ENERGY EFFICIENCY OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION TESTS AT LOCOMOTIVE REPAIR PLANT

Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing.

Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator.

Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator.

Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated.

Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn will allow testing in closer to real conditions as a result of increased load on the hydraulic transmission. Increased load on the hydraulic transmission will help to detect possible defects and hence will improve the quality of transmission repairs.

Keywords: hydraulic transmission; hydraulic testing; test stand; drive motor; load generator; additional motor
Introduction

Most locomotives with hydraulic power transmission used in Ukraine require overall or overhaul reconditioning. When performing the overhaul one of the complex and responsible diesel locomotive units is hydraulic transmission. After overhauls the locomotive hydraulic transmission is tested without load for the running-in purpose and with load to check the basic settings. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. The quality of these tests results in the transmission resource and its efficiency.

Problem statement. When conducting the overhaul at the Dnipropetrovsk Diesel Locomotive Repair Plant «Promteplovoz» the most energy-consuming is the diesel locomotives hydraulic transmission test stand. Testing of hydraulic transmission in a wide power range is limited by technical capabilities of equipment and existing limits for energy consumption. In this connection the important task is the development of energy-efficient method for locomotive hydraulic transmission testing in locomotive repair plant environment.

Previous studies analysis. The problem of improved testing of locomotives with hydraulic transmission is researched in the works [6, 7, 9]. The research results can partly be used during bench testing of hydrodynamic transmissions in plant environment.

Industry research laboratory (IRL) «Technical maintenance and diagnostics of locomotives» of Dnepropetrovsk National University of Railway Transport named after Academician V. Lazaryan (DNURT) is working to improve testing of locomotive hydraulic transmissions under the conditions of Diesel Locomotive Repair Plant [5, 8, 11, 12].

In [3, 4] the author considered the mutual load system of traction electric machines with direct and pulsating current, which allows to use them while bench testing the hydraulic transmission with electric drive and load.

Purpose

Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing.

Methodology

There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment.

Base material. The plant uses a typical stand for testing. It consists of the frame on which there is installed the hydraulic transmission, DC electric drive, DC generator for power take-off, remote control. For generator loading the water rheostat is used.

Block diagram of the stand is shown in Fig. 1.

Fig. 1. Block diagram of the diesel locomotive hydraulic transmission run-in test stand

The stand input parameters are voltage U_m and armature current I_a; excitation winding tension U_{m_e} of the drive motor. The hydraulic transmission input parameters are the rotary speed ω_m and the moment M_m on the electric drive motor shaft that corresponds to the rotary speed ω_i and the moment M_i of the impeller. The hydraulic transmission output parameters are the rotary speed ω_i and the moment M_i of the impeller that corresponds to the rotary speed ω_g and the moment M_g of the load generator armature. To create a moment of resistance during hydraulic transmission testing the water load rheostat is used; the power consumed by rheostat is defined as $P_g = I_g U_g$.

The stand monitors the following parameters:

- the rotary speed of the electric drive motor ω_m and the load generator ω_g;
- the armature current I_a and voltage U_a and excitation winding $U_{m,e}$ of the drive motor and the load generator $U_{g,e}$.
- oil temperature at the inlet and outlet of the hydraulic transmission;
- pressure in lubrication system;
- pressure of the hydraulic transmission feed pump.

Hydraulic transmission of type UGP 750-1 200 is designed for joint operation with diesel engine which develops power from 550 ... 880 kW. It is not possible to check hydraulic transmission operation in full load range at the existing stand, as the drive motor rated power is 270 kW. Besides, the moment characteristics of the motor do not match with those of the hydraulic transmission that does not allow using full engine capacity. That is why the post-overall bench tests of the hydraulic transmission are carried out in a limited range of loads.

To improve the hydraulic transmission test stand there are the following options of modernization [5, 11].

Replacing of the electric drive motor with diesel engine. Installation of diesel significantly complicates the design and dimensions of the stand. Besides, consideration must be given to the fact that when placing the diesel stand within the workshop the noise and exhaust emissions, which occur during the diesel engine operation, will adversely affect the employees. Given the high cost of diesel fuel and other disadvantages, this method is not rational.

Installing the drive motor, which has diesel relevant nominal capacity, will require more powerful motor control system. Along with the cost of the electric motor, this option would require significant capital investments.

One option for modernization is to install the additional electric motor on the stand for more power to the hydraulic transmission input shaft drive. This option has its advantages if the additional electric motor is powered by the stand load generator.

In terms of energy savings spent on drive motor power, the rational option (Fig. 2) is energy returning from the generator to the electric drive motor. To do this, the power converter is switched on instead of the water rheostat in order to regulate the output voltage of the generator according to the operation mode of the drive motor.

Since the load generator power depends on the test mode, it is necessary to use a complex system of energy transformation that will provide the opportunity to supply power to additional motor.

Let’s consider in more detail the option of installation of additional electric motor for more power on the hydraulic transmission input shaft.

Block diagram of the updated stand for testing hydraulic transmission is shown in Fig. 3. The motor M and the generator G are electric machines designed for loading hydraulic transmission. The motor M is connected to the hydraulic transmission input shaft directly, and the generator G – to the hydraulic transmission output shaft through reduction gear with angular velocity transmission ratio k_2.

Additional drive motor M_{add}, designed to cover all losses in the mutual load stand, is connected to the hydraulic transmission input shaft through reduction gear with angular velocity transmission ratio k_1.

The electrical circuit of the test stand is shown in Figure 4. The armatures of the electric motor M and the generator G are connected electrically, forming a loop. The excitation winding of the motor M and the generator G are powered by
separate voltage sources, VS1 and VS2 respectively.

The armatures of the additional drive motor M_{add} is connected to the power source VS3, and its excitation winding to the voltage source VS4.

The rotary speed of hydraulic transmission input shaft is regulated by changing the armature voltage and excitation current of the additional drive motor M_{add} (VS3, VS4).

Fig. 4. Electric circuit of a stand

Adjusting the hydraulic transmission load moment is performed by changing the current I in the circuit of the motor M and the generator G.

Voltage stabilization at the armature M_{add} stabilizes the angular velocity ω_m of hydraulic transmission input shaft. We assume that one of the conditions of hydraulic transmission testing is as follows

$$\omega_m = \text{const}. \quad (1)$$

The second condition, ensuring relative stability of the hydraulic transmission load moment, is armature current consistency M and G

$$I = \text{const.} \quad (2)$$

Voltage balance [4] in the main electrical circuit $(M - G)$ has the form

$$E_g - E_m = I \cdot \sum R, \quad (3)$$

where E_g, E_m – emf of generator and engine, respectively; $\sum R$ – total ohmic resistance of the main electric circuit.

$$E_g = c \cdot \Phi_g \cdot \omega_g; \quad (4)$$

$$E_m = c \cdot \Phi_m \cdot \omega_m, \quad (5)$$

where c – constant component, depending on the design of the same type of electric motor M and generator G; Φ_g, Φ_m – magnetic flows of generator and motor, respectively; ω_g, ω_m – angular velocity of generator and motor, respectively.

Angular velocity ω_g, ω_m are related in the form

$$\omega_g = k_{hr} \cdot K_2 \cdot \omega_m, \quad (6)$$

where k_{hr} and K_2 – angular velocity transfer ratios of hydraulic transmission and reduction gear, respectively.

For normal mutual load of identical electric machines M and G it is preferably to ensure the following conditions

$$k_{hr} = \frac{1}{k_{hr, \text{av}}}, \quad (7)$$

where $k_{hr, \text{av}}$ – average value of adjustable transfer ratio k_{hr}.

Balance of mechanical moments can be represented as

$$M_m + \frac{1}{k_1} \cdot M_{add} = M_g \cdot k_{hr} \cdot k_2 + \Delta M_{hr}, \quad (8)$$

where M_m, M_g – shaft moment of motor and generator; ΔM_{hr} – hydraulic transmission moment losses, before the input shaft.

Shaft moment of the additional motor is required to compensate for all the losses in the test stand

$$M_{add} = k_{hr} \left[M_g \cdot k_{hr} \cdot k_2 + \Delta M_{hr} - M_m \right]. \quad (9)$$

$$M_g = c \cdot \Phi_g \cdot I + \Delta M_g; \quad (10)$$

$$M_m = c \cdot \Phi_m \cdot I - \Delta M_m, \quad (11)$$

where ΔM_g and ΔM_m – moment losses caused by no-load losses in generator and motor, respectively.

Then the expression for M_{add} takes the form

$$M_{add} = k_{hr} \left[c \cdot I \left(\Phi_g \cdot k_{hr} \cdot k_2 - \Phi_m \right) \right] +$$

$$+ \Delta M_{hr} + \Delta M_g \cdot k_{hr} \cdot k_2 + \Delta M_m]. \quad (12)$$

doi: 10.15802/stp2015/57000 © B. E. Bodnar, M. I. Kapitsa, O. B. Ochkasov, R. O. Korenyuk, 2015
Current in the main circuit

\[I = \frac{c \left[\Phi_g \cdot k_{hr} \cdot k_2 - \Phi_m \right]}{\sum_R} \omega_m. \]

(13)

Adjustment of the current and therefore the load moment of the tested hydraulic transmission can be performed by changing the magnetic flows of motor \(M \) and generator \(G \). For a given value of current and angular velocity ratio the magnetic flow ratio is as follows

\[\Phi_g \cdot k_{hr} \cdot k_2 - \Phi_m = \frac{I \cdot \sum_R}{c \cdot \omega_m}. \]

(14)

Then the expression for \(M_{add} \) takes the form:

\[M_{add} = k_1 \left[\frac{I^2 \cdot \sum_R}{\omega_m} + \Delta M_{hr} + \right. \]

\[+ \left. \Delta M_g \cdot k_{hr} \cdot k_2 + \Delta M_m \right]. \]

(15)

Multiplying both parts of this expression by \(\omega_m / k_1 \), we get the power balance equation in the form

\[P_{add} = \sum \Delta P_e + \Delta P_{hr} + \]

\[+ \Delta P_{nl_g} \cdot k_{hr} \cdot k_2 + \Delta P_{nl_m}, \]

(16)

where \(P_{add} \) – power of additional motor; \(\sum \Delta P_e \) – total electrical losses in motor and generator; \(\Delta P_{hr} \) – power losses in hydraulic transmission; \(\Delta P_{nl_g} \), \(\Delta P_{nl_m} \) – no-load losses in generator and motor, respectively.

Thus, an additional motor \(M_{add} \) cover all the losses in the test stand.

The power losses in the hydraulic transmission

\[\Delta P_{hr} = \Delta M_{hr} \cdot \omega_m = M_{in} \cdot \omega_m \left(1 - \eta_{hr}\right). \]

(17)

where \(M_{in} \) and \(\omega_m \) – moment and angular velocity at the hydraulic transmission input; \(\eta_{hr} \) – hydraulic transmission efficiency.

\[M_{in} = M_m + \frac{1}{k_1} M_{add}. \]

(18)

Findings

Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted.

Originality and practical value

The possibility of using electric power load generator to power the stand electric drive motor was theoretically substantiated. A variant of hydraulic transmission test stand based on the mutual load method was proposed.

Conclusions

The connection circuit of the testing station electrical machinery was theoretically justified and practically refined, the test procedure was improved that enables full-range testing of hydraulic transmission with minimal losses of electrical power and existing restrictions thereof.

LIST OF REFERENCE LINKS

1. Афанасов, А. М. Визначення рациональних режимів взаємного навантаження тягових двигунів електрорухомого складу магістрального та промислового транспорту / А. М. Афанасов // Наука та прогрес трансп. Вісн. Дніпропетр. наук. ун-ту заліз. трансп. – 2014. – № 4 (52). – С. 67–74. doi: 10.15802/stp2014/27322.

2. Афанасов, А. М. Регулювання небалансів електромагнітного моменту в системах взаємного навантаження електричних машин тягового та моторвагонного рухового складу магістрального та промислового транспорту / А. М. Афанасов // Наука та прогрес трансп. Вісн. Дніпропетр. наук. ун-ту заліз. трансп. – 2014. – № 6 (54). – С. 70–77. doi: 10.15802/stp2014/32965.

3. Афанасов, А. М. Розвиток наукових основ вдосконалення енергоекономічних методів випробування тягових електричних машин постійного та пульсуючого струму : автореф. дис. … д-ра техн. наук : 05.22.09, 05.22.12 / Афанасов Андрій Михайлович ; Дніпропетр. наук. ун-т. заліз. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2013. – 36 с. Афанасов, А. М. Системы взаимного наружения тяговых электрических машин постоiнного и пульсирующего тока : монография /
ЕКСПЛУАТАЦІЯ ТА РЕМОНТ ЗАСОБІВ ТРANSPORTУ

А. М. Афанасов. – Дніпропетровск : Маковець, 2012. – 248 с.

5. Боднар, Б. С. Підвищення енергоєфективності випробувань гідравлічних передач тепловозів / Б. С. Боднар, О. Б. Очкасов, Р. О. Коренюк // Науково-технічний прогрес на транспорті : тези Всеукр. наук.-техн. конф. молодих вчених, магістрів та студентів : секція «Механіка» / Дніпропетр. наук. ун-т заліз. трансп. ім. акад. В. Лазаряна. – Дніпропетровск, 2015. – С. 60–61.

6. Боднарь, Б. Е. Теоретичні основи, опит створення системи іспитування і діагностировання тепловозів з гідродинамічною передачею: дис. … д-ра техн. наук : 05.22.07 / Боднарь Борис Євгенійович; Дніпропетр. гос. техн. ун-т ж.-д. трансп. – Дніпропетровск, 1996. – 375 с.

7. Ісследования движения валов гидропередач при свободном вращении / Б. Е. Боднарь, М. И. Капица, Т. Ф. Кузнєцов, В. М. Лянцкі // Пути підвищення надежності і економичності тепловозов: межув. сб. наук. тр. – Дніпропетровск, 1987. – Вип. 256/10. – С. 56–61.

8. Капица, М. И. Определение величины тепловых потерь при испытаниях тепловозной гидродинамической передачи в режиме “выбега” / М. И. Капица, В. П. Минчук, Р. А. Коренюк // Вісн. Східноукр. наук. ун-ту ім. В. Доля. – Луганськ, 2013. – Вип. 18. – С. 13–16.

9. Лянцкі, В. М. Інформационно – диагностичная система испытания тепловозов с гидродинамической передачей на базе микро–ЭВМ / В. М. Лянцкі // Пути підвищення надежності і економичності тепловозов: межув. сб. наук. тр. – Дніпропетр. ін-т инженеров трансп.

10. Овчинников, В. М. Гидравлические передачи тепловозов : учеб. пособие / В. М. Овчинников, В. А. Халиманчук, В. В. Невзоров. – Гомель : БелГУТ, 2006. – 155 с.

11. Очкасов, О. Б. Удосконалення випробування гідравлічних передач тепловозів / О. Б. Очкасов, Р. О. Коренюк, О. С. Парфьєнов // Науково-технічний прогрес на транспорті : тези Всеукр. наук.-техн. конф. молодих вчених, магістрів та студентів : секція «Механіка» / Дніпропетр. наук. ун-т заліз. трансп. ім. акад. В. Лазаряна. – Дніпропетровск, 2014. – С. 74–75.

12. Удосконалення стенду випробувания гідравлічних передач тепловозів / Б. С. Боднар, В. П. Минчук, О. Б. Очкасов, Р. О. Коренюк // Проблеми та перспективи розвитку залізничного транспорту : тези 75 Міжнар. наук.-практ. конф. : секція «Експлуатація та ремонт локомотивів» / Дніпропетр. наук. ун-т заліз. трансп. ім. акад. В. Лазаряна. – Дніпропетровск, 2015. – С. 23–24.

13. Discrete-Time Neural Sliding-Mode Block Control for a DC Motor With Controlled Flux / C. E. Castaneda, A. G. Loukianov, E. N. Sanchez, B. Castillo-Toledo // IEEE Transactions. Industrial Electronics. – 2012. – Vol. 59. – Iss. 2. – P. 1194–1207.

14. Hayek, J. El. Experiences with a traction drive laboratory model / J. El. Hayek, T. J. Sobczyk, G. Skarpetowski // Electromotion. – 2010. – Vol. 17. – Iss. 1. – P. 30–36.

15. Liu, Y. Developments in Switching Mode Supply Technologies / Y. Liu, W. Eberle // IEEE Canadian Review. Switching Mode Power Supplies. Fall. – 2009. – № 61. – Р. 9–14.

В. С. БОДНАР1, М. И. КАПИЦА2, О. Б. ОЧКАСОВ3, Р. О. КОРЕНЮК4*

*1Каф. «Локомотиві», Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 793 19 01, ел. пошта bodnar@nz.diiit.edu.ua, ORCID 0000-0002-3591-4772

2Каф. «Локомотиві», Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 733 19 61, ел. пошта m.i.kapica@ua.fm, ORCID 0000-0002-3800-2920

3*Каф. «Локомотиві», Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 733 19 61, ел. пошта oalexander@mail.ru, ORCID 0000-0002-7719-7214

4Каф. «Локомотиві», Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 733 19 61, ел. пошта koroman@ua.fm, ORCID 0000-0003-1416-4770

doi: 10.15802/stp2015/57000 © В. Е. Боднар, М. І. Капиця, О. Б. Очкисов, Р. О. Коренюк, 2015
ПІДВИЩЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ ВИПРОБУВАНЬ ГІДРАВЛІЧНИХ ПЕРЕДАЧ ТЕПЛОВОЗІВ В УМОВАХ ЛОКОМОТИВОРЕМОНТНОГО ЗАВОДУ

Мета. В складних економічним умовах скорочення витрат електроенергії, що споживається на потреби виробництва, є актуальним завданням для промислових підприємств країни. Технічними умовами підприємств, що ремонтують гідравлічні передачі тепловозів, рекомендується проведення певного обсягу оцінювальних та регулювальних випробувань із метою контролю їх післяремонтного стану. Як показує практика, значна частина дефектів гідравлічних передач виявляється під час стендових випробувань. Для переваг стендових випробувань можна також віднести: можливість виявлення післяремонтних дефектів, зручність обслуговування гідравлічної передачі та відносно невелику трудомісткість усунення дефektів. Від якості проведення цих випробувань залежить ресурс передачі та її коефіцієнт корисної дії. Робота спрямована на удосконалення технології заводських післяремонтних випробувань гідропередач із метою зменшення витрат електричної енергії, що споживається на проведення випробувань. Методика. Проведено аналіз можливих варіантів удосконалення стенду випробувань гідравлічних передач. Запропонована методика підвищення енергоефективності випробувань гідравлічних передач тепловозів в умовах локомотиворемонтного заводу. Це досягається шляхом встановлення додаткового привідного електродвигуна, який отримує живлення від навантажувального генератора. Результати. На підставі проведеного аналізу обґрунтовано необхідність удосконалення заводських стендових випробувань гідравлічних передач. Розглянуто варіанти модернізації стенду. Проведено аналіз модернізації випробувального стенду. Наукова новизна. Авторами теоретично обґрунтована можливість використання електричної енергії навантажувального генератора для живлення приводного електродвигуна стенду або додаткового привідного електродвигуна. Практична значимість. За результатами досліджень запропоновано варіант конструкції стенду випробувань гідравлічної передачі, який базується на методі взаємного навантаження. Використання цього методу підвищує діапазон навантажень гідравлічної передачі, а споживання електричної енергії стендом залишається без змін. Додатковий привідний електродвигун сприяє відновленню частоти обертання вхідного валу, що, в свою чергу, дозволяє проводити випробування в умовах, більш наближених до реальних внаслідок збільшення навантаження на гідравлічну передачу. Збільшення навантаження на гідравлічну передачу сприяє виявленню можливих дефектів, що, в свою чергу, підвищує якість ремонту передачі.

Ключові слова: гідравлічна передача; випробування гідропередач; випробувальний стенд; приводний двигун; навантажувальний генератор; додатковий двигун

Б. Е. БОДНАР1, М. И. КАПИЦА2, А. Б. ОЧКАСОВ3, Р. А. КОРЕНЮК4

1Каф. «Локомотивы», Дніпропетровський національний університет железнодорожного транспорта імені академіка В. Лазаряна, ул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 793 19 01, ел. поціта bodnar@nz.diiit.edu.ua, ORCID 0000-0002-3591-4772
2Каф. «Локомотивы», Дніпропетровський національний університет железнодорожного транспорта імені академіка В. Лазаряна, ул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 733 19 61, ел. поціта m.i.kapica@ua.fm, ORCID 0000-0002-3800-2920
3Каф. «Локомотивы», Дніпропетровський національний університет железнодорожного транспорта імені академіка В. Лазаряна, ул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 733 19 61, ел. поціта oalexander@mail.ru, ORCID 0000-0002-7719-7214
4Каф. «Локомотивы», Дніпропетровський національний університет железнодорожного транспорта імені академіка В. Лазаряна, ул. Лазаряна, 2, Дніпропетровськ, Україна, 49010, тел. +38 (056) 733 19 61, ел. поціта Koroman@ua.fm, ORCID 0000-0003-1416-4770

doi: 10.15802/stp2015/57000 © В. Е. Bodnar, М. I. Kapitsa, О. B. Ochkasov, Р. O. Korenyuk, 2015
ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ ИСПЫТАНИЙ ГИДРАВЛИЧЕСКИХ ПЕРЕДАЧ ТЕПЛОВОЗОВ В УСЛОВИЯХ ЛОКОМОТИВОРЕМОНТНОГО ЗАВОДА

Цель. В сложных экономических условиях сокращение расходов электроэнергии, потребляемой на нужды производства, является актуальной задачей для промышленных предприятий страны. Техническими условиями предприятиями, которые ремонтируют гидравлические передачи тепловозов, рекомендуется проведение определенного объема оценочных и регулирующих испытаний с целью контроля их послеремонтного состояния. Как показывает практика, значительная часть дефектов гидравлических передач выявляется при стендах испытаний. К преимуществам стендов испытаний можно отнести: возможность обнаружения послеремонтных дефектов, удобство обслуживания гидравлической передачи и относительно небольшая трудоемкость устранения дефектов. От качества проведения этих испытаний зависит ресурс передачи и ее коэффициент полезного действия. Цель работ – усовершенствование технологии заводских послеремонтных испытаний гидропередач с целью уменьшения расхода электрической энергии, потребляемой в проведение испытаний. Методика. Проведен анализ возможных вариантов усовершенствования стенда испытаний гидравлических передач. Предложена методика повышения энергоэффективности испытаний гидравлических передач тепловозов в условиях локомотиворемонтного завода. Это достигается путем установки дополнительного приводного электродвигателя, который получает питание от нагрузочного генератора. Результаты. На основании проведенного анализа обоснована необходимость совершенствования заводских стендов испытаний гидравлических передач. рассмотрены варианты модернизации стенда. Проведен анализ модернизации испытательного стенда. Научная новизна. Авторами теоретически обоснована возможность использования электрической энергии нагружного генератора для питания приводного электродвигателя стенда или дополнительного приводного электродвигателя. Практическая значимость. По результатам исследований предложен вариант конструкции стенда испытаний гидравлической передачи, основанный на методе взаимной нагрузки. Использование этого метода повышает диапазон нагрузок гидравлической передачи, а потребление электроэнергии стенда остается без изменений. Дополнительный приводной электродвигатель будет способствовать повышению частоты вращения входного вала, что в свою очередь, позволит проводить испытания в условиях, более приближенных к реальным вследствие увеличения нагрузки на гидравлическую передачу. Увеличение нагрузки на гидравлическую передачу будет способствовать выявлению возможных дефектов, что, в свою очередь, повысит качество ремонта передачи.

Ключевые слова: гидравлическая передача; испытания гидропередач; испытательный стенд; приводной двигатель; нагружный генератор; дополнительный двигатель

REFERENCES

1. Afanasov A.M. Vyznachennia rationshynykh rezhymiv vziainemho navantazhennia tiahovykh dvynuniv elektrorukhomo skladu maistralnoho ta promyslovoho transportu [Rational modes determination of traction motors loading-back for electric rolling stock in mainline and industrial transport]. Nauka ta probres transportu. Visnyk Dnipropetrovskoho nacionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2014, no. 4 (52), pp. 67-74. doi: 10.15802/stp2014/27322.

2. Afanasov A.M. Rehuliuvannia nebalansnoho elektromahnitnoho momentu v systemakh vziainemho navantazhenniah elektrichnykh mashyn tiahovoho ta motorvahonnoho rukhomo skladu maistralnoho ta promyslovoho transportu [Regulation of unbalanced electromagnetic moment in mutual loading systems of electric machines of traction rolling stock and multiple unit of mainline and industrial transport]. Nauka ta probres transportu. Visnyk Dnipropetrovskoho nacionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2014, no. 6 (54), pp. 70-77. doi: 10.15802/stp2014/32965.

3. Afanasov A.M. Rozvytok naukovykh osnov vdoskonalennia enerhoeffektivnykh metodiv vyprobuvannia tiahovykh elektrichnykh mashyn postiinoho ta pulsuiuchoho strumu. Avtoreferat Diss. [Scientific foundations development of energy efficiency test methods improvement of traction electric machines of direct and pulsating current. Author’s abstract]. Dnipropetrovsk, 2013. 36 p.

doi: 10.15802/stp2015/57000 © B. E. Bodnar, M. I. Kapitsa, O. V. Ochkasov, R. O. Korenyuk, 2015
4. Afanasov A.M. Sistemy vzaimnogo nagruzheniya tyagovych elektricheskikh mashin postoyannogo i pulsiruyushchego toka [Mutual loading systems of traction electric machines of direct and pulsating current]. Dnipropetrovsk, Makovetskiy Publ., 2012. 248 p.

5. Bodnar B.Ye., Ochkasov O.B., Korenyuk R.O. Pidvyshchennia enerhoefektyvnosti vyprobuvannia gidrodinamichnykh peredach teplotsov [Test energy efficiency increase of hydraulic transmission locomotive]. Tezy Vseukraïns'koї naukovo-tekhnichnoї konferentsii molodykh vchenyk, mahistrantiv ta studentiv: sektsiia «Mekhanika», «Naukovo-tekhnikniy prohres na transporti» [Theses of All-Ukrainian scientific and technical Conf. of young scientists and graduate students: section «Mechanics», «Scientific and Technological Progress on Transport»]. Dnipropetrovsk, 2015, pp. 60-61.

6. Bodnar B.Ye. Teoreticheskiye osnovy, opyt sozdaniya sistem ispytaniya i diagnostirovaniya teplotsov s gidrodinamicheskoy peredachej. Dokt. Diss. [Theoretical foundations, experience of test and diagnostics systems creation of locomotives with hydrodynamic transmission. Doct. Diss.]. Dnepropetrovsk, 1996. 375 p.

7. Bodnar B.Ye., Kapitsa M.I., Kuznetsov T.F., Lyashuk V.M. Issledovaniya dvizheniya valov gidrodinamicheskoy peredachy na baze mikro-EVM [Motion studies of hydraulic transmission shafts at free rotation]. Puti povysheniya nadezhnosti i ekonomichnosti teplotsov: mezhevozovskiy sbornik nauchnykh trudov [Ways to improve the reliability and efficiency of locomotives: Interacademic Proc.]. Dnipropetrovsk, 1987, issue 256/10, pp. 56-61.

8. Kapitsa M.I., Minchuk V.P., Korenyuk R.A. Oprodeleniye velichiny teplovykh poter pri ispytaniy teplotsovoy gidrodinamicheskoj peredachi v rezhime «vybega» [Determination of heat losses at the diesel hydrodynamic transmission test in the «runaway» regime]. Visnyk Skhidnoукраїнського natsionalnoho universytetu im. V. Dalia [Bulletin of Volodymyr Dahl East Ukrainian National University], 2013, issue 18, pp. 13-16.

9. Lyashuk V.M. Informatsionno – diagnosticheskaya sistema ispytaniy teplotsovoy gidrodinamicheskoj peredachy na baze mikro-EVM [Information and diagnostic tests system of locomotives with hydrodynamic transmission on the base of micro-computer]. Puti povysheniya nadezhnosti i ekonomichnosti teplotsov: mezhevozovskiy sbornik nauchnykh trudov [Ways to improve the reliability and efficiency of locomotives: Interacademic Proc.]. Dnipropetrovsk, 1987, issue 256/10, pp. 44-52.

10. Ovchinnikov V.M., Khalimanchik V.A., Nevzorov V.V. Gigrdavlicheskiye peredachi teplotsov [Hydraulic transmissions of locomotives]. Gomel, BelGUT Publ., 2006. 155 p.

11. Ochkasov O.B., Korenyuk R.O., Parfonov O.S. Udoskonalenlia vyprobuvannia hidrodinamichnykh peredach teplotsov [Testing hydraulic transmission improvement of locomotives]. Tezy Vseukrains'koї naukovo-tekhnichnoї konferentsii molodykh vchenyk, mahistrantiv ta studentiv: sektsiia «Mekhanika», «Naukovo-tekhnikniy prohres na transporti» [Theses of All-Ukrainian scientific and technical Conf. of young scientists and graduate students: section «Mechanics», «Scientific and technological progress on Transport»]. Dnipropetrovsk, 2014, pp. 74-75.

12. Bodnar B.Ye., Minchuk V.P., Ochkasov O.B., Korenyuk R.O. Udoskonalenlia stendu vyprobuvaniy gidrodinamichnykh peredach teplotsov [Test stand improvement of hydraulic transmission in locomotives]. Tezy 75 Mizhnarodnoho naukovo-praktychnoi konferentsii: sektsiia «Eksploatatsiia ta remont lokomotyviv», «Problemy ta perspektyvy rozvitku zaliznychnoho transportu» [Proc. of 75th Intern. Sci. And Practical Conf.: section «Maintenance and repair of locomotives», «Problems and Prospects of Railway Transport Development»]. Dnipropetrovsk, 2015, pp. 23-24.

13. Castaneda C.E., Loukianov A.G., Sanchez E.N., Castillo-Toledo B. Discrete-Time Neural Sliding-Mode Block Control for a DC Motor With Controlled Flux. IEEE Transactions. Industrial Electronics, 2012, vol. 59, issue 2, pp. 1194-1207. doi: 10.1109/tie.2011.2161246.

14. Hayek J. E., Sobczyk T.J., G. Skarpetowski. Experiences with traction drive laboratory model. Electromotion, 2010, vol. 17, issue 1, pp. 30-36.

15. Liu Y., Eberle W. Developments in Switching Mode Supply Technologies. IEEE Canadian Review. Switching Mode Power Supplies. Fall, 2009, no. 61, pp. 9-14.

Prof. A. M. Mukha, D. Sc. (Tech.) (Ukraine); Prof. O. S. Krasheninin, D. Sc. (Tech.) (Ukraine) recommended this article to be published

Accessed: Aug. 14, 2015
Received: Oct. 13, 2015