Abstract. Calcium (Ca$^{2+}$) is an essential signaling molecule in all cells. It is involved in numerous fundamental functions, including cell life and death. Abnormal regulation of Ca$^{2+}$ homeostasis may cause human diseases. Usually known as a member of the transient receptor potential (TRP) family, TRP ankyrin 1 (TRPA1) is the only member of the ankyrin subfamily identified in mammals so far and widely expressed in cells and tissues. As it is involved in numerous sensory disorders such as pain and pruritus, TRPA1 is a potential target for the treatment of neuropathy. The functions of TRP family members are closely related to Ca$^{2+}$. TRPA1 has a high permeability to Ca$^{2+}$, sodium and potassium ions as a non-selective cation channel and the Ca$^{2+}$ influx mediated by TRPA1 is involved in a variety of biological processes. In the present review, research on the relationship between the TRPA1 channel and Ca$^{2+}$ ions and their interaction in disease-associated processes was summarised. The therapeutic potential of the TRPA1 channel is highlighted, which is expected to become a novel direction for the prevention and treatment of health conditions such as cancer and neurodegenerative diseases.

Contents

1. Introduction
2. TRP family
3. Structure, distribution and physiological function of TRPA1
4. Ca$^{2+}$ ions
5. Coupling TRPA1 with Ca$^{2+}$ ions
6. Interaction between TRPA1 and Ca$^{2+}$ in disease progression
7. Conclusions and perspectives

1. Introduction

Calcium ions (Ca$^{2+}$) are essential electrolytes in the body and have a fundamental role in regulating nerve cell excitation, neurotransmitter release, membrane integrity and muscle contraction. Thus, Ca$^{2+}$-triggered signalling pathways have an important role in neuron survival, plasticity and nerve transmission.

Over the past decade, transient receptor potential (TRP) channels have attracted increasing attention. TRP ankyrin 1 (TRPA1), a non-selective cation channel permeable to Ca$^{2+}$ ions, is broadly distributed in various parts of the human body and is associated with various physiological and pathological states, such as sensations of cold and pain, as well as itchiness. Numerous studies have explored the role of the channel in the initiation and development of toxicity. The present review summarized the progress of research on the structure, function and distribution of TPRA1, and discussed diseases related to TPRA1 and Ca$^{2+}$.

2. TRP family

TRP family members are non-selective cation channels that were discovered in the visual system of the fruit fly Drosophila melanogaster (1). There are 28 known TRP cation channels with different structures and functions (2). All TRP channels have six transmembrane domains (S1-S6), and both N- and C-termini are located on the cytoplasmic side of the cell membrane. These proteins are thought to function as tetramers. TRP channels allow cations such as Ca$^{2+}$, Mg$^{2+}$, Na$^{+}$ and K$^{+}$ to pass through, which leads to cell depolarisation, influx of extracellular Ca$^{2+}$, release of Ca$^{2+}$ from intracellular Ca$^{2+}$ stores and binding of Ca$^{2+}$ to calmodulin (CaM), ultimately affecting
cell proliferation and apoptosis. The functions of the TRP family are closely related to Ca\(^{2+}\). For instance, TRPC cation channel subfamily V member 5 (TRPV5) and TRPV6 are Ca\(^{2+}\) uptake channels in epithelial tissues with unique selectivity for Ca\(^{2+}\) \([\text{permeability} (P) \text{ ratio } P_{\text{Ca}}/P_{\text{Na}}>100]\) (3).

In mammals, there are six TRP channel subtypes according to their amino acid sequence homology: The ankyrin TRP TRPA1, the canonical TRPC and TRPV, the melatonin TRP termed TRPM, the polycystic TRP known as TRPP and the mucolipin TRP TRPML (4). Although all TRP channels share certain similarities in sequence and structure, there are significant differences in physiological functions, including cation selectivity, ligand binding and sensitivity to temperature and other environmental conditions among family members (5). The members of TRPV subfamily are considered to be heat sensors, nociceptive sensors, mechanosensors and osmo-sensors (6,7) and the majority of TRPM subfamily members are implicated in taste, gastric hormone secretion and insulin release (7,8). Brain development and vaso-motor regulation have been reported for the TRPC subfamily channels (7-9), while the defining characteristic of the TRPP subfamily is their association with renal development (7-10). Evidence suggests that the TRPML subfamily is associated with endocytosis and the regulation of autophagy (7-9). The TRPA subfamily has been indicated to function as a thermo-sensor, chemo-sensor and olfactory sensor (6,7). The major physiological function of TRP family members in mammals is listed in Table I.

Mutations related to human diseases have been detected in nearly 30 members of the TRP channel family, which highlights their importance in human physiology, and they are likely to continue receiving attention in the future.

3. Structure, distribution and physiological function of TRPA1

Ankyrins are a group of linker proteins located on the membrane cytoskeleton that mediate the attachment of intact membrane proteins to spectrin and actin. TRPA1 was first isolated from human fetal lung fibroblasts in 1999 (11) and was originally called ankyrin-like with transmembrane domains protein 1 (12). It is the only known member of the TRPA subfamily and consists of 119 amino acid residues with a molecular weight of 127.4 kDa. **TRPA1 structure.** As all TRP channels, TRPA1 is a tetrameric protein composed of four subunits (119 amino acids) and six transmembrane \(\alpha\)-helices (S1-S6), with the pore loop structure located in the hydrophilic region between S5 and 6 (13,14). TRPA1 derives its name from 14-18 ankyrin repeats at the N-terminus (depending on species) in addition to a large number of active cysteine residues (15), which is an unusual structural feature and may be related to its interaction with intracellular components (16).

TRPA1 may be activated by a series of harmful external stimuli and endogenous signals related to cell damage. The latter includes cinnamaldehyde, allicin, allyl isothiocyanate and reactive oxygen species (17,18). The major mechanism of activation is the covalent modification of cysteine and lysine residues at the N-terminus of TRPA1 by highly electrophilic compounds (19). This mechanism promotes local conformational changes, leading to the expansion of the pore loop structure, which increases the permeability to Ca\(^{2+}\). In addition to being activated by reactive electrophiles and oxidants, TRPA1 may also be indirectly activated by the pro-inflammatory factor-mediated phospholipase C signal, in which cytoplasmic Ca\(^{2+}\) are an important regulator of channel gating (20). In addition, as TRPA1 is permeable to both univalent and bivalent cations (including Ca\(^{2+}\), sodium and potassium), it is able to depolarise the membrane and activate Ca\(^{2+}\) signals (21). The structure of TRPA1 is presented in Fig. 1.

TRPA1 distribution. TRPA1 is a non-selective cation channel present in various tissues and organs, but it is mainly expressed in sensory neurons, such as primary sensory neurons in the lung, skin and brain, and peptidergic neurons (22), particularly those in the mammalian dorsal root ganglion, trigeminal ganglion, nodular ganglion and jugular ganglion (23).

In addition, TRPA1 is also present in several non-nerve cells and tissues, including vascular endothelial cells and chondrocytes (24,25), but the function of this expression has remained largely elusive. The major distribution of TRPA1 in the human body is presented in Fig. 2.

Physiological functions of TRPA1. TRPA1 is a cold-sensitive ion channel that may be activated to generate a stress response to endogenous and exogenous chemical stimulation, cold stimulation, mechanical stimulation and various inflammatory mediators. The activation of TRPA1 is closely related to the conduction and generation of cold sensation, the mediation of pain and analgesia, and the regulation of inflammatory substances.

TRPA1 is not mechanically sensitive under physiological conditions, but it may be activated at temperatures <17°C (26); hence, it serves as a cold-sensitive receptor that detects changes in temperature in the internal and external environment. In addition to mediating temperature sensation and pain (27), TRPA1 functions in mechanical perception (28) and has a role in certain inflammatory states (29). Furthermore, TRPA1 is also associated with hypersensitivity and overexcitation in certain non-neuronal regions and has an important role in the pathophysiology of asthma, neuropathic pain, chronic itching, migraine, gastrointestinal motility disorders, anxiety and cognitive dysfunction (30-34).

Due to its individual characteristics in different organs, TRPA1 has been actively studied as a potential target for treating various diseases.

4. Ca\(^{2+}\) ions

Second messenger is one of the initiating components of intracellular signal transduction. Ca\(^{2+}\), as an ubiquitous second messenger in the cytoplasm, is involved in the regulation of a variety of important physiological processes in cells, such as the synthesis and release of neurotransmitters, regulation of germ cell maturation and fertilization, and regulation of the activities of various enzymes in the body (35). Ca\(^{2+}\) is also closely related to hypertension, coronary heart disease, Alzheimer's disease (AD) and numerous other diseases (36-38). The intracellular second messenger Ca\(^{2+}\) has been a hot research topic in recent years.
The cytosolic free Ca\(^{2+}\) concentration in mammalian cells is generally controlled in the range of 100-200 nmol/l, while the Ca\(^{2+}\) concentration in extracellular organelles is kept in the order of mmol/l (39). The steep but tightly controlled concentration gradient of Ca\(^{2+}\) within and outside the cell membrane, as well as between cytoplasm and organelles, is maintained and dynamically regulated according to cell needs through the cooperative work of a variety of ion channels, ion pumps and transporters (40). The major channels and transporters for intracellular Ca\(^{2+}\) cycling are presented in Fig. 3.

Abnormality of any link may cause instability of Ca\(^{2+}\) homeostasis. Ca\(^{2+}\) homeostasis is essential for cell maintenance; under pathological conditions, Ca\(^{2+}\) homeostasis is altered, with increased cytoplasmic Ca\(^{2+}\) concentrations. Ca\(^{2+}\) channels are a basis for revealing the regulatory laws of Ca\(^{2+}\) homeostasis and vital processes. Certain cation channels, including TRP family members, promote the influx of Ca\(^{2+}\). For instance, although TRPA1 has high permeability to Ca\(^{2+}\), Na\(^{+}\) and K\(^{+}\), it has high Ca\(^{2+}\) selectivity. The PCa/PNa is 6 when the channel opens spontaneously and increases to 9 when the channel is activated by an electrophilic reagent (41).

Table I. TRP family members in mammals.

Subfamily	Main physiological function	(Refs.)
TRPV	Thermo-sensation; nociception; mechano-sensation; osmo-sensation (6,7)	
TRPM	Taste; gastric hormone secretion; insulin release (7,8)	
TRPC	Brain development; vaso-motor regulation (7,9)	
TRPP	Renal development (7,10)	
TRPML	Endocytosis and endosomal/lysosomal function; regulation of autophagy (7,9)	
TRPA	Thermo-sensation; chemo-sensing; nociception; olfactory responses (6,7)	

TRP, transient receptor potential channel; V, vanilloid; M, melastatin; C, canonical; P, polycystic; ML, mucolipin; A, ankyrin.

5. Coupling TRPA1 with Ca\(^{2+}\) ions

TRPA1 mediates Ca\(^{2+}\) internal flow. Compared with most other TRP channels, TRPA1 has higher Ca\(^{2+}\) permeability. The N-terminus of TRPA1 contains two helical Ca\(^{2+}\)-binding motifs and the permeation pathway involves two major contraction sites (15), with an aspartate (D918 in mouse, D915 in human) within the pore loop that is critical for Ca\(^{2+}\) permeability (13). Total internal reflection fluorescence and confocal microscopy revealed that the signal generated by Ca\(^{2+}\) influx from a single TRPA1 channel in endothelial cells is at least 200 times that of L-type Ca\(^{2+}\) channels (42). This is because TRPA1 channels exist in the plasma membrane of endothelial cells with a tight binary structure. When one of a pair of channels is opened, afferent Ca\(^{2+}\) is able to bind to the Ca\(^{2+}\)-sensitive EF-Hand protein domain at the N-terminus, thereby triggering the adjacent channel (43).

There is a highly conserved structural motif in the TRPA1 channel that is the key site of intracellular Ca\(^{2+}\) elevation caused by Ca\(^{2+}\) storage (44), which explains various Ca\(^{2+}\)-dependent processes, including sensitisation, desensitisation and coupling with metabolic receptors. TRPA1-mediated Ca\(^{2+}\) influx is involved in various biological processes such as factor secretion (45) and gene transcription (46). TRPA1 is able to induce apoptosis in cardiomyocytes (47), oligodendrocytes (48) and hippocampal neurons (49) by regulating the Ca\(^{2+}\) concentration. Increasing evidence indicates that TRPA1-mediated Ca\(^{2+}\) influx has a role in determining the pathophysiological state.
Electrical stimulation of TRPA1 in adult mouse cardiomyocytes may lead to activation of the calmodulin-dependent kinase II signalling pathway (45), thereby regulating the availability and manoeuvrability of intracellular Ca²⁺. TRPA1 is also the major contributor to the increase in Ca²⁺ in oligodendrocytes caused by ischemia; 70% of the Ca²⁺ increase may be attributed to TRPA1 (50), indicating a key role of the mediation of Ca²⁺ influx in myelin injury. The molecular basis by which TRPA1 regulates nociceptive neurons is also related to Ca²⁺; TRPA1 induces local Ca²⁺ influx at nerve endings, promotes membrane depolarisation and causes the release of neuropeptides from large dense core vesicles through Ca²⁺-dependent exocytosis, resulting in further amplification of nociceptive sensation, recruitment of immune cells, vasodilation and neurogenic inflammation (51).

Ca²⁺ regulates TRPA1 activity. Ca²⁺ ions are the most important endogenous regulators of TRPA1 and they enhance and inhibit the activity of this channel under chemical stimulation. Ca²⁺ binds to the Ca²⁺ binding domain at the C-terminus of the molecule, which opens the ion channel. The high permeability of TRPA1 to Ca²⁺ not only triggers the influx of extracellular Ca²⁺, but also promotes the release of Ca²⁺ from intracellular stores, such as the endoplasmic reticulum (52). Ca²⁺ activation may enhance the responses to other stimuli and desensitise ion channels through a variety of signaling pathways, which in turn regulate the activity of TRPA1.

The opening kinetics of TRPA1 are strongly affected by divalent cations. When Ca²⁺ binds to the channel, the binding of monovalent cations to the channel is hindered. Under the spontaneous opening state, ~17% of the TRPA1 current is Ca²⁺ current (41). Ca²⁺ is able to directly activate TRPA1, which is not only important for the basic reaction of TRPA1 at low Ca²⁺ concentrations (<1 mM), but may also rapidly inactivate TRPA1 at high Ca²⁺ concentrations (>1 mM) (53). Therefore, Ca²⁺ has dual and opposite effects on TRPA1. In addition to direct interaction with TRPA1, indirect interactions occur via cytoplasmic Ca²⁺ binding proteins, among which CaM is the most prominent. TRPA1 binds CaM to form a Ca²⁺-sensing channel complex, a key Ca²⁺ receptor that responds differently to different Ca²⁺ signals (54). Extracellular Ca²⁺ activates and/or enhances TRPA1 at low concentrations but quickly inactivates TRPA1 following channel activation. This process is called desensitisation or rapid analgesia (55) and this contrasting effect is the result of Ca²⁺ regulating TRPA1 through CaM. Both the N- and C-terminal regions may be important for these interactions. A direct effect for Ca²⁺ on purified human TRPA1 (hTRPA1) independent of CaM has been demonstrated (56); Ca²⁺ is able to directly activate hTRPA1 and cause structural changes by directly interacting with binding sites other than the N-terminal ankyrin protein repeat domain of hTRPA1.

Furthermore, thermal activation of TRPA1 in chameleon, chicken and rat snake depends on extracellular Ca²⁺ binding to negatively charged amino acids near the outer surface of channel pore cells, while other divalent cations cannot activate the heat-evoked current (57). Although TRPA1 is a hypo-thermic receptor, certain researchers assume that harmful hypothermia does not directly activate TRPA1, but rather that the cold environment stimulates the release of intracellular Ca²⁺ stores (58), activating TRPA1, a Ca²⁺-dependent ion channel.

6. Interaction between TRPA1 and Ca²⁺ in disease progression

TRPA1 is a neuronal redox-sensitive Ca²⁺ internal flow channel that is overexpressed in human cancers. It upregulates Ca²⁺-dependent anti-apoptosis pathways and promotes resistance to reactive oxygen species (59). Triclosan, an antibacterial agent, was indicated to induce activation of TRPA1 and Ca²⁺ influx in human prostate cancer stromal cells, resulting in the secretion of VEGF and the growth of prostate cancer epithelial cells (60).
TRPA1 serves as a physiological medium for inflammatory signals and appears to perform a functional role in promoting myoblast migration, fusion and potential activation of human satellite cells. Thus, it may provide a novel target for treating muscle injury or muscle-related diseases via the formation of Ca$^{2+}$/calmodulin complexes (61).

The inflammatory factor interleukin (IL)-1β increases the functional expression of TRPA1, which leads to Ca$^{2+}$ over-load and a significant decrease in mitochondrial membrane potential. Inhibition of TRPA1 has a protective effect on mitochondrial dysfunction and even apoptosis of rat chondrocytes induced by IL-1β (62). Furthermore, the TRPA1 channel may protect against intestinal fibrosis by mediating Ca$^{2+}$ mobilisation, in addition to its anti-inflammatory actions (63).

A considerable amount of research has focused on the role of TRPA1 in nervous system regions and suggests that TRPA1 has a promising prospect in both peripheral and central nervous system regions (64-66).

Current therapies of multiple sclerosis mainly focus on pathological immune responses, but they cannot prevent the progression of clinical symptoms (67). TRPA1 regulates the functions of astrocytes by increasing the intracellular Ca$^{2+}$ concentration (24).

Organophosphate-induced delayed neurotoxicity refers to a series of neurological symptoms that occur within 1-3 weeks after the ingestion of organophosphorus compounds (68). A study from the Shanghai Institute of Pharmacy, Chinese Academy of Sciences, discovered that TRPA1 is the major mediator of delayed neuropathy (69). In the same study, verapamil (an L-type Ca$^{2+}$ channel blocker that effectively relieves the symptoms of the disease) was indicated to have a neuroprotective role by inhibiting TRPA1-mediated Ca$^{2+}$ influx.

There is evidence to suggest that excessive Ca$^{2+}$ in astrocytes may influence synaptic function, and regulating TRPA1 channel activity in astrocytes may provide a novel target for blocking early dysfunction in AD (70).

7. Conclusions and perspectives

After years of in-depth research, TRPA1 has attracted extensive clinical attention due to its function as a chemical sensor for irritation and cell damage, and its relationship with various diseases. For instance, hydrogen sulphide-mediated sensor for irritation and cell damage, and its relationship with extensive clinical attention due to its function as a chemical mediator of delayed neuropathy (70).

Currently, TRPA1 is an important subject of toxicology research and is actively studied by pharmaceutical companies (72). However, the functional regulatory mechanisms of TRPA1 remain poorly understood and further investigations may lead to novel protective strategies. In our opinion, areas worthy of further research include the following: i) Unveiling the specific mechanism of the interaction between TRPA1 and Ca$^{2+}$; ii) exploring the therapeutic potential of TRPA1 in the treatment of pain and airway respiratory diseases through clinical studies; iii) assessing the potential of TRPA1 antagonist as a therapeutic target; and iv) investigating the mechanisms by which TRPA1 regulates Ca$^{2+}$ in different diseases.

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 81673227 and 81172712), the Natural Science Foundation of Hunan Province (grant no. 2020JJ4080) and the Key Projects of the Hunan Provincial Department of Education (grant no. 18A254).

Availability of data and materials

Not applicable.

Authors' contributions

FH: Writing-original draft preparation, review and editing. XS: Conceptualization. DL: Supervision, funding acquisition and manuscript revision. Data authentication is not applicable. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Sakaguchi R and Mori Y: Transient receptor potential (TRP) channels: Biosensors for redox environmental stimuli and cellular status. Free Radic Biol Med 146: 36-44, 2020.
2. Alavi MS, Shamsizadeh A, Karimi G and Roohbakhsh A: Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: Friend or foe? Toxicol Mech Methods 30: 1-18, 2020.
3. Saotome K, Singh AK, Yelshanskaya MV and Sobolevsky AI: Crystal structure of the epithelial calcium channel TRPV6. Nature 534: 506-511, 2016.
4. Skerratt S: Recent progress in the discovery and development of TRPA1 modulators. Prog Med Chem 56: 81-115, 2017.
5. Li X and Fine M: TRP channel: The structural era. Cell Calcium 87: 102191, 2020.
6. Venkatachalam K and Montell C: TRP channels. Annu Rev Biochem 76: 387-417, 2007.
7. Nilius B and Flockerzi V: Mammalian transient receptor potential (TRP) cation channels. Preface. Handbook Exp Pharmacol 223: 5-6, 2014.
8. Dhakal S and Lee Y: Transient receptor potential channels and metabolism. Mol Cells 42: 569-578, 2019.
9. Nilius B and Owsiianik G: The transient receptor potential family of ion channels. Genome Biol 12: 218, 2011.
10. Samanta A, Hughes TET and Moisescuova-Bell VY: Transient receptor potential (TRP) channels. Subcell Biochem 87: 141-165, 2018.
11. Laursen WJ, Anderson EO, Hoffstaetter LJ, Bagriantsev SN and Gracheva EO: Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2: 214-226, 2015.
12. Andrade EL, Meotti FC and Calixto JB: TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 133: 189-204, 2012.
18. Tsuchiya Y and Kawamata K: Allicin induces electrogenic secretion of chloride and bicarbonate ions in rat colon via the TRPA1 receptor. J Nutr Sci Vitaminol (Tokyo) 65: 258-263, 2019.

19. Nilius B and Szallasi A: Transient receptor potential channels of transient receptor potential ankyrin 1 ion channel and soma-sition and inflammation. Pharmacol Rev 67: 36-73, 2015.

20. Gallo V, Dijk FN, Holloway JW, Ring SM, Koppelman GH, Sanchez A, Naert R and Nilius B: Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol Rev 100: 725-803, 2020.

21. Veldhuis NA, Poole DP, Grace M, McIntyre P and Bunnett NW: Inhibition of TRPA1 attenuates doxorubicin-induced acute cardiotoxicity by suppressing oxidative stress, the inflammatory response, and endoplasmic reticulum stress. Oxid Med Cell Longev 2018; 5179468, 2018.

22. Dimriel GS, Gao L, Grant DW, Li T, Zhang J, Chen Y, Bao H, Li Y, Wang X, Wang C, Jia Y, Jiang H, Wang Y, Wang X, Zou X, Li X, Wang X, Li S, Tang Y and Xia Y: TRPA1 receptor antagonist for TRPA1 in primary human osteoarthritic fibroblast-like synoviocytes. Inflammation 41: 700-709, 2018.

23. Wang Z, Wang M, Liu J, Ye J, Jiang H, Xu Y, Ye D and Wan J: TRPM7, TRPA1, TRPM2, and TRPV1 are prevented by 17β-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol 54: 529-539, 2018.

24. Touyz RM, Alves-Carvalho R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A and Montezano AC: Vascular smooth muscle contraction in hypertension. Cardiovasc Res 114: 529-539, 2018.

25. van der Kant R and Neefjes J: Small regulators, major consequences-Ca2+ and cholesterol at the endosome-ER interface. Cell Sci 127: 929-938, 2014.

26. Miyake T, Nakamura S, Zhao M, So K, Inoue K, Numata T, Kogure Y, Yamanaka H, Yamamoto S, Li J, Alpizar YA, Helyes Z, Cheng Y and Julius D: Structure potential TRPA1 channels: From structure to disease. Physiol Rev 95: 891-927, 2015.

27. Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R and Nilius B: Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol Rev 100: 725-803, 2020.

28. Sándor Z, Szőke É, Sétáló G Jr, Komoly S and Pintér E: TRPA1, TRPM2, and TRPV1 are prevented by 17β-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol 54: 529-539, 2018.

29. Moilanen LJ, Hämäläinen M, Lehtimäki L, Nieminen RM and Moilanen T: Vascular smooth muscle contraction in hypertension. Cardiovasc Res 114: 529-539, 2018.

30. Logashina YA, Korolkova YV, Kozlov SA and Andreev YA: TRPA1 channel as a regulator of neurogenic inflammation and pain. Structure, function, role in pathophysiology, and therapeutic potential of ligands. Biochemistry (Moscow) 84: 101-118, 2019.

31. Gallo V, Dijk FN, Holloway JW, Ring SM, Koppelman GH, Sanchez A, Naert R and Nilius B: Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol Rev 100: 725-803, 2020.

32. Logashina YA, Korolkova YV, Kozlov SA and Andreev YA: TRPA1 channel as a regulator of neurogenic inflammation and pain. Structure, function, role in pathophysiology, and therapeutic potential of ligands. Biochemistry (Moscow) 84: 101-118, 2019.

33. Lin King JV, Emrick JJ, Kelly MJ, Herzig V, King GF, Medzhiradzsky FK and Julius D: A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain. Cell 178: 1362-1374.e16, 2019.

34. Mocchia F, Berra-Romani R and Tanzini F: Update on vascular endothelial Ca(2+)-signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 3: 127-158, 2012.

35. Pan S, Ryu SY and Sheu SS: Distinctive characteristics and functions of multiple mitochondrial Ca2+- influx mechanisms. Sci China Life Sci 54: 763-769, 2011.

36. Chen Q, Zhang Y, Ding D, Li D, Yang Y, Li Q, Chen X, Hu G and Ling W: Association between serum calcium, phosphorus and mortality among patients with coronary heart disease. Eur J Nutr 57: 2457-2467, 2018.

37. Popugaeva E, Pichtskaya E and Bezprozvanny I: Dysregulation of intracellular calcium signaling in Alzheimer’s disease. Antioxid Redox Signal 29: 1176-1188, 2018.

38. Tsuchiya Y and Kawamata K: Allicin induces electrogenic secretion of chloride and bicarbonate ions in rat colon via the TRPA1 receptor. J Nutr Sci Vitaminol (Tokyo) 65: 258-263, 2019.

39. Nilius B and Szallasi A: Transient receptor potential channels as drug targets. From the science of basic research to the art of medicine. Pharmacol Rev 66: 676-814, 2014.

40. Zymgunt PM and Högestätt ED: TRPA1. Handb Exp Pharmacol 222: 583-630, 2014.

41. Veldhuis NA, Poole DP, Grace M, McIntyre P and Bunnett NW: The G proteins-coupled receptor-transient receptor potential channel axis: Molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev 37: 63-73, 2015.

42. Bátai IZ, Horváth A, Pintér É, Helyes Z and Pozsgai G: Role of transient receptor potential ankyrin 1 channel and somato-tostatin ss4 receptor in the antinociceptive and anti-inflammatory effects of sodium polysulfide and dimethyl trisulfide. Front Endocrinol (Lausanne) 9: 55, 2018.

43. Kurganov E, Saito S, Tanaka Saito C and Tominaga M: Effect of TRPA1 activator allyl isothiocyanate (AITC) on rat dural and pial arteries. Pharmacol Rep 71: 565-572, 2019.

44. Veličkova I, Tóth Á, Balázs Z, Szőke É, Sétáló G Jr, Komoly S and Pintér E: TRPA1 and calcitropic receptors. Leukemia. 2010: 2218-2229.

45. Liu M, Zhong S, Kong R, Shao H, Wang C, Piao H, Lv W, Chu X, Wang Z, Wang M, Liu J, Ye J, Jiang H, Xu Y, Ye D and Wan J: TRPA1 mediates pro-inflammatory responses in primary human osteoarthritic fibroblast-like synoviocytes. Inflammation 41: 700-709, 2018.

46. Yin S, Wang P, Xing R, Zhao L, Li X, Zhang L and Xiao Y: TRPA1 receptor and cadmium modulation of the TRPA1 receptor. Nature 585: 141-145, 2020.

47. Wang Z, Wang M, Liu J, Ye J, Jiang H, Xu Y, Ye D and Wan J: TRPA1 channel as a regulator of neurogenic inflammation and pain. Structure, function, role in pathophysiology, and therapeutic potential of ligands. Biochemistry (Moscow) 84: 101-118, 2019.

48. Liu M, Zhong S, Kong R, Shao H, Wang C, Piao H, Lv W, Chu X and Zhao Y: Paeonol alleviates interleukin-1β-induced inflammatory responses in osteoarthritis cells during osteoarthritis. Biomed Pharmacother 95: 914-921, 2017.

49. Yazğan Y and Naziroğlu M: Ovariectomy-induced mitochondrial oxidative stress, apoptosis, and calcium ion influx through TRPA1, TRPM2, and TRPV1 are prevented by 17β-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol 54: 760-763, 2017.

50. Hamilton NB, Kolodziejczyk K, Kougioimtzidou E and Attwell D: Proton-gated Ca(2+)-permeable TRP channels damage myelin in conditions mimicking ischaemia. Nature 529: 523-527, 2016.

51. Kádóková A, Synytsya V, Krusec J, Zimova L and Vlachova C: Molecular basis of TRPA1 regulation in nociceptive neurons. A review. Physiol Res 66: 425-439, 2017.

52. Stueber T, Eberhardt MJ, Caspi Y, Lev S, Binshtok A and Leffler A: Differential cytotoxicity and intracellular calcium-signalling following activation of the calcium-permeable ion channels TRPA1 and TRPV1. Cell Calcium 68: 34-44, 2017.

53. Hasian R and Zhang X: Ca2+ regulation of TRP channel proteins. Int J Mol Sci 19: 1256, 2018.

54. Hasan R, Leeson-Payne AT, Jaggard JH and Zhang X: Calmodulin is responsible for Ca2+-dependent regulation of TRP1 channels. Sci Rep 7: 45098, 2017.

55. Cordero-Morales JF, Gracheva EO and Julius D: Cytoplasmic calcium repeats of transient receptor potential AI (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc Natl Acad Sci USA 108: E1184-E1191, 2011.

56. Paulsen CE, Armache JP, Gao Y, Cheng Y and Julius D: Structure of transient receptor potential ankyrin 1 channel suggests regulatory mechanisms. Nature 520: 511-517, 2015.
56. Moparthi L, Moparthi SB, Wenger J and Zygmunt PM: Calcium activates purified human TRPA1 with and without its N-terminal ankyrin repeat domain in the absence of calmodulin. Cell Calcium 90: 102228, 2020.

57. Kurganov E and Tominaga M: Dependence of heat-evoked TRPA1 activation on extracellular Ca2+. Channels (Austin) 11: 271-272, 2017.

58. Zurborg S, Yurgionas B, Jira JA, Caspani O and Heppenstall PA: Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10: 277-279, 2007.

59. Takahashi N, Chen HY, Harris IS, Stover DG, Selfors LM, Bronson RT, Deraedt T, Cichowski K, Welm AL, Mori Y, et al: Cancer cells co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance. Cancer Cell 33: 985-1003.e7, 2018.

60. Derouiche S, Mariot P, Warnier M, Vancauwenbergh E, Bidaux G, Gosset P, Mauroy B, Bonnal JL, Slomianny C, Delcourt P, et al: Activation of TRPA1 channel by antibacterial agent triclosan induces VEGF secretion in human prostate cancer stromal cells. Cancer Prev Res (Phila) 10: 177-187, 2017.

61. Osterloh M, Böhm M, Kalbe B, Osterloh S and Hatt H: Identification and functional characterization of TRPA1 in human myoblasts. Pflugers Arch 468: 321-333, 2016.

62. Yin S, Zhang L, Ding L, Huang Z, Xu B, Li X, Wang P and Mao J: Transient receptor potential ankyrin 1 (trpa1) mediates il-β-induced apoptosis in rat chondrocytes via calcium overload and mitochondrial dysfunction. J Inflamm (Lond) 15: 27, 2018.

63. Kurahara LH, Hiraishi K, Hu Y, Koga K, Onitsuka M, Doi M, Aoyagi K, Takedatsu H, Fujihara Y, et al: Activation of myoibroblast TRPA1 by steroids and pirfenidone ameliorates fibrosis in experimental crohn's disease. Cell Mol Gastroenterol Hepatol 5: 299-318, 2017.

64. Kheradpezhouh E, Choy JMC, Daria VR and Arabzadeh E: TRPA1 expression and its functional activation in rodent cortex. Open Biol 7: 160314, 2017.

65. Kittaka H and Tominaga M: The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin. Allergol Int 66: 22-30, 2017.

66. Bölcskei K, Krizsza G, Ságyh É, Payrits M, Sipos É, Vrancesic A, Berente Z, Ábrahám H, Ács P, Komoly S and Pintér É: Behavioural alterations and morphological changes are attenuated by the lack of TRPA1 receptors in the cuprizone-induced demyelination model in mice. J Neuroimmunol 320: 1-10, 2018.

67. Habis M: Immune and autonomic nervous system interactions in multiple sclerosis: Clinical implications. Clin Auton Res 29: 267-275, 2019.

68. Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhacheva GF and Wijeyesakere SJ: Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Adv Neurotoxicol 4: 1-78, 2020.

69. Ding Q, Fang S, Chen X, Wang Y, Li J, Tian F, Xu X, Attali B, Xie X and Gao Z: TRPA1 channel mediates organophosphate-induced delayed neuropathy. Cell Discov 3: 17024, 2017.

70. Bosson A, Paumier A, Boisseau S, Jacquier-Sarlin M, Buisson A and Albrieux M: TRPA1 channels promote astrocytic Ca2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid-β peptide. Mol Neurodegener 12: 53, 2017.

71. Hajna Z, Ságyh É, Payrits M, Aubdool AA, Szőke É, Pozsgai G, Bátaí IZ, Nagy L, Filipát D, Heyles Z, et al: Capsaicin-sensitive sensory nerves mediate the cellular and microvascular effects of H2S via TRPA1 receptor activation and neuropeptide release. J Mol Neurosci 60: 157-170, 2016.

72. Kaneko Y and Szallasi A: Transient receptor potential (TRP) channels: A clinical perspective. Br J Pharmacol 171: 2474-2507, 2014.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.