Tumor Necrosis Factor-Alpha (TNF-α-308 G>A) Polymorphism in High-grade Gliomas

SELÇUK OZDOGAN1, CUMHUR KAAN YALTIRIK2, SEDA GULEC YILMAZ3, MUSTAFA KAYA4, ALI HALUK DUZKALIR5, NAIL DEMIREL1, ALI KAFADAR6 and TURGAY ISBIR7

1Department of Neurosurgery, Istanbul Training and Research Hospital, Istanbul, Turkey; 2Department of Neurosurgery, Yeditepe University Faculty of Medicine, Istanbul, Turkey; 3Department of Molecular Medicine, Institute of Health Sciences, Yeditepe University, Istanbul, Turkey; 4Department of Neurosurgery, Ereğli State Hospital, Zonguldak, Turkey; 5Department of Neurosurgery, Dr. Lütfi Kırdar Kartal Training and Research Hospital, Istanbul, Turkey; 6Department of Neurosurgery, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey; 7Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey

Abstract. Background/Aim: High-grade gliomas (HGG) consist of anaplastic oligoastrocytomas, anaplastic oligodendrogliomas, anaplastic astrocytomas and glioblastoma multiforme. The present study aimed to evaluate TNF-α -308 G>A polymorphism in a Turkish population. Patients and Methods: This was a prospective case-control study that included 45 patients with HGG and 49 healthy individuals. All patients were operated for intracranial tumors and the pathology results consist of high grade (Grade 3 and 4) glial tumors. Results: No significant differences were found between the HGG and control groups in terms of the median age (p=0.898). There were no significant differences with regard to gender (p=0.577). The TNF genotype frequency comparison between patients and controls was not statistically significant (p=0.598). Conclusion: TNF genotype frequency comparison between the patients and controls was not statistically significant in the Turkish population tested. However, further studies are needed to evaluate the genotype and phenotype correlations in large cohorts of various ethnicities.

High-grade gliomas (HGG) consist of anaplastic oligoastrocytomas, anaplastic oligodendrogliomas, anaplastic astrocytomas and glioblastoma multiforme (GBM) (1). GBM and anaplastic astrocytomas consist the 80% of primary central nervous system gliomas (2). The molecular genotype is the new consideration of subclassifying these tumors by the World Health Organization (3). Maximal safe resection is the gold standard treatment for newly diagnosed HGG which must be followed by radiation therapy and chemotherapy.

Impaired immune reaction or defective oncosuppressive mechanisms in tumor cells are related to tumor growth process (4). Th2 type lymphocytes which are connected with the deficit of immune response, took part in infiltrating process of glioma (5). Th1 cytokines which increase cellular immunity also inhibit Th2 cells. Alterations in the production of Th1 cytokines may be connected with immunological response to prevent tumor formation (6). These results motivated us to evaluate the frequency of polymorphisms of the tumor necrosis factor (TNF) region.

The polymorphisms that affect the production of TNF-α have been reported as causes of some diseases (7). Here, we evaluated the frequency of TNF-α-308 G>A polymorphism in a population of Turkish HGG patients and a healthy control group. Our study is the first research examining TNF-α-308 G>A polymorphism in HGG.

Materials and Methods

Study population. This was a prospective case-control study that included 45 patients with HGG. All of the participants were selected from the Neurosurgery Departments of Yeditepe University and Cerrahpaşa University in Istanbul, Turkey. All patients were operated for intracranial tumors and the pathology results consist of high grade (Grade 3 and 4) glial tumors. A total of 49 healthy individuals were selected for the control group. Informed consent forms were obtained from all of the patients.
Genetic analysis. The peripheral blood samples were collected into EDTA tubes. The DNA extraction was performed using an i Prep Purification Instrument (Invitrogen, Life Technologies; Thermo Fisher Scientific Inc., Waltham, MA, USA) with 350 μl of peripheral blood and an i Prep PureLink gDNA blood isolation kit (Invitrogen, Life Technologies; Thermo Fisher Scientific Inc., Waltham, MA, USA) according to the manufacturer’s instructions. The isolated DNA samples concentrations were then measured with a NanoDrop 2000 (Thermo Fisher Scientific Inc., Waltham, MA, USA) using a 1.7-1.9 optical density range for the genotyping and final sample concentrations were diluted to approximately 100 ng/μl. The TNF-α-308 G>A (rs1800629) polymorphism genotyping was performed using the 7500 Fast Real-Time PCR instrument (Applied Biosystems, Foster City, CA, USA) with the TaqMan Genotyping Assay, TaqMan Genotyping Master Mix (TaqMan Reagents, Applied Biosystems, Foster City, CA, USA), and 100 ng of sample DNA. The reaction mixture and conditions were used as recommended by the manufacturer: 10 min at 95°C for the holding stage, 40 cycles of 15 sec each at 92°C for the denaturation, and 60 sec at 60°C for the annealing/extension. The allelic discrimination of the samples was done by collecting and interpreting the fluorescent signals of the hybridization probes using the software from the 7500 Fast Real-Time PCR instrument.

Statistical analysis. The statistical analyses were performed using IBM SPSS Statistics version 23 (IBM Corp., Armonk, NY, USA). The significance of differences between the groups were examined with the Student’s t-test, and the comparisons of the demographic information were evaluated with the chi squared and Fisher’s exact tests. The statistical significance level was p<0.05.

Results

Our analysis included 45 HGG patients and 49 healthy individuals as a control group. The demographic characteristics of the two groups are shown in Table I. The mean ages of the patients with HGG and the healthy controls were 34.62±8.26 years old and 34.81±4.53 years old, respectively. No significant differences were found between the HGG and control groups in terms of the median age (p=0.898). The gender frequency was 44.4% male and 55.6% female for the patients and 38.8% male and 61.2% female for the controls. There were no significant differences with regard to gender (p=0.577).

The allele and genotype frequencies of TNF-α-308 G>A polymorphism in the patients with HGG and the control group are shown in Table II. The TNF genotype frequency comparison between the patients and controls was not statistically significant (p=0.598). There was no AA genotype detected neither in patient nor in the control group.

Discussion

HGG is one of the most invasive and aggressive cancers that is fatal although all treatment modalities like surgery, systemic chemotherapy and radiation are nowadays applied (8). As this disease is characterized by aggressive local invasion but not distant metastasis, local delivery of radiation in the form of SRS has been and continues to be attempted as a treatment strategy in combination with other treatment modalities with variable reported success rates (1). Without any treatment, patients with recurrent HGG have a median survival of about 3 to 6 months (9).

Clinical presentations of HGG are progressive neurologic signs and symptoms that vary according to the location and size of the tumor. Symptoms could be counted as seizure, headache, motor weakness, memory loss, cognitive problems, personality changes, visual symptoms (10). Prognostic factors of HGG patients are age, Karnofsky performance score, tumor grade, the number of molecular alterations and ratio of surgical resection (11). Recently, biomarkers like methylation of methyl guanine methyl transferase (MGMT) as a gene expression analysis are being used for prognostication (12). In elderly patients with HGG, MGMT predicts better survival rate (13, 14). MGMT enzyme promotes DNA-repair following alkylating agent chemotherapy and loss of chromosomes 1p and 19q improves responsiveness to chemotherapy and survival in oligodendrogliial tumors (15). Isocitrate dehydrogenase 1 (IDH1) and IDH2 enzyme mutations also improves overall survival independent of other prognostic factors especially in HGG (16).

Impaired immune reaction or defective oncosuppressive mechanisms in tumor cells are related to tumor growth process (4). Th2 type lymphocytes that are connected with the deficit of immune response, took part in infiltrating process of glioma (6). Pociot et al. (1993) found a correlation between TNF microsatellite alleles and in vitro lipopolysaccharide-stimulated TNFa production (7). The regulation of the production of TNFa and lymphotoxin (TNFβ) is not known clearly, but a relation to human leukocyte antigen alleles was suggested (17). TNF production could be related to the development of different.

Parameter	Patient (n=45)	Control (n=49)	p-Value
Age Mean±SD	34.62	34.81	0.898
Gender Male/Female	20/25	19/30	0.577

Genotype and allele frequencies between patient and control groups.
Genotype rs1800629

GG
GA
AA
Allele
G
A
types of immune response. For example, decreasing the amount of TNF producers could develop a type-2 (Th2) response which would result as reduction in antitumor activity (6). In the literature, Th2 type lymphocytes which are connected with the deficit of immune response, have been reported as taking part in the infiltrating process of glioma (5).

Only a few studies reported TNF polymorphisms in gliomas in the literature. Frigerio et al. (1999) reported in their microsatellite polymorphism study that TNFβ4-negative individuals could preferentially develop a Th2-type immune response which could result as a reduction in antitumor activity in Italian GBM patients (4). Crouau-Roy investigated TNF microsatellites in European population but not in gliomas (18). Our study is the first research regarding the TNF genotype frequency comparison between the patients and controls was not statistically significant in the Turkish population.

Conclusion

This study evaluated the relevance of the TNF-α-308 G>A polymorphism with regard to the risk of HGG. We found that TNF-α-308 G>A genotype frequency comparison between patients and controls was not statistically significant in the Turkish population studied. Since genetic polymorphisms often show ethnic differences, further functional studies are needed to evaluate the genotype and phenotype correlations in large cohorts of various ethnicities.

Conflicts of Interest

The Authors declare no conflicts of interest in regard to this study.

References

1 Fetcko K, Lukas RV, Watson GA, Zhang L and Dey M: Survival and complications of stereotactic radiosurgery: A systematic review of stereotactic radiosurgery for newly diagnosed and recurrent high-grade gliomas. Medicine 96: e8293, 2017.
2 Prisco FE, Weltman E, de Hanriot RM and Brandt RA: Radiosurgical boost for primary high-grade gliomas. J Neurooncol 57: 151-160, 2002.
3 Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ogbahi K, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131: 803-820, 2016.
4 Frigerio S, Ciusani E, Pozzi A, Silvani A, Salmaggi A and Boiardi A: Tumor necrosis factor microsatellite polymorphism in Italian glioblastoma patients. Cancer Genet Cytogenet 109: 172-174, 1999.
5 Roussel E, Gingras MC, Grimm EA, Bruner JM and Moser RP: Predominance of a type 2 intratumoural immune response in fresh tumour-infiltrating lymphocytes from human gliomas. Clin Exp Immunol 105: 344-352, 1996.
6 Seder RA and Paul WE: Acquisition of lymphokine-producing phenotype by CD4 T cells. Annu Rev Immunol 12: 635-673, 1994.
7 Pociot F, Briant L, Jongeneel CV, Molvig J, Worsaae H, Abbal M, Thomsen M, Nerup J and Camon-Thomsen A: Association of TNF and class II alleles with secretion of TNF alfa and TNF beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol 23: 224-231, 1993.
8 Redmond KJ and Mehta M: Stereotactic radiosurgery for glioblastoma. Cureus 7(12): e413, 2015.
9 Martinez-Carrillo M, Tovar-Martin I, Zurita-Herrera M, Del Moral-Avila R, Guerrero-Tejada R, Saura-Rojas E, Osorio-Ceballos JL, Arrebola-Moreno JP and Expósito-Hernández J: Salvage radiosurgery for selected patients with recurrent malignant gliomas. Biomed Res Int 2014, 2014.
10 Chang SM, Parney IF, Huang W, Anderson FA Jr., Asher AL, Bernstein M, Lillehei KO, Brem H, Berger MS and Laws ER: Patterns of care for adults with newly diagnosed malignant glioma. JAMA 293: 557-564, 2005.
11 Gorlia T, Van Den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JC, Eisenhauer E, Belanger K, Brandes AA, Allgeier A, Lacombe D and Stupp R: Nomograms for predicting survival of patients with newly diagnosed glioblastoma: Prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE3. Lancet Oncol 9: 29-38, 2008.
12 Altuwairgi AK, Raja S, Manzoor M, Aldandan S, Alsaeed E, Balbaid A, Alhussain H, Orz Y, Lary A and Alsharm AA: Management and treatment recommendations for World Health Organization Grade III and IV gliomas. JHS 11(3): 54-62, 2017.
13 Gerstner ER, Yip S, Wang DL, Louis DN, Iafrate AJ and Batchelar TF: Mgmt methylation is a prognostic biomarker in elderly patients with newly diagnosed glioblastoma. Neurology 73: 1509-1510, 2009.
14 Reifenberger G, Hentschel B, Felsberg J, Schackert G, Simon M, Schnell O, Westphal M, Wick W, Pietsch T, Loeffler M and Weller M: Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer 131: 1342-1350, 2012.
15 Kouwenhoven MC, Gorlia T, Kros JM, Idbaih A, Brandes AA, Bromberg JE, Mokhtari K, van Duinen SG, Teepen JL, Wesseling P, Vandenbos F, Grisold W, Sipos L, Mirimanoff R, Vecht CJ, Allgeier A, Lacombe D and van den Bent MJ: Molecular analysis of anaplastic oligodendrogliomas in a prospective randomized study: A report from EORTC study 26951. Neuro Oncol 11: 737-746, 2009.
16 Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GI, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B and Bigner DD: IDH1 and IDH2 mutations in gliomas. N Engl J Med 360: 765-773, 2009.
17 Zipp F, Weber F, Huber S, Sotgiu S, Członkowska A, Holler E, Albert E, Weiss EH, Wekerle H and Hohlfeld R: Genetic control of multiple sclerosis: increased production of lymphotoksin and tumor necrosis factors by HLA-DR2 cells. Ann Neurol 38: 723-730, 1995.
18 Crouau-Roy B, Briant L, Bouissou C, Stavropoulos C, Pociot F, Camon-Thomsen A and Clayton J: Tumor necrosis factor microsatellites in four European populations. Human Immunol 38: 213-216, 1993.