The transverse breathing mode of an elongated Bose-Einstein condensate

F. Chevy, V. Bretin, P. Rosenbusch, K. W. Madison, and J. Dalibard
Laboratoire Kastler Brossel*, 24 rue Lhomond, 75005 Paris, France

(Dated: Received November 23, 2001)

We study experimentally the transverse monopole mode of an elongated rubidium condensate. Due to the scaling invariance of the non-linear Schrödinger (Gross-Pitaevskii) equation, the oscillation is monochromatic and sinusoidal at short times, even under strong excitation. For ultra-low temperatures, the quality factor $Q = \frac{\omega_0}{\gamma_0}$ can exceed 2000, where ω_0 and γ_0 are the angular frequency and damping rate, respectively. This quality factor, much larger than any previously reported value for an oscillation mode of a gaseous BEC, should provide a sensitive test of the various theoretical models of dissipation at ultra-low temperature. Another very unusual property lies in the fact that the measured frequency ω_0 is nearly independent of temperature. Furthermore, we find that the transverse area of the condensate undergoes a pure, isochronal oscillation even for strong excitation. This striking behavior emerges from a scaling invariance of the time-dependent Gross-Pitaevski equation.

Our 87Rb condensate is formed by radio-frequency (rf) evaporation of 10^9 atoms in a Ioffe-Pritchard magnetic trap. The initial temperature of the cloud pre-cooled using optical molasses is 100μK. We vary the final temperature of the gas and the number of atoms in the condensate by adjusting the final rf ν_1. The condensation threshold is reached at $T_c = 290$ nK, with $N_c = 8.4 \times 10^5$ atoms [20]. The coldest sample reliably reproducible ($T \sim 40$ nK) is a quasi-pure condensate with $N_0 = 10^5$ atoms. It is obtained using $\nu_1 = \nu_0 + 6$ kHz, where ν_0 is the rf at which the trap is emptied.

The trap has a longitudinal frequency $\omega_z/(2\pi) = 11.8$ (1) Hz for the atoms prepared in the stretched state $m = 2$ of the $5 S_{1/2}$, $F = 2$ ground state. The transverse magnetic gradient is $B_\perp = 1.33$ T m$^{-1}$ and the transverse frequency ω_{\perp} is adjusted by varying the bias field B_0 at the center of the trap. We choose $B_0 = 0.844 \times 10^{-4}$ T, which leads to $\omega_{\perp}/(2\pi) = 182.6$ (4) Hz [27]. Both frequencies ω_z and ω_{\perp} are measured by monitoring the oscillation of the center-of-mass of the atom cloud.

Once the condensate is formed, we excite the transverse breathing mode by modifying the bias field from B_0 to B'_0, which changes the frequency ω_{\perp} to $\omega'_{\perp} > \omega_{\perp}$. After a time $\tau \ll 2\pi/\omega_{\perp}$, we set the bias field back to its original value. We let the cloud oscillate freely in the magnetic trap for an adjustable time t and then measure the transverse density profile of the condensate after a period of free expansion. In this pursuit, we suddenly switch off the magnetic field, allow for a 25 ms free-fall, and image the absorption of a resonant laser by the expanded cloud. The imaging beam propagates along the z
axis. We fit the density profile of the condensate assuming the parabolic shape of the Thomas-Fermi distribution and extract the radii \(R_x \) and \(R_y \) in the plane \(z = 0 \). The temperature is obtained from a Gaussian fit of the uncondensed part of the distribution.

Within the Thomas-Fermi approximation, the evolution of the trapped condensate after the excitation of the transverse breathing mode is well described by a time-dependent scaling transformation [24, 28, 29]. The spatial density \(\rho(x, t) \) at time \(t \) is deduced from the spatial density at time 0 (i.e. just after the transverse frequency is set back to its value \(\omega_\perp \)) by:

\[
\rho(x, y, z, t) = \frac{1}{\lambda_\perp \lambda_z} \rho\left(\frac{x}{\lambda_\perp}, \frac{y}{\lambda_\perp}, \frac{z}{\lambda_z}, 0\right).
\]

The evolution of the scaling parameters \(\lambda_\perp \) and \(\lambda_z \) is given by [28, 29]:

\[
\dot{\lambda}_\perp = -\frac{\omega_\perp^2}{\lambda_\perp^2 \lambda_z} - \omega_\perp^2 \lambda_\perp \quad \dot{\lambda}_z = -\frac{\omega_\perp^2}{\lambda_\perp^2 \lambda_z^2} - \omega_\perp^2 \lambda_z.
\]

We start our analysis with the evolution for relatively short times \(t \ll 2\pi/\omega_\perp \). In this case one can neglect the variation of \(\lambda_z \) and integrate the equation for \(\lambda_\perp \):

\[
\lambda_\perp(t) = (\cosh(\alpha) + \sinh(\alpha) \sin(2\omega_\perp t - \beta))^{1/2},
\]

where the parameters \(\alpha \) and \(\beta \) depend on the initial conditions. One remarkable consequence of this solution is that the quantity \(A(t) = R_x^2(t) + R_y^2(t) = \lambda_\perp^2(t) A(0) \) always undergoes a sinusoidal oscillation at frequency \(2\omega_\perp \), irrespective of the strength of the excitation [30]. This is confirmed by the results of fig. 3 where we observe a sinusoidal oscillation of \(A(t) \) with a factor 3 between the maxima and the minima. The frequency of the oscillation is indeed found to be equal to \(2\omega_\perp \), within our experimental uncertainty (±0.5 %).

At longer times one has, in principle, to take into account the variation of \(\lambda_z \). We restrict our analysis to small amplitude oscillations and write \(\lambda_\perp = 1 + \epsilon_\perp \), where \(\epsilon_\perp, \epsilon_z \ll 1 \). The linearized equations of motion give rise to two modes [4, 4]. One is a fast mode of frequency \(\sim 2\omega_\perp \) corresponding to \(\epsilon_\perp/\epsilon_z = \omega_\perp/\omega_z \). The other one is a slow mode of frequency \(\sqrt{5/2} \omega_\perp \) with \(\epsilon_\perp/\epsilon_z = -1/4 \). Our excitation scheme corresponds to \(\epsilon_\perp \neq 0 \) at time 0 while the three other quantities \(\epsilon_\perp, \epsilon_z\), and \(\dot{\epsilon}_\perp \) are approximately zero at initial time. Under these conditions, we mainly excite the fast mode \(2\omega_\perp \) since the relative weight of the slow mode in the evolution of \(\lambda_\perp \) is only \(\omega_z/(\sqrt{5/2} \omega_\perp) < 0.01 \). For this fast mode, the condensate dynamics consists essentially in a transverse monopole oscillation since \(\epsilon_z \ll \epsilon_\perp \).

We investigate the oscillation and the damping of this mode on a long time scale (up to 0.7 s). An example is given in fig. 4 for \(T = 40 \) (±20) nK (note that for such cold clouds, corresponding to a quasi-pure condensate, the temperature can only be inferred from the final rf used for the evaporation). The evolution of \(A(t) \) is well fitted by a damped sinusoidal function, \(A_0 + \delta A_0 \cos(\omega_\perp t + \phi) e^{-\gamma t} \), with \(\delta A_0/A_0 = 0.063 \) (4), \(\omega_\perp/2\pi = 366.3 \) (5) Hz and \(\gamma = 1.2 \) (2) s\(^{-1}\). This corresponds to a quality factor \(Q = \omega_\perp/\gamma_0 \sim 2000 \) much larger than any previously reported for other eigenmodes of a BEC. For instance, measurements performed with a TOP trap (\(\omega_\perp = 2\sqrt{2} \omega_{\perp} \)) gave \(Q \sim 200 \) for the lowest \(m = 0 \) mode [4]. For a cigar shape trap, measurements of the low frequency mode discussed above (\(\omega = \sqrt{5/2} \omega_z \)) led to \(Q \approx 80 \) [4]. A smaller value (\(Q \approx 25 \)) was measured for the scissors mode [4]. The present quality factor is also one order of magnitude larger than what we find for the transverse quadrupole mode under the same experimental conditions [49].

We measure the oscillation frequency and the damping rate over a large temperature range compatible with the detection of a condensate. The results are given in figs. 3, together with the total number of atoms \(N \). The measurement of \(\gamma_0 \) is made from the decay of the oscillation amplitude between 0 and 200 ms. For the points of lowest and highest temperature in figs. 3b and 3c, we calculate, including mean field and finite size corrections [10], \(T/T_c = 0.3 \) and 0.8, respectively.

The frequency \(\omega_\perp \) is found to be very close to the Thomas-Fermi prediction \(2\omega_\perp \), and it varies only slightly with temperature (fig. 3b). In particular, we do not observe the 10 % relative decrease predicted in [14] when \(T/T_c \) increases from 0 to 0.8.

The damping rate \(\gamma_0 \) varies approximately linearly with temperature in the range 50 – 200 nK. The linear variation of \(\gamma_0 \) for \(k_B T \) larger than \(\hbar \omega_\perp \sim 20 \) nK and than the chemical potential \(\mu \sim 60 \) nK for the coldest point in fig. 3 is expected if one assumes either Beliaev-type or Landau-type damping of the monopole excitation (see e.g. [22]). In the Beliaev mechanism, the monopole excitation decays into two excitations with a lower energy. For Landau damping, it annihilates in a collision with a thermal excitation to give rise to another excitation. The calculation of the corresponding damping
rate is quite complex for inhomogeneous systems and can lead to drastically different results for modes with similar energies, depending on the stochastic or regular nature of the relevant thermal excitations [32]. In this respect it is worth noting that the frequency of this transverse breathing mode is an integer multiple of the trap oscillation frequency, which is usually not the case for other modes of the condensate.

For a very low temperature \(T \sim 40 \text{ nK} \) and an increasing excitation strength, we observe a significant deviation of the long term behavior of \(A(t) \) with respect to the simple damped sinusoid shown above. Fig. 4 shows the oscillation amplitude for the weak excitation (\(\bullet, \tau = 75 \mu s \)) together with two sets of data obtained for \(\tau_1 = 300 \mu s \) (\(\square \)) and \(\tau_2 = 450 \mu s \) (\(\triangle \)). One clearly sees that for strong excitation the amplitude of the oscillations passes through a local minimum around \(t = 300 \text{ ms} \) before increasing again, and decaying finally after 700 ms. We fit our experimental data with the phenomenological function \(A(t) = A_0 + \delta A(t) \cos(\omega_0 t + \phi) \) where the amplitude \(\delta A(t) \) is now slowly modulated in time, in addition to the exponential decay already discussed: \(\delta A(t) = \delta A_0 \left(1 - \xi \sin^2(\delta \omega t) \right) e^{-\gamma t} \). The best fit parameters are for these two cases \(\gamma_1 = 1.48 (15) \text{ s}^{-1}, \delta \omega_1/(2\pi) = 1.08 (4) \text{ Hz}, \xi_1 = 0.5 (1) \), and \(\gamma_2 = 1.35 (15) \text{ s}^{-1}, \delta \omega_2/(2\pi) = 0.96 (4) \text{ Hz}, \xi_2 = 0.6 (1) \).

Two scenarios can be invoked to explain this evolution of \(A(t) \), which is not predicted by [1]. A first explanation could consist in assuming that we actually excite two modes whose frequencies \(\sim \omega_0 \) differ by a small amount and that we observe the beating between these modes. However, if we assume that these two modes are excited linearly, the relative amplitude of the beating should not depend on the excitation strength, contrary to the observed. Furthermore, this explanation is not confirmed by a linear analysis of the time dependent Gross–Pitaevskii equation for our experimental conditions [23]. A second, more plausible, scenario involves a non-linear process, in which the monopole excitation may be converted in a reversible way into a sum of other excitations of frequency \(\omega_j \). This process is efficient if it is resonant: \(\omega_0 \sim \sum_j \omega_j \). In this context, the modulation in fig. 4 can be interpreted as a parametric oscillation.

As a possible candidate for such a parametric (or Beliaev type) oscillation [24], one may consider the excitation of the pair of modes \(l = 2, m = \pm 1 \) [25, 26]. The
frequency of each mode is \((\omega_1^2 + \omega_2^2)^{1/2}\) so that the resonance condition given above is indeed nearly fulfilled. By imaging the condensate along the \(y\) direction, we observe a weak excitation of this mode. However, no increase in its amplitude is found around \(t = 300\) ms when the amplitude of the breathing mode collapses (cf. fig. 4).

Alternatively one may consider the excitations consisting in a pair of phonon-like excitations propagating along \(z\) with momentum \(k\) and \(-k\), each with an energy \(\hbar \omega_0/2 \sim \hbar \omega_\perp\). To test this latter hypothesis, we perform the same experiment for various values of \(\omega_\perp\), so that it spans the whole interval between two successive phonon modes (typically 6 Hz in this energy domain). However, expecting a resonance when \(\omega_0/2\) coincides with the frequency of a phonon mode, we do not observe any significant change in the evolution of \(A(t)\).

In any case we note that for the long oscillation times involved here, small non-linear terms in the confining potential (varying as \(x^2 z\) and \(y^2 z\)) may play a significant role. Further work investigating this possibility is under progress in our laboratory.

In summary we have presented in this letter a study of the transverse breathing mode of an elongated Bose-Einstein condensate. For low temperatures and short evolution time, the observed isochronal and sinusoidal oscillation is in excellent agreement with the prediction based upon the scaling invariance of the Gross-Pitaevskii equation. However, the temperature dependence of the frequency and damping of the oscillation reveals, on the contrary, some unexpected features. First, the observed damping is comparatively ten times smaller than what was previously reported for other modes of a BEC (quality factor of 2000 instead of 100-200). Second, the frequency of the breathing mode is found to be quasi-independent of temperature, in contradiction with recent theoretical predictions. Finally the long time evolution of this mode when strongly excited reveals an unexpected non-linear mixing phenomenon. This could be explored further using the formalism of \[^{26}\] by looking at a possible dynamical instability of the Gross-Pitaevskii equation in this regime of strong excitation.

We thank Y. Castin, Yu. Kagan, L. Pitaevski, and G. Shlyapnikov for useful discussions. K. M. and P. R. acknowledge support by DEPHY and Alexander von Humboldt-Stiftung, respectively. This work was partially supported by CNRS, Collège de France and DRED.

[^1]: Unité de Recherche de l’Ecole normale supérieure et de l’Université Pierre et Marie Curie, associée au CNRS.
[^2]: For a review, see e.g. Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics “Enrico Fermi”, eds M. Inguscio, S. Stringari, and C. Wieman (IOS Press, 1999).