Supplementary Figure 1: Principal component analysis (PCA) of the RNA sequencing output. The PCA plot for the variance-stabilized transformation of the DESeq2 object was calculated on the basis of 1,000 top genes. We removed one replicate of 2003.9LB DESeq2 analysis because visualization revealed a shift on PC1 and PC2.
Supplementary Figure 2: Heatmap of differentially expressed genes (n = 459). Most important genes are shown on the left. The regularized log transformation function (rlog) from DESeq2 was used to convert counts to the log2 scale for better visualization.
Supplementary Figure 3: Venn diagram of differentially expressed genes in 2003.2LB, 2003.2MH-2, 2003.9LB, and 2003.9MH-2. The Venn diagram shows the number of upregulated (black) and downregulated (white) genes in the four adapted variants. The visualization was created using ggvenn v.0.1.9.
Supplementary Figure 4: Summary of the results of differential gene expression analysis of 2003.2, 2003.2LB, and 2003.2MH-2. a,b Functional classification of differentially expressed genes of 2003.2LB (a) and 2003.2MH-2 (b) each compared to 2003.2 based on the Clusters of Orthologous Groups (COG) database. c Correlation analysis between 2003.2LB (y-axis) and 2003.2MH-2 (x-axis). Similar gene expression profiles in the upper-right and lower-left corners indicate transcriptomic changes independent of the chosen broth medium. The most important genes are highlighted and classified according to COG.
Supplementary Figure 5: Summary of the results of differential gene expression analysis of 2003.9, 2003.9LB, and 2003.9MH-2. a,b Functional classification of differentially expressed genes of 2003.9LB (a) and 2003.9MH-2 (b) each compared to 2003.9 based on the Clusters of Orthologous Groups (COG) database. c Correlation analysis between 2003.9LB (y-axis) and 2003.9MH-2 (x-axis). Similar gene expression profiles in the upper-right and lower-left corners indicate transcriptomic changes independent of the chosen broth medium. The most important genes are highlighted and classified according to COG.
Supplementary Table 1: Results of phenotypic antimicrobial susceptibility testing.

Interpretive categories according to EUCAST (The European Committee on Antimicrobial Susceptibility Testing 2021: Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0.).

For susceptibility testing purposes, the concentration of the β-lactamase inhibitor is fixed at 4 mg/L.

Ceftazidime:aztreonam in the ratio 1:1 was used. MIC: minimum inhibitory concentration; n.a.: not applicable; R: resistant; S: susceptible.

Antimicrobials	PBIO2003 (wild-type)	2003.2	2003.2\(^{2}\)*	2003.3\(^{2}\)*	2003.9	2003.9\(^{2}\)*	2003.9\(^{2}\)*	
	MIC [µg/mL]	S/R*	MIC [µg/mL]	S/R*	MIC [µg/mL]	S/R*	MIC [µg/mL]	S/R*
Ampicillin	> 32	R	> 32	R	> 32	R	> 32	R
Ampicillin-sulbactam\(^{b}\)	> 32	R	> 32	R	> 32	R	> 32	R
Piperacillin	> 128	R	> 128	R	> 128	R	> 128	R
Piperacillin-tazobactam\(^{a}\)	> 128	R	> 128	R	> 128	R	> 128	R
Cefuroxime	> 64	R	> 64	R	> 64	R	> 64	R
Cefotaxime	> 64	R	> 64	R	> 64	R	> 64	R
Cefpodoxime	> 8	R	> 8	R	> 8	R	> 8	R
Cefazidime	> 64	R	> 64	R	> 64	R	> 64	R
Ceftriaxime-avibactam\(^{b}\)	0.5	R	> 16	R	> 16	R	> 16	R
Aztreonam	> 128	R	> 128	R	> 128	R	> 128	R
Ceftriaxime-avibactam:aztreonam\(^{b}\)	> 0.0625/0.0625 n.a.	> 64/64 n.a.						
Ertapenem	> 8	R	> 8	R	> 8	R	> 8	R
Imipenem	> 16	R	> 16	R	> 16	R	> 16	R
Meropenem	> 16	R	> 16	R	> 16	R	> 16	R
Ciprofloxacin	> 4	R	> 4	R	> 4	R	> 4	R
Moxifloxacin	> 8	R	> 8	R	> 8	R	> 8	R
Gentamicin	> 16	R	> 16	R	> 16	R	> 16	R
Trimethoprim-sulfamethoxazole	≤ 20	S	≤ 20	S	≤ 20	S	≤ 20	S
Tigecycline	2	R	2	R	2	R	2	R
Colistin	16	R	16	R	0.5	S	16	R
Chloramphenicol	8	S	8	S	8	S	8	S