Observation of the $e/3$ fractionally charged Laughlin quasiparticles

L. Saminadayar and D. C. Glattli
Service de Physique de l’État Condensé,
CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France

Y. Jin and B. Etienne
Laboratoire de Microstructures et Microélectronique,
C.N.R.S., B. P. 107, F-92225 Bagneux Cedex, France
(January 11, 2022)

The existence of fractional charges carrying the current is experimentally demonstrated. Using a 2-D electron system in high perpendicular magnetic field we measure the shot noise associated with tunneling in the fractional quantum Hall regime at Landau level filling factor $1/3$. The noise gives a direct determination of the quasiparticle charge, which is found to be $e^* = e/3$ as predicted by Laughlin. The existence of $e/3$ Laughlin quasiparticles is unambiguously confirmed by the shot noise to Johnson-Nyquist noise cross-over found for temperature $\Theta = e^* V_d/(2k_B)$.

PACS numbers: 73.40.Hm, 05.30.fk, 71.27.+a, 72.70.+m

Can fractional charges carry the current in a conductor? Up to now, there was no evidence of such phenomenon. Usual metals are known to form Fermi liquids with quasiparticles of charge e. Low dimensional systems are believed to offer a richer spectrum of excitations. Indeed, fractional charges have been predicted for commensurate charge density waves in one dimensional systems [3] and for two-dimensional electron systems (2DES) in high perpendicular magnetic field when the fractional quantum Hall effect occurs [3]. In this letter, we report experimental evidence of charges $e/3$ carrying the current. The observation is done in the Fractional Quantum Hall (FQH) regime at Landau level filling factor $\nu = 1/3$.

2-D electrons in high magnetic field give rise to degenerate Landau Levels (LL) with one state per flux quantum $\phi_0 = h/e$ in the plane. For integer LL filling factor $\nu = n_s/n_\phi$, the cyclotron or the enhanced Zeeman gap gives rise to the integer quantum Hall effect [2]. IQHE (n_s and $n_\phi = eB/h$ are the electron and quantum flux density) [3]. The simplest elementary excitation is an electron removed from the highest occupied LL, leaving a hole having the size of a flux quantum and a unit charge e. At fractional filling factor $\nu = 1/q$, q odd, a gap $\Delta \simeq e^2/\ell_c$ also opens resulting from the interactions [1] ($\ell_c \equiv (\hbar/eB)^{1/2}$). This is the FQH effect. Laughlin has proposed [2] that an elementary excitation can be realized by introducing a flux quantum ϕ_0 in the collective wavefunction. As there is one electron for q flux quanta, the so-called Laughlin quasiparticle has fractional charge $e^* = e/q$. Extensions of the Laughlin approach to higher rational fractions $\nu = p/q$ explain many bulk transport properties but so far no direct experimental evidence for the bulk Laughlin quasiparticles have been found. The quasiparticles in the bulk have been mostly probed using thermal activation. The prefactor of the activated conductivity has shown a striking relation to the quasiparticle charge but is not fully understood [4]. Comparison of the chemical potential jump at fractional ν obtained from capacitance measurements with the activation energy may also determine e^* but is not straightforward [4]. An alternative way to determine e^* uses the edge rather than the bulk quasiparticle properties. At the edge, the Landau levels bent by the confining potential cross the Fermi level and form edge channels. The gapless modes at the Fermi energy, the edge states, provide the dominant conduction in low disorder samples [1]. For integer ν the edge channels are chiral Fermi liquids with quasiparticles of charge e. For $\nu = p/q$, fractional edge channels similarly form. They are chiral Luttinger liquids [2] with fractionally charged quasiparticles generalizing the bulk Laughlin quasiparticles. Attempts to measure e^* have used the Aharonov-Bohm period of the conductance [14–18]. In a recent beautiful experiment using an anti-dot at $\nu = 1/3$ [18], the period of the polarization charge on the control back-gate was found accurately $e/3 = e^*$. In a similar report, it has been argued that equilibrium conductance measurements mostly probe the fractional filling of the ground state [14]. An experiment specifically sensitive to the charge carrying the current was thus needed.

The following experiment is based on a non-equilibrium property, the shot noise, which probes the granularity of the quasiparticles carrying the current. According to Schottky [17], a poissonian uncorrelated flow of carriers generates current fluctuations. The noise power S_I is directly proportional to the carrier charge. A quasiparticle tunneling through the $\nu = 1/3$ quantum Hall fluid is expected for weak coupling between opposite $1/3$ edge channels. Indeed, the tunneling density of states of quasiparticles diverges at the Fermi energy while that of electron vanishes [12]. The tunneling, or backscattering, current is: $I_B = (e^2/3\hbar)V_{ds} - I$. V_{ds} is the voltage difference between ideal contacts connecting the edges, I the total current. At temperature $\Theta = 0$ and for weak coupling $I_B \ll I$, the Schottky formula gives [18–20]:
\[S_I = 2(e/3)I_B \]
\[(1) \]

The noise is thus a direct measure of \(e^* = e/3 \). If instead electrons were to tunnel the noise power would be \(2eI_B \). When the quasiparticle chemical potential difference \((e/3)V_{ds} \) becomes smaller than the temperature a cross-over to Johnson-Nyquist noise is expected \([8,21]\) \((I_B \ll I)\):

\[S_I = 2 \left(\frac{e}{3} \right) I_B \coth \left(\frac{eV_{ds}}{2kB\Theta} \right) - 2k_B\Theta \frac{dI_B}{dV_{ds}} + 4k_B\Theta \frac{dI}{dV_{ds}} \]
\[(2) \]

The characteristic voltage is three times that expected for electrons. The second part of the right hand side identifies to the Johnson-Nyquist noise at zero bias. Note the differential conductance in the expression. For non-Fermi liquids \(I_B(V_{ds}) \) is always non-linear \([12]\). Expressions for \(dI/dV_{ds} \) and \(S_I \) for the ideal case of a single tunneling impurity are given in ref. \([12,13,22]\). In real samples with smooth edges and where tunneling is induced by the smooth potential of a Quantum Point Contact (QPC) deviations from the calculable ideal case may be expected but the general predicted features remain. We emphasize that the exact edge state dynamics (the way \(I_B \) varies with \(V_{ds} \)) is less essential here as in the weak backscattering limit the noise must be given by Eq.\((1)\).

In this limit, the shot noise measurements reported here agree with Eq.\((1)\), bringing evidence that \(e/3 \) charge quanta do carry the current at \(\nu = 1/3 \). Our observation also confirms the Johnson-Nyquist to shot noise cross-over given by Eq.\((2)\). The samples are GaAs/Ga(Al)As heterojunctions with low density \(n_s = 0.94 \times 10^{15} \text{m}^{-2} \) high mobility \(100 \text{m}^2/\text{V} \cdot \text{s}^{-1} \) deep 2DES. Six wide ohmic contacts with increased perimeter length provide ideal contacts in the fractional regime. Using electron beam lithography technique metallic gates are evaporated at the center of the wide Hall bar mesa to define 275nm wide QPC. The QPC locally creates a (\(\geq 150 \phi_0 \)) wide \(\nu = 1/3 \) region upon applying a negative voltage on both gates while keeping a constant filling factor \(\nu_L = 2/3 \) in the mesa, see Fig.1a . The 1/3 state is signaled by a \(e^2/3h \) conductance peak when sweeping the gate voltage. A quasiparticle tunneling through the 1/3 state is induced upon applying a slightly more negative voltage. The saddle shape QPC potential combines with the weak random potential to give tunneling paths whose interference leads to conductance oscillations at the end of the 1/3 plateau. Using the independent control of the gates we can laterally shift the constriction to tune the tunnel coupling of a particular conductance peak. Each peak is found to reach a maximum value remarkably equal to \(e^2/3h \), see Fig. 1b. This observation tells us that tunneling is coherent and that a 1/3 FQHE state is still formed for this gate voltage range. This is an important check without which the following noise results would have been questionable \([23]\). Finally, looking at the differential conductance we see that the overall conductance is restored at finite d.c. bias voltage \(V_{ds} \), in qualitative agreement with chiral Luttinger models. Fig. 1c shows the \(dI/dV_{ds} \) characteristics for a series of gate voltage decribing the left wing of the resonance of Fig.1b . The global features, similarly observed in many samples, are consistent with a singular density of state being a decreasing function of the energy with respect to the Fermi surface as expected for quasiparticle tunneling \([12]\). We are thus in the good regime to detect \(e/3 \) charges; a detailed analysis of the non-linear transport will be given elsewhere. For the following noise measurements we only need to know \(I_B \) and keep \(I_B \ll I \).

Noise measurements use the correlation method described in \([24,25]\) for the observation of the Pauli suppression of fermion shot noise, but here the sample is voltage biased, see Fig. 1a. The voltages \(V_{3,6} \) and \(V_{3,2} \) are separately measured by two ultra low noise amplifiers and a spectrum analyzer calculates the cross-correlation spectrum. This technique removes from the detected signal the uncorrelated amplifier voltage noise and the noise of the leads and contacts. The cross-correlation spectrum \(S_{V_{3,6}V_{3,2}} \) contains the physical shot noise contribution \(S_I \) plus some white noise sources of the circuit \(Rds, S_{ds} \), and \(S_I \) : \(S_{V_{3,6}V_{3,2}} = R_{II}S_I + (1 - R_{II}dI/dV_{ds})^2(S_{V_{4,1} + R_{II}^2(S_{I_{35} + S_{ns}})} \) where \(R_{II} = 3h/2e^2 \) is the quantized Hall resistance of the mesa. The circuit noise sources require to keep \(dI/dV_{ds} \) constant to reliably extract \(S_I \) This is done with a 0.2% accuracy for each series of noise measurements. The amplifier gains known to 0.5% allow for accurate determination of \(S_I \). Finally Johnson-Nyquist noise measurements for different temperatures at fixed conductance in the fractional regime provide an absolute calibration as in \([24]\).

The result of a series of current noise power measurements versus the backscattering current \(I_B \) at \(\Theta = 25mK \) is shown in Fig. 2. The noise measured in the 4~8KHz frequency range is white. The background noise \(\approx 5.32 \times 10^{-28}A^2/Hz \) is due to the circuit noise. The error bars represent the statistical accuracy expected for 1500s acquisition time. \(I_B \) can be varied by changing either the dc bias \(V_{ds} \) or the tunnel coupling with gate voltage. In order to keep \(dI/dV_{ds} = G_{diff} \) constant and follow the path A shown in Fig. 1b and 1c both the bias (40\(\mu \text{V} \) to 78\(\mu \text{V} \)) and the gate voltage \(-170.5 \text{ to } -178.5m\text{V}\) are varied. The backscattering current is obtained within 5% accuracy by measuring the d.c. voltage \(V_B = V_{3,2} \) or \(V_{5,6} \) across the QPC, using \(I_B = (2V_{B} - V_{ds})e^2/3h \). The “reflexion coefficient” \(R = I_B3h/e^2V_{ds} \) is kept small for weak backscattering. It increases with \(I_B \) from 4% to 35%. The linear variation of the noise with \(I_B \) tells us that we do observe shot noise associated with backscattering. We can compare the rate of noise variation with that given by Eq.\((1)\) (dashed line). The agreement with the prediction of Laughlin quasiparticle tunneling is excellent. Electron tunneling would have given a very dif-
The Integer Quantum Hall regime (ν) for similar conductance differs result (dotted line). Electron Shot-Noise is found for two different G_{diff} (path B and C). The noise also compares well with that expected for e/3 charges except for the points at high bias where the backscattering is no longer weak and less noise is found. A good agreement is also found for a different tunneling regime obtained by detuning a resonance (Fig. 1d, path D: V_{ds} = 78\mu V to 175\mu V and gate voltage -161 to -177 mV). The result is also robust against temperature change as shown by the series E corresponding to the tunneling conditions of Fig. 1b but at Θ = 150 mK. Finally, a room temperature thermal cycling changes the resonance shape but not the noise results.

How to take into account the deviations for large R? As long as electron tunneling do not start to compete with quasiparticle tunneling, we may expect a decrease of noise when R increases. Indeed, the tunneling events are no longer poissonian as the exclusion statistics and the interactions correlate the quasiparticles. If they were fermions a noise reduction (1 - R) would occur but nevertheless tempting to plot the noise data as a function of I_{g}(1 - R) (open circles of Fig. 2 and 3). Within experimental accuracy, the simple (1 - R) reduction factor accounts well for the data but slightly overestimates e^*. The least square linear fit gives e^* = 0.38, 0.36, 0.35, and 0.36 for A, B, C, and D.

The final check to confirm our observation of e/3 Laughlin quasiparticles is the cross-over from Johnson-Nyquist to shot noise at eV_{ds}/2 = k_{B}Θ. Fig. 4 shows measurements at Θ = 134 mK and low bias. Here, the bias voltage V_{ds} varies from 13 \mu V to 140 \mu V and G_{diff} = 0.26 e^2/h. The nearly linear noise variation at high bias, consistent with Eq. (1), saturates at low bias. The arrow, indicating when eV_{ds} = 2k_{B}Θ, is well in the cross-over region. Comparison with Eq.(2) (solid curves) shows a remarkable agreement (the experimental variation of V_{ds}(I_{B}) is used). The dashed curve describing the thermal cross-over for charge e does not fit the data.

In conclusion, using shot noise, we have brought evidence of e/3 Laughlin quasiparticles carrying the current through the 1/3 FQH state. The result is robust against various tunneling and temperature conditions and the Johnson-Nyquist to shot noise cross-over confirms the nature of the quasiparticles. At larger backscattering a noise reduction factor similar to that expected for fermions accounts for the observation but slightly overestimates the noise. After submission of this work, we became aware of a similar observation by another group.

We warmly thank A. Kumar for participating at the early stage of the experiment and P. Jacques for his precious technical contribution. Useful discussions with Th. Martin, H. Saleur, I. Safi, M. Bütikker, C. de C. Chamon, M. H. Devoret, and V. Pasquier are acknowledged.

[1] W. P. Su and J. R. Schrieffer, Phys. Rev. Lett. 46, 738 (1981)
[2] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)
[3] D. C. Tsui, H. L. Stormer and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)
[4] K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett 45, 494 (1980)
[5] The Quantum Hall Effect, Ed. by R.E. Prange and S.M. Girvin (Springer-Verlag, New-York, 1990)
[6] D. Yoshioka, B. I. Halperin and P. A. Lee, Phys. Rev. Lett. 50, 1219 (1983)
[7] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983)
[8] R. G. Clark et al., Phys. Rev. Lett. 60, 1747 (1988); Y. Katayama, D. C. Tsui and M. Shayegan, Phys. Rev. B 49, 7400 (1994)
[9] D. G. Polyakov and B. I. Shklovskii, Phys. Rev. Lett. 74, 150 (1995)
[10] S. I. Dorozhkin, R. J. Haug, K. von Klitzing and H. Ploog, Phys. Rev. B 51, 14729 (1995)
[11] M. Büttiker, Phys. Rev. B 38, 9375 (1988)
[12] X. G. Wen, Phys. Rev. Lett. 64, 2206 (1990)
[13] F. P. Milliken, C. P. Umbach and R. A. Webb, Solid State Commun. 97, 309 (1995); A. M. Chang, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 77, 2538 (1996)
[14] J. A. Simmons et al., Phys. Rev. Lett. 63, 1731 (1989)
[15] V. J. Goldman and B. Su, Science 267, 1010 (1995)
[16] J. D. F. Franklin et al., Surf. Sci. 361, 17 (1996)
[17] W. Schottky, Ann. Phys. (Leipzig) 57, 541 (1918)
[18] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 72, 724 (1994)
[19] P. Fendley, A. W. W. Ludwig and H. Saleur, Phys. Rev. Lett. 75, 2196 (1995)
[20] C. de C. Chamon, D. E. Freed and X. G. Wen, Phys. Rev. B 51, 2363 (1995)
[21] P. Fendley and H. Saleur, Phys. Rev B 54, 10845 (1996)
[22] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992)
[23] For incoherent tunneling S_{J} \leq 2eI_{B}. This was found when ν = ν_{L} = 1/3. The weak QPC potential used to keep I_{B} \ll I hardly compete with disorder and hopping occurs.
[24] A. Kumar et al., Phys. Rev. Lett. 76, 2778 (1996)
[25] D. C. Glattli et al., J. Appl. Phys. 81, 7350(1997)
[26] G. B. Lesovik, JETP Lett. 49, 592 (1989); M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990); Th. Martin and R. Landauer, Phys. Rev. B 45, 1742(1992)
[27] M. Reznikov et al, Phys. Rev. Lett. 75, 3340 (1995)
[28] R. de Picciotto et al, cond-mat 9707228 (to be published)
FIG. 1. (a) Schematic picture of the Hall sample. (b) Differential conductance versus gate voltage for different bias V_{ds} for a tuned resonance at $\nu = 1/3$. (c) dI/dV_{ds} versus V_{ds} for different gate voltages ($2mV$ steps) describing the left wing of the tuned resonance. (d) Untuned resonance: dI/dV_{ds} versus gate voltage for different V_{ds} ($10\mu V$ steps from 0 to 59μV). All data are taken at 25mK.

FIG. 2. Tunneling noise at $\nu = 1/3$ ($\nu_L = 2/3$) when following path A and plotted versus $I_B = (e^2/3h)V_{ds} - I$ (filled circles) and $I_B(1 - R)$ (open circles). The slopes for $e/3$ quasiparticles (dashed line) and electrons (dotted line) are shown. $\Theta = 25mK$. Inset: data in same units showing electron tunnelling for similar $G = 0.32e^2/h$ but in the IQHE regime ($\nu_L = 4$). The expected slope for electrons $2eI_B(1 - R)$ ($R = 0.68$, $I_B = (e^2/h)V_{ds} - I$) is shown. $\Theta = 42mK$.

FIG. 3. Filled circles: Shot noise measured at 25mK versus I_B corresponding to the paths B, C, and D of figure 1, and to a series of measurements (E) at 150mK. Open circles: same data versus $I_B(1 - R)$.

FIG. 4. Cross-over from Johnson-Nyquist to shot noise. The arrow indicates the data for which $e^*V_{ds} = 2k_B\Theta$. A comparison with Eq.2 (solid curve) and a similar expression for electrons (dotted curve) is shown.
Figure 1
Figure 2
$e = e/3$
Figure 4

\[(e/3) V_{ds} / 2k_B \theta = 1\]

\[S_1 \left(10^{-28} \text{A}^2/\text{Hz}\right)\]

\[S_1 \left(10^{-28} \text{A}^2/\text{Hz}\right)\]

\[I_B \text{ (pA)}\]

\[134 \text{ mK}\]
