Concentration-compactness principle of singular Trudinger-Moser inequality involving N-Finsler–Laplacian operator

Yanjun Liu

Abstract: In this paper, suppose $F: \mathbb{R}^N \rightarrow [0, +\infty)$ be a convex function of class $C^2(\mathbb{R}^N \backslash \{0\})$ which is even and positively homogeneous of degree 1. We establish the Lions type concentration-compactness principle of singular Trudinger-Moser Inequalities involving N-Finsler–Laplacian operator. Let $\Omega \subset \mathbb{R}^N (N \geq 2)$ be a smooth bounded domain. \{u_n\} $\subset W^{1,N}_0(\Omega)$ be a sequence such that anisotropic Dirichlet norm $\int_\Omega F^N(\nabla u_n)dx = 1$, $u_n \rightharpoonup u \neq 0$ weakly in $W^{1,N}_0(\Omega)$. Then for any $0 < p < p_N(u) := (1 - \int_\Omega F^N(\nabla u)dx)^{-\frac{N}{N-1}}$, we have
\[\int_\Omega e^{\lambda_N(1-\frac{p}{p_N(u)})\frac{\|u_n\|^{N}}{F\alpha(x)^{\beta}}}dx < +\infty, \]
where $0 \leq \beta < N$, $\lambda_N = N \frac{\kappa_N}{\kappa^\perp_N}$ and κ_N is the volume of a unit Wulff ball. This conclusion fails if $p \geq p_N(u)$. Furthermore, we also obtain the corresponding concentration-compactness principle in the entire Euclidean space \mathbb{R}^N.

Keywords: N-Finsler–Laplacian; Singular Trudinger-Moser inequality; Anisotropic Dirichlet norm; Concentration-compactness principle

MSC2010: 46E35

1 Introduction and main results

This paper is concerned with concentration-compactness-principle of singular Trudinger-Moser inequality involving N-Finsler-Laplacian operator. In order to give
our motivation, let’s recall some known results. Suppose \(\Omega \subset \mathbb{R}^N (N \geq 2) \) be a bounded smooth domain. \(W^{1,N}_0(\Omega) \hookrightarrow L^q(\Omega) \) for \(1 \leq q < \infty \), but the embedding \(W^{1,N}_0(\Omega) \not\hookrightarrow L^\infty(\Omega) \), one can see the counterexample by taking \(u(x) = (-\ln |\ln |x||)_+ \) as \(\Omega \) is the unit ball. It was proposed independently by Yudovich [3], Pohozaev [4], Peetre [5] and Trudinger [6] that \(W^{1,N}_0(\Omega) \) is embedded in the Orlicz space \(L^{\varphi_\alpha}(\Omega) \) determined by the Young function \(\varphi_\alpha(t) = e^{\alpha|t|^{\frac{N}{N-1}}} - 1 \) for some positive number \(\alpha \). Moser [7] sharpened the results of Trudinger [6] and established the following inequality

\[
\sup_{u \in W^{1,N}_0(\Omega), \|\nabla u\|_{N} \leq 1} \int_{\Omega} e^{\alpha|u|^{\frac{N}{N-1}}} \, dx < +\infty, \forall \alpha \leq \alpha_N, \tag{1.1}
\]

where \(\alpha_N := \frac{N^{1/(N-1)}}{\omega_{N-1}} \) and \(\omega_{N-1} \) is the surface measure of the unit sphere in \(\mathbb{R}^N \). Moreover, the supremum in (1.1) is \(+\infty \) if \(\alpha > \alpha_N \). Inequality (1.1) is now referred as Trudinger-Moser inequality and plays an important role in geometric analysis and partial differential equations (see [8]). Using a rearrangement argument and a change of variables, Adimurthi-Sandeep [1] generalized the Trudinger-Moser inequality to a singular version as follows:

\[
\sup_{u \in W^{1,N}_0(\Omega), \int_{\Omega} |\nabla u|^{N-1} \, dx \leq 1} \int_{\Omega} e^{\alpha|u|^{\frac{N}{N-1}}} |x|^{\beta} \, dx < +\infty, \tag{1.2}
\]

where \(0 \leq \beta < N, 0 < \alpha \leq \alpha_N(1-\frac{\beta}{N}) \), \(\alpha_N = \frac{N^{1/(N-1)}}{\omega_{N-1}} \) and \(\omega_{N-1} \) is the surface measure of the unit sphere in \(\mathbb{R}^N \). Moreover, this inequality is sharp, i.e., when \(\alpha > \alpha_N(1-\frac{\beta}{N}) \), the supremum is infinity. Trudinger-Moser inequalities for unbounded domains were proposed by D. M. Cao [9] in dimension two and J. M. do Ó [10], Adachi-Tanaka [11] in high dimension. Ruf [12] (for the case \(N = 2 \)), Li and Ruf [13] (for the general case \(N \geq 2 \)) obtained the Trudinger-Moser inequality in the critical case by replacing the Dirichlet norm with the standard Sobolev norm in \(W^{1,N}(\mathbb{R}^N) \). Obviously, if \(\beta = 0 \), then (1.2) reduces to the famous Trudinger-Moser inequality. Subsequently, the inequality (1.2) was extended to the entire Euclidean space \(\mathbb{R}^N \) by Adimurthi-Yang [2].

An important result is concentration-compactness principle with Trudinger-Moser inequality due to P. L Lions [26]. More precisely, let \(\{u_n\} \subset W^{1,N}_0(\Omega) \) be a se-
quence such that $\|\nabla u_n\|_N = 1$, $u_n \rightarrow u \neq 0$ weakly in $W^{1,N}_0(\Omega)$. Then for any $0 < p < p_N := (1 - \int_\Omega |\nabla u|^N)^{-\frac{1}{N-1}}$, it holds
\[
\int_\Omega e^{\alpha_N p |u_n|^N} \frac{\nabla u_n}{|\nabla u_n|^N} \, dx < +\infty.
\] (1.3)

Roughly speaking, the concentration-compactness principle tells us that, if a sequence $\{u_n\} \subset W^{1,N}_0(\Omega)$ converges weakly to some function $u \in W^{1,N}_0(\Omega)$, and does not concentrate at one point in Ω, then an inequality like (1.3) holds along the sequence $\{u_n\}$, with a constant larger than $N\omega_{N-1}^{1/(N-1)}$, depending on $\|\nabla u\|_N$. In [26], the author only proved the case of $0 < p < p_N := (1 - \int_\Omega |\nabla u^*|^N)^{-\frac{1}{N-1}}$, we know $p_N^* \leq p_N$ by Poláč-Szegő inequality $\int_\Omega |\nabla u^*|^N \, dx \leq \int_\Omega |\nabla u|^N \, dx$, here u^* is the radially decreasing symmetry of u. We should pay attention to the recent work in [27] by Černý et al. The authors present a new proof of this relevant principle for $0 < p < p_N$. Moreover, this approach allows one to treat functions with unrestricted boundary values in bounded domains. Concentration-compactness principle is a powerful tool in proving existence of extremal functions and existence of solutions to boundary value problems. It has been extended to the singular version in [14]. Their results can be stated as follows: let $\{u_n\} \subset W^{1,N}_0(\Omega)$ be a sequence such that $\|\nabla u_n\|_N = 1$, $u_n \rightarrow u \neq 0$ weakly in $W^{1,N}_0(\Omega)$, $\nabla u_n \rightarrow \nabla u$ a.e. in Ω. Then for any $0 \leq \beta < N$ and $0 < p < (1 - \|\nabla u\|_N^{N})^{-\frac{1}{N-1}}$, there holds
\[
\int_\Omega e^{\alpha_N (1 - \frac{d}{N}) |u_n|^N} \frac{\nabla u_n}{|\nabla u_n|^N} \, dx < +\infty.
\] (1.4)

More concentration-compactness principle on unbounded domain and the Heisenberg group, we refer the reader to [21, 22, 23].

Another interesting research is that Trudinger-Moser inequality has been generalized to the case of anisotropic norm. In this paper, denote that $F \in C^2(\mathbb{R}^N \setminus 0)$ is a positive, convex and homogeneous function, $F_{\xi_i} = \frac{\partial F}{\partial \xi_i}$ and its polar $F^a(x)$ represents a Finsler metric on \mathbb{R}^N. We will replace the isotropic Dirichlet norm $\|u\|_{W^{1,N}_0(\Omega)} = (\int_\Omega |\nabla u|^N \, dx)^{\frac{1}{N}}$ by the anisotropic Dirichlet norm $(\int_\Omega F^N(\nabla u) \, dx)^{\frac{1}{N}}$ in $W^{1,N}_0(\Omega)$. In [17], Wang and Xia proved the following result:

Theorem A. Suppose $\Omega \subset \mathbb{R}^N (N \geq 2)$ be a smooth bounded domain. Let $u \in W^{1,N}_0(\Omega)$ and $(\int_\Omega F^N(\nabla u) \, dx) \leq 1$. Then there exists a constant $C(N)$, such
that
\[\int_{\Omega} e^{\lambda u^{N-1}} \, dx \leq C(N)|\Omega|, \] (1.5)
where \(0 < \lambda \leq \lambda_N = N^{N-1} \frac{1}{\kappa_N} \) and \(\kappa_N = \{|x \in \mathbb{R}^N : F^o(x) \leq 1\} \). \(\lambda_N \) is sharp in the sense that if \(\lambda > \lambda_N \) then there exists a sequence \((u_n)\) such that \(\int_{\Omega} e^{\lambda u^{N-1}} \, dx \) diverges. In [28], the authors obtained the existence of extremal functions for the sharp geometric inequality (1.5).

For the minimization problem of \(\int_{\Omega} F^N(\nabla u) \, dx \), we know that its Euler equation contains an operator of the form
\[Q_N u := \sum_{i=1}^{N} \frac{\partial}{\partial x_i} (F^{N-1}(\nabla u) F_{\xi_i}(\nabla u)), \]
which is called \(N \)-Finsler-Laplacian operator. When \(N = 2 \) and \(F(\xi) = |\xi| \), \(Q_2 \) is just the ordinary Laplacian. The operator \(Q_N \) is closely related to a smooth, convex hypersurface in \(\mathbb{R}^N \). It has been studied in some literatures, see [19] and the references therein. We denote \(\kappa_N = \{|x \in \mathbb{R}^N : F^o(x) \leq 1\} \) is the volume of a unit Wulff ball. Recently, by using a convex symmetrization approach proposed in [19], which is the extension of Schwarz symmetrization in [30], X. Zhu [18] derived the following results.

Theorem 1.1. (see [18]) Let \(\Omega \subset \mathbb{R}^N (N \geq 2) \) be a smooth bounded domain. Then
\[\sup_{u \in W^{1,N}_0(\Omega), \int_{\Omega} F^N(\nabla u) \, dx \leq 1} \int_{\Omega} e^{\lambda u^{N-1}} \frac{dx}{F^o(x)^{1/N}} < +\infty, \] (1.6)
and
\[\sup_{u \in W^{1,N}(\mathbb{R}^N), \int_{\mathbb{R}^N} F^N(\nabla u) \, dx + \tau |u|^N \leq 1} \int_{\mathbb{R}^N} \Phi(\lambda |u|^N) \frac{dx}{F^o(x)^{1/N}} < \infty, \] (1.7)
where \(0 \leq \beta < N, \tau > 0, \Phi(s) := e^{s} - \sum_{k=0}^{N-2} \frac{s^k}{k!}, 0 < \lambda \leq \lambda_N(1 - \beta \frac{1}{N}), \lambda_N = N^{N-1} \frac{1}{\kappa_N} \) and \(\kappa_N \) is the volume of a unit Wulff ball. Moreover, the above inequalities are sharp, i.e., when \(\lambda > \lambda_N(1 - \beta \frac{1}{N}) \), the supremum is infinity.

In this paper, we will establish the Lions type concentration-compactness principle of singular Trudinger-Moser Inequalities under the anisotropic norm.

Theorem 1.2 Let \(\Omega \subset \mathbb{R}^N (N \geq 2) \) be a smooth bounded domain. \(\{u_n\} \subset W^{1,N}_0(\Omega) \)
be a sequence such that \(\int_{\Omega} F^N(\nabla u_n) dx = 1 \), \(u_n \rightharpoonup u \neq 0 \) weakly in \(W^{1,N}_0(\Omega) \). Then for any
\[
0 < p < p_N(u) := (1 - \int_{\Omega} F^N(\nabla u) dx)^{-\frac{1}{N-1}},
\]
we have
\[
\int_{\Omega} e^{\lambda_N(1 - \frac{\beta}{N})p|u_n|^{\frac{N}{N-1}}} dx < +\infty
\]
where \(0 \leq \beta < N \), \(\lambda_N = \frac{N}{N-1} \kappa_N^{-\frac{1}{N-1}} \) and \(\kappa_N \) is the volume of a unit Wulff ball. Moreover, this conclusion fails if \(p \geq p_N(u) \).

Theorem 1.3 Suppose \(\{u_n\} \subset W^{1,N}(\mathbb{R}^N) \) be a sequence such that \(\int_{\mathbb{R}^N}(F^N(\nabla u_n) + |u_n|^N) dx = 1 \), \(u_n \rightharpoonup u \neq 0 \) weakly in \(W^{1,N}(\mathbb{R}^N) \). Then for any
\[
0 < p < \bar{p}_N(u) := (1 - \int_{\mathbb{R}^N}(F^N(\nabla u) + |u|^N) dx)^{-\frac{1}{N-1}},
\]
we have
\[
\int_{\mathbb{R}^N} \Phi(\lambda_N(1 - \frac{\beta}{N})p|u_n|^{\frac{N}{N-1}}) dx < +\infty
\]
where \(0 \leq \beta < N \), \(\Phi(s) := e^s - \sum_{k=0}^{N-2} \frac{s^k}{k!} \), \(\lambda_N = \frac{N}{N-1} \kappa_N^{-\frac{1}{N-1}} \) and \(\kappa_N \) is the volume of a unit Wulff ball. Moreover, this conclusion fails if \(p \geq \bar{p}_N(u) \).

This paper is organized as follows: In Section 2, we give some preliminaries. In Section 3, we establish the Lions type concentration-compactness principle of singular Trudinger-Moser Inequality under the anisotropic Dirichlet norm. In Section 4, we obtain the corresponding concentration-compactness principle in the entire Euclidean space \(\mathbb{R}^N \).

2 preliminaries

In this section, we will give some preliminaries for our use later.

Let \(F : \mathbb{R}^N \to [0, +\infty) \) be a convex function of class \(C^2(\mathbb{R}^N \setminus \{0\}) \) which is even and positively homogeneous of degree 1, so that
\[
F(t\xi) = |t|F(\xi) \quad \text{for any} \quad t \in \mathbb{R}, \ \xi \in \mathbb{R}^N.
\]
We also assume that \(F(\xi) > 0 \) for any \(\xi \neq 0 \) and \(Hess(F^2) \) is positive definite in \(\mathbb{R}^N \setminus \{0\} \). A typical example is \(F(\xi) = (\sum_i |\xi_i|^q)^{\frac{1}{q}} \) for \(q \in [1, \infty) \).
Let F^o be the support function of $K := \{ x \in \mathbb{R}^N : F(x) \leq 1 \}$, which is defined by

$$F^o(x) := \sup_{\xi \in K} \langle x, \xi \rangle,$$

so $F^o : \mathbb{R}^N \to [0, +\infty)$ is also a convex, homogeneous function of class $C^2(\mathbb{R}^N \setminus \{0\})$. From [19], F^o is dual to F in the sense that

$$F^o(x) = \sup_{\xi \neq 0} \frac{\langle x, \xi \rangle}{F(\xi)}, \quad F(x) = \sup_{\xi \neq 0} \frac{\langle x, \xi \rangle}{F^o(\xi)}.$$

Consider the map $\phi : S^{N-1} \to \mathbb{R}^N$, $\phi(\xi) = F^o(\xi)$. Its image $\phi(S^{N-1})$ is smooth, convex hypersurface in \mathbb{R}^N, which is called the Wulff shape (or equilibrium crystal shape) of F. Then $\phi(S^{N-1}) = \{ x \in \mathbb{R}^N | F^o(x) = 1 \}$ (see [16], Proposition 2.1).

We also give some simple properties of the function F, which follows directly from the assumption on F, also see [17, 25].

Lemma 2.1. There hold

(i) $|F(x) - F(y)| \leq F(x + y) \leq F(x) + F(y)$;

(ii) $\frac{1}{C} \leq |\nabla F(x)| \leq C$ and $\frac{1}{C} \leq |\nabla F^o(x)| \leq C$ for some $C > 0$ and any $x \neq 0$;

(iii) $\langle x, \nabla F(x) \rangle = F(x)$, $\langle x, \nabla F^o(x) \rangle = F^o(x)$ for any $x \neq 0$.

Remark 2.2. Since $\text{Hess}(F^2)$ is positive definite in $\mathbb{R}^N \setminus \{0\}$. Then by Xie and Gong [29], $\text{Hess}(F^N)$ is also positive definite in $\mathbb{R}^N \setminus \{0\}$. Moreover, for a bounded smooth domain $\Omega \subset \mathbb{R}^N (N \geq 2)$, we know that Q_2 is a uniformly elliptic operator in any compact subsets of $\Omega \setminus \{x | \nabla u(x) = 0\}$, see [16].

We will use the convex symmetrization which is defined in [19]. The convex symmetrization generalizes the Schwarz symmetrization (see [30]). Let us consider a measured function u on $\Omega \subset \mathbb{R}^N$, one dimensional decreasing rearrangement of u is

$$u^\sharp(t) = \sup\{s \geq 0 : | \{ x \in \Omega : |u(x)| > s \} | > t \} \quad \text{for} \quad t \in \mathbb{R}. \quad (2.2)$$

The convex symmetrization of u with respect to F is defined as

$$u^*(x) = u^\sharp(\kappa_N F^o(x)^N) \quad \text{for} \quad x \in \Omega^* \quad. \quad (2.3)$$

Here $\kappa_N F^o(x)^N$ is just the Lebesgue measure of a homothetic Wulff ball with radius $F^o(x)$ and Ω^* is the homothetic Wulff ball centered at the origin having the same
measure as Ω. In [19], the authors proved a Pólya-Szegö principle and a comparison result for solutions of the Dirichlet problem for elliptic equations for the convex symmetrization, which generalizes the classical results for Schwarz symmetrization due to Talenti [30].

Lemma 2.3. (see [19]) If $u \in W^{1,p}_0(\Omega)$ for $p \geq 1$. Then $u^* \in W^{1,p}_0(\Omega^*)$ and

$$\int_{\Omega} F^p(\nabla u) dx \geq \int_{\Omega^*} F^p(\nabla u^*) dx.$$

Next, we denote $D_u(\mu) = \{ x \in \Omega : |u(x)| \geq \mu \}$. It is easily derived

$$u^*(x) = \sup \{ \mu : F^o(x) \leq r, \kappa_N r^N = |D_u(\mu)| \}. \quad (2.4)$$

We claim: for any $p \in [0, N)$, it holds

$$\left(\frac{1}{(F^o)^p} \right) \ast (x) \leq \frac{1}{F^o(x)^p}. \quad (2.5)$$

In fact, by (2.4), we have

$$\left(\frac{1}{(F^o)^p} \right) \ast (x) = \sup \{ \mu : F^o(x) \leq r, \kappa_N r^N = |D(F^o)^{-p}(\mu)| \}. \quad (2.6)$$

According to our notation, we have

$$D_{(F^o)^{-p}}(\mu) = \{ x \in \Omega : (F^o(x))^{-p} \geq \mu \}$$

$$= \{ x \in \Omega : F^o(x) \leq \frac{1}{\mu^{1/p}} \}$$

$$\subset \{ x \in \mathbb{R}^N : F^o(x) \leq \frac{1}{\mu^{1/p}} \} \quad (2.7)$$

Thus $|D_{(F^o)^{-p}}(\mu)| \leq \kappa_N \frac{1}{\mu^{N/p}}$, combing with (2.6), we have $\kappa_N r^N \leq \kappa_N \frac{1}{\mu^{N/p}}$, so $\mu \leq \frac{1}{rp}$. Therefore

$$\left(\frac{1}{(F^o)^p} \right) \ast (x) = \sup \{ \mu : F^o(x) \leq r, \kappa_N r^N = |D_{(F^o)^{-p}}(\mu)| \}$$

$$\leq \inf \{ \frac{1}{r^p} : F^o(x) \leq r \} = \frac{1}{(F^o(x))^p} \quad (2.8)$$

Our claim is proved.

Now suppose h and φ be real-valued functions defined for $x \in \Omega$ with h integrable over Ω. Let φ be measurable over Ω and satisfy the condition $-\infty < \varphi_0 \leq \varphi(x) \leq \varphi_1 < \infty$, set $D_{\varphi}(t) = \{ x \in \Omega : \varphi(x) \geq t \}$. Then Lemma 2.3 in [20] implies

$$\int_{\Omega} h\varphi dx = \varphi_0 \int_{\Omega} h dx + \int_{\varphi_0}^{\varphi_1} dt \int_{D_{\varphi}(t)} h dx. \quad (2.9)$$
Lemma 2.4. Assume that \(f : [\varphi_0, \varphi_1] \rightarrow \mathbb{R}^+ \) is an increasing function. Then we have
\[
\int_{\Omega} hf(\varphi)dx \leq \int_{\Omega^*} h^* f(\varphi^*)dx. \tag{2.10}
\]

Proof. On one hand,
\[
\int_{\Omega} hf(\varphi)dx = f(\varphi_0) \int_{\Omega} hdx + \int_{\frac{f(\varphi_1)}{f(\varphi_0)}} dt \int_{\{x \in \Omega : f(\varphi) \geq t\}} hdx = f(\varphi_0) \int_{\Omega} hdx + \int_{\frac{f(\varphi_1)}{f(\varphi_0)}} dt \int_{\{x \in \Omega : \varphi \geq f^{-1}(t)\}} hdx. \tag{2.11}
\]

On the other hand, since inf \(\varphi = \inf \varphi^* \) and sup \(\varphi = \sup \varphi^* \),
\[
\int_{\Omega^*} h^* f(\varphi^*)dx = f(\varphi_0) \int_{\Omega^*} h^* dx + \int_{\frac{f(\varphi_1)}{f(\varphi_0)}} dt \int_{\{x \in \Omega^* : f(\varphi^*) \geq t\}} h^* dx = f(\varphi_0) \int_{\Omega^*} h^* dx + \int_{\frac{f(\varphi_1)}{f(\varphi_0)}} dt \int_{\{x \in \Omega^* : \varphi^* \geq f^{-1}(t)\}} h^* dx. \tag{2.12}
\]

Notice that \(\int_{\Omega} hdx = \int_{\Omega^*} h^* dx \) and Lemma 2.2 in [20] implies
\[
\int_{\{x \in \Omega : \varphi \geq f^{-1}(t)\}} hdx \leq \int_{\{x \in \Omega^* : \varphi^* \geq f^{-1}(t)\}} h^* dx. \tag{2.13}
\]
The assertion now follows immediately.

3 Lions type concentration-compactness principle in bounded domain

In this section, we will prove Lions type concentration-compactness principle of singular Trudinger-Moser Inequalities under the anisotropic Dirichlet norm, which can be referred to [22] and Lemma 2.3 in [28]. This is the extension of Concentration-Compactness Principle due to P. L. Lions [26].

Proof of Theorem 1.2. From the weak semicontinuity of the norm in \(W^{1,N}_0(\Omega) \), we have
\[
\int_{\Omega} F^N(\nabla u)dx \leq \lim inf_{n \to \infty} \int_{\Omega} F^N(\nabla u_n)dx = 1.
\]

Firstly, let \(0 < \int_{\Omega} F^N(\nabla u)dx < 1 \), we give the proof by contradiction. Assume that there exists some \(p_1 < p_N(u) \) and a subsequence of \(\{u_n\} \) (still denote \(u_n \)) such that
\[
\sup_n \int_{\Omega} e^{\lambda N(1-\frac{1}{p_1})p_1|u_n|^\frac{N}{N-1}} dx = +\infty. \tag{3.1}
\]
Set $\Omega^p = \{ x \in \Omega : |u_n(x)| \geq L \}$, where L is a positive constant. Let $v_n = |u_n| - L$, for any $\epsilon > 0$ and some positive constant C, by Young inequality $a^\beta b^{\alpha} \leq \epsilon a + \epsilon^{-\frac{\alpha}{\beta}} b$, $\frac{1}{q} + \frac{1}{q} = 1$ we have

$$
|u_n|^{\frac{N}{N-1}} \leq |v_n|^{\frac{N}{N-1}} + C|v_n|^{\frac{N}{N-1}}L + L^{\frac{N}{N-1}}
$$

$$
= |v_n|^{\frac{N}{N-1}} + C(|v_n|^{\frac{N}{N-1}})^{\frac{q}{q-1}} (L^{\frac{N}{N-1}})^{\frac{q-1}{q}} + L^{\frac{N}{N-1}}
$$

$$
\leq |v_n|^{\frac{N}{N-1}} + C \cdot \left(\frac{\epsilon}{C} |v_n|^{\frac{N}{N-1}} + \left(\frac{\epsilon}{C} \right)^{\frac{1}{q-1}} L^{\frac{N}{N-1}} \right) + L^{\frac{N}{N-1}}
$$

$$
=: (1 + \epsilon) v_n^{\frac{N}{N-1}} + C_L^{\frac{N}{N-1}}. \quad (3.2)
$$

Since $0 \leq \beta < N$, we have

$$
\int_{\Omega} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx = \int_{\Omega \setminus \Omega_0} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx + \int_{\Omega \setminus \Omega_0} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx
$$

$$
\leq \int_{\Omega \setminus \Omega_0} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx + e^{\lambda N(1-\frac{\beta}{N})p_1 L^{\frac{N}{N-1}}} \int_{\Omega \setminus \Omega_0} \frac{1}{F^\beta(x)} dx
$$

$$
\leq \int_{\Omega \setminus \Omega_0} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx + C(L, N, \beta), \quad (3.3)
$$

and then

$$
\sup_n \int_{\Omega_L^p} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx = +\infty. \quad (3.4)
$$

From (3.2), we have

$$
\int_{\Omega_L^p} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx \leq e^{\lambda N(1-\frac{\beta}{N})p_1 C_L^{\frac{N}{N-1}}} \int_{\Omega_L^p} \frac{e^{(1+\epsilon)\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}}}{F^\beta(x)} dx. \quad (3.5)
$$

Thus

$$
\sup_n \int_{\Omega_L^p} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx = \sup_n \int_{\Omega_L^p} e^{\lambda N(1-\frac{\beta}{N})p_1 u_n|^{\frac{N}{N-1}}} F^\beta(x) dx = +\infty, \quad (3.6)
$$

where $p_1 = (1 + \epsilon)p_1 < p_N(u)$. Now, we define

$$
T^L(u) = \min\{L, |u|\} \text{sign}(u) \quad \text{and} \quad T_L(u) = u - T^L(u)
$$

From the assumption $0 < \int_{\Omega} F^N(\nabla u) dx < 1$, we choose L large enough such that

$$
1 - \int_{\Omega} F^N(\nabla u) dx > \left(\frac{p_1}{p_N(u)} \right)^{N-1}. \quad (3.7)
$$
Since $T_L(u_n)$ is bounded in $W^{1,N}_0(\Omega)$, hence, up to a subsequence, $T_L(u_n) \rightharpoonup T_L(u)$ in $W^{1,N}_0(\Omega)$ and $T_L(u_n) \to T_L(u)$ a.e. in Ω. Combining (3.6) and (1.6), up to a subsequence, we have

$$
\limsup_{n \to \infty} \int_{\Omega_L^n} F^N(\nabla v_n) dx = \limsup_{n \to \infty} \int_{\Omega_L^n} F^N(\nabla T_L(u_n)) dx \geq 1,
$$
which implies

$$
\int_{\Omega_L^n} F^N(\nabla v_n) dx = \int_{\Omega} F^N(\nabla T_L(u_n)) dx \geq \left(\frac{1}{p_1} \right)^{N-1} + o_n(1). \tag{3.8}
$$
Thus,

$$
\left(\frac{1}{p_1} \right)^{N-1} + \int_{\Omega} F^N(\nabla T_L(u_n)) dx + o_n(1)
\leq \int_{\Omega} F^N(\nabla T_L(u_n)) dx + \int_{\Omega_\Omega^n} F^N(\nabla u_n) dx
= \int_{\Omega_\Omega^n} F^N(\nabla u_n) dx + \int_{\Omega_\Omega^n} F^N(\nabla u_n) dx = 1.
$$
The above inequality, the weak lower semicontinuity of norm, and (3.7) yield

$$
\bar{p}_1 \geq \frac{1}{(1 - \liminf_{n \to \infty} \int_{\Omega} F^N(\nabla T_L(u_n)) dx)^{1 \over N-1}}
\geq \frac{1}{(1 - \int_{\Omega} F^N(\nabla T_L(u)) dx)^{1 \over N-1}}
\geq \frac{\bar{p}_1}{p_N(u)} \frac{1}{(1 - \int_{\Omega} F^N(\nabla u) dx)^{1 \over N-1}} = \bar{p}_1,
$$
which is a contradiction. Secondly, let $\int_{\Omega} F^N(\nabla u) dx = 1$, we can repeat the process of first case and get

$$
\sup_n \int_{\Omega_L^n} \frac{e^{\lambda N(1 - \beta N \bar{p}_n \beta \nabla v_n)} F^N(\nabla v_n) dx}{F^N(\nabla v_n)} dx = +\infty,
$$
where $\bar{p}_1 = (1 + \epsilon)p_1$. Then we have

$$
\limsup_{n \to \infty} \int_{\Omega_L^n} F^N(\nabla v_n) dx = \limsup_{n \to \infty} \int_{\Omega} F^N(\nabla T_L(u_n)) dx \geq \left(\frac{1}{p_1} \right)^{N-1},
$$
thus,

$$
\int_{\Omega} F^N(\nabla T_L(u)) dx \leq \liminf_{n \to \infty} \int_{\Omega} F^N(\nabla T_L(u_n)) dx
= 1 - \limsup_{n \to \infty} \int_{\Omega} F^N(\nabla T_L(u_n)) dx
\leq 1 - \left(\frac{1}{\bar{p}_1} \right)^{N-1}. \tag{3.9}
$$
On the other hand, since \(\int_{\Omega} F^N(\nabla u)dx = 1 \), we can choose \(L > 0 \) in such a way that
\[
\int_{\Omega} F^N(\nabla T_L(u))dx > 1 - \frac{1}{2} \left(\frac{1}{p_1} \right)^{N-1},
\]
which is contradiction, and the proof is finished in second case.

Next, we prove the sharpness of \(p_N(u) \). It suffices to construct a sequence \(\{u_n\} \subset W^{1,N}_0(\Omega) \) and a function \(u \in W^{1,N}_0(\Omega) \) such that
\[
\int_{\Omega} F^N(\nabla u_n)dx = 1, \quad u_n \rightharpoonup u \neq 0 \quad \text{in} \quad W^{1,N}_0(\Omega),
\]
\[
\left(\int_{\Omega} F^N(\nabla u)dx \right)^{\frac{1}{N}} = \delta < 1 \quad \text{and} \quad \int_{\Omega} \frac{e^{\lambda_N(1-\frac{\delta}{N})(1-\delta^N)\frac{N}{N-1} |u_n|^N}}{F^o(x)^{\beta}}dx \to +\infty.
\]

For \(n \in \mathbb{N} \), let \(r > 0 \), we define
\[
\omega_n(x) = \begin{cases} \frac{1}{N} \kappa_N^N n^{N-1}, & 0 \leq F^o(x) \leq re^{-\frac{N}{N}}, \\ \kappa_N^N \log(r/F^o(x))n^{-\frac{1}{N}}, & re^{-\frac{N}{N}} \leq F^o(x) \leq r, \\ 0, & F^o(x) \geq r. \end{cases}
\]
A straightforward calculation yields
\[
\int_{\Omega} F^N(\nabla \omega_n)dx = 1, \quad \omega_n \rightharpoonup 0 \quad \text{in} \quad W^{1,N}_0(\Omega).
\]
Set \(R = 3r \), define
\[
u(x) = \begin{cases} A, & 0 \leq F^o(x) \leq \frac{2}{3}R, \\ 3A - 3A F^o(x), & \frac{2}{3}R \leq F^o(x) \leq R, \\ 0, & F^o(x) \geq R, \end{cases}
\]
where \(A \) is a positive constant to be chosen in such a way that \((\int_{\Omega} F^N(\nabla u)dx)^{\frac{1}{N}} = \delta < 1 \). Denote \(\mathcal{W}(R) = \{ x \in \mathbb{R}^N : F^o(x) \leq R \} \) be a Wulff ball centered at the origin. Let \(u_n = u + (1 - \delta^N)\frac{1}{N} \omega_n \), since \(\nabla u \) and \(\nabla \omega_n \) have disjoint supports, we have
\[
\int_{\Omega} F^N(\nabla u_n)dx = \int_{\mathcal{W}(R)} F^N(\nabla u)dx + (1 - \delta^N) \int_{\mathcal{W}(R)} F^N(\nabla \omega_n)dx = 1
\]
and $u_n \rightarrow u$ in $W^{1,N}_0(\Omega)$. Thus

$$\int_\Omega e^{\lambda N (1 - \frac{\beta}{N}) (1 - \delta N)} \frac{F_0(x)^\beta}{F_0(x)} \left| u_n \right|^N dx \geq \int_{W(re^{-\frac{\mu}{\lambda}})} e^{\lambda N (1 - \frac{\beta}{N}) (1 - \delta N)} \frac{F_0(x)^\beta}{F_0(x)} \left| u_n \right|^N dx$$

$$= \int_{W(re^{-\frac{\mu}{\lambda}})} e^{\lambda N (1 - \frac{\beta}{N}) (1 - \delta N)} \frac{F_0(x)^\beta}{F_0(x)} \left| u_n \right|^N dx$$

$$= e^{\frac{\lambda N}{N - \beta} \kappa_N \frac{1}{\kappa_N} (1 - \frac{\beta}{N}) (C + \frac{N - 1}{N - \beta})} \int_{W(re^{-\frac{\mu}{\lambda}})} \frac{1}{F_0(x)^\beta} dx$$

$$\geq e^{C_1 + \frac{(1 - \frac{\beta}{N}) N - 1}{N - \beta}} e^{\frac{N - 1}{N - \beta} \kappa_N} e^{\frac{N - 1}{N - \beta} \kappa_N} e^{(1 - \frac{\beta}{N}) n} \rightarrow +\infty (n \rightarrow +\infty)$$

where $0 \leq \beta < N$ and C, C_1, C_2 are positive constants.

\[\square\]

4 Lions type concentration-compactness principle in \mathbb{R}^N

As the similar procedure in Theorem 1.2, we can immediately get Theorem 1.3.

Proof of Theorem 1.3. Since

$$\int_{\mathbb{R}^N} (F^N(\nabla u) + |u|^N) dx \leq \liminf_{n \rightarrow \infty} \int_{\mathbb{R}^N} (F^N(\nabla u_n) + |u_n|^N) dx = 1.$$

We discuss it in two cases.

Case 1: Let $0 < \int_{\mathbb{R}^N} (F^N(\nabla u) + |u|^N) dx < 1$, we give the proof by contradiction. Assume that there exists some $p_1 < \bar{p}_N(u)$ and a subsequence of $\{u_n\}$ (still denote u_n) such that

$$\sup_n \int_{\mathbb{R}^N} \Phi(\lambda N (1 - \frac{\beta}{N}) p_1 |u_n|^\frac{N}{N - 1}) dx = +\infty. \quad (4.1)$$

Set $\Omega_L^u = \{ x \in \mathbb{R}^N : |u_n(x)| \geq L \}$, where L is a positive constant. Since $0 \leq \beta < N$,
we have
\[\int_{\mathbb{R}^N} \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^{\frac{N}{N-1}}) F^o(x)^N \, dx = \int_{\Omega^*_L} \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^{\frac{N}{N-1}}) F^o(x)^N \, dx + \int_{\mathbb{R}^N \setminus \Omega^*_L} \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^{\frac{N}{N-1}}) F^o(x)^N \, dx \]
\[\leq \int_{\Omega^*_L} \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^{\frac{N}{N-1}}) F^o(x)^N \, dx + C \int_{\mathbb{R}^N \setminus \Omega^*_L} |u_n|^{\frac{N}{N-1}} F^o(x)^N \, dx \]
\[\leq \int_{\Omega^*_L} \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^{\frac{N}{N-1}}) F^o(x)^N \, dx + C \int_{F^o(x) \leq 1} \frac{1}{F^o(x)^\beta} \, dx + C \int_{F^o(x) > 1} |u_n|^N \, dx \]
\[\leq \int_{\Omega^*_L} \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^{\frac{N}{N-1}}) F^o(x)^N \, dx + C(p_1, L, N, \beta), \quad (4.2) \]

and then
\[\sup_n \int_{\Omega^*_L} \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^{\frac{N}{N-1}}) F^o(x)^N \, dx = +\infty. \quad (4.3) \]

Let \(v_n = u_n - L \), for any \(\epsilon > 0 \), we have
\[|u_n|^{\frac{N}{N-1}} \leq (1 + \epsilon) v_n^{\frac{N}{N-1}} + C_o L^{\frac{N}{N-1}}. \quad (4.4) \]

Notice that
\[\int_{\Omega^*_L} \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^{\frac{N}{N-1}}) F^o(x)^N \, dx \leq e^{\lambda_N (1 - \frac{\beta}{N}) p_1 C_o L^{\frac{N}{N-1}}} \int_{\Omega^*_L} e^{(1+\epsilon)\lambda_N (1 - \frac{\beta}{N}) p_1 |v_n|^{\frac{N}{N-1}}} F^o(x)^N \, dx. \quad (4.5) \]

Thus
\[\sup_n \int_{\Omega^*_L} e^{\lambda_N (1 - \frac{\beta}{N}) p_1 |v_n|^{\frac{N}{N-1}}} F^o(x)^N \, dx = \sup_n \int_{\Omega^*_L} e^{\lambda_N (1 - \frac{\beta}{N}) p_1 |v_n|^{\frac{N}{N-1}}} F^o(x)^N \, dx = +\infty, \quad (4.6) \]

where \(\overline{p}_1 = (1 + \epsilon) p_1 < \overline{p}_N(u) \). Now, we define
\[T^L(u) = \min\{L, \|u\| \} \text{sign}(u) \quad \text{and} \quad T_L(u) = u - T^L(u) \]

and choose \(L \) so large that
\[\frac{1 - \int_{\mathbb{R}^N} (F^N(\nabla u) + \|u\|^N) \, dx}{1 - \int_{\mathbb{R}^N} (F^N(\nabla T^L(u)) + \|T^L(u)\|^N) \, dx} > \left(\frac{\overline{p}_1}{\overline{p}_N(u)} \right)^{N-1}. \quad (4.7) \]

Since \(T^L(u_n) \) is bounded in \(W^{1,N}(\mathbb{R}^N) \), hence, up to a subsequence, \(T^L(u_n) \rightharpoonup T^L(u) \) in \(W^{1,N}(\mathbb{R}^N) \) and \(T^L(u_n) \rightarrow T^L(u) \) a. e. in \(\mathbb{R}^N \). Combing (4.6) and (4.7), up to a
subsequence, we have
\[
\limsup_{n \to \infty} \int_{\Omega} F^N \left(\frac{N-1}{p_1^N} \nabla v_n \right) dx \geq 1.
\]
Thus
\[
\int_{\Omega} F^N(\nabla v_n) dx = \int \Omega F^N(\nabla T_L(u_n)) dx \geq \left(\frac{1}{p_1} \right)^{N-1} + o_n(1). \tag{4.8}
\]
Then we have
\[
\left(\frac{1}{p_1} \right)^{N-1} + \int_{\mathbb{R}^N} F^N(\nabla T_L(u_n)) dx + \int_{\mathbb{R}^N} |T_L(u_n)|^N dx + o_n(1)
\leq \left(\frac{1}{p_1} \right)^{N-1} + \int_{\mathbb{R}^N} F^N(\nabla T_L(u_n)) dx + \int_{\mathbb{R}^N} |u_n|^N dx + o_n(1)
\leq \int_{\mathbb{R}^N} F^N(\nabla T_L(u_n)) dx + \int_{\mathbb{R}^N} F^N(\nabla T_L(u_n)) dx + \int_{\mathbb{R}^N} |u_n|^N dx
= \int_{\Omega} F^N(\nabla T_L(u_n)) dx + \int_{\mathbb{R}^N \setminus \Omega} F^N(\nabla u_n) dx + \int_{\mathbb{R}^N} |u_n|^N dx = 1.
\]
From (4.7), it holds
\[
\bar{p}_1 \geq \frac{1}{(1 - \liminf_{n \to \infty} \int_{\mathbb{R}^N} (F^N(\nabla T_L(u_n)) + |T_L(u_n)|^N) dx)^{-\frac{1}{N-1}}}
\geq \frac{1}{(1 - \int_{\mathbb{R}^N} (F^N(\nabla T_L(u)) + |T_L(u)|^N) dx)^{-\frac{1}{N-1}}}
> \frac{1}{\bar{p}_N(u) (1 - \int_{\mathbb{R}^N} (F^N(\nabla u) + |u|^N) dx)^{-\frac{1}{N-1}}} = \bar{p}_1,
\]
which is a contradiction. The proof is finished in the first case.

Case 2: Let \(\int_{\mathbb{R}^N} (F^N(\nabla u) + |u|^N) dx = 1 \). Since \(u_n \rightharpoonup u \) and \(W^{1,N}(\mathbb{R}^N) \) is a uniformly convex Banach space, we know that \(u_n \to u \) in \(W^{1,N}(\mathbb{R}^N) \). Thus, by Proposition 1 in [16], there exists some \(v \in W^{1,N}(\mathbb{R}^N) \), such that up to a subsequence, \(|u_n(x)| \leq v(x) \) a.e. in \(W^{1,N}(\mathbb{R}^N) \). Denote
\[
D = \{ x \in \mathbb{R}^N : \int_{\mathbb{R}^N} F^N(\nabla v) dx \leq 1, v(x) > 1 \},
\]
we have
\[
\int_{\mathbb{R}^N \setminus D} \Phi(\lambda_N(1 - \frac{\beta}{N}p_1|v|^\frac{N}{\beta})) \frac{|v|^\frac{N}{\beta}}{F_0(\beta)} dx \leq C(p_1, N, \beta).
\]
Indeed,
\[\int_{\mathbb{R}^N \setminus D} \frac{\Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |v|^N)}{F^\alpha(x)^3} \, dx \]
\[\leq \int_{\{v(x) > 1\}} \frac{1}{F^\alpha(x)^3} \sum_{k=N-1}^{\infty} \frac{[\lambda_N (1 - \frac{\beta}{N}) p_1]^k |u|^k}{k!} \, dx \]
\[\leq \int_{\{v(x) > 1\}} \frac{1}{F^\alpha(x)^3} \sum_{k=N-1}^{\infty} \frac{[\lambda_N (1 - \frac{\beta}{N}) p_1]^k |u|^N}{k!} \, dx \]
\[\leq \int_{\{F^\alpha(x) \geq 1\}} \sum_{k=N-1}^{\infty} \frac{[\lambda_N (1 - \frac{\beta}{N}) p_1]^k |u|^N}{k!} \, dx + \int_{\{F^\alpha(x) < 1\}} \sum_{k=N-1}^{\infty} \frac{[\lambda_N (1 - \frac{\beta}{N}) p_1]^k |u|^N}{k!} \, dx \]
\[\leq C(p_1, N, \beta) \]

From Lemma 2.4 and (2.5), we have
\[\int_{\mathbb{R}^N} \frac{\Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |u_n|^N)}{F^\alpha(x)^3} \, dx \]
\[\leq \int_{\mathbb{R}^N} \frac{\Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |v|^N)}{F^\alpha(x)^3} \, dx \]
\[\leq \int_{\mathbb{R}^N \setminus D} \frac{\Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |v|^N)}{F^\alpha(x)^3} \, dx + \int_{D} \frac{\Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |v|^N)}{F^\alpha(x)^3} \, dx \]
\[\leq C(p_1, N, \beta) + \int_{\mathcal{W}(R)} \left(\frac{1}{F^\alpha(x)^3} \right) \Phi(\lambda_N (1 - \frac{\beta}{N}) p_1 |v|^N) \, dx \]
\[\leq C(p_1, N, \beta) + \int_{\mathcal{W}(R)} e^{\lambda_N (1 - \frac{\beta}{N} p_1 |v|^N)} \frac{|u_n|^N}{F^\alpha(x)^3} \, dx \] (4.9)

where \(\mathcal{W}(R) = \{ x \in \mathbb{R}^N : F^\alpha(x) \leq R \} \) be a Wulff ball and \(|\mathcal{W}(R)| = |D| \). We know that \(\int_{\mathcal{W}(R)} F^N(\nabla u^*) \, dx \leq \int_{\mathcal{W}(R)} F^N(\nabla u) \, dx \) by Lemma 2.3. Hence, the result follows from (1.6).

Next, we prove the sharpness of \(\bar{p}_N(u) \). It suffices to construct a sequence \(\{u_n\} \subset W^{1,N}(\mathbb{R}^N) \) and a function \(u \in W^{1,N}(\mathbb{R}^N) \) such that
\[\int_{\mathbb{R}^N} (F^N(\nabla u_n) + |u_n|^N) \, dx = 1, \quad u_n \rightharpoonup u \neq 0 \quad \text{in} \quad W^{1,N}(\mathbb{R}^N), \]
\[\left(\int_{\mathbb{R}^N} (F^N(\nabla u_n) + |u_n|^N) \, dx \right)^{\frac{1}{N}} = \delta < 1 \]
and
\[\int_{\mathbb{R}^N} \frac{\Phi(\lambda_N (1 - \frac{\beta}{N}) \bar{p}_N(u) |u_n|^N)}{F^\alpha(x)^3} \, dx \to +\infty. \]
For $n \in \mathbb{N}$, let $r > 0$, we define
\[
\omega_n(x) = \begin{cases}
\frac{1}{N} \kappa_N \log \left(\frac{N}{N-n} \right), & 0 \leq F^o(x) \leq re^{-\frac{n}{N}} , \\
\frac{1}{N} \kappa_N \log \left(\frac{F^o(x)}{N} \right), & re^{-\frac{n}{N}} \leq F^o(x) \leq r, \\
0, & F^o(x) \geq r.
\end{cases}
\]
A straightforward calculation yields
\[
w_n \to 0 \quad \text{in} \quad W^{1,N}_0(\Omega), \quad \int_{\mathbb{R}^N} F^N(\nabla \omega_n) dx = 1, \quad \int_{\mathbb{R}^N} |\omega_n|^N dx \to 0.
\]
Set $R = 3r$, define
\[
u(x) = \begin{cases}
A, & 0 \leq F^o(x) \leq \frac{2}{3}R, \\
3A - \frac{3A}{R} F^o(x), & \frac{2}{3}R \leq F^o(x) \leq R, \\
0, & F^o(x) \geq R,
\end{cases}
\]
where A is a positive constant to be chosen in such a way that \(\left(\int_{\mathbb{R}^N} (F^N(\nabla u) + |u|^N) dx \right)^{\frac{1}{N}} = \delta < 1 \). Denote $W(R) = \{ x \in \mathbb{R}^N : F^o(x) \leq R \}$ be a Wulff ball centered at the origin. Set $v_n = u + (1 - \delta^N) \frac{1}{N} \omega_n$, we have
\[
\int_{\mathbb{R}^N} F^N(\nabla v_n) dx = \int_{W(R)} F^N(\nabla u) dx + (1 - \delta^N) \int_{W(R)} F^N(\nabla w_n) dx = \int_{W(R)} F^N(\nabla u) dx + (1 - \delta^N).
\]
Moreover, we have
\[
\int_{\mathbb{R}^N} |v_n|^N dx = \int_{\mathbb{R}^N} |u + (1 - \delta^N) \frac{1}{N} \omega_n|^N dx = \int_{\mathbb{R}^N} |u|^N dx + r_n,
\]
where $r_n = O(n^{-\frac{1}{N}})$ as $n \to +\infty$. Thus we have $\int_{\mathbb{R}^N} (F^N(\nabla u) + |v|^N) dx = 1 + r_n$. Let $u_n = \frac{v_n}{(1+r_n)^{\frac{1}{N}}}$, it holds
\[
\int_{\mathbb{R}^N} (F^N(\nabla u_n) + |u_n|^N) dx = 1, \quad u_n \to u \quad \text{in} \quad W^{1,N}(\mathbb{R}^N).\]
Then
\[
\int_{\mathbb{R}^N} \frac{\Phi(\lambda_N (1 - \frac{\beta}{N}) p_N(u) |u_n|^\frac{N}{N-1})}{F^\alpha(x)^\beta} dx \\
\geq \int_{W(re^{-\frac{N}{4}})} \frac{e^{\lambda_N (1 - \frac{\beta}{N}) (1 - \frac{\delta}{N}) - \frac{\beta}{N} N |A+1-\frac{\beta}{N} N^\beta |^\frac{N}{N-1}}}{F^\alpha(x)^\beta} dx + C(u)
\]
\[
= \int_{W(re^{-\frac{N}{4}})} \frac{e^{\lambda_N (1 - \frac{\beta}{N}) (1 + r_n) - \frac{\beta}{N} N |C+\omega_n|^\frac{N}{N-1}}}{F^\alpha(x)^\beta} dx + C(u)
\]
\[
= e^{N \frac{\lambda_N}{\beta N} \frac{1}{N-1} (1 - \frac{\beta}{N}) (1 + r_n) - \frac{\beta}{N} N |C+\omega_n|^\frac{N}{N-1}} \int_{W(re^{-\frac{N}{4}})} \frac{1}{F^\alpha(x)^\beta} dx + C(u)
\]
\[
\geq e^{C_1 + (1 + r_n) \frac{1}{N} ((1 - \frac{\beta}{N}) n)^\frac{N-1}{N-1} - \frac{\beta}{N} N e^{-\frac{\beta}{N} n}} \int_{W(re^{-\frac{N}{4}})} \frac{1}{F^\alpha(x)^\beta} dx + C(u)
\]
\[
\geq C_2 e^{C_1 + (1 + r_n) \frac{1}{N} ((1 - \frac{\beta}{N}) n)^\frac{N-1}{N-1} - \frac{\beta}{N} N e^{-\frac{\beta}{N} n}} + C(u) \rightarrow +\infty (n \rightarrow +\infty)
\]
where $0 \leq \beta < N$ and C, C_1, C_2 are positive constants.

References

[1] Adimurthi, Sandeep K. A singular Moser-Trudinger embedding and its applications, Nonlinear Differential Equations Appl. 13, 585-603 (2007)

[2] Adimurthi, Yang Y. An interpolation of Hardy inequality and Trudinger-Moser inequality in \mathbb{R}^N and its applications, Int. Math. Res. Not. 13, 2394-2426 (2010)

[3] Yudovich V. I. Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math., Dokl. 2, 746-749 (1961)

[4] Pohozaev S. The Sobolev embedding in the special case pl = n, in: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964-1965, Mathematics Sections, pp. 158-170. Moscov. Energet. Inst., Moscow, 1965.
[5] Peetre J. Espaces d’interpolation et theoreme de Soboleff, Ann. Inst. Fourier (Grenoble) 16, 279-317 (1966)

[6] Trudinger N. On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17, 473-484 (1967)

[7] Moser J. A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20, 1077-1092 (1970)

[8] de Figueiredo D. G, do ´O J. M, Ruf B. Elliptic equations and systems with critical Trudinger-Moser nonlinearities, Discrete Contin. Dyn. Syst. 30, 455-476 (2011)

[9] Cao D. Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^2, Comm. Partial Differential Equations 17, 407-435 (1992)

[10] do ´O J. M. N-Laplacian equations in \mathbb{R}^N with critical growth, Abstr. Appl. Anal. 2, 301-315 (1997)

[11] Adachi S, Tanaka K. Trudinger type inequalities in \mathbb{R}^N and their best exponents, Proc. Amer. Math. Soc. 128, 2051-2057 (2000)

[12] Ruf B. A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^2, J. Funct. Anal. 219, 340-367 (2005)

[13] Li Y. Ruf B. A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^N, Indiana Univ. Math. J. 57, 451-480 (2008)

[14] Mishra P. Goyal S. Sreenadh K. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Commun. Pure Appl. Anal. 15 1689-1717 (2016) .

[15] J.M. do ó, E. Medeiros, U. B. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in \mathbb{R}^N, J. Differential Equations 246 1363-1386 (2009)

[16] Wang G, Xia C. A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Ration. Mech. Anal. 99, 99-115 (2011)
[17] Wang G, Xia C. Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differential Equations 252, 1668-1700 (2012)

[18] Zhu X. Remarks on singular Trudinger-Moser type inequalities, Commun. Pure Appl. Anal. 19, 103-112 (2020)

[19] Alvino A, Ferone V, Trombetti G, Lions P. L. Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 275-293 (1997)

[20] Bandle C. Isoperimetric inequalities and applications. Pitman, London (1980)

[21] do Ó J.M, Souza M. de, Medeiros E. de and Severo U. An improvement for the Trudinger-Moser inequality and applications. J. Differential Equations, 256 (2014), 1317-1349.

[22] Li J, Lu G, Zhu M. Concentration-compactness principle for Trudinger-Moser inequalities on Heisenberg groups and existence of ground state solutions, Calc. Var. Partial Differential Equations 57, no. 3, Article ID 84 (2018)

[23] Zhang C, Chen L. Concentration-Compactness Principle of Singular Trudinger-Moser Inequalities in \mathbb{R}^n and n-Laplace Equations, Adv. Nonlinear Stud. 18, 567-585 (2018)

[24] Belloni M, Ferone V, Kawohl B. Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys. 54, 771-783 (2003)

[25] Ferone V, Kawohl B, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc. 137, 247-253 (2009)

[26] Lions P.L. The concentration-compactness principle in the calculus of variations, Part I, Rev. Mat. Iberoamericana 1, 145-201 (1985)

[27] Černý R, Cianchi A, Henel S. Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. 192, 225-243 (2013)
[28] Zhou C, Zhou C. Moser–Trudinger inequality involving the anisotropic Dirichlet norm \((\int_{\Omega} F^{N}(\nabla u) dx)^{\frac{1}{N}} \) on \(W_{0}^{1,N}(\Omega) \), J. Funct. Anal. 276, 2901-2935 (2019)

[29] Xie R, Gong H. A priori estimates and blow-up behavior for solutions of \(-Q_{N}u = Ve^{u}\) in bounded domain in \(\mathbb{R}^{N} \), Sci. China Math. 59, 479-492 (2016)

[30] Talenti G. Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. 3, 697-718 (1976)