INTERNATIONAL ONLINE CONFERENCE
Forest ecosystems in the conditions of climate change:
biological productivity and remote sensing
28-29 September 2021

Accuracy estimation of two global burned area products at national scale

Thomas Katagis, Ioannis Z. Gitas

Laboratory of Forest Management and Remote Sensing,
Aristotle University of Thessaloniki, Greece
http://fmrs.web.auth.gr/
e-mail: thkatag@for.auth.gr
Forest Fires

- Ecosystem disturbance
- Impact
 - Ecological
 - Economical
 - Social
- Climate change
 - Frequency
 - Severity

Evia, Greece 2021: AFP/Getty Images
Amazon forest (source: Victor Moriyama)
Siberian forest (source: Moscow Times)
Burned Area Information

Information on **Burned Areas (BA)** is important for:

- Supporting fire risk assessment and fire regime studies.
- Modeling fire impacts on human health.
- Estimating burned biomass and GHG emissions.
- Providing input for dynamic global vegetation models (DGVMs).
- Understanding the interactions between climate and fire activity, worldwide.
- Generating products that meet the GCOS Essential Climate Variable (ECV) requirements.
Global Burned Area Products

- Global fire datasets are mainly derived by low-coarse resolution Earth Observation (EO) satellite sensors.
- These sensors provide systematic spatio-temporal assessments on fire activity and generate consistent time-series of BA estimates.

https://geogra.uah.es/fire_cci/firecci51.php
Global Burned Area Products

Indicative list of current global BA products from satellite remote sensing systems

Product	Period	Release	Sensor/Method	Resolution spatial	Resolution temporal	File format	Data Layer	Reference	Data access	
C3SBA10	01/2017	TBA; early 2020	OLCI SRC & MODIS CS HS	p: 300m g: 0.25°	p: 1-2d g: m	NetCDF	p: DOB, CL, LC g: BA, UNC, FBNUR, FOA, LC	Lazoudis-Louda et al., (2020, in review)	TBA	
VNP964C1	10/2019	as sample	VIIRS C1 SRC & VIIRS C1 HS	p: 500m	p: d	HDF4	p: DOB, DOBUNC, QA, DOB (F&L)	https://e4ftl01.ciesas.usgs.gov/VIIRS/VNP964A1.001		
FireCCIL1001	02/2017	(beta)	AVHRR2-3, BA scaled w/MCD64C6	g: 0.25°	g: m	NetCDF	g: BA, UNC, FBNUR, FOA, LC	Otten & Passerini (2019)	https://catalogue.ceda.ac.uk/uuid/4f377a544355456d7e7dec0e53352 & https://edc.climatescience.nsc.edu.au/edc-scddatset/satellite-fire-burned-area	
GlobFire	11/2018		data mining on MCD64C6 pixel	p: 21 ha	p: cut 5d	SQL, SHP	p: NORPH, DOB	Artés et al., (2020)	https://doi.org/10.1394/PANGAEA.AEA.893333	
FireCCi51	11/2018		MODIS C0 SRC & MODIS C0 HS	p: 250m g: 0.25°	p: d g: m	NetCDF	p: GeoTiff & NetCDF4, 6 continental tiles	Lazoudis-Louda et al., (2020)	https://doi.org/10.1394/PANGAEA.AEA.893333	
FRY	09/2018		flood-fill on (a) MCD64C6 pixel	p: 5pixels g: 1°	p: cut 3, 5, 9 & 14d time-average	CSV, NetCDF	p: SHP, GeoTiff	Laurent et al., (2018, 2019)	https://doi.org/10.13144/0e999f1c-7e20-4ac-8853-7692603020	
GFA	08/2018		ignition point plus growth dynamics on MCD64C6 pixel	p: 21ha g: 500m p: b g: 0.25°	p: avg	NetCDF	p: IGNS, PER, DOB, MORPH, DYN	Andela et al., (2019)	https://doi.org/10.3334/ORNLDAAC/1042 & DAAC	
MCD64CMQ	11/2020	10/2018	see MCD64C6	g: 0.25° g: m	HDF4	BA, FOA, QA, LC	Gaglio et al., (2018a)	ftp://fire-burnt@fuwo.geog.mund.edu/ MCD64CMQ-C6		
GABAM	02/2018		Landsat8 SRC	p: 35m p: y	GeoTiff-10°tiles GEO-WGS84	BA	BA	Long et al., (2019)	https://vsdi.gislab.in/post/gabam2015/	
MCD64C5	11/2020	Nov now (lag ~6m)	MODIS C0 SRC & MODIS C0 HS	p: 500m	p: d	HDF4-10°tiles GeoTiff & SHP-24 tiles	DOB, DOBUNC, QA, DOB (F&L)	Gaglio et al., (2018a)	ftp://user.burnt_data@ba1.geog.mund.edu/collectors6/	
GIO-Gl v1 500m	04/2016	Nov now (lag ~3d)	PROBA-V SRC	p: 300m	p: d	NetCDF & GeoTiff	DOB, NOO, SEAS	Tamney et al., (2009)	https://land.copernicus.eu/global/products/ba (registration required)	

Heil A. (2019) ESA CCI ECV Fire Disturbance: D1.1 User requirements document, version 7.0. Available from: https://www.esa-fire-cci.org/documents
Challenges in global BA assessments

- Robust validation of satellite derived products remains an ongoing effort.
- Low availability of high-quality reference data is a critical issue.
- Differences among the various BA products in terms of spatial BA estimates, and especially at smaller scales.
- Significant errors of omission and commission due to products’ low resolution and due to the variety of ecosystems and vegetation types worldwide.

Although a Stage 3 validation has been achieved for MODIS BA products, there is still ‘space’ for further research on their reliability.
Aim and objectives

To assess the accuracy of two publicly available MODIS BA products, MCD64A1 C6 and MODIS FireCCI51, at national scale in a Mediterranean region.

Specific objectives:

- To generate a forest fire database based on the pixel-level information contained in the satellite BA products
- To compare the BA product database with a high resolution reference dataset and estimate its accuracy in fire detection
- To compare the BA product database with a high resolution reference dataset and estimate its spatial performance in terms of area burned (ha)
Study area: Greece

- **Total area**: 131,960 km²
- **Study period**: Fire seasons 2016 and 2017

[Reference data (S2)]

[EFFIS - Annual Country Statistics for Greece](https://effis.jrc.ec.europa.eu/apps/effis.statistics.portal/effis-estimates/EU/EL)
Datasets (I)

1. MODIS Burned Area MCD64A1 C6

 ![MODIS Burned Area MCD64A1 C6](https://lpdaac.usgs.gov/products/mcd64a1v006/)

 https://lpdaac.usgs.gov/products/mcd64a1v006/

2. MODIS FireCCI51

 ![MODIS FireCCI51](https://climate.esa.int/en/projects/fire/data/)

 https://climate.esa.int/en/projects/fire/data/

	MCD64A1 C6	FireCCI51
Spectral information	RED (2), SWIR (5,7), daily 500m	RED (1) NIR (2), daily 250 m
Sensor	Terra+Aqua MODIS	Terra MODIS
Active fire info	MCD14ML (1 km)	MCD14ML (1 km)
Spatial resolution	500 m	250 m
Time step	monthly	monthly
Coverage period	2001-present	2001-2019
Temporal window of detection	10 days	8 days
Algorithm	Multi-temporal burn sensitive Vegetation Index (VI) dynamic thresholding	Temporal compositing of GEMI index and two-phase region growing algorithm
Layers	burn date, burn date uncertainty, QA, first & last day of detection	date of burn (JD), confidence level (CL), land cover (LC)
3. Sentinel-2 Burned area reference dataset (2016-17)

- Reference BA dataset was initially based on the maps generated by the Object-based Burned Area Mapping (OBAM) service of the Greek National Observatory of Forest Fires (NOFFi) (http://epadap.web.auth.gr).
- Additional automated mapping of Sentinel-2 imagery was performed to generate a complete dataset.
Methods – Workflow

Pre-processing

- Download monthly BA products (GeoTiff files)
- Clip to country extent (May-October)
- Reprojection to local UTM zone
- Mask non valid pixels (QA) and agricultural areas
- Aggregation of burned pixels to fire patches

Accuracy analysis

- Create error matrices (BA product vs. reference map vectors)
- Generate S2 reference burned area maps
- Compute accuracy metrics (Oe, Ce, etc.)
- Assess fire detection accuracy
- Assess spatial accuracy of burned area
Methods – Accuracy metrics

- Two types of error matrices were generated, one including number of fires and the other the area burned (ha).
- Errors of omission (Oe) and commission (Ce) were calculated from the standard error matrix, as well as the Dice Coefficient (DC).

\[
Oe = 1 - \frac{B_t}{B_{S2}}, \quad Ce = 1 - \frac{B_t}{B_{MODIS}}, \quad DC = \frac{2B_t}{B_{S2} + B_{MODIS}}
\]

where $B_t =$ the number of fires correctly detected,
$B_{S2} =$ Sentinel-2 reference fires.
$B_{MODIS} =$ all the fires detected by the MODIS products

- Additional spatial comparison was performed by means of regression between the proportion of burned area reported by the product and the proportion reported by the reference maps, within a 5x5 km grid cell.
Individual pixels labeled as burned by the BA products were grouped based on spatial and temporal adjacency (maximum sequential burn period 16 days) to create single fire patches.

- Very small fires < 10 ha were sieved.
- Vector maps of burned areas were created for Greece for 2016 and 2017, as derived by the MCD64A1 and FireCCI51 products.
Results: *Accuracy assessment*

I. Assessment of fire detection capability

	Fires > 10 ha		Fires > 100ha								
	B_t	B_f	NB_f	Oe	Ce	DC	$S2$ fires	B_t	NB_f	Oe	$S2$ fires
2016											
MCD64A1	24	6	24	0.50	0.20	0.62	48	23	4	0.15	27
CCI51	41	24	7	0.15	0.37	0.73		32	3	0.09	35
2017											
MCD64A1	40	7	42	0.51	0.15	0.62	82	23	4	0.15	27
CCI51	44	25	38	0.46	0.36	0.58		32	3	0.09	35

B_t: true detections of fires; B_f: number of fires erroneously detected; NB_f: number of fires omitted

II. Assessment of burned area (ha)

	Fires > 10 ha		Fires > 100ha								
	B_t	B_{MODIS}	B_{S2}	Oe	Ce	DC		B_t	B_{MODIS}	B_{S2}	Oe
2016											
MCD64A1	19398	23576	27703	0.30	0.18	0.76	19374	23327	26588	0.27	
CCI51	20807	29180		0.25	0.29	0.73	20227	28167		0.24	
2017											
MCD64A1	15624	21683	21230	0.26	0.28	0.73	15337	20625	19140	0.20	
CCI51	14560	22193		0.31	0.34	0.67	14006	20955		0.27	

B_t: common area; B_{MODIS}: area mapped by MODIS products; B_{S2}: area mapped by Sentinel-2
Results: *Regression metrics*

Results of the regression conducted between the proportions of burned area of each product and the Sentinel-2 reference map within 5 x 5 km grid cells.

	2016	2017				
	\(R^2\)	Slope	Intercept	\(R^2\)	Slope	Intercept
MCD64A1	0.952	0.983	-0.012	0.945	1.171	-0.009
FireCCI51	0.894	0.975	0.006	0.793	1.016	0.002
BA product performance

- MCD64A1 C6 provided more consistent results in fire detection and burned area estimates, despite its lower resolution (500m). NIR/SWIR information presumably increases its performance.

- Their **spatial performance** also indicated good agreement with the reference data.

- MCD64A1 C6 and FireCCI51 exhibited satisfactory results in **detection** of larger fires (> 100 ha) occurring in forest and semi-natural areas.

- The 250 m FireCCI51 product exhibited relatively **higher sensitivity in detection of smaller** (<100 ha) fires.

- A significant level of **variability** between these products exists due to their different mapping methods.
Conclusions

- This research provides a **preliminary assessment** of the reliability and limitations of global BA products for the country of Greece.

- Not many similar studies have been conducted at country level in the Mediterranean region that include comparison vs. higher resolution data.

- The results have **implications for the usefulness** of global BA products in climate and vegetation disturbance studies conducted by the scientific community and potential end users.

- Further work is needed for a more rigorous assessment at country level by including additional fire seasons for comparison.
Acknowledgements
This work is part of a post-doctoral research co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (IKY).