Supplementary data
Strains	Description	Source
D. dadantii		
3937 (A4922)	Wild-type strain isolated from Saintpaulia ionantha	Kotoujansky A, Lemattre M, Boistard P. Utilization of a thermosensitive episome bearing transposon TN10 to isolate Hfr donor strains of Erwinia carotovora subsp. chrysanthemi. J Bacteriol. 1982;150: 122–131.
Δhfq (A5292)	A4922 hfq::uidA-Kan^R	C. Blanco
ΔproQ (A6175)	A4922 proQ::Cm^R	This work
A6170	A4922 + pBBr1-mcs4	This work
A6171	A4922 + pBBr1-mcs4::hfq	This work
A6172	A4922 + pBBr1-mcs4::proQ	This work
A6173	A5292 + pBBr1-mcs4	This work
A6174	A5292 + pBBr1-mcs4::hfq	This work
A6176	A6175 + pBBr1-mcs4	This work
A6177	A6175 + pBBr1-mcs4::proQ	This work
A6178	A5292 + pBBr1-mcs4::proQ	This work
A6179	A6175 + pBBr1-mcs4::hfq	This work
E. coli		
DH5α	F⁺ ΔlacZΔ(lacZYA-argF)U169 deoR recA1 endA1 hsdR17 (rK-1, mk+) phoA supE44 λ-thi-1 gyrA96 relA1/F⁺ proAB+lacIqZAM15 Tn10-Tc	Lab collection
Phages		
PhiEC2	General transducing phage of Dickeya dadantii	Resibois et al, 1984
Plasmids	Description	Source
--------------------------	--	-------------------------
pKD3	Cm^R	Lab collection
pGEM-T	Cloning vector, Amp^R	Promega
pGEM-T-ΔproQ-BglII	pGEM-T with the proQ coding region containing BglII site	
pGEM-T-proQ::Cm	pGEM-T with the proQ coding region containing chloramphenicol resistance cassette	This work
pBBR1-mcs4	Amp^R	(Kovach et al., 1995)
pBBR1-mcs4::proQ	pBBR1-mcs4 containing proQ ±500bp	This work
pBBR1-mcs4::hfq	pBBR1-mcs4 containing hfq ±500bp	This work
Primer	Sequence (5'-3')	Description
--------	-----------------	-------------
P1	GTAGCGCGTTACTGTTTGAGCG	Forward primer located 500bp upstream proQ
P2	GCTCATCCACGTTTGGCGGCCC	Reverse primer located 500 downstream proQ
P3	GGAGATCTGAAATTCCTGATTACAACGG	Diverging with end of proQ; contains BgIII site
P4+P3'	CCCGTTTGAATCAGGAAATTTCAGATCTA/CGGAGGCAAACCTGGGCATGAAC	Diverging with start of proQ + reverse complement of P3; contains BgIII site
P5	GCTAGCGTAGCGCGTTACTGTTTGAGCG	Forward primer located 500bp upstream proQ; contains NheI site
P6	AAGCTTGCTAGCACGTAAAATTGGCGGCCC	Reverse primer located 500 downstream proQ; contains HindIII site
P7	GCTAGCGTGTTCATCAGTTTGCGATTGC	Forward primer located 500bp upstream hfq; contains NheI site
P8	AAGCTTCACCAGACCGTCGCCAGATGG	Forward primer located 500bp downstream hfq; contains HindIII site
Gene names	Forward primers	Reverse primers
------------	-----------------	-----------------
bcsA	CCCCATTGGACAGTGAAAAAC	GGGCATAAACAACCCCAATGC
celZ	TGCCGCTCTCTTTGGAT	CCCAGCCATTATTACCCCA
fliC	CCCAGACCCACTGACAAA	TACCTTCAGCGGTCTGAACCC
hkl	TAATGGCATAAGCTGGAAG	TCAGCGTCATCCTTTTCTG
hrpN	TACGATTAAGCCGACATCG	GTATTAGCGACGACCCCAAG
kdgK	AACACCGCGGTCTACATTC	GGCATCGTTCACCGCAGTATG
outC	CTGCTGTGCTGCTCTTTTTC	AGAAACGCGCAATAGCGTAA
pelD	TTTGGAAGGTAAAGGGCGACGTT	ATGGCAAATTCACCAACCGCTC
pelE	AGCGAATCACCAAGCAGCCT	GGCCTTTGAGTGATACGGTT
proQ	TTCTCCTGATCCGAAAAATCC	GGAAGCCAGTTGACCCCTGA
prtB	AAACGGCAATCTGACCCTA	TTTTGTGGGCTGACCTCC
prtC	ATGACGCTCAAACGCAATTA	AGCTGACCAGCTGACAAAT
rhlA	GCATATTTCCGATCTGCACT	CCCAGGAAATCGACAGGATA
A.

B.

Figure S1: Sequence alignment and secondary structure prediction of Hfq (A) and ProQ (B) protein homologs identified in *Escherichia coli*, *Dickeya dadantii*, *Pectobacterium atrosepticum*, *Erwinia amylovora*, *Salmonella typhimurium* and *Yersinia enterocolitica*.
Figure S2: Genomic context and expression profiles of the *hfq* (A) and *proQ* (B) genes in *Dickeya dadantii* 3937. Genomic coordinates are given in the x-axis at the bottom of the figures. The normalized intensities (read coverage for the -TEX library and read start coverage for the +TEX library) are represented in the y-axis. Highlighted regions correspond to fragments used for plasmid complementation. Line colors represent the expression profiles, with sequencing conditions detailed in C.
Figure S3: Growth of the wild type, mutant and complemented strains in M63 minimal medium with stress. Overnight bacterial precultures in M63 with sucrose as the carbon source and ampicillin (to maintained plasmid into the cells) were diluted to an OD$_{600}$ of 0.03 in a similar medium with CaCl$_2$ 0.1 mM + polygalacturonic acid (PGA) 0.025 % w/v. A. Osmotic stress was induced by adding different concentrations of NaCl in the medium. OD$_{600}$ measurements of the culture were made at regular intervals to determine growth rates. A. Osmotic stress was induced by adding different concentrations of NaCl in the medium. OD$_{600}$ measurements of the culture were made at regular intervals to determine growth rates. B The pH effect on growth rate was analysed using M63 with sucrose buffered with malic acid at different pH ranging from 4.0 to 7.0 (abscissa). C Resistance to oxidative stress was analysed in the same medium by adding H$_2$O$_2$ concentrations ranging from 25 to 200 µM (abscissa). The lag time is represented instead of the growth rate because after the degradation of H$_2$O$_2$ by bacterial catalases, the growth rates are similar.
Figure S4: Expression levels in the double mutant strain and the double mutant strain complemented by Hfq or ProQ.
Figure S5: *D. dadantii* virulence assays 48h post infection. Virulence was evaluated on the *proQ* mutant with heterologous expression of *hfq*, and on the *hfq* mutant with heterologous expression of *proQ*. Chicory leaf assays were performed as described in the Materials and methods section with an incubation time of 48h, and weights of macerated tissues were measured. Representative examples of symptoms induced were shown.