ORIGINAL RESEARCH—CLINICAL

Inflammatory Bowel Diseases Before and After 1990

Brindusa Truta,1 Ferdouse Begum,1,2 Lisa Wu Datta,1 NIDDK IBD Genetics Consortium*, and Steven R. Brant1,2,3,4

1Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; 2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; 3Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, the Rutgers Crohns and Colitis Center of New Jersey, New Brunswick, New Jersey and 4Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, New Jersey

BACKGROUND AND AIMS: Inflammatory bowel disease (IBD) is caused by interaction of genetic and environmental risk factors. We evaluated potential determinants of the post-1990 increased incidence in North America. METHODS: Using fitted generalized linear models, we assessed clinical features, smoking and genetic risk scores (GRS) for Crohn’s disease (CD) and ulcerative colitis (UC) in the National Institutes of Diabetes, Digestion and Kidney Diseases IBD Genetics Consortium database, before and post 1990. RESULTS: Among 2744 patients (55% CD, 42.2% UC), smoking status and GRS were the main determinants of diagnosis age. After 1990, smoking at diagnosis declined significantly in both UC and CD (34.1% vs 20.8%, P < .001, and 14.7% vs 8.7%, P = .06, respectively). In UC, ex-smoking increased (9% vs 15%, P < .001), and nonsmoking rates remained unchanged, whereas in CD, ex-smoking remained unchanged. CD-GRS and IBD-GRS were significantly associated with young diagnosis age, Jewish ethnicity, IBD family history, and surgery. CD-GRS showed a borderline significant decrease (P = .058) in multivariate analysis post 1990 but only when excluding surgery in the model; surgery significantly decreased post 1990 in both CD and UC. CD-GRS inversely correlated with smoking at diagnosis (P < .001) suggesting that, in the presence of smoking, CD may only require a low genetic risk to develop. CONCLUSION: Significantly increase in ex-smoking correlates with UC incidence post 1990. Conversely, smoking risk decreased significantly post 1990 despite rising CD incidence. CD-GRS likewise trended to decrease post 1990 only when not accounting for a significant decrease in CD surgery. We therefore deduce that unaccounted risk factors (eg, dietary, obesity, antibiotic use, improved hygiene, etc.) or greater detection or presence of mild CD may underlie post-1990 increased CD incidence.

Keywords: IBD; Genetic; Smoking; Environmental Risks

Introduction

Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic condition that decreases quality of life through debilitating diarrhea, bloody stools, and abdominal pain. After the emergence in the Western world in the early 20th century, IBD incidence and prevalence accelerated parallel with societal development, reaching the highest values in North America, Europe, and Australia.1–3 In the United States, IBD affected 1.8 million adults in 1999 and 3 million adults in 2015.4

Both genetic and environmental IBD risk factors have been identified.5–7 Within a given geographic area, IBD family history remains the strongest risk factor.8 The risk of IBD for a person who has a first-degree relative with CD or UC is 10-fold and 4-fold higher, respectively, than the general population.9–11 The first risk gene identified by linkage studies for CD was NOD2, with 3 loss-of-function mutations primarily responsible for the genetic association.12,13 Subsequent genome-wide association studies identified multiple IBD risk genes, TNFSF15 (identified in Japan), followed by IL23R, ATG16L1, IRGM, and PTGER4 for CD, and established the human leucocyte antigen locus as dominant in UC. Genome-wide association studies meta-analyses and replications have identified over 260 genetic risk loci for IBD, and most loci contain genetic risk variants found commonly among European ancestry populations.12–22 Aside from NOD2 and IL23R with greater than 2-fold increased risk for

*National Institute of Diabetes and Digestive and Kidney Disease (NIDDK) Inflammatory Bowel Disease (IBD) Genetics Consortium investigators include: Steven R. Brant (Rutgers University/Johns Hopkins University), Judy H. Cho (Icahn School of Medicine at Mount Sinai), Richard H. Duerr (University of Pittsburgh), Dermot B.P. McGovern (Cedars-Sinai Medical Center), John R. Rioux (Montreal-Boston Collaborative IBD Genetic Research Center), and Mark S. Silverberg (University of Toronto, Samuel Lunenfeld Research Institute, Mount Sinai Hospital).

Abbreviations used in this paper: CD, Crohn’s disease; GC, genetic consortium; GRC, genetic research center; GRS, genetic risk score; IBD, inflammatory bowel disease; IBD-U, inflammatory bowel disease unclassified; SNP, single-nucleotide polymorphism; UC, ulcerative colitis.

Most current article

Copyright © 2023 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.gastha.2022.08.001
single-risk variants (and approximately 20-fold for NOD2 mutation homozygotes), the remainder of the commonly inherited IBD risk variants individually contribute very modestly to IBD risk, with odds ratios less than 1.3 to just above 1.0 for most loci. A high genetic risk score (GRS) determined by the total number of common risk variants, each weighted by their contribution to IBD relative risk, was associated with younger age at diagnosis and involvement of the terminal ileum in CD. However, except for the highly penetrant Mendelian forms of very early-onset IBD, genetic risk variants show low penetrance and hence have been predicted to require interaction with uncharacterized environmental risk factors for IBD to develop.

Environmental risk factors identified in IBD include smoking, appendectomy, oral contraceptives, diet and obesity, breast feeding, infections, antibiotics, food additives, and childhood hygiene. Among these, the best-characterized and most rigorous, measurable environmental risk factor is cigarette smoking. Current smoking confers a 2-fold increase in CD compared to non-smokers and is associated with a greater likelihood of aggressive disease including need for surgery. Conversely and paradoxically, nonsmokers have an increased risk of UC compared to smokers and is associated with a greater likelihood of aggressive disease including need for surgery. Conversely and paradoxically, nonsmokers have an increased risk of UC as compared to smokers. Furthermore, smoking cessation is associated with a significant increase in UC incidence, and when compared to never smokers, this effect can last up to 10 years after smoking cessation.

The greatest environmental risk factor, however, is living in a Western industrialized country. Migration studies have shown that for the same ancestral population, IBD risk increases greatly when ethnic groups move from low-incidence, non-Western, and less-industrialized countries to the high-incidence, Western industrialized countries. Within a given country, industrialization and concurrent lifestyle changes (improved environmental hygiene, food refrigeration, and dietary changes including greater sugar intake and food additives such as emulsifiers) have correlated with increased IBD incidence.

The most rigorous evaluation of IBD incidence in the United States, determined multiple times over several decades, has been in Olmsted County, Minnesota, by epidemiologists at the Mayo Clinic. CD incidence rose from 6.9 per 100,000 person-years in the 1970 to 9.0 in the 1990s and 10.7 during the first decade of the current century (2000–2009). UC incidence remained relatively stable across the last 3 decades of the twentieth century (9.2, 10.2, and 10.2) only to increase to 12.2 in the first decade of the current century.

We hypothesized that if the rise in IBD cases in the 1990s and 2000s was due to novel environmental causes or improved detection of mild cases, then IBD genetic risk among cases would decrease. To address this hypothesis, we explored demographic, environmental, and genetic risk factors in a large North American IBD database, the well-characterized National Institutes of Diabetes, Digestion and Kidney Diseases IBD Genetics Consortium (IBDGC). We also examined temporal trends in age at diagnosis, disease severity, and their determinant factors.

Materials and Methods

Study Population

This is a case-control study on white, non-Hispanic, participants of European descent, carrying a confirmed diagnosis of CD, UC, and IBD-unclassified (IBD-U) registered with IBDGC. The IBDGC cohort was established in 2003, when 6 genetic research centers (GRCs) in the United States and Canada began recruiting patients with confirmed CD, UC, or IBD-U, for IBD gene discovery. Recruitment was unbiased by IBD family history or other clinical factors except that, during the initial 2 years of recruitment (2003–2004), UC proctitis was excluded, and UC cases were preferentially those with extensive disease. IBD cases recruited at each center had their diagnoses of CD, UC, and IBD-U confirmed by chart review, as per the IBDGC phenotyping manual (https://ibdgc.uchicago.edu/files/IBDGC_Phenotyping_Manual_2019-10.pdf). The information was collected one time only, at the time of recruitment.

Data for each patient included demographics, family history, smoking history, and details pertinent to the date of diagnosis, extent and location of the disease, and extraintestinal manifestations. Blood was drawn for DNA extraction for genotyping. Healthy controls in the database were unrelated individuals without IBD. Spouses, significant others, and same-gender friends were targeted as controls, and the general population was also recruited.

Inclusion Criteria

The IBDGC centers recruited patients of all ethnicities. However, this study was limited to white, non-Hispanic participants of European descent, carrying a confirmed diagnosis of CD, UC, or IBD-U, given the focus on IBD-GRS as a major predictor variable. GRS in IBD has only been validated in European ancestry populations with the majority of genetic loci and variants not established or having differential risk among non-whites.

Exclusion Criteria

We excluded patients diagnosed under age 6 (very-early-onset IBD) and those with missing or incomplete genotype data. Multiple related individuals were excluded (eg, only 1 person per family was included). Children were not included as controls.

Definition of Variables

Date of diagnosis refers to the year when a definitive diagnosis of any IBD phenotype was first made.

Smoking at diagnosis is defined as smoking, on average, at least 1 cigarette daily for at least 3 months before diagnosis.

Ex-smoker at diagnosis is defined as smoking stopped at least 3 months before diagnosis and was not smoking at study entry. Nonsmokers (cases and controls) were individuals who smoked fewer than 100 cigarettes in their lifetime.

Family history of IBD is a history of CD, UC, or IBD-U in a first- or second-degree relative, self-reported by the study subject.

Jewish ethnicity, in studies in North America and Western Europe, has been consistently associated with a significantly greater disease prevalence and IBD family history, hence the need for adjustment. **Jewish ethnicity** was self-reported as Jewish ancestry in grandparents.
Characteristics of disease comprised disease extent (Montreal classifications L1, L2, L3, and L4 for CD; E1, E2, and E3 for UC), behavior (B1, B2, and B3), perianal disease, extra-intestinal manifestations (EIMs), or history of bowel resection. EIMs were determined as per the IBDGC phenotyping manual.11

Surgery was limited to intestinal resections: total colectomy for CD and UC patients and segmental small-bowel or large-bowel resections for CD patients.

Genetic Risk Score. All patients and healthy controls were genotyped with the custom Immunochip array (Illumina, San Diego, CA).13 Based on the weighted sum of all risk alleles, we calculated a composite GRS for each individual, using the R program Mangrove.14 We used the list of lead IBD-associated single-nucleotide polymorphisms (SNPs) and their odds ratios for CD, UC, and IBD for each independent locus, and their risk allele frequency estimations in European ancestry individuals, as reported by Liu et al.15 Because our study was limited to individuals of European descent, we included the common NOD2 loss-of-function mutations (rs2066844, rs2066845, and rs2066847) for the “CD” and “IBD” groups.

Ethical Considerations
The ethical boards of each GRC approved the study. All patients included in this study gave written informed consent including for a genetic research study.

Statistical Analysis
To determine the temporal changes that occurred in each of the 3 disease phenotypes and the determinant factors associated with these changes, we analyzed (1) disease characteristics (age of onset, disease extent, and severity), (2) smoking habits, and (3) GRS depending on when each patient was diagnosed (1940–1989 [“pre-1990”] or 1990–2011 [“post-1990”]). Distributions of study variables were compared by disease status (ie, patients vs healthy controls) and by diagnosis (CD, UC, and IBD-U). Data are presented as frequencies and percentiles for categorical variables, means with standard deviations for continuous normally distributed variables, and medians with 25th–75th percentiles for continuous skewed variables. To test associations between continuous variables and disease status, we used 1-way analysis of variance. To test associations between categorical variables and disease status, we used Pearson’s Chi-squared test.

Characteristics of the Study Sample

Our study population comprised 3695 white, non-Hispanic, adults: 2744 affected by IBD and 951 controls recruited by the IBDGC GRCs between 2003 and 2012. Out of the 2744 affected individuals, 55% carried the diagnosis of CD, 42.2% UC, and 2.8% IBD-U.

IBD patients were significantly younger (37.6 ± 15.8 vs 43.5 ± 14.5, \(P < .001 \)), more often male (49.8% vs 43.4%, \(P < .001 \)), and of Jewish ethnicity (13.9% vs 8.9%, \(P < .001 \)) compared to controls. The median period from disease diagnosis to enrollment in the registry was 8 years (25th–75th percentile: 3–15 years). In our database, 28% of IBD patients were diagnosed before 1990, with 72% diagnosed between 1990 and 2011.

Disease Expression and Determinant Factors in Affected Population

In our cohort, the average age at diagnosis significantly increased over time. Patients diagnosed post 1990 were significantly older at diagnosis than those diagnosed before 1990. The mean age for CD diagnosis was 22.7 vs 25.3 years in pre-1990 vs post-1990 era, 26.4 vs 31.9 for UC, and 24.0 vs 28.3 for IBD, respectively \((P < .001 \) in all 3 groups) (Table 1). However, patients diagnosed before 1990 who were older at the time of diagnosis were less likely to be alive. They would have been older when the registry opened in 2003 and with each year of recruitment.

CD patients compared to UC patients were younger at diagnosis (26.0 vs 30.9, \(P < .001 \)), more frequently female (53.3% vs 47.0%, \(P = .005 \)), and more frequently had a positive IBD family history (34.0% vs 29.9%, \(P = .014 \)) (Table A1). CD patients were more likely to be active smokers than UC patients \((P < .001 \). The most common CD site was ileocolonic (L3) (45.9%), and the most common disease behavior was inflammatory (B1) (47.7%). Twelve percent of patients had perianal disease.

CD patients had a significant change in disease site after 1990 \((P < .001 \) primarily from an increase in colon-only disease site (15.1% vs 7.8%). They also were less likely to have penetrating disease behavior (B3) (Table 1). Median disease duration at the time of phenotyping was significantly shorter among patients diagnosed post 1990 than among those diagnosed before 1990 (5 years vs 24 years, \(P < .001 \)). This factor may partly account for less-observed penetrating disease and less aggressive or severe disease post 1990. Among UC patients, 61.2% had pancolitis, with left colonic (31.2%) or proctitis-only disease (6.5%) being less frequent (Table A1). Disease site for UC did not change post 1990 with a similar proportion of patients with pancolitis present (Table 1).
Characteristics	Crohn’s disease		Ulcerative colitis		IBD		<1990	1990+	P value	<1990	1990+	P value	<1990	1990+	P value
Enrolment age, mean years ± SD	48.8 ± 11.4	31.3 ± 13.8	<.001	51.4 ± 12.4	37.5 ± 15.8	<.001	49.6 ± 11.9	34.2 ± 15.1	<.001						
Diagnosis age, mean years ± SD	22.7 ± 8.5	25.3 ± 12.9	<.001	26.4 ± 10.9	31.9 ± 15.3	<.001	24 ± 9.6	28.3 ± 14.5	<.001						
Male, n (%)	170 (45.7)	539 (47.4)	.56	112 (51.4)	505 (53.7)	.53	290 (48.3)	1077 (50.3)	.39						
Jewish, n (%)	61 (16.4)	152 (13.4)	.015	40 (18.3)	114 (12.1)	<.001	103 (17.1)	278 (13)	<.001						
Disease duration, mean years (range)	24 (20–31)	5 (2–10.5)	<.001	23 (20–28)	5 (2–9)	<.001	24 (20–30)	5 (2–10)	<.001						
Family history, n (%)	150 (40.3)	362 (31.9)	.003	69 (31.7)	277 (29.5)	.53	223 (37.1)	668 (31.2)	.006						
Smoking at diagnosis															
Nonsmoker	208 (55.9)	792 (69.7)	150 (68.8)	646 (68.7)	368 (61.2)	1484 (69.2)									
Current smoker	127 (34.1)	236 (20.8)	32 (14.7)	82 (8.7)	159 (26.5)	326 (15.2)									
Ex-smoker	32 (8.6)	96 (8.5)	32 (14.7)	207 (22)	65 (10.8)	315 (4.7)									
Missing	5 (1.3)	12 (1.1)	4 (1.8)	5 (1.5)	9 (1.5)	18 (1.8)									
Genetic risk score	4.8 (5.8)	4.2 (7.9)	.19	1.8 (1.3)	1.8 (1.5)	.39	2.7 (3.1)	2.4 (2.7)	.031						
Surgery, n (%)															
Yes	306 (82.3)	500 (44)	57 (26.1)	150 (16)	366 (60.9)	661 (30.8)									
Missing	3 (.8)	6 (.5)	1 (.5)	5 (.5)	4 (.7)	12 (.6)									
Location															
L1	97 (26.1)	314 (27.6)	- - - -												
L2	29 (7.8)	171 (15.1)	- - - -												
L3	180 (48.4)	512 (45.1)	- - - -												
L4 only	.0 (0)	8 (.7)	- - - -												
Perianal	63 (16.8)	123 (10.8)	- - - -												
Missing	3 (.8)	8 (.7)	3 (1.4)	10 (1.1)	- -										
Extent															
E1	13 (2.2)	62 (6.6)	- - - -												
E2	80 (36.7)	361 (31.2)	- - - -												
E3	122 (56)	587 (62.4)	- - - -												
Disease behavior															
B1	95 (25.5)	625 (55)	- - - -												
B2	111(29.8)	231 (20.3)	- - - -												
B3	154 (41.4)	265 (23.3)	- - - -												
Missing	12 (3.3)	15 (1.32)	- - - -												
Extraintestinal manifestations															
Arthritis	78 (21)	185 (16.3)	30 (13.8)	96 (10.2)	110 (18.3)	292 (13.6)									
Ankylosing spondylitis	6 (1.6)	8 (.7)	7 (3.2)	10 (1.1)	13 (2.2)	19 (9)									
Uveitis/Episcleritis	11 (3)	38 (3.3)	7 (3.2)	18 (1.9)	18 (3.0)	75 (2.7)									
Missing	8 (2.2)	12 (1.1)	7 (3.2)	12 (1.3)	15 (2.5)	25 (1.2)									
Yes	19 (5.1)	58 (5.1)	9 (4.1)	20 (2.1)	28 (4.7)	78 (3.6)									
Missing	7 (1.9)	6 (.5)	4 (1.8)	10 (1.1)	11 (1.8)	16 (.7)									
Overall, 53.4% of CD patients had undergone surgery in comparison with only 17.9% of UC patients ($P < .001$) (Table A1). EIM of erythema nodosum and arthritis were significantly more frequent among CD than among UC patients while uveitis/episcleritis and primary sclerosing cholangitis were both more common in UC ($P < .001$).

Predictors for Age at Diagnosis. We assessed the predictors of age at diagnosis across all the 3 groups (CD, UC and IBD overall) using simple and multivariable linear regression models for "age at diagnosis" (Table 2). As far as innate risk factors, having a higher GRS was significantly associated with younger age at diagnosis for CD, UC, and IBD overall in univariate analyses but remained significant only for CD and IBD phenotypes in multivariate analyses. For each unit increase in GRS, the age at diagnosis decreased by a month (0.11 years). In addition, Jewish ancestry was associated with younger age at diagnosis for CD and IBD, but not UC, and only in multivariate analyses, after controlling for all other factors. Jewish ancestry patients were 1 year younger at diagnosis than non-Jewish ancestry patients (the estimate for age of diagnosis for CD using Jewish ancestry was 1.1 years, $P = .012$). Interestingly, family history of IBD was not associated with younger age at diagnosis in any analyses.

CD and UC patients who "ever smoked" were older at diagnosis than in those who "never smoked" (data not shown). This same comparison was made by dividing smoking into either "current smoking" or "ex-smoking at diagnosis," and each subcategory was significantly associated with age at diagnosis in univariate analyses. However, in multivariate analysis, only ex-smoking remained significantly associated with older age at diagnosis. The association of ex-smoking and older age at diagnosis (in multivariate analyses) was stronger for CD ($\beta = 2.9, 95\% CI 1.83–3.98$) than for UC ($\beta = 1.06, 95\% CI 0.46–1.66, P < .001$).

Smoking Status and IBD. We further explored the potential relationships of smoking, ex-smoking, and nonsmoking at diagnosis in the 2 different eras, noting that for the population of North America overall, smoking prevalence decreased after as compared to before 1990.44 For patients with either CD or UC, there was a statistically significant decline in the prevalence of smoking at diagnosis in both eras (Figure). The prevalence of ex-smoking at diagnosis increased amongst UC patients post 1990 and was greater in UC than in CD (Figure).

While ex-smoking prevalence at diagnosis increased among UC patients post 1990, the frequency of nonsmoking at diagnosis remained identical between the 2 eras (Table 1) despite the overall trend for nonsmoking to increase in the North American population during the same periods. The opposite was true for CD: nonsmoking at diagnosis increased post 1990, whereas ex-smoking at diagnosis was essentially identical (Figure).

Genetic Risk Score. Univariate analysis for CD showed that a higher CD-GRS was significantly associated
Table 2. Results of Univariable and Multivariable Linear Regression Models for Age at Diagnosis

Model	Crohn’s disease, N = 1508	Ulcerative colitis, N = 1158	Inflammatory bowel disease, N = 2744			
	Univariable	Multivariable	Univariable	Multivariable	Univariable	Multivariable
1990–1999 vs <1990	2.03 [0.67, 3.39]	12.97 [12.12, 13.83]	4.74 [2.75, 6.73]	13.80 [12.81, 14.78]	3.56 [2.38, 4.74]	13.52 [12.88, 14.16]
>2000 vs <1990	2.94 [1.73, 4.86]	19.94 [19.09, 20.80]	5.97 [3.95, 7.89]	20.84 [19.89, 21.79]	4.82 [3.69, 5.96]	20.62 [20.01, 21.24]
Enrollment age	0.75 [0.66, 0.85]	0.75 [0.66, 0.85]	0.75 [0.66, 0.85]	0.75 [0.66, 0.85]	0.75 [0.66, 0.85]	0.75 [0.66, 0.85]
Jewish ethnicity	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]
IBD family history	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]
Current smoker vs non-smoker	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]
Ex-smoker vs non-smoker	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]
Genetic risk score	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]	0.02 [0.02, 0.04]

Discussion

Our study is a unique temporal overview of IBD disease expression and the contribution of risk factors for disease during the contemporary era in North America. It is perhaps the first study to examine differences in IBD features as well as known risk factors such as genetics, Jewish ethnicity, family history, and age at diagnosis among persons diagnosed before and after 1990. We observed that in our National Institutes of Diabetes, Digestive and Kidney Diseases IBD cohort (Table 3), in the strongest association with CD-GRS, IBD family history and CD surgery were significantly associated with CD-GRS. In univariate analyses, IBD-GRS in univariate analyses showed associations with IBD family history and IBD surgery. In multivariable analyses, IBD-GRS was no longer associated with IBD surgery. Being a smoker was also a significant determinant of age at diagnosis before 1990 and was associated with an older age at diagnosis. For UC and IBD overall, being a smoker was also a significant determinant of age at diagnosis before 1990 and was associated with an older age at diagnosis. For UC and IBD overall, being a smoker at diagnosis vs a nonsmoker at diagnosis was a significant factor for IBD and considering that surgery frequency may be affected by greater follow-up in the pre-1990 than post-1990 IBD patients. No other variables showed significant independent associations for UC or IBD overall (CD, UC, and IBD-U combined).
Genetic Risk

Our study elucidated the association of genetic risk with young onset and need for surgery among patients with CD and IBD. Compared with before 1990, patients diagnosed in the start of 1990 had a significantly lower CD-GRS (beta coefficient, -0.438, 95% CI -0.871 to -0.004) in univariate analysis but not in multivariable analysis (beta coefficient, -0.097, 95% CI -0.494 to 0.301) (Table 3). However, when we excluded surgery from multivariate analysis, the beta-coefficient decreased from -0.097 to -0.412 (95% CI -0.838 to 0.0137) with a trend toward significance ($P = .058$) suggesting that a lower genetic risk threshold may be permissible for disease to develop in more recent decades. This finding may be obscured by concurrent less-severe disease and decreased need for surgery. For UC, we observed none of the genetic risk-associated features. Our observation for UC is in contrast to the Cleynen et al study where younger onset was associated with a higher UC-GRS. Potential explanations are our smaller sample size and higher percentage of patients with more extensive and perhaps more severe disease than in the study by Cleynen et al. However, as suggested by prior studies on disease concordance for monozygotic twins, UC has less genetic influence than CD (15% vs 30% twin concordance).37

Environment

Smoking at diagnosis was significantly more common among CD patients than among UC patients in our cohort. The opposite was true for ex-smoking. These differences in smoking and ex-smoking between the 2 IBD phenotypes remained significant and consistent, independent of the periods examined. However, mirroring the trend in the general population, smoking decreased significantly among both CD and UC patients post 1990 (Figure). This finding implies that for CD, there has been an increase in incidence, albeit with a concomitant decrease in exposure to this well-established environmental risk factor.58

Ex-smoking status was more prevalent in UC patients diagnosed post 1990. Therefore, the causal association of ex-smoking as a risk factor for this phenotype is concordant with the greater incidence of UC post 1990. This concordance may partly explain UC’s uptrending. Similar findings were reported in a systematic review of inception cohorts.50

Our most interesting finding may be that GRS-CD had a negative beta coefficient in multivariable analysis showing significant association with smoking at diagnosis in CD (Table 4), suggesting an important concept: When a person has the environmental risk factor for CD of smoking, one may only need a lower genetic risk (ie, GRS) to develop CD.

In the context of a decline in overall smoking among CD patients after 1990 and possibly a lower genetic risk contribution after than before 1990, but at a time when CD incidence increased, one might ask, “What are we missing in understanding the pathogenesis of CD?” Two possibilities are that CD incidence had not really changed but rather is being diagnosed much more frequently, and/or CD after 1990 may include more patients with less severe disease that may have gone undiagnosed in previous decades. Support for these hypotheses are that (1) nonsmoking is associated with less severe CD; (2) colon-only disease was significantly increased post 1990, concurrent with the routine utilization of colonoscopy and biopsy to evaluate chronic diarrhea and other symptoms of CD and noting that colon-only CD was shown by Cleynen et al to have lower genetic risk than either ileal-colonic or ileal-only disease52; and (3) there was significantly less CD surgery in our cohort post 1990 (44% vs 82%, $P < .001$), suggesting a more severe disease in CD patients diagnosed in the earlier decades. To normalize surgery for differences in follow-up between the cohorts, we examined surgery within 5 years of diagnosis. CD surgery remained significantly increased before 1990 despite this restriction (41.4 vs 32.4, $P = .002$). Although the degree of surgery may have been affected by the introduction of anti-tumor necrosis factor (TNF) therapy in 1998, this would have applied to only a part of the post-1990 cohort (ie, those recruited from 1999 to 2011), and its use would have been incremental during this period. Additionally, observational studies showed only a modest decrease, if any, in surgical rates during the early biologic era and primarily when aTNF biologics were used within the first years of diagnosis.51,52 A less common practice in the first decade of aTNF therapy when top-down therapy was still in the process of acceptance.53
Table 3. Genetic Risk Score: Simple and Multivariable Quantile Regression Models

Model	Crohn's disease, N = 1508	Ulcerative colitis, N = 1158	Inflammatory bowel disease, N = 2744			
	Simple	Multivariable	Simple	Multivariable	Simple	Multivariable
Diagnosis y (1990+ vs <1990)	-.438 [-.871, -.004]	-.097 [-.494, .301]	.068 [-.134, .270]	.03 [-.189, .25]	-.114 [-.292, .065]	.017 [-.174, .208]
Diagnosis age	-.016 [-.027, -.004]	-.018 [-.03, -.007]	-.0001 [-.003, .0005]	-.0003 [-.008, .003]	-.008 [-.013, -.003]	-.007 [-.120, -.002]
Jewish ethnicity	.923 [.14, 1.70]	1.021 [.42, 1.62]	.009 [-.122, .297]	.100 [-.129, .329]	.483 [.31, .653]	.35 [.082, .617]
Family history	.374 [.016, .732]	.347 [-.011, -.68]	-.0006 [-.161, .160]	.003 [-.163, .168]	.236 [.081, .390]	.15 [.021, .322]
Current smoker vs nonsmoking	.049 [-.314, .413]	.113 [-.300, .527]	.095 [-.135, .325]	.159 [-.087, .404]	.089 [-.854, .264]	.145 [-.057, .347]
Ex-smoker vs nonsmoking	-.053 [-.569, .464]	.145 [-.299, .589]	.056 [-.11, .22]	.115 [-.84, .315]	-.28 [-.407, -.153]	.009 [-.207, .225]
Surgery vs no surgery	.673 [.341, 1.006]	.681 [.360, 1.002]	-.004 [-.191, .183]	.04 [-.156, .241]	.301 [.135, .466]	.254 [.089, .418]

Data presented as beta coefficient and 95% confidence interval in brackets. Beta coefficients can be interpreted as adjusted risk difference of GRS per unit increase in the independent variable.

*Refers to smoking status at diagnosis.

\(^* \) P < .05.

\(^* * \) P < .01.

\(^* * * \) P < .001.

Conclusions

We still have much to discover regarding the driving factors and mechanisms of IBD. We expected lower genetic effects of smoking, but we were surprised by the extent of the protective effects. The results are limited by the availability of smoking status at the time of diagnosis, so we are not able to examine the effects of smoking on disease activity. However, the large sample size allows for the examination of smoking as a risk factor for IBD. Our study has limitations, but we are pleased that we were able to examine smoking as a risk factor for IBD.

A third and important consideration is that our study was limited in examination of environmental effects to that of smoking. However, we have been able to examine environmental effects to some extent, including Helicobacter pylori infection and increased BMI. Our study also examined antibiotic use and decreased infectious disease exposures, which are also important. The differences in smoking status were limited by survival bias. However, the large sample size allowed us to examine the effects of smoking at the time of diagnosis.
effects, as determined by GRS, to be observed for IBD, CD, and UC from the post-1990 era than the pre-1990 era. However, evidence for this was borderline and only when we excluded surgery in the model. However, we did observe that smoking was associated with a decreased GRS in patients that developed CD, validating a concept that when there is an increase in the presence of an environmental risk factor, a lower genetic risk may be required for disease to develop. This is parallel to that observed for reduced lung function but with 50 years of smoking exposure showed a similar effect as those in the highest decile of polygenic risk but having only 11–20 pack-years of smoking exposure.

Since the European ancestry population make-up is not known to have changed greatly (and we accounted for genetics of the high-risk Ashkenazi Jewish population), unaccounted environmental risk factors, in addition to increased diagnosis of mild and colon-only disease, likely underlie the increase in post-1990 IBD incidence, whether CD or UC. It will be important to uncover these risk factors and also determine the gene-environmental interactions that occur and explain the increase in IBD.

Supplementary Material

Material associated with this article can be found in the online version at https://doi.org/10.1016/j.gastha.2022.08.001.

References

1. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012;142:46–54.
2. GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol 2020; 5:17–30.
3. Siew NC, Shi HY, Hamidi N, et al. A worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2018;390:2741–2742.
4. Dahlhamer JM, Zammiti EP, Ward BW, et al. Prevalence of inflammatory bowel disease among adults aged ≥18 years—United States, 2015. MMWR Morb Mortal Wkly Rep 2016;65:1166–1169.
5. Bernstein CN, Shanahan F. Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut 2008;57:1185–1191.
6. De Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 2016;13:13–17.
7. Chang JT. Pathophysiology of inflammatory bowel disease. N Engl J Med 2020;383:2652–2664.
8. Ramos GP, Papadakis KA. Mechanisms of disease: inflammatory bowel diseases. Mayo Clin Proc 2019; 94:155–165.
9. Santos MPC, Gomes C, Torres J. Familial and ethnic risk in inflammatory bowel disease. Ann Gastroenterol 2018; 31:14–23.
10. Halme L, Paavola-Sakki, Turunen U, et al. Family and twin studies in inflammatory bowel disease. World J Gastroenterol 2006;12:3668–3672.
11. Moller FT, Andersen V, Wohlfahrt J, et al. Familial risk of inflammatory bowel disease: a population-based cohort study 1977–2011. Am J Gastroenterol 2015; 110:564–571.
12. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001;411:603–606.
13. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001;411:599–603.
14. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119–124.
15. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015;47:979–986.
16. Ellinghaus D, Jostins L, Spain SL, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016;48:510–518.
17. Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 2007;39:830–832.

18. Yamazaki K, Umeno J, Takahashi A, et al. A genome-wide association study identifies 2 susceptibility Loci for Crohn’s disease in a Japanese population. Gastroenterology 2013;144:781–788.

19. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011;43:246–252, Erratum in: Nat Genet. 2011;43:919.

20. Kenny EE, Pe’er I, Karban A, et al. A genome-wide scan of Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. PLoS Genet 2012;8:e1002559.

21. Julià, Domènech E, Chaparro M, et al. A genome-wide association study identifies a novel locus at 6q22.1 associated with ulcerative colitis. Hum Mol Genet 2014;23:6927–6934.

22. Yang SK, Hong M, Zhao W, et al. Genome-wide association study of Crohn’s disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 2014;63:80–87.

23. Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 2016;387:156–167.

24. Batura V, Muise AM. Very early onset IBD: novel genetic aetiologies. Curr Opin Allergy Clin Immunol 2018;18:470–480.

25. Gordon H, Trier Moller F, Andersen V, et al. Heritability in inflammatory bowel disease: from the first twin study to genome-wide association studies. Inflamm Bowel Dis 2015;21:1428–1434.

26. Ananthakrishnan AN, Berstein CN, Iliopoulos D, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol 2015;12:720–28.

27. Herman SM, Zaborniak K, Bernstein CN. Insight into inflammatory bowel disease pathogenesis: is the answer blowing in the wind? Inflamm Bowel Dis 2022;28:486–491.

28. Piovani D, Danese S, Peyrin-Biroulet L, et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 2019;157:647–659.

29. Mahid SS, Minor KS, Soto RE, et al. Smoking and inflammatory bowel disease: a meta-analysis [published correction appears in Mayo Clin Proc. 2007 82: 890]. Mayo Clin Proc 2006;81:1462–1471.

30. van der Soot KJW, Weersma RK, Alizadeh BZ, et al. Identification of environmental risk factors associated with the development of inflammatory bowel disease. J Crohns Colitis 2020;14:1662–1671.

31. M’Koma AE. Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol 2013;6:33–47.

32. Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 2015;12:720–727.

33. Coward S, Clement F, Benchimol EI, et al. Past and future burden of inflammatory bowel diseases based on modeling of population-based data. Gastroenterology 2019;156:1345–1353.

34. Keyashian K, Dehghan M, Sceats L, et al. Comparative incidence of inflammatory bowel disease in different age groups in the United States. Inflamm Bowel Dis 2019;25:1983–1989.

35. Kaplan GG, Ng SC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 2017;152:313–321.

36. Ananthakrishnan AN, Kaplan GG, Ng SC. Changing global epidemiology of inflammatory bowel diseases: sustaining health care delivery into the 21st century. Clin Gastroenterol Hepatol 2020;18:1252–1260.

37. Rizello F, Spisni E, Giovanardi E, et al. Implications of the westernized diet in the onset and progression of IBD. Nutrients 2019;11:1033.

38. Ng SC, Tang W, Ching JY, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn’s and colitis epidemiology study. Gastroenterology 2013;145:158–165.e2.

39. Wei SC, Lin MH, Tung CC, et al. A nationwide population-based study of the inflammatory bowel diseases between 1998 and 2008 in Taiwan. BMC Gastroenterol 2013;13:166.

40. Shivashankar R, Tremaine WJ, Harmsen WS, et al. Incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted county, Minnesota from 1970 through 2010. Clin Gastroenterol Hepatol 2017;15:857–863.

41. Dassopoulos T, Nguyen GC, Bitton A, et al. Assessment of reliability and validity of IBD phenotyping within the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK) IBD Genetics Consortium (IBDGC). Inflamm Bowel Dis 2007;13:975–983.

42. Brant SR, Okou DT, Simpson CL, et al. Genome-wide association study identifies African-specific susceptibility loci in African Americans with inflammatory bowel disease. Gastroenterology 2017;152:206–217.

43. Stata Corp. Stata Statistical Software: Release 15. College Station: StataCopr LLC, 2017.

44. Duricova D, Burisch J, Jess T, et al. Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature. J Crohns Colitis 2014;8:1351–1361.

45. Nguyen GC, Chong CA, Chong RY. National estimates of the burden of inflammatory bowel disease among racial and ethnic groups in the United States. J Crohns Colitis 2014;8:288–295.

46. Vavricka SR, Schoepfer A, Scharl M, et al. Extraintestinal manifestations of inflammatory bowel disease. Inflamm Bowel Dis 2015;21:1982–1992.

47. Brant SR. Update on the heritability of inflammatory bowel disease: the importance of twin studies. Inflamm Bowel Dis 2011;17:1–5.

48. The Health Consequences of Smoking—50 Years of Progress: a Report of the Surgeon General," National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. Atlanta: Centers for Disease Control and Prevention (US), 2014.

49. Papoutsopoulos S, Satsangi J, Campbell BJ, et al. Review article: impact of cigarette smoking on intestinal inflammation-direct and indirect mechanisms. Aliment Pharmacol Ther 2020;51:1268–1285.
50. Thomas T, Chandan JS, Li VSW, et al. Global smoking trends in inflammatory bowel disease: a systematic review of inception cohorts. PLoS One 2019;14:e0221961.
51. Peyrin-Biroulet L, Salleron J, Filippi J, et al. Anti-TNF monotherapy for Crohn's disease: a 13-year multicentre experience. J Crohns Colitis 2016;10:516–524.
52. Ljung T, Karlén P, Schmidt D, et al. Infliximab in inflammatory bowel disease: clinical outcome in a population-based cohort from Stockholm County. Gut 2004;53:849–853.
53. D'Haens GR. Top-down therapy for IBD: rationale and requisite evidence. Nat Rev Gastroenterol Hepatol 2010; 7:86–92.
54. Buck Louis GM, Sundaram R. Exposome: time for transformative research. Stat Med 2012;31:2569–2575.
55. Rogler G, Vavricka S. Exposome in IBD: recent insights in environmental factors that influence the onset and course of IBD. Inflamm Bowel Dis 2015;21:400–408.
56. Kim W, Moll M, Qiao D, et al. Interaction of cigarette smoking and polygenic risk score on reduced lung function. JAMA Netw Open 2021;4:e2139525.

Received November 5, 2021. Accepted August 3, 2022.

Correspondence:
Address correspondence to: Brindusa Truta, MD, 1830 E Monument Street, Room 426, Baltimore, Maryland 21205. e-mail: btruta1@jhmi.edu.

Acknowledgments:
The authors would like to acknowledge the late Dr Theodore M. Bayless, a luminary in the clinical understanding and management of inflammatory bowel disease, for his invaluable contribution to the design and initiation of this study.

They also wish to acknowledge the assistance of Gayane Yenokyan, PhD, Biostatistics, Johns Hopkins Bloomberg School of Public Health, for the biostatistics analyses, and Phil Schumm, IBDGC Data Coordinating Center, University of Chicago, for his creation of the phenotype database used in the study.

Authors’ Contributions:
Brindusa Truta: Designed study, collected data, interpreted data, edited manuscript. Ferdouse Begum: Contributed to study design, data collection, analysis and interpretation, reviewed manuscript. Lisa Datta: Contributed to study design, data collection, analysis and interpretation, reviewed manuscript. NIDDK IBD Genetics Consortium: Contributed to study design, data collection, reviewed manuscript. Steven R. Brant: Designed study, collected data, interpreted the data, edited the manuscript.

Conflicts of Interest:
The authors disclose no conflicts.

Funding:
This work was supported by the Atran Foundation (to B.T.); the Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center (to B.T. and S.R.B.); National Institute of Health (DK062431 to S.R.B.); and the Robert E. Sadler, Jr Family (to S.R.B.). The IBD Genetics Consortium cohort, phenotyping, and database were supported by the National Institute of Health (DK062431 to S.R.B., DK62422 and DK62429 to J.H.C., DK62420 to R.H.D., DK62413 to D.B.P.M., DK62432 to J.D.R., and DK62423 to M.S.S.).

Ethical Statement:
The corresponding author, on behalf of all authors, jointly and severally, certifies that their institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.

Data Transparency Statement:
Analytic methods are presented in the Material and Methods section. Clinical and genetic data for individuals evaluated in the study, as well as DNA samples, are all part of the IBD Genetics Consortium cohort and are available via https://repository.niddk.nih.gov/home/.