ON THE UNIVERSAL CENTRAL EXTENSION OF HYPERELLIPTIC CURRENT ALGEBRAS.

BEN COX

Abstract. Let $p(t) \in \mathbb{C}[t]$ be a polynomial with distinct roots and nonzero constant term. We describe, using Faà de Bruno’s formula and Bell polynomials, the universal central extension in terms of generators and relations for the hyperelliptic current Lie algebras $g \otimes R$ whose coordinate ring is of the form $R = \mathbb{C}[t, t^{-1}, u | u^2 = p(t)]$.

1. Introduction

Let $p(t) \in \mathbb{C}[t]$ be a separable polynomial with nonzero constant term. In this paper, using a general result of C. Kassel, we explicitly describe the universal central extension of the Lie algebra $g \otimes R$ where $R = \mathbb{C}[t, t^{-1}, u | u^2 = p(t)]$. An algebraic curve of the form $\mathbb{C}[t, u | u^2 = p(t)]$ is called a hyperelliptic curve if $\deg p > 4$, so we called the universal central extension of $g \otimes R$, a hyperelliptic current algebra. Modulo most of the center, this algebra is a particular example of a Krichever-Novikov current algebra (see [KN87a],[KN87b], [KN89]). See also the books [She12] and [Sch14] for more information and background about these algebras.

In the 1990’s M. Bremner explicitly described in terms of generators, relations and using certain families of polynomials (ultraspherical and Pollaczek), the structure constants for the universal central extension of algebras of the form $g \otimes R$ where $R = \mathbb{C}[t, t^{-1}, u | u^2 = p(t)]$ where $p(t) = t^2 - 2bt + 1$ and $p(t) = t^4 - 2bt^2 + 1, b \neq \pm 1$ (see [Bre94a], [Bre94b], [Bre95]). He determined more generally the dimension of the universal central extension for affine Lie algebras of the form $g \otimes R$ where R is the ring of regular functions defined on an algebraic curve with any number of points removed. This was derived using C. Kassels result [KL82, Kas84]) where one knows that the center is isomorphic as a vector space to Ω_R/dR. The case where $p(t) = t^4 - 2bt^2 + 1$ was studied in [CF11] and [CFT13] where particular cases of the associated Jacobi polynomials made their appearance. Thus the contents of the current paper includes as special cases most of the above work. If the constant term of the polynomial is zero, then some small modifications of the present work will yield also an explicit description of the universal central extension. This is left to the reader. We will later review some of the above cited work as needed.

It should also be mentioned that in joint work with R. Lu, X. Guo and K. Zhao we have described the center of the universal central extension of the Lie algebra $\text{Der}(R)$ for R as above ([CGLZ15]) and for the n-point ring $R = \mathbb{C}[t, (t-a_1)^{-1}, \ldots, (t-a_n)^{-1}]$ for distinct complex numbers a_i ([CGLZ14]). Here also interesting families of polynomials arise in their description (for example the associated Legendre polynomials when $p(t) = t^{2k} - 2bt^k + 1, b \neq \pm 1, k \geq 1$).

In our previous work (see [Cox08, CJ14, BCF09, CF11]), the authors we used such detailed information to obtain certain free-field realizations of the three point, four point, elliptic affine
and DJKM algebras depending on a parameter \(r = 0.1 \) that correspond to two different normal orderings. These later realizations are analogues of Wakimoto type realizations which have been used by Schechtman and Varchenko and various other authors in the affine setting to pin down integral solutions to the Knizhnik-Zamolodchikov differential equations (see for example [ATY91], [Kur91], [EFK98], [SV90]). Such realizations have also been used in the study of the Drinfeld-Sokolov reduction in the setting of \(W \)-algebras and in E. Frenkel’s and B. Feigin’s description of the center of the completed enveloping algebra of an affine Lie algebra (see [FFR94, Fre05]).

Our main result Theorem 4.1 is a description of the generators and relations for the hyperelliptic current algebra \(g \otimes R \) in terms of polynomials arising from Faà de Bruno’s formula and Bell polynomials.

In future work the author plans to use results of this paper to describe free-field realizations of the universal central extension of these hyperelliptic current algebras. One can also see that the group of automorphisms of a commutative associate algebra \(R \) over \(\mathbb{C} \) induces an action of that group on \(\Omega_R/dR \). In future work we will also describe for certain algebras \(R \) how \(\Omega_R/dR \) decomposes into a direct sum of irreducible submodules under this action.

2. Background, Faà de Bruno’s Formula and Bell Polynomials

As C. Kassel showed the universal central extension of the current algebra \(g \otimes R \) where \(g \) is a finite dimensional Lie algebra defined over \(\mathbb{C} \), is a vector space \(\hat{g} = (g \otimes R) \oplus \Omega_R^1/dR \) where \(\Omega_R^1/dR \) is the space of Kähler differentials modulo the exact forms \(dR \) and where the Lie bracket is given by

(2.1) \[[x \otimes f, y \otimes g] := [xy] \otimes fg + (x, y)R \frac{dg}{dt}, \quad [x \otimes f, \omega] = 0, \quad [\omega, \omega'] = 0, \]

where \(x, y \in g \), and \(\omega, \omega' \in \Omega_R^1/dR \). Here \((x, y) \) denotes the Killing form on \(g \) and \(\frac{dg}{dt} \) denotes the residue class in \(\Omega_R^1/dR \).

Consider the polynomial \(p(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_0 \), where \(a_i \in \mathbb{C} \) and \(a_n = 1 \). Fundamental to the description of \(\hat{g} \) where \(R = \mathbb{C}[t, t^{-1}, u \mid u^2 = p(t)] \), is the following:

Theorem 2.1 ([Bre94b, Theorem 3.4]). *Let \(R \) be as above. The set*

(2.2) \[\{t^{-1} dt, t^{-1} u dt, \ldots, t^{-n} u dt\} \]

forms a basis of \(\Omega_R^1/dR \) (omitting \(t^{-n} u dt \) if \(a_0 = 0 \)).

A straightforward calculation shows that

Lemma 2.2 ([CF11]). *If \(u^m = p(t) \) and \(R = \mathbb{C}[t, t^{-1}, u \mid u^m = p(t)] \), then \(\Omega_R^1/dR \), one has*

(2.3) \[((m + 1)n + im)t^{n+i-1} u dt \equiv - \sum_{j=0}^{n-1}((m + 1)j + mi)a_jt^{i+j-1} u dt \mod dR. \]

Take from now on \(m = 2 \) and

\[p(t) = (t - \alpha_1) \cdots (t - \alpha_n) = \sum_{i=0}^{n} a_i t^i \]

where the \(\alpha_i \) are distinct complex numbers and fix \(R = \mathbb{C}[t, t^{-1}, u \mid u^2 = p(t)] \) so that \(R \) is a regular ring. Motivated by (2.3) we let \(P_{k,i} := P_{k,i}(a_0, \ldots, a_{n-1}), k \geq -n, -n \leq i \leq -1 \) be the polynomials in the \(a_i \) satisfying the recursion relations

(2.4) \[(2k + n + 2)P_{k,i} = - \sum_{j=0}^{n-1} (3j + 2k - 2n + 2)a_jP_{k-n+j,i} \]
for $k \geq 0$ with the initial condition $P_{k,i} = \delta_{k,-i}, -n \leq k \leq -1$. Now consider the formal power series
\begin{equation}
(2.5) \quad P_i(z) := P_i(a_0, \ldots, a_{n-1}, z) := \sum_{k \geq -n} P_{k,i} z^{k+n} = \sum_{n \geq 0} P_{k-n,i} z^k
\end{equation}

Then one can show that $P_i(z)$ must satisfy the differential equation
\begin{equation}
(2.6) \quad \frac{d}{dz} P_i(z) - \frac{Q(z)}{2z P(z)} P_i(z) = \frac{R_i(z)}{2z P(z)}
\end{equation}

where
\begin{align*}
\bar{P}(z) := \sum_{j=0}^{n} a_j z^{n-j}, & \quad Q(z) := z \bar{P}'(z) + (n-2) \bar{P}(z) \\
R_i(z) := \sum_{j=0}^{n} \left(\sum_{-j \leq k < 0} (3j + 2k - 2n + 2) a_j P_{k-n+j,i} z^{n+k} \right).
\end{align*}

An integrating factor is
\begin{equation}
\mu(z) = \exp \int -\frac{Q(z)}{2z P(z)} \, dz = \frac{1}{z^{(n-2)/2} \sqrt{P(z)}},
\end{equation}
and so
\begin{equation}
(2.7) \quad P_i(z) := z^{(n-2)/2} \sqrt{\bar{P}(z)} \int \frac{R_i(z)}{2z^{n/2} P(z)^{3/2}} \, dz.
\end{equation}

The way we interpret the right hand hyperelliptic integral ($\bar{P}(0) = a_n = 1 \neq 0$) is to expand $\bar{P}(z)/\sqrt{P(z)}$ in terms of a Taylor series about $z = 0$ and then formally integrate term by term and multiply the result by series for $z^{(n-2)/2} \sqrt{P(z)}$. Let us explain this more precisely.

One can expand both $\sqrt{P(z)}$ and $1/\sqrt{P(z)}$ using Bell polynomials and Faa\'di Bruno’s formula as follows. The Bell polynomials in the variables z_1, z_2, z_3, \ldots are defined to be
\begin{equation}
B_{n,k}(z_1, \ldots, z_{n-k+1}) := \sum_{l_1, l_2, \ldots, l_{n-k+1}} \frac{n!}{l_1! l_2! \cdots l_{n-k+1}!} \left(\frac{z_1}{1!} \right)^{l_1} \cdots \left(\frac{z_{n-k+1}}{(n-k+1)!} \right)^{l_{n-k+1}}
\end{equation}
where the sum is over $l_1 + l_2 + \cdots = k$ and $l_1 + 2l_2 + 3l_3 + \cdots = n$ (see [Bel28]).

Now Faa\’di Bruno’s formula [dB57] (discovered earlier by Arbogast [Arb00]) for the n-derivative of $f(g(x))$ is
\begin{equation}
\frac{d^n}{dx^n} f(g(x)) = \sum_{l=0}^{n} f^{(l)}(g(x)) B_{n,l}(g'(x), g''(x), \ldots, g^{(n-l+1)}(x)).
\end{equation}

Setting $f(x) = x^{-3/2}$, $g(x) = \bar{P}(z)$ we get
\begin{equation}
(2.8) \quad f^{(n)}(x) = \frac{(-1)^n (2n + 1)!!}{2^n x^{(2n+3)/2}}
\end{equation}
and $\bar{P}^{(k)}(0) = k! a_{n-k}$ so that
\begin{equation}
\frac{d^n}{dx^n} f(g(x))|_{x=0} = \sum_{l=0}^{n} \frac{(-1)^l (2l + 1)!!}{2^l} B_{n,l}(a_{n-1}, 2a_{n-2}, \ldots, (n-l+1)! a_{l-1}).
\end{equation}
As a consequence
\[
\frac{1}{P(z)^{3/2}} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n}{dz^n} f(g(z))|_{z=0} z^n \\
= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{l=0}^{n} \frac{(-1)^l (2l + 1)!!}{2^l} B_{n,l}(a_{n-1}, 2a_{n-2}, \ldots, (n - l + 1)!a_{l-1}) \right) z^n,
\]
and hence
\[
(2.9) \quad P_n(a_0, \ldots, a_{n-1}) = \frac{1}{n!} \sum_{l=0}^{n} \frac{(-1)^l (2l + 1)!!}{2^l} B_{n,l}(a_{n-1}, 2a_{n-2}, \ldots, (n - l + 1)!a_{l-1}).
\]

Similarly for $\sqrt{\bar{P}}(z)$ we set $f(z) = \sqrt{z}$ so that
\[
f^{(k)}(z) = \frac{(-1)^{k+1} (2k - 3)!!}{2^k z^{(2k-1)/2}}
\]
for $n \geq 0$ and thus
\[
\sqrt{\bar{P}}(z) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{l=0}^{n} \frac{(-1)^{l+1} (2l - 3)!!}{2^l} B_{n,l}(a_{n-1}, 2a_{n-2}, \ldots, (n - l + 1)!a_{l-1}) \right) z^n.
\]

We now take (2.3)
\[
(2.10) \quad 2k a_0 t^{k-1} u \, dt = - \sum_{j=1}^{n} (3j + 2k) a_j t^{k+j-1} u \, dt,
\]
and write it as
\[
(2.11) \quad -2(m - 1) a_0 t^{-m} u \, dt = - \sum_{j=1}^{n} (3j - 2m + 2) a_j t^{-(m-j)} u \, dt.
\]
which certainly is true for $m \geq n + 1$. This leads us to the recursion relation
\[
(2.12) \quad -2(m - 1) a_0 Q_{m,i} = - \sum_{j=1}^{n} (3j - 2m + 2) a_j Q_{m-j,i}
\]
for $m \geq n + 1$ with the same initial condition $Q_{m,i} = \delta_{m,-i}$, $1 \leq m \leq n$ and $-n \leq i \leq -1$. We then form the formal power series
\[
(2.13) \quad Q_i(z) := Q_i(a_0, a_1, \ldots, a_{n-1}, z) = \sum_{k \geq n+1} Q_{k-n,i} z^k = \sum_{k \geq 1} Q_{k,i} z^{k+n},
\]
for $1 \leq i \leq n$. As above one can show that this formal series must satisfy
\[
(2.14) \quad \frac{d}{dz} Q_i(z) - \frac{Q(z)}{2zP(z)} Q_i(z) = \frac{S_i(z)}{2zP(z)}
\]
where
\[
(2.15) \quad P(z) := \sum_{j=0}^{n} a_j z^j, \quad Q(z) := zP'(z) + 2(n + 1)P(z),
\]
The main result of generating series (2.16)

\[Q(z) = \sum_{n=0}^{\infty} P_{-4,n}(c) z^n \]

and

\[S_i(z) := -\sum_{m=1}^{n} \left(\sum_{j=0}^{m-1} (3j - 2m + 2)a_j Q_{m-j,i} \right) z^{m+n}. \]

Indeed

\[
2zP(z) \frac{d}{dz} Q_i(z) - Q(z) Q_i(z) = \sum_{k \geq 1} \sum_{j=0}^{n} (2(k + n) - j - 2n - 2) a_j Q_{k,i} z^{j+k+n}
\]

\[
= - \sum_{k \geq 1} \sum_{j=0}^{n} (j - 2k + 2) a_j Q_{k,i} z^{j+k+n}
\]

\[
= - \sum_{m \geq n+1} \left(\sum_{j=0}^{n} (3j - 2m + 2) a_j Q_{m-j,i} \right) z^{m+n}
\]

\[
- \sum_{m=1}^{n} \left(\sum_{j=0}^{m-1} (3j - 2m + 2) a_j Q_{m-j,i} \right) z^{m+n}
\]

\[
= S_i(z).
\]

An integrating factor is

\[\mu(z) = \exp \int -\frac{Q(z)}{2zP(z)} \frac{dz}{dz} = \frac{1}{z^{n+1} \sqrt{P(z)}}, \]

and so

\[
Q_i(z) := z^{n+1} \sqrt{P(z)} \int \frac{S_i(z)}{2z^{n+2} P(z)^{3/2}} dz.
\]

2.1. Example. In [CFT13] we considered \(p(t) = z^4 - 2cz^2 + 1 \). The polynomials \(P_{-4,n} \) have generating series

\[
P_{-4}(c, z) = z \sqrt{1 - 2cz^2 + z^4} \int \frac{4cz^2 - 1}{z^2(z^4 - 2cz^2 + 1)^{3/2}} dz = \sum_{n=0}^{\infty} P_{-4,n}(c) z^n
\]

\[
= 1 + z^4 + \frac{4c}{5} z^6 + \frac{1}{35} (32c^2 - 5) z^8 + \frac{16}{105} c (8c^2 - 3) z^{10}
\]

\[
- \frac{(2048c^4 - 1248c^2 + 75)}{1155} z^{12} + O(z^{14})
\]

and \(P_{-4,n}(c) \) satisfy the following recursion:

\[
(6 + 2k) P_{k+4}(c) = 4kc P_{k+2}(c) - 2(k - 3) P_k(c).
\]

The main result of [CFT13] is that these polynomials are particular examples of the non-classical associated Jacobi polynomials and they satisfy the following fourth order linear differential equation:

Theorem 2.3 ([CFT13], Theorem 3.1.1). The polynomials \(P_n = P_{-4,n} \) satisfy the following differential equation:

\[
16(c^2 - 1)^2 P_n^{(iv)} + 160c(c^2 - 1) P_n^{'''} - 8(c^2(n^2 - 4n - 46) - n^2 + 4n + 22) P_n^{''}
\]

\[
- 24c(n^2 - 4n - 6) P_n^{'} + (n - 4)^2 n^2 P_n = 0.
\]
In the above cited work we also studied \(P_{k,n} \) the remaining cases of \(k = -3, -2, -1 \). In particular all of these families of polynomials are orthogonal with respect to some measure and satisfy an at most 4th order linear differential equation.

2.2. Example. Let us take \(p(t) = t^6 - 2bt^3 + 1 \). Then we get the recursion relation for the \(P_{k,i} \)’s as

\[
(2k + 8)P_{k,i} = -\sum_{j=0}^{5} (3j + 2k - 10) a_j P_{k+j-i,0} = 2b(2k - 1) P_{k-3,i} - (2k - 10) P_{k-i,0},
\]

for \(k \geq 0 \). So that one can calculate by hand for example the first five nonzero nonconstant polynomials for \(i = -1 \):

\[
P_{2,-1} = \frac{b}{2}, \quad P_{5,-1} = \frac{b^2}{2}, \quad P_{8,-1} = \frac{1}{8} b (5b^2 - 1), \quad P_{11,-1} = \frac{1}{8} b^2 (7b^2 - 3), \quad P_{14,-1} = \frac{1}{16} (21b^5 - 14b^3 + b).
\]

In this setting of \(p(t) \) we have

\[
R_{-1}(z) = 6z^5, \quad R_{-2}(z) = 4z^4, \quad R_{-3}(z) = 2z^3, \quad R_{-4}(z) = 6bz^5, \quad R_{-5}(z) = 10bz^4 - 2z, \quad R_{-6}(z) = 14bz^3 - 4.
\]

and as an example

\[
P_{-1}(z) = z^2 \sqrt{z^6 - 2bz^3 + 1} \lim_{z \to 0} \frac{3z^2}{(z^6 - 2bz^3 + 1)^{3/2}} dz
\]

\[
= z^5 + \frac{b^2}{2} z^{11} + \frac{1}{8} b (5b^2 - 1) z^{14} + \frac{1}{8} b^2 (7b^2 - 3) z^{17}
\]

\[
+ \frac{1}{16} (21b^5 - 14b^3 + b) z^{20} + \frac{1}{16} b^2 (33b^4 - 30b^2 + 5) z^{23} + O(z^{24}).
\]

Note in the integral we take as the constant of integration to be 0.

One could conjecture that these polynomials \(P_{k,i} \) are nonclassical orthogonal and satisfy 6-th order linear differential equations with polynomial coefficients in \(b \) for each fixed \(i, -6 \leq i \leq -1 \).

A similar conjecture can be made for polynomials \(P_{k,i} \) arising from \(p(t) = t^{2k} - 2bt^k + 1 \) for \(k \geq 4 \) where the order of the differential equations would be \(2k \). We plan to investigate this in future work.

3. Cocycles

First we give an explicit description of the cocycles contributing to the even part of the hyperelliptic current algebra. Set

\[
\omega_0 := t^{-1} dt, \quad \omega_k := t^{-k} u dt, \quad \text{for } 1 \leq k \leq n
\]

where we omit \(\omega_n \) if \(a_0 = 0 \).

Lemma 3.1 (cf. [Bre94b], Prop. 4.2). For \(i, j \in \mathbb{Z} \) one has

\[
\bar{t}^i d(\bar{t}) = j \delta_{i+j,0} \omega_0
\]

and

\[
\bar{t}^i u d(\bar{t}) = \sum_{k=0}^{n} \left(j + \frac{1}{2} k \right) a_k \delta_{i+j,-k} \omega_0.
\]
Proof. First observe that
\[2u\, du = d(u^2) = p'(t)\, dt = \sum_{i=0}^{n} ia_i t^{i-1}\, dt. \]

The second congruence then follows from
\[t^i\, du(t^j u) = \frac{j}{2} t^{i+j-1} u^2\, dt + t^{i+j} u\, du \]
\[= \frac{j}{2} t^{i+j-1} \left(\sum_{k=0}^{n} \frac{a_k t^k}{k} \right)\, dt + \frac{n}{2} t^{i+j} \sum_{k=0}^{n} k a_k t^{k-1}\, dt \]
\[= \sum_{k=0}^{n} \left(j + \frac{1}{2} k \right) a_k t^{i+j+k-1}\, dt. \]

□

For the odd part we have

Lemma 3.2 (cf. [Bre94b], Prop. 4.2). For \(i, j \in \mathbb{Z} \) one has

\[t^i u(t^j u) = j \left(\sum_{k=1}^{n} P_{i+j-1, -k}\omega_k \right) \quad \text{if } i + j \geq -n + 1, \]
\[\sum_{k=1}^{n} Q_{-i+j+1, -k}\omega_k \quad \text{if } i + j < -n + 1. \]

Proof. We have

\[(2(i + j) + n) t^{i+j-1} u\, dt = -\sum_{k=0}^{n-1} (3k + 2(i + j) - 2n) a_k t^{i+j-n+k-1} u\, dt \mod dR. \]

and similarly

\[(2(i + j) + n) P_{i+j-1, i} = \sum_{k=0}^{n-1} (3k + 2(i + j) - 2n) a_k P_{i+j-n+k-1, i} \]

So now assume for \(r \geq -n \)
\[t^r u\, dt = \sum_{k=0}^{n-1} P_{r, k-n}\omega_{n-k} \]
(which certainly holds for \(r = -n, \ldots, -1 \)). Then
\[\frac{t^r u\, dt}{t^{r+1} u\, dt} = -\sum_{k=0}^{n-1} \left(\frac{3k + 2r - 2n + 4}{n + 2r + 4} \right) a_k t^{r-n+k+1} u\, dt \]
\[= -\sum_{l=0}^{n-1} \sum_{k=0}^{n-1} \left(\frac{3k + 2r - 2n + 4}{n + 2r + 4} \right) a_k P_{r+1-n+k, l-n}\omega_{n-l} \]
\[= \sum_{l=0}^{n-1} P_{r+1, l-n}\omega_{n-l} \]
Then for \(i + j \geq -n + 1 \) one has

\[t^i u(t^j u) = j \sum_{k=0}^{n-1} P_{i+j-1, k-n}\omega_{n-k} = j \sum_{k=1}^{n} P_{i+j-1, -k}\omega_{k}. \]
So now assume for \(r \geq 1 \)
\[
\int t^{-r} dt = \sum_{k=0}^{n-1} Q_{r-k,n} \omega_{n-k}
\]
(which certainly holds for \(r = 1, \ldots, n \) as \(Q_{m,i} = \delta_{m,i}, 1 \leq m \leq n \) and \(-n \leq i \leq -1\).

For \(r \geq n \) we have by (2.12)
\[
\int t^{-(r+1)} dt = \sum_{j=1}^{n} \frac{(3j - 2r)a_j}{2ra_0} t^{-(r+1-j)} dt.
\]
\[
= \sum_{k=0}^{n-1} \sum_{j=1}^{n} \frac{(3j - 2r)a_j}{2ra_0} Q_{r+k,n} \omega_{n-k}
\]
\[
= \sum_{k=0}^{n-1} Q_{r+k,n} \omega_{n-k}.
\]

Then for \(i + j < -n + 1 \) we have
\[
(3.8) \quad \int t^i dt(\bar{t}^j) = j^i+j^{-1} dt = \sum_{k=0}^{n-1} Q_{-i-j+k,n} \omega_{n-k} = \sum_{k=1}^{n} Q_{-i-j+k,0} \omega_{0}.
\]

4. Main result

Theorem 4.1 (cf. [Cox08]). Suppose \(a_0 \neq 0 \). Let \(g \) be a simple finite dimensional Lie algebra over the complex numbers with Killing form \((\cdot, \cdot) \) and define \(\psi_{ij}(c) \in \Omega^1_R/dR \) by
\[
(4.1) \quad \psi_{ij}(c) = \begin{cases} \sum_{k=1}^{n} P_{i+j-1,k} \omega_k & \text{if } i + j \geq -n + 1, \\ \sum_{k=1}^{n} Q_{-i-j+1,k} \omega_k & \text{if } i + j < -n + 1. \end{cases}
\]
The universal central extension of the Date-Jimbo-Kashiwara-Miwa algebra is the \(\mathbb{Z}_2 \)-graded Lie algebra
\[
\hat{g} = \hat{g}^0 \oplus \hat{g}^1,
\]
where
\[
\hat{g}^0 = (g \otimes \mathbb{C}[t, t^{-1}]) \oplus \mathbb{C} \omega_0, \quad \hat{g}^1 = (g \otimes \mathbb{C}[t, t^{-1}]) \oplus \bigoplus_{k=1}^{n} (\mathbb{C} \omega_k)
\]
with bracket
\[
(4.2) \quad [x \otimes t^i, y \otimes t^j] = [x, y] \otimes t^{i+j} + \delta_{i+j,0} j(x, y) \omega_0,
\]
\[
(4.3) \quad [x \otimes t^u, y \otimes t^v] = [x, y] \otimes t^{i+j} p(t) + \sum_{k=0}^{n} \left(j + \frac{1}{2} k \right) a_k \delta_{i+j-k} \omega_0,
\]
\[
(4.4) \quad [x \otimes t^u, y \otimes t^v] = [x, y] u \otimes t^{i+j} u + j(x, y) \psi_{ij}(c).
\]

Proof. The identities (4.2) and (4.3) follow from Lemma 3.1 whereas (4.4) follows from Lemma 3.2 \(\square \)
5.

Any corrections or typos that are found will be updated on the math arXiv.

REFERENCES

[Arb00] L. F. A. Arbogast. Du Calcul des Derivations. 1800.

[ATY91] Hidetoshi Awata, Akihiro Tsuchiya, and Yasuhiko Yamada. Integral formulas for the WZNW correlation functions. Nuclear Phys. B, 365(3):680–696, 1991.

[BCF09] Andr´e Bueno, Ben Cox, and Vyacheslav Futorny. Free field realizations of the elliptic affine Lie algebra \(\mathfrak{sl}(2, \mathbb{R}) \oplus (\Omega_{\mathbb{R}}/d\mathbb{R}) \). J. Geom. Phys., 59(9):1258–1270, 2009.

[Bel28] E. T. Bell. Partition polynomials. Ann. of Math. (2), 29(1-4):38–46, 1927/28.

[Bre94a] Murray Bremner. Universal central extensions of elliptic affine Lie algebras. J. Math. Phys., 35(12):6685–6692, 1994.

[Bre94b] Murray Bremner. Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variable. Canad. Math. Bull., 37(1):21–28, 1994.

[Bre95] Murray Bremner. Four-point affine Lie algebras. Proc. Amer. Math. Soc., 123(7):1981–1989, 1995.

[CF11] Ben Cox and Vyacheslav Futorny. DJKM algebras I: their universal central extension. Proc. Amer. Math. Soc., 139(10):3451–3460, 2011.

[CFT13] Ben Cox, Vyacheslav Futorny, and Juan A. Tirao. DJKM algebras and non-classical orthogonal polynomials. J. Differential Equations, 255(9):2846–2870, 2013.

[CGLZ14] Ben Cox, Xiangqian Guo, Rencai Lu, and Kaiming Zhao. n-point Virasoro algebras and their modules of densities. Commun. Contemp. Math., 16(3):1350047, 2014.

[CGLZ15] Ben Cox, Xianquan Guo, Rencai Lu, and Kaiming Zhao. Simple superelliptic lie algebras. Math arXiv:1412.7777, 2015.

[CJ14] Ben Cox and Elizabeth Jurisich. Realizations of the three-point Lie algebra \(\mathfrak{sl}(2, \mathbb{R}) \oplus (\Omega_{\mathbb{R}}/d\mathbb{R}) \). Pacific J. Math., 270(1):27–47, 2014.

[FFR94] Boris Feigin, Edward Frenkel, and Nikolai Reshetikhin. Gaudin model, Bethe ansatz and critical level.Comm. Math. Phys., 166(1):27–62, 1994.

[Fre05] Edward Frenkel. Wakimoto modules, opers and the center at the critical level. Adv. Math., 195(2):297–404, 2005.

[Kas84] Christian Kassel. Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra. In Proceedings of the Luminy conference on algebraic K-theory (Luminy, 1983), volume 34, pages 265–275, 1984.

[KL82] C. Kassel and J.-L. Loday. Extensions centrales d’algèbres de Lie. Ann. Inst. Fourier (Grenoble), 32(4):119–142 (1982), 1982.

[KN87a] Igor Moiseevich Krichever and S. P. Novikov. Algebras of Virasoro type, Riemann surfaces and strings in Minkowski space. Funktsional. Anal. i Prilozhen., 21(4):47–61, 96, 1987.

[KN87b] Igor Moiseevich Krichever and S. P. Novikov. Algebras of Virasoro type, Riemann surfaces and the structures of soliton theory. Funktsional. Anal. i Prilozhen., 21(2):46–63, 1987.

[KN89] Boris Feigin, Edward Frenkel, and Nikolai Reshetikhin. Gaudin model, Bethe ansatz and critical level. Adv. Math., 166(1):27–62, 1994.

[Sch14] Martin Schlichenmaier. Krichever-Novikov type algebras, volume 53 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2014. Theory and applications.

[She12] Oleg K. Sheinman. Current algebras on Riemann surfaces, volume 58 of de Gruyter Expositions in Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin, 2012. New results and applications.

[SV90] V. V. Schechtman and A. N. Varchenko. Hypergeometric solutions of Knizhnik-Zamolodchikov equations. Lett. Math. Phys., 20(4):279–283, 1990.
Department of Mathematics, University of Charleston, 66 George St., Charleston, SC 29424, USA
E-mail address: coxbl@cofc.edu