CD40 ligand induces RIP1-dependent, necroptosis-like cell death in low-grade serous but not serous borderline ovarian tumor cells

X Qiu1, C Klausen1, J-C Cheng1 and PC K Leung*1

Ovarian high-grade serous carcinomas (HGSCs) and invasive low-grade serous carcinomas (LGSCs) are considered to be distinct entities. In particular, LGSCs are thought to arise from non-invasive serous borderline ovarian tumors (SBOTs) and show poor responsiveness to conventional chemotherapy. The pro-apoptotic effects of CD40 ligand (CD40L) have been demonstrated in HGSC, though the underlying mechanisms are not fully understood. Conversely, the therapeutic potential of the CD40L-CD40 system has yet to be evaluated in LGSC. We now show that CD40 protein is focally expressed on tumor cells in two of five primary LGSCs compared with no expression in eight primary SBOTs. Treatment with CD40L or agonistic CD40 antibody decreased the viability of LGSC-derived MPSC1 and VOA1312 cells, but not SBOT3.1 cells. Small interfering RNA (siRNA) targeting CD40 was used to show that it is required for these reductions in cell viability. CD40L treatment increased cleaved caspase-3 levels in MPSC1 cells though, surprisingly, neither pan-caspase inhibitor nor caspase-3 siRNA reversed or even attenuated CD40L-induced cell death. In addition, CD40-induced cell death was not affected by knockdown of the mitochondrial proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG). Interestingly, CD40L-induced cell death was blocked by necrostatin-1, an inhibitor of receptor-interacting protein 1 (RIP1), and attenuated by inhibitors of RIP3 (GSK872) or MLKL (mixed lineage kinase domain-like; necrosulfonamide). Our results indicate that the upregulation of CD40 may be relatively common in LGSC and that CD40 activation induces RIP1-dependent, necroptosis-like cell death in LGSC cells.

Cell Death and Disease (2015) 6, e1864; doi:10.1038/cddis.2015.229; published online 27 August 2015

Epithelial ovarian cancer accounts for approximately 90% of all ovarian malignancies and is the leading cause of gynecological cancer death in developed countries.1,2 Recently, differences in molecular alterations and clinicopathological features have established a dualistic model dividing ovarian serous carcinomas into high-grade serous carcinoma (HGSC) and low-grade serous carcinoma (LGSC) subtypes. HGSCs are more common and are thought to develop directly from the ovarian surface epithelium or from serous tubal intra-epithelial carcinomas in the fallopian tube. In contrast, LGSCs are rare and are generally considered to develop from benign serous cystadenomas through serous borderline ovarian tumors (SBOT). SBOTs are slow-growing, non-invasive epithelial neoplasms that have a better prognosis compared with other types of ovarian cancer.3-5 Our previous studies have shown that the inhibition of p53 or treatment of epidermal growth factor or transforming growth factor-β1 increases SBOT cell invasion by inducing epithelial–mesenchymal transition, which suggests a possible mechanism that mediates the progression from SBOT to LGSC.6-9 However, many of SBOTs recur as LGSCs that display poor responsiveness to conventional chemotherapy and for which survival rates are < 50%.1,3,10 Thus, the development of novel, targeted therapeutic strategies is likely required to significantly improve patient survival.

CD40, a transmembrane glycoprotein belonging to the tumor necrosis factor receptor superfamily, is expressed by a wide range of cell types including immune, endothelial and epithelial cells. Engagement of CD40 with its ligand, CD40L, has been shown to have important roles in a variety of physiological and pathological processes, especially in immunity.11,12 In addition, CD40 expression has been demonstrated in several types of cancer, including colon, lung, cervical, bladder and prostate cancer.13 However, reported functions of CD40 in tumor cells vary, with both pro-apoptotic and anti-proliferative effects observed depending on the cellular context.14-16 Alternatively, some studies have shown that CD40 activation may promote the neoplastic transformation and growth of normal cells.17-19 Expression of CD40 has been demonstrated in ovarian cancer cell lines and tumor samples, but not in normal ovarian tissue, suggesting that CD40 may have an important role in ovarian tumors.20-24 Indeed, CD40L-CD40 signaling has been shown to induce growth-inhibitory effects in HGSC cells,20,21,23-25 however, the therapeutic potential of CD40 in LGSC and SBOT has not been evaluated.

Abbreviations: AIF, apoptosis-inducing factor; CD40L, CD40 ligand; EndoG, endonuclease G; HGSCs, high-grade serous carcinomas; LGSCs, low-grade serous carcinomas; 1-MT, 1-methyl-L-tryptophan; RIP1, receptor-interacting protein 1; RIP3, receptor-interacting protein 3; MLKL, mixed lineage kinase domain-like; RT-qPCR, reverse transcription quantitative real-time PCR; SBOTs, serous borderline ovarian tumors; siRNA, small interfering RNA

Received 15.12.2014; revised 3.7.2015; accepted 15.7.2015; Edited by C Munoz-Pinedo
In the present study, we report for the first time elevated CD40 expression in a significant proportion of LGSCs compared with SBOTs. Moreover, CD40 expression is elevated in LGSC-derived MPSC1 and VOA1312 cells compared with SBOT3.1 cells, and CD40 activation induces cell death via CD40 only in LGSC-derived cells. Neither pan-caspase inhibitor nor caspase-3 small interfering RNA (siRNA) has any effect on CD40L-induced MPSC1 cell death. Moreover, CD40L-induced cell death was unaffected by individual or combined knockdown of the mitochondrial proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG). Interestingly, our results suggest that receptor-interacting protein 1 (RIP1), RIP3 and MLKL are involved in CD40-induced MPSC1 cell death. These results demonstrate that CD40 induces RIP1-dependent, necroptosis-like cell death in LGSC cells.

Results

Expression of CD40 in SBOT- and LGSC-derived cell lines and primary tumor samples. A previous study analyzing the DNA methylation profiles of ovarian serous neoplasms indicated that CD40 is hypomethylated in LGSCs compared with SBOTs, suggesting the expression of CD40 may be higher in LGSCs than in SBOTs. To test this hypothesis, we examined CD40 expression levels in SBOT-derived SBOT3.1 cells and LGSC-derived MPSC1 cells. CD40 mRNA (Figure 1a) and protein (Figure 1b) levels were higher in MPSC1 cells than in SBOT3.1 cells. As many CD40-expressing cells also express CD40L, we also examined the expression of CD40L in these two cell lines. As shown in Figure 1c, CD40L mRNA was undetectable in both SBOT3.1 and MPSC1 cells. These results suggest that both SBOT3.1 and MPSC1 cells express CD40, but that CD40 levels are much higher in LGSC-derived MPSC1 cells.

Next, we used western blot to measure CD40 protein levels in frozen tissues from eight SBOTs and five LGSCs. As shown in Figure 1d, CD40 protein levels were elevated in three of five LGSC samples compared with weak or no expression in the SBOT samples. To confirm CD40 expression in LGSC tumor cells, we immunostained matching sections from all eight SBOT samples. To further confirm that CD40 activation reduces the viability of LGSC cells, we examined the effects of CD40L on LGSC-derived VOA1312 cells which have CD40 protein levels similar to those of MPSC1 cells (Figure 2h). As shown in Figure 2i, VOA1312 cell viability was reduced following treatment for 72 h with 500 ng/ml agonistic CD40 antibody. To determine whether CD40 is required for CD40L-induced cell death in LGSC cells, we examined the effects of CD40L on cell viability following siRNA-mediated knockdown of endogenous CD40. Pre-treatment of MPSC1 cells for 24 h with CD40 siRNA significantly reduced CD40 protein levels (Figure 3a), and reversed the effects of subsequent treatment for 72 h with 500 ng/ml of either CD40L (Figures 3b and c) or agonistic CD40 antibody (Figures 3d and e) on cell viability as assessed by MTT or Trypan blue exclusion assays. In addition, knockdown of CD40 also reversed the effects of CD40L on cell viability in VOA1312 cells (Figure 3f).

Caspase-3 is activated during CD40L-induced MPSC1 cell death. Next, we sought to determine whether apoptosis, a well-known form of programmed cell death, was involved in CD40L-induced MPSC1 cell death. Cleavage and activation of caspase-3, a critical executioner caspase, is often associated with apoptotic cell death. Thus, we used western blot to measure cleaved caspase-3 levels in MPSC1 cells following treatment for 24 h with CD40L (100 or 500 ng/ml). CD40L treatment increased the levels of cleaved caspase-3 after 48 h in MPSC1 cells (Figure 4a). Consistent with our cell viability results, treatment of SBOT3.1 cells for 48 h with CD40L (100 or 500 ng/ml) did
not alter the levels of cleaved caspase-3 (Figure 4b). Importantly, CD40L-induced increases in cleaved caspase-3 levels were abolished by pre-treatment of MPSC1 cells for 24 h with CD40 siRNA (Figure 4c). These results indicate that CD40L/CD40 signaling can activate caspase-3 in LGSC-derived MPSC1 cells but not SBOT3.1 cells.

CD40L-induced MPSC1 cell death is caspase-independent. To determine whether activated caspase-3 is directly involved in CD40L-induced cell death, MPSC1 cell viability and cleaved caspase-3 levels were examined in the presence or absence of an irreversible pan-caspase inhibitor (Boc-D-FMK). Pre-treatment for 2 h with 20 μM Boc-D-FMK completely blocked CD40L-induced increases in cleaved caspase-3 levels (Figure 5a). Surprisingly, pre-treatment with Boc-D-FMK (20, 50 or 100 μM) did not reverse, or even attenuate, the effects of CD40L (500 ng/ml, 72 h) on cell viability as measured by MTT assay (Figure 5b). To confirm these findings, we examined the effects of CD40L on MPSC1 cell viability following siRNA-mediated knockdown of caspase-3. Pre-treatment for 24 h with caspase-3 siRNA significantly reduced pro-caspase-3 protein levels (Figure 5c), but did not alter the effects of subsequent treatment with CD40L (500 ng/ml, 72 h) on cell viability as measured by MTT or Trypan blue exclusion assays (Figures 5d and e). These results suggest that CD40L-induced cell death in LGSC-derived MPSC1 cells is caspase-independent.

CD40L induces RIP1-dependent, necroptosis-like cell death in MPSC1 cells. Mitochondria are central to the control of cell death, and mitochondria-dependent cell death is characterized by the release of mitochondrial proteins into the cytoplasm that are capable of inducing caspase-dependent or caspase-independent cell death.30,31 AIF and EndoG are mitochondrial proteins that are known to translocate to the nucleus and cause chromatin condensation and DNA cleavage in a caspase-independent manner.32,33 To determine whether AIF and/or EndoG are required for CD40L-induced MPSC1 cell death, we examined the effects
Figure 2 CD40L induces low-grade serous ovarian cancer cell death

X Qiu et al

Cell Death and Disease
of CD40L on cell viability following siRNA-mediated knockdown of endogenous AIF and/or EndoG. Pre-treatment for 24 h with AIF and/or EndoG siRNA significantly reduced AIF and EndoG mRNA levels (Figure 6a), but did not alter the effects of subsequent treatment with CD40L (500 ng/ml, 72 h) on cell viability as measured by MTT assay (Figure 6b). These results suggest that CD40L-induced cell death in LGSC-derived MPSC1 cells is mitochondria-independent.

RIP1 and RIP3 kinases have emerged as important regulators of a form of caspase-independent cell death referred to as necroptosis. To determine whether RIP1 is required for CD40L-induced cell death, MPSC1 cell viability was measured in the presence or absence of an allosteric inhibitor of RIP1 (necrostatin-1). Interestingly, pre-treatment for 2 h with 150 nM necrostatin-1 completely blocked CD40L-induced reductions in cell viability as measured by MTT assay (Figure 6c). However, several studies have shown that necrostatin-1 also inhibits indoleamine-2,3-dioxygenase. To exclude the possible involvement of indoleamine-2,3-dioxygenase, MPSC1 cells were pre-treated for 2 h with the indoleamine-2,3-dioxygenase inhibitor 1-methyl-L-tryptophan (1-MT, 150 nM) prior to being treated for 72 h with 500 ng/ml CD40L. As shown in Figure 6d, CD40L-induced reductions in cell viability were not affected by treatment with 1-MT. To further confirm the involvement of RIP1 in CD40L-induced cell death, we examined the effects of CD40L on cell viability following siRNA-mediated knockdown of endogenous AIF and/or EndoG. Pre-treatment for 24 h with AIF and/or EndoG siRNA significantly reduced AIF and EndoG mRNA levels (Figure 6a), but did not alter the effects of subsequent treatment with CD40L (500 ng/ml, 72 h) on cell viability as measured by MTT assay (Figure 6b). These results suggest that CD40L-induced cell death in LGSC-derived MPSC1 cells is mitochondria-independent.

RIP1 and RIP3 kinases have emerged as important regulators of a form of caspase-independent cell death referred to as necroptosis. To determine whether RIP1 is required for CD40L-induced cell death, MPSC1 cell viability was measured in the presence or absence of an allosteric inhibitor of RIP1 (necrostatin-1). Interestingly, pre-treatment for 2 h with 150 nM necrostatin-1 completely blocked CD40L-induced reductions in cell viability as measured by MTT assay (Figure 6c). However, several studies have shown that necrostatin-1 also inhibits indoleamine-2,3-dioxygenase. To exclude the possible involvement of indoleamine-2,3-dioxygenase, MPSC1 cells were pre-treated for 2 h with the indoleamine-2,3-dioxygenase inhibitor 1-methyl-L-tryptophan (1-MT, 150 nM) prior to being treated for 72 h with 500 ng/ml CD40L. As shown in Figure 6d, CD40L-induced reductions in cell viability were not affected by treatment with 1-MT. To further confirm the involvement of RIP1 in CD40L-induced cell death, we examined the effects of CD40L on cell viability
CD40L induces low-grade serous ovarian cancer cell death

X Qiu et al

Discussion

Invasive LGSCs display poor responsiveness to conventional chemotherapy, thus novel therapeutic strategies are urgently required to improve patient survival. We now show that CD40 protein is expressed in a significant proportion of LGSCs, perhaps as many as half, compared with weak or no expression in SBOTs. These results are consistent with a previous study suggesting hypomethylation of CD40 in LGSCs compared with SBOTs, though future studies will be required to confirm an epigenetic basis for elevated CD40 expression in LGSCs. Importantly, we show for the first time that treatment with CD40L or agonistic CD40 antibody induces cell death in LGSC-derived cells via CD40 activation. Thus, recombinant human CD40L or agonistic CD40 antibody could represent novel treatment options for patients with LGSC displaying elevated CD40. Anti-tumor effects for CD40L–CD40 signaling have been shown in various types of CD40-positive tumors, with direct apoptotic cell killing accounting for much of the response. Indeed, recombinant CD40L treatment of CD40-positive HGSC xenografts in severe combined immunodeficient mice induced significant apoptosis and tumor destruction, and increased the efficacy of suboptimal doses of cisplatin.

In addition to directly inducing tumor cell death, CD40-targeted treatments can stimulate general immune activation and have demonstrated utility as cancer immunotherapies, for which CD40 expression on tumor cells is not necessary. Several studies have demonstrated the effectiveness of CD40 ligation in triggering the elimination of tumor cells by T-killer cells. Moreover, CD40-induced anti-tumor effects have also been shown to involve activated macrophages as well as B cells and natural killer cells. Interestingly, our immunostaining results show that some primary LGSCs with CD40-negative tumor cells contain CD40-positive lymphoid cells. In this context, patients with SBOT or LGSC displaying weak or no expression of CD40 may still benefit from CD40-targeted therapies owing to the enhancement of antigen-presenting cell function and the activation of T cells and natural killer cells. Patients with CD40-positive LGSC could also benefit from enhanced immune activation, including opsonization effects if treated with anti-CD40 antibody. Future studies investigating the potential of CD40-targeted therapies on CD40-positive and -negative LGSCs in vivo will be of great interest.

Cell death can occur in several ways including necrosis, apoptosis and necroptosis. Apoptosis, a form of programmed cell death, is accompanied by a host of morphological and biochemical features, including plasma membrane blebbing, cell shrinkage, chromatin condensation, apoptotic bodies, DNA fragmentation and phosphatidylserine exposure. Caspases are the primary effectors of apoptotic cell death and caspase-3 is considered an important executioner owing to its activation of the endonuclease CAD, which can degrade chromosomal DNA. Interestingly, though treatment with CD40L resulted in caspase-3 activation, it was not required for CD40L-induced MPSC1 cell death. Moreover, redundant effects from other caspases are unlikely because CD40L-induced cell death was unaffected by pre-treatment with the
broad-spectrum caspase inhibitor Boc-D-FMK. Interestingly, beyond their critical roles in apoptosis, increasing evidence suggests a variety of non-apoptotic functions of caspases. For example, caspase-3 is transiently activated and functions as a key protease in the processes of erythroid differentiation and maturation. Caspase-3 has also been shown to inhibit B-cell cycling, promote adult hematopoietic stem cell quiescence and mediate embryonic stem cell differentiation. Thus, CD40L-induced caspase-3 activation in LGSC cells could indicate additional non-apoptotic roles that warrant further investigation.

Caspase-independent forms of cell death have also been described, often involving the release of mitochondrial proteins such as AIF and EndoG. Upon release, AIF and EndoG translocate to the nucleus where they induce DNA fragmentation and chromosome condensation. Though caspase-independent, CD40L-induced MPSC1 cell death does not appear to involve AIF and/or EndoG. Rather, our RIP1 inhibitor (necrostatin-1) and siRNA findings suggest that CD40L induces necroptosis, a form of controlled necrosis characterized by a dependency on RIP1, RIP3 and MLKL when caspases, especially caspase-8, are inhibited. Indeed, the induction of necroptosis-like cell death by CD40 activation is further supported by our RIP3 (GSK872) and MLKL (necrosulfonamide) inhibitor results. RIP1-mediated necroptosis is becoming increasingly recognized as an important form of caspase-independent cell death, however, pro-apoptotic roles for RIP1 have also been described in caspase-dependent, death receptor-mediated cell killing. In EJ bladder cancer cells, RIP1 has been shown to mediate CD40L-induced caspase-8 activation and apoptosis, the latter being partially inhibited by necrostatin-1 and completely abolished by pan-caspase inhibitor. Moreover, the relationship of RIP1 to necroptosis can also vary depending on the cellular context, as recent studies have demonstrated that RIP1 may inhibit rather than promote necroptosis. This variation likely reflects the complex regulatory roles and interactions of RIP1 with other proteins involved in necrosome formation and necroptotic cell death. Indeed, such variation could explain the discrepancy between our RIP1 inhibitor and siRNA results such that RIP1 still acts as a crucial scaffold for protein–protein interactions when cells are treated with inhibitor (necrostatin-1), whereas this scaffold function would be disrupted when treating cells with siRNA. Future research will be required to characterize, in detail, the precise molecular determinants of CD40L-induced cell death in LGSCs.

In summary, we have shown that CD40 is upregulated in a significant proportion of LGSCs (including LGSC-derived MPSC1 and VOA1312 cells) compared with SBOTs. CD40 activation induces RIP1-dependent, necroptosis-like cell death in MPSC1 but not SBOT3.1 cells. These findings provide insight into the function and therapeutic potential of the CD40 system in LGSCs.

Materials and Methods

Cell culture. The SBOT3.1, MPSC1 and VOA1312 cell lines were kindly provided by Dr. Nelly Auersperg (Department of Obstetrics and Gynaecology, University of British Columbia, Canada), Dr Ie-Ming Shih (Department of Pathology, Johns Hopkins Medical Institutions, USA) and Dr David G. Huntsman (Department of Obstetrics and Gynaecology, University of British Columbia, Canada).
of Pathology and Laboratory Medicine, University of British Columbia, Canada), respectively. SBOT3.1 and VOA1312 cells were grown in a 1:1 (v/v) mixture of M199/MCDB105 medium (Sigma-Aldrich, Oakville, ON, Canada) supplemented with 10% fetal bovine serum (Hyclone Laboratories Inc., Logan, UT, USA). MPSC1 cells were maintained in RPMI 1640 medium (Invitrogen, Burlington, ON, Canada) supplemented with 10% fetal bovine serum. Cells were cultured at 37 °C in a humidified atmosphere containing 5% CO2 and 95% air.

Frozen tissue samples. Frozen samples of primary tissue were obtained from the Ovarian Cancer Canada Tumor Bank with informed patient consent following approval from the University of British Columbia and British Columbia Cancer Agency Research Ethics Board. A cube of tissue was quickly removed from the cryovial, minced using a scalpel blade and transferred to a tube containing cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA) with protease inhibitor cocktail (Sigma-Aldrich). Lysates were passed at least five times each through 18- and 22-gauge needles. Extracts were centrifuged at 20 000 × g for 10 min at 4 °C to remove cellular debris and supernatants were transferred to a clean microcentrifuge tube. Samples were stored at −80 °C until assayed by western blot as described below.

Antibodies and reagents. Mouse monoclonal anti-α-Tubulin, goat polyclonal anti-actin (C-11) and rabbit polyclonal anti-CD40 (N-16) antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Polyclonal anti-caspase-3 and anti-RIP1 antibodies were obtained from Cell Signaling Technology. Mouse monoclonal agonistic anti-CD40 (Clone # 82111) antibody was purchased from R&D Systems (Minneapolis, MN, USA). Horseradish peroxidase-conjugated goat anti-mouse IgG and goat anti-rabbit IgG were obtained from Bio-Rad Laboratories (Hercules, CA, USA). Recombinant human sCD40 ligand (CD40L) was obtained from Peprotech (Rocky Hill, NJ, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), necrostatin-1 and 1-MT were purchased from Sigma-Aldrich. Boc-D-FMK was purchased from Abcam (Toronto, ON, Canada). GSK’872 and necrosulfonamide were purchased from Millipore (Etobicoke, ON, Canada).

Figure 6 CD40L induces mitochondria-independent but RIP1-dependent cell death in MPSC1 cells. (a) Cells were transfected for 24 h with 50 nM control siRNA (si-Ctrl), AIF siRNA (si-AIF) or EndoG siRNA (si-EndoG), and knockdown efficiency was examined by RT-qPCR. (b) Cells were transfected for 24 h with the indicated siRNAs alone or in combination prior to being treated for 72 h with vehicle control (Ctrl) or CD40L (500 ng/ml). Cell viability was measured by MTT assay. (c and d) Cell viability was measured by MTT assay following treatment for 72 h with vehicle control or CD40L (500 ng/ml) in the presence or absence of 150 nM necrostatin-1 (c) or 1-MT (D). (e) Cells were transfected for 24 h with 50 nM control siRNA or RIP1 siRNA (si-RIP1), and knockdown efficiency was examined by western blot. Following transfection as described in (e), transfected cells were treated for 72 h with vehicle control or CD40L (500 ng/ml), and cell viability (f) and cell number (g) were analyzed by MTT and Trypan blue exclusion assays, respectively. (h) Cell viability was measured by MTT assay following treatment for 72 h with vehicle control or CD40L (500 ng/ml) in the presence or absence of 6 μM GSK’872 or 3 μM necrosulfonamide. Results are expressed as the mean ± S.E.M. from at least three independent experiments. Values without a common letter are significantly different (P < 0.05).
Western blot analysis. Cells were washed with cold PBS and lysed in lysis buffer (Cell Signaling Technology) containing protease inhibitor cocktail (Sigma-Aldrich). Extracts were centrifuged at 20,000 × g for 10 min at 4 °C and protein concentrations were determined using the DC Protein Assay (Bio-Rad Laboratories) with BSA as the standard. Equal amounts of protein were separated by SDS-polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membranes. After blocking with Tris-buffered saline containing 5% non-fat dry milk for 1 h, the membranes were incubated overnight at 4 °C with primary antibodies followed by incubation with peroxidase-conjugated secondary antibody. Immunoreactive bands were detected using enhanced chemiluminescent substrate (Pierce, Rockford, IL, USA) followed by exposure to CL-XPosure film (Thermo Fisher, Waltham, MA, USA). Films were scanned and quantified by densitometry using Scion image software (Scion Corp., Frederick, MD, USA).

Immunohistochemistry. Formalin-fixed, paraffin-embedded tumor samples were assessed for CD40 expression. Sections were deparaffinized in xylene, dehydrated through graded alcohol and processed for wet heat-induced antigen retrieval in a steamer for 20 min with a modified citrate buffer (pH 6.1; Dako, Burlington, ON, Canada). Endogenous peroxidase activity was quenched with 3% hydrogen peroxide in PBS for 30 min. Sections were blocked with serum-free protein block (Dako) for 30 min at room temperature, and then incubated overnight at 4 °C with polyclonal anti-CD40 (Abcam, Ab13545) diluted 1:250 in a serum-free protein block. Immunoreactivity was detected with the LSAB-HRP System (Dako) and 3,3′-diaminobenzidine chromogen solution (Dako). Slides were counterstained with hematoxylin (Sigma), dehydrated through graded alcohol and mounted with xylene-based mounting medium and evaluated by light microscopy.

CD40L induces low-grade serous ovarian cancer cell death

X Qiu et al

1. Crispens MA, Bodurka D, Desears M, Lu K, Silva EG, Gershenson DM. Response and survival in patients with progressive or recurrent serous ovarian tumors of low malignant potential. Obstet Gynecol 2002; 99: 3–10.
2. Landen Jr CN, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 2008; 26: 985–1005.
3. Silva EG, Gershenson DM, Malpica A, Desears M. The recurrence and the overall survival rates of ovarian serous borderline neoplasms with noninvasive implants is time dependent. Am J Surg Pathol 2006; 30: 1367–1371.
4. Shih Ie M, Korman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004; 164: 1511–1518.
5. Singer G, Korman RJ, Chung HW, Cho SK, Shih Ie M. Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol 2002; 160: 1223–1228.
6. Cheng JC, Auersperg N, Leung PC. EGF-induced MT and invasiveness in serous borderline ovarian tumor cells: a possible step in the transition to low-grade serous carcinoma cells? PLoS ONE 2012; 7: e34071.
7. Cheng JC, Auersperg N, Leung PC. Inhibition of p53 induces invasiveness in serous borderline ovarian tumor cells by accentuating PI3K/Akt-mediated suppression of E-cadherin. Oncogene 2011; 30: 1025–1031.
8. Cheng JC, Auersperg N, Leung PC. Inhibition of p53 represses E-cadherin expression by increasing DNA methylation/transferase-1 and promoter methylation in serous borderline ovarian tumor cells. Oncogene 2011; 30: 3939–3942.
9. Gershenson DM, Sun CC, Bodurka D, Coleman RL, Lu KH, Sood AK et al. Recurrent lowgrade serous ovarian carcinoma in relatively chemotherapy resistant. Gynecol Oncol 2009; 114: 48–52.
10. van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67: 2–17.
11. Greaves M, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16: 111–135.
12. Fonseith E, Maio M, Altomonte M, Hersey P, Biology and clinical applications of CD40 in cancer treatment. Semin Oncol 2010; 37: 517–523.
13. Gomes EM, Rodrigues MS, Phadke AP, Butcher LD, Starling C, Chen S et al. Antitumor activity of an oncotypic adenalovir(CD40-ligand (CD154) transgene construct in human breast cancer cells. Clin Cancer Res 2009; 15: 1317–1325.
14. Wang X, Chen B, Xu W, Liu S, Zhao W, Wu J. Combined effects of iodo and soluble CD40 ligand on A549 lung cancer cells. Oncol Rep 2011; 25: 1465–1472.
15. Fumara P, Yunes A. CD40 ligand (CD154) and tumor necrosis factor-related apoptosis inducing ligand (Apo-2L) in haematological malignancies. Br J Haematol 2001; 113: 265–274.
16. Plaenken EV, Dijkstra NH, Willerme R, Klun-Netemans JC. Proliferation of B cell malignancies in all stages of differentiation upon stimulation in the ‘CD40 system’. Leukemia 1996; 10: 488–493.
17. Baexendale AJ, Dawson CW, Stewart SE, Mudalil V, Reynolds G, Gordon J et al. Constitutive activation of the CD40 pathway promotes cell transformation and tumour growth. Oncogene 2005; 24: 7913–7923.
18. Homrig-Holzel C, Hojer C, Rastelli J, Casola S, Strobl LJ, Muller W et al. Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-kappab pathway and promotes lymphomagenesis. J Exp Med 2008; 205: 1317–1329.
19. Zhou Y, He J, Gou LT, Mu B, Liao WX, Ma C et al. Expression of CD40 and growth-inhibitory activity of CD40 agonist in ovarian carcinoma cells. Cancer Immunol Immunother 2012; 61: 1735–1743.
20. Gallagher NJ, Elopoulos AG, Agathangello A, Oates J, Crocker J, Young LS. CD40 activation in epithelial ovarian carcinoma cells modulates growth, apoptosis, and cytokine secretion. Mol Pathol 2002; 55: 110–120.
33. Sun L, Wang H, Wang Z, He S, Chen S, Liao D.

34. Liu X, Vlassov V, Zhang H, Mei W, Chau MC, et al.

35. Li Y, Wang L, Zeng Q, Yin X, Cai X, et al.

36. Xu X, Chen J, Li Y, Lan J, Lin Y, et al.

37. Li W, Wang X, Zhang S, Liu T, Chen Y, et al.

38. Sun L, Wang H, Wang Z, He S, Chen S, Liao D.

39. Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, Adams DH, et al.

40. Sun L, Wang H, Wang Z, He S, Chen S, Liao D.

41. Zhang J, Li Y, Shi Y, Sun L, Liu T, et al.

42. Degterev A, Maioli JL, Yuan J.

43. Turner JG, Rahmilichev AL, Burdelya LN, Leal Z, Imboden M, Sondel PM, et al. Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 2001; 166: 89–94.

44. Hassan SB, Olesen BJ, Pedersen AE. Anti-CD40 ligand therapy has significant antitumor effects on CD40-positive ovarian xenografts grown in SCID mice and demonstrates an augmented effect with cisplatin. Cancer Res 2001; 61: 7566–7562.

45. Sihl M, Chen L, Wang CC, Gu J, Davidson B, Cope L, et al. Distinct DNA methylation profiles in ovarian serous neoplasms and their implications in ovarian carcinogenesis. Am J Obstet Gynecol 2003; 183: 851–52.

46. Timmer JC, Salvesen GS. Caspase substrates.

47. Vandenabeele P, Galloway KD, Meliky N, Chow C, Sallamana C, Prentice LM, et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS One 2013; 8: e67216.

48. Lufti AU, Martin SJ. The CASBAH: a searchable database of caspase substrates.

49.5. Degterev A, Maioli J, Yuan J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 2013; 20: 366.

50. Takahashi N, Duprez L, Groenmai J, Scauws A, Neriwick N, Wu-Dahdah JB, et al. Necrostatin-1 analogues: critical insights on the specificity, activity and in vivo use in experimental disease models. Cell Death Differ 2012; 3: e437.

51. Sun L, Wang H, Wang Z, He S, Chen S, Liao D. Mixed lineage kinase domain-like kinase mediates necrosis signaling downstream of TNFalpha. J Cell Biol 2010; 13: 700–714.

52. de Almagro MC, Vocido D. Necroptosis: Pathway diversity and characteristics. Semin Cell Dev Biol 2015; 54: 68–75.

53. Degterev A, Maioli J, Yuan J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 2013; 20: 366.

54. Elmore S. Apoptosis: a review of programmed cell death.

55. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2012; 19: 107–120.

56. Yi CH, Yuan J. The Jekyll and Hyde functions of caspases. Nat Immunol 2001; 2: 563–567.

57. Connolly PF, Jager R, Fearnhead HO. New roles for old enzymes: killer caspases as the regulators of necrosis and virus-induced inflammation. Cell 2009; 137: 1112–1123.

58. He S, Wang L, Mao L, Wang T, Du D, Zhao L, et al. Receptor interacting protein kinase-3 (RIPK3) regulates cells necrotic response to TNFalpha. Cell Death Differ 2009; 16: 1107–1111.

59. Zhang DW, Shao L, Lin J, Zhang N, Li LN, et al. RIPK3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009; 325: 332–336.

60. Farajnia N, Vanden Berghe T, Cornelis S, Vandenabeele P. RIP1, a kinase in the crossroad of a cell’s decision to live or die. Cell Death Differ 2007; 14: 400–410.

61. Ahbabi BA, Cristofanison S, Kappler R, von Schweinitz D, Humphreys R, Fudala S. RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene 2013; 32: 3263–3273.

62. Lin Y, Dew A, Rodriguez Y, Liu ZG. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999; 13: 2514–2526.

63. Knop PG, Davies CC, Ioannou M, Eulmiou P. The death domain kinase RIP links the immunoregulatory CD40 receptor to apoptotic signaling in cancers. J Cell Biol 2011; 192: 391–399.

64. Keenan CJ, Cullen SP, Clancy D, Martin SJ. RIPK1 can function as an inhibitor rather than as an activator of RIP3-dependent necroptosis. FEBS Lett 2014; 588: 4921–4934.

65. Weiss WA, Taylor SS, Shokat KM. Recognizing and exploiting differences between RNAi and chemical inhibitors: Implications for synthetic lethality. Genes Dev 2012; 26: 571–581.

66. Weiss WA, Taylor SS, Shokat KM. Recognizing and exploiting differences between RNAi and chemical inhibitors: Implications for synthetic lethality. Genes Dev 2012; 26: 571–581.