Table of contents
1. Introduction
2. Lang-Trotter in the function field case: generalities and what we might hope for
3. Lang-Trotter in the function field case: the case of modular curves
4. Counting ordinary points on modular curves by class number formulas
5. Interlude: Brauer-Siegel for quadratic imaginary orders
6. Point-count estimates
7. Exact and approximate determination of Galois images
8. Gekeler’s product formula

1. Introduction

This paper grew out of an attempt to look at some aspects of a baby case of a striking conjecture of Lang-Trotter [L-T, page 33]. Suppose that K is a number field and E/K is an elliptic curve over K. Then E has good reduction at all but finitely many primes P of O_K; more precisely, its Neron model E/\mathcal{O}_K is, when pulled back to $\mathcal{O}_K[1/\Delta]$ for some nonzero integer $\Delta \in \mathbb{Z}$, a one-dimensional abelian scheme over $\mathcal{O}_K[1/\Delta]$. For each prime P of good reduction, denoting $\mathbb{F}_P := \mathcal{O}_K/\mathcal{P}, N(\mathcal{P}) := \#(\mathbb{F}_P)$, we have the integer A_P defined by

$$\#E(\mathbb{F}_P) = N(\mathcal{P}) + 1 - A_P.$$

Lang-Trotter try to predict, for a given E/K, which integers A should occur as A_P for an infinity of primes \mathcal{P}. The Hasse bound

$$|A_P| \leq 2\sqrt{N(\mathcal{P})}$$

is irrelevant here, since any given integer A will satisfy the archimedean condition $|A| \leq 2\sqrt{N(\mathcal{P})}$ for all but finitely all primes \mathcal{P}. On the other hand, there may well be a congruence obstruction. Suppose for example that the group $E(K)$ contains a point P of order $N \geq 2$. This point P extends to a point $P_{\mathcal{O}_K}$ in $E(\mathcal{O}_K)$ whose image in $E(\mathbb{F}_P)$ is, for every
prime \(\mathcal{P} \) not dividing \(N\Delta \), a point of order \(N \) in \(E(F_{\mathcal{P}}) \). Therefore \(N \) divides \(\#E(F_{\mathcal{P}}) \), so we have the congruence

\[A_{\mathcal{P}} \equiv N(\mathcal{P}) + 1 \mod N. \]

So in this example, we see that \(A = 1 \) cannot occur as \(A_{\mathcal{P}} \) unless \(N|N(\mathcal{P}) \); there are no such \(\mathcal{P} \) unless \(N \) is itself a prime power, say \(p^a \), and then only the primes \(\mathcal{P} \) of residue characteristic \(p \) can possibly have \(A_{\mathcal{P}} = 1 \), cf. [Maz, pp. 186-188].

The most general sort of congruence obstruction arises as follows. For each integer \(N \geq 2 \), we have the “mod \(N \) representation” attached to \(E/K \), given by the action of \(Gal(K/K) \) on the group \(E(K)[N] \) of points of order dividing \(N \). This group is noncanonically \(\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \), and the representation is unramified outside of \(N\Delta \), so we may view it as a homomorphism

\[\rho_N : \pi_1(Spec(O_K[1/N\Delta])) \to Aut_{gp}(E(\mathbb{Q})[N]) \cong GL(2, \mathbb{Z}/N\mathbb{Z}). \]

The key compatibility is that for any prime \(\mathcal{P} \) not dividing \(N\Delta \), the arithmetic Frobenius conjugacy class

\[Frob_{\mathcal{P}} \in \pi_1(Spec(O_K[1/N\Delta])) \]

has

\[\text{Trace}(\rho_N(Frob_{\mathcal{P}})) \equiv A_{\mathcal{P}} \mod N, \quad \text{det}(\rho_N(Frob_{\mathcal{P}})) \equiv N(\mathcal{P}) \mod N. \]

Now consider the image group \(\text{Im}(\rho_N) \subset GL(2, \mathbb{Z}/N\mathbb{Z}) \). If this group contains at least one element whose trace is \(A \mod N \), then by Chebotarev the set of primes \(\mathcal{P} \) not dividing \(N\Delta \) for which \(A_{\mathcal{P}} \equiv A \mod N \) has a strictly positive Dirichlet density, so in particular is infinite. On the other hand, if the image group \(\text{Im}(\rho_N) \subset GL(2, \mathbb{Z}/N\mathbb{Z}) \) contains no element whose trace is \(A \mod N \), then \(A_{\mathcal{P}} \equiv A \mod N \) can hold at most for one of the finitely many primes \(\mathcal{P} \) dividing \(N \). In this second case, we say that \(A \) has a congruence obstruction mod \(N \) to having \(A_{\mathcal{P}} = A \) for infinitely many primes \(p \).

Given an elliptic curve \(E/K \) and an integer \(A \), we say that \(A \) has no congruence obstruction if, for every integer \(N \geq 2 \), the image group \(\text{Im}(\rho_N) \subset GL(2, \mathbb{Z}/N\mathbb{Z}) \) contains an element whose trace is \(A \mod N \), or equivalently, if for every integer \(N \geq 2 \), the congruence \(A_{\mathcal{P}} \equiv A \mod N \) holds for infinitely many \(\mathcal{P} \).

The weak form of the Lang-Trotter conjecture we have in mind is this.

Conjecture 1.1. (Weak Lang-Trotter) Given a number field \(K \), an elliptic curve \(E/K \) and an integer \(A \), suppose that \(A \) has no congruence
obstruction. Then there are infinitely many primes \mathcal{P} for which $A_\mathcal{P} = A$.

We call this the weak conjecture because Lang-Trotter give a more precise conjecture, at least when E/K is not CM, which we will call the precise Lang-Trotter conjecture. [Strictly speaking, Lang-Trotter only formulate it in the case of $K = \mathbb{Q}$.] For an A with no congruence obstruction, the precise Lang-Trotter conjecture asserts that as the real constant X grows, the ratio

$$\frac{\# \{ \text{primes } \mathcal{P} \text{ with } N(A_\mathcal{P}) \leq X \text{ and } A_\mathcal{P} = A \}}{(2/\pi)\sqrt{X}/\log(X)}$$

tends to a nonzero limit, and gives a conjectural formula for this nonzero limit, as follows. For each integer $N \geq 2$, consider the finite group

$$G_N := \text{Im}(\rho_N) \subset GL(2, \mathbb{Z}/N\mathbb{Z}).$$

For each $a \in \mathbb{Z}/N\mathbb{Z}$, we have the subset $G_{N,a} \subset G_N$ defined as

$$G_{N,a} := \{ \text{elements } \gamma \in G_N \text{ with } \text{Trace}(\gamma) = a \},$$

whose cardinality we denote

$$g_{N,a} := \#G_{N,a}.$$

We define

$$g_{N,\text{avg}} := (1/N) \sum_{a \mod N} g_{N,a} = (1/N)\#G_N$$

to be the average, over a, of $g_{N,a}$. For an A with no congruence obstruction, Lang-Trotter show that as N grows multiplicatively, the ratio

$$g_{N,A}/g_{N,\text{avg}},$$

(which Lang-Trotter write as $Ng_{N,A}/\#G_N$) tends to a nonzero (archimedean) limit. This is the conjectural large X limit of

$$\frac{\# \{ \text{primes } \mathcal{P} \text{ with } N(A_\mathcal{P}) \leq X \text{ and } A_\mathcal{P} = A \}}{(2/\pi)\sqrt{X}/\log(X)}.$$

This more precise form seems completely out of reach, although various “averaged” versions of it have been established, cf. [Da-Pa] and [Ba].

Here is a weaker, though still quantitative, form of the precise Lang-Trotter conjecture, still completely out of reach, which we call the qualitative Lang-Trotter conjecture. Again suppose E/K is not CM, and that A has no congruence obstruction. Given any real $\epsilon > 0$, the
qualitative Lang-Trotter conjecture asserts that for real $X >> \epsilon 0$, we have the upper and lower bounds

$$X^{\frac{1}{2} - \epsilon} < \#\{\text{primes } \mathcal{P} \text{ with } N(A_\mathcal{P}) \leq X \text{ and } A_\mathcal{P} = A\} < X^{\frac{1}{2} + \epsilon}.$$

Perhaps the only known case of the weak Lang-Trotter conjecture is this. Suppose that the number field K has at least one real place. Then $\text{Gal}(\overline{K}/K)$ contains a corresponding “complex conjugation” conjugacy class c, whose image in every mod N representation has trace 0 and determinant -1. So Lang-Trotter predicts that for such a field K, and for any E/K, $A_\mathcal{P} = 0$ should hold for infinitely many \mathcal{P}. That this is true is a celebrated result of Elkies, cf. [Elkies-Real] and [Elkies-SS].

There is another special case of the weak Lang-Trotter conjecture which it seems worth drawing attention to. Whatever the elliptic curve E/K, and whatever the integer $N \geq 2$, the image group $\text{Im}(\rho_N) \subset GL(2, \mathbb{Z}/N\mathbb{Z})$ certainly contains the identity element, whose trace is 2 mod N. So whatever the elliptic curve E/K, 2 has no congruence obstruction. Thus we get the following conjecture.

Conjecture 1.2. Given a number field K and an elliptic curve E/K, there are infinitely many primes \mathcal{P} for which $A_\mathcal{P} = 2$.

There is no single case of this conjecture that is known. But already very special cases are extremely interesting. Consider the special case when $K = \mathbb{Q}$ and where E/\mathbb{Q} is the lemniscate curve $y^2 = x^3 - x$, which has good reduction outside of 2. Here we know the explicit “formula” for A_p, cf. [Ir-Ros, Chpt.18, &4, Thm. 5]. If $p \equiv 3 \text{ mod } 4$, then $A_p = 0$. If $p \equiv 1 \text{ mod } 4$, then we can write $p = a^2 + b^2$ with integers a, b, a odd, b even, and $a \equiv 1 + b \text{ mod } 4$. This specifies a uniquely, and it specifies $\pm b$. [More conceptually, the two gaussian integers $a \pm bi$ are the unique gaussian primes in $\mathbb{Z}[i]$ which are 1 mod $2 + 2i$ and which lie over p.] Then $A_p = 2a$. So we have $A_p = 2$ precisely when there is a gaussian prime of the form $1 + bi$ with $1 \equiv 1 + b \text{ mod } 4$, i.e. with $b = 4n$ for some integer n. Thus $A_p = 2$ precisely when there exists an integer n with

$$p = 1 + 16n^2.$$

So the conjecture for this particular curve is the statement that there are infinitely many primes of the form $1 + 16n^2$.

2. **Lang-Trotter in the function field case: generalities and what we might hope for**

We now turn to a discussion of the Lang-Trotter conjecture in the function field case, cf. [Pa] for an earlier discussion (but note that
his Proposition 4.4 is incorrect). Thus we let k be a finite field \mathbb{F}_q of some characteristic $p > 0$, X/k a projective, smooth, geometrically connected curve, K the function field of X, and E/K an elliptic curve over K. Then E has good reduction at all but finitely many closed points $\mathcal{P} \in X$; more precisely, its Neron model \mathcal{E}/X is, over some dense open set $U \subset X$, a one-dimensional abelian scheme. For each closed point $\mathcal{P} \in U$, with residue field $\mathbb{F}_\mathcal{P}$ of cardinality $N(\mathcal{P})$, we have the elliptic curve $\mathcal{E}_\mathcal{P}/\mathbb{F}_\mathcal{P} := \mathcal{E} \otimes_U \mathbb{F}_\mathcal{P}/\mathbb{F}_\mathcal{P}$, and the integer $A_\mathcal{P}$ defined by

$$\# \mathcal{E}_\mathcal{P}(\mathbb{F}_\mathcal{P}) = N(\mathcal{P}) + 1 - A_\mathcal{P}.$$

Exactly as in the number field case, the idea is to try to guess for which integers A there should exist infinitely many closed points $\mathcal{P} \in U$ with $A_\mathcal{P} = A$, and if possible to be more precise about how many such closed points there are of any given degree. We will try to do this when both of the following two hypotheses hold.

(NCj) The j-invariant $j(E/K) \in K$ is nonconstant, i.e., does not lie in k.

(Ord) For each $\mathcal{P} \in U$, the elliptic curve $\mathcal{E} \otimes_U \mathbb{F}_\mathcal{P}/\mathbb{F}_\mathcal{P}$ is ordinary, i.e., the integer $A_\mathcal{P}$ is prime to $p := \text{char}(K)$.

Remark 2.1. The reason we assume (NCj) is this. If (NCj) does not hold, i.e., if our family has constant j, then for any nonzero integer A, the equality $A_\mathcal{P} = A$ holds for at most finitely many \mathcal{P}. Why is this so? If this constant j is supersingular (:= not ordinary), then for each \mathcal{P}, the elliptic curve $\mathcal{E} \otimes_U \mathbb{F}_\mathcal{P}/\mathbb{F}_\mathcal{P}$ is supersingular. So the integer $A_\mathcal{P}$ is divisible, as an algebraic integer, by $N(\mathcal{P})^{1/2}$, and hence either $A_\mathcal{P} = 0$ or we have the inequality $|A_\mathcal{P}| \geq N(\mathcal{P})^{1/2}$. As there are only finitely many \mathcal{P} of any given norm, the result follows. If, on the other hand, the constant j is ordinary, then $A_\mathcal{P}$ is never zero (because it is prime to p), and one knows [?, 2.10] that $|A_\mathcal{P}| \to \infty$ as $\deg(\mathcal{P}) \to \infty$. So in this ordinary case as well, for any given integer A, the equality $A_\mathcal{P} = A$ holds for at most finitely many \mathcal{P}.

Remark 2.2. When (NCj) holds, any U of good reduction contains at most finitely many closed points \mathcal{P} which are supersingular (:= not ordinary) [simply because the values at all supersingular points of the nonconstant function j lie in the finite set \mathbb{F}_q^2]. Removing the supersingular points gives us a smaller dense open $\tilde{U} \subset X$ over which (Ord) holds, and does not affect which integers A occur as $A_\mathcal{P}$ for infinitely many \mathcal{P}.

So we now let k be a finite field \mathbb{F}_q of some characteristic $p > 0$, U/k a smooth, geometrically connected curve with function field K,
and \mathcal{E}/U an elliptic curve over U whose j-invariant is nonconstant and which is fibre by fibre ordinary. There are slight differences from the number field case which we must take into account.

The first is that inside the fundamental group $\pi_1(U)$ we have the normal subgroup $\pi_1^{geom}(U) := \pi_1(U \otimes_k \overline{k})$, which sits in a short exact sequence

$$
\{1\} \to \pi_1^{geom}(U) \to \pi_1(U) \xrightarrow{deg} Gal(\overline{k}/k) \cong \hat{\mathbb{Z}} \to \{1\}.
$$

For each finite extension field \mathbb{F}_Q/k, and each \mathbb{F}_Q-valued point $u \in U(\mathbb{F}_Q)$, we have its arithmetic Frobenius conjugacy class $Frob_u,\mathbb{F}_Q \in \pi_1(U)$, whose image in $Gal(\overline{k}/k)$ is the $\#\mathbb{F}_Q$’th power automorphism of \overline{k}. For a closed point \mathcal{P} of U of some degree $d \geq 1$, viewed as a $Gal(\overline{k}/k)$-orbit of length d in $U(\overline{k})$, we have the arithmetic Frobenius conjugacy class $Frob_\mathcal{P} \in \pi_1(U)$, equal to the class of $Frob_{u,\mathbb{F}_Q}$ for \mathbb{F}_Q the residue field \mathbb{F}_q^d of \mathcal{P} and for $u \in U(\mathbb{F}_Q)$ any point in the orbit which “is” \mathcal{P}. For any element $F \in \pi_1(U)$ of degree one, e.g., $Frob_{u,k}$ if there exists a k-rational point of U, we have a semidirect product description

$$
\pi_1^{geom}(U) \rtimes < F > \xrightarrow{\sim} \pi_1(U)
$$

where $< F > \xrightarrow{\sim} \hat{\mathbb{Z}}$ is the pro-cyclic group generated by F.

The second difference from the number field case is that only for integers $N_0 \geq 2$ which are prime to p is the group scheme $\mathcal{E}[N_0]$ a finite etale form of $\mathbb{Z}/N_0\mathbb{Z} \times \mathbb{Z}/N_0\mathbb{Z}$. So it is only for integers $N_0 \geq 2$ which are prime to p that we get a mod N_0 representation

$$
\rho_{N_0} : \pi_1(U) \to (GL(2,\mathbb{Z}/N_0\mathbb{Z})).
$$

For a finite extension field \mathbb{F}_Q/k, and an \mathbb{F}_Q-valued point $u \in U(\mathbb{F}_Q)$, we have an elliptic curve $\mathcal{E}_{u,\mathbb{F}_Q}/\mathbb{F}_Q$, the number of whose \mathbb{F}_Q-rational points we write

$$
\mathcal{E}_{u,\mathbb{F}_Q}(\mathbb{F}_Q) = Q + 1 - A_{u,\mathbb{F}_Q}.
$$

The fundamental compatibility is that for each $N_0 \geq 2$ which is prime to p, we have

$$
Trace(\rho_{N_0}(Frob_{u,\mathbb{F}_Q})) \equiv A_{u,\mathbb{F}_Q} \mod N_0, \det(\rho_{N_0}(Frob_{u,\mathbb{F}_Q})) \equiv Q \mod N_0.
$$

In particular, for a closed point \mathcal{P} of U, we

$$
Trace(\rho_{N_0}(Frob_\mathcal{P})) \equiv A_\mathcal{P} \mod N_0, \det(\rho_{N_0}(Frob_\mathcal{P})) \equiv N(\mathcal{P}) \mod N_0.
$$

The third difference from the number field case is that, because \mathcal{E}/U is fibre by fibre ordinary, the p-divisible group $\mathcal{E}[p^{\infty}]$ sits in a short
exact sequence

\[0 \to \mathcal{E} [p^\infty]^0 \to \mathcal{E} [p^\infty] \to \mathcal{E} [p^\infty]^{\text{et}} \to 0, \]

in which the quotient \(\mathcal{E} [p^\infty]^{\text{et}} \) is a form of \(\mathbb{Q}_p / \mathbb{Z}_p \), and the kernel \(\mathcal{E} [p^\infty]^0 \) is the dual form of \(\mu_{p^\infty} \). So the quotient \(\mathcal{E} [p^\infty]^{\text{et}} \) gives us a homomorphism

\[\rho_{p^\infty} : \pi_1(U) \to \text{Aut}_{gp}(\mathbb{Q}_p / \mathbb{Z}_p) \cong GL(1, \mathbb{Z}_p) \cong \mathbb{Z}_p^\times. \]

On Frobenius elements, this \(p \)-adic character \(\rho_{p^\infty} \) of \(\pi_1(U) \) gives the \(p \)-adic unit eigenvalue of Frobenius: the fact that the integer \(A_{u,\mathbb{F}_Q} \), resp. \(A_P \), is prime to \(p \) implies that the integer polynomial

\[X^2 - A_{u,\mathbb{F}_Q} X + Q, \]

resp. \(X^2 - A_P X + N(\mathcal{P}) \),

has a unique root in \(\mathbb{Z}_p^\times \), namely \(\rho_{p^\infty}(\text{Frob}_{u,\mathbb{F}_Q}) \), resp. \(\rho_{p^\infty}(\text{Frob}_P) \).

More concretely, we have identities in \(\mathbb{Z}_p \),

\[A_{u,\mathbb{F}_Q} = \rho_{p^\infty}(\text{Frob}_{u,\mathbb{F}_Q}) + Q / \rho_{p^\infty}(\text{Frob}_{u,\mathbb{F}_Q}), \]

\[A_P = \rho_{p^\infty}(\text{Frob}_P) + N(\mathcal{P}) / \rho_{p^\infty}(\text{Frob}_P). \]

Given a prime-to-\(p \) integer \(A \), and a power \(Q \) of \(p \), we denote by \(\text{unit}_Q(A) \in \mathbb{Z}_p^\times \) the unique root in \(\mathbb{Z}_p^\times \) of the polynomial \(X^2 - AX + Q \).

We have

\[X^2 - AX + Q = (X - \text{unit}_Q(A))(X - Q / \text{unit}_Q(A)). \]

Thus

\[\rho_{p^\infty}(\text{Frob}_{u,\mathbb{F}_Q}) = \text{unit}_Q(A_{u,\mathbb{F}_Q}), \]

\[\rho_{p^\infty}(\text{Frob}_P) = \text{unit}_{N(\mathcal{P})}(A_P). \]

If \(Q \geq p^\nu \), resp. if \(N(\mathcal{P}) \geq p^\nu \), then we have the congruences

\[\text{unit}_Q(A_{u,\mathbb{F}_Q}) \equiv A_{u,\mathbb{F}_Q} \mod p^\nu, \]

\[\text{unit}_{N(\mathcal{P})}(A_P) \equiv A_P \mod p^\nu. \]

For a fixed power \(p^\nu \) of \(p \), \(\nu \geq 0 \), we denote by

\[\rho_{p^\nu} : \pi_1(U) \to (\mathbb{Z}_p / p^\nu \mathbb{Z}_p)^\times \]

the reduction mod \(p^\nu \) of \(\rho_{p^\infty} \), with the convention that for \(\nu = 0 \), \(\rho_{p^0} \) is the trivial representation toward the trivial group. Thus if \(Q \geq p^\nu \), resp. if \(N(\mathcal{P}) \geq p^\nu \), then we have the congruences

\[\rho_{p^\nu}(\text{Frob}_{u,\mathbb{F}_Q}) \equiv A_{u,\mathbb{F}_Q} \mod p^\nu, \]

\[\rho_{p^\nu}(\text{Frob}_P) \equiv A_P \mod p^\nu. \]

Given an integer \(A \), we can of course ask if \(A = A_P \) for infinitely many closed points \(\mathcal{P} \). But in the function field case there are two additional questions we can ask.
(1) For a given finite extension \mathbb{F}_Q/k is there a closed point P with residue field \mathbb{F}_Q, i.e. with $N(P) = Q$, and with $A = A_P$? If so, how many such closed points are there?

(2) For a given finite extension \mathbb{F}_Q/k is there an \mathbb{F}_Q-valued point $u \in U(\mathbb{F}_Q)$ with $A = A_{u,F_Q}$? If so, how many such \mathbb{F}_Q-valued points are there?

To describe conjectural answers to these questions, we need some notation. Given an integer $N \geq 2$, factor it as $N = N_0 p^\nu$ with N_0 prime to p and $\nu \geq 0$. Then form the product representation

$$\rho_N := \rho_{N_0} \times \rho_{p^\nu} : \pi_1(U) \to GL(2, \mathbb{Z}/N_0\mathbb{Z}) \times (\mathbb{Z}/p^\nu\mathbb{Z})^\times.$$

We will write an element of the product group as $(g_{N_0}, \gamma_{p^\nu}) \in GL(2, \mathbb{Z}/N_0\mathbb{Z}) \times (\mathbb{Z}/p^\nu\mathbb{Z})^\times$.

We define its determinant in $(\mathbb{Z}/N_0\mathbb{Z})^\times$ by $\text{det}(g_{N_0}, \gamma_{p^\nu}) := \text{det}(g_{N_0}) \in \mathbb{Z}/N_0\mathbb{Z}$, and its trace in $\mathbb{Z}/N\mathbb{Z}$ by

$$\text{Trace}(g_{N_0}, \gamma_{p^\nu}) := (\text{Trace}(g_{N_0}), \gamma_{p^\nu}) \in \mathbb{Z}/N_0\mathbb{Z} \times \mathbb{Z}/p^\nu\mathbb{Z} \hookrightarrow \mathbb{Z}/N\mathbb{Z},$$

the last arrow being “simultaneous reduction” mod N_0 and p^ν.

In analogy to the number field case, we denote by G_N the image group

$$G_N := \rho_N(\pi_1(U)) \subset GL(2, \mathbb{Z}/N_0\mathbb{Z}) \times (\mathbb{Z}/p^\nu\mathbb{Z})^\times.$$

But in the function field case, we must consider also the normal subgroup $G_N^{\text{geom}} \triangleleft G_N$ defined as

$$G_N^{\text{geom}} := \rho_N(\pi_1^{\text{geom}}(U)).$$

For each strictly positive power $Q = (\# k)^d$ of $\# k$, we define $G_{N, \text{det}=Q} \subset G_N$ to be the coset of G_N^{geom} defined by

$$G_{N, \text{det}=Q} := \rho_N(\pi_1(\text{deg}=d)) = \rho_N(F^d, \pi_1^{\text{geom}}(U)) = \rho_N(F)^d G_N^{\text{geom}},$$

for any element $F \in \pi_1(U)$ of degree one.

And for each integer $A \mod N$, we define $G_N(A, Q) \subset G_{N, \text{det}=Q}$ as follows. If N is prime to p, i.e., if $N = N_0$, then $G_N(A, Q)$ is the subset of $G_{N_0, \text{det}=Q}$ consisting of those elements whose trace is $A \mod N_0$. If $p | N$, then $G_N(A, Q)$ is empty if $p | A$. If $f p | N$ and A is prime to p, it is the subset of $G_{N, \text{det}=Q}$ consisting of those elements whose trace is $(A \mod N_0, \text{unit}_Q(A) \mod p^\nu)$ in $\mathbb{Z}/N_0\mathbb{Z} \times \mathbb{Z}/p^\nu\mathbb{Z}$. [This makes sense, because, for any fixed Q as above, if an integer A is invertible mod p,
then \(\text{unit}_Q(A) \mod p^\nu \) depends only on \(A \mod p^\nu \). But only for \(Q \geq p^\nu \) will we have \(\text{unit}_Q(A) \equiv A \mod p^\nu \).

For later use, we define

\[
\begin{align*}
g_{N,\text{det}=Q} & := \#G_{N,\text{det}=Q}, \\
g_N(A, Q) & := \#G_N(A, Q), \\
g_N(\text{avg}, Q) & := (1/N) \sum_{A \mod N} g_N(A, Q) = (1/N)g_{N,\text{det}=Q}.
\end{align*}
\]

The relevance of the subsets \(G_N(A, Q) \subset G_{N,\text{det}=Q} \subset G_N \) is this. Suppose we are given an integer \(A \) prime to \(p \), and a power \(Q \) of \(\# k \). If there is an \(\mathbb{F}_Q \)-valued point \(u \in U(\mathbb{F}_Q) \) with \(A_u,\mathbb{F}_Q = A \), resp. a closed point \(P \) with norm \(Q \) and \(A_P = A \), then for every \(N \geq 2 \), \(\rho_N(Frob_{u,\mathbb{F}_Q}) \), resp. \(\rho_N(Frob_P) \), lies in \(G_N(A, Q) \).

We say that the data \((A, Q)\), \(A \) an integer prime to \(p \) and \(Q \) a (strictly positive) power of \(\# k \), has a congruence obstruction at \(N \) if the set \(G_N(A, Q) \) is empty. And we say that \((A, Q)\) has an archimedean obstruction if \(A^2 > 4Q \).

The most optimistic hope is that if \((A, Q)\) has neither archimedean nor congruence obstruction (i.e., \(A \) prime to \(p \), \(|A| < 2\sqrt{Q} \), and for all \(N \geq 2 \) the set \(G_N(A, Q) \) is nonempty), then there should be a closed point \(P \) with norm \(Q \) and \(A_P = A \). [And we might even speculate about how many, at least if \(Q \) is suitable large.] Unfortunately, this hope is false for trivial reasons; we can remove from \(U \) all its closed points of any given degree and obtain now a new situation where the groups \(G_N \), being birational invariants, are unchanged, but where there are no closed points whatever of the given degree. What is to be done? One possibility is to make this sort of counterexample illegal: go back to the projective smooth geometrically connected curve \(X/k \) with function field \(K \) in which \(U \) sits as a dense open set, and replace \(U \) by the possibly larger open set \(U_{max} \subset X \) we obtain by removing from \(X \) only those points at which the Neron model of \(E_K/K \) has either bad reduction or supersingular reduction. But even this alleged remedy is insufficient, as we will see below. It is still conceivable that if \((A, Q)\) has neither archimedean nor congruence obstruction there is an \(\mathbb{F}_Q \)-point \(u \in U_{max} \) such that \(Frob_{u,\mathbb{F}_Q} \) gives rise to \((A, Q)\); the counterexample below does not rule out this possibility.

Here is the simplest counterexample. Take any prime power \(q = p^\nu \geq 4 \), take for \(U = U_{max} \) the (ordinary part of the) Igusa curve \(Ig(q)^\text{ord}/\mathbb{F}_q \), and take for \(E/U \) the corresponding universal elliptic curve. For a finite field (or indeed for any perfect field) \(L/k \), an \(L \)-valued point \(u \in Ig(q)^\text{ord}(L) \) is an \(L \)-isomorphism class of pairs \((E/L, P \in E[q](L)) \).
consisting of an elliptic curve E/L together with an L-rational point of order q. Now consider the data $(A = 1 - 2q, Q = q^2)$. The key fact is that any E_2/\mathbb{F}_{q^2} with trace $A_2 = 1 - 2q$ is isomorphic to the extension of scalars of a unique E_1/\mathbb{F}_q with trace $A_1 = 1$, as will be shown in Lemma 4.1. But any such E_1/\mathbb{F}_q has q rational points, so the group $E_1(\mathbb{F}_q)$ is cyclic of order q, and hence every point of order q in $E_1(\mathbb{F}_q)$, is already \mathbb{F}_q-rational. So although the data $(A = 1 - 2q, Q = q^2)$ occurs from an \mathbb{F}_{q^2}-point, and hence has no congruence obstruction, it does not occur from a closed point of degree 2.

There are three plausible hopes one might entertain in the function field case. Let \mathcal{E}/U be as above (fibrewise ordinary, nonconstant j-invariant). Here are the first two.

HOPE (1) Given a prime-to-p integer A, there exists a real constant $C(A, \mathcal{E}/U)$ with the following property. If Q is a power of $\# k$ with $Q \geq C(A, \mathcal{E}/U)$, and if (A, Q) has neither archimedean nor congruence obstruction, then there exists a closed point P with norm Q and $A_P = A$.

HOPE (2) Given a prime-to-p integer A, and a real number $\epsilon > 0$, there exists a real constant $C(A, \epsilon, \mathcal{E}/U)$ with the following property. If Q is a power of $\# k$ with $Q \geq C(A, \epsilon, \mathcal{E}/U)$, and if (A, Q) has neither archimedean nor congruence obstruction, then for the number $\pi_{A, Q}$ of closed points with norm Q and $A_P = A$ and for the number $n_{A, Q}$ of \mathbb{F}_Q-valued points $u \in U(\mathbb{F}_Q)$ with $A_{u, \mathbb{F}_Q} = A$ we have the inequalities

$$Q^{\frac{1}{2} - \epsilon} < \pi_{A, Q} \leq n_{A, Q} < Q^{\frac{1}{2} + \epsilon}.$$

To describe the final hope, we must discuss another, weaker, notion of congruence obstruction. Given a prime-to-p integer A, suppose there are infinitely many closed points P with $A_P = A$. Then as there are only finitely many closed points of each degree, it follows that there are infinitely many powers Q_i of $\# k$ for which (A, Q_i) has no congruence obstruction (and of course no archimedean obstruction either). For a fixed $N = N_0p^\nu$, if Q_i is sufficiently large ($Q_i \geq p^\nu$ being the precise condition), then G_N contains an element whose trace is A mod N.

So we are led to a weaker notion of congruence obstruction, which is the literal analogue of the number field condition: we say that the prime-to-p integer A has a congruence obstruction at N if G_N contains no element whose trace is A mod N, and we say that A has a congruence obstruction if it has one at N for some N. This brings us to the third hope.
HOPE (3) Suppose the prime-to-p integer A has no congruence obstruction. Then there exist infinitely many closed points P with $A_P = A$.

Notice, however, that the assumption that A has no congruence obstruction is, at least on its face, much weaker than the assumption that there are infinitely many powers Q_i of $\#k$ for which (A, Q_i) has no congruence obstruction.

3. Lang-Trotter in the function field case: the case of modular curves

In the number field case, there is no elliptic curve where we know Lang-Trotter for even a single nonzero integer A. But over any finite field k, we will show that there are infinitely many examples of situations $E/U/k$, nonconstant j-invariant and fibrewise ordinary, where all three of our hopes are provably correct. These examples are provided by modular curves over finite fields, and the universal families of elliptic curves they carry.

Let us first describe the sorts of level structures we propose to deal with in a given characteristic $p > 0$. We specify three prime-to-p positive integers (L, M, N_0) and a power $p^\nu \geq 1$ of p. We assume that (L, M, N_0) are pairwise relatively prime.

Given this data, we work over a finite extension k/\mathbb{F}_p given with a primitive N_0’th root of unity $\zeta_{N_0} \in k$, and consider the moduli problem, on k-schemes S/k, of S-isomorphism classes of fibrewise ordinary elliptic curves E/S endowed with all of the following data, which for brevity we will call an \mathcal{M}-structure on E/S.

(1) A cyclic subgroup of order L, i.e., a $\Gamma_0(L)$-structure on E/S.
(2) A point P_M of order M, i.e., a $\Gamma_1(M)$-structure on E/S.
(3) A basis (Q, R) of $E[N_0]$ with $e_{N_0}(Q, R) = \zeta_{N_0}$, i.e., an oriented $\Gamma(N_0)$-structure on E/S.
(4) A generator T of $\text{Ker}(V^\nu : E(p^\nu/S) \to E)$, i.e., an $Ig(p^\nu)$-structure on E/S.

Having specified a finite extension k/\mathbb{F}_p given with a primitive N_0’th root of unity $\zeta_{N_0} \in k$ and the data (L, M, N_0, p^ν) above, we make the further assumption that at least one of the following three conditions holds:

(1) $M \geq 4$,
(2) $N_0 \geq 3$,
(3) $p^\nu \geq 4$.
This assumption guarantees that the associated moduli problem is representable by a smooth, geometrically connected \(k \)-curve \(\mathcal{M}^{\text{ord}} \) over which we have the corresponding universal family \(\mathcal{E}^{\text{univ}}/\mathcal{M}^{\text{ord}} \). For this situation, points of \(\mathcal{M}^{\text{ord}} \) have a completely explicit description.

For any \(k \)-scheme \(S/k \), the \(S \)-valued points of \(\mathcal{M}^{\text{ord}} \) are precisely the \(S \)-isomorphism classes of fibrewise ordinary elliptic curves \(E/S \) endowed with an \(\mathcal{M} \)-structure. In particular, for \(\mathbb{F}_Q/k \) a finite overfield, an \(\mathbb{F}_Q \)-valued point of \(\mathcal{M}^{\text{ord}} \) is an \(\mathbb{F}_Q \)-isomorphism class of pairs

(an ordinary elliptic curve \(E/\mathbb{F}_Q \), an \(\mathcal{M} \)-structure on it).

What about closed points \(P \) of \(\mathcal{M}^{\text{ord}} \) with norm \(N(P) = Q \)? These are precisely the orbits of \(\text{Gal}(\mathbb{F}_Q/k) \) on the set \(\mathcal{M}^{\text{ord}}(\mathbb{F}_Q) \) which contain \(\text{deg}(\mathbb{F}_Q/k) \) distinct \(\mathbb{F}_Q \)-valued points. In more down to earth terms, an \(\mathbb{F}_Q \)-valued point lies in the orbit of a closed point of norm \(N(P) = Q \) if and only it is not (the extension of scalars of) a point with values in a proper subfield \(k \subset \mathbb{F}_Q, \mathbb{F}_Q \neq \mathbb{F}_Q \). Let us denote by

\[
\mathcal{M}^{\text{ord}}(\mathbb{F}_Q)_{\text{prim}} \subset \mathcal{M}^{\text{ord}}(\mathbb{F}_Q)
\]

those \(\mathbb{F}_Q \)-valued points which lie in no proper subfield. So we have the tautological formula

\[
\#\{\text{closed points with norm } Q\} = \frac{\#\mathcal{M}^{\text{ord}}(\mathbb{F}_Q)_{\text{prim}}}{\text{deg}(\mathbb{F}_Q/k)}.
\]

4. COUNTING ORDINARY POINTS ON MODULAR CURVES BY CLASS NUMBER FORMULAS

In this section, we recall the use of class number formulas in counting ordinary points. In a later section, we will invoke the Brauer-Siegel theorem (but only for quadratic imaginary fields, so really Siegel’s theorem [Sie]) and its extension to quadratic imaginary orders, to convert these class number formulas into the explicit upper and lower bounds asserted in HOPE (2).] These class number formulas go back to Deuring [Deu], cf. also Waterhouse [Wat]. As Howe points out [Howe], the story is considerably simplified if we make use of Deligne’s description [De-VA] of ordinary elliptic curves over a given finite field. Let \(\mathbb{F}_q \) be a finite field, and \(E/\mathbb{F}_q \) an ordinary elliptic curve. We have

\[
\#E(\mathbb{F}_q) = q + 1 - A,
\]

for some prime-to-\(p \) integer \(A \) satisfying

\[
A^2 < 4q.
\]

Conversely, given any prime-to-\(p \) integer \(A \) satisfying

\[
A^2 < 4q,
\]
one knows by Honda-Tate, cf. [Honda] and [Tate], that there is at least one ordinary elliptic curve \(E/F_q \) with
\[
\#E(F_q) = q + 1 - A.
\]

The first question, then, is to describe, for fixed \((A,q)\) as above (i.e., \(A\) prime-to-\(p\) with \(A^2 < 4q\)) the category of all ordinary elliptic curves \(E/F_q \) with
\[
\#E(F_q) = q + 1 - A,
\]
the morphisms being \(F_q \)-homomorphisms. We denote by \(\mathbb{Z}[F] \) the ring \(\mathbb{Z}[X]/(X^2 - AX + q) \). Since \(A^2 < 4q \), this ring \(\mathbb{Z}[F] \) is an order in a quadratic imaginary field, which we will denote \(\mathcal{O} \). [In the general Deligne story we would need to work with the ring \(\mathbb{Z}[F,q/F] \), but here \(q/F \) is already present, namely \(q/F = A - F \).] Deligne provides an explicit equivalence of categories (by picking (!) an embedding of the ring of Witt vectors \(W(F_q) \) into \(\mathbb{C} \) and then taking the first integer homology group of the Serre-Tate canonical lifting, cf. [Mes, V 2.3, V 3.3, and Appendix]) of this category with the category of \(\mathbb{Z}[F] \)-modules \(H \) which as \(\mathbb{Z} \)-modules are free of rank 2 and such that the characteristic polynomial of \(F \) acting on \(H \) is
\[
X^2 - AX + q.
\]

In this equivalence of categories, suppose an ordinary \(E/F_q \) gives rise to the \(\mathbb{Z}[F] \)-module \(H \). For any prime-to-\(p \) integer \(N \), the group \(E[N](F_q) \) as \(\mathbb{Z}[F] \)-module, \(F \) acting as the arithmetic Frobenius \(\text{Frob}_q \) in \(\text{Gal}(\overline{F}_q/F_q) \), is just the \(\mathbb{Z}[F] \)-module \(H/NH \). For a power \(p^\nu \) of \(p \), the group \(E[p^\nu](F_q) \) as \(\mathbb{Z}[F] \)-module is obtained from \(H \) as follows. We first write the \(\mathbb{Z}_p[F] \)-decomposition
\[
H \otimes_{\mathbb{Z}} \mathbb{Z}_p = H^{et} \oplus H^{conn},
\]

\[
H^{et} := \text{Ker}(F - \text{unit}_q(A)), \quad H^{conn} := \text{Ker}(F - q/\text{unit}_q(A)),
\]
of \(H \otimes_{\mathbb{Z}} \mathbb{Z}_p \) as the direct sum of two free \(\mathbb{Z}_p \)-modules of rank one, of which the first is called the “unit root subspace”. Then for each power \(p^\nu \) of \(p \), we have
\[
E[p^\nu](F_q) \cong H^{et}/p^\nu H^{et}.
\]

An equivalent, but less illuminating, description of \(H^{et}/p^\nu H^{et} \) is as the the image of \(F^\nu \) in \(H/p^\nu H \) (because \(H/p^\nu H \) is the direct sum \(H^{et}/p^\nu H^{et} \oplus H^{conn}/p^\nu H^{conn} \), and \(F^\nu \) is an isomorphism on the first fact but kills the second factor).

Here is an application of Deligne’s description.
Lemma 4.1. Suppose E_2/F_{q^2} is an elliptic curve with trace $A_2 = 1 - 2q$. Then there exists a unique elliptic curve E_1/F_q with trace $A_1 = 1$ which gives rise to E_2/F_{q^2} by extension of scalars.

Proof. Denote by F_2 the Frobenius for E_2/F_{q^2}. Then F_2 satisfies
\[F_2^2 - (1 - 2q)F_2 + q^2 = 0, \text{ i.e. } F_2 = (F_2 + q)^2. \]
Thus $F_1 := F_2 + q$ is a square root of F_2, and it satisfies the equation
\[F_1^2 - F_1 + q = 0, \text{ i.e. } F_2 = F_1 - q. \]
This last equation shows that $\mathbb{Z}[F_2] = \mathbb{Z}[F_1]$. In terms of the $\mathbb{Z}[F_2]$-module H_2 attached to E_2/F_{q^2}, E_1/F_q is the unique curve over F_q corresponding to the same H_2, now viewed as a $\mathbb{Z}[F_1]$-module. ■

Class number formulas are based on the following “miracle” of complex multiplication of elliptic curves. [I say “miracle” because the analogous statements can be false for higher dimensional abelian varieties.]

Given a $\mathbb{Z}[F]$-module H as above, we can form a possibly larger order R, $R := \text{End}_{\mathbb{Z}[F]}(H)$.

Of course this R is just the \mathbb{F}_q-endomorphism ring of the corresponding E/F_q, thanks to the equivalence. So tautologically H is an R-module. The miracle is that H is an invertible R-module, cf. [Sh, 4.11, 5.4.2].

Of course any order $\mathbb{Z}[F] \subset R \subset \mathcal{O}$ can occur as H varies, since one could take R itself as an H. So if we separate the ordinary elliptic curves E/F_q with given data (A,q) by the orders which are their \mathbb{F}_q-endomorphism rings, then for a given order R the \mathbb{F}_q-isomorphism classes with that particular R are the isomorphism classes of invertible R-modules, i.e., the elements of the Picard group $\text{Pic}(R)$, whose order is called the class number $h(R)$ of the order R.

Suppose that we now fix not only (A,q) but also the endomorphism ring R. Then for any ordinary elliptic curve E/F_q with this data, the question of exactly how many M-structures E/F_q admits is determined entirely by the data consisting of (A,q) and R. Indeed, if E/F_q gives rise to H, then H is an invertible R module. Now for any invertible R-module H_1, and for any integer $N_1 \geq 1$, the invertible $R/N_1 R$-module $H_1/N_1 H_1$ is R-isomorphic to $R/N_1 R$ (simply because $R/N_1 R$, being finite, is semi-local, so has trivial Picard group), and hence a fortiori is $\mathbb{Z}[F]$-isomorphic to $R/N_1 R$. Taking H_1 to be H and N_1 to be $LMN_0 p^n$, we conclude that $H/(LMN_0 p^n)H$ is $\mathbb{Z}[F]$-isomorphic to $R/(LMN_0 p^n)R$. Translating back through Deligne’s equivalence, we
see that $E[LMN_0p^\nu](\mathbb{F}_q)$ is $\mathbb{Z}[F]$-isomorphic to $R/(LMN_0p^\nu)R$. Thus we have the following dictionary:

1. $\Gamma_0(L)$-structure: a cyclic subgroup of R/LR of order L which is $\mathbb{Z}[F]$-stable.
2. $\Gamma_1(M)$-structure: a point $P \in R/MR$ which has additive order M and which is fixed by F.
3. unoriented $\Gamma(N_0)$-structure: a $\mathbb{Z}/N_0\mathbb{Z}$-basis of R/N_0R consisting of points fixed by F. An unoriented $\Gamma(N_0)$-structure exists if and only if F acts as the identity on R/N_0R. If an unoriented $\Gamma(N_0)$-structure exists, there are precisely $\#GL(2, \mathbb{Z}/N_0\mathbb{Z})$ of them. Of these, precisely $\#SL(2, \mathbb{Z}/N_0\mathbb{Z})$ are oriented (for a chosen ζ_{N_0}).
4. $I_{g(p^\nu)}$-structure: a $\mathbb{Z}/p^\nu\mathbb{Z}$-basis of $F^\nu(R/p^\nu R)$ ($\cong H_{et}/p^\nu H_{et}$) which is fixed by F, or equivalently, an F-fixed point in $R/p^\nu R$ which has additive order p^ν.

Thus we see explicitly that how many \mathcal{M}-structures E/\mathbb{F}_q admits is determined entirely by the data consisting of (A, q) and R. Let us denote this number by

$$\#\mathcal{M}(A, q, R).$$

Notice also that for such an E/\mathbb{F}_q giving rise to (A, q) and R, the automorphism group of E/\mathbb{F}_q is the group R^\times of units in the endomorphism ring R. Recall that \mathbb{F}_q points on the modular curve \mathcal{M}^{ord} are \mathbb{F}_q-isomorphism classes of pairs (ordinary $E/\mathbb{F}_q, \mathcal{M}-$structure on E/\mathbb{F}_q). So the number of \mathbb{F}_q points on \mathcal{M}^{ord} whose underlying ordinary elliptic curve gives rise to the data (A, q, R) is the product

$$\#\mathcal{M}(A, q, R)h(R)/\#R^\times.$$

For given (ordinary) data (A, q), with $\mathbb{Z}[F] := \mathbb{Z}[X]/(X^2 - AX + q)$ and ring of integers $\mathcal{O} \subset \mathbb{Q}[F]$, let us denote by

$$\mathcal{M}^{ord}(\mathbb{F}_q, A) \subset \mathcal{M}^{ord}(\mathbb{F}_q)$$

the set of \mathbb{F}_q points on \mathcal{M}^{ord} whose underlying ordinary elliptic curve gives rise to the data (A, q). Then $\#\mathcal{M}^{ord}(\mathbb{F}_q, A)$ is a sum, over all orders R between $\mathbb{Z}[F]$ and \mathcal{O}:

$$\#\mathcal{M}^{ord}(\mathbb{F}_q, A) = \sum_{\text{orders } Z[F] \subset R \subset \mathcal{O}} \#\mathcal{M}(A, q, R)h(R)/\#R^\times.$$

Before we try to count \mathcal{M}-structures, let us record the congruences and inequalities which necessarily hold when such structures exist.

Lemma 4.2. Let k/\mathbb{F}_p be a finite extension, given with a primitive N_0’th root of unity $\zeta_{N_0} \in k$, \mathbb{F}_q/k a finite extension, and E/\mathbb{F}_q an
ordinary elliptic curve which gives rise to the data \((A,q,R)\). Suppose \(E/\mathbb{F}_q\) admits an \(\mathcal{M}\)-structure. Then \(q \equiv 1 \mod N_0\), and we have the following additional congruences.

1. There exists \(a \in (\mathbb{Z}/L\mathbb{Z})^\times\) satisfying \(a^2 - Aa + q \equiv 0 \mod L\), i.e., the polynomial \(X^2 - AX + q\) factors completely \(\mod L\).
 Equivalently, there exists \(a \in (\mathbb{Z}/L\mathbb{Z})^\times\) such that \(A \equiv a + q/a \mod L\).

2. \(q + 1 \equiv A \mod MN_0^2p^\nu\).

Moreover, we have \(q \geq p^\nu\) if \(p\) is odd. When \(p = 2\), we also have \(q \geq p^\nu\) except in the two exceptional cases \((q,p^\nu) = (2,4)\) and \((q,p^\nu) = (4,8)\); in those cases we have \(A = -1\) and \(A = -3\) respectively.

Proof. That \(q \equiv 1 \mod N_0\) results from the fact that \(\mathbb{F}_q\) contains a primitive \(N_0\)'th root of unity. To prove (1), suppose we have a \(\mathbb{F}\)-stable \(\mathbb{Z}/L\mathbb{Z}\) subgroup \(\Gamma_0 \subset R/LR\). Then \(\mathbb{F}\), being an automorphism of \(R/LR\), acts on this subgroup by multiplication by some unit \(a \in (\mathbb{Z}/L\mathbb{Z})^\times\). But \(\mathbb{F}^2 - AF + q\) annihilates \(R/LR\). As \(\Gamma_0 \subset R/LR\) is \(\mathbb{F}\)-stable, and \(\mathbb{F}\) acts on \(\Gamma_0\) by \(a\), we get that \(a^2 - Aa + q \in \mathbb{Z}/L\mathbb{Z}\) annihilates this cyclic group of order \(L\), so \(a^2 - Aa + q = 0\) in \(\mathbb{Z}/L\mathbb{Z}\). The existence of such an \(a\) is equivalent to the polynomial \(X^2 - AX + q\) factoring \(\mod L\), and to the congruence \(A \equiv a + q/a \mod L\) (then the factorization is \((X - a)(X - q/a) \mod L\)). The congruence (2) is just the point-count divisibility that follows from having an \(\mathcal{M}\)-structure. To prove the “moreover” statement, we exploit the fact that, by (2), \(p^\nu\) divides \(q + 1 - A\). We argue by contradiction. If \(p^\nu > q\), then \(p^\nu \geq pq\) (since \(q\) is itself a power of \(p\)). So \(p^\nu\) is divisible by \(pq\), and hence \(pq\) divides \(q + 1 - A\). By the Weil bound and ordinarity, \(q + 1 - A\) is nonzero (indeed \(q + 1 - A > (\sqrt{q} - 1)^2 > 0\)), so from the divisibility we get the inequality

\[
q + 1 - A \geq pq.
\]

Again by the Weil bound, we have \((\sqrt{q} + 1)^2 > q + 1 - A\), so we get

\[
q + 1 + 2\sqrt{q} = (\sqrt{q} + 1)^2 > pq = (p - 2)q + q + q.
\]

Adding \(1 - 2\sqrt{q} - q\) to both sides, we get

\[
2 > (p - 2)q + (\sqrt{q} - 1)^2.
\]

This is nonsense if \(p \geq 3\). If \(p = 2\), this can hold, precisely in the indicated cases. □

To say more about how this works explicitly, we need to keep track, for given ordinary data \((A,q)\), of the orders between \(\mathbb{Z}[F]\) and the full ring of integers \(\mathcal{O}\). The orders \(R \subset \mathcal{O}\) are the subrings of the
form $\mathbb{Z} + f\mathcal{O}$, with $f \geq 1$ an integer. The integer $f \geq 1$ is called the conductor of the order; it is the order of the additive group \mathcal{O}/R. Because (A, q) is given, the particular order $\mathbb{Z}[F] \subset \mathcal{O}$ is given, and we will denote by $f_{A,q}$ its conductor:

$$f_{A,q} := \text{conductor of } \mathbb{Z}[F].$$

An order $R \subset \mathcal{O}$ contains $\mathbb{Z}[F]$ if and only if its conductor f_{R} divides $f_{A,q}$. For an intermediate order $\mathbb{Z}[F] \subset R \subset \mathcal{O}$, we define its co-conductor f^c_{R} to be the quotient:

$$f^c_{R} := f_{A,q} / f_{R} = \#(R/\mathbb{Z}[F]).$$

Of course this notion of co-conductor only makes sense because we have specified the particular order $\mathbb{Z}[F]$. Just as the conductor measures how far “down” an intermediate order is from \mathcal{O}, so its co-conductor measures how far “up” it is from $\mathbb{Z}[F]$.

Lemma 4.3. Let k/\mathbb{F}_p be a finite extension, given with a primitive N_0'th root of unity $\zeta_{N_0} \in k$, \mathbb{F}_q/k a finite extension, and E/\mathbb{F}_q an ordinary elliptic curve which gives rise to the data (A, q, R). Suppose that the following congruences hold.

1. There exists $a \in (\mathbb{Z}/L\mathbb{Z})^\times$ satisfying $a^2 - Aa + q \equiv 0 \text{ mod } L$.
2. $q + 1 \equiv A \text{ mod } MN_0p^\nu$.

Then we have the following conclusions.

1. Whatever the order R, E/\mathbb{F}_q admits precisely $\phi(p^\nu)$ $Ig(p^\nu)$ structures.
2. If R has co-conductor prime to L, then E/\mathbb{F}_q admits at least one $\Gamma_0(L)$ structure.
3. If R has co-conductor prime to M, then E/\mathbb{F}_q admits precisely $\phi(M)$ $\Gamma_1(M)$ structures.
4. If R has co-conductor divisible by N_0, then E/\mathbb{F}_q admits precisely $\#SL(2, \mathbb{Z}/N_0\mathbb{Z})$ oriented $\Gamma(N_0)$ structures. Otherwise, E/\mathbb{F}_q admits none.

Proof. (1) Since E/\mathbb{F}_q is ordinary, the group $E(\mathbb{F}_q)[p^\infty]$ is noncanonically $\mathbb{Q}_p/\mathbb{Z}_p$. So the p-power torsion subgroup of $E(\mathbb{F}_q)$ is cyclic, and its order is the highest power of p which divides $\#E(\mathbb{F}_q) = q + 1 - A$. Because this cardinality is divisible by p^ν, $E(\mathbb{F}_q)[p^\nu]$ is cyclic of order p^ν, and its $\phi(p^\nu)$ generators are precisely the $Ig(p^\nu)$ structures on E/\mathbb{F}_q.

(2) and (3) The existence of a $\Gamma_0(L)$ (resp. $\Gamma_1(M)$)-structure depends only upon R/LR (resp. R/MR) as a $\mathbb{Z}[F]$-module. If R has co-conductor prime to L (resp. M), then the inclusion $\mathbb{Z}[F] \subset R$ induces a $\mathbb{Z}[F]$-isomorphism $\mathbb{Z}[F]/L\mathbb{Z}[F] \cong R/LR$ (resp.$\mathbb{Z}[F]/M\mathbb{Z}[F] \cong R/MR$). So it suffices to treat the single case when $R = \mathbb{Z}[F]$. We will
now show in $\mathbb{Z}[F]/L\mathbb{Z}[F]$ (resp. $\mathbb{Z}[F]/M\mathbb{Z}[F]$), the kernel of $F - a$ (resp. $F - 1$) is a cyclic subgroup of order L (resp. M). Once we show this, then the kernel of $F - a$ in $\mathbb{Z}[F]/L\mathbb{Z}[F]$ is the asserted $\Gamma_0(L)$-structure, and the $\phi(M)$ generators of the kernel of $F - 1$ in $\mathbb{Z}[F]/M\mathbb{Z}[F]$ are all the $\Gamma_1(M)$-structures. The assertion about the kernels results from the fact (elementary divisors) that for an endomorphism Λ of a finite free $\mathbb{Z}/L\mathbb{Z}$-module (resp. of a finite free $\mathbb{Z}/M\mathbb{Z}$-module), $\text{Ker}(\Lambda)$ and $\text{Coker}(\Lambda)$ are isomorphic abelian groups. [In fact, as Bill Messing explained to me, the kernel and cokernel of an endomorphism of any finite abelian group are isomorphic abelian groups, but we will not need that finer statement here.] Applying this to the endomorphisms $F - a$ of $\mathbb{Z}[F]/L\mathbb{Z}[F]$ and $F - 1$ of $\mathbb{Z}[F]/M\mathbb{Z}[F]$, we find that the relevant kernels are the cyclic groups underlying the quotient rings

$$\mathbb{Z}[F]/(L, F - a) := \mathbb{Z}[X]/(L, X^2 - aX + q, X - a) \cong \mathbb{Z}/(L, a^2 - aA + q) \cong \mathbb{Z}/L\mathbb{Z},$$

and

$$\mathbb{Z}[F]/(M, F - 1) := \mathbb{Z}[X]/(M, X^2 - aX + q, X - 1) \cong \mathbb{Z}/(M, 1 - A + q) \cong \mathbb{Z}/M\mathbb{Z},$$

(4) We have $q \equiv 1 \mod N_0$ because \mathbb{F}_q contains a primitive N_0'th root of unity; by assumption N_0^2 divides $q + 1 - A$. We must show that all the points of order dividing N_0 are \mathbb{F}_q-rational if and only if R has co-conductor divisible by N_0. All the points of order dividing N_0 are \mathbb{F}_q-rational if and only if $F - 1$ kills $R/\mathcal{O}R$, i.e., if and only if if $(F - 1)/N$, which a priori lies in the fraction field of \mathcal{O}, lies in R. [Let us remark in passing that in order for $(F - 1)/N$ to lie in \mathcal{O}, it is necessary and sufficient that its norm and trace down to \mathbb{Q} lie in \mathbb{Z}. But its norm down to \mathbb{Q} is $(q + 1 - A)/N_0^2$ and its trace down to \mathbb{Q} is $(A - 2)/N_0 = (q - 1)/N_0 + (A - q - 1)/N_0].$ Thus there exist $\Gamma_0(N_0)$-structures if and only if R contains the order $\mathbb{Z}[(F - 1)/N_0].$ This last order visibly has co-conductor N_0, so the orders containing it are precisely those whose co-conductor is divisible by N_0. Once any (possibly unoriented) $\Gamma(N_0)$ structure exists, there are precisely $\#\text{SL}(2, \mathbb{Z}/N_0\mathbb{Z})$ oriented $\Gamma(N_0)$-structures. \hfill \Box

Remark 4.4. In the above lemma, we don’t specify how many $\Gamma_0(L)$-structures there are, “even” when R has co-conductor prime to L, and we don’t say when any exist for other R. We also don’t say how many $\Gamma_1(M)$-structures there are for other R. For these R, we will be able to make do with the trivial inequalities, valid for any R,

$$0 \leq \#\{\Gamma_0(L) - \text{structures on } R/\mathcal{L}R\} \leq \#\mathbb{P}^1(\mathbb{Z}/L\mathbb{Z}),$$
0 ≤ #{Γ₁(M)} − structures on \(R/\mathbb{M}R \) ≤ \(φ(M)\#\mathbb{P}^1(\mathbb{Z}/\mathbb{M}\mathbb{Z}) \).

5. **Interlude: Brauer-Siegel for quadratic imaginary orders**

The following minor variant of Siegel’s theorem for quadratic imaginary fields is certainly well known to the specialists. We give a proof here for lack of a suitable reference. For a quadratic imaginary order, i.e., an order \(R \) in a quadratic imaginary field, we denote by \(d_R \) its discriminant, by \(h(R) := \#\text{Pic}(R) \) its class number, and by \(h^*(R) := h(R)/\#R^\times \)
its “normalized” class number. [We should warn the reader that in Gekeler [Ge, 2.13, 2.14] his \(h^* \) and his \(H^* \) are twice ours.]

Theorem 5.1. Given a real \(ϵ > 0 \), there exists a real constant \(C_ε > 0 \) such that for any quadratic imaginary order \(R \) with \(|d_R| ≥ C_ε \), we have the inequalities

\[
|d_R|^{\frac{1}{2}−ε} ≤ h^*(R) ≤ |d_R|^{\frac{1}{2}+ε}.
\]

Proof. Given a quadratic imaginary order \(R \), denote by \(f_R \) its conductor, \(K \) its fraction field, and \(\mathcal{O}_K \) the ring of integers of \(K \). Then the discriminant \(d_R \) of \(R = \mathbb{Z} + f_R\mathcal{O}_K \) is related to the discriminant \(d_{\mathcal{O}_K} \) by the simple formula

\[
d_R = f_R^2 d_{\mathcal{O}_K}.
\]

Their normalized class numbers are related as follows, cf. [Cox, 7.2.6 and exc. 7.30(a)] or [Sh, p. 105, exc. 4.12]:

\[
\frac{h^*(R)}{h^*(\mathcal{O}_K)} = \frac{\#(\mathcal{O}_K/f_R\mathcal{O}_K)^\times}{\#(\mathbb{Z}/f_R\mathbb{Z})^\times}.
\]

We rewrite this as follows. Given the quadratic imaginary field \(K \), denote by \(χ_K \) the associated Dirichlet character: for a prime number \(p \), \(χ_K(p) := 1 \) if \(p \) splits in \(K \), \(χ_K(p) := 0 \) if \(p \) ramifies in \(K \), and \(χ_K(p) := 1 \) if \(p \) is inert in \(K \). We then define the multiplicative function \(φ_K \) on strictly positive integers by

\[
φ_K(1) = 1, \ φ_K(nm) = φ_K(n)φ_K(m) \text{ if } gcd(n, m) = 1,
\]

\[
φ_K(p^ν) = p^{ν−1}(p − χ_K(p)), \text{ if } ν ≥ 1.
\]

In terms of this function, we can rewrite the relation of normalized class numbers as

\[
h^*(R) = φ_K(f_R)h^*(\mathcal{O}_K).
\]
By Siegel’s theorem, applied with $\epsilon/2$, there exist real constants $A_\epsilon > 0$ and $B_\epsilon > 0$ such that for all quadratic imaginary fields K we have

\[(**_{\epsilon/2}): A_\epsilon |d_{\mathcal{O}_K}|^{1/2 - \epsilon/2} \leq h^*(\mathcal{O}_K) \leq B_\epsilon |d_{\mathcal{O}_K}|^{1/2 + \epsilon/2}.
\]

[This is true without A and B for $|d|$ large; A and B take care of the small $|d|$. Conversely, if we know (**_{\epsilon/2}) for all $|d|$, we get (**_{\epsilon}) for large $|d|$ with $A = B = 1$.]

In view of the formulas

\[h^*(R) = \phi_K(f_R)h^*(\mathcal{O}_K),\]

and

\[d_R = f_R^2d_{\mathcal{O}_K},\]

it suffices to show that there exist real constants $A'_\epsilon > 0$ and $B'_\epsilon > 0$ such that for every quadratic imaginary field K and every integer $f \geq 1$, we have

\[A'_\epsilon f^{1-\epsilon} \leq \phi(f) \leq B'_\epsilon f^{1+\epsilon}.
\]

In view of the definition of ϕ_K, this is immediate from the two following observations. First, for large (how large depending on ϵ) primes p, we have

\[p^{1-\epsilon} \leq p - 1 \leq \phi_K(p) \leq p + 1 \leq p^{1+\epsilon}.
\]

Second, for the finitely many, say N, small primes p where this fails, we can find real constants $A''_\epsilon > 0$ and $B''_\epsilon > 0$ such that

\[A''_\epsilon p^{1-\epsilon} \leq p - 1 \leq \phi_K(p) \leq p + 1 \leq B''_\epsilon p^{1+\epsilon}
\]

holds for these N primes. We define

\[A'_\epsilon := (A''_\epsilon)^N, B'_\epsilon := (B''_\epsilon)^N.
\]

Then we have the desired inequality

\[A'_\epsilon f^{1-\epsilon} \leq \phi_K(f) \leq B'_\epsilon f^{1+\epsilon}.
\]

Once we have this, we combine it with Siegel’s theorem for quadratic imaginary fields to conclude that for every quadratic imaginary order R we have

\[A_\epsilon A'_\epsilon|d_R|^{1/2 - \epsilon/2} \leq h^*(R) \leq B_\epsilon B'_\epsilon|d_R|^{1/2 + \epsilon/2}.
\]

Then as soon as $|d_R|$ is large enough that

\[1 \leq A_\epsilon A'_\epsilon|d_R|^{\epsilon/2}
\]

and

\[B_\epsilon B'_\epsilon|d_R|^{-\epsilon/2} \leq 1,
\]

we get the assertion of the theorem. \qed
It is also convenient to introduce the (normalized) Kronecker class number of a quadratic imaginary order R, $H^*(R)$, defined as the sum of the normalized class numbers of all orders between R and the ring of integers \mathcal{O} in its fraction field:

$$H^*(R) := \sum_{\text{orders } R \subset R' \subset \mathcal{O}} h^*(R').$$

Corollary 5.2. Given a real $\epsilon > 0$, there exists a real constant $C_\epsilon > 0$ such that for any quadratic imaginary order R with $|d_R| \geq C_\epsilon$, we have the inequalities

$$|d_R|^{\frac{1}{2} - \epsilon} \leq H^*(R) \leq |d_R|^{\frac{1}{2} + \epsilon}.$$

Proof. We trivially have $H^*(R) \geq h^*(R)$, so we get the asserted lower bound for $H^*(R)$. To get the lower bound, recall from the proof of the previous theorem that for any quadratic imaginary order R', we have

$$h^*(R') \leq B_\epsilon B'_\epsilon |d_{R'}|^{\frac{1}{2} + \epsilon/2}.$$

So we get

$$H^*(R) \leq \sum_{\text{orders } R \subset R' \subset \mathcal{O}} B_\epsilon B'_\epsilon |d_{R'}|^{\frac{1}{2} + \epsilon/2}.$$

The co-conductors $f_{R'}^c := f_R/f_{R'}$ of these intermediate orders with respect to R are precisely the divisors of f_R, and we have

$$d_{R'} = d_R/(f_{R'}^c)^2.$$

Thus we have

$$H^*(R) \leq \sum_{n|f_R} B_\epsilon B'_\epsilon |d_R/n^2|^{\frac{1}{2} + \epsilon/2}.$$

But the sum

$$\sum_{n \geq 1} \frac{1}{n^{1+\epsilon}}$$

converges, to $\zeta(1+\epsilon)$, so we get the inequality

$$H^*(R) \leq B_\epsilon B'_\epsilon \zeta(1+\epsilon)|d_R|^{\frac{1}{2} + \epsilon/2}$$

for all quadratic imaginary R, and we need only take $|d_R|$ large enough that

$$B_\epsilon B'_\epsilon \zeta(1+\epsilon)|d_R|^{-\epsilon/2} \leq 1$$

to insure the asserted upper bound. \qed
6. Point-count estimates

We now return to the modular curve \(\mathcal{M}^{\text{ord}}/k \). Recall that we fix a characteristic \(p > 0 \), three prime-to-\(p \) positive integers \((L, M, N_0) \) and a power \(p^\nu \geq 1 \) of \(p \). We assume that \((L, M, N_0) \) are pairwise relatively prime. We assume that either \(M \geq 4 \) or \(N_0 \geq 3 \) or \(p^\nu \geq 4 \). We work over a finite extension \(k/\mathbb{F}_p \) given with a primitive \(N_0 \)-th root of unity \(\zeta_{N_0} \in k \). We have the smooth, geometrically connected modular curve \(\mathcal{M}^{\text{ord}}/k \), which parameterizes isomorphism classes of fibrewise ordinary elliptic curves over \(k \)-schemes endowed with a \(\Gamma_0(L) \)-structure, a \(\Gamma_1(M) \)-structure, a \(\Gamma(N_0) \)-structure, and an \(Ig(p^\nu) \)-structure.

For a finite extension \(\mathbb{F}_q/k \) and a prime-to-\(p \) integer \(A \) with \(|A| < 2\sqrt{q} \), we denote by \(\mathbb{Z}[X] \leq \mathbb{Z} \) \(X^2 - AX + q \) and by \(\mathcal{M}^{\text{ord}}(\mathbb{F}_q, A) \) the set of \(\mathbb{F}_q \)-points on \(\mathcal{M}^{\text{ord}} \) whose underlying ordinary elliptic curve gives rise to the data \((A, q) \). We have already noted, in Lemma 4.1, that \(q \equiv 1 \mod N_0 \), and that \(\mathcal{M}^{\text{ord}}(\mathbb{F}_q, A) \) is empty unless \((A, q) \) satisfies both the following conditions:

1. \(X^2 - AX + q \) factors completely mod \(L \)
2. \(A \equiv q + 1 \mod MN_0^2p^\nu \).

Lemma 6.1. Denote by \(D_0 = D_0(L, M, N_0, p^\nu) \) and \(D_1 = D_1(L, M, N_0, p^\nu) \) the nonzero constants

\[
D_0 := \phi(M)\#SL(2, \mathbb{Z}/N_0\mathbb{Z})\phi(p^\nu),
\]

\[
D_1 := \#\mathbb{P}^1(\mathbb{Z}/L\mathbb{Z})\#\mathbb{P}^1(\mathbb{Z}/M\mathbb{Z})D_0,
\]

with the convention that when any of \(L, M, N_0, p^\nu \) is 1, the corresponding factor is 1. For \((A, q) \) with \(A \) prime-to-\(p \), \(|A| < 2\sqrt{q} \), and \(q \equiv 1 \mod N_0 \) satisfying the two conditions

1. \(X^2 - AX + q \) factors completely mod \(L \)
2. \(A \equiv q + 1 \mod MN_0^2p^\nu \),

we have the inequalities

\[
D_0 h^*([F - 1)/N_0]) \leq \#\mathcal{M}^{\text{ord}}(\mathbb{F}_q, A) \leq D_1 H^*([F - 1)/N_0]).
\]

Proof. This is immediate from Lemma 4.2 and the identity

\[
\#\mathcal{M}^{\text{ord}}(\mathbb{F}_q, A) = \sum_{\text{orders } Z[F] \subset R \subset \mathcal{O}} \#\mathcal{M}(A, q, R) h^*(R).
\]

□

Lemma 6.2. Given a prime-to-\(p \) integer \(A \), suppose there exists an \(\mathbb{F}_q/k \) with \(q > A^2/4 \) such that \((A, q) \) satisfies the conditions of the previous lemma. If \(p = 2 \), suppose further that \(q \geq 8 \). Then there exist
infinitely many powers Q of q such that (A,Q) satisfies these same conditions.

Proof. We first observe that the “moreover” part of Lemma 4.2, and the assumption that $q \geq 8$ if $p = 2$, insures that $q \geq p^\nu$. So the p-part of the second condition is simply that $A \equiv 1 \mod p^\nu$, and this will hold whatever power Q we take. The other conditions depend only on $q \mod L MN^2_0$. As q is invertible mod $L MN^2_0$, we have $q^e \equiv 1 \mod L MN^2_0$ for some divisor e of $\phi(L MN^2_0)$. Then every power $Q := q^{1+ne}$, $n \geq 1$ has $Q \equiv q \mod L MN^2_0$. \qed

Theorem 6.3. Given a prime-to-p integer A, suppose there exists an F_q/k with $q > A^2/4$ such that (A,q) satisfies the conditions of Lemma 6.1. If $p = 2$, suppose further that $q \geq 8$. Given a real number $\epsilon > 0$, there exists a real constant $C(A,\epsilon,Mord/k)$ such that whenever F_Q/k is a finite extension with $Q \geq C(A,\epsilon,Mord/k)$ such that (A,Q) satisfies the conditions of Lemma 6.1, then we have the inequalities

$$Q^{1/2-\epsilon} \leq \#M^{ord}(A,Q) < Q^{1/2+\epsilon}.$$

Proof. This is immediate from Lemma 6.1 and the Brauer-Siegel inequalities: the discriminant of $Z[(F-1)/N_0]$, for F relative to F_Q, is $(A^2 - 4Q)/N_0^2$, and A and N_0 are fixed while Q grows. \qed

We now explain how to pass from estimates for F_Q-points to estimates for closed points of norm Q, with given A. Denote by $M^{ord}_{closed}(A,Q)$ the set of closed points of norm Q giving rise to (A,Q), and by

$$M^{ord}(A,Q)^{prim} \subset M^{ord}(A,Q)$$

the subset of those F_Q-points which, viewed simply as points in $M^{ord}(F_Q)$, come from no proper subfield $k \subset F_Q$, $k \subset F_Q$. As noted earlier, we have

$$\#M^{ord}_{closed}(A,Q) = \#M^{ord}(A,Q)^{prim} / \log \#k(Q).$$

So our basic task is to estimate $\#M^{ord}(A,Q)^{prim}$.

Lemma 6.4. Let A be a prime to p integer, Q a prime power, and $F_q \subset F_Q$ a subfield. There exists a list, depending on (A,Q,q), of at most six integers such that if E_0/F_q is an elliptic curve with $\#E_0(F_Q) = Q + 1 - A$, then $\#E_0(F_q) = q + 1 - a$ for some a on the list.

Proof. Since A is prime to p, any such E_0/F_q becomes ordinary over F_Q, so is already ordinary. Denote by $n := \deg(F_Q/F_q)$, by F the Frobenius of $E_0 \otimes_{F_q} F_Q/\otimes_{F_Q}$, and by F_0 the Frobenius of E_0/F_q. We have an inclusion of orders

$$Z[F] \subset Z[F_0].$$
These orders have the same fraction field K, and in K we have $(F_0)^n = F$. But K is quadratic imaginary, so it contains at most 6 roots of unity. So if F, a root of $X^2 - AX + q$ in K, has any n'th roots in K, it has at most 6, since the ratio of any two is a root of unity in K. The list is then the list of traces, down to \mathbb{Q}, of all the n'th roots of F. □

In fact, we will need only the following standard fact, whose proof we leave to the reader.

Lemma 6.5. Let A be an integer, q a prime power, and $Q = q^2$. If E_0/\mathbb{F}_q is an elliptic curve with $\#E_0(\mathbb{F}_{q^2}) = q^2 + 1 - A$, then $\#E_0(\mathbb{F}_q) = q + 1 - a$ with a one of the two roots of $X^2 - 2q = A$.

Theorem 6.6. Given a prime-to-p integer A, suppose there exists an \mathbb{F}_q/k with $q > A^2/4$ such that (A,q) satisfies the conditions of Lemma 6.1. If $p = 2$, suppose further that $q \geq 8$. Given a real number $\epsilon > 0$, there exists a real constant $C''(A, \epsilon, \text{ord}/k)$ such that whenever \mathbb{F}_Q/k is a finite extension with $Q \geq C''(A, \epsilon, \text{ord}/k)$ such that (A,Q) satisfies the conditions of Lemma 6.1, then we have the inequalities

$$Q^{1/2 - \epsilon} \leq \#\mathcal{M}_{\text{ord}}(A,Q)^{\text{prim}} < Q^{1/2 + \epsilon}.$$

Proof. The statement only gets harder as ϵ shrinks, so it suffices to treat the case when $0 < \epsilon < 1/10$. If the degree of \mathbb{F}_Q over k is odd, we will use only the trivial inequality

$$\#\mathcal{M}_{\text{ord}}(A,Q) - \#\mathcal{M}_{\text{ord}}(A,Q)^{\text{prim}} \leq \sum_{k \subset \mathbb{F}_q \subset \mathbb{F}_Q} \#\mathcal{M}_{\text{ord}}(\mathbb{F}_q).$$

Whatever the value of q, we have a uniform upper upper bound of the form

$$\#\mathcal{M}_{\text{ord}}(\mathbb{F}_q) \leq \sigma q,$$

for σ the sum of the Betti numbers of $\mathcal{M}_{\text{ord}} \otimes_k \overline{k}$. But if $\text{deg}(\mathbb{F}_q/k)$ is odd, each of the at most $\log_{\#k}(Q)$ terms is at most $\sigma Q^{1/2}$, so this error is, for large Q, negligible with respect to $Q^{1/2 - \epsilon}$.

If the degree of \mathbb{F}_Q over k is even, we can still use the above crude argument to take care of imprimitive points which come from a subfield $k \subset \mathbb{F}_q \subset \mathbb{F}_Q$ with $\text{deg}(\mathbb{F}_Q/\mathbb{F}_q) \geq 3$.

But we must be more careful about imprimitive points in $\#\mathcal{M}_{\text{ord}}(A,Q)$ which come from the subfield $\mathbb{F}_q \subset \mathbb{F}_Q$ over which \mathbb{F}_Q is quadratic. If $X^2 - 2q = A$ has no integer solutions, there are no such imprimitive points. If $X^2 - 2q = A$ has integer solutions, say $\pm a$, then the number of such imprimitive points in $\#\mathcal{M}_{\text{ord}}(A,Q)$ is

$$\#\mathcal{M}_{\text{ord}}(a,q) + \#\mathcal{M}_{\text{ord}}(-a,q).$$
If we take Q so large that \sqrt{Q} is large enough for Theorem 6.3 to apply to the sets $M^{\text{ord}}(\pm a, q)$, then these sets have size at most $Q^{1/2} + \epsilon$, again negligible with respect to $Q^{1/2 - \epsilon}$.

Combining this with the identity

$$\# M^{\text{ord}}(A, Q) = \# M^{\text{ord}}(A, Q)^{\text{prim}} / \log_{\# k}(Q),$$

and noting that $\log_{\# k}(Q)$ is negligible with respect to Q^{ϵ}, we get the following corollary.

Corollary 6.7. Given a prime-to-p integer A, suppose there exists an F_q/k with $q > A^2/4$ such that (A, q) satisfies the conditions of Lemma 6.1. If $p = 2$, suppose further that $q \geq 8$. Given a real number $\epsilon > 0$, there exists a real constant $C''(\epsilon)$ such that whenever F_Q/k is a finite extension with $Q \geq C''(\epsilon)$ such that (A, Q) satisfies the conditions of Lemma 6.1, then we have the inequalities

$$Q^{1/2 - \epsilon} \leq \# M^{\text{ord}}(A, Q) < \# M^{\text{ord}}(A, Q) < Q^{1/2 + \epsilon}.$$

To end this section, we interpret its results in terms of the mod N Galois images $G_N := \rho_N(\pi_1(M^{\text{ord}}))$ and their subsets $G_N(A, Q) \subset G_N$ introduced in section 2.

Theorem 6.8. Given a prime-to-p integer A, suppose that for the single value $N := LMN_0^2p^\nu$, $A \mod N$ is the trace of some element of G_N. Then there exist infinitely many closed points P of M^{ord} with $A_P = A$.

Proof. By Chebotarev, every conjugacy class in G_N is the image of Frob_P for infinitely many closed points P. In particular, every conjugacy class in G_N is the image of some Frob_P with $N(P) := Q \geq \text{Max}(A^2/4, 8)$. By Lemma 4.1, we have $Q \geq p^\nu$, and (A, Q) satisfies the two conditions of that lemma, namely

1. $X^2 - APX + Q$ factors completely mod L,
2. $A_P \equiv Q + 1 \mod MN_0^2p^\nu$.

But $A \equiv A_P \mod N$, and hence (A, Q) satisfies these same two conditions. The result now follows from Lemma 6.2 and Corollary 6.7, applied to (A, Q).

Similarly, we have the following result.

Theorem 6.9. Given a prime-to-p integer A and a power q of $\# k$ with $q \geq \text{Max}(A^2/4, 8)$, suppose that for the single value $N := LMN_0^2p^\nu$, the subset $G_N(A, Q) \subset G_N$ is nonempty. Then there exist infinitely many closed points P of M^{ord} with $A_P = A$ and with $N(P) \equiv q \mod LMN_0^2$.

Proof. Pick an element γ in $G_N(A,Q)$; its conjugacy class in G_N is the image of Frob_P for infinitely many closed points P, so is the image of some Frob_P with $\mathbb{N}(P) := Q \geq \text{Max}(A^2/4,8)$. Exactly as in the proof of the theorem above, $Q \geq p^\nu$ and (A_P,Q) satisfies the two conditions of Lemma 4.1. We write these now as three conditions, breaking the second one into a prime-to-p part and a p-part.

1. $X^2 - A_P X + Q$ factors completely mod L,
2a. $A_P \equiv Q + 1 \mod MN^2$.
2b. $A_P \equiv Q + 1 \mod p^\nu$.

But $A \equiv A_P \mod N$, $Q \equiv q \mod LMN^2$, and both Q and q are $0 \mod p^\nu$. Hence (A,q) satisfies these same conditions, and we conclude as above. \(\Box\)

7. Exact and approximate determination of Galois images

If we take the inverse limit of the mod N representations as N grows multiplicatively, we get a representation

$$
\rho = \rho_{\text{not } p} \times \rho_{p^\infty} : \pi_1(M_{\text{ord}}) \to \text{GL}(2,\hat{\mathbb{Z}}_{\text{not } p})_{\text{det in }}(#k)\hat{\mathbb{Z}} \times \mathbb{Z}_p^\times.
$$

Here $\hat{\mathbb{Z}}_{\text{not } p} := \prod_{\ell \neq p} \mathbb{Z}_\ell$, and $(#k)\hat{\mathbb{Z}}$ is the closed subgroup of $(\hat{\mathbb{Z}}_{\text{not } p})^\times$ profinitely generated by $#k$. Under this representation, the geometric fundamental group lands in $\text{SL}(2,\hat{\mathbb{Z}}_{\text{not } p}) \times \mathbb{Z}_p^\times$.

The following theorem is certainly well known to the specialists. We give a proof for lack of a suitable reference.

Theorem 7.1. In suitable bases, the image group

$$
\rho(\pi_1(M_{\text{ord}})) \subset \text{GL}(2,\hat{\mathbb{Z}}_{\text{not } p})_{\text{det in }}(#k)\hat{\mathbb{Z}} \times \mathbb{Z}_p^\times
$$

consists of those elements which mod L have the shape $(\ast,0,\ast,\ast)$, mod M have the shape $(1,0,\ast,\ast)$, mod N_0 have the shape $(1,0,0,1)$, mod p^ν have the shape (1) (i.e., the p-component is $1 \mod p^\nu$). The image of the geometric fundamental group,

$$
\rho(\pi_1(\text{geom}(M_{\text{ord}}))) \subset \text{SL}(2,\hat{\mathbb{Z}}_{\text{not } p}) \times \mathbb{Z}_p^\times
$$

is just the intersection of $\rho(\pi_1(M_{\text{ord}}))$ with $\text{SL}(2,\hat{\mathbb{Z}}_{\text{not } p}) \times \mathbb{Z}_p^\times$, i.e., it consists of those elements of $\text{SL}(2,\hat{\mathbb{Z}}_{\text{not } p}) \times \mathbb{Z}_p^\times$ with the imposed shapes.

Proof. In a basis adapted to the imposed level structures, every element of the image $\rho(\pi_1(M_{\text{ord}}))$ has the asserted shapes. To see this, denote by K the function field of M_{ord}, and by \overline{K} an algebraic closure of K. Viewing $\overline{\eta} := \text{Spec}(\overline{K})$ as a geometric generic point of M_{ord},
$\pi_1(\mathcal{M}^{\text{ord}}, \eta)$ is a quotient of $\text{Aut}(\overline{K}/K)$, and ρ on $\text{Aut}(\overline{K}/K)$ is the action of this group on the profinite group

$$\prod_{\text{all primes } \ell} T_\ell(\mathcal{E}^{\text{univ}}(K)) = T_{\text{not } p}(\mathcal{E}^{\text{univ}}(K)) \times T_{p}(\mathcal{E}^{\text{univ}}(K)).$$

Here $T_{\text{not } p}(\mathcal{E}^{\text{univ}}(K))$ is a free $\hat{\mathbb{Z}}_{\text{not } p}$-module of rank 2, and $T_{p}(\mathcal{E}^{\text{univ}}(K))$ is a free \mathbb{Z}_p-module of rank one. Then take any \mathbb{Z}_p-basis of T_{p}, and any $\hat{\mathbb{Z}}_{\text{not } p}$-basis of $T_{\text{not } p}$ adapted to the imposed $\Gamma_0(L)$, $\Gamma_1(M)$, and $\Gamma(N_0)$-structures. Then $\text{Aut}(\overline{K}/K)$ acts through elements of the asserted shape.

We next explain that it suffices to show that the image

$$\rho(\pi_1^{\text{geom}}(\mathcal{M}^{\text{ord}})) \subset S\ell(2, \hat{\mathbb{Z}}_{\text{not } p}) \times \mathbb{Z}_p^\times$$

is as asserted. For if $F \in \pi_1(\mathcal{M}^{\text{ord}})$ is any element of determinant $\#k$, then $\rho(\pi_1^{\text{geom}}(\mathcal{M}^{\text{ord}}))$ is the semidirect product of $\rho(\pi_1^{\text{geom}}(\mathcal{M}^{\text{ord}}))$ with the $\hat{\mathbb{Z}}$ generated by F. [Such elements F exist: if \mathcal{M}^{ord} has a k-point, take its Frobenius, otherwise take the ratio of Frobenii at two closed points whose large degrees differ by one.] The key point is that $\rho(F)$ is an element of $GL(2, \hat{\mathbb{Z}}_{\text{not } p})_{\text{det in } (\#k)\hat{\mathbb{Z}}^\times}$ of the asserted shape. By the explicit description of $\rho(\pi_1^{\text{geom}}(\mathcal{M}^{\text{ord}}))$, this semidirect product itself has the asserted description.

That the image

$$\rho(\pi_1^{\text{geom}}(\mathcal{M}^{\text{ord}})) \subset S\ell(2, \hat{\mathbb{Z}}_{\text{not } p}) \times \mathbb{Z}_p^\times$$

is as asserted is a geometric statement, so we may extend scalars from k to \overline{k}. Suppose first that either $M \geq 4$ or that $N \geq 3$. In that case we can consider the moduli problem $\mathcal{M}_0/\overline{k}$ where we require $\Gamma_0(L)$, $\Gamma_1(M)$, and (oriented) $\Gamma(N_0)$-structures, but no longer impose either ordinariness or any further condition on p-power torsion. Suppose we know that for $\mathcal{M}_0^{\text{ord}}$, the image

$$\rho(\pi_1^{\text{geom}}(\mathcal{M}_0^{\text{ord}})) \subset S\ell(2, \hat{\mathbb{Z}}_{\text{not } p}) \times \mathbb{Z}_p^\times$$

is as asserted. Then we argue as follows. By a fundamental theorem of Igusa, cf. [Ig] and [K-M, 12.6.2], at any supersingular point $s \in \mathcal{M}_0(\overline{k})$, the p-adic character ρ_{p^∞} restricted to the inertia group I_s at s has largest possible image:

$$\rho_{p^\infty}(I_s) = \mathbb{Z}_p^\times.$$

Therefore the covering $\mathcal{M}^{\text{ord}} \to \mathcal{M}_0^{\text{ord}}$ is finite etale galois, with group $(\mathbb{Z}/p^\nu \mathbb{Z})^\times$. So $\rho(\pi_1^{\text{geom}}(\mathcal{M}^{\text{ord}})) \subset \rho(\pi_1^{\text{geom}}(\mathcal{M}_0^{\text{ord}}))$ is an open subgroup of index $\phi(p^\nu)$. But $\rho(\pi_1^{\text{geom}}(\mathcal{M}^{\text{ord}}))$ lies in the group it is asserted to be,
and that group has the same index $\phi(p^r)$ in the known $\rho(\pi_{1}^{geom}(M^{ord}))$. So we get the asserted description of $\rho(\pi_{1}^{geom}(M^{ord}))$.

We now show that for M_{0}^{ord}, the image

$$\rho(\pi_{1}^{geom}(M_{0}^{ord})) \subset SL(2, \hat{\mathbb{Z}}_{not\ p}) \times \mathbb{Z}^\times$$

is as asserted. By Igusa’s theorem, at any supersingular point of M_{0}, $\rho_{p}^\infty(I_s) = \mathbb{Z}_{p}^\times$. But the representation $\rho_{not\ p}$ is everywhere unramified on M_{0}, so $\rho(I_s) = \{1\} \times \mathbb{Z}_{p}^\times$ in the product $SL(2, \hat{\mathbb{Z}}_{not\ p}) \times \mathbb{Z}^\times$. So we are reduced to showing that the image

$$\rho_{not\ p}(\pi_{1}^{geom}(M^{ord})) \subset SL(2, \hat{\mathbb{Z}}_{not\ p})$$

is as asserted. This follows from the tame specialization theorem [Ka-ESDE, 8.17.14] and the corresponding result over \mathbb{C}. The moduli scheme M_{0} is one geometric fibre of the corresponding moduli scheme \mathcal{M}_{0} over $\mathbb{Z}[[\zeta_{N_{0}}]][1/LM N_{0}]$, which one knows has a proper smooth compactification \overline{M}_{0} over $\mathbb{Z}[[\zeta_{N_{0}}]][1/LM N_{0}]$ with “infinity” a divisor which is finite etale over $\mathbb{Z}[[\zeta_{N_{0}}]][1/LM N_{0}]$. Extend scalars from $\mathbb{Z}[[\zeta_{N_{0}}]][1/LM N_{0}]$ to the Witt vectors $W(\kappa)$. On this scheme $M_{0}/W(\kappa)$, the lisse $\hat{\mathbb{Z}}_{not\ p}$-sheaf which “is” $\rho_{not\ p}$ is (automatically) tamely ramified along “infinity”, so by the tame specialization theorem its geometric monodromy is the same on the special fibre as on the geometric point over the generic fibre gotten by choosing (!) an embedding of $W(\kappa) \subset \mathbb{C}$.

It remains to show that the image

$$\rho(\pi_{1}^{geom}(M^{ord})) \subset SL(2, \hat{\mathbb{Z}}_{not\ p}) \times \mathbb{Z}^\times$$

is as asserted in the general case, i.e., without the assumption that either $M \geq 4$ or $N_{0} \geq 3$. To treat this case, pick two distinct primes ℓ_{1} and ℓ_{2}, both of which are odd and prime to $LM N_{0}$. Consider the moduli problems M_{1}^{ord}, respectively M_{2}^{ord}, over κ where in addition to imposing an M structure we impose also an oriented $\Gamma(\ell_{1})$-structure, resp. an oriented $\Gamma(\ell_{2})$-structure. The two groups $\rho(\pi_{1}^{geom}(M_{i}^{ord}))$, $i = 1, 2$, are then known. Both are subgroups of $\rho(\pi_{1}^{geom}(M_{0}^{ord}))$, and together they visibly generate the asserted candidate for $\rho(\pi_{1}^{geom}(M_{0}^{ord}))$. \qed

Using this result, one can say something, again well known to the specialists, in the case of general families.

Theorem 7.2. Let $E/U/k$ be a family of fibrewise ordinary elliptic curves with nonconstant j-invariant over a base curve U/k, k a finite field, which is smooth and geometrically connected.
(1) The image $\rho(\pi_1^{geom}(U))$ is open in $SL(2, \hat{\mathbb{Z}}_{not \ p}) \times \mathbb{Z}_p^\times$; there exists an integer $D = D_0 p^\nu$, D_0 prime to p and $\nu \geq 0$, such that $\rho(\pi_1^{geom}(U))$ contains the subgroup

$$Ker(SL(2, \hat{\mathbb{Z}}_{not \ p}) \times \mathbb{Z}_p^\times \to SL(2, \mathbb{Z}/D_0\mathbb{Z}) \times (\mathbb{Z}/p^\nu\mathbb{Z})^\times)$$

which is the kernel of reduction mod (D_0, p^ν).

(2) Denote by $G_{D}^{geom} \subset SL(2, \mathbb{Z}/D_0\mathbb{Z}) \times (\mathbb{Z}/p^\nu\mathbb{Z})^\times$ the mod D image $\rho_{D}(\pi_1^{geom}(U))$, and denote by $G_D \subset GL(2, \mathbb{Z}/D_0\mathbb{Z}) \times (\mathbb{Z}/p^\nu\mathbb{Z})^\times$ the mod D image $\rho_{D}(\pi_1(U))$. Then G_{D}^{geom} is a normal subgroup of G_D, and the quotient is cyclic, generated by the image $\rho_{D}(F)$ of any element $F \in \pi_1(U)$ such that $\rho_{not \ p}(F)$ has determinant $\#k$.

(3) An element $\gamma_0 \in SL(2, \hat{\mathbb{Z}}_{not \ p}) \times \mathbb{Z}_p^\times$ lies in $\rho(\pi_1^{geom}(U))$ if and only if mod D it lies in G_{D}^{geom}.

(4) Suppose given an element $\gamma \in GL(2, \hat{\mathbb{Z}}_{not \ p})_{det}$ in $(\#k)^\times \times \mathbb{Z}_p^\times$, with $det(\gamma_{not \ p}) = (\#k)^n$, $n \in \hat{\mathbb{Z}}$. This element lies in $\rho(\pi_1(U))$ if and only if γ mod D lies the coset $\rho_{D}(F^n)G_{D}^{geom}$ of G_D.

Proof. It suffices to prove (1). For (2) is universally true, and (1) and (2) together imply (3). For (4), the condition given is obviously necessary; applying (3) to $F^{-n}\gamma$ we see that it is sufficient.

To prove (1) we argue as follows. The assertion is geometric, so we may extend scalars from k to \overline{k}. It suffices to prove it for some finite etale cover U_1 of U, since $\pi_1(U_1)$ is a subgroup of $\pi_1(U)$. So we may assume choose an odd prime $\ell \neq p$ and reduce to the case when E/U has an oriented $\Gamma(\ell)$-structure. Then we have a classifying map $U \to \mathcal{M}^{ord}(\ell)$, for $\mathcal{M}(\ell)$ the $\Gamma(\ell)$ modular curve. This map is nonconstant, because our family has nonconstant j-invariant. Therefore the image of $\pi_1(U)$ in $\pi_1(\mathcal{M}^{ord}(\ell))$ is a closed subgroup of finite index, hence an open subgroup of finite index, in $\pi_1(\mathcal{M}^{ord}(\ell))$, to which we apply the theorem.

Given $E/U/k$ as in the above theorem, fibrewise ordinary with nonconstant j-invariant, we say that any integer D for which part (1) of the corollary holds is a modulus for $E/U/k$. Of course if D is a modulus, so is any multiple of D.

8. Gekeler’s product formula

To motivate this section, we first explain the heuristic which underlies it. Given a family $E/U/F_q$ with nonconstant j-invariant, we know the Sato-Tate conjecture for this family, cf. Deligne [De-WeilIII, 3.5.7]. Given a finite extension F_Q/F_q, attached to each point $u \in U(F_Q)$ is an
elliptic curve $E_{u,F_Q}/\mathbb{F}_Q$, which gives rise to data (A_{u,F_Q}, Q), which in
turn gives rise to the real number $t_{u,F_Q} := A_{u,F_Q}/(2\sqrt{Q}) \in [-1, 1]$. The
Sato-Tate theorem says that as Q grows, these $\#U(\mathbb{F}_Q)$ real numbers
$t_{u,F_Q} \in [-1, 1]$ become equidistributed for the measure $\frac{2}{\pi}\sqrt{1 - t^2}dt$ on
$[-1, 1]$. This means that for any continuous \mathbb{C}-valued function f on
$[-1, 1]$, we can compute $\frac{2}{\pi}\int_{-1}^{1} f(t)\sqrt{1 - t^2}dt$ as the large Q limit of
$(1/\#U(\mathbb{F}_Q)) \sum_{u \in U(\mathbb{F}_q)} f(t_{u,F_Q})$. For a fixed Q, we make the change of
variable $t = A/(2\sqrt{Q})$, so the integral becomes
\[
\frac{2}{\pi} \int_{-2\sqrt{Q}}^{2\sqrt{Q}} f(A/(2\sqrt{Q}))\sqrt{1 - A^2/4Q}dA/(2\sqrt{Q}) = \\
= \frac{2}{\pi} \frac{1}{4Q} \int_{-2\sqrt{Q}}^{2\sqrt{Q}} f(A/(2\sqrt{Q}))\sqrt{4Q - A^2}dA.
\]
And the approximating sum is
\[
(1/\#U(\mathbb{F}_Q)) \sum_{u \in U(\mathbb{F}_q)} f(A_{u,F_Q}/(2\sqrt{Q})).
\]
Since there are “about” Q points in $U(\mathbb{F}_Q)$, it is “as though” a given
integer $A \in [-2\sqrt{Q}, 2\sqrt{Q}]$ occurs as an A_{u,F_Q} for “about”
\[
\frac{1}{2\pi} \sqrt{4Q - A^2}
\]
of the $u \in U(\mathbb{F}_q)$; this is the Sato-Tate heuristic.

We have already discussed how congruence obstructions can prevent
some particular (A, Q) from occurring at all in a given family. The
Gekeler product formula says that, at least in certain modular families,
whenever (A, Q) is ordinary and has no archimedean or congruence
obstruction, we can use congruence considerations to compute the ratio
\[
\frac{\# \{u \in U(\mathbb{F}_Q) | A_{u,F_Q} = A\}}{\frac{1}{2\pi} \sqrt{4Q - A^2}}.
\]
The prototypical example of computing such a ratio by “congruence
considerations” is Dirichlet’s class number formula for a quadratic imaginary field K:
\[
L(1, \chi) = \frac{2\pi h_K}{w_K \sqrt{|d_K|}}.
\]
Here $h_K = h(O_K)$ is the class number, $w_K = \#O_K^\times$ is the order of the
group of roots of unity in K, and d_K is the discriminant of O_K. So in
terms of the normalized class number
\[
h_K^* := h_K/w_K
\]
the formula reads
\[L(1, \chi) = \frac{h_K^*}{\frac{1}{2\pi} \sqrt{|d_K|}}. \]

In this example, the ratio is the value \(L(1, \chi) \), and “congruence considerations” give the Euler factors, whose conditionally convergent product is \(L(1, \chi) \). Indeed, it is precisely this class number formula which underlies Gekeler’s, as we will see.

We return now to a family \(\mathcal{E}/U/F_q \) with nonconstant \(j \)-invariant. Fix data \((A, Q)\) with \(A \) prime to \(p \), \(|A| < 2\sqrt{Q}\), and no congruence obstruction. We introduced, for every integer \(N \geq 2 \) the finite groups \(G_N \), their normal subgroups \(G_{geom}^N \triangleleft G_N \), the cosets \(G_{N, det=Q} \subset G_N \), and their subsets \(G_N(A, Q) \subset G_{N, det=Q} \), whose cardinalities were denoted \(g_N(A, Q) \) and \(g_{N, det=Q} \). We also introduced the rational number
\[g_N(avg, Q) = \frac{1}{N} g_{N, det=Q} = \frac{1}{N} \sum_{A \mod N} g_N(A, Q). \]

Gekeler’s idea is to consider the ratios
\[g_N(A, Q)/g_N(avg, Q) = N g_N(A, Q)/g_{N, det=Q}, \]
to show they have a “large \(N \) limit”, and then to show that this limit is the ratio
\[\frac{\# \{ u \in U(F_q) | A_u, F_q = A \}}{\frac{1}{2\pi} \sqrt{4Q - A^2}}. \]

Let us be more precise. We have the following elementary lemma.

Lemma 8.1. Let \(D \) be a modulus for \(\mathcal{E}/U/F_q \). Suppose given \((A, Q)\) with \(Q \) a power of \(\#k \) and \(A \) an integer prime to \(p \) with \(A^2 < 4Q \). Suppose that \((A, Q)\) has no congruence obstruction. Suppose \(N \geq 2 \) and \(M \geq 2 \) are relatively prime. Suppose further that \(N \) is relatively prime to \(D \).

1. Under the “reduction mod \(NM \)” map we have an isomorphism of groups
\[G_{NM}^{geom} \sim\to G_N^{geom} \times G_M^{geom}. \]
2. We have a bijection of cosets
\[G_{NM, det=Q} \sim\to G_{N, det=Q} \times G_{M, det=Q}. \]
3. We have a bijection of sets
\[G_{NM}(A, Q) \sim\to G_{N}(A, Q) \times G_{M}(A, Q). \]
(4) For a prime number \(\ell \) prime to \(pD \) and an integer \(n \geq 1 \), we have
\[
G_{\ell^n}^{\text{geom}} = \text{SL}(2, \mathbb{Z}/\ell^n\mathbb{Z}),
G_{\ell^n, \det=Q} = \{ \gamma \in \text{GL}(2, \mathbb{Z}/\ell^n\mathbb{Z}) \mid \det(\gamma) = Q \},\]
\[
G_{\ell^n}(A, Q) = \{ \gamma \in \text{GL}(2, \mathbb{Z}/\ell^n\mathbb{Z}) \mid \det(\gamma) = Q, \; \text{trace}(\gamma) = A \}.
\]
(5) If \(p \) is prime to \(D \), then for any \(n \geq 1 \), we have
\[
G_{p^n}^{\text{geom}} = (\mathbb{Z}/p^n\mathbb{Z})^\times,
G_{p^n, \det=Q} = (\mathbb{Z}/p^n\mathbb{Z})^\times,
G_{p^n}(A, Q) = \{ \alpha \in (\mathbb{Z}/p^n\mathbb{Z})^\times \mid \alpha \equiv \text{unit}_Q(A) \mod p^n \}.
\]

Proof. Assertions (1), (4) and (5) result from Theorem 7.2. Assertion (1) implies (2) by the definition of \(G_{N, \det=Q} \) as a coset, and (2) implies (3) trivially. \(\square \)

Remark 8.2. In the case of any of the moduli problems we have considered, Theorem 7.1 shows that the image group
\[
\rho(\pi_{1,\text{geom}}(\mathcal{M}^{\text{ord}})) \subset \text{SL}(2, \hat{\mathbb{Z}}_{\not\equiv p}) \times \mathbb{Z}_p^\times = \prod_{\ell \neq p} \text{SL}(2, \mathbb{Z}_\ell) \times \mathbb{Z}_p^\times
\]
is the product over all primes \(\ell \), including \(\ell = p \), of the images of the separate \(\ell \)-adic representations. So for (the universal families over) these modular curves, assertions (1), (2) and (3) of Lemma 8.1 hold for every pair \((N, M)\) of relatively prime integers.

Gekeler proves that for a prime number \(\ell \) prime to \(pD \), the sequence
\[
\ell^n g_{\ell^n}(A, Q)/g_{\ell^n, \det=Q}, \; n \geq 1,
\]
i.e., the sequence of ratios
\[
\frac{\ell^n \# \{ \gamma \in \text{GL}(2, \mathbb{Z}/\ell^n\mathbb{Z}) \mid \text{trace}(\gamma) = A, \; \det(\gamma) = Q \}}{\# \text{SL}(2, \mathbb{Z}/\ell^n\mathbb{Z})}
\]
becomes constant for large \(n \), and computes this constant explicitly [Ge, Thm. 4.4], calling it \(\nu_\ell(A, Q) \). He also shows that so long as \(\ell \) is, in addition, either prime to \(A^2 - 4Q \) or split in \(K := \mathbb{Q}(\sqrt{A^2 - 4Q}) \), then
\[
\nu_\ell(A, Q) = \frac{1}{(1 - \frac{\chi(\ell)}{\ell})}
\]
is the Euler factor at \(\ell \) in \(L(1, \chi) \) for \(\chi \) the quadratic character attached to the field \(K \). And if \(p \) does not divide \(D \), it is immediate from the definitions that the sequence
\[
p^n g_{p^n}(A, Q)/g_{p^n, \det=Q}, \; n \geq 1,
\]
is constant, with value
\[(p^n \times 1)/\phi(p^n) = 1/(1 - \frac{1}{p}),\]
the Euler factor at \(p\) of the same \(L(1, \chi)\).

To go further, we must define a reasonable factor “at \(D\)”. It should be true that for any sequence of positive integers \(M_n\) such that \(M_n| M_{n+1}\) and such that \(D^n|M_n\) for all \(n \geq 1\), the sequence of ratios
\[M_n g_{M_n}(A, Q)/g_{M_n, \det=Q}, \quad n \geq 1,\]
becomes constant for large \(n\), and that this constant is independent of the particular choice of the sequence of \(M_n\) as above. If this is true, we would call this constant \(\nu_D(A, Q)\). [For the moduli problems we have been considering, the problem of defining the factor “at \(D\)” is reduced to the problem of defining the factor separately at each prime dividing \(D\), cf. Remark 8.2.] The most optimistic conjecture would then be the following.

Conjecture 8.3. Let \(\mathcal{E}/U/\mathbb{F}_q\) be fibrewise ordinary with nonconstant \(j\)-invariant, \(D\) a modulus. Suppose that \(U = U_{\text{max}}\). If \((A, Q)\) has neither archimedean nor congruence obstruction, then
\[
\frac{\# \{u \in U(\mathbb{F}_q) | A_{u, \mathbb{F}_q} = A\}}{\frac{1}{2\pi} \sqrt{4Q - A^2}} = \nu_D(A, Q) \prod_{\ell \nmid D} \nu_\ell(A, Q),
\]
where the conditionally convergent product is defined by
\[
\prod_{\ell \nmid D} \nu_\ell(A, Q) := \lim_{X \to \infty} \prod_{\ell < X, \ell \nmid D} \nu_\ell(A, Q).
\]

However, this conjecture is false in general, for reasons that emerged in a discussion with Deligne. The problem is that for given \((A, Q)\), it asserts a formula for the number \(\# \{u \in U(\mathbb{F}_q) | A_{u, \mathbb{F}_q} = A\}\) which depends only on the image \(\rho(\pi_1^{\text{geom}}(U)) \subset SL(2, \hat{\mathbb{Z}}_{\not p}) \times \mathbb{Z}_p^\times = \prod_{\ell \neq p} SL(2, \mathbb{Z}_\ell) \times \mathbb{Z}_p^\times\) and on the coset
\[
\rho(FQ^{\pi_1^{\text{geom}}}(U)) \subset \rho(\pi_1(U)) \subset \prod_{\ell \neq p} GL(2, \mathbb{Z}_\ell) \times \mathbb{Z}_p^\times,
\]
\(F_Q \in \pi_1(U)\) being any element of degree \(d := \log Q/\log q\). Consider a situation \(\mathcal{E}/U/\mathbb{F}_q\), \(U = U_{\text{max}}\), for which the conjecture holds, and for which we have potentially multiplicative reduction at all places of bad reduction. Suppose we have another smooth, geometrically connected
curve \(V/F_q\) and a finite flat \(F_q\)-map, \(f: V \to U\), such that the induced maps of fundamental groups

\[f_*: \pi_{1, \text{geom}}(V) \to \pi_{1, \text{geom}}(U), f_*: \pi_1(V) \to \pi_1(U) \]

are both surjective. Now consider the pullback \(\mathcal{E}_V/V/F_q\) of \(\mathcal{E}/U/F_q\) by the map \(f\). This pullback family also has \(V = V_{\text{max}}\) (because supersingular points, resp. points of potentially multiplicative reduction downstairs have their inverse images upstairs supersingular, resp. points of potentially multiplicative reduction). Since the pullback family has the same galois image data, the notion of congruence obstruction is the same for the original family and for its pullback. So the conjecture predicts that for each \((A, Q)\) with no congruence obstruction, we have

\[\# \{u \in U(F_Q) | A_{u,F_Q} = A\} = \# \{v \in V(F_Q) | A_{v,F_Q} = A\}. \]

Fixing \(Q\) and summing over the allowed \(A\), which are the same upstairs and down, we get the equality

\[\#U(F_Q) = \#V(F_Q). \]

As we will recall below, one condition that forces \(f_*\) to be surjective on fundamental groups is for it to be fully ramified over some \(F_q\)-point, say over \(u_0 \in U(F_q)\), with unique point \(v_0 \in V(F_q)\) lying over \(u_0\). Given such an \(f\), we are to have

\[\#U(F_Q) = \#V(F_Q). \]

But of course this is nonsense in general. Here is the simplest example. Work over a prime field \(F_p\) with \(p \equiv 1 \mod 3\), pick a cube root of unity, and take for \(\mathcal{E}/U/F_p\) the universal family for the moduli problem of oriented \(\Gamma(3)\) structures. Here the modular curve \(\mathcal{M}_{\Gamma(3)}\) is \(\mathbb{P}^1 \setminus \{\mu_3, \infty\}\), with parameter \(\mu\) and universal family

\[X^3 + Y^3 + Z^3 = 3\mu XYZ. \]

In this family, we have multiplicative reduction at each missing point. And while there are \(p-1\) supersingular points over \(\overline{F}_p\), no supersingular point is \(F_p\)-rational (simply because over \(F_p\) with \(p \geq 5\), supersingular points have \(A = 0\), whereas our \(A\)'s satisfy \(A \equiv p + 1 \mod 9\), so are certainly nonzero). Thus

\[\mathcal{M}_{\Gamma(3)}^{\text{ord}}(F_p) = F_p \setminus \{\mu_3\} \]

has \(p - 3\) points. Now consider the pullback family by the double covering "square root of \(\mu\)" of \(U := \mathbb{P}^1 \setminus \{\mu_3, \infty\}\) by \(V := \mathbb{P}^1 \setminus \{\mu_6, \infty\}\). Explicitly, this is the family

\[X^3 + Y^3 + Z^3 = 3\mu^2 XYZ. \]
Here

\[V(\mathbb{F}_p) = \mathbb{F}_p \setminus \{\mu_6\} \]

has \(p - 6 \) points.

Here is the precise surjectivity statement used above, whose proof we owe to Deligne. It is not as well known as it should be.

Lemma 8.4. Let \(X \) and \(Y \) be connected, locally noetherian schemes, and \(f : X \to Y \) a morphism which is proper and flat. Suppose that for some geometric point \(y \) of \(Y \), say with values in the algebraically closed field \(K \), the fibre \(X_y(K) := f^{-1}(y)(K) \) consists of a single \(K \)-valued point \(x \in X(K) \). Then the map of fundamental groups

\[f_* : \pi_1(X, x) \to \pi_1(Y, y) \]

is surjective.

Proof. For any \(Y \)-scheme \(h : Z \to Y \), we can also view \(Z \) as an \(X \)-scheme, by \(f \circ h \). So we have the fibres \(Z_y(K) := h^{-1}(y)(K) \) and \(Z_x(K) := (f \circ h)^{-1}(x)(K) \). The hypothesis that \(f^{-1}(y)(K) = x \) insures that \(Z_x(K) = Z_y(K) \).

Let \(g : E \to Y \) be finite étale of some degree \(d \geq 1 \), with \(E \) connected, and denote by \(g_X : E_X \to X \) its pullback to a finite étale cover of \(X \), of the same degree \(d \). We must show that \(E_X \) remains connected. Let \(j : Z \subset E_X \) be the inclusion of a connected component \(Z \) of \(E_X \), and \(W := f_E(Z) \subset E \) its image in \(E \). As \(f \) is proper and flat, so is \(f_E \). As \(Z \) is both open and closed in \(E_X \), its image \(W := f_E(X) \subset E \) is both closed and open in \(E \), and hence \(W = E \).

\[
\begin{array}{ccc}
Z & \xrightarrow{f_E|Z} & W \\
\downarrow & & \downarrow & = \\
E_X & \xrightarrow{f_E} & E \\
\downarrow g_X & & \downarrow g \\
X & \xrightarrow{f} & Y
\end{array}
\]

So the fibre \(W_y(K) \) of \(W \) over \(y \) consists of \(d \) points. But \(Z \) maps onto \(W \), hence, viewing \(Z \) as a \(Y \)-scheme (by \(f \circ g_X \circ j \)) and \(f_E|Z : Z \to W \) as a \(Y \)-morphism, \(Z_y(K) \) maps onto \(W_y(K) \). Therefore \(Z_y(K) \) consists of at least \(d \) points. But \(Z_x(K) = Z_y(K) \), as noted above, hence \(Z_x(K) \) has at least \(d \) points. But the entire fibre \((E_X)_x(K) \) has \(d \) points. Therefore \(Z \) and \(E_X \) have the same fibre over \(x \); as both are finite étale over \(X \) and \(Z \subset E_X \), we conclude that \(Z = E_X \). \(\square \)
Despite the failure of the conjecture above in general, there are certain modular families of elliptic curves for which the conjecture holds.

Theorem 8.5. (Gekeler) The conjecture is true for (the universal fibre-wise ordinary families over) the Igusa curves $Ig(p^n)/k/F_p$, any $p^n \geq 4$.

Proof. For this family, Theorem 7.1 tells us that

$$\rho(\pi_1^{geom}(Ig(p^n))) = SL(2, \hat{\mathbb{Z}}_{not \ p}) \times (1 + p^n \mathbb{Z}_p),$$

and

$$\rho(\pi_1(Ig(p^n))) = GL(2, \hat{\mathbb{Z}}_{not \ p})_{det \ in \ (#k)^2} \times (1 + p^n \mathbb{Z}_p).$$

So here we can take $D = p^n$. Take an (A, Q) with neither congruence nor archimedean obstruction. Then A is prime to p, unit $Q(A) \equiv 1 \mod p^n$, and $A^2 < 4Q$. For $\ell \neq p$, the local factor is Gekeler’s $\nu_\ell(A, Q)$.

What about the factor $\nu_{p^n}(A, Q)$ at $D = p^n$? For any integer $n \geq \nu$, $g_{p^n}(A, Q)$ is the ratio

$$\frac{p^n \# \{\gamma \in ((1 + p^n \mathbb{Z}_p)/(1 + p^n \mathbb{Z}_p))| \gamma \equiv unit_Q(A) \mod p^n\}}{\#((1 + p^n \mathbb{Z}_p)/(1 + p^n \mathbb{Z}_p))},$$

which is just $p^n \times 1/p^{n-\nu} = p^\nu$, which in turn is

$$\phi(p^n) \times (1 - 1/p)^{-1},$$

and hence

$$\nu_{p^n}(A, Q) = \phi(p^n) \times (1 - 1/p)^{-1}.$$

Gekeler proves [Ge, Cor. 5.4] (remember his H^* is twice ours and he writes $H^*(A^2 - 4Q)$ for $H^*(\mathbb{Z}[F])$) that

$$(1 - 1/p)^{-1} \prod_{\ell \neq p} \nu_\ell(A, Q) = 2\pi H^*(\mathbb{Z}[F])/\sqrt{4q - A^2}.$$

Hence we have

$$\nu_{p^n}(A, Q) \prod_{\ell \neq p} \nu_\ell(A, Q) = \frac{\phi(p^n)H^*(\mathbb{Z}[F])}{1/\pi \sqrt{4q - A^2}}.$$

But the numerator $\phi(p^n)H^*(\mathbb{Z}[F])$ is precisely

$$\# \{u \in Ig(p^n)(\mathbb{F}_Q)|A_{u,\mathbb{F}_Q} = A\},$$

cf. Lemma 4.3, (1). \qed

Here is a slight generalization of Gekeler’s result.

Theorem 8.6. Let $N = N_0 p^n$ with N_0 prime to p. Supppose that either $N_0 \geq 3$ or that $p^n \geq 4$. Let k/\mathbb{F}_p be a finite field containing a chosen primitive N_0’th root of unity. Let $\mathcal{E}^{univ}/\mathcal{M}^{ord}/k$ be the universal family of ordinary elliptic curves endowed with both an oriented
Γ(N₀)-structure and an Ig(pⁿ)-structure. The conjecture is true for this family.

Proof. Suppose (A, Q) has neither archimedean nor congruence obstruction. Our first task is to compute, for this family, the local factors νℓ(A, Q, M^ord) at the primes ℓ dividing pN₀.

Suppose we have done this. Then we proceed as follows. We have seen in Lemma 4.3, (1) and (4), that

\[\# \{ u \in M^\text{ord}(\mathbb{F}_q) | A_u \mathbb{F}_q = A \} = \phi(p^n) \# SL(2, \mathbb{Z}/N_0 \mathbb{Z}) H^*(\mathbb{Z}[(F - 1)/N_0]). \]

So what we must show is that

\[\frac{\phi(p^n) \# SL(2, \mathbb{Z}/N_0 \mathbb{Z}) H^*(\mathbb{Z}[(F - 1)/N_0])}{\frac{1}{2\pi} \sqrt{4Q - A^2}} = \prod_{\ell \nmid N_0} \nu_\ell(A, Q, M^\text{ord})(\prod_{\ell \mid N_0} \nu_\ell(A, Q)). \]

The factor νp(A, Q, M^ord) at p is

\[\nu_p(A, Q, M^\text{ord}) = \phi(p^n) \times (1 - 1/p)^{-1}, \]

exactly as in the proof of the previous theorem. According to that theorem, we have

\[(1 - 1/p)^{-1} \prod_{\ell \neq p} \nu_\ell(A, Q) = \frac{H^*(\mathbb{Z}[F])}{\frac{1}{2\pi} \sqrt{4Q - A^2}}. \]

Comparing these two formulas, what we must show is that

\[\prod_{\ell \mid N_0} \nu_\ell(A, Q, M^\text{ord}) / \nu_\ell(A, Q) = \# SL(2, \mathbb{Z}/N_0 \mathbb{Z}) \frac{H^*(\mathbb{Z}[(F - 1)/N_0])}{H^*(\mathbb{Z}[F])}. \]

We next express the right hand side as a product over the primes dividing N₀. Factoring N₀ = \prod ℓₐ, we have

\[\# SL(2, \mathbb{Z}/N_0 \mathbb{Z}) = \prod_{\ell_i \mid N_0} \# SL(2, \mathbb{Z}/\ell_i^{a_i} \mathbb{Z}). \]

We can factor the ratio

\[\frac{H^*(\mathbb{Z}[(F - 1)/N_0])}{H^*(\mathbb{Z}[F])} \]

as follows. Denote by K the fraction field of \(\mathbb{Z}[F] \), \(\mathcal{O}_K \) its ring of integers, \(\chi_K \) the quadratic character corresponding to \(K/\mathbb{Q} \), \(\phi_K \) the multiplicative function introduced in the proof of Theorem 5.1, and

\[f := \text{the conductor of the order } \mathbb{Z}[(F - 1)/N_0]. \]
We have the formulas
\[H^*(\mathbb{Z}[(F - 1)/N_0]) = \sum_{d|f} \phi_K(d) h^*(\mathcal{O}_K), \]
\[H^*(\mathbb{Z}[F]) = \sum_{d|fN_0} \phi_K(d) h^*(\mathcal{O}_K). \]
Because \(\phi_K \) is multiplicative, we have the formulas
\[\sum_{d|f} \phi_K(d) = \prod_{\ell|f} \sum_{a \geq 0, \ell^a|f} \phi_K(\ell^a), \]
\[\sum_{d|fN_0} \phi_K(d) = \prod_{\ell|fN_0} \sum_{a \geq 0, \ell^a|fN_0} \phi_K(\ell^a). \]
In these two products, the primes \(\ell \) not dividing \(N_0 \) give rise to the same factor in each. So we get
\[\frac{H^*(\mathbb{Z}[(F - 1)/N_0])}{H^*(\mathbb{Z}[F])} = \prod_{\ell|N_0} \frac{\sum_{a \geq 0, \ell^a|f} \phi_K(\ell^a)}{\sum_{a \geq 0, \ell^a|fN_0} \phi_K(\ell^a)}. \]
So we are reduced to showing that for each prime \(\ell_i \) dividing \(N_0 = \prod \ell_i^{n_i} \) we have
\[\frac{\nu_{\ell_i}(A, Q, M^{ord})}{\nu_{\ell_i}(A, Q)} = \# SL(2, \mathbb{Z}/\ell_i^n \mathbb{Z}) \frac{\sum_{a \geq 0, \ell_i^a|f} \phi_K(\ell_i^a)}{\sum_{a \geq 0, \ell_i^a|fN_0} \phi_K(\ell_i^a)}. \]
Fix one such \(\ell_i := \ell \), and put \(n := ord_{\ell}(N_0), \delta := ord_{\ell}(f). \) Thus \(n + \delta = ord_{\ell}(fN_0) \). We now compute explicitly everything in sight, using the results [Ge, Thm.4.4] of Gekeler. To state them, we first establish a bit of notation. Given an arbitrary pair \((A_1, Q_1)\) of integers with \(A_1^2 - 4Q_1 < 0 \), we wish to count the number \(\alpha_{\ell^k}(A_1, Q_1) \) of \(2 \times 2 \) matrices \(X \in M_2(\mathbb{Z}/\ell^k \mathbb{Z}) \) with \(Trace(X) = A_1 \) and \(det(X) = Q_1 \), at least for \(k \) large. Attached to \((A_1, Q_1)\) we have the quadratic imaginary order \(\mathbb{Z}[F_1] := \mathbb{Z}[T]/(T^2 - A_1 T + Q_1) \), its fraction field \(K_1 \), ring of integers \(\mathcal{O}_{K_1} \), and Dirichlet character \(\chi_{K_1} \). We denote by \(f_{A_1, Q_1} \) the conductor of the order \(\mathbb{Z}[F_1] \), and we define
\[\delta_1 := ord_{\ell}(f_{A_1, Q_1}). \]
Gekeler shows that for \(k \geq 2\delta_1 + 2 \), \(\alpha_{\ell^k}(A_1, Q_1) \) is equal to
\[\ell^{2k} + \ell^{2k-1}, \] if \(\chi_{K_1}(\ell) = 1, \]
\[
\ell^{2k} + \ell^{2k-1} - (\ell + 1)\ell^{2k-\delta_1-2}, \text{ if } \chi_{K_1}(\ell) = 0,
\]
\[
\ell^{2k} + \ell^{2k-1} - 2\ell^{2k-\delta_1-1}, \text{ if } \chi_{K_1}(\ell) = -1.
\]

We apply this first to \((A, Q)\). Then \(K_1\) is just \(K, f_{A,Q} = N_0f\), and \(\delta_1 = \delta + n\). So for large \(k\), the factor

\[
\nu_{\ell^k}(A, Q) := \ell^k \alpha_{\ell^k}(A, Q)/\#SL(2, \mathbb{Z}/\ell^k\mathbb{Z}) = \alpha_{\ell^k}(A, Q)/\ell^{2k-2}(\ell^2 - 1)
\]
is easily calculated, as \(\alpha_{\ell^k}(A, Q)\) is equal to

\[
\ell^{2k} + \ell^{2k-1}, \text{ if } \chi_{K}(\ell) = 1,
\]
\[
\ell^{2k} + \ell^{2k-1} - (\ell + 1)\ell^{2k-\delta-n-2}, \text{ if } \chi_{K}(\ell) = 0,
\]
\[
\ell^{2k} + \ell^{2k-1} - 2\ell^{2k-\delta-n-1}, \text{ if } \chi_{K}(\ell) = -1.
\]

We next calculate the factor \(\nu_{\ell^{k+2n}}(A, Q, M_{\text{ord}})\). Here the group \(G_{\ell^{k+2n}}\) is the group of matrices of the shape \(1 + \ell^nX, X \in M_2(\mathbb{Z}/\ell^{n+k}\mathbb{Z})\), and \(G_{\ell^{k+2n}, \text{det}=Q}\), being a coset of \(G_{\ell^{k+2n}}^\text{geom} = \{1 + \ell^nX\} \cap SL(2, \mathbb{Z}/\ell^{2n+k}\mathbb{Z})\), has

\[
\#G_{\ell^{k+2n}, \text{det}=Q} = \ell^{3(k+n)}.
\]

How do we compute the number of \(X \in M_2(\mathbb{Z}/\ell^{n+k}\mathbb{Z})\) such that \(1 + \ell^nX\) has trace \(A\) and determinant \(Q\) mod \(\ell^{k+2n}\)? These conditions are

\[
2 + \ell^n\text{Trace}(X) \equiv A \mod \ell^{k+2n},
\]
\[
1 + \ell^n\text{Trace}(X) + \ell^{2n}\text{det}(X) \equiv Q \mod \ell^{k+2n}.
\]

Because \((A, Q)\) has no congruence obstruction, we know that

\[
A \equiv Q + 1 \mod \ell^{2n},
\]
\[
Q \equiv 1 \mod \ell^n.
\]

Thus the conditions on \(X\) are

\[
\text{Trace}(X) \equiv (A - 2)/\ell^n \mod \ell^{k+1},
\]
\[
\text{det}(X) \equiv (Q + 1 - A)/\ell^{2n} \mod \ell^k.
\]

To count these, we first consider \(X_k\) mod \(\ell^k\), satisfying the above two conditions mod \(\ell^k\). The number of such \(X_k\) mod \(\ell^k\) is

\[
\alpha_{\ell^k}(A_1, Q_1),
\]
with

\[
A_1 := (A - 2)/\ell^n, \quad Q_1 := (Q + 1 - A)/\ell^{2n}.
\]

Once we have such an \(X_k\) mod \(\ell^k\), we lift it arbitrarily to some \(X_{k+n}\) mod \(\ell^{k+n}\); then can correct this lift by adding to it anything of the form \(\ell^kY, Y \mod \ell^n\), so long as \(Y\) has the required trace mod \(\ell^n\), namely

\[
\text{Trace}(Y) \equiv (A_1 - \text{Trace}(X_{k+n}))/\ell^k \mod \ell^n.
\]
So there are ℓ^{3n} possible Y, and hence the number of elements in $G_{\ell^{k+2n}, \det = Q}$ with trace A and determinant Q is

$$\ell^{3n} \alpha_{\ell^k}(A_1, Q_1).$$

Thus we get

$$\nu_{\ell^{k+2n}}(A, Q, \mathcal{M}^{\text{ord}}) = \ell^{k+2n} \ell^{3n} \alpha_{\ell^k}(A_1, Q_1) / \ell^{3(k+n)}.$$

For this (A_1, Q_1), $\mathbb{Z}[T]/(T^2 - AT + Q_1)$ is just $\mathbb{Z}[(F - 1)/\ell^n]$, and so its δ_1 is just δ, the ord_ℓ of the conductor of $\mathbb{Z}[(F - 1)/N_0]$. Also its K_1 is just K. So for $k \geq 2\delta + 2$, $\alpha_{\ell^k}(A_1, Q_1)$ is given by Gekeler’s formulas

- $\ell^{2k} + \ell^{2k-1}$, if $\chi_K(\ell) = 1$,
- $\ell^{2k} + \ell^{2k-1} - (\ell + 1)\ell^{2k-\delta-2}$, if $\chi_K(\ell) = 0$,
- $\ell^{2k} + \ell^{2k-1} - 2\ell^{2k-\delta-1}$, if $\chi_K(\ell) = -1$.

With this data at hand, it is straightforward but unenlightening to verify, case by case depending on the value of $\chi_K(\ell)$, the required identity

$$\frac{\nu_\ell(A, Q, \mathcal{M}^{\text{ord}})}{\nu_\ell(A, Q)} = \#SL(2, \mathbb{Z}/\ell^n\mathbb{Z}) \sum_{a=0}^\delta \phi_K(\ell^a) \sum_{a=0}^{\delta+n} \phi_K(\ell^a).$$

\[\square\]

Remark 8.7. Perhaps with a more conceptual approach, one could also verify the conjecture for the more general moduli problems we considered, where we allow also a $\Gamma_0(L)$ structure and a $\Gamma_1(M)$ structure. What is the relation of the conjectured formula to the formula, in terms of orbital integrals, given by Kottwitz in [Ko1, &16, pp. 432-433] and [Ko2, p. 205], when that general formula is specialized to the case of elliptic curves, cf. also [Cl, &3,&4]?

Question 8.8. As explained above, the conjecture is false in general, because of its incompatibility with pullback by a map which is surjective on fundamental groups. Nonetheless, one could ask if the following consequence of it is asymptotically correct. Take one of the moduli problems $\mathcal{M}^{\text{ord}}/k$ we have discussed above, and take a finite flat $f : V \to \mathcal{M}^{\text{ord}}$, with V/k smooth and geometrically connected, such that f_* is surjective on fundamental groups (e.g., an f which is fully ramified over some point). Fix a prime-to-p integer A, and an extension \mathbb{F}_q/k with $q \geq 8$ and $A^2 < 4q$. We know precisely what the congruence obstructions for (A, q) are, and that, if there are none, then there are \mathbb{F}_q-valued points of \mathcal{M}^{ord} whose Frobenii have trace A, cf. Lemmas 4.2, 4.3. We further know that if (A, q) has no congruence obstruction, then there are infinitely many extensions \mathbb{F}_q/k for which
(A, Q) has no congruence obstruction, and for each of these there are \mathbb{F}_Q-valued points of \mathcal{M}^ord whose Frobenii have trace A, cf. Lemma 6.2. For each such Q, consider the ratio

$$\frac{\#\{v \in V(\mathbb{F}_Q)| A_v, \mathbb{F}_Q = A\}}{\#\{u \in \mathcal{M}^\text{ord}(\mathbb{F}_Q)| A_u, \mathbb{F}_Q = A\}}.$$

Is it true that this ratio tends to 1 as Q tends archimedeanly to infinity over the Q’s for which the denominator is nonzero?

References

[Ba] Baier, Stephan The Lang-Trotter conjecture on average. J. Ramanujan Math. Soc. 22 (2007), no. 4, 299-314.

[B-K] Bombieri, E., and Katz, N., Lower bounds for Frobenius traces, 2008 preprint available on www.math.princeton.edu/ nmk.

[Cl] Clozel, Laurent, Nombre de points des variétés de Shimura sur un corps fini (d’aprs R. Kottwitz). Séminaire Bourbaki, Vol. 1992/93. Astérisque No. 216 (1993), Exp. No. 766, 4, 121-149.

[Cox] Cox, David, Primes of the Form $x^2 + ny^2$, John Wiley and Sons, New York, 1989.

[Da-Pa] David, Chantal, and Pappalardi, Francesco, Average Frobenius distributions of elliptic curves, Internat. Math. Res. Notices 1999 (1999), no. 4, 165-183.

[De-VA] Deligne, Pierre, Variétés abéliennes ordinaires sur un corps fini. (French) Invent. Math. 8 1969 238-243.

[De-WeilII] Deligne, Pierre, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. No. 52 (1980), 137-252.

[Deu] Deuring, M., Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272

[Elkies-Real] Elkies, Noam D. Supersingular primes for elliptic curves over real number fields. Compositio Math. 72 (1989), no. 2, 165-172.

[Elkies-SS] Elkies, Noam D. The existence of infinitely many supersingular primes for every elliptic curve over \mathbb{Q}. Invent. Math. 89 (1987), no. 3, 561-567.

[Ge] Gekeler, Ernst-Ulrich, Frobenius distributions of elliptic curves over finite prime fields, IMRN 2003, no. 37, 1999-2018.

[Honda] Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95.

[Howe] Howe, Everett W. Principally polarized ordinary abelian varieties over finite fields. Trans. Amer. Math. Soc. 347 (1995), no. 7, 2361-2401.

[Ig] Igusa, Jum-ichi, Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sci. U.S.A. 44 1958 312-314.
[Ir-Ros] Ireland, Kenneth F., and Rosen, Michael I., A classical introduction to modern number theory. Revised edition of Elements of number theory. Graduate Texts in Mathematics, 84. Springer-Verlag, New York-Berlin, 1982.

[Ka-ESDE] Katz, Nicholas M., Exponential sums and differential equations, Annals of Mathematics Studies, 124. Princeton University Press, Princeton, NJ, 1990.

[K-M] Katz, Nicholas M., and Mazur, Barry, Arithmetic moduli of elliptic curves. Annals of Mathematics Studies, 108. Princeton University Press, Princeton, NJ, 1985.

[Ko1] Kottwitz, Robert E., Points on some Shimura varieties over finite fields. J. Amer. Math. Soc. 5 (1992), no. 2, 373-444.

[Ko2] Kottwitz, Robert E., Shimura varieties and λ-adic representations. Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), 161-209, Perspect. Math., 10, Academic Press, Boston, MA, 1990.

[L-T] Lang, Serge, and Trotter, Hale, Frobenius distributions in GL_2-extensions, Springer Lecture Notes in Mathematics 504, 1976.

[Maz] Mazur, Barry, Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18 (1972), 183-266.

[Mes] Messing, William, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes. Lecture Notes in Mathematics, Vol. 264. Springer-Verlag, Berlin-New York, 1972.

[Pa] Pacheco, Amícar, Distribution of the traces of Frobenius on elliptic curves over function fields. Acta Arith. 106 (2003), no. 3, 255–263.

[Sch] Schoof, René Nonsingular plane cubic curves over finite fields. J. Combin. Theory Ser. A 46 (1987), no. 2, 183-211.

[Sh] Shimura, Goro, Introduction to the arithmetic theory of automorphic functions. Kan Memorial Lectures, No. 1. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971

[Sie] Siegel, Carl Ludwig, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86.

[Tate] Classes d’isogénie des variétés abéliennes sur un corps fini, Séminaire Bourbaki 1968-69, exp. 352, 95-110.

[Wat] Waterhouse, William C. Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. (4) 2 1969 521-560.

Princeton University, Dept. Math., Fine Hall, Princeton, NJ 08544-1000, USA

E-mail address: nmk@math.princeton.edu