Genome Sequences of 72 Bacterial Strains Isolated from *Ectocarpus subulatus*: A Resource for Algal Microbiology

Elham Karimi 1,*, Enora Geslain1,2, Hetty KleinJan1,3, Gwenn Tanguy2, Erwan Legeay2, Erwan Corre2, and Simon M. Dittami1

1Sorbonne Université/CNRS, Station Biologique de Roscoff, UMR 8227, Integrative Biology of Marine Models, Roscoff, France
2Sorbonne Université/CNRS, Station Biologique de Roscoff, FR2424, Roscoff, France
3Present address: CEBEDEAU, Research and Expertise Center for Water, Liège, Belgium
*Corresponding author: E-mail: elham.karimi@sb-roscoff.fr.

Accepted: December 12, 2019

Data deposition: The projects PRJEB31339 and PRJEB34356 have been deposited at European Nucleotide Archive - European Molecular Biology Laboratory- EBI under the accession numbers given in Table 1 (http://www.ebi.ac.uk/ena/data/view/<ACCESSION NUMBER>).

Abstract

Brown algae are important primary producers and ecosystem engineers in the ocean, and *Ectocarpus* has been established as a laboratory model for this lineage. Like most multicellular organisms, *Ectocarpus* is associated with a community of microorganisms, a partnership frequently referred to as holobiont due to the tight interconnections between the components. Although genomic resources for the algal host are well established, its associated microbiome is poorly characterized from a genomic point of view, limiting the possibilities of using these types of data to study host–microbe interactions. To address this gap in knowledge, we present the annotated draft genome sequences of seventy-two cultivable *Ectocarpus*-associated bacteria. A screening of gene clusters related to the production of secondary metabolites revealed terpene, bacteriocin, NRPS, PKS-t3, siderophore, PKS-t1, and homo-serine lactone clusters to be abundant among the sequenced genomes. These compounds may be used by the bacteria to communicate with the host and other microbes. Moreover, detoxification and provision of vitamin B pathways have been observed in most sequenced genomes, highlighting potential contributions of the bacterial metabolism toward host fitness and survival. The genomes sequenced in this study form a valuable resource for comparative genomic analyses and evolutionary surveys of alga-associated bacteria. They help establish *Ectocarpus* as a model for brown algal holobionts and will enable the research community to produce testable hypotheses about the molecular interactions within this complex system.

Key words: brown algae, holobiont, alga-associated bacteria, biosynthetic gene clusters, detoxification, metabolic networks.

Introduction

Brown macroalgae are important primary producers and major ecosystem engineers on marine rocky shores, providing both shelter and nutrients for other forms of life (Brodie et al. 2017). They belong to the stramenopiles, an evolutionarily distinct lineage from the Achaeplastida, which comprise red and green algae as well as land plants (Charrier et al. 2008) and are of commercial importance in several regions of the world (Koro 2013; Raja et al. 2013; Venkatesan et al. 2015). *Ectocarpus* is a genus of brown algae that has been established as a laboratory model for this lineage (Peters et al. 2004) due to its small genome (Cock et al. 2010), the possibility of cultivation in the lab, and its short life cycle.

Like most if not all multicellular eukaryotes, brown algae, including *Ectocarpus*, are associated with bacteria (Paix et al. 2019). These interactions may be so intimate that the term holobiont has been suggested to describe the functional unit of a host and its associated microbiome (Zilber-Rosenberg and Rosenberg 2008; Douglas and Werren 2016). For instance, it has been estimated that approximately half of all algae (including 49 out of 83 surveyed stramenopiles) rely on their bacteria associated to provide them with vitamin B12 (Croft et al. 2005; Tang et al. 2010). In *Ectocarpus*, associated
bacteria are known to provide functions related to developmental transitions and growth of the algae (Pedersen 1968; Tapia et al. 2016). Furthermore, they may impact their capacity to tolerate environmental stressors (Dittami et al. 2016).

Collections of cultivable bacteria provide a valuable resource to study the mechanisms underlying these interactions, and in *Ectocarpus* three recent papers describe the generation of culture collections. In *Ectocarpus siliculosus* Tapia et al. (2016) have reported the isolation of 9 bacterial strains, and in *Ectocarpus subulatus* Kleinjan et al. (2017) cultivated 46 strains corresponding to 33 different bacterial genera from algal surfaces. An additional 95 strains corresponding to 27 different genera have also recently been isolated from field material of *E. subulatus* (Dittami et al. 2019).

In present study, we describe genomic resources for 72 of these cultivable *Ectocarpus*-associated bacteria. Thirty-two genomes were sequenced specifically for this study, plus ten previously sequenced genomes from the same culture collection (Burgunter-Delamare et al. 2019) were also included. These genomes constitute a valuable resource both to study the genomic adaptations of bacteria to life on the surface of brown algae, but also to generate hypotheses on potential beneficial interactions between the bacteria and their host, for example, via metabolic complementarity-based approaches (Frioux et al. 2018). They furthermore constitute a first step toward filling a big gap in our current knowledge: The fact that currently (September 2019), based on our research through Marine Metagenomics Portal (Robertson et al. 2017; Klemetsen et al. 2018), only ~100 draft and complete bacterial genomes isolated from algae/seaweed are publicly available in GenBank. Thus, the genomes from this study could add a great amount of information to algal microbiomes and will promote other studies aiming to decipher algal-microbial associations.

Materials and Methods

Bacterial Strains and DNA Extraction

Bacterial strains were isolated from a laboratory culture of *E. subulatus* (strain CCAP 1310/19; KleinJan et al. 2017) as well as from field samples of the same species (Dittami et al. 2019). Field samples were collected in March 2017 from two locations along the Hopkins River, Victoria, Australia, a few km upstream of Hopkins River falls, the original collection site of strain CCAP 1310/19 (West and Kraft 1996): Framlingham Forest reserve (~38.297064, 142.668291) and Kent’s Ford (~38.191574, 142.698058). All bacterial strains were identified by Sanger-sequencing of the 16S rDNA gene using the 8F and the 1492R primer pair (Weisburg et al. 1991). Bacteria were grown on 90 mm Petri dishes with R2A medium (Resoner and Geldreich 1985) Sigma–Aldrich at 19 °C for 4–7 days. Subsequently, a single colony was selected and grown at 25 °C in liquid R2A medium overnight. The bacterial genomic DNA was extracted using Promega Wizard Genomic DNA purification kit following the manufacturer’s instructions. The extracted DNA was quantified using a Qubit and its quality was determined using agarose gel electrophoresis.

Genome Sequencing, Assembly, and Annotation

Paired-end DNA libraries with an average insert size of 500 bp were prepared using the Nextera XT DNA library kit (library average size ~1,100 bp). Libraries were then sequenced using the Illumina MiSeq technology (V3, paired-end, 2 × 300 bp reads) at GENOMER platform (Station Biologique de Roscoff), multiplexing ~20 bacterial genomes per run. Raw reads were first examined using FastQC (Andrews 2010). Low-quality sequences were trimmed or removed using Trimmomatic v.0.38 and a sliding window with a quality score of 15 as well as a minimal read length of 36 bp as filters. Trimmed read pairs were used for genome assembly with SPAdes v.3.12.0 (Bankevich et al. 2012) using default parameters. Genomic sequences encoding parts of the ribosome were identified using Barmap v. 0.8 (https://github.com/tseemann/barmap) and 16S rDNA sequences used to search for complete reference genomes in the GenBank. These reference genomes were used for scaffolding with Medusa version 1.6. Finally, gaps in the scaffolds were filled wherever possible using GapCloser 1.12 (Li et al. 2010) and the resulting draft genomes were annotated and prepared for submission to public databases using the MicroScope platform (Vallenet et al. 2017). The genomes were deposited at the European Nucleotide Archive.

Phylogenomic Analyses

Phylogenomic relationships among all studied strains were confirmed by running genome clustering based on pairwise distances and Average Nucleotide Identity (ANI) between all selected genomes using the Neighbor-Joining algorithm in MicroScope. Furthermore, the closest genome has been provided for all genomes, based on their resulting Tetranucleotide signature correlation index via the JSpeciesWS tool (Richter et al. 2016).

In Silico Analysis of Bacterial Metabolism

Models of primary metabolism for each sequenced bacterium were generated using the Pathway tools pipeline implemented in the MicroScope platform. The output of this pipeline is a pathway completion value, that is, the ratio between the number of reactions for a specific pathway in a bacterium and the total number of reactions for that pathway defined in the MetaCyc (Caspi et al. 2018) or KEGG (Kanehisa et al. 2008) databases. In addition, secondary metabolite-related gene clusters were predicted using antiSMASH (Blin et al. 2017).
Results and Discussion

Genome Characteristics

Here, we report the sequencing of 62 and the analysis of 72 genomes of *Ectocarpus*-associated bacterial strains corresponding to 43 different genera and 16 different orders. The individual strains as well as key attributes of their genome sequences are listed in table 1. The genome size of all strains ranged from 2.4 Mb to 6.8 Mb. The largest genome was that of *Imperialibacter* sp. strain SDR9 from the Bacteroidetes and the smallest was that of *Micrococcus* sp. strain 118 from the Actinobacteria. The analyzed genomes showed diverse GC contents with strains belonging to the Bacteroidetes and Firmicutes exhibiting GC contents <40% (e.g., 30% in *Flavobacterium* sp. 9AF) contrary to Actinobacteria, where most strains exhibit GC contents over 70%. Overall, the GC content was positively correlated with genome size (Pearson correlation $r=0.73$, $P=0.042$). CheckM analyses (Parks et al. 2015) suggest that the sequenced genomes are nearly complete (>98%, table 1) and free of or with very low levels of contamination (<2.5%; supplementary table S1, Supplementary Material online). The only exception was *Arthrobacter* sp. strain 9V with 4.8% contamination (22 marker genes). This indicates that, overall, the presented genomes are suitable for downstream analyses such as comparisons of metabolic capacities.

Phylogenomic Tree

Several of the sequenced bacteria in this study correspond to bacteria with no or only few closely related sequences in the databases. Notably, *Enterobacteriales* bacterium 8AC, and *Moraxellaceae* bacterium 17A could be confidently identified only to the family level through RDP classifier (supplementary table S1, Supplementary Material online), making these strains candidates for new species or genera. Besides, fifteen strains including *Imperialibacter* sp. EC-SDR9, *Marinosiculum* sp. 108, *Sphingomonas* sp., AX6, and *Novosphingobium* sp., and *Burkholderiales* bacterium 8X have low similarity (z-score below cutoff <0.989) with their closest genome-sequenced relatives (based on the tetra-nucleotide signature correlation index, table 1 and supplementary fig. S1, Supplementary Material online). This phylogenomic analysis yielded a tree generally grouping together bacteria from the same taxon (supplementary fig. S1, Supplementary Material online). However, *Imperialibacter* sp. EC-SDR9 and *Sphingobacterium* sp. 8BC from Bacteroidetes clustered with Firmicutes.

Secondary Metabolic Activities and Potentially Symbiosis-Related Metabolites

Algal-associated microbes are likely to interact with both the host and other microbes within the community. Secondary metabolites are metabolites not essential for normal growth of microorganisms, but they play a major role as chemical signals for interaction with other microorganisms (Netzker et al. 2015), restriction of pathogens (antimicrobial activities), and biofouling (Wiese et al. 2009; Nasrolahi et al. 2012; Susiłowat et al. 2015). For instance, terpenes as the largest class of natural compounds have protective roles against competitors and are involved in interspecies signaling (Gershenzon and Dudareva 2007; Yamada et al. 2015). Similarly, bacteriocins, peptidic toxins produced by bacteria, have been suggested to play a role in pathogenesis by induction of cell lysis (Li and Tian 2012). The annotation of the 72 bacterial genomes with respect to genes involved in secondary metabolism obtained from AntiSMASH via the MicroScope platform showed that all analyzed strains except *Oceanicaulis* sp. strain 350, had at least one secondary biosynthetic gene cluster. Furthermore, 68% of genomes have at least one predicted terpene cluster gene, followed by bacteriocin (40.2%), non-ribosomal Peptide Synthetases (NRPS, 36%), Type 3 polyketide synthases (PKS-t3, 33.33%), siderophores (23.6%), Type 1 polyketide synthases (PKS-t1, 20.8%), and homoserine lactone synthesis genes (16.6%; fig. 1 and supplementary table S1, Supplementary Material online). These genes are likely to be at least partially involved in the communication with the host and between microbes.

Detoxification Role of Symbionts and Provision of Vitamins

In terms of detoxification mechanisms, one pathway that was complete in all studied genomes was the capacity to degrade superoxide radicals. Moreover, 46 strains of 72 possessed the complete pathway for glutaredoxin synthesis (fig. 1). This mechanism is important for the degradation reactive oxygen species (ROS), which are formed by the algae through metabolic processes and in response to different stressors (Cosse et al. 2007). ROS can cause significant damage to the cell; thus, microorganisms have developed defense systems to detoxify ROS in order to survive. Furthermore, the cyanate degradation pathway was complete or semicomplete in all bacteria except in strains 8BE, 8AC, and 8AQ. Cyanate is a common compound in marine environments and may serve as both an energy source for marine microbes (Palatinszky et al. 2015) as well as a potential source of nitrogen (Kamennaya et al. 2008; Sáez et al. 2019). Whether this pathway also plays a role during the interactions of microbes with their algal host, for example, by enabling the microbes to provide nitrogen to their host, remains to be tested.

Finally, most genomes analyzed encoded nearly complete or complete pathways for production of B vitamins like biotin (B7), folate (B9), riboflavin (B2), thiamine (B1), and pyridoxine (B6) (fig. 1). They may thus be contributors of vitamin B for the algal host, as has previously been suggested for diatom-bacteria associations (Behringer et al. 2018). All in all, these studied metabolic features highlight the possible contributions of the alga-associated bacteria to maintain host fitness and survival.
Table 1
Genome Features of Algal-Associated Bacteria Analyzed in This Study

Strain	Complete-ness (%)^a	Genome Size (Mb)	Coverage (X)	N50 (Mb)	%GC Scaffold Nb.	CDS Nb.	Mean CDS Length	tRNA Nb.	rRNA Nb.	Closest Relative Accession Numbers
Actinobacteria										
Aeromicrobium sp. 9AM	99.7	4.2	144	2.98	68	9	4,422	897	46	Aeromicrobium sp. Root236
Arthrobacter sp. 8AJ	99.7	4.3	88	4.22	66	4	4,228	944	51	Moraxella osloensis NCT10465
Arthrobacter sp. 9AX	99.7	4.4	230	4.41	66	7	4,453	918	50	Pseudarthrobacter siccitolerans 4J27
Arthrobacter sp. 9V	99.7	5.1	221	4.82	62	158	5,091	925	62	Arthrobacter sp. EpR517
Citrobacter sp. K5	99.2	3.9	324	3.74	69	9	3,708	974	47	Citrobacter muralis DSM 14442
Curtobacterium sp. B1–2	99	3.6	109	2.80	71	5	3,767	911	47	Curtobacterium flaccumfaciens
Bacteroidetes										
Imperialibacter sp. SDR9	100	6.8	111	0.96	47	65	5,767	1069	38	Articibacter pallidi-corallinus
Micrococcus sp. 116	98.6	2.6	215	2.49	73	19	2,526	943	48	Micrococcus lutea 2385
Micrococcus sp. 11B	98.1	2.4	450	1.89	73	52	2,398	952	48	Micrococcus lutea 2385
Micrococcus sp. 80W	98.1	2.5	224	1.78	73	80	2,521	942	48	Micrococcus lutea 2385
Nocardoides sp. AX2bis	98.7	4.2	221	3.96	73	37	4,397	915	45	Marmoricola aurantiacus DSM 12652*
Firmicutes										
Bacillus sp. 348	99.6	3.8	246	3.58	41	5	4,071	846	79	Bacillus stratosphericus LK33
Bacillus sp. 349Y	99.3	4.5	114	0.12	48	85	4,616	839	97	Bacillus sp. Leaf406
Bacillus sp. 71	99.3	5.7	116	5.69	35	14	6,092	796	98	Bacillus cereus HuA2-4
Bacillus sp. 9J	99.6	3.8	179	3.74	42	76	4,109	834	86	Bacillus sp. Leaf49
Exiguobacterium sp. 8A	99.3	3.1	184	2.87	48	77	3,234	868	63	Exiguobacterium sp. AT1b
Exiguobacterium sp. 8H	99.3	3	296	0.87	48	40	3,154	868	63	Exiguobacterium sp. AT1b
Exiguobacterium sp. 9Y	99.3	3	88	1.61	47	20	3,070	876	65	Exiguobacterium oxidotolerans JCM
Staphylococcus sp. 8AQ	99.2	2.5	269	2.49	31	4	2,501	886	62	Staphylococcus pasteurii BAB3
Proteobacteria

Organism	Accession Numbers
Aeromonas sp. 8C	LR732797-LR732799
Aeromonas sp. 9A	LR732779-LR732789
Alteromonas sp. 38	LR733300-LR733302
Marinobacter sp. HK377	LR73269-LR733270
Marinobacter sp. N1	LR73269-LR733270
Burkholderia sp. 8Y	LR733519-LR733555
Limnobacter sp. 130	LR732328-LR732333
Masilia sp. 9I	LR732375-LR733283
*Burkholderiales bacterium 8X	LR732703-LR732705
Brevundimonas sp. G8	LR732816-LR732816
Oceanicaulis sp. 350	LR73406-LR734312
Pantoea sp. 111	LR733469-LR733503
*Enterobacteriales bacterium 8AC	LR733916-LR733978
Halomonas sp. 153	LR733721-LR733731
Halomonas sp. 9B	LR733707-LR733720
Acinetetabacter sp. 8BE	LR732744-LR732778
Acinetetabacter sp. 8I-beige	LR732790-LR732796
*Moraxellaice bacterium 17A	LR73269-LR732305
Enhydrobacter sp. 8BJ	LR733345-LR733375
Enhydrobacter sp. AX1	LR732800-LR732815
Pseudomonas sp. 8AS	LR733406-LR734312
Pseudomonas sp. 8BK	LR733252-LR733262
Pseudomonas sp. 8D	LR733263-LR732686
Pseudomonas sp. 8Z	LR733824-LR733835
Pseudomonas sp. 9Ag	LR733836-LR733839
Pseudomonas sp. 9A2	LR733840-LR733843
Bosea sp. 125	LR733122-LR735184
Bosea sp. 127	LR733511-LR733518
Bosea sp. 29B	LR733817-LR733823
Bosea sp. 62	LR733504-LR733510
Bosea sp. HK365B	LR701663-LR701680
Hoeflea sp. HK425	LR701545-LR701572
Rhizobium sp. SD304	LR701442-LR701459
Roseovarius sp. SD190	LR701460-LR701476
Erlythroctacter sp. HK427	LR701477-LR701479
Novosphingobium sp. 9U	LR732469-LR732543

(continued)
Strain	Complete-ness (%)	Genome Size (Mb)	Coverage (X)	N50 (Mb)	% GC	Scaffold Nb.	CDS Nb.	Mean CDS Length	rRNA Nb.	Closest Relative	Accession Numbers
Sphingomonas sp. 8AM	99.7	3.8	119	3.66	67	13	3,739	929	48	*Sphingomonas phyllosphaerae* FA2	LR733844–LR733856
Sphingomonas sp. AX6	99.4	3	228	3.01	64	1	3,161	892	44	*Sphingomonas echinoidea* ATCC 14820*	LR733857–LR733870
Sphingomonas sp. HK361	99.7	3.3	150	1.78	66	8	3,274	935	45	*Hephaestia caeni* DSM 25527*	LR701487–LR701494
Sphingomonas sp. SD391	99.5	4.6	114	4.15	66	34	4,682	903	49	*Sphingomonas* sp. Leaf28	LR701495–LR701528
Sphingomonas sp. T1	99.3	4.5	243	3.83	66	41	4,647	900	50	*Sphingomonas* sp. Leaf30	LR733875–LR733915
Sphingorhabdus sp. 109	99.2	3.6	97	3.56	58	5	3,585	928	45	*Sphingorhabdus* sp. M41*	LR732707–LR732711
Luteimonas sp. 9C	100	3.3	77	2.83	69	2	3,207	957	48	*Xanthomonas* sp. Mitacek01	LR733312–LR733313

Note.—The closest relative with the similarity below Cut-off [z-score (<-0.98)] is marked with asterisk. Nb, number; CDS, coding sequence.

* Determined using the CheckM tool.
The genomic resources provided here constitute a valuable resource for comparative genomic analyses and evolutionary surveys of alga-associated bacteria and will allow us to produce testable hypotheses about the molecular interactions between the microbes and their host. They may, among other uses, facilitate metabolic complementarity centered approach as proposed by Dittami et al. (2014), to identify potential beneficial interactions between the partners. They will also form the bases for more targeted molecular approaches, for example, gene knockouts or gene expression analyses once specific interactions are being targeted in coculture experiments.

Supplementary Material

Supplementary data are available at *Genome Biology and Evolution* online.

Acknowledgments

We appreciate the LABGeM (CEA/Genoscope & CNRS UMR8030), the France Génomique and French Bioinformatics Institute national infrastructures (funded as part of Investissement d’Avenir program managed by...
Agence Nationale pour la Recherche, contracts ANR-10-INBS-09 and ANR-11-INBS-0013) for their technical support within the MicroScope annotation platform and thank to Sylvie Rousvoal for help with DNA extractions.

This study was supported partially by the CNRS Momentum call, the ANR project IDEALG [ANR-10-BTBR-04] “Investissements d’Avenir, Biotechnologies-Bioressources,” and the European Union’s Horizon 2020 research and innovation Programme under the Marie Sklodowska-Curie grant agreement [624575 (ALFF)]. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author Contributions

E.K. participated in the conception and design of the study, sample processing, genome sequencing and assembly, data analysis, writing the manuscript. E.G. participated in the genome assembling, submission of genomes to MicroScope, and helped with the preparation of the figures. H.K. participated in the isolation of bacteria and genome sequencing. G.T. and E.L. both contributed to the sequencing of the genomes. S.M.D. participated in the conception and design of the study, isolation of bacteria, genome assembly and writing the manuscript. All authors approved the final draft.

Literature Cited

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. In: Babraham Bioinformatics. Cambridge: Babraham Institute.

Bankevich A, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5): 455–477. doi: 10.1089/cmb.2012.0021.

Behringer G, et al. 2018. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 9: 269.

Blin K, et al. 2017. antiSMASH 4.0: improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45(W1): W36–W41.

Brodie J, et al. 2017. The algal revolution. Trends Plant Sci. 22(8): 726–738.

Burgunder-Delamarre B, et al. 2019. Microbial complementarity between a brown alga and associated cultivable bacteria provide indications of beneficial interactions. bioRxiv 813683. doi: 10.1093/nar/gkm882.

Caspi R, et al. 2018. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46(D1): D633–D639.

Charrier B, et al. 2007. Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. New Phytol.

Chapman A. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465(7298): 617–621.

Cocks A, Leblanc C, Potin P. 2007. Dynamic defense of marine macroalgae against pathogens: from early activated to gene-regulated responses. In: Adv. Bot. Res. Academic Press. p. 221–266.

Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438(7064): 90–93.

Dittami SM, et al. 2016. Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. ISME J. 10(1): 51–63.

Dittami SM, Eveillard D, Tonon T. 2014. A metabolic approach to study algal–bacterial interactions in changing environments. Mol Ecol. 23(7): 1656–1660.

Dittami SM, et al. 2019. Revisiting Australian Ectocarpus subulatus (Phaeophyceae) from the Hopkins River: distribution, abiotic environment, and associated microbiota. bioRxiv 821579. doi: 10.1101/821579.

Douglas AE, Werren JH. 2016. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7(2): e02099–02015.

Frioux C, Freny E, Trottier C, Siegel A. 2018. Scalable and exhaustive screening of metabolic functions carried out by microbial consortia. Bioinformatics 34(17): 934–943.

Gershenzon J, Dudarev N. 2007. The function of terpene natural products in the natural world. Nat Chem Biol. 3(7): 408–414.

Kamennaya NA, Chernihovsky M, Post AF. 2008. The cyanate utilization capacity of marine unicellular Cyanobacteria. Limnol Oceanogr. 53(6): 2485–2494.

Kanehisa M, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36 (suppl_1): D480–D484. doi: 10.1093/nar/gkn882.

Kleinhan J, Jeanthon C, Boven K, Dittami SM. 2017. Exploring the culturable Ectocarpus microbiome. Front Microbiol. 8: 2456. doi: 10.3389/fmicb.2017.02456.

Klemetsen T, et al. 2018. The MAR databases: development and implementation of databases specific for marine metagenomics. Nucleic Acids Res. 46(D1): D692–D699.

Koru E. 2013. Seaweeds for food and industrial applications. In: Muzzalupo I, editor. Intech Open. p. 735–748.

Li R, et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20(2): 265–272.

Li Y-H, Tian X. 2012. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 12(3): 2519–2538.

Nasrolahi A, Stratil SB, Jacob KJ, Wahl M. 2012. A protective coat of microorganisms on macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on barnacle attachment. FEMS Microbiol Ecol. 81(3): 583–595.

Netzker T, et al. 2015. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 6: 2695. doi: 10.3389/fmicb.2015.02695.

Pai B, Othmani A, Debrosa D, Culioli G, Briand J-F. 2019. Temporal cooperation of epibacterial community and surface metabolome in the Mediterranean seaweed holobiont Taonia atomaria. Environ Microbiol. 21(9): 3346–3363.

Palatinszky M, et al. 2015. Cyanate as an energy source for nitrifiers. Nature 524(7563): 105–108.

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25(7): 1043–1055.

Pedersen M. 1968. Ectocarpus fasciculatus: marine brownalga requiring kinetin. Nature 218: 776.

Peters AF, Marie D, Scomet D, Kloareg B, Mark Cock J. 2004. Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J Phycol. 40(6): 1079–1088.

Raja A, Vijin C, Aiyappan A. 2013. Biological importance of marine algae—an overview. Int J Curr Microbiol Appl Sci. 2: 222–227.

Richter M, Rosselló-Mora R, Oliver Göldner F, Peplies J. 2016. SpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6): 929–931.
Robertsen E, et al. 2017. ELIXIR pilot action: marine metagenomics? Towards a domain specific set of sustainable services [version 1; peer review: 1 approved, 2 approved with reservations]. F1000Research 6:70.

Sáez LP, et al. 2019. Cyanate assimilation by the alkaliphilic cyanide-degrading bacterium pseudomonas pseudoalcaligenes CECT5344: mutational analysis of the cyn gene cluster. IJMS 20(12):3008.

Susilowati R, Sabdono A, Widowati I. 2015. Isolation and characterization of bacteria associated with brown algae Sargassum spp. from Panjang island and their antibacterial activities. Proc Environ Sci. 23:240–246.

Tang YZ, Koch F, Gobler CJ. 2010. Most harmful algal bloom species are vitamin B1and B12 auxotrophs. Proc Natl Acad Sci USA. 107(48):20756–20761.

Tapia JE, González B, Goulitquer S, Potin P, Correa JA. 2016. Microbiota influences morphology and reproduction of the brown alga Ectocarpus sp. Front Microbiol. 7:197. doi:10.3389/fmicb.2016.00197.

Vallenet D, et al. 2017. MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res. 45(D1):DS17–DS28.

Venkatesan J, Manivasagan P, Kim S-K. 2015. Chapter 1—Marine microalgae biotechnology: present trends and future advances. In: Kim S-K, editor. Handbook of marine microalgae. Boston: Academic Press. p. 1–9.

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 173(2):697–703.

West J, Kraft G. 1996. Ectocarpus siliculosus (Dillwyn) Lyngbye from the Hopkins River Falls, Victoria. The first record of a freshwater brown alga in Australia. Muelleria 9:29–33.

Wiese J, Thiel V, Nagel K, Staufenberger T, Imhoff JF. 2009. Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic sea. Mar Biotechnol. 11(2):287–300.

Yamada Y, et al. 2015. Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA. 112(3):857–862.

Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 32(5):723–735.

Associate editor: Howard Ochman