Nondestructive measurement of kiwifruit firmness, soluble solid content (SSC), titratable acidity (TA), and sensory quality by vibration spectrum

Wen Zhang | Aichen Wang | Zhenzhen Lv | Zongmei Gao

INTRODUCTION

Kiwifruit is a typical kind of climacteric fruit (Antunes & Sfakiotakis, 2000). Kiwifruit keep softening during its ripening process and storage. The maturity is quite important for the evaluation of quality and acceptability of kiwifruit product. Accurate assessment of kiwifruit maturity can help both consumers and distributors to determine its harvest time, quality, and storage potential (Mayorga-Martínez, Olvera-Trejo, Elías-Zúñiga, Parra-Saldivar, & Chuck-Hernández, 2016; Taniwaki, Hanada, & Sakurai, 2009).

However, the traditional methods are usually time-consuming and costly. Moreover, these methods are destructive and only can be used for sampling inspection. Therefore, various nondestructive technologies were proposed for fruit maturity evaluation, including the near-infrared (NIR) spectroscopy (Alhamdan & Atia, 2017), ultrasonic method (Mizrach, 2004), magnetic resonance imaging (Zhang & McCarthy, 2012), machine vision (Payne, Walsh, Subedi, & Jarvis, 2013), electronic nose technique (Hernández Gómez, Wang, Hu, & García Pereira, 2007), and acoustic vibration method (Mayorga-Martínez, Olvera-Trejo, Elías-Zúñiga, Parra-Saldivar & Chuck-Hernández, 2016).

Abstract

Maturity is a key attribute to evaluate the quality and acceptability of fruit products. In this study, the impact method was used for nondestructive measurement of kiwifruit maturity. The fruit was vertically dropped onto an impact plate, and an accelerometer was used to measure the response signal. Then, fruit firmness, soluble solid content (SSC), titratable acidity (TA), and sensory scores were measured to determine the kiwifruit maturity. In addition, different modeling methods were proposed for data analysis. The results showed that the optimized prediction results were obtained by the principal component analysis–back-propagation neural network (PCA-BPNN) method for both quantitative and qualitative analysis. The optimized correlation coefficient between prediction and actual values ($r_p$) and root mean square error of prediction (RESEP) for firmness, SSC, TA, and sensory score were 0.881 (2.359 N), 0.641 (1.511 Brix), 0.568 (0.023%), and 0.935 (0.693), respectively. The optimized discriminant accuracy for immature, mature, and overmature kiwifruits was 94.2% and 92.1% for calibration and validation, respectively. Such results indicated the feasibility of the proposed impact method for kiwifruit maturity evaluation.
Among these nondestructive methods, the acoustic vibration method has been proved to be an effective way for fruit maturity evaluation, especially for the climacteric fruit. The contact and noncontact measurements were two main technologies in the acoustic vibration method (Taniwaki & Sakurai, 2010; Zhang, Lv, & Xiong, 2018). The acceleration pickup (De Belie, Schotte, Coucke, & De Baerdemaeker, 2000) and piezoelectric sensor (Macrelli, Romani, Paganelli, Sangiorgi, & Tartagni, 2013) were usually used in the contact measurement. However, the attachment of contact sensor to the fruit would affect the free vibration of tested sample, and even damage the surface of fruit (Zhang et al., 2018). Therefore, contact sensors were seldom used in the online detection. The noncontact measurement was getting more and more attention. The microphone was one of the most commonly used noncontact sensors (Valente, Leardi, Self, Luciano, & Pain, 2009). However, the microphone was easily affected by the ambient noise. The laser Doppler vibrometer, as an optical detector, was another commonly used noncontact sensor (Zhang, Cui, & Ying, 2014). A problem of laser Doppler vibrometer was its high price.

In some existing studies, the contact sensor was attached to an impact plate for the indirect measurement of fruit, which did not affect the tested sample and was low cost (Hosainpour, Komarizade, Mahmoudi, & Shayesteh, 2011; Ragni, Berardinelli, & Guarnieri, 2010). Therefore, the impact method by dropping the fruit onto an impact plate was used in this study. An accelerometer was attached to a specially made impact plate rather than the tested sample. The vibration response was different obtained from the samples with different maturities. Moreover, the noncontact merit can meet the requirement of online detection. Similar devices were used for the detection of potato and fruits (Hosainpour et al., 2011; Ragni et al., 2010). However, a problem of such design was that the impact between the sample and plate may damage the tested sample. Therefore, different drop heights were analyzed for seeking the optimized value in this study. In addition, different modeling methods were proposed for data analysis. The study aimed to investigate the feasibility of the proposed impact method for the quantitative and qualitative analysis of kiwifruit maturity.

Table 2 shows the basic morphological properties of the tested kiwifruit samples.

### MATERIALS AND METHODS

#### 2.1 Kiwifruit samples

Kiwifruit samples (Actinidia deliciosa cv. "Hayward") were harvested about 160 days after flowering from a local orchard and immediately transported to the laboratory at Southwest University of Science and Technology in Mianyang, China. The fruits were stored in the laboratory at a temperature of approximately 20°C and a relative humidity of approximately 60% for 20 days. Fruits that spoiled during storage were removed, and a total of 217 fruit samples were finally used for the experiment. Table 1 shows the basic morphological properties of the tested kiwifruit samples.

### Measurement of impact response of kiwifruits

A schematic diagram of the experimental setup used to measure the impact response of kiwifruits is shown in Figure 1. The system consisted of an aluminum impact plate (22 × 12 × 2 cm), a pneumatic manipulator (HZ5014; Lixian Instrument Co., Ltd.), an accelerometer (KT1010; Baofei Vibration Instrument Co., Ltd.), a data acquisition (DAQ) module (DFT; Baofei Vibration Instrument Co., Ltd.), and a PC. The fruit with stem–calyx horizontal was vertically dropped onto the impact plate fixed on an optical table by a pneumatic manipulator from the height of 2, 4, and 6 cm. The impact plate has a 45-degree inclination to avoid a second impact between the fruit and impact plate. The falling distance and angular were determined by a preliminary experiment. The accelerometer was attached on the middle of the back of the impact plate for signal acquisition. Then, the response signal was acquired by the DAQ module and delivered to the PC. The data acquisition software was DFT600 (Baofei Vibration Instrument Co., Ltd.).

Figure 2 shows a typical impact response signal of kiwifruit. The trigger value of accelerometer for data collection was 0.01 g (g = 9.8 m/s²). The data sampling frequency was 5 kHz, and 1,024 data were collected for each sample. The signal started from the impact between the sample and the impact plate, and gradually decayed to zero caused by oscillation of the impact plate. The extraction of response signal started when the signal value was greater than 0.01 g, and ended when the signal value was smaller than 0.01 g by an MATLAB procedure.

For each impact response signal, a total of 15 vibration parameters were extracted from the time domain signal, including the mean value, variance, maximum value, minimum value, signal duration, average rectified value, waveform area, root mean square, skewness, kurtosis, peak-to-peak value, crest factor, impulse factor, waveform factor, and margin factor (Zhang, Cui, & Ying, 2015). The formulas of some vibration parameters are listed in Table 2.

### TABLE 1 Morphological properties of the tested kiwifruit samples

| Parameter | Average | Maximum | Minimum | Standard deviation |
|-----------|---------|---------|---------|--------------------|
| Mass (m, g) | 124.47 | 171.17 | 88.53 | 26.34 |
| Height (h, mm) | 58.07 | 67.10 | 49.78 | 4.63 |
| Diameter (d, mm) | 52.25 | 58.78 | 46.56 | 3.78 |

*Average value of three measurements taken at evenly spaced interval of 120°.
2.3 Maturity evaluation

2.3.1 Firmness

Fruit firmness was measured by the puncture test using a texture analyzer (TA-XT2i, Stable Micro System, Inc.). A 5-mm-diameter cylindrical probe was used to perforate kiwifruits with peel at two opposite sites along the equatorial plane. The penetration speed was 1 mm/s, and the penetration depth was 8 mm. The maximum force during penetration was recorded as fruit firmness.

2.3.2 Soluble solid content

Half of each sample was used to make juice, and 1 ml juice was used to measure SSC (°Brix) with a digital refractometer (PR-101a, Atago, Co.).

2.3.3 Titratable acidity

Measurement of TA, expressed in percentage of citric acid, was carried out with an automatic titrator (G20, Mettler Toledo).

2.3.4 Sensory evaluation

Half of each kiwifruit was equably cut into 10 parts for 10 trained panelists (Chen & Opara, 2013). Every panelist graded the overall maturity

| Feature description     | Formula                                      | Feature description     | Formula                                      |
|-------------------------|----------------------------------------------|-------------------------|----------------------------------------------|
| Mean value              | $X_{\text{mean}} = \frac{1}{n} \sum_{i=1}^{n} x_i$ | Variance                | $s^2 = \frac{\sum (x_i - \overline{x})^2}{n-1}$ |
| Average rectified value | $X_{\text{arv}} = \frac{1}{n} \sum|x_i|$      | Waveform area           | $A_w = \sum x_i \frac{1}{F_s}$              |
| Root mean square        | $X_{\text{rms}} = \sqrt{\frac{1}{n} \sum x_i^2}$ | Skewness                | $S_k = \frac{\sum (x_i - \overline{x})^3/n}{\overline{x}^3}$ |
| Kurtosis                | $K_u = \frac{\sum (x_i - \overline{x})^4/n}{\overline{x}^4} - 3$ | Peak-to-peak value     | $X_{\text{peak}} = \max(x_i) - \min(x_i)$ |
| Crest factor            | $C = X_{\text{peak}}/X_{\text{rms}}$         | Impulse factor          | $I = X_{\text{peak}}/X_{\text{arv}}$       |
| Waveform factor         | $W = X_{\text{rms}}/X_{\text{arv}}$          | Margin factor           | $M = X_{\text{peak}}/\frac{1}{n} \sum \sqrt{|x_i|^2}$ |

$x_i$ are the values of the response signal, $n$ is the number of data points, and $F_s$ is the sampling frequency.
of kiwifruit based on appearance, firmness, sweetness, and juiciness. The maturity of kiwifruits was rated on a scale of 1–10. For qualitative analysis, the kiwifruits with sensory score of 8–10, 5–7, and 1–4 were categorized into immature, mature, and overmature, respectively.

2.4 | Experimental procedure

A total of 157 samples were used to measure their impact response and maturity indices. The test was conducted every 5 days in a period of 20 days. In each test, 30–32 samples were used for the measurement. Kiwifruit maturity, including firmness, SSC, TA, and sensory score, was evaluated immediately after the impact response was measured.

Meanwhile, a test was conducted to evaluate the influence of impact on the fruit. In the same test day, additional 12 samples were divided into 3 groups. Each group was dropped onto the impact plate from the height of 2, 4, and 6 cm, respectively. After 24-hr storage in the laboratory at about 20°C, such kiwifruits were used to measure firmness and cut for visual inspection (Ragni et al., 2010; Zhang et al., 2015).

**FIGURE 3** Time-course changes in vibration parameters of kiwifruit during storage. Vibration parameters were extracted from the response signal obtained from the drop height of 6 cm. The bars represent the standard error.
2.5 | Statistical analysis

2.5.1 | Quantitative analysis

A total of 15 vibration parameters were extracted in this study. First, the stepwise multiple linear regression (SMLR) method and the principal component analysis (PCA) were applied to reduce the dimension of input factors (Dong, Ni, & Kokot, 2013; Geesink et al., 2003; Liu, Sun, & Ouyang, 2010). PCA was carried out to extract information from the 15 vibration parameters, and principal components (PCs) which can explain more than 85% of the total variance were used for further analysis (Ibrahim et al., 2011; Kontogianni et al., 2010). Then, the stepwise multiple linear regression (SMLR) method and the back-propagation neural network (BPNN) and PCA-BPNN were applied to quantitative analysis of kiwifruit maturity. BPNN has a feedforward network structure including input, hidden, and output layers (Dong et al., 2013). In order to reduce the training time, only one hidden layer was used. Kiwifruit maturity was used as neurons of network output layer. The neurons of network input layer for the BPNN model were selected by the SMLR method, and that for the PCA-BPNN model were PCs.

The performance of models was evaluated by the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), and correlation coefficients between the prediction values and actual values for the calibration and validation sample sets ($r_c$ and $r_p$).

2.5.2 | Qualitative analysis

Kiwifruits were categorized into immature, mature, and overmature groups. The BPNN and PCA-BPNN models were used to distinguish kiwifruits with different maturities. Besides, the Fisher’s discriminant analysis (FDA) was also carried out. The input variables for the FDA and BPNN models were selected by the SMLR method, and that for the PCA-BPNN model were PCs.

3 | RESULTS AND DISCUSSION

3.1 | Results of possible mechanical damage test

After 24-hr storage in the laboratory at about 20°C, no visible damage was found on the skin surface and flesh of the kiwifruits dropped from the height of 2 and 4 cm. From the height of 6 cm, slight damage was found in some samples in day 20. The results of puncture test showed that the firmness of these slight damaged samples was less than 4 N. The results can provide a reference for the determination of drop height.

3.2 | Changes in the vibration parameters

Figure 3 shows the time-course changes in some vibration parameters (drop height of 6 cm) of kiwifruit during storage. All these vibration parameters in Figure 3 were on a decreasing or increasing trend during the entire storage period. Similarly, Taniwaki et al. (2009) and Zhang et al. (2014) used the LDV method to determine the ripeness of persimmons and pears, because the elasticity index declined gradually during storage. The results preliminarily indicated that the proposed method in our study can also be used to determine kiwifruit maturity. Other vibration parameters, including the signal duration, mean value, waveform area, skewness, and kurtosis,

| Parameter                  | Firmness | Soluble solid content (SSC) | Titratable acidity (TA) | Sensory score |
|----------------------------|----------|-----------------------------|--------------------------|---------------|
| Maximum value              | 0.628**  | −0.428**                    | 0.345**                  | 0.758**       |
| Minimum value              | −0.613** | 0.333**                     | −0.365**                 | −0.733**      |
| Signal duration            | 0.677**  | −0.367**                    | 0.401**                  | 0.337**       |
| Waveform area              | 0.587**  | −0.317**                    | 0.353**                  | 0.686**       |
| Mean value                 | −0.083   | 0.040                       | −0.123                   | −0.127        |
| Peak-to-peak value         | 0.653**  | −0.453**                    | 0.386**                  | 0.753**       |
| Average rectified value    | 0.637**  | −0.304**                    | 0.382**                  | 0.731**       |
| Variance                   | 0.577**  | −0.260*                     | 0.108                    | 0.678**       |
| Root mean square           | 0.726**  | −0.384**                    | 0.296**                  | 0.712**       |
| Waveform factor            | 0.624**  | −0.357**                    | 0.326**                  | 0.576**       |
| Impulse factor             | 0.637**  | −0.311**                    | 0.337**                  | 0.621**       |
| Crest factor               | 0.706**  | −0.326**                    | 0.305**                  | 0.638**       |
| Margin factor              | 0.651**  | −0.310**                    | 0.371**                  | 0.623**       |
| Kurtosis                   | 0.529**  | −0.259*                     | 0.303**                  | 0.479**       |
| Skewness                   | −0.020   | 0.045                       | −0.132                   | −0.036        |

* $p < .05$.  
** $p < .01$.  

TABLE 3 Pearson’s correlation coefficients between the vibration parameters and maturity indices (drop height of 6 cm)
3.3 Correlation between the vibration parameters and kiwifruit maturity

### Table 3: Pearson's correlation coefficients between the kiwifruit maturity indices and vibration parameters extracted from the response signal obtained from the drop height of 6 cm.

| Modeling method | Height (cm) | Firmness (N) | SSC (°Brix) | TA (%) | Sensory score |
|-----------------|------------|--------------|-------------|--------|--------------|
|                 |            | \( r_c \)  | RMSEC | \( r_p \)  | RMSEP | \( r_c \)  | RMSEC | \( r_p \)  | RMSEP | \( r_c \)  | RMSEC | \( r_p \)  | RMSEP |
| SMLR            | 6          | 0.784        | 3.024      | 0.701  | 4.144       | 0.428  | 2.734      | 0.360  | 3.042       | 0.363  | 0.032      | 0.339  | 0.033      |
|                 | 4          | 0.791        | 2.948      | 0.695  | 4.242       | 0.383  | 2.929      | 0.325  | 3.373       | 0.325  | 0.034      | 0.306  | 0.036      |
|                 | 2          | 0.734        | 3.845      | 0.646  | 4.647       | 0.328  | 3.237      | 0.294  | 3.524       | 0.332  | 0.034      | 0.307  | 0.035      |
| BPNN            | 6          | 0.853        | 2.580      | 0.823  | 2.681       | 0.612  | 1.552      | 0.556  | 1.743       | 0.547  | 0.023      | 0.505  | 0.025      |
|                 | 4          | 0.848        | 2.647      | 0.821  | 2.606       | 0.589  | 1.673      | 0.502  | 1.978       | 0.504  | 0.026      | 0.473  | 0.028      |
|                 | 2          | 0.824        | 2.641      | 0.787  | 3.013       | 0.501  | 1.735      | 0.486  | 1.953       | 0.529  | 0.025      | 0.461  | 0.029      |
| PCA-BPNN        | 6          | 0.914        | 2.134      | 0.875  | 2.442       | 0.668  | 1.493      | 0.641  | 1.511       | 0.607  | 0.022      | 0.568  | 0.023      |
|                 | 4          | 0.925        | 2.028      | 0.881  | 2.359       | 0.678  | 1.506      | 0.624  | 1.522       | 0.530  | 0.024      | 0.494  | 0.026      |
|                 | 2          | 0.886        | 2.379      | 0.827  | 2.696       | 0.611  | 1.515      | 0.594  | 1.530       | 0.553  | 0.023      | 0.513  | 0.026      |

3.4 Quantitative models of maturity evaluation

Initially, quantitative analysis of kiwifruit maturity was carried out. Samples were first divided into calibration and validation samples with a ratio of 3:1. Table 4 shows the results of quantitative analysis of kiwifruit maturity indices by the SMLR, BPNN, and PCA-BPNN methods.

In the SMLR and BPNN models, different vibration parameters were selected for 3 drop heights by the SMLR method. Besides selected vibration parameters, fruit mass was added into the input variables. Acoustic vibration techniques give an overall measurement of the physical properties of fruit, including mass and internal structure (Abbott, Bachman, Childers, Fitzgert, & Matusik, 1968; Jancsok, Clijmans, Nicolai, & De Baerdemaeker, 2001). Therefore, mass is an important factor in the acoustic vibration measurement. The results showed that the BPNN model was better than the SMLR model. Compared with the PCA-BPNN model, it was clear shown that the performance of BPNN model was further improved when PCs were used as input variables rather than a few vibration parameters. This was because that more information of the tested sample was contained in PCs than that obtained from the drop height of 2 cm in most cases. In addition, better performance resulted from the finding of our former study (Zhang et al., 2015). This was because the vibration characteristics were directly related to fruit firmness but were indirectly related to SSC and TA. The results obtained from the drop height of 4 cm were basically the same.

Table 4: Results of quantitative analysis of kiwifruit maturity indices by different modeling methods.

| Modeling method | Height (cm) | Firmness (N) | SSC (°Brix) | TA (%) | Sensory score |
|-----------------|------------|--------------|-------------|--------|--------------|
|                 |            | \( r_c \)  | RMSEC | \( r_p \)  | RMSEP | \( r_c \)  | RMSEC | \( r_p \)  | RMSEP | \( r_c \)  | RMSEC | \( r_p \)  | RMSEP |
| SMLR            | 6          | 0.784        | 3.024      | 0.701  | 4.144       | 0.428  | 2.734      | 0.360  | 3.042       | 0.363  | 0.032      | 0.339  | 0.033      |
|                 | 4          | 0.791        | 2.948      | 0.695  | 4.242       | 0.383  | 2.929      | 0.325  | 3.373       | 0.325  | 0.034      | 0.306  | 0.036      |
|                 | 2          | 0.734        | 3.845      | 0.646  | 4.647       | 0.328  | 3.237      | 0.294  | 3.524       | 0.332  | 0.034      | 0.307  | 0.035      |
| BPNN            | 6          | 0.853        | 2.580      | 0.823  | 2.681       | 0.612  | 1.552      | 0.556  | 1.743       | 0.547  | 0.023      | 0.505  | 0.025      |
|                 | 4          | 0.848        | 2.647      | 0.821  | 2.606       | 0.589  | 1.673      | 0.502  | 1.978       | 0.504  | 0.026      | 0.473  | 0.028      |
|                 | 2          | 0.824        | 2.641      | 0.787  | 3.013       | 0.501  | 1.735      | 0.486  | 1.953       | 0.529  | 0.025      | 0.461  | 0.029      |
| PCA-BPNN        | 6          | 0.914        | 2.134      | 0.875  | 2.442       | 0.668  | 1.493      | 0.641  | 1.511       | 0.607  | 0.022      | 0.568  | 0.023      |
|                 | 4          | 0.925        | 2.028      | 0.881  | 2.359       | 0.678  | 1.506      | 0.624  | 1.522       | 0.530  | 0.024      | 0.494  | 0.026      |
|                 | 2          | 0.886        | 2.379      | 0.827  | 2.696       | 0.611  | 1.515      | 0.594  | 1.530       | 0.553  | 0.023      | 0.513  | 0.026      |
The optimized results for quantitative analysis of kiwifruit maturity were obtained by the PCA-BPNN method. The optimized $r_p$ (RESEP) for firmness, SSC, TA, and sensory score was 0.881 (2.359N), 0.641 (1.511°Brix), 0.568 (0.023%), and 0.935 (0.693), respectively. Such results indicated the feasibility of the proposed method for kiwifruit maturity evaluation.

In most existing studies for fruit firmness detection by the acoustic vibration method, the $r_p$ ranged from about 0.6 to 0.9 (Murayama, Konno, Terasaki, Yamamoto, & Sakurai, 2006; Taniwaki et al., 2009; Terasaki et al., 2001; Zhang et al., 2014). However, these results were obtained from the static state in most situations. The proposed method in our study provided a rapid way for online detection.

### 3.5 Qualitative models of maturity evaluation

The results of qualitative analysis of kiwifruit maturity by FDA, BPNN, and PCA-BPNN methods are shown in Tables 5–7, respectively (drop height of 6 cm). Samples were also divided into calibration and validation sample sets with a ratio of 3:1.

In the FDA and BPNN models, the input variables were selected by the SMLR method. Similarly, $m$ was added into the input variables. Discriminant results of BPNN models were obviously better than that of FDA model. Poor discriminant result of the FDA method was mainly caused by the misclassification of kiwifruits in group 3. As shown in Table 5, 14 samples (38.9%) and 5 samples (38.5%) in group 3 were misclassified into group 2 in the calibration sample set and validation sample set, respectively. The discriminant result was further improved when PCs were used as input variables in the PCA-BPNN model instead of a few vibration parameters. The accuracy increased from 89.1% to 94.2% and from 84.2% to 92.1% in calibration and validation sample sets, respectively. In addition, most misclassification appeared in two neighboring groups. This was because that the maturity of some

#### TABLE 5 Discriminant results of kiwifruit maturity by the Fisher’s discriminant analysis (FDA) method

| Kiwifruit group | Predicted group membership | Calibration | Validation |
|-----------------|----------------------------|-------------|------------|
|                 | 1 2 3 Total                | 1 2 3 Total |
| 1               | 35 5 2 42                 | 13 2 0 15   |
| 2               | 0 34 6 40                 | 0 8 3 11    |
| 3               | 0 14 22 36                | 0 5 8 13    |

#### TABLE 6 Discriminant results of kiwifruit maturity by the back-propagation neural network (BPNN) method

| Kiwifruit group | Predicted group membership | Calibration | Validation |
|-----------------|----------------------------|-------------|------------|
|                 | 1 2 3 Total                | 1 2 3 Total |
| 1               | 39 3 0 42                 | 13 2 0 15   |
| 2               | 1 37 2 40                 | 0 9 2 11    |
| 3               | 0 7 29 36                | 0 2 11 13   |

#### TABLE 7 Discriminant results of kiwifruit maturity by the principal component analysis–back-propagation neural network (PCA-BPNN) method

| Kiwifruit group | Predicted group membership | Calibration | Validation |
|-----------------|----------------------------|-------------|------------|
|                 | 1 2 3 Total                | 1 2 3 Total |
| 1               | 40 2 0 42                 | 14 1 0 15   |
| 2               | 0 37 3 40                 | 0 10 1 11   |
| 3               | 0 2 34 36                | 0 1 12 13   |

#### TABLE 8 Discriminant accuracy of different discriminant analysis methods for distinguishing kiwifruit maturity

| Discriminant analysis method | Height (cm) | Accuracy | Calibration | Validation |
|-----------------------------|-------------|----------|-------------|------------|
| FDA                         | 6           | 77.3%    | 73.6%       |            |
|                             | 4           | 75.6%    | 71.0%       |            |
|                             | 2           | 75.6%    | 65.8%       |            |
| BPNN                        | 6           | 89.1%    | 84.2%       |            |
|                             | 4           | 89.9%    | 84.2%       |            |
|                             | 2           | 81.6%    | 78.9%       |            |
| PCA-BPNN                    | 6           | 94.2%    | 92.1%       |            |
|                             | 4           | 92.5%    | 89.5%       |            |
|                             | 2           | 85.7%    | 84.2%       |            |
fruit was at the boundary of two groups, which led to some misclassifications between two neighboring groups by human sensory.

The results obtained from different drop heights are summarized in Table B. Better discriminant results were also obtained from the drop heights of 4 and 6 cm, which was consistent with the result in quantitative analysis. Generally, good discriminant results proved that the proposed impact method can be used for kiwifruit maturity evaluation.

4 | CONCLUSION

The impact method for kiwifruit maturity measurement was investigated in this study. The accelerometer was attached to the impact plate rather than the tested sample. Moreover, a 45-degree inclination impact plate was used to avoid a second impact. The low-cost design is quite appropriate for a rapid detection to meet the requirement of online detection. In addition, different models were established for quantitative and qualitative analysis of kiwifruit maturity. The PCA-BPNN model showed the optimized results for the kiwifruit maturity evaluation. Such results indicated the feasibility of the proposed impact method for kiwifruit maturity evaluation. The procedure may also be applied to some other similar fruit.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the program supported by the National Natural Sciences Foundation of China under Grant No. 31801625, Applied Basic Research Program of Science and Technology Department of Sichuan Province under Grant No. 2019YJ0444, Foundation of Sichuan Educational Committee under Grant No. 18ZB0606, and Longshan Academic Talent Research Supporting Program of SWUST under Grant No. 17LZX546.

CONFLICT OF INTEREST

Wen Zhang declares that he has no conflict of interest. Aichen Wang declares that she has no conflict of interest. Zhenzhen Lv declares that she has no conflict of interest. Zongmei Gao declares that she has no conflict of interest. De Bellie, N., Schotte, S., Coucke, P., & De Baerdemaeker, J. (2000). Development of an automated monitoring device to quantify changes in firmness of apples during storage. Postharvest Biology and Technology, 18(1), 1–8. https://doi.org/10.1016/S0925-5214(99)00063-0

REFERENCES

Abbott, J. A., Bachman, G. S., Childers, R. F., Fitzgera, J. V., & Matusik, F. J. (1968). Sonic techniques for measuring texture of fruits and vegetables. Food Technology, 22(5), 101–112.

Alhamdan, A. M., & Atia, A. (2017). Non-destructive method to predict Barhi dates quality at different stages of maturity utilising near-infrared (NIR) spectroscopy. International Journal of Food Properties, 20(sup3), S2950–S2959. https://doi.org/10.1080/10949127.2017.1387794

Antunes, M. D. C., & Sfakiotakis, E. M. (2000). Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of 'Hayward' kiwifruit. Postharvest Biology and Technology, 20(3), 251–259. https://doi.org/10.1016/S0925-5214(00)00136-8

Chen, L., & Opara, U. L. (2013). Texture measurement approaches in fresh and processed foods. Food Research International, 51(2), 823–835.

De Bellie, N., Schotte, S., Coucke, P., & De Baerdemaeker, J. (2000). Development of an automated monitoring device to quantify changes in firmness of apples during storage. Postharvest Biology and Technology, 18(1), 1–8. https://doi.org/10.1016/S0925-5214(99)00063-0

Dong, W., Ni, Y., & Kokot, S. (2013). A near-infrared reflectance spectroscopy method for direct analysis of several chemical components and properties of fruit, for example, Chinese hawthorn. Journal of Agricultural and Food Chemistry, 61(3), 540–546. https://doi.org/10.1021/jf305272s

Geesink, G. H., Schreutelkamp, F. H., Frankhuizen, R., Vedder, H. W., Faber, N. M., Kranen, R. W., & Gerritzen, M. A. (2003). Prediction of pork quality attributes from near infrared reflectance spectra. Meat Science, 65(1), 661–668. https://doi.org/10.1016/S0309-1740(02)00269-3

Hernández Gómez, A., Wang, J., Hu, G., & García Pereira, A. (2007). Discrimination of storage shelf-life for mandarin by electronic nose technique. LWT-Food Science and Technology, 40(4), 681–689. https://doi.org/10.1016/j.lwt.2006.03.010

Hosainpour, A., Komarizade, M. H., Mahmoudi, A., & Shayanesteh, M. G. (2011). High speed detection of potato and clad using an acoustic based intelligent system. Expert Systems with Applications, 38(10), 12101–12106. https://doi.org/10.1016/j.eswa.2011.02.164

Ibrahim, B., Basanta, M., Cadden, P., Singh, D., Douce, D., Woodcock, A., & Fowler, S. J. (2011). Non-invasive phenotyping using exhaled volatile organic compounds in asthma. Thorax, 66(9), 804–809. https://doi.org/10.1136/thoraxjnl-2010-200695

Jancsó, P. T., Clijmans, L., Nicolai, B. M., & De Baerdemaeker, J. (2001). Investigation of the effect of shape on the acoustic response of ‘conference’ pears by finite element modelling. Postharvest Biology and Technology, 23(1), 1–12. https://doi.org/10.1016/S0925-5214(01)00098-9

Kontogianni, M. D., Farmaki, A., Vidra, N., Soufrona, S., Magkanari, F., & Yannakoudakis, M. (2010). Associations between lifestyle patterns and body mass index in a sample of Greek children and adolescents. Journal of the American Dietetic Association, 110(2), 215–221. https://doi.org/10.1016/j.jada.2009.10.035

Liu, Y., Sun, X., & Ouyang, A. (2010). Non-destructive measurement of soluble solid content of navel orange fruit by visible–NIR spectroscopic technique with PLSR and PCA-BPNN. LWT-Food Science and Technology, 43(4), 602–607. https://doi.org/10.1016/j.lwt.2009.10.008

Macrelli, E., Romani, A., Paganelli, R. P., Sangiorgi, E., & Tartagni, M. (2013). Piezoelectric transducers for real-time evaluation of fruit firmness. Part I: Theory and development of acoustic techniques. Sensors and Actuators A: Physical, 201, 487–496. https://doi.org/10.1016/j.sna.2013.07.033

Mayorga-Martínez, A. A., Olvera-Trejo, D., Elias-Zúñiga, A., Parra-Saldívar, R., & Chuck-Hernández, C. (2016). Non-destructive assessment of Guava (Psidium Guajava L.) maturity and firmness based on mechanical vibration response. Food and Bioprocess Technology, 9, 1471–1480.

ORCID

Wen Zhang https://orcid.org/0000-0003-4458-8398
Mizrach, A. (2004). Assessing plum fruit quality attributes with an ultrasonic method. *Food Research International, 37*(6), 627–631. https://doi.org/10.1016/j.foodres.2003.12.015

Murayama, H., Konno, I., Terasaki, S., Yamamoto, R., & Sakurai, N. (2006). Nondestructive method for measuring fruit ripening of 'La France' pears using a laser Doppler vibrometer. *Journal of the Japanese Society for Horticultural Science, 75*(1), 79–84. https://doi.org/10.2503/jjshs.75.79

Payne, A. B., Walsh, K. B., Subedi, P. P., & Jarvis, D. (2013). Estimation of mango crop yield using image analysis – Segmentation method. *Computers and Electronics in Agriculture, 91*, 57–64. https://doi.org/10.1016/j.compag.2012.11.009

Ragni, L., Berardinelli, A., & Guarnieri, A. (2010). Impact device for measuring the flesh firmness of kiwifruits. *Journal of Food Engineering, 96*(4), 591–597. https://doi.org/10.1016/j.jfoodeng.2009.09.006

Taniwaki, M., Hanada, T., & Sakurai, N. (2009). Postharvest quality evaluation of "Fuyu" and "Taishuu" persimmons using a nondestructive vibrational method and an acoustic vibration technique. *Postharvest Biology and Technology, 51*(1), 80–85. https://doi.org/10.1016/j.posth arbio.2008.05.014

Taniwaki, M., & Sakurai, N. (2010). Evaluation of the internal quality of agricultural products using acoustic vibration techniques. *Journal of the Japanese Society for Horticultural Science, 79*(2), 113–128. https://doi.org/10.2503/jjshs1.79.113

Terasaki, S., Wada, N., Sakurai, N., Muramatsu, N., Yamamoto, R., Nevins, D. J. (2001). Nondestructive measurement of kiwifruit ripeness using a laser Doppler vibrometer. *Transactions of the ASAE, 44*(1), 81–87. https://doi.org/10.13031/2013.2291

Valente, M., Leardi, R., Self, G., Luciano, G., & Pain, J. P. (2009). Multivariate calibration of mango firmness using vis/NIR spectroscopy and acoustic impulse method. *Journal of Food Engineering, 94*(1), 7–13. https://doi.org/10.1016/j.jfoodeng.2009.02.020

Zhang, L., & McCarthy, M. J. (2012). Measurement and evaluation of tomato maturity using magnetic resonance imaging. *Postharvest Biology and Technology, 67*, 37–43. https://doi.org/10.1016/j.posth arbio.2011.12.004

Zhang, W., Cui, D., & Ying, Y. (2014). Nondestructive measurement of pear texture by acoustic vibration method. *Postharvest Biology and Technology, 96*, 99–105. https://doi.org/10.1016/j.posth arbio.2014.05.006

Zhang, W., Cui, D., & Ying, Y. (2015). The impulse response method for pear quality evaluation using a laser Doppler vibrometer. *Journal of Food Engineering, 159*, 9–15. https://doi.org/10.1016/j.jfood eng.2015.03.013

Zhang, W., Lv, Z., & Xiong, S. (2018). Nondestructive quality evaluation of agro-products using acoustic vibration methods: A review. *Critical Reviews in Food Science and Nutrition, 58*(14), 2386–2397. https://doi.org/10.1080/10408398.2017.1324830

How to cite this article: Zhang W, Wang A, Lv Z, Gao Z. Nondestructive measurement of kiwifruit firmness, soluble solid content (SSC), titratable acidity (TA), and sensory quality by vibration spectrum. *Food Sci Nutr*. 2020;8:1058–1066. https://doi.org/10.1002/fsn3.1390