Self-Similar Algebras with connections to Run-length Encoding and Rational Languages

José Manuel Rodríguez Caballero and Tanbir Ahmed
Université du Québec à Montréal (UQÀM)
Laboratoire de Combinatoire et d’Informatique Mathématique (LaCIM)

Abstract. A self-similar algebra (A, ψ) is an associative algebra A with a morphism of algebras $\psi : A \rightarrow M_d(A)$, where $M_d(A)$ is the set of $d \times d$ matrices with coefficients from A. We study the connection between self-similar algebras with run-length encoding and rational languages. In particular, we provide a curious relationship between the eigenvalues of a sequence of matrices related to a specific self-similar algebra and the smooth words over a 2-letter alphabet. We also consider the language $L(s)$ of words u in $(\Sigma \times \Sigma)^*$ where $\Sigma = \{0, 1\}$ such that $s \cdot u$ is a unit in A. We prove that $L(s)$ is rational and provide an asymptotic formula for the number of words of a given length in $L(s)$.

Keywords: Self-similar algebras, rational languages, matrix algebra, eigenvalues.

1 Introduction

"Each portion of matter can be conceived as like a garden full of plants, or like a pond full of fish. But each branch of a plant, each organ of an animal, each drop of its bodily fluids is also a similar garden or a similar pond"

Gottfried Leibniz
(La Monadologie, 1714)

Self-similar scaling is a fundamental property of non-computable solutions of the homogeneous Euler equation for an incompressible fluid (see Scheffer[9], Shnirelman[10]). Classical (finite dimensional) matrix algebra is the framework for classical geometry and elementary physical applications. Similarly, a kind of self-similar matrix algebra should be (see Villani[11]) the framework for the self-similar phenomena arising from contemporary research in fluid dynamics. The following definition from Bartholdi [12] could be considered as an attempt to formalize self-similarity\footnote{For a general introduction to the subject of self-similarity from the algebraic point of view, see [2] and [7].}.

A self-similar algebra (A, ψ) is an associative algebra...
endowed with a morphism of algebras \(\psi : \mathfrak{A} \to M_d(\mathfrak{A}) \), where \(M_d(\mathfrak{A}) \) is the set of \(d \times d \) matrices with coefficients from \(\mathfrak{A} \). Throughout this paper, we consider the case \(d = 2 \). Given \(s \in \mathfrak{A} \) and integers \(a \geq 0 \) and \(b \geq 0 \), the \(2 \times 2 \) matrix \(\psi_{a,b}(s) \) is obtained using the mapping

\[
\begin{pmatrix}
0 & x^a \\
y^a & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & x^b \\
y^b & 0
\end{pmatrix}.
\]

We simplify the notation of \(\psi_{a,b}(s) \) as \(\psi(s) \) for the case \(a = 1 \) and \(b = 0 \).

Example 1.

\[
\psi_{1,2}(x y^3) = \begin{pmatrix}
x^1 y^2 x^2 y^1 x^1 y^1 x^2 y^2 \\
0
\end{pmatrix}
\]

which corresponds to the following run-length encoding

\[
\begin{array}{cccccccc}
1 & 2 & 2 & 1 & 1 & 1 & 2 & 2
\end{array},
\]

A similar phenomenon occurs in the setting of smooth words over 2-letter alphabets \(\{a, b\} \), where \(a \) and \(b \) are positive integers. Brlek et al. were able to compute the asymptotic density\(^2\) of a given letter in the extremal words, w.r.t. lexicographic order in the space of smooth words over 2-letter alphabets \(\{a, b\} \) provided that \(a \equiv b \mod 2 \) (see [3], [4], [5]). The analogous result for \(a \not\equiv b \mod 2 \) still remains an open problem.

Given a self-similar algebra \((\mathfrak{A}, \psi) \), with \(\psi : \mathfrak{A} \to M_2(\mathfrak{A}) \), we define a right action\(^3\) \(\mathfrak{A} \times (\Sigma \times \Sigma)^* \to \mathfrak{A} \) by

\[
s \cdot (i, j) := \psi(s)[i, j],
\]

where \(\Sigma = \{0, 1\} \) and \(\psi(s)[i, j] \) is the notation for the entry \((i, j) \) in the matrix \(\psi(s) \) (we begin to count the rows and the columns by 0). We define the language of units\(^4\) of \(s \in \mathfrak{A} \) as follows

\[
L(s) := \{ w \in (\Sigma \times \Sigma)^* : s \cdot w \text{ is a unit in } \mathfrak{A} \}.
\]

We use the notation \(\mathbb{F}_q \) for the Galois field with exactly \(q \) elements, where \(q \) is a prime power.

\(^2\) This computation is related to Keane conjecture (see [6]) about the Oldenburger trajectory in generating symbols 1, 2 (see [6]).

\(^3\) Here \(* \) stands for the Kleene closure.

\(^4\) An element \(s \in \mathfrak{A} \) is a unit if and only if \(s r = r s = 1 \) for some \(r \in \mathfrak{A} \).
Example 2. Consider $\mathfrak{A} = \mathbb{F}_2\langle x, y \rangle$ and $s = 1 + x^2yx^2 + yx^2y$

$$\psi(s) = \begin{pmatrix} 1 + xy & xy^2x \\ yx^2y & 1 + xy \end{pmatrix};$$

$$\psi(1 + xy) = \begin{pmatrix} 1 + y & 0 \\ 0 & 1 + x \end{pmatrix}; \quad \psi(1 + xy) = \begin{pmatrix} 1 + x & 0 \\ 0 & 1 + y \end{pmatrix};$$

$$\psi(xy^2x) = \begin{pmatrix} xy & 0 \\ 0 & yx \end{pmatrix}; \quad \psi(yx^2y) = \begin{pmatrix} yx & 0 \\ 0 & xy \end{pmatrix};$$

$$\psi(xy) = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}; \quad \psi(yx) = \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}; \quad \psi(1 + x) = \begin{pmatrix} 1 & x \\ y & 1 \end{pmatrix}; \quad \psi(1 + y) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix};$$

In the above example, since $s \cdot (0, 0) \cdot (1, 1) \cdot (0, 1) = x$ and since x is a unit in $\mathbb{F}_2\langle x, y \rangle$, the word $(0, 0)(1, 1)(0, 1) \in L(s)$.

In this paper, we study self-similar algebras (\mathfrak{A}, ψ) in the above context, and obtain the following results:

- We prove some results about iterated matrices where $A = \mathbb{Q}\langle x, y \rangle$; in particular, we provide a relationship between the eigenvalues of a sequence of matrices and the smooth words over a 2-letter alphabet.

- We prove that $L(s)$ is rational and provide an asymptotic formula

$$\# \left((\Sigma \times \Sigma)^k \cap L(s) \right) = 2^k \mu(s) - 2 \nu(s), \quad (k \to +\infty),$$

for the number of words of a given length in $L(s)$, where $\mathfrak{A} = \mathbb{F}_q\langle x, y \rangle$.

- We prove that the range of $\mu(s)$ is dense in the ray of nonnegative real numbers.

2 Eigenvalues

Given a self-similar algebra (\mathfrak{A}, ψ), with $\psi : \mathfrak{A} \to M_d(\mathfrak{A})$, for any integer $k \geq 0$ we define a new self-similar algebra $(\mathfrak{A}, \psi^{(k)})$, with $\psi^{(k)} : \mathfrak{A} \to M_{dk}(\mathfrak{A})$ by

$$\psi^{(0)}(s) := s,$$

$$\psi^{(k+1)}(s) := \left(\psi^{(k)}(s_{i,j}) \right)_{0 \leq i,j \leq d-1},$$

where $\psi(s) = (s_{i,j})_{0 \leq i,j \leq d-1}$.

Consider the self-similar algebra (\mathfrak{A}, ψ), where $\mathfrak{A} = \mathbb{Q}\langle x, y \rangle$ and $\psi_{a,b} : \mathfrak{A} \to M_2(\mathfrak{A})$ is given by

$$x \mapsto \begin{pmatrix} 0 & xa \\ y^a & 0 \end{pmatrix}, \quad y \mapsto \begin{pmatrix} 0 & xb \\ y^b & 0 \end{pmatrix},$$

$\footnote{We begin to count the rows and the columns of the matrices by 0.}$
Consider the following doubly stochastic matrix

\[M_k(a, b) := \psi^{(k)}_{a,b} \left(\frac{1}{2} x + \frac{1}{2} y \right) \bigg|_{(x,y) \rightarrow (1,1)} \in M_{2^k}(\mathbb{Q}). \]

(6)

where the vertical line at the right with the equality \((x,y) \rightarrow (1,1)\) means that after the computation of the iterated matrix \(\psi^{(k)}_{a,b} \left(\frac{1}{2} x + \frac{1}{2} y \right)\), we should evaluate \((x,y)\) at \((1,1)\).

Proposition 1. For all \(a \equiv b \pmod{2}\), if \(\lambda \in \mathbb{C}\) is an eigenvalue of the matrix \(M_k(a, b)\) then either \(\lambda = -1\) or \(\lambda = 1\).

Proof. We shall consider the following cases.

(i) If \(a \equiv b \equiv 1 \pmod{2}\) then \(M_k(a, b)\) is the exchange matrix, i.e. the matrix \(J = (J_{i,j})_{0 \leq i,j \leq 2^k-1}\), where

\[J_{i,j} = \begin{cases} 1 & \text{if } j = 2^k - 1 - i, \\ 0 & \text{if } j \neq 2^k - 1 - i. \end{cases} \]

(7)

(ii) If \(a \equiv b \equiv 0 \pmod{2}\) then \(M_k(a, b)\) is the following block matrix

\[\begin{pmatrix} I_{2^k-1} & 0_{2^k-1} \\ 0_{2^k-1} & I_{2^k-1} \end{pmatrix}, \]

(8)

where \(I_n\) and \(0_n\) are the \(n \times n\) identity matrix and the \(n \times n\) zero matrix respectively.

In both cases, all the eigenvalues belong to the set \((-1,1)\).

The structure of \(M_k(1,0)\) is less trivial than in the previous examples, although it is not so complex as in the case \(a \not\equiv b \pmod{2}\).

Proposition 2. If \(\lambda \in \mathbb{C}\) is an eigenvalue of the matrix \(M_k(1, 0)\) then

\[\lambda = \cos(\pi \theta) \]

(9)

for some \(\theta \in \mathbb{Q}\).

Proof. Denoting

\[A_k := \left. \psi^{(k)}(x) \right|_{(x,y) = (1,1)}, \]

(10)

\[B_k := \left. \psi^{(k)}(y) \right|_{(x,y) = (1,1)}, \]

(11)
we have
\[
\left[\frac{1}{2} (A_{2k} + B_{2k}) \right]^2 = \left(\frac{1}{2} (B_{2k-1} + I_{2k-1}) \right)^2 \]
\[
= \left(\frac{1}{2} (A_{2k-1} + I_{2k-1}) \right)^2 \]
\[
= \frac{1}{4} \left((A_{2k-1} + I_{2k-1}) (B_{2k-1} + I_{2k-1}) \right) (A_{2k-1} + I_{2k-1}) \]
\[
= \frac{1}{4} \left(\begin{array}{cc}
A_{2k-1} + I_{2k-1} & 0_{2k-1} \\
B_{2k-2} + I_{2k-2} & 0_{2k-2}
\end{array} \right) \left(\begin{array}{cc}
A_{2k-2} + I_{2k-2} & 0_{2k-2} \\
B_{2k-2} + I_{2k-2} & 0_{2k-2}
\end{array} \right)
\]
\[
= \frac{1}{4} \left(\begin{array}{cc}
0_{2k-2} & 0_{2k-2} \\
0_{2k-2} & 0_{2k-2}
\end{array} \right) \left(\begin{array}{cc}
0_{2k-2} & 0_{2k-2} \\
B_{2k-2} + I_{2k-2} & 0_{2k-2}
\end{array} \right)
\]
So,
\[
\lambda I_{2k} - \frac{1}{2} (A_{2k} + B_{2k}) \]
\[
= \left(\lambda^2 \right)^{2^{k-2}} \left(\lambda^2 I_{2k-2} - \frac{1}{4} (A_{2k-2} + B_{2k-2} + 2I_{2k-2}) \right)^2 \]
\[
= \left(\lambda^{2^k-1} \right)^{2} \left(\frac{1}{2} \left(2\lambda^2 I_{2k-2} - \frac{1}{2} (A_{2k-2} + B_{2k-2}) - I_{2k-2} \right) \right)^2 \]
\[
= \frac{\lambda^{2^k-1}}{2^{2^k}} \left(2\lambda^2 - 1 \right) I_{2k-2} - \frac{1}{2} (A_{2k-2} + B_{2k-2}) \right)^2 \]
Hence, the characteristic polynomial of \(M_k(1, 0) \), denoted
\[
C_k(\lambda) := |\lambda I_{2k} - M_k(1, 0)|,
\]
satisfies the recurrence relations
\[
C_0(\lambda) = \lambda - 1,
\]
\[
C_1(\lambda) = \lambda^2 - 1,
\]
\[
C_k(\lambda) = \frac{\lambda^{2^k-1}}{2^{2^k}} C_{k-2} \left(2\lambda^2 - 1 \right).
\]
It follows by induction on \(k \geq 1 \) that \(C_k(\lambda) \) is equal to \(\lambda^2 - 1 \) times the product of normalized irreducible Chebyshev polynomials of the first kind.\(^6\)

\(^6\) This property is false for \(k = 0 \).

\(^7\) A normalized Chebyshev polynomial is a Chebyshev polynomial divided by the coefficient of its leading term. So, the leading term of a normalized Chebyshev polynomial is always 1.

\(^8\) The Chebyshev polynomials of the first kind are defined by \(T_n(x) := \cos (n \arccos(x)) \).
Therefore, if $\lambda \in \mathbb{C}$ is an eigenvalue of the matrix $M_k(1,0)$ then $\lambda = \cos(\pi \theta)$ for some $\theta \in \mathbb{Q}$.

Example 3. The matrices $M_1(1,0)$, $M_2(1,0)$, and $M_3(1,0)$ are

\[
M_1(1,0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
M_2(1,0) = \begin{pmatrix} 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 \\ 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \end{pmatrix},
M_3(1,0) = \begin{pmatrix} 0 & 0 & 0 & 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 \end{pmatrix}.
\]

Example 4. The first values of $C_k(\lambda)$ are

\[
C_2(\lambda) = (\lambda^2 - 1) \cdot \lambda^2,
\]
\[
C_3(\lambda) = (\lambda^2 - 1) \cdot \lambda^6,
\]
\[
C_4(\lambda) = (\lambda^2 - 1) \cdot \lambda^{10} \cdot \left(\lambda^2 - \frac{1}{2}\right)^2,
\]
\[
C_5(\lambda) = (\lambda^2 - 1) \cdot \lambda^{18} \cdot \left(\lambda^2 - \frac{1}{2}\right)^6,
\]
\[
C_6(\lambda) = (\lambda^2 - 1) \cdot \lambda^{34} \cdot \left(\lambda^2 - \frac{1}{2}\right)^{10} \cdot \left(\lambda^4 - x^2 + \frac{1}{8}\right)^2,
\]
\[
C_7(\lambda) = (\lambda^2 - 1) \cdot \lambda^{66} \cdot \left(\lambda^2 - \frac{1}{2}\right)^{18} \cdot \left(\lambda^4 - \lambda^2 + \frac{1}{8}\right)^6,
\]
\[
C_8(\lambda) = (\lambda^2 - 1) \cdot \lambda^{130} \cdot \left(\lambda^2 - \frac{1}{2}\right)^{34} \cdot \left(\lambda^4 - \lambda^2 + \frac{1}{8}\right)^{10} \cdot \left(\lambda^8 - 2\lambda^6 + \frac{5}{4}\lambda^4 - \frac{1}{4}\lambda^2 + \frac{1}{128}\right)^2.
\]

The following common property seem to be true because of the empirical evidences.

Conjecture 1. For all $a \geq 0$, $b \geq 0$, $k \geq 0$, the matrix $2M_k(a,b)$ is nilpotent mod 2, i.e. for some integer $N \geq 0$, all the entries of

\[
(2M_k(a,b))^N
\]

are even integers.

Example 5. The 15th power of $2M_{10}(a,b)$ for $(a,b) = (1,0)$ and $(a,b) = (1,2)$ are represented in Fig 1 and Fig 2 respectively. The odd entries correspond to the black points and the even entries, to the white points.

\footnote{These pictures were obtained in SageMath using a program created by the authors.}
Fig. 1. Representation of the matrix $(2 M_{10}(1, 0))^{15}$.

Fig. 2. Representation of the matrix $(2 M_{10}(1, 2))^{15}$.
3 Rational languages

Proposition 3. For all $s \in \mathbb{F}_q[x, y]$, the language $L(s)$ is rational.

Proof. We can construct a deterministic finite automata Γ for $L(s)$ as follows:

Alphabet: $\Sigma \times \Sigma$.

States: $Q := \{0\} \cup \{v \in \mathbb{A}\{0\} : \deg v \leq \deg s\}$ (this set is finite because the algebra is of finite rank over a finite field).

Initial state: s.

Final states: $\mathbb{F}_q\{0\}$.

Transition: If the machine, in the state $r \in Q$, reads $w \in \Sigma \times \Sigma$, then there is a transition to the state $r \cdot w \in Q$ (Recall equation 1).

Note that Γ has this curious property that a state itself defines the subsequent transitions and states. For a given state $s \in \mathbb{F}_q(x, y)$, the non-zero locations in the matrix $\psi(s)$ dictate the transitions from s and the corresponding non-zero elements define the respective destination states. Also note that $\psi_{a,b}(s)$ in general, do not preserve this property. For example, $\psi_{1,2}(s)$ does not generate an automaton.

Example 6. We construct an automaton using the same example we used for explaining $L(s)$ in the introduction, with $s = 1 + x^2yx^2 + yx^2y \in \mathbb{F}_2[x, y]$.

![Diagram of automaton](image-url)
Proposition 4. For all \(s \in \mathbb{F}_q(x,y) \) and for all \(k \geq 0 \) large enough,
\[
\# \left((\Sigma \times \Sigma)^k \cap L(s) \right) = 2^k \mu(s) - 2\nu(s),
\]
where \(\mu(s) \in \mathbb{Q} \) and \(\nu(s) \in \mathbb{N} \), both independent of \(k \).

Proof. This result is trivially true provided that \(s = 0, s = \gamma \) or \(s = \gamma x \), for all \(\gamma \in \mathbb{F}_q \setminus \{0\} \). On the other hand, given \(s \in \mathbb{F}_q(x,y) \), there is \(k_s \geq 0 \) such that all the words \(w \in (\Sigma \times \Sigma)^{k_s} \) satisfy
\[
s \cdot w = 0, \quad s \cdot w = \gamma \quad \text{or} \quad s \cdot w = \gamma x.
\]
So, for all \(k \geq k_s \),
\[
(\Sigma \times \Sigma)^k \cap L(s) = \bigcup_{w \in (\Sigma \times \Sigma)^{k_s}} \{w\} \left((\Sigma \times \Sigma)^{k-k_s} \cap L(s \cdot w) \right),
\]
where \(\{w\} \left((\Sigma \times \Sigma)^{k-k_s} \cap L(s \cdot w) \right) \) is the concatenation of the languages \(\{w\} \) and \((\Sigma \times \Sigma)^{k-k_s} \cap L(s \cdot w) \). It follows that for all \(k \) large enough,
\[
\# \left((\Sigma \times \Sigma)^k \cap L(s) \right) = \sum_{w \in (\Sigma \times \Sigma)^{k_s}} \# \left((\Sigma \times \Sigma)^{k-k_s} \cap L(s \cdot w) \right) = \sum_{w \in (\Sigma \times \Sigma)^{k_s}} \left(2^{k-k_s} \mu(s \cdot w) - 2\nu(s \cdot w) \right) = 2^k \sum_{w \in (\Sigma \times \Sigma)^{k_s}} 2^{-k_s} \mu(s \cdot w) - 2 \sum_{w \in (\Sigma \times \Sigma)^{k_s}} \nu(s \cdot w).
\]
We conclude that, for
\[
\mu(s) := \frac{1}{2^{k_s}} \sum_{w \in (\Sigma \times \Sigma)^{k_s}} \mu(s \cdot w), \quad \nu(s) := \sum_{w \in (\Sigma \times \Sigma)^{k_s}} \nu(s \cdot w),
\]
the equality (32) holds for all \(k \) large enough. \(\Box \)

Proposition 5. The range of \(\mu \) is dense on the ray of nonnegative real numbers, i.e. given a real number \(\alpha \geq 0 \), for any real number \(\varepsilon > 0 \) there exists \(s \in \mathbb{F}_q(x,y) \) such that
\[
|\mu(s) - \alpha| < \varepsilon.
\]
Proof. For each \(s \in \mathbb{F}_q(x, y) \), we will use the notation \(s' \) for the substitution \(s' = s_{\substitute{(x,y)\rightarrow(y,x)}} \). We will divide the proof into 5 steps.

1) Let \(\sigma : \mathbb{F}_q(x, y) \times \mathbb{F}_q(x, y) \rightarrow \mathbb{F}_q(x, y) \) be the function
\[
\sigma(r, s) := (r + y s)_{\substitute{(x,y)\rightarrow(y,x)}},
\]
where \((x, y) \rightarrow (y, x) \) is the notation for the simultaneous substitution of \(x \) and \(y \) by the products \(xy \) and \(yx \), respectively. Define
\[
\Omega := \bigcup_{n \geq 0} \Omega_n,
\]
where
\[
\Omega_0 := \left\{ 1 - (xy)^{2^k}, 1 - (yx)^{2^k} : k \geq 0 \right\} \cup \{0\},
\]
\[
\Omega_{n+1} := \{ \sigma(r, s), (\sigma(r, s))' : r, s \in \Omega_n \}.
\]

2) For all integers \(k \geq 0 \),
\[
\mu \left(1 - (xy)^{2^k} \right) = \mu \left(1 - (yx)^{2^k} \right) = \frac{1}{2^{k-1}} \in \mu(\Omega).
\]
It follows in a straightforward way by induction on \(k \) using the formulas
\[
\psi \left(1 - x^{2^{k+1}} \right) = \left(\begin{array}{cc} 1 - (x y)^{2^k} & 0 \\ 0 & 1 - (y x)^{2^k} \end{array} \right),
\]
\[
\psi \left(1 - (x y)^{2^k} \right) = \left(\begin{array}{cc} 1 - x^{2^k} & 0 \\ 0 & 1 - y^{2^k} \end{array} \right).
\]

3) For each \(s \in \Omega \), \(\psi(s) \) is a diagonal matrix and \(\mu(s) = \mu(s') \).

Indeed, this claim can be checked in a straightforward way for all \(s \in \Omega_0 \). Suppose that this claim is true for all \(s \in \Omega_n \), with \(n \geq 0 \). Let \(\sigma(r, s) \in \Omega_{n+1} \), with \(r, s \in \Omega_n \). We have,
\[
\psi(\sigma(r, s)) = \left(\begin{array}{cc} r + y s & 0 \\ 0 & (r + y s)' \end{array} \right),
\]
\[
\psi((\sigma(r, s))') = \left(\begin{array}{cc} (r + y s)' & 0 \\ 0 & r + y s \end{array} \right).
\]
Hence,
\[
\mu(\sigma(r, s)) = \frac{1}{2} \left(\mu(r + y s) + \mu(r' + x s') \right) = \mu((\sigma(r, s))').
\]
Therefore, the claim follows for all \(r, s \in \Omega \).
4) For all \(r, s \in \Omega \), we have \(\mu(\sigma(r, s)) = \mu(r) + \mu(s) \).

We know that both \(\psi(r) \) and \(\psi(s) \) are diagonal matrices. So,

\[
\mu(r + ys) = \mu(r) + \mu(s).
\]

We have already proved in step 3) that \(\mu(r) = \mu(r') \) and \(\mu(s) = \mu(s') \). It follows that

\[
\mu(r + ys) = \mu((r + ys)'),
\]

Using the equality

\[
\psi(\sigma(r, s)) = \begin{pmatrix} r + ys & 0 \\ 0 & (r + ys)' \end{pmatrix},
\]

we conclude that

\[
\mu(\sigma(r, s)) = \frac{1}{2} \left(\mu(r + ys) + \mu((r + ys)') \right) = \mu(r + ys) = \mu(r) + \mu(s).
\]

5) We conclude that \(\mu(\Omega) \) contains all the positive rational numbers with finite binary representation. Therefore, the set \(\mu(\Omega) \) is dense on the ray of nonnegative real numbers. \(\square \)

4 Final remarks

1. Many of the results proved in this paper hold with minor modifications for the following more general self-similar structure associated to the cyclic permutation of the variables \(x_0, x_1, x_2, \ldots, x_{d-1} \),

\[
x_0 \mapsto \begin{pmatrix} 0 & x_1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & x_2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & x_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & x_{d-1} \\ x_0 & 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \quad \text{and} \quad x_r \mapsto \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix},
\]

for \(1 \leq r \leq d - 1 \).

2. We have computed in a trivial way the eigenvalues of \(M_k(a, b) \) provided that \(a \equiv b \pmod{2} \). The determination of the eigenvalues of \(M_k(a, b) \), when \(a \not\equiv b \pmod{2} \), is a more difficult problem (the case \(a = 1, b = 0 \) is relatively easier in this category).

The possibility of a connection between the eigenvalues of \(M_k(a, b) \) and the extremal words, with respect to lexicographic order in the space of smooth words over 2-letter alphabets \(\{a, b\} \) is a question that deserves more attention for future research.
References

1. Bartholdi, L. (2010). Self-similar lie algebras. arXiv preprint arXiv:1003.1125.
2. Bartholdi, L., Grigorchuk, R., & Nekrashevych, V. (2003). From fractal groups to fractal sets. In Fractals in Graz 2001 (pp. 25-118). Birkhäuser Basel.
3. Brlek, S., Jamet, D., & Paquin, G. (2008). Smooth words on 2-letter alphabets having same parity. Theoretical Computer Science, 393(1-3), 166-181.
4. Brlek, S., Melançon, G., & Paquin, G. (2007). Properties of the extremal infinite smooth words. Discrete Mathematics and Theoretical Computer Science, 9(2).
5. Berthé, V., Brlek, S., & Choquette, P. (2005). Smooth words over arbitrary alphabets. Theoretical Computer Science, 341(1-3), 293-310.
6. Keane, M. S. (1991). Ergodic theory and subshifts of finite type. Ergodic theory, symbolic dynamics and hyperbolic spaces, 57-66.
7. Nekrashevych, V. (2005). Self-similar groups (No. 117). American Mathematical Soc..
8. Oldenburger, R. (1939). Exponent trajectories in symbolic dynamics. Transactions of the American Mathematical Society, 46(3), 453-466.
9. Scheffer, V. (1993). An inviscid flow with compact support in space-time. Journal of Geometric Analysis, 3(4), 343-401.
10. Shnirelman, A. (1997). On the nonuniqueness of weak solution of the Euler equation. Communications on Pure and Applied Mathematics, 50(12), 1261-1286.
11. Villani, C. (2010). Le paradoxe de Scheffer-Shnirelman revu sous l’angle de l’intégration convexe. Séminaire Bourbaki, 332, 101-134.