Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Full length article

Food proteins are a potential resource for mining cathepsin L inhibitory drugs to combat SARS-CoV-2

Ashkan Madadlou

Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands

ARTICLE INFO

Keywords:
COVID-19
Infection
Virus
Food
Protein
Lactoferrin

ABSTRACT

The entry of SARS-CoV-2 into host cells proceeds by a proteolysis process, which involves the lysosomal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to decrease the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of (small) α-helices, and high surface hydrophobicity.

Lactoferrin can inhibit cathepsin L, but not cathepsins B and H. This selective inhibition might be useful in fine targeting of cathepsin L. Molecular docking indicated that only the carboxyl-terminal lobe of lactoferrin interacts with cathepsin L and that the active site cleft of cathepsin L is heavily superposed by lactoferrin. A controlled proteolysis process might yield lactoferrin-derived peptides that strongly inhibit cathepsin L.

1. Introduction

The ongoing coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2). Coronavirus binds though its spike glycoprotein (S) to human angiotensin converting enzyme 2 (hACE2) on the host cell membrane. Proteolysis of the protein S to its subunits S1 and S2 by the transmembrane protease serine 2 (TMPRSS2) enables fusion of the virus envelope with the host cell membrane to gain entry into the cell (Fig. 1A) (Hoffmann et al., 2020). However, it is now known that SARS-CoV-2 as well (mainly) enters cells through endocytosis. Phosphatidylinositol 3-phosphate kinase and cathepsin L are critical for the endocytosis (Ou et al., 2020). It is now known that SARS-CoV-2 as well (mainly) enters cells through endocytosis. Phosphatidylinositol 3-phosphate kinase and cathepsin L are critical for the endocytosis (Ou et al., 2020).

Similar to SARS-CoV, after endocytosis of SARS-CoV-2, the protein S is cleaved (Fig. 1A) by cathepsin L, which allows fusion of the viral membrane with the endosomal membrane, and then the viral genome is released into the host cell. Therefore, cathepsin L inhibition might be helpful in reducing infection by SARS-CoV (Adeleji et al., 2013) and SARS-CoV-2 (Ou et al., 2020). Actually, application of a clinically proven drug that inhibits TMPRSS2 was shown to incompletely inhibit SARS-CoV-2 infection. Full inhibition was achieved by co-employment of two drugs, one for inhibition of TMPRSS2 and the other for cathepsin L/B (Hoffmann et al., 2020).

Cathepsin L, 220 amino acid residues (Fujishima et al., 1997) is a lysosomal cysteine peptidase and has a two-chain form (L and R). The L domain contains three α-helices (one is the longest central helix) and the R domain is a β-barrel, which is closed at the bottom by an α-helix (Fig. 1B). The reactive site cleft composes of histidine (His163) located at the top of the barrel and cysteine (Cys25) located at the N-terminus of the L domain central helix (Turk et al., 2012). Cathepsin L contributes to protein turnover, and apoptosis in cells. The overexpression of cathepsin L and H in cancer cells, in contrast to cathepsins B, C, S, and X/Z has made cathepsin L a target for anticancer strategies (Lankelma et al., 2010). The enzyme is also implicated in other pathologies such as osteoporosis, and periodontal diseases (Fujishima et al., 1997). Consequently, a plethora of cathepsin L inhibitory drugs are present for assessment. Some of the drugs e.g. E–64 (Fujishima et al., 1997) inhibit several cathepsins including cathepsin L, whereas, a few such as CLI-148 (an epoxysuccinyl derivate) and iCL (an aldehyde derivative) exclusively inhibit cathepsin L (Lankelma et al., 2010). Many of the cathepsin L inhibitory drugs, like dipeptide epoxyketones, which are used for SARS-CoV suppression are essentially peptidomimetic (Adeleji et al., 2013).

2. Food protein and cathepsin inhibition

Given that food contains naturally occurring bioactive peptides and proteins, recently we outlined how food protein-derived peptides (small fragments, usually <3 kDa) that influence the renin-angiotensin system might have implications on SARS-CoV-2 endocytosis and pulmonary function in COVID-19 patients. The presumed mechanisms of action...
were over-expression of hACE2, and the receptor Mas, as well as blockage of the angiotensin II receptor type I on cell surface (Goudarzi et al., 2020). However, food proteins/peptides afford further opportunities for inhibition of SARS-CoV-2. Certain foods contain protein/peptide-based cathepsin L inhibitory compounds. This characteristic confers a new vision to exploration and implementation of biomolecules that can inhibit SARS-CoV-2 entry into host cells.

Whereas some naturally occurring bioactive peptides in food such as carnosine (226 Da, β-alanyl-L-histidine, in meat and chicken) do not affect cathepsin activity (Bonner et al., 1995), several cathepsin inhibitory molecules have been identified in plant and animal foods. Oryzacystatin-I (11.4 kDa, residue count 102) in rice is known to inhibit cathepsin L (inhibition constant, K_i: 7.3×10^{-10} M), but also cathepsin B (K_i: 7.9×10^{-8} M) and cathepsin H (K_i: 1.0×10^{-6}) (Hellinger and Gruber, 2019). A hydrophobic cluster between the α-helix and the five-stranded antiparallel β-sheet structures (Fig. 1C) stabilizes the helix architecture of oryzacystatin-I (Nagata et al., 2000) and the N-terminal 21 amino acid residues are most probably not essential for cathepsin inhibitory activity of oryzacystatin-I (Abe et al., 1988). It is known that hydrophobic interactions are crucial for the inhibition of cathepsins, likely associated with the hydrophobic wedge-shaped structure of their active-site cleft (Turk et al., 2012). Corn cystatin-I as well inhibits cathepsin L (K_i: 1.7×10^{-8} M) and cathepsin H (K_i: 5.7×10^{-9} M) (Hellinger and Gruber, 2019).

In contrast to cystatin, bromelain inhibitor VI [BI-VI; 5.89 kDa; heavy chain (H, 41 amino acid residues) and light chain (L, 11 amino acid residues)] (Fig. 1D) which is a peptide present in pineapple stem selectively inhibits cathepsin L (K_i: 0.2×10^{-6} M) and at a lesser extent trypsin (Polya, 2003). The primary and secondary structures of BI-VI are remarkably distinct from those of cystatin. Hen egg white cystatin consists of two α-helices and a five-stranded antiparallel β-sheet, but the secondary structure of BI-VI lacks α-helix structure. It is composed of

Fig. 1. A) Fusion of the coronavirus envelop to the (Aa) host cell membrane (Hoffmann et al., 2020), or (Ab) endo-lysosomal membrane (Adedeji et al., 2013); B) Ribbon drawing structure of cathepsin L. Green ribbon: the fold of the two-chain form of native cathepsin L; Blue: α-helices; Red: β-sheets; Ball and stick: the side chains of the reactive-site cysteine (Cys25) and histidine (His163) (Turk et al., 2012); Ribbon drawing structures of C) cystatin and oryzacystatin, D) bromelain inhibitor VI and E) diferric bovine lactoferrin, which show cathepsin L inhibitory activity. Bromelain inhibitor VI and lactoferrin specifically inhibit cathepsin L (no other cathepsins); F) Structural drawings of human cathpesin L suprposed by bovine lactoferrin. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
two domains A and B, each of which formed by a three-stranded antiparallel β-sheet (Hatano et al., 1995). BI-VI contains ten cysteine residues, and five intra/inter-chain disulfide bonds between Cys33-Cys76, Cys60-Cys39, Cys84-CysSt, Cys143-Cys211, and Cys184-Cys301 crosslink the protein. The disulfide bonds form the protein core, which is not common as a protein core is commonly occupied with some bulky hydrophobic side chains. This arrangement is homologous with Bowman–Birk trypsin/chymotrypsin inhibitor from soybean (BBI-I), a typical serine protease inhibitor (Hatano et al., 1996). The heavily S-S crosslink the protein. The disulfide bonds form the protein core. As mentioned in an earlier place, cathepsin L inhibitory action proceeds by thiol chemistry.

In addition to the naturally present protein and peptides with cathepsin L inhibitory activity in foods, some peptides encrypted in food proteins might be able to inhibit cathepsin L and hence assist COVID-19 prevention. Food proteins release diverse biologically active peptides once they are hydrolyzed by the enzymes present in the gastrointestinal tract, and from microbes. Presently some pieces of evidence showing cathepsin L inhibitory activity by food protein-derived peptides are scarce. Two cathepsin B inhibitory peptides derived from β-casein were identified in a pancreatic digest of casein (Lee and Lee, 2000), as well as peptides from the digests of β-lactoglobulin B by an endoproteinase could inhibit cathepsin K. It remains to be explored whether food protein-derived peptides can inhibit cathepsin L. Isolation of peptides, for instance from lactoferrin that exclusively (or much more preferentially) inhibit cathepsin L rather than other cathepsins can be highly advantageous.

In conclusion, food proteins can provide biologically active peptides which could inhibit cathepsin K. It remains to be explored whether food protein-derived peptides can inhibit cathepsin L. Isolation of peptides, for instance from lactoferrin that exclusively (or much more preferentially) inhibit cathepsin L rather than other cathepsins can be highly advantageous.

For β-casein, a allosteric-type inhibition mechanism is believed to cause cathepsin inhibitory action (Sano et al., 2005). Beta-casein (23.98 kDa) is a single chain polypeptide and the most hydrophobic casein. Essentially all of β-casein net charge and α-helix structures are positioned at the N-terminal portion of the molecule (Kumosinski et al., 1993). It lacks cysteine. Considerable hydrophobicity and low contents of α-helix structure (<20%) are the shared features between β-casein and β-lactoglobulin B. Taking hydrophobicity into account, I speculate that comparable to oxyazocatin-1 (Abe et al., 1988), the hydrophilic N-terminal portion of β-casein may not be essential for cathepsin inhibitory activity. Rather, the C-terminal hydrophobic portion which is also poor in α-helix structure probably causes the inhibition. In fact, inhibition of cathepsin L may occur as a consequence of the interaction between the carbonyl (carboxyl) group of an inhibitor with the electrostatic interaction of human cathepsin B (Nichols et al., 1997).

Lactoferrin (~80 kDa) is present at much higher contents in human milk than cow’s milk. It strongly inhibits cathepsin I. The IC50 of lactoferrin against cathepsin I was 10⁻⁷ M, while, that of a synthetic peptide which targets cathepsin L active site was 10⁻⁵ M. Notably, lactoferrin does not inhibit cathepsin B and cathepsin H (Sano et al., 2005). This may enable fine targeting of cathepsin L for obstacle SARS-CoV-2 internalization, while avoiding possible jeopardizes to other cells. Bovine lactoferrin is a single polypeptide consisting of 689 residues. It is folded into two lobes (N-terminal and C-terminal halves) joined by a small helix (3-turn) (Moore et al., 1997) (Fig. 1E). The crystal structures of lactoferrin and cathepsin L were taken from the RCSB protein data bank. Molecular docking using MDev (Tiemann et al., 2017) indicates that the C-lobe of lactoferrin interacts with cathepsin L (Fig. 1F). It also shows that the C-lobe superposes the active-site cleft of cathepsin L (Fig. 1F). The α-helix content of bovine lactoferrin varies between 7% and 16% depending on the pH (Sreedhara et al., 2010). This protein contains 17 disulfide bonds (Wang et al., 2019) and the interactions between the two lobes are mostly hydrophobic caused by packing of nonpolar surfaces on the lobes (Moore et al., 1997). Low α-helix content, small helices, and hydrophobic surfaces are the shared features between lactoferrin, β-lactoglobulin and β-casein. It is noteworthy that similar to cathepsin L but not essentially required, lactoferrin, which is discussed later in the current communication. It is noteworthy that similar to cathepsin L but not essentially required, lactoferrin, which is discussed later in the current communication.
Birk trypsin/chymotrypsin inhibitor from soybean. Biochemistry 35, 5379–5384. https://doi.org/10.1021/bi952754+

Hellinger, R., Gruber, C.W., 2019. Peptide-based protease inhibitors from plants. Drug Discov. Today 24, 1877–1889. https://doi.org/10.1016/j.drudis.2019.05.026.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrier, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M.A., Drosten, C., Pohlmann, S., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280. https://doi.org/10.1016/j.cell.2020.02.052 e8.

Kumosinski, T.F., Brown, E.M., Farrell, H.M., 1993. Three-dimensional molecular modeling of bovine caseins: an energy-minimized β-casein structure. J. Dairy Sci. 76, 931–945. https://doi.org/10.3168/jds.S0022-0302(93)77420-2.

Lankelma, J.M., Voorend, D.M., Barwari, T., Koetsveld, J., Van der Spek, A.H., De Porto, A.P.A.N., Van Rooijen, G., Van Noorden, C.J.F., 2010. Cathepsin L, target in cancer treatment? Life Sci. 86, 225–233. https://doi.org/10.1016/j.lfs.2009.11.016.

Lee, H.S., Lee, K.J., 2000. Cathepsin B inhibitory peptides derived from β-casein. Peptides 21, 807–809. https://doi.org/10.1016/S0196-9781(00)00212-6.

Moore, S.A., Anderson, B.F., Groom, C.R., Haridas, M., Baker, E.N., 1997. Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J. Mol. Biol. 274, 222–236. https://doi.org/10.1006/jmbi.1997.1386.

Nagata, K., Kudō, N., Abe, K., Arai, S., Tanokura, M., 2000. Three-dimensional solution structure of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza sativa L. japonica. Biochemistry 39, 14753–14760. https://doi.org/10.1021/bi0006971.

Ogawa, N., Takahashi, M., Ishidoh, K., Katunuma, N., 2009. Inhibition of collagenolytic cathepsins by β-lactoglobulin in milk and its suppressive effect on bone resorption. J. Nutr. Sci. Vitaminol. (Tokyo). 55, 264–270. https://doi.org/10.3177/jnsv.55.264.

Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., Qian, Z., 2020. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620. https://doi.org/10.1038/s41467-020-15562-9.

Polya, G.M., 2003. Protein and Non-protein Protease Inhibitors from Plants, pp. 567–641. https://doi.org/10.1016/S1572-5995(03)80015-7.

Ragona, L., Fogolari, F., Zetta, L., Pérez, D.M., Puyol, P., De Kruif, K., Lohr, F., Rüterjans, H., Molinari, H., 2000. Bovine β-lactoglobulin: interaction studies with palmitic acid. Protein Sci. 9.

Sano, E., Miyazaki, R., Takakura, N., Yamashiki, K., Murata, E., Le, Q.T., Katunuma, N., 2005. Cysteine protease inhibitors in various milk preparations and its importance as a food. Food Res. Int. 38, 427–433. https://doi.org/10.1016/j.foodres.2004.10.011.

Sreedhara, A., Hengsrad, R., Prakash, V., Krowarsch, D., Langerud, T., Kaul, P., Devold, T.G., Vegard, G.E., 2010. A comparison of effects of pH on the thermal stability and conformation of caprine and bovine lactoferrin. Int. Dairy J. 20, 487–494. https://doi.org/10.1016/j.idairyj.2010.02.003.

Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., Turk, D., 2012. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta Protein Proteomics 1824, 68–88. https://doi.org/10.1016/j.bbapap.2011.10.002.

Wang, B., Timilsena, Y.P., Blanch, E., Adhikari, B., 2019. Lactoferrin: structure, function, denaturation and digestion. Crit. Rev. Food Sci. Nutr. 59, 580–596. https://doi.org/10.1080/10408398.2017.1381583.