Impact Learning: A Learning Method from Feature’s Impact and Competition

Nusrat Jahan Prottasha¹, Saydul Akbar Murad², Abu Jafar Md Muzahid², Masud Rana³, Md Kowsher⁴, Apurba Adhikary³, Sujit Biswas⁵ and Anupam Kumar Bairagi⁶

¹Computer Science, Daffodil International University, Bangladesh.
²Faculty of Computing, College of Computing & Applied Sciences, Universiti Malaysia Pahang, Malaysia.
³Information and Communication Engineering, Noakhali Science and Technology University, Bangladesh.
⁴Computer Science, Stevens Institute of Technology, USA.
⁵Computer Science, University of East London, UK.
⁶Computer Science and Engineering Discipline, Khulna University, Bangladesh.

Abstract—Machine learning is the study of computer algorithms that can automatically improve based on data and experience. Machine learning algorithms build a model from sample data, called training data, to make predictions or judgments without being explicitly programmed to do so. A variety of well-known machine learning algorithms have been developed for use in the field of computer science to analyze data. This paper introduces a new machine learning algorithm called impact learning. Impact learning is a supervised learning algorithm that can be consolidated in both classification and regression problems. It can furthermore manifest its superiority in analyzing competitive data. This algorithm is remarkable for learning from the competitive situation and the competition comes from the effects of autonomous features. It is prepared by the impacts of the highlights from the intrinsic rate of natural increase (RNI). We, moreover, manifest the prevalence of the impact learning over the conventional machine learning algorithm.

Index Terms—Impact learning, Machine Learning, Classification, Regression, Asthma prediction, Diabetes Prediction, Heart disease identification.

I. INTRODUCTION

Machine learning (ML) is a state-of-the-art approach that has shown promise in the areas of categorization and prediction. To improve demand estimates, we can use a variety of methods to examine historical data, including time series analysis, machine learning techniques, and deep learning models. As needed, ML ensures program consistency and adaptability. Machine learning, while not competitive, will continue to grow in the near future due to increasing data capital and greater need for personalized applications (e.g., the development of matrix multiplications) [1]. In addition to app growth, ML is also expected to change the general perspective of computer science. ML emphasizes creating a self-monitoring, self-diagnosing, and self-repairing system by shifting the focus from "how to program a machine" to "how to make it program itself." Both statistics and computer science can contribute to the evolution of ML as they develop and apply increasingly complex ideas that change the way people think [2]. In statistics and machine learning, extracting knowledge from data is an important endeavor. Many fields, including biomedicine, rely on it [3]. Business Analytics [4], Computational Optimization [5], Criminal Justice [6], Cybersecurity [7], Policy Making [8], Process Monitoring, Regulatory Benchmarking [9], Mathematical Optimization plays a vital role in building such models.

Classification and Regression Modern approaches based on recursive partitioning are trees. They are theoretically simple and exhibit excellent learning performance. Nevertheless, they are very computationally expensive. There are methods and packages to instruct them in common programming languages such as Python and R. They are desirable not only in terms of their interpretability, but also because of their rule-based nature [10]. This makes them attractive for a variety of applications, such as credit scoring for lending. They used a dataset of individuals that includes demographic and financial predictors, among others, and the model uses this information to predict whether consumers will be good or bad payers.

Each machine learning algorithm has its own application [11]. An approach may be optimal for a particular data set, but not for others. In real life, we work with directed data such as time periods (e.g., day, week, month, etc.), orientation, and rotation. Special algorithms are required to manage directed data. A small number of researchers, including [12], have developed a non-probabilistic model for directional data. [12] have proposed a set of directional Support Vector Machines: updated SVM decision function. Using cosine and triangular waves, they study the periodic parametric mapping of directional variables. Moreover, they modified the model with triangular waves to allow asymmetric circular boundaries and kernelized the different SVM variants. Nevertheless, the additional factors involved in asymmetric SVMs periodically affect the decision boundary. We generate a large amount of directional data on a daily basis. However, the standard statistical distribution is inappropriate for this type of data. Therefore, different distributions and statistics should be used to study this type of data, such as the univariate von Mises distribution and the multivariate von Mises-Fisher distribution. A unidirectional Naive Bayes classifier predictor variable was demonstrated by [13]. Von Mises univariate or von Mises univariate must be used to apply this model. The predictor variables are modeled using the von Mises-Fisher and Gaus-
sian distributions. The parameters of a Gaussian distribution have been found to affect the degree of complexity of the decision surfaces in a hybrid context. Von Mises Naive Bayes (vMNB) was tested on eight datasets and compared to the NB classifiers that use Gaussian distributions or discretization to model angular variables. The Selective NB classifier was, among others, the best algorithm for classifying. A generative probabilistic model, called latent Dirichlet assignment (LDA), was presented by [14]. They showed how to estimate empirical Bayes parameters using variational approaches and a EM algorithm, as well as other useful approximate inference techniques. Document modeling, collaborative filtering, and text classification were all applications of their findings. Tree Augmented Naive Bayes (TAN) outperforms naive Bayes, as shown by [15]. Nonetheless, the TAN maintained the same computational simplicity and resilience as the Bayes model. Similar work has been completed by [16] for categorizing Cell Anemia using a Deep neural network.

Different machine learning algorithms perform better for different types of data. In this manner, there are no "best" learning algorithms to be declared [17]. We are living in an age where the undertakings are information-driven, and the world is delivering more information than natural resources. There is a typical way to deal with while building up an algorithm, that is to plan a cost function and further minimize the cost function. Practically all learning algorithms attempt to limit a cost function for a superior and streamlined outcome. [18] presents an outline of a few of the strategies for testing linear separability between two classes. The techniques are separated into four gatherings: Those dependent on linear programming, those dependent on computational math, one dependent on neural networks, and one dependent on quadratic programming. [19] depict and examine a productive boosting system that can be utilized for limiting the loss functions got from our group of relaxations. [20] explores how concealed layers of profound rectifier networks are equipped for changing at least two example sets to be linearly distinguishable while safeguarding the distances with an ensured degree and demonstrates the all-inclusive characterization force of such distance saving rectifier organizations. [21] outline SVM utilizing a two-class issue and start with a case in which the classes are linearly divisible, implying that a straight line can be drawn that consummately isolates the classes, with the edge being the opposite distance between the nearest focuses to the line from each class. [22] Murad uses recent developments in probabilistic machine learning to identify conditions arising from parametric linear operators. These conditions include, but are not limited to, the conventional and partial differential, fractional order operators, and integrodifferential. [23] studies the utilization of logistic regression in manufacturing failures recognition. Using the generalized linear model for logistic regression makes it possible to break down the influence of the variables under study.

The core purpose of classification and regression is to predict the outcome from a single multidimensional data source. Regression attempts to fit a line with the data curve, whereas classification finds classes from the labeled data. The full functionality of an algorithm mimics a mathematical function. In [17], we proposed a robust machine learning algorithm known as Impact Learning, where the main aim was to solve the classification and regression problems in machine learning applications. This article will briefly describe that algorithm for better understanding. If (X) represents the data and (Y) represents the outcome, then the model (F) would look like a function that converts X into Y [F(X)=Y]. This function can be called a mapping function.

In statistics and population studies, the rate of natural increase (RNI) is a well-known terminology [18],ata is collected from real-world applications, and therefore, to keep it independent and distinguished, we can utilize (RNI) for generating a machine learning model. The following expression can represent RNI:

$$\frac{dP}{dt} \approx rP,$$

where r is taken to be as RNI and P define as population size. To extend the equation by incorporating a logistic growth model [19] we find,

$$\frac{dP}{dt} \approx rP\left(1 - \frac{P}{k}\right),$$

A dataset is comprised of numerous features. Almost every component of the dataset has RNI characteristics. In a competitive scenario, back forces are detrimental to the elements. Along these lines, the target variable gets affected by different highlights of the back forces, and we name that "Back Impact on Target (BIT)". Since the objective element depends on BITs, that is the reason each BIT additionally relies upon the objective factor.

In this paper, we intend to uncover the presence of impact learning. Here we have utilized three kinds of datasets to verify the impact learning. We likewise showed the graphical and factual correlations among all current machine learning techniques such as Random Forest tree, Naive Bayes, SVM, Logistic regression, etc. The main contributions of this work are presented as follows:

- We proposed an algorithm for supervised machine learning called impact learning that is used to utilize classification and regression datasets.
- We used RNI as a guide, this method makes use of the back impact of previous features.
- This algorithm is used to analyze the real competition as it learns from the competition.
- On the basis of a real dataset, we conducted a comparison between impact learning and the remaining algorithms.

II. INTRODUCTION OF IMPACT LEARNING

To visualize the exponential growth of population increase, we use the Malthusian logistic growth model [24], which can be expressed as follow:

$$\frac{dy}{dt} \approx ry,$$

where “y” indicates the population and “r” is the RNI. By incorporating carrying capacity (K) with equation [3] we get:
\[
\frac{dy}{dt} \approx ry \left(1 - \frac{y}{k}\right).
\] (4)

Carrying capacity plays a crucial role in population dynamics. The population of a region cannot exceed a certain limit in ecology. Therefore, the growth rate in equation 4 has to be reversed after a particular time and gradually hit zero. We can visualize the phenomena through Figure 1.

Figure 1: Whenever we have one operator (independent variable) only, the RNI den depends on only number of sample (consumers). The rate decreases with the time passing.

In Figure 2, we see a logistic growth model of cellphone purchases where the RNI curve increases exponentially from 0 to day 3, and after that, the rate decreases. We observe that the purchase impacts itself since a rise in the purchases automatically obstructs its growth at a certain point. Likewise, the presence of different operators can affect each other. If a particular operator makes profits, other operators face a decline simultaneously.

Figure 2: In thing figure, the RNI of operator-1 depends on other operator also and it is limited by its carrying capacity because of other operators.

Back-impact on target prevents target features from moving toward the curve of the RNI (BIT). If \(x \) is the back-impact variable, then \(x \) and \(y \) maintain their effects on each other, but \(y \) maintains its effects on itself. So, we can rewrite the equation 4 as

\[
\frac{dy}{dt} = ry - wxy - wyx \to y
\]

\[
= ry - (w_{x \to y} + w_{y \to x})xy
\]

\[
= ry - wxy
\]

Or, \(\frac{dy}{dt} = ry - wxy^2 - wxy, \) (5)

To visually explain,

Now, combining the equation 4, 5, and 6 we get

\[
ry \left(1 - \frac{y}{x}\right) = ry - wxy^2 - wxy
\]

Or, \(r \left(1 - \frac{y}{x}\right) = r - wxy - wx \)

Or, \(y \left(\frac{r}{k} - w\right) = -wx \)

To determine the impact of \(x_k \) target feature \(y \) (trained) and \(y' \) is the target feature, then we get from the 6 as follows:

\[
\text{Imp}(y) = \left(y' - \left(\frac{k \sum_{i=1}^{n} w_i x_i}{r - w_y k} + b\right)\right) \hat{\times} \text{if } i \neq k, \quad (7)
\]

where, \(N \) is the size of the dataset.

If \(X = [x_1, x_2, x_3, \ldots, x_n] \) and \(W = [w_1, w_2, w_3, \ldots, w_n] \), then the 6 can be expressed as follows.

\[
y = k \left(\sum_{i=1}^{n} w_i x_i\right) + b. \quad (8)
\]

In order to illustrate the polynomial structure of the impact learning, the 6 can be further expressed as follows:

\[
y = \frac{k \sum_{i=1}^{n} w_i x_i^j}{r - w_y k} + b, \quad (9)
\]

where \(j > 0 \). For the \(N \) size of data, the RNI and carrying capacity can be found from these defined functions.

\[
r = \frac{\ln \max (y')}{N - 1} \quad \text{and} \quad k \geq \max (y') \quad (10)
\]

However, it is an excellent way to calculate the RNI (\(r \)) from the optimization techniques like gradient descent. Figure 4 describes the flow chat of the proposed algorithm which is mathematically expressed in 1 above.
III. EXPERIMENTAL RESULTS AND DISCUSSION

We used the proposed method to tackle various real-world situations, demonstrating the acceptability of the Impact Learning model. In addition, we compared the performance of the proposed approach to that of other standard machine learning techniques (Random Forest, KNN, SVM, Naïve Bayes, Linear Regression and Logistic Regression). Besides, we have employed a variety of datasets. The dataset, training and testing procedure, experimental method, outcome, and commentary will all be covered in the following sub-sections.

A. Datasets

All of the datasets we have used to verify the proposed approach have been gathered from the real-world environment. We constructed a Google form for each dataset to collect the information. Our first dataset is for the prediction of diabetes. We created two Google forms to collect data from participants by asking them various questions. A separate form exists for patients and another for non-patients; however, all fields are identical in both formats. The total data obtained is 469, with 232 non-diabetic patients and 237 diabetic patients included. There are 11 attributes of the first dataset, shown in Table I.

Before collecting data for our second dataset on asthma, we consulted with asthma professionals. We had taken a brief note from the doctor’s description of the traits that cause asthma. Finally, we extracted 23 characteristics from them. Based on such features, we created a Google Form. We collected information through social media and through visits to the doctor’s office. This Google form was distributed to a public group, shared on our timeline, and emailed to our contacts to collect data. We spent several days physically collecting data from asthma patients and those who exhibit asthmatic symptoms in the doctor’s chamber. While some previous research collected data exclusively from youngsters, we obtained data from individuals of various ages in our study. We do not have any restrictions on age. Finally, we gathered almost 500 data points from social media and the chamber of visiting doctors. Table II summarizes all of the characteristics of the second dataset.

Our third dataset is utilized to forecast a heart disease prediction. This dataset was gathered from Kaggle and included a total of fifteen features [25]. The first fourteen variables (male, currentSmoker, age, BPMeds, cigsPerDay, prevalentStroke, prevalentHyp, totChol, diabetes, sysBP, diaBP, glucose heartrate, , and region) are utilized as feature data, while the last variable (TenYearCHD) is used as level data. All of the implemented machine learning models performed well on this dataset. Table III contains the attributes and description of the heart disease dataset.

B. Experimental Setup

We use a simulation environment to present the result in this paper. First, we devised a mathematical model. To implement this model, we wrote a Python script that ran on Google Colaboratory, a cloud computing platform with a Python programming environment. For quicker and parallel computing, we employed a Google Colab-based GPU. The development of all the models took more than 200 hours in total. We’ve also made a python module of this model available for public usage, which will make it much easier for consumers to use it. The proposed model was implemented in the following steps, as illustrated in Figure 6.

1) Data Pre-processing and preparing data: During data preprocessing, we determine whether a data set contains null values. After the one-time data processing, we checked if the data is prepared for the following process. If we determined that the data is ready for the next process, then we stop it [26]. We repeated it numerous times. We utilized mean and median to preprocess the data. A computation is used to determine the mean, synonymous with the average value of a data collection.

2) Feature Selection: Feature selection can be used to reduce the input variable model’s size by selecting only relevant data and eliminating noise in the data. It is the process of automatically selecting suitable characteristics for the machine learning model utilized based on the type of problem being addressed. It is accomplished by incorporating or removing critical elements without altering their functionality. It aids in reducing noise in our data and the reduction of the size of our input data. Figure 7 illustrates the diagram of feature selection. Feature selection models can be classified into supervised and unsupervised [27], [28]. We use a supervised learning model.
Table I: Dataset attributes for diabetes identification.

Attributes	Description	Type
Age	Age of patient.	Numeral
Weight	Weight of the patient.	Numeral
Family History	If the family member has diabetes history, than 'Yes' otherwise 'No'.	Boolean
Late-night sleep habit	It's defined the sleeping habit of patient.	Boolean
Heart Diseases	If the patient has heart disease, then 'Yes' otherwise 'No'.	Boolean
Sleep after eating	If the patient goes to bed after eating, then 'Yes' otherwise 'No'.	Boolean
Addiction	This field want to know about drug addiction of patient.	Boolean
Sex	Gender of patient.	Boolean
Late wake-up habit	Wake-up habit of patient.	Boolean
Exercise	Exercise habit.	Boolean

Table II: Dataset attributes for asthma identification.

Attributes	Description	Type
Gender	If gender male then ‘M’ or ‘F’ for Female	Boolean
Age	Age of the patient	Numeral
Frequent Coughing	It's define the continues coughing. If it's continues then 'YES' otherwise 'NO'	Boolean
Shortness of breath	It's define Breathing problems	Boolean
Exercise or walks make	If the person is tired, then 'YES' otherwise 'NO'	Boolean
feel very tired Nausea or Coughing after walking or exercise	Walking or Running for a while if he/she is coughing then 'YES' other wise 'NO'	Boolean
Sleep problems	If face difficulties in sleep then 'YES', otherwise 'NO'	Boolean
There is a feeling of being stuck in the chest	Usually, if you feel chest pain, answer 'YES'; otherwise, answer 'NO'	Boolean
Is anyone in family, suffers from allergies?	It's define family history. If anyone has allergies, then 'YES' otherwise 'NO'	Boolean
Does any family member has asthma?	It's define family history. If any family has asthma, then 'YES' otherwise 'NO'	Boolean
Do you have allergies?	If have allergies, then 'YES' otherwise 'NO'	Boolean
Which season does shortness of breath increase?	Here have four seasons. From there, Have to select one season, when problem is increase.	Text
Problem in Cold Water, Curd or Ice-cream, beef, ilish, prawn, brinjal, pumpkin, coconuts, Malabar night shade, duck meat	If the patient feels this kind of disease then 'Yes' otherwise 'No'	Boolean
Have asthma?	If you have asthma put 'YES', otherwise 'NO'	Boolean

3) Feature Scaling: In data analysis, feature scaling is a technique used to standardize the range of independent variables or characteristics of data \[29\], \[30\]. This happens in the preprocessing phase of data processing and is also called normalization of data. Normalization and standardization are two of the most commonly used strategies for feature scaling. Normalization is utilized when we wish to confine our values to a range between two numbers, often between [0,1] and [-1,1], and we want to do so as efficiently as possible. The following is the general normalization formula:

\[
z' = \frac{z - \min(z)}{\max(z) - \min(z)}.
\]

Feature standardization reduces the data’s variance and means to zero for each of the data’s features. For each feature, the distribution mean and standard deviation are calculated, then the new data point is calculated using the formula below:

\[
z' = \frac{z - \bar{z}}{\sigma}
\]

We separate our dataset into two parts in the feature scaling process: training and testing, with 70 percent of the data being used for training and 30 percent for testing, respectively. For the first and second datasets, we use Normalization; however, for datasets three and four, we use standardization.

4) Model Building: We employ four classification techniques (Random Forest, k-nearest neighbors, support vector machine, and Naive Bayes) and two regression models (Linear regression and Logistic Regression) to utilize the entire dataset, except the newly proposed model. We compared our proposed model to the techniques employed to analyze the whole dataset. For our proposed model, we got a good outcome. A summary of all algorithms used in this work and their parameters are represented in Table IV.
Table III: Dataset attributes for heart disease identification.

Attributes	Description	Type
male	It’s defined the sex: male or female.	Nominal
Age	Patient age.	Number
currentSmoker	whether the patient is a current smoker or not	Nominal
cigsPerDay	the average number of cigarettes smoked each day by the individual	Number
BPMeds	patient’s blood pressure medicine	Nominal
prevalenStroke	whether the patient had already experienced a stroke	Nominal
prevalenHyp	whether the patient was hypertensive or not	Nominal
diabetes	Diabetes history of the patient	Number
totChol	It’s define cholesterol level	Number
sysBP	systolic blood pressure of patient	Number
diaBP	Current diastolic blood pressure	Number
BMI	Body Mass Index of patient	Number
heartRate	heart rate of patient	Number
glucose	glucose level	Number
TenYearCHD	Coronary heart disease is a 10-year risk	Boolean

Table IV: This table contain the details of all implemented algorithms.

Name of Algorithm	Description	Parameters
Random Forest	Creates decision trees from various samples and uses the majority	Number
	vote for classification.	decision
K-Nearest Neighbors (KNN)	The new data point is classified by the majority of votes from its	Nearest
	fixed neighbors.	Neighbors
Support Vector Machine (SVM)	Find a hyperplane in an N-dimensional space that clearly	Kernel
	classifies the data points (N — the number of characteristics)	function.
Naïve Bayes	Classification method based on Bayes’ Theorem and	Probabilities of
	the premise of predictor independence	different
Linear Regression	Undertakes the task of predicting a dependent variable (target)	Value of
	based on the independent variable provided (s).	independent
Logistic Regression	It’s the method of choice for binary classification issues	Value of all
	(problems with two class values)	independent

C. Performance Analysis

This section is mainly divided into two sub-sections: performance analysis for classification algorithms and regression algorithms. The accuracy, precision, F1-score, recall, learning curves, and ROC curves for classification algorithms are used to examine the results of the experiments. These evaluation matrices are compared for four classification algorithms and two regression algorithms.

1) Performance Analysis for Classification Algorithms (Asthma Dataset): We collected 500 data points from the real world to evaluate the asthma dataset, 211 from asthma patients and 289 from non-asthmatic patients. As a result of the fact that this is a balanced dataset, the accuracy score will provide an right idea for the prediction result. Furthermore, the evaluation should include accuracy and recall scores, and the F1 score provides a single harmonic mean score that accounts for both recall and precision. Our experiment used four robust machine learning models (Random Forest, Support Vector Machine, k-Nearest Neighbors, and Naïve Bayes) and compared those to our proposed algorithm. The accuracy of the employed models is used to evaluate their performance.

From Table V with an accuracy of 80.6%, the proposed algorithm (Impact learning) shows the best result compared to all other proposed algorithms. For the SVM, the accuracy is also good, which is 77.5%. The KNN achieved an accuracy of 75.7%, which is very similar to Random Forest. The lowest accuracy is found for BernoulliNB, which is 71.4%. Following a comparison of the four types of performance matrices for various methods, it is clear that our suggested models (Impact Learning) perform the best in these datasets.

The receiver operating characteristic (ROC) plot is one of the most often used methods for assessing classifier performance. The ROC plot is built on two key evaluation metrics: specificity and sensitivity. The negative part’s performance is measured by specificity, whereas the positive part’s performance is measured by sensitivity [31].

In the ideal condition, FPR = 0, indicating that the area under the ROC curve (AUC) equals 1, but in sub-optimal situations, it is less than 1. In Figure 8 the ROC curves for the asthma dataset are shown. The higher the curve, the better the results. The area under the ROC curve (AUC) for each classifier has been determined as a quantitative measure of performance. All of the methods we tested generated satisfactory results. With a score of 73.5 percent, Impact
learning is better than other algorithms.

The Learning Curve is a graphical tool that may be used to estimate the benefit of supplementing our model with extra training data. It demonstrates the relationship between training and test scores for a machine learning model with variable sample size. Generally, the cross-validation strategy is utilized when drawing the learning curve. We visualized the learning curve using the Python Yellowbrick tool. The word "Training Score" refers to the accuracy score for the train set, whereas the term "Cross-Validation Score" refers to the accuracy score for the test set.

Figure 9 shows the learning curves of the four classification algorithms in terms of accuracy and speed. Figure 9(a) depicts the learning curve for the SVM classifier, which demonstrates that increasing the number of training cases leads to better generalization. This model’s training and test scores are highly well-matched to the dataset. Figure 9(b) of the KNN classifier indicates that the training and test scores have not merged, showing that this model may benefit from more training. The Random Forest classifier (Figure 9(c)) indicates a significant degree of systematic error, which suggests that the model, regardless of the quantity of data fed into it, is incapable of reflecting the underlying relationship and has a high level of systematic error. With an increase in the training dataset, BernoulliNB (Figure 9(d)) shows that the model’s performance will continue to improve. Impact learning (Figure 10) illustrates that the training and testing are still not working effectively. We need to enhance the dataset’s size and diversity to get better results.

2) Performance Analysis for Classification Algorithms (Diabetes Dataset): For the study of diabetes evolution, we have gathered data from the actual world, both physically and through an online platform. We have collected 469 data points, with 232 being non-diabetic and 237 being diabetic. Because the prevalence of diabetes and non-diabetes is nearly equal, this dataset is considered a balanced dataset. Accuracy is the most vital metric to consider while identifying the appropriate method for the balanced dataset. This dataset’s accuracy, F1 score, precision, and recall have all evolved. We compare our proposed approach with four robust machine learning algorithms, shown in Table VI. According to the accuracy of the algorithms, we ranked them in Table VI.

Table VI shows that we found a good accuracy for all of the implemented algorithms. Compared to other algorithms, the random forest classifier’s performance is superior because of its accuracy of 89 percent. The accuracy of the KNN classifier is 87.8 percent, which is the second-highest accuracy among the classifiers. The accuracy rate for Impact learning is 86 percent, which is likewise a strong performance rating. The BernoulliNB achieves an accuracy of 85.4 percent, nearly identical to that of the SVM. For all other (Precision, Recall, F1-Score) parameters, the performance is also good for the Impact learning.

Figure 11 depicts the asthma dataset’s receiver operating characteristic (ROC) curves. The higher the slope of the curve, the better the outcome. Each classifier’s area under the receiver operating characteristic curve (AUC) has been calculated as a quantitative measure of performance. For the majority of the algorithms, we were able to achieve a minimum satisfactory outcome. Compared to other algorithms, Random Forest performs significantly better, receiving a score of 62.5 percent. This score is 58.5 percent for impact learning, comparable to 58.5 percent for KNN. SVM received a low score, indicating that it was not the best choice for this dataset.

No matter how much data is fed into it, the Random Forest classifier (Figure 12(a)) cannot capture the underlying link accurately and has a significant systemic error. Figure 8 displays the learning curves of the four classification algorithms without the impact of learning. Underfitting can be seen by looking at the KNN’s training score (Figure 12(b)), which continues to fall. In contrast, the cross-validation score (orange line) continues to rise and fall. Based on the SVM’s findings, Figure 12(c) illustrates how increasing the number of training instances improves generalization. Finally, the BernoulliNB (Figure 12(d)), increasing the number of training cases enhances generalization. Figure 13 illustrates that the training and test scores for the Impact learning model have not yet converged, which suggests that this model could benefit from more training data being added.

3) Performance Analysis for regression Algorithms (Heart disease Dataset): A heart illness dataset from Kaggle with 16 columns was used to improve the regression dataset’s performance. The goal of this dataset was to forecast the likelihood of cardiovascular disease during the following ten years. We have considered three factors to analyze this dataset’s performance: the MSE, MAE, and RMSE depicted in Figure 14.

When it comes to improving the performance of our proposed algorithm (Impact Learning), we have benchmarked it against two of the most prominent algorithms available,

Method Name	AC	PR	RC	F1-Score	Rank (Accuracy)
Impact learning	0.806	0.761	0.734	0.745	1
SVM	0.775	0.698	0.681	0.721	2
KNN	0.757	0.721	0.653	0.661	3
Random Forest	0.752	0.683	0.711	0.691	4
Bernoulli-NB	0.714	0.665	0.671	0.662	5

AC = Accuracy, PR = Precision, RC = Recall

Method Name	AC	PR	RC	F1-Score	Rank (Accuracy)
Random Forest	0.89	0.94	0.62	0.89	1.00
KNN	0.87	0.93	0.58	0.60	2.00
Impact Learning	0.86	0.60	0.58	0.59	3.00
Bernoulli-NB	0.85	0.68	0.56	0.58	4.00
SVM	0.85	0.42	0.50	0.46	5.00

AC = Accuracy, PR = Precision, RC = Recall
Figure 9: Learning curve for the SVM, KNN, Random Forest and BernoulliNb classification algorithms which is used for asthma dataset.
(a) Learning curve for SVM classifier. (b) Learning curve for KNN classifier. (c) Learning curve for Random Forest classifier. (d) Learning curve for BernoulliNB classifier.

Figure 10: Learning curve for the proposed algorithm (Impact learning) that is used for asthma dataset.

Figure 11: Comparison of all implemented algorithms with Impact Learning using ROC curve for diabetes dataset.

Figure 14 indicates that the output of Impact Learning is superior to the output of two other algorithms for all of the performance matrices. Specifically, the effect learning value for MAE is less than 40%, the MSE value is somewhat higher than 20%, and the RMSE value is almost 50%. We obtained the lowest performance with the linear approach, although it is practically identical to that obtained with logistic regression.

Figure 15 shows that the training and validation loss curves are shrinking as the number of epochs increases. Figure 15 indicates that the performance of Impact learning is improving as the number of epochs increases.
Figure 12: Learning curve for the SVM, KNN, Random Forest and BernoulliNb classification algorithms which is used for asthma dataset. (a) Learning curve for Random Forest classifier. (b) Learning curve for KNN classifier. (c) Learning curve for SVM. (d) Learning curve for BernoulliNB classifier.

Figure 13: Learning curve for the proposed algorithm (Impact learning) that is used for diabetes dataset.

Figure 14: Performance analysis (MSE, MAE, and RMSE) for Logistic, Linear and Impact Learning algorithm.

IV. CONCLUSION AND FUTURE WORK

We have developed a novel machine learning approach for handling regression and classification issues. The system of learning from RNI and the impact of additional aspects such as competition is the primary techniques employed by this strategy. As it gains knowledge from the effect, it can be applied to other aspects of competition, such as the effect of other actors. To improve the performance of this algorithm, we used three real datasets, two of which were used for classification analysis and one of which was used for regression analysis. We compared the performance of our method to that of several other well-known algorithms. When we reached the results of our proposed algorithm to those of different algorithms, we
discovered that it produced an excellent outcome. Accuracy, precision, recall, and F1-score are some metrics that we examine while looking at performance evolution.

We hope to use impact learning to solve NLP challenges in the future, integrating it with existing machine learning and deep learning algorithms for improved performance. It will be trained using backpropagation and gradient descent rather than the least-squares approach. Additionally, we’ve developed a method for using this model to evaluate and forecast market value among many competitors in business, economics, and machine learning, among others.

REFERENCES

[1] J. Singh and G. Dhiman, “A survey on machine-learning approaches: Theory and their concepts,” Materials Today: Proceedings, vol. 82214785321039298, May 2021.
[2] J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted regression trees,” Journal of Animal Ecology, vol. 77, no. 4, pp. 802–813, Jul. 2008.
[3] S. M. D. A. C. Jayatilake and G. U. Ganegoda, “Involvement of machine learning tools in healthcare decision making,” Journal of Healthcare Engineering, vol. 2021, pp. 1–20, Jan. 2021.
[4] C. Chen and Storey, “Business intelligence and analytics: from big data to big impact,” MIS Quarterly, vol. 36, no. 4, p. 1165, 2012.
[5] H. Al-Sahaf, Y. Bi, Q. Chen, A. Lensen, Y. Mei, Y. Sun, B. Tran, B. Xue, and M. Zhang, “A survey on evolutionary machine learning,” Journal of the Royal Society of New Zealand, vol. 49, no. 2, pp. 205–228, 2019.
[6] S. Hallmann, M. Moser, S. Reck, T. Eberl, and K. Collaboration, “Machine learning for knn/jet/forca,” in Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019). Sissa Medialab, Jul. 2019, p. 904.
[7] I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqhtani, P. Watters, and A. Ng, “Cybersecurity data science: an overview from machine learning perspective,” Journal of Big Data, vol. 7, no. 1, p. 41, Dec. 2020.
[8] T. Hendricks, B. Cule, P. Meysman, S. Nautaerts, K. Lautens, and B. Goethals, “Mining association rules in graphs based on frequent cohesive itemsets,” in Advances in Knowledge Discovery and Data Mining. Springer International Publishing, 2015, vol. 9078, pp. 637–648.
[9] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015.
[10] Y. Ni, D. Aghamirzaee, H. Elmarakeby, E. Collakova, S. Li, R. Grene, and L. S. Heath, “A machine learning approach to predict gene regulatory networks in seed development in arabidopsis,” Frontiers in Plant Science, vol. 7, Dec. 2016.
[11] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence,” Information, vol. 11, no. 4, p. 193, 2020.
[12] D. Pernes, K. Fernandes, and J. S. Cardoso, “Directional support vector machines,” Applied Sciences, vol. 9, no. 4, p. 725, 2019.

Figure 15: Training and validation loss curve for Impact Learning.