Adaptation and evolution in dynamic persistent environments

David Keil, Dina Goldin

Computer Science & Engineering Dept.
University of Connecticut
Storrs, CT USA

Abstract
Optimization (adaptation) of agents interacting with dynamic persistent environments (DPEs) poses a separate class of problems from those of static optimization. Such environments must be incorporated into models of interactive computation.

By the No Free Lunch Theorem (NFLT), no general-purpose function-optimization algorithm can exist that is superior to random search. But interactive adaptation in environments with persistent state falls outside the scope of NFLT, and we are able to show the existence of useful general-purpose interactive optimization protocols for DPEs.

Persistence of state supports indirect interaction. Based on the observation that mutual causation is inherent to interactive computation, and on the key role of persistent state in multiagent systems, we establish that indirect interaction is essential to MASs.

This work will be useful to researchers in coordination, evolutionary computation, and design of multiagent and adaptive systems.

Key words: Adaptive systems, Dynamic persistent environments, Evolutionary computation, Interactive computing, Models of computation, Multiagent systems

1 Introduction
Environments of adaptive or intelligent agents have been characterized along five dimensions: (1) accessible vs. inaccessible; (2) deterministic vs. non-deterministic; (3) episodic vs. nonepisodic; (4) static vs. dynamic; (5) discrete vs. continuous [26]. The most difficult environments for which to develop intelligent systems are those that approximate the real world, i.e. ones that are
inaccessible, non-deterministic, non-episodic, dynamic, and continuous. For function-based computation, captured by Turing machines, the properties of an environment are of no consequence, because one execution of an algorithm simply computes a function on whatever single input arrives from the environment. (Nondeterministic Turing machines compute functions to sets of outputs.)

Some research in evolutionary computation has characterized real-world environments in a similar way and has pointed out that an agent’s environment may be a function of the existing agent population [12]. Assumptions about the environment (e.g., constraints on it) are part of the interactive problem specification. To design cars, for example, we assume they will be driving on a paved road, with gravity and temperature conditions normal on Earth. We may further restrict the environment for research purposes by assuming that the road has lane dividers and is not covered by snow.

Evolutionary computation emerged to address difficult optimization problems using interactive processes of selection, mutation, and recombination found in nature [14]. In accordance with the function-based paradigm that dominates computer science, however, EC has traditionally been posed as the algorithmic search for solutions to algorithmic problems. Thus, the “evolutionary algorithm” is applied to static “function optimization” problems. In Section 2, we show how this traditional way of posing problems leads into encounters with results such as the No Free Lunch Theorem that seem (falsely) to lead to pessimistic conclusions.

Models suitable for evolutionary computation in real-world-like environments must incorporate the environment [20,10]. A significant research trend redefines the computational problem from static optimization to dynamic environments [8,5]. We suggest a focus on persistent state in such environments. It is persistence of state that enables non-episodic behavior. Our interest is broader than evolutionary computation, because the lessons that can be learned about dynamic persistent environments (DPEs) generalize to any adaptive system.

By the No Free Lunch Theorem (NFLT) no function-optimization algorithm exists superior to random choice. We show the existence of useful general-purpose optimization protocols for such environments (Section 3). For example, life forms and human societies have survived in dynamic environments by learning methods that have broad applicability.

Because of the power of persistent state (memory), the problem of adaptation to a persistent environment may become more challenging than in non-persistent environments. Since persistent state supports indirect interaction among agents with access to that state, the question of multiagent systems (MASs) arises naturally in DPEs.

This paper suggests some new research directions and novel conceptual frameworks, offering several contributions to a multidisciplinary theory of multiagent interaction and multiagent systems.
• We define interaction in a way that recognizes the mutual causation among agents that exists in all truly interactive systems (Definition 2.1).

• We show that the No Free Lunch Theorem (NFLT) is not applicable to problems of optimization of interactive behavior in DPEs (Section 3).

• We show that multiagent interaction with persistent state entails the use of indirect interaction (Theorem 4.4).

We note a gap between the informal setting or motivation in this paper and the formal and technical parts, which are of narrower scope. The latter aspect is a research challenge that we only begin to attack here. We believe that providing proper motivation and scope for the problem at hand is a contribution in itself.

2 Interaction and dynamic persistent environments

Here we identify mutual causality as an essential characteristic of interaction and define dynamic environments with persistent state.

2.1 Interactive computation

Interaction is a form of computation in which communication occurs during the computing process rather than only before or after [17]. The semantics of interaction entail mutual causality.

Definition 2.1 Interactive computation is the ongoing exchange of data among participants (agents or their environment) such that the output of each participant may causally influence its later inputs.

Exchange of data that never affects the actions of the recipient, and never has a later effect on the inputs of the sender, is not true interaction. A person who responds to what is shown on a television screen, by talking to or shouting at the television, is not interacting with it. A microphone and an amplifier do not interact unless feedback is present. Research in cybernetics fifty years ago recognized feedback or mutual influence as a feature that distinguishes an important kind of coupling of systems [2].

Note that the outputs of two agents may causally influence their later inputs without the agents communicating directly; they may communicate via an intermediary. In this case the causality and interaction are indirect (Section 4).

An algorithm is a description of the steps for effectively transforming an input to an output, where the output is a (computable) function of the input [22]. In interactive computation, the role of the environment is heightened, relative to the role of the environment in the execution of an algorithm.

Definition 2.2 The environment of an agent is the set of entities that interact with it.
Communication between an agent and its environment defines a variety of interaction:

Definition 2.3 Sequential interactive computation is interaction involving only two participants. Each participant may be considered the environment of the other.

In Section 4, we will define indirect interaction formally and will show that it may be identified with multiagent interaction, an alternative to sequential interaction.

2.2 Dynamic environments with persistent state

For a computing agent’s outputs to affect any later inputs other than immediate ones, that agent’s environment must have a persistent but alterable state on which its outputs depend. This notion is consistent with Piaget’s definition of behavior, whose purpose is to change the state of the environment [25]. Persistence characterizes some interactive agents and environments.

For function-based computation, captured by Turing machines, the properties of an environment are of no consequence, because one execution of an algorithm simply computes a function on whatever single input arrives from the environment. For interactive computation, on the other hand, how an action by a computing agent will change its environment is crucial to any choice made by the agent.

Let us define some properties of environments that are of interest to us.

Definition 2.4 An environment E is static with respect to agent A if its response to each output of A is the image of that output under a function $f_{E,A} : O \rightarrow I$, where O is the set of possible outputs of A, and I is the set of its possible inputs; $f_{E,A}$ may be said to characterize E w.r.t. A.

A dynamic environment is one that is not static.

A lamp that lights dependably when plugged in and goes out when unplugged defines a static environment w.r.t. the person operating the lamp. A lamp with a light sensor, which lights when plugged in only if the room is dark, defines a dynamic environment with respect to the user.

Any environment that can be modeled by a Turing machine is static, because whatever output an agent in such an environment emits, the environment will respond with a value that is a (computable) function of the agent’s output. Such an environment remembers nothing from previous interactions, just as every computation by a Turing machine begins with a blank tape, not with results left on the tape from previous computations. An objective function, such as is used in evolutionary computation research, defines a static environment.

Let us define a class of environments that can remember from previous interactions:
Let us define a class of environments that can remember from previous interactions:

Definition 2.5 An environment is *persistent* w.r.t. an agent if its outputs to the agent depend on the agent’s earlier actions within it. An environment is *amnesic* if it is not persistent.

An electric light that lights when it is off and the user presses its button switch, but turns off when it is on and the user presses its button switch, defines a persistent environment with respect to the user. A piece of paper defines a persistent environment w.r.t. a person writing on the paper, but is amnesic w.r.t. a person who is only reading it. The air is amnesic w.r.t. a person singing to it, and persistent w.r.t. a person spraying perfume into it.

Both an agent and its environment are *reactive systems* in the sense of [23]. See [30] for discussion of agents and environments of different types. One model for the type of environment we describe as dynamic and persistent is Markov decision processes (MDPs), in particular partially observable MDPs; see [18].

Our concern is with environments that combine dynamism with persistence. A *dynamic persistent environment (DPE)* with respect to an agent is one that is persistent but not static with respect to it. A DPE, E, interacts with agent, M, in such a way that M’s actions may change the state of E, affecting M’s later inputs.

The environment in which we drive a car is dynamic and persistent. It changes with respect to the car whenever we cause the car to move. Cars, pedestrians, and other potential obstacles appear and vanish in a way that our actions determine.

Recent expressiveness results for models of interactive computation enable us to show that dynamic persistent environments are harder to adapt to than dynamic environments without persistent state.

Definition 2.6 A class A of environments is *more difficult* than a class B, with respect to set S of adaptive agents, iff A’s range of observable behaviors is a strict superset of B’s.

Lemma 2.7 The set of system behaviors observable in DPEs strictly includes the set of behaviors observable in amnesic environments.

Proof sketch: We may formalize a DPE as a Persistent Turing machine with state [16]. Amnesic environments may be formalized as amnestic PTMs. By a theorem in [16], the set PSL of stream languages of PTMs strictly includes the set ASL of stream languages of amnesic PTMs.

It follows immediately from Definition 2.6 and Lemma 2.7 that adversarial DPEs are more difficult to adapt to than amnesic environments. In the next section, we show that the notion of dynamic persistent environments can help evolutionary-computation research escape from some apparent theoretical impasses.
3 Where the No Free Lunch theorem does not apply

The No Free Lunch theorem (NFLT) \cite{29} presented a paradox to researchers in evolutionary computation (EC). On the one hand, by the NFLT, no algorithm (such as an evolutionary algorithm) performs more efficiently than random search at solving the general function-optimization problem. On the other hand, natural evolution has proved better at producing organisms that attain fitness in varied environments than random search could have done. We show that the NFLT does not apply to optimization in DPEs, such as natural environments.

3.1 A paradox for evolutionary-computation research

In simple terms, we have by the NFLT that no algorithmic procedure can optimize cost functions more efficiently than any other algorithmic procedure, when the algorithm’s efficiency is averaged over the set of all cost functions, i.e., all search spaces \cite{29}. For example, if a certain evolutionary algorithm may converge quickly to solve a certain optimization problem (the lunch) then for some other problem (the price of lunch) this algorithm performs much worse than random search. Thus as a universal problem solver, no EA is better than random search.

Formally, the NFLT establishes that for any two algorithms a_1 and a_2, and any cost function f, the following equality holds:

$$\sum_f P(\overrightarrow{c} \mid f, m, a_1) = \sum_f P(\overrightarrow{c} \mid f, m, a_2)$$

where \overrightarrow{c} is the histogram of values an algorithm obtains for f given m evaluations of f. The probability expression $P(\overrightarrow{c} \mid f, m, a_i), i \in \{1, 2\}$ is the conditional probability of that histogram \cite{29}.

The proof of the NFLT has withstood inspection, but nature appeared to have produced a counter example, in that life on earth appears to be performing general-purpose (if slow) optimization, via evolution \cite{6}, and humans appear to be doing so as well, at a faster pace, via intelligence.

The paradox is that despite the restriction imposed by the NFLT, it is possible to build adaptive systems with little knowledge and few assumptions about the environment. The natural evolution of life occurred without any a priori assumptions about the environment. Natural and artificial systems gain the necessary knowledge by exploring their environments interactively. But algorithms can’t explore environments, can’t adapt in response to inputs, can’t change their behavior; execution of an algorithm begins only after acquisition of all inputs.

The NFLT rules out algorithmic procedures for general optimization. It follows from the NFLT that every useful evolutionary algorithm is to some degree problem specific in that it has some useful built-in knowledge of the fitness landscape.
Some research has succeeded in restricting severely the class of cost function sets for which the NFLT holds \cite{19}. The performance of some algorithms, averaged over a finite set F of cost functions may be better than that of other algorithms if the set F is not closed under permutation (c.u.p.). Furthermore, almost all sets F are not c.u.p..

Nevertheless, the use of heuristics or prior knowledge of fitness landscapes in virtually all EC research lends weight to the idea that even for the class of “realistic” cost functions, no good universal optimization method exists.

3.2 Resolving the paradox

A way out of the dilemma is indicated by the fact that the theorem stated above restricts a_1 and a_2 to algorithms, not interactive policies, and the set of possible environments considered by the theorem are functions, not first-class objects that may evolve in interaction with populations of solutions.

The notion of dynamic persistent environments offers a resolution to the paradox. In such environments, the cost function for an agent or population may change throughout an optimization process – in fact, may change as a result of actions of the evolving population. Function f is replaced by a sequence of cost functions. Moreover, the optimizing processes are not algorithms (a_1 and a_2 in the formula above), but interactive protocols implemented by computing entities, possibly with evolving persistent states. Since evolution in DPEs is not an algorithm optimizing a function, the NFLT does not apply to optimization in DPEs, whether natural or artificial.

To put it another way, as life forms evolve, they change both themselves and their environments. Evolutionary algorithms don’t do this. For example, the NFLT does not apply in the following contexts:

- As microorganisms evolve in the ocean, changing the ocean environment, they tend to optimize their population’s ability to survive but do not execute together a single algorithm; instead, they interact with an environment whose cost function changes over time.

- As a market evolves, it tends to optimize quantities produced and prices, but via interaction among agents in the economy, not through an algorithm.

Unlike human-directed optimization processes, natural evolution lacks a global purpose; moreover, species, and even often organisms, lack the will or mental intention to survive. Nevertheless, processes of natural evolution tend to optimize the capacity of individuals of a species to survive.

The significance attributed to the NFLT among EC researchers reflects the mathematical world view that sees problems as functions, i.e., as transformations of single inputs to single outputs \cite{17}. To acknowledge the importance of DPEs is to depart from this traditional mathematical world view and to embrace a broader, interactive world view.

The well-known EC researcher Kenneth DeJong observed that effective strategies for sequential decision problems are not necessarily effective for
function optimization, and that the motivation for John Holland’s foundational work on EC was a concern for adaptive systems. Evolution in general is a way “to explore and adapt to complex and time-varying fitness landscapes” [7].

A theory of computing that incorporates interaction would suggest that an agent seeking to minimize or maximize a function should learn interactively about this evolving cost function and the mechanism inducing it. Whereas no algorithm can embody knowledge of all cost functions, an interactive process can be constructed to learn and to guide itself by interacting with environments that induce cost functions, including costs that change dynamically in interaction with the process. Some such interactive learning processes will perform better than blind search. This fact explains the existence of complex life forms.

The facts that natural evolution on Earth has obtained better results than random search would have done, and that many forms of life are themselves better general-purpose optimizers than random search, are proofs that processes exist that perform more efficiently at finding extrema than random search. Since they are not algorithmic processes, the NFLT does not rule out their existence.

The observation that coadaptation (mutual adaptation) between agents and their environments molds fitness landscapes in a favorable way [11] highlights the role of interaction in permitting escape from the unfavorable implications of the NFLT.

The NFLT sets limits on our ability to find optimal general-purpose algorithms, as the Church-Turing Thesis and Turing’s Halting Problem help define boundaries of algorithmic computation. Just as [16] suggests an extension to the Church-Turing thesis, a challenge for research in a theory of interactive computation is to provide a formal negation of the NFLT, including counter-examples, in such a way as to account for the existence of useful general-purpose optimization protocols in interactive contexts.

3.3 Toward formal results

We present our conclusions about the NFLT and DPEs semi-formally, as three observations and a conjecture that all follow from the above discussion.

Observation: Problems of optimization of input in interaction with dynamic persistent environments cannot in general be reduced to function-optimization problems.

Let an environment E interact with computing agent A in such a way that A’s inputs from E are not a function of A’s immediately preceding outputs; they may also be affected by E’s state, as shaped by A’s previous outputs. Thus the problem of optimizing A’s inputs over time is not one of optimization of a function from input to output.
Observation: Certain interactive protocols may obtain better results than others in optimizing inputs from dynamic persistent environments.

The NFLT applies only to function-optimization problems. Optimization of inputs in interactive environments is not necessarily function optimization. In particular, dynamic persistent environments feature evolving state, and this may rule out an identity between input optimization for such an environment and function optimization.

Observation: Consider the set of all environments that have existed on earth for any organism since the cooling of the earth’s crust. The evolution and survival of life forms lends support for the idea that selection, recombination, and mutation of DNA, as the basis for genesis and reproduction of organisms, constitute a robust protocol for the generation of survivable life forms in such a set of environments, superior to other protocols such as random aggregation of molecules.

Discussion: The natural history of the earth’s crust over several billion years confirms this observation. Let us then venture a guess about an artificial protocol with similar general effectiveness.

Conjecture: Let \(\pi \) be the protocol that consists of developing and refining a model of the environment and using that evolving model to predict and obtain desired inputs interactively from the environment. Then \(\pi \) (which could be described as the scientific method plus good engineering practices) approaches optimality for all environments encountered by humans so far or in the foreseeable future. \(\pi \) is better than random choice for obtaining results suitable for human survival and comfort.

Clearly a theorem analogous to NFL, but describing the limits of optimization in DPEs, could be developed, because the easiest DPEs for which to optimize cost functions are amnesic ones, equivalent to static environments, i.e., for which optimization is equivalent to function optimization. However, it is also clear that only environments that change computably in response to agents within them are of interest; a tiny fraction of all conceivable environments. In particular, it may well be that all dynamic environments that are of any practical interest are ones that are learnable, i.e., environments for which a model can be developed that effectively guides the approximation of optimally rewarding interaction with the environment.

4 Indirect interaction and multiagent systems

Persistence of state in an environment offers agents within it a way to interact with each other via that environment instead of directly. We define indirect interaction and show that it is more powerful than direct interaction (Section 4.1). Section 4.2 offers examples of this in nature, illustrating the multidisciplinary aspect of the research area of multiagent systems. We show
that it is precisely indirect interaction that distinguishes multiagent interaction from sequential interaction (Section 4.3). The fact that systems featuring indirect interaction may display a greater range of behavior than ones without it implies that DPEs with indirect interaction (multiagent DPEs) pose more challenging problems than those with only direct interaction, necessitating multiagent solutions.

4.1 Direct versus indirect interaction

It is commonly thought that interaction is the same as communication. Communication is associated with the notion of message passing [24] or targeted send/receive (TSR) [13].

Definition 4.1 Direct interaction is interaction via messages; the identifier of the recipient is specified in the message.

Message passing is appropriate when two entities possess identifying information about each other. Lacking such information, however, communicating entities may communicate by altering the persistent state of their common environment. This is a second category of interaction.

Definition 4.2 Indirect interaction is interaction via persistent, observable state changes in a common environment; recipients are any agents that will observe these changes. [20]

The decoupling between sender and receiver in indirect interaction implies anonymity and asynchrony. Anonymous interaction occurs when computing entities communicate without knowledge of each other’s identities. Examples are processes managed by an operating system via shared memory; multiagent systems; and distributed systems. Since indirect interaction relies on persistence of the state of the environment over time, the identity of the recipient of communicated information is determined by dynamic (late) binding.

Asynchrony in indirect interaction follows from time delay due to the use of persistence of the observable changes over time. Alongside anonymity and asynchrony, indirect interaction typically has the features of locality and non-intentionality [15]. That is, efficient indirect interaction uses multiple direct local communications, and participants may interact without any goal or intention of communication existing.

The sender of information does not need to have, or be designed with, a communication intention of making changes to the environment that may later be perceived by others. Indirect interaction is therefore natural for entities whose ability to perceive and act upon their environment is localized, in contrast to systems with global access [31].

Example 4.3 (The Dining Philosophers problem)

In a classic problem in concurrency and shared resources [9], philosophers sit in a circle to eat, with one chopstick between each pair of diners. Diners
individually pick up two chopsticks, eat, put them down, and think, repeating
the steps endlessly. The problem is to avoid starvation by deadlock; if each
diner uniformly picks up the left (or right) chopstick, for example, and holds
it until the other one is available, then all will starve.

The objective of this problem is to define a protocol for a ring-shaped ar-
rangement of communicating processes, each communicating only with its two
neighbors, such that all processes are allowed to move forward under the con-
straint that no two adjacent ones may execute simultaneously. The chopsticks
are semaphores whose persistent state (on-table or with-diner) enables them
to be used for communication.

Seen in this way, the problem has the properties of (1) locality, because
diners can only see neighboring chopsticks; (2) anonymity, because diners need
not know each other’s names or even whether their neighbors exist; (3) asyn-
chrony, because diners don’t necessarily pick up a chopstick as soon as it is
put down; and (4) non-intentionality of communication, because diners pick
up chopsticks to eat with and put them down to think, not to communicate.

Dining Philosophers can be modeled as direct interaction between philoso-
phers and utensils, as in the original solution and in [1]. In the semantics of
this problem, however, chopsticks are not autonomous computing entities, like
philosophers; they are passive, initiating no action. Their only role is to reflect
the states of the philosophers next to them. The semantics of the problem
are of interaction among diners, not between diners and utensils. But this
interaction is indirect, via chop-sticks.

Dining Philosophers is an example of a DPE problem in which indirect
interaction will be part of any solution. The environment of each philosopher
is the set of other diners; the state of the environment changes in a way not
controllable by one diner alone.

4.2 Indirect interaction in nature (stigmergy)

Almost all real-world problems are problems of adaptation by multiagent sys-
tems (MASs) to dynamic persistent environments that are MASs. Adaptation
in MASs may be centralized, based on rational deduction that yields algorithm-
ic solutions. Or, in the absence of rational problem-solving and planning
mechanisms, it may be decentralized. Examples of decentralized adaptation
include ants, termites, and slime mold.

In the StarLogo termite simulation, the termites build a circular pile of
wood chips, despite having no capacity for planning or coordination, and with
minimal ability to perceive. They continuously apply a simple protocol: move
at random, pick up a chip whenever one is encountered, and put it down when
the termite bumps into another chip. Eventually, a single pile emerges. This
global behavior of the termite population is more than the composition of the
individual chip-carrying behaviors. The termites accomplish this pile-forming
task, in a self-sustaining manner, without an internal representation of the
goal [27].
Ant colonies solve the problem of efficiently foraging for food sources by a decentralized multiagent interaction in which each ant deposits pheromones (evaporating scent chemicals) as it walks, and each ant follows pheromone trails as well as food odors. Heavily traveled (hence strong, hence attractive) pheromone trails correspond to short paths to food. As food is exhausted at a site, the trails to it evaporate. Without a plan, the ants find a set of paths to the food that tends toward optimality [3,4].

When their food is scarce, slime mold amoeba organisms gravitate to one another by use of a chemical signal emitted into the environment. The signal is relayed among the organisms, which migrate toward the center of a spiral of such signals, eventually aggregating into a single crawling slug-like organism [21]. Again, aggregate behavior emerges from individual interaction without centralized direction.

All these cases in nature are multiagent systems, as opposed to ones featuring sequential interaction (Definition 2.3). A common feature of the above examples is that organisms interact via their shared environment rather than by exchanging messages directly.

4.3 Multiagent systems require indirect interaction

Although computer science models computation as transformation of input to output by one computing agent, and although concurrency theory models interaction as direct communication between two agents or processes, the real world is richer. Multiagent interaction (MAI) is ubiquitous, whether at the atomic, molecular, cell, organism, social, or planetary level. Systems are open in the sense that entities or streams of interaction may be created or destroyed. Asynchrony and anonymity of communication have brought into being the field of coordination models for MASs [1,13].

[24] models interaction under concurrency as direct targeted send and receive (TSR). A stochastic model is Markov decision processes (MDPs). For discussion of MDPs controlled by multiple cooperating agents, including via indirect interaction, see [18].

Models of MAI that represent only the direct and synchronous interaction of pairs of agents show significant limitations. Because MAI is more than the composition of multiple instances of sequential interaction, a model of multiagent interaction is required that reflects its special character. MAI is different from sequential interaction precisely in that it involves indirect interaction. In the following, we seek to put the distinction between sequential and multiagent interaction in sharp relief by identifying MAI with indirect interaction.
Theorem 4.4 Let S be a multiagent system that contains some agents and possibly shared variables that form a DPE w.r.t. the other agents. Then indirect interaction occurs in S.

Proof.

1. Let S be a multiagent system in which some subset of agents, and possibly shared variables, form a dynamic persistent environment with respect to the others.

2. Suppose S is characterized by direct interaction only.

3. By Definition 2.1 (interaction), a pair of agents in S interacts only if each affects its own later inputs by its actions. But by Definition 4.2 (indirect interaction), no pair of agents in S communicates via state changes created by one and observable by the other in a common environment.

4. Hence no part of S has persistent state, hence no part can be a DPE w.r.t. the other part (Definition 2.5), contradicting (1).

MASs without indirect interaction are in essence dataflow machines, where each agent does the same algorithmic computation on each input, and chooses from the same set of channels where to send the output, based on the input. In a MAS without indirect interaction, dynamic reconfiguration of channels would be impossible because remembering changes to the configuration would require persistence. It has been conjectured that dynamic reconfiguration is necessary for greater expressiveness of MAS models [28].

Indirect interaction is therefore necessary for full expressiveness of MAS models, but not sufficient. Indirect interaction can occur without greater expressiveness; e.g., if the component agents are not truly concurrent. Note that any modular algorithm can be transformed to a MAS by replacing subroutines with agents and input/output relations with shared variables (indirect interaction). But clearly despite the indirect interaction, there is no gain in expressiveness in that case.

5 Conclusion

Introducing the notion of dynamic persistent environments suggests new research directions for multiple disciplines and new ways of thinking about agents and interactive computation. It may suggest ways forward for research in evolutionary computation and adaptive systems, for example. As we have shown, the recognition of dynamic persistent environments as distinguished from static function optimization allows us to resolve the dilemma of the No Free Lunch Theorem. We have shown that multiagent systems with persistence necessarily feature indirect interaction. This result is enabled in part by the observation that mutual causality is a defining property of interaction.

Future research challenges include:

• showing that adaptive agents can perform better in DPEs if they have
persistent state;
• formalizing the observations about the NFLT and DPEs made in Section 3.3;
• proving the greater expressiveness of models of multiagent/indirect interaction over models of sequential interaction; and
• formalizing multiagent systems in a way that explicitly incorporates indirect interaction, a key notion for solving problems in dynamic persistent environments.

Acknowledgement: we thank the anonymous referees for valuable suggestions and references.

References

[1] Farhad Arbab. Reo: A channel-based coordination model for component composition. CWI Report SEN-0203, 2002.

[2] W. Ross Ashby. An introduction to cybernetics. 1964.

[3] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: From natural to artificial systems. Oxford University Press, 1999.

[4] Eric Bonabeau and Guy Theraulaz. Swarm smarts. Scientific American, pages 72–74, March 2000.

[5] Juergen Branke. Evolutionary optimization in dynamic environments. Kluwer, 2002.

[6] Joseph C. Culberson. On the futility of blind search: An algorithmic view of ‘no free lunch’. Evolutionary Computation, 6(2):109–127, 1998.

[7] Kenneth DeJong. Genetic algorithms are NOT function optimizers. In D. Whitley, Foundations of genetic algorithms 2, 1993.

[8] Kenneth DeJong. Evolutionary computation: A unified overview. Tutorial at CEC-2001, Seoul, Korea, 2001.

[9] Edsger Dijkstra. Hierarchical ordering of sequential processes. Acta Inform., 1:115–138, 1971.

[10] Eugene Eberbach. On expressiveness of evolutionary computation: Is EC algorithmic? Proc. World Conf. on Computational Intelligence, 2002.

[11] Gary William Flake. The Computational Beauty of Nature. MIT Press, 1999.

[12] David B. Fogel, Lawrence J. Fogel, and Wirt Atmar. Hierarchic methods of evolutionary programming. Proc. 1st Ann. Conf. on Evolutionary Programming, pages 175–182, 1992.

[13] D. Gelernter and N. Carriero. Coordination languages and their significance. CACM, 35(2):97–107, 1992.
[14] David E. Goldberg. *The design of innovation: Lessons from and for competent genetic algorithms*. Kluwer, 2002.

[15] Dina Goldin and David Keil. Toward Domain-Independent Formalization of Indirect Interaction. *TAPOCS Workshop, Proc. WET ICE 04*, 2004.

[16] Dina Goldin, Scott A. Smolka, Paul Attie, and Elaine Sonderegger. Turing machines, transition systems, and interaction. *Information and Computation Journal*, 194(2):101–128, Nov. 2004.

[17] Dina Goldin and Peter Wegner. The Origins of the Turing Thesis Myth. *Brown University Technical Report CS-04-14*, June 2004.

[18] C.V. Goldman and S. Zilberstein. Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis. *Journal of Artificial Intelligence Research*, 22:143–174, 2004.

[19] Christian Igel and Marc Toussaint. Recent Results on No-Free-Lunch Theorems for Optimization. *arXiv:cs.NE/0303032v1*, 2003.

[20] David Keil and Dina Goldin. Modeling indirect interaction in open computational systems. *TAPOCS Workshop, Proc. WET ICE 03*, 2003.

[21] James Kennedy and Russell Eberhart. *Swarm intelligence*. Morgan Kaufmann, 2001.

[22] Donald E. Knuth. *The art of computer programming, Vol. 1: Fundamental algorithms*. Addison-Wesley, 1968.

[23] Zohar Manna and Amir Pnueli. *The Temporal Logic of Reactive and Concurrent Systems: Specification*. Springer Verlag, 1992.

[24] Robin Milner. Elements of Interaction. *Communications of the Association for Computing Machinery*, 36(1):78–89, 1993.

[25] Jean Piaget. *Behavior and evolution*. Pantheon, 1978.

[26] Stuart Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach*. Addison-Wesley, 1995.

[27] Starlogo site at MIT Media Lab. http://starlogo.www.media.mit.edu / people / starlogo.

[28] Peter Wegner. Interactive Foundations of Computing. *Theoretical Computer Science*, 192:315–351, 1998.

[29] David H. Wolpert and William G. Macready. No free lunch theorems for search. *Santa Fe Institute technical report SFI-TR—0*, 10, 1996.

[30] M. Wooldridge. On the Sources of Complexity in Agent Design. *Applied Artificial Intelligence*, 14(7):623–644, 2000.

[31] Franco Zambonelli and H. Van Dyke Parunak. Signs of a revolution in computer science and software engineering. *Proc. ESAW02*, 2002.