Supporting Information for:

Fuzzle 2.0: Ligand Binding in Natural Protein Building Blocks

Noelia Ferruz\(^1\)*, Florian Michel\(^1\), Francisco Lobos\(^1\), Steffen Schmidt\(^2\), Birte Höcker\(^1\)*

\(^1\)Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany,
\(^2\)Computational Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.

* Correspondence:
 Corresponding Author
 birte.hoecker@uni-bayreuth.de, noelia.ferruz-capapey@uni-bayreuth.de

Keywords: web server, protein evolution, protein design, protein fragment, flavodoxin-like fold, periplasmic binding protein.
Table S1: Statistics of Datasets. Fuzzle 2.0 allows to access two datasets, SCOP 2.06 and SCOP 2.07. The last row reports the pairwise hits using the filtering criteria reported in the manuscript (HHSearch Probability > 70, TM-score > 0.3 with at least 10 Cα-Atoms superposed, a RMSD below 3.0 Å, and a ratio between the sequence and structure lengths of maximum 1.25.

Dataset	SCOP 2.06	SCOP 2.07
Families	4,783	4,849
Superfamilies	2,006	2,024
Folds	1,221	1,232
Fuzzle hits	8,109,195	10,434,359
Fuzzle hits (filtered)	4,970,087	6,255,666

Table S2: The 18 clusters found in the ribose binding protein. The cluster identifiers correspond to Figure 3. The start/end positions match the amino acid sequence of d2fn9a. The number of domains that are contained in each cluster is shown in the last column. Note, that multiple fragments can be found within a single domain but are sorted into different clusters, e.g. 4 domains are found in both cluster 51 and 13 and therefore are counted twice, resulting in a greater number of total reported domains.

Cluster	Start	End	Domains
0	2	280	49
2	2	223	2
6	5	135	2
8	2	123	7
9	129	264	7
11	112	252	2
13	11	87	63
18	47	115	5
19	2	116	2
21	2	101	3
23	169	256	3
25	44	87	5
26	17	106	7
29	149	234	2
30	53	105	2
51	15	93	5
73	152	257	3
103	22	120	2
Figure S1: Most common ligands found in conserved fragments.

Figure S2: Superposition of all domains that contain cluster 13 (https://fuzzle.uni-bayreuth.de/2.0/super/pymol/cluster/d2fn9a__13/70/3.0/1.25).
Figure S3: Sequence alignment for the ligand-binding domains in superfamilies c.93.1, c.23.13, and c.23.6. Interactions with the ligands are highlighted.

(a) c.93.1: Periplasmic binding protein-like I

(b) c.23.13: Type II 3-dehydroquinase dehydratase

(c) c.23.6: Cobalamin (vitamin B12)-binding domain

Figure S4: Ligand-binding domains containing cluster 13 from less numerous superfamilies.