Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma

Natalia Kułach, Ewelina Pilny, Tomasz Cichoń, Justyna Czapla, Magdalena Jarosz-Biej, Marek Rusin, Alina Drzyzga, Sybilla Matuszczak, Stanisław Szala & Ryszard Smolarczyk

Due to immunosuppressive properties and confirmed tropism towards cancer cells mesenchymal stromal cells (MSC) have been used in many trials. In our study we used these cells as carriers of IL-12 in the treatment of mice with primary and metastatic B16-F10 melanomas. IL-12 has confirmed anti-cancer activity, induces a strong immune response against cancer cells and acts as an anti-angiogenic agent. A major limitation of the use of IL-12 in therapy is its systemic toxicity. The aim of the work was to develop a system in which cytokine may be administered intravenously without toxic side effects. In this study MSC were used as carriers of the IL-12. We confirmed antitumor effectiveness of the cells secreting IL-12 (MSC/IL-12) in primary and metastatic murine melanoma models. We observed inhibition of tumor growth and a significant reduction in the number of metastases in mice after MSC/IL-12 administration. MSC/IL-12 decreased vascular density and increased the number of anticancer M1 macrophages and CD8+ cytotoxic T lymphocytes in tumors of treated mice. To summarize, we showed that MSC are an effective, safe carrier of IL-12 cytokine. Administered systemically they exert therapeutic properties of IL-12 cytokine without toxicity. Therapeutic effect may be a result of pleiotropic (proinflammatory and anti-angiogenic) properties of IL-12 released by modified MSC.

The results of in vitro studies on molecular anticancer agents are promising. However, the efficacy of therapeutic factors in vivo is limited. It is due to the presence of anatomical and physiological barriers in the structure and functioning of tumors, their heterogeneity, invasiveness and the immune system activity. Therapeutic factors often degrade before they reach their destination or exert systemic toxicity. The research into the precise delivery of therapeutic agents to cancer is an important element in design of new anti-cancer strategies.

The “Trojan horse” strategy in cell therapy. For years, the idea of using cells as carriers of therapeutic agents has attracted the attention of researchers. The Endothelial Precursor Cells (EPC), which were able to migrate specifically to the place of the formation and reconstruction of blood vessels, were already studied in the 90’s. Attempts were also made to use macrophages and neutrophils as carriers of therapeutic factors. Transporting cells were armed, among others, with cytotoxic proteins (e.g., TRAIL), immunomodulatory agents, antibodies (e.g., anti-HER2, human epidermal growth factor receptor 2), oncolytic viruses (e.g., Ad5-survivin-pk7), nanoparticles.

MSC as carriers of anticancer agent. MSC have the characteristics of an ideal carrier. They are easily accessible cells showing strong tropism to inflamed tissues and tumors. Immunologically privileged—they do not evoke immune response after transplantation, exert immunomodulatory properties in inflammatory environment and do not provoke an attack of the immune cells. MSC were used as carriers of anti-cancer factors. Modified MSC expressing Herpes Simplex Virus-Thymidine Kinase (HSV-TK) localized in the vicinity of tumors. VEGF receptor producing were used in an experimental model of mice with lung and colorectal cancer. The protein secreted near the tumor cells showed an anti-angiogenic and pro-apoptotic effect. MSC were used

Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102 Gliwice, Poland. *email: Ryszard.Smolarczyk@io.gliwice.pl
as carriers of IFN-α, TNF, IL-15, IL-18, IL-21, CX3CL1, oncolytic viruses, photothermal agents, drugs (paclitaxel).

Therapeutic agent: cytokine IL-12. In recent years, it has become clear that anti-cancer therapies targeting cancer cells alone have limited effectiveness. Cancer functions like a separate, pathologically altered tissue made of cancer cells and their microenvironment. The tumor microenvironment consists of endothelial cells, fibroblasts, immune cells, signalling molecules and extracellular matrix.

The microenvironment participates in the progression and expansion of cancer; it is responsible for the resistance to the applied therapeutic agents.

The pleiotropic (anti-angiogenic and immunostimulatory) effect of cytokine IL-12 may contribute to a change in the nature of the tumor microenvironment (polarization) from pro-angiogenic and immunosuppressive towards anti-angiogenic and immunostimulatory and became the basis of novel anticancer therapeutic strategy.

In this study, mesenchymal stromal cells were used as carriers of the anti-tumor factor IL-12 in the therapy of mice with primary and metastatic melanomas.

Materials and methods

Cells lines and animals. B16-F10 (murine melanoma) cell line (ATCC, Manassas, VA, USA) used to obtain primary tumors and metastases of murine melanoma was maintained using RPMI 1640 medium (Gibco BRL, Paisley, UK) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific, USA). GL261 (mouse glioma) cell line (PerkinElmer, Waltham, MA, USA) was maintained using DMEM (Gibco BRL, Paisley, UK) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific, USA). Cells cultures were kept under standard conditions (37 °C, 5% CO₂, 95% humidity).

Experiments on animals were carried out in accordance with standard procedures. The study was approved by the Local Ethics Commission at the Medical University of Silesia in Katowice (approval no. 54/2018). The study was carried out in compliance with the ARRIVE guidelines. Mice (6 to 8-week-old, C57Bl/6NCR) were obtained from Charles River Breeding Laboratories. All mice were housed in the Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch (Poland) in a HEPA-filtered Allentown's IVC System (Allentown Caging Equipment Co, NJ, USA). The animals received a total pathogen-free standard diet (Altromin 1314, Altromin Spezialfutter GmbH & Co. KG, Germany) and water ad libitum throughout the whole study. The animals were monitored every day. This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All experiments on animals were conducted in accordance with the 3R rule.

Mesenchymal stromal cells: isolation and phenotypic characterization of mesenchymal stromal cells. The mice (6–8-week-old) were sacrificed by cervical dislocation. Femoral bones were excised and soft tissues were removed.

The bones were cut, washed with saline and incubated with collagenase solution (3 h, 37 °C, 0.4 U/ml, Serva Electrophoresis, Heidelberg, Germany). The cells suspension was filtered through 70 μm strainer. The cells were maintained in IMDM (Sigma Aldrich, St Louis, MO, USA) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific), antibiotics (penicillin and streptomycin, Sigma Aldrich, USA) and murine bFGF (1 ng/ml). After 72 h, the plates were rinsed with PBS and fresh culture medium was provided. The medium was changed every 2–3 days. Cell cultures were kept under standard conditions (37 °C, 5% CO₂, 95% humidity). The cells were cryopreserved in FBS, DMSO and IMDM solution in −80 °C until needed.

The phenotype of the cells adherent to plastic dishes was determined using a flow cytometer (FACS Canto BD and BD FACS Aria III; BD, Franklin Lakes, NJ, USA). To obtain a single cell suspension the cells were treated with 0.25% trypsin (Gibco BRL, Paisley, UK). The cells were incubated with antibodies directed against the following murine antigens: CD44, CD105, Sca-1, CD29, CD90.1, CD45, CD11b, CD106 or isotype-matched control with 0.25% trypsin (Gibco BRL, Paisley, UK). The cells were incubated with antibodies directed against the follicular dendritic cells and BD FACSAria III; BD, Franklin Lakes, NJ, USA. To obtain a single cell suspension the cells were treated with antibodies directed against the follicular dendritic cells and BD FACSAria III; BD, Franklin Lakes, NJ, USA. To obtain a single cell suspension the cells were treated with antibodies directed against the follicular dendritic cells and BD FACSAria III; BD, Franklin Lakes, NJ, USA.

MSC tropism towards cancer cells, in vitro examination in Boyden Chambers. Tropism towards tumor cells was examined in vitro using Boyden chambers (Corning Life Sciences, NY, USA). MSC or MSC/IL-12 were placed on a cylindrical cell culture insert with porous bottom nested inside the well of a cell culture plate filled with tested medium. The tested media were collected from over the B16-F10 and GL261 cell cultures, as control media fresh IMDM media with and without FBS supplementation were used. The cells that migrated through the pores of the cellulose membrane were fixed in cold methanol and stained with Giemsa solution (Merck Milipore, Darmstadt, Germany). The cells were counted in 5 fields of view of Eclipse 80i microscope at ×10 magnification.
MSC tropism towards glioma cells in Matrigel. Co-culture of MSC and GL261eGFP cells in Matrigel medium. MSC were stained with the PKH26 Red Fluorescent Cell Linker Kit (Sigma Aldrich, USA) according to the manufacturer’s protocol. Single cells suspensions of GL261eGFP and stained MSC were mixed in equal numbers, suspended in IMDM (3 × 10^5 cells/100 μl medium/well) and placed in Matrigel coated 96-well plate (according to manufacturer’s protocol). The plate was placed in the Zeiss Cell Observer SD chamber and incubated for 24 h under standard culture conditions (37 °C, 95% CO₂). Observations were recorded using a microscope camera. In the first 5 h of the experiment, photos were taken every 30 min and then every 1 h.

Cloning of cDNA encoding IL-12 in adenoviral vectors. pBCMGSNeo plasmid obtained from Dr. H. Yamamoto (Osaka University, Osaka, Japan) contains cDNA encoding the two subunits of IL-12. The cDNA was isolated and amplified with PCR reaction. The starters were designed based on IL-12 cDNA template with 15 bp extensions homologous to the ends of linearized adenoviral vector pAdenoX-DsRed-Express (Clontech, CA, USA). PCR product was purified and introduced into the adenoviral vector with In-Fusion cloning system (Clontech, CA, USA). The procedure was performed in accordance with the manufacturer’s instructions. Following the reaction a portion of In-Fusion mixture was transformed into E. coli in SOC medium (Stellar Component Cells, Clontech, CA, USA). The transformation mix was spread onto LB agar plates with ampicillin (100 μg/ml). Well-separated colonies arisen on the plates were subjected to PCR Colony Screening using Terra PCR Kit (Clontech, CA, USA). Positive clones were amplified and the plasmid was purified. Cloning correctness was confirmed by sequencing of DNA fragment incorporated into the adenoviral vector. The sequencing procedure was performed using 3500 HITACHI Genetic Analyzer (Applayd Biosystem, Foster City, CA, USA). Obtained vector was linearized using PacI restriction enzyme according to manufacturer’s instructions (New England Biolabs, UK).

Preparation of the viruses. Transfection of packaging AdenoX 293 cells (Clontech, USA) with obtained vector was conducted using X-tremeGENE HP DNA Transfection Reagent (Roche, Basel, Switzerland) according to manufacturer’s instructions.

Cell lysis was performed by rapid freezing and thawing the suspension in an alcohol bath (dry ice with 80% alcohol) and in a water bath (37 °C). For the amplification of the adenoviruses, AdenoX 293 cells were transduced with obtained virus particles on 75 cm² bottles according to manufacturer’s instructions.

The procedure was repeated. Viruses isolated from the 7th amplification cycle were used for the experiment. The AdenoX GoStix system (Clontech, USA) was used to confirm the presence and concentration of viral particles in the supernatant medium according to the manufacturer instructions. The aliquots obtained were stored at -20 °C until needed.

Preparation of modified MSC. 7.5 × 10^5 MSC suspended in IMDM culture medium with FBS was placed on a 6 cm plate and incubated under standard culture conditions (37 °C, 5% CO₂). When the cells reached 70% confluence, the medium was replaced with 1.5 ml fresh IMDM, 200 μl of the adenovirus suspension obtained in the previous steps of the procedure and polybrene (8 μg/ml). Cells were incubated (4 h, 37 °C, 5% CO₂) then 2 ml fresh IMDM culture medium with FBS was added and incubated until intense fluorescence (24–48 h). Cells fluorescence was observed under a microscope Zeiss Cell Observer. An ELISA assay (Platinum ELISA, eBioscience, USA) was used to confirm if the modified cells produce IL-12 protein. The procedure was carried out according to the manufacturer’s protocol.

Phenotypic characterization of modified MSC. Sterile cover glasses were placed on a 6 cm plate and 7.5 × 10^5 modified MSC suspended in IMDM culture medium with FBS were incubated under standard culture conditions (37 °C, 5% CO₂) for 24 h. Cover glasses were fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton X-100 and stained with antibodies conjugated with fluorochrome: CD29-APC, CD90-FITC, Sca-1-APC, CD45-APC (BioLegend, USA). Microscopic observations were performed using an LSM 710 Zeiss confocal microscope (Carl Zeiss Microscopy GmGB, Gottingen, Germany).

Treatment of mice bearing primary melanoma B16-F10 tumors. 6–8 weeks mice were used for the experiment. The mice were divided into 3 experimental groups: (1) PBS, (2) MSC, (3) MSC/IL-12. Nine days after inoculating the mice (lower flank) with B16-F10 melanoma cells (2 × 10^6 cells/100 μl PBS/mouse) MSC, MSC/IL-12 cells and PBS were administered intratumorally (5 × 10^6 cells/100 μl PBS/mouse) growing tumors were measured with calipers, and tumor volumes were determined using the formula: \(\text{volume} = \text{width}^2 \times \text{length} \times 0.52 \).

Treatment of mice with experimental lung metastasis of B16-F10 melanoma. 6–8 weeks mice were used for the experiment. To obtain metastases in mice B16-F10 cells (2 × 10^6 cells/100 μl PBS/mouse) were administered to the tail vein. 3 experimental groups were formed: (1) PBS, (2) MSC, (3) MSC/IL-12. On day 5th after administration of the cancer cells the mice were given MSC, MSC/IL-12 cells (5 × 10^6 cells/100 μl PBS/mouse) and PBS to the tail vein. On day 21st the mice were sacrificed, the lungs collected and fixed in Bouin’s solution. After 24 h the lungs were weighed and metastases were counted.

Post-therapeutic analyses. Tumor vascularization analysis. On days 3 and 8 after MSC/IL-12 cells administrations tumors were excised, embedded in liquid nitrogen and sectioned into 5 μm slices. To determine the presence of the blood vessels in collected tumors, frozen sections were stained using antibody directed against CD31 antigen (Abcam; Ab7388, 1:50, Cambridge, UK). The sections were incubated with secondary antibodies
conjugated with fluorochromes (AlexaFluor 594) (Abcam; ab150168, 1:100, Cambridge, UK) and cover slipped with Vectashield mounting medium containing DAPI (Vector Laboratories, USA). Area occupied by blood vessels was counted with ImageJ software (NIH). Stained blood vessels were counted in 5 randomly chosen fields (magn. ×20) per section in 5 tumors of each group. Microscopic observations were performed using an LSM 710 Zeiss confocal microscope (Carl Zeiss Microscopy GmGB, Gottingen, Germany).

Determination of the M1 and M2 macrophages presence in B16-F10 melanoma tumors after the therapy. Flow cytometry. On day 8 after MSC/IL-12 cells administration tumors were excised, single-cell suspension was obtained using collagenase II solution (500 U/ml; Gibco BRL, Paisley, UK). Red blood cells were lysed using 0.15 M ammonium chloride (Sigma Aldrich, St Louis, MO, USA). Dead cells were removed by centrifugation using Histopaque-1077 gradient (Sigma Aldrich, USA). To identify the subpopulations of macrophages, antibodies against the following antigens were used: CD45, F4/80, CD206 and CD86 (eBioscience, USA) or isotype-matched control antibodies. All FACS-analyzed (BD FACSCanto, BD, USA) populations were gated in a 7-AAD window to enrich for viable cells. 7-AAD CD45+ F4/80+ CD86+ cells were considered as M1 macrophages, 7-AAD CD45+ F4/80+ CD206+ cells were considered as M2 macrophages.

Immunohistochemistry. On day 8 after intratumoral MSC/IL-12 cells administration the tumors were collected, embedded in liquid nitrogen and sectioned. Frozen sections were stained using antibodies directed against CD206 antigen (1:100, Abcam, Cambridge, UK) and F4/80 antigen (1:100, Abcam; Cambridge, UK). The sections were incubated with the secondary antibodies conjugated with fluorochromes (FITC, AlexaFluor 594) (Abcam, UK; ab150168, 1:100, Vector Laboratories, Burlingame, USA UK UK). Sections were mounted in VECTASHIELD Mounting Medium with DAPI (Vector Laboratories, USA). The fluorescence intensity was measured with ImageJ software (NIH). Microscopic observations were performed using an LSM 710 Zeiss confocal microscope (Carl Zeiss Microscopy GmGB, Gottingen, Germany).

Determination of CD8+ T lymphocytes in B16-F10 melanoma tumors. On day 3 after intratumoral MSC/IL-12 cells administration the tumors were collected, embedded in liquid nitrogen and sectioned. Frozen sections were stained using antibody directed against CD8+ antigen (1:50, Abcam, Cambridge, UK) and F4/80 antigen (1:100, Abcam; Cambridge, UK). The sections were incubated with the secondary antibodies conjugated with fluorochromes (FITC, AlexaFluor 594) (Abcam, UK; ab150168, 1:100, Vector Laboratories, Burlingame, USA UK UK). Sections were mounted in VECTASHIELD Mounting Medium with DAPI (Vector Laboratories, USA). The number of the cells migrating to the media was counted and compared (Fig. 3B). More than sixfold more MSC migrated to the medium from GL261 than to the control medium with- out serum (and fourfold more than to the control medium supplemented with FBS (Fig. 3B). More than 4 times more MSC as well as MSC/IL-12 migrated to the B16-F10 cell conditioned medium than to the control medium without serum (and less than 3% CD45 hematopoietic antigen and did not have endothelial CD31 antigen (less than 1%) (Fig. 1B).

The isolated cells had the ability to differentiate into three cell lines: adipocytes, chondrocytes and osteoblasts. Cells differentiated to adipocytes were determined by expression of fatty acid binding protein 4 (FABP4) (Fig. 2A). Alizarin red revealed the presence of Ca2+ calcium ions in the osteoblast preparation obtained from differentiated MSC (Fig. 2B). MSC differentiated into chondrocytes were stained with Sarfinan O solution (Fig. 2C).

Statistics. Statistical analyses were performed using Statistica software (Dell Inc. (2016), version 13. software.dell.com.). The Shapiro–Wilk test was used to verify the normality of the distribution. The statistical significance of differences between the experimental and control groups were evaluated with Kruskal–Wallis and multiple comparisons of mean ranks for all groups tests using Statistica software. Differences in p values of 0.05 or less were considered significant.

Results. The cells. Mesenchymal stromal cells were isolated from murine bone marrow. The cells isolation protocol was optimized. The obtained cells met the MSC-specific criteria. The cells were grown on plastic dishes, they had a slender, fusiform shape and a fibroblast-like morphology (Fig. 1A). Using a flow cytometer, their phenotype was examined. Isolated cells had a characteristic MSC phenotype: 80% of the cells expressed Sca-1 and CD29 antigens, 70% CD90 antigen, 60% CD44 and CD105 antigens. Cells had less than 3% CD45 hematopoietic antigen and did not have endothelial CD31 antigen (less than 1%) (Fig. 1B).

Co-cultures of MSC and GL261eGFP glioma cells were observed to examine the cell mobility (Fig. 4). MSC were stained with PKH26 and showed red fluorescence. The cells were incubated in Matrigel (as a simulation of tissue conditions) under standard culture conditions. The 24-h culture and observations were performed in the...
microscope chamber for in vivo cell examinations. Over time, there was a gradual accumulation of MSC around cancer cells (Fig. 4). After the first 2.5 h, aggregation of MSC near cancer cells was noticeable (Fig. 4). After 6 h, all MSC visible in the field of view remained clustered around the glioma cells (Fig. 4).

The cells modification. The procedure of introducing IL-12 DNA into MSC was successful. First, two subunits of IL-12 cDNA were introduced into pAdenoX-DsRed-Express adenoviral vector (Fig. 5) by cloning. Positive clones were chosen using Colony PCR reaction (Fig. 6) and purified. The sequencing confirmed the cloning efficiency.

Figure 1. The morphology (A) and phenotype (B) of the isolated cells. Microscopic observations of the cell culture (lens magn. 5 × left, 10 × right) (A). Antigen profile of the isolated cells: presence of Sca-1, CD29 (approx. 80%), CD90 (approx. 70%), CD44, CD105 (approx. 60%) antigens, a small percentage of CD106 (approx. 20%) and CD11b (10%), absence of F4/80 (approx. 4%) and CD45, CD31 antigens (below 3%), (n = 5) (B).

Figure 2. Differentiation of isolated cells. (A) MSC differentiated into adipocytes. Lipid vesicles stained with FABP4 antibody (green), lens magn. 20 ×, (B) MSC cells differentiated to chondroblasts stained with Safranin O, lens magn × 5, (C) osteoblast-differentiated MSC. Red colour indicates the presence of Ca²⁺ calcium ions (bound by the dye—alizarin red), area 20 × objective, osteoblast.
A transfection of AdenoX 293 packaging cells using obtained plasmid DNA was conducted and virus isolation and amplification were performed. MSC were transduced with obtained viral particles and incubated until intense red fluorescence was observed (Fig. 7A). The ability of MSC/IL-12 cells to secrete IL-12 was confirmed by ELISA test. Modified cells produced IL-12 in opposite to unmodified cells that do not secrete IL-12 at all (Fig. 7B). The phenotypic characteristic of the transduced cells was determined. Typical markers of MSC: CD90, CD29 and Sca-1 and the absence of the CD45 marker were shown in immunofluorescent staining and microscopic analysis (Fig. 7C).

Experiments on animals. The modified cells (MSC/IL-12) were used in experiments on animals bearing primary and metastatic B16-F10 melanoma.

The single-dose administration of MSC/IL-12 cells significantly reduced the volumes of primary melanoma tumors. IL-12 producing MSC were used in the therapy of mice bearing primary B16-F10 melanoma tumors. 9 days after inoculation of mice with B16-F10 cells MSC/IL-12 were administered intratumorally (Fig. 8). On the 20th day of the experiment, the tumor volumes in mice treated with modified MSC were eightfold lower than in control mice receiving PBS (Fig. 9A,B). The animals were lively and showed any side effects.

A single administration of MSC/IL-12 to the tail vein of animals resulted in a significant reduction in melanoma lung metastases. MSC/IL-12 cells were used in the treatment of mice with B16-F10 melanoma lungs metastases. 5 days after B16-F10 cells iv administration MSC/IL-12 were given to the tail vein. In 21st day after cells administration the number of lung metastases in mice treated with modified MSC was approximately fourfold lower than in mice receiving PBS (Fig. 10A). Collected lungs were weighed, and it was noted that the lungs of mice treated with MSC/IL-12 had significantly lower mass than lungs of mice receiving PBS (Fig. 10A). Metastases in the lungs of treated mice were small, not assembled, did not cause tissue deformation (Fig. 10B). Lung metastases in control mice were large and occupied a significant proportion of lung tissue (Fig. 10B).

Post-therapeutic analyses. After the experiments on animals, the tumors were excised, collected and the post-therapeutic analyses were performed. To assess the effect of modified MSC on the two most important fac-
tors affecting tumor progression: vascularization and immune cells activation, the blood vessel network density and ratio of M1 and M2 macrophages in the tumors of treated and untreated mice were compared.

Single, intratumoral administration of MSC/IL-12 cells resulted in a significant reduction in vascular density in melanoma tumors. MSC/IL-12 were administered intratumorally 8 days after the inoculation with B16-F10 cells. Three and eight days after the administration the tumors were collected, fixed and the vascular density was investigated by immunohistochemistry. The vascular surface area (per 1 mm² of the preparation) in group that

Figure 4. Tropism of MSC (red, PKH) towards GL261eGFP glioma cells (green) in Matrigel. Selected pictures show cells at the beginning of the experiment, after 1 h, after 2.5 h, after 4 h, after 4.5 h, after 6 h. After 2.5 h, tropism of MSC towards glioblastoma cells was observed, after 6 h all MSC visible in the field of view localized near cancer cells (lens magn. ×10).

Figure 5. Schematic diagram of the plasmid pAdenoX-DsExpress with the introduced cDNA encoding p35 and p40 IL-12 subunits. The plasmid also contains DsRED marker gene and the gene for ampicillin resistance. The image was drawn using CorelDRAW Graphics Suite X5, 2010.
received MSC/IL-12 was twice lower than in controls both on days three (Fig. 11A) and eight (Fig. 11B) after MSC/IL-12 administration. In tumors collected from treated mice, the vessels were rare and small (Fig. 11C). In control mice tumors, a dense network of mature vessels with significant lumen was observed (Fig. 11G).

Single, intratumoral administration of MSC/IL-12 cells resulted in a change in the composition of the macrophage population in tumors. The number of M1 and M2 macrophages in tumors collected from mice treated with MSC/IL-12 compared to controls by flow cytometry. On day 8 after cells administration, mice were sacrificed and tumors were excised for analysis. Tumor cell suspension was stained with antibodies directed against the CD45, F4/80, CD86, CD206, antigens. In tumors collected from mice treated with modified cells, the M1/M2 ratio was 14 times higher than in tumors of control mice (Fig. 12A).

The above observations were confirmed by immunohistochemical analyzes of tumor sections. MSC/IL-12 cells were administered intratumorally 8 days after the inoculation with B16-F10 cells. The tumors were collected 8 days after the cells administration; tissue sections were prepared and incubated with antibodies directed against the antigens M1 (F4/80+/CD206-, AlexaFluor594—red), M2 (F4/80+/CD206+, AlexaFluor594—red, FITC—green). Macrophages isolated from B16-F10 tumors were collected 8 days after the cells administrations and analysed by flow cytometry (Fig. 12A). The same analysis was performed in the frozen sections (Fig. 12B). The ratio of M1/M2 macrophages in tumors collected from mice treated with MSC/IL-12 was over fourfold higher comparing to controls (Fig. 12B,C). Selected photos of the preparations show the prevalence of M1 macrophages in tumor sections from treated mice. (Fig. 12D).

Single, intratumoral administration of MSC/IL-12 cells resulted in an increase of CD8+ T lymphocytes. MSC/IL-12 cells were administered intratumorally 8 days after the inoculation with B16-F10. Three days after the administration the tumors were collected, fixed and the number of CD8+ T cell was determined by immunohistochemistry (Fig. 13B). The number of CD8+ T cells (per 1 mm² of the preparation) in group that received MSC/IL-12 was over eightfold higher comparing to control and over 1.5-fold higher compared to MSC group (Fig. 13A).

Discussion
In the last over a dozen years IL-12 has become the subject of interest of researchers as one of the most effective antitumor cytokine. IL-12 as a mediator of inflammation interacts with a number of cells of the immune system, acting as a bond between the adaptive and innate immune responses. IL-12 as a potent immunostimulant activates T lymphocytes and NK cells as well as triggers release of IFN-γ, all of which induce a strong immune response directed against cancer cells. This effect is considered responsible for stimulating IL-12 related production of IFN-γ. IFN-γ also reduces the ability of tumor cells to produce VEGF.

Our group is exploring the IL-12 based therapeutical approach for almost 20 years. Anti-tumor effects of IL-12 have been proved in models of renal cancer and in anti-melanoma combination therapies with cyclophosphamide, endoglin-based DNA vaccine, CAMEL peptide, K,L peptide, anti-vascular ABRA-VEGF121 chimeric protein and tumor cell lysate. Similar studies have been carried out in many other laboratories, where the efficacy of therapy using adenoviral plasmid with IL-12 in liver, colon and pancreatic cancer models was tested.

All the above therapeutic solutions have proved effective in inhibiting the growth of tumors and showed satisfactory effects only after administration of IL-12 directly in the vicinity of the tumor. However, there are...
serious limitations to use IL-12 in therapy. Long-term systemic administration of high doses of IL-12 caused side effects like fever, fatigue, hematological disorders, hyperglycemia, liver damage, and acute colitis. There have been deaths among patients undergoing clinical trials with its use. There is still a need to find a way to administer the cytokine intravenously without overall toxicity. It would be necessary to treat the patients bearing with hard-to-reach tumors.

The aim of the work was to develop a system in which cytokine may be administered intravenously without toxic side effects. In this study, mesenchymal stromal cells were used as carriers of IL-12 cytokine. MSC are immunologically privileged, do not induce an immune response in the recipient after transplantation and show strong tropism to tumors sites. Inflammation and hypoxia are attractors to MSC, causing their migration into the damage zone, in which a number of chemokines, adhesion molecules and

Figure 7. Modified MSC secreted IL-12. (A) Transduced MSC expressing dsRED marker gene and red fluorescence, lens magn. × 10 (B) Amount of IL-12 protein produced by modified MSC (MSC/IL-12) compared to control MSC. **p < 0.005 (C) Expression of selected antigens on the surface of transduced MSC secreting IL-12 and expressing dsRED marker gene, presence of CD90, CD29, Sca-1 and absence of CD45, lens magn. × 20.
IL-12 works comprehensively, modifies the microenvironment of tumor. Single, intratumoral administration of MSC/IL-12 cells, 8 days after the inoculation with B16-F10 resulted in a significant reduction in vascular density in melanoma tumors. Three and eight days after the cells administration the vascular density in group that received MSC/IL-12 was over twice lower than in controls (Fig. 11).

Tumor blood vessels are abnormally tortuous—their chaotic architecture greatly affects fluctuating slow blood flow and exacerbate metabolic mismatch between supply and demand what leads to progressive hypoxia. IL-12 modifies the tumor microenvironment: reduces the number of blood vessels. The anti-angiogenic efficacy of IL-12 is probably due to the stimulation of IFN-γ production. IFN-γ induced by IL-12 reduces the secretion of VEGF by tumor cells. Therapy with the use of IL-12 lowers the production of metalloproteinases, important for the maintenance of tumor stroma. Metalloproteinases participate e.g. EGF, VEGF, PDGF, IL-8, IL-6, FGE, SDF-1, G-CSF, MCP-1, HGE, TGF-β and uPA. Barcellos-de-Souza et al. demonstrated that only MSC have a tropism to tumors. Such tropism was not observed for normal fibroblast. Similar results were presented by Liu et al. in their work showed that bone marrow derived MSC have slower lung clearance than umbilical cord blood MSC.

In our study, MSC secreting IL-12 (MSC/IL-12) administered directly to the B16-F10 melanoma tumors significantly inhibited their growth. Ten days after the administration of the cells, the volumes of tumors in mice that received MSC/IL-12 cells were eightfold lower than in mice treated with PBS (Fig. 9).

In the study MSC/IL-12 cells were administered to the tail vein of mice 4–5 days after experimental B16-F10 metastases initiation. The lungs were collected and analyzed after 21 days from administration of the modified MSC. In the lungs of mice treated with MSC/IL-12, fourfold less metastases were formed than in the lungs of control mice (Fig. 10). MSC are larger than hematopoietic cells, so as many as 80% of them are retained in the pulmonary capillaries a few minutes after iv administration. At the basis of communication between MSC and endothelial cells are adhesive interactions between molecules on the surface of MSC and endothelial cell receptors. The adhesion of MSC to the pulmonary vascular walls is mainly due to the VCAM-1 adhesion-protein ligand. After administration of the MSC to the bloodstream of the animal, the cells are located in the pulmonary alveoli. Due to the presence of adhesins and integrins (CD29, CD44) on the surface of the MSC membrane (Fig. 1) they adhere to the walls of the blood vessels. MSC are located in the vicinity of macrophages residing in the lungs and in the vicinity of tumor cells. Studies indicate that MSC remain in the lungs for up to 4 days after administration. Bortolotti et al. and Braid et al. indicated that the retention time depends on route of administration and source of MSC. Both of these work indicate that bone marrow derived MSC are present in the place of injection for 1–2 days after cells injection and afterwards their number decreases significantly and quickly. On days 14–21, only single MSC are visible at the injection site. Doucette et al. also showed that MSC have tropism to glioma and that the retention of these cells lasted until the 10th day when the MSC were undetectable. Nystedt J et al. in their work showed that bone marrow derived MSC have slower lung clearance than umbilical cord blood MSC.

IL-12 works comprehensively, modifies the microenvironment of tumor. Single, intratumoral administration of MSC/IL-12 cells, 8 days after the inoculation with B16-F10 resulted in a significant reduction in vascular density in melanoma tumors. Three and eight days after the cells administration the vascular density in group that received MSC/IL-12 was over twice lower than in controls (Fig. 11).
in tissue remodeling during neoangiogenesis. IL-12-stimulated production of IFN-γ also contributes to inhibiting the activation of αVβ3 integrins and downregulating the expression of ICAM-1 and VCAM-1 adhesion proteins on the surface of endothelial cells. IL-12 stimulates the production of cytokines and anti-angiogenic chemokines. NK cells that accumulate around the blood vessels in the presence of IL-12 have cytolytic properties toward endothelial cells.

IL-12 modifies the tumor microenvironment—changes the proportion of the macrophage populations. Macrophages are the most plastic population of cells in the immune system. They undergo specific activation and occur in two functionally different phenotypes presented in response to environmental conditions. These are the classically activated macrophages M1 (proinflammatory) and alternatively activated M2 macrophages (immunosuppressive). The specific plasticity allows them to functional reprogramming depending on the stimulus available. M1 macrophages are associated with the initiation and maintenance of inflammatory response, M2 with inflammation quenching and tissue regeneration. Tumor-Associated Macrophages (TAM) phenotype resembles the M2 macrophage phenotype. TAM (M2) produce tumor growth and invasive factors such as growth factors (EGF and VEGF), cytokines, enzymes supporting the process of angiogenesis (MMP9), inhibit the expression of anti-cancer factors such as IL-12 and accumulate at hypoxic sites. TAMs show strong immunosuppressive properties through the production of anti-inflammatory cytokines and chemokines.

In our study MSC/IL-12 cells elicit changes in the proportion of macrophage populations in tumors. A 14-fold increase in the ratio of M1 to M2 macrophages was observed in tumors after MSC/IL-12 treatment comparing to control. These cells are probably co-responsible for therapeutic effect stimulated after MSC/IL-12 cells injection.

Our results showed that the administration of IL-12 stimulates infiltration of CD8+ T lymphocytes in tumors after MSC/IL-12 administration, which is also confirmed by others. IL-12 stimulate also the production of IFN-γ by T cells and NK cells and induce a strong anti-tumor response. INF-γ activates M1 macrophages, causes the repolarization of immunosuppressive M2 macrophages (TAM) to proinflammatory M1 macrophages.
Summary

The effectiveness of the proposed system, i.e. the inhibition of melanoma progression, results from the use of both: the characteristics of the carrier and the drug transported. MSC show tropism to cancer cells and release the therapeutic protein in their vicinity. IL-12 has anti-angiogenic and immunostimulatory activity and leads to inhibition of tumor progression.

Modified mesenchymal stromal cells secrete IL-12 that inhibit the progression of murine B16-F10 melanoma. The proposed therapeutic system inhibits the growth of primary tumors and metastases in the lungs. The probable mechanism responsible for the effectiveness of the therapy is the inhibition of angiogenesis evoked by MSC/IL-12 cells and the increase in the percentage of M1 macrophages and CD8 T lymphocytes in the tumor tissue.

Figure 10. Therapy of mice bearing murine B16-F10 melanoma lung metastases. (A) Number and weight of lungs excised from the animals (n = 5). Lungs collected from mice treated with MSC/IL-12 was significantly lighter than lungs from control mice. The number of metastases in the lungs of mice treated with MSC/IL-12 cells was approximately fourfold lower than in mice receiving PBS (B) Representative images of fixed lungs from mice treated with PBS, unmodified MSC, MSC/IL-12, *p < 0.05.
Figure 11. The effect of applied therapy on blood vessels in tumors excised 3 (A) and 8 (B) days after administration of MSC/IL-12 (n = 5). Area occupied by the vessels [μm²/mm² of the preparation]. The area of vessels in tumors collected from mice treated with MSC/IL-12 cells was twofold lower than in tumors from mice that received PBS, both on the 3rd and 8th day of therapy. Representative images of tumor sections from mice treated with PBS, unmodified MSC or MSC/IL-12 (C). Endothelial cells—CD31 (AlexaFluor594, red), cell nuclei (DAPI, blue), lens magn. × 20, *p < 0.05, **p < 0.005.
Figure 12. The M1/M2 ratio of macrophages in tumors after the therapy. Flow cytometry gating strategy with representative flow graphs. Macrophages (7-AAD CD45⁺ F4/80⁺) from each tumor were gated to appropriate isotype control (A). Macrophages isolated from B16-F10 tumors [per 100 mg of tissue, n = 5] collected 8 days after the cells administrations and analysed by flow cytometry. In tumors collected from animals treated with MSC/IL-12 cells, the ratio of M1/M2 macrophages is significantly higher comparing to controls (B). Immunohistochemical analyses of frozen sections from tumors (n = 5) collected 8 days after the cells administration. The ratio of M1/M2 macrophages in tumors collected from mice treated with MSC/IL-12 is fourfold higher comparing to controls (C). Representative images of tumor sections from mice treated with PBS, unmodified MSC or MSC/IL-12, (F4/80⁺, AlexaFluor594—red, CD206⁺, FITC—green) (D). *p < 0.05, **p < 0.005.
Figure 13. The effect of applied therapy on CD8+ lymphocytes in tumors excised 3 days after MSC/IL-12 administration. Total number of CD8+ positive T cells was calculated per mm² of tumor section (n = 5). The number of CD8+ surface area T cells (per mm² of the preparation) in group that received MSC/IL-12 was over eightfold higher comparing to control and over fivefold higher compared to MSC group (A). Representative images of tumor sections from mice treated with PBS, unmodified MSC or MSC/IL-12 (B). CD8+ T lymphocytes (AlexaFluor594—red), cell nuclei (DAPI—blue), lens magn. 20x, *p < 0.05, **p < 0.005.

Received: 27 November 2020; Accepted: 20 August 2021
Published online: 15 September 2021

References
1. Collet, G., Grillon, C., Nadim, M. & Kieda, C. Trojan horse at cellular level for tumor gene therapies. Gene 525, 208–216. https://doi.org/10.1016/j.gene.2013.03.057 (2013).
2. Burke, B., Sumner, S., Maitland, N. & Lewis, C. E. Macrophages in gene therapy: Cellular delivery vehicles and in vivo targets. J. Leukoc. Biol. 72, 417–428 (2002).
3. Murphy, A. M. & Rabkin, S. D. Current status of gene therapy for brain tumors. Transl. Res. 161, 339–354. https://doi.org/10.1016/j.trsl.2012.11.003 (2013).
4. Guadix, J. A., Zugaza, J. L. & Galvez-Martin, P. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med. Clin. 148, 408–414. https://doi.org/10.1016/j.medcli.2016.11.033 (2017).
5. Hu, M. et al. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model. BMC Cancer 8, 306. https://doi.org/10.1186/1471-2407-8-306 (2008).
6. Park, J. H., Ryu, C. H., Kim, M. J. & Jeun, S. S. Combination therapy for gliomas using temozolomide and interferon-beta secreting human bone marrow derived mesenchymal stem cells. J. Korean Neurosurg. Soc. 57, 323–328. https://doi.org/10.3340/jkns.2015.57.5.323 (2015).
7. Ren, C. et al. Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 26, 2332–2338. https://doi.org/10.1634/stemcells.2008-0084 (2008).
8. Li, X. et al. In vitro effect of adenovirus-mediated human Gamma Interferon gene transfer into human mesenchymal stem cells for chronic myelogenous leukemia. Hematol. Oncol. 24, 151–158. https://doi.org/10.1002/hon.779 (2006).
9. Studeny, M. et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62, 3603–3608 (2002).
10. Nowakowski, A., Drela, K., Rozycka, J., Janowski, M. & Lukomska, B. Engineered mesenchymal stem cells as an anti-cancer trojan horse. Stem Cells Dev. 25, 1513–1531. https://doi.org/10.1089/scd.2016.0120 (2016).
51. Hong, X., Miller, C., Savant-Bhonsale, S. & Kalkanis, S. N. Antitumor treatment using interleukin-12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 64, 1139–1146. https://doi.org/10.1227/01.NEU.0000345646.85472.EA (2009) (discussion 1146–1137).

52. Kang, W. K. et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: Outcome of a phase I study. Hum. Gene Ther. 12, 671–684. https://doi.org/10.1089/10430340100057388 (2001).

53. Isai, B. Y., Lin, Y. J. & Chiang, B. L. Application of interleukin-12 expressing dendritic cells for the treatment of animal model of leukemia. Exp. Biol. Med. 234, 952–960. https://doi.org/10.17150/ebm.165 (2009).

54. Zhao, X. et al. Intratumoral IL-12 gene therapy results in the crosspriming of Tc1 cells reactive against tumor-associated stromal antigens. Mol. Ther. 19, 805–814. https://doi.org/10.1038/mt.2010.295 (2011).

55. Pegram, H. J. et al. Tumor-targeted T cells modiﬁed to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141. https://doi.org/10.1182/blood-2011-12-400044 (2012).

56. Duan, X., Guan, H., Cao, Y. & Kleineberg, E. S. Murine bone marrow–derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer 115, 11–22. https://doi.org/10.1002/cncr.24013 (2009).

57. Lee, R. H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inﬂammatory protein TSG-6. Cell Stem Cell 5, 53–63. https://doi.org/10.1016/j.stem.2009.05.003 (2009).

58. Leibacher, J. & Henschler, R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Cell Res. Ther. 7, 7. https://doi.org/10.1186/s13287-015-0271-2 (2016).

59. Bortolotti, F. et al. In vivo therapeutic potential of mesenchymal stromal cell depends on the source and the isolation procedure. Stem Cell Rep. 4, 332–339. https://doi.org/10.1038/stemcr.2015.01.001 (2015).

60. Braid, I. R., Wood, C. A., Wiese, D. M. & Ford, B. N. Intramuscular administration potentiates extended dwell time of mesenchymal stromal cells compared to other routes. Cytotherapy 20, 232–244. https://doi.org/10.1016/j.cyt.2017.09.013 (2018).

61. Doucette, T. et al. Mesenchymal stem cells display tumor–specific tropism in an RCAS/Ntv-a glioma model. Neoplasia 13, 716–725. https://doi.org/10.1593/neo.101680 (2011).

62. Nystedt, J. et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells 31, 317–326. https://doi.org/10.1002/stem.1271 (2013).

63. Del Vecchio, M. et al. Interleukin-12: Biological properties and clinical application. Clin. Cancer Res. 13, 4677–4685. https://doi.org/10.1158/1078-0432.CCR-07-0776 (2007).

64. Kerkar, S. P. et al. Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol. Ther. 21, 1369–1377. https://doi.org/10.1038/mt.2013.58 (2013).

65. Mitola, S., Strasly, M., Prato, M., Ghia, P. & Bussolino, F. IL-12 regulates an endothelial cell–lymphocyte network: Effect on metalloproteinase-9 production. J. Immunol. 171, 3725–3733. https://doi.org/10.4049/jimmunol.171.7.3725 (2003).

66. Strasly, M. et al. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J. Immunol. 166, 3890–3899. https://doi.org/10.4049/jimmunol.166.6.3890 (2001).

67. Yao, L. et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 93, 1612–1621 (1999).

68. Labonte, A. C., Tosello-Trampont, A. C. & Hahn, Y. S. The role of macrophage polarization in infectious and inflammatory diseases. Mol. Cells 37, 275–285. https://doi.org/10.14348/molcells.2014.3374 (2014).

69. Stout, R. D. & Suttles, J. Functional plasticity of macrophages: Reversible adaptation to changing microenvironments. J. Leukoc. Biol. 76, 509–513. https://doi.org/10.1189/jleu.0504272 (2004).

70. Edholm, E. S., Rhoo, K. H. & Robert, J. Evolutionary aspects of macrophage polarization. Results Probl. Cell Differ. 62, 3–22. https://doi.org/10.1007/978-3-659-45610-0_1 (2017).

71. Cassetta, L., Cassol, E. & Poli, G. Macrophage polarization in health and disease. TheScientificWorldJOURNAL 11, 2391–2402. https://doi.org/10.1101/2011.2133962 (2011).

72. Allen, M. & Louise Jones, J.ekyll and Hyde: The role of the microenvironment on the progression of cancer. J. Pathol. 223, 162–176. https://doi.org/10.1002/path.2803 (2011).

73. Solinas, G., Germano, G., Mantovani, A. & Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol. 86, 1065–1073. https://doi.org/10.1189/jleu.0000078.000000385 (2009).

74. Ramanathan, S. & Jagannathan, N. Tumor associated macrophage: A review on the phenotypes, traits and functions. Iran. J. Cancer Prev. 7, 1–8 (2014).

75. Nguyen, K. G. et al. Localized interleukin-12 for cancer immunotherapy. Front. Immunol 11, 575597. https://doi.org/10.3389/fimmu.2020.575597 (2020).

76. Lasek, W., Zagodzron, R. & Jakobiak, M. Interleukin 12: Still a promising candidate for tumor immunotherapy?. Cancer Immunol. Immunother. 63, 419–435. https://doi.org/10.1007/s00262-014-1523-1 (2014).

77. Mirlekar, B. & Pilyaveya-Gupta, V. IL-12 family cytokines in cancer and immunotherapy. Cancers 13, 167. https://doi.org/10.3390/cancers13020167 (2021).

78. Watkins, S. K., Egalmez, N. K., Sutlles, J. & Stout, R. D. IL-12 rapidly alters the functional profile of tumor-associated and tumor infiltrating macrophages in vitro and in vivo. J. Immunol. 178, 1357–1362. https://doi.org/10.4049/jimmunol.178.3.1357 (2007).

79. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000prime Rep. 6, 13. https://doi.org/10.12703/P6-13 (2014).

80. Duluc, D. et al. Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int. J. Cancer 125, 367–373. https://doi.org/10.1002/ijc.24401 (2009).

81. Tsung, K., Dolan, J. P., Tsung, Y. L. & Norton, J. A. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res. 62, 5069–5075 (2002).

Acknowledgements
This work was performed within the framework of the project no. UMO-2015/17/N/NZA/02738 financed by National Science Centre, Poland.

Author contributions
N.K. performing in vitro experiments, data analysis and writing the manuscript; T.C. experiments on mice, E.P. the cells isolation and phenotyping, migration tests, M.J.B. macrophages isolation and flow cytometry, supported manuscript writing and editing; M.R. cloning and sequencing J.C. cells culture and data analysis, A.D. cells culture and immunohistochemistry, S.M. cells culture and data analysis, S.S. project supervision, R.S. design of the study, fluorescence microscope, manuscript writing and revision.

Competing interests
The authors declare no competing interests.
Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-97435-9.

Correspondence and requests for materials should be addressed to R.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021