Sparse Optimization on Measures with Over-parameterized Gradient Descent

Lénaïc Chizat*
SIAM Activity Group on Imaging Science Best Paper Lecture 2022

*EPFL (work carried while at CNRS)
A Motivating Problem: Spikes Deconvolution

Blurred and noisy observation of stars on a domain \mathcal{X}
(here Dirichlet blurring kernel on the 2-torus)

Questions

- **Statistics.** Is recovery of positions, weights and number of particles possible? With which estimator?
- **Optimization.** Can we compute this estimator accurately and efficiently? \leadsto This talk.
Estimator

Setting (simplified for this talk)

- ambient space \mathcal{X} (compact Riemannian d-manifold)
- observed signal $f \in L^2(\mathcal{X})$
- known impulse response $\phi(\cdot, \cdot) \in C^3(\mathcal{X} \times \mathcal{X})$

Optimization problem

- Take $m \in \mathbb{N}$ particles with weight/position $(a, x) \in \mathbb{R}_+ \times \mathcal{X}$
- Parameterize with $\theta = ((a_1, x_1), \ldots, (a_m, x_m)) \in (\mathbb{R}_+ \times \mathcal{X})^m$
- Find the minimizer (in θ and m) of

$$F_m(\theta) := \int_{\mathcal{X}} \left(\frac{1}{m} \sum_{i=1}^{m} a_i \phi(x, x_i) - f(x) \right)^2 dx + \frac{\lambda}{m} \sum_{i=1}^{m} a_i$$

Data fitting + Regularization

NB: F_m is not convex and admits spurious local minima
Conic Particle Gradient Descent

Algorithm (continuous time version)

- Initialize \((x_i)_i\) uniformly in \(\mathcal{X}\) (at random/on a grid), \(a_i = 1\)
- Compute \((\theta(t))_{t \geq 0}\) by following

\[
\begin{align*}
\frac{d}{dt} a_i(t) &= -4m a_i(t) \nabla a_i F_m(\theta(t)) \\
\frac{d}{dt} x_i(t) &= -\alpha m \nabla x_i F_m(\theta(t))
\end{align*}
\]

Why multiplicative updates for weights?

Initializing with \(\theta(0) = (a_0, x_0)\)

\(\Leftrightarrow\)

Initializing with \(\theta(0) = ((a_0/2, x_0), (a_0/2, x_0))\)
Summary of results

Let $F^* := \inf_{m \geq 1, \theta} F_m(\theta)$ the optimal value.

Theorem (Local convergence)

If the problem is *non-degenerate*, there exists $C_0, C_1 > 0$ such that

$$F_m(\theta(0)) \leq F^* + C_0 \implies F_m(\theta(t)) - F^* \leq C_0 e^{-C_1 t}.$$

Theorem (Global convergence)

If the problem is *non-degenerate*, there exists $C'_0, C'_1 > 0$ such that

$$\left\{ \begin{array}{c} \alpha \leq C'_0 \\ \sup_{x \in X} \inf_{i=1,\ldots,m} \text{dist}(x, x_i(0)) \leq C'_1 \end{array} \right. \implies \lim_{t \to \infty} F_m(\theta(t)) = F^*.$$
Applications and related algorithms

General problem: Find a sparse decomposition of an observed signal using a smoothly parameterized dictionary

Sampled applications

- **Imaging.** Astronomy (2D) [Puschmann 2017], Neuro-imaging with EEG (3D) [Gramfort 2013], Fluorescence microscopy (3D) [Betzig 2006]
- **Machine Learning.** 2-layer Relu neural networks, where CPGD \Leftrightarrow backpropagation, Mixture models fitting [Keriven 2017] [Boyd et al 2015]

Other approaches for optimization on measures

- Moment methods: parameterize with moments [Lasserre]
- Stochastic algorithms: generalized Langevin dynamics
- Frank-Wolfe: add one particle per iteration [Bredies, 2013]
Outline

Statics: Sparse optimization over measures

Dynamics: Local convergence

Dynamics: Global convergence
Statics: Sparse optimization over measures
Symmetries lead to a natural reformulation:

\[\theta = (a_i, x_i)_{i=1}^m \in (\mathbb{R}_+ \times \mathcal{X})^m \Rightarrow \mu_m := \frac{1}{m} \sum_{i=1}^m a_i \delta_{x_i} \in \mathcal{M}_+(\mathcal{X}) \]

Objective over the space of nonnegative measures \(\mathcal{M}_+(\mathcal{X}) \)

\[
F(\mu) = \frac{1}{2} \int_{\mathcal{X}} \left(\int_{\mathcal{X}} \phi(x, y) \, d\mu(y) - f(x) \right)^2 \, dx + \lambda \mu(\mathcal{X})
\]

- Data fitting
- Regularization

Basic properties of \(F \)
- \(F(\mu_m) = F_m(\theta) \)
- Convex
- Admits a minimizer \(\mu^* \)

Signed case \((a_i \in \mathbb{R})\)

Set

\[
\tilde{\phi} = (+\phi, -\phi) \\
\tilde{\mu} = (\mu_+, \mu_-)
\]

\(\Rightarrow \) regularization by \(\lambda \| \tilde{\mu} \|_{TV} \) [De Castro & Gamboa, 2012]
Assumption 1 (Uniqueness)

There exists a unique minimizer which is sparse: \(\mu^* = \sum_{i=1}^{m^*} a_i^* \delta_{x_i^*} \).

Let \(V[\mu] \in C^3(\mathcal{X}) \) be the first variation of \(F \) at \(\mu \), characterized by

\[
F(\mu + \epsilon \nu) = F(\mu) + \epsilon \int_{\mathcal{X}} V[\mu](x) \, d\nu(x) + o(\epsilon), \quad \forall \nu \in \mathcal{M}(\mathcal{X}) \text{ adm.}
\]

Proposition (Optimality conditions)

The first variation of \(F \) at \(\mu^* \) satisfies

\[
V[\mu^*] \geq 0 \quad \text{and} \quad \text{spt}(\mu^*) = \{x_1^*, \ldots, x_{m^*}\} \subset \{V[\mu^*] = 0\}.
\]
Non-degeneracy

Definition (Interaction kernels)

Global interaction kernel $K \in \mathbb{R}^{(m^*(d+1))^2}$ (convention $\nabla_0 \phi = 2\phi$):

$$K_{(i,j),(i',j')} = \langle \sqrt{a_i^*} \nabla_j \phi(x_i^*, \cdot), \sqrt{a_i'^*} \nabla_{j'} \phi(x_i'^*, \cdot) \rangle_{L^2}$$

Local interaction kernel $H = \text{diag}(H_i)_{i=1}^{m^*} \in \mathbb{R}^{(m^*(d+1))^2}$ with

$$H_i := \nabla^2 V[\mu^*](x_i^*)$$

Definition (Non-degeneracy)

We say that F is **non-degenerate** iff:

- $K \succ 0$
- $\arg \min V[\mu^*] = \{x_1^*, \ldots, x_{m^*}\}$
- $H_i \succ 0, \ i \in \{1, \ldots, m^*\}$

Can be guaranteed a priori under spikes separation & noise level conditions [Duval & Peyré, 2015] [Poon et al, 2019] [Akiyama & Suzuki, 2021]
Non-degeneracy vs. stability

Unbalanced L_2-Wasserstein metric (e.g. [Liero et al. 2020])

Define, for $\mu, \nu \in \mathcal{M}_+(\mathcal{X})$:

\[
\hat{W}_2^2(\mu, \nu) := \min_{\gamma} \text{KL}(\gamma_1|\mu) + \text{KL}(\gamma_2|\nu) + \int c(x, y) \, d\gamma(x, y)
\]

where $\gamma \in \mathcal{M}_+(\mathcal{X} \times \mathcal{X})$ has marginals γ_1, γ_2 and $c(x, y) \approx \text{dist}(x, y)^2/\alpha^2$

Theorem (stability)

F is non-degenerate

\[F(\mu) - F^* \leq C_0 \Rightarrow \hat{W}_2^2(\mu, \mu^*) \leq C_1 (F(\mu) - F^*) \]

The opposite inequality $\hat{W}_2^2(\mu, \mu^*) \geq C'(F(\mu) - F^*)$ holds, hence:

$F(\mu) - F^*$ small $\iff \mu$ close to μ^*
Using the first-variation V, conic particle gradient descent solves:

\[
\begin{cases}
 \frac{d}{dt} a_i(t) = -4m a_i(t) V[\mu_t](x_i(t)) \\
 \frac{d}{dt} x_i(t) = -\alpha m \nabla V[\mu_t](x_i(t))
\end{cases}
\]

where $\mu_t := \frac{1}{m} \sum_{i=1}^{m} a_i(t) \delta_{x_i(t)} \in \mathcal{M}_+(\mathcal{X})$.

Proposition (Dynamics in the space of measures)

The curve $(\mu_t)_t$ solves (distributionally) the PDE:

\[
\partial_t \mu_t = \alpha \nabla \cdot (\mu_t \nabla V[\mu_t]) - 4\mu_t V[\mu_t]
\]

This is the gradient flow of F under the metric \widehat{W}_2.
Dynamics: Local convergence
Energy dissipation

Let $f : \mathbb{R}^d \to \mathbb{R}$ a smooth function and $x : \mathbb{R}_+ \to \mathbb{R}^d$ a gradient flow of f, i.e.

$$\frac{d}{dt} x(t) = -\nabla f(x(t)), \quad \forall t \geq 0$$

Energy dissipation formula: Euclidean case

$$\frac{d}{dt} f(x(t)) = \nabla f(x(t))^\top x'(t) = -\|\nabla f(x(t))\|^2$$

In our context, let

$$\|\nabla \hat{W}_2 F(\mu)\|^2 := \int_X (\alpha \|\nabla V[\mu](x)\|^2 + 4 |V[\mu](x)|^2) \, d\mu(x)$$

Proposition (Energy dissipation for $(\mu_t)_t$)

$$\frac{d}{dt} F(\mu_t) = -\|\nabla \hat{W}_2 F(\mu_t)\|^2$$
Main local convergence result

Theorem (A Łojasiewicz gradient inequality)

\[F \text{ is non-degenerate} \]
\[\Rightarrow \]
\[\exists C_0, C_1 > 0 \text{ s.t. } F(\mu) - F^* < C_0 \Rightarrow \| \nabla_{\hat{W}_2} F[\mu] \|_2^2 \geq C_1 (F(\mu) - F^*) \]

Corollary

If \(F \) is non-degenerate then there exists \(C_0, C_1 > 0 \) such that
\[F(\mu_0) - F^* \leq C_0 \Rightarrow F(\mu_t) - F^* \leq C_0 e^{-C_1 t}. \]

Proof.

\[\frac{d}{dt} (F(\mu_t) - F^*) = -\| \nabla_{\hat{W}_2} F[\mu_t] \|_2^2 \leq -C_1 (F(\mu_t) - F^*) \]

and we conclude by integrating in time. \(\square \)
Proof idea and local expansion

Decompose μ into local moments in small balls B_i around each x_i^*:

- local biases $b_i \in \mathbb{R}^{d+1}$
- local covariances $\Sigma_i \in \mathbb{R}^{d \times d}$

Local Taylor expansion of F around μ^*

$$F(\mu) - F^* \approx \frac{1}{2} b^T (K + H) b + \sum_{i=1}^{m^*} a_i \text{tr}(\Sigma_i H_i) + \int_{\mathcal{X} \setminus (\cup B_i)} V[\mu^*] \, d\mu$$

- Bias term (local+global)
- Variance term (local)
- Mass sent to 0
Dynamics: Global convergence
Convergence with fixed grid \((\alpha = 0)\)

Consider an infinitely dense grid. What are the convergence rates?

Proposition (Convergence rate, multiplicative updates)

Let \(\mu_0 \propto \text{vol}\) and \(\partial_t \mu_t = -4\mu_t V[\mu_t]\). It holds \(F(\mu_t) - F^* \lesssim \frac{\log(t)}{t}\).

- proof via mirror descent + approximation argument
- in practice discretization error quickly takes over
- compare with the \(L^2\) gradient flow:

Proposition (Convergence rate, additive updates)

Let \(\mu_0 \propto \text{vol}\) and \(\partial_t \mu_t = -V[\mu_t] \text{vol}\). If \(F\) is non-degenerate, then

\[F(\mu_t) - F^* \simeq t^{-2/(d+2)}. \]

See [Chizat, 2021] for a complete analysis of convergence rates.
Theorem (Global convergence)

If the problem is non-degenerate, there exists $C'_0, C'_1 > 0$ such that

$$\left\{ \begin{array}{l}
\alpha \leq C'_0 \\
\sup_{x \in \mathcal{X}} \inf_{i=1, \ldots, m} \text{dist}(x, x_i(0)) \leq C'_1
\end{array} \right. \Rightarrow \lim_{t \to \infty} F_m(\theta(t)) = F^*.$$
Signed 1D spikes deconvolution: trajectory of μ_t
Concluding remarks

- **Extensions**
 We focused on GD but one could explore more advanced algorithms (pre-conditioning, acceleration, SGD)

- **Curse of dimensionality**
 The guarantees require $\exp(d)$ particles, which is unavoidable under our assumptions.

- **Can we change assumptions?**
 - dealing with the degenerate case (see [Zhou, Ge, Jin, 2021])
 - dealing with non-sparse minimizers (open)