Ab initio investigation of the lattice dynamics of fluoride scheelite LiYF₄

Benoit Minisini, Qiuping A Wang and François Tsobnang

Institut Supérieur des Matières et Mécaniques Avancées du Mans, 44 Avenue Bartholdi, 72000 Le Mans, France
E-mail: bminisini@ismans.univ-lemans.fr

Received 14 April 2005, in final form 28 June 2005
Published 5 August 2005
Online at stacks.iop.org/JPhysCM/17/4953

Abstract
We report on the phonon dynamics of LiYF₄ obtained by a direct method using density functional theory. The longitudinal optical/transverse optical (LO/TO) splitting was not investigated. First, the equilibrium structure was evaluated via a full relaxation of the structure. Then phonon dispersion curves, velocities of sound, frequencies of Raman and infrared active modes, and density of states were calculated. Moreover, the elastic stiffness coefficients and specific heat capacity were evaluated from these data. The agreement between calculated and experimental frequencies are acceptable since, in general, the discrepancies are within 8%.

1. Introduction
Research on LiYF₄ crystals is strongly linked to laser technology. The first structural data obtained by Thomas et al date from 1961 [1], just one year after the demonstration of the first laser. At ambient pressure, the crystal cell of LiYF₄ is tetragonal with space group I₄₁/ₐ (C₄ᵥh). This phase is commonly named the scheelite structure, in reference to the CaWO₄ crystal. The lithium ions (Li⁺) are in the centre of tetrahedra composed of four fluoride ions (F⁻). The yttrium ions (Y³⁺) are in the centre of polyhedra composed of eight F⁻. Y³⁺ can be substituted by rare earth metals presenting an oxidation state of +3, such as erbium (Er⁺³) [2] or thulium (Tm⁺³) [3], providing a good matrix for an up-conversion laser. The efficiency of this kind of laser relies on intraionic and interionic processes of relaxation that strongly depend on the host matrix [4]. Consequently, a fair knowledge of the structural and dynamics properties of the host matrix is crucial for the development of laser materials.

To this end many studies have been carried out on the subject. Phonon frequencies were measured by Raman and infrared spectra [5–9]. Phonon dispersion curves, essential to a good understanding of the global vibrational properties, were obtained by Salaün et al [10] using inelastic neutron scattering.
Besides experimental work, numerical methods have been applied. Among them we can notice empirical methods, such as rigid ion model (RIM). Using this method, Salaün et al [10] and Sen et al [11] performed lattice dynamical calculations on LiYF₄. However, the correctness and precision of this model are limited by the empirical parameters.

Density functional theory (DFT) is a method free of structure-dependent parameters whose usefulness and predictive ability in different fields [12, 13] have been known for a long time. Recently, the application of DFT to different techniques such as the linear response method [14, 15] or direct methods [16, 17] have allowed the evaluation of phonon dispersion curves. In particular Parlinski et al [18, 19] developed a direct method where the force constant matrices can be evaluated via the Hellmann–Feynman theorem from DFT total energy calculations.

In this work we present a first-principle investigation of LiYF₄ in its scheelite phase. DFT associated with the projector augmented wave (PAW) and a direct method were used. Cell parameters, the phonon dispersion curve, and the phonon density of state (DOS) are discussed and compared with previous experimental or numerical results. Sound velocities were extracted from acoustic branches and used to evaluate the elastic constants. To our knowledge, this is the first *ab initio* calculation of LiYF₄ lattice dynamics.

2. Methodology

All calculations were carried out with the VASP [20] code, based on DFT [21, 22], as implemented within MEDEA¹ interface. Here the generalized gradient approximation (GGA) through the Perdew Wang 91 (PW91) [23] functional and projector augmented wave (PAW) [24] were employed for all calculations.

The initial model was built from experimental results obtained by Garcia and Ryan [25]. Then, the crystal structure was fully optimized without constraints imposed by the space group symmetry at 0 GPa until the maximum force acting on each atom dropped below 0.002 eV Å⁻¹. The self-consistent field (SCF) convergence criterion was set at 10⁻⁶ eV. High-precision calculations, as defined in VASP terminology, were performed with a basis set of plane waves truncated at a kinetic energy of 700 eV. The Pulay stress [26] obtained on the unit cell was −4 MPa and the convergence of the total energy was within 0.4 meV/atom, compared to an energy of 750 eV. Brillouin zone integrations were performed by using a 3 × 3 × 3k-points Monkhorst–Pack [27] grid leading to a convergence of the total energy within 0.1 meV/cell, compared to a 7 × 7 × 3 k-point mesh.

PHONON code [17], based on the harmonic approximation, as implemented within MEDEA (see footnote 1) was used to calculate the phonon dispersion. From the optimized crystal structure, a 2 × 2 × 1 supercell, consisting of 96 atoms, was generated from the conventional cell to account for an interaction range of about 10 Å. The asymmetric atoms were displaced by ±0.03 Å leading to 14 new structures. The dynamical matrix was obtained from the forces calculated via the Hellmann–Feynman theorem. Γ point and medium precision, as defined in VASP terminology, were used for these calculations. The error on the force can perturb the translational and the rotational invariance conditions. Consequently, this condition has to be enforced. The strength of enforcement of the translational invariance condition was fixed at 0.1 during the derivation of all force constants. The longitudinal optical (LO) and transverse optical mode (TO) splitting was not investigated in this work. Consequently, only TO modes at the Γ point were obtained.

¹ Materials Design Angel Fire NM.
Table 1. Comparison between calculated at 0 K, experimental, and previously calculated structural parameters of the scheelite LiYF₄ structure.

	Experimental results	Numerical results						
	Our work	Ref. [29]	Ref. [30]	Ref. [31]	Ref. [32]⁴	Ref. [32]⁵	Ref. [33]⁶	Ref. [11]⁷
a, b (Å)	5.23	5.171	5.16	5.26	5.2	5.08	5.14	5.12
c (Å)	10.82	10.748	10.74	10.94	10.85	10.54	10.82	10.67
c/a	2.07	2.08	2.08	2.08	2.09	2.07	2.11	2.08
Density (Mg m⁻³)	3.86	3.98	4.00	3.78	3.89	4.20	4.00	4.09

⁺ DFT/PAW/GGA.
⁻ DFT/PAW/LDA.
⁶ DFT/OLCAO/LDA.
⁷ RIM.

3. Results and discussion

3.1. Structural parameters

Table 1 shows calculated and previous experimental or numerical structural properties of LiYF₄. Compared to the most recent experimental data [29, 30], our calculated volume is overestimated. Nevertheless, the c/a axial ratio, whose evolution is significant in the pressure-induced transition phase, is close to experimental results.

DFT results are strongly dependent on the approximation of the exchange correlation term. It is known that the local density approximation (LDA) favours high electron densities, resulting in the prediction of short bonds and hence low equilibrium volume. Results obtained by Li et al [32] and Ching et al [33] using the LDA illustrate this behaviour. The GGA corrects and sometimes over-corrects the failures of the LDA. That is why the cell parameters obtained using PW91 differ from experimental results. At least two reasons explain why our results are at variance with those of Li et al [32]. The first is due to the utilization of different parameters such as the energy cut-off. The other can be attributed to the difference of method to evaluate the equilibrium volume. Indeed, during a structure optimization the convergence criterion is set on the stress. Consequently, the lattice constants are obtained from a cell at its minimum of stress. But a minimum of stress does not mean a minimum of energy. Lattice constants from a cell at its minimum of energy, as performed by Li et al [32], are derived through fitting of an energy versus volume curve.

The conventional cell contains 16 fluorine (18.99 g mol⁻¹), 4 lithium (7.01 g mol⁻¹) and 4 yttrium (88.90 g mol⁻¹) atoms. Consequently we obtained a density of 3.86 Mg m⁻³, which is about 3% lower than the density evaluated from the cell parameters obtained by x-ray diffraction. We can notice that Blanchfield and Saunders [28] measured a floatation density of 3.98 Mg m⁻³. Bond lengths are presented in table 2. As a result of GGA overcorrection, they are 3% longer than the experimental distances.

3.2. Lattice dynamic

The phonon dispersion curves along several lines of high symmetry for the LiYF₄ structure at zero pressure are shown in figure 1. The agreement with experimental data seems acceptable. The main difference concerns the transverse acoustic modes in the GX direction. As observed from the RIM calculations [10, 11], a splitting of the longitudinal acoustic branches occurred along the GX direction. This splitting is absent from inelastic neutron
Figure 1. Calculated phonon dispersion (solid line) curves of scheelite LiYF₄. Experimental neutron scattering data [11] are denoted by circles. The path is defined in the direction of the quadratic Brillouin zone. The labels are adapted to the symmetry of the active structure. Z(1/21/2−1/2), G = Γ(000), X(001/2), P(1/41/41/4), N(00.50).

Table 2. Comparison between experimental and calculated interatomic distances.

Distance (Å)	Experimental results	Our work	Ref. [29]	Ref. [30]	Ref. [31]
Li–F	1.92	1.89	1.89	1.73	
Y–F	2.26	2.24	2.24	2.4	
Y–F	2.32	2.29	2.29	2.45	
F–F	2.62	2.60	2.59	2.71	
F–F	2.78	2.75	2.74	2.83	
F–F	2.78	2.76	2.76	2.84	
F–F	2.86	2.82	2.83	3.03	
Li–F	2.93	2.9	2.89	2.96	
F–F	2.98	2.95	2.95	3.06	

Velocity of sound along different directions of propagation have been evaluated from the slopes of acoustic branches. Our results at 0 K and experimental ultrasonic velocities at 4.2 K are given in table 3. The difference between calculated and measured velocities lies within 8% for 10 velocities out of 11. However, 20% of the discrepancy is obtained for transverse acoustic branches in the [0 2⁻¹/₂ 2⁻¹/₂] direction.

As regards the phonon modes, the spectrum contains 36 phonon modes at the G point as expected from the number of atoms per primitive cell. From group theoretical considerations, the irreducible representation for the zone centre modes of C₄ᵥ is given by

\[\Gamma: 3A_g \oplus 5B_g \oplus 5E_g \oplus 5A_u \oplus 3B_u \oplus 5E_u \]

E modes are doubly degenerate, A_g, B_g and E_g modes are Raman active. Four A_u, and four E_u modes are infrared active. One A_u, one E_u and three B_u modes are inactive.
The Raman active mode frequencies are presented in Table 4. First of all, it should be noticed this calculation was performed at 0 K. The thermal error is not supposed to be very important since, from the results obtained by Raman spectroscopy at 300 and 4.2 K [7], the variation did not exceed 12 cm\(^{-1}\). In general, our calculated frequencies are lower than the experimental results. However, the variation does not exceed 21 cm\(^{-1}\) for 10 out of 13 frequencies. The three frequencies showing the highest discrepancy belong to \(B_g\) modes with a difference of about 30 cm\(^{-1}\). For the first two modes this difference does not induce a change in the classification. But for the last \(B_g\) mode, we can notice a permutation with the fourth \(E_g\) mode. This permutation is visible on phonon dispersion curves obtained by Salaün et al [10] with the RIM and 11 fitting parameters. But it is absent in the results of Sen et al [11] using five variable parameters, showing the dependency of results on the number of variable parameters. The vibration modes are presented in Figure 2. The \(B_g\) mode calculated at 347 cm\(^{-1}\) (the experimental value is 379 cm\(^{-1}\) [10]) is mainly due to the translation of the lithium atoms in the direction of the \(c\)-axis. This movement induces a translation of the fluorine atoms along the direction bridging yttrium and fluorine atoms. The \(E_g\) mode calculated at 356 cm\(^{-1}\) (the experimental value is 373 cm\(^{-1}\) [10]) is mainly due to rotation of the lithium atoms around the \(c\)-axis. These two mode-dependent movements agree with the symmetry-adapted motions deduced from group theory analysis [5, 6]. We can also notice that the experimental difference between these modes is 6 cm\(^{-1}\), which is very close to the error described by Miller et al [6]. It is interesting to notice that the first \(E_g\) phonon mode is difficult to measure experimentally because of the polarization effect. This frequency is easily extracted from our results at 149 cm\(^{-1}\) (the experimental value is 154 cm\(^{-1}\) [5, 8]).

Table 3. Sound velocities in characteristic directions of the propagation vector in the reciprocal lattice.

Direction of propagation vector	Sound velocities (m s\(^{-1}\))	Relationships between velocity and elastic constants		
	Branches	Calc.	Exp. [28]	\(\rho v_f^2 = C_{ij}\)
[1 0 0]	v\(_1\)	3191	3210	\(\frac{1}{2} (C_{11} + C_{66}) + \sqrt{(C_{11} - C_{66})^2 + 4C_{16}^2}\)
	v\(_2\)	5673	5510	\(\frac{1}{2} (C_{11} + C_{66}) - \sqrt{(C_{11} - C_{66})^2 + 4C_{16}^2}\)
[0 0 1]	v\(_4\)	6319	6240	\(C_{13}\)
[2\(^{-1/2}\) 2\(^{-1/2}\) 0]	v\(_5\)	5230	5230	\(\frac{1}{2} (C_{11} + C_{66}) + \sqrt{(C_{12} + C_{66})^2 + 4C_{16}^2}\)
	v\(_6\)	2853	2700	\(\frac{1}{2} (C_{11} + C_{66}) - \sqrt{(C_{12} + C_{66})^2 + 4C_{16}^2}\)
[0 2\(^{-1/2}\) 2\(^{-1/2}\)]	v\(_7\)	5569	5840	\(\rho (v_f^2 + v_f^2 + v_f^2) = \frac{1}{2} (C_{11} + C_{66} + C_{33} + 3C_{44})\)
	v\(_8\)	3577	3320	\(\rho (v_f^2 + v_f^2 + v_f^2) = \frac{1}{2} (C_{11} + C_{66} + C_{33} + 2C_{44})\)
	v\(_9\)	2219	2770	\(\rho (v_f^2 + v_f^2 + v_f^2) = \frac{1}{2} (C_{11} + C_{66} + C_{33} + 2C_{13})\)
[0.5 3\(^{1/2}\)/2 0]	v\(_{10}\)	5655	5460	\(\rho v_{T_1}^2 = \frac{1}{2} (C_{11} + C_{66})\)
Transverse v\(_{11}\)	2219	2210	\(\rho v_{T_1}^2 = \frac{1}{2} (C_{11} + C_{66})\)	

\(\rho\) is the density in g cm\(^{-3}\).
Figure 2. Schematic diagrams of corresponding atomic displacements for the B_g and E_g Raman active modes respectively at 347 and 356 cm$^{-1}$. Y atoms are represented as black balls, Li atoms are dark grey and F atoms are light grey. The curved arrow means rotation around the c-axis.

Table 4. Frequencies of Raman active phonons of scheelite LiYF$_4$.

Phonon symmetry	Experimental results	Numerical resultsa							
	Our work	Ref. [10]b	Ref. [8]b	Ref. [5]c	Ref. [7]c	Ref. [6]c	Ref. [9]c	Ref. [10]	Ref. [11]
A_g	145	151	151	151	151	149	151	149	151
	244	265	265	269	264	261	239	250	250
	416	427	426	426	425	422	419	442	442
B_g	170	174	173	177	177	167	188	174	174
	213	246	246	251	248	241	258	268	268
	314	327	326	331	329	323	319	297	297
	347	379	379	382	382	375	369	391	391
	398	427	426	430	427	423	423	428	428
E_g	149	154	154	158	153	149	152	153	153
	188	199	198	203	199	193	212	207	207
	306	326	326	329	329	322	312	318	318
	356	373	372	376	368	369	378	380	380
	448	447	446	450	446	442	448	449	449

a RIM.

b Inelastic neutron scattering.

c Raman.

As regards the infrared active modes, as LiYF$_4$ is a weak polar crystal, LO/TO mode splitting is experimentally observed. In our calculation LO/TO mode splitting was not taken into account. Consequently, only infrared TO modes are presented in table 5. From the experimental results obtained at 300 and 77 K [5], it seems that the effect of the temperature induces a small variation; the disparity did not exceed 6 cm$^{-1}$. In our results obtained at 0 K, four frequencies out of eight are quite close to experimental results obtained by neutron scattering [10]. The difference lies within 3 cm$^{-1}$. For the other modes the largest discrepancy is 25 cm$^{-1}$. Three calculated infrared active frequencies are higher than the experimental one, which is more complicated than the situation of Raman modes mentioned above.

Finally, focusing on the classification of the phonon symmetry as a function of their frequencies, we can notice only one permutation below 360 cm$^{-1}$ in comparison with
experimentalfrequencies. Above 360 cm\(^{-1}\) in addition of the inversion between the
\(E_g\) and \(B_g\) modes described previously, inversions between Raman and infrared active mode
were observed. The first concerns the intercalation of the \(B_g\) between the two last \(A_g\) modes
compare to experimental results. The second concerns the \(E_u\) mode whose frequency is higher
than the last \(E_g\) and \(B_g\). Nevertheless, the agreement between calculated and experimental
data is better than with the RIM calculation.

The phonon density of states \(g(\omega)\) and partial density of states providing the frequency dis-
tribution of normal modes are given in figure 3. As expected from the mass of the different con-
stituents, the density of states (DOS) can be divided into two parts. Y vibrations are dominant
between 0 and 250 cm\(^{-1}\) and vanish after 417.5 cm\(^{-1}\). We can see that in general there is no preferred direction. An exception can be found around 216 cm\(^{-1}\) where the movement along the \(c\)-axis is privileged. Li vibrations begin at 167 cm\(^{-1}\) and are dominant between 250 and 500 cm\(^{-1}\). In the range from 250 to 417.5 cm\(^{-1}\), except between 300 and 350 cm\(^{-1}\) where no direction was preferred, the vibrations are along the \(c\)-axis whereas from 417.5 to 500 cm\(^{-1}\) movement is in the \(ab\) plane. We can notice that F movements lie between 0 and 500 cm\(^{-1}\), implying that they are first correlated with Y and then with Li. Movement implying the three different atom types are situated between 167 and 417.5 cm\(^{-1}\). Compared to the DOS obtained by the RIM, an important difference can be noticed above 250 cm\(^{-1}\). The most striking difference concerns the high frequency. Indeed, the DOS calculated in this work stops at 500 cm\(^{-1}\) whereas the DOS calculated with the RIM stops at 550 cm\(^{-1}\), implying Li and F correlated vibrations.

3.3. Thermomechanical properties

Elastic constants were evaluated from sound velocities extracted from the slopes of acoustic
branches in different directions. The relationships between the velocities and elastic constants
used in this study are presented in table 3 (see [28] for a complete discussion about these
relationships). Numerical values of the bulk moduli \((B)\), Young’s moduli \((E)\), shear moduli
\((G)\) and Poisson’s ratio \((\nu)\) evaluated using the Voigt relationships are given in table 6. For the
elastic constants we can notice an error of 69\% for \(C_{16}\) and 16\% for \(C_{12}\), whereas generally
the values lie within 4\%. However, \(C_{16}\) is not used to evaluate the most important mechanical
moduli. That is why an acceptable agreement was found, with a maximum error which does not exceed 4% between calculated and experimental moduli. The bulk modulus is the most extensively studied modulus, providing suitable data for comparison. From fitting with an equation of state, B was evaluated at 80 GPa [34, 35], 94.8 GPa [32] and 69 GPa [36] from experimental, DFT and empirical data respectively. Our result is slightly lower than the experimental one but in better agreement than previous numerical values.

The specific heat capacity at constant volume, C_V, was calculated from the density of states. Within the harmonic approximation, the specific heat capacity at constant pressure, C_P, can be evaluated by the formula

$$C_P = C_V + \beta(T)^2 BVT$$
Ab initio investigation of the lattice dynamics of fluoride scheelite LiYF$_4$

Figure 4. Comparison of specific heat of the LiYF$_4$:RIM results [11] (dashed line) and our DFT results (solid line). The inset details the low-temperature region. (This figure is in colour only in the electronic version)

Table 6. Elastic stiffness constants and mechanical moduli of scheelite LiYF$_4$. (Note: $G = \frac{1}{15}(C_{11} + C_{22} + C_{33} - C_{12} - C_{13} - C_{23}) + \frac{1}{5}(C_{44} + C_{55} + C_{66})$. $B = \frac{1}{9}(C_{11} + C_{22} + C_{33}) + \frac{2}{9}(C_{12} + C_{13} + C_{23})$. $\nu = \frac{(3B - 2G)}{2(3B + G)}$. $E = \frac{(9B + G)}{(3B + G)}$.)

Elongation constants	Calc.	Exp. [28]
C_{11}	121	121
C_{12}	51.4	60.9
C_{13}	52.5	52.6
C_{16}	-13	-7.7
C_{33}	153.6	156
C_{44}	39.2	40.6
C_{66}	18.4	17.7

Modulus		
B bulk (GPa)	79	81
G shear (GPa)	35	35
E Young (GPa)	92	92
ν Poisson	0.305	0.310

where V is the molar volume, $\beta(T)$ the thermal expansion coefficient and B the bulk modulus. Figure 4 represents C_P calculated for an empirical formula of LiYF$_4$ with V obtained after full optimization $V = 44.8$ cm3 mol$^{-1}$. B calculated from the elastic constants obtained from sound velocities extracted from phonon dispersion curves $B = 79$ GPa and $\beta(T)$ was taken to be $\beta(T) = (-4 \times 10^{-5}/T + 1.3/T^2) \sinh^{-2}(149/T)$ [8]. To our knowledge, no experimental data are available for comparison. Compared to the previous numerical study we can notice that our results are slightly higher than values calculated from the RIM.

4. Conclusion

This work presents, to our knowledge, the first ab initio lattice dynamics calculation of fluoride scheelite. As regards the phonon dispersion curves, acceptable agreement with inelastic
neutron scattering data was obtained. Discrepancies between sound velocities calculated from acoustic branches and ultrasonic measurement do not exceed 8% for 10 velocities out of 11. Moreover, at the centre of the Brillouin zone the error on Raman active modes calculated compared to experimental results does not exceed 9%, the largest error being 33 cm$^{-1}$. Important differences between ab initio and RIM calculated DOSs were seen mainly above 500 cm$^{-1}$. Mechanical properties evaluated from calculated sound velocities are in acceptable agreement compared to experimental values.

Acknowledgments

The authors whish to thank the Materials Design team for numerical support. We express special thanks to Laurent Nivanen for his help in numerical analysis. We are grateful to CCI du Mans et de la Sarthe for providing the calculation infrastructure.

References

[1] Thomas R E, Harris L A, Weaver C F, Friedman H A, Insley H and Yakel H A Jr 1961 J. Phys. Chem. 65 1096
[2] Hubert S, Meichenin D, Zhou B W and Auzel F 1991 J. Lumin. 50 7
[3] Shu Q, Ni H and Rand S C 1997 Opt. Lett. 22 123
[4] Burkhalter R, Dohnke I and Halliger J 2001 J. Prog. Cryst. Growth Charact. 42 1
[5] Salaïn S, Fornoni M T, Bulou A, Rousseau M, Simon P and Gesland J Y 1997 Phys. Rev. 1. 1. 9 1. 1 9
[6] Miller S A, Rast H E and Caspers H H 1970 J. Chem. Phys. 52 4172
[7] Schulteiss E, Scharmann A and Schwabe D 1986 Phys. Status Solidi b 138 465
[8] Sarantopoulou E, Raptis Y S, Zouboulis E and Raptis C 1999 Phys. Rev. B 59 4154
[9] Zhang X X, Schulte A and Chai B H T 1994 Solid State Commun. 89 181
[10] Salaïn S, Bulou A, Rousseau M, Hennion B and Gesland J Y 1997 J. Phys.: Condens. Matter 9 6957
[11] Sen A, Chaplot S L and Mittal R 2001 Phys. Rev. B 64 024304
[12] Freeman A J and Wimmer E 1995 Annu. Rev. Mater. Sci. 25 7
[13] Matar S F 2003 Prog. Solid State Chem. 31 239
[14] Baroni S, de Gironcoli S and Giannozzi P 1990 Phys. Rev. Lett. 65 84
[15] Baroni S, Giannozzi P and Testa A 1987 Phys. Rev. Lett. 58 1861
[16] Frank W, Eklöf C and Fähnle M 1995 Phys. Rev. Lett. 1. 1 1. 9 1. 1
[17] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[18] Parlinski K and Parlinski-Wojtan M 2002 Phys. Rev. B 66 064307
[19] Parlinski K 2001 J. Alloys Compounds 328 97
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[22] Kohn W and Sham L J 1965 Phys. Rev. A 140 113
[23] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Francis G P and Payne M C 1990 J. Phys.: Condens. Matter 2 4395
[27] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28] Blanchfield P and Saunders G A 1979 J. Phys. C: Solid State Phys. 12 4673
[29] Khajdukov N M, Goryunov A V, Fedorov P P and Popov A I 1992 Mater. Res. Bull. 27 213
[30] García E and Ryan R R 1993 Acta Crystallogr. C 49 2053
[31] Thomas R E, Harris L A, Weaver C F, Friedman H A, Insley H and Yakel H A Jr 1961 J. Phys. Chem. 65 1096
[32] Li S, Ahuja R and Johansson B 2004 J. Phys.: Condens. Matter 16 5983–8
[33] Ching W Y and Xu Y N 2001 Phys. Rev. B 63 115101
[34] Blanchfield P, Saunders G A and Hailing T 1982 J. Phys. C: Solid State Phys. 15 2081
[35] Grzechnik A, Syassen K, Loa I, Hanfland M and Gesland J Y 2002 Phys. Rev. B 65 104102
[36] Sen A, Chaplot L S and Mittal R 2002 J. Phys.: Condens. Matter 14 975