Self-assembling α,γ-cyclic peptides that generate cavities with tunable properties.

Nuria Rodríguez-Vázquez, Rebeca García-Fandiño, Manuel Amorín,* Juan R. Granja*

Singular Research Center in Chemical Biology and Molecular Materials, (CIQUIS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain.

juanr.granja@usc.es and manuel.amorin@usc.es

SUPPORTING INFORMATION
Index:

Scheme 1SI (Synthesis of **CP1** and **CP2**). 3

Scheme 2SI (Synthesis of the **N**-methylated **Ahf**). 4

Scheme 3SI (Synthesis of **CP3**, **CP4** and **CP5**). 5

Figure 1SI (1H NMR spectrum of **CP2**). 6

Figure 2SI (1H NMR spectrum and selected parts of NOESY spectrum of **CP3**). 7

Figure 3SI (Selected parts of NOESY spectrum of **CP3**). 8

Figure 4SI (Temperature and methanol addition experiments of **CP4**). 9

Figure 5SI (1H NMR spectra of **CP4** at 253 K, in CDCl$_3$ and in 5% CD$_3$OH in CDCl$_3$). 10

Figure 6SI (1H NMR studies of the formation of dimer s-5E⊃Ag). 11

Figure 7SI (1H NMR studies of the formation of the dimer s-5E⊃(CO$_2$H)$_2$). 12

Figure 8SI (DFT Optimized structures of bis(methyl picolinate) silver(I) complexes). 13

Figure 9SI (DFT Optimized structures of the dimers). 14

Materials and Methods 15

NMR and FTIR Spectra 27

Computational methods 54
Scheme 1SI: Synthetic strategy for the preparation of cyclic peptides CP1 and CP2 by solution phase method.
Scheme 2SI: Synthesis of the N-methylated Ahf using Fukuyama's method for the preparation of the fully protected amino acid 2. Removal of Nosyl group and coupling with Boc-D-Leu-OH provide the dipeptide 4, the basic component used in the synthesis of CP4.
Scheme 3SI: Synthetic strategy for the preparation of cyclic peptides CP3, CP4 and CP5 by solution phase method.
Figure 1SI: Top: Structure of CP2 and model of the tetrahydrofurane conformations, in which the amide proton is hydrogen bonded to its own carbonyl group, showing the perpendicular orientation between the Hα and the Hβ and between the Hγ and the Hβ. Bottom: 1H NMR spectrum of CP2 (20 mM, CDCl$_3$, 298 K); in the inset, an extension of the spectral region between 5.4 and 3.6 ppm should be shown, where the vicinal protons α-Ahf and β-Ahf appear as singlets, which suggests their perpendicular orientation.
Figure 2SI: Top: Structure of CP3 and model of the two possible dimers: eclipsed (D3E) and alternated (D3A). Bottom left: 1H NMR spectrum of CP3 (16 mM, CDCl3, 298 K), showing the formation of the two non-equivalent dimers in a 2:1 ratio (D3E:D3A). Bottom right: Selected parts of NOESY spectrum showing the nOe cross peaks between the α-Ach proton and the γ-Ahf (pink) in the minor form (D3A) and between the amide protons (N-H) of the two non-equivalent leucines (brown) of the major ensemble (D3E).
Figure 3SI: Top: Structure of CP3 and model of the two possible dimers: eclipsed (D3e) and alternated (D3A). Bottom left: Selected part of NOESY spectrum showing the nOe cross peaks between the γ-Ahf and the Leu N-H (light blue) in the minor form (D3A), and between the γ-Ahf and Leu N-H (green) in the major ensemble (D3e). Bottom right: Selected part of NOESY spectrum showing the nOe cross peaks (red) between the amide protons and the benzylic protons in the minor form (D3A), and between the γ-Ach and Leu N-H (dark blue) of the major ensemble (D3e).
Figure 4SI: Top: Structure of CP4 and model of the two possible dimers: eclipsed (D4_e) and alternated (D4_a). Bottom left: ¹H NMR spectra of CP4 (5 mM, CDCl₃) at different temperatures. Bottom right: ¹H NMR experiment of methanol additions (1-5%) to a 5 mM solution of CP4 in CDCl₃.
Figure S5i: Top: Structure of CP4 and model of the two possible dimers: eclipsed (D4_e) and alternated (D4_a). Bottom left: 1H NMR spectra of CP4 (32 mM in CDCl$_3$) at 253 K, in CDCl$_3$ and in 5% CD$_3$OH in CDCl$_3$, showing that at this temperature the addition of methanol induces the formation of mainly one dimer (D4_a). Bottom right: Selected part of NOESY spectrum showing the nOe cross peaks between the α-Ach proton and the γ-Ahf (pink) and between the N-H and the γ-Ahf (green) in the alternated form (D4_a).
Figure 6S1: Top: Structure of CP5 and model of the silver-encapsulated dimer (s-D5\textsubscript{E}⊃Ag). Bottom left: 1H NMR studies of the formation of dimer s-D5\textsubscript{E}⊃Ag by the addition of different equivalents of AgBF\textsubscript{4} (0.2-1.0 equiv per dimer) to a CDCl\textsubscript{3} solution of CP5 (5 mM, CDCl\textsubscript{3}, 298 K). Bottom right: Selected parts of NOESY spectrum showing the nOe cross peaks between the H\textgamma of each Ach and both H\textalpha of Ach that support the formation of the syn-eclipsed form (s-D5\textsubscript{E}⊃Ag). The nOe cross peaks of picolinic moiety protons are also shown, which suggest the incorporation of the silver complex in the dimer cavity.
Figure 7SI: Top: Structure of CP5 and model of the oxalic acid encapsulated in the corresponding dimer (s-DS₅⊃(CO₂H)₂). Bottom left: ¹H NMR studies of the formation of the dimer s-DS₅⊃(CO₂H)₂ by the addition of different equivalents of oxalic acid (0.2-1.0 equiv per dimer) to a CDCl₃ solution of CP5 (5 mM, CDCl₃, 298 K). Bottom right: Selected parts of NOESY spectrum showing the nOe cross peaks between the Hγ of each Ach and both Hα of the same residue that support the formation of the syn-eclipsed form (s-DS₅⊃(CO₂H)₂).
Figure 8SI: DFT Optimized structures of bis(methyl picolinate) silver(I) complexes with higher (less stable) energies compared to those presented in the main part of the manuscript. The energies of these conformations are about 11, 5, 13 and 18 kcal/mol (from left to right) less stable than those corresponding to the conformers presented there. The silver ion is in gray whereas the two picolinites are highlighted in orange.
Figure 9SI: Top and lateral views of the DFT optimized structures for the *anti*-eclipsed, clockwise and counter-clockwise alternating dimers, respectively. All the hydrogens, except those from the backbone and those from the pyridines, have been removed for clarity. The side chains were changed to methyl groups to reduce the number of possible conformers.
Materials and Methods:

General:

1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo-[4,5-b]pyridinium hexafluorophosphate 3-oxide (N-HATU), 1-[bis(dimethylamino)methylene]-1H-benzotriazolium hexafluorophosphate 3-oxide (N-HBTU), 1-[bis(dimethylamino)methylene]-1H-benzotriazolium tetrafluoroborate 3-oxide (N-TBTU), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), hydroxybenzotriazole (HOBt), 4-dimethylaminopyridine (DMAP) and α-aminoacids were purchased from Iris Biotech, Aldrich or from Global Sales Manager, GL Biochem (Shanghai) Ltd, China. All reagents and solvents were used as received unless otherwise noted. CH$_2$Cl$_2$ and DIEA to be used as reaction solvents were distilled from CaH$_2$ over argon immediately prior to use. Analytical thin-layer chromatography was performed on E. Merck silica gel 60 F$_{254}$ plates. Compounds, which were not UV active, were visualized by dipping the plates in a ninhydrin solution and heating. Silica gel flash chromatography was performed using E. Merck silica gel (type 60SDS, 230-400 mesh). Solvent mixtures for chromatography are reported as v/v ratios.

HPLC purification was carried out on a HITACHI D-7000 using a Phenomenex Luna 5μ Silica 100 Angstroms column with CH$_2$Cl$_2$/MeOH gradients between 96:4 and 87:13. 1H NMR spectra were recorded on Varian Inova 500 MHz, Varian Mercury 300 MHz or Bruker DPX 250 MHz spectrometers. Chemical shifts (δ) were reported in parts per million (ppm) relative to tetramethylsilane (δ = 0.00 ppm) or by the deuterated solvent. 1H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), or quartet (q). All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). 13C NMR spectra were recorded on Varian Mercury 300 MHz spectrometer. Carbon resonances were assigned using distortionless enhancement by polarization transfer (DEPT) spectra obtained with phase angles of 135. 1H NMR Assignments of Cyclic Peptides (CPs). The signals of the 1H NMR spectra of the peptides were identified from the corresponding double-quantum-filled 2D COSY, TOCSY and NOESY and/or ROESY spectra acquired at concentration and temperature indicated (Mixing times for NOESY and/or ROESY –between 250 and 1000 ms- were not optimized). Electrospray (ESI) mass spectra were recorded on a Bruker BIOTOF II mass spectrometer. FTIR measurements were made on a JASCO FT/IR-400 spectrophotometer placing the sample on a CaF$_2$ pellet.

1 L. A. Carpino, et al., *Angew. Chem. Int. Ed.* 2002, 41, 41–445.
Peptide synthesis:

Boc-D-Leu-L-Ahf(Bn)-OMe (3): A solution of N₃-L-Ahf(Bn)-OMe² (271 mg, 0.97 mmol) and Pd/C (208 mg, 10% in wt) in CH₂Cl₂ (10 mL) was stirred at rt for 2 h under hydrogen atmosphere (balloon pressure). The resulting mixture was filtered through a Celite pad, the residue was washed with CH₂Cl₂, and the combined filtrates and washes were concentrated under reduced pressure. The crude was used without further purification.

A solution of the resulting NH₂-L-Ahf(Bn)-OMe in CH₂Cl₂ (15 mL) was successively treated with DIEA (0.71 mL, 3.9 mmol), Boc-D-Leu-OH (225 mg, 1.0 mmol), and N-HBTU (405.0 mg, 1.1 mmol), and the mixture was stirred at rt under Argon for 90 min. The solution was washed with aqueous HCl (5%, 3 x 20 mL) and aqueous saturated NaHCO₃ (2 x 20 mL). The organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude was purified by flash chromatography (0-2% MeOH/CH₂Cl₂) to give 387 mg of dipeptide 3. [Yellow foam, 86%, Rf = 0.58 (5% MeOH/CH₂Cl₂)].

¹H NMR (CDCl₃, 250 MHz, δ): 7.51-7.24 (m, 6H), 6.63 (d, J = 8.1 Hz, 1H), 4.77 (AB, J = 11.8 Hz, 1H), 4.83-4.49 (m, 2H), 4.66 (AB, J = 11.8 Hz, 1H), 4.47 (d, J = 1.6 Hz, 1H), 4.24-3.91 (m, 3H), 3.77 (s, 3H), 1.86-1.51 (m, 3H), 1.43 (s, 9H), 0.93 (d, J = 5.7 Hz, 6H).

¹³C NMR (CDCl₃, 75.4 MHz, δ): 172.8 (CO), 171.7 (CO), 155.4 (CO), 137.3 (C), 128.3 (CH), 127.8 (CH), 127.7 (CH), 86.6 (CH), 82.1 (CH), 79.8 (C), 72.5 (CH₂), 71.8 (CH₂), 54.7 (CH₃), 53.4 (CH), 52.4 (CH), 41.4 (CH₂), 28.2 (CH₃), 24.7 (CH₃), 24.6 (CH₃), 23.0 (CH). MS (ESI) [m/z(%)]: 487 ([MNa⁺]), 465 ([MH⁺]).

HRMS (ESI) calculated for C₂₄H₃₇N₂O₇: 465.2595, found: 465.2595.

Boc-D-Leu-L-Ahf(Bn)-OH (dp2): A solution of dipeptide 3 (387 mg, 0.83 mmol) in a mixture of MeOH and water (3:1, 20 mL) was treated with LiOH (100 mg, 4.2 mmol). The solution was stirred at rt for 5 h and then the solvent was removed under reduced pressure. The resulting residue was diluted with water (10 mL) and washed with Et₂O (10 mL), and the resulting aqueous solution was acidified to pH 3 with aqueous HCl (5%). The acidic solution was extracted with CH₂Cl₂ (4 x 10 mL), the combined organic extracts were dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give 365 mg of dipeptide dp2. [Yellow foam, 97%, Rf = 0.20 (5% MeOH/CH₂Cl₂)].

¹H RMN (CDCl₃, 300 MHz, δ): 10.1 (br, 1H), 7.56 (d, J = 6.8 Hz, 1H), 7.49-7.14 (m, 5H), 6.42 (d, J = 7.0 Hz, 1H), 5.35 (d, J = 8.4 Hz, 1H), 4.78 (AB, J = 11.9 Hz, 1H), 4.69 (AB, J = 11.6 Hz, 1H), 4.57-3.91 (m, 5H), 1.74-1.39 (m, 3H), 1.41 and 1.37 (s, 9H), 0.91 (d, J = 6.3 Hz).

² N. Rodríguez-Vázquez, S. Salzinger, L. F. Silva, M. Amorín, J. R. Granja, Eur. J. Org. Chem. 2013, 17, 3477–3493.
Boc-D-Tyr(Me)-L-MeN-Ach-OFm (dp1): A solution of Boc-L-MeN-Ach-OFm (811 mg, 1.86 mmol) in mixture of TFA and CH₂Cl₂ (1:1, 10 mL) was stirred at rt for 10 min. After removal of the solvent under vacuum, the residue was dried under high vacuum for 3 h. The resulting TFA salt was dissolved under Argon in CH₂Cl₂ (10 mL), then DIEA (1.3 mL, 7.5 mmol), Boc-D-Tyr(Me)-OH (550 mg, 1.9 mmol) and N-HATU (778 mg, 2.0 mmol) were successively added. After 1 h stirring at rt, the solution was washed with aqueous HCl (5%, 2 x 10 mL) and aqueous saturated NaHCO₃ (2 x 10 mL). The organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure, providing a yellow oil that was purified by flash chromatography (0-2% MeOH/CH₂Cl₂) to give 1.0 g of dipeptide dp1. [White foam, 95%, Rf = 0.75 (5% MeOH/CH₂Cl₂)]. ¹H NMR (CDCl₃, 300 MHz, δ): 7.71 (m, 2H), 7.61 (d, J = 7.4 Hz, 1H), 7.54 (m, 2H), 7.43-7.20 (m, 4H), 7.08 (m, 2H), 6.76 (m, 2H), 5.51 (m, 1H), 4.73 (m, 1H), 4.46-4.32 (m, 2H), 4.22-4.04 (m, 1H), 4.14 (AB, J = 6.6 Hz, 1H), 3.95 (AB, J = 6.6 Hz, 1H), 3.73 and 3.60 (s, 3H), 2.89 (m, 1H), 2.70 and 2.46 (s, 3H), 1.96-0.71 (m, 8H), 1.42 and 1.40 (s, 9H). ¹³C NMR (CDCl₃, 75.4 MHz, δ): 174.6 (CO), 171.3 (CO), 158.5 (C), 155.0 (CO), 144.7 (C), 130.4 (CH), 128.4 (C), 127.7 (CH), 127.0 (CH), 124.8 (CH), 119.9 (CH), 113.7 (CH), 79.5 (C), 65.9 (CH₂), 55.1 (CH), 51.5 (CH), 50.3 (CH₂), 46.9 (CH), 42.2 (CH), 39.3 (CH₂), 38.4 (CH₃), 31.3 (CH₃), 29.7 (CH₂), 28.2 (CH₃), 24.2 (CH₂). MS [m/z(%)]: 635.3 ([MNa]+, 62), 613.3 ([MH]+, 38), 557.3 ([MH-Bu]+, 97), 513.3 ([MH-Boc]+, 100). HRMS calculated for C₃₇H₄₅N₂O₆: 613.3272, found: 613.3273.

Boc-D-Leu-L-Ahf(Bn)-D-Tyr(Me)-L-MeN-Ach-OFm (tp1): A solution of dipeptide dp1 (497.0 mg, 0.81 mmol) in mixture of TFA and CH₂Cl₂ (1:1, 10.0 mL) was stirred at rt for 30 min. After removal of the solvent under vacuum, the residue was dried under high vacuum for 3 h. The resulting TFA salt (dp3) was dissolved under Argon in dry CH₂Cl₂ (14 mL), then DIEA (560 µL, 3.2 mmol), dipeptide dp2 (365 mg, 0.81 mmol), and N-HBTU (338 mg, 0.89 mmol) were successively added. After 2 h stirring at rt, the solution was washed with aqueous HCl (5%, 2 x 15 mL) and aqueous saturated NaHCO₃ (2 x 15 mL). The organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The resulting
crude was purified by flash chromatography (0-2% MeOH/CH₂Cl₂) to give 645 mg of tetrapeptide tp₁. [White foam, 84%, Rf = 0.42 (5% MeOH/CH₂Cl₂)]. **MS (ESI) [m/z(%)]:** 967.5 ([MNa]+, 30), 945.5 ([MH]+, 12), 748.4 (100). **HRMS (ESI) calculated for C₅₅H₆₉N₄O₁₀:** 945.5008, **found:** 945.5001.

Boc-[D-Leu-L-Ahf(Bn)-D-Tyr(Me)-L-MeN-Ach]₂-OFm (op₁): A solution of tetrapeptide tp₁ (305 mg, 0.32 mmol) in a mixture of piperidine and CH₂Cl₂ (1:4, 6 mL) was stirred at rt for 45 min. The solution was washed with aqueous HCl (5%, 4 x 5 mL), dried with anhydrous Na₂SO₄, filtered and concentrated, to give Boc-D-Leu-L-Ahf(Bn)-D-Leu-L-MeN-Ach-OH (tp₂), which was used without further purification.

A solution of tetrapeptide tp₁ (305 mg, 0.32 mmol) in a mixture of TFA and CH₂Cl₂ (1:1, 8 mL) was stirred at rt for 15 min. After removal of the solvent under vacuum, the residue was dried under high vacuum for 3 h. The resulting TFA salt (tp₃) was dissolved in dry CH₂Cl₂ (12 mL) under Argon, and successively treated with DIEA (222 µL, 1.3 mmol), the previously prepared tp₂ and N-HBTU (134 mg, 0.35 mmol). After 1 h stirring at rt, the solution was washed with aqueous HCl (5%, 2 x 10 mL) and aqueous saturated NaHCO₃ (2 x 10 mL). The organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude was purified by flash chromatography (0-2% MeOH/CH₂Cl₂) to give 360 mg of octapeptide op₁. [White foam, 70%, Rf = 0.45 (5% MeOH/CH₂Cl₂)]. **MS (ESI) [m/z(%)]:** 1593.8 ([MH]+, 8), 845.4 ([tetrapeptide-Boc]+, 100), 747.9 ([MH-Boc]²⁺, 14). **HRMS (ESI) calculated for C₉₁H₁₁₇N₈O₁₇:** 1593.8531, **found:** 1593.8586.

c-[[L-Ahf(Bn)-D-Tyr(Me)-L-MeN-Ach-D-Leu]₂] (CP₁): The linear octapeptide op₁ (150.0 mg, 94.1 µmol) was dissolved in a mixture of piperidine and CH₂Cl₂ (1:4, 5 mL) and stirred at rt for 45 min. The solution was washed with aqueous HCl (5%, 4 x 5 mL), dried with anhydrous Na₂SO₄, filtered and concentrated to give Boc-[D-Leu-L-Ahf(Bn)-D-Tyr(Me)-L-MeN-Ach]₂-OH, which was used without further purification. The resulting C-unprotected octapeptide was dissolved in a mixture of TFA and CH₂Cl₂ (1:1, 10 mL) and stirred at rt for 30 min. After removal of the solvent under reduced pressure, the residue was dried under high vacuum for 3 h and used without further purification. The
resulting unprotected linear peptide (op2) was dissolved in dry CH$_2$Cl$_2$ (95 mL) and successively treated with DIEA (66 µL, 0.38 mmol) and N-TBTU (39.2 mg, 0.10 mmol). After 12 h, the solvent was removed under reduced pressure, and the residue was dissolved in CH$_2$Cl$_2$ (15 mL), washed with aqueous HCl (10%, 2 x 10 mL), dried with anhydrous Na$_2$SO$_4$, filtered, and concentrated to dryness. The crude was purified by flash chromatography (0-5% MeOH/CH$_2$Cl$_2$) to give 62.5 mg of the desired cyclic peptide. [White solid, 51%, R$_f$ = 0.47 (5% MeOH/CH$_2$Cl$_2$)].

1H NMR (7.5 mM, CDCl$_3$, 300 MHz, δ): 7.29 (m, 12H), 7.09 (d, J = 8.6 Hz, 5H), 6.82 (d, J = 8.5 Hz, 5H), 6.53 (d, J = 8.7 Hz, 1H), 5.59 (d, J = 9.3 Hz, 1H), 4.99-3.82 (m, 18H), 3.80 (s, 6H), 3.44 (m, 2H), 2.53 (m, 2H), 2.24 (s, 6H), 2.11-1.08 (m, 26H), 0.90 (d, J = 7.5 Hz, 6H), 0.87 (d, J = 6.8 Hz, 6H).

13C NMR (CDCl$_3$, 75.4 MHz, δ): 175.2 (CO), 174.0 (CO), 172.7 (CO), 172.0 (CO), 170.0 (C), 159.2 (C), 137.7 (C), 130.5 (CH), 128.5 (CH), 127.4 (CH), 114.2 (CH), 87.7 (CH), 84.9 (CH), 72.4 (CH$_2$), 72.1 (CH$_2$), 55.7 (CH), 55.5 (CH$_3$), 51.9 (CH), 45.0 (CH), 42.1 (CH$_2$), 39.6 (CH$_2$), 29.6 (CH$_3$), 28.5 (CH$_2$), 25.2 (CH), 24.9 (CH$_2$), 23.3 (CH$_3$), 21.4 (CH$_2$).

FTIR (298 K, CHCl$_3$): 3297 (amide A), 3006, 2958, 2933, 2869, 1655 (amide II), 1626 (amide I), 1514 cm$^{-1}$ (amide II).

MS (ESI) [m/z (%)]: 1319.7 (M+Na$^+$, 19), 1297.7 (M+H$^+$, 12), 668.3 ([MHK]+$_2^+$, 100), 660.8 ([MH$^+$Na$^+$]$_2^+$, 23). HRMS (ESI) calculated for C$_{72}$H$_{97}$N$_8$O$_{14}$: 1297.7119, found: 1297.7111.

c-{[[L-Ahf-D-Tyr(Me)-L-13MeN-Ach-D-Leu-$]_2}$ (CP2): A solution of CP1 (42 mg, 0.032 mmol) in TFA (1 mL) was successively treated with pentamethylbenzene (21 mg, 0.13 mmol), anisole (21 µL, 0.18 mmol) and HBr in AcOH (0.5 mL, 33% in wt). The resulting mixture was stirred at rt for 1h. The solvent was removed under reduced pressure and the crude was purified by HPLC (Phenomenex Luna 5μ silica, 4-8% MeOH/CH$_2$Cl$_2$, 25 min) to give 16.3 mg of the desired cyclic peptide. [White solid, 45%, t_R = 19 min].

1H NMR (20 mM, CDCl$_3$, 300 MHz, δ): 9.27 (d, J = 9.1 Hz, 2H, NH$_{Tyr}$), 8.52 (d, J = 8.9 Hz, 2H, NH$_{Ahf}$), 8.24 (d, J = 8.9 Hz, 2H, NH$_{Leu}$), 7.07 (m, 4H, Ar), 6.79 (m, 4H, Ar), 5.19 (m, 2H, H$_{α_{Tyr}}$), 4.83 (br, 2H, OH), 4.74 (s, 2H, H$_{α_{Ahf}}$), 4.61 (m, 4H, H$_{α_{Leu}}$ + H$_{γ_{Ach}}$), 4.47 (dd, J_1 = 9.7 Hz, J_2 = 3.8 Hz, 2H, H$_{γ_{Ahf}}$), 4.22 (s, 2H, H$_δ_{Ahf}$), 4.13 (dd, J_1 = 9.4 Hz, J_2 = 4.2 Hz, 2H, H$_{δ_{Ach}}$), 3.86 (d, J = 8.9 Hz, 2H, H$_{β_{Tyr}}$), 3.79 (s, 6H, OMe$_{Tyr}$), 2.97 (m, 4H, H$_{β_{Tyr}}$), 2.48 (s, 6H, NMe), 1.95 (m, 2H, H$_{α_{Ach}}$), 1.85-1.09 (m, 22H, CH$_2$ ACH + CH$_2$ Leu + CH$_2$ Leu), 0.94 (d, J = 6.4 Hz, 6H, CH$_3$ Leu), 0.91 (d, J = 5.6 Hz, 6H, CH$_3$ Leu). 13C NMR (CDCl$_3$, 75.4 MHz, δ): 175.0 (CO), 172.2 (CO), 171.4 (CO), 170.4 (CO), 158.9 (C), 130.5 (CH), 128.1 (C), 114.0 (CH), 85.3 (CH), 78.7 (CH), 74.8 (CH$_2$), 57.9
(CH), 55.5 (CH$_3$), 51.6 (CH), 50.3 (CH), 43.8 (CH$_2$), 43.5 (CH), 39.6 (CH$_2$), 32.8 (CH$_2$), 29.9 (CH$_3$), 28.6 (CH$_2$), 28.1 (CH$_2$), 25.2 (CH$_2$), 24.8 (CH$_2$), 22.9 (CH$_3$), 22.8 (CH$_3$). \textbf{FTIR} (298 K, CHCl$_3$): 3399, 3299 (amide A), 3006, 2958, 2933, 2865, 1652 (amide I, II), 1629 (amide I), 1513 cm$^{-1}$ (amide II).

\textbf{MS (ESI)} [m/z (%)]: 1140.6 ([MNa$^+$], 7), 1117.6 ([MH$^+$], 8), 578.3 ([MHK$^+$]$^2^+$, 100), 570.3 ([MHNa$^+$]$^2^+$, 40). \textbf{HRMS (ESI)} calculated for C$_{58}$H$_{85}$N$_8$O$_{14}$: 1117.6180, found: 1117.6227.

Boc-D-Leu-LMeN-Ahf(Bn)-OMe (4): A solution of LMeN-Ahf(Bn)-OMe$_2$ (600 mg, 2.26 mmol) in dry CH$_2$Cl$_2$ (22 mL) was successively treated with DIEA (1.6 mL, 9.0 mmol), Boc-D-Leu-OH (523 mg, 2.3 mmol) and N-HATU (946 mg, 2.5 mmol). The mixture was stirred at rt under Argon for 90 min. The solution was washed with aqueous HCl (5%, 3 x 20 mL) and aqueous saturated NaHCO$_3$ (2 x 20 mL). The organic layer was dried with anhydrous Na$_2$SO$_4$, filtered and concentrated under reduced pressure. The resulting crude was purified by flash chromatography (0-2% MeOH/CH$_2$Cl$_2$) to give 1.0 g of dipeptide 4. [Yellow foam, 93%, R_f = 0.53 (5% MeOH/CH$_2$Cl$_2$)].

\textbf{H NMR} (CDCl$_3$, 300 MHz, δ): 7.44-7.19 (m, 5H), 5.17 (m, 1H), 5.00 (m, 1H), 4.76 (AB, J = 11.9 Hz, 1H), 4.68-4.31 (m, 1H), 4.59 (AB, J = 12.0 Hz, 1H), 4.38 (d, J = 4.5 Hz, 1H), 4.19-3.98 (m, 3H), 3.72 (s, 3H), 2.79 (s, 3H), 1.80-1.25 (m, 3H), 1.42 (s, 9H), 0.98 (d, J = 6.7 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H). \textbf{C NMR} (CDCl$_3$, 75.4 MHz, δ): 173.5 (CO), 170.6 (CO), 155.7 (CO), 137.3 (C), 128.3 (CH), 128.0 (CH), 127.8 (CH), 85.5 (CH), 82.4 (CH), 79.5 (C), 71.9 (CH$_2$), 69.3 (CH$_3$), 61.1 (CH), 52.3 (CH$_3$), 49.2 (CH), 42.2 (CH$_2$), 31.5 (CH$_3$), 28.3 (CH$_3$), 24.6 (CH), 23.4 (CH$_3$), 21.6 (CH$_3$). \textbf{MS (ESI)} [m/z (%)]: 501.2 ([MNa$^+$], 100), 423.2 ([MH-tBu$^+$], 13), 379.2 ([MH-Boc$^+$], 6). \textbf{HRMS (ESI)} calculated for C$_{25}$H$_{38}$N$_2$NaO$_7$: 501.2571, found: 501.2581.

Boc-D-Leu-LMeN-Ahf(Bn)-OH (dp5): A solution of dipeptide 4 (700 mg, 1.5 mmol) in a mixture of MeOH and water (3:1, 29 mL) was treated with LiOH (175 mg, 7.3 mmol). The solution was stirred at rt for 2 h and then the solvent was removed under reduced pressure. The resulting residue was diluted with water (15 mL), washed with Et$_2$O (10 mL) and the resulting aqueous solution was acidified to pH 3 with aqueous HCl (5%). The acidic solution was extracted with CH$_2$Cl$_2$ (4 x 10 mL) and the combined organic extracts were dried with anhydrous Na$_2$SO$_4$, filtered and concentrated under reduced pressure to give 670 mg of the desired dipeptide. [White foam, 99%, R_f = 0.32 (5% MeOH/CH$_2$Cl$_2$)]. \textbf{H NMR} (CDCl$_3$, 300 MHz, δ): 9.70 (br, 1H), 7.52-7.10 (m, 5H), 7.10-6.70 (m, 5H), 6.70-6.30 (m, 5H), 6.30-5.90 (m, 5H), 5.90-5.50 (m, 5H), 5.50-5.10 (m, 5H), 5.10-4.70 (m, 5H), 4.70-4.30 (m, 5H), 4.30-3.90 (m, 5H), 3.90-3.50 (m, 5H), 3.50-3.10 (m, 5H), 3.10-2.70 (m, 5H), 2.70-2.30 (m, 5H), 2.30-1.90 (m, 5H), 1.90-1.50 (m, 5H), 1.50-1.10 (m, 5H), 1.10-0.70 (m, 5H), 0.70-0.30 (m, 5H).

2 N. Rodriguez-Vázquez, S. Salzinger, L. F. Silva, M. Amorín, J. R. Granja, Eur. J. Org. Chem. 2013, 17, 3477–3493.
5.61 (m, 1H), 4.90 (m, 1H), 4.75 (AB, \(J = 11.9 \) Hz, 1H), 4.68-4.40 (m, 1H), 4.63 (AB, \(J = 11.6 \) Hz, 1H), 4.43 (dd, \(J_1 = 4.3 \) Hz, \(J_2 = 1.4 \) Hz, 1H), 4.26 (m, 1H), 4.11 (m, 2H), 3.04 (s, 3H), 1.78-1.23 (m, 3H), 1.41 (s, 9H), 0.96 (d, \(J = 6.5 \) Hz, 3H), 0.92 (d, \(J = 6.6 \) Hz, 3H). \(^{13} \text{C} \) NMR (CDCl\(_3\), 75.4 MHz, \(\delta \)): 174.3 (CO), 172.8 (CO), 156.2 (CO), 137.4 (C), 128.5 (CH), 128.0 (CH), 127.9 (CH), 86.4 (CH), 82.5 (CH), 80.1 (C), 72.2 (CH\(_2\)), 69.4 (CH\(_2\)), 62.3 (CH), 49.6 (CH), 41.9 (CH\(_2\)), 32.3 (CH\(_3\)), 28.4 (CH\(_2\)), 24.7 (CH), 23.5 (CH\(_3\)), 21.7 (CH\(_3\)). MS (ESI) [m/z(%)]: 487.2 ([MNa\(^+\], 100), 409.2 ([MH-Boc\(^+\], 21), 365.2 ([MH-Boc\(^+\], 16). HRMS (ESI) calculated for C\(_{24}\)H\(_{36}\)N\(_2\)O\(_7\): 487.2415, found: 487.2395.

Boc-D-Leu-L-MeN-Ach-OFm (dp4): A solution of Boc-L-MeN-Ach-OFm (700 mg, 1.6 mmol) in a mixture of TFA and CH\(_2\)Cl\(_2\) (1:1, 8 mL) was stirred at rt for 15 min. After removal of the solvent under vacuum, the residue was dissolved under high vacuum for 3 h. The resulting TFA salt was dissolved under Argon in dry CH\(_2\)Cl\(_2\) (16 mL), and DIEA (1.1 mL, 6.4 mmol), Boc-D-Leu-OH (372 mg, 1.6 mmol), and N-HATU (669 mg, 1.8 mmol) were successively added. After 1 h stirring at rt, the solution was washed with aqueous HCl (5%, 2 x 15 mL) and aqueous saturated NaHCO\(_3\) (2 x 15 mL). The organic layer was dried with anhydrous Na\(_2\)SO\(_4\), filtered and concentrated under reduced pressure, providing a yellow oil that was purified by flash chromatography (30% EtAcO/hexanes) to give 755 mg of the dipeptide. [White foam, 86%, \(R_f = 0.65 \) (50% EtAcO/hexanes)]. \(^1 \text{H} \) NMR (CDCl\(_3\), 300 MHz, \(\delta \)): 7.76 (d, \(J = 7.6 \) Hz, 2H), 7.57 (d, \(J = 7.6 \) Hz, 2H), 7.36 (td, \(J_1 = 25.0 \) Hz, \(J_2 = 7.6 \) Hz, 4H), 5.31 (d, \(J = 9.2 \) Hz, 1H), 4.64 (m, 1H), 4.53-4.35 (m, 3H), 4.19 (t, \(J = 6.7 \) Hz, 1H), 2.90 and 2.79 (s, 3H), 2.08-1.12 (m, 11H), 1.42 (s, 9H), 0.99 (dd, \(J = 6.5 \) Hz, \(J = 1.9 \) Hz, 3H), 0.91 (dd, \(J = 6.7 \) Hz, \(J = 1.4 \) Hz, 3H). \(^{13} \text{C} \) NMR (CDCl\(_3\), 75.4 MHz, \(\delta \)): 174.9 (CO), 172.8 (CO), 155.7 (CO), 143.8 (C), 141.4 (C), 127.9 (CH), 127.2 (CH), 125.1 (CH), 120.1 (CH), 79.5 (C), 66.2 (CH\(_2\)), 55.1 (CH), 51.7 (CH), 49.2 (CH), 47.1 (CH), 42.9 (CH\(_2\)), 42.6 (CH), 32.8 (CH\(_2\)), 31.6 (CH\(_3\)), 29.3 (CH\(_3\)), 29.0 (CH\(_3\)), 28.5 (CH\(_3\)), 24.8 (CH), 24.5 (CH\(_2\)), 23.6 (CH\(_3\)), 21.8 (CH\(_3\)). MS (ESI) [m/z(%)]: 571.3 ([MNa\(^+\], 24), 549.3 ([MH\(^+\], 11), 493.3 ([MH-\(^t\)Bu\(^+\], 100), 449.3 ([MH-Boc\(^+\], 100). HRMS (ESI) calculated for C\(_{33}\)H\(_{45}\)N\(_2\)O\(_5\): 549.3232, found: 549.3232.

Boc-D-Leu-L-MeN-Ahf(Bn)-D-Leu-L-MeN-Ach-OFm (tp4): A solution of dipeptide dp4 (700 mg, 1.2 mmol) in a mixture of TFA and CH\(_2\)Cl\(_2\) (1:1, 10 mL) was stirred at rt for 30 min. After removal of the solvent under vacuum, the residue was dissolved under high vacuum for 3 h. The resulting TFA salt (dp6) was dissolved in dry CH\(_2\)Cl\(_2\) (12 mL) under Argon, then DIEA (850 \(\mu \)L, 4.8 mmol), dipeptide dp5 (562 mg, 1.2 mmol) and N-HBTU (504 mg, 1.3 mmol) were successively added. After 2 h stirring at rt, the solution was washed with
aqueous HCl (5%, 2 x 10 mL) and aqueous saturated NaHCO₃ (2 x 10 mL). The organic layer was
dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The resulting
crude was purified by flash chromatography (0-2% MeOH/CH₂Cl₂) to give 1.1 g of the
tetrapeptide tp4. [White foam, 99%, Rf = 0.41 (2% MeOH/CH₂Cl₂)]. MS (ESI) [m/z(%)]: 933.4
([MK]+, 3), 917.5 ([MNa]+, 82), 895.5 ([MH]+, 100), 795.5 ([MH-Boc]+, 4). HRMS (ESI) calculated
for C₅₂H₇₁N₄O₉: 895.5216, found: 895.5204.

Boc-[D-Leu-L-MeN-Ahf(Bn)-D-Leu-L-MeN-Ach]-OFm (op3): A solution of tetrapeptide tp4 (515
mg, 0.46 mmol) in a mixture of piperidine and CH₂Cl₂ (1:4, 5 mL) was stirred at rt for 45 min. The solution was washed with aqueous HCl (5%,
4 x 10 mL), dried with anhydrous Na₂SO₄, filtered and concentrated, to give Boc-D-Leu-L-MeN-
Ahf(Bn)-D-Leu-L-MeN-Ach-OH (tp5), which was used without further purification.

A solution of tetrapeptide tp4 (515 mg, 0.46 mmol) in a mixture of TFA and CH₂Cl₂ (1:1, 6 mL)
was stirred at rt for 30 min. After removal of the solvent under vacuum, the residue was dried
under high vacuum for 3 h. The resulting TFA salt (tp6) was dissolved in dry CH₂Cl₂ (5 mL) under
Argon, and successively treated with DIEA (320 µL, 1.9 mmol), the previously prepared tp5 and
N-HBTU (193 mg, 0.51 mmol). After 2 h stirring at rt, the solution was washed with aqueous HCl
(5%, 2 x 10 mL) and aqueous saturated NaHCO₃ (2 x 10 mL). The organic layer was dried with
anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The resulting crude was
purified by flash chromatography (0-5% MeOH/CH₂Cl₂) to give 683 mg of the desired
octapeptide (op3). [White foam, 98%, Rf = 0.35 (2% MeOH/CH₂Cl₂)]. MS (ESI) [m/z(%)]: 1531.8
([MK]+, 1), 1516.9 ([MNa]+, 24), 1493.9 ([MH]+, 10), 774.7 (100), 769.9 ([MNa]²+, 24), 697.4 ([MH-
Boc]²+, 97). HRMS (ESI) calculated for C₈₅H₁₂₁N₈O₁₅: 1493.8946, found: 1493.8971.

C-[[L-MeN-Ahf(Bn)-D-Leu₁-L-MeN-Ach-D-Leu²]-]₂ (CP3): The
linear octapeptide op3 (400 mg, 0.27 mmol) was dissolved
in a mixture of piperidine and CH₂Cl₂ (1:4, 5 mL) and stirred
at rt for 45 min. The solution was washed with aqueous HCl
(5%, 4 x 10 mL), dried with anhydrous Na₂SO₄, filtered and
consolidated to dryness to give Boc-[D-Leu-L-MeN-Ahf(Bn)-
D-Leu-L-MeN-Ach]-OFm (op3), which was used without further
purification. The resulting octapeptide was dissolved in a
mixture of TFA and CH₂Cl₂ (1:1, 6 mL) and stirred at rt for 20 min. After removal of the solvent
under reduced pressure, the residue was dried under high vacuum for 3 h and used without

further purification. The resulting unprotected linear peptide (op4) was dissolved in dry CH₂Cl₂ (268 mL) and successively treated with DIEA (280 µL, 1.6 mmol) and N-TBTU (112 mg, 0.29 mmol). After 12 h, the solvent was removed under reduced pressure and the residue was dissolved in CH₂Cl₂ (25 mL), washed with aqueous HCl (10%, 2 x 20 mL), dried with anhydrous Na₂SO₄, filtered and concentrated to dryness. The crude was purified by flash chromatography (0-6% MeOH/CH₂Cl₂) to give 200 mg of CP3. [White solid, 62%, Rₓ = 0.37 (5% MeOH/CH₂Cl₂)]. ¹H NMR (16 mM, CDCl₃, 500 MHz, δ): 9.08 (d, J = 9.4 Hz, 1.33H, NH₃eul₁-D₃A₁), 8.79 (d, J = 9.4 Hz, 0.66H, NH₃eul₂-D₃A₁), 8.08 (d, J = 9.2 Hz, 1.33H, NH₃eul₂-D₃A₂), 8.03 (d, J = 9.6 Hz, 0.66H, NH₃eul₂-D₃A₃), 6.96 (br, 4.66H, Bn), 6.68 (br, 4H, Bn), 6.58 (m, 1.33H, Bn), 5.53 (m, 1.33H, ḡnd), 5.45 (m, 0.66H, ḡnd), 5.29 (m, 2H, ḡneul₁), 5.21 (d, J = 5.4 Hz, 0.66H, ḡneul₂-D₃A), 5.13 (m, 2H, ḡneul₂), 4.78 (d, J = 8.3 Hz, 1.33H, ḡneul-D₃B₁), 4.53 (m, 1.33H, ḡneul-D₃B₂), 4.37 (m, 1.33H, ḡneul-D₃B₃), 4.22 (dd, J₁ = 10.2 Hz, J₂ = 8.8 Hz, 1.33H, ḡneul-D₃C₁), 4.06 (m, 2.66H, ḡneul-D₃C₂+ ḡneul-D₃C₃+ ḡneul-D₃C₄), 3.96 (br, 2.66H, ḡneul-D₃C₅), 3.73 (dd, J₁ = 10.7 Hz, J₂ = 9.3 Hz, 1.33H, ḡneul-D₃C₆), 3.66 (AB, J = 9.9 Hz, 0.66H, ḡneul-D₃C₇), 3.60 (AB, J = 9.8 Hz, 0.66H, ḡneul-D₃C₈), 3.33 (s, 2H, NMe₂-D₃A₁), 3.04 (s, 4H, NMe₂-D₃B₁), 2.80 (m, 1.33H, ḡneul-D₃B₁), 2.67 (s, 2H, NMe₂-D₃B₂), 2.62 (s, 4H, NMe₂-D₃B₃), 2.31 (m, 0.66H, ḡneul-D₃B₄), 1.91-1.05 (m, 27.33H, CH₂₃-₃₁ + CH₂₄-₃₂ + CH₂₅-₃₃), 1.04-0.80 (m, 24H, CH₃₁-₃₃), -1.20 (d, J = 11.5 Hz, 0.66H, ḡneul-D₃C₅). ¹³C NMR (CDCl₃, 75.4 MHz, δ): 175.2 (CO), 175.0 (CO), 174.4 (CO), 173.8 (CO), 172.4 (CO), 171.8 (CO), 171.4 (CO), 169.5 (CO), 163.8 (C), 163.6 (C), 128.7 (CH), 128.4 (CH), 128.1 (CH), 127.3 (CH), 127.0 (CH), 82.8 (CH), 82.3 (CH), 79.9 (CH), 77.1 (CH), 72.2 (CH₂), 71.8 (CH₂), 67.9 (CH₃), 66.2 (CH₃), 59.6 (CH), 57.7 (CH), 51.5 (CH), 51.1 (CH), 47.0 (CH), 46.6 (CH), 46.5 (CH), 43.9 (CH₂), 43.5 (CH₂), 31.4 (CH), 30.7 (CH₃), 30.1 (CH₂), 29.8 (CH), 29.3 (CH), 29.0 (CH), 28.7 (CH₂), 25.4 (CH₂), 25.0 (CH₂), 24.7 (CH₂), 24.6 (CH₃), 24.5 (CH₃), 23.7 (CH₃), 23.4 (CH₃), 23.2 (CH₃), 22.5 (CH), 22.1 (CH₃), 21.7 (CH₃). FTIR (298 K, CHCl₃): 3307 (amide A), 3066, 2954, 2925, 2866, 1678 (amide l₁), 1626 (amide l₂), 1526 cm⁻¹ (amide II). MS (ESI) [m/z(%)]: 1219.7 ([MNa]+, 10), 1197.7 ([MH]+, 100), 945.6 (30), 683.6 (60), 599.4 ([MH]⁺, 9). HRMS (ESI) calculated for C₂₆H₃₁N₅O₁₂: 1197.7533, found: 1197.7556.

X-Ray Crystallographic Determination of D₃A
Preparation of single crystals for X-Ray analysis: In a typical experiment, 1.0 mg of pure CP3 was dissolved in 900 µL of CHCl₃, and equilibrated by vapour-phase diffusion against 3.0 mL of hexanes. The corresponding dimer crystallized spontaneously after 7 days.

X-Ray Crystallographic Analysis: Data were collected at 100 K, using Bruker X8 APEXII CCD diffractometer. All calculations were performed on a PC compatible computer using the programs: SORTAV (Blessing, 1995), SHELXT-2014 (Sheldrick, 2014), SHELXL2014/7 (Sheldrick,
ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012). Supplementary crystallographic data for D3a (CIF format) can be obtained free of charge from the journal. The crystal structure was deposited at the Cambridge Crystallographic Data Centre, and the data was assigned to the following deposition number: CCDC 1400134.

c-\{[L-MeN-Ahf-D-Leu^1-L-MeN-Ach-D-Leu^2]_2\} (CP4): A solution of CP3 (50 mg, 0.042 mmol) and Pd/C (36 mg, 10% in wt) in a mixture of MeOH and CH_2Cl_2 (3:1, 20 mL) was stirred at rt for 20 h under hydrogen atmosphere (balloon pressure). The resulting mixture was filtered through a Celite pad, the residue was washed with CH_2Cl_2, and the combined filtrates and washes were concentrated under reduced pressure. The crude was purified by HPLC (Phenomenex Luna 5μ silica, 6-13% MeOH/CH_2Cl_2, 30 min) to give 30 mg of the cyclic peptide CP4. [White solid, 71%, t_R = 22 min].

\[^1^H\] NMR (5 mM, CDCl_3, 298 K, 300 MHz, δ): 7.92 (br, 2H), 5.31 (br, 2H), 5.08 (m, 4H), 4.47 (m, 6H), 4.23 (br, 2H), 3.83 (dd, J_1 = 10.7 Hz, J_2 = 9.0 Hz, 2H), 3.08 (s, 6H), 3.03 (s, 6H), 2.79 (m, 2H), 2.01-1.10 (m, 28H), 1.03-0.80 (m, 24H).

\[^1^H\] NMR (32 mM, CDCl_3, 253 K, 500 MHz, δ): 8.72 (d, J = 9.1 Hz, 0.8H, NH(Leu1)), 8.47 (d, J = 9.1 Hz, 1.2H, NH(Leu1-D4A)), 7.95 (d, J = 8.6 Hz, 0.8H, NH(Leu2)), 7.72 (d, J = 9.4 Hz, 1.2H, NH(Leu2-D4A)), 5.97 (br, 0.8H, OH), 5.48 (br, 1.2H, OH), 5.32 (m, 2H, H_γ AHf), 5.09 (m, 4H, H_α Leu), 4.76 (br, 1H, H_α Ahf-D4A), 4.45 (m, 5H, H_γ Ach + H_β Ahf + H_α Ahf), 3.98 (m, 4H, NMe), 3.07 (s, 6H, NMe_2), 2.98 (s, 4H, NMe_2), 2.62 (m, 2H, H_α Ach), 2.07-1.14 (m, 28H, CH_2 Ach + CH_2 Leu + CH_Leu), 1.07-0.68 (m, 24H, CH_3 Leu).

\[^1^H\] NMR (32 mM, 5% CD_3OH/CDCl_3, 253 K, 500 MHz, δ): 8.83 (d, J = 9.3 Hz, 0.2H, NH(Leu1)), 8.64 (d, J = 8.9 Hz, 1.8H, NH(Leu1-D4A)), 8.15 (d, J = 9.5 Hz, 1.8H, NH(Leu2-D4A)), 7.94 (d, J = 8.0 Hz, 0.2H, NH(Leu2)), 6.11 (s, 1.8H, OH), 5.76 (s, 0.2H, OH), 5.31 (m, 2H, H_β Ahf), 5.13 (m, 4H, H_α Leu), 4.62 (d, J = 7.9 Hz, 2H, H_α Ahf), 4.57 (m, 2H, H_γ Ach), 4.31 (dd, J_1 = 9.7 Hz, J_2 = 8.7 Hz, 2H, H_β Ahf), 4.05 (m, 0.2H, H_δ Ahf), 3.96 (d, J = 9.6 Hz, 3.6H, H_δ Ahf-D4A), 3.84 (m, 0.2H, H_δ Ahf), 3.37 (s, 2H, CH_3OH), 3.09 (s, 5.4H, NMe_2), 3.06 (s, 0.6H, NMe_2), 2.93 (s, 6H, NMe_2), 2.78 (m, 2H, H_α Ach), 1.97-1.15 (m, 28H, CH_2 Ach + CH_2 Leu + CH_Leu), 0.98 (d, J = 6.3 Hz, 4H, CH_3 Leu), 0.87 (dd, J_1 = 8.1 Hz, J_2 = 6.8 Hz, 16H, CH_3 Leu), 0.82 (d, J = 6.9 Hz, 4H, CH_3 Leu).

FTIR (298 K, CHCl_3): 3437, 3298 (amide A), 2955, 2931, 2867, 1676 (amide I), 1621 (amide II), 1537 cm\(^{-1}\) (amide II). MS (ESI) [m/z(%)]: 1017.6 ([MH]^+, 16), 536.8 (32), 528.3 ([MK]^2+, 21), 509.3 ([MH]^2+, 9), 381.3 (100). HRMS (ESI) calculated for C_{52}H_{89}N_{8}O_{12}: 1017.6594, found: 1017.6556.
c-[L-MeN-Ahf(pic)-D-Leu¹-L-MeN-Ach¹-D-Leu²-L-MeN-Ahf-D-Leu³-L-MeN-Ach²-D-Leu⁴⁻] [CP5]: A solution of CP4 (5.5 mg, 5.4 µmol) in CH₂Cl₂ (1 mL) was treated with 2-picolinic acid (0.73 mg, 5.9 µmol), EDC·HCl (1.1 mg, 5.9 µmol), HOBT (0.79 mg, 5.9 µmol) and DMAP (0.72 mg, 5.9 µmol). Each 12 h, additional 2-picolinic acid (1.5 mg, 11.8 µmol), EDC (2.2 mg, 11.8 µmol) and DMAP (1.4 mg, 11.8 µmol) was added during 3-4 days. Then, the solution was washed with aqueous saturated NaHCO₃ (2 x 5 mL) and aqueous HCl (5%, 2 x 5 mL). The organic layer was dried with anhydrous Na₂SO₄, filtered and concentrated to dryness. The crude was purified by HPLC (Phenomenex Luna 5µ silica, 7-11% MeOH/CH₂Cl₂, 30 min) to give 3.2 mg of the cyclic peptide CP5. [White solid, 54%, tₖ = 20 min].

1H NMR (CDCl₃, 300 MHz, δ): 8.80-8.15 (m, 3H), 7.99-7.56 (m, 3H), 7.43 (m, 1H), 7.11 (m, 0.5H), 6.72 (m, 0.5H), 6.06-3.67 (m, 17H), 3.35 (s, 1.5H), 3.21 (s, 1H), 3.20 (s, 2H), 3.17 (s, 1H), 3.13 (s, 1H), 3.01 (s, 4H), 2.84 (s, 1.5H), 2.37 (m, 2H), 2.12-0.54 (m, 52H).

FTIR (298 K, CHCl₃): 3298 (amide A), 3003, 2956, 2929, 2868, 1747 (C=O), 1683 (amide I), 1540 cm⁻¹ (amide II). **MS (ESI) [m/z(%)]:** 1144.7 ([MNa⁺], 23), 1122.7 ([MH⁺], 32), 572.8 ([IMNa⁺⁺], 8), 511.3 (34), 500.3 (100). **HRMS (ESI) calculated for C₅₈H₉₂N₉O₁₃:** 1122.6809, **found:** 1122.6807.

ADDITION EXPERIMENT OF AgBF₄:

CP5 (2.2 mg, 1.9 µmol) was dissolved in CDCl₃ (400 µL) in a NMR tube. In a flask under Ar and protected from light, AgBF₄ (15.8 mg, 0.081 mmol) (dry box) was dissolved in CD₂CN (2.0 mL). Then, different portions (0.1, 0.2, 0.3, 0.4 and 0.5 equiv) of the solution of AgBF₄ (24 µL, 0.95 µmol) were added to the NMR tube to form mainly the complex s-DS₅⇒Ag.

1H NMR (4.5 mM, CDCl₃, 500 MHz, δ): 8.66 (d, J = 9.1 Hz, 0.25H, NHₘ𝑖𝑛𝑜𝑟), 8.55 (d, J = 9.2 Hz, 1H, NHₗₑᵤₙ(maj)⇒m𝑖𝑛𝑜𝑟), 8.43 (d, J = 9.6 Hz, 0.75H, NHₗₑᵤₙ(maj)⇒m𝑖𝑛𝑜𝑟), 7.99 (d, J = 9.1 Hz, 0.75H, NHₗₑᵤₙ(maj)⇒m𝑖𝑛𝑜𝑟), 7.93 (d, J = 9.2 Hz, 0.75H, NHₗₑᵤ₂(maj)⇒m𝑖𝑛𝑜𝑟), 7.87 (d, J = 4.3 Hz, 0.25H, Picₘ𝑖𝑛𝑜𝑟), 7.78 (s, 1H, NHₗₑᵤ₂+H₆-Pic_major), 7.65 (d, J = 9.1 Hz, 0.25H, NHₘ𝑖𝑛𝑜𝑟), 7.51 (m, 1H, H₃-Pic_major+Pic_minor), 7.23 (m, 0.25H, Pic_minor), 7.10 (m, 1.50H, H₄/H₅-Pic_major), 6.93 (m, 0.25H, Pic_minor), 5.82 (m, 1.50H, Hᵥₐᵥₐ(hiv), 5.63 (dd, J₁ = 9.7 Hz, J₂ = 9.2 Hz, 0.75H, Hᵥₐᵥₐ(hiv), 5.41 (m, 1H, Hᵥₐᵥₐ), 5.27 (m, 1.25H, Hᵥₐᵥ₂), 5.19 (m, 1.5H, Hᵥₐᵤ₂+Hᵥₐᵤ₂+(hiv), 5.12 (m, 1.25H, Hᵥₐᵤ₂), 5.07 (m, 1.5H, Hᵥₐᵤ₂), 4.93 (d, J = 9.0 Hz, 0.75H, Hᵥₐᵥₐ(hiv), 4.81 (br, 0.25H), 4.59 (d, J = 8.5 Hz, 1.50H, Hᵥₐᵥ₂), 4.40 (dd, J₁ = 10.6 Hz, J₂ = 8.9 Hz, 0.75H, Hᵥₐᵥ₂(hiv), 4.33 (dd, J₁ = 11.7 Hz, J₂ = 9.6 Hz, 0.75H, Hᵥₐᵤ₂(hiv), 4.27 (m, 0.75H, Hᵥₐᵤ₂(hiv), 4.12 (dd, J₁ = 9.3 Hz, J₂ = 8.8 Hz, 0.75H, Hᵥₐᵤ₂(hiv), 4.02 (dd, J₁ = 9.8 Hz, J₂ = 8.3 Hz, 0.75H, Hᵥₐᵤ₂(hiv)), 3.97 (dd, J₁ = 10.2 Hz, J₂ = 9.7 Hz, 0.75H, Hᵥₐᵤ₂(hiv)), 3.92 (m, 0.75H, Hᵥₐᵤ₂(hiv)), 3.82 (m, 0.5H), 3.28 (s, 2.25H, NMe₅(Ahf(pic))), 3.16 (s,
0.75H, NMe), 3.14 (s, 0.75H, NMe), 3.13 (s, 2.25H, NMeAhf), 3.06 (s, 2.25H, NMeAch2), 2.96 (s, 0.75H), 2.94 (s, 0.75H), 2.82 (s, 2.25H, NMeAch1), 2.57 (m, 0.75H, HαAch2(major)), 2.48 (m, 0.25H, HαAch(minor)), 2.35 (m, 0.75H, HαAch1(major)), 2.26 (m, 0.25H, HαAch(minor)), 2.02-1.17 (m, 27H, CH2Ach + CH2Leu + CHLeu), 1.04-0.77 (m, 24H, CH3Leu), 0.11 (d, J = 9.0 Hz, 0.75H, HβAch1(major)). MS (ESI) [m/z(%)]: 2957.6 (35), 2546.2 (Dimer+Ag+AgBF4, 71), 2352.3 (Dimer+Ag, 100), 2247.2 (Dimer, 28), 2057.3 (28), 1230.6 (CP+Ag, 19), 942.1 (17). HRMS (ESI) calculated for C116H182AgN18O16: 2350.2518, found: 2350.2604.

ADDITION EXPERIMENT OF OXALIC ACID:

CP5 (2.5 mg, 2.3 µmol) was dissolved in CDCl3 (400 µL) in a NMR tube. In another flask, (CO2H)2 ∙ 2H2O (7.9 mg, 0.063 mmol) was dissolved in CD3CN (1.0 mL). Then, different portions (0.1, 0.2, 0.3, 0.4 and 0.5 equiv) of the solution of (CO2H)2 ∙ 2H2O (17.8 µL, 1.15 µmol) were added to the NMR tube to form mainly the complex s-DSeca(CO2H)2. 1H NMR (5mM, CDCl3, 500 MHz, δ): 8.65 (d, J = 9.2 Hz, 1H, NH[Leu3]), 8.47 (d, J = 9.5 Hz, 1H, NH[Leu1]), 8.15 (d, J = 9.4 Hz, 1H, NH[Leu4]), 7.96 (s, 1H, H6-Pic), 7.92 (d, J = 10.0 Hz, 1H, NH[Leu2]), 7.48 (br, 1H, H3-Pic), 7.18 (br, 2H, H4/H5-Pic), 5.82 (m, 1H, HγAhf(pic)), 5.60 (dd, J1 = 10.3 Hz, J2 = 9.4 Hz, 1H, HβAhf(pic)), 5.46 (m, 1H, HγAhf), 5.30 (m, 1H, HαLeu4), 5.23 (m, 1H, HαLeu3), 5.14 (m, 2H, HαLeu2 + OH), 5.08 (m, 1H, HαLeu1), 4.92 (d, J = 9.1 Hz, 1H, HαAhf(pic)), 4.71 (d, J = 8.5 Hz, 1H, HαAhf), 4.49 (dd, J1 = 11.0 Hz, J2 = 8.7 Hz, 1H, HδAhf), 4.32 (m, 2H, HδAhf(pic) + HγAch2), 4.14 (m, J1 = 11.5 Hz, J2 = 9.0 Hz, 1H, HδAhf), 4.02 (dd, J1 = 10.1 Hz, J2 = 8.9 Hz, 1H, HδAhf(pic)), 3.96 (dd, J1 = 11.1 Hz, J2 = 9.6 Hz, 1H, HδAhf), 3.92 (m, 1H, HγAch1), 3.28 (s, 3H, NMeAhf(pic)), 3.12 (s, 3H, NMeAhf), 3.08 (s, 3H, NMeAch2), 2.83 (s, 3H, NMeAch1), 2.65 (m, 1H, HαAch2), 2.40 (m, 1H, HαAch1), 1.88-1.07 (m, 27H, CH2Ach + CH2Leu + CHLeu), 1.06-0.70 (m, 24H, CH3Leu), 0.15 (d, J = 11.8 Hz, 1H, HβAch1).
NMR and FTIR Spectra:

Boc-\textit{D}-Leu-\textit{L}-Ahf(Bn)-OMe (3): 1H NMR (CDCl$_3$, 298 K, 250 MHz), DEPT and 13C NMR (CDCl$_3$, 298 K, 75.4 MHz).
Boc-D-Leu-L-Ahf(Bn)-OH (dp2): 1H NMR (CDCl$_3$, 298 K, 300 MHz), DEPT and 13C NMR (CDCl$_3$, 298 K, 75.4 MHz).
Boc-D-Tyr(Me)-L-Me-N-Ach-OFm (dp1): 1H NMR (CDCl$_3$, 298 K, 300 MHz), DEPT and 13C NMR (CDCl$_3$, 298 K, 75.4 MHz).
c-\{[L-Ahf(Bn)-D-Tyr(Me)-L-MeN-Ach- D-Leu-]\}_\text{2} \text{(CP1)}$: 1H NMR (7.5 mM, CDCl\textsubscript{3}, 298 K, 300 MHz) and 13C NMR (CDCl\textsubscript{3}, 298 K, 75.4 MHz).
FTIR (298 K, CHCl$_3$):
c-\{[L-Ahf-D-Tyr(Me)-L^{Me}N-Ach-D-Leu-]-2\} (CP2): 1H NMR (20 mM, CDCl$_3$, 298 K, 300 MHz), DEPT and 13C NMR (CDCl$_3$, 298 K, 75.4 MHz).
COSY (20 mM, CDCl₃, 298 K, 500 MHz).

TOCSY (20 mM, CDCl₃, 298 K, 500 MHz).
NOESY (20 mM, CDCl$_3$, 298 K, 500 MHz).

- [Diagram of NOESY spectrum]

FTIR (298 K, CHCl$_3$):

- [Diagram of FTIR spectrum]
Boc-D-Leu-L-MeN-Ahf(Bn)-OMe (4): 1H NMR (CDCl$_3$, 298 K, 300 MHz), DEPT and 13C NMR (CDCl$_3$, 298 K, 75.4 MHz).
Boc-D-Leu-L-MeN-Ahf(Bn)-OH (dp5): 1H NMR (CDCl\textsubscript{3}, 298 K, 300 MHz), DEPT and 13C NMR (CDCl\textsubscript{3}, 298 K, 75.4 MHz).
Boc-D-Leu-L^MeN-Ach-Ofm (dp4): \(^1\text{H} \text{NMR}\) (CDCl\(_3\), 298 K, 300 MHz), DEPT and \(^{13}\text{C} \text{NMR}\) (CDCl\(_3\), 298 K, 75.4 MHz).
c-{[L-MeN-Ahf(Bn)-D-Leu\(^1\)-L-MeN-Ach-D-Leu\(^2\)-]} \(\text{CP3} \): \(^1\)H NMR (16 mM, CDCl\(_3\), 298 K, 500 MHz), DEPT and \(^{13}\)C NMR (CDCl\(_3\), 298 K, 75.4 MHz).
COSY (16 mM, CDCl₃, 298 K, 500 MHz).

TOCSY (16 mM, CDCl₃, 298 K, 500 MHz).
NOESY (16 mM, CDCl$_3$, 298 K, 500 MHz).

ROESY (16 mM, CDCl$_3$, 298 K, 500 MHz).
FTIR (298 K, CHCl₃):

![FTIR spectrum image]
c-[[L-MeN-Ahf-D-Leu1-L-MeN-Ach-D-Leu2]_2] (CP4):

1H NMR (5 mM, CDCl\textsubscript{3}, 298 K, 500 MHz).

1H NMR (32 mM, CDCl\textsubscript{3}, 253 K, 500 MHz).
COSY (16 mM, CDCl$_3$, 253 K, 500 MHz).

TOCSY (16 mM, CDCl$_3$, 253 K, 500 MHz).
ROESY (16 mM, CDCl₃, 253 K, 500 MHz).

1H NMR (32 mM, 5% CD₃OH/CDCl₃, 253 K, 500 MHz).
COSY (32 mM, 5% CD$_3$OH/CDCl$_3$, 253 K, 500 MHz).

TOCSY (32 mM, 5% CD$_3$OH/CDCl$_3$, 253 K, 500 MHz).
ROESY (32 mM, 5% CD$_3$OH/CDCl$_3$, 253 K, 500 MHz).

FTIR (298 K, CHCl$_3$):
c-[L-MeN-Ahf(pic)-D-Leu1-L-MeN-Ach1-D-Leu2-L-MeN-Ahf-D-Leu3-L-MeN-Ach2-D-Leu4-] (CP5):

\(^1\)H NMR (CDCl$_3$, 298 K, 300 MHz).

FTIR (298 K, CHCl$_3$):
c-[L-\text{Me}N-Ahf(pic)-D-Leu1-L-\text{Me}N-Ach1-D-Leu2-L-\text{Me}N-Ahf-D-Leu3-L-\text{Me}N-Ach2-D-Leu4]- + 0.5 equiv of AgBF\textsubscript{4} ([\text{D-5}E ∵ Ag]): 1H NMR (4.5 mM, CDCl\textsubscript{3}, 298 K, 500 MHz).

\textbf{COSY} (4.5 mM, CDCl\textsubscript{3}, 298 K, 500 MHz).
TOCSY (4.5 mM, CDCl₃, 298 K, 500 MHz).

NOESY (4.5 mM, CDCl₃, 298 K, 500 MHz).
ROESY (4.5 mM, CDCl₃, 298 K, 500 MHz).
c-[L-MeN-Ahf(pic)-D-Leu\(^1\)-L-MeN-Ach\(^1\)-D-Leu\(^2\)-L-MeN-Ahf-D-Leu\(^3\)-L-MeN-Ach\(^2\)-D-Leu\(^4\)-] + 0.5 equiv of (CO\(_2\)H)\(_2\) \cdot 2\(\text{H}_2\)O \(\text{s-D5} \supset\) (CO\(_2\)H)\(_2\): \(^1\text{H}\) NMR (5 mM, CDCl\(_3\), 298 K, 500 MHz).

COSY (5 mM, CDCl\(_3\), 298 K, 500 MHz).
TOCSY (5 mM, CDCl₃, 298 K, 500 MHz).

NOESY (5 mM, CDCl₃, 298 K, 500 MHz).
ROESY (5 mM, CDCl₃, 298 K, 500 MHz).
Computational methods:

The starting geometries of the cyclic peptides investigated in this work were constructed from X-ray crystallographic data of related compounds: c-[(D-Phe-L-MeN-γ-Ach)]4[1] and previous simulations carried out with related systems[2]. The silver complex from these dimers was built using the optimized structures of bis(methyl picolinate) silver(I) complexes. All DFT calculations were carried out using the B3LYP[3] functional with the standard 6-31G(d) basis set for C, N, O and H[4] and Lanl2dz pseudopotential basis set for Ag[5], as implemented in the Gaussian 09[6] program package.

[1] Amorín, M., Castedo, L. and Granja, J. R.; Self-Assembled Peptide Tubulets with 7 Å Pores. Chem. Eur. J. 2005, 11, 6543–6551.

[2] (a) Garcia-Fandino, R.; Castedo, L.; Granja, J. R.; Vázquez, S. Interaction and Dimerization Energies in Methyl-Blocked α,γ-Peptide Nanotube Segments. J. Phys. Chem. B 2010, 114, 4973–4983. (b) García-Fandino, R.; Granja, J. R.; Marco, D. A.; Orozco, M. Theoretical characterization of the dynamical behavior and transport properties of α,γ-peptide nanotubes in solution. J. Am. Chem. Soc. 2009, 131, 15678-15686. (c) García-Fandiño, R.; Granja, J. R. From α,γ-cyclic peptides to homo/hetero dimers and nanotubes in polar and non-polar solvents. Towards control of nanotube length: a computational study. J. Phys. Chem. C. 2013, 117, 10143-10162. (d) Garcia-Fandino, R.; Amorín, M.; Castedo, L.; Granja, J. R. Transmembrane ion transport by self-assembling α,γ-peptide nanotubes. Chem. Sci. 2012, 3, 3280-3285.

[3] Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648-52.

[4] Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory, 1st ed.; Wiley: New York, 1986.

[5] Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-83.

[6] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R. et al., Gaussian 09, Revision A.01, Gaussian Inc., Wallingford, CT, USA, 2009.

Geometries

Cartesian coordinates (Å) of conformations optimized at the B3LYP/6-31G(d) basis set for C, N, O and H and Lanl2dz pseudopotential basis set for Ag
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	4.129494	-3.235475	0.341259
2	6	0	3.326356	3.043674	-0.277417
3	6	0	2.106282	2.367067	-0.224799
4	7	0	2.023797	1.035051	-0.100148
5	6	0	3.164118	0.318997	-0.020096
6	6	0	4.423229	0.918155	-0.065254
7	6	0	4.503849	2.305581	-0.196990
8	6	0	2.998973	-1.171098	0.123802
9	8	0	4.169768	-1.796073	0.196482
10	8	0	1.917643	-1.736553	0.169547
11	6	0	-4.133667	3.233334	0.341120
12	8	0	-4.172184	1.793882	0.196269
13	6	0	-3.322343	-3.044836	-0.277613
14	6	0	-2.103201	-2.366545	-0.224914
15	7	0	-2.022628	-1.034423	-0.100252
16	6	0	-3.163919	-0.319958	-0.020261
17	6	0	-4.422205	-0.920830	-0.065500
18	6	0	-4.500866	-2.308371	-0.197258
19	6	0	-3.000653	1.170314	0.123702
20	8	0	-1.919984	1.737045	0.169578
21	47	0	-0.000048	0.001765	-0.022877
22	1	0	3.606483	-3.502706	1.261834
23	1	0	3.622283	-3.682319	-0.516340
24	1	0	5.171958	-3.546543	0.381762
25	1	0	3.340425	4.123593	-0.379162
26	1	0	1.164464	2.903538	-0.282526
27	1	0	5.313111	0.305151	0.002105
28	1	0	5.471180	2.796775	-0.234872
29	1	0	-5.176512	3.543130	0.381553
30	1	0	-3.611509	3.501150	1.261746
31	1	0	-3.626926	3.680825	-0.516419
32	1	0	-3.334935	-4.124773	-0.379366
33	1	0	-1.160595	-2.901643	-0.282567
34	1	0	-5.312946	-0.309063	0.001815
35	1	0	-5.467507	-2.800917	-0.235219
Perpendicularly oriented bis(methyl picolinate) silver(I) complex

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	4.129494	-3.235475	0.341259
2	6	0	3.326356	3.043674	-0.277417
3	6	0	2.106282	2.367067	-0.224799
4	7	0	2.023797	1.035051	-0.100148
5	6	0	3.164118	0.318997	-0.020096
6	6	0	4.423229	0.918155	-0.065254
7	6	0	4.503849	2.305581	-0.196996
8	6	0	2.998973	-1.171098	0.123802
9	8	0	4.169768	-1.796073	0.196482
10	8	0	1.917643	-1.736553	0.169547
11	6	0	-4.133667	3.233334	0.341120
12	8	0	-4.172184	1.793882	0.196269
13	6	0	-3.322343	-3.044836	-0.277613
14	6	0	-2.103201	-2.366545	-0.224914
15	7	0	-2.022628	-1.034423	-0.100252
16	6	0	-3.163919	-0.319958	-0.020261
17	6	0	-4.422205	-0.928830	-0.065500
18	6	0	-4.500866	-2.308371	-0.197258
19	6	0	-3.006653	1.170314	0.123702
20	8	0	-1.919984	1.737045	0.169578
21	47	0	-0.000048	0.001765	-0.022877
22	1	0	3.606483	-3.502706	1.261834
23	1	0	3.622283	-3.682319	-0.516340
24	1	0	5.171958	-3.546543	0.381762
25	1	0	3.340425	4.123593	-0.379162
26	1	0	1.164464	2.903538	-0.282526
27	1	0	5.313111	0.305151	0.002185
28	1	0	5.471180	2.796775	-0.234872
29	1	0	-5.176512	3.543130	0.381553
30	1	0	-3.611049	3.501150	1.261746
31	1	0	-3.626926	3.680825	-0.516419
32	1	0	-3.334935	-4.124773	-0.379366
33	1	0	-1.160595	-2.901643	-0.282567
34	1	0	-5.312946	-0.309063	0.001815
35	1	0	-5.467507	-2.800917	-0.235219
Syn-eclipsed dimer

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	47	0	0.745805	-0.189113	0.018908
2	6	0	-5.781976	4.035521	-2.455178
3	6	0	0.647979	-2.253207	2.460937
4	6	0	-3.485474	4.624260	-2.630207
5	6	0	-2.272957	5.455639	-2.009179
6	6	0	-0.877064	4.831939	-2.179156
7	6	0	-0.027689	6.051546	-2.563265
8	6	0	1.329090	5.71976	-2.195236
9	6	0	2.300218	4.890436	-2.048908
10	6	0	1.065067	-0.785365	4.478265
11	6	0	1.468979	5.508053	-4.546469
12	6	0	-1.017468	6.816821	-3.450465
13	6	0	0.939188	-0.923988	3.096730
14	6	0	1.319744	1.331999	2.765445
15	6	0	1.456522	1.558029	4.138536
16	6	0	-6.989822	4.890436	-2.048908
17	6	0	-6.009968	1.837397	-4.315361
18	6	0	-6.493472	0.237385	-2.408727
19	6	0	-5.433062	-0.813506	-2.782735
20	6	0	-7.896283	-0.156542	-2.982799
21	6	0	-8.281680	-1.546866	-2.377667
22	6	0	-7.244069	-2.603020	-2.77485
23	6	0	-5.821626	-2.220519	-2.295758
24	6	0	-4.834493	-3.267039	-2.820879
25	6	0	-6.489187	5.548111	2.166710
26	6	0	-3.941318	-5.19573	-2.516439
27	6	0	-4.562574	-6.863384	-2.189915
28	6	0	-2.524364	-5.402980	-1.928425
29	6	0	-5.431138	4.529140	2.610385
30	6	0	-5.717505	2.109857	2.956237
31	6	0	-1.602232	-6.181953	-4.184641
32	6	0	-0.131209	-5.589836	-2.142933
33	6	0	0.792498	-4.631379	2.903513
34	6	0	-6.324012	0.825256	2.384819
35	6	0	0.783948	-6.817004	-2.013568
36	6	0	-7.814384	0.784817	2.880564
37	6	0	2.089633	-4.851865	-2.120111
38	6	0	3.344518	-4.384599	-2.867927
39	6	0	-8.494707	-0.525145	2.393972
40	6	0	-7.743104	-1.744872	2.946925
41	6	0	5.745795	-3.923297	-2.630905
42	6	0	6.888473	-4.840898	-2.182934
43	6	0	6.083468	-2.480723	-2.142935
44	6	0	-5.567177	-0.413473	2.903777
45	6	0	-6.272573	-1.720488	2.495847
46	6	0	5.818542	-1.712929	-4.497352
47	6	0	6.361428	-0.106622	-2.614725
48	6	0	5.285726	0.933644	-2.985386
49	6	0	7.754631	0.300828	-3.126537
50	6	0	8.137781	1.691247	-2.604435
51	6	0	7.085724	2.738230	-2.988136
52	6	0	5.670663	2.342168	-2.492718
53	6	0	4.691944	3.398841	-3.007341
-----	---	---	------------------	------------------	------------------
54	6	0	-5.330387	-3.107485	4.399790
55	6	0	-5.231753	-3.888442	2.046524
56	6	0	3.768428	5.632268	-2.630728
57	6	0	4.381673	6.931777	-2.082390
58	6	0	-1.790729	1.149927	-3.465805
59	6	0	-0.959267	1.110087	-2.343485
60	6	0	-0.330709	-1.071866	-2.793518
61	6	0	-1.162239	-1.126287	-3.911450
62	6	0	-1.900279	0.086926	-4.253386
63	6	0	0.552492	-2.226962	2.094086
64	6	0	4.958803	3.841854	1.888014
65	6	0	4.378042	5.168722	2.418466
66	6	0	1.945053	5.169256	2.778485
67	6	0	0.592597	5.591710	2.198575
68	6	0	-0.558892	4.620081	2.504466
69	6	0	-1.746620	5.601758	1.903663
70	6	0	-5.314404	-6.410550	2.063315
71	6	0	-4.049475	4.969195	2.094086
72	6	0	-4.537982	-5.177096	2.539251
73	6	0	-3.122948	4.730823	4.004945
74	6	0	-1.146676	6.814965	3.198777
75	6	0	-2.094715	-5.103035	2.859728
76	6	0	-0.752301	-5.038015	2.113174
77	6	0	1.037548	-6.568666	1.903663
78	6	0	5.272745	6.329859	1.963141
79	6	0	0.417383	-4.607065	3.007636
80	6	0	1.593450	-5.170796	2.205046
81	6	0	5.279757	3.109209	4.236991
82	6	0	6.110870	1.716989	2.291824
83	6	0	5.418304	0.403584	2.698595
84	6	0	7.587607	1.749960	2.723104
85	6	0	8.341347	0.531730	2.171850
86	6	0	7.673443	-0.779029	2.603692
87	6	0	6.183575	-0.828054	2.180807
88	6	0	5.569873	-2.117947	2.732450
89	6	0	3.148088	-5.195001	4.231549
90	6	0	3.946442	-4.836971	1.900460
91	6	0	5.360682	-4.541858	2.428545
92	6	0	6.334306	-5.630798	1.963397
93	6	0	-5.994518	2.591769	-1.951863
94	7	0	1.306777	5.749712	-3.104538
95	7	0	-5.746149	3.190137	2.123346
96	7	0	-6.118990	1.595078	-2.869871
97	7	0	-5.544711	-2.926243	2.957773
98	7	0	-4.757912	-4.486090	-2.068247
99	7	0	-3.168088	-5.159575	2.034423
100	7	0	-1.461199	-5.795816	-2.697746
101	7	0	4.461932	-4.370735	-2.105674
102	7	0	2.930400	-5.082450	2.783155
103	7	0	6.066560	-1.473279	-3.057666
104	7	0	5.768741	-3.224308	1.955273
105	7	0	4.499786	4.464125	-2.171511
106	7	0	5.383968	2.911998	2.784396
107	7	0	-0.243000	0.025169	-2.011761
108	7	0	-4.548841	4.594381	-1.910826
109	7	0	3.067897	5.346694	1.950860
110	7	0	-3.021298	5.102782	2.981060
111	7	0	1.070402	0.120601	2.249939
112	8	0	4.196730	3.349267	-4.135638
---	---	---	---	---	---
172	1	0	-5.582865	-6.936582	-2.497717
173	1	0	-4.592762	-6.967504	-1.020607
174	1	0	-5.443385	4.455784	3.695703
175	1	0	-1.888302	-5.329760	-4.731304
176	1	0	-0.646890	-6.570993	-4.460774
177	1	0	-2.340538	-6.978886	-4.223433
178	1	0	-0.309897	-5.174461	-1.149583
179	1	0	0.971443	-4.943638	-3.935069
180	1	0	-6.274710	0.861139	1.289393
181	1	0	0.587493	-7.370525	-1.089376
182	1	0	0.683738	-7.580237	-2.868468
183	1	0	-7.867317	0.896917	3.900078
184	1	0	-8.340761	1.642837	2.373811
185	1	0	2.057842	-4.395626	-1.129750
186	1	0	-9.534151	-0.534176	2.743654
187	1	0	-8.534126	-0.588827	1.296480
188	1	0	-7.800412	-1.737694	4.844654
189	1	0	-8.212685	-2.674445	2.605293
190	1	0	5.654166	-3.972695	-3.715177
191	1	0	6.677951	-5.871656	-2.480810
192	1	0	7.832244	-4.530454	-2.645763
193	1	0	7.019442	-4.797634	-1.098484
194	1	0	-4.509933	-0.417433	2.514951
195	1	0	-5.493063	-0.317889	3.992529
196	1	0	-6.254892	-1.793149	1.406596
197	1	0	4.918413	-2.308347	-4.680744
198	1	0	5.698004	-0.751937	-4.995968
199	1	0	6.684237	-2.215356	-4.945294
200	1	0	6.409527	-0.175165	-1.526055
201	1	0	4.324211	0.629428	2.552355
202	1	0	5.139004	0.992156	-4.069397
203	1	0	7.763167	0.311451	-4.225539
204	1	0	8.490171	-0.448113	-2.887093
205	1	0	9.118486	1.984284	-2.998267
206	1	0	8.238391	1.655685	-1.596868
207	1	0	7.054484	2.845459	-4.081048
208	1	0	7.354995	3.718994	-2.578635
209	1	0	5.671271	2.365788	-1.395760
210	1	0	-5.536182	-2.163619	4.903012
211	1	0	-6.000340	-3.865534	4.822410
212	1	0	-4.295981	-3.384213	4.618205
213	1	0	3.852312	5.635977	-3.715700
214	1	0	5.435562	6.987370	-2.369663
215	1	0	4.307852	6.974622	-0.992400
216	1	0	3.863975	7.886280	-2.491384
217	1	0	-2.340278	2.058877	-3.696020
218	1	0	-0.855737	1.972070	-1.691395
219	1	0	-1.231401	-2.037633	-4.490037
220	1	0	-2.551965	-0.011791	-5.121146
221	1	0	4.312933	5.176967	3.583215
222	1	0	0.677520	5.723521	1.104013
223	1	0	-0.407640	4.227549	3.515330
224	1	0	-1.929852	5.871765	1.434555
225	1	0	-4.782540	-7.320725	2.355385
226	1	0	-5.437878	-6.397546	0.977459
227	1	0	-6.313275	-6.431857	2.514035
228	1	0	-4.448985	-5.210703	3.622357
229	1	0	-2.117478	4.559496	4.788473
230	1	0	-3.583728	5.527780	4.996738
---	----	----	----------	----------	----------
231	1	0	-3.692188	3.806924	4.521318
232	1	0	-1.208194	6.719461	4.291466
233	1	0	-1.614493	7.760439	2.966534
234	1	0	-0.849799	-4.384444	1.242596
235	1	0	1.182919	-7.256214	2.749065
236	1	0	1.491170	-7.003550	1.008882
237	1	0	6.277711	6.227019	2.387446
238	1	0	5.370806	6.343680	0.874197
239	1	0	4.850724	7.281393	2.299587
240	1	0	0.285369	-5.093412	3.975437
241	1	0	1.650157	-4.628396	1.262380
242	1	0	5.490239	2.161638	4.732111
243	1	0	6.000147	3.848639	4.606817
244	1	0	4.270241	3.417514	4.516874
245	1	0	6.072618	1.800942	1.204055
246	1	0	5.340247	0.311544	3.787558
247	1	0	4.392664	0.399928	2.308348
248	1	0	8.048220	2.681378	2.371419
249	1	0	7.659802	1.750109	3.819656
250	1	0	8.369338	0.584062	1.073717
251	1	0	9.383784	0.552336	2.511719
252	1	0	8.203032	-1.636008	2.174019
253	1	0	7.733552	-0.880071	3.696614
254	1	0	6.143119	-0.861143	1.084854
255	1	0	3.898854	-5.957436	4.458687
256	1	0	2.218703	-5.506991	4.707888
257	1	0	3.462989	-4.236524	4.655780
258	1	0	5.369506	-4.476329	3.514901
259	1	0	7.349105	-5.390202	2.293486
260	1	0	6.054845	-6.604042	2.382737
261	1	0	6.325912	-5.722458	0.873553
262	1	0	-5.932267	3.057748	1.129089
263	1	0	-5.030654	-4.362519	-1.086321
264	1	0	-3.025962	-5.111089	1.024295
265	1	0	4.375677	-4.535119	-1.102101
266	1	0	5.989668	-3.099211	0.966631
267	1	0	4.729940	4.375251	-1.181495
268	1	0	-4.530701	4.896151	-0.935128
269	1	0	2.845941	5.546768	0.965665
270	1	0	-0.850610	3.799046	0.745923
271	1	0	0.511407	4.459131	-0.857415
	6	0	-5.387776	-0.955010	-3.136076
---	---	---	-----------	-----------	-----------
2			5.480198	3.116242	4.348196
3			3.662393	-4.386280	-3.029401
4			2.351676	-4.727118	-2.295421
5			1.123014	-4.294475	-3.098874
6			0.045984	-5.193872	-2.490481
7			-3.299278	4.828267	4.232950
8			-2.310339	-5.553279	-2.278560
9			-5.196808	-3.275313	4.121662
10			0.837204	-6.516682	-2.467108
11			1.490320	1.157781	-3.736160
12			1.341026	-0.217391	-3.544760
13			0.760354	-0.669921	-2.359696
14			7.175486	-4.813252	-2.240769
15			6.289164	-2.449338	-2.196173
16			0.431975	1.489087	1.600166
17			1.014555	2.018878	2.754446
18			6.553516	-0.049735	2.601221
19			7.891437	0.499800	3.123281
20			8.150248	1.903071	2.556186
21			7.000750	2.862128	2.888793
22			5.379964	0.899246	2.910225
23			5.636235	2.324463	2.385770
24			4.545858	3.288820	2.862538
25			3.213977	-4.956738	4.081913
26			-0.565997	1.979656	2.845839
27			3.503995	5.474887	-2.487132
28			4.207389	6.818941	-2.224282
29			2.147537	5.483096	-1.763056
30			-1.419992	-0.474277	5.619783
31			-1.118267	0.726349	4.974003
32			-0.221859	6.060808	-1.734840
33			-0.918215	7.402655	-2.085649
34			-0.861966	0.712210	3.682446
35			-1.329518	5.005132	-2.033467
36			-2.594063	5.885451	-2.164842
37			-3.680743	5.239806	-3.025815
38			-1.185757	-1.575422	3.504091
39			-1.459702	-1.645328	4.871839
40			-5.728393	3.881281	-2.990583
41			-7.851305	4.654059	-2.903442
42			-5.998450	2.489090	-2.366768
43			-6.393542	0.108876	-2.641590
44			-7.858836	-0.323762	-2.895794
45			-8.133207	-1.700178	-2.277074
46			-7.148802	-2.759117	-2.788844
47			0.647443	-2.133131	-2.060284
48			-5.679400	-2.341371	-2.533343
49			-4.757289	-3.400316	-3.142589
50			6.430380	-5.529553	1.809184
51			-3.747954	-5.622363	-2.823220
52			-4.406945	-6.939057	-2.396994
53			-1.438632	-5.055791	-4.567257
54			6.146156	-1.635235	-4.538279
55			1.036073	6.062794	3.922683
56			5.462940	-4.438430	2.290393
57			-6.126927	1.598000	-4.667647
---	---	---	-------	-------	-------
58	6	0	6.049864	-3.887068	-2.711591
59	6	0	-4.347967	-5.314492	2.241791
60	6	0	5.781664	-2.045622	2.698181
61	6	0	-1.910339	-5.194146	2.537743
62	6	0	-0.558601	-5.527724	1.890354
63	6	0	0.582804	-4.602181	2.323002
64	6	0	1.788603	-5.525482	2.071786
65	6	0	6.419358	-0.750736	2.187844
66	6	0	4.855958	-4.745360	1.749185
67	6	0	5.657334	0.474084	2.727355
68	6	0	1.245847	-6.868958	2.587145
69	6	0	7.901432	-0.728057	2.638510
70	6	0	8.589876	0.590229	2.263082
71	6	0	7.837370	1.797155	2.842092
72	6	0	-5.223218	-6.479023	1.759499
73	6	0	-4.960062	-3.983394	1.752566
74	6	0	6.370324	1.793554	2.379052
75	6	0	5.212833	3.920244	2.013759
76	6	0	-6.141977	-1.890669	2.225653
77	6	0	-8.395313	-0.743138	2.215300
78	6	0	-7.727632	0.583680	2.595712
79	6	0	-5.452314	-0.562817	2.591761
80	6	0	-6.261222	0.653284	2.099765
81	6	0	-5.651778	1.958359	2.615561
82	6	0	-5.373481	4.360606	2.211362
83	6	0	-6.242417	5.440555	1.555726
84	6	0	-3.898038	4.563939	1.832939
85	6	0	5.217665	6.441457	2.044580
86	6	0	-1.580868	4.880714	2.340787
87	6	0	-1.077131	6.305011	2.063521
88	6	0	4.515894	5.183408	2.566528
89	6	0	-0.429309	4.388134	3.227812
90	6	0	2.109639	4.867031	3.020170
91	6	0	0.739189	4.832179	2.335615
92	6	0	-2.158518	4.129232	-0.474399
93	6	0	-2.833591	-5.686533	0.768422
94	1	0	-4.704481	-4.495545	-1.335266
95	1	0	-5.944512	2.877475	0.784105
96	1	0	-4.564199	4.947772	-1.300138
97	1	0	4.674783	4.342891	-1.088438
98	1	0	2.904585	5.219597	1.162384
99	1	0	6.138009	-2.968269	0.863248
100	1	0	4.615318	-4.440279	-1.211254
101	1	0	0.799662	4.218590	1.431637
102	1	0	-0.349611	4.936813	4.167971
103	1	0	4.508339	5.293627	3.655716
104	1	0	-1.340837	6.993414	2.878610
105	1	0	-1.469298	6.709186	1.125803
106	1	0	-1.521377	4.321597	1.410560
107	1	0	5.250122	6.439667	0.951695
108	1	0	6.249515	6.485463	2.410755
109	1	0	4.688145	7.334901	2.388017
110	1	0	-6.135515	5.424332	0.467434
111	1	0	-7.292659	5.272113	1.810715
112	1	0	-5.956150	6.437180	1.909523
113	1	0	-5.510833	4.387054	3.290620
114	1	0	-6.267855	0.675540	1.001944
115	1	0	-5.331437	-0.460567	3.676109
---	---	---	---	---	---
176	1	0	-1.619389	-0.484384	6.687081
177	1	0	-1.078888	1.661521	5.516482
178	1	0	0.045723	6.014389	-0.679836
179	1	0	-0.329035	8.059953	-2.729813
180	1	0	-1.157032	7.954197	-1.162983
181	1	0	-1.134535	4.550273	-3.012155
182	1	0	-2.988167	6.187027	-1.159100
183	1	0	-1.180984	-2.469068	2.897929
184	1	0	-1.686312	-2.612508	5.306850
185	1	0	-5.410118	3.827135	-4.033903
186	1	0	-7.844600	4.143134	-3.460310
187	1	0	-7.372840	4.746021	-1.860796
188	1	0	-6.923194	5.654503	-3.326296
189	1	0	-6.268366	0.225336	-1.565058
190	1	0	-8.526974	0.433692	-2.481015
191	1	0	-8.047417	-0.371020	-3.975966
192	1	0	-9.162904	-2.005732	-2.498339
193	1	0	-8.056442	-1.631092	-1.182017
194	1	0	-7.291222	-2.985092	-3.868677
195	1	0	-7.344305	-3.724183	-2.307464
196	1	0	-5.415507	-1.053316	-4.226759
197	1	0	-4.370644	-0.635452	-2.876436
198	1	0	-5.517858	-2.318792	-1.441808
199	1	0	6.135463	-6.597580	2.205711
200	1	0	7.443214	-5.305882	2.157032
201	1	0	6.434278	-5.598370	0.718158
202	1	0	-3.771250	-5.547194	-3.980898
203	1	0	-3.874886	-7.793639	-2.829845
204	1	0	-5.442864	-6.963297	-2.747396
205	1	0	-4.392398	-7.053341	-1.310185
206	1	0	-2.329998	-4.460095	-4.774298
207	1	0	-0.582148	-4.506379	-4.957240
208	1	0	-1.497356	-6.014206	-5.096941
209	1	0	5.265467	-2.241971	-4.762273
210	1	0	7.032505	-2.109729	-4.975693
211	1	0	6.017741	-0.665586	-5.081725
212	1	0	1.595869	6.964522	-4.196911
213	1	0	0.004332	6.192245	-4.255690
214	1	0	1.460930	5.209316	-4.458311
215	1	0	5.471756	-4.410088	3.377509
216	1	0	-6.859347	2.344608	-4.988822
217	1	0	-5.141938	1.874377	-5.057378
218	1	0	-6.408690	0.647721	-5.119148
219	1	0	5.983247	-3.927580	-3.795982
220	1	0	-4.276166	-5.350096	3.325967
221	1	0	-0.664862	-5.515471	0.796621
222	1	0	0.465889	-3.495551	3.390978
223	1	0	1.946570	-5.598802	0.993438
224	1	0	6.396561	-0.753382	1.098526
225	1	0	5.556551	0.346965	3.810781
226	1	0	4.639418	0.494865	2.317598
227	7	0	4.743233	-4.318828	-2.218405
228	7	0	5.890452	-3.116012	1.858652
229	7	0	-1.275291	-5.240381	-3.116703
230	7	0	5.636696	2.973280	2.892740
231	7	0	0.325411	0.168255	-1.396087
232	7	0	3.116658	5.142348	2.158577
233	7	0	6.294866	-1.424275	-3.090432
234	7	0	4.323423	4.358047	-2.046053
---	---	---	---	---	
235	7	0	1.032290	5.834093	-2.470169
236	7	0	-2.960573	4.748435	2.802409
237	7	0	-4.643584	4.585221	-2.310036
238	7	0	-5.784056	3.029985	1.780304
239	7	0	-6.112263	1.439933	-3.267332
240	7	0	-5.371076	-3.072204	2.677341
241	7	0	-4.488326	-4.464830	-2.330885
242	7	0	-2.981485	-5.451624	1.750463
243	7	0	3.068839	-5.092171	2.624833
244	7	0	-0.886642	-0.428020	2.879645
245	8	0	-4.354707	-3.329133	-4.306084
246	8	0	-5.086125	-3.803876	0.531472
247	8	0	-1.422809	3.954167	-1.095253
248	8	0	-5.166850	2.052577	3.746007
249	8	0	0.620922	-3.342266	1.690348
250	8	0	3.870563	-4.720088	0.523526
251	8	0	-0.166076	-6.838320	2.322202
252	8	0	-5.905137	2.376518	-1.130490
253	8	0	-3.600038	4.542821	0.623215
254	8	0	-3.648794	5.288412	-4.248653
255	8	0	-2.119419	7.067593	-2.780269
256	8	0	0.350641	6.177563	1.978065
257	8	0	2.106933	5.230817	-0.553289
258	8	0	-0.518025	3.024586	3.676558
259	8	0	3.978690	3.155850	-3.952431
260	8	0	2.239804	4.647404	4.225204
261	8	0	6.443018	-2.280590	-0.976338
262	8	0	5.348114	3.813224	0.783956
263	8	0	3.677406	-4.164819	-4.242329
264	8	0	0.912960	-2.866276	-3.137779
265	8	0	2.189338	-6.145726	-2.148489
266	8	0	-2.120557	-5.765349	-1.071716
267	8	0	5.284806	-2.130704	3.824062
268	8	0	-1.991237	-4.752890	3.690027
269	8	0	0.361046	-2.573422	-0.955897
270	8	0	-0.402850	2.037634	1.640282
271	47	0	-0.302711	-0.482973	0.691518
Clockwise alternating dimer

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	47	0	0.510593	-1.809849	-2.080444
2	6	0	4.279597	5.271816	2.563575
3	6	0	-2.602003	-1.373810	-3.099635
4	6	0	1.827602	5.307668	2.532936
5	6	0	0.616626	5.930012	1.826648
6	6	0	-0.661736	5.071284	1.874243
7	6	0	-1.715448	6.093595	2.341645
8	6	0	-1.586243	-1.725562	-6.745955
9	6	0	-3.917427	5.187518	2.001785
10	6	0	-2.380163	-1.488472	-5.623746
11	6	0	-3.034200	5.266145	3.304110
12	6	0	-0.881451	6.991000	3.264789
13	6	0	-1.790521	-1.541231	-4.359047
14	6	0	0.270078	-2.066596	-5.236524
15	6	0	-0.239173	-2.026371	-6.565402
16	6	0	5.285399	6.383582	2.220859
17	6	0	5.060153	3.312683	4.544868
18	6	0	6.282239	1.987359	2.762456
19	6	0	7.685662	2.259188	3.331688
20	6	0	8.670837	1.185988	2.845125
21	6	0	8.185675	-0.242797	2.673879
22	6	0	6.759105	-0.498718	3.000212
23	6	0	6.323398	-1.884471	3.160156
24	6	0	-7.041655	4.497414	-2.222015
25	6	0	5.781995	-4.285023	2.457188
26	6	0	6.789673	-5.067499	1.691870
27	6	0	4.337246	-4.591565	2.068855
28	6	0	-5.734862	3.749051	-2.520867
29	6	0	-3.532140	4.727903	-3.005708
30	6	0	3.446678	-3.629295	4.229416
31	6	0	1.968067	-4.588928	2.446018
32	6	0	0.829357	-3.669915	2.888254
33	6	0	1.395248	-5.934695	2.914117
34	6	0	-2.407452	5.626814	-2.491747
35	6	0	-0.417855	-4.879522	2.522176
36	6	0	-1.566562	-4.246484	3.521121
37	6	0	-2.695525	7.076110	-2.960595
38	6	0	-1.573692	8.033507	-2.542667
39	6	0	-3.977514	-4.468695	3.863220
40	6	0	-4.825744	-5.741779	3.989906
41	6	0	-4.762629	-3.357886	3.172443
42	6	0	-0.211876	7.556315	-3.065187
43	6	0	-1.037244	5.141505	-3.006921
44	6	0	-5.029573	-2.72107	5.387057
45	6	0	-6.076759	-1.275135	3.300561
46	6	0	-5.459850	0.118887	3.527288
47	6	0	-7.548461	-1.330235	3.745540
48	6	0	-8.369306	-0.237470	3.045145
49	6	0	-7.772157	1.154927	2.869992
50	6	0	-6.287966	1.230323	2.852979
51	6	0	-5.751708	2.610180	3.233690
52	6	0	0.082706	6.116914	-2.601803
---	---	---	---	---	---
54	6	0	1.651994	5.511002	-4.505831
55	6	0	-5.358071	4.911788	2.474902
56	6	0	-6.308681	5.875454	1.758749
57	6	0	1.337378	2.107938	0.252358
58	6	0	1.188524	1.126574	-0.730956
59	6	0	2.448380	5.648707	-2.168189
60	6	0	1.064289	-0.553264	0.842157
61	6	0	1.208820	0.358477	1.899269
62	6	0	1.346244	1.714050	1.588241
63	6	0	0.989542	-2.027383	1.087336
64	6	0	-2.919110	-6.093947	-0.711255
65	6	0	-4.426893	-5.957671	-1.028912
66	6	0	-4.717276	-3.657497	-1.797556
67	6	0	-4.931445	-2.209230	-1.364634
68	6	0	-4.979065	-1.196150	-2.520470
69	6	0	-5.447155	0.026780	-1.723200
70	6	0	4.610504	6.871110	-2.421560
71	6	0	-5.699428	2.485609	-1.772621
72	6	0	3.894323	5.537790	-2.688798
73	6	0	-6.258361	1.113229	-3.851814
74	6	0	-6.580932	-0.629637	-0.905086
75	6	0	4.761871	3.242756	-2.676747
76	6	0	5.690503	2.258960	-1.957192
77	6	0	-5.235651	-6.994544	-0.138380
78	6	0	7.151732	0.570777	-2.357103
79	6	0	4.967804	1.011768	-1.376603
80	6	0	-2.476273	-6.709297	-3.078111
81	6	0	-0.626137	-6.645127	-1.338365
82	6	0	0.194807	-5.480420	-1.925876
83	6	0	-0.065572	-8.015726	-1.759035
84	6	0	1.421702	-8.117222	-1.381814
85	6	0	2.242468	-6.981441	-2.008380
86	6	0	1.690895	-5.594850	-1.588999
87	6	0	2.498900	-4.473227	-2.252148
88	6	0	5.977354	-0.140446	-1.654658
89	6	0	4.962237	-0.955225	-3.811889
90	6	0	4.766322	-3.629807	-2.692931
91	6	0	5.955401	-4.495659	-3.146325
92	6	0	5.297158	-2.462878	-1.849472
93	6	0	4.896809	3.922325	2.154424
94	7	0	-0.483881	-1.815482	-4.188385
95	7	0	-2.956799	5.533529	2.896725
96	7	0	-4.561694	4.517350	-2.124682
97	7	0	5.344960	3.084545	3.119082
98	7	0	1.427955	5.689899	-3.063928
99	7	0	6.008642	-2.784329	2.188533
100	7	0	4.690434	4.441605	-2.050888
101	7	0	3.308763	-4.253119	2.912172
102	7	0	-2.767667	-4.693013	3.088312
103	7	0	-5.279276	-2.338220	3.939830
104	7	0	5.403936	-1.238446	-2.437871
105	7	0	-5.708251	3.521612	2.218186
106	7	0	3.815014	-4.427402	-1.930195
107	7	0	1.052933	-0.175200	-0.450712
108	7	0	-2.060886	-6.500523	-1.683261
109	7	0	3.010796	5.510692	1.897704
110	7	0	-4.812085	-4.565859	-0.803762
111	7	0	-5.803251	1.232921	-2.467567
112	8	0	-5.521832	2.397377	-0.547376
---	---	---	---	---	---
113	8	0	-6.225059	-2.019691	-0.778927
114	8	0	-4.426954	-3.921724	-2.969722
115	8	0	-2.540753	-5.826701	0.438265
116	8	0	0.877962	-2.309733	2.388823
117	8	0	1.998953	-3.699823	-3.092842
118	8	0	5.660211	-2.690952	-0.689737
119	8	0	-5.465261	2.893882	4.398964
120	8	0	4.669546	1.098335	0.000954
121	8	0	2.540753	5.826701	3.378265
122	8	0	0.877962	-2.309733	2.388823
123	8	0	1.998953	-3.699823	-3.092842
124	8	0	5.660211	-2.690952	-0.689737
125	8	0	-5.465261	2.893882	4.398964
126	8	0	4.669546	1.098335	0.000954
127	8	0	2.540753	5.826701	3.378265
128	8	0	0.877962	-2.309733	2.388823
129	8	0	1.998953	-3.699823	-3.092842
130	8	0	5.660211	-2.690952	-0.689737
131	8	0	-5.465261	2.893882	4.398964
132	8	0	4.669546	1.098335	0.000954
133	8	0	2.540753	5.826701	3.378265
134	8	0	0.877962	-2.309733	2.388823
135	8	0	1.998953	-3.699823	-3.092842
136	8	0	5.660211	-2.690952	-0.689737
137	8	0	-2.170598	-1.576167	-1.980751
138	8	0	-0.559164	4.285794	2.637599
139	8	0	2.540753	5.826701	3.378265
140	8	0	0.877962	-2.309733	2.388823
141	8	0	1.998953	-3.699823	-3.092842
142	8	0	5.660211	-2.690952	-0.689737
143	8	0	-5.465261	2.893882	4.398964
144	8	0	4.669546	1.098335	0.000954
145	8	0	2.540753	5.826701	3.378265
146	8	0	0.877962	-2.309733	2.388823
147	8	0	1.998953	-3.699823	-3.092842
148	8	0	5.660211	-2.690952	-0.689737
149	8	0	-2.170598	-1.576167	-1.980751
150	8	0	-0.559164	4.285794	2.637599
151	8	0	2.540753	5.826701	3.378265
152	8	0	0.877962	-2.309733	2.388823
153	8	0	1.998953	-3.699823	-3.092842
154	8	0	5.660211	-2.690952	-0.689737
155	8	0	-5.465261	2.893882	4.398964
156	8	0	4.669546	1.098335	0.000954
157	8	0	2.540753	5.826701	3.378265
158	8	0	0.877962	-2.309733	2.388823
159	8	0	1.998953	-3.699823	-3.092842
160	8	0	5.660211	-2.690952	-0.689737
161	8	0	-5.465261	2.893882	4.398964
162	8	0	4.669546	1.098335	0.000954
163	8	0	2.540753	5.826701	3.378265
164	8	0	0.877962	-2.309733	2.388823
165	8	0	1.998953	-3.699823	-3.092842
166	8	0	5.660211	-2.690952	-0.689737
167	8	0	-5.465261	2.893882	4.398964
168	8	0	4.669546	1.098335	0.000954
169	8	0	2.540753	5.826701	3.378265
170	8	0	0.877962	-2.309733	2.388823
171	8	0	1.998953	-3.699823	-3.092842
---	---	---	---	---	
231	1	0	-6.735051	2.035549	
232	1	0	-7.542185	-0.558541	
233	1	0	-6.685888	-0.175908	
234	1	0	6.237811	2.761659	
235	1	0	-6.305799	-6.762686	
236	1	0	-4.980545	-7.946692	
237	1	0	-5.020802	-6.720286	
238	1	0	7.609339	0.089603	
239	1	0	7.930529	0.828866	
240	1	0	4.045683	0.828866	
241	1	0	1.587047	-6.707346	
242	1	0	3.118496	-5.885818	
243	1	0	2.989760	-7.661968	
244	1	0	0.590321	-6.575378	
245	1	0	0.208573	-4.539549	
246	1	0	0.086441	-5.446360	
247	1	0	-0.172401	-8.167330	
248	1	0	-0.639061	-8.810302	
249	1	0	1.820537	-9.085843	
250	1	0	1.531719	-8.083377	
251	1	0	2.210035	-7.065483	
252	1	0	3.292941	-7.073108	
253	1	0	1.833929	-5.565841	
254	1	0	6.278714	-0.576085	
255	1	0	5.540040	-1.524723	
256	1	0	3.899435	-1.817778	
257	1	0	5.108559	0.107299	
258	1	0	4.216267	-3.274728	
259	1	0	5.598834	-5.336955	
260	1	0	6.497624	-4.885344	
261	1	0	6.657402	-3.909038	
262	1	0	-4.431503	4.732271	
263	1	0	6.012816	-2.510504	
264	1	0	4.878315	4.526238	
265	1	0	-2.848732	-5.077905	
266	1	0	-5.750255	3.209767	
267	1	0	4.134271	-4.874003	
268	1	0	2.999928	5.786340	
269	1	0	-4.917917	-4.241795	
270	1	0	4.702916	2.035452	
271	1	0	-1.902681	4.504347	
Counter-clockwise alternating dimer

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	47	0	0.401803	0.752274	1.247958
2	6	0	5.743129	-3.018519	2.560316
3	6	0	7.752657	-1.564778	3.017826
4	6	0	5.409451	-0.590945	3.144499
5	6	0	6.011837	0.823458	3.089755
6	6	0	7.420446	0.866189	3.704125
7	6	0	8.336335	-0.144540	2.992686
8	6	0	4.665231	2.864323	2.905375
9	6	0	3.683901	3.885799	3.509438
10	6	0	1.341269	4.226080	2.863905

72
113	8	0	2.686635	-3.126956	-4.654920
114	8	0	-5.185475	0.939170	-0.422129
115	8	0	-5.526239	4.056316	-2.650288
116	8	0	-1.794582	3.404943	-3.496437
117	8	0	-7.176850	-0.624937	-2.385464
118	8	0	2.842421	5.148839	-0.242825
119	8	0	5.272539	3.031859	-3.038372
120	8	0	4.490236	-0.125695	-0.453893
121	8	0	6.876899	-3.055472	-1.522445
122	8	0	7.319729	1.533531	-1.465055
123	8	0	0.172055	-3.379292	-3.847190
124	8	0	-7.526239	-0.624837	-2.385464
125	8	0	-0.918150	4.028147	-3.038372
126	8	0	-5.444439	3.031859	-3.038372
127	8	0	-0.169893	-1.841914	-1.404346
128	8	0	2.778023	-0.312518	-0.918291
129	8	0	-3.728605	3.211797	-1.465055
130	8	0	-5.763086	2.188465	-3.496437
131	8	0	-5.928691	-3.553860	-2.650288
132	8	0	-2.414328	-4.857378	-3.496437
133	8	0	3.342724	-4.975003	-2.914848
134	8	0	5.461368	-3.476680	-3.667556
135	8	0	-0.708119	-6.006404	0.678230
136	8	0	0.831120	5.965780	1.791314
137	8	0	-4.718090	-1.689742	-3.730422
138	1	0	7.704358	-1.936446	4.048611
139	1	0	8.406632	-2.249749	2.463097
140	1	0	4.422989	-0.582468	2.670853
141	1	0	5.286182	-0.930903	4.179725
142	1	0	6.098546	1.111798	2.042028
143	1	0	7.377749	0.623656	4.775474
144	1	0	7.829754	1.879986	3.618898
145	1	0	9.328300	-0.140316	3.459866
146	1	0	8.481289	0.174713	1.950472
147	1	0	3.158264	3.490143	4.377344
148	1	0	0.846008	4.398748	0.748170
149	1	0	-1.033435	3.308317	2.810405
150	1	0	-2.159312	5.101777	0.654378
151	1	0	-1.682917	7.051430	2.046354
152	1	0	-1.241763	6.026292	3.438168
153	1	0	-5.909480	4.363270	2.665857
154	1	0	-7.408217	0.395603	1.655376
155	1	0	-5.572175	-0.578586	3.899590
156	1	0	-5.252227	-0.690904	2.155815
157	1	0	-7.218912	-2.124887	1.822336
158	1	0	-8.879060	1.267607	3.452451
159	1	0	-7.758894	0.608028	4.677839
160	1	0	-8.518702	-3.033457	3.719411
161	1	0	-7.687964	-2.048765	4.860820
162	1	0	-9.408730	-1.008307	2.610185
163	1	0	-9.739684	-0.919786	4.336260
164	1	0	-4.664969	-5.496905	3.066335
165	1	0	-1.226242	-3.973866	0.646653
166	1	0	0.053057	-3.525704	3.050205
167	1	0	1.289713	-4.072300	0.553371
168	1	0	0.971667	-6.242718	-0.418221
169	1	0	0.951375	-7.043934	1.170493
170	1	0	5.157733	-5.449907	2.404668
171	1	0	5.924955	-5.552589	-0.553530
			5.504731	-6.980984	0.417145
---	---	---	---------	-----------	---------
173	1	0	6.937367	-6.014127	0.831473
174	1	0	3.629149	1.295669	5.128937
175	1	0	4.755421	2.581687	5.638315
176	1	0	5.306725	0.914888	5.540043
177	1	0	5.200439	4.947166	4.675338
178	1	0	4.954505	5.588998	3.039953
179	1	0	3.745662	5.981557	4.310187
180	1	0	3.751379	-4.883869	3.606532
181	1	0	2.034343	-4.677994	3.837707
182	1	0	2.669450	-6.313968	3.551651
183	1	0	-5.183835	-7.324381	1.434799
184	1	0	-5.896031	-6.157783	0.342972
185	1	0	-6.607654	-6.511679	1.921621
186	1	0	-5.365283	-2.595659	4.898220
187	1	0	-4.394517	-3.923402	4.268039
188	1	0	-6.057710	-4.224445	4.852071
189	1	0	-3.963011	5.938414	3.792625
190	1	0	-4.439466	4.222102	4.026994
191	1	0	-2.771523	4.710682	4.279274
192	1	0	-7.364182	4.872658	0.725151
193	1	0	-6.068940	4.396975	-0.408413
194	1	0	-5.860791	5.810310	0.641148
195	1	0	6.255697	-1.106543	-5.136230
196	1	0	4.536590	-1.430170	-4.776770
197	1	0	5.248928	0.138829	-4.383293
198	1	0	6.622574	6.465994	-0.924363
199	1	0	5.214352	7.587949	-1.227872
200	1	0	5.289327	6.539726	0.254171
201	1	0	3.868483	7.143859	-3.606379
202	1	0	2.322650	6.664882	-4.306903
203	1	0	3.591530	5.451804	-4.194035
204	1	0	-5.869825	4.418852	-6.007705
205	1	0	-5.772651	5.768581	-4.798490
206	1	0	-4.634896	5.682919	-6.176447
207	1	0	-4.718581	1.513649	-5.746983
208	1	0	-4.438590	0.259282	-4.523989
209	1	0	-3.291376	1.599627	-4.673748
210	1	0	-5.086822	-6.399649	-3.381101
211	1	0	-5.331445	-5.972767	-1.681804
212	1	0	-6.508772	-5.444251	-2.909853
213	1	0	-1.662407	-4.062813	-5.513601
214	1	0	-3.168090	-4.986756	-5.472311
215	1	0	-3.143379	-3.269813	-4.971132
216	1	0	7.219898	-4.521267	-4.172318
217	1	0	6.485530	-5.358811	-2.796840
218	1	0	5.897472	-5.675447	-4.448229
219	1	0	-3.633849	3.564485	-5.287541
220	1	0	-7.943317	0.866399	-3.544295
221	1	0	-6.638538	-0.056316	-4.318584
222	1	0	-6.445959	2.090463	-2.162665
223	1	0	-4.102623	0.311850	-2.077160
224	1	0	-6.899905	-1.266114	-0.766497
225	1	0	-4.769692	-4.007999	-3.963227
226	1	0	0.612094	-7.420168	-2.627872
227	1	0	0.693824	-8.106012	-4.246231
228	1	0	-1.591329	-7.178079	-3.736326
229	1	0	-0.839662	-6.369613	-5.114482
230	1	0	-0.921359	-5.355123	-2.226065
---	---	---	---	---	
321	1	0	0.341088	-3.922330	-4.686162
322	1	0	0.022246	-3.279552	-3.052978
323	1	0	2.701187	-6.686015	-3.754256
324	1	0	1.779083	-6.052507	-5.116139
325	1	0	1.698947	-5.020635	-2.236614
326	1	0	5.044580	-3.363520	-4.627667
327	1	0	8.344268	0.127331	-2.539584
328	1	0	7.141931	1.048497	-3.487705
329	1	0	6.630460	-0.985956	-1.247927
330	1	0	4.438937	0.788974	-2.336700
331	1	0	5.905810	1.876541	-0.814582
332	1	0	5.113198	5.381779	-2.587950
333	1	0	-0.817612	7.671414	-0.718216
334	1	0	-1.009874	8.981336	-1.881098
335	1	0	-2.686881	7.178303	-2.237622
336	1	0	-1.655828	7.391620	-3.657800
337	1	0	-1.349714	5.213632	-1.522482
338	1	0	0.344950	5.652308	-4.021803
339	1	0	0.508188	4.332645	-2.863745
340	1	0	0.988040	5.967326	-1.041338
341	1	0	1.403883	8.346721	-1.547828
342	1	0	0.893422	8.107415	-3.222406
343	1	0	1.353868	-0.642555	-4.505690
344	1	0	3.084523	-1.126719	-2.798983
345	1	0	-0.448702	1.067767	-3.945183
346	1	0	-0.514198	1.996415	-1.649427
347	1	0	-1.016305	1.880650	7.024381
348	1	0	-0.796979	-2.717894	5.127700
349	1	0	-0.492366	1.339987	6.570117
350	1	0	6.375834	-1.333030	1.360182
351	1	0	0.182894	2.014388	4.282468
352	1	0	-6.446639	2.145739	0.797211
353	1	0	-3.439521	-5.094071	0.394147
354	1	0	2.930876	4.400817	1.568257
355	1	0	5.731466	-3.284042	0.580646
356	1	0	5.272486	3.956901	-0.009062
357	1	0	3.947701	-4.762585	-2.255493
358	1	0	-5.483102	-3.409841	-1.162865
359	1	0	-3.581913	5.987338	-3.657560
360	1	0	-4.625371	1.739653	-0.346397
361	1	0	-2.004509	2.727344	0.576385