Sterile neutrinos existence suggested from LCT covariance

Raoelina Andriambololona 1,2, Ravo Tokiniaina Ranaivoson 1,2,∗, Hanitriarivo Rakotoson 1,2,3 and Roland Raboanary 3

1 Information Technology and Theoretical Physics Department, Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar), BP 3907 Antananarivo101, Madagascar
2 TWAS Madagascar Chapter, Malagasy Academy BP 4279 Antananarivo 101, Madagascar
3 Faculty of Sciences—University of Antananarivo BP 566 Antananarivo 101, Madagascar

∗ Authors to whom any correspondence should be addressed.
E-mail: raoelina.andriambololona@gmail.com, jacquelineraoelina@hotmail.com, raolinasp@yahoo.fr, tokhiniaina@gmail.com, tokhiniainaravor13@gmail.com, infotsara@gmail.com and r_raboanary@yahoo.fr

Abstract
Sterile neutrinos are known to be hypothetical neutrinos which do not interact via the fundamental interactions described within the Standard Model of Particles Physics i.e. electroweak and strong interactions. They are expected to be important for the understanding of the physics beyond the current Standard Model. In the present work, it is shown that the existence of these particles can be suggested from covariance principle using a covariance group formed by Linear Canonical Transformations (LCTs) associated to a pentadimensional pseudo-Euclidian space. It is established that a spin representation of the LCT group gives a particle classification, applicable to the three families of leptons and quarks, which leads to the prediction of the existence of three sterile neutrinos and their antiparticles.

1. Introduction
Sterile neutrinos are currently considered to be very interesting because they are expected to be closely related to a new physics beyond the Standard Model and then to a unified theory of interactions including gravity. Some studies related to sterile neutrinos both on the theoretical and experimental aspects can be found for instance in the references [1–4].

In this work, our objective is to show that the existence of sterile neutrinos can be deduced from a covariance principle based on a covariance group formed by Linear Canonical Transformations (LCTs) associated to a pentadimensional pseudo-Euclidian space. It is established that a spin representation of the LCT group gives a particle classification, applicable to the three families of leptons and quarks, which leads to the prediction of the existence of three sterile neutrinos and their antiparticles.

2. LCT group and its spin representation
LCTs are studied in optics, signal processing, and quantum mechanics [7–9]. As in the reference [5], we may define, in the framework of a relativistic quantum theory, the LCT corresponding to an N-dimensional pseudo-Euclidian space by the relations.
In which \(p_\mu \) and \(x_\mu \) are the momenta and coordinates operators associated to a first frame of reference while \(p'_\mu \) and \(x'_\mu \) are their analogs associated to a second frame of reference. The two frames of reference are linked by the LCT. The \(\eta_{\mu\nu} \) are the covariant components of the bilinear form corresponding to the scalar product on the considered pseudo-Euclidian space.

The relations in (1) mean that LCTs can be identified to be the linear transformations which leave invariant the Canonical Commutation Relations which characterize the coordinates and momenta operators.

The relations in (1) imply that the \(N \times N \) matrices \(a, b, c, d \) corresponding to the parameters \(a'_\mu, b'_\mu, c'_\mu, d'_\mu \) fulfill the following relations

\[
\begin{align*}
\alpha^\gamma d - b^\gamma c &= \eta \\
\alpha^\gamma b - b^\gamma a &= 0 \\
\epsilon^\gamma d - d^\gamma c &= 0
\end{align*}
\]

The relations in (2) mean that the set of the \(2N \times 2N \) matrices \(\Gamma = \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \) can be identified with the symplectic group \(Sp(2N_+, 2N_-) \) \[5, 10\]. Let us denote this group by \(T \).

\[
T = \{ \Gamma = \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) / \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \left(\begin{array}{cc} 0 & \eta \\ -\eta & 0 \end{array} \right) \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) = \left(\begin{array}{cc} 0 & \eta \\ -\eta & 0 \end{array} \right) \} \cong Sp(2N_+, 2N_-).
\]

If an LCT group \(\mathcal{T} \) is taken to be a covariance group for a relativistic quantum theory, it is expected that the law of transformations of the quantities that are considered, in the framework of this theory, should correspond to some representations of \(\mathcal{T} \). It can be shown that the fermionic fields can be considered as corresponding to a spinorial representation.

In \[5\], it was established that a surjective group homomorphism \(\mathcal{G} \) can be defined between the LCT group \(\mathcal{T} \) and a group \(\mathcal{G} \) corresponding to the following group isomorphism.

\[
\mathcal{G} \cong Sp(2N_+, 2N_-) \cap SO_0(2N_+, 2N_-) \cong U(2N_+, 2N_-).
\]

According to this relation (4), \(\mathcal{G} \) is a subgroup of the identity component \(SO_0(2N_+, 2N_-) \) of the special orthogonal group \(SO(2N_+, 2N_-) \). It follows that \(\mathcal{G} \) defines a special orthogonal representation of LCTs.

A spinorial representation of the LCT group \(\mathcal{T} \) can be deduced by taking advantage of the relation between \(SO_0(2N_+, 2N_-) \) and its topological double cover i.e. the spin group \(Spin(2N_+, 2N_-) \) \[11, 12\]. The relation between \(\mathcal{G} \) and its double cover, denoted \(\mathcal{S} \), which is a subgroup of \(Spin(2N_+, 2N_-) \), is described by a covering map \(u \). As a covering map, \(u \) is surjective: an element \(\mathcal{S} \) of \(\mathcal{S} \) and its opposite \(-\mathcal{S} \) have the same image \(\mathcal{g} \).

\[
\begin{cases}
\mathcal{G} \rightarrow \mathcal{G} \\
\mathcal{S} \rightarrow \mathcal{g}
\end{cases}
\]

Given the existence of the group homomorphism \(\mathcal{G} \) between \(\mathcal{G} \) and \(\mathcal{G} \), \(u \) defines a spinorial representation of LCTs.

Some of the main properties of \(\mathcal{G} \) are given in the existing literature related to the pseudo-unitary group \(U(2N_+, N_-) \) \[13, 14\]. Some of the main properties of the double cover \(\mathcal{S} \) of \(\mathcal{G} \) follows from these properties of \(\mathcal{G} \). It can be, for instance, founded that for the signature \(\mathcal{S}(N_+, N_-) = (1, 4) \), \(\mathcal{G} \) and \(\mathcal{S} \) are connected and their dimension is equal to 25. The dimension of their maximal compact subgroups is equal to 17. The rank of these maximal compact subgroups is equal to 5.

As shown in \[5\], a basis of the Lie algebra \(\mathfrak{s} \) of the Lie group \(\mathcal{S} \) is the family.

\[
\mathfrak{s} = \left\{ \frac{1}{2} (\alpha^\mu \alpha^\nu + \beta^\mu \beta^\nu), \frac{1}{2} (\alpha^\mu \beta^\nu + \alpha^\nu \beta^\mu) \right\} \mu = 0, 1, 2, 3, 4
\]

In which \(\alpha^\mu \) and \(\beta^\mu \) are the generators of the Clifford algebra \(\mathcal{C}(2, 8) \). For the algebra corresponding to the compact part of \(\mathcal{S}\), the basis is.

\[
\mathfrak{s}_c = \left\{ \frac{1}{2} (\alpha^l \alpha^l + \beta^l \beta^l), \alpha^\mu \beta^\mu, \frac{1}{2} (\alpha^l \beta^l + \alpha^l \beta^l) \right\}, l = 1, 2, 3, 4
\]
Table 1. Classification of quarks, leptons and their antiparticles with the sterile neutrinos.

N°	Y°	Y¹	Y²	Y³	Y⁴	I_L	Y_W	Q	y^d_1	y^d_2
1	−1/2	−1/3	−1/3	−1/3	−1/2	0	−2	−1	c_R	μ_R
2	−1/2	−1/3	−1/3	−1/3	−1/2	−1	−1	μ_L	τ_R	
3	−1/2	−1/3	1/3	1/3	−1/2	0	−4/3	−2/3	a_R	ε_R
4	−1/2	−1/3	1/3	1/3	−1/2	−1/3	−2/3	a_L	ε_L	
5	−1/2	1/3	−1/3	−1/2	0	−4/3	−2/3	d_R	ρ_R	
6	−1/2	1/3	−1/3	−1/2	−1/3	−2/3	d_L	ρ_L		
7	−1/2	1/3	−1/3	1/3	−1/2	0	−2/3	−1/3	b_R	μ_R
8	−1/2	1/3	−1/3	1/3	−1/2	1/3	−1/3	b_L	μ_L	
9	−1/2	1/3	−1/3	1/3	−1/2	0	−4/3	−2/3	c_R	τ_R
10	−1/2	1/3	−1/3	1/3	−1/2	−1/3	−2/3	c_L	τ_L	
11	−1/2	1/3	−1/3	1/3	−2/3	1/3	d_R	ρ_R		
12	−1/2	1/3	−1/3	1/3	−2/3	1/3	d_L	ρ_L		
13	−1/2	1/3	1/3	1/3	−1/2	0	−2/3	−1/3	b_R	μ_R
14	−1/2	1/3	1/3	1/3	−1/2	1/3	−1/3	b_L	μ_L	
15	−1/2	1/3	1/3	1/3	−1/2	0	0	0	ε_R	ε_L
16	−1/2	1/3	1/3	1/3	−1/2	1	0	1	ε_L	ε_L
17	1/2	−1/3	−1/3	−1/3	−1/2	1	0	ε_L	ε_L	
18	1/2	−1/3	−1/3	−1/3	−1/2	0	0	0	ε_R	ε_R
19	1/2	−1/3	−1/3	1/3	−1/2	1/3	1/3	b_R	μ_R	
20	1/2	−1/3	−1/3	1/3	1/3	2/3	1/3	b_L	μ_L	
21	1/2	−1/3	1/3	−1/3	−1/2	1/3	1/3	c_R	τ_R	
22	1/2	−1/3	1/3	−1/3	1/3	2/3	1/3	c_L	τ_L	
23	1/2	−1/3	1/3	1/3	−1/2	2/3	2/3	a_R	ε_R	
24	1/2	−1/3	1/3	1/3	−1/2	2/3	2/3	a_L	ε_L	
25	1/2	1/3	−1/3	−1/3	−1/2	1/3	1/3	d_R	ρ_R	
26	1/2	1/3	−1/3	−1/3	−1/2	2/3	1/3	d_L	ρ_L	
27	1/2	1/3	−1/3	1/3	−1/2	1/3	2/3	a_R	ε_R	
28	1/2	1/3	−1/3	1/3	−1/2	2/3	2/3	a_L	ε_L	
29	1/2	1/3	1/3	−1/3	−1/2	1/3	2/3	b_R	μ_R	
30	1/2	1/3	1/3	−1/3	−1/2	2/3	2/3	b_L	μ_L	
31	1/2	1/3	1/3	1/3	−1/2	1	1	ε_L	ε_L	
32	1/2	1/3	1/3	1/3	−1/2	0	2	1	ε_L	ε_L

3. Classification of leptons and quarks and identification of the sterile neutrinos

The dimension of the Cartan subalgebra of the algebra generated by the set \(\mathcal{B} \), given in (7) is equal to 5. The following five commutative hermitian generators can be chosen to be a basis of this Cartan subalgebra.

\[
Y_0 = \frac{1}{2} \alpha_0 \beta_0 \\
Y_1 = \frac{1}{2} \alpha_1 \beta_1 \\
Y_2 = \frac{1}{2} \alpha_2 \beta_2 \\
Y_3 = \frac{1}{2} \alpha_3 \beta_3 \\
Y_4 = \frac{1}{2} \alpha_4 \beta_4
\]

(8)

An explicit matrices representations of these operators can be obtained if an explicit matrices representation of the operators \(\alpha^0 \) and \(\beta^0 \) are given. A choice that can be considered for our purpose is (\(\sigma^3 \) is the \(2 \times 2 \) identity matrix and \(\sigma^1, \sigma^2, \sigma^3 \) are the well-known Pauli matrices).

\[
\alpha^0 = \sigma^1 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \\
\alpha^1 = i \sigma^1 \otimes \sigma^1 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \\
\alpha^2 = i \sigma^2 \otimes \sigma^1 \otimes \sigma^1 \otimes \sigma^0 \otimes \sigma^0 \\
\alpha^3 = i \sigma^3 \otimes \sigma^1 \otimes \sigma^1 \otimes \sigma^0 \otimes \sigma^0 \\
\alpha^4 = i \sigma^3 \otimes \sigma^1 \otimes \sigma^1 \otimes \sigma^1 \otimes \sigma^1 \\
\beta^0 = \sigma^1 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \\
\beta^1 = -i \sigma^0 \otimes \sigma^1 \otimes \sigma^1 \otimes \sigma^0 \otimes \sigma^0 \\
\beta^2 = -i \sigma^0 \otimes \sigma^0 \otimes \sigma^1 \otimes \sigma^0 \otimes \sigma^0 \\
\beta^3 = -i \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \\
\beta^4 = -i \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \otimes \sigma^2
\]

(9)

To deduce the classification of leptons and quarks, the operators corresponding to the particles properties, as defined within the Standard model of particle physics should be introduced. These properties are the weak isospin, the weak hypercharge, the electric charge and strong color. According to the table above, an adequate choice for the operators \(I_L, Y_W, Q \) corresponding respectively to the weak isospin, weak hypercharges and electric charges are.
\[\begin{align*}
I_5 &= \frac{1}{2} \mathcal{Y}^0 - \frac{1}{2} \mathcal{Y}^4, \quad Y_W = \mathcal{Y}^0 + \mathcal{Y}^1 + \mathcal{Y}^2 + \mathcal{Y}^3 + \mathcal{Y}^4 \\
Q &= \mathcal{Y}^0 + \frac{1}{2} \mathcal{Y}^1 + \frac{1}{2} \mathcal{Y}^2 + \frac{1}{2} \mathcal{Y}^3 = I_5 + \frac{Y_W}{2}
\end{align*} \] (10)

The table 1 shows also that the existence of strong colors can be explained through the possible combinations of the eigenvalues of the operators \(\mathcal{Y}^0, \mathcal{Y}^2, \mathcal{Y}^3 \).

The table 1 gives a classification of the three families of leptons and quarks according to the values of the eigenvalues of the operators \(\mathcal{Y}^0, \mathcal{Y}^1, \mathcal{Y}^2, \mathcal{Y}^3, \mathcal{Y}^4, I_5, Y_W \) and \(Q \). The up, charm and top quarks are denoted \(u, c, t \) and the down, strange and bottom are denoted \(d, s, b \). Their antiparticles are respectively denoted \(\bar{u}, \bar{c}, \bar{t} \) and \(\bar{d}, \bar{s}, \bar{b} \). The lower index indicates the strong colors: \(R \) for right-handed and \(L \) for left-handed. The upper index indicates the strong colors (blue, green or red). The charged lepton: electron, muon and tau are denoted \(e, \mu, \tau \) and their antiparticles are denoted \(\bar{e}, \bar{\mu}, \bar{\tau} \). The corresponding neutrinos are respectively denoted \(\nu_e, \nu_\mu, \nu_\tau \) and the antineutrinos are denoted \(\bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau \).

The table 1 suggests the existence of the three sterile neutrinos \(\nu_{RS}, \nu_{LS}, \nu_{LR} \) and their antiparticles \(\bar{\nu}_{RS}, \bar{\nu}_{LS}, \bar{\nu}_{LR} \) (put in boldfaced letters). Their electric charge, isospin and hypercharge are equal to zero as expected.

The table 1 suggests also the possibility of description of a family of fermions with a single field \(\psi \) [5]. The law of transformations of this field under the action of an LCT is described by the element \(\mathcal{S} \) of the group \(\mathcal{S} \) defined through the spinorial representation (5).

\[\psi = \mathcal{S} \psi \] (11)

The relation (11) shows explicitly, as expected, that a fermionic field \(\psi \) transforms covariantly under the action of the LCTs corresponding to \(\mathcal{S} \). The law of transformation is described through the spin representation of the LCT group \(\mathcal{T} \) which is the covariance group.

4. Discussion and conclusion

It is highlighted through this work that a spinorial representation of an LCT group, considered as covariance group, can lead to a description of the charges of the elementary fermions of the Standard Model and to the prediction of the existence of three sterile neutrinos and their antiparticles. The LCTs to be considered for this purpose are those which correspond to a pentadimensional pseudo-Euclidian space.

The LCT group may be also used to be a gauge group for a unified theory of interaction including gravity. It is, in fact, remarked in [5] that the symmetry associated to LCT covariance, which is a quantum phase space symmetry, can be considered to circumvent the Coleman-Mandula no-go theorem [15, 16]. And the main gauge groups that are currently considered in the gauge theories of gravitation i.e. the Poincaré and de Sitter groups [17, 18] can be obtained from the contraction of an LCT group [3]. This contraction is to be understood within the concept of group contraction introduced by Inönü and Wigner [19–23].

These results and facts show that the topics of sterile neutrinos and unified theory of interactions (which include gravity) are closely related as it may be expected and this relation seems to be exactly described through LCT covariance. Further studies are needed to assess the validity of this point view. An in-depth study of the exact relation between the LCT group and the gauge group of the Standard Model may be for instance firstly considered to analyze, among other things, the case of the bosonic sector. Indeed, the study which is considered in this paper was oriented on fermions.

Acknowledgments

The authors are grateful to the INSTN-Madagascar and its staff for their help and to the reviewers for their interesting comments and suggestions.

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Ravo Tokiniaina Ranaivoson 𝐓etadata=https://orcid.org/0000-0003-2233-6106
References

[1] Naumov D V 2019 Sterile neutrino. a short introduction EPJ Web of Conferences 207 04004

[2] Boyarsky A, Drewes M, Lasserre T, Mertens S and Ruchayskiy O 2019 Sterile neutrino dark matter Prog. Part. Nucl. Phys. 104 1–45

[3] Drewes M 2013 The phenomenology of right handed neutrinos Int. J. Mod. Phys. E 22 1350019

[4] Böser S, Buck C, Giunti C, Lesgourgues J, Ludhova L, Mertens S, Schukraft A and Wurm M 2020 Status of light sterile neutrino searches Prog. Part. Nucl. Phys. 111 103736

[5] Ranaivoson R T, Andriambololona R, Hanitriarivo R and Raboanary R 2021 Linear canonical transformations in relativistic quantum physics Phys. Scr. 96 065204

[6] Andriambololona R 1985 Algèbre linéaire et multilinéaire Collection LIRA (Antananarivo: INSTN-Madagascar)

[7] Healy J J, Kutay M A, Ozaktas H M and Sheridan J T 2016 Linear Canonical Transforms: Theory and Applications (New York, NY: Springer)

[8] Alieva T and Bastiaans M J 2007 Properties of the linear canonical integral transformation J. Opt. Soc. Am. A/24 3658–3665

[9] Wolf K B 2016 Development of Linear Canonical Transforms: A Historical Sketch Linear Canonical Transforms 198 1 (New York, NY: Springer) 3–28

[10] Andriambololona R, Ranaivoson R T, Hanitriarivo R and Randriamisy D E 2017 Dispersion operator algebra and linear canonical transformation Int. J. Theor. Phys. 56 1258–73

[11] Todorov I 2011 Clifford algebras and spinors Bulg J. Phys. 38 3–28

[12] Coquereaux R 2002 Espaces fibrés et connexions, une introduction aux géométries classiques et quantiques de la physique théorique (Luminy-Marseille: Centre de Physique Théorique)

[13] Munshi S and Yang R 2019 Self-adjoint elements in the pseudo-unitary group Linear Algebr. Appl. 560 100–13

[14] Neretin Y A 2011 Lectures on gaussian integral operators and classical groups (Berlin: European Mathematical Society)

[15] Coleman S and Mandula J 1967 All possible symmetries of the s matrix Phys. Rev. 159 1251

[16] Oskar P and Horwitz L P 1997 Generalization of the Coleman–mandula theorem to higher dimension J. Math. Phys. 38 139–72

[17] Hehl F W 2017 Gauge theory of gravity and spacetime Towards a Theory of Spacetime Theories (Einstein Studies 13) (New York, NY: Birkhäuser) 145–69

[18] Ao X-C, Li X-Z and Sitter de 2011 Gauge theory of gravity: an alternative torsion cosmology JCAP 1110 039

[19] Inönü E and Wigner E P 1953 On the contraction of groups and their representations Proc. Natl Acad. Sci. 39 510–24

[20] Salean F 1961 Contraction of lie groups J. Math. Phys. 2 1

[21] Rivas M, Valle M A and Aguirregabiria J M 1986 Composition law and contractions of the Poincare group Eur J. Phys. 7 1

[22] Kim Y S 1997 Group contractions: inonu, wigner, and einstein Int. J. Mod. Phys. A12 71–8

[23] Rajabov B A 2018 The contraction of the representations of the group SO(4,1) and cosmological interpretation Astron. Astrophys. 3 74–90