Supplementary Material
Towards an accurate prediction of the thermal stability of homologous proteins

Fabrizio Pucci and Marianne Rooman

• Table S1. Predicted and Experimental values of the melting temperature for the set of 45 proteins belonging to the 11 homologous families.

• Table S2. Family-dependent T_m-T_{env} regression lines.

• Table S3. List of 45 proteins with known melting temperature analyzed in this study and their characteristics.
| Protein | Family | Host Organization | PDB code | T_{exp} (ºC) | T_{env} (ºC) | T_{pre1} (ºC) | T_{pre2} (ºC) | T_{pre3} (ºC) | T_{pre4} (ºC) | T_{pre5} (ºC) | T_{pre6} (ºC) | T_{pre7} (ºC) | T_{pre8} (ºC) | T_{pre9} (ºC) | T_{pre10} (ºC) | T_{pre11} (ºC) | T_{pre12} (ºC) | T_{pre13} (ºC) | T_{pre14} (ºC) | T_{pre15} (ºC) | T_{pre16} (ºC) | T_{pre17} (ºC) | T_{pre18} (ºC) | T_{pre19} (ºC) | T_{pre20} (ºC) | T_{pre21} (ºC) | T_{pre22} (ºC) | T_{pre23} (ºC) | T_{pre24} (ºC) | T_{pre25} (ºC) | T_{pre26} (ºC) | T_{pre27} (ºC) | T_{pre28} (ºC) | T_{pre29} (ºC) | T_{pre30} (ºC) | T_{pre31} (ºC) | T_{pre32} (ºC) | T_{pre33} (ºC) | T_{pre34} (ºC) | T_{pre35} (ºC) | T_{pre36} (ºC) | T_{pre37} (ºC) | T_{pre38} (ºC) | T_{pre39} (ºC) | T_{pre40} (ºC) |
|--------------|------------|-------------------|----------|---------------|--------------|---------------|
Protein ID	Experiment	Prediction 1	Prediction 2	Prediction 3	Prediction 4	Prediction 5	Prediction 6	Prediction 7	Prediction 8	Prediction 9	Prediction 10	Combined Tool	Host Organism	Family
1csp	53.8	61.5	52.4	76.9	57.2	60.3	77.1	64.8	64.9	47.6	30.0	Cold Shock Protein	Bacillus Subtilis	
1mjc	57.0	65.8	57.8	53.8	62.8	71.4	60.8	64.8	44.5	65.0	37.0	Cold Shock Protein	E. Coli	
1c9o	76.9	86.3	70.4	53.8	65.2	50.9	65.8	64.9	58.6	79.8	70.0	Cold Shock Protein	Bacillus Caldolyticus	
1bu7	47.0	61.5	56.2	88.0	79.9	70.3	66.3	57.1	55.4	55.2	30.0	Cytochrome p450	Bacillus Megaterium	
1oxa	55.1	62.1	53.6	91.0	75.7	72.2	67.9	58.1	56.8	57.3	31.0	Cytochrome p450	Sarcaropolyspora Erythraea	
1akd	56.0	60.3	49.1	88.0	78.3	53.3	66.1	58.1	68.5	48.0	28.0	Cytochrome p450	Pseudomonas putida	
1n97	88.0	85.1	82.9	55.1	63.7	64.6	62.1	58.5	63.7	91.5	68.0	Cytochrome p450	Thermus thermophilus	
1fit	91.0	91.3	96.9	55.1	56.8	77.6	67.7	58.8	68.8	83.8	78.0	Cytochrome p450	Solfolobus Solfataricus	
1rgg	49.3	59.6	45.2	102.0	67.6	48.9	60.0	64.6	62.3	52.4	27.0	Ribonuclease	Streptomyces aureofaciens	
9rnt	50.9	64.6	56.0	63.6	70.8	53.7	67.1	64.5	65.4	44.6	35.0	Ribonuclease	Aspergillus Oryzae	
1rnh	53.2	65.8	57.9	50.9	59.1	50.3	71.6	64.5	61.1	53.9	37.0	Ribonuclease	E. Coli	
1rbn	63.6	66.5	56.4	102.0	58.2	52.3	68.0	63.9	66.1	65.6	38.0	Ribonuclease	Bos Taurus	
2ehg	102.0	92.5	97.1	63.6	59.4	123.4	74.2	63.9	70.4	105.6	80.0	Ribonuclease	Sulfolobus tokodaii	

TABLE S1. Predicted and Experimental values of the melting temperature for the set of 45 proteins belonging to the 11 homologous families. In column 2 the experimental melting temperatures are listed. In columns 3-10 the predicted \(T_m \)'s with the different methods are reported. In column 11 there are the results obtained from the combined tool. Finally the environmental temperature of the host organism, the family to which proteins belong and the name of the host organism are reported in column 12,13,14 respectively.
Family	$T_{\text{m}}^{(2)} \text{est}$	T_{env}	N
α-Amylase	1.23 $T_{\text{env}} + 22.4 \degree \text{C}$	4	
Lysozyme	3.53 $T_{\text{env}} - 69.9 \degree \text{C}$	4	
Myoglobin	1.39 $T_{\text{env}} + 28.8 \degree \text{C}$	3	
β-Lactamase	1.71 $T_{\text{env}} - 6.4 \degree \text{C}$	4	
α-Lactalbumin	15.6 $T_{\text{env}} - 538.8 \degree \text{C}$	3	
Acylphosphatase	1.00 $T_{\text{env}} + 17.5 \degree \text{C}$	3	
Adenylate kinase	0.72 $T_{\text{env}} + 30.2 \degree \text{C}$	6	
Cell 12A Endoglucanase	0.39 $T_{\text{env}} + 45.2 \degree \text{C}$	5	
Cold shock protein	0.59 $T_{\text{env}} + 35.6 \degree \text{C}$	3	
Cytochrome P450	0.83 $T_{\text{env}} + 28.2 \degree \text{C}$	5	
Ribonuclease	1.05 $T_{\text{env}} + 18.1 \degree \text{C}$	5	

Table S 2. Family-dependent T_{m}-T_{env} regression lines. N is the number of proteins in the family.
Table S 3: List of 45 proteins with known melting temperature analyzed in this study and their characteristics.

Protein	T_{exp} (°C)	pH	Protein Name	Res. (Å)	Host Organism	T_{mwp} (°C)	N	Reference
1aqh	43.7	7.2	α-amylase	2.00	Alteromonas haloplancis	20.0	448	J Biol Chem 276, 25791 (2001)
1ppi	65.6	7.2	α-amylase	2.20	Sus Scrofa	39.0	496	J Biol Chem 276, 25791 (2001)
1sae	65.9	7.2	α-amylase	1.65	Tenebrio Molitor	30.0	470	J Biol Chem 276, 25791 (2001)
1smd	70.3	7.2	α-amylase	1.60	Homo Sapiens	37.0	495	J Biol Chem 276, 25791 (2001)
1am7	52.3	7.0	Lysozyme	2.30	Bacteriophage Lambda	37.0	150	FEBS Lett 460, 442 (1999)
2lzm	64.8	6.5	Lysozyme	1.70	Escherichia Coli	37.0	164	Nature 334,406 (1988), PNAS 85,410 (1988)
1zl1	64.9	2.7	Lysozyme	1.50	Homo Sapiens	37.0	130	J Mol Biol 254, 62 (1995)
4lyz	74.9	7.0	Lysozyme	2.00	Gallus Gallus	41.0	129	Proteins 40, 49 (2000)
2fal	52.0	7.0	Myoglobin	1.80	Aplysia Limacina	17.0	146	J Mol Biol 297, 1231 (2000)
1ymb	78.3	7.0	Myoglobin	1.90	Equus Caballus	38.0	153	Biochemistry 4, 5075 (2001)
1bvc	82.2	9.6	Myoglobin	1.50	Physter Cadocon	36.0	153	Protein Sci 2, 1099 (1993)
1blc	41.6	7.50	β-lactamase	2.20	Staphylococcus Aureus	32.0	257	Biochemistry 33, 116 (1994)
1ke4	54.6	6.80	β-lactamase	1.72	Escherichia Coli	37.0	357	Protein Sci 8, 1816 (1999)
4blm	66.0	7.00	β-lactamase	2.00	Bacillus Licheniformis	40.0	256	Biochemistry 29, 5797 (1990)
1bnc	51.0	7.00	β-lactamase	2.50	Bacillus Cereus	30.0	213	Biochemistry 61, 6603 (1992)
1hml	39.5	7.00	α-lactalbumin	1.70	Homo Sapiens	37.0	123	Biochemistry 28, 8568 (1989)
1hfa	56.2	7.40	α-lactalbumin	2.30	Bos Taurus	38.0	123	Protein Eng 12, 581 (1999)
1hmk	70.8	7.50	α-lactalbumin	2.00	Capra Hircus	39.0	121	Proteins 60, 118 (2005)
2acy	53.8	5.50	Acylphosphatase	1.45	Bos Taurus	38.0	90	Proteins 62, 64 (2006)
2bjd	100.8	5.50	Acylphosphatase	1.27	Sulfolobus Solfataricus	80.0	90	Proteins 62, 64 (2006)
1v3z	111.5	7.40	Acylphosphatase	1.72	Pyrococcus Horkoshii	98.0	91	Biochemistry 38, 35 (2005)
1p3j	47.6	7.40	Adenylate kinase	1.90	Bacillus Subtilis	30.0	212	J Bio Chem 279, 28202 (2004)
3fb4	47.6	7.40	Adenylate kinase	2.00	Jeotgalibacillus Marinus	18.0	216	J Bio Chem 279, 28202 (2004)
1s3g	43.4	7.40	Adenylate kinase	2.25	Bacillus Globisporus	15.0	217	J Bio Chem 279, 28202 (2004)
1aky	47.7	7.50	Adenylate kinase	1.96	Saccharomyces Cerevisiae	27.0	218	Eur J Biochem 231, 405 (1995)
1ank	51.8	7.20	Adenylate kinase	2.00	Escherichia Coli	37.0	214	J Bio Chem 266, 23654 (1991)
1zip	74.8	7.20	Adenylate kinase	1.85	Bacillus Steathermophilus	55.0	217	Biochemistry 31, 3038 (1992)
1oa3	49.2	8.00	Cell 12A	1.70	Hypocrea Schweinitzii	40.0	217	Protein Sci 12, 848 (2003)
1h8v	54.5	8.00	Cell 12A	1.90	Trichoderma Reesei	34.0	217	Protein Sci 12, 2782 (2003)
1oa4	66.8	8.00	Cell 12A	1.50	Streptomyces sp. 1tag8	30.0	222	Protein Sci 12, 848 (2003)
PDB	Score	Mol. Weight	Protein	Reference				
------	-------	-------------	---------	-----------				
1olr	68.7	8.00	Cell 12A	1.20				
1lcc	70.4	7.20	Cell 12A	2.15				
1esp	53.8	7.00	Cold Shock Protein	2.50				
1mjc	57.0	7.00	Cold Shock Protein	2.00				
1c8o	76.9	7.00	Cold Shock Protein	1.17				
1bu7	47.0	7.40	Cytochrome p450	1.65				
1oxa	55.1	7.40	Cytochrome p450	2.10				
1akd	56.0	7.40	Cytochrome p450	1.80				
1n9t	88.5	7.40	Cytochrome p450	1.80				
1f4t	91.0	7.40	Cytochrome p450	1.93				
1rgg	49.3	7.00	Ribonuclease	1.40				
9rnt	50.9	7.00	Ribonuclease	1.50				
1rhb	53.2	5.50	Ribonuclease	2.00				
1rbn	63.6	7.10	Ribonuclease	2.10				
2ehg	102.0	7.00	Ribonuclease	1.60				

Protein Sci 12, 2872 (2003)

Biophys Chem 132, 229 (2002)

J Mol Bio 347, 1063 (2005)

Protein Sci 9, 387 (2000), Protein Sci 10, 2028 (2001)

J Mol Biol 319, 541 (2002)

Nat Struct Biol 7, 380 (2000)

J Biol Chem 278, 608 (2003)

Biochemistry 37, 16192 (1998), Protein Sci 8, 1843 (1999)

J Mol Biol 279, 31790 (2003), J Mol Biol 354, 967 (2005)

J Bio Chem 264, 11621 (1989), Biochemistry 33, 3312 (1994)

Eur J Biochem 220, 663 (1994)

Biochemistry 45, 10795 (2009)

PLoS ONE 6, e16226 (2011)