Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy \(\sqrt{s} = 7 \) TeV is presented. Photons are reconstructed in the pseudorapidity range \(|\eta_{\gamma}| < 1.37\) and with a transverse energy \(E_{T\gamma} > 25\) GeV. Jets are reconstructed in the rapidity range \(|y_{\text{jet}}| < 4.4\) and with a transverse momentum \(p_{T\text{jet}} > 20\) GeV. The differential cross section \(d\sigma/dE_{T\gamma}\) is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-\(p_T\) jet: \(|y_{\text{jet}}| < 1.2\), \(1.2 \leq |y_{\text{jet}}| < 2.8\) and \(2.8 \leq |y_{\text{jet}}| < 4.4\). For each rapidity configuration the same-sign \((\eta\gamma y_{\text{jet}} \geq 0)\) and opposite-sign \((\eta\gamma y_{\text{jet}} < 0)\) cases are studied separately. The results are based on an integrated luminosity of \(37 \, \text{pb}^{-1}\), collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for \(E_{T\gamma} < 45\) GeV, where the theoretical predictions overestimate the measured cross sections.
A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at $\sqrt{s} = 7$ TeV is presented. Photons are reconstructed in the pseudorapidity range $|\eta^\gamma| < 1.37$ and with a transverse energy $E_T^\gamma > 25$ GeV. Jets are reconstructed in the rapidity range $|y^{\text{jet}}| < 4.4$ and with a transverse momentum $p_T^{\text{jet}} > 20$ GeV. The differential cross section $d\sigma/dE_T^\gamma$ is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-p_T jet: $|y^{\text{jet}}| < 1.2$, $1.2 \leq |y^{\text{jet}}| < 2.8$ and $2.8 \leq |y^{\text{jet}}| < 4.4$. For each rapidity configuration the same-sign ($\eta^\gamma y^{\text{jet}} > 0$) and opposite-sign ($\eta^\gamma y^{\text{jet}} < 0$) cases are studied separately. The results are based on an integrated luminosity of 37 pb$^{-1}$ collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for $E_T^\gamma < 45$ GeV, where the theoretical predictions overestimate the measured cross sections.

PACS numbers: 13.85.Qk, 12.38.Qk

I. INTRODUCTION

At colliders, prompt photons are defined as photons produced in the beam particle collisions and not originating from particle decays. They include both direct photons, which originate from the hard process, and fragmentation photons, which arise from the fragmentation of a colored high-\(p_T\) parton [1, 2]. At the LHC, the production of prompt photons in association with jets in proton-proton collisions, $pp \rightarrow \gamma + \text{jet} + X$, represents an important test of perturbative QCD predictions at large hard-scattering scales (Q^2) and over a wide range of the parton momentum fraction (x). In addition the study of the angular correlations between the photon and the jet can be used to constrain the photon fragmentation functions [3]. Since the dominant $\gamma + \text{jet}$ production mechanism in pp collisions at the LHC is through the $qg \rightarrow q\gamma$ process, the measurement of the photon + jet cross section at high rapidities and low transverse momenta can also be exploited to constrain the gluon density function inside the proton [3-6] for values of the incoming parton momentum fraction x down to $\approx O(10^{-3})$. For the same reason, this final state can be used to obtain a high purity sample of quark-originated jets [7] that can be exploited to study detector performance with respect to these jets. The same events can also be used to calibrate the jet energy scale by profiting from momentum conservation in the transverse plane and the accurate energy measurement of the photon in the electromagnetic calorimeter [8]. Finally, $\gamma + \text{jet}$ events provide one of the main backgrounds in searches of Higgs bosons decaying to a photon pair [9]. An accurate knowledge of the photon + jet rate and angular distribution can be useful to understand the background level and shape in these searches.

In this article a measurement of the production cross section of an isolated prompt photon in association with jets, in pp collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV, is presented. Photons are reconstructed in the pseudorapidity range of $|\eta^\gamma| < 1.37$ and in the transverse energy range of $E_T^\gamma > 25$ GeV. The same isolation criterion as used in our measurements of the inclusive isolated prompt photon [10, 11] and diphoton production cross sections [12] is used. It is based on the amount E_T^{iso} of transverse energy deposited in the calorimeters inside a cone of radius $R = \sqrt{(\eta - \eta^\gamma)^2 + (\phi - \phi^\gamma)^2} = 0.4$ centered around the photon direction (defined by η^γ, ϕ^γ) [13]. The contribution from electromagnetic calorimeter cells in the $\Delta\eta, \Delta\phi = (\pm 0.0625, \pm 0.0875)$ region around the photon barycenter is not included in the sum. The mean value of the small leakage of the photon energy outside this region, evaluated as a function of the photon transverse energy, is subtracted from the measured value of E_T^{iso}. The typical size of this correction is a few percent of the photon transverse energy. The measured value of E_T^{iso} is further corrected by subtracting the estimated contributions from the underlying event and additional inelastic pp interactions. This correction is computed on an event-by-event basis using the method suggested in Ref. [14, 15]. After the isolation requirement is applied, the relative contribution to the total cross section from fragmentation photons decreases, though it remains non-negligible especially at low transverse energies, below 35-40 GeV [2]. The isolation requirement significantly reduces the main background, which consists of QCD multijet events where one jet typically contains a π^0 or η meson which carries most of the jet energy and is misidentified as a prompt photon because it decays into a photon pair. Jets are reconstructed in the rapidity range of $|y^{\text{jet}}| < 4.4$ and transverse momentum range of $p_T^{\text{jet}} > 20$ GeV. The minimum separation between the

* Full author list given at the end of the article.
highest \(p_T \) (leading) jet and the photon in the \{\(\eta, \phi \)\} plane is \(\Delta R > 1.0 \). The leading jet is required to be in either the central (\(|y^{\text{jet}}| < 1.2 \)), forward (\(1.2 \leq |y^{\text{jet}}| < 2.8 \)) or very forward (\(2.8 \leq |y^{\text{jet}}| < 4.4 \)) rapidity interval.

The differential cross section \(d\sigma/dE_T^\gamma \) is measured for each of the three leading jet rapidity categories. Measurements are performed separately for the two cases where the photon pseudorapidity and the leading jet rapidity have same-sign (\(\eta^\gamma y^{\text{jet}} \geq 0 \)) or opposite-sign (\(\eta^\gamma y^{\text{jet}} < 0 \)), and the results are compared to next-to-leading order (NLO) perturbative QCD theoretical predictions. Separating the selected phase space into these six different angular configurations allows the comparison between data and theoretical predictions in configurations where the relative contribution of the fragmentation component to the total cross section is different, and in different ranges of \(x \), which in the leading-order approximation is equal to \(x = \frac{E_T^\gamma}{\sqrt{\gamma^2 + y^{\text{jet}}^2}} \). The differential cross sections are measured up to \(E_T^\gamma = 400 \) GeV for the central and forward jet configurations, and up to \(E_T^\gamma = 200 \) GeV for the very forward jet configurations. These measurements cover the region \(x \gtrsim 0.001 \) and \(625 \text{ GeV}^2 \leq Q^2 = (E_T^\gamma)^2 \leq 1.6 \times 10^5 \text{ GeV}^2 \), thus extending the kinematic reach of previous photon + jet measurements at hadron [16–19] and electron-proton [20–23] colliders.

II. THE ATLAS DETECTOR

The ATLAS experiment [24] is a multipurpose particle physics detector with a forward-backward symmetric cylindrical geometry and nearly 4\(\pi \) coverage in solid angle.

The inner tracking detector covers the pseudorapidity range \(|\eta| < 2.5 \), and consists of a silicon pixel detector, a silicon microstrip detector, and, for \(|\eta| < 2.0 \), a transition radiation tracker. The inner detector is surrounded by a thin superconducting solenoid providing a 2T magnetic field.

The electromagnetic calorimeter is a lead-liquid argon sampling calorimeter. It is divided into a barrel section, covering the pseudorapidity region \(|\eta| < 1.475 \), and two end-cap sections, covering the pseudorapidity regions \(1.375 < |\eta| < 3.2 \). It consists of three longitudinal layers in most of the pseudorapidity range. The first layer, with a thickness between 3 and 5 radiation lengths, is segmented into high granularity strips in the \(\eta \) direction (width between 0.003 and 0.006 depending on \(\eta \), with the exception of the regions \(1.4 < |\eta| < 1.5 \) and \(|\eta| > 2.4 \)), sufficient to provide event-by-event discrimination between single-photon showers and two overlapping showers coming from a \(e^0 \) decay. The second layer of the electromagnetic calorimeter, which collects most of the energy deposited in the calorimeter by the photon shower, has a thickness around 17 radiation lengths and a cell granularity of \(0.025 \times 0.025 \) in \(\eta \times \phi \). A third layer, with thickness varying between 4 and 15 radiation lengths, collects the tails of the electromagnetic showers and provides an additional point to reconstruct the shower barycenter. In front of the calorimeter a thin presampler layer, covering the pseudorapidity interval \(|\eta| < 1.8 \), is used to correct for energy loss before the calorimeter. The electromagnetic energy scale is measured using \(Z \rightarrow \gamma e^+ e^- \) events with an uncertainty better than 1% [25]. The linearity has been found to be close to 1%. At low \(|\eta| \) the stochastic term is \((9 - 10)\%/\sqrt{E/\text{GeV}} \). However, it worsens as the amount of material in front of the calorimeter increases at larger \(|\eta| \). The constant term is measured to be about 1.2% in the barrel and 1.8% in the end-cap region up to \(|\eta| < 2.47 \) which is relevant for this analysis.

A hadronic sampling calorimeter is located outside the electromagnetic calorimeter. It is made of scintillating tiles and steel in the barrel section (\(|\eta| < 1.7 \)), with depth around 7.4 interaction lengths, and of two end-caps of copper and liquid argon, with depth around 9 interaction lengths. Hadronic jets are reconstructed with an energy scale uncertainty of the order of 2.5% in the central to 14% in the very forward regions [26].

The muon spectrometer surrounds the calorimeters. It consists of three large air-core superconducting toroid systems, stations of precision tracking chambers providing accurate muon tracking over \(|\eta| < 2.7 \), and detectors for triggering over \(|\eta| < 2.4 \).

Events containing photon candidates are selected by a three-level trigger system. The first level trigger (level-1) is hardware based: using a trigger cell granularity (0.1 \(\times \) 0.1 in \(\eta \times \phi \)) coarser than that of the electromagnetic calorimeter, it searches for electromagnetic clusters within a fixed window of size 0.2 \(\times \) 0.2 and retains only those whose total transverse energy in two adjacent trigger cells is above a programmable threshold. The algorithms of the second and third level triggers (collectively referred to as the high-level trigger) are implemented in software. The high-level trigger exploits the full granularity and precision of the calorimeter to refine the level-1 trigger selection, based on improved energy resolution and detailed information on energy deposition in the calorimeter cells.

III. COLLISION DATA AND SIMULATED SAMPLES

A. Collision Data

The measurements presented here are based on \(pp \) collision data collected at a center-of-mass energy \(\sqrt{s} = 7 \) TeV in 2010. Only events taken in stable beam conditions are considered and the trigger system, the tracking devices and the calorimeters are also required to be operational. Events are recorded using two single-photon triggers, with nominal transverse energy thresholds of 20 and 40 GeV. During the 2010 data-taking, no prescale was applied to the 40 GeV threshold trigger and the cor-
approximately six million. In this measurement, this threshold is used to collect events in which the photon transverse energy, after reconstruction and calibration, is greater than 45 GeV. During the same data-taking period the average prescale of the 20 GeV threshold trigger was 5.5, leading to a total integrated luminosity of \((6.7 \pm 0.2) \text{ pb}^{-1} \). This threshold is used in this measurement to collect events in which the photon transverse energy is lower than 45 GeV.

The selection criteria applied by the trigger on shower-shape variables computed from the energy profiles of the showers in the calorimeters are looser than the photon identification criteria applied in this measurement. Minimum-bias events, triggered by two sets of scintillation counters located at \(z = \pm 3.5 \text{ m} \) from the collision center, are used to estimate the single-photon trigger efficiencies for true prompt photons with pseudorapidity \(|\eta^\gamma| < 2.37 \). The efficiencies are constant and consistent with 100% within the uncertainty (Sec. VII) for \(E_T^\gamma > 43 \text{ GeV} \) and \(E_T^\gamma > 23 \text{ GeV} \) for the 40 GeV and 20 GeV threshold triggers, respectively.

In order to reduce noncollision backgrounds, events are required to have a reconstructed primary vertex with at least three associated tracks and consistent with the average beam spot position. The inefficiency of this requirement is negligible in true photon + jet events passing the acceptance criteria. The estimated contribution to the final photon sample from noncollision backgrounds is less than 0.1% and is therefore neglected [10, 11].

The total number of selected events in data after the trigger, data quality and primary vertex requirements is approximately six million.

IV. PHOTON AND JET SELECTION

A. Photon selection

Photons are reconstructed starting from clusters in the electromagnetic calorimeter with transverse energies exceeding 2.5 GeV, measured in projective towers of \(3 \times 5 \) cells in \(\eta \times \phi \) in the second layer of the calorimeter. An attempt is made to match these clusters with tracks that are reconstructed in the inner detector and extrapolated to the calorimeter. Clusters without matching tracks are classified as unconverted photon candidates. Clusters with matched tracks are classified as electron candidates. To recover photon conversions, clusters matched to pairs of tracks originating from reconstructed conversion vertices in the inner detector or to single tracks with no hit in the innermost layer of the pixel detector are classified as converted photon candidates. The final energy measurement, for both converted and unconverted photons, is made using only the calorimeter, with a cluster size that depends on the photon classification. In the barrel, a cluster corresponding to \(3 \times 5 \) \((\eta \times \phi) \) cells in the second layer is used for unconverted photons, while a cluster of \(3 \times 7 \) \((\eta \times \phi) \) cells is used for converted photon candidates to compensate for the opening between the conversion products in the \(\phi \) direction due to the magnetic field. In the end-cap, where the cell size along \(\theta \) is smaller than in the barrel and the conversion tracks are closer in \(\phi \) because of the smaller inner radius of the calorimeter, a cluster size of \(5 \times 5 \) is used for all candidates. A dedicated energy calibration [36] is then applied separately for converted and unconverted photon candidates to account for upstream energy loss and both lateral and longitudinal leakage. Both unconverted and converted photon candidates are considered for this measurement. Photons reconstructed near regions of the calorimeter affected by readout or high-voltage failures are not considered, eliminating around 5% of the selected candidates. Events with at least one photon candidate with transverse energy \(E_T^\gamma > 25 \text{ GeV} \) and pseudorapidity \(|\eta^\gamma| < 1.37 \) are selected. Photons are selected using the same shower-shape and isolation variables discussed in Refs. [10] and [37]. The selection criteria on the shower-shape variables are independent of the photon candidate’s transverse energy, but vary as a function of the photon reconstructed pseudorapidity, to take into account variations in the total thickness of the upstream material and in the calorimeter geometry. They are optimized independently for unconverted and converted photons to account for the different developments of the showers in each case. Applying these selection criteria suppresses backgrounds from jets...
misidentified as photons. The photon transverse isolation energy E_T^{iso} is required to be lower than 3 GeV. Less than 0.2% of events have more than one photon candidate passing the selection criteria. In such events the leading-E_T photon is retained.

B. Jet selection

Jets are reconstructed starting from three-dimensional topological clusters built from calorimeter cells, using the infrared- and collinear-safe anti-k_t algorithm [38] with a radius parameter $R = 0.4$. The jet four-momenta are constructed from a sum over their constituents, treating infrared- and collinear-safe anti-topological clusters built from calorimeter cells, using the leading-p_T jet. Jets with calibrated energy scale correction as described in Ref. [26]. The calibration procedure corrects for instrumental effects, such as inactive material and noncompensation, as well as for the additional energy due to multiple $p p$ interactions within the same bunch crossing (pile-up). Jets with calibrated transverse momenta greater than 20 GeV are retained for this measurement.

To reject jets reconstructed from calorimeter signals not originating from a $p p$ collision, the same jet quality criteria used in Ref. [26] are applied here. These cuts suppress fake jets from calorimeter noise, cosmic rays and beam-related backgrounds.

Jets overlapping with the candidate photon, or with an isolated electron produced from W or Z decay, are not considered. For this reason, if the jet axis is within a cone of radius 0.3 around the photon, the jet is discarded. Similarly, if the jet axis is within a cone of radius 0.3 around any electron that passes the tight identification. Jets with calibrated transverse momenta greater than 20 GeV are retained for this measurement.

The average jet multiplicity after the previous requirements is between 1.3 and 2.0, increasing with E_T^γ. In events with multiple jet candidates, the leading-p_T jet is chosen. In order to retain the event, the leading jet is required to have rapidity $|y_{\text{jet}}| < 4.4$. The leading jet axis is also required not to lie within a cone of radius $R = 1.0$ around the photon direction.

The contamination in the selected sample from pile-up jets is estimated to be negligible, which is consistent with the low pile-up conditions of the 2010 data-taking, when, on average, only two minimum-bias events per bunch crossing are expected.

C. Distribution of photon transverse energy in selected events

The number of events after photon and jet selections is 213003. 96314 events have been collected with the 20 GeV trigger and have $25 \text{ GeV} < E_T^\gamma \leq 45 \text{ GeV}$, 116689 events have been collected with the 40 GeV trigger and have $E_T^\gamma > 45 \text{ GeV}$. In 57% of the events the jet is central (32%/25% are in the same/opposite-sign configuration), in 37% of the events the jet is forward (24%/13% are in the same/opposite-sign configuration), and in 6% of the events the jet is very forward (4%/2% are in the same/opposite-sign photon). The photon candidate is reconstructed as unconverted in 68% of the events and as converted in the remaining 32%. The transverse energy distribution of the photon candidates in the selected sample is shown in Fig. 1.

![FIG. 1. Transverse energy distribution of photon candidates in photon + jet events selected in the 2010 ATLAS data, before background subtraction. The distribution is normalized by the integrated luminosity and the transverse energy bin width. Events with $E_T^\gamma < 45 \text{ GeV}$ have been collected with the (prescaled) 20 GeV photon trigger. Events with $E_T^\gamma > 45 \text{ GeV}$ have been collected with the (unprescaled) 40 GeV photon trigger.](image)

V. BACKGROUND SUBTRACTION AND SIGNAL YIELD ESTIMATION

A non-negligible residual contribution of background is expected in the selected photon + jets sample, even after the application of the tight identification and isolation requirements. The dominant background is composed of dijet events in which one jet is misidentified as a prompt photon, with a tiny contribution from diphoton and W/Z+jets events. In more than 95% of background dijet events, the misidentified jet contains a light neutral meson that carries most of the jet energy and decays to a collimated photon pair. The background yield in the selected sample is estimated in situ using a two-dimensional sideband technique as in Ref. [10] and then subtracted from the observed yield. In the background estimate, the photon is classified as:

- Isolated, if $E_T^{\text{iso}} < 3 \text{ GeV}$;
- Nonisolated, if $E_T^{\text{iso}} > 5 \text{ GeV}$;
leads to a second-order polynomial equation of the simulated signal sample, estimated assuming negligible signal in the background control regions ($c_T \approx c_c$ and c_n), where c_T is leakage in the background control regions ($\gamma > 150$ GeV compared to the purity $\gamma > 25$ GeV in the reconstructed transverse energy due to resolution effects. The matrix elements are determined from the ratios of two quantities. The denominators are defined in the following way:

- The leading truth-level signal photon within the acceptance ($|\eta|_{\text{true}} \leq 1.37$) is selected.

- Truth jets are reconstructed using the anti-k_t algorithm with a radius parameter $R = 0.4$ on all the particles with proper lifetime longer than 10 ps, including photons, and the leading truth jet is selected among those with axis separated from the photon direction by $\Delta R > 0.3$. The leading photon and the leading jet are required to be separated by $\Delta R > 1.0$.

- To retain the event the true leading photon is required to have $E_T^{\gamma_{\text{true}}} > 20$ GeV and to have a truth-particle-level isolation (computed from the true four-momenta of the generated particles inside a cone of radius 0.4 around the photon direction) $E_{T,\text{iso}}^{\gamma_{\text{true}}} < 4$ GeV. This truth-particle-level cut has been determined on PYTHIA photon + jet samples to match the efficiency of the experimental isolation cut at 3 GeV (more details can be found in Ref. [10]). In this case, the same underlying event subtraction procedure used on data has been applied at the truth level. In addition, the leading truth jet is required to have $E_T^{\text{jet}_{\text{true}}} > 20$ GeV and $|y_{\text{true}}^{\text{jet}}| < 4.4$. At the truth level the minimum $E_T^{\gamma_{\text{true}}} > 20$ GeV is set to 20 GeV to account for possible migrations of photons with true transverse energy below 25 GeV in the reconstructed transverse energy intervals above 25 GeV.

The numerators are determined by applying the selection criteria described in Sec. IV to the simulated signal samples. Since the simulation does not describe accurately the electromagnetic shower profiles, a correction factor for each simulated shape variable is applied to better match the data. We require the reconstructed isolation energy to be less than 3 GeV. As for the truth level, photons are allowed to have a $E_T^{\gamma_{\text{true}}} > 20$ GeV. The reconstructed photon is required to match the truth photon within a cone of radius 0.4 while the reconstructed jet is required to match the truth jet in a cone of radius 0.3. Events which pass the selection at the reconstruction
FIG. 2. Estimated signal purity (left column) and signal yield normalized by bin width and integrated luminosity (right column) in data as a function of the photon transverse energy, for the same-sign angular configurations (full circles) and the opposite-sign angular configurations (open triangles). A small horizontal displacement has been added to the points corresponding to the opposite-sign configurations, so that the error bars are clearly shown. The errors are statistical only. Top row: central jet. Middle row: forward jet. Bottom row: very forward jet.

...level but fail it at the truth level are properly accounted for in the normalization.

The event selection efficiency typically rises from 50% to 80% as a function of E_T^γ. An inefficiency of around 15% is due to the acceptance loss originating from a few inoperative optical links in the calorimeter readout and from the isolation requirement. An inefficiency decreasing from 20-25% for $E_T^\gamma = 25$ GeV to almost zero at high...
The differential cross section as a function of the photon true transverse energy E_{T}^{γ} is computed in each bin i of E_{T}^{γ} and for each angular configuration k as:

$$
\frac{d\sigma^{k}}{dE_{\text{T}}^{\gamma}} = \frac{N_{i}^{\gamma,\text{true},\text{isol},k}}{\int \text{d}t \Delta E_{\text{T}}^{\gamma,i,j}},
$$

where $N_{i}^{\gamma,\text{true},\text{isol},k}$ is the number of events containing a true isolated photon and hadronic jets, in which the true photon transverse energy is in bin i and the angular configuration formed by the leading photon and jet is k. This number is related to the observed number of events passing the analysis cuts through the efficiency matrices Λ_{ij}:

$$
N_{i}^{\gamma,\text{reco},\text{isol},k} = \sum_{j} \Lambda_{ij} N_{j}^{\gamma,\text{true},\text{isol},k}
$$

The unfolding procedure allows the reconstruction of the true number of events from the measured distribution, taking into account the measurement uncertainties due to statistical fluctuations in the finite measured sample. The simplest unfolding method is the basic bin-by-bin unfolding, which corrects the observed cross section in bin i with the efficiency obtained from the ratio of selected events to truth events having the photon with reconstructed and true E_{T} in bin i. A more sophisticated method which properly accounts for migrations between bins is based on the repeated (iterative) application of Bayes's theorem [39]. The differences in the measured cross section for the two methods are a few percent for events with a central or forward jet and slightly higher for events with a very forward jet. Since the differences are within the statistical errors of the methods, we used the bin-by-bin method for these results.

VII. SYSTEMATIC UNCERTAINTIES

We have considered the following sources of systematic uncertainties in the cross section measurement (see Appendix C for tables detailing the uncertainties in each E_{T}^{γ} bin and each angular configuration):

- Photon simulation. In order to take into account the uncertainty on the event generation and the hadron shower model, four additional samples are used: PYTHIA or HERWIG samples containing only hard-scattering photons and PYTHIA or HERWIG samples containing only photons from quark bremsstrahlung. The analysis is repeated using these samples, and the largest positive and negative deviations from the nominal cross section are taken as systematic uncertainties. The deviations are mainly positive, varying from 4% to 16% depending on E_{T}^{γ} or the angular configuration.

- Jet and photon energy scale and resolution uncertainties. The cross section uncertainty is determined by varying the electromagnetic and the jet energy scales and resolutions within their uncertainties [25, 26]. The effect on the cross section is found to be negligible, with the exception of the effect of the jet energy scale uncertainty, which affects mainly the first E_{T}^{γ} bin due to the efficiency of the 20 GeV threshold on $p_{\text{T}}^{\text{jet}}$. For the angular configurations including one central or one forward jet this effect is 3% to 7%, for the configurations containing one very forward jet it is 9% to 20%.

- Uncertainty on the background correlation in the two-dimensional sidebands method. The isolation and identification variables are assumed to be independent for fake photon candidates. This assumption was verified using both data and simulated background samples and was found to be valid within a 10% uncertainty for configurations including a central or a forward jet and within a 25% uncertainty for configurations including a very forward jet. The cross section is recomputed accounting for these possible correlations in the background subtraction [10], and the difference with the nominal result is taken as a systematic uncertainty. This procedure gives a systematic uncertainty on the cross section of 3% and 6% in the first E_{T}^{γ} bin for these groups of configurations respectively. This uncertainty decreases rapidly with increasing E_{T}^{γ}, being proportional to $1 - P$, where P is the signal purity.

- Background control regions definition in the two-dimensional sidebands method. The measurement
is repeated using a different set of background identification or isolation criteria in the purity calculation, and the difference between the new cross section and the nominal result is taken as a systematic uncertainty. For background identification, three or five shower-shape variables are reversed instead of four as in the nominal case (more details can be found in Ref. [10]). The deviations on the cross section range from 5% in the central jet configurations to 12% in the forward jet configurations, all decreasing with increasing $E_T^γ$. Varying the isolation cut by $±1$ GeV results in less than 1% difference in the cross section.

- Data-driven correction to the photon efficiency. The simulated photon shapes in the calorimeter have been corrected in order to improve the agreement with the data. The systematic uncertainty related to the correction procedure is computed using different simulated photon samples and a different simulation of the ATLAS detector and is estimated to be of the order of 1% to 4% in the first $E_T^γ$ bin and lower than 1% elsewhere [11].

- Uncertainty on the trigger efficiency. The trigger efficiency in the simulation is consistent with the one measured in data, using a bootstrap method, within the total uncertainty of the in situ measurement (0.6% uncertainty for $E_T^γ \leq 45$ GeV and 0.4% for $E_T^γ > 45$ GeV). These uncertainties are added to the total systematic uncertainty on the cross section.

- Uncertainty on the jet reconstruction efficiency. The simulation is found to reproduce data jet reconstruction efficiencies to better than 2% [40]. A 2% systematic uncertainty to the cross section is assigned.

- Uncertainty on the simulated jet multiplicity. The LO generators used to estimate the signal efficiencies do not reproduce precisely the jet multiplicity observed in data, and the signal efficiency could depend on the multiplicity. Reweighting the simulation in order to reproduce the jet multiplicity observed in data changes the cross section by less than 1%, which is taken as a systematic uncertainty.

- Uncertainty on the integrated luminosity. It has been determined to be 3.4% [27, 28].

- Isolated electron background. Possible backgrounds may arise from W+jets where the W decays into an electron misidentified as photon, and $W+\gamma$ where the W decays into an electron misidentified as a jet. Additional backgrounds may originate from $Z \rightarrow ee$ where an electron may be misidentified as a photon, and combined with the jet arising from the misidentification of the other electron or with a jet from the rest of the event (in Z+jets). Using simulated samples of these processes, scaled to their cross sections measured in [41–43], the total isolated electron background is estimated to be less than 1.5% of the signal yield measured in data in each $E_T^γ$ bin. Therefore an asymmetric systematic uncertainty ($^{+0.0}_{-1.5}$)% on the measured cross section is assigned.

The sources of systematic uncertainty discussed above are considered as uncorrelated and thus the total systematic uncertainty (listed in the tables in Appendix B) is estimated by summing in quadrature all the contributions.

VIII. THEORETICAL PREDICTIONS

The expected production cross section of an isolated photon in association with jets as a function of the photon transverse energy $E_T^γ$ is estimated using JETPHOX 1.3 [1]. JETPHOX is a parton-level Monte Carlo generator which implements a full NLO QCD calculation of both the direct and fragmentation contributions to the cross section. A parton-level isolation cut, requiring a total transverse energy below 4 GeV from the partons produced with the photon inside a cone of radius $ΔR = 0.4$ in $η × φ$ around the photon direction, is used for this computation. The NLO photon fragmentation function [44] and the CT10 parton density functions [45] are used. The nominal renormalization ($μ_R$), factorization ($μ_F$) and fragmentation ($μ_F$) scales are set to the photon transverse energy $E_T^γ$. Jets of partons are reconstructed by using an anti-k_T algorithm with a radius parameter $R = 0.4$. The same transverse momentum and rapidity criteria applied in the measurement to the reconstructed objects are used in the JETPHOX generation for the photon and the leading-p_T jet. As for data, the event is kept if the two objects are separated by $ΔR > 1.0$ in $\{η, φ\}$. With this setup the fragmentation contribution to the total cross section decreases as a function of $E_T^γ$, from 10% to 1.5% for the same-sign, central jet configuration while it varies from 22% to 2.5% in the same-sign, very forward jet configuration. In the opposite-sign configurations the fragmentation contribution is 20% to 50% (depending on $E_T^γ$ and the jet rapidity) higher than in the corresponding same-sign configurations.

The JETPHOX cross section does not include underlying event, pile-up or hadronization effects. While the ambient-energy density correction of the photon isolation removes the effects from underlying event and pile-up on the photon side, potential differences between the JETPHOX theoretical cross section and the measured one may arise from the application of the jet selection, in particular the transverse momentum threshold of 20 GeV. This cut is applied at parton-level in JETPHOX while it is applied to particle jets in the measured cross section and in the fully simulated PYTHIA and HERWIG samples.

One effect of hadronization is to spread energy outside
of the jet area, so the jet p_T will tend to be lower than that of the originating parton(s); on the other hand, the underlying event adds extra particles to the jet candidate and results in the increase of the jet p_T. To estimate these effects we use the simulated signal PYTHIA samples to evaluate the ratios of truth-level cross sections with and without hadronization and underlying event, and subsequently we multiply each bin of the JETPHOX cross sections by these ratios. These correction factors are smaller than 1 (around 0.9-0.95) at low $E_T^γ$, indicating that the impact of hadronization on the jet p_T is more important than the extra energy added from the underlying event and pile-up. The correction factors are consistent with one at high $E_T^γ$. This finding is in agreement with the expectations, since the photon and the jet transverse momenta are correlated and for large $E_T^γ$ the $p_T > 20 \text{ GeV}$ cut becomes fully efficient both at parton- and particle-level.

The systematic uncertainties on the QCD cross sections computed with JETPHOX are estimated in the following way:

- The scale uncertainty is evaluated by fixing any two scales to the nominal value and varying the third between 0.5 and 2.0 times the nominal value. In addition the effect of the coherent scale variations where all three scales are varied together is also taken into account. The envelope of the values obtained with the different scale configurations is taken as a systematic uncertainty. This leads to a change of the predicted cross section between 15% at low $E_T^γ$ and 10% at high $E_T^γ$.

- The uncertainty on the cross section from the PDF uncertainty has been obtained by varying the PDFs within the 68% confidence level intervals. The corresponding uncertainty on the cross section varies between 5% and 2% as $E_T^γ$ increases. Using a different set of PDFs, such as MSTW 2008 [46] or NNPDF 2.1 [47], the computed cross sections vary always within the total systematic uncertainty on the predicted cross section.

- The uncertainty on the correspondence between parton-level and particle-level isolation cut has been evaluated by varying the cut between 3 and 5 GeV. This variation changes the predicted cross section by a few percent for the central configuration but becomes more important for the forward and very forward configurations, where the fragmentation contribution to the cross section is larger.

- The uncertainty on the hadronization and underlying event corrections is estimated as the maximum spread of the correction factors obtained from PYTHIA using both the nominal and the Perugia 2010 tunes [48] and with HERWIG++ 2.5.1 with the UE7000-2 tune [49].

The expected cross sections with their full statistic and systematic uncertainties for all angular configurations under study are summarized in Appendix A.

IX. COMPARISON BETWEEN DATA AND THEORY

The measured $E_T^γ$-differential cross sections in the six photon-jet angular configurations under study are shown, with the theoretical cross sections overlaid, in Fig. 3. The ratio between data and theory is also plotted, showing the relative deviation of the measured cross section from the predicted cross section across the full $E_T^γ$ range on a linear scale. The error bars represent the combination of statistical and systematic uncertainties, but are dominated by systematic uncertainties in all regions. The numerical results are presented in Appendix B.

The NLO pQCD predictions provided by JETPHOX are in fair agreement with the measured cross sections considering the given experimental and theoretical systematic uncertainties. As already observed in previous measurements of the inclusive prompt photon cross section at the LHC [10, 11, 50], the data are consistently lower than the theoretical prediction in the $E_T^γ < 45 \text{ GeV}$ region, possibly suggesting an inaccuracy at low $E_T^γ$ of the NLO predictions and the need to perform the theoretical calculations at a higher order in perturbation theory.

X. CONCLUSION

A measurement of the production cross section of an isolated prompt photon in association with jets in pp collisions at a center-of-mass energy $\sqrt{s} = 7 \text{ TeV}$ is presented. The measurement uses an integrated luminosity of 37 pb$^{-1}$ and covers the region $x \geq 0.001$ and $625 \text{ GeV}^2 \leq Q^2 \leq 1.6 \times 10^5 \text{ GeV}^2$, thus extending into kinematic regions previously unexplored with this final state at either hadron or electron-proton colliders. The differential cross section $d\sigma/dE_T^γ$ as a function of the photon transverse energy, has been determined for isolated photons in the pseudorapidity range $|\eta^γ| < 1.37$ and transverse energy $E_T^\gamma > 25 \text{ GeV}$, after integration over the jet transverse momenta for $p_T^{\text{jet}} > 20 \text{ GeV}$. A minimum separation of $\Delta R > 1.0$ in the $\{\eta, \phi\}$ plane is required between the leading jet and the photon. The cross sections are presented separately for the three jet rapidity intervals $|y^{\text{jet}}| < 1.2$, $1.2 \leq |y^{\text{jet}}| < 2.8$, and $2.8 \leq |y^{\text{jet}}| < 4.4$, distinguishing between the same-sign $(\eta^γ y^{\text{jet}} \geq 0)$ and opposite-sign $(\eta^γ y^{\text{jet}} < 0)$ configurations. This subdivision allows the comparison between data and NLO perturbative QCD predictions in configurations where the relative contribution of the fragmentation component to the cross section and the explored ranges of the incoming parton momentum fraction x are different. The NLO pQCD cross sections provided by JETPHOX are in fair agreement with the measured ones
FIG. 3. Top graphs: experimental (black dots) and theoretical (blue line) photon + jet production cross sections, for the three same-sign (left column) and the three opposite-sign (right column) angular configurations. The black error bars represent the total experimental uncertainty. The blue bands show the total uncertainties on the theoretical predictions obtained with JETPHOX. Bottom graphs: ratio between the measured and the predicted cross sections. The blue bands show the theoretical uncertainties while the error bars show the experimental uncertainties on the ratio. First row: $|y^{\text{jet}}| < 1.2$. Second row: $1.2 \leq |y^{\text{jet}}| < 2.8$. Third row: $2.8 \leq |y^{\text{jet}}| < 4.4$.
considering the typical (10% to 30%) experimental and theoretical systematic uncertainties. In the $E_T < 45$ GeV region, the NLO QCD calculation consistently overestimates the measured cross section, as observed in previous determinations of the inclusive prompt photon production cross section.

XI. ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IFR, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI, Sweden; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NWO, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] S. Catani et al., JHEP 05, 028 (2002).
[2] P. Aurenche et al., Phys. Rev. D 73, 094007 (2006).
[3] Z. Belghouli et al., Phys. Rev. D 79, 114024 (2009).
[4] E. N. Argyres, A. P. Contogouris, N. Mekabri, and S. D. P. Vlassopulos, Phys. Rev. D 35, 1584 (1987).
[5] P. Aurenche, R. Baier, M. Fontannaz, J. F. Owens, and M. Werlen, Phys. Rev. D 39, 3275 (1989).
[6] D. d’Enterria and J. Rojo, Nucl. Phys. B 860, 311 (2012).
[7] J. Gallicchio and M. D. Schwartz, JHEP 1110, 103 (2011).
[8] ATLAS Collaboration, ATLAS-CONF-2010-031 (2011).
[9] ATLAS Collaboration, Eur. Phys. J. C 71, 1728 (2011).
[10] ATLAS Collaboration, Phys. Rev. D 83, 052005 (2011).
[11] ATLAS Collaboration, Phys. Lett. B 706, 150 (2011).
[12] ATLAS Collaboration, Phys. Rev. D 85, 012003 (2011).
[13] The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision point to the center of the LHC ring and the positive y-axis points upwards. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is measured with respect to the z-axis. Pseudorapidity is defined as $\eta = -\ln \tan(\theta/2)$, and transverse energy is defined as $E_T = E \sin \theta$.
[14] M. Cacciari, G. P. Salam, and G. Soyez, JHEP 04, 005 (2008).
[15] M. Cacciari, G. P. Salam, and S. Sapeta, JHEP 04, 065 (2010).
[16] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 666, 435 (2008).
[17] F. Abe et al. (CDF Collaboration), Phys. Rev. D 57, 67 (1998).
[18] T. Akesson et al. (Axial Field Spectrometer Collaboration), Z. Phys. C 34, 293 (1987).
[19] J. Alitti et al. (UA2 Collaboration), Phys. Lett. B 299, 174 (1993).
[20] F. D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 66, 17 (2010).
[21] F. D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 54, 371 (2008).
[22] S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 49, 511 (2007).
[23] S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 595, 86 (2004).
[24] ATLAS Collaboration, JINST 3, S08003 (2008).
[25] ATLAS Collaboration, Eur. Phys. J. C 72, 1909 (2012).
[26] ATLAS Collaboration, “Jet energy measurement with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 7$ TeV,” (2011), submitted to Eur. Phys. J. C, arXiv:1112.6426 [hep-ex].
[27] ATLAS Collaboration, Eur. Phys. J. C 71, 1630 (2011).
[28] ATLAS Collaboration, ATLAS-CONF-2011-011 (2011).
[29] T. Sjöstrand, S. Mrenna, and P. Z. Skands, JHEP 05, 026 (2006).
[30] ATLAS Collaboration, ATLAS-CONF-2010-031 (2010).
[31] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Methods A 506, 250 (2003).
[32] ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010).
[33] G. Corcella et al., JHEP 01, 010 (2001).
[34] ATLAS Collaboration, ATLAS-PHYS-PUB-2010-014 (2010).
[35] J. M. Butterworth, J. R. Forshaw, and M. H. Seymour, Z. Phys. C 72, 637 (1996).
[36] ATLAS Collaboration, “Expected performance of the ATLAS experiment - detector, trigger and physics,” (2009), arXiv:0901.0512 [hep-ex].
[37] ATLAS Collaboration, ATLAS-PHYS-PUB-2011-007
(2011).
[38] M. Cacciari, G. P. Salam, and G. Soyez, JHEP 04, 063 (2008).
[39] G. D’Agostini, Nucl. Instrum. Methods A 362, 487 (1995).
[40] ATLAS Collaboration, “Measurement of inclusive jet and dijet production in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV using the ATLAS detector,” (2011), accepted by Phys. Rev. D, arXiv:1109.5141 [hep-ex].
[41] ATLAS Collaboration, ATLAS-CONF-2011-013 (2011).
[42] ATLAS Collaboration, “Measurement of the inclusive \(W^{\pm} \) and \(Z/\gamma \) cross sections in the electron and muon decay channels in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector,” (2011), accepted by Phys. Rev. D, arXiv:1112.6297 [hep-ex].
[43] ATLAS Collaboration, “Study of jets produced in association with a W boson in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector,” (2012), accepted by Phys. Rev. D, arXiv:1201.1276 [hep-ex].
[44] ATLAS Collaboration, ATLAS-CONF-2011-013 (2011).
[45] ATLAS Collaboration, “Study of jets produced in association with a W boson in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector,” (2012), accepted by Phys. Rev. D, arXiv:1201.1276 [hep-ex].
[46] ATLAS Collaboration, ATLAS-CONF-2011-013 (2011).
[47] ATLAS Collaboration, ATLAS-CONF-2011-013 (2011).
[48] ATLAS Collaboration, ATLAS-CONF-2011-013 (2011).
[49] ATLAS Collaboration, ATLAS-CONF-2011-013 (2011).
[50] ATLAS Collaboration, ATLAS-CONF-2011-013 (2011).
Appendix A: Theoretical photon + jet cross section

Tables I-VI show the theoretical photon + jet differential cross sections, in the six photon-jet angular configurations under study, computed as described in Sec. VIII.

TABLE I. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 ≤ |ηγ| < 1.37 in association with a jet in the rapidity range |yjet| < 1.2 and pTjet > 20 GeV (ηγyjet < 0). The NLO pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section is shown, with its uncertainty.

| E^γ_T min | E^γ_T max | dσ/dE^γ_T | stat | scale | PDF | isolation | correction factor |
| [GeV] | [GeV] | [pb/GeV] | [pb/GeV] | [pb/GeV] | [pb/GeV] | [pb/GeV] |
|---|---|---|---|---|---|---|---|
| 25 | 30 | 550 ±6 | +41 | +28 | +9 | 0.927±0.036 |
| 30 | 35 | 331 ±3 | +51 | +16 | +2 | 0.951±0.034 |
| 35 | 45 | 156 ±1 | +14 | +7 | +0 | 0.983±0.026 |
| 45 | 55 | 60.4 ±0.4 | +2.1 | +1.0 | +0.0 | 0.992±0.020 |
| 55 | 70 | 24.2 ±0.2 | +2.1 | +1.0 | +0.0 | 1.00±0.025 |
| 70 | 85 | 9.26 ±0.06 | +0.92 | +0.34 | +0.00 | 0.995±0.026 |
| 85 | 100 | 4.21 ±0.03 | +0.37 | +0.14 | +0.01 | 1.00±0.022 |
| 100 | 125 | 1.76 ±0.01 | +0.16 | +0.05 | +0.00 | 0.996±0.017 |
| 125 | 150 | 0.699 ±0.004 | +0.061 | +0.019 | +0.005 | 0.992±0.018 |
| 150 | 200 | 0.236 ±0.001 | +0.024 | +0.006 | +0.001 | 0.997±0.016 |
| 200 | 400 | 0.0266 ±0.0001 | +0.0026 | +0.0008 | +0.0000 | 0.988±0.026 |

TABLE II. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 ≤ |ηγ| < 1.37 in association with a jet in the rapidity range |yjet| < 1.2 and pTjet > 20 GeV (ηγyjet < 0). The NLO pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section is shown, with its uncertainty.

| E^γ_T min | E^γ_T max | dσ/dE^γ_T | stat | scale | PDF | isolation | correction factor |
| [GeV] | [GeV] | [pb/GeV] | [pb/GeV] | [pb/GeV] | [pb/GeV] | [pb/GeV] |
|---|---|---|---|---|---|---|---|
| 25 | 30 | 420 ±5 | +49 | +21 | +8 | 0.925±0.041 |
| 30 | 35 | 261 ±2 | +27 | +11 | +4 | 0.943±0.049 |
| 35 | 45 | 118 ±1 | +17 | +6 | +2 | 0.980±0.032 |
| 45 | 55 | 47.0 ±0.3 | +4.3 | +2.6 | +0.0 | 0.979±0.029 |
| 55 | 70 | 17.2 ±0.1 | +2.8 | +0.8 | +0.0 | 0.982±0.025 |
| 70 | 85 | 6.72 ±0.05 | +0.62 | +0.28 | +0.03 | 0.995±0.018 |
| 85 | 100 | 2.93 ±0.02 | +0.34 | +0.11 | +0.03 | 0.981±0.031 |
| 100 | 125 | 1.24 ±0.01 | +0.14 | +0.04 | +0.01 | 0.989±0.025 |
| 125 | 150 | 0.469 ±0.003 | +0.053 | +0.015 | +0.005 | 0.992±0.027 |
| 150 | 200 | 0.159 ±0.001 | +0.020 | +0.005 | +0.001 | 0.984±0.019 |
| 200 | 400 | 0.0169 ±0.0001 | +0.0017 | +0.0007 | +0.0003 | 0.991±0.026 |
VIII

\[\frac{d\sigma}{dT} \]

\[\eta \gamma \]

\[\gamma \]

\[\text{Table IV. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range } 0.00 \leq |\eta| < 1.37 \text{ in association with a jet in the rapidity range } 1.2 \leq |y^\text{jet}| < 2.8 \text{ and } p_T^\gamma > 20 \text{ GeV (} \eta y^\text{jet} \geq 0 \text{). The NLO pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section is shown, with its uncertainty.} \]

\(E_T^\gamma \) min (GeV)	\(E_T^\gamma \) max (GeV)	\(\frac{d\sigma}{dT} \) (pb/GeV)	stat (GeV)	scale (GeV)	PDF (GeV)	isolation correction factor	
25	30	343	±5	+49	+18	+3	0.925±0.054
30	35	258	±2	+34	+9	+0	0.955±0.034
45	55	42.4	±0.3	+6.5	+1.1	+0.9	0.993±0.023
55	70	16.7	±0.1	+1.8	+0.4	+0.5	0.97±0.025
70	85	6.02	±0.05	+0.68	+0.12	+0.05	0.994±0.015
85	100	2.66	±0.02	+0.30	+0.05	+0.02	0.989±0.020
100	125	1.09	±0.01	+0.11	+0.02	+0.01	0.997±0.020
125	150	0.401	±0.003	+0.051	+0.007	+0.002	0.998±0.020
150	200	0.125	±0.001	+0.010	+0.003	+0.000	0.994±0.023
200	400	0.0118	±0.0001	+0.0011	+0.0003	+0.0000	0.993±0.017

TABLE IV. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range } 0.00 \leq |\eta| < 1.37 \text{ in association with a jet in the rapidity range } 1.2 \leq |y^\text{jet}| < 2.8 \text{ and } p_T^\gamma > 20 \text{ GeV (} \eta y^\text{jet} < 0 \text{). The NLO pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section is shown, with its uncertainty.} \]

\(E_T^\gamma \) min (GeV)	\(E_T^\gamma \) max (GeV)	\(\frac{d\sigma}{dT} \) (pb/GeV)	stat (GeV)	scale (GeV)	PDF (GeV)	isolation correction factor	
25	30	260	±3	+33	+13	+0	0.935±0.075
30	35	141	±1	+24	+7	+0	0.909±0.055
45	55	22.3	±0.2	+3.8	+0.8	+0	0.962±0.051
55	70	8.1	±0.1	+1.5	+0.3	+0	0.961±0.047
70	85	2.81	±0.02	+1	+0	+0	0.985±0.024
85	100	1.14	±0.01	+0.24	+0.04	+0.00	0.998±0.035
100	125	0.456	±0.004	+0.078	+0.016	+0.002	0.974±0.036
125	150	0.157	±0.002	+0.040	+0.006	+0.002	0.979±0.040
150	200	0.0481	±0.0005	+0.00086	+0.0022	+0.0010	0.979±0.031
200	400	0.00422	±0.00005	+0.00099	+0.00024	+0.00002	0.966±0.028
TABLE V. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 \leq |\eta| < 1.37 in association with a jet in the rapidity range 2.8 \leq |y^{jet}| < 4.4 and p_T^{jet} > 20 \text{ GeV} (|\eta| |y^{jet}| \geq 0). The NLO pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section is shown, with its uncertainty.

\gamma_T \, \text{min}	\gamma_T \, \text{max}	\frac{d\sigma}{d\gamma_T}	\text{stat}	\text{scale}	\text{PDF}	\text{isolation}	\text{correction}	
[GeV]	[GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	factor	
25	30	91	±2	-5	-2	+16	+10	0.094±0.062
30	35	47	±1	-4	+1	+12	+5	0.919±0.071
35	45	19.8	±0.3	-1.3	+0.4	+4.1	+1.4	0.959±0.035
45	55	6.14	±0.11	-0.82	-0.23	-0.0	-1.3	0.950±0.005
55	70	1.97	±0.04	-0.22	-0.09	-0.2	-0.0	0.960±0.006
70	85	0.556	±0.013	+0.147	+0.026	+0.051	+0.009	0.975±0.007
85	100	0.204	±0.005	+0.049	+0.012	-0.022	-0.009	0.973±0.007
100	125	0.064	±0.002	+0.008	+0.004	+0.008	+0.003	0.973±0.056
125	150	0.0146	±0.0005	+0.0091	+0.0014	+0.0019	+0.0004	0.979±0.006
150	200	0.0027	±0.0001	+0.0007	+0.0004	-0.0005	+0.0002	1.004±0.056

TABLE VI. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 \leq |\eta| < 1.37 in association with a jet in the rapidity range 2.8 \leq |y^{jet}| < 4.4 and p_T^{jet} > 20 \text{ GeV} (|\eta| |y^{jet}| < 0). The NLO pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section is shown, with its uncertainty.

\gamma_T \, \text{min}	\gamma_T \, \text{max}	\frac{d\sigma}{d\gamma_T}	\text{stat}	\text{scale}	\text{PDF}	\text{isolation}	\text{correction}	
[GeV]	[GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	factor	
25	30	93	±1	-8	-1	+17	+1	0.84±0.26
30	35	27	±0	-5	-1	+7	+1	0.81±0.21
35	45	10	±0.2	-1.2	-0.3	-0.5	-0.3	0.92±0.09
45	55	3.37	±0.05	+0.88	+0.12	+0.88	+0.23	0.88±0.08
55	70	1.00	±0.02	+0.30	+0.04	+0.30	+0.10	0.93±0.15
70	85	0.287	±0.005	+0.094	+0.017	+0.058	+0.058	0.95±0.06
85	100	0.091	±0.002	+0.035	+0.007	+0.010	+0.005	0.97±0.10
100	125	0.028	±0.001	+0.010	+0.003	+0.060	+0.006	0.94±0.12
125	150	0.0067	±0.0002	+0.0030	+0.0008	+0.0016	+0.0005	1.00±0.11
150	200	0.0014	±0.0001	+0.0004	+0.0002	+0.0004	+0.0002	0.92±0.21
Appendix B: Measured photon + jet cross section

Tables VII-XII show the measured photon + jet differential cross sections, in the six photon-jet angular configurations under study, and the comparison to the theoretical predictions.

TABLE VII. Measured cross section as a function of the photon transverse energy, E_T^γ, for $|\eta^\gamma| \leq 1.37$, $|y^jet| < 1.2$ and $\eta^\gamma y^{jet} \geq 0$. The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding nonperturbative correction factor, and its uncertainty.

E_T^γ min [GeV]	E_T^γ max [GeV]	$d\sigma/dE_T$ [pb/GeV]	stat	syst	total exp. uncertainty	$d\sigma/dE_T$ [pb/GeV]	total theory uncertainty
25	30	± 8	+4	+3	510	+51	
30	35	± 6	+49	+23	315	+52	
35	45	± 3	+27	+16	153	+16	
45	55	±0.7	+1.2	+2	9.21	+1.01	
55	70	±0.3	+0.55	+0.57	4.21	+0.41	
100	125	±0.07	+0.23	+0.24	1.76	+0.17	
125	150	±0.038	+0.085	-0.034	0.693	+0.061	
150	200	±0.017	+0.032	+0.036	0.236	+0.025	
200	400	±0.0028	+0.0041	+0.0050	0.0263	+0.0027	

TABLE VIII. Measured cross section as a function of the photon transverse energy, E_T^γ, for $|\eta^\gamma| \leq 1.37$, $|y| < 1.2$ and $\eta^\gamma y^{jet} < 0$. The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding nonperturbative correction factor, and its uncertainty.

E_T^γ min [GeV]	E_T^γ max [GeV]	$d\sigma/dE_T$ [pb/GeV]	stat	syst	total exp. uncertainty	$d\sigma/dE_T$ [pb/GeV]	total theory uncertainty
25	30	± 7	+4	+3	389	+53	
30	35	± 5	+41	+23	246	+30	
35	45	± 3	+23	+12	116	+18	
45	55	±0.5	+5.6	+2.4	46.0	+5.1	
55	70	±0.3	+1.7	+0.74	16.9	+1.8	
70	85	±0.18	+0.38	-0.40	2.87	+0.36	
100	125	±0.05	+0.17	-0.16	1.22	+0.15	
125	150	±0.037	+0.062	-0.072	0.466	+0.044	
150	200	±0.014	+0.023	+0.027	0.156	+0.021	
200	400	±0.0022	+0.0028	+0.0035	0.0167	+0.0017	
Table IX. Measured cross section as a function of the photon transverse energy, E_T^γ, for $|\eta^\gamma| \leq 1.37$, $1.2 \leq |y^{\text{jet}}| < 2.8$ and $\eta^\gamma y^{\text{jet}} \geq 0$. The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding nonperturbative correction factor, and its uncertainty.

E_T^γ min	E_T^γ max	$\frac{d\sigma}{dE_T^\gamma}$	stat	syst	total exp. uncertainty	$\frac{d\sigma}{dE_T^\gamma}$	total theory uncertainty
[GeV]	[GeV]	[pb/GeV]				[pb/GeV]	
25	30	±7	+35	+36	243	+36	+38
30	35	±6	+27	+23	128	+24	+24
35	45	±2	+11	+12	58	+12	+9
45	55	±0.5	+3.1	+3.1	21.5	+3.1	+3.9
55	70	±2	+2.1	+2.2	7.8	+2.2	+2.4
70	85	±0.11	+0.46	+0.48	2.76	+0.48	+0.44
85	100	±0.09	+0.16	+0.19	1.14	+0.19	+0.25
100	125	±0.04	+0.06	+0.07	0.44	+0.07	+0.08
125	150	±0.022	+0.022	+0.031	0.154	+0.021	+0.040
150	200	±0.008	+0.007	+0.011	0.047	+0.011	+0.009
200	0.0441	±0.0010	+0.0006	+0.0012	0.0041	+0.0012	+0.0006

Table X. Measured cross section as a function of the photon transverse energy, E_T^γ, for $|\eta^\gamma| \leq 1.37$, $1.2 \leq |y^{\text{jet}}| < 2.8$ and $\eta^\gamma y^{\text{jet}} < 0$. The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding nonperturbative correction factor, and its uncertainty.

E_T^γ min	E_T^γ max	$\frac{d\sigma}{dE_T^\gamma}$	stat	syst	total exp. uncertainty	$\frac{d\sigma}{dE_T^\gamma}$	total theory uncertainty
[GeV]	[GeV]	[pb/GeV]				[pb/GeV]	
25	30	±6	+35	+36	243	+36	+38
30	35	±4	+22	+23	128	+24	+24
35	45	±2	+11	+12	58	+12	+9
45	55	±0.5	+3.1	+3.1	21.5	+3.1	+3.9
55	70	±2	+2.1	+2.2	7.8	+2.2	+2.4
70	85	±0.11	+0.46	+0.48	2.76	+0.48	+0.44
85	100	±0.09	+0.16	+0.19	1.14	+0.19	+0.25
100	125	±0.04	+0.06	+0.07	0.44	+0.07	+0.08
125	150	±0.022	+0.022	+0.031	0.154	+0.021	+0.040
150	200	±0.008	+0.007	+0.011	0.047	+0.011	+0.009
200	0.0441	±0.0010	+0.0006	+0.0012	0.0041	+0.0012	+0.0006
TABLE XI. Measured cross section as a function of the photon transverse energy, \(E_T^\gamma \), for \(|\eta^\gamma| \leq 1.37, 2.8 \leq |y^{jet}| < 4.4 \) and \(\eta^\gamma y^{jet} \geq 0 \). The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding nonperturbative correction factor, and its uncertainty.

\(E_T^\gamma \) min	\(E_T^\gamma \) max	\(\frac{d\sigma}{dE_T^\gamma} \)	stat	syst	total exp. uncertainty	\(\frac{d\sigma}{dE_T^\gamma} \)	total theory uncertainty
[GeV]	[GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]
25	30	31	±4	+18	+19	82	+1.20
30	35	46	±3	+13	+13	43	+5
35	45	20	±1	+6	+6	19	+2
45	55	8.1	±0.3	+1.4	+1.4	5.8	+0.9
55	70	2.4	±0.1	+0.4	+0.4	1.9	+0.4
70	85	0.86	±0.06	+0.15	+0.17	0.54	+0.15
85	100	0.24	±0.03	+0.03	+0.04	0.20	+0.05
100	125	0.07	±0.01	+0.01	+0.02	0.06	+0.02
125	150	0.014	±0.007	+0.002	+0.007	0.014	+0.003
150	200	0.0028	±0.0019	+0.0004	+0.0019	0.0027	+0.0009

TABLE XII. Measured cross section as a function of the photon transverse energy, \(E_T^\gamma \), for \(|\eta^\gamma| \leq 1.37, 2.8 \leq |y^{jet}| < 4.4 \) and \(\eta^\gamma y^{jet} < 0 \). The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding nonperturbative correction factor, and its uncertainty.

\(E_T^\gamma \) min	\(E_T^\gamma \) max	\(\frac{d\sigma}{dE_T^\gamma} \)	stat	syst	total exp. uncertainty	\(\frac{d\sigma}{dE_T^\gamma} \)	total theory uncertainty
[GeV]	[GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]	[pb/GeV]
25	30	31	±4	+12	+13	44	+1.19
30	35	21	±2	+8	+9	22	+8
35	45	12	±1	+5	+5	10	+3
45	55	3.5	±0.2	+1.1	+1.1	3.0	+0.10
55	70	1.5	±0.1	+0.5	+0.5	0.9	+0.3
70	85	0.38	±0.04	+0.11	+0.12	0.27	+0.09
85	100	0.12	±0.02	+0.01	+0.03	0.09	+0.04
100	125	0.036	±0.011	+0.002	+0.011	0.027	+0.010
125	150	0.015	±0.007	+0.002	+0.011	0.007	+0.003
150	200	0.0023	±0.0019	+0.0003	+0.0019	0.0013	+0.0005
Appendix C: Experimental systematic uncertainties

Tables XIII-XXII show the experimental systematic uncertainties on the measured photon + jet differential cross sections, in each E_T^γ bin and photon-jet angular configuration under study, for the various sources of systematic uncertainties considered in Sec. VII.

TABLE XIII. Relative systematic uncertainty (%) introduced by the detector simulation. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y^{\text{jet}}| < 1.2$ | $|y^{\text{jet}}| < 1.2$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $|y^{\text{jet}}| < 4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ |
| 25-45 | +8.4 | +7.0 | +5.6 | +5.8 | +10.7 | +22.6 | +22.6 |
| +0.9 | +1.8 | +4.7 | +1.6 | +10.7 | +22.6 | +22.6 |
| -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |

TABLE XIV. Relative systematic uncertainty (%) introduced by the prompt photon simulation. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y^{\text{jet}}| < 1.2$ | $|y^{\text{jet}}| < 1.2$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $|y^{\text{jet}}| < 4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ |
| 25-45 | +13.8 | +15.5 | +10.8 | +9.2 | +12.3 | +14.3 | +14.3 |
| -4.0 | -5.7 | -5.2 | -11.3 | -5.0 | -4.5 |
| +7.0 | +8.3 | +5.8 | +8.2 | +8.0 | +15.5 |
| -2.1 | -1.7 | -1.5 | -2.3 | -3.4 | -10.8 |
| +6.2 | +3.6 | +5.0 | +0.7 | +1.1 | +10.2 |
| -0.6 | -1.3 | -0.8 | -0.4 | -2.5 | -7.9 |
| +5.1 | +6.9 | +3.6 | +24 | n/a |
| -0.4 | -0.9 | -0.7 | -5.4 | n/a |

TABLE XV. Relative systematic uncertainty (%) introduced by the electromagnetic energy scale uncertainty. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y^{\text{jet}}| < 1.2$ | $|y^{\text{jet}}| < 1.2$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $|y^{\text{jet}}| < 4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ |
| 25-45 | +1.1 | +1.0 | +1.2 | +1.1 | +1.4 | +1.4 | +1.4 |
| -0.6 | -0.6 | -0.4 | -0.5 | -0.5 | -0.7 | -1.0 |
| +2.2 | +2.7 | +2.0 | +3.1 | +3.7 | +3.7 |
| -0.7 | -0.9 | -0.9 | -0.9 | -1.1 | -1.1 |
| +2.4 | +2.3 | +2.8 | +2.7 | +4.7 | +3.6 |
| -0.6 | -1.1 | -1.0 | -1.4 | -2.7 | -1.5 |
| +2.9 | +2.5 | +2.8 | +3.7 | n/a |
| -1.4 | -1.4 | -0.9 | -0.9 | n/a |

TABLE XVI. Relative systematic uncertainty (%) introduced by the jet energy scale uncertainty. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y^{\text{jet}}| < 1.2$ | $|y^{\text{jet}}| < 1.2$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $|y^{\text{jet}}| < 4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ | $\eta^{\gamma} y^{\text{jet}} \leq 0$ | $\eta^{\gamma} y^{\text{jet}} > 0$ |
| 25-45 | +4.0 | +4.2 | +6.8 | +6.6 | +18.4 | +21.4 | +21.4 |
| -3.6 | -3.8 | -5.4 | -5.9 | -9.4 | -9.6 |
| +0.2 | +0.3 | +0.9 | +1.5 | +5.2 | +7.6 |
| -0.3 | -0.2 | -0.9 | -0.5 | -2.5 | -7.2 |
| +0.1 | +0.3 | +0.1 | +0.0 | +1.2 | +1.7 |
| -0.1 | -0.0 | -0.1 | -0.0 | n/a | n/a |
| +0.0 | +0.0 | +0.0 | +0.1 | n/a | n/a |
| -0.0 | -0.0 | -0.1 | -0.1 | n/a | n/a |
TABLE XVII. Relative systematic uncertainty (%) introduced by the electromagnetic energy resolution uncertainty. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y|^{jet}<1.2$ | $|y|^{jet}<1.2$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<4.4$ | $|y|^{jet}<4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^y^{jet} \geq 0$ | $\eta^y^{jet} < 0$ |
| 25-45 | +0.1 | +0.3 | +0.3 | +0.3 | +0.3 | +0.3 | +0.3 | +0.3 |
| 45-85 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 85-150(200) | +0.1 | +0.3 | +0.3 | +0.3 | +0.3 | +0.3 | +0.3 | +0.3 |
| 150-400 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

TABLE XVIII. Relative systematic uncertainty (%) introduced by the jet energy resolution uncertainty. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y|^{jet}<1.2$ | $|y|^{jet}<1.2$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<4.4$ | $|y|^{jet}<4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^y^{jet} \geq 0$ | $\eta^y^{jet} < 0$ |
| 25-45 | +0.1 | +0.0 | +0.3 | +0.2 | +0.0 | +0.0 | +0.0 | +0.6 |
| 45-85 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 85-150(200) | +0.1 | +0.1 | +0.1 | +0.1 | +0.1 | +0.1 | +0.1 | +0.1 |
| 150-400 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

TABLE XIX. Relative systematic uncertainty (%) introduced by the background correlation. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y|^{jet}<1.2$ | $|y|^{jet}<1.2$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<4.4$ | $|y|^{jet}<4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^y^{jet} \geq 0$ | $\eta^y^{jet} < 0$ |
| 25-45 | 0.1 | 1.9 | 2.0 | 2.8 | 5.4 | 6.3 | 5.4 | 6.3 |
| 45-85 | 0.7 | 0.6 | 0.7 | 1.1 | 1.6 | 3.4 | 1.6 | 3.4 |
| 85-150(200) | 0.3 | 0.4 | 0.2 | 0.5 | 0.2 | 0.8 | 0.2 | 0.8 |
| 150-400 | 0.1 | 0.2 | 0.8 | 0.6 | n/a | n/a | n/a | n/a |

TABLE XX. Relative systematic uncertainty (%) introduced by the tightness control region in the purity extraction method. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y|^{jet}<1.2$ | $|y|^{jet}<1.2$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<4.4$ | $|y|^{jet}<4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^y^{jet} \geq 0$ | $\eta^y^{jet} < 0$ |
| 25-45 | 4.9 | 5.5 | 6.0 | 8.0 | 10.6 | 12.2 | 10.6 | 12.2 |
| 45-85 | 1.3 | 2.0 | 2.1 | 3.0 | 2.4 | 3.3 | 2.4 | 3.3 |
| 85-150(200) | 0.2 | 0.2 | 0.6 | 0.0 | 2.5 | 2.4 | 2.5 | 2.4 |
| 150-400 | 0.9 | 0.5 | 1.2 | 1.4 | n/a | n/a | n/a | n/a |

TABLE XXI. Relative systematic uncertainty (%) introduced by the isolation control region in the purity extraction method. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y|^{jet}<1.2$ | $|y|^{jet}<1.2$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<2.8$ | $|y|^{jet}<4.4$ | $|y|^{jet}<4.4$ |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| [GeV] | $\eta^y^{jet} \geq 0$ | $\eta^y^{jet} < 0$ |
| 25-45 | 0.3 | 0.3 | 0.3 | 0.7 | 0.8 | 0.4 | 0.8 | 0.4 |
| 45-85 | 0.3 | 0.3 | 0.4 | 0.3 | 0.7 | 0.3 | 0.7 | 0.3 |
| 85-150(200) | 0.1 | 0.1 | 0.2 | 0.1 | 0.3 | 0.2 | 0.3 | 0.2 |
| 150-400 | 0.1 | 0.3 | 0.4 | 0.1 | n/a | n/a | n/a | n/a |
TABLE XXII. Relative systematic uncertainty (%) introduced by the shower shape corrections uncertainty. The E_T^γ limits for the very forward jet configurations are given in parentheses.

| E_T^γ range | $|y^{\text{jet}}| < 1.2$ | $1.2 \leq |y^{\text{jet}}| < 1.2$ | $1.2 \leq |y^{\text{jet}}| < 2.8$ | $2.8 \leq |y^{\text{jet}}| < 2.8$ | $2.8 \leq |y^{\text{jet}}| < 4.4$ | $4.4 \leq |y^{\text{jet}}| < 4.4$ |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| [GeV] | $\eta^\gamma y^{\text{jet}} \geq 0$ | $\eta^\gamma y^{\text{jet}} < 0$ | $\eta^\gamma y^{\text{jet}} \geq 0$ | $\eta^\gamma y^{\text{jet}} < 0$ | $\eta^\gamma y^{\text{jet}} \geq 0$ | $\eta^\gamma y^{\text{jet}} < 0$ |
| 25-45 | +1.2 | -2.6 | +1.3 | -5.0 | +3.9 | -3.0 |
| | -1.0 | -0.7 | -0.9 | -0.9 | -1.0 | -0.9 |
| 45-85 | +0.3 | +1.3 | +1.1 | +1.4 | +1.4 | +0.0 |
| | -0.1 | -0.4 | -0.3 | -0.4 | -0.5 | -0.8 |
| 85-150(200) | +0.2 | +0.0 | +0.3 | +0.3 | +0.0 | +0.8 |
| | -0.1 | -0.2 | +0.1 | -0.2 | -1.3 | -0.0 |
| 150-400 | +0.2 | +0.0 | +0.3 | +0.0 | n/a | n/a |
| | -0.1 | -0.0 | -0.1 | n/a | n/a | n/a |
Department of Physics, Oxford University, Oxford, United Kingdom

INFN Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America

Petersburg Nuclear Physics Institute, Gatchina, Russia

INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America

Laboratorio de Instrumentacao e Fisica Experimental de Partículas - LIP, Lisboa, Portugal; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina SK, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

INFN Sezione di Roma I; Dipartimento di Fisica, Università La Sapienza, Roma, Italy

INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre; Dipartimento di Fisica, Università Roma Tre, Roma, Italy

Facoltà des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat; Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CE Saclay (Commissariat a l’Énergie Atomique), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Johannesburg, Johannesburg; School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

TRIUMF, Vancouver BC; Department of Physics and Astronomy, York University, Toronto ON, Canada

Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

Science and Technology Center, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

INFN Gruppo Collegato di Udine; ICTP, Trieste; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
