Supplementary Materials for

Genetics and material culture support repeated expansions into Paleolithic Eurasia from a population Hub out of Africa

Leonardo Vallini, Giulia Marciani, Serena Aneli, Eugenio Bortolini, Stefano Benazzi, Telmo Pievani, Luca Pagani

1 Department of Biology, University of Padova, Padova, Italy
2 Department of Cultural Heritage, University of Bologna, Ravenna, Italy
3 Department of Physical Sciences, Earth and Environment, University of Siena, Italy
4 Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
5 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
6 Institute of Genomics, University of Tartu, Tartu, Estonia

Supplementary Materials include:

- Supplementary Information
 - Section 1: Material Culture Page 2
 - Section 2: Genetic Dataset Page 10
 - Section 3: qpGraph analyses Page 12
 - Section 4: Unsupervised analysis with OrientAGraph/Treemix Page 23
 - Section 5: Paleomaps plotting Page 24

- Supplementary Figures S1 to S8
- Supplementary Tables S1 to S4
Many of the DNA samples discussed in this paper come from sites without stratigraphic association with diagnostic archaeological materials. To overcome this issue, we use layers of sites located in proximity of and coeval to DNA sampling sites (Table S1).

Table S1. Cultural proxies for the ancient genomes analysed in the current work. M: Mousterian; S: Szeletian; IUP: Initial Upper Paleolithic; UP: Upper Paleolithic; a indicates an attribution based on nearby coeval sites, which are specified in the subsequent rows. The coordinates of the sites are taken from the reference articles or from the ROCEEH Out of Africa Database (ROAD) (http://www.roceeh.org).

DNA Sample/Proxy	Sample/Site name	Techno-complex	Country	Coordinates	Broad chronological range (cal kyr BP)	References
DNA Sample	Vindija	M	Croatia	46.29 N, 16.07 E	~50	*
Pre-expansion sites in the Levant	Ksar_Akil_XXII-XXV	IUP	Lebanon	33.91 N, 35.64 E	~45-43	(Leder 2014, 2017; Bosch et al. 2015)
Pre-expansion sites in the Levant	Üçagizli_F,Fa,Fb-c,G,H,H1-3,I	IUP	Turkey	35.98 N, 35.96 E	~45-40	(Kuhn 2004; Kuhn et al. 2009)
Pre-expansion sites in the Levant	Umel’Tiel	IUP	Syria	35.27 N, 38.89 E	~40	(Eric Boëda and Bonilauri 2006)
Pre-expansion sites in the Levant	Boker_Tachtit_layer_4	IUP	Israel	30.84 N, 34.78 E	~45-40	(Marks and Kaufman 1983; Kadowaki, Omori, and Nishiaki 2015)
DNA Sample	Ust_Ishim	IUP*	Russia	Latitude, Longitude	Age	Notes
------------	-----------	------	--------	-------------------	-----	-------
Ust_Ishim	Kara_Bom_OH_5_OH6	IUP	Russia	57.7, 71.1	~44	(N. Zwyns et al. 2012)
Ust_Ishim	Tolbor-4_layer_4-5-6	IUP	Mongolia	50.72, 85.57	>45	(Derevianko et al. 2013; Nicolas Zwyns et al. 2019)
Ust_Ishim	Tolbor-16_layer_6	IUP	Mongolia	49.29, 102.97	~45-35	(Nicolas Zwyns et al. 2019)
Ust_Ishim	Kamenka_A	IUP	Russia	51.44, 108.17	~45-40	(N. Zwyns and Lbova 2019)
DNA Sample	Tianyuan	IUP*	China	39.66, 115.87	~40	*
Tianyuan	Suindonggou_1	IUP	China	38.38, 106.51	<41	(Morgan et al. 2014; E. Boëda et al. 2013)
Tianyuan	Suindonggou_2	IUP	China	38.38, 106.51	<41	(Li et al. 2019; Peng et al. 2020)
DNA Sample	Kostenki14	UP*	Russia	51.23, 39.3	~38	*
Kostenki14	Kostenki_12_Vokov	UP	Russia	51.39, 39.05	<40	(A. A. Sinitsyn and Hoffecker 2006)
Kostenki14	Kostenki_1	UP	Russia	51.39, 39.05	<40	(Hoffecker et al. 2016)
DNASample	Oase1	IUP-UPa	Romania	45.12 N, 21.9 E	~38	*
-----------------	----------------------------	---------	--------------------	-----------------	-----	--------------
Oase1	Bacho_Kiro_IUP_layer_11	IUP	Bulgaria	42.95 N, 25.43 E	>45	(Tsanova 2008; Hublin et al. 2020)
Oase1	Ořechov_IV_--_Kabáty	IUP	Czech Republic	~49.06 N, 16.31 E	~41-35 (underestimate)	(Yuri E. Demidenko, Škrdla, and Rychtaříková 2020)
Oase1	Brno-Bohunice	IUP	Czech Republic	~49.12 N 16.37 E	>45	(Richter, Tostevin, and Skrdla 2008)
Oase1	Românesti-Dumbravita	UP	Romania	45.49 N, 22.19 E	~45-40	(Anghelinu and Niţă 2014; Sitlivy et al. 2012)
Oase1	Cosava	UP	Romania	45.51 N, 22.19 E	~45-40	(Anghelinu and Niţă 2014; Sitlivy et al. 2014)
Oase1	Tincova	UP	Romania	45.33 N, 22.9 E	~45-40	(Anghelinu and Niţă 2014; Sitlivy et al. 2014)
DNASample	GoyetQ116-1	UP*	Belgium	50.45 N, 5.01 E	~35	*
GoyetQ116-1	Maisières-Canal	UP	Belgium	50.48 N, 3.98 E	<40	(Pirson et al. 2012)
GoyetQ116-1	Spy_Ossiferous_Horizon_2	UP	Belgium	50.48 N, 4.67 E	<40	(Pirson et al. 2012)
DNASample	Location	Country	Coordinates	Age (Ka)	References	
-----------	----------	---------	-------------	---------	------------	
Sunghir	UP	Russia	56.18 N, 40.50 E	~34	(Dobrovolskaya, Richards, and Trinkaus 2012; Trinkaus and Buzhilova 2018)	
Yana	UP	Russia	70.72 N, 135.42 E	~31	(Pitulko, Pavlova, and Nikolsky 2017)	
Mal'ta (MA1)	UP	Russia	52.9 N, 103.5 E	~24	(Khenzykhenova et al. 2019; Lbova 2019)	
Bacho_Kiro_IUP_layer_11	IUP	Bulgaria	42.95 N, 25.43 E	~45	(Hublin et al. 2020; Tsanova 2008)	
Zlatý Kůň	S-IUPa	Czech Republic	49.37 N, 16.72 E	>45	*	
Szeleta	S	Hungary	48.06 N, 20.37 E	~45-40	(Adams 2009; Zs Mester 2010; Hauck, Rethemeyer, and Rentzel 2016)	
Pod_Hradem	S	Czech Republic	49.37 N, 16.72 E	~45-40	(Nejman et al. 2017)	
Moravský_Krumlov_IV	S	Czech Republic	49.05 N, 16.41 E	~43-42	(Nerudová and Neruda 2017)	
Stranska_Skala_III-IIIc	IUP	Czech Republic	49.11 N, 16.40 E	~45-40	(Tostevin 2003)	
Location	Site	Repository	Country	Latitude, Longitude	Age	Reference
-------------------	---------------	------------	------------	---------------------	-----	---
Zlatý Kůň	Brno-Bohunice	IUP	Czech Republic	~49.12 N, 16.37 E	>45	(Richter, Tostevin, and Skrdla 2008)
DNA Sample	BK1653	UP	Bulgaria	42.95 N, 25.43 E	~35	(Fewlass et al. 2020; Hublin et al. 2020)
The definition of a techno-complex is based on the association among specific traits identified and recorded in archaeological assemblages (e.g. typology and technology of stone tools). Depending on the degree of magnification used to define a lithic assemblage, each techno-complex could be seen as more/less similar to others. A broad definition of techno-complexes could be compatible with models of population structure/movement, but this requires a high degree of simplification and the loss of finer-grained differences across the examined sites. On the other hand, a strict definition of a techno-complex could focus on the specificities of each assemblage, hampering the possibility of gaining a more general perspective. Strict definitions of lithic assemblages are in fact more compatible with scenarios of independent development (N. Zwyns and Lbova 2019). In order to develop a model which considers a wide geographical and chronological scale as the one under consideration in this work, it is crucial to describe the techno-complexes choosing the key criteria that are both able to: i) maintain site-specificity; and ii) identify the general tendencies. The question is how the data are collected and compared and what meaning can be given to them concerning the question of the origin of technical innovations. New technologies could be related to demic movements, cultural diffusion/exchange without implying migration, or parallel convergence, i.e. the same response to common adaptive challenges. Distinguishing homoplasy from homology requires testing a hypothesis on the diversity of cultural traits and understanding it through a comprehensive framework of technological evolution (E. Boëda et al. 2013; Morgan et al. 2014; Peng et al. 2020; Kuhn 2019; Boyd and Richerson 1988).

The terms Initial Upper Paleolithic, Early Upper Paleolithic and Upper Paleolithic, are commonly used in the scientific literature with different meanings. They could have either a chronological connotation or a technological one, or both of them. This paper refers to the term Initial Upper Paleolithic (IUP) to indicate specific techno-complexes characterised by volumetric blade productions and Levallois reduction sequence (Kuhn 2019; Kuhn and Zwyns 2014) (Table S2). The term Upper Paleolithic (UP) is used to group the lithic industries characterised by the production of several standardised blades and bladelets often together with ornaments and bone tools (Table S2). The non-Mousterian and non-IUP technologies appeared during the Middle to Upper Palaeolithic transition, comprising Uluzzian (Benazzi et al. 2011; Moroni et al. 2018; Peresani et al. 2019; Collina et al. 2020; Marciani et al. 2020; Riel-Salvatore 2009), Châtelperronian (Morgan Roussel 2013; Ruebens, McPherron, and Hublin 2015; M. Roussel, Soressi, and Hublin 2016), Szeletian
Table S2. Main criteria adopted in this work to characterise Initial Upper Paleolithic (IUP) and Upper Paleolithic (UP) sites.

Definition	IUP	UP
Lithic technology	The IUP is a blade-based production.	Blade and bladelet based industries usually used in complementary tools.
	The reduction sequences use direct hard hammer percussion, platform faceting, and mostly flat-faced or semi-tournant cores. The blades and some cores resemble products of Levallois reduction sequence (Kuhn and Zwyns 2014; Kuhn et al. 2009; Kuhn 2019). Sites in Siberia and Mongolia are also characterised by “burin-cores” for producing small blades and the exploitation of the narrow face cores (Slavinsky et al. 2019; N. Zwyns et al. 2012; N. Zwyns and Lbova 2019).	The broad category of UP includes a great diversity of techno-complexes which share the production of standardised bladelets and blades with a wide range of technical options (e.g. unidirectional debitage by prismatic core, carinated core, burin-cores, among others) and percussion techniques (Zilhão et al. 2006; Le Brun-Ricalens, Bordes, and Eizenberg 2009; Teyssandier, Bon, and Bordes 2010a; Moreau 2012a; Kozłowski 2015b; Bataille 2016; Falcucci 2018; Kadowaki, Suga, and Henry 2021b).
Included techno-complex	Emiran (Kuhn, Stiner, and Güleç 1999), Bokerian (Leder 2014, 2017), Bohunician (Richter, Tostevin, and Škrďla 2008; Škrďla 2017; Yuri E. Demidenko, Škrďla, and Rychtaříková 2020), Bachokirian (Hublin et al. 2020).	Protoaurignacian and Aurignacian (Teyssandier, Bon, and Bordes 2010b; Sitlivy et al. 2012; Bataille 2016; Y. E. Demidenko and Škrďla 2017; Tafelmaier 2017; Falcucci 2018; Riel-Salvatore and Negrino 2018), Spitsynian (Vishnyatsky and Nehoroshev 2004; Usik, Monigal, and Kulakovskaya 2006), Ahmariyan (Kadowaki, Omori, and Nishiaki 2015; Barzilai, Hershkovitz, and Marder 2016; Goring-Morris and Belfer-Cohen 2018), Early Upper Paleolithic (Hoffecker 2011; Kadowaki, Suga, and Henry 2021a), Gravettian (Andey A. Sinistsyn 2007; Dobrovolskaya, Richards, and Trinkaus 2012; Moreau 2012b; Kozłowski 2015a; Klaric 2013).
Other material evidence

| In some IUP assemblage is documented the use of personal ornament and formal bone tools e.g. in Levant (Kuhn et al. 2009), Bulgaria, Siberia, and Mongolia (Rybin 2014; Kuhn and Zwyns 2014; Kaifu et al. 2014; Derevianko and Rybin 2003). | Habitual use (especially in the Gravettian) of portable art, graphic representations, musical instruments, and various bone tools (Zilhão et al. 2006; Conard 2003; Conard, Malina, and Münzel 2009). Impressive burials sites e.g. Sunghir (Trinkaus et al. 2014). |

Chronology

| Chronologically, the IUP is a long phenomenon comprised between approximately 50 kya and 35 kya (calibrated). Its stratigraphic position follows the Middle Paleolithic assemblages and is before UP assemblage (Nerudová and Neruda 2017; Zsolt Mester 2018; Neruda and Nerudová 2019; Kuhn 2019; Kuhn and Zwyns 2014). | The various stages of the UP make their appearances approximately 42 kya. Their stratigraphic position follows the IUP, Uluzzian, Szeletian, Chatelperronian, LRS. |
Table S3: Individuals used in qpGraph trees. A green background indicates samples present in the “Allen Ancient DNA Resource” v44.3 database while an orange background indicates samples available from ENA.

Version ID	Master ID	Publication	GroupID	PopID in qpGraph	SNPs
GoyetQ116-1_published	GoyetQ116-1	FuNature2016	Belgium_UP_GoyetQ116_1_published_all	GoyetQ116-1	765579
Chimp.REF	Chimp	Genome	Chimp.REF	Chimp	1102442
Tianyuan	Tianyuan	YangCurrentBiology2017	China_Tianyuan	Tianyuan	885079
HGDP00449.SDG	HGDP00449	BergstromScience2020	Mbuti.SDG	Mbuti	1140413
HGDP00462.SDG	HGDP00462	BergstromScience2020	Mbuti.SDG	Mbuti	1137821
HGDP00463.SDG	HGDP00463	BergstromScience2020	Mbuti.SDG	Mbuti	1137064
HGDP00467.SDG	HGDP00467	BergstromScience2020	Mbuti.SDG	Mbuti	1136730
HGDP00474.SDG	HGDP00474	BergstromScience2020	Mbuti.SDG	Mbuti	1140529
HGDP00476.SDG	HGDP00476	BergstromScience2020	Mbuti.SDG	Mbuti	1140439
HGDP00478.SDG	HGDP00478	BergstromScience2020	Mbuti.SDG	Mbuti	1137743
HGDP00982.SDG	HGDP00982	BergstromScience2020	Mbuti.SDG	Mbuti	1126932
HGDP00984.SDG	HGDP00984	BergstromScience2020	Mbuti.SDG	Mbuti	1137625
HGDP01081.SDG	HGDP01081	BergstromScience2020	Mbuti.SDG	Mbuti	1135761
B_Papuan-15.DG	HGDP00546	PrueferNature2013	Papuan.DG	Papuan	1117740
S_Papuan-1.DG	HGDP00550	SkoglundNature2015	Papuan.DG	Papuan	1118074
S_Papuan-10.DG	HGDP00553	SkoglundNature2015	Papuan.DG	Papuan	1118955
S_Papuan-11.DG	HGDP00555	SkoglundNature2015	Papuan.DG	Papuan	1118110
S_Papuan-12.DG	HGDP00556	SkoglundNature2015	Papuan.DG	Papuan	1116429
S_Papuan-13.DG	HGDP00552	SkoglundNature2015	Papuan.DG	Papuan	1118089
S_Papuan-14.DG	HGDP00554	SkoglundNature2015	Papuan.DG	Papuan	1118823
S_Papuan-2.DG	HGDP00540	SkoglundNature2015	Papuan.DG	Papuan	1118158
S_Papuan-3.DG	HGDP00541	SkoglundNature2015	Papuan.DG	Papuan	1118510
S_Papuan-4.DG	HGDP00543	SkoglundNature2015	Papuan.DG	Papuan	1118633
Sample Code	Location	Publication	Age 10^3 YBP		
-------------	-----------	-------------	--------------		
S_Papuan-5.DG	HGDP00545	SkoglundNature2015	Papuan.DG	Papuan	1119621
S_Papuan-6.DG	HGDP00547	SkoglundNature2015	Papuan.DG	Papuan	1118542
S_Papuan-7.DG	HGDP00548	SkoglundNature2015	Papuan.DG	Papuan	1119624
S_Papuan-8.DG	HGDP00549	SkoglundNature2015	Papuan.DG	Papuan	1118670
S_Papuan-9.DG	HGDP00542	SkoglundNature2015	Papuan.DG	Papuan	1118992
Oase1_d	Oase1	FuNature2015	Romania_Oase	Oase1	195345
Kostenki14	Kostenki14	FuNature2016	Russia_Kostenki14	Kostenki14	1068326
MA1.SG	MA1	RaghavanNature2013	Russia_MA1_HG.SG	MA1	805960
Sunghir1.SG	Sunghir1	SikoraScience2017	Russia_Sunghir1.SG	Sunghir	795499
Sunghir2.SG	Sunghir2	SikoraScience2017	Russia_Sunghir2.SG	Sunghir	1136035
Sunghir3.SG	Sunghir3	SikoraScience2017	Russia_Sunghir3.SG	Sunghir	1149730
Sunghir4.SG	Sunghir4	SikoraScience2017	Russia_Sunghir4.SG	Sunghir	1133177
Ust_Ishim_published.DG	Ust_Ishim	FuNature2014	Russia_Ust_Ishim_HG_published.DG	Ust_Ishim	1147829
Yana_old.SG	Yana1	SikoraNature2019	Russia_Yana_UP.SG	Yana	1150093
Yana_old2.SG	Yana2	SikoraNature2019	Russia_Yana_UP.SG	Yana	1147981
baa001.SG	baa001	SchlebuschScience2017	South_Africa_1900BP.SG	South_Africa_2000BP	1149601
I9133.SG	UCT386	SkoglundCell2017	South_Africa_1900BP.SG	South_Africa_2000BP	1009127
bab001.SG	bab001	SchlebuschScience2017	South_Africa_2000BP.SG	South_Africa_2000BP	719140
I9028.SG	KhoesanLeipzigHunt	SkoglundCell2017	South_Africa_2200BP.SG	South_Africa_2000BP	718296
Vindija_snpAD.DG	Vindija	Pruefer2017	Vindija_Neanderthal.DG	Vindija Neanderthal	1061414
ZKU002				ZlatyKun	653677
BB7-240				Bacho_Kiro	866466
CC7-335				Bacho_Kiro	783301
F6-620				Bacho_Kiro	1068449
BK_1653				BK_1653	1025353
Supplementary Section 3: qpGraph analyses

3.1 Base graph with Zlatý Kůň and Eurasian trifurcation

The position of Ust'Ishim with respect to Paleolithic Eastern and Western Eurasian is unclear and described as a near-trifurcation (Yang et al. 2017; Lipson and Reich 2017) with D-statistics in the form of (Tianyuan, Sunghir, Ust'Ishim, Chimp), (Tianyuan, Ust'Ishim, Sunghir, Chimp) and (Sunghir, Ust'Ishim, Tianyuan, Chimp) all not significantly different from zero (Table S4).

We started with the simple population tree proposed by Prufer and colleagues (Prüfer et al. 2021) (Fig 2c) with Zlatý Kůň as the most basal non African and placed Ust'Ishim either basal to the split between Western and Eastern Eurasians, as a sister of East Eurasians or as a sister of West Eurasians and found that all options are supported with no outlier f4s, being the highest f4 |Z-score| < 3. We used Tianyuan as representative ancient “East Asian” and either Sunghir or Kostenki14 as ancient “West Eurasian”.

3.2 Adding Bacho Kiro

We then tried to add the IUP Bacho Kiro individuals in different positions of these graphs, downstream of the Zlatý Kůň split. We assumed Zlatý Kůň to be more basal than Bacho Kiro because of the following reasons:

- The Bacho Kiro individuals, set aside their higher Neanderthal admixture proportion, have been shown to share more alleles with East Asians compared to Europeans, while Zlatý Kůň is basal to the split between the two (Hajdinjak et al. 2021).
- f4 in the form (X, Zlatý Kůň, Bacho Kiro, Chimp) with X a later Eurasian individual including Ust'Ishim tend to be positive, even if not always significant (Table S4).

As a first attempt we placed Bacho Kiro basal to Ust'Ishim and all other Eurasians except Zlatý Kůň (Figure S1.A): the resulting graph is rejected since it has several f4 with |Z-scores| > 3, highlighting the fact that the genetic distances expected from the tree designed by the user do not match the ones computed from the real data and hence implying a poor fit to the data for the examined tree. f2- statistic results, which are indicators of which samples should be closer in the tree to account for the observed genetic distance, suggest that Bacho Kiro should be placed closer to Tianyuan (f2 Z-score = -3) and further from Sunghir (f2 Z-score = 2.6). A similar result is obtained when placing Ust'Ishim basal to Bacho Kiro and Bacho Kiro
basal to the split between Europeans and East Asians, here represented by Tianyuan and Sunghir (Figure S1.B).

Rather than adding an admixture event from a Bacho Kiro related population to Tianyuan we tried to minimize admixture events and instead placed Bacho Kiro as a sister of Tianyuan, hence leaving Ust'Ishim basal to the split Europe/East Asia. This returned a graph with the worst (i.e. highest in absolute value) Z-score = -2.7 (Figure S1.C), which hence provides a satisfactory fit to the data.

![Figure S1 Placement of Bacho Kiro within the tree proposed in Prufer et al. 2021.](image)

Figure S1 Placement of Bacho Kiro within the tree proposed in Prufer et al. 2021.

When taking into account the excess Neanderthal contribution, Bacho Kiro still yields outlier f4s when placed soon after the split of Zlatý Kůň (A) or after the separation of Ust'Ishim (B). Placing Bacho Kiro as a sister of Tianyuan (C) yields instead no f4 outliers. (Graphs based on 423445 SNPs. Highest |Z-score| = 4.3(A, B), 2.7(C))

The placement of Bacho Kiro with respect to other Eurasians that we are proposing differs from the one proposed by Hajdinjak and colleagues (Hajdinjak et al. 2021) in their Figure S6.2. We speculate this may be due to the presence of Zlatý Kůň in our tree who may inform the genetic drift that characterizes a basal OoA landscape, or to the availability of Neanderthal from the early phases of our qpGraph construction (whose absence, by virtue of the additional Neanderthal ancestry compared to other non Africans, can have the effect of making Bacho Kiro appear more basal if not immediately accounted for)(Table S4).

For the sake of completeness we also tried to position Bacho Kiro as a sister of Sunghir (geographically it could make sense). The graph has several f4 |Z-scores| > 3 and is therefore rejected.
3.3 Ust'Ishim as an early leaf of the IUP branch

We added Kostenki14, the oldest “genetically European” individual sequenced to date to "populate" more the European branch (Figure S2.A – final score 11964). Since we noticed that the drift between nodes B and C was 0 and bearing in mind that D-statistics (Table S4) and previous graphs supported Sunghir/Tianyuan/Ust'Ishim to be a trifurcation, we tried to place Ust-Ishim either as a sister of Tianyuan/Bacho Kiro (Figure S2.B – score 11630) or as a sister of Kostenki14/Sunghir (Figure S2.C – score final 11721). All three graphs produce no f4 outliers and, when not basal, Ust'Ishim shares only one unit of drift with its sisters before branching off (hence showing a near-trifurcation). While all three topologies provide no outlier Z scores, the tree where Ust'Ishim is a sister of Tianyuan/Bacho Kiro (Figure S2.B), has the lowest final score and so is the most supported.

Figure S2 Relationship of Ust'Ishim to other Eurasians. After adding Kostenki14 as a crucial reference sample, we tested all possible positions of Ust'Ishim as either basal to East and West Eurasians (A), sister of Bacho Kiro and Tianyuan (B) and sister of Kostenki and Sunghir (C). All three graphs produce no f4 outliers and Ust'Ishim shares only one unit of drift with its sisters before branching off (hence showing a near-trifurcation). The tree where Ust'Ishim is a sister of Tianyuan/Bacho Kiro (Figure S2.B), however, has the lowest final score and so is the most supported. (Graphs based on 408905 SNPs. Highest |Z-score| = 2.7)

3.4 Oase1 could be simply a descendant of Bacho Kiro, remnant of the IUP movement

We then tried to place on the emerging tree of Figure S2.B the ~40 ky old Oase1 individual, recovered from a site less than 400 km away from Bacho Kiro cave which, like and more than the individuals from Bacho Kiro, has been shown to have a Neanderthal relative in its
recent genealogy.

Since it has not been possible, based on simple f4s, to determine a higher affinity of Oase1 for either East Asians or Europeans (retrospectively, that might be caused by the combination of low number of SNPs and high Neanderthal admixture proportion), we started by making Oase1 a sister of Zlatý Kůň that later admixed with Neanderthals (Figure S3.A). The resulting graph showed several |Z scores| > 3, an excessive proportion of Neanderthal in Eurasians and a clear tendency for Oase1 and Bacho Kiro to share more drift (f2 Z-score = -6.0), incidentally showing that the quality and quantity of Oase1 genetic information is nevertheless suitable for a qpGraph analysis. We then placed Oase1 as a sister of Bacho Kiro with an additional Neanderthal pulse and obtained no outlier f4 and a parsimonious placement for this elusive sample (Figure S3.B).

Our proposed graphs illustrate the claim made by Fu and colleagues (Fu et al. 2015) that Oase1 experienced an additional pulse of Neanderthal admixture between the one shared by all non Africans and the one that occurred 4-6 generations before it lived, and identify said event in the one occurred in the Bacho Kiro population or in a closely related one. A similar graph where the node Oase0 splits from BK0 instead of BK1 (Figure S3.C) is also not rejected but does not explain this additional event of Neanderthal admixture.

To further support the placement of Oase1 and rule out the possibility that its attraction to Bacho Kiro is driven by the excess of Neanderthal ancestry they share, we proceeded to mask out the most recent Neanderthal introgressed segments of Oase1 (we used the genomic coordinates reported in Table S5.1 of Fu et al 2015 (Fu et al. 2015)) and re-run the analysis: Oase1 holds its position and can be described without the last admixture event with Neanderthal (inferred to be 0) hence confirming its connection with the Bacho Kiro population or a related one is genuine and not a simple attraction introduced by their shared excess Neanderthal fraction (Figure S3.D).

Finally, it is worth mentioning that while the low coverage, high contamination and high Neanderthal ancestry of Oase1 prevented the direct assessment of its closer relationship to either Western or Eastern Eurasians, an individual from the same site and with similar age (Oase2) showed a clearly higher affinity for East Asian and Native American populations than with Western Eurasians. The closest sample to Oase2 in outgroup f3 analyses, after Oase1, was reported to be Tianyuan (the individuals from Bacho Kiro cave were not available at the time of those analyses), supporting our claim of its placement in the “genetically East Asian” branch (Siska 2019).
Figure S3 Placement of Oase along the IUP tree. After accounting for the reported recent pulse of Neanderthal admixture, Oase1 cannot be described as a simple basal lineage along the Eurasian tree (A) and is instead best fit as a descendant of the same population Bacho Kiro belonged to (B, C). When masking out the very recent Neanderthal introgressed segments present in Oase1, this individual can still be modeled as a sister of Bacho Kiro, confirming their attraction is genuine and not mediated by Neanderthal (D). (Graphs A, B, C based on 95587 SNPs, graph D based on 88793 SNPs. Highest |Z-score| = 7.2(A), 2.6 (B, C, D)).

3.5 Interaction between Zlatý Kůň and Bacho Kiro

Given the geographical proximity of the two sites, we tested whether a contribution to the Bacho Kiro individuals by a population related to Zlatý Kůň can be accommodated within our so far most supported graph.

An admixture event contributing between 2% and 29% from a sister of Zlatý Kůň into the ancestors of Bacho Kiro, depending on the position of Ust’Ishim (Figure S4), yields no outliers. Although not rejected, these graphs are all less parsimonious than the graph in Figure S2.B and might pick up a signal of shared drift between Bacho Kiro and Zlatý Kůň that is caused by the reduced time purifying selection had to drive out introgressed Neanderthal segments (Zlatý Kůň is the oldest sample and Bacho Kiro has recent Neanderthal introgression), rather than a genuine gene flow.
Figure S4 Interaction between Zlatý Kůň and Bacho Kiro. Given the geographic and partial chronological overlap of Zlatý Kůň and Bacho Kiro samples we allowed for a contribution of the former on the newly arrived IUP population. Such a contribution is acceptable, in varying amounts depending on the position of Ust’Ishim within the tree (A,B,C) but given the viability of the trees without this event we decided to exclude it from further analyses. (Graphs based on 408905 SNPs. Highest |Z-score| = 2.1 (A, C), 2.3 (B).

3.6 Formation of Paleolithic Siberian ancestry profile

Paleolithic Siberian populations younger than 40 ky are consistently described as a mix of European and East Asian ancestries (Massilani et al. 2020; Sikora et al. 2019; Raghavan et al. 2014), although a comprehensive cultural or population dynamics to account for these admixture events is still lacking. Building on our dichotomy between Initial Upper Paleolithic (IUP) and Upper Paleolithic waves of expansions across Eurasia, we tried to model ancient Siberian individuals as a mixture of these waves into our best fitting parsimonious graph (Figure S2.B).

We started by creating a Siberian population that is ancestral to the ~32 ky old Yana individuals (Massilani et al. 2020; Sikora et al. 2019; Raghavan et al. 2014) as a mixture of the E and C nodes in the graph of Figure S2.B. The resulting graph has several f4 outliers and indicates that Yana may fit better as more closely related to Tianyuan (f2 Z-score = -6.1) and, to a lesser extent, Bacho Kiro (f2 Z-score = -2.1), suggesting that the node of origin of the East Asian component in Siberians needs to be moved further down along that branch. With the East Asian component of Siberians originating from node D the graph still has
several outliers and Yana needs to share more drift with Tianyuan (\(f_2 \) Z-score = -3.8), so after taking that into account we obtained a graph that is not rejected (Figure S5.A).

To better define the Siberian populations we included the ~24 thousands years old Mal’ta (MA1) individual (Fu et al. 2015; Raghavan et al. 2014), we started by considering it as a sister of Yana (Figure S4.B) and obtained two \(|Z\)-scores\) ~3.1 (Chimp, South_Africa_2000BP, ZlatyKun, Yana and ZlatyKun, Tianyuan, Sunghir, MA1). Since qpGraph performs f-statistic analyses on a subset of SNPs that is shared by all the individuals in a tree, this might sometimes severely limit the number of SNPs used in a test, especially when ancient individuals are included. We tested whether the two outliers remain significantly different from zero when including all SNPs available to each quadruple and found they do not (Table S4), deeming this outcome as more robust.

Finally, in order to allow MA1 and Yana to have different proportions of East and West Eurasian components, we added an EUR_Sib node and parallelized the admixture events of Yana and MA1. The resulting graph (Figure S5.C) has one f4 test with Z-score 3.1 (Chimp, South_Africa_2000BP, ZlatyKun, Yana) , however it results not significantly different from zero when computing the D-statistic using the all the available SNPs (Table S4) . Since the data we used has been produced over many years and with different strategies, we decided to also verify the structure we found using only transversions. The core structure of the tree (IUP and UP branches, with Siberians as a mixture) holds, however the East Asian component of siberians needs to pick ancestry from different positions along the IUP branch:we think this is due to the limited number of SNPs (55427) this graph is based on, that confer enough power to identify siberians as a mixture of UP and IUP, but not sufficient to pinpoint the exact position of the admixing source within the variegated IUP branch.

Figure S5 Adding Paleolithic Siberians to the qpGraph of Figure S2.B. We first placed Yana1 on the graph as a putative mixture of West Eurasian (EUR) and East Asian (EAS) components (A) and, after having obtained no outliers we proceeded with adding Mal’ta as a
sister leaf (B). When we relax the model to allow the two Siberian samples to derive independent fractions of each ancestry we obtain (C). The core structure (Siberians as a mixture of UP and IUP waves) holds even when only transversions are considered but the reduced number of SNPs makes it difficult to pinpoint the position of the source (D). (Graph A based on 414472 SNPs, graphs B and C based on 303651 SNPs, graph D based on 55427 SNPs. Highest |Z-score| = 2.8 (A), 3.1 (B, C), 2.9 (D)).

3.7 Adding GoyetQ116-1 and BK-1653 to the emerging picture of IUP and UP interaction in Western Eurasia

The ~35000 years old GoyetQ116-1 individual from Belgium, although closer to Europeans than to East Asians, shares more alleles with the latter compared to other contemporary Europeans (Fu et al. 2016) and it has recently been described as a recipient of gene flow from a population related to Bacho Kiro (Hajdinjak et al. 2021).

We started from Figure S5.C and tried to describe Goyet as mixture between the Kostenki14/Sunghir branch and the Bacho Kiro branch (Figure S6.A); however doing so shows that Goyet needs to share more drift with Tianyuan (f2 Z-score = -2.5, plus several f4 outliers). On the other hand, sourcing the East Asian genetic component from the node upstream of Bacho Kiro and Tianyuan (node D) results in the Z scores of f2 with both Tianyuan and Bacho Kiro to be too low (-2.4 and -2.2 respectively), highlighting how its East Asian genetic component is more variegated than the one found in Bacho Kiro or Tianyuan alone (Figure S6.B).

When adding to Goyet a contribution from both the Bacho Kiro and Tianyuan branches (Figure S6.C) we obtained only two minor outliers (Chimp, South_Africa_2000BP, ZlatyKun, Yana = 3.4 and South_Africa_2000BP, ZlatyKun, ZlatyKun, Sunghir = -3.3), the first of which results not significant when computed using all SNPs (Table S4). Notably, the ~35 ky old Bacho Kiro individual: BK1653 (Hajdinjak et al. 2021), that is associated with Upper Paleolithic assemblages (Fewlass et al. 2020; Hublin et al. 2020) can instead be described more simply as a member of the UP genetic branch that received ~33% contribution from a population related to the older IUP Bacho Kiro individuals recovered from the same site with only a minor outlier (ZlatyKun, Tianyuan, Sunghir, MA1 with Z-score -3.3) which results as non significant when all SNPs are taken into account (Figure S6.D). In the modeling of Goyet we fixed the proportion of Neanderthal admixture in non Africans using the lock V option of qpGraph.
Figure S6 Goyet Q116-1 and BK1653 as a mixture of UP and IUP lineages. Modelling the East Asian component found in Goyet Q116-1 as a simple interaction between UP and the Bacho Kiro branch (A) or a node upstream of the Tianyuan-bacho Kiro split (B) yields an unexplained attraction between Goyet Q116-1 and Tianyuan. Modelling the IUP component as a mixture of Bacho Kiro- and Tianyuan-related lineages (C) lineages provides a better fit to the data. A simple interaction between Bacho Kiro and the UP branch can instead explain the ancestry of BK1653(D). (Graphs A, B and C are based on 257802 SNPs, graph D is based on 300021 SNPs. Highest |Z-score| = 3.9 (A, B), 3.4 (C), -3.3 (D)).

3.8 Peopling of Oceania

The position of Oceanian populations with respect to the East and West Eurasian is still unclear, with Oceanians often seen as either an earlier split (Malaspinas et al. 2016; Choin et al. 2021) or a sister population to East Asians (Wall 2017; Mallick et al. 2016). We included Papuans in our model in order to address this. We started from Graph S2.B and tried to have Papuans split from other Eurasians before, together or after the split of the Zlatý Kůň lineage; in all cases the graph was rejected as papuans needed to share more drift with Tianyuan (f2 Z-score: -11, -11 and -8). For this reason we then modeled them as a sister group of Tianyuan and obtained a graph whose only outlier (South_Africa_2000BP, Bacho Kiro, Zlatý Kůň, Papuan Z-score = -3.1) resulted non significant when taking all SNPs into account (Figure 1.B, Figure S7.A).

Subsequently we tried to model Papuans as a mixture of a Tianyuan sister population and a more basal lineage; the contribution from said lineage decreases the more that split is moved backward: it is 96% when splitting just before the split Tianyuan/Bacho Kiro (Figure S7.B), 42% when splitting before Ust’Ishim (Figure S7.C), 26% when splitting after Zlatý Kůň but before any other Eurasian branching (Figure S7.D) and only 2% when splitting before Zlatý Kůň (Figure S7.E). Finally, we decided to test whether a small contribution to Papuans from a population of Anatomically Modern Humans (AMH) that left Africa before the main
Out of Africa 70-60 thousands of years ago (kya) and otherwise extinct (xOoA) (Pagani et al. 2016) is rejected by the model (Figure S7.F). A 1% contribution from said population to modern papuans is not rejected.

All the acceptable solutions for the placement of Papuans within the broader OoA tree confirm Zlatý Kůň as the most basal human genome among the ones ever found Out of Africa. In conclusion, Papuans can be described either as an almost even mixture (occurred sometimes between 45 and 38 kya) between East Asians and a population splitting from other Eurasians before the IUP expansion, or as a sister lineage of East Asians with or without a minor basal OoA or xOoA contribution.
Modern Papuans can be invariably described as a sister population of Tianyuan (A) with or without the addition of a more basal, *H. sapiens* lineage. The position of this deeper lineage along the population model influences the genetic contribution it gives to Papuans: 94% if placed within the IUP branch after Ust’Ishim (B), 42% before Ust’Ishim (C), 26% before the separation of IUP and UP branches (D), 2% as the most basal OoA branch (E) or even 1% as an extinct, extra OoA (xOoA) (F). (Graphs based on 418884 SNPs. Highest |Z-score| = 3.1 (A), 2.8 (B, C, D, E, F).)
Table S4: Relevant f4 tests. The first seven columns report population and values as outputted by Admixtools. The eight column reports the Supplementary Section where a given f4 is mentioned.

Pop1	Pop2	Pop3	Pop4	D	Z	BABA	ABBA	SNPs	Section
Ust_Ishim	Kostenki14	Tianyuan	Chimp	0.0006	0.087	45718	45659	817238	3.1
Ust_Ishim	Sunghir	Tianyuan	Chimp	-0.0023	-0.34	47517	47732	847217	3.1
Tianyuan	Kostenki14	Ust_Ishim	Chimp	-0.0037	-0.523	45718	46054	817238	3.1
Tianyuan	Sunghir	Ust_Ishim	Chimp	0.0024	0.386	47517	47289	847217	3.1
Ust_Ishim	Tianyuan	Kostenki14	Chimp	0.0043	0.588	46054	45659	817238	3.1
Ust_Ishim	Tianyuan	Sunghir	Chimp	-0.0047	-0.758	47289	47732	847217	3.1
Bacho_Kiro	Kostenki14	Ust_Ishim	Chimp	-0.0276	-4.337	56016	59200	997593	3.2
Bacho_Kiro	Sunghir	Ust_Ishim	Chimp	-0.0194	-3.581	59440	61792	1052955	3.2
Bacho_Kiro	Tianyuan	Ust_Ishim	Chimp	-0.0228	-3.628	45780	47915	841030	3.2
Tianyuan	ZlatyKun	Bacho_Kiro	Chimp	0.0349	5.005	32014	29852	554809	3.2
Kostenki14	ZlatyKun	Bacho_Kiro	Chimp	0.0124	1.821	33982	33147	594315	3.2
Sunghir	ZlatyKun	Bacho_Kiro	Chimp	0.0144	2.352	35625	34612	620949	3.2
Ust_Ishim	ZlatyKun	Bacho_Kiro	Chimp	0.0194	2.856	35526	34172	619549	3.2
ZlatyKun	Tianyuan	Sunghir	MA1	0.0085	1.112	21533	21171	422908	2.6, 2.8
Chimp	South_Africa_2000BP	ZlatyKun	Yana	0.0122	2.864	25885	25262	625628	2.6, 2.8
South_Africa_2000BP	Bacho_Kiro	ZlatyKun	Papuan	0.0122	2.136	36159	35288	636119	3.8
Kostenki14	ZlatyKun	Papuan	Chimp	0.029	4.028	34260	32330	587236	3.8
Sunghir	ZlatyKun	Papuan	Chimp	0.027	4.452	35811	33929	614406	3.8
Ust_Ishim	ZlatyKun	Papuan	Chimp	0.0363	5.213	35842	33334	613032	3.8
Tianyuan	ZlatyKun	Papuan	Chimp	0.0736	10.746	33107	28566	547447	3.8

Supplementary Section 4: Unsupervised analysis with OrientAGraph/Treemix

Since qpGraph is a supervised method that relies on a topology provided by the user, we decided to test the robustness of our base model using an unsupervised method such as Treemix (Pickrell and Pritchard 2012), taking advantage of the Maximum Likelihood Network Orientation algorithm recently implemented in OrientAGraph (Molloy et al. 2021).
We selected the same set of samples used in supplementary section 3.3 and ran OrientAGraph to heuristically identify the best fitting graph; our only input was specifying Chimp as root and the gene flow from Neanderthal to Bacho Kiro. The Graph we obtained (Figure S8) has the same topology of graph S2.B, with Bacho Kiro sister of Tianyuan and Ust’Ishim splitting early from the IUP branch, although qpGraph appears to be a more flexible option when multiple admixture events are required to properly explain the data.

Figure S8 Best fitting admixture graph with OrientAGraph/Treemix Best fitting tree (A) and associated residuals (B) obtained running OrientAGraph/Treemix while specifying only chimp as root and the additional gene flow from Neanderthal to Bacho Kiro.

Supplementary Section 5: Paleomaps plotting

To plot the paleomaps, we used R (version 4.0.5 - “Shake and Throw”), the GUI RStudio (version 1.4.1103 - “Wax Begonia”) and the package “oce” (https://dankelley.github.io/oce/). We downloaded the alti-bathymetric maps from the ETOPO1 dataset (Amante and Eakins 2009) and used the inferred sea level values at given times in the past from the “Global 1Ma Temperature, Sea Level, and Ice Volume Reconstructions” dataset (Bintanja, van de Wal, and Oerlemans 2005) available from the NOAA Paleoclimatology Program. We plotted the maps applying Lambert conformal conic projections (“+proj=lcc +lat_1=25 +lat_2=50 +lon_0=97” in PROJ.4 format).
Supplementary References

Adams, Brian. 2009. “The Bükk Mountain Szeletian: Old and New Views on ‘Transitional’ Material from the Eponymous Site of the Szeletian.” In Sourcebook of Paleolithic Transitions: Methods, Theories, and Interpretations, edited by Marta Camps and Parth Chauhan, 427–40. New York, NY: Springer New York.

Amante, C., and B. W. Eakins. 2009. “ETOPO1 Global Relief Model Converted to PanMap Layer Format.” PANGAEA. https://doi.org/10.1594/PANGAEA.769615.

Anghelinu, Mircea, and Loredana Niţă. 2014. “What's in a Name: The Aurignacian in Romania.” Quaternary International: The Journal of the International Union for Quaternary Research 351 (November): 172–92.

Barzilai, Omry, I. Hershkovitz, and O. Marder. 2016. “The Early Upper Paleolithic Period at Manot Cave, Western Galilee, Israel.” Human Evolution 31 (1-2): 85–10.

Bataille, Guido. 2016. “Extracting the ‘Proto’ from the Aurignacian. Distinct Production Sequences of Blades and Bladelets in the Lower Aurignacian Phase of Siuren I, Units H and G (Crimea).” Mitteilungen Der Gesellschaft Für Urgeschichte 25 (49): e85.

Benazzi, Stefano, Katerina Douka, Cinzia Formai, Catherine C. Bauer, Otmar Kullmer, Jiří Svoboda, Ildikó Pap, et al. 2011. “Early Dispersal of Modern Humans in Europe and Implications for Neanderthal Behaviour.” Nature 479 (7374): 525–28.

Bergström, Anders, Shane A. McCarthy, Ruoyun Hui, Mohamed A. Almarri, Qasim Ayub, Petr Danekce, Yuan Chen, et al. 2020. “Insights into Human Genetic Variation and Population History from 929 Diverse Genomes.” Science 367 (6484). https://doi.org/10.1126/science.aay5012.

Bintanja, Richard, Roderik S. W. van de Wal, and Johannes Oerlemans. 2005. “Modelled Atmospheric Temperatures and Global Sea Levels over the Past Million Years.” Nature 437 (7055): 125–28.

Boëda, E., Y. M. Hou, H. Forestier, J. Sarel, and H. M. Wang. 2013. “Levallois and Non-Levallois Blade Production at Shuidonggou in Ningxia, North China.” Quaternary International: The Journal of the International Union for Quaternary Research 295 (May): 191–203.

Boëda, Eric, and Stéphanie Bonilauri. 2006. “THE FIRST BLADELET PRODUCTION 40,000 YEARS AGO.” L’Anthropologie 44 (1): 75–92.

Bosch, Marjolein D., Marcello A. Mannino, Amy L. Prendergast, Tamsin C. O’Connell, Beatrice Demarchi, Sheila M. Taylor, Laura Niven, Johannes van der Plicht, and Jean-Jacques Hublin. 2015. “New Chronology for Ksâr ‘Akil (Lebanon) Supports Levantine Route of Modern Human Dispersal into Europe.” Proceedings of the National Academy of Sciences of the United States of America 112 (25): 7683–88.

Boyd, Robert, and Peter J. Richerson. 1988. Culture and the Evolutionary Process. University of Chicago Press.

Chang, Christopher C., Carson C. Chow, Laurent Cam Tellier, Shashaank Vattikuti, Shaun M. Purcell, and James J. Lee. 2015. “Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets.” GigaScience 4 (February): 7.

Chen, Lu, Aaron B. Wolf, Wenqing Fu, Liming Li, and Joshua M. Akey. 2020. “Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals.” Cell 180 (4): 677–87.e16.

Choin, Jeremy, Javier Mendoza-Revilla, Lara R. Arauna, Sebastian Cuadros-Espinoza, Olivier Cassar, Maximilian Larena, Albert Min-Shan Ko, et al. 2021. “Genomic Insights into Population History and Biological Adaptation in Oceania.” Nature 592 (7855): 583–89.

Collina, Carmine, Giulia Marciani, Ivan Martini, Carlo Donadio, Leopoldo Repola, Eugenio Bortolini, Simona Arrighi, et al. 2020. “Refining the Uluzzian through a New Lithic Assemblage from Roccia San Sebastiano (Mondragone, Southern Italy).” Quaternary International. https://doi.org/10.1016/j.quaint.2020.03.056.

Conard, Nicholas J. 2003. “Palaeolithic Ivory Sculptures from Southwestern Germany and...
the Origins of Figurative Art." *Nature* 426 (6968): 830–32.

Conard, Nicholas J., Maria Malina, and Susanne C. Münzel. 2009. “New Flutes Document the Earliest Musical Tradition in Southwestern Germany.” *Nature* 460 (7256): 737–40.

Demidenko, Y. E., and P. Škrdla. 2017. “Aurignacian in Moravia New Geochronological, Lithic and Settlement Data.” *Památky Archeologické.*

Demidenko, Yuri E., Petr Škrdla, and Tereza Rychtaříková. 2020. “Initial Upper Paleolithic Bladelet Production: Bladelets in Moravian Bohunician.” *Přehled Výzkumů.*

Derevianko, A. P., and E. P. Rybin. 2003. “The Earliest Representations of Symbolic Behavior by Paleolithic Humans in the Altai Mountains.” *Archaeology, Ethnology and Anthropology of Eurasia*, no. 3: 27–50.

Derevianko, A. P., E. P. Rybin, S. A. Gladyshev, B. Gunchinsuren, A. A. Tsybankov, and J. W. Olsen. 2013. “Early Upper Paleolithic Stone Tool Technologies of Northern Mongolia: The Case of Tolbor-4 and Tolbor-15.” *Archaeology, Ethnology and Anthropology of Eurasia* 41 (4): 21–37.

Dobrovolskaya, M., M-P Richards, and E. Trinkaus. 2012. “Direct Radiocarbon Dates for the Mid Upper Paleolithic (eastern Gravettian) Burials from Sungir, Russia.” *Bulletins et Mémoires de La Société D’anthropologie de Paris* 2011 (1-2): 96–102.

Flas, Damien. 2011. “The Middle to Upper Paleolithic Transition in Northern Europe: The Lincombian-Ranisian-Jerzmanowician and the Issue of Acculturation of the Last Neanderthals.” *World Archaeology.*

Feugl, Helen, Sahra Talamo, Lukas Wacker, Bernd Kromer, Thibaut Tuna, Yoann Fagault, Edouard Bard, et al. 2020. "A C Chronology for the Middle to Upper Paleolithic Transition at Bacho Kiro Cave, Bulgaria." *Nature Ecology & Evolution* 4 (6): 794–801.

Flas, Damien. 2011. “The Middle to Upper Paleolithic Transition in Northern Europe: The Lincombian-Ranisian-Jerzmanowician and the Issue of Acculturation of the Last Neanderthals.” *World Archaeology.*

Fu, Qiaomei, Mateja Hajdinjak, Oana Teodora Moldovan, Silviu Constantin, Swapan Mallick, Pontus Skoglund, Nick Patterson, et al. 2015. “An Early Modern Human from Romania with a Recent Neanderthal Ancestor.” *Nature* 524 (7564): 216–19.

Fu, Qiaomei, Cosimo Posth, Mateja Hajdinjak, Martin Petr, Swapan Mallick, Daniel Fernandes, Anja Furtwängler, et al. 2016. “The Genetic History of Ice Age Europe.” *Nature* 534 (7606): 200–205.

Goring-Morris, Nigel, and Anna Belfer-Cohen. 2018. “The Ahmarian in the Context of the Earlier Upper Palaeolithic in the Near East.” In *The Middle and Upper Palaeolithic of the Levant and Beyond*, edited by Yoshihiro Nishiaki and Takeru Akazawa, 87–104. Singapore: Springer Singapore.

Hajdinjak, Mateja, Fabrizio Mafessoni, Laurits Skov, Benjamin Vernot, Alexander Hübner, Qiaomei Fu, Elena Essel, et al. 2021. “Initial Upper Palaeolithic Humans in Europe Had Recent Neanderthal Ancestry.” *Nature* 592 (7853): 253–57.

Hauck, T., J. Rethemeyer, and P. Rentzel. 2016. “Neanderthals or Early Modern Humans? A Revised 14C Chronology and Geoarchaeological Study of the Szeletian Sequence in Szeleta Cave (Kom. Borsod-Abaúj ….” *Archäologisches.*

Hoffecker, John F. 2011. “The Early Upper Paleolithic of Eastern Europe Reconsidered.” *Evolutionary Anthropology* 20 (1): 24–39.
Hsieh, Pinghsun, August E. Woerner, Jeffrey D. Wall, Joseph Lachance, Sarah A. Tishkoff, Ryan N. Gutenkunst, and Michael F. Hammer. 2016. “Model-Based Analyses of Whole-Genome Data Reveal a Complex Evolutionary History Involving Archaic Introgression in Central African Pygmies.” *Genome Research* 26 (3): 291–300.

Hublin, Jean-Jacques, Nikolay Sirakov, Vera Aldeias, Shara Bailey, Edouard Bard, Vincent Delvigne, Elena Endarova, et al. 2020. “Initial Upper Palaeolithic Homo Sapiens from Bacho Kiro Cave, Bulgaria.” *Nature* 581 (7808): 299–302.

Kadowaki, Seiji, Takayuki Omori, and Yoshihiro Nishiaki. 2015. “Variability in Early Ahmarian Lithic Technology and Its Implications for a Levantine Origin of the Protoaourignacian.” *Journal of Human Evolution* 82 (May): 67–87.

Kadowaki, Seiji, Eiki Suga, and Donald O. Henry. 2021a. “Frequency and Production Technology of Bladelets in Late Middle Paleolithic, Initial Upper Paleolithic, and Early Upper Paleolithic (Ahmarian) Assemblages in Jebel Qalkha, Southern Jordan.” *Quaternary International*. https://doi.org/10.1016/j.quaint.2021.03.012.

———. 2021b. “Frequency and Production Technology of Bladelets in Late Middle Paleolithic, Initial Upper Paleolithic, and Early Upper Paleolithic (Ahmarian) Assemblages in Jebel Qalkha, Southern Jordan.” *Quaternary International: The Journal of the International Union for Quaternary Research*, March. https://doi.org/10.1016/j.quaint.2021.03.012.

Kaifu, Yousuke, Masami Izuho, Ted Goebel, Hiroyuki Sato, and Akira Ono. 2014. *Emergence and Diversity of Modern Human Behavior in Paleolithic Asia*. Texas A&M University Press.

Khenzykhenova, Fedora, Ekaterina Lipina, Guzel Danukalova, Alexander Shchetnikov, Eugenija Osipova, Elina Semenei, Erden Tumurov, and Dmitry Lokhov. 2019. “The Area Surrounding the World-Famous Geoarchaeological Site Mal`ta (Baikal Siberia): New Data on the Chronology, Archaeology, and Fauna.” *Quaternary International: The Journal of the International Union for Quaternary Research* 509 (March): 17–29.

Klaric, Laurent. 2013. “Faciès Lithiques et Chronologie Du Gravettien Du Sud Du Bassin Parisien et de Sa Marge Sud-Occidentale.” *Pierre Bodu, Lucy Chehmana, Laurent Klaric, Ludovic Mevel, Sylvain Soriano éds* 56: 61–88.

Kot, Małgorzata, Maciej T. Krajcarz, Magdalena Moskal-del Hoyo, Natalia Gryczewska, Michał Wojenka, Katarzyna Pyżewicz, Virginie Sinet-Mathiot, et al. 2020. “Chronostratigraphy of Jerzmanowician. New Data from Koziarnia Cave, Poland.” https://doi.org/10.1101/2020.04.29.067967.

Kozłowski, Janusz K. 2015a. “The Origin of the Gravettian.” *Quaternary International: The Journal of the International Union for Quaternary Research* 359-360 (March): 3–18.

———. 2015b. “The Origin of the Gravettian.” *Quaternary International: The Journal of the International Union for Quaternary Research* 359-360 (March): 3–18.

Krajcarz, M. T., M. Krajcarz, B. Ginter, T. Goslar, and P. Wojtal. 2018. “Towards a Chronology of the Jerzmanowician-a New Series of Radiocarbon Dates from Nietoperzowa Cave (Poland).” *Archaeometry* 60 (2): 383–401.

Kuhn, Steven L. 2004. “Upper Paleolithic Raw Material Economies at Üçağızlı Cave, Turkey.” *Journal of Anthropological Archaeology* 23 (4): 431–48.

———. 2019. “Initial Upper Paleolithic: A (near) Global Problem and a Global Opportunity.” *Archaeological Research in Asia* 17 (March): 2–8.

Kuhn, Steven L., Mary C. Stiner, and Erksin Güleç. 1999. “Initial Upper Palaeolithic in South-Central Turkey and Its Regional Context: A Preliminary Report.” *Antiquity* 73 (281): 505–17.

Kuhn, Steven L., Mary C. Stiner, Erksin Güleç, Ismail Ozer, Hakan Yilmaz, Ismail Baykar, Ayşen Açikkol, et al. 2009. “The Early Upper Paleolithic Occupations at Uçağizli Cave (Hatay, Turkey).” *Journal of Human Evolution* 56 (2): 87–113.

Kuhn, Steven L., and Nicolas Zwyns. 2014. “Rethinking the Initial Upper Paleolithic.” *Quaternary International*. https://doi.org/10.1016/j.quaint.2014.05.040.

Lbova, Liudmila. 2019. “Pigments on Upper Palaeolithic Mobile Art. Spectral Analysis of
Figurines from Mal'ta Culture (Siberia).” HUGO OBERMAIER-GESELLSCHAFT für Erforschung des Eiszeitalters und der Steinzeit e.V. https://doi.org/10.7485/QU66_8.

Le Brun-Ricalens, F. L., J-G Bordes, and L. Eizenberg. 2009. “A Crossed-Glance between Southern European and Middle-Near Eastern Early Upper Palaeolithic Lithic Technocomplexes. Existing Models, New Perspectives.” In The Mediterranean from 50,000 to 25,000 Bp: Turning Points and New Directions., 66:11–33.

Leder, D. 2014. Technological and Typological Change at the Middle to Upper Palaeolithic Boundary in Lebanon.

———. 2017. “Core Reduction Strategies at the Initial Upper Palaeolithic Sites of Ksar Akil and Abou Halka in Lebanon.” Lithics, The Journal of the Lithic Studies Society. https://www.semanticscholar.org/paper/b3ae3d24daa6256817e3f70d774432699d38e22b.

Li, Feng, Steven L. Kuhn, Ofer Bar-Yosef, Fu-You Chen, Fei Peng, and Xing Gao. 2019. “History, Chronology and Techno-Typology of the Upper Paleolithic Sequence in the Shuidonggou Area, Northern China.” Journal of World Prehistory 32 (2): 111–41.

Lipson, Mark, and David Reich. 2017. “A Working Model of the Deep Relationships of Diverse Modern Human Genetic Lineages Outside of Africa.” Molecular Biology and Evolution 34 (4): 889–902.

Lipson, Mark, Isabelle Ribot, Swapan Mallick, Nadin Rohland, Iñigo Olalde, Nicole Adamski, Nasreen Broomandkhosbacht, et al. 2020. “Ancient West African Foragers in the Context of African Population History.” Nature 577 (7792): 665–70.

Marciani, Giulia, Annamaria Ronchitelli, Simona Arrighi, Federica Badino, Eugene Bortolini, Paolo Boscato, Francesco Boschin, et al. 2020. “Lithic Techno-Complexes in Italy from 50 to 39 Thousand Years BP: An Overview of Lithic Technological Changes across the Middle-Upper Palaeolithic Boundary.” Quaternary International. https://doi.org/10.1016/j.quaint.2019.11.005.

Meyer, Matthias, Martin Kircher, Marie-Theres Gansauge, Heng Li, Fernando Racimo, et al. 2012a. “A High-Coverage Genome Sequence from an Archaic Denisovan Individual.” Science 338 (6104): 222–26.

Meyer, Matthias, Martin Kircher, Marie-Theres Gansauge, Heng Li, Fernando Racimo, Swapan Mallick, Joshua G. Schraiber, et al. 2012a. “A High-Coverage Genome Sequence from an Archaic Denisovan Individual.” Science 338 (6104): 222–26.

Moreau, Luc. 2012a. “Le Gravettien Ancien d’Europe Centrale Revisitée : Mise Au Point et Perspectives.” L’Anthropologie. https://doi.org/10.1016/j.anthro.2011.10.002.

———. 2012b. “Le Gravettien ancien d’Europe centrale revisitée : mise au point et perspectives.” L’Anthropologie 116 (5): 609–38.

Morgan, Christopher, Loukas Barton, Mingjie Yi, Robert L. Bettinger, Xing Gao, and Fei Peng. 2014. “Redating Shuidonggou Locality 1 and Implications for the Initial Upper Paleolithic in East Asia.” Radiocarbon. https://doi.org/10.2458/56.16270.

Moroni, Adriana, Annamaria Ronchitelli, Simona Arrighi, Daniele Aureli, Shara Bailey, Paolo Boscato, Francesco Boschin, et al. 2018. “Grotta Del Cavallo (Apulia-Southern Italy).” 28
The Uluzzian in the Mirror." Journal of Anthropological Sciences = Rivista Di Antropologia: JASS / Istituto Italiano Di Antropologia 96 (December): 125–60.

Nejman, L., R. Wood, D. Wright, L. Lisá, Z. Nerudová, P. Neruda, A. Přichystal, and J. Svoboda. 2017. "Hominid Visitation of the Moravian Karst during the Middle-Upper Paleolithic Transition: New Results from Pod Hradem Cave (Czech Republic)." Journal of Human Evolution 108 (July): 131–46.

Neruda, Petr, and Zdeňka Nerudová. 2019. "Technology of Early Szeletian Leaf Point Shaping: A Refitting Approach." Archaeological and Anthropological Sciences.

https://doi.org/10.1007/s12520-019-00818-3.

Nerudová, Zdeňka, and Petr Neruda. 2017. "Technology of Moravian Early Szeletian Leaf Point Shaping: A Case Study of Refittings from Moravský Krumlov IV Open-Air Site (Czech Republic)." Quaternary International.

https://doi.org/10.1016/j.quaint.2015.09.065.

Nerudová, Zdeňka, and Petr Neruda. 2017. "Technology of Moravian Early Szeletian Leaf Point Shaping: A Case Study of Refittings from Moravský Krumlov IV Open-Air Site (Czech Republic)." Quaternary International.

https://doi.org/10.1016/j.quaint.2015.09.065.

Patterson, Nick, Priya Moorjani, Yontao Luo, Swapan Mallick, Nadin Rohland, Yiping Zhan, Teri Genschoreck, Teresa Webster, and David Reich. 2012. "Ancient Admixture in Human History." Genetics 192 (3): 1065–93.

Peng, Fei, Sam C. Lin, Ilaria Patania, Vladimir Levchenko, Jialong Guo, Huimin Wang, and Xing Gao. 2020. "A Chronological Model for the Late Paleolithic at Shuidonggou Locality 2, North China." PloS One 15 (5): e0232682.

Peresani, Marco, Stefano Bertola, Davide Delpiano, Stefano Benazzi, and Matteo Romandini. 2019. "The Uluzzian in the North of Italy: Insights around the New Evidence at Riparo Broion." Archaeological and Anthropological Sciences.

https://doi.org/10.1007/s12520-018-0770-z.

Pitulko, Vladimir, Elena Pavlova, and Pavel Nikolskiy. 2017. "Revising the Archaeological Record of the Upper Pleistocene Arctic Siberia: Human Dispersal and Adaptations in MIS 3 and 2." Quaternary Science Reviews 165 (June): 127–48.

Pitulko, Vladimir, Elena Pavlova, and Pavel Nikolskiy. 2017. "Revising the Archaeological Record of the Upper Pleistocene Arctic Siberia: Human Dispersal and Adaptations in MIS 3 and 2." Quaternary Science Reviews 165 (June): 127–48.

https://doi.org/10.1007/s12520-018-0770-z.

Prüfer, Kay, Cosimo Posth, He Yu, Alexander Stoessel, Maria A. Spyrou, Thibaut Deviese, Marco Mattonai, et al. 2021. "A Genome Sequence from a Modern Human Skull over 45,000 Years Old from Zlatý Kůň in Czechia." Nature Ecology & Evolution, April.

https://doi.org/10.1038/s41559-021-01443-x.

Raghavan, Maanasa, Pontus Skoglund, Kelly E. Graf, Mait Metspalu, Anders Albrechtsen, Ida Moltke, Simon Rasmussen, et al. 2014. "Upper Palaeolithic Siberian Genome Reveals Dual Ancestry of Native Americans." Nature 505 (7481): 87–91.

Raghavan, Maanasa, Pontus Skoglund, Kelly E. Graf, Mait Metspalu, Anders Albrechtsen, Ida Moltke, Simon Rasmussen, et al. 2014. "Upper Palaeolithic Siberian Genome Reveals Dual Ancestry of Native Americans." Nature 505 (7481): 87–91.

Reich, David, Nick Patterson, Martin Kircher, Frederick Delfin, Madhusudan R. Nandineni, Irina Pugach, Albert Min-Shan Ko, et al. 2011. "Denisova Admixture and the First Modern Human Dispersals into Southeast Asia and Oceania." American Journal of Human Genetics 89 (4): 516–28.

Riegner, Juliana. 2009. "What Is a 'Transitional' Industry? The Uluzzian of Southern Italy as a Case Study." Sourcebook of Paleolithic Transitions.

https://doi.org/10.1007/978-0-387-76487-0_25.

Riel-Salvatore, Julien. 2018. "Proto-Aurignacian Lithic Technology, Mobility, and Human Niche Construction: A Case Study from Riparo Bombrini, Italy." In Studies in Human Ecology and Adaptation, 163–87. Cham: Springer International Publishing.
Roussel, Morgan. 2013. “Méthodes et rythmes du débitage laminaire au Châtelperronien: comparaison avec le Protoaurignacien.” Comptes rendus. Palevol 12 (4): 233–41.

Roussel, M., M. Soressi, and J-J Hublin. 2016. “The Châtelperronian Conundrum: Blade and Bladelet Lithic Technologies from Quinçay, France.” Journal of Human Evolution 95 (June): 13–32.

Ruebens, Karen, Shannon J. P. McPherron, and Jean-Jacques Hublin. 2015. “On the Local Mousterian Origin of the Châtelperronian: Integrating Typo-Technological, Chronostratigraphic and Contextual Data.” Journal of Human Evolution 86 (September): 55–91.

Rybin, Evgeny P. 2014. “Tools, Beads, and Migrations: Specific Cultural Traits in the Initial Upper Paleolithic of Southern Siberia and Central Asia.” Quaternary International: The Journal of the International Union for Quaternary Research 347 (October): 39–52.

Sikora, Martin, Vladimir V. Pitulko, Vitor C. Sousa, Morten E. Allentoft, Lasse Vinner, Simon Rasmussen, Ashot Margaryan, et al. 2019. “The Population History of Northeastern Siberia since the Pleistocene.” Nature 570 (7760): 182–88.

Sinitsyn, A. A., and J. F. Hoffecker. 2006. “Radiocarbon Dating and Chronology of the Early Upper Paleolithic at Kostenki.” Quaternary International: The Journal of the International Union for Quaternary Research 152-153 (August): 164–74.

Skoglund, Pontus, Swapan Mallick, Maria Cátira Bortolini, Niru Chennagiri, Tábita Hünemeier, Maria Luiza Petzl-Erler, Francisco Mauro Salzano, Nick Patterson, and David Reich. 2015. “Genetic Evidence for Two Founding Populations of the Americas.” Nature 525 (7567): 104–8.

Škrdla, Petr. 2017. “Middle to Upper Paleolithic Transition in Moravia: New Sites, New Dates, New Ideas.” Quaternary International.

https://doi.org/10.1016/j.quaint.2016.07.029.

Slavinsky, Vyacheslav S., Evgeny P. Rybin, Arina M. Khatsenovich, and Natalia E. Belousova. 2019. “Intentional Fragmentation of Blades in the Initial Upper Paleolithic Industries of the Kara-Bom Site (Altai, Russia).” Archaeological Research in Asia.

https://doi.org/10.1016/j.ara.2018.05.002.

Tafelmaier, Yvonne. 2017. Technological Variability at the Beginning of the Aurignacian in Northern Spain: Implications for the Proto- and Early Aurignacian Distinction.

Teyssandier, Nicolas, François Bon, and Jean-Guillaume Bordes. 2010a. “WITHIN PROJECTILE RANGE: Some Thoughts on the Appearance of the Aurignacian in Europe.” Journal of Anthropological Research.

https://doi.org/10.3998/jar.0521004.0066.203.

———. 2010b. “WITHIN PROJECTILE RANGE: Some Thoughts on the Appearance of the Aurignacian in Europe.” Journal of Anthropological Research.

Tostevin, Gilbert B. 2003. “Attribute Analysis of the Lithic Technologies of Stránská Skála IIi in Their Regional and Inter-Regional Context: Origins of the Upper Paleolithic in the Brno Basin.” In Stránská Skála: Origins of the Upper Paleolithic in the Brno Basin, 77–118. Peabody Museum Press, Harvard University.

Trinkaus, Erik, and Alexandra P. Buzhilova. 2018. “Diversity and Differential Disposal of the
Dead at Sunghir.” Antiquity 92 (361): 7–21.

Trinkaus, Erik, A. P. Buzhilova, Mariia Borisovna Mednikova, and Mariia Vsevolodovna Dobrovol’skaia. 2014. The People of Sunghir: Burials, Bodies, and Behavior in the Earlier Upper Paleolithic. Oxford University Press.

Tsanova, Tsenka. 2008. “Les Débuts Du Paléolithique Supérieur Dans l'Est Des Balkans: Lithiques Des Sites de Bacho Kiro (couch e 11), Temnata (couch es VI et 4) et Kozarnika (niveau VII).” https://doi.org/10.30861/9781407301914.

Usik, Vitale I., Katherine Monigal, and Larissa Kulakovskaya. 2006. New Perspectives on the Transcarpathian Middle to Upper Paleolithic Boundary. na.

Vishnyatsky, L. B., and P. E. Nehoroshev. 2004. “The Beginning of the Upper Paleolithic on the Russian Plain.” The Early Upper Paleolithic Beyond Western Europe, 80–96.

Wall, Jeffrey D. 2017. “Inferring Human Demographic Histories of Non-African Populations from Patterns of Allele Sharing.” American Journal of Human Genetics 100 (5): 766–72.

Yang, Melinda A., Xing Gao, Christoph Theunert, Haowen Tong, Ayinuer Aximu-Petri, Birgit Nickel, Montgomery Slatkin, et al. 2017. “40,000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia.” Current Biology: CB 27 (20): 3202–8.e9.

Zilhão, João, Francesco d’Errico, Jean-Guillaume Bordes, Arnaud Lenoble, Jean-Pierre Texier, and Jean-Philippe Rigaud. 2006. “Analysis of Aurignacian Interstratification at the Chatelperronian-Type Site and Implications for the Behavioral Modernity of Neandertals.” Proceedings of the National Academy of Sciences of the United States of America 103 (33): 12643–48.

Zwyns, Nicolas, Cleantha H. Paine, Bolorbat Tsendendorj, Sahra Talamo, Kathryn E. Fitzsimmons, Anargadulguun Gantumur, Lkhundev Guunii, et al. 2019. “The Northern Route for Human Dispersal in Central and Northeast Asia: New Evidence from the Site of Tolbor-16, Mongolia.” Scientific Reports 9 (1): 11759.

Zwyns, N., and L. V. Lbova. 2019. “The Initial Upper Paleolithic of Kamenka Site, Zabaikal Region (Siberia): A Closer Look at the Blade Technology.” Archaeological Research in Asia 17 (March): 24–49.

Zwyns, N., E. P. Rybin, J-J Hublin, and A. P. Derevianko. 2012. “Burin-Core Technology and Laminar Reduction Sequences in the Initial Upper Paleolithic from Kara-Bom (Gorny-Altai, Siberia).” Quaternary International. https://doi.org/10.1016/j.quaint.2011.03.036.