Hybridization of Expectation-Maximization and K-Means Algorithms for Better Clustering Performance

D. Raja Kishor*, N. B. Venkateswarlu**

*Ph.D. Student, Dept. of CSE, JNTU, Hyderabad, Telangana, India.
**Dept. of CSE, AITAM, Tekkali, Andhra Pradesh, India.

Emails: 1. rajakishor@gmail.com 2. venkat_ritch@yahoo.com

Abstract: The present work proposes hybridization of Expectation-Maximization (EM) and K-Means techniques as an attempt to speed-up the clustering process. Though both K-Means and EM techniques look into different areas, K-means can be viewed as an approximate way to obtain maximum likelihood estimates for the means. Along with the proposed algorithm for hybridization, the present work also experiments with the Standard EM algorithm. Six different datasets are used for the experiments of which three are synthetic datasets. Clustering fitness and Sum of Squared Errors (SSE) are computed for measuring the clustering performance. In all the experiments it is observed that the proposed algorithm for hybridization of EM and K-Means techniques is consistently taking less execution time with acceptable Clustering Fitness value and less SSE than the standard EM algorithm. It is also observed that the proposed algorithm is producing better clustering results than the Cluster package of Purdue University.

Keywords: Hybridization, Clustering, K-means, Mixture models, Expectation Maximization, Clustering fitness, Sum of Squared Errors.
1. Introduction

The Expectation Maximization (EM) algorithm is a model-based clustering technique, which attempts to optimize the fit between the given data and some mathematical model. Such methods are often based on the assumption that the data are generated by a mixture of underlying probability distributions [1].

The EM is an effective, popular technique for estimating mixture model parameters (like cluster weights and means) [7], [8], [9]. When compared to other clustering algorithms, the EM algorithm demands more computational efforts though it produces exceptionally good results [20], [21], [22]. Many researchers experimented on some variants (like generalized EM (GEM), Expectation Conditional Maximization (ECM), Sparse EM (SpEM), Lazy EM (LEM), Expectation-Conditional Maximization Either (ECME) algorithm and the Space Alternating Generalized EM (SAGE) algorithms) in order to reduce the execution time of EM algorithm [17], [18]. In [19], the use of Winograd’s algorithm is proposed to reduce the computational efforts of E-step and M-step of the standard EM algorithm. In [15], the use of multi-criteria models is proposed to design clusters with the aim of improved clustering performance. All their experiments aimed at the speed-up of the EM algorithm by yielding the same results as the Standard EM algorithm or the better results without sacrificing its simplicity and stability.

As an attempt to speed-up the clustering process, the present work proposes the hybridization of EM and K-Means algorithms. The K-Means algorithm is a very popular algorithm for data clustering, which aims at the local minimum of the distortion [2], [23]. EM is a model based approach, which aims at finding clusters such that maximum likelihood of each cluster’s parameters is obtained. In EM, each observation belongs to each cluster with a certain probability [2]. The K-means algorithm is the 2nd dominantly used data mining algorithm and the EM algorithm is the 5th dominantly used data mining algorithm [3], [4], [24]. Though both K-Means and EM techniques look into different areas [2], [23], K-means can be viewed as an approximate way to obtain maximum likelihood estimates for the means, which is the goal of density estimation in EM [23], [24].

In the present work, along with the proposed algorithm for hybridization of EM and K-Means techniques, experiments are carried out with the standard EM algorithm. In all the experiments, it is observed that the proposed algorithm for hybridization of EM and K-Means techniques is consistently taking less execution time to produce the clustering results with acceptable clustering fitness value and less SSE as compared to the standard EM algorithm. The proposed algorithm is also observed to produce clustering results with better performance than the Cluster Package of Purdue University [26].

2. The Standard EM (StEM) algorithm

The Expectation-Maximization (EM) algorithm partitions the given data by calculating the maximum a posteriori principle using the conditional probabilities [17]. Given a guess for the parameter values, the EM algorithm calculates the probability that each point belongs to each distribution and then uses these probabilities to compute a new estimate for the parameter. The EM algorithm iteratively refines initial mixture model parameter estimates to better fit the data and terminates at a locally optimal solution.

The standard EM [10], [11] for Gaussian Mixture Models (GMM) assumes that the algorithm will estimate k class distributions C_j, $j=1, \ldots, k$. For each of the input vectors X_i, $i=1, \ldots, N$, the algorithm calculates the probability $P(C_j|X_i)$. The highest probability will point to the vector’s class.

The EM algorithm works iteratively by applying two steps: the Expectation step (E-step) and the Maximization step (M-step). Formally, $\hat{\theta}(t) = \{\mu_j(t), \sum_j(t), W_j(t)\}; j = 1, \ldots, k$ stands for successive parameter estimates.

Given a dataset of N, d-dimensional vectors, the EM algorithm has to cluster them into k groups.
The multi-dimensional Gaussian distribution for the cluster C_j is parameterized by the d-dimensional mean column vector μ_j and $d \times d$ covariance matrix Σ_j is given as follows [10]:

$$
P(X_i \mid C_j) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_j|}} e^{-\frac{1}{2}(X_i - \mu_j)^T \Sigma_j^{-1} (X_i - \mu_j)}
$$

where X_i is a sample column vector, the superscript T indicates transpose of a column vector, $|\Sigma_j|$ is the determinant of Σ_j and $(\Sigma_j)^{-1}$ is its matrix inverse of covariance matrix Σ_j.

The mixture model probability density function [10] is

$$
P(X_i) = \sum_{j=1}^{k} W_j P(X_i \mid C_j)
$$

where W_j is the weight of cluster C_j.

2.1 Termination condition

As the termination condition, percentage change is computed using the following formula:

$$
\text{Percentage change} = \left| \frac{\Psi_t - \Psi_{t+1}}{\Psi_t} \right| \times 100
$$

where Ψ_t is the number of vectors assigned to new clusters in t^{th} iteration and Ψ_{t+1} is the number of vectors assigned to new clusters in $(t+1)^{th}$ iteration. The symbol \times indicates multiplication. The algorithm terminates when the percentage change < 3.

The EM algorithm for Gaussian Mixture Model [10] proceeds as follows:

1. Initialize mixture model parameters: set the current iteration $t=0$; set initial weights, W_j to $1/k$ for all k clusters; select k vectors randomly from the dataset as the initial cluster means, μ_j; compute global covariance matrix for the dataset and set it to be the initial covariance matrix, Σ_j, for all clusters.

2. E-step: Estimate the probability of each class C_j ($j=1, 2, \ldots, k$), given a certain vector X_i ($i=1, 2, \ldots, N$) for current iteration t using the following formula and assign X_i to the cluster with the maximum probability.

$$
P(C_j \mid X_i) = \frac{W_j P(X_i \mid C_j)}{P(X_i)}
$$

$$
= \frac{1}{\sum_{j=1}^{k} |\Sigma_j(t)|^{-1/2} \exp \eta_j \cdot W_j(t)} \frac{|\Sigma_j(t)|^{-1/2} \exp \eta_j \cdot W_j(t)}
$$

where

$$
\eta_j = -\frac{1}{2}(X_i - \mu_j(t))^T \Sigma_j^{-1}(t)(X_i - \mu_j(t))
$$

$$
\sigma_j = -\frac{1}{2}(X_i - \mu_j(t))^T \Sigma_j^{-1}(t)(X_i - \mu_j(t))
$$

Each of the k clusters has its mean (μ_j) and covariance (Σ_j); $j = 1, 2, \ldots, k$. W_j is the weight of j^{th} cluster.

3. M-step: Here, for j^{th} cluster, update the parameter estimation for the iteration $t+1$ as follows:

$$
\mu_j(t+1) = \frac{\sum_{i=1}^{N} P(C_j \mid X_i) X_i}{\sum_{j=1}^{N} P(C_j \mid X_i)}
$$
(6) \[\sum_j (t+1) = \frac{\sum_{i=1}^{N} P(C_j \mid X_i)(X_i - \mu_j(t))(X_i - \mu_j(t))^T}{\sum_{i=1}^{N} P(C_j \mid X_i)} \]

(7) \[W_i(t+1) = \frac{1}{N} \sum_{i=1}^{N} P(C_j \mid X_i) \]

4. Compute percentage change using (3).
5. Stop the process if the percentage change is < 3. Otherwise, set \(t = t + 1 \) and repeat the steps 2 to 4 with the updated parameters.

3. Hybridization of EM and EM (HbEMKM) algorithms

Though an effectively used algorithm, the EM suffers from slow convergence as it requires heavy computational efforts involving in repeated computation of the many parameters like covariance matrices, means and weights of the clusters and repeated computation of the inverses of covariance matrices of the clusters [3], [5], [24], [25]. On the other hand, the K-Means algorithm can be used to simplify the computation and accelerate convergence as it requires only one parameter to compute, i.e., cluster means [23], [24]. While assigning points to the clusters, the EM maximizes the likelihood and the K-means minimizes the distortion with respect to the clusters [23].

The algorithm for conventional K-means is given below [12].

Algorithm KMeans

Select \(k \) vectors randomly from the dataset as the initial cluster means, \(\mu \). Set the current iteration \(t = 0 \).

Repeat

Assign each vector \(X_i \) from the dataset to its closest cluster mean using Euclidean distance.

\[\text{dist}(X_i, \mu_j) = \sqrt{\sum_{l=1}^{d} (x_{il} - \mu_{jl})^2} \]

where \(X_i \) is the \(i^{th} \) vector in the dataset, \(\mu_j \) is the mean of the cluster \(j \) and \(d \) is the number of dimensions of a data point.

Re-compute the cluster means and set \(t = t + 1 \).

Compute percentage change using (3).

Until percentage change is < 3.

End of KMeans

The present work, as an attempt to speed-up the clustering process, experiments with the hybridization of EM and K-Means algorithms (HbEMKM). Though both EM and K-Means techniques look into different areas [2], [23], K-means can be viewed as an approximate way to obtain maximum likelihood estimates for the means, which is the goal of density estimation in EM [23], [24]. Furthermore, K-Means is formally equivalent to EM as K-Means is a limiting case of fitting data by a mixture of \(k \) Gaussians with identical, isotropic covariance matrices (\(\Sigma = \sigma^2 I \)), when the soft assignments of data points to mixture components are hardened to allocate each data point solely to the most likely component [3], [23]. A random space is isotropic if its covariance function depends on distance alone [25]. In practice, there is often some conflation of the two algorithms that K-means is sometimes used in density estimation applications due to its more rapid convergence [23].

Also that selection of initial values is critical for EM, since it most likely converges to local maxima around the initial values as EM uses maximum likelihood [2]. It may be a good practice, if the results of K-Means are used as initial parameter values for a subsequent execution of EM.
for the more exact computations [23], [24]. The present work also experiments on running the EM algorithm on the results of K-Means algorithm (KMEM).

Along with the proposed algorithm for hybridization of EM and K-Means techniques, experiments are carried out with the standard EM algorithm and finally performance comparison is made among the results of all experiments. In all the experiments same termination condition, discussed section 2.1, is used.

The pseudo code for the algorithm is given below. This algorithm performs clustering using Expectation-Maximization and K-Means techniques in the alternative iterations till termination. As part of maximization step for EM, cluster weights, means and covariance matrices are calculated using the results of K-Means step.

Algorithm HbEMKM

N = number of samples in data
n_j = number of samples in the j^th cluster
X_i = i^th sample in data
k = number of clusters
W_j = weight of j^th clusters
μ_j = mean of j^th cluster
Σ_j = covariance matrix of j^th cluster

Select k vectors randomly from the input dataset as the initial cluster means, μ.

First, assign each data vector X_i to the closest cluster with mean, μ_j using Euclidean distance in the formula (8).

Set isProgress = true

Repeat while (isProgress == true)

M-Step: Compute means μ_j and covariance matrices Σ_j for j = 1, …, k, based on the results of K-Means step.

Compute cluster weights W_j = n_j/N for j = 1, …, k.

E-Step: For each given data vector X_i (i = 1, 2, …, N), compute the cluster probability P(C_j | X_i) for j = 1, …, k, using (4).

Assign X_i to the cluster with Max_j { P(C_j | X_i); j = 1, …, k }.

Compute percentage change using (3).

IF (percentage change >= 3)

Compute cluster means μ_j for j = 1, …, k, using (5).

K-Means Step: Assign each data vector X_i to the closest cluster with mean, μ_j using Euclidean distance in the formula (8).

Compute percentage change using (3).

IF (percentage change >= 3)

Set isProgress = true

ELSE

Set isProgress = false

End of inner IF

ELSE

Set isProgress = false

End of outer IF

End of Repeat Loop

End of HbEMKM

4. Clustering performance measure

As a measure of clustering performance, the Clustering Fitness [13] is computed. The calculation of Clustering Fitness involves intra-cluster similarity, inter-cluster similarity, and the experiential knowledge, λ. The main objective of any clustering algorithm is to generate clusters with higher intra-cluster similarity and lower inter-cluster similarity [16]. So both the measures are taken into
consideration for computing Clustering Fitness. The computation of Clustering Fitness results in higher value when the inter-cluster similarity is low and results in lower value for when the inter-cluster similarity is high. To make the computation of Clustering Fitness unbiased, the value of λ is taken as 0.5 [13].

4.1 Intracluster similarity for the cluster C_j

It can be quantified via some function of the reciprocals of intracluster radii within each of the resulting clusters. The intracluster similarity of a cluster C_j ($1 = j = k$), denoted as $S_{tra}(C_j)$, is defined by

$$S_{tra}(C_j) = \frac{1 + n_j}{1 + \sum_i dist(I_i, Centroid)}$$

Here, n_j is the number of items in cluster C_j, $1 = l = n_j$, I_i is the i^{th} item in cluster C_j, and $dist(I_i, Centroid)$ calculates the distance between I_i and the centroid of C_j, which is the intracluster radius of C_j. To smooth the value of $S_{tra}(C_j)$ and allow for possible singleton clusters 1 is added to the denominator and numerator.

4.2 Intracluster similarity for one clustering result C

Denoted as $S_{tra}(C)$, Intracluster similarity for one clustering result C is defined by

$$S_{tra}(C) = \frac{\sum_j S_{tra}(C_j)}{k}$$

Here, k is the number of resulting clusters in C.

4.3 Intercluster similarity

It can be quantified via some function of the reciprocals of intercluster radii of the clustering centroids. The intercluster similarity for one of the possible clustering results C, denoted as $S_{ter}(C)$, is defined by

$$S_{ter}(C) = \frac{1 + n}{1 + \sum_j dist(Centroid_j, Centroid^2)}$$

Here, k is the number of resulting clusters in C, $1 = j = k$, $Centroid_j$ is the centroid of the j^{th} cluster in C, $Centroid^2$ is the centroid of all centroids of clusters in C. We compute intercluster radius of $Centroid_j$ by calculating $dist(Centroid_j, Centroid^2)$, which is distance between $Centroid_j$ and $Centroid^2$. To smooth the value of $S_{ter}(C)$ and allow for possible all-inclusive clustering result, 1 is added to the denominator and the numerator.

4.4 Clustering fitness

The Clustering Fitness for one of the possible clustering results C, denoted as CF, is defined by

$$CF = \lambda * S_{tra} + \frac{1 - \lambda}{S_{ter}}$$

Here, $0 < \lambda < 1$ is an experiential weight. The symbol * indicates multiplication. In the present work takes $\lambda=0.5$.

4.5 Sum of Squared Errors

In the present work, Sum of Squared Errors (SSE) is also computed for all the clustering results to measure the clustering performance [6]. The clustering performance is considered to be good if the corresponding SSE is less when compared to the other clustering techniques. The SSE is computed using the following formula.

$$SSE = \frac{1}{N} \sum_{j=1}^{k} \sum_{x_i \in C_j} |X_i - \mu_j|$$
Here, X_i is a vector from the dataset, μ_j is the means of the cluster C_j, k is the number of clusters and N is the number of vectors in the dataset. $|X_i-\mu_j|$ denotes the distance between X_i and μ_j. The objective of clustering is to minimize the within-cluster sum of squared errors. The lesser the SSE, the better the goodness of fit is.

5. Experiment and results

Experiments are carried out on the system with Intel(R) Core i7-3770K with 3.50GHz processor speed, 8GB RAM with 1666FSB, Windows 7 OS and using JDK 1.7.0_45. Separate modules are written for each algorithm to observe the CPU time for clustering any dataset by keeping the cluster seeds same for all methods. I/O operations are eliminated and time observed is strictly for clustering of the data.

Magic Gamma, Poker Hand, and Letter Recognition datasets are used for the present work from UCI ML dataset repository [14]. An important issue in evaluating data analysis algorithms is the availability of representative data. When real-life data are hard to obtain or when their properties are hard to modify for testing various algorithms, synthetic data becomes an appealing alternative. The present work also uses three synthetic datasets that are generated by an algorithm for generating multivariate normal random variables [27]. First synthetic dataset is generated assuming all clusters having different means and different covariance matrices. The second synthetic dataset is generated assuming some clusters having the same mean but different covariance matrices. The third synthetic dataset is generated assuming some clusters having same covariance matrix but different means.

Data Set	No. of points	No. of Dimensions
Letter Recognition Data	20000	16
Magic Gamma data	19020	10
Poker Hand data	102500	10
Synthetic data-1	50000	10
Synthetic data-2	50000	10
Synthetic data-3	50000	10

All the algorithms are studied by executing on each dataset by varying number of clusters (i.e., $k=10, 11, 12, 13, 14, 15$). The details of execution time, clustering fitness and SSE of each algorithm are separately given in the tables below for each dataset.

5.1 Observations on Letter Recognition Dataset

The tables 1, 2 and 3 consist of the execution time, the cluster fitness and Sum of Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and the Cluster Package of Purdue University performed on Letter Recognition dataset. The observations are also shown in the Figures 1, 2 and 3.

Table 1. Execution time of each clustering method in seconds.

K	SiEM	KMEM	HeEMKM	Cluster 3.6.7
10	16.4120	5.9210	0.2440	17.5760
11	6.4330	11.4470	0.3360	20.0250
12	14.0750	6.5540	0.4930	26.4340
13	7.6010	5.8790	0.3880	24.1890
14	5.1380	8.9930	0.4240	30.7420
15	13.5860	6.1920	0.7500	41.3680
Table 2: Clustering fitness of each clustering method.

K	SiEM	KMEM	HbEMKM	Cluster 3.6.7
10	2.6258	2.7286	2.9425	2.7812
11	2.6063	2.9516	3.1282	2.7391
12	2.7610	2.8908	3.1003	2.7088
13	2.8867	3.1064	3.2270	2.9507
14	3.0719	3.3224	3.4473	2.8795
15	2.9324	3.0599	3.3460	3.0419

Table 3: SSE of each clustering method.

K	SiEM	KMEM	HbEMKM	Cluster 3.6.7
10	58.31780253	54.90029903	46.79034965	59.54343871
11	56.81365607	50.53051120	43.76738443	59.06653898
12	55.26046620	49.59847946	43.60821184	55.55461758
13	52.24618292	47.06660999	41.57619654	54.98634779
14	52.43310568	46.24255323	39.85697243	53.61458606
15	52.74977604	47.52093477	39.76810321	51.85401078
5.2 Observations on Magic Gamma dataset

The tables 4, 5 and 6 consist of the execution time, the cluster fitness and Sum of Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and the Cluster Package of Purdue University performed on Magic Gamma dataset. The observations are also shown in the Figures 4, 5 and 6.

Table-4: Execution time of each clustering method in seconds.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	3.5360	0.7920	0.1830	7.2890
11	3.7360	4.0920	0.1110	10.2680
12	3.2410	3.1720	0.2420	9.3120
13	3.2390	4.9610	0.2570	11.0620
14	6.8540	7.9350	0.4070	9.5990
15	5.9050	3.3490	0.5020	18.6780

Fig. 4. Magic gamma dataset: Execution times

Table-5: Clustering fitness of each clustering method.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	29.8434	46.1219	50.8960	34.9529
11	35.9602	40.2215	46.6300	36.0443
12	37.5347	44.2417	57.5562	38.4638
13	34.8555	41.3342	52.9504	40.7634
14	33.7390	39.9490	52.9743	41.0526
15	42.8234	46.1663	61.7020	39.9385

Fig. 5. Magic gamma dataset: Clustering fitness

Table-6: SSE of each clustering method.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	10235.04311	6336.868507	5116.794358	9619.032540
11	9578.544208	8140.627114	5013.55956	8606.290689
12	9873.706092	7544.572959	4409.876943	8838.627792
13	9272.422300	8045.302214	4658.203266	8743.184190
14	9398.092913	7830.483924	4397.280683	8191.174528
15	8646.400371	6528.632337	3803.336041	8620.268594
5.3 Observations on Poker hand dataset

The tables 7, 8 and 9 consist of the execution time, the cluster fitness and Sum of Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and the Cluster Package of Purdue University performed on Poker Hand dataset. The observations are also shown in the Figures 7, 8 and 9.

Table-7: Execution time of each clustering method in seconds.

K	SiEM	KMEM	HbEMKM	Cluster 3.6.7
10	66.1490	107.9470	23.3930	2557.5940
11	74.0110	82.4270	31.0430	3328.3360
12	78.4610	72.0570	29.0900	3434.1700
13	85.2930	33.2375	46.2370	3160.3870
14	91.0140	33.2375	46.2370	3160.3870
15	117.2070	238.8700	28.6360	2809.5350

Table-8: Clustering fitness of each clustering method.

K	SiEM	KMEM	HbEMKM	Cluster 3.6.7
10	1.3840	2.7620	2.8951	1.2293
11	1.6828	2.8351	2.9882	1.8606
12	1.5570	2.9154	3.0631	1.3815
13	1.4044	2.9795	3.1120	1.0973
14	1.5571	3.0186	3.1739	1.5624
15	1.8413	3.0663	3.2148	1.0539
5.4 Observations on Synthetic dataset-I

The tables 10, 11 and 12 consist of the execution time, the cluster fitness and Sum of Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and the Cluster Package of Purdue University performed on Synthetic dataset-I. The observations are also shown in the Figures 10, 11 and 12.

Table-10: Execution time of each clustering method in seconds.

K	STEM	KMEM	HbEMKM	Cluster 3.6.7
10	3.8230	3.3670	0.6580	43.3850
11	5.6100	2.9100	0.8740	46.5140
12	6.1160	3.9880	0.9400	59.1600
13	4.9520	4.2760	1.3410	70.7840
14	4.4550	3.7160	1.0860	87.9630
15	4.7690	6.8270	0.9680	106.1600
Fig. 10. Synthetic dataset-1: Execution times

Table-11: Clustering fitness of each clustering method.

K	SiEM	KMEM	HbEMKM	Cluster 3.6.7
10	582.8037	989.8852	1070.4906	862.1022
11	719.8391	1002.2908	1080.2918	901.5273
12	690.8997	1043.5350	1135.5673	897.9433
13	663.8376	1049.8692	1143.5548	380.6306
14	763.8713	1081.2933	1165.1284	443.3503
15	842.4782	1107.4315	1200.3491	361.4750

Fig. 11. Synthetic dataset-1: Clustering fitness

Table-12: SSE of each clustering method.

K	SiEM	KMEM	HbEMKM	Cluster 3.6.7
10	14628710.78	11859786.85	11684878.89	14388425.51
11	14386916.86	11658179.86	11468010.80	13455719.67
12	13874673.81	11491360.59	11251086.05	13535376.15
13	14099367.22	11385248.64	11110137.28	20481277.55
14	13589123.08	11212795.22	11046519.80	25434272.93
15	13452374.50	11267402.97	10862782.33	21592712.96

Fig. 12. Synthetic dataset-1: Sum of squared errors
5.5 Observations on Synthetic dataset-2

The tables 13, 14 and 15 consist of the execution time, the cluster fitness and Sum of Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and the Cluster Package of Purdue University performed on Synthetic dataset-2. The observations are also shown in the Figures 13, 14 and 15.

Table-13: Execution time of each clustering method in seconds.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	3.8420	2.6790	0.6660	30.8250
11	4.9020	2.9210	0.8630	51.8800
12	4.5760	3.9120	0.9290	49.4800
13	7.4250	5.1100	1.0130	64.8300
14	7.1170	3.6620	1.0750	87.2220
15	5.7130	3.9850	1.1530	88.0840

Fig. 13. Synthetic dataset-2: Execution times

Table-14: Clustering fitness of each clustering method.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	592.9165	985.5797	1064.7669	479.4660
11	705.1030	998.8906	1083.0545	505.4192
12	616.7459	1028.0205	1071.5066	391.3777
13	865.7343	1040.6712	1148.6615	435.4822
14	761.9546	1080.9615	1174.8407	321.3893
15	775.9452	1096.7161	1180.8662	412.5189

Fig. 14. Synthetic dataset-2: Clustering fitness

Table-15: SSE of each clustering method.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	14439664.00	11760241.27	1159373.61	20164991.50
11	13902439.10	11528187.47	11355916.26	21276089.23
12	14232153.20	11421357.02	11287930.24	21633831.68
13	13415780.69	11319653.67	11024847.95	21181605.38
14	13336198.27	11100700.03	10882717.53	23815685.30
15	13320932.07	10941351.39	10743553.26	21087020.41
5.6 Observations on Synthetic dataset-3

The tables 16, 17 and 18 consist of the execution time, the cluster fitness and Sum of Squared Error (SSE), respectively, of algorithms discussed in sections 2 and 3 and the Cluster Package of Purdue University performed on Synthetic dataset-3. The observations are also shown in the Figures 16, 17 and 18.

Table-16: Execution time of each clustering method in seconds.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	8.2650	2.0130	0.8030	31.9960
11	4.1960	3.6610	0.7170	60.8990
12	4.5890	2.4560	0.7870	48.1750
13	5.7860	4.2670	1.0130	70.2460
14	6.2350	8.0820	0.7250	62.2360
15	5.7190	4.9670	0.9640	95.2090

Table-17: Clustering fitness of each clustering method.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	623.6250	972.4719	1048.2655	500.3920
11	671.4153	982.1240	1066.9712	391.8017
12	670.1226	1026.8664	1106.1198	419.4653
13	797.2359	1039.7200	1116.5491	372.0694
14	872.9962	1048.6642	1157.4691	397.6201
15	685.2117	1075.6261	1149.7448	332.1400
Table 18: SSE of each clustering method.

K	StEM	KMEM	HbEMKM	Cluster 3.6.7
10	13456811.43	11348281.15	11197451.26	19005111.06
11	13810971.74	11258784.69	11072963.24	19915617.9
12	13190851.64	10946003.08	10842930.4	19915392.35
13	13235505.84	10976305.12	10717404.62	21071287.76
14	12527770.20	11236068.19	10616547.71	19920287.74
15	13107521.88	10636008.11	10406779.38	21017062.74

6. Conclusion

The proposed algorithm for Hybridization of EM and K-Means is consistently taking less computational time with all the tested datasets. The algorithm also takes less computational time when compared to the Cluster-3.6.7 package of Purdue University. The proposed algorithm also produces the results with higher clustering fitness values than the other algorithms including Cluster-3.6.7. It is also observed that the proposed algorithm produces the clustering results with lesser SSE values than the other algorithms including the Cluster-3.6.7 package. Therefore, the present work proposes Hybridization of EM and K-Means algorithms as a faster clustering technique with improved performance.

References

1. Chris Fraley and Adrian E. Raftery, Model-Based Clustering, Discriminant Analysis, and Density Estimation, Journal of the American Statistical Association; Vol. 97, 2002, No. 458, 611.
2. Adigun Abimbola Adebisi, Omidiura Elijah Olusayo and Olabiyisi Stephen Olatunde, An Exploratory Study of K-Means and Expectation Maximization Algorithms, British Journal of Mathematics & Computer Science, Vol. 2, 2012, No. 2, 62-71.

3. Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, Dan Steinberg, Survey Paper: Top 10 algorithms in data mining, Knowledge and Information Systems, Vol. 14, 2008, 1-37.

4. J. MacQueen, Some methods for classification and analysis of multivariate observations, In Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics and Probability, Vol. 1, 1967, pp. 281-296.

5. Geoffrey J. McLachlan, Thriyambakam Krishnan, The EM Algorithm and Extensions, 2/e, John Wiley & Sons, Inc., 2007.

6. Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, 2/e, Elsevier Inc., New Delhi, India, 2007.

7. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Introduction to data Mining, 1/e, Pearson Education, 2007.

8. Yeung K.Y., Fraley C., Murua A., Raftery A.E. and Ruzzo W.L., Model-based clustering and data transformations for gene expression data, Bioinformatics, Vol. 17, 2010, No. 10, 977-987.

9. Paul S. Bradley, Usama M. Fayyad and Cory A. Reina, Scaling EM (Expectation-Maximization) Clustering to Large Databases, Technical Report, Microsoft Research, MSR-TR-98-35, 1999.

10. Thales Sehn Körting, Luciana Vieira Dutra, Leila Maria Garcia Fonseca, and Guaraci Jose Erthal, Assessment of a Modified Version of the EM Algorithm for Remote Sensing Data Classification, Iberoamerican Congress on Pattern Recognition (CIARP). São Paulo, Brazil, LNCS 6419, 2010, 476-483.

11. Thales Sehn Körting, Luciano Vieira Dutra, Leila Maria Garcia Fonseca, Guaraci Erthal, Felipe Castro da Silva, Improvements to Expectation-Maximization approach for unsupervised classification of remote sensing data, GeoINFO. Campos do Jordão, SP, Brazil, 2007.

12. Neha Aggarwal and Kirti Aggarwal, A Mid-Point based k-mean Clustering Algorithm for Data Mining, International Journal on Computer Science and Engineering, Vol. 4, 2012, No. 06, 1174-1180.

13. Xiwu Han and Tiejun Zhao, Auto-K Dynamic Clustering Algorithm, Journal of Animal and Veterinary Advances Vol. 4, 2005, No. 5, 535-539.

14. UCL Machine Learning Repository http://archive.ics.uci.edu/ml/datasets.html

15. Irina Radeva, Multi-Criteria Models for Clusters Design, Cybernetics and Information Technology, Vol. 13, 2013, No. 1, 18-33.

16. V. Sree Hari Rao, Murthy V. Jonnalagedda, Insurance Dynamics – A Data Mining Approach for Customer Retention in Health Care Insurance Industry, Cybernetics and Information Technologies, Vol. 12, 2012, No. 1, 49-60.

17. F.X. Jollois and M. Nadif, Speed-up for the expectation-maximization algorithm for clustering categorical data, J Glob Optim 37, 2007, 513-525.

18. Xiao-Li Meng and David Van Dyk, The EM Algorithm – an Old Folk-Song Sung to a Fast New Tune, Journal of the Royal Statistical Society, Vol. 59, 1997, No. 3, 511-567.

19. Nagendra Kumar D.J., Murthy J.V.R., Venkateswarlu N.B., Fast Expectation Maximization Clustering Algorithm, International Journal of Computational Intelligence Research, Vol. 8, 2012, No. 2, 71-94.

20. F. X. Jollois and M. Nadif (2007), Speed-up for the expectation-maximization algorithm for clustering categorical data, Journal of Global Optimization, Vol. 37, 2007, No. 4, 513-525.

21. Radford Neal and Geoffrey E. Hinton, A View Of The EM Algorithm That Justifies Incremental, Sparse, And Other Variants, Learning in Graphical Models, Kluwer Academic Publishers, MA, U.S.A, 1998.
22. Rui Xu and Donald Wunsch II, Survey of clustering algorithms. IEEE Transactions on Neural Networks, Vol. 16, 2005, No. 3, 645-678.

23. Michael Kearns, Yishay Mansour and Andrew Ng. (1997), An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering, Uncertainty in Artificial Intelligence, Proceedings of the Thirteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), Morgan Kaufmann, "San Francisco, CA, 1997, 282—293.

24. Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification, 2/e, Wiley-India Edition, New Delhi, 2007.

25. Porcu, Emilio, Montero, Jose-Mart, Schlather and Martin (2012), Advances and Challenges in Space-time Modelling of Natural Events, Lecture Notes in Statistics 207, Springer-Verlag Berlin Heidelberg.

26. Purdue University Cluster Software https://engineering.purdue.edu/~bouman/software/cluster/

27. Amitava Ghosh and Pinnaduwa H.S.W. Kulatilake, A FORTRAN Program for Generation of Multivariate Normally Distributed Random Variables, Computers & Geosciences, Vol. 13, 1987, No. 3, 221-233.