Stereoselective Synthesis of Oxazolidin-2-ones via an Asymmetric Aldol/Curtius Reaction: Concise Total Synthesis of (−)-Cytoxazone

Hosam Choi, Hanho Jang, Joohee Choi and Kiyoun Lee *

Abstract: Herein, we are reporting an efficient approach toward the synthesis of 4,5-disubstituted oxazolidin-2-one scaffolds. The developed approach is based on a combination of an asymmetric aldol and a modified Curtius protocol, which uses an effective intramolecular ring closure to rapidly access a range of oxazolidin-2-one building blocks. This strategy also permits a straightforward and concise asymmetric total synthesis of (−)-cytoxazone. Consisting of three steps, this is one of the shortest syntheses reported to date. Ultimately, this convenient platform would provide a promising method for the early phases of drug discovery.

Keywords: oxazolidin-2-one; (−)-cytoxazone; natural product; total synthesis; curtius reaction; asymmetric aldol

1. Introduction

Functionalized oxazolidin-2-ones are among the most interesting heterocyclic compounds, with uses both as pharmaceuticals and as key synthetic intermediates. One of the most common methods involves the intermolecular reaction of a β-amino alcohol with phosgene (Scheme 1a) [14,15].
Scheme 1. (a) Natural products and pharmaceuticals containing oxazolidin-2-ones (b) Conventional method towards the oxazolidin-2-ones (c) Proposed Strategy for the synthesis of the 4,5-disubstituted oxazolin-2-one framework.

However, these types of method suffer from limited availability of starting materials, in some cases, due to the need for a pre-installed stereogenic center on the β-amino alcohol prior to ring closure. Alternative common strategies include the reaction of isocyanates with epoxides and the reaction of aziridines with carbon dioxide [16–18]. Despite these advances in the field of oxazolidin-2-one synthesis, successful methods are thus far largely limited in terms of the access to substrates, regio- and stereochemical outcome, ability to increase molecular complexity of easily obtainable starting materials, and sufficiently mild reaction conditions that are compatible with various functional groups. Furthermore, to date, the asymmetric synthesis of oxazolidin-2-one motifs has thus far remained out of reach. More specifically, many asymmetric strategies reported to have focused on the generation of C4- or C5-monosubstituted oxazolidinones, while strategies providing access to oxazolidinones possessing 4,5-two vicinal stereogenic centers have rarely been reported.
These aspects have resulted in the continuous demand for new synthetic approaches for the construction of optically active oxazolidin-2-one moieties.

To meet this synthetic need, herein we disclose studies on the development of an efficient synthesis of oxazolidin-2-one scaffolds with access to 4,5-vicinal stereogenic centers, which uses a combination of an asymmetric aldol and a modified Curtius procedure to undergo an effective intramolecular cyclization. This convenient platform consequently permitted the concise total synthesis of natural (−)-cytoxazone (1) in only three steps. To the best of our knowledge, this work presents the shortest asymmetric total synthesis of (−)-cytoxazone reported to date.

The Curtius approach most commonly involves the isolation of acyl azides from carboxylic acid derivatives such as acyl chlorides or mixed anhydrides [19–21]. However, the acid chloride itself often raises the issue of compatibility with acid-labile functionalities and has additional drawbacks such as issues with preparation and storage. Alternative one-pot protocols for the synthesis of carbamates from carboxylic acids by employing the diphenylphosphoryl azide (DPPA) have been more attractive [22,23]. Though quite efficient, toxicity issues and purification difficulties have been inescapable, resulting in restriction of scope and consequently, synthetic utility.

2. Results and Discussion

Keeping these considerations in mind, we were interested in the direct conversion of chiral imides to cyclic carbamates without the isolation of highly reactive acyl chlorides and/or unstable acyl azides. As illustrated in Scheme 1c, we envisaged that efficient, direct, and even diastereoselective construction of an optically active 4,5-disubstituted oxazolidin-2-one motif would be possible if a chiral auxiliary-mediated asymmetric aldol reaction was utilized in conjunction with the Curtius rearrangement, followed by in situ intramolecular ring closure in a tandem manner.

In terms of the simplified reaction mechanism, upon treatment with sufficiently nucleophilic azide transfer reagents, the chiral auxiliary bearing starting material I could be converted into acyl azide intermediate II. Subsequent thermal decomposition results in the formation of an acyl nitrene with the loss of N₂, followed by the molecular rearrangement to generate the desired chiral oxazolidin-2-one, presumably through the intramolecular ring closure of the isocyanate intermediate III.

In order to test this hypothesis, syn-aldol adduct 3a was prepared as a model substrate by employing an Evans type auxiliary-mediated aldol protocol [11,24–26] following the procedure described by Crimmins [27–29] (Scheme 2). Initially, we attempted the direct nucleophilic azidation/Curtius reaction by treatment of 3a with Bu₃SnN₃ (3 equiv., THF, 90 °C). To our disappointment, the reaction only produced a trace amount (less than 2%) of product 4 (entry 1). Introducing an oxazolidinethione in syn-aldol product 3b and ensuing subjection in the nucleophilic azide transfer/Curtius reaction improved the yield, but only to 13% (entry 2).

These low conversions could be attributed to the inherent electrophilic nature of C1 carbonyl carbon in 3a–c and the associated inhibition of the initial acyl azide formation. Therefore, we envisioned that corresponding aldol precursors with diminished electrophilicity at C1 in auxiliaries would potentially be more productive than oxazolidinones or oxazolidinethiones in establishing more effective construction of the oxazolidin-2-ones [29,30]. Consistent with our expectation, the nucleophilic azidation/Curtius reaction of thiazolidinethione 3c under the same reaction conditions (Bu₃SnN₃, THF, 90 °C) proceeded to provide corresponding oxazolidin-2-one 4 in higher conversion (57%).
Scheme 2. Synthesis of oxazolidin-2-one via the azidation/Curtius rearrangement sequence.

entry	substrate	R-N3	solvent	yield (%)
1	3a	Bu3SnN3	THF	<2
2	3b	Bu3SnN3	THF	13
3	3c	Bu3SnN3	THF	57
4	3a	Me2AlN3	THF	<2
5	3b	Me2AlN3	THF	37
6	3c	Me2AlN3	THF	42
7	3a	Me3SiN3	THF	<2
8	3b	Me3SiN3	THF	27
9	3c	Me3SiN3	THF	89
10	3c	Me3SiN3	DMF	32
11	3c	Me3SiN3	MeCN	54
12	3c	Me3SiN3	toluene	42
13	3a	(n-Bu)4NN3	THF	0
14	3b	(n-Bu)4NN3	THF	3
15	3c	(n-Bu)4NN3	THF	7
16	3c	NaN3	DMF	0
17	3c	NaN3	MeCN	N.R.
18	3c	NaN3	acetone	N.R.

Encouraged by this promising result, we contemplated a series of alternative chiral auxiliaries and several N3 transfer reagents and ultimately found that a combination of the use of asymmetric syn-aldol products bearing N-acylthiazolidinethione with a Bn or an i-Pr moiety and treatment with Me3SiN3 [31] (3 equiv., THF, 90 °C, entry 9) proved to be highly effective and cleanly afforded the corresponding oxazolidin-2-one 4 in superb conversion (89%). Optimization of the solvent system revealed that THF was the best solvent of those examined (entries 9–12). The use of higher reaction concentrations (0.2 M) or prolonged reaction times (12 h) did not further improve the already excellent yield. It is worth mentioning that the developed protocol proceeds with complete retention of the enantiomeric excess and the diastereoselectivity in 4 (see Supplementary Material). Alternative nucleophilic azide transfer reactions (M2Al-N3/THF or (n-Bu)4NN3/THF) were also successful, but afforded 4 in lower conversions (Scheme 2, entries 4–6, 13–15).
However, reactions that employed NaN₃ proved ineffective in all tested solvent systems (DMF, MeCN, and acetone) (entries 16–18).

To gain further insight into the effect of thiazolidinethione moiety in compound 3c, we next sought to address the reactivity with a simpler ester functionality (Scheme 3). To this end, methyl ester 5 was prepared by methanalysis of 3c (DMAP (20 mol%), MeOH (1.5 equiv.), CH₂Cl₂, 25 °C) and subsequent azidation/Curtius reaction in the presence of Me₂AlN₃ gave the oxazolidin-2-one 4 in low yield (23%). Surprisingly, the azidation/Curtius reactions of 5 with the treatment of Me₂SiN₃, Bu₃SnN₃, or (n-Bu)₄NN₃ failed to provide the corresponding 4, but rather only resulted in no reactivity for the former and significant decomposition for the latter two cases. Subsequently, carboxylic acid 6 was also evaluated by the treatment of DPPA (Et₃N, benzene, reflux), which proceeded to provide 4 in 84%, suggesting that a direct mode of oxazolidin-2-one formation from a substrate such as 3c may constitute a more effective approach than a multi-step process.

![Scheme 3. Synthesis of 4,5-disubstituted oxazolidin-2-ones from 5 and 6.](image)

entry	R-N₃	time	yield (%)
1	Me₂SiN₃	5 h	N.R.a
2	Me₂AlN₃	10 min	23
3	Bu₃SnN₃	30 min	0
4	(n-Bu)₄NN₃	2 h	0

Isolated yield. a No reaction was observed. DPPA = diphenyl phosphoryl azide.

Having achieved optimal reaction conditions, we set out to explore the scope and the limitations of this transformation (Scheme 4). A series of β-hydroxy carbonyl substrates bearing aryl and aliphatic substituents were synthesized and found to react well to afford the desired 4,5-disubstituted oxazolidin-2-ones in good to excellent conversions. Electron-neutral and electron-rich aryl motifs, such as p-chlorophenyl (7a), p-fluorophenyl (7b), p-methoxyphenyl (7e), and thiophene (7c) groups, readily proceeded to provide the desired products 8a–c and 8e (90–97%). Substrates with strong electron withdrawing functionalities, such as p-cyano (7h), p-nitro (7i), and p-trifluoromethyl (7j) were also tolerated to generate the corresponding oxazolidin-2-ones (8h–8j, 79–80%). In addition, expanding the scope to aliphatic substituents (7k and 7l) proved to be feasible and provided the corresponding products 8k and 8l (73–90%), demonstrating excellent compatibility with a range of functional groups.

To demonstrate the synthetic utility of the present methodology, we tackled the synthesis (−)-cytoxazone (1). (−)-Cytoxazone was originally isolated from cultures of Streptomyces sp. in 1998 by Osada and co-workers [32]. Structural elucidation and relative stereochemistry was established by a combination of high-resolution mass spectroscopy and two-dimensional-NMR studies, while the absolute configuration was secured via the comparison of CD spectra with authentic samples, as well as the enantioselective synthesis by Nakata and co-workers [33]. It was reported that (−)-cytoxazone exhibited a cytokine modulator effect via the signaling pathway of Th2 cells (type 2 cytokines), which is involved in cell growth and differentiation [34]. These interesting pharmacological properties made
Molecules 2021, 26, 597

this natural product and its analogs important targets for chemical synthesis, resulting in more than thirty to date [35–39].

Scheme 4. Substrate scope of the synthesis of 4,5-disubstituted oxazolidin-2-ones. All reactions were run on 0.1–0.2 mmol scale under the standard conditions. Yields of isolated products after purification by flash chromatography.

Our synthesis of (−)-cytoxazone (1) is illustrated in Scheme 5. An asymmetric aldol addition of chlorotitanium enolate of 9 upon treatment with 2-benzyloxyacetalddehyde 10 furnished the syn-aldol adduct 11 in 98% yield (dr 3:1). Subsequent nucleophilic azidation/Curtius reaction of the resulting 11 in the presence of trimethylsilyl azide (3 equiv., THF, 90 °C, 5 h) smoothly proceeded to afford the desired cyclic carbamate 12 in 87% yield as a single diastereomer. Attempts with other methods (Bu3SnN3 or (n-Bu)4NN3, 3 equiv., THF, 90 °C) were also successful but afforded 12 in lower conversions (11–17%). Lastly, removal of benzyl group (Pd/C, H2, EtOH) allowed the completion of the synthesis of (−)-cytoxazone (1), whose properties proved identical in all respects with those of an authentic sample of the natural product.
Our synthesis of (−)-cytoxazone (1) is illustrated in Scheme 5. An asymmetric aldol condensation of (R)-aldehyde (11) with (−)-10-phenyloxazolidin-2-one furnished the aldol adduct (3:1). Subsequent nucleophilic azidation with 3 equiv. (47.0 µL, 0.360 mmol, 3.0 equiv.) of (−)-Bu4N3, 3 equiv., afforded the expected azido compound (12) in 87% yield. The azido azide (12) was transformed into (−)-cytoxazone (1) by palladium-catalyzed hydrogenation

\[
\text{Me}_3\text{SiN}_3 (3 \text{ equiv.}) \quad \text{THF} \quad 90^\circ \text{C}, 5 \text{ h}
\]

The resulting mixture was cooled to 25 °C and quenched with H2 (1 atm). After stirring for 5 h at 90 °C, the resulting mixture was cooled to 25 °C and quenched with the addition of H2O, and diluted with CH2Cl2. The layers were separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with saturated aqueous NaCl, dried over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, gradient eluent: 25–75% EtOAc/hexane) to provide (45,5R)-4-methyl-5-phenyloxazolidin-2-one (4) (19.0 mg, 0.120 mmol, 3.0 equiv.) as a white powder. All reactions were conducted in oven-dried glassware under nitrogen. Unless otherwise stated, all reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA), and were used without further purification. All solvents were ACS grade or better and used without further purification.

3.1. General Information

All reactions were conducted in oven-dried glassware under nitrogen. Unless otherwise stated, all reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA), Acros, or Fisher (Hampton, NH, USA), and were used without further purification. All NMR and C-NMR spectra were recorded at 298 K on a Bruker Avance III HD 500 MHz (Bruker Corporation, Billerica, MA, USA) spectrometer in CDCl3 by using the signal of residual CHCl3, as an internal standard. All-NMR δ values are given in ppm, and all J values are in Hz. Optical rotation values were measured with a Rudolph Research Analytical (AUTOPOL II, Hackettstown, NJ, USA) polarimeter.

3.2. Representative Procedure for the Synthesis of 4

(4S,5R)-4-methyl-5-phenyloxazolidin-2-one (4): A solution of (2S,3S)-3-hydroxy-1-((S)-4-isopropyl-2-thioxothiazolidin-3-yl)-2-methyl-3-phenylpropan-1-one 3c (38.9 mg, 0.120 mmol, 1.0 equiv.) in THF (1.2 mL, 0.1 M) was treated with Me3SiN3 (47.0 µL, 0.360 mmol, 3.0 equiv.) and the resulting mixture was heated to reflux at 90 °C. After stirring for 5 h at 90 °C, the resulting mixture was cooled to 25 °C, quenched with the addition of H2O, and diluted with CH2Cl2. The layers were separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with saturated aqueous NaCl, dried over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, gradient eluent: 25–75% EtOAc/hexane) to provide (4S,5R)-4-methyl-5-phenyloxazolidin-2-one 4 (19.0 mg, 0.120 mmol, 3.0 equiv.) as a white powder. [α]D25 25° 165 (c 0.60, CHCl3), [α]D25 1H-NMR (500 MHz, CDCl3) δ 7.35–7.40 (m, 2H), 7.31–7.34 (m, 1H), 7.27–7.29 (m, 2H), 6.79 (br s, 1H), 5.70 (d, J = 8.1 Hz, 1H), 4.18–4.24 (m, 1H), 0.80 (d, J = 6.6 Hz, 3H).
Molecules 2021, 26, 597

3.3. Synthesis of Oxazolidin-2-one (8a–8l)

A solution of 7a–7l (1.0 equiv.) in THF (0.1 M) was treated with Me3SiN3 (3.0 equiv.) and the resulting mixture was heated to reflux at 90 °C. After stirring for 5 h at 90 °C, the resulting mixture was cooled to 25 °C, quenched with the addition of H2O, and diluted with CH2Cl2. The layers were separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with saturated aqueous NaCl, dried over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified by column chromatography (SiO2, gradient eluent: 25–75% EtOAc/hexane) to provide 8a–8l.

(4S,5R)-5-(4-chlorophenyl)-4-methyl-oxazolidin-2-one (8a): A white solid: [α]D25 +124 (c 0.72, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 7.37 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.32 (br s, 1H), 5.68 (d, J = 8.0 Hz, 1H), 4.17–4.23 (m, 1H), 0.81 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 159.3, 134.4, 133.4, 128.8, 127.3, 80.8, 52.2, 17.5; HRMS (Q-TOF) m/z 212.0484 [M + H]+, C10H11NO2 requires 212.0478.

(4S,5R)-5-(4-fluorophenyl)-4-methyl-oxazolidin-2-one (8b): A white solid: [α]D25 +104 (c 0.27, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 7.26–7.30 (m, 2H), 7.09 (td, J = 8.7, 2.5 Hz, 2H), 5.87 (br s, 1H), 5.70 (d, J = 7.9 Hz, 1H), 4.17–4.23 (m, 1H), 0.81 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 162.7 (d, J = 245.8 Hz), 159.1, 130.6 (d, J = 3.2 Hz), 127.7 (d, J = 8.2 Hz), 115.6 (d, J = 21.6 Hz), 80.4, 52.3, 17.5; HRMS (Q-TOF) m/z 196.0779 [M + H]+, C10H10FNO2 requires 196.0774.

(4S,5R)-5-(4-methyl-phenyl)-4-methyl-oxazolidin-2-one (8c): A white oil: [α]D25 +33.3 (c 0.09, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 7.34 (dd, J = 4.9, 1.3 Hz, 1H), 7.02–7.07 (m, 2H), 5.92 (d, J = 7.8 Hz, 1H), 5.57 (br s, 1H), 4.17–4.24 (m, 1H), 1.00 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 158.5, 137.1, 126.9, 126.1, 125.9, 78.2, 52.6, 17.0; HRMS (Q-TOF) m/z 184.0439 [M + H]+, C9H10NO2 requires 184.0432.

(4S,5R)-5-(4-benzyloxy)-3-methylphenyl)-4-methyl-oxazolidin-2-one (8d): A white oil: [α]D25 +50.0 (c 0.20, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 7.43 (d, J = 7.2 Hz, 2H), 7.35–7.39 (m, 2H), 7.29–7.33 (m, 1H), 6.89 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 1.9 Hz, 1H), 6.74 (dd, J = 8.3, 1.9 Hz, 1H), 5.65 (d, J = 7.9 Hz, 1H), 5.44 (br s, 1H), 5.16 (s, 2H), 4.11–4.17 (m, 1H), 3.90 (s, 3H), 0.88 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 159.0, 149.7, 148.2, 136.0, 128.6, 127.9, 127.7, 127.3, 118.4, 113.7, 109.4, 80.9, 71.0, 56.1, 52.5, 17.5; HRMS (Q-TOF) m/z 314.1393 [M + H]+, C18H20NO4 requires 314.1392.

(4S,5R)-5-(4-methylphenyl)-4-methyl-oxazolidin-2-one (8e): A white solid: [α]D25 +87.4 (c 0.24, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 7.21 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 5.79 (br s, 1H), 5.67 (d, J = 7.9 Hz, 1H), 4.13–4.20 (m, 1H), 3.82 (s, 3H), 0.82 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 159.7, 159.4, 127.3, 126.8, 113.9, 80.9, 55.3, 52.5, 17.5; HRMS (Q-TOF) m/z 208.0980 [M + H]+, C11H14NO4 requires 208.0974.

(4S,5R)-5-(7-methoxybenzo[d][1,3]dioxol-5-yl)-4-methyl-oxazolidin-2-one (8f): A colorless oil: [α]D25 +122 (c 0.24, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 6.48 (d, J = 1.1 Hz, 1H), 6.45 (d, J = 1.1 Hz, 1H), 5.99 (s, 2H), 5.82 (br s, 1H), 6.11 (d, J = 7.9 Hz, 1H), 4.11–4.17 (m, 1H), 3.90 (s, 3H), 0.86 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 159.1, 149.1, 143.7, 135.2, 129.2, 105.5, 101.7, 100.2, 80.8, 56.7, 52.5, 17.4; HRMS (Q-TOF) m/z 252.0876 [M + H]+, C12H12NO5 requires 252.0872.

(4S,5R)-4-methyl-5-(3,4,5-trimethoxyphenyl)oxazolidin-2-one (8g): A colorless oil: [α]D25 +53.8 (c 0.39, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 6.94 (s, 2H), 5.86 (br s, 1H), 5.65 (d, J = 7.9 Hz, 1H), 4.13–4.19 (m, 1H), 3.86 (s, 6H), 3.85 (s, 3H), 0.86 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 159.2, 153.4, 137.8, 130.3, 102.8, 80.9, 60.9, 56.2, 52.5, 17.4; HRMS (Q-TOF) m/z 268.1186 [M + H]+, C13H18NO5 requires 268.1185.
4-((4S,5R)-4-methyl-2-oxooxazolidin-5-yl)benzonitrile (8h): A white solid: [α]D25 −160 (c 0.05, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 7.72 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 5.75 (d, J = 7.9 Hz, 1H), 5.61 (br s, 1H), 4.23–4.29 (m, 1H), 0.81 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 158.3, 140.1, 132.4, 126.7, 118.2, 112.6, 79.9, 52.0, 17.6; HRMS (Q–TOF) m/z 203.0829 [(M + H)+, C11H11N2O2 requires 203.0821].

(4S,5R)-4-methyl-5-(4-nitrophenyl)oxazolidin-2-one (8i): A white solid: [α]D25 −225 (c 0.04, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 8.27 (dd, J = 7.0, 1.8 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 5.81 (d, J = 8.0 Hz, 1H), 5.68 (br s, 1H), 4.26–4.33 (m, 1H), 0.83 (d, J = 6.5 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 158.3, 148.1, 142.0, 126.9, 123.9, 79.7, 52.0, 17.7; HRMS (Q–TOF) m/z 223.0723 [(M + H)+, C10H11N2O2 requires 223.0719].

3.4. Synthesis of (−)-Cytoxanone

(2R,3R)-1-((R)-4-benzyl-2-thioxothiazolidin-3-yl)-4-(benzyl)oxazolidin-2-one (11): A colorless oil: [α]D25 +12.6 (c 0.34, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 6.06 (br s, 1H), 4.52–4.57 (m, 1H), 3.85–3.92 (m, 1H), 1.68–1.76 (m, 1H), 1.46–1.52 (m, 2H), 1.26–1.33 (m, 9H), 1.14 (d, J = 6.5 Hz, 3H), 0.87 (t, J = 6.9 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 158.9, 138.9, 130.8 (q, J = 32.5 Hz), 126.3, 125.6 (q, J = 3.8 Hz), 123.8 (q, J = 270.6 Hz), 80.1, 52.1, 17.6; HRMS (Q–TOF) m/z 246.0744 [(M + H)+, C11H13F3NO2 requires 246.0742].

(4S,5R)-5-heptyl-4-methyloxazolidin-2-one (8k): A white solid: [α]D25 +14.8 (c 0.27, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 5.70 (br s, 1H), 4.53–4.58 (m, 1H), 3.86–3.92 (m, 1H), 1.70–1.77 (m, 1H), 1.48–1.56 (m, 2H), 1.31–1.41 (m, 3H), 1.16 (d, J = 6.5 Hz, 3H), 0.92 (t, J = 7.1 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 159.8, 80.2, 51.1, 31.7, 29.3, 29.10, 29.05, 25.8, 22.8, 15.9, 14.0; HRMS (Q–TOF) m/z 208.1314 [(M + Na)+, C10H15NNaO2 requires 208.1313].

(4S,5R)-5-butyl-4-methyloxazolidin-2-one (8l): A white solid: [α]D25 +14.8 (c 0.27, CHCl3); 1H-NMR (500 MHz, CDCl3) δ 5.70 (br s, 1H), 4.53–4.58 (m, 1H), 3.86–3.92 (m, 1H), 1.70–1.77 (m, 1H), 1.48–1.56 (m, 2H), 1.31–1.41 (m, 3H), 1.16 (d, J = 6.5 Hz, 3H), 0.92 (t, J = 7.1 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 159.6, 80.2, 51.1, 28.7, 27.9, 22.4, 15.9, 13.9; HRMS (Q–TOF) m/z 144.1032 [(M + H)+, C7H14NO2 requires 144.1025].
0.168 mmol, 3.0 equiv.) and the resulting mixture was heated to reflux at 90 °C. After stirring for 5 h at 90 °C, the resulting mixture was cooled to 25 °C, quenched with the addition of H₂O and diluted with CH₂Cl₂. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NaCl, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (SiO₂, gradient eluent: 25–50% EtOAc/hexane) to provide 12 (15.2 mg, 87%) as white oil: [α]D²⁵ = −13.3 (c 0.15, MeOH); ¹H-NMR (500 MHz, CDCl₃) δ 7.24–7.32 (m, 4H), 7.16–7.21 (m, 4H), 6.87–6.91 (m, 2H), 5.36 (br s, 1H), 4.98 (dt, J = 8.1, 5.8 Hz, 1H), 4.94 (d, J = 8.2 Hz, 1H), 4.25 (ABX, 2H, J = 11.7 Hz, Δν = 60.0 Hz), 3.83 (s, 3H), 3.37 (dd, J = 10.3, 6.1 Hz, 1H), 3.13 (dd, J = 10.3, 5.6 Hz, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ 160.0, 158.8, 137.4, 128.4, 128.3, 127.9, 127.8, 127.6, 114.1, 78.9, 73.4, 68.6, 57.8, 55.3; HRMS (Q–TOF) m/z 312.1225 [(M − H)⁺, C₁₈H₁₈NO₄ requires 312.1236].

(−)-Cytoxazone (1): A solution of 12 (13 mg, 0.041 mmol, 1 equiv.) in EtOH (1.0 mL, 0.04 M) was treated with Pd/C (10%, 65 mg) and hydrogenated at 1 atm. After stirring for 1 h at 25 °C, the resulting mixture was filtered through a pad of Celite and concentrated in vacuo. The residue was purified by column chromatography (SiO₂, 75% EtOAc/hexane) to provide (−)-cytoxazone (1, 8.7 mg, 95%) as a white oil whose spectral data were identical to those of the known synthetic 1 [40,41]: [α]D²⁵ = −72.6 (c 0.11, MeOH) vs [α]D²⁵ = −70.5 (c 0.8, MeOH) [40] and [α]D²⁵ = −70.9 (c 0.4, MeOH) [41]; ¹H-NMR (500 MHz, DMSO-d₆); δ 8.07 (br s, 1H), 7.14–7.16 (m, 2H), 6.92–6.94 (m, 2H), 5.90 (d, J = 8.3 Hz, 1H), 4.85 (t, J = 5.2 Hz, 1H), 4.70 (td, J = 8.0, 4.1 Hz, 1H), 3.74 (s, 3H), 2.91–3.00 (m, 2H); ¹³C-NMR (125 MHz, DMSO-d₆) δ 159.1, 158.9, 129.3, 128.1, 113.7, 80.1, 61.1, 56.2, 55.2; HRMS (Q–TOF) m/z 246.0740 [M + Na]⁺, C₁₁H₁₃NNaO₄ requires 246.0742.

4. Conclusions

In conclusion, we investigated the scope and utility of a combination of the asymmetric aldol/Curtius protocol in the context of the synthesis of oxazolidin-2-one scaffolds bearing 4,5-two vicinal functionalities and their necessary stereogenic centers, due to its interesting structural motifs in natural products and diversity of pharmacological properties. The developed strategy also allows for a straightforward and concise asymmetric total synthesis of (−)-cytoxazone in only three steps, making it one of the shortest syntheses reported to date. Continued examination of the synthetic applications of the developed strategy in the synthesis of bioactive natural products and pharmaceuticals is in progress and will be disclosed in due course.

Supplementary Materials: The following are available online. Copies of ¹H and ¹³C-NMR spectra of 1,4,8a–8l.

Author Contributions: Conceptualization, K.L.; methodology, H.C., H.J., and J.C.; formal analysis, H.C., H.J., and J.C.; investigation, H.C., H.J., and J.C.; resources, K.L.; data curation, K.L. and H.C.; writing—original draft preparation, K.L.; writing—review and editing, K.L.; visualization, H.C.; supervision, K.L.; project administration, K.L.; funding acquisition, K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT; No.2020R1A2C1014355) and the 2018 Research Fund of the Catholic University of Korea.

Data Availability Statement: The data presented in this study are available in Supplementary Material.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds 4,8a–8l are available from the authors.

References
1. Slee, A.M.; Wuonola, M.A.; McRipley, R.J.; Zajac, L.; Jawada, M.J.; Bartholomew, P.T.; Gregory, W.A.; Forbes, M. Oxazolidinones, a New Class of Synthetic Antibacterial Agents: In Vitro and In Vivo Activities of DuP 105 and 721. Antimicrob. Agents Chemother. 1987, 31, 1791–1797. [CrossRef] [PubMed]
33. Sakamoto, Y.; Shiraishi, A.; Seonhee, J.; Nakata, T. Stereoselective syntheses of cytoxazone, a novel cytokine modulator, and its stereoisomers. *Tetrahedron Lett.* 1999, 40, 4203–4206. [CrossRef]

34. Kakeya, H.; Morishita, H.; Koshino, T.; Morita, K.; Kobayashi, K.; Osada, H. Cytoxzone: A Novel Cytokine Modulator Containing a 2-Oxazolidinone Ring Produced by *Streptomyces* sp. *J. Org. Chem.* 1999, 64, 1052–1053. [CrossRef] [PubMed]

35. Carda, M.; González, F.; Sánchez, R.; Marco, J.A. Stereoselective synthesis of (−)-Cytoxazone. *Tetrahedron Asymmetry* 2002, 13, 1005–1010. [CrossRef]

36. Carter, P.H.; LaPorte, J.R.; Scherle, P.A.; Decicco, C.P. A New Synthesis of Cytoxazone and Its Diastereomers Provides Key Initial SAR Information. *Bioorg. Med. Chem. Lett.* 2003, 13, 1237–1239. [CrossRef]

37. Boruwa, J.; Borah, J.C.; Kalita, B.; Barua, N.C. Highly regioselective ring opening of epoxides using NaN₃: A short and efficient synthesis of (−)-Cytoxazone. *Tetrahedron Lett.* 2004, 45, 7355–7358. [CrossRef]

38. Davies, S.G.; Hughes, D.G.; Nicholson, R.L.; Smith, A.D.; Wright, A.J. Asymmetric synthesis of (4R,5R)-cytoxazone and (4R,5S)-epi-cytoxazone. *Org. Biomol. Chem.* 2004, 2, 1549–1553. [CrossRef]

39. Venkataramasubramanian, V.; Kiran, I.N.C.; Sudalai, A. Proline-Catalyzed α-Aminooxylation of β-Amino Aldehydes: Access to Enantiomerically Pure syn- and anti-3-Amino-3-aryl-1,2-alkanediols. *Synlett* 2015, 26, 355–358.

40. Lingamurthy, M.; Nalliboina, G.R.; Rao, M.V.; Rao, B.V.; Reddy, B.S.; Kumar, H.M.S. DDQ mediated stereoselective intermolecular benzyl CeN bond formation: Synthesis of (−)-cytoxazone, (−)-4-epi-cytoxazone and their analogues and immunological evaluation of their cytokine modulating activity. *Tetrahedron* 2017, 73, 1473–1481. [CrossRef]

41. Hidasová, D.; Janák, M.; Jahn, E.; Cisaróvá, I.; Jones, P.G.; Jahn, U. Diastereoselective Radical Couplings Enable the Asymmetric Synthesis of *anti*-β-Amino-α-hydroxy Carboxylic Acid Derivatives. *Eur. J. Org. Chem.* 2018, 5222–5230. [CrossRef]