Optimal Concentration for $SU(1,1)$ Coherent State Transforms and An Analogue of the Lieb-Wehrl Conjecture for $SU(1,1)$

Jogia Bandyopadhyay*
Department of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

We derive a lower bound for the Wehrl entropy in the setting of $SU(1,1)$. For asymptotically high values of the quantum number k, this bound coincides with the analogue of the Lieb-Wehrl conjecture for $SU(1,1)$ coherent states. The bound on the entropy is proved via a sharp norm bound. The norm bound is deduced by using an interesting identity for Fisher information of $SU(1,1)$ coherent state transforms on the hyperbolic plane \mathbb{H}^2 and a new family of sharp Sobolev inequalities on \mathbb{H}^2. To prove the sharpness of our Sobolev inequality, we need to first prove a uniqueness theorem for solutions of a semi-linear Poisson equation (which is actually the Euler-Lagrange equation for the variational problem associated with our sharp Sobolev inequality) on \mathbb{H}^2. Uniqueness theorems proved for similar semi-linear equations in the past do not apply here and the new features of our proof are of independent interest, as are some of the consequences we derive from the new family of Sobolev inequalities.

1 Introduction

Let M be a Riemannian manifold with volume element dM. For a probability density ρ on M, that is, a non negative measurable function on M with $\int_M \rho dM = 1$, its entropy is defined as:

$$S(\rho) = - \int_M \rho \ln \rho \ dM \quad (1.1)$$

Thus defined, the entropy of a density ρ can be thought of as a measure of its “concentration”. If some part of the mass of ρ is very nearly concentrated in a multiple of a Dirac mass, then $S(\rho)$ will be very negative. We shall be mainly interested in the case in which M is the phase space of some classical system, so that, in particular, M is a symplectic manifold. In that case, we shall refer to ρ as a classical density, and $S(\rho)$ as its classical entropy.

The uncertainty principle limits the extent of possible concentration in phase space: For instance it prevents both the momentum variables p and the configuration variables q from taking on well-defined values at the same time. Indeed, a quantum mechanical density ρ^Q is a non negative operator on the Hilbert space \mathcal{H}, which is the state space of the quantum system, having unit trace. Then the quantum entropy (or von Neuman entropy) of ρ^Q is defined by

$$S^Q(\rho^Q) = - \text{Tr} \rho^Q \ln \rho^Q \quad (1.2)$$

*E-mail: gtg110n@mail.gatech.edu
Work partially supported by U.S. National Science Foundation grant DMS 06-00037
Since all of the eigenvalues of ρ^Q lie in the interval $[0,1]$, it is clear that

$$S^Q(\rho^Q) \geq 0 .$$ \hspace{1cm} (1.3)

As Wehrl emphasized [Weh], when one considers a quantum system and its corresponding classical analogue, not all of the classical probability densities on the phase space M can correspond to physical densities for the quantum system, and one might expect a lower bound on the classical entropy of those probability densities that do correspond to actual quantum states.

There is a natural way to make the correspondence between quantum states and classical probability densities on phase space, which goes back to Schrödinger. It is based on the *coherent state transform*, which is an isometry L from the quantum state space \mathcal{H} into $L^2(M)$, the Hilbert space of square integrable functions on the classical phase space M. Since it is an isometry, if ψ is any unit vector in $\mathcal{H},$

$$\rho_\psi = |L\psi|^2$$

is a probability density on M. Wehrl [Weh] proposed defining the classical entropy of a quantum state ϕ in this way (note the the corresponding density matrix is rank one, and hence the von Neuman entropy would be zero). The Wehrl entropy is defined in terms of the coherent states for the quantum system and is bounded below by the quantum entropy. It has several physically desirable features such as monotonicity, strong subadditivity, and of course, positivity.

Wehrl identified the class of probability densities arising through the coherent state transform as the class of *quantum mechanically significant* probability densities on M, and conjectured that corresponding to (1.3), there should be a lower bound on $S(|L\psi|^2)$ as ψ ranges over the unit sphere in \mathcal{H}.

Specifically, when \mathcal{H} is $L^2(\mathbb{R}, dx)$, so that the classical phase space is \mathbb{R}^2 with its usual symplectic and Riemannian structure, Wehrl conjectured that the lower bound on $S(|L\psi|^2)$ is attained when ψ is a minimal uncertainty state ψ_{min}, also known as a *Glauber coherent state*. That is:

$$\inf_{\|\psi\|_H=1} S(|L\psi|^2) = S(|L\psi_{\text{min}}|^2) .$$ \hspace{1cm} (1.4)

This was proved by Lieb [Lie]. There is a natural analogue of the Wehrl conjecture for other state spaces, and other coherent state transforms. Lieb generalized the Wehrl conjecture to the $SU(2)$ coherent states, for which the corresponding classical phase space is S^2, the two-dimensional sphere, with its usual Riemannian and symplectic structure. The analogues of the Glauber coherent states in this case are the *Bloch coherent states* generated by least weight vectors in the various unitary representations of $SU(2)$, and Lieb conjectured the analogue of (1.4) for the $SU(2)$ coherent state transform.

Although Lieb’s conjecture for $SU(2)$ is still open, it has attracted the attention of a number of researchers, and much progress has been made. The various unitary representations of $SU(2)$ are indexed by a half integer j, which is the *quantum number* in this context; for each such j there is a coherent state transform, and hence a conjectured lower bound of the Wehrl entropy. The bound is trivial for $j = 1/2$, in which case every state is a Bloch coherent state, but is is already non trivial for $j = 1$. Schupp [Sch] proved the conjecture for $j = 1$ and $j = 3/2$. Later Bodmann [Bod] proved a result which may be seen as complementary to Schupp’s result; he deduced a lower bound for the Wehrl entropy of $SU(2)$ coherent states, for which the high spin asymptotics coincided with Lieb’s conjecture up to, but not including, terms of first and higher orders in the inverse of spin quantum number j.

Bodmann did this by proving a sharp L^p bound on the range of the coherent state transform. This led to a proof of an analogue of Lieb’s conjecture for certain *Rényi entropies*: For any $p > 1$
and any classical density ρ, define

$$S_p(\rho) = \frac{1}{p-1} \ln (\|\rho\|_p) \; .$$

(1.5)

where $\|\rho\|_p$ is the L^p norm of ρ. Then it is easy to see that

$$\lim_{p \to 1} S_p(\rho) = S(\rho) \; .$$

Bodmann derived his bound on Renyi entropies from a Sobolev type inequality and a Fisher information identity, which is another type of concentration bound on the range of the coherent state transform. The Fisher information $I(\rho)$ of a probability density ρ on M is defined by

$$I(\rho) = \int_M |\nabla \ln \rho|^2 \rho \, d\mathcal{M} = 4 \int_M |\nabla \sqrt{\rho}|^2 \, d\mathcal{M} \; .$$

For the Glauber coherent state transform, Carlen [Car] had proved that all classical densities on \mathbb{R}^2 arising through the coherent state transform had the same finite value of the Fisher information. He then used that together with the logarithmic Sobolev inequality (cf. [Gro]) to give a new proof of Wehrl’s conjecture, and to show that the lower bound in (1.4) is attained only for Glauber coherent states. Bodmann proved an analogue of Carlen’s result for Fisher information, and used this, together with a sharp Sobolev inequality, instead of the sharp logarithmic Sobolev inequality, to obtain his Renyi information bounds.

In this paper, we investigate the analogue of the Lieb-Wehrl conjecture for $SU(1,1)$. The representations of $SU(1,1)$ belonging to a discrete series, are labeled by a half-integer k, the relevant quantum number in this context. While the classical phase space for $SU(2)$ is the sphere S^2, for $SU(1,1)$ the classical phase space is H^2, the hyperbolic plane. It is natural to conjecture that, here too, the coherent states generated by the least-weight vector of the representation provide a lower bound on the entropy, as in Lieb’s conjecture for $SU(2)$. We prove that this is indeed asymptotically true, in the semi-classical limit. We also prove that this is exactly true if one replaces the entropy by an appropriate Renyi entropy. To obtain these results, we prove a number of theorems concerning analysis in H^2 that are of independent interest. Specifically, we prove a new sharp Sobolev inequality, and a sharpened energy–entropy inequality in H^2. The Sobolev inequality is

$$\|f\|_q^q + \frac{4}{kq(kq-2)} \int |\nabla |f|^{q/2}|^2 \geq \left(\frac{2k-1}{kq-1} \right) \left(\frac{kp-1}{2k-1} \right) \frac{q/p}{kq-2} \|f\|_p^q$$

where $p = q + 1/k$, $q \geq 2$, $kq > 2$, and we determine all of the cases of equality.

To prove the sharpness of our Sobolev inequality we need to prove and use a uniqueness result for radial solutions of a semi-linear Poisson equation on the hyperbolic plane. The nature of this equation on H^2 is substantially different from that of similar equations which have been investigated in the past. The methods developed here may well be useful for other uniqueness problems.

We then prove the following Fisher information identity:

$$\int |\nabla |\mathcal{L}\psi|^{q/2}|^2 = \frac{1}{4} kq \int |\mathcal{L}\psi|^q$$

where q is a positive number such that $kq > 2$. As mentioned above, an identity like this was first proved by Carlen [Car] for coherent state transforms associated with the Glauber coherent states.
The sharp Sobolev inequality and the Fisher information identity allow us to prove an L^p norm estimate \textit{a la} Bodmann. This norm estimate is used to deduce a lower bound for the Wehrl entropy of coherent state transforms via a convexity argument, and the result is:

$$S(|\mathcal{L}\psi(\zeta)|^2) \geq 2k \ln \left(1 + \frac{1}{2k-1}\right)$$

It is seen that for high values (this gives us the semi-classical limit) of the quantum number k, this lower bound coincides with the analogue of the Lieb-Wehrl conjecture, up to but not including terms of first and higher order in k^{-1}.

The methods used to bound the entropy also serve to produce a new, sharpened energy–entropy inequality for functions on H^2. An energy–entropy inequality is an inequality of the form

$$-S(\rho) \leq \Phi_M(I(\rho))$$

for some function Φ. Since the Fisher information, can be expressed in terms of an energy integral as shown above, the entropy-energy terminology is natural. For a given Riemannian manifold M, the entropy–energy problem is to determine the least function $\Phi : \mathbb{R}_+ \to \mathbb{R}$ for which (1.6) is true.

For example, in the case $M = \mathbb{R}^2$, the optimal Φ is known:

$$-S(\rho) \leq \ln \left(\frac{4}{\pi e} I(\rho)\right)$$

Equality is achieved when ρ is an isotropic Gaussian function. For an appropriate choice of the variance of the Gaussian, $I(\rho)$ can take on any value, and this inequality is sharp for all values of $I(\rho)$. That is,

$$\Phi_{\mathbb{R}^2}(t) = \ln \left(\frac{4}{\pi e} t\right).$$

There has been much investigation of entropy-energy inequalities for various Riemannian manifolds (see [Bec2], [Heb], [Rot] for example). Though there has been significant progress, many questions are still open.

In the case of \mathbb{H}^2, Beckner proved [Bec2] that the entropy–energy inequality for H^2 holds with the same Φ as in \mathbb{R}^2. That is,

$$\Phi_{H^2}(t) \leq \Phi_{\mathbb{R}^2}(t)$$

for all t.

This result is asymptotically sharp in the sense that

$$\lim_{t \to 0} \frac{\Phi_{H^2}(t)}{\Phi_{\mathbb{R}^2}(t)} = 1,$$

however, $\Phi_{H^2}(t) < \Phi_{\mathbb{R}^2}(t)$. We shall give sharpened estimates on $\Phi_{H^2}(t)$.

The paper is organized as follows: in Section 2 we give a description of a discrete representation of $SU(1,1)$. We then define the associated coherent states and coherent state transform. Given any quantum state ψ, we denote its coherent state transform by $\mathcal{L}\psi(\zeta)$, where the complex number ζ is used to label the coherent states. We show that these coherent state transforms are actually probability densities on the hyperbolic plane. We also state the analogue of the Lieb-Wehrl conjecture in this setting.

Section 3 contains the proof of the lower bound for the Wehrl entropy for $SU(1,1)$, and the results leading up to it. Here we prove Fisher information identity for the coherent state transforms, and
the sharp Sobolev inequality. The proof of the latter result uses the uniqueness result that is postponed to the final section.

Section 4 contains the sharpened entropy–energy inequality for H^2, and finally Section 5, the longest one, contains our uniqueness proof.

The problem of proving an analogue of the Lieb-Wehrl conjecture in the $SU(1,1)$ setting was suggested to me by my advisor, Prof. Eric Carlen. I am greatly indebted to him for introducing me to this beautiful problem and helping me with many valuable suggestions and discussions without which this work would not have been possible.

2 Representation of the group SU(1,1) and the Construction of Coherent States

The group $SU(1,1)$ consists of unimodular 2×2 matrices which leave the Hermitian form $|z_1|^2 - |z_2|^2$ invariant. These matrices can be parametrized by a pair of complex numbers, α, β as follows:

$$g = \begin{pmatrix} \alpha & \beta \\ \beta & \bar{\alpha} \end{pmatrix}, \quad |\alpha|^2 - |\beta|^2 = 1$$

One can define a new variable $z = \frac{z_2}{z_1}$ and describe the action of the element $g \in SU(1,1)$ on \mathbb{C}^1 as:

$$z \rightarrow z_g = \frac{\alpha z + \bar{\beta}}{\beta z + \bar{\alpha}}$$

However, the group action on \mathbb{C}^1 is not transitive; in fact the complex plane is foliated into three orbits, namely, i) the interior of the unit disk, ii) the boundary of the unit disk, and, iii) the complement of the closed unit disk in the complex plane.

It is easy to see [Per] that the set of elements of $SU(1,1)$ having real, positive diagonal entries can be identified with the interior of the unit disc, $\{ \zeta : |\zeta| < 1 \}$. We would work with one of the two discrete series of representations of $SU(1,1)$, in the space of functions that are defined and analytical in the unit disc.

The Lie algebra for $SU(1,1)$ has three generators as its basis elements, which we call K_0, K_1 and K_2 following Perelomov. The commutation relations satisfied are:

$$[K_1, K_2] = -iK_0, \quad [K_2, K_0] = iK_1, \quad [K_0, K_1] = iK_2$$

There is one Casimir operator given by: $\hat{C} = K_0^2 - K_1^2 - K_2^2$. So for any irreducible representation the operator is a multiple of the identity and we write:

$$\hat{C} = k(k-1)\hat{I}$$

Thus a particular representation of $SU(1,1)$ is labeled by a single number k. For the discrete series this number takes on discrete half-integral values, $k = 1/2, 1, 3/2, \ldots$ [Bar]. Let us call a particular representation $T^k(g)$. We choose the simultaneous eigenvectors of the Casimir operator \hat{C} and K_0 to be the basis vectors. We use Dirac’s bra-ket notation and denote these vectors by $|k, \mu\rangle$ where:

$$K_0|k, \mu\rangle = \mu|k, \mu\rangle$$
Here \(\mu = k + m \) and \(m \) is either zero or any positive integer [Per] (the representations are infinite-dimensional). We now look at a realization of \(T^k(g) \) in the space \(\mathcal{G}_k \) of functions \(f(z) \) which are analytic inside the unit circle and which satisfy the condition:

\[
\frac{2k-1}{\pi} \int_D |f(z)|^2 (1 - |z|^2)^{2k-2} d^2 z < \infty, \quad D = \{ z : |z| < 1 \}
\]

The invariant density for this realization of \(T^k(g) \) is [Bar]:

\[
d\varpi_k(z) = \frac{2k-1}{\pi} (1 - |z|^2)^{2k-2} d^2 z
\]

The pre-factor \(\frac{2k-1}{\pi} \) is chosen so that we have \((f, g)_k = \int_D f(z) g(z) d\varpi_k(z) \equiv 1 \) when \(f \equiv 1 \) and \(g \equiv 1 \), where \((f, g)_k \) denotes the inner product of \(f \) and \(g \) in this representation. The group action on \(\mathcal{G}_k \) in the multiplier representation \(T^k(g) \) is given by [Bar]:

\[
T^k(g) f(z) = (\beta z + \bar{\alpha})^{-2k} f(z_g), \quad z_g = \frac{\alpha z + \bar{\beta}}{\beta z + \bar{\alpha}}
\]

The operators \(T^k(g) \) with the group action defined as above furnish a unitary and irreducible representation of \(SU(1, 1) \) [Bar]. Now, in \(\mathcal{G}_k \) the generators act as first order differential operators.

If, in stead of the standard basis \(K_0, K_1 \) and \(K_2 \), we switch to the ladder operators \(K_+ = \pm i(K_1 \pm iK_2) \) and \(K_0 \), then we have [Per]:

\[
K_+ = z^2 \frac{d}{dz} + 2kz, \quad K_- = \frac{d}{dz}, \quad K_0 = z \frac{d}{dz} + k
\]

From the form of \(K_0 \) it is clear that its eigenfunctions in this representation are monomials in \(z \). Normalized with respect to the measure \(d\varpi_k(z) \) these eigenvectors are written:

\[
|k, k + m\rangle = \left(\frac{\Gamma(m + 2k)}{m! \Gamma(2k)} \right)^{\frac{1}{2}} z^m
\]

(2.1)

To construct the coherent states let us choose the least-weight vector \(|k, k\rangle \) in \(\mathcal{F}_k \). The stationary subgroup for this state is the subgroup \(H \) of diagonal matrices of the form

\[
h = \begin{pmatrix} e^{i\varphi/2} & 0 \\ 0 & e^{-i\varphi/2} \end{pmatrix}. \]

The factor space \(G/H \) is realized as the unit disk \(\{ \zeta : |\zeta| < 1 \} \), or equivalently, as the hyperbolic plane \(\mathbb{H}^2 = \{ n : |n|^2 = n_0^2 - n_1^2 - n_2^2 = 1, n_0 > 0 \} \) via the following corresponence:

\[
n_0 = \cosh \frac{\tau}{2}, \quad n_1 = \sinh \frac{\tau}{2} \cos \phi, \quad n_2 = \sinh \frac{\tau}{2} \sin \phi \quad \text{and} \quad \zeta = \tanh \frac{\tau}{2} e^{i\phi}
\]

An element of \(G/H \) determines a hyperbolic rotation and we can decompose the corresponding operator \(T^k(g_n) \) as follows:

\[
T^k(g_n) = \exp \left(\tanh \frac{\tau}{2} \exp(i\phi) K_+ \right) \exp \left(-2 \ln(\cosh \frac{\tau}{2}) K_0 \right) \exp \left(-\tanh \frac{\tau}{2} \exp(-i\phi) K_- \right)
\]

We let these operators act on the chosen least-weight vector \(|k, k\rangle \) to obtain an expression for the coherent states in terms of the standard orthonormal basis vectors:

\[
T^k(g_n) |k, k\rangle = \exp \left(\tanh \frac{\tau}{2} \exp(i\phi) K_+ \right) \exp \left(-2 \ln(\cosh \frac{\tau}{2}) K_0 \right) \exp \left(-\tanh \frac{\tau}{2} \exp(-i\phi) K_- \right) |k, k\rangle
\]

\[
= (1 - |\zeta|^2)^k \sum_{m=0}^{\infty} \left(\frac{\Gamma(m + 2k)}{m! \Gamma(2k)} \right)^{\frac{1}{2}} \zeta^m |k, m\rangle
\]
Represented as above, the coherent states are parametrized by a complex number ζ on the unit disk or equivalently, by two real parameters τ and ϕ on the hyperbolic \mathbb{H}^2. In what follows, we will denote the coherent state corresponding to a particular ζ by $|\zeta\rangle$. If we now choose any arbitrary normalized vector $|\psi\rangle = \sum_{m=0}^{\infty} a_m |k, m\rangle$, then we can define its coherent state transform $\mathcal{L}\psi(\zeta)$ via the following inner product:

$$\mathcal{L}\psi(\zeta) = \langle \psi | \zeta \rangle = (1 - |\zeta|^2)^k \sum_{m=0}^{\infty} \left(\frac{\Gamma(m + 2k)}{m! \Gamma(2k)} \right)^{\frac{1}{2}} \hat{a}_m \zeta^m$$ (2.2)

Evidently $\mathcal{L}\psi(\zeta)$ is a function on the unit disk and so the coherent state transform maps unit vectors in our representation space \mathcal{G}_k into functions on the unit disk, which vanish at the boundary of the disk. This mapping becomes an isometry if we equip the unit disk with the L^2-metric corresponding to the measure: $d\nu(\zeta) = \left(\frac{2k-1}{\pi} \frac{1}{(1 - |\zeta|^2)^2} \right) d^2\zeta$. Note that $d\nu(\zeta)$ is just $\left(\frac{2k-1}{4\pi} \right)$ times the standard measure on the unit disk, that is, the measure $d\mu(\zeta) = \left(\frac{4}{(1 - |\zeta|^2)^2} \right) d^2\zeta$, obtained from the Poincare metric on the disk. With inner product defined in the usual way with respect to the measure $d\nu(\zeta)$, the space of the coherent state transforms described above is a Hilbert space [Bar]. We call this space \mathcal{F}_k. The transform \mathcal{L} is thus an analogue of the Bargmann-Segal transform for the Glauber coherent states based on the Heisenberg group. Since $|\psi\rangle$ is a unit vector in our representation space \mathcal{G}_k, its coherent state transform $|\mathcal{L}\psi(\zeta)|^2 d\nu(\zeta)$ is a probability density on the unit disk. Thus, \mathcal{F}_k is a space of probability densities on the unit disk. We can calculate the Wehrl entropy $S(|\mathcal{L}\psi(\zeta)|^2)$ associated with the coherent state transform $\mathcal{L}\psi(\zeta)$. If the unit vector $|\psi\rangle$ happens to be a coherent state itself, we find that: $S(|\mathcal{L}\psi(\zeta)|^2) = \frac{2k}{2k - 1}$. The analogue of the Lieb-Wehrl conjecture for $SU(1, 1)$ coherent states would then be:

Proposition 2.1. For all $\mathcal{L}\psi(\zeta) \in \mathcal{F}_k$, the Wehrl entropy is bounded below by:

$$S(|\mathcal{L}\psi(\zeta)|^2) \geq \frac{2k}{2k - 1}$$ (2.3)

3 The Entropy Bound and Related Results

In this section we first present a useful Fisher information identity for functions in \mathcal{F}_k, that relates the q-norm (for all positive q such that $kq > 2$) of a function to the L^2-norm of the associated gradient. We then prove a sharp Sobolev inequality for functions in a larger function space \mathcal{G}, defined to be the space of bounded non-constant functions $f \in W^{1,2}(D)$ on the unit disk which vanish at the boundary; the norms here are computed with respect to the measure $d\nu(\zeta)$. Next, we prove a sharp norm estimate for functions in \mathcal{F}_k (note that \mathcal{F}_k is a subspace of \mathcal{G}) by converting the gradient norm of $|f|^q/2$ that appears in our sharp Sobolev inequality, into the L^q-norm of the function f, via the Fisher information identity. This sharp norm estimate is then used to derive a lower bound on the entropy of functions in \mathcal{F}_k.

The variational problem associated with our sharp Sobolev inequality in the function space \mathcal{G}, naturally leads us to an Euler-Lagrange equation which is actually a semi-linear Poisson equation on the unit disk. We reduce the Euler-Lagrange equation to an ordinary differential equation by using radially symmetric decreasing rearrangements of functions. To prove the sharpness of the Sobolev inequality we need to prove that the ground state solution, that is to say, the solution that
decays to zero at the boundary of the disk, is unique. Since the proof is somewhat involved, we present a detailed analysis of the Euler-Lagrange equation and relevant results in section 5.

3.1 A Fisher Information Identity

The Fisher information of a probability density function is a measure of its concentration. In this subsection we prove a Fisher information identity for functions in \mathcal{F}_k.

Theorem 3.1. For $L\psi(\zeta)$ in \mathcal{F}_k the following identity holds:

$$\int |\nabla|L\psi(\zeta)|^{q/2}|d\nu(\zeta) = \frac{1}{4} kq \int |L\psi(\zeta)|^q d\nu(\zeta)$$

where q is a positive number such that $kq > 2$.

Proof. Using the expression (2.2) for the coherent state transforms in \mathcal{F}_k, we can write:

$$|L\psi(\zeta)|^{q/2} = (1 - |\zeta|^2)^{kq/2}$$

where $\Phi(\zeta)$ is holomorphic in ζ. Thus $\Phi(\zeta)$ satisfies the Cauchy-Riemann equations on the unit disk/hyperbolic plane. Let us do our computations in terms of the radial variable τ and the angular variable ϕ on the two-dimensional hyperbolic plane. The gradient is then given by: $\nabla = \left(\frac{\partial}{\partial \tau}, \frac{1}{\sinh \tau} \frac{\partial}{\partial \phi}\right)$

A brief computation yields the following Cauchy-Riemann equations for an analytic function $\Phi = u + iv$ on the hyperbolic plane:

$$\frac{\partial u}{\partial \tau} = \frac{1}{\sinh \tau} \frac{\partial v}{\partial \phi}, \quad \frac{\partial u}{\partial \phi} = - \sinh \tau \frac{\partial v}{\partial \tau}$$

Using these two equations we obtain the following:

$$\nabla u \cdot \nabla v = \frac{\partial u}{\partial \tau} \frac{\partial v}{\partial \tau} + \frac{1}{\sinh^2 \tau} \frac{\partial u}{\partial \phi} \frac{\partial v}{\partial \phi} = 0$$

$$|\nabla u|^2 = |\nabla v|^2$$

We now compute some results for the non-holomorphic pre-factor in the expression for the coherent state transforms.

$$\nabla(1 - |\zeta|^2)^{kq/2} = \left(\frac{\partial}{\partial \tau}, \frac{1}{\sinh \tau} \frac{\partial}{\partial \phi}\right) (1 - \tanh^2 \frac{\tau}{2})^{kq/2} = \left(-\frac{kq}{2} \tanh \frac{\tau}{2} \sech \frac{kq \tau}{2}, 0\right)$$

Also,

$$\Delta(1 - |\zeta|^2)^{kq/2} = \left(\frac{\partial^2}{\partial \tau^2} + \coth \tau \frac{\partial}{\partial \tau}\right) (1 - \tanh^2 \frac{\tau}{2})^{kq/2} = \left(\frac{kq}{2}\right)^2 \tanh^2 \frac{\tau}{2} \sech \frac{kq \tau}{2} - \frac{kq}{2} \sech \frac{kq \tau}{2}$$

As for the holomorphic part of the transform, the Cauchy-Riemann equations guarantee that:

$$\Delta |\Phi|^2 = 4|\nabla |\Phi||^2$$
Thus:

\[|\nabla|\mathcal{L}\psi(\zeta)|^{q/2}|^2 \]

\[= (1 - |\zeta|^2)^k q |\nabla|\Phi|^2 + |\nabla(1 - |\zeta|^2)^k q |\Phi|^2 + 2(1 - |\zeta|^2)^k q |\nabla(1 - |\zeta|^2)^k q |\Phi|^2 \]

\[= (1 - |\zeta|^2)^k q |\nabla|\Phi|^2 + \frac{1}{4} |\Phi|^2 (1 - |\zeta|^2)^k q |\nabla(1 - |\zeta|^2)^k q |^2 + \frac{1}{2} |\nabla(1 - |\zeta|^2)^k q | \cdot \nabla|\Phi|^2 \]

\[= (1 - |\zeta|^2)^k q |\nabla|\Phi|^2 + \frac{1}{4} |\Phi|^2 \left(\Delta(1 - |\zeta|^2)^k q + k q (1 - |\zeta|^2)^k q \right) \]

\[+ \frac{1}{2} \left(\nabla \cdot ((1 - |\zeta|^2)^k q \nabla|\Phi|^2) - (1 - |\zeta|^2)^k q \Delta|\Phi|^2 \right) \]

We notice that the divergence term, when integrated with respect to the invariant measure \(d\nu(\zeta)\) yields a vanishing surface integral for \(k q > 2\). Also,

\[\frac{1}{4} |\Phi|^2 \Delta(1 - |\zeta|^2)^k q = \frac{1}{4} \left(\nabla \cdot (|\Phi|^2 \nabla(1 - |\zeta|^2)^k q) - \nabla|\Phi|^2 \cdot \nabla(1 - |\zeta|^2)^k q \right) \]

We can ignore the divergence terms coming from the expression above again by the same logic as before and write

\[\frac{1}{4} \int |\Phi|^2 \Delta(1 - |\zeta|^2)^k q d\nu(\zeta) = \frac{1}{4} \int (1 - |\zeta|^2)^k q \Delta|\Phi|^2 d\nu(\zeta) \]

Putting these all together we finally arrive at:

\[\int |\nabla|\mathcal{L}\psi(\zeta)|^{q/2}|^2 d\nu(\zeta) = \int (1 - |\zeta|^2)^k q \left(|\nabla|\Phi|^2 - \frac{1}{4} \Delta|\Phi|^2 \right) d\nu(\zeta) + \frac{1}{4} k q \int |\Phi|^2 (1 - |\zeta|^2)^{2k} d\nu(\zeta) \]

The first term on the right hand side in the equation above, vanishes due to analyticity of \(\Phi\) as we have already shown, yielding the following identity:

\[\int |\nabla|\mathcal{L}\psi(\zeta)|^{q/2}|^2 d\nu(\zeta) = \frac{1}{4} k q \int |\mathcal{L}\psi(\zeta)|^q d\nu(\zeta) \]

\[\Box \]

3.2 A Sharp Sobolev inequality and a Norm Estimate

We now prove a sharp Sobolev inequality for functions in \(\mathcal{F}\).

Theorem 3.2. For all functions in \(\mathcal{F}\) the following inequality holds:

\[\|f\|^q + \frac{4}{k q (k q - 2)} \int |\nabla|f|^{q/2}|^2 \geq \left(\frac{2 k - 1}{k q - 1} \right)^{q/p} \frac{1}{2 k - 1} \frac{1}{k q - 2} \|f\|^q \]

(3.1)

where \(p = q + 1/k\), \(q \geq 2\), \(k q > 2\) and the norms are computed with respect to the measure \(d\nu(\zeta)\); equality is obtained if and only if the function \(f\) is a coherent state.

Proof. Proving Theorem 3.2 is equivalent to showing that the infimum of the functional

\[I[f] = \frac{\|f\|^q + \frac{4}{k q (k q - 2)} \int |\nabla|f|^{q/2}|^2}{\left(\frac{k q - 1}{k q - 2} \right) \|f\|^q} \]

is \(\left(\frac{2k-1}{kq-1} \right) \left(\frac{kp-1}{2k-1} \right)^{q/p} \). Since we are in the function space \(\mathcal{F}_k \), the existence of the minimum is obvious. Let us take a minimizing sequence \(\{f_n\} \). We can now perform a radially symmetric decreasing rearrangement, since the gradient norm can only decrease under such a rearrangement while the other norms in the functional stay constant. So each function in the minimizing sequence is replaced by its decreasing rearrangement. Functions in the new sequence \(\{f_n^*\} \) thus obtained also have bounded norms and gradient norms. The sequence being monotone and bounded we can use Helly’s principle to obtain a convergent subsequence. Since the functions are in \(W^{1,2} \), the convergence is in the \(s \)-norm, for all finite \(s \), by Rellich-Kondrashov theorem. We thus need to show that in a class of radially symmetric solutions the minimizer is unique. The minimizer satisfies the following Euler-Lagrange equation for our optimization problem:

\[
\Delta u + kq(kq - 2)[\gamma u^{1+\frac{2}{kq}} - u] = 0 \tag{3.2}
\]

where \(u = |f|^{q/2} \), \(\Delta \) is the Laplacian on the hyperbolic plane (or, equivalently, the unit disk), \(\gamma > 0 \) is fixed by choosing the \(p \)-norm of the function \(f \). It is readily seen that this Euler-Lagrange equation is solved by the coherent state: \(f = A(1 - |\zeta|^2)^k \) where \(A \) is a constant determined by fixing the \(p \)-norm. Since we are dealing with radial functions only, (3.2) is equivalent to an ordinary differential equation. We now refer to section 5, where we prove in detail that there is only one solution of this ODE, in the space of radially symmetric functions on the unit disk, which decays to zero at the boundary of the disk (or, equivalently, decays to zero as the radial coordinate on the hyperbolic plane tends to infinity). On the basis of this uniqueness result we can conclude that the coherent state \(f = A(1 - |\zeta|^2)^k \) is indeed the unique solution and hence furnishes the minimum.

This sharp Sobolev inequality, coupled with our Fisher information identity, trivially yields the following corollary:

Corollary 3.3. For all functions in \(\mathcal{F}_k \), the following inequality holds:

\[
\|f\|_q^q \geq \left(\frac{2k-1}{kq-1} \right) \left(\frac{kp-1}{2k-1} \right)^{q/p} \|f\|_p^q \tag{3.3}
\]

where \(q \geq 2 \); equality is obtained if and only if the function \(f \) is a coherent state.

Proof. The Fisher information identity for functions in \(\mathcal{F}_k \) tells us:

\[
\int |\nabla f|^{q/2} |^2 = \frac{1}{4} kq \int |f|^q
\]

We can thus re-write the left hand side of (3.1) as:

\[
\|f\|_q^q + \frac{4}{kq(kq - 2)} \int |\nabla f|^{q/2} |^2 = \left(\frac{kq - 1}{kq - 2} \right) \|f\|_q^q
\]

So now our sharp Sobolev inequality yields the following norm estimate for functions in \(\mathcal{F}_k \):

\[
\|f\|_q^q \geq \left(\frac{2k-1}{kq-1} \right) \left(\frac{kp-1}{2k-1} \right)^{q/p} \|f\|_p^q
\]

\(\square \)
3.3 A Lower Bound for the Wehrl Entropy of functions in \mathcal{F}_k

We now derive a lower bound for the entropy of functions in \mathcal{F}_k.

Theorem 3.4. The Wehrl entropy associated with $L\psi(\zeta) \in \mathcal{F}_k$ has a lower bound given by:

$$S(|L\psi(\zeta)|^2) \geq 2k \ln \left(1 + \frac{1}{2k-1}\right)$$

(3.4)

Proof. Let us define, for any function f, $\varphi(p) = \ln ||f||_p^p = \ln \int |f|^p$. Then, we have:

$$S(|f|^2) = -2 \int |f|^2 \ln |f| = -2\varphi'(2)$$

if $||f||_2 = 1$. By logarithmic convexity of the p-norm:

$$-2\varphi'(2) \geq -2k\varphi \left(2 + \frac{1}{k}\right)$$

If we now set $q = 2, p = 2 + \frac{1}{k}$ in Corollary 3.3, we have:

$$||L\psi(\zeta)||_{2+\frac{1}{k}}^{2+\frac{1}{k}} \leq \left(\frac{2k-1}{2k}\right)$$

since $||L\psi(\zeta)||_2^2 = 1$, by definition. This implies, in \mathcal{F}_k:

$$\varphi \left(2 + \frac{1}{k}\right) \leq \ln \left(\frac{2k-1}{2k}\right)$$

Thus:

$$-2\varphi'(2) \geq -2k\varphi \left(2 + \frac{1}{k}\right)$$

or,

$$S(|L\psi(\zeta)|^2) \geq 2k \ln \left(1 + \frac{1}{2k-1}\right)$$

A comparison between (2.3) and (3.4) shows that the estimate obtained above has the conjectured high-spin asymptotics up to, but not including, first and higher order terms in (k^{-1}) because

$$\ln \left(1 + \frac{1}{2k-1}\right) = 2k \left(\frac{1}{2k-1} - \frac{1}{2} \left(\frac{1}{2k-1}\right)^2 + \ldots\right).$$

In fact this is completely analogous to the lower bound Bodmann [Bod] obtained for coherent state transforms on the sphere S^2.

4 Entropy-Energy Inequalities on the Hyperbolic Plane \mathbb{H}^2

We say a Riemannian manifold M with measure dM admits a logarithmic Sobolev inequality with constant C if:

$$\int_M |f|^2 \ln |f|^2 dM \leq C \int_M |\nabla f|^2 dM \quad \text{for all } f \text{ such that } \int_M |f|^2 dM = 1$$

(4.1)
Since the Fisher information associated with a function is often regarded as an “energy”, one can say that logarithmic Sobolev inequalities give a bound on the entropy of a function \(f \) in terms of its energy

\[
E(f) = \int_M |\nabla f|^2 dM.
\]

Even if \(C \) is the best possible constant in (4.1), this is only one of a whole family of sharp inequalities, and in many applications, use of the whole family leads to more incisive results.

To obtain this family of inequalities, one must determine, for each \(A > 0 \), the least value of \(B \) for which

\[
\int_M |f|^2 \ln |f|^2 d\mathcal{M} \leq A \int_M |\nabla f|^2 d\mathcal{M} + B \quad \text{for all } f \text{ such that } \int_M |f|^2 d\mathcal{M} = 1 \quad (4.2)
\]

is true. Call this optimal choice \(B(A) \). If one then defines an increasing concave function \(\Phi \) through

\[
\Phi(t) = \inf_{A > 0} \{ At + B(A) \},
\]

one has

\[
\int_M |f|^2 \ln |f|^2 d\mathcal{M} \leq \Phi(E(f))
\]

for all \(f \) with \(\int_M |f|^2 d\mathcal{M} = 1 \).

Conversely, given the optimal function \(\Phi(t) \), \(B(A) \) can be recovered: It is just the y–intercept of the tangent line to \(y = \Phi(t) \) at the value of \(t \) for which \(\Phi'(t) = A \).

Thus, determining an optimal entropy energy inequality is essentially equivalent to solving an “\(AB \)” type problem in the sense of Hebey [Heb]: Obviously, if (4.2) holds for some \(A \) (that is, if, given some \(A \), one can find a constant \(B \) such that (4.2) is valid), then it holds for all \(A' \geq A \). Similarly, if (4.2) is valid for some \(B \), it remains valid for all \(B' \geq B \). Thus, it is natural to ask: what is the smallest constant \(A \) (or \(B \)) for which one can find a constant \(B \) (respectively, \(A \)) such that inequality (4.2) holds? In fact, these questions arise naturally whenever one has a Sobolev-type inequality on a Riemannian manifold [Heb]. The smallest \(A \) for which (4.2) holds is called the first best constant while the smallest such \(B \) is called the second best constant with respect to the inequality (4.2). Given any Sobolev-type inequality on some Riemannian manifold, Hebey associated two parallel research programs with the notion of best constants. The \(A \)-part of the program gives priority to the first best constant while the \(B \)-part is concerned with the second best constant.

As mentioned in the introduction, on \(\mathbb{R}^2 \), the optimal entropy–energy function \(\Phi_{\mathbb{R}^2}(t) \) is given by

\[
\Phi_{\mathbb{R}^2}(t) = \ln \left(\frac{1}{\pi e} t \right).
\]

Thus:

\[
\int_{\mathbb{R}^2} |f|^2 \ln |f|^2 \leq \ln \left(\frac{1}{\pi e} E(f) \right)
\]

Equality is achieved when \(f \) is an isotropic Gaussian function. For an appropriate choice of the variance of the Gaussian, the energy \(E(f) \) can take any value, so this inequality is sharp for all values of \(E(f) \).

In the case of \(\mathbb{H}^2 \), Beckner proved [Bec2] that the entropy has the same bound as in \(\mathbb{R}^2 \), i.e.,

\[
\int_{\mathbb{H}^2} |f|^2 \ln |f|^2 \leq \ln \left(\frac{1}{\pi e} E(f) \right)
\]
In other words,
\[\Phi_{\mathbb{H}^2} \leq \Phi_{\mathbb{R}^2}. \]

This result is asymptotically sharp for small \(t \) as explained in the introduction. However, the inequality is actually strict, and significantly so, for large \(t \). Here we prove an improved bound:

For \(t > 0 \), define \(\Phi^*(t) \) by
\[
\Phi^*(t) = \inf_{k \in \mathbb{N}} \left\{ \frac{1}{2} \ln \left[\left(\frac{2k-2}{2k-1} \right)^{2k+1} \left(\frac{2k-1}{2k} \right)^{2k} \left(\frac{2k-1}{4\pi} \right) \left(1 + \frac{1}{k(k-1)} \int |\nabla f|^2 d\mu \right)^{2k+1} \right] \right\}.
\]

Notice that this is an infimum over a family of increasing, concave functions. As such, it is increasing and concave.

While we cannot explicitly evaluate the infimum that defines \(\Phi^*(t) \), we have the following result:

Theorem 4.1. For all \(t > 0 \),
\[\Phi_{\mathbb{H}^2} \leq \Phi^*(t) < \Phi_{\mathbb{R}^2}. \]

Proof. We start from the sharp Sobolev inequality proved in Theorem 3.2, re-written in terms of the standard measure derived from the Poincaré metric. Recall that the measures \(d\mu \) and \(d\nu \) are related via:
\[d\nu = \frac{2k-2}{2k-1} d\mu. \]

If we rescale \(f \) in inequality (3.1) so as to make it \(L^2 \)-normalized in the measure \(d\mu \) and rewrite the inequality with respect to \(d\mu \), we get:
\[
\int f^p d\mu \leq \left(\frac{kq-1}{2k-1} \right)^{p/q} \left(\frac{2k-1}{kq-1} \right)^{p/q} \left(\frac{2k-1}{4\pi} \right)^{p-q/q} \left[\int f^q d\mu + \frac{4}{kq(kq-2)} \int |\nabla f|^2 d\mu \right]^{p/q}
\]

Putting \(q = 2, \quad p = 2 + 1/k \) and using the logarithmic convexity of the \(p \)-norm as in the proof of theorem 3.4, we obtain the following estimate:
\[
\int f^2 \ln f d\mu \leq \frac{1}{2} \ln \left[\left(\frac{2k-2}{2k-1} \right)^{2k+1} \left(\frac{2k-1}{2k} \right)^{2k} \left(\frac{2k-1}{4\pi} \right) \left(1 + \frac{1}{k(k-1)} \int |\nabla f|^2 d\mu \right)^{2k+1} \right]
\] (4.3)

Since this holds for every \(k \), we get an entropy–energy inequality by taking the infimum over \(k \), and this amounts to the inequality \(\Phi_{\mathbb{H}^2} \leq \Phi^*(t) \).

It remains to show that \(\Phi^*(t) < \Phi_{\mathbb{R}^2} \). We shall do this using the equivalent \(A–B \) form of the inequality. To make the tangent line computation and subsequent comparison with \(\Phi_{\mathbb{R}^2} \), and hence Beckner’s estimate, we note that, (4.3) implies:
\[
\int f^2 \ln f^2 d\mu \leq 2k \ln \left(\frac{k-1}{k} \right) + \ln \left(\frac{k-1}{2\pi} \right) + \frac{2k+1}{k(k-1)} \int |\nabla f|^2 d\mu
\] (4.4)

Now Beckner’s inequality [Bec2] on the upper half plane is:
\[
\int |f|^2 \ln |f| d\mu \leq \frac{1}{2} \ln \left[\frac{1}{\pi e} \int |\nabla |f||^2 d\mu \right]
\] (4.5)
Since the logarithm is a concave function of its argument, \(\frac{\ln x - \ln x_0}{x - x_0} < \frac{1}{x_0} \), where \(x > x_0 \). If we put \(x = \int |\nabla f|^2 d\mu \) in (4.5), we obtain the following inequality:

\[
\int f^2 \ln f^2 d\mu \leq \frac{1}{x_0} \int |\nabla f|^2 d\mu + \ln x_0 - \ln \pi - 2 \tag{4.6}
\]

Inequalities (4.4) and (4.6) have the form
\[
\int f^2 \ln f^2 d\mu \leq C_\epsilon + \epsilon \int |\nabla f|^2 d\mu.
\]
We would like to see how the values for the intercept \(C_\epsilon \) compare for a given value of the slope \(\epsilon \). Let \(C_{x_0} \) and \(C_k \) denote the intercepts for the inequalities parametrized by \(x_0 \) and \(k \) respectively. Now, to make the comparison let us put \(x_0 = \frac{2k + 1}{k(k - 1)} \). Then, for this value of \(x_0 \) we have:

\[
C_{x_0} = \ln x_0 - \ln \pi - 2 = - \left[\frac{1}{2} \ln \left(\frac{1}{2} \right) + \ldots \right] + \ln(k - 1) - \ln 2\pi - 2
\]

On the other hand:

\[
C_k = 2k \ln \left(\frac{k - 1}{k} \right) + \ln \left(\frac{k - 1}{2\pi} \right)
\]

\[
= \ln(k - 1) - \ln 2\pi - 2 - \frac{1}{k} - \frac{2}{3} \left(\frac{1}{k} \right)^2 - \frac{1}{2} \left(\frac{1}{k} \right)^3 - \ldots
\]

Thus, for \(x_0 = \frac{k(k - 1)}{2k + 1} \), we have: \(C_{x_0} - C_k = \frac{1}{2k} + \frac{13}{24} \frac{1}{k^2} + \ldots \). This means that the logarithmic Sobolev inequality (4.4) actually gives an improvement on Beckner’s inequality (4.6) as regards the second best constant and \(\Phi^*(t) < \Phi_{\mathbb{R}^2} \).

Another way to see the extent to which \(\Phi^* \) is a better estimate of \(\Phi_{\mathbb{R}^2} \) than \(\Phi_{\mathbb{H}^2} \) is to use them both to estimate the entropy of our coherent state transforms, since for them \(E(f) = \frac{k}{2} > \frac{k(k - 1)}{2k + 1} \).

Inserting the value \(E(f) = \frac{k}{2} \) into \(\Phi_{\mathbb{R}^2} \) we obtain, using Beckner’s estimate with respect to the measure \(d\nu(\zeta) \):

\[
- \int |f|^2 \ln |f|^2 d\nu \geq 1 - \ln \left(\frac{2k}{2k - 1} \right)
\]

while inserting this value into \(\Phi^* \) (with respect to measure \(d\nu(\zeta) \)) yields the better bound (3.4).

We close this section by proving another family of logarithmic Sobolev inequalities on the hyperbolic plane. The basic idea comes from Beckner’s paper [Bec1] where he showed how one could derive a family of sharp Sobolev inequalities on the hyperbolic plane \(\mathbb{H}^2 \), from the sharp Sobolev inequality on \(\mathbb{R}^n \), for \(n > 2 \).

The sharp Sobolev inequality on \(\mathbb{R}^n \), for \(n > 2 \) and \(1/p = 1/2 - 1/n \) is given by [Bec1]:

\[
\|f\|_{L^p(\mathbb{R}^n)} \leq A_p \|\nabla f\|_{L^2(\mathbb{R}^n)}
\]

\[
A_p = [\pi n(n - 2)]^{-1/2} \Gamma(n) / \Gamma(n/2)^{1/n}
\]

and the sharp constant is attained only for functions having the form \(A(1 + |x|^2)^{-n/p} \), where \(x \in \mathbb{R}^n \).
Theorem 4.2. The sharp Sobolev inequality (4.7) on \mathbb{R}^n leads to the following one-parameter family of logarithmic Sobolev inequalities on the hyperbolic plane \mathbb{H}^2:

$$\int g^2 \ln g^2 d\mu \leq \tilde{k} \ln \left[\left(\frac{k-1}{k+1} \right)^{1+1/k} \left(\frac{2k+1}{2\pi} \right)^{1/k} \left(1 + \frac{1}{k(k-1)} \right) \int |Dg|^2 d\mu \right]^{1+1/k}$$ \hspace{1cm} (4.8)

where $\tilde{k} = n/p$.

Proof. To obtain (4.8), we first derive a family of sharp Sobolev inequalities on the hyperbolic plane \mathbb{H}^2, as mentioned in [Bec1]. In order to do this, let us restrict our computations to radial functions f in inequality (4.7). We don’t lose anything by doing this since the optimizer is radial. Let us use the product structure for Euclidean space $\mathbb{R}^n \simeq \mathbb{R} \times \mathbb{R}^{n-1}$, with $x \in \mathbb{R}^n$ written as (t, x') where $x' \in \mathbb{R}^{n-1}$. Also let $y = |x'|$. Now put $g(t, y) = y^{n/p} f(t, x')$. Then:

$$\int f^p dx = \int y^{-n} g^p dt dx' = \int y^{-n} g^p dt (y^{n-2} dy S^{n-1}) = S^{n-1} \int g^p d\mu$$

Here $d\mu = dt \frac{dy}{y^2}$ is the measure derived from the Poincare metric on the upper half plane (recall that it is equivalent to the hyperbolic plane) and in moving from the first to the second line in the computation above we have referred x' to the $(n-1)$-dimensional spherical polar coordinate system, so that S^{n-1} in the final expression represents the surface area of a $(n-1)$-dimensional sphere. After a similar computation and some simplification, the expression for the gradient-norm of f is obtained as:

$$\int |\nabla f|^2 dx = S^{n-1} \left[\int |Dg|^2 d\mu + \frac{n}{p} \left(\frac{n}{p} - 1 \right) \int g^2 d\mu \right]$$

Thus inequality (4.7) can be expressed as:

$$\left(\int_{\mathbb{H}^2} g^p d\mu \right)^{2/p} \leq (S^{n-1})^{1-2/p} A_p^2 \left(\int_{\mathbb{H}^2} |Dg|^2 d\mu + \frac{n}{p} \left(\frac{n}{p} - 1 \right) \int_{\mathbb{H}^2} g^2 d\mu \right)$$

A short computation now shows: $(S^{n-1})^{1-2/p} A_p^2 = \frac{4}{n(n-2)} \left(\frac{n-1}{2\pi} \right)^{2/n}$. We can rewrite the inequality on the hyperbolic plane as:

$$\int_{\mathbb{H}^2} g^p d\mu \leq \left(\frac{4}{n(n-2)} \right)^{p/2} \left(\frac{n-1}{2\pi} \right)^{p/n} \left(\frac{n}{p} \left(\frac{n}{p} - 1 \right) \right)^{p/2} \left[\int_{\mathbb{H}^2} g^2 d\mu + \frac{1}{p(p-1)} \int |Dg|^2 d\mu \right]^{p/2}$$

Since $p = 2n/(n-2)$, the inequality above represents a one-parameter family of inequalities. Let us introduce a new variable $\tilde{k} = (n-2)/2$. Then $\tilde{k} = 1/2, 1, 3/2, 2, 5/2, ...$ and $p = 2 + 2/\tilde{k}$. In terms of \tilde{k} we have the following family of inequalities:

$$\int_{\mathbb{H}^2} g^p d\mu \leq \left(\frac{\tilde{k}-1}{\tilde{k}+1} \right)^{1+1/\tilde{k}} \left(\frac{2\tilde{k}+1}{2\pi} \right)^{1/\tilde{k}} \left[\int_{\mathbb{H}^2} g^2 d\mu + \frac{1}{\tilde{k}(\tilde{k}-1)} \int_{\mathbb{H}^2} |Dg|^2 d\mu \right]^{1+1/\tilde{k}}$$ \hspace{1cm} (4.9)
The sharp constant in this inequality is attained for functions \(g^* = A \left(\frac{y}{1 + t^2 + y^2} \right)^{\frac{n}{p}} = A \left(\frac{y}{1 + t^2 + y^2} \right)^{\tilde{k}} \).

Using the logarithmic convexity of the \(p \)-norm we obtain from (4.9), the family of logarithmic Sobolev inequalities (4.8) for functions on the hyperbolic plane, which are normalized so that their \(L^2 \)-norm with respect to the measure \(d\mu \) is 1:

\[
\int g^2 \ln g^2 d\mu \leq \tilde{k} \ln \left[\left(\frac{k - 1}{k + 1} \right)^{1+1/\tilde{k}} \left(\frac{2\tilde{k} + 1}{2\pi} \right)^{1/\tilde{k}} \left(1 + \frac{1}{k(k-1)} \int |Dg|^2 d\mu \right)^{1+1/\tilde{k}} \right]
\]

It is interesting to note that, for \(\frac{3}{2}, \frac{5}{2}, \ldots \), one can obtain from Theorem 3.2, a one-parameter family of Sobolev inequalities, which is strikingly similar to (4.9). Referred to the standard measure \(d\mu \), Theorem 3.2 tells us, for \(q = 2 \) and \(p' = 2 + 1/k \):

\[
\int f' d\mu \leq \left(\frac{2k - 2}{2k} \right)^{1+1/2k} \left(\frac{k}{2\pi} \right)^{1/2k} \left[\int |f|^2 d\mu + \frac{1}{k(k-1)} \int |Dg|^2 d\mu \right]^{1+1/2k}
\]

It is thus very natural to compare (4.8) with (3.4) and see which inequality gives a better bound for the entropy of functions in \(\mathcal{F}_k \). Let us first see what (4.8) implies for such functions. Put \(g = \sqrt{\frac{2k - 1}{4\pi}} f \) where \(f \in \mathcal{F}_k \). Then we have: \(\int g^2 d\mu = 1 \) and \(\int |Dg|^2 d\mu = k/2 \). So, with reference to the coherent state measure \(d\nu = \frac{2k - 1}{4\pi} d\mu \), (4.8) implies that:

\[
- \int |f|^2 \ln |f|^2 d\nu \geq \ln \left(\frac{2k - 1}{4\pi} \right) - (1 + \tilde{k}) \ln \left(\frac{k - 1}{k + 1} \right) - \ln \left(\frac{2\tilde{k} + 1}{2\pi} \right) - (1 + \tilde{k}) \ln \left(1 + \frac{k}{2(k-1)} \right)
\]

Optimization of the right hand side over the parameter \(\tilde{k} \) doesn’t seem to yield a simple result. However, we can put \(\tilde{k} = 2k \) (where \(k = 3/2, 5/2, \ldots \)) to make \(p = p' \), so that we have the same \(L^p \)-norms on the left hand sides of (4.9) and (4.10). The resulting expression yields the lower bound:

\[
- \int |f|^2 \ln |f|^2 d\nu \geq \ln \left(\frac{2k - 1}{2(4k + 1)} \right) - (1 + 2k) \ln \left(\frac{4(2k - 1)}{2k + 1} \right)
\]

Obviously, Theorem 3.4 gives a better bound for the entropy of functions in \(\mathcal{F}_k \).

5 The uniqueness theorem

In this section we study (3.2) written in terms of the radial hyperbolic coordinate. In what follows, we adapt the methods described in [Kwo] to the hyperbolic setting.

We investigate the question of uniqueness of ground state solution of the equation

\[
u'' + \coth \tau u' + f(u) = 0
\]

(5.1)
where $\tau \in (0, \infty)$ on the two-dimensional hyperbolic plane. The function $f(u)$ is given by: $f(u) = \tilde{a}u^{1+\frac{2}{kq}} - \tilde{b}u$, where $\tilde{b} = kq(kq - 2)$ and $\tilde{a} = \gamma kq(kq - 2)$. The boundary conditions on the solutions of interest are: $\lim_{\tau \to \infty} u(\tau) = 0$ and $u'(0) = 0$. There exist three points ξ_0, ξ_1 and ξ_2 in $(0, \infty)$ such that:

\[
\begin{align*}
\int_{u=0}^{\xi_0} f(u)\,du &= 0; & \int_{u=0}^{v} f(u)\,du < 0 \text{ for } v < \xi_0 \quad \text{and} \quad \int_{u=0}^{v} f(u)\,du > 0 \text{ for } v > \xi_0 \\
f(\xi_1) &= 0; & f(u) < 0 \quad \text{if} \quad u < \xi_1 \quad \text{and} \quad f(u) > 0 \quad \text{if} \quad u > \xi_1 \\
f'(\xi_2) &= 0; & f'(u) < 0 \quad \text{if} \quad u < \xi_2 \quad \text{and} \quad f'(u) > 0 \quad \text{if} \quad u > \xi_2
\end{align*}
\]

Following [Kwo], let us consider u as a function of the initial value α and τ, and study, in stead of the boundary value problem mentioned above, the following initial value problem:

\[
\begin{align*}
u'' + \coth \tau u' + f(u) &= 0 \\
u(0) &= \alpha > 0, \quad u'(0) = 0
\end{align*}
\]

We first divide the set of solutions into three mutually disjoint subsets, namely:

1. Solutions that have a zero at some finite τ. We call the corresponding set of initial values N. We denote the finite zero as $b(\alpha)$.

2. Positive solutions that satisfy $\lim_{\tau \to \infty} u(\tau) = 0$. We call the set of initial values G in this case.

3. Solutions that remain positive and do not belong to case 2. We let P denote the set of initial values for such solutions.
For a particular solution \(u \in G \cup N \), we let \(\tau_1 \) denote the zero of \(f(u) \), that is to say, \(u(\tau_1) = \xi_1 \) (it is possible to define this point uniquely because, as we will show momentarily, solutions \(u \in G \cup N \) are monotone). Our subsequent results rely heavily on Sturm’s comparison theorem (as mentioned in [lemma 1, [Kwo]] and also in chapter X, page 229 of [Inc]) and a few important corollaries that we state below.

Consider two second order differential equations:

\[
U''(x) + f(x)U'(x) + g(x)U(x) = 0, \quad x \in (a, b) \tag{5.3}
\]

\[
V''(x) + f(x)V'(x) + G(x)V(x) = 0, \quad x \in (a, b) \tag{5.4}
\]

Suppose that (5.3) has solutions that do not vanish in a neighborhood of point \(b \). Then the largest neighborhood of \(b \), \((c, b)\), on which there exists a solution of (5.3) without any zero, is called the disconjugacy interval of (5.3). Sturm’s theorem implies that no non-trivial solution can have more than one zero in \((c, b)\). A corollary (lemma 6, [Kwo]) of Sturm’s theorem is: if \((c, \infty)\) is the disconjugacy interval of (5.3), as defined above, then every solution of (5.3) with a zero in \((c, \infty)\) is unbounded. We also have another very useful corollary (lemma 3, [Kwo]) of Sturm’s theorem: if the equations (5.3) and (5.4) satisfy the comparison condition \(G(x) \geq g(x) \), \(U \) is not identically equal to \(V \) in any neighborhood of \(b \) and there exists a solution \(V \) of (5.4) with a largest zero at \(\rho \in (a, b) \), then the disconjugacy interval of (5.3) is a strict superset of \((\rho, b)\).

We are now ready to state and prove our results. But first let us briefly outline our strategy in a few steps, since the proof of uniqueness is rather involved:

1. The first two lemmas state well-known facts about the structure of the sets \(N \), \(P \) and \(G \). As we increase \(\alpha \) from 0 we first have solutions in \(P \). Since the arguments are exactly similar to those used for the Euclidean case in [Kwo], we refer to the relevant lemmas in [Kwo], in stead of reiterating the proofs.

2. Next we study the variation \(w \) of a solution \(u \in G \cup N \) with respect to its initial value. The proof of uniqueness depends crucially on the properties of \(w \). If, for \(\alpha \in G \), \(\lim_{\tau \to \infty} w(\alpha, \tau) = -\infty \), then a right neighborhood of \(\alpha \) belongs to \(N \). Also, if \(\alpha \in N \) and \(w(\alpha, b(\alpha)) < 0 \), then a neighborhood of \(\alpha \) belongs to \(N \) as well. Suppose these hypotheses are indeed true. As we continuously increase \(\alpha \), we will first have solutions in \(P \). The right boundary point will belong to \(G \). A right neighborhood of the corresponding \(\alpha \) will be in \(N \). Then, if for all \(\alpha \in N \), \(w(\alpha, b(\alpha)) < 0 \), we will continue to remain in \(N \) as we increase \(\alpha \) further. Thus the proof of uniqueness of the ground state will be complete. Hence we just need to prove that for \(\alpha \in G \), \(\lim_{\tau \to -\infty} w(\alpha, \tau) = -\infty \), while for \(\alpha \in N \), \(w(\alpha, b(\alpha)) < 0 \). In fact, if we can prove that \(w \) has only one zero for initial values in \(G \cup N \) and \(w \) is unbounded for initial values in \(G \), uniqueness will be guaranteed. Initial values satisfying these two conditions are called strict admissible.

3. To prove that \(w \) can have no more than one zero and that it is unbounded, we construct a comparison function \(v \) for \(w \). The zero of \(w \) is then shown to belong to the disconjugacy interval of the differential equation satisfied by \(w \), which in turn implies unboundedness of \(w \). The idea of constructing a comparison function like this was used in [Kwo] to prove uniqueness of positive solutions of a semi-linear Poisson equation in a bounded or unbounded annular region in \(\mathbb{R}^n \), for \(n > 1 \). It is in this crucial step, right after lemma 5.5 in this paper, that our proof of uniqueness differs from that of [Kwo]. This happens because we are dealing with a semi-linear Poisson equation on the hyperbolic plane \(\mathbb{H}^2 \). The difference
in geometry manifests itself in the form of the comparison function and, more importantly, in the subsequent analysis. Proofs of lemma 5.6 through lemma 5.8 are thus specific to the hyperbolic case. As we go along we point out these differences in detail.

The main result of this section is:

Theorem 5.1. The initial value \(\alpha \in G \cup N \) is strictly admissible.

Let us construct an “energy” function corresponding to (5.2):

\[
E(\tau) = \frac{u'^2(\tau)}{2} + \frac{\ddot{a} u^2 + \ddot{b} u}{2 + \frac{\ddot{a}}{\ddot{k}q}} - \frac{\ddot{b} u^2}{2}
\]

It is readily seen that \(E'(\tau) = - \coth \tau u'^2(\tau) \leq 0 \). Thus \(E \) is a non-increasing function of \(\tau \).

Lemma 5.2. The set \((0, \xi_0]\) of initial values belongs to the set \(P\). [lemma 8, [Kwo]]

For solutions in \(N\), the function \(E\) decreases to a positive constant while for solutions in \(G\), \(E(\infty) = 0\). This fact leads us to the following lemma:

Lemma 5.3. If \(u \in G \cup N\), then \(u'(\tau) < 0\) in \((0, b(\alpha))\) (if \(u \in b(\alpha)\)) or \((0, \infty)\) (if \(u \in G\)). [lemma 11, [Kwo]]

The fact that the sets \(N\) and \(P\) are open subsets of \((0, \infty)\) [lemma 13, [Kwo]; lemma 1.1, [Ber]] is crucial but easy to observe.

We concern ourselves only with solutions that are either in \(G\) or in \(N\). Let us define: \(w = w(\tau, \alpha) = \frac{\partial u}{\partial \alpha}_{|_{\tau, \alpha}}\). We study the function \(w\) for such solutions. First of all let us note that \(w = 0\) means two nearby solutions (i.e. solutions having nearby initial values) can intersect.

Evidently \(w\) satisfies the following equation (the derivatives are taken with respect to \(\tau\)):

\[
\begin{align*}
 w'' + \coth \tau w' + f'(u)w &= 0 \\
 w(0) &= 1, \quad w'(0) = 0
\end{align*}
\]

Lemma 5.4. For \(u \in G \cup N\), \(w\) has to change sign before \(\xi_1\). [lemma 17, [Kwo]]

Following Kwong, we call the initial value \(\alpha \in G\) strictly admissible if the corresponding \(w(\alpha, \tau)\) has only one zero in \((0, \infty)\) and \(\lim_{\tau \to \infty} w(\alpha, \tau) = -\infty\). We call the initial value \(\alpha \in N\) strictly admissible if the corresponding \(w(\alpha, \tau)\) has only one zero in \((0, \infty)\) and \(w(\alpha, b(\alpha)) < 0\).

It is easy to see that if for a particular \(\alpha \in N\), \(w(b(\alpha)) = \frac{\partial u}{\partial \alpha}(b(\alpha), \alpha) < 0\), then in a right neighborhood of \(\alpha\), \(b(\alpha)\) is a strictly decreasing function of \(\alpha\) and thus that neighborhood belongs to \(N\).

Lemma 5.5. If for \(\alpha \in G\), \(\lim_{\tau \to \infty} w(\alpha, \tau) = -\infty\), in particular if \(w(\alpha, \tau)\) is strictly admissible, then there exists a right neighborhood of \(\alpha\) that belongs to \(N\). [lemma 19, [Kwo]]

We now need to prove that every initial value \(\alpha \in G \cup N\) is strictly admissible. The strategy is to construct a comparison function \(v(\tau)\) (to be compared with \(w\)), which has the following properties:

1. \(v(\tau)\) has only one zero in \((0, \infty)\).

and
2. $v(\tau)$ is a strict Sturm majorant of $w(\alpha, \tau)$ in both $(0, \rho)$ and (ρ, ∞), where ρ is the first zero of $w(\alpha, \tau)$.

If we are able to construct such a function, then by property (2) the zero of v occurs before that of w and by property (1) w cannot have another zero in $(0, b(\alpha))$. Here $b(\alpha)$ is the zero of the solution $u \in G \cup N$. If $u \in G$ then $b(\alpha)$ is to be interpreted as the point $\tau = \infty$. If $b(\alpha)$ is finite then of course the corresponding u is in N and $w(\alpha, b(\alpha)) < 0$, i.e., α is strictly admissible. On the other hand if $b(\alpha) = \infty$, w has a zero in the disconjugacy interval of v, and hence in the disconjugacy interval of the differential equation satisfied by w itself. This happens because w being a strict Sturm minorant of v in $(0, \infty)$, the disconjugacy interval of $[Kwo]$ is bigger than that of the differential equation satisfied by v. This means w is unbounded. Hence the corresponding α is strictly admissible.

It is helpful to first construct an auxiliary function $\theta(\tau)$ and then use it to deduce that v has the necessary properties described above. In the Euclidean case [Kwo], the auxiliary function $\theta(\tau)$ is given by: $\theta(\tau) = -\frac{\tau u'(\tau)}{u(\tau)}$. For the hyperbolic case we define the auxiliary function for all solutions $u \in G \cup N$ as:

$$\theta(\tau) = \frac{-\sinh \tau u'(\tau)}{u(\tau)} \quad (5.6)$$

The auxiliary functions and the comparison functions in the Euclidean and hyperbolic cases have different forms but similar properties. Thus lemmas that follow are basically hyperbolic analogues of lemmas proved by Kwong in the Euclidean case.

The function $\theta(\tau)$ is obviously continuous in $(0, \infty)$ for $u \in G$; for $u \in N$ $\theta(\tau)$ is continuous in $(0, b(\alpha))$ where $b(\alpha)$ is the zero of $u(\alpha)$.

Lemma 5.6. For solutions $u \in G \cup N$, $\theta(0) = 0$ and $\lim_{\tau \to b(\alpha)} \theta(\tau) = \infty$. If $u \in N$ $b(\alpha)$ is interpreted to be the zero of u and if $u \in G$, $b(\alpha) = \infty$.

Proof. The first claim is easy to verify since for all $u \in G \cup N$, $u'(0) = 0$; since $u'(\tau) < 0$, $\theta(\tau) > 0$ in $(0, \infty)$.

For $u \in N$, $u'(b(\alpha)) \neq 0$ and the second assertion of the lemma automatically follows.

Let us consider the case: $u \in G$.

Let $R = -\frac{u'}{u}$.

Then $R \geq 0$ and $R' = -\frac{u''}{u} + \frac{u'^2}{u^2} = R^2 - R \coth \tau + \frac{f(u)}{u}$.

Now we know that $\lim_{\tau \to \infty} \frac{f(u)}{u} = -\tilde{b}$. We assert that for large values of τ we would always have:

$$R(\tau) > \sqrt{\frac{b}{2}}.$$

If not, then $R(\tau) \leq \sqrt{\frac{b}{2}}$ for some τ. Then:

$$R'(\tau) = R^2 - \coth \tau R + \frac{f(u)}{u} < R^2 + \frac{f(u)}{u} \leq -\tilde{b}.$$

Thus R' will remain strictly and hugely negative eventually causing R to change sign.

Thus $-\frac{u'(\tau)}{u(\tau)} > \sqrt{\frac{b}{2}}$ for large values of τ. This in turn means $\lim_{\tau \to \infty} \theta(\tau) = \infty$. \hfill \Box

We next define the comparison function $v_\beta(\tau) = \sinh \tau u' + \beta u$ (in the Euclidean case it is defined as $v_\beta(\tau) = ru'(\tau) + \beta u(\tau)$). It is readily seen that $v_\beta(\tau) = (\langle >, 0)$ if and only if θ intersects (is
above, is below) the straight line \(y(\tau) = \beta \). Also, \(v_\beta(\tau) \) is tangent to the \(\tau \)-axis at some point \(\hat{\tau} \) if and only if \(\theta(\tau) \) is tangent to the straight line \(y(\tau) = \beta \) at \(\hat{\tau} \).

The function \(v_\beta(\tau) \) satisfies the following differential equation:

\[
v'' + \coth \tau v' + f'(u)v = \Phi(\tau) = \beta (uf'(u) - f(u)) - 2 \cosh \tau f(u) \tag{5.7}
\]

\[
v(0) > 0, \quad v'(0) = 0
\]

Now

\[
\Phi = \beta (uf'(u) - f(u)) - 2 \cosh \tau f(u)
\]

\[
= \frac{2}{kq} \beta \tilde{a} u^{1 + \frac{2}{kq}} - 2 \cosh \tau f(u)
\]

It is not really obvious that one can choose a \(\beta \) such that \(\Phi \) has only one zero and the position of that zero has a continuous dependence on \(\beta \). However our next lemma proves that this can indeed be achieved.

Lemma 5.7. There exists some \(\bar{\beta} \) such that for \(0 < \beta < \bar{\beta} \) the function \(\Phi(u, \tau) \) has only one zero, say at \(\tau = \sigma \) in \((0, \infty) \) such that:

\[
\Phi(u, \tau) < 0 \quad \text{for } \tau < \sigma
\]

\[
\Phi(u, \tau) > 0 \quad \text{for } \tau > \sigma
\]

The point \(\sigma \) is a continuous monotone function of \(\beta \).

Proof. First, we note that \(\Phi(\tau) > 0 \) in \([\tau_1, \infty) \) by definition; so its zeros must be concentrated in \((0, \tau_1) \). At a zero of the function \(\Phi \) we have:

\[
\frac{2}{kq} \beta \tilde{a} u^{1 + \frac{2}{kq}} = 2 \cosh \tau f(u)
\]

Thus at \(\Phi = 0 \) we have:

\[
\Phi' = \beta \frac{2}{kq} \tilde{a} \left(1 + \frac{2}{kq} \right) u^\frac{2}{kq} u' - 2 \sinh \tau f(u) - 2 \cosh \tau f'(u) u'
\]

\[
= \frac{2u' \cosh \tau}{u} \left[\left(1 + \frac{2}{kq} \right) f(u) - uf'(u) \right] - 2 \sinh \tau f(u)
\]

So, if at \(\Phi = 0, \Phi' > 0 \), then:

\[
\frac{2u' \cosh \tau}{u} \left[\left(1 + \frac{2}{kq} \right) f(u) - uf'(u) \right] > 2 \sinh \tau f(u)
\]

\[
\text{or} \quad -\frac{2b}{kq} u' > \tanh \tau f(u)
\]

which in turn implies

\[
\frac{2b}{kq} (-\sinh \tau u'') > \sinh \tau \tanh \tau f(u) \tag{5.8}
\]
Similarly if $\Phi' < 0$ at $\Phi = 0$, then:

$$\frac{2\tilde{b}}{kq}(-\sinh \tau u') < \sinh \tau \tanh \tau f(u)$$ \hfill (5.9)

Now the differential equation (5.2) satisfied by u can be rewritten as:

$$(-\sinh \tau u')' = \sinh \tau f(u)$$

If at the first zero of the function $\Phi(\tau)$, $\Phi'(\tau) > 0$ then inequality (5.8) holds at that point and we also know that the left hand side of the inequality is positive and increasing at the rate \(\left(\frac{2\tilde{b}}{kq}(-\sinh \tau u') \right)' = \frac{2\tilde{b}}{kq} \sinh \tau f(u) \). As for the right hand side, we have, in the interval $(0, \tau_1)$:

\[
\begin{align*}
\left(\sinh \tau \tanh f(u) \right)' &= \sinh \tau f(u) + \sinh \tau \text{sech}^2 \tau f(u) + \sinh \tau \tanh f'(u) u' \\
&< 2 \sinh \tau f(u)
\end{align*}
\]

The inequality above holds because $f'(u) > 0$ in $(0, \tau_1)$ and $u' < 0$. Since in our case $\frac{2\tilde{b}}{kq} = 2(kq - 2)$ and k is chosen so that $kq > 1$, it turns out that $\frac{2\tilde{b}}{kq} \sinh \tau f(u) > 2 \sinh \tau f(u)$. This in turn implies that the left hand side of (5.8) increases more rapidly than the right hand side. So if inequality (5.8) holds at some point in $(0, \tau_1)$ then it prevails at all subsequent points in this interval. We can thus conclude that if $\Phi(0) < 0$, then $\Phi(\tau)$ can have only one zero in $(0, \tau_1)$.

Now for a particular solution having initial value α, $\Phi(\tau = 0) = \beta (\alpha f'(\alpha) - f(\alpha)) - 2f(\alpha)$. Putting in the specific form of $f(u)$ we obtain the condition that $\Phi(\tau)$ has a negative initial value:

$$\beta < kq \left[1 - \frac{\tilde{b}}{\hat{a} \alpha^2 / kq} \right]$$

We let $\bar{\beta}$ denote the upper limit set on β by the condition above. Then for $\beta \in (0, \bar{\beta})$, the function $\Phi(\tau)$ has a negative initial value and consequently only one zero in $(0, \tau_1)$. We denote that zero by σ.

Let us now find out how σ depends on β. We have:

$$\frac{\tilde{b} \beta}{kq} = \cosh \sigma \frac{f(u(\sigma))}{u(\sigma)^{1+2/kq}}$$

Evidently then β depends continuously on σ. Also:

$$\beta'(\sigma) = \frac{kq}{\tilde{a}} u^{-1-2/kq} \left[\frac{2\tilde{b}}{kq} u'(\sigma) \cosh \sigma + f(u(\sigma) \sinh \sigma \right]$$

Now for $\beta \in (0, \bar{\beta})$, (5.8) holds at σ, as proved before. Thus \(\left[\frac{2\tilde{b}}{kq} u'(\sigma) \cosh \sigma + f(u(\sigma) \sinh \sigma \right] < 0 \), and hence $\beta'(\sigma) < 0$ for all β in this range. This means there exists a continuous inverse function in a neighborhood of $\beta(\sigma)$. Thus σ depends continuously on β. In fact σ is a decreasing function of β. When $\beta = 0$ the only zero of $\Phi(\tau)$ is at τ_1. As we increase β the zero shifts continuously to the left.
Let ρ_β be the first zero of $v_\beta(\tau)$ (we do not yet know how many zeros v can have). Then for $\beta = 0$, $\rho = 0$. As we increase β, ρ_β moves to the right. In order to prove that we can control β such that ρ_β and σ_β can be made to coincide, we need to show that ρ_β continuously depends on β. We first show that actually, given any β, $v_\beta(\tau)$ can have only one zero and then prove the continuous dependence of that zero on the parameter β.

Lemma 5.8. The function $v_\beta(\tau)$ has only one zero in $(0, \infty)$.

Proof. In the interval $[0, \tau_1]$,

$$(-\sinh \tau u'(\tau))' = f(u) \sinh \tau \geq 0$$

Thus $(-\sinh \tau u'(\tau))$ is non-decreasing in $[0, \tau_1]$. Since $u(\tau)$ is decreasing, $\theta(\tau) = \frac{-\sinh \tau u'(\tau)}{u(\tau)}$ is non-decreasing in $[0, \tau_1]$. Thus for any β it can intersect the straight line $y(\tau) = \beta$ no more than once in this interval and the corresponding $v_\beta(\tau)$ can have at most one zero.

Since $\lim_{\tau \to -\infty} \theta(\tau) = \infty$, if $\theta(\tau)$ is not non-decreasing in the entire interval (τ_1, ∞), then it has to have local minima. Suppose the lowest of all such minima occurs at ω and has height β_0. Then in (ω, ∞), $v_{\beta_0}(\tau)$ is negative and has a double zero at ω. Also $v_{\beta_0}(\tau)$ satisfies the following differential inequality in (ω, ∞):

$$v'' + \coth \tau v' + f'(u)v \geq 0$$

But this is impossible (since, if v satisfies the second-order differential equation above, then it cannot have a double zero; cf. lemma 5, [Kwo]).

Thus we conclude that $\theta(\tau)$ is non-decreasing in $(0, \infty)$, which in turn implies that for any value of β, $v_\beta(\tau)$ can have only one zero in $(0, \infty)$.

To prove that one can choose β such that $\rho_\beta = \sigma_\beta$ it is sufficient to show that ρ_β as a function of β doesn’t have any discontinuity in $(0, \tau_1)$. Since v_β has a zero at ρ_β if and only if θ intersects the straight line $y(\tau) = \beta$ at $\tau = \rho_\beta$, we just need to show $\theta'(\rho_\beta) \neq 0$. As shown in the preceding lemma, $\theta'(\tau) > 0$ in $(0, \tau_1)$. As we increase β, the height of the horizontal straight line $y(\tau) = \beta$ increases. This results in a continuous shift of the point of intersection ρ_β to the right. Thus we can conclude that in $(0, \tau_1)$ ρ_β is a continuous increasing function of β. For $\beta = 0$, $\rho = 0$ and $\sigma = \tau_1$. When we increase β, ρ_β moves continuously to the right even as σ_β shifts continuously to the left till it is at the origin $\tau = 0$ for $\beta = \bar{\beta}$, as shown before. It follows that there exists a $\beta_0 \in (0, \bar{\beta})$ for which we would have: $\rho_{\beta_0} = \sigma_{\beta_0}$. Let us then fix the parameter β by choosing that value β_0.

We are now in a position to prove Theorem 5.1.

Proof. Let us use $v_{\beta_0}(\tau)$ as a comparison function for $w(\tau)$. The differential equations to be compared are:

$$w'' + \coth \tau w' + f'(u)w = 0$$

$$w(0) = 1, \quad w'(0) = 0$$

and

$$v'' + \coth \tau v' + \left[f'(u) - \frac{\Phi(\tau)}{v}\right]v = 0$$

$$v(0) > 0, \quad v'(0) = 0$$
Since in $(0, \rho)$, $\Phi < 0$ and $v > 0$ the coefficient of v is larger than that of w. Thus v is a strict Sturm majorant of w and its zero ρ occurs before the first zero of w, say c. But at c, $\Phi > 0$ and $v < 0$, thus the coefficient of v is still larger than that of w. Moreover, since $w(c) = 0$, $\frac{w'(c)}{w(c)} = +\infty$ and $\frac{v'(c)}{v(c)}$. Thus v again is a strict Sturm majorant of w. But v does not have a zero in $[c, \infty)$. Then w cannot have a zero in this interval either. So if $u \in N$ then $w(b(\alpha)) < 0$ and α is strictly admissible. Let us consider the case $u \in G$ now. Evidently, c belongs to the disconjugacy interval of (5.7). Since v is a strict Sturm majorant of w in $(0, \infty)$, the disconjugacy interval of (5.5) is a superset of the disconjugacy interval of (5.7). Thus w has a zero in the disconjugacy interval of the differential equation it satisfies. Hence it must be unbounded.

Thus for $u \in G \cup N$ the corresponding initial value is strictly admissible. \hfill \Box

As shown before, the strict admissibility of an initial value in G guarantees the uniqueness of the corresponding solution.

References

[Bar] Bargmann, V.: Irreducible Unitary Representations of the Lorentz Group, Annals of Mathematics, vol. 48, no. 3, 568-640, 1947
[Beck1] Beckner, W.: Sharp Inequalities and Geometric Manifolds, The Journal of Fourier Analysis and Applications, vol. 3, Special Issue, 825-836, 1997
[Beck2] Beckner, W.: Geometric Asymptotics and the Logarithmic Sobolev Inequality, Forum Mathematicum 11, 105-137, 1999
[Ber] Berestycki, H., Lions, P.L. and Peletier, L.A.: An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^n, Indiana University Mathematics Journal 30, 141-167, 1981
[Bod] Bodmann, B.G.: A Lower Bound for the Wehrl Entropy of Quantum Spin with Sharp High-Spin Asymptotics, Communications in Mathematical Physics 250, 287-300, 2004
[Car] Carlen, E.A.: Some Integral Identities and Inequalities for Entire Functions and Their Application to the Coherent State Transform, Journal of Functional Analysis, vol. 97, no. 1, 231-249, 1991
[Gro] Gross, L.: Logarithmic Sobolev Inequalities, American Journal of Mathematics 97, 1061-1083, 1975
[Heb] Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, CIMS Lecture Notes, 1999, Courant Institute of Mathematical Sciences
[Inc] Ince, E.L.: Ordinary Differential Equations, Dover Publications, 1944
[Kwo] Kwong, M.K.: Uniqueness of Positive Radial Solutions of $\Delta u - u + u^p = 0$ in \mathbb{R}^n, Archive for Rational Mechanics and Analysis 105, 243-266, 1989
[Lie] Lieb, E.H.: Proof of an Entropy Conjecture of Wehrl, Communications in Mathematical Physics 62, 35-41, 1978
[Per] Perelomov, A.: Generalized Coherent States and Their Applications, Texts and Monographs in Physics, Springer-Verlag
[Rot] Rothaus, O.: Diffusion on Compact Riemannian Manifolds and Logarithmic Sobolev Inequalities, Journal of Functional Analysis 42, 358-367, 1981
[Sch] Schupp, P.: On Lieb’s Conjecture for the Wehrl Entropy of Bloch Coherent States, Communications in Mathematical Physics 207, no. 2, 481-493, 1999
[Weh] Wehrl, A.: On the Relation between Classical and Quantum-mechanical Entropy, Reports on Mathematical Physics, vol. 16, no.3, 353-358, 1979