Cathode Materials for Lithium Ion Batteries (LIBs): A Review on Materials related aspects towards High Energy Density LIBs

Ambesh Dixit*
Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
*ambesh@iitj.ac.in

Abstract
This article reviews the development of cathode materials for secondary lithium ion batteries since its inception with the introduction of lithium cobalt oxide in early 1980s. The time has passed and numerous cathode materials are designed and developed to realize not only the enhanced capacity but also the power density simultaneously. However, there are numerous challenges such as the cyclic stability of cathode materials, their structural and thermal stability, higher operating voltage together with high ionic and electronic conductivity for efficient ion and charge transport during charging and discharging. This article will cover the development of materials in chronological order classifying as the lithium ion cathode materials in different generations. The ternary oxides such as LiTMOx (TM=Transition Metal) are considered as the first generation materials, whereas modified ternary and quaternary oxide systems are considered as the second generation materials. The current i.e. third generation includes complex oxide systems with higher lithium content such as Li,TMSiO3 aiming for higher energy density. Further, developments are heading towards lithium metal based batteries with very high energy densities.

Keywords: Energy storage; Secondary batteries; Li-ion battery, Cathode materials; Electrochemistry; Charge dynamics; Cyclability.

Introduction:
The demand of energy consumption per person is continuously increasing not only because of comfort living but also to meet every day necessities such as mobiles, laptops, and other electronic gadgets for everyday communication, commuting, power electronics, and house hold accessories especially in remote areas. Thus, batteries, particularly rechargeable ones, are becoming essential and integral part of everyone’s life. Further, with these applications energy demand especially for movable platforms such as buses, rickshaws, cars, trains and even planes currently rely on uses of conventional non-renewable i.e. fossil fuels. The use of fossil fuels is also impacting our environment and severely polluting with various toxic and greenhouse gases, leading to adverse effect on living beings. That’s why there is a continuous compulsion to use renewable green energy sources, such as solar, wind, thermal and geothermal, not only because of limited conventional fossil fuel sources depleting every day but also because of large pollution after consuming conventional fossil fuel products, causing environmental degradation and thus, life threatening consequences. Most of the megacities are facing such environmental degradation because of toxic exhaust gases from regular vehicles and other exhausts such as conventional power plants, burnings, and industries using conventional fuel sources. The situation is worse in developing and under developed countries, where there is no guidelines and policies on using conventional fossil fuels. The alarming situation is that the consumption of conventional fuel is increasing every day even after knowing the consequences. Further, there are intrinsic challenges with renewable energy sources such as their availability, e.g. Sun light is available during day time and energy requirement is equally or even more important for off-Sun hours, unpredictability, uncontrollability, and intermittency apart from day and night cycles. In spite of all these, the development of solar photovoltaics led to the installation of large scale PV power plants producing GW (Giga Watts) power across the globe and providing useful electrical energy from the freely available Sun light. This directly converted electrical energy can be either fed to the grid or used in distributed applications. However, after Sun hours, the generation of electricity is not possible and thus, there is a stringent requirement of storing electrical energy simultaneously for its use during off-Sun hours. This relies on the energy storage systems i.e. batteries in terms of large specific capacity and power density together with cyclability. The energy needs for various applications such as off-Sun hour grid, distributed off grid, and small scale energy applications can be met by using efficient electrical energy storage devices. Considering such constraints, large efforts are put in the development of secondary rechargeable batteries to meet some of these requirements.
The large energy storage requirements are currently met by lead acid batteries in general, which are not safe to handle because of lead as the toxic elements and also suffer from lower operating voltage and specific energy density, as illustrated schematically in Ragone plot, Fig 1.

![Figure 1: Ragone plot, showing gravimetric and volumetric energy densities of different rechargeable batteries](image)

This provides opportunities to innovate materials which can offer high energy density, cyclability without capacity fading, together with safety against environmental factors. The lithium ion batteries are considered as one of the probable solution towards mitigating the intermittency of renewable energy sources by replacing the widely used toxic lead acid batteries. However, currently lithium ion rechargeable batteries are mostly used in portable electronic devices and in its matured state, which replaced the initially used nickel-cadmium rechargeable batteries. These Ni-Cd batteries were offering relatively poor energy and power density with respect to lithium ion batteries, Fig 1, and also suffering from memory issues, ending with relatively shorter life time. Thus, lithium ion batteries are far superior from their counter systems such as lead acid (Pb-acid), nickel-cadmium (Ni-Cd), and nickel-metal hydride (Ni-MH) batteries, Fig 1. The relatively high gravimetric and volumetric energy density of lithium ion batteries replaced other batteries in today’s consumer electronics and leading steps towards green energy. 2019 Nobel Prize in chemistry is awarded to Professor John Goodenough (The University of Texas at Austin, USA), M. Stanley Whittingham (Binghamton University, State University of New York, USA), and Akira Yoshino (Asahi Kasei Corporation, Tokyo, Japan, & Meijo University, Nagoya, Japan), for the development of lithium ion battery, Fig 2.

![Figure 2: Nobel prize winners and their contribution in the field of rechargeable energy storage, especially in lithium ion batteries, Reference: https://www.nobelprize.org/prizes/chemistry/2019/summary/](image)

The development of battery, especially lithium battery was initiated 1970 and accelerated onwards to explore efficient rechargeable electrical energy storage system, which can overcome the low gravimetric and volumetric energy density issues with contemporary rechargeable batteries. The work was fueled by these Nobel Prize winners’ work, which revolutionized the field of electrical energy storage. Professor Whittingham, around 1970s, discovered titanium disulphide as a cathode material which can host and intercalate lithium ions efficiently in lithium ion batteries. Further, around 1980s, the work on metal oxide i.e. lithium cobalt oxide by Professor Goodenough provided an alternative cathode material to metal sulphide for lithium ion batteries which can operate at higher voltage ~3.5 - 4V and thus, providing higher energy/power density. In these work metallic lithium was used as anode, which is highly reactive and explosive material, thus was not a common choice for battery applications. Later around 1985, Professor Akira Yoshino used a carbon material (petroleum coke) as an anode in place of lithium together
with lithium cobalt oxide as cathode material to fabricate a lithium ion battery. This is considered as the birth point for the current commercially used lithium ion batteries. The advantage of such lithium ion batteries is that these are not based on any chemical reaction but intercalation of lithium ions via lithium ion movement between cathode and electrode during charging and discharging. The use of such rechargeable lithium ion batteries is increasing and most of the portable electronic devices are using only lithium ion batteries providing long hour power backups together with longer charge/discharge cyclability and thus, longer life span. With the advent of lithium ion batteries, there are continuous efforts in developing new battery materials, which can provide enhanced energy and power density, an essential requirement for power electronics and towards the development of electric and hybrid electric vehicles (cars, buses and even planes). However, there are still limited or negligible uses of lithium ion batteries for large power applications such as energy storage in solar photovoltaic power plants, hybrid electric vehicles i.e. plug-in electric vehicles and other such power applications. Further, large energy to power density aspect ratio together with higher operating voltage, large charge-discharge cyclability without capacity fading and safety issues are other important points to be considered towards developing such high energy and power density materials. Thus, large efforts are required to innovate such materials which can meet these requirements. The present article discusses the chronological development of cathode materials together with issues and challenges in realizing efficient rechargeable lithium ion batteries.

Working Mechanism of a Lithium Ion Battery:

A battery stores electrical energy in the form of electrochemical energy, which can be converted back into electrical energy whenever required. It consists of four essential components (i) cathode (e.g. LiFePO₄), anode (e.g. nanocarbon based materials such as graphene), electrolyte (e.g. LiPF₆) a material allowing ions to travel through while electrically insulating avoiding electrical conduction through it, and a separator, a mesoporous material, allowing ions and also prevents electrical shorting between cathode and anode. All these components with representative materials are shown in Fig 3. The process is similar for other electrode materials. The respective lithium ion positions together with its relative motion are shown in Fig 3 for these charging, Fig 3(a), and discharging, Fig 3(b) states of a lithium ion battery. The insertion of lithium ion in cathode and anode is known as intercalation and mostly these cathode and anode materials are materials allowing easy intercalation rather chemical reaction. The charging and discharging are accompanied by lithium ion intercalation and deintercalation at the electrodes as illustrated below for LiFePO₄ cathode and carbon anode electrode materials.

At cathode or positive electrode

\[
\text{Charging:} \quad \text{LiFePO}_4 \rightarrow \text{Li}_{1-x}\text{FePO}_4 + x \text{Li}^+ + xe^{-}
\]

At anode or negative electrode

\[
\text{Charging:} \quad C + x \text{Li}^+ + xe^{-} \rightarrow \text{Li}_xC
\]

Total process = Sum of processes at cathode and anode

\[
\text{Charging:} \quad \text{LiFePO}_4 + C \rightarrow \text{Li}_{1-x}\text{FePO}_4 + \text{Li}_xC
\]

The lithium ion forms complexes like LixC with carbon at anode ends during charging, whereas lithium atoms are at respective crystallographic sites in the cathode materials, which are mostly transition metals oxides, in the discharge states, Fig 3. The respective electron and current motions are shown in respective figures through load while discharging and through a voltage source.

Figure 3: Schematic representation of (a) charging using an external DC source and (b) discharging using an external load for a rechargeable Li-ion battery.
while charging. The lithium chemical potential is lower in cathode than that of anode, which facilitates release of stored electrochemical energy into electrical energy while discharging. The most common electrolyte is LiPF$_6$ based organic liquid and stable up to 4.5 V and at higher voltage i.e. > 4.5 V, it may degrade or decompose into its constituents as well. Further, the operating voltage and energy density or battery capacity are limited by the electronic properties of cathode materials together with efficient ionic i.e. lithium ion transport. Thus, the development of suitable cathode material is very important not only to meet the high energy and power density requirements but also the operational safety.

Configurations of rechargeable lithium ion batteries:

The increasing demand and compulsion towards green energy accelerated the development of rechargeable lithium ion batteries. Initially only smaller electronic systems/machineries were targeted and success can be noticed as lithium ion batteries replaced nearly completely its counterparts such nickel-cadmium and nickel-metal hydride rechargeable batteries. However, lithium ion batteries are still struggling to replace the conventional lead-acid batteries, which are mostly used in power sectors such as electric or hybrid-electric vehicles, power electronic equipment, and power plants. Considering the potential of lithium ion batteries and mitigating this gap, lithium ion batteries are developed in different configurations, as illustrated in Fig 4.

![Figure 4: The schematic diagrams for different configurations of lithium ion battery](image)

The coin or button cell, Fig 4(a), is mostly used in laboratory to characterize the electrochemical performance of electrode materials. Here, each component of coin cell is shown schematically together with corresponding actual photographs from the authors’ laboratory. The coin cell is also developed for commercial applications as well; however, it is mostly suitable for low power devices. The cylindrical cell is shown schematically in Fig 4(b) and used for powering devices with higher power requirements. These cells are combined in suitable (series and parallel) combinations to achieve the desired voltage and current. These coin and cylindrical cells use metallic casing and thus increasing overall weight of battery system. In this regard, pouch, Fig 4(c), may provide better solutions, as there is no metallic casing is used like coin cells. Thus, these cells achieve the highest packing density and thus providing more energy density. The pouch cells are much larger than coin and cylindrical cells and used in various strategic applications such as space and military together with common electric and hybrid electric vehicles. Another similar cell is prismatic cell and shown schematically in Fig 4(d). These cells uses polymer and usually known as lithium-polymer cells. These pouch and prismatic cells may provide high power and very suitable for high current based applications. However, sometimes, swelling issues are noticed with pouch cells. Another interesting configuration is the thin film battery configuration. The geometrical configuration of thin film lithium ion battery is shown in Fig 4(e). This cell may offer a better solution to the present day power needs for miniaturized electronic devices and also probably may be integrated in the chip or devices itself.

Development of cathode materials for lithium ion batteries and their classification:

The importance of lithium ion batteries compels to develop efficient batteries meeting the todays’ electrical energy demand in all sectors including low power everyday applications to hybrid electrical vehicles and power plants. That’s why there are continuous efforts in developing efficient materials to realize a miniaturized powerful battery together with operational safety. The inception of lithium ion battery in research can be noticed even in late 1950s with preliminary work on LiTMOx (TM = Co, Ni, Mn, Fe and V) and much emphasis was given on materials properties and their electrochemical performance. Further efforts ever made to develop new class of materials, as classified in Table 1.
The development of new materials led to the enhanced operating voltage and energy density, Table 1, making lithium ion batteries suitable for various applications including electric vehicles and power plants. Further, pristine lithium ion based batteries are showing potential for very high energy density in both large and thin film geometries, Fig 1, however, large safety concerns are yet to address together with various technological issues before using in real applications. The next section will review the various materials developed over period with their salient materials and electronic features, suitable for lithium ion battery applications.

1st Generation materials for rechargeable lithium ion batteries (Since 1950-1985):

The materials developed up to 1985 are classified as 1st generation cathode materials for rechargeable lithium ion batteries. These materials are summarized in Table 2. The crystallographic structures, their synthesis procedure adopted for fabricating such cathode materials are listed in Table 2 together with battery capacity and remarks, if any, with respective references.

This was the era to explore new potential cathode materials for rechargeable lithium ion batteries; that’s

Table 1: Classification of cathode materials based on different properties and time period for the development of lithium ion batteries

S. No.	Generation	Cathode Materials	Operating Voltage range (V)	Capacity (mAh g⁻¹)	Time period
1.	Generation I	Mono Li atom based transition metal (TM) ternary oxides	1.2 – 3.5	≤ 150	1950 - 1985
2.	Generation II	Mono Li atom based TM ternary oxides	3.5 – 4.0	150 – 200	1985 - 2000
3.	Generation III	Higher Li atom based TM ternary and quaternary oxides and oxifluorides	3.5 – 5.0	200 – 330 or more	2001 - 2020
4.	Generation IV	Li-S or Li-Air systems	1.5 - 2.5	>1000	May be up to 2025

Table 2: 1st Generation cathode materials used in lithium ion batteries (Time period 1950 – 1985)

S. No.	Material	Year	Configuration/structure	Method	Cathode/Anode	Capacity (mAh g⁻¹)	Remark	Refs.
1.	LiₓCo₁₋ₓO (x=0.5)	1958	Rhombohedral	Solid state	Cathode	Not reported	First Commercial Li-ion battery material	1
2.	LiMnO₂	1956	Orthorhombic	Sintering	Cathode	Not reported	One of earliest material	2
3.	LiNiO₂	1958	Rhombohedral	Solid State	Cathode	Not reported	None	3
4.	Li₄Co₂	1980	Hexagonal	Electrochemical extraction	Cathode	4.7 Volt at X=0.1	None	4
5.	LiₓMnO₂	1983	Tetragonal	Lithiation of β-MnO₂	Cathode	Not Reported	None	5
6.	LiₓFe₂O₄	1982	Cubic	Chemical & electrochemical	Cathode	1.3 Volt	None	6
7.	LiₓFe₂O₃	1982	Cubic	Chemical & electrochemical	Cathode	1.2 Volt	None	6
8.	LiMn₂O₄	1983	Cubic	Solid state	Cathode	Not reported	None	7
9.	Li₂Mn₋₂O₄	1983	Tetragonal	Solid state	Cathode	Not reported	None	7
10.	LiMn₂O₄	1983	Tetragonal	Solid state	Cathode	Not reported	None	7
11.	LiₓV₂O₄ (0<x<0.34)	1985	Cubic	Solid state	Cathode	Not reported	None	8
12.	LiₓV₂O₄	1985	Cubic	Solid state	Cathode	Not reported	None	8
13.	Li₂V₂O₄	1985	Cubic	Solid state	Cathode	Not reported	None	8
why nearly all the transition metals are explored in the periodic table. As an essential condition, a multivalent ion based cathode material is required to compensate the charge during lithium insertion and extraction from the cathode material. The materials should show structural stability during lithium transport during charging/discharging process to realize large cycling stability. The manganese and vanadium based compounds show structural stability with relatively large specific capacity, which became the material of choice for next generation cathode materials. Most of these materials are transition metal based ternary oxides and mostly the materials and electrochemical properties are evaluated in their bulk forms. This is the reason of observing poor capacity with respect to their theoretical capacity at even much lower operating voltages. The main reason of lower capacity is their insulating nature together with relatively lower ionic conductivity and longer diffusion paths in bulk materials.

2nd Generation materials for rechargeable lithium ion batteries (Since 1986-2000):

The introduction of transition metal oxides based cathode materials by Professor J. B. Goodenough and his team already showed the potential of lithium ion batteries in 1st generation. However, the limited capacity and lower operating voltages compelled to innovate the modification strategies of 1st generation cathode materials or design and develop new materials for desired electrochemical properties to achieve the optimal performance. The issues with the first generation materials were their poor electrical and ionic conductivity and efforts were put to mitigate these issues in second generation. The doping strategies were adopted to modify the ionic conductivity together with electronic conductivity. The most of ternary oxides from 1st generations are followed in second generation with suitable dopants. The doping of high valent either transition metals or non-transition metals at second cation sites led to enhanced electronic conductivities of these materials. The 2nd generation cathode materials are summarized in Table 2 together with their synthesis process, crystallographic phases, electrochemical capacity together with some noticeable properties as remarks.

Further, in contrast to the bulk materials, nanostructured e.g. nanoparticle, nanotubes, nanorods or two dimensional (2D) sheets like structures are synthesized for these materials and used for electrochemical studies. The reduced dimensions of these materials showed improved

S. No.	Material	Year	Configuration / structure	Method	Cathode/ Anode	Capacity (mAhg⁻¹)	Remark	Refs.
1.	Li(CO₁₀₋ₓ Liₓ/₃ Mn₂ₓ/₃)O₉ (x = 0, 0.1, 0.2, 0.3)	1999	Monoclinic	Solid state	Cathode	160 mAhg⁻¹	Stable	9
2.	LiCoO₂, LiNiO₂	1990	Hexagonal	Solid state	Cathode	Not reported	None	10
3.	LT-LiCoO₂ [Layered] (low temperature)	1993	Trigonal, Cubic	Nitrate method, Carbonate method	Cathode	Not reported	Prepared at low temp.	11
4.	LiCoO₂	1996	Cubic	Microwave heating	Cathode	140 mAhg⁻¹	Stable and good cyclability	12, 13
5.	LiCoO₂	1996	Trigonal	Sol-gel	Cathode	98 mAhg⁻¹	None	14
6.	LiCoO₂ (Pseudo spinel)	1996	Cubic	Solid state	Cathode	Not reported	None	14
7.	LiCoO₂ [Layered]	1998	Trigonal	Solid state	Cathode	150 mAhg⁻¹	None	15
8.	LiCoO₂	1998	Hexagonal	Solid state	Cathode	142 mAhg⁻¹	Stable, good rate capability & good cyclability	16
9.	LiCoO₂	1998	Hexagonal, Trigonal	Sol-gel	Cathode	145 mAhg⁻¹ -165 mAhg⁻¹	None	17, 18, 19
10.	LiCoO₂	1999	Hexagonal	Sol-gel	Cathode	120 mAhg⁻¹	None	20, 21
ionic conductivities as it resulted in the reduced diffusion paths for lithium ions in case of nanomaterials with respect to bulk materials. The electronic conductivities of these materials are also improved by designing cathode material as core and graphitic carbon as shell, leading to several orders of magnitude higher electrical conductivity.

In addition to the first generation cathode materials, emphasis was also given to the vanadium based ternary oxide materials as potential cathode materials, Table 2, due to their layered structures having large potential for easy intercalation and deintercalation, showing moderated ~ 150 mAh g\(^{-1}\) capacity. The structural instability associated with these materials for complete removal of lithium hampered the use of full capacity of these cathode materials. Most interestingly, again from Professor J. B. Goodenough’s group, a quaternary oxide LiFePO\(_4\) as cathode material was reported during 1997, as a potential candidate in its olivine structure and showed electrochemical capacity, very close to the theoretical limits, 170 mAh g\(^{-1}\), after modifying its electronic and ionic conductivities. Olivine LiFePO\(_4\) system among its derivatives with other crystallographic structures is very robust, showing no crystallographic degradation even after complete deintercalation of lithium and showed very high stability. Thus, LiFePO\(_4\) can exhibit very large charge/discharge cycles without any capacity fading.

The second generation materials showed guidelines to modify the ionic and electronic properties of cathode materials showing improved performance. However, the power density was still limited not only in terms of energy density but also in terms of operating voltage and current. The operating voltage of 2\(^{nd}\) generation materials is limited to 3.5 V, whereas there are some studies showing high current extraction using nanostructured cathode materials in lithium ion batteries.

No.	Material	Year	Structure	Synthesis Method	Capacity	Voltage	After 500 cycle	After 800 cycle
11.	Corrugated layer LiFeO\(_2\)	1996	Orthorhombic	Sol-gel	Cathode	110mAh\(^{-1}\)	Synthesized at 90 °C	22
12.	Goethite type LiFeO\(_2\)	1996	Orthorhombic	Sol-gel	Cathode	65mAh\(^{-1}\)	Synthesized at 170 °C	22
13.	LiFe\(_2\)(PO\(_4\))\(_3\)	1997	Monoclinic	Solid state	Cathode	105 mAh\(^{-1}\)	None	23
14.	LiFeP\(_2\)O\(_7\)	1997	Monoclinic	Solid state	Cathode	85mAh\(^{-1}\)	None	23
15.	LiFePO\(_4\)	1997	Hexagonal	Solid state	Cathode	130 mAh\(^{-1}\)	High capacity	23, 24
16.	LiFePO\(_4\)	1999	Orthorhombic	Solid state	Cathode	125 mAh\(^{-1}\)	None	25
17.	LiMn\(_2\)O\(_4\)	1991	Trigonal	Solid state	Cathode	Not reported	None	26
18.	LiNiO\(_2\)	1991	Rhombohedral	Solid state	Cathode	Not reported	None	26
19.	LiCoO\(_2\)	1991	Trigonal	Solid state	Cathode	Not reported	None	26
20.	LiMn\(_2\)O\(_4\)	1996	Cubic	Solid state	Cathode	75mAh\(^{-1}\)	Pure material, High capacity & less fading	27, 28
21.	LiMnO\(_2\)	1996	Monoclinic	Solid state	Cathode	280mAh\(^{-1}\)	None	29
22.	LiNiO\(_2\)	1990	Hexagonal	Solid state	Cathode	.009Ah\(^{-1}\)	Long cycle life	30, 31
23.	LiNiO\(_2\)	1995	Hexagonal	Solid state	Cathode	260mAh\(^{-1}\)	High capacity	32
24.	TiO\(_2\)(LiCoO\(_2\) as cathode)	1995	Tetragonal	As prepared	Anode	46 mAh\(^{-1}\)	None	33
25.	LiV\(_2\)O\(_4\)	1986	Trigonal	Solid state	Cathode	Not reported	None	34
26.	LiVO\(_2\)	1988	Cubic	Solid state	Cathode	Not reported	None	35
27.	LiMnO\(_2\)	1990	Trigonal, Hexagonal	Solid state	Cathode	Not reported	Changes in phase by Li insertion	36
28.	LiV\(_3\)O\(_4\)	1991-99	Cubic	Solid state	Cathode	.117Ah\(^{-1}\), 135AhKg\(^{-1}\)	Initial structure retained after 500 cycle, 70% retention after 800 cycle	35, 37, 38, 39, 40
3rd Generation materials for rechargeable lithium ion batteries (Since 2001-2020):

The initially developed cathode materials showed their potential in the development of commercial lithium ion batteries, and are widely used today for powering everyday electronics in general together with applications in strategic areas such as space and defence. However, limited energy density and relatively lower operating voltage motivated to explore new cathode materials, which may probably mitigate such issues. In third generation, emphasis was given to develop cathode materials with very high electrochemical capacity (250mAh g\(^{-1}\) or more) with good charge/discharge cyclability. These requirements led to the surge in the development of cathode materials, as can be seen in Table 4, listing the developed cathode materials during this period. A large number of cathode materials are reported in table 4, showing relatively higher electrochemical capacities.

Table 4: 3rd Generation cathode materials used in lithium ion batteries (Time period 2001 – 2020)

S. No.	Material	Year	Configuration /structure	Method	Cathode/Anode	Capacity (mAhg\(^{-1}\))	Remark	Refs.
1.	LiVPO\(_4\)OH	2016	Monoclinic, Triclinic	Hydrothermal	Cathode	280mAhg\(^{-1}\)	Newavorite type composition	41
3.	LiVPO\(_4\)	2003, 2014	Triclinic	Carbothermal reduction	Cathode	116mAhg\(^{-1}\)	None	42-44
4.	LiVPO\(_4\)F (Ti doped)	2014	Triclinic	Carbothermal reduction	Cathode	128 mAhg\(^{-1}\)	None	43,44
5.	LiVPO\(_4\),LiVPO\(_4\)F/Ag	2015	Triclinic	Sol-gel	Cathode	102mAhg\(^{-1}\) - 117mAhg\(^{-1}\)	None	45
6.	LiVPO\(_4\)F/C,LiVPO\(_4\)F/C-N	2016, 2019	Triclinic	Sol-gel	Cathode	140mAhg\(^{-1}\)	None	46,47
7.	Li,Ti\(_{12}\)	2007	Cubic	Sol-gel	Anode	170mAhg\(^{-1}\)	None	48
8.	Li[Cr\(_{1-x}\)Mn\(_{x}\)]\(_2\)O\(_2\)	2007	Hexagonal	Sol-gel	Cathode	195 mAhg\(^{-1}\)	Stable cyclic performance at x=.290	49
9.	LiVPO\(_4\),LiY\(_x\)V\(_{2(1-x)}\)PO\(_4\)(x=0.04)	2009	Triclinic	Carbothermal reduction	Cathode	119 mAhg\(^{-1}\) - 134 mAhg\(^{-1}\)	Stable cyclic performance	50
10.	LiVPO\(_4\)	2010	Triclinic	Sol-gel	Cathode	134 mAhg\(^{-1}\)	None	51
11.	Li,Ti\(_{12}\)/Li,Ti\(_{12}\)/Sn	2011	Cubic	Solid-state	Anode	165 – 321 mAhg\(^{-1}\)	None	52
12.	LiVPO\(_4\)F/graphene	2017	Triclinic	Ionothermal process	Cathode	129 - 153mAhg\(^{-1}\)	Good cycling stability and good discharge efficiency	53
13.	LiVPO\(_4\)F/C	2018	Triclinic	Sol-gel	Cathode	135.3mAhg\(^{-1}\)	Stability in cyclability	54
14.	LiVPO\(_4\)F/C	2018	Triclinic	Sol-gel	Cathode	140mAhg\(^{-1}\)	None	55
15.	LiV\(_2\)O\(_4\)	2004	Cubic	Solid state	Cathode	Not reported	None	56
16.	LiNi\(_{0.55}\)Co\(_{0.2}\)Mn\(_{0.25}\)O\(_2\)	2019	Hexagonal	Solid-state	Cathode	145 - 164mAhg\(^{-1}\)	None	57
17.	LiNi\(_{1-x}\)Sb\(_{2}\)O\(_4\)(x=0, 0.1, 0.15, 0.2)	2011	Hexagonal	Solid-state	Cathode	105 -117mAhg\(^{-1}\)	Structure stability and good cyclability	58
18.	LiMnPO\(_4\)/C	2011	Orthorhombic	Spray pyrolysis	Cathode	149 mAhg\(^{-1}\)	None	59
No.	Composition	Year	Synthesis Method	Structure	Cathode Property	Capacity (mAh g⁻¹)	Ref.	
-----	------------------------------------	-------	-------------------------------	-------------	------------------	--------------------	------	
19	Li₃[Li₂Mn₃/₅Ni₀/₁₃Co₁/₃]O₂	2011	Trigonal Co-precipitation	Cathode	250 - 268	None	60	
20	Li₁₂Mn₃/₅Ni₁/₇Co₁/₈O₂	2014	Monoclinic & Rhombohedral	Solid-state	245 mAh g⁻¹	Good cyclability	61	
21	Li₁₂Mn₃/₅Ni₀/₁₃Co₁/₃O₂ (nanoplate)	2016	Hexagonal Co-precipitation	Cathode	307.9 mAh g⁻¹	Excellent cyclability	62	
22	Li₁₁Ni₃₅Mn₂₅O₂	2017	Hexagonal Solid-state	Cathode	210 mAh g⁻¹	None	63	
23	Li₁₂₄/₇Ni₁₂O₂₂	2018	Hexagonal Sol-gel	Cathode	230.38 mAh g⁻¹	None	64	
24	Li₃/₇Ni₁₅/₄Mn₂₅/₄Co₂₀/₃₂O₂ (PEG2000-LMNC0)	2015	Hexagonal Sol-gel	Cathode	228 mAh g⁻¹	None	65	
25	LiCoO₂(Li₃Ti₃O₁₂ coated)	2007	Hexagonal Sol-gel	Cathode	179 mAh g⁻¹	None	66	
26	Li₃TiO₁₂	2008	Cubic Solid-state	Cathode	170 mAh g⁻¹	None	67	
27	Li₃Ti₁₂/₃₀⁻/₃₀C₇₀⁻/₃₀	2016	Cubic Solid-state	Cathode	154 mAh g⁻¹	Good cyclability	68	
28	LiCoO₂(Pristine and Al₂O₃ doped)	2017	Hexagonal Solid-state	Cathode	195 – 202	None	69	
29	LiCoPO₄	2010	Orthorhombic Sol-gel	Cathode	30.9-71.5	None	70	
30	Li₂MnSiO₄ / Pure& carbon coated	2012	Orthorhombic Sol-gel	Cathode	81 – 144	None	71	
31	Li₂Mn₁₁/₈Fe₂/₈SiO₄ (SiO₂ size 5nm)	2013	Orthorhombic Hydrothermal	Cathode	95.6 – 129.4	None	72	
32	Li₂MnSiO₄ /Ca, Li₄MnCa₁₂/SiO₄ /Ca	2018	Orthorhombic Solvothermal	Cathode	141.1 mAh g⁻¹	None	73	
33	Li₂MnSiO₄ / CLi₄MnSi₁₇V₂₅O₄ / C	2016	Orthorhombic Sol-gel	Cathode	60 – 130	None	74	
34	B-Li₂MnSiO₄(Bulk & porous LM5)	2015	Orthorhombic Hydrothermal	Cathode	120 - 217 mAh g⁻¹	None	75	
35	Li₂MnSiO₄/C (20AM+3KB+3TAB) AM-Active Material KB-Ketjen Black TAB-Teflonized Acetylene Black	2011	Orthorhombic Solid State	Cathode	79 – 160	Good cyclability	76	
36	Li₂MnSiO₄ Powder	2012	Orthorhombic Sol-gel	Cathode	206 - 295	Good cyclability	77	
37	Li₂MnSiO₄ and derivative systems	2013	Orthorhombic Hydrothermal	Cathode	185 mAh g⁻¹	None	78	
38	Li₂MnSiO₄/C and derivative systems	2016	Orthorhombic Hydrothermal	Cathode	135 mAh g⁻¹	None	79	
39	Li₂MnSiO₄ & Mg, Al, Ga doped sample	2013	Orthorhombic Sol-gel	Cathode	101 – 147	None	80	
No.	Code	Year	Crystallographic	Method	Material	Capacity	Secondary Attributes	
-----	------	------	------------------	--------	----------	----------	----------------------	
40	Li₂MnSiO₄/C	2010	Monoclinic	Microwave-solvothermal	Cathode	215 mAh⁻¹	None	
41	Li₂MnSiO₄(Pmn₂)	2011	Orthorhombic	Sol-gel	Cathode	100 mAh⁻¹	None	
42	Li₂MnSiO₄ as Cathode	2016	Orthorhombic	Sol-gel	Cathode	405 mAh⁻¹	None	
43	Li₂MnSiO₄ as Anode	2016	Orthorhombic	Sol-gel	Cathode	658 mAh⁻¹	High energy density and good cyclability	
44	Li₂MnSiO₄ (5 hwr ball milled)	2007	Orthorhombic	Sol-gel	Cathode	142 mAh⁻¹	None	
45	Li₂MnSiO_{3.97}F_{0.03} (X=0.03)	2018	Orthorhombic	Solid-state	Cathode	279 mAh⁻¹	Stable energy density	
46	Li₂MnSiO₄(at 55° C)	2014	Orthorhombic	Sol-gel	Cathode	225 mAh⁻¹	None	
47	Li₂MnSiO₄(at 700° C)	2014	Orthorhombic	Molten salt	Cathode	165 mAh⁻¹	Good cyclability	
48	Li₂MnSiO₄/C	2016	Orthorhombic	Sonochemical reaction	Cathode	261 mAh⁻¹	None	
49	Li₂MnSiO₄/C(Carbon wt% 2.1)	2013	Orthorhombic	Sol-gel	Cathode	145 mAh⁻¹	None	
50	Li₂MnSiO₄_Pristine	2016	Orthorhombic	Sol-gel	Cathode	203 mAh⁻¹	None	
51	Li₂FeSiO₄	2013	Monoclinic	Sol-gel	Cathode	180 mAh⁻¹	Stable structure and good cyclability	
52	Li₂Mn_{0.94}Mo_{0.06}SiO₄	2015	Orthorhombic	Sol-gel	Cathode	207.3 mAh⁻¹	None	
53	Amorphous type	Li₂Mn_{0.85}Ti_{0.15}SiO₄/C(S-LMST)	2018	Orthorhombic	Hydrothermal	Cathode	185 mAh⁻¹	None
54	Li₂Mn_{0.85}Ti_{0.15}SiO₄	2015	Orthorhombic	Sol-gel	Cathode	211 mAh⁻¹	None	
55	Li₂MnSiO₄/C with Ni doping	2014	Orthorhombic	Solvothermal	Cathode	274.5 mAh⁻¹	High energy density	
56	Li₂MnFeSiO₄	2015	Orthorhombic	Sol-gel	Cathode	122 mAh⁻¹	None	
57	Li₂Mn_{0.2}Cu_{0.8}SiO₄	2015	Orthorhombic	Sol-gel	Cathode	206 mAh⁻¹	None	
58	CNT@Li₂MnSiO₄	2018	Orthorhombic	Sol-gel	Cathode	227 mAh⁻¹	None	
59	MP-Li₂MnSiO₄@C (MP- mesoporous morphology)	2018	Orthorhombic	In situ Template method based on non ionic surfactant F127	Cathode	164 mAh⁻¹	Good cyclability	
60	Li₂Mn_{0.99}La_{0.01}SiO₄	2015	Orthorhombic	Hydrothermal	Cathode	257 mAh⁻¹ (at.05C)	None	
61	Li₂Mn_{0.95}Cr_{0.05}SiO₄	2018	Orthorhombic	Solid-State	Cathode	200 mAh⁻¹	None	
62	Li(Mn/Fe)SiO₄	2007	Orthorhombic	Sol-gel	Cathode	125 mAh⁻¹	None	
63	Li_{1.95}Mn_{0.05}SiO₄	2014	Orthorhombic	Sol-gel	Cathode	238 mAh⁻¹	High energy density	
64	Li₂MnSiO₄/NC-2	2019	Orthorhombic	Sol-gel	Cathode	276.88 mAh⁻¹	High energy density & good cyclability	

The 3rd generation materials are also transition metal quaternary oxides and oxyfluorides, Table 4. The vanadium based LiVPO$_4$ and its derivatives showed relatively higher capacities (> 250 mAh g$^{-1}$). Further, to increase electrochemical storage capacity, emphasis was given to develop materials with higher lithium content with respect to mono-lithium based cathode materials. The theoretical capacity of higher lithium content such as Li$_2$TMSiO$_4$ (TM = transition metal e.g. Fe, Co, Ni, Mn, V etc) is around 333 mAh g$^{-1}$, nearly twice to that of mono-lithium based cathode materials. Further, their large band gap may lead to higher operating voltage as well. These materials are relatively new cathode materials and explorations are still going on. The initial studies showed high electrochemical capacity for such compounds, which starts fading after first complete charge/discharge cycles and showed reduction to very low 50-60 mAh g$^{-1}$ in 10 – 20 charge/discharge cycles. This is attributed to the structural instability of Li$_2$TMSiO$_4$ cathode materials. The initial structure is subjected to Jahn-Teller (J-T) distortion during charging/discharging and may lead to permanent crystallographic changes at local levels, causing poor cyclability. However, further studies are needed to understand this degradation mechanism and strategies need to be evolved to overcome this aspect. The nanostructuring and even localized strain by doping may provide some understanding towards mitigating the capacity fading in these cathode materials, which seems to potential candidate for high energy density cathode materials.

4th Generation materials for rechargeable lithium ion batteries (2020 onwards):

The current developments (up to 3rd generations) in rechargeable are widely suitable and used for low power applications in our everyday life and mostly limited with their specific current density up to 150 – 200 mAh g$^{-1}$. The scaling of these batteries is realized in terms of large hybrid- electric vehicles. The power hungry applications such as electric and hybrid electric vehicles, planes, and other commuting means toward green energy initiatives may need very high energy density (> 1000 mAh g$^{-1}$ or more).

The problem of limited specific capacity can be taken care by innovating new materials and battery designs which can show very high capacity i.e. > 1000 mAh g$^{-1}$. For example metal air batteries are showing promise to beat the current specific capacity limitations, a hurdle in the present lithium ion batteries. The lithium- air and also lithium – sulfur batteries have shown promise with very high specific energy densities. However, the research and development of such batteries are still in nascent stages and various issues such as safety because of the use of pure lithium, which is highly flammable and cyclability need to address carefully.
Hunt for new lithium ion battery cathode materials and design criteria:

The performance of a lithium battery depends on operating voltage and current, energy density, cyclability, stability, and most importantly safety. The electronic properties of cathode materials such as band gap and relative electronic state positions affect the operating voltage of a lithium ion battery. The relative positions of electronic states in terms of electrochemical potential of respective electrodes are shown in Fig 5 for a lithium ion battery. The electrolyte is a good ionic conductor but electrically insulator, with a large band gap E_g expressed as the difference between the lowest unoccupied molecular orbital (LUMO or also known as conduction band) and the highest occupied molecular orbital (HOMO or valence band), as shown schematically in Fig 5. This band gap of electrolyte is also known as the maximum allowed voltage window as above or below these energy levels, the electrolyte will start dissociating.

![Figure 5: The schematic diagram of electronic states in terms of chemical potential positions of cathode, anode together with band gap of electrolyte. The left most figure shows the relative position of different transition metal elements with respect to oxygen 2p states in transition metal oxides. The right most figure shows the Fermi energy of lithium metal.](image)

Further, the relative chemical potential of cathode and anode are shown with respect to electrolyte HOMO and LUMO positions, suggesting that the open circuit voltage $e\nu_{oc} = \mu_A - \mu_C$, where e is electronic charge ($=1.6\times10^{-19}$ C), ν_{oc} is open circuit voltage, μ_A and μ_C are chemical potential of anode and cathode materials, respectively. Thus, the cathode material should be selected in such a way that it’s chemical potential i.e. μ_C is located above the valence band (i.e. HOMO) of electrolyte, else the electrolyte will oxidize at the cathode-electrolyte interface, leading to a thin film formation at solid-electrolyte interface and is commonly known as SEI film. On the other hand, the chemical potential of anode i.e. μ_A is located below the conduction band (i.e. LUMO) of the electrolyte, else electrolyte will reduce at the anode-electrolyte interface, causing SEI formation at this interface. Thus, the selection of cathode and anode is limited by the electrochemical window i.e. band gap and relative position of HOMO and LUMO of electrolyte. However, there are continuous efforts to increase the operating voltage of lithium ion batteries and either existing materials are engineered or new materials are being developed to meet the requirements of higher operating voltages together with enhanced electrochemical energy storage capacity. Numerous materials are investigated, as listed in Table 4, where high lithium content materials have shown promise with respect to mono-lithium based cathode materials. However, there are various technological issues and challenges such as their capacity fading in few cycles. Thus, efforts are required to address the capacity fading in high lithium based cathode materials to increase the electrochemical energy density. However, there is a need to develop not only cathode materials with higher operating voltage and enhanced energy density but also compatible electrolyte simultaneously.

Conclusion:

This review addresses the development of cathode materials for rechargeable lithium ion batteries. Large efforts are put to realize the commercial lithium ion batteries, however, there are still issues and challenges to make it more suitable for large scale power applications such as power plants, hybrid electric vehicles. The three generations of cathode materials are discussed covering from its inception to the current state of materials. The large emphasis is given to enhance the electrochemical energy storage density and operating voltage of lithium ion batteries to meet the future demands in all sectors. The associated crystallographic instability in Li$_2$Ti$_5$SiO$_x$ based cathode materials is hampering the full potential of these cathode materials. Further, various layered, spinel, and olivine structured materials are widely explored and also shown potential for future energy needs. However, the success of high voltage and high electrochemical energy density based cathode materials will rely on simultaneous development of suitable electrolytes.

Acknowledgement:

Author acknowledges Mr. Kuldeep Kaswan for his assistance in compiling cathode materials and also funding agency Department of Science and Technology (DST), Government of India (project no. INT/RUS/RFBR/320).
References:

1. Johnston, W. D., R. R. Heikes, and D. Sestrich. “The preparation, crystallography, and magnetic properties of the LixCo (1–x) O system.” *Journal of Physics and Chemistry of Solids* 7.1 (1958): 1-13.

2. Johnston, W. D., and R. R. Heikes. “A Study of the LixMn (1-x)O System.” *Journal of the American Chemical Society* 78.14 (1956): 3255-3260.

3. Goodenough, J. B., D. G. Wickham, and W. J. Croft. “Some Ferrimagnetic Properties of the System Li x Ni1-x O.” *Journal of Applied Physics* 29.3 (1958): 382-383.

4. Mizushima, K., et al. “LiCoO2 (0<x<1): A new cathode material for batteries of high energy density.” *Materials Research Bulletin* 15.6 (1980): 783-789.

5. David, W. I. F., et al. “Lithium insertion into β-MnO2 and the rutile-spinel transformation.” *Materials research bulletin* 19.1 (1984): 99-106.

6. Thackeray, M. M., W. I. F. David, and John B. Goodenough. “Structural characterization of the lithiated iron oxides LiFe3O4 and LiFe2O3 (0<x<2).” *Materials Research Bulletin* 17.6 (1982): 785-793.

7. Thackeray, M. M., et al. “Lithium insertion into manganese spinels.” *Materials Research Bulletin* 18.4 (1983): 461-472.

8. De Picciotto, L. A., and M. M. Thackeray. “Insertion/extraction reactions of lithium with LiV2O4.” *Materials research bulletin* 20.12 (1985): 1409-1420.

9. Numata, Koichi, Chie Sakaki, and Shoji Yamanaka. “Synthesis and characterization of layer structured solid solutions in the system of LiCoO2–Li2MnO3.” *Solid State Ionics* 117.3-4 (1999): 257-263.

10. Kemp, J. P., and P. A. Cox. “Electronic structure of LiCoO2 and related materials: photoemission studies.” *Journal of Physics: Condensed Matter* 2.48 (1990): 9653.

11. Rossen, E., J. N. Reimers, and J. R. Dahn. “Synthesis and electrochemistry of spinel LiMnCo2.” *Solid State Ionics* 62.1-2 (1993): 53-60.

12. Yan, Hongwei, et al. “Microwave synthesis of LiCoO2 cathode materials.” *Journal of power sources* 68.2 (1997): 530-532.

13. Sun, Yang-Kook, In-Hwan Oh, and Seong-Ahn Hong. “Synthesis of ultrafine LiCoO2 powders by the sol-gel method.” *Journal of materials science* 31.14 (1996): 3617-3621.

14. Zhecheva, E., et al. “Lithium–cobalt citrate precursors in the preparation of intercalation electrode materials.” *Chemistry of materials* 8.7 (1996): 1429-1440.

15. Kim, J., P. Fulmer, and Arumugam Manthiram. “Synthesis of LiCoO2 cathodes by an oxidation reaction in solution and their electrochemical properties.” *Materials research bulletin* 34.4 (1999): 571-579.

16. Huang, B., et al. “Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications.” *Journal of applied electrochemistry* 28.12 (1998): 1365-1369.

17. Chiang, Yet-Ming, et al. “Synthesis of LiCoO2 by decomposition and intercalation of hydroxides.” *Journal of the Electrochemical Society* 145.3 (1998): 887-891.

18. Kumta, P. N., et al. “Synthesis of LiCoO2 powders for lithium-ion batteries from precursors derived by rotary evaporation.” *Journal of power sources* 72.1 (1998): 91-98.

19. Peng, Z. S., C. R. Wan, and C. Y. Jiang. “Synthesis by sol-gel process and characterization of LiCoO2 cathode materials.” *Journal of Power Sources* 72.2 (1998): 215-220.

20. Yoon, Won-Sub, and Kwang-Bum Kim. “Synthesis of LiCoO2 using acrylic acid and its electrochemical properties for Li secondary batteries.” *Journal of Power Sources* 81 (1999): 517-523.

21. Nakamura, T., and A. Kajiyama. “Synthesis of LiCoO2 particles with uniform size distribution using hydrothermally precipitated Co3O4 fine particles.” *Solid State Ionics* 123.1-4 (1999): 95-101.

22. Sakurai, Yoji, et al. “Low temperature synthesis and electrochemical characteristics of LiFeO2 cathodes.” *Journal of power sources* 68.2 (1997): 711-715.

23. Padhi, A. K., et al. “Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates.” *Journal of the Electrochemical Society* 144.5 (1997): 1609-1613.

24. Padhi, Akshaya K., Kirakodu S. Nanjundaswamy, and John B. Goodenough. “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries.” *Journal of the electrochemical society* 144.4 (1997): 1188-1194.

25. Andersson, Anna S., et al. “Thermal Stability of LiFePO4-Based Cathodes.” *Electrochemical and Solid-State Letters* 3.2 (2000): 66-68.

26. Barboux, P. J. M. Tarascon, and F. K. Shokoohi. “The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds.” *Journal of Solid State Chemistry* 94.1 (1991): 185-196.

27. Tsang, C., and A. Manthiram. “A new route for the synthesis of LiMn2O4 cathode: variation of composition, microstructure, and electrochemical behavior with synthesis temperature.” *Solid State Ionics* 89.3-4 (1996): 305-312.

28. Hasegawa, Akira, Kazunari Yoshizawa, and Tokio Yamae. “Crystal Orbital Overlap Population Analysis of the Capacity Fading of Metal-Substituted Spinel Lithium Manganate LiMn2O4.” *Journal of the Electrochemical Society* 147.11 (2000): 4052-4057.

29. Armstrong, A. Robert, and Peter G. Bruce. “Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries.” *Nature* 381.6582 (1996): 499-500.

30. Dahn, J. R., et al. “Rechargeable LiNiO2/carbon cells.” *Journal of the Electrochemical Society* 138.8 (1991): 2207-2211.

31. Dahn, J. R., Ulrich von Sacken, and C. A. Michal. “Structure and electrochemistry of Li1yNi02 and a new Li2Ni02 phase with the Ni (OH) 2 structure.” *Solid State Ionics* 44.1-2 (1990): 87-97.

32. Arai, H., et al. “Characterization and cathode performance of Li1-xNi1+xO2 prepared with the excess lithium method.” *Solid State Ionics* 80.3-4 (1995): 261-269.

33. Huang, S. Y., et al. “Rocking chair lithium battery based on nanocrystalline TiO2 (anatase).” *Journal of the Electrochemical Society* 142.9 (1995): L142-L144.

34. De Picciotto, L. A., and M. M. Thackeray. “Lithium insertion/extraction reactions with LiVO2 and LiV2O4.” *Solid State Ionics* 18 (1986): 773-777.
35. De Picciotto, L. A., M. M. Thackeray, and G. Pistoia. “An electrochemical study of the systems Li12xV2O4 and Li1-xVO2 (0 ≤ x ≤ 1).” Solid State Ionics 28 (1988): 1364-1370.

36. Zachau-Christiansen, B., et al. “Lithium insertion in oxide spinels.” Solid State Ionics 40 (1990): 580-584.

37. Pistoia, G., et al. “Further electrochemical studies on Li/Li2O4 secondary cells.” Journal of power sources 34.3 (1991): 199-206.

38. Li, Guohua, et al. “Synthesis and characterization of Li2O4 as the cathode in secondary lithium batteries.” Denki Kagaku oyobi Kogyo Butsuri Kagaku 64.3 (1996): 202-206.

39. Faran, O., and V. Volterra. “Metal-insulator transition in the LiV2O4-δ spinel system.” Solid state communications 101.11 (1997): 861-864.

40. Kondo, S., D. C. Johnston, and L. L. Miller. “Synthesis, characterization, and magnetic susceptibility of the heavy-fermion transition-metal oxide LiV2O4.” Physical Review B 59.4 (1999): 2609.

41. Boivin, Edouard, et al. “Structural and electrochemical studies of a new Tavorite composition: LiVPO4 OH.” Journal of Materials Chemistry A 4.28 (2016): 11030-11045.

42. Barker, J. M. Y. Saidi, and J. L. Swyer. “Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4 F.” Journal of the Electrochemical Society 150.10 (2003): A1394-A1398.

43. Ellis, Brian L., et al. “Structure and electrochemistry of two-electron redox couples in lithium metal fluorophosphates based on the tavorite structure.” Chemistry of Materials 23.23 (2011): 5138-5148.

44. Sun, Xiaofei, et al. “Titanium doped LiVPO4F cathode for lithium ion batteries.” Solid State Ionics 268 (2014): 236-241.

45. Yang, Bo, and Lin Yang. “Silver-coated LiVPO4F composite with improved electrochemical performance as cathode material for lithium-ion batteries.” Journal of Physics and Chemistry of Solids 87 (2015): 228-232.

46. Yu, Zhihao, and Linhua Jiang. “Design and facile synthesis of nitrogen-doped carbon decorated LiVPO4F nanocrystals as superior cathode for lithium-ion batteries.” Solid State Ionics 291 (2016): 20-25.

47. DOI: 10.5185/amlett.2019.2141

48. Hao, Yan-Jing, et al. “Influence of various complex agents on electrochemical property of Li4Ti5O12 anode material.” Journal of alloys and compounds 439.1-2 (2007): 330-336.

49. Park, C. W., et al. “Synthesis and materials characterization of Li2MnO3-LiCrO2 system nanocomposite electrode materials.” Materials research bulletin 42.7 (2007): 1374-1383.

50. Zhong, Shengkui, et al. “Preparation and electrochemical studies of Y-doped LiVPO4 F cathode materials for lithium-ion batteries.” Journal of Vihan University of Technology-Mater. Sci. Ed. 24.4 (2009): 552-556.

51. Zhong, Sheng-Kui, et al. “Synthesis of LiVPO4F with high electrochemical performance by sol-gel route.” Transactions of Nonferrous Metals Society of China 20 (2010): s275-s278.

52. Sivashanmugam, Arumugam, et al. “Novel Li4Ti5O12/Sn nano-composites as anode material for lithium ion batteries.” Materials Research Bulletin 46.4 (2011): 492-500.

53. Rangaswamy, Puttaswamy, et al. “Enhanced electrochemical performance of LiVPO4 F/f-graphene composite electrode prepared via ionothermal process.” Journal of Applied Electrochemistry 47.1 (2017): 1-12.

54. Li, Qiyuan, et al. “Chemical reaction characteristics, structural transformation and electrochemical performances of new cathode LiVPO4 F/C synthesized by a novel one-step method for lithium ion batteries.” RSC advances 8.13 (2018): 7044-7054.

55. Zeng, Taotao, et al. “Effect of Environmental Temperature on the Content of Impurity LiV2 (PO4) 3/C in LiVPO4F/C Cathode for Lithium-Ion Batteries.” Frontiers in Chemistry 6 (2018).

56. Krimmel, Alexander, et al. “Anomalous structural behaviour of Zn-doped LiV2O4.” Physica B: Condensed Matter 350.1-3 (2004): E297-E299.

57. Lu, Yao, et al. “Ultrathin LiV2O4 Layers Modified LiNiO. 5Co0. 2Mn0. 3O2 Single-Crystal Cathodes with Enhanced Activity and Stability.” Advanced Materials Interfaces (2019).

58. Cui, Ping, et al. “Preparation and characteristics of Sn-doped LiNiO2 cathode materials for Li-ion batteries.” Journal of Physics and Chemistry of Solids 72.7 (2011): 899-903.

59. Bakoven, Zhumabay, and Izumi Taniguchi. “LiMnPO4 olivine as a cathode for lithium batteries.” (2011).

60. Zheng, J. M., X. B. Wu, and Yong Yang. “A comparison of preparation method on the electrochemical performance of cathode material Li [Li0. 2Mn0. 5Ni0. 5O2] O2 for lithium ion battery.” ElectrochimicaActa 56.8 (2011): 3071-3078.

61. Nayak, Prasant Kumar, et al. “Electrochemical and structural characterization of carbon coated Li1. 2Mn0. 7Ni0. 1O. 5Co0. 2Mn0. 2O2 as cathode material for Li-ion batteries.” Journal of Physics and Chemistry of Solids 87 (2015): 228-232.

62. Dai, Dongmei, et al. “Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li [Li0. 2Mn0. 5Ni0. 10Co0. 3] O2 for lithium ion battery.” ElectrochimicaActa 137 (2014): 546-556.

63. Chen, Min, et al. “Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode material for lithium ion battery.” Journal of Power Sources 279 (2015): 665-672.

64. Zhou, Chun-xian, et al. “Cyclic performance of Li-rich layered material Li1. 2Ni0. 5Mn0. 3Co0. 2O2 synthesized through a two-step calcination method.” ElectrochimicaActa 252 (2017): 286-294.

65. Yang, Puheng, et al. “Structure-tuned Li1. 2Mn0. 6Ni0. 2O2 with low cation mixing and Ni segregation as high performance cathode materials for Li-ion batteries.” ElectrochimicaActa 271 (2018): 276-283.

66. Chen, Min, et al. “Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery.” Journal of Power Sources 279 (2015): 197-204.

67. Fey, George Ting-Kuo, et al. “Improved electrochemical performance of LiCoO2 surface treated with Li4Ti5O12.” Journal of Power Sources 174.2 (2007): 1147-1151.

68. Ge, Hao, et al. “ Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01 V.” Electrochemistry communications 10.5 (2008): 719-722.
68. Su, Xiuli, et al. “Synthesis and electrochemical performance of nano-sized Li4Ti5O12 coated with boron-doped carbon.” Electrochimica Acta 196 (2016): 300-308.

69. Sheng, Suojiang, et al. “Al2O3-surface modification of LiCoO2 cathode with improved cyclic performance.” Journal of Electroanalytical Chemistry 795 (2017): 59-67.

70. Tan, Long, et al. “Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method.” Journal of Alloys and Compounds 502.2 (2010): 407-410.

71. Deng, C., et al. “Synthesis and improved properties of nanostructured Li2MnSiO4/C via a modified sol-gel method.” Int J Electrochem Sci 7 (2012): 4559-4566.

72. Xiao, Dichang, et al. “Hydrothermal preparation of iron-based orthosilicate cathode materials with different SiO2 particles and their electrochemical properties.” J Electrochem Soc 8 (2013): 7581-7590.

73. Feng, Yiming, et al. “Understanding the improved kinetics and cyclability of a Li2MnSiO4 cathode with calcium substitution.” Inorganic chemistry 57.6 (2018): 3223-3231.

74. Wagner, Nils P., et al. “Vanadium Substitution in Li2MnSiO4/ CaS Positive Electrode for Li Ion Batteries.” The Journal of Physical Chemistry C 120.21 (2016): 11359-11371.

75. Xie, Man, et al. “Template-assisted hydrothermal synthesis of Li2MnSiO4 as a cathode material for lithium ion batteries.” ACS applied materials & interfaces 7.20 (2015): 10779-10784.

76. Aravindan, Vanchiappan, et al. “Influence of carbon towards improved lithium storage properties of Li 2 MnSiO 4 cathodes.” Journal of Materials Chemistry 21.8 (2011): 2470-2475.

77. Zhang, Shu, et al. “Cr-doped Li 2 MnSiO 4 /carbon composite nanofibers as high-energy cathodes for Li-ion batteries.” Journal of Materials Chemistry 22.29 (2012): 14661-14666.

78. Hu, Zhe, et al. “Li 2 MnSiO 4 /C nanocomposite as a high-capacity cathode material for Li-ion batteries.” Journal of Materials Chemistry A 1.40 (2013): 12650-12656.

79. Deng, Hui, et al. “Effect of Ni substitution on structural stability, micromorphology, and electrochemical performance of Li 2 MnSiO 4 /C cathode materials.” RSC Advances 6.112 (2016): 111539-111548.

80. Choi, Sungho, et al. “Controlled shape with enhanced electrochemical performance of various ions doped Li2MnSiO4 cathode nanoparticles.” Materials Letters 105 (2013): 113-116.

81. Muraliganth, T., K. R. Stroukoff, and ArumugamManthiram. “Microwave-solvothermal synthesis of nanostructured Li2MnSiO4/C (M= Mn and Fe) cathodes for lithium-ion batteries.” Chemistry of Materials 22.20 (2010): 5754-5761.

82. Duncan, Hughes, et al. “Novel Pn polymorph for Li2MnO4 and its electrochemical activity as a cathode material in Li-ion batteries.” Chemistry of Materials 23.24 (2011): 5446-5456.

83. Liu, Shuang-Shuang, et al. “Comparative study of the cathode and anode performance of Li2MnSiO4 for lithium-ion batteries.” Electrochimica Acta 188 (2016): 145-152.

84. Dominko, R., et al. “Li2MnSiO4 as a potential Li-battery cathode material.” Journal of Power Sources 174.2 (2007): 457-461.

85. Wang, Chao, et al. “Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries.” Journal of Power Sources 378 (2018): 345-352.

86. He, Guang, and ArumugamManthiram. “Nanostructured Li2MnSiO4/C Cathodes with Hierarchical Macro-/Mesoporosity for Lithium-Ion Batteries.” Advanced Functional Materials 24.33 (2014): 5277-5283.

87. Wang, Fei, et al. “High performance Li2MnSiO4 prepared in molten KCl–NaCl for rechargeable lithium ion batteries.” Electrochimica Acta 119 (2014): 131-137.

88. Hwang, Chahwan, et al. “Synthesis, characterization, and electrochemical performance of V-doped Li2MnSiO4/C composites for Li-ion battery.” Materials Letters 164 (2016): 270-273.

89. Zhang, S., et al. “Impacts of in situ carbon coating on the structural, morphological and electrochemical characteristics of Li2MnSiO4 prepared by a citric acid assisted sol-gel method.” Journal of Electroanalytical Chemistry 689 (2013): 88-95.

90. Ji, Ran, et al. “Manipulating the Crystalline Structure and Electrochemical Performance of a Diliithium Manganese Silicate Cathode Material by Polyanion Doping.” ChemElectroChem 3.11 (2016): 1805-1812.

91. Chen, Ruiyong, et al. “Structural Evolution of Li2Fe1-y Mny SiO4 (y = 0, 0.2, 0.5, 1) Cathode Materials for Li-Ion Batteries upon Electrochemical Cycling.” The Journal of Physical Chemistry C 117.2 (2013): 884-893.

92. Lai, Chunyan, et al. “Mo-doped Li2MnSiO4/Cnanocomposite synthesized by citric acid-assisted sol-gel method with enhanced electrochemical properties.” Materials Letters 139 (2015): 134-137.

93. Wu, Xia, et al. “Improving the structure stability and electrochemical performance of Li2MnSiO4/C cathode materials by Ti-doping and porous microstructure.” Journal of Alloys and Compounds 735 (2018): 1158-1166.

94. Wang, Min, et al. “The high capacity and excellent rate capability of Ti-doped Li 2 MnSiO 4 as a cathode material for Li-ion batteries.” RSC Advances 5.2 (2015): 1612-1618.

95. Wang, Yan-Chao, et al. “Solvothermally synthesis and electrochemical performance of Li2MnSiO4/C cathode materials for lithium ion batteries.” Journal of Alloys and Compounds 614 (2014): 271-276.

96. Wagner, Nils P., et al. “Fe and V Substituted Li2MnSiO4/C As Potential Cathode Material for Li-Ion Batteries.” ECS Transactions 64.22 (2015): 33-45.

97. Lee, Sol-Nip, et al. “Cu-Li2MnSiO4-polyaniline composite hybrids as high performance cathode for lithium batteries.” Journal of Alloys and Compounds 630 (2015): 292-298.

98. Peng, Tao, et al. “Uniform coaxial CNT® Li2MnSiO4® C as advanced cathode material for lithium-ion battery.” Electrochimica Acta 291 (2018): 1-8.

99. Qiu, Shen, et al. “Template synthesis of mesoporous Li2MnSiO4® C composite with improved lithium storage properties.” Electrochimica Acta 291 (2018): 124-131.

100. Dong, Yue, et al. “Synthesis of La-doped Li2MnSiO4 nanoparticle with high-capacity via polyol-assisted hydrothermal method.” Electrochimica Acta 166 (2015): 40-46.
101. Cheng, Hong-Mei, et al. “Synthesis and structural stability of Cr-doped Li2MnSiO4/C cathode materials by solid-state method.” Applied Surface Science 433 (2018): 1067-1074.

102. Kokalj, Anton, et al. “Beyond One-Electron Reaction in Li Cathode Materials: Designing Li2Mn x Fe1-x SiO4.” Chemistry of Materials 19.15 (2007): 3633-3640.

103. Deng, C., et al. “Partial substitution of Mn/Si with V, Cr or Al in Li2MnSiO4 nanoparticle: Dependence of the physical and electrochemical properties on the substitution strategy.” Journal of Electroanalytical Chemistry 719 (2014): 150-157.

104. Zhu, Hai, et al. “Nitrogen doped carbon layer of Li2MnSiO4 with enhanced electrochemical performance for lithium ion batteries.” Electrochimica Acta 295 (2019): 956-965.

105. Rangappa, Dinesh, et al. “Ultrathin nanosheets of Li2MnSiO4 (M=Fe, Mn) as high-capacity Li-ion battery electrode.” Nano letters 12.3 (2012): 1146-1151.

106. Luo, Shaohua, Ming Wang, and Weina Sun. “Fabricated and improved electrochemical properties of Li2MnSiO4 cathodes by hydrothermal reaction for Li-ion batteries.” Ceramics International 38.5 (2012): 4325-4329.

107. Li, Xueliang, et al. “Ionothermal synthesis and characterization of Li2MnSiO4/C composites as cathode materials for lithium-ion batteries.” Ceramics International 40.1 (2014): 289-296.

110. Wang, Min, et al. “Structural evolution and electrochemical material for Li-ion batteries.” Journal of nanomaterials 2014 (2014): 4.

112. Aravindan, Vanchiappan, et al. “Influence of carbon towards improved lithium storage properties of Li1MnSiO4 cathodes.” Journal of Materials Chemistry 21.8 (2011): 2470-2475.

113. Liu, Jing, et al. “Facile solid-state synthesis of Li1MnSiO4/C nanocomposite as a superior cathode with a long cycle life.” Journal of Power Sources 231 (2013): 39-43.

114. Peng, Zhenbo, et al. “PEG-assisted solid state synthesis and characterization of carbon-coated Li1MnSiO4 cathode materials for lithium ion battery.” Int. J. Electrochem. Sci 8 (2013): 903-913.

115. Jin, Yun-Ho, et al. “Electrochemical Performances of Li1MnSiO4 Cathodes Synthesized by Mechanical Alloying Process.” Journal of nanoscience and nanotechnology 15.3 (2015): 2418-2421.

116. Devaraj, S., et al. “Sol–gel derived nanostructured Li1MnSiO4/C cathode with high storage capacity.” Electrochimica Acta 102 (2013): 290-298.

117. Qu, Long, et al. “Synthesis and characterization of high capacity Li1MnSiO4/C cathode material for lithium-ion battery.” Journal of Power Sources 252 (2014): 169-175.

118. Park, Kyung-Soo, et al. “Enhanced electrochemical performance of carbon-coated Li2MnSiO4 cathodes synthesized by tartaric acid-assisted sol–gel process.” Ceramics International 40.7 (2014): 9413-9418.

119. Liu, Shuangke, et al. “High capacity Li2MnSiO4/C nanocomposite prepared by sol–gel method for lithium-ion batteries.” Journal of power sources 232 (2013): 258-263.

120. Xie, Man, et al. “Template-assisted hydrothermal synthesis of Li2MnSiO4 as a cathode material for lithium ion batteries.” ACS applied materials & interfaces 7.20 (2015): 10779-10784.

121. Pei, Yi, et al. “Chelate-induced formation of Li2MnSiO4/C cathode material in different electrolyte systems for Li-ion batteries.” Journal of Power Sources 252 (2014): 290-298.

122. Qu, Long, et al. “Ionothermal synthesis and characterization of high capacity Li1MnSiO4/C cathode material for lithium-ion batteries.” Journal of Materials Chemistry A, 4.24 (2016): 9447-9454.

123. Hu, Zhe, et al. “Li2MnSiO4/C cathode material for Li-ion batteries.” Journal of Materials Chemistry A, 1.40 (2013): 12650-12656.

124. Mancini, M., et al. “Study on the stability of Li2MnSiO4 cathode material in different electrolyte systems for Li-ion batteries.” Electrochimica Acta 176 (2015): 679-688.

125. Molenda, Marcin, et al. “Stability of C/Li2MnSiO4 composite cathode material for Li-ion batteries towards LiPF6 based electrolyte.” Solid State Ionics 262 (2014): 98-101.

126. Li, Xueliang, et al. “Ionothermal synthesis and characterization of Li2MnSiO4/C composites as cathode materials for lithium-ion batteries.” Ceramics International 40.1 (2014): 289-296.

Dr. Ambesh Dixit is an Associate Professor at the Indian Institute of Technology Jodhpur (IIT Jodhpur), India, and has more than 15 years of experience in computational and experimental functional materials’ physics. The particular emphasis is on the development of various technologies, including energy, water, and health. He is the first one in the scientific community to show that iron vanadate (FeVO4) is an intrinsic multiferroic system. Further, he has co-authored two books (i) Nanotechnology for Defence Applications (Springer) and (ii) Nanotechnology for Rural Development (Elsevier) and co-edited two books on Solar Energy (Springer). He has more than a hundred articles of international repute and two patents on his credit. He is an Editorial Board member of the Elsevier journal “Vacuum” and a life member of various societies such as Materials Research Society of India, Magnetic Society of India, Indian Carbon Society, and an annual American member Physical Society since 2007 and IEEE since 2019.