Plasmonic modes in cylindrical nanoparticles and dimers

Charles A. Downing¹ and Guillaume Weick², *

¹Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, Zaragoza E-50009, Spain
²Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France

We present analytical expressions for the resonance frequencies of the plasmonic modes hosted in a cylindrical nanoparticle. Our theoretical model gives us access to both the longitudinally and transversally polarized dipolar modes for a metallic cylinder with an arbitrary aspect ratio, which allows us to capture the physics of both plasmonic nanodisks and nanowires. We also calculate quantum mechanical corrections to these resonance frequencies due to the spill-out effect, which is of relevance for cylinders with nanometric dimensions. We go on to consider the coupling of localized surface plasmons in a dimer of cylindrical nanoparticles, which leads to collective plasmonic excitations. We extend our theoretical formalism to construct an analytical model of the dimer, describing the evolution with the inter-nanoparticle separation of the resultant bright and dark collective modes. We comment on the renormalization of the coupled mode frequencies due to the spill-out effect, and discuss some methods of experimental detection.
1. INTRODUCTION

The optical properties of small metal clusters have been studied throughout the 20th century [1], in a field which is now referred to as plasmonics [2]. Modern nanoplasmics aims to confine and control light at the nanoscale, in an amalgamation of photonics and electronics [3]. It is envisaged that applications will arise in areas from data storage and microscopy to light generation and biophotonics [4–6]. In the last few years, the subfield of quantum plasmonics has branched away, whereby quantum mechanical phenomena play a crucial role [7].

An intensively studied quasiparticle in plasmonics is the localized surface plasmon (LSP), a collective oscillation of conduction band electrons, which arises when a metallic nanoparticle is irradiated by light [2] or hot electrons [8]. Exploring how the resonance frequency of the plasmon changes depending on the geometry of its hosting nanoparticle is a fundamental task of the field [9–14]. Recently, a number of groundbreaking experiments [15–20] have probed the plasmonic response of metallic cylinders, and in particular the limiting cases of nanodisks and nanowires. Inspired by these experiments, in this work we derive simple, analytical expressions for the dipolar plasmon resonances in both the longitudinal and transverse polarizations (that is, along the cylindrical axis and perpendicular to it). Our model is based upon a calculation of the change in Hartree energy of the nanoparticle due to the collective displacement of the valence electrons. We assume that the electrons in the nanostructure form a body of approximately uniform density, which allows us to employ continuum mechanics and set up a simple equation of motion [21]. Importantly, our analytic theory is valid for any aspect ratio of the cylinder, and as such is of relevance for a wide range of experiments. Our work therefore complements previous theoretical studies of plasmonic cylinders, which have either employed the nanowire approximation [22], or have required numerics [23–27].

In our model, the inevitable quantum corrections which arise at the nanoscale are addressed by accounting for the so-called spill-out effect [28]. In this quantum size effect, the resonance frequency is modified due to a proportion of electrons spilling outside of the small metallic nanoparticle, thus lowering the average electronic density inside the nanoparticle. This effect arises due to the ground-state many-body wavefunction, which determines the electronic density, having tails which leak outside of the sharp boundary of the nanoparticle surface, so that a non-negligible number of electrons reside outside of the cluster. The spill-out effect has been studied historically in relation to spherical nanoparticles [21], and more recently has been investigated for plasmons in ultra-sharp groove arrays [29].

Coulomb interactions between LSPs housed in different nanoparticles can give rise to collective plasmons spread out over the combined nanostructure [30, 31]. The study of collective plasmons in nanoparticle arrays, including architectures built from cylindrical nanoparticles [32–36], has led to a wealth of diverse physics, from plasmonic waveguides [37, 38] to light harvesters [39, 40] to analogues of a topological insulator [41–44]. In this work, we are concerned with the simplest example of a coupled system, the nanoparticle dimer [45–48], which constitutes the building block of more complex metastructures, and where insight into the nature of coupled plasmons can be achieved.

A series of experiments on nanoplasmic dimers in the near-field coupling regime have revealed both bright and dark plasmonic modes, where the dipole moments are oriented in-phase or out-of-phase, respectively [49–51]. In order to account analytically for such collective plasmonic effects, we adapt our aforementioned theory to the case of a dimer of cylindrical metallic nanoparticles. We derive simple expressions for the bright and dark mode resonance frequencies of the system as a function of the inter-nanoparticle separation, which allows for a clear description of how the plasmonic coupling scales with distance. Our results supplement theories of cylindrical dimers in the literature, which predominately involve assumptions about the aspect ratio of the cylinder, or requires time-consuming numerical computations [52–58]. We also comment on the spill-out effect in the dimer, and suggest some methods for the experimental detection of our predicted effects.

This paper is organized as follows: in §2, we calculate the dipolar resonances of a single cylindrical nanoparticle. We find the modifications to the resonance frequencies due to the spill-out effect in §3. The theory is extended to describe collective effects in a dimer of cylindrical nanoparticles in §4. Finally, we draw some conclusions in §5.

2. PLASMONIC MODES IN A SINGLE CYLINDRICAL NANOPARTICLE

We consider a cylindrical nanoparticle of radius a and length L, containing N_e valence electrons with charge $-e < 0$ and mass m_e (see figure 1). We start by neglecting the electronic spill-out effect, and assume that the density $n(r)$ of valence electrons is uniform (with density n_0) inside the cylinder, and vanishing outside, i.e.,

$$n(r) = n_0 \Theta(a-r) \Theta\left(\frac{L}{2} + z\right) \Theta\left(\frac{L}{2} - z\right), \quad (2.1)$$

where (r, θ, z) are the usual cylindrical coordinates, and where $\Theta(x)$ is the Heaviside step function.
Our strategy to obtain the frequencies of the plasmonic normal modes along the longitudinal (\(\hat{z}, \alpha = \parallel\)) and transverse (\(\hat{r}, \alpha = \perp\)) directions\(^1\) closely follows the one presented, e.g., in reference [21] for a spherical nanoparticle. We first impose a rigid shift \(u_\alpha\) of the electron distribution, which gives rise to the displaced density \(n(r - u_\alpha)\). Assuming that \(u_\alpha = |u_\alpha|\) is small with respect to the dimensions of the cylinder, we have \(n(r - u_\alpha) \simeq n(r) + \delta n_\alpha(r)\), with

\[
\delta n_\alpha(r) = -u_\alpha \cdot \nabla n(r) \quad (2.2)
\]

We then consider the resulting change in the Hartree energy (in cgs units)

\[
\delta E_\alpha = \frac{e^2}{2} \int d^3r \int d^3r' \frac{\delta n_\alpha(r)\delta n_\alpha(r')}{|r - r'|}, \quad (2.3)
\]

with respect to the equilibrium situation. This quantity gives access to the restoring force

\[
F_\alpha = -\frac{\partial}{\partial u_\alpha} (\delta E_\alpha) = -k_\alpha u_\alpha, \quad (2.4)
\]

and to the resulting spring constant \(k_\alpha\). The latter quantity then provides an expression for the normal mode frequency

\[
\omega_{0,\alpha} = \sqrt{\frac{k_\alpha}{M_e}}, \quad (2.5)
\]

where \(M_e = N_e m_e\) corresponds to the total electronic mass.

Let us now consider the longitudinal (\(\alpha = \parallel\)) and transverse (\(\alpha = \perp\)) polarizations each in turn, which arise from different electronic distribution displacements \(u_\alpha\).

2.1. Longitudinal mode

We assume the longitudinal displacement \(u_\parallel = u \hat{z}\), such that the change in electron density (2.2) is

\[
\delta n_\parallel(r) = u n_0 \Theta(a - r) \left[\delta \left(z - \frac{L}{2} \right) - \delta \left(z + \frac{L}{2} \right) \right], \quad (2.6)
\]

where \(\delta(x)\) is the Dirac delta function. Equation (2.6) corresponds to a charge imbalance that is located at the two disks of radius \(a\) closing the cylinder at \(z = \pm L/2\) (cf. figure 1). In order to evaluate the change in Hartree energy (2.3) due to the above density change, we shall exploit the Laplace expansion of the Newtonian kernel [59]

\[
\frac{1}{|r - r'|} = \frac{2}{\pi} \sum_{m=-\infty}^{\infty} \int_0^\infty dk e^{im(\theta - \theta')} \cos(k[z - z']) I_m(kr_<) K_m(kr_>). \quad (2.7)
\]

Here, \(I_m(x)\) and \(K_m(x)\) are modified Bessel functions of the first and second kinds, respectively, while \(r_< = \min(r, r')\) and \(r_> = \max(r, r')\). Upon inserting (2.6) and (2.7) into (2.3), we arrive at a seven-dimensional integral. After

\(^1\) Here and in what follows, hats designate unit vectors.
carrying out the straightforward angular and Cartesian integrals, and using the following result for the double radial integral,

$$
\int_0^a dr \int_0^a dr' I_0(kr) K_0(kr') = \frac{a^2}{2k^2} \left[1 - 2I_1(ka)K_1(ka) \right],
$$

we find

$$
\delta E_\parallel = 8\pi (en_0 u)^2 a^3 \int_0^\infty \frac{dx}{x^3} \sin^2 \left(\frac{L}{2a} x \right) \left[1 - 2I_1(x)K_1(x) \right],
$$

which is harmonic in the displacement u. Evaluating the first term in the above integral with the result

$$
\int_0^\infty dt \sin^2 \left(\frac{t}{2} \right) = \frac{\pi}{2},
$$

and integrating the second term with the aid of special functions, we find

$$
\delta E_\parallel = 4\pi (en_0 u)^2 a^3 \left[\frac{\pi L}{2a} + \frac{4}{3} - g \left(\frac{L}{a} \right) \right].
$$

(2.10)

In the expression above, the function $g(x)$ is defined as

$$
g(x) = \frac{x}{6} \left[(x^2 + 4) K \left(\frac{4}{x^2} \right) - (x^2 - 4) E \left(\frac{4}{x^2} \right) \right],
$$

(2.11)

where

$$
K(x) = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-xt^2)}},
$$

(2.12a)

and

$$
E(x) = \int_0^1 dt \sqrt{\frac{1-xt^2}{1-t^2}},
$$

(2.12b)

are the complete elliptic integrals of the first and second kinds, respectively. The monotonically increasing function $g(x)$ has the following asymptotic expansions for small and large arguments:

$$
g(x) \approx \frac{4}{3} + (6 \ln 2 - 1 - 2 \ln x) \frac{x^2}{4} + O(x^4), \quad x \ll 1,
$$

(2.13a)

$$
g(x) \approx \frac{\pi}{2} \left(x + \frac{1}{2x} - \frac{1}{4x^3} \right) + O(x^{-5}), \quad x \gg 1.
$$

(2.13b)

The result (2.10), together with (2.4) and (2.5), then yields the following analytic expression for the resonance frequency of the dipolar longitudinal mode of the cylinder:

$$
\omega_{0,\parallel} = \omega_p \sqrt{1 + \frac{2a}{\pi L} \left[\frac{4}{3} - g \left(\frac{L}{a} \right) \right]},
$$

(2.14)

Here the plasma frequency of the considered metal is

$$
\omega_p = \sqrt{\frac{4\pi n_0 e^2}{m_e}},
$$

(2.15)

with the electron density $n_0 = N_e/\pi a^2 L$ for the examined cylinder.

We plot in figure 2(a) the longitudinal resonance frequency (2.14) as a function of the aspect ratio L/a of the cylinder as the solid red line. As one can see from the figure, $\omega_{0,\parallel}$ is a monotonically decreasing function of the parameter L/a, with the limiting values $\lim_{L/a \to 0} \omega_{0,\parallel} = \omega_p$ and $\lim_{L/a \to \infty} \omega_{0,\parallel} = 0$. Physically, the longitudinal mode softens when the aspect ratio of the cylinder increases, since the ratio of uncompensated charges to the compensated ones (by the ionic background) decreases with increasing L/a.

We now consider the two limiting cases of (2.14), namely when the cylinder can be treated as a nanodisk ($L/a \ll 1$) or a nanowire ($L/a \gg 1$), and where insightful expressions can be obtained. Let us first examine the disk limit. Using the expansion (2.13a), (2.14) becomes

$$
\omega_{0,\parallel}^{\text{disk}} \approx \omega_p \left\{ 1 - \frac{L}{4\pi a} \left[6 \ln 2 - 1 - 2 \ln \left(\frac{L}{a} \right) \right] \right\}, \quad L/a \ll 1.
$$

(2.16)
Clearly, this expression tends linearly towards the plasma frequency ω_p in the extreme pancake limit ($L \rightarrow 0$), see the dashed green line in figure 2(a). In the opposite limit of a wire, we obtain with (2.13b)

$$\omega_{0,\perp}^\text{wire} \approx \omega_p \sqrt{\frac{8a}{3\pi L}}, \quad L/a \gg 1,$$

which is plotted as a blue dotted line in figure 2(a), showcasing the inverse square root decay to zero frequency.

2.2. Transverse mode

In order to have access to the eigenfrequency of the transverse dipolar plasmonic mode, here we assume the arbitrary small displacement $u_\perp = u \hat{x}$ (see figure 1), such that the change in electron density (2.2) is

$$\delta n_\perp(r) = un_0 \cos \theta \delta (r - a) \Theta \left(\frac{L}{2} + z\right) \Theta \left(\frac{L}{2} - z\right).$$

Completing an analogous calculation as to that for the preceding case of the longitudinally polarized mode [cf. §§22.1] leads to the following equation for the change in the Hartree energy (2.3),

$$\delta E_\perp = 8\pi (en_0 u)^2 a^3 \int_0^\infty \frac{dx}{x^2} \sin^2 \left(\frac{L}{2a} x\right) I_1(x) K_1(x).$$

Evaluating the above integral then yields

$$\delta E_\perp = 2\pi \left(eun_0\right)^2 a^3 \left[g \left(\frac{L}{a}\right) - \frac{4}{3} \right],$$

where $g(x)$ is defined in (2.11). We thus obtain an analytic expression for the resonance frequency of the transverse dipolar plasmonic mode, using (2.4) and (2.5) with (2.20), as

$$\omega_{0,\perp} = \omega_p \sqrt{\frac{a}{\pi L} \left[g \left(\frac{L}{a}\right) - \frac{4}{3} \right]},$$

in units of the plasma frequency (2.15).

We plot the transverse resonance frequency (2.21) in figure 2(b) as the solid red line, as a function of the aspect ratio L/a. As is evident from the figure, $\omega_{0,\perp}$ is a monotonically increasing function of the parameter L/a, bounded by the two limits $\lim_{L/a \to 0} \{\omega_{0,\perp}\} = 0$ and $\lim_{L/a \to \infty} \{\omega_{0,\perp}\} = \omega_p / \sqrt{2}$ (the latter limit is denoted by the horizontal
dash-dotted line in the figure). Contrary to the longitudinal mode shown in figure 2(a), the transverse mode gets harder when the aspect ratio of the cylinder increases, since the ratio of uncompensated charges that sit on the longitudinal surface of the cylinder to the compensated ones increases with increasing \(L/a\).

In figure 2(b), the limiting cases of a nanowire \((L/a \ll 1, \text{ dashed green line})\) and nanodisk \((L/a \gg 1, \text{ dotted blue line})\) are also displayed, and have functional forms which arise directly from (2.21) with the leading order expansions (2.13). Explicitly, one finds

\[
\omega_{\text{disk}, 0, \perp} \simeq \omega_p \sqrt{\frac{L}{4\pi a} \left[6 \ln 2 - 1 - 2 \ln \left(\frac{L}{a} \right) \right]}, \quad L/a \ll 1, \tag{2.22}
\]

and

\[
\omega_{\text{wire}, 0, \perp} \simeq \frac{\omega_p}{\sqrt{2}} \left(1 - \frac{4a}{3\pi L} \right), \quad L/a \gg 1. \tag{2.23}
\]

3. FREQUENCY RENORMALIZATION DUE TO THE SPILL-OUT EFFECT

So far, our approach has been purely classical, and has neglected the spill out of the electronic wave functions outside of the nanoparticle. This approximation follows from our assumed hard wall mean-field potential, resulting in the approximate density of valence electrons given by (2.1). However, the quantum-mechanical spill-out effect is known to renormalize the LSP resonance frequencies, and is particularly prominent for nanoparticles of only a few nanometers in size \[28\]. We thus relax the above hard-wall approximation, and assume that the mean-field potential (including both the ionic positive background and the electron-electron interactions) seen by the valence electrons of the nanoparticle is given by

\[
V(r) = V_0 \Theta (r-a) \Theta \left(|z| - \frac{L}{2} \right), \tag{3.1}
\]

where \(V_0 = \epsilon_F + W\) is the height of the potential, with \(\epsilon_F\) and \(W\) the Fermi energy and the work function of the nanoparticle, respectively. Such a hypothesis has been tested using density functional ab initio calculations using the local density approximation in \[60\], and is a fairly good approximation to the realistic mean-field potential.

Due to the finite height \(V_0\) of the mean-field potential (3.1), some part of the valence electrons can spill out of the cylindrical nanoparticle, effectively increasing its length and radius according to the replacements

\[
L \rightarrow L = L + 2\ell_\parallel, \tag{3.2a}
\]

\[
a \rightarrow a = a + \ell_\perp. \tag{3.2b}
\]

Here, the small spill-out lengths \(\ell_\parallel \ll L\) and \(\ell_\perp \ll a\) in the longitudinal (\(\hat{z}\)) and transverse (\(\hat{r}\)) directions, respectively, can be estimated from the average number of spill-out electrons \(N_\parallel\) and \(N_\perp\) in both of these directions according to

\[
\ell_\parallel = \frac{1}{2} \frac{N_\parallel}{N_e} L, \tag{3.3a}
\]

\[
\ell_\perp = \frac{1}{2} \frac{N_\perp}{N_e} a. \tag{3.3b}
\]

In the following, we will estimate \(N_\parallel\) and \(N_\perp\) using semiclassical expansions, which will give us access to the spill-out lengths \(\ell_\parallel\) and \(\ell_\perp\). We will then incorporate the prescription (3.2) into the mode frequencies (2.14) and (2.21), which will then provide us with an estimate of the renormalized resonance frequencies.

3.1. Average number of spill-out electrons and spill-out lengths

At zero temperature, the average number of spill-out electrons in the longitudinal and transverse directions are given by

\[
N_\parallel = \sum_\lambda \text{occ} \int_{r<a \atop |z|>L/2} d^3r \ |\psi_\lambda(r)|^2, \tag{3.4a}
\]

\[
N_\perp = \sum_\lambda \text{occ} \int_{r>a \atop |z|<L/2} d^3r \ |\psi_\lambda(r)|^2. \tag{3.4b}
\]
respectively. Here, λ labels the bound states in the mean-field potential (3.1) and the summations run over occupied states up to the Fermi level. The single-particle wavefunction $\psi_\lambda(r)$ obeys the time-independent Schrödinger equation

$$
-\frac{\hbar^2}{2m_e} \nabla^2 + V(r) \psi_\lambda(r) = \epsilon_\lambda \psi_\lambda(r),
$$

with the eigenenergies ϵ_λ. Note that in (3.4), we disregard the negligible number of spill-out electrons arising at the corners of the cylindrical nanoparticle.

The choice of mean-field potential (3.1) leads to a nonseparable Schrödinger equation (3.5). However, the replacement

$$
V(r) \approx V_0 \left[\Theta(r - a) + \Theta \left(|z| - \frac{L}{2} \right) \right]
$$

is both an excellent approximation for the original $V(r)$, with only the corners of the cylinder deviating from the nonseparable potential (3.1), and leads to an exactly solvable problem. Decomposing the separable potential (3.6) into $V(r) = V_r(r) + V_z(z)$ with $V_r(r) = V_0 \Theta(r - a)$ and $V_z(z) = V_0 \Theta(|z| - L/2)$, the stationary Schrödinger equation (3.5) then reads

$$
\left\{ \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2} + k^2 - \frac{2m_e}{\hbar^2} [V_r(r) + V_z(z)] \right\} \psi_{nm\ell}(r) = 0,
$$

where $k = \sqrt{2m_e \epsilon_0 / \hbar^2}$, and m is the magnetic quantum number and n (ℓ) is the principal quantum number due to the transverse (longitudinal) motion. We separate the variables in (3.7) using

$$
\psi_{nm\ell}(r) = F_{nm}(r, \theta) Z_\ell(z),
$$

and are thus led to two Schrödinger equations in the reduced eigenvalues k_r and k_z, respectively, where $k^2 = k^2_r + k^2_z$, whose solutions are given explicitly in the appendix. Using the results presented there [see in particular (A.12)], we are then able to evaluate the integrals entering (3.4), which are approximately given in the high-energy, semiclassical limit of $k_0 a \gg 1$ and $k_0 L \gg 1$ [with $k_0 = (2m_e V_0 / \hbar^2)^{1/2}$] by

$$
\int_{r<a} \frac{d^3r}{|z|>L/2} |\psi_{nm\ell}(r)|^2 \approx \frac{2}{k_z L k_0^2},
$$

and

$$
\int_{r>a} \frac{d^3r}{|z|<L/2} |\psi_{nm\ell}(r)|^2 \approx \frac{1}{2k_r a},
$$

where $k_r = (k_0^2 - k_r)^{1/2}$ and $k_z = (k_0^2 - k_z)^{1/2}$.

Upon substituting the expressions (3.9) into (3.4), we then replace the summation over the set of quantum numbers n, m, and ℓ by an integral over wavevector k. We take for the density of states the leading-in-h Weyl term [61], which is appropriate in the semiclassical approximation $k_F a \gg 1$ and $k_F L \gg 1$ (with k_F the Fermi wavevector). For typical noble metals, such as, e.g., Ag or Au, one has $k_F a \approx 10 a[\text{nm}]$, so that the semiclassical approximation is suitable even for nanometer-sized nanoparticles [62]. The aforementioned prescription leads to

$$
N_\parallel \approx 2 \frac{V}{(2\pi)^3} \int_{k<k_F} d^3k \frac{2}{k_z L k_0^2},
$$

and

$$
N_\perp \approx 2 \frac{V}{(2\pi)^3} \int_{k<k_F} d^3k \frac{1}{2k_r a},
$$

where the prefactor of 2 accounts for the spin degeneracy, and $V = \pi a^2 L$ is the volume of the cylinder. Performing the above integrals in spherical coordinates, we arrive at

$$
N_\parallel = \frac{k_o^2 a^2}{4\pi} \int_0^{k_F/k_0} dx x^4 \left[\int_{-1}^{+1} dt \frac{t^2}{\sqrt{1-x^2 t^2}} \right],
$$

and

$$
N_\perp = \frac{k_o^2 aL}{4\pi} \int_0^{k_F/k_0} dx x^2 \left[\int_{-1}^{+1} dt \frac{1}{\sqrt{1-x^2 (1-t^2)}} \right].
$$
where $k_0 > k_F$, and where the integrals with respect to the dimensionless radial (x) and polar (t) coordinates are yet to be performed. Evaluating the above integrals (3.11), we find the expressions

\[
N_\parallel = \frac{(k_F a)^2}{4\pi} h_\parallel \left(\frac{\epsilon_F}{V_0} \right),
\]

(3.12a)

\[
N_\perp = \frac{k_F^2 a L}{4\pi} h_\perp \left(\frac{\epsilon_F}{V_0} \right).
\]

(3.12b)

Here we have introduced the auxiliary functions

\[
h_\parallel(x) = \left(\frac{3}{2} - x \right) \sqrt{\frac{1}{x}} - 1 + \left(2 - \frac{3}{2x} \right) \text{arcsin} \sqrt{x},
\]

(3.13a)

\[
h_\perp(x) = \frac{1}{\sqrt{x}} + \left(1 - \frac{1}{x} \right) \text{arctanh} \sqrt{x}.
\]

(3.13b)

Scaling the results (3.12) with the total number of electrons in the nanoparticle $N_e = L a^2 k_F^3 / 3\pi$, we obtain

\[
\frac{N_\parallel}{N_e} = \frac{3}{4k_F L} h_\parallel \left(\frac{\epsilon_F}{V_0} \right),
\]

(3.14a)

\[
\frac{N_\perp}{N_e} = \frac{3}{4k_F a} h_\perp \left(\frac{\epsilon_F}{V_0} \right).
\]

(3.14b)

Thus, the fraction of spill-out electrons in both the longitudinal and transverse directions scale with the inverse of the spatial extent of the cylinder ($\propto 1/a, 1/L$), and so becomes increasingly important for particles with nanometric dimensions.

With the above results (3.14), we can now evaluate the spill-out lengths (3.3), which read

\[
k_F \ell_\parallel = \frac{3}{8} h_\parallel \left(\frac{\epsilon_F}{V_0} \right),
\]

(3.15a)

\[
k_F \ell_\perp = \frac{3}{8} h_\perp \left(\frac{\epsilon_F}{V_0} \right).
\]

(3.15b)

Importantly, these two quantities do not depend on the nanoparticle dimensions L and a, and only on the Fermi energy ϵ_F (or the Fermi wavevector k_F) and the depth V_0 of the mean-field potential (3.1). The spill-out lengths (3.15) are plotted in figure 3 as a function of ϵ_F/V_0. As one can see from the figure, both of these quantities smoothly increase with the above-mentioned ratio. Since k_F is typically of the order of 10^8 cm$^{-1}$ for alkaline or noble metals, and since ϵ_F/V_0 is usually of the order of 0.5 [28], the spill-out lengths (3.15) are only of a few tenths of an angstrom. However, as we will see in the next section, such a tiny spread of the electronic wave functions outside of the nanoparticle may have a non-negligible effect on the LSP resonance frequency.
3.2. Frequency redshifts due to the spill-out effect

We are now in a position to calculate the renormalized resonance frequency in the longitudinal (transverse) polarization $\tilde{\omega}_{0,\parallel}$ ($\tilde{\omega}_{0,\perp}$) due to the spill-out effect. We account for the spill-out of the electrons by treating the cylindrical nanoparticle with the effective dimensions L and a as in (3.2). It follows from the direct substitution of these effective dimensions into the resonance frequencies (2.14) and (2.21), which assumed hard-wall confinement of the valence electrons, that the renormalized resonance frequencies are, to leading order in the scaled spill-out lengths ℓ/L and ℓ/a [cf. (3.15)], given by

\[
\begin{align*}
\tilde{\omega}_{0,\parallel} &\simeq \omega_{0,\parallel} \left\{ 1 - \left[1 + \frac{L}{a} j_{\parallel} \right] \frac{\ell_{\parallel}}{L} - \left[1 - \frac{1}{2} j_{\parallel} \left(\frac{L}{a} \right) \frac{\ell_{\perp}}{a} \right] \right\}, \\
\tilde{\omega}_{0,\perp} &\simeq \omega_{0,\perp} \left\{ 1 - \left[1 + \frac{L}{a} j_{\perp} \right] \frac{\ell_{\parallel}}{L} - \left[1 - \frac{1}{2} j_{\perp} \left(\frac{L}{a} \right) \frac{\ell_{\perp}}{a} \right] \right\}.
\end{align*}
\]

(3.16a, 3.16b)

Here, we defined the two functions

\[
\begin{align*}
j_{\parallel}(x) &= \frac{(2/\pi x) \left[4/3 - g(x) + xg'(x) \right]}{1 + (2/\pi x) \left[4/3 - g(x) \right]}, \\
j_{\perp}(x) &= \frac{4/3 - g(x) + xg'(x)}{4/3 - g(x)},
\end{align*}
\]

(3.17a, 3.17b)

where

\[
g'(x) = \frac{1}{2} \left[(x^2 + 4) K\left(-\frac{4}{x^2}\right) - x^2 E\left(-\frac{4}{x^2}\right) \right]
\]

(3.18)

is the derivative with respect to x of the function $g(x)$ defined in (2.11).

We plot in figure 4(a) the auxiliary functions (3.17), which are both monotonically increasing functions of the aspect ratio L/a of the cylinder sketched in figure 1, with $0 < j_{\parallel} < 1$ and $-1 < j_{\perp} < 0$. Thus, the prefactors of the terms $\propto 1/L$ and $\propto 1/a$ in (3.16) are negative, such that the LSP resonance frequencies of the cylinder experience a redshift as the nanoparticle size decreases, as it is the case for the sphere geometry [28]. This is exemplified in figure 4(b), which displays the renormalized resonance frequencies (3.16) (in units of the bare ones) as a function of $1/k_F a$, for an aspect ratio $L/a = 1$, and for increasing values of ϵ_F/V_0. As one can see from the figure, the deviation due to the spill-out effect from the bare resonance frequencies can reach between ca. 1.5% to 4.5% (depending on the ratio ϵ_F/V_0, which is essentially material-dependent) for $k_F a = 10$ (which typically corresponds to $a \simeq 1$ nm for normal metals). Progress in nanofabrication techniques should allow one to vary the cylindrical nanoparticle size and thus to measure the predicted size dependence of the resonance frequencies (3.16).
4. COUPLED MODES IN A CYLINDRICAL DIMER

We now consider a dimer of cylindrical nanoparticles composed of the same metal, which are aligned along the z axis, and are separated by a distance d (see figure 5). The two cylinders, denoted left (L) and right (R), are both of a radius a and length L, and contain N_e valence electrons each. In the following, we study the resultant coupled plasmonic modes in the dimer, for both the longitudinal ($\alpha = \parallel$) and transverse ($\alpha = \perp$) polarizations, in a similar fashion to the single cylinder calculation of §2.

Notably, we focus on the dipolar modes and do not take into account higher-order contributions to the collective plasmon-plasmon interactions, which are only relevant for small inter-nanoparticle separations.\footnote{For spheres, this non-dipolar regime is given by $s \lesssim 3R$, where R is the nanoparticle radius and s is the point-to-point separation [63].} We also focus on separation distances such that the near-field coupling between the LSPs on each nanoparticle dominates, and thus disregard retardation effects. The latter only lead to small frequency renormalization effects in nanoparticle dimers [64] (although retardation effects can be significant in long nanoparticle chains [43, 65, 66]).

We start by neglecting the spill-out of the electronic wave functions outside of each cylinder. As in §2, we assume that the density $n(r)$ of valence electrons is uniform within each cylinder (with density n_0), and vanishing outside. We thus have

$$n(r) = n_L(r) + n_R(r), \quad (4.1)$$

where, in cylindrical coordinates, the single nanoparticle contributions are

$$n_L(r) = n_0 \Theta (a - r) \Theta (-z - \frac{d}{2}) \Theta \left(L + \frac{d}{2} + z\right), \quad (4.2a)$$

$$n_R(r) = n_0 \Theta (a - r) \Theta (z - \frac{d}{2}) \Theta \left(L + \frac{d}{2} - z\right). \quad (4.2b)$$

In order to have access to the frequencies of the coupled dipolar modes, we shall impose two types of rigid displacements u_τ^α on the total density (4.1) for each polarization α, distinguished by the index $\tau = \pm$. To first order in the displacement field u_τ^α, the electronic density is perturbed like $n(r - u_\tau^\alpha) \simeq n(r) + \delta n_\tau^\alpha(r)$, where

$$\delta n_\tau^\alpha(r) = -u_\tau^\alpha \cdot \nabla n(r). \quad (4.3)$$

This density change gives rise to the two possible normal modes of the system (labelled by τ) for each polarization α, which we now consider in turn.

4.1. Longitudinal modes

Firstly, let us consider the symmetric mode in the longitudinal polarization ($\rightarrow \rightarrow$), which we denote with the index $\tau = -$ since it constitutes the low-energy mode. We enforce the displacement $u_-^\parallel = u \hat{z}$ in both cylinders, such that

\[\begin{align*}
\end{align*}\]
the shift in density (4.3) is \(\delta n^\parallel (r) = \delta n^\parallel_L(r) + \delta n^\parallel_R(r) \), with

\[
\delta n^\parallel_L(r) = u_{n0} \Theta (a - r) \left[\delta \left(z + \frac{d}{2} \right) - \delta \left(L + \frac{d}{2} + z \right) \right], \tag{4.4a}
\]

\[
\delta n^\parallel_R(r) = u_{n0} \Theta (a - r) \left[\delta \left(L + \frac{d}{2} - z \right) - \delta \left(z - \frac{d}{2} \right) \right]. \tag{4.4b}
\]

Secondly, let us consider the antisymmetric, high-energy mode (\(\rightarrow \epsilon \)), which we mark with the index \(\tau = + \). Imposing the rigid displacements \(\mathbf{u}_\parallel^\tau = \pm \hat{u}_z \), which act in different directions (\(\pm \)) in each cylinder (L relative to R), the change in density (4.3) reads \(\delta n^\tau_L(r) = \delta n^\tau_R(r) - \delta n^\parallel (r) \), in terms of the quantities (4.4).

The change in electrostatic interactions between the electronic clouds is described by the change in the Hartree energy

\[
\delta E^\tau = \delta E^\tau_{LL} + \delta E^\tau_{RR} - \tau \left(\delta E^\tau_{LR} + \delta E^\tau_{RL} \right), \tag{4.5}
\]

where we have used the decomposition

\[
\delta E^{ij}_\alpha = \frac{\varepsilon^2}{2} \int d^3r \int d^3r' \frac{\delta n_{i,\alpha}(r) \delta n_{j,\alpha}(r')}{|r - r'|}, \tag{4.6}
\]

where \(i, j \in \{L, R\}, \alpha \in \{\parallel, \perp\} \) and \(\delta n^\alpha (r) \) are given in (4.4). The first two terms on the right-hand side of (4.5) describe the contributions from each cylinder in isolation, \(\delta E^\tau_{LL} = \delta E^\tau_{RR} = \delta E^\parallel \), where \(\delta E^\parallel \) is given in (2.10). The effect of electrostatic coupling is contained in the final two terms of (4.5). An analogous calculation to that which led to (2.10) yields for the remaining two terms in (4.5) the expression

\[
\delta E^\tau_{LR} = \delta E^\tau_{RL} = 2\pi (\varepsilon u_{n0})^2 a^3 \left[2g \left(\frac{L + d}{a} \right) - g \left(\frac{d}{a} \right) - g \left(\frac{2L + d}{a} \right) \right], \tag{4.7}
\]

where the function \(g(x) \) is defined in (2.11).

The restoring force \(F^\tau_\alpha = -\partial_\alpha (\delta E^\tau_\alpha) = -k^\tau_\alpha \hat{u} \) then provides us with a relation to the effective spring constant \(k^\tau_\alpha \) of the problem, from which the resonance frequencies \(\omega_{\tau,\alpha} = \sqrt{k^\tau_\alpha / 2N_e m_e} \) are revealed.\(^3\) Hence the longitudinal eigenfrequencies of a dimer of cylindrical nanoparticles are given by

\[
\omega_{\tau,\parallel} = \sqrt{\omega^2_{0,\parallel} + 2\tau \Omega^2}, \tag{4.8}
\]

which accounts for both the high-energy (\(\tau = +, \rightarrow \epsilon \)) and the low-energy (\(\tau = -, \rightarrow \epsilon \)) modes. Here, \(\omega_{0,\parallel} \) is the resonance frequency of an isolated cylinder (2.14), which depends on the aspect ratio \(L/a \), while the effective coupling constant of the problem \(\Omega \) has the functional form

\[
\Omega = \omega_p \sqrt{\frac{a}{2\pi L} \left[g \left(\frac{d}{a} \right) + g \left(\frac{2L + d}{a} \right) - 2g \left(\frac{L + d}{a} \right) \right]}, \tag{4.9}
\]

and depends on both \(L/a \) and \(d/a \). Equation (4.8) analytically describes the longitudinal resonance frequencies of the pair of coupled dipolar modes of the cylindrical dimer, provided the separation \(d \) is not too small (i.e., where one can neglect multipolar effects and/or the quantum tunneling of electrons between the two nanoparticles comprising the dimer). To leading order in \(d/a \gg 1 \) and \(d/L \gg 1 \), using (2.13b) we have

\[
\Omega \approx \omega_p \sqrt{\frac{L_o a^2}{4d^3}}, \tag{4.10}
\]

from which one immediately notices that in the extreme isolation limit (\(d \rightarrow \infty \)), the coupling constant (4.9) vanishes and thus the single nanoparticle resonance frequency (2.14) is recovered.

We plot the dimer resonance frequencies (4.8) as a function of the interparticle separation \(d \) in figure 6(a), for both the high-energy (black line) and the low-energy (red line) modes, for the aspect ratio \(L/a = 1 \). Evidently, for

\(^3\) Note that \(2N_e m_e \) corresponds to the total electronic mass of the dimer.
separations of just a few multiples of the cylinder size, the two resonance frequencies converge onto the one of a single cylinder $\omega_{0,\parallel}$ (see the gray dashed line). As one can see from the figure, for separations below the cylinder size, the pair of plasmonic levels become increasingly distinct and hence experimentally detectable. The bright mode ($\rightarrow\rightarrow$) may be accessed optically, whereas the dark mode ($\rightarrow\leftarrow$) should be probed via electron energy loss spectroscopy (EELS) [8].

For completeness, we now consider the two limiting cases of equation (4.8), i.e., the nanodisk ($L/a \ll 1$) and nanowire ($L/a \gg 1$) limits, and for large separation distances ($d/a \gg 1$, $d/L \gg 1$). Using (4.10), the full eigenspectrum (4.8) of the coupled nanodisks reads

$$\omega_{\text{disk}}^{\tau,\parallel} \simeq \omega_{0,\parallel} + \tau \omega_p \frac{La^2}{4d^3},$$

where $\omega_{0,\parallel}^{\text{disk}}$ is given in (2.16), analytically demonstrating the expected inverse cubic decay with separation ($\propto 1/d^3$), which is characteristic of a quasistatic dipolar interaction [59]. In the opposite regime of a dimer of wire-like nanoparticles, and further assuming $L^2a/d^3 \ll 1$, we have

$$\omega_{\text{wire}}^{\tau,\parallel} \simeq \omega_{0,\parallel}^{\text{wire}} + \frac{\omega_p}{8} \frac{3\pi}{2} \left(\frac{L}{d} \right)^3,$$

where an expression for $\omega_{0,\parallel}^{\text{wire}}$ can be found in (2.17), again showcasing the characteristic scaling typical of the dipole-dipole interaction regime ($\propto 1/d^3$).

4.2. Transverse modes

The calculation for the transverse polarized coupled modes ($\alpha = \perp$) proceeds in a similar manner to that of the previous subsection. The main difference is that the symmetric mode ($\uparrow\uparrow$) is now the high-energy mode and is associated with $\tau = +$, while the antisymmetric mode ($\uparrow\downarrow$) corresponds to the low-energy mode and has the label $\tau = -$.

We again consider two separate displacements in order to characterize the two coupled dipolar modes. Firstly we assume $\mathbf{u}_{+}^{\perp} = u \hat{x}$, which gives rise to the symmetric mode, and secondly we let $\mathbf{u}_{-}^{\perp} = \pm u \hat{x}$, which distinguishes the antisymmetric mode (in the right hand side of \mathbf{u}_{-}^{\perp}, the \pm refers to the displacements being in opposite directions for cylinder L as compared to R). The shift in electronic density across the dimer then reads $\delta n_{\perp}^{\tau}(r) = \delta n_{L,\perp}(r) + \delta n_{R,\perp}(r)$...
\[\tau \eta_{R,\perp}(r), \]

where

\[\delta n_{L,\perp}(r) = u_{\eta} \cos \theta (a - r) \Theta \left(-z - \frac{d}{2} \right) \Theta \left(L + \frac{d}{2} + z \right), \tag{4.13a} \]

\[\delta n_{R,\perp}(r) = u_{\eta} \cos \theta (a - r) \Theta \left(z - \frac{d}{2} \right) \Theta \left(L + \frac{d}{2} - z \right), \tag{4.13b} \]

as follows from (4.2) and (4.3).

The change in Hartree energy accounts for the transverse electrostatic interactions via \[\delta E_{\perp} = \delta E_{\perp}^{LL} + \delta E_{\perp}^{RR} + \tau (\delta E_{\perp}^{LR} + \delta E_{\perp}^{RL}), \]

where we utilized the decomposition of (4.6). The first two terms in \[\delta E_{\perp} \]

are single nanoparticle contributions, and so are exactly that of (2.20), explicitly \[\delta E_{\perp}^{LL} = \delta E_{\perp}^{RR} = \delta E_{\perp}. \]

The remaining coupling terms in \[\delta E_{\perp} \]

are single nanoparticle contributions, and are given by

\[\delta E_{\perp}^{LR} = \delta E_{\perp}^{RL} = \pi (e u_{\eta}^2) a^3 \left[g \left(\frac{d}{a} \right) + g \left(\frac{2L + d}{a} \right) - 2g \left(\frac{L + d}{a} \right) \right], \tag{4.14} \]

where \[g(x) \]

was introduced in (2.11). As in the previous subsection, the analytic expression for the transverse resonance frequencies soon follows from the restoring force \[F^{\perp} \]

(see below (4.7) for details) as

\[\omega_{\tau,\perp} = \sqrt{\omega_{0,\perp}^2 + \tau \Omega^2}, \tag{4.15} \]

where the coupling constant \[\Omega \]

is defined in (4.9), and with the single cylinder resonance frequency \[\omega_{0,\perp} \] of (2.21). Notably, compared to the longitudinal result \[\omega_{\tau,\parallel} \]

of (4.8), the second term under the square root in (4.15), the so-called \[\tau \]

coupling term, is half as large. This property is familiar from the canonical case of a dimer of spherical nanoparticles, where the longitudinal modes are also (approximately) twice as widely split as the transverse modes [48, 64].

The transverse polarized dimer resonance frequencies (4.15) are plotted as a function of the interparticle separation \[d \]

in figure 6(b), with the aspect ratio fixed at \[L/a = 1. \]

The plot illustrates increasingly large inter-mode splittings for decreasing separations \[d \], such that \[\omega_{\tau,\perp} \]

become significantly detuned from the single cylinder result (dashed gray line). In stark contrast to the longitudinal coupled modes of figure 6(a), in panel (b) it is the high-energy mode which strongly couples to light (red line), and as such may be detected straightforwardly by optical means, while the low-energy mode is dark (black line), and as such requires EELS probing techniques.

A remark is now in order about the influence of the spill-out effect onto the coupled mode frequencies shown in figure 6. Since the effective coupling constant \[\Omega \] of (4.9) already represents a rather small correction to the single particle results \[\omega_{0,\parallel} \]

and \[\omega_{0,\perp} \] in (4.8) and (4.15), respectively, we can safely assume that \[\Omega \]

is not renormalized by the spill-out lengths (3.15). Therefore, the renormalized coupled mode frequencies are

\[\tilde{\omega}_{\tau,\parallel} = \left(\tilde{\omega}_{0,\parallel}^2 + 2\tau \Omega^2 \right)^{1/2} \] and

\[\tilde{\omega}_{\tau,\perp} = \left(\tilde{\omega}_{0,\perp}^2 + \tau \Omega^2 \right)^{1/2} \] respectively, where \[\omega_{0,\parallel} \]

and \[\omega_{0,\perp} \] are given in (3.16). Henceforth, the only effect of the spill-out electrons is a global frequency shift towards the red end of the spectrum, which does not depend on the interparticle distance \[d \].

5. CONCLUSION

We have considered the fundamental problem of characterizing analytically the longitudinal and transverse dipolar modes supported by a cylindrical nanoparticle with an arbitrary aspect ratio. Inspired by the trend of increasing miniaturization, we have derived semiclassical expressions for the spill-out lengths in metallic cylinders, and have shown that this quantum phenomenon can significantly renormalize the plasmonic frequencies. Recent experiments on plasmonic cylinders, including with nanodisks and nanowires, suggests that both the resonance frequency dependence on the cylinder aspect ratio and the quantum size effect we consider may be probed in cutting edge laboratories [15–20].

We have also developed an analytical theory of a dimer of cylindrical nanoparticles, and have derived a simple expression for the bright and dark mode eigenfrequencies of the collective plasmons, for both the longitudinal and transverse polarizations. These results provide insight into the evolution of the splitting of the coupled modes as a function of the inter-nanoparticle separation, and act as a benchmark for future experimental and numerical studies of collective plasmonic behavior [31, 46, 47].

ACKNOWLEDGMENTS

We are grateful to Rodolfo Jalabert and Dietmar Weinmann for stimulating discussions. We acknowledge support from Agence Nationale de la Recherche (Grant No. ANR-14-CE26-0005 Q-MetaMat). CAD acknowledges support.
from the Juan de la Cierva program of the Spanish MINECO. This research project has been supported by the University of Strasbourg IdEx program.

Appendix A: Schrödinger equation with a cylindrical step potential

In this appendix, we provide details about the bound-state solutions to the Schrödinger equation (3.7), which enable us to evaluate semiclassically the average number of spill-out electrons (3.4), in both the longitudinal and transverse directions.

Separating the variables as in (3.8), the transverse wavefunctions $F_{nm}(r, \theta)$ are subject to the following Schrödinger equation,

$$
\left\{ \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \left[k_r^2 - \frac{2m_e}{\hbar^2} V_r(r) \right] \right\} F_{nm}(r, \theta) = 0.
$$

(A.1)

With the ansatz $F_{nm}(r, \theta) = R_{nm}(r) e^{im\theta}/\sqrt{2\pi}$, where the quantum number $m \in \mathbb{Z}$, and with the notation $\kappa_r = (k_0^2 - k_r^2)^{1/2}$, where $k_0 = \sqrt{2m_e V_0/\hbar^2}$, one finds the following bound state solutions

$$
R_{nm}(r) = C_{nm} \begin{cases} J_m(k_r r), & r \leq a, \\ \frac{J_m(k_r a)}{K_m(k_r a)} K_m(k_r r), & r > a, \end{cases}
$$

(A.2)

where $J_m(x)$ and $K_m(x)$ are the Bessel functions of the first and second kinds, respectively. The normalization constant in (A.2) is given by

$$
C_{nm} = \frac{\sqrt{2}}{a} \left\{ \left[\frac{J_m(k_r a)}{K_m(k_r a)} \right]^2 K_{m+1}(k_r a) K_{m-1}(k_r a) - J_{m+1}(k_r a) J_{m-1}(k_r a) \right\}^{-1/2},
$$

(A.3)

while the transverse motion is subject to energy quantization via the transcendental equation

$$
k_r \frac{J_{m+1}(k_r a)}{J_m(k_r a)} = \kappa_r \frac{K_{m+1}(k_r a)}{K_m(k_r a)}. \tag{A.4}
$$

The solutions of (A.4) are labeled with the quantum number n.

The longitudinal wavefunctions $Z\tilde{n}(z)$ entering (3.8) obey

$$
\frac{d^2}{dz^2} Z\tilde{n}(z) + \left[k_z^2 - \frac{2m_e}{\hbar^2} V_z(z) \right] Z\tilde{n}(z) = 0,
$$

(A.5)

which is equivalent to the textbook quantum mechanics exercise of a one-dimensional particle in a square box [67]. The solutions of (A.5) have either a symmetric (s) or an antisymmetric (a) parity, which we specify as $Z\tilde{n}(z) = Z\tilde{n,p}(z)$, where the index $p = (s, a)$. The even bound state solutions are given by

$$
Z\tilde{n,s}(z) = \sqrt{\frac{\kappa_z}{1 + \kappa_z L/2}} \begin{cases} \cos \left(\frac{k_z L}{2} \right) e^{\kappa_z (L/2-z)}, & z \leq -L/2, \\ \cos \left(k_z z \right), & |z| < L/2, \\ \cos \left(\frac{k_z L}{2} \right) e^{\kappa_z (L/2-z)}, & z \geq L/2, \end{cases}
$$

(A.6a)

where $\kappa_z = \sqrt{k_0^2 - k_z^2} > 0$. Similarly, the odd solutions read

$$
Z\tilde{n,a}(z) = \sqrt{\frac{\kappa_z}{1 + \kappa_z L/2}} \begin{cases} -\sin \left(\frac{k_z L}{2} \right) e^{\kappa_z (L/2+z)}, & z \leq -L/2, \\ \sin \left(k_z z \right), & |z| < L/2, \\ \sin \left(\frac{k_z L}{2} \right) e^{\kappa_z (L/2-z)}, & z \geq L/2. \end{cases}
$$

(A.6b)
Both sets of eigenfunctions (A.6a) and (A.6b) are associated with an individual transcendental equation describing the quantization of energy due to the longitudinal confinement, explicitly

$$\tan \left(\frac{k_z L}{2} \right) = \frac{\kappa_z}{k_z}, \quad (s \text{ modes}),$$
(A.7a)

$$\tan \left(\frac{k_z L}{2} \right) = -\frac{\kappa_z}{k_z}, \quad (a \text{ modes}).$$
(A.7b)

The solutions of these equations are labeled with the third quantum number of the problem, \tilde{n}.

Now that the full Schrödinger equation (3.7) is solved, we proceed with the evaluation of the integrals entering (3.4), namely

$$\mathcal{R}_{nm}^{\text{in}} = \int_0^a dr |R_{nm}(r)|^2,$$
(A.8a)

$$\mathcal{R}_{nm}^{\text{out}} = \int_a^\infty dr |R_{nm}(r)|^2,$$
(A.8b)

$$Z_{\tilde{n},p}^{\text{in}} = \int_{-L/2}^{L/2} dz |Z_{\tilde{n},p}(z)|^2,$$
(A.8c)

$$Z_{\tilde{n},p}^{\text{out}} = \left(\int_{-\infty}^{-L/2} + \int_{L/2}^{+\infty} \right) dz |Z_{\tilde{n},p}(z)|^2,$$
(A.8d)

which describe the probability of finding the electrons inside or outside the cylindrical nanoparticle, in either the transverse or longitudinal directions. With (A.2), we obtain for the transverse integrals (A.8a) and (A.8b) the results

$$\mathcal{R}_{nm}^{\text{in}} = \frac{J_{m+1}(k_r a)J_{m-1}(k_r a) - J_m^2(k_r a)}{J_{m+1}(k_r a)J_{m-1}(k_r a) - J_m^2(k_r a)},$$
(A.9a)

$$\mathcal{R}_{nm}^{\text{out}} = \frac{K_{m+1}(\kappa_r a)K_{m-1}(\kappa_r a) - K_m^2(\kappa_r a)}{K_{m+1}(\kappa_r a)K_{m-1}(\kappa_r a) - K_m^2(\kappa_r a)},$$
(A.9b)

where we have introduced the auxiliary function

$$\mathcal{L}_m(x) = \frac{L_{m+1}(x)L_{m-1}(x)}{L_m^2(x)}.$$
(A.10)

Here, $\mathcal{L}_m(x)$ denotes the Bessel functions $J_m(x)$ or $K_m(x)$. Similarly, using (A.6), we find for the longitudinal integrals (A.8c) and (A.8d)

$$Z_{\tilde{n},p}^{\text{in}} = \frac{1}{1 + \kappa_z L/2} \left(\frac{\kappa_z L}{2} + \kappa_z^2 \frac{k_0^2}{k_0^2} \right),$$
(A.11a)

$$Z_{\tilde{n},p}^{\text{out}} = \frac{k_z^2/k_0^2}{1 + \kappa_z L/2},$$
(A.11b)

In the high-energy semiclassical limit ($k_0 a \gg 1$, $k_0 L \gg 1$), which is well suited for the problem at hand [62], we find that the expressions (A.9) and (A.11) are well-approximated by

$$\mathcal{R}_{nm}^{\text{in}} \simeq 1,$$
(A.12a)

$$\mathcal{R}_{nm}^{\text{out}} \simeq \frac{1}{2} \frac{1}{\kappa_r a},$$
(A.12b)

$$Z_{\tilde{n},p}^{\text{in}} \simeq 1,$$
(A.12c)

$$Z_{\tilde{n},p}^{\text{out}} \simeq \frac{2}{\kappa_z L} \frac{k_z^2}{k_0^2},$$
(A.12d)
which then lead to (3.9).\(^4\)

\(^4\) In this semiclassical limit, the leading order expressions (A.12) do not satisfy unitarity, which requires the inclusion of high-order terms. However, since the absent terms are of negligible importance for the range of parameters we consider in this work we may omit them. Notably, this semiclassical limit has been shown to be an excellent approximation for a spherical nanoparticle \([62]\) and it has the significant advantage of providing additional physical insight.
[30] Prodan E, Radloff C, Halas NJ, Nordlander P. 2003 A hybridization model for the plasmon response of complex nanostructures. Science 302, 419. (doi:10.1126/science.1087849)

[31] Jain PK, El-Sayed MA. 2010 Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153. (doi:10.1016/j.cplett.2010.01.062)

[32] Sahoo PK, Vogelsang K, Schif H, Solak HH. 2009 Surface plasmon resonance in near-field coupled gold cylinder arrays fabricated by EUV-interference lithography and hot embossing. Appl. Surf. Sci. 256, 431. (doi:10.1016/j.apsusc.2009.06.079)

[33] Guillot N, ShenH, Frenaux B, Peron O, Rinnert E, Toury T, Lamy de la Chapelle M. 2010 Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength. Appl. Phys. Lett. 97, 023113. (doi:10.1063/1.3462068)

[34] Kolodziejski M, Miroshnichenko AE, Kivshar Y. 2014 Topological Majorana states in zigzag chains of plasmonic nanoparticles. Nat. Phys. 10, 545. (doi:10.1038/nphys2993)

[35] Gillibert R, Colas F, Yasukuni R, Picardi G, Lamy de la Chapelle M. 2017 Plasmonic properties of aluminum nanocylinders in the visible range. Proc. SPIE 10044, 100441L. (doi:10.1117/12.2264238)

[36] Jackson JD. 1998 Classical electrodynamics. New York: Wiley.

[37] Hoflich K, Gosele U, Christiansen S. 2009 Near-field investigations of nanoshell cylinder dimers. J. Chem. Phys. 131, 034704. (doi:10.1021/jp810064d)

[38] Gillibert R, Colas F, Yasukuni R, Picardi G, Lamy de la Chapelle M. 2017 Plasmonic properties of aluminum nanocylinders in the visible range. Proc. SPIE 10044, 100441L. (doi:10.1117/12.2264238)

[39] Marcus SG, Gaponenko IV, Miroshnichenko AE. 2011 Topological Majorana states in zigzag chains of metallic nanowires. Phys. Rev. B 84, 195438. (doi:10.1103/PhysRevB.84.195438)

[40] Zoric I, Zoric D, Miroshnichenko AE, Kivshar Y. 2014 Topological Majorana states in zigzag chains of plasmonic nanoparticles. ACS Photonics 1, 101. (doi:10.1021/ph4000949)

[41] Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. 2004 Plasmon hybridization in nanoparticle dimers. Phys. Rev. B 69, 115426. (doi:10.1103/PhysRevB.69.115426)

[42] Kodas AM, Weick G. 2018 Topological plasmons in dimerized chains of nanoparticles: robustness against long-range quasistatic interactions and retardation effects. Eur. Phys. J. B 91, 253. (doi:10.1140/epjb/e2018-90199-0)

[43] Pocock SR, Xiao X, Huidobro PA, Giannini V. 2018 Topological plasmonic chain with retardation and radiative effects. ACS Photonics 5, 2271. (doi:10.1021/acsphotonics.8b00117)

[44] Nordlander P, Ouibre C, Prodan E, Li K, Stockman MI. 2004 Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899. (doi:10.1021/nl049681c)

[45] Reinhard BM, Lii M, Agarwal H, Alivisatos AP, Liphardt J. 2005 Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett. 5, 2246. (doi:10.1021/nl051592s)

[46] Jain PK, Huang W, El-Sayed MA. 2007 On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080. (doi:10.1021/nl071008a)

[47] Brandstetter-Kunc A, Weick G, Weinmann D, Jalabert RA. 2016 Nonradiative limitations to plasmon propagation in chains of metallic nanoparticles. Phys. Rev. B 94, 205432. (doi:10.1103/PhysRevB.94.205432)

[48] Cole JR, Halas NJ. 2006 Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Appl. Phys. Lett. 89, 153120. (doi:10.1063/1.2360918)

[49] Aubry A, Leï DY, Fernandez-Dominguez AI, Sonnenfraud Y, Maier SA, Pendry JB. 2010 Plasmonic light-harvesting devices over the whole visible spectrum. Nano. Lett. 10, 2574. (doi:10.1021/nl101235d)

[50] Feng L, Li Y, Huang W, El-Sayed MA. 2009 Near-field investigations of nanoshell cylinder dimers. J. Chem. Phys. 131, 164704. (doi:10.1063/1.3231870)

[51] Gillibert R, Colas F, Yasukuni R, Picardi G, Lamy de la Chapelle M. 2017 Plasmonic properties of aluminum nanocylinders in the visible range. Proc. SPIE 10044, 100441L. (doi:10.1117/12.2264238)

[52] Kottmann JP, Martin OJF. 2001 Plasmon resonant coupling in metallic nanowires. Opt. Express 8, 665. (doi:10.1364/OE.8.000655)

[53] Hofflich K, Gosele U, Christiansen S. 2009 Near-field investigations of nanoshell cylinder dimers. J. Chem. Phys. 131, 164704. (doi:10.1063/1.3231870)

[54] Vorobev PE. 2010 Electric field enhancement between two parallel cylinders due to plasmonic resonance. J. Exp. Theor. Phys. 110, 193. (doi:10.1134/S1063776110020020)

[55] Gillibert R, Colas F, Yasukuni R, Picardi G, Lamy de la Chapelle M. 2017 Plasmonic properties of aluminum nanocylinders in the visible range. Proc. SPIE 10044, 100441L. (doi:10.1117/12.2264238)

[56] Schnitzer O, Giannini V, Maier SA, Craster RV. 2016 Surface plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit. Proc. R. Soc. A 472, 20160258. (doi:10.1098/rspa.2016.0258)

[57] Berezkina AS, Frumin LL, Nemykin AV, Perninov SV, Shapiro DA. 2019 Perturbation series for the scattering of electromagnetic waves by parallel cylinders. EPL 127, 20002. (doi:10.1209/0295-5075/127/20002)
[60] Weick G, Molina RA, Weinmann D, Jalabert RA. 2005 Lifetime of the first and second collective excitations in metallic nanoparticles. *Phys. Rev. B* **72**, 115410. (doi:10.1103/PhysRevB.72.115410)

[61] Brack M, Bhaduri RK. 1997 *Semiclassical physics*. Reading: Addison-Wesley.

[62] Weick G, Ingold GL, Jalabert RA, Weinmann D. 2006 Surface plasmon in metallic nanoparticles: renormalization effects due to electron-hole excitations. *Phys. Rev. B* **74**, 165421. (doi:10.1103/PhysRevB.74.165421)

[63] Park SY, Stroud D. 2004 Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation. *Phys. Rev. B* **69**, 125418. (doi:10.1103/PhysRevB.69.125418)

[64] Downing CA, Mariani E, Weick G. 2017 Radiative frequency shifts in nanoplasmatic dimers. *Phys. Rev. B* **96**, 155421. (doi:10.1103/PhysRevB.96.155421)

[65] Weber WH, Ford GW. 2004 Propagation of optical excitations by dipolar interactions in metal nanoparticle chains. *Phys. Rev. B* **70**, 125429. (doi:10.1103/PhysRevB.70.125429)

[66] Downing CA, Mariani E, Weick G. 2018 Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains. *J. Phys.: Condens. Matter* **30**, 025301. (doi:10.1088/1361-648X/aa9d59)

[67] Cohen-Tannoudji C, Diu B, Laloe F. 2019 *Quantum mechanics. Volume I: basic concepts, tools, and applications*. Weinheim: Wiley-VCH.