C-Codes: Cyclic Lowest-Density MDS Array Codes Constructed Using Starters for RAID 6

Mingqiang Li · Jiwu Shu

Received: date / Accepted: date

Abstract The distance-3 cyclic lowest-density MDS array code (called the C-Code) is a good candidate for RAID 6 because of its optimal storage efficiency, optimal update complexity, optimal length, and cyclic symmetry. In this paper, the underlying connections between C-Codes (or quasi-C-Codes) and starters in group theory are revealed. It is shown that each C-Code (or quasi-C-Code) of length $2n$ can be constructed using an even starter (or even multi-starter) in $(\mathbb{Z}_{2n}, +)$. It is also shown that each C-Code (or quasi-C-Code) has a twin C-Code (or quasi-C-Code). Then, four infinite families (three of which are new) of C-Codes of length $p - 1$ are constructed, where p is a prime. Besides the family of length $p - 1$, C-Codes for some sporadic even lengths are also presented. Even so, there are still some even lengths (such as 8) for which C-Codes do not exist. To cover this limitation, two infinite families (one of which is new) of quasi-C-Codes of length $2(p - 1)$ are constructed for these even lengths.

Keywords RAID 6 · Array codes · Starters · Perfect one-factorization

Mathematics Subject Classification (2000) 05C70 · 20K01 · 94B05

This paper is a revised and expanded version of the material that appeared at the 2010 IEEE International Symposium on Information Theory, Austin, TX, June 2010 (see [15]). The main part of this work was carried out while Mingqiang Li was a Ph.D. student in the Department of Computer Science and Technology, Tsinghua University. This work was supported by the National Science Foundation for Distinguished Young Scholars of China (Grant No. 60925006) and the National High Technology Research and Development Program of China (Grant No. 2009AA01A405).

Mingqiang Li
IBM China Research Laboratory, Diamond Building 19-A, Zhongguancun Software Park, Dongbeiwang West Road No. 8, Shangdi, Haidian District, Beijing 100193, P.R.China
Tel.: +86-10-58748904
Fax: +86-10-58748230
E-mail: mingqiangli@cn.ibm.com

Jiwu Shu
Department of Computer Science and Technology, Tsinghua University, Qinghuayuan No. 1, Haidian District, Beijing 100084, P.R.China
Tel.: +86-10-62795215
Fax: +86-10-62771138
E-mail: shujw@tsinghua.edu.cn
1 Introduction

Array codes [5] are a class of linear codes whose information and parity bits are placed in a two-dimensional (or multidimensional) array rather than a one-dimensional vector. A common property of array codes is that they are implemented based on only simple eXclusive-OR (XOR) operations. This is an attractive advantage in contrast to the family of Reed-Solomon codes [24–26] whose encoding and decoding processes use complex finite-field operations. Thus, array codes are ubiquitous in data storage applications.

Among all kinds of array codes, cyclic lowest-density Maximum-Distance Separable (MDS) array codes [7] are regarded as the optimal ones for data storage applications because they have all the following properties:

1. they are MDS codes, which can tolerate the loss of any \(t \) disks in a storage system with \(t \) additional disks of parity data and thus have optimal storage efficiency (i.e. the ratio of user data to the total of user data plus parity data);
2. their update complexity (defined as the average number of parity bits affected by a change of a single information bit) achieves the minimum update complexity that MDS codes can have; and
3. their regularity in the form of cyclic symmetry makes their implementation simpler and potentially less costly.

Table 1 Comparison among some representative MDS array codes for RAID 6.

Array Codes	Optimal Update Complexity	Optimal Length	Cyclic Symmetry
EVENODD [4]	No	No	No
RDP [9]			
Minimum Density RAID-6 Codes [33]			
Vertical Codes			
X-Code [35]	Yes	No	No
B-Code [34]	Yes	Yes	No
C-Code [1]	Yes	Yes	Yes

\(a \) Considered only for lowest-density MDS codes (see [34]).
\(b \) Including ZZS Code [36] and P-Code [12].
\(c \) Including the codes constructed in [7].

Fault tolerance is an important concern in the design of disk-based storage systems [3, 4, 8, 9, 12, 15, 18, 19, 21–23, 27, 30, 32, 35]. As today’s storage systems grow in size and complexity, they are increasingly confronted with disk failures [21, 27] together with latent sector errors [8]. Then, RAID 5 [8], which has been widely used in modern storage systems to recover one disk failure, cannot provide sufficient reliability guarantee. This results in the demand of RAID 6 [8, 30], which can tolerate two disk failures.

RAID 6 is designed based on a distance-3 MDS linear code. In applications with many small writes, such as the On-Line Transaction Processing (OLTP) application, the distance-3 cyclic lowest-density MDS array code (called the C-Code) defined in Section 2.1 can be regarded as a good candidate for RAID 6 (see Table 1). It should be noted that the C-Code is also a good candidate for distributed RAID (dRAID) [23, 32] of fault tolerance 2 because of its optimal storage efficiency, optimal update complexity, and cyclic symmetry. Under this
background, we will make a systematic study on the C-Code in this paper.

Here, the distance-3 cyclic lowest-density MDS array code is one particular kind of the B-Code described in [34]. Its additional feature is the regularity in the form of cyclic symmetry. It is thus called the C-Code in this paper. As we know, it is often an interesting and worthwhile problem to develop an array code that is also a cyclic code. Although cyclic symmetry can make the implementation of an array code simpler, it can make the construction of the code more complicated at the same time. As will be shown in this paper, the constructions of C-Codes (or quasi-C-Codes) require more efforts than those of general B-Codes.

Besides, although Cassuto and Bruck constructed one infinite family of C-Code instances of length $p - 1$ and one infinite family of quasi-C-Code instances of length $2(p - 1)$ for the first time in [7], they did not study the general constructions of C-Codes (or quasi-C-Codes). So, in this paper, we will carry out a systematic study on the constructions of C-Codes by revealing the underlying connections between C-Codes (or quasi-C-Codes) and starters [10] in group theory.

Definition 1 ([31]) A one-factorization of a graph is a partitioning of the set of its edges into subsets such that each subset is a graph of degree one. Here, each subset is called a one-factor. A perfect one-factorization (or P1F) is a particular one-factorization in which the union of any pair of one-factors is a Hamiltonian cycle.

(Remark: A Hamiltonian cycle is a cycle in an undirected graph, which visits each vertex exactly once and also returns to the starting vertex.)

The C-Code can be described using a graph approach proposed in [34] (see Section 2.2). It will be shown in Section 2.2 that the constructions of the C-Code of length $2n$ (denoted by C_{2n}) are equivalent to bipyramidal P1Fs of a $2n$-regular graph on $2n + 2$ vertices. In the literature of graph theory, we noticed that several known P1Fs [6, 11, 14, 20, 28, 29, 33] were constructed using starters [10] in group theory. Inspired by this, we immediately raise a question: Which kind of starter can be used to construct the C-Code? In Section 3, we will show that each C_{2n} instance can be constructed using an even starter [1] in $(Z_{2n}, +)$. The necessary and sufficient condition is that the even starter can induce a bipyramidal P1F of a $2n$-regular graph on $2n + 2$ vertices. Then, we will obtained C-Codes for some sporadic even lengths listed as follows:

$$4, 6, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 50.$$

Among them, 14, 20, 24, 26, 32, 34, 38, and 50 are not covered by the family of length $p - 1$ presented in [7] (where p is a prime). We will also show that a C-Code exists for most but not all of even lengths (one exception we found is 8) and that there are often more than one C-Code instances for a given even length (each C-Code instance always has a twin C-Code instance). Here, the twin code can provide some choice flexibility for RAID 6 design. Then, we may wonder if there exists an infinite family of C-Codes. In Section 4, we will construct four infinite families of $C_{p - 1}$ instances (which cover the family of $C_{p - 1}$ instances constructed in [7]) from two infinite families of even starters in (Z_{p}, \times). We will also conclude that non-cyclic B-Codes of length $p - 1$ constructed in [12], [34], and [36] can always be transformed to $C_{p - 1}$ instances.

Besides, we noticed that there is no C-Code for some even lengths, such as 8. Then, one question is: Can we construct quasi-C-Codes (which partially hold cyclic symmetry [7]) for these even lengths? In this paper, we say a quasi-C-Code of length $2n$ is a κ-quasi-C-Code (denoted by $C_{2n, \kappa}$) if for $i = 0, 1, \cdots, \kappa - 1$, each group of $\frac{2n}{\kappa}$ columns

$$C_{i + \kappa \times 0}, C_{i + \kappa \times 1}, \cdots, C_{i + \kappa \times \left(\frac{2n}{\kappa} - 1\right)}$$
hold cyclic symmetry, where C_j represents the j-th column of the code. In Section 5, we will introduce a concept of even multi-starters and then discuss how to construct quasi-C-Codes using even multi-starters (with an example of length 8). We will also show that each quasi-C-Code instance has a twin quasi-C-Code instance. Similarly, in Section 6, we will present an infinite family of even 2-starter in $(\mathbb{Z}_{2(p−1)}, +)$ and then construct two infinite families of $C_{2(p−1)}^2$ instances (which cover the family of $C_{2(p−1)}^2$ instances constructed in [7]) using this family of even 2-starter. We will also conclude that non-cyclic B-Codes of length $2(p−1)$ constructed in [34] can always be transformed to $C_{2(p−1)}^2$ instances.

1.1 The Main Contributions of This Paper

The main new findings of this paper include:

1. Each C-Code of length $2n$ can be constructed using an even starter in $(\mathbb{Z}_{2n}, +)$ (see Section 3), while each quasi-C-Code of length $2n$ can be constructed using an even multi-starter in $(\mathbb{Z}_{2n}, +)$ (see Section 5);
2. Each C-Code (or quasi-C-Code) has a twin C-Code (or quasi-C-Code) (see Sections 3 and 5);
3. A C-Code exists for most but not all of even lengths (one exception is 8) (see Section 3); and
4. Non-cyclic B-Codes of length $p−1$ constructed in [12], [34], and [36] can always be transformed to C-Codes (see Section 4), while non-cyclic B-Codes of length $2(p−1)$ constructed in [34] can always be transformed to quasi-C-Codes (see Section 6).

Meanwhile, the main contributions of this paper to the constructions of C-Codes and quasi-C-Codes include:

1. Four infinite families of C-Codes of length $p−1$ (which cover the family of C-Codes of length $p−1$ constructed in [7]) are constructed from two infinite families of even starters in $(\mathbb{Z}_p^\ast, \times)$ (where p is a prime) in Section 4;
2. Besides the family of length $p−1$, C-Codes for some sporadic even lengths listed as follows are obtained in Section 3:

$$14, 20, 24, 26, 32, 34, 38, 50;$$

3. Two infinite families of quasi-C-Codes of length $2(p−1)$ (which cover the family of quasi-C-Codes of length $2(p−1)$ constructed in [7]) are constructed using an infinite family of even 2-starter in $(\mathbb{Z}_{2(p−1)}, +)$ in Section 6.

We begin this paper with an introduction of the C-Code in the next section.

2 An Introduction of the C-Code

2.1 Definition and Structure

The C-Code is one particular kind of the B-Code described in [34]. Its additional feature is the regularity in the form of cyclic symmetry, and its algebraic definition is given as follows:
Definition 2

Let \(H_{2n} = (H_0 H_1 \cdots H_{2n-1}) \) be a binary matrix, where

\[
H_k = (h_{i,j})_{2n \times n}
\]

is a binary submatrix of size \(2n \times n \), for \(0 \leq i \leq 2n - 1, 0 \leq j \leq n - 1, \) and \(0 \leq k \leq 2n - 1 \).

Suppose \(H_{2n} \) meets the following four conditions:

1. for \(k = 0, 1, \cdots, 2n-1 \), the last column of \(H_k \) is the same as the \(k \)-th column of a binary \(2n \times 2n \) identity matrix;
2. for \(k = 0, 1, \cdots, 2n-1 \),
 \[
 H_k = E_{2n}^k \times H_0,
 \]
 where \(E_{2n} \) is a binary *elemental cyclic matrix* defined as
 \[
 E_{2n} = \begin{pmatrix}
 \overrightarrow{0} & 1 \\
 I_{2n-1} & \overrightarrow{0}^T
 \end{pmatrix},
 \]
 where \(I_{2n-1} \) is a binary \((2n-1) \times (2n-1) \) identity matrix, \(\overrightarrow{0} \) is a binary \(1 \times (2n-1) \) vector of 0's, and \(\overrightarrow{0}^T \) is a binary \((2n-1) \times 1 \) vector of 0's;
3. the weight (i.e. the number of 1's) of each row of \(H_{2n} \) is \(2n-1 \); and
4. for any \(m \) and \(k \) (where \(0 \leq m < k \leq 2n-1 \)), the square matrix \((H_m H_k) \) is nonsingular.

If a code’s parity-check matrix is \(H_{2n} \), the code is then called the C-Code of length \(2n \), denoted by \(C_{2n} \).

In the above definition, it should be noted that the length of the C-Code is always an even number. This is guaranteed by the MDS property of the B-Code \[34\].

Take \(C_4 \) for example. The parity-check matrix for a \(C_4 \) instance is as follows:

\[
H_4 = \begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix}.
\]

It can be easily checked that

\[
\{I_{2n}, E_{2n}, E_{2n}^2, \cdots, E_{2n}^{2n-1}\}
\]

forms a cyclic group with binary matrix multiplication. We also have

\[
E_{2n}^{2n} = I_{2n}.
\]

Thus, the code defined in Definition 2 has the property of cyclic symmetry.

In addition, it can also be deduced from the results in \[34\] that the C-Code defined in Definition 2 has all the following optimal properties:

1. it is Maximum-Distance Separable (MDS);
2. its update complexity is 2, which is the minimum update complexity that MDS codes of distance 3 can have; and
3. it achieves the maximum length that MDS codes with optimal update complexity can have.

The structure of the C-Code of length $2n$ evolves from that of the B-Code described in [34]. This kind of array code has dimensions $n \times 2n$, i.e., n rows and $2n$ columns, where n is an integer not smaller than 2. It was proved in [36] that this size has optimal length. The first $n-1$ rows are information rows, and the last row is a parity row. In other words, the bits in the first $n-1$ rows are information bits, while those in the last row are parity bits. Because of the optimal update complexity, each information bit contributes to the calculation of (or is protected by) exactly 2 parity bits contained in other columns. Moreover, any two information bits do not contribute to the calculation of the same pair of parity bits. Here, we can see that since each column (corresponding to a disk) contains both data and parity, the C-Code belongs to the category of vertical array codes.

Take the foregoing C_4 instance for example. It has 2 rows and 4 columns. Its array representation is given as follows:

\[
\begin{array}{cccc}
 d_{1,2} & d_{2,3} & d_{3,0} & d_{0,1} \\
p_0 & p_1 & p_2 & p_3
\end{array}
\]

where $d_{i,j}$ ($0 \leq i \neq j \leq 3$) represents a information bit that contributes to the calculation of (or is protected by) 2 parity bits p_i and p_j. Then, take the parity bit p_0 for example. It can be calculated by $p_0 = d_{3,0} + d_{0,1}$.

2.2 Graph Description

In the C-Code, each information bit contributes to the calculation of (or is protected by) exactly 2 parity bits contained in other columns. Moreover, any two information bits do not contribute to the same pair of parity bits. Thus, a graph approach [34] can be used to describe the C-Code.

In the graph description of the C-Code, each parity bit is represented by a vertex, and each information bit that contributes to the calculation of 2 parity bits is represented by the edge that connects the two corresponding vertices. Then, a C-Code of length $2n$ can be described by a $(2n-2)$-regular graph G on $2n$ vertices. We label the $2n$ vertices with integers from 0 to $2n-1$ such that the i-th vertex ($i = 0, 1, \cdots, 2n-1$) represents the parity bit contained in the i-th column of the C-Code. Then, for $i = 0, 1, \cdots, 2n-1$, the i-th column of the C-Code can be represented by a set of $n-1$ edges, i.e.

\[
C_i = \{ \{x_i,1, y_i,1\}, \{x_i,2, y_i,2\}, \cdots, \{x_{i,n-1}, y_{i,n-1}\} \},
\]

where $\{x_{i,j}, y_{i,j}\}$ ($j = 1, 2, \cdots, n-1$) is an edge corresponding to an information bit contained in the i-th column. According to the cyclic symmetry of the C-Code, for $i = 0, 1, \cdots, 2n-1$, we have

\[
C_i = \{ \{x+i \mod 2n, y+i \mod 2n\} : \{x, y\} \in C_0 \}.
\]

Thus, in this paper, we sometimes use C_0 to simply represent a C-Code.

Take the foregoing C_4 instance for example. Figure 1(a) shows its graph representation. The corresponding graph G is a 2-regular graph on a set of 4 vertices $\{0, 1, 2, 3\}$. The four
columns of the code can be represented by

$$
\begin{align*}
C_0 &= \{\{1, 2\}\}; \\
C_1 &= \{\{2, 3\}\}; \\
C_2 &= \{\{3, 0\}\}; \\
C_3 &= \{\{0, 1\}\}.
\end{align*}
$$

It is clear that \(\{C_0, C_1, C_2, C_3\}\) meets Equation (3). Then, this \(\mathbb{C}_4\) instance can be represented simply by \(C_0 = \{\{1, 2\}\}\).

Recall the C-Code of length \(2n\) can recover the erasure of any two columns. This is guaranteed by the fourth condition of Definition 2. In the graph description, this condition is equivalent to the following one:

Condition 1
For any \(m\) and \(k\) (where \(0 \leq m < k \leq 2n - 1\)), the subgraph

$$
G^* = (\{0, 1, \cdots, 2n - 1\}, C_m \cup C_k)
$$

does not contain a cycle or a path whose terminal vertices are the two vertices \(m\) and \(k\).

The above condition is explained by contradiction as follows:

We first consider the first opposite case where \(G^*\) contains a cycle of length \(r\). In such a cycle, suppose the \(r\) edges are \(e_1, e_2, \cdots, e_r\). As we know, in the corresponding square matrix mentioned in the fourth condition of Definition 2, the column vector corresponding to each edge is a vector of weight 2, whose two 1’s are in the two rows corresponding to the two vertices of the edge. Then, in the square matrix, the binary sum of the \(r\) column vectors corresponding to \(e_1, e_2, \cdots, e_r\) is a zero vertical vector, which conflicts with the nonsingular property of the square matrix. Thus, \(G^*\) should not contain a cycle.

We then consider the second opposite case where \(G^*\) contains a path of length \(r'\) whose terminal vertices are the two vertices \(m\) and \(k\). In such a path, suppose the \(r'\) edges are \(e'_1, e'_2, \cdots, e'_{r'}\). As we know, in the corresponding square matrix mentioned in the fourth condition of Definition 2, the column vector corresponding to the terminal vertex \(m\) (or \(k\)) is a vector of weight 1, whose only 1 is in the row corresponding to the vertex \(m\) (or \(k\)). Then, in the square matrix, the binary sum of the \(r' + 2\) column vectors corresponding to the two
terminal vertices m and k and the r' edges $e'_1, e'_2, \cdots, e'_{r'}$ is a zero vertical vector, which conflicts with the nonsingular property of the square matrix. Thus, G^* should not contain a path whose terminal vertices are the two vertices m and k.

2.3 The Equivalence Between C-Code Constructions and Bipyramidal P1Fs

Definition 3 For a $2n$-regular graph on $2n+2$ vertices $0, 1, \cdots, 2n-1, \infty_1, \infty_2$ (where the two vertices ∞_1 and ∞_2 are not adjacent to each other), a *bipyramidal one-factorization* is a one-factorization consisting of $2n$ factors $F_0, F_1, \ldots, F_{2n-1}$, which are defined as

$$F_i = \{ (\sigma^i(x), \sigma^i(y)) : \{x, y\} \in F_0 \}$$

for $i = 0, 1, \ldots, 2n-1$, where

$$\sigma = (0 \ 1 \ \cdots \ 2n-1)(\infty_1)(\infty_2)$$

is a permutation represented by a product of disjoint cycles.

In the above definition, if the one-factorization is perfect, it is then called a *bipyramidal P1F* of a $2n$-regular graph on $2n+2$ vertices.

Then, we present the following theorem:

Theorem 1 The constructions of the C-Code of length $2n$ are equivalent to bipyramidal P1Fs of a $2n$-regular graph on $2n+2$ vertices. Suppose F is a bipyramidal P1F of a $2n$-regular graph on $2n+2$ vertices $0, 1, \cdots, 2n-1, \infty_1, \infty_2$ (where the two vertices ∞_1 and ∞_2 are not adjacent to each other), in which F_0 is the one-factor that contains the edge $\{0, \infty_1\}$. Then, the first column of the corresponding C-Code C_{2n} is

$$C_0 = F_0 \setminus \{\{0, \infty_1\}, \{r, \infty_2\}\},$$

where r is the vertex that is adjacent to the vertex ∞_2 in F_0.

Proof See Appendix A.

3 Constructing a C-Code Using Even Starters

We first give the definition of an even starter [1] in $(\mathbb{Z}_{2n}, +)$.

Definition 4 An **even starter** S_E in $(\mathbb{Z}_{2n}, +)$ is a set of $n-1$ pairs of non-zero elements, i.e.

$$S_E = \{ \{x_1, y_1\}, \{x_2, y_2\}, \cdots, \{x_{n-1}, y_{n-1}\} \},$$

such that for every element $i \in \mathbb{Z}_{2n}$ such that $i \neq 0$ and $i \neq n$, there exists a pair $\{x, y\} \in S_E$ such that $i = (x - y) \mod 2n$, or $i = (y - x) \mod 2n$. Its **twin even starter** S_E^τ is defined as

$$S_E^\tau = \{ \{x - r, y - r\} : \{x, y\} \in S_E \},$$

where r is the one and only non-zero element that does not occur in S_E.

Take $S_E = \{(1, 2), (3, 5)\}$ in $(Z_6, +)$ for example. For every non-zero element except 3, we have
\[
\begin{align*}
1 &= 2 - 1 \mod 6; \\
2 &= 5 - 3 \mod 6; \\
4 &= 3 - 5 \mod 6; \\
5 &= 1 - 2 \mod 6.
\end{align*}
\]
Thus, S_E is an even starter in $(Z_6, +)$. Its twin even starter is $S'_E = \{(3, 4), (5, 1)\}$.

Then, we present the following theorem:

Theorem 2 For a $2n$-regular graph on $2n + 2$ vertices $0, 1, \ldots, 2n - 1, \infty_1, \infty_2$ (where the two vertices ∞_1 and ∞_2 are not adjacent to each other), suppose a one-factorization F is a bipyramidal one-factorization in which F_0 is the one-factor that contains the edge $\{0, \infty_1\}$. Let
\[
S = F_0 \setminus \{(0, \infty_1), (r, \infty_2)\},
\]
where r is the vertex that is adjacent to the vertex ∞_2 in F_0. Then, S is an even starter in $(Z_{2n}, +)$.

Proof See Appendix B.

According to Theorem [1] in Section 2.3, we can further make the following conclusion:

Theorem 3 In a C-Code C_{2n}, the first column C_0 is always an even starter in $(Z_{2n}, +)$. An even starter S_E in $(Z_{2n}, +)$ can be used to construct a C-Code of length $2n$ if and only if S_E can induce a bipyramidal P1F of a $2n$-regular graph on $2n + 2$ vertices.

At the same time, we can deduce the following conclusion:

Theorem 4 If a C_{2n} instance can be constructed using an even starter S_E in $(Z_{2n}, +)$, another C_{2n} instance can also be constructed using the twin even starter S'_E. They are called twin C_{2n} instances.

The above conclusion can be easily understood because twin even starters S_E and S'_E induce the same bipyramidal one-factorization.

Now, we discuss how to construct a C-Code C_{2n} using even starters in $(Z_{2n}, +)$. The steps to construct C_{2n} are to first find an even starter S_E in $(Z_{2n}, +)$ and then check whether the bipyramidal one-factorization F induced by S_E is a P1F of a $2n$-regular graph on a set of $2n + 2$ vertices $0, 1, \ldots, 2n - 1, \infty_1, \infty_2$ (where the two vertices ∞_1 and ∞_2 are not adjacent to each other). Here, let $F = \{F_0, F_1, \ldots, F_{2n-1}\}$.

According to the cyclic symmetry of F, it is clear that if $F_0 \cup F_i$ is a Hamiltonian cycle for all i from 1 to n, F is then a P1F. Thus, only n rather than $\binom{2n}{2}$ subgraphs need to be checked in determining whether F is a P1F. According to Theorem [3] if F is a P1F, a C_{2n} instance
\[
C_0 = S_E
\]
can be constructed; otherwise we try other even starters in $(Z_{2n}, +)$ until a C-Code is constructed, or all even starters in $(Z_{2n}, +)$ have been checked.

For example, the foregoing even starter $S_E = \{(1, 2), (3, 5)\}$ in $(Z_6, +)$ induces a P1F of a 6-regular graph on 8 vertices. Thus, a C_6 instance illustrated as follows can be constructed using S_E:...
At the same time, we can construct the twin C_6 instance illustrated as follows using the twin even starter $S_E^2 = \{\{3,4\},\{5,1\}\}$:

$$
\begin{array}{cccccccc}
 & d_{1,2} & d_{2,3} & d_{3,4} & d_{4,5} & d_{5,0} & d_{0,1} \\
 & d_{3,5} & d_{4,0} & d_{5,1} & d_{0,2} & d_{1,3} & d_{2,4} \\
 0 & p_0 & p_1 & p_2 & p_3 & p_4 & p_5
\end{array}
$$

Table 2 Some examples of C-Codes for even lengths from 4 to 36.

Length	C_6 (i.e. S_E)
4	$\{(1,2)\}$
6	$\{(1,2), (3,5)\}$
8	(Not Exist!)
10	$\{(1,2), (3,5), (4,8), (6,9)\}$
12	$\{(1,2), (3,3), (5,5), (4,9), (7,8)\}$
14	$\{(1,2), (3,11), (4,6), (5,9), (7,10), (8,13)\}$
16	$\{(1,2), (3,13), (4,15), (5,14), (6,8), (7,11), (9,12)\}$
18	$\{(1,2), (3,7), (4,11), (5,15), (6,9), (8,13), (10,16), (12,14)\}$
20	$\{(1,2), (3,5), (4,17), (6,14), (7,18), (8,13), (9,12), (10,16), (11,15)\}$
22	$\{(1,2), (3,6), (4,12), (5,9), (7,13), (8,21), (10,20), (11,18), (14,19), (15,17)\}$
24	$\{(1,2), (3,5), (4,21), (6,11), (7,20), (8,12), (9,19), (10,16), (13,22), (14,17), (15,23)\}$
26	$\{(1,2), (3,6), (4,25), (5,19), (7,14), (8,24), (9,11), (10,18), (12,23), (13,22), (15,21), (16,20)\}$
28	$\{(1,2), (3,6), (4,25), (5,21), (7,11), (8,16), (9,18), (10,27), (12,22), (13,26), (14,20), (15,17), (19,24)\}$
30	$\{(1,2), (3,5), (4,9), (6,25), (7,13), (8,21), (10,24), (11,29), (12,16), (14,23), (15,22), (17,20), (18,28), (19,27)\}$
32	$\{(1,2), (3,5), (4,8), (6,27), (7,24), (9,21), (10,19), (11,29), (12,31), (13,18), (14,17), (15,25), (16,22), (20,28), (23,30)\}$
34	$\{(1,2), (3,5), (4,10), (6,25), (7,14), (8,32), (9,18), (11,22), (12,20), (13,26), (15,33), (16,30), (17,21), (19,31), (23,28), (24,27)\}$
36	$\{(1,2), (3,5), (4,8), (6,11), (7,20), (9,18), (10,34), (12,26), (13,28), (14,33), (15,35), (16,22), (17,25), (19,29), (21,32), (23,30), (24,27)\}$

Finally, in the literature of graph theory, some bipyramidal PIFs of a complete graph on $2n+2$ vertices (denoted by K_{2n+2}), which are induced by even starters in $(Z_{2n+1},+)$, have been found for the following values of $2n$: 4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 38, and 50 [14][20][29][33]. Here, a bipyramidal PIF F of K_{2n+2} is induced by an even starter S_E in $(Z_{2n+1},+)$ as follows:

$$
F = \{F_0, F_1, \cdots , F_{2n-1}, F_{2n}\},
$$

where $\{F_0, F_1, \cdots , F_{2n-1}\}$ is a bipyramidal PIF of a $2n$-regular graph on $2n+2$ vertices induced by S_E, and

$$
F_{2n} = \{0,n\}, \{1,n+1\}, \cdots , \{n-1,2n-1\}, \{\omega_1, \omega_2\}\).
Thus, C-Codes for these values of $2n$ can be constructed using the corresponding even starters presented in [14], [20], [29], and [33]. For example, a C_{30} instance can be constructed using the even starter presented in [33]:

$$C_0 = \{\{2, 29\}, \{3, 35\}, \{4, 16\}, \{5, 33\}, \{6, 43\}, \{7, 15\},$$
$$\{8, 19\}, \{9, 30\}, \{10, 41\}, \{11, 46\}, \{12, 17\},$$
$$\{13, 20\}, \{14, 28\}, \{18, 38\}, \{21, 27\}, \{22, 23\},$$
$$\{24, 48\}, \{25, 34\}, \{26, 36\}, \{31, 47\}, \{32, 49\},$$
$$\{37, 39\}, \{40, 44\}, \{42, 45\}\}.$$

Then, C-Codes for lengths 14, 20, 24, 26, 34, 38, and 50, which are not covered by the family of length p except 8 (see Table 2). Here, the length 32 is also not covered by the family of length p except 8. For example, a C-Code exists for every even length from 4 to 36 but not all of even lengths. For example, a C-Code exists for every even length from 4 to 36 except 8 (see Table 2). Here, the length 32 is also not covered by the family of length p except 8. In the exhaustive search, for $2n = 4, 6, \cdots, 36$, we first found an even starter S_E in $(Z_{2n}, +)$ according to Definition 5 and then checked whether the bipyramidal one-factorization F induced by S_E is a P1F of a 2n-regular graph on $2n + 2$ vertices using the foregoing efficient method presented in this section. If F is a P1F, a C_{2n} instance was constructed according to Theorem 5; otherwise we tried other even starters in $(Z_{2n}, +)$ until a C-Code was constructed, or all even starters in $(Z_{2n}, +)$ had been checked (e.g. in the case of $2n = 8$).

It should also be noted that there are often more than one C-Code instances for a given even length. For example, besides the C_{34} instance listed in Table 2, another C_{34} instance can be constructed using the even starter presented in [14]:

$$C_0 = \{\{1, 2\}, \{3, 5\}, \{4, 24\}, \{6, 9\}, \{7, 22\}, \{8, 18\},$$
$$\{10, 17\}, \{12, 25\}, \{13, 21\}, \{14, 23\}, \{15, 31\},$$
$$\{16, 28\}, \{19, 30\}, \{20, 26\}, \{27, 32\}, \{29, 33\}\}.$$

These two C_{34} instances are not twin instances. In addition, even for a length 6 covered by the family of length p except 8, besides the instance $C_0 = \{\{1, 3\}, \{4, 5\}\}$ constructed in [7], we can find another instance in Table 2. These two C_0 instances are also not twin instances. Furthermore, as will be shown in the next section, there exist four families of C_{p-1} instances. Besides, Table 3 gives the number of C-Codes for even lengths from 4 to 30. These results are derived from [20]. From this table, we can see that for most but not all of even lengths, the number of C-Codes increases with the length. We can also observe that the number of C-Codes for each length is always an even number. The reason is that each C-Code instance always has a twin instance (see Theorem 5).

Length	4	6	8	10	12	14	16
#	2	4	0	16	24	12	80
Length	18	20	22	24	26	28	30
#	120	272	440	576	2016	4992	11104
4 Four Infinite Families of C_{p-1} Instances

In the previous section, we have obtained C-Codes for some sporadic even lengths listed as follows:

$$4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 50.$$

Then, we may wonder if there exists an infinite family of C-Codes. A positive answer to this question will be given in this section. Exactly speaking, this section will construct four infinite families of C_{p-1} instances.

We first give the extended definition of an event starter as follows:

Definition 5 ([1]) Let (A_{2n}, \circ) be an abelian group (written multiplicatively) of order $2n$ with identity e and unique element a^* of order 2 (i.e. $a^* \circ a^* = e$). An even starter \hat{S}_E in (A_{2n}, \circ) is a set of $n - 1$ pairs of non-identity elements of A_{2n}, i.e.

$$\hat{S}_E = \{\{x_1, y_1\}, \{x_2, y_2\}, \ldots, \{x_{n-1}, y_{n-1}\}\},$$

such that for every element $i \in A_{2n}$ such that $i \neq e$ and $i \neq a^*$, there exists a pair $\{x, y\} \in \hat{S}_E$ such that $i = x^{-1} \circ y$, or $i = x \circ y^{-1}$.

Let (Z_p^\ast, \times) be a multiplicative group of congruence classes modulo p. For $p = 7$,

$$Z_7^\ast = \{1, 2, \ldots, 6\}.$$

It is clear that (Z_7^\ast, \times) is an abelian group of order 6 with identity 1 and unique element 6 of order 2. Take $\hat{S}_E = \{\{2, 6\}, \{3, 5\}\}$ in (Z_7^\ast, \times) for example. For every non-identity element of Z_p^\ast except 6, we have

$$\begin{align*}
2 &= 3 \times 5 \text{ mod 7}; \\
3 &= 2^{-1} \times 6 \text{ mod 7}; \\
4 &= 3^{-1} \times 5 \text{ mod 7}; \\
5 &= 2 \times 6^{-1} \text{ mod 7}.
\end{align*}$$

Thus, \hat{S}_E is an even starter in (Z_7^\ast, \times).

An even starter \hat{S}_E in (A_{2n}, \circ) induces a bipyramidal one-factorization of a $2n$-regular graph on $2n + 2$ vertices as follows. Label the $2n + 2$ vertices with the elements of A_{2n} and two infinity elements ∞_1 and ∞_2 such that there is no edge between the following pairs of vertices: $\{\infty_1, \infty_2\}$ and all $\{a, a \circ a^*\}$ for $a \in A_{2n}$. Let

$$\tilde{S}_E = \hat{S}_E \cup \{\{r, \infty_1\}, \{r, \infty_2\}\},$$

where r is the non-identity element that does not appear in \hat{S}_E. For all $a \in A_{2n}$, define $a \circ \infty_1 = \infty_1$ and $a \circ \infty_2 = \infty_2$. The corresponding bipyramidal one-factorization F is then given by

$$F = \left\{a \circ \tilde{S}_E : a \in A_{2n}\right\},$$

where

$$a \circ \tilde{S}_E = \left\{a \circ x, a \circ y : \{x, y\} \in \tilde{S}_E\right\}.$$

Here, if the bipyramidal one-factorization induced by \tilde{S}_E in (A_{2n}, \circ) is a P1F, a non-cyclic B-Code of length $2n$, in which the a-th column ($a \in A_{2n}$) is $a \circ \tilde{S}_E$, can be constructed [34].

Take the foregoing even starter $\hat{S}_E = \{\{2, 6\}, \{3, 5\}\}$ in (Z_7^\ast, \times) for example. Since the corresponding bipyramidal one-factorization is a P1F, a non-cyclic B-Code of length 6 constructed using \hat{S}_E is illustrated as follows:
This code is the same as the P-Code of length 6 constructed in [12] (in fact, P-Code is just one family of the B-Code of length \(p - 1 \), and its code structure was originally derived from [36]).

We now consider the case where \((A_{2n}, \circ)\) is a cyclic group of which \(g \) is a generator. Then, in the non-cyclic B-Code of length \(2n \) constructed using \(\hat{S}_E \) in \((A_{2n}, \circ)\), the \((g')\)-th column \((i = 0, 1, \cdots, 2n - 1)\) can be expressed as \(g' \circ \hat{S}_E \). For \(i = 0, 1, \cdots, 2n - 1 \), replace \(g' \) with \(i \) and then relabel the \((g')\)-th column with \(i \). Reorder all the \(2n \) columns in order according to their new labels. Then, a C-Code of length \(2n \) is obtained.

Take the foregoing non-cyclic B-Code of length 6 for example. Since \((Z_7^*, \times)\) is a cyclic group of which 3 is a generator, the code can then be represented by

\[
\begin{array}{cccccccc}
 d_{13} & d_{32} & d_{51} & d_{02} & d_{12} & d_{23} & d_{34} & d_{53} \\
 d_{32} & d_{13} & d_{51} & d_{02} & d_{12} & d_{23} & d_{34} & d_{53} \\
 p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7
\end{array}
\]

In the above representation, replace 3\(^i\) with \(i \) for \(i = 0, 1, \cdots, 5 \) and then reorder all the 6 columns in order according to their new labels. We can obtain a \(C_6 \) instance as follows:

\[
\begin{array}{cccccccc}
 d_{13} & d_{12} & d_{24} & d_{04} & d_{01} & d_{12} & d_{24} & d_{04} \\
 d_{13} & d_{12} & d_{24} & d_{04} & d_{01} & d_{12} & d_{24} & d_{04} \\
 p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7
\end{array}
\]

In a cyclic group (written multiplicatively) of which \(g \) is a generator, for \(x = g' \), define \(\log_g(x) = i \). Then, we can easily make the following conclusion:

Theorem 5 If \((A_{2n}, \circ)\) is a cyclic group of which \(g \) is a generator, a non-cyclic B-Code of length \(2n \) constructed using an even starter \(\hat{S}_E \) in \((A_{2n}, \circ)\) can always be transformed to a \(C_{2n} \) instance

\[
C_0 = \left\{ \{ \log_g(x), \log_g(y) \} : \{x, y\} \in \hat{S}_E \right\}. \tag{11}
\]

At the same time, we can get the twin \(C_{2n} \) instance

\[
C_0^* = \left\{ \{x^* - r^*, y^* - r^*\} : \{x^*, y^*\} \in C_0 \right\}, \tag{12}
\]

where \(r^* \) is the one and only non-zero element of \((Z_{2n}, +)\) that does not occur in \(C_0 \).

Specially, we consider even starters in \((Z_p^*, \times)\), where \(p \) is a prime. It is well-known that when \(p \) is a prime, \((Z_p^*, \times)\) is a cyclic group in which

\[
Z_p^* = \{1, 2, \cdots, p-1\}.
\]

Thus, we can make the following conclusion:

Theorem 6 A non-cyclic B-Code of length \(p - 1 \) constructed using an even starter in \((Z_p^*, \times)\) can always be transformed to a C-Code of length \(p - 1 \).
Finally, in \((Z_p^*, \times)\), there exist two infinite families of even starters \([6]\) as follows:

\[
\hat{S}_A^\mathcal{E} = \{\{x, y\} : x, y \in Z_p^* \setminus \{1, 2^{-1}\}, x + y = 1\},
\]

and

\[
\hat{S}_B^\mathcal{E} = \{\{x, y\} : x, y \in Z_p^* \setminus \{1, 2^{-1}, 2, p - 1\}, x + y = 1\} \cup \{\{2^{-1}, p - 1\}\}.
\]

It was proved in \([6]\) that \(\hat{S}_A^\mathcal{E}\) and \(\hat{S}_B^\mathcal{E}\) can induce two families of non-isomorphic bipyramidal P1Fs of \(K_{p+1}\), respectively. Note that the P1F induced by \(\hat{S}_A^\mathcal{E}\) is isomorphic to the well-known patterned P1F (induced by the well-known patterned starter in \((Z_p^*, +)\) \([2]\), which has been used to construct the family of non-cyclic B-Codes of length \(p - 1\) in \([12]\), \([34]\), and \([36]\).

Thus, two families of non-cyclic B-Codes of length \(p - 1\) can be constructed using \(\hat{S}_A^\mathcal{E}\) and \(\hat{S}_B^\mathcal{E}\), respectively.

Suppose \(g\) is a generator of \((Z_p^*, \times)\). Then, two families of \(\mathcal{C}_{p-1}\) instances

\[
C_0^A = \{\{\log_g(x), \log_g(y)\} : x, y \in Z_p^* \setminus \{1, 2^{-1}\}, x + y = 1\}
\]

and

\[
C_0^B = \{\{\log_g(x), \log_g(y)\} : x, y \in Z_p^* \setminus \{1, 2^{-1}, 2, p - 1\}, x + y = 1\} \cup \{\{2^{-1}, p - 1\}\}
\]

and their twin instances can be constructed. Therefore, there exist four families of \(\mathcal{C}_{p-1}\) instances.

Take \((Z_7^*, \times)\) for example. We then have \(\hat{S}_A^\mathcal{E} = \{\{2, 6\}, \{3, 5\}\}\) and \(\hat{S}_B^\mathcal{E} = \{\{3, 5\}, \{4, 6\}\}\).

In \((Z_7^*, \times)\), pick \(g = 3\). From \(\hat{S}_A^\mathcal{E}\), we obtain a \(\mathcal{C}_6\) instance

\[
C_0^A = \{\{2, 3\}, \{1, 5\}\}
\]

and its twin instance

\[
(C_0^A)^\tau = \{\{4, 5\}, \{3, 1\}\}.
\]

Here, the twin instance is the same as the instance constructed in \([7]\). Also, from \(\hat{S}_B^\mathcal{E}\), we obtain a \(\mathcal{C}_6\) instance

\[
C_0^B = \{\{1, 5\}, \{4, 3\}\}
\]

and its twin instance

\[
(C_0^B)^\tau = \{\{5, 3\}, \{2, 1\}\}.
\]

Thus, we construct four \(\mathcal{C}_6\) instances.

From the above results, we can make two observations as follows:

1. Non-cyclic B-Codes of length \(p - 1\) constructed in \([12]\), \([34]\), and \([36]\) can always be transformed to \(\mathcal{C}_{p-1}\) instances; and
2. The family of \(\mathcal{C}_{p-1}\) instances constructed in \([7]\) can also be obtained from \(\hat{S}_A^\mathcal{E}\).
5 Constructing a Quasi-C-Code Using Even Multi-Starters

As mentioned in Section 3, our exhaustive search showed that there is no C-Code for some even lengths, such as 8. Then, one question is: Can we construct quasi-C-Codes (which partially hold cyclic symmetry \([7]\)) for these even lengths? In this paper, we say a quasi-C-Code of length \(2n\) is a \(\kappa\)-quasi-C-Code (denoted by \(\mathbb{C}_{\kappa}^{2n}\), where \(\kappa|2n\)) if for \(i = 0, 1, \cdots, \kappa - 1\), each group of \(\frac{2n}{\kappa}\) columns

\[C_i = C_i^0, C_i^1, \cdots, C_i^{\kappa-1}(n) \]

hold cyclic symmetry, where \(C_j\) represents the \(j\)-th column of the code.

In this section, we will introduce a concept of even multi-starters and then discuss how to construct quasi-C-Codes using even multi-starters.

An even \(\kappa\)-starter in \((\mathbb{Z}_{2n}, +)\) (where \(\kappa|2n\)) is defined as follows:

Definition 6 An even \(\kappa\)-starter \(S^\kappa\) in \((\mathbb{Z}_{2n}, +)\) (where \(\kappa|2n\)) is a set

\[S^\kappa = \{S_0, S_1, \cdots, S_{\kappa-1}\}, \]

where \(S_i (i = 0, 1, \cdots, \kappa - 1)\) is a set of \(n - 1\) pairs of non-\(i\) elements of \(\mathbb{Z}_{2n}\), such that every integer from 1 to \(n - 1\) occurs \(\kappa\) times as a difference of a pair of \(S^\kappa\). Its twin even \(\kappa\)-starter \((S^\kappa)^\tau\) is defined as

\[(S^\kappa)^\tau = \left\{ S_i^\prime \mod \kappa = S_i - \kappa \left\lfloor \frac{r_i}{\kappa} \right\rfloor : i = 0, 1, \cdots, \kappa - 1 \right\}, \quad (17) \]

where \(r_i\) is the non-\(i\) element that does not appear in \(S_i\), and

\[S_i - \kappa \left\lfloor \frac{r_i}{\kappa} \right\rfloor = \left\{ \{x - \kappa \left\lfloor \frac{r_i}{\kappa} \right\rfloor, y - \kappa \left\lfloor \frac{r_i}{\kappa} \right\rfloor \} : \{x, y\} \in S_i \right\}. \]

Take \(S^2 = \{S_0, S_1\}\) in \((\mathbb{Z}_8, +)\) for example, where \(S_0 = \{\{1, 2\}, \{3, 5\}, \{4, 6\}\}\), and \(S_1 = \{\{0, 3\}, \{2, 7\}, \{4, 5\}\}\). For every integer from 1 to 3, we have

\[
\begin{align*}
1 &= 2 - 1 = 5 - 4 \mod 8; \\
2 &= 5 - 3 = 6 - 4 \mod 8; \\
3 &= 3 - 0 = 2 - 7 \mod 8.
\end{align*}
\]

Thus, \(S^2\) is an even 2-starter in \((\mathbb{Z}_8, +)\). Its twin even 2-starter is \((S^2)^\tau = \{S_0^\prime, S_1^\prime\}\), where \(S_0^\prime = \{\{2, 5\}, \{4, 1\}, \{6, 7\}\}\), and \(S_1^\prime = \{\{3, 4\}, \{5, 7\}, \{6, 0\}\}\).

An even \(\kappa\)-starter

\[S^\kappa = \{S_0, S_1, \cdots, S_{\kappa-1}\} \]

in \((\mathbb{Z}_{2n}, +)\) (where \(\kappa|2n\)) induces a one-factorization of a \(2n\)-regular graph on \(2n + 2\) vertices as follows. Label these \(2n + 2\) vertices with the elements of \(\mathbb{Z}_{2n}\) and two infinity elements \(\infty_1\) and \(\infty_2\) such that there is no edge between the following pairs of vertices: \(\{\infty_1, \infty_2\}\) and all \(\{i, i + n\}\) for \(i = 0, 1, \cdots, n - 1\). For every \(i \in \mathbb{Z}_{2n}\), define \(z + \infty_1 = \infty_1\) and \(z + \infty_2 = \infty_2\). For \(i = 0, 1, \cdots, \kappa - 1\), let

\[\tilde{S}_i = S_i \cup \left\{ \{i, \infty_1\}, \{r_i, \infty_2\} \right\}, \quad (18) \]

where \(r_i\) is the non-\(i\) element that does not appear in \(S_i\). The corresponding one-factorization \(\mathbb{F}^\kappa\) is then given by

\[\mathbb{F}^\kappa = \left\{ \kappa t + \tilde{S}_0, \kappa t + \tilde{S}_1, \cdots, \kappa t + \tilde{S}_{\kappa-1} : t = 0, 1, \cdots, \frac{2n}{\kappa} - 1 \right\}, \quad (19) \]
where
\[\kappa \tau + \tilde{S}_i = \left\{ \{ \kappa \tau + x, \kappa \tau + y \} : (x, y) \in \tilde{S}_i \right\} \]
for \(i = 0, 1, \cdots, \kappa - 1 \). Such a one-factorization is called a \(\kappa \)-quasi-bipyramidal one-factorization.

For an even \(\kappa \)-starter
\[S^\kappa = \{ S_0, S_1, \cdots, S_{\kappa - 1} \} \]
in \((Z_{2n}, +)\) (where \(\kappa | 2n \)), if the \(\kappa \)-quasi-bipyramidal one-factorization \(F^\kappa \) induced by \(S^\kappa \) is a P1F of a \(2n \)-regular graph on \(2n + 2 \) vertices, a \(C^\kappa_{2n} \) instance, in which the \(i \)-th column \((i = 0, 1, \cdots, 2n - 1) \) is
\[
C_i = \left\{ \left\{ x + \kappa \left\lfloor \frac{i}{\kappa} \right\rfloor \mod 2n, y + \kappa \left\lfloor \frac{i}{\kappa} \right\rfloor \mod 2n \right\} : (x, y) \in S_i \mod \kappa \right\},
\]
can be constructed using \(S^\kappa \). It can be easily checked that in this \(C^\kappa_{2n} \) instance, for \(i = 0, 1, \cdots, \kappa - 1 \), each group of \(\frac{2n}{\kappa} \) columns
\[
C_{i + \kappa \times 0}, C_{i + \kappa \times 1}, \cdots, C_{i + \kappa \times (\frac{2n}{\kappa} - 1)}
\]
hold cyclic symmetry.

Similar to Theorem 4 in Section 3, we give the following theorem:

Theorem 7 If a \(C^\kappa_{2n} \) instance can be constructed using an even \(\kappa \)-starter \(S^\kappa \) in \((Z_{2n}, +)\), another \(C^\kappa_{2n} \) instance can also be constructed using the twin even \(\kappa \)-starter \((S^\kappa)^t\). They are called twin \(C^\kappa_{2n} \) instances.

The above conclusion can also be easily understood because twin even \(\kappa \)-starters \(S^\kappa \) and \((S^\kappa)^t\) induce the same \(\kappa \)-quasi-bipyramidal one-factorization.

For example, the foregoing even 2-starter \(S^2 = \{ S_0, S_1 \} \) (where \(S_0 = \{ \{ 1, 2 \}, \{ 3, 5 \}, \{ 4, 6 \} \} \), and \(S_1 = \{ \{ 0, 3 \}, \{ 2, 7 \}, \{ 4, 5 \} \} \) in \((Z_8, +)\) induces a 2-quasi-bipyramidal P1F of a 8-regular graph on 10 vertices. Thus, a \(C^2_8 \) instance illustrated as follows can be constructed using \(S^2 \):

\[
\begin{array}{cccccccc}
| d_{1,2} & d_{0,3} & d_{3,4} & d_{5,6} & d_{4,7} & d_{7,0} & d_{6,1} \\
| d_{4,5} & d_{5,7} & d_{1,4} & d_{6,8} & d_{1,3} & d_{3,5} & d_{2,0} \\
| d_{4,6} & d_{4,5} & d_{6,0} & d_{7,0} & d_{1,1} & d_{2,4} & d_{2,3} \\
| p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 \\
\end{array}
\]

At the same time, we can construct the twin \(C^2_8 \) instance illustrated as follows using the twin even 2-starter \((S^2)^t = \{ S'_0, S'_1 \} \), where \(S'_0 = \{ \{ 2, 5 \}, \{ 4, 1 \}, \{ 6, 7 \} \} \), and \(S'_1 = \{ \{ 3, 4 \}, \{ 5, 7 \}, \{ 6, 0 \} \} \):

\[
\begin{array}{cccccccc}
| d_{2,5} & d_{3,4} & d_{4,7} & d_{5,6} & d_{6,1} & d_{7,0} & d_{1,2} \\
| d_{4,1} & d_{5,7} & d_{6,3} & d_{7,1} & d_{0,5} & d_{1,3} & d_{3,5} \\
| d_{6,7} & d_{6,0} & d_{0,1} & d_{1,2} & d_{2,3} & d_{2,4} & d_{4,5} & d_{4,6} \\
| p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 \\
\end{array}
\]
6 Two Infinite Families of $C^2_{2(p−1)}$ Instances

In this section, we will construct two infinite families of $C^2_{2(p−1)}$ instances. We start with an infinite family of even 2-starter S^2 and its twin even 2-starter $(S^2)^\tau$ in $(Z_{2(p−1)}, +)$.

Suppose g is a generator of (Z_p^*, \times). In (Z_p^*, \times), for $x = g^i$, define $\log_g(x) = i$. Then, $S^2 = \{S_0, S_1\}$ in $(Z_{2(p−1)}, +)$ is constructed as follows:

$$S_0 = \{\{2\log_g(x), 2\log_g(y) + 1\} : x \in Z_p^* \setminus \{1\}, y \in Z_p^* \setminus \{p−1\}, x−y = 1\},$$

and

$$S_1 = \{\{2x + 1, 2y + 1\} : (x, y) \in C^2_0\} \bigcup \{\{2x, 2y\} : (x, y) \in C^2_0\} \bigcup \{\{2r, 2r + 1\}\},$$

where C^2_0 is defined in Equation (15) in Section 4, and A is isomorphic to C^2_0. Its twin even 2-starter in $(Z_{2(p−1)}, +)$ is $(S^2)^\tau = \{S_0', S_1'\}$, where

$$S_0' = S_1,$$

and

$$S_1' = \{\{2\log_g(x) + 1, 2\log_g(y)\} : x \in Z_p^* \setminus \{1\}, y \in Z_p^* \setminus \{p−1\}, x−y = 1\}.$$

Take $(Z_5, +)$ for example. Pick $g = 2$ in (Z_5^*, \times). We then have $S^2 = \{S_0, S_1\}$, where $S_0 = \{\{2, 1\}, \{6, 3\}, \{4, 7\}\}$, and $S_1 = \{\{2, 4\}, \{3, 5\}, \{6, 7\}\}$. Its twin even 2-starter in $(Z_5, +)$ is $(S^2)^\tau = \{S_0', S_1'\}$, where $S_0' = \{\{2, 4\}, \{3, 5\}, \{6, 7\}\}$, and $S_1' = \{\{3, 0\}, \{7, 2\}, \{5, 6\}\}$.

It can be verified that this family of even 2-starter S^2 and its twin even 2-starter $(S^2)^\tau$ in $(Z_{2(p−1)}, +)$ can induce the same 2-quasi-bipyramidal PIF of K_{2p}, which is isomorphic to the well-known PIF GA_{2p} of K_{2p} [2]. Thus, two families of $C^2_{2(p−1)}$ instances can be constructed using S^2 and $(S^2)^\tau$, respectively.

Here, the family of $C^2_{2(p−1)}$ instances constructed using S^2 can be shown to be the same as those constructed in [7]. Besides, it was proved in [13] that the PIF GN_{2p} of K_{2p}, which was adopted in [34] to construct the family of non-cyclic B-Codes of length $2(p−1)$, is also isomorphic to GA_{2p}. Thus, we can make two observations as follows:

1. Non-cyclic B-Codes of length $2(p−1)$ constructed in [34] can always be transformed to $C^2_{2(p−1)}$ instances; and
2. The family of $C^2_{2(p−1)}$ instances constructed in [7] can also be constructed using S^2.

7 Conclusions and Remarks

This paper investigated the underlying connections between distance-3 cyclic (or quasi-cyclic) lowest-density MDS array codes and starters in group theory. Some interesting new results listed as follows were obtained:

1. Each cyclic code of length $2n$ can be constructed using an even starter in $(Z_{2n}, +)$ (see Section 3), while each quasi-cyclic code of length $2n$ can be constructed using an even multi-starter in $(Z_{2n}, +)$ (see Section 5);
2. Each cyclic (or quasi-cyclic) code has a twin cyclic (or quasi-cyclic) code (see Sections 3 and 5);
3. A cyclic code exists for most but not all of even lengths (one exception is 8) (see Section 3);
4. Four infinite families of cyclic codes of length \(p - 1\) (which cover the family of cyclic codes of length \(p - 1\) constructed in [7]) were constructed from two infinite families of even starters in \((\mathbb{Z}_p^*, \times)\) (where \(p\) is a prime) in Section 4;
5. Besides the family of length \(p - 1\), cyclic codes for some sporadic even lengths listed as follows were obtained in Section 3:
 14, 20, 24, 26, 32, 34, 38, 50;
6. Two infinite families of quasi-cyclic codes of length \(2(p - 1)\) (which cover the family of quasi-cyclic codes of length \(2(p - 1)\) constructed in [7]) were constructed using an infinite family of even 2-starter in \((\mathbb{Z}_2^{(p - 1)}, +)\) in Section 6; and
7. Non-cyclic B-Codes of length \(p - 1\) constructed in [12], [34], and [36] can always be transformed to cyclic codes (see Section 4), while non-cyclic B-Codes of length \(2(p - 1)\) constructed in [34] can always be transformed to quasi-cyclic codes (see Section 6).

Length	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Cyclic	√	√	×	√	√	√	√	√	√	√	√	√	√	√
Quasi-Cyclic														
Length	32	34	36	38	40	42	44	46	48	50	52	54	56	58
Cyclic	√	√	√	√	√	?	?	?	?	?	?	?	?	√
Quasi-Cyclic	√	√	√	√	√									

√: existence; ×: inexistence; ?: unknown.

According to the above results, we can obtain Table 4. From this table, we can see that for even lengths from 4 to 58, there are one length 8, for which the cyclic code does not exist, and four lengths 44, 48, 54, and 56, for which cyclic codes are still unknown. Luckily, quasi-cyclic codes for lengths 8, 44, and 56 can be constructed in Section 6. Then, the constructions of cyclic (or quasi-cyclic) codes for the rest two lengths 48 and 54 are left as open problems. Here, two points deserve future researchers’ attention:

1. Non-cyclic B-Codes of length 48 can be constructed using P1Fs of \(K_{50}\) found in [11]. However, these P1Fs were induced by starters in \((\mathbb{Z}_9^*, +)\). Whether these non-cyclic B-Codes can be transformed to cyclic codes is left as an open problem.
2. Since 2009, when a P1F of \(K_{52}\) was found (see [33]), \(K_{56}\) has been the smallest complete graph for which a P1F has not been known. The construction of a P1F of \(K_{56}\) is left as an open problem in graph theory. Consequently, the construction of a B-Code of length 54 is still unknown.

A Proof of Theorem 1

We prove this theorem by two algorithms. Here, note that the basic idea comes from the work of [32], and a similar proof was given in [17].

We now first propose Algorithm 1 to construct a \(C_{2n}\) instance from a bipyramidal P1F of a 2n-regular
graph on \(2n + 2\) vertices. In this algorithm, it is clear that \(\{C_0, C_1, \ldots, C_{2n-1}\}\) meets Equation (20) in Section 2.2. It can also be proved as follows that \(\{C_0, C_1, \ldots, C_{2n-1}\}\) meets Condition 1 in Section 2.2. Thus, a corresponding \(C_{2n}\) instance is constructed by Algorithm 2.

Algorithm 1 Constructing a \(C_{2n}\) instance from a bipyramidal P1F of a \(2n\)-regular graph on \(2n + 2\) vertices.

1. Choose arbitrary pair of vertices that are not adjacent to each other in the regular graph and label them \(w_1\) and \(w_2\). Then, label the other \(2n\) vertices of the regular graph with integers from 0 to \(2n - 1\).
2. If a bipyramidal P1F exists for the regular graph, then let \(F_i\) denote the one-factor that contains the edge \(\{i, \omega_i\}\), where \(i = 0, 1, \ldots, 2n - 1\).
3. In each \(F_i\), delete the two edges that are adjacent to the two vertices \(w_1\) and \(w_2\) in the graph. For \(i = 0, 1, \ldots, n - 1\), let \(C_0 = F_i \setminus \{\{i, \omega_i\}, \{r_i, \omega_i\}\}\), where \(r_i\) is the vertex that is adjacent to the vertex \(\omega_i\) originally in \(F_i\), and label all the edges in \(C_i\) with \(i\).

According to Definition 1 in Section 2.2 in a P1F, for any pair of one-factors \(F_{i_1}\) and \(F_{i_2}\), the union of them forms a Hamiltonian cycle. Then, in the union of \(F_{i_1}\) and \(F_{i_2}\), after we delete all the edges that are incident to the two vertices \(\omega_1\) and \(\omega_2\), no cycle can exist. In addition, there also does not exist a path whose terminal vertices are the two vertices \(i_1\) and \(i_2\), otherwise the union of the path and the two edges \(\{i_1, \omega_1\}\) (contained in \(F_{i_1}\)) and \(\{i_2, \omega_2\}\) (contained in \(F_{i_2}\)) can form a cycle that does not visit the vertex \(\omega_2\), which conflicts with the fact that the union of the two one-factors \(F_{i_1}\) and \(F_{i_2}\) forms a Hamiltonian cycle. Thus, \(\{C_0, C_1, \ldots, C_{2n-1}\}\) in Algorithm 1 meets Condition 1 in Section 2.2.

To make Algorithm 1 more easily understood, we give an example of constructing the \(C_4\) instance in Section 2.2 from a bipyramidal P1F of a 4-regular graph on 6 vertices in Figure 1.

Then, the next natural question is: Can we get a bipyramidal P1F of a \(2n\)-regular graph on a set of \(2n + 2\) vertices from a \(C_{2n}\) instance? A positive answer to this question will be given by Algorithm 2.

Algorithm 2 Constructing a bipyramidal P1F of a \(2n\)-regular graph on \(2n + 2\) vertices from a \(C_{2n}\) instance.

1. If a \(C_{2n}\) instance exists, describe the code using the graph representation mentioned in Section 2.2, and let \(C_i\) represent the \(i\)-th column of the code in the graph description, where \(i = 0, 1, \ldots, 2n - 1\).
2. Add two vertices \(w_1\) and \(w_2\) to the \((2n - 2)\)-regular graph \(G\) of vertices \(0, 1, \ldots, 2n - 1\).
3. For \(i = 0, 1, \ldots, 2n - 1\), add two edges \(\{i, \omega_i\}\) and \(\{r_i, \omega_i\}\) to \(C_i\), where \(r_i\) is an integer from 0 to \(2n - 1\) such that the expanded set \(\tilde{C}_i\) is a one-factor of the expanded graph \(\tilde{G}\) of vertices \(0, 1, \ldots, 2n - 1, \omega_1, \omega_2\).

In Algorithm 2 for \(i = 0, 1, \ldots, 2n - 1\), \(C_i\) has the following form:

\[
\tilde{C}_i = C_i \cup \{\{i, \omega_1\}, \{r_i, \omega_2\}\}.
\] (25)

It is clear that the new graph \(\tilde{G}\) is a \(2n\)-regular graph on \(2n + 2\) vertices. For \(i = 0, 1, \ldots, 2n - 1\), define \(\omega_1 + i = \omega_1\) and \(\omega_2 + i = \omega_2\). Then, for \(i = 0, 1, \ldots, 2n - 1\), we have

\[
\tilde{C}_i = \{x + i \mod 2n, y + i \mod 2n : (x, y) \in C_0\}.
\] (26)

Consequently,

\[
F = \{\tilde{C}_0, \tilde{C}_1, \ldots, \tilde{C}_{2n-1}\}\
\] (27)

is a bipyramidal one-factorization of a \(2n\)-regular graph on \(2n + 2\) vertices.

Take the \(C_n\) instance in Section 2.2 for example. Figure 1(b) shows the corresponding expanded graph \(\tilde{G}\), which is a 4-regular graph on a set of 6 vertices \(\{0, 1, 2, 3, \omega_1, \omega_2\}\). The four corresponding expanded sets
are
\[
\begin{align*}
\tilde{C}_0 &= \{\{1,2\}, \{0,\omega_1\}, \{3,\omega_2\}\}; \\
\tilde{C}_1 &= \{\{2,3\}, \{1,\omega_1\}, \{0,\omega_2\}\}; \\
\tilde{C}_2 &= \{\{3,0\}, \{2,\omega_1\}, \{1,\omega_2\}\}; \\
\tilde{C}_3 &= \{\{0,1\}, \{3,\omega_1\}, \{2,\omega_2\}\}.
\end{align*}
\]

It is clear that
\[
\mathcal{F} = \left\{\tilde{C}_0, \tilde{C}_1, \tilde{C}_2, \tilde{C}_3\right\}
\]
is a bipyramidal one-factorization of a 4-regular graph on 6 vertices.

We then prove that the bipyramidal one-factorization obtained in Algorithm 2 is perfect as follows:

From Condition 1 in Section 2.2, we can deduce that for any \(m\) and \(k\) (where \(0 \leq m < k \leq 2n - 1\)), the subgraph
\[
G^\ast = \left\{(0,1,\cdots,2n-1), C_m \cup C_k\right\}
\]
can be in one of the following two forms:

1. \(G^\ast\) consists of an isolated vertex \(m\) (or \(k\)) and a path of length \(2n - 2\) one of whose terminal vertices is the other vertex \(k\) (or \(m\)); or
2. \(G^\ast\) consists of two paths that satisfy: i) the sum of their length is \(2n - 2\), and ii) one of the terminal vertices of each path is the vertex \(m\) or \(k\).

Then, in the one-factorization constructed in Algorithm 2, the union of any pair of one-factors forms a Hamiltonian cycle. Thus, according to Definition 1 in Section 1, the one-factorization obtained in Algorithm 2 is a bipyramidal PIF of a \(2n\)-regular graph on \(2n + 2\) vertices.

B Proof of Theorem 2

It is clear that \(S\) consists of \(n - 1\) pairs of non-zero elements in \((\mathbb{Z}_{2n}, +)\). We then prove by contradiction that for every element \(i \in \mathbb{Z}_{2n}\) such that \(i \neq 0\) and \(i \neq n\), there exists a pair \(\{x,y\} \in S\) such that \(i = (x - y) \mod 2n\), or \(i = (y - x) \mod 2n\).

We first consider the first opposite case where for \(i = n\), there exists a pair \(\{x,y\} \in S\) such that \(i = (x - y) \mod 2n\), or \(i = (y - x) \mod 2n\). Suppose the corresponding pair is \(\{x^\ast, y^\ast\}\), i.e.
\[
y^\ast - x^\ast = x^\ast - y^\ast = n.
\]
Then, we have
\[
\{x^\ast + n, y^\ast + n\} = \{x^\ast, y^\ast\}.
\]
\(\mathcal{F}\) is a bipyramidal one-factorization in which
\[
F_n = \left\{\{x + n, y + n\} : \{x,y\} \in F_0\right\}.
\]
Consequently, \(\{x^\ast, y^\ast\}\) is contained in both \(F_0\) and \(F_n\) — a contradiction!

Now, under the condition \(i \neq n\), we then consider the second opposite case where there is a non-zero element \(i \in \mathbb{Z}_{2n}\) such that there does not exist a pair \(\{x,y\} \in S\) such that \(i = (x - y) \mod 2n\), or \(i = (y - x) \mod 2n\). Then, according to the pigeonhole principle, there exist two pairs \(\{x_1',y_1'\}\) and \(\{x_2',y_2'\}\), which meet
\[
y_1' - x_1' = y_2' - x_2'.
\]
Then, we have
\[
x_2' - x_1' = y_2' - y_1'.
\]
Let
\[
k = x_2' - x_1'.
\]
Then, we have
\[
\{x_1' + k, y_1' + k\} = \{x_2', y_2'\}.
\]
\(\mathcal{F}\) is a bipyramidal one-factorization in which
\[
F_k = \left\{\{x + k, y + k\} : \{x,y\} \in F_0\right\}.
\]
Consequently, \(\{x_2', y_2'\}\) is contained in both \(F_0\) and \(F_k\) — a contradiction!

Therefore, according to Definition 1 in Section 1, \(S\) is an even starter in \((\mathbb{Z}_{2n}, +)\).
References

1. Anderson, B.A.: Sequencings and starters. Pacific Journal of Mathematics 64(1), 17–24 (1976)
2. Anderson, B.A.: Symmetry groups of some perfect 1-factorizations of complete graphs. Discrete Mathematics 18(3), 227–234 (1977)
3. Bairavasundaram, L.N., Goodson, G.R., Pasupathy, S., Schindler, J.: An analysis of latent sector errors in disk drives. In: Proceedings of the 2007 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS’07), pp. 289–300. San Diego, CA (2007)
4. Blaum, M., Brady, J., Bruck, J., Menon, J.: EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures. IEEE Transactions on Computers 44(2), 192–202 (1995)
5. Blaum, M., Farrell, P., van Tilborg, H.: Array codes. In: V. Pless, W. Huffman (eds.) Handbook of Coding Theory, pp. 1805–1909. Elsevier Science B.V., Amsterdam, The Netherlands (1998)
6. Bryant, D., Maenhaut, B., Wanless, I.M.: New families of atomic Latin squares and perfect 1-factorisations. Journal of Combinatorial Theory, Series A 113(4), 608–624 (2006)
7. Cassuto, Y., Bruck, J.: Cyclic lowest density MDS array codes. IEEE Transactions on Information Theory 55(4), 1721–1729 (2009)
8. Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: RAID: High-performance, reliable secondary storage. ACM Computing Surveys 26(2), 145–185 (1994)
9. Corbett, P., English, B., Goel, A., Girnac, T., Kleiman, S., Leong, J., Sankar, S.: Row-diagonal parity for double disk failure correction. In: Proceedings of the 3rd USENIX Conference on File and Storage Technologies (FAST’04), pp. 1–14. San Francisco, CA (2004)
10. Dinitz, J.H.: Starters. In: C.J. Colbourn, J.H. Dinitz (eds.) Handbook of Combinatorial Designs, Second Edition, pp. 622–628. Chapman and Hall/CRC, Boca Raton, FL (2006)
11. Jin, C., Jiang, H., Feng, D., Tian, L.: P-Code: A new RAID-6 code with optimal properties. In: Proceedings of the 23rd International Conference on Supercomputing (ICS’09), pp. 360–369. Yorktown Heights, NY (2009)
12. Li, M., Shu, J.: Preventing silent data corruptions from propagating during data reconstruction. IEEE Transactions on Computers 59(12), 1611–1624 (2010)
13. Li, M., Shu, J., Zheng, W.: GRID Codes: Strip-based erasure codes with high fault tolerance for storage systems. ACM Transactions on Storage 4(4), 1–22 (2009)
14. Pike, D.A., Shalaby, N.: Non-isomorphic perfect one-factorizations from Skolem sequences and starters. Journal of Combinatorial Mathematics and Combinatorial Computing 44, 23–32 (2003)
15. Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure trends in a large disk drive population. In: Proceedings of the 5th USENIX conference on File and Storage Technologies (FAST’07), pp. 17–28. San Jose, CA (2007)
16. Plank, J.S., Buchsbaum, A.L., Vander Zanden, B.T.: Minimum density RAID-6 codes. ACM Transactions on Storage 6(4), 1–22 (2011)
17. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics 8(3), 300–304 (1960)
18. Roth, R.M., Lempel, A.: On MDS codes via Cauchy matrices. IEEE Transactions on Information Theory 36(6), 1334–1339 (1989)
19. Schroeder, B., Gibson, G.A.: Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you? In: Proceedings of the 7th USENIX conference on File and Storage Technologies (FAST’07), pp. 1–16. San Jose, CA (2007)
28. Seah, E.S., Stinson, D.R.: A perfect one-factorization for K_{36}. Discrete Mathematics 70(2), 199–202 (1988)
29. Seah, E.S., Stinson, D.R.: A perfect one-factorization for K_{40}. Congressus Numerantium 68, 211–213 (1989)
30. Thomasian, A., Blaum, M.: Higher reliability redundant disk arrays: Organization, operation, and coding. ACM Transactions on Storage 5(3), 1–59 (2009)
31. Wallis, W.D.: One-Factorizations. Kluwer, Norwell, MA (1997)
32. Wilcke, W.W., Garner, R.B., Fleiner, C., Freitas, R.F., Golding, R.A., Glider, J.S., Kenchammanahosekote, D.R., Halfen, J.L., Mohuiddin, K.M., Rao, K., Becker-Szendy, R.A., Wong, T.M., Zaki, O.A., Hernandez, M., Fernandez, K.R., Huelis, H., Lenk, H., Smolin, K., Ries, M., Goettelt, C., Picunko, T., Rubin, B.J., Kahn, H., Loo, T.: IBM Intelligent Bricks project—Petabytes and beyond. IBM Journal of Research and Development 50(2/3), 181–197 (2006)
33. Wolfe, A.J.: A perfect one-factorization of K_{52}. Journal of Combinatorial Designs 17(2), 190–196 (2009)
34. Xu, L., Bohossian, V., Bruck, J., Wagner, D.G.: Low-density MDS codes and factors of complete graphs. IEEE Transactions on Information Theory 45(6), 1817–1826 (1999)
35. Xu, L., Bruck, J.: X-Code: MDS array codes with optimal encoding. IEEE Transactions on Information Theory 45(1), 272–276 (1999)
36. Zaitsev, G.V., Zinov’ev, V.A., Semakov, N.V.: Minimum-check-density codes for correcting bytes of errors, erasures, or defects. Problems of Information Transmission 19(3), 197–204 (1983)