CASE REPORT

Fluorescence in situ hybridization-based confirmation of acute graft-vs-host disease diagnosis following liver transplantation: A case report

Jing-Jing Xiao, Jin-Yu Ma, Jun Liao, Di Wu, Chao Lv, Hai-Yang Li, Shi Zuo, Hai-Tao Zhu, Hua-Jian Gu

ORCID number: Jing-Jing Xiao 0000-0002-5651-5711; Jin-Yu Ma 0000-0002-5115-8399; Jun Liao 0000-0003-0883-6956; Di Wu 0000-0002-7929-0084; Chao Lv 0000-0001-9789-7608; Hai-Yang Li 0000-0002-5679-0056; Shi Zuo 0000-0002-5624-2343; Hai-Tao Zhu 0000-0002-9889-7625; Hua-Jian Gu 0000-0002-9670-7320.

Author contributions: Xiao JJ and Ma JY were the patients’ surgeons and designed the research; Liao J, Wu D, and Lv C reviewed the literature and contributed to the drafting of the manuscript; Li HY and Zhu HT collected the surgical data and recordings; Zuo S processed the operation screenshots; Gu HJ was responsible for language editing and revision of the manuscript and supervised the revision of the manuscript; All authors took part in the final approval for the version to be submitted.

Informed consent statement: Informed written consent was obtained from the patients for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: Jia-dong Wu, MD, PhD, Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China

Abstract

BACKGROUND

Although acute graft-vs-host disease (aGvHD) is a rare complication of liver transplantation, it is poorly understood and has an extremely high mortality rate. No standardized diagnostic criteria or treatment regimens currently exist.

CASE SUMMARY

The present study investigated the etiology, diagnosis, and treatment of aGvHD following liver transplantation. Presentation, diagnosis, disease course, histology, and treatment of an aGvHD case are reported, and associated literature is reviewed. A 64-year-old female required LTx due to primary biliary cirrhosis. The donor was a 12-year-old male. Three weeks following liver transplantation, the recipient developed pyrexia, diarrhea, rashes, and antibiotic-unresponsive pancytopenia. Clinical symptoms together with laboratory investigations suggested a diagnosis of aGvHD, which was confirmed via peripheral blood fluorescent in situ hybridization. Donor XY chromosome fluorescent in situ hybridization indicating early chimerism achieved 93% sensitivity in the detection of GvHD. Existing immunosuppressants were discontinued, and high-dose intravenous methylprednisolone was initiated along with antibiotics. While diarrhea resolved, the patient’s general condition continued to deteriorate until demise due to multi-system organ failure at 37 d post-liver transplantation. This case illustrates the life-threatening nature of aGvHD.

CONCLUSION
The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: China

Peer-review report's scientific quality classification

- Grade A (Excellent): 0
- Grade B (Very good): 0
- Grade C (Good): 0
- Grade D (Fair): 0
- Grade E (Poor): 0

Received: March 20, 2021

Peer-review started: March 20, 2021

First decision: June 5, 2021

Revised: June 5, 2021

Accepted: July 20, 2021

Article in press: July 20, 2021

Published online: September 27, 2021

P-Reviewer: Ferreira GSA

S-Editor: Wu YXJ

L-Editor: Filipodia

P-Editor: Wu RR

Herein, we have summarized a post-LTx aGvHD case and reviewed associated literature in order to increase awareness and provide potentially risk-mitigating recommendations.

Key Words: Liver transplantation; Graft-vs-host disease; Fluorescence in situ hybridization cytogenetics; Chimerism; Diagnosis; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: At present, the risk factors, pathogenesis, optimal treatment, and prognosis associated with acute graft-vs-host disease following liver transplantation are unclear. Currently, the most reliable diagnostic method is specific immunostaining for donor-specific antigens. If the donor is male and the recipient is female, fluorescent in situ hybridization-based detection of the Y chromosome is a diagnostic option. In the present case, acute graft-vs-host disease was confirmed via fluorescent in situ hybridization, demonstrating the presence of male donor DNA.

Citation: Xiao JJ, Ma JY, Liao J, Wu D, Lv C, Li HY, Zuo S, Zhu HT, Gu HJ. Fluorescence in situ hybridization-based confirmation of acute graft-vs-host disease diagnosis following liver transplantation: A case report. World J Gastrointest Surg 2021; 13(9): 1102-1109

URL: https://www.wjgnet.com/1948-9366/full/v13/i9/1102.htm

DOI: https://dx.doi.org/10.4240/wjgs.v13.i9.1102

INTRODUCTION

Acute graft-vs-host disease (aGvHD) is one of the most dangerous complications following liver transplantation (LTx)[1]. It involves overactivation of donor helper T lymphocytes by recipient antigen-presenting cells, leading to a local inflammatory reaction against recipient tissue. Although the rate of aGvHD incidence after LTx is low (1%-2%), the mortality rate is extremely high (85%-90%)[2]. Skin rash and pyrexia are the most frequently noted early signs, followed by leukopenia. Although aGvHD was first proposed as a clinical entity in 1988, its mechanisms and optimal treatment strategies remain controversial[3]. Modification of the post-transplant treatment plan, including incorporation of more effective immunosuppressants, has a limited effect on the course of aGvHD[4,5]. In most cases, death results from overwhelming sepsis or gastrointestinal hemorrhage as a consequence of bone marrow involvement[6]. Due to the low incidence (but high mortality) of aGvHD following LTx, analysis of the present case with respect to existing literature is worthwhile in order to raise awareness regarding the condition, which may assist in the early diagnosis of suspected cases. It will also help improve diagnostic criteria and establish standardized evidence-based treatment regimens. Moreover, we wish to draw attention to the diagnostic utility of sex chromosome fluorescent in situ hybridization (FISH) when the donor and recipient are of different chromosomal sexes.

CASE PRESENTATION

Chief complaints

The patient was a 64-year-old female with primary biliary cirrhosis, esophageal-fundal variceal hemorrhages, and decompensated hepatocirrhosis in September 2017.

History of present illness

A 64-year-old female received a liver from an ABO-matched (A-positive) 12-year-old male cadaveric donor. The donor and recipient details are shown in Table 1. The donor was a 12-year-old male. Three weeks following liver transplantation, the recipient developed pyrexia, diarrhea, rashes, and antibiotic-unresponsive pancytopenia.

Table 1
Recipient
Age
Gender
ABO Type
Primary Diagnosis

...
Table 1 Recipient and donor demographic, clinical, and typing data

Recipient	Donor	
Age	64	12
Sex	Female	Male
Primary complaint	PBC	Hypoxic-ischemic encephalopathy
Special history	Low-dose glucocorticoids	NA
Blood group	A	A
HLA	NA	NA

PBC: Primary biliary cirrhosis; HLA: Human leukocyte antigen; NA: Not applicable.

History of past illness
A 64-year-old female with primary biliary cirrhosis, esophageal-fundal variceal hemorrhages, and decompensated hepatocirrhosis.

Personal and family history
The patient grew up in her locality, denies any contact with contaminated water or radiation exposure, and denies smoking and alcohol consumption.

Physical examination
On physical examination, we found her poor nutritional status, the abdomen was moderately distended with mild tenderness, and there was moderately yellow staining of the skin and mucous membranes. The rest of the physical examination revealed no abnormal findings.

Laboratory examinations
The following timeline of events refers to post-operative days. On day 22, the patient developed pyrexia of unknown origin, fluctuating between 38.2 °C and 39.3 °C. On day 26, sex chromosome FISH was performed on peripheral venous blood samples. No gastrointestinal tract lesions were apparent, and no evidence of aGvHD was noted on gastrointestinal endoscopic biopsy (histologically normal esophagus, stomach, and ileum). On day 31, the presumptive diagnosis of GvHD was made based on the following clinical ground observations: Generalized maculopapular eruption (largely involving the back, neck, and face), pyrexia, pancytopenia, low blood pressure, and watery diarrhea (Figure 1 and Table 2). FISH revealed chimerism (presence of the fluorescently stained donor XY chromosome) consistent with aGvHD (Figure 2).

Two days following the development of thrombocytopenia, a bone marrow biopsy revealed marked hypocellularity. No skin rash was yet apparent. The findings of detailed post-operative laboratory investigation are summarized in Table 3. Because no sample of indwelling peripheral blood from the donor prior to LTx was available, donor lymphocytes could not be identified in recipient peripheral blood using short tandem repeat sequencing or human leukocyte antigen (HLA) typing.

Imaging examinations
Abdominal computed tomography and color ultrasound findings suggested laminar portal vein, inferior vena cava, hepatic artery, and hepatic venous flow (Figure 3).

FINAL DIAGNOSIS
aGvHD, primary biliary cirrhosis, esophageal-fundal variceal hemorrhages, and decompensated hepatocirrhosis.

TREATMENT
Initial treatment involved tapering the dosage of immunosuppressants to allow the recipient immune system to reject donor lymphocytes. Due to the inefficacy of this
Table 2 Clinical manifestation and treatment timeline

PO day	Temperature (°C)	Skin rash	Diarrhea	Myelosuppression	Tacrolimus (mg/d)	MMF (g/d)	MP	IgG (g/d)	Antibiotics
22	38.3	Palm	2	NA	3	0.25	500	10	Yes
24	38.6	Neck	3	NA	2	0	500	10	Yes
26	38.5	Face	6	Yes	2	0	120	NA	Yes
28	38.2	Trunk	7	Yes	2	0	40	NA	Yes
30	39	> 35%	6	Yes	2	0	20	NA	Yes
32	38.6	> 50%	5	Yes	1.5	0	20	10	Yes
34	38.7	> 55%	4	Yes	1.5	0	20	10	NA
36	Demise								

Table 3 Post-operative laboratory investigation timeline

Value/PO day	0	4	8	12	16	20	24	26	30	34	36
AST (U/L)	643	47.6	56	48	64	75	63	56	44	52	74
ALT (U/L)	772	88.1	96	86	107.3	62	59	64	66	71	83
Total bilirubin (mg/dL)	231.4	123.5	119.5	76.9	65.5	23.7	25.8	24.2	35.1	45.6	48.7
Direct bilirubin (mg/dL)	146.1	63.2	59.3	43.2	38.1	13.3	15.6	16.5	24.7	28.5	31.2
Leukocyte count × 10^9/L	17.5	8.7	12.4	17.3	7.2	6.7	1.3	0.39	0.24	0.12	0.08
Neutrophil %	93	79	86	92	81	80	63	17.9	0	0	0
Hemoglobin (g/L)	89	92	176	113	92	85	75	63	58	53	47
Hematocrit %	42	46	50	32	26.5	23.3	22	17.6	16.5	15.6	14.8
Platelets × 10^9/L	21	26	44	58	77	73	71	56	47	46	41
Prothrombin time (s)	17.9	19.9	16.5	22.4	13.5	13.1	12.7	13.1	12.8	13.2	13.6
INR	1.82	1.7	1.34	1.98	1.05	1.01	0.97	0.99	0.98	1.02	1.07
Sodium (mmol/L)	147	145	142	139	136	134	143	138	139	143	
Potassium (mmol/L)	3.8	4.5	3.1	3.4	3.6	3.8	3.9	4.2	4.1	3.9	3.7
Urea (mmol/L)	32.52	29.8	16.42	4.55	4.77	4.46	4.13	3.8	4.17	3.74	4.02
Creatinine (μmol/L)	89.73	85.64	64.59	43.78	58.44	53.76	49.19	46.52	27.26	24.54	30.45
PCT (ng/mL)	5.73	3.86	11.5	5.1	1.86	2.65	2.58	2.45	2.18	3.65	4.53

PO: Post-operative; NA: Not applicable; MMF: Two oral formulations of mycophenolate mofetil; MP: Methylprednisolone; IgG: Immunoglobulin G. Antibiotics: Melophenan (1 g every 8 h) + carpophennet (50 mg per day) + vancomycin (0.5 g every 6 h).

OUTCOME AND FOLLOW-UP

Severe inflammation induced multi-system organ failure, which led to the patient’s demise on post-operative day 37.
DISCUSSION

At present, the risk factors, pathogenesis, optimal treatment, and prognosis associated with aGvHD following LTx are unclear. Current (incomplete) understanding of aGvHD pathogenesis may be summarized as follows. The conditioning regimen induces initial recipient tissue damage, followed by auto- and alloantigen denudation in the recipient concomitant with antigen-presenting cell activation and massive inflammatory cytokine release (a “cytokine storm”). If a sufficient number of donor lymphocytes, especially T lymphocytes, of the correct specificity are present, direct recognition of and activation by antigen-presenting cell (either locally or within secondary lymphoid tissues) results in T lymphocyte interleukin (IL)-2 and IL-2R expression. Activated T-cells then stimulate donor monocytes to produce significant levels of myeloid cytokines (e.g., IL-1 and tumor necrosis factor) and also trigger a cascade of cytotoxic signal transduction pathways, such as the perforin/granzyme B or Fas/FasL pathways (although direct cytokine-mediated injury is also possible). Finally, inflammatory infiltration in the digestive tract, skin, and bone marrow leads to severe clinical presentations[7]. In the present case, abnormally high numbers of CD8+ T lymphocytes were present during the acute phase of GvHD, while the CD4+/CD8+ T lymphocyte ratio was less than 0.1. This indicates that perhaps cytotoxic T lymphocytes (with a minor contribution by helper T lymphocytes) are the cells primarily involved in GvHD pathogenesis. In summary, the necessary conditions for the occurrence of aGvHD[8-10] include the presence of donor immunoreactive cells within graft tissue, presence of recipient tissue antigens not present in donor organ
Figure 2 Twelve erythrocytes analyzed, 11 showed an XY signal pattern, while one showed an XX signal pattern (91.7% showed one X and one Y signal, and 8.3% showed two X signals). Y is the red fluorescent signal; X is the green fluorescent signal.

Figure 3 The portal vein, inferior vena cava, hepatic artery, and hepatic venous blood flow were smooth.

Tissue, and inability of the recipient immune system to eliminate effectively donor leukocytes.

Triulzi et al[9] have described the diagnostic criteria for aGvHD following LTx in the following three requirements: (1) Characteristic clinical symptoms affecting related organ systems (e.g., skin, gastrointestinal tract, and bone marrow), including rash, diarrhea, and pancytopenia, among others; (2) Abnormal skin or digestive tract histology; and (3) HLA or DNA evidence of donor immunoreactive lymphocytes in involved organs or peripheral blood of the recipient. In addition to the above criteria, T lymphocyte counts and cytokine quantitation provide clear diagnostic support. Currently, the most reliable diagnostic method is specific immunostaining for donor-specific antigens. If the donor is male and the recipient is female, FISH-based detection of the Y chromosome is a diagnostic option[9,11,12]. At present, no false negatives have been reported for this method. In the present case, aGvHD was confirmed via
REFERENCES

1. Perri R, Assi M, Talwalkar J, Heimbach J, Hogan W, Moore SB, Rosen CB. Graft vs. host disease after liver transplantation: a new approach is needed. Liver Transpl 2007; 13: 1092-1099 [PMID: 17663410 DOI: 10.1002/lt.21201]

2. Taylor AL, Gibbs P, Bradley JA. Acute graft vs host disease following liver transplantation: the enemy within. Am J Transplant 2004; 4: 466-474 [PMID: 15023138 DOI: 10.1111/j.1600-6143.2004.00406.x]

3. Burdick JF, Vogelsang GB, Smith WJ, Farmer ER, Bias WB, Kaufmann SH, Horn J, Colombani PM, Pitt HA, Perler BA. Severe graft-versus-host disease in a liver-transplant recipient. N Engl J Med 1988; 318: 689-691 [PMID: 3278235 DOI: 10.1056/NEJM198803173181107]

4. Lee SJ, Onstad L, Chow EJ, Shaw BE, Jim HSL, Syrjala KL, Baker KS, Buckley S, Flowers ME. Patient-reported outcomes and health status associated with chronic graft-versus-host disease. Haematologica 2018; 103: 1535-1541 [PMID: 29858386 DOI: 10.3324/haematol.2018.192930]

5. Qian L, Dina D, Barco C, Liu Y, Rus I, Raduly LZ, Petrushev B, Berindan-Neagoe I, Irimie A, Tanase A, Jurj A, Shen I, Tomulesca C. Protein dysregulation in graft vs host disease. Oncotarget 2018; 9: 1483-1491 [PMID: 29416707 DOI: 10.18632/oncotarget.23276]

6. Taylor AL, Gibbs P, Sudhindar S, Key T, Goodman RS, Morgan CH, Watson CJ, Delriviere L, Alexander GJ, Jamieson NV, Bradley JA, Taylor CJ. Monitoring systemic donor lymphocyte macrochimerism to aid the diagnosis of graft-versus-host disease after liver transplantation. Transplantation 2004; 77: 441-446 [PMID: 14966423 DOI: 10.1097/01.TP.0000103721.29729.FE]

7. Schrager JF, Vnencak-Jones CL, Gruber SE, Neff AT, Chari RS, Wright KJ Jr, Pinson CW, Stewart JH, Gorden DL. Use of short tandem repeats for DNA fingerprinting to rapidly diagnose graft-versus-

CONCLUSION

In the present case, aGvHD was confirmed via FISH, demonstrating the presence of male donor DNA. If the donor is male and the recipient is female, FISH-based detection of the Y chromosome is a diagnostic option.
host disease in solid organ transplant patients. *Transplantation* 2006; 81: 21-25 [PMID: 16421472 DOI: 10.1097/01.tp.0000190431.94252.3f]
8 Jacobs MT, Olson M, Ferreira BP, Jin R, Hachem R, Byers D, Witt C, Ghobadi A, DiPersio JF, Pusic I. The use of ruxolitinib for acute graft-versus-host disease developing after solid organ transplantation. *Am J Transplant* 2020; 20: 389-592 [PMID: 31446673 DOI: 10.1111/ajt.15579]
9 Triulzi D, Duquesnoy R, Nichols L, Clark K, Jukic D, Zeevi A, Meisner D. Fatal transfusion-associated graft-versus-host disease in an immunocompetent recipient of a volunteer unit of red cells. *Transfusion* 2006; 46: 885-888 [PMID: 16734803 DOI: 10.1111/j.1537-2995.2006.00819.x]
10 Kanechira K, Riegert-Johnson DL, Chen D, Gibson LE, Grimmell SD, Velgareti GV. FISH diagnosis of acute graft-versus-host disease following living-related liver transplant. *J Mol Diagn* 2009; 11: 355-358 [PMID: 19460938 DOI: 10.2353/jmoldx.2009.080172]
11 Gonulitas F, Akbulat S, Barut B, Kuthuturk K, Yilmaz S. Graft-versus-host disease after living donor liver transplantation: an unpredictable troublesome complication for liver transplant centers. *Eur J Gastroenterol Hepatol* 2020; 32: 95-100 [PMID: 31524772 DOI: 10.1097/MEG.0000000000001530]
12 Di Ianni M, Del Papa B, Baldoni S, Di Tommaso A, Fabi B, Rosati E, Natalie A, Santarone S, Olioso P, Papalini G, Giancola R, Accorsi P, Di Bartolomeo P, Sportoletti P, Falzetti F. NOTCH and Graft-Versus-Host Disease. *Front Immunol* 2018; 9: 1825 [PMID: 30147692 DOI: 10.3389/fimmu.2018.01825]
13 Triulzi DJ, Nalesnik MA. Microchimerism, GVHD, and tolerance in solid organ transplantation. *Transfusion* 2001; 41: 419-426 [PMID: 11274601 DOI: 10.1046/j.1537-2995.2001.41030419.x]
14 Perkins JL, Neglia JP, Ramsay NK, Davies SM. Successful bone marrow transplantation for severe aplastic anemia following orthotopic liver transplantation: long-term follow-up and outcome. *Bone Marrow Transplant* 2001; 28: 523-526 [PMID: 11593328 DOI: 10.1038/sj.bmt.1703177]
15 Ramachandran V, Kolli SS, Strowd LC. Review of Graft-Versus-Host Disease. *Dermatol Clin* 2019; 37: 569-582 [PMID: 31466596 DOI: 10.1016/j.det.2019.05.014]
16 Hill L, Alousi A, Kebribei P, Mehta R, Rezvani K, Shpall E. New and emerging therapies for acute and chronic graft versus host disease. *Ther Adv Hematol* 2018; 9: 21-46 [PMID: 29317998 DOI: 10.1177/2040620717741860]
17 Schroeder T, Haas R, Kobe G. Treatment of graft-versus-host disease with monoclonal antibodies and related fusion proteins. *Expert Rev Hematol* 2010; 3: 633-651 [PMID: 21083479 DOI: 10.1586/ehm.10.46]
18 Aladağ E, Kelkitli E, Gökker H. Acute Graft-Versus-Host Disease: A Brief Review Turk J Haematol 2020; 37: 1-4 [PMID: 31475512 DOI: 10.4274/tj.2019.2019.0157]
19 Murray J, Stringer J, Hutt D. Graft-Versus-Host Disease (GvHD). 2017 Nov 22. In: Kenyon M, Babic A, editors. The European Blood and Marrow Transplantation Textbook for Nurses: Under the Auspices of EBMT [Internet]. Cham (CH): Springer; 2018. Chapter 11 [PMID: 31314308 DOI: 10.1007/978-3-319-50620-3_11]
20 Whalen JG, Jukic DM, English JC 3rd. Rash and pancytopenia as initial manifestations of acute graft-versus-host disease after liver transplantation. *J Am Acad Dermatol* 2005; 52: 908-912 [PMID: 15858489 DOI: 10.1016/j.jaad.2005.01.126]
