The Characterization and the Product of Quasi-Ehresmann Transversals

Xiangjun Kong\(^a\), Pei Wang\(^b\)

\(^a\) School of Mathematical Sciences and School of Statistics, Qufu Normal University, 273165, P. R. China
\(^b\) School of Software Engineering, Qufu Normal University, Qufu, 273165, P. R. China

Abstract. Wang (Filomat 29(5), 985-1005, 2015) introduced and investigated quasi-Ehresmann transversals of semi-abundant semigroups satisfy conditions (CR) and (CL) as the generalizations of orthodox transversals of regular semigroups in the semi-abundant case. In this paper, we give two characterizations for a generalized quasi-Ehresmann transversal to be a quasi-Ehresmann transversal. These results further demonstrate that quasi-Ehresmann transversals are the “real” generalizations of orthodox transversals in the semi-abundant case. Moreover, we obtain the main result that the product of any two quasi-ideal quasi-Ehresmann transversals of a semi-abundant semigroup \(S\) which satisfy the certain conditions is a quasi-ideal quasi-Ehresmann transversal of \(S\).

1. Introduction

The concept of inverse transversals of regular semigroups was introduced by Blyth-McFadden [1]. Since then, inverse transversals have attracted much attention and a series of important results have been obtained and generalized (see [1-5,11,13-21,23-26]). If \(S\) is a regular semigroup, then an inverse transversal of \(S\) is an inverse subsemigroup \(S_0\) which meets \(V(a)\) precisely once for each \(a \in S\) (that is, \(|V(a) \cap S_0| = 1\)), where \(V(a) = \{x \in S | axa = a\text{ and } xax = x\}\) denotes the set of inverses of \(a\). Since orthodox semigroups can be considered as generalizations of inverse semigroups, Chen [2] generalized inverse transversals to orthodox transversals in the class of regular semigroups and gave a construction theorem for regular semigroups with quasi-ideal orthodox transversals. Chen-Guo [4] obtained some important properties associated with orthodox transversals in the general case. Most recently, Kong, Meng, Zhao [13,15,16,17,21] investigated orthodox transversals and obtained some interesting results. Especially, Kong-Meng [17] acquired the characterization for a generalized orthodox transversal to be an orthodox transversal and present a concrete description of the maximum idempotent separating congruence on regular semigroups with orthodox transversals. If the concept of transversals could be introduced in the \(E\)-inversive semigroups, then the congruences [6,7] on them will be characterized more neatly.

The concept of adequate transversals was introduced for abundant semigroups by El-Qallali [5] as an analogue of inverse transversals, and followed by Chen, Guo, Shum, Kong and Wang etc. [3,11,14,18,19]. In [19], the authors shown that the product of any two quasi-ideal adequate transversals of an abundant
lemmas 2.2 and 2.3 in this paper.

In this paper, we continue along the line of [8,17,19,26] by studying quasi-Ehresmann transversals of semi-abundant semigroups which satisfy conditions (CR) and (CL). In this paper, we give two characterizations for a generalized quasi-Ehresmann transversal to be a quasi-Ehresmann transversal which further demonstrate that quasi-Ehresmann transversals are the “real” generalizations of orthodox transversals in the semi-abundant case. The main purpose of this paper is to show that the product of any two quasi-ideal quasi-Ehresmann transversals of a semi-abundant semigroup satisfies conditions (CR) and (CL) and satisfies the regularity condition is a quasi-ideal quasi-Ehresmann transversal of S.

2. Preliminaries

Let S and S° be semigroups. Throughout this paper, if no confusion, the set of idempotents of S and S° are denoted by E and E°, respectively. For short, the set V(α) ∩ S° is denoted by V_S°(α). If E generates a regular semiband, that is, (E) is a regular subsemigroup of S, then S is said to satisfy the regularity condition. S° is called a quasi-ideal of S, if S°S° ⊆ S°. We list some basic results as follows which are frequently used in this paper.

Definition 2.1[2] Let S be a regular semigroup with an orthodox subsemigroup of S°. Then S° is said to be an orthodox transversal of S, if the following two conditions are satisfied:

1. (∀ a ∈ S) V_S°(a) ≠ ∅;
2. For any a, b ∈ S, if [a, b] ∩ S° ≠ ∅, then V_S°(a)V_S°(b) ⊆ V_S°(ab).

Lemma 2.1[17] Let S be a regular semigroup and S° a subsemigroup of S with V_S°(a) ≠ ∅ for each a ∈ S. Then S° is an orthodox transversal of S if and only if

(∀a, b ∈ S) [V_S°(a) ∩ V_S°(b) ≠ ∅ ⇒ V_S°(a) = V_S°(b)].

The so-called Miller-Clifford theorem will be frequently used in this paper.

Lemma 2.2[12] Let e and f be D-equivalent idempotents of a semigroup S. Then each element a of R_e ∩ L_f has a unique inverse a′ in R_f ∩ L_e, such that aa′ = e and a′a = f;

2. Let a, b ∈ S. Then ab ∈ R_a ∩ L_b if and only if L_a ∩ R_b contains an idempotent.

Let S be a semigroup and a, b ∈ S. By aR°b we mean that xa = ya if and only if xb = yb for all x, y ∈ S. The relation L° can be defined dually. R is a left congruence and L° is a right congruence on S. A semigroup S is called abundant if each L°-class and each R°-class of S contains at least one idempotent. An abundant semigroup S is called quasi-adequate if its idempotents form a band. A band B is called a rectangular band if it satisfies the identity abc = ac for all a, b, c ∈ B. An adequate semigroup is an abundant semigroup in which the idempotents commute.

Let S be an abundant semigroup and U an abundant subsemigroup of S. U is called a **-subsemigroup of S, if for any a ∈ U, there exist idempotents e ∈ L°(S) ∩ U and f ∈ R°(S) ∩ U.

Definition 2.3[5] Let S be an abundant semigroup and S° a **-adequate subsemigroup of S. S° is called an adequate transversal of S, if for each x ∈ S there exist idempotents e, f ∈ S and a unique element x ∈ S° such that x = exf, where eLx° and fKx°.
Let S be a semigroup and $a, b \in S$. That $\tilde{a}R\tilde{b}$ means that $ea = a$ if and only if $eb = b$ for all $e \in E$. The relation \overline{L} can be defined dually. Denote $\overline{H} = \overline{L} \cap R$. In general, \overline{L} is not a right congruence and \overline{R} is not a left congruence. Obviously, $L \subseteq \overline{L}$ and $R \subseteq \overline{R}$. If $a, b \in \text{Reg}S$, the set of regular elements of S, then $\tilde{a}R\tilde{b}$ ($a\overline{L} \tilde{b}$) if and only if $\tilde{a} \tilde{R} \tilde{b}$ ($aL \tilde{b}$). On the relation \overline{R} on a semigroup S, we have the following useful result.

Lemma 2.3 Let S be a semigroup and $a \in S, e \in E$. Then the following statements are equivalent:

(1) eRa;

(2) $ea = a$ and for all $f \in E, fa = a$ implies $fe = e$.

Now, we state the following fundamental concept of our paper. Semi-abundant semigroups satisfy conditions (CR) and (CL) were introduced by Fountain-Gomes-Gould\[8\].

Definition 2.3 A semigroup S is called semi-abundant if each \overline{L}-class and each \overline{R} -class of S contains idempotents. In particular, if \overline{L} is a right congruence and \overline{R} is a left congruence on a semi-abundant semigroup S, then we say that S satisfies conditions (CR) and (CL).

A semi-abundant semigroup S satisfies conditions (CR) and (CL) is quasi-Ehresmann if its idempotents form a subsemigroup of S. Certainly, regular semigroups are semi-abundant semigroups satisfy conditions (CR) and (CL), and orthodox semigroups are quasi-Ehresmann semigroups. It is easy to see a semi-abundant semigroup S satisfies conditions (CR) and (CL) is quasi-Ehresmann if and only if $\text{Reg}S$ is an orthogonal subsemigroup of S. Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL). For $K \in \{L, R\}$ and $a \in S$, the K-class of S containing a is denoted by K_a.

A semi-abundant subsemigroup U of a semi-abundant semigroup S satisfies conditions (CR) and (CL) is called a \sim-subsemigroup of S if

$$\overline{L}(U) = \overline{L}(S) \cap (U \times U), \overline{R}(U) = \overline{R}(S) \cap (U \times U),$$

and this equivalent to that there exist idempotents $e, f \in U$ such that $e\overline{L}x$ and $f\overline{R}x$ in S for all $x \in U$. Now, let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) and S^o a quasi-Ehresmann \sim-subsemigroup of S. For any $x \in S$, denote

$$\Omega_f(x) = \{(e, \overline{x}, f) \in E \times S^o \times E : x = e\overline{x}f, e\overline{L}\overline{x}^+; f\overline{R}\overline{x}^+\text{ for some } \overline{x}^+, \overline{x}^+ \in E^o\},$$

and $\Gamma_x = \{\overline{x} : (e, \overline{x}, f) \in \Omega_f(x)\}, I(x) = \{e : (e, \overline{x}, f) \in \Omega_f(x)\}, \Lambda(x) = \{f : (e, \overline{x}, f) \in \Omega_f(x)\}, I = \bigcup_{x \in S} I(x), \Lambda = \bigcup_{x \in S} \Lambda(x)$.

Lemma 2.4[26] Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) and S^o a quasi-Ehresmann \sim-subsemigroup of S. Then $I = \{e \in E : (\exists e^o \in E^o) e\overline{L}e^o\}$ and $\Lambda = \{f \in E : (\exists f^o \in E^o) f\overline{R}f^o\}$.

Definition 2.4[26] Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) and S^o a quasi-Ehresmann \sim-subsemigroup of S. Then S^o is called a quasi-Ehresmann transversal of S if the following three conditions hold:

1. $\Gamma_x \neq \emptyset$ for all $x \in S$;
2. is $i \in I$ and $si \in \text{Reg}S$ implies $si \in E$ for all $i \in I$ and $s \in E^o$;
3. $s\lambda \in \Lambda$ and $s\lambda \in \text{Reg}S$ implies $s\lambda \in E$ for all $\lambda \in \Lambda$ and $s \in E^o$.

3. Two characterizations of quasi-Ehresmann transversals

Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) with the set of idempotents E and S^o a quasi-Ehresmann \sim-subsemigroup of S with the set of idempotents E^o. S^o is called a generalized quasi-Ehresmann transversal of S if $\Gamma_x \neq \emptyset$ for all $x \in S$.

In the following, we shall give two characterizations for a generalized quasi-Ehresmann transversal to
be a quasi-Ehresmann transversal which further demonstrate that quasi-Ehresmann transversals are the “real” generalizations of orthodox transversals in the semi-abundant case.

Theorem 3.1 Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) with a generalized quasi-Ehresmann transversal S' Then S' is a quasi-Ehresmann transversal of S if and only if

$$(\forall a, b \in \text{Reg}(S), \ [V_S(a) \cap V_S(b) \neq \emptyset \Rightarrow V_{S'}(a) = V_{S'}(b)].$$

Proof. (Sufficiency) Let $f \in E^s, e \in 1$ with $eLe' \in E^s$. By means of S' is quasi-Ehresmann and $efLef' \in E^s$ we have

$$fe' \cdot ef \cdot fe' = f \cdot e'e \cdot ff \cdot e' = fe' = fe'$$

$$ef \cdot fe' \cdot ef = e \cdot ff \cdot e'e \cdot f = ef \cdot fe' = ef.$$

Thus $fe' \in V_S(fe') \cap V_S(ef)$. Then, by the condition, we obtain $V_S(fe') = V_S(ef)$. From S' is quasi-Ehresmann, we deduce that E^s is a band and so is the semilattice Y of rectangular bands $E_\alpha(\alpha \in Y)$. Since $e'f$ and fe' are in the same rectangular band, and so are inverses of each other. Hence $e'f \in V_S(ef)$ and so

$$ef = (ef)(e'f)(ef) = (ef)^2$$

That is ef is idempotent and we have in fact proved $IE^s \subseteq E$.

If fe' is regular, take $x \in V_S(fe')$ and $x' \in V_S(fe')$. Then exf is idempotent and $exf \in V(fe')$ with $eLe'xf \in S'$. Let $(e'xf)' \in E^s$ with $(e'xf)' \subseteq eLe'xf$ since L is a left congruence. Then $exfL(e'xf)' \in E^s$ and so $(e'xf)' \in V_S(exf) \cap V_S(e'xf)'$. From the assumption and S' is quasi-Ehresmann, we have $V_S(exf) = V_S((e'xf)')$ and hence $V_S(exf) \subseteq E^s$. Meanwhile we deduce that the regular elements of S' form an orthodox subsemigroup of S', and so $fx'e' \in V_S(e'xf)$ since $e', f \in E^s$. Hence

$$fx'e' \cdot exf \cdot fx'e' = fx'e' \cdot e'xf \cdot fx'e' = fx'e'$$

and

$$exf \cdot fx'e' \cdot exf = e \cdot e'xf \cdot fx'e' \cdot e'xf = e \cdot e'xf = exf$$

since $e'Le$ with e', e' are idempotent. So, $fx'e' \in V_S(exf)$. Similarly, one can prove that $e'xf \in V_S(fe') \cap V_S(xfe')$. Thus $fx'e' \in E^s$ and $V_S(xfe') = V_S(xfe') \subseteq E^s$ and consequently $x \in E^s$. Therefore $e'xf \in E^s$ and

$$fe = fe \cdot e'xf \cdot fe = fe \cdot exf \cdot e'xf \cdot fe = fex \cdot ex \cdot xfe.$$

Premultiplying and postmultiplying by x, we obtain

$$x = xfxex = xfxex \cdot fe' \cdot xfxex = xfe'x.$$

Thus $fx'e'x$ with $fe'x \in E^s$, from which we deduce that $fexxf = fe'x \cdot xfxex$. By means of $fexxf, xfe \in E^s$, we have $fx'e'x \in V_S(xfe)$. It is obvious that $xf \in V(fe')$ and $xf \in E^s$ implies that $V_S(fe') = V_S(xfe)$ and so $fe'x \in V_S(fe')$. Therefore $fe = fe \cdot fe'xf \cdot fe = fef(ef)efxe'xf \cdot fe = fexfe'x \cdot fe = fef xfe$ since ef is idempotent, and so fe is idempotent. Up to now, we have in fact proved if fe is regular, then it is idempotent. Dually, we can proved that $E^s \Lambda \subseteq E$ and if for all $\Lambda \in \Lambda, f \in E^s$, if Λf is regular, then it is idempotent.

(Necessity) By [26, Theorem 3.6 (4)], the condition is necessary. □

Theorem 3.2 Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) with a generalized quasi-Ehresmann transversal S'. Then S' is a quasi-Ehresmann transversal if and only if for any regular elements $a \in S$, $b \in S'$, if aba is regular, then $V_S(a)V_S(b) \subseteq V_S(ab)$; and if ab is regular, then $V_S(b)V_S(a) \subseteq V_S(ab)$.

X. Kong, P. Wang / Filomat 33:7 (2019), 2051–2060
Proof. (Necessity) For any regular elements $a \in S$, $b \in S'$, take $a^r \in V_S(a)$, $b^r \in V_S(b)$, if S' is a quasi-Ehresmann transversal, then by the definition, $aa^r b \in E^s \subseteq E$. If ba is regular, take $(ba)^r \in V_S(ba)$, then

$$
(b^r b a^r)(a ba)^r (b^r b a^r) = b^r (ba a)(ba)(b^r b a) a^r = b^r (ba) a^r = b^r (ba) a = b^r b a^r.
$$

Thus $b^r b a^r$ is regular and so $b^r b a^r \in E^{t E} \subseteq E$. Therefore

$$
a^r b^r \cdot ba \cdot a^r b^r = a^r (aa^r b) b (aa^r b) b^r = a^r \cdot a a^r b \cdot b^r = a^r b^r
$$

and so $V_S(a) V_S(b) \subseteq V_S(ba)$. Similarly, if ab is regular, then $V_S(b) V_S(a) \subseteq V_S(ab)$.

(Sufficiency) For any regular elements $t_1, t_2 \in S'$, if $V(t_1) \cap V(t_2) \neq \emptyset$, take $t \in V(t_1) \cap V(t_2)$ and $t_1^r \in V_S(t_1)$. From $t_2 L t_1 t_1^r L t_2^r$, by Lemma 2.2, $t_2 R t_1 t_1^r L t_2^r$ and $(t_2 t_1 t_2^r t_1^r)^2 = t_2 (t_1 t_1^r t_2 t_1^r) = t_2 t_1 t_2^r$ since by the assumption

$$
t_1^r t_2 \in V_S(t_1).
$$

Similarly, $t_2 L t_1 t_2^r L t_1^r$ with $t_1^r t_2 \in E$. Thus

$$
t_1^r t_2^r t_1^r t_2 = (t_1^r t_2^r t_1^r t_2 t_2^r) t_1^r t_2 = (t_2 t_1^r t_2^r t_1^r t_2) t_1^r = t_2 t_1^r t_1^r t_2 = t_2 t_1^r = t_2.
$$

Hence $t_1^r \in V_S(t_2)$, that is, $V_S(t_1) \cap V_S(t_2) \neq \emptyset$. Therefore $V_S(t_1) = V_S(t_2)$ since the regular elements of S' form an orthodox subsemigroup of S.

For any $e \in S$, if $V_S(e) \cap E^s \neq \emptyset$, take $f \in V_S(e) \cap E^s$. Then for any $e' \in V_S(e)$, we have $e \in V(f) \cap V(e')$ and so by the above result, $V_S(e) = V_S(e')$. Consequently, e' is an inverse of f in S' and $e' \in E^s$ since S' is quasi-Ehresmann. That is, if $V_S(e) \cap E^s \neq \emptyset$, then $V_S(e) \subseteq E^s$.

Let $e, f \in I$ with $e L f$. Take $h \in E^s$ such that $h L e L f$, then $h \in V_S(e) \cap V_S(f)$. For any $g \in V_S(e)$, by the above result we have $g \in E^s$. It is easy to see that $ghg \in V_S(g e g)$ and $gh g \in V_S(geg) = V_S(g)$. Then $g f g$ and g have a common inverse $gh g$. Consequently $g h g \cdot g f g \cdot gh g = gh g$ and thus $g f g = g$. Since $g e L e L f$, by Lemma 2.2, $f g R f$ and so $g f g = f$. Thus $g \in V_S(f)$ and so $V_S(e) \subseteq V_S(f)$. Similarly, we have the reverse inclusion and hence $V_S(e) = V_S(f)$. Dually, if $e, f \in I$ with $e R f$, then $V_S(e) = V_S(f)$.

It is easy to see that if $a \in Reg S$, then for any $a^r \in V_S(a)$, we have $V_S(a^r) = V_S(a) a^r V_S(a^r)$. For $a, b \in Reg S$, if $V_S(a) \cap V_S(b) \neq \emptyset$, take $e^c \in V_S(a) \cap V_S(b)$. Then $V_S(a) = V_S(c^e a) a^e V_S(ac^e)$ and $V_S(b) = V_S(c^e b) b^e V_S(bc^e)$. It follows from $ac^e \subseteq I$ and $ac^e L e^c b$ that $V_S(ac^e) = V_S(bc^e)$. Similarly, $V_S(c^e a) = V_S(c^e b)$. Therefore $V_S(a) = V_S(b)$ and so by Theorem 3.1 S' is a quasi-Ehresmann transversal. \qed

Obviously, a regular semigroup with an orthodox transversal is a semi-abundant semigroup satisfies conditions (CR) and (CL) with a generalized quasi-Ehresmann transversal. Comparing Lemma 2.1 with Theorem 3.1, and Definition 2.1 with Theorem 3.2, it is illustrated by these two points of view that the transversal is a quasi-Ehresmann transversal. Thus, quasi-Ehresmann transversals are the generalization of orthodox transversals in the semi-abundant case.

By means of the properties of adequate transversal[3,Theorem3.3], one can easily observe that an abundant semigroup with an adequate transversal is a semi-abundant semigroup satisfies conditions (CR) and (CL) with a quasi-Ehresmann transversal.

In the following, we will investigate when a quasi-Ehresmann transversal is an orthodox transversal and when a quasi-Ehresmann transversal is an adequate transversal, respectively. We have the following results.

Theorem 3.3 Let S' be a quasi-Ehresmann transversal of the semi-abundant semigroup S satisfies conditions (CR) and (CL). Then

(i) S' is an orthodox transversal of S if and only if S is a regular semigroup.

(ii) if S and S' are abundant, then S' is an adequate transversal of S if and only if S' is an adequate semigroup.
Lemma 4.1
Let S be a quasi-ideal quasi-Ehresmann transversal of the semi-abundant semigroup S satisfies conditions (CR) and (CL) and H a subset of S. Then

1. $HS^o = HS$ and $S^oH = S^oH$;
2. HS^o and S^oH are both subsemigroups and quasi-ideals of S;
3. For any $x \in RegS$, if $|V(x) \cap H| \geq 1$, then $|V(x) \cap HS^o| \geq 1$ and $|V(x) \cap S^oH| \geq 1$.

Proof. (1) Let $h \in H, x \in S$ and $s \in S^o$. Then $h = chtf_k, f_k \in H, x = hxs, hxs \in HS^oSS^o \subseteq HS^o$. It is obvious that $hs = hfs \in HS^o$ and $HS^o = HS^o$. Similarly, $S^oH = S^oH$.

(2) It is easy to see $HS^o \subseteq H \subseteq S^oSS^o \subseteq HS^o, HS^o$ is a subsemigroup of S. Similarly, $HS^o \subseteq S^oSS^o \subseteq HS^o$ and HS^o is a quasi-ideal of S. There is a dual result for S^oH.

(3) For any regular element $x \in S$, take $x' \in V(x) \cap H$, then for any $x' \in V(x) \cap H$, $x'x't \in V(x) \cap HS^o = V(x) \cap HS^o$, that is $|V(x) \cap HS^o| \geq 1$. Similarly, $|V(x) \cap S^oH| \geq 1$.

Lemma 4.2 Let S^o, S^o be quasi-ideal quasi-Ehresmann transversals of the semi-abundant semigroup S satisfies conditions (CR) and (CL). For every $a \in RegS$, we have $V_{S^o}(a) = V_{S^o}(a) \cdot a \cdot V_{S^o}(a)$.

Proof. Let $a^o \in V_{S^o}(a), a^o \in V_{S^o}(a)$. Then $a^oaa^o \in S^oSS^o = S^oS^o$ and $a^oaa^o \in V(a)$, and so $V_{S^o}(a) \cdot a \cdot V_{S^o}(a) \subseteq$
Let S. For every $x y^a \in V_{S \cdot S}(a)$, we have

$$a = ax^a y^a, \quad x y^a = x y^a \cdot a \cdot x y^a.$$

Hence

$$x y^a = x y^a \cdot a x y^a = x y^a \cdot a \cdot a x y^a.$$

and

$$x y^a a a^0 \in S^0 S^0 \subseteq S^0, \quad a x y^a \in S^0 S^0 \subseteq S^0,$$

On the other hand,

$$a x y^a a a^0 = a x y^a a x y^a a a^0 = x y^a a x y^a a a^0.$$

Thus $x y^a a a^0 \in V_{S}(a)$ and dually, $a x y^a \in V_{S}(a)$. Therefore $V_{S \cdot S}(a) \subseteq V_S(a) \cdot a \cdot V_S(a)$.

Lemma 4.3 Let S^0 be a quasi-ideal quasi-Ehresmann transversal of the semi-abundant semigroup S satisfies conditions (CR) and (CL). For any $x, y \in S$, there exist $x, y \in \Gamma_S, \not\Gamma_S$ such that $x = x_0 x_1 e, e \subseteq \Gamma_S, f \subseteq \Gamma_S$ for some $x^0, x^1 \in E^0$ and $y = y_0 y_1 e, e \subseteq \Gamma_S, f \subseteq \Gamma_S$ for $y^0, y^1 \in E^0$. Then

1. $xy = e \not\Gamma_S e y_0 y_1 e, e \subseteq \Gamma_S, f \subseteq \Gamma_S$ and $x y^a \in S^0$ since S^0 is a quasi-ideal. Since $\not\Gamma_S, \Gamma_S$ are left congruences and $\not\Gamma, \Gamma$ are right congruences, we have

$$e_0 (\not\Gamma_S e y_0 y_1 e) \subseteq \Gamma \subseteq E^0 \subseteq E$$

where $e_0 (\not\Gamma_S e y_0 y_1 e)$ is an E^0-family of $\not\Gamma_S e y_0 y_1 e$ for $\not\Gamma_S e y_0 y_1 e \subseteq S^0$.

Therefore the above properties valid.

In what follows S^0 and S^0 will denote a pair of quasi-Ehresmann transversal of the semi-abundant semigroup S satisfies conditions (CR) and (CL) and E^0 and E^0 will denote the idempotents of them respectively to avoid confusion. For the sake of simplicity, in S^0, we still denote the typical idempotent that $a \subseteq \Gamma_S, a^\ast$ respectively. For any $x, y \in S$, we write $x = x_0 x_1 e$ and $x = x_0 x_1 e$ as the decompositions of x in S^0 and S^0 respectively. Then $x \in S^0$ has the same meaning as in Definition 2.4.

More precisely, $i_0, \lambda_\ast \in E$ and $x^0, x^1 \in E^0$ with $x^0 \subseteq \Gamma \subseteq E^0$ and $x^1 \subseteq \Gamma \subseteq E^0$, and so $i_0 \subseteq \Gamma \subseteq E^0$. Let S^0 and S^0 be quasi-Ehresmann transversals of the semi-abundant semigroup S satisfies conditions (CR) and (CL). Denote

$$I(S^0, S^0) = \{ a a^0 : a \in \text{Reg} S \cap S^0, a^0 \in V_{S}(a) \},$$

$$\Lambda(S^0, S^0) = \{ a^\ast a : a \in \text{Reg} S \cap S^0, a^0 \in V_{S}(a) \}.$$

Theorem 4.4 Let S^0 and S^0 be a pair of quasi-ideal quasi-Ehresmann transversals of the semi-abundant semigroup S satisfies conditions (CR) and (CL) and satisfies the regularity condition. Then

$$I(S^0, S^0) = \Lambda(S^0, S^0) = I_0 \cap \Lambda_0.$$
Proof. For any $aa^o \in I(S^o, S^o)$, where $a \in \text{Reg}S \cap S^o$, $a^o \in V_{S^o}(a)$, certainly, $a \in V_{S^o}(a^o)$ and so $aa^o = a^oa^o \in \Lambda(S^o, S^o)$. Thus $I(S^o, S^o) \subseteq \Lambda(S^o, S^o)$ and dually $\Lambda(S^o, S^o) \subseteq I(S^o, S^o)$. Consequently, $I(S^o, S^o) = \Lambda(S^o, S^o)$ and we denote it by W. From the above definitions, it is clear that $W \subseteq I_o \cap \Lambda_o$.

Conversely, suppose that $x \in I_o \cap \Lambda_o$. Since $x \in \Lambda_o$, we have $x = x^o x$ for some $x^o \in V_{S^o}(x)$ with $x^o \in E_{S^o}$ and so $x^o = xx^o$. Similarly, $x \in I_o$, implied that $x = xx^o$ for some $c^o \in V_{S^o}(x)$ with $c^o \in E_{S^o}$, and so $x^o = xx^o$. Let $x^{oo} \in V_{S^o}(x^o)$. From $c^o \in \mathcal{L}x^o \mathcal{R}x^o \mathcal{X}x^o \mathcal{L}x^{oo} \mathcal{L}x^o \mathcal{X}x^o \mathcal{L}x^{oo}$ with $x^o x^o x^{oo} \in E^o I_o \subseteq E^o$ since S^o is a quasi-ideal and S satisfies the regularity condition. Thus $x^o \in \mathcal{L}x^{oo} \mathcal{R}x^o$.

Certainly, $x^o \mathcal{R}x^o \mathcal{X}x^o \mathcal{L}x^o$ and so by Lemma 2.2, $x^{oo} \mathcal{R}x^o \mathcal{X}x^o \mathcal{L}x^o \mathcal{X}x^o$ and $x^o x^o x^o \mathcal{H}x^o x^o \in I_o \cap \Lambda_o$. Consequently, $x^o x^o x^o = x$ since $x \in E$ and $x^o x^o \cdot x^2 \in I_o E^o \subseteq E$. Also $(x^o x^o x^o)^2 = x^o x^o (x^o x^o x^o) x^o = x^o x^o x^o = x^o x^o x^o$ and $x^o x^o x^o \in E$. Therefore

$$x^o \cdot x^o x^o \cdot x^o = xx^o = x^o$$ and $$x^{oo} x^o \cdot x^o \cdot x^{oo} x^o = x^o x^o x^o = x^o x^o$$

and so $x^{oo} x^o \in V_{S^o}(x)$. Hence $x = x^o \cdot x^o x^o \in I(S^o, S^o) = W$. \hfill \Box

Theorem 4.5 Let S^o and S^o be quasi-ideal quasi-Ehresmann transversals of the semi-abundant semigroup S satisfies conditions (CR) and (CL) and satisfies the regularity condition. Then $S^o S^o$ is a quasi-ideal quasi-Ehresmann transversal of S.

Proof. It is evident that $S^o S^o$ is a subsemigroup and a quasi-ideal of S. For any $x \in S^o S^o$, there exist $s^o \in S^o, t^o \in S^o$ such that $x = s^o t^o$. It follows from S^o is a quasi-ideal of S and Lemma 4.3 that $e_o(s^o f_o e_o)^+ \in I_o E^o = I_o$ and we denote it by e_o. It is obvious that $I_o \in E_{S^o}$ since $s^o \in S^o$ and so from $e_o \mathcal{R}I_o \in E_{S^o}$ we deduce that $e_o \in I_o \cap \Lambda_o$. Thus by Theorem 4.4 there exists $a \in \text{Reg}(S^o)$ such that $e_o = a^o a^o$ and so

$$e_o = e_o(s^o f_o e_o)^+ = a^o a^o(s^o f_o e_o)^+ \in S^o S^o.$$

Similarly, $x^o \in S^o S^o$. Thus $e_o, \lambda_x \in E_{S^o S^o}$, and so from $e_o \mathcal{R}x \mathcal{L} \lambda_x$ we deduce that $S^o S^o$ is semi-abundant. It is a routine matter to show that $e_o \mathcal{R}(S^o S^o) x$, λ_x, thus $S^o S^o$ is a ~semi-abundant subsemigroup of S.

Let e be an idempotent of $S^o S^o$. Then $e = a^o a^o$ for some $a \in S^o$, $s \in S^o$. Since $(asa)(asa)(asa)(asa) = asa(asa)(asa)(asa) = asa(asa)$, we have $s \in V_{S^o}(asa)$, so that $e = asa(asa)(asa)(asa)$, and $s \in S^o$, each idempotent of $S^o S^o$ is of the form $b^o b^o$ for some regular element $b \in S^o$. Let e and f be idempotents of $S^o S^o$. Then $e = b^o b^o$ and $f = c^o c^o$ for some regular elements $b, c \in S^o$ with $b^o \in V_{S^o}(b)$ and $c^o \in V_{S^o}(c)$. For any $l \in E^o$, by the regularity condition, $l c^o c^o$ is regular and so $l c^o c^o \in E^o$. Since S^o is a quasi-Ehresmann transversal of the semi-abundant semigroup S satisfies conditions (CR) and (CL). Thus $l c^o c^o \in E \cap S^o = E^o \subseteq E$ and $S^o S^o$ is a quasi-Ehresmann semigroup.

For any $x \in S^o$, there exist $a, b \in \text{Reg}S$ such that $e_o = a a^o a^o, \lambda_x = b b^o$, where $a^o \in V_{S^o}(a), b^o \in V_{S^o}(b)$. Thus

$$x = e_o x \lambda_x = a a^o x b b^o = a a^o x a^o x b b^o b b^o,$$

where $a^o \in V_{S^o}(a^o), b^o \in V_{S^o}(b^o)$, and consequently

$$e_o = a a^o \mathcal{L} a^o a^o d^o \in E_{S^o S^o}, \lambda_x = b b^o \mathcal{R} b b^o b b^o \in E_{S^o S^o}.$$

Since $a a^o a^o x b b^o \lambda_x = a a^o a^o x \lambda_x = a a^o a^o x$, we have $a a^o a^o x b b^o \mathcal{R}a a^o a^o x$. From $x \mathcal{R} x \mathcal{R} e_o$ and \mathcal{R} is a left congruence we deduce that

$$a a^o a^o x \mathcal{R} a a^o a^o e_o = d^o d^o \in E_{S^o S^o}.$$

Similarly,

$$a a^o a^o x b b^o \mathcal{L} b b^o \in E_{S^o S^o}.$$

Consequently, $x = e_o(a a^o a^o x b b^o \lambda_x)$ with $e_o, \lambda_x \in E, e_o \mathcal{L}(a a^o a^o x b b^o \lambda_x)^+ = a a^o a^o \in E_{S^o S^o}$ and $\lambda_x \mathcal{R}(a a^o a^o x b b^o \lambda_x)^+ = b b^o \in E_{S^o S^o}$. Therefore, $S^o S^o$ is a generalized quasi-Ehresmann transversal of S.

\[X. \text{ Kong, P. \text{Wang } / \text{ Filomat } 33:3 (2019), 2051–2060} \]
For regular elements \(c \in S, d \in S^eS^0\), take \(c' \in V_{S^eS^0}(c), d' \in V_{S^eS^0}(d)\), then by Lemma 4.2, there exist \(c' \in V_{S^e}(c), c'' \in V_{S^e}(c), d'' \in V_{S^e}(d), d'' \in V_{S^e}(d)\), such that \(c' = c''c'\), \(d' = d''d'\). Since \(d \in S^eS^0, d'' \in V_{S^e}(d)\), we have \(d \in V_{S^e}(d'')\). By Lemma 4.2, there exist \((d'')^c \in V_{S^e}(d''), (d'')^c \in V_{S^e}(d'')\), such that \(d = (d'')^c d''(d'')^c\). So
\[
c'c''d''c' = c'c''c''d'' = c'c'(d'')^c d''(d'')^c = c'c'(d'')^c c = \lambda_o \subseteq \lambda_o,
\]
and \(c'c''d''\) is idempotent. On the other hand,
\[
d''d'c = d d''d'' c c = d d''c = (d'')^c d''(d'')^c c = (d'')^c c = \lambda_o \subseteq \lambda_o,
\]
and \(d''d'c \in E\). Thus
\[
c''d''c = c \cdot c''d'' \cdot c''d' \cdot d = c c''d''d' = cd,
\]
d''d''c' = d''d''c = d''d''c = d''d''c = d''d''c = d'd'c,
and so \(V_{S^eS^o}(d)V_{S^eS^o}(c) \subseteq V_{S^eS^o}(cd)\). Similarly, \(V_{S^eS^o}(c)V_{S^eS^o}(d) \subseteq V_{S^eS^o}(dc)\).

It follows from Theorem 3.2 that \(SS^o\) is a quasi-Ehresmann transversal. Since \(SS^o\) is a quasi-ideal, therefore \(SS^o\) is a quasi-ideal quasi-Ehresmann transversal of \(S\).

Theorem 4.6 Let \(S\) be a semi-abundant semigroup satisfying conditions (CR) and (CL) and the the regularity condition. If \(S\) has a quasi-ideal quasi-Ehresmann transversal, then all quasi-ideal quasi-Ehresmann transversals of \(S\) form a rectangular band.

Proof. If \(SS^o\) is a quasi-ideal quasi-Ehresmann transversal of \(S\), then \(SS^o = S^o\). To see this, for \(s' \in S^o, s'' = s'(s')^c \in SS^o\), hence \(SS^o \subseteq SS^0\) and the reverse inclusion is obvious. By Theorem 4.5, all quasi-ideal quasi-Ehresmann transversals of \(S\) form a semigroup and so form a band.

Let \(SS^o, SS^0, SS^1\) be arbitrary three quasi-ideal quasi-Ehresmann transversals of \(S\). For any \(a \in SS^o, x \in S, b \in SS^0\), we have
\[
a''x b = a''x e(b^o)^c b \in SS^o SS^0 \subseteq SS^1, a''b = a''(a'')^c b \in SS^0 SS^o \subseteq SS^1 SS^0,
\]
where \(b^o \in E\) and \(e(b^o)^c \in E^0\). Thus \(SS^o SS^0 \subseteq SS^1 SS^0 = SS^1 SS^0\). For every \(a' \in SS^o, b' \in SS^0\), then
\[
a''b' = a''f(x')^c f(x')^c b' \in SS^0 SS^1 SS^0 = SS^1 SS^0,
\]
with \((f(x'))^c\) is an inverse in \(SS^0\) of \(f(x')^c\). Thus \(SS^0 SS^1 = SS^1 SS^0\) and therefore all quasi-ideal quasi-Ehresmann transversals of \(S\) form a rectangular band.

Acknowledgements The authors would like to express their sincere thanks to the referees for their valuable suggestions and corrections, which much improved this paper. Thanks also go to Professor Dijana Mosic for the timely communications. The first and corresponding author is a postdoctoral researcher of the Postdoctoral Station of Qufu Normal University and a Visiting Research Fellow of Curtin University.

References

[1] T. S. Blyth, R. B. McFadden, Regular semigroups with a multiplicative inverse transversal, Proc. Roy. Soc. Edinburgh 92A (1982) 253-270.

[2] J. F. Chen, On regular semigroups with orthodox transversals, Communications in Algebra 27 (1999) 4275-4288.

[3] J. F. Chen, Abundant semigroups with adequate transversals, Semigroup Forum 60 (2000) 67-79.

[4] J. F. Chen, Y. Q. Guo, Orthodox transversals of regular semigroups, International Journal of Algebra and Computation 11 (2001) 269-279.

[5] A. El-Qallali, Abundant semigroups with a multiplicative type A transversal, Semigroup Forum 47 (1993) 327-340.

[6] X. K. Fan, Q. H. Chen, X. J. Kong, Complete lattice homomorphism of strongly regular congruences on \(E\)-inverse semigroups, J. Australian. Math. Soc., 100(2) (2016) 199-215.

[7] X. K. Fan, Q. H. Chen, X. J. Kong, Weak inverses modulo Greens relation \(H\) on \(E\)-inverse and group-closed semigroups, Semigroup Forum, 92(3) (2016) 691-711.
[8] J. Fountain, G. M. S. Gomes, V. Gould, Enlargements, semi-bundancy and unipotent monoids, Communications in Algebra 27(2) (1999) 595-614.
[9] G. M. S. Gomes, V. Gould, Fundamental semigroups having a band of idempotents, Semigroup Forum 77 (2008) 279-299.
[10] V. Gould, Restriction and Ehresmann semigroups, Proceedings of the International Conference on Algebra 2010, 285-288, World Sci. Publ., Hackensack, NJ, 2012.
[11] X. J. Guo, K. P. Shum, Abundant semigroups with Q-adequate transversals and some of their special cases, Algebra Colloquium, 14(4) (2007) 687-704.
[12] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford 1995.
[13] X. J. Kong, Regular semigroups with quasi-ideal orthodox transversals, Semigroup Forum 74(2) (2007) 247-258.
[14] X. J. Kong, Some properties associated with adequate transversals, Canadian Math. Bull. 54(3) (2011) 487-497.
[15] X. J. Kong, On generalized orthodox transversals, Communications in Algebra 42(2) (2014) 1431-1447.
[16] X. J. Kong, Regular semigroups with weakly simplistic orthodox transversals, Semigroup Forum 97(3) (2018) 548-561.
[17] X. J. Kong, F. W. Meng, The generalization of two basic results for orthodox semigroups, Semigroup Forum 89(2) (2014) 394-402.
[18] X. J. Kong, P. Wang, A new construction for abundant semigroups with multiplicative quasi-adequate transversals, Publ. Math. Debrecen 78(1) (2011) 141-157.
[19] X. J. Kong, P. Wang, The product of quasi-ideal adequate transversals of an abundant semigroup, Semigroup Forum 83(2) (2011) 304-312.
[20] X. J. Kong, P. Wang, Y. H. Wu, The product of quasi-ideal refined quasi-adequate transversals, Open Mathematics 17(1) (2019) 43-51.
[21] X. J. Kong, X. Z. Zhao, A new construction for regular semigroups with quasi-ideal orthodox transversals, J. Aust. Math. Soc. 86(2) (2009) 177-187.
[22] M. V. Lawson, Semigroups and ordered categories I, The reduced case, Journal of Algebra 141 (1991) 422-462.
[23] M.X. Luo, Relationship between the quasi-ideal adequate transversals of an abundant semigroup, Semigroup Forum 67 (2003) 411-418.
[24] D. B. McAlister, R. B. McFadden, Regular semigroups with inverse transversals, Q.J. Math. Oxford 34(2) (1983) 459-474.
[25] T. Saito, Relationship between the inverse transversals of a regular semigroup, Semigroup Forum 33 (1986) 245-250.
[26] S. F. Wang, Semi-abundant semigroups with quasi-Ehresmann transversals, Filomat 29(5) (2015) 985-1005.