On well-posedness for some Korteweg–de Vries type equations with variable coefficients

LUC MOLINET, RAFAF TALHOUK AND IBTISSAME ZAITER

Abstract. In this paper, KdV-type equations with time- and space-dependent coefficients are considered. Assuming that the dispersion coefficient in front of \(u_{xxx} \) is positive and uniformly bounded away from zero and that a primitive function of the ratio between the anti-dissipation and the dispersion coefficients is bounded from below, we prove the existence and uniqueness of a solution \(u \) such that \(hu \) belongs to a classical Sobolev space, where \(h \) is a function related to this ratio. The LWP in \(H^s(\mathbb{R}) \), \(s > 1/2 \), in the classical (Hadamard) sense is also proven under this time an assumption of boundedness of the above primitive function. Our approach combines a change of unknown with dispersive estimates. Note that previous results were restricted to \(H^s(\mathbb{R}) \), \(s > 3/2 \), and only used the dispersion to compensate the anti-dissipation and not to lower the Sobolev index required for well-posedness.

1. Introduction and main results

1.1. Presentation of the problem

In this paper, we study the Cauchy problem for the KdV-type equation with variable coefficients

\[
\begin{cases}
 u_t + \alpha(t, x)u_{3x} + \beta(t, x)u_{2x} + \gamma(t, x)u_x + \delta(t, x)u = \epsilon(t, x)uu_x \\
 u|_{t=0} = u_0,
\end{cases}
\]

for \((t, x) \in (0, T) \times \mathbb{R}\) (1.1)

where \(u = u(t, x)\), from \([0, T] \times \mathbb{R}\) into \(\mathbb{R}\), is the unknown function of the problem, \(u_0 = u_0(x)\), from \(\mathbb{R}\) into \(\mathbb{R}\), is the given initial condition, \(\alpha = \alpha(t, x) \geq \alpha_0 > 0\) \(\forall (t, x) \in [0, T] \times \mathbb{R}\), and \(\beta, \gamma, \delta, \epsilon\) are real-valued smooth and bounded given functions with exact regularities that will be precised later. Of course, we will also require a strong condition on the relation between \(\alpha\) and the positive part of \(\beta\). This equation covers several important unidirectional models for the water waves problems at different regimes which take into account the variations of the bottom. We have in

Mathematics Subject Classification: 35Q53, 35A01, 35A02

Keywords: Korteweg- de Vries equation, Variable coefficients.
view in particular the example of the KdV equation with variable coefficients (see for instance \[10,14\]) for which \(\beta \equiv 0\). Looking for solutions of (1.1) plays an important and significant role in the study of unidirectional limits for water wave problems with variable depth and topographies.

The study of equations of this type with variable coefficients goes back to the seminal paper of Craig–Kappeler–Strauss [7] where the local well-posedness (LWP) in high regularity Sobolev spaces is established under the condition that \(-\beta \geq 0\). Actually their results even concern quasilinear version of (1.1). In [2], Akhunov proved that the associated linear equation is LWP under an assumption on the boundedness uniformly in time and space of the primitive function \((t, x) \mapsto \int_0^x r(t, z) dz\) where \(r(\cdot, \cdot)\) is the ratio function \(r(t, z) = \beta(t, z)/\alpha(t, z)\). As noticed in [2], this integrability condition can be seen as an analogue of the Mizohata condition for Schrödinger equation [12] in the case of third order dispersion. Akhunov also showed some evidences on the sharpness of this assumption. Adaptation of the LWP in high regularity Sobolev spaces under this hypothesis for quasilinear and fully nonlinear generalizations of (1.1) can be found in respectively [1,3]. In [8], Israwi and the second author proved the LWP of (1.1) in \(H^s(\mathbb{R})\), \(s > 3/2\), under the same type of integrability assumption on the ratio function \(r(t, x)\). Their method of proof uses weighted energy estimates.

Up to our knowledge, our approach is the first one that enables to take into account low regularity solutions. Note that, in sharp contrast to [8], we use in a crucial way the dispersive nature of the equation driven by the third order term not only to compensate the anti-diffusion term but also to lower the regularity of the resolution space. However it turns out that our approach requires a supplementary condition on the time derivative of \(\alpha\) that does not appear in the above papers (see Remark 1.5 below). We proceed in two steps. In a first step we make a change of unknown in order to rely the solutions of (1.1) to the solutions of the following KdV-type equation with a constant coefficient in front of \(u_{3x}\):

\[
\begin{align*}
 u_t + u_{3x} - b(t, x)u_{2x} + c(t, x)u_x + d(t, x)u &= e(t, x)uu_x + f(t, x)u^2 \\
 \text{for } (t, x) &\in (0, T) \times \mathbb{R}
\end{align*}
\]

(1.2)

where \(b, c, d, e, f\) are real-valued smooth given functions with this time \(b \geq 0\). Note that this change of unknown is related to the gauge method that is used in similar contexts as in [2,5,8]. Actually, at this stage, to ensure that the coefficients \(e\) and \(f\) of the nonlinear terms are bounded we will require the boundedness from above uniformly in \([0, T] \times \mathbb{R}\) of \((t, x) \mapsto -\int_0^x r_1(t, z) dz\) where \(r_1 = \beta_1/\alpha\) is, roughly speaking, the ratio function between the positive part \(\beta_1\) of \(\beta\) and \(\alpha\) (see Hypothesis 3 in Sect. 3). Moreover in the case where \(\alpha\) depends on time, for the coefficient \(c\) to be bounded, we will require an integrability condition on \(\alpha_t\) that is the price to pay to put a unit coefficient in front of \(u_{3x}\).
We then prove that the Cauchy problem associated with (1.2) is locally well-posed in $H^s(\mathbb{R})$, $s > 1/2$, by extending the method recently introduced by the first author and Vento [13], that combines energy’s and Bourgain’s type estimates, to the variable coefficients case. It is worth noticing that terms as $c(t, x)u_x$ and $-b(t, x)u_{2x}$ may not be treated by a classical fixed point argument in Bourgain’s spaces associated with the KdV linear flow and thus the use of an energy method seems necessary here. Note also that only constant coefficients were considered in [13] and thus the treatment of variable coefficients and especially $-b(t, x)u_{2x}$ is an extension of the results in [13]. At this stage, we would like to emphasize that we will not require a coercive condition on b in $[0, T] \times \mathbb{R}$ ($b \geq \beta > 0$ on $[0, T] \times \mathbb{R}$) but only the non negativity of b. Actually we even obtain the unconditional uniqueness in $H^s(\mathbb{R})$ in the case $b = 0$.

Coming back to (1.1) this proves the existence of a solution u such that $hu \in C([0, T]; H^s)$ with $T = T(\|hu_0\|_{H^s})$, where $h > 0$ defined in (3.8) is the gauge function related to the ratio function $r_1(\cdot, \cdot)$ (see Theorem 3.1). This solution is the unique solution of (1.1) such that hu belongs in $L^\infty(0, T; H^s)$. It is worth pointing out that we do not need any assumption (except to be bounded and “smooth”) on the coefficient β outside a neighborhood of $-\infty$. Actually, as noticed in Remark 3.1, any smooth and bounded β that is non positive uniformly in time at $-\infty$ would satisfy our assumption.

Finally to get the LWP of (1.1) in classical Sobolev spaces $H^s(\mathbb{R})$, $s > 1/2$, we need not only h but also $1/h$ to be bounded, that corresponds to require h to be a classical gauge. This leads to a boundedness requirement on \mathbb{R} uniformly in time of $(t, x) \mapsto \int_0^x r_1(t, z)dz$. In particular, it turns out that anti-diffusion on a compact set will not avoid the local well-posedness of the equation.

To end this introduction, let us recall the linear explanation of this last result that can be found for instance in [5]. To simplify we concentrate on the linear equation

$$u_t + \alpha u_{3x} + \beta u_{2x} = 0.$$

and we assume that α and β are constant on $[0, T] \times [-R, R]$ with $\alpha > 0$ and $\beta \geq 0$. Since a wave packet of amplitude close to A and frequencies close to ξ_0 moves to the left with a speed close to $\frac{d}{d\xi}(\xi_0) = 3\alpha \xi_0^2$, this wave packet will stays in $[-R, R]$ during about an interval of time $\Delta t = \frac{2R}{\alpha \xi_0^2}$ and thus the effect of the anti-diffusion will make its amplitude grows to $A \exp \left(\frac{2R \beta}{\alpha} \right)$ that does not depend on ξ_0. This shows that the speed of propagation of wave packets induced by the dispersion term of order three β_2^3 is just sufficient to compensate the growth of the amplitude of this wave packet induced by the anti-diffusion on a compact set.

1In a futur work we will attempt to lower the LWP to $H^s(\mathbb{R})$, $s \geq 0$, that will enable for instance to prove a global well-posedness result for a KdV equation with a variable bottom that is non increasing.
1.2. Main results

In the sequel \([s]\) denotes the integer part of the real number \(s\) and for any \(N \in \mathbb{N}\), \(C^N_b(\mathbb{R})\) denotes the space of functions \(f \in C^N(\mathbb{R})\) with \(f, f', \ldots, f^{(N)}\) bounded.

We first introduce our notion of solutions to (1.1) and (1.2).

Definition 1.1. Assume that \(\alpha \in L_T^\infty C^3_b, \beta \in L_T^\infty C^2_b, \gamma, \epsilon \in L_T^\infty C^1_b\) and \(\delta \in L^\infty(0, T[\times \mathbb{R}]).\)

We say that \(u \in L_T^\infty L_x^2\) is a weak solution to (1.1) if for any \(\phi \in C^\infty_c(]-T, T[\times \mathbb{R})\) it holds

\[
\int_0^T \int_\mathbb{R} u\left[-\phi_t - \phi_3 + \partial_x^2(\alpha \phi) + \partial_x^2(\beta \phi) - \partial_x(\gamma \phi) + \delta \phi\right] dx \, dt
\]

\[
= \frac{1}{2} \int_0^T \int_\mathbb{R} u^2 \partial_x(\epsilon \phi) dx \, dt + \int_\mathbb{R} u_0(x) \phi(0, x) dx = 0 \tag{1.3}
\]

Remark 1.1. Note that if \(u \in L_T^\infty L_x^2\) is a weak solution to (1.1) then (1.1) is satisfied in the distributional sense on \(]0, T[\times \mathbb{R}\) and thus \(u_t \in L_T^\infty H_{-x}^3\). This forces \(u\) to belong to \(C_w([0, T]; L^2(\mathbb{R}))\) and (1.3) ensures that \(u(0) = u_0\).

We define in the same way the weak solutions to (1.2).

Definition 1.2. Assume that \(b \in L_T^\infty C^2_b, c, e \in L_T^\infty C^1_b\) and \(d, f \in L^\infty(0, T[\times \mathbb{R}).\)

We say that \(u \in L_T^\infty L_x^2\) is a weak solution to (1.2) if for any \(\phi \in C^\infty_c(]-T, T[\times \mathbb{R})\) it holds

\[
\int_0^T \int_\mathbb{R} u\left[-\phi_t + \phi_3 - \partial_x^2(b \phi) - \partial_x(c \phi) + d \phi\right] dx \, dt
\]

\[
+ \int_0^T \int_\mathbb{R} u^2 \left[\frac{1}{2} \partial_x(e \phi) + f\right] dx \, dt + \int_\mathbb{R} u_0(x) \phi(0, x) dx = 0 \tag{1.4}
\]

Let us now state our first result.

Theorem 1.1. Let \(s > \frac{1}{2}\) and \(T \in]0, +\infty]\). Assume that \(e\) belongs to \(L^\infty(0, T[; C^{[s]+3}_b drivis \mathbb{R})\) with \(e_t \in L^\infty(0, T[\times \mathbb{R})\) and \(c, d, f \in L^\infty(0, T[; C^{[s]+2}_b drivis \mathbb{R})\). Assume moreover that

\[
b \geq 0 \quad \text{on } [0, T] \times \mathbb{R} \quad \text{with} \quad \sqrt{b} \in L^\infty(0, T[; C^{[s]+3}_b drivis \mathbb{R})\).
\]

Then for all \(u_0 \in H^s(\mathbb{R})\), there exist a time \(0 < T_0 = T_0(\|u_0\|_{H^{[s]+}}) \leq T\) and a solution \(u\) to (1.2) in

\[
Z_b{T_0}^s = \{v \in L^\infty(0, T_0; H^s) / \sqrt{b} v_x \in L^2(0, T_0; H^s)\}.
\]

This solution belongs to \(C([0, T_0]; H^s(\mathbb{R}))\) and is the unique weak solution of (1.2) that belongs to \(Z_b{T_0}^s\). Moreover, for any \(R > 0\) the solution-map \(u_0 \mapsto u\) is continuous from the ball of \(H^s(\mathbb{R})\) centered at the origin with radius \(R\) into \(C([0, T_0(R)]; H^s)\).
Remark 1.2. Note that in the case $b \equiv 0$, one has $Z_{b,T_0}^s = L^\infty(0, T_0; H^s)$ and thus Theorem 1.1 leads to the unconditional uniqueness in $H^s(\mathbb{R})$ of (1.2).

Remark 1.3. The hypotheses on the coefficients b, c, d, e and f given in the above statement are not optimal. More accurate hypotheses on the coefficients b, c, d, e and f involving norms in Zygmund spaces can be found in Remark 5.1.

By a suitable change of unknown we will be able to link the solutions of (1.1) to the ones of (1.2). As a consequence of the above theorem we then get the following result for (1.1).

Theorem 1.2. Let $s > 1/2$, $T \in [0, +\infty]$ and assume that $\alpha \in L^\infty([0, T]; C^{[s]+4}_{b}([\mathbb{R}]))$ with $\alpha_t \in L^\infty([0, T]; C^{[s]+1}_{b}([\mathbb{R}]))$ $\beta, \gamma, \epsilon, \delta$ belong to $L^\infty([0, T]; C^{[s]+3}_{b}([\mathbb{R}]))$ with $\epsilon_t \in L^\infty([0, T] \times \mathbb{R})$. Assume moreover that

1. There exists $\alpha_0 > 0$ such that for all $(t, x) \in [0, T] \times \mathbb{R}$,
 \[\alpha_0 \leq \alpha(t, x) \leq \alpha_0^{-1}. \]

2. \[\sup_{(t, x) \in [0, T] \times \mathbb{R}} \left| \int_0^x (\alpha^{-4/3} \alpha_t)(t, y) dy \right| < \infty. \]

3. β can be decomposed as $\beta = \beta_1 + \beta_2$ with $\beta_2 \leq 0$, $\beta_1, \sqrt{-\beta_2} \in L^\infty([0, T]; C^{[s]+3}_{b})$ such that
 \[(t, x) \mapsto \int_0^x (\alpha^{-1} \beta_1)(t, y) dy \in W^{1, \infty}([0, T]; L^\infty(\mathbb{R})). \]

Then for all $u_0 \in H^s(\mathbb{R})$ there exist a time $0 < T_0 = T_0(\|u_0\|_{H^s_{1/2}}) \leq T$ and a solution u to (1.1) in

\[Z_{-\beta_2, T_0}^s = \{ v \in L^\infty(0, T_0; H^s) / \sqrt{-\beta_2} v_x \in L^2(0, T_0; H^s) \}. \]

This solution belongs to $C([0, T_0]; H^s(\mathbb{R}))$ and is the unique weak solution of (1.1) that belongs to Z_{g,T_0}^s. Finally, for any $R > 0$ the solution-map $u_0 \mapsto u$ is continuous from the ball of $H^s(\mathbb{R})$ centered at the origin with radius R into $C([0, T_0(R)]; H^s)$.

Remark 1.4. It is worth noticing that point 3. of the above theorem is satisfies if there exists $R > 0$ such that

\[\beta \leq 0 \quad \text{on} \quad [0, T_0] \times (\mathbb{R} \setminus [-R, R]), \quad \text{with} \quad \sqrt{-\beta} \in L^\infty([0, T]; C^{[s]+2}([\mathbb{R} \setminus [-R, R])). \]

Indeed, we can then decompose β as $\beta = \beta_1 + \beta_2$ with $\beta_1 \equiv 0$ on $\mathbb{R} \setminus [-R_0, R_0]$ with $R_0 > R$, that clearly satisfies point 3. This means that, when the anti-dissipation is confined in a fixed compact set for all $t \in [0, T]$, the Cauchy problem associated to (1.1) is locally well-posed in the Hadamard sense in H^s. Note that such configuration cannot be handled by the classical Mizohata type condition on the integrability of the ratio β/α for instance when $\beta = -1$ outside the compact set $[-R, R]$.

Remark 1.5. Hypothesis 2. in the above statement is related to a change of variables that permits to put a constant coefficient in front of u_{xxx}. This change of variables does not lead to a supplementary condition when α does not depend on time but leads to the restrictive Hypothesis 2. otherwise. This hypothesis does not enable us to treat for instance coefficient α that only depends on time as $\alpha(t, x) = 2 + \sin(t)$. Note that this condition does not appear in the works [1–3] where such case can be handled.

Remark 1.6. If Hypothesis 3. in Theorem 1.2 holds with $\beta_1 = \beta$ (i.e. $\beta_2 = 0$) then the change of unknown does link the solution to (1.1) to a solution of (1.2) with $b \equiv 0$ on \mathbb{R}. In that case, the regularity condition on $\sqrt{-\beta_2}$ disappears and we recover the usual Mizohata-type condition on the ratio β/α.

It is worth noticing that, on account of Theorem 1.1 and Remark 1.2, we obtain that in this case (1.1) is actually unconditionally locally well-posed in $H^s(\mathbb{R})$.

The rest of this paper is organized as follows. In the next section we introduce some notations, define our resolution spaces and recall some technical lemmas that will be used in Sect. 4 to prove estimates on solutions to (1.1). Note that the proof of some of these lemmas are postponed to the appendix. In Sect. 3 we establish the links between the problems (1.1) and (1.2) that enables us to prove Theorem 1.2 assuming Theorem 1.1. Finally, Sects. 4 and 5 are devoted to the proof of Theorem 1.1.

2. Notations, function spaces and technical lemmas

2.1. Notations

For any $s \in \mathbb{R}$, we denote $[s]$ the integer part of s. For $\alpha \in \mathbb{R}$, $\alpha+$, respectively $\alpha-$, will denote a number slightly greater, respectively lesser, than α.

For $(a, b) \in (\mathbb{R}_+)^2$, We denote by respectively $a \vee b$ and $a \wedge b$ the maximum and the minimum of a and b.

We denote by $C(\lambda_1, \lambda_2, \ldots)$ a nonnegative constant depending on the parameters $\lambda_1, \lambda_2, \ldots$ and whose dependence on the λ_j is always assumed to be nondecreasing.

Let p be any constant with $1 \leq p < \infty$ and denote $L^p = L^p(\mathbb{R})$ the space of all Lebesgue-measurable functions f with the standard norm

$$
\|f\|_{L^p} = \left(\int_{\mathbb{R}} |f(x)|^p dx\right)^{1/p} < \infty.
$$

The real inner product of any two functions f_1 and f_2 in the Hilbert space $L^2(\mathbb{R})$ is denoted by

$$
(f_1, f_2) = \int_{\mathbb{R}} f_1(x) f_2(x) dx.
$$

The space $L^\infty = L^\infty(\mathbb{R})$ consists of all essentially bounded and Lebesgue-measurable functions f with the norm

$$
\|f\|_{L^\infty} = \sup |f(x)| < \infty.
$$
We denote by $W^{1,\infty}(\mathbb{R}) = \{ f \in S'(\mathbb{R}), \text{s.t. } f, \partial_x f \in L^\infty(\mathbb{R}) \}$ endowed with its canonical norm.

For any real constant $s \geq 0$, $H^s = H^s(\mathbb{R})$ denotes the Sobolev space of all tempered distributions f with the norm $\| f \|_{H^s} = \| \Lambda^s f \|_{L^2} < \infty$, where Λ is the pseudo-differential operator $\Lambda = (1 - \partial_x^2)^{1/2}$.

For any two functions $u = u(t, x)$ and $v(t, x)$ defined on $[0, T) \times \mathbb{R}$ with $T > 0$, we denote the H^s inner product, the L^p-norm and especially the L^2-norm, as well as the Sobolev norm, with respect to the spatial variable x, by $(u, v) = (u(t, \cdot), v(t, \cdot))_{H^s}$, $\| u \|_{L^p} = \| u(t, \cdot) \|_{L^p}$, $\| u \|_{L^2} = \| u(t, \cdot) \|_{L^2}$ and $\| u \|_{H^s} = \| u(t, \cdot) \|_{H^s}$, respectively.

We denote $L^\infty([0, T); H^s(\mathbb{R}))$ the space of functions such that $u(t, \cdot)$ is controlled in H^s, uniformly for $t \in [0, T]$: $\| u \|_{L^\infty([0, T); H^s(\mathbb{R}))} = \sup_{t \in [0, T]} \| u(t, \cdot) \|_{H^s} < \infty$.

Finally, $C^k(\mathbb{R})$ denotes the space of k-times continuously differentiable functions.

Throughout the paper, we fix a smooth even bump function η such that

$$\eta \in C_0^\infty(\mathbb{R}), \quad 0 \leq \eta \leq 1, \quad \eta_{[-1,1]} = 1 \text{ and } \text{supp}(\eta) \subset [-2, 2]. \quad (2.1)$$

We set $\phi(\xi) := \eta(\xi) - \eta(2\xi)$. For $l \in \mathbb{N}\setminus\{0\}$, we define

$$\phi_{2^l}(\xi) := \phi(2^{-l}\xi) \quad \text{and} \quad \psi_{2^l}(\xi, \tau) = \phi_{2^l}(\tau - \xi^3).$$

By convention, we also denote

$$\phi_1(\xi) := \eta(\xi) \quad \text{and} \quad \psi_1(\xi, \tau) := \eta(\tau - \xi^3).$$

Any summations over capitalized variables such as N, L, K or M are presumed to be dyadic. Unless stated otherwise, we work with non-homogeneous decompositions for space, time and modulation variables, i.e. these variables range over numbers of the form $\{2^k : k \in \mathbb{N}\}$ respectively. Then, we have that

$$\sum_{N \geq 1} \phi_N(\xi) = 1 \quad \forall \xi \in \mathbb{R}, \quad \text{supp} (\phi_N) \subset \left\{ \frac{N}{2} \leq |\xi| \leq 2N \right\}, \quad N \in \{2^k : k \in \mathbb{N}\setminus\{0\}\},$$

and

$$\sum_{L \geq 1} \psi_L(\xi, \tau) = 1 \quad \forall (\xi, \tau) \in \mathbb{R}^2, \quad L \in \{2^k : k \in \mathbb{N}\}.$$

Let us now define the following Littlewood–Paley multipliers:

$$P_N u = \mathcal{F}^{-1}(\phi_N \mathcal{F} u), \quad Q_L u = \mathcal{F}^{-1}(\psi_L \mathcal{F} u), \quad R_K u = \mathcal{F}^{-1}(\phi_K \mathcal{F} u). \quad (2.2)$$

We then set

$$\tilde{P}_N := \sum_{N/4 \leq K \leq 4N} P_K, \quad P_{\geq N} := \sum_{K \geq N} P_K, \quad P_{\leq N} := \sum_{1 \leq K \leq N} P_K,$$

$$P_{\ll N} := \sum_{1 \leq K \ll N} P_K,$$
\[
P_{\geq N} := \sum_{K \geq N} P_K, \quad Q_{\leq L} := \sum_{K \leq L} Q_K, \quad Q_{\geq L} := \sum_{1 \leq K \leq L} Q_K \quad \text{and} \quad Q_{\approx L} := \sum_{K \approx N} Q_K.
\]

For brevity we also write
\[
u_{\approx N} := \nu_{\geq N}, \quad \nu_{\leq N} := \nu_{\leq N}, \quad \nu_{\approx N} := \nu_{\approx N} \quad \text{and} \quad \nu_{\geq N} := \nu_{\geq N}.
\]

Following [10], to handle coefficient that are not asymptotically flat we will use the classical Zygmund spaces: for \(s \in \mathbb{R}\), \(C^s_*(\mathbb{R})\) is the set of all \(v \in S'(\mathbb{R})\) such that
\[
\| v \|_{C^s_*} := \sup_{N \geq 1} N^s \| P_N v \|_{L^\infty} < \infty.
\]

Note that, for all \(k \in \mathbb{N}\),
\[
C^{k+}_*(\mathbb{R}) \hookrightarrow W^{k, \infty}(\mathbb{R}) \hookrightarrow C^k_*(\mathbb{R}).
\]

2.2. Function spaces

Let \(s > -1/2\), \(T > 0\), \(b \geq 0\) with \(\sqrt{b} \in L^\infty(\mathbb{R}; C^\delta_b)\). We define the subvector space \(Z^{s}_{b,T}\) of \(L^\infty(0, T; H^s(\mathbb{R}))\) as
\[
Z^{s}_{b,T} = \left\{ \nu \in L^\infty(0, T; H^s(\mathbb{R})), \quad \| \sqrt{b} \nu \|_{L^2(0, T; H^s)} < +\infty \right\}
\]
with
\[
\| \nu \|_{Z^{s}_{b,T}}^2 = \| \nu \|_{L^\infty_t H^s}^2 + \| \sqrt{b} \nu \|_{L^2_t H^s}^2.
\]

For \(s, \theta \in \mathbb{R}\), we introduce the Bourgain spaces \(X^{s,\theta}\) related to the linear KdV equation as the completion of the Schwartz space \(S(\mathbb{R}^2)\) under the norm
\[
\| v \|_{X^{s,\theta}} := \left(\int_{\mathbb{R}^2} \langle \tau - \xi^3 \rangle^{2\theta} \langle \xi \rangle^{2s} |\widehat{v}(\xi, \tau)|^2 d\xi d\tau \right)^{1/2},
\]
where \(\langle x \rangle := 1 + \| x \|\). Recall that
\[
\| v \|_{X^{s,\theta}} = \| U(\cdot) v \|_{H^{s,\theta}_{x,t}}
\]
where \(U(t) = \exp(-i \partial_t^3)\) is the generator of the free evolution associated with the linear KdV equation and where \(\| \cdot \|_{H^{s,\theta}_{x,t}}\) is the usual space-time Sobolev norm given by
\[
\| u \|_{H^{s,\theta}_{x,t}} := \left(\int_{\mathbb{R}^2} \langle \tau \rangle^{2\theta} \langle \xi \rangle^{2s} |\widehat{u}(\xi, \tau)|^2 d\xi d\tau \right)^{1/2}.
\]

We define the function space \(Y^s\) by \(Y^s = L^\infty_t H^s_x \cap X^{s-1,1}\) equipped with its natural norm
\[
\| u \|_{Y^s} = \| u \|_{L^\infty_t H^s_x} + \| u \|_{X^{s-1,1}}.
\]
Finally, we will use restriction in time versions of these spaces. Let $T > 0$ be a positive time and Y be a normed space of space-time functions. The restriction space Y_T will be the space of functions $v : \mathbb{R} \times [0,T[\rightarrow \mathbb{R}$ satisfying
\[
\|v\|_{Y_T} := \inf \{ \| \widehat{v} \|_Y \mid \widehat{v} : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \widehat{v}|_{\mathbb{R} \times [0,T[} = v \}< \infty.
\]

2.3. Technical lemmas

We first recall the following technical lemmas that were proven in [13].

Lemma 2.1. Let $L \geq 1, 1 \leq p \leq \infty$ and $s \in \mathbb{R}$. The operator $Q_{\preceq L}$ is bounded in $L^p_t H^s$ uniformly in $L \geq 1$.

For $T > 0$, we consider 1_T the characteristic function of $[0, T]$. We will often make use of the following decomposition (see (2.1) for the definition of η)
\[
1_T = 1_{low}^{T,R} + 1_{high}^{T,R}, \quad \text{where} \quad \widehat{1_{low}}^{T,R}(\tau) = \eta(\tau/R)\widehat{1_T}(\tau)
\]
for some $R > 0$.

Lemma 2.2. For any $R > 0$ and $T > 0$ it holds
\[
\|1_{high}^{T,R}\|_{L^1} \lesssim T \wedge R^{-1}.
\]
and, for any $p \in [1, +\infty)$,
\[
\|1_{low}^{T,R}\|_{L^p} + \|1_{high}^{T,R}\|_{L^p} \lesssim T^{1/p}
\]

Lemma 2.3. Let $u \in L^2(\mathbb{R}^2)$. Then for any $T > 0, R > 0$ and $L \gg R$, it holds
\[
\|Q_L(1_{low}^{T,R}u)\|_{L^2} \lesssim \|Q_{\sim L}u\|_{L^2}
\]

We will need product estimates in Sobolev spaces for functions in Sobolev and in Zygmund spaces (see [4] for (2.10) and [10] for (2.12). The proof of (2.11) follows exactly the same lines as the one of (2.10)).

Lemma 2.4. 1. Let $(t, s, r) \in \mathbb{R}^3$ with $s + r > t + 1/2, s + r > 0$ and $s, r \geq t$. Then for any $f \in H^s(\mathbb{R})$ and $g \in H^r(\mathbb{R})$, it holds $fg \in H^t(\mathbb{R})$ with
\[
\|fg\|_{H^t} \lesssim \|f\|_{H^s}\|g\|_{H^r}
\]

2. Let $(t, s, r) \in \mathbb{R}^3$ with $s + r > t, s + r > 0$ and $s, r \geq t$. Then for any $f \in C^s_\ast(\mathbb{R})$ and $g \in H^r(\mathbb{R})$, it holds $fg \in H^t(\mathbb{R})$ with
\[
\|fg\|_{H^t} \lesssim \|f\|_{C^s_\ast}\|g\|_{H^r}
\]
In particular, let $s \in \mathbb{R}$, then for any $f \in C^{|s|}_\ast(\mathbb{R})$ and $g \in H^s(\mathbb{R})$, it holds $fg \in H^s(\mathbb{R})$ with
\[
\|fg\|_{H^s} \lesssim \|f\|_{C^{|s|}_\ast}\|g\|_{H^s}
\]
We will also need the following lemma on commutator estimates (see the footnote in ([10], p. 288) for (2.13)) that we prove in the Appendix.

Lemma 2.5. Let \(f \in L^\infty(\mathbb{R}) \) and \(g \in L^2(\mathbb{R}) \). For any \(N > 0 \) it holds

\[
\|[P_N, P_{\ll N}f]g\|_{L^2_x} \lesssim N^{-1} \|P_{\ll N}f\|_{L^\infty_T} \|\widetilde{P}_N g\|_{L^2_x}
\]

(2.13)

Finally we construct a bounded linear operator from \(X_T^{s-1,1} \cap L_T^\infty H_x^s \) into \(Y^s \) with a bound that does not depend on \(s \) and \(T \). For this we follow [11] and introduce the extension operator \(\rho_T \) defined by

\[
\rho_T(u)(t) := U(t)\eta(t)U(-\mu_T(t))u(\mu_T(t)),
\]

(2.14)

where \(\eta \) is the smooth cut-off function defined in Sect. 2.1 and \(\mu_T \) is the continuous piecewise affine function defined by

\[
\mu_T(t) = \begin{cases}
0 & \text{for } t \not\in [0, 2T[\\
t & \text{for } t \in [0, T] \\
2T - t & \text{for } t \in [T, 2T]
\end{cases}
\]

(2.15)

Lemma 2.6. Let \(0 < T \leq 2 \) and \(s \in \mathbb{R} \). Then,

\[
\rho_T : X_T^{s-1,1} \cap L_T^\infty H_x^s \longrightarrow Y^s
\]

\[
u \mapsto \rho_T(u)
\]

is a bounded linear operator, i.e.

\[
\|\rho_T(u)\|_{L^\infty_T H^s_x} + \|\rho_T(u)\|_{X_T^{s-1,1}} \lesssim \|u\|_{L_T^\infty H^s_x} + \|u\|_{X_T^{s-1,1}},
\]

(2.16)

for all \(u \in X_T^{s-1,1} \cap L_T^\infty H_x^s \).

Moreover, the implicit constant in (2.16) can be chosen independent of \(0 < T \leq 2 \) and \(s \in \mathbb{R} \).

3. **Transformation of the problem and proof of Theorem 1.2.**

3.1. Link between solutions of (1.1) and (1.2)

The main assumption on the coefficient of the third order term is that it is bounded from above and from below by positive constants. Of course, we can also treat the case of a negative coefficient by making the trivial change of unknown \(\tilde{u}(t, x) = u(t, -x) \) but this will also change the sense of the real axis. This would play no role in Theorem 1.2 but would change the assumption sup\((t,x)\in[0,T]\times\mathbb{R} \int_0^x \frac{\beta_1}{\alpha}(t, y)dy < \infty \) by sup\((t,x)\in[0,T]\times\mathbb{R} \int_0^x \frac{\beta_1}{\alpha}(t, y)dy < \infty \) in Theorem 3.1 below.
Hypothesis 1. There exists $\alpha_0 > 0$ such that for all $(t, x) \in [0, T] \times \mathbb{R}$,

$$\alpha_0 \leq \alpha(t, x) \leq \alpha_0^{-1}.$$

Proposition 3.1. Assume that Hypothesis 1 is satisfied and that $\alpha \in L^\infty([0, T]; C_b^3(\mathbb{R}))$ with $\alpha_t \in L^\infty([0, T]; C_b^1(\mathbb{R}))$ and $\beta \in L^\infty([0, T]; C_b^4(\mathbb{R}))$. Let $A \in L^\infty([0, T]; C_b^1(\mathbb{R}))$ with $A_t \in L^\infty([0, T]; C_b^2(\mathbb{R}))$ be defined for $(t, x) \in [0, T] \times \mathbb{R}$ by

$$A(t, x) = \int_0^x \alpha^{-1/3}(t, y) \, dy$$ \hspace{1cm} (3.1)

and let $h > 0$ with $h \in L^\infty([0, T]; C_b^3(\mathbb{R}))$ with $h_t \in L^\infty([0, T]; C_b^1(\mathbb{R}))$. For each $t \in [0, T]$ we denote by $A^{-1}(t, \cdot)$ the increasing reciprocal bijection of $A(t, \cdot)$.

Then $u \in L_T^\infty L_x^2$ is a weak solution to (1.1) if and only if

$$(t, x) \mapsto v(t, x) = h(t, A^{-1}(t, x)) u(t, A^{-1}(t, x))$$

is a weak solution to (1.2) with

$$\begin{align*}
 b(t, x) &= \alpha^{1/3}(-\beta \alpha^{-1} + \alpha_x \alpha^{-1} + 3h^{-1}h_x) \\
 c(t, x) &= A_t + \alpha^{-1/3}(6h_x^2h^{-2}\alpha + 4\beta \alpha_x \alpha^{-1} + \alpha_x h_x h^{-1} - 3h_x h^{-1} \alpha - \frac{4}{3} \alpha_2x \\
 &\quad - 2h_x h^{-1} \beta - \frac{1}{3} \alpha^{-1} \alpha_x \beta + \gamma) \\
 d(t, x) &= \alpha(-6h_x^3h^{-3} + 6h_2h_x h^{-2}h_x - h_3h^{-1}) + \beta(2h_x^2h^{-2} - h_x h^{-1}) \\
 &\quad - \gamma h_x h^{-1} - h_t h^{-1} + \delta \\
 e(t, x) &= \epsilon \alpha^{-1/3}h^{-1} \quad \text{and} \quad f(t, x) = -\epsilon h_x h^{-2}. \\
\end{align*}$$ \hspace{1cm} (3.2)

where all the functions in the right-hand side are evaluated at $(t, A^{-1}(t, x))$.

Proof. Since $\alpha \geq \alpha_0 > 0$ on $[0, T] \times \mathbb{R}$, for each $t \in [0, T]$, $A(t, \cdot)$ is an increasing bijection of \mathbb{R} with no critical point and thus its reciprocal bijection $A^{-1}(t, \cdot)$ is well-defined and belong to the same C^n-space. Therefore, since $\alpha \in L^\infty([0, T]; C_b^3(\mathbb{R}))$ with $\alpha_t \in L^\infty([0, T]; C_b^1(\mathbb{R}))$, it is clear that A and A^{-1} belong to $L^\infty([0, T]; C_b^4(\mathbb{R})) \cap \mathcal{W}^{1, \infty}([0, T]; C_b^1(\mathbb{R}))$.

We first assume that $u \in C([0, T]; H^\infty)$ with $u_t \in L^\infty([0, T]; H^\infty)$ and we set

$$V(t, x) = h(t, A^{-1}(t, x)) u(t, A^{-1}(t, x))$$ \hspace{1cm} (3.3)

so that

$$u(t, x) = \frac{V(t, A(t, x))}{h(t, x)}$$

In the calculus below the functions u, h, α, β, γ, δ, ϵ will be evaluated at (t, x) whereas V is evaluated at $(t, A(t, x))$. Then it holds

$$u_t(t, x) = -h_t h^{-2} V + h^{-1} V_t + A_t h^{-1} V_x$$
\[u_x(t, x) = - \frac{h_x}{h^2} V + \frac{\alpha^{-1/3}}{h} V_x \]

\[u_{2x}(t, x) = \alpha^{-2/3} h^{-1} V_{2x} - \left(\frac{h^{-1}}{3} \alpha^{-4/3} \alpha_x + 2h_x h^{-2} \alpha^{-1/3} \right) V_x \]

\[+ \left(2h_x h^{-3} - h_{2x} h^{-2} \right) V \]

\[u_{3x}(t, x) = \alpha^{-1} h^{-1} V_{3x} + V_{2x} \left(-h^{-1} \alpha^{-5/3} \alpha_x - 3h_x h^{-2} \alpha^{-2/3} \right) \]

\[+ V_x \left(h_x h^{-2} \alpha^{-4/3} \alpha_x + \frac{4}{9} h^{-1} \alpha^{-7/3} \alpha_x^2 - \frac{1}{3} h^{-1} \alpha^{-4/3} \alpha_{2x} \right) \]

\[- 3h_{2x} h^{-2} \alpha^{-1/3} + 6h_x^2 h^{-3} \alpha^{-1/3} \]

\[+ V \left(6h_{2x} h^{-3} - 6h_x^3 h^{-4} - h_{3x} h^{-3} \right) \]

\[(uu_x)(t, x) = - h^{-3} h_x V^2 + \alpha^{-1/3} h^{-2} V V_x . \]

Gathering the above identity we thus obtain

\[h(t, x) \left(u_t + \alpha u_{3x} + \beta u_{2x} + \gamma u_x + \delta u - \epsilon uu_x \right)(t, x) \]

\[= \left[V_t + V_{3x} - b V_{2x} + c V_x + dV - eVV_x - f V^2 \right](t, A(t, x)) \tag{3.4} \]

with \(b, c, d, e \) given by (3.2).

Therefore for \(\phi \in L^\infty(0, T; C_b^2(\mathbb{R})) \) with \(\phi_t \in L^\infty(0, T; C_b(\mathbb{R})) \) and compact support in \([0, T] \times \mathbb{R}, \) making use at any fixed \(t \in [0, T] \) of the change of variable \(y = A^{-1}(t, x) \) and noticing that \(A^{-1}(t, x) = \alpha^{1/3}(t, A^{-1}(t, x)) \) we observe that

\[\int_0^T \int_\mathbb{R} \left(u_t + \alpha u_{3x} + \beta u_{2x} + \gamma u_x + \delta u - \epsilon uu_x \right) \phi(t, y) \, dy \]

\[= \int_0^T \int_\mathbb{R} h \left(u_t + \alpha u_{3x} + \beta u_{2x} + \gamma u_x + \delta u - \epsilon uu_x \right) \phi(t, y) \, dy \]

\[= \int_0^T \int_\mathbb{R} \left[h \left(u_t + \alpha u_{3x} + \beta u_{2x} + \gamma u_x + \delta u - \epsilon uu_x \right) \phi \right] \frac{\phi}{h} \]

\[(t, A^{-1}(t, x)) \alpha^{1/3}(t, A^{-1}(t, x)) \, dx \, dt \]

\[= \int_0^T \int_\mathbb{R} \left(V_t + V_{3x} - b V_{2x} + c V_x + dV - eVV_x - f V^2 \right) \psi(t, x) \, dx \, dt \]

\[= \int_0^T \int_\mathbb{R} V \left[-\psi_t - \psi_{3x} - \partial_x^2 (b \psi) - \partial_x (c \psi) + d \psi \right] + V^2 \frac{1}{2} \partial_x (e \psi) + f \]

\[+ \int_\mathbb{R} V(0, x) \psi(0, x) \, dx \tag{3.5} \]

with \(\psi(t, x) = \frac{\alpha^{1/3}}{h} \phi(t, A^{-1}(t, x)) . \)

Now let \(u \in L^\infty_T L^2_x \) be a weak solution to (1.1). Recall that by Remark 1.1, \(u_t \in L^\infty_T H^{-3}_x . \) Then by using mollifiers we can approximate \(u \) in \(L^\infty_T L^2_x \) by \(u_n \in C([0, T] : \)
\(H^\infty \) with \(u_t \in L^\infty([0, T[; H^\infty) \) such that \(u_n(0) \to u_0 \) in \(L^2(\mathbb{R}) \) and \(u_n \to u \in L_T^\infty L_x^2 \). Note that by defining \(V_n \) in the same way as \(V \) in (3.3) we also have \(V_n(0) \to V_0 \) in \(L^2(\mathbb{R}) \) and \(V_n \to V \in L_T^\infty L_x^2 \). Making use of (3.5) and that \(u \) is a weak solution to (1.1) we thus get

\[
0 = \int_0^T \int_\mathbb{R} \left[u \left[-\phi_t - \partial_x^3(\alpha \phi) + \partial_x^2(\beta \phi) - \partial_x(\gamma \phi) + \delta \phi \right] + \frac{1}{2} u^2 \partial_x(e\phi) \right] (t, x) \, dx \, dt
\]

\[
+ \int_\mathbb{R} u_0(x) \phi(0, x) \, dx
\]

\[
= \lim_{n \to +\infty} \int_0^T \int_\mathbb{R} \left[u_n \left[-\phi_t - \partial_x^3(\alpha \phi) + \partial_x^2(\beta \phi) - \partial_x(\gamma \phi) + \delta \phi \right] + \frac{1}{2} u_n^2 \partial_x(e\phi) \right] (t, x) \, dx \, dt
\]

\[
+ \int_\mathbb{R} u_n(0, x) \phi(0, x) \, dx
\]

\[
= \lim_{n \to +\infty} \int_0^T \int_\mathbb{R} \left[V_n \left[-\psi_t - \partial_x^3(b\psi) - \partial_x(c\psi) + d\psi \right] + V_n^2 \left[\frac{1}{2} \partial_x(e\psi) + \frac{1}{2} \partial_x(f) \right] \right] dx \, dt
\]

\[
+ \int_\mathbb{R} V_n(0, x) \psi(0, x) \, dx
\]

\[
= \int_0^T \int_\mathbb{R} \left[V \left[-\psi_t - \partial_x^3(b\psi) - \partial_x(c\psi) + d\psi \right] + V^2 \left[\frac{1}{2} \partial_x(e\psi) + \frac{1}{2} \partial_x(f) \right] \right] dx \, dt
\]

\[
+ \int_\mathbb{R} V(0, x) \psi(0, x) \, dx
\]

(3.6)

that proves that \(u \) is a weak solution to (1.1) if and only if: \((t, x) \mapsto V(t, x) = h(t, A^{-1}(t, x))u(t, A^{-1}(t, x)) \) is a weak solution to (1.2). Indeed since \(\alpha, h \in L^\infty([0, T[; C^3_b(\mathbb{R})) \), \(\alpha_t, h_t \in L^\infty([0, T[; C^3_b(\mathbb{R})) \) with \(h > 0 \) and \(\alpha \geq \alpha_0 > 0 \), the map

\[
\Theta : \phi \mapsto \left(\frac{\phi \alpha^{1/3}}{h} \right)(t, A^{-1}(t, x))
\]

is a bijection from the space of functions in \(L^\infty([0, T[; C^3_b(\mathbb{R})) \) with time derivative in \(L^\infty([0, T[; C^3_b(\mathbb{R})) \) and compact support in \([0, T[\times \mathbb{R} \) into itself. The reciprocal bijection is given by

\[
\Theta^{-1} : \psi \mapsto \left(\frac{\psi h}{\alpha^{1/3}} \right)(t, A(t, x)).
\]
(1.3) is thus satisfied by all \(\psi \in L^\infty(0, T; C^3_b(\mathbb{R})) \) with \(\psi_t \in L^\infty(0, T; C_b(\mathbb{R})) \) and compact support in \([0, T \times \mathbb{R}]\) that leads to the desired result. \(\square \)

3.2. Proof of Theorem 1.2 assuming Theorem 1.1

We want to choose \(h \) such that \(b \geq 0 \). For this we decompose \(\beta(\cdot, \cdot) \) as \(\beta_1 + \beta_2 \) with \(\beta_1 \) and \(\beta_2 \) bounded and \(\beta_2 \leq 0 \) (Note that we can always take \(\beta_1 = \beta \) and \(\beta_2 = 0 \)).

According to (3.2) it suffices to take \(h \) that satisfies

\[
\frac{h_x}{h} = \frac{1}{3} \left(\beta_1 \alpha^{-1} - \alpha_x \alpha^{-1} \right) \tag{3.7}
\]

so that

\[
b(t, A(t, x)) = -\beta \alpha^{-\frac{2}{3}} + \alpha_x \alpha^{-\frac{2}{3}} + 3 \frac{h_x}{h} \alpha^{-\frac{1}{3}} = -\beta_2 \alpha^{-\frac{2}{3}} \geq 0.
\]

Equation (3.7) is satisfied for

\[
h(t, x) = \left[\frac{\alpha(t, 0)}{\alpha(t, x)} \right]^{1/3} \exp \left(\frac{1}{3} \int_0^x (\beta_1 \alpha^{-1})(t, y) \, dy \right). \tag{3.8}
\]

For this choice of \(h \) we need the coefficients \(b, c, d, e, f \) to be bounded in order to solve the equation with the help of Theorem 1.1. First we notice that the coefficient \(c \) contains \(A_t \). The requirement that \(A_t \) is bounded leads to the following hypothesis.

Hypothesis 2.

\[
\sup_{(t, x) \in [0, T] \times \mathbb{R}} \left| \int_0^x (\alpha^{-4/3} \alpha)(t, y) \, dy \right| < \infty.
\]

Now, since \(\alpha \geq \alpha_0 \) one can check that all the terms \(\frac{h_x}{h}, \frac{h_x}{h} \) that appear in \(c \) and \(d \) are bounded. On the other hand the boundedness of \(h_i h^{-1} \) that appears in the coefficient \(d \) requires a new hypothesis. Moreover, in the coefficient \(e \) and \(f \) of the nonlinear part, \(h^{-1} \) appears alone. To force \(h_i h^{-1}, e \) and \(f \) to be bounded we thus add the following hypothesis that ensures in particular that there exists \(h_0 > 0 \) such that for \((t, x) \in [0, T_0] \times \mathbb{R}, h(t, x) \geq h_0 \).

Hypothesis 3. \(\beta \) can be decomposed as \(\beta = \beta_1 + \beta_2 \) with \(\beta_2 \leq 0 \), \(\beta_1, \sqrt{-\beta_2} \in L^\infty([0, T]; C^2_b) \), \(\partial_t \beta_1 \in L^\infty([0, T]; L^\infty(\mathbb{R})) \) such that

\[
\sup_{(t, x) \in [0, T] \times \mathbb{R}} \left| \int_0^x \partial_t (\alpha^{-1} \beta_1)(t, y) \, dy \right| < \infty.
\]

and

\[
\sup_{(t, x) \in [0, T] \times \mathbb{R}} - \int_0^x \frac{\beta_1}{\alpha}(t, y) \, dy < \infty.
\]
Now, according to Theorem 1.1, for \(s > 1/2 \), (1.2) is locally well-posed in \(H^s(\mathbb{R}) \), whenever \(b \geq 0 \) on \([0, T] \times \mathbb{R}\) with \(\sqrt{b} \), \(e \in L^\infty([0, T]; C_b^{[x]+3}(\mathbb{R})) \), \(c, d, f \) in \(L^\infty([0, T]; C_b^{[x]+2}(\mathbb{R})) \) and \(e_t \) in \(L^\infty([0, T]; \mathbb{R}) \).

In view of (3.2), (3.8) and Hypotheses 1–3, one can easily check that the function spaces to which \(\alpha, \beta, \gamma, \delta, \epsilon \) and \(\beta_1, \beta_2 \) belong in the statement of Theorem 1.2 ensure that \(b, c, e, d \) and \(f \) belong to the above function spaces. Moreover, it ensures that \(hu \in C([0, T]_0; H^s) \) if and only if \(V(t, x) = h(t, A^{-1}(t, x)) u(t, A^{-1}(t, x)) \) belongs also to this space. Finally, since according to (3.2) and (3.3) we have respectively \(b(t, x) = (-\beta_2 \alpha^{-2/3})(t, A^{-1}(t, x)) \) and \(V_x(t, x) = \alpha^{1/3}(t, A^{-1}(t, x)) \partial_x(hu)(t, A^{-1}(t, x)) \), we infer that

\[
[\sqrt{b}V_x](t, x) = \left[\sqrt{-\beta_2} \partial_x(hu)\right](t, A^{-1}(t, x))
\]

and thus \(\sqrt{b}V_x \in L^2(0, T_0; H^s) \) if and only if \(\sqrt{-\beta_2} \partial_x(hu) \in L^2(0, T_0; H^s) \).

Therefore, gathering Theorem 1.1 and Proposition 3.1 leads to the existence of a solution to (1.1) with uniqueness in the space of functions \(u \) such that \(hu \in Z_{-\beta_2, T} \).

More precisely, we can state a slightly weaker version of Theorem 1.2 but under less restrictive hypotheses.

Theorem 3.1. Let \(s > \frac{1}{2}, T \in [0, +\infty) \) and assume that \(\alpha \in L^\infty([0, T]; C_b^{[x]+4}(\mathbb{R})) \) with \(\alpha_t \in L^\infty([0, T]; C_b^{[x]+1}(\mathbb{R})) \), \(\beta, \gamma, \delta, \epsilon \) belong to \(L^\infty([0, T]; C_b^{[x]+3}(\mathbb{R})) \) with \(\epsilon_t \in L^\infty([0, T] \times \mathbb{R}) \). Assume moreover that

- There exists \(\alpha_0 > 0 \) such that for all \((t, x) \in [0, T] \times \mathbb{R}\),

\[
\alpha_0 \leq \alpha(t, x) \leq \alpha_0^{-1}.
\]

- \(\beta \) can be decomposed as \(\beta = \beta_1 + \beta_2 \) with \(\beta_2 \leq 0 \), \(\beta_1, \sqrt{-\beta_2} \in L^\infty([0, T]; C_b^{[x]+3}) \) such that \(\partial_t \beta_1 \in L^\infty(0, T; C_b^{[x]}) \) and

\[
\sup_{(t, x) \in [0, T] \times \mathbb{R}} \left| \int_0^x \partial_t(\alpha^{-1/3})(t, y)dy \right| < \infty.
\]

and

\[
\sup_{(t, x) \in [0, T] \times \mathbb{R}} \left| \int_0^x \partial_t(\alpha^{-1/3})(t, y)dy \right| < \infty.
\]

and

\[
\sup_{(t, x) \in [0, T] \times \mathbb{R}} \left| -\int_0^x \frac{\beta_1}{\alpha}(t, y)dy \right| < +\infty.
\]

Then, setting

\[
h(t, x) = \left[\frac{\alpha(t, 0)}{\alpha(t, x)}\right]^{1/3} \exp \left(\frac{1}{3} \int_0^x \beta_1 \alpha^{-1} \right),
\]
for all \(u_0 \in H^s(\mathbb{R}) \) there exist a time \(0 < T_0 = T_0(\|u_0\|_{H^1}) \leq T \) and a solution \(u \) to (1.3) such that \(hu \in Z_{-\beta_2,T_0}^s \) (see (2.4) for the definition of this space). This solution is the unique weak solution of (1.1) such that \(hu \) belongs to \(Z_{-\beta_2,T_0}^s \).

Remark 3.1. It is worth noticing that we can always choose \((\beta_1, \beta_2)\) such that the hypothesis of integrability on \(\beta_1 \alpha^{-1/3} \) in the above theorem is satisfied at \(+\infty\). Indeed, \(\beta \) being bounded by hypothesis, one can always choose \(\beta_1 \geq 0 \) and \(\beta_2 \leq 0 \) bounded such that \(\beta = \beta_1 + \beta_2 \) on \(\mathbb{R} \) and thus \(\int_0^x \frac{\beta_1(t,y)}{\alpha} dy \geq 0 \) for any \(x \in \mathbb{R}^+ \). That means that this existence and uniqueness result works with a uniform anti-diffusion in the neighborhood of \(+\infty\). For instance a coefficient \(\beta \) such that \(\beta \geq 1 \) on \([0, T] \times \mathbb{R}^+ \).

This lost of symmetry between \(+\infty\) and \(-\infty\) is linked to the fact that we imposed that \(\alpha > 0 \) so that linear waves solutions of \(u_t + \alpha u u_x = 0 \) are travelling only to the left.

Finally, if we want to get the well-posedness in the Hadamard sense of (1.1) we need to require a little more on \(h \) so that \(\|u(t)\|_{H^s} \sim \|(hu(t))\|_{H^s} \) uniformly on \([0, T_0] \) and even \(\|u\|_{Z_{-\beta_2,T_0}^s} \sim \|hu\|_{Z_{-\beta_2,T_0}^s} \) for any \(0 < T_0 < 1 \). This forces \(h \) to be smooth enough and situated between two positive values, i.e. there exists \(h_0, h_1 > 0 \) such that for any \((t, x) \in [0, T] \times \mathbb{R}, h_0 \leq h(t, x) \leq h_1 \).

For this it suffices to replace Hypothesis 3 by the following one:

Hypothesis 4. \(\beta \) can be decomposed as \(\beta = \beta_1 + \beta_2 \) with \(\beta_2 \leq 0, \beta_1, \sqrt{-\beta_2} \in L^\infty([0, T]; C_b^{[3]+3}), \partial_1 \beta_1 \in L^\infty([0, T]; C_b^{[3]+3}) \) such that

\[
(t, x) \mapsto \int_0^x (\alpha^{-1} \beta_1)(t, y) dy \in W^{1,\infty}([0, T]; L^\infty(\mathbb{R})).
\]

which leads to Theorem 1.2.

4. Estimates on the solutions to (1.2)

In this section, we prove the needed estimates on solutions to (1.2) to get the local well-posedness of (1.2) in \(H^s(\mathbb{R}) \) for \(s > 1/2 \). For this purpose we extend to the variable coefficients case the approach introduced in [13] that mix energy’s and Bourgain’s type estimates. It should be noted that the consideration of the term \(-b(t, x)u_{2x}\) is particularly new.

4.1. An estimate using Bourgain’s type spaces

We start by proving the only estimate where we need Bourgain’s type spaces. This estimate will be used to bound the contribution of the nonlinear KdV term \(eu u_x \) in the energy estimate. First we check that under suitable space projections on the functions, we have a good lower bound on the resonance relation that appears in this contribution.
Lemma 4.1. Let $L_i \geq 1$ and $N_i \geq 1$ be dyadic numbers and $u_i \in L^2(\mathbb{R}^2)$ for $i \in \{1, 2, 3, 4\}$. If $N_4 \ll \min(N_1, N_2, N_3)$ then it holds
\[
\int_{\mathbb{R}^2} Q_{L_1} P_{N_1} u_1 Q_{L_2} P_{N_2} u_2 Q_{L_3} P_{N_3} u_3 Q_{L_4} P_{\leq N_4} u_4 = 0
\]
whenever the following relation is not satisfied:
\[
L_{\text{max}} \sim N_1 N_2 N_3 \text{ or } (L_{\text{max}} \gg N_1 N_2 N_3 \text{ and } L_{\text{max}} \sim L_{\text{med}}) \quad (4.1)
\]
where $L_{\text{max}} = \max_{i=1,\ldots,4} L_i$ and $L_{\text{med}} = \max(\{L_1, L_2, L_3, L_4\}\setminus\{L_{\text{max}}\})$.

Proof. Applying Plancherel identity, this is a direct consequence of the condition $N_4 \ll \min(N_1, N_2, N_3)$ together with the cubic resonance relation associated with the KdV propagator:
\[
\Omega_3(\xi_1, \xi_2, \xi_3) = \sigma \left(-\sum_{i=1}^{3} \tau_i, -\sum_{i=1}^{3} \xi_i \right) + \sum_{i=1}^{3} \sigma(\tau_i, \xi_i) = -3(\xi_2 + \xi_3)(\xi_1 + \xi_3)(\xi_1 + \xi_2)
\]
where $\sigma(\tau, \xi) := \tau - \xi^3$. Note that the conditions on the N_i’s ensure that the above integrals vanish for $L_{\text{max}} \lesssim 1$. \qed

Now we can give our main estimate that uses Bourgain’s type spaces.

Lemma 4.2. Assume $0 < T < 1$, $e \in L^\infty_T L^2_x$ with $e_i \in L^\infty_{T_x}$ and $u_i \in L^\infty_T H^{-1/2} \cap X^{-3,1}_T$, $i = 1, 2, 3$. Let $\tilde{N}_j \in 2^\mathbb{N}$, $j = 1, 2, 3$ with $\tilde{N}_1 \sim \tilde{N}_2 \gtrsim \tilde{N}_3$. Setting, for all $0 < t < T$,
\[
I^3_t = I_t(e, u_1, u_2, u_3) = \int_0^t \int_{\mathbb{R}} P_{\leq \tilde{N}_3} e P_{\tilde{N}_1} u_1 P_{\tilde{N}_2} u_2 P_{\tilde{N}_3} u_3, \quad (4.2)
\]
it holds
\[
|I^3_t| \lesssim \tilde{N}_1^{-1}(\|e\|_{L^\infty_T L^\infty_x} + \|e_i\|_{L^\infty_{T_x}})
\]
\[
\left[\tilde{N}_3^{-1/2} \|P_{\tilde{N}_3} u_3\|_{L^\infty_T L^2_x} \sum_{(i,j) \in \{(1,2), (2,1)\}} \|P_{\tilde{N}_i} u_i\|_{L^2_{T_x}} \|P_{\tilde{N}_j} u_j\|_{X^{-1,1}_T} + T \frac{1}{\pi} \tilde{N}_1^{-1/2} \prod_{j=1}^{3} \|P_{\tilde{N}_j} u_j\|_{Y^0_p} \right]. \quad (4.3)
\]

Proof. We start by noticing that we may also assume that e and e_i belong to $L^2_T L^2_x$. Indeed, approximating e by $e_R = e \eta_R$ with $\eta_R = \eta(\cdot / R)$ where η is the smooth non negative compactly supported function defined in (2.1), we notice that for any $t \in [0, T]$, Lebesgue dominated convergence theorem leads for any $N \in 2^\mathbb{N}$ to
\[
\mathcal{F}_x^{-1}(\phi_{\leq N}) * e_R \to \mathcal{F}_x^{-1}(\phi_{\leq N}) * e = P_{\leq N} e \quad \text{on } \mathbb{R},
\]
since $\mathcal{F}_x^{-1}(\phi_{\leq N}) \in L^1(\mathbb{R})$ and $|e(t)\eta_R| \leq |e(t)| \in L^\infty(\mathbb{R})$. Applying again the Lebesgue dominated convergence theorem we get
\[
\int_0^t \int_{\mathbb{R}} P_{\ll N_3} e_R P_{\ll N_2} u_1 P_{\ll N_2} u_2 P_{\ll N_3} u_3 \rightarrow \int_0^t \int_{\mathbb{R}} P_{\ll N_3} e P_{\ll N_2} u_1 P_{\ll N_2} u_2 P_{\ll N_3} u_3 = I_t^3,
\]
by using that, for any fixed $j \in \mathbb{N}$, $P_{2j}u_i \in L^\infty_{T \times} \cap L^2_{T \times}$. This proves the desired result since
\[
\|e_R\|_{L^\infty_{T \times}} + \|\partial_t e_R\|_{L^\infty_{T \times}} \leq \|e\|_{L^\infty_{T \times}} + \|\partial_t e\|_{L^\infty_{T \times}}, \quad \forall R \geq 1.
\]
Now we extend the functions e, u_1, u_2, u_3 on the whole time axis. For u_1, u_2, u_3 we use the extension operator ρ_T defined in Lemma 2.6. On the other hand for e we use the extension operator $\tilde{\rho}_T$ defined by $\tilde{\rho}_T(e)(t) = \eta(t)e(\mu_T(t))$ with μ_T defined in (2.15) and η defined in (2.1). This extension operator is bounded from $W^{1,\infty}_{1,\infty} L^\infty_{x}$ into $W^{1,\infty}_{1,\infty} L^\infty_{x}$ with a bound that does not depend on $T > 0$. To lighten the notations, we keep the notation u_i for $\rho_T(u_i)$ and e for $\tilde{\rho}_T(e)$. Fixing $t \in]0, T[$ and setting $R = N_1^2 N_3^3$, we then split I_t as
\[
I_t(e, u_1, u_2, u_3) = I_\infty(e, 1_{t,R}^{\text{high}} u_1, 1_{t,R}^{\text{high}} u_2, 1_{t,R}^{\text{high}} u_3) + I_\infty(e, 1_{t,R}^{\text{low}} u_1, 1_{t,R}^{\text{high}} u_2, 1_{t,R}^{\text{high}} u_3) + I_\infty(e, 1_{t,R}^{\text{low}} u_1, 1_{t,R}^{\text{low}} u_2, 1_{t,R}^{\text{low}} u_3)
:= I_t^{\text{high},1} + I_t^{\text{high},2} + I_t^{\text{high},3} + I_t^{\text{low}},
\]
where $I_\infty(e, u_1, u_2, u_3) = \int_{\mathbb{R}^2} P_{\ll N_3} e P_{N_1} u_1 P_{N_2} u_2 P_{N_3} u_3$. The contribution of $I_t^{\text{high},1}$ is estimated thanks to Lemma 2.2 and Hölder and Bernstein inequalities by
\[
I_t^{\text{high},1} \lesssim \|1_{t,R}^{\text{high}}\|_{L^1} \|e\|_{L^\infty_{T \times}} \|P_{N_1} u_1\|_{L^\infty_{T} L^2_{x}} \|P_{N_2} u_2\|_{L^\infty_{T} L^2_{x}} \|P_{N_3} u_3\|_{L^\infty_{T} L^\infty_{x}}
\lesssim T^{1/4} \left(\frac{N_1^{7/4} N_3^{3/4}}{N_3} \right)^{3/4} \frac{N_3^{1/2}}{4} \|e\|_{L^\infty_{T}} \prod_{i=2}^4 \|P_{N_i} u_i\|_{L^\infty_{T} L^2_{x}}
\lesssim T^{1/4} \frac{e^{21/4}}{N_3} \|e\|_{L^\infty_{T}} \prod_{i=1}^3 \|P_{N_i} u_i\|_{L^\infty_{T} L^2_{x}}.
\]
The contribution of $I_t^{\text{high},2}$ and $I_t^{\text{high},3}$ can be estimated in exactly the same way, using that $\|1_{t,R}^{\text{low}}\|_{L^\infty_{T \times}} \lesssim 1$ thanks to (2.9). To evaluate the contribution I_t^{low} we use the following decomposition:
\[
I_\infty(e, 1_{t,R}^{\text{low}} u_1, 1_{t,R}^{\text{low}} u_2, 1_{t,R}^{\text{low}} u_3) = I_\infty(e, Q_{\ll N_1^2} \tilde{N}_3 \left(1_{t,R}^{\text{low}} u_1\right), 1_{t,R}^{\text{low}} u_2, 1_{t,R}^{\text{low}} u_3)
+ I_\infty(e, Q_{\ll N_1^2} \tilde{N}_3 \left(1_{t,R}^{\text{low}} u_1\right), 1_{t,R}^{\text{low}} u_2, 1_{t,R}^{\text{low}} u_3)
+ I_\infty(e, Q_{\ll N_1^2} \tilde{N}_3 \left(1_{t,R}^{\text{low}} u_1\right), Q_{\ll N_1^2} \tilde{N}_3 \left(1_{t,R}^{\text{low}} u_2\right), 1_{t,R}^{\text{low}} u_3)
+ I_\infty(e, Q_{\ll N_1^2} \tilde{N}_3 \left(1_{t,R}^{\text{low}} u_1\right), Q_{\ll N_1^2} \tilde{N}_3 \left(1_{t,R}^{\text{low}} u_2\right), Q_{\ll N_1^2} \tilde{N}_3 \left(1_{t,R}^{\text{low}} u_3\right))
\]
To evaluate the contribution $I_t^{4,\text{low}}$ we notice that the space frequency projector $P_{\ll \tilde{N}_3}$ that acts on θ together with Lemma 4.1 ensures that

$$I_t^{4,\text{low}} = I_\infty (R_{\ll \tilde{N}_3} e, Q_{\ll \tilde{N}_3} (1_{t,R} u_1), Q_{\ll \tilde{N}_3} (1_{t,R} u_2), Q_{\ll \tilde{N}_3} (1_{t,R} u_3))$$

where R_K is the projection on the time Fourier variable (see (2.2)). Therefore, by Bernstein inequality and Lemma 2.1 we get

$$|I_t^{4,\text{low}}| \lesssim T (\tilde{N}_1 \tilde{N}_3)^{-1} \|e_t\|_{L_\infty^\infty} \|P_{\tilde{N}_1} u_1\|_{L_\infty^\infty} \|P_{\tilde{N}_2} u_2\|_{L_\infty^\infty} \tilde{N}_3^{1/2} \|P_{\tilde{N}_3} u_3\|_{L_x^\infty L_x^2}$$

$$\lesssim T \tilde{N}_1^{-2} \|e_t\|_{L_\infty^\infty} \prod_{i=1}^3 \|P_{\tilde{N}_i} u_i\|_{L_\infty^\infty L_x^2}$$

(4.7)

Let us now evaluate one by one the other contributions in (4.6). For a future use of Lemma 2.3, it is worth noticing that since $\tilde{N}_1, \tilde{N}_3 \gg 1$, $R = \tilde{N}_1^2 \tilde{N}_3^3 \ll \tilde{N}_1^2 \tilde{N}_3$.

First $I_t^{3,\text{low}}$ can be easily estimated thanks to Lemmas 2.1–2.3 and (2.9) by

$$|I_t^{3,\text{low}}| \lesssim \|e\|_{L_\infty^\infty} \|Q_{\ll \tilde{N}_3} P_{\tilde{N}_1} (1_{t,R} u_1)\|_{L_\infty^\infty} \|Q_{\ll \tilde{N}_3} P_{\tilde{N}_2} (1_{t,R} u_2)\|_{L_\infty^\infty L_x^2}$$

$$\lesssim T^{1/2} (\tilde{N}_1 \tilde{N}_3)^{-1} \tilde{N}_3^{3/2} \|e\|_{L_\infty^\infty} \|P_{\tilde{N}_1} u_1\|_{X^{-1,1}} \prod_{i=1}^2 \|P_{\tilde{N}_i} u_i\|_{L_\infty^\infty L_x^2}$$

$$\lesssim T^{1/2} \tilde{N}_1^{-3/2} \|e\|_{L_\infty^\infty} \|P_{\tilde{N}_3} u_3\|_{X^{-1,1}} \prod_{i=1}^2 \|P_{\tilde{N}_i} u_i\|_{L_\infty^\infty L_x^2}$$

(4.8)

To estimate the contribution of $I_t^{1,\text{low}}$ we notice that Lemma 2.2 together with the fact that $R \geq \tilde{N}_1$ ensure that for any $w \in L_\infty^\infty L_x^2$

$$\|1_{t,R} w\|_{L_\infty^\infty L_x^2} \leq \|1_t w\|_{L_\infty^\infty L_x^2} + \|1_{t,R}^{\text{high}} w\|_{L_\infty^\infty L_x^2} \lesssim \|w\|_{L_\infty^\infty L_x^2} + T^{1/4} \tilde{N}_1^{-1/4} \|w\|_{L_\infty^\infty L_x^2}.$$

Therefore Lemmas 2.1 and 2.3 lead to

$$|I_t^{1,\text{low}}| \lesssim \|e\|_{L_\infty^\infty} \|Q_{\ll \tilde{N}_3} P_{\tilde{N}_1} (1_{t,R} u_1)\|_{L_\infty^\infty} \|1_{t,R} P_{\tilde{N}_2} u_2\|_{L_\infty^\infty} \|1_{t,R} P_{\tilde{N}_3} u_3\|_{L_\infty^\infty}$$

$$\lesssim (\tilde{N}_1^2 \tilde{N}_3)^{-1} \tilde{N}_1 \tilde{N}_3^{1/2} \|e\|_{L_\infty^\infty} \|P_{\tilde{N}_1} u_1\|_{X^{-1,1}} \|P_{\tilde{N}_3} u_3\|_{L_\infty^\infty L_x^2} \left(\|P_{\tilde{N}_2} u_2\|_{L_\infty^\infty L_x^2} + T^{1/4} \tilde{N}_1^{-1/4} \|P_{\tilde{N}_2} u_2\|_{L_\infty^\infty L_x^2}\right)$$

(4.9)
Finally, $I_t^{2,low}$ can be estimated in exactly the same way by exchanging the role of u_1 and u_2 to get

$$|I_t^{2,low}| \lesssim \tilde{N}_1^{-1} \tilde{N}_3^{-1/2} \| e \|_{L_\infty^T} \| P_{N_2} u_2 \|_{X^{-1,1}} \| P_{N_3} u_3 \|_{L_\infty^T L_2^s}$$

$$\left(\| P_{N_1} u_1 \|_{L_t^2 L_2^s} + T^{1/4} \tilde{N}_1^{-1/4} \| P_{N_1} u_1 \|_{L_\infty^T L_2^s} \right). \quad (4.10)$$

Gathering (4.4)–(4.10), we obtain (4.3).

\[\square \]

4.2. A priori estimates in $H^s(\mathbb{R})$

For an initial data in $H^s(\mathbb{R})$, with $s > 1/2$, we will construct a solution to (1.2) in Y_T^s whereas the estimate of difference of two solutions emanating from initial data belonging to $H^s(\mathbb{R})$ will take place in Y_T^{s-1}.

Lemma 4.3. Let $s > 1/2$, $0 < T < 1$ and $u \in Z_{b,T}^s$ be a solution to (1.2). Then $u \in Y_T^s$ and the following inequality holds

$$\|u\|_{Y_T^s} \leq C \left(1 + \|u\|_{L_\infty^T H^{s+1}} \right) \|u\|_{Z_{b,T}^s}. \quad (4.11)$$

Moreover, for any couple $(u, v) \in Z_{b,T}^s$ of solutions to (1.2) associated with a couple of initial data $(u_0, v_0) \in (H^s(\mathbb{R}))^2$, it holds

$$\|u - v\|_{Y_T^{s-1}} \leq C \left(1 + \|u + v\|_{L_\infty^T H^s} \right) \|u - v\|_{Z_{b,T}^{s-1}}. \quad (4.12)$$

where

$$C = C\left(s, \|\sqrt{b}\|_{L_\infty^T C_s^{(3-s)/2} + }, \|c\|_{L_\infty^T C_s^{+}}, \|d\|_{L_\infty^T C_s^{+}}, \|e\|_{L_\infty^T C_s^{(s+1)/2}}, \|f\|_{L_\infty^T C_s^{+}}\right).$$

Proof. According to the extension Lemma 2.6 it suffices to establish estimates on the Bourgain’s norms of u and $u - v$. Standard linear estimates in Bourgain’s spaces lead to

$$\|u\|_{X_T^{s-1,1}} \lesssim \|u_0\|_{H^{s-1}} + \|1_T (\partial_t - \partial_x^3) u\|_{X_T^{s-1,0}}$$

$$\lesssim \|u_0\|_{H^{s-1}} + \|b_x u\|_{L_\infty^T H^s} + \|b_x u\|_{L_T^2 H^{s-1}} + \|c u\|_{L_T^2 H^s}$$

$$+ \|(-c_x + d) u\|_{L_T^2 H^{s-1}} + \frac{1}{2} \|e u^2\|_{L_T^2 H^s} + \|(-e_x/2 + f) u^2\|_{L_T^2 H^{s-1}}.$$

According to Lemma 2.4, using that $s > 1/2$, it holds

$$\|b_x u\|_{L_T^2 H^{s-1}} \lesssim \|b_x\|_{L_\infty^T C_s^{\left[\frac{3-s}{2}\right]+}} \|u\|_{L_\infty^T H^{s-1}}$$

$$\|c u\|_{L_\infty^T H^s} + \|c_x u\|_{L_T^2 H^{s-1}} \lesssim \|c\|_{L_\infty^T C_s^{+}} \|u\|_{L_\infty^T H^s}$$

$$\|e u^2\|_{L_\infty^T H^s} + \|e_x u^2\|_{L_T^2 H^{s-1}} \lesssim \|e\|_{L_\infty^T C_s^{+}} \|u\|_{L_\infty^T H^{1/2}} + \|u\|_{L_\infty^T H^s}$$

$$\|d u\|_{L_T^2 H^{s-1}} \lesssim \|d\|_{L_\infty^T C_s^{\left[\frac{3-s}{2}\right]+}} \|u\|_{L_\infty^T H^s} \quad \text{and} \quad \|f u^2\|_{L_T^2 H^{s-1}} \lesssim \|f\|_{L_\infty^T C_s^{\left[\frac{3-s}{2}\right]+}} \|u\|_{L_\infty^T H^s}.$$
Therefore, we get

\[\|u\|_{X^{s-1,1}_T} \lesssim \|u\|_{L^\infty_T H^{s-1}} + C_1 (1 + \|u\|_{L^\infty_T H^{s+1/2}}) \|u\|_{L^\infty_T H^s} + \|b u\|_{L^2_T H^s}, \]

where \(C_1 = C_1 (\|b\|_{L^\infty_T C^{(-2) inconclusive}, \|c\|_{L^\infty_T C^{s+1 inconclusive}, \|d\|_{L^\infty_T C^{s inconclusive}, \|e\|_{L^\infty_T C^{s inconclusive}, \|f\|_{L^\infty_T C^{(s-1) inconclusive}}. \)

Now, noticing that Lemma 2.4 also leads for \(s > 1/2 \) to

\[
\begin{align*}
\|b_x w_x\|_{L^2_T H^{s-2}} &\lesssim \|b_x\|_{L^\infty_T C_s^{(s-2) inconclusive}} + \|w_x\|_{L^\infty_T H^{s-2}} \\
\|c w\|_{L^2_T H^{s-1}} + \|c_x w\|_{L^2_T H^{s-2}} &\lesssim \|c\|_{L^\infty_T C_s^{s inconclusive}} \|w\|_{L^\infty_T H^{s-1}} \\
\|e u w\|_{L^2_T H^{s-1}} + \|e_x u w\|_{L^2_T H^{s-2}} &\lesssim \|e\|_{L^\infty_T C_s^{(s inconclusive)}} \|u\|_{L^\infty_T H^s} \|w\|_{L^\infty_T H^{s-1}} \\
\|d w\|_{L^2_T H^{s-2}} &\lesssim \|d\|_{L^\infty_T C_s^{s inconclusive}} \|w\|_{L^\infty_T H^{s-1}} \text{ and } \|f\|_{L^2_T H^{s-2}} \lesssim \|f\|_{L^\infty_T C_s^{s inconclusive}} \|w\|_{L^\infty_T H^{s-1}},
\end{align*}
\]

we also get

\[
\begin{align*}
\|u - v\|_{X^{s-1,1}_T} &\lesssim \|u_0 - v_0\|_{H^{s-1}} + C_2 (1 + \|u + v\|_{L^\infty_T H^s}) \|u - v\|_{L^\infty_T H^{s-1}} \\
&+ \|b \partial_x (u - v)\|_{L^2_T H^{s-1}}
\end{align*}
\]

with \(C_2 = C_2 (\|b\|_{L^\infty_T C^{(s-2) inconclusive}, \|c\|_{L^\infty_T C^{s inconclusive}, \|d\|_{L^\infty_T C^{s inconclusive}, \|e\|_{L^\infty_T C^{(s inconclusive)}}. \)

It just remains to get an estimate on \(\|\partial_x (b u_x)\|_{L^2_T H^{s-1}} \) for \(\sqrt{b} \in L^\infty_T C_s^{(s inconclusive)} \) and \(v \in L^\infty_T H^\theta \) with \(\theta > -1/2 \). By using a non homogeneous dyadic decomposition it holds

\[
\|\partial_x (b u_x)\|_{L^2_T H^{s-1}}^2 = \|\partial_x P_{\leq 1} (b u_x)\|_{L^2_T L^2}^2 + \sum_{N \gg 1} N^{2\theta} \|P_N (b u_x)\|_{L^2_T L^2}^2.
\]

The first term of the above right-hand side is easily estimated as above by:

\[
\|\partial_x P_{\leq 1} (b u_x)\|_{L^2_T L^2} \lesssim \|b\|_{L^\infty_T C_s^{3 inconclusive}} \|v\|_{L^\infty_T H^{s-1}}
\]

Now, for \(N \gg 1 \) we rewrite \(P_N (b u_x) \) as

\[
P_N (b u_x) = \sqrt{b} P_N (\sqrt{b} u_x) + [P_N, \sqrt{b}](\sqrt{b} u_x) = A_N + B_N.
\]

Clearly,

\[
\sum_{N \gg 1} N^{2\theta} \|A_N\|_{L^2_T}^2 \lesssim \|b\|_{L^\infty_T} \|\sqrt{b} u_x\|_{L^\infty_T H^\theta}^2.
\] \hspace{1cm} (4.13)

To treat \(B_N \) we decompose it as

\[
B_N = [P_N, P_{\leq N} \sqrt{b}](\sqrt{b} u_x) + [P_N, P_{\geq N} \sqrt{b}](\sqrt{b} u_x) = B_{N1}^1 + B_{N2}^2.
\]

On account of the commutator estimate (2.13), it holds

\[
\sum_{N \gg 1} N^{2\theta} \|B_{N1}\|_{L^2_T}^2 \lesssim \sum_{N \gg 1} N^{2\theta} N^{-2} \|P_{\leq N} \partial_x \sqrt{b}\|_{L^2_T}^2 \|P_N (\sqrt{b} u_x)\|_{L^2_T}^2
\]

\[
\lesssim \|\sqrt{b}\|_{L^\infty_T}^2 \|\sqrt{b} u_x\|_{L^\infty_T H^\theta}^2.
\] \hspace{1cm} (4.14)
Finally to bound the contribution of B_N^2 we observe that

$$\sum_{N \gg 1} N^{2\theta} \|B_N\|_{L^2_T}^2 \leq \sum_{N \gg 1} N^{2\theta} \left(\sum_{N \geq N_1} \|P_{N_1} \sqrt{b} \|_{L^\infty_T} \|P_{\leq N_1} (\sqrt{b} v_N)\|_{L^2_T L^2_x} \right)^2 \lesssim \sum_{N \gg 1} \left(\sum_{N \geq N_1} N_1^{\theta \nu(0)} \|P_{N_1} \sqrt{b} \|_{L^\infty_T} N_1^{(-\theta) \nu(0)} \|P_{\leq N_1} (\sqrt{b} v_N)\|_{L^2_T H^0} \right)^2 \lesssim \|\sqrt{b}\|_{L^\infty_T C^{[0]} \cap \|\sqrt{b} v_N\|_{L^2_T H^0}}^2. \quad (4.15)$$

This completes the proof of the lemma. \hfill \square

Proposition 4.1. Let $0 < T < 2$ and $u \in Y^s_T$ with $s > 1/2$ be a solution to (1.2) associated with an initial datum $u_0 \in H^s(\mathbb{R})$. Then it holds

$$\|u\|_{L^\infty_T H^s}^2 + \|\sqrt{b} u\|_{L^2_T (\mathbb{R} \times (0, T]; H^s)} \leq \|u_0\|_{L^2_T H^s}^2 + C T^{\frac{1}{3}} (1 + \|u\|_{L^2_y H^s}) \|u\|_{L^2_y H^s}^2. \quad (4.16)$$

where

$$C = C \left(s, \|\sqrt{b}\|_{L^\infty_T C^{(s+1)[0, 2\nu(3-s)]}}, \|c\|_{L^\infty_T C^{(s+1)[0, 2]}}, \|d\|_{L^\infty_T C^{(s+1)[0, 2]}}, \|\theta\|_{L^\infty_T C^{(s+1)[0, 2]}}, \|\varepsilon\|_{L^\infty_T C^{(s+1)[0, 2]}}, \|\varepsilon\|_{L^\infty_T C^{(s+1)[0, 2]}}, \right) > 0. \quad (4.17)$$

Proof. We apply the operator P_N with $N \in 2\mathbb{N}$ dyadic to Eq. (1.2). On account of Remark 1.1, it is clear that $P_N u \in C([0, T]; H^\infty)$ with $\partial_t u_N \in L^\infty(0, T; H^\infty)$. Therefore, taking the L^2-scalar product of the resulting equation with $\langle N \rangle^{2s} P_N u$, integrating by parts on \mathbb{R} and integrating on $[0, t]$ with $0 < t < T$ we obtain

$$\langle N \rangle^{2s} \|P_N u(t)\|_{L^2_x}^2 = \langle N \rangle^{2s} \|P_N u_0\|_{L^2_x}^2 + \langle N \rangle^{2s} \int_0^t \int_{\mathbb{R}} P_N \left(-b u_N - c u_N - d u + \left(f - \frac{\varepsilon_N}{2} \right)^2 \right) P_N u \, dx \, dt$$

$$+ \langle N \rangle^{2s} \left(\frac{1}{2} \int_0^t \int_{\mathbb{R}} \partial_x P_N (e u^2) P_N u + \int_0^t \int_{\mathbb{R}} \partial_x P_N (b u_N) P_N u \right). \quad (4.18)$$

Now we are going to estimate successively all the terms of the right-hand of (4.18). Note that, even if $s > 1/2$, we will give estimates of the linear terms (in u) valid for $s > -1/2$ that will be directly usable in Proposition 4.2 when estimating the difference of two solutions in $H^{s-1}(\mathbb{R})$.

- **Contribution of $P_N(du)$.**

 Making use of Lemma 2.4, this contribution is easily estimated by:

 $$\langle N \rangle^{2s} \left| \int_{[0, t] \times \mathbb{R}} P_N(du) P_N u \right| \lesssim \langle N \rangle^{2s} \|P_N(du)\|_{L^2_T L^2_x} \|P_N u\|_{L^2_T L^2_x} \lesssim T \delta_N \|du\|_{L^\infty_T H^s} \|u\|_{L^\infty_T H^s}.$$
\begin{equation}
\lesssim T \delta_N \|d\|_{L_T^\infty C_x^{s+1+}} \|u\|_{L_T^\infty H^s}^2 \tag{4.19}
\end{equation}

with \(\|\delta_{2,j}\|_{j \geq 0} \|t\| \leq 1. \) In the sequel, we denote by \(\delta_q \) any sequence of real numbers such that \(\|\delta_{2,j}\|_{j \geq 0} \|t\| \leq 1. \)

- **Contribution of** \(PN((f - \frac{e_x}{2})u^2) \).
 This term is only estimated for \(s > 1/2. \) Proceeding exactly as above we get

\[
\langle N \rangle^{2s} \left| \int_{0,t_1 \times \mathbb{R}} P_N \left(\left(f - \frac{e_x}{2} \right) u^2 \right) P_N u \right|
\lesssim T \delta_N \left(\|fu^2\|_{L_T^\infty H^s} + \|e_x u^2\|_{L_T^\infty H^s} \right) \|u\|_{L_T^\infty H^s}
\lesssim T \delta_N \left(\|f\|_{L_T^\infty \mathcal{C}^{s+1}} + \|e_x\|_{L_T^\infty \mathcal{C}^{s+1}} \right) (1 + \|u\|_{L_T^\infty}) \|u\|_{L_T^\infty H^s}^2. \tag{4.20}
\]

- **Contribution of** \(PN((b_x + c)u_x) \).
 For \(1 \leq N \lesssim 1, \) (2.12) leads to

\[
\langle N \rangle^{2s} \left| \int_0^t \int_{\mathbb{R}} \left(P_N((b_x + c)u_x) \right) P_N u \right|
\lesssim \int_0^t \|b_x + c\|_{H_s} \|u\|_{H^s} \|u\|_{H^s}^2.
\]

For \(N \gg 1, \) we first notice that

\[
N^{2s} \left| \int_{0,t_1 \times \mathbb{R}} P_N \left(P_{\leq N}(b_x + c)u_x \right) P_N u \right|
\lesssim N^{2s} \sum_{N_1 \geq N} \left| \int_{0,t_1 \times \mathbb{R}} P_N \left(P_{N_1}(b_x + c)P_{\leq N_1} u_x \right) P_N u \right|
\lesssim \int_0^t \sum_{N_1 \geq N} N_1^{s=0} \|P_{N_1}(b_x + c)\|_{L_T^\infty \mathcal{N}_1^{1-s}} \|P_{\leq N_1} u_x\|_{H^{s-1}} \|u\|_{H^s}
\lesssim T \delta_N \left(\|b_x\|_{L_T^\infty \mathcal{C}_x^{1+s}} + \|c\|_{L_T^\infty \mathcal{C}_x^{1+s}} \right) \|u\|_{L_T^\infty H^s}^2. \tag{4.21}
\]

Then we use the commutator estimate (2.13) and integration by parts to get

\[
N^{2s} \left| \int_{0,t_1 \times \mathbb{R}} P_N \left(P_{\ll N}(b_x + c)u_x \right) P_N u \right| = N^{2s} \left| \int_{0,t_1 \times \mathbb{R}} P_{\ll N}(b_{xx} + c_x)(P_N u)^2 \right|
+ N^{2s} \left| \int_{0,t_1 \times \mathbb{R}} [P_N, P_{\ll N}(b_x + c)]u_x P_N u \right|
\lesssim N^{2s} \|b_{xx} + c_x\|_{L_T^\infty} \|P_N u\|_{L_T^\infty}^2
\lesssim T \delta_N \left(\|b_{xx}\|_{L_T^\infty} + \|c_x\|_{L_T^\infty} \right) \|u\|_{L_T^\infty H^s}^2. \tag{4.22}
\]

with \(\|\delta_{2,j}\|_{j \geq 0} \|t\| \leq 1. \)

- **Contribution of** \(\partial_x P_N(eu^2) \).
 This term is only estimated for \(s > 1/2. \) We first notice that for \(1 \leq N \lesssim 1 \) the contribution of this term is easily estimated by

\[
\langle N \rangle^{2s} \left| \int_{0,t_1 \times \mathbb{R}} \partial_x P_N \left(eu^2 \right) P_N u \right| \lesssim T \|u\|_{L_T^\infty L_x^2} (\|eu^2\|_{L_T^\infty L_x^2}
\]
\begin{equation}
\lesssim T \|e\|_{L_T^\infty} \|u\|_{L_T^\infty H^s}^2 \quad (4.23)
\end{equation}

It thus remains to consider \(N \gg 1 \). We first separate two contributions.

1. The contribution of \(P_N (P_{\lesssim N} e u^2) \). This contribution is easily estimated by
\begin{equation}
N^2 s \int_{[0,t] \times \mathbb{R}} \partial_x P_N \left(P_{\lesssim N} e u^2\right) P_N u \lesssim N^{2s+1} \int_0^t \|P_{\lesssim N} e\|_{L_T^\infty} \|P_N u\|_{L_T^2} \|u^2\|_{L_T^2} \lesssim \delta_N T \|e\|_{L_T^\infty C^s} \|u\|^2_{L_T^\infty H^s} \quad (4.24)
\end{equation}

with \(\|\langle \delta_j \rangle_{j \geq 0}\|_{L^1} \leq 1 \).

2. The contribution of \(P_N (P_{\ll N} e u^2) \). We use that for \(N \gg 1 \) we may write
\[
P_N (P_{\ll N} e u^2) = 2 P_N (P_{\ll N} e \tilde{P}_N u P_{\ll N} u) + \sum_{N_1 \gtrsim N} P_N (P_{\lesssim N} e P_{N_1} u \tilde{P}_N u).
\]
We notice that the contribution of \(P_N (P_{\ll N} e P_{N_1} u \tilde{P}_N u) \) is exactly of the form of \(I^3_1 \) in Lemma 4.2 with \(\tilde{N}_1 = N_1, \tilde{N}_2 \sim N_1, \tilde{N}_3 = N, u_1 = u_2 = u \) and \(u_3 = \partial_x P_N u \).

Therefore Lemma 4.2 leads to
\begin{equation}
N^2 s \sum_{N_1 \gtrsim N} \left| \int_0^t \int_{\mathbb{R}} P_N (P_{\ll N} e P_{N_1} u \tilde{P}_N u) \partial_x P_N u \right| \lesssim \left(\|e\|_{L_T^\infty} + \|e_1\|_{L_T^\infty} \right) \left(N^{-1/2} \|u\|_{L_T^\infty L_2^s} \sum_{N_1 \gtrsim N} \|\tilde{P}_N u\|_{X_{r-1,1}} \|\tilde{P}_N u\|_{L_T^2 H^s} \right.
\end{equation}
\begin{equation}
\left. + T^{1/2} \|u\|_{Y_T^0} \|u\|^2_{Y_T^s} \sum_{N_1 \gtrsim N} N_1^{-1/2} \right)
\end{equation}
\begin{equation}
\lesssim \delta_N T^{1/4} \left(\|e\|_{L_T^\infty} + \|e_1\|_{L_T^\infty} \right) \|u\|_{Y_T^0} \|u\|^2_{Y_T^s} \quad (4.25)
\end{equation}

To bound the contribution of \(P_N (P_{\ll N} e \tilde{P}_N u P_{\ll N} u) \) we rewrite this term as
\[
P_N (P_{\ll N} e P_{\ll N} u \tilde{P}_N u) = P_N \left(P_{\lesssim N} e P_{\lesssim 1} u \tilde{P}_N u \right)
\end{equation}
\begin{equation}
+ \sum_{1 \ll N_2 \ll N} P_N \left(P_{\lesssim N_2} e P_{N_2} u \tilde{P}_N u \right)
\end{equation}
\begin{equation}
+ \sum_{1 \ll N_2 \ll N} P_N \left(P_{\ll N_2} e P_{N_2} u \tilde{P}_N u \right)
\end{equation}
\begin{equation}
= A_N + B_N + C_N. \quad (4.26)
\end{equation}

To bound the contribution of \(A_N \) we use integration by parts and the commutator estimate (2.13) to get
\[
N^{2s} \left| \int_{[0,t] \times \mathbb{R}} \partial_x A_N P_N u \right| \lesssim N^{2s} \left| \int_{[0,t] \times \mathbb{R}} \partial_x \left(P_{\lesssim N} e P_{\lesssim 1} u \right) (P_N u)^2 \right|
\]
Finally we notice that for any fixed $1 \ll N_2 \ll N$, the contribution of $P_N \left(\sum_{1 \ll N_2 \ll N} P_{N_2} u \right)$ is exactly of the form of I_3^1 in Lemma 4.2 with $\tilde{N}_1 = N$, $\tilde{N}_2 \sim N$, $\tilde{N}_3 = N_2$, $u_2 = u_3 = u$ and $u_1 = \delta_x P_N u$. Therefore Lemma 4.2 leads to

$$N^{2s} \sum_{1 \ll N_2 \ll N} \left| \int_0^t \int_{\mathbb{R}} P_N \left(\sum_{1 \ll N_2 \ll N} P_{N_2} u \right) \delta_x P_N u \right| \lesssim \left(\|e\|_{L^\infty_T} + \|e_t\|_{L^\infty_T} \right) \left(\|u\|_{L^\infty_T L^2_x} \right) \left(\|\tilde{P}_N u\|_{X_{\delta, -1}} \right) \left(\|\tilde{P}_N u\|_{L^2_T H^s_x} \right) \sum_{1 \ll N_2 \ll N} N_2^{-1/2}$$

$$+ T \frac{1}{16} N^{-1/4} \ln N \|u\|_{Y^0} \|u\|_{Y^2}^{1/2} \lesssim \delta N T \frac{1}{16} \left(\|e\|_{L^\infty_T} + \|e_t\|_{L^\infty_T} \right) \|u\|_{Y^0} \|u\|_{Y^2}^{1/2} \ .$$

- **Contribution of $\partial_x P_N (bu_x)$:** This term being linear, we will give an estimate for $s > -1/2$. Integrating by parts, the contribution of this term can be rewritten as:

$$\langle N \rangle^{2s} \int_{0, t] \times \mathbb{R}} \partial_x P_N (bu_x) P_N u = - \langle N \rangle^{2s} \int_{0, t] \times \mathbb{R}} P_N (bu_x) P_N u_x$$
For $1 \leq N \lesssim 1$, it then holds

\[
\langle N \rangle^{2s} \left| \int_{[0,t] \times \mathbb{R}} P_N(bu_x) P_N u_x \right|
\lesssim \langle N \rangle^{2s} \left| \int_{[0,t] \times \mathbb{R}} P_N(\widetilde{P}_N b \partial_x u_{\ll N}) P_N u_x \right|
+ \langle N \rangle^{2s} \left| \sum_{N_1 \geq N} \int_{[0,t] \times \mathbb{R}} \widetilde{P}_{N_1} b \partial_x u_{N_1} \right| P_N u_x
\]

\[
\lesssim T \| b \|_{L^\infty_T L^1_x} \| u \|_{L^\infty_T L^2_x}^2 + \| u \|_{L^\infty_T L^2_x} \int_{0}^{t} \sum_{N_1 \geq N} N_1 \| b_{N_1} \|_{L^\infty} \| u_{N_1} \|_{L^2_x}
\]

\[
\lesssim T \| b \|_{L^\infty_T C_0^1} \| u \|_{L^\infty_T L^2_x}^2
\]

(4.30)

which is acceptable. For $N \gg 1$, we first decompose $P_N(bu_x)$ as

\[
P_N(bu_x) = \sqrt{b} \ P_N(\sqrt{b} u_x) + [P_N, \sqrt{b}](\sqrt{b} u_x)
\]

Then integrating by parts we obtain

\[
\int_{[0,t] \times \mathbb{R}} \partial_x P_N(bu_x) P_N u = - \int_{[0,t] \times \mathbb{R}} \left(P_N(\sqrt{b} u_x) \right)^2
\]

\[
- \int_{[0,t] \times \mathbb{R}} [\sqrt{b}, P_N] u_x P_N(\sqrt{b} u_x)
\]

\[
- \int_{[0,t] \times \mathbb{R}} [P_N, \sqrt{b}](\sqrt{b} u_x) P_N u_x
\]

\[
= - A_N + B_N + C_N.
\]

(4.31)

The first term of the right-hand side is non positive and will give us an estimate on the $L^2(0, T; H^s)$-norm of $\sqrt{b} u_x$. Note that the contribution of the low frequency part of $\sqrt{b} u_x$, $N \lesssim 1$, to this norm is easily estimated by

\[
\sum_{1 \leq N \lesssim 1} \langle N \rangle^{2s} A_N
\]

\[
\lesssim \sum_{1 \leq N \lesssim 1} \langle N \rangle^{2s} \left(\| P_N(\sqrt{b} P_{\ll N} u_x) \|_{L^2_T L^2_x}^2 + \sum_{N_1 \gtrsim N} \| P_N(P_{N_1} \sqrt{b} u_x) \|_{L^2_T L^2_x}^2 \right)
\]

\[
\lesssim \sum_{1 \leq N \lesssim 1} \left(\| \sqrt{b} \|_{L^\infty_T}^2 \| P_N u \|_{L^2_T L^2_x}^2 + \sum_{N_1 \gtrsim N} N_1^2 \| P_{N_1} \sqrt{b} \|_{L^\infty_T}^2 \| P_{\ll N_1} u \|_{L^2_T L^2_x}^2 \right)
\]

\[
\lesssim \left(\| \sqrt{b} \|_{L^\infty_T}^2 + \| \sqrt{b} \|_{L^\infty_T C_{L^p}^{p+1}}^2 \right) \| u \|_{L^2_T H^s}^2.
\]

(4.32)

Next by Holder and Young inequalities it holds

\[
|B_N| \leq \| [P_N, \sqrt{b}] u_x \|_{L^2_T L^2_x}^2 + \frac{1}{4} A_N = B_N^1 + \frac{1}{4} A_N.
\]

(4.33)
Now, thanks to the commutator estimate (2.13), for \(g \in L^2([0, T] \times \mathbb{R}) \) it holds
\[
\| [P_N, \sqrt{b}] g \|_{L^2_{T_x}} \lesssim \| [P_N, \rho_{\leq N} \sqrt{b}] g \|_{L^2_{T_x}} + \sum_{N_1 \gtrsim N} \| [P_N, P_{N_1} \sqrt{b}] g \|_{L^2_{T_x}} \\
\lesssim N^{-1} \| P_{\leq N} \partial_x \sqrt{b} \|_{L^\infty_{T_x}} \| \tilde{P}_N g \|_{L^2_{T_x}} \\
+ \sum_{N_1 \gtrsim N} \| P_{N_1} \sqrt{b} \|_{L^\infty_{T_x}} \| P_{\leq N_1} g \|_{L^2_{T_x}}.
\tag{4.34}
\]
Applying this last inequality with \(g = u_x \), the contribution of \(B^1_N \) is easily estimated by
\[
\sum_{N \gg 1} N^{2s} B^1_N \lesssim \| \sqrt{b} \|_{L^\infty_T C^{1+}_{x^+}} \| u \|_{L^2_{T} H^s}^2 \\
+ \sum_{N \gg 1} \left(\sum_{N_1 \gtrsim N} N_1^{s \vee 0} N_1 \| P_{N_1} \sqrt{b} \|_{L^\infty_{T_x}} \| N_1^{(-s) \vee 0} \| P_{\leq N_1} u \|_{L^2_{T_x} H^{s \vee 0}} \right)^2 \\
\lesssim \| \sqrt{b} \|_{L^\infty_T C^{1+}_{x^+}} \| u \|_{L^2_{T} H^s}^2.
\tag{4.35}
\]
Finally, applying (4.34) with \(g = \sqrt{b} u_x \) we infer that
\[
\| [P_N, \sqrt{b}] (\sqrt{b} u_x) \|_{L^2_{T_x}} \lesssim N^{-1} \| \partial_x \sqrt{b} \|_{L^\infty_{T_x}} \| \tilde{P}_N (\sqrt{b} u_x) \|_{L^2_{T_x}} \\
+ \sum_{N_1 \gtrsim N} \| P_{N_1} \sqrt{b} \|_{L^\infty_{T_x}} \| P_{\leq N_1} (\sqrt{b} u_x) \|_{L^2_{T_x}}.
\tag{4.36}
\]
This last inequality together with the direct estimate
\[
|C_N| \leq N \| [P_N, \sqrt{b}] (\sqrt{b} u_x) \|_{L^2_{T_x}} \| P_N u \|_{L^2_{T_x}}
\]
lead to
\[
\sum_{N \gg 1} N^{2s} |C_N| \lesssim \sum_{N \gg 1} \| \sqrt{b} \|_{L^\infty_T C^{1+}_{x^+}} \| P_N u \|_{L^2_{T} H^s} \| P_N (\sqrt{b} u_x) \|_{L^2_{T} H^s} \\
+ \sum_{N \gg 1} \| P_N u \|_{L^2_{T} H^s} \\
+ \sum_{N \gg 1} N_1^{s \vee 0} N_1 \| P_{N_1} \sqrt{b} \|_{L^\infty_{T_x}} \| N_1^{(-s) \vee 0} \| P_{\leq N_1} (\sqrt{b} u_x) \|_{L^2_{T_x} H^{s \vee 0}} \\
\lesssim \| \sqrt{b} \|_{L^\infty_T C^{1+}_{x^+}} \| u \|_{L^2_{T} H^s} \| \sqrt{b} u_x \|_{L^2_{T} H^s} \\
\leq \frac{1}{4} \sum_{N \geq 1} \langle N \rangle^{2s} A_N + C \| \sqrt{b} \|_{L^\infty_T C^{1+}_{x^+}} \| u \|_{L^2_{T} H^s}^2,
\tag{4.37}
\]
for some universal constant \(C > 0 \). It follows from (4.31), (4.32), (4.33), (4.35) and (4.37) that
\[
\sum_{N \geq 1} \langle N \rangle^{2s} \int_{[0,t] \times \mathbb{R}} \partial_x P_N (bu_x) P_N u \leq -\frac{1}{2} \sum_{N \geq 1} \langle N \rangle^{2s} \| P_N (\sqrt{b} u_x) \|_{L^2_{T_x}}^2
\]
Therefore, proceeding as in the proof of the preceding proposition, we infer that for $T \geq 1$, $v \in Y^s_T$ with $s > 1/2$ be two solutions to (1.2) associated with two initial data $u_0, v_0 \in H^s(\mathbb{R})$. Then it holds

$$
\|u - v\|^2_{L^2_{T,T}} \lesssim \|u_0 - v_0\|^2_{H^{s-1}} + C T \|v\|_{Y^s_T}^2 \|u + v\|_{Y^s_T}^2 \|u - v\|^2_{Y^s_T}.
$$

(4.39)

with

$$
C = C \left(s, \|\sqrt{b}\|_{L^2_T C^{2(1/2+3')}_\ast}, \|c\|_{L^\infty_T C^{(1/2+1/2+3')}_\ast}, \|d\|_{L^\infty_T C^{s-1}_\ast}, \|e\|_{L^\infty_T C^{s+1}_\ast}, \|e_t\|_{L^\infty_x}, \|f\|_{L^\infty_T C^{s+1}_\ast} \right). > 0.
$$

Proof. The difference $w = u - v$ satisfies

$$
w_t + w_{3x} - bw_{2x} + cw_x + dw = \frac{1}{2} e \partial_x(z w) + f z w
$$

(4.40)

where $z = u + v$. We proceed as in the proof of the preceding proposition by applying the operator P_N, with $N \in 2^\mathbb{N}$, to the above equation, taking the L^2_x scalar product with $P_N w$, multiplying by $(N)^2(s-1)$ and integrating on $]0, t[\cap [0, t]$ with $0 < t < T$. Clearly the terms coming from the linear part of (1.2) (i.e. the term where z is not involves) may be treated by the estimates established in the proof of the preceding proposition. They lead to

$$
\begin{align*}
\sum_{N \geq 1} (N)^2(s-1) \int_{]0,t[\times \mathbb{R}} P_N (d w) P_N w & \lesssim T \|d\|_{L^\infty_T C^{s-1}_\ast} \|w\|^2_{L^\infty_T H^{s-1}} \\
\sum_{N \geq 1} (N)^2(s-1) \int_{]0,t[} \int_{\mathbb{R}} P_N ((b_x + c) w_x) P_N w & \lesssim T \left(\|\sqrt{b}\|_{L^\infty_T C^{2(1/2+3')}_\ast} + \|c\|_{L^\infty_T C^{(1/2+1/2+3')}_\ast} \right) \|w\|^2_{L^\infty_T H^{s-1}} \\
\sum_{N \geq 1} (N)^2(s-1) \int_{]0,t[\times \mathbb{R}} \partial_x P_N (b w_x) P_N w & \leq - \frac{1}{2} \sum_{N \geq 1} (N)^2(s-1) \left\| P_N \left(\sqrt{b} \partial_x (u - v) \right) \right\|^2_{L^2_T} \\
+ C T \|\sqrt{b}\|_{L^\infty_T C^{s-1}_\ast} \|w\|^2_{L^\infty_T H^{s-1}}.
\end{align*}
$$

Therefore, proceeding as in the proof of the preceding proposition, we infer that for $N \geq 1$,

$$
\begin{align*}
\|w\|^2_{L^\infty_T H^{s-1}} + \|\sqrt{b} w_x\|^2_{L^2_T H^{s-1}} & \lesssim \|P_N w_0\|^2_{H^{s-1}} + T \|\vec{c}\| \|w\|^2_{L^\infty_T H^{s-1}} \\
& \quad + \sup_{t \in]0,T[} \sum_{N \geq 1} (N)^2(s-1) \left| \int_{]0,t[} \int_{\mathbb{R}} P_N \left(\frac{1}{2} e \partial_x(e z w) + f - \frac{e_x}{2} z w \right) P_N w \right|.
\end{align*}
$$

(4.41)
with

\[\tilde{C} = \tilde{C}(s, \| \sqrt{b} \|_{L^\infty_T C^s_x}, \| c \|_{L^\infty_T C^s_x}, \| d \|_{L^\infty_T C^{s-1}_x}) \]

To control the contribution of \(P_N((f - \frac{e_x}{2})zw) \) we use Lemma 2.4 to get

\[\langle N \rangle^{2(s-1)} \left| \int_0^T \int_{\mathbb{R}} P_N((f - \frac{e_x}{2})zw) P_N w \right| \leq \frac{\delta N T \| (f - \frac{e_x}{2})zw \|_{L^\infty_T H^{s-1}}}{2} \| w \|_{L^\infty_T H^{s-1}} \]

\[\leq \frac{\delta N T \| (f - \frac{e_x}{2})zw \|_{L^\infty_T H^s}}{2} \| w \|_{L^\infty_T H^{s-1}} \]

\[\leq \frac{\delta N T (\| f \|_{L^\infty_T C^s_x} + \| e_x \|_{L^\infty_T C^s_x}) \| z \|_{L^\infty_T H^s} \| w \|_{L^\infty_T H^{s-1}}^2} {2} \]

Let us now tackle the contribution of \(\partial_x P_N(ezw) \). For \(1 \leq N \leq 1 \), Lemma 2.4 leads to

\[N^{2(s-1)} \left| \int_{0, t \times \mathbb{R}} \partial_x P_N(ezw) P_N w \right| \leq T \| e \|_{L^\infty_T H^{\frac{s}{2}}} \| z \|_{L^\infty_T H^s} \| w \|_{L^\infty_T H^{s-1}}^2 \]

since \(s + s - 1 > 0 \).

It thus remains to consider \(N \gg 1 \). Using Lemma 2.4, the contribution of \(P_N(P_{\geq N} ezw) \) is easily estimated by

\[N^{2(s-1)} \left| \int_{0, t \times \mathbb{R}} \partial_x P_N(P_{\geq N} ezw) P_N w \right| \leq \int_0^T N \| P_{\geq N} ezw \|_{H^{s-1}} \| w \|_{H^{s-1}} \]

\[\leq \int_0^T \| P_{\geq N} ezw \|_{C^{s-1}_x} \| z \|_{L^\infty_T H^s} \| w \|_{L^\infty_T H^{s-1}}^2 \]

since for \(s > 1/2, s + (s-1) > 0 \).

On the other hand, as in Proposition 4.1, we may write

\[N(P_{\ll N} ezw) = P_N(P_{\ll N} e P_{\geq N} \tilde{P}_N w P_{\ll N} w) + P_N(P_{\ll N} e P_{\sim N} w P_{\ll N} w) + \sum_{N_1 \geq N} P_N(P_{\ll N} e P_{N_1} \tilde{P}_N w) \]

It thus remains to bound the 3 above contributions.

- **Contribution of \(\sum_{N_1 \geq N} P_N(P_{\ll N} e P_{N_1} \tilde{P}_N w) \)**

As in Proposition 4.1, we notice that, for any fixed \(N_1 \), the contribution of \(P_N(P_{\ll N} e P_{N_1} \tilde{P}_N w) \) is exactly of the form of \(I_3 \) in Lemma 4.2 with \(\tilde{N}_1 = N_1 \),
\[\tilde{N}_2 \sim N_1, \tilde{N}_3 = N, u_1 = z, u_2 = w \text{ and } u_3 = \partial_x P_N w. \] Therefore Lemma 4.2 leads to

\[N^{2(s-1)} \sum_{N_1 \geq N} \left| \int_{0}^{t} \int_{\mathbb{R}} P_N(\Phi_{\leq N} \epsilon P_N w) \partial_x P_N w \right| \lesssim \left(\| \epsilon \|_{L_T^{\infty}} + \| \epsilon_1 \|_{L_T^{\infty}} \right) \]

\[\left(\| w \|_{L_T^{\infty} H^{1/2}} \left(\| w \|_{X_T^{1/2, 1}} \| \tilde{z} \|_{L_T^1 H^{1/2}} + \| \tilde{z} \|_{X_T^{-1, 1}} \| w \|_{L_T^{1/2} H^{-1/2}} \right) \right. \sum_{N_1 \geq N} N_1^{-1} \]

\[+ T^\frac{1}{4} \| w \|_{Y_T^{-1/2}} \| w \|_{Y_T^{-1, 1}} \| \tilde{z} \|_{Y_T^1} \sum_{N_1 \geq N} N_1^{-\frac{3}{4}} \left) \right. \]

\[\lesssim \delta N T^\frac{1}{4} \left(\| \epsilon \|_{L_T^{\infty}} + \| \epsilon_1 \|_{L_T^{\infty}} \right) \| \tilde{z} \|_{Y_T^1} \| w \|_{Y_T^{-1}}^2. \quad (4.45) \]

Contribution of \(P_N(\Phi_{\leq N} \epsilon \tilde{P}_N \phi_{\leq N} w) \). We decompose this term as

\[P_N(\Phi_{\leq N} \epsilon \tilde{P}_N \phi_{\leq N} w) = P_N \left(\Phi_{\leq N} \epsilon \tilde{P}_N \phi_{\leq N} \right) \]

\[+ \sum_{1 < N_2 \leq N} P_N \left(\Phi_{\geq N_2} \phi_{\leq N} \epsilon P_N w \tilde{P}_N \right) \]

\[+ \sum_{1 < N_2 \leq N} P_N \left(\Phi_{\leq N} \epsilon P_N w \tilde{P}_N \right) \]

\[= A_N + B_N + C_N. \quad (4.46) \]

The contribution of \(A_N + B_N \) can be easily bounded in the following way:

\[N^{2(s-1)} \left| \int_{0}^{t} (A_N + B_N) \partial_x P_N w \right| \]

\[\lesssim \int_{0}^{t} \| \tilde{P}_N \phi \|_{H^1} \| P_N w \|_{H^{-1}} \left(\| \Phi_{\leq N} \epsilon \|_{L_T^{\infty}} \| \Phi_{\geq 1} w \|_{L_T^{\infty}} \right) \]

\[+ \sum_{1 < N_2 \leq N} \| \Phi_{\geq N_2} \epsilon \|_{L_T^{\infty}} \| P_N w \|_{L_T^{\infty}} \]

\[\lesssim T \delta N \| \epsilon \|_{L_T^{\infty}} \| \Phi_{\leq 1} w \|_{L_T^{\infty} H^{-1/2}} \| \tilde{z} \|_{L_T^{\infty} H^1} \| w \|_{L_T^{1/2} H^{1/2}}. \quad (4.47) \]

To bound the contribution of \(C_N \), we notice that it is of the form of (4.2) so that we can use Lemma 4.2 to get

\[N^{2(s-1)} \left| \int_{0}^{t} C_N \partial_x P_N w \right| \lesssim \left(\| \epsilon \|_{L_T^{\infty}} + \| \epsilon_1 \|_{L_T^{\infty}} \right) \]

\[\ln \left(T^\frac{1}{4} N^{-3/4} \| w \|_{Y_T^{-1/2}} \| w \|_{Y_T^{-1, 1}} \| \tilde{z} \|_{Y_T^1} \right) \]

\[+ N^{-1} \| w \|_{L_T^{\infty} H^{-1/2}} \left(\| w \|_{X_T^{-2, 1}} \| \tilde{z} \|_{L_T^2 H^1} + \| \tilde{z} \|_{X_T^{-1, 1}} \| w \|_{L_T^{1/2} H^{-1}} \right) \]

\[\lesssim \delta N T^{\frac{1}{4}} \left(\| \epsilon \|_{L_T^{\infty}} + \| \epsilon_1 \|_{L_T^{\infty}} \right) \| \tilde{z} \|_{Y_T^1} \| w \|_{Y_T^{-1}}^2. \quad (4.48) \]
• Contribution of $P_N(P_{\ll N}e\tilde{P}_wP_{\ll Nz})$. We proceed in the same way by writing

$$P_N(P_{\ll N}e\tilde{P}_wP_{\ll Nz}) = P_N\left(P_{\ll N}e \ P_{\leq 1}z \ \tilde{P}_Nw\right) + \sum_{1 \ll N_2 \ll N} P_N\left(P_{\geq N_2}P_{\ll N}e \ P_{N_2}z \ \tilde{P}_Nw\right) + \sum_{1 \ll N_2 \ll N} P_N\left(P_{\ll N_2}e \ P_{N_2}z \ \tilde{P}_Nw\right)$$

$$= \tilde{A}_N + \tilde{B}_N + \tilde{C}_N.$$ \hspace{1cm} (4.49)

This time to bound the contribution of $\tilde{A} + \tilde{B}$ we have to use the commutator estimate \((2.13)\) and integration by parts as in \((4.27)–(4.28)\) to get

$$N^2(s-1) \left| \int_{[0,1] \times \mathbb{R}} (\tilde{A}_N + \tilde{B}_N) \partial_x P_Nw \right| \leq \int_{0}^{t} \left\| \tilde{P}_Nw \right\|_{H^{10}} \left(\| \partial_x (P_{\ll N}eP_{\leq 1}z) \|_{L^\infty} + \sum_{1 \ll N_2 \ll N} \| \partial_x (P_{\geq N_2}P_{N_2}z) \|_{L^\infty} \right)$$

$$\leq T \delta_N \| e \|_{L^{\infty}_T C^1_x} \| z \|_{L^{\infty}_T H^{11}} \| w \|_{L^{\infty}_T H^{11}} \hspace{1cm} (4.50)$$

Finally to bound the contribution of \tilde{C}_N we proceed as in \((4.29)\) to get

$$N^2(s-1) \left| \int_{0}^{t} \tilde{C}_N \partial_x P_Nw \right| \leq \left(\| e \|_{L^{\infty}_T} + \| e_t \|_{L^{\infty}_T} \right) \left(\left\| \tilde{P}_Nw \right\|_{X^{s-1,1}} \| \tilde{P}_Nw \|_{L^{2}_T H^{s-1}} \sum_{1 \ll N_2 \ll N} N_2^{-1/2} \right)$$

$$+ T^{1/4} N^{-1/4} \ln N \left\| z \right\|_{Y^0_T} \| w \|_{Y^0_T}^2$$

$$\leq \delta_N T^{1/6} \left(\| e \|_{L^{\infty}_T} + \| e_t \|_{L^{\infty}_T} \right) \| z \|_{Y^0_T} \| w \|_{Y^0_T}^2 \hspace{1cm} (4.51)$$

\[\Box\]

Remark 4.1. Gathering Lemma 4.3 and Propositions 4.1–4.2 we observe that sufficient hypotheses for these statements to hold are

$$b \in L^{\infty}_T C^*_x((3-s)\sqrt{2}v(s+1)+), \ c \in L^{\infty}_T C^*_x((2-s)\sqrt{s})+, \ d \in L^{\infty}_T C^*_x+$$

$$e \in L^{\infty}_T C^{s+1}_x, \ e_t \in L^{\infty}_T, \text{ and } f \in L^{\infty}_T C^*_x+$$

\hspace{1cm} (4.52)

5. Proof of Theorem 1.1

5.1. Uniqueness

Assume \((4.52)\) are fulfilled and $u_0 \in H^s(\mathbb{R})$ with $s > 1/2$. Let u and v be two solutions of \((1.2)\) emanating from u_0 that belong to $Z^s_{b,T}$ for some $T > 0$. Then
according to Lemma 4.3, \(u \) and \(v \) belong to \(Y^5_T \) and Proposition 4.2 together with (4.12) ensure that for any \(0 < T_0 \leq T \wedge 1 \) it holds
\[
\|u - v\|_{Z_{b; T_0}^{2}}^2 \lesssim T_0^{-\frac{1}{4}} (1 + \|u + v\|_{Y^5_T})^3 \|u - v\|_{Z_{b; T}^{2}}^2.
\]
This forces \(u \equiv v \) on some time interval \(]0, T_1[\) with \(0 < T_1 \leq T_0 \). Taking now \(T_1 \) as initial time we can repeat the same argument to get that \(u \equiv v \) on \(]0, T \wedge 2T_1[\) and a finite iteration of this argument leads to \(u \equiv v \) on \(]0, T[\). It is worth noticing that in the case \(b \equiv 0 \), \(Z_{b; T}^r = L_7^\infty H^s \) and thus we get the unconditional uniqueness of (1.2) in \(H^s(\mathbb{R}) \) for \(s > 1/2 \).

5.2. Existence

We make use of the famous existence result of Craig–Kappeler–Strauss [7] for the general quasilinear KdV type equations:
\[
u_t + F(\partial^3 u, \partial^2 u, \partial_x u, u, x, t) = 0.
\] (5.1)
In this paper, the following assumptions on \(F \) are made: \(F : \mathbb{R}^5 \times [0, T] \rightarrow \mathbb{R} \) is \(C^\infty \) in all its variables and satisfies
\begin{align*}
(A1) & \exists c > 0 \text{ such that } \partial_1 F(y, x, t) \geq c > 0 \text{ for all } y \in \mathbb{R}^4, x \in \mathbb{R} \text{ and } t \in [0, T]. \\
(A2) & \partial_2 F(y, x, t) \leq 0. \\
(A3) & \text{All the derivatives of } F(y, x, t) \text{ are bounded for } x \in \mathbb{R}, t \in [0, T] \text{ and } y \text{ in a bounded set.} \\
(A4) & x^N \partial_x^j F(0, x, t) \text{ is bounded for all } N \geq 0, j \geq 0, x \in \mathbb{R} \text{ and } t \in (0, T].
\end{align*}
Fixing \(F \) that satisfies (A1)–(A4), in [7] it is shown that for any \(k \in \mathbb{N} \) with \(k \geq 7 \) and any \(c_0 > 0 \) there exists \(T = T(c_0) > 0 \) such that for any \(u_0 \in H^k(\mathbb{R}) \), with \(\|u_0\|_{H^7} \leq c_0 \), the Cauchy problem associated with (5.1) has a unique local solution \(u \in L^\infty(0, T; H^k(\mathbb{R})) \).

This implies that for any \(F \) satisfying (A1)–(A4) and any \(u_0 \in H^k \) with \(k \geq 7 \), the unique solution \(u \) to (5.1) can be prolonged on a maximal time interval \([0, T^*] \) with either
\[
T^* = +\infty \quad \text{or} \quad \limsup_{T \nearrow T^*} \|u\|_{L^\infty(0,T;H^7)} = +\infty.
\] (5.2)
We notice that (1.2) corresponds to (5.1) with
\[
F(y, x, t) = y_1 - b(t, x)y_2 + c(t, x)y_3 + d(t, x)y_4 - e(t, x)y_3y_4 - f(t, x)y_4^2
\]
In particular, for any \(y \in \mathbb{R}^4, x \in \mathbb{R} \) and \(t \in [0, T] \) we have \(\partial_1 F(y, x, t) = 1 \) and \(F(0, x, t) = 0 \) which ensure that (A1) and (A4) are clearly fulfilled. Moreover, the hypothesis \(b \geq 0 \) ensures that (A2) is also fulfilled. Therefore, since our coefficient functions are by hypothesis all bounded on \([0, T] \times \mathbb{R} \), it thus suffice to regularize them by convoluting in \((t, x) \) with a smooth positive sequence of mollifiers to fulfill the assumptions (A1)–(A4).
So let the coefficient functions a, b, c, d, e, f satisfying the hypotheses of Theorem 1.1 and let $u_0 \in H^s(\mathbb{R})$ with $s > 1/2$. We first construct the solution emanating from u_0 to (1.2) with a, b, c, d, e replaced by their smooth regularizations. For this we regularize the initial datum by setting, for any $n \in \mathbb{N}^*$, $u_{0,n} = P_{\leq n}u_0 \in H^\infty(\mathbb{R})$.

According to the existence result of [7] there exists a sequence (T_n) with $0 < T_n < 1$ such that, for any $n \in \mathbb{N}^*$, (1.2) has a unique solution $u_n \in L^\infty(0, T_n; H^\infty(\mathbb{R}))$ emanating from $u_{0,n}$. Note that (1.2) then implies that actually $u_n \in C([0, T_n]; H^\infty(\mathbb{R}))$.

Now, applying (4.11) and (4.16) for u_n on $[0, T_n]$ we obtain that

$$\|u_n\|^2_{Z^{s_0}_{b,T_n}} \leq \|u_{0,n}\|^2_{H^s} + C T_n^{\frac{1}{n}} \left(1 + \|u_n\|^2_{Z^{s_0}_{b,T_n}}\right)^6$$

for $s_0 = \frac{1}{2} < s$. Using the continuity of $T \to \|u_n\|^2_{Z^{s_0}_{b,T_n}}$ this ensures that there exists $0 < T_0 = T_0(\|u_0\|_{H^s}) < 2$ such that $\|u_n\|^2_{Z^{s_0}_{b,T_n,T_0}} \leq 4\|u_{0,n}\|^2_{H^s}$.

Using again (4.11) and (4.16), we obtain that, for any fixed $n \geq 0$, u_n is bounded in $L^\infty_{T_n \wedge T_0} H^7$. Therefore (5.2) ensures that u_n can be extended on $[0, T_0]$. Hence, it holds

$$\|u_n\|^2_{Z^{s_0}_{b,T_0}} \leq 4\|u_0\|_{H^s}.$$

Applying again (4.11) and (4.16) but at the H^s-regularity this forces

$$\|u_n\|_{Z^{s_0}_{b,T_0}} \lesssim \|u_0\|_{H^s}.$$

Note that Lemma 4.3 and Proposition 4.2 then ensure that (u_n) is a Cauchy sequence in $L^\infty(0, T_0; H^{s-1})$ and thus it is also a Cauchy sequence in $L^\infty(0, T_0; H^{s-\frac{1}{2}})$. Let u be the limit of u_n in $L^\infty(0, T_0; H^{s-\frac{1}{2}})$. From the above estimates we obtain that $u \in Z^s_{b,T_0}$ and it is immediat to check that u satisfies (1.2) at least in $L^\infty(0, T_0; H^{s-3})$.

Now we can pass to the limit on the coefficient functions. Since their regularizations are bounded in the function spaces appearing in Remark 4.1, we obtain the existence of a solution $u \in Z^s_{b,T_0}$ that is the unique one in this class on account of Sect. 5.1. Now the continuity of u with values in $H^s(\mathbb{R})$ as well as the continuity of the flow-map in $H^s(\mathbb{R})$ will follow from the Bona–Smith’s argument (see [6]).

Remark 5.1. Bona–Smith’s argument will require to apply Lemma 4.3 and Propositions 4.1–4.2 at the $H^{s+1}(\mathbb{R})$-regularity. In view of Remark 4.1 we thus finally need to make the following regularity hypotheses on the coefficient b, c, d, e and f:

$$b \in L^\infty_T C^{s+2+}_s, \ c \in L^\infty_T C^{s+1+}_s, \ d \in L^\infty_T C^{s+1+}_s, \ e \in L^\infty_T C^{s+2+}_s, \ e_t \in L^\infty_T C^{s+1+}_s \quad (5.3)$$

For any $\varphi \in H^s(\mathbb{R})$, any integer $n \geq 1$ and any $r \geq 0$, straightforward calculations in Fourier space lead to

$$\|P_{\leq n}\varphi\|_{H^{s+r}_x} \lesssim n^r \|\varphi\|_{H^s_x} \quad \text{and} \quad \|\varphi - P_{\leq n}\varphi\|_{H^{s-r}_x} \lesssim n^{-r} \|P_{> n}\varphi\|_{H^s_x}. \quad (5.4)$$
Let \(u_0 \in H^s \) with \(s > 1/2 \) and let \(T_0 = T_0(\|u_0\|_{H^{1/2}_t}) > 0 \) the associated minimum time of existence. We denote by \(u_n \in Z_{b,T_0}^s \) the solution of (1.2) emanating from \(u_{0,n} = P_{\leq n} u_0 \) and for \(1 \leq n_1 \leq n_2 \), we set
\[
w := u_{n_1} - u_{n_2}.
\]

Then, (4.12) and (4.39) lead to
\[
\|w\|_{Y^s_{T_0}} \lesssim \|w(0)\|_{H^{s-1}} \lesssim n_1^{-1}\|P_{> n_1} u_0\|_{H^s}. \tag{5.5}
\]
Moreover, for any \(r \geq 0 \) and \(s > 1/2 \) we have
\[
\|u_{n_i}\|_{Y^{s+r}_{T_0}} \lesssim \|u_{0,n_i}\|_{H^{s+r}} \lesssim n_i^r\|u_0\|_{H^s}. \tag{5.6}
\]

Next, we observe that \(w \) solves the equation
\[
w_t + w_{3x} - bw_{2x} + cw_x + d = \frac{1}{2} e\partial_x (w^2) + e\partial_x (u_{n_1} w) + f w^2 + 2f u_{n_1} w. \tag{5.7}
\]

Proposition 5.1. Let \(0 < T < 1 \) and \(w \in Y^s_T \) with \(s > 1/2 \) be a solution to (5.7). Then it holds
\[
\|w\|_{Z^s_{b,T}}^2 \lesssim \|w(0)\|_{H^s}^2 + CT\frac{1}{16}\left(\|u_{n_1}\|_{Y^s_T}^2 \|w\|_{Y^s_T}^2 + \|u_{n_1}\|_{Y^{s+1}_T} \|w\|_{Y^{s-1}_T} \|w\|_{Y^s_T}\right) \tag{5.8}
\]
and
\[
\|w\|_{Y^s_T} \leq C \left((1 + \|u_0\|_{H^{1/2}_t}) \|w\|_{Z^s_{b,T}}\right). \tag{5.9}
\]

where
\[
C = C(\|\sqrt{b}\|_{L_t^\infty C^{s+2}_x}, \|c\|_{L_t^\infty C^{s+1}_x}, \|d\|_{L_t^\infty C^{s+1}_x}, \|e\|_{L_t^\infty C^{s+2}_x},
\|e_1\|_{L_t^\infty C^{s+1}_x}, \|f\|_{L_t^\infty C^{s+1}_x}) > 0. \tag{5.10}
\]

Proof. (5.8) is a direct consequence of estimates derived in the proof of Propositions 4.1 and 4.2. The only delicate contributions are the ones of \(e\partial_x (w^2) \) and \(e\partial_x (u_{n_1} w) \). Rewriting these terms as respectively \(\frac{1}{2} \partial_x (ew^2) - \frac{1}{2} (e_x w^2) \) and \(\frac{1}{2} \partial_x (eu_{n_1} w) - \frac{1}{2} (e_x u_{n_1} w) \), we only have to care about the contributions of \(\partial_x (ew^2) \) and \(\partial_x (eu_{n_1} w) \). Now we notice that the contribution of \(\partial_x (ew^2) \) can be estimated exactly as the one of \(\partial_x (eu_{n_1} w) \) in Proposition 4.1 and the contribution of \(\partial_x (eu_{n_1} w) \) can be estimated exactly as the one of \(\partial_x (e_{n_1} w) \) in Proposition 4.2 but at the level \(H^s \) instead of \(H^{s-1} \). Finally, (5.9) can be proven exactly as (4.11) with (5.6) in hand. This completes the proof of the proposition. \(\square \)
Combining (4.12) with (5.8) and (5.6) we get for \(0 < T < T_0 \),
\[
\| w \|_{Z_{b,T}^T}^2 \lesssim \| w(0) \|_{H^s}^2 + T \frac{1}{16} \left[\| u_0 \|_{H^s} \| w \|_{Y_{T}^s}^2 + n_1 \| u_0 \|_{H^s} \| w \|_{Y_{T}^{s-1}} \right].
\]

Gathering this last estimate with (5.5) and (5.9) leads, for \(T > 0 \) small enough, to
\[
\| w \|_{Z_{b,T}^T}^2 \lesssim \| w(0) \|_{H^s}^2 + n_1^2 \| w \|_{Y_{T}^{s-1}}^2
\lesssim \| P_{> n_1} u_0 \|_{H^s}^2 \rightarrow 0 \text{ as } n_1 \rightarrow 0. \tag{5.11}
\]

This shows that \(\{ u_n \} \) is a Cauchy sequence in \(C([0, T]; H^s) \) and thus \(\{ u_n \} \) converges in \(C([0, T]; H^s) \) to a solution of (1.2) emanating from \(u_0 \). Then, the uniqueness result ensures that \(u \in C([0, T]; H^s) \). Repeating this argument with \(u(T) \) as initial data we obtain that \(u \in C([0, T_1]; H^s) \) with \(T_1 = \min(2T, T_0) \). This leads to \(u \in C([0, T_0]; H^s) \) after finite number of repetitions.

Continuity of the flow map. Let now \(\{ u_0^k \} \subset H^s(\mathbb{R}) \) be such that \(u_0^k \rightarrow u_0 \) in \(H^s(\mathbb{R}) \).

We want to prove that the emanating solution \(u^k \) tends to \(u \) in \(C([0, T_0]; H^s) \). By the triangle inequality, for \(k \) large enough,
\[
\| u - u^k \|_{L_{T_0}^\infty H^s} \leq \| u - u_n \|_{L_{T_0}^\infty H^s} + \| u_n - u^k_n \|_{L_{T_0}^\infty H^s} + \| u^k_n - u^k \|_{L_{T_0}^\infty H^s},
\]
where \(u_n \) and \(u^k_n \) are respectively the solution to (1.2) emanating from \(u_{0,n} = P_{\leq n} u_0 \) and \(P_{\leq n} u^k \).

Using the estimate (5.11) on the solution to (5.7) we first infer that
\[
\| u - u_n \|_{Z_{b,T_0}^T} + \| u^k - u^k_n \|_{Z_{b,T_0}^T} \lesssim \| P_{> n} u_0 \|_{H^s} + \| P_{> n} u^k_0 \|_{H^s}
\]
and thus
\[
\lim_{n \rightarrow \infty} \sup_{k \in \mathbb{N}} \left(\| u - u^k \|_{L_{T_0}^\infty H^s} + \| u^k - u^k_n \|_{L_{T_0}^\infty H^s} \right) = 0. \tag{5.12}
\]

Next, we notice that (4.12) and (4.39) ensure that
\[
\| u_n - u^k_n \|_{Y_{T_0}^{s-1}} \lesssim \| u_n - u^k_n \|_{Z_{b,T_0}^{s-1}} \lesssim \| u_{0,n} - u^k_{0,n} \|_{H^{s-1}}
\]
and thus (5.11) and (5.5) lead to
\[
\| u_n - u^k_n \|_{Z_{b,T_0}^T}^2 \lesssim \| u_{0,n} - u^k_{0,n} \|_{H^s}^2 + n^2 \| u_{0,n} - u^k_{0,n} \|_{H^{s-1}}^2
\lesssim \| u_0 - u^k_0 \|_{H^s}^2 (1 + n^2). \tag{5.13}
\]
Data availability Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

6. Appendix

6.1. Proof of Lemma 2.5

Let $N > 0$. We follow [10]. By Plancherel and the mean-value theorem,

$$
\left| \left[\mathcal{P}_N, P_{\ll N} f \right] g \right| (x) = \left| \left[\mathcal{P}_N, P_{\ll N} f \right] \tilde{P}_N g \right| (x)
= \left| \int_{\mathbb{R}} \mathcal{F}_x^{-1}(\varphi_N)(x - y) P_{\ll N} f(y) \tilde{P}_N g(y) \, dy \right|
- \left| \int_{\mathbb{R}} P_{\ll N} f(x) \mathcal{F}_x^{-1}(\varphi_N)(x - y) \tilde{P}_N g(y) \, dy \right|
= \left| \int_{\mathbb{R}} (P_{\ll N} f(y) - P_{\ll N} f(x)) N \mathcal{F}_x^{-1}(\varphi)(N(x - y)) \tilde{P}_N g(y) \, dy \right|
\leq \left\| P_{\ll N} f_x \right\|_{L^\infty} \int_{\mathbb{R}} N |x - y| \left| \mathcal{F}_x^{-1}(\varphi)(N(x - y)) \right| \left\| \tilde{P}_N g \right\|_{L^2} \, dy
$$

Therefore, since $N |\cdot| \left| \mathcal{F}_x^{-1}(\varphi)(N \cdot) \right| = \left| \mathcal{F}_x^{-1}(\varphi')(N \cdot) \right|$, we deduce from Young’s convolution inequalities that

$$
\left\| \left[\mathcal{P}_N, P_{\ll N} f \right] g \right\|_{L^2} \lesssim N^{-1} \left\| P_{\ll N} f_x \right\|_{L^\infty} \left\| \tilde{P}_N g \right\|_{L^2},
$$

that is (2.13).

REFERENCES

[1] T. Akhunov, Local well-posedness of quasi-linear systems generalizing KdV, Commun. Pure Appl. Anal. 12 (2013) 899–921.

[2] T. Akhunov, A sharp condition for the well-posedness of the linear KdV-type equation, Proc. Amer. Math. Soc. 142 (2014), 4207–4220.

[3] T. Akhunov, D. M. Ambrose and J. D. Wright, Well-posedness of fully nonlinear KdV-type evolution equations, Nonlinearity 32 (2019) 2914–2954.

[4] S. Alinhac and P. Gérard, Pseudo-differential Operators and the Nash-Moser Theorem Graduate Studies in Mathematics 82. Providence, RI, 2007.

[5] D. M. Ambrose and J. D. Wright, Dispersion vs. anti-diffusion: well-posedness in variable coefficient and quasilinear equations of KdV-type, Indiana Univ. Math. J. 62 (2013), 1237–1281.
[6] J.L. Bona, R. Smith, *The initial-value problem for the Korteweg-de Vries equation*, Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 1287, 555–601.

[7] W. Craig, T. Kappeler and W. Strauss, *Gain of regularity for equations of KdV type*, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 9 (2) (1992) 147–186.

[8] S. Israwi and R. Talhouk, *Local well-posedness of a nonlinear KdV-type equation*, C. R. Math. Acad. Sci. Paris 351 (2013), no. 23-24, 895–899.

[9] T. Kato, *On nonlinear Schrödinger equations II. H^s-solutions and unconditional well-posedness*, J. Anal. Math., 67 (1995), 281–306.

[10] D. Lannes, *The Water Waves Problem: Mathematical Analysis and Asymptotics*, volume 188 of Mathematical Surveys and Monographs. AMS, 2013.

[11] N. Masmoudi and K. Nakanishi, *From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation*, J. Hyperbolic Differ. Equ. 2 (2005), 975-1008.

[12] S. Mizohata, *On the Cauchy problem*, Notes and Reports in Mathematics in Science and Engineering, vol. 3, Academic Press Inc., Orlando, FL, 1985.

[13] L. Molinet and S. Vento, *Improvement of the energy method for strongly non resonant dispersive equations and applications*, Analysis & PDE 6 (2015), 1455–1495.

[14] B. Tian, Y.-T. Gao, *Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics*, Eur. Phys. J. B 22 (2001), 351–360.

Luc Molinet
*Institut Denis Poisson, CNRS
Université de Tours, Université d’Orléans
Parc Grandmont
37200 Tours
France
E-mail: luc.molinet@lmpt.univ-tours.fr*

Raafat Talhouk
*Research Center
Léonard de Vinci Pôle Universitaire
92 916 Paris La Défense
France*

Raafat Talhouk and Ibtissame Zaiter
*Laboratory of Mathematics-DSST, Department of Mathematics, Faculty of Sciences 1
Lebanese University Hadat
Beirut
Lebanon*

Accepted: 18 June 2023