Are we all clear?
Unintended shocks to caregivers during cardiopulmonary resuscitation

ALTHOUGH TRAINING in basic life support and advanced cardiac life support emphasizes the importance of ensuring that caregivers are “clear” before shock delivery, there will inevitably be circumstances when they are not. However, to our knowledge, device manufacturers do not address how to manage cases of unintended shock either in their training programs or service manuals. Therefore, the management of caregivers who appear asymptomatic after receiving an unintended shock from a defibrillator remains undefined.

• WE DON’T KNOW HOW OFTEN IT OCCURS

Reports of unintended shock from defibrillator use during cardiopulmonary resuscitation (CPR) are limited, perhaps because there is no clear avenue for reporting. Also, caregivers may be reluctant to report shocks because they are embarrassed about failing to follow proper protocol.

In one study,1 the rate of injury was 1 per 1,700 shocks for paramedics and 1 per 1,000 shocks for emergency medical technicians. The incidence for hospital caregivers may be higher, as more caregivers are involved in the code process. Regardless, the paucity of literature and the limited extent of reporting does not allow us to estimate current injury rates.

The use of defibrillators has likely increased since 2015, when the American College of Cardiology and American Heart Association (ACC/AHA) updated their guidelines on cardiopulmonary resuscitation.2 The guidelines recommend delivering shock within 2 minutes of recognizing a dysrhythmia that is amenable to defibrillation. The ACC/AHA guidelines also stress the importance of continuing chest compressions during defibrillator charge time.2 In addition, automated external defibrillators are now common in public areas and can be used by people who are not medically trained.

• EFFECTS OF ACCIDENTAL SHOCK

Defibrillators are designed to affect electrical activity in the patient’s heart, and potentially can affect the caregiver’s heart as well. Earlier reports describe a tingling sensation and electrical burns in those who are shocked.3 However, little has been published within the last decade on this topic, and no formal guidelines or recommendations exist on how to manage this event.

How much exposure?
The electric exposure of the individual largely affects how one perceives the shock and its effects on the body.

The minimal perceptible current detected by the central nervous system is approximately 1 mA but is insufficient for skeletal or cardiac muscle stimulation via transcutaneous exposure. A 1- to 5-mA current is generally perceptible but considered harmless and is un-
likely to transcutaneously stimulate cardiac or skeletal muscle or burn the skin. A current of 100 to 300 mA, however, will affect skeletal and cardiac muscle and thus can externally induce ventricular fibrillation if present during cardiac repolarization (T wave).

Biphasic defibrillators deliver shock energy up to 360 J. The minimum amount of transcutaneous energy required to induce ventricular fibrillation ranges from 10 to 50 J.

The energy delivered to both the patient and the unsuspecting caregiver depends on the resistance to the current; this is referred to as shock impedance and is measured in ohms. Various factors affect impedance and therefore the amount of shock energy delivered. Clothing and gloves are insulating (have high impedance) and can protect the exposed caregiver from shock energy. Conductive media such as human tissue, metallic objects, or fluids have low impedance and can facilitate shock delivery.

Subcutaneous automated implantable defibrillators are generally ineffective for cardiac defibrillation at shock impedance values over 100 ohms. In a study of 321 patients, the mean impedance on effective shocks that terminated the lethal arrhythmia was 85 ohms vs 104 ohms on ineffective shocks. However, ventricular fibrillation induction is feasible for exposures occurring at lower outputs when timed with ventricular repolarization (T wave), or atrial fibrillation when occurring during atrial repolarization (QRS complex).

Along with the amount of energy supplied, there is a high degree of variability in the level of caregiver exposure. A caregiver could receive a large amount of energy if his or her hand were touching the conductive surface of a paddle, or a small amount if touching a more distal area of the patient with a barrier in place such as gloves. Either way, if the caregiver perceives a sense of electrical impulse, then the caregiver received some unintended degree of energy.

Do gloves protect against shock?
All caregivers should wear personal protective equipment, including gloves, during emergency resuscitation. This helps ensure that if a current is unintentionally conducted through the caregiver’s body, the most likely source of entry will be through the gloved hand, which will minimize any current that is shunted from the patient to the caregiver.

A 2016 study examining interruptions in CPR and the utilization of hands-on defibrillation (HOD) reported limited data on emergency personnel being shocked by contact with a patient receiving defibrillation therapy. Another study examining the conduction of electricity through nitrile gloves found that they did not offer adequate protection from electricity delivered during defibrillation. In an opposing study, it was found that the nitrile pad and neoprene gloves prevented 99% of shocks detectable by the caregiver.

The most common result of these shocks is a tingling sensation and brief paresthesias with associated muscle soreness lasting up to 24 hours. The lack of a perceived current in HOD with exposure to electricity may not ensure that the provider did not receive a shock, which raises questions about the safety of HOD.

■ HOW TO MANAGE ACCIDENTAL SHOCK
We believe that unintended shocks are highly underreported and can cause atrial or ventricular fibrillation.

We believe shocks are highly underreported and can cause atrial or ventricular fibrillation.
UNINTENDED SHOCK DELIVERY

Ining does not appear to be of great utility. This approach is reasonable for caregivers with obvious injury or residual symptoms, including pain or muscular discomfort, following a shock.

FURTHER RESEARCH NEEDED

Accidental caregiver shock from defibrillator use during CPR is likely to be grossly underreported. Guidance is needed for the systematic reporting of these cases and for proper medical management. Further clinical research and studies are needed to fully understand the risks and consequences of these events, as they may represent a public health concern and certainly an occupational hazard for healthcare providers.

REFERENCES

1. Gibbs W, Eisenberg M, Damon SK. Dangers of defibrillation: injuries to emergency personnel during patient resuscitation. Am J Emerg Med 1990; 8(2):101–104. pmid:2302275
2. Neumar RW, Shuster M, Callaway CW, et al. Part 1: Executive summary: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015; 132(18 suppl 2):S315–S367. doi:10.1161/CIR.0000000000000252
3. Hoke RS, Heinroth K, Trappe HJ, Werdan K. Is external defibrillation an electric threat for bystanders? Resuscitation 2009; 80(4):395–401. doi:10.1016/j.resuscitation.2009.01.002
4. Frankel DS, Burke MC, Callans DJ, Stivland TM, Duffy E, Epstein AE. Impact of body mass index on safety and efficacy of the subcutaneous implantable cardioverter-defibrillator. JACC Clin Electrophysiol 2019; 4(5):652-659.doi:10.1016/j.jacep.2017.11.019
5. Brady W, Berlat JA. Hands-on defibrillation during active chest compressions: eliminating another interruption. Am J Emerg Med 2016; 34(11):2172–2176. doi:10.1016/j.ajem.2016.08.017
6. Petley GW, Deakin CD. Do clinical examination gloves provide adequate electrical insulation for safe hands-on defibrillation? II: Material integrity following exposure to defibrillation waveforms. Resuscitation 2013; 84(7):900–903. doi:10.1016/j.resuscitation.2013.03.012
7. Wampler D, Kharod C, Bolleter S, Burkett A, Gabe hart C, Manifold C. A randomized control hands-on defibrillation study-Barrer use evaluation. Resuscitation 2016; 103:37-40. doi:10.1016/j.resuscitation.2016.03.019
8. Weingart SD. A note of caution on the performance of hands-on biphasic defibrillation. Resuscitation 2013; 84(3):e53. doi:10.1016/j.resuscitation.2012.12.014
9. Thomsen JE, Petley GW, Deakin CD. Risk of injury to rescuers who use hands-on defibrillation. Resuscitation 2013; 84(10):e131–e132. doi:10.1016/j.resuscitation.2013.04.031
10. Medscape. Electrical injuries in emergency medicine workup. https://emedicine.medscape.com/article/770179-workup. Accessed November 8, 2019.
11. Pavlik AM, Lampart A, Stephan FP, Bingisser R, Ummenhofer W, Nickel CH. Outcomes of electrical injuries in the emergency department: a 10-year retrospective study. Eur J Emerg Med 2016; 23(6):448–454. doi:10.1097/MEJ.0000000000000283

ADDRESS: David R. Lowery, MD, FASA, Department of Cardiothoracic Anesthesiology, J4-331, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; LoweryMD@gmail.com