First-principles investigation of adsorption behaviors of small molecules on penta-graphene

Hongbo Qin*, Chuang Feng, Xinghe Luan and Daoguo Yang*

Abstract

The gas-adsorption behaviors of small molecules CO, H₂O, H₂S, NH₃, SO₂, and NO on pristine penta-graphene (PG) were investigated using first-principles calculations to explore their potential for use as advanced gas-sensing materials. Results show that, except for CO, H₂O, H₂S, NH₃, and SO₂ are physically adsorbed on the surface of penta-graphene with considerable adsorption energy and moderate charge transfer, while NO is prone to be chemically adsorbed on the surface of penta-graphene. Moreover, the electronic properties of PG can be effectively modified after H₂O, H₂S, NH₃, SO₂, and NO are adsorbed, and penta-graphene has potential for using in gas sensors via the charge-transfer mechanism.

Keywords: Penta-graphene, Gas molecule, Adsorption behavior, Gas sensing, First principles

Background

Gas sensing, especially polluted or toxic gas sensing, has always been a focus of research associated with applications in the fields of environmental pollution monitoring, industrial control, agricultural production, and medical diagnosis [1]. Recently, increasingly more two-dimensional materials have been predicted and synthesized [2–4]. Two-dimensional materials have been extensively investigated and employed as gas-sensing elements since they exhibit fascinating properties, such as large surface area, ultrahigh carrier mobility, and low electrical noise [5]. It has been reported that the electronic properties of two-dimensional materials may be changed after some specific gas molecules are adsorbed on them [6, 7].

Among two-dimensional materials, particularly graphene and its analogues have attracted attention by virtue of their remarkable physical properties and potential for applications in both nanoelectronics and nanomechanics [8–12]. Although graphene has widely been regarded as one of the most suitable host materials for next-generation electronic devices [13], the stable sp² hybridization of carbon bonds and zero-gap character render it inefficient for gas adsorption, which is disadvantageous for the design of gas sensors. Moreover, graphene is a conductor having excellent electrical conductivity [8]. Compared with semiconductors, it is difficult to measure the resistance information during the process of gas adsorption and graphene is insensitive to the concentration variations of gases. Thus, graphene needs to be functionalized for opening the band gap and acting as a semiconductor [10]. For the limitation of experimental characterization, the adsorption behaviors of molecules on the surface of graphene have been widely investigated by first-principles calculation, which are meaningful for the application of graphene [14–16].

Penta-graphene (PG), which can be exfoliated from bulk T12 carbon, is one of the most recently proposed graphene allotropes, and it consists of repeating carbon pentagon structures [17]. Some investigations have predicted that PG is stable with fixed lattice constants [17, 18]. It has a honeycomb structure and is a promising metal-free, low-cost catalyst for low-temperature CO oxidation [19]. Nitrogen-doped PG displays very high catalytic activity and is more competitive with many metal-based and carbon-based catalysts for low-temperature CO oxidation owing to the very small energy barrier of the rate-limiting step [20]. It has also been reported that transition-metal-doped PG is a potential hydrogen-storage material [21]. Furthermore, unlike graphene, PG is an
intrinsic quasi-direct-band-gap semiconductor with a band gap in the range 1.52–4.48 eV \[8, 17, 22\], implying an enormous potential for application in semiconductor gas sensors. In addition, PG has a unique hybrid bond structure containing both sp^3 and sp^2 carbon bonds. Owing to the tetrahedral character of the sp^3 hybridization of carbon bonds, PG is not ideally planar, but rather oscillates out-of-plane in a periodic corrugated manner \[17\], indicating more possible positions for gas adsorption as a sensing element.

Investigations of the interaction between small gas molecules and pristine PG have been scarce until now. Owing to the limitation of experimental methods, in this study, density functional theory (DFT) calculations were carried out to investigate the adsorption behavior of small gas molecules (i.e., CO, H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO) on the novel carbon material PG. This research will help workers analyze and predict the performance of PG applied in gas sensors.

Methods

In this study, the calculations of structural optimizations were carried out by first-principles calculations based on DFT \[23\] as implemented in Dmol3 code \[24\]. It is supposed that the local-density approximation (LDA) is propitious to study gas-molecule-adsorption systems \[25, 26\], and the LDA-PWC was selected for the structural optimizations in this investigation. To avoid neglecting the van der Waals interactions in the study gas-molecule adsorption, the method of Ortman, Bechstedt, and Schmidt \[27\] was employed. The 2 × 2 × 1 Monkhorst-Pack mesh \[28\] was used for the Brillouin-zone integration, in which the self-consistent field tolerance was set as 1 × 10$^{-5}$ Ha. The system would reach the ground state when the convergence precision of energy for the maximum energy change, the maximum force, and the maximum displacement were 1 × 10$^{-5}$ Ha, 0.002 Ha/Å, and 0.005 Å, respectively. Multi-core parallel computing was carried out \[29\] and spin polarization was applied in the calculations of the adsorption of NO. A 3 × 3 supercell with a vacuum space of 30 Å \[21\] was modeled based on the unit cell containing two sp^3-hybridized carbon (C1) atoms and four sp^2-hybridized carbon (C2) atoms \[17\], see Fig. 1, where C1 and C2 atoms are distinguished as black and gray spheres, respectively. Gas molecules were located horizontal to the substrate at an initial distance of 3.5 Å. To obtain the most favorable adsorption positions of the gas molecules, four possible sites were investigated, namely the top of the C1 atom (T1), the top of the C2 atom (T2), the middle of the grooves in PG (T3), and the opposite position of T2 (T4), as shown in Fig. 1.

In order to quantitatively evaluate the adsorption capability of the system, in addition to LDA-PWC, adsorption energy (E_a), charge transfer (Q), and adsorption distance (d_2) were calculated using the generalized gradient approximation (GGA) functionals with Perdew-Wang 1991 (PW91) and Perdew-Burke-Ernzerh (PBE) in the study. d_2 is defined as the nearest atomic distance between the PG and the gas molecule in the equilibrium state. Q denotes the Mulliken charge of gas molecule \[30, 31\], and a negative value means charge transfer from PG to the gas molecule. The adsorption energy is calculated by

$$E_a = E_{(PG + \text{molecule})} - E_{PG} - E_{molecule},$$

where $E_{(PG + \text{molecule})}$, E_{PG}, and $E_{molecule}$ are the total energies of the adsorbate-PG equilibrium system, isolated PG, and isolated gas molecule, respectively. In the computations of electronic structures of the adsorption systems, the DFT calculations using the PBE exchange-correlation approximation were carried out with the Vienna ab initio simulation package (VASP).

\[Fig. 1\] Structure and geometry of PG: a 3 × 3 supercell, b front view of unit cell, and c side view of the adsorbate-PG atoms. The distance between two C2 atoms, the distance between C1 and C2 atoms, the thickness of PG, and the C2-C1-C2 angle are defined as l_1, l_2, d_1, and θ, respectively.
functional with the GGA have been employed for higher accuracy [2, 32].

Results and discussion

After structural optimization, the calculated structural parameters of pristine PG reported in this paper (\(l_1 = 1.342 \, \text{Å}, \ l_2 = 1.551 \, \text{Å}, \ \theta = 133.9^\circ, \ d_1 = 0.612 \, \text{Å}\)) were found to be consistent with those of previous work [17]. By selecting the lowest \(E_{(PG + molecule)}\) or \(E_a\) at the four adsorption positions T_1 to T_4 (see Table S1 of Additional file 1), the most favorable adsorption configurations for gases on monolayer PG are plotted in Fig. 2, and the most favorable adsorption positions (i.e., T_1, T_2, T_3, or T_4) are listed in Table 1. The calculated results in the following text are obtained based on these most favorable adsorption configurations. Recent studies have revealed that monolayer InSe, graphene, and blue phosphorus hold great promise for using in gas sensors [14, 33, 34]. In the present study, the calculated \(E_a\) values of CO, H_2O, and NH_3 are \(-0.531\), \(-0.900\), and \(-1.069\) eV (see Table 1), respectively, while they are \(-0.120\), \(-0.173\), and \(-0.185\) eV, respectively, for InSe [33]. For CO, H_2O, NH_3, and NO on the surface of graphene, the calculated \(E_a\) values are \(-0.014\), \(-0.047\), \(-0.031\), and \(-0.029\) eV, respectively [14]. Meanwhile, \(E_a\) values for H_2S and SO_2 gases on PG are \(-1.345\) and \(-1.212\) eV, respectively, which are much larger than \(-0.14\) and \(-0.20\) eV, respectively, for blue phosphorus [34]. Obviously, the calculated \(E_a\) values of these gas molecules on PG are much larger than these obtained from the other materials, indicating that these gas molecules are easy to be adsorbed on the surface of PG [35]. Considering that the calculated \(E_a\) value of CO is much smaller than that of other gases, the adsorption of CO may be the weakest. Meanwhile, the adsorption energy of NO in Table 1 is smaller than some of those physisorbed (non-covalent) adsorbates, such as H_2S, NH_3, and SO_2. This can be explained by the reason that, different with physical adsorption, the chemical adsorption of NO induces obvious deformation of PG, which consumes extra energy and reduces the calculated adsorption energy \(E_a\), as introduced in Additional file 1. Similarly, obvious deformation can also be observed in the chemical adsorption of NO_2.
on the surface of antimonene [5], which may result in the relatively low adsorption energy. Furthermore, except for NO, the values of d_2 listed in Table 1 are obviously larger than the sum of covalent radii of the corresponding atom in the gas molecule and the C atom in the PG (i.e., $l_{C-O} = 1.38$ Å, $l_{C-H_2O} = 1.07$ Å, $l_{C-H_2S} = 1.46$ Å, $l_{C-NH_3} = 1.78$ Å) [36], revealing that these gas molecules tend to be physically adsorbed. Regarding NO, the value of d_2 in the adsorption system is 1.541 Å, which is in the covalent-bonding range, indicating that chemical bonds may exist in this case.

Previous studies on InSe and boron phosphide have shown that adsorbed molecules change the resistivity of the substrate by acting as charge acceptors or donors [33, 37]. The Q values for CO, H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO on the surface of PG are 0.023, 0.082, 0.133, 0.169, −0.109, and −0.03 e (see Table 1), respectively, indicating that gases of CO, H$_2$O, H$_2$S, and NH$_3$ donate electrons to PG while SO$_2$ and NO obtain electrons from PG. It is worth mentioning that, except for CO, the electronic properties of PG can be effectively modified after H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO are adsorbed, which is critical for gas detection.

In order to obtain a better understanding on the influence of gas molecules on the electronic properties of PG, the density of state (DOS) of the molecule-PG system was calculated, see Fig. 3. Obviously, near the Fermi level (E_f, e.g., in the range from −2.5 to 2.5 eV), there are obvious contributions of the electronic levels of H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO to the adsorption systems, indicating that the existence of these gas molecules may have a great influence on the electronic properties of PG [5, 37]. For example, for H$_2$S, an apparent contribution of electronic levels is located at 0 eV; see Fig. 3c. Regarding CO on the surface of PG, the orbital peaks of CO in the adsorption system are located at −8.0, −5.7, −2.9, and 4.0 eV, and there is no obvious orbital contribution near E_f. Additionally, band gap is also a critical factor in determining the electronic properties of materials [26, 34].

The band gaps and corresponding band structures of the adsorption systems are shown in Fig. 4, where the band gaps of CO, H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO on PG are 2.15, 2.02, 1.86, 1.81, 1.61, and 0 eV, respectively. As a contrast, the band gap of pristine PG is 2.21 eV (see Additional file 1: Figure S2). Clearly, except for CO, the electronic adsorptions of H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO have obvious influence on the electronic properties of PG, and these are consistent with the results of DOS. All of these results may indicate that, except for CO, the electronic properties of PG can be effectively modified after H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO are adsorbed, which is critical for gas detection.

Gas molecule	Site	E_s (eV)	Q (e)	d_2 (Å)	E_g (eV)
CO	T$_1$	−0.531	0.023	2.702 (C)	
H$_2$O	T$_2$	−0.900	0.082	2.026 (H$_f$)	
H$_2$S	T$_3$	−1.345	0.133	1.930 (H$_f$)	
NH$_3$	T$_2$	−1.069	0.169	2.315 (N)	
SO$_2$	T$_2$	−1.121	−0.109	2.374 (S)	
NO	T$_1$	−0.945	−0.030	1.541 (N)	

Gas molecule	Site	GGA-PW91	GGA-PBE	
CO	T$_1$	−0.243	0.016	3.051 (C)
H$_2$O	T$_2$	−0.595	0.034	2.372 (H$_f$)
H$_2$S	T$_3$	−1.044	0.077	2.51 (H)
NH$_3$	T$_2$	−0.637	0.084	2.966 (N)
SO$_2$	T$_2$	−0.920	−0.065	2.832 (S)
NO	T$_1$	−0.443	−0.031	1.592 (N)

The calculated values of E_s, Q, and d_2 for gas molecules on PG are listed in Table 2. The E_s values calculated by PW91 and PBE are smaller than that calculated by the LDA, whereas both PW91 and PBE give a larger d_2 compared to the LDA. Different from the LDA, the GGA usually has a tendency to underestimate the adsorption energy and overestimate the bond distance, which is consistent with the results of previous works [26, 31]. It is worth mentioning that the tendencies of the results of these three functionals are consistent. For example, the calculated values of E_s of CO are smallest, and the calculated values of E_s of H$_2$S and SO$_2$ are larger than those of other gas molecules. Moreover, the calculated values of d_2 of NO for the LDA, PW91, and PBE functionals are 1.514, 1.592, and 1.591 Å, respectively, which are all in the covalent-bonding range [36].
Fig. 3 Total electronic density of states (DOS) for molecule-PG systems (black), and projected DOS for small molecules (blue line with green shadow) and PG (red) in the adsorption system: a CO, b H₂O, c H₂S, d NH₃, e SO₂, and f NO. The Fermi level is set to zero (see the dash line).

Fig. 4 Band structures of CO (a), H₂O (b), H₂S (c), NH₃ (d), SO₂ (e), and NO (f) on the surface of PG.
Considering that the d^2 value of NO on PG is in the bonding range and that the electronic levels of NO in the system mainly localize around E_F, it is speculated that a chemical adsorption occurs. Toward a deep understanding of the adsorption mechanism between NO and PG, the projected density of states (PDOS) of NO on PG and the electron localization function (ELF) are plotted in Fig. 5. Clearly, the peaks of the PDOS of N p and O p atoms are mainly located at -6.9, -0.9, 0, and 0.8 eV; thus there is an intra-molecule hybridization in NO, as shown in Fig. 5a. Meanwhile, orbital mixing between NO and the C atom of PG near the Fermi level can be observed, which is mainly contributed by the C s, C p, N s, N p, and O p orbitals. The orbital mixing induces a chemical bond between N in NO and C in PG, as displayed in Fig. 5b; thus, PG can be used for detecting or catalyzing NO gas [5, 39]. Further, in order to confirm the adsorption type of other gas molecules, ELFs of other adsorption systems are also calculated, see Additional file 1: Table S1. The Mulliken charge distributions of the atoms of gas molecule before and after adsorption are defined as C_b and C_a, respectively. Figure S1. The structures of SO$_2$ (a) and NO (b) on PG, and the structure of PG after NO adsorption (c). Figure S2. The calculated band structure of the pristine PG using GGA-PBE method. Figure S3. The electron localization function (ELF) of (a) CO, (b) H$_2$O, (c) H$_2$S, (d) NH$_3$, (e) SO$_2$, and (f) NO on PG. (DOC 624 kb)

Fig. 5 The atom projected DOS (a) and electron localization function (ELF) of NO-PG (b)

Conclusions

In summary, H$_2$O, H$_2$S, NH$_3$, and SO$_2$ gases are physically adsorbed on monolayer PG with considerable adsorption energy and moderate charge transfer. For weak physical adsorption, small adsorption energy, and charge transfer, pristine PG is not suitable for detecting CO. For these gas molecules on the surface of PG, CO, H$_2$O and H$_2$S, and NH$_3$ donate electrons to PG, while SO$_2$ and NO obtain electrons from PG. Moreover, near the Fermi level, there are obvious contributions of the electronic levels of H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO to the DOS of the adsorption systems, indicating that the electronic properties of PG can be effectively modified after H$_2$O, H$_2$S, NH$_3$, SO$_2$, and NO are adsorbed. Furthermore, the adsorption of NO on PG shows a strong tendency of chemical adsorption, and thus PG can be used for detecting or catalyzing NO gas. Pristine PG, therefore, has great potential in gas-sensing applications.

Additional file

Additional file 1: Table S1. The adsorption energies (E_a) of small gas molecules of different initial positions adsorbed on PG. Table S2. The Mulliken charge distributions of the atoms of gas molecule before and after adsorption are defined as C_b and C_a, respectively. Figure S1. The structures of SO$_2$ (a) and NO (b) on PG, and the structure of PG after NO adsorption (c). Figure S2. The calculated band structure of the pristine PG using GGA-PBE method. Figure S3. The electron localization function (ELF) of (a) CO, (b) H$_2$O, (c) H$_2$S, (d) NH$_3$, (e) SO$_2$, and (f) NO on PG. (DOC 624 kb)

Abbreviations

2D: Two-dimensional; DFT: Density functional theory; DOS: Density of states; ELF: Electron localization function; GGA: Generalized gradient approximation; LDA: Local-density approximation; PBE: Perdew–Burke–Ernzerhof; PDOS: Projected density of states; PG: Penta-graphene; PW91: The Perdew–Wang 1991; PW91: Perdew–Wang correlational

Funding

This research was supported by the National Natural Science Foundation of China (NSFC) under grant No. 51505095, Guangxi Natural Science Foundation under grand No. 2016GXNSFAA380114, and Innovation Project of GUET Graduate Education under grant No. 2018YJ0X04.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article, and further information about the data and materials could be made available to the interested party under a motivated request addressed to the corresponding author.

Authors’ contributions

HBQ and DGY conceived and designed the study. HBQ, CF, and XHL performed the first-principles calculations, and HBQ and CF wrote the manuscript. DGY participated in the discussions and edited the manuscript. All authors reviewed and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 April 2018 Accepted: 24 August 2018
Published online: 03 September 2018

References
1. Chen XP, Wong CKY, Yuan CA, Zhang QG (2013) Nanowire-based gas sensors. Sensors Actuators B Chem 177:198–195
2. Zhu Z, Tománek D (2014) Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett 112:176802–176805
3. Shaghrokh M, Mortazavi B, Berdiyorov GR (2017) New two-dimensional boron nitride allotropes with attractive electronic and optical properties. Solid State Commun 253:51–56
4. Wang SF, Wu XJ (2015) First-principles study on electronic and optical properties of graphene-like boron phosphide sheets. Chin J Chem Phys 28:588–594
5. Meng RS, Cai M, Jiang JK, Liang QH, Sun X, Yang Q, Tan CJ, Chen XP (2017) First principles investigation of small molecules adsorption on Antimonene. IEEE Electron Device Lett 38:134–137
6. Cho B, Hahn MG, Choi M, Yoon J, Kim AR, Lee YJ, Park SG, Kwon JD, Kim CS, Song M (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052–8057
7. Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chimies A, Wlodarski W (2015) Physisorption based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 9:10313–10323
8. Wang ZY, Dong F, Shen B, Zhang RI, Zheng YX, Chen LY, Wang SY, Wang CZ, Ho KM, Fan YJ, Jin BY, Su WS (2016) Electronic and optical properties of novel carbon allotropes. Carbon 101:77–85
9. Zhou SY, Gweon GH, Fedorov AV, First PN, Heer WAD, Lee DH, Guinea F, Kong XK, Chen CL, Chen QW (2014) Doped graphene for metal-free catalysis. Chem Soc Rev 43:2841–2857
10. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313:951–953
11. Krishnan R, Su WS, Chen HT (2017) A new carbon allotrope: penta-graphene. Proc Natl Acad Sci 112:2372–2377
12. Wang ZY, Dong F, Shen B, Zhang RI, Zheng YX, Chen LY, Wang SY, Wang CZ, Ho KM, Fan YJ, Jin BY, Su WS (2016) Electronic and optical properties of novel carbon allotropes. Carbon 101:77–85
13. Krishnan R, Su WS, Chen HT (2017) A new carbon allotrope: penta-graphene as a metal-free catalyst for CO oxidation. Carbon 114:465–472
14. Rajbanshi B, Sarkar S, Mandal B, Sarkar P (2016) Energetic and electronic structure of penta-graphene nanoribbons. Carbon 100:118–125
15. Krishnan R, Wu SY, Chen HT (2018) Nitrogen-doped penta-graphene as a superior catalytic activity for CO oxidation. Carbon 132:257–262
16. Zhang S, Ho YW, Wang SY, Chen SY, Wu XJ (2015) First-principles study of nitric oxide sensor based on blue phosphorus. IEEE Electron Device Lett 36:1366–1368
17. Zhang SH, Zhou J, Wang Q, Chen XS, Kawazoe Y, Jena P (2015) Penta-graphene: a new carbon allotrope. Proc Natl Acad Sci 112:2372–2377
18. Rajbanshi B, Sarkar S, Mandal B, Sarkar P (2016) Energetic and electronic structure of penta-graphene nanoribbons. Carbon 100:118–125
19. Krishnan R, Su WS, Chen HT (2017) A new carbon allotrope: penta-graphene as a metal-free catalyst for CO oxidation. Carbon 114:465–472
20. Krishnan R, Wu SY, Chen HT (2018) Nitrogen-doped penta-graphene as a superior catalytic activity for CO oxidation. Carbon 132:257–262
21. Zhang S, Ho YW, Wang SY, Chen SY, Wu XJ (2015) First-principles study of nitric oxide sensor based on blue phosphorus. IEEE Electron Device Lett 36:1366–1368
22. Yu ZG, Zhang YW (2015) A comparative density functional study on electrical properties of layered penta-graphene. J Appl Phys 118:165706–165712
23. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138
24. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764
25. Chen XP, Yang N, Ni JM, Cai M, Ye HY, Wong CKY, Leung SYY, Ren TL (2015) Density-functional calculation of methane adsorption on graphenes. IEEE Electron Device Lett 36:1366–1368
26. Qu Y, Shao Z, Chang S, Li J (2013) Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 8:425
27. Ottmann F, Bechtstedt F, Schmidt WG (2006) Semiemipirical van der Waals correction to the density functional description of solids and molecular structures. Phys Rev B Condens Matter 73:205101
28. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192
29. Auckenthaler T, Blum V, Bungartz HJ, Huckle T, Johanni R, Krämer L, Lang B, Liederer H, Willems PR (2011) Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations. Parallel Comput 37:783–794
30. Shokri A, Salami N (2016) Gas sensor based on MoS2 monolayer. Sensors Actuators B Chem 236:378–385
31. Zhang YH, Chen YB, Zhou KQ, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504
32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868
33. Ma DW, Ju WN, Tang YN, Chen Y (2017) First-principles study of the small molecule adsorption on the InSe monolayer. Appl Surf Sci 426:244–252
34. Liu N, Zhou S (2017) Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology 28:175708–175726
35. Sajad M, Montes E, Singh N, Schwengenschlögl U (2016) Superior gas sensing properties of monolayer PrSe2. Adv Mater Interfaces 4:1600911–1600914
36. Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem Eur J 15:186–197
37. Cheng YF, Meng RS, Tan CJ, Chen XP, Xiao J (2018) Selective gas adsorption and I–V response of monolayer boron phosphide introduced by dopants: a first-principle study. Appl Surf Sci 427:176–188
38. Sun X, Yang Q, Meng RS, Tan CJ, Liang QH, Jiang JK, Ye HY, Chen XP (2017) Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study. Appl Surf Sci 404:291–299
39. Luo HC, Meng RS, Gao H, Sun X, Xiao J, Ye HY, Zhang QG, Chen XP (2017) First-principle study of nitric oxide sensor based on blue phosphorus monolayer. IEEE Electron Device Lett 38:1139–1142

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com