Abstract

Building machines that can understand text like humans is an AI-complete problem. A great deal of research has already gone into this, with astounding results, allowing everyday people to discuss with their telephones, or have their reading materials analysed and classified by computers. A prerequisite for processing text semantics, common to the above examples, is having some computational representation of text as an abstract object. Operations on this representation practically correspond to making semantic inferences, and by extension simulating understanding text. The complexity and granularity of semantic processing that can be realised is constrained by the mathematical and computational robustness, expressiveness, and rigour of the tools used.

This dissertation contributes a series of such tools, diverse in their mathematical formulation, but common in their application to model semantic inferences when machines process text. These tools are principally expressed in nine distinct models that capture aspects of semantic dependence in highly interpretable and non-complex ways. This dissertation further reflects on present and future problems with the current research paradigm in this area, and makes recommendations on how to overcome them.

The amalgamation of the body of work presented in this dissertation advances the complexity and granularity of semantic inferences that can be made automatically by machines.

Foreword

This document is a doktordisputats - a dissertation within the Danish academic system required to obtain the degree of Doctor Scientiarum, in form and function equivalent to the French and German Habilitation and the Higher Doctorate of the Commonwealth.
The dissertation contains my work in the field of semantic dependence for information retrieval, realised in the period January 2009 - April 2017.

The first chapter of this dissertation consists of an executive summary that introduces the general area and gives a compact overview of the specific contributions of this work. This chapter is aimed at readers with a broad background in computer science or related disciplines. The remainder of the dissertation consists of nine technical chapters that are slightly reformatted versions of previously published papers.

Publications

The following published papers have been included in the text of this dissertation. The papers are listed in the order they appear in the dissertation:

1. Roi Blanco and Christina Lioma. **Graph-based Term Weighting for Information Retrieval**. In: *Information Retrieval*. Springer, 2012. Vol. 15, no. 1, pp. 54–92. issn: 1386-4564. doi: 10.1007/s10791-011-9172-x. url: http://dx.doi.org/10.1007/s10791-011-9172-x

2. Christina Lioma, Jakob Grue Simonsen, Birger Larsen, and Niels Dalum Hansen. **Non-Compositional Term Dependence for Information Retrieval**. In: *Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, August 9-13, 2015*. Ed. by Ricardo A. Baeza-Yates, Mounia Lalmas, Alistair Moffat, and Berthier A. Ribeiro-Neto. ACM, 2015, pp. 595–604. isbn: 978-1-4503-3621-5. doi: 10.1145/2766462.2767717. url: http://doi.acm.org/10.1145/2766462.2767717

3. Christina Lioma and Niels Dalum Hansen. **A Study of Metrics of Distance and Correlation Between Ranked Lists for Compositionality Detection**. In: *Journal of Cognitive Systems Research*. Elsevier, 2017, in press. doi: 10.1016/j.cogsys.2017.03.001.

4. Christina Lioma, Birger Larsen, and Wei Lu. **Rhetorical Relations for Information Retrieval**. In: *The 35th International ACM SIGIR conference on research and development in Information Retrieval, SIGIR’12, Portland, OR, USA, August 12-16, 2012*. Ed. by William R. Hersh, Jamie Callan, Yoelle Maarek, and Mark Sanderson. ACM, 2012, pp. 931–940. isbn: 978-1-4503-1472-5. doi: 10.1145/2348283.2348407. url: http://doi.acm.org/10.1145/2348283.2348407
5. Casper Petersen, Christina Lioma, Jakob Grue Simonsen, and Birger Larsen. *Entropy and Graph Based Modelling of Document Coherence using Discourse Entities: An Application to IR*. In: *Proceedings of the 2015 International Conference on The Theory of Information Retrieval, ICTIR 2015, Northampton, Massachusetts, USA, September 27-30, 2015*. Ed. by James Allan, W. Bruce Croft, Arjen P. de Vries, and Chengxiang Zhai. ACM, 2015, pp. 191–200. isbn: 978-1-4503-3833-2. doi: 10.1145/2808194.2809458. url: http://doi.acm.org/10.1145/2808194.2809458.

6. Christina Lioma, Fabien Tarissan, Jakob Grue Simonsen, Casper Petersen, and Birger Larsen. *Exploiting the Bipartite Structure of Entity Grids for Document Coherence and Retrieval*. In: *Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval, ICTIR 2016, Newark, DE, USA, September 12–6, 2016*. Ed. by Ben Carterette, Hui Fang, Mounia Lalmas, and Jian-Yun Nie. ACM, 2016, pp. 11–20. isbn: 978-1-4503-4497-5. doi: 10.1145/2970398.2970413. url: http://doi.acm.org/10.1145/2970398.2970413.

7. Christina Lioma, Roi Blanco, Raquel Mochales Palau, and Marie-Francine Moens. *A Belief Model of Query Difficulty That Uses Subjective Logic*. In: *Advances in Information Retrieval Theory, Second International Conference on the Theory of Information Retrieval, ICTIR 2009, Cambridge, UK, September 10-12, 2009, Proceedings*. Ed. by Leif Azzopardi, Gabriella Kazai, Stephen E. Robertson, Stefan M. Rüger, Milad Shokouhi, Dawei Song, and Emine Yilmaz. Vol. 5766. Lecture Notes in Computer Science. Springer, 2009, pp. 92–103. isbn: 978-3-642-04416-8. doi: 10.1007/978-3-642-04417-5. url: http://dx.doi.org/10.1007/978-3-642-04417-5_9.

8. Christina Lioma, Birger Larsen, Hinrich Schütze, and Peter Ingwersen. *A Subjective Logic Formalisation of the Principle of Polyrepresentation for Information Needs*. In: *Information Interaction in Context Symposium, IIiX 2010, New Brunswick, NJ, USA, August 18–21, 2010*. Ed. by Nicholas J. Belkin and Diane Kelly. ACM, 2010, pp. 125–134. isbn: 978-1-4503-0247-0. doi: 10.1145/1840784.1840804. url: http://doi.acm.org/10.1145/1840784.1840804.

9. Christina Lioma, Birger Larsen, and Peter Ingwersen. *Preliminary Experiments using Subjective Logic for the Polyrepresentation of Information Needs*. In: *Information Interaction in Context: 2012, IIiX’12, Nijmegen, The Netherlands, August 21–24, 2012*. Ed. by Jaap
The papers presented below are published in the period January 2009 – April 2017 and are unrelated or marginally related to my research on semantic dependence for information retrieval. For this reason, they are not included in the dissertation. The list is shown here to outline the context of the research presented in this dissertation and to indicate the broadness of my research. The papers are presented in increasing chronological order:

1. Roi Blanco and Christina Lioma. Mixed Monolingual Homepage Finding in 34 Languages: the Role of Language Script and Search Domain. In: Journal of Information Retrieval, Special Issue on non-English Web Retrieval. Springer, 2009. vol. 12, no. 3, pp. 324–351. Full reference: [32].

2. Christina Lioma and Roi Blanco. Part of Speech Based Term Weighting for Information Retrieval. In: Advances in Information Retrieval, 31th European Conference on IR Research, ECIR 2009, Toulouse, France, April 6-9, 2009. Proceedings. Springer, 2009, pp. 412–423. Full reference: [190].

3. Christina Lioma, Roi Blanco, and Marie-Francine Moens. A Logical Inference Approach to Query Expansion with Social Tags. In: Advances in Information Retrieval Theory, Second International Conference on the Theory of Information Retrieval, ICTIR 2009, Cambridge, UK, September 10-12, 2009, Proceedings. Lecture Notes in Computer Science. Springer, 2009, pp. 358–361. Full reference: [191].

4. Charles Jochim, Christina Lioma, Hinrich Schütze, Steffen Koch, and Thomas Ertl. Preliminary Study into Query Translation for Patent Retrieval. In: Proceedings of the 3rd International Workshop on Patent Information Retrieval (PaIR '10). ACM, 2010. pp. 57–66. Full reference: [141].

5. Lukas Michelbacher, Alok Kothari, Martin Forst, Christina Lioma, and Hinrich Schütze. A Cascaded Classification Approach to Semantic Head Recognition. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, pp. 793–803. Full reference: [221].

6. Charles Jochim, Christina Lioma, and Hinrich Schütze. Expanding Queries with Term and Phrase Translations in Patent Retrieval. In: Multidisciplinary Information Retrieval - Second Information Retrieval Facility Conference, IRFC 2011, pp. 16–29. Full reference: [140].
7. Radu Dragusin, Paula Petcu, Christina Lioma, Birger Larsen, Henrik Jørgensen and Ole Winther. Rare Disease Diagnosis as an Information Retrieval Task. In: Advances in Information Retrieval Theory - Third International Conference, ICTIR 2011, pp. 356–359. Full reference: [73].

8. Christina Lioma, Alok Kothari, and Hinrich Schütze. Sense Discrimination for Physics Retrieval. In: Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 1101–1102. Full reference: [194].

9. Christina Lioma, Birger Larsen, and Hinrich Schütze. User Perspectives on Query Difficulty. In: Advances in Information Retrieval Theory - Third International Conference, ICTIR 2011, pp. 3–14. Full reference: [199].

10. Wei Lu, Qikai Cheng, and Christina Lioma. Fixed Versus Dynamic Co-Occurrence Windows in TextRank Term Weights for Information Retrieval. In: The 35th International ACM SIGIR conference on research and development in Information Retrieval, SIGIR ’12, pp. 1079–1080. Full reference: [211].

11. Birger Larsen, Christina Lioma, Ingo Frommholz, and Hinrich Schütze. Preliminary Study of Technical Terminology for the Retrieval of Scientific Metadata Book Records. In: The 35th International ACM SIGIR conference on research and development in Information Retrieval, SIGIR ’12, pp. 1131–1132. Full reference: [173].

12. Peter Ingwersen, Christina Lioma, Birger Larsen, and Peiling Wang. An Exploratory Study into Perceived Task Complexity, Topic Specificity and Usefulness for Integrated Search. In: Information Interaction in Context: 2012, IIix’12, pp. 302–305. Full reference: [139].

13. Raf Guns, Christina Christina Lioma, and Birger Larsen. The Tipping Point: F-score as a Function of the Number of Retrieved Items. In: Journal of Information Processing & Management. Elsevier, 2012. Vol. 48, no. 6, pp. 1171–1180. Full reference: [109].

14. Radu Dragusin, Paula Petcu, Christina Lioma, Birger Larsen, Henrik Jørgensen, Ingemar J. Cox, Lars K. Hansen, Peter Ingwersen, and Ole Winther. Specialised Tools are Needed when Searching the Web for Rare Disease Diagnoses. In: Rare Diseases. 2013. Vol. 1, no. 2, pp: e25001-1–e25001-4. Full reference: [72].

15. Radu Dragusin, Paula Petcu, Christina Lioma, Birger Larsen, Henrik Jørgensen, Ingemar J. Cox, Lars K. Hansen, Peter Ingwersen, and Ole Winther. FindZebra: A Search Engine for Rare Diseases. In: International Journal of Medical Informatics. Elsevier, 2013. Vol. 82, no. 6, pp. 528–538. Full reference: [71].
16. Casper Petersen, Christina Lioma, and Jakob Grue Simonsen. **Comparative Study of Search Engine Result Visualisation: Ranked Lists Versus Graphs.** In: *Proceedings of the 3rd European Workshop on Human-Computer Interaction and Information Retrieval, Dublin, Ireland, August 1, 2013*, pp. 27–30. Full reference: [258].

17. Roi Blanco, Manuel Eduardo Ares Brea, and Christina Lioma. **User Generated Content Search.** In: *Mining of User Generated Content and its Applications*, 2013, pp.167–187. Full reference: [30].

18. Niels Dalum Hansen, Christina Lioma, Birger Larsen, and Stephen Alstrup. **Temporal Context for Authorship Attribution - A Study of Danish Secondary Schools.** In: *Multidisciplinary Information Retrieval - 7th Information Retrieval Facility Conference, IRFC 2014*, pp. 22–40. Full reference: [112].

19. Casper Petersen, Jakob Grue Simonsen, and Christina Lioma. **The Impact of Using Combinatorial Optimisation for Static Caching of Posting Lists.** In: *Information Retrieval Technology - 11th Asia Information Retrieval Societies Conference, AIRS 2015*, pp. 420–425. Full reference: [261].

20. Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simonsen, and Jian-Yun Nie. **A Hierarchical Encoder-Decoder for Generative Context-Aware Query Suggestion.** In: *Proceedings of the 24th ACM International Conference on Information and Knowledge Management, CIKM 2015*, pp. 553–562. Full reference: [299].

21. Casper Petersen, Jakob Grue Simonsen, and Christina Lioma. **Power Law Distributions in Information Retrieval.** In: *Transactions on Information Systems (TOIS)*. ACM, 2016, Vol. 34, no. 2, pp. 1–37. Full reference: [262].

22. Christina Lioma, Birger Larsen, Wei Lu, and Yong Huang. **A Study of Factuality, Objectivity and Relevance: Three Desiderata in Large-Scale Information Retrieval?.** In: *Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2016*, pp. 107–117. Full reference: [197].

23. Brian Brost, Ingemar J. Cox, Yevgeny Seldin, and Christina Lioma. **An Improved Multileaving Algorithm for Online Ranker Evaluation.** In: *Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, SIGIR 2016*, pp. 745–748. Full reference: [38].

24. Christina Lioma, Birger Larsen, Casper Petersen, and Jakob Grue Simonsen. **Deep Learning Relevance: Creating Relevant Information (As Opposed to Retrieving It).** In: *Neu-IR’16 SIGIR Workshop on*
It is generally acknowledged that dismantling something is easier that putting it back together. From puzzles to LEGO structures, examples abound where it takes less time and mental effort to reduce some structure to its parts, than to combine parts to form a structure. One reason is that, when a structure is dismantled, it is no longer always obvious how its parts fit together. Or, to put it differently, dismantling causes information loss.

It follows that, to make a structure, one needs not only its individual components, but also knowledge about how to combine them. This little bit of common sense lies at the core of Frege’s Principle of Compositionality.

\footnote{Friedrich Ludwig Gottlob Frege is widely credited for the first modern formulation of the Principle of Compositionality in his Foundations of Arithmetic (1884), even though he never explicitly stated the principle. Precursors of this idea appear in the work of Plato and Boole, among others.}
Formulated more than 100 years ago, this principle posits, roughly, that:

The meaning of an expression is a function of the meanings of its constituent expressions and of the ways these constituents are combined [312].

Principle of Compositionality

Initially formulated in the context of mathematics, this principle has been since applied to several other domains, from linguistics (by Montague [312]) to programming languages [142, 274, 272], software engineering [61], geology [62], biology [282], and – indeed – LEGO.

The widespread application of the principle of compositionality across different disciplines is partially due to its appeal to our human inclination to dismantle in order to understand. Toddlers spend hours disassembling and reassembling structures; zoologists dissect animals; linguists tokenize language; physicists isolate atoms; geologists separate rock minerals. Common throughout these activities is the wish to learn, i.e., to determine the nature of some phenomenon by investigating its composing elements and their relationship to one another.

The role of this decomposing process to scientific analysis has been acknowledged at least since Aristoteles’ time, who referred to it as the dissecting method of achieving a solution (λύσις) through several layers (analýsis) of processing (analysis).

There are at least two interesting implications to this decomposing paradigm of scientific analysis:

I. The constituent parts of a structure that is being decomposed do not necessarily have the same properties as that structure.

II. Each constituent part of a structure can be itself a separate structure that is, in its turn, decomposable into its own constituent parts.

The above two implications practically mean that the task of modelling the properties of a structure by decomposing it into its constituent parts increases in complexity, the more one decomposes. One of the most illustrative examples of this increase in complexity is found in physics, and concerns the behaviour of atoms: the movement of a physical object is decided by its mass and the forces acting on it (understanding this requires basic physics); however, on a microscopic level, the movements of the atoms composing that object can only be given probabilistic estimates of behaving in a particular way, for at the heart of their behaviour is randomness. Understanding this requires quantum physics.

Generally, complex structures tend to be studied in science by restricting their representation to factors that can be reasonably computed, hence reducing part of the complexity. One of the most common analytical tools deployed for this is the so-called **Assumption of Independence**, which posits that:
The constituent parts composing a structure can be assumed to occur independently of one another \[55\].

Assumption of Independence

Making the assumption of independence bypasses the problem of accounting for the mode and degree of dependence of the constituent parts of a structure. This allows to build considerably less complex and more scalable models of the structure studied, compared to when modelling dependence. Often, to compensate for the information loss incurred by the assumption of independence, heuristics are introduced. However, in practice, theoretical explanations of these heuristics are seldom given or generalisable.

This dissertation presents a series of studies that replace the assumption of independence (and the heuristics that follow from its adoption), with principled methods for capturing semantic dependence in the context of information retrieval. We explain this next.

2 Semantic Dependence in Information Retrieval

DEPENDENCE (*noun*): the quality or state of being influenced or determined by or subject to another.

CATENA (*noun, plural catenae*): a connected series of related things.

Information retrieval is the scientific discipline studying how machines can infer the semantics of some information object, like a document\(^2\), so that they can approximate its relevance to some human or automatic request. The best known application of information retrieval is search engines.

Intuitively, one may expect that automatically inferring text semantics would require complex linguistic representations, expressive enough to capture as many facets of meaning in language as possible. Few such approaches have been presented. However, their high complexity is a serious challenge to both computational efficiency and human interpretation of the underlying processes. Consequently, the majority of information retrieval approaches today adopt some form of the assumption of independence when processing text. This allows to easily represent text as the multiset (or bag) of its words, disregarding grammar, word order, and in general any relation binding words together, but keeping multiplicity. These methods are collectively known as *bag of words* approaches\(^3\).

As old as bag of words approaches may be (they can be traced at least as far back as Zellig S. Harris’ 1954 article on Distributional Structure \[116\]), equally old is the criticism against them. Empirically, it is easy to see that important semantic distinctions, for instance the difference in meaning between the

\(^2\) In information retrieval terminology, *document* refers to any information object, e.g. text of any type or format (pdf, html, tweet, book, product review, etc.).

\(^3\) The divide between linguistic rigour and computational performance was famously captured by Frederick Jelinek at IBM in the 1980s, who anecdotally said: “every time we fire a linguist, system performance goes up” [paraphrased].
proposition *John loves Mary* and the proposition *Mary loves John*, cannot be captured by bag of words approaches. Nevertheless, despite the long and well argued criticism against these approaches, they continue to be the main paradigm in text processing because the benefits they yield (ease of computation, scalability, interpretability of results, robust processing) outrank their disadvantages (semantic inaccuracy, restricted analytical scope).

This dissertation presents:

(i) a series of studies showing that several benefits of bag of words approaches can be preserved when representing aspects of semantic dependence in principled, non-complex ways;

(ii) reflections on why the current *modus vivendi* of semantic processing in information retrieval is inadequate and should be revised;

(iii) recommendations on designing a new *modus operandi* that bridges the two extremes of shallow versus deep semantic processing, leading to more accurate and more expressive information retrieval inferences.

The common underlying objective in the body of work included in this dissertation is to model the dependence of textual constituents on three different levels of semantic analysis: *lexical, discourse*, and *cognitive*.

Lexical level. The units of analysis in lexical semantics are words.

Discourse level. The units of analysis in discourse semantics are sentences.

Cognitive level. The units of analysis in cognitive semantics are concepts.

For each of the above three levels, the type and strength of the dependence conjoining the constituent parts of text is examined in a principled manner, and different models are developed for processing the corresponding *semantic catenae* (of words, sentences, or concepts) in the context of information retrieval. These models capture part of the information loss that takes place when reasoning about text computationally by dismantling it into individual words, sentences, or concept representations. Collectively, these models replace the assumption of independence with non-complex representations of lexical, discourse, and cognitive dependence, using principles from graph theory, probability theory, logic and statistics.

A total of nine models of semantic dependence for information retrieval are presented in this dissertation (outlined in Table 1). The results contributed and conclusions drawn by each model are discussed next, separately for lexical, discourse and cognitive semantics.
3 Contributions to Lexical Semantics

Three models of lexical dependence (referred to as Model I, II, and III) are presented as Chapters 2, 3, and 4 of this dissertation. All three models are unsupervised (they incur no added computational cost for training on pre-annotated data). Each model uses principles of different formalisms: graph theory, probability, and statistics.

3.1 Model I: Unsupervised graph theoretic lexical dependence [33].

The essential idea of lexical semantics is that the meaning of a word correlates with the semantic entailments associated to this word. Following this, instead of assuming that words occur independently in text, Model I represents word dependencies as graph edges that connect vertices denoting unique words (see Figure 1 for an illustration). More simply, instead of representing text as a bag of words, text is represented as a graph of interconnected words. Analogies are then made between different aspects of word dependence and aspects of the graph’s topology (such as clustering or average path length).

Based on this graph representation of text, Model I contributes a novel term weighting approach for information retrieval. In addition to its theoretical novelty, Model I also makes the following two advances:

On an algorithmic level it is not subject to document length bias (because it replaces the currently dominating frequentist practice of word counts by vertex connectivity). Practically this makes the need for additional document length normalisation obsolete (unlike all other term weighting approaches).

On a theoretical level it allows aspects of lexical dependence, such as grammatical type, modification, or non-adjacent transition, to be seamlessly in-

Tab. 1: The nine models of semantic dependence presented in this dissertation. The numbers inside square brackets point to the bibliographic references of the articles where each model was published.

METHOD	SEMANTIC LEVEL		
	lexical	discourse	cognitive
graph theory	Model I [33]	Models VI-VII [203, 259]	
probabilistic	Model II [202]	Models IV-V [196, 259]	
statistics	Model III [193]		
logic		Models VIII-IX [192, 200, 195]	

4 Term and word are used interchangeably in information retrieval and also in this dissertation.
Compatibility of systems of linear constraints over the set of natural numbers. Criteria of compatibility of a system of linear Diophantine equations, strict inequalities, and nonstrict inequations are considered.

Fig. 1: [Model I]. Graph representation of the above sample text: vertices denote words, edges denote co-occurrence within a fixed context window, and directionality denotes grammatical modification [33].

corporated into term weighting (because they are formulated as weights, labels or direction in the graph edges). Practically, this modularity allows generating instances of term weighting methods that capture different aspects of lexical dependence in the approximation of a term’s semantic salience. This has not been possible in any other term weighting approach.

The reliability and validity of Model I is supported by thorough experimental evaluation in two information retrieval tasks (ad hoc search and web blog search), using large-scale state of the art benchmark datasets (28.9GB in total), and measuring effectiveness (precision, binary preference), efficiency (overhead in milliseconds, running time of iterations), and parameter sensitivity against competitive state of the art baselines.

3.2 Models II & III: Unsupervised probabilistic & statistical lexical dependence [193, 202]

The most common approach for approximating the semantic dependence between words in information retrieval is through lexical frequency statistics of

5 Throughout this chapter, state of the art refers to the year the corresponding article was first published.
their co-occurrence. The underlying rationale is that:

- If words co-occur often enough in some corpus, they are semantically dependent;
- The more often words co-occur, the more semantically dependent they are.

Model II reveals (for the first time in information retrieval) that this rationale is not always correct: the frequency of word co-occurrence can be separate from the strength of semantic dependence. Even though the former can be indicative to some extent of the latter, their relation is not symmetric. This miscalculation of semantic dependence in words is corrected by two models (one probabilistic, one statistical), which distinguish between frequency of co-occurrence and strength of semantic dependence as follows.

Model II represents word pairs as probability distributions of their distributional semantics (co-occurring words within fixed context windows extracted from corpora). These probability distributions are generated for word pairs and for perturbations of these pairs where one word at a time is replaced by its synonym. This is a modern implementation of Leibniz’ Principle of Intersubstitutivity (salva veritate) to detect irregular composition of meaning, which posits that words which can be substituted for one another without altering the truth of any statement are the same (eadem) or coincident (coincidentia). The divergence between the distribution of the original word pair and the distribution of its perturbation (illustrated as the Kullback-Leibler Divergence of \(p(x) \) and \(q(x) \) in Figure 2) is found by Model II to be an accurate approximation of the semantic strength of the words of the original word pair.

In addition to the theoretical novelty of Model II, the significance of its findings to information retrieval can be summarised as follows:

On a conceptual level it points out a significant error in the estimation of semantic strength between words that has gone so far undetected in this very well studied area of information retrieval (the relevant literature is outlined in Section 6).

On an algorithmic level it proposes a non-complex solution to this error that yields considerable gains in retrieval accuracy and that has increased interpretability.

6. The Distributional Hypothesis posits that words used or occurring in the same contexts tend to purport similar meanings. John Rupert Firth famously captured this as: “you shall know a word by the company it keeps.”

7. Image by Nathan Mundhenk. Source: https://upload.wikimedia.org/wikipedia/en/a/a8/KL-Gauss-Example.png. Licensed under Creative Commons: CC BY-SA 3.0.

8. Interpretability refers to how easy it is for humans to understand a process and its resulting outcome. The more abstract the features used, and the higher the dimension of spaces represented, the harder it is for humans to readily comprehend a process and explain its output.
Fig. 2: [Model II]. Illustration of Kullback-Leibler divergence (D_{KL}).

Model III follows the same rationale as Model II, but uses a different representation. Word pairs are represented not as probability distributions, but as lists of the term weights of their distributional semantics. These lists are ranked by term weight, and the distance or correlation between these lists is found to be an accurate approximation of the semantic strength between the words. The novelty of this approach is that, instead of considering all terms forming the distributional semantics of the input phrase, it ranks these terms by their contribution to the text semantics (approximated by their term weight) and considers only the most discriminative terms. This allows for more dense and discriminative representations.

In addition to the theoretical novelty of Model III, the significance of its findings can be summarised as follows:

On a theoretical level it proposes a simple, unsupervised solution to a problem that has been primarily addressed in increasingly complex ways (more recently deep learning). Any appropriate term weighting method and correlation or distance metric can be plugged into Model III, allowing for different aspects of term salience (and its ranking) to be considered in the computation of lexical dependence.

On an empirical level it yields the highest performance reported up to the date of publication for this task and benchmarks, outperforming the previous highly tuned supervised deep learning state of the art, while also having high interpretability (elements of which are exemplified in Figure 3 for the Pearson correlation coefficient).

Model II is a novel contribution to information retrieval. Model III is a novel contribution to natural language processing.

The reliability and validity of Models II & III is supported by thorough experimental evaluation. Model II is evaluated in two information retrieval tasks (ad hoc search and web search), using large-scale state of the art benchmark.
datasets (502.1GB in total), and measuring effectiveness (precision, normalised discounted cumulative gain) both on the whole dataset and also separately per query length. Model III is evaluated on the largest manually annotated compositionality dataset publicly available in 2016 (1048 phrases) \[89\] against competitive state of the art baselines.

4 Contributions to Discourse Semantics

Four models of discourse dependence (referred to as Models IV, V, VI, and VII) are presented in Chapters 5, 6, and 7 of this dissertation. All four models are unsupervised (hence they incur no added computational cost for tuning). Models IV & V are probabilistic, while Models VI & VII use principles from graph theory.

4.1 Models IV & V: Unsupervised probabilistic discourse dependence \([196, 259]\)

The essential idea of discourse semantics is that the meaning of a sentence is bounded by anaphoric elements in that sentence pointing to preceding or succeeding sentences (or elements thereof) that are collectively needed to interpret the discourse context. Following this, instead of assuming that text is an unordered set of sentences, Models IV & V represent the relations and transition between sentences in text when processing text semantics. Two different probabilistic models of discourse dependence are presented.

Model IV \([196]\) approximates the retrieval probability of different rhetorical relations (defined by Rhetorical Structure Theory \([214]\) and exemplified in Table 2) between sentences in text, and creates a novel ranking model that includes this probability in its computation. This retrieval probability of different rhetorical relations is found to be highly discriminative of topical relevance.

In addition to the theoretical novelty of Model IV, the significance of its findings can be summarised as follows:

On a theoretical level it proposes a novel ranking model that allows making inferences about which part of text is topically relevant to a query and why, as opposed to assuming that all parts in text are equally topically relevant to some query.
Tab. 2: Examples of the rhetorical relations (in bold italics) inferred as part of Model IV

Rhetorical Relation	Examples
attribution	... the islands now known as the Gilbert Islands were settled by Austronesian-speaking people ...
background	... many whites had left the country when Kenyatta divided their land among blacks ...
cause-result	... I plugged “wives” into the search box and came up with the following results ...
comparison	... so for humans, it is stronger than coloured to frustrate these unexpected numbers ...
condition	... Conditional money based upon care for the pet ...
consequence	... voltage drop with the cruise control switch could cause erratic cruise control operation ...
contrast	... Although it started out as a research project, the ARPANET quickly developed into ...
elaboration	... order accutane no prescription required ...
enablement	... The project will also offer exercise programs and make eye care services accessible ...
evaluation	... such advances will be reflected in an ever-greater proportion of grade A recommendations ...
explanation	... the concept called as “evolutionary developmental biology” or shortly “evo-devo” ...
manner-means	... Fill current path using even-odd rule, then paint the path ...
summary	... Safety Last, Girl Shy, Hot Water, The Kid Brother, Speedy (all with lively orchestral scores) ...
temporal	... Take time out before you start writing ...
topic-comment	... Director Mark Smith expressed support for greyhound adoption ...
Fig. 4: [Model V]. Catenae of discourse entities (matrix rows) of the sample text shown above (example reproduced from [19]). s,o,x denote the syntactic role of subject, object, or other.

1 [The Justice Department]s is conducting an [anti-trust trial]o against [Microsoft corp.]s with [evidence]x that [the company]s is increasingly attempting to crush [competitors]o.
2 [Microsoft]o is accused of trying to forcefully buy into [markets]x where [its own products]s are not competitive enough to unseat [established brands]o.
3 [The case]s revolves around [evidence]o of [Microsoft]s aggressively pressing [Netscape]o into merging [browser software]o.
4 [Microsoft]s claims [its tactics]s are commonplace and good economically.
5 [The government]s may file [a civil suit]o ruling that [conspiracy]s to curb [competition]o through [collusion]x is [a violation of the Sherman Act]o.
6 [Microsoft]s continues to show [increased earnings]o despite [the trial]x.

On an empirical level it yields considerable gains in retrieval performance, while also having high interpretability.

Model V [259] represents the relations between core syntactic entities of different sentences in text as catenae of salient discourse entities (see Figure 4 for an example). Analogies are then made between the entropy of these catenae and the amount of semantic disorder in text. Entropy is found to be an accurate approximation of text coherence, and further, text coherence is found to be highly discriminative of topical relevance.

In addition to the theoretical novelty of this Model V, the significance of its findings can be summarised as follows:

On a theoretical level it proposes the first ever coherence ranking model for information retrieval, allowing to make inferences about which part of text is topically relevant to a query as a function of both its topical relevance and its coherence with respect to the rest of the text.

The reliability and validity of Models IV & V is supported by thorough experimental evaluation. Model IV is evaluated on ad hoc information retrieval, using large-scale state of the art benchmark datasets (500GB in total), and measuring effectiveness (precision, binary preference, normalised discounted cumulative gain) both on the whole dataset and also separately per query length,
against competitive state of the art baselines. Model V is evaluated both on text reordering (standard task in coherence modelling) and also on \textit{ad hoc} information retrieval. State of the art benchmark datasets are used for both text reordering and retrieval (500GB in total), and effectiveness (accuracy, mean reciprocal rank, expected reciprocal rank) is measured against state of the art baselines.

Models IV & V contribute novel, non-complex, unsupervised methods of processing two different aspects of discourse semantics in information retrieval: rhetorical relations between sentences, and entity transition across sentences for text coherence. Prior to this work, none of these two aspects had been integrated into information retrieval in non \textit{ad hoc} ways. Model IV is a novel contribution to information retrieval. Model V is a novel contribution to both natural language processing and information retrieval.

4.2 Models VI & VII: Unsupervised graph theoretic discourse dependence [203, 259]

Similarly to Models IV & V, Models VI & VII represent the relations and transition between sentences in text when processing text semantics. However, unlike Models IV & V (that are probabilistic), Models VI & VII use graph theory.

Two different graph theoretic models of sentence dependence are presented.

Model VI [259] represents the relations between different discourse entities across sentences in text as bipartite graphs whose vertex sets represent sentences and entities respectively. Analogies are then made between different aspects of sentence dependence and aspects of the topology of this bipartite graph when projected onto a one-mode graph\footnote{One-mode projection is a graph representation of the relation structure among only one of the two set of vertices of a bipartite graph.} (see Figure 5 for an illustration).

Model VII [203] uses the same representation of entities and sentences as a bipartite graph, but makes inferences about discourse semantics directly on the bipartite graph instead of its one-mode projections (this is significantly less trivial).

Both Models VI & VII are shown to be successful when ranking documents
in information retrieval with respect to both their topical relevance and their coherence.

In addition to the theoretical novelty of these models, the significance of their findings can be summarised as follows:

On a theoretical level they propose novel unsupervised modelling of both global and local text coherence\(^{11}\) (very few exist).

On a theoretical level Model VII proposes novel graph metrics on the bipartite graph without one-mode projection (very few exist in general, and none exist for coherence modelling).

On an empirical level both models yield considerable gains in both coherence (Model VII in particular yields the highest accuracy reported at the time of publication, outperforming the previous highly tuned state of the art) and retrieval performance, while also having high interpretability.

The reliability and validity of Models VI & VII is supported by thorough experimental evaluation both in text reordering (standard task in coherence modeling) and also in ad hoc information retrieval. State of the art benchmark datasets are used for both text reordering and retrieval (500GB in total), and effectiveness (accuracy, mean reciprocal rank, expected reciprocal rank) is measured against state of the art baselines. Models VI & VII contribute non-complex, unsupervised ways of processing discourse flow in text, which are novel to both natural language processing and information retrieval.

5 Contributions to Cognitive Semantics

Two models of cognitive dependence (referred to as Models VIII and IX) are presented as Chapters 8, 9, and 10 of this dissertation. Both models use Sub-

\(^{11}\) Local versus global coherence refers to the well connectedness of adjacent versus remote text spans.
The essential idea of cognitive semantics is that language is part of a more general human cognitive ability, which describes the world as people conceive it. Different people may have different representations of the semantics of the same object. Modelling these representations is central to information retrieval, where a major challenge is to devise expressive methods for mapping written representations of meaning to their best fitting semantic concepts.

Models VIII & IX formally represent different concept representations of query and document semantics, and combine these representations in highly tractable and expressive ways that account for the different types and degrees of dependence between representations (graphically illustrated in Figures 6 & 7). Based on this, Model VIII contributes a novel query difficulty estimation approach, and Model IX contributes a novel polyrepresentation approach for information retrieval. Both models are novel to information retrieval.

In addition to the theoretical novelty of these models, the significance of their findings can be summarised as follows:

On a theoretical level they present a rich calculus for expressing impact, bias, and directionality between cognitive representations. This is the first mathematical expression of the Principle of Polyrepresentation.

12 Subjective logic is a type of probabilistic logic that explicitly takes uncertainty and source trust into account [143].
13 The Principle of Polyrepresentation [138] posits that information retrieval effectiveness may improve through the consideration of multiple and diverse representations of information objects or processes.
14 together with the Quantum Model, presented in Section 6.
On a theoretical level they present mathematical means for quantifying the degree of uncertainty in probability estimates of concept representations that are used in information retrieval. Practically, this allows semantic inferences to be made even when the input arguments may be fraught with uncertainty.

The reliability and validity of Models VIII & IX is supported by thorough experimental evaluation in ad hoc information retrieval using rich human-assessed benchmark data and measuring different aspects of effectiveness (precision, normalised discounted cumulative gain, binary preference, mean reciprocal rank) on standard settings.

Collectively Models I - IX show that, in the analytical spectrum of deep (complex) versus shallow (naive) processing, there is a lot to be gained both empirically and theoretically, from a middle ground of principled, yet non-complex formalisations of text semantics.

6 Research Landscape of Semantic Dependence in Information Retrieval

This section contextualises the findings presented above by contributing a broad, comprehensive and up to date overview of the state of the art and major trends of semantic dependence in information retrieval. This overview includes the literature covered in Chapters 2 - 10, and further extends it with more recent advances. Details on the precise comparison and evaluation of the results presented in this dissertation to prior work are provided in the individual articles.

6.1 Lexical Dependence

Broadly speaking, efforts to model dependence on the level of lexical semantics (term dependence), also known as term co-occurrence, adjacency and lexical affinities in information retrieval, typically model phrases found in queries and/or documents, motivated by the intuition to consider as more relevant those documents in which terms appear in the same order and patterns as they appear in the query, and as less relevant those documents in which terms are separated. Lexical dependence is approximated using either statistical or linguistic information.

Research in this area began with the early work on statistical term associations and syntax-based approaches, continuing with work on probabilistic term dependence models, syntactic methods, and statistical approaches. From the mid-1990s onwards, research focused on hybrid methods combining syntactic and statistical approaches of phrase processing, phrase-based enhancement of the indexed term representations, and phrase-based term
weighting [241, 255, 305]. This was succeeded by a focus on statistical methods, primarily using language modelling [28, 219, 230, 240, 298, 302] but not exclusively [209], while attention has also been given to heuristics [309] and formalisations of term position [212].

A temporal listing of the major contributions in lexical dependence for information retrieval can be seen in Table 3. Efforts in this area intensified in the late 1990s, and peaked again relatively recently (see Figure 8), motivated, among others, by the often stated need to refine the state of semantic processing in information retrieval. However, despite this long and rich literature, no prior work on lexical dependence in information retrieval has contributed solutions to lexical dependence that account for semantic aspects such as modification and transitivity (contributed by Model I), or semantic non-compositionality (thus correcting the error of equating frequency to semantic strength) (contributed by Models II & III).

6.2 Discourse Dependence

Unlike the long-spanning and rich literature of lexical dependence in information retrieval, discourse dependence has been largely ignored in information retrieval prior to the date of publication of the articles in this dissertation. There was no prior work on automatically inferred discourse transitions for information retrieval, neither for rhetorical relations (contributed by Model IV), nor for coherence (contributed by Models V & VI). In that sense, Models IV – VI contribute not only improved semantic processing, but also completely new ways of thinking about text semantics in information retrieval.

Major prior work on discourse semantics outside information retrieval is displayed in Table 3. As Figure 8 graphically shows, advances in this area started emerging in the 1990s, peaked around 2010, and further again more recently. Most of the very recent work uses deep learning (corresponding to its emergence in recent years in Figure 9).

These trends support the reasoning put forward in this dissertation that discourse semantics should not be ignored. Efforts to integrate discourse semantics to information retrieval can benefit from the significant progress made in the field of natural language processing. This line of research has the potential to raise the bar of semantic inferences in search engines, that is required to push information retrieval further beyond searching, in the direction of simulating human intelligence (artificial intelligence - AI).

6.3 Cognitive Dependence

A common starting point when reasoning about cognitive dependence in information retrieval is the Principle of Polyrepresentation [136], which posits that the combination of various different cognitive representations of documents and information needs is likely to reveal cognitive overlaps, the semantics of which

16 Prior to the first publication of the articles included in the dissertation.
Fig. 8: Number of publications on lexical, discourse, and cognitive dependence in information retrieval (y axis), versus publication year (x axis). The numbers of publications are smoothed by moving 3-year averages.

Fig. 9: Number of publications on the major paradigms used to model semantic dependence in information retrieval (y axis), versus publication year (x axis). The numbers of publications are smoothed by moving 3-year averages.
are discriminative indicators of topical relevance. Following the formulation of this principle in the mid-1990s, research in this area has been gaining traction (see Table 3), with a recent peak around 2010 (see Figure 8). This peak corresponds to a considerable advance in the field: the mathematical formulation of the (up until then) solely conceptual formalisation of the Principle of Polyrepresentation. Specifically, two very different mathematical formulations of the principle were presented in the same year and in the proceedings of the same conference: the Quantum model of Frommholz et al. [98], and Model IX [200] [195] of this dissertation.

In the Quantum model, cognitive representations are modelled in Hilbert spaces\(^{17}\) and combined by means of their tensor products. This differs from Model IX, where cognitive representations are modelled as subjective beliefs and combined using logical operators of Subjective Logic. Model IX is significantly more efficient and less complex than the Quantum model.

Overall, the landscape of research in cognitive dependence for information retrieval is different to that of lexical dependence and discourse dependence, in the sense that it is more uniform, characterised mainly by fewer, smaller peaks and relatively steady research interest throughout the years (see Figure 8). Table 3 highlights the major research in cognitive dependence for information retrieval.

\(^{17}\) **Hilbert spaces** are a generalisation of Euclidean space to spaces with any finite or infinite number of dimensions.
Tab. 3: Classification of related work on (a) lexical, (b) discourse, and (c) cognitive dependence in information retrieval (second column), according to the approach (third column) used to model dependence. The rows are sorted increasingly by year of publication.
ARTICLE	TYPE OF Semantic DependeNce	TYPE OF APPROACH
Baxendale 1958	lexical: term associations	linguistic analysis
		heuristics
Stiles 1961	lexical: term associations	heuristics
Doyle 1962	lexical: term associations	graphs/networks
Guiliano & Jones 1963	lexical: term associations	graphs/networks
		heuristics
Salton 1966	lexical: term associations	linguistic analysis
		heuristics
Lesk 1969	lexical: term associations	vector space
Earl 1972	lexical: term associations	linguistic analysis
		heuristics
Halliday & Hasan 1976	lexical: term associations	graphs/networks
van Rijsbergen 1977	lexical: term associations	heuristics
Harper & van Rijsbergen 1978	lexical: term associations	heuristics
Hopfield 1982	cognitive: document &	graphs/networks
	query associations	
Salton et al. 1982	lexical: term dependence	probabilistic
Dillon & Gray 1983	lexical: term associations	heuristics
Yu et al. 1983	lexical: term associations	probabilistic
Metzler et al. 1984	lexical: term associations	heuristics
Sowa 1984	cognitive: concept	graphs/networks
	associations	
Smith & Devine 1985	lexical: term associations	heuristics
Hopfield 1986	cognitive: document &	graphs/networks
	query associations	
van Rijsbergen 1986	cognitive: document &	logic
	query associations	
Smeaton 1986	lexical: term associations	heuristics
Huang & Lippmann 1987	cognitive: document relations	graphs/networks
Mann & Thompson 1988	discourse: rhetorical	heuristics
	relations	
Pearl 1988	cognitive: document &	graphs/networks
	query associations	probabilistic
Saracevic & Kantor 1988	cognitive: document &	heuristics
	query associations	
Smeaton & van Rijsbergen 1988	lexical: term associations	heuristics
Belew 1989	cognitive: document &	graphs/networks
	query associations	
Fagan 1989	lexical: term associations	heuristics
Kwok 1989	cognitive: document &	graphs/networks
	query associations	
Dozkocs et al. 1990	cognitive: document &	graphs/networks
	query associations	
Lewis & Croft 1990	lexical: term associations	heuristics
Veronis & Ide 1990	lexical: term associations	graphs/networks

Continued on next page
Table 3 – continued from previous page

ARTICLE	TYPE OF SEMANTIC DEPENDENCE	TYPE OF APPROACH
Devlin 1991 [63]	cognitive: document & query associations	logic
Hoey 1991 [125]	lexical & discourse: document cohesion	graphs/networks
Lin et al. 1991 [130]	cognitive: document relations	graphs/networks
Macleod & Robertson 1991 [213]	cognitive: document associations	graphs/networks
Sinclair 1991 [288]	lexical: term associations	graphs/networks
Turtle & Croft 1991 [179]	cognitive: document relevance	graphs/networks
Wilkinson & Hingston 1991 [334]	lexical: related terms	graphs/networks
Bruza & van der Weide 1992 [40]	cognitive: document & query associations	logic
Chevallet 1992 [45]	cognitive: document & query associations	logic
Chiaramella & Chevallet 1992 [19]	cognitive: document & query associations	logic
Ingwersen 1992 [134]	cognitive: document & query associations	heuristics
Lewis 1992 [179]	lexical: term associations	heuristics
Nie 1992 [244]	cognitive: document & query associations	logic
Belkin et al. 1993 [23]	cognitive: document & query associations	heuristics
Kozima 1993 [169]	lexical: term associations	graphs/networks
Meghini et al. 1993 [212]	cognitive: document & query associations	logic
Ingwersen 1994 [135]	cognitive: document & query associations	heuristics
Logan et al. 1994 [207]	cognitive: document & query associations	logic
Losse 1994 [209]	lexical: term associations	probabilistic
Crestani & van Rijsbergen 1995[67]	cognitive: document & query associations	logic
Groz et al. 1995 [102]	discourse: document coherence	heuristics
Muller & Kutschkeukes 1995 [235]	cognitive: document & query associations	logic
Evans & Zhai 1996 [87]	lexical: term associations	heuristics
Huibers et al. 1996 [131]	cognitive: document & query associations	logic
Ingwersen 1996 [130]	cognitive: document & query associations	heuristics
Nie et al. 1996 [244]	cognitive: document & query associations	logic
Pederson et al. 1997 [255]	lexical: term associations	heuristics
Strzalkowski & Lin 1997 [305]	lexical: term associations	heuristics
Tong et al. 1997 [315]	lexical: term associations	heuristics
Crestani & van Rijsbergen 1998[59]	cognitive: document & query associations	graphs/networks
Foltz et al. 1998 [90]	discourse: document coherence	heuristics

Continued on next page
ARTICLE	TYPE OF SEMANTIC DEPENDENCE	TYPE OF APPROACH
Lalmas 1998	cognitive: document & query associations	logic
van Rijsbergen et al. 1998	cognitive: document & query associations	logic
Ingwersen 1999	cognitive: document & query associations	heuristics
Lin 1999	lexical: term dependence	heuristics probabilistic
Song & Croft 1999	lexical: term dependence	probabilistic
Narita & Ogawa 2000	lexical: term associations	heuristics
Shin & Stach 2000	discourse: document coherence	heuristics
Zhu & Gauch 2000	discourse: document quality	heuristics
Dorogovtsev & Mendes 2001	lexical: term associations	graphs/networks
Ferrer i Cancho & Sole 2001	lexical: term associations	graphs/networks
Fujita 2001	lexical: term associations	linguistic analysis heuristics
Kibble 2001	discourse: document coherence	heuristics
Lin 2001	lexical: term associations	heuristics
Losada & Barreiro 2001	cognitive: document & query associations	logic
Mikk 2001	discourse: document quality	heuristics
Barzilay et al. 2002	discourse: document coherence	graphs/networks
Kehler 2002	discourse: document heuristics	heuristics
Motter et al. 2002	discourse, cognitive: term & concept associations	graphs/networks
Nallapati & Allan 2002	lexical: term associations	graphs/networks probabilistic
Sigman & Cecchi 2002	lexical: term associations	graphs/networks
Teufel & Moens 2002	discourse: rhetorical relations	heuristics
Widdows & Dorrow 2002	lexical: term associations	graphs/networks
Baldwin et al. 2003	lexical: term compositionality	vector space
Bordag et al. 2003	lexical: term associations	graphs/networks
Lapata 2003	discourse: document coherence	probabilistic heuristics
McCarthy et al. 2003	lexical: phrase compositionality	heuristics
Morato et al. 2003	discourse: rhetorical relations	heuristics
Reddy et al. 2003	lexical: term compositionality	vector space
Srikanth & Srihari 2003	lexical: term dependence	probabilistic
Barzilay & Lee 2004	discourse: topic order	probabilistic
Blondel et al. 2004	lexical: term associations	graphs/networks
Erkan & Radev 2004	lexical: term associations	graphs/networks
Ferrer i Cancho et al. 2004	lexical: term associations	graphs/networks
He & Ounis 2004	lexical: query difficulty	heuristics
Ho & Fairon 2004	lexical: term associations	graphs/networks
Kibble & Power 2004	discourse: document coherence	linguistic trees heuristics
Mihalcea & Tarau 2004	lexical: term associations	graphs/networks
Milo et al. 2004	lexical: term associations	graphs/networks
Miltsakaki & Kukich 2004	discourse: document coherence	heuristics

Continued on next page
Table 3 — continued from previous page

ARTICLE	TYPE OF SEMANTIC DEPENDENCE	TYPE OF APPROACH	
Pang & Lee 2004 [259]	discourse:	heuristics	
Pedersen et al. 2004 [255]	lexical: term associations	graphs/networks	
Poesio et al. 2004 [260]	discourse: document coherence	heuristics	
van Rijsbergen 2004 [221]	cognitive: document & query	quantum	
Tomlinson 2004 [313]	lexical: query difficulty	heuristics	
Tsikrika & Lalmas 2004 [171]	discourse: document relevance	graphs/networks	
Caldeira et al. 2005 [12]	lexical: term associations	graphs/networks	
Ferrer i Cancho 2005 [50]	discourse: syntactic	associations	
Larsen 2005 [168]	cognitive: document	heuristics	
Larsen & Ingwersen 2005 [100]	cognitive: document	query associations	
Medeiros Soares et al. 2005	lexical: term associations	graphs/networks	
Metzler & Croft 2005 [210]	lexical: term associations	graphs/networks	
Mishne et al. 2005 [230]	lexical: term associations	heuristics	
Mothe & Tanguy 2005 [235]	lexical: query difficulty	heuristics	
Plachouras & Ounis 2005 [263]	discourse: document relevance	logic	
Popescu & Etzioni 2005 [266]	lexical: phrase sentiment	heuristics	
Reyna & Brainerd 2005 [273]	lexical: term associations	graphs/networks	
Steyvers & Tenenbaum 2005	discourse, cognitive: term &	concept associations	graphs/networks
Venkatapathy & Joshi 2005	lexical: term compositionality	vector space	
Vitevitch & Rodriguez 2005	lexical & cognitive:	term associations	
	term associations	graphs/networks	
Wiebe et al. 2005 [333]	discourse: document sentiment	heuristics	
Wilson et al. 2005 [334]	discourse: document subjectivity	heuristics	
Yom-Tov et al. 2005 [341]	lexical: query difficulty	heuristics	
Zhou & Croft 2005 [149]	discourse: document quality	heuristics	
Fung & Ngai 2006 [100]	discourse: topic cohesion	probabilistic	
Gamon 2006 [101]	lexical: term associations	graphs/networks	
Goldberg & Zhu 2006 [100]	discourse: document sentiment	graphs/networks	
Hassan & Banea 2006 [113]	lexical: term associations	graphs/networks	
Karamanis 2006 [147]	discourse: document coherence	probabilistic	
Katz & Giesbrecht 2006 [150]	lexical: term compositionality	vector space	
Larsen et al. 2006 [170]	cognitive: document	heuristics	
	query associations	graphs/networks	
Leicht et al. 2006 [177]	lexical: term associations	graphs/networks	
Masucci & Rodgers 2006 [215]	lexical: term associations	graphs/networks	
Muller et al. 2006 [239]	lexical: term associations	graphs/networks	
Nastase et al. 2006 [242]	lexical: noun associations	graphs/networks	
Shanahan et al. 2006 [263]	discourse: document aspect	heuristics	
Soricut & Marcu 2006 [300]	discourse: document coherence	graphs/networks	
Wang et al. 2006 [328]	discourse: rhetorical types	graphs/networks	

Continued on next page
Table 3 – continued from previous page

ARTICLE	TYPE OF SEMANTIC DEPENDENCE	TYPE OF APPROACH
Antiqueira et al. 2007 [165]	discourse: author attribution graphs/networks	
Blanco & Lioma 2007 [31]	lexical: term associations graphs/networks	
Chen et al. 2007 [44]	discourse: document structure heuristics	
Choudhury et al. 2007 [51]	lexical: term associations graphs/networks	
Cook et al. 2007 [51]	lexical: term associations linguistics	
Esuli & Sebastiani 2007 [85]	lexical: term associations graphs/networks	
Ferrer i Cancho et al. 2007 [91]	lexical: term associations graphs/networks	
Filippova & Strube 2007 [94]	discourse: document coherence heuristics	
Hughes & Ramage 2007 [130]	lexical: term associations graphs/networks	
Lioma & Ounis 2007 [201]	lexical: term quality heuristics	
Minkov & Cohen 2008 [229]	lexical: term associations graphs/networks	
Oussalah et al. 2008 [248]	cognitive: document & query associations logic	
Plaza et al. 2008 [264]	lexical: term associations graphs/networks	
Radhouni & Falquet 2008 [268]	cognitive: document & query associations logic	
Shi et al. 2008 [281]	discourse: document & query associations logic	
Simou et al. 2008 [287]	cognitive: document & query associations logic	
Skov et al. 2008 [289]	cognitive: document & query associations heuristics	
Zuccon et al. 2008 [352]	cognitive: document & query associations logic	
Agirre & Sorroa 2009 [7]	lexical: term associations graphs/networks	
Antiqueira et al. 2009 [11]	lexical: term associations graphs/networks	
Banik 2009 [17]	discourse: document coherence heuristics	
Bicknell & Levy 2009 [20]	discourse: document coherence probabilistic	

Continued on next page
Table 3 – continued from previous page

ARTICLE	TYPE OF SEMANTIC DEPENDENCE	TYPE OF APPROACH
Chen et al. 2009	discourse: document coherence	probabilistic
Crestani 2009	cognitive: document & query associations	logic
Diriye et al. 2009	cognitive: document & query associations	heuristics
Juffinger et al. 2009	discourse: document credibility	heuristics
Karamanis et al. 2009	discourse: document coherence	probabilistic heuristics
Korkontzelos & Manandhar 2009	lexical: term associations	graphs/networks
Larsen et al. 2009	cognitive: document & query associations	heuristics
Lecce & Amato 2009	cognitive: document & query associations	logic
Lioma et al. 2009	cognitive: document & query associations	logic
Lv & Zhai 2009	lexical: term association	probabilistic heuristics
Park et al. 2009	discourse: document bias	heuristics
Ramage et al. 2009	lexical: term associations	graphs/networks
Sinha et al. 2009	lexical: term associations	graphs/networks
Somasundaran et al. 2009	discourse: discourse relations & opinion polarity	classification heuristics
Somasundaran et al. 2009	discourse: discourse relations & opinion polarity	classification heuristics
du Verle & Prendinger 2009	discourse: rhetorical relations	vector space
Wittek et al. 2009	lexical: term associations	heuristics
Yu et al. 2009	discourse: rhetorical relations	heuristics
Bendersky et al. 2010	lexical: term associations	graphs/networks probabilistic
Burstein et al. 2010	discourse: document coherence	probabilistic
Cheung & Penn 2010	discourse: document coherence	heuristics
Clarke & Lapata 2010	discourse: rhetorical relations	heuristics
Efron & Winget 2010	cognitive: document & query associations	heuristics
Ennals et al. 2010	discourse: document controversy	heuristics
Frommholz et al. 2010	cognitive: document & query associations	quantum
Lex et al. 2010	discourse: document objectivity	heuristics
Lipka & Stein 2010	discourse: document quality	heuristics
Mitchell & Lapata 2010	lexical: term compositionality	vector space
Suwandelatna & Perera 2010	discourse: topic identification	graphs/networks
Yessenalina et al. 2010	discourse: document subjectivity	heuristics classification
Bendersky et al. 2011	discourse: document quality	heuristics
Celikyilmaz & Hakkani-Tur 2011	discourse: document coherence	probabilistic heuristics
Elsner & Charniak 2011	discourse: document coherence	probabilistic heuristics
Elsner & Charniak 2011	discourse: document coherence	probabilistic heuristics

Continued on next page
ARTICLE	TYPE OF SEMANTIC DEPENDENCE	TYPE OF APPROACH
Ghosh et al. 2011 [104]	discourse: argument segmentation	linguistic analysis classification
Heerschop et al. 2011 [120]	discourse: discourse relations opinion polarity	heuristics
Herzig et al. 2011 [122]	discourse: document bias	heuristics
Lin et al. 2011 [187]	discourse: document coherence	classification heuristics
Lioma et al. 2011 [194]	lexical: term associations	probabilistic heuristics
Michelbacher et al. 2011 [221]	lexical: term compositionality	classification heuristics
Reddy et al. 2011 [270]	lexical: term compositionality vector space	
Schwarz & Morris 2011 [281]	discourse: document credibility	heuristics
Socher et al. 2011 [295]	lexical: term compositionality deep learning	
Wang et al. 2011 [329]	discourse: discourse relations	heuristics
Wiebe & Riloff 2011 [332]	discourse: document subjectivity	classification heuristics
Zhang 2011 [346]	discourse: document coherence graphs/networks	
Zhou et al. 2011 [348]	discourse: rhetorical relations & document sentiment	heuristics
Li et al. 2012 [182]	lexical: phrase compositionality vector space	
Morris et al. 2012 [234]	discourse: document credibility	heuristics
Tan et al. 2012 [308]	discourse: document comprehensibility	heuristics
Guinaudeau & Strube 2013 [108]	discourse: document coherence graphs/networks	
Horn et al. 2013 [128]	discourse: document factuality	heuristics
Kiela & Clarke 2013 [154]	lexical: phrase compositionality vector space	
Krcmar et al. 2013 [162]	lexical: term compositionality vector space	
Mikolov et al. 2013 [225]	lexical: term compositionality deep learning	
Oh et al. 2013 [242]	discourse: document trustworthiness	heuristics
Rousseau & Vazirgiannis 2013 [275]	lexical: term associations	graph theory
Salehi & Cook 2013 [276]	lexical: phrase compositionality	heuristics
Schulte et al. 2013 [133]	lexical: term compositionality vector space	
Xiong et al. 2013 [137]	discourse: document cohesion	probabilistic
Banea et al. 2014 [149]	discourse: document subjectivity	heuristics
Chenlo et al. 2014 [156]	discourse: rhetorical relations	heuristics
Choi et al. 2014 [150]	discourse: rhetorical relations	probabilistic
Frommholz & Abbasi 2014 [177]	cognitive: document & query associations	heuristics statistics
Hill & Korhonen 2014 [123]	lexical: phrase subjectivity	heuristics
Kartsaklis 2014 [139]	lexical: term compositionality	logic
Li & Hovy 2014 [183]	discourse: document coherence deep learning	
Abbasi & Frommholz 2015 [16]	cognitive: document & query associations	heuristics statistics

Continued on next page
Table 3 – concluded from previous page

ARTICLE	TYPE OF SEMANTIC DEPENDENCE	TYPE OF APPROACH
Dima 2015 [66]	lexical: term compositionality	vector space
Eickhoff et al. 2015 [74]	lexical: term dependence	logic
Hunter et al. 2015 [132]	discourse: rhetorical relations	graphs/networks, heuristics
Kuyten et al. 2015 [163]	discourse: rhetorical relations	probabilistic
Le & Zuidema 2015 [175]	lexical: term compositionality	deep learning
Lioma et al. 2015 [202]	lexical: term compositionality	vector space, probabilistic
Mineshima et al. 2015 [228]	lexical: term compositionality	logic
Neelakantan et al. 2015 [243]	lexical: term compositionality	vector space
Petersen et al. 2015 [259]	discourse: document coherence	graphs/networks, probabilistic
Qiu et al. 2015 [267]	lexical: term associations	vector space, deep learning
Salehi et al. 2015 [277]	lexical: term compositionality	deep learning
Voskarides et al. 2015 [327]	discourse: entity relations	graphs/networks
Xiong et al. 2015 [338]	discourse: document coherence	probabilistic
Yazdani et al. 2015 [339]	lexical: term compositionality	deep learning
Zellhoefer 2015 [344]	cognitive: query associations	heuristics
Zhang et al. 2015 [344]	discourse: document coherence	graphs/networks, probabilistic
Asher et al. 2016 [11]	lexical: term compositionality	semantic theory
Cordeiro et al. 2016 [53]	lexical: term compositionality	deep learning
Ermakova & Mothe 2016 [54]	discourse: document structure	probabilistic, heuristics
Gutierrez et al. 2016 [110]	lexical: term compositionality	vector space
Hashimoto & Tsuruoka 2016 [117]	lexical: term compositionality	deep learning
Lioma et al. 2016 [143]	discourse: document coherence	graphs/networks
Liu & Huang 2016 [206]	discourse: sentence dependence	deep learning
Monroe et al. 2016 [234]	lexical: term compositionality	deep learning
Nikolaev et al. 2016 [248]	lexical: term associations	heuristics
Paperno & Baroni 2016 [251]	lexical: term compositionality	vector space
Pavlick & Callison-Burch 2016 [253]	lexical: term compositionality	logic
Tian et al. 2016 [313]	lexical: term compositionality	vector space
Toutanova et al. 2016 [316]	lexical: term compositionality	deep learning
Zhang et al. 2016 [317]	lexical & discourse: term & sentence associations	deep learning
Zhu et al. 2016 [331]	lexical: term compositionality	deep learning
Lioma and Hansen 2017 [193]	lexical: term compositionality	distance metrics
7 Conclusions

Building machines that can simulate understanding text like humans is an AI-complete problem\(^{18}\). A great deal of research has already gone into this, with astounding results, allowing everyday people to discuss with their telephones, or orally instruct their laptops to select and analyse their reading materials. A prerequisite for processing text semantics, common to all applications of information retrieval, is having some computational representation of text as an abstract object. Operations on this representation practically correspond to making semantic inferences, and by extension simulating understanding text. The complexity and granularity of semantic processing that can be realised is constrained by the mathematical and computational robustness, expressiveness, and rigour of the tools used.

This dissertation presents a series of such tools, diverse in their mathematical formulation, but common in their application to model the semantic dependence of words, sentences and concepts in textual information retrieval. These tools are principally expressed in nine distinct models that capture aspects of semantic dependence in highly interpretable and non-complex ways. This dissertation further expands beyond these separate nine contributions, and presents embracive reflections on the following two levels:

I. FUTURE ANALYTICAL METHODS. A great amount of research focus is directed towards refining and improving methods of semantic processing by training them on increasingly larger and more challenging data. This requires additional and powerful parameterised adaptation (this was traditionally manually controlled and interpretable, but is increasingly becoming self-adaptive and harder to interpret). While this practice is generally useful and attractive, it should not be the only one. Justified as its predominance may be, if unchallenged, it risks leading the area into a standstill (there is only so much parameterisation that can be sustained).

The amalgamation of the body of work presented in this dissertation shows an alternative way of thinking about our methods of analysis: there is a lot to be gained from taking a step back and considering alternative characterisations, representations and solutions to the general problem of text understanding in information retrieval. Above and beyond the specific methods presented in this dissertation, the overarching message is to start thinking about new methods. This is predicated on our capacity and our need to do so, or in more plain English, because we can and because we must.

- We can start thinking of new methods because, as fellow disciplines within and outside computer science and mathematics advance, their output is a stream of inspiration for reasoning about text semantics.

\(^{18}\) AI-complete refers to artificial intelligence problems whose solution is non-trivial and cannot be approximated by any simple specific algorithm.
Our capacity to think of new methods is anything but constrained by such advances.

- We must start thinking of new methods because, if we do not, the research in the area will eventually close in on itself and lose its innovative drive that has been so far pushing it forward.

II. FUTURE RESEARCH QUESTIONS. The amount of core research questions posed in information retrieval today seems notably smaller than the amount of scenarios (or tasks) within which these questions are examined, without this implying that we have arrived at general solutions of these research questions. There is a lot to be gained from asking new questions about text and its semantic interpretation by computers. Not asking new research questions cannot advance semantic processing. New inferences are required to address new and unexpected challenges, such as the novel problems pertaining to discourse dependence that this dissertation argues should be solved in textual information retrieval. After all, reliability and validity are properties of inferences, not of methods.

For an area that has been vigorously investigated for more than 50 years now, it is alarming to see how little reasoning is done outside word counts. Several of the advances described in this dissertation could, in principle, have been made 20 years ago, in the sense that the theoretical tools needed were already in place; it is just that no one thought of asking these questions before. The time is now ripe for new research questions, instead of continuing to hammer the proverbial same old hammer upon the same old nail.

Collectively, the above reflections pave the way for refined semantic processing in information retrieval systems, where shallow semantic processing is traditionally preferred. These insights have the potential to inspire new models of computational processing and analysis that can improve notably the performance of semantic inferences made by search engines and similar technologies. This type of refined semantic processing is expected to be particularly valuable in the emerging field of content-based retrieval that requires systems enabling people not only to access but also to assess the information they interact with, for instance in terms of its credibility, transparency, or bias [197].

References

[1] HLT/EMNLP 2005, Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 6-8 October 2005, Vancouver, British Columbia, Canada. The Association for Computational Linguistics, 2005.

[2] Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Con-
ference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL. ACL, 2011.

[3] Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL. ACL, 2013.

[4] Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers. The Association for Computer Linguistics, 2015.

[5] Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Linguistics, 2016.

[6] M. K. Abbasi and I. Frommholz. Cluster-based polyrepresentation as science modelling approach for information retrieval. Scientometrics, 102(3):2301–2322, 2015.

[7] E. Agirre and A. Soroa. Personalizing pagerank for word sense disambiguation. In A. Lascarides, C. Gardent, and J. Nivre, editors, EACL 2009, 12th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference, Athens, Greece, March 30 - April 3, 2009, pages 33–41. The Association for Computer Linguistics, 2009.

[8] J. Allan, W. B. Croft, A. P. de Vries, and C. Zhai, editors. Proceedings of the 2015 International Conference on The Theory of Information Retrieval, ICTIR 2015, Northampton, Massachusetts, USA, September 27-30, 2015. ACM, 2015.

[9] G. Amati and F. Crestani, editors. Advances in Information Retrieval Theory - Third International Conference, ICTIR 2011, Bertinoro, Italy, September 12-14, 2011. Proceedings, volume 6931 of Lecture Notes in Computer Science. Springer, 2011.

[10] L. Antúnez, O. N. Oliveira, Jr., L. d. F. Costa, and M. d. G. V. Nunes. A complex network approach to text summarization. Inf. Sci., 179(5):584–599, 2009.

[11] N. Asher, T. V. de Cruys, A. Bride, and M. Abrusán. Integrating type theory and distributional semantics: A case study on adjective-noun compositions. Computational Linguistics, 42(4):703–725, 2016.
7 Conclusions

[12] L. Azzopardi, G. Kazai, S. E. Robertson, S. M. Rüger, M. Shokouhi, D. Song, and E. Yilmaz, editors. Advances in Information Retrieval Theory, Second International Conference on the Theory of Information Retrieval, ICTIR 2009, Cambridge, UK, September 10-12, 2009, Proceedings, volume 5766 of Lecture Notes in Computer Science. Springer, 2009.

[13] R. A. Baeza-Yates, M. Lalmas, A. Moffat, and B. A. Ribeiro-Neto, editors. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, August 9-13, 2015. ACM, 2015.

[14] R. A. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait, editors. SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, August 15-19, 2005. ACM, 2005.

[15] T. Baldwin, C. Bannard, T. Tanaka, and D. Widdows. An empirical model of multiword expression decomposability. In Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, pages 89–96. Association for Computational Linguistics, Sapporo, Japan, July 2003.

[16] C. Banea, R. Mihalcea, and J. Wiebe. Sense-level subjectivity in a multilingual setting. Computer Speech & Language, 28(1):7–19, 2014.

[17] E. Banik. Extending a surface realizer to generate coherent discourse. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 305–308, Suntec, Singapore, August 2009. Association for Computational Linguistics.

[18] R. Barzilay, N. Elhadad, and K. McKeown. Inferring strategies for sentence ordering in multidocument news summarization. Journal of Artificial Intelligence Research (JAIR), 17:35–55, 2002.

[19] R. Barzilay and M. Lapata. Modeling local coherence: An entity-based approach. Computational Linguistics, 34(1):1–34, 2008.

[20] R. Barzilay and L. Lee. Catching the drift: Probabilistic content models, with applications to generation and summarization. In J. Hirschberg, S. T. Dumais, D. Marcu, and S. Roukos, editors, Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, HLT-NAACL 2004, Boston, Massachusetts, USA, May 2-7, 2004, pages 113–120. The Association for Computational Linguistics, 2004.

[21] P. B. Baxendale. Machine-made index for technical literature. IBM Journal for R&D, 2:354–361, 1958.
[22] R. K. Belew. Adaptive information retrieval: Using a connectionist representation to retrieve and learn about documents. In Belkin and van Rijsbergen [26], pages 11–20.

[23] N. J. Belkin, C. Cool, W. B. Croft, and J. P. Callan. Effect of multiple query representations on information retrieval system performance. In Korfhage et al. [157], pages 339–346.

[24] N. J. Belkin, P. Ingwersen, and A. M. Pejtersen, editors. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Copenhagen, Denmark, June 21-24, 1992. ACM, 1992.

[25] N. J. Belkin and D. Kelly, editors. Information Interaction in Context Symposium, IIiX 2010, New Brunswick, NJ, USA, August 18-21, 2010. ACM, 2010.

[26] N. J. Belkin and C. J. van Rijsbergen, editors. SIGIR’89, 12th International Conference on Research and Development in Information Retrieval, Cambridge, Massachusetts, USA, June 25-28, 1989, Proceedings. ACM, 1989.

[27] M. Bendersky, W. B. Croft, and Y. Diao. Quality-biased ranking of web documents. In I. King, W. Nejdl, and H. Li, editors, Proceedings of the Forth International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, February 9-12, 2011, pages 95–104. ACM, 2011.

[28] M. Bendersky, D. Metzler, and W. B. Croft. Learning concept importance using a weighted dependence model. In B. D. Davison, T. Suel, N. Craswell, and B. Liu, editors, Proceedings of the Third International Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY, USA, February 4-6, 2010, pages 31–40. ACM, 2010.

[29] K. Bicknell and R. Levy. A model of local coherence effects in human sentence processing as consequences of updates from bottom-up prior to posterior beliefs. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 665–673, Boulder, Colorado, June 2009. Association for Computational Linguistics.

[30] R. Blanco, M. E. A. Brea, and C. Lioma. User generated content search. In M. Moens, J. Li, and T. Chua, editors, Mining User Generated Content., pages 167–187. Chapman and Hall/CRC, 2014.

[31] R. Blanco and C. Lioma. Random walk term weighting for information retrieval. In Kraaij et al. [161], pages 829–830.
[32] R. Blanco and C. Lioma. Mixed monolingual homepage finding in 34 languages: the role of language script and search domain. *Inf. Retr.*, 12(3):324–351, 2009.

[33] R. Blanco and C. Lioma. Graph-based term weighting for information retrieval. *Inf. Retr.*, 15(1):54–92, Feb. 2012.

[34] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. V. Dooren. A measure of similarity between graph vertices: Applications to synonym extraction and web searching. *SIAM Rev.*, 46(4):647–666, 2004.

[35] J. E. Blumenstock. Size matters: word count as a measure of quality on wikipedia. In J. Huai, R. Chen, H. Hon, Y. Liu, W. Ma, A. Tomkins, and X. Zhang, editors, *Proceedings of the 17th International Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008*, pages 1095–1096. ACM, 2008.

[36] A. Bookstein, Y. Chiaramella, G. Salton, and V. V. Raghavan, editors. *Proceedings of the 14th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*. Chicago, Illinois, USA, October 13-16, 1991 (Special Issue of the SIGIR Forum). ACM, 1991.

[37] S. Bordag, G. Heyer, and U. Quasthoff. Small worlds of concepts and other principles of semantic search. In T. Böhme, G. Heyer, and H. Unger, editors, *Innovative Internet Community Systems, Third International Workshop, IICS 2003, Leipzig, Germany, June 19-21, 2003, Revised Papers*, volume 2877 of *Lecture Notes in Computer Science*, pages 10–19. Springer, 2003.

[38] B. Brost, I. J. Cox, Y. Seldin, and C. Lioma. An improved multileaving algorithm for online ranker evaluation. In Perego et al. [257], pages 745–748.

[39] B. Brost, Y. Seldin, I. J. Cox, and C. Lioma. Multi-dueling bandits and their application to online ranker evaluation. In Mukhopadhyay et al. [237], pages 2161–2166.

[40] P. Bruza and T. P. van der Weide. Stratified hypermedia structures for information disclosure. *Comput. J.*, 35(3):208–220, 1992.

[41] J. Burstein, J. Tetreault, and S. Andreyev. Using entity-based features to model coherence in student essays. In *Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics*, pages 681–684, Los Angeles, California, June 2010. Association for Computational Linguistics.

[42] S. M. G. Caldeira, T. C. P. Lobão, R. F. S. Andrade, A. Neme, and J. G. V. Miranda. The network of concepts in written texts. *The European
7 Conclusions

Physical Journal B - Condensed Matter and Complex Systems, 49(4):523–529, 2006.

[43] A. Çelikyilmaz and D. Hakkani-Tür. Discovery of topically coherent sentences for extractive summarization. In Lin et al. [184], pages 491–499.

[44] E. Chen, B. Snyder, and R. Barzilay. Incremental text structuring with online hierarchical ranking. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 83–91, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

[45] H. Chen, S. Branavan, R. Barzilay, and D. R. Karger. Global models of document structure using latent permutations. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 371–379, Boulder, Colorado, June 2009. Association for Computational Linguistics.

[46] J. M. Chenlo, A. Hogenboom, and D. E. Losada. Rhetorical structure theory for polarity estimation: An experimental study. Data Knowl. Eng., 94:135–147, 2014.

[47] J. C. K. Cheung and G. Penn. Entity-based local coherence modelling using topological fields. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 186–195, Uppsala, Sweden, July 2010. Association for Computational Linguistics.

[48] J. P. Chevallet. Un Modèle Logique de Recherche d’Information Appliqué au Formalisme des Graphes Conceptuels. Le Prototype ELEN et son Ex- perimentation sur un Corpus de Composants Logiciels. PhD in Computer Science, University of Joseph Fourier, Grenoble I, 1992.

[49] Y. Chiaramella and J. P. Chevallet. About Retrieval Models and Logic. Comput. J., 35(3):233–242, 1992.

[50] S. Choi, J. Choi, S. Yoo, H. Kim, and Y. Lee. Semantic concept-enriched dependence model for medical information retrieval. Journal of Biomedical Informatics, 47:18–27, 2014.

[51] M. Choudhury, M. Thomas, A. Mukherjee, A. Basu, and N. Ganguly. How difficult is it to develop a perfect spell-checker? a cross-linguistic analysis through complex network approach. In Proceedings of the Second Workshop on TextGraphs: Graph-Based Algorithms for Natural Language Processing, pages 81–88, Rochester, NY, USA, 2007. Association for Computational Linguistics.

[52] J. Clarke and M. Lapata. Discourse constraints for document compression. Computational Linguistics, 36(3):411–441, 2010.
[53] P. Cook, A. Fazly, and S. Stevenson. Pulling their weight: Exploiting syntactic forms for the automatic identification of idiomatic expressions in context. In *Proceedings of the Workshop on A Broader Perspective on Multiword Expressions*, pages 41–48, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

[54] S. Cordeiro, C. Ramisch, M. Idiart, and A. Villavicencio. Predicting the compositionality of nominal compounds: Giving word embeddings a hard time. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers*.

[55] D. R. Cox. *Principles of Statistical Inference*. Cambridge University Press, 2006.

[56] F. Crestani. Logical Models of Information Retrieval. In L. Liu and M. T. ¨Ozsu, editors, *Encyclopedia of Database Systems*, pages 1652–1658. Springer, 2009.

[57] F. Crestani and C. J. van Rijsbergen. Information retrieval by logical imaging. *Journal of Documentation*, 51(1):3–17, 1995.

[58] F. Crestani and C. J. van Rijsbergen. A study of probability kinematics in information retrieval. *ACM Trans. Inf. Syst.*, 16(3):225–255, 1998.

[59] W. B. Croft, H. R. Turtle, and D. D. Lewis. The use of phrases and structured queries in information retrieval. In Bookstein et al. [36], pages 32–45.

[60] W. B. Croft and C. J. van Rijsbergen, editors. *Proceedings of the 17th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval. Dublin, Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum)*. ACM/Springer, 1994.

[61] J. Davies, J. Gibbons, D. Milward, and J. Welch. Compositionality and refinement in model-driven engineering. In R. Gheyi and D. A. Naumann, editors, *Formal Methods: Foundations and Applications - 15th Brazilian Symposium, SBMF 2012, Natal, Brazil, September 23-28, 2012. Proceedings*, volume 7498 of *Lecture Notes in Computer Science*, pages 99–114. Springer, 2012.

[62] P. Dell’Aversana. *Cognition in Geosciences: The feeding loop between geosciences, cognitive sciences and epistemology*. Elsevier Science, 2013.

[63] K. Devlin. *Logic and information*. Cambridge University Press, 1991.

[64] M. T. Diab, T. Baldwin, and M. Baroni, editors. *Proceedings of the Second Joint Conference on Lexical and Computational Semantics, *SEM 2013, June 13-14, 2013, Atlanta, Georgia, USA*. Association for Computational Linguistics, 2013.
[65] M. Dillon and A. S. Gray. FASIT: A fully automatic syntactically based indexing system. *JASIS*, 34(2):99–108, 1983.

[66] C. Dima. Reverse-engineering language: A study on the semantic compositionality of german compounds. In Márquez et al. [213], pages 1637–1642.

[67] A. Diriye, A. Blandford, and A. Tombros. A polyrepresentational approach to interactive query expansion. In F. Heath, M. L. Rice-Lively, and R. Furuta, editors, *Proceedings of the 2009 Joint International Conference on Digital Libraries, JCDL 2009, Austin, TX, USA, June 15-19, 2009*, pages 217–220. ACM, 2009.

[68] S. N. Dorogovtsev and J. F. F. Mendes. Language as an evolving word web. *Proceedings of The Royal Society of London. Series B, Biological Sciences*, 268(1485):2603–2606, December 2001.

[69] T. E. Doszkocs, J. Reggia, and X. Lin. Connectionist models and information retrieval. *Annual Review of Information Science and Technology (ARIST)*, 25:209–260, 1990.

[70] L. B. Doyle. Indexing and abstracting by association. part i. *Am. Doc.*, 13:378–390, 1962.

[71] R. Dragusin, P. Petcu, C. Lioma, B. Larsen, H. Jørgensen, I. J. Cox, L. K. Hansen, P. Ingwersen, and O. Winther. Findzebra: A search engine for rare diseases. *I. J. Medical Informatics*, 82(6):528–538, 2013.

[72] R. Dragusin, P. Petcu, C. Lioma, B. Larsen, H. Jørgensen, I. J. Cox, L. K. Hansen, P. Ingwersen, and O. Winther. Specialised tools are needed when searching the web for rare disease diagnoses. *Rare Diseases*, 1(2):e25001–1–e25001–4, 2013.

[73] R. Dragusin, P. Petcu, C. Lioma, B. Larsen, H. Jørgensen, and O. Winther. Rare disease diagnosis as an information retrieval task. In Amati and Crestani [9], pages 356–359.

[74] D. A. duVerle and H. Prendinger. A novel discourse parser based on support vector machine classification. In *Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09*, pages 665–673, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[75] L. L. Earl. The resolution of syntactic ambiguity in automatic language processing. *Information Storage and Retrieval*, 8:277–308, 1972.

[76] M. Efron and M. A. Winget. Query polyrepresentation for ranking retrieval systems without relevance judgments. *JASIST*, 61(6):1081–1091, 2010.
[77] C. Eickhoff, A. P. de Vries, and T. Hofmann. Modelling term dependence with copulas. In Baeza-Yates et al. [39], pages 783–786.

[78] M. Elsner and E. Charniak. Coreference-inspired coherence modeling. In Proceedings of ACL-08: HLT, Short Papers, pages 41–44, Columbus, Ohio, June 2008. Association for Computational Linguistics.

[79] M. Elsner and E. Charniak. Disentangling chat with local coherence models. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 1179–1189, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[80] M. Elsner and E. Charniak. Extending the entity grid with entity-specific features. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 125–129, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[81] R. Ennals, D. Byler, J. M. Agosta, and B. Rosario. What is disputed on the web? In K. Tanaka, X. Zhou, M. Zhang, and A. Jatowt, editors, Proceedings of the 4th ACM Workshop on Information Credibility on the Web, WICOW 2010, Raleigh, North Carolina, USA, April 27, 2010, pages 67–74. ACM, 2010.

[82] K. Erk. Vector space models of word meaning and phrase meaning: A survey. Language and Linguistics Compass, 6(10):635–653, 2012.

[83] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. (JAIR), 22:457–479, 2004.

[84] L. Ermakova and J. Mothe. Document re-ranking based on topic-comment structure. In Tenth IEEE International Conference on Research Challenges in Information Science, RCIS 2016, Grenoble, France, June 1-3, 2016, pages 1–10. IEEE, 2016.

[85] A. Esuli and F. Sebastiani. Pageranking wordnet synsets: An application to opinion mining. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 424–431, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

[86] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information extraction from the web. Commun. ACM, 51(12):68–74, 2008.

[87] D. A. Evans and C. Zhai. Noun-phrase analysis in unrestricted text for information retrieval. In A. K. Joshi and M. Palmer, editors, 34th Annual Meeting of the Association for Computational Linguistics, 24-27 June 1996, University of California, Santa Cruz, California, USA, Proceedings., pages 17–24. Morgan Kaufmann Publishers / ACL, 1996.
[88] J. L. Fagan. The effectiveness of a nonsyntactic approach to automatic phrase indexing for document retrieval. *JASIS*, 40(2):115–132, 1989.

[89] M. Farahmand, A. Smith, and J. Nivre. A multiword expression data set: Annotating non-compositionality and conventionalization for English noun compounds. In V. Kordoni, K. Cholakov, M. Egg, S. Markantonatou, and S. Wintner, editors, *Proceedings of the 11th Workshop on Multiword Expressions, MWE@NAACL-HLT 2015, June 4, 2015, Denver, Colorado, USA*, pages 29–33. The Association for Computer Linguistics, 2015.

[90] R. Ferrer-i-Cancho. The structure of syntactic dependency networks: insights from recent advances in network theory. *The Problems of Quantitative Linguistics*, pages 60–75, 2005.

[91] R. Ferrer-i-Cancho, A. Capocci, and G. Caldarelli. Spectral methods cluster words of the same class in a syntactic dependency network. *International Journal of Bifurcation and Chaos*, 17(7):2453–2463, 2007.

[92] R. Ferrer-i-Cancho and R. V. Solé. Two regimes in the frequency of words and the origins of complex lexicons: Zipf’s law revisited. *Journal of Quantitative Linguistics*, 8(3):165–173, 2001.

[93] R. Ferrer i Cancho, R. V. Solé, and R. Köhler. Patterns in syntactic dependency networks. *Phys. Rev. E*, 69(5):051915, 2004.

[94] K. Filippova and M. Strube. The German vorfeld and local coherence. *Journal of Logic, Language and Information*, 16(4):465–485, 2007.

[95] J. R. Firth. A synopsis of Linguistic Theory. In F. R. Palmer, editor, *Selected papers of J.R. Firth 1952-1959*, pages 168–205. London: Longmans, 1968b.

[96] P. Foltz, W. Kintsch, and T. Landauer. The measurement of textual coherence with latent semantic analysis. *Discourse Processes*, 25(2&3):285–307, 1998.

[97] I. Frommholz and M. K. Abbasi. On clustering and polyrepresentation. In M. de Rijke, T. Kenter, A. P. de Vries, C. Zhai, F. de Jong, K. Radinsky, and K. Hofmann, editors, *Advances in Information Retrieval - 36th European Conference on IR Research, ECIR 2014, Amsterdam, The Netherlands, April 13-16, 2014. Proceedings*, volume 8416 of *Lecture Notes in Computer Science*, pages 618–623. Springer, 2014.

[98] I. Frommholz, B. Larsen, B. Piwowarski, M. Lalmas, P. Ingwersen, and K. van Rijsbergen. Supporting polyrepresentation in a quantum-inspired geometrical retrieval framework. In Belkin and Kelly [25], pages 115–124.
[99] S. Fujita. More reflections on "aboutness" TREC-2001 evaluation experiments at justsystem. In E. M. Voorhees and D. K. Harman, editors, *Proceedings of The Tenth Text REtrieval Conference, TREC 2001, Gaithersburg, Maryland, USA, November 13-16, 2001*, volume Special Publication 500-250. National Institute of Standards and Technology (NIST), 2001.

[100] P. Fung and G. Ngai. One story, one flow: Hidden markov story models for multilingual multidocument summarization. *TSLP*, 3(2):1–16, 2006.

[101] M. Gamon. Graph-based text representation for novelty detection. In *Proceedings of TextGraphs: the First Workshop on Graph Based Methods for Natural Language Processing*, pages 17–24, New York City, June 2006. Association for Computational Linguistics.

[102] M. Gamon, S. Basu, D. Belenko, D. Fisher, M. Hurst, and A. C. König. BLEWS: using blogs to provide context for news articles. In E. Adar, M. Hurst, T. Finin, N. S. Glance, N. Nicolov, and B. L. Tseng, editors, *Proceedings of the Second International Conference on Weblogs and Social Media, ICWSM 2008, Seattle, Washington, USA, March 30 - April 2, 2008*. The AAAI Press, 2008.

[103] B. Gaume. Mapping the forms of meaning in small worlds. *Int. J. Intell. Syst.*, 23(7):848–862, 2008.

[104] S. Ghosh, R. Johansson, G. Riccardi, and S. Tonelli. Shallow discourse parsing with conditional random fields. In *Proceedings of 5th International Joint Conference on Natural Language Processing*, pages 1071–1079, Chiang Mai, Thailand, November 2011. Asian Federation of Natural Language Processing.

[105] V. E. Giuliano and P. E. Jones. Linear associative ir. *Vistas in Information Handling: The Augmentation of Man’s Intellect by Machine*, 1:30–54, 1963.

[106] A. Goldberg and X. Zhu. Seeing stars when there aren’t many stars: Graph-based semi-supervised learning for sentiment categorization. In *Proceedings of TextGraphs: the First Workshop on Graph Based Methods for Natural Language Processing*, pages 45–52, New York City, June 2006. Association for Computational Linguistics.

[107] B. J. Grosz, A. K. Joshi, and S. Weinstein. Centering: A framework for modeling the local coherence of discourse. *Computational Linguistics*, 21(2):203–225, 1995.

[108] C. Guinaudeau and M. Strube. Graph-based local coherence modeling. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers*, pages 93–103. The Association for Computer Linguistics, 2013.
R. Guns, C. Lioma, and B. Larsen. The tipping point: F-score as a function of the number of retrieved items. *Inf. Process. Manage.*, 48(6):1171–1180, 2012.

E. D. Gutiérrez, E. Shutova, T. Marghetis, and B. Bergen. Literal and metaphorical senses in compositional distributional semantic models. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers*.

M. A. K. Halliday and R. Hasan. *Cohesion in English*. Longman, London, 1976.

N. D. Hansen, C. Lioma, B. Larsen, and S. Alstrup. Temporal context for authorship attribution - A study of danish secondary schools. In D. Lamas and P. Buitelaar, editors, *Multidisciplinary Information Retrieval - 7th Information Retrieval Facility Conference, IRFC 2014, Copenhagen, Denmark, November 10-12, 2014, Proceedings*, volume 8849 of *Lecture Notes in Computer Science*, pages 22–40. Springer, 2014.

N. D. Hansen, C. Lioma, and K. Mølbak. Ensemble learned vaccination uptake prediction using web search queries. In Mukhopadhyay et al. [237], pages 1953–1956.

N. D. Hansen, K. Mølbak, I. J. Cox, and C. Lioma. Time-series adaptive estimation of vaccination uptake using web search queries. *International ACM Conference of the World Wide Web*, page in press, 2017.

D. J. Harper and C. J. K. van Rijsbergen. An evaluation of feedback in document retrieval using concurrence data. *Journal of Documentation*, 34:189–216, 1978.

Z. S. Harris. *Distributional structure*. Springer, 1981.

K. Hashimoto and Y. Tsuruoka. Adaptive joint learning of compositional and non-compositional phrase embeddings. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers*.

S. Hassan and C. Banea. Random-walk term weighting for improved text classification. In *Proceedings of TextGraphs: the First Workshop on Graph Based Methods for Natural Language Processing*, pages 53–60, New York City, June 2006. Association for Computational Linguistics.

B. He and I. Ounis. Inferring query performance using pre-retrieval predictors. In A. Apostolico and M. Melucci, editors, *String Processing and Information Retrieval, 11th International Conference, SPIRE 2004, Padova, Italy, October 5-8, 2004, Proceedings*, volume 3246 of *Lecture Notes in Computer Science*, pages 43–54. Springer, 2004.
[120] B. Heerschop, F. Goossen, A. Hogenboom, F. Frasincar, U. Kaymak, and F. de Jong. Polarity analysis of texts using discourse structure. In Proceedings of the 20th ACM international conference on Information and knowledge management, CIKM ’11, pages 1061–1070, New York, NY, USA, 2011. ACM.

[121] W. R. Hersh, J. Callan, Y. Maarek, and M. Sanderson, editors. The 35th International ACM SIGIR conference on research and development in Information Retrieval, SIGIR ’12, Portland, OR, USA, August 12-16, 2012. ACM, 2012.

[122] L. Herzig, A. Nunes, and B. Snir. An annotation scheme for automated bias detection in wikipedia. In Proceedings of the Fifth Linguistic Annotation Workshop, LAW 2011, June 23-24, 2011, Portland, Oregon, USA, pages 47–55. The Association for Computer Linguistics, 2011.

[123] F. Hill and A. Korhonen. Concreteness and subjectivity as dimensions of lexical meaning. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 725–731, Baltimore, Maryland, June 2014. Association for Computational Linguistics.

[124] N. Ho and C. Fairon. Lexical similarity based on quantity of information exchanged - synonym extraction. In Actes de la Deuxième Conference Internationale Associant Chercheurs Vietnamiens et Francophones en Informatique, Hanoï Vietnam, 2-5 Février 2004, pages 193–198, 2004.

[125] M. Hoey. Patterns of Lexis in Text. Oxford University Press, Oxford, UK, 1991.

[126] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences, pages 2554–2558. National Academy of Sciences, 1982.

[127] J. J. Hopfield and D. W. Tank. Computing with neural circuits: a model. Science, 233:625–633, 1986.

[128] C. Horn, A. Zhila, A. F. Gelbukh, R. Kern, and E. Lex. Using factual density to measure informativeness of web documents. In S. Oepen, K. Hagen, and J. B. Johannessen, editors, Proceedings of the 19th Nordic Conference of Computational Linguistics, NODALIDA 2013, May 22-24, 2013, Oslo University, Norway, volume 85 of Linköping Electronic Conference Proceedings, pages 227–238. Linköping University Electronic Press, 2013.

[129] W. Y. Huang and R. Lippmann. Neural net and traditional classifiers. In D. Z. Anderson, editor, Neural Information Processing Systems, Denver, Colorado, USA, 1987, pages 387–396. American Institute of Physics, 1987.
7 Conclusions

[130] T. Hughes and D. Ramage. Lexical semantic relatedness with random graph walks. In *Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)*, pages 581–589, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

[131] T. W. C. Huibers, M. Lalmas, and C. J. van Rijsbergen. Information retrieval and situation theory. *SIGIR Forum*, 30(1):11–25, 1996.

[132] J. Hunter, N. Asher, and A. Lascarides. Integrating non-linguistic events into discourse structure. In M. Purver, M. Sadrzadeh, and M. Stone, editors, *Proceedings of the 11th International Conference on Computational Semantics, IWCS 2015, 15-17 April, 2015, Queen Mary University of London, London, UK*, pages 184–194. The Association for Computer Linguistics, 2015.

[133] S. S. im Walde, S. Müller, and S. Roller. Exploring vector space models to predict the compositionality of german noun-noun compounds. In Diab et al. [64], pages 255–265.

[134] P. Ingwersen. *Information Retrieval Interaction*. Taylor Graham, 1992.

[135] P. Ingwersen. Polyrepresentation of information needs and semantic entities: Elements of a cognitive theory for information retrieval interaction. In Croft and van Rijsbergen [60], pages 101–110.

[136] P. Ingwersen. Cognitive perspectives of information retrieval interaction: Elements of a cognitive IR theory. *Journal of Documentation*, 52(1):3–50, 1996.

[137] P. Ingwersen. Cognitive Information Retrieval. *Annual Review of Information Science and Technology (ARIST)*, 34:3–52, 1999.

[138] P. Ingwersen and K. Järvelin. *The Turn - Integration of Information Seeking and Retrieval in Context*, volume 18 of *The Kluwer International Series on Information Retrieval*. Kluwer, 2005.

[139] P. Ingwersen, C. Lioma, B. Larsen, and P. Wang. An exploratory study into perceived task complexity, topic specificity and usefulness for integrated search. In Kamps et al. [146], pages 302–305.

[140] C. Jochim, C. Lioma, and H. Schütze. Expanding queries with term and phrase translations in patent retrieval. In A. Hanbury, A. Rauber, and A. P. de Vries, editors, *Multidisciplinary Information Retrieval - Second Information Retrieval Facility Conference, IRFC 2011, Vienna, Austria, June 6, 2011. Proceedings*, volume 6653 of *Lecture Notes in Computer Science*, pages 16–29. Springer, 2011.
[141] C. Jochim, C. Lioma, H. Schütze, S. Koch, and T. Ertl. Preliminary study into query translation for patent retrieval. In Proceedings of the 3rd International Workshop on Patent Information Retrieval, PaIR '10, pages 57–66, New York, NY, USA, 2010. ACM.

[142] S. L. P. Jones, A. Reid, F. Henderson, C. A. R. Hoare, and S. Marlow. A semantics for imprecise exceptions. In B. G. Ryder and B. G. Zorn, editors, Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Atlanta, Georgia, USA, May 1-4, 1999, pages 25–36. ACM, 1999.

[143] A. Jøsang. A logic for uncertain probabilities. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(3):279–212, 2001.

[144] T. Joyce and M. Miyake. Capturing the structures in association knowledge: Application of network analyses to large-scale databases of japanese word associations. In T. Tokunaga and A. Ortega, editors, Large-Scale Knowledge Resources. Construction and Application, Third International Conference on Large-Scale Knowledge Resources, LKR 2008, Tokyo, Japan, March 3-5, 2008, Proceedings, volume 4938 of Lecture Notes in Computer Science, pages 116–131. Springer, 2008.

[145] A. Juffinger, M. Granitzer, and E. Lex. Blog credibility ranking by exploiting verified content. In K. Tanaka, X. Zhou, and A. Jatowt, editors, Proceedings of the 3rd ACM Workshop on Information Credibility on the Web, WICOW 2008, Madrid, Spain, April 20, 2009, pages 51–58. ACM, 2009.

[146] J. Kamps, W. Kraaij, and N. Fuhr, editors. Information Interaction in Context: 2012, IIix’12, Nijmegen, The Netherlands, August 21-24, 2012. ACM, 2012.

[147] N. Karamanis. Evaluating centering for sentence ordering in two new domains. In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 65–68, New York City, USA, June 2006. Association for Computational Linguistics.

[148] N. Karamanis, C. Mellish, M. Poesio, and J. Oberlander. Evaluating centering for information ordering using corpora. Computational Linguistics, 35(1):29–46, 2009.

[149] D. Kartsaklis. Compositional distributional semantics with compact closed categories and Frobenius algebras. PhD thesis, University of Oxford, UK, 2014.

[150] G. Katz and E. Giesbrecht. Automatic identification of non-compositional multi-word expressions using latent semantic analysis. In Proceedings of the Workshop on Multiword Expressions: Identifying and Exploiting Underlying Properties, pages 12–19. Association for Computational Linguistics, Sydney, Australia, July 2006.
[151] A. Kehler. *Coherence, Reference and the Theory of Grammar*. CSLI Publications, California, 2002.

[152] R. Kibble. A reformulation of rule 2 of centering theory. *Computational Linguistics*, 27(4):579–587, 2001.

[153] R. Kibble and R. Power. Optimizing referential coherence in text generation. *Computational Linguistics*, 30(4):401–416, 2004.

[154] D. Kiela and S. Clark. Detecting compositionality of multi-word expressions using nearest neighbours in vector space models. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL [3], pages 1427–1432.

[155] A. Kittur, B. Suh, and E. H. Chi. Can you ever trust a wiki?: impacting perceived trustworthiness in wikipedia. In B. Begole and D. W. McDonald, editors, *Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work*, CSCW 2008, San Diego, CA, USA, November 8-12, 2008, pages 477–480. ACM, 2008.

[156] K. Knight, A. Nenkova, and O. Rambow, editors. *NAACL HLT 2016*, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016. The Association for Computational Linguistics, 2016.

[157] R. Korfhage, E. M. Rasmussen, and P. Willett, editors. *Proceedings of the 16th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval*. Pittsburgh, PA, USA, June 27 - July 1, 1993. ACM, 1993.

[158] I. Korkontzelos and S. Manandhar. Detecting compositionality in multi-word expressions. In *Proceedings of the ACL-IJCNLP 2009 Conference Short Papers*, pages 65–68, Suntec, Singapore, August 2009. Association for Computational Linguistics.

[159] Z. Kozareva, E. Riloff, and E. Hovy. Semantic class learning from the web with hyponym pattern linkage graphs. In *Proceedings of ACL-08: HLT*, pages 1048–1056, Columbus, Ohio, June 2008. Association for Computational Linguistics.

[160] H. Kozima. Similarity between words computed by spreading activation on an english dictionary. In S. Krauwer, M. Moortgat, and L. des Tombe, editors, *Sixth Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference, 21-23 April 1993, Utrecht, The Netherlands*, pages 232–239. The Association for Computer Linguistics, 1993.
[161] W. Kraaij, A. P. de Vries, C. L. A. Clarke, N. Fuhr, and N. Kando, editors. SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, July 23-27, 2007. ACM, 2007.

[162] L. Krčmář, K. Ježek, and P. Pecina. Determining compositionality of expressions using various word space models and methods. In Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality, pages 64–73, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

[163] P. Kuyten, D. Bollegala, B. Hollerit, H. Prendinger, and K. Aizawa. A discourse search engine based on rhetorical structure theory. In A. Hanbury, G. Kazai, A. Rauber, and N. Fuhr, editors, Advances in Information Retrieval - 37th European Conference on IR Research, ECIR 2015, Vienna, Austria, March 29 - April 2, 2015. Proceedings, volume 9022 of Lecture Notes in Computer Science, pages 80–91, 2015.

[164] K. L. Kwok. A neural network for probabilistic information retrieval. In Belkin and van Rijsbergen [20], pages 21–30.

[165] L. L. Antiqueira, T. A. S. Pardo, M. Nunes, and J. O. N. Oliveira. Some issues on complex networks for author characterization. Inteligencia Artificial, Revista Iberoamericana de IA, 11(36):51–58, 2007.

[166] M. Lalmas. Logical models in information retrieval: Introduction and overview. Inf. Process. Manage., 34(1):19–33, 1998.

[167] M. Lapata. Probabilistic text structuring: Experiments with sentence ordering. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pages 545–552, Sapporo, Japan, July 2003. Association for Computational Linguistics.

[168] B. Larsen. Practical implications of handling multiple contexts in the principle of polyrepresentation. In F. Crestani and I. Ruthven, editors, Context: Nature, Impact, and Role - 5th International Conference on Conceptions of Library and Information Sciences, CoLIS 2005, Glasgow, UK, June 4-8, 2005, Proceedings, volume 3507 of Lecture Notes in Computer Science, pages 20–31. Springer, 2005.

[169] B. Larsen and P. Ingwersen. Cognitive Overlaps along the Polyrepresentation Continuum. New Directions in Cognitive Information Retrieval, pages 43–60, 2005.

[170] B. Larsen, P. Ingwersen, and J. Kekäläinen. The polyrepresentation continuum in IR. In I. Ruthven, editor, Proceedings of the 1st International Conference on Information Interaction in Context, IIiX 2006, Copenhagen, Denmark, October 18-20, 2006, pages 88–96. ACM, 2006.
7 Conclusions

[171] B. Larsen, P. Ingwersen, and B. Lund. Data fusion according to the principle of polyrepresentation. *JASIST*, 60(4):646–654, 2009.

[172] B. Larsen and C. Lioma. On the need for and provision for an 'ideal' scholarly information retrieval test collection. In P. Mayr, I. Frommholz, and G. Cabanac, editors, *Proceedings of the Third Workshop on Bibliometric-enhanced Information Retrieval co-located with the 38th European Conference on Information Retrieval (ECIR 2016)*, Padova, Italy, March 20, 2016., volume 1567 of *CEUR Workshop Proceedings*, pages 73–81. CEUR-WS.org, 2016.

[173] B. Larsen, C. Lioma, I. Frommholz, and H. Schütze. Preliminary study of technical terminology for the retrieval of scientific book metadata records. In Hersh et al. [121], pages 1131–1132.

[174] R. Y. K. Lau, P. D. Bruza, and D. Song. Towards a belief-revision-based adaptive and context-sensitive information retrieval system. *ACM Trans. Inf. Syst.*, 26(2), 2008.

[175] P. Le and W. Zuidema. The forest convolutional network: Compositional distributional semantics with a neural chart and without binarization. In Márquez et al. [215], pages 1155–1164.

[176] V. D. Lecce and A. Amato. A fuzzy logic based approach to feedback reinforcement in image retrieval. In D. Huang, K. Jo, H. Lee, H. Kang, and V. Bevilacqua, editors, *Emerging Intelligent Computing Technology and Applications, 5th International Conference on Intelligent Computing, ICIC 2009, Ulsan, South Korea, September 16-19, 2009. Proceedings*, volume 5754 of *Lecture Notes in Computer Science*, pages 939–947. Springer, 2009.

[177] E. A. Leicht, P. Holme, and M. E. J. Newman. Vertex similarity in networks. *Physical Review E*, (73):026120, 2006.

[178] M. E. Lesk. Word-word associations in document retrieval systems. *Am. Doc.*, 20:27–38, 1969.

[179] D. D. Lewis. An evaluation of phrasal and clustered representations on a text categorization task. In Belkin et al. [24], pages 37–50.

[180] D. D. Lewis and W. B. Croft. Term clustering of syntactic phrases. In J. Vidick, editor, *SIGIR’90, 13th International Conference on Research and Development in Information Retrieval, Brussels, Belgium, 5-7 September 1990. Proceedings*, pages 385–404. ACM, 1990.

[181] E. Lex, A. Juffinger, and M. Granitzer. Objectivity classification in online media. In M. H. Chignell and E. G. Toms, editors, *HT’10, Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, Toronto, Ontario, Canada, June 13-16, 2010*, pages 293–294. ACM, 2010.
[182] E. Lex, M. Voelske, M. Errecalde, E. Ferretti, L. Cagnina, C. Horn, B. Stein, and M. Granitzer. Measuring the quality of web content using factual information. In WebQuality, pages 7–10, 2012.

[183] J. Li and E. H. Hovy. A model of coherence based on distributed sentence representation. In A. Moschitti, B. Pang, and W. Daelemans, editors, EMNLP, pages 2039–2048. ACL, 2014.

[184] D. Lin, Y. Matsumoto, and R. Mihalcea, editors. The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA. The Association for Computer Linguistics, 2011.

[185] J. Lin. Indexing & Retrieving Natural Language Using Ternary Expressions. Master’s thesis, U. of Maryland, USA, 2001.

[186] Z. Lin, C. Liu, H. T. Ng, and M. Kan. Combining coherence models and machine translation evaluation metrics for summarization evaluation. In The 50th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, July 8-14, 2012, Jeju Island, Korea - Volume 1: Long Papers, pages 1006–1014. The Association for Computer Linguistics, 2012.

[187] Z. Lin, H. T. Ng, and M. Kan. Automatically evaluating text coherence using discourse relations. In Lin et al. [184], pages 997–1006.

[188] S. Linckels and C. Meinel. Applications of description logics to improve multimedia information retrieval for efficient educational tools. In M. S. Lew, A. D. Bimbo, and E. M. Bakker, editors, Proceedings of the 1st ACM SIGMM International Conference on Multimedia Information Retrieval, MIR 2008, Vancouver, British Columbia, Canada, October 30-31, 2008, pages 321–328. ACM, 2008.

[189] P. G. Lind, M. C. Gonzalez, and H. J. Herrmann. Cycles and clustering in bipartite networks. Phys. Rev. E, page 72:056127, 2005.

[190] C. Lioma and R. Blanco. Part of speech based term weighting for information retrieval. In M. Boughanem, C. Berrut, J. Mothe, and C. Soulé-Dupuy, editors, Advances in Information Retrieval, 31th European Conference on IR Research, ECIR 2009, Toulouse, France, April 6-9, 2009. Proceedings, volume 5478 of Lecture Notes in Computer Science, pages 412–423. Springer, 2009.

[191] C. Lioma, R. Blanco, and M. Moens. A logical inference approach to query expansion with social tags. In Azzopardi et al. [12], pages 358–361.

[192] C. Lioma, R. Blanco, R. M. Palau, and M. Moens. A belief model of query difficulty that uses subjective logic. In Azzopardi et al. [12], pages 92–103.
[193] C. Lioma and N. D. Hansen. A study of metrics of distance and correlation between ranked lists for compositionality detection. *Cognitive Systems Research*, page in press, 2017.

[194] C. Lioma, A. Kothari, and H. Schütze. Sense discrimination for physics retrieval. In W. Ma, J. Nie, R. A. Baeza-Yates, T. Chua, and W. B. Croft, editors, *Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, July 25-29, 2011*, pages 1101–1102. ACM, 2011.

[195] C. Lioma, B. Larsen, and P. Ingwersen. Preliminary experiments using subjective logic for the polyrepresentation of information needs. In Kamps et al. [146], pages 174–183.

[196] C. Lioma, B. Larsen, and W. Lu. Rhetorical relations for information retrieval. In Hersh et al. [121], pages 931–940.

[197] C. Lioma, B. Larsen, W. Lu, and Y. Huang. A study of factuality, objectivity and relevance: three desiderata in large-scale information retrieval? In A. Anjum and X. Zhao, editors, *Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2016, Shanghai, China, December 6-9, 2016*, pages 107–117. ACM, 2016.

[198] C. Lioma, B. Larsen, C. Petersen, and J. G. Simonsen. Deep learning relevance: Creating relevant information (as opposed to retrieving it). *CoRR*, abs/1606.07660, 2016.

[199] C. Lioma, B. Larsen, and H. Schütze. User perspectives on query difficulty. In Amati and Crestani [9], pages 3–14.

[200] C. Lioma, B. Larsen, H. Schütze, and P. Ingwersen. A subjective logic formalisation of the principle of polyrepresentation for information needs. In Belkin and Kelly [25], pages 125–134.

[201] C. Lioma and I. Ounis. Extending weighting models with a term quality measure. In N. Ziviani and R. A. Baeza-Yates, editors, *String Processing and Information Retrieval, 14th International Symposium, SPIRE 2007, Santiago, Chile, October 29-31, 2007, Proceedings*, volume 4720 of *Lecture Notes in Computer Science*, pages 205–216. Springer, 2007.

[202] C. Lioma, J. G. Simonsen, B. Larsen, and N. D. Hansen. Non-compositional term dependence for information retrieval. In Baeza-Yates et al. [19], pages 595–604.

[203] C. Lioma, F. Tarissan, J. G. Simonsen, C. Petersen, and B. Larsen. Exploiting the bipartite structure of entity grids for document coherence and retrieval. In B. Carterette, H. Fang, M. Lalmas, and J. Nie, editors, *Proceedings of the 2016 ACM on International Conference on the Theory of
7 Conclusions

Information Retrieval, ICTIR 2016, Newark, DE, USA, September 12-6, 2016, pages 11–20. ACM, 2016.

[204] C. Lioma and C. J. K. van Rijsbergen. Part of speech n-grams and information retrieval. Revue française de linguistique appliquée, XIII(1):9–11, 2008.

[205] N. Lipka and B. Stein. Identifying featured articles in wikipedia: writing style matters. In M. Rappa, P. Jones, J. Freire, and S. Chakrabarti, editors, Proceedings of the 19th International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages 1147–1148. ACM, 2010.

[206] B. Liu and M. Huang. A sentence interaction network for modeling dependence between sentences. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers [5].

[207] B. Logan, S. Reece, and K. S. Jones. Modelling information retrieval agents with belief revision. In Croft and van Rijsbergen [60], pages 91–100.

[208] D. E. Losada and A. Barreiro. A logical model for information retrieval based on propositional logic and belief revision. Comput. J., 44(5):410–424, 2001.

[209] R. M. Losee. Term dependence: Truncating the bahadur lazarsfeld expansion. Information Processing & Management, 30(2):293–303, 1994.

[210] A. Louis and A. Nenkova. A coherence model based on syntactic patterns. In Tsujii et al. [318], pages 1157–1168.

[211] W. Lu, Q. Cheng, and C. Lioma. Fixed versus dynamic co-occurrence windows in textrank term weights for information retrieval. In Hersh et al. [121], pages 1079–1080.

[212] Y. Lv and C. Zhai. Positional language models for information retrieval. In J. Allan, J. A. Aslam, M. Sanderson, C. Zhai, and J. Zobel, editors, Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009, pages 299–306. ACM, 2009.

[213] K. J. Macleod and W. Robertson. A neural algorithm for document clustering. Inf. Process. Manage., 27(4):337–346, 1991.

[214] W. C. Mann and S. A. Thompson. Rhetorical structure theory: Toward a functional theory of text organization. Number 3, pages 243–281, 1998.
[215] L. Márquez, C. Callison-Burch, J. Su, D. Pighin, and Y. Marton, editors. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015. The Association for Computational Linguistics, 2015.

[216] A. P. Masucci and G. J. Rodgers. Network properties of written human language. Phys. Rev. E, 74(2):026102, Aug 2006.

[217] D. McCarthy, B. Keller, and J. Carroll. Detecting a continuum of compositionality in phrasal verbs. In Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, pages 73–80. Association for Computational Linguistics, Sapporo, Japan, July 2003.

[218] C. Meghini, F. Sebastiani, U. Straccia, and C. Thanos. A model of information retrieval based on a terminological logic. In Korfhage et al. [157], pages 298–307.

[219] D. Metzler and W. B. Croft. A markov random field model for term dependencies. In Baeza-Yates et al. [14], pages 472–479.

[220] D. P. Metzler, T. Noreault, L. Richey, and P. B. Heidorn. Dependency parsing for information retrieval. In SIGIR, pages 313–324, 1984.

[221] L. Michelbacher, A. Kothari, M. Forst, C. Lioma, and H. Schütze. A cascaded classification approach to semantic head recognition. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL [2], pages 793–803.

[222] R. Mihalcea, J. Y. Chai, and A. Sarkar, editors. NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015. The Association for Computational Linguistics, 2015.

[223] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing , EMNLP 2004, A meeting of SIGDAT, a Special Interest Group of the ACL, held in conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain, pages 404–411. ACL, 2004.

[224] J. Mikk. Prior knowledge of text content and values of text characteristics. Journal of Quantitative Linguistics, 8(1):67–80, 2001.

[225] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th Annual
7 Conclusions

Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119, 2013.

[226] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon. Superfamilies of evolved and designed networks. *Science*, 303(5663):1538–1542, 2004.

[227] E. Miltsakaki and K. Kukich. Evaluation of text coherence for electronic essay scoring systems. *Natural Language Engineering*, 10(1):25–55, 2004.

[228] K. Mineshima, P. Martínez-Gómez, Y. Miyao, and D. Bekki. Higher-order logical inference with compositional semantics. In Márquez et al. [215], pages 2055–2061.

[229] E. Minkov and W. W. Cohen. Learning graph walk based similarity measures for parsed text. In *2008 Conference on Empirical Methods in Natural Language Processing, EMNLP 2008, Proceedings of the Conference, 25-27 October 2008, Honolulu, Hawaii, USA, A meeting of SIGDAT, a Special Interest Group of the ACL*, pages 907–916. ACL, 2008.

[230] G. Mishne and M. de Rijke. Boosting web retrieval through query operations. In *ECIR*, pages 502–516, 2005.

[231] J. Mitchell and M. Lapata. Composition in distributional models of semantics. *Cognitive Science*, 34(8):1388–1429, 2010.

[232] W. Monroe, N. D. Goodman, and C. Potts. Learning to generate compositional color descriptions. In J. Su, X. Carreras, and K. Duh, editors, *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016*, pages 2243–2248. The Association for Computational Linguistics, 2016.

[233] J. Morato, J. Llorens, G. Genova, and J. A. Moreiro. Experiments in discourse analysis impact on information classification and retrieval algorithms. *Inf. Process. Manage.*, 39:825–851, November 2003.

[234] M. R. Morris, S. Counts, A. Roseway, A. Hoff, and J. Schwarz. Tweeting is believing?: understanding microblog credibility perceptions. In S. E. Poltrock, C. Simone, J. Grudin, G. Mark, and J. Riedl, editors, *CSCW ’12 Computer Supported Cooperative Work, Seattle, WA, USA, February 11-15, 2012*, pages 441–450. ACM, 2012.

[235] J. Mothe and L. Tanguy. Linguistic features to predict query difficulty - a case study on previous TREC campaigns. In *ACM Conference on research and Development in Information Retrieval, SIGIR, Predicting query difficulty - methods and applications workshop*, pages 7–10, 2005.
[236] A. E. Motter, A. P. S. D. Moura, Y. C. Lai, and P. Dasgupta. Topology of the conceptual network of language. *Phys. Rev. E*, 65(6).

[237] S. Mukhopadhyay, C. Zhai, E. Bertino, F. Crestani, J. Mostafa, J. Tang, L. Si, X. Zhou, Y. Chang, Y. Li, and P. Sondhi, editors. *Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016*. ACM, 2016.

[238] A. Müller and S. Kutschekmanesch. Using Abductive Inference and Dynamic Indexing to Retrieve Multimedia SGML Documents. In I. Ruthven, editor, *MIRO*, Workshops in Computing, page 11. BCS, 1995.

[239] P. Muller, N. Hathout, and B. Gaume. Synonym extraction using a semantic distance on a dictionary. In *Proceedings of TextGraphs: the First Workshop on Graph Based Methods for Natural Language Processing*, pages 65–72, New York City, June 2006. Association for Computational Linguistics.

[240] R. Nallapati and J. Allan. Capturing term dependencies using a language model based on sentence trees. In *Proceedings of the 2002 ACM CIKM International Conference on Information and Knowledge Management, McLean, VA, USA, November 4-9, 2002*, pages 383–390. ACM, 2002.

[241] M. Narita and Y. Ogawa. The use of phrases from query texts in information retrieval. In *SIGIR*, pages 318–320, 2000.

[242] V. Nastase, J. Sayyad-Shirabad, M. Sokolova, and S. Szpakowicz. Learning noun-modifier semantic relations with corpus-based and wordnet-based features. In *Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA*, pages 781–787. AAAI Press, 2006.

[243] A. Neelakantan, B. Roth, and A. McCallum. Compositional vector space models for knowledge base completion. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers [4]*, pages 156–166.

[244] J. Nie. Towards a probabilistic modal logic for semantic-based information retrieval. In Belkin et al. [24], pages 140–151.

[245] J. Nie, M. Brisebois, and F. Lepage. Information retrieval as counterfactual. *Comput. J.*, 38(8):643–657, 1995.

[246] F. Nikolaev, A. Kotov, and N. Zhiltsov. Parameterized fielded term dependence models for ad-hoc entity retrieval from knowledge graph. In Perego et al. [257], pages 433–444.
7 Conclusions

[247] H. Oh, Y. Yoon, and H. Kim. Finding more trustworthy answers: Various trustworthiness factors in question answering. *J. Information Science*, 39(4):509–522, 2013.

[248] M. Oussalah, S. Khan, and S. Nefti. Personalized information retrieval system in the framework of fuzzy logic. *Expert Syst. Appl.*, 35(1-2):423–433, 2008.

[249] S. Padó and M. Lapata. Dependency-based construction of semantic space models. *Computational Linguistics*, 33(2):161–199, 2007.

[250] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In D. Scott, W. Daelemans, and M. A. Walker, editors, *Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, 21-26 July, 2004, Barcelona, Spain.*, pages 271–278. ACL, 2004.

[251] D. Paperno and M. Baroni. When the whole is less than the sum of its parts: How composition affects PMI values in distributional semantic vectors. *Computational Linguistics*, 42(2):345–350, 2016.

[252] S. Park, S. Kang, S. Chung, and J. Song. Newscube: delivering multiple aspects of news to mitigate media bias. In D. R. O. Jr., R. B. Arthur, K. Hinckley, M. R. Morris, S. E. Hudson, and S. Greenberg, editors, *Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009*, pages 443–452. ACM, 2009.

[253] E. Pavlick and C. Callison-Burch. Most "babies" are "little" and most "problems" are "huge": Compositional entailment in adjective-nouns. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers* [5].

[254] J. Pearl. *Probabilistic reasoning in intelligent systems: networks of plausible inference*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[255] J. O. Pedersen, C. Silverstein, and C. C. Vogt. Verity at TREC-6: out-of-the-box and beyond. In Voorhees and Harman [326], pages 259–273.

[256] T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet: : Similarity - measuring the relatedness of concepts. In D. L. McGuinness and G. Ferguson, editors, *Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA*, pages 1024–1025. AAAI Press / The MIT Press, 2004.
7 Conclusions

[257] R. Perego, F. Sebastiani, J. A. Aslam, I. Ruthven, and J. Zobel, editors. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016. ACM, 2016.

[258] C. Petersen, C. Lioma, and J. G. Simonsen. Comparative study of search engine result visualisation: Ranked lists versus graphs. In M. L. Wilson, T. Russell-Rose, B. Larsen, P. Hansen, and K. Norling, editors, Proceedings of the 3rd European Workshop on Human-Computer Interaction and Information Retrieval, Dublin, Ireland, August 1, 2013, volume 1033 of CEUR Workshop Proceedings, pages 27–30. CEUR-WS.org, 2013.

[259] C. Petersen, C. Lioma, J. G. Simonsen, and B. Larsen. Entropy and graph based modelling of document coherence using discourse entities: An application to IR. In Allan et al. [8], pages 191–200.

[260] C. Petersen, J. G. Simonsen, K. Järvelin, and C. Lioma. Adaptive distributional extensions to DFR ranking. In Mukhopadhyay et al. [237], pages 2005–2008.

[261] C. Petersen, J. G. Simonsen, and C. Lioma. The impact of using combinatorial optimisation for static caching of posting lists. In G. Zuccon, S. Geva, H. Joho, F. Scholer, A. Sun, and P. Zhang, editors, Information Retrieval Technology - 11th Asia Information Retrieval Societies Conference, AIRS 2015, Brisbane, QLD, Australia, December 2-4, 2015. Proceedings, volume 9460 of Lecture Notes in Computer Science, pages 420–425. Springer, 2015.

[262] C. Petersen, J. G. Simonsen, and C. Lioma. Power law distributions in information retrieval. ACM Trans. Inf. Syst., 34(2):8:1–8:37, 2016.

[263] V. Plachouras and I. Ounis. Dempster-shafer theory for a query-biased combination of evidence on the web. Information Retrieval, 8(2):197–218, 2005.

[264] L. Plaza, A. Diaz, and P. Gervas. Concept-graph based biomedical automatic summarization using ontologies. In Coling 2008: Proceedings of the 3rd Textgraphs workshop on Graph-based Algorithms for Natural Language Processing, pages 53–56, Manchester, UK, August 2008. Coling 2008 Organizing Committee.

[265] M. Poesio, R. Stevenson, B. D. Eugenio, and J. Hitzeman. Centering: A parametric theory and its instantiations. Computational Linguistics, 30(3):309–363, 2004.

[266] A. Popescu and O. Etzioni. Extracting product features and opinions from reviews. In HLT/EMNLP 2005, Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 6-8 October 2005, Vancouver, British Columbia, Canada [1].
[267] L. Qiu, Y. Zhang, and Y. Lu. Syntactic dependencies and distributed word representations for analogy detection and mining. In Márquez et al. [213], pages 2441–2450.

[268] S. Radhouani and G. Falquet. Description logics-based modelling for precise information retrieval. In F. Baader, C. Lutz, and B. Motik, editors, Proceedings of the 21st International Workshop on Description Logics (DL2008), Dresden, Germany, May 13-16, 2008, volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[269] D. Ramage, A. N. Rafferty, and C. D. Manning. Random walks for text semantic similarity. In Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing (TextGraphs-4), pages 23–31, Suntec, Singapore, August 2009. Association for Computational Linguistics.

[270] S. Reddy, I. P. Klapaftis, D. McCarthy, and S. Manandhar. Dynamic and static prototype vectors for semantic composition. In Fifth International Joint Conference on Natural Language Processing, IJCNLP 2011, Chiang Mai, Thailand, November 8-13, 2011, pages 705–713. The Association for Computer Linguistics, 2011.

[271] S. Reddy, D. McCarthy, S. Manandhar, and S. Gella. Exemplar-based word-space model for compositionality detection: Shared task system description. In Proceedings of the Workshop on Distributional Semantics and Compositionality, pages 54–60. Association for Computational Linguistics, Portland, Oregon, USA, June 2011.

[272] J. H. Reppy. Concurrent ML: design, application and semantics. In P. E. Lauer, editor, Functional Programming, Concurrency, Simulation and Automated Reasoning: International Lecture Series 1991-1992, McMaster University, Hamilton, Ontario, Canada, volume 693 of Lecture Notes in Computer Science, pages 165–198. Springer, 1993.

[273] V. F. Reyna and C. J. Brainerd. Fuzzy processing in transitivity development. Annals of Operations Research, 23(1):37–63, 2005.

[274] A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[275] F. Rousseau and M. Vazirgiannis. Graph-of-word and TW-IDF: new approach to ad hoc IR. In Q. He, A. Iyengar, W. Nejdl, J. Pei, and R. Rastogi, editors, 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 : November 1, 2013, pages 59–68. ACM, 2013.

[276] B. Salehi and P. Cook. Predicting the compositionality of multiword expressions using translations in multiple languages. In Diab et al. [64], pages 266–275.
7 Conclusions

[277] B. Salehi, P. Cook, and T. Baldwin. A word embedding approach to predicting the compositionality of multiword expressions. In Mihalcea et al. [222], pages 977–983.

[278] G. Salton. Automatic phrase matching. Readings in Automatic Language Processing, pages 169–188, 1966.

[279] G. Salton, C. Buckley, and C. T. Yu. An evaluation of term dependence models in information retrieval. In SIGIR, pages 151–173, 1982.

[280] T. Saracevic and P. Kantor. A study of information seeking and retrieving. iii. searchers, searches, and overlap. Journal of the American Society for Information Science, 39(3):197–216, 1988.

[281] J. Schwarz and M. R. Morris. Augmenting web pages and search results to support credibility assessment. In D. S. Tan, S. Amershi, B. Begole, W. A. Kellogg, and M. Tungare, editors, Proceedings of the International Conference on Human Factors in Computing Systems, CHI 2011, Vancouver, BC, Canada, May 7-12, 2011, pages 1245–1254. ACM, 2011.

[282] N. Segata and E. Blanzieri. Stochastic pi-calculus modelling of multisite phosphorylation based signaling: The PHO pathway in saccharomyces cerevisiae. Trans. Computational Systems Biology, 10:163–196, 2008.

[283] J. G. Shanahan, Y. Qu, and J. Wiebe. Computing Attitude and Affect in Text. Springer, 2006.

[284] L. Shi, J. Nie, and G. Cao. Relating dependent indexes using dempster-shafer theory. In J. G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K. Choi, and A. Chowdhury, editors, Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, Napa Valley, California, USA, October 26-30, 2008, pages 429–438. ACM, 2008.

[285] H. Shin and J. F. Stach. Using long runs as predictors of semantic coherence in a partial document retrieval system. In NAACL-ANLP 2000 Workshop: Syntactic and Semantic Complexity in Natural Language Processing Systems, pages 6–13, 2000.

[286] M. Sigman and G. A. Cecchi. Global organization of the WordNet lexicon. Proceedings of the National Academy of Sciences, 3(99):1742–1747, 2002.

[287] N. Simou, T. Athanasiadis, G. Stoilos, and S. D. Kollias. Image indexing and retrieval using expressive fuzzy description logics. Signal, Image and Video Processing, 2(4):321–335, 2008.

[288] J. Sinclair. Corpus, Concordance, Collocation. Oxford University Press, Oxford, 1991.
[289] S. Sinha, R. K. Pan, N. Yadav, M. Vahia, and I. Mahadevan. Network analysis reveals structure indicative of syntax in the corpus of undeciphered indus civilization inscriptions. In Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing (TextGraphs-4), pages 5–13, Suntec, Singapore, August 2009. Association for Computational Linguistics.

[290] M. Skov, B. Larsen, and P. Ingwersen. Inter and intra-document contexts applied in polyrepresentation for best match IR. Inf. Process. Manage., 44(5):1673–1683, 2008.

[291] A. F. Smeaton. Incorporating syntactic information into a document retrieval strategy: An investigation. In L. R. Bernardi and F. Rabitti, editors, SIGIR’86, Proceedings of the 9th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy, September 8-10, 1986, pages 103–113. ACM, 1986.

[292] A. F. Smeaton and C. J. van Rijsbergen. Experiment on incorporation syntactic processing of user queries into a document retrieval strategy. In Y. Chiaramella, editor, SIGIR’88, Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Grenoble, France, June 13-15, 1988, pages 31–51. ACM, 1988.

[293] F. J. Smith and K. Devine. Storing and retrieving word phrases. Information Processing and Management, 21(3):215–224, 1985.

[294] M. M. Soares, C. Corso, and L. S. Lucena. Network of syllables in portuguese. Physica A: Statistical Mechanics and its Applications, 355(2-4):678–684, September 2005.

[295] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic compositionality through recursive matrix-vector spaces. In Tsujii et al. [MTS], pages 1201–1211.

[296] S. Somasundaran, G. Namata, L. Getoor, and J. Wiebe. Opinion graphs for polarity and discourse classification. In Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing (TextGraphs-4), pages 66–74, Suntec, Singapore, August 2009. Association for Computational Linguistics.

[297] S. Somasundaran, G. Namata, J. Wiebe, and L. Getoor. Supervised and unsupervised methods in employing discourse relations for improving opinion polarity classification. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, 6-7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 170–179. ACL, 2009.
[298] F. Song and W. B. Croft. A general language model for information retrieval. In *Proceedings of the 1999 ACM CIKM International Conference on Information and Knowledge Management, Kansas City, Missouri, USA, November 2-6, 1999*, pages 316–321. ACM, 1999.

[299] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. G. Simonsen, and J. Nie. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion. In J. Bailey, A. Moffat, C. C. Aggarwal, M. de Rijke, R. Kumar, V. Murdock, T. K. Sellis, and J. X. Yu, editors, *Proceedings of the 24th ACM International Conference on Information and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, October 19 - 23, 2015*, pages 553–562. ACM, 2015.

[300] R. Soricut and D. Marcu. Discourse generation using utility-trained coherence models. In N. Calzolari, C. Cardie, and P. Isabelle, editors, *ACL 2006, 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, Sydney, Australia, 17-21 July 2006*. The Association for Computer Linguistics, 2006.

[301] J. F. Sowa. *Conceptual Structures: Information Processing in Mind and Machine*. Addison-Wesley, 1984.

[302] M. Srikanth and R. K. Srihari. Incorporating query term dependencies in language models for document retrieval. In *SIGIR 2003: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 28 - August 1, 2003, Toronto, Canada*, pages 405–406. ACM, 2003.

[303] M. Steyvers and J. B. Tenenbaum. The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. *Cognitive Science*, 29(1):41–78, 2005.

[304] H. E. Stiles. The association factor in information retrieval. *Journal of the ACM*, 8(2):271–279, Apr. 1961.

[305] T. Strzalkowski, F. Lin, and J. P. Carballo. Natural language information retrieval TREC-6 report. In Voorhees and Harman [326], pages 347–366.

[306] N. Suwandelathna and U. Perera. Discourse marker based topic identification and search results refining. In *5thIEEE International Conference on Information and Automation for Sustainability (ICIAfS’10), Colombo, Sri Lanka*, pages 119–125, 2010.

[307] H. Takamura, T. Inui, and M. Okumura. Extracting semantic orientations of phrases from dictionary. In C. L. Sidner, T. Schultz, M. Stone, and C. Zhai, editors, *Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings, April 22-27, 2007, Rochester, New York, USA*, pages 292–299. The Association for Computational Linguistics, 2007.
[308] C. Tan, E. Gabrilovich, and B. Pang. To each his own: personalized content selection based on text comprehensibility. In E. Adar, J. Teevan, E. Agichtein, and Y. Maarek, editors, *Proceedings of the Fifth International Conference on Web Search and Web Data Mining, WSDM 2012, Seattle, WA, USA, February 8-12, 2012*, pages 233–242. ACM, 2012.

[309] T. Tao and C. Zhai. An exploration of proximity measures in information retrieval. In Kraaij et al. [161], pages 295–302.

[310] I. Tapiero. *Situation Models and Levels of Coherence: Towards a Definition of Comprehension*. Lawrence Erlbaum Associates, Manwah, New Jersey, 2007.

[311] S. Teufel and M. Moens. Summarizing scientific articles: Experiments with relevance and rhetorical status. *Computational Linguistics*, 28(4):409–445, 2002.

[312] R. H. Thomason. *Formal Philosophy. Selected Papers of Richard Montague*. Yale University Press, 1974.

[313] R. Tian, N. Okazaki, and K. Imi. Learning semantically and additively compositional distributional representations. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers* [5].

[314] S. Tomlinson. Robust, web and terabyte retrieval with hummingbird searchserver at TREC 2004. In E. M. Voorhees and L. P. Buckland, editors, *Proceedings of the Thirteenth Text REtrieval Conference, TREC 2004, Gaithersburg, Maryland, USA, November 16-19, 2004*, volume Special Publication 500-261. National Institute of Standards and Technology (NIST), 2004.

[315] X. Tong, C. Zhai, N. Milic-Frayling, and D. A. Evans. Evaluation of syntactic phrase indexing – CLARIT NLP track report. In E. M. Voorhees and D. K. Harman, editors, *Proceedings of The Fifth Text REtrieval Conference, TREC 1996, Gaithersburg, Maryland, USA, November 20–22, 1996*, volume Special Publication 500-238. National Institute of Standards and Technology (NIST), 1996.

[316] K. Toutanova, V. Lin, W. Yih, H. Poon, and C. Quirk. Compositional learning of embeddings for relation paths in knowledge base and text. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers* [5].

[317] T. Tsikrika and M. Lalmas. Combining evidence for web retrieval using the inference network model: an experimental study. *Inf. Process. Manage.*, 40(5):751–772, 2004.
[318] J. Tsujii, J. Henderson, and M. Pasca, editors. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea. ACL, 2012.

[319] H. R. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval model. ACM Transactions on Information Systems, 9(3):187–222, 1991.

[320] C. J. van Rijsbergen. A non-classical logic for information retrieval. Comput. J., 29(6):481–485, 1986.

[321] C. J. van Rijsbergen. The geometry of information retrieval. Cambridge University Press, 2004.

[322] C. J. K. van Rijsbergen. A theoretical basis for the use of co-occurrence data in information retrieval. J. Doc., 33:106–119, 1977.

[323] C. J. K. van Rijsbergen, F. Crestani, and M. Lalmas. Information Retrieval: Uncertainty and Logics. Springer, 1998.

[324] J. Véronis and N. Ide. Word sense disambiguation with very large neural networks extracted from machine readable dictionaries. In 13th International Conference on Computational Linguistics, COLING 1990, University of Helsinki, Finland, August 20-25, 1990, pages 389–394, 1990.

[325] M. S. Vitevitch and E. Rodriguez. Neighborhood density effects in spoken word recognition in spanish. J. Multilingual Communication Disorders, 3:64–73, 2005.

[326] E. M. Voorhees and D. K. Harman, editors. Proceedings of The Sixth Text REtrieval Conference, TREC 1997, Gaithersburg, Maryland, USA, November 19-21, 1997, volume Special Publication 500-240. National Institute of Standards and Technology (NIST), 1997.

[327] N. Voskarides, E. Meij, M. Tsagkias, M. de Rijke, and W. Weerkamp. Learning to explain entity relationships in knowledge graphs. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers [4], pages 564–574.

[328] D. Y. Wang, R. W. P. Luk, K. Wong, and K.-L. Kwok. An information retrieval approach based on discourse type. In C. Kop, G. Fiedl, H. C. Mayr, and E. Métais, editors, Natural Language Processing and Information Systems, 11th International Conference on Applications of Natural Language to Information Systems, NLDB 2006, Klagenfurt, Austria, May 31 - June 2, 2006, Proceeding, volume 3999 of Lecture Notes in Computer Science, pages 197–202. Springer, 2006.
7 Conclusions

[329] L. Wang, M. Lui, S. N. Kim, J. Nivre, and T. Baldwin. Predicting thread discourse structure over technical web forums. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL [2], pages 13–25.

[330] E. B. Wendlandt and J. R. Driscoll. Incorporating a semantic analysis into a document retrieval strategy. In Bookstein et al. [36], pages 270–279.

[331] D. Widdows and B. Dorow. A graph model for unsupervised lexical acquisition. In 19th International Conference on Computational Linguistics, COLING 2002, Howard International House and Academia Sinica, Taipei, Taiwan, August 24 - September 1, 2002, 2002.

[332] J. Wiebe and E. Riloff. Finding mutual benefit between subjectivity analysis and information extraction. IEEE Trans. Affective Computing, 2(4):175–191, 2011.

[333] J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and emotions in language. Language Resources and Evaluation, 39(2-3):165–210, 2005.

[334] R. Wilkinson and P. Hingston. Using the cosine measure in a neural network for document. In Bookstein et al. [36], pages 202–210.

[335] T. Wilson, P. Hoffmann, S. Somasundaran, J. Kessler, J. Wiebe, Y. Choi, C. Cardie, E. Riloff, and S. Patwardhan. Opinionfinder: A system for subjectivity analysis. In HLT/EMNLP 2005, Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 6-8 October 2005, Vancouver, British Columbia, Canada [1].

[336] P. Wittek, S. Darányi, and C. L. Tan. An ordering of terms based on semantic relatedness. In Proceedings of the Eighth International Conference on Computational Semantics, IWCS-8 ’09, pages 235–247, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[337] D. Xiong, Y. Ding, M. Zhang, and C. L. Tan. Lexical chain based cohesion models for document-level statistical machine translation. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL [3], pages 1563–1573.

[338] D. Xiong, M. Zhang, and X. Wang. Topic-based coherence modeling for statistical machine translation. Trans. Audio, Speech and Lang. Proc., 23(3):483–493, Mar. 2015.
[339] M. Yazdani, M. Farahmand, and J. Henderson. Learning semantic composition to detect non-compositionality of multiword expressions. In Márquez et al. [215], pages 1733–1742.

[340] A. Yessenalina, Y. Yue, and C. Cardie. Multi-level structured models for document-level sentiment classification. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, EMNLP 2010, 9-11 October 2010, MIT Stata Center, Massachusetts, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1046–1056. ACL, 2010.

[341] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow. Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval. In Baeza-Yates et al. [14], pages 512–519.

[342] C. T. Yu, C. Buckley, K. Lam, and G. Salton. A generalised term dependence model in IR. Information Technology: R&D, 2:129–154, 1983.

[343] L.-C. Yu, C.-H. Wu, and F.-L. Jang. Psychiatric document retrieval using a discourse-aware model. Artif. Intell., 173:817–829, May 2009.

[344] D. Zellhöfer. Predicting relevance feedback effectiveness with the help of the principle of polyrepresentation in MIR. In Allan et al. [8], pages 345–348.

[345] M. Zhang, V. W. Feng, B. Qin, G. Hirst, T. Liu, and J. Huang. Encoding world knowledge in the evaluation of local coherence. In Mihalcea et al. [222], pages 1087–1096.

[346] R. Zhang. Sentence ordering driven by local and global coherence for summary generation. In The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA - Student Session, pages 6–11. The Association for Computer Linguistics, 2011.

[347] R. Zhang, H. Lee, and D. R. Radev. Dependency sensitive convolutional neural networks for modeling sentences and documents. In Knight et al. [156], pages 1512–1521.

[348] L. Zhou, B. Li, W. Gao, Z. Wei, and K. Wong. Unsupervised discovery of discourse relations for eliminating intra-sentence polarity ambiguities. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL [2], pages 162–171.

[349] Y. Zhou and W. B. Croft. Document quality models for web ad hoc retrieval. In O. Herzog, H. Schek, N. Fuhr, A. Chowdhury, and W. Teiken,
editors, *Proceedings of the 2005 ACM CIKM International Conference on Information and Knowledge Management, Bremen, Germany, October 31 - November 5, 2005*, pages 331–332. ACM, 2005.

[350] X. Zhu and S. Gauch. Incorporating quality metrics in centralized/distributed information retrieval on the world wide web. In *SIGIR*, pages 288–295, 2000.

[351] X. Zhu, P. Sobhani, and H. Guo. Dag-structured long short-term memory for semantic compositionality. In Knight et al. [156], pages 917–926.

[352] G. Zuccon, L. Azzopardi, and C. J. van Rijsbergen. A formalization of logical imaging for information retrieval using quantum theory. In *19th International Workshop on Database and Expert Systems Applications (DEXA 2008), 1-5 September 2008, Turin, Italy*, pages 3–8. IEEE Computer Society, 2008.