RESEARCH ARTICLE

Soret and Dufour effects on MHD peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions

Tasawar Hayat¹,²*, Hina Zahir²*, Anum Tanveer²*, Ahmad Alsaedi²

¹ Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan, ² Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

* These authors contributed equally to this work.

Abstract

The purpose of present article is to examine the peristaltic flow of Jeffrey fluid in a curved channel. An electrically conducting fluid in the presence of radial applied magnetic field is considered. Analysis of heat and mass transfer is carried out. More generalized realistic constraints namely the convective conditions are utilized. Soret and Dufour effects are retained. Problems formulation is given for long wavelength and low Reynolds number assumptions. The expressions of velocity, temperature, heat transfer coefficient, concentration and stream function are computed. Effects of emerging parameters arising in solutions are analyzed in detail. It is found that velocity is not symmetric about centreline for curvature parameter. Also maximum velocity decreases with an increase in the strength of magnetic field. Further it is noticed that Soret and Dufour numbers have opposite behavior for temperature and concentration.

Introduction

Undoubtedly the peristalsis of fluids in a channel is useful in several applications in engineering and biomechanics. The importance of topic can be recognized by its numerous physiological and industrial applications about swallowing food through esophagus, capillaries and arterioles, in the vasomotion of venules, in sanitary fluid transportation, toxic liquid transport in the nuclear industry, locomotion of worms, roller and finger pumps etc. Peristalsis is a radially symmetrical contraction and relaxation of muscles so as to propagate in a wave down a tube, in an anterograde way. In digestive tract (for instance the human gastrointestinal tract) a peristaltic wave is produced due to smooth muscle tissue contraction which forces a ball of food (entitled a bolus as in the upper gastrointestinal tract, in the esophagus and chyme in the stomach) across the tract. A non-Newtonian fluid model for the study of peristasis in a non-uniform rectangular duct has been investigated by Ellahi et. al [1]. Another useful article, peristaltic flow with thermal conductivity of water with copper nanofluid is done by Akbar et. al [2]. Peristaltic transport of magnetohydrodynamic (MHD) physiological fluids are important
in medicine and bioengineering. In fact electric current is induced due to movement of conducting liquid across the magnetic field. Fluid flow is modified because of mechanical forces arising in view of magnetic field on these currents. MHD compressor operation, blood pump machines, design of heat exchangers, flow meters, power generators, radar systems etc are based upon MHD principles. Such principles in bioengineering and medical sciences have been utilized for targeted drugs transport, bleeding reduction during surgeries, magnetic devices development for cell separation, magnetic tracers development, hyperthermia etc. Magneto therapy largely involve MHD non-Newtonian materials. In particular, the MHD peristaltic flows have relevance for problems about urinary tract, cells and tissues behavior modification and cure of gastrointestinal motility related disorders. Having all such in mind, some advancements have been made for peristaltic flows of MHD fluids in a channel (see [3–15]). It should be noted that much alteration in the past has been focused to such flows using constant applied magnetic field. Distinct from the previous studies are in present attempt will deal with the peristalsis through non-uniform applied magnetic field in the radial direction. We believe that such consideration in the peristaltic flows of physiological fluids is more realistic.

Impact of heat transfer in peristaltic transport of fluid is quite significant in food processing, oxygenation, hemodialysis, tissues conduction, heat convection for blood flow from the pores of tissues and radiation between environment and its surface. Mass transfer is useful in the aforementioned processes. Especially mass transfer cannot be under estimated when nutrients diffuse out from the blood to neighboring tissues. Further mass transfer involvement is quite prevalent in distillation, chemical impurities diffusion, membrane separation and combustion process. It should be noted that relationships between fluxes and driving potentials occur when both heat and mass transfer act simultaneously. Here temperature gradient generates energy flux. However mass flux and composition gradients are due to temperature gradient (which is called Soret effect). Thermal diffusion (or Dufour effect) is the energy flux induced by concentration gradient. Although sizeable information exists about peristaltic flows in presence of heat and mass transfer but Soret and Dufour effects are less emphasized (see [16–25]).

Previous literature on the topic witnesses that peristaltic flows of fluids in a curved geometrical configurations have been scarcely examined. To our knowledge there are only few attempts [26–34] which address this aspect. Also there is not any attempt available which investigates the effect of radial magnetic field on the peristaltic flow of Jeffrey liquid in a curved compliant wall channel. The objective here is to address this problem. Thus relevant equations are modeled. These equations are then reduced subject to lubrication approach. The resulting problems for heat and mass transfer in a curved channel with convective conditions are also considered. Function formulation are adopted. Stream results for stream function, temperature, concentration and heat transfer coefficient are obtained and discussed. Streamlines are plotted and studied.

Problem development

Consider an incompressible Jeffrey liquid in curved channel of thickness $2d$ and mean radius R. The wave is propagating along the walls of channel with velocity c. Let $u(r, x, t)$ and $v(r, x, t)$ represent the components of velocity in the axial x and radial r directions respectively (see refs. [28] and [29]). The peristaltic wave shape is represented by

$$r = \pm \eta(x, t) = \pm \left[d + a \sin \frac{2\pi}{L} (x - ct) \right],$$

and the physical geometry of the problem is given by Fig 1.
where a is the amplitude of wave, λ the wavelength and t the time. The displacements of the upper and lower walls are represented by $\pm \eta$ respectively. Further in radial direction we applied a magnetic field B by which the fluid is electrically conducting. The magnetic field in radial direction is defined by

$$B = \frac{B_0}{r + R} e_r,$$

where B_0 shows the magnetic field strength and e_r is unit vector in the radial direction. Utilization of Ohm’s law gives the following expression

$$J \times B = -\frac{\sigma B_0^2 u}{(r + R^*)} e_r,$$

in which J represents the current density, σ the electrical conductivity, u the velocity component in axial direction and e_r corresponds to unit vector in axial direction.

The constitutive equations for Jeffrey model are given by [9]:

$$\tau = -pI + S,$$

$$S = \frac{\mu}{1 + \beta} \left[1 + \frac{1}{r + R^*} \frac{d}{dt} \right] A_1,$$

and in component form, S can be written as follows:

$$S_{rr} = \frac{2\mu}{1 + \beta} \left[1 + \lambda_3 \left(\frac{\partial}{\partial t} + \frac{v}{r + R^*} + \frac{R^* u}{r + R^*} \frac{\partial}{\partial x} \right) \right] \frac{\partial v}{\partial r},$$

$$S_{rz} = S_{zr} = \frac{2\mu}{1 + \beta} \left[1 + \lambda_3 \left(\frac{\partial}{\partial t} + \frac{v}{r + R^*} + \frac{R^* u}{r + R^*} \frac{\partial}{\partial x} \right) \right] \left(\frac{\partial u}{\partial r} + \frac{R^*}{r + R^*} \frac{\partial v}{\partial x} - \frac{u}{r + R^*} \right),$$

$$S_{xx} = \frac{2\mu}{1 + \beta} \left[1 + \lambda_3 \left(\frac{\partial}{\partial t} + \frac{v}{r + R^*} + \frac{R^* u}{r + R^*} \frac{\partial}{\partial x} \right) \right] \left(\frac{R^*}{r + R^*} \frac{\partial u}{\partial x} + \frac{v}{r + R^*} \right),$$

Fig 1. Schematic picture.

doi:10.1371/journal.pone.0164854.g001
where \(\tau \) is the Cauchy stress tensor, \(p \) the pressure, \(I \) the identity tensor, \(S \) the extra stress tensor, \(A_1 \) the first Rivlin Ericksen tensor, \(\mu \) the fluid dynamic viscosity, \(\beta \) ratio of the relaxation to retardation times and \(\lambda_3 \) the retardation time.

The governing equations in absence of body forces are given by

Equation of Continuity:

\[
\frac{\partial v}{\partial r} + \frac{R'}{r + R'} \frac{\partial u}{\partial x} + \frac{v}{r + R'} = 0, \tag{7}
\]

Component of momentum equation in radial direction:

\[
\rho \left[\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r} + \frac{R' u}{r + R'} \frac{\partial v}{\partial x} - \frac{u^2}{r + R'} \right] = - \frac{\partial p}{\partial r} + \mu \frac{\partial}{\partial r} (S_{rr}) + \frac{\mu R'}{r + R'} \frac{\partial}{\partial x} (S_{rr}) - \frac{\mu}{r + R'} (S_{rr}). \tag{8}
\]

Component of momentum equation in axial direction:

\[
\rho \left[\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial r} + \frac{R' u}{r + R'} \frac{\partial u}{\partial x} + u v \right] = - \frac{R'}{r + R'} \frac{\partial p}{\partial x} + \mu \frac{\partial}{\partial r} (S_{rr}) + \frac{\mu R'}{r + R'} \frac{\partial}{\partial x} (S_{rr}) \nonumber \quad - \mu B_0^2 \frac{u}{(r + R')^2}. \tag{9}
\]

Energy equation comprising viscous dissipation and Dufour effects:

\[
\rho c_p \left[\frac{\partial T}{\partial t} + v \frac{\partial T}{\partial r} + \frac{R' u}{r + R'} \frac{\partial T}{\partial x} \right] T = \kappa \left[\frac{\partial^2 T}{\partial r^2} + \frac{1}{r + R'} \frac{\partial T}{\partial r} + \frac{R'}{(r + R')^2} \frac{\partial^2 T}{\partial x^2} \right] + \frac{Dk_T}{C_S} \left[\frac{\partial^2 C}{\partial r^2} + \frac{1}{r + R'} \frac{\partial C}{\partial r} + \frac{R'}{(r + R')^2} \frac{\partial^2 C}{\partial x^2} \right] + \text{tr}(LS), \tag{10}
\]

Concentration equation with Soret effect is

\[
\left[\frac{\partial}{\partial t} + v \frac{\partial}{\partial r} + \frac{R' u}{r + R'} \frac{\partial}{\partial x} \right] C = D \left(\frac{\partial^2 C}{\partial r^2} + \frac{1}{r + R'} \frac{\partial C}{\partial r} + \frac{R'}{(r + R')^2} \frac{\partial^2 C}{\partial x^2} \right) + \frac{Dk_T}{T_m} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r + R'} \frac{\partial T}{\partial r} + \frac{R'}{(r + R')^2} \frac{\partial^2 T}{\partial x^2} \right), \tag{11}
\]

In above equations \(\rho \) the density of fluid, \(\nu \) the kinematic viscosity, \(T \) the fluid temperature, \(C \) the concentration of fluid, \(T_0 \) and \(C_0 \) the temperature and concentration at the lower and upper walls respectively, \(c_p \) the specific heat at constant pressure, \(c_s \) the concentration susceptibility, \(D \) the mass diffusivity coefficient, \(k_T \) the thermal diffusion ratio and \(\kappa \) the thermal conductivity. Here \(L = \nabla V \) and \(T_m \) the mean fluid temperature.
The convective boundary conditions for the exchange of heat and concentration, no slip condition and compliant nature of the walls are described through the expressions

\[
\kappa \frac{\partial T}{\partial r} = -h_1(T - T_0), \text{ at } r = \eta, \\
\kappa \frac{\partial T}{\partial r} = -h_1(T_0 - T), \text{ at } r = -\eta,
\]

\[
u = 0, \text{ at } r = \pm \eta,
\]

\[
D \frac{\partial C}{\partial r} = -h_2(C - C_0), \text{ at } r = \eta, \\
D \frac{\partial C}{\partial r} = -h_2(C_0 - C), \text{ at } r = -\eta,
\]

In above expressions \(h_1\) and \(h_2\) are the heat and mass transfer coefficients at the upper and lower walls of the channel respectively, \(\tau\) the elastic tension in the membrane, \(m^*_r\) the mass per unit area and \(d^*\) the coefficient of viscous damping.

On setting velocity in terms of stream function in polar coordinates

\[
u = -\frac{\partial \psi}{\partial r}, \quad \frac{R}{r + R^*} \left[-\frac{\partial^2}{\partial x^2} + m^*_r \frac{\partial}{\partial x} \frac{\partial}{\partial t} + d^* \frac{\partial^2}{\partial t^2} \right] \eta = -\rho \left[\frac{\partial u}{\partial t} + \nu \frac{\partial u}{\partial r} + \frac{R}{r + R^*} \frac{\partial}{\partial x} \frac{\partial}{\partial x} + \frac{uv}{r + R^*} \right] \\
+ \left(\frac{1}{r + R^*} \right)^2 \frac{\partial}{\partial r} \left((r + R^*)^2 \phi \right) + \frac{R}{r + R^*} \frac{\partial}{\partial x} \phi, \text{ at } r = \pm \eta.
\]

The long wavelength and low Reynolds number assumptions are commonly used in the
analysis of peristalsis flow [35–38]. Using this approach Eqs (5)–(10) becomes

$$\frac{\partial p}{\partial r} = 0,$$

$$\frac{-k}{r + k} \frac{\partial p}{\partial x} + \frac{1}{(r + k)^2} \frac{\partial}{\partial r} [(r + k) \frac{\partial}{\partial r} \phi + H^2 \frac{\psi_r}{(r + k)^2}] = 0,$$

$$\frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r + k} \frac{\partial \theta}{\partial r} + Pr Du \left(\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r + k} \frac{\partial \phi}{\partial r} \right) + Br \left(\frac{1}{r + k} \frac{\partial \psi_r}{\partial r} - \frac{\partial^2 \psi_r}{\partial r^2} \right) S_\alpha = 0,$$

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r + k} \frac{\partial \phi}{\partial r} + Sc Sr \left(\frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r + k} \frac{\partial \theta}{\partial r} \right) = 0,$$

with the dimensionless conditions

$$\eta = 1 + \epsilon \sin 2\pi(x - t),$$

$$\frac{\partial \theta}{\partial r} + Bi \phi = 0 \text{ at } r = \eta,$$

$$\frac{\partial \theta}{\partial r} - Bi \phi = 0 \text{ at } r = -\eta,$$

$$\psi_r = 0 \text{ at } r = \pm \eta,$$

$$\frac{\partial \phi}{\partial r} + Bi \phi = 0 \text{ at } r = \eta,$$

$$\frac{\partial \phi}{\partial r} - Bi \phi = 0 \text{ at } r = -\eta,$$

$$\frac{k}{r + k} \left[\frac{E_1}{\partial \xi^2} + E_2 \frac{\partial^3}{\partial x \partial r^2} + E_3 \frac{\partial^2}{\partial x \partial r} \right] \eta = \frac{1}{(r + k)^2} \frac{\partial}{\partial r} [(r + k) \frac{\partial}{\partial r} \phi]$$

$$+ \frac{H^2}{(r + k)^2} \psi_r \text{ at } r = \pm \eta.$$

In above equations, δ corresponds to the dimensionless wave number, Re the Reynolds number, Pr the Prandtl number, H the Hartmann number, $E_i (i = 1-3)$ the non-dimensional elasticity parameters, E the Eckert number, Br the Brinkman number, Sr the Soret number, Du the Dufour number, ϵ the amplitude ratio parameter and $Bi \in (1, 2)$ the heat and mass transfer Biot numbers respectively. The values of these parameters can be defined as follows:

$$\delta = \frac{d}{\lambda}, \quad Re = \frac{cd}{\nu}, \quad Pr = \frac{\mu c_p}{\kappa_c}, \quad \epsilon = \frac{a}{d}, \quad E = \frac{c^2}{T_0 c_p},$$

$$E_1 = -\frac{\tau \nu \lambda^2}{\kappa_c}, \quad E_2 = \frac{m \nu \lambda^2}{\kappa_c}, \quad E_3 = \frac{d^2 \phi}{\mu \lambda^2}, \quad Br = E Pr, \quad Sc = \frac{\mu}{\rho \lambda^2},$$

$$Bi_1 = \frac{h_1 d}{\kappa_c}, \quad Bi_2 = \frac{h_2 d}{D}, \quad H^2 = \frac{\sigma B_0^2}{\mu}, \quad Sr = \frac{\rho D k_c T_0}{\mu T_0 C_0}, \quad Du = \frac{D k_c C_0}{\mu C_0 T_0}. $$

$$ (27)$$
Through Eqs (17) and (18) we have
\[
\frac{1}{(r+k)^2} \frac{\partial}{\partial r} \left[r(r+k)^2 \frac{\partial}{\partial r} \left[S_{\omega} \right] \right] = 0.
\]
(28)
where non-dimensional tensor is
\[
S_{\omega} = \frac{2}{1+\beta} \left[-\psi_{\omega} + \frac{\psi_r}{r+k} \right].
\]

Method of solution
The closed form solutions of Eqs (20), (21) and (28) are
\[
\psi = (k+r)^{\frac{1}{2}} \sqrt{1+(1+\beta)H} D_1 + (k+r)^{-\frac{1}{2}} \sqrt{1+(1+\beta)H} D_2 + krD_3 + \frac{1}{2} r^2 D_3 + D_4,
\]
(29)
\[
\theta = C_1 C_2 (k+r)^2 \sqrt{1+(1+\beta)H} + C_2^2 C_3 (k+r)^{-2} \sqrt{1+(1+\beta)H} A_2 + A_1 \log[k+r] - C_i C_j C_5 \log[k+r]^2,
\]
(30)
\[
\phi = B_1 \theta [r] + B_2 \log[k+r] + B_3
\]
(31)
and the heat transfer coefficient is defined by
\[
Z = \eta \theta \eta,
\]
where \(A_i (i = 1 - 2), B_j (j = 1 - 3), D_l (l = 1 - 4), C_m (m = 1 - 5)\) and \(Z\) are mentioned in appendix.

Results and discussion
In this section the results of velocity, temperature, concentration, heat transfer coefficient and streamlines are discussed physically.

0.1 Velocity profile
The impacts of elasticity parameters \(E_1\), \(E_2\) and \(E_3\) on the velocity distribution is presented in Fig 2. The obtained results illustrate the increase in velocity via larger wall parameters \(E_1\) and \(E_2\). The velocity decays when parameter \(E_3\) is decreased. Because of elasticity of walls there is less resistance to flow and thus velocity increases. The variations of Hartmann number \(H\) on velocity profile are depicted in Fig 3. Velocity profile decreases due to an applied magnetic field. This magnetic field creates a resistive force similar to drag force that acts in opposite direction of fluid motion. The results for the ratio of relaxation and retardation times \(\beta\) are presented in Fig 4. The graph indicates the increase in velocity when the ratio of relaxation and retardation times \(\beta\) enhances. It is possible only when there is increase in relaxation time and decrease in retardation time. Fig 5 indicates an increase in velocity for larger curvature parameter. In fact through increase in curvature parameter the velocity is tilted towards lower wall.

0.2 Temperature
Figs 6–16 are developed for the physical interpretation of embedded parameters on temperature distribution \(\theta\). From Figs 6 and 7 it is observed that temperature rises inside the channel for Dufour \(Du\) and Soret \(Sr\) effects. As increase in \(Du\) or \(Sr\) shows decrease in viscosity and so
velocity increases. The fast moving fluid particles with larger molecular vibrations rises the temperature. The results plotted in Fig 8 perceive the increasing behavior of Prandtl number Pr due to increase in specific heat of fluid. Fig 9 shows an increase in temperature by increasing Schmidt number Sc. Clearly Sc causes reduction in viscosity. Decrease in temperature with increasing values of heat transfer Biot number Bi_1 is seen through Fig 10. It is due to the fact that thermal conductivity of fluid reduces with an increase in Bi_1 and so fluid temperature drops. On the other hand an increase in mass transfer Biot number Bi_2 does not effect temperature of fluid (see Fig 11). The behavior of Hartmann number H is decreasing (see Fig 12).

Since temperature and velocity are in direct relation so similar results are obtained. It is seen from Fig 13 that with an increase in ratio of relaxation and retardation times parameter β the temperature increases. Temperature profile is an increasing function of Brinkman number Br and curvature parameter k (see Figs 14 and 15). It is in view of the fact that Brinkman number involves the viscous dissipation effects that are responsible for the heat generation inside the channel. In Fig 16 the temperature increases for wall parameters which is similar to velocity profile. The results are found in good agreement with those obtained in limiting sense by Hina et al [28].

Fig 2. Variation in velocity u for wall parameters E_1, E_2, E_3 when $\varepsilon = 0.1$, $t = 0.2$, $x = 0.3$, $k = 3$, $\beta = 0.4$ and $H = 0.5$. doi:10.1371/journal.pone.0164854.g002
0.3 Heat transfer coefficient

The graphs displayed in Figs 17–27 show oscillatory behavior of \(Z \) due to propagation of peristaltic waves. It is indicated from Figs 17 and 18 that for increasing Soret \(Sr \) and Dufour \(Du \) numbers the heat transfer increases inside the channel. The heat and mass transfer Biot numbers \(Bi_1 \) and \(Bi_2 \) give no net change on absolute value of heat transfer coefficient (see Figs 19 and 20). Figs 21 and 22 also show increasing behavior of heat transfer for larger Prandtl \(Pr \) and Schmidt \(Sc \) numbers respectively. The Hartmann number \(H \) reduces the magnitude of heat transfer coefficient \(Z \) near centerline of channel whereas it increases near the boundaries (see Fig 23). However \(\beta \) increases the heat transfer coefficient near centerline and it decreases along the boundary walls (see Fig 24). Fig 25 elucidates that magnitude of heat transfer coefficient enhances for wall parameters \(E_i (i = 1, 2) \) and it reduces for \(E_3 \). The obtained results from Figs 26 and 27 show increasing behavior of heat transfer coefficient for larger values of \(k \) and Brinkman number \(Br \).
0.4 Concentration

From Figs (28)–(38) the concentration profiles have been mentioned graphically. Opposite behaviour for concentration profile is noted when compared with temperature. The overall effect of concentration distribution is greater inside the walls of channel. In clinical practice the nutrients diffuse out of the blood vessels to neighboring tissues and thickens the mass of vessels. In Figs 28 and 29 the concentration decreases with the increase in Soret and Dufour numbers. Moreover the effect is also decreasing with the increase in Prandtl and Schmidt numbers (see Figs 30 and 31). By increasing Schmidt Sc number the mass diffusion decreases which show decrease in concentration. The heat transfer Biot number Bi_1 has negligible effect on concentration distribution (see Fig 32). Increasing effect of mass transfer Biot number Bi_2 on concentration distribution has been observed in Fig 33 when compared with Bi_1. The obtained result from Fig 34 show that concentration enhances with increasing values of Hartmann number. In Fig 35 the concentration decreases for wall parameters which is opposite to temperature. Figs 36–38 show similar behavior of concentration distribution for increasing values of ratio of relaxation and retardation times parameter β, curvature parameter k and

$$\beta = 0, 0.3, 0.5, 0.7$$
Brinkman number Br. It is because of the fact that the concentration distribution is higher when compared to straight channel in the upper half portion.

0.5 Streamlines pattern

Fig 39(a) and 39(b) reveal that increasing values of Hartmann number H decrease the number of circulating streamlines in the lower half of the channel whereas size of bolus enhances. However the pattern of streamlines remain unchanged in the upper half of the channel. It is noticed from Fig 40(a) and 40(b) that larger values of β increases the number of circulating streamlines in the upper half of channel whereas size of bolus contracts.

Concluding remarks

Peristaltic flow of Jeffrey fluid in curved channel with compliant walls is studied in the presence of convective boundary conditions and radial magnetic field effect. The major findings of presented analysis are listed below:
• Similar response of wall parameters on the velocity, temperature and heat transfer coefficient is noticed inside the curved channel.

• Temperature is increasing function of Brinkman, Soret, Dufour, Prandtl, and Schmidt numbers.

• Temperature decreases for larger heat and mass transfer Biot numbers.

• Concentration drops with the increase in Soret, Dufour, Prandtl, Schmidt and Brinkman numbers and it increases for heat and mass transfer Biot numbers.

• Opposite effects of Hartmann number and ratio of relaxation and retardation times parameter β are observed for the velocity, temperature, concentration and heat transfer coefficient.

• Similar effects of curvature parameter are seen on the velocity, temperature, concentration and heat transfer coefficient.

• Behavior of streamline pattern is increasing with ratio of relaxation and retardation times parameter.

Fig 6. Variation in temperature θ for Soret number Sr when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Bi_1 = 10$, $Bi_2 = 0.5$, $H = 0.8$, $Du = 0.5$, $Pr = 2$ and $Sc = 0.3$.

doi:10.1371/journal.pone.0164854.g006
• The Hartmann number on streamline pattern has opposite effects when compared with the ratio of relaxation and retardation times parameter.

Appendix

\[D_1 = C_1(1 + \sqrt{1 + H^2(1 + \beta)}) \], \[D_2 = C_2(1 - \sqrt{1 + H^2(1 + \beta)}) \], \[D_3 = \frac{L}{H^2(1 + \beta)} \], \[D_4 = 0 \],

\[C_1 = -\frac{L(k - \eta) \sqrt{1 + H^2 + \beta \eta^2} - (k - \eta) \sqrt{1 + H^2 + \beta \eta^2} \eta - k(k + \eta) \sqrt{1 + H^2 + \beta \eta^2} - (k + \eta) \sqrt{1 + H^2 + \beta \eta^2}}{H^2(1 + \beta)((k - \eta)^2 \sqrt{1 + H^2 + \beta \eta^2} - (k + \eta)^2 \sqrt{1 + H^2 + \beta \eta^2}} \],

Fig 7. Variation in temperature \(\theta \) for Dufour number \(\text{Du} \) when \(\epsilon = 0.2, t = 0.1, x = 0.2, k = 2, E_1 = 0.3, E_2 = 0.2, E_3 = 0.1, Br = 2, \beta = 0.5, Bi_1 = 10, Bi_2 = 0.5, Sr = 0.5, Pr = 2, Sc = 0.3 \) and \(H = 0.8 \).

doi:10.1371/journal.pone.0164854.g007
Fig 8. Variation in temperature θ for Prandtl number Pr when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Bi_1 = 10$, $Bi_2 = 0.5$, $H = 0.8$, $Du = 0.5$, $Sr = 0.5$ and $Sc = 0.3$.

doi:10.1371/journal.pone.0164854.g008

$$C_2 = -\frac{L(k - \eta)\sqrt{1 + H^2 + \beta H^2} (k + \eta)^{\frac{1}{2} + \beta H^2} (k(k - \eta)\sqrt{1 + H^2 + \beta H^2} + (k - \eta)\sqrt{1 + H^2 + \beta H^2})}{H^3(1 + \beta)((k - \eta)^{1/2} + (k + \eta)^{1/2})},$$
Fig 9. Variation in temperature θ for Schmidt number Sc when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Bi_1 = 10$, $Bi_2 = 0.5$, $H = 0.8$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g009

\[C_3 = Br \left(4(-1 + Du \ Pr \ ScSr)(1 + \beta)(1 + H^2 + \beta H^2)^{3/2} \right)^{-1} \]

\[(-2 - 2H^2 - 2H^2\beta + 2\sqrt{1 + H^2(1 + \beta)} + H^2\sqrt{1 + H^2(1 + \beta)} + H^2\beta\sqrt{1 + H^2(1 + \beta)}) \]

\[C_4 = Br \left(4(-1 + Du \ Pr \ ScSr)(1 + \beta)(1 + H^2 + \beta H^2)^{3/2} \right)^{-1} \]

\[(2 + 2H^2 + 2H^2\beta + 2\sqrt{1 + H^2(1 + \beta)} + H^2\sqrt{1 + H^2(1 + \beta)} + H^2\beta\sqrt{1 + H^2(1 + \beta)}) \]

\[C_5 = BrH^2(-1 + Du \ Pr \ ScSr)^{-1} \]
\[A_1 = -\frac{1}{Bi_i\left(\frac{1}{k - \eta} + \frac{1}{k + \eta} - Bi_i\log(k - \eta) + Bi_i\log(k + \eta)\right)} \]

\[\begin{align*}
[a, Bi, Br \{ \frac{1}{(1 + \beta)(1 + H^2(1 + \beta))^2} \},
& -2(-1 + \sqrt{1 + H^2(1 + \beta)})))(k - \eta)2\sqrt{1 + H^2 + \beta H^2} \} - Bi_i C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)})
\]

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k - \eta)2\sqrt{1 + H^2 + \beta H^2} \} - Bi_i C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)})
\]

\[+ \frac{1}{(1 + \beta)(1 + H^2(1 + \beta))}(-2C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)}))
\]

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k - \eta)2\sqrt{1 + H^2 + \beta H^2} \} - Bi_i C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)})
\]

\[+ \frac{1}{(1 + \beta)(1 + H^2(1 + \beta))}(-2C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)}))
\]

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k - \eta)2\sqrt{1 + H^2 + \beta H^2} \} - Bi_i C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)})
\]

\[+ \frac{1}{(1 + \beta)(1 + H^2(1 + \beta))}(-2C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)}))
\]

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k - \eta)2\sqrt{1 + H^2 + \beta H^2} \} - Bi_i C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)})
\]

\[+ \frac{1}{(1 + \beta)(1 + H^2(1 + \beta))}(-2C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)}))
\]

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k - \eta)2\sqrt{1 + H^2 + \beta H^2} \} - Bi_i C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)})
\]

\[+ \frac{1}{(1 + \beta)(1 + H^2(1 + \beta))}(-2C_2^2(2(1 + \sqrt{1 + H^2(1 + \beta)})\}

\[- \frac{8C_1 C_2 H^2 \log(k - \eta)}{k - \eta} + 4Bi_i C_1 C_2 H^2 \log(k - \eta)^2} \}

\[+ \frac{1}{4(-1 + Du Pr Sc Sr)(1 + \beta)(1 + H^2 + \beta H^2)^2} \}

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k + \eta)2\sqrt{1 + H^2 + \beta H^2} \}

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k + \eta)2\sqrt{1 + H^2 + \beta H^2} \}

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k + \eta)2\sqrt{1 + H^2 + \beta H^2} \}

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k + \eta)2\sqrt{1 + H^2 + \beta H^2} \}

\[+ H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})))(k + \eta)2\sqrt{1 + H^2 + \beta H^2} \}

\[- \frac{2Br C_1 C_2 H^2 \log(k + \eta)}{(-1 + Du Pr Sc Sr)(k + \eta) + \frac{Bi_i Br C_1 C_2 H^2 \log(k + \eta)^2}{1 - Du Pr Sc Sr}} \},
\]
\[
A_2 = \frac{1}{B_i} \left\{ \frac{1}{4(-1 + Du Pr ScSr)(1 + \beta)(1 + H^2 + \beta H^2)^2} \left(B_i Br C_2 H^2 (1 + \beta)(1 + \sqrt{1 + H^2(1 + \beta)}) + (1 + \sqrt{1 + H^2(1 + \beta)})(k + \eta)^{-\sqrt{1 + H^2(1 + \beta)}} + B_i Br C_2 (1 + \beta)(-2 + \sqrt{1 + H^2(1 + \beta)}) + 2(-1 + \sqrt{1 + H^2(1 + \beta)})(k + \eta)^{2\sqrt{1 + H^2(1 + \beta)}} \right) + \frac{1}{2(-1 + Du Pr ScSr)(1 + \beta)(1 + H^2 + \beta H^2)^2} \left(-Br C_2 (2(1 + \sqrt{1 + H^2(1 + \beta)}) + H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})(k + \eta)^{-2\sqrt{1 + H^2(1 + \beta}}} + Br C_2 (1 + \beta)(-2 + 2(-1 + \sqrt{1 + H^2(1 + \beta)})(k + \eta)^{-1 + 2\sqrt{1 + H^2(1 + \beta)}} - 2Br C_2 C_1 H^2 Log[k + \eta] \right) \left(-1 + Du Pr ScSr)(k + \eta) + \frac{B_i Br C_2 C_1 H^2 Log[k + \eta]^2}{1 - Du Pr ScSr} \right) + 1 \right) - \frac{1}{B_i} \left\{ \frac{1}{(1 + \beta)(1 + H^2 + \beta H^2)^2} \left(-B_i C_2 (1 + \beta)(-2 + \sqrt{1 + H^2(1 + \beta)}) + H^2(1 + \beta)(2 + \sqrt{1 + H^2(1 + \beta)})(k + \eta)^{-2\sqrt{1 + H^2(1 + \beta)}} + C_2 (1 + \beta)(-2 + \sqrt{1 + H^2(1 + \beta)})(k + \eta)^{-1 + 2\sqrt{1 + H^2(1 + \beta)}} + 2(-1 + \sqrt{1 + H^2(1 + \beta)})(k + \eta)^{-1 + 2\sqrt{1 + H^2(1 + \beta)}} - 8C_2 C_1 H^2 Log[k + \eta] \right) \right\} \left(\frac{1}{k - \eta} + \frac{B_i Log[k - \eta] + B_i Log[k + \eta]}{1 + \eta} \right) \right\} \right),
\]
Fig 10. Variation in temperature θ for heat transfer Biot number Bi_i when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Sc = 0.3$, $B_2 = 0.5$, $H = 0.8$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g010

\begin{align*}
B_1 &= 2Bi_i k Sc Sr - Bi_i^2 k^2 Sc Sr \log[k - \eta] + Bi_i^2 \eta^2 Sc Sr \log[k + \eta] \\
&\quad + Bi_i^2 k^2 Sc Sr \log[k + \eta] - Bi_i^2 \eta^2 Sc Sr \log[k - \eta], \\
B_2 &= Bi_i^2 k^2 Sc Sr \theta[-\eta] - Bi_i^2 k^2 Sc Sr \theta[-\eta] + Bi_i^2 \eta^2 Sc Sr \theta[-\eta] - Bi_i^2 \eta^2 Sc Sr \theta[-\eta] \\
&\quad + Bi_i^2 k^2 Sc Sr \theta[-\eta] - Bi_i^2 k^2 Sc Sr \theta[-\eta] - Bi_i^2 \eta^2 Sc Sr \theta[-\eta] + Bi_i^2 \eta^2 Sc Sr \theta[-\eta] \\
&\quad - Bi_i^2 \eta^2 Sc Sr \theta[\eta] - Bi_i^2 \eta^2 Sc Sr \theta[\eta] + Bi_i^2 \eta^2 Sc Sr \theta[\eta] - Bi_i^2 \eta^2 Sc Sr \theta[\eta], \\
B_3 &= Bi_i k Sc Sr \theta[-\eta] - Bi_i k Sc Sr \theta[-\eta] - Bi_i Sc Sr \eta[-\eta] + Bi_i^2 Sc Sr \eta[-\eta] \\
&\quad + Bi_i k Sc Sr \theta[\eta] - Bi_i k Sc Sr \theta[\eta] + Bi_i \eta^2 Sc Sr \theta[\eta] - Bi_i \eta^2 Sc Sr \theta[\eta] \\
&\quad - Bi_i k Sc Sr \log[k - \eta] \theta[\eta] + Bi_i^2 k^2 Sc Sr \log[k - \eta] \theta[\eta] + Bi_i^2 \eta^2 Sc Sr \log[k - \eta] \theta[\eta] \\
&\quad - Bi_i^2 \eta^2 Sc Sr \log[k - \eta] \theta[\eta] + (Bi_i (-2k + Bi_i k^2 \log[k - \eta] - Bi_i k^2 \log[k + \eta] + Bi_i \eta^2 \log[k + \eta]),
\end{align*}
\[Z = \eta_A \left[\frac{A}{k + \eta} + \frac{1}{2(-1 + Du Pr ScSr)(1 + \beta)(1 + H^2 + \beta H^2)} \right] \]

\[\{ BrC_1^2(-2 - 2H^2 - 2H^2 \beta + 2 \sqrt{1 + H^2(1 + \beta)})(k + \eta)^{-1/2(\beta^2 + \beta H^2)} \} \]

\[+ H^2 \sqrt{1 + H^2(1 + \beta)} + H^2 \beta \sqrt{1 + H^2(1 + \beta)}(k + \eta)^{-1/2(\beta^2 + \beta H^2)} \]

\[- \frac{1}{2(-1 + Du Pr ScSr)(1 + \beta)(1 + H^2 + \beta H^2)} \{ BrC_2^2(2 + 2H^2 + 2H^2 \beta) \]

\[+ 2\sqrt{1 + H^2(1 + \beta)} + H^2 \sqrt{1 + H^2(1 + \beta)} + H^2 \beta \sqrt{1 + H^2(1 + \beta)}(k + \eta)^{-1/2(\beta^2 + \beta H^2)} \}

\[- \frac{2BrC_1C_2H^2 \log[k + \eta]}{(-1 + Du Pr ScSr)(k + \eta)}, \]

\[a_1 = (1/4(-1 + Du Pr ScSr)). \]
Fig 12. Variation in temperature θ for Hartmann number H when $s = 0.2$, $t = 0.1$, $x = 0.2$, $k = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g012
Fig 13. Variation in temperature θ for ratio of relaxation and retardation times parameter β when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $H = 0.8$, $Bil_1 = 10$, $Sc = 0.3$, $Bil_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g013
Fig 14. Variation in temperature θ for Brinkman number Br when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $\beta = 0.5$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g014
Fig 15. Variation in temperature θ for curvature parameter k when $\kappa = 0.2$, $t = 0.1$, $x = 0.2$, $Br = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $\beta = 0.5$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g015
Fig 16. Variation in temperature θ for wall parameters E_1, E_2, E_3 when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $\beta = 0.5$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$, $Pr = 2$ and $H = 0.5$.

doi:10.1371/journal.pone.0164854.g016
Fig 17. Variation in heat transfer coefficient Z for Soret number S_{r} when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_{1} = 0.3$, $E_{2} = 0.2$, $E_{3} = 0.1$, $\beta = 0.5$, $H = 0.8$, $B_{1} = 10$, $S_{c} = 0.3$, $B_{2} = 0.5$, $D_{u} = 0.5$, $H = 0.8$ and $P_{r} = 2$.

doi:10.1371/journal.pone.0164854.g017
Fig 18. Variation in heat transfer coefficient Z for Dufour number Du when $\chi = 0.2$, $\tau = 0.1$, $x = 0.2$, $k = 2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $\beta = 0.5$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $H = 0.8$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g018
Fig 19. Variation in heat transfer coefficient Z for heat transfer Biot number Bi when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 0.1$, $\beta = 0.5$, $Sc = 0.3$, $Bi_2 = 0.5$, $H = 0.8$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g019
Fig 20. Variation in heat transfer coefficient Z for mass transfer Biot number B_i^2 when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 0.1$, $\beta = 0.5$, $B_i = 10$, $Sc = 0.3$, $H = 0.8$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g020
Fig 21. Variation in heat transfer coefficient Z for Prandtl number Pr when $\varepsilon = 0.2, \, t = 0.1, \, x = 0.2, \, k = 5, \, E_1 = 0.3, \, E_2 = 0.2, \, E_3 = 0.1, \, Br = 0.1, \, \beta = 0.5, \, Bi_1 = 10, \, Bi_2 = 0.5, \, H = 0.8, \, Du = 0.5, \, Sr = 0.5$ and $Sc = 0.3$.

doi:10.1371/journal.pone.0164854.g021
Fig 22. Variation in heat transfer coefficient Z for Schmidt number Sc when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 0.1$, $\beta = 0.5$, $Bl_1 = 10$, $Bl_2 = 0.5$, $H = 0.8$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g022
Fig 23. Variation in heat transfer coefficient Z for Hartmann number H when $t = 0.2$, $x = 0.1$, $k = 0.2$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 0.1$, $\beta = 0.5$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g023
Fig 24. Variation in heat transfer coefficient Z for ratio of relaxation and retardation times parameter β when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 0.1$, $H = 0.8$, $Bl_1 = 10$, $Sc = 0.3$, $Bl_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g024
Fig 25. Variation in heat transfer coefficient Z for wall parameters E_1, E_2, E_3 when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $Br = 0.1$, $\beta = 0.5$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g025
Fig 26. Variation in heat transfer coefficient Z for curvature parameter k when $\kappa = 0.2$, $t = 0.1$, $x = 0.2$, $\beta = 0.5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 0.1$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g026
Fig 27. Variation in heat transfer coefficient Z for Brinkman number Br when $r = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $\beta = 0.5$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 0.5$, $Du = 0.5$, $Sr = 0.5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g027
Fig 28. Variation in concentration ϕ for Soret number Sr when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $\beta = 0.5$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 10$, $Du = 15$, $H = 0.8$, $Pr = 2$ and $Br = 2$.

doi:10.1371/journal.pone.0164854.g028
Fig 29. Variation in concentration ϕ for Dufour number Du when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $\beta = 0.5$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 10$, $H = 0.8$, $Sr = 5$, $Pr = 2$ and $Br = 2$.

doi:10.1371/journal.pone.0164854.g029
Fig 30. Variation in concentration ϕ for Prandtl number Pr when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Bl_1 = 10$, $Bl_2 = 10$, $H = 0.8$, $Du = 15$, $Sr = 5$ and $Sc = 0.3$.

doi:10.1371/journal.pone.0164854.g030
Fig 31. Variation in concentration ϕ for Schmidt number Sc when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Bi_1 = 10$, $Bi_2 = 10$, $H = 0.8$, $Du = 15$, $Sr = 5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g031
Fig 32. Variation in concentration ϕ for heat transfer Biot number Bi, when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Sc = 0.3$, $Br_1 = 10$, $H = 0.8$, $Du = 15$, $Sr = 5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g032
Fig 33. Variation in concentration ϕ for mass transfer Biot number Bi_2 when $\epsilon = 0.2, t = 0.1, x = 0.2, k = 5, E_1 = 0.3, E_2 = 0.2, E_3 = 0.1, Br = 2, \beta = 0.5, Bi_1 = 10, Sc = 0.3, H = 0.8, Du = 15, Sr = 5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g033
Fig 34. Variation in concentration ϕ for Hartmann number H when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $\beta = 0.5$, $Bl_1 = 10$, $Sc = 0.3$, $Bl_2 = 10$, $Du = 15$, $Sr = 5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g034
Fig 35. Variation in concentration ϕ for ratio of relaxation and retardation times parameter β when $\eta = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $Br = 2$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 10$, $Du = 15$, $Sr = 5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g035
Fig 36. Variation in concentration ϕ for wall parameters E_1, E_2, E_3 when $\varepsilon = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $H = 0.8$, $Br = 2$, $\beta = 0.5$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 10$, $Du = 15$, $Sr = 5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g036
Fig 37. Variation in concentration ϕ for curvature parameter k when $\epsilon = 0.2$, $t = 0.1$, $x = 0.2$, $\beta = 0.5$, $E_1 = 0.3$, $E_2 = 0.2E_3 = 0.1$, $Br = 2$, $H = 0.8$, $Bl_1 = 10$, $Sc = 0.3$, $Bl_2 = 10$, $Du = 15$, $Sr = 5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g037
Fig 38. Variation in concentration ϕ for Brinkman number Br when $\gamma = 0.2$, $t = 0.1$, $x = 0.2$, $k = 5$, $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.1$, $\beta = 0.5$, $H = 0.8$, $Bi_1 = 10$, $Sc = 0.3$, $Bi_2 = 10$, $Du = 15$, $Sr = 5$ and $Pr = 2$.

doi:10.1371/journal.pone.0164854.g038
Fig 39. Streamlines for Hartmann number H when $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.3$, $\epsilon = 0.1$, $t = 0$, $\beta = 0.4$, $k = 4$, (a) $H = 4.5$ (b) $H = 6.5$.

doi:10.1371/journal.pone.0164854.g039

Fig 40. Streamlines for relaxation and retardation times parameter when $E_1 = 0.3$, $E_2 = 0.2$, $E_3 = 0.3$, $\epsilon = 0.1$, $t = 0$, $H = 5$, $k = 4$, (a) $\beta = 0.4$, (b) $\beta = 1$.

doi:10.1371/journal.pone.0164854.g040
Author Contributions

Conceptualization: TH HZ AT AA.
Data curation: TH HZ AT AA.
Formal analysis: TH HZ AT AA.
Funding acquisition: TH HZ AT AA.
Investigation: TH HZ AT AA.
Methodology: TH HZ AT AA.
Project administration: TH HZ AT AA.
Resources: TH HZ AT AA.
Software: TH HZ AT AA.
Supervision: TH HZ AT AA.
Validation: TH HZ AT AA.
Writing – original draft: TH HZ AT AA.
Writing – review & editing: TH HZ AT AA.

References

1. Ellahi R, Bhatti MM, Fetecau C, Vafai K, Peristaltic Flow of Couple Stress Fluid in a Non-Uniform Rectangular Duct Having Compliant Walls. Commun Theor Phys. 2016; 65: (2016) 66–72. doi: 10.1088/0253-6102/65/1/66
2. Akbar NS, Raza M, Ellahi R, Peristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generation. Results Phy. 2015; 5: 115–124. doi: 10.1016/j.rinp.2015.04.003
3. Hameed M, Khan AA, Ellahi R, Raza M, Study of magnetic and heat transfer on the peristaltic transport of a fractional second grade fluid in a vertical tube. Eng Tech Int J. 2015; 496–502.
4. Pandey SK, Chaube MK, Peristaltic flow of a micropolar fluid through a porous medium in the presence of an external magnetic field. Comm Nonlinear Sci Numer Simulation. 2011; 16: 3591–3601. doi: 10.1016/j.cnsns.2011.01.003
5. Sinha A, Shit GC, Ranjit NK, Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity slip and temperature jump. Alex Eng J. 2015; 54: 691–704. doi: 10.1016/j.aej.2015.03.030
6. Kalantari A, Sadeghy K, Sadeqi S, Peristaltic flow of non-Newtonian fluids through channels. Annual transaction of the norden rheology society. 2013.
7. Nadeem S, Akram S, Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel. Math Comput Modeling. 2010; 52: 107–119. doi: 10.1016/j.mcm.2010.02.001
8. Abd Elmaboud Y, Influence of induced magnetic field on peristaltic flow in an annulus. Comm Nonlinear Sci Numer Simulation. 2012; 17: 685–698. doi: 10.1016/j.cnsns.2011.05.039
9. Abd-Alla AM, Abo-Dahab SM, Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel. J Magn Magn. Mater. 2015; 374: 680–689. doi: 10.1016/j.jmmm.2014.08.091
10. Gad NS, Effect of Hall currents on interaction of pulsatile and peristaltic induced flows of a particle-fluid suspension. Appl Math Comp. 2011; 217: 4313–4320. doi: 10.1016/j.amc.2010.08.016
11. Wang Y, Ali N, Hayat T, Oberlack M, Peristaltic motion of a magnetohydrodynamic micropolar fluid in a tube. Appl Math Model. 2011; 35: 3737–3750. doi: 10.1016/j.apm.2011.02.030
12. Ellahi R, Hussain F, Simultaneous effects of MHD and partial slip on peristaltic flow of Jeffrey fluid in a rectangular duct. J Magn Magn Mater. 2015; 393: 284–292. doi: 10.1016/j.jmmm.2015.05.071
13. Bhatti MM, Riaz A, Ellahi R, Effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium. J Porous Media. 2014; 17: 143–157. doi: 10.1615/JPorMedia.v17i2.50

14. Akbar NS, Raza M, Ellahi R, Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. J Magn Magn Mater. 2015; 381: 405–415. doi: 10.1016/j.jmmm.2014.12.087

15. Vafai K, Khan AA, Sajjad S, Ellahi R, The study of peristaltic motion of Third grade fluid under the effects of Hall current and heat transfer. J Zeit Natur A. 2015; 70: 281–293.

16. Abd-Alla AM, Abo-Dahab SM, El-Shahrany HD, Influence of heat and mass transfer, initial stress and radially varying magnetic field on the peristaltic flow in an annulus with gravity field. J Magn Magn Mater. 2014; 363: 166–178. doi: 10.1016/j.jmmm.2014.03.023

17. Hayat T, Yasin H, Al-Yami M, Soret and Dufour effects in peristaltic transport of physiological fluids with chemical reaction: A mathematical analysis. Comp & Fluids. 2014; 89: 242–253. doi: 10.1016/j.compfluid.2013.10.038

18. Ramesh K, Devakar M, Magnetohydrodynamic peristaltic transport of couple stress fluid through porous medium in an inclined asymmetric channel with heat transfer. J Magn Magn Mater. 2015; 394; 335–348. doi: 10.1016/j.jmmm.2015.06.052

19. Sinha A, Shit GC, Ranjit NK, Persistsatric flow of MHD flow and heat transfer in an asymmetric channel. Alex Eng J. 2015; 54: 691–704. doi: 10.1016/j.aej.2015.03.030

20. Ellahi R, Mubashir M, Vafai K, Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int J Heat Mass Transf. 2014; 71: 706–719. doi: 10.1016/j.ijheatmasstransfer.2013.12.038

21. Akram S, Nadeem S, Hussain A, Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms. J Magn Magn Mater. 2014; 362: 184–192. doi: 10.1016/j.jmmm.2014.02.063

22. Kothandapani M, Prakash J, Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int J Heat Mass Transf. 2015; 81: 234–245. doi: 10.1016/j.ijheatmasstransfer.2014.09.062

23. Hayat T, Saleem N, Asghar S, Alhothuali MS, Alhomaidan A, Influence of induced magnetic field and heat transfer on peristaltic transport of a Carreau fluid. Comm Nonlinear Sci Numer Simul. 2011; 16: 3559–3577. doi: 10.1016/j.cnsns.2010.12.038

24. Mustafa M, Abbaspandeb S, Hina S, Hayat T, Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. J Taiwan Inst Chem Eng. 2014; 45: 308–316. doi: 10.1016/j.jtice.2013.07.010

25. Mekheimer KS, Abd Elmaboud Y, The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope. Phys Lett A. 2008; 372: 1657–1665. doi: 10.1016/j.physleta.2007.10.028

26. Hayat T, Javed M, Hendi AA, Peristaltic transport of viscous fluid in a curved channel with compliant walls. Int J Heat Mass Transf. 2011; 54: 1615–1621. doi: 10.1016/j.ijheatmasstransfer.2010.11.022

27. Hina S, Hayat T, Alsaedi A, Heat and mass transfer effects on the peristaltic flow of Johnson–Segalman fluid in a curved channel with compliant walls. Int J Heat Mass Transf. 2012; 55: 3511–3521. doi: 10.1016/j.ijheatmasstransfer.2012.03.014

28. Ali N, Sajid M, Abbas Z, Javed T, Non-Newtonian fluid flow induced by peristaltic waves in a curved channel. Europ J Mech-B/Fluids. 2010; 29: 387–394. doi: 10.1016/j.euromechflu.2010.04.002

29. Hina S, Mustafa M, Hayat T, Alotaibi ND, On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl Math Comput. 2015; 263: 378–391.

30. Abbasi FM, Hayat T, Alsaedi A, Numerical analysis for MHD peristaltic transport of Carreau-Yasuda fluid in a curved channel with Hall effects. J Magn Magn Mater. 2015; 382: 104–110. doi: 10.1016/j.jmmm.2015.01.040

31. Shehzad SA, Abbasi FM, Hayat T, Alsaedi F, Mousa G, Peristalsis in a curved channel with slip condition and radial magnetic field. Int J Heat Mass Transf. 2015; 91: 562–569. doi: 10.1016/j.ijheatmasstransfer.2015.07.076

32. Ali N, Sajid M, Javed T, Abbas Z, Heat transfer analysis of peristaltic flow in a curved channel. Int J Heat Mass Transf. 2010; 53: 3319–3325. doi: 10.1016/j.ijheatmasstransfer.2010.02.036

33. Hayat T, Hina S, Hendi AA, Asghar S, Effect of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer. Int J Heat Mass Transf. 2011; 54: 5126–5136. doi: 10.1016/j.ijheatmasstransfer.2010.11.022
34. Shezad SA, Abbasi FM, Hayat T, Alsaadi F, Mousa G, Peristalsis in a curved channel with slip condition and radial magnetic field. Int J Heat Mass Transf. 2015; 91: 562–569. doi: 10.1016/j.ijheatmasstransfer.2015.07.076

35. Hayat T, Farooq S, Alsaedi A, Ahmad B, Influence of variable viscosity and radial magnetic field on peristalsis of copper-water nanomaterial in non-uniform porous medium. Int J Heat Mass Transf. 2016; 103: 1134–1143. doi: 10.1016/j.ijheatmasstransfer.2016.07.101

36. Srinivas S, Muthuraj R, Effects of chemical reaction and space porosity on MHD mixed convective flow in a vertical asymmetric channel with peristalsis. Math Comp Model. 2011; 54: (2011) 1213–1227. doi: 10.1016/j.mcm.2011.03.032

37. Reddy MG, Heat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slip. Alex Eng J. 2016; 55: 1225–1234. doi: 10.1016/j.aej.2016.04.009

38. Hina S, Mustafa M, Hayat T, Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions. PLoS ONE 9(12): e114168. doi: 10.1371/journal.pone.0114168 PMID: 25474212