NB-Type Electronic Asymmetric Compounds as Potential Blue-Color TADF Emitters: Steric Hindrance, Substitution Effect, and Electronic Characteristics

Chunyun Tu and WanZhen Liang*

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China

Supporting Information

ABSTRACT: This article is devoted to the theoretical study of the effects of a connection pattern and stereo hindrance of different π-bridges, nitrogen-containing donors, and boron-containing acceptors on the electrooptic properties of NB-type electronic asymmetric compounds in conventional D−π−A frameworks by the density functional theory (DFT) and time-dependent DFT (TD-DFT) approaches. By introducing three different connection groups (−O−, −CH2−, and −CMε2−) and guided by structural rationality, we formed 30 NB-type molecules, which have been classified into four types: D−π−A, D−π−X1−π−A, D−π−X1−π−X2−A, and D−π−X1−π−X2−A (Xn are connection groups). Then, the energy gaps (ΔE_ST) between the first singlet and triplet excited states were evaluated by TD-LC-ωPBE with the optimal values of ω*, as well as an approximate method, which only considers the interaction between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). It is found that for the compounds with strong vibronic coupling, the calculated ΔE_ST defined as the difference of vertical excitation energies largely deviates from the experimental result. The consistency between the estimated and experimental values indicates that ΔE_ST is predominantly determined by the frontier molecular orbitals, which can be tuned by adjusting the modular overlap between HOMO and LUMO or the orientation of the donor and acceptor groups. Accompanied with the other electronic and optical properties, our study suggests that the interaction mode, D−π−X1−π−A, the modified D−π−A system with a rigidly fixed acceptor and a relatively free donor, can serve as a valuable molecular design pattern for new blue-colored thermally activated delayed fluorescence (TADF) emitters. Specifically, our calculations predict that ARD-BZN-2CMε2-PYN and its relatives might have excellent potential as TADF emitters.

1. INTRODUCTION

Thermally activated delayed fluorescence (TADF) materials have been intensively explored as one of the most promising third-generation electrofluorescent materials for applications in modern organic light-emitting diode (OLED) devices in recent years.1−10 An OLED is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of an organic compound that emits light in response to an electric current. Since the first big breakthrough of Tang and VanSlyke in 1987,11 the materials and efficiency of OLEDs have been improved profoundly.12−15 In recent years, OLEDs have been used to create digital displays in devices such as television screens, computer monitors, and portable systems such as mobile phones, handheld game consoles, and personal digital assistants.12,16

The functioning of OLED relies on the electrofluorescence process.16 Upon electronic injection, there is a 3:1 generation of triplet and singlet excitons in OLEDs.17 Owing to the spin-forbidden effect between the triplet excited state and singlet ground state, the triplet excitons get wasted as thermal energy; thus, only a maximum of 25% internal quantum efficiency (IQE) can be expected for conventional fluorescence material-based devices. Through exploitation of the spin−orbit interaction in rare transition metal organic complexes, the IQE of phosphorescent materials can surpass the 75% statistical limit in well-tuned devices. To break the limit of the spin statistics and achieve nearly 100% IQE, scientists have proposed two approaches, one is “singlet-trapping” and the other is “triplet-trapping.”12 The singlet-trapping method utilizes phosphorescence materials (typically, organometallic compounds with heavy transition metal centers) to convert the singlet excitons to triplet excitons through efficient intersystem crossing (ISC) induced by a strong spin−orbit coupling effect,18,19 so as to emit light from the emissive triplet excited state totally.16 However, the triplet-trapping method utilizes delayed fluorescence materials (typically, organic compounds
with very low singlet–triplet energy gaps) to convert the triplet excitons to singlet excitons through efficient reverse intersystem crossing (rISC) induced by thermal activation, so as to emit light from the emissive singlet excited state. Upon careful exploitation of these methods, near 100% IQE can be achieved.30

Full color and white-light displays need efficient OLEDs that emit three basic colors (red, green, and blue).12,16 Currently, high-performance blue-light OLEDs are the final piece to pursue for industrial applications of the technology. Considering the rareness and high cost of heavy transition metal complexes, though the electronics might not be so attractive. Therefore, the design and investigation of TADF emitters with a low energy gap and high emission energy (in blue color) are still in great need for future replacement of the expensive phosphorescence emitters in high-performance OLED devices.4 Basically, two classes of TADF-emitting materials have been intensively investigated, the first one is transition metal organic complexes bearing saturated d10 configuration to diminish the possible dπ−dπ* transition quenching loss, the other is pure organic polycyclic aromatic compounds.30−24

Through building models and performing numerical simulations, researchers have found that the vibronic coupling effect, the regio- and conformational isomerization, and the dynamic nature of excited states might play important roles in determining the fitness of TADF materials.25−27 Recently, 10H-phenoinoxaborin derivatives have been designed and tested as high-efficiency blue TADF materials in OLEDs,28,29 whose frameworks can be either asymmetric D−π−A (or D−A) or symmetric D−A−A−D. It has been observed that the steric hindrance arising from the hydrogen–hydrogen (H−H) interaction, as shown in Figure 1, is vital for such NB-type molecules as TADF emitters. The term “NB-type” indicates the intrinsic structural characteristic of the compound, which is basically composed of a nitrogen-containing donor and a boron-containing acceptor interconnected by a π-bridge. Through borylation of 1,3-phenyloxybenzene, and subsequently borylation of 1,3-phenyloxybenzene, and subsequently borylation of 1,3-phenyloxybenzene, and subsequently boron-containing acceptor interconnected by a

![Figure 1. Steric hindrance arising from the H–H interaction in an NB-type system.](image)

Figure 1. Steric hindrance arising from the H–H interaction in an NB-type system.

...time-dependent DFT (TD-DFT) method.34 Through introduction of three different connection groups (−O−, −CH2−, and −CMEO2−), and guided by structural rationality, 30 NB-type molecules, as shown in Figure 2, have been constructed, which can be classified into four types: D−π−A (1−2), D−X1−π−A (3−10), D−π−X1−A (11−26), and D−X1−π−X2−A (27−30), where Xn denotes connection groups. Their singlet−triplet energy gaps, ∆EST, will be evaluated by the range-separated DFT LC-ωPBE with the optimal value of ω.35−38 On the basis of ∆E_ST, absorption/emission energies, and corresponding oscillator strengths, the possibility of utilizing NB-type electronic asymmetric compounds as potential TADF materials was evaluated.

2. THEORETICAL METHODS

The TADF process proceeds by rISC from the triplet to singlet excited states and relies on relatively small energy differences between singlet and triplet excited states. Therefore, ∆E_ST and E_S are the basic quantities used to determine the quality of the compound to be viewed as potential TADF materials. Benchmark tests on existent delayed fluorescence molecules have shown that conventional DFT XC functionals (e.g., LDA, GGA, hybrid B3LYP, etc.) typically are not suitable to predict these excited-state properties correctly and consistently. However, through a fine tune of the range separation of the DFT exchange and pure Hartree–Fock exchange under the generalized Kohn–Sham framework, DFT becomes trustable to give a reliable prediction on the excited-state properties.36−38

In these long-range-corrected (LRC) DFT functionals, the amount of exact exchange is weighted according to the interelectron distance (r_{12}) as 1 = \frac{\text{erfc}(ωr_{12})}{\text{erf}(ωr_{12})} + \frac{\text{erf}(ωr_{12})}{\text{erf}(ωr_{12})}, where erf(x) = \frac{2}{\sqrt{π}} \int_0^x \exp(-t^2) dt and erfc(x) = 1 − erf(x). For a given system, the optimal ω value can be obtained without empirical fitting by minimizing the function

$$J = |ω\text{HOMO}(ω, N) + IP(ω, N)|$$

(1)

In donor−acceptor systems, it is useful to focus not only on the ionization potential (essentially related to the donor component) but also on the electron affinity (essentially related to the acceptor component). Electron affinity (i.e., in the absence of geometry relaxation) of the N electron system can be considered as the ionization potential of the N + 1 electron system. In this context, the tuning of the ω value can be done by minimizing the following equation

$$J^2 = \sum_{i=0}^{N} [ε_{\text{HOMO}}(ω, N + i) + IP(ω, N + i)]^2$$

(2)

Here, ε_{\text{HOMO}} and IP denote the highest occupied molecular orbital (HOMO) energy and ionization potential, respectively.

In this study, we then calculated ∆E_ST and E_S by TD-DFT/6-31+G(d,p) with the optimally tuned range-separated functional, LC-ωPBE, abbreviated as LC-ω*PBE. The Tamm–Dancoff approximation (TDA) to TD-DFT was adopted. TD-LC-ω*PBE with TDA had been benchmarked to be able to give reliable prediction for ∆E_ST in organic TADF emitters.42 The root-mean-square errors can be as low as 0.10 eV; this level of accuracy is crucial for the quantitative theoretical prediction of TADF molecules. Similarly, by using the tuned range-separated LC-BLYP functional at the TDA framework, Penfold demonstrated that the special tuned...
functional can give a rather trustable prediction of singlet−triplet gaps for TDAF molecules. For the applicability of TDA in predicting such excited state properties, refer to the prominent works of Peach et al. To show how to obtain the optimal range-separation parameter, ω^*, we took ARD-BZN-2O-DPB (13) as an example to tune ω^*, as shown in
The barycenters of the spatial regions defined by \(\rho_+(r) \) and \(\rho_-(r) \), referred in the following as \(R_+ \) and \(R_- \), can thus be defined as

\[
R_+ = \frac{\int \rho_+(r) \, dr}{\int \rho_+(r) \, dr} = (x_+, y_+, z_+) \tag{5}
\]

\[
R_- = \frac{\int \rho_-(r) \, dr}{\int \rho_-(r) \, dr} = (x_-, y_-, z_-) \tag{6}
\]

The spatial distance between the two barycenters of density distributions can thus be used to measure the CT excitation length, \(D_{CT} \).

The ground-state geometric optimizations of all of the studied systems in the gas phase were finished at the theoretical level of B3LYP/6-311G(d,p). To calculate the adiabatic excitation energies of some selected compounds, the geometries of \(T_1 \) and \(S_1 \) are required, which were obtained at theoretical levels of UoB97X-D/6-31+G(d,p) and TD-oB97X-
D/6-31+G(d,p), respectively. Owing to the CT characters of S_1, the LRC-DFT XC functional, ωB97X-D, should be more suitable than the conventional hybrid functional, B3LYP. In addition, for some selected compounds, we also simulated their related electrooptic properties (including the vertical absorption and emission characteristics, etc.) in the solution phase, wherein the solvent effect was taken into account by the polarizable continuum model (PCM, solvent = toluene). All of the calculations were performed within the Gaussian 09 software package.

3. RESULTS AND DISCUSSION

As stated in Section 1, the main purpose of this study is to explore how the geometric and electronic characteristics affect the electrooptic properties (tuning the energy gap and first singlet excited energy) and eventually change the appropriateness of the compounds as TADF emitters. Indeed, we observed that the connection pattern and steric hindrance greatly affect the electrooptic properties of the studied systems. Thirty NB-type molecules have been constructed through the introduction of three different connection groups (−O−, −CH−, and −CMe−).

Figure 2 shows the classification of the compounds and the correspondence between structures and names. Because the IUPAC names are tedious and inconvenient to refer to, we denote them by shorthand names and ordinal numbers. Three symbols are used to denote donors (ARD, PXZ, and DPA), three symbols for acceptors (PXB, DPB, and PYN), symbol BZN for the central benzene ring, and symbols −O−, −CH−, and −CMe− for the connection groups.

3.1. E_{S_1}, E_{T_1}, and ΔE_{ST}. E_{S_1}, E_{T_1}, ΔE_{ST}, and E_{S_i} are the basic quantities used to evaluate the quality of combined compounds as TADF emitters. Table 1 collects these two quantities as well as the corresponding oscillator strengths (f). Empirically, the energy gap is related to the efficiency to convert the triplet exciton to the singlet one through rISC induced by thermal activation, so as to emit light from the emissive singlet excited state to the ground state. This obeys the Arrhenius form, that is, the smaller the energy gap, the higher the efficiency. A very large ΔE_{ST} would correspond to a rather low-efficiency rISC and hence an unacceptable internal (and external) quantum efficiency. E_{S_i} can provide a good estimate of the emission color, although it is
Table 2. Calculated Dipole Moments (μ), Energies of HOMO and LUMO, HOMO–LUMO Gap (E_{H}, E_{L}, and E_{gap}), the Modular Overlap (A) and Average Separation Distance (Δr_{ST}) between HOMO and LUMO, the Estimated Singlet–Triplet Energy Gap (ΔE_{ST} (est)), and CT Quantities (q_{CT} and D_{CT}) Corresponding to S_0 \rightarrow S_1 at S_0 Geometries

system	μ (Debye)	E_{H} (eV)	E_{L} (eV)	E_{gap} (eV)	A	Δr_{ST} (Å)	ΔE_{ST} (est) (eV)	q_{CT} (c$^-$)	D_{CT} (Å)
ARD-BZN-PXB (1)	2.20	-6.53	-0.80	5.72	0.066	14.34	0.009	1.236	3.178
PXZ-BZN-PXB (2)	3.48	-6.37	-0.79	5.57	0.065	14.73	0.008	1.212	3.322
DPA-2CH$_2$-BZN-PXB (3)	0.19	-6.53	-0.66	5.78	0.269	11.96	0.174	0.809	2.754
DPA-2CMe$_2$-BZN-PXB (4)	0.19	-6.47	-0.71	5.75	0.268	11.94	0.173	0.848	2.524
DPA-2O-BZN-PXB (5)	0.33	-6.41	-0.69	5.72	0.273	11.67	0.184	0.770	2.741
ARD-2CH$_2$-BZN-PXB (6)	0.08	-6.25	-0.75	5.50	0.281	12.17	0.187	0.831	3.037
ARD-2CMe$_2$-BZN-PXB (7)	0.09	-6.24	-0.74	5.50	0.282	12.13	0.189	0.886	2.854
ARD-2O-BZN-PXB (8)	0.80	-6.08	-0.75	5.33	0.289	11.77	0.204	0.721	2.446
PXZ-2CMe$_2$-BZN-PXB (9)	1.21	-6.09	-0.78	5.31	0.278	12.58	0.177	0.816	2.823
PXZ-2O-BZN-PXB (10)	0.95	-6.35	-0.74	5.61	0.285	11.74	0.199	0.680	2.235
ARD-BZN-2CH$_2$-DPB (11)	1.29	-6.47	-0.93	5.54	0.104	12.27	0.025	1.285	3.074
ARD-BZN-2CMe$_2$-DPB (12)	1.37	-6.45	-0.97	5.48	0.106	12.15	0.027	1.338	2.908
ARD-BZN-2O- DPB (13)	2.14	-6.53	-0.90	5.63	0.099	12.30	0.022	1.235	3.090
PXZ-BZN-2CH$_2$-DPB (14)	2.59	-6.38	-0.88	5.51	0.104	12.64	0.025	1.249	3.175
PXZ-BZN-2CMe$_2$-DPB (15)	2.69	-6.29	-0.97	5.32	0.103	12.53	0.024	1.304	3.006
PXZ-2O-BZN- DPB (16)	3.48	-6.44	-0.84	5.59	0.093	12.65	0.020	1.217	3.120
ARD-BZN-3CH$_2$-PYN (17)	1.86	-6.45	-0.70	5.76	0.101	12.40	0.024	1.258	3.067
ARD-BZN-CMe$_2$-PYN (18)	1.80	-6.45	-0.72	5.73	0.096	12.51	0.021	1.287	3.040
ARD-BZN-2CMe$_2$-PYN (19)	1.89	-6.45	-0.75	5.70	0.105	12.29	0.026	1.307	2.949
ARD-BZN-3CMe$_2$-PYN (20)	1.82	-6.45	-0.78	5.67	0.100	12.39	0.023	1.335	2.927
ARD-BZN-2O-PYN (21)	2.99	-6.50	-0.70	5.80	0.105	12.24	0.026	1.240	3.019
PXZ-BZN-3CH$_2$-PYN (22)	3.16	-6.37	-0.64	5.73	0.094	12.76	0.020	1.234	3.140
PXZ-BZN-CMe$_2$-PYN (23)	3.11	-6.37	-0.66	5.70	0.093	12.86	0.019	1.249	3.140
PXZ-BZN-2CMe$_2$-PYN (24)	3.21	-6.29	-0.75	5.54	0.097	12.66	0.021	1.282	3.019
PXZ-BZN-3CMe$_2$-PYN (25)	3.15	-6.29	-0.78	5.51	0.096	12.76	0.021	1.297	3.025
PXZ-2O-BZN-2PYN (26)	4.34	-6.41	-0.65	5.76	0.100	12.58	0.023	1.212	3.081
DPA-2CMe$_2$-BZN-2O- DPB (27)	0.10	-6.68	-0.65	6.03	0.364	10.33	0.369	0.653	1.143
DPA-2O-BZN-2O- DPB (28)	0.69	-6.50	-0.72	5.78	0.396	9.49	0.476	0.739	2.432
ARD-2CMe$_2$-BZN-2O- DPB (29)	0.01	-6.34	-0.81	5.53	0.414	10.08	0.490	0.787	2.490
PXZ-2O-BZN-2O- DPB (30)	0.65	-6.36	-0.77	5.59	0.432	9.21	0.583	0.660	2.070
vertical energy gaps and are closer to the experimental data. Obviously, the adiabatic and vertical ΔE_{ST} can exhibit very distinctive behaviors for different patterns. For example, for several compounds (11 and 12, 14 and 15, and 19 and 20) belonging to D–\pi–X1–A, the adiabatic gaps are larger than the corresponding vertical ones. But the sizes of the gaps are typically lower than 0.20 eV. Thus, they have a great chance to fulfill the gap requirement of TADF emitters. Compound 16 in type D–\pi–X1–A is also an experimentally verified valid TADF emitter.\(^{30}\) However, for this compound, the calculated vertical ΔE_{ST} is 0.09 eV in the gas phase, agreeing well with the experimental value of 0.06 eV, indicating that for this one-side fixed class, D–\pi–X1–A, the difference between the calculated vertical and adiabatic energy gaps is relatively small, and the vertical ΔE_{ST} seems to be a reasonable estimation of the real ΔE_{ST}.

For most of the studied compounds, their first singlet excited states mainly come from the electronic transitions from HOMO to lowest unoccupied molecular orbital (LUMO) and nearby frontier MOs (see Table S3), and they possess obvious CT characters, indicated by the difference of charge densities shown in Figure 3 and the charge distribution of HOMO and LUMO shown in Figure S2. For the first two compounds, their HOMOs and LUMOs occupy distinct spatial regions and have a very small overlap. However, for these two compounds, the contribution from HOMO → LUMO + 2 transitions is also significant. Through the connection between the donor and \pi-bridge, the compounds 3–5 in the D–X1–\pi–A series display a more extensive electron distribution in the HOMOs. The compounds 11–16, 19–21, and 24–26 in the D–\pi–X1–A series differ from those in D–X1–\pi–A, in that they bear more extensive distribution in the LUMOs. The overlap region for the compounds in the D–\pi–X1–A and D–\pi–A series is smaller than that for those in the D–X1–\pi–A series.

The orbital diagram is confirmed by the values of modular overlap Λ shown in Table 2. Λ, defined as $\Lambda = \frac{\int \psi^*_H(r)\psi_L(r)\,dr}{\int \psi^*_L(r)\psi_L(r)\,dr}$, is the overlap between HOMO and LUMO. In addition, Table 2 also shows the average separation distance between HOMO and LUMO ($\Delta r_{HL} = |r_H - r_L|$ with $r_H/L = \frac{\int \psi^*_H(r)\psi_L(r)\,dr}{\int \psi^*_L(r)\psi_L(r)\,dr}$) and the estimated energy gaps denoted by $\Delta E_{ST}(\text{est})$. On the basis of Λ and Δr_{HL}, ΔE_{ST} can be qualitatively estimated via $\Delta E_{ST}(\text{est}) = 28.8\frac{\Lambda}{\Delta r_{HL}}$ by following Chen et al.\(^{50}\) When Δr_{HL} is in angstrom (Å), $\Delta E_{ST}(\text{est})$ would be in eV. The estimated energy gaps and calculated vertical ΔE_{ST} by TD-DFT are pictorially compared in Figures S3 and S4. A detailed analysis about the differences between the estimated and calculated energy gaps has been given in the SI.

The CT distance (D_{CT}) experiences small variations across the four classes. D–\pi–A bears relatively large values of ~14.0 Å, and D–X1–\pi–X2–A holds relatively small ones (~9.0 Å). This can be understood by the difference in conjugation (planar) and the electron–sufficient (or deficient) character. The CT charge (q_{CT}) gives a clear contrast among the four classes. The largest values exist for D–\pi–A and D–X1–\pi–X1–A (>120°), and the others hold low values (<90°).

To summarize this subsection: ΔE_{ST} and S_i exhibit different behaviors across the four classes. The compounds in the D–\pi–X1–A series consistently display rather low ΔE_{ST} values of <0.30 eV, and the energy gap can be qualitatively understood by the difference in the modular overlap between HOMO and LUMO, because S_i is predominately contributed by the electronic transitions from HOMO to LUMO.

3.2. Emission Characteristic. As fluorescence materials, their emission channel from S_1 to S_0 must open according to Kasha’s rule; thus, the corresponding oscillator strength should have considerable size. In Section 3.1, the assessment of the appropriateness as the TADF emitter candidate is based on the vertical excitation energy. Although the absorption and emission spectra usually have mirror symmetry for the molecules without the structure’s flexibity, in real systems, especially in the molecules whose geometries are flexible, the vibronic coupling usually is very strong and the emissive properties can be significantly different from the absorption...
properties. In principle, the best blue-color TADF emitter candidates should be those bearing possibly the smallest energy gap and the highest excitation energy, in addition to a large-enough oscillator strength. In reality, a trade-off between ΔE_{ST} and f must be adopted. Considering the criteria of $\Delta E_{\text{ST}} < 0.30$ eV, only the compounds 1–2 and 11–26 in the D–π–A and D–π–X1–A series seem to have a chance. However, as shown in Table 1, the absorption oscillator strengths corresponding to $S_0 \rightarrow S_1$ transitions for the compounds in D–π–X1–A at S_0 geometries are essentially zero. Here, we thus examine the emission behaviors of these systems.

The common structural character for compounds 11–26 in the D–π–X1–A series is that they have a relatively free donor (ARD or PXZ) (see Figure 2), which has been confirmed by the geometric parameters shown in Table S1. In S_0 dihedral angles $D1$ of the compounds in D–π–X1–A typically are $\sim 90^\circ$, whereas those in S_1 are $\sim 70^\circ$. The reduction of $D1$ upon photoexcitation (or possibly electric excitation) enhances the conjugation of the compounds and should play a crucial role in their emission behaviors.

Table 3 shows the emission energy and the corresponding oscillator strength. Because S_1 possesses a CT character, TADF emission behaviors can be a dark state. Criteria to assess TADF emitters. It has been established that the geometries are essentially zero. Here, we thus examine the emission channel for the compounds in D–π–X1–A can have comparable emission energies to those in D–π–A, and can span a large energy range. The compounds with an ARD donor typically give a higher emission energy than those with PXZ. For the compounds with the same donor and acceptor in D–π–X1–A, the effect of connection group X1 on E_{emi} is small.

(a) With the same geometries, different DFT functionals give apparently different emission energies, and the variation can be larger than 1 eV. Compared with the experimental data, the conventional hybrid functional, TD-B3LYP, seems to underestimate E_{emib}; TD-LC-oPBE tends to overestimate E_{emi}, and TD-oB97X and TD-LC-oPBE produce a more reasonable E_{emi}.

(b) Considering the results produced by TDA-LC-oPBE as the standard, the compounds in D–π–X1–A can have comparable emission energies to those in D–π–A, and can span a large energy range. The compounds with an ARD donor typically give a higher emission energy than those with PXZ. For the compounds with the same donor and acceptor in D–π–X1–A, the effect of connection group X1 on E_{emi} is small.

(c) All TD-DFT methods predict that the emission channel for the compounds in D–π–X1–A is open, except for those with the connection –O–. The compounds in D–π–X1–A (11–26) and D–π–A (1 and 2) have relatively smaller oscillator strengths compared to those in D–π–A (3–5).

The calculated f values of all of the compounds in type D–π–2O–A are zero. However, it is known that compound PXZ-BZN-2O-DPB (16) does emit light.30 The discrepancy between the theory and experiment might come from the neglecting of the non-Condon effect and the exclusion of the molecular environmental effect in the theoretical calculation. In the gas phase, the compounds in D–π–2O–A have a quasiorthogonal geometry in both S_0 and S_1 (D1 is near 90°). This type of molecular symmetry usually attributes S_1 to be a dark state.

The rate constant (k_{TADF}) of TADF emission is another criterion to assess TADF emitters. It has been established that there exist various radiative and nonradiative processes for the TADF emitter after electric excitation. Moreover, currently, the theoretical calculation of all of the related processes is not feasible especially for medium- to large-sized molecular systems. Nevertheless, under certain assumptions, k_{TADF} can be estimated by the following equation:

$$k_{\text{TADF}} = \frac{2 \pi e^2 n^3}{e \mu c} \frac{1}{\omega^2 + 1 + 3 \exp(\Delta E_{\text{ST}}/k_B T)}$$

where ϵ is the elementary charge, n is the refractive index of the material, m_e is the mass of electron, ω is the speed of light in vacuum, k_B is the Boltzmann constant, and T is the temperature. Because the geometries of S_1 and T_1 might be close to each other, and the T_1 structure can be obtained via unrestricted optimization in the triplet manifold with relatively more cost compared to that in ground-state optimization, here we use T_1 geometries to replace those of S_1 in the calculation of k_{TADF}. The vertical excitation energy ($E_{S_0}(T_1)$) and the corresponding oscillator strength ($f(T_1)$) based on the optimized T_1 geometry, in addition to the estimated rate constants of k_{TADF}, have been tabulated in Table 4.

Table 4. Vertical Excitation Energy $E_{S_0}(T_1)$ and Oscillator Strength $f(T_1)$ of S_0 for Selected Compounds in the Gas Phase at the T_1 Optimized Geometry

system	$E_{S_0}(T_1)$	$f(T_1)$	ΔE_{ST}	k_{TADF}
ARD-BZN-2CH$_2$-DPB	2.81	0.3017	0.014	6.1
ARD-BZN-2CM$_2$-DPB	2.84	0.3040	0.013	6.5
ARD-BZN-2O-DPB	2.99	0.1303	0.207	2.0 $\times 10^{-3}$
PXZ-BZN-2CH$_2$-DPB	2.73	0.2503	0.084	3.7 $\times 10^{-1}$
PXZ-BZN-2CM$_2$-DPB	2.71	0.2564	0.124	3.7 $\times 10^{-1}$
PXZ-BZN-2O-DPB	2.80	0.1022	0.089	1.3 $\times 10^{-1}$
ARD-BZN-2CM$_2$-PYN	3.02	0.3181	0.013	7.7
ARD-BZN-3CM$_2$-PYN	3.02	0.3214	0.013	7.8
ARD-BZN-2O-PYN	3.05	0.2228	0.099	2.3 $\times 10^{-1}$
PXZ-BZN-2CM$_2$-PYN	2.85	0.2560	0.131	6.7 $\times 10^{-2}$
PXZ-BZN-3CM$_2$-PYN	2.85	0.2395	0.124	8.6 $\times 10^{-2}$
PXZ-BZN-2O-PYN	2.86	0.1543	0.164	1.1 $\times 10^{-2}$

$E_{S_0}(T_1)$ of D–π–X1–A compounds can span a range from 2.71 eV (PXZ-BZN-2CM$_2$-DPB) to 3.05 eV (ARD-BZN-2O-PYN), and this characteristic is valuable in realizing the appropriate emission color in devices. We also note that the introduction of –O– groups makes the emission energy blue-shifted weakly. All compounds have large emission strengths ($f(T_1) > 0.10$). The difference in k_{TADF} is large and is predominately determined by ΔE_{ST}. The lifetime of some compounds can be several hundreds of μs. The D–π–X1–A series display great contrast (f vs $f(T_1)$) in Tables 1 and 4, which might be associated with the geometric change between the ground and excited states (the reduction of the dihedral D1).

Electronic properties such as ionization potential and electron affinity are important experimentally measurable quantities for optoelectronic materials. For computational details of these quantities, refer to Figure S5 and related contents in SL. They are calculated at the B3LYP/6-311G(d,p) level of theory. This level should be sufficient to give quantitative predictions. To account for the trade-off between
the energy gap and oscillator strength, we have included a scatterplot between the two quantities in Figure S6, where \(\Delta E_{ST} \) is the vertical energy gap in the gas phase (from Table 1), and \(f \) is the emission oscillator strength based on the T₁ structure (partly in Table 4). Obviously, there is no simple proportionality relationship between the two quantities. In accordance with our conceptual classification of the compounds into four classes, the D−π−X1−A class located in the left-lower corner of the region (small \(\Delta E_{ST} \) and acceptable \(f \)) seems to be in a good position overcoming the trade-off.

In a typical setup of an OLED device, the emitters are doped in the emission layer with a relatively low weight ratio (\(\sim 0.10 \)). Thus, the charge transportation mobility is vital for charge equilibrium in this guest–host emission layer. Crudely, the mobility is dominated by the electron extraction potential (EEP), hole extraction potential (HEP), hole recombination energy (\(\lambda_h \), and electron recombination energy (\(\lambda_e \)). We have tabulated these quantities in Table S4.

Because the studied compounds are very similar from a structural point of view, they exhibit comparable IP(v), IP(a), HEP, EA(v), EA(a), and EEP. The variation in \(\lambda_h \) and \(\lambda_e \) is also small, and they are comparable in size. Therefore, these systems would exhibit a good charge equilibrium, which is preferable for a realistic design of the emitters. For future comparison with experimental data, the simulated UV–vis absorption spectra of selected compounds in toluene at the B3LYP/6-31+G(d,p)/PCM level of theory have been provided in Figure S7.

To summarize, these D−π−X1−A compounds are predicted to be valid blue- (or green-) color emitters, given compounds 1 and 2 as the reference. Because they also obey other requirements of TADF emitters (low \(\Delta E_{ST} \), open emission channel), they might be potential candidates for applications in OLEDs. Specifically, our calculations predict that ARD-BZN-2CMC₂-PYN and its relatives might have excellent potential as TADF emitters.

3.3. Tuning \(\Delta E_{ST} \) via the Frontier Orbital Overlap and Group Substitution

As described in Section 3.1, the energy gap of \(\Delta E_{ST} \) is very much dependent on the overlap and energy levels of frontier MOs. It is thus possible to tune \(\Delta E_{ST} \) through altering the orientation of the donor and acceptor and through applying the group substitution of interacting H-atoms. For example, the notable difference between S₁ geometries for the compounds in the D−X1−π−A (3−10) and D−π−X1−A (11−26) series is that the former assumes mediate-size dihedral angle D2 (\(\sim 50^\circ \)) between the acceptor and π-bridge, whereas the latter holds quasiorthogonal dihedral angle D1 (\(\sim 90^\circ \)) between the donor and π-bridge (see Table S1). This small structural change has profound impact on the electrooptic properties of the compounds as shown above. We then vary the dihedral angles D1 (or D2) to check how \(\Delta E_{ST} \) and \(\Lambda \) vary with D1 (or D2).

Figure 4 shows the dependence for representative compound 4 in the D−X1−π−A series and compounds 12 and 24 in the D−π−X1−A series. The restricted optimization was used by starting from the full-optimized geometry and fixing the dihedral angle, D1 (or D2), from 30 to 90° with a step-size of 5°. For all of the compounds, \(\Delta E_{ST} \) decreases with the increase of D2 (or D1) from 30 to 90° at apparently different speeds, suggesting that one can tune the energy gap of the compound via tuning the orientation of the donor and the acceptor. \(\Delta E_{ST} \) values of compound 4 are always larger than 0.20 eV, whereas those of the latter two compounds are lower than 0.15 eV when D1 changes from 65 to 90°. A experiences a smooth drop for all of the three compounds. It is obvious that the compounds in the D−X1−π−A and D−π−X1−A series might exhibit very different performances as TADF emitters.

Considering that compounds 1 (ARD-BZN-PXB) and 2 (PXZ-BZN-PXB) are experimentally verified valid TADF emitters, it would be valuable to further explore new structures on the basis of them being potential TADF materials. It is repeatedly experienced that the electrooptic properties (especially the energy gap, \(\Delta E_{ST} \)) are rather sensitive to the changes on the basic frameworks, for example, a single nitrogen replacement on the linking benzene bridge would profoundly shift the excitation energy and markedly change the \(\Delta E_{ST} \). In the next subsection, we restrict to examine the changes introduced by group substitution of the interacting hydrogen atoms on two compounds, where only di-substitution at the same side via F, Cl, and OMe (methoxy group) was considered. The substitution positions, -a, -b, -c, and -d, have been used to distinguish them, where -a denotes the positions of two H atoms on the donor (ARD or PXZ), -b denotes the two H...
atoms on the benzene next to the donor, -c denotes the two H atoms on the benzene next to the acceptor (PXB), -d denotes the two H atoms on the acceptor.

The calculated optical and electronic properties of substituted ARD-BZN-PXB and PXZ-BZN-PXB in the gas phase have been presented in Table 5. From the data, we observed that:

(a) The energy gap, ΔE_{ST}, exhibits very different behaviors across the four substitution positions (-a, -b, -c, and -d). This behavior holds for all three substitution groups without regard to their donor or acceptor character.

(b) With regard to different positions, substitution at the -b position always gives the lowest ΔE_{ST}, and substitution at the -a position generally gives the highest ΔE_{ST}.

(c) Consider all -b substituted compounds, Cl substitution gives the lowest energy gap, whereas F and OMe give comparable energy gaps.

(d) The decrease in energy gaps can be mainly associated with the drop in the singlet state energy, whereas the triplet state energy seems stable under such kind of substitutions.

In short, through simple substitution of interacting H atoms on the basic frameworks (ARD-BZN-PXB and PXZ-BZN-PXB), the electrooptic properties can be appropriately tuned to fit the requirement of TADF emitters. Hence, substitution at specific positions can be a valuable strategy to optimize TADF materials when lead compounds are available.

4. CONCLUSIONS

By using the DFT and TD-DFT approaches, we have investigated the effects of the connection pattern and stereo hindrance of different π-bridges, donors, and acceptors on the electrooptic properties of four classes of NB-type compounds (D−π−A, D−X1−π−A, D−π−X1−A, and D−X1−π−X2−A). On the basis of ΔE_{ST} as well as absorption/emission energies and properties, the possibility of utilizing NB-type electronic asymmetric compounds as potential TADF materials was evaluated. The following conclusions have been made.

(1) For compounds with strong vibronic coupling, the calculated ΔE_{ST} values by TD-DFT in the gas phase largely deviate from the experimental values. To reproduce the experimental value, the photo-induced geometrical changes and the realistic molecular environments should be taken into account.

(2) Qualitatively, the energy gap is predominately determined by the frontier MO overlap and energy levels. The dependence of the energy gap across different interaction modes can be mainly attributed to the difference in modular overlap between HOMO and LUMO, because the first singlet excited states arise basically by HOMO to LUMO transitions and possess considerable intramolecular CT character.

(3) The effect of the orientation of the donor and acceptor on the energy gap, ΔE_{ST}, is significant. ΔE_{ST} varies with the torsion of the structural framework and group substitution. The basic structural frameworks might determine the quality and behavior of the combined compounds, and group substitution would further modify the quality in a small manner.

(4) The reduction of the dihedral angle ($D1$) between the donor and π-bridge in D−π−X1−A molecules from \sim90° in S_0 to \sim70° in S_1 increases the mixing of localized excitation and CT excitation and thus enhances the emissive rate.

To sum up, we suggest that the interaction mode, D−π−X1−A, the modified D−π−A system with a rigidly fixed acceptor and a relatively free donor, can serve as a valuable molecular design pattern for new blue-color TADF emitters. Specifically, our calculations predict that ARD-BZN-2CMe2-PY and its relatives might have excellent potential as TADF emitters.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.7b00514.
the LC-ω*PBE/6-31+G(d,p) method; the transition character of \(S_1 \) and \(T_1 \) for selected compounds in the gas phase; the vertical and adiabatic ionization potential and electron affinity, EEP, HEP, hole recombination energy, and electron recombination energy for selected compounds in the gas phase (PDF)

AUTHOR INFORMATION

Corresponding Author
E-mail: liangwz@xmu.edu.cn. Phone/Fax: +86 0592 2184300.

ORCID
WanZhen Liang: 0000-0002-5931-2901

Notes
The authors declare no competing financial interest. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENTS
Financial supports from National Natural Science Foundation of China (Grant Nos. 21290193, 21373163, and 21573177) are gratefully acknowledged.

REFERENCES

1. Lee, S. Y.; Yasuda, T.; Nomura, H.; Adachi, C. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. *Appl. Phys. Lett.* 2012, 101, 093306.

2. Ouyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. *Nature* 2012, 492, 234–238.

3. Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. *Nat. Photon.* 2012, 6, 253–258.

4. Adachi, C. Third-generation organic electroluminescence materials. *Ipn. J. Appl. Phys.* 2014, 53, No. 060101.

5. Li, B.; Nomura, H.; Miyazaki, H.; Zhang, Q.; Yoshida, K.; Suzumura, Y.; Orita, A.; Otera, J.; Adachi, C. Dicarbazoloyldicyanobenzes as Thermally Activated Delayed Fluorescence Emitters: Effect of Substitution Position on Photoluminescent and Electroluminescent Properties. *Chem. Lett.* 2014, 43, 319–321.

6. Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. *Nat. Photon.* 2014, 8, 326–332.

7. Adachi, C.; Lee, S.; Nakagawa, T.; Shizu, K.; Goushi, K.; Yasuda, T.; Potscavage, W. J., Jr. In *Organic Electronics Materials and Devices*; Ogawa, S., Ed.; Springer: Japan, 2015; pp 43–73.

8. Hofbeck, T.; Monkoius, U.; Yersin, H. Highly Efficient Luminescence of Cu(I) Compounds: Thermally Activated Delayed Fluorescence Combined with Short-Lived Photoluminescence. *J. Am. Chem. Soc.* 2015, 137, 399–404.

9. Kang, L.; Chen, J.; Teng, T.; Chen, X.-L.; Yu, R.; Lu, C.-Z. Experimental and theoretical studies of highly emissive dinuclear Cu(I) halide complexes with delayed fluorescence. *Dalton Trans.* 2015, 44, 11649–11659.

10. Lee, D. R.; Kim, B. S.; Lee, C. W.; Im, Y.; Yook, K. S.; Hwang, S.-H.; Lee, J. Y. Above 30% External Quantum Efficiency in Green Delayed Fluorescent Organic Light-Emitting Diodes. *ACS Appl. Mater. Interfaces* 2015, 7, 9625–9629.

11. Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. *Appl. Phys. Lett.* 1987, 51, 913–915.

12. Minaev, B.; Baryshnikov, G.; Agren, H. Principles of phosphorescent organic light emitting devices. *Phys. Chem. Chem. Phys.* 2014, 16, 1719–1758.

13. Yang, X.; Neher, D.; Hertel, D.; Däubler, T. K. Highly Efficient Single-Layer Polymer Electrophosphorescent Devices. *Adv. Mater.* 2004, 16, 161–166.

14. Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Electron Transport Materials for Organic Light-Emitting Diodes. *Chem. Mater.* 2004, 16, 4556–4573.

15. Zhang, D.; Cai, M.; Bin, Z.; Zhang, Y.; Zhang, D.; Duan, L. Highly efficient blue thermally activated delayed fluorescent OLEDs with record-low driving voltages utilizing high triplet energy hosts with small singlet-triplet splittings. *Chem. Sci.* 2016, 7, 3355–3363.

16. Yersin, H. Highly Efficient OLEDs with Phosphorescent Materials; John Wiley & Sons, 2008.

17. Baldó, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R. Exciton singlet-triplet ratio in a semiconducting organic thin film. *Phys. Rev. B* 1999, 60, 14422–14428.

18. Marian, C. M. Spin-orbit coupling and intersystem crossing in molecules. *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* 2012, 2, 187–203.

19. Cui, G.; Thiel, W. Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. *J. Chem. Phys.* 2014, 141, No. 124101.

20. Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. *J. Am. Chem. Soc.* 2012, 134, 14706–14709.

21. Leitl, M. J.; Köchle, F.-R.; Mayer, H. A.; Wesemann, L.; Yersin, H. Brightly Blue and Green Emitting Cu(I) Dimers for Singlet Harvesting in OLEDs. *J. Phys. Chem. A* 2013, 117, 11823–11836.

22. Nakanotani, H.; Masui, K.; Nishiide, J.; Shibata, T.; Adachi, C. Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. *Sci. Rep.* 2013, 3, No. 2127.

23. Sato, K.; Shizu, K.; Yoshimura, K.; Kawada, A.; Miyazaki, H.; Adachi, C. Organic Luminescent Molecule with Energetically Equivalent Singlet and Triplet Excited States for Organic Light-Emitting Diodes. *Phys. Rev. Lett.* 2013, 110, No. 247401.

24. Wu, S.; Aonuma, M.; Zhang, Q.; Huang, S.; Nakagawa, T.; Kiwabara, K.; Adachi, C. High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter. *J. Mater. Chem. C* 2014, 2, 421–424.

25. Gibson, J.; Monkman, A. P.; Penfold, T. J. The importance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules. *Chem. Phys. Chem.* 2016, 17, 2956–2961.

26. Etherington, M. K.; Franchello, F.; Gibson, J.; Norrhey, T.; Santos, J.; Ward, J. S.; Higginbotham, H. F.; Data, P.; Kurowska, A.; Dos Santos, P. L.; et al. Regio- and conformational isomerization critical to design of efficient thermally-activated delayed fluorescence emitters. *Nat. Commun.* 2017, 8, No. 14987.

27. Olivier, Y.; Moral, M.; Muccioli, L.; Sancho-García, J.-C. Dynamic nature of excited states of donor-acceptor TADF materials for OLEDs: how theory can reveal structure-property relationships. *J. Mater. Chem. C* 2017, 5, 5718–5729.

28. Kitamoto, Y.; Namikawa, T.; Ikemizu, D.; Miyata, Y.; Suzuki, T.; Kita, H.; Sato, T.; Oi, S. Light blue and green thermally activated delayed fluorescence from 10H-phenoxyborin-derivatives and their application to organic light-emitting diodes. *J. Mater. Chem. C* 2015, 3, 9122–9130.

29. Numata, M.; Yasuda, T.; Adachi, C. High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxyborin and acridan units. *Chem. Commun.* 2015, 51, 9443–9446.

30. Hirai, H.; Nakajima, K.; Nakatsuka, S.; Shiren, K.; Ni, J.; Nomura, S.; Ikuta, T.; Hatakeyama, T.; One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes. *Angew. Chem., Int. Ed.* 2015, 54, 13581–13585.

31. Kashida, T.; Zhou, Z.; Wakamya, A.; Yamaguchi, S. Planarized B-phenylboratranthracene anions: structural and electronic impacts of coplanar constraint. *Chem. Commun.* 2012, 48, 10715–10717.

32. Zhou, Z.; Wakamya, A.; Kashida, T.; Yamaguchi, S. Planarized Triarylfuranes: Stabilization by Structural Constraint and Their Plane-to-Bowl Conversion. *J. Am. Chem. Soc.* 2012, 134, 4529–4532.
(33) Parr, R. G.; Weitao, Y. Density-Functional Theory of Atoms and Molecules; Oxford University Press, 1989.
(34) Runge, E.; Gross, E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000.
(35) Vydrov, O. A.; Scuseria, G. E. Assessment of a long-range corrected hybrid functional. J. Chem. Phys. 2006, 125, No. 234109.
(36) Livshits, E.; Baer, R. A well-tempered density functional theory of electrons in molecules. Phys. Chem. Chem. Phys. 2007, 9, 2932–2941.
(37) Baer, R.; Livshits, E.; Salzner, U. Tuned Range-Separated Hybrids in Density Functional Theory. Annu. Rev. Phys. Chem. 2010, 61, 85–109.
(38) Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. Fundamental Gaps in Finite Systems from Eigenvalues of a Generalized Kohn-Sham Method. Phys. Rev. Lett. 2010, 105, No. 266802.
(39) Kronik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. J. Chem. Theory Comput. 2012, 8, 1515–1531.
(40) Grimme, S. Density functional calculations with configuration interaction for the excited states of molecules. Chem. Phys. Lett. 1996, 259, 128–137.
(41) Hirata, S.; Head-Gordon, M. Time-dependent density functional theory within the Tamm-Dancoff approximation. Chem. Phys. Lett. 1999, 314, 291–299.
(42) Sun, H.; Zhong, C.; Brédas, J.-L. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence. J. Chem. Theory Comput. 2015, 11, 3851–3858.
(43) Penfold, T. J. On Predicting the Excited-State Properties of Thermally Activated Delayed Fluorescence Emitters. J. Phys. Chem. C 2015, 119, 13535–13544.
(44) peach, M. J. G.; Williamson, M. J.; Tozer, D. J. Influence of Triplet Instabilities in TDDFT. J. Chem. Theory Comput. 2011, 7, 3578–3585.
(45) peach, M. J. G.; Tozer, D. J. Overcoming Low Orbital Overlap and Triplet Instability Problems in TDDFT. J. Phys. Chem. A 2012, 116, 9783–9789.
(46) Le Bahers, T.; Adamo, C.; Ciofini, I. A Qualitative Index of Spatial Extent in Charge-Transfer Excitations. J. Chem. Theory Comput. 2011, 7, 2498–2506.
(47) Jacquesmin, D.; Bahers, T. L.; Adamo, C.; Ciofini, I. What is the "best" atomic charge model to describe through-space charge-transfer excitations? Phys. Chem. Chem. Phys. 2012, 14, 5383–5388.
(48) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681.
(49) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian Software, version 09, revision D01; Gaussian, Inc.: Wallingford, CT, 2009.
(50) Chen, T.; Zheng, L.; Yuan, J.; An, Z.; Chen, R.; Tao, Y.; Li, H.; Xie, X.; Huang, W. Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach. Sci. Rep. 2015, 5, No. 10923.
(51) Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Duvenaud, D.; Maclaurin, D.; Schoenholz, S. S.; Silver, C. D.; Adams, R. P.; Chu, C.; Raffel, M. et al. Automation of computational chemistry to support discovery in the life sciences. Nat. Chem. 2016, 8, 402–411.