Major complications encountered during 9979 flexible bronchoscopies performed under local anesthesia over 8 years

Flexible bronchoscopy (FB) is a frequently employed diagnostic procedure for evaluating respiratory disorders.[1,2] Studies in the previous decades suggest a complication rate of 1% with FB.[3,4] The complication rates in the contemporary era are unknown. The indications for FB have considerably widened to include sicker patients (immunocompromised patients and others) who are at risk of higher complications. We reviewed our bronchoscopy database to assess the frequency of major complications among subjects undergoing FB procedures without sedation.

We performed a retrospective analysis of the data collected over 8 years (February 1, 2013–January 1, 2021). The Institute Ethics Committee approved the study protocol. We were granted a consent waiver as the study was retrospective and involved anonymized patient data. We have previously published details of some of the subjects included in the study.[5-7] We included all participants undergoing FB during the study period. We excluded FB procedures (radial and convex probe endobronchial ultrasound, argon plasma coagulation, electrocautery, balloon dilatation, or foreign-body retrieval) where conscious sedation was used.[8,9] We retrieved the following information from our database: (1) age and sex; (2) indication for the procedure; (3) type of procedure (bronchoalveolar lavage [BAL], endobronchial biopsy [EBB], and transbronchial biopsy [TBB]); (3) the number of procedures (none [airway inspection], one [either BAL, EBB, or TBB], or ≥2 procedures); and (4) the specific complications encountered.
Table 1: Baseline characteristics, indications, and procedural details of the study population undergoing bronchoscopy

Characteristics	No major complications (n=9886)	Major complications (n=93)	Total (n=9979)	P
Demography				
Age (years), mean (SD)	48.0 (16.7)	50.4 (17.6)	48.0 (16.8)	0.17
Male sex	6540 (66.2)	57 (61.3)	6597 (66.1)	0.32
Indications for bronchoscopy				
Airway inspection				
Bronchogenic carcinoma	1276 (12.9)	6 (6.5)	1282 (12.8)	0.0001
Tuberculosis	2676 (27.1)	26 (28.0)	2702 (27.1)	
Sarcoidosis	1630 (16.5)	23 (24.7)	1653 (16.6)	
Nonresolving pneumonia	609 (6.2)	12 (12.9)	621 (6.2)	
Intestinal lung disease	452 (4.6)	6 (6.5)	458 (4.6)	
Others	2893 (29.3)	17 (18.3)	2910 (29.2)	
Procedure details				
BAL	4010 (40.6)	37 (39.8)	4047 (40.6)	0.99
EBB	2474 (25.0)	31 (33.3)	2745 (27.4)	0.07
TBB	1364 (13.8)	47 (50.5)	1411 (14.1)	0.0001

*Airway inspection included stridor, hemoptysis, perioperative evaluation, and others. Values are expressed as numbers (%) unless otherwise mentioned. BAL: Bronchoalveolar lavage, EBB: Endobronchial biopsy, SD: Standard deviation, TBB: Transbronchial biopsy.

Table 2: Details of complications encountered during bronchoscopy

Complication details	Number of patients
Any major complication	93 (0.95)
Complication details	
Pneumothorax	44 (0.44)
Severe bleeding	27 (0.27)
Endotracheal intubation	23 (0.23)
Cardiac arrest	2 (0.02)
Death	5 (0.08)
Number of procedures	
Airway inspection	10/3568 (0.3)
Single procedure (BAL, EBB or TBB)	51/4952 (1.0)
Two procedures	32/1366 (2.3)
Operator	
Consultant	26/93 (28.0)
Fellow	67/93 (72.0)
Duration of procedure (min), mean (SD)	11.8 (8.3)
ICU stay after complication	12/93 (12.9)

An individual patient may have experienced one or more complications hence the individual numbers do not add up to 93. Eleven of these 44 (25%) pneumothoraces required chest drain insertion. Among those subjects with complications (n=93), The values are presented as numbers (%) for the entire study population unless mentioned as BAL: Bronchoalveolar lavage, EBB: Endobronchial biopsy, ICU: Intensive care unit, SD: Standard deviation, TBB: Transbronchial biopsy.

The study’s primary objective was to analyze the prevalence of major complications during nonsedation bronchoscopy. The indications of bronchoscopy and the procedures resulting in major complications were compared with uncomplicated procedures. We categorized the complications as major if the patient had any of the following: (1) hypoxemia requiring supplemental oxygen or mechanical ventilation (invasive or noninvasive); (2) severe bleeding (requiring instillation of ice-cold saline, local adrenaline, or tamponade to control the bleeding or blood transfusion); (3) life-threatening bleeding (requiring endotracheal intubation); (4) pneumothorax (with or without the need for drainage); and (5) death.

We performed all the bronchoscopy procedures after written procedural consent. FB was performed after clinical and radiological assessment by consultants or fellows under the direct supervision of the consultants. At our bronchoscopy suite, we administer local anesthesia using lignocaine spray (10 puffs) for the oropharynx, 2% lignocaine gel instillation into the nasal cavity, and 1% lignocaine spray sprayed on the vocal cords, the trachea, and major bronchi during the procedure. Coagulation profile and complete blood count were performed in all the subjects undergoing transbronchial lung biopsy (TBB) and those with risk factors for increased bleeding (anticoagulant and antiplatelet therapy, chronic liver disease, and history of bleeding diathesis). We performed TBB using alligator forceps without fluoroscopy guidance and obtained at least four moderate-to-large tissues. In general, 4–6 biopsies were obtained during EBB. A chest radiograph was performed 2–4 h (or earlier if indicated) after TBB. We monitored heart rate and oxygen saturation using a pulse oximeter before, during, and at least 15 min after the procedure. We prolonged the monitoring or admitted the patient to the hospital if a complication occurred.

In the event of bleeding during FB, the bronchoscopy table was tilted, and the patient was positioned with the affected side dependent. We instilled ice-cold saline or adrenaline (1:10000 dilution) if bleeding continued. We managed pneumothorax as per the standard recommendations depending on the size of the pneumothorax, the status of the underlying lung, and the patient’s clinical status.

We analyzed data using the commercial statistical package SPSS version 22.0 (IBM SPSS Inc., Armonk NY, US). Data are presented as numbers (percentage) or mean (standard deviation). As applicable, differences between groups were compared using the Chi-square test or Student’s t-test. We also performed a binary logistic regression analysis to ascertain factors associated with major complications during FB. For our analysis, we grouped the procedures as airway inspection, endobronchial procedures (BAL or EBB), and transbronchial procedures (TBB or without
During the study period, 12,450 subjects underwent a procedure in our bronchoscopy suite. We finally included 9,979 subjects (66.1% of subjects were men) with a mean age of 48.0 years. The most frequent indications for bronchoscopy were suspected malignancy, tuberculosis, or sarcoidosis [Table 1]. Ninety-three (0.93%) subjects experienced a major complication [Table 2]. Of those experiencing a complication, 72% were performed by fellows, the remainder by the consultants.

Pneumothorax (n = 44) and severe bleeding (n = 27) were the most common complications. Eleven of the 44 (25%) pneumothoraces required intercostal tube drainage.

Twenty-three (0.2%) subjects required endotracheal intubation for respiratory failure (n = 15), life-threatening bleed (n = 6), or cardiac arrest (n = 2). We recorded eight deaths (severe bleeding, n = 4; respiratory failure, n = 3; and cardiac arrest, n = 1) among the 9,979 procedures (0.08%). Twelve (12.9) of the 93 subjects were transferred to the intensive care unit (ICU) for management. We encountered complications more frequently in subjects who underwent two or more procedures versus a single procedure (2.3% vs. 1%) or airway inspection (0.3%). On binary logistic regression analysis, the performance of any procedure (TBB had a greater risk than EBB or BAL) was an independent risk factor for the occurrence of complications after adjusting for age and the clinical indication [Table 3].

We report the incidence of major complications encountered during FB at our institute over 8 years. Major complications (0.93%) including death (0.08%) were uncommon following outpatient FB. Nearly 13% of the subjects experiencing a major complication required ICU admission. The incidence and pattern of complications during bronchoscopy depend on the patient profile (age, comorbid illness), setting (emergency vs. elective), the indication (diagnostic vs. therapeutic), and the experience of the operator. Common complications requiring further intervention are severe bleeding, pneumothorax, and bronchospasm. At centers using sedation for outpatient bronchoscopy, oversedation contributes to a significant proportion. In a study published in 2006, the complication rates for bronchoscopy among fellows undergoing training was 2.06% of 3,538 procedures, and the most common was pneumothorax; mortality was (1/3528; 0.03%). Complication rates were highest for the fellows in their first 4 months of training than more experienced fellows (later part of the 1st-year training and 2nd-3rd years).

The rate and type of complication at our center may not be generalizable. Our study’s marginally higher death rate (8/10,000 bronchoscopies) might be due to the sicker patients referred to a tertiary center. Further, we performed FB without conscious sedation, and the complications may differ in centers routinely employing intravenous sedation or general anesthesia. Finally, our study is limited by the lack of details of minor complications occurring after bronchoscopy.

In conclusion, major complications such as pneumothorax, severe bleeding, and others occur uncommonly after FB, even without sedation. Diagnostic bronchoscopy performed on an outpatient basis is a safe procedure.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

Valliappan Muthu, Babu Ram, Inderpaul Singh Sehgal, Sahajal Dhoria, Kuruwamy Thurai Prasad, Ashutosh Nath Aggarwal, Ritesh Agarwal

Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India

E-mail: agarwal.ritesh@outlook.in

Submitted: 15-Jan-2022 Revised: 18-Jan-2022
Accepted: 22-Jan-2022 Published: 01-Jul-2022

REFERENCES

1. Gupta AA, Sehgal IS, Dhoria S, Singh N, Aggarwal AN, Gupta D, et al.
Indications for performing flexible bronchoscopy: Trends over 34 years at a tertiary care hospital. Lung India 2015;32:211-5.

2. Mohan A, Madan K, Hadda V, Tiwari P, Mittal S, Guleria R, et al. Guidelines for diagnostic flexible bronchoscopy in adults: Joint Indian Chest Society/National College of chest physicians (I)/Indian association for bronchology recommendations. Lung India 2019;36:S37-89.

3. Jin F, Mu D, Chu D, Fu E, Xie Y, Liu T. Severe complications of bronchoscopy. Respiration 2008;76:429-33.

4. Lukomsky GI, Ovchinnikov AA, Bilal A. Complications of bronchoscopy: Comparison of rigid bronchoscopy under general anesthesia and flexible fiberoptic bronchoscopy under topical anesthesia. Chest 1981;79:316-21.

5. Sehgal IS, Bal A, Dhooria S, Gupta N, Ram B, Aggarwal AN, et al. Predictors of successful yield of transbronchial lung biopsy in patients with sarcoidosis. J Bronchology Interv Pulmonol 2018;25:31-6.

6. Muthu V, Gandra RR, Dhooria S, Sehgal IS, Prasad KT, Kaur H, et al. Role of flexible bronchoscopy in the diagnosis of invasive fungal infections. Mycoses 2021;64:668-77.

7. Muthu V, Sehgal IS, Prasad KT, Aggarwal R. Iatrogenic pneumothorax following vigorous suctioning of mucus plug during flexible bronchoscopy. BMJ Case Rep 2019;12:e230943.

8. Dhooria S, Sehgal IS, Gupta N, Aggarwal AN, Behera D, Agarwal R. Diagnostic yield and complications of EBUS-TBNA performed under bronchoscopist-directed conscious sedation: Single center experience of 1004 subjects. J Bronchology Interv Pulmonol 2017;24:7-14.

9. Sehgal IS, Dhooria S, Behera D, Agarwal R. Use of cryoprobe for removal of a large tracheobronchial foreign body during flexible bronchoscopy. Lung India 2016;33:543-5.

10. Kaur H, Dhooria S, Aggarwal AN, Gupta D, Behera D, Agarwal R. A randomized trial of 1% vs. 2% lignocaine by the spray-as-you-go technique for topical anesthesia during flexible bronchoscopy. Chest 2015;148:739-45.

11. Dhooria S, Chaudhary S, Ram B, Sehgal IS, Muthu V, Prasad KT, et al. A randomized trial of nebulized lignocaine, lignocaine spray, or their combination for topical anesthesia during diagnostic flexible bronchoscopy. Chest 2020;157:198-204.

12. Sehgal IS, Bal A, Dhooria S, Agrawal P, Gupta N, Ram B, et al. A prospective randomized controlled trial comparing the efficacy and safety of cup vs. alligator forceps for performing transbronchial lung biopsy in patients with sarcoidosis. Chest 2016;149:1584-6.

13. Muthu V, Ram B, Sehgal IS, Dhooria S, Prasad KT, Bal A, et al. Predictors of severe bleeding during endobronchial biopsy: Experience of 537 cases. J Bronchology Interv Pulmonol 2019;26:273-9.

14. MacDuff A, Arnold A, Harvey J; BTS Pleural Disease Guideline Group. Management of spontaneous pneumothorax: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010;65 Suppl 2:i18-31.

15. Jacomelli M, Margotto SS, Demarzo SE, Scordamaglio PR, Cardoso PF, Palomino AL, et al. Early complications in flexible bronchoscopy at a university hospital. J Bras Pneumol 2020;46:e20180125.

16. Ouellette DR. The safety of bronchoscopy in a pulmonary fellowship program. Chest 2006;130:1185-90.

17. Fazlalizadeh H, Adimi P, Kiani A, Malekmohammad M, Jabardarjani HR, Soltaninejad F, et al. Evaluation of bronchoscopy complications in a tertiary health care center. Tanaffos 2014;13:48-50.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to cite this article: Muthu V, Ram B, Sehgal IS, Dhooria S, Prasad KT, Aggarwal AN, et al. Major complications encountered during 9979 flexible bronchoscopies performed under local anesthesia over 8 years. Lung India 2022;39:384-4.

© 2022 Indian Chest Society | Published by Wolters Kluwer - Medknow