On accelerated Universe expansion

L. V. Verozub

Kharkov National University

(Dated: February 10, 2022)

It is shown that observed peculiarities of the Universe expansion are an inevitable consequence of the gravitational force properties following from gauge-invariant gravitation equations considered in detail in an author’s paper in Annalen der Physik, v.17, 28 (2008).

PACS numbers: 04.50+h; 98.80.-k

Numerous data testifying that the most distant galaxies move away from us with acceleration where obtained for the last 8 years [1]. This fact poses serious problems both for fundamental physics and astrophysics [2]. In the present paper it is shown that the available observational data are an inevitable consequence of properties of the gravitational force implying from gauge-invariant gravitation equations [3]. These equations were tested successfully by binary pulsar PSR 1913 + 16 [4].

In Minkowski’s space-time the radial component of the gravitational force of a point mass \(M \) affecting the free-falling particle of mass \(m \) is \(m \ddot{r} \) where the acceleration \(\ddot{r} = d^2r/dt^2 \) must be found from the gravitational equations in use. According to [3] the force is given by

\[
F = -m \left[c^2 C/2A + (A'/2A - 2C'/2C)c^2 \right],
\]

where

\[
A = f^2/C, \quad C = 1 - r_g/f, \quad f = (r_g^3 + r^3)^{1/3}, \quad f' = df/dt.
\]

In this equation the dot denotes the derivative with respect to \(t \), \(r_g = 2GM/c^2 \), \(G \) is the gravitational constant, \(c \) is the speed of light at infinity, the prime denotes the derivative with respect to \(r \).

For particles at rest (\(\dot{r} = 0 \))

\[
F = -\frac{GmM}{r^2} \left[1 - \frac{r_g}{(r^3 + r_g^3)^{1/3}} \right].
\]

Fig. 1 shows the force \(F \) affecting a particle at rest and a particle free falling from infinity as the function of the distance \(r = r/r_g \) from the centre.

It follows from Fig. 1 that the gravitational force affecting free-falling particles changes its sign at \(r \approx 2r_g \). Although we have never yet observed particles motion at distances of the order of \(r_g \), we can verify this result for very distant objects in the Universe, at large cosmological redshifts, because it is well-known that the radius of the observed region of the Universe is of the order of its Schwarzschild radius.

A magnitude which is related with observations in the expanding Universe is the relative velocity of distant star objects with respect to an observer. The radial velocity \(v = \dot{R} = dR/dt \) of particles on the surface of a selfgravitating expanding homogeneous sphere of a radius \(R \) can be obtained from equations of the motion of a test particle [3]:

\[
v = \frac{Cf^2}{R^2} \sqrt{1 - \frac{C}{E}},
\]

where \(C \) are the functions of the distance \(R \), \(r_g = (8/3)\pi c^{-2} G \rho R^3 \) is Schwarzshild’s radius of homogeneous matter inside of the sphere and \(\rho \) is the matter density. The parameter \(E \) is the constant total energy of a particle divided by \(mc^2 \).

Fig. 2 shows the radial acceleration \(\ddot{R} = v' \dot{v} \) of a particle on the surface of the sphere of the radius \(R \) in flat space-time. Two conclusions can be made from this figure.

1. At some distance from the observer the relative acceleration changes its sign. If the \(R < 2 \cdot 10^{27} cm \), the radial acceleration of particles is negative. If \(R > 2 \cdot 10^{27} cm \), the acceleration is positive. Hence, for sufficiently large distances the gravitational force affecting particles is repulsive and gives rise to a relative radial acceleration of particles with respect to any observer.

2. The gravitational force, affecting the particles, tends to zero when \(R \) tends to infinity. (The same fact takes place as regards the force acting on particles in the

*Electronic address: leonid.v.verozub@univer.kharkov.ua
The matter density is equal to $10^{-29}g\,cm^{-3}$.

Therefore, the difference in two local level E_1 and E_2 of an atom energy in the field is $\Delta E = (E_2 - E_1)\sqrt{C}$, so that the local frequency ν_0 at the distance R from an observer are related with the observed frequency ν by equality

$$\nu = \nu_0 \sqrt{C},$$

where we take into account that for the observer location $\sqrt{C} = 1$. It follows from (7) and (5) that the relationship between frequency ν as measured by the observer and the proper frequency ν_0 of the moving source in the gravitational field takes the form

$$\frac{\nu}{\nu_0} = \sqrt{\frac{1 - v/c}{1 + v/c}} \quad (8)$$

Equation (8) yields the quantity z as a function of R. By solving this equation numerically we obtain the dependence $R = R(z)$ of the measured distance R as a function of the redshift. Therefore the distance modulus μ to a star object is given by

$$\mu = 5 \log_{10}[R(z) (z + 1)] - 5 \quad (9)$$

where $R(1 + z)$ is a bolometric distance (in pc) to the object.

If (4) is a correct equation for the radial relative velocity of distant star objects in the expansive Universe, it must to lead to the Hubble law at small distances R. Under this condition the Schwarzschild radius $r_g = (8/3)\pi G\rho R^3$ of the matter inside of the sphere is very small compared with R. For this reason $f \approx r$, and $C = 1 - r_g/r$. Therefore, at $E = 1$, we obtain from (4) that

$$v = HR, \quad (10)$$

where

$$H = \sqrt{(8/3)\pi G\rho}. \quad (11)$$

If $E \neq 1$ equation (4) does not lead to the Hubble law, since v does not tend to zero when $R \to 0$. For this reason we set $E = 1$ and look for the value of the density at which a good accordance with observation data can be obtained.

The fig. (3) show the Hubble diagram based on eq. (9) compared with observations data [11]. It follows from this figure that the model under consideration are in a good accordance with observation data.

For the value of the density $\rho = 4.5 \cdot 10^{-30}g\,cm^{-3}$ we obtain from (11) that

$$H = 1.59 \cdot 10^{-18}c^{-1} = 49\,km\,c^{-1}\,Mpc. \quad (12)$$

Fig. 4 shows the dependence of the radial velocity v on the redshift. It follows from this figure that at $z > 1$ the Universe expands with an acceleration. At $R \to \infty$ the velocity and acceleration tend to zero.
FIG. 3: The distance modulus μ vs. the redshift z for the density $\rho = 4.5 \cdot 10^{-30} \text{g cm}^{-3}$. Small squares denote the observation data according to Riess et al.

FIG. 4: The radial velocity vs. redshift z for the density $\rho = 4.5 \cdot 10^{-30} \text{g cm}^{-3}$

[1] A. Riess et al., ApJ 607, 665 (2004)
[2] S. Weinberg, E-print astro-ph/0005265 (2000)
[3] L. Verozub, Ann. Phys. (Berlin), 17, 28 (2008)
[4] L. Verozub & A. Kochetov, Grav. and Cosm., 6, 246 (2000)
[5] Ia. Zel'dovich, & I. Novikov, Relativistic Astrophysics, v. 2: The Structure and Evolution of the Universe (University of Chicago Press, 1971)
[6] L. Landau & E. Lifshitz, The Classical Theory of Field (Addison - Wesley, Massachusetts, 1971)
[7] S. Weinberg, S. 1972, Gravitation and Cosmology, (J. Wiley & Son Inc., 1972)