Risk and protective factors of acute kidney injury in decompensated cirrhotic patients with ascites on tolvaptan

Tomomi Kogiso, Yuri Ogasawara, Takaomi Sagawa, Makiko Taniai and Katsutoshi Tokushige

Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan

Key words
acute kidney injury, kanamycin/rifaximin, liver cirrhosis, proton pump inhibitor/H2 blockers, tolvaptan.

Abstract

Background and Aim: Acute kidney injury (AKI) is a life-threatening complication of liver cirrhosis. Here, we evaluated the risk factors and characteristics of AKI in cirrhosis.

Patients/Methods: This was a single-center retrospective study. A total of 199 Japanese patients with decompensated liver cirrhosis (104 men, median age 61 years) were enrolled and received tolvaptan orally. Survival rates and new onset of AKI were monitored, and risk factors were evaluated.

Results: Forty-six patients (23.1%) suffered an AKI complication and exhibited significantly poorer survival ($P < 0.01$). The rates of hepatic encephalopathy ($P < 0.01$) and chronic kidney disease (CKD; $P = 0.02$) were significantly increased in patients with AKI. The rate of proton pump inhibitor (PPI)/H2 blocker treatment ($P = 0.04$) was significantly lower, whereas that of ascites drainage was significantly higher in the AKI cases ($P < 0.01$). The AKI risk was significantly increased in patients with hepatic encephalopathy (HR 4.18, 95% CI 1.618–10.771). In contrast, the incidence of AKI was significantly lower in patients with a higher serum albumin level (HR 0.36, 95% CI 0.142–0.914, $P = 0.03$). Treatment with PPI/H2 blockers (HR 0.30, 95% CI 0.126–0.711, $P < 0.01$) or kanamycin/rifaximin (HR 0.26, 95% CI 0.075–0.929, $P = 0.04$) was significantly associated with a reduced risk of AKI development.

Conclusions: AKI incidence was increased in patients with decreased liver function and was associated with poor survival. PPI/H2 blocker or kanamycin/rifaximin treatment may reduce the risk of AKI.

Introduction

Acute kidney injury (AKI) is a common and frequently life-threatening complication of liver cirrhosis. The incidence of AKI has been reported to be as high as 20–50% among patients with liver cirrhosis. In addition to prerenal azotemia, AKI patients have been reported to develop hepatorenal syndrome (HRS) and acute tubular necrosis. In 2012, the Kidney Disease: Improving Global Outcomes (KDIGO) group proposed new definitions of AKI based on creatinine elevation or the disturbance in urination. The International Club of Ascites (ICA) then adapted
these definitions for patients with cirrhosis (ICA-AKI criteria) in 2015.5

When liver disease progresses, decreased renal perfusion causes activation of the renin–angiotensin–aldosterone system, resulting in sodium and water retention and extrasplanchnic vasodilatation.2 Liver cirrhosis is associated with the induction of vasodilators such as nitric oxide, carbon monoxide, and endogenous cannabinoids as well as vasodilation due to inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 induced by and translocated from bacterial peritonitis in the gut.6 High portal pressure and severe vasodilatation predispose patients with cirrhosis to increased risk of AKI and chronic kidney disease (CKD).7 The use of AKI-precipitating medications was reported to be the most common cause of AKI, followed by bacterial infection, including spontaneous bacterial peritonitis (SBP).8

The recommended treatment for cirrhosis has been updated in the Clinical Practice Guidelines for Decompensated Cirrhosis proposed by the European Association for the Study of the Liver (EASL) in 2018.9 The Japanese Society of Gastroenterology and the Japan Society of Hepatology also revised the guidelines for the treatment of cirrhosis in 2020.10 Overdosing with diuretics should be avoided, and use of the vasopressin V2-receptor antagonist, tolvaptan, was recommended prior to renal impairment. Previously, we demonstrated the efficacy and safety of tolvaptan in cirrhotic patients and showed that long-term treatment improved survival.11,12 Furthermore, rifaximin, a nonabsorbable antibiotic, was recommended for the treatment of hepatic encephalopathy and SBP in patients with cirrhosis. AKI has been reported to increase the mortality rate.13,14 However, although the treatment options for cirrhosis have been improving, the efficacy of rifaximin treatment for AKI has not been elucidated. Therefore, it is necessary to reconsider the implications of AKI in patients with liver cirrhosis.

Here, we evaluated the effects of AKI on survival and considered the risk and protective factors of AKI in cirrhotic patients with ascites receiving tolvaptan therapy.

Methods

Patients and study design. This was a single-center, retrospective observational study conducted between September 2013 and 2020. A total of 199 Japanese patients with liver cirrhosis (104 men, 52.3%), diagnosed based on imaging and biochemical results, complicated with ascites who received tolvaptan at 3.75–7.5 mg once per day (Samsca®; Otsuka Pharmaceutical Co. Ltd., Tokyo, Japan) were enrolled in the study. The patients were treated with conventional diuretics, including 0–160 mg/day furosemide and/or 0–400 mg/day spironolactone, and a salt-restricted diet. Diagnosis of AKI and determination of the AKI grade were based on the KDIGO practice guidelines.4 Briefly, AKI was diagnosed based on an increase in serum creatinine concentration of ≥0.3 mg/dL from baseline within 48 h, an increase of 50% within 7 days, or urine volume < 0.5 mL/kg/h for 6 h.4 CKD was also diagnosed based on the KDIGO guidelines, with a disease stage higher than G3a (mild to moderate decrease in kidney function) and an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m² defined as CKD.15 Survival rates and new onset of AKI were monitored for a median observation period of 8.1 (0.6–96.6) months.

This study was conducted in accordance with the principles of the Declaration of Helsinki and the ethics regulations of Tokyo Women’s Medical University Hospital (TWMU, Tokyo, Japan). The TWMU Institutional Review Board approved the study protocol.

Clinical parameters. The following baseline characteristics of the patients were assessed: age, sex, clinical history, underlying hepatic diseases, complications of cirrhosis (i.e., encephalopathy, esophageal/gastric varices, and hepatocellular carcinoma [HCC]), complications of diabetes mellitus, hypertension, CKD, SBP, cell-free and concentrated ascites reinfusion therapy (CART) or ascites drainage, administration of diuretics, and treatment with ureosxylcholic acid (UDCA), branched-chain amino acids (BCAA), amino-acid preparations for hepatic insufficiency, proton pump inhibitor (PPI)/H2 blockers, lactulose, kanamycin/rifaximin, canine, zinc agents, intestinal regulators, and/or laxatives. CART featured drainage of 3 L of ascites each time. Otherwise, the ascites drainage volume was 1–3 L each time, usually accompanied by intravenous albumin. Cases with suspected SBP did not undergo CART; however, all other cases were prescribed CART to minimize the use of blood products. Paracentesis was performed before and after tolvaptan treatment for patients whose ascites accumulations were severe. All patients received diuretics and medications for cirrhosis for more than 7 days. Blood samples for biochemistry and hematological data were collected at the time of administration of tolvaptan. Laboratory tests were performed to determine the serum concentrations of albumin, total bilirubin, aspartate aminotransferase, alanine transaminase, and γ-glutamyl transferase; platelet count; fasting blood glucose; hemoglobin Alc; prothrombin time (PT%); PT international normalized ratio; blood urea nitrogen (BUN); creatinine; eGFR; cystatin C (Cys C); Cys C-based glomerular filtration rate; uric acid; serum sodium and potassium; ammonia; C-reactive protein; neutrophil-to-lymphocyte ratio; α-fetoprotein (AFP); and des-γ-carboxy prothrombin (DCP). Child–Turcotte–Pugh (CTP)16 and model for end-stage liver disease (MELD) scores17 were used for the evaluation of liver function.

Follow-up and outcomes. The patients were hospitalized and administered tolvaptan. All cases receiving tolvaptan were monitored 8 h later (or on the next day). After discharge, patients were followed up every 1–2 months at the outpatient clinic. Renal function was monitored at the clinic during regular follow-up and blood samples were taken when patients visited the outpatient clinic because of illness. The prognosis was evaluated in terms of survival time until death or liver transplantation after tolvaptan treatment. The observation periods were from the date of initiation of tolvaptan to death, liver transplantation, and the time of censoring (January 2021).

Statistical analysis. Data are presented as medians with minimum and maximum values. Significant differences between the AKI and non-AKI groups were assessed with the Mann–Whitney U-test or χ² test using SPSS statistical software (SPSS Inc., Chicago, IL, USA). Multivariate regression analysis was performed to compare the AKI and non-AKI groups. Factors
highly significant on univariate analysis were subjected to multivariate analysis. We assessed the variables by SPSS and there was no multicollinearity. The following factors were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs): sex, hepatic encephalopathy, CKD, SBP, CART or ascites drainage, albumin, alanine aminotransferase, hemoglobin \(A_{\text{Hct}} \), BUN, creatinine, AFP, DCP, CTP score, and treatment with PPI/H2 blockers, and kanamycin/rifaximin. In all analyses, \(P < 0.05 \) was taken to indicate statistical significance. The survival rate and cumulative incidence of AKI were subjected to Kaplan–Meier analysis. Differences between groups were analyzed using a log-rank test. Multivariate Cox regression analysis was used to evaluate the risk of AKI development based on the time to AKI occurrence after administration of tolvaptan and estimate hazard ratios (HRs) and 95% CIs.

Results

Baseline characteristics of patients treated with tolvaptan. The median age of the 199 patients receiving tolvaptan treatment was 61 (range 21–92) years, and 52.3% were male (Table 1). The underlying liver diseases included viral hepatitis (hepatitis C, 42 cases; hepatitis B, 12 cases), alcoholic liver disease/nonalcoholic fatty liver disease (62/25 cases), autoimmune hepatitis (2 cases), primary biliary cholangitis (19 cases), and primary sclerosing cholangitis (7 cases). With regard to complications of liver cirrhosis, hepatic encephalopathy (23.6%), esophageal/gastric varices (68.6%), and HCC (53.4%) were observed. All patients commenced on 3.75 mg/day tolvaptan; this was increased to 7.5 mg/day after 2–3 days in 139 (69.8%) patients who lacked adequate control of their body weight or urination. In six cases, tolvaptan was administered for more than 4 months and then stopped because the ascites had improved.

Characteristics of AKI cases and survival rates of cirrhosis according to type of complications. During the observation period, 46 cases (23.1%) suffered an AKI complication. The majority of these cases were classified as KDIGO stage 1 (38 cases, 82.6%). HRS-AKI was observed in eight cases. The rates of hepatic encephalopathy (\(P < 0.01 \)) and CKD (\(P = 0.02 \)) were significantly higher in the AKI group compared to the non-AKI group (Table 1). The rate of SBP was also higher in the AKI group (\(P = 0.05 \)). In terms of the treatment of cirrhosis, the rate of PPI/H2 blocker treatment was significantly lower for AKI cases than for non-AKI cases (\(P = 0.04 \)). The rate of CART or ascites drainage was significantly higher for AKI cases than for non-AKI cases (\(P < 0.01 \)). With regard to biochemical findings, AKI cases exhibited lower levels of serum albumin (AKI vs. non-AKI, 2.4 vs. 2.5 g/dL, respectively, \(P = 0.04 \)), alanine aminotransferase (25 vs. 26 U/L, respectively, \(P = 0.03 \)), and AFP (3 vs. 4 ng/mL, respectively, \(P = 0.03 \)), and higher levels of BUN (24.2 vs. 15.9 mg/dL, respectively, \(P < 0.01 \)) and creatinine (1.05 vs. 0.84 mg/dL, respectively, \(P = 0.02 \)). Multivariate regression analysis indicated that hepatic encephalopathy (OR 3.81, 95% CI 1.137–12.797, \(P = 0.03 \)) was positively associated with the occurrence of AKI, whereas treatment with PPI/H2 blocker (OR 0.23, 95% CI 0.077–0.695, \(P < 0.01 \)) or kanamycin/rifaximin (kanamycin 9 cases and rifaximin 42 cases. Kanamycin was switched to rifaximin in three cases. OR 0.13, 95% CI 0.028–0.615, \(P = 0.01 \)) were negatively associated.

The survival rates of cirrhotic patients after tolvaptan administration, as examined via a Kaplan–Meier analysis, are shown in Figure 1. Prognosis was significantly poorer in patients with AKI than in patients without AKI (\(P < 0.01 \)) (Fig. 1a) and in SBP cases than in the non-SBP cases (\(P = 0.03 \)) (Fig. 1b). After the exclusion of HCC cases, AKI and SBP were also associated with significantly poorer outcomes in comparison to non-AKI and non-SBP cases, respectively.

Incidence of AKI according to the type of complications and treatment. Although diabetes mellitus as a complication was not associated with an increased rate of developing AKI, SBP was more frequent in the AKI group (\(P = 0.05 \)). The incidence of AKI was significantly higher in patients with CKD compared to non-CKD cases (\(P = 0.04 \)) (Fig. 2a). We compared the AKI cases with and without CKD on Table S1, Supporting information. CKD cases were significantly older; however, no other factor (excluding renal factors) differed significantly between the groups. With regard to the treatment of cirrhosis, there were no significant differences in rates of treatment with UDCA, BCAA, or other agents for lowering ammonia between the AKI group and the non-AKI group. Among patients with hepatic encephalopathy (\(n = 122 \)), the incidence of AKI tended to be lower in patients treated with kanamycin/rifaximin with lactulose compared to those treated with lactulose alone (\(P = 0.06 \)) (Fig. 2b). Treatment with PPI/H2 blockers significantly decreased the rate of AKI onset (\(P = 0.03 \)) (Fig. 2c), whereas the onset rate was significantly elevated in patients who underwent CART or ascites drainage (\(P = 0.01 \)) (Fig. 2d).

Risk factors for AKI development in patients with decompensated cirrhosis. We evaluated the factors that were predictive of AKI development in patients with cirrhosis via multivariate analysis using a Cox hazard model. The parameters included were sex, hepatic encephalopathy, CKD, SBP, CART or ascites drainage, albumin, alanine aminotransferase, hemoglobin \(A_{\text{Hct}} \), BUN, creatinine, AFP, DCP, CTP score, and treatment with PPI/H2 blockers, and kanamycin/rifaximin (Table 2). The incidence of AKI was significantly higher in patients with hepatic encephalopathy (HR 4.18, 95% CI 1.618–10.771, \(P < 0.01 \)). By contrast, the incidence of AKI was significantly lower in patients with a higher serum albumin level (HR 0.36, 95% CI 0.142–0.914, \(P = 0.03 \)). Treatment with PPI/H2 blockers (HR 0.30, 95% CI 0.126–0.711, \(P < 0.01 \)) or kanamycin/rifaximin (HR 0.26, 95% CI 0.075–0.929, \(P = 0.04 \)) was significantly associated with a reduced risk of AKI development.

Discussion

The results of this study indicate that the onset of AKI is associated with a poorer outcome in liver cirrhosis patients with ascites and the incidence of AKI is increased in patients with encephalopathy and decreased liver function. By contrast, PPI/H2 blocker or kanamycin/rifaximin treatment appeared to decrease the risk of AKI in these patients.

Our study population consisted of patients with decompensated cirrhosis requiring tolvaptan treatment. We previously
Table 1	Baseline characteristics of the patients and univariate and multivariate regression analyses of the risk of AKI						
	Total (n = 199)	AKI (n = 46)	Non-AKI (n = 153)	P-value*	Odds ratio	95% CI	P-value
Age (years)	61 (21–92)	60 (27–90)	62 (21–92)	0.73			
No. of males (%)	104 (52.3%)	19 (41.3%)	85 (55.6%)	0.09			
Underlying hepatitis				0.72			
Viral (HCV/HBV)	42/12	9/3	33/9				
Alcoholic/nonalcoholic	62/25	13/6	49/19				
AIH/PBC/PSC	2/19/7	0/7/2	2/12/5				
Others	35	8	27				
Complication type (%)							
Hepatic encephalopathy	47 (23.6%)	20 (43.5%)	27 (17.6%)	< 0.01	3.81	1.137–12.797	0.03
Esophageal/gastric varices	129 (68.6%)	29 (67.4%)	100 (69.0%)	0.85			
Diabetes mellitus	62 (31.2%)	12 (26.1%)	50 (32.7%)	0.40			
Hypertension	39 (19.6%)	11 (23.9%)	28 (18.3%)	0.40			
Hepatocellular carcinoma	52 (26.1%)	9 (19.6%)	43 (28.1%)	0.25			
Chronic kidney disease	102 (53.4%)	31 (70.5%)	71 (49.7%)	0.02			
Spontaneous bacterial peritonitis	37 (18.6%)	13 (28.3%)	24 (15.7%)	0.05			
Diuretics							
Furosemide dose (mg/day)	20 (0–160)	20 (0–120)	20 (0–160)	0.33			
Spironolactone dose (mg/day)	50 (0–400)	50 (0–150)	50 (0–400)	0.56			
Treatment (%)							
Ursodeoxycholic acid	120 (60.3%)	30 (65.2%)	90 (58.8%)	0.44			
Branched-chain amino acids	136 (68.3%)	28 (60.9%)	108 (70.6%)	0.21			
Amino-acid preparations for hepatic insufficiency	67 (33.7%)	17 (37%)	50 (32.7%)	0.59			
PP/H2 blockers	148 (74.4%)	29 (63.0%)	119 (77.8%)	0.04	0.23	0.077–0.695	< 0.01
Lactulose	113 (56.8%)	27 (58.7%)	86 (56.2%)	0.77			
Kanamycin/rifaximin (Kanamycin n = 9, rifaxamine n = 42)	48 (24.1%)	7 (15.2%)	41 (26.8%)	0.11	0.13	0.028–0.615	0.01
Carnitine	40 (20.1%)	13 (28.3%)	27 (17.6%)	0.12			
Zinc agents	22 (11.1%)	4 (8.7%)	18 (11.8%)	0.56			
Intestinal regulators	47 (23.6%)	11 (23.9%)	36 (23.5%)	0.96			
Laxative	62 (31.2%)	17 (37.0%)	45 (29.4%)	0.33			
Ascites treatment (%)							
CART or drainage	93 (46.7%)	30 (65.2%)	63 (41.2%)	< 0.01			
Laboratory data†							
Albumin (g/dL)	2.5 (1.5–4.4)	2.4 (1.5–3.3)	2.5 (1.5–4.4)	0.04			
Total bilirubin (mg/dL)	2.0 (0.3–27.3)	1.9 (0.3–27.3)	2.0 (0.3–24.2)	0.83			
Aspartate aminotransferase (U/L)	44 (10–551)	50 (14–164)	44 (10–551)	0.32			
Alanine aminotransferase (U/L)	26 (3–381)	25 (3–53)	26 (4–381)	0.03			
γ-Glutamyl transpeptidase (U/L)	60 (9–926)	55 (9–359)	62 (10–926)	0.12			
Platelet counts (×10³/µL)	8.6 (15–42.4)	8.3 (2.1–39.8)	8.8 (15–42.2)	0.65			
Fasting blood glucose (mg/dL)	101 (58–364)	93 (64–364)	103 (58–305)	0.34			
Hemoglobin A1c (%)	5.2 (3.4–11.6)	5.0 (3.8–6.6)	5.2 (3.4–11.6)	0.05			
Prothrombin time (PT; %)	56.1 (16.3–100.0)	56.4 (26.0–88.4)	56.0 (16.3–100.0)	0.49			
PT INR	1.31 (0.98–3.17)	1.28 (0.99–2.53)	1.32 (0.98–3.17)	0.41			
Blood urea nitrogen (mg/dL)	17.7 (3.8–74.9)	24.2 (5.7–61.8)	15.9 (3.8–74.9)	< 0.01			
Creatinine (mg/dL)	0.89 (0.35–3.30)	1.05 (0.40–3.16)	0.84 (0.35–3.30)	0.02			
eGFR (mL/min/1.73 m²)	60.0 (15.5–134.8)	46.7 (15.5–134.8)	62.5 (16.8–133.6)	0.07			
Cystatin C (Cys C; mg/L)	1.3 (0.5–3.5)	1.56 (0.97–2.75)	1.26 (0.47–3.50)	0.17			
Cys C-based GFR (mL/min/1.73 m²)	51.6 (13.5–171.8)	45.2 (18.7–75.8)	56.0 (13.5–171.8)	0.10			
Uric acid (mg/dL)	6.0 (1.4–14.2)	6.2 (3.4–14.2)	5.8 (1.4–12.6)	0.12			
Serum sodium (mEq/L)	137 (118–145)	138 (118–142)	137 (122–145)	0.94			
Serum potassium (mEq/L)	4.0 (1.3–6.1)	4.1 (1.4–5.5)	4.0 (1.3–6.1)	0.68			
Ammonia (µg/dL)	69 (15–499)	69 (24–269)	68 (15–499)	0.68			
C-reactive protein (mg/dL)	1.09 (0.02–19.3)	1.73 (0.03–10.12)	0.93 (0.02–19.3)	0.18			
Neutrophil-to-lymphocyte ratio	3.42 (1.00–26.17)	4.42 (1.00–24.61)	3.18 (1.26–26.17)	0.63			
α-Fetoprotein (ng/mL)	4 (1–4720)	3 (1–109)	4 (1–4720)	0.03			
Des-γ-carboxy prothrombin (mAU/mL)	58 (3–35 675)	35 (10–23 277)	66 (3–35 675)	0.95	1.00	1.000–1.000	0.02

(Continues)
reported the safety and efficacy profiles of long-term tolvaptan. Most patients had to remain on medication because of liver cirrhosis progression. Only six patients could cease treatment. In the tolvaptan era, it is essential to monitor the clinical courses of patients with liver cirrhosis who are on tolvaptan and to seek always to improve treatment. Hiramine et al. reported that the AKI incidence was significantly lower in patients treated with tolvaptan than in those not so treated (27.6% vs. 44.7%, respectively, \(P = 0.028 \)). While renal function worsened with higher natriuretic agent doses in the control group, Mori et al. reported that renal blood flow was maintained in patients on tolvaptan. In addition, neurohormonal factors and blood pressure were not markedly altered, with this outcome thought to protect against worsening renal function. In the present study, 46 (23.1%) patients developed AKI after treatment with tolvaptan. Although there were no significant differences in the doses of other diuretics between the AKI and non-AKI groups, the rates of hepatic encephalopathy and CKD were significantly higher in patients with AKI in the present study. The recent guidelines suggest that large amounts of diuretics should not be used to avoid renal dysfunction. Therefore, the rates of treatment with other fundamental diuretics were extremely low and were thought not to be associated with the development of AKI in our study population. Patients with AKI had significantly poorer prognosis even after the exclusion of cases of HCC from our cohort, consistent with the results of previous studies.

The creatinine level and the eGFR are commonly used to evaluate kidney function. Cys C enhanced the renal function in cirrhosis patients. We found that the cys C level and cys C-based GFR was not associated with AKI complications. Type 1 HRS, the prototype of acute renal dysfunction in cirrhosis, has been re-named AKI-HRS, and was observed in eight cases.

Ascites were the most common complication of cirrhosis (86.5%), followed by hepatic encephalopathy (37.8%), variceal bleeding (17.5%), HRS (6.3%), and SBP (6.1%). Rifaximin was introduced to treat hepatic encephalopathy by reducing ammonia via regulation of the gut microbiome. Dong et al. reported that long-term rifaximin treatment reduced the rate of AKI in cirrhosis patients. However, reports on this topic are limited. In the present study, kanamycin/rifaximin treatment with

Table 1 (Continued)

	Total (n = 199)	AKI (n = 46)	Non-AKI (n = 153)	P-value*	Odds ratio	95% CI	P-value
Child–Turcotte–Pugh score	11 (6–15)	11 (7–15)	11 (6–15)	0.11			
MELD score	12 (2–35)	13 (2–35)	12 (3–29)	0.46			

*AKI versus non-AKI.

†At the initiation of tolvaptan.

‡Kamaycin was switched to rifaximine in three patients.

AIH, autoimmune hepatitis; CART, cell-free and concentrated ascites reinfusion therapy; CI, confidence interval; eGFR, estimated glomerular filtration rate; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; INR, international normalized ratio; MELD, model for end-stage liver disease; n, number of patients; PBC, primary biliary cholangitis; PPI, proton pump inhibitor; PSC, primary sclerosing cholangitis.

Figure 1 Mortality rates of cirrhotic patients with and without complications. (a) AKI. (b) SBP. (a) Patients with AKI had a significantly poorer prognosis than patients without AKI (\(P < 0.01 \)). (b) Patients with SBP had significantly poorer survival compared to non-SBP cases (\(P = 0.03 \)). AKI, acute kidney injury; SBP, spontaneous bacterial peritonitis.
lactulose tended to decrease the incidence of AKI compared to treatment with lactulose alone in cases with hepatic encephalopathy \((P = 0.06)\). A leaky gut increases the risk of SBP in patients with ascites, and kanamycin/rifaximin has been reported to reduce SBP in such cases\(^{26}\). In patients receiving treatment for hepatic encephalopathy, Zeng et al.\(^{27}\) reported that kanamycin/rifaximin protected against ascites exacerbation \((P < 0.001)\) and gastric variceal bleeding \((P = 0.03)\).

PPI treatment has been reported to have negative effects in patients with cirrhosis.\(^{28,29}\) Patients receiving PPIs and/or SBP prophylaxis were found to have an increased risk of infection.\(^{28}\) In a systematic review and meta-analysis, the pooled ORs for hepatic encephalopathy and SBP were 2.31 (95% CI 1.63–3.28) and 1.72 (95% CI 1.42–2.09), respectively, and these were significantly higher in PPI users compared with non-PPI users.\(^{29}\) However, PPI treatment was reported to reduce the risk of post-endoscopic variceal band ligation bleeding.\(^{30}\) In the present study, the rate of treatment with PPI/H2 blockers was significantly lower in AKI cases (63.0%) compared to non-AKI cases (77.8%). The HR associated with developing AKI was 0.30 (95% CI 0.126–0.711, \(P < 0.01\)). We speculated that PPI treatment can reduce variceal bleeding, thus decreasing the risk of...
The present study had some limitations. The study was retrospective, and we did not perform gut microbiome analysis. There might have been physician-based or institution-based bias in the treatment of cirrhotic patients. AKI was evaluated specifically in cirrhotic patients undergoing treatment with tolvaptan. This limited the generalizability of our results; however, the disease conditions (e.g., decompensation level) were similar across the included patients, and thus, fair comparisons between patient groups could be made. The effects of drug combinations on cirrhosis should be evaluated in future prospective studies.

In conclusion, AKI was associated with an increased mortality rate in patients with liver cirrhosis. In patients who develop decompensated liver cirrhosis with ascites, treatment with PPI/H2 blockers and kanamycin/rifaximin may reduce the incidence of AKI.

Acknowledgments

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (JP19fk0210040) to M.T. and a grant from the Japan Agency for Medical Research and Development (AMED; grant number JP19fk0210040) to M.T.

Human/animal rights

All procedures were performed in accordance with the ethical standards of the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from the patients.

Data availability statement. The datasets used and/or analyzed in the current study are available from the corresponding author upon reasonable request.

References

1. Tonon M, Rosi S, Gambino CG et al. Natural history of acute kidney disease in patients with cirrhosis. J. Hepatol. 2021; 74: 578–83.
2. Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology. 2008; 48: 2064–77.
3. Belcher JM, Sanyal AJ, Peixoto AJ et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology. 2014; 60: 622–32.
4. Khwaaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012; 120: c179–84.
5. Angeli P, Rodríguez E, Piano S et al. Acute kidney injury and acute-on-chronic liver failure classifications in prognosis assessment of patients with acute decompensation of cirrhosis. Gut. 2015; 64: 1616–22.
6. Navasa M, Follio A, Filella X et al. Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality. Hepatology. 1998; 27: 1227–32.
7. Maiwall R, Pasupuleti SSR, Jain P, Sarin SK. Degree of portal and systemic hemodynamic alterations predict recurrent AKI and chronic kidney disease in patients with cirrhosis. Hepatol. Commun. 2021; 5: 293–308.
Acute kidney injury in cirrhosis

Khatua CR, Sahu SK, Meher D, Nath G, Singh SP. Acute kidney injury in hospitalized cirrhotic patients: risk factors, type of kidney injury, and survival. JGH Open. 2021; 5: 199–206.

EASL. Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018; 69: 406–60.

The Evidence-Based Clinical Practice Guidelines for Cirrhosis (Japanese). Tokyo: Nankodo, 2020.

Kogiso T, Yamamoto K, Kobayashi M et al. Response to tolvaptan and its effect on prognosis in cirrhotic patients with ascites. Hepatol. Res. 2017; 47: 835–44.

Leão GS, de Mattos AA, Picon RV et al. The prognostic impact of different stages of acute kidney injury in patients with decompensated cirrhosis: a prospective cohort study. Eur. J. Gastroenterol. Hepatol. 2021; in press.

Maiwall R, Pasupuleti SSR, Chandel SS et al. Co-orchestration of acute kidney injury and non-organ failure in critically ill patients with cirrhosis. Liver Int. 2021; 41: 1358–69.

Levin A, Stevens PE. Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 2014; 85: 49–61.

Cholongitas E, Papatheodoridis GV, Vangeli M, Terreni N, Patch D, Burroughs AK. Systematic review: the model for end-stage liver disease—should it replace Child-Pugh’s classification for assessing prognosis in cirrhosis? Aliment. Pharmacol. Ther. 2005; 22: 1079–89.

Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000; 31: 864–71.

Kogiso T, Tokushige K, Hashimoto E et al. Safety and efficacy of long-term tolvaptan therapy for decompensated liver cirrhosis. Hepatol. Res. 2016; 46: E194–200.

Hiramine Y, Uto H, Mawatari S et al. Impact of acute kidney injury on prognosis and the effect of tolvaptan in patients with hepatic ascites. J. Gastroenterol. 2021; 56: 54–66.

Mori T, Ohsaki Y, Oba-Yabana I, Ito S. Diuretic usage for protection against end-organ damage in liver cirrhosis and heart failure. Hepatol. Res. 2017; 47: 11–22.

Fagundes C, Barreto R, Guevara M et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J. Hepatol. 2013; 59: 474–81.

Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. Gut. 2013; 62: 131–7.

Wang D, Feng JF, Wang AQ, Yang YW, Liu YS. Role of Cystatin C and glomerular filtration rate in diagnosis of kidney impairment in hepatic cirrhosis patients. Medicine (Baltimore). 2017; 96: e6949.

Thomson MJ, Lok AS, Tapper EB. Appropriate and potentially inappropriate medication use in decompensated cirrhosis. Hepatology. 2020; 73: 2429–40.

Dong T, Aronsohn A, Gautam Reddy K, Te HS. Rifaximin decreases the incidence and severity of acute kidney injury and hepatorenal syndrome in cirrhosis. Dig. Dis. Sci. 2016; 61: 3621–6.

Son H, Kumar-M P, Sharma V et al. Antibiotics for prophylaxis of spontaneous bacterial peritonitis: systematic review & Bayesian network meta-analysis. Hepatol. Int. 2020; 14: 399–413.

Zeng X, Sheng X, Wang PQ et al. Low-dose rifaximin prevents complications and improves survival in patients with decompensated liver cirrhosis. Hepatol. Int. 2021; 15: 155–65.

O’Leary JG, Reddy KR, Wong F et al. Long-term use of antibiotics and proton pump inhibitors predict development of infections in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2015; 13: 753–9.e1–2.

Wang J, Wu Y, Bi Q, Zheng X, Zhang J, Huang W. Adverse outcomes of proton pump inhibitors in chronic liver disease: a systematic review and meta-analysis. Hepatol. Int. 2020; 14: 385–98.

Kang SH, Yim HJ, Kim SY et al. Proton pump inhibitor therapy is associated with reduction of early bleeding risk after prophylactic endoscopic variceal band ligation: a retrospective cohort study. Medicine (Baltimore). 2016; 95: e2903.

Patil V, Jain M, Venkataraman J. Paracentesis-induced acute kidney injury in decompensated cirrhosis—prevalence and predictors. Clin. Exp. Hepatol. 2019; 5: 55–9.

Supporting information

Additional supporting information may be found in the online version of this article at the publisher’s website:

Table S1. AKI patients with and without CKD.