Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin βA (activin A), a regulatory molecule for chondrocytes

Monika Hermansson1*, Yasunobu Sawaji1, Mark Bolton1, Susan Alexander1, Andrew Wallace2, Shajna Begum1, Robin Wait1* and Jeremy Saklatvala1

1Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, 1 Aspenlea Road, London W6 8LH, United Kingdom
2Department of Musculoskeletal Surgery, Division of Surgery, Anaesthetics and Intensive Care, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London W6 8RF, United Kingdom

This work was supported by the Arthritis Research Campaign and the Medical Research Council, United Kingdom

Running title: Proteomic Analysis of Articular Cartilage

*Correspondence to Dr. Monika Hermansson, Department of Rheumatology, Karolinska Hospital, Stockholm, Sweden. or Dr. Robin Wait, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, 1 Aspenlea Road, London W6 8LH, United Kingdom
Telephone: +44 20 8384442; Facsimile: +44 20 83834999
Email: monika.hermansson@imperial.ac.uk

r.wait@imperial.ac.uk
We show proteomic analysis can be applied to study cartilage pathophysiology. Proteins secreted by articular cartilage were analysed by 2-dimensional (2D) SDS-PAGE and mass spectrometry. Cartilage explants were cultured in medium containing \[^{35}\text{S}]\text{methionine/cysteine} to radiolabel newly synthesised proteins. In order to resolve the cartilage proteins by 2D-electrophoresis it was necessary to remove the proteoglycan aggrecan by precipitation with cetylpyridinium chloride.

50-100 radiolabelled protein spots were detected on 2D-gels of human cartilage cultures. Of 170 silver stained proteins identified, nineteen were radiolabelled representing newly synthesised gene products. Most of these were known cartilage constituents. Several non-radiolabelled cartilage proteins were also detected. The secreted protein pattern of explants from 12 osteoarthritic joints (knee, hip and shoulder) and 14 non-osteoarthritic adult joints were compared.

Synthesis of type II collagen was strongly up-regulated in osteoarthritic cartilage. Normal adult cartilage synthesised little or no type II collagen in contrast to infant and juvenile cartilage. Potential regulatory molecules novel to cartilage were identified: pro- and processed inhibin \(\beta\text{A} \) (which dimerises to activin A) were produced by all the osteoarthritic samples and half the normals. Connective tissue growth factor and cytokine-like protein C17 (previously only identified as an mRNA) were also found. Activin induced the tissue inhibitor for metalloproteinases-1 in human chondrocytes. Its expression was induced in isolated chondrocytes by growth factors or interleukin-1.

We conclude type II collagen synthesis in articular cartilage is down regulated at skeletal maturity and reactivated in osteoarthritis in attempted repair, and that activin A may be an anabolic factor in cartilage.
Osteoarthritis (OA) is a common joint disease characterised by degeneration of articular cartilage. Since cartilage has very limited capacity for repair the loss is effectively irreversible. Prevalence studies show that most people over the age of 65 have some evidence of the disease (1,2). Little is known about the molecular mechanism of cartilage destruction in OA, particularly the early events. It is thought that there is an imbalance between anabolism and catabolism of the extracellular matrix, there being an increase in catabolism. It has been suggested that this increased breakdown of matrix is due to production of degradative enzymes such as the matrix metalloproteinases (MMPs), and members of the disintegrin and metalloproteinase (ADAM) family (3,4). The increase in proteinase expression may be due to inflammatory cytokines such as interleukin-1 (IL-1) and tumour necrosis factor (4,5). However it is unclear whether these degradative processes are a primary event, or a secondary reaction.

Articular cartilage consists mainly of extracellular matrix whose principal organic components are type II collagen fibres and aggregates of the large proteoglycan aggrecan. The only cells in cartilage, the chondrocytes, contribute less than 5% to the total volume (6) and are responsible for the synthesis and degradation of matrix components. Very little is known about the normal endogenous control mechanisms of matrix turnover in articular cartilage. In order to study the regulation of synthesis of proteins in cartilage and to understand better the molecular basis of the osteoarthritic process we have developed a method for proteomic analysis of explanted tissue in which secreted proteins are separated using two-dimensional (2D) electrophoresis and identified by mass spectrometry (MS). We analysed secreted proteins because the tissue is mostly composed of extracellular material, and used metabolic radiolabelling to detect newly synthesised molecules. Limiting the study to secreted proteins means that only a few hundred need to be separated, which is feasible by
medium-format 2D gel electrophoresis. Since cartilage cannot be directly studied in the joint we used explanted human articular cartilage in culture.

Transcriptional analyses of normal and diseased cartilage have enabled parallel analysis of a large complement of genes in the osteoarthritic process (7,8). However mRNA levels do not necessarily correlate with protein expression and reveal nothing about processing or post-translational modification. A proteomic approach, in which proteins are identified and quantified directly, is therefore a valuable complement to such transcriptomic studies.

Our proteomic analysis shows a marked increase of type II collagen synthesis in osteoarthritic cartilage and has revealed that articular cartilage makes two potentially regulatory molecules, activin A and connective tissue growth factor (CTGF).
Materials and Methods

Materials.

$[^{35}S]$methionine/$[^{35}S]$cysteine and recombinant platelet-derived growth factor (PDGF) were purchased from Amersham Biosciences. Recombinant activin A and epidermal growth factor (EGF) were from R&D Systems and recombinant basic fibroblast growth factor (FGF-2) was obtained from PeproTech (London). Recombinant human IL-1α was prepared in house. The activin A ELISA kit came from R&D Systems, Abingdon, UK. Pronase E was from BDH. DMEM and FCS were obtained from BioWhittaker (Verviers, Belgium). All other reagents were the best available grade from Sigma.

Sources of cartilage.

Porcine articular cartilage was dissected from the metacarpophalangeal joints of 3-6 month old pigs within 24 h of slaughter. Human articular cartilage was obtained from Charing Cross Hospital, Hammersmith, London and the Royal National Orthopaedic Hospital, Stanmore, London with approval of the appropriate local ethical committee. Informed consent was given in all cases. OA cartilage came from joint replacement operations, while control samples were from femoral heads removed following trauma or from individuals undergoing amputations and resections for reasons other than joint disease. Some normal cartilage specimens were from fresh post mortem autopsies performed at Algemeen Ziekenhuis Sint-Jan, Bruges, Belgium or at the Department of Rheumatology, University of Ghent, Belgium. The age range was 22 to 86 years and 53 to 83 years for normal and osteoarthritic patients respectively. Details of the OA and control samples studied are summarised in Table S1 (supplementary material).
Preparation of cartilage explant conditioned media.

Cartilage explants were dissected into serum-free DMEM (1 ml/g cartilage) supplemented with 25 mM HEPES, penicillin (100 U/ml), streptomycin (100 μg/ml) and amphotericin (2 μg/ml). The explants were washed once and left overnight in serum-free DMEM. The following day the tissue was incubated in methionine/cysteine-free DMEM (30 min) and then in the same medium containing $[^{35}\text{S}]$methionine/cysteine (200 μCi/ml/g cartilage) for 5 h.

Precipitation of proteoglycans with cetyl pyridinium chloride (CPC).

Glycosaminoglycan content was estimated as chondroitin sulphate using the dimethyl methylene blue (DMB) assay (9). Whale and shark chondroitin sulphate (Sigma, Poole, Dorset, UK) was used as a standard. A 5 % aqueous (w/v) cetylpyridinium chloride solution was prepared and 3 mg CPC/mg GAG was added to each sample (unless otherwise stated). After 30 min at room temperature, the proteoglycan/CPC-containing precipitate was centrifuged and the supernatant removed. Samples for 2D-electrophoresis were dialysed (10 kDa cut off) against water at 4°C overnight, and lyophilized. The pellets were washed with 0.4 M sodium acetate in 90% ethanol and 90% ethanol to remove CPC and sodium acetate respectively. The residual proteoglycan-rich pellet was mixed with 4 volumes of sample buffer, boiled for 5 min and then run on a 12.5% SDS-PAGE gel.

2D-gel electrophoresis.

The lyophilized residues were dissolved in 9.5 M urea, 1 % (w/v) dithiothreitol, 2 % CHAPS and 0.5 % carrier ampholyte buffer (Amersham Biosciences) supplemented with proteinase inhibitors and loaded into 13 cm long linear pH 3-10 immobilised pH gradient (IPG) dry strip (Amersham Biosciences) by in-gel rehydration. Samples (50-100 μg) were isoelectrically focused using a Multiphor II flatbed electrophoresis system, (Amersham Biosciences) at 300 V for 1 min, then ramped to 3500 V for 1.5 h and then kept at 3500 V for 3.5 h. Prior to the
second dimension separation disulphide bonds were reduced by incubating the IPG strips for
15 min with 65 mM dithiothreitol (DTT) in equilibration buffer (2 % SDS, 6 M Urea, 30 %
v/v glycerol and 150 mM Tris pH 8.8). Free SH-groups were alkylated by treatment with 260
mM iodoacetamide in equilibration buffer for 15 min. Following equilibration, the strips were
transferred to a 12.5 % polyacrylamide gel (Laemmli (10) without stacking gel) and run at 8
mA. Gels were fixed and silver stained using a mass spectrometry compatible protocol (11).
After staining, gels were soaked for 2 h in 3% glycerol and dried, prior to visualization of
metabolically radiolabelled proteins by autoradiography.

Quantification of protein expression.
The autoradiograms were scanned using a BioRad 710 imaging densitometer, and the
autoradiographic patterns were analysed using Phoretix 2D software (version 6.01; Nonlinear
Dynamic Ltd, UK). The area and pixel intensity of each spot was measured, enabling
calculation of individual spot volumes, which were expressed as a percentage of the
integrated spot volume for the entire gel.

Mass spectrometry.
The dried gels were rehydrated and silver stained features matching radiolabelled spots were
excised as described (12). In gel trypsinolysis was performed using an Investigator Progest
(Genomic Solutions, Huntingdon, UK) robotic digestion system, as previously described
(13). Tandem electrospray mass spectra were recorded using a Q-Tof hybrid quadrupole /
orthogonal acceleration time of flight spectrometer (Waters, Manchester, UK) interfaced to a
Waters CapLC capillary chromatograph. Samples were dissolved in 0.1% aqueous formic
acid, injected onto a Pepmap C18 column (300 µm x 0.5 cm; LC Packings, Amsterdam, NL),
and eluted into the electrospray with an acetonitrile / 0.1% formic acid gradient (5% to 70 %
acetonitrile over 20 minutes).
Data dependant MS/MS acquisitions were performed on precursors with charge states of 2, 3 or 4 over a survey mass range 540-1200. Known trypsin autolysis products and keratin derived precursor ions were automatically excluded. Proteins were identified by correlation of uninterpreted tandem mass spectra to entries in SwissProt/TREMBL, using ProteinLynx Global Server (14). One missed cleavage per peptide was allowed, and the fragment ion tolerance was set to 100 ppm. Carbamidomethylation of cysteine was assumed, but other potential modifications were not considered in the first pass search. All matching spectra were reviewed manually, and in cases were the score reported by ProteinLynx global server was less than 100, additional searches were performed against the NCBI nr database using MASCOT, which utilizes a robust probabilistic scoring algorithm (15).

Isolation of chondrocytes.

Chondrocytes were isolated from the cartilage by digestion with pronase E (1 mg/ml/g cartilage) for 30 min at 37°C followed by collagenase (1 mg/ml/g cartilage) for 5 h at 37°C. The digest was strained then centrifuged at 500 x g for 8 min. Pellets were washed twice, and resuspended in DMEM containing 10% FCS supplemented with 25 mM HEPES, penicillin (100 U/ml), streptomycin (100 μg/ml) and amphotericin (2 μg/ml). Cells were counted and plated on 12-well plates, (diameter of 22.6 mm) at a density of 2.5 million cells per well (100% confluent).

Encapsulation of chondrocytes in alginate.

Chondrocytes from femoral condyle of patient with OA were isolated by incubating cartilage with pronase E (1 mg/ml) for 30 min, followed by collagenase (1 mg/ml) for overnight. The digest was strained and centrifuged at 500 g for 5 min. The pellet was washed twice with DMEM supplemented with 10% (v/v) FCS. Cells were counted and resuspended in 1.2%
(w/v) (Keltone® LV, ISP Alginates, UK) in 0.15 M NaCl at a density of 4 x 10^6 cells/ml, which was passed dropwise through a 25 gauge needle into 102 mM CaCl_2. After 10 min of polymerization, beads were washed twice in 0.15 M NaCl and finally in DMEM supplemented with 10% (v/v) FCS and HEPES. The cells were cultured for 5 weeks in the same medium in a humid atmosphere of 5% CO_2 in air at 37 °C. The medium was replaced twice weekly.

Stimulation of chondrocytes in alginate.
After 5 weeks of alginate culture, thirty beads (approximately 0.75 x 10^6 cells in 30 beads) were reseeded into a 24 well plate and cultured in 500 µl of DMEM supplemented with HEPES overnight. The following day, the beads were washed twice with the same medium and stimulated with either activin A (R&D Systems, Abingdon, UK) (100ng/ml) or TGFβ (PeproTech EC Ltd, London, UK) (10ng/ml) for 48 hours.

Western blotting for TIMP-1.
The harvested conditioned medium was precipitated with TCA and subjected to SDS-PAGE with 12% (w/v) acrylamide gel. The proteins separated in the gel were electrotransferred onto PVDF membrane and reacted with sheep anti-(human TIMP-1) (from Professor Hideaki Nagase, Kennedy Institute of Rheumatology) followed by horseradish peroxidase-conjugated rabbit anti-(sheep IgG) IgG (DAKO A/S, Denmark). Immunoreactive TIMP-1 was visualized with enhanced chemiluminescence (ECL, Amersham Biosciences, UK).

Reverse transcriptase PCR.
Chondrocytes were serum-depleted for 5 h and then stimulated for 24 h. RNA was isolated from the cells using Rneasy Mini-columns (QIAGEN Ltd, UK) and reverse-transcribed into DNA using Superscript II (Gibco). PCR amplification was performed using PuRe Taq
Ready-to-go PCR beads (Amersham Biosciences). The primers used for inhibin βA subunit were 5'-CCTCCCAAAGGATGTACCCAAC-3' (sense strand) and 5'-GTGATGATCTCCGAGGTCTGCT-3' (antisense strand). The primers were derived from the human sequence of activin βA chain (accession number NM_002192).
Results

2D-electrophoresis of proteins secreted by articular cartilage: the need for proteoglycan removal

In initial 2D-electrophoresis experiments it was found that proteins secreted by cartilage explants did not focus in the first dimension. This was probably due to the presence of highly anionic proteoglycans, particularly aggrecan, interfering with isoelectric focusing. Aggrecan was therefore removed by precipitation with the cationic detergent cetylpyridinium chloride (CPC) (16).

The GAG content of medium conditioned by culturing cartilage (as estimated with the DMB assay) varied, but was normally around 200 μg/ml for porcine and 100 μg/ml for human material. After addition of CPC, precipitates were centrifuged and both the supernatants and proteoglycan–rich pellets were analysed by 1D-electrophoresis (Fig 1a). Addition of 1 mg CPC/mg GAG removed about 80% of the GAG from porcine cartilage conditioned medium (Fig 1b) but some smaller proteins (molecular mass less than 30 kDa) were lost from the supernatant and were found in the precipitate (Fig 1a). When 2 to 4 mg CPC/mg GAG were added more than 95% of the GAG was precipitated and little silver-stainable protein was present in the pellet, although cartilage link protein was identified by HPLC MS/MS (Fig 1a arrowed). Precipitation was carried out at room temperature since non-specific co-precipitation of several proteins was observed at 4 ºC (data not shown). For routine use it was decided to add 3 mg CPC/mg GAG and the medium was left for 30 min at room temperature. After centrifugation the medium was dialysed and the proteins secreted by porcine cartilage were then well resolved by 2D-electrophoresis (Supplementary material, Fig S1 and Table S2).

2D-electrophoresis of proteins secreted from human cartilage
Human cartilage was dissected from fresh surgical samples, washed overnight with serum-free DMEM to remove extraneous proteins and then metabolically radiolabelled with $[^{35}\text{S}]$methionine/cysteine for 5 hours. CPC precipitation was carried out as described above. Altogether 12 osteoarthritic samples and 17 controls with macroscopically normal cartilage were analysed (Table 1).

Several hundred protein spots were usually observable on the silver stained gels, of which 170 were excised, digested in gel and identified by HPLC MS/MS (Supplementary material, Fig S2 and Table S3). Many of these were not chondrocyte-derived but were plasma or other proteins originating from synovial fluid and blood cells (e.g. haemoglobin and carbonic anhydrase). The autoradiographic patterns representing newly synthesised chondrocyte proteins were simpler, with between 50 and 100 well-focused protein spots (depending on the sample loading) being observable. A typical autoradiographic pattern from cultured osteoarthritic cartilage is shown in Fig 2. Nineteen radiolabelled proteins were identified by HPLC-MS/MS (Fig 2). These are listed in Table 1, together with some non-labelled cartilage proteins and several radiolabelled proteins, which were absent from the 2D pattern but were detected by 1D-electrophoresis. Many are present on the 2D-gel (Fig 2) as multiple gel spots because of glycosylation or other modifications. The reproducibility of the 2D patterns is shown by comparison of 7 autoradiograms from normal and OA joints representing a wide age range (Fig 3).

Lumican and clusterin were abundantly present in multiple isoelectric forms and hindered detection of other proteins migrating to the same region of the gel. For example, MMP-2 and MMP-3 were sometimes obscured by lumican. MMP-1 was not observed on the 2D-gels but may be hidden in the lumican cluster, since it was identified by MS after 1D electrophoresis (Table 1). Relative expression levels of these MMPs in OA and control samples were therefore difficult to assess from the 2D-gel patterns.
Expression of YKL-40 (also known as cartilage glycoprotein 39 and chitinase-3 like protein 1) is reportedly increased in OA cartilage (21, 24-25). However, we found its production variable: it was detected in 12/14 adult controls and in 4/12 OA samples. In contrast, the related protein YKL-39 was a consistent feature of the 2D patterns in both normal and OA cartilage.

Two interesting potentially regulatory molecules, inhibin βA and connective tissue growth factor (CTGF), were identified. These proteins have not previously been described in articular cartilage (see below).

Synthesis of collagen type II is increased in cartilage explants from young or OA subjects

In the osteoarthritic sample shown in Fig 2, two high molecular mass metabolically labelled spots (apparent Mr > 116kDa) were identified as type II collagen. The larger species was presumed to be the pro-α-chain, the smaller the processed α-chain. The type II collagen C-terminal propeptide was detected in 1-3 isoelectric forms of about 35kD (Figs 2 and 3). Procollagen C-proteinase enhancer protein was also detected, but the C-proteinase itself was not found. The OA explants (Fig 2 and 3a) were clearly synthesising and processing type II collagen.

Inspection of the 2D patterns from 12 osteoarthritic and 17 normal samples listed in Table 1 showed that the collagen II α-chain and the C-propeptide were made by most of the OA samples but not by the normal adult controls (Figs 2 and 3a,e,f). Because the pro-α-chain and α-chain spots often focused poorly, the normalised spot volume of the C-propeptide was used as a measure of type II collagen synthesis (Fig 4). The C-propeptide was a prominent feature in 9 out of 12 OA samples (0.4-6.3% of total spot volume). It was undetectable in one and only weakly present in two others (about 0.1% of total spot volume). In samples from control adult cartilage, the C-propeptide was either undetectable or comprised less than 0.3% of total
spot volume. In contrast, cartilage from two very young subjects (7 weeks and 6 years) synthesised significant amounts of collagen type II α chain and C-propeptide (Fig 3b,c). The latter was also just detectable in a further sample from a 13 year old (Fig 3d).

Newly synthesised type II collagen and its C-terminal propeptide were also prominent in the medium of cultured explants of porcine cartilage (Supplementary material Fig S1 and Table S2). The porcine cartilage was from animals that were 3-6 months old at slaughter (i.e. skeletally immature). Taken together, these results suggest that in healthy cartilage type II collagen synthesis declines with skeletal maturity but may be reactivated in OA.

Secretion of the βA chain of activin/inhibin by OA cartilage explants

A diagonal line of spots with molecular masses around 45 kDa was identified as pro-inhibin βA by HPLC MS/MS (Fig 2 and 3). A single spot at 14 kDa corresponded to mature inhibin βA. The increasing mass and acidity of the 45kDa spot chain is consistent with complex or hybrid type N-glycosylation, and inspection of the sequence reveal a single Asn-X-Thr N-linked glycosylation sequence (Asn 165). By contrast the fully processed form, which lacks this consensus glycosylation site, is observed as a single spot in a position consistent with its calculated mass and pI (12,976 / 7.1).

Inhibin βA chains homodimerize by disulphide bonding to form activin A, or heterodimerise with inhibin α-chains to form inhibin A. Since no inhibin α-chains or other types of β-chain were detected, presumably only activin A (a βA-βA homodimer) is present.

Proinhibin βA was secreted by all the OA explants and the mature protein was present in 10/12 samples. Production of proinhibin βA and inhibin βA in adult control samples was variable and only detected in half of the samples. Production was detectable in the samples from the three youngest subjects (7 weeks, 6 years and 13 years), (Fig 3b,c,d)
Activin A is induced by growth factors and cytokines

Activin is produced by cultured fibroblasts and keratinocytes in response to stimulation by growth factors or the inflammatory cytokines IL-1 and TNFα (17). Serum-starved monolayers of human chondrocytes were therefore treated for 24 hours with IL-1, activin A, TGFβ1, FGF-2, PDGF or EGF to identify potential mediators of pro-inhibin βA induction in cartilage. All of these agents, including activin A itself induced activin A mRNA (Fig 5a). The concentration of activin A protein in the culture medium was also increased by these stimuli: IL-1 and TGFβ caused the highest increase, consistent with their effect on the mRNA (Fig 5b). The sample containing activin A was not assayed for protein.

Activin A induces TIMP-1 protein in chondrocytes

Since activin A is a member of the TGFβ family, and TGFβ is known to induce expression of TIMP-1 in chondrocytes (18), we stimulated alginate encapsulated human articular chondrocytes with activin A or TGFβ for 48 hours. Immunoblotting showed that both stimuli increased levels of TIMP-1 protein in the culture medium (Fig 6a), and in the case of activin A, induction was concentration dependent (Fig 6b).

Discussion

This study is, to our knowledge, the first application of 2D-electrophoresis and MS to analyse proteins made by articular cartilage. Removal of sulphated proteoglycans by treatment with CPC was essential for successful 2D-electrophoresis. Between 50 and 100 radiolabelled protein spots were visible, though many of these were below the silver stain detection limit. Inevitably, since our analytical strategy entailed a deliberate removal of proteoglycans, we did not detect aggrecan, or link protein (which was, however found in the proteoglycan-rich pellet). It is likely that small proteoglycans such as biglycan and decorin were also...
precipitated with the pellet since they were not observed on the 2D-gels. Given that aggrecan and link protein were precipitated by CPC and that fibronectin and MMP-1 were not resolved on 2D-electrophoresis, we accounted for a total of 27 cartilage proteins secreted by cartilage. Two-dimensional electrophoresis has inherent limitations, particularly for analysis of hydrophobic, high molecular mass, or extremely acidic and basic proteins. Generally, 2-3 g of cartilage are needed to obtain 2D-gels from which radiolabelled proteins can be identified by mass spectrometry. In the case of OA samples it was usually necessary to use all available material so diseased tissue may sometimes be mixed with a proportion of undamaged cartilage. Hence differences between the protein expression patterns in osteoarthritic and normal cartilage may be masked by the heterogeneity of the diseased material. Gene expression in normal and osteoarthritic cartilage has been studied using microarrays and by sequencing cDNA libraries. These approaches depend on obtaining 10-20 µg of mRNA per sample, and thus require comparable amounts of cartilage to the present study. Gene expression profiling cannot predict a priori quantities of protein made, post-translational modifications or protein-protein interactions.

We have previously shown that dissection of cartilage results in activation of the extracellularly regulated kinase (ERK) pathway, due to release of basic FGF which is sequestered in the extracellular matrix (19). Dissection and explantation also transiently activates the c-jun N-terminal kinase (20). Although the explants were rested and washed overnight, the patterns of proteins synthesised by the cartilage may differ from in vivo. Cell activation on explantation could also obscure differences between osteoarthritic and normal tissue, and could induce expression of MMPs, inhibin βA/activin A and TIMP-1. Caution is thus needed when comparing the behaviour of OA and normal samples. Basic FGF was not
found on the 2D-gels of the cartilage culture medium, but it is extremely basic which would not favour its isoelectric focusing, and it is present in low concentration.

Our observation that type II collagen synthesis and processing was increased in osteoarthritic cartilage is consistent with microarray data (7), in situ hybridisation studies (21) and with early work using [3H]proline incorporation (22). In contrast, Kumar et al (23), who sequenced cDNA libraries derived from OA and normal cartilage did not observe differences in type II collagen mRNA expression. However since mRNA from several subjects was pooled, individual variation could have biased the results.

Although we consistently observed collagen type II C-terminal propeptide, procollagen C-proteinase (BMP-1) was absent from the gels. Procollagenase enhancer protein, which binds the type II collagen C-terminal propeptide and potentiates the action of procollagen C-proteinase (24), was observed at the protein level, but has not been detected in published transcriptomic studies (7,23). Collagen type VI α-chain was readily detectable, but apart from a 30 kDa unlabelled fragment of type XI, other collagens were not found.

In contrast to control cartilage from adult donors, normal cartilage from young subjects (and skeletally immature pigs) secreted collagen type II C-propeptide and α chain at similar levels to OA samples. Thus type II collagen synthesis may decline with skeletal maturity but becomes reactivated in OA.

Inhibin βA chain (a member of the TGFβ superfamily (25)) was secreted by most cultured OA samples but its production by normal cartilage was variable. Its expression may be induced by the cell activation caused by explantation and the release of bFGF (19,20). We found it could be induced in human chondrocytes by IL-1 or several growth factors including bFGF. It increased chondrocyte expression of TIMP-1. In view of its relationship to TGFβ, it is likely that activin A is anabolic for cartilage.
Inhibin and activin were originally discovered in ovarian follicular fluid. Activin stimulated but inhibin inhibited release of follicle-stimulating hormone from the pituitary cells. Activin was subsequently shown to be a powerful mesodermal inducer of embryonic ectoderm in Xenopus (26). Activin binds to heterodimeric receptor complexes (ActRI and ActRII) similar to TGFβ receptors, whose activation leads to phosphorylation of the transcription factors Smad 2 and Smad 3, which transduce the signal from the cytoplasm to the nucleus via interaction with Smad 4 (27,28). It is interesting that Smad 3 null mice displayed OA-like degenerative changes in their cartilage (29). Activin also binds to the naturally occurring glycoprotein inhibitor follistatin, (30), which we did not find.

Activin is produced at sites of inflammation (31-33) and has been shown to play a role in wound healing in mice (34). It may also be involved in bone formation since inhibin βA-chain knockout mice have craniofacial abnormalities (35). It has not previously been described in articular cartilage but induces a modest enhancement of type II collagen gene expression and proteoglycan synthesis in chondrocytes (36). In situ hybridisation and immunocytochemistry will be needed to determine if activin is expressed by osteoarthritic lesions.

A further potential regulatory molecule, CTGF was present as a low abundance 20 kDa spot in osteoarthritic samples. It was also produced by the young porcine cartilage. CTGF has previously been detected by screening cDNA libraries from OA and normal articular cartilage (23). Full length CTGF is approximately 36 kDa but cleaved forms between 10-20 kDa have been observed in serum-stimulated mouse fibroblast cultures and physiological fluids (37). It promotes proliferation and differentiation of chondrocytes in culture (38), and has been detected in mouse fracture callus (39). Since CTGF is induced by TGFβ (40) it may conceivably act downstream of activin.
Cytokine-like protein C17 mRNA was originally reported in CD34+ bone marrow stem cells (41) but the protein has not previously been detected. It is predicted to fold into four α-helices, a characteristic feature of haematopoietic cytokines and interleukins. The abundance of both cytokine like C17 and CTGF was very low, and further study is required to see if their expression differs in normal and OA cartilage.

In conclusion, we have shown that proteomic technologies can be applied to articular cartilage, and reveal potential disease-specific alterations in protein expression. Refinement of these techniques will enable definition of phenotypic changes during the progression of OA, and could also be used to evaluate chondrocytes phenotype during differentiation from stem cells for use in tissue engineering.

ACKNOWLEDGMENTS

The authors are grateful to Mrs Sandy Wilson for technical assistance in the early stages of this study.

REFERENCES.

1. van Saase, J. L., van Romunde, L. K., Cats, A., Vandenbroucke, J. P., and Valkenburg, H. A. (1989) Ann Rheum Dis 48, 271-280
2. Lawrence, R. C., Hochberg, M. C., Kelsey, J. L., McDuffie, F. C., Medsger, T. A., Jr., Felts, W. R., and Shulman, L. E. (1989) J Rheumatol 16, 427-441
3. Lohmander, L. S., Ionescu, M., Jugessur, H., and Poole, A. R. (1999) Arthritis Rheum 42, 534-544
4. Tetlow, L. C., Adlam, D. J., and Woolley, D. E. (2001) Arthritis Rheum 44, 585-594
5. Saha, N., Moldovan, F., Tardif, G., Pelletier, J. P., Cloutier, J. M., and Martel-Pelletier, J. (1999) Arthritis Rheum 42, 1577-1587
6. Poole, A. R. (1986) *Biochem J* **236**, 1-14

7. Aigner, T., Zien, A., Gehrsitz, A., Gebhard, P. M., and McKenna, L. (2001) *Arthritis Rheum* **44**, 2777-2789

8. Bau, B., Gebhard, P. M., Haag, J., Knorr, T., Bartnik, E., and Aigner, T. (2002) *Arthritis Rheum* **46**, 2648-2657

9. Farndale, R. W., Sayers, C. A., and Barrett, A. J. (1982) *Connect Tissue Res* **9**, 247-248

10. Laemmli, U. K. (1970) *Nature* **227**, 680-685

11. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) *Anal Chem* **68**, 850-858

12. Westbrook, J. A., Yan, J. X., Wait, R., and Dunn, M. J. (2001) *Proteomics* **1**, 370-376

13. Wait, R., Gianazza, E., Eberini, I., Sironi, L., Dunn, M. J., Gemeiner, M., and Miller, I. (2001) *Electrophoresis* **22**, 3043-3052

14. Wait, R., Miller, I., Eberini, I., Cairoli, F., Veronesi, C., Batozchio, M., Gemeiner, M., and Gianazza, E. (2002) *Electrophoresis* **23**, 3418-3427

15. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) *Electrophoresis* **20**, 3551-3567

16. Laurent, T., and Scott, J. E. (1964) *Nature* **202**, 661-662

17. Hubner, G., and Werner, S. (1996) *Exp Cell Res* **228**, 106-113

18. Gunther, M., Haubeck, H. D., van de Leur, E., Blaser, J., Bender, S., Gutgemann, I., Fischer, D. C., Tschesche, H., Greiling, H., Heinrich, P. C., and et al. (1994) *Arthritis Rheum* **37**, 395-405

19. Vincent, T., Hermansson, M., Bolton, M., Wait, R., and Saklatvala, J. (2002) *Proc Natl Acad Sci U S A* **99**, 8259-8264

20. Gruber, J., Vincent, T. J., Hermansson, M., Bolton, M., Wait, R., and Saklatvala, J. (2004) *Arthritis Rheum* *In press*
21. Aigner, T., Bertling, W., Stoss, H., Weseloh, G., and von der Mark, K. (1993) *J Clin Invest* **91**, 829-837

22. Lippiello, L., Hall, D., and Mankin, H. J. (1977) *J Clin Invest* **59**, 593-600

23. Kumar, S., Connor, J. R., Dodds, R. A., Halsey, W., Van Horn, M., Mao, J., Sathe, G., Mui, P., Agarwal, P., Badger, A. M., Lee, J. C., Gowen, M., and Lark, M. W. (2001) *Osteoarthritis Cartilage* **9**, 641-653

24. Hojima, Y., van der Rest, M., and Prockop, D. J. (1985) *J Biol Chem* **260**, 15996-16003

25. Bernard, D. J., Chapman, S. C., and Woodruff, T. K. (2001) *Recent Prog Horm Res* **56**, 417-450

26. Thomsen, G., Woolf, T., Whitman, M., Sokol, S., Vaughan, J., Vale, W., and Melton, D. A. (1990) *Cell* **63**, 485-493

27. Mathews, L. S., and Vale, W. W. (1991) *Cell* **65**, 973-982

28. Pangas, S. A., and Woodruff, T. K. (2000) *Trends Endocrinol Metab* **11**, 309-314

29. Yang, X., Chen, L., Xu, X., Li, C., Huang, C., and Deng, C. X. (2001) *J Cell Biol* **153**, 35-46

30. Nakamura, T., Takio, K., Eto, Y., Shibai, H., Titani, K., and Sugino, H. (1990) *Science* **247**, 836-838

31. Hubner, G., Brauchle, M., Gregor, M., and Werner, S. (1997) *Lab Invest* **77**, 311-318

32. De Bleser, P. J., Niki, T., Xu, G., Rogiers, V., and Geerts, A. (1997) *Hepatology* **26**, 905-912

33. Yu, E. W., Dolter, K. E., Shao, L. E., and Yu, J. (1998) *Clin Exp Immunol* **112**, 126-132

34. Hubner, G., Hu, Q., Smola, H., and Werner, S. (1996) *Dev Biol* **173**, 490-498
35. Matzuk, M. M., Kumar, T. R., Vassalli, A., Bickenbach, J. R., Roop, D. R., Jaenisch, R., and Bradley, A. (1995) *Nature* **374**, 354-356
36. Luyten, F. P., Chen, P., Paralkar, V., and Reddi, A. H. (1994) *Exp Cell Res* **210**, 224-229
37. Brigstock, D. R. (1999) *Endocr Rev* **20**, 189-206
38. Nakanishi, T., Nishida, T., Shimo, T., Kobayashi, K., Kubo, T., Tamatani, T., Tezuka, K., and Takigawa, M. (2000) *Endocrinology* **141**, 264-273
39. Nakata, E., Nakanishi, T., Kawai, A., Asaumi, K., Yamaai, T., Asano, M., Nishida, T., Mitani, S., Inoue, H., and Takigawa, M. (2002) *Bone* **31**, 441-447
40. Moussad, E. E., and Brigstock, D. R. (2000) *Mol Genet Metab* **71**, 276-292
41. Liu, X., Rapp, N., Deans, R., and Cheng, L. (2000) *Genomics* **65**, 283-292
Figure Legends

Fig 1. The effect of cetylpyridinium chloride (CPC) concentration upon precipitation of (a) proteins and (b) glycosaminoglycan (GAG) from cartilage explant medium. Porcine cartilage explants were cultured in DMEM (1 g/ml) for 5 h. The medium was removed and its GAG content estimated with the DMB assay. 800 μl samples were treated for 30 min at room temperature with 1-4 mg CPC/mg GAG. The precipitate was spun down and the supernatant removed. (a) Supernatants and pellets were analysed by SDS-PAGE and silver-stained. Link protein detected in the pellet is arrowed. (b) The GAG remaining in the supernatant after CPC precipitation was measured.

Fig 2. Autoradiograph of 2D-electrophoresis of OA cartilage explant medium (OA11). 2 g of cartilage was removed and washed overnight in serum-free DMEM. The following day the cartilage was pulsed with $[^{35}\text{S}]$methionine/cysteine (200μCi/ml) for 5 h. The explant medium was removed and treated with 3 mg CPC/mg GAG for 30 min at room temperature. The supernatant was removed and dialysed into water at 4 °C and lyophilized. 60 μg of proteins was used for isoelectric focusing on a pH 3-10 gradient. Focused proteins were further separated by SDS-PAGE on a 12.5% gel. Metabolically labelled protein spots were identified by mass spectrometry.

Fig 3. Autoradiographs of 2D-gels of radiolabelled proteins secreted by osteoarthritic (a) or normal (b-f) cartilage explants. Details of the cartilage samples are given in Table 1. Approximately 3 g of cartilage was used for each 2D-gel. Proteins indicated are (a) TIMP-1, (b) YKL-39, (c) collagen type II C-propeptide, (d) inhibin βA and (e) procollagen C-proteinase enhancer (f) collagen type VI.
Fig 4. Amounts of radiolabelled collagen type II C-terminal propeptide in normal and OA explant medium samples. The normalised spot volumes of the collagen type II C propeptide from 2D autoradiographs from fourteen normal and twelve OA samples are plotted.

Fig 5. Induction of activin A mRNA (a) and activin A protein (b) in human isolated chondrocytes stimulated with various factors. Primary chondrocytes in monolayer culture were serum-starved for 5 h and then stimulated with IL-1 (12.5 ng/ml), activin A (100 ng/ml), TGFβ (20 ng/ml), FGF-2 (20 ng/ml), PDGF (20 ng/ml) and EGF (20 ng/ml) for 24 h. Activin A mRNA levels were determined by RT-PCR and secreted activin A was measured in the cell medium by ELISA.

Fig 6. Induction of TIMP-1 protein in human chondrocytes in alginate by stimulation with activin A and TGFβ (a). Chondrocytes in alginate were either unstimulated (lane 1), stimulated with activin A (100ng/ml) (lane 2) or TGFβ (10ng/ml) (lane 3) for 48 hours. The conditioned culture medium was subjected to SDS-PAGE on a 12% gel, blotted onto a PVDF membrane and probed with an antibody against TIMP-1. In (b) chondrocytes in alginate were stimulated with increasing concentration of activin A and processed as above. Lane 1 is unstimulated, lane 2-4 is 10, 50, 100 ng/ml activin A respectively.
Table 1. Proteins identified from human osteoarthritic cartilage explant medium by 1D/2D-electrophoresis and HPLC MS/MS.

Identified protein	Electrophoresis*	Radiolabelled**
Matrix proteins		
ASPIC	2D	Y
Cartilage intermediate layer protein (CILP)	2D	N
Chondroadherin	2D	N
Clusterin	2D	Y
Collagen II procα and α chain	2D	Y
Collagen VI	2D	Y
Collagen XI	2D	N
COMP	2D	Y/N
Fibromodulin	2D	N
Fibronectin	1D	Y
Lumican	2D	Y
Osteonectin	2D	Y
YKL-39	2D	Y
YKL-40	2D	Y
Proteinases and inhibitors		
Cathepsin L	2D	Y
MMP-1	1D	Y
MMP-2	2D	Y
MMP-3	2D	Y
TIMP-1	2D	Y
TIMP-2	2D	Y
Regulatory molecules		
Complement factor B	2D	Y
CTGF	2D	Y
Cytokine-like protein C-17	2D	Y
Inhibin βA	2D	Y
Proinhibin βA	2D	Y

* 1D - one dimensional; 2D - two dimensional electrophoresis
** Y - yes; N - no
Activin

Control IL-1 Activin TGF-β bFGF PDGF EGF

GAPDH

Activin ng/ml	Control	IL-1	TGF-β	bFGF	PDGF	EGF
1.2	16.3	19.8	6.8	5.2	3.2	

Table a

Table b
Supplementary Fig S1. Silver stained 2D-gel of proteins secreted from IL-1 treated porcine explant medium. 6 g of porcine articular cartilage were cultured with IL-1 overnight and then pulsed with $[^{35}\text{S}]$methionine/cysteine (200 μCi/ml) for 5 h. Explant medium was removed and treated with 3 mg CPC/mg GAG for 30 min at room temperature. The supernatant was removed and dialysed against water overnight at 4°C and lyophilized. 60 μg of protein was used for isoelectric focusing on a pH 3-10 gradient. Focused proteins were electrophoresed by SDS-PAGE on a 12.5 % gel. The gel was stained with silver, dried and exposed to film for 1 week. The gel was rehydrated and protein spots excised. Proteins were identified by HPLC MS/MS. Identified proteins corresponding to the labels on the gel are listed in Table S1.

Supplementary Fig S2. Silver stained 2D-gel of proteins secreted from OA cartilage explant medium (OA11). 2 g of cartilage was removed from and washed overnight in serum free DMEM. The following day the cartilage was pulsed with $[^{35}\text{S}]$methionine/cysteine (200 μCi/ml) for 5 h. The explant medium was removed and treated with 3 mg CPC/mg GAG for 30 min at room temperature. The supernatant was removed and dialysed into water over night at 4°C and lyophilized. 60 μg of protein was used for isoelectric focusing on a pH 3-10 gradient. Focused proteins were further separated by SDS-PAGE on a 12.5 % gel. The gel was stained with silver, dried and exposed to film for 1 week. The corresponding autoradiograph is shown in Fig 2 in the paper. The gel was rehydrated and protein spots excised. Proteins were identified by HPLC MS/MS. Identified proteins corresponding to the labels on the gel are listed in Table S2.
Supplementary Figure S1

pH 3 pH 10

Collagen type II

by guest on March 24, 2020
http://www.jbc.org/Downloaded from
Supplementary Table S1. Human articular cartilage specimens used for proteomic analysis.

Sample	Tissue source	Sex	Age
N1	fem. head* (fracture)	f	82
N2	fem. head (fracture)	f	86
N3	fem. head (fracture)	f	78
N4	fem. head (fracture)	f	70
N5	fem. condyle** (post-mortem)	?	49
N6	fem. condyle (post-mortem)	m	65
N7	knee (post-mortem)	?	?
N8	fem. head (fracture)	f	80
N9	fem. head (fracture)	m	82
N10	tibial plate (amputation for osteosarcoma)	m	54
N11	fem. head (resection of epithelioma)	m	40
N12	fem. condyle (amputation for osteosarcoma)	m	50
N13	hum. head† (excision following avascular necrosis)	m	32
N14	hum. head (metastatic breast cancer)	f	60
N15	fem. condyle (post-mortem)	?	7 weeks
N16	fem. condyle (amputation for osteosarcoma)	f	6
N17	tibial plate (amputation for osteosarcoma)	f	13
OA1	fem. condyle	f	54
OA2	fem. head	f	70
OA3	fem. head	f	63
OA4	fem. condyle	m	65
OA5	fem. head	f	62
OA6	fem. condyle	f	53
OA7	fem. condyle	f	83
OA8	fem. condyle	m	60
OA9	fem. condyle	m	68
OA10	fem. head	f	83
OA11	hum. head	f	76
OA12	hum. head	f	72
OA11	hum. head	f	76
OA12	hum. head	f	72

N: normal; OA: osteoarthritic

* femoral head, ** femoral condyle, † humeral head
Supplementary Table S2. Proteins identified from a 2D-gel of porcine explant medium by HPLC-MS/MS. The gel is shown in Fig S1.

Spot	Protein	Exp pI/Mw	Theor. pI/Mw	Sequence
A1	Connective tissue growth factor (CTGF)	6.8/21000	8.38/35404	QUGEL CTER LPSD CPPR GLCFC FOSPA NKR CPAGY SVLVD GCOCC R QUGEL CTERD PCDPH K
A2	Peptidyl-prolyl cis-trans isomerase B	10/20000	9.13/20158	IGDEM IGR DVTIA DCGK TYDNF VALAT GEK DTNS QHTH TVK SITGE RPIDE NFK VIKDE MRGG DFTJ
A3	Cartilage oligomeric matrix protein (COMP)	10/20000	4.35/80934	SITGF GEGLR NALWH TDGTA SQVR EQSAL QTQCL K TFRHE SEDCT SR
A4	Connective tissue growth factor (CTGF)	5.9/21000	8.38/35404	SITGF GEGLR NALWH TDGTA SQVR EQSAL QTQCL K TFRHE SEDCT SR
A5	Metalloproteinase inhibitor 1 (TIMP-1)	8.8/27000	8.29/20690	GFWAL GDAPD IR EPYMC TWQLR RPR FHYP AMENSY CFTYH R LQSDT HCLWT DOLLT GSDK
A6	Metalloproteinase inhibitor 1 (TIMP-1)	8.5/27000	8.29/20690	GFWAL GDAPD IR EPYMC TWQLR RPR FHYP AMENSY CFTYH R LQSDT HCLWT DOLLT GSDK
A7	Triosephosphate isomerase	7.3/28000	6.51/26538	IAVAA QCYK IYOG SYTIGT CCK HYTG SDELI GQK TAPQ QAOEV HIEK VLYFL EPWYA RITKG VAHAL AEGUL VIGAI GIEK
A8	Collagen alpha 1 type II C-propeptide	7.3/28000	6.66/27405	LILYA ASLQ SGOVS R
A9	Haemoglobin beta chain	7.3/28000	7.25/16034	LILYA ASLQ SGOVS R
A10	Triosephosphate isomerase	6.6/32000	6.66/27405	FVPWV NWK IAVAA QCYK IYOG SYTIGT CCK HYTG SDELI GQK TAPQ QAOEV HIEK VLYFL EPWYA RITKG VAHAL AEGUL VIGAI GIEK
A11	Collagen alpha 1 type II C-propeptide	7.2/36000	6.66/27405	NLSAVL DUEAA GNLKK
A12	Collagen alpha 1 type II C-propeptide	6.5/36000	6.66/27405	NLSAVL DUEAA GNLKK
A13	Collagen alpha 1 type II C-propeptide	6.3/36000	6.66/27405	NLSAVL DUEAA GNLKK
A14	Collagen alpha 1 type II C-propeptide	6.2/36000	6.66/27405	NLSAVL DUEAA GNLKK
A15	Collagen alpha 1 type II C-propeptide	6.1/36000	6.66/27405	NLSAVL DUEAA GNLKK
A16	Collagen alpha 1 type II C-propeptide	6.1/36000	6.66/27405	NLSAVL DUEAA GNLKK
A17	Collagen alpha 1 type II C-propeptide	6.1/36000	6.66/27405	NLSAVL DUEAA GNLKK
B1	Malate dehydrogenase	6.2/36000	6.15/36323	VLTG AAOQG AYSSL TSYON GSVFG K TLYGL GAAYV QK
B2	L-lactate dehydrogenase B chain	5.8/36000	6.66/27405	FTTYV LKDCG TK NLSAVL DUEAA GNLKK ALRIQ GSNVD EIRAE GSNR
B3	Collagen alpha 1 type II C-propeptide	5.4/37000	5.58/36481	GLTSS INQK LKDESDE VAQLE NTAIDT LWQGK K VKEG CNLDL AR MVVES AVEYI K SLTEDE LALVL VLEDK ALRIQ GSNVD EIRAE GSNR
B4	Collagen alpha 1 type II C-propeptide	5.4/37000	6.66/27405	FTTYV LKDCG TK NLSAVL DUEAA GNLKK ALRIQ GSNVD EIRAE GSNR
B5	Collagen alpha 1 type II C-propeptide	5.3/37000	6.66/27405	FTTYV LKDCG TK NLSAVL DUEAA GNLKK ALRIQ GSNVD EIRAE GSNR
Protein Name	MW	pI		
-----------------------------------	-----	------		
Thrombospondin 1	5.3/37000	4.74/129553		
Collagen alpha 1 (XI) chain	5.3/37000	5.08/181120		
B4 Collagen alpha 1 (XI) chain	4/38000	5.08/181120		
B5 Collagen alpha 1 (XI) chain	4.2/38000	5.08/181120		
B6 Annexin A8	5.6/6000	5.56/36879		
Collagen alpha 1 (XI) chain	5.3/6000	4.74/129553		
B7 Collagen alpha 1 (XI) chain	7.5/26000	5.08/181120		
B8 Angiopoietin-related protein 2	8/26000	7.07/54802		
Glutathione S-transferase P	8/26000	8.07/23496		
Collagen alpha 1 (XI) chain	8/26000	5.08/181120		
B9 Osteronectin/SPARC	4.2/40000	4.66/32697		
Clusterin	4.2/40000	5.7/48695		
Heat shock 70 kDa protein	4.2/40000	5.32/69199		
B10 Osteronectin/SPARC	4.4/39000	4.66/32697		
B11 Osteronectin/SPARC	4.6/38000	4.66/32697		
B12 Osteronectin/SPARC	4.1/41000	4.66/32697		
C1 Osteronectin/SPARC	4.1/42000	4.66/32697		
C2 Aspartate aminotransferase	9.7/43000	8.98/44664		
C3 Matrix metalloproteinase-1 (MMP-1)	5.6/59000	5.41/51164		
C4 Polyubiquitin	5.4/14000	7.13/64897		
C5 Polyubiquitin	5.6/14000	7.13/64897		
C6 Calpactin 1 light chain	6.3/14000	6.35/10943		
C7 Elongation factor 1-delta	6.7/14000	4.9/31121		
C8 Haemoglobin beta chain	7.4/14000	7.25/16034		
C9 Haemoglobin beta chain	8/14000	7.25/16034		
Protein Name	Location	Value	1st Value	2nd Value
------------------------------------	----------	-------	-----------	-----------
Haemoglobin epsilon chain		8/14000	8.73/15963	
C10 Haemoglobin beta chain		7.7/14000	7.25/16034	
C11 Superoxide dismutase [Cu-Zn]		6.5/18000	6.04/15760	
Haemoglobin beta chain		6.5/18000	7.25/16034	
C12 Haemoglobin beta chain		6.8/19000	7.25/16034	
D1 Fibrogen A-alpha-chain		8.3/18000	6.55/47354	
Nucleoside diphosphate kinase B		8.3/18000	8.52/17298	
D2 Cofilin, non-muscle isoform		8.5/19000	8.16/18518	
D3 Phosphatidylethanolamine-binding protein		8.2/21000	7.39/20854	
D4 Peroxiredoxin 1		7.5/21000	8.26/22176	
Peroxiredoxin 4		7.5/21000	8.16/18518	
D5 Peroxiredoxin 5		8.1/22000	8.86/22176	
Peroxiredoxin 4		8.1/22000	8.86/22176	
D6 Peroxiredoxin 1		8.9/24000	8.26/22176	
Peroxiredoxin 4		8.9/24000	8.26/22176	
D7 Peroxiredoxin 1		9.1/24000	8.86/22176	
Ig lambda chain C region		9.1/24000	8.86/22176	
Peroxiredoxin 4		9.1/24000	8.86/22176	
D8 DJ-1 protein		5.8/23000	6.33/19847	
D9 RNA-binding protein regulatory subunit		6.4/23000	6.33/19891	
D10 Ig lambda chain C region		5.9/24000	6.76/11003	
Angiopoietin 1 receptor		5.9/24000	6.76/11003	
D11 Ig lambda chain C region		5.9/24000	5.73/21529	
Thioredoxin-dependent peroxide reductase		6.9/24000	6.76/11003	
D12 Ig lambda chain C region		7.8/24000	6.76/11003	
E1 Superoxide dismutase [Mn], mitochondrial		8.2/24000	6.86/22204	
E2 Glutathione S-transferase P		8.5/25000	8.07/23496	
E3 Thrombospondin 1		6.3/28000	4.74/129553	
E4 Thrombospondin 1		5.5/28000	4.74/129553	
Protein Name	Accession	M.Wt	P.I.	Description
-------------	-----------	------	-----	-------------
Thrombospondin 1	E5	5.2/35000	4.74/129553	FVFGT TPEDI LR YVANL FQKY
Thrombospondin 1	E6	5.5/29000	4.74/129553	FVFGT TPEDI LR LKPSV LEATV DWRV
Thrombospondin-1	E7	5.3/39000	4.74/129553	FVFGT TPEDI LR LKPSV LEATV DWRV
Inorganic pyrophosphatase	E8	5.3/39000	2.73/129553	YVANL FQKY
Collagen alpha 1 type II C-propeptide	F1	5.3/46000	6.66/27405	LKPSV LEATV DWRV
F-actin capping protein alpha-2 subunit	F2	5.3/46000	6.66/27405	LKPSV LEATV DWRV
Type IX collagen alpha 1 chain	F3	5.3/39000	6.66/27405	LKPSV LEATV DWRV
L-lactate dehydrogenase A chain	F4	5.3/39000	6.66/27405	LKPSV LEATV DWRV
Fructose-bisphosphate aldolase A	F5	5.3/39000	6.66/27405	LKPSV LEATV DWRV
Procollagen C-proteinase enhancer protein Annexin A8	F6	5.3/39000	6.66/27405	LKPSV LEATV DWRV
Alpha-1 acid glycoprotein	F7	5.3/39000	6.66/27405	LKPSV LEATV DWRV
Actin beta chain	F8	5.2/48000	6.66/27405	LKPSV LEATV DWRV
Alpha enolase	F9	5.4/41000	6.66/27405	LKPSV LEATV DWRV
Protein Name	pI	Molecular Weight		
--------------------------------------	---------	------------------		
Fibrinogen beta chain	5.4/45000	7.15/52314		
Fibrinogen beta chain	5.6/45000	7.15/52314		
Fibrinogen beta chain	6/45000	7.15/52314		
Ornithine aminotransferase, mt	6.3/50000	6.57/48534		
NADP+-dependent isocitrate dehydrogenase	7.2/47000	6.53/46659		
Fumarylacetoacetase	7.2/47000	6.92/46103		
Phosphoglycerate kinase 1	7.2/47000	8.3/44596		
Isocitrate dehydrogenase	7.4/47000	6.53/46659		
Phosphoglycerate kinase 1	7.4/47000	8.3/44596		
Phosphoglycerate kinase 1	7.8/46000	8.3/44596		
Phosphoglycerate kinase 1	8.6/45000	8.3/44596		
47 kDa heat shock protein	9.5/53000	7.95/44527		
Similar to glucose regulated protein	5.3/56000	5.3/36777		
Alpha-1-antitrypsin	5.3/56000	5.54/44792		
Similar to glucose regulated protein	5.5/56000	5.32/36177		
Alpha-1-antitrypsin	5.5/56000	5.54/44792		
Alpha enolase	6.3/54000	6.99/47037		
Beta enolase	6.3/54000	7.33/46855		
Phosphopyruvate hydratase	6.3/54000	4.63/16104		
Alpha enolase	6.6/54000	6.99/47037		
Beta enolase	6.6/54000	7.33/46855		
Phosphopyruvate hydratase	6.6/54000	4.63/16104		
G11 Alpha enolase 7/54000 6.99/47037

Beta enolase 7/54000 7.33/46855

Phosphopyruvate hydratase 7/54000 4.63/16104

G12 Ig heavy chain V region 7.8/55000 8.99/12975

Alpha enolase 7.8/55000 6.99/47037

H1 Ig heavy chain V region 8.4/55000 8.99/12975

Protein disulphide isomerase A3 8.4/55000 5.78/54398

H2 Ig heavy chain V region 8.1/55000 8.99/12975

H3 Ig heavy chain V region 8.6/55000 8.99/12975

H4 Ig heavy chain V region 8.8/55000 8.99/12975

H5 Procollagen C-proteinase enhancer protein P 7/58000 7.55/45549

Beta-2-glycoprotein 1 7/58000 8.37/36254

H6 Ig heavy chain V region 7/58000 8.99/12975

Procollagen C-proteinase enhancer protein P 7/58000 7.55/45549

H7 Serum albumin 6/56000 5.86/66152

Procollagen C-proteinase enhancer protein P 6/56000 7.55/45549

H8 Alpha-2-HS-glycoprotein 4.1/64000 5.4/36868

H9 Alpha-1-antichymotrypsin 3 4.4/62000 5.77/22840

Alpha-1-antichymotrypsin 3 4.5/64000 5.77/22840

Nucleobindin 1 (CALNUC) 4.5/64000 5.09/51087

Alpha-1-antichymotrypsin 3 4.6/62000 5.77/22840

78 kDa glucose-regulated protein 4.6/62000 5.01/70478

Fibromodulin 4.6/62000 5.56/41285

Fibromodulin 4.7/64000 5.56/41285

RAB GDP dissociation inhibitor alpha 4.7/64000 5/5065

78 kDa glucose-regulated protein 4.7/64000 5.01/70478

Alpha-1-antichymotrypsin 3 4.7/64000 5.77/22840

2A1 Serum albumin 6/65000 5.86/66152
Protein Name	Accession	Value 1	Value 2
Serum albumin	2A2	4.7/160000	5.86/66152
Collagen alpha 1 (VI) chain	2A3	4.7/160000	5.23/106495
Pyruvate kinase, M2 isozyme	2A4	8.6/63000	5.59/4863
Serum albumin	2A5	7.9/68000	5.86/66152
Cystatin B	2A6	5.7/15000	5.87/11130
Cartilage oligomeric matrix protein (COMP)	2A7	4/14000	4.35/89934
Haemoglobin beta chain	2A8	6.8/14000	7.25/16034
Polyubiquitin	2A9	7.3/14000	7.13/68497
Haemoglobin beta chain	2A10	6.7/14000	7.25/16034
Haemoglobin alpha chain	2A11	8.3/14000	8.76/15039
Haemoglobin beta chain	2A12	7.2/14000	7.25/16034
Haemoglobin alpha chain	2B1	8.5/14000	8.76/15039
Haemoglobin alpha chain	2B2	9.5/14000	8.76/15039
Haemoglobin beta chain	2B3	9.8/22000	7.25/16034
Dihydropteridine reductase	2B4	7.9/32000	6.9/25803
Collagen alpha 1 type II C-propeptide	2B5	7.3/32000	6.66/27405
Adenylate kinase isoenzyme 2, mitochondrial	2B6	7.3/32000	8.31/26365
Glyceraldehyde 3-phosphate dehydrogenase	2B7	9.4/38000	8.52/35707
Ornithine decarboxylase	2B8	9.4/38000	5.28/51345
38 kDa heparin-binding glycoprotein (Gp38)	2B9	9.8/49000	9.17/42443
Protein Name	Accession Numbers	Monotonicity	Description
---------------------------------	-------------------	--------------	-------------
Transaldolase	6.1/39000	6.36/37540	6.1/39000
Serum albumin	6.1/39000	5.86/66152	5.38/52978
Actin, cytoplasmic 2	5.1/45000	5.31/41661	
Gelsolin, plasma	4.9/53000	6.36/41470	6.1/39000
Glutathione synthetase	4.9/53000	5.67/52384	
Protein disulphide isomerase A6	4.9/53000	4.95/46170	
Protein disulphide isomerase	4.3/59000	4.73/5223	
Pigment epithelium-derived factor	5.7/53000	6.31/44056	
Transferrin (prealbumin)	5.7/53000	6.34/13929	
Alpha enolase	5.7/53000	6.99/47037	
RAB GDP dissociation inhibitor alpha	5.9/53000	5/50565	
Alpha enolase	5.9/53000	6.99/47037	
Cytosol aminopeptidase	6.4/58000	6.29/52640	
Leucine aminopeptidase	6.4/58000	7.61/51641	
Matrix metalloproteinase-3 (MMP-3)	4.9/62000	5.59/52221	5.82/59000
Alpha-1-antichymotrypsin 3	4.9/62000	5.77/22840	
Vitamin D-binding protein	4.9/60000	5.52/1243	
Antithrombin-III	5/62000	5.95/49039	
60 kDa heat shock protein	5/62000	5.76/1054	
Lysyl oxidase homolog 2	5/62000	5.92/8406	
Lysyl oxidase homolog 2	5/62000	5.92/8406	
Serum albumin	5.7/65000	5.86/66152	
Prolyl 4-hydroxylase alpha subunit	5.7/65000	5.75/59109	
Collagen alpha 2 (XI) chain	7.5/10500	9.22/134012	
Serotransferrin	6.7/95000	6.93/76967	
Serum albumin	6.1/95000	5.86/66152	
Serotransferrin	7/84000	6.93/76967	
Inhibitor of carbonic anhydrase	7/84000	5.82/75697	
Lactotransferrin	7/84000	8.67/76143	
Type IX collagen alpha 1 chain	9.7/14000	8.69/20906	
Supplementary Table S3. Proteins identified from human OA cartilage explant medium (OA11, Fig S2) by 2D-electrophoresis and HPLC-MS/MS.

Spot	Protein	Exp pl/Mw	Theor. pl/Mw	Sequence
A1	Inhibin beta A	7.5/15000	7.07/12976	QFFVSFK
A2	Cytokine-like protein C17	4.5/18000	8.8/15577	LLQYSEPKSEKEVR
A3	Cytokine-like protein C17	5.8/18000	8.8/15577	ALSQE HTR
				DFNLL QSVSP SEPCV
A4	Tetranectin	5/20000	5.8/19752	LDTLQAQVALLEKQALQTVCLCK
A5	Tetranectin	5.8/22000	5.8/19752	CFLAFTQTKT
A6	Tetranectin	5.5/22000	5.8/19752	CFLAFTQTKI
A7	Tetranectin	5/23000	5.8/19752	NWETE ITAQPD DGGKT ENCVA LSGAANGK
A8	Tetranectin	4.8/23000	5.8/19752	TFEA SEDC1 SR
A9	Metalloproteinase inhibitor 2 (TIMP-2)	6.5/22000	6.5/21755	TYTVGEETCTVFPCSLIPCK
A10	Metalloproteinase inhibitor 2 (TIMP-2)	6.5/22000	6.5/21755	TYTVGEETCTVFPCSLIPCK
A11	Metalloproteinase inhibitor 1 (TIMP-1)	8.8/30000	8.5/20708	TYTVGEETCTVFPCSLIPCK
A12	Metalloproteinase inhibitor 1 (TIMP-1)	8.5/30000	8.5/20708	TYTVGEETCTVFPCSLIPCK
B1	Metalloproteinase inhibitor 1 (TIMP-1)	8/30000	8.5/20708	TYTVGEETCTVFPCSLIPCK
B2	Metalloproteinase inhibitor 1 (TIMP-1)	7.5/30000	8.5/20708	TYTVGEETCTVFPCSLIPCK
B3	Osteoinductive factor (OIF)	5/32000	5/26976	ESAYLYAR ESAYLYAR
B4	Clusterin	6/34000	5.9/50602	ESSSEDLFQ DRFF R
B5	Clusterin	5.5/34000	5.9/50602	ESAYLYAR ESAYLYAR
B6	Osteoinductive factor	5.5/34000	5/26976	ESAYLYAR ESAYLYAR
				ESAYLYAR ESAYLYAR
B7	Osteoinductive factor	5.5/36000	5/26976	ESAYLYAR ESAYLYAR
Osteoinductive factor	B8	5/36000 5/26976		
-----------------------	----	----------------		
Clusterin	B9	5/36000 5.9/50062		
Osteoinductive factor	B10	5/36000 5/26976		
Clusterin	B11	4.5/36000 5/26976		
Osteoinductive factor	B12	3.6/44000 5/26976		
Osteonectin/SPARC		3.6/44000 4.7/30666		
Vimentin	C2	3.9/43000 5.1/46814		
Osteonectin/SPARC	C3	3.9/43000 5.1/46814		
Osteoinductive factor	C4	4/17000 5.1/46814		
Vimentin	C5	3.5/20000 5.1/46814		
Vimentin	C6	4/45000 5.1/46814		
Osteoinductive factor	C7	5.3/32000 5/26976		
Osteoinductive factor	C8	4.8/34000 5/26976		
Clusterin	C9	5/24000 5.9/50062		
Clusterin	C10	4.8/40000 5.9/50062		
Lamin	C11	5.8/42000 6.7/48452		
Clusterin	C12	4.7/34000 5.9/50026		
Clusterin	D1	4.9/34000 5.9/50062		
Inhibin beta A	D2	5.8/44000 7.9/45085		

B8
DFADIPNLR
IEEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK
B8 Osteoinductive factor 5/36000 5/26976
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

B9
Clusterin 5/36000 5.9/50062
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

B10
Clusterin 5/36000 5/26976
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

B11
Clusterin 4.5/36000 5/26976
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

B12
Osteoinductive factor 3.6/44000 5/26976
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C1
Osteonectin/SPARC 3.6/44000 4.7/30666
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C2
Vimentin 3.9/43000 5.1/46814
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C3
Vimentin 3.9/43000 5.1/46814
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C4
Vimentin 4/17000 5.1/46814
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C5
Vimentin 3.5/20000 5.1/46814
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C6
Vimentin 4/45000 5.1/46814
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C7
Osteoinductive factor 5.3/32000 5/26976
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C8
Osteoinductive factor 4.8/34000 5/26976
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C9
Clusterin 5/24000 5.9/50062
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C10
Clusterin 4.8/40000 5.9/50062
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C11
Lamin 5.8/42000 6.7/48452
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

C12
Clusterin 4.7/34000 5.9/50026
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

D1
Clusterin 4.9/34000 5.9/50062
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK

D2
Inhibin beta A 5.8/44000 7.9/45085
ESAYLYAR DFADIPNLR LTAKDFADIPNLR LPVPLPKLTLFNAK EEIRLEGNPIVLGK
LSLLEELSLAENQLLKLPVLPPK
RLDFTGNLIEDIEDGTFSK
D3 Inhibin beta A 6/44000 7.9/45085 RPVDT QPVPK SELLE SEKVY DAR SWHYF PPSS SQQR VGENG YVEIE DIDIGR
D4 Inhibin beta A 6.4/43000 7.9/45085 RPVDT QPVPK LLDDQ KSSLD VR SWHYF PPSS SQQR VGENG YVEIE DIDIGR IACQ CJESG ASLVL LGK AEMNE LMEQT SEIT FAESG TAR
D5 Inhibin beta A 6.6/41000 7.9/45085 AEVWL FLKVP K SELLE SEKVY DAR SWHYF PPSS SQQR VGENG YVEIE DIDIGR KSTWH YPYS SQQR IACQ CJESG ASLVL LGK
D6 Inhibin beta A 6.8/41000 7.9/45085 SELL SEK RPVDT QPVPK LLDDQ KSSLD VR SWHYF PPSS SQQR VGENG YVEIE DIDIGR IACQ CJESG ASLVL LGK
D7 Inhibin beta A 7/39000 7.9/45085 SELL SEK RPVDT QPVPK LLDDQ KSSLD VR SWHYF PPSS SQQR VGENG YVEIE DIDIGR IACQ CJESG ASLVL LGK AEMNE LMEQT SEIT FAESG TAR
D8 Inhibin beta A 7.3/39000 7.9/45085 SELL SEK RPVDT QPVPK LLDDQ KSSLD VR SWHYF PPSS SQQR VGENG YVEIE DIDIGR IACQ CJESG ASLVL LGK
D9 YKL-39/ Chitinase-3 like protein 2 7.5/39000 7.2/40871 LLDDQ KSSLD VR SWHYF PPSS SQQR VGENG YVEIE DIDIGR IACQ CJESG ASLVL LGK
D10 YKL-40/gp-39/Chitinase-3 like protein 1 8.2/41000 8.65/40476 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
D11 YKL-40/gp-39/ Chitinase-3 like protein 1 8.6/41000 8.65/40476 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
Fructose-bisphosphate aldolase 8.6/41000 8.4/36016
D12 Alpha-1-antitrypsin 4/63000 5.3/44324 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
E1 YKL-40/Gp-39/ chitinase-3 like protein 1 9/40000 8.65/40476 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
E2 YKL-40/Gp-39/ chitinase-3 like protein 1 9/40000 8.65/40476 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
E3 Matrix metalloproteinase-3 (MMP-3) 5.2/58000 5.7/52221 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
E4 Matrix metalloproteinase-3 (MMP-3) 4.8/59000 5.7/52221 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
E5 Matrix metalloproteinase-3 (MMP-3) 4.4/59000 5.7/52221 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
E6 Matrix metalloproteinase-2 (MMP-2) 4.5/70000 6.4/51844 QLLLS AALSA GK THGF DLGLA WLYPG R EAGTL AYYEI CDFLR SFTLA SSETG VGAPI SGPGI PGRFT
E7 ASPIC 4/84000 4.95/68434
Lumican 4/82000 6.17/36660
E8 Lumican 4.5/53000 6.17/36660
Collagen alpha 1 type VI 4.5/130000 5.23/106495
E9 Complement factor B 5.8/90000 6.66/83000
E10 Collagen alpha 1 type VI 4.5/53000 6.17/36660
Kinesin-like protein 9.3/150000 5.42/138630
E11 Complement factor B 6.7/90000 6.66/83000
E12 Complement factor B 6.2/90000 6.66/83000
E13 Complement factor B 6.7/88000 6.66/83000
F1 Complement factor B 6.9/61000 6.66/83000
F2 Preursor polypeptide (AA-14 to 747) 9.3/150000 6.57/83881
F3 Putative DNA/chromatin binding motif 5.5/170000 5.90/144676
F4 Cartilage intermediate layer protein (CILP) 7.5/60000 8.73/132538
F5 Cartilage intermediate layer protein (CILP) 7.8/60000 8.73/132538
F6 Cartilage intermediate layer protein (CILP) 8.2/59000 8.73/132538
F7 Cartilage intermediate layer protein (CILP) 8.7/59000 8.73/132538
F9 Cartilage intermediate layer protein (CILP) 8.8/61000 8.73/132538
VPGSC CR INPLS CNYVR TFLVG NLIEB CTGSDS SGAHFR SNVGV ALTTFN CVER FNPNA KPVPLYNK BDPQ NV3AA CLEFK FLPSE EQOQVISYVNLIEPR QSAFQ YLQST FAQPS AAGTVQGR

F10 Cartilage intermediate layer protein (CILP) 9/62000 8.73/132538
VPGSC CR TAEALG IR VPGSC SCR IVGPL EVNVR TFLVNLIEB ACEEA PSRFA AAIFR FNPNA KPVPLYNK BDPQ NV3AA CLEFK FLPSE EQOQVISYVNLIEPR QSAFQ YLQST FAQPS AAGTVQGR

F11 Cartilage intermediate layer protein (CILP) 9.2/62000 8.73/132538
VPGSC CR TAEALG IR VPGSC SCR IVGPL EVNVR TFLVNLIEB ACEEA PSRFA AAIFR FNPNA KPVPLYNK LSVNR YEQSG CNLDS AR G3 L-lactate dehydrogenase 8.2/34000 8.46/35922 GALQN IIPAS TGAAK

F12 Golgin-160 8.6/50000 5.74/66349
LOSEL KELR EAADA ELGQL R HLVQA LQASL EK QELMQ VHGEK R KGTRL LGQSN AALR VIELE DGE5 SR ELEGL QOQLQ NVK EREDM ETHLQ SLOFD K ELQOK KLQAE ADDLQ FR

G1 Golgin-160 9.5/54000 5.74/66349
LOSDL TSAQK EAADA ELGQL R QELMQ VHGEK R LGSDL TSAQK EMK VLELE DGE5 SR ELEGL QOQLQ NVK EREDM ETHLQ SLOFD K ELQOK KLQAE ADDLQ FR

G2 L-lactate dehydrogenase 8.6/34000 8.46/36557
VIQSG CNLDS AR QHDAE VDATL K FTYTA LKDG FK NSKAY IDEAA GNLK K SLNOQ JEBST ALLIQ GNDVE ER

G3 L-lactate dehydrogenase 8.2/34000 8.46/36557
VIQSG CNLDS AR QHDAE VDATL K FTYTA LKDG FK

G4 Collagen alpha 1 type II C-propeptide 7/33000 6.66/27405
QDEAE YDATL K FTYTA LKDG FK

G5 Collagen alpha 1 type II C-propeptide 6.6/33000 6.66/27405
QHDAE VDATL K FTYTA LKDG FK

G6 Glyceraldehyde 3-phosphate dehydrogenase 8.2/36000 8.58/35922 GALQN IIPAS TGAAK

G7 Glyceraldehyde 3-phosphate dehydrogenase 8.4/36000 8.58/35922 GALQN IIPAS TGAAK

G8 Glyceraldehyde 3-phosphate dehydrogenase 8.7/36000 8.58/35922 GALQN IIPAS TGAAK

G9 Glyceraldehyde 3-phosphate dehydrogenase 8.8/36000 8.58/35922 GALQN IIPAS TGAAK

G10 Glyceraldehyde 3-phosphate dehydrogenase 9.2/36000 8.58/35922 GALQN IIPAS TGAAK

G11 Procollagen C-proteinase enhancer protein P 6.2/50000 7.55/45549
ATSIG EHOQC GBER E K FCGT RPAL VAPON QTBLR

G12 Procollagen C-proteinase enhancer protein P 6.5/47000 7.55/45549
ATSIG EHOQC GBER E K FCGT RPAL VAPON QTBLR

H1 Procollagen C-proteinase enhancer protein P 6.8/47000 7.55/45549
ATSIG EHOQC GBER E K FCGT RPAL VAPON QTBLR

H2 Procollagen C-proteinase enhancer protein P 7.3/47000 7.55/45549
ATSIG EHOQC GBER E K FCGT RPAL VAPON QTBLR
H3 Procollagen C-proteinase enhancer protein P 7.5/47000 7.55/45549
H4 Procollagen C-proteinase enhancer protein P 9.5/19000 7.55/45549
H5 Extracellular superoxide dismutase [Cu-Zn] 5.7/31000 6.32/24162
H6 Extracellular superoxide dismutase [Cu-Zn] 6/31000 6.32/24162
H7 Extracellular superoxide dismutase [Cu-Zn] 6.5/30000 6.32/24162
H8 Carbonic anhydrase 6.8/29000 6.63/28739
H9 Carbonic anhydrase 7/29000 6.63/28739
H10 Complement factor D 7.2/24000 6.85/24404
H11 Complement factor D 7.2/23000 6.85/24404
H12 Complement factor D 7.5/24000 6.85/24404
2A1 Biliverdin reductase B 7.7/23000 7.13/22119
2A2 Phosphatidylethanolamine-binding protein 7.8/22000 7.43/20925
2A3 Serum amyloid P 5.2/27000 6.12/23528
2A4 Cartilage oligomeric matrix protein (COMP) 4.3/31000 4.35/80394
2A5 Cartilage oligomeric matrix protein (COMP) 9.6/21000 4.35/80394
2A6 α-1-microglobulin-bikunin 4.5/32000 6.32/35528
2A7 Cartilage intermediate layer protein (CILP) Cartilage oligomeric matrix protein (COMP) 4.5/32000 8.73/132538
2A8 Peroxiredoxin 2 5.3/225000 5.66/21891
2A9 Peroxiredoxin 2 7.6/22000 5.66/21891
	Description	MW	Accession Numbers
2A10	Destrin (Actin-depolymerizing factor)	8/18000	8.06/18505
2A11	Transhyretin (prealbumin)	5.2/16000	5.35/13761
2A12	Peptidyl-prolyl cis-trans isomerase B	9.7/20000	9.25/20289
2B1	Peptidyl-prolyl cis-trans isomerase	8/17000	7.82/17881
2B2	Chain A, zinc dependent dimers	9.2/24000	9.1/19561
	Type XVIII collagen	9.2/24000	9.3/17732
2B3	Haemoglobin alpha chain	9.3/14000	8.73/15136
2B4	Haemoglobin alpha chain	8.7/14000	8.73/15136
2B5	Haemoglobin alpha chain	8.5/14000	8.73/15136
2B6	Lysozyme C	9.5/14000	9.38/16537
2B7	Profilin 1	8.8/14000	8.47/14923
2B8	Haemoglobin delta chain	8/14000	7.97/15924
2B9	Haemoglobin beta chain	7.5/14000	6.81/15867
2B10	Haemoglobin beta chain	7.2/14000	6.81/15867
2B11	Haemoglobin beta chain	6.7/14000	6.81/15867
2B12	Haemoglobin delta chain	6.0/14000	7.97/15924
2C1	Haptoglobin-1	5.5/20000	5.23/9192
2C2	Retinoic acid receptor responder protein 2	9/18000	8.99/16856

Note: MW = Molecular Weight
2C3 Retinoic acid responder protein 2 9.3/18000 8.99/16856
 KCLAC IK
 LVHCP BETOV LR
 EAEHH QETQC LR
 AGREDP HSFYF PQQA FSK

2C4 Thrombospondin 4 N-terminal domain 9.8/21000 9.23/29230
 KPOGDF LEELK
 AFAGP SQFPE TIELR
 KPOGDF LEELK LVVR
 GAGSL ELYLD CQVDQ SVHNL PR

2C5 Ribonuclease pancreatic precursor 8.8/21000 8.98/14574
 VPNCA TR
 CKPVN TVHEI PVLDF QNVCF QEK

2C6 Glutathione S-transferase 5.2/23000 5.44/23224
 ASCLY GQLPK
 FPPTV VYFPV R
 FQDGDL LTYLQ SNTIL R
 ALPQP LKPEE TLLSQ NOQGK

2C7 Prolargin 5.2/29000 9.45/41646
 KVPV1PPR
 NQLEE VPSAL PR
 YLEKL PGVLF LYMKEK
 EYCCPY PFDFPS ALYCD SR

2C8 Prolargin 5.7/29000 9.45/41646
 KVPV1PPR
 NQLEE VPSAL PR
 YLEKL PGVLF LYMKEK
 EYCCPY PFDFPS ALYCD SR

2C9 Phosphoglycerate mutase 6.3/26000 6.67/28803
 HYGGL TGLNK
 ALEPW NEEIN POIK
 SYDVP PPMMF PIPHF VSNIS K
 YADLT EDQQL SCSEL KDI1 A!

2C10 Ig kappa chain region 8.5/24000 5.58/11608
 SGTAS YVCCL NNFFP R
 VYACE VTHQG LSSPV TK
 TVAAP SSVIF PPDSE QLJK

2C11 Ig kappa chain region 9/24000 5.58/11608
 SGTAS YVCCL NNFFP R
 TVAAP SSVIF PPDSE QLJK

2C12 Chondroadherin 9.4/29000 9.43/38271
 ASRPD ATCAS PAC
 SIPDN AFOQF GR
 FSQGA FLOVT TLK
 VVEEL KLSIN PLK
 YLELT WLONT NLEK
 GLISSP LYNLF ILQDN NNNK
 FVHDQ NQQIS YPSAI LSK
 LQNPQ SNFFP DLSELT LALTNPWK
 AAGAF DTIEL TLYL DHNKV TELPR

2D1 Chondroadherin 9.5/33000 9.43/38271
 LRVEE ELK
 ASRPD ATCAS PAK
 SIPDN AFOQF GR
 NQISS YPSAI LSK
 QLIEE YLSIN DIR
 YLELT WLONT NLEK
 GLISSP LYNLF ILQDN NNNK
 LQNPQ SNFFP DLSELT LALTNPWK
 AAGAF DTIEL TLYL DHNKV TELPR

2D2 Annexin II 8.6/33000 7.65/38472
 TNQEL GEINR
 GVDEV TVNLI LTNR
 SASLG HLETV ILGLL K
 GLGTD EDLLE EECHS R
 DLYDA GVR
 QSAF AYOR
 TNQEL GEINR
 SLYYY SQFFT K
 GVDEV TVNLI LTNR
 TKGVD ETVIV NLTIN R
 RAEDG SVDYP ELIDQ DAR
 AYTNF DAERD ALNIE TAK

2D3 Annexin II 7.7/34000 7.65/38472

2D4 Complement C4 6.8/32000 6.37/33073
 LLATL CSAEV COAC GKPGR
 SFVNI VAK
 BCSCT TNQIC K
 QHYPF EDQGSDR
 FNTFI HEDIW NIR
 YALYD ATYCL K
 KEDLY FIFWA PESAP LK

2D5 Hypothetical 187.1 kDa protein in OGG1-CNA2 4.4/14000 8.16/187132
 TDV1 NTTQK
 QDQ1 SQILQ K
 CYKLAS EGLK
 ENQAL QTVCL R
 NSDII NAQDY YGKR
 LWTVE NALKE IQALF TVCLR
 ESNQP VVkeywords: SIK
 ADDLG KGGNE ESTK
 GDGPV QGIIN FEQK
 AVCVL KGDGP VQGII NFEQK

2D6 Ribonuclease 4 9.3/17000 9.18/13823
 VSFLS ALEEY TK
 DYVSQ FEGSA LGK
 VSKDLA TTYYD VLIK
 LLDNW DSVTS TFSK

2D7 Cofilin 8.4/19000 8.22/18502
 AKPAL EDLR
 ATEHL STTSL K
 QQGPL VLEK S
 VQYDL DDFQK
 TILAP VSYEL R
 VSFLS ALLEEY TK
 DYYSQ FEGSA LGK

2D8 C-type lectin 7.5/18000 9.15/19840
 AEQOE GARI
 AKPAL EDLR
 ATEHL STTSL K
 QQGPL VLEK S
 VQYDL DDFQK
 TILAP VSYEL R
 VSFLS ALLEEY TK
 LDGIL KDSLP LQTV
 VSKDLA TTYYD VLIK
 LLDNW DSVTS TFSK

2D9 Superoxide dismutase [Cu-Zn] 5.5/19000 8.83/19995
 ESGRP KQKWG SIR
 ADDLG KGGNE ESTK
 GDGPV QGIIN FEQK
 AVCVL KGDGP VQGII NFEQK

2D10 Apolipoprotein A-1 4.8/23000 5.27/28078
 AEQOE GARI
 AKPAL EDLR
 ATEHL STTSL K
 QQGPL VLEK S
 VQYDL DDFQK
 TILAP VSYEL R
 VSFLS ALLEEY TK
 DYYSQ FEGSA LGK

2D11 Apolipoprotein A-1 4.5/23000 5.27/28078
 AEQOE GARI
 AKPAL EDLR
 ATEHL STTSL K
 QQGPL VLEK S
 VQYDL DDFQK
 TILAP VSYEL R
 VSFLS ALLEEY TK
 LDGIL KDSLP LQTV
 VSKDLA TTYYD VLIK
 LLDNW DSVTS TFSK
Protein Name	Mass (kDa)	P.I.		
2D12 Triosephosphate isomerase	6.7/24000	7.09/26581		
2E1 Triosephosphate isomerase	7/24000	7.09/26581		
2E2 Complement C1q subcomponent, B chain	9.1/30000	8.85/23741		
2E3 Collagen alpha 1 (XI) chain	7.2/29000	9.1/97667		
2E4 Annexin V	4.3/33000	4.94/35805		
2E5 Annexin V	8.3/32000	4.94/35805		
2E6 Fibrogen beta chain	5.3/40000	7.95/50762		
2E7 Pigment epithelium-derived factor	6.7/42000	6.56/40071		
2E8 Pigment epithelium-derived factor	5.1/50000	6.56/40071		
2E9 Pigment epithelium-derived factor	5.3/49000	6.56/40071		
2E10 Pigment epithelium-derived factor	5.6/48000	6.56/40071		
2E11 Pigment epithelium-derived factor	5.7/47000	6.56/40071		
2E12 Pigment epithelium-derived factor	5.8/46000	6.56/40071		
2F1 Phosphoglycerate kinase	8.7/43000	8.3/44596		
2F2 Serine protease HTRA1	7.3/55000	7.89/49048		
2F3 Ig gamma-2 chain C region	7.6/55000	7.66/35884		
2F4 Complement C3 b-chain	7.2/68000	8.7/70420		
2F5 Serotransferrin	6.9/71000	6.7/75181		
2F6 Serotransferrin	6.7/72000	6.7/75181		
Protein Name	Accession Numbers	Mass (kDa)	pI	Other Information
--------------	-------------------	------------	----	-------------------
Serotransferrin	2F7	6.4/73000	6.7/75181	KPVEE YANCH LAR EDQTF FYAV AVVK NLMK EVYEL CCLKT R EILD WSLLQ ALQIF FK SAGWN IPGDL LCDI PEPR
Serotransferrin	2F8	6.5/74000	6.7/75181	APNHA VYTR KASYLDCIR SKDL TWNKL K SNPS DPSS ACVK MYLG EYXTA IR CSTSS LLEAC TFR EKLF LDRY LC LAK SAGWN IPGDL LCDI PEPR
Fibromodulin	2F9	3.6/50000	5.57/40988	YLPFV PSR SLIL DSNY HERK
Fibromodulin	2F10	3.5/60000	5.57/40988	YLPFV PSR SLIL DSNY HERK
Alpha-1B glycoprotein	2F11	4.6/75000	5.65/51940	
Hemopexin	2F12	5.2/73000	6.43/49295	
Annexin I	2G1	6.5/35000	6.64/38583	
Related to glycerol-3-phosphate dehydrogenase	2G2	6.7/38000	7.6/76907	
H factor (complement)-like	2G3	6.8/39000	7.39/37650	
Actin, aortic smooth muscle (a-actin 2)	2G4	4.7/43000	5.24/41774	
Procollagen C-endopeptidase enhancer	2G5	7.6/52000	7.41/47972	
Hypothetical 72.2 kDa protein	2G6	8/51000	04/72247	
Hypothetical 72.2 kDa protein	2G7	9.4/54000	04/72247	
Hypothetical 72.2 kDa protein	2G8	8.9/53000	8.04/72247	
Ig gamma-4 chain C region	2G9	8/54000	7.81/35940	
Beta-2-glycoprotein I	2G10	6.6/57000	8.37/36254	
Ig gamma-1 chain C region	2G11	8.2/90000	8.46/36105	
Polynucleotide nucleotidytransferase	2G12	5.3/22000	5.3/79170	
Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecule for chondrocytes

Monika Hermansson, Yasunobu Sawaji, Mark Bolton, Susan Alexander, Andrew Wallace, Shajna Begum, Robin Wait and Jeremy Saklatvala

J. Biol. Chem. published online August 2, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M407041200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2004/09/01/M407041200.DC1