Unraveling Unique Structure and Biosynthesis Pathway of N-Linked Glycans in Human Fungal Pathogen Cryptococcus neoformans by Glycomics Analysis

Received for publication, February 20, 2012, and in revised form, April 4, 2012. Published, JBC Papers in Press, April 12, 2012. DOI 10.1074/jbc.M112.354209

Jeong-Nam Park†1, Dong-Jik Lee†1, Oh suk Kwon†, Doo-Byoung Oh†, Yong-Sun Bahn†, and Hyun Ah Kang‡1,2

From the †Department of Life Science, Center for Fungal Pathogenesis, Chung-Ang University, Seoul, 156-756, the ‡Systematic and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, and the §Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University, Seoul, 120-749, South Korea

Background: N-Glycan structures of the human pathogenic yeast C. neoformans have not yet been elucidated.

Results: Cryptococcal N-glycans were composed of mostly mannoses with addition of xylose and xylose phosphate residues.

Conclusion: Cryptococcal N-glycans show serotype-specific structures with variation in the length and in the presence of xylose.

Significance: This is the first survey on the structure and biosynthesis pathway of C. neoformans N-glycans.

The encapsulated fungal pathogen Cryptococcus neoformans causes cryptococcosis in immunocompromised individuals. Although cell surface mannoproteins have been implicated in C. neoformans pathogenicity, the structure of N-linked glycans assembled on mannoproteins has not yet been elucidated. By analyzing oligosaccharide profiles combined with exoglycosidase treatment, we report here that C. neoformans has serotype-specific high mannosetype N-glycans with or without a β1,2-xylose residue, which is attached to the trimannosyl core of N-glycans. Interestingly, the neutral N-glycans of serotypes A and D were shown to contain a xylose residue, whereas those of serotype B appeared to be much shorter and devoid of a xylose residue. Moreover, analysis of the N. neoformans uxs1Δ mutant demonstrated that UDP-xylose is utilized as a donor sugar in N-glycan biosynthesis. We also constructed and analyzed a set of C. neoformans mutant strains lacking genes putatively assigned to the reconstructed N-glycan biosynthesis pathway. It was shown that the outer chain of N-glycan is initiated by CnOch1p with addition of an α1,6-mannose residue and then subsequently extended by CnMnn2p with multiple additions of α1,2-mannose residues. Finally, comparative analysis of acidic N-glycans from wild-type, CnMnn2p/CnMnn2Δ, and CnOch1p/CnOch1Δ strains strongly indicated the presence of xylose phosphate attached to mannose residues in the core and outer region of N-glycans. Our data present the first report on the unique structure and biosynthesis pathway of N-glycans in C. neoformans.

The encapsulated basidiomycetous Cryptococcus neoformans species complex is an opportunistic fungal pathogen causing fatal cryptococcal meningoencephalitis in immunocompromised populations, such as AIDS patients, if left untreated (1). The capsule of C. neoformans, a major immunomodulatory and antiphagocytic cellular structure, is mainly composed of two polysaccharides, glucuronoxylomannan (GXM)3 and glucuronoxylomannogalactan. C. neoformans species are categorized into serotypes A–D based on the number of xylose residues on the mannose backbone in GXM (2). Recently, serotypes B and C have been classified as an independent species, named Cryptococcus gattii, because they cause a fatal cryptococcosis even in immunocompetent persons (3). The pathogenicity of the Cryptococcus species complex has long been linked to its polysaccharide capsule as a key virulence factor, but it was recently also associated with cell-bound mannoproteins (4). Several studies showed that cryptococcal mannoproteins secreted or localized on the cell surface stimulate host T-cell responses (1, 5, 6).

Glycans attached to proteins serve various functions, including correct protein conformation, stabilization of proteins against denaturation and proteolysis, and mediation of host-pathogen protein interactions (7). In yeast and fungi belonging to Ascomycota and Basidiomycota, N-linked oligosaccharides are mostly high mannose types with some modifications such as addition of N-acetylglucosamine, galactose, galactofuranose, fucose, pyruvate, or phosphate (8–10). In the ascomycetous yeast Saccharomyces cerevisiae, hypermannosylation of the Man9GlcNAc2 core glycan is initiated with the addition of an α1,6-linked mannose residue by ScOch1p in the Golgi. Subsequently, the α1,6 backbone of the outer chain is extended by mannan polymerase (M-pol) I and II and further elaborated with α1,2- and 1,3-linked mannoses by various mannosyltransferases such as ScMnn2p/ScMnn5p, ScKtr protein family, and ScMnn1p (11–13). The outer chains and core N-glycans of S. cerevisiae are modified by the addition of phosphomannannan by

3 The abbreviations used are: GXM, glucuronoxylomannan; ER, endoplasmic reticulum; cwMPs, cell wall mannoproteins; sMPs, secretory mannoproteins; α1,2-MNS, α1,2-mannosidas; α1,6-MNS, α1,6-mannosidas; JBM, jack bean α-mannosidas; UDP-Xyl, UDP-xylose; ConA, concanavalin A; 2AA, 2-aminobenzoic acid; M-pol, mannan polymerase.
N-Glycan Structure of C. neoformans

ScMnn4p/ScMnn6p, generating acidic glycans with negative charge (14). S. cerevisiae mutants lacking the OCH1 gene (Sc och1A) exhibit hypersensitivity to high temperature and cell wall perturbation reagents (15). Candida albicans, an ascomycetous yeast and opportunistic human pathogen, has an N-glycan structure different from that of S. cerevisiae, because Candida N-glycans are modified with both α- and β-linked mannoses (16, 17). Deletion of Candida OCH1 results in hypersensitivity to cell wall-perturbing agents and an attenuation of virulence in a murine model of systemic candidiasis (18). The OCH1 deletion mutants of other ascomycetous yeast species, such as Kluyveromyces lactis, Hansenula polymorpha, Yarrowia lipolytica, Schizosaccharomyces pombe, and Pichia pastoris, and an ascomycetous filamentous fungus Neurospora crassa also exhibit altered morphological phenotypes under stress conditions, suggesting that outer chain N-glycans are important for cell wall integrity in yeast and fungal species (19–24). The only exception was observed in the ascomycetous filamentous fungus and opportunistic human pathogen Aspergillus fumigatus, where deletion of OCH1 does not affect normal growth even under various stress conditions (25).

Based on the Cryptococcus genome database, C. neoformans is predicted to have more than 50 putative mannoproteins, which typically contain potential Asn (N)-glycosylation sites, putative Ser/Thr (S/T)-rich regions for O-glycosylation, and a glycosylphosphatidylinositol anchor (6, 26). However, only a small number of C. neoformans glycoproteins have been characterized, and detailed investigation on oligosaccharide structures has not been carried out except for carbohydrate composition (27–29). Previous work involving bioinformatics and radioactive N-glycan analyses indicated that the structure of the dolichol-linked N-glycosylation precursor in the ER of C. neoformans is Man$_2$GlCNac$_2$-PP-Dol with no addition of glucose residues due to a lack of Alg glucosyltransferases (Alg6p, Alg8p, and Alg10p), implying different processing of cryptococcal N-glycans in the ER (30). In addition, C. neoformans was predicted to lack most of the genes encoding M-pol I and II subunits, suggesting N-glycans have less elongated α1,6-mannan chains compared with those of S. cerevisiae (31). However, only limited information is available on the structural characteristics of the N-linked glycans in Cryptococcus species. In this study, we performed a comparative N-glycan profile analysis of C. neoformans species complex using MALDI-TOF mass spectrometry and HPLC, and we present the first report on the serotype-specific presence of a β1,2-xyllose residue in high mannose type N-glycans in C. neoformans. In addition, we showed that the OCH1 and MNN2 genes play major roles in cryptococcal N-glycan processing in the Golgi. Furthermore, we provide a line of data supporting the presence of xylose phosphate residues on the core and outer regions of N-glycans in Cryptococcus.

EXPERIMENTAL PROCEDURES

Strains and Culture Conditions—The yeast strains used in this study are listed in supplemental Table 1 and were generally cultured in YPD broth medium (1% w/v yeast extract, 2% w/v peptone, 2% w/v glucose) with shaking (200 rpm) at 30 °C. YPD$_\text{NAT}$ (YPD solid medium containing 100 µg/ml nourseothricin, Werner BioAgents; where NAT is nourseothricin acetyltransferase) or YPD$_{G418}$ (YPD solid medium containing 200 µg/ml geneticin, Sigma) was used for selection of C. neoformans transformants.

DNA Manipulation—The primer sets used for disruption and reintegration of genes in this study are listed in supplemental Table 2. Each gene was disrupted in the C. neoformans serotype A H99 (MATα) strain background using overlap PCR or double joint-PCR strategies followed by biolistic transformation as described previously (32). Genomic DNA of C. neoformans transformants grown on YPD$_\text{NAT}$ was isolated from cell lysate using acid-washed glass beads (425–600 µm, Sigma), and deletion of CnOCH1, CnMNN2, and CnKTR3 was confirmed by PCR (supplemental Fig. 1). For reintegration of wild-type genes into the corresponding mutant strains, genomic DNA fragments of CnOCH1 and CnMNN2 were obtained and introduced into the original genomic locus using pALF1 (33) with the G418 resistance marker (supplemental Fig. 1).

Preparation of Glycoproteins—To obtain cell wall mannoproteins (cwMPs), C. neoformans cells freshly grown on YPD plates for 2 days were inoculated in 200 ml of YPD and incubated at 30 °C for 24 h with shaking at 200 rpm. The cells at the stationary phase (A$_{600}$ = 40–50) were harvested and washed with water. To reduce the possibility of capsular polysaccharide contamination, the washed cells were incubated twice for 30 min at room temperature in an equal volume of DMSO as described previously (34). After centrifugation, the supernatants were decanted, and the cell pellets were washed with water. The washed cells were then resuspended in 0.1 M citrate buffer, pH 7.0, autoclaved at 121 °C for 120 min, and centrifuged at 4,000 × g for 10 min at 4 °C (35). The supernatants (mixture of crude cell wall proteins and capsular polysaccharides) were recovered, and capsular polysaccharides were precipitated from the supernatants by slowly adding an equal volume of cold ethanol to the supernatants and removed by filtration with a syringe filter (0.45-µm, Sartorius Stedim Biotech). After addition of 3 volumes of ethanol to the filtrate and incubation at 4 °C overnight, crude cell wall proteins were collected by centrifugation at 4,000 × g for 30 min at 4 °C. The dried cell wall proteins were then dissolved in 10 ml of concanavalin A (ConA) binding buffer (20 mM Tris-HCl, pH 7.4, 0.5 M NaCl, 1 mM CaCl$_2$, 1 mM MnCl$_2$) and incubated with 1 ml of ConA-Sepharose beads (GE Healthcare) in a column for 2 h with slow rotation. The beads were then washed with 10 ml of ConA binding buffer, and cwMPs were eluted by addition of 5 ml of 1 M methyl-α-D-mannopyranoside. For isolation of secretory mannoproteins (sMPs), supernatants from 500 ml of YPD cultures incubated for 48 h at 30 °C were obtained by centrifugation and filtration using a 0.45-µm filter membrane, concentrated, and then exchanged with PBS buffer by tangential flow filtration using a 30-kDa cassette (PX030SC50, Millipore). The supernatants were further concentrated by using an Amicon-15 (30,000 molecular weight cutoff, Millipore), sMPs were purified from the concentrated culture supernatants using ConA, as described for the purification of cwMPs, except that PBS buffer was used instead of Tris-HCl buffer. The eluted glycoproteins were dialyzed with water for 2 days and dried using a vacuum evaporator (Hanil Scientific). The dried glyco-
proteins were dissolved in water and quantified by spectrophotometer (NanoDrop, ThermoScientific).

Profiling of N-Linked Oligosaccharides by MALDI-TOF— From purified cwMPs or sMPs (100–200 μg), N-linked glycans were isolated using 3 μl of peptide:N-glycanase F (500 units/μl, New England Biolabs) and then purified by Carbograph Extract-Clean™ column (150 mg, Alltech). For MALDI-TOF analysis, a matrix solution consisting of 6-aza-2-thiothymine and 2,5-dihydroxybenzoic acid (Bruker Daltonics Inc.) (v/v, 1:1) in 0.25% acetonitrile (Burdick & Jackson) and 0.075% trifluoroacetic acid was mixed with samples of equal volume. The glycan samples were dried and then analyzed using Microflex™ mass spectrometer (Bruker Daltonics Inc.) operated in the reflective positive mode for neutral glycan analysis or in the linear negative mode for acidic glycan analysis. Alternatively, isolated N-glycans were dried, resuspended in 50 μl of fresh 1% (w/v) sodium acetate-3H2O, and then labeled with 100 μl of 2-aminothiazolic acid (2-AA) solution (30 mg of 2-AA and 30 mg of NaBH₄CN in 1 ml of 4% sodium acetate-3H₂O, 2% boric acid, in methanol) at 80 °C for 45 min. Labeled N-glycans were purified using a SampleQ Cyano cartridge (100 mg, Agilent) to remove excess 2-AA.

Exoglycosidase Treatment— Purified N-glycans were reacted with 1 μl of α1,2-mannosidase (α1,2-MNS, 0.1 milliunit/μl, Prozyme) in 20 mM ammonium acetate buffer, pH 5.0, for 12 h at 37 °C, and half of the mixture with an additional 1 μl of α1,2-MNS was further incubated for 12 h. The other half of the α1,2-MNS-treated mixture was subsequently reacted with 1 μl of α1,6-mannosidase (α1,6-MNS, 40 units/μl, New England Biolabs) for 12 h at 37 °C. Enzymes were removed using a 10K Microcon (Millipore), dried in a vacuum evaporator (Hanil Scientific), and reconstituted with 3–5 μl of water for mass analysis. To determine the presence of xylene residue, 2-AA labeled N-glycans in 20 mM ammonium acetate buffer, pH 5.0, were mixed with 2 μl of jack bean α-mannosidase (JBM, 150 milliunits/μl, Prozyme), incubated for 48 h at 37 °C, and then successively treated with 1 μl of β1,2-xyllosidase (from Xanthomonas sp., 20 microunits/μl, Calbiochem) for 24 h at 37 °C. After removal of exoglycosidases by filtration through a 10K Microcon, glycan profiles were analyzed by normal phase HPLC. Two peaks generated after JBM treatment were fractionated and further analyzed by MALDI-TOF.

α1,6-Mannosyltransferase Activity Assay— Membrane fractions were obtained as described previously with slight modification (21). Pre-cultured C. neoformans in YPD was inoculated in 500 ml of YPD medium at initial optical density (A₆₀₀ = 0.5), and cultured to mid-log phase (A₆₀₀ = 5). The cells were harvested by centrifugation (3,000 × g, 10 min), washed with water, and resuspended in 5 ml of PMS buffer (50 mM Tris·HCl, pH 7.5, 5% glycerol, and 2 μl/ml protease inhibitor mixture (Sigma)). Aliquots (500 μl) were transferred to 1.5-ml microcentrifuge tubes; glass beads were added at half the volume of the cell suspension, and cell lysis was then carried out through 5–10 cycles of alternating 1-min vortexing and 1-min cooling on ice. After ~50% of the cells were disrupted (as assessed by microscopy), lysates were centrifuged at 10,000 × g for 20 min. The supernatant was separated, and an equal volume of PMS buffer was added to the pellets. After a second round of cell lysis, the supernatant was removed and added to the first round supernatant. Total supernatant (S1) was further centrifuged at 100,000 × g for 1 h. High speed pellets were collected, resuspended in 100 μl of 50 mM Tris·HCl buffer, pH 7.5, plus 5% glycerol, and stored at 4 °C. Protein concentrations of high speed pellets were determined using the protein assay reagent (Bio-Rad). α1,6-Mannosyltransferase activity was assayed as described previously with slight modification (21). High speed pellets (500 μg) were incubated in 100 μl of 50 mM Tris·HCl, pH 7.5, buffer containing 2 mM MnCl₂, 1 mM GDP-manno5, 0.5 mM 1-deoxymannojirimycin, and 0.1 μg of Man₄GlcNAc₂-AA (Prozyme) as an acceptor at 30 °C overnight. The reaction mixture was filtered through a Microcon (YM-10, Millipore), and the filtrate was analyzed by HPLC. To identify linkage, the Golgi reaction mixture was treated with α1,2-MNS.

N-Glycan Analysis by HPLC— Normal phase HPLC was conducted using an Asahipak NH2P-50 4E column (0.46 × 25 cm, 5 μm, Shodex) at a rate of 1.0 ml/min with Solvent A (100% acetonitrile) and Solvent B (50 mM ammonium formate in water, pH 4.4). The column was equilibrated with a solution containing 50% Solvent A and 50% Solvent B. After sample injection, the proportion of Solvent B was increased in a linear fashion to 68% for 50 min. 2-AA-oligosaccharides were analyzed with a Waters HPLC system composed of 515 dual pumps, a 717 plus autosampler, and a 2475 fluorescence detector with excitation and emission wavelengths of 360 and 425 nm, respectively. Data were collected using Empower™ chromatography data software (Waters).

For acidic glycan analysis, the column was equilibrated with a solution containing 90% Solvent C (2% acetic acid, 1% tetrahydrofuran in acetonitrile) and 10% Solvent D (5% acetic acid, 3% triethylamine, 1% tetrahydrofuran in water). After sample injection (50 μl), the proportion of Solvent D was increased in a linear fashion up to 90% for 60 min. 2-AA-oligosaccharides were detected using the same Waters HPLC system described above. After fractionation, each sample was dried and dissolved in water. The peaks separated on HPLC were further identified by MALDI-TOF mass spectrometry using the linear negative mode. All chemicals were purchased from Sigma unless mentioned otherwise.

RESULTS

Neutral N-Glycan Structures of C. neoformans— To obtain general information on the structure of neutral N-glycans of the Cryptococcus species complex, MALDI-TOF analysis was carried out in the positive mode with N-linked oligosaccharides assembled on cwMPs derived from serotype A strain H99 (α-mating type) (Fig. 1A). A series of major peaks observed at m/z of 1258.1, 1420.1, 1582.1, 1744.1, 1906.0, 2067.9, 2230.1, and 2392.1 were matched well to high mannos type N-glycans ranging from Hex₃HexNAc₁ to Hex₁₂HexNAc₂ (H₅–₁₂) originating from the ascomycetous yeast and fungal species (glycan structure database of the Consortium for Functional Glycomics). In contrast, other major peaks with a mass value smaller than those of Hex₃HexNAc₁ could not be assigned to any reported glycans. Considering that the mass difference of each peak corresponds to the molecular weight of C₁₅H₂₉O₄, it
was speculated that the unassigned glycan structures might be oligosaccharides containing a pentose residue (P₁H_{5–10} and P₁H_{5–14}) (Fig. 2, C). Given that most fungal N-glycans are of high mannose type, we predicted that N-linked oligosaccharides of *C. neoformans* would also be mostly constituted of mannose residues. As expected, digestion of N-glycans from serotype A strain H99 with α_{1,2}-MNS resulted in the convergence of most peaks to H_{5–6} and P₁H_{5–6} indicating that the outer chains of cryptococcal N-glycans were mostly extended by α_{1,2}-mannose residues without a terminal α_{1,3}-mannose cap (Fig. 1B). Subsequent digestion with α_{1,6}-MNS resulted in the shift of H₆ to H₅ and P₁H₆ to P₁H₅ although the peak of P₁H₅Hex₅HexNAC₂ (P₁H₅) was not shifted (Fig. 1C). The P₁H₅ glycan seems to be an incompletely digested product that was derived from a fraction of glycans lacking α_{1,6}-mannose extension, because it was converted to P₁H₅ by additional prolonged digestion with α_{1,2}-mannosidase (data not shown). These results indicated that the outer chains contained a single α_{1,6}-mannose extension. The profiles of N-linked oligosaccharides obtained from sMPs of the H99 strain also showed the same pattern of H_{5–12} glycans containing one residue of pentose as observed in those from cwMPs (Fig. 1D). We also analyzed glycan profiles of the *C. neoformans cac1Δ* mutant, which has a deletion of the adenyl cyclase gene and is deficient in capsule production (36), and confirmed the same profile pattern (Fig. 1E) thus excluding the possibility of capsule oligosaccharide contamination in the preparation of N-linked glycans. Exoglycosidase treatment of glycan samples from the Cac1Δ mutant also showed the same result as the wild type (data not shown). The findings strongly suggested that the N-glycans of serotype A strain were extended with mostly α_{1,2}-linked mannose residues and a single α_{1,6}-linked mannose residue and were further modified with a pentose residue bound to the inner region of the N-glycan.

Comparison of Neutral N-Glycan Profiles among Different Serotype Strains—Next, we examined whether the neutral N-glycan profiles of *C. neoformans* vary depending on mating type or serotypes. It was previously reported that phenotypic variants of one *C. neoformans* strain differ with respect to virulence and the arrangement of xylose moieties within the GXM of the capsule (2). Mating type has also been implicated as a virulence factor in *C. neoformans*. Epidemiological studies have shown that clinical isolates mostly have the α-mating type (96% average) (37). In addition, α strains were reported as more virulent than congenic a strains in serotype D but not in serotype A (38).

There were no apparent differences found when the N-glycan profiles of strain H99 were compared with mating type a or when congenic strain KN99 was compared with mating type a (Fig. 2, A and B), indicating that glycan profiles were not affected by mating type. The N-glycans of serotype D strains, JEC21 (mating type a) and JEC20 (mating type a), were shown to be shorter than those of serotype A; however, they also contained a pentose residue (H_{5–10} and P₁H_{5–13}) (Fig. 2, C and D). In contrast, the N-glycans of *C. gattii* serotype B strains, R265 and WM276 (both mating type α but different molecular types), consisted of H_{5–14} without a pentose residue, similar to those of other yeast species in general (Fig. 2, E and F). The N-glycans of JEC21 and CGR265 were shifted to P₁H₅ and H₅,
respective, by serial treatment with α1,2- and 1,6-MNSs, indicating their core N-glycans were also extended by addition of α1,2- and α1,6-linked mannose residues even though the extension is quite limited in serotypes B and D strains (supplementary Fig. 2, A and B). These results strongly suggested that cryptococcal N-glycans displayed serotype-specific differences not only in length but also in the presence of pentose.

Identification of a Pentose Residue as Xylose—In Cryptococcus, xylose is a sole pentose residue that is incorporated as a component of GXM, glucuronoxylomannogalactan, glucosylinositol phosphorylceramides, and O-glycans (39). The possible presence of xylose in N-glycans of *C. neoformans* has been implicated by a previous report showing that the cryptococcal laccase 1 protein (Lac1) from serotype D strain contains 4 mol of glucosamine and 22 mol of mannose/xylose/mol of protein (27). To determine whether the pentose attached to the inner region of the N-glycans was a xylose residue, 2-AA-labeled N-glycans fractionated in HPLC using an anion column were digested by treatment with JBM, which cleaves α1,2/3/6-linked mannoses. After JBM treatment, the N-glycans of serotypes A and D (Fig. 3A, panels a and d) converged to two peaks (X and Y, Fig. 3A, panels b and e). Then the subsequent β1,2-xylidosidase treatment of the JBM-digested N-glycans resulted in an increased intensity of peak Y (Fig. 3A, panels c and f). In the case of the serotype B, N-glycans were already shifted to a single peak (Y, Fig. 3A, panels g and h) by treatment with JBM only. Peaks X and Y from JMB-treated N-glycans of three serotype strains were fractionated and analyzed for mass by MALDI-TOF. As shown in Fig. 3B, peaks X and Y corresponding to m/z of 862.6 and 730.3, respectively, were assigned as sodium adducts of P1H1-AA and H1-AA, respectively. Based on the data showing that a pentose residue was still retained even after removal of α1,2,3-mannoses from the trimannosyl core of N-glycans and that the pentose residue was removed by β1,2-xylidosidase treatment, we speculated that P1H1 and H1 correspond to Xyl1Man1GlcNAc2 and Man1GlcNAc2, respectively. Thus, it is highly likely that a single xylose residue is attached to the first mannose residue of the trimannosyl core of N-glycans.

Moreover, we constructed a CnuEXs1Δ mutant strain with a defect in the synthesis of UPD-xylose (UDP-Xyl) and compared its N-glycan profile to that of the wild-type strain. It was previously reported that the addition of xylose to the capsular polysaccharides GXM and glucosylinositol phosphorylceramides is defective in the CnuEXs1Δ mutant (40). As seen in Fig. 3C, the N-glycans from cwMPs of the CnuEXs1Δ mutant showed only high mannose-type N-glycans without pentose residues, strongly supporting the idea that the pentose residue was xylose. These results also indicated that UDP-Xyl was utilized as a sugar donor not only for capsule biosynthesis but also for N-glycan biosynthesis of *C. neoformans* through the classical protein secretory pathway.

In Silico Analysis of *C. neoformans* N-Glycan Biosynthesis Pathway—To reconstruct the N-glycan outer chain biosynthesis pathway of *C. neoformans*, we aimed to identify *C. neoformans* genes orthologous to *S. cerevisiae* genes participating in the N-glycan biosynthesis pathway (Table 1). The *in silico* analysis based on the genome database of *C. neoformans* serotype A (H99) and serotype D (JEC21) suggested that several Golgi glycosyltransferase genes involved in processing the outer chain of N-glycans in *S. cerevisiae* were missing in *C. neoformans*. For example, *C. neoformans* does not have orthologs for M-pol I and II complex formation, such as VAIN1, ANPI, MNN10, or
MNNII, which are responsible for elongation of the α1,6-mannose backbone of outer chains. Furthermore, C. neoformans did not appear to contain orthologs of MNN4 responsible for mannose phosphorylation and MNN1 for addition of the terminal α1,3-mannose residue in S. cerevisiae glycans, indicating a different structure of the cryptococcal N-glycan outer chains.

Yeast and fungus-specific outer chain biosyntheses are initiated by Och1p having an α1,6-mannosyltransferase activity in the Golgi. In S. cerevisiae, Och1p (homologous to Och1p) resides in the M-pol II complex, although its function has not been defined (11). We identified three Crypto
coccus genes encoding proteins homologous to yeast Och1p (CNAG_00744.2, CNAG_05836.2, and CNAG_01214.2) from the H99 genome database, designated CnOCH1, CnHOCl1, and CnHOCl2, respectively. We also found a single gene (CNAG_06782.2, designated CnMNN2) homologous to yeast MNN2/MNN5 genes encoding α1,2-mannosyltransferase and a single gene (CNAG_03832.2, designated CnKTR3) homologous to the S. cerevisiae KRE2/MNT1 family containing nine members of Golgi mannosyltransferases involved in both N- and O-linked glycan synthesis (13). The bioinformatics analysis indicated that the glycosylation pathway of C. neoformans might be simpler with a fewer number of components than those of other yeast species, which have larger protein families playing functionally redundant or inactive roles in glycosylation.

Functional Characterization of C. neoformans Och1p Homologs—To analyze the function of the C. neoformans Och1p homologs, we constructed gene deletion mutants for each homolog (CnOCH1Δ, CnHOCl1Δ, and CnHOCl2Δ) and examined their neutral N-glycans structures by MALDI-TOF mass spectrometry. As seen Fig. 4A, N-glycans from the CnOCH1Δ mutant (Fig. 4A, panel b) were noticeably much shorter than those of the H99 wild-type strain (Fig. 4A, panel a), although no apparent changes were detected in N-glycan profiles from the mutant CnHOCl1Δ and CnHOCl2Δ strains (Fig. 4A, panels c and d). In the CnHOCl1Δ mutant, N-glycans larger than Xyl1,Man10GlcNAc2 (X1,M10) were hardly detected, but reintroduction of the wild-type CnOCH1 gene into the CnHOCl1Δ strain restored its N-glycan profile to that of the H99 strain (Fig. 4A, panel e), thus verifying the involvement of CnOch1p in the N-glycan processing of C. neoformans.

To examine which step of the outer chain biosynthesis pathway was affected by disruption of the CnOCH1 gene, N-glycans obtained from the CnOCH1Δ mutant strain were sequentially treated with α1,2- and α1,6-MNSs (Fig. 4B). After treatment with α1,2-MNS, most glycan peaks were converted to Man5~6GlcNAc2 (M5~6) or Xyl1,Man5~6GlcNAc2 (X1,M5~6) with M5 and X1,M5 as major peaks (Fig. 4B, panel b). However, subsequent treatment with α1,6-MNS in the CnOCH1Δ mutant did not generate any further changes in the N-glycan profiles (Fig. 4B, panel c), whereas the treatment with α1,6-MNS in the
N-Glycan Structure of C. neoformans

A.

- a. CnH99
- b. Cncoh1Δ
- c. Cncoh1Δ
- d. Cncoh2Δ
- e. Cncoh1Δ/CnOCH1

B.

- a. Cncoh1Δ
- b. Cncoh1Δ/α1,2-MNS
- c. Cncoh1Δ/α1,2- and ε1,6-MNS

C.

- a. CnH99
- b. Cncoh1Δ
- c. CnH99/α1,2-MNS
- d. Cncoh1Δ/α1,2-MNS
wild-type strain did result in further shifts of X_1M_6 and M_6 to X_1M_5 and M_5, respectively (Fig. 1C). The exoglycosidase $\alpha1,6$-MNS can remove only linear $\alpha1,6$-mannose residues at the nonreducing end. Because the presence of a branched $\alpha1,3$-mannose in the core N-glycans inhibits the removal of the $1,6$-mannose, the $\alpha1,6$-MNS treatment of N-glycans from the wild-type strain would convert X_1M_6 and M_6 to X_1M_5 and M_5, respectively. Thus, no shift of any N-glycan peak after the $\alpha1,6$-MNS treatment of N-glycans from the $Cnoch1\Delta$ mutant strain strongly supported the idea that the outer chains of N-glycans in the $Cnoch1\Delta$ mutant do not possess $\alpha1,6$-linked mannose residues because of the loss of $Cnoch1p$ function. We further confirmed that Cryptococcus Och1p is a functional homolog of S. cerevisiae Och1p by analyzing its complementation capacity to recover the defective phenotype of the S. cerevisiae och1\Delta mutant (supplemental Fig. 3A). Heterologous expression of $CnoCH1$, but not of CnHOC1 or CnHOC2, recovered the N-glycosylation defect of secreted invertase as well as the decreased resistance to hygromycin B in the Sc och1\Delta mutant (supplemental Fig. 3B). These results strongly suggest that CnHoc1p and CnHoc2p are not functional homologs of ScOch1p, despite sequence similarities between them. Further investigation will be necessary to determine whether they are functional orthologs of ScHoc1p or play other functions. Moreover, we also observed decreased additional activity of an $\alpha1,6$-mannose residue to the M_6 core form oligosaccharide in the och1\Delta mutant of C. neoformans (Fig. 4C). These results further support that the Cryptococcus OCH1 gene is a functional ortholog of the S. cerevisiae OCH1 gene encoding $\alpha1,6$-mannosyltransferase, which initiates outer chain branching of N-glycans in the Golgi by addition of a single $\alpha1,6$-linked mannose residue to the Man$_9$GlcNAc$_2$ core.

Glycan Profile Analysis of CnMnn2\Delta and Cnktr3\Delta Strains—To examine the function of the CnMNN2 and CnkTR3 genes in cryptococcal N-glycan biosynthesis, N-glycan profiles of the CnMnn2\Delta and Cnktr3\Delta mutants were analyzed (Fig. 5A, panels b and c). N-Glycans of the CnMnn2\Delta strain were much shorter than those of the wild-type strain, consisting mostly of M_{6-9} and X_1M_{6-10}, but were slightly longer than those of the Cnoch1\Delta mutant (Fig. 5A, panels a and b). Reintroduction of the CnMNN2 gene into the CnMnn2\Delta strain recovered its glycan profile to that of the wild-type CnH99 strain (Fig. 5A, panel d). When treated with $\alpha1,2$-MNS, N-glycans of the CnMnn2\Delta mutant were shifted to M_{6-8} and X_1M_{6-7} (Fig. 5B, panel b), and subsequent treatment with $\alpha1,6$-MNS generated peaks of M_5 and X_1M_5 as major forms (Fig. 5B, panel c). Compared with the $\alpha1,2$-MNS-treated N-glycans of the CnMnn2\Delta mutant, those from the CnMnn2\Delta mutant were larger by a single hexose residue, which was removed by subsequent $\alpha1,6$-MNS treatment. These results suggest that CnMnn2p mediates the addition of $\alpha1,2$-mannose residues after the first step of $\alpha1,6$-mannose addition to the core N-glycan by CnOch1p in C. neoformans. In contrast to the notable defects in the elongation of outer chains in Cnoch1\Delta and CnMnn2\Delta mutants, the N-glycan profile of the Cnktr3\Delta mutant was almost identical to that of the wild-type strain (Fig. 5A, panel c), indicating that Cnktr3p is not involved in the processing of N-glycans in C. neoformans. Interestingly, however, we observed a significant defect in O-glycan biosynthesis in the Cnktr3\Delta mutant (supplemental Fig. 4), suggesting a possible role of CnkTR3 in O-glycan elongation but not in N-glycan processing in C. neoformans.

Presence of Acidic N-Linked Oligosaccharides Containing Xylose Phosphate—A recent study on xylosylphosphotransferase 1 (Xpt1p) of C. neoformans reported that this enzyme catalyzes O-linked glycosylation of proteins by adding xylose phosphate to O-glycans using UDP-Xyl as a reaction donor (39). To investigate the possible presence of xylose phosphate residues in cryptococcal N-glycans, total N-glycan profiles, including both neutral and acidic glycans, were analyzed by HPLC using an amine column at an acidic pH, which can separate oligosaccharides based on their charges and sizes. Interestingly, all N-glycans of the wild-type H99 strain (serotype A) could be separated into four major peaks (groups 1–4) (Fig. 6A, panel a). Notably, Cnoch1\Delta, CnMnn2\Delta, and Cnuxx\Delta mutants showed distinct profiles compared with the wild-type strain. The peak assigned to group 3 was missing in Cnoch1\Delta and CnMnn2\Delta mutants (Fig. 6A, panels b and c), and peaks corresponding to groups 2–4 were not detected in Cnuxx\Delta mutant (Fig. 6A, panel d). Each group exhibited a similar HPLC profile with an amide column separating oligosaccharides based mainly on sizes (supplemental Fig. 5).

Further analysis using MALDI-TOF in the negative reflector mode revealed that group 1 and groups 2–4 in H99 were composed of neutral and acidic N-glycans, respectively (Fig. 6B). Group 1 consisted of neutral N-glycans with or without a xylose residue. In contrast, N-glycans from group 2 in the wild-type strain were composed of Ph$_1$P$_1$-H$_{5-20}$ glycans containing an additional pentose phosphate residue with or without a xylose residue (Fig. 6B, panel b). Group 3 consisted of large glycans with a pentose phosphate residue (Ph$_1$P$_1$H$_{12-20}$) and group 4 mostly consisted of a core form of N-glycans containing a pentose phosphate residue (Ph$_1$P$_1$H$_{18-20}$) as the major portion (Fig. 6B, panels c and d). In particular, the disappearance of only group 3 in both Cnoch1\Delta and CnMnn2\Delta mutants indicated that the glycans in group 3 were large N-glycan species containing a single pentose phosphate on the outer chains extended by addition of $\alpha1,6$- and $\alpha1,2$-mannoses. Therefore, the absence of all peaks of groups 2–4 corresponding to acidic glycans in the Cnuxx\Delta mutant (Fig. 6D, panel d) strongly supported that the

Figure 4. Analysis of neutral N-glycan structures and in vitro mannosyltransferase activity of the Cnoch1\Delta mutant. A, N-glycan profiles of C. neoformans H99 wild-type (CnH99, panel a), Cnoch1\Delta (panel b), Cnoch1\Delta (panel c), CnHoc2\Delta (panel d), and Cnoch1\Delta/CnoCH1 (panel e) strains by MALDI-TOF analysis in the positive mode. B, linkage analysis of the outer region in N-glycans from the Cnoch1\Delta strain without (panel a) and with treatment by $\alpha1,2$- (panel b) and $\alpha1,6$-MNS (panel c) treatment. X, xylose; M, mannose; *, unidentified peak. C, analysis of $\alpha1,6$-mannosyltransferase activity in CnH99 and Cnoch1\Delta strains. The enriched Golgi membrane fraction of CnH99 or Cnoch1\Delta strain was used to analyze $\alpha1,6$-mannosyltransferase activity using Man$_3$GlcNAc$_2$-AA as an acceptor glycan. The reaction products were then treated with $\alpha1,2$-MNS. Reaction products of the membrane fractions of CnH99 and Cnoch1\Delta strains (panels a and b, respectively) and the reaction products of $\alpha1,2$-MNS treatment (panels c and d, respectively) were analyzed by HPLC. Squares and circles with linkage information symbolize N-acetylglucosamine and mannose, respectively.
pentose phosphate residues found in the acidic glycans were xylose phosphate, which appeared to be added to both the core and outer regions of N-glycans in \textit{C. neoformans}. The absence of xylose phosphate in N-glycans from the \textit{Cnuxs1}/H9004 mutant also suggested that UDP-Xyl is also used as a donor to add xylose phosphate to N-glycans assembled on proteins.

We observed very small peaks corresponding to groups 2 and 4, and no peak for group 3, in the total N-glycan profiles of serotypes B and D (supplemental Fig. 6A), implying the presence of acidic N-glycans in the core form of N-glycans of serotypes B and D. However, the proportion of acidic glycans in serotypes B and D was much smaller (less than 10\%) compared with those of serotype A, which contained more than 50\%. The lack of a group 3 peak was consistent with the much shorter length of outer chains of N-glycans from serotypes B and D. Acidic N-glycans from serotypes B and D were also shown to consist of \textit{Ph1P1H5–11} containing an additional pentose phosphate residue (supplemental Fig. 6, \textit{B} and \textit{C}), suggesting that \textit{C. neoformans} N-glycans are modified by addition of a xylose phosphate regardless of the serotypes. Notably, an interesting
observation is the presence of acidic glycans carrying a phosphate moiety without xylose, particularly in N-glycans from serotype B.

Growth Phenotypes of C. neoformans Mutant Strains Defective in Glycan Biosynthesis—In general, yeast mutant strains with defects in glycosylation show alteration in cell wall integrity and thus exhibit increased sensitivity to cell wall-disturbing reagents and high temperatures (41). We assessed the growth phenotypes of the *C. neoformans* mutants *Cn och1/H9004, Cn hoc1/H9004, Cn hoc2/H9004, Cn mnn2/H9004, Cn ktr3/H9004,* and *Cn uxs1/H9004* in the presence of diverse cell wall- and membrane-disturbing reagents, including SDS, Calcofluor white, Congo red, sodium orthovanadate, and hygromycin B, and high temperature. All mutants grew as well as the wild-type strain under normal unstressed conditions on YPD at 30 °C (Fig. 7). Unexpectedly, however, despite a significant alteration in the structure of outer chain N-glycans, the *Cn och1/H9004* and *Cn mnn2/H9004* mutants showed no apparent change. In contrast, the *Cn ktr3/H9004* mutant, which appeared to have a defect in O-glycosylation but not in N-glycosylation, and the *Cn uxs1/H9004* mutant with a defect in UDP-Xyl synthesis, displayed increased sensitivity to SDS and high temperature at 39 °C, indicating that CnKtr3p and CnUxs1p are required for maintenance of cell wall stability.

The capsule of *C. neoformans* is intimately associated with the cell wall, which underlies the capsule and provides yeast mechanical strength under stressful conditions. However, we did not observe any defects in capsule formation in *Cn och1/H9004, Cn hoc1/H9004, Cn hoc2/H9004, Cn mnn2/H9004,* or *Cn ktr3/H9004* mutant strains (data not shown). These results imply that the truncated outer chain structure in N-glycans might be tolerable for maintaining the cell wall integrity of *C. neoformans,* different from other yeast species such as *S. cerevisiae* and *C. albicans* with hypermannosylated outer chains (8). Similarly, it was also reported that the outer chain structure of N-glycans is not important for maintenance of cell wall integrity in the filamentous fungi *A. fumigatus* (25).

DISCUSSION

N-Glycosylation, the most common type of eukaryotic protein glycosylation, involves the linkage of an oligosaccharide core to Asn residues in the ER, which is well conserved from yeast to mammals. However, subsequent processing of N-glycans is significantly different among different organisms and even in yeast species, generating diversity in N-glycan structures. Although N-glycans in yeasts are generally extended by addition of mannose to the core oligosaccharide in the Golgi, additional monosaccharide units such as galactose and N-acetylglucosamine (GlcNAc) are added in some species (11).

FIGURE 6. Acidic N-glycan analysis of C. neoformans mutant strains. A, total N-glycan profiles of *C. neoformans* H99 wild-type (panel a), *Cn och1/H9004* (panel b), *Cn mnn2/H9004* (panel c), and *Cn uxs1/H9004* (panel d) strains by HPLC analysis using an amine column. Triangle indicates the retention time for Man8. B, MALDI-TOF analysis in the negative reflector mode for the detection of acidic N-glycans, group 1 (panel a), group 2 (panel b), group 3 (panel c), and group 4 (panel d), released from *CnH99.* C, MALDI-TOF analysis in the negative reflector mode for the detection of acidic N-glycans, group 1 (panel a), group 2 (panel b), group 3 (panel c), and group 4 (panel d), released from *CnH99.* D, MALDI-TOF analysis in the negative reflector mode for the detection of acidic N-glycans, group 1 (panel a), group 2 (panel b), and group 4 (panel c) from *Cnmnn2* and group 1 from *Cn uxs1* (panel d) strains, respectively. Ph, phosphate; X, xylose; M, mannose; *, unidentified peak.
N-Glycans of several yeast species also contain acidic sugars, which are composed of mannosyl phosphorylated sugars in most yeast species such as S. cerevisiae, C. albicans, P. pastoris, and Y. lipolytica. However, in S. pombe, the addition of pyruvate generates acidic glycans (11, 43).

Historically, C. neoformans and its related species, such as C. gattii, have been further categorized by serotypes based on a defined set of capsular-reactive immune sera (44). C. gattii includes serotypes B and C, whereas strains classified as serotypes A, D, or AD hybrids make up C. neoformans. Serotypes A and D have been also classified as varieties based on C. neoformans, var. grubii and var. neoformans, respectively (45). Serotypes A and D generally associated with diseases in immunocompromised individuals are distributed worldwide, whereas serotypes B and C known to infect immunocompetent persons are typically found in, but not limited to, tropical and subtropical regions. The number of xylose residues on the major repeat unit of capsular polysaccharides exhibits a serotype-specific pattern: 2:3:4:1 = serotype A, serotype B, serotype C, and serotype D (46).

In this study, we performed comparative N-glycan profile analysis of several C. neoformans serotype strains, including C. neoformans var. grubii H99 and KN99 (serotype A), C. neoformans var. neoformans JEC21 and JEC20 (serotype D), and C. gattii R265 and WM276 (serotype B). We report, for the first time, the serotype-specific presence of a β1,2-xylose residue in high mannose type N-glycans of cryptococcal glycoproteins. Unexpectedly, serotype B strains containing the higher number of xylose residues in their capsule compared with serotypes A and D showed only high mannose-type N-glycans without xylose (Figs. 2 and 3). It is speculated that the differences in N-glycan structures among the serotypes tested in this study might reflect evolutionary divergence.

Interestingly, we also present data strongly indicating that C. neoformans N-glycans also contain xylose phosphate residues as acidic sugars (Fig. 6 and supplemental Fig. 6). The relative proportion of acidic sugars among total N-glycans was more than 50% in serotype A, much higher than the reported proportion of less than 1% of total acidic O-glycans (39). It is noticeable that the portion of acidic sugars was much lower in serotypes B and D, compared with that of serotype A. N-Glycans from cwMPs of the Cnu1Δ mutant contained high mannose-type oligosaccharides without any xylose and xylose phosphate residues. Based on our data, it is conceivable that UDP-xylose is used as a substrate not only for xylosylation but also for xylosyl phosphorylation of various glycoconjugates, including N-glycans. The physiological role of acidic glycans in yeast species has been implicated in the stress response to environmental changes. However, it has been reported the mannosyl phosphorylation is not required for macrophage interactions or for virulence in C. albicans, despite significant loss of β1,2-mannose oligosaccharides (47).

The in silico analysis indicated that C. neoformans might have a simpler N-glycan outer chain biosynthetic pathway. As expected from the lack of genes encoding M-pol I and M-pol II subunits, our data confirmed that the outer chains of N-glycans from C. neoformans have a very short 1,6-mannose extension, consisting mostly of a single α1,6-mannose residue, and are extended mainly by α1,2-mannose residues. Based on the structural information of N-glycans in C. neoformans mutants constructed in this study, we propose the N-linked outer chain biosynthetic pathway in C. neoformans as shown in Fig. 8. Sim-
ilar to *S. cerevisiae*, the Man$_9$GlcNAc$_2$ core glycan attached to the cryptococcal proteins in the ER is also elongated via the addition of an α1,6-mannose unit by CnOch1p, an initiating α1,6-mannosyltransferase in the Golgi. However, the α1,6 outer chain backbone is not further elongated in *C. neoformans*. Instead, the outer chain and core N-glycans are further elongated mainly via α1,2-mannose addition mediated by CnMnn2p. Moreover, although the exact order is not yet clear, a single β1,2-xylose residue is added to the first mannose at the trimannosyl core of N-glycan during the early processing stages in the Golgi. As in the case of the xylose addition to *C. neoformans* N-glycans, the modification of N-glycans by bisecting GlcNAc at the β-mannose of the N-glycan core was previously reported, and the corresponding transferase has been characterized in the basidiomycete *Coprinopsis cinerea* (10). Then, similar to the addition of mannosyl phosphate in *S. cerevisiae*, the xylose phosphate might be added to some N-glycans at the core and outer chain regions, generating acidic N-glycans with negative charges during the late processing stages. Considering that the addition of a xylose phosphate residue occurs at the late stage of N-glycan processing in *C. neoformans*, it is highly likely that a transporter for UDP-Xyl would be present at the Golgi membrane. There has been a report on the Golgi localization of a human transporter for UDP-Xyl, which can transport UDP-Xyl over the Golgi membrane (48). However, we could not exclude the possibility that a transporter for UDP-xylose could be also present in the ER. As indicated by the absence of a MNN1 ortholog in *C. neoformans*, our structural analysis data supported the idea that *C. neoformans* N-glycans do not undergo the final modification step to add terminal α1,3-linked mannoses to the outer chains.

In *Cryptococcus*, Cxt1p, a β1,2 xylosyltransferase, uses UDP-Xyl as a donor for the incorporation of xylose as a component of capsular polysaccharides and glucosylinositol phosphorylceramides (49). However, we observed that the Cnctx1Δ mutant displayed the same N-glycan profile as that of the wild-type strain (data not shown), excluding the possibility that Cxt1p may act solely to transfer xylose to mannose residues during N-glycan biosynthesis. In fact, we identified several Cxt1 homologs from the *C. neoformans* genome database. Moreover, in our preliminary analysis of N-glycan profiles in the xpt1Δ strain, which is defective in adding xylose phosphate to O-glycans due to lack of Xpt1p, we could still detect the presence of acidic glycans. This indicates the presence of unknown xylosyltransferase(s) and xylosylphosphotransferase(s) specific for N-glycan biosynthesis or the involvement of other redundant enzymes in the addition of xylose and xylose phosphate residues to N-glycans in *C. neoformans*. In this study, we report the comprehensive information on the structure and biosynthesis pathway of *C. neoformans* N-glycome. However, our experimental approach based on the enrichment of the mannose-containing structures by using ConA might miss a fraction of glycans that are not bound by ConA. Also, the release of N-glycans using peptide:N-glycanase F from cryptococcal manno-proteins might impose a bias on the structures analyzed, because the modification of the core GlcNAc by α1,3-linked fucose prevents the action of peptide:N-glycanase F. Thus, the possibility still remains that cryptococcal N-glycans with yet

4 J.-N. Park, D.-J. Lee, O. Kwon, D.-B. Oh, Y.-S. Bahn, and H. A. Kang, unpublished data.
uncharacterized structures might be identified by further systematic analysis.

Cell surface mannoproteins contain both O- and N-linked oligosaccharides. Most information about glycosylation of proteins has been generated through studies of the model yeast S. cerevisiae. Very recently, information assessing the relevance of glycosylation for virulence has emerged for medically important fungal pathogens, including C. albicans, A. fumigatus, and C. neoformans. Previous studies have demonstrated that O-glycosylation is required for host-fungus interactions and virulence in all strains of C. albicans, A. fumigatus, and C. neoformans (50). However, the roles of N-glycan outer chains for host-fungus interactions and virulence were shown to be quite different between C. albicans and A. fumigatus. The Caoch1Δ null mutant with loss of the α1,6-linked polymannose backbone was shown to be attenuated in virulence. However, similar infection experiments revealed no difference between the afoch1Δ null mutant and control strains, suggesting that N-glycan outer chains of A. fumigatus are not associated with virulence (25). To address whether the modification of N-glycan outer chains affects the virulence of C. neoformans, we tested the virulence of the Cnoch1Δ mutant, which is defective in initiating extension of N-glycan outer chains, using a murine model of systemic cryptococcosis. Although the Cnoch1Δ mutant showed slightly attenuated virulence compared with the wild-type strain, the Cnoch1Δ/CnOCH1 complemented strain was as virulent as the Cnoch1Δ mutant (data not shown), suggesting that the function of CnOch1p is not critical for virulence in C. neoformans. Our data also strongly suggest that perturbation of outer chain processing of N-glycans in C. neoformans will not significantly affect virulence. For example, the N-glycans of serotype B appeared to be mostly core forms without extended outer chains or the addition of xylose. Moreover, they were shown to be much less modified with the addition of xylose phosphate compared with those of serotype A. Despite such noticeable differences in the outer chain N-glycans, serotype B can infect even immunocompetent persons.

In conclusion, we present evidence supporting the idea that C. neoformans N-glycans are high mannose type modified with addition of a β1,2-xylose in a serotype-specific way. Moreover, our data strongly indicate the presence of differential modification by addition of xylose phosphate. It remains a challenge to identify the glycosyltransferases responsible for these unique modifications of N-glycans with xylose and xylose phosphate in C. neoformans. It would be intriguing to elucidate regulatory mechanisms underlying the serotype-specific processing of cryptococcal N-glycans. Furthermore, we expect that the glycosylation-defective mutant strains developed in this study will be useful for systematic investigation on how structural alterations of N- and O-glycans affect the intensity of virulence and the extent of host immunological interactions in C. neoformans.

Acknowledgments—We are grateful to Dr. Yin-Won Lee for inspiring comments and encouragement. We thank Dr. Hong-Jin Kim for help with virulence analysis.

REFERENCES

1. Perfect, J. R. (2005) Cryptococcus neoformans. A sugar-coated killer with designer genes. FEMS Immunol. Med. Microbiol. 45, 395–404.
2. Doering, T. L. (2009) How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu. Rev. Microbiol. 63, 223–247.
3. Kwon-Chung, K. J., Boekhout, T., Fell, J. W., and Díaz, M. (2002) Proposal to conserve the name Cryptococcus gattii against C. hondurensis and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon 51, 804–806.
4. Wozniak, K. L., and Levitz, S. M. (2009) Isolation and purification of antigenic components of Cryptococcus. Methods Mol. Biol. 470, 71–83.
5. Mansour, M. K., Latz, E., and Levitz, S. M. (2006) Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J. Immunol. 176, 3053–3061.
6. Levitz, S. M., and Specht, C. A. (2006) The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 6, 513–524.
7. Helenius, A., and Aebl, M. (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049.
8. Gemmill, T. R., and Trimble, R. B. (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1426, 227–237.
9. Deshpande, N., Wilkins, M. R., Packer, N., and Nevalainen, H. (2008) Protein glycosylation pathways in filamentous fungi. Glycobiology 18, 626–637.
10. Buser, R., Lazar, Z., Kaser, S., Kunzler, M., and Aebl, M. (2010) Identification, characterization, and biosynthesis of a novel N-glycan modification in the fructifying body of the basidiomycete Coprinopsis cinerea. J. Biol. Chem. 285, 10715–10723.
11. Dean, N. (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim. Biophys. Acta 1426, 309–322.
12. Nakayama, K., Nakashima-Shindo, Y., Tanaka, A., Haga-Toda, Y., and Igami, Y. (1997) Substrate specificity of α-1,6-mannosyltransferase that initiates N-linked mannose outer chain elongation in Saccharomyces cerevisiae. FEBS Lett. 412, 547–550.
13. Lussier, M., Sádici, A. M., and Bussey, H. (1999) The KTR and MNIN mannosyltransferase families of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1426, 323–334.
14. Igami, Y., and Odani, T. (1999) Mannosyl phosphate transfer to yeast mannan. Biochim. Biophys. Acta 1426, 335–345.
15. Nakayama, K., Nagasu, T., Shimma, Y., Kuromitsu, J., and Igami, Y. (1992) OCH1 encodes a novel membrane-bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J. 11, 2511–2519.
16. Mille, C., Bobrowicz, P., Trinel, P. A., Li, H., Maes, E., Guerardel, Y., Fradin, C., Martinez-Esparza, M., Davidson, R. C., Janbon, G., Poulain, D., and Wildt, S. (2008) Identification of a new family of genes involved in β1,2-mannosylation of glycans in Pichia pastoris and Candida albicans. J. Biol. Chem. 283, 9724–9736.
17. Mora-Montes, H. M., Bates, S., Netea, M. G., Castillo, L., Brand, A., Buermann, E. T., Díaz-Jiménez, D. F., Jan Kullberg, B., Brown, A. J., Odds, F. C., and Gow, N. A. (2010) A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions. J. Biol. Chem. 285, 12087–12095.
18. Bates, S., Hughes, H. B., Munro, C. A., Thomas, W. P., MacCallum, D. M., Bertram, G., Atrih, A., Ferguson, M. A., Brown, A. J., Odds, F. C., and Gow, N. A. (2006) Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J. Biol. Chem. 281, 90–98.
19. Song, Y., Choi, M. H., Park, J. N., Kim, M. W., Kim, E. J., Kang, H. A., and Kim, J. Y. (2007) Engineering of the yeast Yarrowsia lipolytica for the production of glycoproteins lacking the outer chain mannose residues of N-glycans. Appl. Environ. Microbiol. 73, 4446–4454.
20. Ucelletti, D., Farina, F., Rufini, S., Magnelli, P., Abeijon, C., and Palleschi, C. (2006) The Kluyveromyces lactis α1,6-mannosyltransferase KlOCh1p is required for cell wall organization and proper functioning of the secretory pathway. FEMS Yeast Res. 6, 439–457.
21. Kim, M. W., Kim, E. J., Kim, J. Y., Park, J. S., Oh, D. B., Shimma, Y., Chiba, Y., Jigami, Y., Rhee, S. K., and Kang, H. A. (2006) Functional characterization of the Hansenula polymorpha HOC1, OCH1, and OCR1 genes as members of the yeast OCH1 mannansyltransferase family involved in protein glycosylation. *J. Biol. Chem.* 281, 6261–6272

22. Yoko-o, T., Tsukahara, K., Watanabe, T., Hata-Sugi, N., Yoshimatsu, K., Nagasu, T., and Jigami, Y. (2001) *Schizosaccharomyces pombe* och1(+) encodes α1,6-mannosyltransferase that is involved in outer chain elongation of N-linked oligosaccharides. *FEBS Lett.* 489, 75–80

23. Choi, B. K., Bobrowicz, P., Davidson, R. C., Hamilton, S. R., Kung, D. H., Li, H., Miele, R. G., Nett, J. H., Wildt, S., and Gerngross, T. U. (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast *Pichia pastoris*. *Proc. Natl. Acad. Sci.* U.S.A. 100, 5022–5027

24. Maddi, A., and Free, S. J. (2010) α1,6-Mannosylation of N-linked oligosaccharide present on cell wall proteins is required for their incorporation into the cell wall in the filamentous fungus *Neurospora crassa*. *Eukaryot. Cell* 9, 1766–1775

25. Kotz, A., Wagener, J., Engel, J., Routier, F. H., Echtenacher, B., Jacobsen, I., and Wagener, J. (2005) The diversity of dolichol-linked precursors to the N-glycan of the diphenol oxidase of *Cryptococcus neoformans* var. *grubii*. *Biochem. Biophys. Res. Commun.* 390, 983–988

26. Kim, M. W., Kim, Y. S., Oh, J. Y., Kim, J. Y., Lee, W. S., and Bahn, Y. S. (2004) Functional characterization of mating types and virulence in *Cryptococcus neoformans* var. *grubii*. *Eukaryot. Cell* 3, 1476–1491

27. Kim, M. W., Kim, S. Y., Yoon, J. K., Lee, Y. W., and Bahn, Y. S. (2009) An adenyl cyclase-associated protein AcA1 regulates virulence and differentiation of *Cryptococcus neoformans* via the cyclic AMP-protein kinase A cascade. *Eukaryot. Cell* 3, 1476–1491

28. Biondo, C., Mancuso, G., Midiri, A., Bombaci, M., Messina, L., Beninati, C., and Teti, G. (2005) Identification of major proteins secreted by *Cryptococcus neoformans*. *FEBS Lett.* 586, 1029–1034

29. Biondo, C., Mancuso, G., Midiri, A., Bombaci, M., Messina, L., Beninati, C., and Teti, G. (2006) Identification of major proteins secreted by *Cryptococcus neoformans*. *FEBS Lett.* 586, 1029–1034

30. Leach, M. D., and Brown, A. J. (2012) Post-translational modifications of proteins in the pathobiology of medically relevant fungi. *Eukaryot. Cell* 11, 98–108