Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution

Sixto Herrera1 | Sven Kotlarski2 | Pedro M. M. Soares3 | Rita M. Cardoso3 | Adam Jaczewski4 | José M. Gutiérrez5 | Douglas Maraun6

1Meteorology Group, Departamento de Matemática Aplicada y Ciencias de la Computación, University of Cantabria, Santander, Spain
2Federal Office of Meteorology and Climatology MeteoSwiss, Zürich, Switzerland
3Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
4Institute of Meteorology and Water Management - National Research Institute, Warsaw, Poland
5Meteorology Group, Instituto de Física de Cantabria, CSIC-University of Cantabria, Santander, Spain
6Wegener Center for Climate and Global Change, University of Graz, Graz, Austria

Correspondence
Sixto Herrera, Meteorology Group, Departamento de Matemática Aplicada y Ciencias de la Computación. University of Cantabria, Santander, Spain.
Email: sixto.herrera@unican.es

This work analyses three uncertainty sources affecting the observation-based gridded data sets: station density, interpolation methodology and spatial resolution. For this purpose, we consider precipitation in two countries, Poland and Spain, three resolutions (0.11, 0.22 and 0.44°), three interpolation methods, both areal- and point-representative implementations, and three different densities of the underlying station network (high/medium/low density). As a result, for each resolution and interpolation approach, nine different grids have been obtained for each country and inter-compared using a variance decomposition methodology. Results indicate larger differences among the data sets for Spain than for Poland, mainly due to the larger spatial variability and complex orography of the former region. The variance decomposition points out to station density as the most influential factor, independent of the season, the areal- or point-representative implementation and the country considered, and slightly increasing with the spatial resolution. In contrast, the decomposition is stable when extreme precipitation indices are considered, in particular for the 50-year return value. Finally, the uncertainty due to station sub-sampling inside a particular grid box decreases with the number of stations used in the averaging/interpolation. In the case of spatially homogeneous grid boxes, the interpolation approach obtains similar results for all the parameters, excepting the wet day frequency, independently of the number of stations. When there is a more significant internal variability in the grid box, the interpolation is more sensitive to the number of stations, pointing out to a minimum stations’ density for the target resolution (six to seven stations).

KEYWORDS
gridded observations, interpolation method, observational uncertainty, stations density, scale, uncertainty

1 INTRODUCTION

There is an increasing need for global and regional climate model data for present and future climates. Global climate models and downscaling methodologies, which include regional climate models and statistical downscaling methods, are the only tools that enable the production of future climate projections and thus, quality assessment of climate models in present climate is a crucial step for augmenting the confidence of the projections and to characterize the inherent uncertainties. Presently, climate models are being run at increasing resolutions, and statistical downscaling methods mostly aim at describing climate properties at local scales. Global climate models are approaching resolutions of 50 km in the atmosphere (e.g., Haarsma et al., 2016) and regional climate models are reaching the...
convective permitting scales of ~2 km resolution, where deep convection is expected to be explicitly or at least partially resolved (Ban et al., 2014; Prein et al., 2015).

In evaluation exercises, potential-scale mismatches between climate models and observation-based estimates have to be carefully considered. Climate models provide area-averaged quantities of the different surface meteorological variables while ground based observations are collected on a local scale. To ensure consistency, grid box model results should be compared to area-averaged observational estimates (Osborn and Hulme, 1997) and, as a result, the need to build observational gridded data sets emerged, representing areal-average quantities and allowing fair comparisons and evaluations of model results (Chen and Knutson, 2008). In addition, observation-based gridded data sets have been used for the development of bias-corrected climate change scenarios and many other climate impact studies (IPCC-BG3b, 2015).

The first global regular gridded data sets proposed were the monthly data sets, at 0.5 × 0.5° latitude/longitude resolution, originally developed by New et al. (1999; 2000), later updated by Mitchell and Jones (2005) and by Harris et al. (2014)—the CRU TS3.10 Dataset. At a European level the most widely used data set, E-OBS, was developed in the framework of the ENSEMBLES project and includes daily observations for temperature, precipitation (Klein Tank et al., 2002; Haylock et al., 2008; Klok and Klein Tank, 2009) and sea level pressure (van den Besselaar et al., 2011). Other continental-scale examples include the APHRODITE precipitation data set for Asia (Yatagai et al., 2012), the AWAP climate data sets for Australia (Jones et al., 2009), the North America regular gridded data set (Chen et al., 2008; Daly et al., 2008) and the CLARIS data set for South America (Menéndez et al., 2010). Recently, some regional and/or national regular gridded data sets were built, often at higher spatial and temporal resolution, incorporating a higher number of local station observations, spanning different periods and covering further variables (e.g., air temperatures, precipitation, cloud cover, relative humidity, etc.). Examples exist for Spain (Herrera et al., 2012; 2016), Portugal (Belo-Pereira et al., 2011), Germany (Quintana-Seguí et al., 2017; Rauhe et al., 2013; Frick et al., 2014), Switzerland (Frei, 2014; Isotta et al., 2014) or Romania (Birsan and Dumitrescu, 2014; Dumitrescu and Birsan 2015).

Typically, the aim of a gridded data set is to represent the areal average in a grid box, which requires a sufficiently large number of stations within the grid box to account for the sub-grid variability and allow the computation of an accurate mean value. Unfortunately, in many regions the observational network is sparse which poses challenges and difficulties for the building of high-quality regular gridded data sets affecting the spatiotemporal structure of not only the mean values, but also the variance and extremes. Moreover, as the target resolution of the gridded data set increases the effects of the mentioned issues on the quality of the data set also increase. To the best of our knowledge there are only few studies focusing on these issues and due to their importance more investigation on this topic is needed.

Some previous studies have analysed the impact of the station density and interpolation method on the quality of the gridded data sets produced regarding mean and extreme values (e.g., Gervais et al., 2014; Avila et al., 2015). In fact, the recognizable good quality of gridded data sets for mean values is not extendable for the variance as shown by Beguería et al. (2016). This study showed that modifications in the sample size result in changes in the variance of the gridded data. Usually gridded products underestimate the variance, even of the area average, leading to flawed inferences about changes in climate variability and extremes. Hofstra et al. (2010) investigated the effect of station network density on distributions and trends in indices of areal-averaged daily precipitation and temperature in the E-OBS gridded data set. By randomly decreasing the number of stations included in some of the grid boxes, the authors found that the fewer stations are used for the interpolation the larger the over-smoothing, for both precipitation and temperature. This smoothing is larger for higher percentiles and thus for extremes and the related extreme indices. In the context of a new method for spatial interpolation of daily surface air temperature from local stations in complex orographic regions, Frei (2014) showed that, in the covered period, as the network became denser the interpolation accuracy improves. Nevertheless with the drawback regarding the long-term homogeneity of the resulting grid data set, Herrera et al. (2016) used two interpolation methods to produce three regular gridded temperature (maximum and minimum) and precipitation data sets for Spain and tested the sensitivity of the interpolated fields to the use of orography as a covariate in the interpolation. As in Hofstra et al. (2010), the inclusion of orography in the temperature interpolation method is necessary to produce consistent results, while it introduces high precipitation biases with increasing elevation. The high station density also allowed the authors to infer that the precipitation underestimation (mean and extremes) encountered in E-OBS is associated to the density of the underlying station network.

For Australia, Contractor et al. (2015) assessed the spatiotemporal variability of precipitation comparing different gridded data sets, namely AWAP, TRMM, GPCP, in addition to six data sets built using diverse interpolation methods (cubic spline, triangulation with linear interpolation, ordinary kriging, natural neighbour interpolation, Barnes objective analysis) and grid station average. Regarding the temporal variability, grids interpolated by ordinary kriging and cubic spline interpolation show regionally larger differences (lower correlations). Additionally, the larger differences are associated with rainfall
extremes, which in some locations have differences up to a factor of five. From the gridding methods no one consistently performs better when compared with the station observations, but in particular cubic spline interpolation shows a tendency to “overshoot” in comparison to station data and the other gridded products, particularly in regions with strong spatial gradients. Similar shortcomings appear to occur in particular in regions where the sparseness of the network is larger and important climate variability exists, like for example, in West Africa (Wagner et al., 2007).

An increasing number of studies assess the observational uncertainty by comparing different observation-based reference data sets for specific variables (e.g., Hofstra et al., 2009; Kysely and Plavcová, 2010; Palazzi et al., 2013; Dunn et al., 2014; Schneider et al., 2014; Berg et al., 2015; Isotta et al., 2014; Herold et al., 2016) and investigate the influence of uncertainties in gridded observations on regional climate model evaluation (e.g., Prein and Gobiet, 2016; Kotlarski et al., 2017).

Against this background, a first objective of this study is to assess the sensitivity of gridded products to resolution, observation density and interpolation method, and assess their contribution to the total variance of the resulting gridded data sets. In particular we consider three resolutions (0.11, 0.22 and 0.44°), three station densities (high, medium and low, the latter equivalent to the density of the E-OBS data set), and three interpolation methods based on ordinary kriging (alone, or applied to the residuals after considering 2D or 3D splines for the monthly mean values). Moreover, we considered both point- and areal-representative implementations for the interpolation methods. The analysis is carried out for two distinct regions, Poland and Spain, which represent a wide range of European climatic variability. A second objective of this work was to provide suitable information to undertake an analysis of the uncertainty of gridded products for the evaluation of regional climate models (see Kotlarski et al., 2017).

This paper is organized as follows. Section 2 describes the observational networks considered to build the gridded data sets for both countries (Poland and Spain), the interpolation methods used in this work and the variance decomposition analysis considered to separate the contribution of each factor to the total variability. Section 3 describes the main results obtained and section 4 summarizes the results and concludes the paper.

2 | DATA AND METHODS

2.1 | Observation data for Spain

The Iberian Peninsula is located in southwestern Europe (Figure 1a), in the transition zone between extratropical and subtropical influences, spanning a region with complex orography influenced by both Atlantic and Mediterranean climates. The resulting local climate variability (Figure 2c,d) ranges from temperate climates with regular precipitation spread over the whole year in the north; to dry (semi-arid) climates with areas with less than 100 mm/year in the south-east; to the Mediterranean coast and part of the Ebro basin where frequent drought periods alternate with heavy rainfall events (see, e.g., Llasat, 2009).

The observational network used in this work is based on the observational data sets described in Herrera (2011). Only stations with at least 40 years in the period 1950–2003 and with at least 90% data availability within each year have been considered, being representative of the climatology observed in the whole period and also for each particular year. None automated missing daily data completion algorithm has been included in the process. Moreover, only the homogeneous stations (at a 95% confidence level) according to the standard normal homogeneity test (SNHT) and Alexandersson test (Alexandersson, 1986) have been considered. The final observational network obtained contains 822 precipitation stations (Figure 1b) in the period 1951–2010 which have been used in the interpolation procedure.

2.2 | Observation data for Poland

Poland is, for the most of its territory, topographically relatively flat and reaches from the Baltic Sea in the north, to the Carpathian Mountains in the south (Figure 1a). The country is located in a transition zone in the temperate climatic zone (Szwed, 2010). Poland’s climate is influenced by oceanic (Atlantic) and continental air masses approaching from the western and eastern direction, respectively, as well as by polar and tropical air. These factors determine precipitation amounts which, in the annual sum, are largest (greater than 600 mm) in the northwest of the country and in the southern upland and mountainous part (Tatra mountains) where they partly exceed 1,000 mm/year (Figure 2a,b). The maximum monthly precipitation sum is observed in July and the minimum in February. There is a tendency for extreme daily totals to increase towards the east (Marosz et al., 2013). Drought is more frequent in the northern and western part of Poland (Kalbarczyk, 2010).

The number of publicly available precipitation station data for Poland is very limited. Even the station network used for public gridded data sets is sparse, resulting in low-quality data sets, especially for the extremes (Hofstra et al., 2009; Wibig et al., 2014). The rain gauge network operated by the Institute of Meteorology and Water Management–National Research Institute in Poland is not very dense in comparison to other European countries of similar scale and comprises about 500 stations. To avoid dealing with missing data and to focus on the sensitivity analysis we have decided to take only stations with more than 98% data available into account, without including automated missing daily data completion in the process. This finally leads to 197 Polish stations in the period 1978–2012 considered in our analysis.
The data has been homogenized and quality controlled by the MASHv3.03 (Szentimrey, 2008 and 2011; Lakatos et al., 2013) procedure.

Note that the quality control and homogeneity analysis considered for each country are the standard procedures as employed (a) by the Institute of Meteorology and Water Management to be applied to its observational data sets in Poland and (b) in the development of the ensemble of gridded data sets Spain02 (Herrera et al., 2012; Herrera et al., 2016). In order to maintain the coherence with the data sets of reference used in both countries we decided to keep both procedures for the present analysis in spite of their differences.

For the sake of the coherence and the comparability of the analysis proposed for both countries, only the common period, 1981–2010, of both observational data set has been considered in this study. For this period, the 50-year return value for each grid-box was obtained by adjusting a generalized extreme value (GEV) distribution to the annual maximum of daily precipitation (see Herrera et al., 2016 and section 2.3 for a detailed description).

2.3 | Target resolutions and grids

The objective of a related study was to provide suitable information to undertake an analysis of the uncertainty of
gridded products for the evaluation of regional climate models (see Kotlarski et al., 2017). Therefore, the grids considered in this study match the rotated grids considered in the EURO-CORDEX initiative at a horizontal resolution of 0.11, 0.22 and 0.44° (see Figure 3). Note that the latter two grids are degraded versions of the 0.11° one. Note also that the E-OBS grid (v11 was used in this work) matches the 0.22° resolution grid used in this work.

In order to evaluate the uncertainty associated with the density of the station network we defined three different densities for each domain (high, medium and low), considering the full set, half and quarter of all available stations, respectively. The medium and low-density network were chosen from the total network with a stratified random sampling based on the location (longitude and latitude) and the mean precipitation. To obtain each sample, a k-means clustering algorithm was applied to these variables (after standardization), considering the same number of clusters as stations used for each target density. Then, one station was randomly chosen within each of the clusters. Note that the lowest density considered (~200/50 stations for Spain/Poland) approximately corresponds to the number of stations used by E-OBS to define the 0.22° rotated grid (~190/30 stations for Spain/Poland). Therefore, the sensitivity analysis undertaken in this study sheds some light on the representativeness of the E-OBS data sets over the two regions under study.

We want to remark that the sensitivity analysis provided in this work focuses on the impact of a relative change in the actual density of stations available (note that the actual density is higher in Spain than in Poland), not at the impact relative to some hypothetically perfectly representative density. This latter aspect is illustratively analysed with a case study in section 3.3, considering the gridbox with highest density.

2.4 | Interpolation methods

The present work builds on the methodologies described in a previous study of Herrera et al. (2016). In that study four interpolation methods were applied to obtain a set of daily gridded data sets for precipitation and temperature (mean, minimum and maximum), targeting the three different resolutions presented in section 2.3. In order to obtain gridded products comparable with the RCM direct output we consider the three methods representing the area average (AA) included in the work of Herrera et al., 2016: Ordinary Krigeing (AA-OK), and two- and three-dimensional thin plate splines (AA-2D and AA-3D). These three methods are based on ordinary kriging. In the first case, the method is directly applied to the observed daily precipitation values, while the
other two methods follow a two-step approach: first the two-or three-dimensional thin plate splines (considering or not the orography as covariable) is applied to the observed monthly values, and second the daily anomalies are interpolated using the ordinary kriging. Finally, both monthly values and daily anomalies are combined to obtain the interpolated daily values. Area-averaged representativeness is achieved by performing the interpolation using an auxiliary 0.01° grid, and averaging the resulting interpolated results in both regions for the three target resolutions (0.11, 0.22 and 0.44°). In addition, the above interpolation methods were applied using a point-representative implementation (OK, 2D and 3D, according to the previously defined notation) by directly estimating the values for the final grid, not including the interpolation to the auxiliary 0.01° grid. In this case, the resulting grids are not averaged versions of the higher-resolution one.

Note that both point- and area-representative interpolation have been applied in previous studies (Herrera et al., 2012; 2016) and the optimal approach depends on the application. As an example, for climate models evaluation area-representative methods should be considered in order to maintain the coherence between both data sets, while for observation data completion a point-representative can be more appropriated.

2.5 Variance decomposition analysis

The described experiments lead to a 3 × 3 (interpolation method and stations density) matrix of gridded data sets for each interpolation approach (point- and areal-representative), resolution (0.11, 0.22 and 0.44°) and region (Poland and Spain) which allows to assess the contribution of each dimension to the total variance by means of a statistical analysis of variance (von Storch and Zwiers, 1999; Déqué et al., 2007; Déqué et al., 2012):

\[
V = I + D + ID
\]

\[
I = \frac{1}{3} \sum_{i=1}^{3} (X_i - \bar{X})^2; D = \frac{1}{3} \sum_{j=1}^{3} (X_j - \bar{X})^2;
\]

\[
ID = \frac{1}{3} \sum_{i=1}^{3} \frac{1}{3} \sum_{j=1}^{3} (X_{ij} - X_i - X_j + X)\]

where \(V\) is the total variance, \(I\) and \(D\) are the variance due to the interpolation method and the stations density alone, respectively, \(ID\) is the variance due to the interaction between both dimensions, \(X_{ij}\) is the gridded data set corresponding to the \(i\)th interpolation method and the \(j\)th stations density, and the dots (\(\cdot\)) in the sub-index represent the mean in the corresponding dimension. The variance decomposition is carried out for each grid cell independently, and variance contributions are then spatially averaged.

![FIGURE 4](https://wileyonlinelibrary.com)
3 | RESULTS

3.1 | Overall interpolation results

In order to analyse the effect of the station density and the interpolation methods on the resulting gridded data sets, we focus both on mean and extreme regimes and consider mean precipitation and 50-year return value of the daily all-year time series for each grid box. Figures 4 and 5 show the results for the nine data sets developed for the high-density case considering the three resolutions (columns) and the three interpolation methods (in rows), for Spain (left) and Poland (right). The benchmarking results for the stations and the gridded (0.22°) data set E-OBS are shown in the upper two panels of each figure. Note that, for the sake of simplicity, the individual map results have been shown only for the areal-representative methods, whereas both approaches will be considered in the analysis of variance in the following section.

Figure 4 shows the results for mean daily precipitation. On the one hand, this figure shows a general underestimation by E-OBS, mainly in regions with complex orography (e.g., Spain or the south of Poland). On the other hand, comparing the interpolation methods, there are in general smaller differences between them for each resolution than with respect to E-OBS, which is related to the stations network considered in both cases and points out to the importance of the stations density in the interpolation process. The main difference is found between the AA-OK and AA-2D methods in Southern Poland.

Regarding the 50-year return value, Figure 5 shows similar results than those described for the mean daily precipitation with a significant underestimation by E-OBS in both countries for all the interpolation methods. In this case, the differences between methods are more significant than for the mean for the three resolutions. In particular, for both countries the main differences appear when the monthly splines-based interpolation is included in the methodology in isolated points/regions (e.g., northwestern Spain or center Poland). Note that the spatial pattern of the extreme precipitation is less dependent on the orography which has been partially explained by the relation between the occurrence of extreme events with different circulation patterns (García-Ortega et al., 2007; AEMET, 2011; Herrera et al., 2012; Ramis et al., 2013) like the North Atlantic Oscillation (NAO) or the western Mediterranean Oscillation (WeMOi).

In particular, despite orography, in the Mediterranean coast the humid air from the Mediterranean Sea favours the development of mesoscale convective systems and convective clouds resulting in hail or heavy precipitations in the eastern coast of the Iberian Peninsula.

3.2 | Variance decomposition

Figure 6 shows the spatially averaged variance decomposition (considering only those grid boxes with at least one
station) for the mean (first three column blocks) and extreme (last block) values, considering both countries and both area- and point-representative implementations of the interpolation methods. For each block, the stacked bar plots show the contribution to the total variance of only station density (blue), only the interpolation methodology (red) and the interaction of both (green), separately for each resolution. Station density appears to be the main variability factor, explaining over 60% of the variance in Spain and over 50% in Poland in all cases. This contribution is particularly relevant for summer, with differences in the range of 5–10% with respect to winter and annual contributions. Moreover, the interaction term is roughly insensitive to the resolution in all cases, so the increment of the relative importance of station density (~10% for all seasons) with resolution leads to a similar decrement of the relative importance of the interpolation method. For the point-representative interpolation methods the results are very similar in Spain, but in Poland the station density component is more important, particularly due to a reduction of the interaction term.

Similar results have been found for the 50-year return value, with the exception of the sensitivity to resolution: in this case the results are roughly insensitive to this factor. This could be partly explained by the fact that extreme precipitation is less dependent on the orography than the mean precipitation (see Figures 4 and 5). Since the main effect of increasing the resolution is to improve the representation of the orography (and the orographic effects on precipitation), the dependence on the resolution has less impact in the 50-year return value than for the mean precipitation.

Figure 7 shows the spatial variability of the variance decomposition obtained for the area-representative implementation and the highest-resolution grid. In agreement with the obtained results, areas with a large dependence on the interpolation method broadly correspond to station-sparse regions (not included in the bar plot). Note that regions without stations depend on the surrounding network and on the nature of the interpolation method. Subsequently, once the station’s network is defined, all the variability comes from the interpolation method as is shown in Figure 7. This information can support the identification of target regions where a clear need for increasing the local representativeness with new station data.

These results are also in agreement with those obtained for the local analysis (see section 3.3 and Figure 9) which shows that, for a particular grid box, the interpolated value strongly depends on the stations surrounding the grid box. Hence, changes in the density modify the nearest stations.
affecting the grid box and lead to a high variability in the resulting interpolated values.

3.3 Analysis of effective resolution

In the previous section we have seen that the station density largely influences the variability of the interpolated grid box values. However, this analysis does not provide information on the effective resolution for a given network of stations or, in other words, the number of stations needed for convergence of interpolated values for a given resolution. In this section we shed some light on this problem by considering two grid boxes from the 0.44° resolution grid in northern Spain with the largest number of available stations (see the rectangle in northern Spain in Figure 1a). Figure 8 shows the local grid boxes of the 0.44° resolution grid in this area and the location of the stations within these grid boxes. In this case, for each number of stations and grid box a bootstrapping approach was considered to obtain 100 randomly chosen samples from the 10 stations available within each grid box. For each sample, the point-representative 3D interpolation method was adjusted, considering the stations chosen for both grid boxes, and applied to obtain the interpolated values of both grid boxes for the full period 1981–2010. Moreover, for comparison we have considered an alternative grid box value estimation method based on simply averaging the station values.

On the one hand, the averaging approach reduces the uncertainty w.r.t. the interpolation due to the station combinations considered for all the parameters and grid boxes considered. Moreover, with the exception of the wet day frequency, in the case of the averaging approach the median value for the realizations is almost independent of the number of stations considered. On the other hand, a greater variability and more dependence on the number of stations have been found for the interpolation. In this sense, the results obtained for the interpolation point out to a minimum stations' density of six to seven stations per grid box to reach the target resolution (0.44°). Although this result depends on the internal variability of each grid box, as is reflected in Figure 9, for both approaches and grid boxes considered all the parameters stabilize around these values.

4 SUMMARY AND CONCLUSIONS

In this work the sensitivity to different uncertainty sources of a precipitation interpolation methodology has been analysed considering three interpolation methods (OK, 2D and
3D), three stations density (low, medium and high), two interpolation approaches (areal- and point-representative), three resolutions (0.11, 0.22 and 0.44°) and two different geographical domains (Spain and Poland).

The main conclusion obtained is the relevance of the stations density, explaining more than 60% of the variance independently of the areal- or point-representativity of the interpolation method, the resolution, season and the country considered. Regarding the spatial distribution of the explained variance, regions with largest percentage due to the interpolation method are located in regions with low stations density.

FIGURE 9 Effective resolution analysis for the two grid boxes shown in Figure 8. Box-plots show, for both the averaging (left) and interpolation (right) methods, the variability of different statistics (mean daily precipitation, standard deviation of daily precipitation, wet day frequency and 50-year return values, in rows) for the period 1981–2010 due to the different combinations of stations considered, for an increasing number of stations (m), ranging from 1 to 10 (x-axis) [Colour figure can be viewed at wileyonlinelibrary.com]
For the sake of comparison, E-OBS has been considered as well and showed large differences w.r.t. the gridded products built, independently of the method considered, including the AA-3D which corresponds to the method used to develop E-OBS. These differences are more significant for Spain than Poland due to the large climatic variability and the complex orography of the former.

To analyse the local effect of the stations network considered in the interpolation, two Spanish grid boxes containing the largest number of stations (10) for the 0.44 resolution, and the time series corresponding to the interpolation and average of 100 randomly chosen sub-samples have been considered. Although it depends on the internal variability inside the grid box, the uncertainty due to the combinations and number of stations considered is reduced when the spatial average is used instead an interpolation method. Based on the results obtained for both grid boxes and interpolation/averaging approaches, at least 6–7 stations per grid box should be considered to reach the target resolution.

ACKNOWLEDGEMENTS

VALUE has been funded as EU COST Action ES1102. Participation of S.H. and J.M.G. was partially supported by the project MULTI-SDM (CGL2015-66583-R, MINECO/ FEDER). P.M.M.S. and R.M.C. wish to acknowledge the projects SOLAR (PTDC/GEOMET/7078/2014) and FCT UID/GEO/50019/2013 - Instituto Dom Luiz, both financed by the Fundação para a Ciência e Tecnologia. We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We also thank two anonymous reviewers for their useful comments that helped to improve the original manuscript.

CONFLICT OF INTERESTS

There are no known conflicts of interest associated with this publication, it has not been submitted (or published previously) to other journal and there has been no significant financial support for this work that could have influenced its outcome. All the authors included have contributed to this work, both in the development and in the interpretation of the scientific results. All the authors have consented the submission of this work and are prepared to collect documentation of compliance with ethical standards and send it if it is requested during peer review or after publication.

ORCID

Sven Kotlarski https://orcid.org/0000-0001-9542-6781
Pedro M. M. Soares https://orcid.org/0000-0002-9155-5874
José M. Gutiérrez https://orcid.org/0000-0002-2766-6297
Adam Jaczewski https://orcid.org/0000-0002-2364-5835
Douglas Maraun https://orcid.org/0000-0002-4076-0456

REFERENCES

AEMET. (2011) Atlas climático ibérico/Iberian climate atlas. Madrid: Agencia Estatal de Meteorología (AEMET).
Alexander, H. (1986) A homogeneity test applied to precipitation data. Journal of Climate and Applied Meteorology, 6, 661–675.
Avila, P.B., Dong, S., Menang, K.P., Rajczak, J., Renom, M., Donat, M.G. and Alexander, L.V. (2015) Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: a case study for south-east Australia. Weather and Climate Extremes, 9, 6–16. https://doi.org/10.1016/j.wace.2015.06.003.
Ban, N., Schmidli, J. and Schär, C. (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. Journal of Geophysical Research: Atmospheres, 119, 7889–7907. https://doi.org/10.1002/2014JD021478.
Beguería, S., Vicente-Serrano, S.M., Tomás-Burguera, M. and Maneta, M. (2016) Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability. International Journal of Climatology, 36, 3413–3422. https://doi.org/10.1002/joc.4561.
Belo-Pereira, M., Dutra, E. and Viterbo, P. (2011) Evaluation of global precipitation data sets over the Iberian Peninsula. Journal of Geophysical Research, 116, D20101. https://doi.org/10.1029/2010JD015481.
Berg, N., Hall, A., Sun, F., Capps, S., Walton, D., Langenbrunner, B. and Neelin, D. (2015) Twenty-first-century precipitation changes over the Los Angeles region. Journal of Climate, 28(2), 401–421. https://doi.org/10.1175/JCLI-D-14-00316.1.
Birsan, M.V. and Dumitrescu, A. (2014) ROCADA: Romanian daily gridded climate dataset (1961–2013) V1.0. Bucuresti: Administratia Nationala de Meteorologie. Available at: https://doi.pangaea.de/10.1594/PANGAEA.83627.
Birner, C.T. and Knutsen, T. (2008) On the verification and comparison of extreme rainfall indices from climate models. Journal of Climate, 21, 1605–1621. https://doi.org/10.1175/2007JCLI1494.1.
Birner, M., Xie, P. and Shi, W. (2008) CPC unified gauge-based analysis of global daily precipitation. In: Western Pacific Geophysics Meeting, Cairns, Australia, 29 July–1 August, 2008.
Contractor, S., Alexander, L.V., Donat, M.G. and Herold, N. (2015) How well do gridded datasets of observed daily precipitation compare over Australia? Advances in Meteorology, 2015, 325718. https://doi.org/10.1155/2015/325718.
Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J. and Pasteris, P.A. (2008) Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. International Journal of Climatology, 28, 2031–2064. https://doi.org/10.1002/joc.1688.
van den Besselaar, E.J.M., Haylock, M.R., van der Schrier, G. and Klein Tank, A.M.G. (2011) A European daily high-resolution observational gridded data set of sea level pressure. Journal of Geophysical Research, 116, D11110. https://doi.org/10.1029/2010JD015468.
Déqué, M., Rowell, D.P., Lüthi, D., Giorgi, F., Christensen, J.H., Rockel, B., Jacob, D., Kjellström, E., de Castro, M. and van den Hurk, B. (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climatic Change, 81(1), 53–70. https://doi.org/10.1007/s10584-006-9228-x.
Déqué, M., Somot, S., Sanchez-Gomez, E., Goodess, C.M., Jacob, D., Lenderink, G. and Christensen, O.B. (2012) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Climate Dynamics, 38(5), 951–964. https://doi.org/10.1007/s00382-011-1053-x.
Dumitrescu, A. and Birsan, M.V. (2015) Supplement to ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Natural Hazards, 78(2), 1045–1063. https://doi.org/10.1007/s11069-015-1757-z.
convection-permitting climate modeling: demonstrations, prospects, and challenges. *Reviews of Geophysics*, 53, 323–361. https://doi.org/10.1002/2014RG000475.

Quintana-Seguí, P., Turco, M., Herrera, S. and Miguez-Macho, G. (2017) Validation of a new SAFRAN-based gridded precipitation product for Spain and comparisons to Spain02 and ERA-Interim. *Hydrology and Earth System Sciences*, 21, 2187–2201. https://doi.org/10.5194/hess-21-2187-2017.

Ramis, C., Homar, V., Amengual, A., Romero, R. and Alonso, S. (2013) Daily precipitation records over mainland Spain and the Balearic Islands. *Natural Hazards and Earth System Sciences*, 13, 2483–2491. https://doi.org/10.5194/nhess-13-2483-2013.

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A. and Gratzi, A. (2013) A central European precipitation climatology part I: generation and validation of a high-resolution gridded daily data set (hyras). *Meteorologische Zeitschrift*, 22(3), 235–256. https://doi.org/10.1127/0941-2948/2013/0436.

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M. and Rudolf, B. (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. *Theoretical and Applied Climatology*, 115(1), 15–40. https://doi.org/10.1007/s00704-013-0860-x.

von Storch, H. and Zwiers, F.W. (1999) *Statistical Analysis in Climate Research*. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511612336.

Szentimrey, T. (2011) Manual of homogenization software MASHv3.03. Budapest, Hungary: Hungarian Meteorological Service.

Szwed, M. (2010) Uncertainty of the climate model projections based on the Poland’s territory example. In: 6th Alexander von Humboldt International Conference on Climate Change, Natural Hazards, and Societies, March 15–19, Merida, Mexico.

Wagner, S., Kunstmann, H. and Bardossy, A. (2007) Uncertainties in water balance estimations due to scarce meteorological information: a case study for the White Volta catchment in West Africa. In: Proceedings of Symposium HS2004 at IUGG2007, Perugia: Quantification and Reduction of Predictive Uncertainty for Sustainable Water Resources Management. IAHS Publication No. 313.

Wibig, J., Jaczewski, A., Brzoska, B., Konca-Kędzierska, K. and Panko-Kluczyńska, K. (2014) How does the areal averaging influence the extremes? The context of gridded observation data sets. *Meteorologische Zeitschrift*, 23, 181–187.

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N. and Kitoh, A. (2012) APHRODITE constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. *Bulletin of the American Meteorological Society*, 93(9), 1401–1415.