GC and GC–MS Analysis of Volatile Compounds From *Ballota nigra* subsp. *uncinata* Collected in Aeolian Islands, Sicily (Southern Italy)

Daniela Rigano¹, Carmen Formisano¹, Sergio Rosselli²,³, Natale Badalamenti⁴, and Maurizio Bruno³,⁴

Abstract

In the present study, the chemical composition of the essential oils from aerial parts of *Ballota nigra* subsp. *uncinata* (Bég.) Patzak collected in Sicily was evaluated by gas chromatography (GC) and GC-mass spectrometry. The main components of the oil were (E)-phytol (20.0%), α-pinene (9.0%), hexahydrofarnesyl acetone (5.7%), and α-selinene (5.1%). Cluster analysis of the essential oil compositions of all the taxa belonging to *B. nigra* s.l. group was performed.

Keywords

Ballota nigra subsp. *uncinata*, Lamiaceae, Stachydeae, essential oil, (E)-Phytol

Received: February 28th, 2020; Accepted: March 25th, 2020.

Ballota L. (Lamiaceae) is a genus belonging to the tribe Stachydeae, subtribe Ballotae. The Plant List, which has been used to validate the scientific names of the species, includes more than 160 scientific plant names of species rank for the genus *Ballota*. Of these, only 30 are accepted species names. They are native to Macaronesia, Europe, Mediterranean to West Asia, Mauritania, Chad, and South Africa. *Ballota* species are perennial herbs characterized by flowers held in verticillasters and by an unpleasant aromatic foliage.¹

Lamiaceae taxa have attracted interest by the researcher for the valuable biological properties of their extracts, such as antibacterial, antioxidant, and hypoglycemia.² Furthermore, Lamiaceae essential oils have shown a promising anti-inflammatory potential³ and are widely used in aromatherapy for several minor clinical uses.⁴ In this context, *Ballota* species have been used in folk medicine as antiulcer, antispasmodic, diuretic, choleric, antihemorrhoidal, and sedative agents.⁵ The antimicrobial activities⁶⁻⁸ and the antioxidant activities⁹ of *Ballota* species were recently reported as well as the antifungal activities of some flavonoids isolated from 2 species.¹⁰⁻¹¹ The water extract has been reported to have antinociceptive, anti-inflammatory, and hepatoprotective activities.¹² In Europe, the polar extracts of the flowering aerial parts of *Ballota* are commonly used due to their neuromodulatory activity.¹³⁻¹⁴ More recently, the general antioxidant activity¹⁵ the in vitro inhibition of LDL (low-density lipoprotein) peroxidation¹⁶ and the antibacterial activity¹⁷,¹⁸ of these plants have been published. Phytochemical investigations showed that labdane diterpenoids, flavonoids, and phenylpropanoids are the characteristic features of the genus, and recently the occurrence of non-volatile and volatile metabolites, the ethnopharmacological uses, and the biological properties of all the studied taxa of *Ballota* have been reviewed.¹⁹

As a continuation of our researches on *Ballota* species,²⁰⁻²² we decided to investigate the chemical composition of the essential oil *B. nigra* subsp. *uncinata*, collected in Sicily.

Ballota nigra subsp. *uncinata* (Bég.) Patzak (syn. *Ballota nigra* subsp. *ruderalis* (Sw.) Briq.) is present in the western part of North Africa, Southern Europe, Turkey, and Mediterranean Middle East.²³ Previous investigations on this taxon reported
the occurrence of only 1 labdane diterpenoid, dehydrohispanolone,24,25 the chemical composition of the essential oil of Turkish accession,26 and its antilisterial activity against \textit{L. monocytogenes}.

Results and Discussion

Hydrodistillation of \textit{B. nigra} subsp. \textit{uncinata} (\textit{B.n.u.}) aerial parts gave a pale yellow oil. Overall, 49 compounds have been identified in \textit{B.n.u.}, representing 96.6% of the total components. The components are listed in Table 1 according to their retention indices on an HP 5 MS column and are classified on the basis of their chemical structures into 9 classes.

The main constituents of \textit{B.n.u.} were found to be (E)-phytol (20.0%), \textit{\alpha}-pinene (9.0%), hexahydrofarnesyl acetone (5.7%), \textit{\alpha}-selinene (5.1%), 1-undecene (5.0%), and (Z)-caryophyllene (4.2%). Sesquiterpenes constituted the most abundant fraction of the oil (39.9%), with a prevalence of sesquiterpene hydrocarbons (30.7%) among which \textit{\alpha}-selinene (5.1%), (Z)-caryophyllene (4.2%), and germacrene D (3.7%) predominated. Among the 7 oxygen-containing sesquiterpenes (9.2%), viridiflorol (2.8%) was the most abundant. With regard to monoterpenes, 6 oxygen-containing monoterpenes accounted for 3.5% of the total oil and monoterpane hydrocarbon represented 12.9% with \textit{\alpha}-pinene (9.0%) as the main compound. Also, diterpene fraction was noteworthy (21.5%), with (E)-phytol (20.0%) being the main compound of the class and the oil. Hexahydrofarnesyl acetone (5.7%) and 1-undecene (5.0%) were, instead, the principal products among the carbonylic compounds (8.2%) and the hydrocarbons (7.7%), respectively.

Table 2 reports the main compounds of the essential oils of the different taxa of \textit{B. nigra} s.l. group studied so far.

Considering the compounds occurring in the oils with an abundance of more than 3% only, the comparison of our data with those reported in the literature (Table 2) allows to point out some interesting considerations.

Almost all the \textit{B. nigra} species contain the sesquiterpenes caryophyllene and/or caryophyllene oxide among the main compounds with the exception of 2 cases: \textit{B. nigra} 3 collected in Iran30 and \textit{B. nigra} subsp. \textit{anatolica} 2 collected in Turkey.26

The \textit{B. nigra} subsp. \textit{uncinata}, we examined, contains on the contrary to the previously investigated \textit{B. nigra} subsp. \textit{uncinata}, also a relevant amount (9%) of monoterpane \textit{\alpha}-pinene exclusively contained in the \textit{B. nigra} 3 collected in Iran.30 A cluster statistical analysis (Figure 1) of these data, based on a comparison of the species according to the relative amounts of compounds, shows a certain resemblance of our sample with \textit{B. nigra} subsp. \textit{foetida} 4 collected in Serbia.36 In fact, both species, apart from caryophyllene and germacrene D, are the only ones containing the diterpene phytol as the most abundant compound.

Experimental

Plant Material

Aerial parts (flowers, stems, and leaves) of \textit{B. nigra} subsp. \textit{uncinata} (Bég.) Patzak (\textit{B.n.u.}) were collected at Lipari (38°29′51.652″N, 14°57′1.519″E), Aeolian Islands, Sicily (Italy), at the beginning of June 2018. The authentication was carried out by Mr Emanuele Schimmenti, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy. A voucher specimen (PAL MB-2018/86) was deposited in Department STEBICEF, University of Palermo.

Isolation of the Essential Oil

The air-dried samples (200 g) were ground in a Waring blender and then subjected to a single hydrodistillation for 3 hours using \textit{n}-hexane as the solvent, according to the standard procedure previously described.39 The extracts were dried over anhydrous sodium sulfate and then stored in sealed vials, at ~20°C, ready for the gas chromatography (GC) and GC-mass spectrometry (MS) analyses. The samples yielded 0.016% (\textit{B.n.u.}) of yellow oils (w/w).

Gas Chromatography–Mass Spectrometry

Analytical GC was carried out on a Perkin-Elmer Sigma 115 GC fitted with an HP-5 MS capillary column (30 m \times 0.25 mm), \textit{0.25 µm film thickness}. Column temperature was initially kept at 40°C for 5 minutes, then gradually increased to 250°C at 2°C/min rate, held for 15 minutes and finally raised to 270°C at 10°C/min. Diluted samples (1/100 v/v, in \textit{n}-pentane) of 1 µL were injected at 250°C, manually, and in the splitless mode. Flame ionization detection (FID) was performed at 280°C. GC-MS analysis was performed on an Agilent 6850 Ser. II apparatus, fitted with a fused silica DB-5 capillary column (30 m \times 0.25 mm), 0.33 µm film thickness, coupled to an Agilent Mass Selective Detector MSD 5973; ionization voltage 70 eV; electron multiplier energy 2000 V. GC conditions were as given; transfer line temperature, 295°C. Analysis was also run by using a fused silica HP Innowax polyethylene glycol capillary column (50 m \times 0.20 mm, 0.20 µm film thickness). In both cases, helium was used as carrier gas (1 mL/min). Identification of compounds was carried out using NIST 11, Wiley 9, FFNSC 2, and Adams databases.40 These identifications were confirmed by linear retention indices with those available in literature by the SciFinder database. Some of the compounds were also confirmed by comparison of mass spectra and retention times with standard compounds available in the laboratory. The retention indices were determined in relation to a homologous series of \textit{n}-alkanes (C8–C30) injected under the same
Table 1. Percent Composition of the Essential Oils of Aerial Parts of *Ballota nigra* subsp. *uncinata* Arranged by Class.

K^a	K^b	Component	B.n.u.^c	Ident.^d
930	1014	α-Thujene	1.7	1, 2
936	1073	α-Pinene	9.0	1, 2, 3
973	1132	Sabinene	0.6	1, 2
978	1118	β-Pinene	1.1	1, 2, 3
1030	1203	Limonene	0.5	1, 2, 3

Monoterpene hydrocarbons

1098	1553	Linalool	0.8	1, 2, 3
1143	1532	Camphor	0.4	1, 2, 3
1167	1719	Bornecol	0.9	1, 2, 3
1176	1611	Terpinen-4-ol	0.4	1, 2, 3
1187	1706	α-Terpineol	0.6	1, 2, 3
1262	1583	*cis*-Chrysantheryl acetate	0.4	1, 2

Oxygenated monoterpenes

1363	1492	Cyclosativene	2.1	1, 2
1377	1497	*α*-Copaene	1.8	1, 2
1385	1535	β-Bourbonene	0.7	1, 2
1404	1666	(Z)₂-Caryophyllene	4.2	1, 2, 3
1407	1538	α-Gurjunene	0.5	1, 2
1418	1612	(E)₂-Caryophyllene	2.2	1, 2, 3
1437	1628	Aromadendrene	2.6	1, 2
1463	1661	*allo*-Aromadendrene	0.6	1, 2
1475	1715	β-Selinene	2.0	1, 2
1477	1726	Germacrene D	3.7	1, 2
1479	1698	β-Selinene	0.8	1, 2
1487	1731	*α*-Selinene	5.1	1, 2
1495	1740	Valencene	2.1	1, 2
1521	1773	γ-*epi*-α-Selinene	1.1	1, 2
1526	1173	*β*-Cadinene	1.2	1, 2
1554	1856	Germacrene B	t^e	1, 2

Sesquiterpene hydrocarbons

1527	2001	Isocaryophyllene oxide	0.5	1, 2
1581	2008	Caryophyllene oxide	1.1	1, 2, 3
1584	2176	Longiborneol	1.9	1, 2
1586	2099	Globulol	0.8	1, 2
1593	2104	Viridiflorol	2.8	1, 2
1636	2185	γ-Eudesmol	1.5	1, 2
1735	2355	Eremophilone	0.6	1, 2

Oxygenated sesquiterpenes

1836	1963	Neophytadiene	0.5	1, 2
2054	2524	Abietatriene	1.0	1, 2
2132	2625	(E)-Phytol	20.0	1, 2
854	1209	(E)-2-Hexenal	0.6	1, 2
1102	1401	Nonanal	0.7	1, 2
1380	1835	β-Damascenone	0.6	1, 2
1845	2131	Hexahydrofarneol acetone	5.7	1, 2
1915	2387	(E,E)-Farnesyl acetone	0.6	1, 2

Carboxylic compounds

1353	2186	Eugenol	1.5	1, 2, 3
1094	1095	Phenol	1.5	1, 2
2300	2300	Tricosane	0.6	1, 2, 3

(Continued)
Table 1. Continued

K^a	K^b	Component	B.n.u.^c	Ident. ^d
2500	2500	Pentacosane	0.7	1, 2, 3
2700	2700	Heptacosane	0.9	1, 2, 3
2900	2900	Nonacosane	0.5	1, 2
		Hydrocarbons	7.7	
977	1452	1-Octen-3-ol	0.7	1, 2
1002	1243	2-Pentylfuran	0.7	1, 2
		Others	1.4	
		Total	96.6	

^aHP-5 MS column.
^bHP Innowax column.
^cB.n.u.: Ballota nigra L. subsp. uncinita (Fiori et Beg.) Patzak.
^d1: Retention index, 2: mass spectrum, 3: co-injection with authentic compound.
^eTrace, <0.05%.

Table 2. Main Compounds (>3%) of the Essential Oils From the Aerial Parts of Taxa of *Ballota nigra* s.l. Group.

Taxa	Origin	Compounds	Ref
B. nigra	1: Mazandaran, Iran	Caryophyllene oxide (7.9), *ep*-α-muuroolol (6.6), δ-cadinene (6.5), α-cadinol (6.3), γ-amorphene (4.3), β-bourbonene (4.1), 6,10,14-trimethyl-2-pentadecanone (4.0), (E)-caryophyllene (4.0), germacrene D (3.8), aromadendrene (3.4), γ-murolene (3.2), germacrene D-4-ol (3.2), α-bisabolol (3.2), α-amorphene (3.0)	28
	2: Jadovnik Mt., Serbia	β-Caryophyllene (35.4/39.1), germacrene D (27.4/35.7), a-humulene (7.4/10.4), δ-cadinene (3.8/0), (E)-phytol (2.5/3.8)	29
	3: Golestan, Iran	β-Pinene (39.0), a-pinene (34.5), sabinene (7.7), a-phellandrene (4.1)	30
B. nigra subsp. anatolica	1: Mazandaran, Iran	Germacrene D (18.1), nerolidol epoxyacetate (15.4), scareol oxide (12.1), linalyl acetate (11.5), β-caryophyllene (10.5), spathulanol (9.0), linalool (5.2), longipinene epoxide (4.7)	31
	2: Muğla, Turkey	Hexadecanoic acid (40.9), β-bisabolene (13.4), hexahydrofarnesyl acetone (7.9), 1-isobutyl-4-isopropyl-2,2-dimethyl succinate (6.6), β-eudesmol (3.5)	26
	3: Western Turkey	1-Hexacosanol (26.7), caryophyllene oxide (9.3), germacrene D (9.3), α-selinene (8.7), Z-8-octadecen-1-ol acetate (7.1), 2,5-di-t-tert-octyl-p-benzoquinone (7.3), arachidic acid (6.0), tetracosane (4.5), heneicosane (4.4), heptacosane (4.3), 2-methyl-1-hexadecanol (3.3), octadecano (3.3), butyl phthalate (3.0)	32
B. nigra subsp. foetida	1: Pisa, Italy	β-Caryophyllene (25.1), germacrene D (24.2), 1-octen-3-ol (7.3), (E)-2-hexenal (6.1), a-humulene (4.3), caryophyllene oxide (4.2)	33
	2: Urbino, Italy	β-Caryophyllene (20.0), germacrene D (18.0), caryophyllene oxide (15.0), 1-octen-3-ol (6.8), (E)-2-hexenal (6.1), a-humulene (4.5), β-bourbonene (3.2)	34
	3: Urbino, Italy	β-Caryophyllene (22.6), caryophyllene oxide (18.0), germacrene D (16.5), (E)-2-hexenal (6.5), 1-octen-3-ol (5.5)	35
	4: Nis, Serbia	(E)-Phytol (56.9), germacrene D (10.0), β-caryophyllene (4.7), caryophyllene oxide (3.6), (E)-β-ionone (3.4)	36
	5: Brac, Croatia	Germacrene D (23.1), β-caryophyllene (20.3), caryophyllene oxide (6.2), caryophylladienol I (3.3), (E)-2-hexenal (3.1), hexadecanoic acid (3.1), a-humulene (3.0)	37
B. nigra subsp. kurdica	Kurdistan, Iran	Caryophyllene oxide (39.4), β-caryophyllene (24.9), germacrene D (7.6), 1-undecene (4.2), isoaromadendrene epoxide (3.2)	38
B. nigra f. uncinata	Konya, Turkey	Caryophyllene oxide (21.2), hexadecanoic acid (19.9), β-caryophyllene (18.9), germacrene D (4.6), hexahydrofarnesyl acetone (4.4), spathulanol (4.2), caryophyllenol II (3.8), bicyclogermacrene (3.7)	26
operating conditions. Component relative concentrations were calculated based on GC peak areas without using correction factors.

Statistical Analysis

It was carried out using the cluster method by Primer 6.1 using a matrix composed of the amount (%) of the 50 compounds occurring in 14 subspecies of *B. nigra* with abundance >3%.

Acknowledgments

The GC–MS spectra were performed at the "C.S.I.A.S." of the University "Federico II" of Napoli.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: the assistance of the staff is gratefully appreciated. This work was supported by grant from MIURITALY PRIN 2017 (Project N. 2017A95NCJ).

ORCID ID

Sergio Rosselli
https://orcid.org/0000-0002-2448-9192

References

1. World Checklist of Selected Plant Families (WCSP), Kew Science. Accessed 13.01.2020. http://apps.kew.org/wcsp/qsearch.do

2. Iaku I, Acquaviva R, Mastrojeni S, et al. Antibacterial, antioxidant and hypoglycaemic effects of *Thymus capitatus* (L.) Hoffmanns. et link leaves' fractions. *J Enzyme Inhib Med Chem*. 2015;30(3):360-365. doi: 10.3109/14756366.2014.930453

3. Zuzarte M, Alves-Silva JM, Alves M, Cavaleiro C, Salgueiro L, Cruz MT. New insights on the anti-inflammatory potential and safety profile of *Thymus carnossus* and *Thymus camphoratus* essential oils and their main compounds. *J Ethnopharmacol*. 2018;225:10-17. doi:10.1016/j.jep.2018.06.025

4. Bagetta G, Cosentino M, Sakurada T. *Aromatherapy: basic mechanisms and evidence-based clinical use*. 2016. Boca Raton: CRC Press; 2016.

5. Citoğlu G, Tanker M, Sever B, Englert J, Anton R, Altanlar N. Antibacterial activities of diterpenoids isolated from *Ballota saxatilis* subsp. *saxatilis*. *Planta Med*. 1998;64(5):484-485. doi:10.1055/s-2006-957494

6. Çitoğlu GS, Yılmaz BS, Altanlar N. Antimicrobial activity of *Ballota* species growing in Turkey. *J Fac Pharm Ankara*. 2003;32(2):93-97.

7. Dülger B, Dülger G. Antimicrobial activity of the leaves of *Ballota acetabulosa* on microorganisms isolated from urinary tract infection. *Turk J Pharm Sci*. 2012;9(3):257-262.
8. Askin T, Teklu EM, Saitl F, Modanlıoğlu S, Aydeniz H. Preliminary antimycobacterial study on selected Turkish plants (Lamiaceae) against Mycobacterium tuberculosis and search for some phenolic constituents. BMC Complement Altern Med. 2013;13:365. doi:10.1186/1472-6882-13-365

9. Çitoğlu GS, Çalış T, Sever B, Ișcan M. Antioxidant properties of Ballota species growing in Turkey. J Ethnopharmacol. 2004;92(2-3):275-280. doi:10.1016/j.jep.2004.03.012

10. Çitoğlu GS, Sever B, Antus S, Baiz-Gács E, Altanlar N. Antifungal Flavonoids from Ballota glandulosisissima. Pharm Biol. 2003;41(7):483-486. doi:10.1080/13880200308951339

11. Çitoğlu GS, Sever B, Anus S, Baiz-Gács E, Altanlar N. Antifungal Diterpenoids and Flavonoids from Ballota inaequidens. Pharm Biol. 2005;42(8):659-663. doi:10.1080/13880200409002626

12. Özçek H, Çitoğlu GS, Dülger H, Uğraş S, Sever B. Hepatoprotective and anti-inflammatory activities of Ballota glandulosisissima. J Ethnopharmacol. 2004;95(2-3):143-149. doi:10.1016/j.jep.2004.06.030

13. Racz-Kotilla G, Racz G, Jozsa J. Activity of some species belonging to Labiatae on the central nervous systems of mice. Herb Hung. 1980;19:49-53.

14. Vural K, Ezer N, Erol K, Samin FP. Anxiolytic and antidepressant activities of some Ballota species. Journal of Faculty of Pharmacy of Gazi University. 1996;13(1):29-32.

15. Coulidis M, Tsakou O, Verykokidou E, Harvala C. Screening of the essential oil of Ballota nigra ssp. uncinata and subsp. anatolica from Turkey. J Ethnopharmacol. 2017;51(3):s185-s189. doi:10.1016/j.jep.2018.01.064

16. Seidel V, Verholle M, Malard Y, et al. Phenylpropanoids from Ballota nigra ssp. uncinata. J Med Food. 2009;12(2):435-441. doi:10.1089/jmf.2008.0164

17. Jamzad M, Rustaiyan A, Jamzad Z, Masoudi S. Essential oil composition of Salvia indica L., Thymbus caucasicus Wind. ex Ronniger subsp. grosheimii (Ronniger) Jalas. and Ballota nigra L.: three Labiatae species from Iran. J Ess Oil Bearing Plants. 2011;14(1):76-83. doi:10.1080/0972060X.2011.10643903

18. Kazemizadeh Z, Amini T, Nazari F, Habibi Z. Volatile constituents of Ballota nigra ssp. anatolica from Iran. Chem Nat Compd. 2009;45(5):737-738. doi:10.1080/13880200409002626

19. Ertay A, Boğa M, Yeşil Y. Phytochemical profile and ABTS cation radical scavenging, cupric reducing antioxidant capacity and anticholinesterase activities of endemic Ballota nigra L. subsp. anatolica P. H. Davis from Turkey. J Coast Life Med. 2014;2(7):555-559.

20. Bader A, Caponi C, Cioni PL, Flamini G, Morelli I. Composition of the essential oil of Ballota undulata, B. nigra ssp. foetida and B. saxatilis. Flavour Fragr J. 2003;18(6):502-504. doi:10.1002/ffj.1257

21. Fraternale D, Bucchiini A, Giampieri I, Ricci D. Essential oil composition and antimicrobial activity of Ballota nigra L. ssp. foetida. Nat Prod Commun. 2009;4(4):585-588. doi:10.1177/1751795609009400429

22. Fraternale D, Ricci D. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp. foetida collected at flowering and fruting times. Nat Prod Commun. 2014;9(7):1015-1018. doi:10.1177/1751795614009400733

23. Đorđević AS, Jovanović OP, Zlatković BK, Stojanović GS. Chemical composition of Ballota maculovia Vand and Ballota L. ssp. foetida (Vis.) Hayek essential oils – the chemotaxonomic approach. Chem Biodivers. 2016;13(6):782-788.

24. Yilmaz BS, Çitoğlu GS. High performance liquid chromatographic analysis of some diterpenoids of the Ballota species. J Pharm Sci. 2003;28(1):13-17.

25. Yilmaz GS, Yilmaz BS, Tarikahaya B, Tipirdamaz R. Chemotaxonomy of Ballota species. Chem Nat Compd. 2005;41(3):299-302. doi:10.1007/s10600-005-0134-7

26. Kaya A, Kırıkçığlu M, Dinc M, Doğan S. Compositions of the essential oils of Ballota nigra subsp. uncinata and subsp. anatolica from Turkey. J Med Food. 2017,51(3):s185-s189. doi:10.1016/j.ijpe.2018.01.064

27. Sever Yılmaz B, Altanlar N, Saltan Çitoğlu G. Antioxidant activity of Ballota species growing in Turkey. J Fac Pharm Ankara. 2005;34(3):155-164.

28. Morteza-Semnani K, Saeedi M, Akbarzadeh M. The essential oil composition of Ballota nigra. Chem Nat Compd. 2007;43(6):722-723. doi:10.1080/106600-007-0245-4

29. Vukovic N, Sukdolak S, Solujic S, Niciforovic N. Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia. J Med Food. 2009;12(2):435-441. doi:10.1080/1934578X.2011.10643903

30. Jamzad M, Rustaiyan A, Jamzad Z, Masoudi S. Essential oil composition of Salvia indica L., Thymbus caucasicus Wind. ex Ronniger subsp. grosheimii (Ronniger) Jalas. and Ballota nigra L.: three Labiatae species from Iran. J Ess Oil Bearing Plants. 2011;14(1):76-83. doi:10.1080/0972060X.2011.10643903

31. Kazemizadeh Z, Amini T, Nazari F, Habibi Z. Volatile constituents of Ballota nigra subsp. anatolica from Iran. Chem Nat Compd. 2009;45(5):737-738. doi:10.1080/13880200409002626

32. Ertay A, Boğa M, Yeşil Y. Phytochemical profile and ABTS cation radical scavenging, cupric reducing antioxidant capacity and anticholinesterase activities of endemic Ballota nigra L. subsp. anatolica P. H. Davis from Turkey. J Coast Life Med. 2014;2(7):555-559.

33. Bader A, Caponi C, Cioni PL, Flamini G, Morelli I. Composition of the essential oil of Ballota undulata, B. nigra ssp. foetida and B. saxatilis. Flavour Fragr J. 2003;18(6):502-504. doi:10.1002/ffj.1257

34. Fraternale D, Bucchiini A, Giampieri I, Ricci D. Essential oil composition and antimicrobial activity of Ballota nigra L. ssp. foetida. Nat Prod Commun. 2009;4(4):585-588. doi:10.1177/1751795609009400429

35. Fraternale D, Ricci D. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp. foetida collected at flowering and fruting times. Nat Prod Commun. 2014;9(7):1015-1018. doi:10.1177/1751795614009400733

36. Đorđević AS, Jovanović OP, Zlatković BK, Stojanović GS. Chemical composition of Ballota maculovia Vand and Ballota L. ssp. foetida (Vis.) Hayek essential oils – the chemotaxonomic approach. Chem Biodivers. 2016;13(6):782-788.

37. Rigano D, Marrelli M, Formisano C, et al. Phytochemical profile of three Ballota species essential oils and evaluation of the effects on human cancer cells. Nat Prod Res. 2017;31(4):436-444. doi:10.1080/14786419.2016.1185722

38. Majdi M, Dastan D, Maroofi H. Chemical composition and antimicrobial activity of essential oils of Ballota nigra subsp. kurdica from Iran. Jundishapur J Nat Pharm Prod. 2017;12(3):e36314.
39. De Martino L, Bruno M, Formisano C, et al. Chemical composition and antimicrobial activity of the essential oils from two species of *Thymus* growing wild in Southern Italy. *Molecules*. 2009;14(11):4614-4624. doi:10.3390/molecules14114614

40. Adams RP. *Identification of Essential Oil Components by Gas Chromatography/ Mass Spectroscopy*. 4th ed. Allured Publishing, Carol Stream USA; 2007.

41. Clarke KR, Gorley RN; 2006. PRIMER (6.0). Plymouth UK: PRIMER-E.