Assessment of Chimkurgan water reservoir sedimentation processes

F Gapparov†, D Nazaraliev† and Q Eshkuvatov†
†Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
quvonchbek.1988@mail.ru

Abstract. Uzbekistan is an inland country with very dry summers and cold winters. The main course of the economy is agriculture. There are two basic kinds of agriculture in terms of irrigation: rainfed and artificial irrigation systems. Therefore, in long dry summers it is reasonable to build water reservoirs to keep enough water resources for vegetation period. Because of sedimentation transport water reservoirs sometimes quickly filled with sediment. Estimating the effects of potential sediment accumulation in reservoirs is an important element in the planning of the dam project. Sediment accumulation in a reservoir may reduce the useful storage of water in this reservoir, change the water quality near the dam, increase flooding level upstream of the dam due to sediment aggradation, influence the stability of the stream downstream of the dam, affect stream ecology in the dam region, etc. This article provides a correlation between the reservoir volume reduction from the bottom to a given level, based on the amount of water flowing into the Chimkurgan reservoir and the river basin monitoring data. Based on the results of observations and calculations, the current state of the reservoir was formed on the basis of GIS tools. In the first step we constructed a flow duration curve, which is the cumulative distribution curve of the stream runoff passing the dam.

1. Introduction
During the operation of reservoirs, it is important to exploit safe structures and facilities in the complex and efficient use of water from the reservoir. Rational use of a water reservoir requires accurate knowledge of the precise amount of water stored in the reservoir. This volume is steadily decreasing due to the annual operation of reservoirs through the sedimentation. The above problems justify the need to identify continuous changes in reservoir volumes during the operational period and develop quick methods for predicting future changes based on the data obtained. In general there are three methods to reduce sediment inflow into the reservoir. These methods are reduction of sediment inflow by soil conservation, bypassing heavy sediment-laden flows, and trapping of sediment by a vegetation screen. Before applying one of these methods it is important to know the sedimentation process in water reservoirs [6]

2. Methods
The research methodology was based on systematic, comparative analysis of the data. Using the mathematical statistics method to calculate and compare the results with the data obtained from natural observations [1]. To calculate the volume of reservoirs, the water balance components of the reservoirs during the previous years were used, which is, the total amount of inflow and outflow water volume
and the last months of the recent years. Selected years when the reservoir at or below the normal retaining level (NRL) mark and the minimum water level is close to the dead-end or inactive volume (IV). For assessments correlation curve between reservoir water level and reservoir volume was plotted. [15 – 25]

3. Results and discussion

Based on data about the amount of water coming into the Chimkurgan reservoir, it was determined that the volume of the reservoir was reduced due to fluctuation in the long-term water discharge of The Kashkadarya River during 1980-2018 [2, 3].

Reduction of the active volume

\[\Delta V_{\text{active}} = 0.019O_c^{0.82} \]

Reduction of the total volume

\[\Delta V_{\text{total}} = 0.033O_c^{0.79} \]

Correlation between the reservoir volume reductions from bottom to a given water level, based on sampling data, was built for the Chimkurgan reservoir. [7, 8, 9]

\[\frac{\Delta V_H}{\Delta V_{\text{NRL}}} = 0.95 \left(\frac{H}{H_{\text{NRL}}} \right)^{1.26} \]

Table 1. Dependences of the physic mechanical and filtration properties of alluvial sands

Surface, m	462	464	466	468	470	IV	472	474	476	478	480	482	484	486	488	NRL
\(\Delta V / \Delta V_{\text{NRL}} \)	0.04	0.08	0.14	0.21	0.27	0.31	0.37	0.46	0.58	0.69	0.85	0.99	1.00			

Table 2. Reduction of the reservoir’s total volume relatively to the water level

Water level, m	By the project	1970	1980	1986	1990	2000	2010	2018
462	0	0	0	0.01	0	0	0	0
464	4	2.4	1.33	0.67	0.5	0	0	0
466	10	6.99	4.96	3.79	3.38	1.28	0.33	0
468	22	16.8	13.3	11.29	10.6	6.98	4.19	2.08
470	40	32.3	27.1	24.11	23.1	17.7	13.6	10.47
471	50	40.3	33.8	30	28.7	22	16.75	12.8
472	62	52.3	45.8	42	40.7	34	28.75	24.8
474	88	76.6	68.9	64.48	63	55	39.09	44.26
476	120	106	97.3	91.96	90.2	80.7	73.42	67.9
478	156	141	131	125.39	123	113	105.19	99.16
480	200	183	172	165.06	163	151	141.97	135.09
482	256	235	221	212.23	209	195	183.28	174.65
484	320	295	278	268.52	265	248	234.57	224.44
486	400	369	348	335.98	332	310	293.65	281.06
488	492	456	432	417.3	413	387	367.97	353.26
488.2	500	464	439	425	420	395	375.48	360.71
489.25	550	511	485	470	465	438	425.48	410.71
2. By plotting a graph from the figures of the table, we can identify the reservoir volume for a given year:

![Graph showing the relationship between Chimkurgan reservoir volume and water level for a given year.](image)

Figure 1. The relationship between Chimkurgan reservoir volume and water level for a given year.

Comparison of the estimated volume of the reservoir and the data obtained from sampling observations in the reservoir basin shows that the computational path yields giving better results, which is less than the difference in the active volume (+1%), it is respectively referred to

\[
\frac{55.3}{57.6} = 0.96
\]

Based on sampling observations in the reservoir and estimated reservoir volume determined by graph chart, and also to assist the practicing in planning for better regulation of the reservoir in recent years, it has been developed to apply GIS tools [4, 5].
Figure 2. GIS map of the hydrographic network of the Chimkurgan reservoir and the district borders.

This software allows you to analyze the mapped data, refer to additional databases, and frame a plan of them. Easy submission of work results through a built-in program enables the work to print a reservoir quality map or link to diagrams, tables, charts, pictures, and other files. \[10, 11, 12, 13, 14\]

Figure 3. Installation of the tools.
Figure 4. Determination tools of water level for each mark of height.

Figure 5. Filling process of the reservoir.
4. Conclusions

ArcMap 10.3 was used to create the Chimkurgan reservoir database. The Digital map of the Chimkurgan reservoir basin, designed on the basis of ArcMap, can describe the conditions associated with the sedimentation process of the reservoir storage. The tool makes it possible to map out the underwater surface, which was unimaginable some years ago. As a result, we obtained detailed information about the water level dynamics of the reservoir. This gives insight into sedimentation load and processes in the reservoir at a certain water level. The program also facilitates the identification and monitoring of water bodies and their specifications, distribution points and consumers, the status and types of water meters, and allows them to analyze the map data, add supplementary data, refer to the database and map them.

References

[1] Gapparov F A Nazaraliev D V Yangiev A A Handbook of «reservoirs exploitation"
[2] Nikitin A M 1987 "Hydrometeorological regime of lakes and water reservoirs of Central Asia" (Moscow Hydrometeo) p 106
[3] Nikitin A M 1991 "Water reservoirs of Central Asia" (L: Hydrometeo) p 165
[4] Guidance on application of unified technical, program and technological principles of creation of an automated geographical information system of the state cadasters p 73
[5] Guide to the creation of geoinformation databases on the state land cadastre using ArcGIS software 2016 (Tashkent) p 266
[6] David R 1992 Maidment (Editor in chief) (Handbook of hydrology New York: McGraw-Hill)
[7] Arifjanov A M Otaxonov M Samiev L Akmalov Sh 2019 Hydraulic calculation of horizontal open drainages «Construction the formation of living environment 2019 (FORM-2019)» XXII International scientific conference E3S Web of Conferences 97 05039
[8] Arifjanov A M Akmalov Sh Akhmedov I Atakulo D 2019 Evaluation of deformation procedure in waterbed of rivers XII International Scientific Conference on Agricultural Machinery Industry IOP Conf. Series Earth and Environmental Science 403 012155
[9] Dimo Dimov Fabian Löw Johannes H Uhl Shavkat Kenjabaev Olena Dubovyk Mirzahayot Ibrakhimov 2019 Chandrashekhar Biradar “Framework for agricultural performance assessment
based on MODIS multitemporal data” J Appl Remote Sens 13(2) 025501 doi: 10.1117/1.JRS.13.025501

[10] Amanov B T Gadaev N N Ahmedjonov D G Zhaparkulova E 2020 Mathematical calculations of water saving during furrow irrigation of cotton using a screen from an interpolymer complex Journal of Physics: Conference Series Volume 1425 Modelling and Methods of Structural Analysis 13–15 November 2019 (Moscow Russian Federation Journal of Physics: Conference Series) Volume 1425 Issue 1 8 January Number state 012120

[11] Jurík Ľ Zeleňáková M Kaletová T Arifjanov A M 2019 Small Water Reservoirs: Sources of Water for Irrigation The handbook of environmental Chemistry Volume 69 pp 115-131

[12] Arifjanov A M Samiev L Apakhdjaeva T Akmalov Sh 2019 Distribution of river sediment in channels XII International Scientific Conference on Agricultural Machinery Industry IOP Conf. Series: Earth and Environmental Science 403 012153

[13] Arifjanov A M Rakhimov K Abduraimova D Akmalov Sh 2019 Transportation of river sediments in cylindrical pipeline XII International Scientific Conference on Agricultural Machinery Industry IOP Conf. Series: Earth and Environmental Science 403 012154

[14] Laktaev N T 1978 Watering the cotton (Moscow Kolos) pp 43-46

[15] Arifjanov A M Samiev L Akmalov Sh 2019 Dependence of Fractional Structure of River Sediments on Chemical Composition International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075 Volume-9 Issue-1 November

[16] Fatxulloyev A M Gafarova A I Hamraqulov J 2019 The importance of mobile applications in the use of standard water measurements International conference on information science and communications technologies (ICISCT 2019) Tashkent, Uzbekistan 27 February pp 1-3

[17] Arifjanov A M Fatxulloyev A M 2020 Natural Studies for Forming Stable Channel Sections. Volume 1425, Issue 1, 8 January 2020, 012025. International Scientific Conference on Modeling and Methods of Structural Analysis 2019, (MMSA 2019); Moscow; Russian Federation; 13-15 November. Code 156713. (2019).Fatxulloyev A.M. Gafarova A.I. Study of the process of cultivation in soil fertile irrigation channels. «Construction the formation of living environment 2019 (FORM-2019)» XXII International scientific conference. E3S Web of Conferences 97, 05025. https://doi.org/10.1051/e3sconf/20199705025.

[18] Ergashev R Artikbekova F Jumabaeva G and Uljayev F 2019 Problems of water lifting machine systems control in the republic of Uzbekistan with new innovation technology E3S Web of Conferences 97 05037

[19] Khidirov S Berdiev M Norkulov B Rakhimov N and Raimova I 2019 Management exploitation condition of Amu- Bukhara machine channel E3S Web of Conferences 97 05038

[20] Kan E Ikramov N and Muxammadiev M 2019 The change in the efficiency factor of the pumping unit with a frequency converter E3S Web of Conferences 97 05010

[21] Ikramov N Kan E Mirzoev M and Majidov T 2019 Effect of parallel connection of pumping units on operating costs of pumping station E3S Web of Conferences 97 05014

[22] Shaazizov F Badalov A Ergashev A and Shukurov D 2019 Studies of rational methods of water selection in water intake areas of hydroelectric power plants E3S Web of Conferences 97 05041

[23] Shaazizov F Uralov B Shukurov E and Nasrulin A 2019 Development of the computerized decision-making support system for the prevention and revealing of dangerous zones of flooding E3S Web of Conferences 97 05040

[24] Bazarov D Shodiev B Norkulov B Kurbanova U and Ashirov B 2019 Aspects of the extension of forty exploitation of bulk reservoirs for irrigation and hydropower purposes E3S Web of Conferences 97 05008

[25] Krutov A Bazarov D Norkulov B Obidov B and Nazarov B 2019 Experience of employment of computational models for water quality modeling E3S Web of Conferences 97 05008