Minimally destructive sampling of type specimens of *Pyropia* (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes

Jeffery R. Hughey1, Paul W. Gabrielson2, Laurence Rohmer3, Jacquie Tortolani1, Mayra Silva1, Kathy Ann Miller4, Joel D. Young5, Craig Martell5 & Erik Ruediger5

1Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California 93901, USA,
2Herbarium and Department of Biology, University of North Carolina, CB# 3280,Coker Hall, Chapel Hill, North Carolina 27599-3280, USA, 3Department of Microbiology, University of Washington, Campus Box 357710, 1705 NE Pacific St. Seattle, Washington 98195, USA, 4Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California, 94720-2465, USA, 5Department of Computer Science, Naval Postgraduate School, 1411 Cunningham Road, Monterey, California, 93943, USA.

Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is permanently attached. Applying a scientific name to any specimen therefore requires demonstrating correspondence between the type and that specimen. Traditionally, identifications are based on morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution. Using 4 \times 4 mm2 of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes attributed to the red algae *Pyropia perforata*, *Py. fucicola*, and *Py. kanakaensis*. The chloroplast genomes were fairly conserved, but the mitochondrial genomes differed significantly among populations in content and length. Complete genomes are attainable from 19th and early 20th century type specimens; this validates the effort and cost of their curation as well as supports the practice of the type method.

The correct application of 18th, 19th, and early 20th century plant names to modern specimens is a challenging undertaking. Plant names, including algae and fungi1, are based on type specimens, the original specimens on which species names are based. These specimens are housed in approximately 3,400 official herbaria and maintained by more than 10,000 herbarium curators at museums and universities around the world2. Historically, to assign the correct names to modern collections, type specimens were borrowed for anatomical and morphological comparison. This approach however is fraught with problems, particularly for morphologically simple and/or variable species, e.g., most algae, fungi, and numerous land plants, or where type material is missing, fragmented, or lacks the vegetative, reproductive, or geographic information necessary for correspondence with modern collections. Compounding the problem is that many herbarium curators are reluctant, and sometimes hostile, to loan material for what is termed “destructive sampling”, the extraction of DNA from a fragment of a type specimen. One of the currently accepted answers to this problem is to collect fresh specimens and perform phylogenetic analyses using standard species markers3–5. Another is to use modern DNA to develop representative barcodes of species5,6. The fundamental idea of the barcode is to create a database of comparable sequences that are used by researchers for species determination. A global Barcode of Life Database (BOLD) focusing on the barcode as well as the various online repositories (EMBL, GenBank, DDBJ) contain millions of submissions that serve this purpose. The major problem with these two approaches is the assumption that a barcode from any specimen said to be a particular species is truly representative of the type material of that species. The only indisputable method for linking a species name to type material is by sequencing type specimens7–10. This approach too has limitations. Specifically, usually only small (~200 base pairs) hypervariable regions of DNA can be obtained11, and therefore complete gene sequences required for phylogenetic analyses are not achievable. The age-old question still remains, how do scientists unite the alpha system of taxonomy to modern systematics?
To address this question we isolated DNA from small herbarium fragments (4 × 4 mm²) of species in the economically important red algal genus *Pyropia* (*Py.*), recently segregated from *Porphyra* (*Po.*)12 and both marketed as nori as follows: 6 type specimens attributed to *Py. perforata* (J. Agardh) S.C. Lindstrom, 6 non-type specimens of *Py. perforata* distributed in the northeast Pacific from Washington to Baja California Sur, Mexico, 1 specimen from the type sheet of *Py. perforata* attributed to *Py. kanaeakensis* (Mumford) S.C. Lindstrom, and the holotype collections of 2 northeastern Pacific species, *Py. fucicola* (V. Krishnamurthy) S.C. Lindstrom and *P. kanaeakensis* (Fig. 1) (Table 1). The specimens ranged in age from 140 years old (collected in 1874) to recent (collected fresh). Included in this analysis are the type specimens of two species (*Po. perforata f. segregata* Setchell and Hus and *Po. sanjuanensis* V. Krishnamurthy (Fig. 1)) considered distinct by some authors13,14, and conspecific with *Py. perforata* by others15–17.

Results

Quantitation and Data. High sensitivity quantitation of the DNA extractions indicated intact DNA fragments 35–500 base pairs in length (Fig. 1), with considerable variation in concentration between specimens (e.g. refer to Fig. 1f syntype material of *Py. perforata*) and other specimens (Fig. 1). The number of filtered sequencing reads generated from the 15 specimens varied from 4,716,038 to 68,784,178 (Table 2). The reads were sufficient to assemble the complete chloroplast genomes from 12 of the 15 specimens and the complete mitochondrial genomes for all 15 of the specimens, with the average N50 for all 15 specimens calculated to 25,274 bp, and the average maximum contig length to 54,472 bp (Table 2). Prior to analyzing all of the specimens, filtered reads from the first three type materials (LD-Ag 13037, UC 807662, VK-11-00061) were analyzed for bacterial and human contamination, and found to contain less than 0.75% contamination16.

Chloroplast Genome Analysis. The chloroplast genomes of *Py. perforata* were similar in length (189,752 bp to 189,889 bp), content, and gene synteny, all containing 209 protein-coding genes (including 24 ycf and 27 Open Reading Frames (ORFs)), 35 tRNA, 3 ribosomal RNA, totaling 247 genes (Supplementary Figures 1–5, Supplementary Table 1). The partial chloroplast genomes of *Py. fucicola* and *Py. kanaeakensis* were generated account for 97.5% of the estimated complete genome length. The assembly methods we employed for these two holotypes were unable to resolve a region approximately 4.8 kb in length representing non-identical ribosomal 16S, 23S, and 5S repeats. The content and synteny of *Py. fucicola* and *Py. kanaeakensis* are similar to *Py. perforata* and other *Pyropia* species.

Within populations of *Py. perforata* the chloroplast sequences were highly conserved. Two syntype collections of *Po. perforata f. segregata* from La Jolla, California were nearly identical (differing by 1 SNP), as were two specimens from the lectotype sheet of *Py. perforata* from San Francisco, California (6 SNPs, 4 gaps), and two syntype specimens of *Py. perforata* from Santa Barbara, California (4 SNPs). Comparison of genomes between the type collections of *Po. perforata f. segregata* and *Po. sanjuanensis*, differed from the lectotype of *Py. perforata* by 185 SNPs (+14 gaps), and 75 SNPs (+1 gap), respectively. The non-type material of *Py. perforata* from Punta San Roque, Baja California Sur showed the greatest amount of intraspecific sequence divergence from *Py. perforata*, 1,072 SNPs and 75 gaps. Pairwise distances between specimens of *Py. perforata* ranged from 0.0000–0.0053 (Supplementary Table 2). Interspecific distances between *Py. perforata* and *Py. haitanensis* were lowest (0.1178), and highest between *Py. perforata* and *Py. fucicola* (0.1453).

Maximum likelihood analysis of the chloroplast genomes of 18 complete sequences indicates strong support for a clade containing *Py. perforata* in a sister relationship to *Py. haitanensis* and *Py. kanaeakensis* (Fig. 2). The same relationships, but with less bootstrap support, were found when a likelihood analysis was performed using only the rbcL gene from the same specimens (Fig. 2). Locally collinear blocks (LCBs) analysis of 12 chloroplast sequences against the published genomes of *Py. yezoensis* and *Py. haitanensis*19 and *Porphyra* (*Py. purpurea* and *Po. umbilicalis*)26,27 identified 33 conserved gene regions using *Cyanidium caldarium*28 as an outgroup. The data confirm that genome structure is highly conserved within the Bangiaceae (Fig. 3). The only apparent difference is that all specimens of *Py. perforata* contained three fewer non-identical ribosomal 16S, 23S and 5S repeats (approximately 4.8 kb) compared to other Bangiaceae.

Mitochondrial Genome Analysis. The mitochondrial genomes of specimens attributed to *Py. perforata* harbored 55 to 59 genes, with lengths ranging from 32,491 bp (*Py. perforata* from Carmel, California) to 40,042 bp (holotype of *Py. sanjuanensis* from San Juan Island, Washington) (Table 2, Supplementary Table 3). Specimens of *Py. perforata* contained 2–3 ribosomal RNA genes (1–2 large subunit (rnl), 1 small subunit (rns)), 23–24 transfer RNAs, 4 ribosomal proteins, 2 ymfs, and 18–19 genes involved in electron transport and oxidative phosphorylation. The number of ORFs varied between specimens (3 ORFs in *Py. perforata* from Carmel, California to 7 ORFs in the holotype of *Py. sanjuanensis*) (Supplementary Figures 6–17, Supplementary Table 3). The genome content of *Py. fucicola* was similar to *Py. perforata*, however *Py. kanaeakensis* lacked orf546, but contained orf729.

The mitochondrial genome sequences within populations of *Py. perforata* were similar. Two syntype collections of *Po. perforata f. segregata* from La Jolla, California were nearly identical (differing by 5 SNPs, 2 gaps), as were the two specimens from the lectotype sheet of *Py. perforata* from San Francisco, California (4 SNPs, 2 gaps), and two syntype specimens of *Py. perforata* from Santa Barbara, California (3 SNPs). In contrast, the genomes of *Py. perforata* from different populations varied in their content and length. The type collections of *Po. perforata f. segregata* and *Po. sanjuanensis* differed from the lectotype of *Py. perforata* by 120 SNPs (+8 single nucleotide gaps and 3 large gaps) and 106 SNPs (+3 single nucleotide gaps and 3 large gaps), respectively. The specimen from Punta San Roque, Baja California Sur exhibited the greatest intraspecific variation compared to the lectotype of *Py. perforata*, showing 934 SNPs, 127 single/multiple length gaps, and 1 large gap. Pairwise distances between specimens of *Py. perforata* ranged from 0.0000–0.0641 (Supplementary Table 4). Distances between the holotype of *Py. kanaeakensis* and a more recent collection of this species from Land’s End, San Francisco was 0.0039. Interspecific distances between *Py. perforata* and *Py. fucicola* were lowest (0.1963), and highest between *Py. perforata* and *Py. yezoensis* (0.3226). Distances between *Py. yezoensis*, *Py. haitanensis*, *Py. kanaeakensis*, and *Py. fucicola* ranged from 0.1113–0.3499.

Maximum likelihood analysis of the complete mitochondrial genomes found strong support for a single monophyletic clade containing *Py. perforata*, which was sister to position to *Py. haitanensis* and *Py. kanaeakensis* (Fig. 2). Phylogenetic analysis of the same representatives using only their cytochrome oxidase 1 sequences (664 bp) failed to resolve the populations of *Py. perforata*, and found different relationships for the other species of *Pyropia* (Fig. 2). LCB analysis and linearized barcode alignments of the 15 *Pyropia* generated here, against those of published *Pyropia* and *Porphyra*26,27 identified 18 conserved gene regions (Fig. 4). The alignments depict numerous insertion/deletion events among populations of *Py. perforata*, and between *Py. perforata* and other species of *Pyropia*. No alignment differences were observed within populations of *Py. perforata*, but
Figure 1 | Images of six type specimens analyzed in this study and their high sensitivity quantitations. (a), (d), Lectotype (LD-Ag 13037) of *Porphyra perforata* J. Agardh with 860.75 pg/ul at 98 bp. (b), (e), Holotype (VK-11-00061) of *Po. sanjuanensis* V. Krishnamurthy with 218.65 pg/ul at 74 bp. (c), (f), Syntype (UC 807662) of *Po. perforata* f. segregata Setchell & Hus with 3496.84 pg/ul measuring at 100 bp. (g), (j), Lower specimen on the lectotype sheet of *Po. perforata*, identified as *Po. kanakaensis* by Conway²⁹ with 5.21 pg/ul at 50 bp (LD-Ag 13038). (h), (k), Holotype (VK-11-00121) of *Po. fucicola* V. Krishnamurthy with 50.00 pg/ul at 150 bp. (i), (l), Holotype (Mumford #161) of *Po. kanakaensis* Mumford 24.10 pg/ul at 142 bp. FU = fluorescence units, bp = base pairs.
Table 1 | Species, voucher, collection, and GenBank information for Pyropia analyzed in this study

Identification	Voucher	Collector/Date/Locality	GenBank mtDNA	GenBank Chloroplast	SRA Accession
Pyropia perforata	LD-Ag 13037, Py. perforata lectotype	Sven Berggren/1874/near Golden Gate, Calif.	KF515971	KC904971	SAMN02743484
Pyropia perforata	LD-Ag 13038, Py. perforata syntype	Sven Berggren/1874/near Golden Gate, Calif.	KJ708764	KJ776827	SAMN02743481
Pyropia perforata	LD-Ag 13031, Py. perforata syntype	R.F. Bingham/unknown/Santa Barbara, Calif.	KJ708767	KJ776829	SAMN02743482
Pyropia perforata	LD-Ag 13032, Py. perforata syntype	R.F. Bingham/unknown/Santa Barbara, Calif.	KJ708769	KJ776831	SAMN02743483
Pyropia perforata	UC 807662, Po. perforata f. segregata syntype	E. Snyder/1895/La Jolla, Calif.	KJ708766	KJ776828	SAMN02743486
Pyropia perforata	UC 95739, Po. perforata f. segregata syntype	E. Snyder/1895/La Jolla, Calif.	KF515975	KF515972	SAMN02743485
Pyropia perforata	UC 95735	G. Eisen/1899/Punta San Roque, Baja California, Mexico	KJ708768	KJ776830	SAMN02743487
Pyropia perforata	UC 1450590	M.J. Wynne/1968/South end of Carmel Beach, Calif.	KJ708770	KJ776832	SAMN02743488
Pyropia perforata	UC 2019900	J.R. Hughley/12-May-2011/Tomales Bay, Calif.	KJ708771	KJ776833	SAMN02743489
Pyropia perforata	UC 2019901	M. Dethier/16-Sep-2013/Near Turn Is., San Juan Is., Wash.	KJ708772	KJ776834	SAMN02743490
Pyropia perforata	UC 2019902	C. O’Kelly/19-Sep-2013/Friday Harbor, San Juan Is., Wash.	KJ708761	KJ776835	SAMN02743491
Pyropia perforata	VK-11-00061, Po. sanjuanensis holotype	V. Krishnamurthy/19-Feb-1968/Minn. Reef, San Juan Is., Wash.	KF515974	KF515973	SAMN02743492
Pyropia kanakaensis	WTU 255136, Py. kanakaensis holotype	T.F. Mumford/02-Aug-1970/Kanaka Bay, San Juan Is., Wash.	KJ708763	KJ776836	SAMN02743493
Pyropia kanakaensis	UC 1863890	R. Moe/12-Aug-1999/Land’s End, San Francisco, Calif.	KJ708765	Not determined	SAMN02743494
Pyropia fucicola	VK-11-00121, Py. fucicola holotype	V. Krishnamurthy/13-May-1968/Makah Bay, Wash.	KJ708762	KJ776837	SAMN02743495

Significant polymorphisms were evident among populations of this species. Barcode findings were similar to those of the LCB analysis (Fig. 5). Most notably the intraspecific mitochondrial genome content differences for Py. perforata were: 1) the lectotype and two other collections of Py. perforata (San Francisco and Baja California Sur) lack the entire 2,326 bp large subunit ribosomal intron present in other species of Pyropia, whereas some Py. perforata and Py. kanakaensis both lack part (1,274 bp) of the same intron, 2) type material of Py. perforata contains a single orf546 gene, whereas the other specimens either have an additional non-identical orf546 repeat totaling 2,478 bp in size, or totally lack orf546 (Carmel, California), 3) Py. perforata from Santa Barbara and La Jolla lack a 2,075 bp open reading frame (orf693) that is present in the other Py. perforata specimens and in other species of Pyropia, 4) Py. perforata from La Jolla, California codes for an additional tRNA (histidine), and 5) the holotype material of Po. sanjuanensis contains a 2,390 bp insertion that codes for a group II intronic open reading frame (orf813) not present in the other Py. perforata, but present in Py. haitanensis and Py. tenera.

Phylogenetic Markers. Analysis of the standard chloroplast markers ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the universal plastid ampiclon (UPA), plus the universal mitochondrial barcode marker cytochrome oxidase 1 (CO1), found few polymorphisms (Supplementary Table 5) among populations of Py. perforata from Alaska, USA to Baja California Sur, Mexico. The rbcL gene for Py. perforata showed 0–2 (6) bp variation (the 6 bp variation was exhibited solely in the specimen from Baja California Sur), and the lectotype sequence of Py. perforata was identical to three sequences deposited in GenBank from Alaska, USA and British Columbia, Canada; no differences for the UPA gene were observed among Py. perforata populations, and all 13 genome sequences matched the two 371 bp sequences deposited in GenBank from British Columbia specimens; no polymorphisms were identified for CO1 between the lectotype and other Py. perforata, with the exception of the Py. perforata from Baja California Sur (which differed by 3 bp) and the holotype specimen of Po. sanjuanensis. The latter was found to contain orf813 inserted in the CO1 gene (Fig. 5). As noted above, this specific orf813 organization is also found in Py. haitanensis and Py. tenera. Comparison of CO1 sequences from the Py. perforata genomes to those in GenBank found 12 exact matches from specimens from British Columbia. Analysis of the holotype of Py. kanakaensis found an exact match in GenBank to the rbcL sequence generated from a specimen from British Columbia, and two exact matches for CO1 from specimens of Py. kanakaensis from the same province. The holotype of Py. fucicola failed to exactly match any sequences in GenBank for rbcL and UPA, but its CO1 barcode was identical to seven sequences deposited under the name Py. fucicola from British Columbia.

Discussion

The first plastid and mitochondrial genomes from red algae were determined for Porphyra purpurea20,24. The organellar genomes of other Bangiaceae soon followed19,21,23,25,26. Excluding six red algal florideophyte chloroplast genomes and ten mitochondrial genomes, in total GenBank contains the complete circular genomes of two species of Porphyra (Po. purpurea and Po. umbilicalis), three Pyropia mitochondrial genomes (Py. yezoensis, Py. haitanensis, and Py. tenera), and two Pyropia chloroplast genomes (Py. yezoensis, Py. haitanensis). This study investigated genomic divergence at both the intraspecific and interspecific levels to test the current taxonomic classification of Py. perforata. We analyzed the type specimens of Po. perforata f. segregata and Po. sanjuanensis and compared the genetic distances exhibited by these specimens to two closely related
species, Py. fucicola against Py. yezoensis. The distances between the latter were calculated to 0.0338 for the chloroplast genome. The same comparison done for Po. purpurea and Po. umbilicalis, was 0.0833, well within the range observed for all Pyropia distances compared in this study (0.0338–0.1455). The range of divergence between the lectotype of Py. perforata and the types of Po. perforata f. segregata (0.0009), and Po. sanjuanensis (0.0004), fall well within that of all Py. perforata from Washington to Baja California Sur (0.0000–0.0053). It is thus concluded that this variation represents intraspecific variation. Conversely, mitochondrial distances between Py. fucicola and Py. yezoensis, plus Py. fucicola and Py. tenera, were 0.1463 and 0.1113, respectively. Pairwise distances between various Pyropia species were quite high (0.1113–0.3499). For Po. purpurea and Po. umbilicalis that number was 0.1567. The level of variation observed among populations of Py. perforata was 0.0000–0.0641. Compared to the lectotype of Py. perforata, the types of Po. perforata f. segregata (0.0258) and Po. sanjuanensis (0.0224) fall within the observed intraspecific range. Based on these well-defined pairwise distances, the interspecific delineations using complete plastid evidence is likely around 0.025 and higher, and for the mitochondrial genome they are at 0.10 and higher.

Analysis of standard markers indicates that scant amounts of variation can be obtained through the marker approach compared to the genomic method of analysis. In comparing the chloroplast variation exhibited by the \(rbcL \) gene among populations of Py. perforata, we found a mere 0–2 bp divergence, whereas, the genome data for these same specimens displayed 1 SNP-1,072 SNPs and 75 gaps divergence. Interestingly enough, the maximum likelihood analysis of Figure 2 | Maximum likelihood analysis of chloroplast genomes (a), \(rbcL \) sequences (b), mitochondrial genomes (c), and CO1 sequences (d) of Pyropia and Porphyra. Numbers above branches are maximum likelihood bootstrap values based on 1,000 replicates. The legend below represents the scale for nucleotide substitutions. The analysis was performed using RAxML and the default parameters in Galaxy. The tree was constructed with TreeDyn 198.3 at Phylogeny.fr.

Species/Voucher/Year Collected	36 mers	N50	Velvet Contigs	Max Contig	mtDNA Length	Chloroplast Length
Py. perforata/LD-Ag 13037/1874*	68,784,178	35,758	526	54,271	33,919	189,789
Py. perforata/LD-Ag 13038/1874*	5,194,297	15,937	321	43,667	33,921	189,789
Py. perforata/LD-Ag 13031/unknown	18,738,480	54,271	114	99,206	32,662	189,789
Py. perforata/LD-Ag 13032/unknown	4,758,357	36,270	67	55,056	32,662	189,789
Py. perforata/UC 95735/1899*	4,716,038	15,629	1,845	42,644	33,958	189,789
Py. perforata/UC 1450590/1968*	29,767,819	2,712	2,103	18,231	32,491	189,794
Py. perforata/UC 2019900/2011*	5,842,020	54,265	506	99,200	34,968	189,789
Py. perforata/UC 2019901/2013*	19,624,308	2,850	689	9,639	34,870	189,794
Po. sanjuanensis/VK-11-00061/1968*	6,197,218	24,095	613	42,643	34,968	189,788
Po. perforata f. segregata/UC 807667/1895	23,123,087	4,879	912	23,135	35,144	189,752
Po. perforata f. segregata/UC 95738/1895	20,234,514	437	4,249	13,714	34,968	189,752

Table 2 | Comparison of assembly and genomic data for the specimens of Pyropia analyzed in this study

* denotes assemblies performed in Velvet using kmer = 31
* denotes assemblies performed in Velvet using kmer = 25
— estimate based on 97.5% of genome that was obtained
Py. denotes Pyropia
Po. denotes Porphyra

Figure 2 | Maximum likelihood analysis of chloroplast genomes (a), rbcL sequences (b), mitochondrial genomes (c), and CO1 sequences (d) of Pyropia and Porphyra. Numbers above branches are maximum likelihood bootstrap values based on 1,000 replicates. The legend below represents the scale for nucleotide substitutions. The analysis was performed using RAxML and the default parameters in Galaxy. The tree was constructed with TreeDyn 198.3 at Phylogeny.fr.
Figure 3 | Locally collinear blocks (LCBs) analysis for 17 complete chloroplast genomes. The figure depicts linearized alignments identifying 33 conserved gene regions for 14 specimens of Pyropia (a–n), two of Porphyra (o–p), and outgrouped with Cyanidium caldarium (q). Each chromosome is oriented horizontally, and homologous blocks are shown as identically colored regions linked across genomes. Regions that are inverted relative to Py. perforata are shifted below the genome’s center axis. Sequence similarities within an LCB are proportional to the heights of interior colored bars. Large sections of white within blocks, and gaps between blocks, indicate lineage specific sequences. The analysis shows that chloroplast genomes of Pyropia and Porphyra are similar in content and gene synteny. The single observable difference is the presence of ribosomal 16S, 23S and 5S repeats found in other Pyropia and the two species of Porphyra, but absent in Py. perforata. (a–l), Py. perforata, (a), LD-Ag 13037 (b), VK-11-00061 (c), UC 807662 (d), LD-Ag 13038 (e), UC 95739 (f), LD-Ag 13031 (g), UC 95735 (h), LD-Ag 13032 (i), UC 1450590 (j), UC 2019900 (k), UC 2019901 (l), UC 2019902 (m), Py. haitanensis (n), Py. yezoensis (o), Po. purpurea (p), Po. umbilicalis (q), Cyanidium caldarium. The figure was drawn using Mauve 2.3.1*.
Figure 4 | Locally collinear blocks (LCBs) analysis for 20 complete mitochondrial genomes. The figure depicts linearized alignments identifying 18 conserved gene regions for six species of Pyropia (a–r) and two of Porphyra (s–t). Each chromosome is oriented horizontally and homologous blocks are shown as identically colored regions linked across genomes. Regions that are inverted relative to P. perforata are shifted below the genome’s center axis. Sequence similarities within an LCB are proportional to the heights of interior colored bars. Large sections of white within blocks, and gaps between blocks, indicate lineage specific sequences. The analysis shows that mitochondrial genomes within populations of P. perforata are similar in content and length, but highly variable between populations and other Pyropia. (a–l), P. perforata, (a), LD-Ag 13037 (b), LD-Ag 13038 (c), UC 95735 (d), LD-Ag 13031 (e), LD-Ag 13032 (f), UC 2019900 (g), UC 2019901 (h), UC 2019902 (i), UC 1450590 (j), UC 807662 (k), UC 95739 (l), VK-11-00061 (m), Mumford #161 (n), UC 1863890 (o), VK-11-00121 (p), Py. haitanensis (q), Py. yezoensis (r), Py. tenera (s), Po. purpurea (t), Po. umbilicalis. The figure was drawn using Mauve 2.3.1."
the rbcL data generated a congruent evolutionary hypothesis compared to the genome data phylogeny. The other chloroplast marker, UPA, failed to exhibit any polymorphisms in this species. The CO1 barcode showed 0–3 bp variation, whereas the genome data for these specimens found content, length (32,491 to 40,042 bp), and SNP variation (3 SNPs–934 SNPs, 127 single/multiple length gaps, and 1 large gap). These results suggest that the marker based approach to phylogenetics is failing to identify a large amount of cryptic molecular diversity in these algae. Comparison of the CO1 phylogeny to the genome derived tree found incongruency. The CO1 data alone was unable to resolve populations of *Py. perforata*, and supported different relationships compared to the genome-based hypothesis.

All of these results taken together, support previous taxonomic and phylogenetic conclusions regarding the synonymy of the names *Po. perforata f. segregata* and *Po. sanjuanensis* under *Py. perforata* [15,16]. This species, although quite variable in its mitochondrial sequence between populations, is circumscribed to accommodate monostromatic thalli that inhabit the uppermost intertidal to the lower intertidal, that are variable in color with ruffled margins, vary in thickness from 40–60 μm, are monoecious and reproduce sexually with tiers of zygotosporangia in 2 or 4 (mixed and not mixed with vegetative cells) and spermatangia in tiers of 8, but that also asexually reproduce via aplanospores, and show a karyotype of 2 or 3 [15,16]. One of the specimens that was analyzed, LD-Ag 13038 (Fig. 1g), mounted on the lectotype sheet of *Py. perforata*, was previously attributed incorrectly to *Py. kanakaensis* based on anatomical examination [29]. This specimen should be designated syntype material, especially in light of the fact that it is excessively perforate, and the sheet carries the inscription *Porphyra perforata* in the author’s (J. Agardh’s) handwriting. The other specimen that was misidentified as *Py. perforata* (UC 1863890 from Land’s End, San Francisco, California), was determined by mitochondrial genome and partial plastid analysis to be assignable to *Py. kanakaensis*.

Worldwide herbaria are estimated to contain 300 million specimens and nearly all of them are not being used for molecular phylogenetic studies. Of the estimated 70,000 plant species still to be described, more than half already have been collected and are stored in herbaria [33]. In an age when administrators of universities are cutting funds or considering closure of herbaria on the grounds of obsolescence, there is a need for a method that will allow for type and nontype specimens to be compared against existing older names, as well as future names. Our data show that this need can be satisfied using very small amounts of archival herbarium tissue. The methodologies used here are optimized for low DNA quality and concentration for library construction (several of the samples contained less than 0.5 ng of total DNA). The amount of material required for this type of analysis is similar to that traditionally used for microscopic examination. In addition, our results show that large amounts of single read sequence data are not required to decipher the chloroplast and mitochondrial genomes. In this case we assembled the two circular genomes of type specimen of *Py. perforata* from Baja California Sur with only 4,716,038 filtered reads. Once deciphered, the large amount of information housed in the chloroplast and mitochondrial genomes likely eliminates the need for future sampling of the type material for organellar purposes. The complete circular genomes of type specimens can be used in part (i.e. markers) or in total, to address barcode, phylogenetic, conservation, taxonomic, historical, evolutionary, and population studies. This data shows that 19th and early 20th century herbarium specimens have great value for current and future systematic and genomic studies, and with respect to type specimens, are essential for the accurate application of species names for all plants, algae and fungi where ample material was archived.
Methods

DNA was isolated following the protocol of Lindstrom et al., with the exception that epipelic acid was resuspended with 60 ul of elution buffer. Procedures were performed using 4 x 4 mm² of material following the precautionary contamination guidelines outlined by Hughey and Gabrielson. The DNA quality and quantity was analyzed by the High-Throughput Genomics Center (HTGC) on an Agilent 2100 Bioanalyzer following the manufacturer's instructions. The genome library was constructed based on a modified TruSeq protocol developed by HTGC (Supplementary Methods). The 36 bp single end sequencing analysis was performed using the manufacturer’s protocol via the Cb0 and HiSeq 2000 by HTGC. Filtered reads were base called using Illumina’s standard pipeline, then assembled using the Bio-Linux 7th platform with Velvet running on auto settings. After the first run, the data was then rerun optimizing for the expected cutoff and coverage cutoff based on the coverage data from the first assembly. Specimens with more than 15 million reads were assembled using the kmer = 31, while those with less than 8 million were assembled with kmer = 25. The resulting contigs and aligned contigs were ordered according to reference sequences (Py. yezeis, Py. haitanensis, and Po. purpurea). To validate the joined contigs, targeted PCR and sequencing, and assembly comparisons to Metavelvet contig results, were analyzed on the first three genomes assembled (LD-Ag 13037, UC 807662, VK-11-00061). Genomes processed later were confirmed by aligning sequence reads against a draft assembly in NextGen® (Soft Genetics LLC). The ORFs were annotated using NCBI ORF-finder and alignments obtained via BLASTX and BLASTN searches at NCBI. The tRNAs were identified using the tRNAscan-SE 1.21 web server and the rRNAs using the RnAmmer 1.2 server. LCB alignments were generated using ProgressiveMauve with a seed of 21 for the chloroplast and mitochondrial alignments, with the 'Use seed families' option selected. The barcode alignment of the mitochondrial data was performed with MAFFT 7.058 using default settings, and the results were presented with Jalview. Alignments results from MAFFT were analyzed with RaxML, using the default parameters in Galaxy and the phylogenic tree was visualized with TreeDyn 1983 at Phylogeny.fr. Pairwise distances were calculated using the default settings (GTR substitution model) by DIVEIN.

Acknowledgments

We wish to especially thank Dr. Per Lassen, Dr. Patrik Fro¨de´n, and Dr. David Giblin for their generous support. We are grateful to Dr. Peter Evert for his kind advice and to Dr. David Bourne for his helpful comments. This work was supported by a grant from the Swedish Research Council Formas (2009-1136).
assistance in securing material. Drs. Megan Dethier and Charles O’Kelly kindly supplied fresh Pyropia from San Juan Island. Dr. Rajinder Kaul provided valuable genome sequencing advice and Joni Black provided laboratory support for this project. This work was possible as a result of the generous support from a private family trust from P.W.G. and Dr. Kelly Locke, Title V grant director at Hartnell College (Grant number: PO31C110168).

Author contributions
J.R.H. designed, executed, coordinated, and wrote the study. P.W.G. annotated, assembled, and contributed to the writing of the paper. L.R. performed genomic assemblies. J.T. and M.S. annotated the data. E.R. performed the contamination analyses. C.M. and J.D.Y. executed assemblies and provided technical expertise. K.A.M. supplied specimens and contributed to the text of the paper. All authors discussed the results and commented on the manuscript. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied of the US government.

Additional information
Genbank accession numbers KC304971, KF515971-KF515975, KJ708761-KJ708772, KJ776827-KJ776847

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Hughey, J.R. et al. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes. Sci. Rep. 4, 5113; DOI:10.1038/srep05113 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images in this article are included in the article's Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/