The Use of Biomonitoring Data in Exposure and Human Health Risk Assessments

Richard Albertini,1 Michael Bird,2 Nancy Doerrer,3 Larry Needham,4 Steven Robison,5 Linda Sheldon,6 and Harold Zenick7

1University of Vermont College of Medicine, Burlington, Vermont, USA; 2ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA; 3International Life Sciences Institute, Health and Environmental Sciences Institute, Washington, DC, USA; 4Centers for Disease Control and Prevention, Atlanta, Georgia, USA; 5The Procter & Gamble Company, Cincinnati, Ohio, USA; 6National Exposure Research Laboratory, and 7National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

Biomonitoring uses analytic methods that permit the accurate measurement of low levels of environmental chemicals in human tissues. However, depending on the intended use, biomonitoring, like all exposure tools, may not be a stand-alone exposure assessment tool for some of its environmental public health uses. Although biomonitoring data demonstrate that many environmental chemicals are absorbed in human tissues, uncertainty exists regarding if and at what concentrations many of these chemicals cause adverse health outcomes. Moreover, without exposure pathway information, it is difficult to relate biomonitoring results to sources and routes of exposure and develop effective health risk management strategies. In September 2004, the Health and Environmental Sciences Institute, U.S. Environmental Protection Agency, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, and International Council of Chemical Associations co-sponsored the International Biomonitoring Workshop, which explored the processes and information needed for placing biomonitoring data into perspective for risk assessment purposes, with special emphasis on integrating biomarker measurements of exposure, internal dose, and potential health outcome. Scientists from international governments, academia, and industry recommended criteria for applying biomonitoring data for various uses. Six case studies, which are part of this mini-monograph, were examined: inorganic arsenic, methyl eugenol, organophosphorus pesticides, perfluorooctanesulfonate, phthalates, and polybrominated diphenyl ethers. Based on the workshop and follow-up discussions, this overview article summarizes lessons learned, identifies data gaps, outlines research needs, and offers guidance for designing and conducting biomonitoring studies, as well as interpreting biomonitoring data in the context of risk assessment and risk management. Key words: arsenic, biomarkers, biomonitoring, exposure, methyl eugenol, organophosphorus, PBDE, PFOS, phthalates, risk assessment. Environ Health Perspect 114:1755–1762 (2006). doi:10.1289/ehp.9056 available via http://dx.doi.org/ [Online 12 June 2006]

This article is part of the mini-monograph “Use of Biomonitoring Data in Exposure and Human Health Risk Assessments.”

Address correspondence to N. Doerrer, ILSI Health and Environmental Sciences Institute, One Thomas Circle NW, 9th Floor, Washington, DC 20005 USA. Telephone: (202) 659-3306. Fax: (202) 659-3617. E-mail: ndoerrer@hesiglobal.org

The International Life Sciences Institute Health and Environmental Sciences Institute (HESI) extends its appreciation to S.M. Cohen (University of Nebraska Medical Center) and R.N. Hines (Medical College of Wisconsin) for organizing and conducting a scientific peer review of the articles in this mini-monograph before submission for publication. We extend special thanks to E. Moore (HESI) for providing excellent administrative support to the HESI Biomonitoring Technical Committee.

The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the federal agencies or other institutions represented by the authors.

M.B. is employed by ExxonMobil Biomedical Sciences, Inc. S.R. is employed by The Procter & Gamble Company. All other authors declare they have no competing financial interests.

Received 1 February 2006; accepted 19 April 2006.
Biomonitoring is not a new phenomenon. For more than a century, occupational physicians and industrial hygienists have monitored worker populations for exposure to a variety of hazardous substances. Clinical medicine offers historical and contemporary lessons on the value of measuring human body fluids for indicators of adverse health risk (Sexton et al. 2004). Ideally, biomonitoring data from environmental, occupational, and clinical settings are supported by quality control, analytical standardization, availability of control groups, and other mechanisms for limiting uncertainty and variability. Biomonitoring programs for assessing exposure to environmental chemicals generally require the measurement of the relevant analytes at much lower concentrations than needed in human clinical or animal toxicology studies, thus posing considerable challenges. Therefore, biomonitoring approaches for assessing exposures to environmental chemicals must employ state-of-the-art analytical methods, which often include isotopic dilution mass spectrometry, to limit the uncertainty for measuring low-level concentrations. Improved analytical capabilities make possible the accurate and precise measurement of many environmental chemicals at very low levels in the tissues of the general population, thus demonstrating human exposure to and absorption of chemicals, and often their distribution, metabolism, storage, and elimination.

On 21–22 September 2004 the International Life Sciences Institute’s (ILSI) Health and Environmental Sciences Institute (HESI) organized and co-sponsored the International Biomonitoring Workshop with the U.S. EPA National Exposure Research Laboratory, the CDC National Center for Environmental Health, the Agency for Toxic Substances and Disease Registry, and the International Council of Chemical Associations. The workshop was held at the laboratory facilities of the U.S. EPA in Research Triangle Park, North Carolina.

At the workshop, key questions relating to the use of biomonitoring data in the context of risk assessment were discussed: How can biomonitoring data be used? What other information is needed to apply biomonitoring data in a risk assessment context? How might biomonitoring data be used inappropriately? To explore these questions, case studies were prepared in advance and discussed in small working groups. The case studies included chemicals that are short-lived in the environment and readily metabolized in humans, as well as chemicals that are relatively stable in the environment and bioaccumulate. Some case studies were data rich and were compared and contrasted with chemicals for which few data exist. This mini-monograph includes six case studies examined at the workshop. In evaluating the case studies, workshop participants identified both general and specific scientific issues, questions, and research needs.

The environmental public health continuum (EPHC; Figure 1) served as an important starting point for the 100 workshop invitees from international governments, academia, and industry. The workshop focused on the links between the components of the EPHC as well as on the components themselves. The unique utility of the EPHC as a tool is that one may start at any point on the continuum and work forward or backward through the links. Because the links work both ways, it is possible to examine what is not known and which data gaps need to be filled. Careful definition of the link being assessed, as well as the question being asked, is critical.

At the International Biomonitoring Workshop, participants explored the processes and information needed to place biomonitoring data into perspective for the risk assessment process, with special emphasis on integrating biomarker measurements of exposure, internal dose, and potential health outcome. The EPHC was modified to capture the critical workshop focus area (Figure 2). The reliance on and integration of hazard identification with exposure and dose are recognized in this diagram.

One outcome of the workshop is the development of guidance on the application of biomonitoring data in the context of risk assessment, risk management, and disease prevention. Different criteria are recommended for applying and interpreting biomonitoring information for different purposes. For instance, epidemiology/human effects data would not be needed to address the question of whether there is a trend for a substance or an increase (or decrease) in the environment over time; however, epidemiology/human effects data (and animal toxicology data) would be necessary if the question being asked is whether there is a potential human health risk from exposure to the substance. The risk assessor/risk manager will use different data and criteria depending on the question (Doerr and Holsapple 2004).
The organophosphorus pesticides are rapidly absorbed from the gastrointestinal tract and metabolized in the liver. For methyl eugenol, the parent compound is readily metabolized, and has an elimination half-life of several years in humans. Nevertheless, existing background levels, albeit low, suggest that some portion of the methyl eugenol resides in a third compartment, potentially adipose tissue, which is in equilibrium with its blood concentration.

The strategy used to collect samples for biomonitoring needs to be carefully developed. For example, in the inorganic arsenic case study, there was considerable variation in methods for which the detection limits were in the range of 1–5 µg/L. Clearly, this indicates poor interlaboratory comparison at lower concentrations that is, in large part, due to differences in analytical methods.

The polybrominated diphenyl ethers (PBDEs) are ubiquitous in the environment, and there is evidence that some of their congeners bioaccumulate. The PBDEs are normally found as a mixture of congeners, but specific congeners can be measured when assessing exposure to the commercial products containing the pentabrominated diphenyl ethers (Birnbaum and Cohen Hubal 2006). As noted, the selection of the proper metabolites for the biomonitoring program is important.
Exposure

Biomonitoring data represent an integration of exposure from all sources and routes, which provides an important perspective on overall exposure. Collection of serial biomonitoring samples over an extended period of time can provide information regarding variability and trends in exposure. Such information is particularly useful for assessing the effectiveness of environmental remediation programs or evaluating the impact of removal or reduction in general use of a chemical (e.g., lead). However, the primary sources of exposure for many of the case study chemicals discussed in this mini-monograph are not fully understood. For example, in the case of DEP, it is known that fragranced cosmetic and other consumer products may contain DEP; however, the use of DEP in the cosmetic and fragrance industry accounts for <20% of all DEP production (Api 2001). Consequently, many other sources of exposure are likely to contribute to the human DEP body burden. Potential sources of exposure to DEHP are numerous (e.g., medical plastics such as tubing and syringes; household materials such as floor or wall coverings, and plastic toys) (Calafat and McKee 2006).

Organophosphorus pesticides are used widely in agriculture and to a lesser extent in residential applications. Because organophosphorus pesticide residues have been detected at permittable (and sometimes impermissable) levels in many agricultural products, low-level dietary exposures to organophosphorus pesticides are likely. Other potential sources of exposure to a few organophosphorus pesticides still registered for residential use include preconstruction termite control and home and garden use. In general, occupational exposures to organophosphorus pesticides are numerous (e.g., medical plastics such as tubing and syringes; household materials such as floor or wall coverings, and plastic toys) (Calafat and McKee 2006). Organophosphorus pesticides are used widely in agriculture and to a lesser extent in residential applications. Because organophosphorus pesticide residues have been detected at permittable (and sometimes impermissable) levels in many agricultural products, low-level dietary exposures to organophosphorus pesticides are likely. Other potential sources of exposure to a few organophosphorus pesticides still registered for residential use include preconstruction termite control and home and garden use. In general, occupational exposures to organophosphorus pesticides are numerous (e.g., medical plastics such as tubing and syringes; household materials such as floor or wall coverings, and plastic toys) (Calafat and McKee 2006). Organophosphorus pesticides are used widely in agriculture and to a lesser extent in residential applications. Because organophosphorus pesticide residues have been detected at permittable (and sometimes impermissable) levels in many agricultural products, low-level dietary exposures to organophosphorus pesticides are likely. Other potential sources of exposure to a few organophosphorus pesticides still registered for residential use include preconstruction termite control and home and garden use. In general, occupational exposures to organophosphorus pesticides are numerous (e.g., medical plastics such as tubing and syringes; household materials such as floor or wall coverings, and plastic toys) (Calafat and McKee 2006). Organophosphorus pesticides are used widely in agriculture and to a lesser extent in residential applications. Because organophosphorus pesticide residues have been detected at permittable (and sometimes impermissable) levels in many agricultural products, low-level dietary exposures to organophosphorus pesticides are likely. Other potential sources of exposure to a few organophosphorus pesticides still registered for residential use include preconstruction termite control and home and garden use. In general, occupational exposures to organophosphorus pesticides are numerous (e.g., medical plastics such as tubing and syringes; household materials such as floor or wall coverings, and plastic toys) (Calafat and McKee 2006).
Toxicology/Toxicokinetics

Ideally, sufficient toxicologic data are available in humans and animals to compare results for biomonitoring purposes. In reality, data sets are often limited. For this mini-monograph the critical toxicologic effect(s) associated with each of the case study chemicals is reasonably well defined. Certain limitations do exist, however. For example, in the case of methyl eugenol, the mode of action in animals is not understood, and there are no known human health effects associated with dietary ingestion (Robison and Barr 2006; Schecter et al. 2004). A number of animal toxicity studies with methyl eugenol exist, including single- and multiple-dose toxicokinetic studies. The available data indicate that methyl eugenol undergoes relatively rapid metabolic conversion and excretion (National Toxicology Program 2000; Smith et al. 2002). The rodent bioassay data indicate that methyl eugenol, along with some structural analogs and when administered at high-bolus doses, may cause a shift in metabolism, resulting in the formation of a reactive carbonium ion intermediate. This is associated with liver tumor induction in rodents. Although the oral route of exposure is relevant, use of bolus administration in rodents contrasts with human exposure via dietary ingestion of spices and foods containing methyl eugenol. In addition, low-level dermal exposure may occur after the use of products containing methyl eugenol as a component of natural oils. More data are needed to understand comparative metabolism between animals and humans, the critical metabolite(s), and the mode of action.

The toxicology of inorganic arsenic is well characterized for most end points (Hughes 2006). Inorganic arsenic exposure may result in a number of different toxic effects, including cancer, neurotoxicity, genotoxicity, and cardiovascular toxicity. However, in contrast to most chemical carcinogens, an animal model does not exist for assessing the carcinogenic effects of inorganic arsenic. With this limitation, the mode of action for inorganic arsenic carcinogenesis is not completely understood.

The toxicologic profile of DEP has been fairly well characterized and was recently reviewed [World Health Organization (WHO) 2003]. Although there are limited toxicokinetic data for DEP, it is possible to make some inferences about the toxicokinetics of DEP based on information available for other phthalates (Calafat and McKee 2006). The existing data support the conclusion that there are no substantial differences in metabolism between humans and rodents. Quantitative safety assessments for DEP use one of two no observed adverse effect levels (NOAELs): one from a dietary study (U.S. EPA 1993), and one from a developmental and reproductive toxicity study (WHO 2003). Assessments of exposure (David 2000; Kohn et al. 2000) indicate that the exposures based on biomonitoring data are substantially less than either NOAEL.

Toxicology data indicate that DEHP can induce liver effects in rodents, including changes in liver weight, histological changes, peroxisome proliferation, and tumors (Calafat and McKee 2006). The International Agency for Research on Cancer concluded that there is sufficient evidence of carcinogenicity in animals but insufficient evidence in humans (IARC 2000). There is also evidence that high doses of DEHP can cause developmental and reproductive toxicity. In recent years these effects of DEHP have received more attention than the carcinogenic effects. Quantitative safety assessments for DEHP have used either an NOAEL for noncancer liver effects or the more conservative linear extrapolation methods based on liver tumor induction. Urinary metabolite data indicate that ambient exposures of the U.S. population to DEHP are lower than the reference dose (RfD) established by the U.S. EPA, although use of medical devices may result in much higher exposures to DEHP (Calafat and McKee 2006). However, the use of medical devices entails risk–benefit calculations that make the risk assessments substantially different from those relating to ambient exposures.

The toxicity of PBDE mixtures has been studied in mammals (Birnbaum and Cohen Hubal 2006). This case study highlights some of the considerations that are needed when evaluating the toxicity of mixtures and their individual components. Recently, concerns have been expressed regarding the potential of PBDEs to cause endocrine-related effects (i.e., PBDEs are antiandrogenic and perturb estrogen and progesterone pathways) or developmental toxicity effects based on their qualitative structural similarity to polychlorinated dibenzo-p-dioxins and polychlorinated biphenyls (PCBs), although animal toxicity data suggest that PBDEs are not dioxin-like but are more similar to PCBs (Chen et al. 2001). The toxicology of the key primary component molecules, penta-, octa-, and decabromodiphenyl ethers, has been evaluated. Exposure to pentabromodiphenyl ether has been associated with hepatic and endocrine-disruptive effects, developmental reproductive effects, and, of most concern, developmental neurotoxicity. Reproductive effects have been shown in rats, rabbits, and fish. Octabromodiphenyl ether has been shown to cause fetal effects at maternally toxic doses, and contaminating levels of 2,2′,4,4′,5,5′-hexabromodiphenyl ether has also been reported to induce developmental neurotoxicity and perturb several hormonal pathways. Decabromodiphenyl ether ("Deca," the commercial mixture) is reported to have a relatively low order of toxicity, based on studies conducted to date. There are no long-term toxicity studies for the PBDE mixtures or any of the individual PBDEs. Species differences in PBDE accumulation appear to exist.

The pharmacokinetic properties of PFOS are favorable for using serum PFOS concentration as a measure of internal dose (Butenhoff et al. 2006). Good absorption, lack of known metabolism, distribution primarily in extracellular space, high serum protein binding (albumin and β-lipoproteins), and poor elimination in all species studied combine to establish serum PFOS concentration as an integration of exposures from various sources. In addition, serum PFOS concentrations can be directly associated with effects in toxicology studies.

The acute animal and human toxicities of the organophosphorus pesticides chlorpyrifos and malathion are well understood. As potent inhibitors of the enzyme acetylcholinesterase that breaks down the neurotransmitter acetylcholine, symptoms range from nausea, headaches, and increased salivation to death, depending on the magnitude of exposure. The organophosphorus insecticides are rapidly metabolized and excreted in urine. Many of the urinary metabolites of organophosphorus insecticides are common, preventing the identification of the parent pesticide(s) to which an individual was exposed. Other urinary metabolites are more selective for a given insecticide. Measurements of the intact pesticide in blood are the most specific indicators of exposure to a given organophosphorus pesticide; however, these measurements are complex and may be hampered by their instability in blood.

Based on the discussions of toxicity for each case study, the following questions should be considered when designing, conducting, or interpreting toxicology studies in the context of biomonitoring:

- Are there sufficient toxicology data, including for longer-term exposures?
- Are the routes of exposure in human and toxicology studies comparable?
- Are toxicokinetic data in animals and humans available?
- Are the critical effect(s) and mode of action understood?
- Are the animal data relevant for humans?
- Are matched biologic samples available for both humans and animals so that the results can be compared? Or do sufficient pharmacokinetic data exist to estimate exposure levels in animal studies?

Epidemiology

Data from epidemiology studies can provide the critical information needed to support the link between human exposure and human health effects. At the September 2004
The case studies illustrate that, in many instances, there is an absence of large-scale epidemiology studies with sufficient statistical power to detect associations between human exposure and health effects identified in animal toxicity studies. In addition, interpretation of epidemiologic studies is complicated by the limited ability to accurately determine dosimetry, exposure duration, and patterns of exposure. Defining the potential confounding factors for each chemical is important because epidemiology studies are often designed to evaluate a specific association between chemical exposure and a known health effect(s).

Several factors should be considered when designing, conducting, or interpreting epidemiologic studies that seek to define associations between specific exposures and specific human health effects (or their absence), particularly in the context of biomonitoring. As stated previously, careful definition of the link being assessed, as well as the question being asked, is critical.

- Are criteria for making reasonable inferences of association and causation supported? The Bradford Hill criteria (Federal Focus 1996), used successfully in the context of establishing causality in many epidemiology studies, may have similar utility in biomonitoring studies. These criteria consist of the following basic characteristics: the strength, specificity, and consistency of the association; the temporality and duration of exposure; the biologic gradient or the relationship between the dose and the response; the effects of the removal of the suggested cause; the biologic plausibility of the association; and the coherence between the association and other findings.

- Has an adverse health effect been demonstrated in humans?
- Is there information regarding the mode of action for the agent producing this health effect?
- Are there health effects observed in populations exposed to the agent of concern? (Note that some characterization of the health effects observed in populations exposed to the agent of concern is needed to design a new epidemiologic study that is focused on disease end points. Furthermore, these health effects must be known before biomarkers are used to identify population exposures and assess risk.)

- Are any toxicokinetic and/or toxicodynamic genetic polymorphisms known to modify risk and define susceptible populations?

Risk Assessment/ Risk Management

As noted previously, biomonitoring data can be used in multiple ways (e.g., trend analysis, exposure assessment, dose reconstruction), and supporting data, such as those necessary for risk assessment purposes, are not always needed. When biomonitoring data are used for these non-risk assessment purposes, the uncertainty associated with their intended use(s) should be acknowledged and communicated. In terms of risk assessment and risk management (e.g., refining remediation efforts), biomonitoring data have the potential to be a valuable tool.

Given the increased sensitivity of analytical methods, simple detection of a chemical in biologic samples such as blood, urine, breast milk, or body fat should not be confused with or equated to increased risk. Exposure information must be carefully evaluated against all relevant toxicology data and any human epidemiology data. In addition, the relevance of the toxicology data to humans should be considered. There are, based on epidemiology data, biologically plausible statistical associations that, taken together with animal and other toxicologic data, imply causation between exposure and health effects for inorganic arsenic and organophosphorus pesticides. Evidence suggesting human health effects associated with exposure to DEP, DEHP, methyl eugenol, and PFOS is limited and/or restricted to statistical associations.

For the phthalates, methyl eugenol, and PBDEs, comparison of exposures based on the NHANES biomonitoring data that represent aggregate exposures to all sources offers suggestive evidence that human exposure in the general population is lower than NOAELs or RfDs derived from animal toxicology studies (CDC 2001, 2003, 2005). However, trends in internal concentrations of certain compounds detected via biomonitoring (e.g., rapidly rising PBDE levels in the United States), as well as the impact on vulnerable populations (i.e., highly exposed or highly susceptible to effects), should also be considered in assessing risk and making risk management decisions. Emerging data on human blood levels of PBDEs for highly exposed individuals show that there is no margin of exposure based on several published animal studies of developmental or neurologic toxicity (Birnbaum and Cohen Hubal 2006).

Based on the discussions of risk assessment and risk management for each case study, the following questions should be considered when designing, conducting, or interpreting studies for biomonitoring purposes:

- Are there sufficient and relevant toxicology data?
- Is there a relationship between the biomarker of exposure and a known human health effect?
- Are there pharmacokinetic data that can be useful in the risk assessment?
- If applicable, is there evidence that remediation efforts are working?
Research Needs/Data Gaps

Meaningful interpretation of existing and future biomonitoring data will require rigorous, scientific approaches to data collection, analysis, interpretation, and application. Thus, biomonitoring data can provide much-needed information on exposure to a variety of environmental chemicals. However, investigators must define and communicate the question to be addressed in any given biomonitoring study. For example, the data required for the assessment and interpretation of exposure trends may be different from those necessary for the assessment of health risk. Nonetheless, the existing data gaps add to the uncertainty of the interpretation of the biomonitoring data. Filling these critical data gaps is essential to reduce these uncertainties in interpretation, thus providing the most reliable data for public health decisions.

The authors of this mini-monograph call for research activities in the following areas to advance scientific understanding and application of biomonitoring data in its various contexts:

- Improve the understanding of the predictive relationships/linkages between measures of exposure, dose, and effect. Such insight would allow the development of an interpretation strategy and specific criteria for moving from any point on the EPHC (Figure 1) toward either the “exposure” or “effects” sides.
- Emphasize biomarker validation and precision. For analytical methods, conduct interlaboratory comparison trials.
- Characterize a baseline for biomarkers, and apply statistical methods to assess temporal departures from the baseline.
- Improve understanding of the origin of the biomarker and its relationship to the disease process and/or individual, multiple, and exogenous or endogenous exposure. Establish a database of biomarker disease associations, including null and negative studies.
- Improve study design to better assess intra- and interindividual variability related to measures of exposure, dose, metabolism, and effects that would influence the likelihood of observing predictive relationships between these variables and aid in identifying subpopulations that might be at greater risk. Such data would also clarify the relevance of biomarkers for the target tissues of certain organs.
- Apply new technologies such as gene expression, proteomics, and protein activity profiling, both in terms of development of potential new biomarkers and as screening tools for identifying candidates for biomonitoring.

The questions and considerations identified in this article for designing, conducting, or interpreting studies for biomonitoring purposes are intended as guidance only. The authors acknowledge that no individual study can address all of these questions. It is recommended, however, that future studies be designed with some or all of these considerations in mind to maximize application and interpretation of biomonitoring data for human health risk assessment.

Government, academic, and industry scientists who are committed to identifying data needs and exploring research programs through the HESI consensus-building process will report progress and technical advancements in biomonitoring in future publications.

REFERENCES

AHS (Agricultural Health Study). 2005. Home Page. Available: http://www.aghealth.org/results.html [accessed 9 April 2006].

Alexander BH. 2004. Bladder Cancer in Perfluorooctanesulfonate Fluoride Manufacturing Workers. U.S. EPA Docket AR-226-1956. Washington, DC: U.S. Environmental Protection Agency.

Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS. 2003. Mortality of employees of a perfluorooctanesulfonate fluoride manufacturing facility. Occup Environ Med 60:222–229.

Api AM. 2001. Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food Chem Toxicol 39:97–108.

Balbash DM, Philbert M, Suk WA. 2005. Research strategies for safety evaluation of nanomaterials. Part III: Nanoscale technologies for assessing risk and improving public health. Toxicol Sci 86:298–306.

Barr DB, Allen R, Olsson AO, Bravo R, Caltabiano LM, Montesano A, et al. 2005. Concentrations of selective metabolites of organophosphorus pesticides in the United States population. Environ Res 99:314–328.

Barr DB, Anjer J. 2006. Potential uses of biomonitoring data: a case study using the organophosphorus pesticides chlorpyrifos and malathion. Environ Health Perspect 114:1763–1769.

Barr DB, Barr JR, Bailey SL, Lopera CR Jr, Beeson MD, Caudill SP, et al. 2000. Levels of methyl eugenol in a subset of adults in the general U.S. population as determined by high resolution mass spectrometry. Environ Health Perspect 108:323–328.

Barr DB, Bravo R, Weaverseker G, Caltabiano LM, Whitehead RD Jr, Olsson AO, et al. 2004. Concentrations of diacyl phosphate metabolites of organophosphate pesticides in the U.S. population. Environ Health Perspect 112:186–200.

Berkowitz GS, Wemtur JC, Birman-Deych E, ObeJ, Lapinski RH, Goldblot JH, et al. 2004. In utero pesticide exposure, maternal paraxoxonase activity, and head circumference. Environ Health Perspect 112:398–399.

Birnbaum LS, Cohen Hulab EA. 2006. Polybrominated diphenyl ethers: a case study for using biomonitoring data to address risk assessment questions. Environ Health Perspect 114:1770–1775.

Butenholz JF, Olsen GW, Phalen-Hutches A. 2006. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum. Environ Health Perspect 114:1776–1782.

Calefati AM, Mc Kee RH. 2006. Integrating biomonitoring exposure data into the risk assessment process: phthalates (diethyl phthalate and dibutyl phthalate) as a case study. Environ Health Perspect 114:1779–1792.

CDC. 2001. National Report on Human Exposure to Environmental Chemicals. Atlanta:Centers for Disease Control and Prevention. Available: http://www.cdc.gov/nchs/about/major/reports/datalink.htm [accessed 9 April 2006].

CDC. 2003. Second National Report on Human Exposure to Environmental Chemicals. Atlanta:Centers for Disease Control and Prevention. Available: http://www.cdc.gov/nchs/about/major/reports/datalink.htm [accessed 9 April 2006].

CDC. 2004. Environmental Public Health Tracking Program. Atlanta:Centers for Disease Control and Prevention. Available: http://www.cdc.gov/nchh/tracking/ [accessed 9 April 2006].

CDC. 2005. Third National Report on Human Exposure to Environmental Chemicals. Atlanta:Centers for Disease Control and Prevention. Available: http://www.cdc.gov/nceh/tracking/exposurereport/ [accessed 9 April 2006].

Chen G, Konstantinov AD, Cittim BG, Joyce EM, Bolc NC, Bunc NJ. 2001. Synthesis of polybrominated diphenyl ethers and their capacity to induce OP/PP by the receptor mediated pathway. Environ Sci Technol 35:3749–3756.

CLIA. 1988. Clinical Laboratory Improvement Amendments of 1988. Code of Federal Regulations Part 493, Laboratory Requirements. Available: http://www.sphhp.cdc.gov/cia/regs/toc.aspx [accessed 9 April 2006].

Concha G, Nermell, B, Vanted, M. 1998. Metabolism of inorganic arsenic in children with chronic arsenic exposure in Northern Argentina. Environ Health Perspect 108:359–369.

David RM. 2000. Exposure to phthalate esters [Letter]. Environ Health Perspect 108:A440.

De Simon BF, Cadiha E, Jalocha J. 2003. Volatile compounds in a red wine aged in barrels made of Spanish, French, and American oak wood. J Agric Food Chem 51:7671–7678.

Doerrner RD, Holsappel MP. 2004. Integration of biomonitoring exposure data into the risk assessment process. Risk Prev Rep 11(12):33–35.

EC (European Commission). 2004a. Baseline Report on “Biomonitoring of Children for Research in the Environmental Public Health Continuum” [accessed 9 April 2006].

EC (European Commission). 2004b. European Human Biomonitoring Homepage of the Implementation Group and ESBIO. Available: http://www.eu-biomonitoring.org/ [accessed 14 April 2006].

ECETOC. 2005. Guidance for the Interpretation of Biomonitoring Data. Document No. 44. Brussels:European Centre for Ecotoxicology and Toxicology of Chemicals.

Ekseni A, Harkey K, Bradman A, Weizhen E, Jewell NP, Barr DB, et al. 2004. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect 112:1116–1124.

Federal Focus. 1996. Principles for Evaluating Epidemiologic Data in Regulatory Risk Assessment. Appendix B. Washington, DC:Federal Focus, Inc.

Hughes MF. 2006. Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect 114:1790–1796.

IARC (International Agency for Research on Cancer). Some Industrial Chemicals. IARC Mornal Eval Carcinog Riks Hum 77:141–148.

Klausen JG, Babich MA, Boechtke KP, Cook JC, Corton JC, David RM, et al. 2003. PPAR alpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33:695–710.

Kohn MC, Parham F, Masten SA, Portier CJ, Sheldon MD, Brock JW, et al. 2000. Human exposure estimates for phthalates [Letter]. Environ Health Perspect 108:A440–A442.

NCS (National Children’s Study). 2005. Home Page. Available: http://www.nationalchildrensstudy.org/ [accessed 6 April 2006].

Neuedam LL. 2005. Assessing exposure to organophosphate pesticides by biomonitoring in epidemiologic studies of birth outcomes. Environ Health Perspect 113:494–498.

NIHES. 2003. Centers for Children’s Environ Health and Disease Prevention Research. Research Triangle Park, NC: National Institute of Environmental Health Sciences. Available: http://www.niehs.nih.gov/translation/children/children.htm [accessed 9 April 2006].

NRC (National Research Council). 2004. Human Biomonitoring for Environmental Chemicals. National Research Council Committee on Human Biomonitoring for Environmental Toxicants. Washington, DC:National Academies Press. Available: http://www.nap.edu/catalog/11700.htm [accessed 9 April 2006].

National Toxicology Program. 2000. Toxicology and Carcinogenesis Studies of Methylene glycol (CAS no. 90-15-2) in F344/N Rats and

Environmental Health Perspectives • VOLUME 114 • NUMBER 11 • November 2006
Albertini et al.

B6C3F1 Mice (Gavage Studies). Technical Report 491. Research Triangle Park, NC: National Toxicology Program. Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, et al. 2003. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect 111:201–205.

Robison SH, Barr DB. 2006. Use of biomonitoring data to evaluate methyl eugenol exposure. Environ Health Perspect 114:1797–1801.

Schecter A, Lucier GW, Cunningham ML, Abd KM, Blumenthal G, Silver AG, et al. 2004. Human consumption of methyl-eugenol and its elimination from serum. Environ Health Perspect 112:678–680.

Schwartz DA, Weis B, Wilson SH. 2005. The need for exposure health sciences. Environ Health Perspect 113:A650.

Sexton K, Needham LL, Pirkle JL. 2004. Human biomonitoring of environmental chemicals. Am Sci 92:38–45.

Smith R, Adams T, Doull J, Feron V, Goodman J, Marnett L, et al. 2002. Safety assessment of allylalkoxybenzene derivatives used in flavoring substances—methyl eugenol and estragole. Food Chem Toxicol 40:851–870.

Tosolo P, Boffetta P, Shuker DEG, Rothman N, Hulka B, Pearce N, eds. 1997. Application of Biomarkers in Cancer Epidemiology—Workshop Report. IARC Sci Publ 142:1–335. University of Minnesota. 2004. Farm Family Exposure Study. Available: http://www.farmfamilyexposure.org/ [accessed 9 April 2006].

U.S. EPA. 1993. Diethyl Phthalate (CASRN 84-66-2). Washington, DC: U.S. Environmental Protection Agency. Available: http://www.epa.gov/iris/subst/0226.htm [accessed 9 April 2006].

U.S. EPA. 2004. National Human Exposure Assessment Survey (NHEXAS). Washington, DC: U.S. Environmental Protection Agency. Available: http://www.epa.gov/nerl/research/2002/g8-2.html [accessed 9 April 2006].

Vargas RI, Stark JD, Kido MH, Ketter HM, Whitehand LC. 2000. Methyl eugenol and cue-lure traps for suppression of male oriental fruit flies and melon flies (Diptera: Tephritidae) in Hawaii: effects of lure mixtures and weathering. J Econ Entomol 93:81–87.

WHO. 2003. Diethyl Phthalate. Concise International Chemical Assessment Document (CICAD) 52. Geneva: World Health Organization. Available: http://www.who.int/ipcs/publications/cicad/en/cicad52.pdf [accessed 9 April 2006].

Whyatt RM, Rauh V, Barr DB, Camann DE, Andrews HF, Garfinkel R, et al. 2004. Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect 112:1125–1132.

WWF. 2004. Bad Blood? A Survey of Chemicals in the Blood of European Ministers. Brussels: World Wildlife Fund. Available: http://worldwildlife.org/toxics/pubs/badblood.pdf [accessed 9 April 2006].

Young JG, Eskenazi B, Gladstone EA, Bradman A, Pedersen L, Johnson C, et al. 2005. Association between in utero organophosphorus pesticide exposure and abnormal reflexes in neonates. Neurotoxicology 26:199–209.