Properties of the non-Hermitian SSH model: role of \mathcal{PT} symmetry

Dipendu Halder1,*, Sudin Ganguly2,* and Saurabh Basu1,*

1 Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
2 Department of Physics, School of Applied Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India

E-mail: h.dipendu@iitg.ac.in, sudinganguly@gmail.com and saurabh@iitg.ac.in

Received 19 October 2022, revised 3 December 2022
Accepted for publication 21 December 2022
Published 29 December 2022

Abstract
The present work addresses the distinction between the topological properties of \mathcal{PT} symmetric and non-\mathcal{PT} symmetric scenarios for the non-Hermitian Su–Schrieffer–Heeger model. The non-\mathcal{PT} symmetric case is represented by non-reciprocity in both the inter- and the intra-cell hopping amplitudes, while the one with \mathcal{PT} symmetry is modeled by a complex on-site staggered potential. In particular, we study the loci of the exceptional points, the winding numbers, band structures, and explore the breakdown of bulk-boundary correspondence (BBC). We further study the interplay of the dimerization strengths on the observables for these cases. The non-\mathcal{PT} symmetric case denotes a more familiar situation, where the winding number abruptly changes by half-integer through tuning of the non-reciprocity parameters, and demonstrates a complete breakdown of BBC, thereby showing non-Hermitian skin effect. The topological nature of the \mathcal{PT} symmetric case appears to follow closely to its Hermitian analogue, except that it shows unbroken (broken) regions with complex (purely real) energy spectra, while another variant of the winding number exhibits a continuous behavior as a function of the strength of the potential, while the conventional BBC is preserved.

Keywords: non Hermitian systems, SSH model, skin effect, bulk boundary correspondence, exceptional points, winding number, topological insulator

(Some figures may appear in colour only in the online journal)

1. Introduction

In conventional quantum mechanics, the Hamiltonian of a system is Hermitian, which implies that the dynamical observables assume real values. Thus isolated systems are dealt within Hermitian quantum mechanics, while real systems always interact with the environment, and then dissipate. Hence an exchange of energy between the system under consideration and the ‘bath’ occurs. These are called open systems, and in a real scenario, the coupling to the environment makes their description significantly more complex. Strictly speaking, the time evolution of the wave function via a Hermitian Hamiltonian needs to be replaced by a Liouvillian superoperator via the time evolution of the density matrices [1]. There are more technically challenging techniques to deal with open systems, such as, Keldysh formalism [2], Lindblad master equation [3] etc. Simpler reconciliations in the form of using non-Hermitian (NH) Hamiltonians yield an intuitive understanding of the emergent phenomena in real physical systems, such as, photonic lattices with gain and/or loss, other optical systems [4–19], electronic [20, 21], and mechanical [22, 23] systems etc. Since the introductory findings by Hatano and Nelson [24, 25] and Bender and Boettcher [26], claiming that NH systems with certain symmetry, such as a combination of both the parity (\mathcal{P}) and the time reversal symmetry (\mathcal{T}), namely the \mathcal{PT} symmetry, can have real energy spectra, they have
emerged as topics that are worth exploring. In the context of present day’s research, PT symmetric Hamiltonians have emerged as appropriate description of the dissipative systems with balanced gain and loss [27], and thus have been attracting a lot of attention. In certain cases, the Hermitian Hamiltonians reside at the borderline of PT symmetric and non-PT symmetric cases. In our work, we shall consider two different NH Hamiltonians, one PT symmetric, while PT symmetry is absent for the other.

Meanwhile, a good volume of research has also concentrated on topological band theory extended to NH systems, where the topological classification gets significantly richer than their Hermitian counterpart [28]. Besides, in a Hermitian system, the topological phases are characterized by gapless edge modes in the open boundary condition (OBC). However, no such edge modes exist under the periodic boundary condition (PBC), as the PBC corresponds to an infinite system. Yet some topological invariants may be used to garner information of the topological phase transition in finite systems (OBC). This correspondence is known as the bulk boundary correspondence (BBC), which is no longer valid in NH systems (or have to be modified), thereby constituting an important deviation from its Hermitian counterpart, and the phenomenon is termed as the breakdown of BBC [29–48]. Moreover, systems with OBC and PBC are way too far distinct from one another in NH systems, which is not the case for the Hermitian analogues. Another fascinating manifestation is the non-Hermitian skin effect (NHSE), which is related to localization property at the edges of the system. In several recent works [38, 39, 41], it has been shown that a macroscopic number of eigenstates get localized at either edge of the system, as soon as non-Hermiticity is introduced. This may be considered as a direct consequence of the breakdown of BBC.

In addition to these, the existence of exceptional points (EPs) [29, 49–53], where the Hamiltonian becomes ill-defined owing to formation of Jordan blocks, and hence the linearly independent vectors fall short of the degeneracy of the eigenvalues. Simply speaking, EPs are the singularities in the system where all the eigenvalues and the eigenvectors of a system coalesce, making the Hamiltonian non-diagonalizable. They play a major role in segregating the topologically trivial, and the non-trivial phases of a NH system. Plenty of theoretical works have suggested that the NH systems can have non-trivial properties. Implementation of NH physics in systems with distinct topological characteristics, such as, models like Su–Schrieffer–Heeger (SSH) models [30, 32, 36, 54–68], Aubry–André–Harper models [69–74], Rice–Mele models [75–79] etc have been widely studied to ascertain the interplay of topology and non-Hermiticity.

In this paper, we have taken the simplest system that encodes topological considerations, such as a dimerized tight binding model in one dimension, or the familiar SSH model, which is thought to be a realistic model for polyacetylene in order to demonstrate the distinction between the PT symmetric or the non-PT symmetric systems. A main feature of the SSH model is the existence of two topologically different phases that are distinguished by the presence or the absence of two-fold degenerate zero-mode edge states (one at each edge) under the OBC. The topological invariant that provides information on these zero-mode edge states is the winding number [80–83], which, in Hermitian systems, can take only integral values. In the conventional Hermitian SSH model, the value of winding number is zero and unity for the topologically trivial and the non-trivial regimes respectively.

In our model, non-Hermiticity is introduced in two different ways; first through a non-reciprocity in the hopping integrals (both within and across the unit cells), and second, introducing a complex staggered on-site potential in the SSH model. The two resultant Hamiltonians differ with regard to their PT symmetry, with the former denoting a case with absent PT symmetry, while the latter preserves PT symmetry. We ascertain different topological properties of the two models. Specifically, we compare and contrast between the corresponding topological phases, NHSE, the structure of the EPs, and the winding numbers. Further, we investigate the interplay of the dimerization strength (ratio of the intra-cell and the inter-cell hopping amplitudes) with these observables.

Our paper is organized as follows. We introduce the Hamiltonians corresponding to the PT symmetric, and the non-PT symmetric cases in section 2. Hence we discuss the band structure, NHSE, and the role of the corresponding EPs in section 3. Further, we compute the winding numbers in each of these cases to ascertain their topological characteristics. In fact, another distinct definition of the winding number for the PT symmetric case is shown to have a continuous variation as a function of the strength of the on-site potential, implying that it can assume any value in the range $[0:1]$. Further, the non-PT symmetric case demonstrates NHSE, which is absent in the PT symmetric case. Finally, we conclude with a brief summary of our results in section 4.

2. Model Hamiltonians

We have incorporated the non-Hermiticity in the tight binding model with two atoms per unit cell, that is, the so called SSH model in the following fashion. First, we consider a model with non-reciprocity in both the intra-cell, and the inter-cell hopping energies, which are pictorially shown in figure 1(a). The corresponding Hamiltonian can be written as,

$$H_1 = \sum_n \left[(t_1 - \delta_1) \hat{a}_n^\dagger \hat{b}_n + (t_1 + \delta_1) \hat{b}_n^\dagger \hat{a}_n \right. $$

$$+ \left. (t_2 - \delta_2) \hat{b}_n^\dagger \hat{a}_{n+1} + (t_2 + \delta_2) \hat{a}_{n+1}^\dagger \hat{b}_n \right]$$

where, $\hat{a}_n (\hat{a}_n^\dagger)$ and $\hat{b}_n (\hat{b}_n^\dagger)$ are annihilation(creation) operators, corresponding to the sites at the A and the B sublattices, respectively, of the nth unit cell, and $t_1(t_2)$ is intra-cell (inter-cell) hopping amplitude with a non-reciprocity in $\delta_1 (\delta_2)$. An alternate NH model may be obtained by including a staggered
where the hopping parameters are kept unaltered. This Hamiltonian can be written as,

\[
\hat{H}_2 = \sum_n \left[iu \left(\hat{a}_n^\dagger \hat{b}_n - \hat{b}_n^\dagger \hat{a}_n \right) + t_1 (\hat{a}_n^\dagger \hat{b}_{n+1} + \hat{b}_{n+1}^\dagger \hat{a}_n) \\
+ t_2 (\hat{b}_{n+1}^\dagger \hat{a}_n + \hat{a}_n^\dagger \hat{b}_{n+1}) \right]
\]

where \(u \) is the strength of the imaginary on-site potential. The system can be visualized as presented in figure 1(b).

To make the problem more tractable, we Fourier transform \(\hat{H}_j (j \in 1, 2) \) and write them in the Bloch form as,

\[
\hat{H}_j = \sum_k \left(\hat{a}_k^\dagger \hat{b}_k \right) h_j(k) \left(\hat{a}_k \right)
\]

where,

\[
h_1(k) = \begin{pmatrix} 0 & (t_1 - \delta_1) + (t_2 + \delta_2) e^{-ik} \\ (t_1 + \delta_1) + (t_2 - \delta_2) e^{ik} & 0 \end{pmatrix}
\]

and

\[
h_2(k) = \begin{pmatrix} iu & t_1 + t_2 e^{-ik} \\ t_1 + t_2 e^{ik} & -iu \end{pmatrix}.
\]

Both equations (4) and (5) can be expressed in the form of the standard Dirac Hamiltonian, namely,

\[
\hat{H}_j = \begin{pmatrix} \vec{d} \cdot \vec{\sigma} \end{pmatrix}
\]

where the \(\vec{d} \) denote vectors in the complex plane. Further the components of the \(\vec{d} \)-vector are written as,

\[
\vec{d}_1^x = \begin{pmatrix} t_1 + t_2 \cos k, t_2 \sin k, 0 \end{pmatrix}, \
\vec{d}_1^y = \begin{pmatrix} -\delta_2 \sin k, -\delta_1 + \delta_2 \cos k, 0 \end{pmatrix}
\]

and

\[
\vec{d}_2^x = \begin{pmatrix} t_1 + t_2 \cos k, t_2 \sin k, 0 \end{pmatrix}, \
\vec{d}_2^y = \begin{pmatrix} 0, 0, u \end{pmatrix}
\]

where, \(\sigma \) denote the Pauli matrices, and \(\vec{d}_1^x, \vec{d}_1^y \) represent the real and the imaginary parts of \(\vec{d}_1 \) respectively. The eigenvalues of these Hamiltonians are given by,

\[
E_j = \pm |\vec{d}_j|.
\]

Let us examine the symmetries of the Hamiltonians, \(h_j, h_1(k) \) clearly has a chiral symmetry, which is evident from the following relation [36],

\[
\sigma_z h_1(k) \sigma_z = -h_1(k)
\]

however, it does not possess the \(P \mathcal{T} \) symmetry, that is,

\[
\sigma_x h_1(k) \sigma_x \neq h_1^*(k)
\]

while the opposite happens for \(h_2(k) \), that is, the \(P \mathcal{T} \) symmetry exists,

\[
\sigma_x h_2(k) \sigma_x = h_2^*(k)
\]

but the chiral symmetry is lost, namely,

\[
\sigma_z h_2(k) \sigma_z \neq -h_2(k).
\]

3. Results

In order to make the preceding discussion more structured, in the following section, we segregate the discussion of our results for the cases corresponding to the one with absent \(P \mathcal{T} \) symmetry and the one with \(P \mathcal{T} \) symmetry. Specifically, we show the calculation of EPs, winding numbers, energy spectra, and demonstrate NHSE via the sensitivity (or its lack thereof) to the boundary conditions in both these situations. While doing so, we have considered two cases that correspond to the topological and the trivial phases for the Hermitian SSH model, namely, \(t_1 < t_2 \) and \(t_1 > t_2 \) respectively. While we agree that the trivial and the topological phases of the Hermitian model might lose their significance in the NH analogue, we still use these regimes as the benchmarks to ascertain the role of the dimerization strength on the properties of our NH models. Specifically, all the while we consider \(t_1 = 1 \), and fix \(t_2 \) at 2 and 0.5 corresponding to the topological and the trivial regimes, respectively.

3.1. Non-\(P \mathcal{T} \) symmetric case

In the non-\(P \mathcal{T} \) symmetric case, the components of the \(\vec{d} \)-vector can be expressed via a complex angle \(\phi \), which is defined by,

\[
\tan \phi = \frac{d_x}{d_y} = \frac{d_x^x + id_x^y}{d_y^x + id_y^y}
\]

\(\phi \) can be termed as an angle between the components \(d_x, d_y \), and can be expressed as,

\[
\phi = \phi_R + i \phi_I
\]
where ϕ_R and ϕ_I denote the real and the imaginary parts of ϕ. These components can further be expressed in terms of the components of the d-vector (see equation (14)) [37],
\begin{equation}
e^{2i\phi_R} = \frac{d_U}{d_D} \left(\frac{d_U^*}{d_D^*} \right), \quad \text{and} \quad e^{-2i\phi_I} = \frac{d_U}{d_D} \left(\frac{d_U^*}{d_D^*} \right).
\end{equation}
(16)
Further, it can be shown that,
\begin{equation}
\tan 2\phi_R = \frac{\text{Im} \left(\frac{d_U}{d_D} \right)}{\text{Re} \left(\frac{d_U}{d_D} \right)}
\end{equation}
(17)
where d_{\pm} are defined by,
\begin{equation}
d_+ = d_R^i - d_I^i + i(d_R^\delta + d_I^\delta)
\end{equation}
(18)
\begin{equation}
d_- = d_R^R + d_I^R - i(d_R^\delta - d_I^\delta)
\end{equation}
(19)
\begin{equation}
d_R^i = \text{Re}(d_i), \quad d_I^i = \text{Im}(d_i), \quad d_R^\delta = \text{Re}(d_\delta) \quad \text{and} \quad d_I^\delta = \text{Im}(d_\delta).
\end{equation}

Let us focus on finding the EPs of this system. The eigenvalues given by equation (9) will coalesce when $E_{\pm} = 0$, that is, when the following condition is satisfied,
\begin{equation}
(d_R^i + id_I^i)^2 + (d_R^\delta + id_I^\delta)^2 = 0.
\end{equation}
(20)
From the above equation (equation (20)), it is evident that the real part of the energy will be zero when
\begin{equation}
d_R^i = \pm d_I^i \quad \text{and} \quad d_R^\delta = \mp d_I^\delta.
\end{equation}
(21)
Further, the imaginary part of equation (20) becomes zero when the hopping amplitudes satisfy,
\begin{equation}
t_1 = -\frac{\delta_1}{\delta_2},
\end{equation}
(22)
Now, in an NH system, the left eigenvector (eigenvector of H^\dagger), and the right eigenvector (eigenvector of H) differ from each other, as the eigenvectors no longer form an orthonormal set due to the non-Hermiticity. Instead they satisfy the bi-orthonormal condition given by,
\[\langle \psi_{1m}^{LE} | \psi_{m}^{RE} \rangle = \delta_{nm} \]
where Ψ_n^{LE} and Ψ_n^{RE} are the left and right eigenvectors corresponding to the eigenvalues E_n^{R} and E_n^{R} respectively.

The right eigenvector of the Hamiltonian, $h_1(k)$, is given by,
\begin{equation}
|\psi_{1m}^{RE} \rangle = \sqrt{\frac{R_1}{R_1 + R_2}} e^{i\xi} \left(\pm \frac{\sqrt{\frac{R_1}{R_1 + R_2}}}{R_1} e^{-i(\alpha_1 + \alpha_2)/2} \right)
\end{equation}
(23)
with $d_- = R_1 e^{i\alpha_1}$ and $d_+ = R_2 e^{i\alpha_2}$, $e^{i\xi}$ being a phase factor. Further, $R_1 = |(t_1 - \delta_1) + (t_2 - \delta_2)| e^{i\alpha_1}$, $R_2 = |(t_1 + \delta_1) + (t_2 + \delta_2)| e^{-i\alpha_1}$, $\alpha_1 = \tan^{-1} \left(\frac{(t_1 + \delta_1) e^{-i\xi}}{(t_1 - \delta_1) e^{i\xi}} \right)$ and $\alpha_2 = \tan^{-1} \left(\frac{(t_2 - \delta_2) e^{i\xi}}{(t_1 + \delta_1) e^{-i\xi}} \right)$. Now the coalescence of the eigenvectors at the EPs demands that R_1 has to vanish. This is equivalent to the condition,
\[|\delta_1 - \delta_2| = t_1 + t_2 \text{ and } |\delta_1 + \delta_2| = |t_1 - t_2| \]
(24)
\[k = \pm \pi \text{ and } k = 0 \text{ respectively.} \]
Hence the location of the EPs is given by equation (21) along with the criteria laid down in equation (24). Now, the real part of the angle ϕ (see equation (17)) can be written in terms of the location of the EPs, that is,
\begin{equation}
\tan 2\phi_R = \frac{\tan \phi_1 + \tan \phi_2}{1 - \tan \phi_1 \tan \phi_2} = \tan(\phi_1 + \phi_2)
\end{equation}
(25)
where the angles ϕ_1 and ϕ_2 are given by,
\begin{equation}
\tan \phi_1 = \frac{d_R^R + d_I^R}{d_R^\delta - d_I^\delta}, \quad \tan \phi_2 = \frac{d_R^\delta - d_I^\delta}{d_R^R + d_I^R}
\end{equation}
(26)
As ϕ_1 is a real, continuous and a periodic function of the wave vector k, one has,
\begin{equation}
\oint_C \partial_k \phi_1 dk = 0
\end{equation}
(27)
The definition of the winding number, ν, that is the topological invariant that counts the winding of the EPs, can be represented by [84],
\begin{equation}
\nu_n = \frac{1}{2\pi} \oint_C \partial_k \phi_n dk
\end{equation}
(28)
where $n = \pm$ is the band index, $\phi_n(k)$ is the argument of the d-vector, that is $\phi_n(k) = \tan^{-1}(d_R/d_I)$ and the contour C denotes the Brillouin zone (BZ), that is, k goes from $-\pi$ to π. It is evident that ν will only be function of ϕ_R (see equation (27)). From equations (15) and (17), ν splits into two parts, namely,
\begin{equation}
\nu = \frac{1}{2} (\nu_1 + \nu_2)
\end{equation}
(29)
where,
\begin{equation}
\nu_1 = \frac{1}{2\pi} \oint_C \partial_k \phi_1 dk \quad \text{and} \quad \nu_2 = \frac{1}{2\pi} \oint_C \partial_k \phi_2 dk.
\end{equation}
(30)
Here, ϕ_1 is the angle that the line connecting $(d_R^\delta - d_I^\delta)$ and $(d_R^\delta - d_I^\delta)$ makes with a line parallel to x-axis (see figure 2), and ϕ_2 is the corresponding angle for the EP located at $(-d_R^\delta, -d_I^\delta)$. So, as shown in figure 2, as k is taken over the BZ, both the EPs will travel along a circle (anti-clockwise), each with radius δ_2 (both denoted by blue circles in figure 2), and their centers are located at $(-\delta_1, 0)$ corresponding to the EP at $(d_R^\delta, -d_I^\delta)$, and at $(\delta_1, 0)$ for the EP at $(-d_R^\delta, d_I^\delta)$. The point (d_R^R, d_I^R) will travel along a circle (shown by red color in figure 2) of radius t_2 whose center is located at $(t_1, 0)$. This is similar to the locus of the d-vector in the d_c-d_d plane for the Hermitian version of the model, with the only difference that here we have to deal with the real parts of d_c and d_d.

Figure 2. Loci of the EPs and \((d^R_x, d^R_y)\) in a space spanned by \(d^R_x\) and \(d^R_y\). The two blue circles are the loci of the EPs \((d^I_y, -d^I_x)\) and \((-d^I_y, d^I_x)\) with the blue stars representing the instantaneous position of the EPs for some non-zero values of \(k\). The red star on the red circle represents instantaneous position of \((d^R_x, d^R_y)\).

Figure 3. Phase diagram of the winding number (0 ‘white’, 0.5 ‘sky blue’, 1 ‘light-magenta’) as a function of \(\delta_1\) and \(\delta_2\) for (a) \(t_1 = 1, t_2 = 2\) (b) \(t_1 = 1, t_2 = 0.5\). The discontinuous jumps in \(\nu\) for (c) \(t_1 = 1, t_2 = 2\) (d) \(t_1 = 1, t_2 = 0.5\) are shown in the figures in lower panel.

We can now construct the phase diagrams in figure 3 for the winding number \(\nu\) in the plane defined by the non-reciprocity parameters, \(\delta_1\) and \(\delta_2\) for both \(t_1 > t_2\) and \(t_1 < t_2\). There are three distinct regions in these phase diagrams, where \(\nu\) assumes values 0, \(\frac{1}{2}\) and 1 corresponding to zero winding, winding one of the set of EPs, and both the EPs respectively, as \(k\) is taken from over the BZ. Thus, there are clear evidences of phase transitions from one topological phase to another, characterized by the winding number discontinuously changing from 1 to 0.5, or from a topological to a trivial phase where the winding number jumps from 0 to 0.5. These abrupt changes are depicted as a function of \(\delta_2\) in the lower panel of figure 3 along the straight lines (in red) shown in its upper panel.

To understand the topological phase transitions more succinctly, we plot the band structure in figure 4, that is, the real part of the energy, corresponding to the expression \(E(k)\) given by,

\[
E_k = \pm \left[\delta_1^2 + \delta_2^2 - \delta_1^2 - \delta_2^2 + 2(t_1 t_2 + \delta_1 \delta_2) \cos k - 2i(t_1 \delta_2 + t_2 \delta_1) \sin k \right]^{\frac{1}{2}}
\]

for two representative values of \(\delta_2\) that denote two different values of the winding number, \(\nu\) corresponding to both \(t_1 > t_2\) and \(t_1 < t_2\) in the upper and the lower panels of respectively. For \(t_1 < t_2\), \(\delta_1 = 0.1\) corresponds to \(\nu = 1\), where we...
have observed the spectral gap being non-zero everywhere in BZ. Thus it makes sense to conclude that the real part energy shows a topological gap with $\nu = 1$ for $t_1 < t_2$, and a trivial gap with $\nu = 0$ for $t_1 > t_2$, while $\nu = 0.5$ corresponds to gap closing scenario for both the cases. However, there is an important difference between the two. The zero mode for OBC which exists for $t_1 < t_2$, is absent for $t_1 > t_2$. Further, the discontinuous transitions of one value of ν to another occur when equation (24) is satisfied. For example, in figure 3, ν drops discontinuously from 1 to 0.5 at $\delta_2 = 0.5$ for $t_1 = 1$, $t_2 = 2$, and from 0 to 0.5 at $\delta_2 = 0.25$ for $t_1 = 1$, $t_2 = 0.5$.

Next we distinguish between the behavior of the imaginary part of the energy as a function of its real part for both the PBC and the OBC corresponding to $t_1 < t_2$ (figure 5) and $t_1 > t_2$ (figure 6). The eigenvalues always come in pairs with ‘+’ and ‘−’ signs, that is there must be some $-E$ for every E due to Hamiltonian’s chiral nature (obeys equation (10)). In the upper panel of figure 5, we contrast between the PBC and OBC for $\nu = 1$. Apart from demonstrating a completely different behavior, where the energy has both real and imaginary parts for the PBC, while $\text{Im}(E) = 0$ for OBC, we get a couple of zero energy modes ($|E| = 0$). At $\nu = 0.5$, although $\text{Im}(E) \neq 0$ in both the PBC and the OBC, the zero energy modes continue to exist for the OBC. The above scenario suffers drastically, that is $|E|$ remains non-zero all the while for $t_1 > t_2$ (figure 6), albeit there are differences noted in the behavior of system in the PBC and the OBC. Thus the situation corresponding to $\nu = 0.5$, although with a gapless band structure ($\text{Re}(E) = 0$) at the edges of the BZ for both $t_1 < t_2$ and $t_1 > t_2$ (see right panel of figure 4), are distinct.

Let us have a closer look at figures 5(d) and 6(d). They seem to form closed loops from a distance, while a careful inspection reveals that these are not really closed loops. For the sake of clarity, figures 5(b) and (d) are zoomed in figure 7(a). It can be seen in figure 7(a) that though two loops form at both sides of the imaginary axis for $\nu = 0.5$, some points scatter on the real axis, suggesting that $\text{Im}(E) = 0$, (with a couple of eigenvalues with $|E|$ being zero because of $t_1 < t_2$), making it more of a scattered plot, rather than a closed loop. Also it must be noted that for $\nu = 1$, there are no loops formed. The points lie only on the real axis, making all the eigenvalues real.

Similarly figure 7(b) is a clearer picture of figures 6(b) and (d). Here also some points scatter on the real axis apart from making loops at each side of the imaginary axis for $\nu = 0.5$. It must be noted that for $\nu = 0$, no loops are formed here as well. Unlike the previous case (figure 7(a) with $\nu = 0.5$), here there are no eigenvalues with $\text{abs}(E) = 0$ for $t_1 > t_2$. These so called ‘closed loops’ are distinct from the closed loops we obtained in case for PBC (figures 5(c) and 6(c)).

In fact, a common perception is that closed loops only occur in PBC. However, OBC spectrum does form closed loops as well. In the work of Liu et al [85] on the NH Aubry André model, it can be seen that system with OBC forms closed loops as shown in figures 8(a)–(c) of the paper.

Let us now describe the NHSE in the non-\mathcal{PT} symmetric system. The NHSE is depicted in figure 9. Majority of the eigenstates are localized at either of the edges depending upon the signs of δ_1 and δ_2. We have showed the NHSE for $t_1 = 1$ and two values of t_2, namely, 0.5 and 2 with $\nu = 0.5$ in figure 9. It can be seen almost all the eigenstates for both the cases are present for the case $t_1 < t_2$ (left panel of figure 9) and absent for
The energy gaps play a vital role in determining the topological properties of the spectra of the Hamiltonian with PBC. The energy gaps, such as the point gap and the line gap from the energy gap when \(\nu = 0 \) with OBC, \(\nu = 0 \) with OBC, \(\nu = 0.5 \) with PBC, keeping \(t_1 = 1 \) and \(t_2 = 0.5 \). The \(|E| = 0\) mode is missing.

We have also studied two different types of the spectral gaps, such as the point gap and the line gap from the energy spectra of the Hamiltonian with PBC. The energy gaps play a vital role in determining the topological properties of the system [28]. There are further two kinds of line gaps, namely, line gaps with respect to the real axis \((L_r) \), and gap with respect to the imaginary axis \((L_i) \). In figure 3(a), which defines \(t_1 < t_2 \), the ‘sky blue’ regions correspond to point gap, while the ‘light magenta’ region hosts line gap. This means that we have \(P \) type energy gap when \(\nu = 0.5 \) (shown in figure 6((a))), which is shown by ‘sky blue’ region and \(L_r \) type gap when \(\nu = 0 \) (shown in figure 6((a))) shown by ‘white’ region in figure 3((b)). These results are consistent with the band structure (Re (E) vs k) graphs (shown in figure 4), which show gapped spectrum for \(\nu = 1 \) (for \(t_1 < t_2 \)) and \(\nu = 0 \) (for \(t_1 > t_2 \)), whereas the spectrum is gapless for \(\nu = 0.5 \) for both \(t_1 < t_2 \) and \(t_1 > t_2 \). These transitions occur when there is a jump in the value of the winding number that are denoted by the continuous bold lines in figures 3((a)) and (b). This feature suggests a connection between the topology of the system and the complex energy spectrum.

3.2. \(\mathcal{PT} \) symmetric case

We shall explore an alternate route for rendering non-Hermiticity to our dimerized Hamiltonian, which may be achieved via an imaginary potential, \(u \), that is given by \(h_2(k) \) in equation (5). The energy eigenvalues of \(h_2(k) \) are given by (see equation (9)),

\[
E_{\pm} = \pm \sqrt{|t_1 + t_2 e^{-i\theta}|^2 - u^2}.
\]

The right eigenvectors of \(h_2(k) \) are given by,

\[
|\Psi_{2+}^{RE}\rangle = \left(e^{-i\phi} \cos \theta_k \right) \sin \theta_k \left(e^{-i\phi} \sin \theta_k \right) \cos \theta_k
\]

and

\[
|\Psi_{2-}^{RE}\rangle = \left(e^{-i\phi} \sin \theta_k \right) \cos \theta_k.
\]

Figure 6. Re(E) vs Im(E) for (a) \(\nu = 0 \) with PBC, (b) \(\nu = 0 \) with OBC, (c) \(\nu = 0.5 \) with PBC, (d) \(\nu = 0.5 \) with OBC, keeping \(t_1 = 1 \) and \(t_2 = 0.5 \). The \(|E| = 0\) mode is missing.

Figure 7. Re(E) vs Im(E) graphs for non-\(\mathcal{PT} \) symmetric model with OBC with (a) \(t_1 = 1, t_2 = 2, \delta_1 = 0.5, \delta_2 = 0.3 \) for \(\nu = 1 \) and \(\delta_1 = 0.6, \delta_2 = 1.3 \) for \(\nu = 0.5 \), and (b) \(t_1 = 1, t_2 = 0.5, \delta_1 = 0.3, \delta_2 = 0.15 \) for \(\nu = 0 \) and \(\delta_1 = 0.5, \delta_2 = 0.3 \) for \(\nu = 0.5 \).
Figure 8. (a) The EC is completely surrounded by the red circle, (b) the EC is partially surrounded by the red circle, (c) the red circle is fully surrounded by the EC, (d) winding number vs potential strength, u, for $t_1 = 1$, $t_2 = 2$.

Figure 9. NHSE in the non-\mathcal{PT} symmetric model. (a) $t_1 = 1$, $t_2 = 2$, $\delta_1 = 0.5$, $\delta_2 = 1.3$ and (b) $t_1 = 1$, $t_2 = 0.5$, $\delta_1 = 0.5$, $\delta_2 = 0.3$. The system comprises of 100 lattice sites.
where, \(\phi_k = i \ln \left| \frac{1 + e^{-i \theta_k}}{1 + e^{+i \theta_{k}} - i \nu} \right| \) and
\[\theta_k = \tan^{-1} \left(\frac{E_k - u}{E_k + u} \right). \]
The topological invariant for the \(\mathcal{PT} \) symmetric model is considered as the usual winding number, defined in equation (28). For this case, expressions for \(d_x \) and \(d_y \) are given by equation (8). Figure 10(a) shows that there are no zero energy modes (\(|E| = 0 \)) as long as \(u \neq 0 \). These modes (a couple of them) are restored as soon as \(u \) becomes 0 and \(t_1 \) becomes smaller than \(t_2 \) (shown by thin red part at the bottom of figure 10(a)), which is a known result for the Hermitian SSH model. Even though there are no abs(\(E \)) = 0 modes for \(t_1 < t_2 \), we still get \(\nu = 0 \) for \(t_1 > t_2 \), and \(\nu = 1 \) for \(t_1 < t_2 \) irrespective of the values of \(u \) (shown in figure 10(b)) because of the absence \((t_1 > t_2) \) and presence \((t_1 < t_2) \) of edge modes.

We have also computed the complex Berry phase for this model. The complex Berry phase is an important quantity in the \(\mathcal{PT} \) symmetric case, and is given by [36],

\[
Q_\psi = i \int_{BZ} \left< \frac{\partial}{\partial k} \psi_k \right> dk \tag{34}
\]

where \(\left< \psi_k \right> \) and \(\left< \psi_k \right> \) are the left and the right eigenvectors respectively corresponding to \(n \)th band respectively. To make our presentation complete, we have included a complete derivation of the complex Berry phase in the Appendix. The complex Berry phase exhibits the same behavior as that shown by the winding number \((\nu) \), where the former is either \(2\pi \) and 0 for \(t_1 < t_2 \) and \(t_1 > t_2 \) respectively, while \(\nu \) takes a value 1 as long as \(t_1 < t_2 \), and becomes 0 when \(t_1 > t_2 \), irrespective of \(u \). In this way, the complex Berry phase behaves similar to that of \(\nu \), although the value has to be multiplied by \(2\pi \).

Now let us focus on finding the EPs of this system. The energy eigenvalues coalesce when \(E_{\pm} \) become zero, which leads to,

\[
|t_1 + t_2 e^{-i\theta}|^2 = u^2 \tag{35}
\]
The coalescence of the eigenvectors demands also equation (35) to be satisfied, and thus is in contrast with the non-\(\mathcal{PT} \) symmetric case, where the conditions corresponding to the coalescence of the eigenvalues and the eigenvectors are distinct. In terms of components of the \(d \)-vector, equation (35) can be written as,

\[
(d_x^2) + (d_y^2) = u^2 \tag{36}
\]

which is the equation of a circle with radius \(u \) in a space spanned by \(d_x^2 \) and \(d_y^2 \). Expressions for \(d_x^2 \) and \(d_y^2 \) can be obtained from equation (8). So the EPs are arranged on the circumference of a circle of radius \(u \), and there are infinite number of EPs which reside on the circumference. A schematic diagram is shown, via blue circle, while the red circle (of radius \(t_2 \)) denotes the locus of the \(d \)-vector in the \(d_x^2 - d_y^2 \) plane, in figure 8.

Now, we can define a new winding number \((\nu') \) for this system in the following way. \(\nu' \) is the ratio of the portion of the Exceptional Circle in blue color (will be referred as EC hereafter) wound by the \(d_x^2 - d_y^2 \) curve, shown in red color, and the circumference of the EC. We shall show the calculations of \(\nu' \) afterwards. For example, as shown in figure 8(b), \(\nu' \) is denoted by the ratio of the arc \(ABC \) to the whole EC. Thus \(\nu' \) may assume any value between 0 and 1 depending on the portion of the overlap of EC with the red circle. This is true for any value of the potential \(u \) (refer to figure 8).

It may be noted that we have kept \(t_1 \) fixed and considered two values of \(t_2 \), namely 2 and 0.5, which fix the radius of the red circle at these values. Let us first discuss \(t_1 < t_2 \). In order to compute the overlap of the EC with the red circle, there are two possibilities. Either the EC is completely within the red circle (figure 8(a)), which corresponds to \(\nu' = 1 \), or to enumerate the partial overlap we compute the angle \(\theta \) in figure 8(b) (shown below). This corresponds to \(\nu' < 1 \) (in this case \(\nu' \) is close to 1). In figure 8(c), the red circle is completely inside EC which corresponds to zero overlap, and hence \(\nu' = 0 \). We show the variation of \(\nu' \) as a function of \(u \) in figure 8(d). Till \(u = 1 \) (\(|t_1 - t_2| \)), \(\nu' \) remains at a value 1. For \(1 < u < 3 \), we get \(0 < \nu' < 1 \), while for \(u > 3 \) (\(t_1 + t_2 \)), \(\nu' \) remains at a value 0. The above scenario can be contrasted with the case \(t_1 > t_2 \), except for the red circle and the EC are apart with zero overlap for the first case of \(t_1 < t_2 \) (figure 8(a)), that is, when \(u < t_2 - t_1 \), \(\nu' \) takes the value 1 there and behaves similarly of that of the previous case \((t_1 < t_2) \) afterwards.

Now let us return back to the calculations that yield the plots shown in figure 8(d). At the points of overlap of these two circles (EC and the red circle), if we substitute,

\[
d_x^2 = t_1 + t_2 \cos k, \quad d_y^2 = t_2 \sin k
\]
in equation (36), we shall obtain,

\[
u^2 - 2d_x t_1 + t_1^2 = \frac{t_2^2}{2} \quad \text{and} \quad d_x^2 = \frac{\left(u^2 + t_1^2 - \frac{t_2^2}{2} \right)}{2t_1}. \tag{37}
\]

Thus substituting \(d_x^2 \) in equation (36), one gets,

\[
d_x^2 = \pm \frac{1}{2t_1} \sqrt{\left(\left(u + t_1 \right)^2 - \frac{t_2^2}{2} \right) \left(\left(t_2^2 - u - t_1 \right)^2 \right)} \tag{38}
\]
\[d^B_c \text{ must be real, and for that to happen, we should have,} \]
\[|t_1 - t_2| \leq u \leq t_1 + t_2. \] \hspace{1cm} (39)

It can be shown that the angle subtended by the arc ABC at the center of EC, shown by \((0,0)\) in figure 8(b), is given by,
\[\theta = 2u \tan^{-1} \left[\frac{\sqrt{\left((u+t_1)^2 - t_2^2 \right) \left(t_2^2 - (u-t_1)^2 \right)}}{u^2 + t_1^2 - t_2^2} \right]. \] \hspace{1cm} (40)

The value of \(\theta \) is such that, \(\theta \in [-\pi, \pi] \). Thus the winding number, which is denoted by the overlap of EC with the red circle is given by,
\[\nu' = \frac{\text{arclength}(ABC)}{2\pi u}. \] \hspace{1cm} (41)

This finally yields the expression for the winding number as,
\[\nu' = \frac{1}{\pi} \tan^{-1} \left[\frac{\sqrt{\left((u+t_1)^2 - t_2^2 \right) \left(t_2^2 - (u-t_1)^2 \right)}}{u^2 + t_1^2 - t_2^2} \right]. \] \hspace{1cm} (42)

It is clear from equation (42), that this winding number, \(\nu' \), can take all possible values between 0 and 1.

The band structure (Re\((E)\) vs \(k\)) is plotted in figure 11. The band gap closes at the point, \(u = |t_1 - t_2| \), which happens when the EC touches the \(d^R_x - d^R_y \) curve internally, and remains so until a value \(u = t_1 + t_2 \), where Re\((E(k))\) becomes zero. Similar phenomena happen for both \(t_1 < t_2 \) and \(t_1 > t_2 \). In order to distinguish the band structures for the two dimerized cases, \(t_1 < t_2 \) (left panel) and \(t_1 > t_2 \) (right panel), we have plotted Re\((E)\) vs \(k\) in figure 11 corresponding to \(\nu' = 0 \) and \(\nu' \neq 0 \) respectively. The top row shows results for small \(u \) where \(\nu' = 1 \) for both \(t_1 < t_2 \) and \(t_1 > t_2 \). The spectrum is gapped in each case, however the nature of the gaps are different, since they correspond to different values of \(\nu' \). The central panel of figure 11 denotes the band structure for intermediate values of \(\nu' \).
Figure 12. Re(E) vs Im(E) with PBC (first column) and OBC (second column) for three cases: (a) and (b) correspond to $u = 0.5$, (c) and (d) correspond to $u = 2$, (e) and (f) correspond to $u = 3.5$, keeping $t_1 = 1$ and $t_2 = 2$.

Figure 13. Re(E) vs Im(E) with PBC (first column) and OBC (second column) for three cases: (a) and (b) correspond to $u = 0.25$, (c) and (d) correspond to $u = 1$, (e) and (f) correspond to $u = 1.75$, keeping $t_1 = 1$ and $t_2 = 0.5$.

u where we have $0 < \nu' < 1$ in each case. The situation corresponds to the closure of the spectral gap occurring at k-values away from the edge of the BZ, along with the presence of zero modes ($\text{Re}(E) = 0$) in both the cases. The presence of the spectral gap in certain parts of the BZ probably bears the testimony of a finite winding number. Finally, for large u, where $\nu' = 0$ in both $t_1 < t_2$ and $t_1 > t_2$ cases, there are two fold degenerate flat bands at Re(E) = 0.

We also plot Im(E) vs Re(E) for both the PBC and the OBC corresponding to $t_1 < t_2$ and $t_1 > t_2$ (figures 12 and 13). The energy eigenvalues always occur in complex conjugate pairs, that is there must be a E^* for every E, as the Hamiltonian is \mathcal{PT} symmetric (obeys equation (12)). Some of these eigenvalues are purely real, and the rest are purely imaginary. This happens for both the PBC and the OBC. However, there is one difference. For $t_1 < t_2$ with OBC, two edge modes exist with $E = \pm iu$ for all values of the potential u, a scenario that is absent in PBC. Same phenomena have been observed for $t_1 > t_2$, except that there are no edge modes corresponding to either of the energy eigenvalues $E = \pm iu$ [36]. The two edge modes continue to exist as long as $t_1 < t_2$ with the winding number, ν being 1 (figure 14), regardless of the value of the staggered imaginary potential strength, u [84].

Lastly, we discuss the broken and unbroken regions in this model. The energy eigenvalues remain purely real till a value of u given by, $u = |t_1 - t_2|$. Beyond that, the number of purely imaginary eigenvalues increases with u, until $u = t_1 + t_2$. Finally, all the energies become purely imaginary for larger values of u. So, $u = |t_1 - t_2|$ can be thought as the transition point between the \mathcal{PT} broken and the unbroken regions, prior to which the \mathcal{PT} symmetry is unbroken, while after $u = |t_1 - t_2|$ it is broken (figure 15). The new winding number, ν' can be thought of as a measurement of the ratio of the number of energy eigenvalues with real parts being non-zero to the total number of eigenvalues. Say, the real parts of n out of N of the energy eigenvalues are non-zero, then ν' is given by n/N.

11
Figure 14. No NHSE in the PT symmetric model. (a) $t_1 = 1$, $t_2 = 2$, $u = 2$ and (b) $t_1 = 1$, $t_2 = 0.5$, $u = 1$.

Figure 15. The PT broken and the unbroken regions in the PT symmetric model are shown as a function of u. The boundary between the PT unbroken region with purely real eigenvalues and PT broken region with complex eigenvalues is given by $u = |t_1 - t_2|$. Also, the boundary separating the PT broken regions with complex and purely imaginary eigenvalues is given by $u = t_1 + t_2$.

4. Conclusion

Here, in this paper, we have investigated the NH SSH model, and examined two separate cases, namely the PT symmetric case (modeled by a complex on-site potential), and a non-PT symmetric case (modeled by breaking the reciprocity in the hopping amplitudes). The phase diagram of the non-PT symmetric case encodes a more familiar view of the winding number, which takes integer and half integer values for specific set of the parameters, thereby supporting a phase transition from one value of the winding number to another. Different types of spectral gaps are discussed via the real and the imaginary parts of the energies. The band structure, given by, $\text{Re}(E)$ vs k, supports these transitions via a gap closing scenario. A geometrical perspective of understanding the EPs in a more generalized sense has also been provided. The EPs for the non-PT symmetric case are functions of the momentum (k) and is thus unusual compared to the Hermitian SSH model. For PT symmetric case, a phase diagram of winding number is obtained and complex Berry phase is being calculated. In contrast to the non-PT symmetric case, where the winding number assumes three distinct values, namely 0, $\frac{1}{2}$ and 1, here it can only takes two values, namely 0 and 1. Another feature emerges as we have infinite number of EPs, arranged on the circumference of a circle, which renders a continuous variation of a newly defined winding number as a function of the strength of the imaginary potential. The $\text{Re}(E)$ vs $\text{Im}(E)$ plots show that the eigenvalues are either purely real or purely imaginary (which was not the case for non-PT symmetric system), which supports the information obtained from the winding number (ν') and also are in accordance with the band structure $\text{Re}(E)$ vs k plots. We also find that the broken and unbroken regions in this case characterized by eigenvalues being real and complex respectively. Finally, NHSE is examined for both the cases, which demonstrates significant differences between the non-PT symmetric and the PT symmetric cases. The variations of the real part of the energy with the corresponding imaginary part are quite distinct in these cases, with only non-PT symmetric case demonstrating breakdown of BBC, and the occurrence of NHSE. In this case, the occurrence of skin effect depends on the signs of δ_1 and δ_2, while the presence or the absence of the zero energy modes depends on whether $t_1 < t_2$ or $t_1 > t_2$. The PT symmetric case does not show NHSE, instead only two zero energy edge modes are observed for the topological case ($t_1 < t_2$), and none corresponding to the trivial case ($t_1 > t_2$) as both the intra-cell and inter-cell hoppings in this model is reciprocal. The scenario is similar to the Hermitian SSH model, and hence the conventional BBC is preserved. It is prudent to mention that a parallel formalism that uses non-Bloch band theory via complex momenta defined in generalized BZ [39] admits usage of the ‘normal’ Bloch wavefunction with real momenta for this scenario.
Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix. Complex Berry phase

The Hamiltonian for the PT symmetric model in the Bloch form can be written as,

$$H(k) = \begin{pmatrix} iu & t_1 + t_2e^{-ik} \\ t_1 + t_2e^{ik} & -iu \end{pmatrix}. $$

The eigenvalues of this Hamiltonian are given by,

$$E_\pm = \pm \sqrt{t_1 + t_2e^{-ik}^2 - u^2}. $$

In an NH system, the left eigenvector and the right eigenvector satisfy the bi-orthonormal condition given by,

$$\langle \lambda_n | \psi_m \rangle = \delta_{nm} $$

where $\langle \lambda_n \rangle$ and $| \psi_m \rangle$ are the left and right eigenvectors corresponding to the eigenvalues E_n^+ and E_n^- respectively. Thus, The normalized right eigenvectors are given by,

$$ |\psi_+\rangle = e^{-i\phi_k} \cos \theta_k \sin \theta_k \quad \text{and} \quad |\psi_-\rangle = e^{-i\phi_k} \sin \theta_k \cos \theta_k $$

and the left eigenvectors are given by,

$$ \langle \lambda_+ | = \begin{pmatrix} e^{i\phi_k} \cos \theta_k \\ \sin \theta_k \end{pmatrix}^T \quad \text{and} \quad \langle \lambda_- | = \begin{pmatrix} e^{-i\phi_k} \sin \theta_k \\ \cos \theta_k \end{pmatrix}^T $$

where, $\phi_k = i \ln \left| \frac{\lambda_+ - t_2e^{-ik}}{\lambda_- + t_2e^{ik}} \right|$ and $\theta_k = \tan^{-1} \left(\sqrt{\frac{E_+ + iu}{E_- + iu}} \right)$. Now the complex Berry phase corresponding to the eigenvalues E_\pm is given by [84],

$$ Q'_\pm = i \int_{BZ} \langle \lambda_\pm | \frac{\partial}{\partial k} |\psi_\pm\rangle \, dk $$

Now the global Berry phase is defined via [36],

$$ Q'_G = Q'_+ + Q'_- $$

Let us calculate Q'_G first. From equations (43) and (44), we can write Q'_+ as,

$$ Q'_+ = i \int_{BZ} \begin{pmatrix} e^{i\phi_k} \sin \theta_k \\ \cos \theta_k \end{pmatrix}^T \frac{\partial}{\partial k} \begin{pmatrix} e^{-i\phi_k} \sin \theta_k \\ \cos \theta_k \end{pmatrix} \, dk $$

$$ = i \int_{BZ} \begin{pmatrix} e^{i\phi_k} \sin \theta_k \\ \cos \theta_k \end{pmatrix}^T \begin{pmatrix} -ie^{-i\phi_k} \cos \theta_k \frac{\partial \phi_k}{\partial k} + iut_1t_2 \sin k \frac{4E_+}{4E_+^3} - iut_1t_2 \sin k \frac{2E_+^2}{4E_+} \\ 4E_+^3 \sin \theta_k \end{pmatrix} \, dk $$

$$ = i \int_{BZ} \begin{pmatrix} -ic^2t_1 \sin k \frac{\partial \phi_k}{\partial k} + iut_1t_2 \sin k \frac{2E_+^2}{4E_+} \\ 4E_+^3 \sin \theta_k \end{pmatrix} \, dk $$

Similarly, the expression for Q'_- can be obtained as,

$$ Q'_- = i \int_{BZ} \begin{pmatrix} -e^{i\phi_k} \sin \theta_k \\ \cos \theta_k \end{pmatrix}^T \frac{\partial}{\partial k} \begin{pmatrix} -e^{-i\phi_k} \sin \theta_k \\ \cos \theta_k \end{pmatrix} \, dk $$

$$ = \int_{BZ} \sin^2 \theta_k \frac{\partial \phi_k}{\partial k} \, dk. $$

Hence, the global Berry phase is given by,

$$ Q'_G = \int_{BZ} \cos^2 \theta_k \frac{\partial \phi_k}{\partial k} \, dk + \int_{BZ} \sin^2 \theta_k \frac{\partial \phi_k}{\partial k} \, dk = \int_{BZ} d\phi_k $$

Now, if this line integral over Brillouin Zone contains the origin, that is $t_1 = t_2 = 0$, then it gives a value 2π, otherwise it will give 0. So, it follows that,

$$ Q'_G = \begin{cases} 2\pi & \text{for} \quad t_1 < t_2 \\ 0 & \text{for} \quad t_1 > t_2 \end{cases} $$

ORCID IDs

Dipendu Halder \(\text{https://orcid.org/0000-0001-7201-4610} \)
Sudin Ganguly \(\text{https://orcid.org/0000-0003-0607-4417} \)

References

[1] Breuer H P and Petruccione F 2002 *The Theory of Open Quantum Systems* (Oxford: Oxford University Press)
[2] Keldysh L V 1964 Diagram technique for nonequilibrium processes Zh. Eksp. Teor. Fiz. 47 1515–27
[3] Lindblad G 1976 On the generators of quantum dynamical semigroups Commun. Math. Phys. 48 119–30
[4] Eichler T, Heilmann M, Weimann S, Stützer S, Dreisow F, Christodoulides D N, Nolte S and Szameit A 2013 Mobility transition from ballistic to diffusive transport in non-Hermitian lattices Nat. Commun. 4 2533
[5] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Observation of parity-time symmetry breaking transitions in a dissipative floquet system of ultracold atoms *Nat. Commun.* 10 855
[6] Kremer M, Biesenthal T, Maczewsky L J, Heinrich M, Thomale R and Szameit A 2019 Demonstration of a two-dimensional *PT*-symmetric crystal *Nat. Commun.* 10 435
[7] Wu Y, Liu W, Geng J, Song X, Ye X, Duan C-K, Rong X and Du J 2019 Observation of parity-time symmetry breaking in a single-spin system *Science* 364 878–80
[8] Tuniz A, Wieduwilt T and Schmidt M A 2019 Tuning the effective *PT* phase of plasmonic eigenmodes *Phys. Rev. Lett.* 123 213903
[9] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Observation of a topological transition in the bulk of a non-Hermitian system *Phys. Rev. Lett.* 115 040402
[10] Xu Y-L, Fegadolli W S, Gan L, Lu M-H, Liu X-P, Li Z-Y, Scherer A and Chen Y-F 2016 Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice *Nat. Commun.* 7 11319
[11] Xiao L et al 2017 Observation of topological edge states in parity–time–symmetric quantum walks *Nat. Phys.* 13 1117–23
[12] Bahari B, Ndao A, Vallini F, Amili A E, Fainman Y and Kanté B 2017 Nonreciprocal lasing in topological cavities of arbitrary geometries Science 358 636–40

[13] Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N and Khajavikhan M 2018 Topological insulator laser: experiments Science 359 eaar6005

[14] Xiao L, Wang K, Zhan X, Bian Z, Kawabata K, Ueda M, Yi W and Xue P 2019 Observation of critical phenomena in parity–time-symmetric quantum dynamics Phys. Rev. Lett. 123 230401

[15] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Non-Hermitian bulk–boundary correspondence in quantum dynamics Nat. Phys. 16 761–6

[16] Weimann S, Kremer M, Plotnik Y, Luner Y, Nolte S, Makris K G, Segev M, Rechtsman M and Szameit A 2017 Topologically protected bound states in photonic parity–time-symmetric crystals Nat. Mater. 16 433–8

[17] St-Jean P, Gobot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J and Amo A 2017 Lasing in topological edge states of a one-dimensional lattice Nat. Photon. 11 651–6

[18] Parto M, Wittek S, Hedaihi H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N and Khajavikhan M 2018 Edge-mode lasing in 1D topological active arrays Phys. Rev. Lett. 120 113901

[19] Pan M, Zhao H, Miao P, Longhi S and Feng L 2018 Photonic zero mode in a non-Hermitian photonic lattice Nat. Commun. 9 1308

[20] Rosenthal E I, Ehrlich N K, Rudner M S, Higginbotham A P and Lehner K W 2018 Topological phase transition measured in a dissipative metamaterial Phys. Rev. B 97 220301

[21] Sakhdari M, Hajizadegan M, Zhong Q, Christodoulides D N, El-Ganainy R and Chen P-Y 2019 Experimental observation of PT symmetry breaking near divergent exceptional points Phys. Rev. Lett. 123 193901

[22] Brandenbourger M, Locsin X, Lerner E and Coulais C 2019 Non-reciprocal robust metamaterials Nat. Commun. 10 4608

[23] Ghatak A, Brandenbourger M, van Wezel J and Coulais C 2020 Observation of non-Hermitian topology and its bulk edge correspondence in an active mechanical metamaterial Proc. Natl Acad. Sci. 117 29561–8

[24] Hatano N and Nelson D R 1996 Localization transitions in non-Hermitian quantum mechanics Phys. Rev. Lett. 77 570–3

[25] Hatano N and Nelson D R 1997 Vortex pinning and non-Hermitian quantum mechanics Phys. Rev. B 56 8651–73

[26] Bender C M and Boettcher S 1998 Real spectra in non-Hermitian Hamiltonians having PT symmetry Phys. Rev. Lett. 80 5243–6

[27] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Non-Hermitian physics and PT symmetry Nat. Phys. 14 193901

[28] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Symmetry and topology in non-Hermitian physics Phys. Rev. X 9 041015

[29] Rudner M S and Levitov L S 2009 Topological transition in a non-Hermitian quantum walk Phys. Rev. Lett. 102 065703

[30] Hu Y C and Hughes T L 2011 Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians Phys. Rev. B 84 153101

[31] Eisaki K, Sato M, Hasebe K and Kohmoto M 2011 Edge states and topological phases in non-Hermitian systems Phys. Rev. B 84 205128

[32] Zhu B, Lu R and Chen S 2014 PT symmetry in the non-Hermitian Su-Schrieffer-Heeger model with complex boundary potentials Phys. Rev. A 89 062102

[33] Lee T E 2016 Anomalous edge state in a non-Hermitian lattice Phys. Rev. Lett. 116 133903

[34] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Edge modes, degeneracies and topological numbers in non-Hermitian systems Phys. Rev. Lett. 118 040401

[35] Shen H, Zhen B and Fu L 2018 Topological band theory for non-Hermitian Hamiltonians Phys. Rev. Lett. 120 146402

[36] Lü Y 2018 Topological phases in the non-Hermitian Su-Schrieffer-Heeger model Phys. Rev. B 97 045106

[37] Yin C, Jiang H, Li L, Lu R and Chen S 2018 Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems Phys. Rev. A 97 052115

[38] Yao S and Wang Z 2018 Edge states and topological invariants of non-Hermitian systems Phys. Rev. Lett. 121 086803

[39] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Bichorogical bulk-boundary correspondence in non-Hermitian systems Phys. Rev. Lett. 121 026808

[40] Martinez Alvarez V M, Barrios Vargas J E and Foa Torres L E F 2018 Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points Phys. Rev. B 97 121401

[41] Gong Z, Ashida Y, Kawabata K, Takasaki K, Higashikawa S and Ueda M 2018 Topological phases of non-Hermitian systems Phys. Rev. X 8 031079

[42] Yao S, Song F and Wang Z 2018 Non-Hermitian Chern bands Phys. Rev. Lett. 121 136802

[43] Jin L and Song Z 2019 Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry Phys. Rev. B 99 081103

[44] Kawabata K, Shiozaki K and Ueda M 2018 Anomalous helical edge states in a non-Hermitian Chern insulator Phys. Rev. B 98 165148

[45] Lang L-J, Wang Y, Wang H and Chong Y D 2018 Effects of non-Hermiticity on Su-Schrieffer-Heeger defect states Phys. Rev. B 98 094307

[46] Jiao H, Yang C and Chen S 2018 Topological invariants and phase diagrams for one-dimensional two-band non-Hermitian systems without chiral symmetry Phys. Rev. A 98 052116

[47] Song F, Yao S and Wang Z 2019 Non-Hermitian topological invariants in real space Phys. Rev. Lett. 123 246801

[48] Borgnia D S, Kruchkov A J and Slager R-J 2020 Non-Hermitian boundary modes and topology Phys. Rev. Lett. 124 056802

[49] Heiss W D 2012 The physics of exceptional points J. Phys. A: Math. Theor. 45 444016

[50] Zhen B, Hsu C, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S-L, El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H and Lehnert K W 2018 Topological phase transition and Ueda M 2018 Symmetry of non-Hermitian systems in real space Phys. Rev. Lett. 123 1246801

[51] Ding K, Ma G, Xiao M, Zhang Z Q and Chan C T 2016 Emergence, coalescence and topological properties of multiple exceptional points and their experimental realization Phys. Rev. X 6 021007

[52] Jin L, Wu H C, Wei B-B and Song Z 2020 Hybrid exceptional point created from type-III dirac cone Phys. Rev. B 101 045130

[53] Zhang S M, Zhang X Z, Jin L and Song Z 2020 High-order exceptional points in supersymmetric arrays Phys. Rev. A 101 033820

[54] Yokomizo K and Murakami S 2019 Non-Bloch band theory of non-Hermitian systems Phys. Rev. Lett. 123 066404

[55] Schomerus H 2011 Topologically protected midgap states in complex photonic lattices Opt. Lett. 38 1912–4

[56] Yuce C 2015 Topological phase in a non-Hermitian PT symmetric system Phys. Lett. A 379 1213–8

[57] Menke H and Hirschmann M M 2017 Topological quantum wires with balanced gain and loss Phys. Rev. B 95 174506
[58] Xu Z, Zhang R, Chen S, Fu L and Zhang Y 2020 Fate of zero modes in a finite Su-Schrieffer-Heeger model with PT symmetry Phys. Rev. A 101 013635

[59] Lang L-J, Weng Y, Zhang Y, Cheng E and Liang Q 2021 Dynamical robustness of topological end states in nonreciprocal Su-Schrieffer-Heeger models with open boundary conditions Phys. Rev. B 103 014302

[60] Xu X-W, Li Y-Z, Liu Z-F and Chen A-X 2020 General bounded corner states in the two-dimensional Su-Schrieffer-Heeger model with intracellular next-nearest-neighbor hopping Phys. Rev. A 101 063839

[61] Xu K, Zhang X, Luo K, Yu R, Li D and Zhang H 2021 Coexistence of topological edge states and skin effects in the non-Hermitian Su-Schrieffer-Heeger model with long-range nonreciprocal hopping in topoelectric realizations Phys. Rev. B 103 125411

[62] Li S, Liu M, Li F and Liu B 2021 Topological phase transition of the extended non-Hermitian Su-Schrieffer-Heeger model Phys. Scr. 96 015402

[63] Cui W-X, Qi L, Xing Y, Liu S, Zhang S and Wang H-F 2020 Localized photonic states and dynamic process in nonreciprocal coupled Su-Schrieffer-Heeger chain Opt. Express 28 37026–39

[64] Du L, Wu J-H, Artoni M and La Rocca G C 2019 Phase-dependent topological interface state and spatial adiabatic passage in a generalized Su-Schrieffer-Heeger model Phys. Rev. A 100 012112

[65] Yuce C and Ramezani H 2019 Topological phase transitions in a non-Hermitian two-dimensional Su-Schrieffer-Heeger model Phys. Rev. A 100 032102

[66] Wu H and An J-H 2020 Floquet topological phases of non-Hermitian systems Phys. Rev. B 102 041119

[67] Imura K-I and Takane Y 2019 Generalized bulk-edge correspondence for non-Hermitian topological systems Phys. Rev. B 100 165430

[68] Pocock S R, Huidobro P A and Giannini V 2019 Bulk-edge correspondence and long-range hopping in the topological plasmonic chain Nanophotonics 8 1337–47

[69] Longhi S 2021 Phase transitions in a non-Hermitian Aubry-André-Harper model Phys. Rev. B 103 054203

[70] Longhi S 2019 Metal-insulator phase transition in a non-Hermitian Aubry-André-Harper model Phys. Rev. B 100 125157

[71] Schiffer S, Liu X-J, Hu H and Wang J 2021 Anderson localization transition in a robust PT-symmetric phase of a generalized Aubry-André model Phys. Rev. A 103 L011302

[72] Zeng Q-B, Yang Y-B and Xu Y 2020 Topological phases in non-Hermitian Aubry-André-Harper models Phys. Rev. B 101 020201

[73] Zhang D-W, Chen Y-L, Zhang G-Q, Lang L-J, Li Z and Zhu S-L 2020 Skin superfluid, topological Mott insulators and asymmetric dynamics in an interacting non-Hermitian Aubry-André-Harper model Phys. Rev. B 101 235150

[74] Zeng Q-B and Xu Y 2020 Winding numbers and generalized mobility edges in non-Hermitian systems Phys. Rev. Res. 2 033052

[75] Wang R, Zhang X Z and Song Z 2018 Dynamical topological invariant for the non-Hermitian Rice-Mele model Phys. Rev. A 98 042120

[76] Rice M J and Mele E J 1982 Elementary excitations of a linearly conjugated diatomic polymer Phys. Rev. Lett. 49 1455–9

[77] Yuce C 2019 Spontaneous topological pumping in non-Hermitian systems Phys. Rev. A 99 032109

[78] Vanderbilt D and King-Smith R D 1993 Electric polarization as a bulk quantity and its relation to surface charge Phys. Rev. B 48 4442–55

[79] Yi Y and Yang Z 2020 Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect Phys. Rev. Lett. 125 186802

[80] Hasan M Z and Kane C L 2010 Colloquium: Topological insulators Rev. Mod. Phys. 82 3045–67

[81] Qi X-L and Zhang S-C 2011 Topological insulators and superconductors Rev. Mod. Phys. 83 1057–110

[82] Bernevig B A 2013 Topological Insulators and Topological Superconductors (Princeton, NJ: Princeton University Press)

[83] Asbóth J K, Oroszlány L and Pályi A P 2016 A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Cham: Springer)

[84] Ghatak A and Das T 2019 New topological invariants in non-Hermitian systems J. Phys.: Condens. Matter 31 263001

[85] Liu Y, Zhou Q and Chen S 2021 Localization transition, spectrum structure and winding numbers for one-dimensional non-Hermitian quasicrystals Phys. Rev. B 104 024201