Vitamin C in the critically ill - indications and controversies

Christoph S Nabzdyk, Edward A Bittner

Christoph S Nabzdyk, Edward A Bittner, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States

ORCID number: Christoph S Nabzdyk (0000-0002-9849-6221); Edward A Bittner (0000-0002-0159-2373).

Author contributions: Both authors equally contributed to this paper with conception, literature review, drafting and critical revision and editing, and final approval of the final version.

Conflict-of-interest statement: No potential conflicts of interest. No financial support.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Edward A Bittner, MD, PhD, MSED, Associate Professor, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States. ebittner@partners.org Telephone: +1-617-7263030 Fax: +1-617-7267536

Received: June 24, 2018 Peer-review started: June 25, 2018 First decision: July 9, 2018 Revised: August 4, 2018 Accepted: August 21, 2018 Article in press: August 21, 2018 Published online: October 16, 2018

Abstract
Ascorbic acid (vitamin C) elicits pleiotropic effects in the body. Among its functions, it serves as a potent anti-oxidant, a co-factor in collagen and catecholamine synthesis, and a modulator of immune cell biology. Furthermore, an increasing body of evidence suggests that high-dose vitamin C administration improves hemodynamics, end-organ function, and may improve survival in critically ill patients. This article reviews studies that evaluate vitamin C in pre-clinical models and clinical trials with respect to its therapeutic potential.

Key words: Ascorbic acid; vitamin C; Sepsis; Shock; Critical care medicine; Vasopressors; Cardiovascular

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: An increasing body of evidence suggests that high-dose vitamin C administration improves hemodynamics, end-organ function, and may improve survival in critically ill patients. This article reviews studies that evaluate vitamin C in pre-clinical models and clinical trials with respect to its therapeutic potential.

INTRODUCTION
Vitamin C is one of the most well-known essential nutrients and is believed by many to confer a litany of health benefits (Figure 1). The Nobel Prize Winner Linus Pauling may have been the foremost ambassador to date who suggested that vitamin C would enhance cardiovascular health, improve the body’s immune function to overcome infections, and even help abate cancer[1-4]. These health claims created significant controversies that lasted for decades. While many of Pauling’s “more is better” claims have not been supported by rigorous scientific
VITAMIN C LEVELS IN THE CRITICALLY ILL

Vitamin C is water-soluble and circulates in the plasma. It is freely filtered by the glomerulus and reabsorbed in the proximal tubule via the first sodium-dependent vitamin C transporter (SVCT1). In the setting of hypovitaminosis C, its urinary excretion is minimal[5]. While SVCT1 regulates whole-body homeostasis of vitamin C, a high-affinity, low-capacity sodium-dependent vitamin C transporter SVCT2 protects metabolically-active cells against oxidative stress, which facilitates vitamin C accumulation where it is needed[5]. The recommended daily oral dose of vitamin C is 75 mg (adult female)/90 mg (adult male), and only ten mg of daily oral vitamin C is necessary to prevent scurvy (plasma level < 0.1 mg/dL; normal range 0.8-1.6 mg/dL). Despite meeting these recommended daily intakes, many critically ill patients exhibit decreased vitamin C plasma levels. Carr et al[24] reported hypovitaminosis C in 44 critically ill patients receiving standard intensive care unit nutrition, of which one-third had vitamin C deficiency. The degree of vitamin C deficiency was more pronounced in the septic population as compared to the non-septic critically ill. Continuous renal replacement is commonly utilized in critically ill patients and is believed to lead to a depletion of water-soluble vitamins[8-10]. A retrospective study of critically ill patients receiving continuous renal replacement revealed that 87% (13 out of 15) had vitamin C deficiencies[9].

BIOLGICAL EFFECTS OF VITAMIN C

Among vitamin C’s pleiotropic functions that are of relevance to critical illness are its immune-enhancing effects, anti-oxidant properties, and potential anti-mutagenic effects[11,12]. Vitamin C has been shown to enhance neutrophil chemotaxis, phagocytosis, and thus microbial clearance[13,14]. In addition, vitamin C promotes T cell and natural killer cell proliferation and modulates their functions[13,15]. Studies on vitamin C’s effects on B cells have revealed conflicting data with regard to proliferation and differentiation[13,15]. Vitamin C appears to induce antibody production in human lymphocytes and those of guinea pigs[16,17]. In a mouse model of abdominal sepsis induced by cecal-puncture ligation, parenteral vitamin C administration improved sepsis outcomes through reversal of regulatory T cell inhibitory function[18]. Hypovitaminosis C in a sepsis model using guinea pigs was also associated with fewer macrophages in the peritoneal cavity and impaired macrophage migration[19,20]. Interestingly, the adverse effects of vitamin C deficiency were more pronounced in elderly guinea pigs[19].

In cell culture and rodent experiments, vitamin C has been shown to decrease lipid peroxidation, prevent occludin dephosphorylation, and thus diminish the loosening of tight junctions[21-23]. Vitamin C also improves microcirculatory flow impairment by inhibiting tumor-necrosis-factor (TNF)-induced intercellular adhesion molecule 1 expression, thereby decreasing leukocyte adhesiveness[24,25]. In smokers, a single bolus administration of vitamin C (3 g IV) was found to increase coronary flow reserve, which is an integrated parameter of endothelial function and vascular smooth muscle relaxation. This effect was not seen in healthy control patients[26].

Vitamin C is a cofactor in collagen synthesis, a mitogen for fibroblasts, and is believed to positively modulate proinflammatory signaling and inflammation resolution that occur in wound bed[27,28]. Vitamin C supplementation in deficient mice promotes wound healing through enhanced matrix deposition and fibroblast proliferation[27]. In addition, topical vitamin C increases dermal collagen biosynthesis in healthy volunteers[29,30]. However, vitamin C supplementation does not consistently improve pressure ulcer healing in nursing homes and hospitalized patients, and recent systematic reviews have concluded that vitamin C (often administered in conjunction with zinc and other nutrients) is ineffective in treatment for this condition[31-35].

Vitamin C is a cofactor in carnitine synthesis, a molecule that facilitates fatty acid shuttling into mitochondria,
reduces oxidative stress, and promotes endothelial
sprouting[56,37]. Its deficiency has been linked to cardio-
myopathy and neurometabolic disease[60,39]. Despite car-
tinine’s essential metabolic roles, clinical data to date have
not yielded convincing evidence that supplementation in
critically ill patients will improve outcomes[60-62].

Vitamin C is also a cofactor in catecholamine syn-
thesis and adrenal steroidogenesis[43,44]. Vitamin C con-
tributes to the conversion of dopamine to norepine-
phrine by dopamine beta-hydroxylase[45]. Vitamin C en-
hances norepinephrine synthesis both by recycling
tetrahydrobiopterin, a critical cofactor in catecholamine
synthesis, and increasing tyrosine hydroxylase expres-
sion[46]. Furthermore, vitamin C is a cofactor for the
peptidylglycine α-amidating monoxygenase that is
required for the endogenous synthesis of vasopressin[47].
One study in cardiac surgical patients has suggested
that pre-operative administration of vitamin C mitigates
etomidate-induced adrenal suppression[48]. Thus, there
has been significant interest in utilizing vitamin C for
the management of hemodynamically-unstable patients[49].

VITAMIN C IN CARDIOVASCULAR
PATIENTS

While a recent review concluded that there is insufficient
evidence to support the use of vitamin C to reduce cardio-
vacular disease risk or mortality in the general
population, increasing evidence suggests that it may
have a beneficial role in patients with acute coronary
syndromes or undergoing cardiac surgical procedures[50].
Cardiac surgery, extracorporeal membrane oxygenation
and hemodialysis produce oxidative stress, which neg-
atively impacts morbidity and mortality[51]. Vitamin C’s
ability to scavenge reactive oxygen species and increase
nitric oxide production through induction of endothelial
nitric oxide synthase have made it a focus of interest
as a cardiovascular therapy adjunct[52]. In one study of
cardiac surgical patients undergoing cardiopulmonary
bypass, statistically significant reductions in plasma
levels of vitamin C were found intraoperatively compared
to preoperative levels, even prior to initiation of cardio-
pulmonary bypass (Δ16.3% compared to baseline).
This decrease in vitamin C plasma levels continued after
cardiopulmonary bypass and lasted for at least six days[53].

Perioperative vitamin C administration has also been
shown to prevent post-operative atrial fibrillation in the
majority of the studies[54-59]. Its effects appear to result in
reductions in the duration of hospital and intensive care
unit patient stay following cardiac surgery[54-57].

Other studies examining the effects of vitamin C admin-
istration on patients with acute myocardial infarction
and undergoing coronary revascularization procedures
have reported improved left ventricular ejection fraction,
microcirculation, and limited infarct size in patients with
acute myocardial infarction[60-62]. One recent randomized
multicenter clinical trial on patients with myocardial
infarction undergoing percutaneous coronary angioplasty
did not show a significant improvement in infarct size
or ejection fraction at the time of the intervention with
vitamin C administration. However, a decline in the LVEF
between 7-15 d and 2-3 mo noted in the control group
was not seen in the vitamin C group[63]. The authors of
this study suggested that vitamin C may have ameliorated
myocardial reperfusion injury[63].

In addition to potential beneficial effects on micro-
perfusion and myocardial protection, a growing body of
evidence suggests that vitamin C administration may
positively affect hemodynamic parameters and hasten
freedom from vasopressors in critically ill patients[64-67].
Interestingly, some evidence suggests that vitamin C’s effects
on hemodynamics may have a ceiling effect. A recently
reported pharmacokinetic study by de Grooth et al[68]
only found a minimal reduction in heart rate among critically ill
patients randomized to receive 2 g/d vs 10 g/d of vitamin C.
However, only the treatment group that received the 2 g/d
of vitamin C, but not the 10 g/d treatment regimen, had a
clinically-relevant decrease in norepinephrine requirements
over 48 h[69].

VITAMIN C IN BURN-INJURED PATIENTS

Increased capillary leakage is a clinical hallmark of burn
injury. It is associated with significant fluid and protein
extravasation. The term “fluid creep” was coined to de-
scribe the phenomenon that burn patients often receive
significantly more resuscitation fluid than anticipated
based on Parkland formula calculations[69]. This excess
fluid resuscitation can be associated with edema-
related complications[70]. Endothelial damage leading to
increased permeability in patients with burn injury may
partly be mediated by reactive oxygen species-induced
lipid peroxidation. As an antioxidant, vitamin C has been
evaluated as a therapy to decrease fluid resuscitation
requirements[71,72]. In a rodent model of burn injury, high-
dose vitamin C appeared to improve microvascular barrier
dysfunction, without affecting leukocyte activation[73].
In a study of guinea pigs with 70% third-degree burns given
high dose vitamin C (170, 340 and 680 mg/kg per day),
fluid requirements were significantly reduced while stable
cardiac outputs were maintained[74]. In a study of dogs
with burn injuries, vitamin C administration (14 mg/kg
per hour) decreased lipid peroxidation and microvascular
protein and fluid leakage[75]. A burn study in sheep pro-
vided additional evidence that high-dose vitamin C (250
mg/kg bolus plus 15 mg/kg per hour) could reduce fluid
requirements and lipid peroxidation, as well as improve
antioxidant status[76]. Preliminary studies in humans have
also been promising. In a study of 37 patients with > 30%
total body surface area burns, vitamin C administration
(66 mg/kg per hour) reduced fluid requirements, wound
edema, and increased the ratio of PaO2 to a fraction of
inspired oxygen[66]. In a retrospective review of 40 patients
with > 20% total body surface area, vitamin C (66 mg/kg
per hour) was associated with increased urine output and
decreased fluid requirements, but no change in outcomes
or incidence of acute kidney injury[77]. In another small
study (n = 30) of patients with second degree burns, topical vitamin C accelerated formation of granulation tissue[80].

VITAMIN C IN SEPTIC PATIENTS

There has recently been a surge of interest in the use of vitamin C as an adjuvant treatment for sepsis. This interest was stimulated by the findings of a cohort study by Marik et al[64] that administered a cocktail of vitamin C (1.5 g IV every 6 h), hydrocortisone (50 mg IV every 6 h) and thiamine (200 mg IV every 12 h) to 47 septic patients and found a significant reduction in SOFA scores, dependence on vasopressors, and most importantly in hospital mortality to 8.5% in the treatment arm vs 40.4% in a historic control group. These findings were consistent with small phase I double-blinded placebo-controlled trials suggesting the beneficial effects of vitamin C in patients with sepsis[65]. This trial, which randomized 24 septic patients with documented hypovitaminosis C to receive placebo, low-dose (50 mg/kg per day) or high-dose (200 mg/kg per day) parental vitamin C for four days, found significant reductions in SOFA scores and CRP plasma levels in the vitamin C-treated groups[65]. In another small trial of critically ill surgical patients, Zabet et al[65] reported a significant reduction in 28 d mortality in 14 patients with septic shock who were randomized to receive 25 mg/kg per day of ascorbic acid every 6 h for 72 h, when compared to 14 patients with septic shock who received placebo. Despite these promising findings, there are potential safety concerns worthy of consideration with vitamin C administration in the critically ill population. A recent study by De Grooth et al[66] evaluated four parenteral vitamin C repletion regimens (2 g/d vs 10 g/d; bolus vs continuous infusion) administered for 48 h to critically ill patients with multiple organ dysfunction. The patients receiving 10 g vitamin C per day had supraphysiologic vitamin C levels and hyperoxaluria, oxalate being a metabolite of vitamin C. These findings raise concern for an increased risk of oxalate nephropathy, as has been reported with high-dose vitamin C administration and more prolonged administration in the noncritically ill population[68,79,80]. This theoretical risk of oxalate nephropathy stands in contrast with the mostly reassuring data about the safety of short-term high-dose vitamin C administration[64,65,67].

At present, multiple ongoing randomized controlled trials, including the VICTAS, ACTS, and HYVCTSSS trials, are aimed at confirming the beneficial effects of vitamin C and adjuncts in critically ill patients with sepsis[81-85].

VITAMIN C IN HEMORRHAGIC SHOCK

Trauma and hemorrhagic shock can lead to significant coagulopathy and inflammation, and both are associated with increased mortality and morbidity. Given its antioxidant effects, vitamin C has long been evaluated as a protective agent to mitigate effects on proinflammatory and procoagulant pathways caused by trauma and hemorrhagic shock[84-88].

In a swine model of acute hemorrhagic shock, animals were randomized to receive either intravenous normal saline, low-dose Vitamin C (50 mg/kg), or high-dose Vitamin C (200 mg/kg). The group of animals receiving normal saline (control) showed significantly greater historical end-organ damage, including elevated acute lung injury scores and increased mRNA levels of interleukin (IL)-1β, IL-8, TNF-α, plasminogen activation inhibitor-1 and tissue factor compared with the groups receiving vitamin C. Furthermore, only a modest correction of coagulopathy was observed in the vitamin C group when compared to the normal saline group[88]. Similarly, in a rat model of hemorrhagic shock, vitamin C administration (low 100 mg/kg or high 500 mg/kg) was shown to attenuate renal injury, possibly via a SIRT1-mediated mechanism. Levels of serum creatinine, BUN, TNF-α, and IL-1β were lower in the vitamin C group when compared to a sham group. Conversely, levels of hemeoxygenase-1 (HO-1), a stress-response protein believed to play key roles in mediating protection against oxidant-mediated lung injury, were higher in kidneys treated with vitamin C. This effect appeared to occur irrespective of the vitamin C dose administered[89]. Another study of the effects of vitamin C administration (100 mg/kg) on renal function found a decrease in expression of the induced dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin protein in the tubular epithelial cells of rat kidneys. Levels of this protein are believed to correlate with the occurrence of kidney injury. Vitamin C administration prior to resuscitation was also found to decrease proinflammatory cytokine production, which mitigated renal injury[90].

Another rat model of hemorrhagic shock found that vitamin C treatment induced HO-1 expression in a variety of tissues, including kidney, lung and liver, with decreased organ injury and proinflammatory responses[88]. Likewise, vitamin C pretreatment in the setting of hemorrhagic shock appears to protect the intestinal epithelium by decreased proinflammatory cytokine expression and neutrophil infiltration. This effect was also believed to be mediated by HO-1 and was abrogated by pharmacological HO-1 inhibition[92]. Prior studies have suggested that pre-treatment of rats with vitamin C (1 mg/100 g or 5 mg/100 g) decreases gastric mucosal bleeding after induction of hemorrhagic shock and retransfusion[93]. Lastly, the combination of vitamin C administration (50 mg/kg per day for 3 d) prior to inducing hemorrhage together with intravenous infusion vitamin C (50 mg/kg) following hemorrhage improved cardiovascular parameters, such as blood pressure and LV dp/dt, and decreased free radical production in a rat model of hemorrhagic hypotension[88].

These beneficial effects of vitamin C stand in contrast with those obtained in a rat model of liver injury and hemorrhagic shock, in which vitamin C preconditioning (10 mg/kg) did not improve the recovery of animals after resuscitation[90]. Likewise, a survival study in rats with hemorrhagic shock did not show a difference when lactated Ringer’s solution plus vitamin C (50 mg/kg) was administered for resuscitation, compared with lactated Ringer’s solution only[83].
VITAMIN C IN CANCER PATIENTS

Perhaps more widely investigated than any other vitamin C-related claim is the assertion of benefit for patients with cancer. In fact, a quick PubMed search of “ascorbic acid + cancer” yielded 4,376 items, 247 of which were clinical trials (as of May 2018).

Cancer patients have been recognized to have low vitamin C levels compared with healthy controls. In a large randomized, placebo-controlled trial, daily intake of antioxidants, vitamins and minerals, a combination of vitamin C (120 mg/d), vitamin E, zinc, beta carotene and selenium lowered total cancer incidence and all-cause mortality in men but not women at 7.5 years. A similar regimen of vitamin C and E supplementation with beta carotene did not, however, prevent the formation of colon adenomas in a randomized trial of 864 patients. Another study of vitamin C and E supplementation for cancer prevention did not identify immediate or long-term effects on the risk of total cancers, prostate cancer, or other site-specific cancers.

A randomized clinical trial examining different doses of vitamin C (1, 2 or 4 g/d) failed to find a dose-response relationship or an association between serum ascorbic acid levels and mutagen sensitivity, which has been described as a risk factor for tobacco-related epithelial cancers. Despite these clinical findings, basic science data suggest that vitamin C may have a beneficial role in cancer progression through several different mechanisms. Vitamin C was recently found to restore Tet methylcytosine dioxygenase 2 function, one of the most frequently mutated genes in hematopoietic malignancies. Through this mechanism, vitamin C may block aberrant self-renewal and leukemia progression. Vitamin C also facilitates DNA oxidation in leukemia cells, rendering them more sensitive to poly ADP ribose polymerase inhibitors.

In cholangiocarcinoma, SVCT2 expression levels have been shown to correlate with susceptibility to vitamin C-induced cancer cell death in vitro and in vivo. In separate experiments, Vitamin C has been shown to increase methotrexate-mediated hepatocellular carcinoma cell death. Furthermore, vitamin C enhances the effectiveness of radiation therapy for glioblastoma and gemcitabine/epigallocatechin-3-gallate treatment for mesothelioma. These findings are in contrast to data showing that vitamin C interferes with chemotherapy drugs such as doxorubicin, methotrexate, and cisplatin. Moreover, vitamin C may enhance the growth of some cancers. For example, plasmacytoma cell growth is dependent on the presence of vitamin C. Vitamin C exposure showed differential effects in an in vitro model of colony-forming bone marrow cell growth in patients with myelodysplastic syndrome. In this model, vitamin C responsiveness (both growth enhancement or inhibition) was associated with shorter survival when compared to patients with no response to vitamin C. Adding to this complex picture is data derived from in vitro work that examined the response of HL-60 cells from an acute myeloid leukemia cell line to vitamin C. Vitamin C administration decreased oxidative stress and thus protected HL-60 cells from H2O2-induced cell death.

Curiously, high-dose vitamin C (0.5-5 mmol/L) has also been shown to increase the procoagulant properties of freshly isolated red blood cells via externalization of phosphatidyserine, a mechanism known to lead to throm-
bus formation. Interestingly, this effect was more pronounced in red blood cells from cancer patients and could be confirmed in a rat model of thrombus formation138.

In one study in terminal cancer patients, vitamin C was associated with increased quality-of-life and survival116. In contrast, in two double-blinded randomized controlled trials that included patients with advanced cancers (stomach, colon, pancreas, lung, breast and others), vitamin C (10 g/d) did not improve survival136,137.

Given the complexities of cancer biology and vitamin C, the risks and benefits of initiating high-dose vitamin C therapy in critically ill oncology patients should be carefully weighed and discussed with the oncology consultant.

CONCLUSION

Vitamin C is once again a focus of intense interest with respect to its role in the treatment of critically ill patients. Evidence suggests that vitamin C administration may have a variety of beneficial effects in patients undergoing cardiac surgical procedures, with resuscitation with acute burn injury, for the treatment of sepsis, in reducing pain, and in the treatment of cancer. While many questions have yet to be answered, there is little data to suggest that short-term high-dose vitamin C would elicit major harm, except for the risk of oxalate nephropathy. In fact, evidence suggests that short-term high-dose vitamin C in selected patients may improve hemodynamic parameters, decrease fluid resuscitation requirements, reduce the incidence of perioperative atrial fibrillation, improve pain and potentially reduce sepsis-associated mortality. We eagerly await additions to the growing body of evidence that examine the role of vitamin C administration for improving outcomes for our sickest patients.

REFERENCES

1. Pauling L. Vitamin C therapy of advanced cancer. N Engl J Med 1980; 302: 694-695 [PMID: 7354772 DOI: 10.1056/NEJM19800320302129]
2. Pauling L. Diet, nutrition, and cancer. Am J Clin Nutr 1977; 30: 661-663 [PMID: 324260 DOI: 10.1093/ajcn/30.5.661]
3. Cameron E, Pauling L. Ascorbic acid and the glycosaminoglycans. An orthomolecular approach to cancer and other diseases. Oncology 1973; 27: 181-192 [PMID: 4267127 DOI: 10.1159/000224733]
4. Pauling L. Vitamin C and common cold. JAMA 1971; 216: 332 [PMID: S107925 DOI: 10.1001/jama.1971.0318020086025]
5. Berger MM, Oudemans-van Straaten HM. Vitamin C supplementation in the critically ill patient. Curr Opin Clin Nutr Metab Care 2015; 18: 193-201 [PMID: 25653594 DOI: 10.1097/MCO.0000000000000148]
6. Savini I, Rossi A, Pierro C, Avigliano L, Catani MV. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 2008; 34: 347-355 [PMID: 17541511 DOI: 10.1007/s00726-007-0555-7]
7. Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care 2017; 21: 300 [PMID: 29228951 DOI: 10.1186/s13054-017-1891-y]
8. Honoré PM, De Waele J, Jacobs R, Van den Oudekerk P, Van Gorp V, Voer W, Collin V, Spahen HD. Nutritional and metabolic alterations during continuous renal replacement therapy. Blood Purif 2013; 35: 279-284 [PMID: 2368949 DOI: 10.1159/000350610]
9. Kemal AY, Dave NJ, Zhao VM, Griffith DP, Connor MJ Jr, Ziegler TR. Micronutrient Alterations During Continuous Renal Replacement Therapy in Critically Ill Adults: A Retrospective Study. Nutr Clin Pract 2018; 33: 439-446 [PMID: 28727945 DOI: 10.1177/088453631771618]
10. Story DA, Ronco C, Bellomo R. Trace element and vitamin concentrations and losses in critically ill patients treated with continuous venovenous hemofiltration. Crit Care Med 1999; 27: 220-223 [PMID: 9934919 DOI: 10.1097/00003246-199901000-00005]
11. Frei B, Stocker R, England L, Ames BN. Ascorbate: the most effective antioxidant in human blood plasma. Adv Exp Med Biol 1990; 264: 155-163 [PMID: 2244489 DOI: 10.1007/978-1-4684-5730-8_24]
12. Dennis JM, Withington PK. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017; 9: E718 [PMID: 28686196 DOI: 10.3390/nu9070718]
13. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients 2017; 9: E1211 [PMID: 29099763 DOI: 10.3390/nu9112112]
14. Ames AM, Nungester WJ. The relationship between ascorbic acid and phagocytic activity. J Bacteriol 1947; 54: 53 [PMID: 20255149]
15. van Gorkom GNV, Klein Wolterink RGJ, Van Elssen CHMJ, Wieten L, Germeraad WTV, Bos GMJ. Influence of Vitamin C on Lymphocytes: An Overview. Antioxidants (Basel) 2018; 7: E41 [PMID: 29534432 DOI: 10.3390/antiox7030041]
16. Tanaka M, Muto N, Goeda E, Yamamoto I. Enhancement by ascorbic acid 2-glucose or repeated additives of ascorbate of mitogen-induced IgM and IgG productions by human peripheral blood lymphocytes. Jpn J Pharmacol 1994; 66: 451-456 [PMID: 7722322 DOI: 10.1254/jip.66.451]
17. Feigen GA, Smith BH, Dix CE, Flynn CJ, Peterson NS, Rosenberg LF, Pavlovic S, Leibovitz B. Enhancement of antibody production and protection against systemic anaphylaxis by large doses of vitamin C. Res Commun Chem Pathol Pharmacol 1982; 38: 313-333 [PMID: 7163630 DOI: 10.11002/s-5347(71)5286-0]
18. Gao YL, Lu B, Zhai JH, Liu YC, Qi BX, Yao Y, Chai YF, Shou ST. The Parenteral Vitamin C Improves Sepsis and Sepsis-Induced Multiple Organ Dysfunction Syndrome via Preventing Cellular Immunosuppression. Mediators Inflamm 2017; 2017: 4024672 [PMID: 28221072 DOI: 10.1155/2017/4024672]
19. Ganguly R, Waldman RH. Macrophage functions in aging: effects of vitamin C deficiency. Allerg Immunol (Lge) 1981; 37-43 [PMID: 2986438]
20. Ganguly R, Durieux MF, Waldman RH. Macrophage function in vitamin C-deficient guinea pigs. Am J Clin Nutr 1976; 29: 762-765 [PMID: 9373230 DOI: 10.1093/ajcn/29.7.762]
21. Han M, Penders S, Teh SL, Sukumaran DK, Wu F, Wilson JX. Ascorbate protects endothelial barrier function during septic insult: Role of protein phosphatase type 2A. Free Radic Biol Med 2010; 48: 128-135 [PMID: 19840845 DOI: 10.1016/j.freeradbiomed.2009.10.003]
22. Fisher BJ, Kraskauskas D, Martin EJ, Forkes D, Wegelin JA, Brophy D, Ward KR, Voelkel NF, Fowler AA 3rd, Natarajan R. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol 2012; 303: L20-L32 [PMID: 22523283 DOI: 10.1152/ajplung.00300.2011]
23. Al-Shimani HS, Mowe RM, Macnaughton PD, Sneyd JR, Moody AJ. Effects of hyperoxia on the permeability of 16HBE14o- cell monolayers—the protective role of antioxidant vitamins E and C. FEBS J 2013, 280: 4521-4522 [PMID: 23809212 DOI: 10.1111/febs.12413]
24. Mo SJ, Son EW, Rheu DK, Pyo S. Modulation of TNF-α-induced ICAM-1 expression, NO and H2O2 production by alginate, allicin and ascorbic acid in human endothelial cells. Arch Pharm Res 2003; 26: 244-251 [PMID: 12723939 DOI: 10.1007/BF02978637]
25. Scioli MG, Bielli A, Agostinelli S, Tarquini C, Arcuri G, Ferlosio A, Costanza G, Doldo E, Orlando A. Antioxidant treatment prevents serum deprivation- and TNF-α-induced endothelial dysfunction through the inhibition of NADPH oxidase 4 and the restoration of β-oxidation. J Vac Res 2014; 51: 327-337 [PMID: 25401479 DOI: 10.1159/000365926]
26. Kaufmann PA, Gneeczi-Ruscone T, di Terlizzi M, Schäfers KP, Lüscher TF, Canni PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 2000; 102:
Vitamin C in critical care

26: 187-193 [PMID: 8005179 DOI: 10.1159/000129335]

Bhandari B, Kohli SK, Lak V. Protective role of ascorbic acid in hemorrhage-induced cardiovascular depression. Indian J Pharmacol 2014; 48: 371-75 [PMID: 26215003]

94

89

108

105

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534
CW. Vitamin C enhances anticancer activity in methotrexate-treated Hep3B hepatocellular carcinoma cells. *Oncol Rep* 2014; 32: 1057-1063 [PMID: 24969544 DOI: 10.3892/or.2014.3289]

128 Martinotti S, Ranzato E, Burlando B. In vitro screening of synergistic ascorbate-drug combinations for the treatment of malignant mesothelioma. *Toxicol In Vitro* 2011; 25: 1568-1574 [PMID: 21645609 DOI: 10.1016/j.tiv.2011.05.023]

129 Herst PM, Broadley KW, Harper JL, McConnell MJ. Pharmacological concentrations of ascorbate radiosensitize glioblastoma multiforme primary cells by increasing oxidative DNA damage and inhibiting G2/M arrest. *Free Radic Biol Med* 2012; 52: 1486-1493 [PMID: 22342518 DOI: 10.1016/j.freeradbiomed.2012.01.021]

130 Ong PS, Chan SY, Ho PC. Differential augmented effects of buthionine sulfoximine and ascorbic acid in As2O3-induced ovarian cancer cell death: oxidative stress-independent and -dependent cytotoxic potentiation. *Int J Oncol* 2011; 38: 1731-1739 [PMID: 21455570 DOI: 10.3892/ijo.2011.986]

131 Heaney ML, Gardner JR, Karasavvas N, Golde DW, Scheinberg DA, Smith EA, O’Connor OA. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. *Cancer Res* 2008; 68: 8031-8038 [PMID: 18829561 DOI: 10.1158/0008-5472.CAN-08-1490]

132 Park CH, Bergsagel DE, McCulloch EA. Ascorbic acid: a culture requirement for colony formation by mouse plasmacytoma cells. *Science* 1971; 174: 720-722 [PMID: 5123422 DOI: 10.1126/science.174.4010.720]

133 Park CH, Kimler BF, Bodensteiner D, Lynch SR, Hassanein RS. In vitro growth modulation by L-ascorbic acid of colony-forming cells from bone marrow of patients with myelodysplastic syndromes. *Cancer Res* 1992; 52: 4458-4466 [PMID: 1643638]

134 Guaiquil VH, Vera JC, Golde DW. Mechanism of vitamin C inhibition of cell death induced by oxidative stress in glutathione-depleted HL-60 cells. *J Biol Chem* 2001; 276: 40955-40961 [PMID: 11533037 DOI: 10.1074/jbc.M106878200]

135 Kim K, Bae ON, Koh SH, Kang S, Lim KM, Noh JY, Shin S, Kim I, Chung JH. High-Dose Vitamin C Inception to Cancer Patients May Promote Thrombosis Through Procoagulant Activation of Erythrocytes. *Toxicol Sci* 2015; 147: 350-359 [PMID: 26139164 DOI: 10.1093/toxsci/kfv133]

136 Creagan ET, Moertel CG, O’Fallon JR, Schutt AJ, O’Connell MJ, Rubin J, Frytak S. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. *N Engl J Med* 1979; 301: 687-690 [PMID: 384241 DOI: 10.1056/NEJM197909273011303]

137 Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM. High-dose vitamin C vs placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. *N Engl J Med* 1985; 312: 137-141 [PMID: 3880867 DOI: 10.1056/NEJM198501133120301]

P- Reviewer: Lin JA, Llompart-Pou JA, Kumar N, Willms DC
S- Editor: Ma YJ
L- Editor: Filipodia
E- Editor: Yin SY
