Conditions on the regularity of balanced \(c \)-partite tournaments for the existence of strong subtournaments with high minimum degree

Ana Paulina Figueroa\(^a\), Juan José Montellano-Ballesteros\(^b\)\(^,\)\(^*\), Mika Olsen\(^c\)

\(^a\)Departamento de Matemáticas ITAM, México
\(^b\)Instituto de Matemáticas, UNAM, México
\(^c\)Departamento de Matemáticas Aplicadas y Sistemas, UAM-C, México

Abstract

We consider the following problem posed by Volkmann in 2007: How close to regular must a \(c \)-partite tournament be, to secure a strongly connected subtournament of order \(c \)? We give sufficient conditions on the regularity of balanced \(c \)-partite tournaments to assure the existence of strong maximal subtournament with minimum degree at least \(\left\lfloor \frac{c^2}{4} \right\rfloor + 1 \). We obtain this result as an application of counting the number of subtournaments of order \(c \) for which a vertex has minimum out-degree (resp. in-degree) at most \(q \geq 0 \).

Keywords: global irregularity, multipartite tournaments, strong maximal subtournaments

2010 MSC: 05C20, 05C35

1. Introduction

Let \(c \) be a non-negative integer, a \(c \)-partite or multipartite tournament is a digraph obtained from a complete \(c \)-partite graph by orienting each edge. In 1999 Volkmann [4] developed the first contributions in the study of the structure of the strongly connected subtournaments in multipartite tournaments. He proved that every almost regular \(c \)-partite tournament contains a strongly connected subtournament of order \(p \) for each \(p \in \{3, 4, \ldots, c - 1\} \). In the same paper he also proved that if each partite set of an almost regular \(c \)-partite tournament

\(^*\)Corresponding author

Email addresses: apaulinafg@gmail.com (Ana Paulina Figueroa), juancho@math.unam.mx (Juan José Montellano-Ballesteros), olsen@correo.cua.uam.mx (Mika Olsen)

Supported by PAPIIT-México under project IN107218; CONACYT under projects A1-S-12891 and 47510664.
has at least $\frac{3c}{2} - 6$ vertices, then there exist a strong subtournament of order c. In 2008 Volkmann and Wieser [5] proved that every almost regular c-partite tournament has a strongly connected subtournament of order c for $c \geq 5$. In 2011 Xu et al. [6] proved that every vertex of regular c-partite tournament with $c \geq 16$, is contained in a strongly connected subtournament of order p for every $p \in \{3, 4, \ldots, c\}$. The following problem was posed by Volkmann [3]:

Determine further sufficient conditions for (strongly connected) c-partite tournaments to contain a strong subtournament of order p, for some $4 \leq p \leq c$. How close to regular must a c-partite tournament be, to secure a strongly connected subtournament of order c?

On this direction, in 2016 [2], we proved that for every (not necessarily strongly connected) balanced c-partite tournament of order $n \geq 6$, if the global irregularity of T is at most $\frac{c}{\sqrt{c-2}}$, then T contains a strongly connected tournament of order c. A c-partite tournament is balanced if each of its partite sets have the same amount of vertices.

In this paper, we consider Volkmann’s problem for balanced c-partite tournaments. We give sufficient conditions on its regularity to assure the existence of a strong subtournament with minimum degree at least $\left\lceil \frac{c-2}{4} \right\rceil + 1$. We obtain this result as an application of counting the number of subtournaments of order c for which a vertex has minimum out-degree (resp. in-degree) at most $q \geq 0$.

2. Notation and definitions

We follow all the definitions and notation of [1]. Let G be a c-partite tournament of order n with partite sets $\{V_i\}_{i=1}^c$. We call G balanced, if all the partite sets have the same number of vertices and we denote by $G_{r,c}$ a balanced c-partite tournament satisfying that $|V_i| = r$ for every $i \in [c]$, where $[c] = \{1, \ldots, c\}$. Throughout this paper $|V_i| = r$ for each $i \in [c]$.

Let G be a c-partite tournament. For $x \in V(G)$ and $i \in [c]$, the **out-neighborhood of x in V_i** is $N_i^+(x) = V_i \cap N^+(x)$; the **in-neighborhood of x in V_i** is $N_i^-(x) = V_i \cap N^-(x)$; $d_i^+(x) = |N_i^+(x)|$ and $d_i^-(x) = |N_i^-(x)|$.

2
For an oriented graph \(D \), the *global irregularity* of \(D \) is defined as

\[
i_g(D) = \max_{x,y \in V(D)} \{ \max\{d^+(x), d^-(x)\} - \min\{d^+(y), d^-(y)\} \}.
\]

If \(i_g(D) = 0 \) (\(i_g(D) \leq 1 \), resp.) \(D \) is regular (almost regular, resp.). For our study we introduce another irregularity parameter, namely *local partite irregularity* of \(D \), which is defined as

\[
\mu(D) = \max_{x \in V(D)} \{ \max_{i \in [c]} |d^+_i(x) - d^-_i(x)| \}.
\]

Observe that, for a balanced \(c \)-partite tournament \(G_{r,c} \), \(\mu(G_{r,c}) \geq i_g(G_{r,c}) - 1 \).

3. Maximal tournaments for which a vertex has minimum degree at most \(q \)

The aim of this section is to give sufficient conditions on the minimum degree, local partite irregularity and global irregularity to obtain a bound on the number of maximal tournaments in a balanced \(c \)-partite tournament \(G_{r,c} \) in which a given vertex \(x \in V(G_{r,c}) \) has out-degree (in-degree resp.) at most \(q \), for some given \(q \geq 0 \).

Let \(x \in V_c \) and let \(\mathcal{H}^+_k(x) \) be the set of vectors \((h_1, h_2, \ldots, h_{c-1}) \in \{0,1\}^{c-1}\) such that \(h_i = 1 \) if \(d^+_i(x) = r \); \(h_i = 0 \) if \(d^+_i(x) = 0 \); and \(\sum_{i=1}^{c-1} h_i = k \). A maximal tournament containing the vertex \(x \) with out-degree \(k \) can be constructed choosing a vertex for each part \(V_i \) for \(i \in [c-1] \) as follows: Given \(h = (h_1, h_2, \ldots, h_{c-1}) \in \mathcal{H}^+_k(x) \), we choose an out neighbor of \(x \) from \(V_i \) if and only if \(h_i = 1 \). Since the number of maximal tournaments constructed in this way for a fixed \(h \) is \(\prod_{i=1}^{c-1} d^+_i(x)^{h_i}d^-_i(x)^{1-h_i} \), we have the following remark.

Remark 1. Let \(G_{r,c} \) be a balanced \(c \)-partite tournament and let \(x \in V_c \). The number of maximal tournaments of \(G_{r,c} \) for which \(x \) has out-degree \(k \) is equal to

\[
\sum_{h \in \mathcal{H}^+_k(x)} \prod_{i=1}^{c-1} d^+_i(x)^{h_i}d^-_i(x)^{1-h_i}.
\]

Let \(x \in V(G_{r,c}) \). For each \(q \geq 0 \), let \(T^+_q(x) \) (resp. \(T^-_q(x) \)) be the number of maximal tournaments of \(G_{r,c} \) for which \(x \) has out-degree (resp. in-degree) at most \(q \). All the following results regarding \(T^+_q(x) \) can be obtained for \(T^-_q(x) \) in an analogous way.
Let \(x \in V(G_{r,c}) \). Assume w.l.o.g that \(x \in V_c \). By Remark 1,
\[
T^+_q(x) = \sum_{k=0}^{q} \left(\sum_{h \in \mathcal{H}^+_k(x)} \prod_{i=1}^{c-1} d^+_i(x)^{h_i} d^-_i(x)^{1-h_i} \right).
\]
In order to bound \(T^+_q(x) \), for any integer \(r \geq 2 \), and \(g_1, g_2, \ldots, g_s \) real numbers such that \(0 \leq g_i \leq r \), we define
\[
M(g_1, \ldots, g_s; k) = \sum_{h \in \mathcal{H}^+_k} \prod_{i=1}^{s} g_i^{h_i}(r - g_i)^{1-h_i},
\]
where \(\mathcal{H}^+_k \) is the set of \(s \)-vectors \((h_1, h_2, \ldots, h_s) \in \{0,1\}^s \) such that: if \(g_i = r \) then \(h_i = 1 \); if \(g_i = 0 \) then \(h_i = 0 \); and \(\sum_{i=1}^{s} h_i = k \).
If for a given \(x \in V(G_{r,c}) \), \(g_i = d^+_i(x) \), with \(i \in [c-1] \), the following lemma gives a sufficient condition on the out-degree of \(x \) to assure that the number of maximal tournaments in which \(x \) has out-degree \(q \) is at least equal to the number of maximal tournaments in which \(x \) has out-degree \(q - 1 \).

Lemma 1. Let \(r \geq 2 \) be an integer, and let \(g_1, \ldots, g_s \) be real numbers such that \(0 \leq g_i \leq r \). Let \(\Gamma = \max \{ g_i \}_{i \in [s]} \) and \(\gamma = \min \{ g_i \}_{i \in [s]} \). If for some integer \(q \geq 1 \) we have that \(\sum_{i \in [s]} g_i \geq q(r + \Gamma - \gamma) - \Gamma \), then
\[
M(g_1, \ldots, g_s; q) \geq M(g_1, \ldots, g_s; q - 1).
\]

Proof. Let \(g_1, \ldots, g_s \) be real numbers such that \(0 \leq g_i \leq r \), and let \(q \geq 1 \). Suppose w.l.o.g. that for every \(i \), if \(1 \leq i \leq t \) then \(0 < g_i < r \); if \(t + 1 \leq i \leq t + p_r \) then \(g_i = r \); and if \(t + p_r + 1 \leq i \leq s \) then \(g_i = 0 \). Observe that for every \(h = (h_1, \ldots, h_s) \in \mathcal{H}^+_{q-1} \) and every \(h' = (h'_1, \ldots, h'_s) \in \mathcal{H}^+_{q} \) we have that if \(t + 1 \leq i \leq t + p_r \), then \(h_i = h'_i = 1 \); and if \(t + p_r + 1 \leq i \leq s \), then \(h_i = h'_i = 0 \). Notice that if \(p_r \geq q \), then \(\mathcal{H}^+_{q-1} = \emptyset \) which implies that \(M(g_1, \ldots, g_s; q - 1) = 0 \) and the lemma follows. Thus, we can suppose that \(q \geq p_r + 1 \).

For each \(h = (h_1, \ldots, h_s) \in \mathcal{H}^+_{q-1} \) let \(F(h) = \{(h'_1, \ldots, h'_s) \in \mathcal{H}^+_{q} : h_i \leq h'_i \text{ for } i \in [s]\} \) and let \(a(h) = \{j : h_j = 1 \text{ for } j \in [t]\} \). Observe that for every \(h \in \mathcal{H}^+_{q-1} \), \(|a(h)| = q - 1 - p_r \).

By definition of \(\mathcal{H}^+_{q} \) and \(\mathcal{H}^+_{q-1} \), it follows that given \(h \in \mathcal{H}^+_{q-1} \) and \(h' \in F(h) \subseteq \mathcal{H}^+_{q} \) (except for some \(j_0 \in [t] \setminus a(h) \), where \(h'_{j_0} = h_{j_0} + 1 \)), we have that \(h_i = h'_i \) for every \(i \in [s] \setminus \{j_0\} \).
Thus,

\[
\sum_{\mathbf{h} \in F(\mathbf{h})} \prod_{i=1}^{s} g_i^{h'_i} (r - g_i)^{1-h'_i} = \sum_{\mathbf{h} \in F(\mathbf{h})} \prod_{i=1}^{s} g_i^{h'_i} (r - g_i)^{1-h'_i} = \sum_{j \in [t] \setminus a(\mathbf{h})} \frac{g_j}{r - g_j}. \tag{1}
\]

Claim 1. \(\sum_{j \in [t] \setminus a(\mathbf{h})} \frac{g_j}{r - g_j} \geq q - p_r.\)

Suppose that \(\sum_{j \in [t] \setminus a(\mathbf{h})} \frac{g_j}{r - g_j} < q - p_r.\) Let \(Q_0 = \min_{i \in [t]} \{g_i\}.\) Thus, \(\sum_{j \in [t] \setminus a(\mathbf{h})} \frac{g_j}{r - q_0} < q - p_r\) and therefore \(\sum_{j \in [t] \setminus a(\mathbf{h})} g_j < (r - Q_0)(q - p_r).\) On the other hand, \(\sum_{j \in [t]} g_j = \sum_{j \in [s]} g_j + r p_r = \sum_{j \in [t] \setminus a(\mathbf{h})} g_j + \sum_{j \in a(\mathbf{h})} g_j + r p_r.\) Hence, \(\sum_{j \in [t] \setminus a(\mathbf{h})} g_j = \sum_{j \in [s]} g_j - \sum_{j \in a(\mathbf{h})} g_j - r p_r\) which implies that

\[(r - Q_0)(q - p_r) > \sum_{j \in [s]} g_j - \sum_{j \in a(\mathbf{h})} g_j - r p_r\]

and therefore, after some easy calculation, we see that \(\sum_{j \in a(\mathbf{h})} g_j = q - p_r,\) it follows that

\[\sum_{j \in [s]} g_j - \sum_{j \in a(\mathbf{h})} g_j - r p_r \geq g_j.\]

Let \(Q_1 = \max\{g_i : i \in [t]\}.\) Since \(|a(\mathbf{h})| = q - 1 - p_r,\) it follows that

\[rq + Q_1(q - 1 - p_r) - Q_0(q - pr) \geq \sum_{j \in [s]} g_j.\]

Since \(\Gamma \geq Q_1 \geq Q_0 \geq \gamma \) and \(p_r \geq 0,\) we see that

\[Q_1(q - 1 - p_r) - Q_0(q - pr) \leq \Gamma(q - 1 - p_r) - \gamma(q - pr) = \Gamma(q - 1) - \gamma q - \gamma q = \Gamma(q - 1) - \gamma q.\]

Thus,

\[rq + \Gamma(q - 1) - \gamma q = q(r + \Gamma - \gamma) - \Gamma > \sum_{j \in [s]} g_j\]

which, by hypothesis, is not possible and the claim follows.

From Claim 1 and (1) it follows that for each \(\mathbf{h} = (h_1, \ldots, h_s) \in H^s_{q - 1}\)

\[\sum_{\mathbf{h} \in F(\mathbf{h})} \prod_{i=1}^{s} g_i^{h'_i} (r - g_i)^{1-h'_i} \geq (q - p_r) \prod_{i=1}^{s} g_i^{h'_i} (r - g_i)^{1-h'_i}. \tag{2}\]
Observe that, for every $h' \in \mathcal{H}_q$, $|\{ j : h'_j = 1 \text{ with } j \in [t]\}| = q - p_r$. Therefore, for every $h' \in \mathcal{H}_q$ there are exactly $q - p_r$ elements $h \in \mathcal{H}_{q-1}$ such that, $h' \in F(h)$. Thus,

$$
\sum_{h \in \mathcal{H}_{q-1}} \left(\sum_{h' \in F(h)} \prod_{i=1}^{s} g_i^{h'_i}(r - g_i)^{1-h'_i} \right) = (q - p_r) \sum_{h' \in \mathcal{H}_q} \prod_{i=1}^{s} g_i^{h'_i}(r - g_i)^{1-h'_i}.
$$

On the other hand, by (2) we see that

$$
\sum_{h \in \mathcal{H}_{q-1}} \left(\sum_{h' \in F(h)} \prod_{i=1}^{s} g_i^{h'_i}(r - g_i)^{1-h'_i} \right) \geq \sum_{h \in \mathcal{H}_{q-1}} (q - p_r) \prod_{i=1}^{s} g_i^{h'_i}(r - g_i)^{1-h_i}
$$

implying that

$$
\sum_{h' \in \mathcal{H}_q} \prod_{i=1}^{s} g_i^{h'_i}(r - g_i)^{1-h'_i} \geq \sum_{h \in \mathcal{H}_{q-1}} \prod_{i=1}^{s} g_i^{h'_i}(r - g_i)^{1-h_i}
$$

which, by definition, is equivalent to $M(g_1, \ldots, g_s; q) \geq M(g_1, \ldots, g_s; q - 1)$ and the lemma follows. ■

Corollary 1. Let $r \geq 2$, $c \geq 3$ and $G_{r,c}$ be a balance c-partite tournament such that for some $q \geq 1$, $\delta(G_{r,c}) \geq q(r + \mu(G_{r,c}))$. Then, for every $x \in V(G_{r,c})$ the number of maximal tournaments in which x has out-degree q is at least equal to the number of maximal tournaments in which x has out-degree $q - 1$.

The following theorem gives a condition regarding the minimum degree and the local partite irregularity to obtain a bound of $T^+_q(x)$.

Theorem 2. Let $r \geq 2$, $c \geq 5$ and $G_{r,c}$ be a balance c-partite tournament such that for some $q \geq 0$, $\delta(G_{r,c}) \geq q(r + \mu(G_{r,c})) \left(\frac{1}{c-2} \right)$. Then, for every $x \in V(G_{r,c})$,

$$
T^+_q(x) \leq \sum_{k=0}^{q} \binom{c-1}{k} \left(\frac{d^+(x)}{c-1} \right)^k \left(\frac{d^-(x)}{c-1} \right)^{c-1-k}.
$$

Proof. Let $x \in V(G_{r,c})$, and suppose $x \in V_c$. By Lemma 1, we see that

$$
T^+_q(x) = \sum_{k=0}^{q} \sum_{h \in \mathcal{H}_k(x)} \prod_{i=1}^{c-1} d_i^+(x)^{h_i} d_i^-(x)^{1-h_i} = \sum_{k=0}^{q} M(d_1^+(x), \ldots, d_{c-1}^+(x); k).
$$

For each i, with $i \in [c-1]$, let $g_i = d_i^+(x)$, and assume that $g_{c-1} = \max\{g_i\}_{i \in [c-1]} = \Gamma$ and $g_{c-2} = \min\{g_i\}_{i \in [c-1]} = \gamma$. Let $g'_1, g'_2, \ldots, g'_{s-1}, g'_s$ be real numbers such that, for $i \in [c-3]$, $g'_{i} = g_i$; and $g'_{c-2} = g'_{c-1} = \frac{g_{c-2} + g_{c-1}}{2}$.

6
Claim 2. $\sum_{k=0}^{q} M(g_1, \ldots, g_{c-1}; k) \leq \sum_{k=0}^{q} M(g'_1, \ldots, g'_{c-1}; k)$.

If $q = 0$, $\sum_{k=0}^{q} M(g_1, \ldots, g_{c-1}; 0) = \prod_{i=1}^{c-1} (r - g_i)$. Since $(r - g_{c-2})(r - g_{c-1}) \leq (r - \frac{g_{c-2} + g_{c-1}}{2})^2$, the claim follows. Assume that $q \geq 1$. For the sake of readability, in what follows, g_1, \ldots, g_{c-1} and g_1, \ldots, g_{c-3} can be denoted as g_{c-1} and g_{c-3}, respectively. Observe that

$$M(g_{c-1}; 0) = M(g_{c-3}; 0)M(g_{c-2}, g_{c-1}; 0);$$

$$M(g_{c-1}; 1) = M(g_{c-3}; 1)M(g_{c-2}, g_{c-1}; 0) + M(g_{c-3}; 0)M(g_{c-2}, g_{c-1}; 1)$$

and for every $k \geq 2$,

$$M(g_{c-1}; k) = \sum_{j=0}^{2} M(g_{c-3}; k - j)M(g_{c-2}, g_{c-1}; j).$$

Therefore, for $q = 1$,

$$\sum_{k=0}^{1} M(g_{c-1}; k) = M(g_{c-3}; 0)[M(g_{c-2}, g_{c-1}; 0) + M(g_{c-2}, g_{c-1}; 1)] + M(g_{c-3}; 1)M(g_{c-2}, g_{c-1}; 0);$$

and for $q \geq 2$,

$$\sum_{k=0}^{q} M(g_{c-1}; k) = \sum_{k=0}^{q-2} M(g_{c-3}; k)[M(g_{c-2}, g_{c-1}; 0) + M(g_{c-2}, g_{c-1}; 1) + M(g_{c-2}, g_{c-1}; 2)] + M(g_{c-3}; q - 1)[M(g_{c-2}, g_{c-1}; 0) + M(g_{c-2}, g_{c-1}; 1)] + M(g_{c-3}; q)M(g_{c-2}, g_{c-1}; 0).$$

It is not hard to see that for any pair of reals $0 \leq x, y \leq r$, $M(x, y; 0) = (r - x)(r - y)$; $M(x, y; 1) = r(x + y) - 2xy$ and $M(x, y; 2) = xy$. Therefore, $M(x, y; 2) + M(x, y; 1) + M(x, y; 0) = r^2$. Since for $i \in [c - 3]$, $g'_i = g_i$ and $g_{c-2} + g_{c-1} = g'_{c-2} + g'_{c-1}$, we have, after some easy calculations, that

$$\sum_{k=0}^{q} M(g'_{c-1}; k) - \sum_{k=0}^{q} M(g_{c-1}; k) = M(g_{c-3}; q - 1)[g_{c-2}g_{c-1} - g'_{c-2}g'_{c-1}] + M(g_{c-3}; q)[g'_{c-2}g'_{c-1} - g_{c-2}g_{c-1}] = \left(g'_{c-2}g'_{c-1} - g_{c-2}g_{c-1}\right)[M(g_{c-3}; q) - M(g_{c-3}; q - 1)].$$
Since \(g_{c-2} g'_{c-1} \geq g_{c-2} g_{c-1} \), it follows that \(\sum_{k=0}^{q} M(g_{c-1}; k) \leq \sum_{k=0}^{q} M(g'_{c-1}; k) \) if and only if \(M(g_{c-3}; q - 1) \leq M(g'_{c-3}; q) \).

Since \(\sum_{i \in [c-1]} g_i = d^+(x) \geq \delta(G_{r,c}) \geq q\left(r + \mu(G_{r,c})\right)\left(\frac{c-1}{2}\right) \), it follows that \(d^+(x)\left(\frac{c-2}{c-1}\right) = d^+(x) - \frac{d^+(x)}{c-1} \geq (r + \mu(G_{r,c})) \). Therefore, \(d^+(x) \geq (r + \mu(G_{r,c})) + \frac{d^+(x)}{c-1} \). On the one hand, clearly \(\gamma \leq \frac{d^+(x)}{c-1} \) and by definition \(\mu(G_{r,c}) \geq \Gamma - \gamma \). It follows that \(d^+(x) = \sum_{i \in [c-1]} g_i \geq q(r + \Gamma - \gamma) + \gamma \).

Since \(g_{c-1} = \Gamma \) and \(g_{c-2} = \gamma \), we see that \(\sum_{i \in [c-3]} g_i \geq q(r + \Gamma - \gamma) - \Gamma \). On the other hand, observe that \(\Gamma \geq \Gamma' = \max\{g_i\}_{i \in [c-3]} \) and \(\gamma \leq \gamma' = \min\{g_i\}_{i \in [c-3]} \). Since \(q \geq 1 \), it follows that \(q(r + \Gamma - \gamma) - \Gamma \geq q(r + \Gamma' - \gamma') - \Gamma' \) which implies that \(\sum_{i \in [c-3]} g_i \geq q(r + \Gamma' - \gamma') - \Gamma' \).

Hence, by Lemma 1, \(M(g_{c-3}; q - 1) \leq M(g'_{c-3}; q) \), and from here the claim follows.

Observe that \(\Gamma \geq \Gamma' = \max\{g_i'\}_{i \in [c-1]} \) and \(\gamma \leq \gamma' = \min\{g_i'\}_{i \in [c-1]} \). Since \(\sum_{i \in [c-1]} g_i = \sum_{i \in [c-1]} g_i' \) it follows that \(\sum_{i \in [c-1]} g_i' \geq q(r + \Gamma' - \gamma')(\frac{c-1}{c-2}) \), and clearly \(0 \leq g_i' \leq r \). Hence, we can iterate this procedure, and by the way \(g_{c-2}' \) and \(g_{c-1}' \) are defined, we see that the limit of the difference \(\Gamma' - \gamma' \) by iterating this procedure is zero. Thus, by Claim 2, it follows that \(T_q^+(x) \) is bounded by \(\sum_{k=0}^{q} M\left(\frac{d^+(x)}{c-1}, \ldots, \frac{d^+(x)}{c-1}; k\right) \). Finally, by definition, for each \(k \in [q] \),

\[
M\left(\frac{d^+(x)}{c-1}, \ldots, \frac{d^+(x)}{c-1}; k\right) = \sum_{h \in \mathcal{H}_{c-1}^k} \prod_{i=1}^{\cdot} \left(\frac{d^+(x)}{c-1}\right)^{h_i} \left(\frac{c-1}{c-1} - \frac{d^+(x)}{c-1}\right)^{1-h_i} = \sum_{h \in \mathcal{H}_{c-1}^k} \left(\frac{d^+(x)}{c-1}\right)^{k} \left(\frac{c-1}{c-1} - \frac{d^+(x)}{c-1}\right)^{c-1-k} = \left(\frac{c-1}{k}\right) \left(\frac{d^+(x)}{c-1}\right)^{k} \left(\frac{c-1}{c-1} - \frac{d^+(x)}{c-1}\right)^{c-1-k},
\]

and it is not hard to see that \(r - \frac{d^+(x)}{c-1} = \frac{d^-(x)}{c-1} \). From here the result follows. \(\blacksquare \)

The following theorem gives a condition regarding the minimum degree; the local partite irregularity and the global irregularity to obtain a bound of \(T_q^+(x) \).

Theorem 3. Let \(r \geq 2, c \geq 5 \) and \(G_{r,c} \) be a balance \(c \)-partite tournament. If for some \(q \geq 0, \delta(G_{r,c}) \geq q(r + \mu(G_{r,c}))\left(\frac{c-1}{2}\right) \) and \(i_q(G_{r,c}) = r(c - 1)\beta \) with \(0 \leq \beta < \frac{c-2q-2}{c} \), then for every \(x \in V(G_{r,c}) \) we have that

\[
T_q^+(x) \leq \left(\frac{c-1}{q+1}\right) \left(\frac{r}{2}\right)^{c-1} \left(1 + \beta\right)^{c-2-2q} (q+1) \frac{c(1-\beta) - 2q - 2}{c(1-\beta) - 2q - 2}.
\]
Proof. Let \(x \in V(G_{r,c}) \). By Theorem 2, it follows that

\[
T^+_q(x) \leq \sum_{k=0}^q \binom{c-1}{k} \left(\frac{d^+(x)}{c-1} \right)^k \left(\frac{d^-(x)}{c-1} \right)^{c-1-k}.
\]

(3)

Observe that

\[
\sum_{k=0}^q \binom{c-1}{k} \left(\frac{d^+(x)}{c-1} \right)^k \left(\frac{d^-(x)}{c-1} \right)^{c-1-k} = \left(\frac{d^+(x)}{c-1} \right)^c \sum_{k=0}^q \binom{c-1}{k} \left(\frac{d^+(x)}{d^-(x)} \right)^k.
\]

For every \(q \), with \(0 \leq q \leq c-1 \), let \(g(q) = \sum_{k=0}^q \binom{c-1}{k} \left(\frac{d^+(x)}{d^-(x)} \right)^k \). Observe that for \(q < c-1 \),

\[
g(q) = 1 + \sum_{k=1}^{q+1} \binom{c-1}{k} \left(\frac{d^+(x)}{d^-(x)} \right)^k = 1 + \sum_{k=0}^{q+1} \binom{c-1}{k} \left(\frac{d^+(x)}{d^-(x)} \right)^k
\]

\[
= 1 + \left(\frac{d^+(x)}{d^-(x)} \right) \sum_{k=0}^{q+1} \binom{c-1}{k} \frac{d^+(x)}{d^-(x)}
\]

\[
> \left(\frac{d^+(x)}{d^-(x)} \right) \left(\frac{c-1-q}{q+1} \right) g(q).
\]

On the other hand, \(g(q+1) = g(q) + \binom{c-1}{q+1} \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1} \). Therefore

\[
g(q) + \left(\frac{c-1}{q+1} \right) \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1} > \left(\frac{d^+(x)}{d^-(x)} \right) \left(\frac{c-1-q}{q+1} \right) g(q)
\]

which implies that

\[
\left(\frac{c-1}{q+1} \right) \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1} > \left(\frac{d^+(x)}{d^-(x)} \right) \left(\frac{c-1-q}{q+1} \right) - 1 \right) g(q).
\]

(4)

Clearly, \(\frac{d^+(x)}{d^-(x)} \geq \frac{\delta(G_{r,c})}{\Delta(G_{r,c})} \) and since \(\Delta(G_{r,c}) = \frac{r(c+1)\beta(G_{r,c})}{2} \), \(\delta(G_{r,c}) = \frac{r(c-1)\beta(G_{r,c})}{2} \), and \(\beta(G_{r,c}) = r(c-1)\beta \), it is not hard to see that \(\frac{\delta(G_{r,c})}{\Delta(G_{r,c})} = \frac{1-\beta}{1+\beta} \). Moreover, since \(\beta < \frac{c-2q-2}{c} \), it follows that \(\frac{1-\beta}{1+\beta} > \frac{2q+2}{2c-2q-2} = \frac{q+1}{c-q-1} \). Therefore \(\frac{\frac{1-\beta}{1+\beta} \left(\frac{c-1-q}{q+1} \right) - 1}{1-(\beta)(c-1-q)_{(1+\beta)(q+1)}} \frac{c(1-\beta)-2q-2}{(1+\beta)(q+1)} > 0 \). Hence, by (4),

\[
\left(\frac{c-1}{q+1} \right) \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1} > \left(\frac{c(1-\beta)-2q-2}{(1+\beta)(q+1)} \right) g(q)
\]
and then
\[
\left(\frac{c+1}{d-1} \right)^{c+1} \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1} \frac{(1+\beta)(q+1)}{c(1-\beta)-2q-2} > g(q).
\]

Therefore, it follows that, for \(q < c-1 \),
\[
\sum_{k=0}^{q} \binom{c-1}{k} \left(\frac{d^+(x)}{c-1} \right)^{k} \left(\frac{d^-(x)}{c-1} \right)^{c-1-k} = \left(\frac{d^-(x)}{c-1} \right)^{c-1} \sum_{k=0}^{q} \binom{c-1}{k} \left(\frac{d^+(x)}{d^-(x)} \right)^{k}
\]
\[
= \left(\frac{d^-(x)}{c-1} \right)^{c-1} g(q)
\]
\[
< \left(\frac{d^-(x)}{c-1} \right)^{c-1} \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1} \frac{(1+\beta)(q+1)}{c(1-\beta)-2q-2}.
\]

Thus, by (3),
\[
T^+_q(x) < \left(\frac{d^-(x)}{c-1} \right)^{c-1} \left(\frac{d^+(x)}{q+1} \right) \frac{d^+(x)}{d^-(x)} \frac{(1+\beta)(q+1)}{c(1-\beta)-2q-2}.
\]

Finally, observe that
\[
\left(\frac{d^-(x)}{c-1} \right)^{c-1} \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1} = \left(\frac{d^-(x)}{c-1} \right)^{c-1} \left(\frac{d^+(x)}{c-1} \right)^{q+1} \left(\frac{d^-(x)}{d^-(x)} \right)^{q+1}
\]
\[
= \left(\frac{d^-(x)}{c-1} \right)^{c-1-2q-2} \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1}.
\]

On the one hand, since \(d^+(x) + d^- (x) = r(c-1) \), it follows that \(\frac{d^+(x)d^-(x)}{(c-1)^2} \leq \frac{r^2(c-1)^2}{4(c-1)^2} = \frac{r^2}{4} \) and therefore \(\left(\frac{d^+(x)d^-(x)}{(c-1)^2} \right)^{q+1} \leq \left(\frac{r}{2} \right)^{2q+2} \).

On the other hand, \(d^- (x) \leq \Delta(G_{r,c}) = \frac{r(c-1)+\beta}{2} = \frac{r(c-1)+r(c-1)\beta}{2} = \frac{r(c-1)(1+\beta)}{2} \) and therefore \(\left(\frac{d^-(x)}{c-1} \right)^{c-1-2q-2} \leq \left(\frac{r(1+\beta)}{2} \right)^{c-1-2q-2} \). Thus,
\[
\left(\frac{d^-(x)}{c-1} \right)^{c-1} \left(\frac{d^+(x)}{d^-(x)} \right)^{q+1} \leq \left(\frac{r}{2} \right)^{2q+2} \left(\frac{r}{2} \right)^{c-1-2q-2} (1+\beta)^{c-1-2q-2} = \left(\frac{r}{2} \right)^{c-1} (1+\beta)^{c-1-2q-2}
\]

and from here, the result follows. \(\square \)

4. Maximal strong subtournament with minimum degree at most \(\left\lfloor \frac{c-2}{4} \right\rfloor + 1 \)

Recall that if \(T \) is a tournament of order \(c \) such that \(\delta(T) \geq \left\lfloor \frac{c-2}{4} \right\rfloor + 1 \), then \(T \) is strong. As an application of Theorem 3, we give sufficient conditions for the existence of a maximal strong subtournament with minimum degree at most \(\left\lfloor \frac{c-2}{4} \right\rfloor + 1 \), in a balanced \(c \)-partite tournament.
Theorem 4. Let $G_{r,c}$ be a balanced c-partite tournament, with $r \geq 2$, such that $\delta(G_{r,c}) \geq \lfloor \frac{c-2}{4} \rfloor (r + \mu(G_{r,c}))(\frac{c-1}{c-2})$. Then $G_{r,c}$ contains a strong connected tournament T of order c such that $\delta(T) \geq \lfloor \frac{c-2}{4} \rfloor + 1$, whenever

i) $i_g(G_{r,c}) \leq \frac{r}{2}$ and $c \geq 13$, except for 14, 15, and 18.

ii) $i_g(G_{r,c}) \leq r$ and $c \geq 17$, except for 18, 19, and 22.

iii) $i_g(G_{r,c}) \leq \frac{3r}{2}$ and $c \geq 21$, except for 22, 23, and 26.

Proof. In order to prove this theorem, we first show the following.

Claim 3. Let $r \geq 2$ and $c \geq 5$. For every balanced c-partite tournament $G_{r,c}$ with $\delta(G_{r,c}) \geq \lfloor \frac{c-2}{4} \rfloor (r + \mu(G_{r,c}))(\frac{c-1}{c-2})$ and $i_g(G_{r,c}) \leq \frac{\alpha r}{2}$ ($\alpha \geq 0$), if

$$2^{c-2} > \left(\frac{c-1}{\lfloor \frac{c-2}{4} \rfloor + 1} \right) (\frac{2c-2+\alpha}{2c-2})^{\frac{c-2-2\lfloor \frac{c-2}{4} \rfloor}{4}} \frac{(\lfloor \frac{c-2}{4} \rfloor + 1)c}{c(\frac{2c-2+\alpha}{2c-2}) - 2[\frac{c-2}{4}] - 2}$$

then $G_{r,c}$ contains a strong connected tournament T of order c such that $\delta(T) \geq \lfloor \frac{c-2}{4} \rfloor + 1$.

Let $G_{r,c}$ be a balanced c-partite tournament as in the statement of the claim, and suppose there is no tournament T of order c in $G_{r,c}$ such that $\delta(T) \geq \lfloor \frac{c-2}{4} \rfloor + 1$. Thus, each of those tournaments has minimal degree at most $\lfloor \frac{c-2}{4} \rfloor$, and since there are r^c tournaments of order c in $G_{r,c}$, it follows that

$$\sum_{x \in V(G_{r,c})} (T^+_{\lfloor \frac{c-2}{4} \rfloor}(x) + T^-_{\lfloor \frac{c-2}{4} \rfloor}(x)) \geq r^c.$$

Since $|V(G_{r,c})| = rc$, by Theorem 3, we see that

$$\left(2rc\right) \left(\frac{c-1}{\lfloor \frac{c-2}{4} \rfloor + 1} \right) \left(\frac{r}{2} \right)^{c-1} \frac{\left(1 + \frac{i_g(G_{r,c})}{r(c-1)}\right)^{c-2-2\lfloor \frac{c-2}{4} \rfloor} \left(\lfloor \frac{c-2}{4} \rfloor + 1\right)}{c(1 - \frac{i_g(G_{r,c})}{r(c-1)}) - 2[\frac{c-2}{4}] - 2} \geq r^c,$$

and since $i_g(G_{r,c}) \leq \frac{\alpha r}{2}$, it follows that $\frac{i_g(G_{r,c})}{r(c-1)} \leq \frac{\alpha}{2(c-1)}$; $1 + \frac{i_g(G_{r,c})}{r(c-1)} \leq \frac{2c-2+\alpha}{2c-2}$ and $1 - \frac{i_g(G_{r,c})}{r(c-1)} \geq \frac{2c-2-\alpha}{2c-2}$. Thus,

$$\left(2rc\right) \left(\frac{c-1}{\lfloor \frac{c-2}{4} \rfloor + 1} \right) \left(\frac{r}{2} \right)^{c-1} \frac{\left(\frac{2c-2+\alpha}{2c-2}\right)^{c-2-2\lfloor \frac{c-2}{4} \rfloor} \left(\lfloor \frac{c-2}{4} \rfloor + 1\right)}{c(\frac{2c-2+\alpha}{2c-2}) - 2[\frac{c-2}{4}] - 2} \geq r^c.$$
Multiplying both sides of the inequality by \(\frac{2^{c-1}}{2^r}\left(\frac{1}{2r}\right)\), we obtain that

\[
\frac{c}{\left\lceil \frac{c-2}{4} \right\rceil + 1}\left(\frac{2c-2+\alpha}{2c-2}\right)\frac{e^{2-2\left\lceil \frac{c-2}{4} \right\rceil} \left(\left\lfloor \frac{c-2}{4} \right\rfloor + 1\right)}{c\left(\frac{2c-2-\alpha}{2c-2}\right) - 2\left\lfloor \frac{c-2}{4} \right\rfloor - 2} \geq 2^{c-2}
\]

and from here the claim follows.

Let \(f_\alpha(c) = \left(\frac{c-1}{\left\lceil \frac{c-2}{4} \right\rceil + 1}\right)\left(\frac{2c-2+\alpha}{2c-2}\right)\frac{e^{2-2\left\lceil \frac{c-2}{4} \right\rceil} \left(\left\lfloor \frac{c-2}{4} \right\rfloor + 1\right)}{c\left(\frac{2c-2-\alpha}{2c-2}\right) - 2\left\lfloor \frac{c-2}{4} \right\rfloor - 2} \) and \(g(c) = 2^{c-2} \). Notice that for \(0 \leq \alpha \leq \alpha' \), for every \(c \geq 2 \), \(f_\alpha(c) \leq f_{\alpha'}(c) \).

If \(i_g(G_{r,c}) \leq \frac{r}{2} \), it follows that \(\alpha \leq 1 \) and it is not hard to see that \(f_1(c) < g(c) \) whenever \(c \in \{13, 16, 19, 22\} \). Analogously, if \(i_g(G_{r,c}) \leq r \), then \(\alpha \leq 2 \) and \(f_2(c) < g(c) \) whenever \(c \in \{17, 20, 23, 26\} \); and if \(i_g(G_{r,c}) \leq \frac{3r}{2} \), then \(\alpha \leq 3 \) and \(f_3(c) < g(c) \) whenever \(c \in \{21, 24, 27, 30\} \).

To end the proof, we just need to show that, for \(\alpha \in \{1, 2, 3\} \), if for some \(c \geq 13 \) we have that \(f_\alpha(c) < g(c) \), then \(f_\alpha(c + 4) < g(c + 4) \). For this we show that \(\frac{g(c+4)}{f_\alpha(c)} \leq \frac{g(c+4)}{g(c)} \). Clearly, for every \(c \geq 13 \), \(\frac{g(c+4)}{g(c)} = 16 \). On the other hand, it is not difficult to see that, for every \(c \geq 13 \),

\[
\left(\frac{2c+6+\alpha}{2c+6}\right)^2 \leq \frac{6}{5}.
\]

and using a solver, it is possible to verify that, for \(c \geq 13 \),

\[
\left(\frac{\left\lceil \frac{c+4}{4} \right\rceil + 1\left\lfloor \frac{c+4}{4} \right\rfloor + 1\left(\frac{c+4}{4}\right) + 1\left(\frac{c+4}{4}\right)}{\left\lceil \frac{c-2}{4} \right\rceil + 1\left\lfloor \frac{c-2}{4} \right\rfloor + 1\left(\frac{c-2}{4}\right) + 1\left(\frac{c-2}{4}\right)}\right) \leq \frac{32}{3}.
\]

Thus, for \(c \geq 13 \), \(\frac{f_\alpha(c+4)}{f_\alpha(c)} \leq \left(\frac{6}{5}\right)^2 \leq 16 = \frac{g(c+4)}{g(c)} \) and the result follows.

As we can observe from the proof of Claim 3, it is possible to obtain analogous results to Theorem 4 for greater values of global irregularity.
References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2001.

[2] A.P. Figueroa, J.J. Montellano Ballesteros, M. Olsen, Strong subtournaments and cycles of multipartite tournaments, Discrete Math. 339 (2016), 2793–2803.

[3] L. Volkmann, Multipartite tournaments: A survey, Discrete Math. 307 (2007), 3097–3129.

[4] L. Volkmann, Strong subtournaments of multipartite tournaments, Australas J. Combin. 20 (1999), 189–196.

[5] L. Volkmann, S. Winzen, Almost regular c-partite tournaments contain a strong sub-tournament of order c when c ≥ 5, Discrete Math. 308 (2008), 1710–1721.

[6] G. Xu, S. Li, H. Li, Q. Guo, Strong subtournaments of order image containing a given vertex in regular c-partite tournaments with c ≥ 16, Discrete Math. 311 (2011), 2272–2275.