Diagnostic quality of 3Tesla postmortem magnetic resonance imaging in fetuses with and without congenital heart disease

Barbara Ulm, MD; Gregor O. Dovjak, MD, PhD; Anke Scharrer, MD; Dana A. Muin, MD, MSc; Daniel Zimpfer, MD; Daniela Prayer, MD; Michael Weber, PhD; Vanessa Berger-Kulemann, MD

BACKGROUND: Postmortem confirmation of prenatally diagnosed congenital heart disease after termination of pregnancy and evaluation of potential cardiac defects after spontaneous fetal or neonatal death are essential. Conventional autopsy rates are decreasing, and 1.5Tesla magnetic resonance imaging has demonstrated limited diagnostic accuracy for postmortem cardiovascular assessment.

OBJECTIVE: This study aimed to evaluate the feasibility and image quality of cardiac 3Tesla postmortem magnetic resonance imaging and to assess its diagnostic accuracy in detecting fetal heart defects compared with conventional autopsy. Secondly, the study aimed to explore whether clinical factors affect the quality of 3Tesla postmortem magnetic resonance imaging.

STUDY DESIGN: A total of 222 consecutive fetuses between 12 and 41 weeks’ gestation, who underwent 3Tesla postmortem magnetic resonance imaging and conventional autopsy after spontaneous death or termination of pregnancy for fetal malformations, were included. First, 3Tesla postmortem magnetic resonance imaging of each fetus was rated as diagnostic or nondiagnostic for fetal cardiac assessment by 2 independent raters. The image quality of individual cardiac structures was then further evaluated by visual grading analysis. Finally, the presence or absence of a congenital heart defect was assessed by 2 radiologists and compared with autopsy results.

RESULTS: Overall, 87.8% of 3Tesla postmortem magnetic resonance imaging examinations were rated as diagnostic for the fetal heart. Diagnostic imaging rates of individual cardiac structures at 3Tesla postmortem magnetic resonance imaging ranged from 85.1% (atrioventricular valves) to 94.6% (pericardium), with an interrater agreement of 0.82 (0.78–0.86). Diagnostic imaging of the fetal aortic arch and the systemic veins at 3Tesla postmortem magnetic resonance imaging was possible from 12+5 weeks’ gestation onward in 90.1% and 92.3% of cases, respectively. A total of 55 fetuses (24.8%) had at least 1 cardiac anomaly according to autopsy, 164 (73.9%) had a normal heart, and in 3 fetuses (1.4%), autopsy was nondiagnostic for the heart. Considering all examinations rated as diagnostic, 3Tesla postmortem magnetic resonance imaging provided high diagnostic accuracy for the detection of fetal congenital heart defects with a sensitivity of 87.8%, a specificity of 97.9%, and concordance with autopsy of 95.3%. 3Tesla postmortem magnetic resonance imaging was less accurate in young fetuses (<20 weeks compared with >20 weeks; P<.001), in fetuses with low birthweight (<100 g compared with >100 g; P<.001), in cases after spontaneous fetal death (compared with other modes of death; P=.012), in cases with increasing latency between death and 3Tesla postmortem magnetic resonance imaging (P<.001), and in cases in which there was a high degree of maceration (maceration score of 3 compared with a score from 0 to 2; P=.004).

CONCLUSION: Diagnostic 3Tesla postmortem magnetic resonance imaging assessment of the fetal heart is feasible in most fetuses from 12 weeks’ gestation onward. In diagnostic images, sensitivity and, particularly, specificity in the detection of congenital heart disease are high compared with conventional autopsy. Owing to its high diagnostic accuracy, we suggest that 3Tesla postmortem magnetic resonance imaging may serve as a suitable imaging modality with which to direct a targeted conventional autopsy when pathology resources are limited or to provide a virtual autopsy when full autopsy is declined by the parents.

Key words: autopsy, coarctation of the aorta, congenital heart disease, fetal heart, hypoplastic left heart, hypoplastic right heart, magnetic resonance imaging, postmortem imaging, prenatal diagnosis, prenatal ultrasound, tetralogy of Fallot, truncus arteriosus

Introduction
Congenital heart disease (CHD) is the most common malformation in fetuses and newborns, with a prevalence of 8 per 1000, comprising live births, fetal deaths after 20 weeks’ gestation, and terminations of pregnancy for fetal malformations.1 In Europe, up to 44% of pregnancies are terminated prematurely owing to prenatally diagnosed CHD, either in isolation or as part of complex syndromes.1,2 Indeed, the diagnostic quality of prenatal screening for CHD varies widely owing to the limited availability of specialists.2,3 Moreover, the diagnostic accuracy of cardiac ultrasound (US) is limited per se, even when performed by specialists.2,4,5 The prenatal diagnosis of CHD has been improved recently by using intelligent methods, such as fetal intelligent navigation echocardiography, with more than 90% diagnostic accuracy, but these techniques are not yet widely used.6 Finally, only a relatively small proportion of fetuses undergo targeted cardiac US for suspicion of CHD. Accordingly, the cause of spontaneous death in utero is often unclear.

A postnatal, full workup of fetal malformations is essential: even if prenatal US suggests CHD, this suspected
Why was this study conducted?
This study aimed to evaluate the feasibility, image quality, and accuracy of cardiac 3T pmMRI in a consecutive series of fetuses for the detection of congenital heart defects compared with autopsy and to explore whether clinical factors affect the quality of postmortem imaging.

Key findings
3T pmMRI was feasible from early gestation onward, and image quality was diagnostic in 87.8% of examinations. Compared with autopsy and after exclusion of nondiagnostic images, the accuracy of 3T pmMRI for the detection of heart defects was high, with a sensitivity of 87.8%, a specificity of 97.9%, and concordance with autopsy results of 95.3%.

What does this add to what is known?
Cardiac 3T pmMRI is feasible for fetal postmortem examination from 12 weeks onward and may act as a decision tool for further investigation or invasive postmortem assessment.

Postmortem magnetic resonance imaging and image analyses
Fetuses were kept in a refrigerator at 4°C from birth until 3T pmMRI. 3T pmMRI examinations were performed outside of routine office hours in order to not disturb clinical routines, within 24 hours after delivery. Acquisition of the 3T pmMRI examination depended mainly on the availability of radiologists and MRI scanners in the evening and during the night; in any case, the corpse was brought to the Department of Pathology for full autopsy after 3T pmMRI within 24 to 48 hours.

All pmMRIs were performed on a 3T scanner (Magnetom Trio and Magnetom...
Vida, Siemens Medical Systems, Erlangen, Germany) using a knee coil, flex coil, or body coil according to the size of the fetus. To date, examination protocols for the body, excluding the brain, have consisted of T2-weighted images (with the field of view [FOV] depending on the region) of the body in at least 2 orthogonal planes (axial and coronal). The sagittal plane and oblique planes were reconstructed from the original data set (3-dimensional [3D] constructive interference in steady state [CISS]), if available. The following acquisition parameters were used (T2, CISS): repetition time [TR], 1000–2500 ms; 6.26–67.04 ms; echo time [TE], 122–157 ms; 2.75–3.17 ms; slice thickness, 0.4–3 mm; 0.4–0.5 mm; flip angle [FA], 100–149; 42–46; voxel size 0.3 × 0.3 × 0.4 mm³; 0.6 × 0.6 × 0.6 mm³; 0.4 × 0.4 × 0.4 mm³; and FOV, 130–140 mm, 157–230 mm (details on 3T pmMRI protocols can be found in Supplementary Materials).

To assess the feasibility and the image quality of fetal cardiac pmMRI and to detect potential cardiac malformations, 2 experienced radiologists (4 years and 11 years of experience in cardiac imaging; 2 years of limited experience in postmortem imaging), who were blinded to any clinical information (US findings, gestational age, mode of death, autopsy results), independently rated different anatomic structures of the fetal heart and the great vessels on a picture archiving and communication system (AGFA). The following structures were evaluated: left and right atria, left and right ventricles, atrial and ventricular septum, atroventricular valves, left and right heart outflow tracts, aortic origin and aortic arch, pulmonary arteries including the ductus arteriosus Botalli, pericardium, pulmonary veins, and venae cavae.

Each cardiac structure was scored independently, receiving a score of 1 if the anatomic structure was clearly visible and assessable without restriction (regardless of normal or abnormal); a score of 2 if visibility was limited, but assessable with restriction; and a score of 3 if the structure was not clearly visible and not assessable (nondiagnostic).

Interrater agreement and Cohen’s kappa values were calculated from the individual scoring results of the 2 independent raters (step 1). Cardiac structures were grouped together when the specific ratings of 1 structure (such as the mitral valve) were always identical with the ratings of the anatomically similar or corresponding structure (such as the tricuspid valve). Only cardiac structures that were visible simultaneously, provided that the correct axes could be displayed, were grouped together. In cases where the 2 raters scored the visibility of cardiac anatomic structures as diagnostic, but at different levels, consensus was then obtained in a second scoring round and a final score was calculated (step 2). Nondiagnostic images (score 3 on our scale) were noted when 1 or both raters considered that the respective cardiac structures were not assessable enough to be rated as diagnostic (no consensus required). When a CHD was noted, the specific suggested cardiac malformation diagnoses, based on 3T pmMRI, were noted in agreement between the 2 radiologists (1 with less and 1 with more experience in cardiac imaging; step 3).

Pathology
A senior fetal pathologist performed the autopsy in all cases according to a pre-designed protocol (Supplementary Material: Protocol for fetal and perinatal autopsies). Only when all personnel involved in patient care agreed that there was no scientific or legal reason for autopsy and no relevant information regarding the cause and circumstances of death was to be expected from invasive postmortem examination, the parents were given the choice to forego autopsy. Autopsy reports were reviewed by a pathologist blinded to US and pmMRI records, but aware of the maternal obstetrical history, gestational age, and mode of fetal death.

The primary endpoints of analyses were the feasibility and the image quality of 3T pmMRI for the depiction of individual fetal cardiac structures. Feasibility was based on binary discrimination of diagnostic vs nondiagnostic examinations of individual cardiac structures at 3T pmMRI. Image quality was assessed using a 3-stage visual grading scale and rated very good to good, moderate but diagnostic, and nondiagnostic imaging of individual cardiac structures at 3T pmMRI.

Secondary aims were to assess diagnostic accuracy of 3T pmMRI in the detection of fetal CHD compared with autopsy and, furthermore, to evaluate the clinical factors that could affect the rate of diagnostic examinations at 3T pmMRI and concordance with autopsy results. Concordance with autopsy results was recorded when both 3T pmMRI and autopsy agreed about the presence or absence of a fetal or neonatal CHD, without further consideration of whether the specific CHD had been diagnosed correctly at 3T pmMRI. Clinical factors assessed for their influence on feasibility and concordance rates were gestational age, birthweight, the reason for fetal or neonatal death (if known), and the circumstances of death (pharmaceutical TOP with and without feticide or spontaneous death; live birth vs stillbirth), the presence or absence of extracardiac malformations, and time between death and 3T pmMRI.

We intentionally did not compare the diagnostic quality of 3T pmMRI vs prenatal US, because this was not the primary aim of our study, and fetal echocardiography reports were inconsistent and oftentimes from substantially earlier gestational ages than fetal death, 3T pmMRI, and autopsy.

Statistical analysis
Statistical analyses were performed using IBM SPSS Statistics for Windows version 26.8 (IBM Corp, Armonk, NY). Categorical data are presented as absolute frequencies and percentages. Comparisons between groups were calculated using chi-square tests. For diagnostic quality measures (sensitivity, specificity, negative and positive predictive value, and accuracy), nondiagnostic cases were treated as either wrong diagnoses (version A) or excluded (version B). In addition, 95% confidence intervals (CIs) according to Wilson (for smaller n) were assessed. To compare quality measures obtained for...
versions A and B, general estimation equations models were used. Rater agreement was measured by calculating the percentage of identical ratings as by Cohen’s kappa. $P\leq0.05$ was considered to indicate significant results.

Results

Demographics

Our initial data set consisted of 262 consecutive fetal 3T pmMRIs from 2012 to 2019. A total of 40 fetuses (40 of 262, 15.3%) were excluded owing to missing prenatal US reports (14), missing whole-body sequences in 3T pmMRI (15), or unavailable autopsy reports (11). The data from 222 fetuses were included, of which 55 (55 of 222, 24.8%) had 1 or several structural heart defects and 164 (164 of 222, 73.9%) had a normal heart according to autopsy. The characteristics of fetuses included are summarized in Table 1.

Of 222 fetal 3T pmMRIs, 115 (51.8%) were 3D, allowing for reconstruction of sagittal and oblique planes (3D CISS), whereas 107 3T pmMRI examinations (48.2%) were in only 2 orthogonal planes.

Feasibility of cardiac 3Tesla postmortem magnetic resonance imaging and diagnostic examination rates for individual cardiac structures

Diagnostic examination rates for fetal cardiac structures in 3T pmMRI (Figure 1 A) with rater agreements are provided in Table 2. A complete depiction of the 4-chamber view (both atria, atrioventricular valves, ventricles, atrial and ventricular septum) and the outflow tracts (left and right including both ventriculoarterial valves) was feasible in 83.8% (4-chamber view) and 88.3% (outflow tracts) of 3T pmMRI examinations, when autopsy was diagnostic.

Diagnostic rating of the aortic arch (90.1%) and the systemic veins (92.3%) was successful from 12+5 gestational weeks (earliest case studied) onward. After 16 gestational weeks, depiction of the complete 4-chamber view (90.1%), the outflow tracts (93.2%), the aortic arch (93.2%), and the systemic veins (95.5%) was possible in at least 90% of fetuses. Rater agreements between radiologists for individual cardiac structures as either diagnostic (rating scores of 1 or 2) or nondiagnostic (rating score of 3) were 96.8%, on average (94.6% to 98.2%). Overall interrater agreement about diagnostic (scores of 1 and 2) vs nondiagnostic (score of 3) imaging of individual cardiac structures (Cohen’s kappa) was 0.82 (95% CI, 0.78–0.86).

Diagnostic accuracy of cardiac 3Tesla postmortem magnetic resonance imaging to detect congenital heart disease, compared with conventional autopsy

The overall sensitivity of 3T pmMRI in diagnosing fetal CHD was 78.2% (43 of 55; 95% CI, 0.656–0.871), with a specificity of 85.4% (140 of 164; 95% CI, 0.791–0.900) and a concordance of 83.6% (183 of 219; 95% CI, 0.781–0.879). Concordance rates of cardiac 3T pmMRI (Figure 1, C) and prenatal US compared with autopsy for the diagnosis of fetal CHD are summarized in Table 3. Cardiac 3T pmMRI was significantly less accurate in fetuses below 20 weeks and in fetuses with a birthweight of ≤100 grams compared with pmMRI in fetuses at ≥20 weeks ($P<0.001$) and fetuses >100 g ($P<0.001$). The presence of extracardiac, intrathoracic abnormalities was associated with decreased 3T pmMRI diagnostic accuracy ($P=0.079$).

Concordance rates between 3T pmMRI and conventional autopsy were significantly lower after spontaneous intrauterine fetal death than other modes of death ($P=0.012$). Stillbirth was associated with lower concordance rates than live birth (136 of 170 vs 47 of 52; $P=0.098$). Increasing time intervals between death and 3T pmMRI decreased concordance rates progressively ($P<0.001$). Third-degree maceration was associated with lower concordance rates than maceration scores of 0 to 2 ($P=0.004$).

Diagnostic accuracy was based on the data from 219 fetuses in which conventional autopsy reports were diagnostic. Nondiagnostic ratings from cardiac 3T pmMRI were considered false negative. We also assessed the diagnostic accuracy (n=192; pmMRI) when nondiagnostic ratings were excluded from calculation. Diagnostic accuracy data for both

Table 1

Parameters	Values
Gestational age	22 wk + 2 d (12 wk + 5 d – 41 wk + 0 d)
Fetal/neonatal weight (g)	444 (10–3800)
Male fetus	104 (46.8)
Postmortem interval time:	
Death to 3T pmMRI (d)	1 (0–112)
Death to autopsy (d)	3 (1–112)
Results of cardiac 3T pmMRI:	
Congenital heart defect(s) present	47 (21.2)
Normal heart	148 (66.7)
Nondiagnostic for the fetal heart	27 (12.2)
Autopsy:	
Congenital heart defect(s) present	55 (24.8)
Normal heart	164 (73.9)
Nondiagnostic for the fetal heart	3 (1.4)

Values are expressed as median (range) or number (percentages).

3T pmMRI, 3Tesla postmortem magnetic resonance imaging.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
modalities (nondiagnostic cases rated as false-negative vs deleted) are compared in Figure 2. Exclusion of nondiagnostic 3T pmMRI images led to significantly higher diagnostic quality rates, with a sensitivity of 87.8% (43 of 49; P=.01), a specificity of 97.9% (140 of 143; P<.001), and a concordance of 95.3% (183 of 192; P<.001).

The spectrum of cardiac malformations diagnosed on 3T pmMRI and prenatal US are presented in Table 4. Normal fetal cardiac images in 3T pmMRI are displayed in Figures 3 and 4, and postmortem CHDs in fetuses from weeks 14 to 23 are shown in Figure 5. Further cardiac pathologies are detailed in Supplementary Material.

Details of cardiac pathologies are given in Supplemental Table 2, and the reasons for nondiagnostic ratings in 3T pmMRI are summarized in Supplemental Table 3.

Discussion

Principal findings

3T pmMRI is a feasible imaging modality with which to assess the fetal heart and great vessels postmortem. Furthermore, 3T pmMRI provides high diagnostic accuracy for a wide spectrum of cardiac anomalies compared with conventional autopsy. The rate of nondiagnostic images and, subsequently, impaired diagnostic accuracy in the detection of CHD is related to factors, such as low birthweight (below 100 g), extracardiac thoracic anomalies, and advanced maceration.16,17,19

Results

We were able to validate the feasibility of 3T pmMRI of the fetal heart and great vessels regardless of gestational age, in the largest series of 222 consecutive fetuses thus far. Depiction of individual cardiac structures was feasible in more than 9 of 10 fetuses from 16 gestational
TABLE 2
Diagnostic examination rates, interrater agreement and Cohen’s kappa values of 3Tesla cardiac pmMRI for individual cardiac structures in 222 fetuses

Fetal cardiac structures	Diagnostic examinations at 3T pmMRI	Interrater agreement	Cohen’s kappa (95% confidence interval)
Atria (left and right)	199 (89.6)	97.3	0.849 (0.730—0.967)
Atrioventricular valves (mitral valve, tricuspid valve)	189 (85.1)	96.8	0.863 (0.765—0.962)
Ventricles (left and right)	200 (90.1)	97.7	0.866 (0.750—0.981)
Atrial and ventricular septum	194 (87.4)	97.3	0.865 (0.759—0.971)
Left ventricular outflow tract, aortic valve	199 (89.6)	96.8	0.839 (0.724—0.955)
Aortic arch, aortic valve to descending aorta	200 (90.1)	95.5	0.748 (0.598—0.897)
Right ventricular outflow tract, pulmonary valve	199 (89.4)	95.5	0.775 (0.641—0.909)
Pulmonary arteries (left and right, ductus arteriosus Botalli)	197 (88.7)	94.6	0.709 (0.554—0.864)
Pulmonary veins	190 (85.6)	96.4	0.846 (0.742—0.950)
Venae cavae (inferior vena cava, superior vena cava)	205 (92.3)	98.2	0.857 (0.720—0.994)
Pericardium	210 (94.6)	98.2	0.809 (0.626—0.992)

Values are expressed as number (percentage), interrater agreements (percentage) and Cohen’s kappa (95% confidence intervals). Image quality was rated independently by 2 radiologists as 1 for very good to good visibility of the structure(s), 2 for moderate but diagnostic, and 3 for nondiagnostic examination. Diagnostic examinations at 3T pmMRI are expressed as the sum of diagnostic scorings (scores 1 and 2), when none of the 2 raters stated the assessment of the respective cardiac structures as nondiagnostic (score 3). Interrater agreements and Cohen’s kappa values are based on independent scorings.

3T pmMRI, 3Tesla cardiac postmortem magnetic resonance imaging.

TABLE 3
Concordance rates of 3T postmortem magnetic resonance imaging and prenatal ultrasound with autopsy for the diagnosis of congenital heart disease in 222 fetuses

Variable	3T pmMRI concordant	Prenatal US concordant	Fetuses per category	P-value 3T pmMRI	P-value Prenatal US
Gestational age (wk)					
<20 + 0	46 (66.7)	44 (63.8)	69 (31.1)	<.001	<.001
20–23 + 6	71 (94.7)	62 (82.7)	75 (33.8)		
≥24 + 0	66 (84.6)	69 (88.5)	78 (35.1)		
Birthweight (g)					
≤100	21 (53.8)	23 (59.0)	39 (17.6)	<.001	.001
101–250	23 (79.3)	20 (69.0)	29 (13.1)		
251–500	49 (92.5)	43 (81.1)	53 (23.9)		
>500	90 (89.1)	89 (88.1)	101 (45.5)		
Additional extracardiac malformations				.079	<.001
No	71 (81.6)	69 (79.3)	87 (39.2)		
Yes, intrathoracic	20 (69.0)	15 (51.7)	29 (13.1)		
Yes, extrathoracic	92 (86.8)	91 (85.8)	106 (47.7)		
Mode of death				.012	.302
Termination of pregnancy	73 (83.9)	66 (75.9)	87 (39.2)		
Feticide	39 (88.6)	39 (88.6)	44 (19.8)		
Intrauterine fetal death	33 (67.3)	39 (79.6)	49 (22.1)		
Spontaneous abortion	38 (90.5)	31 (73.8)	42 (18.9)		

Values are expressed as number (percentage). P-values are based on Pearson’s χ²-test for independence, except for mode of death, which was based on Fisher’s exact test.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
weeks onward, with high interrater agreement. Exclusion of nondiagnostic imaging provided high sensitivity, specificity, and concordance rates of 3T pmMRI in the detection of CHD, in particular for nonseptal cardiac defects. However, image quality and, therefore, diagnostic accuracy depend on various factors. A deformed body shape after having wrapped the fetus for conservation hampers the differentiation of individual organs. Other limitations are harder to overcome, such as the lack of blood in the ventricles postmortem, which interferes with diagnostic imaging of the complete 4-chamber view. Intrathoracic abnormalities, such as diaphragmatic hernia or pleural effusion, have a similar detrimental effect on the feasibility of cardiac 3T pmMRI, because the side walls are squeezed toward the septa, which hampers the distinct imaging of both septa and atrioventricular valves. Furthermore, a well-designed protocol for 3T pmMRI, with planes adjusted to the cardiac axes and the outflow tracts, is essential, particularly with regard to their small size. Evaluation of the intrathoracic aorta is particularly difficult when the arch is dislocated or when a large arterial duct mimics the features of isthmus stenosis.

Variable	3T pmMRI concordant	Prenatal US concordant	Fetuses per category	P value
Days from death to 3T pmMRI				
0–1	114 (89.8)	NA	127 (57.2)	.001
2	38 (80.9)	47 (21.2)		
3	19 (70.4)	27 (12.2)		
>3	12 (57.1)	21 (9.5)		
Degree of maceration				.002
0–1	134 (87.6)	NA	153 (68.9)	
2	20 (83.3)	24 (10.8)		
3	29 (64.4)	45 (20.3)		

Values are expressed as number (percentage). Comparison between groups were performed using Chi-square test.

3T pmMRI, 3Tesla postmortem magnetic resonance imaging; NA, not applicable; US, ultrasound.

a Without feticide.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.

FIGURE 2
Diagnostic quality rates of cardiac postmortem MRI for the detection of fetal congenital heart defects

Open white circles represent diagnostic quality rates when nondiagnostic images were rated as false-negative and blue circles represent the respective values when nondiagnostic images were excluded.

MRI, magnetic resonance imaging; NPV, negative predictive value; PPV, positive predictive value.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.

TABLE 3
Concordance rates of 3T postmortem magnetic resonance imaging and prenatal ultrasound with autopsy for the diagnosis of congenital heart disease in 222 fetuses (continued)
and pulmonary veins are often hard to depict because they are commonly covered by other structures. More diagnostic MRI studies would have been available if the protocols for fetal 3T pmMRI (short interval between death and MRI, no wrapping of the body, specific protocol) had been followed.

Clinical implications

The diagnostic accuracy of 3T pmMRI depends substantially on the decision about how to proceed with non-diagnostic examinations. Long latencies from demise to 3T pmMRI and autopsy, such as in cotwin demises with continuation of the pregnancy, are associated with high nondiagnostic 3T pmMRI rates. Removing those cases would raise the performance of 3T pmMRI in cases with a >3-day latency to be similar to those cases with a 3-day latency (70% vs 67%). When nondiagnostic cardiac 3T pmMRI examinations were considered false negative, the overall concordance of 3T pmMRI with autopsy in diagnosing a fetal CHD was 83.6%. Exclusion of nondiagnostic 3T pmMRI imaging led to significantly higher diagnostic quality rates, with a sensitivity of 87.8%, a specificity of 97.9%, and a concordance of 95.3%. We intentionally included all consecutive fetuses with 3T pmMRI and autopsy reports available to investigate clinical feasibility and diagnostic accuracy in the detection of CHD in the daily routine. Most previous studies either excluded nondiagnostic pmMRI imaging or included only fetuses without additional malformations or highly macerated bodies.\(^\text{15,18,19}\) In our opinion, this does not reflect the clinical situation of diverse fetal disease. Similar to other authors, we found the diagnostic value of cardiac 3T pmMRI less accurate in younger fetuses of lower birthweight.\(^\text{16–19}\) Furthermore, we observed high rates of nondiagnostic cardiac 3T pmMRI examinations in fetuses after spontaneous intrauterine death with a high degree of maceration, which resulted in high discordance rates (nondiagnostic 3T pmMRI vs diagnostic autopsy) in these fetuses. For fetuses younger than 20 weeks, 9.4T pmMRI\(^\text{18}\) and microfocus computed tomography (CT)\(^\text{21–24}\) have been suggested. Indeed, micro-CT scanners and high-field MRI scanners are not widely available. The procedure of minimally invasive

Table 4

Spectrum of fetal CHDs diagnosed on prenatal ultrasound, cardiac 3T pmMRI, and autopsy (1 fetus can have several cardiac anomalies)

CHDs	Specific diagnosis at:			
	Prenatal ultrasound	Cardiac 3T pmMRI	Autopsy	
Conotruncal				
Tetralogy of Fallot and double-outlet right ventricle	5 (63)	4 (50)	8	
d-Transposition of the great arteries	1 (100)	1 (100)	1	
Common arterial trunk	1 (100)	1 (100)	1	
Right or double aortic arch	1 (25)	3 (75)	4	
Atrioventricular septal defect	6 (86)	6 (86)	7	
Septal defects				
Ventricular septal defect	14 (67)	13 (62)	21	
Atrial septal defect	2 (40)	2 (40)	5	
Left ventricular outflow tract obstructions				
Coarctation of the aorta or aortic hypoplasia	5 (36)	10 (71)	14	
Hypoplastic left heart syndrome	1 (100)	1 (100)	1	
Right ventricular outflow tract obstructions				
Pulmonary artery stenosis or pulmonary artery atresia	2 (67)	2 (67)	3	
Hypoplastic right heart syndrome	3 (100)	3 (100)	3	
Cardiomyopathy	2 (100)	2 (100)	2	
Complex or other CHDs	3 (60)	4 (80)	5	
All CHDs	46/75 (61)	52/75 (69)	75	
CHD without ventricular septal defects and atrial septal defects	30/49 (61)	37/49 (76)	49	

Values are expressed as number (percentages). The values indicate the number of cases found with each respective modality, the numbers in parentheses represent the percentage of the detected pathologies relative to full autopsy.

3T pmMRI, 3Tesla postmortem magnetic resonance imaging; CHD, congenital heart defects.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
autopsy, including 1.5T pmMRI, defined by Thayyil et al,9 has about the same diagnostic accuracy for the detection of major abnormalities as conventional autopsy, even in younger fetuses. However, undetected abnormalities were predominantly located in the lungs and the heart, most frequently reported in young fetuses at 24 weeks’ gestation or less.9 The approach with 3T pmMRI provides sufficient image quality with high resolution of anatomic structures, is more widely accessible, and allows a suitable postmortem examination both for young and for older fetuses with the advantage of a high soft-tissue resolution compared with CT.

Research implications
Fetal postmortem evaluation is crucial, and considering the decline in parental consent for invasive investigation and the increased pathologist’s workload, targeted autopsy in selected fetuses may aid both families and clinicians. 3T pmMRI provides almost the same degree of accuracy as conventional autopsy and is widely available, and images may be transferred from anywhere to specialized centers with expertise in pre- and perinatal medicine. Considering these facts, we urgently need further studies in this field to upgrade postmortem imaging as an integral part of the clinical routine.

Strengths and limitations
Previous investigations of the diagnostic accuracy of pmMRI excluded a substantial proportion of fetuses owing to unavailable autopsy records.14,25 A major strength of this study is the inclusion of a large, consecutive cohort of fetuses with 3T pmMRI, of which only 4.2% had to be excluded owing to missing autopsy data. In Austria, the law permits non-forensic autopsies without family consent when there is a medical or scientific interest; therefore, autopsy rates in Austria are high compared with other countries.26 The major limiting factor for cardiac evaluation in this study was the inhomogeneous 3T pmMRI examination protocols adjusted to extra-thoracic body regions, predominantly the fetal brain. Only 51.8% of fetuses...
had 3T pmMRI sequences that allowed for reconstruction in all orthogonal planes and, thus, could adequately display all cardiac axes. To study the feasibility of cardiac 3T pmMRI, the radiologists in the present investigation were blinded to any clinical data; it is likely that the knowledge of these factors would further improve the 3T pmMRI test characteristics. However, most 3T pmMRI examinations were diagnostic with regard to CHD, which underlines the strength of this method.

Conclusions

3T pmMRI is a feasible tool with which to evaluate the fetal heart and to detect CHD at any gestational age. Diagnostic imaging rates were particularly high in fetuses with a birthweight of >100 g, a gestational age of >20 weeks, low-degree maceration, and after a <3-day interval from death to pmMRI. After excluding nondiagnostic imaging, specificity for the detection of CHD was high, especially with regard to nonseptal cardiac anomalies. Cardiac 3T pmMRI may act as a decision tool as to whether or not to proceed with invasive postmortem investigation, such as conventional autopsy. The targeted use of postmortem imaging techniques provides quality assurance for prenatal assessments and important additional information about the causes of death while reducing the workload for pathologists. Telemedical evaluation of postmortem imaging would even free diagnostic analyses from the place where the data were acquired.

References

1. Dolh H, Loane M, Game E; European Surveillance of Congenital Anomalies (EUROCAT) Working Group. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 2011;123:841–9.
2. Tegnander E, Williams W, Johansen OJ, Blaas HG, Elk-Nes SH. Prenatal detection of heart defects in a non-selected population of 30,149 fetuses—detection rates and outcome. Ultrasound Obstet Gynecol 2006;27:252–65.
3. Game E, Stoll C, Clementi M; Euroscan Group. Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries. Ultrasound Obstet Gynecol 2001;17:386–91.
4. Bensemlali M, Stirnemann J, Le Bidois J, et al. Discordances between pre-natal and post-natal diagnoses of congenital heart diseases and impact on care strategies. J Am Coll Cardiol 2016;68:921–30.
5. Mozumdar N, Rowland J, Pan S, et al. Diagnostic accuracy of fetal echocardiography in congenital heart disease. J Am Soc Echocardiogr 2020;33:1384–90.
6. Yeo L, Romero R. Color and power Doppler combined with Fetal Intelligent Navigation Echocardiography (FINE) to evaluate the fetal heart. Ultrasound Obstet Gynecol 2017;50:476–91.
7. Fallet-Bianco C, De Be I, Desilets V, Ollivry LL. No. 365-fetal and perinatal autopsy in prenatally diagnosed fetal abnormalities with normal chromosome analysis. J Obstet Gynaecol Can 2018;40:1358–66.e5.
8. Struksnaes C, Blaas HGK, Elk-Nes SH, Vogt C. Correlation between prenatal ultrasound and postmortem findings in 1029 fetuses following termination of pregnancy. Ultrasound Obstet Gynecol 2016;48:232–8.
9. Thayyl S, Sebire NJ, Chitty LS, et al. Postmortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet 2013;382:223–33.
10. Lewis C, Riddington M, Hill M, et al. Availability of less invasive prenatal, perinatal and paediatric autopsy will improve uptake rates: a mixed-methods study with bereaved parents. BJOG 2019;126:745–63.
11. Sorop-Florea M, Cureau RN, Ioana M, et al. The importance of perinatal autopsy. Review of the literature and series of cases. Rom J Morphol Embryol 2017;58:323–37.
12. Shojania KG, Burton EC. The vanishing nonforensic autopsy. N Engl J Med 2008;358:873–5.
13. Shelerdine SC, Sebire NJ, Arthus OJ. Perinatal post-mortem ultrasound (PMUS): radiological-pathological correlation. Insights Imaging 2019;10:81.
14. Kang X, Carlin A, Cannie MM, Sanchez TC, Jani JC. Fetal postmortem imaging: an overview of current techniques and future perspectives. Am J Obstet Gynecol 2020;223:493–515.
15. Sandiale I, De Catte L, Moerman P, et al. A morphometric study of the human fetal heart on post-mortem 3-tesla magnetic...
resonance imaging. Prenat Diagn 2013;33:318–27.
16. Sandaite I, Dymarkowski S, De Catte L, et al. Fetal heart pathology on postmortem 3-T magnetic resonance imaging. Prenat Diagn 2014;34:223–9.
17. Kang X, Cannie MM, Arthurs OJ, et al. Postmortem whole-body magnetic resonance imaging of human fetuses: a comparison of 3-T vs. 1.5-T MR imaging with classical autopsy. Eur Radiol 2017;27:3542–63.
18. Votino C, Jani J, Verhoye M, et al. Postmortem examination of human fetal hearts at or below 20 weeks’ gestation: a comparison of high-field MRI at 9.4 T with lower-field MRI magnets and stereomicroscopic autopsy. Ultrasound Obstet Gynecol 2012;40:437–44.
19. Taylor AM, Sebire NJ, Ashworth MT, et al. Postmortem cardiovascular magnetic resonance imaging in fetuses and children: a masked comparison study with conventional autopsy. Circulation 2014;129:1937–44.
20. Hellkvist A, Wikström J, Mulic-Lutvica A, et al. Postmortem magnetic resonance imaging vs autopsy of second trimester fetuses terminated due to anomalies. Acta Obstet Gynecol Scand 2019;98:865–76.
21. Månsson LG. Methods for the evaluation of image quality: a review. Radiat Prot Dosim 2000;90:89–99.
22. Hutchinson JC, Kang X, Shelmerdine SC, et al. Postmortem microfocus computed tomography for early gestation fetuses: a validation study against conventional autopsy. Am J Obstet Gynecol 2018;218:445.e1–12.
23. Hutchinson JC, Arthurs OJ, Ashworth MT, et al. Clinical utility of postmortem microcomputed tomography of the fetal heart: diagnostic imaging vs macroscopic dissection. Ultrasound Obstet Gynecol 2016;47:58–64.
24. Shelmerdine SC, Simcock IC, Hutchinson JC, et al. Postmortem microfocus computed tomography for noninvasive autopsies: experience in >250 human fetuses. Am J Obstet Gynecol 2021;224:103.e1–15.
25. Shelmerdine SC, Arthurs OJ, Gilpin I, et al. Is traditional perinatal autopsy needed after detailed fetal ultrasound and post-mortem MRI? Prenat Diag 2019;39:818–29.
26. Gaensbacher S, Waldoher T, Beržánovich A. The slow death of autopsies: a retrospective analysis of the autopsy prevalence rate in Austria from 1990 to 2009. Eur J Epidemiol 2012;27:577–80.
27. Pechet TCM, Girard G, Walsh B. The value of teleradiology represents for Europe: a study of lessons learned in the U.S. Eur J Radiol 2010;73:36–9.

Author and article information
From the Division of Obstetrics and Fetomaternal Medicine, Department of Obstetrics and Gynecology (Drs Ulm and Muin), Department of Biomedical Imaging and Image-Guided Therapy (Drs Dovjak, Prayer, Weber, and Berger-Kulemann), Department of Pathology (Dr Scharrer), and Department of Cardiac Surgery (Dr Zimpfer), Medical University of Vienna, Vienna, Austria.
Received Oct. 26, 2020; revised Feb. 16, 2021; accepted Feb. 18, 2021.
The authors report no conflict of interest.
This study was presented at the 29th World Congress on Ultrasound in Obstetrics and Gynecology of the International Society of Ultrasound in Obstetrics and Gynecology, Berlin, Germany, October 12–16, 2019.
Corresponding author: Barbara Ulm, MD. barbara.ulm@meduniwien.ac.at
Supplementary Material

Autopsy and magnetic resonance imaging protocols, further cardiac pathologies and details on fetal malformations

A. Protocol for fetal and perinatal autopsies

A senior fetal and perinatal pathologist (A.S.) with more than 15 years of experience in fetal and perinatal pathology performed autopsy in all cases according to a predesigned protocol.

The protocol followed (with individual modification if necessary) the following:

- Handbook of Pediatric Autopsy Pathology, 2nd Edition, Springer Media, ISBN 978-1-4614-6710-6
- Keeling’s Fetal and Neonatal Pathology, 5th Edition, Springer Media, ISBN 978-3-319-19207-2
- Autopsie Leitfaden, Facultas Verlag, ISBN978-3-7089-1885-3
- Pediatric Cardiology, 3rd Edition, Churchill Livingston /Elsevier Ltd ISBN 978-0-7020-3064-2

Autopsy (selected for internal examination and cardiovascular system) included at minimum, but was not restricted to:

Internal examination

- Comment on cranial, thoracic and abdominal cavities
- Retention and fixation of the brain where practicable
- Systematic description of major organs and tissues
- Specific reference to ductus arteriosus and umbilical vessels
- Weights of all major organs in a digital balance (to 0.1 g)
- Comment on muscle and skeleton

Cardiovascular system

- Pericardium including effusion
- Myocardium: atria and ventricles
- Coronary arteries including orifices
- Valves
- Aorta
- Major branches of aorta
- Pulmonary arteries and veins
- Inferior and superior vena cavae, other major and systemic veins

B. Protocol for 3Tesla postmortem magnetic resonance imaging

Imaging parameter for cardiac 3Tesla postmortem magnetic resonance imaging on the 3T scanner SIEMENS MAGNETOM VIDA-XT-128, Siemens, Erlangen, Germany. Examination protocols were adjusted to the pathologies found in prenatal ultrasound and previous fetal magnetic resonance imaging examinations. In the first 18 months of postmortem imaging we used a T2-weighted sequence in the axial and coronal plane to assess the body. Since the end of 2013, we in addition used a 3-dimensional (3D) constructive interference in steady state (CISS) sequence enabling multiplanar reconstructions in various planes.

C. Further cardiac pathologies seen on 3T pmMRI

D. Details on multiple fetal malformations and skeletal dysplasias (Supplemental Table 2)

Sequence	Voxel size	TE	TR	FOV	SL	FA
2D T2-weighted	0.3×0.3×0.4 mm³	122.0 ms	1000 ms	130–140 mm	0.4 mm	100°
3D CISS	0.4×0.4×0.4 mm³	3.17 ms	7.04 ms	157–230 mm	0.4 mm	46°

FA, flip angle; FOV, field of view; SL, slice thickness; TE, echo time; TR, repetition time.

Ulms et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL FIGURE 1
Atrial septal defect

Postmortem T2-weighted 4-chamber view in a fetus with an atrial septal defect type I in gestational week 23+3. The defect represented by asterisk between the RA and LA can be visualized very well. In addition, the blood-fluid level is continuous through both atria.

LA, left atrium; RA, right atrium.
Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.

SUPPLEMENTAL FIGURE 2
Tetralogy of Fallot

Postmortem T2-weighted parasagittal slice of a fetus with tetralogy of Fallot in gestational week 36+0. The overriding aorta represented by asterisk can be seen well.

Ao, ascending aorta.
Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL FIGURE 3
Hypoplastic left heart

Postmortem T2-weighted 4-chamber view in a fetus with hypoplastic left heart syndrome in gestational week 20+6. The enlarged RA and the RV can be seen well. The asterisk marks the hypoplastic left ventricle which is only minimally filled with fluid.

RA, right atrium; RV, right ventricle.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.

SUPPLEMENTAL FIGURE 4
Hypoplastic right heart

Postmortem T2-weighted 4-chamber view in a fetus with hypoplastic right heart syndrome in gestational week 23+5. The arrow marks the hypoplastic right ventricle.

LV, left ventricle.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL FIGURE 5
Pulmonary atresia

Postmortem T2-weighted coronal slice of a fetus with pulmonary atresia in gestational week 18+6. The asterisk marks the thin pulmonary trunk, and the arrows the course of the hypoplastic right pulmonary artery.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.

SUPPLEMENTAL FIGURE 6
Truncus arteriosus

T2-weighted oblique-sagittal reconstruction of a fetus with truncus arteriosus communis in gestational week 26+1. Both the ascending aorta, and the pulmonary trunk arise from a common trunk (arrow).

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL FIGURE 7
Ventricular septal defect

Postmortem T2-weighted 4-chamber view in a fetus with a ventricular septal defect represented by asterisk in gestational week 23+2. The arrows mark the lung veins on both sides.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.

SUPPLEMENTAL FIGURE 8
Coarctation of aorta

T2-weighted oblique-sagittal view (parallel to the aortic arch) of a fetus with coarctation of the aorta in gestational week 33+0. The tapering in the proximal descending aorta and the coarctation (arrow) can be delineated well. The 3 asterisks mark the supraaortal branches (brachiocephalic trunk, left common carotid artery, and left subclavian artery).

Ao, descending aorta.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
Overview of autopsy findings in fetuses where multiple malformations or skeletal dysplasia are noted

This table summarizes the main autopsy findings in fetuses with multiple malformations or skeletal dysplasia, as noted on Supplemental Table 2. Each entry includes the case ID, main findings, and additional details relevant to the specific case.

Case ID from Supplemental Table 2	Main autopsy findings (summative).
15⁺₂, 37 g, IUFD	Flexion deformity at the second and fourth fingers (bilateral)
	Cardiac malformation: tetralogy of Fallot
15⁺₂, 50 g, TOP	Sequence of the missing umbilical cord
	Amniotic peritoneal tube with exposed abdominal organs (liver, spleen, intestine, stomach)
	Split pelvis
	External genitals and internal genital organs and the urinary bladder cannot be displayed
	Ventricular septal defect
	Lumbar spine scoliosis
	External rotation of both legs, clubfeet
15⁺₅, 72 g, TOP	Skin edema, hygroma colli, hypertelorism, deep set ears, bilateral cleft lip and palate
	Tetralogy of Fallot with right cardiac hypertrophy, pulmonary stenosis, ventricular septal defect, overriding aorta
	Left-sided diaphragmatic hernia with intrathoracic left liver lobe, parts of the stomach and spleen
	Hypoplastic lung (left)
17⁺₂, 95 g, TOP	Discrete craniofacial dysmorphia
	Omphalocele with eversion of the entire gastrointestinal tract to sigmoid colon, spleen, liver, pancreas and left-sided diaphragmatic defect
	Ventricular septal defect, coarctation of the aorta
	Dilated internal cerebrospinal fluid spaces and cystic choroid plexus
18⁺₆, 216 g, TOP	Hydrocephaly, complex malformation syndrome,
	Dysplastic thumb (right), thymic agenesis
	Monolobar right lung
	Hypoplastic right heart syndrome, atresia of the tricuspid and the pulmonary valve, narrow truncus pulmonalis, large atrial septal defect
	Arteria lusoria
	Renal agenesis (right), discoid adrenal gland (right)
	Uterine agenesis
	Scoliosis
	Single umbilical artery (left-sided), hypoplastic placenta
19⁺₃, 200 g, TOP	Discrete external dysmorphism: minimal hypertelorism, micrognathia
	Pes equinovarus on both sides
	Subcutaneous edema, discrete pleural effusion on both sides
	Discrete lung hypoplasia on both sides, 2-lobed right lung
	Hydrops
	Free ascending colon
	Pelvic testicles on both sides

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021. (continued)
Case ID from Supplemental Table 2	Main autopsy findings (summative).
20+6, 290 g, TOP	Typical Potter facies in anhydramnios, deformed extremities and contractures, Hygroma colli Double-outlet right ventricle with relatively small left ventricle, ventricular septal defect and right-sided aortic arch Bilateral lung hypoplasia, hydrothorax Accessory spleen, spinal malformation, Bilateral renal agenesis
21+2, 347 g, TOP	Deep set ears Complete agenesis of corpus callosum Hypertelorism, microretrognathia Hexadactyly bilateral, upper and lower extremities Omphalocele with herniated loops of the small intestine/Meckel’s diverticulum Ventricular septal defect Ureter duplex (left) Bicornuate uterus
21+6, 560 g, TOP	Oligohydramnios sequence: Potter facies, contractures of large joints, rocker bottom feet both sides, generalized subcutaneous edema, Bilateral hypoplastic kidneys with small cysts, small ureters, small urinary bladder Cystic hygroma colli (especially dorsal) Narrow thorax, bilateral lung hypoplasia Coarctation of the aorta Cardiac dilation, stasis organs
22+1, 280 g, TOP	Occipital encephalocele (3 cm in diameter); short neck, high palate Kyphoscoliosis with hemispherical and block vertebrae (thoracolumbar) Diaphragmatic aplasia (left) with thoracic displacement of the left liver, Pancreas, spleen, gastrointestinal tract to descending colon, mediastinal shift and bilateral lung hypoplasia Ventricular septal defect, dysphagia lusoria Pelvic testicles on both sides
22+2, 380 g, TOP	Massive hygroma colli Hyperelorism Left-sided diaphragmatic hernia with an intrathoracic stomach, spleen, loops of small intestine, and left liver lobe Coarctation of the aorta Ventricular septal defect Bilateral pulmonary hypoplasia Bilateral multicystic hypoplastic kidneys Bicornuate uterus

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021. (continued)
Overview of autopsy findings in fetuses where multiple malformations or skeletal dysplasia are noted on Supplemental Table 2 (continued)

Case ID from Supplemental Table 2	Main autopsy findings (summative).
22+3, 365 g, TOP	Craniofacial dysmorphia with atypical Naso-orbital complex, hypotelorism, short eyelid slits, small mouth, Narrow lips, small chin Ventricular septal defect, right cardiac dilation, Prominent ductus arteriosus Botalli and discrete hypoplasia/coarctation of the aortic arch Bilateral plexus cysts Diaphragmatic furrows of the liver, Meckel’s diverticulum Small adrenal glands, small thyroid and pancreas Generalized congestive hyperemia, subcapsular liver hematoma
23+2, 486 g, TOP	OEIS complex: omphalocele, cloacal extrophy, anal atresia, intestinal malrotation, lumbosacral meningocele Secondary scrotum fissus Pelvic kidney on the right side Tetralogy of Fallot with right-sided aortic arch Upper extremity contractures Clubfeet (left>right)
23+2, 560 g, TOP	Hydrocephaly, small face skull Deep set ears, flexion deformities, prominent heels Complex cardiac defect with atrial and ventricular septal defect Bilobar lung on the right side Esophageal atresia type IIIb according to Vogt Ascites Single umbilical artery
23+3, 505 g, TOP	Pierre Robin sequence with craniofacial dysmorphia, Hydrocephaly, low set ears bilateral, hypertelorism, antimongoloid lid axis position Microstomy, micrognathia, median cleft palate Atrial septal defect I Massive bilateral pulmonary hypoplasia
23+4, 612 g, Feticide	Left isomerism with Dandy Walker syndrome Right-sided aortic arch and descending aorta, Double-outlet right ventricle with ventricular septal defect Left isomerism of tracheal bifurcation (with 2-lobed lungs) and isomerism of cardiac auricles Partial situs inversus abdominis: stomach, spleen and pancreas on the right side Malrotation of the mesenteric root Ascites

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021. (continued)
Overview of autopsy findings in fetuses where multiple malformations or skeletal dysplasia are noted on Supplemental Table 2 (continued)

Case ID from Supplemental Table 2	Main autopsy findings (summative).
24+1, 515 g, TOP	Brachycephaly, bilateral cleft lip and palate, semilobar holoprosencephaly
	Atrial septal defect II
	Massive hepatosplenomegaly with bleeding and necrosis of the liver
	Relatively large kidneys with prominent renulation, atypical renal pelvis, hypoplastic ureters, small urinary bladder
	Small adrenal glands, small lungs
	Cardiac dilation, ascites, pericardial effusion
	Cantilever feet
25+6, 1040 g, Feticide	Skeletal dysplasia (clinical: diastrophic dysplasia)
	External dysmorphism with significantly shortened extremities (especially proximal), bilateral cradle feet
	Hypertelorism, prominent forehead, sunken nasal saddle, small chin
	Diastrophic dysplasia,
	Coarctation of the aorta (30% lumen reduction)
	Subcutaneous edema
26+4, 1320 g, NND	Hydrops with massive pleural effusion on both sides (drained) and massive cor contractum
	Pericardial effusion
	Bilateral pulmonary hypoplasia, interstitial (finely lobulated)
	Pulmonary emphysema, multifocal pulmonary hemorrhage, mediastinal emphysema
	Cardiovascular malformation: double aortic arch with
	retroesophageal “ring formation” (left aortic arch hypoplastic with atresia before DAB), bicuspid aortic valve
	Anasarca (head and neck stressed)
29+0, 836 g, NND	Condition after anhydramnios: small chin, cradle feet on both sides
	All long tubular bones shortened
	Massive bilateral pulmonary hypoplasia
	Hypoplastic ureters and bladder
	Large atrial septal defect II, cardiac hypertrophy (right heart), cardiac dilation
	Slightly hypoplastic cystic kidneys on both sides (see histo)
	Atypical “overlapping” toe line on both sides
	Anasarca, hydrothorax, hydrops universalis
	Ambiguous external genitalia, testicular rudiments in the inguinal canal
30+5, 1420 g, feticide	Heterozygous deletion 17q25.3 with cleft lip and palate and vitium cordis
	Hypertelorism
	4-finger furrow on both sides
	Bilateral cleft lip and palate
	Complex cardiac defect (Double-outlet right ventricle with ventricular septal defect and small left ventricle)
	Chest wall hematoma, soft-tissue hematoma mediastinal, hematothorax, hematopericardium
Overview of autopsy findings in fetuses where multiple malformations or skeletal dysplasia are noted on Supplemental Table 2 (continued)

Case ID from Supplemental Table 2	Main autopsy findings (summative).
31 +4, 1250 g, feticide	Semilobar holoprosencephaly and arhinencephaly
	Microcephaly, microphthalmia and hypotelorism, missing nasal septum, high, pointed palate
	Right hand quadruple with preaxial appendages, left hand with syndactyly 2/3
	Type I esophagotracheal fistula
	Ventricular septal defect
	Horseshoe kidneys
	Hypoplastic placenta with single umbilical artery
31 +6, 2650 g, feticide	Multiple malformations and complex cardiac malformation
	External dysmorphism: 4-finger furrow, hydrocephalic skull configuration
	Fontanelles with bilateral osseous deficiency, plump nasal saddle (missing nasal bone), slight hypertelorism and mongoloid lid axis position, cradle feet on both sides
	Hydrocephalus internus et externus, old media infarction with massive reduction of the cerebral cortex
	Atrioventricular septal defect, persistent ductus arteriosus Botalli, coarctation of the aorta
	Hematopericardium
	Atypical big toes on both sides, conical fingers and prominent fingertips
33 +0, 960 g, NND	Dysmorphism suspicious of trisomy 18: dolichocephaly, dysplastic auricles on both sides,
	narrow lips, small mouth, hypertelorism, misalignment of the fingers on both sides (flexion contractures),
	prominent calcaneus on both sides
	Esophageal atresia type 3b according to Vogt (proximal blind sac, distal fistula)
	Perimembranous ventricular septal defect, persistent ductus arteriosus Botalli, cardiac hypertrophy, coarctation of aorta
	Diaphragmatic furrows of the liver, pronounced square lobe with small calcification
	Small adrenal glands with premature involution, sparsely renaled kidneys
	Noticeably narrow/contracted small and large intestines (with the exception of the oral small intestine), Meckel’s diverticulum
35 +2, 2525 g, IUFD	Female stillbirth
	Anhydramnios sequence: Potter facies, dysplastic auricles
	Bell-shaped narrow thorax, bilateral lung hypoplasia and lung bleedings
	Contractures, scoliosis
	Massive splenomegaly with no discernible white pulp
	Cardiac dilatation (cardiomyopathy), especially on the left side, pericardial effusion,
	Hypoplastic kidneys, secondary hypoplasia of the ureters and urinary bladder
	Hydropic placenta
	Relatively short extremities, large fontanelles

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021. (continued)
Case ID from Supplemental Table 2	Main autopsy findings (summative).
36+0, 1760 g, feticide	Cardiac malformation: double-outlet right ventricle and ventricular septal defect, overriding aorta
	Suspicious for posterior cleft palate and suspicious for Pierre Robin syndrome
	Single umbilical artery
	Left kidney shifted caudally
	Microretrognathia
	Mega cisterna magna and pontocerebellar hypoplasia
	Cerebellar hypoplasia, Pons hypoplasia
36+4, 1790 g, NND	Suspected thanatophoric skeletal dysplasia type II
	Brachydactyly
	Generalized shortening of the long bones
	Bell-shaped, narrow thorax; Pulmonary hypoplasia and hemorrhage
	Massive secondary bilateral pulmonary hypoplasia
36+4, 2930 g, NND	Thanatophoric dwarfism type I with typical skeletal deformity
	Temporal lobe hypertrophy bilateral, symmetrical, mediobasal
	Cortical development disorders in dorsal parts of the brain
	Megalencephalic malformation syndrome
	Severe bilateral lung hypoplasia
	Severe acrocyanosis
37+4, 1651 g, IUFD	Suspicious for Roberts syndrome, craniofacial dysmophia
	Suspicious for musculoskeletal malformation syndrome (bilateral cleft lip and palate cleft; exophthalmos; deep-seated auricles; forearm/hand malformation, anal atresia)
	Trilobar lung (left side)
	Retrognathia, mandibular hypoplasia, bilateral phocomelia of the upper extremities
	Accessory spleen
	Hypospadias
37+5, 2140 g, NND	Proportionate generalized hypotrophy, male newborn
	Craniofacial dysmophia with microcephaly, high forehead, microphthalmia, deep nasal root, hypotelorism
	Deep-seated ears, bilateral complete cleft lip and palate
	Semilobar holoprosencephaly, arhinencephaly, small pons with thickened tectum and tegmentum
	Complex cardiac defect with single outlet right ventricle, pulmonary atresia and ventriculoarterial discordance, ventricular septal defect, small atrial septal defect II and hypoplasia of the pulmonary artery
	Incomplete lung lobation (right side)
	Meckel’s diverticulum
	Hydronephrosis dext. with ureter fissus and megahydroureter and ureteral stenosis at the urinary bladder ostium
Overview of autopsy findings in fetuses where multiple malformations or skeletal dysplasia are noted on Supplemental Table 2. (continued)

Case ID from Supplemental Table 2	Main autopsy findings (summative).
	Hexadactyly bilateral, upper and lower extremities
	Maldescensus testis bilateral
	Hypoplastic placenta with single umbilical artery

IUFD, intrauterine fetal death; NND, neonatal death; TOP, termination of pregnancy.

Ulms et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL TABLE 1

Detailed characteristics of the study population (n = 222)

Parameters	Values
Maternal characteristics (n = 220)	
Maternal age, y	32 (18—51)
Prepregnant body mass index, kg/m²^a	24.5 (17.5—52.2)
Obese (body mass index > 30)	35/199 (17.6)
Gravidity	2 (1—9)
Parity	1 (0—7)
Smoker	29 (13.2)
Twin pregnancy^b	9/220 (4.1)
Complications of placenta or umbilical cord^c	9 (4.1)^d
Complications of twinning^d	8 (3.6)^d
IUFD or NND unexplained	3 (1.4)^d
Mode of delivery and fetal characteristics (n = 222)	
+ vaginal (after prostaglandin induction of labor)	208 (93.7)
+ cesarean delivery	14 (6.3)
Male fetus	104 (46.8)
Fetal weight (g)	444 (10—3800)
Fetal length (cm)	27 (5—55)

Values are expressed as median (range) or number (percentage).

^a In 21 cases, the maternal body mass index was unknown (21/220, 9.5%);^b 11 fetuses or neonates were included in the 3T pmMRI study, and 7 healthy neonates were not included;^c Included placental abruption and umbilical cord knot, without problems of twinning;^d None of these cases exhibited a fetal or neonatal congenital heart defect at autopsy;^e Included 1 dichorionic twin pregnancy with late miscarriage of both fetuses, 2 monochorionic twin pregnancies with intrauterine death of 1 twin and survival of the other, 2 monochorionic twin pregnancies with early twin-twin transfusion syndrome and demise of all 4 fetuses (3 included in the 3T pmMRI study), and 1 monochorionic twin pregnancy after laser treatment of twin-twin transfusion syndrome and demise of 1 twin.

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL TABLE 2
Details of fetal cardiac MFs evaluated by prenatal ultrasound, 3Tesla postmortem magnetic resonance imaging, and autopsy

GA	BW (g)	Mode of death	Prenatal ultrasound	3T pmMRI	Autopsy	Additional Anomalies	Interval death to pmMRI/autopsy (d)	Degree of maceration
13+1	10.4	TOP	ND	1 heart, 2 AoA	1 heart, 2 AoA	Craniothoracopagus	2/3	0
13+2	25	IUFD	abnormal	ND	TOF	Trisomy 18	0/4	2
14+1	28	TOP	ND	ND	AIST	45, X0, hydrothorax, hydropic	0/4	0
14+2	22	TOP	ND	ND	AIST	Trisomy21, cystic hygroma	1/5	0
14+4	95	TOP	ND	AVSD, RV>LV, AIST	AVSD, AIST		0/7	0
15+1	55	TOP	ND	AIST	AIST	Megacystis	0/4	0
15+2	37	IUFD	HLHS	ND	TOF	Trisomy18, mult. MF	2/5	0
15+2	50	TOP	ND	ND	VSD	Mult. MF	1/4	0
15+4	87	TOP	AVSD	AVSD	VSD	Ellis-van Creveld syndrome	0/1	0
15+5	72	TOP	ND	ND	TOF	DH (left), mult. MF	1/0	0
15+6	79	TOP	ARSA	normal/limited	normal	DH (left), spina bifida	4/5	0
16+3	113	TOP	AVSD	normal	normal	Trisomy 21	1/4	0
16+6	145	TOP	VSD	VSD	VSD	Trisomy 21	1/4	0
17+2	95	TOP	Ti	AIST	AIST, VSD	Trisomy 18, mult. MF	1/3	0
17+3	110	TOP	VSD	ND	VSD	Trisomy 18, omphalocele	1/2	0
17+4	150	TOP	VSD	ND	normal	45,X0, hydropic	2/2	0
18+0	202	TOP	ASVD, Ti	AVSD, RA dilated, RV hypertrophy	AVSD, RV hypertrophy	Trisomy 21, DWM	0/3	0
18+3	205	TOP	ND	AVSD	normal	Trisomy 21	2/3	0
18+3	225	TOP	AVSD	AVSD, ASD II	AVSD, ASD II	Trisomy 21-Mosaic	0/3	0
18+4	223	TOP	normal	normal	VSD, AIST	Trisomy21	1/4	0
18+6	216	TOP	HRHS	HRHS, hypoplastic PA	HRHS, hypoplastic PA, ASD	Mult. MF	4/5	0
19+3	200	TOP	VSD	normal	normal	Mult. MF, hydropic	0/3	0
20+2	270	TOP	HRHS	HRHS	HRHS	no	1/5	0

Ulms et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL TABLE 2
Details of fetal cardiac MFs evaluated by prenatal ultrasound, 3Tesla postmortem magnetic resonance imaging, and autopsy (continued)

GA	BW (g)	Mode of death	Prenatal ultrasound	3T pmMRI	Autopsy	Additional Anomalies	Interval death to pmMRI/autopsy (d)	Degree of maceration	
20+6	290	TOP	DORV, hypoplastic	DORV, LV not filled, LV, hypoplastic aorta	DORV, VSD, hypoplastic, LV, right AoA	16q22.2 deletion, hydrothorax, mult. MF	1/2	0	
21+2	347	TOP	Borderline LV	VSD	VSD	Trisomy 13, mult. MF	3/4	0	
21+2	764	TOP	HLHS, MI, LA	HLHS, LA	HLHS, LA	Pericardial effusion	1/2	0	
21+3	206	TOP	normal	AIST	AIST	FGR	1/5	0	
21+6	560	TOP	VSD; hypoplastic aorta	PLSVC	AIST	Mult. MF	1/2	0	
22+0	591	Feticide	Rhabdomyoma	AIST	AIST, diluted DAB	AIST, dilated DAB	Trisomy 18-Mosaic, mult. MF	2/3	0
22+1	280	TOP	normal	VSD	VSD	DH (left), mult. MF	0/2	0	
22+2	380	TOP	normal	normal	AIST, VSD	DH (left), mult. MF	0/5	0	
22+3	365	TOP	VSD, hypoplastic LV,	VSD, dilated RV,	VSD, dilated RV,	Trisomy 18-Mosaic	2/3	0	
22+6	605	Feticide	AVSD	AVSD	AVSD, AIST	Trisomy 21	1/2	1	
23+2	486	TOP	ND	TOF, right AoA	TOF, right AoA	Mult. MF	0/2	0	
23+2	560	TOP	VSD	VSD; ASD	VSD, ASD	Trisomy 18, mult. MF	0/3	0	
23+2	740	Feticide	VSD, hypoplastic Ao,	VSD, absent AoA,	VSD, hypoplastic Ao,	Microdeletion 22q11.2	2/6	0	
23+3	505	TOP	VSD, ASD	ASD	ASD I	3p-minus-Sy., mult. MF	3/5	0	
23+4	612	Feticide	Heterotaxy, VSD	DORV, VSD, overriding aorta	DORV, VSD, right AoA	Mult. MF	3/6	2	
23+5	448	TOP	HRHS	HRHS	HRHS	Microdeletion 22q11.2	1/2	0	
23+5	530	Feticide	Absent PV, dilated	Absent PV, dilated, PA's, abs.DAB, VSD	Absent PV, dilated, PA's, abs.DAB, VSD	Trisomy 13, mult. MF	0/5	0	
24+1	515	TOP	VSD, dilated PA, Hypoplastic aorta	AIST	ASD	Trisomy 13, mult. MF	0/5	0	
25+2	670	Feticide	normal	normal	AIST	Microdeletion 4q21.3q23	2/3	2	

Ulm et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
GA	BW (g)	Mode of death	Prenatal ultrasound	3T pmMRI	Autopsy	Additional Anomalies	Interval death to pmMRI/autopsy (d)	Degree of maceration
25+6	870	Feticide	valvular PS, dysplastic	hypoplastic PA, TV, hypoplastic RV	Valvular PS	no	2/5	3
25+6	1040	Feticide	normal	normal	AIST	Skeletal dysplasia	2/4	0
26+0	814	Feticide	d-TGA, VSD, ASD	d-TGA, ASD II	DH (left)^a	1/4	1	
26+1	880	Feticide	Common arterial trunk, VSD	trunk, VSD	Common arterial trunk, VSD	Microdeletion 22q11.2	2/3	2
26+4	1320	NND	Right AoA	Double AoA	Double AoA	Mult. MF	1/1	0
27+2	484	Feticide	AVSD, cardiomegaly	ND	AVSD, ASD II	DC twins, FC 2 mo before delivery, hydropic	60/60	3
27+6	870	Feticide	VSD, dilated PA	Dilated DAB, hypoplastic aorta	VSD, AIST	Trisomy 18-Mosaic	2/4	1
29+0	836	NND	Valvular PS, VSD	AIST	ASD II, right heart hypertrophy	Skeletal dysplasia, mult. MF, hydrothorax^a	0/4	0
30+5	1420	Feticide	DORV, hypoplastic LV, hypoplastic aorta	DORV, hypoplastic LV, hypoplastic aorta	VSD	Microdeletion 17q25.3	2/4	3
31+2	1380	IUFD	VSD	VSD	VSD	Polyhydramnios	2/3	1
31+4	1250	Feticide	VSD	VSD	VSD	Trisomy 13, mult. MF	2/4	3
31+6	2650	Feticide	AVSD	AVSD	AVSD, AIST	Trisomy 21, mult. MF	1/2	1
32+6	1456	NND	VSD	PL SVC	PL SVC	Triploidy, hydropic	1/3	0
33+0	960	NND	AIST, VSD	AIST, VSD	AIST, VSD	Trisomy 18, mult. MF	1/1	0
34+5	2500	NND	CMP: cardiomegaly	CMP: cardiomegaly	CMP: cardiomegaly	Hydropic, hydrothorax^a	1/1	0
35+2	2525	IUFD	CMP: Cardiomegaly, myocardial hypertrophy thick, solid foramen ovale	CMP: Cardiomegaly	CMP: cardiomegaly	Anhydramnios, mult. MF, pericardial effusion^b	0/1	0
36+0	1760	Feticide	normal	VSD, TOF/DORV, overriding aorta	VSD, DORV, overriding aorta	Trisomy 18, mult. MF	1/5	3
36+3	2140	NND	TOF, VSD, PS	DORV, PLSVC	TOF, PS, PLSVC, atretic DAB	Renal agenesis, anhydramnios	0/3	0

Ulmy et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL TABLE 2

Details of fetal cardiac MFs evaluated by prenatal ultrasound, 3Tesla postmortem magnetic resonance imaging, and autopsy (continued)

GA	BW (g)	Mode of death	Prenatal ultrasound	3T pmMRI	Autopsy	Additional Anomaliesa	Interval death to pmMRI/autopsy (d)	Degree of maceration
36 + 4	1790	NND	normal	VSD	normal	Skeletal dysplasia, mult. MF	3/5	0
36 + 4	2930	NND	ASD II	Normal	normal	Skeletal dysplasia, microthorax	2/6	0
37 + 4	1651	IUFD	ASD	normal	normal	Mult. MF	1/4	2
37 + 5	2140	NND	ND	Complex SV, ASD, VSD, Aorta from RV, hypoplastic PA	Complex SV, ASD, VSD, Aorta from RV, hypoplastic PA	Trisomy13, mult. MF	0/2	0
38 + 1	3110	NND	DORV	Aorta > PA	normal	Heterotaxy, DH (right)	0/1	0

All cases that contained at least 1 abnormal cardiac finding in either imaging modality (prenatal ultrasound, cardiac 3Tesla postmortem magnetic resonance imaging) or at autopsy are included.

AIST, aortic isthmus stenosis; AoA, aortic arch; AS, aortic stenosis; ASD, atrial septal defect; AVSD, atrioventricular septal defect; CMP, cardiomyopathy; DAB, ductus arteriosus Botalli; DC, dichorionic; DH, diaphragmatic hernia; DORV, double-outlet right ventricle; d-TGA, d-transposition of the great arteries; FO, foramen ovale; HLHS, hypoplastic left heart syndrome; HRHS, hypoplastic right heart syndrome; IUFD, intrauterine fetal death; LA, left atrium; LV, left ventricle; MI, mitral valve insufficiency; mult., multiple; ND, nondiagnostic; NND, neonatal death; PA, pulmonary artery; PLSVC, persistent left superior vena cava; PS, pulmonary artery stenosis; PV, pulmonary valve; RA, right atrium; RV, right ventricle; SV, single ventricle; VSD, ventricular septal defect; TI, tricuspid valve insufficiency; TOF, tetralogy of Fallot; TOP, termination of pregnancy; TV, tricuspid valve.

a Fetuses with extracardiac or intrathoracic abnormalities.

Ulmi et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.
SUPPLEMENTAL TABLE 3
Problems encountered at nondiagnostic and severely limited cardiac 3Tesla postmortem magnetic resonance imaging examinations, when autopsy was diagnostic

GA (wk/d)	Weight (g)	D after death, mode of death	Maceration score	Body shape/additional MFs/limitations to 3T pmMRI	Genetic findings	Cardiac 3T pmMRI	Autopsy: cardiac findings
13+2	25 g	4 d after IUFD	Score 2	normal/NT 4.4 mm	Trisomy 18	ND	TOF
14+1	28 g	4 d after TOP	Score 0	severe bilateral hydrothorax/NT 12 mm	45, XO	ND	CoA
14+1	70 g	2 d after miscarriage	Score 0	severely deformed body	-	ND	normal
14+2	22 g	4 d after TOP	Score 0	severe FGR	Triploidy	ND	CoA
14+4	44 g	2 d after TOP	Score 0	multiple severe extrathoracic MF	-	ND	normal
15+0	37 g	5 d after IUFD	Score 2	multiple severe extrathoracic MF	Trisomy 18	ND	TOF
15+0	70 g	3 d after TOP	Score 1	blurry images, epidermolysis bullosa	abnormal	ND	normal
15+2	50 g	4 d after TOP	Score 0	multiple intra- and extrathoracic MF	-	ND	VSD
15+5	72 g	1 d after TOP	Score 0	ventricles collapsed, left DH, mult. MF	normal	ND	TOF
15+6	79 g	5 d after TOP	Score 2	ventricles collapsed and crushed, multiple severe extrathoracic MF; limited diagnostic value	normal	limited	normal
16+1	83 g	3 d after TOP	Score 0	ventricles collapsed and dislocated, masked anatomy, hydrops; limited diagnostic value	45,X0	limited	normal
16+4	33 g	4 d after miscarriage	Score 3	deformed body shape	-	ND	normal
16+5	42 g	6 d after IUFD	Score 3	deformed body shape	-	ND	normal
17+1	72 g	5 d after IUFD	Score 3	spongy structures	-	ND	normal
17+2	50 g	3 d after IUFD	Score 3	severely deformed body	-	ND	normal
17+4	150 g	2 d after TOP	Score 0	compression of the heart owing to severe bilateral hydrothorax, hydrops	45,X0	ND	normal
18+0	78 g	5 d after IUFD	Score 3	severely deformed body	-	ND	normal
18+3	300 g	3 d after IUFD	Score 3	flat fetus after anhydramnios owing to bilateral polycystic-dysplastic kidneys	-	ND	normal
18+4	83 g	3 d after IUFD	Score 3	severely deformed, autolytic body	-	ND	normal
18+4	264 g	4 d after miscarriage	Score 0	ventricles collapsed, ventricular septum nondiagnostic, exam limited	-	limited	normal
20+3	320 g	5 d after IUFD	Score 3	deformed and autolytic body	-	ND	normal
21+3	104 g	2 d after IUFD	Score 3	deformed thorax, wrong sequences for heart and vessels	-	ND	normal
22+0	190 g	112 d after IUFD	Score 3	severely deformed body after laser ablation in monochorionic twin pregnancy	-	ND	normal

Ulman et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021. (continued)
GA (wk/d)	Weight (g)	D after death, mode of death	Maceration score	Body shape/additional MFs/limitations to 3T pmMRI	Genetic findings	Cardiac 3T pmMRI	Autopsy: cardiac findings
22+5	510 g	2 d after TOP	Score 0	mechanic dislocation and compression of the heart owing to right-sided DH, exam limited	-	limited	normal
24+4	264 g	4 d after IUFD	Score 0	severely deformed, crushed body, FGR	-	ND	normal
27+2	484 g	60 d after feticide	Score 3	severely deformed body after feticide in dichorionic twin pregnancy	-	ND	AVSD, ASD II
29+2	718 g	27 d after IUFD	Score 3	severely deformed body after cord clamping for hydrocephaly in monochorionic twin pregnancy	-	ND	normal
31+2	1598 g	3 d after IUFD	Score 2	spongy imaging, exam limited	-	ND	normal
32+6	1700 g	6 d after IUFD	Score 3	severely deformed body, spongy	Microarray	ND	normal
38+0	3700 g	1 d after IUFD	Score 3	imaging, extrathoracic MF	-	ND	normal

ASD, atrial septal defect; AVSD, atrioventricular septal defect; CoA, coarctation of the aorta; DH, diaphragmatic hernia; FGR, fetal growth restriction; GA, gestational age (weeks, days); IUFD, intrauterine fetal death; MF, malformations; NT, nuchal translucency; TOF, tetralogy of Fallot; TOP, termination of pregnancy; VSD, ventricular septal defect.

Ulmy et al. Postmortem magnetic resonance imaging of the fetal heart. Am J Obstet Gynecol 2021.