Correlation between Glycated Hemoglobin and Serum Lipids in Type 2 Diabetics in Eastern Libya

Nura Mohammed Naseb1, Ramesh Naidu Yedla2, Khalid Saleh Gharib3, Jagannadha Rao Peela4*, S. Shakila4, Abdul Rehaman Said4, Laxmi Teja Peela5, Sobha Devi Kolla6, Sainath Jagannath Doiphode7, Anuradha Argi8, Jagannadha Rao Peela4*, S. Shakila4, Abdul Rehaman Said4, Laxmi Teja Peela5, Sobha Devi Kolla6, Sainath Jagannath Doiphode7, Anuradha Argi8, V. Laxmi Kalpana8, Avinash Rawal9 and Soe Naung10

1Department of Biochemistry, Faculty of Medicine, University of Benghazi, Benghazi, Libya.
2Department of Medicine, Rangaraya Medical College, Kakinada, AP, India.
3Department of Biochemistry, Faculty of Medicine, Omar Al-Muhkhtar University, Al-Baida, Libya.
4Department of Biochemistry, Faculty of Medicine, Quest International University Perak, Ipoh, Malaysia.
5Great Eastern Medical School, Srikakulam, India.
6Department of Biochemistry, Rangaraya Medical College, Kakinada, India.
7Department of Pharmacology, Guardian College of Dental Sciences and Research Centre, Ambernath, Thane, Maharashtra, India.
8Department of Human Genetics, Andhra University, Visakhapatnam, India.
9Department of Biochemistry, Faculty of Medicine, St Mathews Medical University, Grand Cayman, Cayman Islands.
10Community Medicine, Faculty of Medicine, Quest International University, Perak, 30250 Ipoh, Malaysia.

Authors’ contributions

This work was carried out in collaboration between all authors. Author JRP designed the study, author SN performed the statistical analysis, authors NMN and KSG wrote the protocol, and wrote the first draft of the manuscript and managed literature searches. Authors LTP, VLK and AA helped in writing and formatting. Authors SS, SJD, SDK, ARS and RNY managed the analyses of the study and literature searches. Author AR helped reviewing process. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMMR/2016/18537

*Corresponding author: pjagannadharao@hotmail.com;
ABSTRACT

Introduction: Type 2 diabetes is an increasingly common metabolic disorder characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Diabetes mellitus is frequently associated with dyslipidemia and an increased percentage of glycated hemoglobin. Patients with type 2 diabetes mellitus are at increased risk for cardiovascular complications.

Objective: To assess the relationship between glycemic control (as reflected by glycated hemoglobin; HbA1c) and serum lipid profile in type 2 diabetic patients.

Materials and Methods: A total of 60 patients were selected from those attending Diabetes Mellitus Clinic, Seventeenth of February Teaching Hospital, Al- Baida as outpatients. The subjects were divided into 3 groups such as group I as the control group, group II as the diabetic group with all related complications excluded and group III as those with type 2 DM with at least cardiovascular event in the last two years considered as cardiovascular complication of DM. Blood samples were collected from all the subjects and tested for glucose level, glycated hemoglobin, total cholesterol, triglycerides and HDL cholesterol using authenticated reagents kits on an auto analyzer. LDL cholesterol was calculated using Friedwald’s formula.

Results: The levels of glycated hemoglobin (p<0.0001), fasting glucose level (p<0.0001) and triglycerides (p<0.0001), were significantly raised and HDL cholesterol (p<0.0001) is found to have significantly decreased in diabetic patients with or without cardiovascular complications. In those patients with diabetic complications, total cholesterol and low density lipoprotein cholesterol were significantly raised and high density lipoprotein cholesterol significantly decreased when compared to control subjects.

Conclusion: The findings of the study showed significant positive correlation between glycated hemoglobin with the levels of total cholesterol, triacylglycerol, and low density lipoprotein cholesterol in both control and diabetic groups with or without complications. Glycated hemoglobin level was significant and positively correlated with total cholesterol and triglycerides in type 2 DM.

Keywords: Glycated hemoglobin; type 2 DM; serum lipids.

1. INTRODUCTION

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from a defect in insulin secretion, insulin action or both [1,2]. Glycated hemoglobin is an objective measure of glycemic control, which reflects average plasma glucose over the previous eight to twelve weeks. Type 2 DM was previously referred to as non-insulin dependent diabetes or adult-onset diabetes. It consists of an array of dysfunctions characterized by hyperglycemia resulting from the combination of resistance to insulin action, inadequate insulin secretion, and excessive or inappropriate glucagon secretion [3-5]. Dyslipidemia is another more prominent in biochemical finding in type-2 diabetes and in poorly controlled diabetes there is impaired low density lipoprotein (LDL) catabolism which leads to its elevated concentration in blood [6].

Prevalence of diabetes mellitus is a global problem and Libya is no exception to this problem mainly due to the raised incidence of metabolic syndrome, genetic predisposition and dietary habits. Complications of diabetes includes neuropathy, nephropathy, retinopathy and other vascular complications particularly atherosclerosis.

The aim of the current prospective study was to evaluate correlation between glycated hemoglobin and serum lipids in type 2 diabetics in eastern Libya.

2. MATERIALS AND METHODS

In the present study, 60 subjects of either sex in the age group between 30 to 75 years were selected. The details of the age, body weight and body mass index (BMI) were given in Table 1. The study was carried out on outpatients from the department of Diabetes Mellitus Clinic,
Seventeenth of February Teaching Hospital, Al-Baida. This study was approved by ethics committee of Al Mukthar University, Al Baida, Libya in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. The subjects were grouped based on cardiovascular complications such as coronary heart disease as follows:

Study groups

Group	Description	Male	Female
Group I	Control group with twenty subjects from similar age group and physical characteristics. 18 males and 2 females		
Group II	Consists of twenty patients with diabetes with no other diabetes associated complications. 11 males and 9 females		
Group III	Consists of twenty patients with diabetes with known history of coronary heart disease in the last two years. 11 males and 9 females		

Blood samples from all the subjects were collected and analyzed for Glycated Hemoglobin, Fasting plasma glucose and lipid profile. All laboratory work was carried out at the labs of Biochemistry Department, Omar Al-Mukhtar Faculty of Medicine and Clinical Laboratory at Seventeenth of February Teaching Hospital, Al-Baida. The blood samples were collected into EDTA tubes for determination of HbA1c; in fluoride oxalate tubes for fasting glucose (FG) and serum separator tube for lipid profile measurement.

Table 1. Mean age, body weight and BMI

Groups	Age	Body weight	BMI
Group I	46.05±11.408	65±4.576	21.7±2.5
Group II	57.65±7.915	66±7.765	22.7±2.8
Group III	61.5±6.030	69±6.435	23.8±2.0

Blood glucose was estimated by enzymatic colorimetric method [7]. Glycated hemoglobin was estimated by chromatographic spectrometric ion exchange method [8]. Cholesterol was measured by enzymatic method [9-12].

LDL cholesterol was calculated using Friedwald’s formula: \(LDL = TC - HDL - TG/5 \) [13] Lipid risk ratio was calculated by the ratio between total cholesterol and HDL cholesterol. Correlation test was done by pearson method using microsoft excel sheet.

Statistical analysis was done by using SPSS software and calculated post hoc sample size. We used Mann Whitney U test for calculating p-values. Correlation was done by pearson method in Microsoft excel sheet.

3. RESULTS

The fasting glucose and glycated hemoglobin levels of the study groups are presented in Tables 2 and 3, respectively. The p-value showed a significant difference in fasting plasma glucose (p<0.001), and in hemoglobin A1c (p<0.001) in control (group I) compared with other two study groups II and III. There was no significant difference (p>0.05) between group II and group III.

The results of lipid profile are presented in Table 4. It is revealed that serum total cholesterol, serum LDL-C, serum triacylglycerides and lipid risk ratio were found to be in the higher range in patients with diabetic complication (group III) in comparison to control subjects (group I). Serum total cholesterol, serum LDL, serum triacylglycerides, lipid risk ratio were raised in patients with diabetic (group II) in comparison to control subjects (group I).

The p-value for all the parameters showed that there was significant difference in the serum total cholesterol (p<0.001), serum LDL cholesterol (p<0.05), serum triacylglyceride levels (p<0.001) and serum lipids risk ratio (p<0.001) between group I and group III. There was significant difference in the serum LDL cholesterol (p<0.05), serum lipids risk ratio (p<0.001) between group II and group III. However, there was no significant difference in the serum total cholesterol (p>0.05), serum triacylglycerides (p>0.05) and serum lipids risk ratio (p<0.001) between group (II) and group (III).

There is a positive correlation between Glycated hemoglobin and Total Cholesterol, LDL cholesterol, Triglycerides and negative correlation to HDL cholesterol but not significant may be due to small sample size in each category. The results of correlation between glycated hemoglobin and other lipids were mentioned in Table 5.

4. DISCUSSION

The characteristic features of diabetic dyslipidemia are a high plasma triglyceride
Table 2. Fasting plasma glucose (mg/dl) in control and two other studied groups (Number = 20 each)

Groups	Control (group I)	Group II (group I Vs. Group II)	Group III (group I Vs. Group III)
Range	64 – 110	86 – 224	124 – 377
Mean	90.7	158.95**	191.85**
S.D.	± 13.85	± 39.99	± 56.053

** p<0.001

Table 3. HbA1c% in control and two other study groups

Groups	Control (group I)	Group II (group I Vs. Group II)	Group III (group I Vs. Group III)
Range	4.2 – 6.0%	6.3 – 15.8%	6.6 – 13%
Mean	5.64	9.23**	8.86**
S.D.	± 1.66	± 2.265	± 1.62

** p<0.001

Table 4. Serum cholesterol, triglycerides, LDL cholesterol, and HDL cholesterol levels in control and two other studied groups

Parameters	Control (group I) mean ± S.D	Group II (group I vs. Group II) mean ± S.D	Group III (group I vs. Group III) mean ± S.D
Total cholesterol (mg/dL)	124.65 ± 29.16	150.20 ± 52.62*	171.2 ± 47.246**
LDL cholesterol (mg/dL)	54.82 ± 28.80	107.97 ± 46.17*	109.55 ± 46.40*
Triglycerides (mg/dL)	136.40 ± 39.83	163.60 ± 82.25**	162.70 ± 59.54**
HDL cholesterol (mg/dL)	46.15 ± 18.58	35.65 ± 8.66*	28.10 ± 5.37**
Lipids risk ratio	2.70 ± 1.611	4.5± ± 2.275**	6.255 ± 2.072**

* P<0.05 ** p<0.001

Table 5. Correlation between glycated haemoglobin and lipid parameters and glucose

Groups	TG	HDL	LDL	TC	Glucose	
Group I	r	0.20908	0.360826	0.133325	0.07368	0.152485
	p value	0.3765	0.1124	0.5760	0.7521	0.5220
Group II	r	-0.11597	-0.16323	0.2865	0.2284	0.337888
	p value	0.6265	0.4920	0.2207	0.3333	0.1452
Group III	r	0.031536	-0.3585	0.2468	0.275519	0.415772
	p value	0.8952	0.1206	0.2941	0.2390	0.0680

concentration, low HDL cholesterol concentration and increased concentration of LDL-cholesterol. The lipid changes associated with diabetes mellitus are attributed to increased free fatty acid flux secondary to insulin resistance [14].

The relationship between the typical lipid profile exhibited by patients with type 2 diabetes and risk of cardiovascular disease are also proved [15]. Hemoglobin A1c provides a tool for blood sugar monitoring in persons with diabetes; chronic hyperglycemia is related to the development of micro vascular disease, and also represents correlation between glycated hemoglobin and serum lipids in diabetic patients.[16]

In the present study, the pattern of lipid profile in type 2 diabetic patients and its correlation with HbA1c is studied. Earlier studies have shown that high level of cholesterol, triglyceride, LDL and low HDL in type 2 diabetics are well known risk factors for cardiovascular disease. Insulin resistance and hyperglycemia promote atherosclerosis at the arterial wall with the help of macrophages and endothelial cells results in plaque formation. At the same time hyperglycemia acts synergistically with other
cardiovascular risk factors [17]. The cause of
dyslipidemia in type 2 diabetes mellitus may be
due to the resistance of the insulin action which
in turn influences the liver apo-lipoprotein
production. The direct correlation between FBS
and HbA1c with total cholesterol (TC),
triglycerides (TG) and LDL and inverse
correlation with HDL are also well postulated
[18].

Inflammatory markers such as IL-1, IL-6, IL-15,
and TNF-α were found to be low in type 2
diabetes patients, but the levels of IL-10, IFN-γ,
and caspase-1 were high, compared to normal
controls. Type 2 diabetes patients with
hypertension show significantly decreased levels
of IL-1 and caspase-1 compared to patients
without hypertension [19].

There is risk of colorectal cancer is more in
diabetes because of their sharing environmental
factors such as obesity, sedentary life style and
high fat diet. Excess insulin levels were shown in
animals to stimulate IGF-1 which is also a risk
factor for colorectal cancer [20].

In the current study, the levels of glycated
hemoglobin in diabetic groups (II and III) were
found to be highly significant in comparison to
control group. The study also revealed that there
is an increase in the cholesterol levels in group
III diabetic patients with cardiovascular
complications when compared to the control
group. Such significance was not found between
the control group and the uncomplicated diabetic
group II. Group III showed significant increase in
LDL-cholesterol in comparison to the control
group (group I) and uncomplicated diabetic group
(group II).

The HDL-cholesterol values were significantly
lower in both uncomplicated and complicated
groups (II and III) when compared to the control
group. There was also significant decrease in
HDL-cholesterol in complicated group when
compared to uncomplicated diabetic group.
Lipoprotein lipase is the key enzyme in the
metabolism of triglyceride rich lipoproteins. LPL
in the pre heparin serum mass reflects the insulin
sensitivity of diabetic patients receiving neither
insulin nor hypoglycemic agents. [21], low pre
heparin LPL mass may be deeply involved in the
progression of coronary atherosclerosis [22].
Significant high concentration of triglycerides was
found in uncomplicated and complicated groups
(II and III). There was significant rise in all the
lipid profiles in diabetic patients with

5. CONCLUSION
Type 2 diabetes mellitus continues to be a
serious health concern in the growing world.
Cardiovascular events in type 2 diabetes mellitus
patients is an important complication that
requires immediate attention. Studies have
shown that an increase in glycated hemoglobin
and abnormal lipid profile is prevalent in diabetic
patients. The current study concluded that there
is a definite positive correlation of glycated
hemoglobin with the levels of total cholesterol,
triglyceride, and low density lipoprotein
cholesterol. This strongly suggests dyslipidemia
in diabetic patients when not under optimal
control.

CONSENT
Not applicable since this is an observational
study.

DISCLAIMER
This manuscript was presented in the conference
“American Association of Clinical Chemistry,
Annual Meeting 2014 and Clinical Lab Expo,
at Chicago, USA” available link is
"http://www.researchgate.net/publication/262840
903_CORRELATION_BETWEEN_GLYCATED
HEMOGLOBIN_AND_SERUM_LIPIDS_IN_TYP
E_2_DIABETICS_IN_EASTERN_LIBYA".

COMPETING INTERESTS
Authors have declared that no competing
interests exist.
REFERENCES

1. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2009;32(1):S62–S67.
2. Dimitrios AS, Dara PS, Sparkset EA, et al. Association between glycosylated hemoglobin, left ventricular mass and aortic function in nondiabetic individuals with insulin resistance. Eur J Endocrinol. 2007;157(1):63-8.
3. Diagnosis and classification of diabetes mellitus: Diabetes Care. 2010;33(1).
4. Massi-Benedetti M. Changing targets in the treatment of type 2 diabetes. Curr Med Res Opin. 2006;2(22):S5-13.
5. Nathan DM, Turgeon H, Regan S. Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia. 2007;50:2239-2244.
6. Masram SW, Bimanpalli MV, Ghangle S. Study of Lipid Profile and glycated hemoglobin in diabetes mellitus. Indian Medical Gazette. 2012;257-265.
7. Tietz NW. Clinical guide to laboratory tests, 3rd Edition. WB. Saunders Co. Philadelphia. 1995;287.
8. Jeppson JO, Kobold U, Barr J, et al. Approved IFCC reference method for measurement of HbA1c in human blood. Clin Chem Lab Med. 2007;45:1077-1080.
9. Grove T. Effect of reagent pH on determination of HDL cholesterol by precipitation with sodium Phosphotungstate-magnesium. Clin Chem. 1997;25–560.
10. Naito H. Disorder of lipid metabolism In: Kaplan LA, pesce AJ, Eds. Clinical chemistry, theory, analysis and correlation. St. Louis: Mosby Company. 1984;550-593.
11. Naito K. High density lipoprotein (HDL) cholesterol. Clin. Chem. The C.V. Mosty Co. St Louis. Toronto. Princeton. 1984;1207, 1213 and 37.
12. Young D. Effects of drugs on clinical Laboratory tests. 3rd edition. 1990:3-6-12.
13. Friedewald WT, Levy RL, Friedrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499-502.
14. Arshag D Mooradian. Dyslipidemia in type 2 diabetes mellitus. Nature Clinical Practice Endocrinology & Metabolism. 2009:50:150-159.
15. Krauss RM, Siri PW. Dyslipidemia in type 2 diabetes. Med Clin N Am. 2004;88:897–909.
16. Rafael Carmena. High risk of lipoprotein dysfunction in Type 2 diabetes mellitus. Rev Esp Cardiol. 2008;8(Supl C):18-24.
17. Karin E. Bornfeldt1, Ira Tabas2. Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell metabolism. 2011; 14(5):575–585.
18. Khan HA, Sobki SH, Khan SA. Association between glycaemic control and serum lipids profile in type 2 diabetic patients: HbA1c predicts dyslipidemia. Clin Exp Med. 2007;7(1):24-9.
19. Ahmed Al-Shukaili, Saif AL-Ghafri, Safia Al-Marhoobi, Said Al-Abri, Jawad Al-Lawati, Masoud Al-Maskari. Analysis of inflammatory mediators in type 2 diabetes patients. International Journal of Endocrinology. 2013(2013):7. Article ID 976810.
20. Nancy Volkers. Diabetes and cancer scientists search for a possible link. JNCI J Natl Cancer Inst. 2000;92(3):192-194.
21. Hanyu O, et al. Preheparin lipoprotein lipase mass is a practical marker of insulin resistance in ambulatory type 2 diabetic patients treated with oral hypoglycemic agents. Clin Chim Acta. 2007;384:118-123.
22. Hitsumoto T, et al. Preheparin serum lipoprotein lipase mass is negatively related to coronary atherosclerosis. Atherosclerosis. 2000;153: 391-396.
23. Vinod Mahato R, Gyawali P, Raut PP, Regmi P, Singh DRP, et al. Association between glycaemic control and serum lipid profile in type 2 diabetic patients: Glycated haemoglobin as a dual biomarker. Biomedical Research. 2011;229(3):375-80.
24. Friedewald WT, Levy RL, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry. 1972;18(6):499-502.
25. Nishimura R, Nakagami T, Sone H, Ohashi Y, Tajima N. Relationship between HbA1c and cardiovascular disease in mild-to moderate hypercholesterolemic Japanese individuals: Sub-analysis of a large-scale randomized controlled trial. Cardiovascular Diabetology. 2011;10:58.
26. Ahmad Khan H. Clinical significance of HbA1c as a marker of circulating lipids in male and female type 2 diabetic patients. Acta Diabetol. 2007;44(4):193-200.

27. Arivarasan A, Rana G, Sharma A, Kumar M, Jhang K, Chakraborty A, et al. Clinical management of lipid profile, renal and liver function versus HbA1c profile in diabetes affected patients of Vellore, Tamil Nadu, India. African Journal of Pharmacy and Pharmacology. 2012;6(40):2832-6.