APP transgenic modeling of Alzheimer’s disease: mechanisms of neurodegeneration and aberrant neurogenesis

Leslie Crews · Edward Rockenstein · Eliezer Masliah

Received: 22 September 2009 / Accepted: 11 November 2009 / Published online: 29 November 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Neurodegenerative disorders of the aging population affect over 5 million people in the US and Europe alone. The common feature is the progressive accumulation of misfolded proteins with the formation of toxic oligomers. Alzheimer’s disease (AD) is characterized by cognitive impairment, progressive degeneration of neuronal populations in the neocortex and limbic system, and formation of amyloid plaques and neurofibrillary tangles. Amyloid-β (Aβ) is the product of proteolysis of amyloid precursor protein (APP) by β and γ-secretase enzymes. The neurodegenerative process in AD initiates with axonal and synaptic damage and is associated with progressive accumulation of toxic Aβ oligomers in the intracellular and extracellular space. In addition, neurodegeneration in AD is associated with alterations in neurogenesis. Aβ accumulation is the consequence of an altered balance between protein synthesis, aggregation rate, and clearance. Identification of genetic mutations in APP associated with familial forms of AD and gene polymorphisms associated with the more common sporadic variants of AD has led to the development of transgenic (tg) and knock out rodents as well as viral vector driven models of AD. While APP tg murine models with mutations in the N- and C-terminal flanking regions of Aβ are characterized by increased Aβ production with plaque formation, mutations in the mid-segment of Aβ result in increased formation of oligomers, and mutations toward the C-terminus (E22Q) segment results in amyloid angiopathy. Similar to AD, in APP tg models bearing familial mutations, formation of Aβ oligomers results in defective plasticity in the perforant pathway, selective neuronal degeneration, and alterations in neurogenesis. Promising results have been obtained utilizing APP tg models of AD to develop therapies including the use of β- and γ-secretase inhibitors, immunization, and stimulating neurogenesis.

Keywords Transgenic · Neurodegenerative disease · Aging · Alzheimer · APP · Synapse loss · Neurogenesis

Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the aging population. It is characterized by the progressive and irreversible deafferentation of the limbic system, association neocortex, and basal forebrain (Perry et al. 1977; Hyman et al. 1984; Wilcock et al. 1988; Hof et al. 1990; Palmer and Gershon 1990; Masliah et al. 1993), accompanied by the formation of neuritic amyloid plaques, amyloid angiopathy, neurofibrillary tangles (NFTs), and neuropil threads (Terry et al. 1994). This neurodegenerative process is followed by reactive astrogliosis (Dickson et al. 1988) and microglial cell proliferation (Rogers et al. 1988; Masliah et al. 1991). Loss of synapses (DeKosky and Scheff 1990; Masliah 2001; Scheff and Price 2001) and axonal pathology (Raff et al. 2002) are probably key neuropathological features leading to dementia in these neurodegenerative disorders. In addition, recent evidence suggests that alterations in the niches for neurogenesis in the adult brain might also contribute to the neurodegenerative process (Haughey et al. 2002; Tatebayashi et al. 2003; Dong et al. 2004;
Jin et al. 2004; Wen et al. 2004; Chevallier et al. 2005; Donovan et al. 2006). The unique patterns of cognitive impairment that characterize AD, in turn, depend on the neural circuitry specifically affected (Hof and Morrison 1994), the extent of the synapto-dendritic damage, and the speed with which the injury propagates (Terry et al. 1991; DeKosky et al. 1996). Recent evidence supports the contention that neuronal cell death might occur later in the progression of neurodegeneration and that damage to the synapto-dendritic apparatus might be one of the earliest pathological alterations (Masliah and Terry 1993, 1994; Masliah 1998, 2001; Honer 2003; Scheff and Price 2003). This is accompanied by the abnormal accumulation of neuronal proteins in the extracellular space (e.g., plaques, cerebral amyloid angiopathy [CAA]) or in intracellular compartments (e.g., tangles and Lewy bodies [LBs]). Abnormal accumulation and misfolding (toxic conversion) of these synaptic and cytoskeletal proteins are being explored as key pathogenic events leading to neurodegeneration (Koo et al. 1999; Ramassamy et al. 1999; Ferrigno and Silver 2000).

In AD, amyloid-β peptide 1–42 (Aβ1–42), a proteolytic product of amyloid precursor protein (APP) metabolism (Fig. 1), accumulates in the neuronal endoplasmic reticulum (ER) (Cuello 2005) and extracellularly (Selkoe et al. 1996; Trojanowski and Lee 2000; Walsh et al. 2000). The primary pathogenic event triggering synaptic loss and selective neuronal cell death in these disorders is not yet completely clear (Masliah 2000, 2001), however, recent studies suggest that nerve damage might result from the conversion of normally non-toxic monomers to toxic oligomers (Volles et al. 2001; Volles and Lansbury 2002; Walsh and Selkoe 2004) (Fig. 2), whereas larger polymers and fibers that often constitute the plaques might not be as toxic (Lansbury 1999; Walsh et al. 2002). An example of a naturally occurring oligomer species is Aβ*56, which has been shown to promote age-dependent memory deficits (Lesne et al. 2006). Aβ*56 and Aβ trimers secreted by cultured cells could share common synaptotoxic properties (Selkoe 2008). Previous studies have shown that the Aβ dimers, trimers, and higher-order oligomers secreted by cultured neurons inhibit LTP and damage spines (Klein et al. 2001; Walsh and Selkoe 2004; Townsend et al. 2006; Selkoe 2008). Additional studies have shown that Aβ dimers derived from human CSF disrupt synaptic plasticity and inhibit hippocampal LTP in vivo (Klyubin et al. 2008). Together, these studies indicate that Aβ oligomers ranging in size from 2 to 12 subunits might be responsible for the
Experimental modeling of Alzheimer’s disease

Although dramatic progress has been made in understanding the pathogenesis of neurodegenerative conditions of the aged population, such as AD, Parkinson’s disease (PD), and Lewy body disease (LBD), most of these disorders remain incurable. Because of the near epidemic proportion in the aging population, these disorders pose a serious challenge to the health care system. Identification of new targets and development of biological mouse models holds the promise of better understanding their pathogenesis and discovering and testing new treatments.

Experimental models of AD could mimic individual or multiple alterations found in AD; however, to date not a single model mimics all the alterations observed in AD. The best model is probably the aged monkey (Price et al. 1994), however, because of the time and cost involved in utilizing this model, most studies have been focused on developing murine models. Most of the tg animal models of AD are based on the targeted overexpression of single or multiple mutant molecules associated with familial AD (FAD) (Table 1, Fig. 3). Currently, mutations in three or multiple mutant molecules associated with familial AD of AD are based on the targeted overexpression of single developing murine models. Most of the tg animal models utilizing this model, most studies have been focused on overexpression of mutant APP (Table 1) in combination with mutant PS1. A summary of the FAD mutations reproduced in tg mouse models is presented in Fig. 3. Previously developed tg mouse models have shown that it is possible to reproduce certain aspects of AD pathology over a shorter period of time (Masliah et al. 1996; Games et al. 1997; Price et al. 2000). In this model, the platelet-derived growth factor (β chain) (PDGF-β) promoter drives an alternatively spliced human APP (hAPP) minigene (PDAPP) encoding mutated (Indiana, V717F) hAPP695, 751, and 770 (Games et al. 1995; Rockenstein et al. 1995). This confers a high ratio of mRNA encoding mutated hAPP versus wild-type mouse APP (Rockenstein et al. 1995), which promotes development of typical amyloid plaques, dystrophic neurites, loss of presynaptic terminals, astrocytosis and microgliosis (Games et al. 1995, 1997; Masliah et al. 1996).

Other models have expressed mutant hAPP under the regulatory control of either the human or murine (m)Thy1 promoter (Andra et al. 1996; Sturchler-Pierrat et al. 1997; Moehars et al. 1999; Bornemann and Staufenbiel 2000) or the prion protein (PrP) promoter (Hsiao et al. 1996; Borchelt et al. 1997). Amyloid deposition begins at 12 months of age; however, co-expression of mutant PS1 accelerates amyloid deposition, beginning at 4 months of age (Borchelt et al. 1996, 1997; Holcomb et al. 1998). Another previously developed model, where hAPP is also expressed under the control of the PrP promoter, displays even earlier onset of amyloid deposition, starting at 3 months and progressing to mature plaques and neuritic pathology from 5 months of age, accompanied by high levels of Aβ1–42 (Chishti et al. 2001). While the PrP promoter has provided several models that mimic aspects of FAD, other promoters targeting expression of APP to neurons provide alternative models demonstrating pathology that recapitulate similar and additional aspects of FAD. In this regard, we have generated lines of tg mice expressing hAPP751 cDNA containing the London (Lon, V717F) and Swedish (Swe, K670N/M671L) mutations under the regulatory control of the mThy1 gene (mThy1-hAPP751) (Rockenstein et al. 2001; Fig. 4). While expression of mutant hAPP under the PDGF-β promoter results in the production of diffuse (and some mature) plaques (Games et al. 1995; Mucke et al. 2000), tg expression of mutant hAPP under the mThy1 (Andra et al. 1996) and PrP (Hsiao et al. 1996; Borchelt et al. 1997)
Model	Gene/Mutation	Species	Strategy	Promoter	Phenotype	References
PDAPP tg	hAPP695, 751, 770 V717F (Ind)	Mouse	Overexpression	PDGF-β	Increased expression of APP, accumulation of diffuse amyloid plaques, synaptic damage, and astro/microgliosis	Games et al. (1995), Rockenstein et al. (1995), Mucke et al. (2000)
Thy1-APP751 Swe/Ind tg	hAPP751 K670N/M671 (Swe) + V717F (Ind)	Mouse	Overexpression	Thy1	Amyloid deposition (6 mos), gliosis and tau hyperphosphorylation	Andra et al. (1996), Sturchler-Pierrat et al. (1997)
Thy1-APP695 Swe/Lon tg	hAPP695 K670N/M671 (Swe) + V717I (Lon)	Mouse	Overexpression	Thy1	Amyloid deposition (12 mos), high levels of Aβ₁₋₄₂ accumulation	Moechars et al. (1999)
Thy1-APP751 Swe/Lon tg	hAPP751 K670N/M671 (Swe) + V717I (Lon)	Mouse	Overexpression	Thy1	Amyloid deposition (3 mos) and mature plaque formation in hippocampus and neocortex	Rockenstein et al. (2001)
Tg2576	hAPP695 K670N/M671 (Swe)	Mouse	Overexpression	PrP	Amyloid deposition (9–12 mos), some vascular Aβ deposition	Hsiao et al. (1996), Borchelt et al. (1997)
Tg2576/PS1 mut	hAPP695 K670N/M671 (Swe) PS1 M146L	Mouse	Overexpression	PrP-hAPP PDGF-β-PS1	Early (4 mos) amyloid deposition, elevation of Aβ42(43) levels	Borchelt et al. (1997), Holcomb et al. (1998)
TgCRND8	hAPP695 K670N/M671 (Swe) + V717F (Ind)	Mouse	Overexpression	PrP	Early (3–5 mos) amyloid deposition, high levels of Aβ₁₋₄₂ accumulation	Chishti et al. (2001)
3xTg-AD	hAPP695 K670N/M671 (Swe) hTau4R0N P301L PS1 M146V	Mouse	Overexpression	Thy1	Amyloid deposition (9 mos), some intraneuronal Aβ accumulation, tangle-like pathology in the hippocampus, behavioral deficits	Oddo et al. (2003a, b)
Rat PDGFβ-APP751 tg	hAPP751 K670N/M671 (Swe) + V717F (Ind) PS1 M146V	Rat	Overexpression	PDGF-β	Intracellular amyloid accumulation, CREB activation and tau pathology	Echeverria et al. (2004a, b)
Rat UbC-APPSwe tg	hAPP695 K670N/M671 (Swe)	Rat	Overexpression	UbC	Extracellular amyloid deposition at 15–18 mos, some cerebrovascular Aβ accumulation	Folkesson et al. (2007)
Model	Gene/Mutation	Species	Strategy	Promoter	Phenotype	References
----------------------------	--	---------	------------------------	----------	---	---------------------
Rat UbC-APPSwe/Ind tg	hAPP695 K670N/M671 (Swe) + V717F (Ind)	Rat	Overexpression	UbC	High levels of APP expression, Aβ detected in serum	Agca et al. (2008)
Rat Synapsin-APP/PS1 tg	hAPP695 K670N/M671 (Swe) PS1 M146V	Rat	Overexpression Synapsin	Synapsin	Amyloid deposition at 7 mos in double tg	Flood et al. (2009)
TBA2 tg	Aβ3Q-42	Mouse	Overexpression of pyroglutamate Aβ	Thy1	Accumulation of intraneuronal pyroglutamate Aβ, extensive neuronal loss, no tangles or hippocampal degeneration	Wirths et al. (2009)
Tet-APP tg	Chimeric mo/hAPP695 K670N/M671 (Swe) + V717F (Ind)	Mouse	Regulatable overexpression	tetO	Abundant plaques remain after abolition of APP expression	Jankowsky et al. (2005)
APPSwe KI	Humanized Aβ in mo APP K670N/M671 (Swe)	Mouse	Knockin	Endogenous	Ninefold greater Aβ levels than in normal human brain, spatial and temporal expression patterns of human Aβ are reproduced	Reaume et al. (1996)
Arctic mut Aβ tg	hAPP K670N/M671 (Swe) + V717F (Ind) + Aβ E22G (Arc)	Mouse	Overexpression of hAPP, generation of mut Aβ	PDGF-β	Accumulation of oligomeric and fibrillar mut Aβ, extensive plaque formation	Cheng et al. (2004)
APP Dutch tg	hAPP751 Aβ E22Q (Dutch)	Mouse	Overexpression of hAPP, generation of mut Aβ	Thy1	Model of CAA; accumulation of primarily cerebrovascular amyloid, little parenchymal amyloid	Herzig et al. (2004)
promoters favors the formation of mature plaques in the hippocampus and neocortex. This suggests that the differential patterns of Aβ deposition might be dependent on the specific neuronal populations selected by the promoter, levels of expression and topographical distribution of the transgene, and levels of Aβ1–40 and Aβ1–42. Consistent with this, in FAD and Down syndrome, production of high levels of Aβ1–42 results in early plaque formation (Citron et al. 1997). This suggests that early age of onset and plaque formation depends on high levels of Aβ1–42 production (Rockenstein et al. 2001). Finally, of considerable interest and wide attention is the triple tg mouse model developed by LaFerla et al. (2007) (3xTg-AD) that involves overexpression of mutant APP (Swe) and Tau (P301L) under the Thy1.2 promoter in homozygous mutant PS1 (M146V) knockin mice. These mice develop neurological deficits, amyloid deposition, and tangle-like pathology in the hippocampus (Oddo et al. 2003a, b).

Models with accumulation of intracellular Aβ have also been developed. Among the most interesting ones is a rat tg model that expresses Swe/Ind mutant hAPP751 (K670N/M671L, V717F) alone or with mutant PS1 (M146V) knockin mice. These mice develop neurological deficits, amyloid deposition, and tangle-like pathology in the hippocampus (Oddo et al. 2003a, b).

Fig. 3 Diagram showing common mutations in the APP gene that are utilized in the generation of animal models of AD. Mutations in the N- and C-terminal domains of APP result in the accumulation of intracellular and/or extracellular Aβ species, while mutations in the Aβ region lead to the development of amyloid angiopathy. Swe Swedish mutation, Lon London mutation, Ind Indiana mutation, Arc Arctic mutation, TM transmembrane domain.

These animals have been shown to develop extracellular amyloid deposits at 15–18 months. A third rat line carrying both mutant APP (K670N/M671L) and a human PS1 transgene with the FAD M146V mutation under the control of the rat synapsin 1 promoter develops plaques at 7 months of age (Flood et al. 2009). While these models show promising results recapitulating the intracellular accumulation of Aβ that is observed in AD patients, more detailed neuropathological examination is necessary to fully characterize these models. Interestingly, the 3xTg-AD model described earlier has also been shown to accumulate intraneuronal Aβ, and more recent studies have focused on this as a mouse model of intracellular Aβ deposition. In these animals, accumulation of intraneuronal Aβ leads to progressive degeneration and death of neurons in the brains of tg mice (LaFerla et al. 2007).

Remarkably, post-transcriptionally modified Aβ also accumulates in substantial quantities intraneuronally (Fig. 5). In particular, pyroglutamate Aβ3–42 triggers a lethal phenotype with neurodegeneration in a mouse model that expresses Aβ3–42 peptides under the control of the Thy1 promoter (TBA2 tg) (Wirths et al. 2009). This model expresses Aβ with N-terminal glutamine (Aβ3Q-42) as a fusion protein with the murine thyrotropin-releasing hormone (mTRH), for transport via the secretory pathway (Cynis et al. 2006). The levels of converted Aβ(3(pE)-42) in TBA2 mice are comparable to the APP/PS1 knockin mouse model (Casas et al. 2004), with extensive neuron loss and associated behavioral deficits (Wirths et al. 2009).

Eight weeks after birth, TBA2 mice develop neurological
impairments together with abundant loss of Purkinje cells (Wirths et al. 2009). Although the TBA2 model lacks important AD-typical neuropathological features like tangles and hippocampal degeneration, it clearly demonstrates that intraneuronal Aβ (3(pE)-42) is neurotoxic in vivo (Wirths et al. 2009).

To further understand the mechanisms involved in Aβ deposition and clearance, a unique model of neuronal APP expression has been developed that expresses mutant (Swe/Ind) hAPP695 under the control of a tetracycline-sensitive promoter (Jankowsky et al. 2005). This approach allows the instantaneous abolition (95%) of hAPP expression upon treatment with doxycycline. Animals were treated with antibiotic after plaques were already formed and in this model, very little new hAPP—and subsequently, Aβ—is produced after antibiotic treatment, so the natural rate of Aβ clearance can be assessed. Notably, even after 12 months of suppression of APP production, amyloid deposits in the brains of treated mice remained abundant (Jankowsky et al. 2005). This indicates that, once formed, amyloid plaques are highly resistant to dissolution in the brain, and further suggests that therapeutic approaches based solely on reducing amyloid production may not be effective, and may need to be combined with clearance-based treatments.

While most animal models of AD involve ectopic expression or overexpression of FAD-related genes, some pathological features of AD have been recapitulated in mutant and knockin animals in which FAD-causing mutations are targeted into their endogenous genes. One advantage to gene-targeted and knockin models is that developmental and tissue-specific expression patterns of human Aβ are relatively preserved because the gene encoding the mutant precursor protein remains in its normal chromosomal location. One of the first models to express mutant APP in its endogenous location in the
mouse genome used site-specific mutagenesis to transform murine APP into “humanized” APP bearing the Swe mutation (K670N/M671L) (Reaume et al. 1996). In this model, amyloidogenic processing was somewhat enhanced and measurable increases in Aβ production were detected (Siman et al. 2000), however, the effects were not as robust as in APP tg models. Interestingly, in the gene-targeted mutant APP animals, the pathological process is markedly enhanced upon introduction of a PS1 P264L knockin mutation in these mutant APP animals, characterized by a large increase in Aβ1–42 levels and an acceleration of age-dependent onset of amyloid pathology (Siman et al. 2000).

It is still controversial which Aβ species is responsible for the neurodegenerative process in AD. While most recent studies support a role for small oligomers (dimers, trimers, up to dodecamers) (Walsh and Selkoe 2004; Glabe 2005; Glabe and Kayed 2006), others emphasize an important role for the accumulation of intracellular Aβ and for post-transcriptional modifications, such as pyroglutamate changes (Cynis et al. 2008; Schilling et al. 2008). Models reproducing the formation of Aβ oligomers include those expressing APP bearing the Arctic mutation (E22G) under the control of the PDGF-β promoter (Cheng et al. 2004). This mutation is highly fibrillogenic in vivo, and these mice rapidly develop extensive plaque formation (Cheng et al. 2004). Mutations that increase oligomers and protofibril formation include the E22G (Arctic), E22K (Italian), E22Q (Dutch), and the D23N (Iowa) amino acid substitutions (Demeester et al. 2001; Lashuel et al. 2003; Betts et al. 2008; Fig. 3). Interestingly, all of these mutations are located within the Aβ-containing sequence of APP, and in addition to the apparent oligomer-promoting effect of these mutations, it has been proposed that the pathogenic effect may also be related to a resistance in proteolysis of Aβ (Tsubuki et al. 2003). In support of this possibility, another familial APP mutation, A21G (Flemish), exhibits a significantly reduced rate of proteolysis by the Aβ-degrading enzyme Neprilysin (Betts et al. 2008).

Most emphasis has been placed on the amyloid deposition in the intracellular compartment and in the plaques. However, patients with AD also develop amyloid deposition around blood vessels, a process that ultimately leads to a condition known as cerebral amyloid angiopathy (CAA). This can cause vascular fragility and hemorrhages (reviewed in Pezzini et al. (2009)), and it is important to note that therapeutic anti-Aβ vaccination strategies may increase susceptibility to developing CAA (Boche et al. 2008). Patients who have hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) generate both wild-type Aβ and E22Q-mutant Aβ (Aβ Dutch) (van Duinen et al. 1987; Levy et al. 1990). The brains of patients with HCHWA-D show CAA with very little parenchymal amyloid deposition (Herzig et al. 2006). To date, there are several mouse models that deposit amyloid in the blood vessels, including some models more widely used to study parenchymal Aβ accumulation, such as the Tg2576 mouse (Hsiao et al. 1996; Frackowiak et al. 2003). The only mouse model that develops significant cerebrovascular amyloid with virtually no parenchymal amyloid is the APPDutch mouse, which overexpresses hAPP751 bearing the E693Q (E22Q in Aβ) mutation under the control of the Thy1 promoter (Herzig et al. 2004). More recently, the same group has also developed a new model of CAA by crossing the APPDutch mutant mice with...
APP23 mice that express mutant hAPP751 (Swe) under the control of the Thy1 promoter (Herzig et al. 2009). While the classical APP23 mice display extracellular $\alpha\beta$ plaques, double-tg APP23/APPDutch mice co-deposited $\alpha\beta$ Dutch (mainly $\alpha\beta$ Dutch1-40) and wild-type $\alpha\beta$ at twofold levels in the vasculature, with reduced parenchymal deposition (Herzig et al. 2009). Hemorrhages were also significantly increased in the double-tg mice. These studies suggest that $\alpha\beta$ Dutch1-40 increases vascular deposits and reduces parenchymal amyloidosis similar to HCHWA-D patients.

For a comprehensive review of these and additional tg models of neurodegenerative disease, please visit the Alzheimer’s forum website at: http://www.alzforum.org/res/com/tra.

Alterations in APP processing, synaptic plasticity, and neurogenesis in APP tg models

The most significant correlate to the severity of the cognitive impairment in AD is the loss of synapses in the frontal cortex and limbic system (DeKosky and Scheff 1990; Terry et al. 1991; Masliah and Terry 1994; DeKosky et al. 1996; Figs. 2, 4). The pathogenic process in AD involves alterations in synaptic plasticity that include changes in formation of synaptic contacts, changes in spine morphology, and abnormal area of synaptic contact (Scheff and Price 2003). However, other cellular mechanisms necessary to maintain synaptic plasticity might also be affected in AD (Cotman et al. 1993; Masliah 2000; Masliah et al. 2001). Recent studies indicate that neurogenesis in the mature brain plays an important role maintaining synaptic plasticity and memory formation in the hippocampus (van Praag et al. 2002). In the adult nervous system, motor activity and environmental enrichment (EE) have been shown to stimulate neurogenesis in the hippocampal dentate gyrus (DG) (Gage et al. 1998; van Praag et al. 2002). Physiological neurogenesis in the adult brain is regulated by numerous cell extrinsic and intrinsic factors, including local cytokine/chemokine signals and intracellular signal transduction (Johnson et al. 2009). In this context, recent studies have shown that, among other pathways, the Notch (Breunig et al. 2007; Crews et al. 2008), cyclin-dependent kinase-5 (CDK5) (Jessberger et al. 2008; Lagace et al. 2008), and Wnt/bone morphogenetic protein (BMP) (Lim et al. 2000; Lie et al. 2005) cascades are involved in regulating adult neurogenesis. Interestingly, studies of human brains (Tatebayashi et al. 2003) and tg animal models have demonstrated significant alterations in the process of adult neurogenesis in the hippocampus in AD (Dong et al. 2004; Jin et al. 2004; Wen et al. 2004; Chevallier et al. 2005; Donovan et al. 2006). The deficient neurogenesis in the subgranular zone (SGZ) of the DG found in our APP tg mice (Rockenstein et al. 2007; Fig. 6) is consistent with studies of other lines of APP tg mice and other models of AD that have shown decreased markers of neurogenesis, such as bromodeoxyuridine (BrdU), and doublecortin (DCX) cells, with an increase in the expression of markers of apoptosis (Feng et al. 2001; Haughey et al. 2002; Dong et al. 2004; Wang et al. 2004).

A different study reported increased neurogenesis in the PDAPP model (Jin et al. 2004). Another recent study showed that in 5-month-old APP23 tg mice prior to amyloid deposition, there was no robust difference in neurogenesis relative to wild-type control mice, but 25-month-old amyloid-depositing APP23 mice showed significant increases in neurogenesis compared to controls (Ermini et al. 2008). In contrast, 8-month-old amyloid-depositing APP/PS1 tg mice revealed decreases in neurogenesis compared to controls. Furthermore, 8-month-old nestin-GFP × APP/PS1 mice exhibited decreases in quiescent nestin-positive astrocyte-like stem cells, while transient amplifying progenitor cells did not change in number (Ermini et al. 2008). Strikingly, both astrocyte-like and transient-amplifying progenitor cells revealed an aberrant morphologic reaction toward congophilic amyloid deposits. A similar reaction toward the amyloid was no longer observed in doublecortin-positive immature neurons (Ermini et al. 2008). These results provide evidence for a disruption to neuronal progenitor cells (NPCs) in an amyloidogenic environment and support findings that neurogenesis is differentially affected among various tg mouse models of AD, probably due to variations in promoter cell type specificity, expression levels, and other factors. A more comprehensive analysis of neurogenesis in APP tg mice showed that while in the molecular layer (ML) of the DG there is an increased number of NPC, in the SGZ markers of neurogenesis are decreased, indicating that in PDAPP animals there is altered migration and increased apoptosis of NPC that contributes to the deficits in neurogenesis (Donovan et al. 2006).

The molecular mechanisms of aberrant neurogenesis in AD are unclear, however, several signaling pathways that control physiological adult neurogenesis are known to be dysregulated in AD. For example, CDK5 is hyperactivated in AD by $\alpha\beta$ peptide-mediated calcium influx (Lee et al. 2000). In mature neurons, this contributes to neurodegeneration by promoting aberrant phosphorylation of downstream targets of CDK5 such as tau (Ahlijanian et al. 2000), however, the direct effects on NPCs are unknown. It is possible that kinases, such as CDK5 that are disturbed in mature neurons in AD may also play a role in the mechanisms of disrupted neurogenesis in the adult AD brain.

While a considerable body of work is currently emerging on neurogenic alterations associated with the pathogenesis
of AD, it is important to keep the role of neurogenesis in perspective given the relatively limited number of brain regions that are neurogenic. It is an exciting prospect that new neurons from progenitor cells in the hippocampus could replace cells damaged during the pathogenesis of AD. However, the extent to which progenitor cells might integrate into already-established neural circuitry is unclear, and the problem of re-establishing long inter-regional connections is considerable. Furthermore, taking into account the distribution of AD pathology among various non-neurogenic brain regions, such as the entorhinal cortex and neocortex, it is possible that neurogenesis may not be an ideal target for repairing global neuronal damage in the brain. However, given the critical role of the hippocampus in the processes of learning and memory, and the recent studies showing that neurogenesis plays an important part in these functions (van Praag et al. 2002), it is possible that modulation of neurogenesis in this area might have therapeutic potential. Moreover, it is important to consider the interconnected circuitry that characterizes the brain’s architecture. Although AD pathology in the hippocampus primarily affects the non-neurogenic pyramidal cell layers, the granular cells extend processes into the pyramidal layers, and additionally affect the connectivity of the entorhinal cortex via the perforant pathway. Taken together, much further work will be necessary to fully understand the role of neurogenesis in the pathogenesis of AD and the therapeutic potential of harnessing the regenerative capacity of progenitor cells.

Alterations in synaptic plasticity in AD might involve not only direct damage to the synapses but also interference with adult neurogenesis (Fig. 2). The mechanisms of synaptic pathology in AD are the subject of intense investigation. Studies of experimental models of AD and in human brain support the notion that aggregation of Aβ, resulting in the formation of toxic oligomers rather than fibrils, might be ultimately responsible for the synaptic damage that leads to cognitive dysfunction in patients with AD (Walsh and Selkoe 2004; Glabe 2005; Glabe and Kayed 2006; Fig. 1). Supporting this notion, it has been shown that Aβ oligomers reduce synaptic transmission and dendritic spine movement (Lacor et al. 2004; Moolman et al. 2004; Walsh and Selkoe 2004), and interfere with axoplasmic flow and activate signaling pathways that might lead to synaptic dysfunction, tau hyperphosphorylation, and cell death. Moreover, a dodecameric Aβ complex denominated *56 has been recently characterized (Lesne et al. 2006) in brains from APP tg mice and shown
to contribute to the behavioral alterations in these animals. The differential effects of this and other toxic oligomeric species of Aβ in mature and developing neurons and synapses awaits further investigation.

The accumulation of Aβ in the CNS and the formation of toxic oligomers most likely depend on the rate of Aβ aggregation, synthesis, and clearance (Fig. 7). Although most effort has been concentrated on elucidating the mechanisms of Aβ production and aggregation (Luo et al. 1999; Sinha et al. 1999; Vassar et al. 1999; Selkoe 2000; Cai et al. 2001), less is known about the mechanisms of Aβ clearance. As previously discussed in the section on tg models, the conditional APP tg model showed that enhancing clearance of Aβ may actually be more critical than preventing its production when considering potential therapies. This is also important because while most familial forms of AD might result from mutations that affect the rate of Aβ synthesis and aggregation, sporadic AD might be the result of alterations in Aβ clearance (Fig. 7). Pathways involved in Aβ clearance include LDLR-related protein (LRP) ligands, such as apolipoprotein E (ApoE) (Holtzman et al. 1995, 1999), lysosomal degradation (Nixon et al. 1992, 2005) and cleavage by proteolytic enzymes, such as Neprilysin, insulin-degrading enzyme (IDE), endothelin-converting enzyme (ECE), angiotensin converting enzyme (ACE), and matrix metalloproteinase-9 (MMP9) (Iwata et al. 2000, 2001; Selkoe 2001; Carson and Turner 2002; Leissring et al. 2003; Marr et al. 2004; Eckman and Eckman 2005; Saito et al. 2005; Fig. 7).

Functional correlations to the structural pathology in APP tg mice

The relationship among the patterns of Aβ production, amyloid deposition, neurodegeneration, and behavioral deficits in the tg models of AD is complex. One important finding common to several of these APP tg models is that there is no obvious neuronal dropout in early stages of pathogenesis (Irizarry et al. 1997a, b). In fact, the earliest neuronal pathology before amyloid deposition is the loss of synapses and dendrites in the limbic system and neocortex (Hsia et al. 1999; Mucke et al. 2000). This is accompanied by neurophysiological deficits and alterations in long-term potentiation (LTP) and field potential (Chapman et al. 1999; Hsia et al. 1999). Since the synaptic damage in these mice correlates better with the levels of soluble Aβ1–42 than with plaques, it has been proposed that neurodegeneration might be associated more with the neurotoxic effects of Aβ oligomers than with fibrillar amyloid (Mucke et al. 2000). In agreement with this possibility, studies of brain slices have shown that Aβ oligomers rather than fibrillar amyloid are toxic to synapses and depress LTP, leading to cognitive impairment (Walsh et al. 2002).

Other recently developed models have also focused on defining the effects of APP and its products on functional markers, including behavioral performance and LTP. These studies have shown that overexpression of the C-terminal APP fragment C100 under the control of neurofilament (NF) promoter results in amyloid-like production and electrophysiological alterations (Nalbantoglu et al. 1997). Although these, as well as the other APP tg animal models, have been shown to be of significant interest, the basic principle for their success rests in the ability to overexpress high levels of mutant APP, which is in a way rather non-physiological event. With the exception of Down syndrome, in sporadic AD there is no evidence for upregulation of APP expression but rather a shift in the ratio between APP770 and 751 to APP695. In this regard, a previous study (van Leeuwen et al. 1998) has shown frame shift mutations in APP and ubiquitin genes are present in some AD patients. It is conceivable that future tg models might utilize this mechanism in an attempt to reflect the more common sporadic forms of the disease.

Conclusions

In summary, a number of known mutations in the APP gene associated with familial forms of amyloid disorders have made it possible to recapitulate several features of amyloid pathology in the brains of tg animal models. While other genes, such as PS1 and tau have been manipulated alone or in combination with APP mutations, a large portion of the current literature describing the AD-like neurodegenerative phenotypes in animal models has been based on animal models expressing high levels of mutant APP. While APP tg murine models with mutations in the N- and C-terminal flanking regions of Aβ are characterized by increased Aβ production with plaque formation, mutations in the mid-segment of Aβ result in increased formation of oligomers, and mutations toward the C-terminus (E22Q) segment results in amyloid angiopathy. Several lines of evidence
suggest that formation of Aβ oligomers reduces neuroplasticity and contributes to neuronal degeneration and alterations in neurogenesis. Specifically targeting these toxic oligomeric species of Aβ with β- and γ-secretase inhibitors, immunization, and neurogenesis-stimulating therapies may provide individual or combination treatments that ameliorate multiple features of AD pathology.

Acknowledgments This work was supported by National Institutes of Health grants AG5131, AG11385, AG10435, NS44233 and AG18440.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Agca C, Fritz JJ, Walker LC, Levey AI, Chan AW, Lah JJ, Agca Y (2008) Development of transgenic rats producing human beta-amyloid precursor protein as a model for Alzheimer’s disease: transgene and endogenous APP genes are regulated tissue-specifically. BMC Neurosci 9:28

Ahljanian MK, Barrezzuta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A, Seymour PA, Burkhardt JE, Nelson RB, McNeish JD (2000) Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci USA 97:2910–2915

Andra K, Abramowski D, Duke M, Probst A, Wiederholt K, Burki K, Goedert M, Sommer B, Staufenbiel M (1996) Expression of APP in transgenic mice: a comparison of neuron-specific promoters. Neurobiol Aging 17:183–190

Bertoli-Avellia AM, Oostra BA, Heutink P (2004) Chasing genes in Alzheimer’s and Parkinson’s disease. Hum Genet 114:413–438

Betts V, Leisring MA, Dolios G, Wang R, Selkoe DJ, Walsh DM (2008) Aggregation and catabolism of disease-associated intra-Abeta mutations: reduced proteolysis of Abeta21G by nephrilysin. Neurobiol Dis 31:442–450

Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, Wilkinson D, Holmes C, Nicoll JA (2008) Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131:3299–3310

Borchelt D, Thinakaran G, Eckman C, Lee M, Davenport F, Ratovitsky T, Prada C, Kim G, Seekins S, Yager D (1997) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Ab1–42/–40 ratio in vitro and in vivo. Neuron 17:1005–1013

Borchelt D, Ratovitsky T, van Lare J, Lee M, Gonzales V, Jenkins N, Copeland N, Price DL, Wong PC (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci 4:233–234

Carson JA, Turner AJ (2002) Beta-amyloid catabolism: roles for nephrilysin (NEP) and other metallopeptidases? J Neurochem 81:1–8

Casas C, Sergeant N, Itier JM, Blanchard V, Wriths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300

Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, HSiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2:271–276

Cheng IH, Palop JJ, Espósito LA, Bien-Ly N, Yan F, Mucke L (2004) Aggressive amyloidosis in mice expressing human amyloid peptides with the Arctic mutation. Nat Med 10:1190–1192

Chevallier NL, Soriano S, Kang DE, Masliah E, Hu G, Koo EH (2005) Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. Am J Pathol 167:151–159

Chikhit MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zeker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S, Morissette C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA, George-Hyslop PS, Westaway D (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570

Citrion M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Subert P, Davis A, Kholodenko D, Motter R, Sherrington P, Perry B, Hong Y, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St. George-Hyslop P, Selkoe D (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med 3:67–72

Cotman C, Cummings B, Pike C (1993) Molecular cascades in adaptive versus pathological plasticity. In: Goriio A (ed) Neurodegeneration. Raven Press, New York, pp 217–240

Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28:4250–4260

Cruts M, Van Broeckhoven C (1998) Molecular genetics of Alzheimer’s disease. Ann Med 30:560–565

Cuello AC (2005) Intracellular and extracellular Abeta, a tale of two neuropathologies. Brain Pathol 15:66–71

Cynis H, Schilling S, Bodnar M, Hoffmann T, Heiser U, Saido TC, Demuth HU (2006) Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta 1764:1618–1625

Cynis H, Scheel E, Saido TC, Schilling S, Demuth HU (2008) Amyloidogenic processing of amyloid precursor protein: evidence of a pivotal role of glutaminyl cyclase in generation of pyroglutamate-modified amyloid-beta. Biochemistry 47:7405–7413

DeKosky S, Scheff S (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

DeKosky ST, Scheff SW, Styren SD (1990) Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 5:417–421

Demestre N, Mertens C, Caster H, Goethals M, Vandekerckhove J, Rosseneu M, Labur C (2001) Comparison of the aggregation properties, secondary structure and apoptotic effects of wild-
Brain Struct Funct (2010) 214:111–126

Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Fractowiak J, Miller DL, Potempska A, Sukontasup T, Mazur-Folkesson R, Malkiewicz K, Kloskowska E, Nilsson T, Popova E, Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, Ferrigno P, Silver P (2000) Polyglutamine expansions: proteolysis, protein. Nature 373:523–527

Feng R, Rampon C, Tang YP, Li H, Duff K, Szyf M, Cuello AC (2004a) Transgenic models with a phenotype of intracellular Abeta accumulation in hippocampus and cortex. J Alzheimers Dis 6:209–219

Echeverria V, Ducatenzeiler A, Alhonen L, Janne J, Grant SM, Wandosell F, Muro A, Baralle F, Li H, Duff K, Szyf M, Cuello AC (2004b) Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the beta-amyloid peptide intracellularly in hippocampal and cortical neurons. Neuroscience 129:583–592

Eckman EA, Eckman CB (2005) Abeta-degrading enzymes: modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans 33:1101–1105

Ermini FV, Grathwohl S, Radde R, Yamaguchi M, Staufenbiel M, Palmer TD, Jucker M (2008) Neurogenesis and alterations of neural stem cells in mouse models of cerebral amyloidosis. Am J Pathol 172:1520–1528

Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32:911–926

Ferrigno P, Silver P (2000) Polyglutamine expansions: proteolysis, chaperones, and the dangers of promiscuity. Neurosci 26:9–12

Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, Scott RW, Howland DS (2009) A transgenic rat model of Alzheimer’s disease with extracellular Abeta deposition. Nature Med 4:97–100

Folkesson R, Malkiewicz K, Kloskowska E, Nilsson T, Popova E, Bogdanovic N, Ganten U, Ganten D, Bader M, Winblad B, Schwartz AL (1995) Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc Natl Acad Sci USA 92:9480–9484

Holzmann DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, Chang LK, Sun Y, Paul SM (1999) Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer’s disease. J Neurochem 83:1509–1524

Homer WG (2003) Pathology of presynaptic proteins in Alzheimer’s disease: more than simple loss of terminals. Neurobiol Aging 24:1047–1062

Hsia AY, Masliah E, McConlogue L, Yu G-Q, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem 38:167–177

Glabe CC (2005) Amyloid accumulation and pathogenesis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Abeta. Neurobiol Aging 26:9–12

Games D, Masliah E, Lee M, Johnson-Wood K, Schenk D (1997) Neurodegenerative Alzheimer-like pathology in PDAPP 717V–F transgenic mice. In: Hyman B, Duyckaerts C, Christen Y (eds) Connections, cognition and Alzheimer’s disease. Springer, Berlin, pp 105–119

Glabe CG, Kayed R (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66:574–578

Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83:1509–1524

Herzig MC, Winker DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD, Danner S, Abramowski D, Sturchler-Pierart C, Burki K, van Duinen SG, Maat-Schieman ML, Staufenbiel M, Mathews PM, Jucker M (2004) Abeta is targeted to the vascular tree in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7:954–960

Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16:40–54

Herzig MC, Eisele YS, Staufenbiel M, Jucker M (2009) E22Q-mutant Abeta peptide (AbetaDutch) increases vascular but reduces parenchymal Abeta deposition. Am J Pathol 174:722–726

Hof P, Morrison J (1994) The cellular basis of cortical disconnection in Alzheimer disease and related dementia states. In: Terr C, Katzman R, Bick K (eds) Alzheimer disease. Raven Press, New York, pp 197–230.

Hof P, Cox K, Morrison J (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54

Holzmann DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, Chang LK, Sun Y, Paul SM (1999) Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103:R15–R21

Hoper MG (2003) Pathology of presynaptic proteins in Alzheimer’s disease: more than simple loss of terminals. Neurobiol Aging 24:1047–1062

Hsia AY, Masliah E, McConlogue L, Yu G-Q, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease: more than simple loss of terminals. Neurobiol Aging 20:105–119

Hyman B, VanHolsern G, Damasio A, Barnes C (1984) Alzheimer’s disease: more than simple loss of terminals. Neurobiol Aging 20:105–119
Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsumo G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptopathy without plaque formation. J Neurosci 20:4050–4058

Nalbantoglu J, Tirado-Santiago G, Lahsaini A, Poirier J, Goncalves O, Verge G, Momoli F, Wener S, Massicotte G, Julien J (1997) Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 387:500–505

Nixon RA, Cataldo AM, Paskevich PA, Hamilton DJ, Wheelock TR, Kanaley-Andrews L (1992) The lysosomal system in neurons. Involvement at multiple stages of Alzheimer’s disease pathogenesis. Ann N Y Acad Sci 674:65–88

Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A. Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003b) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

Palmer A, Gershon S (1990) Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J 4:2745–2752

Pastor P, Goate AM (2004) Molecular genetics of Alzheimer’s disease. Curr Psychiatry Rep 6:125–133

Perry E, Perry R, Blessed G, Tomlinson B (1977) Neurotransmitter susceptibility genes for Alzheimer’s disease. Ann N Y Acad Sci 271:23380–23388

Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 61:1–24

Rockenstein E, McConlogue L, Tan H, Power M, Masliah E, Mucke L (1995) Levels and alternative splicing of amyloid b protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 270:28257–28267

Rockenstein E, Mallory M, Mante M, Sisk A, Masliah E (2001) Early formation of mature amyloid-b proteins deposits in a mutant APP transgenic model depends on levels of Ab1–42. J Neurosci Res 66:573–582

Rockenstein E, Mante M, Adame A, Crews L, Moessler H, Masliah E (2007) Effects of Cerebrolysin trade mark on neurogenesis in an APP transgenic model of Alzheimer’s disease. Acta Neuropathol (Berl) 113:265–275

Rogers J, Luben-Narod J, Styren S, Cwvin W (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

Saito T, Iwata N, Tsubuki S, Takayaki T, Takano I, Huang SM, Suemoto T, Higuchi M, Saito TC (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439

Scheff SW, Price DA (2001) Alzheimer’s disease-related synapse loss in the cingulate cortex. J Alzheimers Dis 3:495–505

Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046

Schilling S, Zeitschel U, Hoffmann T, Heiser U, Francke M, Kehlen A, Holzer M, Hutter-Paier B, Prokesch M, Windisch M, Jagla W, Schlenzig D, Lindner C, Rudolph T, Reuter G, Cynis H, Montag D, Demuth HU, Rossner S (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med 14:1106–1111

Selkoe DJ (2000) The genetics and molecular pathology of Alzheimer’s disease: roles of amyloid and the presenilins. Neurol Clin 18:903–922

Selkoe DJ (2001) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180

Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113

Selkoe DJ, Yamazaki T, Citron M, Podlisny MB, Koo EH, Teplow DB, Haass C (1996) The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Ann N Y Acad Sci 777:57–64

Siman R, Reame AG, Savage MJ, Trusko S, Lin YG, Scott RW, Flood DG (2000) Presenilin-1 P264L knock-in mutation: differential effects on abeta production, amyloid deposition, and neuronal vulnerability. J Neurosci 20:8717–8726

Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsumo G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, John V et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537–540

Sturchler-Pierrat C, Abramowski D, Duke M, Wiedeholt K, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti P, Waridel C, Calhoun M, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

Tatebayashi Y, Lee MH, Li L, Iqbal K, Grundke-Iqbal I (2003) The dentate gyrus neurogenesis: a therapeutic target for Alzheimer’s disease. Acta Neuropathol (Berl) 105:225–232

Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580
Terry R, Hansen L, Masliah E (1994) Structural basis of the cognitive alterations in Alzheimer disease. In: Terry R, Katzman R (eds) Alzheimer disease. Raven Press, New York, pp 179–196
Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572:477–492
Trojanowski JQ, Lee VM (2000) “Fatal attractions” of proteins A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann N Y Acad Sci 924:62–67
Tsukiji S, Takaki Y, Saito TC (2003) Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Abeta to physiologically relevant proteolytic degradation. Lancet 361:1957–1958
van Duinen SG, Castano EM, Prelli F, Bots GT, Luyendijk W, Frangione B (1987) Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci USA 84:5991–5994
van Leeuwen F, de Kleijn D, van den Hurk H, Neubauer A, Sonnemans M, Sluijs J, Keoyceau S, Ramdijelal R, Salehi A, Martens G, Grosveld F, Peter J, Burbach H, Hol E (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279:242–247
Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034
Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendia EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741
Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602
Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819
Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11:213–228
Walsh D, Tseng B, Rydel R, Podlisny M, Selkoe D (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839
Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30:552–557
Wang R, Dineley KT, Sweat JD, Zheng H (2004) Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 126:305–312
Wen PH, Hof PR, Chen X, Gluck K, Austin G, Younkin SG, Younkin LH, DeGasperi R, Gama Sosa MA, Robakis NK, Haroutunian V, Elder GA (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188:224–237
Wilcock GK, Esiri MM, Bowen DM, Hughes AO (1988) The differential involvement of subcortical nuclei in senile dementia of Alzheimer’s type. J Neurol Neurosurg Psychiatry 51:842–849
Wiraths O, Breyhan H, Cynis H, Schilling S, Demuth HU, Bayer TA (2009) Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 118(4):487–496