MEASURABLE RIEMANNIAN STRUCTURE ON HIGHER DIMENSIONAL HARMONIC SIERPINSKI GASKETS

SARA CHARI, JOSHUA FRISCH, DANIEL J. KELLEHER, LUKE G. ROGERS

Abstract. We prove existence of a measurable Riemannian structure on higher-dimensional harmonic Sierpinski gasket fractals and deduce Gaussian heat kernel bounds in the geodesic metric. Our proof differs from that given by Kigami for the usual Sierpinski gasket [8] in that we show the geodesics are de Rham curves, for which there is an extensive regularity theory.

1. Introduction and Main Result

The basic elements of analysis on Sierpinski-Gasket type fractals were developed, in a more general context, by Kusuoka [9] and Kigami [5]. The following definitions are from [8], though our presentation is different at some points and was influenced in a more general context, by Kusuoka [9] and Kigami [5]. The following definitions is the unique non-empty compact set such that the endpoints, and follows. Let \(\{ p_j \}_{j=1}^N \) be the vertices of a regular \(N \)-simplex in \(\mathbb{R}^{N-1} \) such that \(|p_j - p_k| = 1 \) if \(j \neq k \), and \(F_i : \mathbb{R}^{N-1} \to \mathbb{R}^{N-1} \) be \(F_j(x) = (x - p_j)/2 + p_j \). Then \(K_N \) is the unique non-empty compact set such that \(K_N = \bigcup_{j=1}^N F_j(K_N) \). Note that \(K_2 \) is an interval and \(K_3 \) is the usual Sierpinski Gasket.

Fix \(N \geq 2 \). For notational simplicity we write \(K \) for \(K_N \). Then \(K \) is post-critically finite, with post-critical set \(V_0 = \{ p_1, \ldots, p_N \} \). Let \(W_m = \{ 1, \ldots, N \}^m \) denote the set of words length \(|w| = m \), so \(w \in W_m \) is \(w = w_1 \cdots w_m \) with each \(w_j \in \{ 1, \ldots, N \} \). Let \(W_* = \bigcup_m W_m \) and for \(w = w_1 \cdots w_m \in W_* \) define \(F_w = F_{w_1} \circ \cdots \circ F_{w_m} \). We set \(V_m = \bigcup_{w \in W_m} F_w(V_0) \), which we call the set of scale \(m \) vertices; evidently this is the level \(m \) critical set. We write \(p \sim_m q \) if \(p \) and \(q \) are both in \(F_w(V_0) \) for some \(w \in W_m \).

For each \(N \geq 2 \) there is a non-negative definite, symmetric, quadratic form on \(K = K_N \) which may be defined as a limit of forms on the sets \(V_m \).

Definition 1.2. For \(u, v \) continuous functions on \(K \) let

\[
\mathcal{E}_m(u,v) = \left(\frac{N+2}{N} \right)^m \sum_{p \sim_m q} (u(p) - u(q))(v(p) - v(q)).
\]

Write \(\mathcal{E}_m(u) = \mathcal{E}_m(u,u) \). It is known that \(\mathcal{E}_m(u) \leq \mathcal{E}_{m+1}(u) \) for all \(m \geq 0 \), so that \(\lim_m \mathcal{E}_m(u) \) exists. Define \(\mathcal{F} = \{ u : \lim_m \mathcal{E}_m(u) < \infty \} \) and \(\mathcal{E}(u,v) = \lim_m \mathcal{E}_m(u,v) \). When \(N = 2 \), \(\mathcal{F} \) is the space of functions with one derivative in \(L^2 \) that vanishes at the endpoints, and \(\mathcal{E} \) is the \(L^2 \) norm of the derivative.

A proof of the following result is in [7].

2000 Mathematics Subject Classification. Primary 28A80,60J35, 26A15.

Key words and phrases. Analysis on Fractals, Sierpinski Gasket, Harmonic Coordinates.

Authors supported in part by the National Science Foundation through grant DMS-1262929.
Theorem 1.3. Let μ be an atomless Borel probability measure on K with $\mu(O) > 0$ if O is non-empty and open. Then $(\mathcal{E}, \mathcal{F})$ is a local regular Dirichlet form on $L^2(K, \mu)$.

The analytic structure corresponding to the Dirichlet form $(\mathcal{E}, \mathcal{F})$ is greatly elucidated by considering the harmonic gasket, or gasket in harmonic coordinates. A function $h \in \mathcal{F}$ is harmonic if $\mathcal{E}_m(h) = \mathcal{E}_{m+1}(h)$ for all m. Since this involves minimization of a quadratic functional the minimizer is given by a linear operator on the values on V_m. When $m = 0$ we write H_j for the operator taking the values on V_0 to those on $F_j(V_0)$, more precisely:

$$H_j : (h(p_1), \ldots, h(p_N)) \mapsto (h(F_j p_1), \ldots, h(F_j p_N)).$$

By self-similarity we find $H_j : (h(F_w p_1), \ldots, h(F_w p_N)) \mapsto (h(F_w F_j p_1), \ldots, h(F_w F_j p_N))$ for any $w \in W_j$, and therefore the values of h on V_0 are determined by composing the H_j (or multiplying the corresponding matrices, which we also denote by H_j); this determines h on K by continuity, so the fact that the H_j are invertible ensures the harmonic functions are in one-to-one correspondence with functions on V_0 and are an N-dimensional space. The latter may be seen by explicitly computing (from (1.1)) that

$$H_j = \frac{1}{N+2} \begin{pmatrix} N+2 & 0 \\ 2 & I + J \end{pmatrix},$$

where I_{N-1} is the identity, J_{N-1} is the size $N-1$ square matrix with all entries equal 1, and we have written 0 and 2 for the length $(N-1)$ vectors with all entries equal 0 and 2 respectively. Symmetry implies the other H_j may be obtained by cyclic row and column permutations.

Definition 1.4. Fix $N \geq 2$ and for $1 \leq j \leq N$ let ψ_j denote the harmonic function on K_N which is 1 at p_j and 0 on $V_0 \setminus \{p_j\}$. The function $\Psi : K \to \mathbb{R}^N$ given by $\Psi = ((\psi_1, \ldots, \psi_N) - (1, \ldots, 1)/N)/\sqrt{2}$ is injective (see [2]), so it is a homeomorphism onto its image X_N, which we call the harmonic N-Sierpinski gasket.

Constant functions are harmonic, so $\sum_j \psi_j \equiv 1$ and the harmonic N-Sierpinski gasket X_N lies in the subspace $Y = \{(x_1, \ldots, x_N) : \sum_j x_j = 0\}$, which we identify with \mathbb{R}^{N-1}. Moreover $\Psi(V_0)$ is the set of vertices of a regular N-simplex with unit length sides in this subspace, so we identify $\Psi(V_0)$ with V_0 via $\Psi(p_j) = p_j$. It is an important fact that X_N is a self-affine set under maps conjugate to the F_j via Ψ.

Theorem 1.5 ([6]). For each $1 \leq j \leq N$ let T_j be the linear map on Y that contracts the direction $\Psi(p_j)$ by the factor $N/(N+2)$ and all orthogonal directions by the factor $1/(N+2)$. Let $S_j(x) = T_j(x - p_j) + p_j$, so $S_j : Y \to Y$. Then $\Psi \circ F_j = S_j \circ \Psi$ for each j and therefore $X_N = \bigcup_j S_j(X_N)$ is self-affine.

Remark 1.6. We will sometimes write S_j in the equivalent form

$$S_j x = \frac{x}{N+2} + \frac{1}{N+2} \left(2 + \frac{(N-1)x \cdot p_j}{\|p_j\|^2}\right)p_j.$$

It is a special case of results of Kusuoka [9] that there is a Carré du Champ measure ν for the Dirichlet form $(\mathcal{E}, \mathcal{F})$ and an associated ν-a.e. defined metric Z that can be expressed in terms of the operators T_j as in the following results. Recall that the Hilbert-Schmidt norm on a linear operator on \mathbb{R}^{N-1} may be defined by setting $\|T\|^2_{\text{HS}}$ to be the sum of the squares of the coefficients of the associated matrix with respect to the standard orthonormal basis.
Theorem 1.7 ([9]). For \(w = w_1 \cdots w_m \in W_\ast \) let \(T_w = T_{w_1} \cdots T_{w_m} \) and \(Z_m(w) = T_w T_w^\ast /\|T_w\|_{HS}^2 \), where the adjoint is taken with respect to the usual inner product on \(Y \) with respect to the measure and a.e.-defined linear operator obtained by pushing forward under the \(C^0 \) manifold energy. Volume and metric in that if \(\Sigma \) denote the space of infinite words.

(i) There is a unique, atomless, Borel regular probability measure \(\nu \) on \(\Sigma \), called the Kusuoka measure, such that for any \(w \in W_\ast \)

\[
\nu(w \Sigma) = \frac{1}{N} \left(\frac{N + 2}{N} \right)^{|w|} \|T_w\|_{HS}^2.
\]

(ii) The limit \(Z(w) = \lim_{m \to \infty} Z_m(w_1 \cdots z_m) \) exists and is the orthogonal projection onto its image for \(\nu \)-a.e. \(w = w_1w_2 \cdots \in \Sigma \).

Both \(\nu \) and \(Z \) can be transferred to \(K \) using the obvious projection \(\pi : \Sigma \to K \), which is defined by \(\pi(w) = \lim_m F_{w_1} \cdots F_{w_m} K \), because this projection is injective off the measure-zero set \(W_\ast \). For this reason we abuse notation to use \(\nu \) and \(Z \) for the measure and a.e.-defined linear operator obtained by pushing forward under \(\pi \).

Together, the form \((E, F) \), measure \(\nu \) and metric \(Z \) are analogues of the Riemannian energy, volume and metric in that if \(C \) denotes the \(\nu \)-measurable functions \(K \to Y \) then the following theorem of Kusuoka holds.

Theorem 1.8 ([9]). There is \(\bar{\nabla} : F \to C \) such that for all \(u, v \in F \)

\[
E(u, v) = \int_K \langle \bar{\nabla}u, Z \bar{\nabla}v \rangle \, dv.
\]

The sense in which this structure is simplified by considering the harmonic gasket \(X_N \) is captured by the following theorem which relates \(\bar{\nabla} \) to the classical gradient \(\nabla \) on \(Y = \mathbb{R}^{N-1} \). Roughly speaking, it says that the analytic structure we have on \(K \) is just the restriction of the usual smooth structure on \(Y \) to the harmonic gasket \(X \), transferred to \(K \) via \(\Psi \), when \(K \) is endowed with the Kusuoka measure.

Theorem 1.9 ([9, 8]). Let \(D = \{ u = v|_{X} \circ \Psi : v \in C^1 \text{ on a neighborhood of } X \text{ in } Y \} \). Then \(D \) is dense in \(F \) with respect to the norm \(\|u\|^2 = E(u) + \|u\|^2_{\bar{\nabla}} \). Moreover for \(u, v \in D \) we have \(\overline{\nabla} u = Z \overline{\nabla} u \) \(\nu \)-a.e. and

\[
E(u, v) = \int_K \langle \nabla u, Z \nabla v \rangle \, dv.
\]

One main result of [8], see also Teplyaev [11], was that in addition to the energy, measure and metric structure described above, the harmonic Sierpinski gasket \(X_3 \) admits a geodesic distance analogous to the Riemannian distance. Moreover the distance between two points may be computed by integrating the norm, computed with respect to the metric \(Z \), of the directional derivative along a geodesic path joining these points. Kigami states in [8], but does not verify, that similar results can be proved for \(X_N \), \(N > 3 \) using a similar but more complicated argument. The purpose of the present work is to prove this claim by a slightly different approach involving de Rham curves. Specifically we prove the following.

Theorem 1.10. If \(p, q \in X \) there is a Euclidean geodesic from \(p \) to \(q \) in \(X \). There is a \(C^1 \) function \(g_{pq} : [0, 1] \to X \) that parametrizes this curve, and the length of the curve is

\[
\int_0^1 \langle g'_{pq}(t), Z(g_{pq}(t)) g'_{pq}(t) \rangle^{1/2} \, dt.
\]
Knowing Theorem 1.10 it follows from the work in Section 6 of Kigami’s paper [3] that the heat semigroup associated to the Dirichlet form \mathcal{E} on $L^2(\nu)$ has a jointly continuous kernel $p(t, x, y)$ which has Gaussian bounds with respect to the geodesic distance d_* on X. Precisely, we obtain the following.

Corollary 1.11. There are constants c_1, c_2, c_3, c_4 such that if $B(x, r)$ denotes the ball of radius r around x in the metric d_* then for $t \in (0, 1]$ and $x \in X$

$$\frac{c_1}{\nu(B(x, \sqrt{t}))} \exp\left(-\frac{c_2 d_*(x, y)^2}{t}\right) \leq p(t, x, y) \leq \frac{c_3}{\nu(B(x, \sqrt{t}))} \exp\left(-\frac{c_4 d_*(x, y)^2}{t}\right)$$

Note that Kajino [3] has proved more refined estimates for the heat kernel using a related distance estimate on the classical Sierpinski gasket X_3. His approach is not applicable to the gaskets with $N > 3$, as he points out in [4], and it is not known whether these more precise results are true in this setting.

2. Geodesics on X_N: Proof of Main Result

Fix $N \geq 2$ and write $X = X_N$ for the harmonic N-Sierpinski gasket. Recall that there are affine maps $S_j : Y \to Y$ so that $X = \bigcup_1^N S_j(X)$. To obtain our geodesics we consider the subsets of X that are self-affine under two of the maps S_j. By symmetry it is sufficient to consider the unique, non-empty, compact set Γ such that $\Gamma = S_1(\Gamma) \cup S_2(\Gamma)$. Our initial goal is to prove the following.

Theorem 2.1. Γ is a C^1 plane curve connecting $p_1, p_2 \in V_0$. If $N \geq 3$ it is C^1 but not C^2; in fact it has a parametrization in which the derivative is Hölder continuous with Hölder exponent

$$\frac{\log N + 2 \log 2 - 2 \log(1 + \sqrt{4N + 1})}{\log(1 + \sqrt{4N + 1}) - \log 2 - \log(N + 2)}.$$

Moreover, if $x \in \Gamma$, so $x = S_w(X)$ for some infinite word w with letters from $\{1, 2\}$ then $Z(w)$ is projection onto the tangent direction of Γ at w.

We give several intermediate results before proving the theorem. Let P be the 2-dimensional subspace of Y that contains p_1 and p_2 and let Π denote the orthogonal projection of Y onto P.

Lemma 2.2. P is invariant under S_1 and S_2 and therefore contains Γ. Moreover $\Pi(V_0 \setminus \{p_1, p_2\})$ is a single point p.

Proof. It suffices by symmetry to consider the action of S_1. If $x \in P$ we may orthogonally decompose it as $x = \alpha p_1 + (x - \alpha p_1)$. Then

$$S_1(x) = \frac{N}{N + 2} \alpha p_1 + \frac{1}{N + 2} (x - \alpha p_1) = \frac{N - 1}{N + 2} \alpha p_1 + \frac{1}{N + 2} x$$

which is a linear combination of $p_1 \in P$ and $x \in P$, so lies in P. This proves invariance of P under S_1 and S_2. It follows that the closure of $\{S_w p_1 : w \in W_s\}$ is a subset of P, but since it is also non-empty, compact, and equal to the union of its images under S_1 and S_2 it must be equal to Γ, proving $\Gamma \subset P$. Finally, symmetry ensures that all points in $V_0 \setminus \{p_1, p_2\}$ project to the same point $p \in P$, and that $|p_1 - p| = |p_2 - p|$.

Many other properties of Γ now follow from the fact that Γ is an arc on a classical type of curve introduced by de Rham [1][2]. This fact was noted by Teplyavev in [11] for the case of the classical Sierpinski gasket, where he also gave a number of results about the energy and Laplacian in harmonic coordinates.
Theorem 2.4. We can therefore perform the construction with an initial polygon having three vertices and two edges to obtain a de Rham curve between the midpoints of these edges. The significance for our problem is in the following theorem.

Theorem 2.4. \(\Gamma \) is an arc of a de Rham curve in \(P \) with scale factor \(r = \frac{1}{N+2} \).

Proof. Let \(A_0 \) be the line segments from \(2p_1 \) to 0 and 0 to \(2p_2 \), so that \(p_1 \) and \(p_2 \) are the midpoints of the sides. Let \(A_k \), \(A \) be as in Definition 2.3 with ratio \(r \), except that we retain only the arc between \(p_1 \) and \(p_2 \).

Write \([a, b]\) for the line segment from \(a \) to \(b \) and \(D \) for one step of the de Rham construction. A key observation is that \(D \) commutes with \(S_1 \) and \(S_2 \) because \(D \) depends only on dividing line segments according to fixed proportions and the \(S_j \) preserve proportions. We use this to show inductively that \(A_k = \bigcup_{|w| = k} S_w([p_1, 0] \cup [p_2, 0]) \). For \(k = 0 \) this is trivial, as the edges of \(A_0 \) are precisely \([p_1, 0] \cup [p_2, 0]\), but our induction will actually start at the \(k = 1 \) case. To verify this latter, observe that \(S_1 \) fixes \(p_1 \) and scales \([p_1, 0]\) by \(N/(N+2) \), so it maps \([p_1, 0]\) to \([p_1, 2p_1/(N+2)]\) which is one edge of \(A_1 \). Similarly \(S_2 \) maps \([p_2, 0]\) to \([p_2, 2p_2/(N+2)]\), which is another edge of \(A_1 \). By direct computation we then check that \(S_1 p_2 = S_2 p_1 = (p_1 + p_2)/(N + 2) \), which is the midpoint of \([2p_1/(N+2), 2p_2/(N+2)]\) and conclude that the union \(S_2([p_1, 0]) \cup S_1([p_2, 0]) \) is the third edge of \(A_1 \).

The inductive step uses that \(A_{k-1} = \bigcup_{|w| = k-1} S_w([p_1, 0] \cup [p_2, 0]) \) to see that \(A_{k-1} = S_1(A_{k-2}) \cup S_2(A_{k-2}) \), and therefore for \(k \geq 2 \)

\[A_k = D(A_{k-1}) = D(S_1(A_{k-2}) \cup S_2(A_{k-2})). \]

All pairs of neighboring segments in \(S_1(A_{k-2}) \cup S_2(A_{k-2}) \) are internal to either \(S_1(A_{k-2}) \) or \(S_2(A_{k-2}) \), with the exception of the segments that meet at \(S_1(p_2) = S_2(p_1) \). However, by the inductive hypothesis these segments run from \(S_1 S_2^{k-1}(0) \) to \(S_1(p_2) = S_2(p_1) \) and from \(S_2 S_2^{k-1}(0) \) to \(S_1(p_2) = S_2(p_1) \). Moreover there is \(c \) so \(S_1^{k-1}(0) = cp_2 \) and \(S_2^{k-1}(0) = cp_1 \), because both \(S_1 \) and \(S_2 \) contract by the same factor along the respective directions \(p_1 \) and \(p_2 \). Using (1.3) and computing \((N - 1)p_1 \cdot p_2/\|p_1\|^2 = -1\) we find

\[
\begin{align*}
S_1 S_2^{k-1}(0) &= S_1 cp_2 = \frac{cp_2}{N + 2} + \frac{2 - c}{N + 2} p_1, \\
S_2 S_1^{k-1}(0) &= S_2 cp_1 = \frac{cp_1}{N + 2} + \frac{2 - c}{N + 2} p_2,
\end{align*}
\]

so that the midpoint is \((p_1 + p_2)/(N + 2) = S_1(p_2) = S_2(p_1)\). This shows that the two ending segments of \(S_1(A_{k-2}) \) and \(S_2(A_{k-2}) \) form a single line segment in \(A_{k-1}\) as soon as \(k \geq 2 \). It follows that all of the de Rham construction for \(D(S_1(A_{k-2}) \cup S_2(A_{k-2})) \) occurs within either \(S_1(A_{k-2}) \) or \(S_2(A_{k-2}) \). Then commuting \(D \) with the
Theorem 2.5

of Theorem 2.4; more importantly for the current work he proves (a more general
applications in wavelets, approximation theory, and certain areas in computer sci-

{Υ

r

if

It is useful to think of constructing the interior of the convex hulls of the
for any

α

A

S

6 CHARI, FRISCH, KELLEHER, ROGERS

exponent

Lemma 2.6.

This and the inductive hypothesis ensure \(A_k = \bigcup_{|w|=k} S_w([p_1,0] \cup [p_2,0]) \), from which
we deduce that \(A_k \) converges to a set \(A \) that is invariant under the iterated function
system \(\{S_1, S_2\} \). Uniqueness of the attractor of the i.f.s. then ensures \(A = \Gamma \). \(\square \)

The de Rham curves have been fairly extensively studied because they have
applications in wavelets, approximation theory, and certain areas in computer science. References for some of these may be found in a paper of Protasov [10], which makes a detailed study of the regularity of these curves. It is proved there that the de Rham curves are affine similar sets, which is the main point in the above proof of Theorem 2.4 more importantly for the current work he proves (a more general version of) the following result.

Theorem 2.5 ([10] Theorem 2). A de Rham curve is \(C^1 \) if \(r \in (0, \frac{1}{4}) \). Moreover
if \(r \in (0, \frac{1}{4}) \) the curve is not \(C^2 \) but has Hölder continuous derivative with Hölder exponent

\[
\frac{\log(r(1-2r))}{\log(r + \sqrt{4r - 7r^2}) - \log 2} - 2.
\]

Proof of Theorem 2.5. From Lemma 2.2, \(\Gamma \) is a plane curve. Theorem 2.4 shows
that \(\Gamma \) is a de Rham curve, and by Theorem 2.5 it is \(C^1 \). Now \(x \in \Gamma \) is \(T_w(X) \) for
an infinite word \(w \) with letters in \(\{0,1\} \). If we write \([w]_m \) for the truncation to the
first \(m \) letters then the sequence \(T_{[w]_m}([p_1,p_2]) \) consist of chords of \(\Gamma \) that converge
to \(x \). Since \(\Gamma \) is \(C^1 \) the normalized sequence \(T_{[w]_m}(T_{[w]_m} / \|T_{[w]_m} \|_H^2) \) converges to the
operator of projection onto the tangent direction to \(\Gamma \) at \(x \). \(\square \)

Having established the basic regularity properties of \(\Gamma \) our next goal is to show
that it is the shortest path between \(p_1 \) and \(p_2 \) in \(X \). In order to proceed we collect
some additional features of \(\Gamma \) in the next result.

Lemma 2.6. \(\Gamma \) and the line segment from \(p_1 \) to \(p_2 \) bound an open convex region.
If \(\Upsilon \) denotes the complement of this region in the triangle \(\Omega \) with vertices \(p_1, p_2 \),
then \(\Upsilon \) is star-shaped with respect to \(0 \) and has the property that \((\Upsilon + \alpha p) \cap \Omega \subset \Upsilon \)
for any \(\alpha \geq 0 \).

Proof. It is useful to think of constructing the interior of the convex hulls of the
approximating curves \(A_k \) for our de Rham curve \(A \) as part of the inductive construction.
If we denote the \(k \)th hull interior by \(C_k \) one easily checks that \(C_k, k \geq 1 \) can be
obtained as follows: for two adjacent vertices \(x, y \in A_k \) the line through \(x \) and \(y \)
divides the plane into an open half-plane \(K(x,y) \) that contains both \(p_1 \) and \(p_2 \) and
its complementary (closed) half-plane \(K'(x,y); C_k \) is the intersection of \(C_{k-1} \) with
all \(K(x,y) \) corresponding to adjacent vertices \(x, y \in A_k \). Evidently \(\cap_k C_k \) is convex
and has \(\Gamma \) as a boundary arc; when it is further intersected with the half-plane that
is bounded by the line through \(p_1, p_2 \) and contains \(0 \) we obtain the convex region
asserted in the statement. Then \(\Upsilon \) is the intersection of \(\Omega \) with the union of the
\(K'(x,y) \), with the latter taken over all \(k \) and all pairs of adjacent vertices from each
\(A_k \).

Consider the above for three consecutive vertices, \(x+v_1, x, x+v_2 \) from \(A_{k-1}, k > 1 \).
The convex set \(\{ x+\alpha_1 v_1 + \alpha_2 v_2: \alpha_1 > 0, \alpha_2 > 0 \} \) contains \(p_1 \) and \(p_2 \) (for which one of
\(\alpha_1 \) or \(\alpha_2 \) is at least 1) and is the intersection \(K(x+v_1, x+v_2). \) The vertices
of A_k introduced at the kth step are of the form $y_1 = x + \beta_1 v_1$, $y_2 = x + \beta_2 v_2$ with $\beta_1, \beta_2 \in (0,1/2)$, so the line through them has direction $\beta_1 v_1 - \beta_2 v_2$. At any point y on this line the cone $L(v_1, v_2, y) = \{y - \alpha_1 v_1 - \alpha_2 v_2 : \alpha_1 \geq 0, \alpha_2 \geq 0\}$ is disjoint from the line (because it does not contain points of the form $y + \delta (\beta_1 v_1 - \beta_2 v_2)$), and cannot contain p_1, p_2 because these are reached from x using non-negative multiples of v_1 and v_2, with at least one coefficient being 1 or more.

We make two observations from the reasoning in the preceding paragraph. The first is that $L(v_1, v_2, y) \subset K'(y_1, y_2)$ at every y on the segment from y_1 to y_2. Then, by induction, if $y \in A_k$ is between vertices z, z' of A_k we see $L(p_1, p_2, y)$ is contained in $K'(z, z')$ and hence $\Omega \cap L(p_1, p_2, y) \subset \Upsilon$. Taking the union over k gives $L(p_1, p_2, y) \subset \Upsilon$ if y is on any A_k. This immediately establishes the assertion about translation of Υ by ap for $a > 0$. The second observation is that $L(v_1, v_2, z) \subset K'(y_1, y_2)$ for any $z \in K'(y_1, y_2)$, so in particular $L(v_1, v_2, x) \subset K'(x, y_2)$. Induction from this shows that the first such cone, $L(p_1, p_2, 0)$ is contained in $K(z, z')$ for each pair of adjacent vertices z, z' in any A_k. Since 0 is in this cone we conclude that $0 \in K(z, z')$ for each pair of adjacent vertices z, z' in every A_k, and since $K(z, z')$ is convex and hence star-shaped with respect to any of its points we it follows that Υ is a union of regions star-shaped with respect to 0 and is therefore itself star-shaped with respect to 0.

Lemma 2.7. $\Pi(X) \subset \Upsilon$.

Proof. We show that the intersection of $\Pi^{-1}(\Upsilon)$ with the simplex having vertices $\{p_j\}^N_j$ is invariant under the iterated function system $\{S_j : j = 1, \ldots, N\}$. It therefore must contain the attractor X.

Both S_1 and S_2 contract every vector that is orthogonal to P by the same factor. It follows that $\Pi \circ S_j \circ \Pi^{-1}$ is well-defined and equal to $S_j|_P$ for $j = 1, 2$. Since Γ is invariant under $S_1|_P$ and $S_2|_P$, it is easy to check that these maps take Υ into itself, whereupon $\Pi \circ S_j \circ \Pi^{-1} = S_j|_P$, for $j = 1, 2$ implies $\Pi^{-1}(\Upsilon)$ is invariant under S_1 and S_2.

By symmetry, to treat the maps S_j, $j \geq 3$ it suffices to consider S_3. If one has $\sum_j \alpha_j = 1$ then $x = \sum_j \alpha_j p_j$ is a point in the simplex and its projection to P is $\Pi x = \alpha_1 p_1 + \alpha_2 p_2 + \sum_{j \neq 3} \alpha_j p_j$. We may also compute $S_3 x$ using (1.3) and the fact that $(N-1)p_j \cdot p_k/\|p_j\|^2 = -1$. We obtain

$$S_3 x = \frac{x}{N+2} + \frac{1}{N+2} \left(2 + (N-1) \alpha_j - \sum_{k \neq j} \alpha_k \right) p_j = \frac{x}{N+2} + \frac{N \alpha_j + 1}{N+2} p_j$$

$$\Pi S_3 x = \frac{\Pi x}{N+2} + \frac{N \alpha_j + 1}{N+2} p$$

From Lemma [2.3], Υ is star-shaped with respect to 0 and therefore $\Pi x \in \Upsilon$ implies $\Pi x/(N+2) \in \Upsilon$. Lemma [2.6] further established that the image of Υ under translation by a positive multiple of p followed by intersection with Ω is contained in Υ. As $(N \alpha_j + 1)(N+2) > 0$ we conclude from this and the previous observation that $\Pi \circ S_3 x \in \Upsilon$ whenever $\Pi x \in \Upsilon$, or equivalently that S_3 (and thus, by symmetry, each S_k for $k \geq 3$) maps the intersection of $\Pi^{-1}(\Upsilon)$ with the simplex having vertices $\{p_j\}$ to itself.

We can now prove our main results. Let us write $Z = Z \circ \pi^{-1} \circ \Psi^{-1}$, which is a well defined map from $X \setminus \Psi(V_\ast)$ to the set of infinite words Σ.
Theorem 2.8. Using the restriction of the Euclidean metric from Y, Γ is a geodesic in X connecting p_1 to p_2. There is a C^1 function $g : [0, 1] \to \Gamma$ such that the length of Γ is

$$l(\Gamma) = \int_0^1 \langle g'(t), Z_\ast(g(t)) g'(t) \rangle^{1/2} \, dt.$$

Moreover we have

$$\frac{1}{3} \leq l(\Gamma) \leq 2 \quad (2.1)$$

Proof. Γ is fixed by S_1 and S_2, so it is a subset of X. The fact that that Γ is rectifiable ensures the infimum of the length of curves in X that contain p_1 and p_2 is well-defined. Moreover, if γ is such a curve then $\Pi(\gamma)$ is rectifiable, contains p_1 and p_2 and has length $l(\gamma) \geq l(\Pi(\gamma))$. By Lemma 2.7, if $\Pi(\gamma) \subset Y$, so $\Pi(\gamma) \cup [p_1, p_2]$ surrounds the convex set $T \setminus Y$. However it is a result of classical geometry that then

$$l(\Pi(\gamma) \cup [p_1, p_2]) \geq l(\Gamma \cup [p_1, p_2])$$

so Γ achieves the infimum and is a geodesic.

The same convexity argument shows (2.1) because $\Omega \setminus \Gamma$ is contained in the triangle with vertices $p_1, p_2, 0$ and contains the triangle with vertices $p_1, p_2, S_1(p_2) = S_2(p_1) = (p_1 + p_2)/(N + 2)$. We need only check that the lengths of the sides are $|p_1| = |p_2| = \sqrt{(N - 1)/2N} \leq 2$ and $|(N + 1)p_1 - p_2|/(N + 2) = \sqrt{(N^2 + N + 2)/2(N + 1)^2} \geq 1/3$ because $N \geq 2$.

We may parametrize Γ in the following way. Take $e_1 = p_1 - p_2$ and $e_2 = (N/(N - 2))^{1/2}(p_1 + p_2)$ as a basis for the plane P; it is easily checked that these are orthonormal. For $t \in [0, 1]$ the fact that Γ bounds a convex region ensures there is a unique point $g(t) = p_2 + te_1 + se_2$ on Γ. The function $g(t)$ is C^1 because Γ is C^1, and $g'(t)$ is in the direction of $Z_\ast(g(t))$, so

$$l(\Gamma) = \int_0^1 \|g'(t)\| \, dt = \int_0^1 \langle g'(t), Z_\ast(g(t)) g'(t) \rangle^{1/2} \, dt. \quad \square$$

Corollary 2.9. If $p, q \in F_w(V_0)$ there is a geodesic from p to q with length comparable to the diameter of $F_w(X)$ which has a C^1 parametrization g_{pq} for which (1.4) gives the length of the geodesic.

Proof. Given $1 \leq j < k \leq N$ one can find an orthogonal transformation of Y that maps p_1 to p_j and p_2 to p_k. Under this map the image of Γ is a geodesic curve Γ_{jk} from p_j to p_k. Evidently Γ_{jk} is the invariant set of $\{T_j, T_k\}$. Now there are j, k such that $p = F_w(p_j)$ and $q = F_w(p_k)$ and $F_w(\Gamma_{jk})$ is a geodesic from p to q in $F_w(X)$. The length bound follows from (2.1) and the validity of (1.4) comes from the fact that the restriction of Z_\ast to $F_w(X)$ is T_wZ_\ast. \quad \square

The proof of Theorem 1.10 now follows the argument given to prove Theorem 5.1 on page 798 of [8], but is included below for the convenience of the reader.

Proof of Theorem 1.10. Suppose $p, q \in V_\ast$, so there is m so they are both in V_m. There is a finite sequence $p = p_1, \ldots, p_k = q$ with no repetitions such that p_j and p_{j+1} are in the boundary of $F_w(V_0)$ with $|w| = m$. Concatenation of the geodesics from p_j to p_{j+1} that were constructed in Corollary 2.9 provides a finite length path from p to q.

Conversely, any finite length path from p to q passes through some sequence of points from V_m. We may shorten the path by deleting loops, at which point
sequence $p = p_1, \ldots, p_k = q$ is finite and has no repetitions. The curve constructed above from geodesics joining p_j to p_{j+1} is evidently the shortest path from p to q that passes through these points in this order. Moreover there are finitely many sequences of this type, so by taking the minimum of the lengths of the resulting finite collection of paths we find a geodesic from p to q which we denote γ_{pq}. This proves the result when both points are in V_\ast.

Observe that in the above construction if $p, q \in V_m$ and γ_{pq} passes through $p', q' \in V_m'$ for some $m' < m$ then replacing the arc of γ_{pq} from p' to q' with $\gamma_{p'q'}$ does not increase the length. Thus for sequences $p_j \to q$ and $q_j \to q$ there are geodesics γ_j from p_j to q_j such that γ_j is an arc of γ_k for each $j < k$. Then $\bigcup_j \gamma_j$ is a geodesic from p to q and is made up of arcs as constructed in Corollary 2.9.

To each of the above arcs there is a finite word and an orthogonal transformation as in Corollary 2.9 so that the composition of F_w, the orthogonal map and the function g from Theorem 2.8 is a C^1 parametrization of the arc. Concatenating these functions (and arcs) gives a parametrization of the geodesic from p to q, and it satisfies (1.4) because Theorem 2.8 shows the parametrizations of individual arcs had this property. Moreover it is C^1 because at any point of V_\ast where two arcs from the construction are joined, the one-sided tangents are equal in the same way that they were when we joined the two halves of Γ in the proof of Theorem 2.4. □

3. Acknowledgements

The authors thank Alexander Teplyaev for useful discussions and suggestions.

References

[1] Georges de Rham. Sur une courbe plane. J. Math. Pures Appl. (9), 35:25–42, 1956.
[2] Georges de Rham. Sur les courbes limites de polygones obtenus par trisection. Enseignement Math. (2), 5:29–43, 1959.
[3] Naotaka Kajino. Heat kernel asymptotics for the measurable Riemannian structure on the Sierpinski gasket. Potential Anal., 36(1):67–115, 2012.
[4] Naotaka Kajino. Analysis and geometry of the measurable Riemannian structure on the Sierpinski gasket. In Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics, volume 600 of Contemp. Math., pages 91–133. Amer. Math. Soc., Providence, RI, 2013.
[5] Jun Kigami. A harmonic calculus on the Sierpinski spaces. Japan J. Appl. Math., 6(2):259–290, 1989.
[6] Jun Kigami. Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math. Soc., 335(2):721–755, 1993.
[7] Jun Kigami. Analysis on fractals, volume 143 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001.
[8] Jun Kigami. Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the Gaussian heat kernel estimate. Math. Ann., 340(4):781–804, 2008.
[9] Shigeo Kusuoka. Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math. Sci., 25(4):659–680, 1989.
[10] V. Yu. Protasov. On the smoothness of de Rham curves. Izv. Ross. Akad. Nauk Ser. Mat., 68(3):139–180, 2004.
[11] Alexander Teplyaev. Energy and Laplacian on the Sierpinski gasket. In Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, volume 72 of Proc. Sympos. Pure Math., pages 131–154. Amer. Math. Soc., Providence, RI, 2004.
[12] Alexander Teplyaev. Harmonic coordinates on fractals with finitely ramified cell structure. Canad. J. Math., 60(2):457-480, 2008.