Functional renormalization group approach and gauge dependence in gravity theories

Vítor F. Barraa, Peter M. Lavrovb,c, Eduardo Antonio dos Reisa,3, Tibério de Paula Nettod Ilya L. Shapiroa,b,c

a Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG, Brazil
b Department of Theoretical Physics, Tomsk State Pedagogical University, 634061 Tomsk, Russia
c National Research Tomsk State University, 634050 Tomsk, Russia
d Departament of Physics, Southern University of Science and Technology, 518055 Shenzhen, China

Abstract

We investigate the gauge symmetry and gauge fixing dependence properties of the effective average action for quantum gravity models of general form. Using the background field formalism and the standard BRST-based arguments, one can establish the special class of regulator functions that preserves the background field symmetry of the effective average action. Unfortunately, regardless the gauge symmetry is preserved at the quantum level, the non-invariance of the regulator action under the global BRST transformations leads to the gauge fixing dependence even under the use of the on-shell conditions.

Keywords: quantum gravity, background field method, functional renormalization group approach, gauge dependence

1 Introduction

The interest to the non-perturbative formulation in quantum gravity has two strong motivations. First, there are a long-standing expectations that even the perturbatively non-renormalizable models such as the simplest quantum gravity based on general relativity...
may be quantum mechanically consistent due to the asymptotic safety scenario [1] (see [2, 3] for comprehensive reviews). On the other hand, there is a possibility that the non-perturbative effects may provide unitarity in the fourth derivative theory by transforming the massive unphysical pole, which spoils the spectrum of this renormalizable theory [4]. The presence of such a massive ghost violates the stability of classical solutions (see e.g. discussion and further references in [5]). At the quantum level, the perturbative information is insufficient to conclude whether in the dressed propagator the ghost pole does transform into a non-offensive pair of complex conjugate poles [6].

The perturbative renormalization group in this model is well-explored [7, 8, 9], but it is not conclusive for the discussion of the dressed propagator. In general, the attempts to explore this possibility in the semiclassical and perturbative quantum level [10, 11] has been proved non-conclusive [12], and hence the main hope is related to the non-perturbative calculations in the framework of Functional Renormalization Group approach [13] (see [14] for an extensive review).

Thus, in both cases the consistency of the results obtained within Functional Renormalization Group approach is of the utmost importance. In this respect there are two main dangers. For the quantum gravity models based on general relativity, the running of Newton constant in four-dimensional spacetime is always obtained on the basis of quadratic divergences. These divergences are known to have strong regularization dependence. In particular, they are absent in dimensional regularization and can be freely modified in all known cut-off schemes by changing the regularization parameter. This part of the problem does not exist for the Functional Renormalization Group applied to the fourth derivative quantum gravity. However, in this case there is yet another serious problem, related to the gauge-fixing dependence of the effective average action. This problem is the subject of the present work. In the previous publications [15, 16, 17] we explored the gauge fixing dependence in Yang-Mills theories and it was shown that such dependence for the effective average action does not vanish on-shell, except in the fixed point where this object becomes identical with the usual effective action in quantum field theory. Except this special point there is uncontrollable dependence on the set of arbitrary gauge fixing parameters, and thus one can expect a strong arbitrariness in the renormalization group flows which lead to the fixed point and, in fact, define its position and proper existence. The main purpose of the present work is to extend this conclusion to quantum gravity. It is remarkable that one can complete this task for the quantum gravity theory of an arbitrary form, without using the concrete form of the action. One can use this consideration, e.g. for the super-renormalizable models of quantum gravity, when the perturbative renormalization group may be exact and, moreover, completely independent on the gauge fixing [18, 19]. This example is somehow the most explicit one, since it shows that the transition from standard
quantum field theory to the functional renormalization group (FRG) may actually spoil the “perfect” situation, namely exact and universal renormalization group flow.

In Yang-Mills theories [20], the gauge symmetry of the initial action is broken on quantum level due to the gauge fixing procedure in the process of quantization. In turn, the effective potential depends on gauge [21, 22, 23, 24]. This dependence occur in a special way, such that it disappears on-shell [25, 26], which means that it is possible to give physical interpretation to the results obtained at the quantum level.

One of the well-developed non-perturbative methods in Quantum Field Theory to study quantum properties of physical models beyond the perturbation theory is the FRG approach [27, 28] (see also the review papers [29, 30, 31, 32, 33, 34]). As we have already mentioned above, when applied to gauge theories, this method leads to obstacles related to the on-shell gauge dependence of the effective average action.

There are some efforts to solve this problems. One of them consists from reformulation of Yang-Mills theory with the application of a gauge-invariant cut-off dependent regulator function that is introduced as a covariant form factor into the action of Yang-Mills fields, which leads to an invariant regulator action [35, 36]. As a consequence, the effective average action is gauge invariant on-shell. A second approach [37, 38] is based in the use of the Vilkovisky-DeWitt covariant effective action [39, 40]. This technique provides gauge independence even off-shell, but it introduce other types of ambiguities. An alternative formulation was presented in [15], it consists of an alternative way of introducing the regulator function as a composite operator. When applied in gauge theories, this approach leads to the on-shell gauge invariance of the effective average action.

In the present work, we apply the background field method [41, 42, 43] (recent advances for the gauge theories can be found in [44, 45, 46, 47, 48, 49] and discussion for the quantum gravities case in [50]) in the FRG approach as a reformulation to the quantization procedure for quantum gravity theories to study the gauge dependence problem in this kind of theory. This method allows us to work with the effective action which is invariant under the gauge transformations of the background fields.

Despite the numerous aspects of quantum properties successfully studied with the background field method, [51, 52, 53, 54, 55, 56, 57, 58, 59, 60], the gauge dependence problem remains important [16] and need to be considered in more details. We obtain restrictions on the tensor structure of the regulator functions which allows us to construct a gauge invariant effective average action. Nevertheless, the effective average action remains dependent of the gauge choice at on-shell level.

The paper is organized as follows. In section sect2 we introduce general considerations of quantum gravity theories through the background field method. In section sect3 we consider the FRG approach for quantum gravity theories and find conditions that we must
impose in the regulator functions to maintain the gauge invariance of background effective average action. Based on this, we also present some interesting candidates to the regulator functions. In section sect4 we prove the gauge dependence of vacuum functional for the model under consideration. Finally, our conclusions and remarks are presented in section sect5.

In the paper, DeWitt notations [61] are used. The short notation for integration in D dimension is $\int d^D x = \int dx$. All the derivatives with respect to fields are left derivative unless otherwise stated. The Grassmann parity of a quantity A is denoted as $\epsilon(A)$.

2 Quantum gravity in the background field formalism

Let us consider an arbitrary action $S_0 = S_0(g)$, where $g = g_{\alpha\beta}(x)$ is the metric tensor of an arbitrary Riemann manifolds. We assume that the action is invariant under general coordinates transformations

$$x^\mu \to x^\mu = x^\mu(x'),$$

which leads to the metric transformations

$$g'_{\alpha\beta}(x') = g_{\mu\nu}(x) \frac{\partial x^\mu}{\partial x'^\alpha} \frac{\partial x^\nu}{\partial x'^\beta},$$

and consider the infinitesimal form of these transformations, $x'^\sigma = x^\sigma + \xi^\sigma(x)$, when

$$\delta g_{\alpha\beta} = -\xi^\sigma(x) \partial_\sigma g_{\alpha\beta}(x) - g_{\alpha\sigma}(x) \partial_\beta \xi^\sigma(x) - g_{\sigma\beta}(x) \partial_\alpha \xi^\sigma(x).$$

The diffeomorphism (3) can be considered as the gauge transformation for $g_{\alpha\beta}(x)$

$$\delta g_{\alpha\beta}(x) = \int dy R_{\alpha\beta\sigma}(x, y; g) \xi^\sigma(y),$$

where

$$R_{\alpha\beta\sigma}(x, y; g) = -\delta(x - y) \partial_\sigma g_{\alpha\beta}(x) - g_{\alpha\sigma}(x) \partial_\beta \delta(x - y) - g_{\sigma\beta}(x) \partial_\alpha \delta(x - y)$$

are the generators of the gauge transformations of the metric tensor, and $\xi^\sigma(y)$ are the gauge parameters. The algebra of generators is closed, namely

$$\int du \left[\frac{\delta R_{\alpha\beta\sigma}(x, y; g)}{\delta g_{\mu\nu}(u)} R_{\mu\nu\gamma}(u, z; g) - \frac{\delta R_{\alpha\beta\gamma}(x, z; g)}{\delta g_{\mu\nu}(u)} R_{\mu\nu\sigma}(u, y; g) \right] = -\int du R_{\alpha\beta\lambda}(x, u; g) F^\lambda_{\sigma\gamma}(u, y, z),$$

where

$$F_{\sigma\gamma}(u, y, z),$$
where

\[F^\lambda_{\mu\nu}(x, y, z) = \delta(x - y)\delta^\lambda_\nu \partial_\mu \delta(x - z) - \delta(x - z)\delta^\lambda_\mu \partial_\nu \delta(x - y), \]

(7)

with

\[F^\lambda_{\mu\nu}(x, y, z) = -F^\lambda_{\nu\mu}(x, z, y) \]

(8)

are structure functions of the algebra which does not depend on the metric tensor. Let us stress that the mentioned features are valid for an arbitrary action of gravity, since the algebra presented above is independent on the initial action. Therefore, any theory of gravity is a gauge theory and the structure functions are independent of the fields, that means quantum gravity is similar to the Yang-Mills theory.

An useful procedure to quantize gauge theories is the so called background field formalism. In what follows, we shall perform the quantization of gravity on an arbitrary external background metric \(\bar{g}_{\alpha\beta}(x) \). The standard references on the background field formalism in quantum field theory are [41, 42, 43] (see also recent advances for the gauge theories in [16] and [48] for the discussion of quantum gravity).

In the background field formalism, the metric tensor \(g_{\alpha\beta}(x) \) is replaced by the sum

\[g_{\alpha\beta}(x) = \bar{g}_{\alpha\beta}(x) + h_{\alpha\beta}(x), \]

(9)

where \(\bar{g}_{\alpha\beta}(x) \) is an external (background) metric field and \(h_{\alpha\beta}(x) \) is the variable of integration, also called quantum metric. Thus, the initial action is replaced by

\[S_0(g) \rightarrow S_0(\bar{g} + h). \]

The Faddeev-Popov \(S_{FP}(\phi, \bar{g}) \) action is constructed in the standard way [62]

\[S_{FP}(\phi, \bar{g}) = S_0(\bar{g} + h) + S_{gh}(\phi, \bar{g}) + S_{gf}(\phi, \bar{g}), \]

(10)

where \(S_{gh}(\phi, \bar{g}) \) is the ghost action and \(S_{gf}(\phi, \bar{g}) \) is the gauge fixing action. In the presence of external metric \(\bar{g}_{\alpha\beta}(x) \), they can be written as

\[S_{gh}(\phi, \bar{g}) = \int dx dy dz \sqrt{-\bar{g}(x)} \bar{C}^\alpha(x) H^{\beta\gamma}_\alpha(x, y; \bar{g}, h) R^{\beta\gamma\sigma}(y, z; \bar{g} + h) \bar{C}^\sigma(z), \]

(11)

\[S_{gf}(\phi, \bar{g}) = \int dx \sqrt{-\bar{g}(x)} \bar{B}^\alpha(x) \chi_\alpha(x; \bar{g}, h), \]

(12)

where

\[H^{\beta\gamma}_\alpha(x, y; \bar{g}, h) = \frac{\delta \chi_\alpha(x; \bar{g}, h)}{\delta h^{\beta\gamma}(y)} \]

(13)

and \(\chi_\alpha(x; \bar{g}, h) \) are the gauge fixing functions, \(\phi^i(x) = \{ h_{\alpha\beta}(x), B^\alpha(x), C^\alpha(x), \bar{C}^\alpha(x) \} \) is the set of quantum fields, \(C^\alpha(x) \) and \(\bar{C}^\alpha(x) \) are the ghost and anti-ghost fields, respectively, and
\(B^\alpha(x) \) are the Nakanishi-Lautrup auxiliary fields. The Grassmann parity of all quantum fields are as follows,

\[
\varepsilon(h_{\alpha\beta}) = \varepsilon(B^\alpha) = 0, \quad \varepsilon(C^\alpha) = \varepsilon(C^\alpha) = 1, \quad \varepsilon(\phi^i) = \varepsilon_i.
\]

The ghost numbers are

\[
\text{gh}(B^\alpha) = \text{gh}(h_{\alpha\beta}) = 0, \quad \text{gh}(C^\alpha) = 1, \quad \text{gh}(C^\alpha) = -1.
\]

Independently of gauge fixing function choice, the action (10) is invariant under a global supersymmetry transformation, known as BRST symmetry \([63, 64]\). The gravitational BRST transformations were introduced in \([65, 4, 66]\) and can be presented as

\[
\begin{align*}
\delta_B h_{\alpha\beta}(x) &= -(C^\alpha(x)\partial_\sigma g_{\alpha\beta}(x) + g_{\alpha\sigma}(x)\partial_{\beta} C^\alpha(x) + g_{\sigma\beta}(x)\partial_\alpha C^\sigma(x)) \lambda, \\
\delta_B C^\alpha(x) &= C^\alpha(x)\partial_\sigma C^\alpha(x) \lambda, \\
\delta_B \bar{C}^\alpha(x) &= B^\alpha(x) \lambda, \\
\delta_B B^\alpha(x) &= 0,
\end{align*}
\]

where \(\lambda \) is a constant Grassmann parameter. In condensed notation, we can write the BRST transformations as

\[
\begin{align*}
\delta_B \phi^i(x) &= R^i(x; \phi, \bar{g}) \lambda, \quad \varepsilon(R^i) = \varepsilon_i + 1,
\end{align*}
\]

where \(R^i = \{ R^{(h)}_{\alpha\beta}, R^\alpha_{(B)}, R^\alpha_{(C)}, R^\alpha_{(\bar{C})} \} \) and

\[
\begin{align*}
R^{(h)}_{\alpha\beta}(x; \phi, \bar{g}) &= -C^\alpha(x)\partial_\sigma g_{\alpha\beta}(x) - g_{\alpha\sigma}(x)\partial_{\beta} C^\alpha(x) - g_{\sigma\beta}(x)\partial_\alpha C^\sigma(x), \\
R^\alpha_{(C)}(x; \phi, \bar{g}) &= C^\alpha(x)\partial_\sigma C^\alpha(x), \\
R^\alpha_{(C)}(x; \phi, \bar{g}) &= B^\alpha(x), \\
R^\alpha_{(B)}(x; \phi, \bar{g}) &= 0.
\end{align*}
\]

The generating functional of Green functions is defined as

\[
Z(J, \bar{g}) = \int d\phi \exp \left\{ \frac{i}{\hbar} [S_{FP}(\phi, \bar{g}) + J\phi] \right\} = \exp \left\{ \frac{i}{\hbar} W(J, \bar{g}) \right\},
\]

where \(W(J, \bar{g}) \) is the generating functional of connected Green functions. In Eq.(17) the product of the sources \(J_i(x) \) and the fields \(\phi^i(x) \) was written in the condensed notation of DeWitt \([61]\). Explicitly,

\[
J\phi = \int dx J_i(x) \phi^i(x), \quad \text{where} \quad J_i(x) = \{ J^{\mu\nu}, J^{(B)}_{\alpha}(x), J_{\alpha}(x), J_{\bar{\alpha}}(x) \}
\]

with the Grassmann parities \(\varepsilon(J_i) = \varepsilon(\phi^i) \) and ghost numbers \(\text{gh}(J_i) = \text{gh}(\phi^i) \).
The effective action $\Gamma(\Phi, \bar{g})$ is defined in terms of the Legendre transformation
\begin{equation}
\Gamma(\Phi, \bar{g}) = W(J, \bar{g}) - J\Phi, \tag{19}
\end{equation}
where $\Phi = \{\Phi^i\}$ are the mean fields and the J_i are the solution of the equation
\begin{equation}
\frac{\delta W(J, \bar{g})}{\delta J_i} = \Phi^i. \tag{20}
\end{equation}

It is well-known \cite{25, 26} that the effective action is gauge independent on-shell,
\begin{equation}
\delta \Gamma(\Phi, \bar{g}) \bigg|_{\delta W(\Phi, \bar{g}) = 0} = 0. \tag{21}
\end{equation}

At this moment we have considered only the transformations of the quantum fields. However, the background metric also transform together with the quantum fields in the so-called background field transformations. The rules of such transformation can be written, in the local formulation, as
\begin{align}
\delta_\omega \bar{g}_{\alpha\beta}(x) &= -\partial_\sigma \bar{g}_{\alpha\beta}(x) \omega^\sigma - \bar{g}_{\alpha\sigma}(x) \partial_\beta \omega^\sigma - \bar{g}_{\sigma\beta}(x) \partial_\alpha \omega^\sigma, \\
\delta_\omega h_{\alpha\beta}(x) &= -\partial_\sigma h_{\alpha\beta}(x) \omega^\sigma - h_{\alpha\sigma}(x) \partial_\beta \omega^\sigma - h_{\sigma\beta}(x) \partial_\alpha \omega^\sigma, \\
\delta_\omega \bar{C}^\alpha(x) &= -\omega^\sigma \partial_\sigma \bar{C}^\alpha(x) + \bar{C}^\sigma(x) \partial_\sigma \omega^\alpha, \\
\delta_\omega C^\alpha(x) &= -\omega^\sigma \partial_\sigma C^\alpha(x) + C^\sigma(x) \partial_\sigma \omega^\alpha, \\
\delta_\omega B^\alpha(x) &= -\omega^\sigma \partial_\sigma B^\alpha(x) + B^\sigma(x) \partial_\sigma \omega^\alpha, \tag{22}
\end{align}
where $\omega^\sigma = \omega^\sigma(x)$ are arbitrary functions. The background field transformations have the same structure of tensor transformations for tensors of types $(0, 2)$ and $(1, 0)$. The background invariance of Faddeev-Popov action for quantum gravity is known \cite{48} and reads
\begin{equation}
\delta_\omega S_{FP}(\phi, \bar{g}) = 0. \tag{23}
\end{equation}

A consequence of (23) is the gauge invariance of (17). Namely,
\begin{equation}
\delta_\omega Z(J, \bar{g}) = 0. \tag{24}
\end{equation}

From this expression it is possible to prove that $\Gamma(\Phi, \bar{g})$ is also gauge invariant
\begin{equation}
\delta_\omega \Gamma(\Phi, \bar{g}) = 0. \tag{25}
\end{equation}

In the next sections we will discuss this and other features for quantum gravity theories in the framework of the FRG approach.
3 FRG approach for quantum gravity theories

The main idea of functional renormalization group (FRG) is to use instead of Γ an effective average action, Γ_k, where k is a momentum-shell parameter \cite{27}, in a way that

\[
\lim_{k \to 0} \Gamma_k(\phi, \bar{g}) = \Gamma(\phi, \bar{g}).
\]

\[
(26)
\]

In order to obtain $\Gamma_k(\phi, \bar{g})$, we introduce the average action

\[
S_{kFP}(\phi, \bar{g}) = S_{FP}(\phi, \bar{g}) + S_k(\phi, \bar{g}),
\]

\[
(27)
\]

where $S_k(\phi, \bar{g})$ is the scale-dependent regulator action defined in curved spacetime

\[
S_k(\phi, \bar{g}) = \int dx \sqrt{-\bar{g}(x)L_k(\phi, \bar{g})}
\]

\[
(28)
\]

and the Lagrangian density is written as

\[
L_k(\phi, \bar{g}) = \frac{1}{2} h_{\alpha\beta}(x) R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) h_{\gamma\delta}(x) + \bar{C}^\alpha(x) R_k^{(2)\alpha\beta\gamma\delta}(x; \bar{g}) C^\beta(x),
\]

\[
(29)
\]

where the regulator functions $R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g})$ and $R_k^{(2)\alpha\beta\gamma\delta}(x; \bar{g})$ are dependent on the external fields $\bar{g}_{\alpha\beta}(x)$. The regulator functions obey the properties

\[
\lim_{k \to 0} R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) = 0 \quad \text{and} \quad \lim_{k \to 0} R_k^{(2)\alpha\beta\gamma\delta}(x; \bar{g}) = 0,
\]

\[
(30)
\]

which means that the average action recovers the Faddeev-Popov action \cite{11} in the limit when $k \to 0$. The regulator functions $R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g})$ also obey, by construction, the symmetry properties

\[
R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) = R_k^{(1)\beta\alpha\gamma\delta}(x; \bar{g}) = R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) = R_k^{(1)\gamma\delta\alpha\beta}(x; \bar{g}).
\]

\[
(31)
\]

We want to solve the problem of average action invariance under background field transformations, namely

\[
\delta_\omega S_{kFP}(\phi, \bar{g}) = \delta_\omega S_k(\phi, \bar{g}) = 0,
\]

\[
(32)
\]

where the relation \cite{28} is used.

In what follows, we present explicit calculation of variation of action \cite{28}. For this purpose, we write \cite{32} as

\[
\delta_\omega S_k(\phi, \bar{g}) = \int dx \left\{ \delta_\omega \sqrt{-\bar{g}(x)L_k(\phi, \bar{g})} + \sqrt{-\bar{g}(x)} \delta_\omega L_k(\phi, \bar{g}) \right\} = 0.
\]

\[
(33)
\]
For the first term in (33) we have

\[
\int dx \delta \omega \sqrt{-g(x)} L_k(\phi, \bar{g}) = -\int dx \partial_\sigma (\sqrt{-g(x)} \omega^\sigma) L_k(\phi, \bar{g})
\]

\[
= \int dx \sqrt{-g(x)} \omega^\sigma \partial_\sigma L_k(\phi, \bar{g}),
\]

(34)

where integration by parts was used.

The variation of \(L_k(\phi, \bar{g})\) in second term of equation (33) can be presented as

\[
\delta_\omega L_k(\phi, \bar{g}) = \frac{1}{2} \delta_\omega h_{\alpha \beta}(x) R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) h_{\gamma \delta}(x) + \frac{1}{2} h_{\alpha \beta}(x) \delta_\omega R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) h_{\gamma \delta}(x)
\]

\[
+ \frac{1}{2} h_{\alpha \beta}(x) R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) \delta_\omega h_{\gamma \delta}(x) + \delta_\omega \bar{C}^\alpha(x) R_k^{(2)\alpha \kappa \beta}(x; \bar{g}) C^\beta(x)
\]

\[
+ \bar{C}^\alpha(x) \delta_\omega R_k^{(2)\alpha \kappa \beta}(x; \bar{g}) C^\beta(x).
\]

(35)

In terms of transformations (22), the above expression reads

\[
\delta_\omega L_k(\phi, \bar{g}) = -\frac{1}{2} \left(\partial_\sigma h_{\alpha \beta}(x) \omega^\sigma + h_{\alpha \sigma}(x) \partial_\beta \omega^\sigma + h_{\sigma \beta}(x) \partial_\alpha \omega^\sigma \right) R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) h_{\gamma \delta}(x)
\]

\[
- \frac{1}{2} h_{\alpha \beta} R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) \left(\partial_\sigma h_{\gamma \delta}(x) \omega^\sigma + h_{\gamma \sigma}(x) \partial_\delta \omega^\sigma + h_{\delta \sigma}(x) \partial_\gamma \omega^\sigma \right)
\]

\[
+ \frac{1}{2} h_{\alpha \beta}(x) \delta_\omega R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) h_{\gamma \delta}(x) + \bar{C}^\alpha(x) \delta_\omega R_k^{(2)\alpha \kappa \beta}(x; \bar{g}) C^\beta(x)
\]

\[
+ \bar{C}^\alpha(x) R_k^{(2)\alpha \kappa \beta}(x; \bar{g}) \left(- \omega^\sigma \partial_\sigma C^\beta(x) + C^\sigma(x) \partial_\sigma \omega^\sigma \right).
\]

(36)

Thus, by means of Eqs. (34) and (36) the variation of the action can be written in the compact way

\[
\delta_\omega S_k(\phi, \bar{g}) = \int dx \sqrt{-g(x)} \left\{ \frac{1}{2} h_{\alpha \beta}(x) M_{\omega k}^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) h_{\gamma \delta}(x) + \bar{C}^\alpha(x) M_{\omega k \alpha \beta}^{(2)}(x; \bar{g}) C^\beta(x) \right\},
\]

(37)

where

\[
M_{\omega k}^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) = \delta_\omega R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) + \omega^\sigma \partial_\sigma R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) - \partial_\sigma \omega^\sigma R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g})
\]

\[
- \partial_\sigma \omega^\sigma R_k^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) - \partial_\sigma \omega^\gamma R_k^{(1)\alpha \beta \sigma \delta}(x; \bar{g}) - \partial_\sigma \omega^\delta R_k^{(1)\alpha \beta \gamma \sigma}(x; \bar{g})
\]

and

\[
M_{\omega k \alpha \beta}^{(2)}(x; \bar{g}) = \delta_\omega R_k^{(2)\alpha \kappa \beta}(x; \bar{g}) + \omega^\sigma \partial_\sigma R_k^{(2)\alpha \kappa \beta}(x; \bar{g}) + \bar{R}^{(2)\alpha \kappa \beta}(x; \bar{g}) \partial_\alpha \omega^\sigma + R_k^{(2)\alpha \kappa \beta}(x; \bar{g}) \partial_\beta \omega^\sigma.
\]

(38)

In order to ensure the invariance of (28), it is necessary that the following conditions are satisfied

\[
M_{\omega k}^{(1)\alpha \beta \gamma \delta}(x; \bar{g}) = 0 \quad \text{and} \quad M_{\omega k \alpha \beta}^{(2)}(x; \bar{g}) = 0.
\]

(39)
As a result, we obtain expressions for the variation of the regulator functions,
\[\delta_\omega R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) = -\omega^\sigma \partial_\sigma R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) + R_k^{(1)\sigma\beta\gamma\delta}(x; \bar{g}) \partial_\sigma \omega^\alpha + R_k^{(1)\alpha\sigma\gamma\delta}(x; \bar{g}) \partial_\sigma \omega^\beta + R_k^{(1)\alpha\beta\delta\sigma}(x; \bar{g}) \partial_\sigma \omega^\gamma + R_k^{(1)\alpha\beta\gamma\sigma}(x; \bar{g}) \partial_\sigma \omega^\delta \] (40)

and
\[\delta_\omega R_{k\alpha\beta}^{(2)}(x; \bar{g}) = -\omega^\sigma \partial_\sigma R_{k\alpha\beta}^{(2)}(x; \bar{g}) - R_{k\alpha\beta}^{(2)}(x; \bar{g}) \partial_\alpha \omega^\sigma - R_{k\alpha\sigma}(x; \bar{g}) \partial_\beta \omega^\sigma. \] (41)

If the relations (40) and (41) are fulfilled, then the action \(S_k(\phi, \bar{g}) \) is invariant under background field transformations. Therefore, the regulator functions should have a tensor structure in order to ensure the invariance. Thus, taking into account the symmetry properties presented in (31) we can propose the following solutions for the regulator functions
\[R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) = \bar{g}^{\alpha\beta}(x)\bar{g}^{\gamma\delta}(x)R_k^{(1)}(\Box) + (\bar{g}^{\alpha\gamma}(x)\bar{g}^{\beta\delta}(x) + \bar{g}^{\alpha\delta}(x)\bar{g}^{\beta\gamma}(x))Q_k(\Box) \] (42)

and
\[R_{k\alpha\beta}^{(2)}(x; \bar{g}) = \bar{g}_{\alpha\beta}R_k^{(2)}(\Box), \] (43)

where \(R_{k(1,2)}^{(1)}(\Box) \) and \(Q_k(\Box) \) are scalar functions and \(\Box \) is the d’Alembertian operator defined in terms of the covariant derivatives of the background metric:
\[\Box = \bar{g}^{\mu\nu}\nabla_\mu\nabla_\nu, \] (44)

with the metricity property
\[\nabla_\tau \bar{g}_{\mu\nu} = 0. \] (45)

It is possible to show that (42) and (43) presents the same variational structure of (40) and (41), respectively. By using the inverse background metric variation
\[\delta_\omega \bar{g}^{\mu\nu}(x) = -\omega^\sigma \partial_\sigma \bar{g}^{\mu\nu}(x) + \bar{g}^{\mu\sigma}(x)\partial_\sigma \omega^\nu + \bar{g}^{\sigma\nu}(x)\partial_\sigma \omega^\mu, \] (46)

we have
\[\delta_\omega R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) = \left(-\omega^\sigma \partial_\sigma \bar{g}^{\alpha\beta}(x) + \bar{g}^{\alpha\sigma}(x)\partial_\sigma \omega^\beta + \bar{g}^{\sigma\beta}(x)\partial_\sigma \omega^\alpha \right) \bar{g}^{\gamma\delta}(x)R_k^{(1)}(\Box) + \bar{g}^{\alpha\beta}(x) \left(-\omega^\sigma \partial_\sigma \bar{g}^{\gamma\delta}(x) + \bar{g}^{\gamma\sigma}(x)\partial_\sigma \omega^\delta + \bar{g}^{\sigma\delta}(x)\partial_\sigma \omega^\gamma \right) R_k^{(1)}(\Box) + \left(-\omega^\sigma \partial_\sigma \bar{g}^{\alpha\gamma}(x) + \bar{g}^{\alpha\sigma}(x)\partial_\sigma \omega^\gamma + \bar{g}^{\sigma\gamma}(x)\partial_\sigma \omega^\alpha \right) \bar{g}^{\beta\delta}(x)Q_k(\Box) + \bar{g}^{\alpha\gamma}(x) \left(-\omega^\sigma \partial_\sigma \bar{g}^{\beta\delta}(x) + \bar{g}^{\beta\sigma}(x)\partial_\sigma \omega^\delta + \bar{g}^{\sigma\delta}(x)\partial_\sigma \omega^\beta \right) Q_k(\Box) + \left(-\omega^\sigma \partial_\sigma \bar{g}^{\alpha\delta}(x) + \bar{g}^{\alpha\sigma}(x)\partial_\sigma \omega^\delta + \bar{g}^{\sigma\delta}(x)\partial_\sigma \omega^\alpha \right) \bar{g}^{\beta\gamma}(x)Q_k(\Box) + \bar{g}^{\alpha\delta}(x) \left(-\omega^\sigma \partial_\sigma \bar{g}^{\beta\gamma}(x) + \bar{g}^{\beta\sigma}(x)\partial_\sigma \omega^\gamma + \bar{g}^{\sigma\gamma}(x)\partial_\sigma \omega^\beta \right) Q_k(\Box) - \bar{g}^{\alpha\beta}(x)\bar{g}^{\gamma\delta}(x)\omega^\sigma \partial_\sigma R_k^{(1)}(\Box) - \bar{g}^{\alpha\gamma}(x)\bar{g}^{\beta\delta}(x)\omega^\sigma \partial_\sigma Q_k(\Box) - \bar{g}^{\alpha\delta}(x)\bar{g}^{\beta\gamma}(x)\omega^\sigma \partial_\sigma Q_k(\Box). \] (47)
The derivatives in metric tensor and in functions \(R_k^{(1)}(\Box) \) and \(Q_k(\Box) \) can be combined to obtain

\[
\delta_\omega R_k^{(1)\alpha\beta\gamma\delta}(x; \bar{g}) = (\bar{g}^{\alpha\sigma}(x)\partial_\sigma\omega^\beta + \bar{g}^{\sigma\beta}(x)\partial_\sigma\omega^\alpha)\bar{g}^{\gamma\delta}(x)R_k^{(1)}(\Box) + \bar{g}^{\alpha\beta}(x)(\bar{g}^{\gamma\sigma}(x)\partial_\sigma\omega^\delta + \bar{g}^{\sigma\delta}(x)\partial_\sigma\omega^\gamma)\bar{g}^{\beta\delta}(x)R_k^{(1)}(\Box) + (\bar{g}^{\alpha\sigma}(x)\partial_\sigma\omega^\beta + \bar{g}^{\sigma\beta}(x)\partial_\sigma\omega^\alpha)\bar{g}^{\gamma\delta}(x)Q_k(\Box) + \bar{g}^{\alpha\gamma}(x)(\bar{g}^{\beta\sigma}(x)\partial_\sigma\omega^\delta + \bar{g}^{\sigma\delta}(x)\partial_\sigma\omega^\beta)Q_k(\Box) + \bar{g}^{\alpha\delta}(x)(\partial_\sigma\partial_\delta\bar{g}^{\alpha\beta}(x)\bar{g}^{\gamma\delta}(x)R_k^{(1)}(\Box)) - \omega^\sigma\partial_\sigma\bar{g}^{\alpha\beta}(x)\bar{g}^{\gamma\delta}(x)Q_k(\Box) - \omega^\sigma\partial_\sigma\bar{g}^{\alpha\delta}(x)\bar{g}^{\beta\gamma}(x)Q_k(\Box).
\]

(48)

As a result, it is possible to see that (40) is satisfied.

For the second function its variation can be expressed, after some algebra, as

\[
\delta_\omega R_k^{(2)\alpha\beta}(x; \bar{g}) = -\omega^\sigma\partial_\sigma\bar{g}_{\alpha\beta}(x)R_k^{(2)}(\Box) - \partial_\alpha\omega^\sigma\bar{g}_{\alpha\beta}(x)R_k^{(2)}(\Box) - \partial_\beta\omega^\sigma\bar{g}_{\alpha\sigma}(x)R_k^{(2)}(\Box) - \omega^\sigma\bar{g}_{\alpha\beta}(x)\partial_\sigma R_k^{(2)}(\Box).
\]

(49)

The combination of derivatives in metric tensor and in scalar function leads to

\[
\delta_\omega R_k^{(2)\alpha\beta}(x; \bar{g}) = -\omega^\sigma\partial_\sigma(\bar{g}_{\alpha\beta}(x)R_k^{(2)}(\Box)) - \partial_\alpha\omega^\sigma\bar{g}_{\alpha\beta}(x)R_k^{(2)}(\Box) - \partial_\beta\omega^\sigma\bar{g}_{\alpha\sigma}(x)R_k^{(2)}(\Box),
\]

(50)

which has the same structure as (11).

Finally, the scale-dependent regulator Lagrangian density (29) in terms of (12) and (43) reads

\[
\mathcal{L}_k(\phi, \bar{g}) = \frac{1}{2}h_{\alpha\beta}(x)\left[\bar{g}^{\alpha\beta}(x)\bar{g}^{\gamma\delta}(x)R_k^{(1)}(\Box) + (\bar{g}^{\alpha\gamma}(x)\bar{g}^{\beta\delta}(x) + \bar{g}^{\alpha\delta}(x)\bar{g}^{\beta\gamma}(x))Q_k(\Box)\right]h_{\gamma\delta}(x) + \bar{C}^{\alpha}(x)\bar{g}_{\alpha\beta}(x)R_k^{(2)}(\Box)C^{\beta}(x),
\]

(51)

which maintains the background field symmetry, \(\delta_\omega S_k(\phi, \bar{g}) = 0 \).
4 Gauge dependence of effective average action

In order to understand the gauge invariance and gauge dependence problems in the background field method, we shall consider the generating functionals of Green functions

\[Z_k^\Psi(J, \bar{g}) = \int d\phi \exp \left\{ i \frac{\hbar}{\hbar} \left[S_0(h + \bar{g}) + \hat{R}(\phi, \bar{g})\Psi(\phi, \bar{g}) + S_k(\phi, \bar{g}) + J\phi \right] \right\} = \int d\phi \exp \left\{ i \frac{\hbar}{\hbar} \left[S_{kFP}(\phi, \bar{g}) + J\phi \right] \right\} = \exp \left\{ i \frac{\hbar}{\hbar} W_{k\Psi}(J, \bar{g}) \right\}, \tag{52} \]

where

\[\Psi(\phi, \bar{g}) = \int dx \sqrt{-\bar{g}(x)C^\alpha(x)\chi^\alpha(x; h, \bar{g})} \]

is the fermionic gauge fixing functional and

\[\hat{R}(\phi, \bar{g}) = \int dx \frac{\delta r}{\delta \phi^i(x)} R^i(x; \phi, \bar{g}) \]

is the generator of BRST transformations \[(15) \].

As far as we saw in the previous section, the regulator action \[(28) \] does not depend on the gauge \[\Psi(\phi, \bar{g}) \]. Now, we shall consider another choice of gauge fixing functional \[\Psi \rightarrow \Psi + \delta \Psi \] and set \[J = 0 \] in \[(52) \]. Thus,

\[Z_{k\Psi + \delta \Psi}(\bar{g}) = \int d\phi \exp \left\{ i \frac{\hbar}{\hbar} \left[S_{kFP}(\phi, \bar{g}) + \hat{R}(\phi, \bar{g})\delta \Psi(\phi, \bar{g}) \right] \right\} = \exp \left\{ i \frac{\hbar}{\hbar} W_{k\Psi + \delta \Psi}(\bar{g}) \right\}, \tag{55} \]

where

\[\delta \Psi = \delta \Psi(\phi, \bar{g}) = \int dx \sqrt{-\bar{g}(x)C^\alpha(x)\delta \chi^\alpha(h, \bar{g})}. \tag{56} \]

We will try to compensate the additional term \(\hat{R}\delta \Psi \) in \[(55) \]. To do this, we change the variables in the functional integral related to the symmetries of action \(S_{FP}(\phi, \bar{g}) \), namely the BRST symmetry and the background gauge invariance. First, we shall consider the BRST symmetry \[(14) \], but trading the constant parameter \(\lambda \) by a functional \(\Lambda = \Lambda(\phi, \bar{g}) \).

The variation of \[(28) \] under such transformation is the following

\[\delta_B S_k(\phi, \bar{g}) = \int d^4 x \sqrt{-\bar{g}(x)} \left\{ \delta_B L_k(\phi, \bar{g}) \right\}, \tag{57} \]

where

\[\delta_B L_k = \frac{1}{2} \delta_B h_{\alpha\beta}(x)R^{(1)\alpha\beta\gamma\delta}(x; \bar{g})h_{\gamma\delta}(x) + \frac{1}{2} h_{\alpha\beta}(x)R^{(1)\alpha\beta\gamma\delta}(x; \bar{g})\delta_B h_{\gamma\delta}(x) \]

\[+ \delta_B \bar{C}^\alpha(x)R^{(2)\alpha\beta}(x; \bar{g})C^\beta(x) + \bar{C}^\alpha(x)R^{(2)\alpha\beta}(x; \bar{g})\delta_B C^\beta(x) \]
After some algebra, \(\delta_B L_k(\phi, \bar{g})\) reads as

\[
\delta_B L_k = -\frac{1}{2}(C^\alpha(x)\partial_\sigma g_{\alpha\beta}(x) + g_{\alpha\sigma}(x)\partial_\beta C^\sigma(x) + g_{\sigma\beta}(x)\partial_\alpha C^\sigma(x))\Lambda R_k^{(1)\alpha\beta\gamma}(x; \bar{g})h_{\gamma\delta}(x)
\]

\[
-\frac{1}{2}h_{\alpha\beta}(x)R_k^{(1)\alpha\beta\gamma}(x; \bar{g})(C^\sigma(x)\partial_\sigma g_{\gamma\delta}(x) + g_{\gamma\sigma}(x)\partial_\delta C^\sigma(x) + g_{\delta\sigma}(x)\partial_\gamma C^\sigma(x))\Lambda
\]

\[
+ B^\alpha(x)\Lambda R_k^{(2)\alpha\beta\gamma}(x; \bar{g})C^\beta(x) + \bar{C}^\alpha(x)P_k^{(2)\alpha\beta\gamma}(x; \bar{g})C^\beta(x)\partial_\sigma C^\beta(x)\Lambda.
\]

From the above expression, it is clear that the action \(S_k(\phi, \bar{g})\) is not invariant under BRST transformations \(\delta_B S_k(\phi, \bar{g}) \neq 0\). The Jacobian \(J_1\) of such transformation can be obtained in the standard way

\[
J_1 = \exp \left\{ \int dx \left[\frac{\delta(\delta_B h_{\alpha\beta}(x))}{\delta h_{\alpha\beta}(x)} - \frac{\delta(\delta_B C^\alpha(x))}{\delta C^\alpha(x)} - \frac{\delta(\delta_B \bar{C}^\alpha(x))}{\delta \bar{C}^\alpha(x)} \right] \right\}, \quad (58)
\]

where the functional derivatives are

\[
\frac{\delta(\delta_B h_{\alpha\beta}(x))}{\delta h_{\alpha\beta}(x)} = -\frac{D(D+1)}{2} \delta(0)C^\alpha(x)\partial_\sigma \Lambda(\phi, \bar{g}) - \frac{(D+1)(D-2)}{2} \delta(0)\partial_\sigma C^\sigma(x)\Lambda(\phi, \bar{g})
\]

\[
- \left[C^\sigma(x)\partial_\sigma g_{\alpha\beta}(x) + g_{\alpha\sigma}(x)\partial_\beta C^\sigma(x) + g_{\sigma\beta}(x)\partial_\alpha C^\sigma(x) \right] \delta \Lambda(\phi, \bar{g}), \quad (59)
\]

\[
\frac{\delta(\delta_B C^\alpha(x))}{\delta C^\alpha(x)} = (D+1)\delta(0)\partial_\sigma C^\sigma(x)\Lambda(\phi, \bar{g}) + D\delta(0)C^\sigma(x)\partial_\sigma \Lambda(\phi, \bar{g})
\]

\[
+ C^\sigma(x)\partial_\sigma C^\sigma(x)\frac{\delta \Lambda(\phi, \bar{g})}{\delta C^\sigma(x)}, \quad (60)
\]

\[
\frac{\delta(\delta_B \bar{C}^\alpha(x))}{\delta \bar{C}^\alpha(x)} = B^\alpha(x)\frac{\delta \Lambda(\phi, \bar{g})}{\delta \bar{C}^\alpha(x)}, \quad (61)
\]

It is possible to choose a regularization scheme such that \(\delta(0) = 0\). As a result, the Jacobian for BRST transformations is

\[
J_1 = \exp \left\{ \int dx \left[R_k^{(h)}(x; \phi, \bar{g})\frac{\delta \Lambda(\phi, \bar{g})}{\delta h_{\alpha\beta}(x)} - R_k^{(c)}(x; \phi, \bar{g})\frac{\delta \Lambda(\phi, \bar{g})}{\delta C^\alpha(x)} - R_k^{(\bar{c})}(x; \phi, \bar{g})\frac{\delta \Lambda(\phi, \bar{g})}{\delta \bar{C}^\alpha(x)} \right] \right\}, \quad (62)
\]

where (15) is used.

It is also interesting to consider the background gauge transformation related to expressions (22). As far as the regulator functions transform as (40) and (41), the action \(S_k(\phi, \bar{g})\) is invariant under such transformation. But now, instead of functions \(\omega = \omega^\sigma(x)\) we shall consider the functional \(\Omega^\sigma = \Omega^\sigma(x, \phi, \bar{g})\). The action (23) remains invariant, and the corresponding Jacobian of this transformation can be obtained as before

\[
J_2 = \exp \left\{ \int dx \left[\frac{\delta(\delta_B h_{\alpha\beta}(x))}{\delta h_{\alpha\beta}(x)} - \frac{\delta(\delta_B C^\alpha(x))}{\delta C^\alpha(x)} - \frac{\delta(\delta_B \bar{C}^\alpha(x))}{\delta \bar{C}^\alpha(x)} \right] \right\}, \quad (63)
\]
with the following functional derivatives:

\[
\frac{\delta(\delta_{\Omega}h_{\alpha\beta}(x))}{\delta h_{\alpha\beta}(x)} = \frac{(D+1)(D-2)}{2}(0)\partial_\sigma \Omega^\sigma(x, \phi, \bar{g})
\]

\[
- (\partial_\sigma h_{\alpha\beta}(x) + h_{\alpha\sigma}(x)\partial_\beta + h_{\sigma\beta}(x)\partial_\alpha) \frac{\delta \Omega^\sigma(x, \phi, \bar{g})}{\delta h_{\alpha\beta}(x)},
\]

\[
(64)
\]

\[
\frac{\delta(\delta_{\Omega}\bar{C}^\alpha(x))}{\delta C^\alpha(x)} = (D+1)\delta(0)\partial_\sigma \bar{C}^\alpha(x) - \bar{C}^\sigma(x)\partial_\sigma \delta \bar{C}^\alpha(x),
\]

\[
(65)
\]

\[
\frac{\delta(\delta_{\Omega}C^\alpha(x))}{\delta C^\alpha(x)} = (D+1)\delta(0)\partial_\sigma \bar{C}^\alpha(x) - \bar{C}^\sigma(x)\partial_\sigma \delta \bar{C}^\alpha(x),
\]

\[
(66)
\]

As before, \(\delta(0) = 0\). Thus, the Jacobian for background gauge transformations reads

\[
J_2 = \exp \left\{ \int dx \left\{ -(\partial_\sigma h_{\alpha\beta}(x) + h_{\alpha\sigma}(x)\partial_\beta + h_{\sigma\beta}(x)\partial_\alpha) \frac{\delta \Omega^\sigma(x, \phi, \bar{g})}{\delta h_{\alpha\beta}(x)}
\right. \\
+ \frac{\delta \Omega^\sigma(x, \phi, \bar{g})}{\delta C^\alpha(x)}\partial_\sigma \bar{C}^\alpha(x) + \bar{C}^\sigma(x)\partial_\sigma \frac{\delta \Omega^\sigma(x, \phi, \bar{g})}{\delta \bar{C}^\alpha(x)} + \left. \frac{\delta \Omega^\sigma(x, \phi, \bar{g})}{\delta C^\alpha(x)}\partial_\sigma C^\alpha(x)
\right. \\
+ \bar{C}^\sigma(x)\partial_\sigma \frac{\delta \Omega^\sigma(x, \phi, \bar{g})}{\delta \bar{C}^\alpha(x)} \right\}.
\]

\[
(67)
\]

If it is possible to fulfill the condition

\[
J_1 J_2 \exp \left\{ \frac{i}{\hbar} \int dx [\hat{R}(\phi, \bar{g})\delta \Psi(\phi, \bar{g}) + \delta B S_k(\phi, \bar{g})] \right\} = 1
\]

the generating vacuum functional \(Z_{k\Psi}(\bar{g})\) does not depend on the gauge fixing functional \(\Psi\). In order to verify that, let us expand the functionals \(\Lambda\) and \(\Omega\), with Grassmann parity \(\varepsilon(\Lambda) = 1\) and \(\varepsilon(\Omega) = 0\) and ghost numbers \(gh(\Lambda) = -1\) and \(gh(\Omega) = 0\) in the lower power of ghost fields

\[
\Lambda = \Lambda^{(1)} + \Lambda^{(3)}, \quad \Omega^\sigma = \Omega^{\sigma(0)} + \Omega^{\sigma(2)},
\]

\[
(68)
\]

where

\[
\Lambda^{(1)} = \int dx \bar{C}^\alpha(x) \lambda^{(1)}_\alpha(x, \phi, \bar{g}),
\]

\[
(69)
\]

\[
\Lambda^{(3)} = \int dx \frac{1}{2} \bar{C}^\alpha(x) \bar{C}^\beta(x) \lambda^{(3)}_{\alpha\beta\gamma}(x, \phi, \bar{g}) C^\gamma(x),
\]

\[
(70)
\]

\[
\Omega^{\sigma(0)}(x) = \Omega^{\sigma(0)}(x, \phi, \bar{g}),
\]

\[
(71)
\]

\[
\Omega^{\sigma(2)}(x, \phi, \bar{g}) = \bar{C}^\alpha(x) \omega^{\sigma(2)}_{\alpha\beta}(x, \phi, \bar{g}) C^\beta(x).
\]

\[
(72)
\]

\[
\omega^{\sigma(2)}_{\alpha\beta}(x, \phi, \bar{g}) C^\beta(x).
\]

\[
(73)
\]
The terms that vanish in (74) and do not depend on ghost fields, lead to
\[
(\partial_\sigma h_{\alpha\beta}(x) + h_{\alpha\sigma}(x)\partial_\beta + h_{\sigma\beta}(x)\partial_\alpha) \frac{\delta\Omega^{(0)}(x, h, \bar{g})}{\delta h_{\alpha\beta}(x)} = 0. \tag{74}
\]

Analyzing the terms which are linear in the anti-ghost fields, which contains the auxiliary fields \(B(x)\), we obtain
\[
\lambda^{(1)}_\alpha(x, h, \bar{g}) = \frac{i}{\hbar}\delta\chi_\alpha(x, h, \bar{g}) \tag{75}
\]
and
\[
\lambda^{(3)}_{\alpha\beta\gamma}(x, h, \bar{g}) = \lambda^{(1)}_\alpha(h, \bar{g})R^{(2)}_{\beta\gamma\delta}(x; \bar{g}) \tag{76}
\]
where
\[
\lambda^{(1)}_\alpha(h, \bar{g}) = \int dx \lambda^{(1)}_\alpha(x, h, \bar{g}). \tag{77}
\]

Now, the vanishing terms with structure \(\bar{C}(x)C(x)\) can be related to the second order of \(\Omega^{(2)}(x, h, \bar{g})\) functional leading to a differential equation for \(\omega^{(2)}_{\alpha\beta}(x, h, \bar{g})\),
\[
\partial_\sigma \omega^{(2)}_{\alpha\beta}(x, h, \bar{g}) = \frac{i}{2\hbar} \left[\partial_\beta g_{\tau\sigma}(x)\lambda^{(1)}_\alpha(h, \bar{g})R^{(1)}_{\tau\sigma\gamma\delta}(x; \bar{g})h_{\gamma\delta}(x) + h_{\tau\sigma}(x)R^{(1)}_{\tau\sigma\gamma\delta}(x; \bar{g})\partial_\beta g_{\gamma\delta}(x)\lambda^{(1)}_\alpha(h, \bar{g}) \right]. \tag{78}
\]

From Eq. (74) since \(\Omega^{(0)}(x, h, \bar{g})\) is an arbitrary function we can not have just one particular solution. In addition, the \(\lambda^{(3)}_{\alpha\beta\gamma}\) relation in (76) creates non-local term of structure \(BCC\bar{C}\bar{C}\bar{C}\) which can be only eliminated if we consider new functional \(\Lambda\) of higher orders in ghost fields. Even so, this process would repeat endlessly. The only case left for us is to consider the simple solution when \(\Omega^{(2)} = 0\) and \(\Lambda = \Lambda^{(1)}\) we have the result
\[
Z_{k\psi+\delta\phi}(\bar{g}) = \int d\phi \exp \left\{ \frac{i}{\hbar} [S_{kFP}(\phi, \bar{g}) + \delta S_{kFP}(\phi)] \right\},
\]
\[
Z_{k\psi}(\bar{g}) \neq Z_{k\psi+\delta\phi}(\bar{g}). \tag{79}
\]

As final result, the vacuum functional in the FRG approach for gravity theories depends on the gauge fixing even on-shell, which leads to a gauge dependent \(S\)-matrix.

5 Conclusions and Perspectives

We explored the problem of gauge invariance and the gauge-fixing dependence using the background field formalism, for gravity theories in the FRG framework. It was shown
that the background field invariance is achieved when the regulator functions are chosen to have the tensor structure. Nevertheless, even in this case the on-shell gauge dependence cannot be cured in the standard FRG approach which we dealt with. In this respect the situation is qualitatively the same as in the Yang-Mills theories, as it was discussed in [15].

The on-shell gauge dependence takes place due to the fact that the regulator action (28) is not BRST-invariant. It turns out that this is a fundamentally important feature, that can be changed only by trading the standard and conventional FRG framework to an alternative one, which is based on the use of composite operators for constructing the regulator action. Unfortunately, until now there is no way to perform practical calculations in this alternative formulation. For this reason, taking our present results into account, it remains unclear whether the quantum gravity results obtained within the FRG formalism can have a reasonable physical interpretation. One can expect that all predictions of this formalism will depend on an arbitrary choice of the gauge fixing. Thus, one can, in principle, provide any desirable result, but the value of this output is not clear. Alternatively, there should be found some physical reason to claim that one special gauge fixing is “correct” or “preferred” for some reason, but at the moment it is unclear how this reason can look like, since the original theory is gauge (diffeomorphism) invariant.

The results of the considerations which we described above make more interesting the discussion of the possible ways to solve the problem of on-shell gauge fixing dependence, such as the ones suggested in [35, 36, 34] or in [15]. In our opinion, the last approach is more transparent and physically motivated, but (as we have already mentioned above) there is no well-developed technique of using it for practical calculations.

Acknowledgments

E.A.R. and V.F.B. are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES for supporting their Ph.D. and Ms. projects. P.M.L. is grateful to the Department of Physics of the Federal University of Juiz de Fora (MG, Brazil) for warm hospitality during his long-term visit, when this work has been initiated. The work of P.M.L. was partially supported by the Ministry of Science and Higher Education of the Russian Federation, grant 3.1386.2017 and by the RFBR grant 18-02-00153. I.L.Sh. was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq under the grant 303635/2018-5 and Fundação de Amparo à Pesquisa de Minas Gerais - FAPEMIG under the project APQ-01205-16.
References

[1] S. Weinberg, *Ultraviolet divergences in quantum theories of gravitation*. (In S. W. Hawking; W. Israel (eds.). General Relativity: An Einstein centenary survey. Cambridge University Press, 1979).

[2] M. Niedermaier and M. Reuter, *The Asymptotic Safety Scenario in Quantum Gravity*, Living Rev. Rel. 9 (2006) 5, gr-qc/0610018.

[3] R. Percacci, *Asymptotic Safety*, (In D. Oriti - Editor: Approaches to quantum gravity, 111-128, Cambridge University Press, 2007). arXiv:0709.3851

[4] K.S. Stelle, *Renormalization of Higher Derivative Quantum Gravity*, Phys. Rev. D16 (1977) 953.

[5] F. de O. Salles, and I.L. Shapiro, *Do we have unitary and (super)renormalizable quantum gravity below the Planck scale?* Phys. Rev. D89 (2014) 084054; Erratum: Phys. Rev. D90 (2014) 129903, arXiv:1401.4583

A.M. Pelinson, F. de Oliveira Salles, and I.L. Shapiro, *Gravitational waves and perspectives for quantum gravity*, Mod. Phys. Lett. A29 (2014) 1430034 (Brief Review), arXiv:1410.2581.

P. Peter, F. de Oliveira Salles, and I.L. Shapiro, *On the ghost-induced instability on de Sitter background*, Phys. Rev. D97 (2018) 064044, arXiv:1801.00063.

A. Salvio, *Metastability in Quadratic Gravity*, Phys. Rev. D99 (2019) 103507, arXiv:1902.09557.

S. Castardelli dos Reis, G. Chapiro and I. L. Shapiro, *Beyond the linear analysis of stability in higher derivative gravity with the Bianchi-I metric*, Phys. Rev. D100 066004 (2019) arXiv:1903.01044.

[6] A. Salam and J. Strathdee, *Remarks on High-energy Stability and Renormalizability of Gravity Theory*, Phys. Rev. D18 (1978) 4480.

[7] E.S. Fradkin and A.A. Tseytlin, *Renormalizable asymptotically free quantum theory of gravity*, Nucl. Phys. B201 (1982) 469.

[8] I.G. Avramidi and A.O. Barvinsky, *Asymptotic Freedom In Higher Derivative Quantum Gravity* Phys. Lett. B159 (1985) 269.

[9] G. de Berredo-Peixoto and I.L. Shapiro, *Higher derivative quantum gravity with Gauss-Bonnet term*, Phys. Rev. D71 (2005) 064005, hep-th/0412249.
[10] E. Tomboulis, \textit{1/N Expansion and Renormalization in Quantum Gravity}, Phys. Lett.
\textbf{B70} (1977) 361; \textit{Renormalizability and Asymptotic Freedom in Quantum Gravity},
Phys. Lett. \textbf{B97} (1980) 77; \textit{Unitarity in Higher Derivative Quantum Gravity}, Phys.
Rev. Lett. \textbf{52} (1984) 1173.

[11] I. Antoniadis and E.T. Tomboulis, \textit{Gauge Invariance And Unitarity In Higher Derivative Quantum Gravity}, Phys. Rev. \textbf{D33} (1986) 2756.

[12] D.A. Johnston, \textit{Sedentary Ghost Poles In Higher Derivative Gravity}, Nucl. Phys.
\textbf{B297} (1988) 721.

[13] A. Codello and R. Percacci, \textit{Fixed points of higher derivative gravity}, Phys. Rev. Lett.
\textbf{97} (2006) 221301, hep-th/0607128; A. Codello, R. Percacci, L. Rachwal and A. Tonero,
\textit{Computing the Effective Action with the Functional Renormalization Group}, Eur.
Phys. J. \textbf{C76} (2016) 226, arXiv:1505.03119.

[14] A. Codello, R. Percacci and C. Rahmede, \textit{Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation}, Annals Phys. \textbf{324} (2009)
414, arXiv:0805.2909.

[15] P.M. Lavrov and I.L. Shapiro, \textit{On the Functional Renormalization Group approach for Yang-Mills fields}, JHEP \textbf{1306} (2013) 086, arXiv:1212.2577.

[16] P.M. Lavrov, \textit{Gauge (in)dependence and background field formalism}, Phys. Lett. \textbf{B791}
(2019) 29; arXiv:1805.02149.

[17] P.M. Lavrov, E. A. dos Reis, T. de Paula Netto and I.L. Shapiro, \textit{Gauge invariance of the background average effective action}, Eur. Phys. J. \textbf{C79} (2019) 661,
arXiv:1905.08296.

[18] M. Asorey, J.L. López and I.L. Shapiro, \textit{Some remarks on high derivative quantum gravity}, Int. J. Mod. Phys. \textbf{A12} (1997) 5711, hep-th/9610006.

[19] L. Modesto, L. Rachwal and I.L. Shapiro, \textit{Renormalization group in superrenormalizable quantum gravity}, Eur. Phys. J. \textbf{C78} (2018) 555, arXiv:1704.03988.

[20] C. N. Yang and R. L. Mills, \textit{Conservation of Isotopic Spin and Isotopic Gauge Invariance}, Phys. Rev. \textbf{96} (1954) 191.

[21] R. Jackiw, \textit{Functional evaluation of the effective potential}, Phys. Rev. \textbf{D9} (1974) 1686.

[22] L. Dolan and R. Jackiw, \textit{Gauge invariant signal for gauge symmetry breaking}, Phys.
Rev. \textbf{D9} (1974) 2904.
[23] N.K. Nielsen, *On the gauge dependence of spontaneous symmetry breaking in gauge theories*, Nuc. Phys. B101 (1975) 173.

[24] R. Fukuda and T. Kugo, *Gauge invariance in the effective action and potential*, Phys. Rev. D13 (1976) 3469.

[25] P.M. Lavrov and I.V. Tyutin, *On the generating functional for the vertex functions in Yang-Mills theories*, Sov. J. Nucl. Phys. 36 (1981) 474.

[26] B.L. Voronov, P.M. Lavrov and I.V. Tyutin, *Canonical transformations and gauge dependence in general gauge theories*, Sov. J. Nucl. Phys. 36 (1982) 292.

[27] C. Wetterich, *Average action and the renormalization group equations*, Nuc. Phys. B352 (1991) 529.

[28] C. Wetterich, *Exact evolution equation for the effective potential*, Phys. Lett. B301 (1993) 90, arXiv:1710.05815.

[29] J. Berges, N. Tetradis and C. Wetterich, *Non-perturbative renormalization flow in quantum field theory and statistical physics*, Phys. Rept. 363 (2002) 223, hep-ph/0005122.

[30] C. Bagnuls and C. Berviller, *Exact renormalization group equations: an introductory review*, Phys. Rept. 348 (2001) 91, hep-th/0002034.

[31] J. Polonyi, *Lectures on the functional renormalization group method*, Central Eur. J. Phys. 1 (2003) 1, hep-th/0110026.

[32] J.M. Pawlowski, *Aspects of the functional renormalization group*, Annals Phys. 322 (2007) 2831, hep-th/0512261.

[33] B. Delamotte, *An introduction to the nonperturbative renormalization group*, Lect. Notes Phys. 852 (2012) 49, cond-mat/0702365.

[34] O.J. Rosten, *Fundamentals of the exact renormalization group*, Phys. Rep. 511 (2012) 177, arXiv:1003.1366.

[35] T.R. Morris, *A gauge invariant exact renormalization group. 2*. JHEP 12 (2000) 012, hep-th/0006064.

[36] S. Arnone, T.R. Morris, and O.J. Rosten, *A generalized manifestly gauge invariant exact renormalization group for SU(N) Yang-Mills*, Eur. Phys. J. C50 (2007) 467, hep-th/0606181.
[37] V. Branchina, K.A. Meissner and G. Veneziano, *The prize of an exact, gauge invariant RG flow equation*, Phys. Lett. B **574** (2003) 319, [hep-th/0309234](https://arxiv.org/abs/hep-th/0309234).

[38] J.M. Pawlowski, *Geometrical effective action and Wilsonian flows*, [hep-th/0310018](https://arxiv.org/abs/hep-th/0310018).

[39] G.A. Vilkovisky, in *B.S. DeWitt Sixtieth Anniversary Volume*, S. Christensen eds., Hilger, Bristol U.K. (1983).

[40] G.A. Vilkovisky, in *The unique effective action in quantum field theory*, Nucl. Phys. B**234** (1984) 124.

[41] B.S. DeWitt, *Quantum theory of gravity. II. The manifestly covariant theory*, Phys. Rev. **162** (1967) 1195.

[42] I.Ya. Arefeva, L.D. Faddeev and A.A. Slavnov, *Generating functional for the s matrix in gauge theories*, Theor. Math. Phys. **21** (1975) 1165 (Teor. Mat. Fiz. **21**(1974) 311-321).

[43] L.F. Abbott, *The background field method beyond one loop*, Nucl. Phys. B**185** (1981) 189.

[44] A.O. Barvinsky, D. Blas, M. Herrero-Valca, S.M. Sibiryakov and C.F. Steinwachs, *Renormalization of gauge theories in the background-field approach*, JHEP **1807** (2018) 035, [arXiv:1705.03480](https://arxiv.org/abs/1705.03480).

[45] I.A. Batalin, P.M. Lavrov and I.V. Tyutin, *Multiplicative renormalization of Yang-Mills theories in the background-field formalism*, Eur. Phys. J. C**78** (2018) 570, [arXiv:1806.02552](https://arxiv.org/abs/1806.02552).

[46] J. Frenkel and J.C. Taylor, *Background gauge renormalization and BRST identities*, Annals Phys. **389** (2018) 234, [arXiv:1801.01098](https://arxiv.org/abs/1801.01098).

[47] I.A. Batalin, P.M. Lavrov and I.V. Tyutin, *Gauge dependence and multiplicative renormalization of Yang-Mills theory with matter fields*, Eur. Phys. J. C**79** (2019) 628, [arXiv:1902.09532](https://arxiv.org/abs/1902.09532).

[48] P.M. Lavrov and I.L. Shapiro, *Gauge invariant renormalizability of quantum gravity*, Phys. Rev. D**100** (2019) 026018, [arXiv:1902.04687](https://arxiv.org/abs/1902.04687).

[49] B.L. Giacchini, P.M. Lavrov and I.L. Shapiro, *Background field method and nonlinear gauges*, Phys. Lett. B**797** (2019) 134882, [arXiv:1906.04767](https://arxiv.org/abs/1906.04767).
[50] R. Percacci and G.P. Vacca, *The background scale Ward identity in quantum gravity*, Eur. Phys. J. C77 (2017) 52, arXiv:1611.07005.

[51] G. ’t Hooft, *An algorithm for poles at dimension four in the dimensional regularization procedure*, Nucl. Phys. B62 (1973) 444.

[52] H. Klusberg-Stern and J.B. Zuber, *Renormalization of non-Abelian gauge theories in a background-field gauge. I. Green’s functions*, Phys. Rev. D12 (1975) 482.

[53] M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, *Background field method versus normal field theory in explicit examples: One loop divergences in S matrix and Green’s functions for Yang-Mills and gravitational fields*, Phys. Rev. D12 (1975) 3203.

[54] D.M. Capper and A. MacLean, *The background field method at two loops: A general gauge Yang-Mills calculation*, Nucl. Phys. B203 (1982) 413.

[55] S. Ichinose and M. Omote, *Renormalization using the background-field formalism*, Nucl. Phys. B203 (1982) 221.

[56] M.H. Goroff and A. Sagnotti, *The ultraviolet behavior of Einstein gravity*, Nucl. Phys. B266 (1986) 709.

[57] A.E.M. van de Ven, *Two-loop quantum gravity*, Nucl. Phys. B378 (1992) 309.

[58] P.A. Grassi, *Algebraic renormalization of Yang-Mills theory with background field method*, Nucl. Phys. B426 (1996) 524.

[59] C. Becchi and R. Collina, *Further comments on the background field method and gauge invariant effective action*, Nucl. Phys. B562 (1999) 412, hep-th/9907092.

[60] R. Ferrari, M. Picariello and A. Quadri, *Algebraic aspects of the background field method*, Annals Phys. 294 (2001) 165, hep-th/0012090.

[61] B.S. DeWitt, *Dynamical theory of groups and fields*, (Gordon and Breach, 1965).

[62] L.D. Faddeev and V.N. Popov, *Feynman diagrams for the Yang-Mills field*, Phys. Lett. B25 (1967) 29.

[63] C. Becchi, A. Rouet and R. Stora, *The abelian Higgs Kibble Model, unitarity of the S-operator*, Phys. Lett. B52 (1974) 344.

[64] I.V. Tyutin, *Gauge invariance in field theory and statistical physics in operator formalism*, Lebedev Inst.preprint N 39 (1975); arXiv:0812.0580.
[65] R. Delbourgo and M. Ramon-Medrano, *Becchi-Rouet-Stora gauge identities for gravity*, Nucl. Phys. **B110** (1976) 467.

[66] P.K. Townsend and P. van Nieuwenhuizen, *BRS gauge and ghost field supersymmetry in gravity and supergravity*, Nucl. Phys. **B120** (1977) 301.