The Vaginal Microbiome: II. Vaginal Dysbiotic Conditions

Ahinoam Lev-Sagie, MD,1,2 Francesco De Seta, MD,3,4 Hans Verstraelen, MD, MPH, PhD,5,6 Gary Ventolini, MD, FACOG,7 Risa Lonnee-Hoffmann, MD, PhD,8,9 and Pedro Vieira-Baptista, MD10,11,12

Objective: This series of articles, titled The Vaginal Microbiome (VMB), written on behalf of the International Society for the Study of Vulvovaginal Disease, aims to summarize the recent findings and understanding of the vaginal bacterial microbiota, mainly regarding areas relevant to clinicians specializing in vulvovaginal disorders.

Materials and Methods: A search of PubMed database was performed, using the search terms “vaginal microbiome” with “dysbiosis,” “bacterial vaginosis,” “cytolytic vaginosis,” “desquamative inflammatory vaginitis,” and “aerobic vaginitis.” Full article texts were reviewed. Reference lists were screened for additional articles.

Results: The second article in this series focuses on vaginal dysbiotic conditions. Dysbiosis is a term describing imbalances in bacterial communities. Given that lactobacillus-dominated microbiota are thought to be the most optimal, vaginal dysbiosis is usually considered as lactobacilli-depleted VMB. Bacterial vaginosis (BV), the most common vaginal dysbiotic condition, is a polymicrobial disorder, considered the leading cause for vaginal discharge in women worldwide. In addition, we review the VMB in other vaginal conditions associated with lactobacilli depletion: desquamative inflammatory vaginitis and aerobic vaginitis. We also discuss the controversies in the diagnosis of cytolytic vaginosis, related with lactobacilli overgrowth.

Conclusions: Bacterial vaginosis displays complex microbiology. The heterogeneity and diversity within the genus Gardnerella may impact the progression of BV. Bacterial biofilms may contribute to the etiology and persistence of BV, and various bacteria may affect its clinical presentation and pathogenicity. Lack of lactobacilli is not always accompanied by an overgrowth of anaerobes.

Key Words: vaginal microbiome, vaginal dysbiosis, bacterial vaginosis, cytolytic vaginosis, desquamative inflammatory vaginitis, aerobic vaginitis

Moreover, the concept of what is a “normal” VMB is still controversial,2,3 as was discussed in part I. Alternatively, vaginal dysbiosis is often characterized as a VMB not dominated by lactobacilli.4 Dysbiotic, lactobacilli-depleted BV, has been associated with increased susceptibility to sexually transmitted infections (STIs), including HIV (see part III), and increased risk of pregnancy complications (see part IV). Nevertheless, the concept that absence of lactobacilli necessarily represents VMB imbalance may be incorrect or inadequate, as lactobacilli are often absent in asymptomatic women, who are not at increased risk for complications, such as in the cases of prepubertal girls and postmenopausal women.

Knowledge about different types of dysbiosis and their relationship to urogenital and reproductive disorders has increased in recent years by applying molecular techniques. This part of the VMB review discusses the complexity of the VMB in bacterial vaginosis (BV), which is the most common and most studied vaginal dysbiosis. It also discusses the diagnoses of desquamative inflammatory vaginitis (DIV) and aerobic vaginitis (AV), which are associated with lactobacilli depletion and dysbiotic VMB, demonstrating the complexity of defining whether dysbiosis associated with vaginal inflammatory conditions is a cause or a result. We also review the controversial diagnosis of cytolytic vaginosis (CyV), which is another form of vaginal dysbiosis that contradicts the accepted concept of lactobacilli depletion.

BACTERIAL VAGINOSIS

The Microbiome Characteristics of BV

Bacterial vaginosis (BV) is a polymicrobial disorder, which is considered the most common cause of vaginal discharge,2 affecting millions of reproductive-aged women worldwide. Bacterial vaginosis is associated with multiple adverse gynecologic and obstetrics consequences, including an increased risk of preterm birth, pelvic inflammatory disease, endometritis, cervical intraepithelial neoplasia (CIN), and acquisition of STIs including HIV and human papillomavirus (HPV).6

The diagnosis of BV is complicated by the lack of consensus on its definition,7 the natural difference of the VMB in women of diverse racial backgrounds, and its polymicrobial etiology.8 Symptomatic BV can be described as a syndrome based on the presence of clinical features (discharge and/or malodor) interpreted by vaginal fluid features (i.e., Amsel criteria) or gram stain (the Nugent score), without a specific etiologic agent defined. Bacterial vaginosis is not characterized by inflammation on microscopy, with relative absence of polymorphonuclear cells on wet mount, and was therefore termed “vaginosis” and not “vaginitis.”9 Despite decades of research, the etiology of BV remains unknown; it is a form of vaginal dysbiosis, marked by depletion of lactobacilli and proliferation of various gram-negative and/or anaerobic bacteria.10,11

The epidemiology of BV strongly suggests that it may be acquired via sexual transmission,12,11 and it is associated with various risk factors, including a new sexual partner,12 douching,14 and smoking.15 Although usually treatable with antibiotics, recurrence is a major problem, with relapse rates greater than 50% within 12 months of treatment.16

Bacterial vaginosis is diagnosed clinically in 1 of 2 ways: Amsel criteria or Nugent score. Amsel criteria comprises a set of

1Facility of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; 2Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; 3Institute for Maternal and Child Health “IRCCS Burlo Garofolo,” Trieste, Italy; 4Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; 5Department of Obstetrics and Gynecology, Ghent University Hospital, Ghent, Belgium; 6Department of Human Structure and Repair, Ghent University, Ghent, Belgium; 7Professor of Obstetrics and Gynecology, Distinguished University Professor, School of Medicine, Texas Tech University Health Sciences Center, Permian Basin, Odessa, Texas; 8Department of Obstetrics and Gynecology, St Olavs University Hospital, Trondheim, Norway; 9Institute for Clinical and Molecular Medicine, Norwegian University for Science and Technology, Trondheim, Norway; 10Hospital Lisboaias Porto, Porto, Portugal; 11Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal; and 12LAP, a Unilabs Company, Porto, Portugal

Reprint requests to: Ahinoam Lev-Sagie, MD, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, and Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, 8 Churchill Blvd, Jerusalem 9765422, Israel. E-mail: lev-sagie@netvision.net.il

The authors have declared they have no conflicts of interest.

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the ASCCP. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

DOI: 10.1097/LGT.0000000000000644

Journal of Lower Genital Tract Disease • Volume 26, Number 1, January 2022
4 criteria including: (1) vaginal discharge, (2) fishy odor with or without the addition of 10% KOH (whiff test), (3) elevated pH >4.5, and (4) the presence of clue cells (epithelial cells studded with adherent bacteria) on microscopy, with 3 of 4 criteria are required to make a positive diagnosis. The Nugent score is based on gram-stained vaginal smear, with high numbers of lactobacilli species indicative of health, and their depletion coupled with increased numbers of small and/or curved gram variable rods being indicative of BV.

More than half of the women with diagnosable BV have no clear symptoms. Patients’ perception of their vaginal symptoms varies significantly and does not necessarily correlate with signs of BV. Some women do not report symptoms; nevertheless, discharge is noted on examination by a clinician, and diagnostic criteria are present, highlighting that many women with BV may consider their discharge to be normal. These women may be asymptomatic despite the presence of BV. This may contribute to the debate regarding the definition of “normal” VMB, as was discussed in part I.

Microbiology of BV

Despite multiple molecular and genomic studies, there is no consensus on the group of bacterial species that may directly cause BV. Multiple studies using both deep sequencing methods and species-level taxonomic classification have described the diversity of microbial communities in BV. In a study published in 2005, Fredricks et al. described bacterial communities in samples of vaginal fluid from 27 subjects with BV (defined according to Amsel criteria) and 46 without the condition, using combination of broad-range PCR amplification of 16S rDNA with clone analysis and bacterium-specific PCR assay of 16S rDNA (see part I for technical details). Among subjects without BV, 1–6 bacterial species (mean = 3.3) were found. Lactobacillus species were the dominant bacteria detected, particularly L. crispatus and L. iners. In addition, most bacterial 16S rDNA sequences in subjects without BV closely matched known bacteria. Nevertheless, analysis from vaginal fluid of subjects with BV showed a high level of species diversity, with a mean of 12.6 bacteria (range = 9–17), and newly recognized bacteria were present in 60% of BV samples. Bacteria that were frequently detected in women with BV included Gardnerella vaginalis, Atopobium vaginae, Megapathera types, Leptotrichia amnionis, Sneathia sanguinegens, Porphyromonas asaccharolytica, a bacterium related to Eggerthella hongkongensis, and bacteria related to Prevotella genus. Thirty-five unique bacterial species were identified in women with BV, 16 of which were newly characterized, including fastidious bacteria termed BV-associated bacterium 1–3 (BVAB1–3), which were subsequently found as highly specific for BV. Lactobacillus crispatus was not detected in subjects with BV, whereas L. iners was detected in most subjects. In addition, G. vaginalis was detected in all BV samples; however, it was also found in 59% of subjects without BV.

In a subsequent study, broad-range 16S rRNA gene PCR and pyrosequencing (a method of DNA sequencing that detects light emitted during the sequential addition of nucleotides during the synthesis of a complementary strand of DNA) were performed on vaginal swabs from 220 women with and without BV, diagnosed separately by both Amsel criteria and Gram stain (Nugent score). In accordance with the previous findings, women with BV had diverse, heterogeneous vaginal bacterial communities, which were usually not dominated by a single bacteria, showing increased species richness and diversity. No bacterium was present in all women with BV; however, G. vaginalis was present in 80% of women with BV. A. vaginae in 92%, L. iners in 86%, and Eggerthella species in 85%. In the absence of BV (by Gram stain), vaginal bacterial communities were mostly dominated by either L. crispatus or L. iners. Lactobacillus jensenii and L. gasseri were present in 65% and 34% of women, respectively. Of note, although women with high levels of L. crispatus did not have BV, women with high levels of L. iners could be either BV negative or positive. Hypothesizing that bacterial community subtypes may be shaped by synergistic or antagonistic relationships among individual BV-associated bacteria, the researchers examined bacterial co-occurrence. They found that lactobacilli were strongly correlated with each other, as were several subgroups among BV-associated bacteria. Strong negative correlations were found between most lactobacilli and the bacteria associated with BV. These correlations suggest metabolic or other dependencies; bacteria that are negatively correlated may compete for similar nutrients or change the environment in ways that inhibit growth of each other. Lactobacillus crispatus had strong positive correlations with Lactobacillus jensenii and G. vaginalis but was negatively correlated with L. iners.

Role of G. vaginalis in BV

Gardnerella vaginalis, present in 95%–100% of BV cases, was originally thought to be the primary BV pathogen. In vitro, G. vaginalis possesses various virulence factors, adheres in large aggregates to vaginal epithelial cells, exhibits a significant cytotoxic activity, and produces a biofilm matrix (see hereinafter). However, G. vaginalis is found in many women without BV in lower abundances. Whole genome sequence analysis experiments were conducted in 81 Gardnerella strains by Vanechouette et al., who pointed out the existence of at least 13 groups, distinct enough to be classified as separate species, within the taxon formerly known as G. vaginalis. Distinct genomic properties may present different pathological features (i.e., cytotoxicity, adhesion to epithelial cells, biofilm formation, sialidase production, and antibiotic susceptibility), as some subgroup(s) or species have been found to have an association with BV, whereas others have not. Therefore, it is possible that women who are colonized by Gardnerella species or clades with low virulence potential do not develop BV, whereas acquisition of virulent strains results in BV. Another explanation suggests that G. vaginalis alone may be necessary but not sufficient for BV development. In an article published in 1955 by Gardner and Dukes, isolated G. vaginalis were introduced into the vaginas of 13 healthy women, which resulted in the development of BV in one of them. However, when vaginal fluid obtained from subjects with BV was inoculated into the vaginas of 15 healthy women, 11 developed BV. These observations suggest that whole vaginal fluid is a much more successful inoculum for the transmission of BV than is pure G. vaginalis, indicating that synergy between G. vaginalis and other bacteria may be important in BV development. Such potentially significant synergistic relationships between G. vaginalis and other bacteria, the researchers have been reported in BV pathogenesis.

The ecological interactions between G. vaginalis and other BV-associated bacteria were analyzed by Castro et al. in a dual-species biofilm model. This study revealed distinct biofilm structures between each bacterial consortium, leading to at least 3 unique dual-species biofilm morphotypes. Furthermore, their findings seem to indicate that Enterococcus faecalis and Actinomyces naesii had a higher impact on the enhancement of G. vaginalis virulence, whereas the other tested species had a lower or no impact. This study proposed that not all BV-associated bacteria contribute to the enhancement of BV pathogenesis by influencing G. vaginalis virulence.

Biofilm in BV

Another notable feature of BV is the presence of a polymicrobial biofilm on vaginal epithelial cells. A biofilm is a structured
community of microorganisms in a self-produced extracellular matrix, adherent to the surface of epithelial cells. The BV biofilm has been found to contain abundant *G. vaginalis* and *A. vaginae*.13

Shedding of vaginal epithelial cells coated with BV biofilm presents as clue cells. After the initial colonizing species adhere to the surface, the BV polymicrobial biofilm may incorporate additional bacteria; a synergetic relationship between these bacteria within the biofilm allows the biofilm’s growth and maturation.30

Within the biofilm, gradients of pH, nutrients, and oxygen can be found.31 *Gardnerella vaginalis* biofilms can adhere to epithelial cells and provide protective features, such as tolerance to H₂O₂ and lactic acid produced by lactobacilli, inhibition of elimination by the immune system, and antimicrobial resistance, promoting the recurring and chronic nature of BV.32

Little is known about the exact mechanisms of biofilm formation in BV: the genes responsible, communication strategies (quorum sensing, metabolic communication), and genetic exchanges between biofilm-associated bacteria. It is not clear whether all bacteria found in the BV biofilm have a pathogenic role or are simply a consequence of biofilm formation.30

In a model suggested recently by Muzny et al.,22 it was proposed that BV development is triggered by sexual transmission of virulent strains of *G. vaginalis*, which displaces healthy vaginal lactobacilli, and initiates BV biofilm formation on the vaginal epithelium. *Gardnerella vaginalis* can tolerate the high oxidation-reduction (redox) potential of a *Lactobacillus*-dominated vaginal microbiota. These bacteria may lower the redox potential in the vagina, remarkably reducing lactobacilli, resulting in an increase in other strict anaerobic BV-associated bacteria, such as *P. bivia*, which is normally present in low concentrations. This results in the production of metabolites facilitating bacterial growth. Subsequently, vaginal sialidase and other enzymes, produced by *G. vaginalis* and *P. bivia*, promote breakdown of the mucous layer of the vaginal epithelium. The loss of the protective mucous layer leads to increased adherence of secondary colonizers to the mature, polymicrobial BV biofilm. One of these secondary colonizers is *A. vaginae*, an obligate anaerobic species, that, unlike *G. vaginalis*, is usually not present in the health-related VMB.31

Alternatively, it was suggested that infection by polymicrobial biofilms containing *G. vaginalis* between sex partners may contribute to BV formation, with increasing evidence of colonization by "vaginal" bacteria and clue cells in the male reproductive tract.32,34

Different Bacteria, Different BV Symptoms, and Different Pathogenic Potential

Associations between certain bacteria and BV symptoms were reported. These findings may account for discrepancies often observed between Arnsel and Nugent diagnostic criteria among women with BV, as well as between symptomatic and asymptomatic women. In a study investigating associations of Arnsel criteria with bacterial tax, it was described that *Eggerthella* species and *Leptotrichia amnionii* were the only BV-associated bacteria that were positively associated with all 4 Arnsel criteria.29

Lactobacillus crispatus was the only *Lactobacillus* species associated with low pH, negative whiff test, absence of clue cells, and normal vaginal discharge. In contrast, women with high *L. iners* levels can have either low or high pH. The fishy amine odor is attributed to polyamines such as putrescine, cadaverine, and trimethylamine.35,36

Several bacteria including *Prevotella* species, *BVAB1* and *B. parvum*, *Megasphaera* and *Meganin*s were associated with a positive whiff test.22 *Gardnerella vaginalis* and *A. vaginae* were each associated with 3 criteria: *G. vaginalis* was not associated with abnormal vaginal discharge, whereas *A. vaginae* was not associated with amine odor. *Lactobacillus iners* was not associated with any of Arnsel clinical criteria for BV. The difference in bacteria composition in BV not only may differ among racial and ethnic groups, but also varies within women over time.36

Longitudinal Changes in BV

In a prospective, longitudinal study, Ravel et al.38 evaluated the spectrum of events that occur in vaginal microbial communities over 2 menstrual cycles, among women with symptomatic BV, asymptomatic BV, and healthy subjects. Bacterial community dynamics in women who had symptomatic and asymptomatic BV seemed to be highly personalized, with some women experiencing shifts in VMB composition while others having stable microbiota, depleted of *Lactobacillus* species. The VMB of healthy women was consistently dominated by *Lactobacillus* species or *Bifidobacterium* but was not always stable in terms of the dominant species of *Lactobacillus* present. In most women, the treatment of BV reduced the proportion of anaerobes and increased the relative proportions of *Lactobacillus* species (mainly *L. iners*). However, this effect was short-lived, and in most individuals, the VMB returned to its pretreatment state within 2–4 weeks.38

Bacterial Vaginosis Associations With Demographics

A systematic review describing the global epidemiology of BV showed that BV prevalence varies by ethnic group and within countries.39 This has been most extensively studied and documented in the United States,39 showing that BV prevalence was highest in African American and lowest in non-Hispanic Whites and Asians, with Hispanics women having an intermediate prevalence.38,39 Bacterial vaginosis prevalence tended to be highest in sub-Saharan Africa and lowest in Asia, Australasia, and western Europe.39 Nevertheless, there were populations with high and low BV prevalence in all these regions.

Among those with a clinical diagnosis of BV, African American women were more likely colonized by *Anaerococcus tetras* and *BVAB1*, whereas White women were more likely colonized by *M. hominis*, *D. microaerophilus*, and *Gemella* species.30 Tanzanian women with BV had a high abundance of *P. bivia*.41 Although these limited data suggest that BV-VMB may vary between subpopulations, it is important to note that studies in sub-Saharan Africa differ considerably in terms of experimental techniques used, and therefore, direct comparisons are limited.42

Summary

Understanding the etiology of BV has important implications for improvements in diagnosis, treatment, and prevention of this common clinical condition. For example, in recent years, several highly sensitive and specific PCR assays, which use various combinations of bacteria, became available for the diagnosis of BV in symptomatic women, possibly replacing the currently used tests...
A vaginitis, and noninfectious conditions, such as lichen planus. The bacteria gain terrain. Most often, isolated bacteria from patients in the colonic milieu is adverse to lactobacilli and, consequently, other bacteria. The overgrowth of lactobacilli is associated with hyperacidity and low pH. In CV as its name implies, there is lysis of epithelial cells, presenting with numerous bare nuclei and debris cytoplasm, which is generally assumed to be because of overacidification.

The etiology is unknown, but it was suggested that hormonal factors, mainly progesterone, play a role, as it is more often encountered during pregnancy, the luteal phase, and in perimenopause. Despite the predominance of lactobacilli in these conditions, in some nonpregnant women, symptoms of itching, burning, irritation, dyspareunia, dysuria, and white cheesy vaginal discharge may indicate an unhealthy state. The symptoms may be explained by excessive production of H₂O₂ and/or low pH (≤3.8). It is unknown whether these entities are part of a continuum or not.

In microbiological terms, CV is characterized by low diversity and dominance of L. crispatus and a near absence of Faecalibacterium species. In cases with CV, a lesser diversity of Lactobacillus species was found compared with women without the condition. Lactobacillus crispatus was found in both groups but demonstrated enhanced acid-producing capability in the CV group.

Desquamative Inflammatory Vaginitis and Aerobic Vaginitis

Desquamative Inflammatory Vaginitis (DIV) is an uncommon vaginitis, associated with symptoms of copious vaginal discharge, burning, irritation, and dyspareunia. Physical examination features may include cervical and vaginal erythema, introital erythema, spotted hemorrhages, erosions of the vaginal and cervical mucosa, and purulent discharge. The vaginal discharge of women with DIV is characterized by the dominance of parabasal/basal cells, increased number of leukocytes (ratio leukocytes: epithelial cells >1:1), and often, mixed microbiota with dominance of cocci (usually Streptococcus species). Differential diagnosis includes trichomoniasis, severe vaginal atrophy (literally, “atrophic vaginitis”), Streptococcus Group A vaginitis, and noninfectious conditions, such as lichen planus.

The dysbiosis associated with DIV presents an unclear primary or secondary relationship with the DIV condition per se. The unanswered question is whether inflammation, tissue erosion, and subsequent exposure of deep layers of epithelial cells are triggered by specific bacteria or, alternatively, whether the inflammatory milieu is adverse to lactobacilli and, consequently, other bacteria gain terrain. Most often, isolated bacteria from patients with DIV have been Streptococcus agalactiae, Escherichia coli, and Staphylococcus aureus.

Others have described a spectrum of vaginal discharge changes, based on wet mount microscopy, which include varying degrees of inflammation and presence of parabasal cells, as well as replacement of dominant lactobacilli microbiota by other bacilli or cocci. This spectrum of conditions was named “aerobic vaginitis” (as “opposite” of the anaerobic counterpart, BV), with the severe forms of AV corresponding to DIV.

Moderate/severe AV prevalence in nonpregnant women has been reported to range between 2.0% and 25.8%, mostly ranging between 7% and 13%. The huge differences in terms of prevalence may be due to geographical or ethnic factors, similar to BV. The prevalence is systematically lower in pregnant women.

The bacteria most often isolated in AV are Streptococcus species, S. aureus, S. epidermidis, S. anginosus, E. coli, and E. faecalis. During pregnancy, the same bacteria were found, but E. coli was most frequently identified. This study may, however, be biased, as the population studied was more than 35 weeks of gestation and AV/DIV is considered a risk factor for preterm labor. More recent studies, using next-generation sequencing, confirmed these findings and showed that the prevalence of anaerobic species typically associated with BV, such as G. vaginalis, A. vaginae, Prevotella species, and Sneathia species, are also prevalent in women with AV.

Cytolytic Vaginosis

Cytolytic vaginosis (CyV) and lactobacillosis are diagnoses not accepted by all authors. These are characterized by an excessive number of lactobacilli with or without associated cytolyis—“cytolytic vaginosis” or “lactobacillosis.” The overgrowth of lactobacilli has been assumed that the normal status of a healthy woman is a homogenous entity can lead to better strategies to prevent disease and the full picture of the lactobacilli-depleted forms of dysbiosis is still incomplete. Nevertheless, it is already clear that acknowledging that “dysbiosis” includes more than BV and that BV itself is not a homogenous entity can lead to better strategies to prevent disease and complications in the future. This can also explain contradictory results in the past, for example, in the attempts to reduce preterm labor by treating BV or dysbiosis.

On the opposite spectrum of dysbiosis are the cases of excessive lactobacilli, which challenge the concept that lactobacilli are always beneficial, and confirm that more is not always better.

REFERENCES

1. Dysbiosis. Definition of dysbiosis by Oxford Dictionary on Lexico.com. Available at: https://www.lexico.com/definition/dysbiosis. Accessed November 23, 2020.
2. Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med 2012;4:132ra52.

3. Brotman RM, Ravel J, Cone RA, et al. Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis. Sex Transm Infect 2010;86:297–302.

4. Van De Wijgt HJJM, Jespers V. The global health impact of vaginal dysbiosis. Res Microbiol 2017;168(9–10):859–64.

5. Morris M, Nicoll A, Simms I, et al. Bacterial vaginosis: a public health review. BJOG 2001;108:439–50.

6. Schwebke JR. Gynecologic consequences of bacterial vaginosis. Obstet Gynecol Clin North Am 2003;30:685–94.

7. Van De Wijgt HJJH, Borgdorff F, Verhelst R, et al. The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One 2014;9:e105998.

8. Redelinguys MJ, Goldenhuys J, Jung H, et al. Bacterial vaginosis: current diagnostic avenues and future opportunities. Front Cell Infect Microbiol 2020;10:354.

9. Schellenberg JJ, Patterson MH, Hill JE. Gardnerella vaginalis diversity and ecology in relation to vaginal symptoms. Res Microbiol 2017;168(9–10):837–44.

10. Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 2005;353:899–911.

11. Swidsinski A, Mendling W, Loening-Baucke V, et al. Adherent biofilms in bacterial vaginosis. Obstet Gynecol 2005;106(5 Pt 1):1013–23.

12. Muzny CA, Schwebke JR. Gardnerella vaginalis: still a prime suspect in the pathogenesis of bacterial vaginosis. Curr Infect Dis Rep 2013;15:130–5.

13. Sobel JD. Recurrent bacterial vaginosis, relapse or reinitiation: the role of sexual transmission. BIOJ 2021;128:768.

14. Noss RB, Hillier SL, Richter HE, et al. Douching in relation to bacterial vaginosis, lactobacilli, and facultative bacteria in the vagina. Obstet Gynecol 2002;100:765–72.

15. Bradshaw CS, Walker SM, Vodstrcil LA, et al. The influence of behaviors and relationships on the vaginal microbiota of women and their female partners: the WOW health study. J Infect Dis 2014;209:1562–72.

16. Bradshaw CS, Morton AN, Hocking J, et al. High recurrence rates of bacterial vaginosis over the course of 12 months after oral metronidazole therapy and factors associated with recurrence. J Infect Dis 2006;193:1478–86.

17. Ansel R, Totten PA, Spiegel CA, et al. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med 1983;74:14–22.

18. Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol 1991;29:297–301.

19. Muzny CA, Lensing SY, Aaron KJ, et al. Incubation period and risk factors support sexual transmission of bacterial vaginosis in women who have sex with women. Sex Transm Infect 2019;95:511–5.

20. Srinivasan S, Hoffman NG, Morgan MT, et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One 2012;7:e37818.

21. Patterson JL, Stull-Lane A, Gireld PH, et al. Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes. Microbiology 2010;156:392–9.

22. Muzny CA, Taylor CM, Swords WE, et al. An updated conceptual model on the pathogenesis of bacterial vaginosis. J Infect Dis 2019;220:1399–405.

23. Hickey RJ, Forney LJ. Gardnerella vaginalis does not always cause bacterial vaginosis. J Infect Dis 2014;210:1682–3.

24. Vancenhouy M, Guschin A, Van Simnaey L, et al. Emended description of Gardnerella vaginalis and description of gardnerella leopoldii sp. nov., gardnerella piotti sp. nov. and Gardnerella swidinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int J Syst Evol Microbiol 2019;69:879–87.

25. Castro J, Jefferson KK, Cerca N. Genetic heterogeneity and taxonomic diversity among Gardnerella species. Trends Microbiol 2020;28:202–11.

26. Plummer EL, Vodstrcil LA, Murray GL, et al. Gardnerella vaginalis clade distribution is associated with behavioral practices and Nugent score in women who have sex with women. J Infect Dis 2020;221:454–63.

27. Muzny CA, Blanchard E, Taylor CM, et al. Identification of key bacteria involved in the induction of incident bacterial vaginosis: a prospective study. J Infect Dis 2018;218:966–78.

28. Gilbert NM, Lewis WG, Li G, et al. Gardnerella vaginalis and Prevotella bivia trigger distinct and overlapping phenotypes in a mouse model of bacterial vaginosis. J Infect Dis 2019;220:1099–108.

29. Castro J, Machado D, Cerca N. Unveiling the role of Gardnerella vaginalis in polymicrobial bacterial vaginosis biofilms: the impact of other vaginal pathogens living as neighbors. ISME J 2019;13:1306–17.

30. Machado A, Cerca N. Influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis. J Infect Dis 2015;212:1856–61.

31. Hardy L, Cerca N, Jespers V, et al. Bacterial biofilms in the vagina. Res Microbiol 2017;168(9–10):865–74.

32. Swidsinski A, Mendling W, Loening-Baucke V, et al. The adherence Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol 2008;198:97.e1–6.

33. Swidsinski A, Doerffel Y, Loening-Baucke V, et al. Gardnerella biofilm involves females and males and is transmitted sexually. Gynecol Obstet Invest 2010;70:256–63.

34. Liu CM, Hungate BA, Tobian AAR, et al. Penile microbiota and female partner bacterial vaginosis in Rakai, Uganda. mBio 2015;6:e00589.

35. Hillier SL. Diagnostic microbiology of bacterial vaginosis. Am J Obstet Gynecol 1993;169(2 Pt 2):455–9.

36. Wolrah H, Forsman U, Larsson PG, et al. Analysis of bacterial vaginosis-related amines in vaginal fluid by gas chromatography and mass spectrometry. J Clin Microbiol 2001;39:4026–31.

37. Muzny CA, Laniepowski P, Schwebke JR, et al. Host-vaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect Dis 2020;33:59–65.

38. Ravel J, Brotman RM, Gajer P, et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome 2013;1:29.

39. Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol 2013;209:505–23.

40. Fettweis JM, Brooks JP, Serrano MG, et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology (Reading) 2014;160(Pt 10):2272–82.

41. Hummelren R, Fernandes AD, Macklaim JM, et al. Deep sequencing of the vaginal microbiota of women with HIV. PLoS One 2010;5:e12078.

42. Bayigga L, Kateete DP, Anderson DJ, et al. Diversity of vaginal microbiota in sub-Saharan Africa and its effects on HIV transmission and prevention. Am J Obstet Gynecol 2019;220:155–66.

43. Vieira-Baptista P, Silva AR, Costa M, et al. Clinical validation of a new molecular test (Seegene Aptima™ Vaginitis) for the diagnosis of vaginitis: a cross-sectional study. BJOG 2021;128:1344–52.

44. Vieira-Baptista P, Silva AR, Costa M, et al. Diagnosis of bacterial vaginosis: clinical or microscopic? A cross-sectional study. Int J Gynaecol Obstet 2021. doi:10.1002/IJGO.13792.

45. Schwebke JR, Taylor SN, Ackerman R, et al. Clinical validation of the aptima bacterial vaginosis and aptima Candida/Trichomonas vaginitis assays: results from a prospective multicenter clinical study. J Clin Microbiol 2020;58:e01643–19.

46. Voytik M, Nyirijsy P. Cytolytic vaginosis: a critical appraisal of a controversial condition. Curr Infect Dis Rep 2020;22:1–6.
47. Vaneechoutte M. The human vaginal microbial community. Res Microbiol 2017;168(9–10):811–25.
48. Yang S, Liu Y, Wang J, et al. Variation of the vaginal Lactobacillus microbiome in cytolytic vaginosis. J Low Genit Tract Dis 2020;24:417–20.
49. Sanches JM, Giraldo PC, Bardin MG, et al. Laboratory aspects of cytolytic vaginosis and vulvovaginal candidiasis as a key for accurate diagnosis: a pilot study. Rev Bras Ginecol Obstet 2020;42:634–41.
50. Soares R, Vieira-Baptista P, Tavares S. Vaginose citolítica: uma entidade subdiagnosticada que mimetiza a candidíase vaginal. Acta Obstétrica e Ginecológica Portuguesa. 2017;11:106–12.
51. Cibley LJ, Cibley LJ. Cytolytic vaginosis. Am J Obstet Gynecol 1991;165:1245–9.
52. Xu H, Zhang X, Yao W, et al. Characterization of the vaginal microbiome during cytolytic vaginosis using high-throughput sequencing. J Clin Lab Anal 2019;33:e22653.
53. Sobel JD. Desquamative inflammatory vaginitis: a new subgroup of purulent vaginitis responsive to topical 2% clindamycin therapy. Am J Obstet Gynecol 1994;171:1215–20.
54. Stockdale CK. Clinical spectrum of desquamative inflammatory vaginitis. Curr Infect Dis Rep 2010;12:479–83.
55. Murphy R. Desquamative inflammatory vaginitis. Dermatol Ther 2004;17:47–9.
56. Donders GGG, Bellen G, Grinceviciene S, et al. Aerobic vaginitis: no longer a stranger. Res Microbiol 2017;168(9–10):845–58.
57. Wang C, Fan A, Li H, et al. Vaginal bacterial profiles of aerobic vaginitis: a case-control study. Diagn Microbiol Infect Dis 2020;96:114981.
58. Tao Z, Zhang L, Zhang Q, et al. The pathogenesis of streptococcus anginosus in aerobic vaginitis. Infect Drug Resist 2019;12:3745–54.
59. Rumyantseva T, Khayrullina G, Guschin A, et al. Prevalence of Ureaplasma spp. and Mycoplasma hominis in healthy women and patients with flora alterations. Diagn Microbiol Infect Dis 2019;93:227–31.
60. Tang Y, Yu F, Hu Z, et al. Characterization of aerobic vaginitis in late pregnancy in a Chinese population: a STROBE-compliant study. Medicine 2020;99:e20732.
61. Le MT, Nguyen TLN, Le DD, et al. Is genital tract infection related to tubal diseases in infertile Vietnamese women? J Infect Dev Ctries 2019;13:906–13.
62. Vieira-Baptista P, Lima-Silva J, Pinto C, et al. Bacterial vaginosis, aerobic vaginitis, vaginal inflammation and major Pap smear abnormalities. Eur J Clin Microbiol Infect Dis 2016;35:657–64.
63. Jahic M, Mulavdic M, Hadzimehmedovic A, et al. Association between aerobic vaginitis, bacterial vaginosis and squamous intraepithelial lesion of low grade. Med Arch 2013;67:94–6.
64. Donders GGG, Bellen G, Ruban KS. Abnormal vaginal microbiota is associated with severity of localized provoked vulvodynia. Role of aerobic vaginitis and Candida in the pathogenesis of vulvodynia. Eur J Clin Microbiol Infect Dis 2018;37:1679–85.
65. Bornstein J, Goldstein AT, Stockdale CK, et al. 2015 ISSVD, ISSWSH, and IPPS Consensus Terminology and Classification of Persistent Vulvar Pain and Vulvodynia. J Sex Med 2016;13:607–12.
66. Döderlein A. Das Scheidensekret Und Seine Bedeutung Für Das Puerperalfieber. Leipzig, Besold; 1892:12–36.
67. Caucci S, Driussi S, De Santo D, et al. Prevalence of bacterial vaginosis and vaginal flora changes in peri- and postmenopausal women. J Clin Microbiol 2002;40:2147–52.
68. Larsson PG, Carlsson B, Fähræus L, et al. Diagnosis of bacterial vaginosis: need for validation of microscopic image area used for scoring bacterial morphotypes. Sex Transm Infect 2004;80:63–7.
69. Brocklehurst P, Gordon AT, Heatley E, et al. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev 2013;CD000262. doi:10.1002/14651858.CD000262.pub4.
70. Lamont RF, Nhan-Chang CL, Sobel JD, et al. Treatment of abnormal vaginal flora in early pregnancy with clindamycin for the prevention of spontaneous preterm birth: a systematic review and metaanalysis. Am J Obstet Gynecol 2011;205:177–90.
71. Vieira-Baptista P, Bornstein J. Candidiasis, bacterial vaginosis, trichomoniasis and other vaginal conditions affecting the vulva. In: Vulvar Disease. Cham: Springer International Publishing; 2019:167–205. doi:10.1007/978-3-319-61621-6_24.