Measurements of branching fraction and final-state asymmetry of the $\bar{B}^0(B^0) \rightarrow K^0_S K^\mp \pi^\pm$ decay at Belle

A. Abdesselam,100 I. Adachi,22,18 K. Adamczyk,74 J. K. Ahn,49 H. Aihara,108 S. Al Said,100,47 K. Arinstein,5,78 Y. Arita,66 D. M. Asner,4 H. Atmacan,96 V. Aulchenko,5,78 T. Aushev,65 R. Ayad,100 T. Aziz,101 V. Babu,101 I. Badhrees,100,46 S. Bahinipati,29 A. M. Bakich,99 Y. Ban,83 V. Bansal,81 E. Barberio,61 M. Barrett,114 W. Bartel,10 P. Behera,32 C. Beleño,17 K. Belous,36 M. Berger,97 F. Bernlochner,3 D. Besson,64 V. Bhardwaj,28 B. Bhuyan,30 T. Bilka,6 J. Biswal,41 T. Bloomfield,61 A. Bobrov,5,78 A. Bondar,5,78 G. Bonvicini,114 A. Bozek,74 M. Bračko,59,41 N. Braun,43 F. Breiback,35 J. Brodzicka,74 T. E. Browder,21 L. Cao,43 G. Caria,61 D. Červenkov,6 M.-C. Chang,13 P. Chang,73 Y. Chao,73 V. Chekelian,60 A. Chen,71 K.-F. Chen,73 B. G. Cheon,20 K. Chilikin,54 R. Chistov,54,64 K. Cho,48 V. Chobanova,60 S.-K. Choi,19 Y. Choi,98 S. Choudhury,31 C. Cinabro,114 J. Cukrovic,27 S. Cunliffe,10 T. Czank,106 M. Danilov,64,54 N. Dash,29 S. Di Carlo,52 J. Dingfelder,3 Z. Doležal,6 T. V. Dong,22,18 D. Dossett,61 Z. Drášal,6 A. Drutskoy,54,64 S. Dubey,21 D. Dutta,101 S. Eidelman,5,78 D. Epifanov,5,78 J. E. Fast,81 M. Feindt,43 T. Ferber,10 A. Frey,17 O. Frost,10 B. G. Fulsom,81 R. Garg,82 V. Gaur,101 N. Gabyshev,5,78 A. Garmash,5,78 M. Gelb,43 J. Gemmler,43 D. Getzkow,15 F. Giordano,27 A. Giri,31 R. Glattauher,35 Y. M. Goh,20 P. Goldenzwieg,43 B. Golob,55,41 D. Greenwald,103 M. Grosse Perdekamp,27,89 J. Grygier,43 O. Grzymkowska,74 Y. Guan,33,22 E. Guido,39 H. Guo,91 J. Haba,22,18 P. Hamer,17 K. Hara,22 T. Hara,22,18 Y. Hasegawa,93 J. Hasenbusch,3 K. Hayasaoka,76 H. Hayashii,70 X. H. He,83 M. Heck,43 M. T. Hedges,21 D. Heffernan,80 M. Heider,43 A. Heller,43 T. Higuchi,44 S. Hirose,66 T. Horiguchi,106 Y. Hoshi,105 K. Hoshina,111 W.-S. Hou,73 Y. B. Hsiung,73 C.-L. Hsu,99 K. Huang,73 M. Huschle,43 Y. Igarashi,22 T. Iijima,67,66 M. Imamura,66 K. Inami,66 G. Inguglia,10 A. Ishikawa,106 K. Itagaki,106 R. Itoh,22,18 M. Iwasaki,79 Y. Iwasaki,22 S. Iwata,110 W. W. Jacobs,33 I. Jaegle,12 H. B. Jeon,51 S. Jia,2 Y. Jin,108 D. Joffe,45 M. Jones,21 K. K. Joo,8 T. Julius,61 J. Kahn,56 H. Kakuno,110 A. B. Kaliyar,32 J. H. Kang,116 K. H. Kang,51 P. Kapusta,74 G. Karyan,10 S. U. Kataoka,69 E. Kato,106 Y. Kato,66 P. Katrenko,65,54 H. Kawai,77 T. Kawasaka,76 T. Keck,43 H. Kichimi,22 C. Kiesling,60 B. H. Kim,92 D. Y. Kim,95 H. J. Kim,51 H.-J. Kim,116 J. B. Kim,49 T. K. Kim,49 S. H. Kim,20 S. K. Kim,92 Y. J. Kim,49 T. Kimmel,113 H. Kindo,22,18 K. Kinoshita,9 C. Kleinwort,10 J. Klucar,41 N. Kobayashi,109 P. Kodys,6 Y. Koga,66 T. Konno,117 S. Korpar,59,41 D. Kotchetkov,21 R. T. Kouzes,81 P. Križan,55,41 R. Kroeger,62 J.-F. Krohn,61 P. Kroonen,5,78 P. Kronenbitter,43 T. Kuhr,56 R. Kulasiri,45 R. Kumar,85 T. Kumita,110 E. Kurihara,7 Y. Kuroki,80 A. Kuzmin,5,78 P. Kvasnicka,6 Y.-J. Kwon,116 Y.-T. Lai,22 J. S. Lange,15 I. S. Lee,20 S. C. Lee,51 M. Leitgab,27,89 R. Leitner,6 D. Levit,103 P. Lewis,21 C. H. Li,61 H. Li,33 L. K. Li,34 Y. Li,113 Y. B. Li,83 L. Li Gioi,60 J. Libby,32 A. Limosani,61 C. Liu,91 Y. Liu,9 D. Liventsev,113,22 A. Loos,96 R. Louvot,53 P.-C. Lu,73 M. Lubej,41 T. Luo,14 J. MacNaughton,63 M. Masuda,107 T. Matsuda,63 D. Matvienko,5,78 A. Matyja,74 J. T. McNeil,12 M. Merola,38,68 F. Metzner,43 Y. Mikami,106 K. Miyabayashi,70 Y. Miyachi,115 H. Miyake,22,18 H. Miyata,76 Y. Miyazaki,66
R. Mizuk, 54, 64, 65 G. B. Mohanty, 101 S. Mohanty, 101, 112 H. K. Moon, 49 T. Mori, 66 T. Morii, 44 H.-G. Moser, 60 M. Mrvar, 41 T. Müller, 43 N. Muramatsu, 86 R. Mussa, 39 Y. Nagasaka, 25 Y. Nakahama, 108 I. Nakamura, 22, 18 K. R. Nakamura, 22 E. Nakano, 79 H. Nakano, 106 T. Nakano, 87 M. Nakao, 22, 18 H. Nakayama, 22, 18 H. Nakazawa, 73 T. Nanut, 41 K. J. Nath, 30 Z. Natkaniec, 74 M. Nayak, 114, 22 K. Neichi, 105 C. Ng, 108 C. Niebuhr, 10 M. Niiyama, 50 N. K. Nisar, 84 S. Nishida, 22, 18 K. Nishimura, 21 O. Nito, 111 A. Ogawa, 89 K. Ogawa, 76 S. Ogawa, 104 T. Ohshima, 66 S. Okuno, 42 S. L. Olsen, 19 H. Ono, 75, 76 Y. Ono, 106 Y. Onuki, 108 W. Ostrowicz, 74 C. Oswald, 3 H. Ozaki, 22, 18 P. Pakhlov, 54, 64 G. Pakhlova, 54, 65 B. Pal, 4 H. Palka, 74 E. Panzenböck, 17, 70 S. Pardi, 38 C.-S. Park, 116 C. W. Park, 98 H. Park, 51 K. S. Park, 98 S. Paul, 103 I. Pavelkin, 65 T. K. Pedlar, 57 T. Peng, 91 L. Pesántež, 3 R. Pestotnik, 41 M. Peters, 21 L. E. Piilonen, 113 A. Poluektov, 5, 78 V. Popov, 54, 65 K. Prasanth, 101 E. Precice, 24 M. Prim, 43 K. Prothmann, 60, 102 M. V. Purohit, 36 A. Rabusov, 103 J. Rauch, 103 B. Reisert, 60 P. K. Resmi, 32 E. Ribežič, 41 M. Ritter, 56 J. Rorie, 21 A. Rostomyan, 10 M. Rozanska, 74 S. Rumel, 56 G. Russo, 38 D. Sahoo, 101 H. Sahoo, 62 T. Saito, 106 Y. Sakai, 22, 18 M. Salehi, 58, 56 S. Sandilya, 9 D. Santelj, 9 L. Santelj, 22 T. Sanuki, 106 J. Sasaki, 108 N. Saso, 50 Y. Sato, 66 V. Savinov, 84 T. Schlüter, 56 O. Schneider, 53 G. Schnell, 1, 26 P. Schönmeier, 106 M. Schram, 81 C. Schwanda, 35 A. J. Schwartz, 9 B. Schwenker, 17 R. Seidl, 89 Y. Seino, 76 D. Semmler, 15 K. Senyo, 115 O. Seon, 66 I. S. Seong, 21 M. E. Sevior, 61 L. Shang, 34 M. Shapkin, 36 V. Shebalin, 5, 78 C. P. Shen, 2 T.-A. Shibata, 109 H. Shibuya, 104 S. Shinomiya, 80 J.-G. Shiu, 73 B. Shwartz, 5, 78 A. Sibidanov, 99 F. Simon, 60, 102 J. B. Singh, 82 R. Sinha, 37 A. Sokolov, 30 Y. Soloviev, 10 E. Solovieva, 54, 65 S. Stanič, 77 M. Starič, 41 M. Stedler, 10 Z. Stottler, 113 J. F. Strube, 51 J. Stypula, 74 S. Sugihara, 108 A. Sugiyama, 90 M. Sumihama, 16 K. Sumisawa, 22, 18 T. Sumiyoshi, 110 W. Sutcliffe, 43 K. Suzuki, 66 K. Suzuki, 97 S. Suzuki, 90 S. Y. Suzuki, 22 Z. Suzuki, 106 H. Takeichi, 66 M. Takizawa, 94, 23, 88 U. Tamponi, 39 M. Tanaka, 22, 18 S. Tanaka, 22, 18 K. Tanida, 40 N. Taniguchi, 22 Y. Tao, 12 G. N. Taylor, 61 F. Tentchini, 61 Y. Teramoto, 79 I. Tikhomirov, 64 K. Trabelsi, 22, 18 T. Tsuboyama, 22, 18 M. Uchida, 109 T. Uchida, 22 I. Ueda, 22 S. Uehara, 22, 18 T. Ugo, 54, 65 Y. Unno, 20 S. Uno, 22, 18 P. Urquijo, 61 Y. Ushiroda, 22, 18 Y. Usov, 5, 78 S. E. Vahsen, 21 R. Van Tonder, 43 C. Van Hulse, 1 P. Vanhoefer, 60 G. Varner, 21 K. E. Varvell, 99 K. Vervink, 53 A. Vinokurova, 5, 78 V. Vorobyev, 5, 78 A. Vossen, 11 M. N. Wagner, 15 E. Waheed, 61 B. Wang, 9 C. H. Wang, 72 M.-Z. Wang, 73 P. Wang, 34 X. L. Wang, 14 M. Watanabe, 76 Y. Watanabe, 42 S. Watanuki, 106 R. Wedd, 61 S. Wehle, 10 E. Widmann, 97 J. Wiechczynski, 74 K. M. Williams, 113 E. Won, 49 B. D. Yabsley, 99 S. Yamada, 22 H. Yamamoto, 106 Y. Yamashita, 75 S. Yashchenko, 10 H. Ye, 10 J. Yelton, 12 J. H. Yin, 34 Y. Yoo, 116 C. Z. Yuan, 34 Y. Yusa, 76 S. Zakharov, 54, 65 C. C. Zhang, 34 L. M. Zhang, 91 Z. P. Zhang, 91 L. Zhao, 91 V. Zhilich, 5, 78 V. Zhukova, 54, 64 V. Zhulanov, 5, 78 T. Zivko, 41 A. Zupanc, 55, 41 and N. Zwahlen53

(The Belle Collaboration)

1 University of the Basque Country UPV/EHU, 48080 Bilbao
2 Beihang University, Beijing 100191
3 University of Bonn, 53115 Bonn
4 Brookhaven National Laboratory, Upton, New York 11973
5 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
6 Faculty of Mathematics and Physics, Charles University, 121 16 Prague
7. Chiba University, Chiba 263-8522
8. Chonnam National University, Kwangju 660-701
9. University of Cincinnati, Cincinnati, Ohio 45221
10. Deutsches Elektronensynchrotron, 22607 Hamburg
11. Duke University, Durham, North Carolina 27708
12. University of Florida, Gainesville, Florida 32611
13. Department of Physics, Fu Jen Catholic University, Taipei 24205
14. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
15. Justus-Liebig-Universität Gießen, 35392 Gießen
16. Gifu University, Gifu 501-1193
17. II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
18. SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
19. Gyeongsang National University, Chinju 660-701
20. Hanyang University, Seoul 133-791
21. University of Hawaii, Honolulu, Hawaii 96822
22. High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
23. J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
24. Forschungszentrum Jülich, 52425 Jülich
25. Hiroshima Institute of Technology, Hiroshima 731-5193
26. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
27. University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
28. Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
29. Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
30. Indian Institute of Technology Guwahati, Assam 781039
31. Indian Institute of Technology Hyderabad, Telangana 502285
32. Indian Institute of Technology Madras, Chennai 600036
33. Indiana University, Bloomington, Indiana 47408
34. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
35. Institute of High Energy Physics, Vienna 1050
36. Institute for High Energy Physics, Protvino 142281
37. Institute of Mathematical Sciences, Chennai 600113
38. INFN - Sezione di Napoli, 80126 Napoli
39. INFN - Sezione di Torino, 10125 Torino
40. Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
41. J. Stefan Institute, 1000 Ljubljana
42. Kansai University, Yokohama 221-8686
43. Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
44. Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
45. Kennesaw State University, Kennesaw, Georgia 30144
46. King Abdulaziz City for Science and Technology, Riyadh 11442
47 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
48 Korea Institute of Science and Technology Information, Daejeon 305-806
49 Korea University, Seoul 136-713
50 Kyoto University, Kyoto 606-8502
51 Kyungpook National University, Daegu 702-701
52 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay
53 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
54 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
55 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
56 Ludwig Maximilians University, 80539 Munich
57 Luther College, Decorah, Iowa 52101
58 University of Malaya, 50603 Kuala Lumpur
59 University of Maribor, 2000 Maribor
60 Max-Planck-Institut für Physik, 80805 München
61 School of Physics, University of Melbourne, Victoria 3010
62 University of Mississippi, University, Mississippi 38677
63 University of Miyazaki, Miyazaki 889-2192
64 Moscow Physical Engineering Institute, Moscow 115409
65 Moscow Institute of Physics and Technology, Moscow Region 141700
66 Graduate School of Science, Nagoya University, Nagoya 464-8602
67 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
68 Università di Napoli Federico II, 80055 Napoli
69 Nara University of Education, Nara 630-8528
70 Nara Women’s University, Nara 630-8506
71 National Central University, Chung-li 32054
72 National United University, Miaoli 36003
73 Department of Physics, National Taiwan University, Taipei 10617
74 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
75 Nippon Dental University, Niigata 951-8580
76 Niigata University, Niigata 950-2181
77 University of Nova Gorica, 5000 Nova Gorica
78 Novosibirsk State University, Novosibirsk 630090
79 Osaka City University, Osaka 558-8585
80 Osaka University, Osaka 565-0871
81 Pacific Northwest National Laboratory, Richland, Washington 99352
82 Panjab University, Chandigarh 160014
83 Peking University, Beijing 100871
84 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
85 Punjab Agricultural University, Ludhiana 141004
86 Research Center for Electron Photon Science, Tohoku University, Sendai 980-8578
87 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
88 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
89 RIKEN BNL Research Center, Upton, New York 11973
90 Saga University, Saga 840-8502
Abstract

We report the measurement of the branching fraction and final-state asymmetry for the $B^0(B^0) \rightarrow K^0_S K^{\pm} \pi^{\mp}$ decays. The analysis is based on a data sample of 711 fb$^{-1}$ collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We obtain a branching fraction of $(3.60 \pm 0.33 \pm 0.15) \times 10^{-6}$ and a final-state asymmetry of $(-8.5 \pm 8.9 \pm 0.2)\%$, where the first uncertainties are statistical and the second are systematic. Hints of peaking structures are observed in the differential branching fraction plotted as functions of Dalitz variables.

PACS numbers: 14.40.Nd, 13.20.Hw, 13.25.-k, 11.30.Er
Three-body charmless hadronic B decays are suppressed in the standard model (SM) and are also sensitive to localized CP violation in the phase space $[1, 2]$. The $B^0(B^0) \rightarrow K_S^0 K^\pm \pi^\mp$ [3] decays with even number of kaons have a smaller decay rate compared to the cases with odd number of kaons. These proceed via the $b \rightarrow u$ tree-level, the $b \rightarrow u$ W-exchange, and the $b \rightarrow d$ penguin process with a virtual loop, which provides an opportunity to search for physics beyond the SM since new heavy particles may cause deviations from SM predictions.

Previous measurements by the BaBar [4, 5] and LHCb [6–8] experiments find hints of structures at the low $K^−\pi^+$ and $K^-K_S^0$ regions that have highly asymmetric helicity angular distributions. However, the yield is not enough to draw firm conclusions with a full Dalitz analysis. Similar studies on $B^+ \rightarrow K^+K^-\pi^+$ were performed by Belle [9], BaBar [10], and LHCb [11, 12], in which strong evidence of localized CP violation was found in the low $M_{K^+K^-}$ region.

By using the full data set of Belle, we expect to measure the branching fraction and final-state asymmetry of $B^0(B^0) \rightarrow K_S^0 K^\pm \pi^\mp$ decays more precisely. Using charges of final-state particles, the latter is defined as

$$A = \frac{N(K_S^0 K^- \pi^+)}{N(K_S^0 K^+ \pi^-)} - \frac{N(K_S^0 K^+ \pi^-)}{N(K_S^0 K^- \pi^+)}$$ \ (1)

where N denotes the measured signal yield of the corresponding B final states. A is distinct from the direct CP asymmetry; rather it is an asymmetry between the decay final states of $K^0K^−\pi^+$ and $K^0K^+\pi^-$ where $K^0(K^0)$ leads to K_S^0. We measure A as the measurement of direct CP asymmetry based on flavor tagging won’t be so precise. Only about 30% of events can be effectively flavor-tagged, which would be further affected by B^0-\bar{B}^0 mixing. In addition, we use the “Plot [13]” method to obtain the background-subtracted yields for the Dalitz variables $M_{K^-\pi^+}$, $M_{\pi^+K_S^0}$, and $M_{K^-K_S^0}$, and hence determine their differential branching fractions. The total branching fraction is extracted by integrating the differential branching fraction.

Our measurements are obtained from a data sample of 711 fb$^{-1}$, corresponding to 772×10^6 $B\bar{B}$ pairs, collected with the Belle detector [14] operating at the KEKB asymmetric-energy e^+e^- collider [15]. The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF) and an electromagnetic calorimeter comprised of CsI(Tl) crystals, all located inside a superconducting solenoid that provides a 1.5 T magnetic field. An iron flux-return yoke located outside the solenoid is instrumented to detect K^0_L mesons and muons. The detector is described in detail elsewhere [14].

This analysis uses the data sets with two different inner-detector configurations. About 140 fb$^{-1}$ were collected with a beam-pipe of radius 2.0 cm and with 3 layers of SVD, while the rest of the data set was recorded with a beam-pipe of radius 1.5 cm and 4 layers of SVD [16]. Large samples Monte Carlo (MC) events for signal and backgrounds are generated with EvtGen [17] and subsequently simulated with GEANT3 [18] with the configurations of the Belle detector. These samples are used to obtain expected distributions of various physical quantities for signal and backgrounds, to optimize selection criteria as well as to determine the signal detection efficiency.

The selection criteria for the final-state charged particles in the $\bar{B}^0(B^0) \rightarrow K_S^0 K^\pm \pi^\mp$ reconstruction are based on information obtained from the tracking systems (SVD and
mesons and K^0_S sample in which the branching fractions are much larger than the measured or expected exclusion limits. They are mainly due to the two-body decays $J/\psi \rightarrow K^-\pi^+$ and $J/\psi \rightarrow \mu^+\mu^-$. These decays can be identified by peaks at the nominal decay, and the identification is enhanced by using a neural network (NN) which combines seven kinematic variables of the reconstructed B meson. The B candidates are required to have $M_{bc} > 5.255$ GeV/c^2 and $|\Delta E| < 0.15$ GeV, and the signal region is defined as 5.272 GeV/$c^2 < M_{bc} < 5.288$ GeV/c^2 and $|\Delta E| < 0.05$ GeV. We require a vertex fit for $B^0(B^0) \rightarrow K^+K^-\pi^+\pi^-$ candidates with $\chi^2 < 100$. We find that 9% of events have more than one B candidates. In those cases, we choose the one with the smallest χ^2 value. Our best B selection method chooses the correct candidate in 99% of cases.

The dominant background arises from the continuum $e^+e^- \rightarrow q\bar{q}$ ($q = u,d,s,c$) process. To suppress this, we construct a Fisher discriminant from 17 modified Fox-Wolfram moments. To further improve the distinguishing power, we combine the output of the Fisher discriminant with four more variables in a NN. These are: the cosine of the angle between the reconstructed B flight direction and the beam direction in the CM frame, the offset between the vertex of the reconstructed B and that of the rest of the tracks' vertex along the z axis, the cosine of the angle between the thrust axis of the reconstructed B and that of the rest of the event in the CM frame, and a B meson flavor tagging quality variable. The NN is trained with signal and continuum MC samples. The NN output (C_{NN}) ranges from -1 to 1, and it is required to be greater than 0.7. This removes 93% of continuum background while 82% of the signal is retained. We transform C_{NN} to $C'_{NN} \equiv \log(C_{NN}/C_{NN}^\text{min})$, where C_{NN}^min is 0.7 and C_{NN}^max is the maximum value of C_{NN}.

Background events from B decays mediated via the $b \rightarrow c$ transition (generic B decays) exhibit peaking structures in the signal region. They are mainly due to the two-body decays of D mesons and J/ψ, e.g., $D^0 \rightarrow K^-\pi^+$, $D^- \rightarrow K^-K^0_S$, $D^+_s \rightarrow K^-K^0_S$, $J/\psi \rightarrow e^+e^-$, and $J/\psi \rightarrow \mu^+\mu^-$. These decays can be identified by peaks at the nominal D and J/ψ mass in the distributions of the invariant masses of two of the final-state particles ($M_{K^-\pi^+}$, $M_{\pi^+K^0_S}$, $M_{K^-K^0_S}$, and the cases with changing the masses hypothesis of charged kaon or pion). We exclude the events within 4σ of the peaking structures to suppress the contributions from D mesons and J/ψ.

The rare B background coming from $b \rightarrow u,d,s$ transitions is studied with a large MC sample in which the branching fractions are much larger than the measured or expected value. Two modes are found to have peaks near the ΔE signal region: $B^0 \rightarrow K^-K^+K^0_S$ and $B^0 \rightarrow \pi^-\pi^+K^0_S$, including their intermediate resonant modes. Rest of the rare B events...
have a relatively flat ΔE distribution.

The signal yield and A are extracted from a three-dimensional extended unbinned maximum likelihood fit, with the likelihood defined as

$$L = \frac{e^{-\sum_j N_j}}{N!} \prod_{i=1}^{N} \left(\sum_j N_j P_j^i \right),$$

where,

$$P_j^i = \frac{1}{2} (1 - q^i \cdot A_j) \times \left(M_{bc}^i \Delta E^i, C_{NN}^i \right),$$

N is the total number of candidate events, N_j is the number of events in category j, i denotes event index, q^i is the charge of K^\pm in the i-th event, A_j is the value of final-state asymmetry of the j-th category, P_j represents the value of the corresponding three-dimensional probability density function (PDF), and $M_{bc}^i, \Delta E^i,$ and C_{NN}^i are the $M_{bc}, \Delta E,$ and C_{NN} value of the i-th event, respectively.

With all the selection criteria applied, the signal MC sample contains 98% of the correctly-reconstructed signal B events (‘true’ signal) and 2% self-crossfeed (scf) events. In the fit, the ratio of scf to true signal events is fixed. The signal yield (N_{sig}) is the combined yield of the two PDFs. In addition to the signal part, five more categories are included in the fit: continuum background, generic B background, $B^0 \rightarrow K^- K^+ K_S^0, B^0 \rightarrow \pi^- \pi^+ K_S^0,$ and the rest of the rare B background. The true signal PDF is described by a product of a sum of two Gaussian functions in M_{bc}, a sum of three Gaussian functions in ΔE, and an asymmetric Gaussian function in C_{NN}. These signal PDF shapes are calibrated including possible data-MC differences obtained from study of the control mode: $B^0 \rightarrow D^- \pi^+$ with $D^- \rightarrow K_S^0 \pi^-$. The continuum background PDF PDF is described by a product of an ARGUS function [25] in M_{bc}, a second-order polynomial in ΔE, and a combination of a Gaussian and an asymmetric Gaussian function in C_{NN}. The shape parameters of the continuum background PDF are free in the data fit, except for the ARGUS end-point which is fixed to 5.2892 GeV/c^2. For the others (scf, generic B, $B^0 \rightarrow K^- K^+ K_S^0, B^0 \rightarrow \pi^- \pi^+ K_S^0,$ and rare B), their PDFs are described by a smoothed histogram in ΔE and M_{bc}, and an asymmetric Gaussian function in C_{NN} whose shape is based on MC. The yield of each category is floated. Except for the signal, A is fixed to zero for the other categories.

The projections of the fit are shown in Fig. We obtain a signal yield of 490_{-45}^{+46} with a statistical significance of 13 standard deviations, and an A of $(8.5 \pm 8.9)\%$. The significance is defined as $\sqrt{\text{2ln}(L_0/L_{\text{max}})}$, where L_0 and L_{max} are the likelihood values obtained by the fit with and without the signal yield fixed to zero, respectively.

The branching fraction is calculated using

$$B = \frac{N_{\text{sig}}}{\epsilon \times \eta \times N_{B\bar{B}}},$$

where $N_{\text{sig}}, N_{B\bar{B}}, \epsilon,$ and η are the fitted signal yield, the number of $B\bar{B}$ pairs ($= 772 \times 10^6$), the reconstruction efficiency of signal, and the efficiency calibration factor, respectively. The last quantity contains calibrations due to various systematic effects: $\eta = \eta_K \times \eta_\pi \times \eta_{NN} \times \eta_{\text{fit}},$ where $\eta_K(= 0.9948 \pm 0.0083)$ and $\eta_\pi(= 0.9512 \pm 0.0079)$ are the corrections due to the K^\pm and π^\pm identification with requirement on L_K and $L_\pi,$ and are obtained by the control sample study of $D^{\ast+} \rightarrow D^0 \pi^+$ with $D^0 \rightarrow K^+ \pi^-$, $\eta_{NN}(= 0.9897 \pm 0.0208)$ is due to the requirement on C_{NN} and is obtained by the $B^0 \rightarrow D^- \pi^+$ with $D^- \rightarrow K_S^0 \pi^-$ control sample.
study, and $\eta_{\text{fit}} (= 1.022 \pm 0.004)$ is due to fit bias and is obtained by ensemble test on the fitter. The reconstruction efficiency for the signal (ϵ) is $(26.7 \pm 0.03)\%$ with all the selection criteria applied.

Figure 2 shows the background-subtracted Dalitz plot obtained with the $sPlot$ method. There seem to be some structures around the region of 2 GeV/c^2 < M_{bc} < 5.288 GeV/c^2 and 0 < C_{NN}' < 5. (b) M_{bc} in $|\Delta E| < 0.05$ GeV and 0 < C_{NN}' < 5. (c) C_{NN}' in $|\Delta E| < 0.05$ GeV and and 5.272 GeV/c^2 < M_{bc} < 5.288 GeV/c^2.

![Figure 1](image1)

FIG. 1: Projections of the fit results of $\bar{B}^0(B^0) \rightarrow K_S^0 K^{\mp+}$ decay on ΔE, M_{bc}, and C_{NN}'. (a) ΔE in 5.272 GeV/c^2 < M_{bc} < 5.288 GeV/c^2 and 0 < C_{NN}' < 5. (b) M_{bc} in $|\Delta E| < 0.05$ GeV and 0 < C_{NN}' < 5. (c) C_{NN}' in $|\Delta E| < 0.05$ GeV and 5.272 GeV/c^2 < M_{bc} < 5.288 GeV/c^2.

Sources of various systematic uncertainties on the branching fraction calculation are shown in Table I. The uncertainty due to the total number of $B\bar{B}$ pairs is 1.4%. The uncertainty due to the charged-track reconstruction efficiency is estimated to be 0.35% per track by using the partially reconstructed $D^{\mp+} \rightarrow D^0 \pi^+$ with $D^0 \rightarrow \pi^+\pi^-K_S^0$ events. The uncertainty due to the K^{\pm} and π^{\pm} identification are obtained by the control sample study of $D^{\mp+} \rightarrow D^0 \pi^+$ with $D^0 \rightarrow K^+\pi^-$. The uncertainty due to the $K_S^0 \rightarrow \pi^+\pi^-$ branching fraction is based on the world average value $(69.2 \pm 0.05)\%$ [24]. The uncertainty due to K_S^0 identification is estimated to be 1.6% based on a control sample of $D^{\mp+} \rightarrow D^0 \pi^+$ with $D^0 \rightarrow K_S^0\pi^0$. The uncertainty due to continuum suppression with the requirement on C_{NN} and is obtained by the $B^0 \rightarrow D^-\pi^+$ with $D^- \rightarrow K_S^0\pi^-$ control sample study. The

![Image 2](image2)

![Image 3](image3)
uncertainty of the reconstruction efficiency is estimated due to limited MC statistics. The uncertainty due to the fixed signal and background PDF shapes is estimated by the deviation of fitted signal yield with varying the conditions of those PDFs in different cases. For all the smoothed histograms, we vary the binning conditions of those histograms. For the other PDFs with fixed parameterization, the fixed parameters are randomized by using Gaussian random number to repeat data fits with various parameter sets, and the uncertainty of the yield distribution is quoted. The uncertainty due to fit bias is obtained by ensemble test on the fitter.

Sources of various systematic uncertainties on \mathcal{A} are listed in Table III. The uncertainty due to K^\pm and π^\pm detection bias are obtained by control sample studies of $D^+ \to \phi\pi^+$ and $D_s^+ \to \phi\pi^+$ [26], and $D^+ \to K^0_S\pi^+$ [27], respectively. The uncertainty due to the fixed signal and background PDF shapes is using the same way as the one for the uncertainty on branching fraction. It is also estimated by the deviation of fitted \mathcal{A} with varying the conditions of those PDFs in different cases.

In conclusion, we have performed a measurement of branching fraction and \mathcal{A} of the
eff. Yield 31
0.292 122 0.237 152 13 (GeV/
M 1.1 2.5 1.1 π 3.5 K
2.5 0.289 47.5 ± 20.5 ± 2.0 3.2 ± 1.4 ± 0.1 9.4 ± 14.3 ± 0.4 38.1 ± 14.7 ± 1.6 1.3 ± 1.9 ± 0.1 5.2 ± 2.0 ± 0.2
π

FIG. 4: Differential branching fraction as functions of the $M_{K^-\pi^+}$, $M_{K^-K^0_S}$, and $M_{\pi+K^0_S}$ for the two reconstructed B final states: $K^0_S K^-\pi^+$ (red error bar) and $K^0_S K^+\pi^-$ (blue error bar).

TABLE I: Signal yields, efficiency, and differential branching fraction in each $M_{K^-\pi^+}$, $M_{K^-K^0_S}$, and $M_{\pi+K^0_S}$ bin.

$K^0_S K^+\pi^+$ yield	$K^0_S K^+\pi^-$ yield	$K^0_S K^+\pi^-$ yield
$M_{K^-\pi^+}$	$M_{K^-K^0_S}$	$M_{\pi+K^0_S}$
0~1.1	0.301 69.2 ± 18.0 ± 3.0 4.1 ± 1.1 ± 0.2	40.3 ± 12.7 ± 1.7 28.9 ± 12.8 ± 1.2 4.5 ± 1.5 ± 0.2 3.4 ± 1.5 ± 0.1
1.1~1.5	0.306 71.3 ± 17.8 ± 3.1 11.4 ± 2.8 ± 0.5	31.4 ± 12.3 ± 1.4 39.9 ± 12.9 ± 1.7 10.0 ± 3.9 ± 0.4 12.8 ± 4.1 ± 0.5
1.5~2.5	0.289 47.5 ± 20.5 ± 2.0 3.2 ± 1.4 ± 0.1	9.4 ± 14.3 ± 0.4 38.1 ± 14.7 ± 1.6 1.3 ± 1.9 ± 0.1 5.2 ± 2.0 ± 0.2
2.5~3.5	0.262 149.7 ± 21.7 ± 6.4 11.2 ± 1.6 ± 0.5	56.5 ± 14.6 ± 2.4 93.2 ± 16.1 ± 4.0 8.4 ± 2.2 ± 0.4 13.9 ± 2.4 ± 0.6
>3.5	0.237 152.7 ± 22.0 ± 6.6 7.4 ± 1.1 ± 0.3	79.9 ± 15.5 ± 3.4 72.8 ± 15.5 ± 3.1 7.8 ± 1.5 ± 0.3 7.1 ± 1.5 ± 0.3

$\bar{B}^0(B^0) \to K^0_S K^-\pi^+\pi^-$ decay based on a data sample of 711 fb$^{-1}$ collected by Belle. We obtain a branching fraction of $(3.60 \pm 0.33 \pm 0.15) \times 10^{-6}$ and an A of $(−8.5 \pm 8.9 \pm 0.2)\%$, where their first uncertainty is statistical and the second is systematic. The measured A is consistent with null asymmetry. Hints of peaking structures are seen around a region of 2 GeV2/c$^4 > M_{K^-K^0_S}^2$ and 7 GeV2/c$^4 < M_{\pi+K^0_S}^2 < 23$ GeV2/c4 in the Dalitz plot. A cross-check is done by the differential branching fraction with projecting on each Dalitz variable, and hints of peaking resonances are seen at around 1.2 GeV/c2 of $M_{K^-K^0_S}$ and around 4.2 GeV/c2 of $M_{\pi+K^0_S}$ when compared to the phase space MC. No obvious K^* structure is seen at both the low $M_{K^-\pi^+}$ and $M_{\pi+K^0_S}$ spectrum, which is also consistent with the BaBar and LHCb results [3, 7, 8]. No localized final-state asymmetry is observed. In the near
TABLE II: Summary of systematic uncertainties on the branching fraction.

Source	in %
$N_{B\bar{B}}$	1.4
Tracking	0.7
K^\pm identification	0.8
π^\pm identification	0.8
$\mathcal{B}(K_S^0 \to \pi^+\pi^-)$	0.1
$K_S^0 \to \pi^+\pi^-$ identification	1.6
Continuum suppression with NN	2.1
Reconstruction efficiency (MC statistics)	0.1
Signal PDF	2.7
Background PDF	0.4
Fit bias	0.4
Total	**4.3**

TABLE III: Summary of systematic uncertainties on A.

Source	in %
Detector bias	0.6
Signal PDF	2.7
Background PDF	0.9
Total	**2.9**

future, the experiments with large data sets such as Belle II and LHCb can provide more detailed analysis employing a full Dalitz analysis to search for the intermediate resonances and localized final-state asymmetry.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grant No. P 22742-N16 and P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, No. 11475187 and No. 11575017; the Chinese Academy of Science Center for Excellence in Particle Physics; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the WCU program of the Ministry of Education, National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-
0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286,
No. 2014R1A2A2A01002734, No. 2015R1A2A2A01003280, No. 2015H1A2A1033649; the
Basic Research Lab program under NRF Grant No. KRF-2011-0020333, Center for Ko-
orean J-PARC Users, No. NRF-2013K1A3A7A06056592; the Brain Korea 21-Plus program
and Radiation Science Research Institute; the Polish Ministry of Science and Higher Edu-
cation and the National Science Center; the Ministry of Education and Science of the
Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research
Agency; Ikerbasque, Basque Foundation for Science and the Euskarri Unibertsitatea
(UPV/EHU) under program UFI 11/55 (Spain); the Swiss National Science Foundation; the
Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S.
Department of Energy and the National Science Foundation. This work is supported by a
Grant-in-Aid from MEXT for Science Research in a Priority Area (“New Development of
Flavor Physics”) and from JSPS for Creative Scientific Research (“Evolution of Tau-lepton
Physics”).

[1] I. Bediaga et al., Phys. Rev. D 80, 096006 (2009).
[2] I. Bediaga et al., Phys. Rev. D 86, 036005 (2012).
[3] Throughout this paper, inclusion of charge-conjugate decay modes is always implied.
[4] P. del Amo Sanchez et al., (BABAR Collaboration) Phys. Rev. D 82, 031101 (2010).
[5] B. Aubert et al., (BABAR Collaboration) Phys. Rev. D 74, 072008 (2016).
[6] Aaij, R., Adeva, B. et al., (LHCb Collaboration) J. High Energy Phys. 11 (2017) 027
[7] Aaij, R., Adeva, B. et al., (LHCb Collaboration) New Journal of Physics. 16 (2014) 123001
[8] Aaij, R., Adeva, B. et al., (LHCb Collaboration) J. High Energy Phys. 01 (2016) 012
[9] C.-L. Hsu et al., (Belle Collaboration) Phys. Rev. D 96, 031101 (2017).
[10] B. Aubert et al., (BABAR Collaboration) Phys. Rev. Lett. 99, 221801 (2007).
[11] R. Aaij et al., (LHCb Collaboration) Phys. Rev. Lett. 112, 011801 (2014).
[12] R. Aaij et al., (LHCb Collaboration) Phys. Rev. D 90, 112004 (2014).
[13] M. Pivk and F R. Le Diberder, arXiv:physics/0402083.
[14] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 479,
117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. (2012)
04D001.
[15] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res. Sect. A 499, 1 (2003), and
other papers included in this Volume; T.Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001
(2013) and references therein.
[16] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instrum. Methods Phys. Res. Sect. A 560, 1
(2006).
[17] D. J. Lange et al., Nucl. Instrum. Methods Phys. Res. Sect. A 462, 152 (2001).
[18] R. Brun et al., GEANT 3.21, CERN Report No. DD/EE/84-1 (1987).
[19] M. Feindt and U. Kerzel, Nucl. Instrum. and Methods in Phys. Res., Sect. A 559 190 (2006).
[20] N. Dash et al. (Belle Collaboration), Phys. Rev. Lett. 119, 171801 (2017).
[21] R. A. Fisher, Annals of Human Genetics 7, 179 (1936); also available at
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
[22] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The modified moments used in
this paper are described in, S.H. Lee et al. (Belle Collab.), Phys. Rev. Lett. 91, 261801 (2003).
[23] S. Brandt, C. Peyrou, R. Sosnowski, and A. Wroblewski, Phys. Lett. 12, 57 (1964).
[24] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 010001 (2018).
[25] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[26] M. Starič et al. (Belle Collaboration), Phys. Rev. Lett. 108, 071801 (2012).
[27] B. R. Ko et al. (Belle Collaboration), Phys. Rev. Lett. 109, 021601 (2012).