Distributions, Compositions, And Ecological Risk Assessment Of Typical Pollutants In Surface Sediment Of Xihe River, China

Xun Sun
Shenyang Aerospace University

Zheng Yan
Shenyang Aerospace University

Xin Ke (kex@iae.ac.cn)
Shenyang Aerospace University https://orcid.org/0000-0001-9695-4113

Research Article

Keywords: Sediment, PAEs, heavy metals, Ecological risk assessment,

Posted Date: March 9th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1161654/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Distributions, compositions, and ecological risk assessment of typical pollutants
in surface sediment of Xihe River, China
Xun Suna, Zheng Yana, Xin Kea,*
College of Energy and Environmental, Shenyang Aerospace University, 110136, Shenyang, China

Abstract: Distributions and compositions of six phthalic acid esters (PAEs), eight phenol compounds and seven heavy metals in riverbed sediments of the Xihe River in Shenyang, China. The ecological risks of these typical pollutants were investigated and evaluated based on the risk quotient (RQ) and potential ecological risk index (PERI) methods. The concentrations of total Σ_6PAEs, Σ_8phenols and Σ_7heavy metals in sediments varied from 92.83 to 293.66 μg/g dw, 8.87 to 83.73 μg/g dw and 0.46 to 419μg/g dw. The main pollutants in Xihe River sediments are DEHP, DIBP, phenol, P-methylphenol and Cd. More than half target PAEs and phenol compounds in sediment of the Xihe River exhibited medium or high ecological risk. Cd poses a very high ecological risk to the Xihe River Basin. It is imperative to take some effective measures to reduce the pollution of those contaminants.

Keywords: Sediment; PAEs; heavy metals; Ecological risk assessment;

Email address: kex@iae.ac.cn

1. Introduction

Due to Chinese rapid urbanization and industrialization, rivers are increasingly threatened by all kinds of pollutants (Zhao et al., 2018). Riverbed sediments as important sinks and sources for pollutants, the concentration of pollutants in it has a great impact on aquatic organisms and the water environment, even influence the entire ecosystem (Mi et al., 2019; Hu et al., 2020).

Phthalic acid esters (PAEs) are typical plasticizer, whose environmental behavior has attracted considerable attention (Yang et al., 2019; Khalid Muzamil Gani et al., 2016). The US Environmental Protection Agency has identified six congeners, including di-methyl phthalate (DMP), di-ethyl phthalate (DEP), di-n-butyl phthalate (DnBP), di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP) and butylbenzyl phthalate (BBP), as priority pollutants (Gao et al., 2018; Alkan Nigar et al., 2021). Phenol compounds are important chemical raw materials and are used in large quantities to make phenolic resin, epoxy resin and synthetic fiber (Wang et al., 2020). Phenol compounds have a strong destructive effect on the human body, and can inhibit the central nervous system and have strong toxic, persistent and bio-accumulative effects (Li et al., 2015). Due to the potential biological toxicity of heavy metals, they may cause further adverse effects on human beings through bioaccumulation (Xu et al., 2017). Because of potential risks to humans and the environment of these typical pollutants, the comprehensive evaluations of ecological
risks are required.

The Xihe River is 78 kilometers long and flows through the Tiexi District, the
most important industrial estate in Shenyang (Liu., 2016). Due to the complete variety
and large number of factories around the basin, various types of wastewater are one of
the main sources of water for the Xihe River. A variety of pollutants in the basin such
as ammonia nitrogen, PCDD and dibenzofurans have been investigated and studied by
many people (Ke et al., 2018; Lin et al., 2013; Ke et al., 2019). It is still lack of
information on the pollution level of common PAEs, phenol compounds and heavy
metals in the river sediment, limited work has reported on the potential risk of these
pollutants in the Xihe River.

In this study, we selected some representative sites as the study area to conduct a
risk assessment of heavy metals, PAEs and phenol compounds in Xihe River. The
purpose of this study is: (1) to study the distribution and compositions of heavy metals,
PAEs, phenols and heavy metals in surface sediments of Xihe River; (2) To evaluate
the ecological risk of heavy metals, PAEs and phenol compounds in sediments.

2. Materials and methods
2.1. Sample collection

Figure 1 provides sampling locations for this study. Sediment samples were
collected from 11 sampling points in Xihe River. The riverine sediments were
collected by use of a grab bucket (depth of approximately 0.1 m) and then put in a
clean stainless steel lunch box. In each sampling point, three duplicate samples were
collected and mixed evenly, then transported back to the laboratory and all samples
were stored in an icebox stored at 4°C.

2.2. Chemical analysis

Use a centrifuge for 30 minutes (4°C; 9000r/min) to extract interstitial water, and
store it in a 4°C walk-in cooler before collecting samples for chemical analysis. The
concentrations of phthalates (PAEs) and phenols were analyzed by Agilent 6890-5973
GC/MS. The sediment samples (0.5g) were digested in 20mL of a 1:1:2 guaranteed
reagent HNO3 + HClO4 + HF for 10h, the concentrations of heavy metals were
determined by Inductively coupled Plasma Atomic Emission Spectrometry (ICP-AES,
Thermo).

2.3. Risk Assessment
2.3.1. Risk quotient

The risk quotient (RQ) method was used to assess the potential environmental
risk of the PAEs and phenols in this work. According to the European technical
guidance document (TGD) on risk assessment (EC, 2003; Li et al., 2017; Li et al.,
2016*; Zhang et al., 2018; Li et al., 2016**), RQ for PAEs and phenols congeners
were calculated from the measured environmental concentration (MEC) divided by
the predicted no effect concentration (PNEC), which is described as follows;
\[
\begin{align*}
RQ &= \frac{\text{MEC}}{\text{PNEC}} \\
\text{PNEC}_{\text{sed}} &= \frac{K_{\text{susp-water}}}{\text{RHO}_{\text{susp}}} \times \text{PENC}_{\text{water}} \times 1000 \\
K_{\text{susp-water}} &= F_{\text{water-susp}} + F_{\text{solid-susp}} \times F_{\text{occ}} \times \frac{K_{\text{oc}}}{1000} \times \text{RHO}_{\text{solid}}
\end{align*}
\]

where MEC is the measured environmental concentration and PNEC is the predicted no effect concentration. where PNEC\text{watervalues were calculated from the lowest acute toxicity data, RHO}\text{susp is the density of wet suspended matter, which is 1150 kg/m}^3; \text{RHO}\text{solid is the density of the solid phase, which is 2500 kg/m}^3; \text{F}_{\text{water-susp}} is the volume fraction of water in suspension, which is defined as 0.9 m}^3/m^3; \text{F}_{\text{solid-susp}} is the volume fraction of solid in suspension, which is defined as 0.1 m}^3/m^3; \text{F}_{\text{occ}} is the mass fraction of organic carbon in suspension, which is assigned as 0.1 kg/kg; \text{K}_{\text{oc}} is the partition coefficient of organic carbon-water (L/kg).

The PERI (Ke et al., 2017; Ben Mna Haïfa et al., 2021; Islam Md Saiful et al., 2018; Shi et al., 2016; Chai et al., 2017) was used to assess the comprehensive potential ecological risk of heavy metals in sediment and was initially introduced by Hakanson (1980). The potential ecological risk factor of a given metal (E \text{E}_r^i) is defined as:

\[
E_r^i = T_r^i \times \frac{C_i}{C_0}
\]

\[
\text{RI} = \sum_{i=1}^{n} T_r^i \times \frac{C_i}{C_0}
\]

where C_i is the concentration of metal i in sediment, C_0 is the concentration of the same element in background sediment, T_r^i is the biological toxicity factor of an individual element, which was determined for Cu = Pb = 5, Zn = 1, Hg = 40, As = 10, Cr = 2 and Cd = 30 (Suresh et al., 2011), E \text{E}_r^i is the potential ecological risk factor of a single metal, and RI is the comprehensive potential ecological risk index of the metals. The PERI of heavy metals was categorized according to five levels, as shown in Table 1.

2.4. Quality assurance and Quality control (QA/QC)

Quality assurance and quality control were assessed in duplicates, with method blanks and standard reference materials. The content of pollutants was determined by three replicates. No target pollutants were detected in the blank control groups. Quantitative analysis of all target compounds was corrected by data of blank test and recovery. The deviations were less than 10%. The quality of the analytical procedures was tested by the recovery measurements on the Chinese national geo-standard (GBW-07333 and GBW-07314). All of the reagents were guaranteed analytical grade or higher. The lab glassware (bottles, tubes, etc.) were pre-cleaned by soaking in 10% HNO_3 (w/w) for at least 2 days, followed by soaking and rinsing with de-ionized water.
prior to use (Zhuang et al., 2015)

3. Results and discussion

3.1. Distribution of PAEs in the Xihe River

The concentration of \sum_{6}PAEs was shown in Table 2. In the Xihe River, the mean concentrations of each PAEs is: DEHP (200.96 μg/g dw) > DNOP 5.88μg/g dw) > DiBP (2.67μg/g dw) > DBP (1.46 μg/g dw) > DMP (0.20 μg/g dw) > DEP (0.15 μg/g dw). DEHP and DNOP were the dominant pollutants in sediments. The maximum concentrations of DEHP and DNOP appear in source of Xihe River (St2; 284.95 μg/g dw) and Ganguan (St3; 7.90 μg/g dw). The proportion of \sum_{6}PAEs at each sampling point is shown in Figure 2. According to the chart, it can be seen that the upstream of the fine river is greatly affected by the pollution of phthalates, with the detected content of six phthalates accounting for about 75-92% of the whole river. Due to the Xihe River mainly flows through Tiexi District, the largest industrial area in Shenyang, all kinds of factories around the river basin are complete, and the Xiannvhe sewage treatment plant, the largest sewage treatment plant in Shenyang, is near its upstream. Therefore, the Xihe River became the largest recipient of industrial effluents and domestic wastewater from Shenyang. In the Dawula (St.9), the concentration of \sum_{6}PAEs has dropped significantly, among which the main pollutants DEHP and DNOP in the sediments gradually decreased to 87.94 μg/g dw and 2.93 μg/g dw, which were about one third of the upstream concentration. This may have been caused by the constant dilution of the river

3.2. Distribution of phenols in the Xihe River

The concentrations of phenol compounds (\sum_{8}phenols) in sediment from the Xihe River were given in Table. 3. The concentration of \sum_{8}phenols in sediments varied from 8.86 to 83.72 μg/g dw in the Xihe River. The main pollutants are phenol and p-methylphenol. The proportion of \sum_{8}phenols was shown in Figure 3. On the upstream of Xihe River, the content of phenol and p-methylphenol is 71.5% and 80.2% of the overall sampling point. In addition, the contents of 2, 4-dimethylphenol and 2, 4-di-tert-butylphenol in the upstream area were second only to phenol and p-methyl phenol, accounting for 89.3% and 81.3% of the total sampling points, respectively., and the remaining phenols were less than 0.5 μg/g dw. Very similar spatial distribution has been found between the pollution levels of PAEs and phenolic compounds, indicating that both pollutants might be subjected to the same contamination sources. In general, the pollution level in the upstream of Xihe River is much greater than that in the downstream.

3.3. Distribution of heavy metals in the Xihe River

The concentration of \sum_{7}heavy metals was shown in Table. 3. In the Xihe River, the mean concentrations of each heavy metals is: Zn (333 μg/g dw) > Cr (91.68 μg/g dw) > Cu (82.43 μg/g dw) > Pb (61.66 μg/g dw) > As (19.80 μg/g dw) > Cd (18.44
μg/g dw) > Hg(0.68 μg/g dw). From the perspective of pollution, the order of the sampling points is St.4 (Σ7 heavy metals= 760.63 μg/g) > St.10 (Σ7 heavy metals= 636.80 μg/g) > St.8 (Σ7 heavy metals= 577.86 μg/g) > St.7 (Σ7 heavy metals= 559.69 μg/g) > St.6 (Σ7 heavy metals= 421.02 μg/g). The distribution ratio of the seven heavy metals at each sampling point is shown in Figure 4. It can be found that the high proportion of metals in St.4 and St. 10 is due to the presence of many factories for the manufacture of machinery and automobile parts, located along the river and not just in upstream of Xihe River. Zn is the most important pollutant in Xihe River, followed by Cr and Cu, which also confirms the reason for the high Content of Zn and Cu in the sediment of this basin from the side.

3.4. Ecological risk assessment

The ecological risk assessment of Σ6 PAEs and Σ8 phenols in sediments was carried out based on the calculated RQ values. In Figure 5 and 6, among which DEHP and phenol are high-risk in all sampling sites, p-methyl phenol and DIBP are high-risk in three of the four sampling sites. Half of the target PAEs and phenolic compounds in the river have a moderate or high ecological risk to organisms, which means that some effective measures must be taken to reduce the pollution of these pollutants. Among the seven types of heavy metals, Cd is high-risk at all sampling sites, and the other heavy metals are low-risk. Explain that Cd is the main pollutant in this area. As a whole, because the potential ecological risk factor of Cd is too high, the comprehensive potential ecological risk index in the region presents a high risk. Therefore, it is necessary to strengthen the detection of Cd in wastewater and reduce the concentration of Cd in wastewater to reduce the potential ecological risk of heavy metals in the region as a whole. However, Due to the lack of specific biotoxicity number of phenol in sediment and the simple evaluation method in this paper, further research might be needed to establish the real risks of phenolic compounds to benthic organisms.

4. Conclusion

The distributions of PAEs, phenol compounds and heavy metals in the Xihe River were investigated and the ecological risk was evaluated in this study. Screen out several pollutants with potential risks to the environment. The results revealed that six PAEs and eight phenols, DEHP, DIBP, phenol and p-methyl phenol were the most abundant pollutants in the Xihe River. The pollution level in the upstream of Xihe River is much higher than that in the downstream. The ecological risk assessment showed that DBP, DEHP, phenol, p-methyl phenol and Cd in the Xihe River have a high ecological risk to relevant organisms. Thus, only by precisely controlling the above pollutants can the overall ecological risk in the basin be effectively reduced it is imperative to control the discharge of toxic sewage into the rivers so as to reduce the potential risks in the Xihe River.
Ethical Approval

Before the journal editing process is completed, the paper will not be submitted elsewhere.

Consent to Participate

Xin Ke, Xun Sun and Zheng Yan all agreed to participate.

Consent to Publish

Xin Ke, Xun Sun and Zheng Yan all agreed to publish.

Authors Contributions

Xin Ke and Xun Sun conceived and designed experiments. Xun Sun performed experiments, statistical analysis and chemical analysis. Xun Sun wrote manuscript. Xin Ke and Zheng Yan provided technical and editorial assistance.

Funding

This research was supported by Liaoning Revitalization Talents Program [XLYC1807045], and Shenyang Youth Science, Technology Innovation Talents Support Plan [RC180101]. We thank the Key Laboratory of Clean Energy, Liaoning Province and Shenyang Aerospace University College of Energy and Environment for their scientific research assistance.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and materials

No additional unpublished data and materials are available.

References

Chai LY, Li H, Yang ZH. 2017. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. *ENVIRON SCI POLLUT R*, 24:874-885.

EC, 2003. Technical Guidance Document on Risk Assessment-Part II. Institute for Health and Consumer Protection, Italy, Ispra

Gao DW, Li Z, Wang H. 2018. An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure. *SCI TOTAL ENVIRON*, 645, 1400-1409.

Haïfa Ben Mna, Mohamed Amine Helali, Walid Oueslati. 2021. Spatial distribution, contamination assessment and potential ecological risk of some trace metals in the surface sediments of the Gulf of Tunis, North Tunisia. *MAR POLLUT BULL*, 170.

Hu XY, Yang T, Liu C. 2020. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China. *FRONT ENV SCI EN*, 14:66-.

Khalid Muzamil Gani and Absar Ahmad Kazmi. 2016. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of
developing countries and small communities. *SCI TOTAL ENVIRON.* 569-570, 661-671.

Nigar Alkan, Ali Alkan, Javier Castro-Jiménez. 2021. Environmental occurrence of phthalate and organophosphate esters in sediments across the Gulf of Lion (NW Mediterranean Sea). *SCI TOTAL ENVIRON,* 760.

Xu YF, Wu F, Han JG. 2017. The current status of heavy metal in lake sediments from China: Pollution and ecological risk assessment. *ECOL EVOL,* 7(14).

Ke X, Qi YF, Bao QH. 2019. Concentrations, Sources, and TEQ of PCDD/Fs in Sediments from the Liaohe River Protected Areas. *ARCH ENVIRON CON TOX,* 76(2).

Ke X, Bao QH, Qi YF. 2018. Toxicity assessment of sediments from the Liaohe River Protected Area (China) under the influence of ammonia nitrogen, heavy metals and organic contaminants. *ENVIRON TOXICOLOGICAL PHAR,* 59: 34-42.

Ke X, Gui SF, Huang H. 2017. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. *CHEMOSPHERE,* 175.

Li B, Hu XQ, Liu RX. 2015. Occurrence and distribution of phthalic acid esters and phenols in Hun River Watersheds. *ENVIRON EARTH SCI,* 73(9).

Liu YX. 2016. Study on the present situation, causes and countermeasures of water environment pollution in Xihe River (Shenyang section). *ENVIRONMENTAL PROTECTION AND CIRCULAR ECONOMY,* 36(12).

Lin CY, He MC, Liu XT. 2013. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China. *ENVIRON MONIT ASSESS,* 185:4321-4332.

Mi LJ, Xie ZY, Zhao Z. 2019. Occurrence and spatial distribution of phthalate esters in water and surface sediments of the Pearl River Estuary: distribution, ecological, and human health risks. *ENVIRON SCI POLLUT R,* 23(19).

Li RL, Liang J, Gong ZB. 2016. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. *SCI TOTAL ENVIRON,* 580.

Li XH, Yin PH, Zhao L. 2016. Phthalate esters in water and surface sediments of the Pearl River Estuary: distribution, ecological, and human health risks. *ENVIRON SCI POLLUT R,* 23(19).

Li B, Liu RX, Gao HJ. 2016. Spatial distribution and ecological risk assessment of phthalic acid esters and phenols in surface sediment from urban rivers in Northeast China. *ENVIRON POLLUT,* 219:409-415.

Md. Saiful Islam, M. Belal Hossain, Abdul Matin. 2018. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. *CHEMOSPHERE,* 202:25-32.
esters in sediments of the Bohai and Yellow seas. SCI TOTAL ENVIRON, 653:792-800

Shi CY, Liang M, Feng B. 2012. Background values of 39 element series in sediments of water systems in China. EARTH SCIENCE, 41.

Yang YY, Wang HY, Chang Y. 2020. Distributions, compositions, and ecological risk assessment of polycyclic aromatic hydrocarbons and phthalic acid esters in surface sediment of Songhua river, China. MAR POLLUT BULL, 152.

Zhao GM, Ye SY, Yuan HM. 2018. Surface sediment properties and heavy metal contamination assessment in river sediments of the Pearl River Delta, China. MAR POLLUT BULL, 136: 300-308.

Zhang ZM, Zhang HH, Zou YW. 2018. Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea. ENVIRON POLLUT, 240:235-247.

Zhuang W, Gao XL. 2015. Distributions, sources and ecological risk assessment of arsenic and mercury in the surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea. MAR POLLUT BULL, 99(1-2), 320–327.

Assessment criterion	Low	Moderate	Considerable	High	Very high
E_r^i	<40	40—80	80-160	160-320	≥320
RI	<150	150—300	300-600	≥600	

Table 1. Classification of PERI

Compound	Range (μg/g dw)	Mean (μg/g dw)	SD (μg/g dw)
DMP	0.159-0.227	0.198	0.025
DEP	0.085-0.188	0.148	0.040
DBP	0.792-2.132	1.461	0.475
DiBP	0.872-3.746	2.67	1.085
DnOP	2.929-7.903	5.877	1.923
DEHP	87.94-284.945	200.961	83.105
ΣPAES	92.83-293.662	210.577	84.457
phenol	3.938-28.858	14.88	8.944
p-methylphenol	3.548-51.835	19.679	18.860
2,3-dimethylphenol	0.049-0.088	0.064	0.014
2,4-dimethylphenol	0.300-1.815	0.702	0.643
3,5-dimethylphenol	0.156-0.213	0.184	0.027
2,4,6-trimethylphenol	0.050-0.086	0.073	0.014
2,4-di-tert-butylphenol	0.565-0.875	0.755	0.117
2,6-di-tert-butyl-4-ethylphenol	0.014-0.021	0.017	0.003
Σphenols	8.870-83.726	36.353	28.273

Table 2. Concentrations of Σ6PAEs and Σ8phenol compounds in sediment of the Xihe River (μg/g dw)
Table.3. Concentrations of \sum_7 heavy metals in sediment of the Xihe River (μg/g dw)

Element	Range	Mean	SD	TEC	PEC
Cu	39-118.5	82.43	29.33	31.6	149
Cd	9.2-27.6	18.44	6.69	0.99	4.98
Pb	12.8-126.8	61.66	46.2	35.8	128
Cr	73-101.6	91.68	10.27	43.4	111
Hg	0.46-0.83	0.68	0.13	0.18	1.06
As	12.9-31.2	19.8	6.74	9.79	33
Zn	201-419	333	83.34	121	459.8

TEC = threshold effect concentration; PEC = possible effect concentration.

Table.4. Risk quotient (RQ) of \sum_6 PAEs and \sum_8 phenol compounds

Compound	RQ(St1)	RQ(St2)	RQ(St3)	RQ(St9)
DMP	0.77	0.80	0.88	0.62
DEP	0.52	0.24	0.49	0.40
DBP	21.47	10.98	4.93	2.93
DiBP	29.50	25.14	22.60	6.86
DnOP	13.64	8.88	18.29	6.78
DEHP	41.17	42.47	23.07	13.11
Phenol	2885.77	1374.53	393.81	1297.87
p-methylphenol	95.99	21.03	6.57	22.18
2,3-dimethylphenol	0.12	0.06	0.08	0.08
2,4-dimethylphenol	0.85	0.18	0.15	0.14
3,5-dimethylphenol	0.10	0.14	0.10	0.13
2,4,6-trimethylphenol	1.00	1.07	0.95	0.62
2,4-di-tert-butylphenol	-	-	-	-
2,6-di-tert-butyl-4-ethylphenol	-	-	-	-

Table.5. Potential ecological risk factor (E^r_i) of \sum_7 heavy metals

Element	T^*_1	E^r_i(St4)	E^r_i(St6)	E^r_i(St7)	E^r_i(St8)	E^r_i(St10)
Cu	5	29.92	19.04	22.40	9.85	24.44
Cd	30	7527.27	5318.18	2509.09	6300.00	3490.91
Pb	5	25.12	7.64	6.66	2.99	29.63
Cr	2	3.33	2.52	3.06	3.51	3.41
Hg	40	0.83	0.72	0.79	0.46	0.60
As	10	25.8	21.25	15.34	14.66	35.45
Zn	1	6.09	3.17	6.60	6.11	4.25

Table.5. Potential ecological risk factor (E^r_i) of \sum_7 heavy metals
Fig. 1. Sampling sites in Xihe River, China
St.1. Gili Bridge, St.2. source of Xihe River, St.3. Ganguan, St.4. Fuguan, St.5. Aijin, St.6. Xiaoyu, St.7. Dapan, St.8. Zhangyi, St.9. Dawula, St.10. Qianyu, and St.11. Tutaizi.

Fig. 2. Distributions and compositions of \sum_6 PAEs in sediment of the Xihe River (μg/g dw).
DMP = Dimethyl phthalate; DEP = Diethyl phthalate; DBP = Dibutyl phosphate; DEHP = Di-2-ethylhexyl phthalate; DIBP = Di-iso-butyl phthalate; DNOP = Di-n-octyl phthalate.
Fig. 3. Proportion of Σ_8 phenols compounds in each sampling dots of the Xihe River sediments (μg/g dw)

$p\cdot p = p$-methylphenol; $2,3\cdot p = 2,3$-dimethylphenol; $2,4\cdot p = 2,4$-dimethylphenol;
$3,5\cdot p = 3,5$-dimethylphenol; $2,4,6\cdot p = 2,4,6$-trimethylphenol;
$2,4\cdot dp = 2,4$-di-tert-butylphenol; $2,6\cdot dp = 2,6$-di-tert-butyl-4-ethylphenol.

Fig. 4. Proportion of Σ_7 heavy metals in sediment of the Xihe River (μg/g dw)
Fig. 5. Ecological risk assessment of PAES and phenols in surface sediments of Xihe River

- DMP: Low risk
- DEP: Medium risk
- DBP: High risk
- DIBP: High risk
- DNOP: High risk
- DEHP: High risk
- Phenol: Medium risk
- p-methylphenol: Medium risk
- 2,3-dimethylphenol: High risk
- 2,4-dimethylphenol: High risk
- 3,5-dimethylphenol: High risk
- 2,4,6-trimethylphenol: High risk

Fig. 6. Ecological risk assessment of heavy metals in surface sediments of Xihe River

- Cu: Low risk
- Cd: Medium risk
- Pb: Considerable risk
- Cr: High risk
- Hg: Very high risk
- As: Low risk
- Zn: Moderate risk

St1, St2, St3, St9, St4, St6, St7, St8, St10