SUFFICIENCY FOR NEPHROID STARLIKENESS USING HYPERGEOMETRIC FUNCTIONS

A. SWAMINATHAN‡ AND LATEEF AHMAD WANI†

Abstract. Let A consists of analytic functions $f : D \to \mathbb{C}$ satisfying $f(0) = (f'(0)) - 1 = 0$. Let S_{Ne}^* be the recently introduced Ma-Minda type functions family associated with the 2-cusped kidney-shaped nephroid curve $((u - 1)^2 + v^2 - \frac{4}{9})^3 - \frac{4v^2}{9} = 0$ given by

$$S_{Ne}^* := \left\{ f \in A : \frac{zf'(z)}{f(z)} \prec \varphi_{Ne}(z) = 1 + z + \frac{z^3}{3} \right\}.$$

In this paper, we adopt a novel technique that uses the geometric properties of hypergeometric functions to determine sharp estimates on β so that each of the differential subordinations

$$p(z) + \beta z p'(z) \prec \begin{cases} \sqrt{1 + z}; \\
1 + z; \\
e^z; \end{cases}$$

imply $p(z) \prec \varphi_{Ne}(z)$, where $p(z)$ is analytic satisfying $p(0) = 1$. As applications, we establish conditions that are sufficient to deduce that $f \in A$ is a member of S_{Ne}^*.

1. Introduction

Let A be the family of analytic functions f defined on the open unit disk $D := \{z : |z| < 1\}$ and satisfying $f(0) = f'(0) - 1 = 0$. Let $S \subset A$ be the family of one-one (univalent) functions defined on D. Further, let $S^* \subset S$ and $C \subset S$ be, respectively, the well-known classes of starlike and convex functions defined on D. We note that the functions in S^* are analytically characterized by the condition that for each $z \in D$, the quantity $zf'(z)/f(z)$ lies in the interior of the half-plane $\text{Re}(w) > 0$.

Let f be analytic and g be univalent. Then f is subordinate to g, written as $f \prec g$, if, and only if,

$$f(0) = g(0) \quad \text{and} \quad f(D) \subset g(D).$$

Definition 1.1. Let $\Lambda : \mathbb{C}^2 \times D \to \mathbb{C}$ be analytic, and let u be univalent. The analytic function p is said to satisfy the first-order differential subordination if

$$\Lambda(p(z), zp'(z); z) \prec u(z), \quad z \in D. \quad (1.1)$$

If $q : D \to \mathbb{C}$ is univalent and $p \prec q$ for all p satisfying (1.1), then q is said to be a dominant of the differential subordination (1.1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1.1) is called the best dominant of (1.1). If \tilde{q}_1 and \tilde{q}_2 are two best dominants of (1.1), then $\tilde{q}_2(z) = \tilde{q}_1(e^{\theta}z)$ for some $\theta \in \mathbb{R}$. For further details related to differential subordinations, we refer to the monograph of Miller and Mocanu [34] (see also Bulboaca [1]). Due to its straightforward consequences, the theory of differential subordinations (a complex analogue of differential inequalities) developed by Miller and

2010 Mathematics Subject Classification. 30C45, 30C80, 33C05, 33C15.

Key words and phrases. Differential Subordination, Starlike functions, Hypergeometric Functions, Nephroid, Bernoulli Lemniscate.
Mocanu [34] is being extensively used in studying the analytic and geometric properties of univalent functions. For some recent works, see [5, 13, 15, 17, 21, 37, 58].

Following [3, 12, 16, 18, 20, 23, 31, 32, 40–42, 63], the authors in [60, 61] introduced and studied the geometric properties of the function \(\varphi_{Ne}(z) := 1 + z - z^3/3 \) and the associated Ma-Minda type (see [28, 44, 49]) function family \(S^*_N_e \) given by

\[
S^*_N_e := \left\{ f \in A : \left| \frac{zf'(z)}{f(z)} \right| < \varphi_{N_e}(z) \right\}.
\]

It was proved by Wani and Swaminathan [61] that the function \(\varphi_{N_e}(z) \) maps the boundary \(\partial D \) of the unit disk \(D \) univalently onto the nephroid, a 2-cusped kidney-shaped curve (see Figure 1), given by

\[
(u - 1)^2 + v^2 - \frac{4}{9} = 0.
\]

(1.2)

Geometrically, a nephroid is the locus of a point fixed on the circumference of a circle of radius \(\rho \) that rolls (without slipping) on the outside of a fixed circle having radius \(2\rho \). First studied by Huygens and Tschirnhausen in 1697, the nephroid curve was shown to be the catacaustic (envelope of rays emanating from a specified point) of a circle when the light source is at infinity. In 1692, Jakob Bernoulli had shown that the nephroid is the catacaustic of a cardioid for a luminous cusp. However, the word nephroid was first used by Richard A. Proctor in 1878 in his book ‘The Geometry of Cycloids’. For further details related to the nephroid curve, we refer to [27, 62].

![Figure 1. Nephroid: The Boundary curve of \(\varphi_{N_e}(D) \).](image)

Thus \(f \in S^*_N_e \) if, and only if, all the values taken by the expression \(zf'(z)/f(z) \) lie in the region \(\Omega_{N_e} \) bounded by the nephroid curve (1.2). Since \(S^*_N_e \subset S^* \), we call \(f \in S^*_N_e \) a nephroid starlike function.

In this paper, we employ the differential subordination techniques and use the geometric properties of Gaussian and confluent hypergeometric functions to establish conditions which ensure that the analytic function \(f \in A \) is nephroid starlike in \(D \). More specifically, we determine the best possible bounds on the real \(\beta \) so that, for some analytic \(p \) satisfying
Sufficiency for nephroid starlikeness using hypergeometric functions 3

$p(0) = 1$, the following implication holds:

$$p(z) + \beta z p'(z) \prec \begin{cases} \sqrt{1 + z}; \\ 1 + z; \\ e^z; \end{cases} \implies p(z) \prec \varphi_{\kappa}(z).$$

Replacing $p(z)$ by the expression $zf'(z)/f(z)$ for any $f \in A$, we obtain conditions that are sufficient to imply that the function f is nephroid starlike in \mathbb{D}.

Although similar type of differential subordination implication problems have been studied for several other function families (for instance see [2, 4, 6, 8, 11, 14, 21, 22, 24, 29, 36, 37]), the approach of utilizing the properties of hypergeometric functions to arrive at the desired implication is totally new. In addition, this paper verifies analytically certain crucial facts which some of the above cited authors have concluded geometrically without providing any analytic clarification. However, graphical illustrations are also provided in this manuscript for enhancing the clarity of the results to the reader and competing with the existing related literature.

In the sequel, it is always assumed that $z \in \mathbb{D}$ unless stated otherwise.

2. Preliminaries on Hypergeometric Functions

The following lemma related to differential subordination will be used in our discussion.

Lemma 2.1 (Ma and Minda [34, p. 132]). Let $q : \mathbb{D} \to \mathbb{C}$ be univalent, and let λ and ϑ be analytic in a domain $\Omega \supseteq q(\mathbb{D})$ with $\lambda(\xi) \neq 0$ whenever $\xi \in q(\mathbb{D})$. Define

$$\Theta(z) := zq'(z) \lambda(q(z)) \quad \text{and} \quad h(z) := \vartheta(q(z)) + \Theta(z), \quad z \in \mathbb{D}.$$

Suppose that either

(i) $h(z)$ is convex, or

(ii) $\Theta(z)$ is starlike.

In addition, assume that

(iii) $\text{Re}(zh'(z)/\Theta(z)) > 0$ in \mathbb{D}.

If $p \in H$ with $p(0) = q(0)$, $p(\mathbb{D}) \subset \Omega$ and

$$\vartheta(p(z)) + zp'(z) \lambda(p(z)) \prec \vartheta(q(z)) + zq'(z) \lambda(q(z)), \quad z \in \mathbb{D},$$

then $p \prec q$, and q is the best dominant.

Definition 2.1 (Gaussian hypergeometric function). Let $a, b \in \mathbb{C}$ and $c \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}$. Define

$$F(a,b;c;z) := \sum_{j=0}^{\infty} \frac{(a)_{j}(b)_{j}}{j! (c)_{j}} z^j, \quad z \in \mathbb{D},$$

where $(x)_{j}$ is the Pochhammer symbol given by

$$(x)_{j} = \begin{cases} 1, & j = 0 \\ x(x+1)(x+2) \cdots (x+j-1), & j \in \{1, 2, \ldots\} \end{cases}.$$

The analytic function $F(a,b;c;z)$ given in (2.1) is called the Gaussian hypergeometric function.

Prior to the use of hypergeometric functions in the proof of Bieberbach’s conjecture by de Branges [10], there has been little known connections between the univalent function theory and the theory of special functions. This surprising use of hypergeometric functions has given function theorists a renewed interest to study the interrelatedness of these two
convergent power series

Definition 2.2 (Küstner [26, Theorem 1 (a)]). If $0 < a \leq b \leq c$, then

$$1 - \frac{ab}{b + c} \leq \sigma (zF(a, b; c; z)) \leq 1 - \frac{ab}{2c}. \tag{2.6}$$

Definition 2.2 (Confluent hypergeometric function). Let $a \in \mathbb{C}$ and $c \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}$. The confluent (or Kummer) hypergeometric function is defined as the convergent power series

$$\Phi(a; c; z) := {}_1F_1(a; c; z) = \sum_{j=0}^{\infty} \frac{(a)_j z^j}{(c)_j j!}, \quad z \in \mathbb{D}, \tag{2.7}$$

where $(x)_j$ is the Pochhammer symbol defined in (2.2).
The function $\Phi(a; c; z)$ is analytic in \mathbb{C} and satisfies the Kummer’s differential equation

$$zw''(z) + (c - z)w'(z) - aw(z) = 0.$$

If we replace b by $1/\varrho$ and z by $z\varrho$ in the series (2.1) and allow $\varrho \to 0$, we obtain the series (2.7). Below, we mention certain well-known properties of $\Phi(a; c; z)$ given by (2.7).

$$\Phi(a; c; z) = \frac{\Gamma(c)}{\Gamma(a)} \sum_{j=0}^{\infty} \frac{\Gamma(a + j)}{\Gamma(c + j) j!} z^j,$$ (2.8)

$$\Phi'(a; c; z) = \frac{a}{c} \Phi(a + 1; c + 1; z),$$ (2.9)

and

$$\Phi(a; c; z) = \frac{\Gamma(c)}{\Gamma(a) \Gamma(c - a)} \int_0^1 t^{a-1} (1 - t)^{c-a-1} e^{tz} dt, \quad (\text{Re} c > \text{Re} a > 0).$$ (2.10)

Further, the function

$$z\Phi(a; c; z) = z_1 F_1(a; c; z) = z + \sum_{j=2}^{\infty} \frac{(a)_{j-1}}{(c)_{j-1}(j-1)!} \frac{z^j}{j}, \quad z \in \mathbb{D},$$

is the normalized (shifted) confluent hypergeometric function. The following result related to the starlikeness of $z \Phi(a; c; z)$ will be used to prove Theorem 3.3.

Lemma 2.3 (Miller and Mocanu [34, p. 236]). If $c \leq 1 + N(a - 1)$, where

$$N(a) = \begin{cases} |a| + \frac{1}{2} & \text{if } |a| \geq \frac{1}{3}, \\ \frac{3|a|^2}{2} + \frac{2}{3} & \text{if } |a| \leq \frac{1}{3}, \end{cases}$$

then $z \Phi(a; c; z)$ is starlike in \mathbb{D}.

3. Main Results

By making use of Lemma 2.1, Lemma 2.2, and the above mentioned properties of Gaussian hypergeometric function, we prove Theorem 3.1 and Theorem 3.2.

Theorem 3.1. Let $p : \mathbb{D} \to \mathbb{C}$ be analytic and satisfies $p(0) = 1$. Let $\varphi_L(z) := \sqrt{1 + z}$ and

$$p(z) + \beta z p'(z) \prec \varphi_L(z), \quad \beta > 0.$$

If $\beta \geq \beta_L \approx 0.158379$, then $p(z) \prec \varphi_{\aleph(z)}$, where β_L is the unique root of

$$\frac{3}{\Gamma(-\frac{1}{2})} \sum_{j=0}^{\infty} \frac{\Gamma(-\frac{1}{2} + j)}{j!} (1 + j\beta) - 1 = 0.$$ (3.1)

The estimate on β is best possible.

Proof. An elementary analysis shows that the analytic function

$$\Psi_\beta(z) = \frac{1}{\beta} \int_0^1 \frac{t^{\beta-1}}{(1 + zt)^{-1/2}} dt, \quad \beta > 0$$ (3.2)

is a solution of the first-order linear differential equation

$$\Psi_\beta(z) + \beta z \Psi'_\beta(z) = \varphi_L(z).$$
In view of the representation (2.5) of the Gaussian hypergeometric function, it is easy to see that the function \(\Psi_\beta(z) \) given by (3.2) has the form
\[
\Psi_\beta(z) = F \left(-\frac{1}{2}, \frac{1}{\beta}; \frac{1}{\beta} + 1; -z \right).
\] (3.3)

For brevity, we now split the proof into two steps.

Step I. In this step, we prove that \(p(z) + \beta z p'(z) \prec \varphi_L(z) \)** implies** \(p(z) \prec \Psi_\beta(z), \beta > 0 \).

For \(\xi \in \mathbb{C} \), define \(\vartheta(\xi) = \xi \) and \(\lambda(\xi) = \beta \) so that
\[
\Theta(z) = z \Psi'_\beta(z) \lambda(\Psi_\beta(z)) = \beta z \Psi'_\beta(z) = \beta z F' \left(-\frac{1}{2}, \frac{1}{\beta}; \frac{1}{\beta} + 1; -z \right).
\]

This, on using the identity (2.3), gives
\[
\Theta(z) = \frac{\beta}{2(1 + \beta)} z F \left(\frac{1}{2}; \frac{1}{\beta} + 1; \frac{1}{\beta} + 2; -z \right).
\] (3.4)

We prove that the function \(\Theta(z) \) given by (3.4) is starlike in \(\mathbb{D} \) by showing that \(\sigma(\Theta) \geq 0 \), where \(\sigma(\cdot) \) is defined in (2.6). For the normalized hypergeometric function on the right side of (3.4), we have \(a = 1/2, b = 1/\beta + 1 \) and \(c = 1/\beta + 2 \), so that the condition \(0 < a \leq b \leq c \) easily holds. Therefore, by Lemma 2.1, it follows that
\[
\sigma(z F(a, b; c; z)) \geq 1 - \frac{ab}{b+c} = 1 - \frac{1 + \beta}{2(2 + 3\beta)} = \frac{3 + 5\beta}{2(2 + 3\beta)} > 0 \quad (\because \beta > 0).
\]

This shows that the hypergeometric function \(z F \left(\frac{1}{2}, \frac{1}{\beta} + 1; \frac{1}{\beta} + 2; -z \right) \) is starlike in \(\mathbb{D} \), thereby proving the starlikeness of \(\Theta(z) \) defined in (3.4). Since \(\beta > 0 \) and \(\Theta(z) \) is starlike, the function
\[
h(z) = \vartheta(\Psi_\beta(z)) + \Theta(z) = \Psi_\beta(z) + \Theta(z)
\]
satisfies
\[
\text{Re} \left(\frac{z h'(z)}{\Theta(z)} \right) = \text{Re} \left(\frac{1}{\beta} + \frac{z \Theta'(z)}{\Theta(z)} \right) > 0.
\]

In view of Lemma 2.1 we conclude that the differential subordination
\[
p(z) + \beta z p'(z) \prec \Psi_\beta(z) + \beta z \Psi'_\beta(z) = \varphi_L(z)
\]
implies the subordination \(p(z) \prec \Psi_\beta(z) \), where \(\Psi_\beta(z) \) is given by (3.2) (or (3.3)).

Now the desired subordination \(p(z) \prec \varphi_{\mathcal{N}_c}(z) \) will hold true if the subordination \(\Psi_\beta(z) \prec \varphi_{\mathcal{N}_c}(z) \) holds.

Step II. In this step, we prove that \(\Psi_\beta(z) \prec \varphi_{\mathcal{N}_c}(z) \)** if, and only if,** \(\beta \geq \beta_L \approx 0.158379 \).

Necessity. Let \(\Psi_\beta(z) \prec \varphi_{\mathcal{N}_c}(z), z \in \mathbb{D} \). Then
\[
\varphi_{\mathcal{N}_c}(-1) < \Psi_\beta(-1) < \Psi_\beta(1) < \varphi_{\mathcal{N}_c}(1) \quad \text{(3.5)}
\]

On using the representation (3.3) and the identity (2.3), the condition (3.5) yields the two inequalities
\[
\frac{1}{3} \leq F \left(-\frac{1}{2}, \frac{1}{\beta}; \frac{1}{\beta} + 1; 1 \right) = \frac{1}{\Gamma\left(-\frac{1}{2}\right)} \sum_{j=0}^{\infty} \frac{\Gamma\left(-\frac{1}{2} + j\right)}{j!} (1 + j\beta)
\]
and
\[
\frac{5}{3} \geq F \left(-\frac{1}{2}, \frac{1}{\beta}; \frac{1}{\beta} + 1; -1 \right) = \frac{1}{\Gamma\left(-\frac{1}{2}\right)} \sum_{j=0}^{\infty} \frac{\Gamma\left(-\frac{1}{2} + j\right)}{j!} (1 + j\beta)(-1)^j.
\]
Or equivalently,

\[
\tau(\beta) := \frac{1}{\Gamma(-\frac{1}{2})} \sum_{j=0}^{\infty} \frac{\Gamma(-\frac{1}{2} + j)}{j! (1 + j\beta)} - \frac{1}{3} \geq 0
\]

and

\[
\delta(\beta) := \frac{5}{3} - \frac{1}{\Gamma(-\frac{1}{2})} \sum_{j=0}^{\infty} \frac{\Gamma(-\frac{1}{2} + j)}{j! (1 + j\beta)} (-1)^j \geq 0.
\]

A computer based numerical computation shows that for \(\beta \in (0, \infty)\),

\[
\tau(\beta) \in \left(-\frac{1}{3}, \frac{2}{3}\right) \quad \text{and} \quad \delta(\beta) \in \left(\frac{5}{3} - \sqrt{2}, \frac{2}{3}\right).
\]

That is, as \(\beta\) varies from 0 to \(\infty\), \(\delta(\beta)\) is positive, while \(\tau(\beta)\) takes positive as well as negative values. Moreover,

\[
\tau'(\beta) = \frac{-1}{\Gamma(-\frac{1}{2})} \sum_{j=1}^{\infty} \frac{\Gamma(-\frac{1}{2} + j)}{(j-1)! (1 + j\beta)^2}
\]

takes values from the interval \((0, \infty)\) for each \(\beta \in (0, \infty)\). This shows that \(\tau(\beta)\) is strictly increasing in \((0, \infty)\). Therefore, both conditions \(\tau(\beta) \geq 0\) and \(\delta(\beta) \geq 0\) hold true for \(\beta \geq \beta_L \approx 0.158379\), where \(\beta_L\) is the unique root of \(\tau(\beta)\). See the plots of \(\tau(\beta)\) and \(\delta(\beta)\) in Figure 2.

![Figure 2. Plots of \(\tau(\beta)\) and \(\delta(\beta)\), \(\beta > 0\).](image)

Sufficiency. Since the function \(\varphi_{N*}(z)\) is univalent in \(D\) and \(\Psi_\beta(0) = \varphi_{N*}(0) = 1\), it is sufficient to prove that \(\Psi_\beta(D) \subset \varphi_{N*}(D)\) for \(\beta \geq \beta_L\).

The square of the distance from the point \((1,0)\) to the points on the nephroid curve \((1.2)\) is

\[
d_1(\theta) := \frac{16}{9} - \frac{4 \cos^2 \theta}{3}, \quad 0 \leq \theta < 2\pi,
\]

and the square of the distance from \((1,0)\) to the points on the curve

\[
\Psi_\beta(e^{i\theta}) = F\left(-\frac{1}{2}, 1; \frac{1}{\beta}; 1 + e^{i\theta}\right)
\]

is

\[
= \frac{1}{\Gamma(-\frac{1}{2})} \sum_{j=0}^{\infty} \frac{(-1)^j \Gamma(-\frac{1}{2} + j)}{j! (1 + j\beta)} (\cos j\theta + i \sin j\theta), \quad 0 \leq \theta < 2\pi,
\]
is given by

\[
d_2(\theta, \beta) := \left(\frac{1}{\Gamma\left(-\frac{1}{2}\right)} \sum_{j=0}^{\infty} C(j, \beta) \cos(j\theta) - 1 \right)^2 + \left(\frac{1}{\Gamma\left(-\frac{1}{2}\right)} \sum_{j=0}^{\infty} C(j, \beta) \sin(j\theta) \right)^2,
\]

where

\[
C(j, \beta) := \frac{(-1)^j \Gamma\left(-\frac{1}{2} + j\right)}{j! (1 + j\beta)}.
\]

Since the curves \(\varphi_{Ne}(e^{i\theta})\) and \(\Psi_{\beta}(e^{i\theta})\) are symmetric about the real axis, we may choose \(\theta \in [0, \pi]\). Now, the difference of square of the distances from the point \((1, 0)\) to the points on the boundary curves \(\varphi_{Ne}(e^{i\theta})\) and \(\Psi_{\beta}(e^{i\theta})\), respectively, is

\[
d(\theta, \beta) := d_1(\theta) - d_2(\theta, \beta) = \frac{16}{9} - \frac{4 \cos^2 \theta}{3} - \left(\frac{\sum_{j=0}^{\infty} C(j, \beta) \cos(j\theta)}{\Gamma\left(-\frac{1}{2}\right)} - 1 \right)^2 - \left(\frac{\sum_{j=0}^{\infty} C(j, \beta) \sin(j\theta)}{\Gamma\left(-\frac{1}{2}\right)} \right)^2,
\]

A computer based numerical computation shows that \(d(\theta, \beta) \geq 0\) for each \(\theta \in [0, \pi]\) whenever \(\beta \geq \beta_L \approx 0.158379\) and \(d(\theta, \beta) < 0\) for some \(\theta \in (\pi - \epsilon, \pi)\), \(\epsilon \to 0\) whenever \(\beta < 0.158379\), see Table 1. This shows that the region bounded by the curve \(\Psi_{\beta}(e^{i\theta})\) is completely contained in \(\varphi_{Ne}(\mathbb{D})\) whenever \(\beta \geq \beta_L\). Moreover, the estimate on \(\beta\) is best possible as

\[
d(\pi, \beta_L) = \frac{4}{9} - \left(\frac{1}{\Gamma\left(-\frac{1}{2}\right)} \sum_{j=0}^{\infty} (-1)^j C(j, \beta_L) - 1 \right)^2 = \frac{4}{9} - \left(\frac{1}{\Gamma\left(-\frac{1}{2}\right)} \sum_{j=0}^{\infty} \Gamma\left(-\frac{1}{2} + j\right) - 1 \right)^2 = \frac{4}{9} - \left(\tau(\beta_L) + \frac{1}{3} - 1 \right)^2 = \frac{4}{9} - \left(\frac{1}{3} - 1 \right)^2 = 0,
\]

See Figure 3 for the graphical illustration of the above proved facts and the sharpness of the bound \(\beta_L\) for the containment \(\Psi_{\beta}(\mathbb{D}) \subset \varphi_{Ne}(\mathbb{D})\). This proves the sufficiency of \(\beta \geq \beta_L\) for the subordination \(\Psi_{\beta} \prec \varphi_{Ne}\).

The desired result now follows by combining the conclusions of Step I and Step II. \(\square\)
The following sufficient condition for the function class S^*_{Ne} is a direct application of Theorem 3.1 obtained by setting $p(z) = z f'(z)/f(z)$.

Corollary 3.1. Let $f \in A$, and let

$$G(z) := 1 - \frac{zf'(z)}{f(z)} + \frac{zf''(z)}{f'(z)}, \quad z \in \mathbb{D}. \quad (3.6)$$
If the function \(f(z) \) satisfies
\[
(1 + \beta \mathcal{G}(z)) \frac{zf'(z)}{f(z)} \prec \varphi_L(z),
\]
then \(f \in \mathcal{S}_{\mathcal{N}_L}^* \) for \(\beta \geq \beta_L \), where \(\beta_L \) is the unique root of (3.1).**

Theorem 3.2. Let the analytic \(p \) satisfies \(p(0) = 1 \) and let
\[
p(z) + \beta z p'(z) \prec 1 + z, \quad \beta > 0.
\]
Then \(p \prec \varphi_{\mathcal{N}_L} \) whenever \(\beta \geq 1/2 \) and this estimate on \(\beta \) is sharp.

Proof. Consider the first-order linear differential equation
\[
q_\beta(z) + \beta z q_\beta'(z) = 1 + z
\]
whose analytic solution is the function \(q_\beta(z) \) given by
\[
q_\beta(z) = \frac{1}{\beta} \int_0^1 t^{\beta-1}(1 + zt) \, dt = F\left(-1, \frac{1}{\beta}; \frac{1}{\beta} + 1; -z\right), \quad z \in \mathbb{D}.
\]
as its solution. Defining the functions \(\vartheta \) and \(\lambda \) as in Theorem 3.1, we obtain
\[
\Theta(z) = z q_\beta'(z) \lambda(q_\beta(z)) = \beta z q_\beta'(z) = \frac{\beta}{1 + \beta} z F\left(0, \frac{1}{\beta} + 1; \frac{1}{\beta} + 2; -z\right) = \frac{\beta}{1 + \beta} z,
\]
which is clearly a starlike function in \(\mathbb{D} \). Also,
\[
h(z) = \vartheta(q_\beta(z)) + \Theta(z) = q_\beta(z) + \Theta(z)
\]
satisfies \(\text{Re}(zh'(z)/\Theta(z)) > 0 \) in \(\mathbb{D} \). Therefore, it follows from Lemma 2.1 that
\[
p(z) + \beta z p'(z) \prec 1 + z = q_\beta(z) + \beta z q_\beta'(z)
\]
implies \(p \prec q_\beta \).

To get \(p \prec \varphi_{\mathcal{N}_L} \), it now remains to prove that \(q_\beta \prec \varphi_{\mathcal{N}_L} \).

If \(q_\beta \prec \varphi_{\mathcal{N}_L} \), then \(\varphi_{\mathcal{N}_L}(-1) < q_\beta(-1) < q_\beta(1) < \varphi_{\mathcal{N}_L}(1) \) which is equivalent to
\[
F\left(-1, \frac{1}{\beta}; \frac{1}{\beta} + 1; 1\right) - \frac{1}{3} \geq 0 \quad \text{or} \quad \beta \geq \frac{1}{2}
\]
and
\[
\frac{5}{3} - F\left(-1, \frac{1}{\beta}; \frac{1}{\beta} + 1; -1\right) \geq 0 \quad \text{or} \quad \beta \geq \frac{5}{2}.
\]
Therefore the necessary condition for \(q_\beta \prec \varphi_{\mathcal{N}_L} \) is that \(\beta \geq \max\{1/2, -5/2\} = 1/2 \).

As in Theorem 3.1, it can be easily verified that whenever \(\beta \geq 1/2 \), the distance \(d_1(\theta) \) from \((1,0)\) to the points on the nephroid curve \(\varphi_{\mathcal{N}_L}(e^{i\theta}) \) is always greater than or equal to the distance \(d_2(\theta, \beta) \) from \((1,0)\) to the points on the curve \(q_\beta(e^{i\theta}) \), \(0 \leq \theta < 2\pi \). This shows that \(q_\beta(\mathbb{D}) \subset \varphi_{\mathcal{N}_L}(\mathbb{D}) \) whenever \(\beta \geq 1/2 \). Hence \(\beta \geq 1/2 \) is also sufficient for the subordination \(q_\beta \prec \varphi_{\mathcal{N}_L} \) to hold true. Moreover,
\[
d_1(0) = d_2(0, 1/2) \quad \text{and} \quad d_1(\pi) = d_2(\pi, 1/2).
\]
Therefore the estimate on \(\beta \) can not be decreased further.

Corollary 3.2. Let \(\mathcal{G}(z) \) be given by (3.6). If \(f \in \mathcal{A} \) satisfies the subordination
\[
(1 + \beta \mathcal{G}(z)) \frac{zf'(z)}{f(z)} \prec 1 + z,
\]
then \(f \in \mathcal{S}_{\mathcal{N}_L}^* \) whenever \(\beta \geq 1/2 \).\[\square\]
In the following theorem, we make use of Lemma 2.1, Lemma 2.3 and the properties of the confluent hypergeometric function \(\Phi(a; c; z)\) defined in (2.7).

Theorem 3.3. Let \(p\) be analytic in \(\mathbb{D}\) satisfying \(p(0) = 1\). For \(\varphi_c(z) := e^z\), let the differential subordination

\[p(z) + \beta z p'(z) \prec \varphi_c(z), \quad \beta > 0. \]

holds. Then \(p(z) \prec \varphi_{N_e}(z)\) whenever \(\beta \geq \beta_e \approx 1.14016\), where \(\beta_e\) is the unique solution of

\[\sum_{j=0}^{\infty} \frac{1}{j! (1 + j \beta)} - \frac{5}{3} = 0. \]

The estimate on \(\beta\) can not be improved further.

Proof. Consider the function

\[\psi_\beta(z) = \frac{1}{\beta} \int_0^1 e^{zt} t^{\frac{1}{\beta} - 1} \, dt, \quad \beta > 0. \]

(3.7)

It can be easily verified that \(\psi_\beta(z)\) given by (3.7) is an analytic solution of the linear differential equation

\[\psi_\beta(z) + \beta z \psi_\beta'(z) = \varphi_c(z). \]

Using the representation (2.10) of the confluent hypergeometric function, it can be observed that

\[\psi_\beta(z) = \Phi \left(\frac{1}{\beta}; \frac{1}{\beta} + 1; z \right). \]

(3.8)

Define \(\vartheta(\xi) = \xi\) and \(\lambda(\xi) = \beta\) so that

\[\Theta(z) = z \psi_\beta'(z) \lambda(\psi_\beta(z)) = \beta z \psi_\beta'(z) = \beta z \Phi' \left(\frac{1}{\beta}; \frac{1}{\beta} + 1; z \right), \]

which upon using (2.9) yields

\[\Theta(z) = \frac{\beta}{(1 + \beta)} z \Phi \left(\frac{1}{\beta} + 1; \frac{1}{\beta} + 2; z \right). \]

(3.9)

We now use Lemma 2.3 to prove that \(\Theta(z)\) given by (3.9) is starlike in \(\mathbb{D}\). Here \(a = 1/\beta + 1\) and \(c = 1/\beta + 2\) so that \(c - 1 = 1/\beta + 1\) and

\[N(a - 1) = \begin{cases} \frac{1}{\beta} + \frac{1}{2} & \text{if } \frac{1}{\beta} \geq \frac{1}{3}, \\ \frac{2}{3\beta} + \frac{1}{2} & \text{if } \frac{1}{\beta} \leq \frac{1}{3}. \end{cases} \]

In both the cases, the inequality \(c - 1 \geq N(a - 1)\) holds. Therefore, \(\Theta(z)\) is starlike and consequently the function

\[h(z) = \vartheta(\psi_\beta(z)) + \Theta(z) = \psi_\beta(z) + \Theta(z) \]

satisfies \(\text{Re} \left(z h'(z) / \Theta(z) \right) > 0\) for each \(z \in \mathbb{D}\). In view of Lemma 2.1, we conclude that the differential subordination \(p(z) + \beta z p'(z) \prec \psi_\beta(z) + \beta z \psi_\beta'(z) = \varphi_c(z)\) implies \(p(z) \prec \psi_\beta(z)\), where \(\psi_\beta(z)\) is given by (3.8).

Now the subordination \(p(z) \prec \varphi_{N_e}(z)\) will be attained if \(\psi_\beta(z) \prec \varphi_{N_e}(z)\). **Claim.** The necessary and sufficient condition for the subordination \(\psi_\beta \prec \varphi_{N_e}\) to hold true is that \(\beta \geq \beta_e \approx 1.14016\).
Necessity. Let $\psi_\beta(z) \prec \varphi_{N_e}(z)$, $z \in \mathbb{D}$. Then
\[
\varphi_{N_e}(-1) < \psi_\beta(-1) < \psi_\beta(1) < \varphi_{N_e}(1). \tag{3.10}
\]
On using (3.8) and (2.8) in (3.10), we obtain the two inequalities
\[
\mu(\beta) := \sum_{j=0}^{\infty} \frac{(-1)^j}{j!(1+j\beta)} - \frac{1}{3} \geq 0
\]
and
\[
\rho(\beta) := \frac{5}{3} - \sum_{j=0}^{\infty} \frac{1}{j!(1+j\beta)} \geq 0.
\]
We note that:
\[
\lim_{\beta \searrow 0} \mu(\beta) = \frac{1}{e} - \frac{1}{3} > 0, \quad \lim_{\beta \nearrow \infty} \mu(\beta) = \frac{2}{3} > 0
\]
and
\[
\lim_{\beta \searrow 0} \rho(\beta) = \frac{5}{3} - e < 0, \quad \lim_{\beta \nearrow \infty} \rho(\beta) = \frac{2}{3} > 0.
\]
Moreover, a computation shows that both $\mu(\beta)$ and $\rho(\beta)$ are strictly increasing functions of $\beta \in (0, \infty)$. Therefore, the inequalities $\mu(\beta) \geq 0$ and $\rho(\beta) \geq 0$ are true for $\beta \geq \beta_e$, where $\beta_e \approx 1.14016$ is the unique root of $\rho(\beta) = 0$. See the plots of $\mu(\beta)$ and $\rho(\beta)$ in Figures 4(a) and 4(b).

Sufficiency. In order to attain the subordination $\psi_\beta(z) \prec \varphi_{N_e}(z)$, we only need to prove that $\psi_\beta(\mathbb{D}) \subset \varphi_{N_e}(\mathbb{D})$ whenever $\beta \geq \beta_e$. Likewise in Theorem 3.1, the difference of the square of the distances from the point $(1, 0)$ to the points on the boundary curves $\varphi_{N_e}(e^{i\theta})$ and $\psi_\beta(e^{i\theta})$, respectively, is
\[
d(\theta, \beta) := d_1(\theta) - d_2(\theta, \beta)
\]
\[
= \frac{4}{3} \left(\frac{4}{3} - \cos^2 \theta \right) - \left(\sum_{j=0}^{\infty} \frac{\cos(j\theta)}{j!(1+j\beta)} - 1 \right)^2 - \left(\sum_{j=0}^{\infty} \frac{\sin(j\theta)}{j!(1+j\beta)} \right)^2.
\]
Since both the curves $\varphi_{N_e}(e^{i\theta})$ and $\psi_\beta(e^{i\theta})$ are symmetric about the real line, we restrict θ to $[0, \pi]$. A computation shows that $d(\theta, \beta) \geq 0$ for each $\theta \in [0, \pi]$ whenever $\beta \geq \beta_e \approx 1.14016$ and $d(\theta, \beta) < 0$ for some θ whenever $\beta < 1.14016$. This shows that the region bounded by the curve $\psi_\beta(e^{i\theta})$ lies in the interior of $\varphi_{N_e}(\mathbb{D})$ whenever $\beta \geq \beta_e$. Further, the estimate on β can not be improved as
\[
d(0, \beta_e) = \frac{4}{9} - \left(\sum_{j=0}^{\infty} \frac{1}{j!(1+j\beta_e)} - 1 \right)^2
\]
\[
= \frac{4}{9} - \left(\left(\frac{5}{3} - \rho(\beta_e) \right) - 1 \right)^2
\]
\[
= \frac{4}{9} - \left(\frac{5}{3} - 1 \right)^2 \quad (\because \rho(\beta_e) = 0)
\]
\[
= 0
\]
See Figure 4(c) for the geometrical interpretation of the sharpness of β_e. \qed
The following sufficient condition for the nephroid starlikeness of \(f \in A \) is obtained on setting \(p(z) = zf'(z)/f(z) \) in Theorem 3.3.

Corollary 3.3. Let \(G(z) \) be defined as in (3.6). If \(f \in A \) satisfies the subordination

\[
(1 + \beta G(z)) \frac{zf'(z)}{f(z)} \prec \varphi_e(z),
\]

then \(f \in S^*_{N_e} \) for \(\beta \geq \beta_e \approx 1.14016 \).

4. Conclusion

In this work, certain differential subordination-implication problems have been discussed. We have employed a new technique to solve the problem by applying the well-known properties of Gaussian and confluent (or Kummer) hypergeometric functions. In addition, analytic clarification of certain set-inclusions have been supplied in this paper which the earlier authors have claimed to be true without providing any details. All the results proved yield sufficient conditions for the nephroid starlikeness of a normalized analytic function. For a quick overview, we summarize the subordination implications discussed in this paper in Table 2.

In view of the recent papers of Srivastava et al. [45–48, 51], we remark that the works related to the nephroid domain carried out by the authors of this manuscript has several future prospects for \(q \)-extension.

Differential Subordination	\(\mathcal{P}(z) \)	Implication	\(\beta \)	Sharp/ non-sharp \(\beta \)
\(p(z) + \beta z p'(z) \prec \mathcal{P}(z) \)	\(\sqrt{1 + z} \)	\(p(z) \prec \varphi_{N_e}(z) \)	0.158379	sharp
	\(1 + z \)	\(1 + z - z^3/3 \)	1/2	
	\(e^z \)		1.14016	

Table 2. Subordination implications studied in this paper
Acknowledgment. This work of the authors was supported by the Project No. CRG/2019/000200/MS of Science and Engineering Research Board, Department of Science and Technology, New Delhi, India.

REFERENCES

[1] O. P. Ahuja, Connections between various subclasses of planar harmonic mappings involving hypergeometric functions, Appl. Math. Comput. 198 (2008), no. 1, 305–316.
[2] O. P. Ahuja, S. Kumar and V. Ravichandran, Applications of first order differential subordination for functions with positive real part, Stud. Univ. Babeš-Bolyai Math. 63 (2018), no. 3, 303–311.
[3] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 6557–6565.
[4] R. M. Ali, N. E. Cho, V. Ravichandran and S. S. Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (2012), no. 3, 1017–1026.
[5] J. A. Antonino and S. S. Miller, Systems of simultaneous differential inequalities, inclusions and subordinations in the complex plane, Anal. Math. Phys. 10 (2020), no. 3, Paper No. 32, 13 pp.
[6] İ. Aktaş, Lemniscate and exponential starlikeness of regular Coulomb wave functions, Studia Sci. Math. Hungar. 57 (2020), no. 3, 372–384.
[7] N. Bohra and V. Ravichandran, On confluent hypergeometric functions and generalized Bessel functions, Anal. Math. 43 (2017), no. 4, 533–545.
[8] N. Bohra, S. Kumar and V. Ravichandran, Some special differential subordinations, Hacet. J. Math. Stat. 48 (2019), no. 4, 1017–1034.
[9] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[10] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137–152.
[11] N. E. Cho, S. Kumar, V. Kumar and V. Ravichandran, Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate, Turkish J. Math. 42 (2018), no. 3, 1380–1399.
[12] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213–232.
[13] N. E. Cho, H. M. Srivastava, E. Analouei Adegani and A. Motamednezhad, Criteria for a certain class of the Carathéodory functions and their applications, J. Inequal. Appl. 2020, Paper No. 85, 14 pp.
[14] A. Ebadian, T. Bulboacă, N. E. Cho and E.A. Adegani, Coefficient bounds and differential subordinations for analytic functions associated with starlike functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 3, Paper No. 128, 19 pp.
[15] A. Ebadian, N. H. Mohammed, E.A. Adegani and T. Bulboacă, New results for some generalizations of starlike and convex functions, J. Funct. Spaces 2020, Art. ID 7428648, 12 pp.
[16] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math. Stat. 48 (2017), no. 4, 1750064, 12 pp.
[17] E. Gavriş, Differential subordinations and Pythagorean means, Math. Slovaca 70 (2020), no. 5, 1135–1140.
[18] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 1, 957–991.
[19] R. Kargar, A. Ebadian and J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (2019), no. 1, 143–154.
[20] K. Khatter, V. Ravichandran and S. Sivaprasad Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 1, 233–253.
[21] S. S. Kumar and P. Goel, Starlike functions and higher order differential subordinations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 192, 23 pp.
[22] S. S. Kumar, V. Kumar, V. Ravichandran and N. E. Cho, Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl. 2013, 2013:176, 13 pp.
[23] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), no. 2, 199–212.
Sufficiency for nephroid starlikeness using hypergeometric functions

[24] S. Kumar and V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Theory 12 (2018), no. 5, 1179–1191.

[25] R. Küstner, Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order α, Comput. Methods Funct. Theory 2 (2002), no. 2, [On table of contents: 2004], 597–610.

[26] R. Küstner, On the order of starlikeness of the shifted Gauss hypergeometric function, J. Math. Anal. Appl. 334 (2007), no. 2, 1363–1385.

[27] E. H. Lockwood, A book of curves, paperback re-issue of the 1963 edition, Cambridge University Press, Cambridge, 2007.

[28] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I. Int. Press, Cambridge.

[29] V. Madaan, A. Kumar and V. Ravichandran, Starlikeness associated with lemniscate of Bernoulli, Filomat 33 (2019), no. 7, 1937–1955.

[30] M. Masjed-Jamei and H. M. Srivastava, Some expansions of functions based upon two sequences of hypergeometric polynomials, Quaest. Math. 44 (2021), no. 1, 17–36.

[31] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math. 25 (2014), no. 9, 1450090, 17 pp.

[32] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365–386.

[33] S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc. 110 (1990), no. 2, 333–342.

[34] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

[35] A. O. Mostafa, Starlikeness and convexity results for hypergeometric functions, Comput. Math. Appl. 59 (2010), no. 8, 2821–2826.

[36] A. Naz, S. Nagpal and V. Ravichandran, Star-like likeness associated with the exponential function, Turkish J. Math. 43 (2019), no. 3, 1353–1371.

[37] A. Naz, S. Nagpal and V. Ravichandran, Exponential Starlikeness and Convexity of Confluent Hypergeometric, Lommel, and Struve Functions, Mediterr. J. Math. 17 (2020), no. 6, 204.

[38] E. D. Rainville, Special functions, The Macmillan Co., New York, 1960.

[39] St. Ruscheweyh and V. Singh, On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl. 113 (1986), no. 1, 1–11.

[40] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923–939.

[41] P. Sharma, R. K. Raina and J. Sokól, Certain Ma-Minda type classes of analytic functions associated with the crescent-shaped region. Analysis and Mathematical Physics (2019), pp.1-17.

[42] J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996), 101–105.

[43] H. M. Srivastava, R. Agarwal and S. Jain, Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions, Math. Methods Appl. Sci. 40 (2017), no. 1, 255–273.

[44] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 (2018), no. 4, 1157–1168.

[45] H.M. Srivastava, Q.Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics 7(2) (2019) 181.

[46] H.M. Srivastava, B. Khan, N. Khan, Q.Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J. 48 (2019) 407–425.

[47] H.M. Srivastava, B. Khan, N. Khan, Q.Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mt. J. Math. 49(7) (2019) 2325–2346.

[48] H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad and N. Khan, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math. 167 (2021), 102942, 16 pp.

[49] H. M. Srivastava, G. Murugusundaramoorthy and K. Vijaya, Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal. 2 (2013), no. 2, 167–181.
[50] H. M. Srivastava, M. I. Qureshi and S. Jabee, Some general series identities and summation theorems for the Gauss hypergeometric function with negative integer numerator and denominator parameters, J. Nonlinear Convex Anal. 21 (2020), no. 2, 463–478.
[51] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of q-starlike functions associated with the Janowski functions, Filomat 33 (2019) 2613–2626.
[52] H. M. Srivastava, Y. Vyas and K. Fatawat, Extensions of the classical theorems for very well-poised hypergeometric functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), no. 2, 367–397.
[53] A. Swaminathan, Hypergeometric functions in the parabolic domain, Tamsui Oxf. J. Math. Sci. 20 (2004), no. 1, 1–16.
[54] A. Swaminathan, Inclusion theorems of convolution operators associated with normalized hypergeometric functions, J. Comput. Appl. Math. 197 (2006), no. 1, 15–28.
[55] A. Swaminathan, Sufficiency for hypergeometric transforms to be associated with conic regions, Math. Comput. Modelling 44 (2006), no. 3-4, 276–286.
[56] A. Swaminathan, Convexity of the incomplete beta functions, Integral Transforms Spec. Funct. 18 (2007), no. 7-8, 521–528.
[57] A. Swaminathan, Sufficient conditions for hypergeometric functions to be in a certain class of analytic functions, Comput. Math. Appl. 59 (2010), no. 4, 1578–1583.
[58] A. Swaminathan and L. A. Wani, Sufficient conditions and radii problems for a starlike class involving a differential inequality, Bull. Korean Math. Soc. 57 (2020), no. 6, 1409–1426.
[59] L. A. Wani and S. Anbhu, Inclusion properties of hypergeometric type functions and related integral transforms, Stud. Univ. Babeş-Bolyai Math. 65 (2020), no. 2, 211–227.
[60] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 178, 20 pp.
[61] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 1, 79–104.
[62] R. C. Yates, A Handbook on Curves and Their Properties, J. W. Edwards, Ann Arbor, MI, 1947.
[63] Y. Yunus, S. A. Halim and A. B. Akbarally, Subclass of starlike functions associated with a limacon, in AIP Conference Proceedings 2018 Jun 28 (Vol. 1974, No. 1, p. 030023), AIP Publishing.

‡Department of Mathematics, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
Email address: mathswami@gmail.com, a.swaminathan@ma.iitr.ac.in

†Department of Mathematics, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
Email address: lateef17304@gmail.com