Preparation of activated red mud and its application for removal of hydrogen sulfide in air

Lam Pham Thanh Hien¹,², Le Truong Anh Huy¹,², Pham Dan Thanh¹,², Le Nguyen Dang Khoa¹,², Bui Khanh Le¹,², Le Thi Kieu Thi¹,², Vo Thi Thanh Thuy¹,², Nguyen Nhat Huy¹,²,*

ABSTRACT
Red mud is a highly alkaline solid waste from the Bayer process for aluminum production. Red mud reservoirs are usually considered as a potential environmental risk. The treatment of red mud is costly due to the lack of an effective and economical treatment technology. On the other hand, the main components of red mud are Fe₂O₃, Al₂O₃, SiO₂, and Na₂O, which could be employed as a promising precursor for the preparation of various nanomaterials. In this study, we prepared activated red mud by thermal and acid treatment method and applied it for adsorption of H₂S in air. The red mud was activated under different temperatures (i.e., 200, 400, 600, and 800 °C for 4 h), types of acid (i.e., H₂SO₄ and HCl), and acid concentrations (i.e., 0.5, 1.5, and 2.5 M). The produced materials were then applied for H₂S removal in air with concentration of 90 – 110 mg/m³ using a fixed-bed adsorption column test. Results showed that red mud activated at 800 °C and with 1.5 M H₂SO₄ solution had the highest adsorption capacity of 29.38 mg/g with an average removal efficiency of 80.2%. The effects of gas flow rate and initial H₂S concentration were also investigated, and the highest removal capacity was achieved at an inlet concentration of 100 mg/m³ and flow rate of 1 L/min. Both Langmuir and Freundlich adsorption isotherms were employed for modelling the H₂S adsorption by this material and the experimental result was more fitted with the Langmuir isotherm. The thermal desorption and recyclability test were also conducted for evaluating the practical application of activated red mud material and 200 °C was suggested as the desorption temperature with 81.7% adsorption capacity recovery.

Key words: red mud, hydrogen sulfide, adsorption, air pollution control

INTRODUCTION
Hydrogen sulfide (H₂S) is a toxic and colorless gas with a very unpleasant odor that originated from both nature and human activities. It greatly affects the air quality and also causes the corrosion of equipment and pipes¹. H₂S is a common pollution gas in industry, biogas, coal storage, and in the processes that release odor such as sewage systems, wastewater treatment, and solid waste composting². Air pollution due to H₂S gas is a problem that has been mentioned in lots of documents and research works³. For H₂S treatment, many methods were studied and applied such as absorption, oxidation, and biofiltration⁴. Among them, adsorption is considered as a simple but effective method. Therefore, finding a new, effective, and inexpensive adsorbent for H₂S removal is of interest.

On the other hand, red mud is a highly alkaline solid waste with pH from 10 – 12 from the Bayer process for aluminum production⁵ – ⁸, which requires a large amount of NaOH⁷. It comprises very fine-grained particles with a size of < 10 μm and a specific surface area of about 10 - 30 m²/g⁷. The main components of red mud are Fe₂O₃, Al₂O₃, SiO₂, and Na₂O. Many studies showed that red mud has a good adsorption capacity, particularly when activated by acid, heat, or combining activation with other metal oxides⁹ – ¹³. Currently, the research of using red mud to adsorb H₂S emission is still limited¹⁴. Therefore, in this study, we aimed to collect red mud from Tan Rai bauxite plant and then activate it by acid and thermal treatment for H₂S adsorption. Besides, other factors were also investigated such as flow rate and input concentration as well as the adsorption and reuse of the adsorbent.

MATERIALS AND METHODS
According to the study of Minh¹⁵, the pH of raw red mud from Tan Rai bauxite plant was very high at pH 11.5. Their X-ray diffraction analysis showed that the phase composition of raw red mud is mainly gibbsite (Gi) γ-Al(OH)₃, goethite (Go) α-FeOOH, and hematite (He) α-Fe₂O₃¹⁵. The elemental composition of red mud includes Fe, Al, O, Na, C, Si, Ca, Ti,

Cite this article: Hien L P T, Huy L T A, Thanh P D, Khoa L N D, Le B K, Thi L T K, Thuy V T T, Huy N N. Preparation of activated red mud and its application for removal of hydrogen sulfide in air. Sci. Tech. Dev. J. – Engineering and Technology; 2(512):SI40-SI45.
and S with a weight percentage of 18.00, 6.85, 55.21, 7.62, 8.37, 2.42, 0.21, 1.00, and 0.32 %, respectively. The collected dry red mud was firstly ground and sieved to the size of 0.097 - 0.45 mm. The material was then calcined at different temperatures of 200, 400, 600, and 800 °C for 4 h. Calcined red mud was subsequently activated with H2SO4 or HCl solutions at different concentrations of 0.5, 1.5, and 2.5 M according to a process published in the literature 16,17. The produced materials were denoted as RMXC-Y (activated by HCl) and RMXS-Y (activated by H2SO4) where X represents the calcined temperature (e.g., X = 4 for 400 °C) and Y is the concentration of acid. In this study, commercial activated carbon (AC) with a size of 0.097 - 0.45 mm was also prepared and employed as reference material. The schematic for the H2S adsorption test is illustrated in Figure 1. H2S gas is generated by slowly adding of H2SO4 solution to a reactor containing Na2S solution. The generated gas with a flow rate of 0.05 - 0.20 L/min was then mixed with clean air to reach the desire H2S concentration before passing through the adsorption column with an internal diameter of 16 mm made of acrylic material. A glass wool ball was employed to support an adsorbent layer of 15 - 25 mm height. The superficial airflow velocity in the column was calculated to be about 0.2 m/s and the flow was controlled in the range of 1.0 - 3.0 L/min depending on the experiments. H2S gas in the inlet and outlet was sampled and analyzed according to TCN 676 – 2006 (hydrogen sulfide determination process in the air at cattle farm of Ministry of Agriculture and Rural Development, Viet Nam), which are referenced from Methods of air sampling and analysis 18. The sampling device included two impingers connected sequentially to sample H2S gas for analysis and concentration determination. Most of the experiments were conducted three times, and the average values and errors are presented in the results.

RESULTS AND DISCUSSION

Adsorption test

The adsorption tests were conducted with 29 different materials, including activated carbon, thermal activated red mud, and acid activated red mud. The H2S concentration was in range of 90 - 110 mg/m³ and 3 g of adsorbent was used. The results are presented in Figure 2. As seen in Figure 2, the adsorption capacity of most adsorbents derived from red mud was higher than that of AC except for RM2, RM2C-0.5, and RM4 materials. It is also obvious that the adsorption capacity of the thermally treated materials is proportional to their activation temperature. Under high temperature, there was a phase transformation of red mud component (e.g., goethite to hematite) and the join of aluminum into the material lattice to form Al-hematite 15, which acts as internal adsorption sites. In addition, since water is removed from the material at the high temperatures, the pore system is enhanced, and the material surface area could be improved. For acid-activated red mud, it is reported that the specific surface area of material increases while the particle size tends to decrease with the acid concentration 15. Therefore, the adsorption capacity also increases with the increases of acid concentration in a certain range but then decreases due to the material structure disruption under high acidic treatment condition. Besides, H2SO4 was proved to be more effective than HCl for activating of red mud in terms of H2S adsorption, possibly due to the higher volatility of HCl than H2SO4. Among all materials, RM8S-1.5 had the highest H2S adsorption capacity of 29.38 mg/g, which was about 1.4 times better than that reported by Sahu et al. 14.

Isotherm study

RM8S-1.5 material was then chosen for isotherm study with input H2S concentration from 40 to 120 mg/m³. As seen in Figure 3, the adsorption capacity increases when input H2S concentration increases from 40 to 100 mg/m³ but then decreased with a further increase of input concentrations from 100 to 120 mg/m³.

Langmuir and Freundlich adsorption isotherm models were established to determine the parameters of H2S adsorption by RM8S-1.5. As summarized in Table 1, the adsorption of H2S on RM8S-1.5 is more fitted with Langmuir (R2 = 0.906) than with the Freundlich isotherm adsorption model (R2 = 0.781). This implied that the adsorption of H2S on RM8S-1.5 not only physical adsorption by electrostatic attraction but also chemical interaction of H2S and oxides of iron and aluminum formed after calcined at a high temperature of 800 °C. The maximum adsorption capacity was calculated to be 36.68 mg/g.

To evaluate if an adsorption process is fitted with the single-layer adsorption model described by Langmuir equation, it is required to be evaluated through equilibrium parameter RL 17, as expressed in Equation (1). Results from Table 2 with RL < 1 confirmed the suitability of the Langmuir isotherm model for H2S adsorption by RM8S-1.5 in this input concentration range.

\[
R_L = \frac{1}{1 + K_L C_O}
\]
where K_L is the mass transfer coefficient according to the Langmuir equation and C_o is input concentration.

Influence of input flow rate

This experiment was carried out with the flow rate in a range of 1.0 - 3.0 L/min and an input concentration of 100 - 110 mg/m3. Obviously, the adsorption capacity continuously decreased from 30.49 mg/g to 16.58 mg/g with an increase of flow rate from 1.0 to 3.0 L/min (Figure 4). This is because of the decrease of contact time between H_2S and adsorbent with the increase of gas flow rate, which leads to the low H_2S adsorption on the surface of RM8S-1.5 material.

Regeneration of adsorbent

The recycle test was also conducted to investigate the effect of the desorption process on the sorption capacity of RM8S-1.5 material. The desorption process was carried out by drying saturated RM8S-1.5 samples at 200 and 400 °C for 20 min. After desorption, the material was cooled and then reused for adsorption. As presented in Figure 5, the capacity of the regenerated materials was lower than the original one although still at high levels. The adsorption capacity of material regenerated at 400 °C was higher than that at 200 °C. However, the difference was not much since capacity increased only from 24.0 to 26.9 mg/g as compared to double temperature with higher energy consumption.

CONCLUSION

Adsorbents from red mud were successfully synthesized and applied for H_2S adsorption. Results showed that adsorption capacity increased with the increase of calcination temperature and H_2SO_4 was better than HCl for red mud activation. The highest adsorption capacity of 30.49 mg/g was achieved at input concentration of 100 mg/m3 and flow rate of 1 L/min using red mud calcined at 800 °C and activated with 1.5
M H$_2$SO$_4$ solution. The adsorption process follows Langmuir ($R^2 = 0.906$) rather than the Freundlich adsorption model. Moreover, the material can be regenerated by thermal treatment at 200 °C with 81.7% capacity. These results suggest a potential use of activated red mud for H$_2$S and maybe other gases treatment.

ACKNOWLEDGEMENT

This research is funded by Ho Chi Minh City University of Technology - VNU-HCM under grant number T-MTTN-2018-114.

ABBREVIATION

AC: activated carbon
RM: red mud
RMX: red mud activated at X °C
RMXC-Y: red mud activated at X °C and by HCl with concentration of Y (M)
RMXS-Y: red mud activated at X °C and by H$_2$SO$_4$ with concentration of Y (M)
CONFLICT OF INTEREST

There is no conflict of interest regarding this manuscript.

AUTHOR CONTRIBUTION

Lam Pham Thanh Hien helped with funding, planned the experiment, and prepared the draft manuscript. Le Truong Anh Huy, Pham Dan Thanh, Le Nguyen Dang Khoa, Bui Khanh Le, Le Thi Kieu Thi, Vo Thi Thanh Thu did the experiment, collected, and composed data. Nguyen Nhat Huy outlined the research, prepared the figures, and completed the manuscript.

REFERENCES

1. Gutiérrez OFJ, Aguilera PG, Ollero P. Biogas desulfurization by adsorption on thermally treated sewage-sludge. Separation and Purification Technology. 2014;123:200–213. Available from: https://doi.org/10.1016/j.seppur.2013.12.025.

2. Zhang L, Schryver PD, Gusseme BD, Muynck WD, Boon N, Verstraete W. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water research. 2008;42(1-2):1–12. PMID: 17692889. Available from: https://doi.org/10.1016/j.watres.2007.07.013.

3. Malone SR, Pearce LL, Peterson J. Environmental toxicology of hydrogen sulfide. Nitric oxide: biology and chemistry. 2017;71:1–13. PMID: 29017846. Available from: https://doi.org/10.1016/j.niox.2017.09.011.

4. Syed M, Soreanu G, Falletta P, Beland M. Removal of hydrogen sulfide from gas streams using biological processes: a review. Canadian Biosystems Engineering. 2006;48(2).

5. Grafe M, Power G, Klauber C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy. 2011;108(1-2):60–79. Available from: https://doi.org/10.1016/j.hydromet.2011.02.004.

6. Klauber C, Grafe M, Power G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy. 2011;108(1-2):11–32. Available from: https://doi.org/10.1016/j.hydromet.2011.02.007.

7. Liu Y, Naidu R, Ming H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma. 2011;163(1-2):1–12. Available from: https://doi.org/10.1016/j.geoderma.2011.04.002.

8. Sutar H, Mishra SC, Sahoo SK, Maharanah A. Progress of red mud utilization: an overview. American Chemical Science Journal 2014;4(3):255–279. Available from: https://doi.org/10.9734/ACSJ/2014/7258.

9. Dung NT, Minh VX, My NT. Nghiên cứu hoạt hóa bùn đỏ bằng axit sulfuri và khô sát khả năng hấp phụ Cr (VI). Vietnam Journal of Chemistry. 2015;53(4):475–479.

10. Genç-Fuhrman H, Tjell JC, McConchie D. Adsorption of Arsenic from Water Using Activated Neutralized Red Mud. Environmental Science & Technology. 2004;38(8):2428–2434. PMID: 15116850. Available from: https://doi.org/10.1021/es035207h.

11. Brunori C, Cresminisi C, Massanisso P, Pinto V, Torricelli L. Reuse of a treated red mud bauxite waste: studies on environmental compatibility. Journal of hazardous materials. 2005;117(1):55–63. PMID: 15621353. Available from: https://doi.org/10.1016/j.jhazmat.2004.09.016.

12. Wang S, Boyoey Y, Choueib A, Zhu ZH. Removal of dyes from aqueous solution using fly ash and red mud. Water Research. 2005;39(1):129–138. PMID: 15607172. Available from: https://doi.org/10.1016/j.watres.2004.09.011.

13. Palmer SJ, Nothing M, Bakon KH, Frost RL. Thermally activated seawater neutralised red mud used for the removal of arsenate, vanadate and molybdate from aqueous solutions. Journal of Colloid and Interface Science. 2010;342(1):147–154. PMID: 19896140. Available from: https://doi.org/10.1016/j.jcis.2009.10.016.

14. Sahu RC, Patel R, Ray BC. Removal of hydrogen sulfide using red mud at ambient conditions. Fuel processing technology. 2011;92(8):1587–1592. Available from: https://doi.org/10.1016/j.fuproc.2011.04.002.

15. Minh VX. Nghiên cứu hoạt hóa bùn đỏ để hấp phụ một số anion ở nhiễm trong môi trường nước. Luận án Tiến sĩ, Học viện Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam. 2017;

16. Loi HD, Hung DT, Van NT. Nghiên cứu xử lý ion phosphat trong nước bằng bùn đỏ bằng tinh. Tạp chí Phân tích Hóa, Lý và Sinh học. 2015;20(3):173.

17. McCabe WL, Smith JC, Harriott P. Unit operations of chemical engineering. 1985;

18. Lodge JP. Methods of air sampling and analysis. CRC Press. 1988;
Nghiên cứu chế tạo vật liệu bùn đỏ hoạt hóa ứng dụng hấp phụ H₂S trong khí thải

Lâm Phạm Thanh Hiền¹,², Lê Trường Anh Huy¹,², Phạm Đan Thanh¹,², Lê Nguyễn Đăng Khoa¹,², Bùi Khánh Lê¹,², Lê Thị Kiều Thị¹,², Võ Thị Thanh Thủy¹,², Nguyễn Nhật Huy¹,²,*

TLÚM TÁT
Bùn đỏ là một loại chất thải rắn có tính kim loại phát sinh từ quá trình sản xuất nhôm từ quy trình Bayer. Các hồ chứa bùn đỏ thường được xem là ruồi ro môi trường đáng kể. Việc xử lý bùn đỏ khả tận kém do chưa có một công nghệ hiệu quả và kinh tế. Một cách, thành phần chính của bùn đỏ bao gồm Fe₂O₃, Al₂O₃, SiO₂, và Na₂O có thể sử dụng như những tiền chất để chế tạo các loại vật liệu nano. Nghiên cứu này được thực hiện nhằm đánh giá khả năng hoạt hóa bùn đỏ và ứng dụng để xử lý chất ô nhiễm H₂S trong khí thải. Bùn đỏ được hoạt hóa ở các nhiệt độ khác nhau, với các loại axit khác nhau và ở các nồng độ khác nhau. Bùn đỏ hoạt hóa sau đó được sử dụng để hấp phụ khí thải H₂S trong không khí với nồng độ từ 90 đến 110 mg/m³ sử dụng cột hấp phụ tản nhiệt. Kết quả cho thấy bùn đỏ hoạt hóa ở 800 ºC sử dụng axit H₂SO₄ ở nồng độ 1,5 M cho hiệu quả xử lý H₂S cao nhất. Hiệu suất hấp phụ trung bình ở mức 80,2 % và dung lượng hấp phụ đạt đến 29,38 mg H₂S/g bùn đỏ hoạt hóa. Ảnh hưởng của lưu lượng dòng khí và nồng độ đầu vào lên quá trình hấp phụ cũng được khảo sát và kết quả chỉ ra rằng hiệu suất hấp phụ cao nhất ở nồng độ H₂S đầu vào 100 mg/m³ và lưu lượng 1 L/phút. Mô hình hấp phụ phù hợp nhất Langmuir và Freundlich đã được áp dụng để mô tả quá trình hấp phụ và kết quả thực nghiệm cho thấy quá trình hấp phụ H₂S sử dụng bùn đỏ hoạt hóa phù hợp hơn với mô hình Langmuir. Thí nghiệm giải hấp và độ bền vật liệu cũng đã được thực hiện để đánh giá khả năng ứng dụng thực tế của vật liệu bùn đỏ hoạt hóa và nhiệt độ giải hấp được đề xuất ở 200 ºC tương ứng với khả năng hấp phụ đạt 81.7% dung lượng hấp phụ ban đầu.

Từ khóa: Bùn đỏ, hydro sulfua, hấp phụ, xử lý khí thải

¹Khoa Môi trường và Tài Nguyên, Trường Đại học Bách Khoa TP.HCM
²Đại học Quốc gia Thành phố Hồ Chí Minh

Liên hệ
Lâm Phạm Thanh Hiền, Khoa Môi trường và Tài Nguyên, Trường Đại học Bách Khoa TP.HCM
Đại học Quốc gia Thành phố Hồ Chí Minh

Liên hệ
Nguyễn Nhật Huy, Khoa Môi trường và Tài Nguyên, Trường Đại học Bách Khoa TP.HCM
Đại học Quốc gia Thành phố Hồ Chí Minh
Email: nnhuy@hcmut.edu.vn

Lịch sử
• Ngày nhận: 11-3-2019
• Ngày chấp nhận: 09-7-2019
• Ngày đăng: 31-2-2019

DOI: 10.32508/stdjet.v3i2.474

Bản quyền © ĐHQG TP.HCM. Đây là bài báo công bố mở được phát hành theo các điều khoản của the Creative Commons Attribution 4.0 International license.

Trích dẫn bài báo này: Hiền L P T, Huy L T A, Thanh P D, Khoa L N D, Lê B K, Thi L T K, Thủy V T T, Huy N N. Nghiên cứu chế tạo vật liệu bùn đỏ hoạt hóa ứng dụng hấp phụ H₂S trong khí thải. Sci. Tech. Dev. J. - Eng. Tech.; 2(SI2):SI40-SI45.