Heteronanostructural metal oxide-based gas microsensors

Lin Liu¹, Yingyi Wang¹,², Yinhang Liu¹,³, Shuqi Wang¹, Tie Lio, Simin Feng¹, Simin Feng¹, Sujie Qin²,³ and Ting Zhang¹,⁴,⁵,⁶,⁷

Abstract
The development of high-performance, portable and miniaturized gas sensors has aroused increasing interest in the fields of environmental monitoring, security, medical diagnosis, and agriculture. Among different detection tools, metal oxide semiconductor (MOS)-based chemiresistive gas sensors are the most popular choice in commercial applications and have the advantages of high stability, low cost, and high sensitivity. One of the most important ways to further enhance the sensor performance is to construct MOS-based nanoscale heterojunctions (heteronanostructural MOSs) from MOS nanomaterials. However, the sensing mechanism of heteronanostructural MOS-based sensors is different from that of single MOS-based gas sensors in that it is fairly complex. The performance of the sensors is influenced by various parameters, including the physical and chemical properties of the sensing materials (e.g., grain size, density of defects, and oxygen vacancies of materials), working temperatures, and device structures. This review introduces several concepts in the design of high-performance gas sensors by analyzing the sensing mechanism of heteronanostructural MOS-based sensors. In addition, the influence of the geometric device structure determined by the interconnection between the sensing materials and the working electrodes is discussed. To systematically investigate the sensing behavior of the sensor, the general sensing mechanism of three typical types of geometric device structures based on different heteronanostructural materials are introduced and discussed in this review. This review will provide guidelines for readers studying the sensing mechanism of gas sensors and designing high-performance gas sensors in the future.

Introduction
Air pollution is becoming a growing concern and a serious worldwide environmental problem that threatens the wellbeing of humans and organisms. Inhalation of gas pollutants can cause many health problems, such as respiratory disease, lung cancer, leukemia, and even early death¹–⁴. It is reported that from 2012 to 2016, millions of people died from air pollution, and billions of people face poor air quality every year⁵. Therefore, it is important to develop portable and miniaturized gas sensors that can provide real-time feedback and high sensing performance (e.g., sensitivity, selectivity, stability, and response and recovery time). In addition to environmental monitoring, gas sensors also play a crucial role in security⁶–⁹, medical diagnosis⁹,¹⁰, aquaculture¹¹, and other fields¹².

To date, several types of portable gas sensors based on different sensing mechanisms, such as optical¹³–¹⁸, electrochemical¹⁹–²², and chemiresistive sensors²³,²⁴, have been made available. Among them, metal oxide semiconductor (MOS)-based chemiresistive sensors are the most popular in commercial applications due to their high stability and low cost²⁵,²⁶. The concentration of pollutants can be obtained by simply detecting changes in the resistance of MOSs. At the beginning of the 1960s, the first chemiresistive gas sensor based on ZnO film was reported, and it aroused great interest in the field of gas sensing²⁷,²⁸. To date, many different MOSs have been used as gas sensing materials, and they can be divided into two classes according to their physical properties: n-type...
MOSs where electrons are the majority charge carriers and p-type MOSs where holes are the majority charge carriers. Normally, p-type MOSs are less popular than n-type MOSs because the sensing response of a p-type MOS \((S_p) \) is proportional to the square root of an n-type MOS \((S_n) \) under the same presumptions (e.g., same morphological configurations and same band bending changes in the air)\(^{29,30}\). However, the practical applications of single MOS-based sensors still encounter some issues, such as insufficient detection limit and poor sensitivity and selectivity. The selectivity issue can be addressed to some degree by constructing sensor arrays, known as "electronic noses", and by combining computational analysis algorithms such as learning vector quantization (LVQ), principal component analysis (PCA), and partial least squares (PLS) analysis\(^{31–35}\). In addition, fabrication of low-dimensional MOS\(^{32,36–39}\) (e.g., one-dimensional (1D), 0D and 2D nanomaterials) and modification of backbone MOSs with other nanomaterials (e.g., MOSs\(^{40–42}\), noble metal nanoparticles (NPs)\(^{43,44}\), carbon nanomaterials\(^{45,46}\), and conducting polymers\(^{47,48}\)) to construct nanoscale heterojunctions (i.e., heterostructural MOSs) are the other preferred approaches to tackle the abovementioned issues. Compared with conventional thick MOS films, low-dimensional MOSs with large specific surface areas could provide more activation sites for gas adsorption and facilitate gas diffusion\(^{36,37,49}\). In addition, the design of MOS-based heterostructures can further modulate carrier transport at the heterointerface, leading to larger resistance changes due to the different working functions\(^{50–52}\). Moreover, some chemical effects (e.g., catalytic activity and synergistic surface reactions) originating from designing MOS heterostructures could also improve the sensor performance\(^{50,53,54}\). Although the design and construction of MOS-based heterostructures would be a promising approach to enhance the sensor performance, current chemiresistive sensors often use a trial-and-error type approach, which is time-consuming and inefficient. Therefore, it is important to understand the sensing mechanism of MOS-based gas sensors, as it can provide a guideline for the directional design of high-performance sensors.

In recent years, MOS-based gas sensors have undergone rapid development, and some review papers about MOS nanostructures\(^{55–57}\), room-temperature gas sensors\(^{58,59}\), specific MOS sensing materials\(^{60–62}\), and specific gas sensors\(^{63}\) have been reported. Other reviews have focused on elucidating the sensing mechanism of gas sensors according to the intrinsic physical and chemical properties of the MOSs, including the role of oxygen vacancies,\(^{64}\), the role of heterostructure,\(^{55,65}\), and charge transfer at the heterointerface\(^{66}\). Moreover, the sensor performance is also influenced by various other parameters, including heterostructure, grain size, operation temperature, defect density, oxygen vacancy, and even the exposed crystal facet of the sensing materials\(^{25,67–73}\). However, the geometric device structure determined by the interconnection between the sensing materials and the working electrodes, which is seldom mentioned, can also significantly affect the sensing behavior of the sensor\(^{74–76}\) (more details are provided in Section 3). For example, Kumar et al.\(^{77}\) reported two gas sensors based on the same materials (e.g., TiO\(_2@\)NiO and NiO@TiO\(_2\) bilayer-based gas sensors) and observed different resistance changes upon NH\(_3\) gases due to the different geometric structures of the devices. Therefore, it is important to consider the device structure when analyzing the gas sensing mechanism. In this review, the authors focus on the sensing mechanism based on different heterostructures of MOSs and the structures of the devices. We believe that this review could provide guidelines for readers who wish to understand and analyze the gas sensing mechanism, and it may facilitate the design of high-performance gas sensors in the future.

Basic sensing mechanism of a single material and enhancement sensing mechanism of a MOS heterostructure

Figure 1a illustrates the basic gas sensing mechanism model based on a single MOS. When the temperature increases, the adsorption of oxygen molecules (O\(_2\)) on the surface of MOS attracts electrons from MOS and forms an oxidation layer (Ox). Then, an electron-depletion layer (EDL) for an n-type MOS or a hole accumulation layer (HAL) for a p-type MOS is formed at the surface of the MOS\(^{15,23,78}\). The interaction between O\(_2\) and MOSs leads to upward bending of the MOS conduction band at the surface and forms a potential barrier. Later, when the sensor is exposed to target gases, the gases adsorbed on the surface of the MOS react with ionic oxygen species by attracting electrons (oxidizing gases) or donating electrons (reducing gases)\(^{79,80}\). The transfer of the electrons between the target gases and MOS can regulate the width of EDL or HAL\(^{30,81}\), resulting in a change in the overall resistance for the MOS-based sensors. For example, for reducing gases, the electrons will transfer from the reducing gases to the n-type MOS, leading to a decrease in EDL and a decrease in resistance, which is named n-type sensing behavior. In contrast, p-type sensing behavior is defined when a p-type MOS is exposed to the reducing gases, HAL will shrink and the resistance will increase due to the donated electrons. For oxidizing gases, the sensor response is opposite to that of reducing gases.

Except for the basic sensing mechanism, the gas sensing mechanisms involved in practical gas sensors are fairly complex. For instance, the practical use of gas sensors...
should meet many requirements (e.g., sensitivity, selectivity, and stability) depending on the users’ needs. These requirements are closely correlated with the physical and chemical properties of the sensing materials. For example, Xu et al. demonstrated that a SnO2-based sensor reached the highest sensitivity when the crystal diameter (d) was comparable to or less than twice the Debye length (λD) of SnO2. When d ≤ 2λD, the SnO2 is completely depleted after adsorption of O2 molecules, and the sensing response to the reducing gases is maximized. In addition, various other parameters can also influence the sensor performance, including working temperatures, crystal defects, and even the exposed crystal facets of the sensing materials. Sakai et al. simulated the sensing mechanism of a single MOS and discussed several factors that impact the MOS performance. In addition to these factors, gas sensors based on heterostructures can be largely improved by introducing foreign receptors (e.g., metal NPs and other MOSs). Transducer function refers to the ability to convert reactions between the gases and MOS surface into electrical signals, and this function is dominated by the grain boundary of MOSs. Therefore, the transducer function is significantly influenced by the grain size of MOSs and the density of foreign receptors. Katoch et al. reported that reducing the grain size of ZnO-SnO2 nanofibrils leads to the formation of a large number of heterojunctions and improves the sensor sensitivity, which is consistent with the transducer function. Wang et al. compared different Zn2GeO4 grain sizes and demonstrated that the sensor sensitivity increased by 6.5 times after grain boundaries were introduced. Utility is another key factor in the performance of the sensors that describes the accessibility of interior MOSs to gases. If the gas molecules cannot access and react with the interior MOSs, the sensor responsivity is reduced. Utility is closely related to the diffusion depth of a specific gas, which is dependent on the pore size of the sensing materials. Sakai et al. simulated the sensing response of sensors to combustion gases with respect to different diffusion depths of gases inside the sensing films and found that both the molecular weight of the gas and the pore radius of the sensing film can affect the sensor response. Through the above discussions, it is demonstrated that high-performance gas sensors can be designed by balancing and optimizing the receptor function, transducer function, and utility. The abovementioned works have elucidated the basic sensing mechanism of a single MOS and discussed several factors that impact the MOS performance. In addition to these factors, gas sensors based on heterostructures can
further improve the sensor performance by greatly enhancing the transducer function and receptor function. In addition, heteronanostructures can further improve the sensor performance by enhancing catalytic reactions, modulating charge transport, and providing more adsorption sites. To date, numerous MOS heteronanostructure-based gas sensors have been studied to discuss the enhancement sensing mechanism. Miller et al. summarized several of the most likely mechanisms responsible for enhancing the sensing performance of heteronanostructures, including surface-dependent, interface-dependent, and structure-dependent. Among them, the interface-dependent enhancement mechanism is too complicated to cover all interface interactions by one theory, as various heteronanostructural material-based sensors are available (e.g., n-n heterojunctions, p-n heterojunctions, p-p heterojunctions, and Schottky junctions). Generally, sensors based on heteronanostructural MOSs always involve more than two or three enhancement sensing mechanisms. The synergistic effects of these enhancement mechanisms can amplify the reception and transduction.

Table 1 Summary of the main factors that influence the sensor performance and relevant enhancement sensing mechanism

Main factors	Materials	Target gases	Response (ppm/value)	Enhancement sensing mechanism	Ref
Grain size	SnO₂	Butane	8219.2/8.09³	Smaller grain size induced large specific area, increased grain boundaries and volume deplletion (d ~ 2λa).	186
Zeolite/SnO₂	Formaldehyde	10/11³			187
ZnO	H₂S	0.05/0.142³			188
Pd@ZnO	H₂	10000~/-8.5³			170
In₂O₃	Formaldehyde	50~/-14³			189
SnO₂	H₂S	5/13000³			66
Fe₂O₃	Ethanol	100/14.5²	Relative larger grain size in fine grain films (d=0-20 nm) promotes gas diffusion.		190
SnO₂	CO	50/4.5²			191
Effects of Heterojunctions					
PdO@ZnO	Ethanol	100/35.4³	Heterojunction induces more active site; catalytic effect; modulation of conduction channel and carrier transportation etc.		192
Fe₂O₃@NiO	Acetone	100/29.0⁶			193
ZnO-Co₂O₄	Triethylamine	50/67.8⁶			194
ZnO-SnO₂-RGO	NO₂	5/141.0⁶			195
NiO@SnO₂	NO₂	100~/-4.4⁹			196
SnO₂-Co₂O₄	Toluene	1/18.7⁷²			98
CuO-In₂O₃	H₂S	5/229.3²			197
ZnO-Co₂O₄	Ethanol	100/106²			198
Density of defect					
ZnO	Acetone	5~/-66³	Increased donor defects provide more free electrons for forming active oxygen species.		199
ZnO	Ethanol	200/193.7⁹			200
Co/ZnO	Triethylamine	50/1020²			201
ZnO	Ethanol	100/47⁹			202
ZnO	Formaldehyde	200/227.4⁰			203
TiO₂	H₂	10/58⁴			204
Ce-Fe₂O₃	Acetone	100/26.3⁵			205
W₁₋₂O₃₋₁₋₀PANI	NH₃	100/50⁵			206
SnO₂	H₂	0.1/1.25⁷			207
Mo-SnO₂	Ethanol	100/46.8⁹			208
Tb- SnO₂	Ethanol	100/53.6⁹			209
Sb- SnO₂/ZnO	NO₂	1/9.5⁴			49
ZnO	CO	0.45/24.9⁴			210
SnO₂	Ethanol	100/24.9⁴			211
Bi₂MoO₆	NH₃	5/53.97⁶			212
Exposed crystal facet					
In₂O₃	Ethanol	1000/610³	The optimized exposed crystal facet could provide more oxygen vacancies and dangling bonds.		213
ZnO	Ethanol	50/80⁹			214
SnO₂	Formaldehyde	200/207.7⁷			215
CeO₂	Dimethylamine	100/14.2⁲			87
Co₃O₄	NO₂	0.3/0.16⁴	The optimized exposed crystal facet could provide more lattice oxygen to interact with gases.		216
SnO₂	Alkenes	50/40⁹			217
Au@SnO₂	Acetylene	100/77.5³	The optimized exposed crystal facet exhibits higher adsorption energy.		218

Table 1 Summary of the main factors that influence the sensor performance and relevant enhancement sensing mechanism

Main factors
- Grain size
- Effects of Heterojunctions
- Density of defect
- Exposed crystal facet

Materials
- SnO₂, Zeolite/SnO₂, ZnO, Pd@ZnO, In₂O₃, SnO₂, Fe₂O₃, etc.

Target gases
- Butane, Formaldehyde, H₂S, Ethanol, Toluene, etc.

Response (ppm/value)
- 8219.2/8.09³, 10/11³, 0.05/0.142³, 10000~/-8.5³, 50~/-14³, 5/13000³, 100/14.5², 50/4.5², etc.

Enhancement sensing mechanism
- Smaller grain size induced large specific area, increased grain boundaries and volume deplletion (d ~ 2λa).
- Heterojunction induces more active site; catalytic effect; modulation of conduction channel and carrier transportation etc.
- Increased donor defects provide more free electrons for forming active oxygen species.
- Increased oxygen vacancies provide more oxygen adsorption sites.
- The optimized exposed crystal facet could provide more oxygen vacancies and dangling bonds.
- The optimized exposed crystal facet could provide more lattice oxygen to interact with gases.
- The optimized exposed crystal facet exhibits higher adsorption energy.

Ref:
- 186
- 187
- 188
- 170
- 189
- 66
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 98
- 105
- 98
- 106
- 83
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 49
- 208
- 209
- 210
- 211
- 87
- 213
- 214
- 215

a: (Rg-Ra)/Ra b: Rg/Ra c: Ra/Rg d: (Rg-Ra)/Ra*100
of the sensor signal101. Therefore, understanding the sensing mechanism of sensors based on hetero-nanostructural materials is essential and can guide researchers in the bottom-up design of gas sensors according to their demands. In addition, the geometric device structure can also significantly affect the sensing behavior of the sensor74–76. To systematically analyze the sensing behavior of the sensor, the sensing mechanism of three types of device structures based on different hetero-nanostructural materials will be introduced and discussed in the following sections.

Three typical device structures and relevant sensing mechanisms

With the rapid development of MOS-based gas sensors, various hetero-nanostructural MOSs have been proposed. The charge transfer at the heterointerface depends on the different Fermi levels (E_F) of the components. At the heterointerface, the electrons move from one side with higher E_F to the other with lower E_F until their Fermi levels reach equilibrium, and vice versa for holes. Then, the carriers at the heterointerface are depleted and form a depletion layer. Once the sensor is exposed to target gases, the carrier concentration of hetero-nanostructural MOSs changes, as does the potential barrier height, which amplifies the detection signal. In addition, the various approaches to fabricating hetero-nanostructures lead to varied interconnections between the materials and electrodes, which produces different geometric device structures and leads to different sensing mechanisms. In this review, we propose three types of geometric device structures and discuss the sensing mechanism of each structure.

Definition of three types of device structures

Although the heterojunction plays a very important role in gas sensing performance, the geometric device structure of the whole sensor can also significantly affect the sensing behavior because the position of the conduction channel of the sensor greatly depends on the geometric device structure. Here, three typical types of geometric device structures based on MOS heterojunctions are discussed and shown in Fig. 2. In the first type, two MOS compounds are randomly distributed between two electrodes, and the position of the conduction channel is determined by the major MOS. In the second type, hetero-nanostructures are formed from different MOSs, while only one MOS is connected to the electrodes, and the conduction channel is normally located inside one MOS, which is directly connected to the electrodes. In the third type, two materials are connected to the two electrodes separately, and the device is channeled by the formed heterojunction between the two materials.

Sensing Mechanism of the Type-I Sensor Structure

For MOS composite-based gas sensors, two kinds of MOSs are randomly distributed between the electrodes. Many fabrication methods have been developed to obtain MOS composites, including sol-gel, coprecipitation, hydrothermal, electrospinning, and mechanical mixing methods98,102–104. Recently, metal–organic frameworks (MOFs), a class of porous crystalline framework-structured materials, which consist of a metal center and an organic linker, have been used as a template to fabricate porous MOS composites105–108. Notably, even though the composition percentages of MOS composites are the same, the sensing performance can be quite

Fig. 2 Three types of device structures. A hyphen between compounds (e.g., “SnO$_2$–NiO”) indicates that the two constituents are simply mixed (type-I). An “@” between two compounds (e.g., “SnO$_2$@NiO”) indicates that the backbone material (NiO) is decorated with SnO$_2$, which is used in the type-II sensor structure. A forward slash (e.g., “NiO/SnO$_2$”) represents the type-III sensor structure.
different when different fabrication processes are used109,110. For instance, Gao et al.109 prepared two sensors based on MoO\textsubscript{3}-SnO\textsubscript{2} composites with the same atomic ratio (Mo:Sn = 1:1.9) and found that different fabrication methods led to different responsivities. Shaposhnik et al.110 reported that the response of coprecipitated SnO\textsubscript{2}-TiO\textsubscript{2} to H\textsubscript{2} gases differs from that of the material formed by mechanical mixing, even though the Sn/Ti ratio was the same. This difference occurred because the interconnections between the MOSs and the crystallite size of the MOSs differ with various synthesis methods109,110. When the size and shape of the grains are uniform in terms of donor density and semiconductor type, the response results should remain the same if the contact geometry is unchanged110. Staerz et al.111 reported that the sensing performance of SnO\textsubscript{2}-Cr\textsubscript{2}O\textsubscript{3} core-shell nanofibers (CSNs) and crushed SnO\textsubscript{2}-Cr\textsubscript{2}O\textsubscript{3} CSNs are practically identical, indicating that the nanofiber morphology shows no advantages if the characteristics of the samples remain unchanged.

In addition to different fabrication methods, the semiconducting type of two different MOSs can also influence the sensing behavior of the sensors. This can be further classified into two categories depending on whether the two MOSs are of the same type of semiconductors (n-n or p-p composite) or different types (p-n composite). When the types of MOS composite-based gas sensors are the same, the sensing response behavior remains unchanged by varying the molar ratio of the two MOSs, while the sensitivity of the sensor changes as the number of n-n or p-p heterojunctions is different102. When one component dominates in the composites (e.g., 0.9 ZnO-0.1 SnO\textsubscript{2} or 0.1 ZnO-0.9 SnO\textsubscript{2}), the conduction channel is determined by the major MOS, which is called the homojunction conduction channel92. When the proportion of two components is comparable, the conduction channel is believed to be dominated by the heterojunction98,102. Yamazoe et al.112,113 reported that the heterocontact regions of two components could dramatically enhance the sensitivity of the sensor because the heterojunction potential barrier formed due to the different work functions of the components can efficiently tune the drift mobility of electrons when the sensor is exposed to different ambient gases102,113. Figure 3a shows that the sensors based on fibrous SnO\textsubscript{2}-ZnO hierarchical structures with different ZnO contents (0 to 10 mol\% Zn) can selectively detect ethanol114. Among them, the sensor based on the SnO\textsubscript{2}-ZnO fiber (7 mol\% Zn) exhibited the highest sensitivity due to the formation of a large number of heterojunctions and an increase in the specific surface area, which increased the transducer function and enhanced the sensitivity90. However, by further increasing the ZnO component to 10 mol\%, the microstructure of the SnO\textsubscript{2}-ZnO composites might wrap up the surface activation sites and reduce the sensing response85. A similar tendency can be observed for sensors based on NiO-NiFe\textsubscript{2}O\textsubscript{4} p-p heterojunction composites with different Fe/Ni ratios (Fig. 3b)114.

For the case of p-n MOS composites, they exhibit different sensing behaviors depending on the atomic ratio of MOSs115. Generally, the sensing behavior of MOS composites greatly depends on which MOS acts as the dominating conduction channel of the sensor. Therefore, it is very important to characterize the percentage composition and the nanostructure of the composites. Kim et al.98 verified this conclusion by synthesizing a series of composite xSnO\textsubscript{2}-(1-x)Co\textsubscript{3}O\textsubscript{4} nanoﬁbers via an electrospinning method and studying their sensing performance. They observed that the sensing behavior of sensors based on SnO\textsubscript{2}-Co\textsubscript{3}O\textsubscript{4} composites transits from n-type to p-type sensing behavior by reducing the SnO\textsubscript{2} percentage (Fig. 3c)98. Moreover, compared with homojunction-dominated sensors (e.g., SnO\textsubscript{2}-rich or Co\textsubscript{3}O\textsubscript{4}-rich sensors), the heterojunction-dominated sensor (0.5 SnO\textsubscript{2}-0.5 Co\textsubscript{3}O\textsubscript{4}-based) exhibits the highest sensing response to C\textsubscript{6}H\textsubscript{6}. The intrinsic high resistance of 0.5 SnO\textsubscript{2}-0.5 Co\textsubscript{3}O\textsubscript{4}-based sensor and its higher ability to modulate the total resistance of the sensor contribute to its supreme sensitivity to C\textsubscript{6}H\textsubscript{6}. Moreover, defects originating from lattice mismatch form at the SnO\textsubscript{2}-Co\textsubscript{3}O\textsubscript{4} heterointerfaces, which can provide preferential adsorption sites for gas molecules, lead to an enhanced sensing response109,116.

In addition to the semiconducting type of MOSs, the sensing behavior of MOS composites can also be modulated by the chemical properties of the MOS117. Huo et al.117 used a simple soak calcination method to fabricate Co\textsubscript{3}O\textsubscript{4}-SnO\textsubscript{2} composites and observed that when the Co/Sn molar ratio was 10%, the sensor exhibited a p-type sensing response to H\textsubscript{2}, while it demonstrated an n-type sensing response to CO, H\textsubscript{2}S, and NH\textsubscript{3} gases, as shown in Fig. 4a117. With a low Co/Sn ratio, many homojunctions form at the SnO\textsubscript{2}-SnO\textsubscript{2} nanograins boundaries and exhibit an n-type sensing response to H\textsubscript{2} (Fig. 4b, c)115. By increasing the Co/Sn ratio to 10 mol\%, many Co\textsubscript{3}O\textsubscript{4}-SnO\textsubscript{2} heterojunctions simultaneously form instead of the SnO\textsubscript{2}-SnO\textsubscript{2} homojunction (Fig. 4d). Since Co\textsubscript{3}O\textsubscript{4} is inactive to H\textsubscript{2} while SnO\textsubscript{2} is highly reactive to H\textsubscript{2}, the reaction between H\textsubscript{2} and ionic oxygen species mainly occurs on the surface of SnO\textsubscript{2}117. Therefore, the electrons are transferred to SnO\textsubscript{2} and shift the E\textsubscript{F} of SnO\textsubscript{2} toward the conduction band, while the E\textsubscript{F} of Co\textsubscript{3}O\textsubscript{4} remains unchanged. As a result, the resistance of the sensor increases, revealing that the materials with a high Co/Sn ratio exhibit p-type sensing behavior (Fig. 4e). In contrast, CO, H\textsubscript{2}S, and NH\textsubscript{3} gases react with ionic oxygen species on both the SnO\textsubscript{2} and Co\textsubscript{3}O\textsubscript{4} surfaces, and electrons move from the gases to the sensor, leading to a decrease
in the potential barrier height and n-type sensing behavior (Fig. 4f). This different sensing behavior is caused by the different reactivity of Co$_3$O$_4$ toward various gases and was further verified by Yin et al.118. Similarly, Katoch et al.119 demonstrated that SnO$_2$-ZnO composites exhibited good selectivity for H$_2$ with high sensitivity. This behavior occurs because H atoms can easily adsorb on O sites of ZnO via a strong hybridization between the s-orbitals of H and the p-orbitals of O, which leads to the metallization of ZnO120,121.

Fig. 3 The influence of heterojunction number. a SEM image of a SnO$_2$-ZnO fiber (7 mol% Zn) and responses of the sensors to various 100 ppm gases at 260 °C54 b responses of the sensors based on pure NiO and NiO-NiFe$_2$O$_4$ composites to 50 ppm different gases at 260 °C114 (c) schematic diagram of the number of junctions in the xSnO$_2$-(1−x)Co$_3$O$_4$ compositions and relevant resistance and sensing response of xSnO$_2$-(1−x)Co$_3$O$_4$ compositions to 10 ppm CO, acetone, C$_6$H$_6$, and SO$_2$ gases at 350 °C by varying the Sn/Co molar ratio98
In summary, we can enhance the sensitivity of type-I sensors by choosing a proper fabrication method, reducing the grain size of the composites, and optimizing the molar ratio of MOS composites. In addition, a thorough understanding of the chemical properties of the sensing materials can further improve the selectivity of the sensors.

Mechanism of the Type-II Sensor Structure

The type-II sensor structure is another popular sensor structure, and various heteronanostructural materials are available, which consist of one “backbone” nanomaterial and a second or even third nanomaterial. For instance, (1D or 2D materials decorated with nanoparticles, core-shell (C-S), and multilayer heteronanostructure materials are generally used in type-II sensor structures and will be discussed in detail below.

Decorated heteronanostructures

For the first kind of heteronanostructural material (decorated heteronanostructures), as demonstrated in Fig. 2b (1), the conduction channel of the sensor is connected by the backbone materials. The modified nanoparticles can provide more reaction sites for adsorption or desorption of gases due to the formation of heterojunctions and can also work as catalysts to enhance the sensing performance. Yuan et al. observed that decorating WO₃ nanowires with CeO₂ nanodots can provide more adsorption sites at the CeO₂@WO₃ heterointerfaces and the CeO₂ surface and generate more chemisorbed...
oxygen species to react with acetone. Gunawan et al.\(^{125}\) presented an ultrahigh sensitivity acetone sensor based on 1D \(\text{Au@\(\alpha\)-Fe}_2\text{O}_3\) and observed that the sensing performance of the sensor is controlled by the activation of \(\text{O}_2\) molecules as the oxygen supply. The presence of \(\text{Au NPs}\) may act as catalysts to promote the dissociation of oxygen molecules into lattice oxygen for the oxidation of acetone\(^{125}\). A similar result was observed by Choi et al.\(^9\), where Pt catalysts were used to dissociate adsorbed oxygen molecules into ionized oxygen species and enhance the sensing response to acetone. In 2017, the same research group demonstrated that the catalytic effect of bimetallic NPs is much higher than that of single noble nanoparticles, as shown in Fig. 5\(^{126}\). Figure 5a shows a schematic graph of the fabrication process for Pt-based bimetallic (PtM) NPs with an average size less than 3 nm using an apoferritin protein cage. Then, electrospinning technology was used to obtain PtM@WO\(_3\) nanofibers to improve the sensitivity and selectivity toward acetone or \(\text{H}_2\text{S}\) (Fig. 5b–g). Recently, owing to maximum atom utilization efficiency and tunable electronic structures, single-atom catalysts (SACs) have exhibited superior catalytic performance in the fields of catalysis and gas sensing\(^{127,128}\). Shin et al.\(^{129}\) used Pt SA-anchored shredded melamine-derived carbon nitride nanosheets (MCN), SnCl\(_2\), and PVP as chemical sources to prepare Pt@MCN@SnO\(_2\) fiber-in-tubes for gas sensing. Although the amount of Pt@MCNs was very low (0.13 wt\% to 0.68 wt\%), Pt@MCN@SnO\(_2\) showed the highest sensing performance toward formaldehyde gas over other reference samples (pristine SnO\(_2\), MCN@SnO\(_2\), and Pt NPs@SnO\(_2\)). This superior sensing performance can be explained by the maximized catalyst atom efficiency of Pt SAs and the minimum coverage of the active sites on SnO\(_2\)\(^{129}\).

In addition, the formed heterojunctions between the backbone material and the nanoparticles can also efficiently modulate the conduction channel via a radial...
Similar sensing response results were observed by Choi of the EDL is limited, which leads to low sensitivity. Contrast, when switching to oxidizing gases, the expansion of \(\text{SnO}_2 \) nanowires in the radial direction of the formed priorates to oxidizing gases. These phenomena are closely the reducing gases is greatly enhanced, whereas it dete-

Comparison with pure \(\text{SnO}_2 \) nanowires, the response of the \(\text{Cr}_2\text{O}_3@\text{SnO}_2 \) nanowires to the reducing gases is greatly enhanced, whereas it deteriorates to oxidizing gases. These phenomena are closely related to the local suppression of the conduction channel of \(\text{SnO}_2 \) nanowires in the radial direction of the formed p-n heterojunction. The resistance of the sensor is simply tuned by changing the width of the EDL on the surface of the pure \(\text{SnO}_2 \) nanowires after exposure to the reducing and oxidizing gases. However, for \(\text{Cr}_2\text{O}_3@\text{SnO}_2 \) nanowires, the initial EDL of the \(\text{SnO}_2 \) nanowires in the air is expanded, and the conduction channel is suppressed compared with that of the pure \(\text{SnO}_2 \) nanowires due to the formed heterojunctions. Therefore, when the sensor is exposed to reducing gases, captured electrons are released to the \(\text{SnO}_2 \) nanowires, and the EDL dramatically shrinks, resulting in a higher sensitivity than that of the pure \(\text{SnO}_2 \) nanowires. In contrast, when switching to oxidizing gases, the expansion of the EDL is limited, which leads to low sensitivity. Similar sensing response results were observed by Choi et al., where the sensing response of \(\text{SnO}_2 \) nanowires decorated with p-type \(\text{WO}_3 \) nanoparticles for reducing gases was significantly improved, while an enhanced sensitivity to oxidizing gases was observed for a \(\text{SnO}_2 \) sensor decorated with n-type \(\text{TiO}_2 \) nanoparticles (Fig. 6b). This result was mainly due to the different working functions between the \(\text{SnO}_2 \) and MOS nanoparticles (\(\text{TiO}_2 \) or \(\text{WO}_3 \)). In p-type (n-type) nanoparticles, the conduction channel of the backbone material (\(\text{SnO}_2 \)) expands (or shrinks) radially, and then further expansion (or shortening) of the \(\text{SnO}_2 \) conduction channel is marginal upon exposure to reducing (or oxidizing) gases (Fig. 6b).

Bilayer and multilayer heteronanostructures

In bilayer and multilayer heteronanostructure devices, the conduction channel of the device is dominated by the layer that is directly in contact with the electrodes (generally the bottom layer), and the heterojunctions formed at the contact regions of the two layers can modulate the conductance of the bottom layer. Therefore, once the gases interact with the top layer, they significantly influence the conduction channel of the bottom layer and the resistance of the device. For instance, Kumar et al. reported the opposite sensing behavior of \(\text{TiO}_2@\text{NiO} \) and \(\text{NiO}@\text{TiO}_2 \) bilayer films toward \(\text{NH}_3 \). This discrepancy occurs because the conduction channels of the two sensors are dominant in different material layers (\(\text{NiO} \) and \(\text{TiO}_2 \), respectively), and then the changes in the conduction channel in the bottom layer are different.

Bilayer or multilayer heteronanostructures are commonly obtained by sputtering, atomic layer deposition (ALD), and spin coating. The thicknesses of the films and the contact areas of the two materials can be well controlled. Figure 7a and b show the \(\text{NiO}@\text{SnO}_2 \) and \(\text{Ga}_{2}\text{O}_3@\text{WO}_3 \) nanofilms prepared by the sputtering method for ethanol sensing. However, these methods usually result in planar films, and the sensitivity of these planar films is lower than that of 3D nanostructured materials due to their low specific surface area and low gas permeation rate. Thus, liquid phase strategies have also...
been proposed to fabricate bilayer films with different hierarchical structures to increase the sensing performance by increasing the specific surface area. Zhu et al. combined sputtering and hydrothermal methods and obtained highly ordered ZnO nanowires on top of SnO$_2$ nanobowls (ZnO@SnO$_2$ nanowires) for H$_2$S sensing (Fig. 7c). Its responsivity to 1 ppm H$_2$S is 1.6-fold higher than that of sensors based on the ZnO@SnO$_2$ nanofilm, which is prepared by sputtering. Liu et al. reported a high-performance H$_2$S sensor by fabricating SnO$_2$@NiO hierarchical nanostructures with an in-situ two-step chemical bath deposition method followed by thermal annealing treatment (Fig. 10d). Compared with conventional SnO$_2$@NiO bilayer films, which are prepared by the sputtering method, the sensing performance of the hierarchical SnO$_2$@NiO bilayer structure is dramatically enhanced owing to the increase in the specific surface area.52,137

Core-shell heteronanostructures

In core-shell heteronanostructure (CSHN)-based type-II devices, the sensing mechanism is more complex since the conduction channel is not confined to the inner shell. The fabrication routes and the thicknesses of the shell (h_s) can both determine the location of the conduction channel. For example, the conduction channel is normally confined to the inner core when using bottom-up synthesis approaches, and the structure is similar to bilayer or multilayer device structures (Fig. 2b(3)). Xu et al. reported a bottom-up approach to prepare NiO@α-Fe$_2$O$_3$ and CuO@α-Fe$_2$O$_3$ CSHNs by depositing a layer of NiO or CuO NPs on top of α-Fe$_2$O$_3$ nanorods, in which the conduction channel is confined to the core part (α-Fe$_2$O$_3$ nanorods). Liu et al. also successfully confined the conduction channel to the core part of TiO$_2$@Si CSHNs by drop-casting TiO$_2$ onto the as-prepared Si nanowire array. Therefore, its sensing...
mostly mentioned that the conduction channel of the carriers is dominated by the adsorbed oxygen species fully electron depleted by the adsorbed oxygen species, which is consistent with experimental observations. It is believed that two factors contribute to the sensing mechanism of this structure: (1) the radial modulation of the EDL of the shell and (2) the electric field smearing effect. The researchers mentioned that the conduction channel of the carriers is mostly confined to the shell layer when $h_s > \lambda_D$ of the shell layer. As a result, the resistance modulation of sensors based on CSHNs is mainly dominated by the radial modulation of the EDL of the shell (Fig. 8a). However, when $h_s \leq \lambda_D$ of the shell layer, the shell layer becomes fully electron depleted by the adsorbed oxygen species and the formed heterojunction at the CS heterointerface. Therefore, the conduction channel is not only located inside the shell layer but also partially in the core part, especially when $h_s < \lambda_D$ of the shell layer. In this case, both the fully electron-depleted shell layer and the partially depleted core layer contribute to modulating the resistance of the whole CSHNs, generating an electric-field smearing effect (Fig. 8b). Some other studies use the concept of EDL volume fraction instead of electric field smearing effect to analyze the effect of h_s. By taking both contributions into consideration, the overall resistance modulation of the CSHNs reaches the highest when h_s is comparable with λ_D of the shell layer, as shown in Fig. 8c. Therefore, the optimal h_s of the CSHN may be close to λ_D of the shell layer, which is consistent with experimental observations. Several studies have demonstrated that h_s can also influence the sensing behavior of sensors based on p-n heterojunction CSHNs. Lee et al. and Bai et al. systematically studied the influence of h_s on the performance of p-n heterojunction CSHN (e.g., TiO$_2$@CuO and ZnO@NiO)-based sensors by varying the ALD cycles of the shell layer. As a result, the sensing behavior transits from p-type to n-type with increasing h_s. This behavior occurs because at the beginning (with a limited ALD cycle number), the heterostructure can be regarded as decorrelated heteronanostructures. Thus, the conduction channel is confined to the core layer (p-type MOS), and the sensor shows p-type sensing behavior. By increasing the ALD cycle number, the shell layer (n-type MOS) becomes quasi-continuous and serves as the conduction channel, resulting in n-type sensing behavior. Similar sensing transition behaviors have also been reported on branched p-n heteronanostructures. Zhou et al. studied the sensing behavior of Zn$_2$SnO$_4$@Mn$_3$O$_4$ branched heteronanostructures by tuning the content of Zn$_2$SnO$_4$ on the surface of Mn$_3$O$_4$ nanowires. The p-type sensing behavior is observed when Zn$_2$SnO$_4$ seeds form on the surface of Mn$_3$O$_4$. With a further increase in the content of Zn$_2$SnO$_4$, the sensor based on Zn$_2$SnO$_4$@Mn$_3$O$_4$ branched heteronanostructures switches to n-type sensing behavior.

In summary, the type-II sensor involves many different hierarchical nanostructures, and the sensor performance depends largely on the position of the conduction channel. Therefore, it is crucial to control the location of the conduction channel of the sensor and use a suitable model based on heteronanostructural MOSs to study the enhanced sensing mechanism of the type-II sensor.

Sensing mechanism of the type-III sensor structure

The type-III sensor structure is not very common, and the conduction channel is based on the formed heterojunction between the two semiconductors, which are separately connected to the two electrodes. The unique device structure is usually obtained via microfabrication techniques, and the sensing mechanism is quite different from those of the previous two types of sensor structures. The $I-V$ curves of the type-III sensor usually present the typical rectification characteristics due to the formed heterojunctions. The $I-V$ curves of the ideal
The electrical charge of the carrier, and

\[I = I_s \exp \left(\frac{qV_a}{kT} \right) - 1 = A(J_n + J_p) \]

(1)

where \(V_a \) is the bias voltage, \(A \) is the device area, \(k \) is the Boltzmann constant, \(T \) is the absolute temperature, \(q \) is the electrical charge of the carrier, and \(J_n \) and \(J_p \) represent the hole and electron diffusion current densities, respectively. \(I_s \) represents the reverse saturation current given by the following equation:

\[I_s = AA^*T^2 \exp \left(-\frac{qV_0}{kT} \right) \]

(2)

where \(A^* \) is the Richardson constant and \(V_0 \) is the built-in potential.

Therefore, the total current of the p-n heterojunction is determined by both the changes in the carrier concentrations and the heterojunction barrier height, as illustrated by Eqs. (3) and (4):

\[J_p = \frac{qD_p}{L_p} n_{p0} \exp \left(-\frac{qV_0}{kT} \right) \exp \left(-\frac{\Delta E_p}{kT} \right) \left[\exp \left(\frac{qV_a}{kT} \right) - 1 \right] \]

(3)

\[J_n = \frac{qD_n}{L_n} n_{n0} \exp \left(-\frac{qV_0}{kT} \right) \exp \left(-\frac{\Delta E_n}{kT} \right) \left[\exp \left(\frac{qV_a}{kT} \right) - 1 \right] \]

(4)

where \(n_{p0} \) and \(p_{n0} \) are the electron (hole) concentrations in n-type (p-type) MOS, \(V_0 \) is the built-in potential, \(D_p \) (\(D_n \)) is the diffusion coefficient for the electron (hole), \(L_p \) (\(L_n \)) is the diffusion length for the electron (hole), and \(\Delta E_p \) (\(\Delta E_n \)) is the energy shift of the valence band (conduction band) at the heterointerface. Although the current density is proportional to the carrier density, it is inversely exponentially correlated with \(V_0 \). Therefore, the overall change in the current density is significantly dependent on the modulation of the heterojunction barrier height.

As discussed above, the construction of hetero-nanostructural MOS (e.g., type-I and type-II devices) can dramatically enhance the sensor performance over that of the individual components. Whereas, for the type-III device, the response of hetero-nanostructure can be either higher than both the components or just higher than only one component depending on the chemical properties of the materials. Several reports have illustrated that when one of the components is insensitive to target gases, the response of the hetero-nanostructure is much higher than that of individual components. In this case, the target gas would just interact with the sensitive layer and cause the shift of \(E_z \) for the sensitive layer as well as the change of heterojunction barrier height. Then, the total current of the device dramatically changes as it is inverse exponentially correlated with the heterojunction barrier height according to Eqs. (3) and (4). However, when both n-type and p-type components are sensitive to target gases, the sensing performance may lie in between. Josè et al. used the sputtering method to obtain a NiO/SnO2 porous thin film-based NO2 sensor and found that the sensitivity of the sensor was only higher than that of a NiO-based sensor but lower than that of a SnO2-based sensor. This phenomenon is because SnO2 and NiO exhibit opposite responses to NO2. In addition, as the two components show different sensitivities to gases, they may cause the same trend in sensing oxidizing and reducing gases. For instance, Kwon et al. proposed a NiO/SnO2 p-n heterojunction-based gas sensor via an oblique-angle deposition method, as shown in Fig. 9a. Interestingly, the sensor based on the NiO/SnO2 p-n heterojunction showed the same sensing trend to H2 and NO2 (Fig. 9a). To address this result, Kwon et al. systematically studied how NO2 and H2 would change the carrier concentration and modulate the \(V_0 \) of both materials via I-V characterization and computational simulation (Fig. 9 b-d). Figure 9b, c demonstrate the ability of H2 and NO2 to change the carrier density of the sensor based on p-NiO (\(p_{p0} \)) and n-SnO2 (\(n_{n0} \)), respectively. They show that the \(p_{p0} \) of p-type NiO changed slightly in the NO2 environment, while a dramatic change occurred in the H2 environment (Fig. 9b). However, \(n_{n0} \) showed the opposite behavior for n-type SnO2 (Fig. 9c). Based on these results, the authors concluded that when the sensor based on the NiO/SnO2 p-n heterojunction was exposed to H2, the increase in \(n_{n0} \) led to an increase in \(J_n \) and the slight increase in \(V_0 \) led to a low response (Fig. 9d). After exposure to NO2, the large decrease in \(n_{n0} \) in SnO2 and the small increase in \(p_{p0} \) in NiO both led to a large decrease in \(V_0 \), which ensured an enhancement of the sensing response (Fig. 9d). In summary, both changes in the carrier concentrations and \(V_0 \) can lead to the variation of the total current, which further influences the sensing capability.

In addition to the chemical properties of the materials themselves, the Type-III device structure shows the ability to construct a self-powered gas sensor, which cannot be achieved by type-I and type-II devices. The p-n hetero-junction diode structure is commonly utilized to construct photovoltaic devices owing to the inherent electric field (BEF) and shows the potential to fabricate photovoltaic room temperature self-powered gas sensors under light illumination. The BEF at the heterointerface, which results from the difference in Fermi levels of the materials, can also contribute to the separation of electron-hole pairs. The merit of the photovoltaic self-powered gas sensor lies in its low energy consumption, as
it can absorb energy from illuminated light and then drive itself or other miniaturized devices without external energy sources. For instance, Tanuma and Sugiyama162 fabricated a NiO/ZnO p-n heterojunction as a solar cell to activate a polycrystalline SnO\textsubscript{2}-based CO\textsubscript{2} sensor. Gad et al.74 reported a photovoltaic self-powered gas sensor based on a Si/ZnO@CdS p-n heterojunction, as demonstrated in Fig. 10a. Vertically aligned ZnO nanowires were directly grown on the p-type Si substrate to form a Si/ZnO p-n heterojunction. Then, CdS nanoparticles were...
decorated on the surface of ZnO nanowires via chemical surface modification. Figure 10a demonstrates the sensing response results of Si/ZnO@CdS to O₂ and ethanol under self-powered mode. Under light illumination, the open-circuit voltage (V_{oc}), which was induced by the separation of electron-hole pairs under the BEF at the heterointerface of Si/ZnO, increased linearly with the number of connected diodes74,161. V_{oc} can be expressed by Eq. (5) 156,

$$V_{oc} = \frac{kT}{q} \ln \left(\frac{N_{DZnO}N_{ASi}}{N_{NZnO}N_{A}} \right)$$

(5)

where N_D, N_A, and N_i are the concentrations of the donor, acceptor, and intrinsic carrier, respectively, and k, T, and q represent the same parameters as in previous equations. When exposure to oxidizing gases, they withdraw electrons from the ZnO nanowires and result in a decrease in N_{ZnO} and then V_{oc}. In contrast, the reducing gases lead to an increase in V_{oc} (Fig. 10a). By decorating ZnO with CdS nanoparticles, the photoexcited electrons in the CdS nanoparticles are injected into the conduction band of ZnO and interact with adsorbed gases, resulting in improved sensing performance74,161. Hoffmann et al.160,161 reported a similar photovoltaic self-powered gas sensor based on Si/ZnO (Fig. 10b). The sensor can selectively detect NO₂ by modulating the working function of target gases by functionalizing ZnO nanowires with amine ([3-(2-aminoethylamino) propyl trimethoxysilane]) (amine functionalized-SAM) and thiol ([3-mercapto-propyl)-(trimethoxysilane]) (thiol functionalized-SAM) (Fig. 10b)74,161.

Therefore, when discussing the sensing mechanism of type-III sensors, it is very important to determine the changes in the heterojunction barrier height and the ability of gases to affect carrier concentrations. In addition, light illumination can produce photogenerated carriers that react with gases, and these carriers are promising for self-powered gas detection.

Conclusions, future outlook, remaining challenges

As discussed in this literature review, many different MOS heteronanostructures have been fabricated to enhance the performance of sensors. Various keywords (metal oxide composites, core-shell metal oxide, hierarchical metal oxide, and self-powered gas sensor) were searched on the Web of Science database, and the differentiating features (popularity, sensitivity/selectivity, power generation potential, fabrication method, and conduction channel) of the three types of devices are summarized in Table 2. A general concept of how to design high-performance gas sensors has been discussed by analyzing the three key factors proposed by Yamazoe. Researchers have further discussed and classified the enhancement sensing mechanisms of sensors based on MOS heteronanostructures. To understand the influencing factors of gas sensors, various parameters of MOSs (e.g., grain size, operation temperatures, density of defects and oxygen vacancies, exposed crystal facet) have been investigated thoroughly. However, the influence of the geometric device structure, which is also critical to the sensing behavior of the sensors, has been ignored and has seldom been discussed. In this review, the basic sensing mechanisms of three typical types of device structures are discussed.

The grain size structure, fabrication method, and number of heterojunctions formed by the sensing materials in type-I sensors can greatly influence the sensitivity of the sensors. In addition, the sensing behavior is also
influenced by the molar ratio of the components. The type-II device structure (decorated heteronanostructures, bilayer or multilayer films, and CSHNs) is the most popular device structure; it consists of two or more components, and only one of them connects to the electrodes. For this device structure, it is critical to determine the location of the conduction channel and its relative changes when studying the sensing mechanism. As type-II devices involve many different hierarchical heteronanostructures, many different sensing mechanisms have been proposed. In the type-III sensor structure, the conduction channel is dominated by the formed heterojunction at the heterointerface, and the sensing mechanism is quite different. Therefore, it is very important to determine the changes in the heterojunction barrier height of the type-III sensors once exposed to target gases. With this structure, it is possible to fabricate photovoltaic self-powered gas sensors to reduce power consumption. However, there is much progress to be made in studies of self-powered gas sensors since their current fabrication process is rather complicated and the sensitivity is much lower than that of traditional MOS-based chemiresistive gas sensors.

The key advantages of MOS gas sensors with hierarchical heteronanostructures are their fast responses and improved sensitivity. However, several key challenges (e.g., high working temperature, long-term stability, poor selectivity and reproducibility, humidity impact, and so on) of MOS gas sensors remain and need to be addressed before they can be used in practical applications. Current MOS gas sensors usually work under high temperatures, which causes high power consumption and impacts the long-term stability of sensors. There are two common approaches to address this problem: (1) the design of low power consumption sensor chips and (2) the development of novel sensing materials that can work at low temperatures or even at room temperature. One method of designing low power consumption sensor chips, one of the method is to minimize the sensor size by fabricating ceramic-based and silicon-based microhotplates. The power consumption of ceramic-based microhotplates is approximately 50–70 mV per sensor, while the power consumption of optimized silicon-based microhotplates can decrease to 2 mW per sensor when operated continuously at 300 °C. The development of novel sensing materials is an effective way to reduce the power consumption by decreasing the working temperature and can also improve the stability of the sensor. The thermal stability of MOSs becomes more challenging when the size of MOSs continues to reduce to improve the sensor sensitivity, which results in the signal drift of the sensor. In addition, high temperature promotes the diffusion of materials across the heterointerfaces and form mixed phases, which affects the electronic properties of sensors. Researchers have reported that the optimized operation temperatures of sensors can be reduced by choosing appropriate sensing materials and designing MOS heteronanostructures. Seeking a low-temperature method of fabricating highly crystalline MOS heteronanostructures is another promising approach to enhancing stability.

The selectivity of MOS-based sensors is another practical issue because various gases coexist with the target gas, and MOS-based sensors are normally sensitive to more than one gas and usually show cross-sensitivities. Therefore, it is crucial to improve the selectivity of the sensor to a target gas among other gases for real-world applications. Over the past few decades, the selectivity has been partially addressed by constructing gas sensor arrays known as “electronic noses (E-noses)”, and combining computational analysis
algorithms such as learning vector quantization (LVQ), principal component analysis (PCA), partial least squares (PLS), and so on. Two main factors (the number of sensors, which is greatly related to the kinds of sensing materials, and the computational analysis) are essential for enhancing the ability of the E-nose to distinguish gases. However, it usually requires many complex fabrication processes to increase the sensor number; thus, it is crucial to seek a facile method to enhance the E-nose performance. In addition, modification of the MOS with other materials can also enhance the selectivity of the sensor. For example, one can realize the selective detection of H2 using Pd NP-decorated MOSs due to their good catalytic activity. In recent years, some researchers have covered the surface of MOSs with MOFs to improve the sensor selectivity through the size-exclusive effect. Inspired by this work, the functionalization of materials may address the issue of selectivity in some way. However, much work still needs to be performed on how to choose appropriate materials.

Reproducibility in performance among sensors fabricated under identical conditions and methods is another important requirement of large-scale fabrication and practical applications. Generally, spin- and dip-coating methods are low-cost routes to fabricate gas sensors with high throughput. However, during these processes, the sensing materials tend to aggregate, and the interconnections between the sensing materials and the substrates are weak. Therefore, the sensitivity and stability of the sensors are significantly influenced, and the performance reproducibility is poor. Other fabrication methods, such as sputtering, ALD, pulsed laser deposition (PLD) and physical vapor deposition (PVD), can directly yield bilayer or multilayer MOS films on patterned silicon or alumina substrates. These techniques can avoid aggregation of the sensing materials and ensure the reproducibility of the sensors and demonstrate the feasibility for large-scale fabrication of planar film-based sensors. However, the sensitivity of these planar films is usually much lower than that of 3D nanostructured materials due to their low specific surface area and low gas permeation rate. New strategies for growing MOS heteronanostructures at specific locations on patterned microchips and precisely controlling the size, thickness and morphology of the sensing materials are essential for the low-cost wafer-scale fabrication of sensors with high reproducibility and sensitivity. For instance, Liu et al. proposed a combined “top-down” and “bottom-up” strategy to manufacture wafer-scale miniaturized gas sensors with high throughput by in-situ growth of Ni(OH)2 nanowalls at specific locations of the microhotplate wafer.

In addition, it is important to consider the impact of humidity on the sensor in real-world applications. The water molecules can compete with oxygen molecules for the adsorption site of the sensing materials and influence the responsibility of the sensors to target gases. Similar to oxygen gases, water acts as a molecule via physical adsorption and can also present as hydroxyl radicals or hydroxyl groups in multiple oxidation stations via chemical adsorption. Furthermore, the reliable response of sensors to target gases is a great challenge due to the high level and nonconstant humidity in the environment. Several strategies have been developed to address this issue, such as the gas preconcentration method, humidity compensation and cross-reactive array method and dehumidification techniques. However, these methods are costly and complex and lower the sensor’s sensitivity. Some low-cost strategies have been proposed to suppress the impact of humidity. For example, decorating SnO2 with Pd NPs can facilitate the transition of adsorbed oxygen into anionic species, and functionalization of SnO2 with materials (e.g., NiO and CuO) with a high affinity to water molecules are two possible methods to prevent the humidity dependence of the sensors. In addition, the construction of hydrophobic surfaces by introducing hydrophobic materials can also reduce the influence of humidity. However, the design of humidity-resistant gas sensors remains in its early stage, and more advanced strategies are needed to tackle these problems.

In conclusion, improvements in sensing performance (e.g., sensitivity, selectivity, low optimal working temperature) have been achieved by the construction of MOS heteronanostructures, and different enhancement sensing mechanisms have been proposed. The geometric device structure must also be taken into consideration when studying the sensing mechanism of a specific sensor. To further improve the performance of gas sensors and address the remaining challenges, exploring novel sensing materials and investigating advanced fabrication strategies are needed in the future. To tune the sensing performance in a controlled way, it is essential to systematically construct relationships between the synthesis methods and the functions of the heteronanostructure for the sensing materials. In addition, the study of the surface reactions and the changes at the heterointerfaces by state-of-the-art characterization techniques can help elucidate their sensing mechanisms and provide guidelines for the design of heteronanostructure material-based sensors. Finally, exploring modern fabrication strategies of sensors may enable the implementation of wafer-scale fabrication of miniaturized gas sensors, which lead to their industrial applications.

Acknowledgements
We acknowledge the funding support from the National Key R&D Program of China (2018YFB1304700, 2017YFA0701101, 2020YFB2008501), the National Natural Science Foundation for Distinguished Young Scholars of China (No. 62125112), the National Natural Science Foundation of China (No. 62071462), Youth Promotion Association of Chinese Academy of Sciences (2020230), and
Suzhou Association for Science and Technology (E1391302). The authors are grateful for the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO).

Author details

1- Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS). Suzhou, Jiangsu, China. 2-Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China. 3- Nano-X, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, China. 4- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, PR China. 5- Guisi Laboratory of Materials, Suzhou, Jiangsu, PR China. 6- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, PR China

Conflict of interest

The authors declare no competing interests.

Received: 21 December 2021 Revised: 16 April 2022 Accepted: 20 May 2022

Published online: 28 July 2022

References

1. Harivel, N. N. et al. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ. Health Perspect. 116, 1428–1432 (2008).
2. Wellenius, G. A., Bateson, T. F., Mittleman, M. A. & Schwartz, J. Particulate air pollution and the rate of hospitalization for congestive heart failure among medicare beneficiaries in Pittsburgh, Pennsylvania. Am. J. Epidemiol. 161, 1030–1036 (2005).
3. Elliott, E. G. et al. Unconventional oil and gas development and risk of childhood leukemia. Assessing the evidence. Sci. Total Environ. 576, 138–147 (2017).
4. Yu, T. et al. Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. J. Mater. Chem. A 3, 11991–11999 (2015).
5. Institute, E. H. Start of Global air 2018, Special Report. (Boston, MA: Health Effects Institute, 2018).
6. Peveeler, W. J. et al. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array. ACS Nano 10, 1139–1146 (2016).
7. Freund, P., Senkovska, I. & Kaskel, S. Switchable conductive MOF-nanocarbon composite coatings as threshold sensing architectures. ACS Appl. Mater. Interfaces 9, 43782–43789 (2017).
8. Qu, J. et al. Transition-metal-doped p-type ZnO nanoparticle-based sensory array for instant discrimination of explosive vapors. Small 12, 1369–1377 (2016).
9. Choi, S. J. et al. Selective diagnosis of diabetes using Pt-functionalized WO3 hemitrans networks as a sensing layer of acetone in exhaled breath. Anal. Chem. 85, 1792–1796 (2013).
10. Nasiri, N. & Clarke, C. Nanostructured gas sensors for medical and health applications: low to high dimensional materials. Biosens. Sens. 9, 43 (2019).
11. Sinnavasan, P. & Rayappan, J. B. B. Investigations on room temperature dual sensitization of ZnO nanostructures towards fish quality biomarkers. Sens. Actuators, B 304, 127092 (2020).
12. Sivastava, A. K., Dev, A. & Kamarak, S. Nanosensors and nanobiosensors in food and agriculture. Environ. Chem. Lett. 16, 161–162 (2017).
13. Masie, M., Adnan, R., Ahmad, A. A hybrid gas sensor based on infrared absorption for indoor air quality monitoring. Proceedings of the World Congress on Engineering 2, (2012).
14. Wele, P. et al. Near-and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 37, 101–114 (2002).
15. Dev, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 229, 206–217 (2018).
16. Narayanan, S., Rice, G. & Agah, M. A micro-discharge photionization detector for micro-gas chromatography. Microchem. Acta 181, 493–499 (2013).
17. Zimmer, C. M., Kallis, K. T. & Giebel, F. J. Micro-structured electron accelerator for the mobile gas ionization sensor technology. J. Sens. Sens. Syst. 4, 151–157 (2015).
18. Liu, J., Tan, Q., Xue, C. & Xiong, J. Design of a gas sensor for hydrazines based on photo-ionization principle. Appl. Mech. Mater. 44, 2050–2054 (2011).
19. SebeAhamdi, S. S. et al. General modeling and experimental observation of size dependence surface activity on the example of Pt nano-particles in electrochemical CO gas sensors. Sens. Actuators, B 285, 310–316 (2019).
20. Gębicki, J., Kloskowski, A. & Chzanoiowski, W. Prototype of electrochemical sensor for measurements of volatile organic compounds in gases. Sens. Actuators, B 177, 1173–1179 (2013).
21. Dosi, M. et al. Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte infused laser-induced graphene. ACS Appl. Mater. Interfaces 11, 6166–6173 (2019).
22. Struzik, M., Garbarzo, I., Pfenninger, R. & Rupp, J. L. M. A simple and fast electrochemical CO2 sensor based on 2Li2ZnO3 for environmental monitoring. Adv. Mater. 30, e1804908 (2018).
23. Yang, M. et al. Preparation of highly crystalline NiO meshed nanowalls via ammonia volatilization liquid deposition for H2S detection. J. Colloid Interface Sci. 540, 35–50 (2018).
24. Bao, F. et al. Photochemical Aging of Beijing Urban PM2.5: HONO Production. Environ. Sci. Technol. 52, 6309–6316 (2018).
25. Krotzenkag, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007).
26. Neti, G., Donato, N. Resistive gas sensors. Wiley encyclopedia of electrical and electronic engineering, 1–12, (1999).
27. Selvam, T., Kato, A., Fujish, K. & Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962).
28. Neti, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors 3, 1–20 (2015).
29. Hubner, M. et al. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuators, B 153, 347–353 (2011).
30. Kim, H. J. & Lee, J. H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators, B 192, 607–627 (2014).
31. Song, Z. et al. Wireless self-powered high-performance integrated nanostructured-gas-sensor network for future smart homes. ACS Nano 15, 7659–7667 (2021).
32. Chen, J. et al. Ultra-low-power smart electronic nose system based on three-dimensional Ti oxide nanotube arrays. ACS Nano 12, 6079–6088 (2018).
33. Pour, M. N., Nafarjam, A., Taheri, A. & Sadretdin, A. P. Gas sensor array assisted with UV illumination for discriminating several analytes at room temperature. Micro Nano Lett. 10, 1066–1068 (2019).
34. Hu, W. et al. Electronic noses: from advanced materials to sensors aided with data processing. Adv. Mater. Technol. 4, 1800488 (2019).
35. Zhang, B. & Gao, P. Metal oxide nanoarrays for chemical sensing: a review of fabrication methods, sensing modes, and their inter-correlations. Front. Mater. 6, 55 (2019).
36. Bulémo, P. M., Cho, H. J., Kim, N. H. & Kim, I. D. Mesoporous SnO2 nanotubes via electrosprinning-etching route: highly sensitive and selective detection of H2S molecule. ACS Appl. Mater. Interfaces 9, 26304–26313 (2017).
37. Song, Z. et al. Nanosheet-assembled, hollowed-out hierarchical γ-Fe2O3 microspheres for high-performance gas sensing. J. Mater. Chem. A 8, 3754–3762 (2020).
38. Meng, F. et al. UV-activated room temperature single-sheet ZnO gas sensor. Micro Nano Lett. 12, 813–817 (2017).
39. Kim, J. et al. Micropattermable double-faced ZnO nanoflowers for flexible gas sensor. ACS Appl. Mater. Interfaces 9, 32876–32886 (2017).
40. Bai, J. et al. Debye-length controlled gas sensing performances in NiOZnO p-n junctional core–shell nanotubes. J. Phys. D: Appl. Phys. 52, 285103 (2019).
41. Yuan, K. et al. Fabrication of a micro-electromechanical system-based acetic acid sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl. Mater. Interfaces 12, 14095–14104 (2020).
42. Shao, S. et al. ZnO nanosheets modified with graphene quantum dots and SnO2 quantum nanoparticles for room-temperature H2S sensing. ACS Appl. Nano Mater. 3, 5220–5230 (2020).
43. Liu, X. et al. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 7, 14872–14880 (2015).
Liu et al. (2022) Systems & Nanoengineering, Page 19 of 22

44. Majhi, S. M. et al. Au8NIO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens. Actuators, B 268, 223–231 (2018).
45. Kim, J. D., Yun, J. H., Song, J. W. & Han, C. S. The spontaneous metal-sitting structure on carbon nanotube arrays positioned by inkjet printing for wafer-scale production of high sensitive gas sensor units. Sens. Actuators, B 135, 587–597 (2009).
46. Feng, Q., Li, X. & Wang, J. Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor. Sens. Actuators, B 243, 1115–1126 (2017).
47. Siddiqui, G. U. et al. Wide range highly sensitive relative humidity sensor based on series combination of MoO3 and PEDOT:PSS sensors array. Sens. Actuators, B 256, 384–393 (2018).
48. Wang, K. et al. Inorganic-organic pn heterojunction nanotree arrays for a high-sensitivity diode humidity sensor. ACS Appl. Mater. Interfaces 5, 5825–5831 (2013).
49. Yuan, H. et al. SnO2 nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31, 1807161 (2019).
50. Gui, Y. et al. Pt-doped Co3O4 nanocrystals decorated on the surface of n-type flower-like WO3 nanosheets for high-performance gas sensing. Sens. Actuators, B 288, 104–112 (2019).
51. Zhang, Z. et al. Novel SnO2@ZnO hierarchical nanoarchitectures for highly sensitive and selective NO2 gas sensing. Sens. Actuators, B 287, 714–727 (2019).
52. Liu, L. et al. In situ growth of NiO@SnO2 hierarchical nanostructures for high performance H2S sensing. ACS Appl. Mater. Interfaces 11, 44829–44836 (2019).
53. Zhang, S. et al. An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanoparticles synthesized by seed-mediated growth: design of highly sensitive gas sensing material. J. Mater. Chem. A 7, 13709–13735 (2019).
54. Wang, B., Nisar, J. & Ahuja, R. Molecular simulation for gas adsorption at NiO (100) surface. ACS Appl. Mater. Interfaces 4, 5691–5697 (2012).
55. Kidu, T. et al. Pore and particle size control of gas sensing films using Au8NIO nanoparticles synthesized by seed-mediated growth design of highly sensitive gas sensors. J. Phys. Chem. C 117, 15774–15782 (2013).
56. Bulemo, P. M., Cho, H. J., Kim, D. H. & Kim, I. D. Facile synthesis of Pt-functionalized meso/macroporous SnO2 hollow spheres through in situ templating with SO2 for H2S sensors. ACS Appl. Mater. Interfaces 10, 18183–18191 (2018).
57. Wang, Y. et al. Sputtered SnO2:NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors. Sens. Actuators, B 278, 28–38 (2019).
58. Xu, C., Tamaki, J., Muara, N. & Yamazole, N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators, B 8, 147–155 (1991).
59. Cui, S. et al. Ultrasensitive chemical sensing through facile tuning defects and functional groups in reduced graphene oxide. Anal. Chem. 86, 7516–7522 (2014).
60. Bandara, N., Jayathilaka, C., Disanayaka, D. & Jayantelli, S. Temperature effects on gas sensing properties of electrodeposited chlorine doped and undoped n-type cuprous oxide thin films. J. Sens. Technol. 04, 119–126 (2014).
61. Gad, A. et al. Integrated strategy toward self-powering and selectivity tuning of semiconductor gas sensors. ACS Sens 1, 1256–1264 (2016).
62. Liu, L. et al. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction. Nanoscale 9, 18579–18583 (2017).
63. Jose, A. S., Prabhujil, K., Choudhury, P. & Barhilla, H. C. Sputter deposited p-NiO–SnO2 porous thin film gas sensor: high selectivity and fast response. Sens. Actuators, B 310, 127830 (2020).
64. Kumar, A., Sanger, A., Kumar, A. & Chandia, R. Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv. 6, 77636–77643 (2016).
65. Bansal, N., Koejoe D. & Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators, B 121, 18–35 (2007).
66. Batzill, M. & Diebold, U. The surface and materials science of tin dioxide. Prog. Surf. Sci. 79, 47–154 (2005).
67. Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators, B 140, 319–336 (2009).
68. Comini, E. et al. Stable and highly sensitive gas sensors based on semi-conducting oxide nanobelts. Appl. Phys. Lett. 81, 1869–1871 (2002).
69. Sun, G. J. et al. H2 gas sensing properties of FeO2, nanoparticle-decorated NiO nanoplate sensors. Surf. Coat. Technol. 307, 1088–1095 (2016).
70. Zhou, X. et al. Crystal-defect-dependent gas-sensing mechanism of the single ZnO nanowire sensors. ACS Sens 3, 2385–2393 (2018).
71. Choi, P. G., Fuchigami, T., Kakimoto, K. & Masuda, Y. Effect of crystal defect on gas sensing properties of Co3O4 nanoparticles. ACS Sens 5, 1665–1673 (2020).
72. Motaung, D. E. et al. Ultra-high sensitive and selective H2 gas sensor manifested by interface of n-n heterostructure of CeO2–SnO2 nanoparticles. Sens. Actuators, B 254, 984–995 (2018).
73. Wang, X. et al. Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanopowders with exposed high-energy facets. Chem. Eur. J. 18, 2283–2289 (2012).
74. Bi, H. et al. Morphology-controlled synthesis of CeO2 nanocrystals and their face-dependent gas sensing properties. Sens. Actuators, B 330, 129374 (2021).
75. Han, X. et al. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy (221) facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed 48, 9190–9193 (2009).
76. Yamazole, N. Toward innovations of gas sensor technology. Sens. Actuators, B 108, 2–14 (2005).
77. Katko, A., Afkhome, Z. U., Kim, H. W. & Kim, S. S. Grain-size-tuned highly H2-selective chemiresistive sensors based on ZnO–SnO2 composite nanostructures. ACS Appl. Mater. Interfaces 8, 2486–2494 (2016).
78. Wu, Q. et al. Grain-boundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv. Mater. 31, 1804583 (2019).
79. Sakai, G., Matsuoka, N., Shimanca, K. & Yamazole, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators, B 80, 125–131 (2001).
80. Shimanca, K., Yuasa, M., Kidu, T., Yamazole, N. In 2011 IEEE Nanotechnology Materials and Devices Conference. 38–43 (IEEE).
81. Adamiu, B. et al. p-p heterojunction sensors of p-Cu2O/MoO3 micro/nanorods vertically grown on p-CuO layers for room-temperature ultrasmall and fast recoverable detection of NOx. ACS Appl. Mater. Interfaces 12, 8411–8421 (2020).
82. Wang, Y. et al. MOF-derived porous hollow Cu2O@SnO2 cages for high-performance MEMS trimethylamine sensors. ACS Sens 6, 2613–2621 (2021).
83. Lou, C. et al. Fe2O3-sensitized SnO2 nanosheets via atomic layer deposition for sensitive formaldehyde detection. Sens. Actuators, B 345, 130429 (2021).
201. Zhang, H. et al. Extending the detection range and response of TiO$_2$ based hydrogen sensors by surface defect engineering. *Int. J. Hydrog. Energy* **45**, 18057–18065 (2020).

202. Wang, X. et al. Oxygen vacancy defects engineering on Ce-doped α-Fe$_2$O$_3$ gas sensor for reducing gases. *Sens. Actuators, B* **302**, 127165 (2020).

203. Chen, Y. et al. Interface defect engineering induced drastic sensing performance enhancement of W$_x$O$_y$@PANI nanowires for ammonia detection at room temperature. *Appl. Surf. Sci.* **506**, 144816 (2020).

204. Luo, N. et al. Ultralow detection limit MEMS hydrogen sensor based on SnO$_2$ with oxygen vacancies. *Sens. Actuators, B* **354**, 130982 (2022).

205. Wang, L. et al. Mo-doped SnO$_2$ nanotubes sensor with abundant oxygen vacancies for ethanol detection. *Sens. Actuators, B* **347**, 130642 (2021).

206. Wang, L. et al. Oxygen vacancy-based Tb-doped SnO$_2$ nanotubes as an ultrasensitive sensor for ethanol detection. *Sens. Actuators, B* **344**, 130111 (2021).

207. Wang, Z. et al. Ultrasensitive NO$_2$ gas sensor based on Sb-doped SnO$_2$ covered ZnO nano-heterojunction. *J. Mater. Sci.* **56**, 7348–7356 (2021).

208. Zhang, L. et al. Facile one-step hydrothermal synthesis of SnO$_2$ microspheres with oxygen vacancies for superior ethanol sensor. *J. Alloy. Compd.* **814**, 152266 (2020).

209. Qin, Y. et al. Enhanced gas sensing performance of Bi$_2$MoO$_6$ with introduction of oxygen vacancy: coupling of experiments and first-principles calculations. *J. Alloy. Compd.* **894**, 162534 (2022).

210. Liu, J. et al. Controllable synthesis of In$_2$O$_3$ octodecahedra exposing (110) facets with enhanced gas sensing performance. *ASC Adv.* **5**, 44306–44312 (2015).

211. Xu, J. et al. The crystal facet-dependent gas sensing properties of ZnO nanosheets: experimental and computational study. *Sens. Actuators, B* **242**, 148–157 (2017).

212. Xu, R. et al. Ultrathin SnO$_2$ nanosheets with dominant high-energy (001) facets for low temperature formaldehyde gas sensor. *Sens. Actuators, B* **289**, 186–194 (2019).

213. Sun, H. & Lv, H. Facet engineering of Nano-Co$_3$O$_4$ for catalytic and gas sensor performance: a mechanism insight. *J. Alloy. Compd.* **823**, 153742 (2020).

214. Choi, P. G., Izu, N., Shirahe, N. & Masuda, Y. SnO$_2$ nanosheets for selective alkene gas sensing. *ACS Appl. Nano Mater.* **2**, 1820–1827 (2019).

215. Zhang, N. et al. Synthesis of Au-decorated SnO$_2$ crystallites with exposed (221) facets and their enhanced acetylene sensing properties. *Sens. Actuators, B* **307**, 127629 (2020).