The Data Tags Suite (DATS) model for discovering data access and use requirements

George Alter\(^1\), Alejandra Gonzalez-Beltran\(^2\), Lucila Ohno-Machado\(^3\) and Philippe Rocca-Serra\(^4\)

\(^1\)University of Michigan, ICPSR 330 Packard Street, Ann Arbor MI 48104, USA; \(^2\)Science and Technology Facilities Council, Scientific Computing Department, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 OQX, United Kingdom; \(^3\)University of California, San Diego, Division of Biomedical Informatics, 9500 Gilman Dr. MC 0728, La Jolla CA 92093-0728, USA and \(^4\)Oxford e-Research Centre University of Oxford 7 Keble Road, Oxford, OX1 3QG United Kingdom.

Abstract

Background: Data reuse is often controlled to protect the privacy of subjects and patients. Data discovery tools need ways to inform researchers about restrictions on data access and re-use. **Results:** We present elements in the Data Tags Suite (DATS) metadata schema describing data access, data use conditions, and consent information. DATS metadata are explained in terms of the administrative, legal, and technical systems used to protect confidential data. **Conclusions:** The access and use metadata items in DATS are designed from the perspective of a researcher who wants to find and re-use existing data. We call for standard ways of describing informed consent and data use agreements that will enable automated systems for managing research data.

Keywords: data access; data use; data discovery; metadata; confidential data

Background

The vast amounts of data generated by researchers in many scientific disciplines hold potential discoveries extending beyond the work of those who created them. This is only possible if data can be discovered, accessed, and made available for reuse. The bioCADDIE Project [1], which was funded by the NIH Big Data to Knowledge Program (BD2K) [2] to create a way for researchers to search across all types of biomedical data, recognized that access conditions are an important part of data discovery. Researchers, when asked how they would use a data discovery index, emphasized their need for information about the conditions and methods for retrieving datasets of interest.

The access conditions imposed on researchers who reuse existing data are part of a chain of agreements intended to protect research subjects. An increasing number of research studies require data that may present risks to privacy if they are not protected. Human subjects may be exposed to re-identification from their genomes [3], geographic locations [4], or clinical data [5], and pieces of information that may be innocuous in isolation can allow re-identification when combined, particularly when linked to other datasets. A wide range of procedures and technologies are being deployed to allow researchers to analyze these data while protecting the rights of research subjects [6–9]. Researchers are aware that protecting confidential information imposes costs on them, and they want to know what to expect when it comes to data access and reuse conditions.

Researchers can only find the access conditions governing a dataset if those conditions are included in metadata describing the data. The bioCADDIE Project designed a new metadata schema called the Data Tags Suite (DATS) [10, 11] for its proto-
The Data Tags Suite (DATS) model for discovering data access and use requirements provided by research subjects [19]. Datasets vary in the type of existing research data with their obligation to protect information. Protective confidentiality...costs that they impose on researchers. The most burdensome protection measures that differ both in their effectiveness and in the amount of harm that subjects would suffer if their confidential information became known. Data providers have a range of data protection procedures to protect confidential data. However, these procedures are part of a larger environment around patient privacy protection, and this article puts DATS metadata into the context of the administrative, legal, and technical systems used to protect confidential data.

Protecting Confidential Research Data

Data providers try to balance the benefits of facilitating access to existing research data with their obligation to protect information provided by research subjects [19]. Datasets vary in the level of risk that subjects can be re-identified and in the amount of harm that subjects would suffer if their confidential information became known. Data providers have a range of data protection measures that differ both in their effectiveness and in the costs that they impose on researchers. The most burdensome and costly types of data protection are normally for data that pose the greatest risks to research subjects [7, 20, 21].

Ritchie [22] proposed a framework for protecting confidential data that is known as the “Five Safes” [23].

- Safe data: Modify the data to reduce the risk of re-identification of subjects.
- Safe projects: Review and approve designs of proposed research projects.
- Safe settings: Isolate the data in a secure physical location or by applying secure remote access technologies.
- Safe people: Require legal agreements that commit researchers to protecting confidential information. Train researchers in best practices.
- Safe outputs: Review analyses and other products before releasing them to researchers.

These headings describe a toolkit from which data administrators select a combination of measures appropriate for the disclosure risks in a particular dataset [24]. For example, a national sample of health interviews may be released after data masking procedures (“safe data”), such as “top coding” income into an open-ended category to make very wealthy individuals less identifiable. In contrast, health histories of patients with a specific disease in a limited geographic area are much more difficult to de-identify. Patient records may be released for only approved types of research (“safe projects”) through a secure remote access system (“safe settings”) under a formal data use agreement (“safe people”). Additionally, some health care institutions only permit release of analyses performed on their data after review (“safe outputs”). The challenge for a data discovery index is capturing those aspects of the data protection that impose costs on prospective data users, and potentially displaying only datasets that users may be authorized to use. The user should be able to filter results according to his/her ability to conform to the authorization criteria.

DATS Access Metadata

The bioCADIE Project invited an international group of advisors to participate in an Accessibility Metadata for Datasets Working Group to recommend metadata describing how researchers gain access to data. This group identified 3 processes in accessing data for reuse: authorization, authentication, and access method.

Authorization

Obtaining permission from the party that owns or is responsible for protecting the data is an important step. A range of checks can be done for credentialing a user, which may take milliseconds or stretch into weeks (see Table 1). Conditions for authorization are spelled out in “data use agreements” (DUAs) that are based on study consent forms, HIPAA authorization forms, and other documents. Some data created for public use may not require any kind of permission (open access), but confidential data are protected by formal authorization agreements, which are called “licenses” in DATS (see below). For example, the U.S. Health Insurance Portability and Accountability Act (HIPAA) defines 2 standards for disclosing protected health information: “de-identification” and development of “limited data sets” [25]. Limited data sets are only available under a DUA because they contain information that increases the risk of re-identifying individuals (several authors have shown that individuals can be re-identified in “de-identified” data; see, e.g., [5]). The most restrictive authorization procedures are designed to limit data access to “safe people” (controlled access) who will respect the rights of research subjects and patients. Higher levels of security also come with a price. Obtaining institutional signatures on legal agreements is burdensome and reduces reuse of data [20, 26]. For electronic health record data, researchers are typically not the signatories of DUAs: this is usually reserved for institutions. Dyke et al. [27] propose registration with self-declaration of qualifications, purpose, and commitments as a level of protection between open access and authorization under formal agreements. The Working Group identified 6 common types of authorization.

Authorization procedures have implications for the accountability of the data user and timelines for accessing the data. For example, if researchers want to remain anonymous, they can only access datasets labeled with Authorization Types “None” or “Click-through.” If they are not affiliated with an institution,
they are not eligible for DUAs covering many types of biomed
cal data. Conditions in the DUA impose additional hurdles before
the researcher will be able to use the data. Approval by an insti-
tutional review board (IRB) is often required, and the researcher
may need to show that the purpose of the research is consistent
with the consent forms signed by subjects in the study. Author-
ization is thus complicated, and a researcher may be allowed to
use a particular dataset for one purpose (e.g., cancer research)
but not another (e.g., a study on ancestry) (see the discussion of
licenses below).

A data repository may use one or more of these authoriza-
tion types. The Inter-university Consortium for Political and So-
cial Research (ICPSR) [28], which is the oldest repository of social
science data in the United States, has examples of all 5 author-
rization types among the studies in its collection.

Authentication

When data are accessed online, many data repositories require
some kind of login process to identify the user (see Table 2).
Even when the data are not covered by a license, the user may
need to create a username and password for access (i.e., reg-
geristered access). Access to confidential data may require multi-
factor authentication controls involving a second type of identi-
fication, such as a telephone number or dedicated IP address.
Researchers who plan to automate harvesting of data from mul-
tiple sources are especially interested in authentication proce-
dures. Three types of authentication were listed by the Accessi-
bility Metadata for Datasets Working Group.

Access Method

Data repositories may protect confidential data by only allow-
ing access in a physical or virtual “safe setting” (see Table 3).
Researchers who want to use highly sensitive data may need
to travel to a secure “enclave,” such as the Census Bureau’s Re-
search Data Centers [29] and the Veterans Health Administration
VINCI system [30], or submit program code to be executed by the
data repository (“remote service”) [6]. An increasing number of
data providers allow researchers “remote access” to computers
in a secure data center, and this is the model selected by the NIH-
funded AlloUs Research Program [31]. Researchers working in
these “virtual data enclaves” see a standard operating system,
as they would on their local computer, but they cannot down-
load data to their local machine [32, 33]. They are using a virtual
machine launched from their local computer but actually oper-
ating on the remote system. An example of this is Vivli [34], a
new platform for sharing clinical research data, which connects
a data repository to a secure cloud-based workspace. When re-
searchers are required to perform all of their analyses on a com-
puter controlled by the data provider, the provider also has the
option of examining and approving results before sending them
to the researcher (“safe outputs”).

Table 1: Descriptors for Authorization

Authorization type	Description
None	Not covered by a DUA
“Click through” online license	Users must agree to an online agreement without providing additional identifi-
cation	
Registration	Users must register before access is allowed and agree to conditions of use. Registration information may be verified
DUA signed by an individual	An agreement signed by the investigator is required. DUAs may require additional information, such as a research plan and an IRB review (see discussion of licenses below)
DUA signed by an institution	An agreement signed by the investigator’s institution is required. DUAs require additional information, such as a research plan and an IRB review (see discussion of licenses below)

DUA: data use agreement; IRB: institutional review board.

DATS Use Metadata

A variety of terms are used to refer to legal agreements be-
tween data providers and users, including “data use agreement”
(DUA), “data access agreement,” “material transfer agreement,”
and “non-disclosure agreement.” In the “open data” world these
agreements are called “licenses.” For example, Creative Com-
mons licenses are used by openICPSR [35], figshare [36], and
other data repositories for open access to data [37]. However, “li-
cense” usually implies access to the commercial value of an in-
vention or software, and we prefer the term DUA for the agree-
ments between data providers and users, especially for confi-
dential data.

DUAs are often lengthy agreements that inherit conditions
from a number of earlier documents involving several differ-
ent parties (see Fig. 1). DUAs include provisions describing al-
lowed uses, limitations, and requirements: what analyses may
be conducted, how long the data may be used, and the ways
in which it must be returned, destroyed, or discarded after use.
Solid lines in Fig. 1 connect parties in legal documents. Dashed
lines show agreements that are implicated in later documents.
DUAs typically require data users to obtain IRB approval from
their home institutions, which may impose additional condi-
tions on the data user’s research plan. The bioCADDIE project
did not attempt to create a comprehensive ontology of conditions
found in DUAs, but DATS has been designed to take advantage
of current efforts to use relevant ontologies when available. To
understand the metadata needed to describe an agreement for
reusing data, we outline how these agreements are created and
administered. We focus here on the most complex case: agree-
ments for data with some risk of harm to research subjects or
patients.

Most academic research involving human subjects requires
prior approval of a research plan by an ethical review commit-
tee or an IRB. In the United States, federal regulations mandate
IRB approval for all research sponsored by NIH, NSF, and some
other agencies [38], and most universities and other organiza-
tions require IRB review for all research involving human sub-
jects. IRBs are responsible for protecting human subjects from
the risks posed by research, which they do by approving and
monitoring compliance with research plans. The research plan will include a description of documents and procedures for obtaining informed consent from research subjects involved in the study. The terms of the informed consent apply to all future research with these data, and an IRB should also review plans for sharing data resulting from the study. Researchers who analyze confidential data from a data repository are also expected to obtain approval from an IRB at their institution. However, IRBs do not make agreements with researchers at other institutions to share confidential data.

Transactions involving confidential research data are conducted by officials who are authorized to make agreements for the institution, such as a research administration officer. Most universities assert that research data belong to the institution, not to the researcher. If the research was sponsored by a funding agency, the “grantee” is the university, and universities see ownership of data resulting from external funding as part of their obligation to assure compliance with the terms of the grant or contract. Because confidential data also pose a risk to the reputation of the institution and possibly legal liability, universities are especially motivated to monitor the agreements surrounding them. This also applies to the institutions of researchers who request confidential data, and many universities will not allow faculty or staff to sign DUAs. Because data providers want the recipient university to be responsible for the management of confidential data, DUAs are typically signed by university officials on both sides.

DUAs often include a variety of conditions that were not explicitly included in the informed consent agreement. For example, some agreements include detailed requirements about data storage and computer systems. Agreements may require data to be stored offline and isolated from the Internet or be encrypted. Data recipients are often required to inform the data provider about any publications resulting from their secondary research. In some cases, the data provider insists on reviewing articles before they are submitted for publication or public presentation.

Most data providers require a research plan describing how the data will be used, which may be reviewed by a panel of experts. For instance, researchers who ask for data from NIH's Database of Genotypes and Phenotypes (dbGaP) repository must submit a Data Access Request for review by a Data Access Committee [39, 40]. The Data Access Request becomes part of the DUA and limits the recipient to the approved analyses.

“Dynamic consent” is a rapidly developing practice with important implications for data access [41]. Until recently, informed consent agreements were static documents signed by a research subject when data were collected. There is a strong movement to give research subjects ongoing control over the use of their data [42]. Subjects may be able to withdraw consent at any time, and several new technologies allow them to choose which research projects can use their data [43, 44]. Dynamic consent conforms to the spirit of the European Union's General Data Protection Regulation (GDPR), but the GDPR exempts scientific research from rules giving subjects control of their data [45, 46].

This exemption is for research considered of “substantial public interest,” in which case consent is not required. If the research is not considered in the public interest, there are more demanding requirements entailing true anonymization of the data or consent [47].

Private companies now hold enormous quantities of confidential data about their customers, which are sometimes available to academic researchers under DUAs. Kanous and Brock [48] found that agreements used by private data providers were often poorly designed. These agreements were usually derived from non-disclosure or confidentiality agreements that were designed to protect the business secrets of the data provider. Consequently, they are often vague about the nature of the data and the uses permitted to the researcher. Kanous and Brock [48] also found that some agreements include conditions asserting the data provider’s right to “derivative” works, which might be interpreted to include analyses and publications. The Yale Open Data Access (YODA) Project was developed to provide
independent scientific review of requests to use data created in the private sector [49].

The Accessibility Metadata for Datasets Working Group decided not to attempt to characterize the conditions included in a DUA. Creating an ontology of use conditions was deemed beyond the resources of the group. Fortunately, since the Working Group finished its report, a number of efforts have moved in the direction of ontologies describing the conditions in DUAs, which are detailed below. To accommodate this type of information, the most recent version of DATS was extended with "DataUseCondition" and "ConsentInformation" schemas for referencing dedicated ontologies in anticipation of their future implementation.

Conditions in Data Use Agreements

Data providers use agreements to ensure that data users behave in ways that protect confidential information and respect consent agreements with research subjects. For example, a common requirement is that researchers will not attempt to re-identify subjects (“safe people”). DUAs used by ICPSR include lists of statistics that should not be published, such as a cell in a cross-tabulation table describing only 1 person, because of re-identification risks. Some agreements require data recipients to submit papers and presentations for review before publication. Standardization of data use conditions would make it easier to automate management and compliance with DUAs, but the diversity and specificity of legacy agreements makes classification difficult. Fortunately, several projects are working on this problem.

Automatable Discovery and Access Matrix (ADA-M) is an ambitious project of the Global Alliance for Genomics and Health (GA4GH) and the International Rare Diseases Research Consortium (IRDiRC) to standardize metadata about data access [50, 51]. ADA-M divides conditions into “permissions” and “terms,” which are arranged under specified concepts. Additional information about permissions and terms can be provided with child fields, and free-text fields are used to capture details and for human readability.

The Data Use Ontology (DUO), which is also a project of GA4GH, is formalizing a controlled vocabulary used by dbGAP for conditions in DUAs for genomic data [52]. DUO is based on the NIH Standard Data Use Limitation (DUL) codes [53]. Data in dbGAP studies are arranged into “consent groups” that share consent agreements and other use conditions. DULs are used to summarize these conditions, although consent groups are often subject to additional conditions not described by DULs. DUL codes are composites combining several types of conditions. For example, General Research Use (GRU), the broadest DUL code, allows studies of statistical methods and population structure or ancestral origin, but the Health/Medical/Biomedical (HMB) code excludes those studies. Like the DUL codes, DUO allows a primary category (e.g., GRU) to be modified by a secondary category (e.g., NMDS [no general methods research]). DUO has been adopted by the European Genome-Phenome Archive [54].

The Informed Consent Ontology (ICO) is being developed to represent terms and relations in informed consent agreements [55, 56]. As the process of obtaining informed consent moves from paper to online systems, it becomes possible to offer in-
The Data Tags Suite (DATS) model for discovering data access and use requirements

Figure 2: Graphical representation of relevant constructs allowing consent, license, and terms of use information to be made available as information payload in DATS messages. The new “ConsentInformation” schema allows for annotation (semantic markup) with resources such as the Data Use Ontology (DUO; produced by the Global Alliance for Genomic Health) or the Information Consent Ontology (ICO).

dividual subjects a wider range of choices about the future use of their data.

The Open Digital Rights Language (ODRL), a recommendation by the World Wide Web Consortium (W3C) [57], provides a rich language to express statements about the use of content and services. It allows the provision of a standard description model and format representing permission, prohibition, and obligation statements. ODRL is recommended in the Data Catalog Vocabulary [17]. Other relevant vocabularies, which also follow a granular approach, are the Open Data Rights Statement Vocabulary [58] and the Agreements ontology (AGR-O) [59].

These vocabularies provide more granularity than DUO and ICO. However, representing DUAs or DULs in a granular way distinguishing permissions, prohibitions, and obligations is a very challenging task, which becomes intractable in many cases because the original documents have not considered such detailed representation and there is ambiguity on choosing relevant terms.

Thus, for cases in which it is not feasible to distinguish between permissions, prohibitions, and obligations, DATS recommends the use of DUO and ICO. However, if an expression relying on ODRL, Open Data Rights Statement (ODRS), or the Agreements ontology can be used, DATS supports pointing to such expression.

The DATS ConsentInformation (consent_info_schema.json) [60] schema has been designed in a flexible way to capture conditions limiting the use of a dataset that may not be included in the DUA. First, as we noted above, the DUA implicitly inherits conditions from all of the previous agreements and approvals covering the data. In particular, the informed consent agreement may include requirements not listed explicitly in the DUA. For this reason, the ConsentInformation schema includes an “incorporatedIn” property that points to the license that it modifies (see Fig. 2).

Second, a research study may include data from subjects who signed different consent agreements. An important example of this regularly occurs in studies that collect genomic data from patients with a specific disease. Some subjects provide consent only to research about their disease, while other subjects allow their data to be used for any type of research. Restrictions of this kind are important to researchers who are searching for data as well as collecting data for reuse (e.g., when creating synthetic cohorts). Dynamic consent creates an even more challenging situation because any subject may give or withdraw consent for a project requesting reuse of their data. To record aspects of dynamic consent, the ConsentInformation schema also has a property for “temporalCoverage,” allowing periods of time when the consent is valid. DATS may be used to describe a specimen or data derived from a tissue sample of a specific individual. To cover these cases the “consentInformation” property may be included in the DATS “material” entity.

Table 4 shows the information in dbGAP for consent groups in the Massachusetts General Hospital (MGH) Atrial Fibrillation Study. The first group (Health/Medical/Biomedical) gave their consent for any type of health, medical, or biomedical research with the exception of studies about the origins or ancestry of individuals or groups. The second group (Disease-Specific) only
Table 4: Examples of dbGAP Consent Groups

Consent group	Consent information
Health/Medical/Biomedical (IRB)	Use of this data is limited to health/medical/biomedical purposes, does not include the study of population origins or ancestry. Requestor must provide documentation of local IRB approval. Use of the MGH AF Study data deposited in dbGaP is restricted to research on associations between phenotypes and genotypes. MGH AF Study data may not be used to investigate individual subject genotypes, individual pedigree structures, perceptions of racial/ethnic identity, non-maternity/paternity, and of variables that could be considered as stigmatizing an individual or group. All research must be related to the etiology and prevention of morbidity and mortality of the U.S. population consistent with the demographic distribution in the MGH AF Study. Data users will be required to obtain IRB approval for their projects from their respective institutions (please note that only full or expedited approvals will be accepted). Use of the data must be related to Atrial Fibrillation and related disorders. Requestor must provide documentation of local IRB approval. Data use is limited to research related to atrial fibrillation and cardiovascular disease.
Disease-Specific (Atrial Fibrillation, IRB, RD)	Use of this data is limited to health/medical/biomedical purposes, does not include the study of population origins or ancestry. Requestor must provide documentation of local IRB approval. Use of the MGH AF Study data deposited in dbGaP is restricted to research on associations between phenotypes and genotypes. MGH AF Study data may not be used to investigate individual subject genotypes, individual pedigree structures, perceptions of racial/ethnic identity, non-maternity/paternity, and of variables that could be considered as stigmatizing an individual or group. All research must be related to the etiology and prevention of morbidity and mortality of the U.S. population consistent with the demographic distribution in the MGH AF Study. Data users will be required to obtain IRB approval for their projects from their respective institutions (please note that only full or expedited approvals will be accepted). Use of the data must be related to Atrial Fibrillation and related disorders. Requestor must provide documentation of local IRB approval. Data use is limited to research related to atrial fibrillation and cardiovascular disease.

Source: [61]. MGH AF. Massachusetts General Hospital Atrial Fibrillation.

consented to future research on atrial fibrillation, the focus of the original study. Both consent groups require IRB approval from the recipient’s institution. In these cases, DATS can describe multiple “study groups” with different consent conditions and other attributes. In DATS, we would represent each consent group as a StudyGroup with different consent Information.

Third, we expect greater standardization and automation of informed consent agreements to lead to the use of ontologies describing the conditions within these agreements. DATS has a standard way of referring to external ontologies, which can be used for the standards being developed by such projects as ADA-M, DUO, and ICO. By including these conditions in DATS, we allow them to be used for discovery and for filtering search results. Standardization will make it easier to provide this important information to researchers.

Discussion

There is an inherent tension between the increasing importance of research that combines data from multiple sources and the increasing demand for data that cannot be de-identified. Researchers cannot plan their work unless they know how access will be provided and how long it will take to obtain the necessary permissions. The access metadata objects in the DATS metadata standard differ from other approaches in their focus on the experience of researchers who need to find and intend to reuse existing data. DATS access metadata does not have the level of detail found in metadata standards designed for managing data resources, such as ADA-M [51], Fast Healthcare Interoperability Resources (FHIR) [62], or eXtensible Access Control Markup Language (XACML) [63], but references to other metadata standards can be embedded in DATS. As these and other standards and ontologies develop, data discovery applications will be able to benefit from them through DATS.

Based on the experience garnered through work on DataMed, we are convinced that dividing the access process into 3 steps (authorization, authentication, and type of access) is a useful and original contribution of DATS. New ways of implementing each of these steps are still emerging. Most discussions of data access distinguish between “open” and “restricted” data, but restricted data are distributed in an increasing number of different ways. From a researcher’s point of view data that can be downloaded are very different from data that are only accessible on a remote virtual machine. As the bioCADDIE Project has drawn to a close, we document our experience and encourage other organizations to take responsibility for supporting and updating the controlled vocabularies identified by the Accessibility Metadata for Datasets Working Group.

Capturing metadata about the conditions affecting data use will be a time-consuming process until standard ways of describing informed consent and DUAs become part of automated systems for creating and managing research data. There is little standardization in these agreements today, and extracting and classifying the conditions included in legacy agreements is a very complex task. When agreements have been described in standards like ICO, DUO, and ADA-M, they will be searchable and discoverable in DATS. We expect the benefits of automating these agreements to be great but to take time to be realized. Because the technology for electronic health records is developing very quickly, the automation of consent for research use of patient records and tissue samples in FHIR or other standards may be close.

The most difficult problem is obtaining the cooperation of data providers in describing their access and licensing procedures. This does not mean that all data providers must expose metadata about their holdings in DATS. The bioCADDIE Project has demonstrated the flexibility of DATS by mapping and ingesting metadata from ~70 data repositories into DataMed [12]. However, the capabilities of data repositories vary widely. Major data repositories (e.g., dbGaP, Protein Data Bank, ICPSR) have established metadata standards, as well as the material and human resources to adapt to new requirements. Other data repositories operate with minimal staff and under precarious funding, even if they serve important scientific communities. We see a great need for NIH and other funding agencies to adopt standards for data repositories, such as the CoreTrustSeal [64], and develop new funding mechanisms designed to provide sustainable support for data curation, dissemination, and preservation. As funding agencies put increased emphasis on FAIR (Findability, Accessibility, Interoperability, Reusability) principles [65],
access and data use conditions should become findable as well.

Availability of supporting materials

The DATS schema is publicly available at https://github.com/datatagsuite.

Abbreviations

ADA-M: Automatable Discovery and Access Matrix; API: Applications Programming Interface; BD2K: Big Data to Knowledge Program; DATS: Data Tags Suite; dbGaP: Database of Genotypes and Phenotypes; DUA: Data Use Agreement; DUL: Data Use Limitation; DUO: Data Use Ontology; FHIR: Fast Healthcare Interoperability Resources; GA4GH: Global Alliance for Genomics and Health; GDPR: General Data Protection Regulation; GRU: General Research Use; HIPAA: Health Insurance Portability and Accountability Act; ICO: Informed Consent Ontology; ICPSR: Inter-university Consortium for Political and Social Research; IP: Internet Protocol; IRB: institutional review board; NIH: National Institutes of Health; NSF: National Science Foundation; ODRL: Open Digital Rights Language; VINCI: Veterans Affairs Informatics and Computing Infrastructure; W3C: World Wide Web Consortium; XACML: eXtensible Access Control Markup Language.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was supported by the bioCADDIE Project under NIH grant 1U24AI117966-01 and by NIH award OTOD025462. L.O.-M. is funded by NSF OIA-1937136, R01GM118609, and R01HL16835.

Author contributions

Writing original draft: G.A.; Review and editing: A.G.-B., L.O.-M., P.R.-S.

Acknowledgments

We are very grateful to Elaine Brock, Alex Kanous, and Melanie Courtot for valuable comments on a previous draft of the manuscript. We are also very grateful to the members of bioCADDIE Project Working Group 7 “Accessibility Metadata for Datasets”: George Alter (chair, University of Michigan), Damon Davis (HealthData.gov), Alex Kanous (University of Michigan), Hyeoneui Kim (University of California San Diego), Jared Lyle (University of Michigan), Frank Manion (University of Michigan), Reagan Moore (University of North Carolina), Mark Phillips (McGill University), Kendall Roark (Purdue University), Jessica Scott (GlaxoSmithKline), and Anne-Marie Tassé (McGill University).

References

1. Ohno-Machado L, Sansone SA, Alter G, et al. Finding useful data across multiple biomedical data repositories using DataMed. Nat Genet 2017;49(6):816–9.
2. Bourne PE, Bonazzi V, Dunn M, et al. The NIH Big Data to Knowledge (BD2K) initiative. J Am Med Inform Assoc 2015;22(6):1114.
3. Lippert C, Sabatini R, Maher MC, et al. Identification of individuals by trait prediction using whole-genome sequencing data. Proc Natl Acad Sci U S A 2017;114(38):10166–71.
4. El Emam K, Brown A, AbdelMalik P. Evaluating predictors of geographic area population size cut-offs to manage re-identification risk. J Am Med Inform Assoc 2009;16(2):252–66.
5. El Emam K, Jonker E, Arbuckle L, et al. A systematic review of re-identification attacks on health data. PLoS One 2011;6(12):e28071.
6. Abowd JM, Lane J. New approaches to confidentiality protection: Synthetic data, remote access and research data centers. In: Domingo-Ferrer J, Torra V, eds. Privacy in Statistical Databases, Proceedings. Berlin: Springer; 2004: 282–9.
7. Sweeney L, Cross M, Bar-Sinai M. Sharing sensitive data with confidence: the datatags system. Technol Sci 2015;2015101601.
8. Arellano AM, Dai W, Wang S, et al. Privacy policy and technology in biomedical data science. Annu Rev Biomed Data Sci 2018;1(1):115–29.
9. Goroff D, Polonetsky J, Tene O. Privacy protective research: Facilitating ethically responsible access to administrative data. Ann Am Acad Pol Soc Sci 2018;675(1):46–66.
10. Sansone S-A, Gonzalez-Beltran A, Rocca-Serra P, et al. DATS, the data tag suite to enable discoverability of datasets. Sci Data 2017;4:170059.
11. DATS Data Tag Suite. http://github.com/datatagsuite/. Accessed 2 December 2018.
12. Chen XL, Gururaj AE, Ozyurt B, et al. DataMed - an open source discovery index for finding biomedical datasets. J Am Med Inform Assoc 2018;25(3):300–8.
13. DataMed. https://datamed.org/. Accessed 28 October 2019.
14. NIH Center for Information Technology. BRICS: Biomedical Research Informatics Computing System. https://brics.cit.nih.gov/. Accessed 28 October 2019.
15. NIH Center for Information Technology. BRICS Functional Components that support FAIR. https://brics.cit.nih.gov/sites/default/files/styles/pdf/brics_and_fair.pdf. Accessed 9 October 2019.
16. Bioschemas. https://bioschemas.org/. Accessed 28 October 2019.
17. Albertoni R, Browning D, Cox S, et al. Data Catalog Vocabulary (DCAT) - Version 2. 2019. https://www.w3.org/TR/vocab-dcat-2/. Accessed 24 October 2019.
18. FAIRplus. https://fairplus-project.eu/. Accessed 28 October 2019.
19. Alter G, Gonzalez R. Responsible practices for data sharing. Am Psychol 2018;73(2):146–56.
20. Kaye J, Hawkins N. Data sharing policy design for consortia: Challenges for sustainability. Genome Med 2014;6:4.
21. Rubinstein IS, Hartzog W. Anonymization and risk. Wash Law Rev 2016;91(2):703–60.
22. Ritchie F. Access to business microdata in the UK: Dealing with the irreducible risks. Paper presented at the UN-EC/Eurostat Work session on statistical data confidentiality, Geneva, Switzerland, 2005.
23. Desai T, Ritchie F, Whelpton R. Five Safes: Designing data access for research. Bristol, UK: Bristol Centre for Economics and Finance. 2016. http://eprints.uwe.ac.uk/28124. Accessed 28 October 2019.
24. Broes S, Lacombe D, Verlinden M, et al. Toward a tiered model to share clinical trial data and samples in precision oncology. Front Med 2018;5:56.
25. U.S. Department of Health and Human Services. Standards for Privacy of Individually Identifiable Health Information, 45 CFR Parts 160 and 164.
26. Joly Y, Dyke SOM, Knoppers BM, et al. Are data sharing and privacy protection mutually exclusive? Cell 2016;167(5):1150–4.
27. Dyke SOM, Kirby E, Shabani M, et al. Registered access: A ‘Triple-A’ approach. Eur J Hum Genet 2016;24(12):1676–80.
28. Inter-university Consortium for Political and Social Research (ICPSR). 2018. Restricted-Use Data Management at ICPSR. https://www.icpsr.umich.edu/icpsrweb/content/lCPSR/access/restricted/index.html. Accessed 7 September 2018.
29. U.S. Census Bureau. Federal Statistical Research Data Centers. https://www.census.gov/about/adm/fsrdc/locations.htm. Accessed 13 August 2018.
30. U.S. Department of Veterans Affairs. VA Informatics and Computing Infrastructure (VINCI). https://www.hsrd.research.va.gov/for_researchers/vinci/default.cfm. Accessed 4 November 2018.
31. National Institutes of Health. All of Us Research Program Operational Protocol. https://allofus.nih.gov/sites/default/files/aou_operational_protocol_v1.7_mar_2018.pdf. Accessed 28 October 2019.
32. Data Sharing for Demographic Research. What is the Virtual Data Enclave (VDE)? https://www.icpsr.umich.edu/icpsrweb/content/DSDR/what-is-the-vde.html. Accessed 13 August 2018.
33. Research Data Assistance Center. CMS Virtual Research Data Center (VRDC). https://www.resdac.org/cms-virtual-research-data-center-vrdc. Accessed 15 January 2020.
34. Bierer BE, Li R, Barnes M, et al. A global, neutral platform for sharing and accessing genomic data. Joly Y, Dyke SOM, Knoppers BM, et al. Are data sharing and privacy protection mutually exclusive? Cell 2016;167(5):1150–4.
35. Inter-university Consortium for Political and Social Research (ICPSR). openICPSR FAQ. https://www.openicpsr.org/openicpsr/faq. Accessed 27 September 2019.
36. Figshare. What is the most appropriate licence for my data? https://knowledge.figshare.com/articles/item/what-is-the-most-appropriate-licence-for-my-data. Accessed 27 September 2019.
37. Creative Commons. Open Data. https://creativecommons.org/about/program-areas/open-data/. Accessed 4 November 2018.
38. U.S. Department of Health and Human Services. Title 45 Public Welfare CFR 46. 2009. http://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/. Accessed 15 January 2020.
39. Paltoo DN, Rodriguez LL, Feolo M National Institutes of Health Genomic Data Sharing Governance Committees, et al., National Institutes of Health Genomic Data Sharing Governance Committees Data use under the NIH GWAS Data Sharing Policy and future directions. Nat Genet 2014;46(9):934–8.
40. Shabani M, Dove ES, Murtagh M, et al. Oversight of genomic data sharing: What roles for ethics and data access committees? Biopreserv Biobank 2017;15(5):469–74.
41. Budin-Ljosne I, Teare HJA, Kaye J, et al. Dynamic consent: A potential solution to some of the challenges of modern biomedical research. BMC Med Ethics 2017;18:4.
42. Genetic Alliance. Platform for engaging everyone responsibly. http://www.geneticaalliance.org/programs/biitrust/peer. Accessed 23 August 2018.
43. Kim H, Bell E, Kim J, et al. iCONCUR: Informed consent for clinical data and bio-sample use for research. J Am Med Inform Assoc 2017;24(6):1150–4.
44. Wilbanks J, Friend SH. First, design for data sharing. Nat Biotechnol 2016;34(4):377–9.
45. Chassang G. The impact of the EU general data protection regulation on scientific research. Eancermedicalsience 2017;11:709.
46. European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Official J Eur Union 2016; L119: 1–88.
47. Rumbold JMM, Pierscionek B. The effect of the general data protection regulation on medical research. J Med Internet Res 2017;19(2):e47.
48. Kanous A, Brock E. Contractual limitations on data sharing. Report prepared for ICPSR as part of “Building Community Engagement for Open Access to Data.” Ann Arbor, MI: Inter-university Consortium for Political and Social Research; 2015, doi:10.3886/ContractualLimitationsDataSharing.
49. Krumholz HM, Waldstreicher J. The Yale Open Data Access (YODA) Project - A mechanism for data sharing. N Engl J Med 2016;375(5):403–5.
50. Woolley JP. Tools to foster trust in sharing healthcare data: Toward a common language for regulatory metadata. Med Law 2017;36(1):25–50.
51. Woolley JP, Kirby E, Leslie J, et al. Responsible sharing of biomedical data and biospecimens via the “Automatable Discovery and Access Matrix” (ADA-M). NPJ Genom Med 2018;3:17.
52. Dyke SOM, Philippakis AA, De Argila JR, et al. Consent codes: Upholding standard data use conditions. PLoS Genet 2016;12(1):e1005772.
53. National Institutes of Health. Points to consider in developing effective data use limitation statements. 2015. https://osp.od.nih.gov/wp-content/uploads/NIH_PTC_in_Developing_DUL_Statements.pdf. Accessed 22 August 2018.
54. European Genome-phenome Archive. Data Use Conditions. https://ega-archive.org/data-use-conditions. Accessed 6 November 2018.
55. Lin Yu, Harris MR, Manion FJ, et al. Development of a BFO-based Informed Consent Ontology (ICO). CEUR Workshop Proceedings 2014;1327:84–86.
56. Manion FJ, He Y, Eisenhauer E, et al. Towards a common semantic representation of informed consent for biobank specimens. In: CEUR Workshop Proceedings. 2014: 61–3.
57. Iannella R, Steidl M, Myles S, et al. ODRL Vocabulary & Expression 2.2: W3C Recommendation, 15 February 2018. https://www.w3.org/TR/odrl-vocab/. Accessed 12 December 2018.
58. Dodds L. Open Data Rights Statement Vocabulary. http://schema.theodi.org/odrs/. Accessed 12 December 2018.
59. Car N. Agreements ontology (AGR-O). https://github.com/nicholascar/agr-o. Accessed 7 January 2018.
60. DATS - Data Tag Suite. consent_info_schema. https://github.com/datatagsuite/schema/blob/master/consent_info_schema.json. Accessed 28 October 2019.
61. NHLBI TOPMed: Massachusetts General Hospital (MGH) Atrial Fibrillation Study. dbGaP Study Accession: phs001062.v1.p1. https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001062.v3.p2. Accessed 28 October 2019.
62. Health Level Seven International (HL7). Consent - FHIR v3.0.1. https://www.hl7.org/fhir/consent.html. Accessed 24 August 2018.
63. OASIS TC. OASIS eXtensible Access Control Markup Language (XACML) TC. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml. Accessed 24 August 2018.
64. Core Trust Seal. CoreTrustSeal – Core Trustworthy Data Repositories. https://www.coretrustseal.org. Accessed 24 August 2018.
65. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 2016;3:160018.