
K2O	5.46	94.2	0.0580	0.0580	5.46	5.48	6.55
P2O5	0.11	141.94	0.0008	0.0008	0.11	0.11	0.11
Totals	99.99	100.00	100.00	100.00	check	100.00	100.00

* The original oxide wt% values are normalised to 100 wt%, volatile-free and with all Fe expressed as FeOT