Health System, Akron, Ohio; Infectious Disease Section Northeast Ohio Med. Univ, Rootstown, Ohio; Infectious Disease Division, SUMMA Health System, Akron, Ohio; Northeast Ohio Medical University, Rootstown, Ohio; Pharmacy, Summa Health System, Akron, Ohio, 1Summa Health Division of Infectious Disease, Akron, Ohio, 2Microbiology, Summa Health System, Akron, Ohio

Session: 240. Stewardship: Impact of Diagnostics

Background. Rapid molecular methods have created new opportunities for the clinical microbiology laboratory to affect patient care in the areas of initial diagnosis and therapy. Rapid diagnostic tests provide collaborative opportunities for antimicrobial stewardship teams (AST) to improve patient outcomes and decrease antimicrobial use. In January of 2017 our institution initiated use of a FDA approved multiplex polymerase chain reaction (PCR) Respiratory Panel. The objective of this evaluation was to assess the clinical impact along with procalcitonin (PCT) on quality of patient care when used in conjunction with antimicrobial stewardship.

Methods. Molecular testing was performed using the BioFire FilmArray® Respiratory Panel (RP) (BioMerieux). The medical staff was encouraged to order an Influenza/RSV PCR test prior to ordering the full RP. The results of RP and PCT were available the same day as ordered. AST recommended the RP as part of its intervention on several patients and provided advice based on results.

Results. From January-April the results of 81 tests for the respiratory panel were evaluated. Of these 30 were positive (+) for virus (most common Human Metapneumovirus [HVM]-13, Coronavirus)-7. PCT (ng/mL) results were available on 69. Most common final diagnosis: Pneumonia-31; AECOPD-16. Effect on duration of antimicrobial therapy (ABX) and hospital length of stay (LOS).

Conclusion. The results of the RP led to a decrease in ABX duration, which was most profound in the patients for whom AST intervened. LOS was also reduced. Utilization of RP and PCT facilitated better ABX use.

Disclosures. T. M. File Jr., BioMerieux: Scientific Advisor, Consulting fee.

2139. Impact of PBP2a Assay on Antibiotic Therapy of Patients with Non-Blood, Non-Urine Staphylococcus aureus Infections

Stephanie Shulder, PharmD1; Victoria Adams-Sommer, PharmD2; Sara E. Cosgrove, MD, MS3; Kathryn Dzintars, PharmD3; Patricia Simineri, PhD, D(ABMM)4; Pranita T. Damm, MD, MHS5 and Edina Avdic, MBA, PharmD, BCPS AQ-ID6; 1Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland, 2Johns Hopkins Bayview Medical Center, Baltimore, Maryland, 3Johns Hopkins Medical Institutions, Baltimore, Maryland, 4Johns Hopkins University School of Medicine, Baltimore, Maryland

Session: 240. Stewardship: Impact of Diagnostics

Background. Rapid diagnostic tests can reduce time to organism identification and susceptibility results, allowing for more rapid optimization of antibiotic therapy. We sought to determine whether a qualitative immunochromatographic assay for methicillin-resistant S. aureus (MSSA) from methicillin-resistant S. aureus (MRSA) could optimize time to appropriate therapy for patients with skin and soft-tissue infections (SSTIs) and nosocomial pneumonia.

Methods. Adult patients admitted to The Johns Hopkins Hospital with a respiratory or wound culture growing S. aureus between July-October 2015 (baseline period) and July-October 2016 (intervention period) were included. The primary outcome was time to optimal antibiotic therapy from specimen collection before and after implementation of the PBP2a assay. Secondary outcomes were (1) time to antibiotic de-escalation from specimen collection, (2) length of hospital stay, and (3) number of vancomycin levels. An unadjusted analysis was conducted using Chi-square or Fisher’s exact test for categorical variables and Wilcoxon rank-sum test for continuous variables.

Results. 189 patients met eligibility criteria (119 baseline, 70 intervention). There were no significant differences in characteristics of patients between periods. Overall time to optimal therapy decreased during the intervention period compared with baseline (IQR 0.24-7.4 hours vs. 0.64-2.2 hours, P = 0.03). In the subset of patients with SSTIs, time to optimal and de-escalation of antibiotic therapy was reduced during the intervention period compared with baseline (IQR 0.6-6 vs. 0.7-8.6, P = 0.02 and IQR 0.26-5.6 vs. 0.65-5, P = 0.05, respectively), but not with pneumonia. Length of hospital stay (median 6 days in each, P = 0.60) and number of vancomycin levels (median 0 vs. 1, P = 0.33) were similar before and after assay implementation.

Conclusion. There was a reduction in time to optimal antibiotic therapy after implementation of the PBP2a assay driven by changes in SSTI regimens but not pneumonia regimens. Incorporation of a rapid test to differentiate MSSA from MRSA be a useful addition to antibiotic stewardship initiatives to optimize therapy for patients with MSSA infection.

Disclosures. P. Simineri, BioMerieux: Research Contractor, Research support. Check-Points Health BV: Research Contractor, Research support.

2140. Trends of Device Utilization Ratios in Intensive Care Units During 10 Years in South Korea: Results from the Korean National Healthcare-Associated Infections Surveillance System

Jun Jin Kim, MD1; Young Hwa Choi, MD, PhD2; Hyo Youl Kim, MD, PhD3; Young Hwa Kwak, MD, PhD4; Ye-Hong Yang, MD, PhD5; Hong Bin Kim, MD6; Sun Hee Park, MD, PhD7; Misuk Lee, MD8; Sang-Oh Lee, MD, PhD9; Hyung Choi, MD, PhD10; Pyeong-Gyun Choe, MD11; Seoung-Kwan Lim, MD12; Sung Ran Kim, RN13; Myoung Jin Shin, RN14; So-Yeon Kim15; Hyonmi Yoo, RN16; Ji Young Choi, RN17; and Su Ha Han, RN18; 1Division of Infectious Diseases, Department of Internal Medicine,Ajou University College of Medicine, Suwon, Korea, Republic of (South), 2Ajou University College of Medicine, Suwon, Korea, Republic of (South), 3Division of Infectious Diseases, Yongsi University Wonju College of Medicine, Wonju, Korea, Republic of (South), 4Department of Internal Medicine, Department of Internal Medicine, Korean Nosocomial Infections Surveillance System, University College of Medicine, Seoul, South Korea, Seongnam, Korea, Republic of (South), 5Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea, Republic of (South), 6Department of Internal Medicine, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea, Republic of (South), 7Inje University, Goyang, Korea, Republic of (South), 8Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea, Republic of (South), 9Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea, Republic of (South), 10Infection Control Office, Korea University Guro Hospital, Seoul, South Korea, Seoul, Korea, Republic of (South), 11Infection Control Office, Seoul National University Bundang Hospital, Seongnam, Korea, Republic of (South), 12Infection Control Office, The Catholic University of Korea, St. Vincent’s Hospital, Suwon, Korea, Republic of (South), 13Infection Control Office, Inje University Sanggye Paik Hospital, Seoul, Korea, Republic of (South), 14Infection Control Office, Seoul National University College of Medicine, Seoul, Korea, Republic of (South), 15Department of Internal Medicine, University College of Medicine, Seongnam, Korea, Republic of (South), 16Infection Control Nurse, Chung-Ang University Healthcare System, Infection Control Unit, Seoul, Korea, Republic of (South), 17Soon Chun Hyang University Bucheon Hospital, Bucheon, Korea, Republic of (South) and Korean Nosocomial Infections Surveillance System (KONIS)

Session: 241. HAIs: Device-related Infections

Saturday, October 7, 2017: 12:30 PM

Background. Device-associated healthcare-associated infection (DA-HAI) is an important issue related to safety of patients. It is important to monitor unnecessary device utilization in order to decrease DA-HAI rates. Therefore, we investigated to the time trend of device utilization (DU) ratios and DA-HAI rates to analyzed collected data for 10 years through the Korean National Healthcare-associated Infections Surveillance System (KONIS) which is voluntarily participating in hospitals.

Methods. We investigate the trend of DU ratios and DA-HAI rates from 2006 through 2015 in KONIS participating intensive care units (ICUs). DA-HAI rates were calculated as the sum of DA-HAI per 1,000 patient-days and DU were calculated as a ratio of device-days to patient-days. The pooled incidences of DUs and DA-HAI rates were calculated for each year of participation.

Results. Data were collected on 5,325,176 catheter-days and 6,358,829 patient-days in the 190 participating ICUs between July 2006 and June 2016. From 2006 to 2015, year-wise ventilator utilization ratio (V-UR) per 1000 patients-days increased significantly from 6.27 to 4.54 (F = 6.27, P < 0.0001), year-wise urinary catheter utilization ratio (UC-UR) showed gradually increased trend from 0.83 to 0.84 but non-significant trend (F = 1.66, P = 0.095) and year-wise c-line utilization ratio (CL-UR) was gradually decreased non-significantly from 0.55 to 0.52 (F = 1.62, P = 0.105). In subgroup analysis, Medical ICU (F = 2.79, P = 0.0034) or hospital with more than 900 beds (F = 3.07, P = 0.015) related to increased significantly V-UR. Rate of ventilator associated pneumonia significantly decreased from 3.48 in 2006 to 1.98 in 2015 (per 1000 ventilator-days, F = 27.62, P < 0.0001). Also, rates of catheter associated UTI and c-line associated blood stream infection significantly decreased from 1.85 to 0.88 (per 1000 catheter-days, F = 10.14, P < 0.0001) and from 3.40 to 2.20 (per 1000 catheter-days, F = 11.87, P < 0.0001).

Conclusion. In Korea, all of the DA-HAIS have shown a significant reduction in the last 10 years, however V-UR has significantly increased trend for past 10 years, also UC-UR and CL-UR have not decreased trend significantly. We need effort to make reduction of device utilization ratios.

Disclosures. E. J. Kim, Korean Nosocomial Infections Surveillance System (KONIS): Investigator, Research support; Y. HOURS. Choi, Korean Nosocomial Infections Surveillance System (KONIS): Investigator, Research support; Y. HOURS.