Global existence and uniqueness of the solution to a nonlinear parabolic equation

Alexander G. Ramm

Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA

Abstract

Consider the equation

\[u'(t) - \Delta u + |u|^\rho u = 0, \quad u(0) = u_0(x), \quad (1) \]

where \(u' := \frac{du}{dt} \), \(\rho = \text{const} > 0 \), \(x \in \mathbb{R}^3 \), \(t > 0 \).

Assume that \(u_0 \) is a smooth and decaying function,

\[\|u_0\| = \sup_{x \in \mathbb{R}^3, t \in \mathbb{R}_+} |u(x, t)|. \]

It is proved that problem (1) has a unique global solution and this solution satisfies the following estimate

\[\|u(x, t)\| < c, \]

where \(c > 0 \) does not depend on \(x, t \).

Mathematics Subject Classification: MSC 2010, 35K55.

Keywords: nonlinear parabolic equations; global solutions.

1 Introduction

Let

\[u' - \Delta u + |u|\rho u = 0, \quad u(0) = u_0; \quad u' := \frac{du}{dt}, \quad (1) \]

where \(\rho > 0 \), \(t \in \mathbb{R}_+ = [0, \infty) \), \(x \in \mathbb{R}^3 \), \(X \) is a Banach space of real-valued functions with the norm \(\|u(x, t)\| := \sup_{x \in \mathbb{R}^3, t \in \mathbb{R}_+} |u(x, t)| \). We assume that

\[\|u\| \leq c. \quad (2) \]

Corresponding author: Email: ramm@ksu.edu
We say that u is a global solution to (1) if u exists $\forall t \geq 0$.

Our result is formulated in Theorem 1. Our method is simple and differs from the published results, see [1], [2] and references there.

The novel points in this work are:

a) There is no restriction on the upper bound of ρ.

In [1], (Section 1.1) a nonlinear hyperbolic equation with the same nonlinearity is studied in a bounded domain, uniqueness of the solution is proved only for $\rho \leq 2/(n - 2)$, and existence is proved by a different method. The contraction mapping theorem is not used.

In [2] the quasi-linear problems for parabolic equations are studied in Chapter 5 in a bounded domain and under the assumptions different from ours. There are many papers and books on non-linear problems for parabolic equations (see the bibliography in [1], [2].

b) Existence of the global solution is proved.

c) Method of the proof differs from the methods in the cited literature.

Our result is formulated in Theorem 1:

Theorem 1. Problem (1) has a unique global solution in X for any $u_0 \in X$.

2 Proofs

Let $g(x, t) = \frac{e^{-|x|^2}}{(4\pi t)^{3/2}}$. If u solves (1) then

$$u(t) = -\int_0^t d\tau \int g(x - y, t - \tau)|u|^\rho u dy + \int g(x - y, t)u_0(y)dy := A(u) + F := Q(u),$$

where $\int := \int_{\mathbb{R}^3}$. Let X be the Banach space of continuous in $\mathbb{R}^3 \times R_+$ functions, $\mathbb{R}_+ := [0, \infty)$, $\|u\| := \max_{x \in \mathbb{R}^3, t \in [0, T]} |u(x, t)|$. If $\|u\| \leq R$ then $\|A(u)\| \leq T R^\rho + 1$, where the identity $\int g(x - y, t - \tau)dy = 1$ was used. From (3) one gets

$$\|u\| \leq T\|u\|^\rho + \|F\|.$$

Thus, Q maps the ball $B(R) = \{u : \|u\| \leq R\}$ into itself if T is such that

$$TR^\rho + 1 + \|F\| \leq R.$$

The Q is a contraction on $B(R)$ if

$$\|Q(u) - Q(v)\| \leq T(\rho + 1)R^\rho \|u - v\| \leq q\|u - v\|, \quad 0 < q < 1.$$

Thus, if

$$T(\rho + 1)R^\rho \leq q < 1,$$
then \(Q \) is a contraction in \(B(R) \) in the Banach space \(X_T \) with the norm \(\| \cdot \| \), \(t \in [0, T] \). We use the same notations for the norms in \(X_T \) and in \(X_\infty \).

We have proved that

For \(T \) satisfying (5) - (6) there exists and is unique the solution to (1), and this solution can be obtained from (3) by iterations.

The problem now is:

Does this solution exist and is unique on \(R^+ \)?

From our proof it follows that if the solution exists and is unique in \(X_T \), then the solution exists and is unique in \(X_{T_1} \) for some \(T_1 > T \).

To prove that the solution \(u(x, t) \) to (1) exists on \(R^+ \), assume the contrary: this solution does not exist on any interval \([0, T_1) \), \(T_1 > T \), where \(T \) is the maximal interval of the existence of the continuous solution. Then \(\lim_{t \to T^-} u(x, t) = \infty \), because otherwise there is a sequence \(t_n \to T - 0 \) such that \(u(x, t_n) \to u(x, T) \) and one may construct the solution defined on \([T, T_1] \), \(T_1 > T \), by using the local existence and uniqueness of the solution to (1) with the initial value \(u(x, T) \) for \(t \in [T, T_1] \). This contradicts the assumption that \(T \) is the maximal interval of the existence of the continuous solution \(u \).

Thus, if \(T < \infty \) then one has \(\lim_{t \to T^-} u(x, t) = \infty \). Let us prove that this also leads to a contradiction. Then we have to conclude that \(T = \infty \) and Theorem 1 is proved.

We need some estimates. Multiply (1) by \(u \), integrate over \(R^3 \) with respect to \(x \), and then integrate by parts the second term. The result is:

\[
0.5 \frac{dN(u)}{dt} + N(\text{grad}u) + \int |u|^{\rho+2}dy = 0,
\]

where \(N(u) := \int u^2dy \). Integrate (7) with respect to time over \([0, T] \) and get

\[
0.5N(u(T)) + \int_0^T \left(N(\text{grad}u) + \int |u|^{\rho+2}dy \right) d\tau = 0.5N(u(0)).
\]

Therefore,

\[
N(u(t)) \leq c, \quad \forall t \in [0, T], \quad \int_0^T N(\text{grad}u)d\tau \leq c, \quad \int_0^T d\tau \int |u|^{\rho+2}dy \leq c,
\]

where \(c = 0.5N(u_0) \).

Lemma 1. From (9) and (3) it follows that

\[
\|u(x, t)\| < \infty \quad \forall t \in [0, T].
\]

If (10) is proved then \(T \) is not the maximal interval of the existence of the solution to (1). This contradiction proves Theorem 1.
Proof of Lemma 1. One uses the Hölder inequality twice and gets

\[
\begin{aligned}
\int_0^T d\tau \int g(x-y,t-\tau)|u|^\rho dy & \leq \left(\int_0^T d\tau \int |u|^{\rho+2} dy \right)^{(\rho+1)/(\rho+2)} \left(\int_0^T d\tau \int g^{\rho+2} dy \right)^{1/(\rho+2)} \\
& \leq \left(\int_0^T d\tau \int |u|^{\rho+2} dy \right)^{(\rho+1)/(\rho+2)} \left(\int_0^T d\tau \int g^{\rho+2} dy \right)^{1/(\rho+2)}.
\end{aligned}
\]

(11)

By the last inequality (9) it follows that \(\int_0^T d\tau \int |u|^{\rho+2} dy < c \forall T > 0 \), where \(c > 0 \) is a constant independent of \(T \). The last integral in (11) is also bounded independently of \(T \). It can be calculated analytically.

Thus, inequalities (11), (9) and equation (3) imply (10).

Lemma 1 is proved. \(\square \)

Therefore Theorem 1 is proved. \(\square \)

The ideas related to the ones used in this paper were developed and used in [3]–[5].

References

[1] Lions, J., Quelques methods de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.

[2] Ladyzhenskaya, O., et al.,Linear and quasilinear equations of parabolic type, Transl. of math. monogr., vol. 23, Amer. Math. Soc., Providence RI, 1968.

[3] Ramm, A. G., Stability of the solutions to evolution problems, Mathematics, 1, (2013), 46-64.

doi:10.3390/math1020046

Open access Journal:

http://www.mdpi.com/journal/mathematics

[4] Ramm, A. G., Large-time behavior of solutions to evolution equations, Handbook of Applications of Chaos Theory, Chapman and Hall/CRC, 2016, pp. 183-200 (ed. C.Skiadas).

[5] Ramm, A. G., Hoang, N. S., Dynamical Systems Method and Applications. Theoretical Developments and Numerical Examples. Wiley, Hoboken, 2012.