A note on selection stability: combining stability and prediction

Yixin Fang*
New York University School of Medicine

Junhui Wang
University of Illinois at Chicago

Wei Sun
Purdue University

Abstract

Recently, many regularized procedures have been proposed for variable selection in linear regression, but their performance depends on the tuning parameter selection. Here a criterion for the tuning parameter selection is proposed, which combines the strength of both stability selection and cross-validation and therefore is referred as the prediction and stability selection (PASS). The selection consistency is established assuming the data generating model is a subset of the full model, and the small sample performance is demonstrated through some simulation studies where the assumption is either held or violated.

Keywords: Consistency; Cross-validation; High-dimensionality; Variable selection.

*Correspondence to: 650 First Avenue, Room 559, New York, NY 10016; yixin.fang@nyumc.org
1 Introduction

Many regularized procedures produce sparse solution and therefore are sometimes used for variable selection in linear regression. Breiman (1996) showed that regularized procedures are more stable than subset selection. Such procedures include LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), and adaptive LASSO (Zou, 2006). However, their performance depends crucially on the tuning parameter selection.

This manuscript is not intended to add a new regularized procedure to the long list. Rather, it is aimed to propose a new method for selecting an “appropriate” tuning parameter, which is crucial in any existing regularized procedure. The meaning of appropriateness depends on whether the purpose of regularization is prediction or variable selection.

For prediction, popular methods for the tuning parameter selection include C_p (Mallows, 1973), cross-validation (Stone, 1974), and generalized cross-validation (Craven and Wahba, 1979). However, for prediction, it is way too simple to consider only one regularization procedure based on one selected tuning parameter, and usually it is more powerful to consider complicated procedures such as boosting and averaging (Hastie et al., 2009). Therefore, this manuscript is focused on the tuning parameter selection for variable selection.

For variable selection, the most popular method for the tuning parameter selection is BIC (Schwarz, 1978). The selection consistency of BIC for SCAD was shown in several papers (e.g., Wang et al., 2007, Wang et al., 2009, and Zhang et al., 2010). Here the selection consistency means that the probability of selecting the data generating model is tending to one when the sample size goes to infinity, assuming that the data generating model is a subset of the full model. This manuscript is to propose an alternative to BIC. The new method is selection consistent for a large group of regularized procedures.

Simple put, the new method combines the strength of both stability selection and cross-validation, and therefore it is referred as the prediction and stability selection (PASS). Here
the stability selection is a recent idea for variable selection. Bach (2008) proposed Bolasso to enhance the original LASSO through the bootstrap; but it requires knowing the exact root-n regularization decay. Meinshausen and Bühlmann (2010) proposed their version of stability selection, in which a super tuning parameter, cutoff π_{thr} (pre-set as 0.8 there), needs to be selected. Most recently, Sun et al. (2012) proposed Kappa selection; however, there is also a super tuning parameter, threshold α_n (pre-set as 0.1 there), needed to be selected.

This manuscript is a note on Sun et al. (2012), aimed at avoiding the selection of threshold α_n by incorporating the strength of cross-validation. The remainder of the manuscript is organized as follows. Section 2 reviews some asymptotic results in some regularized procedures. Section 3 develops a new criterion for tuning parameter selection and Section 4 examines its selection consistency. Numerical results are in Section 5 and some discussion is in Section 6.

2 Regularized procedures

Consider variable selection in linear regression,

$$y_i = x_i' \beta + \epsilon_i, \quad i = 1, \ldots, n,$$

(1)

where $\beta = (\beta_1, \ldots, \beta_p)'$, $E(\epsilon_i) = 0$, and $Var(\epsilon_i) = \sigma^2$. Assume both response and covariates are centered and then no intercept is included. Let $A = \{ j : \beta_j \neq 0 \}$ and assume β is sparse in the sense that $|A| = q < p$. Without loss of generality, assume $A = \{1, \ldots, q\}$.

A general framework for the regularized regression is

$$\hat{\beta}_\lambda = \arg \min_{\gamma \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - x_i' \gamma)^2 + \sum_{j=1}^p p_\lambda(|\gamma_j|),$$

(2)

where $p_\lambda(\cdot)$ is a regularization term encouraging sparsity in $\hat{\beta}$. In LASSO, $p_\lambda(|\beta_j|) = \lambda |\beta_j|$. In SCAD, $p_\lambda'(\theta) = \lambda I(\theta \leq \lambda) + \frac{(\alpha - \theta) I(\theta > \lambda)}{(\alpha - 1) \lambda}$. And in adaptive LASSO, $p_\lambda(|\beta_j|) = \lambda |\beta_j|/|\tilde{\beta}_j|$, where $\tilde{\beta}_j$ is some initial estimate of β_j.

If $\tilde{A}_\lambda = \{ j : \tilde{\beta}_{\lambda j} \neq 0 \}$ is used to estimate A, all the three aforementioned regularization procedures have been shown to be selection consistent under various conditions with appropriately $\lambda = \lambda_n$, where subscript n emphasize the dependence on sample size n.

For simplification, in this manuscript, consider the case where p is fixed. It has been shown that for all these three regularization procedures, there exist r_n and s_n such that the procedures are selection consistent if $r_n \prec \lambda_n \prec s_n$, where $a_n \prec b_n$ means $a_n = O(b_n)$. This fact might also hold for many other regularization procedures. Specifically, for LASSO under the irrepresentable condition, $r_n \asymp 1/\sqrt{n}$ and $s_n \asymp 1$ (Zhao and Yu, 2006), where $a_n \asymp b_n$ means $a_n = O(b_n)$ and $b_n = O(a_n)$. In addition, $r_n \asymp 1/\sqrt{n}$ and $s_n \asymp 1$ for SCAD (Fan and Li, 2001) and $r_n \asymp 1/n$ and $s_n \asymp 1/\sqrt{n}$ for adaptive LASSO (Zou, 2006). In the following, five mutually exclusive cases of λ_n are considered. For LASSO, refer to Bach (2008), while for the other two, refer to Sun et al. (2012).

Case 1: If $\lambda_n \succ s_n$, then $\tilde{\beta}_{\lambda_n} = 0$ with probability tending to one.

Case 2: If $\lambda_n \asymp s_n$, then $\tilde{\beta}_{\lambda_n} \to \gamma_0 \neq \beta$, where γ_0 is fixed and its sign pattern may or may not be the same as that of β.

Case 3: If $r_n \prec \lambda_n \prec s_n$, then $\tilde{\beta}_{\lambda_n} \to \beta$ and the sign pattern of $\tilde{\beta}_{\lambda_n}$ is consistent with that of β with probability tending to one. Here the irrepresentable condition is needed for LASSO but not for the other two.

Case 4: If $\lambda_n \asymp r_n$, then the sign pattern of $\tilde{\beta}_{\lambda_n}$ is consistent with that of β on A with probability tending to one, while for all sign patterns consistent with that of β on A, the probability of obtaining this pattern is tending to a limit in $(0, 1)$.

Case 5: If $\lambda_n \prec r_n$, then $\tilde{\beta}_{\lambda_n} \to \beta$ and $\tilde{A}_{\lambda_n} = \{ 1, \ldots, p \}$ with probability tending to one.
3 Prediction and stability selection (PASS)

A good criterion should intend to select λ_n from case 3; selecting λ_n from cases 1 or 2 might lead to under-fitting while from cases 4 or 5 might lead to over-fitting. If the two degenerate cases (1 and 5) are pre-excluded, the criterion designed in this section incorporates cross-validation, which avoids under-fitting, and Kappa selection proposed in Sun et al. (2012), which avoids over-fitting.

To describe this criterion, consider any aforementioned regularized procedure with tuning parameter λ. First of all, randomly partition the dataset $\{(y_i, x_i), \ldots, (y_n, x_n)\}$ into two halves, $Z_1 = \{(y_1^*, x_1^*), \ldots, (y_m^*, x_m^*)\}$ and $Z_2 = \{(y_{m+1}^*, x_{m+1}^*), \ldots, (y_n^*, x_n^*)\}$, where $m = \lfloor n/2 \rfloor$. Based on Z_1 and Z_2 respectively, $\hat{\beta}_{k\lambda}$ is obtained via (2) and then submodel $\hat{A}_{k\lambda}$ is selected, $k = 1, 2$.

If λ were from Case 4, both submodels, $\hat{A}_{k\lambda}, k = 1, 2$, would include non-informative variables randomly. The agreement of these two submodels can be measured by Cohen’s Kappa Coefficient (Cohen, 1960),

$$\kappa(\hat{A}_{1\lambda}, \hat{A}_{2\lambda}) = \frac{Pr(a) - Pr(e)}{1 - Pr(e)},$$

(3)

where $Pr(a) = (|\hat{A}_{1\lambda} \cap \hat{A}_{2\lambda}| + |\hat{A}^c_{1\lambda} \cap \hat{A}^c_{2\lambda}|)/p$ and $Pr(e) = (|\hat{A}_{1\lambda}| |\hat{A}_{2\lambda}| + |\hat{A}^c_{1\lambda}| |\hat{A}^c_{2\lambda}|)/p^2$.

On the other hand, if λ were from Case 2, either submodels, $\hat{A}_{k\lambda}, k = 1, 2$, might exclude some informative variable. To avoid such under-fitting, consider cross-validation,

$$CV(Z_1, Z_2; \lambda) = \left\{ \sum_{i=1}^{m} (y_i - x_i'\hat{\beta}_{2\lambda})^2 + \sum_{i=m+1}^{n} (y_i - x_i'\hat{\beta}_{1\lambda})^2 \right\}/n.$$

(4)

In addition, submodel A is assumed to be sparse and contain at least one variable, so $\kappa(\hat{A}_{1\lambda}, \hat{A}_{2\lambda})$ will be set as -1 if both $\hat{A}_{1\lambda}$ and $\hat{A}_{2\lambda}$ are empty or both are full (that is, the two degenerate cases, Cases 1 and 5, will be pre-excluded).

Now we are ready to describe the PASS algorithm, which runs the following five steps.

5
Step 1: Randomly partition the original dataset into two halves, Z_1^* and Z_2^*.

Step 2: Based on Z_1^* and Z_2^* respectively, two sub-models, \(\hat{A}_{1\lambda}^{\mathrm{sb}} \) and \(\hat{A}_{2\lambda}^{\mathrm{sb}} \), are selected.

Step 3: Calculate \(\kappa(\hat{A}_{1\lambda}^{\mathrm{sb}}, \hat{A}_{2\lambda}^{\mathrm{sb}}) \) and \(CV(Z_1^*, Z_2^*; \lambda) \).

Step 4: Repeat Steps 1-3 for \(B \) times and obtain the following ratio,

\[
\text{PASS}(\lambda) = \frac{\sum_{b=1}^{B} \kappa(\hat{A}_{1\lambda}^{\mathrm{sb}}, \hat{A}_{2\lambda}^{\mathrm{sb}})}{\sum_{b=1}^{B} CV(Z_1^*, Z_2^*; \lambda)}.
\]

Step 5: Compute \(\text{PASS}(\lambda) \) on a grid of \(\lambda \) and select \(\hat{\lambda} = \arg \max_{\lambda} \text{PASS}(\lambda) \).

4 Selection consistency

Recall the existence of those \(r_n \) and \(s_n \) in Section 2, which plays an important role here. The underlying assumptions are not stated in the following theorem, but they can be found in Bach (2008) for LASSO, Fan and Li (2001) for SCAD, and Zou (2006) for adaptive LASSO.

As discussed in Section 3, Cases 1 and Case 5 can be pre-excluded by the definition of \(\kappa \), so it suffices to show that the PASS can distinguish Case 3 from Cases 2 and 4.

Proposition 1 For any \(\lambda_n \) such that \(r_n < \lambda_n < s_n \), as \(n \to \infty \) and \(B \to \infty \),

\[
\Pr\{\text{PASS}(s_n) < \text{PASS}(\lambda_n)\} \to 1 \quad \text{and} \quad \Pr\{\text{PASS}(r_n) < \text{PASS}(\lambda_n)\} \to 1.
\]

Heuristic proof: First, by Chebyshev’s inequality, for identically distributed variables, \(X_{nb}, b = 1, \ldots, B \), if \(\text{Var}(X_{nb}) < C \) and \(\text{Corr}(X_{n1}, X_{n2}) \to 0 \), then \(\sum_{b=1}^{B} X_{nb} / B - \text{E}(X_{n1}) \to 0 \).

If \(r_n < \lambda_n < s_n \), by the result in Case 3, \(\hat{A}_{1\lambda_n}^{\mathrm{r}} = \hat{A}_{2\lambda_n}^{\mathrm{r}} = A \) with probability tending to one, and therefore by Lebesgue’s dominated theorem, \(E\{\kappa(\hat{A}_{1\lambda_n}^{\mathrm{r}}, \hat{A}_{2\lambda_n}^{\mathrm{r}})\} \to 1 \). In order to apply Lebesgue’s dominated theorem to examine the asymptotic property of cross-validation, assume that in (4), \(\hat{\beta}_{2\lambda} \) and \(\hat{\beta}_{2\lambda} \) are bounded manually by some large value, say \(M = 10^6 \).

Then, by Lebesgue’s dominated theorem, \(E\{CV(Z_1^{\mathrm{r}}, Z_2^{\mathrm{r}}; \lambda_n)\} \to \sigma^2 \).

When \(\lambda = s_n \), \(E\{CV(Z_1^{\mathrm{r}}, Z_2^{\mathrm{r}}; s_n)\} \to \sigma^2 + c||\beta - \gamma_0||^2 \), where \(\gamma_0 \) is defined in Case 2 and \(c \) is the limit of the minimum eigenvalue of \(\sum x_i x_i' / n \) (fixed design matrix) or the minimum
eigenvalue of $E(x_1x_1')$ (random design matrix). And trivially, $\kappa(\hat{A}_{1s_n}^1, \hat{A}_{1s_n}^2) \leq 1$. Therefore, $Pr\{PASS(s_n) < PASS(\lambda_n)\} \to 1$.

When $\lambda = r_n$, by the result in Case 4, $Pr(\hat{A}_{1r_n}^1 \neq \hat{A}_{2r_n}^2) \to \delta > 0$. Note that if $\hat{A}_{1r_n}^1 \neq \hat{A}_{2r_n}^1$, then $\kappa(\hat{A}_{1r_n}^1, \hat{A}_{2r_n}^2) \leq 1 - 1/p$. Then $\lim_{n \to \infty} E\{\kappa(\hat{A}_{1\lambda_n}^1, \hat{A}_{2\lambda_n}^1)\} \leq (1-\delta)+(1-1/p)\delta < 1$. And trivially, $E\{CV(Z_1^1, Z_2^1; r_n)\} \to \sigma^2$. Therefore, $Pr\{PASS(r_n) < PASS(\lambda_n)\} \to 1$. □

5 Numerical results

In this section, via simulations, the PASS method is compared with Cp, 10-fold cross-validation (CV), generalized cross-validation (GCV), and BIC. AIC is not compared because it is equivalent to Cp here. R package pass is created for implementing both the PASS method proposed here and the Kappa selection method proposed in Sun et al. (2012). After $\hat{\lambda}$ is selected by one of the above criterions, submodel $\hat{A}_{\hat{\lambda}}$ is selected based on the non-zero components of $\hat{\beta}_{\hat{\lambda}}$ obtained from (2). In addition, the OLS estimate based on only the selected variables, $\tilde{\beta}$, is also obtained, along with its relative prediction error, $RPE = E(x_0^\prime \tilde{\beta} - x_0^\prime \beta)^2/\sigma^2$, where x_0 is i.i.d. with x_i.

Three scenarios are considered. In Scenario I, the data generating model is a subset of the full model. In Scenario II, tapering effects are added to the generating model in Scenario I. In Scenario III, the dimension of the data increases with the sample size.

In Scenario I, the data generating model is $\beta = (3, 1.5, 0, 0, 0, 2, 0, 0, 0)'$, and x_{i1}, \cdots, x_{ip} and ϵ_i are generated from $N(0, 1)$ with $Corr(x_{ik}, x_{il}) = 0.5^{|k-l|}$. This example was commonly used in literature, such as Tibshirani (1996), Fan and Li (2001), and Zou (2006). Sample size n is set as 40, 60, and 80. Three regularized procedures are applied, LASSO, adaptive LASSO (aLASSO), and SCAD. Tuning parameter λ are searched among $\{10^{-2+4k/99}; k = 0, \cdots, 99\}$. The number of random partitions is set as $B = 20$.

Each simulation setting is repeated 100 times. The percentage of selecting the sparse
generating model $A = \{1, 2, 5\}$ and the relative prediction error (RPE) of the selected submodel are summarized in Table 1. The average numbers of correctly selected zeros (C) and incorrectly selected zeros (I) are summarized in Table 2.

Table 1: Percentage (PCT) of selecting $\{1, 2, 5\}$ and average RPE of selected submodels

n	Method	PASS PCT	RPE	BIC PCT	RPE	C_p PCT	RPE	CV PCT	RPE	GCV PCT	RPE
		0.45	0.142	0.29	0.183	0.16	0.203	0.09	0.220	0.16	0.203
40	LASSO	0.94	0.102	0.75	0.143	0.53	0.181	0.63	0.167	0.52	0.181
	aLASSO	0.99	0.092	0.81	0.141	0.55	0.180	0.76	0.152	0.52	0.184
60	LASSO	0.49	0.095	0.35	0.112	0.16	0.138	0.14	0.140	0.17	0.137
	aLASSO	0.99	0.069	0.87	0.084	0.52	0.118	0.65	0.103	0.52	0.118
	SCAD	1.00	0.066	0.88	0.084	0.58	0.118	0.76	0.100	0.56	0.119
80	LASSO	0.60	0.055	0.38	0.074	0.16	0.097	0.08	0.097	0.16	0.098
	aLASSO	0.99	0.042	0.88	0.056	0.56	0.081	0.77	0.067	0.56	0.081
	SCAD	0.99	0.044	0.89	0.056	0.62	0.079	0.75	0.069	0.61	0.080

Table 2: Average numbers of correctly selected zeros (C) and incorrectly selected zeros (I)

n	Method	PASS C	I	BIC C	I	C_p C	I	CV C	I	GCV C	I
		4.16	0	3.68	0	3.26	0	2.66	0	3.25	0
40	LASSO	4.94	0	4.59	0	4.16	0	4.25	0	4.15	0
	aLASSO	4.99	0	4.63	0	4.11	0	4.39	0	4.06	0
	SCAD	4.36	0	4.00	0	3.12	0	2.85	0	3.13	0
60	LASSO	4.99	0	4.84	0	4.17	0	4.35	0	4.17	0
	aLASSO	5.00	0	4.84	0	4.15	0	4.37	0	4.12	0
	SCAD	4.47	0	4.05	0	3.01	0	2.66	0	3.00	0
80	LASSO	4.99	0	4.84	0	4.19	0	4.49	0	4.19	0
	aLASSO	4.99	0	4.83	0	4.23	0	4.45	0	4.22	0

Table 1 shows that PASS performs much better than the other criterions in terms of having the largest percentage of selecting submodel $A = \{1, 2, 5\}$. In addition, if the selected model is used for prediction (although in practice it is way too simple for prediction), PASS performs better than the others in terms of having the smallest RPE. It also verifies that, in
terms of variable selection, adaptive LASSO and SCAD perform better than LASSO and BIC performs better than \(C_p \), CV, and GCV. Furthermore, Table 2 shows that all the criterions barely (never happen in the 100 times here) select any incorrect zeros. It seems PASS performs much better than the others in terms of selecting the largest number of correct zeros; there are 5 correct zeros in the data generating model.

In Scenario II, the consequence of adding tapering effects is examined. Three generating models are considered: (II.1) \(\beta = (3, 2, 1.5, 0.05, 0.04, 0.03, 0.02, 0.01)' \); (II.2) \(\beta = (3, 2, 1.5, 0.1, 0.08, 0.06, 0.04, 0.02)' \); and (II.3) \(\beta = (3, 2, 1.5, 0.2, 0.16, 0.12, 0.08, 0.04)' \). Other setups are the same as those in Scenario I except that sample size \(n \) is set as 40. Table 3 summarizes the average size and the average RPE of the selected submodels.

Table 3: Average size and average RPE of selected submodels

Model	PAS	BIC	\(C_p \)	CV	GCV					
	Size	RPE								
LASSO	3.58	0.145	4.08	0.179	4.83	0.208	5.15	0.212	4.79	0.207
II.1	3.08	0.133	3.33	0.149	3.88	0.187	3.83	0.174	3.91	0.189
SCAD	3.08	0.122	3.27	0.143	3.89	0.191	3.71	0.169	3.98	0.197
LASSO	3.80	0.166	4.58	0.194	5.06	0.208	5.52	0.211	5.06	0.209
II.2	3.17	0.172	3.63	0.184	4.22	0.208	4.10	0.200	4.21	0.208
SCAD	3.20	0.158	3.51	0.178	4.16	0.206	3.89	0.191	4.19	0.209
LASSO	4.54	0.215	5.28	0.211	5.75	0.222	6.25	0.224	5.69	0.220
II.3	3.36	0.260	4.17	0.249	4.71	0.230	4.67	0.246	4.72	0.230
SCAD	3.59	0.252	4.16	0.253	4.74	0.234	4.69	0.249	4.75	0.235

Table 3 shows that PASS is more immune to tapering effects than the other criterions. In model (II.1), the signal-to-noise ratio (SNR) of the largest tapering effect is \(0.05/\sqrt{40} = 0.316 \), and therefore it is desirable to exclude all 5 tapering effects and PASS outperforms the other. In model (II.2), the SNP of the largest tapering effect is \(0.1/\sqrt{40} = 0.632 \), and still it is reasonable to exclude all 5 tapering effects and PASS outperforms the other. However, in model (II.3), the SNP of the largest tapering effect is \(0.2/\sqrt{40} = 1.264 \), and therefore it is
arguable to exclude all 5 tapering effects. Still, PASS selects sparser submodels than the others, but in some cases PASS has slightly bigger RPE than others.

In Scenario III, we investigate the effects of the dimensionality. The setting is similar to the one in Scenario I except that $\beta = (5, 4, 3, 2, 1, 0, \cdots, 0)^{T}$, $p = [\sqrt{n}]$. More specifically, 3 cases are examined: (1) $n = 100$, $p = 10$; (2) $n = 200$, $p = 14$; and (3) $n = 400$, $p = 20$. The percentage of selecting the sparse generating model $\mathcal{A} = \{1, 2, 3, 4, 5\}$ and the relative prediction error (RPE) of the selected submodel are summarized in Table 4.

Table 4: Percentage (PCT) of selecting $\{1, 2, 3, 4, 5\}$ and average RPE of selected submodels

$n(p)$	Method	PASS	BIC	C_p	CV	GCV							
		PCT	RPE	PCT	RPE	PCT	RPE	PCT	RPE	PCT	RPE	PCT	RPE
100(10)	LASSO	0.74	0.055	0.43	0.083	0.17	0.084	0.10	0.082	0.17	0.084		
	aLASSO	0.96	0.049	0.86	0.053	0.48	0.061	0.74	0.056	0.47	0.063		
	SCAD	0.97	0.048	0.92	0.049	0.47	0.073	0.82	0.050	0.47	0.072		
200(14)	LASSO	0.89	0.022	0.49	0.040	0.11	0.043	0.07	0.045	0.11	0.043		
	aLASSO	0.99	0.018	0.90	0.024	0.38	0.037	0.66	0.027	0.38	0.037		
	SCAD	1.00	0.018	0.93	0.022	0.46	0.038	0.73	0.024	0.47	0.038		
400(20)	LASSO	0.95	0.012	0.53	0.029	0.09	0.025	0.04	0.023	0.09	0.025		
	aLASSO	1.00	0.012	0.93	0.013	0.34	0.019	0.73	0.015	0.33	0.019		
	SCAD	1.00	0.012	0.98	0.012	0.43	0.020	0.75	0.012	0.43	0.021		

Clearly the proposed PASS criterion outperforms other competitors in both variable selection and prediction performance. As illustrated in Table 4, PASS delivers the largest percentage of selecting the true active set among all the selection criteria, and yields the smallest relative prediction error across all cases.

6 Discussion

In literature, BIC is commonly used for tuning parameter selection in regularized procedures. Recently, stability selection is becoming popular. The intuition behind stability selection is that a good variable selection criterion should select similar subsets of variables when applied
to different samples of data generated from a same population. However, if there were a few variables of significantly large effects, then any selection criterion selecting only these “big” variables would be stable, and therefore applying stability selection would lead to under-fitting. The PASS criterion proposed here overcomes this drawback by borrowing the strength from cross-validation.

Although it is showed that the PASS criterion is selection consistent, it is worth noting that selection consistency is meaningful only in theory because a naively simple true model is assumed. In practice, it is extremely important to evaluate carefully scientific aspects of the full model before conducting variable selection. Practically, the PASS, along with many other criteria, can be only treated as tools for data mining or data dredging. In other words, these variable selection criteria are exploratory rather than confirmatory.

Another limitation of the proposed criterion, although it is only technical, is that the selected $\hat{\lambda}$ is corresponding to sample size $n/2$, because each time data are partitioned into two halves. This limitation is common to any stability selection method (e.g., Meinshausen and Bühlmann, 2010), because in order to consider stability, due to that there is only one dataset, data re-generating has to be mimicked by some sort of data re-sampling.

Finally, stability selection is becoming popular for cluster analysis (e.g., Fang and Wang, 2012), an example of unsupervised learning. There is no doubt that in any unsupervised learning, the problem of tuning parameter selection is very difficult, because there is no loss function to guide the selection. Maybe stability selection can be used to select tuning parameters in regularized procedures proposed for unsupervised learning.

References

[1] Bach, F. (2008). Bolasso: model consistent lasso estimation through the bootstrap. In *Proc. 25th Int. Conf. Machine Learning*, pp. 33–40. New York: Association for Comput-
ing Machinery.

[2] Breiman, L. (1996). Heuristics of instability and stabilization in model selection. *The Annals of Statistics* 24: 2350–2383.

[3] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American Statistical Association* 96: 1348–1360.

[4] Fang, Y. and Wang, J. (2012). Selection of the number of clusters via the bootstrap. *Computational Statistics and Data Analysis* 56: 468–477.

[5] Cohen, J. (1960). A coefficient of agreement for nominal scales. *Educational and Psychological Measurement* 20: 37-46.

[6] Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. *Numerische Mathematik* 31: 317–403.

[7] Hastie, T., Tibshirani, R., and Friedman, J. (2009). *The Elements of Statistical Learning*. Springer, New York.

[8] Mallows, C. (1973). Some comments on C_p. *Technometrics* 15: 661–675.

[9] Meinshausen N. and Bühlmann P. (2010). Stability selection (with discussion). *Journal of the Royal Statistical Society, Series B*, 72: 417–473.

[10] Schwarz, G. Estimating the dimension of a model. *The Annals of Statistics* 6: 461–464.

[11] Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). *Journal of the Royal Statistical Society, Series B*, 39: 111–147.
[12] Sun, W., Wang, J., and Fang, Y. (2012). Consistent selection of tuning parameters in high-dimensional penalized regression. Under review.
http://arxiv.org/pdf/1208.3380v1.pdf.

[13] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society, Series B*, **58**: 267–288.

[14] Wang, H., Li, R., and Tsai, C. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. *Biometrika* **94**: 553–568.

[15] Wang, H., Li, B., and Leng, G. (2009). Shrinkage tuning parameter selection with a diverging number of parameters. *Journal of the Royal Statistical Society, Series B*, **71**: 671–683.

[16] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society, Series B*, **68**: 49–67.

[17] Zhang, Y., Li, R., and Tsai, C. (2010). Regularization parameter selections via generalized information criterion. *Journal of the American Statistical Association* **105**: 312–323.

[18] Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. *Journal of Machine Learning Research* **7**: 2541–2563.

[19] Zou, H. (2006). The adaptive lasso and its oracle properties. *Journal of the American Statistical Association* **101**: 1418–1429.

[20] Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society, Series B*, **67**: 301–320.

[21] Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis. *Journal of Computational and Graphical Statistics* **15**: 265–286.