Isochronal synchronization of delay-coupled systems

Ira B. Schwartz and Leah B. Shaw
US Naval Research Laboratory, Code 6792, Nonlinear Systems Dynamics Section,
Plasma Physics Division, Washington, DC 20375

We consider small network models for mutually delay-coupled systems which typically do not exhibit stable isochronally synchronized solutions. We show analytically and numerically that for certain coupling architectures which involve delayed self feedback to the nodes, the oscillators become isochronally synchronized. Applications are shown for both incoherent pump coupled lasers and spatio-temporal coupled fiber ring lasers.

I. INTRODUCTION

Synchronization of networked, or coupled, systems has been examined for large networks of identical and heterogeneous oscillators. For coupled systems with smaller numbers of oscillators, several new dynamical phenomena have been observed, including generalized, phase, and lag synchronization. Lag synchronization, in which there is a phase shift between observed signals, is one of the routes to complete synchrony as coupling is increased and may occur without the presence of delay in the coupling terms.

For systems with delayed coupling, a time lag between the oscillators is typically observed, with a leading time series followed by a lagging one. Such lagged systems are said to exhibit achronal synchronization. In the existence of achronal synchronization in a mutually delay-coupled semiconductor laser system was shown experimentally, and in [3], studied theoretically in a single-mode semiconductor laser model. In the case of short coupling delay for unidirectionally coupled systems, anticipatory synchronization occurs when a response in a system’s state is not replicated simultaneously but instead is anticipated by the response system [3, 4], and an example of anticipation in synchronization is found in coupled semiconductor lasers [9]. Cross-correlation statistics between the two intensities showed clear maxima at delay times consisting of the difference between the feedback and the coupling delay. Anticipatory responses in the presence of stochastic effects have been observed in models of excitable media [11], as well as in experiments of coupled semiconductor lasers in a transmitter-receiver configuration [20]. When the zero lag state is unstable and achronal synchronization occurs, the situation may be further complicated by switching between leader and follower. Switching has been observed theoretically and experimentally in stochastic systems [12] but may occur even in deterministic chaotic systems [30].

Given that both lag and anticipatory dynamics may be observed in delay-coupled systems, it is natural to ask whether the isochronal, or zero lag, state, in which there is no phase difference in the synchronized time series, may be stabilized in coupled systems. Stabilizing the isochronal state is important in bi-directional chaotic communication systems, as shown in recent theoretical work on communicating in systems with delay [31]. Stable isochronal synchronization of semiconductor lasers has been observed recently in experiments [13, 14] and numerically [14, 15]. Examples of partial isochronal synchrony in which only some of the oscillators in a delay network synchronize may be found in [27, 31], and recently a theoretical explanation for partial synchronization has appeared in [28]. Other examples of isochronal synchrony have appeared in neural network models with delay [16, 17].

In this letter, we explore the possibility of adding self feedback to two globally coupled situations: 1. Incoherent delay-coupled semiconductor systems [18], and 2. Coupled spatio-temporal systems consisting of coupled fiber ring lasers [9] with delay [20].

We consider N coupled oscillators of the following form. Let F denote an m-dimensional vector field, B an $m \times m$ matrix, and κ_j, where $j = 1 \cdots N$, denote the coupling constants. For the cases we examine here, we consider global coupling including self feedback:

$$\frac{dx_i(t)}{dt} = F(x_i(t), x_i(t-\tau)) + \sum_{j \neq i} \kappa_j B x_j(t-\tau). \quad (1)$$

Given the structure of Eq. (1) we examine the stability transverse to the synchronized state, $S = \{x_i(t) : x_i(t) = s(t), i = 1 \cdots N\}$, by defining $\eta_{ij} \equiv x_i - x_j$. The linearized variations in the direction transverse to S are then given by

$$\frac{d\eta_{ij}(t)}{dt} = D_1 F(x_i(t), x_i(t-\tau)) \eta_{ij}(t) + D_2 F(x_i(t), x_i(t-\tau)) \eta_{ij}(t-\tau) + (\kappa_i - \kappa_j) B x_i(t-\tau) - \kappa_j B \eta_{ij}(t-\tau) \quad (2)$$

where D_i denotes the partial derivative with respect to the i^{th} argument.

We make the following hypotheses to simplify the analysis: (H1): Assume that the dependence on the time delayed variables in F takes the same form as the delay coupling; i.e., $D_2 F(x, y) = B \kappa_f$. (H2): Let $\kappa_i = \kappa_f = \kappa, i = 1 \cdots N$. Equation (2) then simplifies to

$$\frac{d\eta_{ij}(t)}{dt} = D_1 F(x_i(t), x_i(t-\tau)) \eta_{ij}(t), \quad (3)$$

where it is understood the arguments of the derivatives are computed along the synchronized solution $s(t)$, and
the solution is a function of parameters such as coupling and delay. Computing Eq. (3) along the synchronized state will generate the Lyapunov exponents for the transverse directions, and we examine the effect of coupling and delay by computing the cross-correlations between time series as well.

To examine the stability of the isochronally synchronized state of Eq. (4), we model \(N = 3 \) lasers that are pump coupled \([18, 21]\). An isolated semiconductor laser’s dynamics at the \(i^\text{th} \) node is governed by \(\frac{dz_i}{dt} = F(z_i), z_i = (x_i, y_i) \), where

\[
F(z) = [-y - \epsilon x(a + by), x(1 + y)],
\]

and \(x, y \) are the scaled carrier fluctuation number and normalized intensity fluctuations about steady state zero, respectively. \(\epsilon^2 \) is the ratio of photon to carrier lifetimes, and \(a \) and \(b \) are dimensionless constants (see [22] for details on the derivation).

The coupling strengths are \(\kappa_i = \kappa_f = \kappa, i = 1, 2, 3 \). This leads to the following set of differential equations for the system:

\[
\frac{dz_i(t)}{dt} = F(z_i(t)) + \sum_{i=1}^{3} \kappa Bz_i(t-\tau), i = 1, 2, 3,
\]

where \(m = 2 \), and \(B(1,2) = 1 \), with all other entries in \(B \) equal to 0. An example of the intensities with and without self feedback in Fig. 1 shows explicitly the effect of self feedback in stabilizing the isochronal solution. Writing down the differential equation for the transverse directions in matrix form for Eq. (5) and expanding near the synchronized solution \(\eta_J = 0 \), we obtain

\[
X'(t) = A(t, \kappa, \tau, \epsilon)X(t), \quad A(t, \kappa, \tau, \epsilon) = DF(s(t, \kappa, \tau, \epsilon)), \quad X(0) = I.
\]

Due to the nature of the global coupling with self feedback, each node receives the same signal. Therefore, the transverse stability does not explicitly depend on the coupling or delay, but rather on the dynamics of local nodes [23]. To examine the stability of the isochronal state, we derive some properties of the transverse Lyapunov exponents (TLE). The TLE satisfy the following limit:

\[
\lambda(x_0, y_0) = \lim_{t \to \infty} \frac{1}{t} \log \|X(t)u\|/\|u\|
\]

Here \(u \) is a vector in a given direction.

By computing the solution to the linear variational equations along a given solution, we can extract the TLE. To examine the scaling behavior of the TLE, let \(\Delta(t, \kappa, \tau, \epsilon) = \det(X(t, \kappa, \tau, \epsilon)) \). Then, we have that

\[
\Delta(t, \kappa, \tau, \epsilon) = \exp(\int_0^t \text{trace}(A(s, \kappa, \tau, \epsilon))ds)
\]

Taking the log of the matrix solution, and noting the determinant of a matrix is the product of its eigenvalues, we have:

\[
\sum_{i=1}^{m} \lambda(x_0, y_0, e_i) = \lim_{t \to \infty} \frac{1}{t} \log |\det(X(t, \kappa, \tau, \epsilon))|,
\]

where \(e_i \) are arbitrary independent basis vectors. Equation (6) yields a rate of volume change in the dynamics in the transverse directions. The solution may still be chaotic with one or more exponents being positive, but if sufficiently dissipative, volumes will shrink over time.

From Eq. (4) since \(\text{trace}(A(t, \kappa, \tau, \epsilon)) = -\epsilon(a + by(t, \kappa, \tau, \epsilon)) + x(t, \kappa, \tau, \epsilon) \), and assuming the inversion, \(x(t, \kappa, \tau, \epsilon) \), has zero time average due to symmetry (which is observed numerically [26]), we have

\[
\int_0^t \text{trace}(A(s, \kappa, \tau, \epsilon))ds = -\epsilon(a + b \langle y_{\kappa, \tau, \epsilon} \rangle)t
\]

and from
Figure 2: Prediction of the scaling of the sum of transverse Lyapunov exponents for Eq. 5 with respect to ϵ. Other parameter values are as in Figure 1(b). Squares are the prediction using Eq. 7 and dots are the numerical values.

Eq. 6, we have

$$\lambda(x_0, y_0, e_1) + \lambda(x_0, y_0, e_2) = -\epsilon(a + b \langle y_{\kappa, \tau, \epsilon} \rangle).$$

(7)

Since ϵ appears explicitly, it is easy to see how the sum of the TLE scales with ϵ and compares with numerical experiments as in Fig. 2.

Although the sum of the TLE is negative, loss of synchrony due to instability may occur at intermediate values of ϵ, as seen in Fig. 3. Regions where the isochronally synchronized solution is unstable are associated with one or more positive transverse Lyapunov exponents. On the other hand, for sufficiently large damping, the transverse exponents reveal a stronger overall reduction in the phase space volume. The stability of isochronal synchrony with respect to other parameters can also be computed, e.g., as shown in Fig. 4 for variations in coupling strength κ.

To illustrate the robustness of the self feedback structure for generating isochronal synchronization in delay coupled systems, we examine a spatio-temporal stochastic system with multiple delays composed of coupled fiber ring lasers. A fiber ring laser system without self feedback was studied in [20], and we extend the same model to include self feedback terms. In each ring laser, light circulates through a ring of optical fiber, at least part of which is doped for stimulated emission. The time for light to circulate through the ring is the cavity round-trip time $\tau_R = 202$ ns, and the delay time in the coupling and self feedback lines is a second delay $\tau_d = 45$ ns. Each laser is characterized by a total population inversion $W(t)$ and an electric field $E(t)$. The equations for the model dynamics of the j^{th} laser are as follows:

$$E_j(t) = R \exp [\Gamma(1 - i\alpha_j)] W_j(t) + i\Delta \phi] L_{j,db}^{th}(t) + \xi_j(t)$$

$$(8)$$

$$\frac{dW_j}{dt} = q - 1 - W_j(t) - \left| L_{j,db}^{th}(t) \right|^2 \{ \exp [2\Gamma W_j(t)] - 1 \}. \quad (9)$$

Figure 3: (Color online) (a) Transverse Lyapunov exponents and (b) cross-correlation (CC) of the dynamics for the same conditions as in Fig. 2. In (b), the cross-correlations between lasers 1 and 2 (solid line) and 1 and 3 (dashed line) are shown. For most values of ϵ shown here, a cross-correlation of 1 is achieved when the shift between the time traces is zero, showing that the isochronal solution is stable.

Figure 4: Cross-correlation (CC) between lasers 1 and 2 (solid line) and between 1 and 3 (dashed line) vs. coupling κ for Eq. 5. Other parameters are the same as in Figure 1(b).
The electric field from earlier times which affects the field at time t is

$$E_j^{fib}(t) = E_j(t - \tau_R) + \sum_{l \neq j} \kappa_l E_l(t - \tau_d) + \kappa_f E_j(t - \tau_d).$$

(10)

$E_j(t)$ is the complex envelope of the electric field in laser j, measured at a given reference point inside the cavity. $E_j^{fib}(t)$ is a feedback term that includes optical feedback within laser j and optical coupling with the other laser. Time is dimensionless. Energy input is given by the pump parameter q. Each electric field is perturbed by independent complex Gaussian noise sources, ξ_j, with standard deviation D. We use a fixed input strength for all coupling terms: $\kappa_i = \kappa_f = \kappa$ for all i. (Values of the parameters in the model as well as further computational details can be found in [20]. The only difference in parameters was that the lasers are not detuned relative to each other in the current work.)

Because of the feedback term $E_j^{fib}(t)$ in Eqs. 8, one can think of Eqs. 8 as mapping the electric field on the time interval $[t - \tau_R, t]$ to the time interval $[t, t + \tau_R]$ in the absence of coupling ($\kappa = 0$). Equivalently, because the light is traveling around the cavity, Eqs. 8 maps the electric field at all points in the ring at time t to the electric field at all points in the ring at time $t + \tau_R$. We can thus construct spatio-temporal plots for $E(t)$ or the intensity $I(t) = |E(t)|^2$ by unwrapping $E(t)$ into segments of length τ_R.

Figure 5 shows time traces of the $N = 2$ lasers for a single round trip for both the system with self feedback described here and the system without self feedback ($\kappa_f = 0$) [25]. Isochronal synchrony can been seen when self feedback is included, while in the absence of self feedback the lasers are delay synchronized. The spatio-temporal plots in 5(c) and (d) are nearly identical due to the isochronal synchrony. To quantify the synchrony, we align the time traces for the two lasers with various time shifts between them. In the absence of self feedback, the peak cross-correlation occurs when the lasers are shifted relative to each other by the delay time. The cross-correlation is low when the lasers are compared with no time shift. In contrast, when self feedback is included, the lasers achieve a high degree of correlation when compared isochronally. For the time traces shown in Fig. 5(a), the peak cross-correlation of 0.9554 occurs when there is no time shift, although the cross-correlation when shifted by the delay time is near as high (0.9549).

We have swept the coupling strength κ for the system of two lasers with self feedback and computed the average cross-correlation when the lasers are compared isochronally. Figure 6 shows that the lasers are well synchronized for input strengths as small as 0.1%. Isochronal synchronization can be produced when the lasers are detuned as in [20], but this requires stronger coupling and self feedback (not shown).

For $N = 3$ fiber ring lasers, we have done a similar computation for cases with and without self feedback.
ined globally without self feedback, the isochronal state will still synchronize. However, adding self feedback will cause the isochronal state to stabilize at somewhat lower values of coupling. Further details for this case are in [26].

In summary, we have considered delay-coupled systems and, through the addition of self feedback, obtained stable isochronal synchrony in coupled semiconductor and fiber ring laser models. Model analysis for incoherent pump coupled lasers reveals scaling of the Lyapunov exponents transverse to the synchronized state, while computations on systems of coupled fiber ring lasers show how self feedback may cause the onset of synchrony in coupled spatio-temporal systems. In the cases we have studied, we constructed small globally coupled networks. For the small clusters presented here with delay, it is advantageous to add feedback loops, since this was key to stabilizing the synchronous state. A question for future study is how this method may be scaled up for larger networks.

The authors thank Raj Roy and Tony Franz for very stimulating discussions and comments. The authors also acknowledge the support of the Office of Naval Research. LBS is currently a National Research Council Post Doctoral fellow.

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A universal concept in nonlinear science (Cambridge University Press, Cambridge, 2001).
[2] J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. Lett. 96, 254103 (2006).
[3] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, et al, Phys. Rev. E 51, 980 (1995).
[4] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).
[5] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 78, 4193 (1997).
[6] T. Heil, I. Fischer, W. Elsasser, et al, Phys. Rev. Lett. 86, 795 (2001).
[7] J. K. White, M. Matus, and J. V. Moloney, Phys. Rev. E 65 (2002).
[8] H. U. Voss, Phys. Rev. E 61, 5115 (2000).
[9] H. U. Voss, Phys. Rev. Lett. 87, 014102 (2001).
[10] C. Masoller, Phys. Rev. Lett. 86, 2782 (2001).
[11] M. Ciszak, O. Calvo, C. Masoller, et al, Phys. Rev. Lett. 90, 204102 (2003).
[12] J. Mulet, C. Mirasso, T. Heil, and I. Fischer, J. Of Optics B 6, 97 (2004).
[13] S. Tang, R. Vicente, M. Chiang, et al, IEEE J. Sel. Topics Quant. Elec. 10, 936 (2004).
[14] E. Klein, N. Gross, M. Rosenbluh, et al, Phys. Rev. E 73, 066214 (2006).
[15] R. Vicente, S. Tang, J. Mulet, et al, Phys. Rev. E 73, 047201 (2006).
[16] E. Rossoni, et al, Phys. Rev. E 71, 061904 (2005).
[17] M. Dhamala, et al, Phys. Rev. Lett. 92, 074104 (2004).
[18] M. Y. Kim, R. Roy, J. L. Aron, T. W. Carr, and I. B. Schwartz, Phys. Rev. Lett. 94, 088101 (2005).
[19] Q. L. Williams, J. Garcia-Ojalvo, and R. Roy, Phys. Rev. A 55, 2376 (1997).
[20] L. B. Shaw, I. B. Schwartz, E. A. Rogers, and R. Roy, Chaos 16, Art. no. 015111 (2006).
[21] T. W. Carr, M. L. Taylor, and I. B. Schwartz, Physica D 213, 152 (2006).
[22] I. B. Schwartz and T. Erneux, Siam J. Appl. Math. 54, 1083 (1994).
[23] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).
[24] P. Hartman, Ordinary Differential Equations (Birkhäuser, Boston, 1982), 2nd ed., ISBN 3-7643-3068-6.
[25] The intensities displayed for the fiber laser are filtered with a 125 MHz low pass filter, to correspond with a typical setup for measuring intensities experimentally [20].
[26] L. B. Shaw and I. B. Schwartz, to be submitted.
[27] I. Fischer, R. Vicente, J. M. Buldú, M. Peil, C. R. Mirasso, M. C. Torrent, and J. G. Ojalvo, Physical Review Letters 97 (2006).
[28] A. S. Landsman and I. B. Schwartz, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 75 (2007).
[29] S. Sivaprakasam, E. M. Shahverdiev, P. S. Spencer, and K. A. Shore, Phys. Rev. Lett. 87, 154101 (2001).
[30] L. Wu and S. Q. Zhu, Physics Letters A 315, 101 (2003).
[31] B. B. Zhou and R. Roy, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 75 (2007).