Обзор

Двумерная система сильновзаимодействующих электронов в кремниевых (100) структурах

В.Т. Долгополов

Целью обзора является описание и критический анализ работ различных экспериментальных групп, изучавших свойства двумерного электронного газа в кремниевых полупроводниковых системах (полевых транзисторах (100)Si-MOSFET и квантовых ямах (100)SiGe/Si/Ge) в окрестности перехода металл–изолятор. Выделены результаты, общие для всех исследований: 1) эффективная масса электронов, измеренная на уровне Ферми, в металлической области возрастает по мере понижения концентрации и, по экстраполяции, имеет тенденцию к расходящему; 2) средняя по энергии масса в металлической области ведет себя в двух исследованных системах по-разному: в Si-MOSFET она также обнаруживает тенденцию к расходящему, в квантовых ямах SiGe/SiGe — насыщается в области минимальных концентраций; 3) в металлической фазе имеется небольшое (занимющее от качества образца) количество локализованных электронов; 4) в фазе изолятора в окрестности перехода металл–изолятор электронная система обнаруживает свойства, типичные для аморфных сред с сильным взаимодействием между составляющими такую среду частичами.

Ключевые слова: двумерные электронные системы, переход металл–изолятор, эффективная масса

PACS numbers: 71.27. + a, 71.30. + b, 73.20. − r

DOI: https://doi.org/10.3367/UFNr.2018.10.038449

Содержание

1. Введение (673).
2. Электроны в кремниевых полевых транзисторах ((100)Si-MOSFET) (674).
 2.1. Переход металл–изолятор в отсутствие магнитного поля.
 2.2. Влияние магнитного поля на переход металл–изолятор.
 2.3. Свойства электронов в глибине распределения Ферми.
 2.4. Свойства электронов на уровне Ферми. 2.5. Промежуточные выводы.
 2.6. Электроны в изоляторе. 2.7. Дополнительные промежуточные выводы.
3. Электроны в квантовых ямах SiGe/Si/Ge (687).
 3.1. Достоинства и недостатки структур. 3.2. Тенденция к появлению плоской одночастичной зоны на уровне Ферми.
4. Заключение (689).

Список литературы (689).

1. Введение

Обзор посвящен краткому изложению современного состояния экспериментальных исследований сильновзаимодействующих двумерных электронных систем, созданных на базе кремниевых полупроводниковых структур. Под сильновзаимодействующей электронной системой понимается такая система, в которой характерна энергия кулоновского взаимодействия электронов значительно превосходит их кинетическую (фермиевскую) энергию Φe. Поскольку первая обратно пропорциональна среднему расстоянию между электронами (т.е. $\sqrt{\langle n \rangle}$, где n — концентрация электронов), а вторая $\Phi \propto n_s$, сильному взаимодействию соответствуют малые электронные концентрации. В большинстве обсуждаемых далее экспериментов электронный газ предполагается выраженным, т.е. $\Phi \approx kT$, где k — постоянная Больманна, T — температура.

Силу взаимодействия между электронами обычно характеризуют параметром r_s, равным отношению радиуса Вигнера–Зейтца $(\pi n_s)^{-1/2}$ к коротковолновому радиусу электронов $a_b = \hbar^2/(me^2)$, где m — дипольная постановка, определяющая взаимодействие между электронами, и e — их масса и заряд соответственно. В простейшем случае однодimensionalной электронной системы (к которой рассматриваемые ниже электронные системы не относятся) r_s как раз равен отношению характерной потенциальной энергии взаимодействия к энергии Ферми. Необходимо учитывать, что различное со своём свойствам двумерных электронных структур на базе кремния, мы крайне близки к изложенным выше сведениям. В импульсном пространстве ячейки Вигнера–Зейтца для кремния составляет Лэйпцигская октава (рис. 1a). Центр ячейки Вигнера–Зейтца обозначают буквами Г, центр квадратов — Х, центр шестиугольников — Л. Минимумы зоны проводимости расположены на прямых, соединяющих точки Г и Х. Всего таких точек шесть. Изоэнергетические поверхности в импульсном пространстве схематически показаны на рис. 16. Они представляют собой эллипсоиды вращения с массой вдоль длинной оси
0.98\textit{m}_0 (\textit{m}_0 — масса свободного числа) и \textit{m}_0 = 0.19\textit{m}_0 для импульса в перпендикулярном направлении.

Если вводятся потенциальные барьеры, делающие движение электрона в z-направлении финитным (ориентация образца (100)), то в такой квантовой яме появляются дискретные уровни, из которых определяется процесс с одной областью вдоль z (с "ряжёлой" массой при движении вдоль z). Также процесса нейтральный, имеющий вид

\[e(p) = e_0 + \frac{p^2}{2m_b}, \]

где \(e_0 \) — энергия нижайшего уровня в квантовой яме, \(p \) — импульс в плоскости (100), кроме двукратного спинового выражения имеет дополнительное, так называемое "дольное" выражение. Строго говоря, в асимметричной потенциальной яме дольное выражение снимается, однако в дальнейшем этим сложным расщеплением мы будем пренебрегать.

Для заполнения потенциальной ямы электронами необходимо, чтобы энергия Ферми \(e_F \) превышала \(e_0 \). При выполнении этого условия появляется электрон, свободно движущиеся вдоль квантовой ямы, возбуждая функция которых простирается в z-направлении на 30 A в кремниевом поле транзисторе (Si-MOSFET) и на 150 A в рассматриваемых \(\frac{2}{3} \) квантовых ямах SiGe/Si/SGe.

У двух рассматриваемых электронных систем есть и ещё одно существенное отличие. В кремниевых полевых транзисторах электроны находятся на границе между кремнием с диэлектрической постоянной \(\kappa_{Si} \) и диоксидом кремния (\(\kappa_{SiO_2} \)). Поэтому взаимодействие между электронами определяется средней диэлектрической постоянной \((\kappa_{Si} + \kappa_{SiO_2})/2 \approx 7.7 \). В квантовой яме SiGe/Si/SiGe взаимодействие определяется диэлектрической постоянной \(\kappa_{SiGe} \), близкой к \(\kappa_{Si} \). Следовательно, в SiGe/Si/SiGe для достижения равного взаимодействия нужно понизить концентрацию электронов по меньшей мере в два с половиной раза.

Управление концентрацией носителей тоже осуществляется с помощью металлического электрода (за- твора), нанесенного поверх диэлектрика, отделяющего двумерный электронный слой от затвора. Разность потенциалов между затвором и электронным слоем линейно связана с электронной концентрацией. Как будет показано далее, наличие затвора позволяет получать информацию о многих свойствах электронной системы.

2. Электроны в кремниевых полевых транзисторах ((100)Si-MOSFET)

2.1. Переход металл – изолятор в отсутствие магнитного поля

Двумерные электронные системы при гелиевых температурах могут обладать высокой проводимостью, значительно, в сотни раз, превышающей \(g_0 = e^2/h \) (где \(e \) — заряд электрона, \(h \) — постоянная Планка). Однако при малых электронных плотностях реальные электронные системы демонстрируют небольшую проводимость \(\sigma < g_0 \), имеющую активационную температурную зависимость, типичную для изолятора. Таким образом, по мере понижения электронной плотности происходит переход проводимости от типично металлической к типичной для изолятора.

Начиная с работы [1] на базе скейлинговой гипотезы широкое распространение получило мнение, что металлическая фаза в двумерной электронной системе даже с произвольно слабым барьером невозможна, в том смысле, что такая система при нулевой температуре и бесконечных размерах неизбежно станет изолятором. В этом случае переход металл – изолятор (MIT) в двумерной системе оказался невозможным, и экспериментально наблюдавшийся переход стали именовать "каким-то". Термин не очень удачный, поскольку каким, скорее, является изолятор, предполагаемый на месте металла при недостаточно низких температурах и fantastically огромных размерах образца.

Революционную роль сыграли эксперименты [2, 4], в которых наблюдалось необычное температурное поведение сопротивления высокоплотных электронов в Si-MOSFET в окрестности перехода от металлической зависимости к поведению, типичному для изолятора (рис. 2). Сущности, подобное поведение было зарегистрировано даже раньше, в работе [3], но прошло незамеченным.

В [2, 4] обнаружено, что кривые в металлической области скажутся в одну уникальную кривую, и то же самое справедливо для области изолятора. Две эти группы кривых разделяют не зависимой от температуры линией, соответствующей концентрации \(n \approx 7.25 \times 10^{10} \text{ см}^{-2} \), на рис. 2.

Экспанополия эту линию к нулевым температурам, мы приходим к выводу, что в исследуемой электронной системе переход металл – изолятор возможен даже при нулевой температуре и бесконечных размерах образца, т.е. к выводу, явино противоречащему работе [1]. Поскольку при электронных концентрациях порядка \(10^{11} \text{ см}^{-2} \) в исследуемом электронном газе кинетическая (фермиевская) энергия на порядок меньше характерной энергии взаимодействия между электронами, противо-
речь было интерпретировано как результат сильного межэлектронного взаимодействия. Возникло впечатление, что однопараметрический скейлинг остаётся справедливым с изменённой взаимодействием скейлинговой функцией. Убеждённость в универсальности однопараметрического скейлинга привела к парадоксальным выводам [6, 7] о том, что даже при сопротивлениях порядка 3×10^2 Ом на квадрат и положительной производной проводимости по температуре двумерная электронная система остаётся металлической, и о том, что критическая концентрация n_c может уменьшиться при увеличении беспорядка.

В то же время, экспериментальные результаты более реалистичные, полученные с помощью двумерной системы, не позволяют полностью удовлетворяться этим выводам. В [8–12] на основании такого рода выводы был сделан вывод о том, что наблюдаемый в наиболее совершенных Si-MOSFET фазовый переход действительно является квантовым фазовым переходом [10, 11]. Продемонстрированное совпадение теории с экспериментом в металлической области [12–14]. Последняя работа интересна тем, что она описывает экспериментально наблюдаемую температурную зависимость в гораздо более широком интервале по сравнению с теориями малых поправок [15, 16].

Тематике перехода металл–изолятор и, в частности, перехода в высокоплотных MOSFET посвящено большое количество работ [6, 17–23, 25]. Мы не будем пересказывать здесь их содержание, только обратим внимание на некоторые детали.

1. Прежде всего отметим, что критическая концентрация n_c не является универсальной и изменяется при изменении квазичастиц (см. рис. 2 и рис. 3а, а также [25]).

2. Если считать обнаруженный в Si-MOSFET переход стабилизированным за счёт взаимодействия квантовым фазовым переходом металл–изолятор, то должен быть ещё один переход металл–изолятор, возникающий по мере роста электронной концентрации и ослабления взаимодействия. Некоторые следы (см., например, [26]) такого перехода не наблюдалось. Впрочем (см. [10]), есть теоретическое предсказание возможного отсутствия второго перехода.

3. Несмотря на определённый успех, теория ренормгруппы не может сделать никаких предсказаний относительно устройства изолятора.

Рис. 2. Зависимость сопротивления от температуры для образца Si-MOSFET при электронных плотностях (сверху вниз): 6.85, 7.17, 7.25, 7.57, 7.85 $\times 10^{10}$ cm$^{-2}$. (По данным [5].)

Рис. 3. Зависимость сопротивления от температуры для одного Si-MOSFET в отсутствие магнитного поля (а) при электронных плотностях (сверху вниз) 7.65, 7.8 $\times 10^{10}$ cm$^{-2}$, $n_c = 7.95, 8.1, 8.25 (\times 10^{10})$ cm$^{-2}$ и в параллельном интерференции магнитном поле 4 Тс (б) при электронных концентрациях 1.095, 1.125 $\times 10^{11}$ cm$^{-2}$, $n_c = 1.158, 1.185, 1.215 (\times 10^{11})$ cm$^{-2}$. (По данным [24].)

2.2. Влияние магнитного поля на переход металл–изолятор

Параллельное интерференция магнитное поле воздействует исключительно на спин электронов двумерной электронной системы и способно полностью её поляризовать по спину [27]. Поляризованная по спину электронная система в окрестности перехода от поведения, типичного для металла, к поведению, типичному для изолятора, не обнаруживает свойство, подобных изображённым на рис. 2. Как видно из рис. 3б, при всех концентрациях электронов сопротивление возрастает при понижении температуры, хотя ряд признаков (исчезновение нелинейности, заложение энергии активации) указывает на переход от изолятора к металлу при критической концентрации $n_c = 1.155 \times 10^{11}$ cm$^{-2}$. Строго говоря, неоднородная сепаратриса, отделяющая металл от изолятора, не означает отсутствия квантового фазового перехода (дальнейшее обсуждение этого вопроса приведено в работах [6, 23]), поэтому определение критической концентрации по знаку температурной производной является, как минимум, спорным. В дальнейшем мы будем использовать другие критерии для определения критической концентрации n_c, например, заливание энергии активации в фазе изолятора.

На рисунке 4 показано положение точки перехода металл–изолятор на плоскости (B, n_c) в магнитном поле, нормальном и параллельном двумерному электронному газу. В параллельной ориентации магнитного поля положение точки перехода не зависит от угла между током и полем, что лишенный раз подтверждает влияние магнитного поля в этом случае исключительно на спин.
электронов. (Вклад спин-орбитального взаимодействия в магнетосопротивление в Si-MOSFET довольно слаб: в [28] обнаружена анизотропия около 5% магнетосопротивления в параллельном поле при разных направлениях тока относительно поля.)

В областях под сплошной линией на рис. 4 в нормальном магнитном поле и под штриховой в параллельном электронная система является изолятором, а выше этих линий — металлом. Обращают на себя внимание два обстоятельства. Во-первых, в параллельном магнитном поле критическая концентрация плавно возрастает примерно в полтора порядка и, достигнув этого значения, перестаёт расти при дальнейшем увеличении магнитного поля. Во-вторых, поведение границы раздела оказывается совершенно различным в нормальном и параллельном магнитном поле.

Возрастание критической концентрации в параллельном магнитном поле связано с поляризацией электронов по спину. В сильном магнитном поле (превышающем 4 Тл на рис. 4) электроны полностью поляризованы по спину и критическая плотность не зависит от магнитного поля. Наблюдается переход из поляризованного по спину электронного изолятора в поляризованый по спину металл [31].

Последнее утверждение, так же как и масштаб эффекта и поведение сопротивления в металлической области, согласуется с представлениями о переходе металла—изолятор за счёт многократного электрон-электронного рассеяния [32]. В металлической фазе возникает область повышенной вязкости, названная в работе [33] металлическим стеклом. Аналогичная область, хотя и в гораздо более узком интервале концентраций, может существовать и в нулевом магнитном поле. Во всяком случае, она прекрасно проявляется в сильно разупорядоченных Si-MOSFET [6].

Линейное возрастание критической концентрации на начальном участке рис. 4 в рамках этих представлений должно соответствовать поведению поля полной спиновой поляризации, что, хотя и не совсем точно, соответствует эксперименту. Тем не менее в адекватности описания перехода металл—изолятор в наиболее совершенных Si-MOSFET с помощью расчёта [32] имеются сомнения. Расчёт соответствует, скорее, не квантовому фазовому, а андерсоновскому переходу. Кроме того, точка перехода в расчёте определяется с помощью экстраполяции из металлической области.

Линейная зависимость критической концентрации в сильном нормальном магнитном поле может быть понята на основании соображений, высказанных в работе [34]. Нормальное магнитное поле уменьшает амплитуду нулевых колебаний электронов в изоляторе ($\sim B^{1/2}$). Согласно критерию Линделена, критическая электроплотность определяется из сравнения амплитуды нулевых колебаний и межэлектронного рассеяния ($\sim n_s^{1/2}$). Экстраполация прямой к нулевому магнитному полю задаёт числу локализующих центров, равное 4×10^{10} см$^{-2}$ для рис. 4.

На начальном участке, где квантование неустойчиво, кривые для нормального и параллельного магнитного поля совпадают. Однако при дальнейшем увеличении магнитного поля граница в нормальном поле не только не поднимается вверх по концентрации, подобно границе в параллельном поле, но даже несколько опускается, демонстрируя мелкие осцилляции (см. вставку на рис. 4).

В сильном квантовом магнитном поле на каждом из квантовых уровней имеется полоса делокализованных состояний. При уменьшении магнитного поля делокализованные состояния опускаются вниз по концентрации, следуя каждому своему фактору заполнения. Следовательно, переход металл — изолятор в сильном поле должен происходить при факторе заполнения, меньшем единицы (см. рис. 4). В слабом магнитном поле ($eB/H \approx 1$) делокализованные состояния отрываются от квантовых уровней и, будучи топологически защищёнными, сливаются, не опускаясь при дальнейшем уменьшении поля ни по энергии, ни по концентрации [35, 36].

Осцилляции границы в этой области были объяснены осцилляциями химического потенциала в условиях квантового эффекта Холла [37, 38]. Предположено, что на границе перехода металл — изолятор обе фазы могут сосуществовать. В этом случае химические потенциалы фаз в точке перехода должны быть равны между собой. Химический потенциал изолятора изменяется плавно по энергии, а химический потенциал металла в квантовом магнитном поле осциллирует, что и приводит к осцилляциям границы.

2.3. Свойства электронов в глубине разделения Ферми
2.3.1. Поле полной спиновой поляризации

Эксперимент. Параллельное поверхность поля полной спиновой поляризации в линейной зависимости от электронной плотности [39 — 41] и экстраполяции обращается в нуль при конечной концентрации электронов n_0 (рис. 5).

Линейная зависимость, изначально установленная по транспортным измерениям, подтверждена независимыми экспериментами [42]. В работе [41] показано, что ухудшение качества образца не изменяет на- клона линейной зависимости, но увеличивает n_0. По- скольку n_0, во всех экспериментах оказывалась довольно близкой к n_s, возникает мысль о том, что число подвижных электронов не равно n_s, а составляет всего $n_s - n_s$.

С целью исключения такой возможности в работе [39] произведены измерения электронной плотности n_{hall} по эффекту Холла в слабом магнитном поле (рис. 6). Оказалось, что полученная таким образом концентрация с
Рис. 5. Точки — поле полной спиновой поляризации в зависимости от концентрации электронов (по результатам работы [39]). Штриховая линия — подгонка методом наименьших квадратов по экспериментальным точкам. Сплошная линия — ожидаемый результат для невзаимодействующих электронов в модели, представленной в тексте.

Рис. 6. Зависимость электронной концентрации, найденной из измерений эффекта Холла в слабом магнитном поле, от полной электронной концентрации, определённой по квадратным осцилляциям в сильном магнитном поле. Точки — $B = 0.3$ Тл, квадраты — $B = 0.1$ Тл. Сплошная линия соответствует $n_{	ext{tot}} = n_s$.

экспериментальной точностью совпадает с полной концентрацией электронов n_s, определённой, как обычно, по эффекту Шубникова—де Гааза в сильном магнитном поле. Ниже будут приведены аргументы в пользу того, что такой эксперимент, вообще говоря, не исключает существования "хвоста" плотности состояний, содержащего локализованные электроны.

Условие полной спиновой поляризации может быть сформулировано следующим образом: фермиевская энергия, отсчитанная от дна электронной подзоны у электронов, имеющих вынужденный переход от энергии в магнитном поле e^p_F, равна μB^p (здесь $\mu = \text{магнетон Бора, } g = \text{фактор Ланда, взятый при энергии } e^p_F$). Постоянство наклона экспериментальной зависимости на рис. 5 означает, что $\mu B^p D_F = \text{const.}$ Здесь фактор Ланда и термодинамическая плотность состояний полностью поляризованного по спину электронного газа (D^p_F), в принципе, являются функцией электронной плотности. С учётом того, что g-фактор слабо изменяется с электронной плотностью в металлической фазе, постоянство наклона означает отсутствие перенормировки термодинамической плотности состояний в полностью поляризованной по спину электронной системе (100)Si-MOSFET.

Обнаружение конечной критической плотности даже в самых совершенных кремниевых структурах было интерпретировано как проявление возможной спонтанной спиновой поляризации в сильно взаимодействующем электронном газе или, по крайней мере, в индуцированной магнитной полях неустойчивости [22, 39].

Наиная модель. Поведение поля полной спиновой поляризации, аналогичное изображённым на рис. 5, может быть реализовано и в двумерной системе невзаимодействующих электронов. Действительно, пусть часть таких электронов локализована (рис. 7). В нулевом магнитном поле одинаково заполнены две спиновые подзоны, каждая из которых состоит из двух спиновых подзон. Хвост локализованных состояний по спину не поляризован.

Существенно, что: 1) первый делокализованный электрон имеет конечный квазимпульс и энергию (рис. 7а):

$$p_{\text{loc}} = \hbar (\pi n_s)^{1/2}, \quad \varepsilon(n_s) = \frac{p_{\text{loc}}^2}{2m}.$$

(2)

2) число сильно локализованных электронов не зависит от $n_s (n_s > n_c)$.

Уравнение (2) не может быть доказано, является предположением и должно быть проверено экспериментально. Вопрос о возможности появления такого уравнения мы отложим до следующих разделов.

В слабом магнитном поле и при достаточно низкой температуре все электроны "хвоста" поляризуются по спину (рис. 7б). Такое возможно, например, для одиночных локализованных спинов [43, 44]. Для рисунка 7в невозможно нарисовать аналог рис. 7а.

Попытка измерить термодинамическую плотность состояний в поляризованной по спину локализованной электронной системе [24] привела к совершенно неожи-
данныму результату, показанному на рис. 8: термодинамическая плотность состояний в фазе изолятора у спин-поларизованной электронной системы оказалась почти в три раза больше, чем у неполяризованных по спину свободных электронов, и почти в шесть раз больше, чем у свободных электронов, поляризованных по спину.

Подвижные электроны начинают поляризоваться при концентрации \(n_s > n_c \). Другими словами, в рассмотряемой модели \(n_s = n_0 \), а наклон прямой определяется условием

\[
\frac{dB^p}{d\rho} = \frac{2}{\mu_B g D_{TB}} = \frac{n\hbar^2}{m^* \mu_B g}.
\]

(3)

\(D_{TB} = 2D_{b} = \frac{d\rho}{d\epsilon} \) — термодинамическая плотность состояний неполяризованного по спину электронного газа с зонными параметрами. Соответствующая зависимость представлена сплошной линией на рис. 5 для \(m^* = m_0 \) (\(m_b \) — зонная масса электрона), \(g = 2 \). Как видно из рис. 5, значения \(n_c \) и \(n_0 \) практически совпадают, а наклон экспериментальной прямой меньше ожи-даемого. Наклонов можно согласовать, если считать, что \(g \)-фактор больше зонного: \(g = 1.3 \). Зависимость измеренных значений функции Ланда от

\[p(n_s) = \hbar^2 (n_s)^{1/2} \quad e^p_T(n_s) = \frac{p^2}{2m^*} \propto (n_s - n_c) \]

(4)

Предполагаемый одночастичный спектр поляризованного электронного газа схематически изображен на вставке на рис. 9. Спектр квадратичен, со средней эффективной массой \(m^* \). Постоянство термодинамической плотности состояний и обращение поля полной спиновой поляризации в нуль при \(n_s = n_c \) обусловлено расходимостью \(m^* \), как это показано на рис. 9.

Эта модель использовалась в ряде работ, начиная с [39] и заканчивая недавней публикацией [22]. Обе модели обладают рядом недостатков. Прежде всего, это обращение с квазичастницами как со свободными частицами даже в глубине фермиевского распределения. Обе модели не в состоянии объяснить сдвиг критической концентрации при установлении полной спиновой поляризации. Наконец, в них никак не рассматриваются физические свойства изолятора.

2.3.2. Термодинамическая плотность состояний. Как уже упоминалось, термодинамическая плотность состояний является одним из параметров, который может быть извлечен из эксперимента. Экспериментальные данные для полностью поляризованной системы подвижных электронов можно сравнить с результатами численного моделирования квантовым методом Монте-Карло [49].
На вставке к рис. 8 сплошной линией показана термодинамическая плотность состояний идеальной, с пренебрежимо малым рассеянием электронов, двумерной электронной системы Si-MOSFET, вычисленная с использованием результата работы [49]. Там же штриховой линией показана термодинамическая плотность состояний, полученная из экспериментальных данных рис. 5 с использованием значения $g = 1.3g_0$. Как видно из рис. 8, расчётная термодинамическая плотность состояний слабо зависит от электронной плотности при $n_e = 3 \times 10^{11} \text{ см}^{-2}$, асимптотически приближаясь к штриховой линии при $n_e \rightarrow \infty$. В этой области концентрации электронов вычисленное поле полной спиновой поляризации неплохо согласуется с экспериментом. Учёт конечной длины свободного пробега электронов, согласно [49], приводит к ослаблению роста термодинамической плотности состояний при минимальных концентрациях электронов, тем самым приближая термодинамическую плотность состояний к константе в интересующем нас интервале концентраций.

Сравнение данных основного рис. 8 с данными вставки приводит к выводу о том, что термодинамическая плотность состояний в параллельном магнитном поле испытывает скачок при концентрации n_e увеличиваясь в условиях полной спиновой поляризации в фазе изолятора.

Информация о термодинамической плотности состояний может быть извлечена из изменений ёмкости MOSFET. Действительно, изменяя ёмкость в отсутствие магнитного поля и в поле, параллельном плоскости двумерной системы, определим их разность $\Delta C(n_e)$ в области полной спиновой поляризации:

$$\frac{\Delta C}{C} = C_0(Ae^2)^{-1} \left(\frac{1}{D_{\text{Tpol}}} - \frac{1}{D_T} \right).$$

Здесь A — площадь затвора. При электронной плотности менее $1.2 \times 10^{11} \text{ см}^{-2}$ в магнитном поле электронная система становится изолатором, что и приводит к росту $|\Delta C|$. При электронной концентрации $2.25 \times 10^{11} \text{ см}^{-2}$ по измерениям магнетосопротивления фиксируется переход в полностью поляризованное состояние.

Как видно из рис. 10, измеренная разность ёмкостей уменьшается по мере увеличения концентрации электронов. Подобное возможно только в случае, если термодинамическая плотность состояний ведёт себя как $D_T \propto n_e$, а $D_{\text{Tpol}} = \text{const}$. О том же поведении сообщалось в работе [51] на основании анализа данных по зависимости упругого времени релаксации от электронной плотности. Подбор экспериментальных данных с помощью этого выражения и уравнения (5) показана на рис. 10 штриховой линией для $D_T = D_{Tpol}/(n_e - n_c)$ и $D_{\text{Tpol}} = D_{\text{Tpol}}/1.3$. Полученный результат требует проверки с помощью измерений в более сильных магнитных полях.

2.3.3. Магнитный момент электронов в металлической фазе. Исследования магнитного момента электронов начаты работой [52]. Поскольку прямое измерение магнитного момента двумерной электронной системы

1 Выражение для D_{Tpol}, полученное в работе [50], основано на неразумении: в соотношении Максвелла и в эпиэрирование входят химические потенциалы, отсчитанные от разных уровней.
резированной электронной системы не квадратичен, а из сравнения двух сплошных кривых при произвольной фиксированной концентрации можно заключить, что степень спиновой поляризации примерно пропорциональна магнитному полю.

Недавно [55] предложен метод измерения магнитного момента в изоляторе. Измерения возможны хоть и при малой, но конечной проводимости, обеспеченной конечностью температуры. Идея метода состоит в том, что процессы зарядки MOSFET происходят одинаково при модуляции затворного напряжения и параллельного магнитного поля, причём в первом случае измеряется некоторая эффективная ёмкость (зависящая от проводимости и не превышающая ёмкость образца), а во втором — величина \(\frac{dN}{dB} \), относящаяся к той же площади, что и измеренная ёмкость. Единственной неприятностью метода остаётся то обстоятельство, что полученный в результате измерений глубоко в изоляторе магнитный момент относится к приконтактной области образца.

Один из результатов [54], полученных с помощью интегрирования магнитного момента, стартуя с нулевой электронной плотности, при которой, естественно, магнитный момент электронной системы равен нулю, показан на рис. 12. Приведённая на рисунке кривая согласуется в области перекрытия \(n_e < 6 \times 10^{11} \text{ см}^{-2} \) с ранее полученными другим способом данными [52], для которых магнитный момент приблизительно пропорционален величине магнитного поля и, следовательно, в основном обусловлен подвижными электронами. При дальнейшем увеличении электронной плотности магнитный момент (см. рис. 12) перестаёт уменьшаться. Уровень, на котором насыщается зависимость \(M(n_e) \), слабо зависит от температуры и величины магнитного поля (см. вставку на рис. 12), несомненно, связан с наличием локализованных электронов в металлической фазе и позволяет оценить их число. Действительно, поскольку магнитный момент в насыщении крайне слабо зависит от температуры, то максимальное число локализованных электронов равно разности между уровнем насыщения и

- ожидаемым уровнем для свободного электронного газа. Оно составляет \(2 \times 10^{10} \text{ см}^{-2} \) при том, что для исследуемого образца \(n_e = 8.5 \times 10^{10} \text{ см}^{-2} \).

Это число не универсально. Оно изменяется от образца к образцу и даже для одного образца может меняться от охлаждения к охлаждению.

Немало усилий потрачено на исследования магнитной восприимчивости, т.е. величины \(\chi = \frac{dM}{dB} (B = 0) \) (рис. 13). Результат, показанный на рис. 13, можно сравнить с грубой оценкой для ожидаемой магнитной восприимчивости согласно данным рис. 11, 12 и сделать вывод, что измеренная восприимчивость превышает ожидаемую почти на порядок. Такое возможно только в том случае, если магнитная восприимчивость обусловлена начальной стадией перестройки "хвоста" плотности состояний (см. рис. 7) и не имеет прямого отношения к свойствам деликолокализованных электронов.

Отметим две особенности кривых на рис. 13. Во-первых, кривая, полученная на образце голландского
производства, проходит ниже, чем соответствующая кривая для российского образца. Если считать, что при прочих равных параметрах восприимчивость в металлической фазе пропорциональна числу локализованных электронов, то следует сделать вывод о 25%-ном превышении числа локализованных электронов в российском образце.

Во-вторых, восприимчивость в небольшом интервале концентраций продолжает возрастать при увеличении n_e в металлической фазе, причём увеличение восприимчивости практически одинаково для двух образцов (стrelloka на рис. 13).

2.4. Свойства электронов на уровне Ферми

2.4.1. Температурная зависимость проводимости. В отсутствие магнитного поля проводимость двумерной электронной системы в некотором интервале температуры линейно зависит от температуры. Такое поведение проводимости предсказано в двух различных моделях [15, 16, 56] и экспериментально продемонстрировано в работе [57]. Интервал температур, в котором ожидается линейная зависимость, определяется условием

$$\frac{\hbar}{\tau} \ll kT \ll p_F v_F,$$

где k — постоянная Больмана, p_F и v_F — импульс и скорость электронов на поверхности Ферми. Левое неравенство в соотношении (6) соответствует баллистическому режиму [16]. Оно появляется и в альтернативной модели [15] как ограничение по энергии в области столкновительного размывания параметра экранирования.

Для нас существенно, что независимо от модели проводимость в линейной области определяется соотношением

$$\frac{\sigma(T)}{\sigma(0)} = 1 - AkT,$$

где $A \propto \left(\frac{p_F v_F}{\tau}\right)^{-1} \propto m_e^2/n_e$. Здесь мы стандартным образом ввели одиночастичную массу на поверхности Ферми как $m_e^2 = p_F v_F$.

Примеры зависимости проводимости от температуры на металлической стороне перехода металл–изолятор показаны на вставке к рис. 14. Для каждой из электронных концентраций температура зависимости проводимости имеет линейный участок, позволяющий определить $A(n_e)$. Полученная в результате зависимость показана на рис. 14. С хорошей точностью зависимость $1/A(n_e)$ оказалась линейной и экстраполирующейся в конечную концентрацию, совпадающую для исследуемого образца с n_{0e} и n_e. Линейная зависимость означает, что $m_e^2 \propto n_e/\left(n_0 - n_e\right)$, т.е. как и средняя масса спин-поляризованных электронов, и, по экстраполяции, расходитя в той же концентрации, где фермьевская энергия спин-поляризованных электронов сравнивается с дном электронной подзоны (см. рис. 5).

2.4.2. ТермоЭДС. Альтернативным методом исследования свойств электронов в окрестности уровня Ферми в Si-MOSFET послужили измерения термоЭДС $S_T = -\Delta V/\Delta T$ [58], где ΔV — разность потенциалов, вызванная разностью температур ΔT при постоянном по величине и направлению потоке тепла вдоль электронного слоя. Именно в создании такого потока тепла и контроле за его постоянством состоит главная экспериментальная проблема при измерении термоЭДС при низких температурах.

В случае невозмущающих электронов (с учётом долинного вырождения) термоЭДС описывается выражением:

$$S_T = -\frac{2\pi k^2 m_e T}{3e\hbar^2}$$

При малой электронной плотности упругое время релаксации само становится зависящим от температуры [15, 16], что приводит к попадает к уравнению (8). В правой части появляется дополнительный множитель, зависящий как от беспорядка [59–61], так и от взаимодействий [62]. Кроме того, для взаимодействующих электронов в уравнении (8) следует заменить m_e на m_e^*. Ожидается, что величина $1/S_T$ будет обратно пропорциональна температуре и, в простейшем случае, пропорциональна n_e/m_e^*. Действительно, эксперимент демонстрирует правильное скалирование термоЭДС с температурой и линейную зависимость обратной термоЭДС от электронной плотности (рис. 15). Последнее означает постоянство дополнительного множителя в уравнении (8), обусловленное, вероятнее всего, узкостью тока интервал электронных концентраций, в котором производились измерения.

Измерения термоЭДС подтверждают зависимость $m_e^* \propto n_e/(n_0 - n_e)$ при минимальных достижимых электронных плотностях и протяжённые его гораздо ближе к критической концентрации.

2.4.3. Измерения энтропии. Дополнительная информация о свойствах электронной системы в Si-MOSFET получена из измерений энтропии [63]. Эксперимент, технически довольно сложный, состоял в том, чтобы исследовать отклик химического потенциала электронной системы на модуляцию температуры ΔT, равной взятому с обратным знаком изменению энтропии при
добывании одного электрона. Энтропия S единицы площади вырожденного ($kT < \varepsilon_F$, где ε_F — энергия Ферми, отсчитанная от дна электронной подзоны) невзаимодействующего электронного газа равна

$$S = \frac{k^2 \pi T \varepsilon_F n_0}{6\hbar^2}$$

(9)

и не зависит от количества электронов. Поэтому для невзаимодействующих электронов ожидается нулевой отклек.

Свойства вырожденного электронного газа взаимодействующих электронов будут определяться ближайшей окрестностью уровня Ферми [64]:

$$\frac{\Delta S}{\Delta n_0} = \frac{k^2 \pi T \varepsilon_F}{6\hbar^2}.$$

(10)

Поскольку масса электронов на уровне Ферми возрастает с уменьшением электронной плотности, ожидается отрицательное значение $\Delta S/\Delta n_0$ в области вырожденного электронного газа.

Соответствующие экспериментальные данные приведены на рис. 16. Здесь сплошной линией показан расчёт с ранее найденной массой электронов на уровне Ферми. При электронной концентрации выше 4×10^{11} см$^{-2}$ расчёт вполне удовлетворительно согласуется с экспериментом. При меньших концентрациях экспериментальные точки отклоняются от расчётной кривой и даже переходят в верхнюю полуплоскость, поскольку электронная система перестаёт быть вырожденной.

В обратном предельном случае $kT > \varepsilon_F$ авторы работы [63] воспользовались для обработки экспериментальных результатов формулей для идеального газа с перенормированной средней эффективной массой m^*:

$$\frac{\Delta S}{\Delta n_0} = k \left[\frac{\varepsilon_F/kT}{\exp (\varepsilon_F/kT) - 1} - \ln (1 - \exp (-\varepsilon_F/kT)) \right].$$

(11)

Выражение (11) справедливо лишь в ограниченном диапазоне электронных концентраций, зависящих от температуры. Например, для рис. 16 оно, как концентрации выше 10^{11} см$^{-2}$ (чтобы не захватывать изолатор) и ниже 2×10^{11} см$^{-2}$ (чтобы оставаться в невырожденном режиме). Результат соответствующей обработки приведён на вставке к рис. 16. Видно, что в выбранных координатах экспериментальные точки близки к прямой с наклоном 45°, экстраполирующейся в конечную электронную плотность.

В заключение этого раздела отметим, что результаты, полученные с помощью измерений энтропии, не могут служить подтверждением результатов разделов 2.3.3, 2.4.1 и 2.4.2, но и не находятся с ними в противоречии.

2.4.4. Эффект Шубникова–де Гааза. Для определения параметров электронной системы на уровне Ферми, как известно, могут быть использованы квантовые оцилляции сопротивления (эффект Шубникова–де Гааза) [65]. Соответствующие измерения выполнены в ряде работ [64, 66–68] различными экспериментальными группами и на образцах разных производителей. Для нахождения эффективной массы использовано соотношение Лифшица–Козевича (LK) [65], задающее относительную величину квантовых оцилляций U как функцию температуры и магнитного поля:

$$U = \sum_i U_{iK}^L \cos \left[\pi \left(\frac{\varepsilon_i}{c \beta T_D} - 1 \right) \right] Z_i^* Z_i^*,$$

$$U_{iK}^L = 4 \exp \left(- \frac{2\pi^2 \varepsilon_i \hbar D}{\hbar \omega_c} \right) \frac{2\pi^2 \varepsilon_i T}{\hbar \omega_c} \sinh \left(\frac{2\pi^2 \varepsilon_i T}{\hbar \omega_c} \right),$$

$$Z_i^* = \cos \left(\frac{\pi A_1}{\hbar \omega_c} \right) \cos \left(\frac{\pi g m_i^2}{2m_c} \right),$$

(12)

$$Z_i^* = \cos \left(\frac{\pi A_2}{\hbar \omega_c} \right),$$

где T_D — температура Дингла, m_c — масса свободного электрона, ω_c — циклотронная частота, A_1 и A_2 — зеемановские расщепления.
5.5 × 10^{10} \text{ до } 6.5 \times 10^{10} \text{ см}^{-2}. Это значение заметно ниже найденного в разделах 2.4.1 и 2.4.2. Причиной расхождения может служить нелинейность одночленного электронного спектра около уровня Ферми (см. правую вставку к рис. 17). Действительно, при минимальных электронных плотностях исследуется температурная зависимость оцищений на третьем или четвёртом уровне Ландуэ, т.е. в условиях

\[h\omega_c \approx \frac{p_F \sqrt{2}}{3}. \]

При столь значительных отклонениях от уровня Ферми нелинейность спектра вполне способна привести к уменьшению измеряемой эффективной массы по отношению к массе, измеренной непосредственно на уровне Ферми.

Во избежание недоразумений следует сделать одно важное замечание. Амплитуда квантовых оцищений определяется исключительно окрестностью уровня Ферми и совершенно нечувствительна к разности энергий между дном зоны и фермиевской. Именно поэтому измеренная масса оказалась нечувствительной к степени спиновой поляризации.

С помощью исследования температурной зависимости амплитуды квантовых оцищений в наклонных полях [67] установлен ещё один важный факт: нелинейность массы электронов на уровне Ферми от степени спиновой поляризации. Это утверждение было недавно подтверждено независимыми экспериментами [64]. В его пользу свидетельствуют некоторые из первичных экспериментальных данных работы [66] и расчёты [69] для многодисперсной электронной системы в пределе слабого взаимодействия.

В наклонном магнитном поле есть ещё одна возможность для измерения параметров электронной системы на уровне Ферми. При изменении наклона (или при изменении одной из составляющих магнитного поля и фиксированной другой) можно наблюдать узлы квантовых оцищений. В работе [70] показано, что при относительно слабом межэлектронном взаимодействии и нулевой температуре положение узлов определяется произведением \(g_s m_c^2 \). Соответствующие экспериментальные данные, приведённые на вставке к рис. 17, демонстрируют критическое поведение произведения \(g_s m_c^2 \), но не позволяют сколько-нибудь точно определить критическую концентрацию, поскольку закон экстраполяции неизвестен.

2.4.5. Низкочастотный шум сопротивления. Информация о свойствах электронов на уровне Ферми может быть получена из измерений низкочастотного (НЧ) шума сопротивления. Подобные измерения выполнены на Si-MOSFET совершенно различного качества [71] и в широком интервале температур. Ниже мы ограничимся результатами низкотемпературных измерений на наиболее совершенных образцах [72, 73].

В работе [72] показано, что НЧ спектральная плотность шума, обычно пропорциональная в металлической фазе 1/\(f \), изменяется в узкой области выше \(n_F \) на 1/\(f^2 \) с коэффициентом \(x > 1 \), возрастающим по мере уменьшения концентрации электронов. Спектральная плотность шума в этой области возрастает при \(T < 3 \text{ K} \) по мере понижения температуры. Такое поведение типично для аморфной фазы (Glassy phase).
В поляризованном по спину металле показатель степени z, так же как и в обычной металлической фазе, не зависит от электронной концентрации и равен примерно $z \approx 0.5$. В области перехода от поляризованного по спину изолятора к поляризованному по спину металлу [73] z возрастает, а диапазон концентраций, при котором существует стеклообразная металлическая фаза (Metallic Glass), расширяется (рис. 18).

Если граница между аморфным металлом и изолятором может быть установлена с хорошей точностью (см. разделы 2.1 и 2.2), то верхняя граница (штриховая кривая) на рис. 18 имеет несколько условный характер, поскольку нет критерия на величину показателя степени z, по которому можно было бы отделить металлическую fazu от аморфного металла. Точность определения этой границы можно оценить по данным, приведённым на рис. 19.

Отметим, что интервал электронной концентрации, в котором наблюдается аморфная металлическая фаза, сильно зависит от качества образца [6], значительно расширяясь по мере увеличения беспорядка.

2.5. Промежуточные выводы
Сформулируем кратко результаты приведённых экспериментов.

1. В металлической фазе масса электронов на уровне Ферми возрастает по мере уменьшения электронной плотности и не зависит от степени спиновой поляризации. По экстраполяции ожидается расходимость массы (являющееся плоского участка электронного спектра) при электронной концентрации, близкой к точке перехода металл–изолятор в нулевом магнитном поле. Последнее означает, что термодинамическая плотность состояний спин-поляризованных электронов при условии $n_s = n_1$ (где n_1 — число электронов с энергетически выгодной спиновой ориентацией) не зависит от концентрации электронов.

2. Средняя по спектру эффективная масса спин-поляризованных электронов возрастает при уменьшении электронной плотности, демонстрируя (по экстраполяции) тенденцию к расходимости при электронной концентрации, близкой к таковой при переходе металл–изолятор в нулевом магнитном поле.

2.6. Электроны в изоляторе
2.6.1. Низкочастотный шум в фазе изолятора. В работах [72, 73] измерения НЧ-шума были продолжены вплоть до границы металл–изолятор и даже в глубокой фазе изолятора (см. рис. 19). Как видно из рисунка, ни в отсутствие магнитного поля, ни в магнитном поле, поляризующем электронную систему по спину, не наблюдается никаких особенностей в поведении v в точке перехода металл–изолятор. Следовательно, переход происходит между металлической аморфной фазой (с конечным сопротивлением при нулевой температуре) и стеклообразной фазой изолятора (с проводимостью, стремящейся к нулю при понижении температуры).

Аморфная фаза изолятора рассмотрена в работе [74] в решёточной модели для беспесниевых электронов. Показано, что при одновременном наличии беспорядка и сильного электрон-электронного взаимодействия возникает бесцелевое состояние с глубоким, доходящим до
Рис. 20. Вольт-амперные характеристики в фазе изолятора. $n_i = 5.36 \times 10^{16}$ см$^{-2}$; температура (правая панель): 60, 140, 200, 300 мКК. На вставке показана ВАХ при электронной плотности $n_e = 5.2 \times 10^{16}$ см$^{-2}$ в растянутом масштабе. $T = 60$ мКК. Видно сильное возрастание низкочастотного шума в интервале $V_d < V < V_c$. (По данным работы [78].)

нужно на уровне Ферми, понижением одночастичной плотности состояний. При реализации такого спектра следует ожидать прыжковой проводимости с переменной длиной прыжка [75]. Изменение сопротивления с температурой по закону Эффроса – Шкловскогого действительно было обнаружено экспериментально при значительном углублении в изолятор [4, 76]. В более близкой к переходу металл–изолятор области наблюдалась обычая активационная зависимость [24], свидетельствующая о переходе к прыжку на ближайшем соседе.

Появление промежуточной металлической амфравной фазы предсказано в работе [77].

Интересные результаты по НЧ-шуму в фазе изолятора получены в работе [78], в которой исследовалась нелинейные вольт-амперные характеристики (ВАХ) в глубоком изоляторе (рис. 20). При низкой температуре $(T \approx 60$ мК$)$ в линейном режиме ток с экспоненциальной точностью отсутствовал. При достижении напряжением некоторого критического значения, зависящего от разности $n_i - n_c$, ток начинался резко возрастать, причем увеличение тока сопровождалось НЧ-шумом, хорошо видным на вставке к рис. 20. Наконец, при достижении напряжением второго порогового значения ВАХ становилась линейной, а шум хотя и сохранялся, но уменьшился по амплитуде. Повышение температуры уменьшало оба пороговых напряжения, уменьшалось шум, а при достаточно больших температурах приводило к появлению тока в линейной области. Наклон линейного участка ВАХ слабо зависел от температуры (см. рис. 20) и от электронной концентрации.

Наблюдаемые вольт-амперные характеристики аналогичны (с точностью до взаимной замены осей тока и напряжения) хорошо известным для денинигина вихревой решётки в сверхпроводниках второго рода (см., например, [79]). Базируясь на этой аналогии, можно попытаться построить описание экспериментальной кривой.

Следуя терминологии, принятой для описания свойств вихревых решёток, введём два критических напряжения: стационарное V_c (см. вставку к рис. 20) — как напряжение, соответствующее выходу тока на линейную зависимость от напряжения, и динамическое V_d — как результат экстраполяции линейной зависимости к нулю (см. рис. 20).

Область напряжений $V_d < V < V_c$ является областью коллективного пиннига аморфной электронной системы с сильным межчастичным взаимодействием. В этой области пинниг осуществляется центрами различной силы, и движение электронной системы возможно только за счёт термической активации. Подчеркнём, что речь идёт не о активации отдельного электрона, а об активационном движении всей электронной системы или, по крайней мере, большей её части:

$$I \sim \exp \left[\frac{-U(V)}{kT} \right].$$

здесь $U(V)$ — энергия активации, зависящая от приложенной к образцу разности потенциалов.

При напряжении, превышающем V_c, электронная система движется с трением, максимальным в пространственных точках с наибольшей силой пиннига, поэтому

$$U_c = eE_cL,$$

где U_c — максимальная энергия активации в отсутствие электрического поля, E_c — электрическое поле при напряжении V_c, L — характерное расстояние между точками максимального пиннига. Именно хаотическое расположение таких точек поддерживает аморфное состояние электронной системы. Электрический ток в этой области линейно связан с приложенным напряжением:

$$I = \sigma_0(V - V_d).$$

здесь σ_0 — коэффициент с размерностью обратного сопротивления.

Поскольку активационная энергия выражается как

$$U(V) = U_c - eEL = U_c \left(1 - \frac{V}{V_c}\right),$$

то ток при $V < V_c$ равен

$$I = \sigma_0(V - V_d) \exp \left[- \frac{U_c(1 - V/V_c)}{kT}\right].$$

Подгоняя экспериментальных кривых с помощью выражений (15), (17) показана на рис. 20 и вставке к нему штриховыми линиями. Единственным подгоночным параметром являлась энергия активации U_c. Все остальные величины, входящие в (15), (17), определялись из эксперимента. Как видно из рис. 20, расчет хорошо описывает эксперимент.

Шум в области напряжений $V_d < V < V_c$ связан с ожиданием достаточно большой флуктуации, перебирающей электронную систему из одного локального минимума энергии в другой. Большой шум в нелинейном режиме, такое же и двуххордовое течение, исчезает раньше, чем достигается переход металл – изолятор [78]. Подобное поведение вполне согласуется с результатами измерения шума в линейном режиме, где насыщение x на уровне $x = 2$, соответствующем обычной аморфной фазе, наблюдалось при электронной плотности, заметно меньшей, чем n_c.

2.6.2. Магнитные свойства в фазе изолятора.
Локализованные дротики. В работе [80] приведены экспериментальные данные, интерпретированные как
следствие существования в фазе изолятора локализованных дроплетов, т.е. локализованных образований, похожих на квантовые точки, состоящие из нескольких ($\simeq 4$) электронов. Электроны в таких дроплетах полностью поляризованы по спину со случайной ориентацией полного магнитного момента в нулевом магнитном поле.

Несмотря на идентичность названий, локализованные дроплеты вряд ли имеют что-либо общее с предложенными в работе [81] свободными дроплетами — одной из промежуточных faz между металлом и вигнеровским кристаллом.

В рамках представлений о локализованных дроплетах магнитный момент единицы площади можно записать как

$$M = \mu_B \left(n_d \tanh (b) + (n_s - n_d) \tanh (b) \right),$$

где n_d — плотность электронов, вовлечённых в дроплеты, $b = \mu_B B/kT$ — нормированное магнитное поле. Для простоты будем считать $s \gg 1$, $b \ll 1$. Тогда

$$\frac{\partial M}{\partial n_s} \approx N_d \frac{\partial}{\partial n_d} \left[\tanh (b) + sb \cosh^{-2}(b) \right].$$

Здесь введено число дроплетов (центров силового пиннигна) $N_d = n_d/s$, слабо зависящее от электронной концентрации в фазе изолятора, но зависящее от температуры.

На рисунке 21 приведены подгоночные кривые с использованием выражения (19) при значениях подгоночного параметра $N_d \partial s/\partial n_s$, равных 2, 1, $-0,1$ и $s = 4$. Как видно из рисунка, подгоночные кривые вполне удовлетворительно описывают эксперимент.

Сравнение расчёта с экспериментом позволяет сделать несколько любопытных выводов. Во-первых, обнаружение производной $\partial M/\partial n_s \approx 2$ в условиях насыщения при температуре $T = 0,8 K$ означает, что та же производная при меньших концентрациях значительно меньше единицы, и интервал больших значений производной достаточно узок. Последнее утверждение плохо согласуются с результатами измерений при более высоких температурах (см., например, рис. 12). Во-вторых, число локализованных дроплетов оказалось зависящим от температуры (что, впрочем, требует дополнительной проверки) и слабо зависящим от электронной концентрации в фазе изолятора.

В-третьих, после перехода в металлическую фазу произошедшая $\partial/\partial n_s$ меняет знак.

Невольно возникает вопрос: как соотносится предложение о локализованных дроплетах с представлением об описанной выше, следующей из измерений шума, аморфной фазе? Если учесть, что при температурах $T \ll 2 K$ кулоновская энергия значительно преобладает температуру, то характерный пространственный масштаб между электронами в дроплете не должен сильно отличаться от среднего межэлектронного расстояния. Другими словами, электронная система с дроплетами имеет малые изменения плотности на масштабах, превышающих (по незначительно) среднее межэлектронное расстояние, что вполне соответствует аморфному состоянию и качественно подтверждается экспериментом, хотя и проведённым на образцах разных производителей и разной степени совершенства.

**Магнитный момент и воспринимчивость в фазе изолятора. Обратимся вновь к рис. 12. В магнитном поле 2 Тл линейное возрастание магнитного момента с единичным наклоном продолжается вплоть до концентрации $5 \times 10^{10} \text{cm}^{-2}$. При дальнейшем увеличении электронной концентрации магнитный момент продолжает возрастать, но уже не пропорционально n_s. Поскольку $B = 2 \text{Tл}$ при температуре $1,7 K$ соответствует насыщению магнитного момента дроплетов, мы вынуждены заключить, что при $n_s > 5 \times 10^{10} \text{cm}^{-2}$ уже не все локализованные электроны входят в состав дроплетов. Поэтому число центров силового пиннигна $n_e \sim 5 \times 10^{10} \text{cm}^{-2}$, $s \sim 1,2 \times 10^{10} \text{cm}^{-2}$, в металлической фазе, согласно оценке в разделе 2.3, $s \sim 2$.

В магнитном поле $B = 5 \text{Tл}$ при температуре $T = 0,4 \text{K}$ параметр $b \approx 16$ и все электроны в фазе изолятора заведомо поляризованы по спину. Можно ожидать, что именно прямая $M = \mu_B n_s$, задаёт поведение магнитного момента в фазе изолятора, что соответствует результатам работ [52, 54]. Однако, как следует из рис. 11, экспериментальные точки в металлической фазе при минимальных концентрациях оказываются выше этой прямой, что не удовлетворительно, поскольку в металлической фазе фактор Ланде $g > 2$.

Воспринимчивость в фазе изолятора определяется начальным участком кривой зависимости магнитного момента от магнитного поля. В представлении о дропletaх

$$\chi = \frac{\mu_B^2}{kT} \left[n_d(s - 1) + n_s \right].$$

В работе [80] обнаружено весьма приближительное выполнение соотношения $n_s \propto 1/T$.

На начальном участке зависимости $\chi(n_s)$ воспринимчивость пропорциональна концентрации (см. рис. 13).
следовательно, \(n_d = n_h \). Наклон начального участка на рис. 13 для образца, показанного точками, на 30 % меньше, чем у образца с данными, показанными кружками. Согласно уравнению (20) это означает, что среднее число частиц в дроплете у более совершенного образца меньше, чем у более разупорядоченного.

2.7. Дополнительные промежуточные выводы
Прежде всего отметим, что из двух альтернативных наивных моделей, представленных в разделе 2.3.1, ни одна не оказалась верной в чистом виде. Эксперименту соответствует их комбинация.

Действительно, в металлической фазе как средняя по энергии эффективная масса электронов \(m^* \), так и эффективная масса электронов на уровне Ферми \(m^*_F \) возрастает по мере уменьшения электронной концентрации. Причём \(m^*_F \) демонстрирует тенденцию к расходности, что согласуется со второй моделью, в которой предполагается, что в металлической фазе нет локализованных электронов, а свойства электронной системы определяются исключительно взаимодействием.

Вместе с тем в металлической фазе, несомненно, имеется небольшое количество локализованных электронов, определяющее, например, магнитную восприимчивость электронной системы. Количество локализованных электронов зависит от качества образца. Эксперимент демонстрирует, что, в согласии с предположениями первой модели, наличие локализованных электронов в металлической фазе не сказывается на эффекте Холла в слабых полях.

В фазе изолятора в общем случае имеются электроны, включённые в состав локализованных дроплетов, с суммарным магнитным моментом дроплете, ведущим себя как единое целое, а также локализованные электроны, не входящие в состав дроплетов. Соотношение между этими двумя группами электронов зависит, по-видимому, от качества образца. По ряду свойств, например, по шумовым характеристикам, такая смесь ведёт себя как аморфная фаза. К сожалению, какие-либо теоретические расчёты, включающие в себя магнитные свойства сильно взаимодействующей, разупорядоченной электронной системы, отсутствуют.

Очень интересными могли бы быть исследования магнитного момента на переходе металл–изолятор при милликильновых температурах. Экстраполяция имеющихся знаний, можно было бы ожидать в этой области скачок магнитного момента.

3. Электроны в квантовых ямах

SiGe/Si/SiGe

3.1. Достоинства и недостатки структур
Свойства электронов в квантовых ямах SiGe/Si/SiGe наиболее подвижности исследованы в работах [82–87]. Наличие дальнего диапазона лучей, шириной 150 Å. Квантовую яму сверху и снизу ограничивали барьеры SiGe. Верхний барьер толщиной ∼ 1500 Å был покрыт слоем кремния толщиной 10 Å, на который термическим напылением наносили SiO (2000–3000 Å) и металлический затвор. Образцы, так же как и в случае Si-MOSFET, имели форму холловских мостиков.

Достоинства электронной системы в квантовых ямах SiGe/Si/SiGe определяются, во-первых, высокой подвижностью электронов и, во-вторых, возможностью измерений при низкой электронной концентрации. Зависимость подвижности электронов от концентрации на одном из лучших образцов показана на рис. 22. Как видно из рисунка, максимальная подвижность электронов в квантовой яме SiGe/Si/SiGe почти на два порядка превышает подвижность электронов в лучших Si-MOSFET. Кроме того, металлическая проводимость простирается вплоть до очень малой электронной концентрации, порядка 1,5 × 10¹⁰ см⁻².

К числу недостатков следует отнести более слабое (при фиксированной концентрации) электрон-электронное взаимодействие. Причиной тому, как это уже упоминалось во введении, являются в полтора раза большая диллектрическая постоянная и более размытая в нормальном к интерфейсу направлении волновая функция электронов.

Ещё одним недостатком структуры SiGe/Si/SiGe является сложный рельеф поверхности (см. вставку к рис. 22). Имеются "грабли", вытянутые вдоль направлений [10] и [-10], с характерной высотой ~ 50 нм и периодом 10 мкм. Рельеф довольно плоский, поскольку период значительно превосходит характерную высоту граблей. В работе [86] показано, что рельеф потенциальной ямы повторяет рельеф поверхности, поэтому модуляция электронной концентрации за счёт граблей практически отсутствует.

Тем не менее модуляция рельефа значительно осложняет измерения в параллельном направлении магнитном поле. Хотя поле в среднем параллельно поверхности, из-за изгибов квантовой ямы локально появляется нормальная (в идеальном случае — знакопеременная) компонента. Теперь уже нельзя считать, что параллельное поле воздействует только на спин электрона, поскольку локальная нормальная компонента воздействует на орбитальное движение. Способ преодоления этой трудности состоит в правильном выборе ориентации холловского мостика относительно кристаллографических осей и ориентации магнитного поля относительно измерительного тока [86, 87].
3.2. Тенденции к появлению плоской однородной зоны на уровне Ферми
Электронная система в квантовых ямах SiGe/Si/SiGe использована для измерений двух типов [87]. Во-первых, проведены измерения поля полной спиновой поляризации в зависимости от электронной плотности. Соответствующие результаты показаны на рис. 23.

Обнаруженное поведение поля полной спиновой поляризации хорошо согласуется (правда, с точностью до числового коэффициента) с результатами вычислений квантовым методом Монте-Карло [49]. При больших концентрациях зависимости хорошо аппроксимируется прямой линией, приходящей в конечную концентрацию при $B^0 = 0$. При концентрациях, примерно равной $n_s \approx 7 \times 10^{10}$ см$^{-2}$, происходит излом зависимости, и при меньших концентрациях $B^0(n_s)$ стремится в начало координат (штриховая линия на левой вставке к рис. 23).

На правой вставке к рис. 23 показана зависимость величин $m_p n_s/m^*_e$ от n_s. Применённый способ экспериментального получения массы на уровне Ферми мы обсудим ниже, а пока отметим прямолинейную зависимость на правой вставке, экстраполирующего в конечную электронную концентрацию, совпадающую с экспериментальной точностью с результатом экстраполяции зависимости $B^0(n_s)$. Как уже отмечалось ранее, последняя зависимость определяется средней по энергии массой. Следовательно, при больших концентрациях средняя по энергии масса электронов и масса на уровне Ферми если не совпадают, то в всяком случае пропорциональны друг другу. Зато при концентрациях $n_s < 7 \times 10^{10}$ см$^{-2}$ поведение масс совершенно различно: масса электронов на уровне Ферми продолжает расти с понижением электронной концентрации, а средняя по энергии масса насыщается.

![Рис. 23. Поле полной спиновой поляризации для двух образцов (разные символы) при температуре 30 мК в зависимости от электронной концентрации. Легенда — лицевая подгонка по точкам в больших концентрациях. Левая вставка — начальный участок той же зависимости в увеличенном масштабе. Правая вставка — зависимость обратной эффективной массы на уровне Ферми от концентрации. (По данным работы [87].)](image)

![Рис. 24. Сравнение концентрационных зависимостей средней по энергии электронной массы и массы на уровне Ферми. $T = 30$ мК. Линии служат гидами для глаз. Вставка иллюстрирует качество подгонки экспериментальной зависимости нормированного сопротивления с помощью выражения (12). (По данным работы [87].)](image)

Более наглядно такое поведение демонстрирует рис. 24, на котором сравниваются зависимости $g_v m^*$ и $g_v m_e^*$ от массы электронной концентрации. Для нахождения первой зависимости использованы экспериментальные точки $B^0(n_s)$ и соотношение

$$g_v \mu_B B^0 = \frac{2\pi \hbar^2 n_s}{m^* g_v},$$

где $g_v = 2$ — дольное вырождение.

Зависимость $g_v m^*_e(n_s)$ получена с помощью уравнений (12). Подгонялась зависимость сопротивления от магнитного поля, как это показано на вставке к рис. 24. Подгоночными параметрами служили m^*_e, $T_D m^*_e$ и $g_v m^*_e$. Величина m^*_e находилась в отдельных экспериментах по температурной зависимости квантовых осцилляций с точностью 10 %. Оказалось, что подгонка экспериментальных кривых не очень чувствительна к параметрам m^*_e и $T_D m^*_e$, но весьма чувствительна к произведению $g_v m^*_e$.

Сравнение поведения $g_v m^*_e$ и $g_v m^*$ при концентрациях $n_s < 7 \times 10^{10}$ см$^{-2}$ демонстрирует явное различие: масса электронов на уровне Ферми продолжает возрастать с уменьшением концентрации, в то время как средняя по энергии масса насыщается.

Подобное поведение соответствует появлению плоского участка однодimensionalного спектра на уровне Ферми (рис. 25).

В окрестности критической концентрации $n_s \approx 1.4 \times 10^{10}$ см$^{-2}$ электронная система находится в критической области, в которой эффективная масса на уровне Ферми ограничена температурой $m^*_e < p/s\Delta/4kT$. Использование данных рис. 24 даёт оценку интервала Δp: $\Delta p/p_e = 0.06$.

Отметим, что появление индуцированного взаимодействия плоского участка однодimensionalного спектра на уровне Ферми предсказано в ряде теоретических работ (см., например, [88, 89]), базирующихся на совершенно разных идеях.
И приведённые выше эксперименты, и вывод о различном поведении массы на уровне Ферми и средней по энергии массы достаточно необычны. Для подтверждения этого поведения необходимы независимые эксперименты. Такой эксперимент опубликован в работе [92].

4. Заключение
Сравнив результаты, полученные исследователями разных групп на разных образцах Si-MOSFET, с результатами измерений на квантовых ямах SiGe/Si, можно сделать вывод о том, что эффективная масса электронов на уровне Ферми m^* в металлической фазе имеет тенденцию к росту по мере понижения электронной концентрации. Результаты, касающиеся измерений эффективной массы на уровне Ферми, у различных групп на однотипных образцах от разных производителей отличаются исключительно за счёт разных способов обработки. К сожалению, возрастание m^* в области, доступной для измерений, далеко не так значительно, как, например, в плёнках 3He [90, 91], и вывод о росте массы приходится делать на основании экстраполяции.

В металлической фазе обнаруживается небольшое (зависящее от качества образца) количество локализованных электронов, слабо влияющее на транспортные свойства. В фазе изолятора и в окрестности перехода металл–изолятор электронная система обнаруживает свойства, типичные для аморфных сред с сильными взаимодействиями между составляющими такую среду частицами. Исследование микроскопического устройства фазы изолятора в Si-MOSFET показало, что она состоит из локализованных дроплетов (напоминающих квантовые точки), включающих в среднем около четырёх электронов, поляризованных по спину, и локализованных электронов, не входящих в такие дроплеты.

Из простого перечисления видно, что за последнее время произошёл значительный прогресс в эксперименте. Он достигнут в основном за счёт развития экспериментальных методов. К сожалению, не произошло совершенствования качества Si-MOSFET. С другой стороны, для исследования электронов в квантовых ямах SiGe/Si применим далеко не весь имеющийся в распоряжении инструментарий. Выводы, сделанные на основе имеющихся экспериментальных данных, должны рассматриваться как предварительные. Частично, независимые дополнительные эксперименты описаны в работе [92]. Тем не менее для убедительного доказательства возможной независимости перехода металл–изолятор от событий на уровне Ферми понадобятся дальнейшие эксперименты.

Автор благодарен А.А. Шашкину и С.В. Кравченко за полезные обсуждения. Особую благодарность автор выражает В.М. Пудалову за внимательное прочтение манускрипта и многочисленные полезные замечания. Работа выполнена в рамках гранта РФФИ 18-02-00368 (частично) и Государственного задания Институту физики твёрдого тела РАН.

Список литературы

1. Abrahms E et al. Phys. Rev. Lett. 42 673 (1979)
2. Kravchenko S V et al. Phys. Rev. B 50 8039 (1994)
3. Заварышина Т. Н., Заварышин Э. И. Пиасько в ЖЭТФ 45 476 (1987); Zavaritskaya T N, Zavaritskaya E I JETP Lett. 45 699 (1987)
4. Kravchenko S V et al. Phys. Rev. B 51 7038 (1995)
5. Kravchenko S V, Klapwijk T M Phys. Rev. Lett. 84 2909 (2000)
6. Popovic D, in Strongly Correlated Electrons in Two Dimensions (Ed. S V Kravchenko) (Singapore: Pan Stanford Publ., 2016)
7. Feng X G et al. Phys. Rev. Lett. 86 2625 (2001)
8. Финкельштейн А. М. ЖЭТФ 84 168 (1983); Finkel'stein A M Sov. Phys. JETP 57 97 (1983)
9. Finkel'stein A M Sov. Sci. Rev. A 14 3 (1990)
10. Pudalov V M et al. Phys. Rev. B 70 134510 (2004)
11. Pudalov V M in The Electron Liquid Paradigm in Condensed Matter Physics (Eds G F Giuliani, G Vignale) (Amsterdam: IOS Press, 2004)
12. Shashkin A A Phys. Rev. B 73 245120 (2006)
13. Kravchenko S V, Sarachik M P Rev. Mod. Phys. 73 251 (2001)
14. Kravchenko S V, Sarachik M P Prog. Rep. Phys. 67 1 (2004)
15. Shashkin A A, Kravchenko S V, in Strongly Correlated Electrons in Two Dimensions (Ed. S V Kravchenko) (Singapore: Pan Stanford Publ., 2016)
16. Gantmakher V F, Pudalov V M in The Theory of Strongly Correlated Electrons (Ed. S V Kravchenko) (Singapore: Pan Stanford Publ., 2016)
17. Shashkin A A, Kravchenko S V, in Strongly Correlated Electrons in Two Dimensions (Ed. S V Kravchenko) (Singapore: Pan Stanford Publ., 2016)
18. Kravchenko S V, Sarachik M P Proc. Natl. Acad. Sci. USA 96 5900 (1999)
19. Pudalov V M et al. Phys. Rev. B 60 R2154 (1999)
20. Vitkalov S A et al. Phys. Rev. B 55 2164 (2000)
21. Pudalov V M et al. Phys. Rev. Lett. 88 076401 (2002)
22. Shashkin A A, Kravchenko S V, Doklady Phys. Rev. Lett. 50 215 (1993); JETP Lett. 58 220 (1993)
23. Kravchenko S V et al. Phys. Rev. Lett. 75 910 (1995)
24. Eng K et al. Phys. Rev. B 79 136402 (2009)
25. Dolgopolov V T, Shashkin A A, Kravchenko S V Phys. Rev. B 96 075407 (2017)
26. Jarošynski J, Popovic D, Klapwijk T M Phys. Rev. Lett. 91 226403 (2004)
Two-dimensional system of strongly interacting electrons in silicon (100) structures

V.T. Dolgopolov

Institute of Solid-State Physics, Russian Academy of Sciences, ul. Akademika Osipyanu 2, 424024 Chernogolovka, Moscow region, Russian Federation;
Editorial Board of JETP Letters
E-mail: dolgopolovvalerir@mail.ru, melnikov@issp.ac.ru

Studies of various experimental groups that explore properties of a two-dimensional electron gas in silicon semiconductor systems ((100)Si-MOSFET and (100)SiGe/SiGe quantum wells) in the vicinity of the metal–insulator transition are described and critically analyzed. Results are identified that are common for all research: (i) the effective mass of electrons measured at the Fermi level in the metallic region increases with decreasing electron density and, extrapolated, tends to diverge; (ii) the behavior of the energy-averaged mass in the metallic region is quite different in the two systems under study: in Si-MOSFETs, it also exhibits a tendency to diverge, while in the SiGe/SiGe quantum wells, it saturates in the limit of low electron densities; (iii) there is a small number (depending on the sample quality) of localized electrons in the metallic phase; (iv) the properties that the electron system exhibits in the insulating phase, in the vicinity of the metal–insulator transition, are typical for amorphous media with a strong coupling between particles.

Keywords: two-dimensional electron systems, metal–insulator transition, effective mass

PACS numbers: 71.27.+a, 71.30.+h, 73.20.–r

Bibliography — 92 references

DOI: https://doi.org/10.3367/UFNr.2018.10.038449

Russia — Uspekhi 62 (7) (2019)

Two-dimensional system of strongly interacting electrons in silicon (100) structures

V.T. Dolgopolov

Institute of Solid-State Physics, Russian Academy of Sciences, ul. Akademika Osipyanu 2, 424024 Chernogolovka, Moscow region, Russian Federation;
Editorial Board of JETP Letters
E-mail: dolgopolovvalerir@mail.ru, melnikov@issp.ac.ru

Studies of various experimental groups that explore properties of a two-dimensional electron gas in silicon semiconductor systems ((100)Si-MOSFET and (100)SiGe/SiGe quantum wells) in the vicinity of the metal–insulator transition are described and critically analyzed. Results are identified that are common for all research: (i) the effective mass of electrons measured at the Fermi level in the metallic region increases with decreasing electron density and, extrapolated, tends to diverge; (ii) the behavior of the energy-averaged mass in the metallic region is quite different in the two systems under study: in Si-MOSFETs, it also exhibits a tendency to diverge, while in the SiGe/SiGe quantum wells, it saturates in the limit of low electron densities; (iii) there is a small number (depending on the sample quality) of localized electrons in the metallic phase; (iv) the properties that the electron system exhibits in the insulating phase, in the vicinity of the metal–insulator transition, are typical for amorphous media with a strong coupling between particles.

Keywords: two-dimensional electron systems, metal–insulator transition, effective mass

PACS numbers: 71.27.+a, 71.30.+h, 73.20.–r

Bibliography — 92 references

DOI: https://doi.org/10.3367/UFNr.2018.10.038449

Russia — Uspekhi 62 (7) (2019)