Mass accretion rate of the galactic black hole A0620-00 in its quiescent state

Sabyasachi Pal1 and Sandip K. Chakrabarti2,1

1 Centre for Space Physics, Chalantika 43, Garia Station Rd., Kolkata, 700084, India e-mail: spacephys@vsnl.com
2 S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata, 700098, India e-mail: chakraba@bose.res.in

Received ; accepted .

Abstract. Our recent radio observation using the Giant Meter Radio Telescope (GMRT) of the galactic black hole transient A0620-00 at 1.280GHz revealed a micro-flare of a few milli-Jansky. Assuming an equipartition of magnetic energy and the gravitational potential energy of accreting matter, it is possible to estimate the upper limit of the accretion rate. Assuming a black hole mass of $10M_\odot$ residing at the center, we find this to be at the most $\dot{M} = (8.5 \pm 1.4) \times 10^{-11} M_\odot$ yr$^{-1}$. This is consistent with earlier estimates of accretion rates based on optical and X-ray observations.

Key words. Black hole physics – accretion, accretion disks – magnetic fields – radio continuum: stars

1. Introduction

The galactic black hole transient A0620-00 is not particularly well known for its activity in radio wavelengths. It was last reported to have radio outbursts in 1975 at 962 and 151 MHz (Davis et al. 1975; Owen et al. 1976). A few years after this observation, Duldig et al. (1979) reported a low level activity at 2 cm (14.7GHz). More recent re-analysis of the 1975 data revealed that it underwent multiple jet ejection events (Kuulkers et al. 1999). There are no other reports of radio observations of this object.

A0620-00 is in a binary system and its mass is estimated to be around $10M_\odot$ (Gelino, Harrison & Orosz 2001). It was discovered in 1975 through the Ariel V sky survey (Elvis et al. 1975). This object is located at a distance of $D = 1.05\text{kpc}$ (Shahbaz, Naylor & Charles 1994). The outbursts and quiescence are thought to be due to some form of thermal-viscous-instability in the accretion disk. In the quiescent state, the accretion rate becomes very low (e.g. Lasota 2001). Assuming there is a Keplerian disk, from optical and X-ray observations the accretion rate was estimated to vary from a few times the Eddington rate in outbursts to less than $10^{-11}M_\odot$ yr$^{-1}$ in quiescence (de Kool 1988; McClintock & Remillard 1986). Assuming a low-efficiency flow model, McClintock & Remillard (2000), obtained the accretion rate to be $\sim 10^{-10}M_\odot$ yr$^{-1}$ using X-ray observations. A0620-00 has been in a quiescent state for quite some time. Our understanding of the accretion processes at low accretion rates suggests that magnetic field may be entangled with hot ions at virial temperatures and could be sheared and amplified to the local equipartition value (Rees 1984). If so, dissipation of this field, albeit small, should produce micro-flares from time to time, and they could be detectable especially if the object is located nearby.

In the present Paper, we report the observation of a micro-flare in radio wavelength (frequency 1.28MHz) coming from
2. Observations and results

On Sept. 29th, 2002, during UT 00:45-02:03 we observed A0620-00 with the Giant Meter Radio Telescope (GMRT) located in Pune, India. GMRT has 30 parabolic reflector antennae placed with altazimuth mounts each of which is of 45 meter diameter. During our observation, 28 out of 30 antennae were working and the observational conditions were stable. It has a tracking and pointing accuracy of 1′ for wind speeds less than 20km/s. GMRT is capable of observing at six frequencies from 151MHz to 1420MHz. On the higher side, 608-614MHz and 1400-1420MHz are protected frequency bands by the International Telecommunication Union (ITU). The observed frequency is \(\nu_{\text{obs}} \sim 1280\text{MHz} \) far away from the ITU bands. The band width is 16MHz. There were 128 channels with a channel separation of 125kHz. The light-curve without the background subtraction is shown in Fig. 1. The data is saved every 16 seconds. The background is due to two side lobes and is found to be constant in time. The UV coverage was very good and the background was found to be constant within the field of view with RMS noise \(8.6 \times 10^{-4} \) Jy as tested by the task IMAGR in AIPS. The UVRANGE task required no constraint. The background subtraction reveals that a micro-flare of average flux density of \(F_{\nu} \sim 3.84\text{mJy} \) occurred and it lasted for about \(t_{\mu f} = 192 \pm 32 \) seconds. We used the 3C147 as the flux calibrator and 0521+166 as the phase calibrator. No other source was found within the field of view. The primary beam width is 0.5 degree and the synthesized beam width is 3 arc second. The confirmation of this micro-flare is shown by the fact that each of the antennae independently showed this event and the synthesized image of the field of view showed no significant signal.

3. Discussion

Close to a black hole, fast variabilities in time scales of the order of the light crossing time \(t_l = \frac{r_g}{c} \sim 0.1 \frac{M}{10^4 M_\odot} \) ms, \(r_g = 2GM/c^2 \) is the Schwarzschild radius, is possible. Shot noise in this time scale is observed during X-ray observations. The duration \(t_{\mu f} \) of the micro-flare that we observe is much larger \((t_{\mu f} \gg t_l) \), and hence we rule out the possibility that it is a shot noise type event.

Assuming that the flare is due to magnetic dissipation, with an energy density of \(B^2/8\pi \), the expression for the total energy release (fluence) is:

\[
E_{\text{mag}} = \frac{B^2}{8\pi} V = 4\pi D^2 \nu_{\text{obs}} F_{\nu} t_{\mu f},
\]

where \(V \sim r_g^3 \) is the lower limit of the volume in the accretion flow that released the energy, \(D \) is the distance of the source from us, \(\nu_{\text{obs}} \) is the frequency at which the observation is made and \(F_{\nu} \) is the specific intensity of radiation. Here, \(B \) is the average magnetic field in the inflow where the flare forms. Re-
writing Eq. (1) using the equipartition law,
\[\frac{B^2}{8\pi} \sim \frac{GM\rho}{r} = \frac{GM\dot{M}}{4\pi vr^2} \] (2)
where \(\rho \) is the density of the flow in the accretion flow, \(\dot{M} \)
is the accretion rate and \(v \) is the velocity of inflow. Since
there is no signature of a Keplerian disk in the quiescent state, one may
assume the inflow to be generally like a Bondi flow (Chakrabarti, 1990),
especially close to the black hole. Estimations of McClintock & Remillard
(2000) was carried out with a low-efficiency radial flow model. Thus we use the
definition of the accretion rate to be \(\dot{M} = \frac{4\pi \rho r^2 v}{r} \). More specifically,
we assume, the free-fall velocity, \(v \sim (2GM/r)^{1/2} \). Introduction
of pressure and rotation effects do not change the result since the
gas is tenuous, and since the Keplerian flow is absent, the angular
momentum is very low. These simple but realistic assumptions allow us to
obtain the upper limit of the accretion rate of the flow to be
\[\dot{M} \sim (3.5 \pm 0.58) \times 10^{14} x^{5/2} \text{gm/s} = (5.5 \pm 0.91) \times 10^{-12} x^{5/2} M_\odot \text{yr}^{-1}. \] (3)
Here \(x = \frac{r}{s} \), is the dimensionless distance of the flaring region
from the center. From transonnic flow models (Chakrabarti 1990),
the flow is expected to be supersonic only around \(x \sim 2 - 3 \) before disappearing into the black hole. This gives the
accretion rate of A0620-00 in the quiescent state to be
\[\dot{M} = (8.5 \pm 1.4) \times 10^{-11} \left(\frac{x}{3} \right)^{5/2} M_\odot \text{yr}^{-1}. \] (4)
This is consistent with that reported by McClintock & Remillard
(2000) on the basis of X-ray observations. It is to be noted that Duldig et al.
(1979) found a flux of 44 \pm 14 mJy well after the outburst and concluded that intermittent emissions are possible
and that mass transfer continues even in quiescence states. Our result also verifies such an assertion.

The procedure we have suggested here is general and
should be applicable to determine the mass of the black holes
if the distance is reasonably well known. Only condition is that
a hot, sub-Keplerian component should be present.

Acknowledgements. We thank the staff of the GMRT who have helped
us to make this observation possible. GMRT is run by the National
Centre for Radio Astrophysics of the Tata Institute of Fundamental
Research. SP thanks a CSIR Fellowship which supported his work at
the Centre for Space Physics.

References
Chakrabarti S.K. 1990, Theory of Transonic Astrophysical Flows,
(World Scientific: Singapore)
Davis, R.J., Edwards, M.R., Morison, I., Spencer, R.E., 1975, Nat.
257, 659
de Kool, M., 1988, ApJ 334 336
Duldig, M.L. et al., 1979, MNRAS, 187, 567
Elvis, M., Page, C.G., Pounds, K.A., Ricketts, M.J. and Turner, M.J.L.
1975, Nat. 257, 656
Gelino, D.M., Harrison, T.E. and Orosz, J.A., 2001, AJ, 122, 2668
Kuulkers, E., Fender, R.P., Spencer, R.E., Davis, R.J. and Morison, I.,
1999, MNRAS 306, 919
Lasota, J.-P., 2001, New AR, 45, 449
McClintock, J.E., Petro, L.D., Remillard, R.A., Ricker, G.R., 1983,
ApJ 266, L27
McClintock, J.E., Remillard, R.A., 1986, ApJ 308, 110
Owen, F.N., Balonek, T.J., Dickey, J., Terzian, Y., Gottesman, S.T.
1976, ApJ 203, L15
McClintock, J.E., Remillard, R.A., 2000, ApJ 531, 956
Rees, M., 1984, ARAA, 22, 471
Shahbaz, T., Naylor T., Charles, P.A., 1994, MNRAS 268, 756