Genotípus – fenotípus kapcsolata Drosophila IV-es típusú kollagén mutánsokban

Ph.D. Tézis füzet

Kiss András Attila

Orvosi Biológiai Intézet
Multidiszciplináris Orvostudományok Doktori Iskola
Általános Orvostudományi Kar
Szegedi Tudományegyetem

Témavezetők:
Dr. Mink Mátyás és Prof. Dr. Boldogkői Zsolt
Szeged
2020
A dolgozat témájához közvetlenül kapcsolódó publikációk

I. **Drosophila basement membrane collagen col4a1 mutations cause severe myopathy**
Kelemen-Valkony I, Kiss M, Csiha J, **Kiss A**, Bircher U, Szidonya J, Maróy P, Juhász G, Komonyi O, Csiszár K, Mink M.
Matrix Biology (2012)
https://doi.org/10.1016/j.matbio.2011.09.004
MTMT azonosító: 2104514
IF: 3.19 (Q2)

II. **Drosophila type IV collagen mutation associates with immune system activation and intestinal dysfunction**
Márton Kiss, **András A. Kiss**, Monika Radics, Nikoletta Popovics, Edit Hermesz, Katalin Csiszár and Mátyás Mink.
Matrix Biology (2016)
https://doi.org/10.1016/j.matbio.2015.09.002
MTMT azonosító: 2962945
IF: 7.4 (Q1)

III. **Altered stress fibres and integrin expression in the Malpighian epithelium of Drosophila type IV collagen mutants**
András A. Kiss, NikolettaPopovics, GáborSzabó, Katalin Csiszár, Mátyás Mink.
Data in Brief (2016)
https://doi.org/10.1016/j.dib.2016.03.059
MTMT azonosító: 3056130
IF: 0 (Q2)
IV. 4-Hydroxy-2-nonenal Alkylated and Peroxynitrite Nitrated Proteins Localize to the Fused Mitochondria in Malpighian Epithelial Cells of Type IV Collagen Drosophila Mutants

András A. Kiss¹, Nikoletta Popovics¹, Zsolt Boldogkői¹, Katalin Csiszár² and Mátyás Mink¹

BioMed Research International (2018)
https://doi.org/10.1155/2018/3502401
MTMT azonosító: 3326500
IF: 2.197 (Q2)

V. Novel Phenotypic Elements of Type IV Collagenopathy Revealed by the Drosophila Model

András A. Kiss¹, Nikoletta Somlyai-Popovics¹, Vilmos Tubak², Zsolt Boldogkői¹, Katalin Csiszár³ and Mátyás Mink¹*

Applied Sciences (2019)
https://doi.org/10.3390/app9102083
MTMT azonosító: 30686350
IF: 2.217 (Q2)

VI. Type IV Collagen Is Essential for Proper Function of Integrin-Mediated Adhesion in Drosophila Muscle Fibers

András A. Kiss¹, Nikoletta Somlyai-Popovics¹, Márton Kiss¹, Zsolt Boldogkői¹, Katalin Csiszár² and Mátyás Mink¹

International Journal of Molecular Sciences (2019)
https://doi.org/10.3390/ijms20205124
MTMT azonosító: 30881918
IF: 4.183 (Q2)
VII. Muscle dystrophy is triggered by type IV collagen alleles affecting integrin binding sites directly or indirectly in Drosophila
Márton Kiss¹, Ildikó Kelemen-Valkony¹, András Kiss¹, Brigitta Kiss², Katalin Csiszár³, Mátyás Mink¹
XXIIIed FECTS and ISMB Joint Meeting, August 25th–29th, 2012, Katowice, Poland
http://www.actabp.pl/pdf/Supl1_12/s3.pdf
MTMT azonosító: 3240354
IF: 1.185

Összesített impact factor: 20.372
Bevezetés

A kollagének szerepe

A többsejtű állatok sokféleségének kulcsa a sejtek azon képességében rejlik, hogy össze tudnak kapcsolódni és ily módon alakítják ki a szerveket és szöveteket. Ehhez a folyamathoz szupramolekuláris kapcsolat szükséges, hogy együtt tartsák őket. Ezek a molekuláris "összetartók" a kollagének. Az alapmembránt alkotó kollagénfehérjék triplahelikálisak és képesek egymáshoz kapcsolódni. A meghatározott módon történő összekapcsolódás eredményeként létrejön egy szabályos hálózati struktúra. Ennek a hálónak az elsődleges funkciója egy tartószerkezet létrehozása, valamint jelentős rugalmasság és ellenálló képesség biztosítása a szervek és szövetek részére. Rendkívül fontos szerepet játszanak a sejtek migrációjában, a sejtek adhéziójában, a regenerációban és a jelátvitelben. A kollagén szupercsalád egy nagyon összetett család, 9 fő családba tartozik a 28 ismert kollagén és kollagén-szerű protein. Az összes kollagénfehérje közös szerkezeti jellemzővel rendelkezik,
de legalább triplahélix doménnel rendelkezik. A kollagén az egész testünkben megtalálható. Különböző típusú szervekben és szövetekben találhatjuk meg a jellegzetes kollagénhálózatokat. Ezek alkotják a porcot, a szem üveges testét, megtalálhatóak az érrendszer falában, a tüdőben, a vesében és az alapmembránban 3. A disszertációmban részletesebben foglalkozom a IV-es típusú kollagénnel.

A kollagének

Az emlősök három pár IV-es típusú kollagén gént hordoznak fej-fej elrendezésben, míg *Drosophilaban* csak egy pár van és a *col4a1* és *col4a2* lókuszok ugyanabban a genomi szerveződésben 4. A *COL4A3, COL4A4* és *COL4A5* gének mutációi az Alport-szindrómával 5,6 társulnak. Úgy tűnik, hogy a *COL4A5* és a *COL4A6* génekben lévő deléciók diffúz leiomyomatózist is okoznak 7. A [COL4A1]_2COL4A2 összetételű heterotrimerjei az emlősök alapmembránjainak legnagyobb arányban előforduló összetevői. A *Col4a1* vagy a *Col4a2* egér mutánsok reprezentálják a legösszetettebb szisztémás fenotípusokat, amelyek befolyásolják a központi
idegrendszer, szem, vese, pulmonális, érrendszeri, reproduktív és izomrendszereket 8–10, az embereknél ismegjelennek ezek a tünetek 11. A COL4A1 mutációval szenvedő betegekben súlyos izomfenotípusokat mutattak ki, melyek többszervrendszeri rendellenességgel együtt (örökletes angiopathiával, nephropathival, aneurizmákkal és izomgörcsökkel) HANAC szindrómának neveznek 12,13.

A Drosophila col4a1 mutánsokban kondicionális, hőmérséklet-érzékeny allél sorozatot azonosítottak. A col4a1⁻ homozigóták embrionálisan letálisak, míg a col4a1⁺⁻ heterozigóták életképes és termékenyen 20° C permisszív hőmérsékleten, de restriktív 29° C-os körülmények között elpusztulnak. Ezekben a mutánsokban súlyos myopathiát 4, szabálytalan és megvastagodott BM-t, a bél hám- és zsigeri izomsejtjeinek leválását a BM-röl, az antimikrobiális peptidok túlzott expresszióját, hidrogén-peroxidot és peroxinitrit túlterhelést mutattuk ki 12. Kimutattuk továbbá a membrán lipidperoxidációját 15, az aktin stressz filamentumokat és a szabálytalan integrin expressziót a malpighi tubulus epiteliális sejtjeiben 16.
Eredményeink azt sugallják, hogy a *Drosophila col4a1* mutánsaiban is felléphet az izomdisztrófia.

Az izomfenotípus jellemzésére a *col4a1* mutáns allél sorozaton immunhisztokémiai kísérleteket végeztünk. A rendellenes szarkomereket, a megváltozott integrin expressziót és a lokalizációt, a Z-korong diszorganizációját, streamingjét és atrófiáját a közös petevezeték harántcsíkolt izomzatára összpontosítva detektáltuk. Az eredményeink együttesen azt mutatják, hogy a mutánsok disztrófikus izomfenotípusa a kóros integrin a rendellenes COL4A1-el kialakított kölcsönhatásokból származik, ami alátámasztja az integrin-közvetített izomsejt-adhézió részeként a IV-es típusú kollagén meghatározó szerepét.

Célok

Kutatásomban kíváncai voltam arra, hogy a *col4a1* mutációi hogyan befolyásolják a kiválasztott szervek működését. Ehhez a munkához a *Drosophila melanogaster* választottam, mivel csak két *col4a* gént hordoz. Korábbi munkánk eredményeként kondicionális
col4a1 mutánsok álltak rendelkezésünkre, amelyekben képesek voltunk leírni annak hatásait a harántcsíkos izmok fejlődésére is.

Dolgozatomban összefoglalom megfigyeléseimeet, amelyek célja annak megvizsgálása volt, hogyan változtak a col4a1 mutációk eredményeként:

- A mutáns állatokban a COL4A1 protein mennyiségének változásai, hogy átfogóbb képet kapjunk a fejlődés két különböző fázisáról, különböző hőmérsékleteken.

- A Drosophila melanogaster közönséges petevezetékének immunfluoreszcens képei, amelyek a szarkomer szerkezetének változásait mutatják a col4a1 mutáció következtében.

- A COL4A1 fehérjéhez kapcsolódó extracelluláris fehérjék vizsgálata a középbélben a fejlődés különböző szakaszaiiban.
• A mutáció káros szisztémás természetének igazolására megvizsgáljuk a Malpighi tubulusok citoszkeletális-extracelluláris tengelyében levő fehérjék változásait.

• Végezetül érdekeltek, hogyan változik a mitokondriumok morfológiája a Malpighi tubulusokban a mutációk eredményeként.

Módszerek

Nyolc domináns hőmérséklet-érzékeny (DTS) mutáns Drosophila melanogaster törzzsel rendelkezik a laboratóriumunk. A mutációk a 2. kromoszómán vannak, és mindegyikük pontmutáció, amely glicin aminosav cserét eredményez. A törzseket balancer kromoszómával (2. kromoszóma) tartottam fenn. A vad típusú Oregon legyek és a col4a1 mutáns állományokat 20° C és 29° C hőmérsékleten tartottam, élesztő-kukoricadara-szacharózagar táptalajon, melyek nipagint tartalmaztak a gombás fertőzés megelőzésére. A malpighiális tubulusokat, a bélt és a petefészek szén-dioxid altatás során távolítottam el az állatokból, akiket mind a restriktív, mind a permisszív
hőmérsékleten inkubáltam. Az immunfestést ezután különféle antitestekkel hajtottuk végre. A malpighi tubulusok, a középbél és a közös petevezeték mikroszkópos felvételeit konfokális lézeres pásztázó fluoreszcens mikroszkóppal készítettem. A statisztikai számításokat a Microsoft Office Excel és az ingyenes R-3.5.2 és RStudio-1.1.463 eszközökkel végeztem el. A Western blot-kísérletekhez egész legyekből készítettem a mintákat.

Eredmények és következtetések

A közös petevezeték és a larva testfalának mutáns fenotípusa az összes vizsgált állélban mutatja a miopáthiás, vagy disztrófikus állapotokra jellemző tulajdonságokat. Az aktin kóros szerveződését és lerakódását, továbbá a szarkomer szerkezet szabálytalan és széteső megjelenését, a Z-korongok streamingjével. Hipotézisünk szerint a COL4A1 fehérje expressziója alacsonyabb a mutáns legyekben, ezért Western blotot kísérletet végeztük. Véleményem szerint a pontmutációt hordozó gén hátrányosan befolyásolja az expressziót permisszív hőmérsékleten. Nem találtunk
különbséget felnőtt vad típusú és mutáns állatok között 20° C-on. A mutáns felnőtt állatokban azonban a COL4A1 fehérje mennyisége láthatóan csökkent a restriktív hőmérsékleten (29° C). Csoportunk korábbi eredményei azt mutatják, hogy a col4a1 mRNS transzkripciós szintje nem csökkent. Ezek az adatok arra utalnak, hogy a mutánsokban a COL4A1 fehérje szintjének 29° C-on csökkenő szintjét a nem megfelelő fehérje összeszerelődés és beépülés okozza.

Ezeket az eredményeket immunhisztokémiai módszerrel is kívántuk validálni és megjeleníteni, azt is érdekelt, hogy a COL4A1-vel kapcsolatba lépő citoszkeletális-extracelluláris tengely kialakításában részt vevő más fehérjék hasonló fenotípust mutatnak. A kiválasztott fehérjék a COL4A1, a PS I és PS II integrin alfa-áleggységei és a Laminin gamma 1 volt. Megállapítottuk, hogy az integrin festése és a mutáns L3 lárvák középbelében csökkenést mutatott permisszív hőmérsékleten. Ez a jelenség fokozódik restriktív hőmérsékleteken, az integrin eloszlása szabálytalan és felnőtt állatokban is megfigyelhető. A laminin expresszió
szintén csökkent a restrikтив hőmérsékleten a mutáns L3 lárvák középbelében. A COL4A1 fehérje felhalmozódik a mutáns állatok középbelében és restrikтив hőmérsékleteken további csökkenést, eloszlása diffúz és egyenetlen.

A közös petefészek és a középbél után egy másik szervet, a malpighi tubulust is bevontam a vizsgálatba, amely analóg az emlősök veseivel. Immunhisztokémiai festést végeztem különböző korú (3 és 18 napos) és különböző hőmérsékleten inkubált felnőtt állatok szervein. A vizsgált fehérjék az aktin, a COL4A1 és az integrin alfa PS I és PSII alegységek voltak. Felvételeink egyértelműen kimutatták, hogy a col4a1 mutánsok a restrikтив hőmérséklet következtében növelik az aktin stressz fibrillumok számát, csökkentik a COL4A1 fehérje szintjét, és az egyenetlen integrin eloszlást.

A stresszválasz részeként a Drosophila col4a1 mutánsok fiziológiai koncentráció felett szintézálják a peroxinitritet. A peroxinitrit túlzott termelése súlyos fehérje tirozin-nitrációt és fehérje alkilezést eredeményez, amely hátrányosan befolyásolja ezek működését, valamint
membrán lipidperoxidációt és mitokondriális füziót indukál. A vad típusú kontroll állatok nem mutatták ezeket a transzláció utáni módosításokat füziót indukáló testhelyzetek között, mivel a peroxinitrit eltávolításához a nitrozoperoxid-karbonát utat használták. Megállapításunk szerint a col4a1 Drosophila mutáns modellben a poszttranszlációs fehérjemódosítások a col4a1-hez kapcsolódó pathológia szerves részét képezik, és olyan mechanikus poszt-transzlációsféherje módosításokat képviselnek, amelyeket COL4A1 mutációval rendelkező emberekben, vagy egerekben még nem mutattak ki.
Irodalomjegyzék

1. Fidler, A. L. et al. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. Elife 6, (2017).

2. Ricard-Blum, S. & Ruggiero, F. The collagen superfamily: From the extracellular matrix to the cell membrane. Pathol. Biol. (2005) doi:10.1016/j.patbio.2004.12.024.

3. Myllyharju, J. et al. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. (2004) doi:10.1016/j.tig.2003.11.004.

4. Kelemen-Valkony, I. et al. Drosophila basement membrane collagen col4a1 mutations cause severe myopathy. Matrix Biol. 31, 29–37 (2012).

5. Alport, A. C. HEREDITARY FAMILIAL CONGENITAL HAEMORRHAGIC NEPHRITIS. Br. Med. J. 1, 504–6 (1927).

6. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. New England Journal of Medicine (2003) doi:10.1056/NEJMra022296.

7. Zhou, J. et al. Deletion of the paired α5(IV) and α6(IV) collagen genes in inherited smooth muscle tumors. Science (80-.). (1993) doi:10.1126/science.8356449.

8. Gould, D. B. et al. Mutations in Col4a1 Cause Perinatal Cerebral Hemorrhage and Porencephaly. Science (80-.). 308, 1167–1171 (2005).
9. Van Agtmael, T. *et al.* Dominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy. *Hum. Mol. Genet.* **14**, 3161–8 (2005).

10. Favor, J. *et al.* Type IV procollagen missense mutations associated with defects of the eye, vascular stability, the brain, kidney function and embryonic or postnatal viability in the mouse, Mus musculus: An extension of the Col4a1 allelic series and the identification of . *Genetics* (2007) doi:10.1534/genetics.106.064733.

11. Kuo, D. S., Labelle-Dumais, C. & Gould, D. B. Col4a1 and col4a2 mutations and disease: Insights into pathogenic mechanisms and potential therapeutic targets. *Hum. Mol. Genet.* (2012) doi:10.1093/hmg/dds346.

12. Kiss, M. *et al.* Drosophila type IV collagen mutation associates with immune system activation and intestinal dysfunction. *Matrix Biol.* **49**, 120–131 (2016).

13. Alamowitch, S. *et al.* Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. *Neurology* (2009) doi:10.1212/WNL.0b013e3181c3fd12.

14. Kelemen-Valkony, I., Kiss, M., Csiszár, K. & Mink, M. Inherited myopathies. in *Myopathies: New Research* (2013).

15. Kiss, A. A., Popovics, N., Boldogki, Z., Csiszár, K. & Mink, M. 4-Hydroxy-2-nonenal Alkylated and Peroxynitrite Nitrated Proteins Localize to the Fused Mitochondria in Malpighian Epithelial Cells of Type IV Collagen Drosophila Mutants. *Biomed Res. Int.* **2018**, (2018).
16. Kiss, A. A., Popovics, N., Szabó, G., Csiszár, K. & Mink, M. Altered stress fibers and integrin expression in the Malpighian epithelium of Drosophila type IV collagen mutants. *Data Br.* 7, 868–72 (2016).

17. Kiss, A. A. *et al.* Type IV collagen is essential for proper function of integrin-mediated adhesion in Drosophila muscle fibers. *bioRxiv* 318337 (2018) doi:10.1101/318337.

18. Rahimov, F. & Kunkel, L. M. Cellular and molecular mechanisms underlying muscular dystrophy. *J. Cell Biol.* (2013) doi:10.1083/jcb.201212142.
Társszerzői lemondó nyilatkozat

Alulírott Valkonyné-Kelemen Ildikó (felelős társszerző) kijelentem, hogy Kiss András Attila (pályázó) PhD értekezésének tézispontjaiiban bemutatott - közösen publikált - tudományos eredmények elérésében a pályázónak meghatározó szerepe volt, ezért ezeket a téziseket más a PhD fokozat megszerzését célzó minősítési eljárásban nem használta fel, illetve nem kívánja felhasználni.

2020.02.26.

dátum
szerző

A pályázó tézispontjaiiban érintett, közösen publikált közlemények:

I. **Drosophila basement membrane collagen col4a1 mutations cause severe myopathy**
 Kelemen-Valkony1, Kiss M, Csilha J, Kiss A, Bircher U, Szidonya J, Maróy P, Juhász G, Komonyi O, Csiszár K, Mink M.
 Matrix Biology (2012)
 https://doi.org/10.1016/j.mathbio.2011.09.004
 MTMT azonosító: 2104514

II. **Muscle dystrophy is triggered by type IV collagen alleles affecting integrin binding sites directly or indirectly in Drosophila**
 Márton Kiss1, Ildikó Kelemen-Valkony1, **András Kiss**1, Brigitta Kiss2, Katalin Csiszár2, Máté Mink1
 XXIIIed FECTS and ISMB Joint Meeting, August 25th–29th, 2012, Katowice, Poland
 http://www.actabp.pl/pdf/SupPl1_12/s3.pdf
 MTMT azonosító: 3240354
Társszerzői lemondó nyilatkozat

Alulírott Kiss Márton (felelős társszerző) kijelentem, hogy Kiss András Attila (pályázó) PhD értekezésének tézispontjaiban bemutatott - közösen publikált - tudományos eredmények elérésében a pályázónak meghatározó szerepe volt, ezért ezeket a téziseket más a PhD fokozat megszerzését célzó minősítési eljárásban nem használta fel, illetve nem kívánja felhasználni.

2020.02.26.

dátum

szerző

A pályázó tézispontjaiban érintett, közösen publikált közlemények:

I. Drosophila type IV collagen mutation associates with immune system activation and intestinal dysfunction
 Márton Kiss*, András A. Kiss*, Monika Radics*, Nikoletta Popovics*, Edit Hermesz*, Katalin Csiszar* and Máté Mink*
 Matrix Biology (2016)
 https://doi.org/10.1016/j.matbio.2015.09.002
 MTMT azonosító: 2962945

II. Drosophila basement membrane collagen col4a1 mutations cause severe myopathy
 Kelemen-Valkonyi 1*, Kiss M, Csiha J, Kiss A, Bircher U, Szidonya J, Maróy P, Juhász G, Komoryi O, Csiszar K, Mink M.
 Matrix Biology (2012)
 https://doi.org/10.1016/j.matbio.2011.09.004
 MTMT azonosító: 2104514
III. Type IV Collagen Is Essential for Proper Function of Integrin-Mediated Adhesion in Drosophila Muscle Fibers

András A. Kiss1, Nikolett Somlyai-Popovics1, Márton Kiss3, Zsolt Boldogh1, Katalin Csizsár2 and Mátéyás Mink1

International Journal of Molecular Sciences (2019)
https://doi.org/10.3390/ijms20205124
MTMT azonosító: 30881918

IV. Muscle dystrophy is triggered by type IV collagen alleles affecting integrin binding sites directly or indirectly in Drosophila

Márton Kiss1, Ilóiko Kelemen-Valkony1, András Kiss1, Brigitta Kiss2, Katalin Csizsár2, Mátéyás Mink1

XXIII. de FECTS and ISMB Joint Meeting, August 25th–29th, 2012, Katowice, Poland
http://www.actabp.pl/pdf/Suppl1_32/s3.pdf
MTMT azonosító: 3240354