Predictors of discordant MRSA nares and respiratory cultures in patients with pneumonia

Nicholas P. Palisano¹*, Christina F. Yen² and Nicholas J. Mercuro ³

¹Department of Pharmacy, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA; ²Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75201, USA; ³Department of Pharmacy, Maine Medical Center, 22 Bramhall St., Portland, ME 04102, USA

*Corresponding author. E-mail: npalisano7@gmail.com

© The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
discordance within the same hospitalization, and few subjects (1.6%) had a respiratory sample obtained >14 days after the nares swab. While these duration cut-off points have been identified in the literature, the NPV remains high even beyond 7 and 14 days.\(^5\)\(^6\) Mallidi et al.\(^8\) calculated an NPV >98% in critically ill patients using a duration between swab and respiratory sample collection of up to 60 days. Ultimately, extrapolation to other institutions is dependent on local prevalence and testing practices.

In conclusion, negative MRSA nares testing with a subsequent positive respiratory culture is a rare occurrence, supporting de-escalation of anti-MRSA therapies for patients with pneumonia. In patients with suspected pneumonia who have a history of MRSA infection or an MRSA swab collected ≥7 days prior, a high-quality respiratory sample should be pursued for diagnostic purposes as opposed to repeating an MRSA swab.

Table 1. Baseline characteristics and univariate analysis of potential risk factors for having negative MRSA nares swabs with a positive MRSA respiratory culture result in patients diagnosed with pneumonia

Characteristic	Cases (n=46)	Controls (n=138)	P value	Unadjusted OR (95% CI)
Age, years, mean (SD)	64.5 (17.7)	68.1 (14.2)	0.51	—
BMI, kg/m\(^2\), mean (SD)	29.6 (9.3)	28.3 (7.4)	0.58	—
Race, n (%)				
Caucasian	28 (60.9)	85 (61.6)		
African American	5 (10.9)	15 (10.9)		
Other/not reported	13 (28.2)	38 (27.5)		
Charlson comorbidity index, median (IQR)	4 (2–6)	5 (3–7)	0.23	—
Diabetes mellitus, n (%)	19 (41.3)	47 (34.1)	0.38	1.36 (0.69–2.70)
Renal replacement therapy, n (%)	4 (8.7)	6 (4.3)	0.27	2.10 (0.56–7.78)
Immunocompromised\(^a\), n (%)	2 (4.3)	24 (17.4)	0.028	0.22 (0.05–0.95)
Chronic lung disease, n (%)	12 (26.1)	27 (19.6)	0.35	1.45 (0.66–3.17)
Surgery within prior 90 days, n (%)	10 (21.7)	21 (15.2)	0.31	1.55 (0.67–3.59)
Surgery during hospitalization, n (%)	14 (30.4)	41 (29.7)	0.93	1.04 (0.50–2.14)
Length of stay, days, median (IQR)	26 (13–42)	16 (10–24)	<0.001	—
Central venous catheter, n (%)	26 (57)	61 (44)	0.15	1.64 (0.84–3.22)
Vasopressor support, support, n (%)	21 (45.7)	60 (43.5)	0.80	1.09 (0.56–2.14)
Mechanically ventilated prior to MRSA nares, n (%)	30 (65.2)	85 (61.6)	0.66	1.17 (0.58–2.35)
Duration of mechanical ventilation, days, median (IQR)	1 (0–3)	1 (0–3)	0.72	—
Time to MRSA nares, days, median (IQR)	1 (0–3)	2 (0–5)	0.27	—
Time between admission and MRSA nares ≥7 days, n (%)	7 (15.2)	21 (15.2)	1.00	1.00 (0.40–2.53)
Time between MRSA nares and respiratory culture ≥7 days, n (%)	14 (30.4)	3 (2.2)	<0.001	19.69 (5.34–72.61)
Vancomycin exposure prior to nares collection, n (%)	13 (28.3)	62 (44.9)	0.046	0.48 (0.23–1.00)
Prior history of MRSA infection or colonization, n (%)	4 (8.7)	1 (0.7)	0.014	13.05 (1.42–119.94)

\(^a\)HIV/AIDS, solid organ transplant on immunosuppressants, recent stem-cell or bone-marrow transplant, active chemotherapy, immunosuppressive medications.

References

1. Kalil AC, Metersky ML, Klompas M et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63: e61–111. https://doi.org/10.1093/cid/ciw353
2. Metlay JP, Waterer GW, Long AC et al. Diagnosis and treatment of adults with community-acquired pneumonia: an official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200: e45–67. https://doi.org/10.1164/rccm.201908-1581ST
3. Mergenhagen KA, Starr KE, Wattengel BA et al. Determining the utility of methicillin-resistant Staphylococcus aureus nares screening in antimicrobial stewardship. Clin Infect Dis 2020; 71: 1142–8. https://doi.org/10.1093/cid/ciz974
4. Chotiprasitsakul D, Tamma PD, Gadala A et al. The role of negative methicillin-resistant Staphylococcus aureus nasal surveillance swabs in predicting the need for empiric vancomycin therapy in intensive care unit patients. Infect Control Hosp Epidemiol 2018; 39: 290–6. https://doi.org/10.1017/ice.2017.308
5. Parente DM, Cunha CB, Mylonakis E et al. The clinical utility of methicillin-resistant Staphylococcus aureus (MRSA) nasal screening to rule out MRSA pneumonia: a diagnostic meta-analysis with antimicrobial stewardship implications. Clin Infect Dis 2018; 67: 1–7. https://doi.org/10.1093/cid/ciy024

Funding

This study was supported by internal funding.

Transparency declarations

None to declare.
6 Turner SC, Seligson ND, Parag B et al. Evaluation of the timing of MRSA PCR nasal screening: how long can a negative assay be used to rule out MRSA-positive respiratory cultures? Am J Health Syst Pharm 2021; 78 Suppl 2: S57–61. https://doi.org/10.1093/ajhp/zxab109

7 Rybak MJ, Le J, Lodise TP et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 2020; 77: 835–64. https://doi.org/10.1093/ajhp/zxaa036

8 Mallidi MG, Slocum GW, Peksa GD et al. Impact of prior-to-admission methicillin-resistant Staphylococcus aureus nares screening in critically ill adults with pneumonia. Ann Pharmacother 2022; 56: 124–30. https://doi.org/10.1177/10600280211023209