ABSTRACT

Quinoa is a crop with high potential due to its nutritional properties, wide adaptation to edaphoclimatic conditions and genetic diversity. This research aimed at evaluating four accessions of quinoa (*Chenopodium quinoa*) seeds, as well as their viability and germination percentage after cold storage. Storage temperatures and time were 4-20, -80°C and 10 months, with evaluation every two months. Initial seed viability was lower than 71% for all accessions and moisture content 10%. After storage, all accessions showed an increase in germination percentage. The accession with the greatest increase in terms of germination and the lowest moisture level (10.66%) before treatments, was the Nariño cultivar. Quinoa seed showed a secondary dormancy because of adverse storage conditions, this was inferred from the better response in germination after cold storage treatment. On the other hand, quinoa loses its germinative potential in short periods of time when stored under environmental conditions, therefore, regarding its storage, cool conditions and seed moisture content near 10% are recommended.

Keywords: seed storage, viability, temperature, water content, germination percentage.
INTRODUCTION

Quinoa (Chenopodium quinoa Willd.) is a plant of the Amaranthaceae family that grows mainly in the Andean region, which is the center of origin of the species (Apaza et al. 2013). Quinoa grains have a high nutritional value due to its ideal balance of essentials amino acids, fatty acids, content of vitamins and minerals such as iron and calcium (Muñoz & Acevedo, 2002). Quinoa is qualified as a functional food (Filho et al. 2017; Abugoch, 2009) because its nutritional quality is superior to other grains like rice and wheat (Vilcacundo & Hernández, 2017; Navruz-Varli & Sanlier, 2016). According to the United Nations Food and Agriculture Organization FAO (2010), Quinoa is a promissory crop by reason of its multiples uses, high adaptability to a wide range of climatic conditions, tolerance to abiotic factors and high genetic diversity (Montoya et al. 2005; Mújica & Jacobsen, 2006; Vargas et al. 2015). However, Quinoa seed quality is influenced by the low germination rate and reduced vigor; seeds lose viability more rapidly than cereals because of the porosity in the integument, which allows a seed to easily gain or lose moisture and may initiate germination in the panicle (Spehar & Santos, 2002).

Quinoa seeds have an orthodox behavior, because they naturally dehydrate up to a water content in equilibrium with the environment that implies a subsequent artificial drought tolerance up to about 5% water content without losing viability (Ellis et al. 1990). In this type of plant, seed cells get dehydrated due to losses of vacuolar water, supplied from their mother plant to seed during the maturity process, which helps keep viability and storage potential (Magnitskiy & Plaza, 2007). Conservation techniques of orthodox seed require a minimum physiological activity (Calle et al. 2010). However, some non-enzymatic events occur in low water contents, this reaction leads to seed aging, producing an alteration on functional proteins that weakens the metabolic system and limits the capacity to defend itself from free radical damage and to repair damages throughout the germination process (Castellión et al. 2010).

The moisture content is a relevant factor that can affect the rate of damaging and aging reactions during seed storage period (Castellión et al. 2010). One of the conditions that need to be met in Quinoa seeds storing is having about 10% of moisture to increase longevity (Ellis et al. 1988). Under unsuitable conditions of relative humidity 75 - 80% and temperatures of 10 - 20°C respectively, seeds lose viability in a short period of time (Ellis et al. 1993). Storage conditions can influence the dormancy pattern output and seed longevity along with seed variety from contrasting environments (Strenske et al. 2017; Castellión et al. 2010).

The first long-term seed conservation was carried out in the Bolivian C. quinoa germplasm bank, with the conservation of 247 accessions of quinoa (Rojas et al. 2003). According to the FAO (2010), ex situ conservation of 16,263 accessions of quinoa and wild relatives was carried out in 59 seed germplasm banks in 30 countries around the world (Rojas et al. 2013). Storage and conservation of germplasm as well as commercial seed production, require adequate viability prediction and monitoring (Ceccato et al. 2013).

As a reproductive organ of plants, seed has a vital role to play in the propagation and perpetuation of the species; likewise as a source of food for animals and humankind. In agricultural production, the seed quality is essential for crop success. This quality depends on, among other features, its genetic, physiological, health and physical characteristics (Doria, 2010).

According to Antuna et al. (2003), physiological quality includes structures and processes that allow the seed to maintain high rates of viability; this quality component must be checked before sowing or storage. Seed storage allows distribution in time and space. Conditions associated with seed quality like germination and viability must be preserved. Water content, temperature and oxygen are fundamental factors in the control of seed longevity (Roberts & Ellis, 1989).

Considering the limited information on quinoa seed viability stored under different temperatures, the objective of this research was to determine the effect of cold storage in the viability of four accessions of Ch. Quinoa from different origin.

MATERIAL AND METHODS

The evaluation was developed during the years 2014 - 2015 at the Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, in the agrarian unit ‘El Remanso’ (4° 47’ 57.98” N 74° 2’ 47.17” W, altitude 2,560 m.a.s.l) located in the savannah north of Bogotá.

Seed material was obtained from four accessions of Chenopodium quinoa. Three of them were from production zones of Colombia: Nariño, Boyacá and Bogotá (Usme); the fourth one was a Bolivian accession donated by the Jardín Botánico de Bogotá in the meeting “Traveling Exhibition of Quinoa - Colombia 2014”. The time after seeds are stored is referred to as post-harvest period, which corresponded to one month for Nariño and three months for the other accessions.
A completely random design was used in a 3x4x2 factorial arrangement (temperature, accession and substrate, respectively) with three repetitions and an experimental unit consisting of one hundred seeds. Germination assessment was carried out in greenhouse, using as commercial peat soil substrate and soil enriched with organic matter, in trays of 128 alveoli.

To identify the initial state of the seeds, physiological tests of moisture content, imbibition and viability were performed. The initial moisture (fresh weight percentage FW%) of the seeds was determined by its constant dry weight after drying. For this purpose, the samples were dried in an oven at a temperature of 103°C, during 17h as recommended by the ISTA (International Seed Testing Association).

The imbibition curve was estimated from 10g of seed, with measures of weight every hour for six hours. The viability test was performed using the tetrazolium test technique in Petri dishes with tetrazolium chloride (2,3,5-triphenyl-2H-tetrazolium chloride) at 1% and temperature of 30°C in a period of two hours. The seeds were observed by stereoscope and the one that presented homogeneous staining of the embryo (in line with the cotyledons and the radicle that surrounds the perisperm in the form of a ring) was defined as viable seed; according to the first two seeds of figure 1.

The different accessions were stored for 10 months, at temperatures of 4, -20 and -80°C, using hermetic bags, covered with aluminum foil to ensure a minimum gas exchange and absence of light, temperatures of seeds were maintained in a cooler and a freezer. Germination tests were carried out at 2, 4, 6, 8 and 10 months of conservation. Germination tests were carried out prior to storage (ambient conditions) at the beginning of the assay and after ten months under the same conditions (control).

Data were subjected to analysis of variance (ANOVA). Post hoc tests of means comparison were performed using Tukey’s honestly significant difference (HSD). The analyses were performed with the R Core Team statistical package, 2015.

RESULTS AND DISCUSSION

The initial moisture content corresponded to 10.66, 11.59, 11.80 and 12.47% for the Nariño, Boyacá, Bogotá (Usme) and Bolivia accessions, respectively. The seed water content is a relevant factor that can affect the rate of damaging and aging during long time-storage (Justice & Bass, 1978). An alternative to reduce deterioration and enhance longevity of orthodox seeds is decreasing water content and storage temperature.

The imbibition curve of the four accessions of quinoa (Figure 2) and the differentiation between germination phases I and II were observed. Phase I corresponds to the rapid increase in water absorption as shown from 0 to 5 hours with an exponential behavior of the curve, evidencing weight gain in the four accessions. The highest rate occurred after one hour of imbibing the seed. After five hours, the absorption of water decreases; thereafter, the weight begins to stabilize in the transition to phase II. In the second phase, Hartmann et al. (2011) showed that metabolism could be activated because of protein synthesis, carbohydrates and lipids; perisperm is the unique carbohydrate source, after emergence cotyledons develop chlorophyll and are efficient photosynthetic organs.

![Figure 1. Reddish stain of the embryo in the Nariño accession. Viability test by tetrazolium (2,3,5-triphenyl-2H-tetrazolium chloride) 1%, in seeds of Chenopodium quinoa Willd.](image-url)
Therefore, the nutrition is available for the embryo and it starts growing up (Rosa et al. 2009).

Quinoa seeds have a high and rapid permeability, under optimal physiological and environmental conditions, it has a high germinative potential. Depending on the environmental conditions, this aspect represents a risk, because the seed can germinate in pre-harvest period (Gubler et al. 2005; Kermode, 2005).

Regarding the viability quantification by the tetrazolium method, the accessions have shown percentages lower than 80%. It is noteworthy that genetic and physiological quality of quinoa seed had a viability and germination rates close to 100% in the harvest. However, its loss of life and viability is faster compared to cereals due to the porosity in the integument, which allows it to gain or lose moisture easily (Spehar & Santos, 2002).

In seed viability, the measures indicated that the accessions from Boyacá and Nariño reached 71 and 70%; while the accessions from Bolivia and Usme (Bogotá) registered 55 and 10%, respectively. The lower viability in the Bolivia and Bogotá (Usme) accessions can be attributed to post-harvest management conditions, genotype, seed provenance and prevailing conditions during seed development (Gómez-Tejero et al. 2006). Castellión et al. (2010) obtained viabilities close to 100% under storage conditions at -20°C and seed humidity content of 6%. Nevertheless, in the present research seeds were studied in a post-harvest period of 1 to 3 months without specific storage conditions, seeds were acquired from growers in different zones, fresh seeds were not available, additionally, viability technique with tetrazolium sales, is subjective and not discriminate seed in dormancy.

The germinative potential -percentage of germination- for each accession of quinoa assessed at different storage temperatures, presented no significant differences within the assessment times (Table 1) during the period. Nevertheless, according to data in table 1, the highest germination percentages occurred under storage temperatures of -20 and -80°C (Figure 3). Walters et al. (2004) mention the different degrees of low temperatures that contribute to prolong seed’s lifespan; this aspect depends on intrinsic properties, handling and harvest of seed. Moreover, pre-storage under higher temperatures had dramatic effects on longevity.

Furthermore, the effect of substrate had no significant differences, in contrast, it showed greater germinative power in commercial peat treatment. As regards interaction between substrates and accessions, there were significant differences registered in the second month of storage (figure 4a; p-value: 4.8E-03) for cultivars of Bolivia and Boyacá, while for Nariño they happened in the sixth month (Figure 4b).
Table 1. Germination percentage of four accessions of quinoa, under different storage temperatures and two substrates. Glass house, U.D.C.A.

Accession	Substrate	Temperature	Storage time (month)	2	4	6	8	10
Nariño	Peat	4°C	abcd	17.00	18.33	52.33	51.33	56.33
		(-) 20°C	abc	23.33	25.33	49.33	49.67	59.67
		(-) 80°C	ab	65.67	66.00	51.33	51.33	56.33
Soild	Peat	4°C	abcd	17.67	28.67	50.67	59.33	53.33
		(-) 20°C	ab	49.33	49.33	51.33	51.33	56.33
		(-) 80°C	abc	65.33	65.67	51.33	51.33	56.33
Boyacá	Peat	4°C	abc	23.50	19.33	19.33	24.50	28.00
		(-) 20°C	abc	12.67	12.67	24.50	24.50	28.00
		(-) 80°C	ab	24.50	24.50	24.50	24.50	28.00
Soild	Peat	4°C	abcd	12.00	18.00	24.67	29.00	32.00
		(-) 20°C	ab	19.00	24.67	29.00	29.00	32.00
		(-) 80°C	ab	24.00	24.00	24.00	24.00	28.00
Bogotá (Usme)	Peat	4°C	abcd	11.00	17.33	23.67	32.67	35.33
		(-) 20°C	abcd	7.67	24.67	33.00	38.00	42.00
		(-) 80°C	abcd	16.33	25.00	29.33	35.67	38.33
Soild	Peat	4°C	abcd	8.00	18.00	25.67	30.33	33.33
		(-) 20°C	abcd	8.33	19.00	27.33	31.67	34.00
		(-) 80°C	abcd	15.00	19.67	24.67	33.33	34.33
Bolivia	Peat	4°C	abcd	23.00	19.67	18.33	19.67	22.67
		(-) 20°C	abcd	17.67	16.67	21.33	23.33	23.33
		(-) 80°C	abcd	16.33	17.67	18.67	21.33	25.33
Soild	Peat	4°C	abcd	7.00	12.67	16.67	18.67	22.33
		(-) 20°C	abcd	7.33	10.67	17.00	20.33	23.00
		(-) 80°C	abcd	5.00	15.00	18.33	20.00	24.67

** Means followed by the same letter within the columns have no significant differences (Tukey≤0.05).
Figure 3. Germination percentage in four accessions of quinoa (Boyacá, Bolivia, Nariño, Bogotá-Usme) with respect to the temperature treatment in five storage times (months 2, 4, 6, 8 and 10), respectively figures from a to d.
Porcentaje de germinación mostró notables diferencias entre accesiones a lo largo de los meses de evaluación. La accesión Nariño obtuvo la mayor respuesta. Este alto porcentaje de germinación se atribuye al corto tiempo de recolección, lo que indica su alta viabilidad semanal, de acuerdo con el test de tetrazolium. Además, la accesión Nariño registró el contenido de humedad más bajo (10.66%). Un contenido de humedad cercano al 10% se reportó como condición óptima para almacenar semillas de tipo ortodoxo.

Los accesiones de quinoa fueron medidas dos veces. Primero, antes de comenzar el ensayo, y después, diez meses más tarde sin almacenamiento (control) a temperatura ambiente bajo condiciones de laboratorio (Figura 5). Las pérdidas de potencial germinativo fueron evidentes para todas las accesiones. Un comportamiento similar se encontró en ambos medios de soporte evaluados. Los resultados fueron concordantes con los presentados por Castellión et al. (2010), quienes indicaron pérdidas de viabilidad y germinación en semillas de quinoa almacenadas bajo condiciones ambientales, evidenciando diferentes respuestas entre cultivares. Se asoció esto con la procedencia del cultivar, genotipo, y condiciones de recolección fisiológicas.

Accesiones mostraron un incremento progresivo en el porcentaje de germinación a lo largo de los meses de almacenamiento frío. Esto indica que las fluctuaciones de temperatura contribuyen a la quebra de la dormANCia en semillas de quinoa. Según Ceccato et al. (2011), la ausencia de dormANCia en cultivares de quinoa subraya la importancia de determinar el efecto de factores ambientales y fisiológicos sobre cambios en el nivel de dormANCia de semillas de quinoa durante su desarrollo, maduración y almacenamiento pos-harvest. Trabajos similares en sesame (Almeida et al. 1999), pepino (Torres et al. 2002) y fruta de maracuyá (Catunda Aragão et al. 2003), reportaron un incremento en la germinación después de algunos meses de almacenamiento.

Quinoa es un semilla con comportamiento ortodoxo, lo que le permite almacenarse bajo condiciones fisiológicas (maduración, contenido de agua) y un ambiente adecuado. En el contexto de este estudio, se recomienda almacenamiento bajo condiciones frescas para semillas destinadas a establecer nuevas culturas. La viabilidad es progresivamente afectada por el periodo de post-harvest o el tiempo que transcurra sin adecuadas condiciones de almacenamiento. Por lo tanto, semillas destinadas a bancos de germoplasma se recomiendan conservar a temperaturas iguales o inferiores a -20°C. Resultados para 4°C no fueron significativos, sin embargo, hubo mejores respuestas a temperaturas inferiores.

Funding: Este estudio fue financiado por la Universidad de Ciencias Aplicadas y Ambientales U.D.C.A. Conflicts of interest: El manuscrito fue preparado y revisado por todos los autores que declararon no tener conflicto de interés que perjudique la validez de los resultados presentados.
Figure 5. Behavior of quinoa seeds under ambient temperature conditions at the beginning of the evaluation and after ten months (Month 0 and 10, respectively).

REFERENCES

1. ABUGOCH JAMES, L.E. 2009. Quinoa (Chenopodium quinoa Willd.): composition, hemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 58:1-31. https://doi.org/10.1016/S1043-4526(09)58001-1

2. ALMEIDA, F. de A.C.; FONSECA, K.S.; GOMES DE GOÜEIA, J.P. 1999. Influência da embalagem e do local de armazenamento na qualidade fisiológica de sementes de gergelim. Rev. Bras. Engenharia Agrícola e Ambiental. 3(2):195-201.

3. ANTUNA, O.; RINCÓN, F.; GUTIERREZ, E.; RUIZ, N.; BUSTAMANTE, L. 2003. Componentes genéticos de caracteres agronómicos y de calidad fisiológica de semillas en líneas de maíz. Fitotecnia Mexicana. 26(1):11-17.

4. APAZA, V.; CACERES, G.; ESTRADA, R.; PINEDO, R. 2013. Catálogo de variedades comerciales de quinua en el Perú: Instituto Nacional de Innovación Agraria (INIA). p.15-82.

5. CALLE, M.; AGUIRRE, G.; ÚGARTE, M.L.; ÚGARTE, L.; GABRIEL, J. 2010. Efecto del método de secado y nivel de humedad en la germinación y vigor de semillas de quinua. Rev. Agricultura. 62(49):10-15.

6. CECCATO, D.; BERTERO, H.D.; BATLLA, D. 2011. Fuentes de tolerancia al brotado pre-cosecha en quinoa (Chenopodium quinoa Willd.) efecto de las condiciones ambientales sobre el nivel de dormición. Comunicación técnica. Análisis de semillas [Rosario], 5(17):50-55.

7. CECCATO, D.; DELATORRE-HERRERA, J.; BURRIEZA, H.; BERTERO, D.; MARTÍNEZ, E.; DELFINO, I.; CASTELLIÓN, M. 2013. Fisiología de las semillas y respuesta a las condiciones de germinación. Capítulo 2.2. In: Bazile, D., Bertero, D., Nieto, C. (eds). Estado del arte de la quinua en el mundo en 2013. FAO (Santiago de Chile) y CRIAD, (Montepellier, Francia). p.153-166.
8. CASTELLIÓN, M.; MATIACHEVIC, S.; BUERA P.; MALDONADO, S. 2010. Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chemistry. 121:952-958. https://doi.org/10.1016/j.foodchem.2010.01.025.

9. CATUNDÁ ARAGÃO, P.H.; VIEIRA DUARTE, H.; FERREIRA DA SILVA, R.; POSSE P., S.C. 2003. Influência do teor de água, da embalagem e das condições de armazenamento na qualidades de sementes de maracujá arameu. Rev. Brasileira de Sementes. 25(1):65-71.

10. DORIA, J. 2010. Generalidades sobre las semillas: su producción, conservación y almacenamiento. Cultivos Tropicales. 31(1):74-85.

11. ELLIS, R.H.; HONG, T.D.; JACKSON, M.T. 1993. Seed production environment, time of harvest, and the potential longevity of seeds of three cultivars of rice (Oryza sativa L.). Ann. Bot. 72:583-590. https://doi.org/10.1006/anbo.1993.1148

12. ELLIS, R.H.; HONG, T.D.; ROBERTS, E.H.; TAO, K.-L. 1990. Low moisture content limits to relations between seed longevity and moisture. Annals of Botany. 65:493-504. https://doi.org/10.1093/oxfordjournals.aob.a087961

13. ELLIS, R.H.; HONG, T.D.; ROBERTS, E.H. 1988. A low-moisture-content limit to logarithmic relations between seed moisture content and longevity. Ann. Bot. 61(4):405-408. https://doi.org/10.1093/oxfordjournals.aob.a087571

14. FILHO, A.M.M.; PIROZI, M.R.; BORGES, J.T.D.S.; PINHEIRO SANT’ANA, H.M.; CHAVES, J.B.P.; COIMBRA, J.S.D.R. 2017. Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition. 57(8):1618-1630. https://doi.org/10.1080/10408398.2014.1001811

15. GÓMEZ-TEJERO, J.; JASSO-MATA, J.; VARGAS-HERNÁNDEZ, J.J.; SOTO HERNÁNDEZ, M.R. 2006. Deterioro de semilla de dos procedencias de Swietenia macrophylla King, bajo distintos métodos de almacenamiento. Ra Xinhai. 2(1):223-239.

16. GÜBLER, F.; MILLAR, A.A.; JACOBSEN, J.V. 2005. Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology. 8(2):183-187. https://doi.org/10.1016/j.pbi.2005.01.011

17. HARTMANN, H.T.; KESTER, D.E.; DAVIES, F.T.; GENEVE, R. 2011. Hartmann & Kester’s Plant Propagation: Principles and Practices. Eighth Ed., Prentice Hall/Pearson. 915p.

18. JUSTICE, O.L.; BASS, L.N. 1978. Principles and practices of seed storage. Washington, DC: US Government Printing Office. U.S. States Department Agriculture. Agriculture Handbook. No. 506. 296p.

19. KERMODE, A. 2005. Role of abscisic acid in seed dormancy. J. Plant Growth Regul. 24:319-344. https://doi.org/10.1007/s00344-005-0110-2.

20. MAGNITSKIY, S.V.; PLAZA, G.A. 2007. Fisiología de semillas recalcitrantes de árboles tropicales. Agronomía Colombiana. 25(1):96-103.

21. MONTOYA, L.A.; MARTÍNEZ VIANCHÁ, L.; PERALTA BALLESTEROS, J. 2005. Análisis de variables estratégicas para la conformación de una cadena productiva de quinua en Colombia. Innovar. 15(25):103-119.

22. MUÑOZ, R.; ACEVEDO, E. 2002. Evaluación del rendimiento potencial y bajo estrés hídrico de 11 genotipos de Quinua (Chenopodium quinoa Willd.). Laboratorio Relación suelo-agua-planta. Facultad de Ciencias Agronómicas, Universidad de Chile. 46p.

23. MÚJICA, A.; JACOBSEN, S. 2006. La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. Botánica Económica de los Andes Centrales. 32:449-457.

24. NAVRUZ-VARLI, S.; SANLIER, N. 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal. Sci. 69:371-376. https://doi.org/10.1016/j.jcs.2016.05.004

25. ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA –FAO–. 2010. El segundo informe sobre el estado de los recursos fitogenéticos para la alimentación y la agricultura en el mundo. Italia: FAO.

26. ROBERTS, E.H.; ELLIS, R.H. 1989. Water and Seed Survival. Ann. Bot. 63:9-52.

27. ROJAS, W.; PINTO, M.; CAMARGO, A. 2003. Estandarización de listas de descriptors de quinua y cañahua. En: Informe Técnico Anual 2002 - 2003. Año 2. Proyecto IPGRI-FAD “Elevar la contribución que
hacen las especies olvidadas y subutilizadas a la seguridad alimentaria y a los ingresos de la población rural de escasos recursos”. Fundación PROINPA, La Paz, Bolivia. p.59-94.

28. ROJAS, W.; PINTO, M.; ALANOCA, C.; PANDO, L.; LEÓN-LOBOS, P.; DIULGHEROFF, S.; PADULOSI, S.; BAZILE, D. 2013. Estado de la conservación ex situ de los recursos genéticos de quinua. Capítulo 1.5. In: Bazile, D.; Bertero, D.; Nieto, C. (eds). Estado del arte de la quinua en el mundo en 2013. FAO (Santiago de Chile) y CRIAD, (Montepellier, Francia). p.65-94.

29. ROSA, M.; HILAL, M.; GONZALEZ, J.A.; PRADO, F.E. 2009. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant physiology and biochemistry. 47:300-307. https://doi.org/10.1016/j.plaphy.2008.12.001

30. SPEHAR, C.R.; SANTOS, R.L.B. 2002. Quinoa BRS Piabiru: alternative for diversification of cropping systems. Pesquisa Agropecuária Brasileira. 37(6):809-893. http://dx.doi.org/10.1590/S0100-204X2002000600020

31. STRENSKE, A.; SOARES DE VASCONCELOS, E.; EGE-WARTH, V., A.; MICHELIN HERZOG, N.F.; DE MATOS MALAVASI, M. 2017. Responses of quinoa (Chenopodium quinoa Willd.) seeds stored under different germination temperatures. Acta Scientiarum. Agronomy. 39(1):83-88. http://doiorg/10.4025/actasciagron.v39i1.30989

32. TORRES, S.B.; APARECIDA, M.; DA SILVA, S.; RAMOS, S.R.R.; ABÍLIO, M.; QUEIROZ, D. 2002. Qualidade de sementes de maxixe armazenadas em diferentes embalagens e ambientes. Ciencias Agroecologica. 26(3):539-544.

33. VARGAS, D.E.; BOADA, M.; ARACA, L.; VARGAS, W.; VARGAS, R. 2015. Agrobiodiversidad y economía de la quinua (Chenopodium quinoa) en comunidades Aymaras de la cuenca del Titicaca. Idesia. 33(4):81-87.

34. VILCACUNDO, R.; HERNÁNDEZ, B. 2017. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science. 14:1-6. https://doi.org/10.1016/j.cofs.2016.11.007

35. WALTERS, C.; WHEELER, L.; STANWOOD, P.C. 2004. Longevity of cryogenically stored seeds. Cryobiology. 48:229-244. https://doi.org/10.1016/j.cryobiol.2004.01.007

Received: September 5, 2018
Accepted: November 16, 2018

How to cite:
Romero, G.; Heredia, A.; Chaparro-Zambrano, H.N. 2018. Germinative potential in quinoa (Chenopodium quinoa Willd.) seeds stored under cool conditions. Rev. U.D.C.A Act. & Div. Cient. 21(2):341-350. https://doi.org/10.31910/rudca.v21.n2.2018.1076