Antigenic Properties of Fixed and Unfixed Particles of Some Cucumber Mosaic Virus Strains

Wiwiek Sri Wahyuni
Department of Plant Protection, Faculty of Agriculture, University of Jember, Indonesia

Abstract. The virus particle of Cucumber mosaic virus (CMV) is unstable and degrades during and after virus preparation. For long term storage, either 0.25% glutaraldehyde or 0.2% formaldehyde are used as protein cross-linking reagents for stabilizing the antigenic binding sites of the viral protein. The glutaraldehyde effect on the stability of purified CMV strains preparation after long-term storage were investigated by serological reactions with either fixed and unfixed CMV antisera. These preparations were also analysed by sucrose density gradient centrifugation and ISCO density gradient fractionation, then by gel electrophoresis and by electron microscopy. During long term storage (more than one year) some fixed and unfixed virus strains had degrade partially as shown by the appearance of double precipitine lines in gel immunodiffusion tests and the shape of absorbance peaks of ISCO density gradient fractionation. However, the degradation of virus particles was not apparent by electron microscopy. On the other hand, in agarose gel electrophoresis the virus particle of CMV strains produced pattern of multiple bands that shown that virus was certainly degraded. It appeared that the fixed virus had faster mobility bands than unfixed virus.

Keywords: fixed and unfixed particle, CMV strains, degradation, longterm storage

1. INTRODUCTION

Cucumber Mosaic Virus (CMV) particle is unstable virus, its protein as a coat of RNA is degradable. Therefore for long term storage usually used either 0.25% glutaraldehyde [1] or 0.2% formaldehyde [2]. These reagents used as protein cross linking to stabilised antigenic binding sites of the viral protein and it called fixed antigen. When the fixed antigen used as the immunogen, increases the titre of the antiserum as demonstrated of CMV [2] and Alfalfa mosaic virus [3].

Both fixed and unfixed antigen were tested by the fixed and unfixed antiserum. These were investigated because the particles seem to be degrade in gel immunodiffusion [4]. Serological used in this study was done by gel immunodiffusion and by plate trapped antigen (PTA) indirect ELISA whereas antibody and antigen complex was detected with commercial goat antirabbit IgG alkaline phosphatase conjugate. It is more sensitive for detecting distantly related viruses when using purified virus rather than crude extract of leaf sap [5]. In this study, it was investigated whether the glutaraldehyde effect on the stability of purified CMV strains preparation after long-term storage by serological reactions with either fixed and unfixed CMV antisera.

These preparations were also analysed by sucrose density gradient centrifugation and ISCO density gradient fractionation, then by gel electrophoresis and by electron microscopy.

2. MATERIALS AND METHODS

2.1 Reactivity of homologous fixed and unfixed antigens with fixed and unfixed antisera in gel immunodiffusion tests.

The fixed antigen prepared by dialysed purified virus with 0.3% glutaraldehyde in borate buffer pH 8.0 and stored at 4 °C, and the unfixed antigen prepared by adding 50% glycerol in borate buffer pH 8.0 of purified virus and stored at -20°C. A tests were done in a 0.7% gel in 10 mM PO4 buffer pH 7.0 in a petridish as shown in a pattern of Fig. 1. Virus of 10 ml at a concentration of 1 mg/ml were placed at peripheral wells. The homologous antiserum was placed at the central antigen wells. Gels were incubated at room temperate for 2hrs.

2.2 Reactivity of fixed and unfixed virus in plate trapped antigen (PTA)

Microtiterplates were pre-coated directly with either fixed and unfixed antigen of Twa (subgroup I), L ny
(subgroup II) or Ywa (intermediate serogroup) in twofold dilution series. The diluted series was started at 0.5 ug/ml, then were blocked with BSA solution. Either fixed or unfixed antiserum to Twa or Lny were used at 1/2000 dilution as the first antibody. Goat anti rabbit IgG AP-ase conjugate was used as a second antibody at 1/9000 dilution. The absorbency was read at 405 nm.

2.3 Analysis of physical changes in fixed and unfixed virus by sucrose density gradient centrifugation

Three mg of purified viruses (fixed and unfixed preparations) which 20-30 months stored were layered in 13 ml (SW 41) tubes containing 5-30 % sucrose density gradient and run for 2 ½ hours at 25,000 rpm. The physical changes in particle virus was analysed with an ISCO density fractionator.

2.4 Analysis of physicochemical changes of fixed and unfixed virus by agarose gel electrophoresis

Virus preparation used in this experiment were the same with no. 3 above. Two mg/ml of fixed or unfixed virus were loaded on 1.5% agarose gel containing either TAE or TBE buffer then subjected to electrophoresis at 100 V for 70 minutes. The gel was firstly stained with ethidium bromide to observe RNA pattern, then stained with coomassie blue to observe virus protein pattern [3].

2.5 Analysis of virus particle by electron microscopy

Particles of some CMV strains were observed under electron microscopy to determine whether particles degraded during longterm storage. Virus particles were stained 2% uranacetat or a mixture of 0.2% uranyl acetate with 3% K-phosphotungstic acid pH 7.0.

3 RESULTS AND DISCUSSION

3.1 Reactivity of homologous fixed and unfixed antigens with fixed and unfixed antiserum in gel immunodiffusion tests.

Figure 1 showed that some of unfixed virus at the same months of stored had degraded by double precipitate lines and they all appeared the homologous reaction except antigen Y2 against Y2 antiserum. That was also appear by the fixed virus (A1). It was concluded that both unfixed and fixed virus protein degraded after several times storaged.
3.2 Reactivity of fixed and unfixed virus in plate trapped antigen (PTA)

This test was to determine the dilution end point of fixed and unfixed antigen in PTA indirect ELISA (Fig 1). The lowest concentration of virus reacted with both fixed and unfixed antiserum in this test was 31.5 ng/ml. Fixed antiserum gave slightly stronger reaction by homologous fixed unfixed antigen (Fig. 3 IA, C). The same reaction were shown also with unfixed antiserum by unfixed antigen (Fig.3 I B,D) than by fixed antigen.

![Fig 1](image)

Another test was to determine the dilution end point antiserum against fixed and unfixed antiserum in PTA. Wells of microtiter plate were pre-coated with either fixed or unfixed antigen 0.5 mg/ml. Unfractionated unfixed and fixed antiserum in twofold dilution series were used as the first antibody, starting with dilution of 1/1054. Goat antirabbit AP-ase was used at 1/900 dilution. With this experiment, a very low dilution antiserum could still detect the homologous antigen at a concentration 0.5 mg/ml. Fixed antigens reacted more strongly to homologous fixed antiserum than did to unfixed antigen (Fig. 3 II A,C).

3.3 Analysis of physical changes in fixed and unfixed virus by sucrose density gradient centrifugation

![Fig 2](image)

![Fig 3](image)

![Fig 4](image)

On the other hand, this experiment was good enough to detect and separate CMV strains with TAV-V and TMV-U1 (Fig. 3 IIC). Therefore, the PTA-indirect ELISA technique it is economical, practical and suitable for virus detection of a wide range of plant viruses. This four families contained six species virus had been tested were from the family
Secoviridae, Comovirus genus (*Squash mosaic virus, SQMV* and *Cowpea severe mosaic virus, CPSMV*), family Bromoviridae, Cucumovirus genus (*Cucumber mosaic virus, CMV*), family Potyviridae, Potyvirus genus (*Cowpea aphidborne mosaic virus, CABMV* and *Zucchini yellow mosaic virus, ZYMV*) and Sobemovirus (*Papaya lethal yellowing virus, PLYV*) in infected plant tissues (12) ELISA plate wells were also treated with extracts from healthy plants of cowpea [*Vigna unguiculata* (L.) Walp subsp. *unguiculata*], papaya (*Carica papaya* L.) and melon (*Cucumis melo* L.) to function as control. (13) considered that the new developed PTA-ELISA kit could be used to detect simultaneously up to four different plant virus families, in the same ELISA plate, instead of the use of kit for each virus like the commercial kits available by multinational companies.

Figure 4 showed the sucrose gradient density analysis of fixed and unfixed virus after longterm preparations (A, B, C, D) and comparison with fresh virus preparation (E, F). The UV absorbance profiles for fixed preparation of Fny and Lny virus which had been stored for 26 and 28 months, respectively, showed heterogeneity. Preparations of fixed Hnsw and Qld which were kept for 30 months were more stable than unfixed of the same strain of virus after storage for 23, 27, and 30 months, respectively. Fixed Twa (25 months) had two peaks, the peak preceding the virus peak possibly representing a dimer. The fresh virus preparation of Twa and Qld and unfixed Twashowed only one peak. The peak above the virus peak shown by unfixed Hnsw and Qld was possibly degradation particles.

Some CMV strains varied in stability after fixation, some It was concluded that strains of CMV have different stabilities after fixing with glutaraldehyde, as shown by the different shapes of the absorbance peak although glutaraldehyde used for cross linked of protein to stabilised antigenic binding sites [2]. Thus, fixed virus of some strains were stable and some degraded partially during storage and detected by appearance of more slowly sedimented component after analysis by sucrose density gradient centrifugation (Fig. 4). This results was in unagreement with [2] that glutaraldehyde increased the stability CMV particles.

The structure of antigenic many plant viruses have been investigated through epitopes recognised by monoclonal and polyclonal antibodies. The rod shape virion, i.e. Tobamovirus (TMV) the epitopes has been localized along the surface virion[7,8]. Coat protein CMV and other genus of Cucumovirus are interest antigenic determinant sites because it is primary determinant of aphid transmission [9]. So the epitopes is a useful analysis tool of topography of CP structural and antigenic of CMV [10].

3.4 Analysis of physicochemical changes of fixed and unfixed virus by agarose gel electrophoresis

Both fixed and unfixed virus preparations of strains Fny, Twa, Hnsw, Cnsw, Lny, Vqld, Wtas, and Ywa showed bands in gel electrophoresis (Fig. 5). Strains of CMV produces different numbers of bands. For example, preparations of fixed Twa, Vqld, and Ywa virus produced 5, 4, and 3 bands respectively.

Staining with ethidium bromide (Fig. 5 top) showed that fixed virus contained a more rapidly migrating component than the unfixed virus. The mobility of bands from unfixed virus was slower than of fixed virus. Coomassie blue stained the bands of fixed and unfixed virus (Fig 5 Bottom) after ethidium bromide stained (Fig. 6 Top). The used of TBE as electrophoresis buffer were separated virus component better than TAE buffer. The mobility of some component of unfixed virus appears to be more slightly slower than that of fixed virus [4]. This result was in agreement with observation on the mobility of AMV particles. The fixed AMV particles produce a sharp bands while the unfixed particles produced diffuse bands, indicating that the unfixed virus particles had a lost their integrity as a result of an effect of their protein-RNA interaction [3]. However, innyexperiment both fixed and unfixed CMV particles produced sharp bands. The fixed virus was distinguish by producing an additional more rapidly migrating band but the composition of this band was not determine (Fig. 5). The binding affinity of MAb against different strains of CMV is specific key to identify the epitope mapping of the CP site [10].

3.5 Analysis of virus particle by electronmicroscopy

The electron microscopy seemed that the particle of neither fixed nor unfixed CMV particles were degrade (Fig 5 A, B, C, D). Apparently the unfixed of Vqld particles were smaller than the fixed particles (Fig 5 C, D), because it stained with the positively stain partially, and the diameter of particle were the same and all the particles appeared as intact particles after longterm storage. This could be caused the stained prevent the fixed and unfixed particles more degraded. [11] especially the addition stain of 0.2% uranyl acetate, pH 7 than with phosphotungstic acid (PTA) alone.

The results of this study suggests that the new developed PTA-ELISA kit could be used to detect simultaneously up to four different plant virus families, in the same ELISA plate, instead of the use of kit for each virus like the commercial kits available by multinational companies.
Fig 5. Electron micrograph of virus particles from fixed and unfixed purified virus after long-term storage. Preparation of (A) unfixed and fixed virus (B) of strain Hnsw were stained with 2% uranyl acetate and (C) unfixed and (D) fixed virus of strain Vqld were stained with a mixture of 2% uranyl acetate and 3% phosphotungstic acid (pH 7.0). Both fixed and unfixed particles had the same diameter. Bar scale 100 nm.

4 CONCLUSION

Some fixed (with 0.25% glutaraldehyde) and unfixed (with adding 50% glycerol) CMV strains had degraded partially after stored more than one year as shown by the appearance of double precipitin lines in gel immunodiffusion tests and by the shape of absorbance peaks in sucrose density gradient sedimentation analysis and in electromobilities analysis. However, this degradation of virus particles was not apparent by electron microscopy.

References

1. A.H. Korn, S.H. Fearheller, E.M. Fillachione. Glutaraldehyde, nature of the reagent. J. Mol. Biology 65:525-529 (1972).
2. R.I.B. Francki, N. Habil. Stabilization of capsid structure and enhancement of immunology of Cucumber mosaic virus (Q strain) by formaldehyde. Virology 48:309-315 (1972).
3. M.R. Hajimorad, R.I.B. Francki. Serological differentiation of some strains of Alfalfa mosaic virus with polyclonal antibodies. Phytopathology 8:1603-610 (1991).
4. W.S. Wahyuni, R.G. Dietzgen, K. Hanada, R.I.B. Francki. Serological and biological variation between and within subgroup I and subgroup II strains of Cucumber mosaic virus (CMV). Plant Pathol. 41: 282-297 (1992).
5. M. Jaegle, M.H.V. Regenmortel. The use of ELISA for measuring the extent of serological cross-reactivity between plant viruses. J. Virol. Methods 11:189-198 (1985).
6. M.H.V. Regenmortel. Serology and Immunochemistry of plant Viruses. New York: Academic Press Inc (1982).
7. M.H.V. Regenmortel. Tobacco mosaic virus: antigenic structure. In: Van Regenmortel, M.H.V., Fraenkel-Conrat, H. (Eds.), In The Plant Viruses. The Rod-Shaped Plant Viruses. Plenum Press, New York, pp. 79–104 (1986).
8. I.E. Dore, D. Weiss, M.H.V. Altschuh, V. Regenmortel. Visualization by electron microscopy of the location of tobacco mosaic virus epitopes reacting with monoclonal antibodies in enzyme immunoassay. Virology 162, 279–289.
9. K.L. Perry, L. Zhang, M.H. Shintaku, P. Palukaitis. Mapping determinants in Cucumber mosaic virus for transmission by Aphid gossypii. Virology 205:501-595 (1994).
10. H.S. Zein, A. Zeina, T. Jaime, D. Silva, K. Miyatake. Antigenic properties of the coat of Cucumber mosaic virus using monoclonal antibodies. J. Virol. Methods 162:223-230 (2009).
11. R.I.B. Francki, J.W. Randles, T.C. Chambers, S.B. Wilson. Some properties of purified Cucumber mosaic virus (Q strain). Virology 28:749-741 (1966).
12. A.K.Q. Nascimento, G. Silva-Barbosa, A.Q. Kelly. Biological, physical, and molecular properties of a papaya lethal yellowing virus isolate. Plant Disease 94:1206-1212, 2010.
13. A.Q. Kelly, AKQ Nascimento, G. Silva-Barbosa, JA Araújo Lima. A simple kit of plate-trapped antigen enzyme-linked immunosorbent assay for identification of plantviruses. Rev. Ciênc. Agron. 48: 42-47 2017.