Integrated Analysis for Identifying Radix Astragali and Its Adulterants Based on DNA Barcoding

Sihao Zheng,1 Dewang Liu,2 Weiguang Ren,1 Juan Fu,1 Linfang Huang,1 and Shilin Chen3

1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
2 School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia 010080, China
3 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China

Correspondence should be addressed to Linfang Huang; lfhuang@implad.ac.cn

Received 15 June 2014; Accepted 22 July 2014; Published 27 August 2014

1. Introduction

Radix Astragali (Huang Qi), a commonly used Chinese medicinal material, is mainly sourced from the plants of Astragalus membranaceus and Astragalus mongholicus according to Chinese Pharmacopoeia (2010 edition). Radix Astragali is widely used for its antiperspirant, antidiuretic, and antidiabetic properties and as a tonic drug [1–3]. It possesses various beneficial compounds, including astragalosides, isoflavonoids, isoflavones, isoflavan, and pterocarpan glycosides [4–6].

Due to the high market demand for Radix Astragali, a diverse group of adulterants with similar-morphological characteristics from genuses, such as Astragalus, Hedysarum, and Malva are often used in its stead [7]. The traditional methods used to identify Radix Astragali for use as a medicinal material, such as morphological and microscopic identification [8], thin-layer chromatography and Ultraviolet spectroscopy [9], Fourier Transform infrared spectroscopy (FTIR) [10], and high performance liquid chromatography (HPLC) [11], all, require specialized equipment and training. Several PCR-based molecular methods have been developed, providing an alternative means of identification. Multiplex PCR methods of DNA fragment analysis, such as randomly amplified polymorphic DNA (RAPD) [12] or amplified fragment length polymorphism (AFLP) [13], are unstable for the results to identify. DNA barcoding is a widely used molecular marker technology, first proposed by Hebert et al. [14, 15]. It uses a standardized and conserved, but diverse, DNA sequence to identify species and uncover biological diversity [16, 17]. In previous studies, various coding sequences for identifying Radix Astragali and its adulterants have been used, such as the 5S-rRNA spacer domain [18], 3′ untranslated region (3′ UTR) [19], ITS (internal transcribed spacer region) and 18S rRNA [3, 20, 21], ITS2 [22], ITS1 [6], matK (maturase K) and rbcL (ribulose 1, 5-bisphosphate carboxylase) of chloroplast genome, and coxI (cytochrome c oxidase 1) of the mitochondrial genome [23]. However, sequence analysis was mainly focused on genetic distance, variable sites, amplified polymorphisms, and the use of a modified neighbor-joining (NJ) algorithm, Bio-NJ tree, which were basic analyses limited to particular species. A more effective
method of molecular identification is necessary. The current study evaluates the identification reliability and efficiency of DNA barcoding for the identification of Radix Astragali using six indicators of genetic distance, identification efficiency, intra- and interspecific variation, gap rate, and barcoding gap. Six barcodes were selected for identification because they are commonly used in plant, especially in medicinal plant. We collected Radix Astragali samples from several of its adulterants reported in previous research and downloaded the genetic sequences from the GenBank database. A total of 29 species (including 19 species of Astragalus) and 478 sequences from six barcodes were used to validate the new method for identifying Radix Astragali and adulterants and to accelerate the data utilization of DNA barcoding.

2. Materials and Methods

2.1. Materials Information

A total of 77 specimens were collected from two origins of Radix Astragali, along with seven adulterants. Radix Astragali specimens were collected from Inner Mongolia, Shaanxi, and Gansu provinces in the People’s Republic of China, which are the main producing areas. The collection information is shown in Table 1. All corresponding voucher specimens were deposited in the Herbarium of the Institute of Medicinal Plant Development at the Chinese Academy of Medical Sciences in Beijing, China. The GenBank accession number of the ITS2 in this experiment was orderly KJ999296–KJ999344, the accession number of ITS sequences was orderly KJ999345–KJ999416, and the accession number of psbA-trnH was orderly KJ999256–KJ999295. The sequences added in the subsequent analysis, including ITS, ITS2, psbA-trnH, matK, and rbcL, were downloaded from the GenBank database.

2.2. DNA Extraction, PCR Amplification, and Sequencing

The material specimens were naturally dried and 30 mg of dried plant material was used for the DNA extraction. Samples were rubbed for two minutes at a frequency of 30 r/s in a FastPrep bead mill (Retsch MM400, Germany), and total genomic DNA was isolated from the crushed material according to the manufacturer’s instructions (Plant Genomic DNA Kit, Tiangen Biotech Co., China). We made the following modifications to the protocol: chloroform was diluted with isopropanol alcohol (24:1 in the same volume) and buffer solution GP2 with isopropanol (same volume). The powder, 700 μL of 65°C GP1, and 1 μL β-mercaptoethanol were mixed for 10–20 s before being incubated for 60 minutes at 65°C. Then, 700 μL of the chloroform:isopropanol alcohol mixture was added and the solution was centrifuged for 5 minutes at 12000 rpm (~13400 g). Supernatant was removed and placed into a new tube before adding 700 μL isopropanol and blending for 15–20 minutes. The mixture was centrifuged in CB3 spin columns for 40 s at 12000 rpm. The filtrate was discarded and 500 μL GD (adding quantitative anhydrous ethanol before use) was added before centrifuging at 12000 rpm for 40 s. The filtrate was discarded and 700 μL PW (adding quantitative anhydrous ethanol before use) was used to wash the membrane before centrifuging for 40 s at 12000 rpm. This step was repeated with 500 μL PW, followed by a final centrifuge for 2 minutes at 12000 rpm to remove residual wash buffer. The spin column was dried at room temperature for 3–5 minutes and then centrifuged for 2 minutes at 12000 rpm to obtain the total DNA. General PCR reaction conditions and universal DNA barcode primers were used for the ITS, ITS2, and psbA-trnH barcodes, as presented in Table 2[24–26]. PCR amplification was performed on 25-μL reaction mixtures containing 2 μL DNA template (20–100 ng), 8.5 μL ddH2O, 12.5 μL 2× Taq PCR Master Mix (Beijing TransGen Biotech Co., China), and 1/1 μL forward/reverse (F/R) primers (2.5 μM). The reaction mixtures were amplified in a 9700 GeneAmp PCR system (Applied Biosystems, USA). Amplicons were visualized by electrophoresis on 1% agarose gels. Purified PCR products were sequenced in both directions using the ABI 3730XL sequencer (Applied Biosystems, USA).

2.3. Sequence Assembly, Alignment, and Analysis

Sequencing peak diagrams were obtained and proofread, and then contigs were assembled using a CodonCode Aligner 5.0.1 (CodonCode Co., USA). Complete ITS2 sequences were obtained using the HMMer annotation method, based on the Hidden Markov model (HMM) [27]. All of the sequences were
Table 2: Primers and PCR reaction conditions.

Primer name	Primer sequences (5'-3')	PCR reaction condition
ITS2	ATGCAGATCTTGGTGTAAT	94°C 5 min; 94°C 30 s, 56°C 30 s, 72°C 45 s, 40 cycles; 72°C 10 min;
pr2	GACGCTTCTCCAGACTACAAT	94°C 30 s, 56°C 30 s, 72°C 45 s, 40 cycles; 72°C 10 min;
ITS	TCCTCCGCTATTGATATGC	94°C 5 min; 94°C 1 min, 50°C 1 min, 72°C 1.5 min + 3 s/cycle, 30 cycles; 72°C 7 min;
psbA	GTTAGTAAAGTCGTAACAGG	94°C 4 min; 94°C 30 s, 55°C 1 min, 72°C 1 min, 35 cycles; 72°C 10 min;
trnH	CGCGCATGGGATGATGATG	94°C 30 s, 55°C 1 min, 72°C 1 min, 35 cycles; 72°C 10 min;

aligned using ClustalW, in combination with 317 sequences from six commonly used barcodes (ITS2, ITS, psbA-trnH, matK, rbcL, and COI), which were downloaded from the GenBank database (Table 3). Sequence genetic distance and GC content were calculated using the maximum composite likelihood model. Maximum likelihood (ML) trees were constructed based on the Tamura-Nei model, and bootstrap tests were conducted using 1000 repeats to assess the confidence of the phylogenetic relationships by MEGA 6.0 software [28]. The barcoding gap, defined as the spacer region between intra- and interspecific genetic variations, and identification efficiency, based on BLAST1 and K2P nearest distance, were performed by the Perl language algorithm (Putty) [25, 29, 30].

3. Results

3.1. Sequence Information and Identification Efficiency. A total of 478 sequences for six barcodes were analyzed, from which 161 sequences were obtained from Astragalus Radix and its adulterants. Sequence information and identification success rates are listed in Table 4. The average GC content of six barcodes was discrepant, and ITS and ITS2 regions from nuclear ribosomal DNA performed higher than other barcodes (52.97% versus 50.80%). Among the six barcodes, ITS2 provided the largest average genetic distance (1.0792), and rbcL was the smallest (0.0349). All of the six barcodes obtained a zero value for the minimum genetic distance. In terms of identification efficiency, the nearest distance method was superior to the BLAST1 method for all of the six barcodes. Moreover, ITS and the psbA-trnH and matK regions provided a higher rate of success than the other three barcodes using the BLAST1 method. However, matK, ITS, and psbA-trnH performed better than the other three barcodes, based on the nearest distance method. ITS and psbA-trnH obtained higher genetic distances, so the matK, ITS, and psbA-trnH barcodes were the preferable methods for identifying Radix Astragali and its adulterants based on superior sequencing efficiency and identification efficiency.

3.2. Intra- and Interspecific Variation Analysis Using Six Parameters. Six parameters to analyze intraspecific variation and interspecific divergence were employed to assess the utility of six DNA barcodes (Table 5). We expected the “minimum interspecific distance” would be higher than the “coalescent depth” (maximum intraspecific distance). Therefore, we first utilized the “gap rate” to indicate the distinctness, calculated by the formula: (minimum interspecific distance – maximum intraspecific distance)/minimum interspecific distance. Results show that the ITS2, COI, matK, and rbcL regions outperformed the ITS and psbA-trnH regions for gap rates. However, when we compared all of the average interspecific divergence, the ITS2, rbcL, matK, and psbA-trnH regions performed better than the ITS and COI regions. Therefore, in terms of intra- and interspecific variation, ITS2, matK, and rbcL are the preferable options for identifying Radix Astragali and its adulterants.

3.3. Barcoding Gap Analysis. Analysis of the DNA barcoding gap presents the divergence of inter- and intraspecies and indicates separate, nonoverlapping distribution between specimens in an ideal situation [25]. In our study (Figure 1), the rbcL, COI, ITS, and matK regions possessed less relative distribution of inter- and intraspecific variation than psbA-trnH and ITS2, although there were no nonoverlapping regions for the six barcodes. Hence, the rbcL, COI, ITS, and matK regions are more successful at identifying Radix Astragali and its adulterants, from the standpoint of barcoding gap analysis.

3.4. ML Tree Analysis. Maximum likelihood (ML) is a general statistical criterion in widespread use for the inference of molecular phylogenies [31]. An ML tree visually revealed the relationship between species. As the results show (Figure 2),
Table 3: Sequences from GenBank for identifying *Astragalus* and its adulterants.

Region	Family	Species	Accession number
ITS2	Fabaceae	*Melilotus officinalis*	U50765, Z97687
	Fabaceae	*Astragalus adsurgens*	L10757, GU217639, GU217640, GU217641
	Fabaceae	*Astragalus chinensis*	GQ434356, GQ434366
	Fabaceae	*Hedysarum polybrotys*	GQ434367
	Fabaceae	*Astragalus mongholicus*	GQ434368, GU217643
	Fabaceae	*Astragalus mongholicus var. dahuricus*	GU217635
	Fabaceae	*Medicago sativa*	GU217662, Z99236, AF028417, JN617208
	Fabaceae	*Caragana sinica*	GU217654
	Fabaceae	*Medicago sativa subsp. caerulea*	AF028418
	Fabaceae	*Medicago sativa subsp. glomerata*	AF028419
	Fabaceae	*Medicago falcata*	AF028420
	Malvaceae	*Alcea rosea*	AF303023
	Fabaceae	*Astragalus membranaceus*	AF359749, EF685968, EU852042, FJ572044, GU289659
			GU289660, GU289661, GU289662, GU289663, GU289664
			HM142272, HM142273, HM142274, HM142275, HM142276
			HM142277, HM142278, HM142279, HM142280, HM142281
			HQ891827, JX017320, JX017321, JX017322, JX017323
			JX017324, JX017325, JX017326, JX017327, JX017328
			JX017329, JX017330, JX017331, JX017332, AF121675
			AF359750, EF685969, HM142282, HM142283, HM142284
			HM142285, HM142286, HM142287, HM142288, HM142289
			HM142290, JF736665, JF736666, JF736667, JF736668
			JF736669, AB787166
	Fabaceae	*Astragalus mongholicus*	AF359751
	Fabaceae	*Astragalus propinquus*	AF359751
	Fabaceae	*Astragalus lepsensis*	AF359752
	Fabaceae	*Astragalus aksuensis*	AF359753, AB231091
	Fabaceae	*Astragalus hoantchy*	AF359754, AF521952
	Fabaceae	*Astragalus hoantchy subsp. dshimensis*	AF359755
	Fabaceae	*Astragalus lehmannianus*	AF359756
	Fabaceae	*Astragalus sieversianus*	AF359757
	Fabaceae	*Astragalus austrosibiricus*	AF359758
	Fabaceae	*Astragalus uliginosus*	EF685970
	Fabaceae	*Astragalus scaberrimus*	AB051988
	Fabaceae	*Astragalus chinensis*	FJ980292, HM142297, AF121681
	Fabaceae	*Astragalus borealimongolicus*	HM142291, HM142292, HM142293, HM142294, HM142295
	Fabaceae	*Astragalus adsurgens*	HM142298, HM142299, HQ199326
	Fabaceae	*Astragalus mongholicus var. dahuricus*	HM142300, KC262199
	Fabaceae	*Astragalus zacharensis*	HM142301
	Fabaceae	*Astragalus mellotoides*	HM142302
	Fabaceae	*Astragalus scaberrimus*	HM142303
	Fabaceae	*Astragalus sieversianus*	AB741299
	Fabaceae	*Oxytropis aneritii*	EF685971
	Fabaceae	*Caragana sinica*	DQ914785, FJ537284, GQ338283
	Fabaceae	*Glycyrrhiza pallidiflora*	EU591998, GQ246130
	Fabaceae	*Melilotus officinalis*	AB546796, JF461307, JF461308, JF461309, DQ31985
	Fabaceae	*Medicago sativa*	GQ488541, AF053142, AU256392, JX017335, JX017336
	Fabaceae	*Oxytropis caerulea*	GU217599, HQ199316
	Fabaceae	*Hedysarum vicioides*	HM142304, HM142305
	Fabaceae	*Hedysarum polybrotys*	JX017333, JX017334, KF032294
	Malvaceae	*Malva neglecta*	EF419478, EF419479
	Malvaceae	*Alcea rosea*	AH010172, EF419544, EF679714, JX017319
Table 3: Continued.

Region	Family	Species	Accession number
psbA-trnH		Astragalus membranaceus f. pallidipurpureus	GQ139474
Fabaceae		Astragalus adsurgens	GU396749, GU396750, GU396751, KF011553
Fabaceae	Fabaceae	Astragalus mongholicus	GU396754, AB787167
Fabaceae		Astragalus membranaceus	GQ139475, GQ139476, GQ139477, GQ139478, GQ139479
Fabaceae		Astragalus montanum	GQ139480, GQ139481, GQ139482, GQ139483, GU396752
Fabaceae		Astragalus mongholicus	GU396753
psbA-trnH	Fabaceae	Caragana sinica	GU396767, KJ025053
Fabaceae	Fabaceae	Oxytropis caerulea	GU396771
Fabaceae	Fabaceae	Caragana sinica	GU396767, KJ025053
Fabaceae	Fabaceae	Medicago sativa	GU396781, HQ596768, HE966707
Fabaceae	Fabaceae	Glycyrrhiza pallidiflora	GU396807
Fabaceae	Fabaceae	Melilotus officinalis	HE966710
Fabaceae	Malvaceae	Malva neglecta	EF419597, EF419598, HQ596765, HQ596765, EF419662, EF679744
Fabaceae	Fabaceae	Astragalus membranaceus	EF685992, HMI42232, HMI42233, HMI42234, HMI42235
Fabaceae	Fabaceae	Astragalus mongholicus	HM142236, HMI42237, HMI42238, HMI42239, HMI42240
Fabaceae	Fabaceae	Astragalus mongholicus	HMI42245
Fabaceae	Fabaceae	Astragalus mongholicus var. dahuricus	HM049531, HM142260
Fabaceae	Fabaceae	Astragalus chinensis	HM049533, HM142263
Fabaceae	Fabaceae	Astragalus adsurgens	HM049537, HM142258, HMI42259, AY920437
Fabaceae	Fabaceae	Astragalus uliginosus	HMI422248, HMI42249, HMI42250, HMI42251, HMI42252
Fabaceae	Fabaceae	Astragalus zacharensis	HMI42261
Fabaceae	Fabaceae	Astragalus mellotoides	HMI42264
Fabaceae	Fabaceae	Astragalus scaberrinus	HMI42265
Fabaceae	Fabaceae	Astragalus sieversianus	AB741343
Fabaceae	Fabaceae	Medicago sativa	AF522108, HQ593363, HM851138, AY386881, HE967439
Fabaceae	Fabaceae	Oxytropis anertii	AF69289
Fabaceae	Fabaceae	Oxytropis caerulea	EF685995, HMI42266
Fabaceae	Fabaceae	Glycyrrhiza pallidiflora	HM049544
Fabaceae	Fabaceae	Hedysarum vicioides	EF685997, HMI42269, JQ699444
Fabaceae	Fabaceae	Caragana sinica	EF685996, HMI42257, HMI42267
Fabaceae	Fabaceae	Melilotus officinalis	HM049541
Fabaceae	Malvaceae	Malva neglecta	HE970723
Malvaceae	Malvaceae	Malva neglecta	EU346788, HQ593360, JN894566, JN894571, JN895781
Malvaceae	Malvaceae	Alcea rosea	EU346805
Fabaceae	Fabaceae	Astragalus membranaceus	EF685973
Fabaceae	Fabaceae	Astragalus adsurgens	EF685978, HMI42199, HMI42200, HMI42201, HMI42202
Fabaceae	Fabaceae	Astragalus mongholicus	HM142203, HMI42204, HMI42205, HMI42206, HMI42207
Fabaceae	Fabaceae	Astragalus mongholicus	HMI42221
Fabaceae	Fabaceae	Astragalus mongholicus var. dahuricus	HMI42208, HMI42209, HMI42210, HMI42211
Fabaceae	Fabaceae	Astragalus uliginosus	HMI42212, HMI42213, HMI42214, HMI42222, HMI42223
Fabaceae	Fabaceae	Hedysarum vicioides	EF685982, U74246, HMI42224, HMI42227,
Fabaceae	Fabaceae	Astragalus adsurgens	EF685984
Fabaceae	Fabaceae	Astragalus uliginosus	HMI42215, HMI42216, HMI42217, HMI42218, HMI42219, HMI42220,
Fabaceae	Fabaceae	Astragalus borealimongolicus	EF685981, HMI42226
Fabaceae	Fabaceae	Oxytropis anertii	EF685983, AB012129, HMI42228
Fabaceae	Fabaceae	Glycyrrhiza pallidiflora	EF685983
Fabaceae	Fabaceae	Caragana sinica	FJ537233
Fabaceae	Fabaceae	Melilotus officinalis	JQ933405, JX848463
4. Discussion and Conclusions

Radix Astragali is reported to possess 47 bioactive compounds and has many bioactive properties [32–37]. Various Radix Astragali preparations are commercially available, not only in China as a TCM component, but also in the United States, as dietary supplements [38]. However, due to increasing demand, substitutes and adulterants have flooded the market. Traditional identification methods, such as morphological and microscopic methods, are limited by the lack of explicit criteria for character selection or coding and, thus, mainly depend on subjective assessments. Although chemical methods are able to distinguish between different species, it is difficult to differentiate sibling species that possess similar chemical compositions. In addition, chemical methods are unable to provide accurate species authentication. Several types of molecular markers for characterizing genotypes are useful in identifying plant species. For example, RAPD has been used to estimate genetic diversity in plant populations based on amplification of random DNA fragments and comparisons of common polymorphisms. DNA barcoding is advocated for species identification, due to its universal applicability, simplicity, and scientific accuracy. However, the analysis methods for DNA barcodes were limited. With the development of molecular biology and bioinformatics, a more improved analytic method for DNA barcoding can be established to identify Radix Astragali and closely related species.

In this study, we validated a new analytical method for identifying Radix Astragali using DNA barcoding. Seventy-seven specimens of Radix Astragali and its adulterants were collected, and the sequences of 29 species reported in the literature were downloaded from the GenBank database. Based on the 478 sequences for six barcodes (ITS2, ITS from mitochondrial genome; COI from mitochondrial genome), genetic distance and ML Tree were calculated by MEGA 6.0 software, and identification efficiency, intra- and interspecific variation, and barcoding gap were calculated using the Perl language algorithm. Results of the six indicators assessed are shown in Table 6. ITS and psbA-trnH outperformed other barcodes in terms of identification efficiency. ITS2 performed better in terms of genetic distance, gap rate, and inter- and intraspecific variation. RbcL performed better in terms of barcoding gap and inter- and intraspecific variation. Although ITS2 was part of the ITS sequence, it performed poorly in identification efficiency. Therefore, we suggest that the ITS sequence is the optimal barcode, and that the psbA-trnH region is a complementary barcode for identifying Radix Astragali and its adulterants.

In conclusion, we describe a new analytical method for the use of DNA barcoding in the identification of Radix...
Astragali. Six indicators, including average genetic distance, BLAST1 and the nearest distance method for identification efficiency, inter- and intraspecific variation, and gap rate were tested to evaluate six DNA barcodes using bioinformatics software and the Perl language algorithm. The ITS sequence was the optimal barcode for identifying Radix Astragali and its adulterants. This method provides a novel means for accurate identification of Radix Astragali and its adulterants and improves the utilization of DNA barcoding in identifying medicinal plant species.
Figure 2: Continued.
Figure 2: ML tree for six barcodes. *The different color and shape for different species in clusters presented the identification of different barcodes.

Table 6: Six indicators assessed for DNA barcoding.

DNA barcodes	Average genetic distance	Identification efficiency BLAST1	Identification efficiency Nearest distances	Gap rate	Inter- to intraspecific variation	Barcoding gap	Total score
ITS2	8	12	8	8	8	4	48
ITS	6	28	22	0	0	6	62
psbA-trnH	6	26	18	0	2	2	54
rbcl	4	12	14	4	6	8	48
matK	4	14	24	4	4	2	52
COI	2	6	10	6	0	6	30

*The total score of six parameters was set by 10, 30, 30, 10, 10, and 10 in order. Identification efficiency based on two methods was set by 30 score because of its importance for identification.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments
Thanks are due to the National Natural Science Foundation of China (nos. 81274013, 8130069, and 81473315) and the National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (no. 2011BAI07B01).

References
[1] Y. Kuo, W. Tsai, S. Loke, T. Wu, and W. Chiou, “Astragalus membranaceus flavonoids (AMF) ameliorate chronic fatigue syndrome induced by food intake restriction plus forced swimming,” Journal of Ethnopharmacology, vol. 122, no. 1, pp. 28–34, 2009.
[2] W. C. S. Cho and K. N. Leung, “In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus,” Journal of Ethnopharmacology, vol. 113, no. 1, pp. 132–141, 2007.
[3] T. T. X. Dong, X. Q. Ma, C. Clarke et al., “Phylogeny of Astragalus in China: molecular evidence from the DNA sequences of 5S rRNA spacer, ITS, and 18S rRNA,” Journal of Agricultural and Food Chemistry, vol. 51, no. 23, pp. 6709–6714, 2003.
[4] X. Ma, P. Tu, Y. Chen, T. Zhang, Y. Wei, and Y. Ito, “Preparative isolation and purification of two isoflavones from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography,” Journal of Chromatography A, vol. 992, no. 1-2, pp. 193–197, 2003.
[5] X. Ma, P. Tu, Y. Chen, T. Zhang, Y. Wei, and Y. Ito, “Preparative isolation and purification of isoflavon and pterocarpan glycosides from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography,” Journal of Chromatography A, vol. 1023, no. 2, pp. 311–315, 2004.
[6] P. Y. Yip and H. S. Kwan, “Molecular identification of Astragalus membranaceus at the species and locality levels,” Journal of Ethnopharmacology, vol. 106, no. 2, pp. 222–229, 2006.
[7] Y. Z. Zhao, “Investigation the source and distribution of Radix Astragali,” Chinese Traditional and Herbal Drugs, vol. 35, no. 10, pp. 1189–1190, 2004.
[8] Y. H. Zhang, L. M. Zhang, X. B. Liu et al., “Study on morphological and microscopic identification for different producing areas of Radix Astragali,” Journal of Chinese Medicinal Materials, vol. 36, no. 10, pp. 1602–1604, 2013.
[9] L. Wei and F. T. Zeng, “Using thin-layer chromatography and ultra-violet spectroscopy to identify Radix Astragali and its adulterants,” Journal of Chinese Medicinal Materials, vol. 16, no. 12, pp. 14–17, 1993.
[10] G. Li, H. Zhao, Y. Liu et al., “Study on Chinese herb astragalus membranaceus by FTIR fingerprint,” Spectroscopy and Spectral Analysis, vol. 30, no. 6, pp. 1493–1497, 2010.
[11] X. Q. Ma, Q. Shi, J. A. Duan, T. T. X. Dong, and K. W. K. Tsim, “Chemical analysis of Radix Astragali (Huangqi) in China: a comparison with its adulterants and seasonal variations,” Journal of Agricultural and Food Chemistry, vol. 50, no. 17, pp. 4861–4866, 2002.
[12] H. J. Na, J. Y. Um, S. C. Kim et al., “Molecular discrimination of medicinal Astragali radix by RAPD analysis,” Immunopharmacology and Immunotoxicology, vol. 26, no. 2, pp. 265–272, 2004.
[13] L. X. Duan, T. L. Chen, M. Li et al., “Use of the metabolomics approach to characterize chinese medicinal material Huangqi,” Molecular Plant, vol. 5, no. 2, pp. 376–386, 2012.
[14] P. D. N. Hebert, A. Cywinska, S. L. Ball, and J. R. DeWaan, “Biological identifications through DNA barcodes,” Proceedings of the Royal Society B: Biological Sciences, vol. 270, no. 1512, pp. 313–321, 2003.
[15] P. D. N. Hebert, E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs, “Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14812–14817, 2004.
[16] S. H. Zheng, X. Jiang, L. B. Wu, Z. H. Wang, and L. F. Huang, “Chemical and genetic discrimination of cistanches herba based on UPLC-QTOF/MS and DNA barcoding,” PLoS ONE, vol. 9, no. 5, Article ID e89061, 2014.
[17] L. F. Huang, S. H. Zheng, L. B. Wu, X. Jiang, and S. L. Chen, “Ecotypes of Cistanche deserticolabased on chemical component and molecular traits,” Scientia Sinica Vitae, vol. 44, no. 3, pp. 318–328, 2014.
[18] X. Q. Ma, J. A. Duan, D. Y. Zhu, T. T. X. Dong, and K. W. K. Tsim, “Species identification of Radix Astragali (Huangqii) by DNA sequence of its 5S-rRNA spacer domain,” Phytochemistry, vol. 54, no. 4, pp. 363–368, 2000.
[19] G. Chen, X. L. Wang, W. S. Wong, X. D. Liu, B. Xia, and N. Li, “Application of 3’ Untranslated Region (UTR) sequence-based amplified polymorphism analysis in the rapid authentication of Radix astragali,” Journal of Agricultural and Food Chemistry, vol. 53, no. 22, pp. 8551–8556, 2005.
[20] J. Liu, H.-B. Chen, B.-L. Gou, Z.-Z. Zhao, Z.-T. Liang, and T. Yi, “Study of the relationship between genetics and geography in determining the quality of Astragal Radix,” Biological and Pharmaceutical Bulletin, vol. 34, no. 9, pp. 1404–1412, 2011.
[21] Z. H. Cui, Y. Li, Q. J. Yuan, L. Zhou, and M. Li, “Molecular identification of Astragal Radix and its adulterants by ITS sequences,” China Journal of Chinese Materia Medica, vol. 37, no. 24, pp. 3773–3776, 2012.
[22] T. Gao, H. Yao, X. Y. Ma, Y. J. Zhu, and J. Y. Song, “Identification of Astragalus plants in China using the region ITS2,” World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica, vol. 12, no. 2, pp. 222–227, 2010.
[23] H.-Y. Guo, W.-W. Wang, N. Yang et al., “DNA barcoding provides distinct between Radix Astragali and its adulterants,” Science China Life Sciences, vol. 53, no. 8, pp. 992–999, 2010.
[24] CBOL Plant Working Group, “A DNA barcode for land plants,” Proceedings of the National Academy of Sciences of United States of America, vol. 106, no. 31, pp. 12794–12797, 2009.
[25] S. L. Chen, H. Yao, J. P. Han et al., “Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species,” PLoS ONE, vol. 5, no. 1, Article ID e6813, 2010.
[26] W. J. Kress, K. J. Wurdack, E. A. Zimmer, L. A. Weigt, and D. H. Janzen, “Use of DNA barcodes to identify flowering plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8369–8374, 2005.
[27] A. Keller, T. Schleicher, J. Schultz, T. M¨uller, T. Dandekar, and M. Wolf, “3.8S-28S rRNA interaction and HMM-based ITS2 annotation,” Gene, vol. 430, no. 1-2, pp. 50–57, 2009.
[28] K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, "MEGA6: molecular evolution analysis version 6.0," *Molecular Biology and Evolution*, vol. 30, no. 12, pp. 2725–2729, 2013.

[29] C. P. Meyer and G. Paulay, "DNA barcoding: error rates based on comprehensive sampling," *PLoS Biology*, vol. 3, no. 12, article e422, 2005.

[30] H. A. Ross, S. Murugan, and W. L. S. Li, “Testing the reliability of genetic methods of species identification via simulation,” *Systematic Biology*, vol. 57, no. 2, pp. 216–230, 2008.

[31] D. A. Morrison, "Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences," *Systematic Biology*, vol. 56, no. 6, pp. 988–1010, 2007.

[32] Y. P. Zhang, M. K. Nie, S. Y. Shi et al., "Integration of magnetic solid phase fishing and off-line two-dimensional high-performance liquid chromatography-diode array detector mass spectrometry for screening and identification of human serum albumin binders from Radix Astragali," *Food Chemistry*, vol. 146, no. 1, pp. 56–64, 2014.

[33] X. H. Liu, L. G. Zhao, J. Liang et al., "Component analysis and structure identification of active substances for anti-gastric ulcer effects in Radix Astragali by liquid chromatography and tandem mass spectrometry," *Journal of Chromatography B*, vol. 960, no. 1, pp. 43–51, 2014.

[34] C. Chu, H.-X. Cai, M.-T. Ren et al., "Characterization of novel astragalosidemalonates from *Radix Astragali* by HPLC with ESI quadrupole TOF MS," *Journal of Separation Science*, vol. 33, no. 4-5, pp. 570–581, 2010.

[35] J. Fu, L. F. Huang, H. T. Zhang, S. H. Yang, and S. L. Chen, "Structural features of a polysaccharide from *Astragalus membranaceus* (Fisch.) Bge. var. mongholicus (Bge.) Hsiao," *Journal of Asian Natural Products Research*, vol. 15, no. 6, pp. 687–692, 2013.

[36] X. Huang, Y. Liu, F. Song, Z. Liu, and S. Liu, “Studies on principal components and antioxidant activity of different *Radix Astragali* samples using high-performance liquid chromatography/electrospray ionization multiple-stage tandem mass spectrometry,” *Talanta*, vol. 78, no. 3, pp. 1090–1101, 2009.

[37] A. Nalbantsoy, T. Nesil, Ö. Yilmaz-Dilsiz, G. Aksu, S. Khan, and E. Bedir, "Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species," *Journal of Ethnopharmacology*, vol. 139, no. 2, pp. 574–581, 2012.

[38] W. L. Xiao, T. J. Motley, U. J. Unachukwu et al., "Chemical and genetic assessment of variability in commercial *Radix Astragali* (Astragalus spp.) by ion trap LC-MS and nuclear ribosomal DNA barcoding sequence analyses," *Journal of Agricultural and Food Chemistry*, vol. 59, no. 5, pp. 1548–1556, 2011.