Electronic Supplementary Information (ESI):

Particle Emissions of a Heavy-Duty Engine Fueled with Polyoxymethylene Dimethyl Ethers (OME)

Alexander Daniel Gelnera, Dieter Rotheb, Carsten Kykalc, Martin Irwind, Alessandro Sommera, Christian Pastötterb and Georg Wachtmeistera

aTechnical University of Munich, Institute of Internal Combustion Engines, Schragenhofstraße 31, 80992 Munich, Germany.
bMAN Truck & Bus SE, Vogelweiherstraße 33, Nuremberg, Germany.
cTSI GmbH, Neuköllner Straße 4, 52068 Aachen, Germany.
dCatalytic Instruments GmbH & Co. KG, Zellerhornstraße 7, 83026 Rosenheim.

Measurement methods of OME values

Parameter	Value	Method
Cetane number	68.8	DIN EN 17155 :2018
Oxygen content in % (w/w)	45.0	DIN 51732 :2014 mod.
Sulfur content in mg/kg	< 5	DIN EN ISO 20884 :2011
Lower heating value in MJ/kg	19.21	DIN 51900-2 :2003 mod.
Density (15°C at 1 bar) in kg/dm3	1057.1	DIN EN ISO 12185 :1997
Boiling range at 1 bar in °C	144.9 – 242.4	DIN EN ISO 3405 :2011
Flash point at 1 bar in °C	65.0	DIN EN ISO 2719 :2016
Cold Filter Plugging Point in °C	-40	DIN EN 116 :2018
Cloud Point in °C	-38	DIN EN 23015 :1994
Kinematic viscosity at 40°C in mm2/s	1.082	DIN EN ISO 3104 :1999
Lubricity – HFFR at 60°C in µm	320	DIN EN ISO 12156-1 :2016
Formaldehyde content in mg/kg	233	ASG 1855 Voltammetry

Properties of the test engine

Parameter	Value
Number of cylinders	6 (inline)
Displacement	12,419 cm3
Bore	126 mm
Stroke	166 mm
Power	294 kW
Compression ratio	18 : 1
Number of valves per cylinder	4 (2 inlet / 2 exhaust)
Charge	Two-stage waste-gate turbocharger
Exhaust gas recirculation	High-pressure & cooled
Injection system	Common Rail (max. 1800 bar)
Hydraulic nozzle flow rate	Diesel: 1,300 cm3 / 30 s (at 100 bar)
	OME: 1,835 cm3 / 30 s (at 100 bar)
Properties of the aftertreatment system components

Table 3. Properties of the ATS components provided by VT Vitesco Technologies Emitec GmbH in downstream order. The value of the platinum group metals (PGM) density represents the total quantity of the precious metal content of platinum (Pt) and palladium (Pd). (*) The value of the open frontal area (OFA) bases on the following assumptions: coating of the DOC is 150 g/dm³, coating of the Hyd is 60 g/dm³ and coating of the SCR is 200 g/dm³, with a wash-coat density of 1.35 g/cm³. (***) In some test runs with OME, the DPF is removed. The DPF had a mileage of about 500 km in diesel operation before the test runs.

Component	Catalytic coating	PGM in g/ft³	Cell density in cpsi	Diameter in mm	Length in mm	Volume in dm³	Carrier material	Carrier structure	OFA (*)
Hyd	TiO₂	-	N/A	174.6	60	1.43	Metal	300/600 LSPE	89%
SCR	CuZe	-	N/A	300	3 x 101.5	21.5	Metal	600 CS	79%
ASC	Pt	3	60	300	300	90	6.4	Metal	78%
DOC	Pt, Pd (1 : 1)	35	300	300	100	10.6	Metal	300/600 LS	82%
DPF (**)	Uncoated	None	300	305	381	27.8	Cordierite	Symmetrical	83%
Hyd	TiO₂	-	N/A	174.6	60	1.43	Metal	300 PE	89%
SCR	CuZe	-	400	300	4 x 101.5	28.8	Metal	E400	77%

Scheme of the test bench setup

Figure 1. Test bench setup. The raw exhaust sampling point was located approx. 0.5 m downstream of the second turbocharger; the tailpipe sampling point was located approximately 50 mm downstream of the ATS.
Chronological order of test runs

Table 4. Chronological order of the test runs and the respective setup. (*) marks the last test run of the day, with the next test run happening on another day. (**) The test runs of WHSC and WHTC with DPF happened between the cleaning process after the fuel change and the removal of the DPF.

Chronological order	Removal of volatile fraction	Dilution	Sampling point	Urea dosing				
	With CS	w/o CS	One-stage	Two-stage	Raw exhaust	Tailpipe	With dosing	w/o dosing
1	X	X	X	X				
2	X	X	X	X				
3	X	X	X	X				
4	X	X	X	X				
5	X	X	X	X				
6 (*)	X	X	X	X				
7	X	X	X	X				
8	X	X	X	X				
9	X	X	X	X				

Comparison between diesel and OME: raw exhaust

Change from diesel to OME: change of the injectors; removal of the DPF ()**

Cleaning of the impactor

Investigation on OME: one-stage dilution

Investigation on urea dosing

Step sizes of the DMA

Step size (nm)	6.38 nm	6.61 nm	6.85 nm	7.10 nm	7.37 nm	7.64 nm	7.91 nm	8.20 nm	8.51 nm	8.82 nm	9.14 nm	9.47 nm	9.82 nm	10.2 nm	10.6 nm	10.9 nm	11.3 nm	11.8 nm	12.2 nm	12.6 nm	13.1 nm	13.6 nm	14.1 nm	14.6 nm	15.1 nm	15.7 nm	16.3 nm	16.8 nm	17.5 nm	18.1 nm	18.8 nm	19.5 nm	20.2 nm	20.9 nm
Calculation of particle losses†

Maximum tube Reynolds number and maximum particle Reynolds number (according to Hinds (1))

The following calculations describe the respective maximum or minimum of each value and therefore enable the decision of whether the flow is laminar or turbulent.

Temperature T: 293.15 K
Pressure p: 101.3 kPa
Tube diameter d_t: 0.006 m
Air velocity v_a: 5.895 m/s
Particle diameter d_p: 0.23 µm
Particle velocity v_p: 5.895 m/s

Air density ρ_a:
$$\rho_a = 1.293 \cdot \frac{273.15}{T} \cdot \frac{p}{1013} = 1.2048 \text{ kg/m}^3$$

Air dynamic viscosity μ_a:
$$\mu_a = 0.0000178 \cdot \left(\frac{T}{273.15}\right)^{1.5} \cdot \frac{393.396}{T + 120.246} = 1.8071 \cdot 10^{-5} \text{ Pa} \cdot \text{s}$$

Particle Reynolds number Re_p:
$$Re_p = 0.000001 \cdot \rho_a \cdot d_p \cdot \frac{v_p}{\mu_a} = 0.0904$$

According to Hinds, the flow is laminar for $Re_p < 0.1$.

Tube Reynolds number Re_t:
$$Re_t = \rho_a \cdot d_t \cdot \frac{v_a}{\mu_a} = 2358$$

According to Hinds, the flow is laminar for $Re_t < 2000$, but not turbulent as long as $Re_t < 4000$ (1).

Since Re_p decreases for smaller particles and higher aerosol temperature, and Re_t decreases with higher aerosol temperature, the assumption of laminar flow in all parts of the sampling system is valid.

Gravitational settling in the inlet (according to Willeke & Baron(2))

The following calculations describe the respective maximum or minimum of each value and therefore lead to the minimum penetration rate through the inlet.

Air dynamic viscosity μ_a: 1.8071 \cdot 10^{-5} \text{ Pa} \cdot \text{s}
Tube diameter d_t: 0.006 m
Air velocity v_a: 5.895 m/s
Particle diameter d_p: 0.23 µm
Particle density ρ_p: 1000 kg/m³
Inlet length l_i: 0.3 m
Sampling angle θ: 45°
Velocity ratio R: 1 (isokinetic)
Flow Reynolds number Re_t: 2358

Slip correction factor S:
$$S = 1 + \frac{2}{p \cdot d_p \cdot 0.752} \cdot 6.32 + 2.01$$

Setting velocity v_s:
$$v_s = \rho_p \cdot d_p^2 \cdot 0.000000000001 \cdot 9.81 \cdot \frac{S}{18 \cdot \mu_a} = 2.8 \cdot 10^{-6} \text{ m/s}$$

Stokes number St:
$$St = \rho_p \cdot d_p^2 \cdot 0.000000000001 \cdot \frac{S}{18 \cdot \mu_a} \cdot \frac{R}{d_t} = 0.0003$$

Gravitational deposition parameter g_d:
$$g_d = l_i \cdot \frac{v_s}{v_a} \cdot d_t$$

K(θ):
$$K(\theta) = \sqrt{g_d \cdot St \cdot Re_t^{-0.25} \cdot \cos\left(\frac{\theta}{180}\right)}$$

Penetration rate r_p:
$$r_p = e^{-\left(4.7 \cdot K(\theta)^{0.75}\right)} = 0.9992$$

Since r_p increases for smaller particles and higher aerosol temperature, the neglect of gravitational settling in the inlet is valid.

†The calculations were performed using Matlab R2019b. Therefore it used more digits than indicated in this document. The EXCEL-Tool "aerocalc" by Paul Baron was used for the specific formulas.
Sedimentation (according to Willeke & Baron (2))

The following calculations describe the respective maximum or minimum of each value and therefore lead to the minimum penetration rate inside the tubing.

Parameter	Value
Particle diameter dₚ	0.23 µm
Particle density ρₚ	1000 kg/m³
Tube diameter d₁	0.006 m
Tube length l₁	4.37 m
Incline angle δ	0°
Mean flow velocity vₛ	5.895 m/s
Flow Reynolds number Reₖ	2358
Slip correction factor S	1.7551 (for dₚ = 0.23 µm)
Setting velocity vₛ	2.8·10⁻⁶ m/s

Intermediate number k₁:

\[k_1 = \cos \left(\pi \cdot \frac{\delta}{180} \right) \cdot 3 \cdot v_s \cdot \frac{l_1}{4 \cdot d_1 \cdot v_a} \]

Intermediate number k₂:

\[k_2 = \arcsin \left(\frac{1}{k_1^3} \right) \]

Penetration rate \(r_p \):

\[r_p = 1 - 2\pi \cdot \sqrt{1 - \left(\frac{1}{k_1^3} \right)} + k_2 - \left(\frac{1}{k_1^3} \right) \cdot \sqrt{1 - k_2^3} = 0.9996 \]

Since \(r_p \) increases for smaller particles and higher aerosol temperature, the neglect of gravitational settling in the tubing is valid.

Bent tubing (according to Willeke & Baron (2))

The following calculations describe the respective maximum or minimum of each value and therefore lead to the minimum penetration rate through bent tubing.

Parameter	Value
Particle diameter dₚ	0.23 µm
Stokes number St	0.0003
Flow Reynolds number Reₖ	2358
Angle of bend ψ	90°

Penetration rate \(r_p \):

\[r_p = 1 - St \cdot \gamma \cdot \frac{\pi}{180} = 0.9993 \]

Since \(r_p \) increases for smaller particles and higher aerosol temperature, the neglect of losses in bent tubing is valid.

Coagulation (according to Willeke & Baron (2))

The following calculations describe the respective maximum or minimum of each value and therefore lead to the maximum coagulation rate. Furthermore, the initial particle concentration considers monodisperse aerosol of the total concentration.

Upper particle diameter \(d_{pu} \): 0.23 µm
Lower particle diameter \(d_{pu} \): 0.006 µm
Initial particle concentration \(PN \): 10³¹ 1/m³
Coagulation coefficient \(c \): 5.6·10⁻¹⁶ m³/s
Time \(t \): ~1 s
(tubing length: 4.3 m, velocity: 5.9 m/s)

Final particle concentration \(PN_f \):

\[PN_f = \frac{PN}{1 + PN \cdot c \cdot t} = 9.9443 \cdot 10^{-12} \text{ m}^3 \]

Final particle size \(d_{fu} \) for \(d_{pu} \):

\[d_{fu} = d_{pu} \left(\frac{PN}{PN_{fu}} \right) ^{\frac{1}{3}} = 0.2304 \, \mu\text{m} \]

Final particle size \(d_{fu} \) for \(d_{pu} \):

\[d_{fu} = d_{pu} \left(\frac{PN}{PN_{fu}} \right) ^{\frac{1}{3}} = 0.0060 \, \mu\text{m} \]

Since the aerosol is polydisperse with lower total particle concentrations and the dwell time is less than one second, the neglect of coagulation is valid.

Thermophoretic velocity (according to Hinds (1) and Willeke & Baron (2))

The following calculations describe the respective maximum or minimum of each value and therefore lead to the maximum thermophoretic velocity tubing.

Temperature of particle \(T_p \): 693.15 K
Pressure \(p \): 101.3 kPa
Particle diameter \(d_p \): 0.23 µm
Particle thermal conductivity \(k \): 4.2 W/m·K (carbon)
Thermal gradient \(\Delta T \): 4000 K/m
Air density \(\rho_{a,h} \): 0.5095 kg/m³
Air dynamic viscosity \(\mu_{a,h} \): 3.3393·10⁻⁵ Pa·s
Slip correction factor S: 1.7551 (for \(d_p = 0.23 \mu m \))

Mean free path \(\lambda \):

\[\lambda = 0.00674 \cdot 0.0001 \cdot \frac{T_p}{296.15} \cdot \frac{1 + \frac{110.4}{p}}{1 + \frac{110.4}{296.15}} \]

Intermediate factor H:

\[H = \frac{1}{1 + 6 \cdot \frac{\lambda}{d_p} - 0.000001} \cdot \left(\frac{0.026}{\kappa} + 4.4 \cdot \frac{\lambda}{d_p} \cdot 0.000001 \right) \]

\[H = \frac{1 + 2 \cdot \frac{0.026}{\kappa} + 8.8 \cdot \frac{\lambda}{d_p} \cdot 0.000001}{1 + 6 \cdot \frac{\lambda}{d_p} - 0.000001} \]

Thermophoretic velocity \(v_T \):

\[v_T = 3 \cdot \mu_{a,h} \cdot S \cdot H \cdot \frac{\Delta T}{2 \cdot \rho_{a,h} \cdot T_p} = 7.4375 \cdot 10^{-5} \frac{m}{s} \]
Since v_T decreases for lower aerosol temperature and lower temperature gradients, the neglect of thermophoretic losses is valid.

Diffusional losses in a cylindrical tube-fraction passing through tube under laminar flow (according to Willeke & Baron (2))

Since the tubing length between the catalytic stripper and the SMPS is the dominant part in this calculation, the temperature inside the tubing is assumed to be 20°C. The maximum deviation in penetration efficiency between an aerosol temperature of 20°C and 220°C is less than 1.06% absolute for a particle diameter of 6 nm.

Temperature T: 293.15 K
Pressure p: 101.3 kPa
Particle diameter d_p: from 0.006 µm to 0.23 µm
Tube diameter d_t: 0.006 m
Tube length l_t: 4.37 m
Air flow rate V_a: 1.667 \cdot 10^{-4} m³/s
Air density ρ_a: 1.2048 kg/m³
Air dynamic viscosity μ_a: 1.8071 \cdot 10^{-5} Pa·s
Slip correction factor S: depending on d_p

Diffusion coefficient β:

$$\beta = 1.38 \cdot 10^{-23} \cdot \frac{T}{3 \cdot \pi \cdot \mu_a \cdot d_p} \cdot 0.000001$$

$Hinds$:

$$\mu_{Hinds} = \beta \cdot \frac{l_t}{V_a}$$

Penetration rate r_p:

$$r_p = 1 - 5.5 \cdot (\mu_{Hinds})^2 + 3.77 \cdot \mu_{Hinds}$$

Particle losses in the ejector diluters (according to Giechaskiel et al. (3))

The transportation losses of the ejector diluters were assumed to be 5% for each diluter and for any particle diameter, according to the measurements of Giechaskiel et al. (3).

Electrostatic losses

Transport losses due to electrostatic fields were neglected due to the usage of stainless steel wherever possible and an intermediate connection using Tygon tubing. This polymer is known as a tubing material having lower electrostatic losses than other kinds of tubing (4–6).

Particle losses inside the catalytic stripper

The manufacturer of the catalytic stripper (Catalytic Instruments GmbH & Co. KG) provide in the manual, penetration efficiency data at nominal flow (10 l/min):

D_p (nm)	F	D_p (nm)	F	D_p (nm)	F
3.55	0.0017	7.30	0.03	12.10	0.15
3.56	0.0017	7.31	0.03	12.11	0.15
3.57	0.0017	7.32	0.03	12.12	0.15
3.58	0.0017	7.33	0.03	12.13	0.15

Figure 2 shows the calculated penetration efficiencies of the purpose-built sampling systems with and without the CS or the second dilution stage. The results of the PSD in this work use the PCRF of these calculations. Furthermore, the “Aerosol Instrument Manager” software by TSI includes the option of considering the diffusion losses inside the SMPS and a multiple charge correction. The evaluations in this study include these considerations.

Calculated particle losses

- one-stage w/o CS
- two-stage w/o CS
- one-stage with CS
- two-stage with CS

Considered losses:
- Brownian diffusion
- Ejector diluters
- Catalytic stripper

Figure 2. Calculated particle losses. The losses due to Brownian diffusion are based on calculations according to Hinds (1) with the assumption of a laminar flow inside the tubing. The losses of each ejector diluter were assumed to be 5% according to Giechaskiel et al. (3). The manufacturer of the catalytic stripper determined the respective penetration efficiency at a nominal flow rate of 10 l/min.
References

1. Hinds WC. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley; 1999.

2. Kulkarni P, Baron PA, Willeke K. Aerosol Measurement. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2011.

3. Giechaskiel B, Ntziachristos L, Samaras Z. Effect of ejector dilutors on measurements of automotive exhaust gas aerosol size distributions. Meas. Sci. Technol. 2009; 20(4):45703.

4. Liu BY, Pui DY, Rubow KL, Szymanski WW. Electrostatic effects in aerosol sampling and filtration. Ann Occup Hyg 1985; 29(2):251–69.

5. Tsai CS-J. Characterization of Airborne Nanoparticle Loss in Sampling Tubing. J Occup Environ Hyg 2015; 12(8):D161-7.

6. Asbach C, Kaminski H, Lamboy Y, Schneiderwind U, Fierz M, Todea AM. Silicone sampling tubes can cause drastic artifacts in measurements with aerosol instrumentation based on unipolar diffusion charging. Aerosol Science and Technology 2016; 50(12):1375–84.