INTRODUCTION

Ectoparasites such as fleas, ticks, and mites are the source of several important systemic and local diseases and conditions, including direct damage to the skin barrier through parasitic feeding, tissue invasion, and hypersensitivity reactions, in addition to their function as vectors and reservoirs for significant pathogenic microorganisms such as Bartonella, Rickettsia, Borrelia, Anaplasma, Ehrlichia, and Babesia (Breitschwerdt et al., 2010; Dantas-Torres et al., 2012; Durden et al., 2005).

Ectoparasites are an important concern for health status of animals, as well as prevention of zoonotic diseases. A wide array of compounds are currently on the market for treatment of ectoparasites for animals, with various modes of action that target arthropod-specific ligand-gated ion channels and G protein-coupled receptors (Hsu & Martin, 2013; Taylor, 2001). Afoxolaner, fluralaner, sarolaner, and lotilaner are members of isoxazolines, a novel class of insecticide/acaricide with potent inhibitory activity on glutamate- and gamma-aminobutyric acid (GABA)-gated chloride channels in invertebrates, and generally have a high safety margin in vertebrates (Ozoe et al., 2010). These novel ectoparasiticides are currently marketed as oral canine products with FDA-approved labels against fleas, black-legged ticks, American dog ticks, brown dog ticks, and the lone star ticks. Fluralaner is additionally available in topical spot-on form for both dogs and cats. Beyond their FDA-approved usage against common fleas and ticks, all four marketed isoxazoline products have experimentally and clinically demonstrated efficacy in the treatment of mite infestations (Becskei, De Bock, Illambas, Cherni, et al., 2016; Carithers et al., 2016; Six et al., 2016; Snyder et al., 2017; Taenzler et al., 2016).

PHARMACODYNAMICS

2.1 | Mechanism of action

Gamma-aminobutyric acid is the primary inhibitory neurotransmitter within the central nervous system (CNS) of vertebrates (Gassel et al., 2014; Krnjevic, 2004; Krnjević, 2010) and in both the CNS...
and peripheral nervous system of invertebrates (Lunt, 1991). GABA receptors are members of the Cys-loop superfamily linked to chloride channels (Sine & Engel, 2006). They have five transmembrane subunits, each consisting of four transmembrane helices. Current research indicates the helical subunits are the target of isoxazolines, though the precise inhibition site has not yet been identified (Weber et al., 2016). Variation in arrangement and substitution of these subunits is ultimately responsible for the different pharmacological action of the drug targeting the receptor and the degree of safety in the use of a particular isoxazoline in vertebrates. A study utilizing fly and rat models has demonstrated a significant preference of isoxazolines for vertebrate GABA receptors over vertebrates (Gassel et al., 2014). The glutamate-gated chloride channel, a ligand-gated ion channel unique to invertebrates and the target of macrocyclic lactones, is also targeted by isoxazolines to a lesser degree (Gassel et al., 2014). GABA and glutamate exert their actions by stimulating chloride influx on the postsynaptic tissue, causing hyperpolarization, preventing the generation of an action potential. Isoxazolines inhibit this modulatory action by binding to the postsynaptic tissue, preventing chloride influx leading to depolarization/hyperexcitation, paralysis, and death of the parasite (Gassel et al., 2014; Ozoe et al., 2010).

3 | APPROVED USAGE OF ISOXAZOLINES

These isoxazoline ectoparasiticides are currently marketed under the trade names NexGard® (afloxaner, Boehringer Ingelheim), Bravecto® (fluralaner, Merck), Simparica® (sarolaner, Zoetis), and Credelio® (lotilaner, Elanco), as well as combination drugs NexGard Spectra® (afloxaner and milbemycin oxime, Boehringer Ingelheim), Bravecto Plus® (fluralaner and moxidectin, Merck), Simparica Trio® (sarolaner, moxidectin, and pyrantel, Zoetis), and Revolution Plus® (selamectin and sarolaner, Zoetis) (Table 1 and 2). Among the isoxazoline products with single active pharmaceutical ingredient, most products contain drugs formulated as chewable tablets for treatment of fleas and ticks (castor bean tick) in various countries, including black-legged ticks (Ixodes scapularis), American dog ticks (Dermacentor variabilis), brown dog ticks (Rhipicephalus sanguineus), and lone star ticks (Amblyomma americanum) in the USA and Canada (Canada, 2014a, 2014b, 2016, 2017, 2018, 2020b; FDA, 2014, 2018a, 2018b; Six et al., 2016); ornate cow tick (D. reticulatus), castor bean tick (I. ricinus), Hedgehog tick (I. hexagonus), and brown dog tick in Member States of European Union (EU) (EMA, 2013, 2014, 2015a, 2017); Australian paralysis ticks (I. holocyclus), brown dog tick, and Asian longhorned tick (Haemaphysalis longicornia) in Australia (APVMA, 2014, 2015, 2016, 2018a, 2018b, 2018c); and Asian longhorned tick in New Zealand (ACVM, 2014a, 2014b, 2015a, 2016). Other than common tick species, sarolaner has shown additional efficacy against Gulf Coast ticks (Amblyomma maculatum) in dogs (FDA, 2016b). In addition, most isoxazolines with single active substance are approved by EMA for treatment of demodicosis, scabies, and ear mite infestations (Table 1). Fluralaner differs from the other three isoxazolines with prolonged duration up to 12 weeks, which is three times longer than afoxolaner, sarolaner, and lotilaner (FDA, 2014). Fluralaner is also available as a topical solution for both dogs and cats; in cats, it is for the treatment and prevention of fleas and control of black-legged ticks (FDA, 2016a). Lotilaner has been approved by EMA as chewable tablets for treatment of fleas and ticks (castor bean tick) in cats (EMA, 2017). As for other detailed information of approved usage, for example, minimum dose and age of animal, please refer to Tables 1 and 2.

4 | PHARMACOKINETICS

Pharmacokinetic parameters of currently available isoxazolines are summarized in Table 3. Oral isoxazolines have varied bioavailability ranging from 8.4% to 100% with an average plasma half-life of ~2 weeks (Kilp et al., 2014; Letendre et al., 2014; McTier et al., 2016), except for lotilaner that possesses the longest plasma half-life of ~30 days in both dogs and cats (Toutain et al., 2017, 2018). It is interesting to note that, although, lotilaner has the longest plasma half-life among isoxazolines, which leads to a moderate degree of accumulation (Kuntz & Kammanadiminti, 2017). Its recommended oral dosing interval is the same as afoxolaner and sarolaner of 4 weeks (Table 1). Studies of a prolonged dosing interval (for instance, 8–12 weeks) of lotilaner are suggested to explore sustained efficacy longer than one month. Feeding of the target animal plays a critical role in the pharmacokinetics of lotilaner, especially bioavailability, which is decreased from 82% to 24% when administered to fasted dogs, and 100% to 8.4% in fasted cats (Toutain et al., 2017, 2018). Thus, it is strongly recommended to provide wet or dry food with lotilaner for an effective treatment and prevention of fleas and control of ticks. On the contrary, the plasma concentration of afoxolaner does not appear to be affected by food with a high bioavailability of 74% (Letendre et al., 2014). Isoxazolines have a high degree of plasma protein binding (~99.9%), indicating that the clearance is likely largely hepatic rather than renal (Kilp et al., 2014; Letendre et al., 2014; McTier et al., 2016; Toutain et al., 2017, 2018). The average volume of distribution (Vss) has been determined to be ~3 L/kg for afoxolaner (Letendre et al., 2014), fluralaner (Kilp et al., 2014, 2016), and sarolaner (McTier et al., 2016), whereas lotilaner has a higher Vss value of ~6 L/kg, which implies a higher distribution into adipose tissue than other isoxazolines (Toutain et al., 2017, 2018). Besides moderate to high distribution, low clearance rate (0.3% of plasma protein binding) and moderate volume of distribution (~3 L/kg for afoxolaner and sarolaner) are readily absorbed, particularly with food, and have a persistent efficacy.
Drug (trade name, company)	Route of dose (species)	Minimum dose (frequency)	US-approved use against:	EU-approved use against:	Canada-approved use against:	Australia-approved use against:	NZ-approved use against:
Afoxolaner (NexGard®, Boehringer Ingelheim)	Oral chewable (canine)	2.5 mg/kg (once per month)	Flea, black-legged tick, American dog tick, brown dog tick, lone star tick prevention of B. burgdorferi	Flea, ornate cow tick, castor bean tick, Hedgehog tick (Ixodes hexagonus), brown dog tick	Flea, black-legged tick, American dog tick, brown dog tick, lone star tick reduction of B. burgdorferi	Flea, Australian paralysis ticks (I. holocyclus), brown dog tick, Asian longhorned ticks (Haemaphysalis longicornis)	Flea, Asian longhorned ticks (Haemaphysalis longicornis) (ACVM, 2014a)
	8 weeks of age+				(Canada, 2014a)		
	Flea, Asian longhorned ticks						
Fluralaner (Bravecto®, Merck)	Oral chewable (canine)	25 mg/kg (12 weeks)	Dogs: Flea, black-legged tick, American dog tick, brown dog tick, lone star tick (FDA, 2014, 2016a)	Dogs (topical and oral): Flea, ornate cow tick, castor bean tick, American dog tick, brown dog tick	Dogs (oral): Flea, black-legged tick, American dog tick, brown dog tick	Dogs (oral): Flea, Australian paralysis ticks, brown dog tick, Asian longhorned ticks	Dogs (oral): Flea, Asian longhorned ticks
	Topical (canine and feline)	25 mg/kg (12 weeks)	Cats: Flea, black-legged tick, American dog tick, brown dog tick	Cats (topical): Flea, ornate cow tick, castor bean tick, brown dog tick	Cats (oral): Flea, black-legged tick, American dog tick	Cats (oral): Flea, ornate cow tick, castor bean tick, American dog tick	Cats (oral): Flea, Asian longhorned ticks (ACVM, 2016)
	8 weeks to 6 months of age+						
	Cats (topical): Flea, American dog tick, brown dog tick						
Sarolaner (Simparica®, Zoetis)	Oral chewable (canine)	2 mg/kg (once per month or every 5 weeks)	Flea, American dog tick, brown dog tick, lone star tick, Gulf coast tick, black-legged tick (FDA, 2016b)	Flea, ornate cow tick, castor bean tick, Hedgehog tick, brown dog tick	Flea, American dog tick, brown dog tick, lone star tick, Gulf coast tick, black-legged tick (Canada, 2016)	Flea, Australian paralysis ticks, brown dog tick, Asian longhorned ticks	Flea, Asian longhorned ticks
	8 weeks to 6 months of age+						
	Cats: 6 mg/kg (once per month)						
Lotilaner (Credelio®, Elanco)	Oral chewable (canine and feline)	20 mg/kg (once per month)	Dogs: Flea, black-legged tick, American dog tick, brown dog tick, lone star tick (FDA, 2018b)	Dogs: Flea, ornate cow tick, castor bean tick, Hedgehog tick, brown dog tick	Dogs: Flea, American dog tick, brown dog tick, lone star tick (Japan, 2020b)	Dogs: Flea, Australian paralysis ticks, brown dog tick, Asian longhorned ticks	Not approved yet
	8 weeks of age+						

*Effective for 8 weeks.
ECTOPARASITICidal Effects

5.1 | Ticks

Tick infestations have been implicated in the transmission of rickettsial diseases, babesiosis, theileriosis, anaplasmosis, Lyme disease, and ehrlichiosis, along with a number of bacterial, viral, and other pathogens (Breitschwerdt et al., 2010; Dantas-Torres et al., 2012; Durden et al., 2005; Ozoe et al., 2010; Pantchev et al., 2015). Isoxazolines have been approved by the USA and Canada against multiple tick species as indicated above and have been demonstrated to be effective against additional species experimentally (Table 4), a majority of which are also registered as ectoparasiticides for veterinary use in EU, Australia, and New Zealand.

Several efficacy studies have been performed with a number of common tick species (Table 5), including *Dermacentor variabilis* (American dog ticks, all four products), *Ixodes scapularis* (deer ticks, all four products), *Ixodes Ricinus* (Castor bean ticks, all four products), *Amblyomma americanum* (lone star ticks, all four products), *Amblyomma maculatum* (Gulf Coast ticks, sarolaner), and *R. sanguineus* (brown dog ticks, all four products). Variations in efficacy exist among the drugs and the different genera of ticks. While the efficacy within the first 24 h is variable after treatment with the US

Table 2: Approved combination products of isoxazoline ectoparasiticides in the USA, EU, Canada, Australia, and New Zealand

Combination drug (trade name, company)	Approved countries	References
Afoxolaner and milbemycin oxime (NexGard Spectra®, Boehringer Ingelheim) Chewable tablets (canine)	Member state of EU, Canada, Australia, New Zealand	EMA (2015b), Canada (2019a), APVMA (2017), ACVM (2015b)
Fluralaner and moxidectin (Bravecto Plus®, Merck) Topical solution (feline)	US, Member state of EU, Canada, Australia, New Zealand	FDA (2019a), EMA (2018), APVMA (2020a), ACVM (2017)
Sarolaner, moxidectin and pyrantel (Simparica Trio®, Zoetis) Chewable tablets (canine)	US, Member state of EU, Canada, Australia, New Zealand	FDA (2020), EMA (2019), Canada (2020a), APVMA (2020b)
Sarolaner and selamectin (Revolution Plus®, Zoetis) Topical solution (feline)	US, Canada, Australia, New Zealand	FDA (2018c), Canada (2019b), APVMA (2020b)

Table 3: Pharmacokinetic (PK) parameters of currently available isoxazoline ectoparasiticides for dogs and cats

Pharmacokinetics	Drug	Bioavailability	$T_{1/2}$	T_{max}	C_{max}	V_d	Clearance
Afoxolaner: canine systemic	74%	~16 days	2–6 h	2.5 mg/kg PO: ~1.7 µg/ml	$V_{ss} = 2.68$L/kg (1 mg/kg IV)	4.95 ml/h/kg (1 mg/kg IV)	
Fluralaner: canine oral	26% (25 mg/kg PO)	12–15 days	1 day	Fasted: 1.6 µg/ml Fed: 3.4 µg/ml (25 mg/kg PO)	$V_{z} = 3.1$L/kg (12.5 mg/kg IV)	5.8 ml/h/kg (12.5 mg/kg IV)	
Fluralaner: canine topical	~25%	~19 days	25 days	Dose dependent, 25 mg/kg: 0.7 µg/ml 50 mg/kg: 1.7 µg/ml	$V_{z} = 3.1$L/kg (12.5 mg/kg IV)	5.8 ml/h/kg (12.5 mg/kg IV)	
Fluralaner: feline topical	~25%	12 days	6–9 days	Dose dependent, 20 mg/kg: 0.8 µg/ml 40 mg/kg: 1.9 µg/ml	$V_{ss} = 3.5$L/kg (5 mg/kg IV)	9.6 ml/h/kg (5 mg/kg IV)	
Sarolaner: canine systemic	>85%	11–12 days	<24 h	Fasted: 1.1 µg/ml (~2 mg/kg PO)	$V_{ss} = 2.8$L/kg (2 mg/kg IV)	7.2 ml/h/kg (2 mg/kg IV)	
Lotilaner: canine systemic	Fasted: 24.3% Fed: 81.7% (20 mg/kg PO)	~30 days	2–4 h	Fasted: 1.5 µg/ml Fed: 4.0 µg/ml (20 mg/kg PO)	$V_{ss} = 6.45$L/kg (3 mg/kg IV)	7.5 ml/h/kg (3 mg/kg IV)	
Lotilaner: feline systemic	Fasted: 8.4% Fed: 100% (6 mg/kg PO)	~30 days	2–4 h	Fasted: 0.4 µg/ml Fed: 4.0 µg/ml (6 mg/kg PO)	$V_{ss} = 5.37$L/kg (3 mg/kg IV)	5.4 ml/h/kg (3 mg/kg IV)	

Note: For afoxolaner PK: Letendre et al., 2014; Kunkle et al., 2014. For oral fluralaner PK: Klip et al., 2014; Walther, Allan, et al., 2014a. For topical fluralaner PK: Klip et al., 2016. For sarolaner PK: McTier et al., 2016. For canine lotilaner PK: Toutain et al., 2017. For feline lotilaner PK: Toutain et al., 2018.

Abbreviations: C_{max}: maximum plasma concentration; $T_{1/2}$: half-life; T_{max}: time to maximum plasma concentration; V_{d}: volume of distribution; V_{ss}: steady-state volume of distribution; V_{z}: apparent volume of distribution during the terminal phase.
FDA-approved recommended dose, though by 24 h, most isoxazolines have 100% efficacy against common tick species (Halos et al., 2014; Six et al., 2016; Six et al., 2016; Six et al., 2016; Wengenmayer et al., 2014). Despite a 12-week label claim for fluralaner for the action against black-legged ticks, American dog ticks, and brown dog ticks, results of studies suggest the efficacy declines in the last month of the dosing interval (Beugnet et al., 2015a; Ohmes et al., 2015; Vatta et al., 2019; Wengenmayer et al., 2014); care should be taken by veterinarians prescribing the off-label use of isoxazolines to ensure proper coverage based on different geographical areas.

5.2 | Fleas

Commonly used insecticides for the treatment of flea infestations typically possess either a rapid onset of action and/or remain effective long enough to be used as a monthly preventive. Isoxazolines are effective against fleas in 2–4 h and exhibit a prolonged duration of action with efficacy rates >95% by hour 8 following infestation (Cavalleri, Murphy, Gorbea, et al., 2017; Cavalleri et al., 2017a; Kunkle et al., 2014; Six et al., 2016; Taenzler et al., 2014) and >99% throughout the respective dosing intervals (Cavalleri, Murphy, Gorbea, et al., 2017; Cavalleri et al., 2017b; Hunter et al., 2014; McTier et al., 2016; Six et al., 2016; Six et al., 2016). Isoxazolines prevent oviposition (Dryden et al., 2015; Williams et al., 2014) and have larvicidal (Williams et al., 2014) and adulticidal activity (Cavalleri, Murphy, Gorbea, et al., 2017; Cavalleri et al., 2017b; Hunter et al., 2014; Six et al., 2016; Taenzler et al., 2014; Williams et al., 2014). However, with administration of minimum dose of isoxazolines, the primary effect is exerted by rapid onset of adulticidal activity prior to oviposition, as the study of Williams et al was conducted at subinsecticidal concentrations. Isoxazolines are effective in reducing flea infestations within a home environment, a critical aspect of breaking the parasite life cycle (Dryden et al., 2016, 2017, 2018; 2020; Six et al., 2016), and reduce skin lesions associated with flea-allergic dermatitis and pruritus (Dryden et al., 2016, 2017, 2018; 2020). There is evidence that isoxazolines outperform spinosad, an insect nicotinic receptor agonist with significantly higher portion of clinical resolution, some may require prolonged treatment course with high probability of adverse effects (Arsenovic et al., 2015; Saari et al., 2009).

All four isoxazolines have shown efficacy in the treatment of generalized demodicosis (Beugnet, Halos, et al., 2016; Fourie et al., 2015; Six et al., 2016; Snyder et al., 2017), with marked reduction of mites as early as day 14 with the sarolaner treatment (Six et al., 2016). Afoxolaner, fluralaner, and sarolaner have been evaluated against weekly topical application of 2.5 mg/kg moxidectin plus 10 mg/kg imidacloprid (Advocate®), which demonstrated 99% reduction of Demodex in 4 weeks, compared with 90–98% efficacy with topical Advocate® treatment (Beugnet, Halos, et al., 2016; Fourie et al., 2015; Six et al., 2016). Lotilaner treatment also killed mites 99.9% with monthly applications (Snyder et al., 2017). While none of isoxazolines is currently labeled for use against demodicosis in the USA or Canada, they represent an excellent improvement in the field of veterinary dermatology (Zhou et al., 2020).

5.3.2 | Sarcoptes/Notodredes

Sarcoptic mange is caused by Sarcoptes scabiei var. canis in dogs and Notedredes cati in cats. This condition (scabies) is characterized by intense pruritus with or without secondary bacterial infection and pyoderma. Treatment modalities involve topical and oral medications with variable licensing based on individual country. These treatment options include lime–sulfur dips, amitraz dips, and topical dose of macrocyclic lactones (Folz et al., 1984; Malik et al., 2006; Shanks et al., 2000). As with the treatment of demodicosis, these treatment modalities can be risky and cumbersome. All isoxazolines except lotilaner have been studied extensively for the treatment of canine sarcoptic mange (Becskei, De Bock, Illambas, Cherni, et al., 2016; Beugnet, de Vos, et al., 2016; Hyun et al., 2019; Taenzler et al., 2016). Sarolaner has been demonstrated to be extremely effective within 14 days of dose against nymphs, larvae, and adults, with over 99% efficacy compared with the control groups by week 2 and 100% reduction by week 4 (Becskei, De Bock, Illambas, Cherni, et al., 2016). In a field study juxtaposing the efficacy of sarolaner and imidacloprid/moxidectin topical treatments (Advocate®), clear rates were 89% and 100% for sarolaner by days 30 and 60, respectively, and 85% and
6% for imidacloprid/moxidectin combination (Becskei, De Bock, Illambas, Cherni, et al., 2016). Topical and oral fluralaner were evaluated with complete resolution of mite counts, and significant improvement in clinical signs was observed with both dose routes (Taenzler et al., 2016). Compared with sarolaner, the data of the fluralaner study suggest a more rapid resolution of canine sarcoptic mange by achieving 100% efficacy in a month, while sarolaner required 2 months to reach clinical cure with a monthly dosing interval (Taenzler et al., 2016). In addition, a study of six racoon dogs revealed 100% negative skin scraping in 7 days following a single oral dose of fluralaner; parasitological and clinical cure maintained up to 21 days (Hyun et al., 2019). Afoxolaner, given orally on days 0, 14, 28, and 56, appeared to exhibit a slower speed of killing against *Sarcoptes scabiei* in dogs, as it necessitated one more month than sarolaner to obtain 99% efficacy (Beugnet, de Vos, et al., 2016).

To our best knowledge, no research evaluating isoxazolines against the parasite of feline scabies (*Notoedres cati*) has been published.

5.3.3 | Otodectes

Otodectes cynotis, an obligate parasite of the external ear canal, is a common cause of otitis externa, particularly in kittens, with zoonotic potential (Van de Heyning & Thienpont, 1977). Current treatment methods involve topicals, both on- and off-label, and off-label oral moxidectin (0.2 mg/kg oral, twice a day for 10 days) (Six et al., 2016). Oral sarolaner at the recommended dose of 2 mg/kg yields a 98.2% mite reduction by day 28, followed by a 99.5% reduction by day 60 following a second monthly dose (Six et al., 2016). Afoxolaner has similar efficacy with >98% mite reduction by day 28 following a single 2.5 mg/kg oral dose (Carithers et al., 2016). Fluralaner is 100% effective against *O. cynotis* in both dogs and cats by day 28 after treatment in dogs; both oral and topical applications are effective (Taenzler et al., 2017).

5.3.4 | Miscellaneous ectoparasites

In addition to common mites affecting cats and dogs, fluralaner was investigated against *Psoroptes cuniculi* in naturally infested rabbits. *P. cuniculi* is a common ear mite in rabbits, causing otitis externa. Rabbits were treated with a one-time 25 mg/kg oral dose of fluralaner, significant mite reduction was seen by day 4; by day 8, mites were present in only one of the 30 treated rabbits and a marked reduction in ear exudate was also observed (Sheinberg et al., 2017). Fluralaner is 100% effective against *O. cynotis* in both dogs and cats by day 28 after treatment in dogs; both oral and topical applications are effective (Taenzler et al., 2017).

5.3.3 | Otodectes

Otodectes cynotis, an obligate parasite of the external ear canal, is a common cause of otitis externa, particularly in kittens, with zoonotic potential (Van de Heyning & Thienpont, 1977). Current treatment methods involve topicals, both on- and off-label, and off-label oral moxidectin (0.2 mg/kg oral, twice a day for 10 days) (Six et al., 2016). Oral sarolaner at the recommended dose of 2 mg/kg yields a 98.2% mite reduction by day 28, followed by a 99.5% reduction by day 60 following a second monthly dose (Six et al., 2016). Afoxolaner has similar efficacy with >98% mite reduction by day 28 following a single 2.5 mg/kg oral dose (Carithers et al., 2016). Fluralaner is 100% effective against *O. cynotis* in both dogs and cats by day 28 after treatment in dogs; both oral and topical applications are effective (Taenzler et al., 2017).

5.3.4 | Miscellaneous ectoparasites

In addition to common mites affecting cats and dogs, fluralaner was investigated against *Psoroptes cuniculi* in naturally infested rabbits. *P. cuniculi* is a common ear mite in rabbits, causing otitis externa. Rabbits were treated with a one-time 25 mg/kg oral dose of fluralaner, significant mite reduction was seen by day 4; by day 8, mites were present in only one of the 30 treated rabbits and a marked reduction in ear exudate was also observed (Sheinberg et al., 2017). Fluralaner is 100% effective against *O. cynotis* in both dogs and cats by day 28 after treatment in dogs; both oral and topical applications are effective (Taenzler et al., 2017).

Table 4: List of additional tick species with corresponding effective isoxazolines

Tick species	Effective isoxazolines	References					
Dermacentor reticulatus (ornate cow ticks)	Afoxolaner, Fluralaner, Sarolaner, Lotilaner	Becskei, De Bock, Illambas, Cherni, et al. (2016), Beugnet et al. (2014), Cavalleri, Murphy, Gorbea, et al. (2017), Geurden et al. (2016), McTier et al. (2016a), Taenzler et al. (2015), Taenzler et al. (2016)					
Ixodes hexagonus (hedgehog ticks)	Sarolaner	Geurden et al. (2016)					
I. ricinus (Castor bean ticks)	afoxolaner, fluralaner, Sarolaner, Lotilaner	Cavalleri, Murphy, Gorbea, et al. (2017), Dumont et al. (2014), Geurden et al. (2016), Halos et al. (2014), Six et al. (2016), Wengenmayer et al. (2014), Williams et al. (2015)					
I. holocyclus (Australian paralysis ticks)	Fluralaner, Sarolaner, Lotilaner	Baker et al. (2018), Fisara and Webster (2015), Packianathan et al. (2017)					
Ornithodoros moubata (African hut tampans)	Fluralaner	Gassel et al. (2014)					
O. turicata (relapsing fever ticks)	Sarolaner	McTier et al. (2016b)					
Rhipicephalus microplus (cattle ticks)	Fluralaner	Gassel et al. (2014)					
Amblyomma cajennense (Cayenne ticks)	Sarolaner, Lotilaner	Lasmar et al. (2018), Scott et al. (2017)					
Haemaphysalis longicornia (Asian longhorned ticks)	Afoxolaner, Fluralaner, Sarolaner, Lotilaner	Kondo et al. (2014), Oda et al. (2019), Otaki et al. (2018), Toyota et al. (2019)					
Haemaphysalis elliptica (African yellow dog ticks)	Sarolaner	Fourie et al. (2019)					
Tick species	Medication	0–24 h	Day 2–4	Day 28–30	Other	Note	References
--------------------	-----------------------	-----------------------------	-----------------------------	-------------------------	---------------------------------------	---	-----------------------------
Dermacentor variabilis	Afoxolaner: canine oral	100% (2.5 mg/kg PO single dose)	≥97% (2.5 mg/kg PO single dose)	Day 56: 83%	Tick counts 2 days postinfestations	Mitchell et al. (2014)	
	Fluralaner: canine oral	98% (25.1 – 49.4 mg/kg PO single dose)	97% (25.1 – 49.4 mg/kg PO single dose)	Day 84: 9% (25.1 – 49.4 mg/kg PO single dose)	Day 84: 90% Day 90: 78% (35.21 – 43.16 mg/kg PO single dose)	Tick counts 12 hrs. postinfestations	Ohmes et al. (2015)
	Fluralaner: feline oral	100% (35.21 – 43.16 mg/kg PO single dose)	Day 56: 100% Day 84: 90% Day 90: 78%	Tick counts 2 days postinfestations	Vatta et al. (2019)		
	Sarolaner: canine oral	100% (2 mg/kg PO single dose)	>99% (2 mg/kg PO single dose)	Day 35: >99% (2 mg/kg PO single dose)	Tick counts 2 days postinfestations	Six et al. (2016)	
	Lotilaner: canine oral	100% (20 mg/kg PO single dose)	99% (20 mg/kg PO single dose)	Day 37: 98% (20 mg/kg PO single dose)	Tick counts 2 days postinfestations	Murphy et al. (2017)	
Ixodes scapularis	Afoxolaner: canine oral	98% (2.5 mg/kg PO single dose)	94% (2.5 mg/kg PO single dose)	Day 56: 100% Day 84: 90% Day 90: 78% (35.21 – 43.16 mg/kg PO single dose)	Tick counts 2 days postinfestations	Mitchell et al. (2014)	
	Fluralaner: feline topical	100% (35.21 – 43.16 mg/kg PO single dose)		Day 56: 100% Day 84: 90% Day 90: 78% (35.21 – 43.16 mg/kg PO single dose)	Tick counts 2 days postinfestations	Vatta et al. (2019)	
	Sarolaner: canine oral	4 h: 0% 8 h: 57% 12 h: 99% 24 h: 100% (2 mg/kg PO single dose)	4 h: 10% 8 h: 10% 12 h: 62% 24 h: 97% (2 mg/kg PO single dose)	Day 35: 75% (2 mg/kg PO single dose)	Tick counts 24 hrs. postinfestation if not specified.	Six et al. (2016)	
	Lotilaner: canine oral	100% (20 mg/kg PO single dose)	100% (20 mg/kg PO single dose)	Day 37: 99% (20 mg/kg PO single dose)	Tick counts 2 days postinfestations	Murphy et al. (2017)	
Ixodes ricinus	Afoxolaner: canine oral	12 h: 93% 24 h: 100% (2.5 mg/kg PO single dose)	91% (2.5 mg/kg PO single dose)		Tick counts 24 hrs. postinfestations, if not specified.	Halos et al. (2014)	
	Fluralaner: canine oral	4 h: 90% 8 h: 98% 12 h: 100% 24 h: 100% (25 mg/kg PO single dose)	4 h: 33% 8 h: 97% 12 h: 100% 24 h: 100% (25 mg/kg PO single dose)	Day 56: 100% Day 84: 98.1% (25 mg/kg PO single dose)	Tick counts 24 hrs. postinfestation if not specified	Wengenmayer et al. (2014)	

(Continues)
Tick species	Medication	0–24 h	Day 2–4	Day 28–30	Other	Note	References
Sarolaner: canine oral	8 h: 77% 12 h: 90% 24 h: 100% (2.5 mg/kg PO single dose)	8 h: 23% 12 h: 95% 24 h: 99% (2.5 mg/kg PO single dose)	Day 35: 95% (2 mg/kg PO single dose)	Tick counts 24 hrs. postinfestation if not specified	Six et al. (2016)		
Lotilaner: feline oral	100% (6 mg/kg PO single dose)	100% (6 mg/kg PO single dose)	Day 37: >99% (6 mg/kg PO single dose)	Tick counts 2 days postinfestations	Cavalleri, Murphy, Seewald, Drake, et al. (2018)		
Amblyomma americanum	Afoxolaner: canine oral	32% (3.1 – 6.2 mg/kg PO single dose)	40% (3.1 – 6.2 mg/kg PO single dose)	Tick counts 12 hrs. postinfestations	Ohmes et al. (2015)		
Fluralaner: canine oral	97% (25.1 – 49.4 mg/kg PO)	83% (25.1 – 49.4 mg/kg PO)	Tick counts 12 hrs. postinfestations	Ohmes et al. (2015)			
Sarolaner: canine oral	100% (2 mg/kg PO single dose)	100% (2 mg/kg PO single dose)	Day 36% (2 mg/kg PO single dose)	Tick counts 2 days postinfestations	Six et al. (2016)		
Lotilaner: canine oral	100% (20 mg/kg PO single dose)	100% (20 mg/kg PO single dose)	Tick counts 2 days postinfestations	Murphy et al. (2017)			
Amblyomma maculatum	Sarolaner: canine oral	8 h: 90% 12 h: 99% 24 h: 100% (2 mg/kg PO single dose)	100% (2 mg/kg PO single dose)	Day 35: >99% (2 mg/kg PO single dose)	Tick counts 2 days postinfestations	Six et al. (2016)	
R. sanguineus	Afoxolaner: canine oral	Day 56: 98% Day 84: 86% (2.5 mg/kg PO monthly)		Tick counts 24 hrs. postinfestations	Beugnet et al. (2015a)		
Fluralaner: canine topical	91–100% (25 mg/kg topical single dose)	100% (25 mg/kg topical single dose)	Day 58: 99–100% Day 86: 97–100% (25 mg/kg topical single dose)	Tick counts 2 days postinfestations	J. Taenzler et al. (2016)		
Fluralaner: canine oral	100% (25 mg/kg PO single dose)	100% (25 mg/kg PO single dose)	Day 56: 92% Day 84: 72% (25 mg/kg PO single dose)	Tick counts 24 hrs. postinfestations	Beugnet et al. (2015a)		
Sarolaner: canine oral	8 h: 94% 12 h: 100% 24 h: 100% (2–4 mg/kg PO single dose)	8 h: 20% 12 h: 29% 24 h: 98% (2–4 mg/kg PO single dose)	Day 35: 92% (2–4 mg/kg PO single dose)	Tick counts 24 hrs. postinfestation if not specified.	Six et al. (2016)		
Lotilaner: canine oral	100% (20 mg/kg PO single dose)	Day 30:100% (20 mg/kg PO single dose)	Day 37: 100% (20 mg/kg PO single dose)	Tick counts 2 days postinfestations	Murphy et al. (2017)		
potential for additional application of isoxazolines in the treatment of many different ectoparasites (Han et al., 2016). Other ectoparasites that are susceptible to isoxazolines include *Dermanyssus gallinae* (poultry red mites) (Thomas et al., 2017), *Tetranychus urticae* Koch (two-spotted spider mites) (Leviticus et al., 2020), *Phlebotomus perniciosus* (sand flies) (Bongiorno et al., 2020; Perier et al., 2019), *Triatoma infestans* nymphs (kissing bugs) (Laino et al., 2019), canine myiasis (maggots) (Han et al., 2018), and *Caparinia tripilis* (one of the common mites infesting African pygmy hedgehogs) (Romero et al., 2017).

6 | SAFETY

As mentioned earlier, isoxazolines block glutamate-gated chloride channels, which exist in invertebrates, but not vertebrates (Gassel et al., 2014). In addition, isoxazolines selectively block invertebrate GABA-gated chloride channels. These modes of action of isoxazolines account for their high margin of safety for use in veterinary species (Gassel et al., 2014). Safety studies have been performed for all four isoxazoline compounds at a minimum of five times the recommended doses with no apparent adverse effects, except neurological effects observed (Drag et al., 2014; Kuntz & Kammanadiminti, 2017, 2018; McTier et al., 2016; Walther, Allan, et al., 2014b). Prescription of isoxazolines should be determined in combination with patient medical histories on an individual basis (FDA, 2019).

A recent survey conducted in the USA revealed high occurrence of neurological adverse effects on dogs using isoxazolines (13.7% seizures, 15.9% ataxia, and 16.7% shaking as overall rates for afoxolaner, fluralaner, and sarolaner) (Palmieri et al., 2020). However, this survey might be non-representative and biased due to potential disadvantages of online electronic questionnaire and owner-observed reactions that may or may not be associated with isoxazoline use, caution should be taken when considering this article as a reference for isoxazoline safety. Limited safety studies

TABLE 6	Efficacy of 2 flea species after treatment with an isoxazoline					
Flea species	**Medication**	**0–24 h**	**28–30 Days**	**35+ days**	**Other**	**References**
C. felis	Afoxolaner: canine oral	6 h: 63% 12 h: 94% 24 h:100% (2.5 mg/kg PO monthly)	Flea counts 24 hrs. postinfestations if not specified		Beugnet et al. (2015)	
	Fluralaner: canine oral	2 h: 37% 4 h: 81% 8 h:100% 24: 100% (25 mg/kg PO single dose)	Day 84 4 h:33% 8 h:98% 12 h:99% 24 h:100% (25 mg/kg PO single dose)		Taenzler et al. (2014)	
	Fluralaner: feline topical	100%(40 mg/kg topical single dose)	Day 84: 100% (40 mg/kg topical dose)		Bosco et al. (2019)	
	Sarolaner: canine oral	2 h: 0% 4 h: 86% 8 h: 100% 12 h: 100% (2 mg/kg topical single dose)	Day 35: 100% (2 mg/kg topical single dose)	Flea counts 12 hrs. postinfestations if not specified	Six et al. (2016)	
	Lotilaner: feline oral	100% (6 mg/kg PO single dose)	Day 35: 100% (6 mg/kg PO single dose) (Cavalleri, Murphy, Seewald, Drake, et al., 2018; Cavalleri et al., 2018a)	Flea counts 24 hrs. postinfestations if not specified	Cavalleri et al., 2018a	
C. canis	Afoxolaner: canine oral	12 h: 100% 24 h: 100% (2.5 mg/kg PO single dose)	Day 35: 99% (2.5 mg/kg PO single dose)	Flea counts 24 hrs. postinfestations if not specified	Dumont et al. (2014)	
	Sarolaner: canine oral	24 h: 100% (2 mg/kg PO single dose)	Day 35: 100% (2 mg/kg PO single dose)	Flea counts 24 hrs. postinfestations if not specified	Six et al. (2016)	
have shown that isoxazolines are safe in cats (Cavalleri, Murphy, Seewald, Drake, et al., 2018; Cavalleri et al., 2018b; Kuntz & Kamnanadiminti, 2018) and MDR1-/- collies (Walther et al., 2014). Safety in puppies or kittens on afoxolaner, fluralaner, and lotilaner was confirmed with oral or topical dose at 1, 3, or 5X the maximum FDA-approved dose, while mild and self-limiting ataxia and tremors with seizures were observed in 8-week-old puppies treated at elevated doses (3X and 5X the maximum FDA-approved dose) (Table 7; FDA, 2014, 2016a, 2016b, 2018a, 2018b). Limited theriogenological data revealed that isoxazoline treatments have no notable impact on reproductive status or semen analysis, but may lead to limb deformity, enlarged heart and spleen, and cleft palate of new-born puppies (FDA, 2014). It is our opinion that veterinarians should be cautious when prescribing isoxazolines in pregnant and lactating bitches until further safety studies have been conducted.

7 | CONCLUSIONS

Isoxazolines are a novel class of ectoparasiticide that has unique characteristics of rapid absorption, prolonged duration, and broad spectrum activity against fleas/insects, ticks, and mites. The advent of isoxazolines may replace the conventional treatment of demodicosis and sarcoptic mange, due to their high efficacy with rapid resolution and few adverse effects. However, caution should be taken for animals with seizures or other neurological disorders (cerebellar ataxia, central vestibular signs, etc.) before prescribing an isoxazoline ectoparasiticide, as it might enhance the occurrence of neurological disturbances.

ANIMAL WELFARE STATEMENTS

No animals were used in this investigation.

REFERENCES

ACVM (2014a). Nexgard registration details. https://eatsafe.nzfsa.govt.nz/web/public/acvm-register. Retrieved November 30, 2020.
ACVM (2014b). Bravecto chewable tablets registration details. https://eatsafe.nzfsa.govt.nz/web/public/acvm-register. Retrieved November 30, 2020.
ACVM (2015). Simparica registration details. https://eatsafe.nzfsa.govt.nz/web/public/acvm-register. Retrieved November 30, 2020.
ACVM (2015). Nexgard Spectra registration details. https://eatsafe.nzfsa.govt.nz/web/public/acvm-register. Retrieved November 30, 2020.
ACVM (2016). Bravecto topical solution registration details. https://eatsafe.nzfsa.govt.nz/web/public/acvm-register. Retrieved November 30, 2020.
ACVM (2017). Bravecto Plus registration details. https://eatsafe.nzfsa.govt.nz/web/public/acvm-register. Retrieved November 30, 2020.
ACVM (2018). Revolution Plus registration details. 2020 https://eatsafe.nzfsa.govt.nz/web/public/acvm-register. Retrieved November 30, 2020.
APVMA (2014). Nexgard product information. http://websvr.infop est.com.au/LabelRouter?LabelType=L&Mode=1&ProductCode=67942. Retrieved November 30, 2020.
APVMA (2015). Bravecto chewable tablet product information. http://websvr.infop est.com.au/LabelRouter?LabelType=L&Mode=1&ProductCode=68867. Retrieved November 30, 2020.
APVMA (2016). Simparica product information. http://websvr.infop est.com.au/LabelRouter?LabelType=L&Mode=1&ProductCode=80951. Retrieved November 30, 2020
APVMA (2017). NexGard Spectra product information. http://websvr.infop est.com.au/LabelRouter?LabelType=L&Mode=1&ProductCode=81051. Retrieved November 30, 2020.
APVMA (2018a). Bravecto topical solution(dogs) product information. http://websvr.infop est.com.au/LabelRouter?LabelType=L&Mode=1&ProductCode=82796. Retrieved November 30, 2020.
isoxazoline ectoparasiticide for dogs. Veterinary Parasitology, 222, 3–11. https://doi.org/10.1016/j.vetpar.2016.02.019.

Dantas-Torres, F., Chomel, B. B., & Otranto, D. (2012). Ticks and tick-borne diseases: A One Health perspective. Trends in Parasitology, 28, 437–446. https://doi.org/10.1016/j.pt.2012.07.003.

Drag, M., Saik, J., Harriman, J., & Larsen, D. (2014). Safety evaluation of orally administered afoxolaner in 8-week-old dogs. Veterinary Parasitology, 201, 198–203. https://doi.org/10.1016/j.vetpar.2014.02.022.

Dryden, M. W., Canfield, M. S., Bocon, C. et al (2018). In-home assessment of either topical fluralaner or topical selamectin for flea control in naturally infested cats in West Central Florida, USA. Parasites & Vectors, 11, 422. https://doi.org/10.1186/s13071-018-2995-1.

Dryden, M. W., Canfield, M. S., Kalosy, K., Smith, A., Crevoiserat, L., McGrady, J. C., Foley, K. M., Green, K., Tebaldi, C., Smith, V., Bennett, T., Heaney, K., Math, L., Royal, C., & Sun, F. (2016). Evaluation of fluralaner and afoxolaner treatments to control flea populations, reduce pruritus and minimize dermatologic lesions in naturally infested dogs in private residences in west central Florida USA. Parasites & Vectors, 9, 365. https://doi.org/10.1186/s13071-016-1654-7.

Dryden, M. W., Canfield, M. S., Niedfeldt, E., Kinnon, A., Kalosy, K., Smith, A., Foley, K. M., Smith, V., Bress, T. S., Smith, N., Endrizzi, M., & Login, J. (2017). Evaluation of selanoterol and spinosad oral treatments to eliminate fleas, reduce dermatologic lesions and minimize pruritus in naturally infested dogs in west Central Florida, USA. Parasites & Vectors, 10, 389. https://doi.org/10.1186/s13071-017-2328-9.

Dryden, M., Herrin, B., Canfield, M., Burke, M., Ryan, K., Sutherland, C. et al (2020). Evaluation of a topical sarolaner-selamectin combination to control flea populations on naturally infested cats in private residences in West Central Florida. Veterinary Parasitology, 283, https://doi.org/10.1016/j.vetpar.2020.109172.

Dryden, M. W., Smith, V., Bennett, T., Math, L., Kallman, J., Heaney, K., & Sun, F. (2015). Efficacy of fluralaner flavored chews (Bravecto) administered to dogs against the adult cat flea, Ctenocephalides felis felis and egg production. Parasites & Vectors, 8, 364. https://doi.org/10.1186/s13071-015-0965-4.

Dumont, P., Blair, J., Fourie, J. J., Chester, T. S., & Larsen, D. L. (2014). Evaluation of the efficacy of afoxolaner against two European dog tick species: Dermacentor reticulatus and Ixodes ricinus. Veterinary Parasitology, 201, 216–219. https://doi.org/10.1016/j.vetpar.2014.02.017.

Dumont, P., Gale, B., Chester, T. S., & Larsen, D. L. (2014). Curative and preventive efficacy of orally administered afoxolaner against Ctenocephalides canis infestation in dogs. Veterinary Parasitology, 201, 212–215. https://doi.org/10.1016/j.vetpar.2014.02.014.

Durden, L. A., Judy, T. N., Martin, J. E., & Speeding, L. S. (2005). Fleas parasitizing domestic dogs in Georgia, USA: Species composition and seasonal abundance. Veterinary Parasitology, 130, 157–162. https://doi.org/10.1016/j.vetpar.2005.03.016.

EMA (2013). Nexgard product information. https://www.ema.europa.eu/en/documents/product-information/nexgard-epar-product-information_en.pdf. Retrieved March 19, 2020.

EMA (2014). Bravecto product information. https://www.ema.europa.eu/en/documents/product-information/bravecto-epar-product-information_en.pdf. Retrieved March 19, 2020.

EMA (2015a). Simparica product information. https://www.ema.europa.eu/en/documents/product-information/simparica-epar-product-information_en.pdf. Retrieved March 19, 2020.

EMA (2015b). Nexgard Spectra product information. https://www.ema.europa.eu/en/documents/product-information/nexgard-spectra-epar-product-information_en.pdf. Retrieved November 30, 2020.

EMA (2017). Credelio product information. https://www.ema.europa.eu/en/documents/product-information/credelio-epar-product-information_en.pdf. Retrieved March 19, 2020.

EMA (2018). Bravecto Plus product information. https://www.ema.europa.eu/en/documents/product-information/bravecto-plus-epar-product-information_en.pdf. Retrieved November 30, 2020.

EMA (2019). Simparica Trio product information. https://www.ema.europa.eu/en/documents/product-information/simparica-trio-epar-product-information_en.pdf. Retrieved November 30, 2020.

FDA (2014). Corrected Freedom of Information Summary, original new animal drug application NADA 141–426, Bravecto (fluralaner Chewable Tablets, dogs). https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/1502. Retrieved March 19, 2020.

FDA (2016a). Corrected Freedom of Information Summary, original new animal drug application NADA 141–459, Bravecto (fluralaner topical solution, dogs and cats). https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/945. Retrieved March 19 2020.

FDA (2016b). Freedom of Information Summary, original new animal drug application NADA 141–452, Simparica (sarolaner chewable tablet, dogs). https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/940. Retrieved November 28, 2020.

FDA (2018a). Freedom of Information Summary, original new animal drug application NADA 141–406, Nexgard (afoxolaner chewable tablet, dogs). https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/3811.

FDA (2018b). Freedom of Information Summary, original new animal drug application NADA 141–494, Credelio (lotilaner chewable tablet, dogs). https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/3101. Retrieved March 19, 2020.

FDA (2018c). Freedom of Information Summary, original new animal drug application NADA 141–502, Revolution plus (selamectin and sarolaner topical solution, cats). https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/5847. Retrieved November 25, 2020.

FDA (2019a). Freedom of Information Summary, original new animal drug application NADA 141–518, Bravecto plus (fluralaner and moxidectin topical solution, cats). https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/7947. Retrieved November 25, 2020.

FDA (2019b). Animal Drug Safety Communication: FDA Alerts Pet Owners and Veterinarians About Potential for Neurologic Adverse Events Associated with Certain Flea and Tick Products. https://www.fda.gov/animal-veterinary/cvm-updates/animal-drug-safety-communication-fda-alerts-pet-owners-and-veterinarians-about-potential-neurologic. Retrieved March 26, 2020.

FDA (2020). Freedom of Information Summary, original new animal drug application, Simparica trio (Sarolaner, moxidectin and pyrantel chewable tablets, dogs). https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/8368. Retrieved November 25, 2020.

Fisara, P., & Webster, M. (2015). A randomized controlled trial of the efficacy of orally administered fluralaner (Bravecto) against induced Ixodes holocyclus (Australian paralysis tick) infestations on dogs. Parasites & Vectors, 8, 257. https://doi.org/10.1186/s13071-015-0864-8.

Folz, S. D., Kakuk, T. J., Henke, C. L., Rector, D. L., & Tesar, F. B. (1984). Clinical evaluation of amitraz for treatment of canine scabies. Modern Veterinary Practice, 65, 597–600.

Fourie, J. J., Liebenberg, J. E., Crafford, D., & Six, R. (2019). Immediate and persistent efficacy of sarolaner (Simparica) against Haemaphysalis elliptica on dogs. Parasites & Vectors, 12, 431. https://doi.org/10.1186/s13071-019-3696-0.
Shanks, D. J., McTier, T. L., Behan, S., Pengo, G., Genchi, C., Bowman, D. D., Scott, F., Franz, L., Campos, D. R., Azevedo, T. R. C., Cunha, D., Six, R. H., Sine, S. M., & Engel, A. G. (2006). Recent advances in Cys-loop receptor.

Otaki, H., Sonobe, J., Murphy, M., Cavalleri, D., Seewald, W., Drake, J., & Nanchen, S. (2018). Laboratory evaluation of the efficacy of lo-tilaner (Credelio) against Haemaphysalis longicornis infestations of dogs. Parasites & Vectors, 11, 448. https://doi.org/10.1186/s13071-018-3032-0.

Ozoe, Y., Asahi, M., Ozoe, F., Nakahira, K., & Mita, T. (2010). The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels. Biochemical and Biophysical Research Communications, 391, 744–749. https://doi.org/10.1016/j.bbrc.2009.11.131.

Packianathan, R., Hodge, A., Bruelke, N., Davis, K., & Maeder, S. (2017). Comparative speed of kill of sarolaner (Simplicar®) and afoxolaner (NexGard®) against induced infestations of Ixodes holocyclus on dogs. Parasites & Vectors, 10, 98. https://doi.org/10.1186/s13071-017-2024-9.

Palmini, V., Dodds, W. J., Morgan, J., Carney, E., Fritsche, H. A., Jeffrey, J., Bullock, R., & Kimball, J. P. (2020). Survey of canine use and safety of isoxazoline parasiticides. Veterinary Medicine and Science, 6(4), 933–945. https://doi.org/10.1016/j.vms.2025.03.

Pantchev, N., Pluta, S., Huisinga, E., Nather, S., Scheufelen, M., Vrhovec, M. G., Schweinitz, A., Hampel, H., & Straubinger, R. K. (2015). Tick-borne Diseases (Borreliosis, Anaplasmosis, Babesiosis) in German and Austrian Dogs: Status quo and review of distribution, transmission, clinical findings. Diagnostics and Prophylaxis. Parasitology Research, 114(Suppl 1), S19–S54. https://doi.org/10.1007/s00431-015-4133-0.

Perier, N., Lebon, W., Meyer, L., Lekouch, N., Aouiche, N., & Beugnet, F. (2019). Assessment of the insecticidal activity of oral afoxolaner against Plfhebotomus perniciosus in dogs. Parasite, 26, 63. https://doi.org/10.1051/parasite/2019063.

Romero, C., Waiburd, G., Pineda, J., Heredia, R., Yarto, E., & Cordero, A. (2017). Fluralaner as a single dose oral treatment for Caparina triiplis in a pygmy African hedgehog. Veterinary Dermatology, 28, 622-e152. https://doi.org/10.1111/vetd.12465.

Saari, S. A., Juuti, K. H., Paljarvi, J. H., Vaisanen, K. M., Rajaniemi, R. L., & Saijonmaa-Koulumies, L. E. (2009). Demodex gatoi-associated contagious pruritic dermatosis in cats—a report from six house-holds in Finland. Acta Veterinaria Scandinavica, 51, 40. https://doi.org/10.1007/s10511-017-0471-40.

Scott, F., Franz, L., Campos, D. R., Azevedo, T. R. C., Cunha, D., Six, R. H., Maeder, S., & Cree, T. (2017). Efficacy of sarolaner (Simplicar®) against induced infestations of Amblyomma cajennense on dogs. Parasites & Vectors, 10, 390. https://doi.org/10.1186/s13071-017-2324-0.

Shanks, D. J., McTier, T. L., Behan, S., Pengo, G., Genchi, C., Bowman, D. D., Holbert, M. S., Smith, D. G., Jernigan, A. D., & Rowan, T. G. (2000). The efficacy of selamectin in the treatment of naturally acquired infestations of sarcoptes scabiei on dogs. Veterinary Parasitology, 91, 269–281. https://doi.org/10.1016/s0304-4017(00)00298-3.

Sheinberg, G., Romero, C., Heredia, R., Capulin, M., Yarto, E., & Caprio, J. (2017). Use of oral fluralaner for the treatment of Psoroptes cuniculi in 15 naturally infested rabbits. Veterinary Dermatology, 28, 393–391. https://doi.org/10.1111/vetd.12429.

Sine, S. M., & Engel, A. G. (2006). Recent advances in Cys-loop receptor structure and function. Nature, 440(7083), 448–455. https://doi.org/10.1038/nature04708.
Taenzler, J., Wengenmayer, C., Williams, H., Fourie, J., Zschiesche, E., Roepke, R. K. A., & Heckeroth, A. R. (2014). Onset of activity of fluralaner (BRAVECTO™) against Ctenocephalides felis on dogs. *Parasites & Vectors, 7*, 567. https://doi.org/10.1186/s13071-014-0567-6.

Taylor, M. A. (2001). Recent developments in ectoparasiticides. *The Veterinary Journal, 161*, 253–268. https://doi.org/10.1053/tvjl.2000.0549.

Thomas, E., Chiquet, M., Sander, B., Zschiesche, E., & Flochlay, A. S. (2017). Field efficacy and safety of fluralaner solution for administration in drinking water for the treatment of poultry red mite (*Dermanyssus gallinae*) infestations in commercial flocks in Europe. *Parasites & Vectors, 10*, 457. https://doi.org/10.1186/s13071-017-2390-3.

Toutain, C. E., Seewald, W., & Jung, M. (2017). The intravenous and oral pharmacokinetics of lotilaner in dogs. *Parasites & Vectors, 10*, 522. https://doi.org/10.1186/s13071-017-2475-z.

Toutain, C. E., Seewald, W., & Jung, M. (2018). Pharmacokinetics of lotilaner following a single oral or intravenous administration in cats. *Parasites & Vectors, 11*, 412. https://doi.org/10.1186/s13071-018-2966-6.

Toyota, M., Hirama, K., Suzuki, T., Armstrong, R., & Okinaga, T. (2019). Efficacy of orally administered fluralaner in dogs against laboratory challenge with Haemaphysalis longicornis ticks. *Parasites & Vectors, 12*, 43. https://doi.org/10.1186/s13071-019-3306-1.

Van de Heyning, J., & Thienpont, D. (1977). Otitis externa in man caused by the mite Otodectes cynotis. *Laryngoscope, 87*, 1938–1941. https://doi.org/10.1002/lary.1977.87.11.1938.

Vatta, A. F., Young, D. R., King, V. L., & Myers, M. R. (2019). Comparative efficacy of topical treatments with Revolution® Plus (selamectin and sarolaner) and Bravecto® for Cats (fluralaner) against *Ixodes scapularis* ticks on cats. *Veterinary Parasitology, 270*(Suppl 1), S58–S63. https://doi.org/10.1016/j.vetpar.2019.05.012.

Walther, F. M., Allan, M. J., Roepke, R. K., & Nuernberger, M. C. (2014b). Safety of fluralaner chewable tablets (Bravecto), a novel systemic antiparasitic drug, in dogs after oral administration. *Parasites & Vectors, 7*, 87. https://doi.org/10.1186/1756-3305-7-87.

Walther, F. M., Paul, A. J., Allan, M. J., Roepke, R. K., & Nuernberger, M. C. (2014). Safety of fluralaner, a novel systemic antiparasitic drug, in MDRI(-/-) Collies after oral administration. *Parasites & Vectors, 7*, 86. https://doi.org/10.1186/1756-3305-7-86.

Weber, T., & Selzer, P. M. (2016). Isoxazolines: A novel chemotype highly effective on ectoparasites. *ChemMedChem, 11*, 270–276. https://doi.org/10.1002/cmdc.201500516.

Wengenmayer, C., Williams, H., Zschiesche, E., Moritz, A., Langenstein, J., Roepke, R. K., & Heckeroth, A. R. (2014). The speed of kill of fluralaner (Bravecto) against *Ixodes ricinus* ticks on dogs. *Parasites & Vectors, 7*, 525. https://doi.org/10.1186/s13071-014-0525-3.

Williams, H., Demeler, J., Taenzler, J., Roepke, R. K., Zschiesche, E., & Heckeroth, A. R. (2015). A quantitative evaluation of the extent of fluralaner uptake by ticks (*Ixodes ricinus*, *Ixodes scapularis*) in fluralaner (Bravecto) treated vs. untreated dogs using the parameters tick weight and coxal index. *Parasites & Vectors, 8*, 352. https://doi.org/10.1186/s13071-015-0963-6.

Williams, H., Young, D. R., Qureshi, T., Zoller, H., & Heckeroth, A. R. (2014). Fluralaner, a novel isoxazoline, prevents flea (*Ctenocephalides felis*) reproduction in vitro and in a simulated home environment. *Parasites & Vectors, 7*, 275. https://doi.org/10.1186/1756-3305-7-275.

Zhou, X., Holman, A., & Hsu, W. H. (2020). Review of extralabel use of isoxazolines for the treatment of demodicosis in dogs and cats. *Journal of American Veterinary Medical Association, 256*, 1342–1346.

How to cite this article: Zhou X, Hohman AE, Hsu WH. Current review of isoxazoline ectoparasiticides used in veterinary medicine. *J Vet Pharmacol Therap.* 2021;00:1–15. https://doi.org/10.1111/jvet.12959