A NOTE ON A RELATION BETWEEN THE WEAK AND STRONG DOMINATION NUMBERS OF A GRAPH

Razika Boutrig and Mustapha Chellali

Abstract. In a graph $G = (V,E)$ a vertex is said to dominate itself and all its neighbors. A set $D \subseteq V$ is a weak (strong, respectively) dominating set of G if every vertex $v \in V - S$ is adjacent to a vertex $u \in D$ such that $d_G(v) \geq d_G(u)$ (respectively). The weak (strong, respectively) domination number of G, denoted by $\gamma_w(G)$ ($\gamma_s(G)$, respectively), is the minimum cardinality of a weak (strong, respectively) dominating set of G. In this note we show that if G is a connected graph of order $n \geq 3$, then $\gamma_w(G) + t\gamma_s(G) \leq n$, where $t = 3/(\Delta + 1)$ if G is an arbitrary graph, $t = 3/5$ if G is a block graph, and $t = 2/3$ if G is a claw free graph.

Keywords: weak domination, strong domination.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

We consider finite, undirected, simple graphs. Let G be a graph, with vertex set V and edge set E. The open neighborhood of a vertex $v \in V$ is $N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood is $N[v] = N(v) \cup \{v\}$. For a subset $S \subseteq V$, the open neighborhood is $N(S) = \cup_{v \in S} N(v)$ and the closed neighborhood is $N[S] = N(S) \cup S$. By $G[S]$ we denote the subgraph induced by the vertices of S. If v is a vertex of V, then the degree of v denoted by $d_G(v)$, is the size of its open neighborhood. A tree is a connected graph that contains no cycle. A star $K_{1,q}$ is a tree of order $q + 1$ with at least q vertices of degree 1. A subdivided star SS_q is obtained from a star $K_{1,q}$ by replacing each edge uv of the star by a vertex w and edges uw and vw. The claw is the star $K_{1,3}$. Given any graph H, a graph G is H-free if it does not have any induced subgraph isomorphic to H. A block graph is a graph in which every block (maximal 2-connected graph) is a clique. It is well-known that block graphs are exactly chordal graphs that do not contain $K_4 - \{e\}$ as induced subgraph.
In [5], Sampathkumar and Pushpa Latha have introduced the concept of weak and strong domination in graphs. A subset \(D \subseteq V \) is a weak dominating set (wd-set) if every vertex \(v \in V - S \) is adjacent to a vertex \(u \in D \), where \(d_G(v) \geq d_G(u) \). The subset \(D \) is a strong dominating set (sd-set) if every vertex \(v \in V - S \) is adjacent to a vertex \(u \in D \), where \(d_G(u) \geq d_G(v) \). The weak (strong, respectively) domination number \(\gamma_w(G) \) (\(\gamma_s(G) \), respectively) is the minimum cardinality of a wd-set (an sd-set, respectively) of \(G \). If \(D \) is an sd-set of \(G \) of size \(\gamma_s(G) \), then we call \(D \) a \(\gamma_s(G) \)-set.

Strong and weak domination have been studied for example in [1–4].

In their paper introducing weak and strong domination in graphs, Sampathkumar and Pushpa Latha showed that a graph \(G \) of order \(n \) satisfies \(\gamma_w(G) + \gamma_s(G) \leq n \) if \(G \) is a \(d \)-balanced graph (\(G \) has an sd-set \(D_1 \) and a wd-set \(D_2 \) such that \(D_1 \cap D_2 = \emptyset \)). However there exist graphs \(G \) for which \(\gamma_w(G) + \gamma_s(G) > n \). For example if \(G \) is a subdivided star \(SS_q \) with \(q \geq 3 \), then \(\gamma_w(SS_q) = \gamma_s(SS_q) = q + 1 = (n + 1)/2 \).

2. RESULTS

We begin by giving an observation and two useful lemmas.

Observation 2.1. 1) For a cycle \(C_n \) we have \(\gamma_w(C_n) = \gamma_s(C_n) = \lceil n/3 \rceil \).

2) For a nontrivial path \(P_n \) we have

\[
\gamma_s(P_n) = \lceil n/3 \rceil \quad \text{and} \quad \gamma_w(P_n) = \begin{cases}
\lceil n/3 \rceil , & \text{if } n \equiv 1 \pmod{3}, \\
\lceil n/3 \rceil + 1, & \text{otherwise}.
\end{cases}
\]

Lemma 2.2. Let \(G = (V, E) \) be a nontrivial connected graph. Then \(G \) has a \(\gamma_s(G) \)-set \(D \) such that for every vertex \(x \in D \) having at least one neighbor in \(V - D \), there is a vertex \(y \in V - D \) adjacent to \(x \) such that \(d_G(y) \leq d_G(x) \).

Proof. Among all \(\gamma_s(G) \)-sets let \(D \) be a one such vertex such that \(\sum_{u \in D} d_G(u) \) is maximum. Obviously the result is valid if \(|V| = 2 \). Hence let \(|V| \geq 3 \) and assume that \(D \) contains a vertex \(x \) such that \(N(x) \cap (V - D) \neq \emptyset \) and \(d_G(y) > d_G(x) \) for every \(y \in N(x) \cap (V - D) \). Then \(\{y\} \cup D - \{x\} = D' \) is a \(\gamma_s(G) \)-set such that \(\sum_{u \in D'} d_G(u) > \sum_{u \in D} d_G(u) \), contradicting our choice of \(D \).

Lemma 2.3. Let \(X \) be an independent set of a connected graph \(G \) such that every vertex of \(X \) has degree at least three. Then:

(i) if \(G \) is a claw free graph, then \(3|X| \leq 2|N(X)| \).

(ii) if \(G \) is a block graph, then \(2|X| + 1 \leq |N(X)| \).

Proof. (i) Let \(E' \) be the set of edges between \(X \) and \(N(X) \). Then \(3|X| \leq |E'| \). Also since \(G \) is claw free and \(X \) is independent, every vertex of \(G \) has at most two neighbors in \(X \), implying that \(|E'| \leq 2|N(X)| \). Therefore, \(3|X| \leq |E'| \leq 2|N(X)| \).

(ii) Assume now that \(G \) is a block graph and let \(A = N(X) \). Consider the graph \(G'[X,A] \) induced by the vertices of \(X \) and \(A \). We can suppose that \(G'[X,A] \) is connected, for otherwise we can repeat the procedure below for each component. Let
Therefore, x_3 we have \cup. A note on a relation between the weak and strong domination numbers of a graph γ or a block graph. Hence we obtain (i) and (ii), respectively. We omit the details.

is claw free or a block graph. Note that ΔG contains two adjacent vertices $u v$. Let G be a connected graph of order n. If G is claw free, then $\gamma_w(G)$ is a block graph, then $\gamma_w(G)$ is a connected block graph, each vertex x_k for $k \geq 2$ has exactly one neighbor in $\cup_{j=1}^{k-1} A_j$. Using this fact and the fact that every vertex of X has degree at least three, it follows that $|A_k| \geq 2$ for $2 \leq k \leq t$. Therefore, $|N(X)| = |A| = |A_1| + |A_2| + \ldots + |A_t| \geq 3 + 2(t - 1) = 2|X| + 1$. □

Now we are ready to state our main result.

Theorem 2.4. Let G be a connected graph of order $n \geq 3$ and maximum degree Δ. Then $\gamma_w(G) + 3\gamma_s(G)/(\Delta + 1) \leq n$. Moreover,

(i) if G is a claw free graph, then $\gamma_w(G) + 3\gamma_s(G)/5 \leq n$, and

(ii) if G is a block graph, then $\gamma_w(G) + 2\gamma_s(G)/3 \leq (3n - 1)/3$.

Proof. Clearly since $n \geq 3$, we have $\Delta \geq 2$. If $\Delta = 2$, then G is either a cycle C_n or a path P_n, and by Observation 2.1 the result holds. Thus we may assume that $\Delta \geq 3$. Let D be a $\gamma_s(G)$-set satisfying the conditions of Lemma 2.2. Let $A = \{x \in D : N(x) \cap (V - D) \neq \emptyset\}$ and $X = D - A$. Observe that by our choice of D, the set $V - D$ weakly dominates A. If $X = \emptyset$, then $A = D$, and consequently, $\gamma_w(G) \leq |V - D| = n - \gamma_s(G)$. Hence the result is valid even for (i) and (ii) when G is claw free or a block graph, respectively. From now on we will assume that $X \neq \emptyset$. If X contains two adjacent vertices u and v, then one of $D - \{u\}$ or $D - \{v\}$ is a strong dominating set of G, a contradiction. Hence X is an independent set. Note that every vertex of D has degree at least two, otherwise $n = 2$ or G is not connected. Also since $N(X) \subseteq A$ we have $d_G(u) \geq 3$ for every $u \in X$; otherwise $D - \{u\}$ is an sd-set of G, a contradiction. Now since $V - D$ weakly dominates A, the set $(V - D) \cup X$ weakly dominates G, and therefore

$$\gamma_w(G) \leq |(V - D) \cup X| = n - |D| + |X|.$$

Now let us show how to bound $|X|$ by $|D|$ when G is an arbitrary graph, claw free, or a block graph. Note that $|D| = |X| + |A| \geq |X| + |N(X)|$. Let $E(X, N(X))$ be the set of edges between X and $N(X)$. Since $d_G(u) \geq 3$ for every $u \in X$ and $N(X) \subset D$ we have $3|X| \leq |E(X, N(X))|$. Also each vertex y of $N(X)$ has degree at most $\Delta - 1$, otherwise $D - N(y) \cap X$ would be an sd-set of G, a contradiction. It follows that every vertex of $N(X)$ has at most $\Delta - 2$ neighbors in X, thus $|E(X, N(X))| \leq (\Delta - 2)|N(X)|$. This implies that $3|X| \leq |E(X, N(X))| \leq (\Delta - 2)|N(X)|$, and consequently, $|N(X)| \geq 3|X|/(\Delta - 2)$. Since $|D| \geq |X| + |N(X)|$, we obtain $|X| \leq (\Delta - 2)|D|/(\Delta + 1)$. Now we get $\gamma_w(G) \leq n - |D| + |X| = n - 3|D|/(\Delta + 1)$.

Using Lemma 2.3, one can improve the previous result when G is a claw free graph or a block graph. Hence we obtain (i) and (ii), respectively. We omit the details. □
Since the class of trees is contained in the class of block graphs we obtain the following corollary.

Corollary 2.5. If T is a tree of order $n \geq 3$, then $\gamma_w(T) + 2\gamma_s(T)/3 \leq (3n - 1)/3$.

Acknowledgements

This research was supported by “Programmes Nationaux de Recherche: Code 8/u09/510”.

REFERENCES

[1] J.H. Hattingh, M.A. Henning, *On strong domination in graphs*, J. Combin. Math. Combin. Comput. 26 (1998) 73–92.

[2] J.H. Hattingh, R.C. Laskar, *On weak domination in graphs*, Ars Combinatoria 49 (1998).

[3] D. Rautenbach, *Bounds on the weak domination number*, Austral. J. Combin. 18 (1998), 245–251.

[4] D. Rautenbach, *Bounds on the strong domination number*, Discrete Math. 215 (2000), 201–212.

[5] E. Sampathkumar, L. Pushpa Latha, *Strong, weak domination and domination balance in graphs*, Discrete Math. 161 (1996), 235–242.

Razika Boutrig
r.boutrig@yahoo.fr

University of Blida
LAMDA-RO Laboratory, Department of Mathematics
B.P. 270, Blida, Algeria

Mustapha Chellali
m_chellali@yahoo.com

University of Blida
LAMDA-RO Laboratory, Department of Mathematics
B.P. 270, Blida, Algeria

Received: November 8, 2010.

Revised: March 8, 2011.

Accepted: March 28, 2011.