The Crossed Product by a Partial Endomorphism and the Covariance Algebra

D. Royer

Abstract

Given a local homeomorphism $\sigma : U \to X$ where $U \subseteq X$ is clopen and X is a compact and Hausdorff topological space, we obtain the possible transfer operators L_ρ which may occur for $\alpha : C(X) \to C(U)$ given by $\alpha(f) = f \circ \sigma$. We obtain examples of partial dynamical systems (X_A, σ_A) such that the construction of the covariance algebra $C^*(X_A, \sigma_A)$ and the crossed product by partial endomorphism $O(X_A, \alpha, L)$ associated to this system are not equivalent, in the sense that there does not exists invertible function $\rho \in C(U)$ such that $O(X_A, \alpha, L_\rho) = C^*(X_A, \sigma)$.

1 Introduction

We start with a summary of the construction of the crossed product by a partial endomorphism. Details may be seen in [3]. A partial C^*-dynamical system (A, α, L) consists of a (closed) ideal I of a C^*-algebra A, an idempotent self-adjoint ideal J of I (not necessarily closed), a *-homomorphism $\alpha : A \to M(I)$ and a linear positive map (which preserves *) $L : J \to A$ such that $L(aa(b)) = L(a)b$ for each $a \in J$ and $b \in A$. The map L is called transfer operator. Define in J an inner product (which may be degenerated) by $(x, y) = L(x^*y)$. Then we obtain an inner product \langle , \rangle in the quotient $J_0 = J/\{x \in J : L(x^*x) = 0\}$ defined by $\langle \tilde{x}, \tilde{y} \rangle = L(x^*y)$, which induces a norm $\| \|$. Define $M = \overline{J_0}$, which is a right Hilbert A-module and also a left A-module, where the left multiplication is defined by the *-homomorphism $\varphi : A \to L(M)$ (the adjointable operators in M), where $\varphi(a)(\tilde{x}) = \tilde{ax}$ for each $x \in J$. The Toeplitz algebra associated to (A, α, L) is the universal C^*-algebra $T(A, \alpha, L)$ generated by $A \cup M$ with the relations of A, of M, the bi-module products and $m^*n = \langle m, n \rangle$.

\[\text{Supported by Cnpq}\]
A redundancy in $T(A, \alpha, L_L)$ is a pair $(a, k) \in A \times \hat{K}_1$, ($\hat{K}_1 = \text{span}\{mn^*, m, n \in M\}$), such that $am = km$ for every $m \in M$. The Crossed Product by a Partial Endomorphism $O(A, \alpha, L)$ is the quotient of $T(A, \alpha, L)$ by the ideal generated by all the elements $a - k$ where (a, k) is a redundancy and $a \in \ker(\varphi)^{-1} \cap \varphi^{-1}(K(M))$.

In [3] it was defined the algebra $O(X, \alpha, L)$. This algebra is constructed from a partial C^*-dynamical system $(C(X), \alpha, L)$ induced by a local homeomorphism $\sigma : U \to X$, where U is an open subset of a compact topological Hausdorff space X. More specifically,

$$\alpha : C(X) \to C^b(U)$$

$$f \mapsto f \circ \sigma$$

where $C^b(U)$ is the space of all continuous bounded functions in U and $L : C_c(U) \to C(X)$ ($C_c(U)$ is the set of the continuous functions with compact support in U) is defined by

$$L(f)(x) = \begin{cases}
\sum_{y \in \sigma^{-1}(x)} f(y) & \text{if } x \in \sigma(U) \\
0 & \text{otherwise}
\end{cases}$$

for every $f \in C_c(U)$ and $x \in X$.

In [3] it was defined the algebra $C^*(X, \alpha)$, called covariance algebra. This algebra is also constructed from a partial dynamical system, that is, a continuous map $\sigma : U \to X$ where X is a topological compact Hausdorff space, U is a clopen subset of X and $\sigma(U)$ is open.

If we suppose that $\sigma : U \to X$ is an local homeomorphism, U clopen (and so $\sigma(U)$ is always open) then (X, σ) gives rise to two C^*-algebras, the covariance algebra $C^*(X, \sigma)$ and the crossed product by a partial endomorphism $O(X, \sigma, L)$.

In this paper we identify the transfer operators L_ρ which may occur for α. Moreover we show that the constructions of covariance algebra and crossed product by partial endomorphism are not equivalent, in the following sense: we obtain examples of partial dynamical systems (X_A, σ_A) such that there does not exists invertible function ρ such that $O(X_A, \alpha, L_\rho) = C^*(X, \alpha)$.

Given C^*-algebras A and B, if we write $A = B$, we will say that A and B are *-isomorphic.

Acknowledgements
2 Transfer operators of X for α

Let $\sigma : U \to X$ be a local homeomorphism and U an open subset of the compact Hausdorff space X. This local homeomorphism induces the $*$-homomorphism

$$\alpha : C(X) \to C^b(U)$$

$$f \mapsto f \circ \sigma .$$

Given a positive function $\rho \in C(U)$, for all $f \in C_c(U)$ we may define

$$L_\rho(f)(x) = \begin{cases}
\sum_{y \in \sigma^{-1}(x)} \rho(y)f(y) & \text{if } x \in \sigma(U) \\
0 & \text{otherwise}
\end{cases}$$

for each $x \in X$. Note that $L_\rho(f) = L(\rho f)$, and since $\rho f \in C_c(U)$ and $L(\rho f) \in C(X)$ (see [3]) then $L_\rho(f)$ in fact is an element of $C(X)$. In this way we may define the map $L_\rho : C_c(U) \to C(X)$, which is linear and positive (by the fact that ρ is positive). It is easy to see that $L_\rho(f \circ (g)) = L_\rho(f)g$ for each $f \in C_c(U)$ and $g \in C(X)$. The following proposition shows that if U is clopen in X then every transfer operator for α is of the form L_ρ for some $\rho \in C(U)$.

Proposition 2.1 Let $L : C_c(U) \to C(X)$ (U clopen in X) a transfer operator for α, that is, L is linear, positive and $L(g \circ (f)) = L(g)f$ for each $f \in C(X)$ and $g \in C_c(U)$. Then there exists $\rho \in C(U)$ such that $L = L_\rho$.

Proof.

Let $\{V_i\}_{i=1}^n$ be an open cover of U such that $\sigma_{|V_i}$ is a homeomorphism. (such cover exists because U is compact and σ is a local homeomorphism). For each i take an open subset $U_i \subseteq V_i$ such that $\overline{U_i} \subseteq V_i$ and $\{U_i\}_i$ is also a cover for U. Consider the partition of unity $\{\varphi_i\}$ subordinated to $\{U_i\}_i$ and define $\xi_i = \sqrt{\varphi_i}$. Since ξ_i is positive for each i then $L(\xi_i)$ is a positive function. Define $\rho = \sum_{i=1}^n \alpha(L(\xi_i))\xi_i$ which is also positive. Given $f \in C_c(U)$ define for each i,

3
Claim 1: \(g_i \in C(X) \) for all \(i \)

Let \(x_j \to x \). Suppose \(x \in \sigma(V_i) \). Since \(\sigma(V_i) \) is open we may suppose that \(x_j \in \sigma(V_i) \) for each \(j \). Since \(\sigma|_{V_i} \) is a homeomorphism then \(\sigma^{-1}(x_j) \to \sigma^{-1}(x) \) in \(V_i \) and so \(g_i(x_j) = (\xi_i f)(\sigma^{-1}(x_j)) \to (\xi_i f)(\sigma^{-1}(x)) = g_i(x) \). If \(x \notin \sigma(V_i) \) then \(x \notin \sigma(\overline{V_i}) \), which is closed. Therefore we may suppose that \(x_j \notin \sigma(\overline{U_i}) \) and so \(g_i(x_j) = 0 = g_i(x) \).

Claim 2: \(\xi_i \alpha(g_i) = \varphi_i f \)

If \(x \notin U_i \) then \((\xi_i \alpha(g_i))(x) = 0 = (\varphi_i f)(x) \). If \(x \in U_i \) then \(\alpha(g_i)(x) = g_i(\sigma(x)) = \xi_i(x)f(x) \) and so \(\xi_i(x)\alpha(g_i)(x) = \xi^2(x)f(x) = \varphi(x)f(x) \).

Since \(\varphi \) is partition of unity then \(f = \sum_{i=1}^{n} \varphi_i f = \sum_{i=1}^{n} \xi_i \alpha(g_i) \), where the last equality follows by claim 2. Then

\[
L(f) = \sum_{i=1}^{n} L(\xi_i \alpha(g_i)) = \sum_{i=1}^{n} L(\xi_i) g_i.
\]

We show that \(L = L_\rho \). If \(x \notin \sigma(U) \) then \(L_\rho(f)(x) = 0 = L(f)(x) \) by definition.

Given \(x \in \sigma(U) \),

\[
L_\rho(f)(x) = \sum_{y \in \sigma^{-1}(x)} \rho(y)f(y) = \sum_{y \in \sigma^{-1}(x)} \sum_{i=1}^{n} \alpha(L(\xi_i))(y)\xi_i(y)f(y) = \sum_{y \in \sigma^{-1}(x)} \sum_{i:y \in U_i} L(\xi_i)(x)\xi_i(y)f(y).
\]

On the other hand,

\[
L(f)(x) = \sum_{i=1}^{n} L(\xi_i)(x)g_i(x) = \sum_{i:x \in \sigma(U_i)} L(\xi_i)(x)\xi_i(\sigma^{-1}(x))f(\sigma^{-1}(x)).
\]

To see that those two expressions are equal note that the summands are the same.
Denote by M_ρ the Hilbert bi-module generated by $C_c(U)$ with the inner product given by L_ρ and by \tilde{K}_ρ the algebra generated by nm^* in $T(X,\alpha,L_\rho)$. Moreover, denote by $\varphi_\rho : C(X) \to L(M_\rho)$ the *-homomorphism given by the left product of A by M_ρ.

Lemma 2.2 Let $\rho, \rho' \in C(U)$ positive functions. If $\ker(\rho) = \ker(\rho')$ then $\ker(\varphi_\rho) = \ker(\varphi_{\rho'})$.

Proof.

Let $f \in C(X)$. Then $f \in \ker(\varphi_\rho) \iff fm = 0$ for each $m \in M_\rho \iff \tilde{f}g = \tilde{f}\tilde{g} = 0$ for each $g \in C_c(U)$. It is easy to check that $\tilde{f}g = 0$ in M_ρ if and only if $\rho fg = 0$. Then $f \in \ker(\varphi_\rho)$ if and only if $\rho fg = 0$ for each $g \in C_c(U)$. In the same way, $f \in \ker(\varphi_{\rho'})$ if and only if $\rho' fg = 0$ for each $g \in C_c(U)$. Since $\ker(\rho) = \ker(\rho')$ then $\rho fg = 0$ if and only if $\rho' fg = 0$ for each $g \in C_c(U)$.

\[\square\]

Proposition 2.3 If ρ and ρ' are elements of $C(U)$ such that there exists $r \in C(U)$ such that $r(x) \neq 0$ for each $x \in U$ and $\rho = rp'$ then $\mathcal{O}(X,\alpha,L_\rho)$ and $\mathcal{O}(X,\alpha,L_{\rho'})$ are *-isomorphic.

Proof.

Let us define a *-homomorphism from $\mathcal{O}(X,\alpha,L_\rho)$ to $\mathcal{O}(X,\alpha,L_{\rho'})$. Define

$$\psi_1 : C(X) \to T(X,\alpha,L_{\rho'})$$

$$f \mapsto f$$

Let $\xi = \sqrt{r}$, and note that for each $g \in C_c(U)$,

$$\|\tilde{g}\|_\rho^2 = \|L_\rho(g^*g)\| = \|L(\rho g^*g)\| = \|L(rp'g^*g)\| = \|L_{\rho'}((\xi g)^*\xi g)\| = \|\tilde{\xi}g\|_{\rho'}^2.$$

So we may define $\psi_2 : M_\rho \to T(X,\alpha,L_{\rho'})$ by $\psi_2(\tilde{g}) = \tilde{\xi}g$. Let $\psi_3 = \psi_1 \cup \psi_2$. We show that ψ_3 extends to $T(X,\alpha,L_\rho)$. For each $f \in C(X)$ and $g \in C_c(U)$ we have

$$\psi_3(f)\psi_3(\tilde{g}) = f\tilde{\xi}g = \tilde{\xi}fg = \psi_3(\tilde{fg})$$

and

$$\psi_3(\tilde{g})\psi_3(f) = \tilde{\xi}gf = \tilde{\xi}g\alpha(f) = \psi_3(g\alpha f).$$
Moreover, if \(h \in C_c(U) \) then
\[
\psi_3(\xi g^*)^* \xi h = L_{\rho'}((\xi g)^* \xi h) = L_{\rho'}(g^* h) = L_{\rho}(g^* h) = \psi_3(L_{\rho}(g^* h)).
\]

So \(\psi_3 \) extends to \(\mathcal{T}(X, \alpha, L_{\rho}) \). Let \((f, k) \in C(X) \times \hat{K}_{1, \rho} \) a redundancy with \(f \in \ker(\varphi_{\rho})^\perp \cap \varphi_{\rho}^{-1}(K(M_{\rho})) \). Since \(\psi_3(M_{\rho}) \subseteq M_{\rho'} \) it follows that \(\psi_3(k) \in \hat{K}_{1, \rho'} \) and so \((\psi_3(f), \psi_3(k)) \in C(X) \times \hat{K}_{1, \rho'} \). Moreover, given \(g \in C_c(U) \) and \(\xi^{-1} g \) from where \(\psi_3(M_{\rho}) \) is dense in \(M_{\rho'} \), and so, since \(fm = km \) for each \(m \in M_{\rho} \) then \(\psi_3(f)n = \psi_3(k)n \) for every \(n \in M_{\rho'} \). Therefore \((\psi_3(f), \psi_3(k)) \) is a redundancy. Since \(\xi^{-1} g \) is dense in \(M_{\rho'} \), and so, since \(f \in \ker(\varphi_{\rho})^\perp \), by the previous lemma, \(\psi_3(f) \in \ker(\varphi_{\rho'})^\perp \). Then, since \((\psi_3(f), \psi_3(k)) \) is a redundancy of \(\mathcal{T}(X, \alpha, L) \) then by \([3:2.6]\), \(\psi_3(f) \in \varphi^{-1}(K(M_{\rho'})) \). So \(\psi_3(f) \in \ker(\varphi_{\rho'})^\perp \cap \varphi_{\rho'}^{-1}(K(M_{\rho})) \). This shows that if \(\phi \) is the quotient *-homomorphism from \(\mathcal{T}(X, \alpha, L) \) in \(\mathcal{O}(X, \alpha, L) \) then \(\phi \circ \psi_3 : \mathcal{T}(X, \alpha, L_{\rho}) \to \mathcal{O}(X, \alpha, L) \) is a homomorphism which vanishes on all the elements of the form \((a - k)\) where \((a, k)\) is a redundancy and \(a \in \varphi_{\rho}^{-1}(K(M_{\rho})) \cap \ker(\varphi_{\rho})^\perp \). So we obtain a *-homomorphism
\[
\psi : \mathcal{O}(X, \alpha, L_{\rho}) \to \mathcal{O}(X, \alpha, L_{\rho'})
\]
\[
f \mapsto f
\]
\[
\tilde{g} \mapsto \tilde{\xi}g
\]

In the same way we may define the *-homomorphism
\[
\psi_0 : \mathcal{O}(X, \alpha, L_{\rho'}) \to \mathcal{O}(X, \alpha, L_{\rho})
\]
\[
f \mapsto f
\]
\[
\tilde{g} \mapsto \tilde{\xi}^{-1}g
\]

Note that \(\psi_0 \) is the inverse of \(\psi \), showing that the algebras are *-isomorphic.

\(\square \)

Corollary 2.4 If \(\rho \in C(U) \) is a positive function such that \(\rho(x) \neq 0 \) for all \(x \in U \) then \(\mathcal{O}(X, \alpha, L_{\rho}) \) is *-isomorphic to \(\mathcal{O}(X, \alpha, L) \).
Proof.

Note that the transfer operator L associated to the algebra $O(X, \alpha, L)$ is the operator L_{1_U}.

Since $\rho = 1_U$ is invertible, taking $r = \rho^{-1}$, by the previous proposition follows the corollary.

□

3 Relationship between the Covariance Algebra and the Crossed Product by Partial Endomorphism

We show here that given a partial dynamical system $\sigma : U \to X$, where U is clopen, there exists an other partial dynamical system $\tilde{\sigma} : \tilde{U} \to \tilde{X}$ (called in [4] the σ-extension of X) such that $C^*(\sigma, X) = O(\tilde{X}, \alpha, L)$. Moreover, if σ is injective then $C^*(\sigma, X) = O(X, \alpha, L)$.

3.1 The Covariance Algebra as an Crossed Product by a Partial Endomorphism

Let us start with a summary of the construction of the covariance algebra. Let $\sigma : U \to X$ a continuous map, $U \subseteq X$ clopen, X compact Hausdorff and $\sigma(U)$ open. Denote $\sigma(U) = U_{-1}$.

Consider the space $X \cup \{0\}$, where $\{0\}$ is a symbol, which we define to be clopen. So $X \cup \{0\}$ is a compact and Hausdorff space.

Define $\tilde{X} \subset \prod_{i=0}^{\infty} X \cup \{0\}$,

$$\tilde{X} = \bigcup_{N=0}^{\infty} X_N \cup X_\infty$$

onde

$$X_N = \{(x_0, x_1, ..., x_N, 0, 0, ...) : \sigma(x_i) = x_{i-1} \text{ e } x_N \notin U_{-1}\}$$

and

$$X_\infty = \{(x_0, x_1, ...) : \sigma(x_i) = x_{i-1}\}.$$

In \tilde{X} we consider the product topology induced from $\prod X \cup \{0\}$.
By [4: 2.2] \(\widetilde{X} \) is compact. Define

\[
\Phi : \quad \widetilde{X} \to X
\]

\[
(x_0, x_1, ...) \mapsto x_0
\]

which is continuous and surjective. Consider the clopen subsets \(\widetilde{U} = \Phi^{-1}(U) \) and \(\widetilde{U}_{-1} = \Phi^{-1}(U_{-1}) \) and the continuous map

\[
\tilde{\sigma} : \quad \widetilde{U} \to \widetilde{U}_{-1}
\]

\[
(x_0, x_1, ...) \mapsto (\sigma(x_0), x_0, x_1, ...)
\]

Those maps satisfies the relation

\[
\Phi(\tilde{\sigma}(\tilde{x})) = \sigma(\Phi(\tilde{x})).
\]

Note that \(\tilde{\sigma} \) is in fact an homeomorphism. This homeomorphism induces the *-isomorphism

\[
\theta : C(\widetilde{U}_{-1}) \to C(\widetilde{U})
\]

\[
f \mapsto f \circ \tilde{\sigma}
\]

So we may consider the partial crossed product \(C(\widetilde{X}) \rtimes_\theta \mathbb{Z} \) (see [1]).

Definition 3.1 (4: 4.2) The covariance algebra associated to the partial system \((X, \sigma)\) is the algebra \(C(\widetilde{X}) \rtimes_\theta \mathbb{Z} \) and will be denoted \(C^*(X, \sigma) \).

Lemma 3.2 If \(\sigma : U \to X \) is injective, \(U \) clopen and \(U_{-1} \) open then \(C(X) \rtimes_\theta \mathbb{Z} = \mathcal{O}(X, \alpha, L) \), where \(\theta : C(U_{-1}) \to C(U) \) is given by \(\theta(f) = f \circ \sigma \).

Proof.

Define \(\psi_1 : C(X) \cup M \to C(X) \rtimes_\theta \mathbb{Z} \) by \(\psi_1(f) = f \delta_0 \) and \(\psi_1(1_{U}) = 1_U \delta_1 \). It is easy to check that \(\psi_1 \) extends to \(T(X, \alpha, L) \). We show that \(\Psi_1 \) vanishes on the redundancies.

Let \((f, k)\) redundancy with \(f \in \ker(\varphi)^{\perp} \cap \varphi^{-1}(\mathbb{K}(M)) \). By [3 2.6], \(f \in C(U) \). Then \(\psi_1(f) \psi_1(1_U) = f \delta_1 1_{U_{-1}} \delta_{-1} = \theta(\theta^{-1}(f) 1_{U_{-1}}) \delta_0 = \psi_1(f) \). Take \((k_n) \in \mathbb{K}_1 \), \(k_n = \sum_{i} m_{ni} l_{ni} \).
where \(m_{ni}, l_{ni} \in M \). Then

\[
(\psi_1(f) - \psi(k))(\psi_1(f) - \psi(k))^* = (\psi_1(f) - \psi_1(k))\psi_1(f - k) = \psi_1(f - k)(\psi_1(\tilde{1}_U) - \psi_1(k))^* = \\
= \psi(f - k)(\tilde{1}_U \tilde{f}^* - k) = \lim_{n \to \infty} \psi(f - k)(\tilde{1}_U \tilde{f}^* - k_n) = 0.
\]

The last equality follows by the fact that \((f - k)m = 0\) for each \(m \in M \). So, by passage to the quotient we may consider \(\psi : \mathcal{O}(X, \alpha, L) \to C(X) \rtimes_{\theta} \mathbb{Z} \). By the other hand, define

\[
\psi_0 : C(X) \to \mathcal{O}(X, \alpha, L) \quad f \mapsto f
\]

which is a *-homomorphism. Note that for each \(f \in C(U_{-1}) \),

\[
\tilde{1}_U \psi_0(f)\tilde{1}_U^* = 1_U \alpha(f) \tilde{1}_U^* = 1_U \alpha(f) = \theta(f) = \psi_0(\theta(f))
\]

and moreover \(\tilde{1}_U \) is a partial isometry such that \(\tilde{1}_U \tilde{1}_U^* = 1_U \) and \(\tilde{1}_U^* \tilde{1}_U = 1_{U_{-1}} \). Then, since \((\psi_0, \tilde{1}_U)\) is a covariant representation of \(C(X) \) in \(\mathcal{O}(X, \alpha, L) \), there exists a *-homomorphism \(\psi' : C(X) \rtimes_{\theta} \mathbb{Z} \to \mathcal{O}(X, \alpha, L) \) such that \(\psi'(f \delta_n) = f \tilde{1}_U^n \) (see [1, 5]). The *-homomorphisms \(\psi \) and \(\psi' \) are inverses of each other, and so the algebras are *-isomorphic.

\[\square\]

Corollary 3.3 \(C^*(X, \sigma) = \mathcal{O}(\tilde{X}, \alpha, L) \)

Proof.

Follows by the definition of covariance algebras and by the previous lemma.

\[\square\]

By the following proposition, if \(\sigma \) is injective then the constructions of covariance algebra and crossed product by partial endomorphism are equivalent.

Proposition 3.4 If \(\sigma : U \to X \) is injective then \(C^*(X, \sigma) = \mathcal{O}(X, \alpha, L) \).

Proof.
By [4: 2.3] the map
\[\Phi : \tilde{X} \rightarrow X \]
\[(x_0, x_1, ...) \mapsto x_0 \]
is a homeomorphism. Moreover, since \(\Phi \circ \tilde{\sigma} = \sigma \circ \Phi \) then \(C(\tilde{x}) \times_{\theta} \mathbb{Z} = C(x) \times_{\theta} \mathbb{Z} \). By the previous lemma \(C(x) \times_{\theta} \mathbb{Z} = \mathcal{O}(X, \alpha, L) \).

\[\square \]

3.2 Cuntz-Krieger algebras

We show examples of partial dynamical system \(\sigma_A : U \rightarrow X_A \) such that there does not exist an invertible function \(\rho \in C(U) \) such that \(\mathcal{O}(X, \alpha, L_\rho) \) and \(C^*(X, \alpha) \) are *-isomorphic.

The examples are based on the Cuntz-Krieger algebras.

Let \(A \) be a \(n \times n \) matrix with \(a_{i,j} \in \{0, 1\} \). Denote by \(Gr(A) \) the directed graph of \(A \), that is, the vertex set is \(\{1, ..., n\} \) and \(A(i,j) \) is the number of oriented edges from \(i \) to \(j \). A path is a sequence \(x_1, ..., x_m \) such that \(A(x_i, x_{i+1}) = 1 \) for each \(i \). The graph \(Gr(A) \) is transitive if for each \(i \) and \(j \) there exists a path from \(i \) to \(j \), that is, a path \(x_1, ..., x_m \) such that \(x_1 = i \) and \(x_m = j \). The graph is a cycle if for each \(i \) there exists only one \(j \) such that \(A(i,j) = 1 \).

Let

\[X_A = \{ x = (x_1, x_2, ..) \in \{1, ..., n\}^\mathbb{N} : A(x_i, x_{i+1}) = 1 \forall i \} \subseteq \{1, ..., n\}^\mathbb{N} \]

and

\[\sigma_A : X_A \rightarrow X_A \]
\[(x_0, x_1, ...) \mapsto (x_1, x_2, ...). \]

Consider the set

\[\overline{X_A} = \{(x_i)_{i \in \mathbb{Z}} \in \{1, ..., n\}^\mathbb{Z} : A(x_i, x_{i+1}) = 1 \forall i \} \subseteq \{1, ..., n\}^\mathbb{Z} \]

and the map \(\overline{\sigma_A} : \overline{X_A} \rightarrow \overline{X_A} \) defined by \(\overline{\sigma_A}(i)_{i \in \mathbb{Z}} = (x_{i+1})_{i \in \mathbb{Z}} \). It is showed in [4: 2.8] that there exists a homeomorphism \(\Phi : \overline{X_A} \rightarrow \overline{X_A} \) such that \(\Phi \circ \overline{\sigma_A} = \overline{\sigma_A} \circ \Phi \). Therefore \(\mathcal{O}(\overline{X_A}, \alpha, L) = \mathcal{O}(\overline{X_A}, \alpha, L) \) and so \(C^*(X_A, \sigma_A) = \mathcal{O}(\overline{X_A}, \alpha, L) \). So we may analyze the ideal structure of \(C^*(X_A, \sigma_A) \) by using the theory developed for \(\mathcal{O}(\overline{X_A}, \alpha, L) \) in [3]. This theory
is based on the σ_A,σ_A^{-1} invariant open subsets of X_A. (In a system $\sigma: U \to X$, a subset $V \subseteq X$ is σ,σ^{-1} invariant if $\sigma(U \cap V) \subseteq V$ and $\sigma^{-1}(V) \subseteq V$).

Proposition 3.5 If $Gr(A)$ is transitive and is not a cicle then there exists at least one open non trivial σ_A,σ_A^{-1} invariant subset of X_A.

Proof.

Let $r = x_1, x_2, \ldots, x_n$ an admissible word (that is, $A(x_i, x_{i+1}) = 1$ for each i). Let $V_r = \{x \in X_A : r \in x\}$. Note that V_r is open and σ_A, σ_A^{-1} invariant. We show that there exists a such non trivial V_r. Take $x_1 \in \{1, \ldots, n\}$. Consider an admissible word x_1, \ldots, x_m where $x_j \neq x_1$ for each $j > 1$ and $A(x_m, x_1) = 1$. Such word exists because $Gr(A)$ is transitive. Let $r = x_1, \ldots, x_m, x_1$. Then

$$y = (\ldots, x_m, x_1, x_2, \ldots, x_m, x_1, x_2, \ldots) \in V_r$$

where x_1° means $y_0 = x_1$.

We conclude the proof by showing that $V_r \neq X_A$. Suppose that there exists $y_0 \in \{1, \ldots, n\}$ with $y_0 \notin \{x_1, \ldots, x_m\}$. Let $x_1, y_1, \ldots, y_l, y_0, s_1, \ldots, s_l$ an admissible word such that $y_j \neq x_1$ and $s_j \neq x_1$ for each j and $A(s_l, x_1) = 1$. Then

$$(\ldots, s_l^\circ, x_1, y_1, \ldots, y_l, y_0, s_1, \ldots, s_l, x_1, \ldots) \notin V_r.$$

If $\{x_1, \ldots, x_m\} = \{1, \ldots, n\}$, since $Gr(A)$ is not a cicle, for some x_i there exists x_t such that $A(x_i, x_t) = 1$ and $x_t \neq x_{i+1}$. (if $i = m$ consider $x_{i+1} = x_1$). If $x_t = x_1$ (and so $i \neq m$) consider an admissible word x_1, \ldots, x_i, x_1 and note that

$$(\ldots, x_i^\circ, x_1, x_2, \ldots, x_i, x_1, \ldots) \notin V_r.$$

If $x_t \neq x_1$ consider an admissible word $x_1, x_2, \ldots, x_i, x_t, y_1, \ldots, y_l$ such that $y_j \neq x_1$ and $A(y_l, x_1) = 1$ (if there does not exists $y_1 \neq x_1$ such that $A(x_t, y_1) = 1$ then y_1, \ldots, y_l is the empty word) and so

$$(\ldots, y_l^\circ, x_1, x_2, \ldots x_i, x_t, y_1, \ldots, y_l, y_1, \ldots) \notin V_r.$$

11
So $V_t \neq X_A$.

Now we analyse the σ_A, σ_A^{-1} invariant subsets of X_A.

Proposition 3.6 If $Gr(A)$ is transitive and is not a cicle the the unique open σ_A-invariant subset of X_A are \emptyset and X_A.

Proof.
Let $V \subseteq X_A$ an open nonempty σ_A invariant susbet of X_A. Let $x \in V$ and V_m a open neighbourhood of x, $V_m \subseteq V$,

$$V_m = \{ y \in X_A : x_i = y_i \text{ for each } 1 \leq i \leq m \}.$$

Given $z \in X_A$ take $r = r_1, ..., r_t$ a path from x_m to z_1. Then

$$s = (x_1, ..., x_m, r_2, ..., r_{t-1}, z_1, z_2, ...) \in V_m$$

and since V is σ_A invariant then $z = \sigma_A^{m+t-2}(s) \in V$. So $V = X_A$.

□

According [3] a partial dynamical system $\sigma : U \to X$ is topologically free if the closure of $V^{i,j} = \{ x \in U : \sigma^i(x) = \sigma^j(x) \}$ has empty interior for each $i, j \in \mathbb{N}, i \neq j$.

Proposition 3.7 If $Gr(A)$ is transitive and is not a cicle then (X_A, σ_A) is topologically free.

Proof.
Suppose that $\overline{V^{i,j}}$ has nonempty interior and $i < j$, $j = i + k$. Let x' be an interior point of $\overline{V^{i,j}}$ and $V_{x'} \subseteq \overline{V^{i,j}}$ open neighbourhood of x'. Take $x \in V^{i,j} \cap V_{x'}$. Since $\sigma_A^i(x) = \sigma_A^j(x)$ then $z_i + t = z_{j + t}$ for each $t \in \mathbb{N}$ and since $j = i + k$ then $x = (x_1, ..., x_{i-1}, r, r, ...)$ where $r = x_i x_{i+1} ... x_{i+k-1}$. Consider the open subset

$$V_m = \{ z \in X_A : z_i = x_i, 1 \leq i \leq m \}$$

where m is such that $m \geq i + k$ and $V_m \subseteq V_{x'}$. Then, if $y \in V_m$ with $y \in V^{i,j}$ then $y = x$.

12
Therefore $V_m = \{x\}$. We show that there exists $z \in V_m$ with $z \neq x$, and that will be a contradiction. Suppose $y_0 \in \{1, ..., n\}$ and $y_0 \notin \{x_i, ..., x_{i+k-1}\}$. Take a path $s = s_1, ..., s_t$ from x_i to x_{i+k-1} such that $s_j = y_0$ for some j. Then $z = (x_1, ..., x_{i-1}, r, r, ..., r, s, s, ...) \in V_m$ (where r is repeated m times) but $z \neq x$. Suppose $\{1, ..., n\} = \{x_i, ..., x_{i+k-1}\}$. Since $\text{Gr}(A)$ is not a cycle then for some x_j there exists $x_t \neq x_{j+1}$ (consider $x_{j+1} = x_i$ if $j = i+k-1$) such that $A(x_j, x_t) = 1$. Let s be a path from x_t to x_{i+k-1} and define $p = x_i, ..., x_j, x_t$. Then

$$z = (x_1, ..., x_{i-1}, r, r, ..., r, x_i, ..., x_{j}, x_t, p, p, p, ...,) \in V_m$$

(where p is repeated m times) but $z \neq x$. So, it is showed that there exists $z \in V_m, z \neq x$. Therefore, V^i_j has empty interior for each i, j.

\[\square\]

Theorem 3.8 If $\text{Gr}(A)$ is transitive and is not a cycle then $C^*(X_A, \sigma_A)$ and $O(X_A, \alpha, L)$ are not *-isomorphic C^*-algebras.

Proof.

By [3.2] $C^*(X_A, \sigma_A) = O(\overline{X_A}, \alpha, L)$ and since $O(\overline{X_A}, \alpha, L) = O(\overline{X_A}, \alpha, L)$ then $C^*(X_A, \sigma_A) = O(\overline{X_A}, \alpha, L)$. By [3.5] X_A has at least one non trivial open σ_A, σ_A^{-1} invariant subset and by [3.9] $O(\overline{X_A}, \alpha, L)$ has at least on non trivial ideal. On the other hand, by [3.6] (X_A, σ_A) has no open σ_A, σ_A^{-1} invariant subsets and by [3.7] (X_A, σ_A) is topologically free. By [3.8] $O(X_A, \alpha, L)$ is simple. So $C^*(X_A, \sigma_A)$ and $O(X_A, \alpha, L)$ are not *-isomorphic.

\[\square\]

Corollary 3.9 If $\text{Gr}(A)$ is transitive and is not a cycle then there does not exists transfer operator L_{ρ}, with $\rho(x) \neq 0$ for each $x \in U$ such that $C^*(X_A, \sigma_A)$ and $O(X_A, \alpha, L)$ are *-isomorphic C^*-algebras.

Proof.

Follows by the previous theorem an by [2.4]

\[\square\]
References

[1] R. Exel, Circle actions on C^*-algebras, partial automorphisms and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122, (1994), 361-401.

[2] R. Exel, A new look at the crossed-product of a C^*-algebra by an endomorphism, Ergodic Theory Dynam. Systems, Vol. 23 (2003), pp. 1733-1750.

[3] R. Exel and D. Royer, The crossed product by a partial endomorphism, Preprint 2004, math.OA/0410192

[4] B. K. Kwasniewski, Covariance algebra of a partial dynamical system, Preprint 2004, math.OA/0407352

Departamento de Matemática, Universidade Federal de Santa Catarina, Brasil.

E-mail: royer@mtm.ufsc.br