Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Characterization of the #Radiology Twitter Conversation During the Global COVID-19 Pandemic

Maegan K.G. Lazaga, MD a,*, Joshua D. Dowell, MD, PhD b, Mina S. Makary, MD a

a Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
b Northwest Radiology, St. Vincent Health, Indianapolis, IN

A B S T R A C T

Objective: To assess the #Radiology conversation on Twitter social media platform during the COVID-19 pandemic.

Materials and Methods: From February 1 to December 31, 2020, all tweets with a #Radiology hashtag were identified using the healthcare social media analytics tool, Symplur Signals. Data collected included number of tweets, retweets, impressions, links, and user characteristics. Data were stratified by the presence of a COVID-19-related keyword, and a social media network analysis was further performed.

Results: Of the 68,172 tweets, 10,093 contained COVID-19 content from 2809 users generating 65,513,669 impressions. More tweets with COVID-19 content contained links than without (P < 0.01). Network analysis demonstrated most users were physicians (48.10%), authoring the most tweets (40.38%), using the most mentions (32.15%), and retweeting the most (51.45%). The most impressions, however, were by healthcare organizations not providing clinical care (20,235,547 impressions, 30.89%). Users came from 80 countries, most from the United States (29.3%) and the United Kingdom (8.6%). During early March, COVID-19 dominated the #Radiology conversation, making up 54.67% of tweets the week of March 14 and 64.74% of impressions the week of March 21 compared to 13.97% of tweets and 16.76% of impressions in the remainder of the study period (P < 0.01). There was an influx of new users to the #Radiology conversation during this time period with more users tweeting about COVID-19 than not (P < 0.01).

Conclusion: Discussion of COVID-19 in the #Radiology community increased significantly during the early weeks of the pandemic. Real time sharing and collaboration proved a useful tool when rapid information dissemination was needed to manage an emerging pathogen.

© 2021 Elsevier Inc. All rights reserved.

Introduction

Use of social media by healthcare providers has increased tremendously during recent years, changing how healthcare providers interact with colleagues and expanding both educational and networking opportunities for all. Multiple studies have discussed the impact of social media on the medical community in a variety of avenues such as academic scholarship, healthcare organizations, medical journal operations, medical professional meetings, education, and professional networks for mentorship and collaboration. The global coronavirus (COVID-19) pandemic emerged in China in December 2019 and at the time of this paper, COVID-19 infections have reached nearly 84 million with over 1.8 million deaths reported. With a new, rapidly spreading virus, information guiding practice changes daily and information dissemination has become paramount to providing the most up to date patient care. In the early days of the pandemic, data guiding practice arose from anecdotal case descriptions, often not yet published in journals and only available through social media channels.

Twitter hashtags are similar to keywords in a conversation and enable a user to narrow the focus of content in a tweet. The hashtag #Radiology was established in 2010 and now has over 1,000,000 total tweets. In fact, the number of tweets has increased rapidly over the last ten years now with approximately 400 tweets per day. Utilizing social media, information can be shared and collaboration can occur rapidly in real time without the delay that can be caused with journal peer review and publication. Once data were collected and analyzed, the resulting publications can be distributed and amplified rapidly via social media outlets. The aim of this study is to describe global collaboration and rapid information dissemination via the social media platform Twitter in the radiology community during the ongoing global pandemic.

Methods

Study Design and Data Collection

This study did not require institutional board approval. Data was available to the public on the online platform Twitter. We performed a retrospective search utilizing the Hashtag Finder application of Symplur Signals (Symplur, LLC, Upland, CA), a social media analytics tool for healthcare to identify all tweets including the #Radiology hashtag on Twitter between February 1, 2020 to December 31, 2020. After extracting all tweets containing #Radiology during the study period, tweets containing both #Radiology and a COVID-19-related keyword were aggregated. COVID-19 keywords included “COVID19, COVID, corona, coronavirus, pandemic, SARSCOV2, COVID-19.”
Data collected included number of tweets, retweets, impressions, links, hashtags, and user characteristics during the study period. Impressions represent the number of total possible views for each tweet and are calculated by multiplying the number of followers for every participant by the sum of the number of tweets. Stakeholder type definitions are summarized in Appendix 1. Stakeholder types categorized by Symplur as spam or unknown were excluded before analysis. A single user can be classified as multiple stakeholder types, for example a physician who engages in research can be classified as a doctor and researcher/academic.

Data Analytics and Statistics

Methods of engagement with other users, as defined by Twitter, include retweets and mentions. A retweet is a reposting of an original tweet intended to amplify the tweet message. Mentions call out a specific user in a tweet, notifying that user of the original author’s message. Special content such as media and links can also be embedded in individual tweets. Retweets, replies, mentions, and use of media and links metrics were elucidated and analyzed. Information was also collected about the most popular tweets, hashtags, and links in tweets containing both #Radiology and COVID-19 content.

Furthermore, a social media network analysis was performed to characterize the relationships between specific Twitter users engaging with both #Radiology and COVID-19 content. In addition, we used Twitter geolocation to determine the global and national geographic distribution for users tweeting both #Radiology and COVID-19 related content. Categorical data were reported as relative frequencies (%) and analyzed by chi-square test. A two-tailed P-value of less than 0.05 was considered statistically significant. The analysis was performed using SAS 9.4 (SAS Institute Inc, Cary, NC).

Results

There were a total of 68,172 tweets, including 10,093 with COVID-19 content during the study time period from 2809 users generating 65,513,669 impressions (Table 1). Most of the digital footprint was composed of retweets rather than original tweets with 48.8% of tweets in the #Radiology conversation being retweets and 51.0% of tweets in the #Radiology with COVID-19 content being retweets.

Tweet Content

More tweets with COVID-19 content contained links than tweets without (68.1% vs 58.8%, P < 0.01). The top links were educational webinars, informational sites and journal articles (Table 2). The top shared links were from individual users or from established medical advocacy/support organizations and contained open-access resources. The most shared hashtag was #COVID19 (57.56%) followed by #coronavirus (10.88%) (Table 3). The most popular tweets discussed representative cases, literature regarding characteristic findings and appropriate imaging choice for diagnosis. The 10 most popular

Table 1

Summary of #Radiology Twitter conversation with and without COVID-19 content

	#Radiology with COVID-19 content	#Radiology
Total Tweets	10,093	68,172
Tweets with Mentions	7223	47,945
Tweets with Links	93,954	58,840
Tweets with Media	5522	35,991
Retweets	5149	33,275
Tweets with Replies	148	2131
Users	2,809	8672
Impressions	65,513,669	367,780,075

Table 2

Top 10 links shared with #Radiology containing COVID-19 content

Rank	Shares	URL	Title
1	74	https://pubs.rsna.org/doi/10.1148/radiol.2020201365	The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society
2	50	https://rsna.webex.com/mw3300/mywebex/default.do?nomenu=true&steurl=rsnakowrsna&service=6&rnd=0.9835078540188275&maint_url=https://pubs.rsna.org/doi/10.1148/radiol.2020201237	RSNA COVID-19 Informational Webinar
3	42	https://www.escardio.org/Education/COVID-19-and-Cardiology	COVID-19 and Cardiology
4	36	https://pubs.rsna.org/doi/10.1148/radiol.2020201183	3D CT of Novel Coronavirus (COVID-19) Pneumonia
5	34	https://www.rsna.org/2019-ncov	2019 Novel Coronavirus (2019-ncov)
6	32	https://pubs.rsna.org/doi/10.1148/radiol.2020201544	COVID-19 and Cardiology
7	26	https://pubs.rsna.org/doi/10.1148/radiol.2020201473	Acute Pulmonary Embolism Associated with COVID-19 Pneumonia Detected by Pulmonary CT Angiography
8	23	https://pubs.rsna.org/doi/10.1148/radiol.2020201160	COVID-19 and Cardiology
9	22	https://pubs.rsna.org/doi/10.1148/radiol.2020201187	COVID-19 and Cardiology
10	17	https://pubs.rsna.org/doi/10.1148/radiol.2020200642	COVID-19 and Cardiology

Table 3

Top 20 most frequently used hashtags concurrently with #Radiology

Rank	Hashtag	Tweets
1	#COVID19	5,810
2	#coronavirus	1,098
3	#radres	963
4	#imaging	783
5	#AI	706
6	#Covid_19	551
7	#COVID	482
8	#mri	348
9	#radiologia	345
10	#ct	332
11	#MedicalImaging	317
12	#healthcare	306
13	#Cardiotwitter	298
14	#RT	289
15	#COVID-19	287
16	#medtwitter	284
17	#FOAMed	262
18	#teleradiology	205
19	#ChestRad	195
20	#radiologists	193
tweets were retweeted from 31 to 395 times with the top 10 tweets garnering 275,978 to 1,976,155 impressions. The 10 most popular images shared are depicted in Table 4.

User Characteristics

The largest group of users was physicians comprising 48.10% (1351) of users, authoring the most tweets (4076, 40.38%), and averaging 3.02 tweets per physician. Other nonclinical healthcare individuals and nonhealthcare individuals comprised the next largest stakeholder group by number of users with 281 (10.00%) and 257 users (9.15%), respectively. Approximately 19.39% of tweets were authored by other nonclinical healthcare organizations (1957 tweets) (Table 5).

Most retweets were from physicians (2649, 51.45%) followed by researchers (558, 10.84%) and other nonhealthcare individuals (443, 8.60%). In addition, physicians made the greatest number of mentions (2322, 32.15%) followed by other nonclinical healthcare organizations (937, 12.97%) then researchers (558, 10.84%). Most impressions were generated by healthcare organizations not providing clinical care (20,235,547, 30.89%) followed by physicians (14,676,220, 22.40%) then advocacy organizations (9,499,437, 14.50%) (Table 5).
6	38
![Image](https://example.com)	

7	36
![Image](https://example.com)	

8	34
![Image](https://example.com)	

9	32
![Image](https://example.com)	

(continued)
Network Analysis

Network analysis of #Radiology COVID-19 conversation is shown in Fig 1 demonstrating the various individual and organizational stakeholders influencing the #Radiology COVID-19 conversation. The network of users primarily consists of healthcare organizations filling roles within the healthcare industry that are not providing direct clinical care (Radiopedia) and advocacy/support organizations (Aunt-Minnie, SIR, ACR) who interact with physicians directly. Users came from 80 countries spanning 6 continents. Most tweets originated from the United States (29.3%) and the United Kingdom (8.69%) (Fig 2). Within the United States, tweets came from 45 of 50 states with New York (11.2%), California (11.0%) and Massachusetts (9.59%) being the most common states tweeted from (Fig 3). Of note a percentage of users’ geolocation was unknown, globally 35.5% and nationally 4.85%.

Temporal Trends

Most tweets occurred from 8 to 11 AM (EST) on Monday through Friday with Tuesday being the most popular day. During early March, COVID-19 dominated the #Radiology conversation, making up 54.67% of tweets for the week of March 14 and 64.74% of impressions for the week of March 21 compared to the 13.97% of tweets and 16.76% of impressions in the remainder of the study period (P < 0.01) (Fig 4). There was a spike in new tweets and impressions during mid and late November corresponding to the annual RSNA conferences with no change in the number of tweets or impressions with COVID-19 content. Additionally, there was an influx of new users to the #Radiology conversation the mid-March 2 week peak with more new users tweeting about COVID-19 than not (P < 0.01) (Fig 5).

Discussion

Twitter has been a robust source of information sharing and dissemination during the COVID-19 pandemic with over 10,000 tweets containing COVID-19 content from almost 3000 unique users from February to December 2020 with the potential of almost 65 million views/impressions. With the ever-evolving pandemic, social media served as a conduit which information could be shared across the globe. Radiology departments have played an integral role in the COVID-19 pandemic, particularly for diagnosis during the early months of 2020 when rapid testing was not readily available. International and national stakeholder organizations, media organizations, various medical organizations and individuals began to use social media to share information. Physicians and other healthcare providers shared their experiences with diagnosing and dealing with COVID-19 around the world in countries to include the United Kingdom, Spain, Canada, Saudi Arabia, and the United States.

Tweets propagated during the pandemic were primarily retweets and tweets containing mentions implying content

Shareholder type	# Tweets (%)	Users (%)	Retweets (%)	Tweets with mentions (%)	Impressions (%)
Doctor	4076 (40.38)	1351 (48.10)	2649 (51.45)	2322 (32.15)	14,676,220 (22.40)
HCP	416 (4.12)	177 (6.30)	329 (6.39)	370 (5.12)	777,800 (1.19)
Patient advocate	66 (0.65)	38 (1.35)	55 (1.07)	60 (0.83)	202,299 (0.31)
Caregiver	13 (0.13)	11 (0.39)	13 (0.25)	13 (0.18)	114,388 (0.17)
Researcher/Academic	874 (8.66)	230 (8.19)	558 (10.84)	770 (10.66)	7,847,408 (11.98)
Journalist/Media	201 (1.99)	39 (1.39)	75 (1.46)	122 (1.69)	490,948 (0.75)
Individual other health	562 (5.57)	281 (10.00)	391 (7.59)	473 (6.55)	2,536,244 (3.87)
Individual nonhealth	556 (5.51)	257 (9.15)	443 (8.60)	506 (7.01)	2,758,304 (4.21)
Provider organization	371 (3.68)	72 (2.56)	96 (1.86)	260 (3.60)	3,204,899 (4.89)
Research/Academic organz.	110 (1.09)	41 (1.46)	98 (1.90)	66 (0.91)	592,412 (0.90)
Government organization	43 (0.43)	13 (0.46)	9 (0.17)	16 (0.22)	72,940 (0.11)
Advocacy organization	912 (9.04)	146 (5.20)	354 (6.88)	557 (7.71)	9,499,437 (14.50)
Pharmaceutical organization	6 (0.06)	3 (0.11)	1 (0.02)	2 (0.03)	29,517 (0.05)
Medical device organization	28 (0.28)	8 (0.28)	3 (0.06)	7 (0.10)	1,088,643 (1.66)
Media organization	528 (5.23)	50 (1.78)	111 (2.16)	239 (3.31)	5,510,542 (8.41)
Other healthcare organization	1,957 (19.39)	226 (8.05)	385 (7.48)	937 (12.97)	20,235,547 (30.89)
Other nonhealth organization	88 (0.87)	39 (1.39)	27 (0.52)	39 (0.54)	2,400,186 (3.66)
amplification rather than distribution of original content by an individual user. We show the most commonly shared and viewed content including links and images were real-time case series, summarized data about typical diagnostic findings for COVID-19, and guideline statements about how to report cases suspicious for COVID-19. This study demonstrates the influence of social media on rapid information dissemination evidenced by the influx of new users to the COVID-19 #Radiology conversation at the beginning of the pandemic in mid-March around the time when the WHO declared a global pandemic (March 14). Most users were physicians, other healthcare individuals and health-care organizations denoting these shareholder types dominated the conversation and network analysis shows they primarily interacted with each other.

A major benefit of using social media for sharing information is the instant access to the most up-to-date literature available. Many
journals, national and international radiology organizations have prioritized open-access publication of COVID-19 studies and guidelines.20-29 For the average radiologist, keeping up with the latest literature can become overwhelming. Promotion and dissemination of these publications among users and their followers allows users immediate, curated access to literature that was extremely relevant to everyday practice amid the global pandemic. When users share the studies with their followers, a virtual library is created automatically, updating under the collective tag of the #Radiology and accessible to anyone with an internet connection. Indeed, this rapid dissemination of information should be considered within its context and not serve as a substitute for peer-reviewed published literature. Although this may allow for prompt passage of information in unchartered times such as during a new pandemic, care must be exercised in the delivery, interpretation and execution of any medically relevant information across any social media platform. In no way should medical decision making be made based upon anecdotal observations shared on case examples over social media. However, in our review of the information shared during the course of the early pandemic, a large percentage of tweets included links to publications aiding in the diagnosis of COVID.

FIG 4. Tweets and impressions per week in the #Radiology conversation with and without COVID-19 content. (Color version of figure is available online.)

FIG 5. New users per week in the #Radiology conversation with and without COVID-19 content. (Color version of figure is available online.)
The analysis is limited by its primarily descriptive nature and number of tweets analyzed. It is possible the remaining #Radiology tweets not included in the sample also contained COVID-19 content without utilizing our search keywords. In addition, there are likely radiology relevant tweets about COVID-19 that do not contain the #Radiology which were excluded from the data entirely. User data is limited by what is publicly available from their Twitter profile. One final limitation is that Twitter is not available to users in China, and valuable information shared during the early pandemic may not be available to the global audience. This lack of connection could have been a potential barrier to early information sharing and communication with the stakeholders first encountering COVID-19 disease in China.

Conclusions

This analysis demonstrates that the online discussion of COVID-19 in the #Radiology conversation on Twitter increased significantly during the early weeks of the pandemic, the weeks of March 14 and March 21. Real time sharing and collaboration proved a useful tool during the ongoing global pandemic providing a means for rapid global information dissemination crucial to giving patients up to date methods in diagnosing and managing an emerging and unknown pathogen. The role of social media platforms, such as Twitter, will likely remain key in international collaboration for future pandemics.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

None.

Appendix

Table A1.

Healthcare stakeholder	Definition	Example	
Doctor	Those believed to be licensed, MD's, DO's, PhD's who bill directly for services. Includes also residents (see note).	@hjluks, @drbeckershuette	
HCP	Those believed to be healthcare professionals (ie, nurses, dietitians, respiratory therapists, nurses, pharmacists etc.).	@nursefriendly, @wholify	
Patient	Person whose primary use of Twitter is to express their point of view as a patient with a specific disease or condition.	@ePatientDave, @thehurtblogger	
Caregiver/Advocate	Person who is currently or has been a direct caregiver of a family member or other closely associated individual, and/or a person who speaks on behalf of the patient.	@ReginaHolliday, @thomsod	
Researcher/Academic	Person who is working in the field of health related research and/or academia. Note: A PhD that do not treat patients will fall in this category.	@dgsci, @westr	
Journalist/Media	Person whose profession is journalism or other news related media	@charlesornstein	
Individual other health	Person working in the healthcare industry in nonclinical role.	@andrewspng, @Sappy81	
Individual nonhealth	Person not known to be directly working in the healthcare industry.	@opmarca, @asymco	
Org. provider	Inpatient facilities, medical groups, labs, imaging centers, and other outpatient facilities.	@cityofhope, @MayoClinic	
Org. research/Academic	Accredited schools of upper learning (ie, universities, colleges, etc.) and healthcare research institutions/centers	@stanfordmed, @SCCTSIEducation	
Org. government	Government accounts at local, and national levels.	@ONC, @NHgovndeesamed	@American_Heart, @jmir1
Org. advocate/support	An organization focused on a specific set of health issues for the purpose of support, guidance and education.	@Novartis, @pfizer	
Org. Pharma	All organizations in the pharmaceutical industry.	@philipshealth, @medtronic,	
Org. MedDevice	All organizations in the medical device industry.	@nytimes, @medcitynews,	
Org. media	All organizations whose primary purpose is publishing or broadcast.		
Org. other healthcare	Organizations filling roles within the healthcare industry that are not providing direct clinical care.	@symlur, @dellhealth	
Org. nonhealth	All organizations not falling into an established category.	@evernote, @apple	
Spam/Unknown	Accounts reported to be associated with spam or accounts which are unclassified	@Faldaprevir	

Notes:
- When an organization is part of a larger organization, then categorize similarly as to the parent organization (ex. fellowship program part of a hospital: should be Org. Provider. News account from a medical association should be Org. Advocate/Support.)
- Journals focused on specific medical specialty, condition etc. should be Org. Advocate/Support. Other healthcare related media organizations should be Org. Other Healthcare.
- Doctors. This includes residents. Medical students should be categorized as “Individual Other Health”.
- Doctors. This includes residents. Medical students should be categorized as “Individual Other Health”.

TABLE A1 Healthcare stakeholder definitions
References

1. Wadhwa V, Brandis A, Madassery K, et al. # TwittIR: Understanding and establishing a Twitter ecosystem for interventional radiologists and their practices. J Am Coll Radiol 2018;15:218–23.
2. Zem bere WF, Fishman EK, Horton KM, et al. How social media can impact medicine and radiology. J Am Coll Radiol 2015;12:620–1.
3. Patel SS, Hawkins CM, Rawson JV, et al. Professional social networking in radiology: Who is there and what are they doing? Acad Radiol 2017;24:574–9.
4. Hage AN, Chick JFB, Jeffers B, et al. # InterventionalRadiology. J Vasc Interv Radiol 2018;29:669–75.
5. Ranschaert ER, Van Ooijen PM, McGinty GB, et al. Radiologists’ usage of social media: Results of the RANSOM survey. J Digital Imaging 2016;29:443–9.
6. Ishak R, Fishman EK, Bedi H. Social media in radiology: A primer. J Am Coll Radiol 2017;14:290–3.
7. Rawson JV. Why academic radiologists should use social media. Acad Radiol 2014;21:1499–500.
8. Hawkins CM, Duszak R, Rawson JV. Social media in radiology: early trends in Twitter microblogging at radiology's largest international meeting. J Am Coll Radiol 2014;11:387–90.
9. Hawkins CM, Hillman BJ, Carlos RC, et al. The impact of social media on readership of a peer-reviewed medical journal. J Am Coll Radiol 2014;11:1038–43.
10. Zhu N, Zhang D, Wang W, et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–33.
11. Johns Hopkins Coronavirus Resource Center; Johns Hopkins COVID-19 Dashboard. https://coronavirus.jhu.edu/map.html. Accessed 1/1/2021.
12. Bundy JJ, Hage AN, Chick JFB, et al. # Radiology: A 7-year analysis of radiology-associated hashtags. Curr Probl Diagn Radiol 2018;47:296–301.
13. Twitter Help: Definitions. https://help.twitter.com. Accessed 9/10/2020.
14. “Listings of WHO’s Response to COVID-19.” World Health Organization, World Health Organization, www.who.int/news-room/detail/29-06-2020-covidtimeline. Accessed 9/10/2020.
15. Hawkins CM, Hillman BJ, Carlos RC, et al. The impact of social media on readership of a peer-reviewed medical journal. J Am Coll Radiol 2014;11:1038–43.
16. Allen HG, Stanton TR, Di Pietro F, et al. Social media release increases dissemination of original articles in the clinical pain sciences. PLoS One 2013;8:e68914.
17. Fehring KA, De Martino I,McLawhorn AS, et al. Social media: Physicians-to-physicians education and communication. Curr Rev Musculoskelet Med 2017;10:275–7.
18. Boulos MNK, Maramba I. Wheeler S, Wilks, blogs and podcasts: a new generation of Web-based tools for virtual collaborative clinical practice and education. BMC Med Educ 2006;6:1–8.
19. Sternberg KM,Loeb SL, Canes D, et al. The use of Twitter to facilitate sharing of clinical expertise in urology. J Am Med Inf Assoc 2018;25:183–6.
20. COVID-19 Articles, JACR, 2020, www.jacr.org/covid-19-resources.
21. COVID-19 News and Resources, SNMMI, 2020, www.snmmi.org/COVID-19.
22. COVID-19 Resource Centre, CIRSE, 2020, www.cirse.org/education/covid-19-resource-centre.
23. COVID-19 Resources, RSNA, 2020, www.rsna.org/covid-19.
24. COVID-19 Resources, SBI, 2
25. Important Resources for Radiologists Regarding COVID-19, European Society of Radiology, 2020, www.myesr.org/covid-19-resources.
26. Information for Medical Physicists. American Association of Physicists in Medicine; 2020 w3.aapm.org/covid19/.
27. Open Access COVID-19 Resources, ARRS, 2020, arrs.org/covid19.
28. SIR COVID-19 Resources. Society of Interventional Radiology; 2020 www.sirweb.org/practice-resources/covid-19-resources/.
29. STR COVID-19 Resources. Society of Thoracic Radiology; 2020 thoracicrad.org/?page_id=2879.