SHORT COMMUNICATION

Nucleosides and amino acids, isolated from Cordyceps sinensis, protected against cyclophosphamide-induced myelosuppression in mice

Yu Zhanga,b,*, Jie Liuc,*, Yan Wangb,*, Chengpeng Sunb, Wenjia Lid, Jianjian Qiud, Yanling Qiaoa,b, Fan Wua,b, Xiaokui Huoa, Yue Ana, Baojing Zhangb, Shuangcheng Mac, Jian Zhengc and XiaoChi Maa

aPharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China; bDalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China; cInstitute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China; dDongguan Dongyangguang Cordyceps R&D Co., Ltd, Dongguan, China

ABSTRACT

The material basis of Cordyceps sinensis (Berk.) Sacc has not yet been well understood and natural C. sinensis resources are very rare. The present study aimed to clarify the substance basis and compare the protective effect of natural and artificially-cultivated C. sinensis against cyclophosphamide (CTX)-induced myelosuppression. Both natural and artificially-cultivated C. sinensis effectively improved CTX-induced decrease of peripheral blood counts and hemopoietic growth factors, pathological changes, and apoptosis of bone marrow. Importantly, artificially-cultivated C. sinensis showed similar capacity compared with natural C. sinensis. Uridine (1), adenosine (2), L-pyroglutamic acid (3), lysinonorleucine (4), 1,3,5-trimethoxybenzene (5), D-mannitol (6), L-pyroglutamic acid methyl ester (7), tryptophan (8), and phenylalanine (9) were isolated from bioactivity-guided fraction and identified to attenuate CTX-induced myelosuppression in mice. In conclusions, nucleosides and amino acids represented the effective chemical components in C. sinensis. Artificial cultivation can be used as an effective substitute for natural C. sinensis.

ARTICLE HISTORY

Received 5 November 2021
Accepted 13 February 2022

KEYWORDS

natural C. sinensis; artificially-cultivated C. sinensis; cyclophosphamide; myelosuppression

CONTACT

Xiao-Chi Ma \texttt{maxc1978@163.com}; Jian Zheng \texttt{zhengjian@nifdc.org.cn}; Shuangcheng Ma \texttt{masc@nifdc.org.cn}

*Yu Zhang, Jie Liu, and Yan Wang contributed equally to this work.

Supplemental data for this article can be accessed online at https://dx.doi.org/10.1080/14786419.2022.2043307.
1. Introduction

Cordyceps sinensis (Berk.) Sacc. is a worm in winter but a grass in summer. For centuries, *C. sinensis* has been used as an immunomodulator in China (Qian et al. 2012; Kang et al. 2015). Due to its extreme host range specificity, *C. sinensis* grows slowly and natural resources are scarce. The overexploitation has made *C. sinensis* on the brink of extinction. Recently, artificially-cultivated *C. sinensis* has been successfully developed in China (Li, Liu, et al. 2019). However, the active ingredients of cultivated *C. sinensis* has not been fully understood, which needs to be further characterised. In present study, the potential effect on CTX-induced myelosuppression was evaluated in mice after treatment of natural and artificially-cultivated *C. sinensis*. The active components were identified. The results would provide useful information to understand the effect of *C. sinensis* for improving hematopoietic function and promote the development process of the cultivated substitute to protect the *C. sinensis* resources on the verge of extinction.

2. Results and discussion

2.1. Natural and artificially-cultivated *C. sinensis* exhibited virtually identical protective effect against CTX-induced myelosuppression in mice

To evaluate the potential effect of natural and artificially-cultivated *C. sinensis* on CTX-induced myelosuppression, their chemical compositions were firstly analyzed by HPLC, which showed similar chemical composition (Supplementary Figure 1A). Both natural and cultivated strains, significantly improved CTX-induced myelosuppression in mice, as evidenced by increased levels of immune organ indexes, peripheral blood counts, EPO, G-CSF and TPO (Supplementary Figures 2–4). Moreover, *C. sinensis* increased bone marrow cell number, improved femoral bone morphology and inhibited cell apoptosis (Supplementary Figures 5–7). These findings suggested the chemoprotective effects of natural and artificially-cultivated *C. sinensis* were identical, which means artificial cultivation can be used as an effective substitute for natural *C. sinensis* regarding the effect on CTX-induced myelosuppression.
2.2. Water extracts of C. sinensis contribute to the protective effect against CTX-induced myelosuppression in mice

In order to elucidate the active components, C. sinensis was extracted by different extract solvents and only water extract increased WBC counts and LYM% level (Supplementary Table 1). These results suggested that the active components of C. sinensis responsible for the leukogenic effects might be water-soluble substances with higher polarity. Then, the exact compounds in ethanol extract and water extract were systematically isolated using preparative HPLC and silica gel column chromatography. Finally, compounds 1-9 were obtained and their chemical structures were identified by 1H and 13C NMR data (Supplementary Figure 9–26), namely uridine (1) (Kwon et al. 2003), adenosine (2) (Shao et al. 2014), L-pyroglutamic acid (3) (Gao et al. 2001), lysino-norleucine (4) (van den Nieuwendijk et al. 1999), 1,3,5-trimethoxybenzene (5) (Xie et al. 2013), D-mannitol (6) (Yang et al. 2005), L-pyroglutamic acid methyl ester (7) (He et al. 2014), tryptophan (8) (Yuan et al. 2009), phenylalanine (9) (Wang et al. 2017) (Supplementary Figure 1B). Among them, the contents of adenosine, uridine, mannitol, tryptophan, phenylalanine and pyroglutamic acid in natural and artificially-cultivated C. sinensis were determined by LC-MS/MS (Supplementary Figure 1C; Supplementary Table 2). Natural and artificially-cultivated C. sinensis contained similar contents of these compounds with variations of 0.48–1.78 (contents ratio of artificially-cultivated C. sinensis to natural C. sinensis) (Supplementary Table 3). Actually, the main nutrients including soluble proteins, nucleosides, nucleotides, and adenosine between the natural and artificially-cultivated samples were virtually identical, while the toxic heavy metal levels were significantly lower in artificially-cultivated C. sinensis (Lee et al. 2015; Li, Han, et al. 2019; Zhou et al. 2019; Guo et al. 2020). Then, the effects of adenosine, uridine, mannitol, tryptophan, phenylalanine and pyroglutamic acid were directly evaluated in CTX-induced myelosuppression mice. First, all six compounds abolished the body weight loss induced by CTX but failed to ameliorate the decrease of indexes of thymus and spleen (Supplementary Figure 27). Furthermore, six compounds displayed varied effects on hematopoietic function of bone marrow in CTX-induced mice. It should be noted that the protective potential of a single compound verified in present study was poorer than that of C. sinensis. These results suggested that these compounds ameliorated CTX-induced myelosuppression to different degrees and the leukogenic effect of C. sinensis could be a synergistic action of multiple components, like adenosine, uridine, mannitol, tryptophan, phenylalanine and pyroglutamic acid.

3. Conclusion

Both natural and artificially-cultivated C. sinensis exhibited comparable pharmacological activity against CTX-induced myelosuppression in mice. Nucleosides and amino acids represented the effective chemical components in C. sinensis. The findings suggested that artificial cultivation can be used as an effective substitute for natural C. sinensis regarding the effect on CTX-induced myelosuppression.
Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Key Research and Development Program of China (2018YFC1705900), Distinguished professor of Liaoning Province (XLYC2002008), Science Foundation of Department of Education of Liaoning Province (LZ2020054).

References

Gao JM, Dong ZL, Liu JK. 2001. A new ceramide from the basidiomycete Russula cyanoxantha. Lipids. 36(2):175–180.

Guo DL, Qiu L, Feng D, He X, Li XH, Cao ZX, Gu YC, Mei L, Deng F, Deng Y. 2020. Three new α-pyrones derivatives induced by chemical epigenetic manipulation of Penicillium herquei, an endophytic fungus isolated from Cordyceps sinensis. Nat Prod Res. 34(7):958–964. Apr

He C, Peng C, Dai O, Yang L, Liu J, Guo L, Xiong L, Liu S. 2014. Chemical constituents from Leonurus japonicus Injection. Chin Tradit Herb Drugs. 45:3048–3052.

Kang HJ, Baik HW, Kim SJ, Lee SG, Ahn HY, Park JS, Park SJ, Jang EJ, Park SW, Choi JY, et al. 2015. Cordyceps militaris enhances cell-mediated immunity in healthy Korean men. J Med Food. 18(10):1164–1172.

Kwon HC, Jung IY, Cho SY, Cho OR, Yang MC, Lee SO, Hur JY, Kim SY, Yang JB, Lee KR. 2003. Phospholipids from Bombycis corpus and their neurotrophic effects. Arch Pharm Res. 26(6):471–477.

Lee EJ, Jang KH, Im SY, Lee YK, Farooq M, Farhoudi R, Lee DJ. 2015. Physico-chemical properties and cytotoxic potential of Cordyceps sinensis metabolites. Nat Prod Res. 29(5):455–459.

Li X, Liu Q, Li W, Li Q, Qian Z, Liu X, Dong C. 2019. A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Crit Rev Biotechnol. 39(2):181–191.

Li XH, Han XH, Qin LL, He JL, Cao ZX, Gu YC, Guo DL, Deng Y. 2019. Isochromanes from Aspergillus fumigatus, an endophytic fungus from Cordyceps sinensis. Nat Prod Res. 33(13):1870–1875.

Qian GM, Pan GF, Guo JY. 2012. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res. 26(24):2358–2362.

Shao X, Lin J-h, Zhang L. 2014. Chemical constituents in root tubers of Euphorbia kansui and their activities. Chinese Herbal Medicines. 45(23):3383–3386.

van den Nieuwendijk AM, Benninghof JC, Wegmann V, Bank RA, Te Koppele JM, Brussee J, van der Gen A. 1999. Synthesis of reduced collagen crosslinks. Bioorg Med Chem Lett. 9(12):1673–1676.

Wang XL, Xiang B, Ya-Mei Li, Geng FN, Yan YM, Cheng YX. 2017. Water soluble compounds from Periplaneta americana and their angiogenesis activity. Nat Product Res Dev. 29:2004–2009.

Xie Q, Wang W, Li G, Wang Y, Zhang X, Ye W. 2013. Chemical constituents from the leaves of Hunteria zeylanica. J Jinan Univ (Nat Sci Med Ed.). 34:121–124.

Yang L, Wang M, Zhao Y, Tu Y. 2005. Chemical constituents of the rhizome of Matteuccia struthiopteris. Yao Xue Xue Bao. 40(3):252–254.

Yuan L, Ji T, Wang A, Yang J, Su Y. 2009. Studies on chemical constituents of the seeds of Allium cepa. J Chin Med Mater. 31:222–223.

Zhou Y, Wang M, Zhang H, Huang Z, Ma J. 2019. Comparative study of the composition of cultivated, naturally grown Cordyceps sinensis, and stiff worms across different sampling years. PLoS One. 14(12):e0225750.