Pion-Kaon correlations in central Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV

J. Adams,3 C. Adler,12 M.M. Aggarwal,25 Z. Ahammed,28 J. Amonett,17 B.D. Anderson,17 M. Anderson,5 D. Arghipkin,11 G.S. Averichev,10 S.K. Badyal,16 J. Balewski,13 O. Barannikova,28,29 L.S. Barnby,17 J. Baudot,15 S. Bekele,24 V.V. Belaga,10 R. Bellwied,41 J. Berger,12 B.I. Bezverkhyy,43 S. Bhardwaj,29 P. Bhaskar,38 A.K. Bhati,25 H. Bichsel,40 A. Billmeier,41 L.C. Bland,2 C.O. Blyth,3 B.E. Bonner,30 M. Botje,23 A. Boucham,34 A. Brandin,21 A. Bravar,2 R.V. Cadman,1 X.Z. Cai,33 H. Caines,43 M. Calderón de la Barca Sánchez,2 J. Carroll,18 J. Castillo,18 M. Castro,41 D. Cebra,5 P. Chaloupka,9 S. Chattopadhyay,38 H.F. Chen,32 Y. Chen,9 S.P. Chernenko,10 M. Chernenko,43 B. Choi,36 W. Christie,2 J.P. Coffin,19 T.M. Cormier,41 J.G. Cramer,40 H.J. Crawford,4 D. Das,38 S. Das,38 A.A. Derevschikov,27 L. Didenko,7 T. Dietel,12 X. Dong,32,18 J.E. Draper,5 F. Du,43 A.K. Dubey,14 V.B. Dunin,10 J.C. Dunlop,2 M.R. Dutta Majumdar,38 V. Eckardt,19 L.G. Efimov,10 V. Emeljanov,21 J. Engelge,4 G. Eppley,30 B. Erazmus,34 P. Fachini,2 V. Faine,2 J. Fairey,15 R. Fatemi,13 K. Filimonov,18 P. Filip,9 E. Finch,43 Y. Fisyak,2 D. Flierl,12 K.J. Foley,2 J. Fu,42 C.A. Gagliardi,35 M.S. Ganti,35 T.D. Gutierrez,9 N. Gagamushvili,10 J. Gans,43 L. Gaudichet,43 M. Germain,15 F. Geurts,30 V. Glazikhanian,9 P. Ghosh,38 J.E. Gonzalez,6 O. Grachov,41 V. Grigoriev,21 S. Gronsal,8 D. Grosnick,37 M. Guedon,15 S.M. Guertin,6 A. Gupta,16 E. Gushin,21 T.J. Hallman,2 D. Hardtke,18 J.W. Harris,43 M. Heinz,43 T.W. Henry,35 S. Heppelmann,26 T. Herstorm,28 B. Hippolyte,43 A. Hirsch,28 E. Hjort,18 G.W. Hoffmann,36 M. Horsley,45 H.Z. Huang,6 S.L. Huang,32 T.J. Humanic,24 G. Igo,6 A. Ishihara,36 P. Jacobs,18 W.W. Jacobs,13 M. Janik,39 J. Johnson,18 P.G. Jones,4 E.G. Judd,9 S. Kabana,43 M. Kaneta,18 M. Kaplan,7 D. Keane,17 J. Kirilyuk,6 A. Kisiel,39 J. Klay,18 S.R. Klein,18 A. Klyachko,13 D.D. Koetke,37 T. Kollegger,12 A.S. Konstantinov,27 M. Kopytov,17 L. Kotchenda,21 A.D. Kovalenko,10 M. Kramer,22 P. Kravtsov,21 K. Krueger,1 C. Kuhn,15 A.I. Kulikov,10 A. Kumar,26 G.J. Kunde,43 C.L. Kunz,7 R.Kh. Kutuev,11 A.A. Kuznetsov,10 M.A.C. Lamont,3 J.M. Landgraf,2 S. Lange,12 C.P. Lansdell,36 B. Lasiuk,43 F. Laue,2 J. Lauret,4 A. Lebedev,2 R. Lednicky,10 V.M. Leontiev,27 M.J. LeVine,2 C. Li,32 Q. Li,41 S.J. Lindenbaum,22 M.A. Lisa,24 F. Liu,42 L. Liu,42 Z. Liu,42 J.Q. Liu,40 T. Ljubicic,2 W.J. Llope,30 H. Long,8 R.S. Longacre,2 M. Lopez-Noriega,24 W.A. Love,2 T. Lumlud,2 D. Lyon,2 J. Ma,6 Y.G. Ma,33 D. Magestro,24 S. Mahajan,16 L.K. Mangotra,16 D.P. Mahapatra,14 R. Majka,43 R. Manweiler,37 S. Marquis,17 C. Markert,43 L. Martin,34 J. Marx,18 H.S. Matis,18 Yu.A. Matulenko,27 T.S. McShane,6 F. Meissner,18 Yu. Melnick,27 A. Meschini,27 M. Messer,2 M.L. Miller,43 Z. Milosevich,7 N.G. Minasiev,27 C. Mironov,17 D. Mishra,14 J. Mitchell,30 B. Mohanty,38 L. Molnar,28 C.F. Moore,36 M.J. Mora-Corraal,19 V. Morozov,18 M.M. de Moura,41 M.G. Munhoz,31 B.K. Nandi,38 S.K. Nayak,16 T.K. Nayak,38 J.M. Nelson,3 P. Nevskii,2 V.A. Nikitin,11 L.V. Nogach,27 B. Norman,17 S.B. Nurush,27 G. Odninev,18 A. Ogawa,2 V. Okorokin,24 M. Oldenburg,18 D. Olson,18 G. Paic,24 S.U. Pandey,41 S.K. Pal,38 Y. Panebratsev,10 S.Y. Panitkin,2 A.I. Pavlinov,41 T. Pawlik,42 W. Perevozchikov,2 W. Peryt,39 V.A. Petrov,11 S.C. Phatak,14 R. Picha,5 M. Planinic,44 J. Pluta,39 N. Porile,28 J. Porter,2 A.M. Poskanzer,18 M. Potekhin,2 E. Potrebenikova,10 B.V.K.S. Potukuchi,16 D. Prindle,43 C. Pruneau,16 J. Putschke,19 G. Rai,18 G. Rakness,13 R. Raniwala,39 S. Raniwala,29 O. Ravel,34 R.L. Ray,36 S.V. Razin,10,13 D. Reichhold,28 J.G. Reid,40 G. Renault,34 R. Retiere,18 A. Riddler,21 H.G. Ritter,18 J.B. Roberts,30 O.V. Rogachevski,10 J.L. Romero,5 A. Rose,41 C. Roy,34 L.J. Ruan,32,2 V. Rykov,41 R. Sakoh,14 I. Sakrejda,18 S. Salur,43 J. Sandweiss,43 I. Savin,11 J. Schambach,36 R.P. Scharenberg,28 N. Schmitz,18 L.S. Schroeder,18 K. Schweda,18 J. Seeg,8 D. Seliverstov,21 P. Seyboth,19 E. Shalaliev,10 M. Shao,32 M. Sharma,25 K.E. Shesternakov,27 S.S. Shimanskiii,10 R.N. Singaraju,38 F. Simon,19 G. Skoro,10 N. Smirnov,43 R. Snellings,23 G. Sood,25 P. Sorenson,6 J. Sowinski,13 H.M. Spinka,1 B. Srivastava,28 S. Stanislaus,37 R. Stock,12 A. Stolpovskiy,41 M. Strikhanov,21 B. Stringfellow,28 C. Struck,12 A.A.P. Suádei,41 E. Sugarbaker,24 C. Suire,2 M. Sumbera,9 B. Surrow,24 T.J.M. Symons,18 A. Szanto de Toledo,31 P. Szarvas,39 A. Tai,14 J. Takahashi,31 A.H. Tang,2,23 D. Thein,6 J.H. Thomas,18 V. Tikhomirov,21 M. Tokarev,10 M.B. Tonjes,20 T.A. Trakir,20 S. Trentalange,6 E. Trebile,35 M.D. Trivedi,38 V. Trofimov,21 O. Tsai,6 T. Ulrich,2 D.G. Underwood,3 G. Van Buren,4 A.M. VanderMolen,20 A.N. Vasilev,27 M. Vasilev,35 S.E. Vidgor,13 Y.P. Viyogi,38 S.A. Voloshin,41 W. Waggoner,8 F. Wang,28 G. Wang,17 X.L. Wang,32 Z.M. Wang,32 H. Ward,36 J.W. Watson,17 R. Wells,24 G.D. Westfall,20 C. Whitten Jr.,6 H. Wieman,18 R. Willisou,24 S.W. Wissink,13 R. Witt,43 J. Wood,6 J. Wu,32 N. Xu,18 Z. Xu,2 Z.Z. Xu,32 A.E. Yakutin,27 E. Yamamoto,18 J. Yang,6 P. Yepsan,30 V.I. Yurevich,10 Y.V. Zanevski,10 I. Zborovský,9 H. Zhang,43 H.Y. Zhang,17 W.M. Zhang,17 Z.P. Zhang,32 P.A. Žmierczyk,31 R. Zoukarneva,11 J. Zoukarneva,11 and A.N. Zubarev,10
Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at $\sqrt{s_{NN}} = 130$ GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e. transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.

Two-particle correlations for non-identical particles produced in heavy ion collisions are sensitive to differences in the average emission time and position of the different particle species. Such correlations in data taken at GANIL ($^{129}\text{Xe}+^{8}\text{Be}$ at 45 MeV per nucleon) suggest delayed emission of deuterons with respect to protons. Correlation data from the SPS (Pb-Pb collisions at $\sqrt{s_{NN}} = 17.3$ GeV), and AGS (Au-Au collisions at $\sqrt{s_{NN}} = 4.7$ GeV) also suggest that the pion and proton average space-time emission points do not coincide; a partial explanation is that space-momentum correlations arise from the system’s collective expansion. For Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV, transverse mass spectra, elliptic flow, and deduced pion source radii suggest collective expansion in the transverse plane. Such transverse flow may shift the average emission radii of different particle species by different amounts. Also, different species may kinematically...
decouple from the system at different times depending upon their interaction cross sections. In addition, the average emission time for a given species may be delayed significantly if produced dominantly through resonance decay. We construct pion-kaon correlation functions from Au+Au STAR data taken at \(\sqrt{s_{NN}} = 130 \) GeV and investigate whether the pions and kaons are emitted at the same average space-time position.

Non-identical charged particles interact through Coulomb and strong interactions; for the pion-kaon case correlation effects are dominated by the Coulomb interaction. To probe the \(\pi-K \) separation, correlation functions \(C(k^*) \) are constructed as the ratio of the \(k^* \) distribution constructed with particles from the same event (correlated distribution) divided by the \(k^* \) distribution constructed with particles from different events (uncorrelated distribution). \(k^* \) is the magnitude of the three-momentum of either particle in the pair rest frame.

For two particles initially moving towards each other the effects of the Coulomb and strong interactions are different from those for two particles initially moving apart. The technique exploits this difference to study emission asymmetries. Pairs are divided into two groups, which represents either the case where the pions catch up with the kaons or the case where the pions move away from the kaons, depending upon the space-time separation between pion and kaon emission points. Each sample is used to construct two different correlation functions, \(C_+(k^*) \) and \(C_-(k^*) \), the sign index reflecting the sign of \(\vec{r} \cdot \vec{k}_x \), with \(\vec{r} \) the pair velocity and \(\vec{k}_x \) the pion momentum vector in the pair rest frame. If the average space-time emission points of pions and kaons coincide, both correlation functions are identical. If instead, pions are emitted closer to the center of the source than kaons, pions with larger velocity will tend to catch up with kaons, and the Coulomb correlation strength will be enhanced compared to the case where pions are slower than kaons. Hence, the correlation function \(C_+ \) will show a larger deviation from unity than \(C_- \). Pairs can be separated according to the sign of \(k^*_\text{side}, k^*_\text{long} \) and \(k^*_\text{out} \), the \(k^*_\gamma \) projections onto three perpendicular axes in the longitudinally comoving system (LCMS) where the longitudinal component of the pair momentum vanishes. The \(out \) axis parallels the pair velocity in the LCMS, the \(long \) axis is the beam axis and the \(side \) axis is perpendicular to the other two. \(r^*_\text{out}, r^*_\text{side} \), and \(r^*_\text{long} \) are the corresponding projections of the three-vector \(\vec{r}^* \), the relative distance between the particle freeze-out points in the pair rest frame. Due to azimuthal symmetry and symmetry about mid-rapidity, \(\langle r^*_\text{side} \rangle = \langle r^*_\text{long} \rangle = 0 \). Thus \(C_+/C_- \) defined with respect to the signs of \(k^*_\text{side} \) and \(k^*_\text{long} \) must equal unity. If pions and kaons are not emitted at the same average radius in the transverse plane and/or at the same average time, \(C_+/C_- \) defined with respect to the sign of \(k^*_\text{out} \) will deviate from unity, unless these two contributions cancel. Thus, one can probe the space-time separation between pion and kaon sources in the transverse plane.

Charged particles are identified and tracked by the STAR Time Projection Chamber (TPC). This analysis selects the 12% most central collisions, i.e. the events with the largest multiplicity of particles. Selected particles have pseudorapidity \(|\eta| < 0.5 \). The Au+Au collision point (primary vertex) is required to be within \(\pm 75 \) cm of the TPC mid-plane. The non-correlated pair background is constructed by mixing events whose primary vertices are also separated from each other by less than 10 cm. Pions and kaons are identified by measuring specific energy loss \((dE/dx) \) in the TPC. When the momentum of pions and kaons exceeds 700 MeV/c, the \(dE/dx \) of both species becomes similar which compromises particle identification. In addition, the pion and kaon samples are contaminated by electrons and positrons. The yield of each particle species in the momentum range where the energy losses coincide is interpolated (\(e^+\)/\(e^- \) contamination) or extrapolated (kaon/pion separation) from the yields measured in the momentum range where there is good separation. In order to quantify the probability of correctly identifying a given species when the \(dE/dx \) bands overlap, four probabilities are calculated for each track: the chance that the particle is a \(\pi^+ \) or \(\pi^- \), \(K^+ \) or \(K^- \), \(p \) or \(\bar{p} \), or \(e^+ \) or \(e^- \). To be accepted as a pion or kaon the probability has to be > 60%. Tracks must point back to within 3 cm of the primary vertex; this removes a large number of secondary pions. Pions must have transverse momentum \(80 \) MeV/c < \(p_T < 250 \) MeV/c and rapidity \(|y| < 0.5 \), while kaons must have 400 MeV/c < \(p_T < 700 \) MeV/c, and \(|y| < 0.5 \).

Pion-kaon pair identification probability (product of both particle individual \(dE/dx \) probabilities) is required to be larger than 60%. Since the \(e^+\)/\(e^- \) pairs can distort \(\pi^+\)/\(\pi^- \) and \(\pi^+\)/\(K^- \) correlation functions, the maximum probability allowed for a given pair to be \(e^+\)/\(e^- \) is set at 1%, ensuring negligible contribution. Track pairs that share more than 10% of their TPC space points are discarded in order to avoid track merging errors. Two points are defined as shared if the probability of separating hits produced by them in the TPC is less than 99%. After selecting pion-kaon pairs, the correlation functions are constructed by taking the ratio of the \(k^* \) distributions of pairs from the same event to the \(k^* \) distributions of pions and kaons from different events.

Primary purity and momentum resolution effects are taken into account as described below. Primary purity is the percentage of primary pion-kaon pairs in all pion-kaon pairs satisfying all cuts. It is estimated to average 77% for unlike sign pairs and 75% for like sign pairs. The lower limit for each is 54%. This number is the product of the probability of identifying both pions and kaons using the \(dE/dx \) information and the probability of excluding pions and kaons that do not originate from
points close to the collision vertex. Excluded pions include decay products of strange hyperons and \(K^0\), and pions produced in the detector material. The fraction of secondary pions is estimated from the \(K^0\), \(\Lambda\) and pion yields in Ref. [11,12,13]. Detector simulations determine the relative reconstruction efficiency of pions from these different sources. Secondary kaons, being rare, are neglected. Assuming that the non-primary pion-kaon pairs are uncorrelated, the correlation function is corrected as

\[
C_{\text{true}}(k^*) = (C_{\text{measured}}(k^*) - 1)/\text{purity}(k^*) + 1
\]

The systematic error introduced by this correction is less than 20%.

The effect of momentum resolution depends upon the correlation function shape. Pion-kaon correlation functions are calculated from the pion and kaon momentum and space-time distributions, accounting for both the Coulomb and strong interactions as in Ref. [14]. The correlation function strength is calculated with the true momentum while the correlation function is binned as a function of \(k^*\) smeared by momentum resolution. Momentum resolution is estimated at the track level by detector simulations. The space-time distribution is chosen so that the main features of the measured correlation function are reproduced. The correction is obtained by comparing correlation functions calculated with and without momentum smearing. The correction enhances \(C(k^*)\) by 20% (1%) for \(k^* < 5\) MeV/c (\(5 < k^* < 10\) MeV/c), first and second bins in Figure 1, with a conservative systematic error of \(\pm 100\%\) on the correction of these two bins.

The top panels of Figure 1 show the correlation functions for every combination of pion-kaon pairs. The agreement between unlike-sign \((\pi^-K^+ + \pi^+K^-)\) and between like-sign \((\pi^+K^+ + \pi^-K^-)\) correlation functions is excellent. The middle and bottom panels show the ratios \(C_+/C_-\) for all pion-kaon pair combinations. \(C_+/C_-\) with respect to the sign of \(k_{\text{side}}\) and \(k_{\text{long}}\) is unity within statistical errors in accordance with the requirement that \(\langle r_{\text{side}}^* \rangle = \langle r_{\text{long}}^* \rangle = 0\). However, \(C_+/C_-\) with respect to the sign of \(k_{\text{out}}^*\) is significantly larger than unity at small \(k^*\) when the interaction is attractive \((\pi^-K^+ + \pi^-K^-)\) and significantly smaller than unity when the interaction is repulsive \((\pi^+K^+ + \pi^-K^-)\). These results indicate that pions and kaons are not emitted on average at the same radius and/or time.

In order to understand the measured average space-time shift between pion and kaon sources, we compare the data with the RQMD (Relativistic Quantum Molecular Dynamic [15]) model and the Blast Wave Parametrization (BWP) described in Ref. [16]. BWP assumes that the system has undergone longitudinal and transverse expansions, and provides the particle space-time and momentum distributions at kinetic freeze-out. The parameters, system outermost radius \(R = 13\) fm, freeze-out proper time \(\tau = 9\) fm/c, emission duration \(\Delta\tau = 0\) fm/c, temperature \(T = 110\) MeV, and transverse flow rapidity \(\rho(r) = 0.9(r/R)\) (with particle emission radius \(r\)) are consistent with fits to pion, kaon, proton and lambda transverse mass spectra and to pion source radii [3]. The hadronic cascade model, RQMD, also generates transverse flow through rescattering of hadrons [7]. Indeed, turning off hadronic rescattering within this model shuts off transverse flow [10]. In addition, RQMD includes contributions from resonance decay, such as \(\omega, \eta\) and \(\phi\), which shift pion and kaon emission times.

Figure 2 shows correlation functions \(C(k^*)\) and ratios \(C_+/C_-\) measured, from BWP, and from RQMD with and without hadronic rescattering. The calculated correlation functions use model space-time and momentum distributions as described in Ref. [14], with pion and kaon kinematic cuts chosen to match the data. The correlation function are calculated for like-sign and unlike-sign pairs. The small wiggles in the calculated \(C_+/C_-\) ratios for \(k^* < 20\) MeV/c arise from statistical uncertainties. RQMD and BWP are in qualitative agreement with the

\[
\text{FIG. 1: Top panels: pion-kaon correlation functions } C(k^*), \text{ the average of } C_+(k^*) \text{ and } C_-(k^*). \text{ Middle and bottom panels: ratio of the correlation functions } C_+ \text{ and } C_- \text{ defined with the sign of the projections, } k_{\text{out}}, k_{\text{side}} \text{ and } k_{\text{long}}. \text{ Errors are statistical only. The horizontal axis of the ratios } C_+/C_- \text{ for } k_{\text{side}}^* (k_{\text{long}}^*) \text{ is shifted by 1 MeV/c (2MeV/c) to separate the error bars.}
\]
measured correlation functions. Turning off rescattering in RQMD leads to a strong correlation, which implies that the pion and kaon sources are too small. On the other hand, RQMD reproduces qualitatively the ratio C_+/C_-. The effect of source size and source shift is disentangled by simultaneously fitting the correlation functions C_+ and C_-. In order to insure that the detector acceptance is matched, the particle momenta are taken from experimental pion-kaon pairs constructed by mixing events that pass all the cuts. The particle positions are set such that the distribution of the relative space-time separation between pions and kaons in the pair rest frame is a three dimensional Gaussian. The free parameters are the Gaussian mean, $\langle \Delta r^*_{out} \rangle = \langle r^*_{out}(\pi) - r^*_{out}(K) \rangle$, $\langle \Delta r^*_{side} \rangle = \langle \Delta r^*_{long} \rangle = 0$ and the Gaussian width, $\sigma = \sigma_{r^*_{out}} = \sigma_{r^*_{side}} = \sigma_{r^*_{long}}$. Both fit parameters from all four correlation functions are in agreement within statistical errors; combined they give $\sigma = 12.5 \pm 0.4^{+2.2}_{-3.5}$ fm and $\langle \Delta r^*_{out} \rangle = -5.6 \pm 0.6^{+1.9}_{-1.3}$ fm with a $\chi^2 / \text{dof} = 134.5 / 110$. Systematic errors are estimated from the discrepancy between the four correlation functions, the dependence on the input momentum distribution, the uncertainties on primary purity and the fit range dependence. This -5.6 fm in the pair rest frame becomes in the lab frame 3.9 fm (5.4 fm/c) if emission difference is space (time) only.

The parameters σ and $\langle \Delta r^*_{out} \rangle$ may be extracted directly from BWP or RQMD by constructing the $r^* = \sqrt{(r^*_{out})^2 + (r^*_{side})^2 + (r^*_{long})^2}$ and r^*_{out} distributions. However, neither RQMD nor BWP \vec{r}^* distribution is close to a three dimensional Gaussian. Thus, to compare models and data fairly, the correlation functions calculated from RQMD and BWP are fitted in exactly the same way as the data. The extracted fit parameters are compared to the data in Table 1. The large χ^2 / dof values arise because the tails of the \vec{r}^* distributions of RQMD and BWP are not well-described by a three dimensional Gaussian in the pair rest frame. The data appear to be insensitive to these tails due to larger statistical errors.

Consider BWP. At an emission point, the fluid velocity (increases with radius) and the thermal velocity (common freeze-out temperature T for all species in fluid rest frame) combine to give the observed particle velocity \vec{V}. If the source does not expand, the relative emission probability for given \vec{V} will track the fireball spatial density. If the source expands but $T = 0$, particles with \vec{V} will come from the single point where the fluid moves with \vec{V}. At $T \neq 0$ and for constant density and unlimited fireball size, the spread of thermal velocity smears this emission point to a nearly spherical volume whose size increases inversely with particle mass. This volume must be folded with a realistic fireball spatial density distribution, removing contributions from large radial distances. Thus, effective centers of emission regions are shifted towards smaller radii. For our m_t / T ($m_t \propto m$ at given V), the relative shift of pions and kaons is small but measurable. There is also an emission time separation: BWP has kinetic freeze-out at fixed longitudinal proper time $\tau = \sqrt{t^2 - z^2}$, so the larger size of effective pion source yields emission at later laboratory times t. Thus pions are on average emitted closer to source center and later in time than kaons.

In the RQMD model, pion and kaon sources are also spatially shifted when transverse flow builds up by hadronic rescattering. Even when rescattering is turned off, resonance decays delay the pion average emission time and increase the apparent size of the source.

Our results show that pions and kaons are not emitted at the same average space-time position for Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV. The data are consistent with BWP and RQMD, i.e. with a system whose domi-

	σ (fm)	$\langle \Delta r^*_{out} \rangle$ (fm)	χ^2 / dof
Data	$12.5 \pm 0.4^{+2.2}_{-3.5}$	$-5.6 \pm 0.6^{+1.9}_{-1.3}$	$134.5 / 110$
RQMD	11.8 ± 0.4	-8.0 ± 0.6	$205 / 54$
RQMD no rescattering	5.8 ± 0.1	-2.0 ± 0.3	$940 / 54$
BWP	9.9 ± 0.1	-6.9 ± 0.3	$1020 / 118$

TABLE I: Fit results using a three dimensional Gaussian distribution in the pair rest frame. For the data, the first error is statistical and the second systematic. The errors on the model calculations are calculated by rescaling the χ^2 distribution by the minimum value of χ^2 / dof.
nant feature is a transverse collective expansion. These results significantly challenge models that attempt to explain pion, kaon and proton spectra by purely initial state effects [17, 18]. Such an analysis may also be used to probe at what transverse momentum soft processes (expanding system) give way to hard processes since the space-time emission pattern will substantially change at that momentum.

We wish to thank the RHIC Operations Group and the RHIC Computing Facility at Brookhaven National Laboratory, and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory for their support. This work was supported by the Division of Nuclear Physics and the Division of High Energy Physics of the Office of Science of the U.S. Department of Energy, the United States National Science Foundation, the Bundesministerium für Bildung und Forschung of Germany, the Institut National de la Physique Nucléaire et de la Physique des Particules of France, the United Kingdom Engineering and Physical Sciences Research Council, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, Brazil, the Russian Ministry of Science and Technology, the Ministry of Education of China, the National Natural Science Foundation of China, Stichting voor Fundamenteel Onderzoek der Materie, the Grant Agency of the Czech Republic, Department of Atomic Energy of India, Department of Science and Technology of India, Council of Scientific and Industrial Research of the Government of India, and the Swiss National Science Foundation.

[1] R. Lednický, V.I. Lyuboshitz, B. Erazmus, D. Nouais, Phys. Lett. B 373 (1996) 30.
[2] R. Lednický, nucl-th/0305027; Proc. CIPPG’01, nucl-th/0112011; Proc. XXXII ISMD, nucl-th/0212089.
[3] R. Ganz et al., Nucl. Phys. A 661 (1999) 448, P. Seyboth et al., Nucl. Phys. B (Proc. Suppl.) 92 (2001) 7.
[4] D. Miskowiec (E877 collaboration), CRIS’98 proceedings, nucl-ex/9808003.
[5] B. Tomasik, U. Achim Wiedemann, U. Heinz, Heavy Ion Phys. 17 (2003) 105-143, and F. Retière and M. Lisa, to be submitted to Phys. Rev. C.
[6] C. Adler et al., Phys. Rev. Lett. 87 (2001) 182301.
[7] H. W. van Hecke, H. Sorge, and, N. Xu, Phys. Rev. Lett. 81 (1998) 5764.
[8] S. Voloshin, R. Lednický, S. Panitkin, N. Xu, Phys. Rev. Lett. 79 (1997) 4766.
[9] R. Lednický, Proc. 8th Int. Workshop on Multiparticle Production, Correlations and Fluctuations (1998) 148, nucl-th/0304063, and R. Lednický, S. Panitkin, and N. Xu, nucl-th/0304062.
[10] M. Anderson et al., Nucl. Instrum. Meth. A 499 (2003) 659.
[11] K. Adcox et al., Phys. Rev. Lett. 88 (2002) 242301.
[12] C. Adler et al., Submitted to Phys. Lett. B, nucl-ex/0206008.
[13] C. Adler et al., Phys. Rev. Lett. 89 (2002) 092301.
[14] R. Lednický and V.I. Lyuboshitz, Yad. Fiz. 35 (1982) 1316 [Sov. J. Nucl. Phys. 35 (1982) 770]. Fortran program provided by R.Lednický.
[15] H. Sorge, Phys. Rev. C 52 (1995) 3291.
[16] C. Adler et al. Submitted to Phys. Rev. Lett., nucl-ex/0306029.
[17] J. Schaffner-Bielich, D. Kharzeev, L. McLerran, R. Venugopalan, Nucl. Phys. A 705 (2002) 494, and nucl-th/0202054.
[18] H.G. Fischer and the NA49 Collaoration, Nucl. Phys. A 715 (2003) 118.

* URL: www.star.bnl.gov