Evaluation of Natural Radioactivity Levels and Potential Radiological Hazards of Common Building Materials Utilized in Mediterranean Region, Turkey

Şeref Turhan
Kastamonu Universitesi

Asli Kurnaz (✉ kumazasli56@gmail.com)
Kastamonu Universitesi

Muhammet Karataşlı
Beykent Üniversitesi: Beykent Universitesi

Research Article

Keywords: Building materials, Natural radioactivity, External and internal index, Activity Annual effective dose, Excess lifetime cancer risk

DOI: https://doi.org/10.21203/rs.3.rs-500215/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Evaluation of natural radioactivity levels and potential radiological hazards of common building materials utilized in Mediterranean region, Turkey

Şeref Turhan¹, Asli Kurnaz*,¹, Muhammet Karataşlı²

¹Kastamonu University, Faculty of Science and Letters, Department of Physics, 37150 Kastamonu, Turkey
²Beykent University, Faculty of Engineering and Architecture, Department of Electronics and Communication Engineering, Sarıyer, İstanbul, Turkey

Abstract

Radiometric measurement of building materials is very important to assess the internal and external exposure caused by the ionizing radiation emitted from terrestrial radionuclides in building materials. The activity concentrations of 226Ra, 232Th, and 40K in fifty-eight samples of fifteen different structural and covering building materials commonly used in Osmaniye province located in the Mediterranean region of Turkey were measured by using gamma-ray spectroscopy. The activity concentrations of 226Ra, 232Th and 40K varied from 2.5 ± 0.1 (marble) to 145.7 ± 4.4 (clay brick), 1.3 ± 0.1 (marble) to 154.3 ± 4.1 (marble) and 8.6 ± 0.2 (sand) to 1044.1 ± 70.3 (granite), respectively. Radiological parameters (activity concentration index, alpha index, indoor absorbed gamma dose rate and the corresponding annual effective dose rate, and excess lifetime cancer risk) were estimated to evaluate the health hazards associated with these building materials. Since the estimated values of these parameters are within the recommended safety limits or criteria values, the use of the studied building materials in the construction of dwellings can be considered to be safe for the residents of the region.

Keywords: Building materials; Natural radioactivity; External and internal index; Activity Annual effective dose; Excess lifetime cancer risk

Introduction

*Corresponding author: Tel.: +90 366 280 19 06; fax: +90 366 215 49 69
E-mail address: kurnazasli56@gmail.com
Human exposure to ionizing radiation emitted from natural radioactive sources (cosmic and terrestrial radionuclides) is an ongoing and unavoidable fact of life on earth (UNSCEAR 2008). In the UNSCEAR report, the value of worldwide average annual exposure (external and internal) to natural radiation sources was estimated as 2.4 mSv (UNSCEAR 2008). The external exposure (indoor and outdoor) results from gamma-rays from terrestrial or primordial radionuclides such as radioactive potassium (40K) and the radioactive series of uranium (238U) and thorium (232Th). The concentrations of these radionuclides existing in all environmental media (soil, rock, food, water, building materials, etc.) may vary depending on the geological and geochemical structure of the region (UNSCEAR 2008). The average annual external exposure was assessed as 0.48 mSv, of which 0.41 mSv is caused by indoor exposure (UNSCEAR 2008). The internal exposures come from the intake of terrestrial radionuclides by inhalation and ingestion (UNSCEAR 2008). The major contribution to the effective dose from inhalation is due to radon (222Rn, half-life=3.83 d), which is the decay product of radium (226Ra) in the 238U series, and its short half-life decay products such as polonium (218,214Po), lead (214Pb), and bismuth (214Bi) (Turhan et al. 2018). The average annual inhalation exposure was assessed as 1.26 mSv, of which 1.15 mSv is due to 222Rn and 0.1 mSv to thoron (220Rn, half-life=55.6 s) (UNSCEAR 2008). Epidemiological surveys carried out in Europe, North America, and China have revealed strong evidence related to increased risk of lung cancer with high levels of radon exposure in dwellings (WHO 2009; Das 2021).

Building materials generally originated from the earth’s crust (rocks and soil) can be divided into three categories: structural materials (cement, concrete, mortar, clay brick, pumice brick, etc.), covering materials used for insulation and ornamental purposes (marble, granite, andesite, tuff, gypsum plaster, etc.) and additive raw materials (blast furnace slag, fly ash, bauxite, phosphogypsum, etc.) obtained as a result of some industrial activities (Turhan et al. 2018). Building materials produced for permanent use used in the construction of
dwellings, schools, and commercial buildings where we spend most of our time (approximately 80% lifetime), are one of the main sources of indoor external and internal exposures (Turhan et al. 2007; Joel et al. 2018). However, the radiation dose received from natural radionuclides in building materials depends on some conditions such as place and type of dwellings, ventilation habits, etc. Also, the activity concentrations of natural radionuclides in building materials vary depending on the geological and geochemical structure of the region where the materials are obtained (UNSCEAR 2008). Therefore, determination of natural radioactivity levels of building materials is very important in the evaluation of radiological hazards arising from indoor external and internal exposures to individuals and preparation standards and national guidelines of these materials in the light of international recommendations (Aykamış et al. 2013; Ravisankar et al. 2016). Recently, due to the increasing social anxiety, many studies on the measurement of natural radioactivity of different building materials and the assessment of the associated radiological risks on human health were published in the literature (Kumara et al. 2018; Al-Hubail and Al-Azmi 2018; Otoo et al. 2018; Leonardi et al. 2018; De With et al. 2018; Abdullahi et al. 2019; Al-Sewaidan 2019; Nuccetelli et al. 2020; La Verde et al. 2020; Orosun et al. 2020; Ghias et al. 2021). Up to now, several studies related to the determination of the activity concentrations of 232Th, 226Ra, and 40K in some building materials used in Turkey and assessment of the radiological health hazards associated with these materials (Erees et al. 2006; Turhan et al. 2008; Turhan 2009; Mavi and Akkurt 2010; Turhan 2010; Turhan et al. 2011; Turhan and Varinlioğlu 2012; Baykara et al. 2012; Solak et al. 2014; Hatungimana et al. 2020). However, there is no detailed study related to the determination of the activity levels of terrestrial radionuclides in building materials utilized in Osmaniye province located in the Mediterranean region of Turkey and evaluation of radiological hazards associated with the utilization of these building materials.
The aim of this study is to obtain reference data related to the radioactivity level of building materials utilized in the construction of homes in Osmaniye province and evaluate their radiological consequence when used as building materials. In this study, the activity concentrations of 226Ra, 232Th, and 40K in fifty-eight samples of fifteen different structural and covering and other building materials using gamma-ray spectrometry with an HPGe detector. The potential health hazards caused by the utilization of these materials were evaluated by estimating radiological parameters (external and internal, indoor absorbed gamma dose rate and the corresponding annual effective dose rate, and excess lifetime cancer risks). The obtained results were compared with the criterion values and/or recommended limits.

Materials and method

Sample collection and preparation

For this study, a total of fifty-eight building material samples given in Table 1 were purchased from commercial markets and manufacturers in Osmaniye province. Some of these materials are also widely used in other provinces in the Mediterranean region. Approximately 0.5 kg of each sample was brought to the sample preparation laboratory and coded. Then, the samples, except cement, sand, gypsum, grouting, and ceramic glue samples, were crushed and ground into a fine powder to have the same geometry as the reference materials used in detector efficiency calibration. Before radiometric measurement, all the crushed samples were passed through a sieve of 1 mm pore size and dried at 110 °C for 15 -24 h to remove moisture content. Then each sample was transferred into a cylindrical polystyrene sample container with a volume of 118 mL, weighed, and hermetically sealed. Before counting, the sealed samples were kept for at least one month to obtain secular equilibrium between 226Ra and its decay products.

Gamma-ray spectrometry
Radiometric measurements of the building materials were conducted by using a high-resolution gamma-ray spectrometry system with a coaxial p-type shielded HPGe detector (GEM50P4-83) at the Central Research Laboratory of Kastamonu University, Turkey. Details of the system are given in the study performed by Sultan et al. (2020). The detector has a relative efficiency of 50%, resolution of 1.9 keV at a full-width half maximum (FWHM) for 1332.5 keV gamma-ray photopeak 60Co and peak to Compton ratio of 66:1. The efficiency calibration of the system, which depends on parameters such as detector sample distance, sample geometry, is determined using the equation given below (Solak et al. 2014):

$$\varepsilon (E_\gamma) = \frac{C_{Net}}{I_\gamma \cdot t_C \cdot A} \cdot f_C \cdot f_G \cdot f_D$$ \hspace{1cm} (1)

where C_{Net} is the net counts of gamma-ray photopeak of interest, A is the activity of the reference material (in Bq), I_γ is the emission probability of the gamma-ray of interest, t_C is the counting time in seconds, f_C is the coincidence-summing correction factor, f_G is the geometry correction factor and f_D is the decay correction factor. In this study, RGU-1 (U-ore; 400 ± 2 µg g^{-1}), RGTh-1 (Th-ore; 800 ± 16 µg g^{-1}) and RGK-1 (K$_2$SO$_4$; 44.8 ± 0.3% K) reference materials purchased from IAEA were used for efficiency calibration of the gamma-ray spectrometer to eliminate the influence of coincidence summation and self-absorption effects of the emitting gamma-ray photons (Stoulos et al. 2003; Sultan et al. 2020). First, these reference materials were transferred to the sample containers to be used for measurement and weighed. The containers with RGU-1 and RGTh-1 were then sealed to prevent the escape of radon and thoron gases and kept for at least one month for secular radioactive equilibrium. Each reference container placed on the top of the detector was counted for 5,000-10,000 seconds. The efficiency values obtained using the above formula for gamma-ray photopeaks in the range of 0.2 to 2.6 MeV were fit to the following function (Kurnaz et al. 2020):

$$y(\varepsilon_\gamma) = \frac{1}{a + b \cdot x(E_\gamma)}$$ \hspace{1cm} (2)
where E_γ is the energy of the gamma-ray photopeak and the a, b and c constants are equal to 4.64, 0.0973 and 0.899, respectively.

Radiometric measurement

Each sample of building material studied was placed on the detector and counted for 40,000 – 86,000 seconds to obtain good counting statistics. Background spectrum taken under the same conditions was subtracted from the sample spectra to get net counts for the sample.

GammaVision gamma-ray spectroscopy software was used for spectrum analysis such as peak searching, peak evaluation, nuclide identification, determination of uncertainty of peaks, etc. The activity concentration of 226Ra was determined using the weighted average of the gamma-ray lines emitted from the progenies of 226Ra (351.9 keV from 214Pb and 609.3 and 1764.5 keV from 214Bi). The activity concentration of 232Th was determined using the weighted average of the gamma-ray lines of 911.2 keV from 228Ac and 583.2 keV from 208Tl. The activity concentration of 40K was measured directly by its gamma-ray line at 1460.8 keV (Kurnaz et al. 2020). The minimum detectable activity (MDA) based on Currie’s derivation, at the 95% confidence, is determined as follows:

$$MDA(Bq \text{ kg}^{-1}) = \frac{2.71 + 4.66\sqrt{B}}{\varepsilon(E_\gamma) \cdot I_\gamma \cdot t_c \cdot M}$$

(3)

where B is the area of the background continuum under the gamma-ray line of interest, $\varepsilon(E_\gamma)$ is the efficiency calculated by Eq. (1) for the interested gamma-ray lines, and M is the mass of the sample (in kg). The values of MDA calculated for 226Ra, 232Th and 40K varied from 0.3 and 0.6 Bq kg$^{-1}$, 0.4 to 0.7 Bq kg$^{-1}$ and 5.2 to 7.1 Bq kg$^{-1}$, respectively.

Evaluation of radiological hazards

Radiological parameters such as activity concentration index (external), alpha index (internal) indoor absorbed gamma dose rate caused by the external exposure and the corresponding
annual effective dose rate, and excess lifetime cancer risk were estimated to evaluate the potential radiological hazards to human health associated with these building materials. Preventive actions may be required for building materials with high annual effective dose levels caused by external exposure due to gamma radiation emitted the radionuclides in building materials where technologically enhanced naturally occurring radioactive materials are used, such as fly ash, blast furnace slag, bauxite, phosphogypsum. Therefore the activity concentration index based on the dose criterion was established by European Commission (EC 1999) as a screening tool for identifying building materials that may be exempted or subject to restrictions. The standard equation for the estimation of the activity concentration index (I) is given below (EC 1999):

$$I = \left(\frac{A_{Ra}}{300 \text{ Bq kg}^{-1}} + \frac{A_{Th}}{200 \text{ Bq kg}^{-1}} + \frac{A_{K}}{3000 \text{ Bq kg}^{-1}} \right)$$ \hspace{1cm} (4)

where A_{Ra}, A_{Th} and A_{K} are the activity concentration of ^{226}Ra, ^{232}Th and ^{40}K in terms of Bq kg$^{-1}$, respectively. For structural materials such as cement, concrete, bricks when $I \leq 1$, the annual effective dose $\leq 1 \text{ mSv y}^{-1}$ and while $I \leq 0.5$ the annual effective $\leq 0.3 \text{ mSv y}^{-1}$ (EC 1999). For covering and other materials limited use, when $I \leq 6$, the annual effective dose $\leq 1 \text{ mSv y}^{-1}$ and while $I \leq 2$ the annual effective $\leq 0.3 \text{ mSv y}^{-1}$ (EC 1999).

The alpha index (I_{α}) or internal health index, which is related to the assessment of excess α-radiation due to the inhalation of ^{222}Rn escaping from building materials, was calculated with the formula given below (Solak et al. 2014):

$$I_{\alpha} = \frac{A_{Ra}}{200 \text{ Bq kg}^{-1}}$$ \hspace{1cm} (5)

If the activity concentration of ^{226}Ra in any building material exceeds a value of 200 Bq kg$^{-1}$, the ^{222}Rn exhalation may lead to indoor ^{222}Rn concentrations exceeding the recommended level of 200 Bq m$^{-3}$. Therefore, the value of I_{α} must be less than or equal to unity.
Indoor absorbed gamma dose rate (D_R in terms of nGy h$^{-1}$) due to gamma-ray radiations emitted from natural radionuclides (226Ra, 232Th, and 40K) in the building materials was estimated using the formula given by European Commission Report (EC 1999):

For the structural building materials:

$$D_R = 0.92 \cdot A_{Ra} + 1.10 \cdot A_{Th} + 0.08 \cdot A_K$$ \hspace{1cm} (6)

For the covering building materials:

$$D_R = 0.12 \cdot A_{Ra} + 0.14 \cdot A_{Th} + 0.0096 \cdot A_K$$ \hspace{1cm} (7)

The corresponding annual effective dose rate (E_R in terms of mSv y$^{-1}$) was estimated using the following formula (UNSCEAR 2000):

$$E_R = D_R \cdot C_F \cdot OF \cdot T \cdot 10^{-6}$$ \hspace{1cm} (8)

where D_R is the indoor absorbed gamma dose rate given in Eqs. (6) and (7), C_F is dose conversion factor (0.7 Sv Gy$^{-1}$), OF is the indoor occupancy (0.8) and T is 8766 h y$^{-1}$.

Excess lifetime cancer risk ($ELCR$), which gives the lifetime probability of cancer development as a result of exposure to ionizing radiation, was estimated using the following formula (Solak et al. 2014):

$$ELCR = E_R \cdot AL \cdot F_R$$ \hspace{1cm} (9)

where E_R is the indoor annual effective dose rate given in Eq. (8), AL is the average life (70 y) and F_R is the fatal risk factor (0.057 Sv$^{-1}$) (ICRP 1990).

Results and discussion

Table 2 presents the average and range (minimum-maximum) values of activity concentrations of 226Ra, 232Th, and 40K measured in the fifteen popularly used building materials in the study area. Fig. 1 shows the frequency distributions (histograms) of the activity concentrations of these radionuclides. A comparison of the average activity concentrations of these radionuclides in the building material samples with Earth’s crust average values is given in Fig. 2. Table 3 compares the average activity concentration of these...
radionuclides measured in the studied some building material samples with the results of similar studies reported in other countries.

It can be seen from Table 2 that the activity concentrations of radionuclides measured in the building materials show a distribution that is directly related to the geology of their origin. The activity concentrations of 226Ra varied from 2.5 ± 0.1 (in MARB sample) to 145.7 ± 4.4 (CBRICK sample) Bq kg$^{-1}$. The activity concentrations of 232Th varied from 1.3 ± 0.1 (IMAT sample) to 154.3 ± 4.1 (MARB sample) Bq kg$^{-1}$. The activity concentrations of 40K varied from 8.6 ± 0.4 (SND sample) to 1044.1 ± 70.3 (GRNT sample) Bq kg$^{-1}$. As can be seen from Fig. 1, the frequency distributions of the activity concentrations of 226Ra, 232Th and 40K measured in the studied building materials exhibit a log-normal distribution. Approximately 50%, 85% and 80% of the activity concentrations of 226Ra, 232Th and 40K are in the range of 3 to 35 Bq kg$^{-1}$, 1 to 45 Bq kg$^{-1}$ and 9 to 415 Bq kg$^{-1}$, respectively. From Fig. 2, the average activity concentration of 226Ra measured in the building material samples, except for SND, AGG, MARB and RTIL samples, is higher than the Earth’s crust (worldwide) average value of 32 Bq kg$^{-1}$ (UNSCEAR, 2008). The average activity concentration of 232Th measured in the building material samples, except for CEM, MARB and GRNT samples, is lower than the Earth’s crust average value of 45 Bq kg$^{-1}$ (UNSCEAR 2008). The average activity concentration of 40K measured in the building material samples, except for GRNT sample, is lower than the Earth’s crust average value of 412 Bq kg$^{-1}$ (UNSCEAR 2008). It can be seen from Table 3 that the average concentrations of 226Ra in the CEM, CBRICK, GYP, CONC, and MARB samples are higher than those obtained for some other countries, except for CONC utilized in European Union (EU) and MARB utilized in Greece, while the average concentrations of 226Ra in the SND and GRNT are lower than those obtained for some other countries, except for SND utilized in India (Polur) and GRNT utilized in Serbia and Iran (Semnan). The average concentrations of 232Th in the CEM and MARB samples are higher
than those obtained for some other countries, except for CEM utilized in Bangladesh while
the average concentrations of 232Th in the CONC and SAND are lower than those obtained for
some other countries. Also, the average concentrations of 232Th in the CBRICK, GRNT, and
GYP are comparable to those obtained for some other countries. The average concentrations
of 40K in the CONC, SND, CBRICK, GRNT, and GYP are lower than those obtained for
some other countries, except for CBRICK utilized in Iran (Semnan), GRNT utilized in Serbia
and Iran (Semnan), and GYP utilized in Egypt.

The average and range values of the activity concentration index (I) and alpha index (I_α)
estimated for the studied building materials are given in Table 4. The values of I and I_α varied
from 0.02 to 1.4 (GRNT sample) and 0.01 to 0.7 (CBRICK sample), respectively. All values
of I estimated for the structural materials don’t exceed the recommended maximum or
criterion limit of unity corresponding to an annual effective dose rate of 1 mSv y$^{-1}$ while all
values of I estimated for the covering and other materials with restricted use are lower than
the exemption level of 2 corresponding to an annual effective dose rate of 0.3 mSv y$^{-1}$. All
values of I_α are lower than the recommended limit of unity corresponding to 222Rn activity
concentration of 200 Bq m$^{-3}$.

The average and range values of the indoor absorbed gamma dose rate (D_R) and the
corresponding annual effective dose rate (E_R), and excess lifetime cancer risk (ELCR)
estimated for the structural and covering building materials are given in Table 5. The values
of D_R and E_R varied from 1 (MARB sample) to 261 (CBRICK sample) nGy h$^{-1}$ and 0.003 to
1.3 mSv y$^{-1}$, respectively. The average values of D_R estimated for CONC, SND, MARB,
GRN, and CTILE are below the world average indoor absorbed gamma dose rate of 84 nGy
h$^{-1}$ (UNCCERA, 2000). The average values of D_R estimated for CEM, CBRICK and PBRIC
are higher than %45-61 higher than the world average value. All values of E_R estimated for
the covering building materials are lower than the world average of 0.41 mSv y$^{-1}$ (UNSCEAR
Furthermore, these values meet the exemption for the annual effective dose criterion of 0.3 mSv y\(^{-1}\) recommended by the EU (EC 1999). The average values of \(E_R\) estimated for the structural building materials are higher than the world average of 0.41 mSv y\(^{-1}\) except for CONC samples. Conversely, all average values meet the annual effective dose criterion of 1 mSv y\(^{-1}\) recommended by EU (EC 1999). The average values of ELCR varied from \(2.3 \times 10^{-4}\) to \(2.3 \times 10^{-3}\). All average values of ELCR estimated for the structural and covering building materials, except for MARB and CTILE are above the world average of \(2.9 \times 10^{-4}\) due to the annual effective dose rate caused by external exposure outdoor (UNSCEAR 2000). Whereas the average ELCR values estimated for CEM, CBRICK, and PBRICK are higher than the world average of \(1.4 \times 10^{-3}\) due to the annual effective dose from indoor external exposure (UNSCEAR 2000).

Conclusions

Determination of the activity concentration levels of the natural radionuclides contained in the building materials utilized in the construction of dwellings, schools, and commercial buildings is very important to evaluate the radiological risks associated with the utilization of these materials. The activity concentrations of \(^{226}\text{Ra}, ^{232}\text{Th},\) and \(^{40}\text{K}\) together with the radiological parameters (activity concentration and alpha index, indoor absorbed gamma dose rate and the corresponding annual effective dose rate, and excess lifetime cancer risk) for the popularly utilized 58 building materials (6 structural and 9 covering and other materials) in the Mediterranean region of Turkey, especially Osmaniye province was investigated using the gamma-ray spectroscopy. The activity concentration results of these terrestrial radionuclides reveal that there are significant differences in the measured values of building material samples originating from different areas. This fact is important in choosing suitable materials for utilization in buildings in the regions. It is concluded that all values of the activity concentration and alpha index estimated for the studied building materials are lower than the
criterion of unity. Also, all average values of the annual effective dose rate are below the effective dose rate criterion of 1 mSv y\(^{-1}\) recommended by EU. Consequently, this study reveals that the studied building material samples are within the recommended safety limit and do not pose any significant source of radiation risks. The data obtained in this study is significant in two respects: Firstly, it can create awareness for the local community using these materials regarding the radioactivity that building materials may contain. Secondly, this data is evaluated to be prepared standards and/or regulations regarding the use and management of building materials utilized in Turkey.

Author contribution

M. Karataşlı collected the building samples and prepared the samples for the radioactivity measurements. A. Kurnaz and Ş. Turhan performed the laboratory measurements and analyzed the spectra and done the spectra evaluations and the data analysis including the statistical analysis. Ş. Turhan was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Funding

Not applicable.

Competing interests

The authors declare no competing interests.

Availability of data and materials

All data generated or analyzed during this study are included in this published article anyway datasets are available from the corresponding author on reasonable request.

References

Abdullahi S, Ismail AZ, Samat S (2019) Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia. Nucl Eng Technol 51: 325–336
Evaluation of radiometric standards of major building materials used in dwellings of South-Western Nigeria. Radiat Phys Chem 178(109021):1–9

Al-Hubail J, Al-Azmi D (2018) Radiological assessment of indoor radon concentrations and gamma dose rates in secondary school buildings in Kuwait. Constr Build Mater 183:1–6

Al-Sewaidan HA (2019) Natural radioactivity measurements and dose rate assessment of selected ceramic and cement types used in Riyadh, Saudi Arabia. J King Saud Univ Sci 31:987–992

Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YM, Sharma S, Kassim HA (2015) Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings. PloS One 10(10):1–16

Aykamış AŞ, Turhan Ş, Uğur FA, Baykan UN, Kılıç AM (2013) Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as a construction material in Turkey. Radiat Prot Dosim 157:105–111

Baykara O, Karatepe S, Doğru M (2012) Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiat Meas 46(1):153–158

Das B (2021) Radon induced health effects: A survey Report. Indian J Sci Technol 4(5):481–507

De With G, Michalik B, Hoffmann B, Döse M (2018) Use of NORM-containing products in construction development of a European harmonised standard to determine the natural radioactivity concentrations in building materials. Constr Build Mater 171:913–918
EC (European Commission) (1999) Radiation Protection 112- Radiological Protection
Principles Concerning the Natural Radioactivity of Building Materials. Directorate-
General Environment, Nuclear Safety and Civil Protection
Erees FS, Dayanıklı SA, Çam S (2006) Natural radionuclides in the building materials used in
Manisa city, Turkey. Indoor Built Environ 15(5): 495–498
Ghias S, Satti KH, Khan M, Dilband M, Naseem A, Jabbar A, Kali S, Rehman TU, Nawab J,
Aqeel M, Khan MA, Zafar MI (2021) Health risk assessment of radioactive footprints
of the urban soils in the residents of Dera Ghazi Khan, Pakistan. Chemosphere
2671(29171):1–14
Hatungimana D, Taşköprü C, İçhedef M, Saç MM, Yazıcı Ş, Aghabaglou AM (2020)
Determination of radon and natural radioactivity concentration in some building
materials used in İzmir, Turkey. J Green Build 15(1):107–118
ICRP (1990) Recommendations of the International Commission on Radiological Protection.
Vol. 212 No.1-3, publication 60
Imani M, Adelikhah M, Shahrokhi A, Azimpour G, Yadollahi A, Kocsis E, Toth-Bodrogi E,
Kovács T (2021) Natural radioactivity and radiological risks of common building
materials used in Semnan Province dwellings, Iran. Environ Sci Pollut Res
https://doi.org/10.1007/s11356-021-13469-6
Joel ES, Maxwell O, Adewoyin OO, Ehi-Eromosele CO, Embong Z, Saeed MA (2018)
Assessment of natural radionuclides and its radiological hazards from tiles made in
Nigeria. Radiat Phys Chem 144:43–47
Kumara PARP, Mahakumara P, Jayalath A, Jayalath CP (2018) Estimating natural radiation
exposure from building materials used in Sri Lanka. J Radiat Res Appl Sci 11:350–
354
Kurnaz A, Turhan Ş, Hançerlioğulları A, Gören E, Karataşlı M, Altıkulaç A, Erer AM, Metin O (2020) Natural radioactivity, radon emanating power and mass exhalation rate of environmental soil samples from Karabük province, Turkey. Radiochimica Acta 108(7):573–579

Kuzmanović P, Todorović N, Petrović LF, Mrđa D, Forkapić S, Nikolov J, Knežević J (2020) Radioactivity of building materials in Serbia and assessment of radiological hazard of gamma radiation and radon exhalation. J Radioanal Nucl Chem 324:1077–1087

La Verde G, Raulo A, D’Avino V, Roca V, Pugliese M (2020) Radioactivity content in natural stones used as building materials in Puglia region analysed by high resolution gamma-ray spectroscopy: Preliminary results. Constr Build Mater 239(117668):1–6

Leonardi F, Bonczyk M, Nuccetelli C, Wysocka M, Michalik B, Ampollini M, Tonnarini S, Rubin J, Niedbalska K, Trevisi R (2018) A study on natural radioactivity and radon exhalation rate in building materials containing norm residues: preliminary results. Constr Build Mater 173:172–179

Nuccetelli C, Leonardi F, Trevisi R (2020) Building material radon emanation and exhalation rate: Need of a shared measurement protocol from the European database analysis. J Environ Radioact 225(106438):1–7

Mavi B, Akkurt I (2010) Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Radiat Phys Chem 79:933–937

Orosun MM, Usikalu MR, Oyewumi KJ, Achuka JA (2020) Radioactivity levels and transfer factor for granite mining field in Asa, North-central Nigeria. Heliyon 6:1–6

Otoo F, Darko EO, Garavaglia M, Giovani C, Pividore P, Andam AB, Amoako JK, Adukpo OK, Inkoom S, Adu S (2018) Public exposure to natural radioactivity and radon exhalation rate in construction materials used within Greater Accra Region of Ghana. Scientific African 1:1–12
Pantelić GK, Todorović DJ, Nikolić JD, Rajačić MM, Janković MM, Sarap NB (2015) Measurement of radioactivity in building materials in Serbia. J Radioanal Nucl Chem 303:2517–2522

Ravisankar R, Raghu Y, Chandrasekaran A, Gandhi MS, Vijayagopal P, Venkatraman B (2016) Determination of natural radioactivity and the associated radiation hazards in building materials used in Polur, Tiruvannamalai District, Tamilnadu, India using gamma ray spectrometry with statistical approach. J Geochem Explor 163:41–52

Shoeib MY, Thabayneh KM (2014) Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials. J Radiat Res Appl Sc 7:174–181

Solak S, Turhan Ş, Uğur FA, Gören E, Gezer F, Yeğingil Z, Yeğingil İ (2014) Evaluation of potential exposure risks of natural radioactivity levels emitted from building materials used in Adana, Turkey. Indoor Built Environ 23(4): 594–602

Sultan DAO, Turhan Ş, Kurnaz A, Hançonloğuğulları A, Kamberli AK, Emeksizoğlu B (2020) Investigation of natural radionuclide and essential metal contents of ancient wheat einkorn (Triticum monococcum L.) grown in Turkey. Radiochim Acta 108:999–1007

Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69:225–240

Trevisi R, Risica S, D’Alessandro M, Paradiso D, Nuccetelli C (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ Radioact 105:11–20.

Tuo F, Peng X, Zhou Q, Zhang J (2020) Assessment of natural radioactivity levels and radiological hazards in building materials. Radiat Prot Dosim 188(3):316–321
Turhan Ş, Yücel H, Gündüz L, Şahin Ş, Vural M, Parmaksız A, Demircioglu B (2007) Natural radioactivity measurement in pumice samples used raw materials in Turkey. Appl Radiat Isot 65:350–354

Turhan Ş, Baykan UN, Şen K (2008) Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses. J Radiol Prot 28:83–91

Turhan Ş (2009) Radiological impacts of the usability of clay and kaolin as raw material in manufacturing of structural building materials in Turkey. J Radiol Prot 29:75–83

Turhan, Ş. 2010. Radioactivity levels of limestone and gypsum used as building raw materials in Turkey and estimation of exposure doses. Radiat. Prot. Dosim. 140(4), 402–407.

Turhan Ş, Arıkan İH, Demirel H, Güngör N (2011) Radiometric analysis of raw materials and end products in the Turkish ceramics industry. Radiat Phys Chem 80(5): 620–625

Turhan Ş, Varinlioğlu A (2012) Radioactivity measurement of primordial radionuclides in and dose evaluation from marble and glazed tiles used as covering building materials in Turkey. Radiat Prot Dosim151(3):546–555

Turhan Ş, Temirci AT, Kurnaz A, Altıkulaç A, Gören E, Karataşlı M, Kırsık R, Hançerlioğulları A (2018) Natural radiation exposure and radon exhalation rate of building materials used in Turkey. Nucl Technol Radiat Prot 33(2):159–266

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) 2008 (2010) Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations Publication, New York, USA

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000) Sources and Effects of Ionizing Radiation. United Nations Publication, New York, USA
FIGURE CAPTIONS

Fig. 1 Frequency distributions of the activity concentrations of radionuclides in the studied building materials

Fig. 2 Comparison of the average values of radionuclides measured in the studied building materials with those in the Earth's crust
TABLE CAPTIONS

Table 1 Building materials of different types utilized in Osmaniye province

Table 2 The activity concentrations of 226Ra, 232Th, and 40K measured in the studied building material samples

Table 3 Comparison of radioactivity concentrations measured in this study with those in building materials utilized in other countries

Table 4 The values of activity concentration index and alpha index

Table 5 The values of the indoor absorbed gamma dose rate, annual effective dose, and excess lifetime cancer risk
Fig. 1
Type	Building material	Sample ID	N
Structural materials used in bulk amounts			
Cement	CEM		5
Concrete	CONC		3
Clay brick	CBRCK		4
Pumice brick	PBRCK		3
Sand	SND		5
Aggregate	AGG		4
Covering and other materials with restricted			
Marble	MARB		5
Granite	GRNT		3
Ceramic tile	CTIL		5
Roofing tile	RTIL		3
Gypsum	GYP		5
Limestone	LSTN		2
Insulating material	IMAT		3
Grouting	GROU		3
Ceramic glue	CGLUE		5

Table 1
Sample ID	Activity concentration (Bq kg\(^{-1}\))	226Ra	232Th	40K
CEM	Average 63.7	63.7	46.2	306.2
	Range 11.8 ± 0.4–91.4 ± 2.7	11.8	12.1	135.5
CONC	Average 46.4	46.4	19.0	115.0
	Range 13.4 ± 0.3–65.7 ± 1.8	13.4	12.3	48.1
CBRIK	Average 63.5	63.5	30.8	372.3
	Range 18.8 ± 0.5–45.7 ± 4.4	18.8	4.6	53.5
PBRIK	Average 67.6	67.6	44.0	298.7
	Range 42.7 ± 1.1–95.4 ± 2.8	42.7	41.0	110.6
CONC	Average 12.3	12.3	4.9	90.0
	Range 8.6 ± 0.2–20.2 ± 0.5	8.6	1.8	8.6
AGG	Average 8.7	8.7	6.3	123.7
	Range 7.4 ± 0.2–9.5 ± 0.3	7.4	6.2	118.2
MARB	Average 30.3	30.3	57.9	296.7
	Range 2.5 ± 0.1–89.1 ± 2.3	2.5	1.3	12.7
GRNT	Average 45.4	45.4	82.3	931.6
	Range 13.4 ± 0.4–103.0 ± 2.8	13.4	46.5	784.0
CTILE	Average 43.5	43.5	37.9	310.9
	Range 9.6 ± 0.3–102.6 ± 2.7	9.6	8.9	41.9
RTILE	Average 27.0	27.0	32.6	346.6
	Range 18.9 ± 0.4–36.6 ± 0.9	18.9	22.9	65.6
GYP	Average 44.5	44.5	11.9	101.5
	Range 26.5 ± 0.8–53.4 ± 1.6	26.5	5.6	53.5
LSTN	Average 44.2	44.2	7.2	78.9
	Range 38.9 ± 1.2–49.4 ± 1.5	38.9	5.1	61.2
IMAT	Average 52.6	52.6	7.1	118.0
	Range 17.7 ± 0.5–97.8 ± 2.9	17.7	1.3	66.0
GROU	Average 37.1	37.1	15.5	94.0
	Range 15.3 ± 0.4–53.2 ± 1.6	15.3	9.1	41.4
CGLUE	Average 60.2	60.2	18.1	247.8
	Range 37.2 ± 1.1–97.3 ± 2.9	37.2	6.3	95.8

Table 2
Building material	Country	Activity concentration (Bq kg⁻¹)	Reference		
		226Ra	232Th	40K	
Cement	Nigeria	21	16	147	Aladeniyi et al. 2021
	Iran (Semnan)	31	15	231	Imani et al. 2021
	India (Polur)	37	34	188	Ravisankar et al. 2016
	Egypt	45	10	51	Shoeib and Thabayneh 2014
	European Union	45	31	216	Trevisi et al. 2012
	Serbia	37	15	43	Pantelić et al. 2015
	Malaysia	29	31	205	Abdullahi et al. 2019
	Bangladesh	61	65	952	Asaduzzaman et al. 2015
	Turkey (Osmaniye)	64	46	306	This study
Concrete	Nigeria	23	60	536	Aladeniyi et al. 2021
	China (Beijing)	16	51	605	Tuo et al. 2020
	Serbia	17	21	253	Kuzmanović et al. 2020
	European Union	60	35	392	Trevisi et al. 2012
	Turkey (Osmaniye)	46	19	115	This study
Sand	Nigeria	18	59	236	Aladeniyi et al. 2021
	Iran (Semnan)	24	22	362	Imani et al. 2021
	India (Polur)	11	130	297	Ravisankar et al. 2016
	Egypt	17	13	119	Shoeib and Thabayneh 2014
	Serbia	26	30	210	Pantelić et al. 2015
	Malaysia	43	45	451	Abdullahi et al. 2019
	Bangladesh	54	77	982	Asaduzzaman et al. 2015
	Turkey (Osmaniye)	12	5	90	This study
Clay brick	Nigeria	40	62	1045	Aladeniyi et al. 2021
	Iran (Semnan)	31	28	338	Imani et al. 2021
	China (Beijing)	14	39	678	Tuo et al. 2020
	Serbia	45	49	646	Kuzmanović et al. 2020
	India (Polur)	5	23	374	Ravisankar et al. 2016
	Egypt	23	23	448	Shoeib and Thabayneh 2014
	Czech	45	47	611	UNSCEAR, 2008
	Turkey (Osmaniye)	64	31	372	This study
Marble	Iran (Semnan)	7	7	917	Imani et al. 2021
	China(Taiwan)	16	22	133	UNSCEAR 2008
	Germany	24	5	90	UNSCEAR 2008
	Greece	81	34	483	UNSCEAR 2008
	Pakistan	16	20	248	UNSCEAR 2008
	Turkey (Osmaniye)	30	58	297	This study
Granite	Nigeria	74	100	1098	Aladeniyi et al. 2021
	Iran (Semnan)	38	47	917	Imani et al. 2021
	China (Beijing)	356	318	1637	Tuo et al. 2020
	Serbia	200	77	1280	Kuzmanović et al. 2020
	Germany	100	120	1000	UNSCEAR 2008
	Italy	89	94	1126	UNSCEAR 2008
	Spain	86	45	1028	UNSCEAR 2008
	Serbia	38	43	660	Pantelić et al. 2015
	Turkey (Osmaniye)	45	82	932	This study
Gypsum	Iran (Semnan)	12	14	116	Imani et al. 2021
	Egypt	8	8	85	Shoeib and Thabayneh 2014
	Czech	12	10	187	UNSCEAR 2008
	Italy	8	3	160	UNSCEAR 2008
	Romania	41	40	199	UNSCEAR 2008
	European Union	15	9	91	Trevisi et al. 2012
	Turkey (Osmaniye)	45	12	102	This study

Table 3
Sample ID	I Average	I Range	I₀ Average	I₀ Range
CEM	0.5	0.3–0.7	0.3	0.1–0.5
CONC	0.3	0.2–0.4	0.2	0.1–0.3
CBRICK	0.5	0.2–1.0	0.3	0.1–0.7
PBRICK	0.6	0.5–0.7	0.3	0.2–0.5
SND	0.10	0.06–0.12	0.06	0.04–0.10
AGG	0.102	0.096–0.108	0.043	0.037–0.048
MARB	0.49	0.02–1.35	0.15	0.01–0.45
GRNT	0.9	0.6–1.4	0.2	0.1–0.5
CTIL	0.4	0.1–0.9	0.2	0.1–0.5
RTIL	0.37	0.32–0.45	0.14	0.09–0.18
GYP	0.24	0.16–0.33	0.22	0.13–0.27
LSTN	0.21	0.18–0.24	0.22	0.19–0.25
IMAT	0.25	0.09–0.47	0.26	0.09–0.47
GROU	0.23	0.11–0.32	0.19	0.08–0.27
CGLUE	0.37	0.19–0.50	0.30	0.19–0.49

Table 4
Sample ID	DR (nGy h⁻¹)	ER (mSv y⁻¹)	ELCR
CEM	Average 134	0.7	2.3 x 10⁻³
	Range 87–168	0.4–0.8	1.5 x 10⁻³–2.9 x 10⁻³
CONC	Average 73	0.4	1.3 x 10⁻³
	Range 44–93	0.2–0.5	7.5 x 10⁻⁴–1.6 x 10⁻³
CBRICK	Average 122	0.6	2.1 x 10⁻³
	Range 45–261	0.2–1.3	7.7 x 10⁻⁴–4.5 x 10⁻³
PBRICK	Average 135	0.7	2.3 x 10⁻³
	Range 113–163	0.6–0.8	1.9 x 10⁻³–2.8 x 10⁻³
SND	Average 24	0.12	4.1 x 10⁻⁴
	Range 16–29	0.08–0.14	2.7 x 10⁻⁴–5.0 x 10⁻⁴
AGG	Average 25	0.12	4.3 x 10⁻⁴
	Range 23–26	0.11–0.13	4.0 x 10⁻⁴–4.5 x 10⁻⁴
MARB	Average 15	0.07	2.5 x 10⁻⁴
	Range 1–41	0.003–0.199	1.2 x 10⁻⁵–7.0 x 10⁻⁴
GRNT	Average 26	0.13	4.5 x 10⁻⁴
	Range 16–42	0.08–0.21	2.8 x 10⁻⁴–7.3 x 10⁻⁴
CTIL	Average 13	0.07	2.3 x 10⁻⁴
	Range 4–29	0.02–0.14	7.1 x 10⁻⁵–5.0 x 10⁻⁴

Table 5
Figures

Figure 1

Frequency distributions of the activity concentrations of radionuclides in the studied building materials
Figure 2

Comparison of the average values of radionuclides measured in the studied building materials with those in the Earth's crust