On quantum perfect state transfer in weighted join graphs

Ricardo Javier Angeles-Canul∗ Rachael M. Norton† Michael C. Opperman‡
Christopher C. Paribello§ Matthew C. Russell¶ Christino Tamon∥

September 2, 2009

Abstract

We study perfect state transfer on quantum networks represented by weighted graphs. Our focus is on graphs constructed from the join and related graph operators. Some specific results we prove include:

• The join of a weighted two-vertex graph with any regular graph has perfect state transfer. This generalizes a result of Casaccino et al. [9] where the regular graph is a complete graph or a complete graph with a missing link. In contrast, the half-join of a weighted two-vertex graph with any weighted regular graph has no perfect state transfer. This implies that adding weights in a complete bipartite graph do not help in achieving perfect state transfer.

• A Hamming graph has perfect state transfer between each pair of its vertices. This is obtained using a closure property on weighted Cartesian products of perfect state transfer graphs. Moreover, on the hypercube, we show that perfect state transfer occurs between uniform superpositions on pairs of arbitrary subcubes. This generalizes results of Bernasconi et al. [5] and Moore and Russell [14].

Our techniques rely heavily on the spectral properties of graphs built using the join and Cartesian product operators.

Keywords: Perfect state transfer, quantum networks, weighted graphs, join.

1 Introduction

Recently, the notion of perfect state transfer in quantum networks modeled by graphs has received considerable attention in quantum information [7, 8, 15, 5, 4, 6, 9]. A main goal in this line of research is to find and characterize graph structures which exhibit perfect
state transfer between pairs of vertices in the graph. This is a useful property of quantum networks since it facilitates information transfer between locations.

We may conveniently view the perfect state transfer problem in the context of quantum walks on graphs \[10, 12\]. In this setting, the initial state of the quantum system is described by a unit vector on some initial vertex \(a\). To achieve perfect transfer to a target vertex \(b\) at time \(t\), the quantum walk amplitude of the system at time \(t\) on vertex \(b\) must be of unit magnitude. In other words, we require that \(|\langle b | e^{-itA_G} | a \rangle| = 1\), where \(A_G\) is the adjacency matrix of the underlying graph \(G\) that describes the quantum network.

Christandl et al. \[7\] observed that the Cartesian products of paths of length three (two-link hypercubes) admit perfect state transfer between antipodal vertices. They also noted that paths of length four or larger do not possess perfect state transfer unless their edges are weighted in a specific manner (see \[8\]). In fact, this weighting scheme corresponds closely to the hypercube structure. This crucially shows that edge weights can be useful in achieving perfect state transfer on graphs which are known not to possess the property.

It is known that complete graphs do not have perfect state transfer. But surprisingly, Casaccino et al. \[9\] observed that adding weighted self-loops on two vertices in a complete graph helps create perfect state transfer between the two vertices. We generalize their observation by considering the join of a weighted two-vertex graph with an arbitrary regular graph. We prove that adding weights also helps for perfect state transfer in this more general case. On the other hand, we show that the half-join between a weighted two-vertex graph with a weighted self-join of an arbitrary regular graph, where each vertex of the two-vertex graph is connected to exactly half of the join graph, has no perfect state transfer for any set of weights. This implies that weights provably do not help in achieving perfect state transfer in a complete bipartite graphs. The full connection that is available in the standard join seems crucial in achieving perfect state transfer.

Bernasconi et al. \[5\] gave a complete characterization of perfect state transfer on the hypercubes. They proved that perfect state transfer is possible at time \(t = \pi/2\) between any pair of vertices. We will refer to this stronger property as universal perfect state transfer. Previously known results on perfect state transfer on other graphs, such as integral circulants \[6\] and two-link hypercubes \[7\], only allow perfect state transfer between antipodal vertices (which are vertices at maximum distance from each other). Recent results on integral circulants and other graphs (see \[2\]) have exhibited perfect state transfer between non-antipodal vertices, but most of these graphs still lack the universal perfect state transfer property.

We show that weights are useful for universal perfect state transfer in the family of Hamming graphs, which is a generalization of the hypercube family. We prove this result by extending the observation of Christandl et al. \[7\] to perfect state transfer on weighted Cartesian products. For a weighted \(n\)-cube, we prove a stronger universal perfect state transfer property. We show that perfect state transfer occurs between uniform superpositions over two arbitrary subcubes of the \(n\)-cube. This generalizes the results of both Bernasconi et al. \[5\] mentioned above and also of Moore and Russell \[14\] on the uniform mixing of a quantum walk on the \(n\)-cube. We note that Bernasconi et al. \[5\] proved universal perfect state transfer on the \(n\)-cube by dynamically changing the underlying hypercubic structure of the graph. In contrast, our scheme is based on static weights which can be interpreted dynamically with time.
Note that if we allow zero edge weights then universal perfect state transfer becomes trivial. Assuming that the two source and target vertices are connected, find a path connecting them, assign the hypercubic weights to the edges on this path (as in Christandl et al. [2]) and zero weights to the other edges. This shows that universal perfect state transfer can be achieved if zero edge weights are allowed.

Our work exploits the machinery developed in [2] and their extensions to weighted graphs. These include the join theorem for regular graphs and the closure property for Cartesian product of perfect state transfer graphs.

2 Preliminaries

For a logical statement S, the Iversonian notation $[S]$ is 1 if S is true and 0 otherwise (see Graham, Knuth and Patashnik [11]). As is standard, we use I_n and J_n to denote the $n \times n$ identity and all-one matrices, respectively; we drop the subscript n whenever the context is clear.

The graphs $G = (V, E)$ we study are finite, mostly simple, undirected, and connected. The adjacency matrix A_G of a graph G is defined as $A_G[u, v] = \mathbb{1}(u, v) \in E]$. A graph G is called k-regular if each vertex has k adjacent neighbors. That is, the neighbor set $\{v \in V : (u, v) \in E\}$ of u has cardinality k for each vertex $u \in V$. In most cases, we also require G to be vertex-transitive, that is, for any $a, b \in V$, there is an automorphism $\pi \in \text{Aut}(G)$ with $\pi(a) = b$.

In this paper, we also consider edge-weighted graphs $\tilde{G} = (V, E, w)$, where $w : E \rightarrow \mathbb{R}$ is a function that assigns weights to edges. In the simplest case, we take an unweighted graph $G = (V, E)$ and add self-loops with weight α to all vertices and assign a weight of β to all edges; we denote such a graph by $G(\alpha, \beta)$. Note that the adjacency matrix of G is given by $\alpha I + \beta A_G$. Unless otherwise stated, most of our weighted graphs will be of this form.

We denote the complete graph on n vertices by K_n. The Cartesian product $G \oplus H$ of graphs G and H is a graph whose adjacency matrix is $I \otimes A_H + A_G \otimes I$ (see Lovász [13], page 617). The binary n-dimensional hypercube Q_n may be defined recursively as $Q_n = K_2 \oplus Q_{n-1}$, for $n \geq 2$, and $Q_1 = K_2$. Similarly, the Hamming graph $H(q, n)$ is defined as $K_q^{\oplus n}$; this may be viewed as a q-ary n-dimensional hypercube.

The join $G + H$ of graphs G and H is defined as $G + H = G \cup H$; that is, we take a copy of G and a copy of H and connect all vertices of G with all vertices of H (see [16]). We will also consider the weighted join $G + \rho H$ where we assign a weight of ρ to the edges that connect G and H; more specifically, the adjacency matrix of $G + \rho H$ is given by

$$
\begin{bmatrix}
A_G & \rho J \\
\rho J & A_H
\end{bmatrix},
$$

with the appropriate dimensions on the two all-one J matrices. A cone on a graph G is the graph $K_1 + G$. Similarly, a connected double cone on a graph G is the graph $K_2 + G$; similarly, a disconnected double cone is the graph $\overline{K}_2 + G$. When G is the empty graph, the connected double-cone is simply the complete graph whereas the disconnected double-cone is the complete graph with a missing edge (see [4, 9]). On the other hand, a connected (or disconnected) double half-cone on a graph G is formed by taking K_2 (or \overline{K}_2) and $G + G$ and

3
The quantum walk on K_2 connecting each vertex of the two-vertex graph to exactly one copy of G in the join $G+G$. When G is the empty graph, the double half-cone simply yields a complete bipartite graph. For more background on algebraic graph theory, we refer the reader to the monograph by Biggs [3].

For a graph $G = (V,E)$, let $|\psi(t)\rangle \in \mathbb{C}^{|V|}$ be a time-dependent amplitude vector over V. The continuous-time quantum walk on G is defined using Schrödinger’s equation as

$$|\psi(t)\rangle = e^{-itA_G}|\psi(0)\rangle,$$

where $|\psi(0)\rangle$ is the initial amplitude vector (see [10]). Further background on quantum walks on graphs can be found in the survey by Kendon [12]. We say G has perfect state transfer (PST) from vertex a to vertex b at time t^* if

$$|\langle b|e^{-it^*A_G}|a\rangle| = 1,$$

where $|a\rangle, |b\rangle$ denote the unit vectors corresponding to the vertices a and b, respectively. The graph G has perfect state transfer if there exist distinct vertices a and b in G and a time $t^* \in \mathbb{R}^+$ so that (3) is true. We say that G has universal perfect state transfer if (3) occurs between all distinct pairs of vertices a and b of G.

2.1 Example: Triangle

We begin by describing an explicit example of the role of weights for perfect state transfer in a triangle, or K_3, which is the complete graph on three vertices. The eigenvalues of K_3 are 2 (simple) and -1 (with multiplicity two) with eigenvectors $|F_k\rangle$, where $|F_k\rangle$ are the columns of the Fourier matrix, with $\langle j|F_k\rangle = \omega_k^j/\sqrt{3}$, for $j,k \in \{0,1,2\}$ (see Biggs [3]). The quantum walk on K_3 yields

$$\langle 1|e^{-itK_3}|0\rangle = \langle 1| \sum_{k=0}^{2} e^{-it\lambda_k}|F_k\rangle\langle F_k|\rangle \langle 0| = -\frac{2}{3}ie^{-it/2} \sin(3t/2).$$

So, it is clear that there is no perfect state transfer on K_3 (see [11, 12]). Now, consider adding self-loops on vertices 0 and 1 with weight μ and putting a weight of η on the edge connecting each vertex of the two-vertex graph to exactly one copy of G in the join $G+G$. When G is the empty graph, the double half-cone simply yields a complete bipartite graph. Without the self-loops and weights, there is no perfect state transfer (see [9]).

Figure 1: Weighted joins: (a) $K_2 + K_1$ (b) $K_2 + C_4$. Perfect state transfer occurs between the weighted self-loop vertices. Without the self-loops and weights, there is no perfect state transfer (see [9]).
connecting 0 and 1. The adjacency matrix of this weighted \(\tilde{K}_3 \) is
\[
\tilde{K}_3 = \begin{bmatrix}
\mu & \eta & 1 \\
\eta & \mu & 1 \\
1 & 1 & 0
\end{bmatrix}
\] (5)

The spectra of \(\tilde{K}_3 \) is given by the eigenvalues \(\lambda_0 = \mu - \eta \) and \(\lambda_\pm = 2\alpha_\pm \), where \(\alpha_\pm = \frac{1}{4}(\delta \pm \Delta) \), \(\delta = \mu + \eta \) and \(\Delta = \sqrt{\delta^2 + 8} \), with corresponding orthonormal eigenvectors
\[
|v_0\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad |v_\pm\rangle = \frac{1}{\sqrt{2\alpha_\pm^2 + 1}} \begin{bmatrix} \alpha_\pm \\ \alpha_\pm \\ 1 \end{bmatrix}
\] (6)

The perfect state transfer equation between the two vertices with weighted self-loops are given by
\[
\langle 1 | e^{-it\tilde{K}_2} | 0 \rangle = \langle 1 | e^{-itK_2} | 0 \rangle + \frac{1}{2} e^{-it\delta} \left\{ e^{it\delta/2} \left[\cos \left(\frac{\Delta}{2} t \right) - i \frac{\delta}{\Delta} \sin \left(\frac{\Delta}{2} t \right) \right] - 1 \right\},
\] (7)

where \(K_2 \) is \(K_2(\mu, \eta) \). Recall that the perfect state transfer \(\langle 1 | e^{-itK_2} | 0 \rangle \) on the (unweighted) \(K_2 \) is given by \(-i \sin(t)\). Thus, the weighted \(K_2 \) has perfect state transfer at time \(t^* = (2\mathbb{Z} + 1)\pi/2\eta \), since the self-loop weight \(\mu \) disappears into an irrelevant phase factor and the edge weight \(\eta \) translates into a time-scaling. So, to achieve perfect state transfer on \(\tilde{K}_3 \), it suffices to have
\[
\cos \left(\frac{\delta}{4\eta} \pi \right) \cos \left(\frac{\Delta}{4\eta} \pi \right) = 1.
\] (8)

Equivalently, we require that:

1. \(A \equiv \delta/4\eta \) be an integer;
2. \(B \equiv \Delta/4\eta \) be an integer; and
3. \(A \equiv B \) (mod 2) or that \(A \) and \(B \) have the same parity.

From the first two conditions, we require that \(\delta/\Delta \) be a rational number \(p/q < 1 \) with \(\gcd(p, q) = 1 \). Restating this last condition on \(p \) and \(q \) and simplifying, we get that
\[
\delta = p \sqrt{\frac{8}{q^2 - p^2}}, \quad \Delta = q \sqrt{\frac{8}{q^2 - p^2}}.
\] (9)

So, we may choose
\[
\eta = \frac{1}{4} \sqrt{\frac{8}{q^2 - p^2}}
\] (10)
so that both \(\delta/4\eta \) and \(\Delta/4\eta \) are integers. Therefore, we choose odd integers \(p \) and \(q \) satisfying \(\gcd(p, q) = 1 \); this will satisfy all three conditions stated above. This shows that there are infinitely many weights \(\mu \) and \(\eta \) (via infinitely choices of odd integers \(p \) and \(q \)) which allow perfect state transfer on \(\tilde{K}_3 \). We generalize this example in our join theorem for arbitrary regular weighted graphs.

This example complements a result of Casaccino et al. [9] which showed the power of weighted self-loops on complete graphs. Our analysis above shows that perfect state transfer is achieved through edge weights instead.
3 Join of weighted regular graphs

In this section, we prove that the existence of perfect state transfer in a join of two arbitrary regular weighted graphs can be reduced to perfect state transfer in one of the graphs. In fact, since we add weights to our graphs in a particular way, this is a reduction onto the unweighted version of one of the graphs. This allows us to analyze the double-cone on any regular graph; that is, the join of K_2 with an arbitrary regular graph. The next theorem is a generalization of a similar join theorem given in [2].

Theorem 1 For $j \in \{1, 2\}$, let $\tilde{G}_j(\mu_j, \eta_j)$ be a k_j-regular graph on n_j vertices, where each vertex has a self-loop with weight μ_j and each edge has weight η_j. Also, for $j \in \{1, 2\}$, let

$$\kappa_j = \mu_j + \eta_j k_j.$$

Suppose that a and b are two vertices in \tilde{G}_1. Let $G = \tilde{G}_1(\mu_1, \eta_1) + \tilde{G}_2(\mu_2, \eta_2)$ be the join of the weighted graphs. Then,

$$\langle b | e^{-itA_G} | a \rangle = \langle b | e^{-itA_{\tilde{G}_1}} | a \rangle + \frac{e^{-it\kappa_1}}{n_1} \left\{ e^{it\delta/2} \left[\cos \left(\frac{\Delta t}{2} \right) - i \left(\frac{\delta}{\Delta} \right) \sin \left(\frac{\Delta t}{2} \right) \right] - 1 \right\}$$

where $\delta = \kappa_1 - \kappa_2$ and $\Delta = \sqrt{\delta^2 + 4n_1n_2}$.

Proof Let G_j be the simple and unweighted version of \tilde{G}_j, for $j \in \{1, 2\}$; that is, $G_j = \tilde{G}_j(0, 1)$. Whenever it is clear from context, we denote $\tilde{G}_j(\mu_j, \eta_j)$ as simply G_j.

If λ_k and $|u_k\rangle$ are the eigenvalues and eigenvectors of A_{G_1}, for $k = 0, \ldots, n_1 - 1$, then

$$\langle b | e^{-itA_{G_1}} | a \rangle = \langle b | \sum_{k=0}^{n_1-1} |u_k\rangle \langle u_k|e^{-it\lambda_k} \rangle |a\rangle.$$

(13)

Here, we assume $|u_0\rangle$ is the all-one eigenvector (that is orthogonal to the other eigenvectors) with eigenvalue $\lambda_0 = 1$. By the same token, let θ_{ℓ} and $|v_{\ell}\rangle$ be the eigenvalues and eigenvectors of A_{G_2}, for $\ell = 0, \ldots, n_2 - 1$. Also, let $|v_0\rangle$ be the all-one eigenvector (with eigenvalue $\theta_0 = k_2$) which is orthogonal to the other eigenvectors $|v_{\ell}\rangle$, $\ell \neq 0$.

Let $G = G_1 + G_2$. Note that the adjacency matrix of G is

$$A_G = \begin{bmatrix} \mu_1 I + \eta_1 A_{G_1} & J_{n_1 \times n_2} \\ J_{n_2 \times n_1} & \mu_2 I + \eta_2 A_{G_2} \end{bmatrix}.$$

(14)

Let $\delta = \kappa_1 - \kappa_2$, where $\kappa_j = \mu_j + \eta_j k_j$, for $j \in \{1, 2\}$. The eigenvalues and eigenvectors of A_G are given by the following three sets:

- For $k = 1, \ldots, n_1 - 1$, let $|u_k, 0_{n_2}\rangle$ be a column vector formed by concatenating the column vector $|u_k\rangle$ with the zero vector of length n_2. Then, $|u_k, 0_{n_2}\rangle$ is an eigenvector with eigenvalue $\lambda_k = \mu_1 + \eta_1 \lambda_k$. Note that $\lambda_0 = \kappa_1$.

- For $\ell = 1, \ldots, n_2 - 1$, let $|0_{n_1}, v_{\ell}\rangle$ be a column vector formed by concatenating the zero vector of length n_1 with the column vector $|v_{\ell}\rangle$. Then, $|0_{n_1}, v_{\ell}\rangle$ is an eigenvector with eigenvalue $\theta_{\ell} = \mu_2 + \eta_2 \theta_{\ell}$.
Let $|\pm\rangle = \frac{1}{\sqrt{L_{\pm}}} |\alpha_{\pm}, 1_{n_2}\rangle$ be a column vector formed by concatenating the vector $\alpha_{\pm}|1_{n_1}\rangle$ with the vector $|1_{n_2}\rangle$, where $|1_{n_1}\rangle$, $|1_{n_2}\rangle$ denote the all-one vectors of length n_1, n_2, respectively. Then, $|\pm\rangle$ is an eigenvector with eigenvalue $\tilde{\lambda}_{\pm} = n_1\alpha_{\pm} + \kappa_2$. Here, we have

$$\alpha_{\pm} = \frac{1}{2n_1}(\delta \pm \Delta), \quad \Delta^2 = \delta^2 + 4n_1n_2, \quad L_{\pm} = n_1(\alpha_{\pm})^2 + n_2, \quad (15)$$

In what follows, we will abuse notation by using $|a\rangle$, $|b\rangle$ for both \tilde{G}_1 and $\tilde{G}_1 + \tilde{G}_2$; their dimensions differ in both cases, although it will be clear from context which version is used. The quantum wave amplitude from a to b is given by

$$\langle b | e^{-itA}\varphi | a \rangle = \langle b | e^{-it\tilde{A}} \left\{ \sum_{k=1}^{n_1-1} \langle u_k, 0_{n_2} | a \rangle | u_k, 0_{n_2} \rangle + \sum_{\pm} \frac{\alpha_{\pm}}{\sqrt{L_{\pm}}} | \pm \rangle \right\} | a \rangle$$

$$= \langle b | \left\{ \sum_{k=1}^{n_1-1} \langle u_k | a \rangle e^{-i\tilde{\lambda}_k} | u_k, 0_{n_2} \rangle + \sum_{\pm} \frac{\alpha_{\pm}}{\sqrt{L_{\pm}}} e^{-it\tilde{\lambda}_{\pm}} | \pm \rangle \right\} | a \rangle$$

$$= \sum_{k=1}^{n_1-1} \langle b | u_k \rangle \langle u_k | a \rangle e^{-i\tilde{\lambda}_k} + \sum_{\pm} \frac{\alpha_{\pm}^2}{L_{\pm}} e^{-it\tilde{\lambda}_{\pm}}. \quad (16)$$

This shows that

$$\langle b | e^{-itA}\varphi | a \rangle = \langle b | e^{-itA}\tilde{G}_1 | a \rangle + \sum_{\pm} \frac{\alpha_{\pm}^2}{L_{\pm}} e^{-it\tilde{\lambda}_{\pm}} - \frac{e^{-it\kappa_1}}{\delta} e^{it\tilde{\lambda}_{\pm}}. \quad (19)$$

To analyze the second term next, we use the following identities whose correctness follows easily from the definitions of α_{\pm}, L_{\pm}, δ and Δ:

$$\alpha_+\alpha_- = -(n_2/n_1) \quad (21)$$

$$\alpha_+ + \alpha_- = \delta/n_1 \quad (22)$$

$$L_+L_- = (n_2/n_1)\Delta^2 \quad (23)$$

$$L_+ + L_- = \Delta^2/n_1 \quad (24)$$

$$\alpha_{\pm}^2L_{\mp} = (n_2/n_1)L_{\mp} \quad (25)$$

$$\tilde{\lambda}_{\pm} = (\delta \pm \Delta)/2 \quad (26)$$

where $\delta = \kappa_1 + \kappa_2$. Therefore, the summand in (20) is given by

$$\sum_{\pm} \frac{\alpha_{\pm}^2}{L_{\pm}} e^{-it\tilde{\lambda}_{\pm}} = \frac{1}{n_1} e^{-it\delta/2} \left[\cos\left(\frac{\Delta t}{2}\right) - i\left(\frac{\delta}{\Delta}\right) \sin\left(\frac{\Delta t}{2}\right) \right]. \quad (27)$$

This yields

$$\langle b | e^{-itA}\varphi | a \rangle = \langle b | e^{-itA}\tilde{G}_1 | a \rangle + \frac{e^{-it\kappa_1}}{n_1} \left\{ e^{it\delta/2} \left[\cos\left(\frac{\Delta t}{2}\right) - i\left(\frac{\delta}{\Delta}\right) \sin\left(\frac{\Delta t}{2}\right) \right] - 1 \right\}. \quad (28)$$
which proves the claim.

We describe several applications of Theorem 1 to the weighted double-cone \(\tilde{K}_2 + G \), for any regular graph \(G \). For notational simplicity, let \(K^b_2 \) denote \(K_2 \) if \(b = 1 \) and \(\overline{K}_2 \) if \(b = 0 \).

Remark: The next corollary complements the observation made by Casaccino et al. [9] on \(K_2 + K_m \) where each vertex of \(K_2 \) has a weighted self-loop. They show that perfect state transfer occurs in this weighted graph in contrast to the unweighted version.

Corollary 2 For any \(k \)-regular graph \(G \) on \(n \) vertices and any \(b \in \{0, 1\} \), there exist weights \(\mu, \eta \in \mathbb{R}^+ \) so that the double-cone \(\tilde{K}^b_2(\mu, \eta) + G \) has perfect state transfer between the two vertices of \(\tilde{K}^b_2 \).

Proof Consider the weighted double-cone \(\tilde{K}^b_2(\mu, \eta) + \tilde{G}(0, 1) \), where \(\tilde{G}(0, 1) \) is simply the unweighted graph \(G \). We know that \(\tilde{K}^b_2(\mu, \eta) \) has perfect state transfer for \(b\eta t^* = (2\mathbb{Z} + 1)\pi/2 \). Note that when \(b = 0 \), the perfect state transfer time is \(\infty \) or non-existent. Let \(\delta = (\mu + b\eta) - k \) and \(\Delta^2 = \delta^2 + 8n \). By Theorem 1, it suffices to have

\[
\cos\left(\delta \cdot t^* / 2\right) \cos\left(\Delta \cdot t^* / 2\right) = \cos\left(\delta \pi / 4\eta\right) \cos\left(\Delta \pi / 4\eta\right) = (-1)^{1-b}. \tag{29}
\]

So, we require that:

1. \(A \equiv \delta / 4\eta \) be an integer;
2. \(B \equiv \Delta / 4\eta \) be an integer; and
3. \([A \equiv B \pmod{2}] = b \); or that \(A \) and \(B \) have the same parity if and only if \(b = 1 \).

From the first two conditions, we require that \(\delta / \Delta \) be a rational number \(p/q < 1 \) with \(\gcd(p, q) = 1 \). Restating this last condition on \(p \) and \(q \) and simplifying, we get that

\[
\delta = p \sqrt{8n / q^2 - p^2}, \quad \Delta = q \sqrt{8n / q^2 - p^2}. \tag{30}
\]

So, we may choose

\[
\eta = \frac{1}{4} \sqrt{8n / q^2 - p^2} \tag{31}
\]

so that both \(\delta / 4\eta \) and \(\Delta / 4\eta \) are integers. Therefore, we choose integers \(p \) and \(q \) satisfying \(\gcd(p, q) = 1 \) and \([p \equiv q \pmod{2}] = b \); this will satisfy all three conditions stated above. Finally, we may choose \(\mu = b\eta - k - \delta \) to complete the weight parameters.

\(\square \)

3.1 Double half-cones

In this section, we consider graphs obtained by taking a half-join between \(K_2 \) and \(G + G \), for some arbitrary \(k \)-regular graph \(G \), where each vertex of \(K_2 \) is connected to only one copy of \(G \) in the join \(G + G \). When \(G = \overline{K}_n \), this half-join is obtained by selecting two
adjacent vertices in the complete bipartite graph $K_{n+1,n+1}$. In contrast to complete graphs, we show that weights are not helpful in complete bipartite graphs for achieving perfect state transfer. In fact, we prove a stronger result where perfect state transfer still does not exist even if weights are added to some of the other sets of edges.

Theorem 3 Let G be a k-regular graph on n vertices. Let $G(\mu, \eta; \kappa, \tau, \rho; \varepsilon)$ be a graph obtained from $\tilde{K}_2(\mu, \eta)$ and $\tilde{G}(\kappa, \tau) + \rho \tilde{G}(\kappa, \tau)$ by connecting each vertex of $\tilde{K}_2(\mu, \eta)$ to exactly one copy of $\tilde{G}(\kappa, \tau)$ in the weighted join $\tilde{G}(\kappa, \tau) + \rho \tilde{G}(\kappa, \tau)$ and assigning a weight to ε to each of these connecting edges. Then, there are no non-zero real-valued weights $\mu, \eta, \kappa, \tau, \rho$, or ε for which $G(\mu, \eta; \kappa, \tau, \rho; \varepsilon)$ has perfect state transfer between the two vertices of $\tilde{K}_2(\mu, \eta)$.

Remark: Note that if $\varepsilon = 0$, then we have perfect state transfer in G trivially.

Proof The adjacency matrix of G is given by

$$A_G = \begin{bmatrix}
\mu & \eta & \varepsilon \mathbf{1}_n^T & 0_n^T \\
\eta & \mu & \mathbf{0}_n^T & \varepsilon \mathbf{1}_n^T \\
\varepsilon \mathbf{1}_n & \mathbf{0}_n & \kappa \mathbf{I}_n + \tau A_G \\
\mathbf{0}_n & \varepsilon \mathbf{1}_n & \rho \mathbf{I}_n & \kappa \mathbf{I}_n + \tau A_G
\end{bmatrix}$$

(32)

where $\mathbf{0}_n$ and $\mathbf{1}_n$ denote the all-zero and all-one column vectors of dimension n, respectively. Suppose that $A_G|u_j\rangle = \lambda_j|u_j\rangle$ are the eigenvalues and eigenvectors of G, for $0 \leq j \leq n-1$, with $|u_0\rangle$ being the all-one eigenvector with $\lambda_0 = k$. Then, the spectra of A_G is given by the following sets:

1. The eigenvectors $|0, 0, 0_n, u_j\rangle$ and $|0, 0, u_j, 0_n\rangle$ both share the eigenvalues $\kappa + \tau \lambda_j$, for $1 \leq j \leq n-1$.

2. Let

$$\alpha_{\pm} = \frac{1}{2}(\delta_\alpha \pm \Delta_\alpha),$$

(33)
where $\delta_\alpha = (\mu + \eta) - (\kappa + \tau k + \rho m)$ and $\Delta_\alpha^2 = \delta_\alpha^2 + 4\varepsilon^2 n$. Then, the two eigenvectors

$$|\alpha_\pm\rangle = \frac{1}{\sqrt{L_\pm^\alpha}} [\alpha_\pm \alpha_\pm 1_n 1_n]^T$$ (34)

have $\lambda_\pm = \alpha_\pm + (\kappa + \tau k + \rho m)$ as eigenvalues. Here $L_\pm^\alpha = 2(\alpha_\pm)^2 + 2n$ is the normalization constant.

3. Let

$$\beta_\pm = \frac{1}{2}(\delta_\beta \pm \Delta_\beta),$$ (35)

where $\delta_\beta = (\mu - \eta) - (\kappa + \tau k - \rho n)$ and $\Delta_\beta^2 = \delta_\beta^2 + 4\varepsilon^2 n$. Then, the two eigenvectors

$$|\beta_\pm\rangle = \frac{1}{\sqrt{L_\pm^\beta}} [\beta_\pm -\beta_\pm 1_n -1_n]$$ (36)

have $\theta_\pm = \beta_\pm + (\kappa + \tau k - \rho m)$ as eigenvalues. Here $L_\pm^\beta = 2(\beta_\pm)^2 + 2n$ is the normalization constant.

The following identities can be verified easily: for $\xi \in \{\alpha, \beta\}$, we have

$$L_+^\xi L_-^\xi = 4n\frac{\Delta_\xi^2}{\varepsilon^2}$$ (37)

$$\xi_+\xi_- = -n$$ (38)

$$\xi_+^2 L_-^\xi = nL_+^\xi$$ (39)

Using these, the quantum walk on G starting at a and ending at b is given by:

$$\langle b|e^{-itA_G}|a\rangle = \left\{ \sum_\pm e^{-it\lambda_\pm \frac{\alpha_\pm^2}{L_\pm^\alpha}} - \sum_\pm e^{-it\theta_\pm \frac{\beta_\pm^2}{L_\pm^\beta}} \right\}$$ (40)

After simplifications, we obtain

$$\langle b|e^{-itA_G}|a\rangle = \frac{e^{-i(\kappa + \tau k)t}}{2} e^{-i(\rho m)t} e^{-i\delta_\alpha t/2} \left[\cos \left(\frac{\Delta_\alpha}{2} t \right) - i \frac{\delta_\alpha}{\Delta_\alpha} \sin \left(\frac{\Delta_\alpha}{2} t \right) \right]$$ (41)

$$- \frac{e^{-i(\kappa + \tau k)t}}{2} e^{-i(\rho m)t} e^{-i\delta_\beta t/2} \left[\cos \left(\frac{\Delta_\beta}{2} t \right) - i \frac{\delta_\beta}{\Delta_\beta} \sin \left(\frac{\Delta_\beta}{2} t \right) \right]$$ (42)

Ignoring the irrelevant phase factor $e^{-i(\kappa + \tau k)t}$ and noting that the damping factor δ/Δ forces the sine term to vanish, we get

$$\langle b|e^{-itA_G}|a\rangle = \frac{e^{-i(\rho m)t}}{2} \cos \left(\frac{\delta_\alpha}{2} t \right) \cos \left(\frac{\Delta_\alpha}{2} t \right) - \frac{e^{-i(\rho m)t}}{2} \cos \left(\frac{\delta_\beta}{2} t \right) \cos \left(\frac{\Delta_\beta}{2} t \right)$$ (43)

We choose t^* so that $e^{-i(\rho m)t^*} = 1$, which implies that $t^* = 2\pi/\rho m$. This simplifies the above expression to

$$\langle b|e^{-it^*A_G}|a\rangle = \frac{1}{2} \cos \left(\frac{\delta_\alpha}{2} t^* \right) \cos \left(\frac{\Delta_\alpha}{2} t^* \right) - \frac{1}{2} \cos \left(\frac{\delta_\beta}{2} t^* \right) \cos \left(\frac{\Delta_\beta}{2} t^* \right)$$ (44)
For simplicity, define

\[
Z_\alpha = \cos \left(\frac{\Delta_\alpha}{2} t^* \right) \cos \left(\frac{\Delta_\alpha}{2} t^* \right) = \cos \left(\frac{\Delta_\alpha}{2} \pi \right) \cos \left(\frac{\Delta_\alpha}{2} \pi \right) \tag{45}
\]

\[
Z_\beta = \cos \left(\frac{\Delta_\beta}{2} t^* \right) \cos \left(\frac{\Delta_\beta}{2} t^* \right) = \cos \left(\frac{\Delta_\beta}{2} \pi \right) \cos \left(\frac{\Delta_\beta}{2} \pi \right) \tag{46}
\]

Let

\[
\tilde{P}_\alpha = \frac{\Delta_\alpha}{\rho n}, \quad \tilde{Q}_\alpha = \frac{\Delta_\alpha}{\rho n}, \quad \tilde{P}_\beta = \frac{\Delta_\beta}{\rho n}, \quad \tilde{Q}_\beta = \frac{\Delta_\beta}{\rho n}. \tag{47}
\]

To achieve perfect state transfer, we require that \(Z_\alpha Z_\beta = -1\). For example, if we require \(Z_\alpha = -1\) and \(Z_\beta = 1\), then it suffices to impose the following integrality and parity conditions:

\[
\tilde{P}_\alpha, \tilde{Q}_\alpha \in \mathbb{Z}, \quad \tilde{P}_\alpha \neq \tilde{Q}_\alpha \Mod 2 \tag{48}
\]

\[
\tilde{P}_\beta, \tilde{Q}_\beta \in \mathbb{Z}, \quad \tilde{P}_\beta \equiv \tilde{Q}_\beta \Mod 2. \tag{49}
\]

We will show that there is no \(\rho\) which can satisfy all the above conditions.

Suppose that, for \(\xi \in \{\alpha, \beta\}\), we have

\[
\frac{\delta_\xi}{\Delta_\xi} = \frac{p_\xi}{q_\xi} \in \mathbb{Q}, \tag{50}
\]

where \(p_\xi\) and \(q_\xi\) are integers with \(\gcd(p_\xi, q_\xi) = 1\); moreover, since \(\Delta_\xi^2 = \delta_\xi^2 + 4\varepsilon^2 n\), we get

\[
\delta_\xi = p_\xi \sqrt{\frac{4\varepsilon^2 n}{q_\xi^2 - p_\xi^2}}, \quad \Delta_\xi = q_\xi \sqrt{\frac{4\varepsilon^2 n}{q_\xi^2 - p_\xi^2}}. \tag{51}
\]

Consider \(\tilde{P}_\xi\) and \(\tilde{Q}_\xi\), for \(\xi \in \{\alpha, \beta\}\). Letting \(\Lambda = 2\varepsilon/\rho\sqrt{n}\), we have

\[
\tilde{P}_\xi = p_\xi \frac{\Lambda}{\sqrt{q_\xi^2 - p_\xi^2}}, \quad \tilde{Q}_\xi = q_\xi \frac{\Lambda}{\sqrt{q_\xi^2 - p_\xi^2}}. \tag{52}
\]

Since \(\tilde{P}_\alpha \equiv \tilde{P}_\beta \Mod 2\), we know \(\tilde{P}_\alpha^2 \neq \tilde{Q}_\beta^2 \Mod 2\) is equivalent to \(\tilde{P}_\alpha \neq \tilde{Q}_\alpha \Mod 2\). Likewise, \(\tilde{P}_\beta^2 \equiv \tilde{Q}_\beta \Mod 2\) is equivalent to \(\tilde{P}_\beta \equiv \tilde{Q}_\beta \Mod 2\). This changes \(\tilde{P}_\xi^2 \equiv \tilde{Q}_\xi^2 \Mod 2\) to

\[
\tilde{P}_\xi^2 = p_\xi^2 \frac{\Lambda^2}{q_\xi^2 - p_\xi^2}, \quad \tilde{Q}_\xi^2 = q_\xi^2 \frac{\Lambda^2}{q_\xi^2 - p_\xi^2}. \tag{53}
\]

Since we require that \(\tilde{P}_\xi^2\) and \(\tilde{Q}_\xi^2\) must be integers, then \((q_\xi^2 - p_\xi^2) \mid q_\xi^2 \Lambda^2\) and \((q_\xi^2 - p_\xi^2) \mid p_\xi^2 \Lambda^2\).

However, \(\gcd(p_\xi, q_\xi) = 1\) implies that \(\gcd(p_\xi^2, q_\xi^2) = 1\). This gives us \((q_\xi^2 - p_\xi^2) \mid \Lambda^2\).

Suppose now that \(p_\beta^2 \equiv q_\beta^2 \Mod 2\). Then \(q_\beta^2 - p_\beta^2\) is even. This forces \(\Lambda^2\) to be even. Similarly, suppose \(p_\beta^2 \neq q_\beta^2 \Mod 2\). Then \(q_\beta^2 - p_\beta^2\) is odd. However, since \(\tilde{P}_\beta^2 \equiv \tilde{Q}_\beta^2 \Mod 2\) and one of \(p_\beta^2, q_\beta^2\) is odd, then \(\Lambda^2\) must be even.

In both cases, \(\Lambda^2\) is even. Allowing \(p_\alpha^2 \equiv q_\alpha^2 \Mod 2\) guarantees \(\tilde{P}_\alpha^2 \equiv \tilde{Q}_\alpha^2 \Mod 2\). Letting \(p_\alpha^2 \neq q_\alpha^2 \Mod 2\) gives us \(q_\alpha^2 - p_\alpha^2\) to be odd. This again forces \(\tilde{P}_\alpha^2 \equiv \tilde{Q}_\alpha^2 \Mod 2\). Both instances contradict our given requirement that \(\tilde{P}_\alpha^2 \neq \tilde{Q}_\alpha^2 \Mod 2\).
The case when we require that \(Z_\alpha = 1 \) and \(Z_\beta = -1 \), that is, where \(\tilde{P}_\alpha \) is even and \(\tilde{Q}_\alpha, \tilde{P}_\beta, \tilde{Q}_\beta \) are odd, may be treated similarly. \(\square \)

Corollary 4 For any \(n \geq 2 \), consider the complete bipartite graph \(K_{n,n} \). Let \(a \) and \(b \) be two arbitrary adjacent vertices in \(K_{n,n} \). Then, there are no self-loop weights \(\mu \) on \(a \) and \(b \) and edge weight \(\eta \) on the edge \((a,b)\) for which there is perfect state transfer from vertex \(a \) to vertex \(b \) in this weighted version of \(K_{n,n} \).

Proof We apply Theorem 3 with \(\eta \approx \tilde{G} \) and only if \(\eta \approx G \). Since \(\kappa \approx \tilde{G} \), we apply Theorem 3 with \(\eta \approx G \).

For \(n \geq 2 \), consider the complete bipartite graph \(K_{n,n} \). Let \(a \) and \(b \) be two arbitrary adjacent vertices in \(K_{n,n} \). Then, there are no self-loop weights \(\mu \) on \(a \) and \(b \) and edge weight \(\eta \) on the edge \((a,b)\) for which there is perfect state transfer from vertex \(a \) to vertex \(b \) in this weighted version of \(K_{n,n} \).

Proof We apply Theorem 3 with \(\eta \approx \tilde{G} \) and only if \(\eta \approx G \). Since \(\kappa \approx \tilde{G} \), we apply Theorem 3 with \(\eta \approx G \).

4 Hamming graphs

We show that the class of weighted Hamming graphs exhibit perfect state transfer between any two of its vertices. First, we prove the following closure result on Cartesian product of graphs. This is an adaptation of a similar theorem for the unweighted case (see \([2]\)).

Theorem 5 For \(j = 1, \ldots, m \), the graph \(G_j \) has perfect state transfer from \(a_j \) to \(b_j \) at time \(t_j \) if and only if \(G = \bigoplus_{j=1}^m \tilde{G}_j(\mu_j, \eta_j) \) has perfect state transfer from \((a_1, \ldots, a_m) \) to \((b_1, \ldots, b_m) \) at time \(t^* \), whenever \(t^* = t_j/\eta_j \). This holds independently of the choice of the self-loop weights \(\mu_j \).

Proof We prove the claim for \(m = 2 \). Suppose that the unweighted graph \(G_j \) has perfect state transfer from \(a_j \) to \(b_j \) at time \(t_j^* \). Consider the quantum walk on the \(\tilde{G}_1(\mu_1, \eta_1) \oplus \tilde{G}_2(\mu_2, \eta_2) \). For shorthand, we denote each graph simply as \(\tilde{G}_j \):

\[
\langle b_1, b_2 | e^{-itA\tilde{G}_1 \oplus \tilde{G}_2} | a_1, a_2 \rangle = \langle b_1 | b_2 | e^{-it(I \otimes A\tilde{G}_1 \oplus I)} | a_1 \rangle | a_2 \rangle
\]

\[
= \langle b_1 | b_2 | (I \otimes e^{-itA\tilde{G}_2}) (e^{-itA\tilde{G}_1} \otimes I) | a_1 \rangle | a_2 \rangle
\]

\[
= \langle b_1 | e^{-itA\tilde{G}_1} | a_1 \rangle \langle b_2 | e^{-itA\tilde{G}_2} | a_2 \rangle.
\]

Since \(A\tilde{G}(\mu, \eta) = \mu I + \eta A_G \), we have

\[
\langle b | e^{-itA\tilde{G}} | a \rangle = e^{-i\mu t} \langle b | e^{-i\eta tA_G} | a \rangle.
\]

Therefore, the quantum walk on the weighted Cartesian product yields

\[
\langle b_1, b_2 | e^{-itA\tilde{G}_1 \oplus \tilde{G}_2} | a_1, a_2 \rangle = e^{-i(\mu_1 + \mu_2)t} \langle b_1 | e^{-i\eta_1 tA\tilde{G}_1} | a_1 \rangle \langle b_2 | e^{-i\eta_2 tA\tilde{G}_2} | a_2 \rangle.
\]

This shows that \(\tilde{G}_1 \oplus \tilde{G}_2 \) has perfect state transfer from \((a_1, a_2) \) to \((b_1, b_2) \) at time \(t \) if and only if \(G_1 \) has perfect state transfer from \(a_1 \) to \(b_1 \) at time \(\eta_1 t \) and \(G_2 \) has perfect state transfer from \(a_2 \) to \(b_2 \) at time \(\eta_2 t \). So, if the weights \(\eta_j \) satisfy \(\eta_j t^* = t_j \), for all \(j \), then \(\tilde{G}_1 \oplus \tilde{G}_2 \) has perfect state transfer at time \(t^* \). The general claim follows by induction. \(\square \)
Theorem 6 The class $\tilde{H}(q,n)$ of weighted Hamming graphs has universal perfect state transfer at an arbitrarily chosen time.

Proof Recall that $H(q,n) = K_q^{\oplus n}$. Let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ be two vertices of $\tilde{H}(q,n)$. By Corollary 2 we know that \tilde{K}_q has perfect state transfer between any two of its vertices for a suitable choice of weights. For each dimension $j \in \{1, \ldots, n\}$, fix a set of weights so that $\tilde{K}_q^{(j)}$ has perfect state transfer from a_j to b_j. Then, by Theorem 5 $\bigoplus_{j=1}^{n} \tilde{K}_q^{(j)}$ has perfect state transfer from a to b. \hfill \square

4.1 Hypercubes

In this section, we show that a weighted hypercube has universal perfect state transfer property. In fact, we prove a stronger statement as given in the next theorem. But first, we need to define a particular notion of uniform superposition over the n-cube.

Fact 7 (Moore-Russell [14], Bernasconi et al. [5])

The following facts are known about a quantum walk on the hypercube Q_n at times $t \in \{\pi/4, \pi/2\}$:

$$
\langle b | e^{-iQ_n} | a \rangle = \begin{cases}
(-i)^{|a \oplus b|}/\sqrt{2^n} & \text{if } t = \pi/4 \\
[|a \oplus b = 1_n|] & \text{if } t = \pi/2
\end{cases}
$$

(59)

We say that a superposition $|\varrho_n\rangle$ over Q_n is in normal form if

$$
|\varrho_n\rangle = \frac{1}{\sqrt{2^n}} \sum_{a \in \{0,1\}^n} (-i)^{|a|} |a\rangle.
$$

(60)

Note that $|\varrho_n\rangle$ is the uniform superposition of a quantum walk on Q_n from 0_n at time $\pi/4$; that is, $|\varrho_n\rangle = \exp(-i(\pi/4)Q_n)|0_n\rangle$.

Theorem 8 For any $n \geq 1$, given any two distinct subcubes B_1 and B_2 of Q_n, there is a set of edge weights w so that Q_n^w has perfect state transfer between uniform superpositions in normal form on B_1 and B_2.
Proof. First, we show that the hypercube \(Q_n\) has perfect state transfer from any vertex to any subcube. Since \(Q_n\) is vertex-transitive, it suffices to show perfect state transfer from vertex 0\(_n\) to the subcube \(B = (1, 0, \ell \star m)\), where \(m = n - k - \ell\). Define the adjacency matrix of \(\tilde{Q}_n\) as
\[
\tilde{Q}_n = Q_k \otimes I_{2^{n-k}} + \frac{1}{2} I_{2^{k+\ell}} \otimes Q_m.
\]
which is a sum of two commuting matrices. Then, letting \(t^* = \pi/2\), we have
\[
\langle 1, 0, \ell | \langle \gamma_m | \exp \left(-it^* \tilde{Q}_n \right) | 0, 0, \ell, 0_m \rangle = \langle 1, 0, \ell | \langle \gamma_m | \exp \left(-it^* \frac{1}{2} I_{2^{k+\ell}} \otimes Q_m \right) | 1, 0, \ell, 0_m \rangle. \tag{62}
\]
The equality and the fact that the last expression has unit magnitude follows from Fact 7.

To show perfect state transfer between two arbitrary subcubes, note that we just showed that \(|B\rangle = e^{-it^* \tilde{Q}_n} |0_n\rangle\). Thus, we also have \(|0_n\rangle = e^{-it^* (-\tilde{Q}_n)} |B\rangle\). This proves the claim.

We recover the result of Bernasconi et al. [5], which we restate in the next corollary, via the use of explicit edge weights on the hypercube.

Corollary 9 For any \(n \geq 1\), given any two distinct vertices \(a\) and \(b\) of the hypercube \(Q_n\), there is a set of edge weights \(w\) so that \(Q^w_n\) has perfect state transfer from \(a\) to \(b\) at time \(t^* = \pi/2\).

Remark: We note that Bernasconi et al. [5] proved universal perfect state transfer for the \(n\)-cube by dynamically changing the underlying hypercubic structure of the graph. In contrast, our scheme is based on using static weights which can be interpreted dynamically with time. In both schemes, it is possible to route information through a Hamiltonian path which visits each vertex once and exactly once. We believe that this Hamiltonian property might be of interest in further applications of perfect state transfer.

5 Conclusion

We studied perfect state transfer on quantum networks represented by weighted graphs. Our goal was to understand the role of weights in achieving perfect state transfer in graphs.

First, we proved a join theorem for weighted regular graphs and derived, as a corollary, that a weighted double-cone on any regular graph has perfect state transfer. This implies as a corollary a result of Casaccino et al. [9] where the regular graph is a complete graph. In contrast, we also showed that weights do not help in achieving perfect state transfer in complete bipartite graphs. This is obtained as part of a more general result on graphs constructed from a half-join of \(K_2\) and \(G + G\), for an arbitrary regular graph \(G\). We found it curious that the full join connection seemed crucial for weights to have a positive effect in achieving perfect state transfer. We leave the case of complete multipartite graphs and strongly regular graphs as an open question.

Second, we observed that Hamming graphs have the universal perfect state transfer property. This is a stronger requirement that the standard perfect state transfer property where perfect state transfer must occur between any pair of vertices. Prior to this work,
the only known family of graphs with universal perfect state transfer were the (unweighted) hypercubic graphs \([5]\). We proved our result on the Hamming graphs by showing a closure result for a weighted Cartesian product of perfect state transfer graphs; even when the graph components have different perfect state transfer times. The unweighted version of this closure result, as shown in \([2]\), requires a global common perfect state transfer time for all graphs in the Cartesian product. For the hypercubes, we showed a stronger universal perfect state transfer property, where perfect state transfer occurs between uniform superpositions of two arbitrary subcubes. We imposed a mild condition on the uniform superpositions which exhibit perfect state transfer.

We remark that if zero weights are allowed, then universal perfect state transfer is trivial. Simply take any path connecting the two vertices and assign the hypercubic weights to the edges on the path (as in Christandl et al. \([7]\)) and zero weights to all other edges. If zero weights are not allowed then we conjecture that near-perfect state transfer is possible by assigning weights that tend to zero (for the edges which require zero weights).

Acknowledgments

This research was supported in part by the National Science Foundation grant DMS-0646847 and also by the National Security Agency grant H98230-09-1-0098.

References

[1] Amir Ahmadi, Ryan Belk, Christino Tamon, and Carolyn Wendler, “On Mixing in Continuous-Time Quantum Walks on Some Circulant Graphs,” *Quantum Information and Computation* 3(6):611-618, 2003.

[2] Ricardo Javier Angeles-Canul, Rachael Norton, Michael Opperman, Christopher Paribello, Matthew Russell, Christino Tamon, “Perfect state transfer, integral circulants and join of graphs,” arXiv.org eprint quant-ph/0907.2148.
[3] Norman Biggs, *Algebraic Graph Theory*, 2nd edition, Cambridge University Press, 1993.

[4] Sougato Bose, Andrea Casaccino, Stefano Mancini, and Simone Severini, “Communication in XYZ All-to-All Quantum Networks with a Missing Link,” *International Journal on Quantum Information* 7(4):713-723, 2009.

[5] Anna Bernasconi, Chris Godsil, and Simone Severini, “Quantum Networks on Cube-like Graphs,” *Physical Review A* 78, 052320, 2008.

[6] Milan Bašić and Marko Petković, “Some classes of integral circulant graphs either allowing or not allowing perfect state transfer,” *Applied Mathematics Letters*, in press.

[7] Matthias Christandl, Nilanjana Datta, Artur Ekert, Andrew Landahl, “Perfect state transfer in quantum spin networks,” *Physical Review Letters* 92, 187902, 2004.

[8] Matthias Christandl, Nilanjana Datta, Tony Dorlas, Artur Ekert, Alastair Kay, Andrew Landahl, “Perfect transfer of arbitrary states in quantum spin networks,” *Physical Review A* 71, 032312, 2005.

[9] Andrea Casaccino, Seth Lloyd, Stefano Mancini, Simone Severini, “Quantum state transfer through a qubit network with energy shifts and fluctuations,” arXiv.org eprint quant-ph/0904.4510.

[10] Edward Farhi and Sam Gutmann, “Quantum computation and decision trees,” *Physical Review A* 58 (1998), 915-928.

[11] Ronald L. Graham, Donald E. Knuth, Oren Patashnik, *Concrete Mathematics*, 2nd edition, Addison-Wesley, 1994.

[12] Viv Kendon, “Quantum walks on general graphs,” *International Journal of Quantum Information* 4:5 (2006), 791-805.

[13] László Lovász, *Combinatorial Problems and Exercises*, 2nd edition, American Mathematical Society, 2007.

[14] Cristopher Moore and Alexander Russell, “Quantum Walks on the Hypercube,” in Proc. 6th Int. Workshop on Randomization and Approximation in Computer Science, Lecture Notes in Computer Science 2483, Springer (2002), 164-178.

[15] Nitin Saxena, Simone Severini, and Igor Shparlinski, “Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics,” *International Journal of Quantum Information* 5(3):417-430, 2007.

[16] Allen J. Schwenk and Robin J. Wilson, “Eigenvalues of Graphs,” in *Selected Topics in Graph Theory*, Lowell W. Beineke and Robin J. Wilson (eds.), Academic Press (1978), 307-336.