INTRODUCTION

Chilli (Capsicum annuum L.) is one of the most important economic food crops grown in various countries for domestic usage and export. It is used as a vegetable (fresh) as well as a spice (dried). India is one of the largest producers of chilli. The chilli suffers from various diseases, and chilli anthracnose is one of the most important among them. It is the most important disease of chilli in tropics and subtropics worldwide. The disease drastically reduces the yield, deteriorates the fruit quality, and hence results in low returns to farmers. In severe cases, the crop loss may exceed 50%. Species of the genus Colletotrichum such as C. capsici, C. gloeosporioides, C. acutatum etc have been identified as pathogens causing chilli anthracnose. Out of these, C. capsici is the major pathogen causing anthracnose disease (Gomathi and Kannabiran, 2000; Kaur et al., 2006; Montri et al., 2009; Susheela, 2012; Chaisemsaeng et al., 2013).

Various fungicides such as mancozeb, captan, bavistin, thiram, copper oxychloride, cosan, benlate and ziram are employed in order to control anthracnose disease. The resistance to these fungicides has been noticed in most fungal pathogens including C. capsici. Moreover, the residues of these fungicides remain in the harvested produce. Hence, search for alternative disease control strategies are of immense interest. Natural products are promising in terms of their low cost, potential efficacy as well as no or negligible side effects. Plants and their derivatives have been extensively studied for the control of phytopathogenic fungi. Several studies have been carried out on inhibitory potential of many botanical extracts against phytopathogenic fungi including species of Colletotrichum (Gomathi and Kannabiran, 2000; Kumaran et al., 2003; Nduagu et al., 2008; Rahman et al., 2011; Mukherjee et al., 2011; Johnny et al., 2011; Bajpai and Kang, 2012; Ajith et al., 2012; Dileep et al., 2013; Jagtap et al., 2013; Sundaramoorthy et al., 2014).

India has a rich floristic diversity which represents about 11% of total flora of the world. Western Ghats of India is one among the global biodiversity hotspots. The mountain ranges of Western Ghats harbor a large number of plant species with high degree of endemism. It is a mountainous range extending from the mouth of the river Tapti in Gujarat to Kanyakumari in Tamil Nadu. The Western Ghats encompass various vegetation types such as wet evergreen forests, moist and dry deciduous forests, montane forests, sholas, scrub and savannas (Richard and Muthukumar, 2012; Sundaramoorthy et al., 2014). Western Ghats of Karnataka, known as Sahyadri, represents a long mountain chain along the west coast of India and encompass districts namely Chikmagalur, Shimavogga, Udipi, Dakshina Kannada, Uttar Kannada, Hassan and Coorg. The present study was carried out to investigate...
the antifungal efficacy of 35 plants (belonging to 23 families) from three different regions viz., Haniya and of P. macrantha (16.13%) respectively. Next to M. indica, leaf extract of P. dioica caused high inhibition of fungus (70.96%). An inhibition of 60-70% was observed in case of leaf extract of F. tetraphylla, F. montana and P. scandens, L. roxburghii and C. odorata and bark extract of F. zeylanica. Inhibition of fungus ranged 50-60% in case of leaf extract of J. arborescens, F. zeylanica, O. dioica, A. lakoocha, A. indica and C. roxburghii, bark extract of D. montana and P. macrantha, root extract of A. curassavica and whole plant extract of H. indicus. All other extracts (except leaf extract of P. macrantha) inhibited the fungus to an extent which ranged between >20 and <50%.

Bark extract of D. montana inhibited the fungus to high extent than leaf extract. Leaf extract of D. buxifolia was more effective than that of leaf extract of D. montana. Leaf extract of T. heyeana inhibited fungus to high extent when compared to flower extract. Leaf extract of C. odorata was more inhibitory to fungus than inflorescence extract. In case of F. zeylanica, bark extract was more effective in inhibiting the fungus when compared to leaf extract. The extract from roots of A. curassavica inhibited the growth of fungus to high extent when compared to leaf and flower extracts which showed similar inhibition. Extracts from all parts of L. speciosa exhibited similar inhibition of the fungus. The bark extracts of P. macrantha and A. occidentale exhibited stronger inhibitory activity when compared to leaf extracts. In case of leaf and bark extract of P. dioica, leaf extract caused higher suppression of fungal growth. Rhizome extract of A. galanga was effective in inhibiting fungus to high extent than leaf “extract. Leaf and flower extracts of P. ferrugineum, D. regia and C. pulcherrima exhibited more or less similar inhibition of C. capsici.

In an earlier study, Johnny et al. (2011) showed dose dependent inhibitory activity of leaves of A. galanga and A. mnicata against C. capsici. Extract of A. galanga exhibited stronger inhibition of fungus than extract of A. muricata. However, in our study, leaf extract of A. muricata inhibited C. capsici to higher extent than leaf extract of A. galanga. In an earlier study, Nduagu et al. (2008) found that extract of C. odorata failed to cause reduction in the colony diameter of C. capsici. However, in our study, the leaf and inflorescence extract of C. odorata inhibited mycelial growth of the fungus. Leaf extract was found to be more effective. Kumaran et al. (2003) found low inhibitory potential of L. aspera when compared to R. tetraphylla against C. capsici. In our study also, similar result was observed. The study of Sarathambal et al. (2011) revealed the efficacy of solvent extracts of L. aspera against a panel of fungi which included C. capsici. In a previous study, we reported inhibitory effect of leaf and bark extracts of P. dioica and A. occidentale against Fusarium oxysporum f.sp. zingiberi isolated from soft rot of ginger. Leaf extracts of both the plants were more effective in inhibiting mycelial growth of fungus when compared to bark extracts (Vivek et al., 2013). In the present study, similar result was observed only in case of P. dioica but not in case of A. occidentale as bark extract of A. occidentale inhibited fungus to higher extent than leaf extract.
Table 1: Plants used in this study.

No.	Name of the plant	Family	Habit	Part/s used	Place of collection
1	Tabernaemontana heyneana Wall.	Apocynaceae	Tree	Leaf, flower	Haniya
2	Rauvolfia tetraphylla L.	Apocynaceae	Shrub	Leaf	Haniya
3	Psychotria nigra (Gaert.) Alston	Rubiaceae	Shrub	Leaf	Haniya
4	Flacourtia montana Graham	Flacourtiaceae	Tree	Leaf	Haniya
5	Jasminum arborescens Roxb.	Oleaceae	Shrub	Leaf	Haniya
6	Rubia cordifolia Linn.	Rubiaceae	Climbing herb	Whole plant	Haniya
7	Aglaia roxburghiana (W. & A) Miq. Var. Beddomei	Euphorbiaceae	Sub-shrub	Leaf, root, flower	Haniya
8	Pothis scandens L.	Araceae	Climbing shrub	Leaf	Haniya
9	Diospyros montana Roxb.	Ebenaceae	Tree	Leaf, bark	Haniya
10	Leucas aspera (Willd.) Linn.	Lamiaceae	Herb	Leaf	Haniya
11	Trichosanthes asiatica (Thunb.) R. King & H. Robinson	Asteraceae	Perennial shrub	Leaf, inflorescence	Haniya
12	Fahrenheitia zeylanica (Thw.) Ainy	Euphorbiaceae	Tree	Leaf, bark	Hulikal
13	Olea dioica Roxb.	Oleaceae	Tree	Leaf	Haniya
14	Maesa indica (Roxb.) A.DC	Myrsinaceae	Small tree	Leaf	Haniya
15	Asclepias curassavica L.	Asclepiaceae	Sub-shrub	Leaf, root, flower	Haniya
16	Elaeagnus kologa Schlecht	Elaeagnaceae	Shrub	Leaf	Haniya
17	Artocarpus lakoocha Roxb.	Moraceae	Tree	Leaf	Hulikal
18	Croton roxburghii Balak.	Euphorbiaceae	Tree	Leaf	Haniya
19	Lagerstroemia speciosa (L.)	Lythraceae	Medium sized tree	Leaf, seed, flower	Haniya
20	Ligustrum roxburghii C.B. Clarke	Oleaceae	Tree	Leaf	Haniya
21	Annona muricata Linn.	Annonaceae	Tree	Leaf	Maragalale
22	Persea macrantha (Nees.) Kosterm.	Lauraceae	Tree	Leaf, bark	Haniya
23	Pimenta dioica (Linn.) Merril	Myrtaceae	Tree	Leaf, bark	Maragalale
24	Anacardium occidentale L	Anacardaceae	Tree	Leaf	Maragalale
25	Ziziphus mauritiana Lam.	Rhamnaceae	Small tree	Leaf	Maragalale
26	Alpinia galanga Willd.	Zingiberaceae	Herb	Leaf, rhizome	Maragalale
27	Capsicum frutescens Linn.	Solanaceae	Sub-shrub	Leaf	Haniya
28	Mucuna pruriens Linn.	Fabaceae	Twining herb	Flower	Haniya
29	Anisomeles indica Linn.	Lamiaceae	Herb	Leaf	Haniya
30	Hedemusmus indicus R.Br	Asclepiadaceae	Semi-erect shrub	Root	Maragalale
31	Caesalpinia pulcherrima Linn.	Fabaceae	Shrub	Leaf and flower	Maragalale
32	Delonix regia (Bojer Ex. Hook.)	Fabaceae	Tree	Leaf and flower	Maragalale
33	Peltaphorum ferrugineum	Fabaceae	Tree	Leaf and flower	Maragalale
Table 2: Antifungal activity of selected plants

Sl. No.	Plant name	Part used	C.D in cm	% inhibition
1	Control		3.1±0.1	
2	*T. heyneana*	Leaf	1.9±0.0	38.70
		Flower	2.0±0.0	35.48
3	*R. tetraphylla*	Leaf	1.0±0.0	67.74
4	*P. nigra*	Leaf	2.1±0.1	32.26
5	*F. montana*	Leaf	1.2±0.1	61.29
6	*J. arborescens*	Leaf	1.5±0.0	51.61
7	*R. cordifolia*	Leaf	2.0±0.1	35.48
8	*A. roxburghiana*	Leaf	2.0±0.0	35.48
9	*C. dicoccum*	Leaf	2.4±0.2	22.58
10	*P. scandens*	Leaf	1.1±0.0	64.52
11	*D. montana*	Leaf	1.5±0.0	51.61
		Bark	1.5±0.2	51.61
12	*L. aspera*	Leaf	2.2±0.2	29.03
13	*C. odorata*	Inflorescence	2.2±0.1	29.03
		Leaf	1.1±0.0	64.52
14	*F. zeylanica*	Leaf	1.4±0.0	54.83
		Bark	1.2±0.0	61.29
15	*O. dioica*	Leaf	1.5±0.0	51.61
16	*M. indica*	Leaf	0.8±0.1	74.19
		Leaf	1.7±0.1	45.16
17	*A. currasavica*	Root	1.5±0.0	51.61
		Flower	1.7±0.2	45.16
18	*E. kologa*	Leaf	1.6±0.1	48.39
19	*A. lakoocha*	Leaf	1.5±0.0	51.61
20	*C. roxburghii*	Leaf	1.5±0.0	51.61
		Leaf	2.2±0.2	29.03
21	*L. speciosa*	Seed	2.2±0.2	29.03
		Flower	2.2±0.1	29.03
22	*L. roxburghii*	Leaf	1.2±0.0	61.29
23	*A. muricata*	Leaf	1.6±0.1	48.39
24	*P. macarantha*	Leaf	2.6±0.1	16.13
25	*P. dioica*	Leaf	0.9±0.1	70.96
		Bark	1.9±0.0	38.70
26	*A. occidentale*	Leaf	2.4±0.1	22.58
		Bark	1.7±0.1	45.16
27	*Z. mauritiana*	Leaf	1.9±0.1	38.70
28	*A. galanga*	Leaf	2.0±0.0	35.48
29	*C. frutescens*	Leaf	2.2±0.0	29.03
30	*D. buxifolia*	Leaf	1.6±0.1	48.39
31	*M. pruriens*	Flower	2.3±0.1	25.80
32	*A. indica*	Leaf	1.5±0.0	51.61
33	*H. indicus*	Whole plant	1.4±0.0	54.83
34	*P. ferrugineum*	Leaf	2.0±0.0	35.48
35	*D. regia*	Flower	2.1±0.0	32.25
36	*C. pulcherrima*	Leaf	2.0±0.0	35.48

Note: C.D = concentration of the sample in cm
Figure 1: Colonies of *C. capsici* on control and poisoned plates [1-16] (1-Control; 2-A.curassavica leaf; 3-A.curassavica flower; 4-A.curassavica root; 5-F.zeylanica leaf; 6-F.zeylanica bark; 7-P.macrantha leaf; 8-P.macrantha bark; 9-L.roxburghii; 10-P.dioica bark; 11-P.dioica leaf; 12-A.muricata; 13-D.buxfolia; 14-D.montana leaf; 15-D.montana bark; 16-R.tetraphylla; 17-T.heyneana leaf; 18-T.heyneana flower; 19-C.odorata leaf; 20-C.odorata inflorescence; 21-A.roxburghiana; 22-O.dioica; 23-J.arborescens; 24-M.indica)
Figure 2: Colonies of C. capsici on control and poisoned plates [25-44] (25-P.nigra; 26-F.montana; 27-E.kologa; 28-C.dicoccum; 29-C.roxburghii; 30-R.cordifolia; 31-P.scandens;32-A.lakoocha; 33-H.indicus; 34-M.pruriens; 35-A.indica; 36-D.regia leaf; 37-Z.mauritiana; 38-C.frutescens; 39-A.galanga leaf; 40-A.galanga rhizome; 41-P.ferrugineum flower; 42-P.ferrugineum leaf; 43-C.pulcherrima flower; 44-C.pulcherrima leaf)
CONCLUSION

The use of fungicides of plant origin has been shown an effective alternative to synthetic chemicals in order to counter the potential hazardous effect on the environment as well as consumer. In the present study, the extracts of all 29 plants collected at different regions of Western Ghats of Shivamogga district, Karnataka displayed inhibitory activity against chilli anthracnose causing fungus in terms of inhibition of mycelial growth. These plants can be exploited as natural fungicides for the control of chilli anthracnose. The study made here is an \textit{in vitro} study and further experiments fields is required to ascertain the possible application of these botanicals for the management of disease.

ACKNOWLEDGEMENTS

Authors are thankful to Dr. N. Mallikarjun, Associate Professor and Chairman, P.G. Department of Studies and Research in Microbiology and Principal, Sahyadri Science College (Autonomous) for providing facilities and moral support to conduct work. Authors also thank Dr. Vinayaka K.S and Mr. Noor Nawaz A.S for support given.

REFERENCES

Ajith, P.S., Lakshmesha, K.K., Murthy, M.S., Lakshmidevi, N. (2012). Botanicals for control of anthracnose of bell peppers. The Journal of Plant Protection Sciences 4(1): 13-19.

Bajpai, V.K., Kang, S.C. (2012). \textit{In vitro and in vivo} inhibition of plant pathogenic fungi by essential oil and extracts of \textit{Magnolia liliflora} Desr. Journals of Agricultural Science and Technology 14: 845-856.

Chaisemsaeng, P., Mongkolthanaruk, W., Bunyatratchata, W. (2013). Screening and potential for biological control of anthracnose disease (\textit{Colletotrichum capsici}) on Chili fruits by yeast isolates. Journal of Life Sciences and Technologies 1(4): 201-204.

Dileep, N., Junaid, S., Rakesh, K.N., Kekuda, P.T.R., Nawaz, N.A.S. (2013). Antifungal activity of leaf and pericarp of \textit{Polyalthia longifolia} against pathogens causing rhizome rot of ginger. Science, Technology and Arts Research Journal 2(1): 56-59.

Gomathi, V., Kannabiran, B. (2000). Inhibitory effects of leaf extracts of some plants on the anthracnose fungi infecting \textit{Capsicum annuum}. Indian Phytopathology 53(3): 305-308.

Jagtap, G.P., Mali, A.K., Dey, U. (2013). Bioefficacy of fungicides, bio-control agents and botanicals against leaf spot of turmeric incited by \textit{Colletotrichum capsici}. African Journal of Microbiology Research 7(18): 1865-1873.

Johnny, L., Yusuf, U.K., Nulit, R. (2011). Antifungal activity of selected plant leaves crude extracts against a pepper anthracnose fungus, \textit{Colletotrichum capsici} (Sydow) butler and bisby (Ascomycota: Phyllachorales). African Journal of Biotechnology 10(20): 4157-4165.

Kambar, Y., Vivek, M.N., Manasa, M., Kekuda, P.T.R., Nawaz, N.A.S. (2013). Inhibitory effect of cow urine against \textit{Colletotrichum capsici} isolated from anthracnose of chilli (\textit{Capsicum annuum} L.). Science, Technology and Arts Research Journal 2(4): 91-93.

Kaur, M., Sharma, O.P., Sharma, P.N. (2006). \textit{In vitro} effect of \textit{Trichoderma} species on \textit{Colletotrichum capisci} causing fruit rot of chilli (\textit{Capsicum annuum} L.). \textit{Indian Phytopathology} 59(2): 243-245.

Kumaran, R.S., Gomathi, V., Kannabiran, B. (2003). Fungitoxic effects of root extracts of certain plant species on \textit{Colletotrichum capsici} causing anthracnose in \textit{Capsicum annuum}. \textit{Indian Phytopathology} 56(1): 114-116.

Manasa, M., Swamy, S.H.C., Vivek, M.N., Kumar, R.T.N., Kekuda, P.T.R. (2013). Antibacterial efficacy of \textit{Pimenta dioica} (Linn.) Merill and \textit{Anacardium occidentale} L. against drug resistant urinary tract pathogens. Journal of Applied Pharmaceutical Science 3(12): 72-74.

Montri, P., Taylor, P.W.J., Mongkolporn, O. (2009). Pathotypes of \textit{Colletotrichum capsici}, the causal agent of chilli anthracnose, in Thailand. \textit{Plant Disease} 93:17-20.

Mukherjee, A., Khandker, S., Islam, M.R., Shahid, S.B. (2011). Efficacy of some plant extracts on the mycelial growth of \textit{Colletotrichum gloeosporioides}. Journal of Bangladesh Agricultural University 9(1): 43-47.

Nampoothiri, M.K., Ramkumar, B., Pandey, A. (2013). Western Ghats of India: Rich source of microbial diversity. \textit{Journal of Scientific and Industrial Research} 72: 617-623.

Nduagu, C., Ekefan, E.J., Nwankiti, A.O. (2008). Effect of some crude plant extracts on growth of \textit{Colletotrichum capsici} (Synnd) Butler and Bisby, causal agent of pepper anthracnose. \textit{Journal of Applied Biosciences} 6(2): 184-190.

Rahman, A.M., Rahman, M.M., Azad, K.A., Alam, F.M. (2011). Inhibitory effect of different plant extracts and antifungal metabolites of \textit{Trichoderma} strains on the conidial germination and germ tube growth of \textit{Colletotrichum capsici} causing chilli anthracnose. \textit{International Journal of Agronomy and Agricultural Research} 1(1): 20-28.

Richard, P.S.S., Muthukumar, S.A. (2012). Arborescent angiosperms of Mundanthurai range in the Kalakad-Mundanthurai Tiger Reserve (KMTTR) of the southern Western Ghats, India. \textit{Check List} 8(5): 951-962.

Sarathambal, C., Chourasiya, A., Barman, K.K. (2011). Screening for antipathogenicity of weeds. \textit{Indian Journal of Weed Science} 43 (3and4): 188-191.

Sivu, A.R., Pradeep, N.S., Rameshkumar, K.B., Pandurangan, A.G. (2013). Evaluation of phytochemical, antioxidant and antimicrobial activities of \textit{Memecylon} L. species from Western Ghats. \textit{Indian Journal of Natural Products and Resources} 4(4): 363-370.

Sundaramoorthy, S., Usharani, S., George, A.P. (2014). Antifungal activity of plant products for the management of fruit rot infection in chillies. \textit{Plant pathology} Journal 13(2): 87-99.

Susheela, K. (2012). Evaluation of screening methods for anthracnose disease in chilli. \textit{Pest Management in Horticultural Ecosystems} 18(2): 188-193.

Vivek, M.N., Kambar, Y., Manasa, M., Pallavi, S., Kekuda, P.T.R. (2013). Bio control potential of \textit{Pimenta dioica} and \textit{Anacardium occidentale} against \textit{Fusarium oxysporum f. sp. zingiberi}. \textit{Journal of Biological and Scientific Opinion} 1(3): 193-195.