Finite temperature effects and the validity of the Weinberg sum rules

Alejandro Ayala1,3, C. A. Dominguez3, M Loewe2,3,4 and Y. Zhang5

1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510, Mexico.
2 Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile.
3 Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700, South Africa.
4 Centro Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso, Chile.
5 CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa.

E-mail: mloewe@fis.puc.cl

Abstract.
Using recent independent results from QCD sum rules for the thermal evolution of hadronic parameters in the vector and the axial-vector channels, we discuss the saturation of the two Weinberg sum rules. It turn out that both sum rules are quite well satisfied in a wide range from \(T = 0\) up to \(T/T_c \approx 0.7 - 0.8\). At higher temperatures, coming closer to \(T_c\), there is an asymmetry between both channels since in the vector case there is a leading order effect, proportional to \(T^2\), due to a one loop pion contribution in the space-like region, which is absent in the axial-vector case. This leads then to a small deviation. More important, though, in this region the QCD sum rules for the hadronic parameters begin to have no solutions since the widths of the \(\rho\) and the \(a_1\)-mesons diverge signaling the occurrence of deconfinement. Close to and at \(T_c\) there are no pions left in the medium and chiral symmetry is restored so that the Weinberg sum rules are trivially satisfied.

1. Introduction
The two Weinberg sum rules (WSR) were formulated, in the \(T = 0\) case, in the frame of the chiral \(SU(2) \times SU(2)\) symmetry and current algebra [1]. They are given by

\begin{align*}
W_1 & \equiv \int_0^\infty ds \frac{1}{\pi} [\text{Im}\Pi_V(s) - \text{Im}\Pi_A(s)] = 2 f_\pi^2, \\
W_2 & \equiv \int_0^\infty ds s \frac{1}{\pi} [\text{Im}\Pi_V(s) - \text{Im}\Pi_A(s)] = 0,
\end{align*}

where \(f_\pi = 92.21 \pm 0.14\) MeV [2], and

\begin{equation}
\Pi_{\mu\nu}^{VV}(q^2) = i \int d^4 x e^{iqx} < 0|T(V_\mu(x)V_\nu^\dagger(0))|0 > = (g_{\mu\nu} q^2 + q_\mu q_\nu) \Pi_V(q^2),
\end{equation}
\[\Pi^{AA}_{\mu \nu}(q^2) = i \int d^4 x e^{iqx} <0|T(A_\mu(x)A_\nu^\dagger(0))|0> \]
\[= -g_{\mu \nu} \Pi_1(q^2) - q_\mu q_\nu \Pi_A(q^2), \quad (4) \]

with \(V_\mu(x) =: \bar{d}(x)\gamma_\mu u(x) \) : the conserved vector current in the chiral limit and \(A_\mu(x) =: \bar{d}(x)\gamma_\mu\gamma_5 u(x) \) : the axial-vector current, being \(q_\mu = (\omega, \vec{q}) \) the four-momentum carried by the currents. The functions \(\Pi_{V,A}(q^2) \) satisfy dispersion relations since they are free from kinematical singularities. In perturbative QCD (PQCD) they are normalized as

\[\text{Im} \Pi_V(q^2) = \text{Im} \Pi_A(q^2) = \frac{1}{4\pi} \left[1 + \mathcal{O}(\alpha_s(q^2)) \right], \quad (5) \]

In the framework of QCD Eqs. (1)-(2) become effectively finite energy sum rules (in the chiral limit: \(m_u = m_d = 0 \))

\[W_{n+1}(s_0) \equiv \int_0^{s_0} ds s^n \left[\frac{1}{\pi} \text{Im} \Pi_V(s) - \text{Im} \Pi_A(s) \right] = 2 f_\pi^2 \delta_{n0}, \quad (6) \]

where \(s_0 \simeq 1 - 3 \text{GeV}^2 \) is the squared energy beyond which QCD is valid, and both sum rules have been combined. This result also follows from Cauchy’s theorem in the complex squared energy plane, together with the assumption of quark-hadron duality. Given a Green function \(\Pi(s) \), e.g. \(\Pi_{V,A}(s) \), and an analytic function \(f(s) \), Cauchy’s theorem leads to

\[\int_0^{s_0} ds f(s) \frac{1}{\pi} \text{Im} \Pi(s) = -\frac{1}{2\pi i} \oint_{|s|=s_0} f(s) \Pi(s) ds, \quad (7) \]

where the discontinuity across the real axis involves the hadronic sector, and the contour integral requires asymptotic information if the integration radius \(s_0 \) is large enough. According to quark-hadron (global) duality \(\Pi(s) \) is assumed to be given by the QCD operator product expansion (OPE). A warning about this assumption, now referred to as potential duality violations associated with the QCD behaviour on or close to the positive real axis, was raised long ago in [3]. Different tests of the WSR were performed [4]-[5] using experimental data on \(\tau \)-decays from the ARGUS collaboration at DESY [6], and later [7] from the ALEPH collaboration [8]. Both determinations led to a better saturation of the WSR if an integral kernel, e.g. a non-trivial \(f(s) \) in Eq.(7), was introduced, e.g. such that \(f(s_0) = 0 \). This was interpreted in [7] as a possible signal of duality violations, on account of a considerably improved saturation of the WSR obtained with a pinched kernel [7], [9] \(f(s) = (1 - s/s_0) \), i.e.

\[WP(s_0) \equiv \int_0^{s_0} ds \left(1 - \frac{s}{s_0} \right) \frac{1}{\pi} \left[\text{Im} \Pi_V(s) - \text{Im} \Pi_A(s) \right] \]
\[= 2 f_\pi^2. \quad (8) \]
Figure 1. The vector spectral function at $T = 0$, Eq. (9) (solid curve), and at $T = 175$ MeV (dotted curve) with thermal parameters given in Eqs. (11)-(14). The TESR make use of only that part of the spectral function whose integral matches the QCD integral, according to quark-hadron duality.

Figure 2. Solid curve is the axial-vector (a_1-resonance) spectral function at $T = 0$ fitted to the ALEPH data [8], shown with error bars the size of the data points. Dotted curve is the spectral function at $T = 175$ MeV with thermal parameters given in Eqs. (16)-(18). The TESR make use of only that part of the spectral function whose integral matches the QCD integral, according to quark-hadron duality.
2. Thermal Hadronic Spectral Functions

First, let us concentrate on the vector channel. In a recent analysis [10] it was parameterized as a Breit-Wigner distribution

\[
\frac{1}{\pi} \text{Im} \Pi_V^{(+)}(s, T) = \frac{1}{\pi} \frac{1}{f_\rho^2} \frac{M_\rho^3 \Gamma_\rho}{(s - M_\rho^2)^2 + M_\rho^2 \Gamma_\rho^2},
\]

where the upper index (+) refers to the time-like region \((q^2 > 0)\), and all parameters depend on the temperature. At \(T = 0\) they are normalized as follows [2]: \(f_\rho(0) = 5\), \(M_\rho(0) = 0.776\ \text{GeV}\), and \(\Gamma_\rho(0) = 0.145\ \text{GeV}\). This parametrization was then used in the first three FESR

\[
(-)^{(N-1)} C_{2N} \langle \mathcal{O}_{2N} \rangle = 4\pi^2 \int_0^{s_0} ds \ s^{N-1} \frac{1}{\pi} \text{Im} \Pi(s)|_{\text{HAD}}
\]

and where the leading order vacuum condensates in the chiral limit are the dimension \(d = 4\) gluon condensate and the dimension \(d = 6\) four-quark condensate. From the above FESR we got for the continuum threshold, i.e. the onset of PQCD, \(s_0 = 1.44\ \text{GeV}^2\), and we checked that the resulting dimension \(d = 4\) and \(d = 6\) vacuum condensates were in agreement with independent determinations from data analysis. Alternative parametrizations lead to similar results. When extending this analysis to the finite temperature scenario we obtained the following results:

\[
\frac{s_0(T)}{s_0(0)} = 1.0 - 0.5667 \left(\frac{T}{T_c} \right)^a - 4.347 \left(\frac{T}{T_c} \right)^b,
\]

with \(a = 11.38\), \(b = 68.41\), \(T_c = 197\ \text{MeV}\) and

\[
\frac{\Gamma_\rho(T)}{\Gamma_\rho(0)} = \frac{1}{1 - \left(\frac{T}{T_c} \right)^3},
\]

\[
\frac{M_\rho(T)}{M_\rho(0)} = 1 - \left(\frac{T}{T_c} \right)^{10},
\]

where \(T_c^* = 222\ \text{MeV}\), allowed to vary in the range \(T_c^* = 210 - 240\ \text{MeV}\), and finally

\[
\frac{f_\rho(T)}{f_\rho(0)} = 1.0 - 0.3901 \left(\frac{T}{T_c} \right)^c + 0.04155 \left(\frac{T}{T_c} \right)^d,
\]

with \(c = 10.75\) and \(d = 1.269\).

Let us consider now the axial-vector channel. A fit was made to the ALEPH data on \(\tau\)-decay to be used as the \(T = 0\) normalization. As in the vector channel, the first three FESR were employed to determine \(s_0\) and to check consistency of the results for the dimension \(d = 4, 6\) condensates. The parametrization leading to the best \(\chi^2\) is given by [10]

\[
\frac{1}{\pi} \text{Im} \Pi_A(s)|_{a_1} = C f_{a_1} \exp \left[- \left(\frac{s - M_{a_1}^2}{\Gamma_{a_1}^2} \right)^2 \right]
\]

\(0 \leq s \leq 1.2\ \text{GeV}^2\),

\[
(9)
\]
\[
\frac{1}{\pi} \text{Im} \Pi_A(s)_{a_1} = C f_{a_1} \exp \left[- \left(\frac{1.2 \text{ GeV}^2 - M_{a_1}^2}{\Gamma_{a_1}^2} \right)^2 \right]
\]

\[1.2 \text{ GeV}^2 \leq s \leq 1.45 \text{ GeV}^2, \tag{16}\]

\[
\frac{1}{\pi} \text{Im} \Pi_A(s)_{a_1} = C f_{a_1} \exp \left[- \left(\frac{s - M_{a_1}^2}{\Gamma_{a_1}^2} \right)^2 \right]
\]

\[1.45 \text{ GeV}^2 \leq s \leq M_{T}^2, \tag{17}\]

where \(M_{a_1} = 1.0891 \text{ GeV}, \Gamma_{a_1} = 568.78 \text{ GeV}, C = 0.662\) and \(f_{a_1} = 0.073\) (notice that the latter two parameters were split to facilitate comparison between \(f_{a_1}\) and \(f_\rho\)). Regarding our parametrization, this spectral function cannot be fitted with a normal Breit-Wigner expression, essentially due to the large width of the \(a_1\)-meson, and some background contamination. For instance, the early ARGUS data \[6\] was fitted with a Breit-Wigner modulated by a high degree polynomial \[12\]. Solving the FESR the onset of PQCD turns out to be identical to that in the vector channel, i.e. \(s_0 = 1.44 \text{ GeV}^2\), so that Eq.(17) is never needed. The finite temperature results for \(s_0(T), f_\pi(T), f_{a_1}(T)\), and \(\Gamma_{a_1}(T)\) can be written generically as

\[
\frac{Y(T)}{Y(0)} = 1 + a_1 \left(\frac{T}{T_c} \right)^{b_1} + a_2 \left(\frac{T}{T_c} \right)^{b_2}, \tag{18}\]

where the corresponding coefficients are given in Table I.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.png}
\caption{Experimental data on the dimuon production spectrum in In-In ion collisions around the \(\rho\)-peak from the NA60 Collaboration \[14\], compared with the prediction using the vector spectral function from \[10\] (solid line), reproduced here in Eqs.(9), (11)-(14).}
\end{figure}
Coefficients in Eq. (18)

Parameter	a_1	a_2	b_1	b_2
$s_0(T)$	-28.5	-0.6689	35.60	3.93
$f_π(T)$	-0.2924	-0.7557	73.43	11.08
$f_{a_1}(T)$	-19.34	14.27	7.716	6.153
$Γ_{a_1}(T)$	2.323	1.207	20.24	7.869

Table 1. The values of the coefficients entering Eq. (18).

We kept the a_1 mass constant, since it hardly changes with temperature. This behavior can be ascribed to the very large width of the a_1 resonance. It should be noticed the (different) way the leptonic decay constants enter their respective spectral functions. However, the full T-dependence of these functions is the result of the aggregate behaviour of all their parameters. This T-dependence is consistent with a quark deconfinement scenario in both channels.

It should be mentioned that the FESR analyses leading to the above results [10]-[11] find that the hadronic integrals match the QCD integrals in the range $T \simeq 0 - 0.9 ~ T_c$. Beyond this temperature upper limit the integrals cease to have support. Since this upper limit is so close to T_c a smooth extrapolation should be acceptable.

The parametrization of the spectral function in the vector channel was later used to predict the dimuon production spectrum in heavy ion collisions at high energies [13]. Excellent agreement was obtained after comparing with data on In-In collision around the ρ-meson peak from the NA60 Collaboration [14]. Figure 3 shows the experimental data and the prediction using the vector spectral function from [10], as reproduced here in Eqs.(9), (11)-(14).

It should be clear from Figs. (1) and (2) that the vector spectral function evolves with increasing T independently of the axial-vector one. The latter involves, in addition to the a_1 resonance, the pion pole given by $f_π^2(T) \propto |\langle \bar{q}q \rangle|$. This contribution vanishes at $T = T_c$, signaling chiral-symmetry restoration, i.e. a transition from a Nambu-Goldstone to a Wigner-Weyl realization of chiral $SU(2) \times SU(2)$ symmetry. It should be recalled that the thermal quark condensate from lattice QCD has been used as input to the FESR in the axial-vector channel in [11]. As shown in [11] the T-dependence of the ratio $f_π(T)^2/f_π(0)^2$ follows closely that of $s_0(T)/s_0(0)$, vanishing at the same temperature within the accuracy of the method. This independent and clearly very different approach to $T = T_c$ exhibited by the thermal spectral functions does not suggest any potential chiral mixing as some authors suggested [17]

In the QCD sector the PQCD spectral functions for both $q^2 > 0$ (annihilation) and $q^2 < 0$ (scattering), as well as the dimension $d = 4$ gluon condensate are chiral symmetric, thus not contributing to Eq.(6). In the hadronic sector for $q^2 < 0$ (scattering) there is an asymmetric contribution from pion loops, which in the vector channel at leading order is [15]

$$\frac{1}{\pi} \text{Im} \Pi_V^{(-)}(s,T) = \frac{2}{3\pi^2} \delta(s) \int_0^\infty y n_B \left(\frac{y}{T} \right) dy$$

$$\tag{19} = \frac{T^2}{9} \delta(s),$$

where $n_B(z) = 1/(e^z - 1)$ is the Bose thermal function. The corresponding contribution in the axial-vector channel is a higher order two-loop effect, which is traditionally neglected.
Figure 4. The first WSR, Eq. (6), at finite T. Solid (dash) line is the left (right) hand side of Eq. (6). The divergence at high T is caused by the asymmetric hadronic scattering contribution in the space-like region ($q^2 < 0$), which disappears at deconfinement ($T = T_c$).

Figure 5. The pinched WSR, Eq. (8), at finite T. Solid (dash) line is the left (right) hand side of Eq. (6). The divergence at high T is caused by the asymmetric hadronic scattering contribution in the space-like region ($q^2 < 0$), which disappears at deconfinement ($T = T_c$).
3. Conclusions
Starting at \(T = 0 \) and using the results from the three FESR obtained in [10]-[11], i.e. \(s_0(0)|_V = s_0(0)|_A = 1.44 \text{ GeV}^2 \) and the parametrizations Eq.(9) and Eqs.(15)-(17), the WSR, Eq.(6), and the pinched WSR, Eq.(8), are satisfied to better than 1%. The corresponding results at finite \(T \) are shown in Fig. 4 for the first WSR, \(W_1(T) \), Eq.(6), and in Fig. 5 for the pinched WSR, \(WP(T) \), Eq. (8). The solid (dash) lines correspond to the left (right) hand sides of the sum rules. Clearly, the upper limit of integration in the WSR, i.e. \(s_0(T) \), is not strictly chiral-symmetric, as seen from Eqs.(11) and (18). The divergence between the left and the right hand sides of the WSR at high \(T \) is due to the asymmetric hadronic scattering term present in the vector spectral function, but loop suppressed in the axial-vector channel. The importance of this term is short lived, as it must disappear at \(T = T_c \), since there would be no longer pions in the medium. In any case, since the source of this contribution is fully understood, it should not be interpreted as an invalidation of the thermal WSR.

As indicated in Figs. 4-5 the WSR are very well satisfied up to \(T/T_c \approx 0.75 \). The source of the departure between the left hand side of the WSR and its right hand side, i.e. \(f_2^c(T) \), or alternatively the thermal quark condensate \(\langle \bar{q}q \rangle(T) \), is well understood. It is due to the two-pion loop contribution to the vector spectral function, growing like \(T^2 \), but disappearing at \(T = T_c \). If this contribution would have been chiral symmetric, then it would have canceled out and the WSR would have been fully satisfied up to \(T = T_c \).

The results for the behaviour of the WSR in the full temperature range can be interpreted as follows. First of all, at \(T = 0 \) the WSR make the highly non-trivial statement that the integrated difference between the vector and the axial-vector (including the pion) spectral functions vanishes. These functions could not be more different, i.e. the vector correlator has no pole, and the ground state resonance is narrow, while the axial-vector involves a pole and a very broad resonance almost twice as heavy. Next, there is no a-priori reason for the WSR to be satisfied at finite temperature. Their original derivation was done in the context of current algebra and chiral \(SU(2) \times SU(2) \) symmetry. Today we reinterpret them in the framework of QCD, which does exhibit this chiral symmetry in the limit of vanishing light quark masses. In principle, an extension to finite \(T \) could lead to more than one scenario, including one in which the sum rules are not satisfied at all, except at \(T = T_c \), where they must be trivially satisfied. The results obtained from thermal QCD FESR [10]-[11] clearly indicate that the vector spectral function evolves with \(T \) independently of the axial-vector spectral function. While both disappear at \(T = T_c \), they do so following their own distinctive thermal evolution. In other words, there is no a-priori relation between these two channels, unless one were to demand it. Given the successful saturation of the WSR there seems to be no reason to justify such a demand. The behaviour of the spectral function parameters points to deconfinement, as the onset of PQCD, \(s_0(T) \), and the resonance couplings decrease, while the widths increase substantially with increasing \(T \). This results in the \(\rho \) and \(a_1 \) resonances becoming progressively broader, with decreasing couplings to their respective currents. At the same time, the pion decay constant/quark condensate decreases with increasing \(T \), vanishing at \(T_c \). The thermal behaviour of the hadron mass is irrelevant in the context of the approach to deconfinement. In fact, the mass only specifies the position of the real part of the resonance Green function in the complex squared energy \(s \)-plane. Its moving upwards or downwards with temperature is no indication of a deconfinement phase transition. It is the imaginary part of the Green function, i.e. the hadronic width, the relevant parameter in this context. Its considerable increase with increasing temperature thus serves as a phenomenological signal for deconfinement.

Alternative analyses of the thermal WSR have been performed recently [16], with somewhat
different emphasis, e.g. in connection with potential chiral mixing. From our discussion, we would like to stress that we did not find any evidence for a possible mixing at finite temperature between the vector and axial-vector channel as some authors have claimed to be the case [17].

Acknowledgments
Support for this work has been received in part from DGAPA-UNAM under grant number PAPIIT-IN103811, CONACyT-México under grant number 128534, FONDECYT (Chile) under grants numbers 1130056, the National Research Foundation (South Africa) and the University of Cape Town Research Committee.

References
[1] S. Weinberg, Phys. Rev. Lett. 1967 18, 507.
[2] J. Beringer et al. (Particle Data Group) Phys. Rev. D 2012 86, 010001.
[3] R. Shankar, Phys. Rev. D 1977 15, 755.
[4] R. D. Peccei and J. Solà, Nucl. Phys. B 1987 281, 1.
[5] C. A. Dominguez and J. Solà, Phys. Lett. B 1988 208, 131.
[6] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 1986 33, 7.
[7] C. A. Dominguez and K. Schilcher, Phys. Lett. B 1999 448, 93.
[8] ALEPH Coll., R. Barate et al., Eur. Phys. J. C 1988 4, 409.
[9] The use of pinched kernels in other QCD sum rules was independently proposed in K. Maltman, Phys. Lett. B 1998 440, 367.
[10] A. Ayala, C. A. Dominguez, M. Loewe and Y. Zhang, Phys. Rev. D 2012 86, 114036. Notice that there is a misprint in Eq.(8) of this reference; the correct formula is given in Eqs.(15)-(17) of this paper.
[11] C. A. Dominguez, M. Loewe and Y. Zhang, Phys. Rev. D 2012 86, 034030.
[12] C. A. Dominguez and J. Solà, Z. Phys. C 1988 40, 63.
[13] A. Ayala, C. A. Dominguez, L. A. Hernandez, M. Loewe and A. J. Mizher, Phys. Rev. D 2013 88, 114028.
[14] R. Arnaldi et al. (NA60 Collaboration), Phys. Rev. 2006 96, 16302; (NA60 Collaboration), Phys. Rev. Lett. 2008 100, 022302; S. Damjanovic for the NA60 Collaboration, J. Phys. G 2008 35, 104036; (NA60 Collaboration), Eur. Phys. J. C 2009 59, 607; (NA60 Collaboration), Eur. Phys. J. C 2009 61, 711.
[15] A. I. Bochkarev and M. E. Shaposnikov, Nucl. Phys. B 1986 268, 220.
[16] N. P. M. Holt, P. M. Hohler and R. Rapp, Phys. Rev. D 2013 87, 076010; P. M. Hohler and R. Rapp, Phys. Lett. B 2014 731, 103, and references therein.
[17] M. Dey, V. L. Eletsky, and B. L. Ioffe, Phys. Lett. B 1990 252, 620;