On the blow-up of solutions for the unstable sixth order parabolic equation

Zhenbang Li and Changchun Liu
ON THE BLOW-UP OF SOLUTIONS FOR THE UNSTABLE SIXTH ORDER PARABOLIC EQUATION

ZHENBANG LI AND CHANGCHUN LIU

Received 3 May, 2012

Abstract. We study the universal blow-up of sixth-order parabolic thin film equation with the initial boundary conditions. We prove that the problem in finite time blow-up will happen, if the initial datum

\[u_0 \in C^{6+\alpha}(\Omega) \] with

\[\int_{\Omega} (H(u_0) + \frac{1}{2}|\Delta u_0|^2) \, dx \geq 0. \]

And then, we get some nondegeneracy results on blow-up for this problem.

2000 Mathematics Subject Classification: 35K55; 35K90; 76A20

Keywords: blow-up, nondegeneracy, sixth order parabolic equation

1. INTRODUCTION

In this paper, we consider the following initial boundary problem of sixth-order equation

\[
\begin{aligned}
&u_t - \Delta (\Delta^2 u - |u|^{p-1}u) = 0, \quad \text{in } \Omega \times (0, T), \\
&u = \Delta u = \Delta^2 u = 0, \quad \text{on } \partial \Omega \times [0, T), \\
&u = u_0, \quad \text{in } \Omega \times \{0\},
\end{aligned}
\]

(1.1)

where \(\Omega \subset \mathbb{R}^N \) is a bounded smooth domain, \(p > 1 \).

During the past years, only a few works have been devoted to the sixth-order parabolic equation [1,4,5,7].

Recently, Evans, Galaktionov and King [4,5] considered the sixth-order thin film equation containing an unstable (backward parabolic) second-order term

\[\frac{\partial u}{\partial t} = \text{div} \left[|u|^n \nabla \Delta^2 u \right] - \Delta (|u|^{p-1}u), n > 0, p > 1. \]

By a formal matched expansion technique, they show that, for the first critical exponent \(p = p_0 = n + 1 + \frac{2}{N} \) for \(n \in (0, \frac{2}{3}) \), where \(N \) is the space dimension, the free-boundary problem with zero-height, zero-contact-angle, zero-moment, and zero-flux conditions at the interface admits a countable set of continuous branches of radially symmetric self-similar blow-up solutions \(u_k(x,t) = (T-t)^{-\frac{N}{4n+2}} f_k(y), \)

\[y = \frac{x}{(T-t)^{\frac{1}{4n+2}}}, \]

where \(T > 0 \) is the blow-up time.
In fact, when \(n = 0 \), the equation (1.1) is obtained. In this paper we study the universal blow-up and some nondegeneracy results on blow-up of the equation (1.1). Our method about universal finite time blow-up is similar to that of Elliott and Zheng [3] which treats the blow-up problem for Cahn-Hilliard equation. We can show that if the initial datum \(u_0 \in C^{6+\alpha}(\mathbb{R}) \) with \(-\int_{\mathbb{R}} \left(H(u_0) + \frac{1}{2} |\Delta u_0|^2 \right) dx \geq 0 \), then the solution to the above problem (1.1) should blow up in finite time.

We also establish some nondegeneracy results on the blow-up of the problem. We mainly follow the purpose of Giga and Kohn [6] and Cheng and Zheng [2]. More accurately, there is a constant \(\beta > 0 \), depending on \(n, p \) and the constant in the estimates of the fundamental solution to \(u_t - \Delta^3 u = 0 \) (see (3.1) below), such that if \(u \) is a solution of the equation

\[
 u_t - \Delta (\Delta^2 u - |u|^{p-1} u) = 0, \quad \text{on} \quad Q_r = B_r(a) \times [t_1 - r^6, t_1),
\]

where \(1 < p < 3, a \in \mathbb{R}^n, t_1 \in \mathbb{R} \) and \(0 < r \leq 1 \), and if

\[
 |u(x,t)| \leq \varepsilon (t_1 - t)^{-\frac{p}{2(p-1)}} \quad \text{for all} \quad (x,t) \in Q_r,
\]

then \(u \) does not blow up at \((a, t_1) \).

The following sections include our main results. In Section 2, we establish universal finite time blow-up. Section 3 is devoted to the nondegeneracy results on the blow-up.

2. Universal Finite Time Blow-up

Theorem 1. Assume \(u_0 \in C^{6+\alpha}(\mathbb{R}) \) with \(\int_{\mathbb{R}} \left(H(u_0) + \frac{1}{2} |\Delta u_0|^2 \right) dx \geq 0 \). Then the solution of the problem (1.1) must blow up at a finite time, namely, for some \(T > 0 \)

\[
 \lim_{t \to T} \|u(t)\| = +\infty,
\]

where \(H(u) = -\frac{|u|^{p+1}}{p+1} \).

Proof. Let

\[
 F(t) = \int_{\Omega} \left(H(u) + \frac{1}{2} |\Delta u|^2 \right) dx,
\]

then

\[
 \frac{dF(t)}{dt} = \int_{\Omega} \left(-|u|^{p-1} u \varphi(u) u_t + \frac{1}{2} \Delta u \Delta u_t \right) dx
\]

\[
 = \int_{\Omega} \left(-|u|^{p-1} u + \frac{1}{2} \Delta^2 u \right) u_t dx
\]

\[
 = -\int_{\Omega} |\nabla (|u|^{p-1} u + \frac{1}{2} \Delta^2 u)|^2 dx \leq 0.
\]

So

\[
 2 \int_{\Omega} H(u) dx - 2F(0) \leq -\|\Delta u\|^2, \quad (2.1)
\]
where

\[F(0) = \int_{\Omega} \left(H(u_0) + \frac{1}{2} |\Delta u_0|^2 \right) \, dx. \]

Let \(\phi \) be the unique solution to

\[
\begin{cases}
\Delta \phi = u, & \text{in } \Omega, \\
\nabla \phi = 0, & \text{on } \partial \Omega.
\end{cases}
\]

It is easy to get that

\[
\|\nabla \phi\|^2 \leq C \|\Delta \phi\|^2 \leq C \|u\|^2. \tag{2.2}
\]

Now multiplying (1.1) by \(\phi \) and integrating with respect to \(x \), we obtain

\[
\frac{d}{dt}\|\nabla \phi\|^2 \geq -2 \int_{\Omega} \phi(u)u \, dx - 2 \|\Delta u\|^2 \, dx
\]

\[
\geq 4 \int_{\Omega} H(u) \, dx - 4 F(0) - 2 \int_{\Omega} \varphi(u)u \, dx
\]

\[
= \int_{\Omega} \left(2 - \frac{4}{p+1} \right) |u|^{p+1} \, dx - 4 F(0)
\]

\[
\geq \frac{2(p-1)}{p+1} \left(\int_{\Omega} u^2 \, dx \right)^{\frac{p+1}{2}} - 4 F(0). \tag{2.3}
\]

Combining (2.2), (2.3) and \(-F(0) \geq 0 \), we have

\[
\frac{d}{dt}\|\nabla \phi\|^2 \geq \frac{2C(p-1)}{p+1} \|\nabla \phi\|^{p+1}. \tag{2.4}
\]

Let \(y(t) = \|\nabla \phi\|^2 \) with \(t \in [0, T) \), then

\[
y'(t) \geq \gamma (y(t))^{\frac{p+1}{2}}, \tag{2.5}
\]

where \(\gamma = \frac{2C(p-1)}{p+1} \). A direct integration of (2.5) then yields

\[
y^{\frac{p+1}{2}}(t) \geq \frac{1}{y^{\frac{1-p}{2}}(0) - \frac{p-1}{2} \gamma t}.
\]

It turns out that the solution of the problem (1.1) will blow up in finite time. The proof of this theorem is completed. \(\square \)

3. Nondegeneracy results on the blow-up

Let \(\Gamma(x,t) \) be the fundamental solution to \(u_t - \Delta^3 u = 0 \). According to [8], we have the follow inequalities:

\[
|D_t^\mu D_x^\nu \Gamma(x,t)| \leq C \, t^{-\frac{1}{2}(\alpha+6\mu+\nu)} \exp \left\{ -\omega \left(\frac{|x|}{t^\frac{1}{2}} \right)^\frac{\delta}{\nu} \right\}, \quad t > 0, \tag{3.1}
\]

where \(C > 0, \omega > 0 \) are constants, and \(\mu, \nu \) are nonnegative integers.
Our purpose in this section is to have some nondegeneracy results on the blow-up. We state that the solution \(u(x,t) \) to blows up at \((a,t_1)\) if it is not locally bounded nearby, i.e., if there is a sequence \(\{(x_k, \tau_k)\} \subset \Omega \times [0,t_1) \) with \((x_k, \tau_k) \to (a,t_1)\) as \(k \to \infty \) such that \(|u(x_k, \tau_k)| \to \infty \).

Theorem 2. There is a constant \(\varepsilon > 0 \), depending on \(n \), \(p \) and the constant in \((3.1)\), such that if \(u \) is a solution of the equation
\[
 u_t - \Delta (\Delta^2 u - |u|^{p-1} u) = 0, \quad \text{on} \quad Q_r = B_r(a) \times [t_1-r^6, t_1),
\]
where \(1 < p < 3, a \in \mathbb{R}^n, t_1 \in \mathbb{R} \) and \(0 < r \leq 1 \), and if
\[
 |u(x,t)| \leq \varepsilon (t_1-t)^{-\frac{2}{n(n-1)}} \quad \text{for all} \quad (x,t) \in Q_r, \tag{3.2}
\]
then \(u \) does not blow up at \((a,t_1)\).

Next, we introduce the two lemma which will be used in the article and whose proofs can be found in [2] and [6].

Lemma 1. For \(0 < a < 1, \theta > 0 \), and \(0 < h < 1 \), the integral
\[
 I(h) = \int_h^1 (s-h)^{-a} s^{-\theta} ds,
\]
satisfies
\[
\begin{align*}
(1) \quad I(h) & \leq \left(\frac{1}{1-a} + \frac{1}{a+\theta-1} \right) \quad \text{if} \quad a + \theta > 1, \\
(2) \quad I(h) & \leq \frac{1}{1-a} + |\log h| \quad \text{if} \quad a + \theta = 1, \\
(3) \quad I(h) & \leq \frac{1}{1-a-\theta} \quad \text{if} \quad a + \theta < 1.
\end{align*}
\]

Lemma 2. If \(y(t), r(t) \) and \(q(t) \) are continuous functions defined on \([t_0,t_1]\), such that \(y(t) \leq y_0 + \int_{t_0}^t y(s) r(s) ds + \int_{t_0}^t q(s) ds \), \(t_0 \leq t \leq t_1 \), and \(r(t) \geq 0 \) on \([t_0,t_1]\), then
\[
 y(t) \leq \exp \left\{ \int_{t_0}^t r(\tau) d\tau \right\} \left[y_0 + \int_{t_0}^t q(\tau) \exp \left\{ -\int_{t_0}^t r(\sigma) d\sigma \right\} d\tau \right].
\]

Then, we began to prove the main Theorem 2.

Proof. Without loss of generality, we may assume \(a = 0 \) and \(t_1 = 0 \). By scaling, it is sufficient to consider the case \(r = 1 \). In the fact, if \(u \) satisfies the assumptions of the theorem with \(r < 1 \), then \(u_r(x,t) = r^{\frac{4}{n-1}} u(rx, r^6 t) \) satisfies them with \(r = 1 \) (using the same \(\varepsilon \)), and clearly \(u_r \) blow up at \((0,0)\) if \(u \) does.

Let \(\phi \) be a smooth function supported on \(B_1(0) \) such that \(\phi \equiv 1 \) on \(B_1^2(0) \) and \(0 \leq \phi \leq 1 \). Consider \(\omega = \phi u \); then \(\omega_t - \Delta^3 \omega = g \) where
\[g = -2\nabla \Delta^2 u \nabla \phi - \Delta^2 u \Delta \phi - \Delta (u \Delta^2 \phi + 4\nabla \Delta u \nabla \phi + 6\Delta u \Delta^2 \phi + 4\nabla \Delta u \Delta \phi) - \phi \Delta (|u|^{p-1} u) \]

The semigroup representation formula for \(\omega \) gives that
\[\omega(t) = e^{(t+1) \Delta^3} \omega(-1) + \int_{-1}^{t} e^{(t-s) \Delta^3} g(s) ds \quad \text{for} \quad -1 \leq t < 0, \quad (3.3) \]
where \(e^{t \Delta^3} \) is the semigroup associated with the equation \(u_t - \Delta^3 u = 0 \) in \(\mathbb{R}^n \), i.e.,
\[(e^{t \Delta^3} h)(x) = \int_{\mathbb{R}^n} \Gamma(x - y, t) h(y) dy. \]
Noticing that \(\int_{\mathbb{R}^n} \Gamma(x - y, t) dy = 1 \). It follows that
\[\|e^{t \Delta^3} h\| \leq \|h\|_{\infty}. \quad (3.4) \]
The (3.1) implies that
\[|(e^{t \Delta^3} D_i h)(x)| = \left| \int_{\mathbb{R}^n} \Gamma(x - y, t) D_i h(y) dy \right| \]
\[= \left| \int_{\mathbb{R}^n} \frac{\partial}{\partial x_i} \Gamma(x - y, t) h(y) dy \right| \leq C t^{-\frac{1}{2}} \|h\|_{\infty}, \quad \forall i = 1, 2, \ldots, n. \]
So, we get that
\[\|e^{t \Delta^3} D_i h\|_{\infty} \leq C t^{-\frac{1}{2}} \|h\|_{\infty}, \quad \|e^{t \Delta^3} D_{ij} h\|_{\infty} \leq C t^{-\frac{3}{2}} \|h\|_{\infty}, \]
\[\|e^{t \Delta^3} D_{ijk} h\|_{\infty} \leq C t^{-\frac{2}{2}} \|h\|_{\infty}, \quad \|e^{t \Delta^3} D_{ijkm} h\|_{\infty} \leq C t^{-\frac{5}{2}} \|h\|_{\infty}. \quad (3.5) \]
where \(i, j, k, m, q \in \{1, 2, \ldots, n\} \).

Now let \(g = g_1 + g_2 \), where \(g_2 = -\phi \Delta (|u|^{p-1} u) \). As above, we estimate
\[\left| \int_{-1}^{t} e^{(t-s) \Delta^3} g_2(s) ds \right| \]
\[\leq \int_{-1}^{t} \left| \int_{\mathbb{R}^n} \Delta(\phi \Gamma(x - y, t - s))(|u|^{p-1} u)(y, s) dy \right| ds \]
\[\leq \int_{-1}^{t} \left| \int_{\mathbb{R}^n} \Delta(\Gamma(x - y, t - s) \Delta \phi + 2\nabla \Gamma(x - y, t - s) \cdot \nabla \phi)(|u|^{p-1} u) dy \right| ds \]
\[+ \int_{-1}^{t} \left| \int_{\mathbb{R}^n} (\Gamma(x - y, t - s) \Delta \phi + 2\nabla \Gamma(x - y, t - s) \cdot \nabla \phi)(|u|^{p-1} u) dy \right| ds \]
\[\leq C \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \|\phi u^p\|_{\infty}(s) ds + C \int_{-1}^{t} \|\Delta \phi u^p\|_{\infty}(s) ds \]
\[+ C \int_{-1}^{t} (t-s)^{-\frac{1}{6}} \| \nabla \phi u^P \|_{\infty}(s) ds \]
\[\leq C \int_{-1}^{t} (t-s)^{-\frac{1}{6}} \| u \|_{\infty}^{-\frac{1}{6}} \| \omega \|_{\infty}(s) ds + C \int_{-1}^{t} \| u^P \|_{\infty}(s) ds \]
\[+ C \int_{-1}^{t} (t-s)^{-\frac{1}{6}} \| u \|_{\infty}(s) ds \]
\[\leq C e^{p-1} \int_{-1}^{t} (t-s)^{-\frac{1}{6}} (-s)^{-\frac{2}{3}} \| \omega \|_{\infty}(s) ds + C e^{p} \int_{-1}^{t} (-s)^{-\frac{2p}{3p-11}} ds \]
\[+ C e^{p} \int_{-1}^{t} (t-s)^{-\frac{1}{6}} (-s)^{-\frac{2p}{3p-11}} ds. \] (3.6)

Due to our assumption.

On the other hand, it is found similarly that
\[
\left| \int_{-1}^{t} e^{(t-s)A} g(s) ds \right| = \int_{-1}^{t} \int_{\mathbb{R}^n} \Gamma(x-y,t-s)(-2\nabla^2 u \nabla \phi - \Delta^2 u \Delta \phi \\
- \Delta(\Delta \Delta \phi + 4\nabla \Delta u \nabla \phi + 6\Delta u \Delta \phi + 4\nabla u \Delta \phi)) dy ds \leq C \int_{-1}^{t} (t-s)^{-\frac{1}{6}} \| u \|_{\infty}(s) ds \]
\[\leq C e^{p} \int_{-1}^{t} (t-s)^{-\frac{1}{6}} (-s)^{-\frac{2p}{3p-11}} ds. \] (3.7)

By (3.2)-(3.4), (3.6) and (3.7), we get that for \(-1 \leq t < 0,\)
\[\| \omega(t) \|_{\infty} \leq \varepsilon + C e^{p-1} \int_{-1}^{t} (t-s)^{-\frac{1}{6}} (-s)^{-\frac{2}{3}} \| \omega \|_{\infty}(s) ds \]
\[+ C e^{p} \int_{-1}^{t} (t-s)^{-\frac{1}{6}} (-s)^{-\frac{2p}{3p-11}} ds + C \int_{-1}^{t} (t-s)^{-\frac{5}{6}} (-s)^{-\frac{2}{3p-11}} ds \]
\[\leq \varepsilon + C e^{p-1} \int_{-1}^{t} (t-s)^{-\frac{1}{6}} (-s)^{-\frac{2}{3p-11}} ds. \] (3.8)

Due to \(1 < p < 3\) and Lemma (1).

Let \(y(t) = \| \omega(t) \|_{\infty};\) therefore
\[y(t) \leq \varepsilon + C e(-t)^{-\frac{1}{6}} (-s)^{-\frac{2}{3p-11}} + C e^{p-1} \int_{-1}^{t} (t-s)^{-\frac{1}{6}} (-s)^{-\frac{2}{3p-11}} y(s) ds. \] (3.9)

Define \(f(t) = \chi_{[-1,0]}(t)y(t), \forall t < 0.\) We introduce a special maximal function on \((-\infty, 0):\)
\[(Mf)(t) = \sup_{r > 0} \frac{1}{r} \int_{t-r}^{t} |f(s)| ds, \quad \forall t \in (-\infty, 0). \]
Now $\forall r > 0,$
\[
\int_{-1}^{t} (t - s)^{-\frac{1}{3}} (-s)^{-\frac{2}{3}} y(s) ds = \int_{-\infty}^{t} (t - s)^{-\frac{1}{3}} (-s)^{-\frac{2}{3}} f(s) ds = \int_{t-r}^{t} (t - s)^{-\frac{1}{3}} (-s)^{-\frac{2}{3}} f(s) ds + \int_{-\infty}^{t-r} (t - s)^{-\frac{1}{3}} (-s)^{-\frac{2}{3}} f(s) ds = I_1 + I_2.
\]
We compute these two integrals, respectively.
\[
I_1 \leq (-t)^{-\frac{1}{3}} \int_{t-r}^{t} (t - s)^{-\frac{1}{3}} f(s) ds
\leq (-t)^{-\frac{1}{3}} \sum_{k=0}^{\infty} \int_{t-\frac{r}{2k+1}}^{t} (t - s)^{-\frac{1}{3}} f(s) ds
\leq (-t)^{-\frac{1}{3}} \sum_{k=0}^{\infty} \left(\frac{r}{2k+1} \right)^{\frac{1}{3}} \int_{t-\frac{r}{2k+1}}^{t} f(s) ds
\leq (-t)^{-\frac{1}{3}} \sum_{k=0}^{\infty} \left(\frac{1}{2k+1} \right)^{\frac{1}{3}} r \left(Mf \right)(t)
= Cr^{\frac{2}{3}} (-t)^{-\frac{1}{3}} (Mf)(t),
\]
and
\[
I_2 \leq r^{-\frac{1}{3}} \int_{-\infty}^{t-r} (-s)^{-\frac{2}{3}} f(s) ds
\leq r^{-\frac{1}{3}} \int_{-\infty}^{t} (-s)^{-\frac{2}{3}} f(s) ds = r^{-\frac{1}{3}} \int_{-1}^{t} (-s)^{-\frac{2}{3}} f(s) ds.
\]
Then,
\[
f(t) \leq \varepsilon + C\varepsilon(-t)^{\frac{1}{6} - \frac{2}{3(2\alpha-1)}} + C\varepsilon^{p-1} \left[r^{\frac{2}{3}} (-t)^{-\frac{2}{3}} (Mf)(t) + r^{-\frac{1}{3}} \int_{-1}^{t} (-s)^{-\frac{2}{3}} f(s) ds \right],
\]
for all $r > 0$ and $t \in (-\infty, 0)$.

Let
\[
r = \frac{\int_{-1}^{t} (-s)^{-\frac{2}{3}} f(s) ds}{(-t)^{-\frac{2}{3}} (Mf)(t)},
\]
so we have
\[
f(t) \leq \varepsilon + C\varepsilon(-t)^{\frac{1}{6} - \frac{2}{3(2\alpha-1)}} + C\varepsilon^{p-1} \left((-t)^{-\frac{1}{3}} \int_{-1}^{t} (-s)^{-\frac{2}{3}} f(s) ds \right)^{\frac{2}{3}} ((Mf)(t))^{\frac{1}{3}}
\leq \varepsilon + C\varepsilon(-t)^{\frac{1}{6} - \frac{2}{3(2\alpha-1)}} + C\varepsilon^{p-1} (-t)^{-\frac{1}{3}} \int_{-1}^{t} (-s)^{-\frac{2}{3}} f(s) ds
+ C\varepsilon^{p-1} (Mf)(t).
\]
(3.10)
If we define
\[g(t) = (-t)^{-\frac{1}{2}} \int_{-1}^{t} (-s)^{-\frac{3}{2}} f(s) ds, \]
then
\[g'(t) = (-t)^{-1}\left[\frac{1}{3} (-t)^{-\frac{1}{2}} \int_{-1}^{t} (-s)^{-\frac{3}{2}} f(s) + f(t) \right] \geq 0. \]
Hence \(g(t) \) is increasing in \((\infty, 0)\).

Then we get
\[
\max_{-1 \leq \tau \leq t} f(\tau) \leq \varepsilon + C_\varepsilon (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}} + C_\varepsilon^{p-1} g(t) + C_\varepsilon^{p-1} \max_{-1 \leq \tau \leq t} (Mf)(\tau), \quad \forall t \in [-1, 0), \tag{3.11}
\]
where we have used \(\frac{1}{6} - \frac{2}{3(p-3)} < 0 \) since \(1 < p < 3 \).

Clearly, \(\max_{-1 \leq \tau \leq t} (Mf)(\tau) \leq \max_{-1 \leq \tau \leq t} f(\tau) \) by our definition of the maximal function. Therefore (3.11) implies that for any \(-1 \leq t < 0\),
\[
\max_{-1 \leq \tau \leq t} f(\tau) \leq \frac{1}{1 - C_\varepsilon^{p-1}} \left[\varepsilon + C_\varepsilon (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}} + C_\varepsilon^{p-1} (-t)^{-\frac{1}{2}} \int_{-1}^{t} (-s)^{-\frac{3}{2}} f(s) ds \right],
\]
provided that \(C_\varepsilon^{p-1} < 1 \). Especially,
\[
f(t) \leq \frac{1}{1 - C_\varepsilon^{p-1}} \left[\varepsilon + C_\varepsilon (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}} + C_\varepsilon^{p-1} (-t)^{-\frac{1}{2}} \int_{-1}^{t} (-s)^{-\frac{3}{2}} f(s) ds \right]
\forall t \in [-1, 0).
\]

Then for \(\varepsilon > 0 \) small enough, we obtain
\[
(-t)^{\frac{1}{2}} f(t) \leq 2 \left[\varepsilon + C_\varepsilon (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}} + C_\varepsilon^{p-1} \int_{-1}^{t} (-s)^{-\frac{1}{2}} f(s) ds \right]
\forall t \in [-1, 0).
\]

Define \(h(t) = (-t)^{\frac{1}{2}} f(t) \); then
\[
h(t) \leq 2\varepsilon + 2C_\varepsilon (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}} + 2C_\varepsilon^{p-1} \int_{-1}^{t} (-s)^{-1} h(s) ds, \tag{3.12}
\]
Applying Lemma(2), we have
\[
h(t) \leq (-t)^{-2C_\varepsilon^{p-1}} \left[2\varepsilon + C(p, e) (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}} + 2C_\varepsilon^{p-1} \right]
\leq 2\varepsilon (-t)^{2C_\varepsilon^{p-1}} + C(p, e) (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}}, \quad \forall t \in [-1, 0).
\]

Then \(f(t) \leq 2\varepsilon (-t)^{\frac{1}{2} - 2C_\varepsilon^{p-1}} + C(p, e) (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}}, \forall t \in [-1, 0) \), or
\[
y(t) \leq 2\varepsilon (-t)^{-\frac{3}{2} - 2C_\varepsilon^{p-1}} + C(p, e) (-t)^{\frac{1}{2} - \frac{2}{3(p-3)}}, \quad \forall t \in [-1, 0). \tag{3.13}
\]
Choose \(\varepsilon > 0 \) small enough that \(\frac{1}{3} + 2C \varepsilon^{p-1} < \frac{2}{3(p-1)} \) which is possible since \(1 < p < 3 \). Define \(\alpha = \max \left\{ \frac{1}{3}, 2C \varepsilon^{p-1}, \frac{2}{3(p-1)} - \frac{1}{6} \right\} \leq \frac{2}{3(p-1)} \), it is easy to find that \(\alpha > \frac{1}{3} \); then (3.13) implies \(y(t) \leq C(p, \varepsilon) \varepsilon(-t)^{-\alpha}, \forall t \in [-1, 0) \). Hence

\[
|u(x, t)| \leq C(p, \varepsilon) \varepsilon(-t)^{-\alpha}, \quad \forall (x, t) \in B_{\frac{1}{2}}(0) \times [-1, 0).
\]

(3.14)

Now let \(\tilde{\phi} \) be a function supported on \(B_{\frac{1}{2}}(\varepsilon) \) with \(\tilde{\phi} \equiv 1 \) on \(B_{\frac{1}{4}}(0) \) and \(0 \leq \tilde{\phi} \leq 1 \), and define \(\tilde{\omega} = \tilde{\phi}u \); then we go back to (3.6)-(3.8) and we have that

\[
\|	ilde{\omega}(t)\|_\infty \leq \varepsilon + C \int_{-1}^{t} (t-s)^{-\frac{1}{3}} \|u\|_\infty^{p-1} \|	ilde{\omega}\|_\infty ds + C \int_{-1}^{t} \|u\|_\infty^p ds
\]

\[
+ C \int_{-1}^{t} (t-s)^{-\frac{1}{3}} \|u\|_\infty^{p-1} ds + C \varepsilon \int_{-1}^{t} (t-s)^{-\frac{1}{3}} \|u\|_\infty ds
\]

\[
\leq \varepsilon + C \varepsilon^{p-1} \int_{-1}^{t} (t-s)^{-\frac{1}{3}} (-s)^{-\alpha(p-1)} (-s)^{-\alpha} ds + C \varepsilon^p \int_{-1}^{t} (-s)^{-\alpha p} ds
\]

\[
+ C \varepsilon^p \int_{-1}^{t} (t-s)^{-\frac{1}{3}} (-s)^{-\alpha} ds + C \varepsilon \int_{-1}^{t} (t-s)^{-\frac{1}{3}} \|u\|_\infty ds
\]

\[
\leq \varepsilon + C \varepsilon^{p-1} \int_{-1}^{t} (t-s)^{-\frac{1}{3}} (-s)^{-\alpha p} ds + C \varepsilon^p \int_{-1}^{t} (-s)^{-\alpha p} ds + C \varepsilon \int_{-1}^{t} (t-s)^{-\frac{1}{3}} \|u\|_\infty ds
\]

\[
+ C \varepsilon^p \int_{-1}^{t} (t-s)^{-\frac{1}{3}} (-s)^{-\alpha} ds + C \varepsilon \int_{-1}^{t} (t-s)^{-\frac{1}{3}} \|u\|_\infty ds
\]

(3.15)

due to (3.14).

Since \(\frac{1}{3} < \alpha < \frac{2}{3(p-1)} \), we get

\[
\frac{5}{6} - \alpha p > \frac{2}{3} - \alpha p > \frac{1}{6} - \alpha.
\]

Hence by Lemma(1), we obtain

\[
\|	ilde{\omega}(t)\|_\infty \leq \varepsilon + C \varepsilon^{p-1} + C \varepsilon^p (-t)^{\frac{1}{3} - \alpha} \leq (2 + C \varepsilon^{p-1})(-t)^{\frac{1}{3} - \alpha}, \quad \forall t \in [-1, 0).
\]

Which means, for small \(\varepsilon > 0 \),

\[
|u(x, t)| \leq (2 + C \varepsilon^{p-1})(-t)^{\frac{1}{3} - \alpha}, \quad \forall (x, t) \in B_{r_0}(0) \times [-1, 0).
\]

(3.16)

Iterating the argument finitely many times we can get that there is a number \(0 < r_0 < \frac{1}{4} \) such that

\[
|u(x, t)| \leq K(-t)^{-\frac{1}{6p}}, \quad \forall (x, t) \in B_{r_0}(0) \times [-1, 0),
\]

(3.17)

where \(K \) is constant.
Next, we choose another cut-off function \(\hat{\phi} \) supported on \(B_{r_0} \) such that \(\hat{\phi} \equiv 1 \) on \(B_{2r_0} \) and define \(\phi = \hat{\phi} u \). Going back to (3.15) and applying Lemma (1), we have

\[
\| \hat{\phi}(t) \|_{\infty} \leq \varepsilon + C \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \| u \|_{\infty}^{p-1} \| \hat{\phi} \|_{\infty} ds + C \int_{-1}^{t} \| u \|_{\infty}^{p} ds + C \varepsilon \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \| u \|_{\infty} ds
\]

\[
+ C \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \| u \|_{\infty}^{p} ds + C \varepsilon \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \| u \|_{\infty} ds
\]

\[
\leq \varepsilon + CK^{p-1} \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \| (s) \|_{\hat{\phi}}^{p} ds + CK^{p} \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \| u \|_{\infty} ds
\]

\[
+ CK^{p} \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \| (s) \|_{\hat{\phi}}^{p} ds + CK \int_{-1}^{t} (t-s)^{-\frac{1}{2}} \| u \|_{\infty} ds
\]

\[
\leq \varepsilon + CK^{p-1},
\]

which means that \(|u(x,t)| \leq C \) in \(B_{2r_0} \times [-1,0] \). This completes the proof of the theorem.

\[\Box\]

Using the same argument, we can easily draw the following conclusion.

Theorem 3. Suppose \(p \geq 3 \), then for any \(\varepsilon \in (0, \frac{2}{3(p-1)}) \), there is a constant \(\varepsilon > 0 \), depending on \(n \), \(p \) and the constant in (3.1), such that if \(u \) is a solution of the equation

\[u_t - \Delta (\Delta^2 u - |u|^{p-1} u) = 0, \quad \text{on} \quad Q_r = B_r(a) \times [t_1 - r^6, t_1] \]

where \(a \in \mathbb{R}^n, t_1 \in \mathbb{R} \) and \(0 < r \leq 1 \), and if

\[|u(x,t)| \leq \varepsilon (t_1 - t)^{-\frac{2}{3(p-1)}} \quad \text{for all} \quad (x,t) \in Q_r, \]

then \(u \) does not blow up at \((a,t_1) \).

References

[1] J. W. Barrett, S. Langdon, and R. Nürnberg, “Finite element approximation of a sixth order nonlinear degenerate parabolic equation,” *Numer. Math.*, vol. 96, no. 3, pp. 401–434, 2004.

[2] T. Cheng and G.-F. Zheng, “On the blow-up of solutions for some fourth order parabolic equations,” *Nonlinear Anal., Theory Methods Appl.*, vol. 66, no. 11, pp. A, 2500–2511, 2007.

[3] C. M. Elliott and S. Zheng, “On the Cahn-Hilliard equation,” *Arch. Ration. Mech. Anal.*, vol. 96, pp. 359–357, 1986.

[4] J. D. Evans, V. A. Galaktionov, and J. R. King, “Unstable sixth-order thin film equation. I: Blow-up similarity solutions,” *Nonlinearity*, vol. 20, no. 8, pp. 1799–1841, 2007.

[5] J. D. Evans, V. A. Galaktionov, and J. R. King, “Unstable sixth-order thin film equation. II: Global similarity patterns,” *Nonlinearity*, vol. 20, no. 8, pp. 1843–1881, 2007.

[6] Y. Giga and R. V. Kohn, “Nondegeneracy of blowup for semilinear heat equations,” *Commun. Pure Appl. Math.*, vol. 42, no. 6, pp. 845–884, 1989.

[7] A. Jüngel and J.-P. Milisic, “A sixth-order nonlinear parabolic equation for quantum systems,” *SIAM J. Math. Anal.*, vol. 41, no. 4, pp. 1472–1490, 2009.
[8] V. A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general form,” *Proc. Steklov Inst. Math.*, vol. 83, p. 184, 1965.

Authors’ addresses

Zhenbang Li
Department of Mathematics, Jilin University, Changchun 130012, China
E-mail address: jamesbom23@yahoo.com.cn

Changchun Liu
Department of Mathematics, Jilin University, Changchun 130012, China
E-mail address: liucc@jlu.edu.cn