TECHNICAL AND VOCATIONAL EDUCATION ANALYTICS USING PUNJAB TEVTA STUDENTS’ DATA

QUDSIA SALEEM, ARSLAN ASIF, MALIKTAHIR HASSAN

Department of Software Engineering, University of Management and Technology, Lahore, Punjab, Pakistan
Email: qudsia.saleem@gmail.com

ABSTRACT. The development of informative workforce that is skilled in a specific profession is considered to be the most recommended and desirable feature of any advanced state. Technical Education & Vocational Trainings provide golden opportunity of growth regarding the output of individuals and prosperity of employers. Subsequently it is the dire need of developing countries to invest in public vocational education and training sector (VET) for the progression of skillful societies. Process of manual predictions and analysis on the basis of students’ data to make decisions that will improve the overall teaching and learning is very difficult and tiring. Data mining is exceptionally helpful when we are talking about education data analysis and prediction. Data mining techniques are being used successfully in different areas especially in student educational and learning analytics called as Educational Data Mining (EDM). In this work, TEVTA students’ data is shaped as a ready-to-mine data set and then various data mining techniques are applied to derive interesting patterns that can potentially derive important decisions for improvement of learning process, enhancement of teaching method and overall development of whole system of technical education and vocational trainings. Besides presenting interesting analytics of TEVTA data, we develop classification problems to predict status of students after completing TEVTA courses. This classification can also help in evaluating success of TEVTA programs. This work can help in analyzing and predicting the aspects affecting students’ as well as institutes’ performance from different dimensions.

Keywords: Educational Data Mining; Technical Education and Vocational Training; TEVTA; Classification

1. Introduction. Today it is challenging to improve the system of education and decision making using data analysis. As the complexity of educational entities increases, the decision-making process of management becomes more difficult. These days, in order to improve decision making for better planning and management, educational institutes are looking for the latest technologies. In this regard, data mining techniques are the most popular techniques, which are used to get meaningful patterns from huge datasets.

Data mining that is also called knowledge discovery in databases (KDD) plays a vital role in discovering unknown traits from a large set of data [1]. Its advantages have landed its application in numerous fields including e-commerce, bioinformatics and lately, within the educational research [2]. Educational Data Mining (EDM) is an emerging discipline concerned with developing new methods for exploring the unique types of data that come from the educational setting, and using those methods to better understand students, and the settings, which they learn in. EDM often stresses on the improvement of student models that denote the student’s current knowledge, motivation, cognition, and attitudes [3].

Data mining methodology is helpful in analysis and visualization of students’ academic data and students’ employment as well as looking to improve their performance, clustering/grouping them, organization of their enrollment, target job profiles and suggesting appropriate courses [4]. Main drive to use EDM is to examine the educational data to resolve the current educational research matters. Usually there are five
categories of stakeholders (learners, teachers, course developers, administrators and institutes) of EDM. With the help of analysis and results, EDM can guide learners to choose further courses after studying a basic level of education. It also helps teachers in predicting their learner’s performance, behavior and improvement in pedagogical skills. With the help of EDM course developers can decide the courses, curricula, area to launch a new course, etc. [5].

By the help of this research, we have elaborated a study on various EDM techniques and how they could be beneficial for all the stakeholders in the educational system. Classification (naïve Bayesian) technique has been used to predict status for number of pass outs. The knowledge we learned can assist the educational institutes to overcome the problem of low employment and poor performance hence accordingly actions to be taken to improve the overall academic performance.

2. Literature Review. Different computational techniques in data mining are used to analyze educational data and the aim is to study useful questions. There are many researchers who have worked on EDM and its applications in improving educational process.

A. Empirical study of data mining techniques in education system [8] used to extract useful information from huge data sets, also provided analytical tool for viewing information to use for decision making process.

B. Clustering Algorithms Applied in Educational Data Mining [9] recommend the investigators with the methodology of how huge amounts of educational data of the institutes can predicted for the strategic purposes exploiting Data Mining Techniques. Meanwhile it shortens the design of system which developed from data; using data mining approaches i.e. clustering, classification, and prediction algorithms.

C. Educational Data Mining: a Case Study [10] discussed how Data Mining algorithms can pick pedagogically important sources contained in the data stores obtained from the educational system.

D. A Comprehensive Study of Educational Data Mining [11] provides stakeholders a better understanding of learners and environmental settings which will ultimately helped to learn and develop models for the improvement of education environment.

E. An Approach of Improving Student’s Academic Performance by using K-means clustering algorithm and Decision tree [12] uses a model which is based on hybrid procedure of Decision Tree method and Data Clustering (especially the K-Means) This will help teachers/educators to predict student’s GPA so that teacher can take suitable changes to enhance student curriculum performance.

F. An Educational Data Mining Model for Predicting Student Performance in Programming Course [13] Student performance in specific courses (programming) proposed an educational data mining model. There are three phases in proposed solution; data pre-processing, attribute selection and rule extraction algorithm. The students’ data includes 10 predictive attributes and one target attribute. The predictive attributes are StudentID, High school mathematics grade, mathematical background, problem solving, programming aptitude, prior experience, previous computer programming experience, gender, locality, and e learning usage. The target attribute is the Grade (student performance in programming course).
G. A Decision Support System for Predicting Student Performance[15] uses Naive Bayes algorithm (NB) approach. The applicant data gathered from the University of Tuzla, the Faculty of Economics, academic year 2010-2011, among first year students and the data taken during the enrolment

H. Using Programming Process Data to Detect Differences in Students' Patterns of Programming’ [19] EDM also helps us to predict students’ programming ability w.r.t. particular assignment. The method, based on tracing PSM programming sequences, can be used as a basis for dynamically tailoring learning interventions that better serve students as they learn to program. Their model also helped them to identify differences between students as well.

I. A Systematic Review of Educational Data Mining [21] provides a complete detailed review from 1983-2016 on evolution of EDM specifically involving clustering algorithms and its applicability and resuability in terms of EDM.

J. Plagiarism in Take-home Exams: Help-seeking, Collaboration, and Systematic Cheating [20]. We can also find plagiarism in educational data using EDM practices. During the interview process with students who were suspected of plagiarism, three behavior types stood out: (1) help-seeking, (2) collaboration and (3) systematic cheating

K. Predicting Students Academic Performance Using Education Data Mining [16] uses association rule mining for predicting students’ performance in final exam on the basics of their performance in assignments, unit tests, graduation percentage and attendance. The following work methodology is used:

![Diagram of Association Rule Mining](image)

Figure 1: Association rule mining [16]

After doing literature review, it is concluded that education data mining is an emerging and widespread domain which has its implications both at academia and industry. Researchers have applied different EDM algorithms to get useful results like clustering and classification. Our main focus in this study is on classification algorithms applied on TEVTA dataset.

3. Technical Education and Vocational Training Background.

A. Importance of Technical Education & Vocational Training

Technical Education & Vocational Training provides necessary competencies in order to increase the productivity of individuals and prosperity of employers which is badly required in a democratic society. Training acquisition plays a dynamic role to improve our economic growth which can result in providing opportunity of earning to underprivileged groups in a state [6].

B. Technical Education & Vocational Training Authority (TEVTA), Punjab

The main motif of TEVTA Punjab is to heighten worldwide educational competitiveness in Punjab, by producing a productive workforce based on demand driven, standardized, technical education and vocational training service.

After matriculation students are awarded by TEVTA (3) years of education and vocational training courses as well as six months duration vocational certificate programs. These diploma and certificates are offered in almost all technologies for both girls and boys.
4. Methodology. The methodology we use in our research is first we have extracted raw data from TEVTA website\(^1\) by selecting all criteria. First, we perform preprocessing in which different attributes including zones, districts, institutes, trades, unit-duration, exam-body, gender, domicile-district and status have been assigned numerical codes according to their frequencies (occurrences) hence reducing space complexity. We have also truncated long and useless strings attached with some data attributes hence cleaning data for further processing. Afterwards, we computed basic data statistics and analytics from this data set including finding top ten and bottom ten records from different dimensions and attribute perspectives. Then we split our data in training and test set 66% to 34% in ratio and used classification techniques like Naive Bayes, J48, Bayes net, lazy IBK. After applying classification techniques, we compare them in terms of accuracy. For the obtained results, we provide suggestions which can be helpful for the stakeholders in decision-making process, e.g., in predicting launch of TEVTA courses in different districts, their success evaluation, etc.

A) Data Analytics

Basic data set statistics are shown in Table 1.

Data Characteristics	Multivariate
No of Instances	306744
Attribute Characteristics	Mixed
No of Attributes	23
Data Duration	2009-2016
Missing Values	Yes

Conditions used to extract data from TEVTA website are shown in Table 2.

Year of Passing	Selected all (2009-2016)
Districts	Selected all (36 districts of Punjab)
Institutes	Selected all
Trade Duration	Selected all categories(1,2,3,4,6,9,12,18,24,36,48)
Institutes Types	Selected all
Institute Gender	Selected both (M/F)
Traceability Status	Selected all (Employed, Self Employed, Un Employed, Higher Studies, Not Interested in Job, Untraceable)
Duration Units	Month/Week
Trades	Selected all

Important attribute details are explained in Table 3.

Sr.#	Attribute Name	Type	Detail
1	Zone	Categorical	3 zones (North, Center & South zone)
2	Districts	Categorical	36 districts
3	Gender	Categorical	2 genders (male, Female)
4	Marks Obtained	Mixed	
5	Status	Categorical	(Self Employed, Employed, Unemployed, Higher Studies, Untraceable, Not Interested in Job)

\(^1\) http://tdcc.tevta.gop.pk/Rpt_InstYearTracWise_GradDetail_P.aspx
Useful statistics (e.g., top and bottom values) and other details of individual attributes are presented next.

1) Zone Attribute
There are three zones in Punjab, i.e., North, Center and South. All 36 districts come under these three zones. Number of students in different zones are shown in Table 4.

Table 4. No. of students (zone wise)

Sr.#	Zone	No of Students	%
1	North Zone	115035	33.05
2	Center Zone	101388	37.50
3	South Zone	90321	29.44

2) District Attribute
There are total of 36 districts in Punjab. Top 10 and bottom 10 districts w.r.t. number of students (pass outs) are shown in Figure 2 and Figure 3.

Figure 2: Top Districts

Figure 3: Bottom Districts

3) Institute Attribute
There are total 357 institutes in whole Punjab. Top ten successful institutes’ w.r.t. number of pass outs can be observed with the help of chart in Figure 4.
Similarly, we can observe the bottom institutes having less number of pass outs from 2009-2016 data set, in Figure 5.

4) Year of Passing Attribute
As this data set is from 2009 to 2016, the chart in Figure 6 clearly depicts that 2015 was most successful year with respect to no of pass out students. The potential reason identified was special interest and stress of TEVTA’s administration in data collection and course management.

5) Gender Attribute
Results from dataset are clearly indicating that females are choosing such courses, which help them to work at home, e.g., dress making, etc., while male students are choosing technical courses like certificate in computer application, civil DAE, mechanical DAE, electrical DAE, etc., (Figure 7 and Figure 8).
6) Zone Wise Employment Status

Zone wise employment status can be seen Figures 9 and 10. Facts are indicating that most people with employment & self-employed status belong to North zone.
C. Data Classification

Different data mining techniques (linear regression, clustering, classification and outlier analysis, etc.) can be used for EDM. Linear Regression is a technique that can be used to predict numerical data. Various attributes like income, age, no. of pass outs, etc., can be predicted using Regression. Clustering can be used to group similar records together. This is an unsupervised learning approach, which mainly focuses on un-labeled data. K-Means is the most common method of Clustering. Classification helps in classifying data based on the training set and then uses that pattern to classify the new data which is known as the test set. In this work, we focus on the classification technique.

Classification helps in classifying data by building a prediction model using labeled data called the training set, and then using that model to classify new data, which is known as test set. In this paper, different classifiers including Naive Bayes and J48 have been used for prediction of a student’s status after completing a TEVTA course. Classification can help in evaluating success of a program, i.e., if most of the students are employed after completion of a program, the program can be considered successful.

There are total 23 attributes in this data set but in order to apply the classification technique we have selected 8 important and more relevant attributes. These are Zone, Districts, Institute Name, Trade Name, Trade Type, Duration, Gender and Status. Status is our class attribute, which can originally take six possible values, i.e., employed, self-employed, unemployed, higher studies, not interested in job and untraceable. Our classification problem is “predict the status of a student”. There are total 300 technical and vocational courses in this data set, which are further divided into 35 generic course types. We develop a 2-class problem and a 4-class problem for classification purposes that are described below.
D. 2-class problem

In the 2-class problem setting, the status attribute is divided into only two classes, i.e. employed (merging self-employed and higher studies in it) and unemployed (by merging not interested in job and untraceable data). The detail of 2-class problem setting is shown in Table 5.

Class Name	Attributes	Classification attribute
2-class problem	Zone, Districts, InstituteName, TradeName, TradeType, Duration, Gender Status [class attribute]	Status
		1- Employed
		2- unemployed

E. 4-class problem

In 4-class problem the status attribute is divided into four classes, i.e., employed, self-employed, higher studies and unemployed (by merging not interested in job and untraceable data). The detail of 4-class problem setting is shown in Table 6.

Class Name	Attributes	Classification attribute
4-class problem	Zone, Districts, InstituteName, TradeName, TradeType, Duration, Gender Status [class attribute]	Status
		1- Employed
		2- Unemployed
		3- Self-Employed
		4- Higher Studies

4. Results and Discussion. A comparative analysis of different classifiers including Naive Bayes and J48 has been done on different parameters like Kappa statistics, mean absolute error, root mean squared error, root relative squared error, TP rate, FP rate, precision, recall, F-measure and ROC area. The summary of classifiers and their accuracies are presented in Table 7. It can be observed from the results in Table 7 that J48 classifier has outperformed other classifiers in both 2-class problem and 4-class problem. The conditional independence assumption of Naïve Bayes classifier does not work well in our scenario and decision tree based J48 gives better accuracy. After running classification algorithms and collecting results, there are some recommendations which are put forward in order to improve employment rate at various zones. For example, offering technical trades like Electrical (DAE), Electronics (DAE) and Civil (DAE) has more scope in industrial districts like Lahore, Faisalabad, and Gujranwala, etc. as employment rate for these trades are quite significant. Trend of professional cooking is increasing in large districts so TEVTA can offer more courses related to professional cooking in selected districts. Also due to inclusion of solar technology in market, courses related to solar technology has high employment rate. Trade like mobile repairing has high employment rate in most of the districts. Rural poultry is also a top trade in rural areas. Trades related to agriculture like diploma in agriculture science (DAS), tunnel farming is not popular as number of students are very low as well as employment status is also quite low. These trades should be re-designed in order to get attention of students. Diplomas related to beautician and dress designing are more popular and useful among female participants in all districts.
Table 7. The summary of classifiers and their accuracies

Problem data class	Classifier	Accuracy	Test Option
2-Class Problem	Naive Bayes Classifier	72.2934 %	Percentage split (66%)
	Naive Bayes Classifier	72.3248 %	Cross-validation (folds 10)
	J48 pruned tree	79.7877 %	Percentage split (66%)
	J48 pruned tree	**80.0325 %**	**Cross-validation (folds 10)**
	BayesNet	72.3951 %	Percentage split (66%)
	BayesNet	72.5559 %	Cross-validation (folds 10)
	lazy.IBk	79.8615 %	Percentage split (66%)
	AttributeSelectedClassifier	75.8843 %	Percentage split (66%)
	meta.Stacking	68.8445 %	Percentage split (66%)
	rules.ZeroR	68.8445 %	Percentage split (66%)
4-Class Problem	Naive Bayes Classifier	52.691 %	Percentage split (66%)
	Naive Bayes Classifier	52.7287 %	Cross-validation (folds 10)
	J48 pruned tree	60.4604 %	Percentage split (66%)
	J48 pruned tree	60.6734 %	Cross-validation (folds 10)
	BayesNet	52.829 %	Percentage split (66%)
	BayesNet	52.788 %	Cross-validation (folds 10)
	lazy.IBk	60.6273 %	Percentage split (66%)
	AttributeSelectedClassifier	60.0175 %	Percentage split (66%)

Conclusion. Efficiency of individuals and progress of employers both are dependent on Technical Education & Vocational Training. The two terms like technical and vocational are very difficult to be defined even by the linguists. As a matter of fact, both are meant to remove unemployment and joblessness. These days quality is the most concerned area of Technical Education. There are many parameters, which are affecting quality of education like students’ parameters/characteristics, students’ employment rate, market oriented courses and diverse teaching skills, etc. Educational institutes are doing their best to support decision-making processes and people, and to formulate healthier management plans. These results are achieved by utilizing valuable unseen knowledge, which is hidden in the huge educational data. Determining the relevant parameters which may affect the Performance of Students and teaching learning process in Education is the leading research area in the arena of data mining. Significant information can be driven from huge data set using mining techniques.

In this work, we have tried to explore and analyze a so far less attended area of technical education and vocational trainings in Pakistan. Interesting analytics based on gender, districts, institutes, etc., are presented. In addition, classification problems are formulated to predict status of students after completing a TEVTA course. These findings can be very useful for all TEVTA stakeholders including students, instructors, institutes and administrators.

Future Work. Current work is a step forward towards more effective and successful technical education and vocational trainings in Pakistan, based on quantitative analysis. Future Research will focus on gathering more data including the enrollment and dropouts. Outlier Analysis can be performed to find which institutes/districts are producing more number of pass outs and which institutes/districts are having high employment rate. It can also help in finding which institutes or districts are having lowest un-employment rate so that we can change the strategies at those institutes/districts to increase employment rate. This can help to explore more areas to improve the teaching-learning process thus enhancing the quality of technical and vocational education. Besides exploring more classifiers, other EDM techniques can be applied in future, like clustering and association rule mining; to know what changes need to be made, which course should be offered to whom and in which area, identify the reasons of dropouts and to make learning a better experience.
for students; finally helping the students get into business or employment.

REFERENCES

[1] Witten, I. H., Frank, E., Trigg, L. E., Hall, M. A., Holmes, G., & Cunningham, S. J. (1999). Weka: Practical machine learning tools and techniques with Java implementations.
[2] Baker, R. S. J. D. (2010). Data mining for education. *International encyclopedia of education, 7*(3), 112-118.
[3] Baker, R. S., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. *JEDM| Journal of Educational Data Mining, 1*(1), 3-17.
[4] Goyal, M., & Vohra, R. (2012). Applications of data mining in higher education. *International Journal of Computer Science Issues (IJCSI), 9*(2), 113.
[5] Khanna, L., Singh, S. N., & Alam, M. (2016, August). Educational data mining and its role in determining factors affecting students academic performance: A systematic review. In *Information Processing (ICIP), 2016 1st India International Conference on* (pp. 1-7). IEEE.
[6] Abrami, P. C., Bernard, R. M., Wade, A., Schmid, R. F., Borokhovski, E., & Tamim, R. (2009). Integrated Bibliography. *Educational Research, 1*(1), 49-57.
[7] Sarala, V., & Krishmaiah, J. (2015). Empirical Study Of Data Mining Techniques In Education System. *International Journal of Advances in Computer Science and Technology (IJACST)*, 15-21.
[8] Dutt, A., Aghabozrgi, S., Ismail, M. A. B., & Mahroeian, H. (2015). Clustering algorithms applied in educational data mining. *International Journal of Information and Electronics Engineering, 5*(2), 112.
[9] Merceron, A., & Yacef, K. (2005, May). Educational Data Mining: a Case Study. In *AIED* (pp. 467-474).
[10] Kumar, J. (2015). A Comprehensive Study of educational Data mining. *International Journal of Electrical Electronics & Computer Science Engineering Special Issue-TeLMISR*, 2348-2273.
[11] Shovon, M., Islam, H., & Haque, M. (2012). An Approach of Improving Students Academic Performance by using k means clustering algorithm and Decision tree. *arXiv preprint arXiv:1211.6340*.
[12] ElGamal, A. F. (2013). An educational data mining model for predicting student performance in programming course. *International Journal of Computer Applications, 70*(17), 22-28.
[13] Ramesh, V. A. M. A. N. A. N., Parkavi, P., & Ramar, K. (2013). Predicting student performance: a statistical and data mining approach. *International journal of computer applications, 63*(8), 35-39.
[14] Anoopkumar, M., & Rahman, A. M. (2015). A comprehensive survey on educational data mining and use of data mining techniques for improving teaching and predicting student performance. *Advances in Innovative Engineering and Technologies*.
[15] Borkar, S., & Rajeswari, K. (2013). Predicting students academic performance using education data mining. *International Journal of Computer Science and Mobile Computing, 2*(7), 273-279.
[16] Butler, M., & Morgan, M. (2007). Learning challenges faced by novice programming students studying high level and low feedback concepts. Proceedings ascilite Singapore, (99-107).
[17] Jie, W., Hai-yan, L., Biao, C., & Yuan, Z. (2017, June). Application of educational data mining on analysis of students' online learning behavior. In *Image, Vision and Computing (ICIVC), 2017 2nd International Conference on* (pp. 1011-1015). IEEE.
[18] Carter, A. S., & Hundhausen, C. D. (2017, March). Using programming process data to detect differences in students' patterns of programming. In *Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education* (pp. 105-110). ACM.
[19] Carter, A. S., & Hundhausen, C. D. (2017, March). Using programming process data to detect differences in students' patterns of programming. In *Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education* (pp. 105-110). ACM.
[20] Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. IEEE Access, 5, 15991-16005.

[21] Khan, Y. D., Ahmad, F., & Anwar, M. W. (2012). A neuro-cognitive approach for iris recognition using back propagation. World Applied Sciences Journal, 16(5), 678-685.

[22] Khan, Y. D., Khan, S. A., Ahmad, F., & Islam, S. (2014). Iris recognition using image moments and k-means algorithm. The Scientific World Journal, 2014. [24] Khan, Y. D., Ahmed, F., & Khan, S. A. (2014). Situation recognition using image moments and recurrent neural networks. Neural Computing and Applications, 24(7-8), 1519-1529.