THE ACTIAS SYSTEM: SUPERVISED MULTI-STRATEGY LEARNING PARADIGM USING CATEGORICAL LOGIC

Carlos Leandro1*, Helder Pita2, Luís Monteiro3

1: Departamento de Matemática
Instituto Superior de Engenharia de Lisboa,
Lisboa, Portugal.
e-mail: miguel.melro.leandro@gmail.com

2: Departamento de Engenharia Electrónica de Telecomunicações e de Computadores,
Instituto Superior de Engenharia de Lisboa,
Lisboa, Portugal.
e-mail: hp@isel.ipl.pt

3: Departamento de Informática,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
Lisboa, Portugal.
e-mail: lm@di.fct.unl.pt

Keywords: Knowledge discovery, Data mining, Collaborative data-mining, Knowledge acquisition, Data modelling, Multi-strategy learning, Sketches.

Abstract. One of the most difficult problems in the development of intelligent systems is the construction of the underlying knowledge base. As a consequence, the rate of progress in the development of this type of system is directly related to the speed with which knowledge bases can be assembled, and on its quality. We attempt to solve the knowledge acquisition problem, for a Business Information System, developing a supervised multi-strategy learning paradigm. This paradigm is centred on a collaborative data mining strategy, where groups of experts collaborate using data-mining process on the supervised acquisition of new knowledge extracted from heterogeneous machine learning data models. The Actias system is our approach to this paradigm. It is the result of applying the graphic logic based language of sketches to knowledge integration. The system is a data mining collaborative workplace, where the Information System knowledge base is an algebraic structure. It results from the integration of background knowledge with new insights extracted from data models, generated for specific data modelling tasks, and represented as rules using the sketches language.

1 INTRODUCTION

The computational branch of theoretical computer science is a well-established mathematical discipline currently transforming itself into an applied category theory. In con-
contrast, data modelling is more closely connected with practical information technologies. The data modelling theory is not well formed mathematically and is supported, outside the scope of the relational data model, by ad hoc Database (DB) theories. In the context of deterministic data modelling this problem has been attacked with new and powerful tools imported from category theory like sketches. Sketches were proposed by Charles Ehresmann in the late sixties, for the purpose of specifying algebraic structures [21]. This graphic-based structure has a mathematical foundation and offers a formal semantic data-specification mechanism of quite different nature if compared with the classical and informal mechanisms like Chen’s Entity-Relationship (ER) or Unified Modelling Language (UML) but powerful to formalize rigorously many modern data modelling problems [16][4]. In the last decade there has been considerable use of sketches to support semantic data modelling. Important steps for its use were the development by Piessens and Steegmans of an algorithm to verify the equivalence of sketch models [16], Diskin design of graphic query languages on sketches [4] and the Michael Johnson and collaborators consultancy work using sketches to Information System (IS) specification and view integration [5] [9][10]. The core of an IS is one or a net of DBs. In the modern view, DB presents an integral model of the real world fragment (Universe of Discourse) upon which an information system is built. A crucial step for the information system design, business and data understanding is to specify the universe in a consistent and rigorous way. Which is the ideal field for applying sketches, since they specify the universe in rigorous, abstract and formalized terms using a graphical language. It compresses the information structure in a compact and comprehensible way, suitable for communication among database experts and data analysts. The Universe of Discourse (UoD) specification using sketches correspond to the specification of a set of deterministic real-word constraints. This specification is supposed to be valid during the IS life cycle. However, in spite of its information changes, some relevant probabilistic structures or patterns on its data can be invariant, given useful and non-trivial knowledge about the business rules and the data probabilistic structure. The extraction of this type of information from large repositories of information requires the use of automatic techniques, which have being developed by Machine Learning (ML) specialists. These techniques usually generate probabilistic models, which generalise the data structure, and traditionally are defined by different semantic structures like neural networks, regression trees, classification trees, rules sets, logical programs, etc. The selection of one type of model depends from the data structure and from the modelling task. This selection is an important step of a process, called Data Mining (DM) process, which has as goal the discovery of knowledge. The knowledge discovery from data is the result of an exploratory problem (e.g. [18]) involving the application of various algorithmic procedures for manipulating data, building models from data, and manipulating the models [6]. To define a DM process involves many possible choices for each stage of the process, which are domain dependent, if useful information is found with a particular DM process on a subset of the IS structure, probably it should have good results in a new problem with similar data structure, with minor change on the
process (e.g. [1] and [2]). We use the IS sketch specification as support for DM process specification. This allows the definition of libraries relating UoD structures with useful DM processes to help solving new knowledge extraction problems. An airport, hospital or bank are discrete heterogeneous systems consisting of many subsystems of different kinds all integrated in a single whole via complex mutual relationships and mutually dependent functions subjected to specific business rules. Each system can include its own specification language used by the domain experts. Thus, the entire conceptual model appears as a heterogeneous structure. The sketch domain independence reduces the conceptual model complexity, since it is sufficiently expressive to capture the particularities of the whole system. Helping on the development of collaborative data-mining strategies, where teams of people with different profiles collaborate on the IS knowledge extraction, flowing different strategies and data views. Producing sets of models for the same or different modelling tasks with valuable new insights about the system information. This knowledge, to be useful must be stored on a knowledge repository, and deployed. To do this, and because the semantic structure of data models can be different from task to task or from strategy to strategy, the model Integration requires a semantic language able to present data models. The sketches seem to be helpful in this context too. The main goal of this work is study the advantages of using sketches to represent information about the UoD, IS structure and probabilistic data patterns and store it on a knowledge database. This database can be seen as a “big” sketch describing the absolute specification of the known business structure. This structure can be used to induce new knowledge applying inference over it [4]. The new and helpful information can be used to enrich the system sketch specification structure, with new information, useful on the definition of new DM extraction processes, and which can be propagated to all the knowledge extraction workgroups. The use of sketches allows the definition of what we mean by supervised multi-strategy learning paradigm. The paper is organized as follows. In Section 2 the Actias system architecture is presented as a set of methodologies, each described in Sections 5, 6, 7, 8 and 9, and integrated through a business knowledge repository. In Section 3 we begin with the definition of basic concepts used on sketch data modelling and is presented an example illustrating the category theoretic information system specification techniques. Section 4 explains what we mean by collaborative data mining and how the system is used for supervised multistrategy learning. Finally, in Section 10 we point out future work on sketch data modeling on multi-strategy learning.

2 THE ACTIAS SYSTEM STRUCTURE OVERVIEW

The Actias system supervised multi-strategy learning goals and requisites are supported through a set of methodologies. These methodologies take into account the collaborative nature of the system. It classifies the users in function of their jobs and profiles in a data mining team, having in consideration the users requirements for data analysis and modeling, DM process specifications or data mining tasks definition. Depending on the user profile he sees the system from different perspectives corresponding each one to an
operational view of the system. This decomposition extends the CRISP-DM specification, having as metagoals the creation and
or administration of a business knowledge repository, the heart of the system. The Business Knowledge repository is defined by four types of business information: (1) Structural Models built using sketches and that correspond to the business model with UoD, IS warehouse specification and probabilistic patterns; (2) Data Stream Processes defined by DM extraction processes; (3) Data Models defined by heterogeneous model structures each associated with a type of learner; (4) Normalized Data Models corresponding to the presentation of information extracted from the models and presented as fuzzy sketch predicates. Functionally the Actias system can be decomposed in a (see Figure 1):

- **IS Warehouse specification methodology**; where the language used to describe the business domain and its structure is specified (or edited) using a domain hierarchical decomposition strategy. This decomposition is based on libraries with sketch specification background knowledge and primitive structures. This methodology can have as input the meta-information associated with the IS warehouse and its output is a sketch specifying the deterministic information structure:

![Figure 1: The Actias system structure](image)
• **Extraction process specification methodology**, corresponding to a set of functions and processes supported by a graph language used to specify or edit DM processes to modelling a data stream, define by sketch queries, based on the WEKA toolkit [20] for data processing algorithms, and organized on a CRISP-DM process taxonomy.

• **Knowledge extraction methodology**, where the relevant new insights are extracted from the data models and its representation is normalized using sketches.

• **Knowledge integration methodology**, where the new knowledge is integrated in the business sketch on the knowledge repository, preserving the consistency.

• **Knowledge deployment methodology**, corresponding to models or business knowledge deployment to data users or decision support teams.

The relations between these methodologies and the business knowledge repository are presented in figure below and are described at the subsequent sections.

3 DATA MODELLING USING SKETCHES

In this section we provide the background for the sketch data model. We assume some familiarity with ER models and with some elementary category theory. Any introduction to category theory (for example [21]) contains the basic category theory definitions needed below including commutative diagrams, limits, and coproducts. Following [9] a sketch is a directed graph whose nodes specify entities and attributes, similar to an ER diagram, and a set of categorical constraints defined on this graph. These constraints take three forms:

• **Categorical diagrams**, defined by pairs of paths in the graph with common origin and destination.

• **Limit constraints**, specifying a certain node in the graph as the “Limit” of a specified diagram in the graph.

• **Colimit constraints**, specifying a certain node in the graph as the “Colimit” of a specified diagram in the graph.

For practical reasons usually restrictions are imposed on the limit and colimit constrains. The type of this categorical constraints allowed on a sketch specification determines the sketch semantic power. Which can be used to define a hierarchy of sketches ranging from sketches with very little expressive power but well-behaved model categories easy to use for data specification, to sketches with stronger expressive power but less well-behaved model categories and more hard to use and understand (e.g. [17]). For our needs, we limit data sketch specification to finite limit constraints and coproducts. Coproduct constraints specify that a certain node in the graph is to act as the “coproduct” of specified nodes.
in the graph. This restriction simplifies the users specification tool. The semantic loss imposed by this restriction doesn’t affect its usability. This type of sketch has enough power to define structures specifiable using Horn-clauses, which correspond to the type of information structures present in Information Systems [19].

An Information system, sometimes called a database state or instance, is an assignment of, for every node the sketch, a finite set of instances or values of that entity or attribute, and for every arrow in the sketch graph a relation between the corresponding entity instances, such that:

- The commuting diagrams do indeed commute as diagrams of the corresponding relations.
- The sets assigned to limit nodes are limits of the corresponding diagrams of relations.
- The sets assigned to coproduct nodes are indeed coproducts, i.e. disjoint unions, of the assigned sets.

In other words, a database state is a diagram of sets and relations, which have the same shape as the sketch graph, and whose sets and relations satisfy the constraints.

A business data model is essentially a mathematical structure, is intended to correspond in more or less detail to the business activity and information, representing the business understanding. Like mathematical semantics, data semantics arises in two forms, which might be described as absolute semantics and relative semantics. In absolute semantics terms, the meaning of an object is fully determined by its interactions, by the operation it can perform and the properties which they satisfy. Relative semantics, on other hand, permits a hierarchical structuring of semantics by allowing a new structure to be defined based on another. Business data sketches are essentially absolute semantic structures but its definition can follow a relative methodology. This methodology is used to reduce the specification task complexity. It allows the hierarchy domain decomposition where more complex structures are defined based on pre-existent ones, which allows the definition of libraries with useful structures.

To let the use of sketches as relative semantic structures the system expresses the sketch syntax using boxes and arrows, context diagrams and diagram marks. Context diagrams provide a format for representing models graphically and allowing hierarchal domain problem decomposition. A sketch is defined by a set of diagrams, which can cross-reference each other. Each graphic diagram contains boxes, arrows, box/arrow interconnections and associated relationships. Where boxes represent each major object of the domain, such as entities, data sources, or data sets. These objects can be decomposed into more detailed diagrams, until the domain is described at a level necessary to support the goal of a particular data-modelling task. The top-level diagram provides the most general or abstract data structure represented by the model. This decomposition represents a refinement process ending on a set of primitive objects corresponding to primitive business entities. Parallel to the object decomposition, the system allows a similar process for
arrows. An arrow on the child diagram can be seen as refining a meta-arrow defined on the parent diagram.

The specification of the business IS using a sketch corresponds to a rigorous way to present the business understanding and its data structure understanding. This knowledge is important for the definition of data mining tasks and specify the knowledge extraction processes. However, the business knowledge is dynamic changing with time, which imposes its enrichment with new knowledge. Given by domain experts or extracted from symbolic models generated by machine learning algorithms and usually presentable by first-order many-sorted logic formulae. The connection between sketch-based logic and classical logic has been studied exhaustively (e.g. [13]), giving us methods to translate logic theories to sketch theories and vice-versa. We are making progresses studying its application to fuzzy logic. This will allows us to do the normalization of the expert knowledge and data knowledge with the business model, allowing the business sketch data enrichment with new insights.

4 COLLABORATIVE DATA-MINING

The uses of sketches for data modelling has been criticized for being too complicated, especially concerning its formalism and the way of thinking about the specification process which is different from the one used on the standard methods. At the beginning, its use may seem to be overkilled. However, once the sketch methodologies have been understood, this structure can quickly be applied to lots of different data extraction problems with some domain independence. Helping on the development of collaborative data-mining strategies, as a way to interchange business knowledge among people with different profiles and expertises.

Knowledge discovery from data can be seen as teamwork, where different experts collaborate on the business and data exploration process specification. Which involves the application of various procedures for storing and integrating data on a repository, specifying the data structure, manipulating data, building models from data, manipulating the models, extracting relevant information from models, integrating and deploying knowledge. Which impose the user specialisation on the use of some algorithms and techniques. To incorporate a collaborative work strategy the system distinguishes between three user types: Information System Administrator, Data Analyst, and Knowledge Engineer. The Information System Administrator specifies the business information system warehouse using sketches, changes it, and implements a data security policy defining the user work groups and groups data views. The Data Analysts follow a CRISP-DM methodology [18] to specify and deploy knowledge extraction processes using IDEF0 diagrams, based on a data view, and implements a problem security policy defining projects, tasks and task data views. The Knowledge Engineer tests the extraction processes deployed by the Data Analyst and extracts relevant information from the generated models, deploy it and tries to integrate it on the IS sketch with the existing domain knowledge without significant loss of its consistence level. The Knowledge Engineer is also responsible for defining the
level of consistence for the rules used on domain enrichment processes and for the rule confidence update during the IS life.

5 INFORMATION MODELLING

The Actias system information modelling methodology has the goal of defining a business sketch model based of the small part of the world associated with the business Information System. This small part of the world corresponds to the business universe of discourse (UoD). The models of the data specification must be seen as possible states of the UoD, and are the information storable on its structures or equivalently stored in the business IS. This process is incremental following the Business Knowledge needs and evolution. Therefore the problem of knowing whether the specification and its changes are compatible with the existent IS information structure become visible. This requires the development of a strategy to validate the model against the IS structure. For this we were inspired by the G. Karcs and P. van Bammel approach, where the IS structure is first mapped to an intermediate specification. Based on the CWM (Common Warehouse Meta-data) description a business IS warehouse, we produce the IS representation using a relational schema, see Figure 2, which can be seen as a sketch [8], a first approximation to the business conceptual model, helping the user on the specification work. This relational schema will be used to verify if the update of business model is able to store all the information present on the IS. After performing the information compatibility test, some
times is convenient, for operational reasons, to generate or change the internal Actias system Data Warehouse, improving its structure based on the new knowledge. Helping on the definition of sketch views and data streams for the extraction process specification methodology.

The sketch structure definition or enrichment is done using a CASE tool, implementing a refinement hierarchic methodology allowing the gradual introduction of greater levels of detail through the sketch diagram structure. Having as main goal the minimization of potential specification complexity based on a Modelling Knowledge library, containing helpful structures. Producing as result a process to generate or change the warehouse, reflecting directly the structures specified by the enriched sketch.

The information sketch modelling methodology can be decomposed, see Figure 3, into five generic phases: Base relational model acquisition, sketch model enrichment (using the CASE tool), implementation sketch generation, sketch model validation and warehouse structural revision using the implementation sketch. The produced warehouse adaptation tries to make easier its use on the extraction processes. Since, it requires the definition of a data stream, which will be seen as a query result, defined on the user sketch model view selecting in it a part of the general sketch having associated a data dictionary [11].

Figure 3: Modeling methodology.
6 EXTRACTION PROCESS SPECIFICATION

A knowledge extraction process involves multiple stages. A simple, but typical, process might include processing data, applying a data-mining algorithm, and post-processing the mining results. There are many possible choices for each stage, and only some combinations are valid. The primary goal of the extraction process methodology is to provide support to this, based on data-mining and data processing ontology.

As planning methodology we selected the SADT (Structures Analysis and Design Technique) more precisely the IDEF0 (Integration DEFinition language 0) [7]. This choice is motivated by the fact that it is a graphic language, based on atomic building blocks, provided with methods allowing: (1) a structured decomposition of complex planning problems; (2) the definition and management of transferred data between (sub)problems, the definition of control variables and the allocation of resources needed for its execution; (3) record the decision made and the results; (4) make the model evaluation about its completion, consistency and correctness. One of the most important features of IDEF0 as a modelling concept is that it gradually introduces greater levels of detail through the diagram structure comprising the model. These levels of detail end with atomic functions defined based on a library of primitive functionalities. Defined based on the WEKA Data Mining library [20] for Java and organized following a specific data-mining ontology.

The ontology contains for each operator [1]: a specification of the condition under which the operation can be applied, involving a precondition on the state of the extraction process as well as its compatibility with preceding operation; a specification of the operation’s effects on the extraction process state, on the data, and on the sketch which specify the domain structure; logical group, which can be used to narrow the set of operations to be considered at each stage of the extraction process; predefined schemata for generic problems indexed by a sketch structure associated with its data stream; a help function to obtain online information about each of the operations; a set of rules to be used by an agent to check the extraction process structure consistency.

Figure 4 shows a structural view of the ontology, which groups the extraction operations into six major groups: business understanding; data understanding; pre-processing; data analysis and control; modelling; and post-processing.

The Actias system uses an ontology-based approach on a CASE tool to specify extraction processes using IDEF0 diagrams, following the general framework present on figure 5 [7]. Where the Background Knowledge implements the task ontology, with access supported by the Interaction mechanism, and used to define or change existent extraction processes. It is represented by the logic architecture reflecting the problem refinement. Which, after functional resources have been associated with its primitive tasks, generates the Realisation architecture. If this architecture is valid, i.e. satisfies the agent consistency check, it can be seen as a solution to the data extraction task, and can be executed, producing as result a model or a set of models. On the process of producing this models the extraction process changes the domain sketch specification. These changes are con-
sequence of the possible use of auxiliary structures on the specification process definition and used as on the resulting model preconditions.

7 KNOWLEDGE EXTRACTION

After the execution of an extraction process the generated model or set of models can provide new insights on the business, which should be deployed to the other users through the enrichment of the domain sketch model. This requires the development of an interface able to display rules extracted from models and compute its relative importance against the information stored on the Actias data warehouse. This requires the models information normalization; since the system uses different types of machine learning models. For this we use probabilistic Horn-clauses. These types of rules are easy to extract from symbolic models, and when the model is connectionist, it is translated to a symbolic one using a mining process.

The probabilistic Horn-clauses are similar to the way human experts express their expertise and users are comfortable with this way of expressing newly extracted knowledge. This is important during the expert validation of a knowledge base and for the knowledge deployment. Having an important advantage, they are easy to translate to the graphic based logic of sketches.

8 KNOWLEDGE INTEGRATION

The knowledge integration methods allow the combination of any collection of learned models, i.e., they may be generated by a collection of heterogeneous or homogeneous data models. This integration can be done on the extraction process as a post-processing integration function, or through the knowledge integration methodology if it is made on model extracted Horn-clauses. The integration on extracted rules is performed using its sketch language representation, and only on rules selected by the Knowledge Engineer. The use of sketch simplifies this task, since the sketch model of a set of rules associated
with a data model can be seen as the model of a Horn-theory. Then to integrate the sets of rules extracted from, for instance, two models correspond to integrate two Horn-theories, which have been extensively studied for sketches, and can be performed algorithmically for finite sketches [17]. And to produce the knowledge base update with the new insights the integration process is extended to all the business sketch specification.

This integration method has a reduce sensitivity to the correlation in learning models because the learning models are condensed into a set of uncorrelated basic set of rules. Only those sets accounting for significant niches are retained for integration on the business sketch. The combining set of rules discarded the redundancy in the set extracted from learning models by discarding the rules, which do not account for a significant amount of information established by the Knowledge Engineer.

When new theories are integrated on the business specification, its structure is enriched. This induces the change of the user structure views, allowing the definition of new data modelling tasks having as data stream the result of queries defined on parts of this new structure.

This phase closes the knowledge base enrichment cycle. The relations among the types of information involved in it are represented in Figure 6.
9 KNOWLEDGE DEPLOYMENT

The system uses a web-based interface for knowledge deployment. Through it user accesses to models, executes extraction processes and views the business knowledge. When the interface is used to access a model, depending on the type of model, a prediction or a distribution is generated. The consistency of a theory extracted from a model changes during the IS lifetime, which requires the update of the rules confidence used on the business specification. This type of update is done through a knowledge deployment interface, executing the required extraction process.

The database of rules used on the sketch business definition is accessible and represents the business knowledge base. This information can be used to define intelligent systems using the business IS. This strategy is used to simplify the sketch direct use. However the direct sketch edition through the web interface was considered, but it is only available to
sketch data modelling experts since it is difficult to read for non-experts.

10 CONCLUSIONS AND FUTURE WORK

The Actias system is in the specification phase. Its success depends on the integration level reached among its modules. Its usability is highly conditioned by the way the interfaces simplify the sketch specification process and the query definition, and how this process is integrated with the IDEF0 data processing specification CASE tool. At present we are developing prototypes for these interfaces.

This is the first of a series of articles exploring the advantages of using the sketch formal language on the specification of an Information System universe of discourse. We are extending the results on deterministic structure modelling using finite sketches to a probabilistic framework. This will allow us to apply sketch logic inference techniques on the business model. Generating new probabilistic knowledge expressed directly by sketches, which will extend the system induction capabilities.

11 ACKNOWLEDGMENTS

This work is being supported in part by the research project no 37/2003 from Instituto Politécnico de Lisboa.

REFERENCES

[1] A. Bernstain, S. Hill and F. Provost, Intelligent Assistant for the Data Mining Process: An Ontology-based Approach, CeDer Working Paper IS-02-02, Center for Digital Economy Research, Stern School Business, New York University.

[2] P. Brazdil and C. Soares, A Comparison of Ranking Methods for Classification Algorithm Selection. In Proceedings 11th European Conference on Machine Learning (ECML-2000), 63-74.

[3] Z. Diskin and B. Kadish, Variable Set Semantics for Generalized Sketches: Why ER is more object-oriented than OO, Object-Oriented and Entity-Relationship Modeling, Proc. 14th Int. ER-Conference, Springer LNCS1021 pp. 226-237.

[4] Z. Diskin, Generalized sketches as an algebraic graph-based framework for semantic modelling and database design, Laboratory for Database Design, FIS/LDBD-97-93, Riga, Latvia, 1997.

[5] C.N.G. Dampney, G. Pegler and M. Johson, Harmonising Health Information Models - a critical analysis of current practice. Proceedings of the Health Information Conference 2001, 8pp. ISBN: 0 9585370 8 9

[6] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, The KDD process for extracting useful knowledge from volumes of data, CACM 39 (11), pp. 27-34, 1996.
[7] Helder Pita, Concepo de Arquitecturas para ambientes Integrados de Manufactura, Cooptcnica/EPGE, (Portuguese PhD theses), Lisbon 1995.

[8] M. Johnson and R. Rosebrugh, Sketch Data Models, Relational Schema and Data Specifications. Proceedings of the Tenth OOPSLA Workshop on Behavioural Semantics, Tampa, Florida, October 2001, pp. 121-132.

[9] M. Johnson and R. Roseburgh, Reverse Engineering Legacy Information System for Internet Based Interoperation, Proceedings of the IEEE Conference on Software Maintenance, pp. 32-39, 2001.

[10] C.N.G Dampney and M. Johnson, Enterprise Information System: Specifying the links among project data models using category theory, Enterprise Information Systems III. Eds J. Filipe, B. Sharp and P. Miranda, 191-197, 2002.

[11] M. Johnson, R. Roseburgh and R.J. Wood, Entity-relationship models and sketches, Theory and Application of Categories, Volume 10, 3, 94-112, 2002.

[12] N.Lavrač and S. Džeroski, Inductive Logic Programming: techniques and applications, Ellis Horwood, New York, 1994.

[13] M. Makki and R. Paré, Accessible Categories, volume 104 of Contemporary Mathematics, American Mathematic Society, 1990.

[14] M. Makkai, Generalized sketches as a framework for completeness University. theorems, 1993, Preprint, McGill

[15] Tom Mitchell, Machine Learning and Data Mining, Communications of ACM, Vol.42, No. 11, 1999.

[16] Frank Piessens and Eric Steegmans, Categorical data- specification, Theory and Applications of Categories, Theory and Applications of Categories, 1:156-173, 1995.

[17] Frank Piessens, Semantic Data Specifications: An Analysis Based on a Categorical Formalization, PhD theses, Katholieke Universiteit Leuven, Heverlee, Belgium, 1996.

[18] P. Chapman. et al., CRISP-DM 1.0: Step-by-step data mining guide, SPSS, 2000.

[19] S. Vickers, Geometric Theories and Databases, LNS177, 1992.

[20] http://www.cs.waikato.ac.nz/~ml/weka/

[21] M. Barr and C. Wells, Category theory for computer science, Prentice-Hall, International Series in Computer Science, second edition, 1995.