Estimation Methods with Ordered Covariate Subject to Measurement Error and Missingness in Semi-Ecological Design

by

Hyang-Mi KIM¹* Chul Gyu PARK² Martie van TONGEREN³ Igor BURSTYN⁴

Supplementary Material

EM with Measurement Errors Only:

1) Linear regression

First note that \(\theta = (\theta_1, \theta_2, \theta_3) \) where \(\theta_1 = (\beta_0, \beta_1, \sigma_\theta^2) \), \(\theta_2 = \sigma_\eta^2 \) and \(\theta_3 = (\mu, \sigma_\varepsilon^2) \). The E-Step of the \(r \)th iteration of the EM procedure gives

\[
Q(\theta | \theta^{(i)}) = E_{\theta^{(i)}}[l_c(\theta; Y, W, X) | y, w] = -\frac{1}{2} \left(\sum_{g=1}^{G} n_g \right) \left(\ln \sigma_\eta^2 + \ln \sigma_\theta^2 + \ln \sigma_\varepsilon^2 \right) - \frac{1}{2 \sigma_\varepsilon^2} \sum_{g=1}^{G} \sum_{i=1}^{n_g} E_{\theta^{(i)}}[(Y_{gi} - \beta_0 - \beta_1 X_{gi})^2 | y_{gi}, w_{gi}] - \frac{1}{2 \sigma_\eta^2} \sum_{g=1}^{G} \sum_{i=1}^{n_g} E_{\theta^{(i)}}[(W_{gi} - X_{gi})^2 | y_{gi}, w_{gi}] - \frac{1}{2 \sigma_\theta^2} \sum_{g=1}^{G} \sum_{i=1}^{n_g} E_{\theta^{(i)}}[(X_{gi} - \mu)^2 | y_{gi}, w_{gi}] \tag{1}
\]

In M-Step, we need to maximize \(Q(\theta | \theta^{(i)}) \) under the constraints \(\mu_1 \leq \mu_2 \leq \cdots \leq \mu_G \). For this, note first the conditional variable \((X_{gi}|y_{gi}, w_{gi}) \) follows \(N(m_x(y_{gi}, w_{gi}; \theta), \nu_x(\theta)) \), where

\[
m_x(y_{gi}, w_{gi}; \theta) = \frac{\beta_1 \sigma_\theta^2 \sigma_\varepsilon^2 (y_{gi} - \beta_0) + (\sigma_\theta^2 \sigma_\varepsilon^2) w_{gi} + \sigma_\varepsilon^2 \sigma_\eta^2 \mu_g}{\beta_1^2 \sigma_\theta^2 \sigma_\varepsilon^2 + \sigma_\varepsilon^2 (\sigma_\theta^2 + \sigma_\eta^2)} \quad \text{and} \quad \nu_x(\theta) = \frac{\sigma_\varepsilon^2 \sigma_\theta^2 \sigma_\eta^2}{\beta_1^2 \sigma_\theta^2 \sigma_\varepsilon^2 + \sigma_\varepsilon^2 (\sigma_\theta^2 + \sigma_\eta^2)}.
\]

Let \(\bar{m}_g = \frac{1}{n_g} \sum_{i=1}^{n_g} m_x(y_{gi}, w_{gi}; \theta^{(i)}) \), \(g = 1, \cdots, G \), \(\bar{m} = \frac{1}{\sum_{g=1}^{G} n_g} \sum_{g=1}^{G} n_g \bar{m}_g \), and \(\bar{y} = \frac{1}{\sum_{g=1}^{G} n_g} \sum_{g=1}^{G} \sum_{i=1}^{n_g} y_{gi} \). Then, the solution to this maximization problem can be found and updated as follows:

\[
\hat{\mu}^{(r+1)} = \text{isotonic regression of } (\bar{m}_1, \bar{m}_2, \cdots, \bar{m}_G)' \text{ with weight vector } (n_1, n_2, \cdots, n_G)',
\]

*Corresponding author: hmkim@ucalgary.ca, Office: (403) 220-5691, Fax: (403) 282-5150: Department of Mathematics and Statistics, The University of Calgary, 2500 University Drive N.W. Calgary, Alberta, Canada T2N 1N4
\[\beta_1^{(t+1)} = \frac{\sum_{g=1}^G \sum_{i=1}^{n_g} [m_s(y_{gi}, w_{gi}) - \hat{m}] y_{gi}}{\sum_{g=1}^G \sum_{i=1}^{n_g} [m_s(y_{gi}, w_{gi}; \theta^{(t)}) - \hat{m}]^2}, \]

\[\beta_0^{(t+1)} = \bar{y} - \beta_1^{(t+1)} \bar{m}, \]

\[\sigma_b^2(t+1) = \frac{1}{\sum_{g=1}^G n_g} \sum_{g=1}^G \sum_{i=1}^{n_g} [y_{gi} - \beta_0^{(t+1)} - \beta_1^{(t+1)} m_s(y_{gi}, w_{gi}; \theta^{(t)})]^2 + \nu_x(\theta^{(t)}), \]

\[\sigma^2(t+1) = \frac{1}{\sum_{g=1}^G n_g} \sum_{g=1}^G \sum_{i=1}^{n_g} [y_{gi} - \hat{\beta}_0^{(t+1)} - \hat{\beta}_1^{(t+1)} m_s(y_{gi}, w_{gi}; \theta^{(t)})]^2 + \nu_x(\theta^{(t)}). \]

If we keep updating estimates by this EM algorithm, then \(\theta^{(t)} \) will converge the true MLE of \(\theta \). Note that no Monte Carlo method is necessary for the simple linear case.

2) Logistic regression

Parameters in the logistic regression model are \(\theta_1 = (\beta_0, \beta_1) \), \(\theta_2 = \sigma^2_\eta \) and \(\theta_3 = (\mu, \sigma^2_b) \). As in the simple linear case, \(\sigma^2_\eta \) is assumed to be known. The E step for this model gives

\[Q(\theta|\theta^{(t)}) = E_{\theta^{(t)}}[\ln(\theta; Y, W, X)|y, w] = -\frac{1}{2} \left(\sum_{g=1}^G n_g \ln \sigma^2_\eta + \ln \sigma^2_b \right) + \sum_{g=1}^G \sum_{i=1}^{n_g} \{y_{gi} E_{\theta^{(t)}}[\ln p(X_{gi}; \beta)] y_{gi}, w_{gi} + (1 - y_{gi}) E_{\theta^{(t)}}[\ln(1 - p(X_{gi}; \beta))] y_{gi}, w_{gi} \} \]

\[- \frac{1}{2\sigma^2_\eta} \sum_{g=1}^G \sum_{i=1}^{n_g} E_{\theta^{(t)}}[(W_{gi} - X_{gi})^2] y_{gi}, w_{gi} - \frac{1}{2\sigma^2_b} \sum_{g=1}^G \sum_{i=1}^{n_g} E_{\theta^{(t)}}[(X_{gi} - \mu_b)^2] y_{gi}, w_{gi} \] (2)

In fact, the third term of \(Q(\theta|\theta^{(t)}) \) is constant because \(\sigma^2_\eta \) is known. Since the conditional density of \(X_{gi} \) given \(Y_{gi} = y_{gi} \) and \(W_{gi} = w_{gi} \) is

\[f(x_{gi}|y_{gi}, w_{gi}; \theta) = \frac{p(x_{gi}; \beta)^y [1 - p(x_{gi}; \beta)]^{1-y} h(x_{gi}; w_{gi}, \mu_i, \sigma^2_\eta, \sigma^2_b)}{f(x_{gi}; \beta)^y [1 - p(x_{gi}; \beta)]^{1-y} h(x_{gi}; w_{gi}, \mu_i, \sigma^2_\eta, \sigma^2_b) dx_{gi}}, \]

where \(h(x_{gi}; w_{gi}, \mu_i, \sigma^2_\eta, \sigma^2_b) \) is the p.d.f \(N(\frac{\sigma^2_w y_{gi} + \sigma^2_\eta \mu_i}{\sigma^2_\eta + \sigma^2_b}, \frac{\sigma^2_\eta^2}{\sigma^2_\eta + \sigma^2_b}) \), conditional expectations in \(Q(\theta|\theta^{(t)}) \) do not have closed form of expressions. Thus, a Monte-Carlo EM method is used as is generally the case in many similar situations. The outline of the M-Step in the \((t+1) \)st iteration of the EM algorithm can be described as follows:

Step 1: Set \(\mu^{(t+1)} \) equal to the isotonic regression of \((\hat{m}_1, \cdots, \hat{m}_G) \), with weight vector \((n_1, \cdots, n_G)\), where

\[\hat{m}_g = \frac{1}{n_g} \sum_{i=1}^{n_g} E_{\theta^{(t)}}[X_{gi}|y_{gi}, w_{gi}] \]. Then, compute \(\sigma^2_b^{(t+1)} = \frac{1}{\sum_{g=1}^G n_g} \sum_{g=1}^G \sum_{i=1}^{n_g} E_{\theta^{(t)}}[(X_{gi} - \mu^{(t+1)})^2] y_{gi}, w_{gi} \), similarly.

Step 2: Keeping \(\theta^{(t)} \) in the conditional distribution, apply a usual Newton method to maximize \(Q(\theta|\theta^{(t)}) \) with respect to \(\beta \) until a convergence criterion is satisfied. And set \(\beta^{(t+1)} \) equal to the solution.
It should be noted that the Newton method in Step 2 can be applied simply to the second term in $Q(\theta | \theta^{(t)})$ because all other conditional expectations do not involve β.

EM with Measurement Errors and Missing in Covariate:

1) **Linear regression**

In this case, $Q_1(\theta | \theta^{(t)})$ is the same as (4) while $Q_2(\theta | \theta^{(t)})$ is given by

$$Q_2(\theta | \theta^{(t)}) = \frac{1}{2} \left(\sum_{g=1}^{G} n_g^* \right) \left(\ln \sigma_q^2 + \ln \sigma_b^2 + \ln \sigma_v^2 \right) - \frac{1}{2\sigma_q^2} \sum_{g=1}^{G} \sum_{i=1}^{n_g^*} E_{\theta^{(t)}} [(Y_{gi}^* - \hat{\beta}_0 - \beta_1 X_{gi}^*)^2 | y_{gi}^*]$$

$$- \frac{1}{2\sigma_b^2} \sum_{g=1}^{G} \sum_{i=1}^{n_g^*} E_{\theta^{(t)}} [(W_{gi}^* - X_{gi}^*)^2 | y_{gi}^*] - \frac{1}{2\sigma_v^2} \sum_{g=1}^{G} \sum_{i=1}^{n_g^*} E_{\theta^{(t)}} [(X_{gi}^* - \mu_g)^2 | y_{gi}^*].$$

(3)

Recall first (X_{gi}, y_{gi}, w_{gi}) follows $N(m_x(y_{gi}, w_{gi}; \theta), v_x(\theta))$. Also note that $(X_{gi}^*, W_{gi}^* | y_{gi}^*)$ follows a bivariate normal distribution $BVN(m_x(y_{gi}, w_{gi}; \theta), m_w(y_{gi}, w_{gi}; \theta), \rho_{xw}(\theta), v_x(\theta), v_w(\theta))$ where $m_x(y_{gi}, \theta) = m_w(y_{gi}, \theta) = \frac{\sigma_v^2 \mu_x + \beta_1 \sigma_v^2 (y_{gi} - \beta_0)}{\sigma_v^2 + \beta_1^2 \sigma_v^2}$, $\rho_{xw}(\theta) = \frac{\sigma_v^2 \sigma_w^2}{\sigma_v^2 + \beta_1 \sigma_v^2}$, and $v_x(\theta) = \frac{\sigma_v^2 \sigma_v^2}{\sigma_v^2 + \beta_1 \sigma_v^2}$, and $v_w(\theta) = \frac{\sigma_v^2 \sigma_v^2}{\sigma_v^2 + \beta_1 \sigma_v^2}$.

Similarly to the case without missing, let $\bar{m}_g = \frac{1}{n_g^* + n_g^*} \sum_{i=1}^{n_g^*} [m_x(y_{gi}, w_{gi}; \theta^{(t)}) + m_w(y_{gi}, w_{gi}; \theta^{(t)})]$, $g = 1, \cdots, G$, $\bar{y} = \frac{1}{\sum_{g=1}^{G} (n_g^* + n_g^*)} \sum_{g=1}^{G} \sum_{i=1}^{n_g^*} y_{gi}$, and then, considering (1) and (3), we can establish the EM algorithm that updates estimates as follows:

$$\mu^{(t+1)} = \text{isotonic regression of } (\bar{m}_1, \bar{m}_2, \cdots, \bar{m}_G) \text{ with weight vector } (n_1 + n_1^*, n_2 + n_2^*, \cdots, n_G + n_G^*)',$$

$$\beta_1^{(t+1)} = \frac{\sum_{g=1}^{G} \{ \sum_{i=1}^{n_g^*} [m_x(y_{gi}, w_{gi}; \theta^{(t)}) - \bar{m}] y_{gi} + \sum_{i=1}^{n_g^*} [m_x(y_{gi}, \theta^{(t)}) - \bar{m}] y_{gi}^* \}}{\sum_{g=1}^{G} \{ \sum_{i=1}^{n_g^*} [m_x(y_{gi}, w_{gi}; \theta^{(t)}) - \bar{m}]^2 + \sum_{i=1}^{n_g^*} [m_x(y_{gi}, \theta^{(t)}) - \bar{m}^2] \}},$$

$$\beta_0^{(t+1)} = \bar{y} - \beta_1^{(t+1)} \bar{m}_x,$$

$$\sigma_b^{2(t+1)} = \frac{1}{\sum_{g=1}^{G} (n_g + n_g^*)} \sum_{g=1}^{G} \left\{ \sum_{i=1}^{n_g} \left[m_x(y_{gi}, w_{gi}; \theta^{(t)}) - \mu_x^{(t+1)} \right]^2 + \left[m_x(y_{gi}^*, \theta^{(t)}) - \mu_x^{(t+1)} \right]^2 \right\} + n_g v_x(\theta^{(t)}) + n_g^* v_x^*(\theta^{(t)}),$$

$$\sigma_e^{2(t+1)} = \frac{1}{\sum_{g=1}^{G} (n_g + n_g^*)} \sum_{g=1}^{G} \left\{ \sum_{i=1}^{n_g} \left[y_{gi} - \beta_0^{(t+1)} - \beta_1^{(t+1)} m_x(y_{gi}, w_{gi}; \theta^{(t)}) \right]^2 \right\} + n_g v_x(\theta^{(t)}) + n_g^* v_x^*(\theta^{(t)}).$$

2) **Logistic regression**

Based on observations having missing values in covariate, the second term of $Q(\theta | \theta^{(t)})$ for this model is
expressed as

\[Q_2(\theta|\theta^{(t)}) = -\frac{1}{2} \left(\sum_{g=1}^{G} n_g \right) (\ln \sigma^2_\eta + \ln \sigma^2_\beta) \]

\[+ \sum_{g=1}^{G} \sum_{i=1}^{n_g^*} \left\{ y_{gi}^* E_{\theta^{(0)}} [\ln p(X_{gi}^*; \beta)|y_{gi}^*] + (1 - y_{gi}^*) E_{\theta^{(0)}} [\ln (1 - p(X_{gi}^*; \beta))|y_{gi}^*] \right\} \]

\[- \frac{1}{2\sigma^2_\eta} \sum_{g=1}^{G} \sum_{i=1}^{n_g^*} E_{\theta^{(t)}} [(W_{gi}^* - X_{gi}^*)^2|y_{gi}^*] - \frac{1}{2\sigma^2_\beta} \sum_{g=1}^{G} \sum_{i=1}^{n_g^*} E_{\theta^{(t)}} [(X_{gi}^* - \mu_g^{(t)})^2|y_{gi}^*]. \tag{4} \]

In order to maximize \(Q(\theta|\theta^{(t)}) \), we need a Newton method as a part of each EM procedure. However, our investigations indicate that it does not take too long time to reach a convergence criterion. Considering (2) and (4), the M-Step can be summarized as follows:

Step 1: Set \(\mu^{(t+1)} \) equal to the isotonic regression of \((\bar{m}_1, \cdots, \bar{m}_G)' \) with weight vector \((n_1 + n_1^*, \cdots, n_G + n_G^*)' \), where \(\bar{m}_g = \frac{1}{n_g + n_g^*} \left\{ \sum_{i=1}^{n_g} E_{\theta^{(t)}} [X_{gi}|y_{gi}, w_{gi}] + \sum_{i=1}^{n_g^*} E_{\theta^{(t)}} [X_{gi}^*|y_{gi}^*] \right\} \). Then, compute

\[\sigma^2_\beta^{(t+1)} = \frac{1}{\sum_{g=1}^{G} (n_g + n_g^*)} \left\{ \sum_{g=1}^{G} \sum_{i=1}^{n_g} E_{\theta^{(t)}} [(X_{gi} - \mu^{(t+1)})^2|y_{gi}, w_{gi}] + \sum_{i=1}^{n_g^*} E_{\theta^{(t)}} [(X_{gi}^* - \mu^{(t+1)})^2|y_{gi}^*] \right\}, \text{ similarly.} \]

Step 2: Keeping \(\theta^{(t)} \) in the conditional distributions, plug \(\mu^{(t+1)} \) and \(\sigma^2_\beta^{(t+1)} \) into \(Q(\theta|\theta^{(t)}) \) and apply a usual Newton method to maximize \(Q(\theta|\theta^{(t)}) \) with respect to \(\beta \). Set \(\beta^{(t+1)} \) equal to the solution.

As mentioned earlier, the conditional expectations here do not have closed form of expressions, and thus we rely on a Monte Carlo method to evaluate them.