Supplementary Information

Ce$^{3+}$-enriched Spherical Porous Ceria with an Enhanced Oxygen Storage Capacity

Ayano Taniguchi, Yoshitaka Kumabe, Kai Kan, Masataka Ohtani* and Kazuya Kobiro*

a School of Environmental Science and Engineering,
b Laboratory for Structural Nanochemistry and
c Research Center for Molecular Design,
Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan

*Corresponding authors
Masataka Ohtani: ohtani.masataka@kochi-tech.ac.jp
Kazuya Kobiro: kobiro.kazuya@kochi-tech.ac.jp
Preparation of a ceria

CeO\textsubscript{2}-ME-FA: A methanol solution (3.5 mL) including Ce(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O (152 mg, 0.350 mmol) and formic acid (66.6 µL, 1.75 mmol) was transferred to an SUS316 batch-type reactor (10 mL volume). The reactor was heated up to 300 °C at a rate of 5.4 °C/min. The temperature was kept at 300 °C for 10 min, and then the reaction was quenched by placing the reactor into an ice-water bath. The obtained product was centrifuged, washed with methanol, and then dried under vacuum for overnight at room temperature to give a powder.

CeO\textsubscript{2}-ME-AA, CeO\textsubscript{2}-ME-BA, CeO\textsubscript{2}-ME-PA: CeO\textsubscript{2}-ME-AA, CeO\textsubscript{2}-ME-BA, and CeO\textsubscript{2}-ME-PA were prepared by similar process to CeO\textsubscript{2}-ME-FA by using 1.75 mmol of acetic acid, benzoic acid and phthalic acid as additives, respectively.

CeO\textsubscript{2}-ME-EG, CeO\textsubscript{2}-ME-dEG, CeO\textsubscript{2}-ME-tEG: CeO\textsubscript{2}-ME-EG, CeO\textsubscript{2}-ME-dEG, and CeO\textsubscript{2}-ME-tEG were prepared by similar process to CeO\textsubscript{2}-ME-FA by using 11.1 mmol of ethylene glycol, diethylene glycol and triethylene glycol as additives, respectively.

CeO\textsubscript{2}-AN: CeO\textsubscript{2}-AN was prepared by similar process to CeO\textsubscript{2}-ME-FA by using acetonitrile as a solvent without additive.

CeO\textsubscript{2}-AN-EG, CeO\textsubscript{2}-ME-dEG: CeO\textsubscript{2}-AN-EG and CeO\textsubscript{2}-ME-dEG were prepared by similar process to CeO\textsubscript{2}-ME-FA by using acetonitrile as a solvent with 11.1 mmol of ethylene glycol and diethylene glycol as additives, respectively.
Fig. S1 TG profile of as-synthesized CeO$_2$-AN-tEG (red) and calcined CeO$_2$-AN-tEG (green). Both of them showed less than 2% weight loss after 300 °C.

Fig. S2 N$_2$ adsorption/desorption measurements of CeO$_2$-AN-tEG. (a) Adsorption/desorption isotherm and (b) pore size distribution (BJH plot).
Fig. S3 Characterization of Pt-deposited CeO$_2$ catalyst. High resolution TEM images, STEM images and EDX mapping images of (a) Pt/CeO$_2$-AN-tEG and (b) Pt/JRC-CEO-5.

Fig. S4 Reaction path yielding N-benzylideneaniline from benzyl alcohol catalyzed by CeO$_2$.

\[
\text{Benzyl Alcohol} \xrightarrow{([O])} \text{Benzaldehyde} \xrightarrow{\text{Benzylamine}} \text{N-Benzylideneaniline}
\]
Fig. S5 Ce 3d HAXPES spectra of CeO$_2$-AN-tEG (red) and JRC-CEO-5 (black).

Fig. S6 Liquid phase oxidation reaction catalyzed by CeO$_2$. (a) Time course of imine yield with as-synthesized (red), calcined (green) and pretreated (violet) CeO$_2$-AN-tEG. Data on as-synthesized CeO$_2$-AN-tEG are same to those on CeO$_2$-AN-tEG showed in Fig. 3c. Calcination was performed at 300 °C for 1 h in air. (b) HAXPES spectrum of calcined CeO$_2$-AN-tEG at 300 °C for 1 h in air.
Fig. S7 SEM images of CeO$_2$, (a) CeO$_2$-AN7-W3-tEG, (b) CeO$_2$-AN5-W5-tEG and (c) CeO$_2$-W-tEG synthesized at 300 °C (scale bar: 2 µm). (d) XRD patterns of synthesized CeO$_2$, CeO$_2$-AN7-W3-tEG, CeO$_2$-AN5-W5-tEG and CeO$_2$-W-tEG. Black line represents reference XRD pattern of cubic CeO$_2$.

Fig. S8 SEM images of CeO$_2$, (a) CeO$_2$-AN7-W3-tEG, (b) CeO$_2$-AN5-W5-tEG and (c) CeO$_2$-W-tEG synthesized at 250 °C (scale bar: 2 µm).
Fig. S9 XRD peak of (220) facet (a) and lattice parameter (b) of CeO$_2$ prepared in acetonitrile/water mixed solvents with different ratio. CeO$_2$-AN-tEG (red), CeO$_2$-AN7-W3-tEG (violet), CeO$_2$-AN5-W5-tEG (blue) and CeO$_2$-W-tEG (green). Black line represents reference XRD pattern of cubic CeO$_2$.
Fig. S10 Ce 3d HAXPES spectra and peak fitting curves of CeO$_2$-AN7-W3-tEG, CeO$_2$-AN5-W5-tEG and CeO$_2$-W-tEG. Observed (green), Shirley base line (violet), deconvolution peaks of Ce$^{4+}$ (blue), deconvolution peaks of Ce$^{3+}$ (red) and simulated curve (black).
Fig. S11 H$_2$-TPR profiles of CeO$_2$-AN-tEG (red) and JRC-CEO-5 (black).

Fig. S12 Schematic diagram of CeO$_2$ reduction at 200 °C and 400 °C. (a) CeO$_2$-AN-tEG and (b) JRC-CEO-5. Ce$^{4+}$ (gray circle) is partially reduced by H$_2$ to yield Ce$^{3+}$ (violet circle). Then, new oxygen defects (square) are generated.
Table S1 Synthetic conditions of ceria porous spheres.

Sample name	Solvent	Additive	Temperature (°C)
CeO2-ME-FA	CH₃OH	Formic acid	300
CeO2-ME-AA	CH₃OH	Acetic acid	300
CeO2-ME-BA	CH₃OH	Benzoic acid	300
CeO2-ME-PA	CH₃OH	o-Phthalic acid	300
CeO2-ME-EG	CH₃OH	Ethylene glycol	300
CeO2-ME-dEG	CH₃OH	Diethylene glycol	300
CeO2-ME-tEG	CH₃OH	Triethylene glycol	300
CeO2-AN	CH₃CN	–	300
CeO2-AN-EG	CH₃CN	Ethylene glycol	300
CeO2-AN-dEG	CH₃CN	Diethylene glycol	300
CeO2-AN-tEG	CH₃CN	Triethylene glycol	300
CeO2-AN7-W3-tEG	CH₃CN/H₂O=7/3 (v/v)	Triethylene glycol	250^b
CeO2-AN5-W5-tEG	CH₃CN/H₂O=5/5 (v/v)	Triethylene glycol	250^b
CeO2-W-tEG	H₂O	Triethylene glycol	250^b

^a Short abbreviations ME, FA, AA, BA, PA, EG, dEG, tEG, AN and W represent methanol, formic acid, acetic acid, benzoic acid, o-phthalic acid, ethylene glycol, diethylene glycol, triethylene glycol, acetonitrile and water, respectively. ^b Diffraction peaks ascribed to non-cubic ceria phase were recognized in the XRD patterns of product obtained at 300 °C (Fig. S7). Then, reaction temperature was lowered to 250 °C (Fig. S8).
Table S2 Peak positions of Ce3d HAXPES spectra.

Sample name	Peak position (eV)									
	v⁰	v	v'	v''	u⁰	u	u'	u''	u'''	
CeO₂-AN-tEG	883.4	883.6	887.0	890.4	899.8	901.8	902.0	905.4	908.8	918.2
CeO₂-AN7-W3-tEG	882.6	883.3	886.2	889.8	899.1	901.0	901.7	904.6	908.2	917.5
CeO₂-AN5-W5-tEG	882.0	882.8	885.6	889.3	898.7	900.4	901.2	904.0	907.7	917.1
CeO₂-W-tEG	882.6	882.9	885.0	889.4	898.8	901.0	901.3	903.4	907.8	917.2
JRC-CEO-5	882.2	882.8	885.1	889.3	898.7	900.6	901.2	903.5	907.7	917.1

^a Short abbreviations tEG, AN, and W represent triethylene glycol, acetonitrile and water, respectively.

Table S3 Crystallite size and Ce³⁺ concentration of ceria.

Sample name^a	CeO₂-AN-tEG	CeO₂-AN7-W3-tEG	CeO₂-AN5-W5-tEG	CeO₂-W-tEG	JRC-CEO-5
Crystallite size (nm)	3.3	6.8	10.2	21.4	9.9
Ce³⁺ (at%)	57.4	36.7	36.3	22.6	22.5
Lattice parameter (nm)	0.544	0.544	0.543	0.542	0.541

^a Short abbreviations tEG, AN, and W represent triethylene glycol, acetonitrile and water, respectively.