Length-weight relationships and sex ratio of *Selaroides leptolepis*, Cuvier 1833 in Tomini Bay, Indonesia

N Pasisingi¹,*, T D Pramesthy² and A Musyali¹

¹Faculty of Fisheries and Marine Science, Gorontalo State University, Jl. Jendral Sudirman No 6, Kecamatan Kota Tengah, Kota Gorontalo, Gorontalo 96128, Indonesia
²Marine and Fisheries Polytechnic of Dumai, Study Program of Capture Fisheries, Jl. Wan Amir No 1, Kelurahan Pangkalan Sesai, Kecamatan Dumai Barat, Kota Dumai, Riau 28826, Indonesia

*Corresponding author: nuralim@ung.ac.id

Abstract. *Selaroides leptolepis* is one of the most common pelagic fish, which has high market demand in Gorontalo. This study aimed to provide growth patterns and sex ratio of *S. leptolepis* male and female inhabiting Tomini Bay, Indonesia. Sampling was conducted monthly for six months, from April 2020 to September 2020. A fish sample of 1168 was taken randomly from Tomini Bay fishers who landed their catch at Kampung Tenda Fish Landing Site, Gorontalo City. The length and weight of fish were measured using a ruler (nearest 1 mm) and an analytical scale (nearest 0.01 g) separately. The results showed that almost all captured exhibited positive allometric growth (*b > 3*) and tended to be plump, except for the female in May 2020. The sex ratio between males and females during the sampling periods was 1: 1.17, which means the population proportion is not balanced. Such data are essential for establishing fisheries management in Tomini Bay.

Keywords: allometric; condition factor; Indonesia; *Selaroides*; sex ratio; Tomini

1. Introduction

Selaroides sp. is a species from the family Carangidae [1, 2] distributed in the Western Indian Ocean, narrowed to coastal waters from the gulf eastward to Sri Lanka, Indo-West Pacific known from the Bay of Bengal, Okinawa, Japan, Gulf of Thailand, the Philippines, Indonesia, and Australia [3]. The fish is the prospective resources of small pelagic fishery in Indonesian waters [4].

The only species of the genus *Selaroides* officially recorded in the FAO and FishBase are *Selaroides leptolepis* (Cuvier, 1833) with two synonyms: *Caranx leptolepis* Cuvier, 1833 and *Caranx procaranx* De Vis, 1884. Internationally, *S. leptolepis* is named yellow stripe scad [5], yellow stripe trevally [6-9], and smooth-tailed trevally [10, 11]. Indonesian people call the fish as Selar Kuning Fish [12-14] or Selar Fish [15-17]. Meanwhile, in several Indonesian regions, the species is also known as Tude [18], Oci [19], and Ciu [1].

As the main catch of Indonesian fishers, which is a source of protein [20, 21], *S. leptolepis* also can be processed [22-25] to be consumed. The fishing season in Indonesia occurs throughout the year [26]. Therefore, market demand for fish is relatively high. Based on data from the Department of Fisheries and Gorontalo Province in 2019 and 2020, *S. leptolepis* is one of the dominant pelagic catches of...
Gorontalo fishers in Tomini Bay with an average price at the consumer level of IDR 20,000 per kg. The spawning season for *S. leptolepis* in the Malacca Strait occurs from March to April [27], while the peak spawning season in Manado Bay occurs at the end of April [28] and in Sunda Strait occurs in May [29]. In some areas, the spawning season of pelagic fish coincides with the upwelling season; nonetheless, in other areas spawning and upwelling are out of phase [30].

Length-weight relationships are beneficial for fisheries study as they: (a) allow the conversion of growth-in-length equations to growth-in-weight for a stock assessment models purposes; (b) allow the estimation of biomass from length observations; (c) allows an estimation of the fish condition, and (d) are useful for between area comparisons of life histories of particular species [31-33]. They are an essential component of Fish Base [3][34]. Therefore, the length-weight relationship remains a popular tool in providing information supporting world fish stock assessment [35-37]. Besides, the sex ratio of the populations is an aspect of reproductive biology used in various studies as it is also needed to support the assessment of stocks and the management of fishery resources.

Tomini Bay is part of the Republic of Indonesia Fisheries Management (WPPNRI) 715 based on Regulation of the Minister of Marine Affairs and Fisheries of the Republic of Indonesia Number 18/Permen-KP/2014 [38] as a rich pelagic fish resources area. The biotic resources in the region are open access and likely to be shared stocks with several countries [39]. Therefore, it is necessary to pay special attention to the sustainability and availability of fish resources in waters to meet community needs. The management and utilization of *S. leptolepis* resources as an economic fish must be supported by necessary comprehensive data regarding population dynamics in nature. This study aimed to determine the growth pattern and sex ratio of *Selaroides leptolepis* in Tomini Bay, Indonesia.

2. Materials and methods

2.1. Sampling technique

The fishing ground and the landing site of *S. leptolepis* are presented in figure 1. Samples were collected monthly using random sampling methods from April 2020 to September 2020 from fishers who capture the fish from Tomini Bay and land the catch at Kampung Tenda Fish Landing Site, Gorontalo. Fish were caught by the fishermen using Purse Seine with a minimum mesh size of ¾ inch.
2.2. Data analysis

2.2.1. Length-weight relationship and growth pattern. A linear allometric model was used to calculate parameters a and b through measurements of length and weight [40] as follows:

\[W = aL^b \] \hspace{1cm} (1)

Where:
- \(W \) = body weight (gram)
- \(L \) = total length (mm)
- a and b = polynomial equation constants

The equation model (1) was transformed into a linear equation as follows:

\[\ln W = \ln a + b \ln L \] \hspace{1cm} (2)

\[Y = a + bX \] \hspace{1cm} (3)

The values a and b in equation (3) are constant regression equations obtained through simple linear regression analysis with "\(\ln L \) data" as independent variables (X) and "\(\ln W \) data" as dependent variables (Y) in linear regression equations (2). Furthermore, the determination of fish growth patterns was carried out by testing the hypothesis of the constant value b in equations (2) and (3) at the 95% confidence level using the t-test [41] as follows:

\[H_0: b = 3 \]
\[H_1: b \neq 3 \]

The \(t_{\text{statistic}} \) value was compared with the \(t_{\text{critical}} \) at the 95% confidence level. The rule for decision making is to reject \(H_0 \) if \(t_{\text{statistic}} > t_{\text{critical}} \), or fail to reject \(H_0 \) if \(t_{\text{statistic}} < t_{\text{critical}} \) [42] through the following formula:

\[t_{\text{statistic}} = \left| \frac{b - 3}{S_b} \right| \] \hspace{1cm} (4)

\[S_b = \sqrt{\frac{1}{n-2} \left(\frac{sy^2}{sx^2} - b^2 \right)} \] \hspace{1cm} (5)

Where,
- b = constant value
- \(S_b \) = deviation standard
- n = number of data
- sy = deviation standard of Y
- sx = deviation standard of X

The coefficient of determination (\(R^2 \)) and correlation (r) of the equation of the length and weight relationships were calculated using Microsoft Excel.

The criteria for fish growth patterns based on the constant b value test are as follows:
- b = 3, fish have an isometric growth pattern, meaning that the weight gain is balanced with the increase in length;
- b \(\neq \) 3, fish have an allometric growth pattern, meaning that the weight gain is imbalanced with the increase in length;
- b > 3, fish have a positive allometric growth pattern, meaning that the weight gain is faster than the length gain
- b < 3, fish have a negative allometric growth pattern, meaning that the weight gain is slower than the length gain.

2.2.2. Sex ratio. The sex ratio was determined by comparing the proportion of male and female samples. Determination of the sex of the sample fish was done visually by looking at the characteristics and
differences in the gonads. The males have whitish gonads in the form of testes, while female fish have gonads that are reddish yellow in the form of ova. The numbers of male and female took monthly from fishers were analysed its sex ratio using the formula [41] as follow:

\[
\text{Sex Ratio} = \frac{\sum \text{male}}{\sum \text{female}}
\]

(6)

Significant of the fish sex ratio was tested using Chi-square (\(\alpha = 0.05\)) [42]:

\[
\chi^2 = \sum \frac{(O-E)^2}{E}
\]

(7)

Where,

\(\chi^2\) = Chi-square,

O = male and female fish frequency observed,

E = male and female fish frequency expected.

2.2.3. Condition factor. The condition factor shows the excellent condition of the fish in terms of physical capacity for reproduction and survival. The condition factors were calculated using the metric system based on the length-weight relationships of the samples as follows [43]:

\[
K = \frac{10^5W}{L^3} \quad (\text{if the fish growth pattern is isometric})
\]

(8)

\[
K = \frac{W}{aL^b} \quad (\text{if the fish growth pattern is allometric})
\]

(9)

Where,

K = condition factor,

W = body weight (gram),

L = total length (mm).

3. Results and discussion

3.1. Length-weight relationship

The equation's performance of the relationship between male and female weight each month of samples varies (figure 2). The length-weight relationship is naturally influenced by several factors, including water conditions, population density, natural food availability, and seasonality [44]. In general, the coefficient of determination value is relatively high (\(R^2 > 80\%\)) shown for each equation per month of observation indicates that the polynomial length-weight equation (\(W = aL^b\)) is suitable and can be used to predict the fish growth patterns.

Almost all male and female showed a positive allometric fish growth pattern every month, excluding the female in May showed a negative allometric pattern (table 1). It indicates that, overall, Tomini Bay waters' natural conditions support the fish life and survival. The length gain that is more dominant than the weight gain of female fish in May is a characteristic that the fish are at the peak of the month's spawning season. During the egg development process, energy is absorbed for the gonadic growth of the female fish. The \(b\) value depends on environmental and physiological situations, for instance, salinity, temperature, sampling techniques, geographic location, and biological conditions like food availability and gonad development [45].
Male

April 2020

\[W = 0.000007 L^{3.1249} \]
\[R^2 = 91.36 \% \]
\[r = 0.95 \]
\[n = 138 \]

May 2020

\[W = 0.000002 L^{3.3898} \]
\[R^2 = 96.81 \% \]
\[r = 0.98 \]
\[n = 217 \]

June 2020

\[W = 0.000007 L^{3.1052} \]
\[R^2 = 95.73 \% \]
\[r = 0.97 \]
\[n = 171 \]

Female

April 2020

\[W = 0.000008 L^{3.1009} \]
\[R^2 = 84.90 \% \]
\[r = 0.92 \]
\[n = 315 \]

May 2020

\[W = 0.1795 L^{1.1311} \]
\[R^2 = 88.23 \% \]
\[r = 0.94 \]
\[n = 175 \]

June 2020

\[W = 0.000007 L^{3.107} \]
\[R^2 = 94.16 \% \]
\[r = 0.97 \]
\[n = 175 \]
Figure 2. Length-weight relationships of *Selaroides leptolepis* in Tomini Bay, Indonesia.
Table 1. Growth pattern of *Selaroides leptolepis* in Tomini Bay, Indonesia.

Sampling Time	Growth Pattern*	Male	Female
April 2020	allometric positive	allometric positive	
May 2020	allometric positive	allometric negative	
June 2020	allometric positive	allometric positive	
July 2020	allometric positive	allometric positive	
August 2020	allometric positive	allometric positive	
September 2020	allometric positive	allometric positive	

*significance different (p < 0.05)

3.2. Sex ratio

Understanding the sex ratio is related to efforts to maintain the sustainability of the fish population. The sex ratio of 1:1 (male: female) is a balanced condition [43] due to the ratio is needed to maintain their survival in a population [46, 34]. Based on the Chi-square test (α = 0.05), the sex ratio of the male and female caught from April 2020 to September 2020 in Tomini Bay monthly was equal (1:1), except in April 2020, where female remaining preponderated over the male. In total, its number showed that female numbers generally preponderated over the male (table 2).

Table 2. Sex ratio (male:female) of *Selaroides leptolepis* in Tomini Bay, Indonesia.

Sex Ratio	April	May	June	July	August	September	Total
Male : Female	1 : 2.28*	1 : 1.06	1 : 1.02	1.02 : 1	1.10 : 1	1.05 : 1	1 : 1.17*

*significance different (p < 0.05)

Even though sex ratios are frequently treated as more or less stable population features, the up-to-date theoretical evidence suggests that sex ratio fluctuates under many conditions and that these variations’ amplitude can be considerable [47]. The sex ratio of the results of this study deviated from the ideal value of 1:1. It is due to the fish samples caught were not in one spawning area; therefore, the chances of being caught were different. Fishing activities also have a considerable influence on the fish sex ratio in nature [48].

![Figure 3](image-url). Average condition factors of *Selaroides leptolepis* in Tomini Bay, Indonesia.
3.3. **Condition factor**

The average condition factor values for males and females of *S. leptolepis* from this study were 1.014 ± 0.133 and 0.007 ± 0.119, respectively (figure 3). The condition factor is shown to be an efficient instrument and shows changes in fish conditions throughout the year [44]. The condition factor can go up and down as it indicates the spawning season, especially for the female [43]. The condition factor value variation depends on the diet, age, sex, and gonad maturity level [49]. In this study, there was no variance in condition factors between males and females. It indicates that the fish are in relatively good condition.

4. **Conclusion**

All captured *Selaroides leptolepis* in Tomini Bay, Indonesia, sampled from April to September 2020, exhibited a positive allometric growth (b > 3) and tended to be plump, unless for the female in May 2020. On average, the male to female sex ratio during the study was not balanced (1:1.17).

Acknowledgment

Deepest appreciation to Institute for Research and Community Service (LPPM), Gorontalo State University (UNG) for the financial support.

References

[1] Salim K, Rita A, and Supratman O 2019 Identification of fish species (local, national and scientific naming) of main catch (HTU) fishermen and classification of fishing tools *Akuatik J. Sumberd. Perair.* 13 42–51

[2] MP O, Rudi S, and Magdalena T 2019 Constituent genetic characteristics of scad species (family Carangidae) from Bitung Waters of Indonesia *Russ. J. Agric. Socio-Economic Sci.* 91 383-90

[3] Anon FAO Fisheries & Aquaculture - Species Fact Sheets - *Selaroides leptolepis* (Cuvier, 1833)

[4] Dimara O F, Budiman J and Mandey C F 2015 Distribution of catching of selar fish on soma darape net sheets in FADs *J. Ilmu dan Teknol. Perikan. Tangkap* 2 1–5

[5] Hau E, Amiza M, Mohd Zin Z, Shaharudin N, and Zainol M 2020 Effect of yellow stripe scad (*Selaroides leptolepis*) protein hydrolysate in the reduction of oil uptake in deep-fried squid *Food Res. J.* 4 1929–36

[6] Rasli H and Sarbon N 2019 Preparation and physicochemical characterization of fish skin gelatine hydrolysate from shortfin scad (*Decapterus macrosoma*) *Int. Food Res. J.* 26 287–94

[7] Klompong V, Benjakul S, Yachai M, Visessanguan W, Shahidi F, and Hayes K D 2009 Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (*Selaroides leptolepis*) *J. Food Sci.* 74 126–33

[8] Klompong V, Benjakul S, Kantachote D and Shahidi F 2007 Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (*Selaroides leptolepis*) as influenced by the degree of hydrolysis and *Food Chem.* 102 1317–27

[9] Arfat Y A and Benjakul S 2012 Gelling characteristics of surimi from yellow stripe trevally (*Selaroides leptolepis*) *Int. Aquat. Res.* 4 1–13

[10] Yusfiandayani R, Nurilmala M, Abdullah A, A Sondita M F, Mualim R, Kusdinar A, and Choerudin H 2019 IOP Conference Series: Earth and Environmental Science Fishing trial using a portable fish aggregating device (FAD) in the Indian Ocean *OP Conf. Ser. Earth Environ. Sci.* 404 1–6

[11] Costa M, Rodrigues B, Frasao B, and Conte-Junior C 2018 Food quality: balancing health and disease *Elsevier Inc.* pp 75–108

[12] Ahmad S, Sofiati T and Pina J 2020 Lighting effectiveness using light emitting diode (LED) in handline fisheries to catch selar kuning (*Selaroides leptolepis*) in the waters *J. Ilmu Kelaut. Kepul.* 3 106–18

[13] Tiya S 2020 Analysis of growth rate, mortality, and recruitment of selar kuning fish (*Selaroides leptolepis*) in the management of small pelagic fish resources in Bintan Waters, Riau Islands
Mustofa M B and Setyobudianti I 2019 The relation between the maturity of the gonads of selar kuning fish (Selaroides leptolepis Cuvier, 1833) with sea surface temperature in the waters of the Sunda Strait Trop. Fish. Manag. J. 1 24–9

Baskoro M, Riyanto M and Mawardi W 2020 Physiological responses of the eye of selar (Selaroides leptolepis) and kembung (Rastreliger brachysoma) to light color J. Ilmu dan Teknol. Kelaut. Trop. 12 277–288

Rasyid M, Yasidi F and Mustafa A 2019 Population parameters of selar kuning fish (Selaroides leptolepis) in Wolo Waters, Kolaka Regency J. Manaj. Sumber Daya Perair. 4 51–9

Anto S and Almohdar E 2017 Growth pattern of selar fish (Selaroides leptolepis) in Southeast Maluku District Waters Fish Sci. 7 105–12

Madiowa V, Olii A H and Baruadi A S R 2020 Gorontalo fishermen knowledge studies related to astronory and the movement of fish in Tomini Bay Asian J. Fish. Aquat. Res. 6 41–9

Pasisingi N, Sapira Ibrahim P, Arsalam Moo Z, and Tuli M 2020 Reproductive biology of oci fish Selaroides leptolepis in Tomini Bay J. Mar. Res. 9 407–15

Saputra D, Nurhayati T, and Purwaningsih S 2020 End post-rigour phase yellow stripe scad fish (Caranx leptolepis) peptones and its application for bacteria’s growth media Food Res. 4 413–20

Priatni S, Ratnaningrum D, Kosasih W, Sriendah Y, Rosmalina T, and Pudjiraharti S 2018 Protein and fatty acid profile of marine fishes from Java Sea, Indonesia Biodiversitas J. Biol. Divers. 19 1737–42

Lubis E, Pane A B and Fatoni K 2019 The need for fish raw materials for the pandang industry at the Pantai Tasik Agung Rembang Fishing Port J. Mar. Fish. Technol. Manag. 10 193–204

Baksir A, Daud K, Wibowo E, Akbar N and Haji I 2019 Utilization of geothermal energy sources for drying fish in Idamdehe Village, West Halmahera Regency, North Maluku Province J. Pengolah. Has. Perikan. Indones. 22 423–32

Nastiti D S, Nurhamidah N, and Chandra I N 2019 Utilization of Morus alba L. (Mulberry) fruit extract as a fish preservative Selaroides leptolepis (selar) Alotrop 3 1–7

Irianto H, Sugiyono S and Indriati N 2017 Research on the processing of dried fish snack products from selar kuning fish (Selaroides leptolepis) J. Penelit. Perikan. Indones. 6 101–10

Sharfina M, Boer M and Ernawati Y 2014 Sustainable potential of selar kuning fish (Selaroides leptolepis) in Sunda Strait Waters J. Mar. Fish. Technol. Manag. 5 101–8

Tarigan A, Bakti D and Desrita D 2017 Catch and gonadal maturity level of yellow stripe trevally (Selaroides leptolepis) in the Strait of Malacca Acta Aquat. Aquat. Sci. J. 4 44–52

Sinaga F, Tilaar F F and Bataragoo E 2018 Characteristics of reproduction of yellow stripe scad Selaroides leptolepis (Cuvier, 1833) in Manado Bay Waters J. Ilm. Platax 6 45–57

Ibrahim P S, Setyobudianti I and Sulistiono 2018 Length-weight relationship and condition factor of yellow stripe scads Selaroides leptolepis in Sunda Strait J. Ilmu dan Teknol. Kelaut. Trop. 9 577–84

Roy C, Curry P, and Kifiani S 1992 Pelagic fish recruitment success and reproductive strategy in upwelling areas: environmental compromises South African J. Mar. Sci. 12 135–46

Gonçalves J M S, Bentes L, Lino P G, Ribeiro J, Canário A V M and Erzini K 1997 Weight-length relationships for selected fish species of the small-scale demersal fisheries of the South and South-West Coast of Portugal Fish. Res. 30 253–6

Moutopoulos D and Stergiou K 2002 Weight-length and length-length relationships for 40 fish species of the Angene Sea (Hellas) J. Appl. Ichthyol. 18 200–3

Stergiou K I and Moutopoulos D K 2001 A review of length-weight relationships of fishes from Greek Marine Waters Fish. Sect. Netw. Trop. Aquac. Fish. Prof. FISHBYTE 24 23–39

Nasution S H, Muschsin I and Sulistiono S 2010 Potential to recruit bonti-bonti fish (Paratherina striata Aurich) in Lake Towuti, South Sulawesi BAWAL Widya Ris. Perikan. Tangkap 3 45–55
[35] Zuchi N, Röpke C, Shibuya A, Farago T, Carmona M, Zuanon J and Amadio S 2020 Length-weight relationship of fish species from Central Amazon Floodplain *J. Appl. Ichthyol*

[36] Lima J S, da Costa I D and Zalmon I R 2020 Length-weight relationship of fish species captured around an artificial offshore reef (Northern Rio de Janeiro, Brazil) *J. Appl. Ichthyol*

[37] Bhakta D, Meetei W, Vaisakh G, and Kamble S 2019 Season-wise length-weight relationship and relative condition factor of *Tenualosa ilisha* (Hamilton, 1822) at Narmada Estuary, Gujarat, India

[38] Rahmat E and Widiarso B 2017 Operation of mini purse seine in Tomini Bay by fishermen in Gorontalo *Bul. Tek. Litkayasa Sumber Daya dan Penangkapan* 15 31–4

[39] Suwarso S, Sadhotomo B and Wudianto W 2017 The development of the small pelagic fishery in Tomini Bay: an approach to responsible management *BAWAL Widya Ris. Perikan. Tangkap* 1 233–44

[40] De Robertis A and Williams K 2008 Weight-length relationships in fisheries studies: the standard allometric model should be applied with caution *Trans. Am. Fish. Soc.* 137 707–19

[41] Steel R G D, Sumantri B, and Torrie J H 1993 *Prinsip dan prosedur statistika: suatu pendekatan biometrik* (Jakarta: Gramedia Pustaka Utama)

[42] Walpole R E 1974 *Introduction to Statistics* (Macmillan: McGraw-Hill School Division).

[43] Effendie M I 2002 *Biologi Perikanan* (Yogyakarta: Yayasan Pustaka Nusatama)

[44] Rahardjo M F and Simanjuntak C P H 2008 Relationship of weight length and condition of tetet fish, *Johnius belangerii* Cuvier (Pisces: Sciaenidae) in Mayangan Beach, West Java *J. Ilmu-Ilmu Perair. dan Perikan. Indones.* 15 135–40

[45] Mulfizar A, ZA M and Irma D 2012 The relationship between length and weight and condition factors for three types of fish caught in the waters of Kuala Gigieng, Aceh Besar, Aceh Province *DEPIK J. Ilmu-Ilmu Perair. dan Perikan. Indones.* 1 1–9

[46] Gustomí A, Sulistiono and Yonvitner 2016 Reproductive biology featherback (*Notopterus notopterus* Pallas, 1769) in Simpur Reservoir, Bangka Island *J. Ilmu Pertan. Indones.* 21 56–62

[47] Pettersson L B, Rammarine I W, Becher S A, Mahabir R and Magurran A E 2004 Sex ratio dynamics and fluctuating selection pressures in natural populations of the trinidadian guppy, *Poecilia reticulata* *Behav. Ecol. Sociobiol.* 55 461–8

[48] Asut H, Hamdani H and Paradhita Dewanti I 2019 Analysis of stingray catches which landed in Fish Landing Site of Labuan Bajo, West Manggarai Regency of East Nusa Tenggara *World News Nat. Sci.* 24 89–99

[49] Effendie M I 1979 *Metode Biologi Perikanan* (Bogor: Yayasan Dewi Sri)