On the Granularity of Explanations in Model Agnostic NLP Interpretability

Yves Rychener¹, Xavier Renard², Djamé Seddah³, Pascal Frossard⁴, and Marcin Detyniecki²,⁴,⁵

¹ EPFL, Lausanne, Switzerland
² AXA, Paris, France
³ Inria, Paris, France
⁴ Sorbonne Université, Paris, France
⁵ Polish Academy of Science, Warsaw, Poland

Abstract. Current methods for Black-Box NLP interpretability, like LIME or SHAP, are based on altering the text to interpret by removing words and modeling the Black-Box response. In this paper, we outline limitations of this approach when using complex BERT-based classifiers: The word-based sampling produces texts that are out-of-distribution for the classifier and further gives rise to a high-dimensional search space, which can’t be sufficiently explored when time or computation power is limited. Both of these challenges can be addressed by using segments as elementary building blocks for NLP interpretability. As illustration, we show that the simple choice of sentences greatly improves on both of these challenges. As a consequence, the resulting explainer attains much better fidelity on a benchmark classification task.

1 Introduction and Related Work

Interpretability of Natural Language Processing (NLP) models can be addressed by developing inherently interpretable classification models [14,5,10] or with Post-Hoc interpretability that can be applied to already trained models. With the latter, neural network architectures can be interpreted by white box approaches, which need access to model internals like gradients and activations [2,8]. Patterns in attention layers are also used, but the validity of this practice has been under heavy discussion, see [3] for an overview of recent literature in this domain. However, when model access is not possible or preprocessing methods hinder gradient flow, a Black-Box approach without model access is more suitable. Models like LIME [24] and SHAP [17] are examples of Black-Box interpreters which can be applied to texts. They create an interpretation for a text sample, called local interpretation. To this end, a dataset of similar texts, called the neighborhood, is sampled by repeatedly removing words from the original text and observing the change in output. The local behaviour of the model is then approximated using a regression on the presence of words, whose weights are interpreted as local effects of the word presence on the prediction. While LIME and SHAP perform the sampling of the neighborhood directly in the text domain, other approaches use for example auto-encoders to generate neighboring texts [11]. While such approaches are promising, their performance heavily depends on the performance of the text generation
model. Since in practice, resampling in the text domain is still the most prevalent, we will consider this approach in this work.

We explore the limits of the approach of using words when it comes to complex language models like BERT [7]. In concurrent work, Zafar et al. [27] also investigate if sentences are more suitable for NLP interpretability. They find that sentence interpretations are more robust than word based interpretations and lead to lower variability when using approximation techniques. We hypothesize that these two results may be direct consequences of the results in Sections 2.1 and 2.2 respectively. Our work can thus be seen as complementary to [27], as it confirms the results independently and gives interpretation for the source of the better performance of sentence-based methods. Our main contributions are the identification of the granularity (words/sentences/paragraphs) as a crucial, often overlooked hyper-parameter in black-box NLP interpretability. In addition to displaying the problems arising from this negligence, we show that an interpreter using sentences as elementary units is able to greatly address the identified problems. Finally, we achieve substantially higher performance in the benchmark problem used for assessing fidelity to the underlying classifier. With this work, we hope to spark a discussion in the literature about the importance of granularity for NLP interpretability.

2 Limits of Word-Based Black-Box Interpretability

While removing words to interpret a model is suitable for Bag-Of-Words (BOW) models without n-grams, the use of models like BERT [7], which try to model word interactions using the attention mechanism, warrants a discussion if this is the appropriate sampling mechanism for such models: Removing random words from a text can make it unreadable for humans, since key interactions, like verb-subject, are broken. Is this also observed with BERT? What are other consequences of word-based sampling? We compare the commonly used word based sampling to sentence-based sampling. We argue it is a more natural choice for interpretability, since sentences represent syntactically closed units and can greatly reduce the dimensionality of the neighborhood to explore.

2.1 Distributional Shift

Sampling the neighborhood is done by altering the text. The sampling mechanism thus has an effect on the embedding of the altered text. For neural networks, it is well studied that the Out-Of-Distribution (OOD, different distribution than training distribution) performance can be significantly worse than In-Distribution (ID, same distribution as training data) performance [20][19][15][19], with sometimes dramatic errors known as adversarial attacks. In order for the explanation, which is based on the altered texts, to be truthful, downstream classifier accuracy must be maintained for those altered texts. This can only be guaranteed if texts remain in-distribution after alteration, which we will show is not the case with word-based sampling.

Consider a simple example: Assume a perfect classifier which is able to correctly identify the sentiment of any natural text. However, if the text does not contain a verb, it predicts the opposite sentiment. Consider now the text "The food was nice.". Any text alteration method, which removes the verb, produces an adversarial text for which
the model makes an incorrect prediction. An explanation based on such an alteration method does not reflect the behaviour of the classifier on natural (ID) text. Inspired by [13] where hidden activations were used to detect OOD samples for images, we use the text embedding produced by language models ([CLS]-Token) to detect distributional shift in two experiments. This is because in many approaches, the [CLS]-Token is used as an input for downstream models, which may receive an OOD input.

Fig. 1: t-SNE of Distributional Shift with 10,000 samples. \(W_1(\text{words}) = 8.6, W_1(\text{sentence}) = 4.1 \)

Visualizing Distributional Shift In the first experiment, we compare the distribution of the embeddings of the original text, after removing a random sentence and after randomly removing the same number of words. We compute the embeddings for 10,000 randomly selected Wikipedia snippets from the SQuAD dataset [23] using BERT [7]. On a t-SNE visualisation (Figure 1) of the distributions of the embeddings (original text, sentence removed, words removed) one can observe that the distribution obtained by removing randomly selected words (orange) is significantly different from the original one (blue), while no big difference is observed with removing sentences (green). To quantify this effect, we consider the Wasserstein Distance. Given two distributions \(\mathbb{P} \) and \(\mathbb{Q} \), it is defined as

\[
W_1(\mathbb{P}, \mathbb{Q}) = \min_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{(x, y) \sim \pi} \|x - y\|
\]

where \(\Pi(\mathbb{P}, \mathbb{Q}) \) is the set of all couplings between \(\mathbb{P} \) and \(\mathbb{Q} \). The Wasserstein Distance or "earth mover distance" measures the minimum cost (probability mass multiplied by distance moved) to turn one probability distribution into another. We now consider by \(\mathbb{Q} \) the empirical distribution of the embeddings of original text, \(\mathbb{P}_s \) the empirical distribution
of the embeddings of texts with a sentence removed and \(P_w \), the empirical distribution of the embeddings of texts with words removed. We obtain \(W_1(P_w, Q) = 8.6 \) and \(W_1(P_s, Q) = 4.1 \), which confirms that texts with sentences removed are closer to standard text than texts with words removed. Since the classifier is trained on normal texts, its accuracy on the texts obtained by word-sampling, as used by current state of the art model-agnostic interpretability methods, is questionable, since they are OOD. However, sentence sampling produces ID texts, for which normal accuracy can be expected.

![Figure 2: Comparing Distributional Shift Classifier Accuracy](image)

Evaluating Distributional Shift with Classifier Accuracy One may wonder if the distributional shift observed in the previous experiment is only because a relatively high number of words was removed, reflecting a strong alteration of the text. We perform a second experiment, by framing the detection of distributional shift as a classification problem: The classifier is given text embeddings and tasked with distinguishing between altered and unaltered texts. We compare the embeddings of the original texts, with 5 words removed and with 1 sentence removed. In order to further study if the distributional shift effect is present across different pretraining schemes and prevails after distillation, we use a range of language models other than BERT [7], namely DistilBERT [26], ROBERTA [16] and ELECTRA [10], where DistilBERT is a distilled version of BERT, while ROBERTA and ELECTRA use different pretraining tasks, notably losing next sentence prediction. We employ a variety of different text domains by using context from SQuAD 2.0 [22] and SQuADShifts [18]. While SQuAD 2.0 contains texts from Wikipedia, SQuADShifts contains texts from other domains, which are often encountered in practice. These include user generated text (from Amazon reviews and Reddit comments) and newspaper articles (New York Times). For each binary classifications
(Original-Word and Original-Sentence for all datasets and transformer models), we train a Random Forest Classifier on the embeddings and observe its performance on a randomly selected, held-out test set. The results are given in Figure 2. Since the binary classifications are balanced, random predictions would yield a classification accuracy of 0.5. We observe that for all datasets and Language Models, the classification accuracy for sentence-removal is much lower compared to word-removal, almost down to random prediction. This suggests that the distributional shift with sentence-removal is much lower, confirming the results from Section 2.1. The fact that the result is not only observed on the Wikipedia subset, but also Amazon, New York Times and Reddit, suggests that distributional shift is a problem across text domains and transformer-based Language Models. Further, using sentences seems to successfully address the issue for most language models except ROBERTA, where the altered text seems to still be OOD, although an improvement can be observed, indicated by the lower accuracy. While this behaviour of the different language models is an interesting property, we leave its analysis for further works. For the arguments presented here, it suffices to note that sentence based interpretability shows preferable distributional properties with reduced distributional shift.

2.2 Computational Complexity

Since language models often require substantial computation power, even in inference, computational complexity is another issue with word based methods. We can view the sampling from the neighborhood as sampling binary vectors, encoding the presence/absence of words or sentences, where the number of possible choices, i.e. the size of the neighborhood is exponential in the number of words/sentences. Taking the SQuAD 2.0 [22] dataset for illustration, the texts contain on average 137.7 words in 5.1 sentences. The number of elements in the neighborhood are thus $2^{137.7} = 2.8 \times 10^{41}$ for word-based alteration and $2^{5.1} = 34.3$ for sentence-based alteration. Since in practical applications, computation time is often constrained, only a limited number of samples from the neighborhood can be evaluated. Since the neighborhood resulting from sentence-based alteration is much smaller, a higher portion of it can be explored. If for example time permits only exploring 20 samples, then 58% of the sentence-based neighborhood can be explored. However, of the word based neighborhood, less than 10^{-39}% can be explored. This results in a better estimation of the model’s decision surface with sentence-based methods when computation power is limited.

3 Sentence-Based Interpretability

To explain a sample, standard post-hoc model-agnostic interpretability approaches create a dataset of the local neighborhood by repeatedly perturbing parts of the input. The created dataset is then used to train an interpretable surrogate model, for example a linear regression, on the model predictions.

Based on the insights from Section 2, we propose to use sentences as atomic units for explanations. In addition to sentence-based alteration, we use a different methodology to select which parts to alter. For tabular data, [12] conclude that defining locality is a
crucial issue for local Black-Box interpretability. We hypothesize that the same holds for
text classification: Texts should be sampled such that small changes are more frequent
than large changes. This is why we use the most local neighborhood possible: we
enumerate the alterations with the fewest sentences removed. Since the dataset of the
neighborhood is well localized, using a weighted regression like in LIME or SHAP is
not necessary.

We propose the GUTEK \(^6\) approach in three steps: We first split the text into sentences
\textbf{(Segmentation)}. We then repeatedly remove some sentences in order to create a dataset
reflecting the local neighborhood of the sample to explain \textbf{(Local Sampling)}. This
dataset is then used to fit a linear regression on the presence/absence of sentences
\textbf{(Surrogate Training)}. The weights of the regression can be interpreted as the local
effect of the presence of sentences on the prediction.

\section{Fidelity Experiment}

In Section \(^2\) we point out the main reasons for proposing sentence-based interpretability:
computational complexity and distributional shift. While we give theoretical arguments
why these are important drawbacks of word-based methods, we ultimately want to give
better explanations. Defining what is a good explanation is still an open question in
interpretability research, but we identify fidelity as a desirable property. This means that
the given explanation well reflects the reasoning of the underlying classifier.

In order to assess if GUTEK correctly explains the classifier’s reasoning, we test
if it is able to detect which parts of the text were important for the prediction. We
use the QUACKIE \(^25\) benchmark. QUACKIE aims to address the human bias in the
ground-truth generation for NLP interpretability tasks. This is done by, instead of human
annotating ground truth labels for existing classification tasks, constructing a specific
classification task for which the ground-truth labels arise directly from the underlying
dataset. That is, for a given question-context pair in Question-Answering datasets, the
classification models are tasked with determining if the question can be answered with
the context. The sentence containing the answer in the context is then used as ground-
truth interpretability label. QUACKIE comprises three performance metrics, namely
IOU, calculated as the intersection-over union in terms of sentences and measuring how
well the ground truth has been found, HPD, computing inverse rank of the ground truth
sentence and SNR, computing the square of the score of the important sentence divided
by the variance of the scores of unimportant sentences.

We compare our approach to LIME with \textit{sum} aggregation of token scores for each sen-
tence, which represents the current best-performing Black-Box method in the benchmark
in the primary metrics IoU and HPD, representing performance of correctly identifying
the important sentence and highly ranking the important sentence respectively. We report
the results for the SQuAD 2.0 dataset in Table \(\text{I}^\) results from other domains, such as
Reddit posts or New York times Articles, are given in Appendix \(\text{D}\) and show the same
behaviour. We outperform the previous method by a substantial margin in both IoU and
HPD for both classifiers. Notably in IoU, our approaches scores are more than double

\(^6\) GUTEK, “Gutenber” in Polish, for \textit{Generating Understandable Text Explanations based on
\textit{Key segments}.
LIME’s scores with the same number of samples, which implies that we find the most important sentence twice as often as the word-based approach. When allowing LIME 10 times as many samples as our approach (100 samples vs. 10 samples for GUTEK) it gets closer to our performance in IoU and HPD without matching it. Obviously, drawing 10 times as many samples also results in roughly a 10 fold increase in required computation power and thus a roughly 10 fold increase in computation time. Using 100 samples with the sentence-based approach results in a minor improvement of about 3 percentage points in the primary metrics IoU and HPD, suggesting that the neighborhood is already sufficiently well explored with 10 samples. In the SNR metric, measuring how much higher the score for the important sentence is compared to the unimportant ones, LIME is performing better than GUTEK, possibly due to the use of LASSO regression, which was pointed out by the benchmark authors as a possible attack to improve the SNR score. Overall, the explanations from the sentence-based approach thus better represent the model’s reasoning. We hypothesize that the improvement in fidelity is due to the reduced distributional shift (Section 2.1) and much reduced search space (Section 2.2). This is in line with the observation that LIME is able to improve its performance when using more samples.

5 Discussion

We have shown that word-based sampling mechanisms which alter the text by removing words create a distributional shift in the input texts. This may lead to OOD inputs to the underlying model when the neighborhood is explored. We further showed that the neighborhood created by word-based methods is very big and can not be well explored with a limited number of samples. While using an iterative approach, first finding the important sentences in a text, then the important words in the important sentences would address the second problem, the first would prevail.

While in this work, we used sentences as elementary building blocks for NLP interpretability, this is not the best choice in all applications. For example, in short texts like tweets, where less interdependence between words is present, word-based approaches may be preferable. Similarly, for very long texts where there is a strong interdependence between sentences, even bigger segments, such as paragraphs, may be

\[\text{Table 1: Results on QUACKIE (SQuAD)}\]

METHOD	CLASSIF IoU HPD SNR	QA IoU HPD SNR
GUTEK 10	88.55 90.75 39.48	90.53 92.37 37.37
LIME 10	37.70 50.29 39.23	38.47 50.83 38.20
LIME 100	58.04 66.50 39.30	69.90 75.98 40.91

The scores are also better than the ones obtained for LIME on a random subset of samples using a neighborhood of 1000 samples.
used. Finally, also parts of sentences may be used. However, this raises the problem of
text segmentation, which is beyond the scope of this paper.

While we have illustrated the importance of the granularity hyperparameter in terms of
distributional shift, computational complexity and fidelity, the explanations created by
different choices of granularity are also inherently different. For example, the sentence-
based interpretations give context, while the word-based methods are easier to understand
at a glance. In Figure 3, we show the interpretations by GUTEK and LIME for a negative
movie review given. (TF-IDF based Random-Forest Classifier is used, further examples
are given in Appendix C) We can see that both approaches correctly identify worst as a
key driver for negative prediction. However, since the sentence also contains the context,
giving it as explanation also provides the information that it was in fact the worst villain
and not the worst screenplay or worst story-line. A similar effect is observed with poorly.
Which interpretation is easier to understand may be domain and application specific.
Nonetheless, this effect should also be considered when choosing the granularity of NLP
interpretability applications.

6 Conclusion

In this work, we illustrated limits of current state-of-the-art model-agnostic interpretabil-
ity methods based on word sampling (e.g. LIME, SHAP), prone to out-of-distribution
sampling when it comes to complex NLP classifiers like BERT and questioning the truth-
fulness of the explanations. Word-based sampling also suffers from high computational
complexity, limiting the exploration of the neighborhood of the text whose prediction is
to explain. These limitations are addressed with a sentence-based approach resulting in
better fidelity. The main take-aways thus are (1) the challenges arising with word-based
approaches (distributional shift, computational complexity and human interpretability)
and (2) the illustration that a simple sentence based model (GUTEK) attains improved
performance compared to word-based methods.

References

1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems
 in ai safety. arXiv preprint arXiv:1606.06565 (2016)
2. Arras, L., Horn, F., Montavon, G.: Explaining predictions of non-linear classifiers in nlp. ACL
 2016 p. 1 (2016)
3. Bibal, A., Cardon, R., Alfter, D., Wilkens, R., Wang, X., François, T., Watrin, P.: Is attention
 explanation? an introduction to the debate. In: Proceedings of the 60th Annual Meeting of the
 Association for Computational Linguistics (Volume 1: Long Papers). pp. 3889–3900 (2022)
4. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing text with
 the natural language toolkit. " O’Reilly Media, Inc." (2009)
5. Chang, S., Zhang, Y., Yu, M., Jaakkola, T.: A game theoretic approach to class-wise selective
 rationalization. In: Advances in Neural Information Processing Systems. pp. 10055–10065
 (2019)
6. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: Electra: Pre-training text encoders as
discriminators rather than generators. arXiv preprint arXiv:2003.10555 (2020)
treat williams, looking like rhett butler but sounding like mickey mouse, is one of the worst villains I have ever seen in a movie. Oh yeah, the phantom also has a secret identity but this is so poorly played out you won’t even care. About the only things I can recommend are a good performance by jones, and some colorful scenery. Wincer displays absolutely no skill in setting up an exciting action sequence.

Billy zane is wooden as the hero. Kristy swanson is given very little to do, and does very little with it. Treat williams, looking like rhett butler but sounding like mickey mouse, is one of the worst villains I have ever seen in a movie. She has energy and spunk, which the movie needed much more of.

However, if you’re looking for a fun family movie, go watch the underrated flipper.

Everything in the phantom you have seen many times before and there is nothing new presented here.

Only Catherine Zeta Jones, as one of Williams cohorts turns in a good performance.

The only thing I can recommend are a good performance by Jones, and some colorful scenery.

This is not a good movie. However, if you’re looking for a fun family movie, go watch the underrated flipper.

Fig. 3: Comparison of Explanations for TFIDF movie sentiment classifier, GUTEK (left) vs LIME (right) (negative sample id 875)
7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186 (2019)
8. Dimopoulos, Y., Bourret, P., Lek, S.: Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Processing Letters 2(6), 1–4 (1995)
9. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)
10. Jain, S., Wiegreffe, S., Pinter, Y., Wallace, B.C.: Learning to faithfully rationalize by construction. arXiv preprint arXiv:2005.00115 (2020)
11. Lampridis, O., Guidotti, R., Ruggieri, S.: Explaining sentiment classification with synthetic exemplars and counter-exemplars. In: International Conference on Discovery Science. pp. 357–373. Springer (2020)
12. Laugel, T., Renard, X., Lesot, M.J., Marsala, C., Dety niecki, M.: Defining locality for surrogates in post-hoc interpretability. arXiv preprint arXiv:1806.07498 (2018)
13. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in Neural Information Processing Systems. pp. 7167–7177 (2018)
14. Lei, T., Barzilay, R., Jaakkola, T.: Rationalizing neural predictions. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. pp. 107–117 (2016)
15. Liang, S., Li, Y., Srikan t, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)
16. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, D., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
17. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in neural information processing systems. pp. 4765–4774 (2017)
18. Miller, J., Krauth, K., Recht, B., Schmidt, L.: The effect of natural distribution shift on question answering models. arXiv preprint arXiv:2004.14444 (2020)
19. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1765–1773 (2017)
20. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 427–436 (2015)
21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)
22. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: Unanswerable questions for squad. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 784–789 (2018)
23. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. pp. 2383–2392 (2016)
24. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. pp. 1135–1144 (2016)
25. Rychener, Y., Renard, X., Seddah, D., Frossard, P., Dety niecki, M.: Quackie: An nlp classification task with ground truth explanations. arXiv preprint arXiv:2012.13190 (2020)
26. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)
27. Zafar, M.B., Schmidt, P., Donini, M., Archambeau, C., Biessmann, F., Das, S.R., Kenthapadi, K.: More than words: Towards better quality interpretations of text classifiers. arXiv preprint arXiv:2112.12444 (2021)
A Reproducibility

To ensure reproducibility, we give the implementation details of our experiments. Direct implementations can also be found directly on our Github.

A.1 The Case Against Word-Based Black-Box Interpretability

Distributional Shift We use the last embedding of the classification token as representation of the whole text. We use base uncased BERT [7]. For the visualisation experiment, we directly use this embedding to calculate Wasserstein distance. To visualize, we use t-SNE on the combined dataset (word removed + sentence removed + original) with PCA initialisation and a perplexity of 100. The algorithm is given a maximum of 5000 iterations, for other parameters we used SKLearn defaults.

For evaluating distributional shift with classifier accuracy, we use base uncased BERT [7], base RoBERTa [16], base uncased DistilBERT [26] and the small ELECTRA [6] discriminator. The text embeddings are pairwise used to create a classification problem, which uses a random 75-25 train test split. We train a Random Forest Classifier using default SKLearn parameters, controlling for complexity using the maximum depth with options 2, 5, 7, 10, 15 and 20. The best choice is selected using out-of-bag accuracy. Results in Figure 2 and Table 2 represent performance on the test-set.

Computational Complexity In order to have normal flowing text, we use text from Wikipedia, notably contexts from SQuAD 2.0 [22]. We compare the number of sentences and the number of words, obtained using NLTK [4] sent_tokenize and word_tokenize respectively.

A.2 Experiments and Analysis

Fidelity Evaluation with QUACKIE We use code provided with QUACKIE [25] to test GUTEK. In our implementation of GUTEK, we use NLTK sent_tokenize to split the text into sentences and use the SKLearn implementation of the Linear Regression as surrogate. The coefficients of the linear regression are used as sentence scores.

B Tabular Results for OOD Classification

In addition to plotting, we give the results from Figure 2 in Table 2.

C Qualitative Evaluation

In Figures 4 and 5, we give some more illustrations of the different explanations, similarly to Figure 3.

https://github.com/axa-rev-research/gutek
D Complete QUACKIE results

We also give results for all datasets in QUACKIE and report the scores for all other methods currently in QUACKIE in Tables 3, 4 and 5.
I wasted enough of my time just sitting through it. To top that pathetic premise off—Reese goes to visit Granny and you’ll never guess who’s waiting under the covers in Granny’s bed.

Note to Keifer: You wonder why you aren’t a bigger star in Hollywood?

Keifer Sutherland is one of Hollywood’s most talented, yet underrated actors, and Reese Witherspoon is exceptionally talented and will most likely become a major star.

Reese Witherspoon’s abundant acting talents are used to their full potential in Fear, a great thriller.

Freeway is a modern retelling of Little Red Riding Hood. Do yourself a favor and rent one of these movies—but stay as far away from Freeway as you possibly can.

So what are they doing in this movie? After seeing the end result, undoubtedly they are both asking themselves the same question.

You might be asking yourself why this is such a short review. The answer is quite simple—I don’t want to waste any more of my time writing or thinking about this movie than absolutely necessary.

You might be asking yourself why this is such a short review.

Note to both: Don’t worry about it too much, no one saw this movie anyway.

Don’t waste your time on this turkey.

After seeing the end result, undoubtedly they are both asking themselves the same question.

If you want to see a great Keifer Sutherland movie, go rent Flatliners or Young Guns.

Because you keep making movies like this.

Only in the nineties, little red riding hood is a foul-mouthed juvenile delinquent played by Reese Witherspoon, and the big bad wolf is a serial killer (Keifer Sutherland).

So what are they doing in this movie?

Do yourself a favor and rent one of these movies—but stay as far away from Freeway as you possibly can.

Freeway is giving me second thoughts.

Note to Reese: You were great in Fear, what happened this time?

Note to both: Don’t worry about it too much, no one saw this movie anyway.

Bottom line—I’m still shaking my head.

Don’t waste your time on this turkey.

If you want to see a great Keifer Sutherland movie, go rent Flatliners or Young Guns.

Reese Witherspoon’s abundant acting talents are used to their full potential in Fear, a great thriller.

Freeway is giving me second thoughts.

Bottom line—I’m still shaking my head.

Note to Reese: You were great in Fear, what happened this time?

You might be asking yourself why this is such a short review. The answer is quite simple—I don’t want to waste any more of my time writing or thinking about this movie than absolutely necessary.

I wasted enough of my time just sitting through it.

Fig. 4: Comparison of Explanations for TFIDF movie sentiment classifier, GUTEK (left) vs LIME (right) (sample id 370)
after watching the film again, i am convinced that it is simply one of the finest works of cinematic genius to ever illuminate the big screen. using stunning cinematography, costuming, and direction, shot in the most uninhabitable location on the face of the earth, i can only imagine what it must have been like to sit in a theater in 1962 and watch this story unfold before my eyes. lawrence quickly sees just how caring and great these desert dwelling people can be and ends up rallying the various tribes together to fight the Turks and help the British turn the tide of World War I.

after watching the film, the first thing that came to my mind was, "I've got to do a remake of this film!"

we are going to need to blow up a full-size train because computer-generated effects probably won't do it justice, and we are not going to use any big stars, and won't have any female actors since there's no love story.

being the self-proclaimed professional film critic that i am, i am somewhat embarrassed to admit that i had not seen lawrence of arabia (coming soon to DVD) until only recently.

it is absolutely breathtaking.

eyes, my friends, the velvet curtain fell on the golden-era of Hollywood a long time ago.

shot in Panavision's famed super 70mm format, the film beautifully illustrates the definition of the word epic.

bored with his assignment of coloring maps for the British army in a dimly lit headquarters building, Lawrence jumps at the opportunity to be reassigned as an observer for an Arab prince fighting against the Turkish army.

i was initially skeptical that something made almost 40 years ago would be able to keep my attention for the bulk of its duration.

based on the autobiographical writing of British officer T. E. Lawrence during World War I, Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.

every shot is choreographed as a portrait—a living tribute to a great land.

david Lean put his reputation on the line to get this film completed, and the fact that it was even greenlit in the first place says something about the ideology of the Motion Picture Industry at the time, a far cry from its pathetic, uncreative existence today.

and we are not going to use any big stars, and won't have any female actors since there's no love story."

but at least we still have the proof to show all would be producers and directors out there just how good a film can be.

after all, it's considered by just about everyone to be the masterpiece epic of director David Lean, who also directed films such as Bridge on the River Kwai, and Doctor Zhivago, but then i thought about trying to pitch the idea to a modern-day movie executive: "Okay, it's going to be almost four hours long and shot over three months on location in the Sahara desert.

but now i fully understand why this has become the film that other epic films are judged against—the winner of seven Academy Awards in 1963 for Best Picture, Director, Editing, Cinematography, Art Direction, Music, and Sound.

Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.

but now i fully understand why this has become the film that other epic films are judged against—the winner of seven Academy Awards in 1963 for Best Picture, Director, Editing, Cinematography, Art Direction, Music, and Sound.

Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.

Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.

Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.

Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.

Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.

Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.

Lawrence of Arabia depicts Lawrence (played by then-unknown actor Peter O'Toole) as a lieutenant lacking any sort of military discipline whatsoever.
Table 3: IoU Results

Interpreter	Aggregation Samples	SQuAD	New Wiki	NYT	Reddit	Amazon
		Classif	Classif	Classif	Classif	Classif
GUTEK	-	10	88.33	87.7	87.66	71.62
		100	91.38	90.83	91.56	80.62
LIME†	sum	10	57.70	58.04	40.72	40.22
		100	90.53	89.70	62.02	50.33
	max	10	34.06	36.98	36.19	26.52
		100	57.86	59.65	61.57	48.22
SHAP†	sum	10	30.48	54.85	34.06	57.86
		100	90.75	57.53	53.19	54.56
	max	10	29.69	22.13	24.59	22.72
		100	29.89	22.58	24.99	23.84
Saliency	sum	-	37.70	50.29	22.19	22.13
		max	66.73	66.27	65.85	64.81
Integrated Gradients	sum	50	66.73	62.73	65.85	61.63
	max	50	60.98	60.70	60.29	56.93
SmoothGrad	sum	5	60.98	62.73	60.29	60.25
	max	5	59.48	62.73	60.29	56.93
Random	-	-	24.64	26.86	24.53	16.51

Table 4: HPD Results

Interpreter	Aggregation Samples	SQuAD	New Wiki	NYT	Reddit	Amazon
		Classif	Classif	Classif	Classif	Classif
GUTEK	-	10	90.75	90.17	89.64	74.93
		100	93.02	92.72	93.02	83.04
LIME†	sum	10	50.29	66.50	51.62	56.60
		100	53.32	68.93	57.18	56.60
	max	10	45.12	47.85	46.60	44.79
		100	63.74	65.47	62.78	53.23
SHAP†	sum	10	41.22	42.87	39.06	28.94
		100	93.72	64.71	34.67	32.97
	max	10	37.34	39.29	36.40	27.30
		100	59.85	61.80	58.30	51.19
Saliency	sum	-	39.91	72.20	74.97	63.05
		max	72.99	66.86	72.20	55.10
Integrated Gradients	sum	50	73.52	70.15	71.99	58.51
	max	50	69.03	67.83	68.87	56.51
SmoothGrad	sum	5	60.98	67.83	68.87	56.51
	max	5	59.48	61.80	63.00	51.19
Random	-	-	40.28	42.66	39.23	27.41

Interpreter	Aggregation Samples	SQuAD	New Wiki	NYT	Reddit	Amazon
		Classif	Classif	Classif	Classif	Classif
GUTEK	-	10	90.75	90.17	89.64	74.93
		100	93.02	92.72	93.02	83.04
LIME†	sum	10	50.29	66.50	51.62	56.60
		100	53.32	68.93	57.18	56.60
	max	10	45.12	47.85	46.60	44.79
		100	63.74	65.47	62.78	53.23
SHAP†	sum	10	41.22	42.87	39.06	28.94
		100	93.72	64.71	34.67	32.97
	max	10	37.34	39.29	36.40	27.30
		100	59.85	61.80	58.30	51.19
Saliency	sum	-	39.91	72.20	74.97	63.05
		max	72.99	66.86	72.20	55.10
Integrated Gradients	sum	50	73.52	70.15	71.99	58.51
	max	50	69.03	67.83	68.87	56.51
SmoothGrad	sum	5	60.98	67.83	68.87	56.51
	max	5	59.48	61.80	63.00	51.19
Random	-	-	40.28	42.66	39.23	27.41

Table 4: HPD Results
Table 5: SNR Results (Examples for which noise cannot be estimated are omitted)

Interpreter	Aggregation Samples	SQuAD Classif	Classif QA	New Wiki Classif	Classif QA	NYT Classif	Classif QA	Reddit Classif	Classif QA	Amazon Classif	Classif QA
GUTEK	-	39.48 37.37	42.63 37.86	32.21 30.68	19.12 17.69	26.11 22.22					
		35.49 37.37	39.5 37.37	30.38 33.13	18.22 19.48	20.9 22.92					
LIME	sum	39.23 38.20	41.82 40.66	36.98 37.28	25.89 22.84	27.87 27.08					
		39.30 40.94	42.30 43.96	39.41 39.38	32.90 46.71	27.42 32.52					
	max	91.76 91.54	94.38 88.83	93.24 85.01	107.89 110.55	93.77 95.83					
		125.98 176.07	124.96 162.51	133.54 184.66	171.42 305.21	151.52 232.94					
SHAP	sum	73.24 67.24	74.17 67.85	71.42 68.34	91.28 83.95	68.02 60.68					
		42.27 42.09	44.80 45.60	37.31 43.69	34.30 40.05	28.76 34.64					
	max	99.16 102.31	97.42 101.44	97.10 92.66	130.98 127.01	99.87 102.16					
		107.51 137.77	102.01 132.57	94.43 132.64	149.95 240.47	135.62 207.62					
Saliency	sum	37.29 39.92	40.88 40.14	35.14 34.23	19.10 19.77	22.90 23.34					
	max	35.58 38.20	39.75 39.81	34.08 36.35	19.15 20.04	22.17 23.78					
Integrated Gradients	sum	37.28 37.32	39.16 40.19	33.30 33.04	18.96 20.60	22.50 24.60					
	max	35.71 34.99	38.74 38.09	32.55 32.80	18.41 20.57	21.80 23.69					
SmoothGrad	sum	38.13 37.22	41.29 40.15	35.16 33.04	19.40 20.33	23.34 23.11					
	max	37.55 36.61	40.29 40.04	34.85 35.98	19.23 19.62	22.45 22.69					
Random	-	37.70 37.34	40.63 40.52	34.87 35.08	19.24 19.79	23.21 23.70					