Selection principles and countable dimension

Liljana Babinkostova and Marion Scheepers

Abstract

We consider player TWO of the game $G_1(A, B)$ when A and B are special classes of open covers of metrizable spaces. Our results give game-theoretic characterizations of the notions of a countable dimensional and of a strongly countable dimensional metric spaces.

The selection principle $S_1(A, B)$ states: There is for each sequence $(A_n : n \in \mathbb{N})$ of elements of A a corresponding sequence $(b_n : n \in \mathbb{N})$ such that for each n we have $b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of B. There are many examples of this selection principle in the literature. One of the earliest examples of it is known as the Rothberger property, $S_1(O, O)$. Here, O is the collection of all open covers of a topological space.

The following game, $G_1(A, B)$, is naturally associated with $S_1(A, B)$: Players ONE and TWO play an inning per positive integer. In the n-th inning ONE first chooses an element O_n of A; TWO responds by choosing an element $T_n \in O_n$. A play

$$ O_1, T_1, O_2, T_2, \ldots, O_n, T_n, \ldots $$

is won by TWO if $\{T_n : n \in \mathbb{N}\}$ is in B, else ONE wins.

TWO has a winning strategy in $G_1(A, B)$

\downarrow

ONE has no winning strategy in $G_1(A, B)$

\downarrow

$S_1(A, B)$.

There are many known examples of A and B where neither of these implications reverse.

Several classes of open covers of spaces have been defined by the following schema: For a space X, and a collection T of subsets of X, an open cover U of X is said to be a T-cover if X is not a member of U, but there is for each $T \in T$ a $U \in U$ with $T \subseteq U$. The symbol $O(T)$ denotes the collection of T-covers of X. In this paper we consider only A which are of the form $O(T)$ and $B = O$. Several examples of open covers of the form $O(T)$ appear in the literature. To mention just a few: When T is the family of one-element subsets of X, $O(T) = O$. When T is the family of finite subsets of X, then members of $O(T)$ are called ω-covers in \mathbb{R}. The symbol Ω denotes the family of ω-covers of \mathbb{R}.
X. When T is the collection of compact subsets of X, then members of $O(T)$ are called k-covers in $[5]$. In $[5]$ the collection of k-covers is denoted K.

Though some of our results hold for more general spaces, in this paper “topological space” means separable metric space, and “dimension” means Lebesgue covering dimension. We consider only infinite-dimensional separable metric spaces. By classical results of Hurewicz and Tumarkin these are separable metric spaces which cannot be represented as the union of finitely many zerodimensional subspaces.

1 Properties of strategies of player TWO

Lemma 1 Let F be a strategy of TWO in the game $G_1(O(T), B)$. Then there is for each finite sequence (U_1, \cdots, U_n) of elements of $O(T)$, an element $C \in T$ such that for each open set $U \supseteq C$ there is an $U \in O(T)$ such that $U = F(U_1, \cdots, U_n, U)$.

Proof: For suppose on the contrary this is false. Fix a finite sequence (U_1, \cdots, U_n) witnessing this, and choose for each set $C \subseteq X$ which is in T an open set $U_C \supseteq C$ witnessing the failure of Claim 1. Then $U = \{U_C : C \subseteq X$ and $C \in T\}$ is a member of $O(T)$, and as $F(U_1, \cdots, U_n, U) = U_C$ for some $C \in T$, this contradicts the selection of U_C.

When T has additional properties, Lemma 1 can be extended to reflect that. For example: The family T is up-directed if there is for each A and B in T, a C in T with $A \cup B \subseteq C$.

Lemma 2 Let T be an up-directed family. Let F be a strategy of TWO in the game $G_1(O(T), B)$. Then there is for each $D \in T$ and each finite sequence (U_1, \cdots, U_n) of elements of $O(T)$, an element $C \in T$ such that $D \subseteq C$ and for each open set $U \supseteq C$ there is an $U \in O(T)$ such that $U = F(U_1, \cdots, U_n, U)$.

Proof: For suppose on the contrary this is false. Fix a finite sequence (U_1, \cdots, U_n) and a set $D \in T$ witnessing this, and choose for each set $C \subseteq X$ which is in T and with $D \subseteq C$ an open set $U_C \supseteq C$ witnessing the failure of Claim 1. Then, as T is up-directed, $U = \{U_C : D \subseteq C \subseteq X$ and $C \in T\}$ is a member of $O(T)$, and as $F(U_1, \cdots, U_n, U) = U_C$ for some $C \in T$, this contradicts the selection of U_C.

We shall say that X is T-first countable if there is for each $D \in T$ a sequence $(U_n : n = 1, 2, \cdots)$ of open sets such that for all n, $T \subseteq U_{n+1} \subseteq U_n$, and for each open set $U \supseteq T$ there is an n with $U_n \subseteq U$. Let $\langle T \rangle$ denote the subspaces which are unions of countably many elements of T.

Theorem 3 If F is any strategy for TWO in $G_1(O(T), B)$ and if X is T-first countable, then there is a set $S \in \langle T \rangle$ such that: For any closed set $C \subseteq X \setminus S$, there is an F-play $O_1, T_1, \cdots, O_n, T_n \cdots$ such that $\bigcup_{n=1}^{\infty} T_n \subseteq X \setminus C$.

More can be proved for up-directed T: 2
Theorem 4 Let T be up-directed. If F is any strategy for TWO in $G_1(\mathcal{O}(T), \mathcal{O})$ and if X is T-first countable, then there is for each set $T \in \langle T \rangle$ a set $S \in \langle T \rangle$ such that: $T \subseteq S$ and for any closed set $C \subset X \setminus S$, there is an F-play $O_1, T_1, \cdots, O_n, T_n \cdots$ such that $T \subseteq \bigcup_{n=1}^{\infty} T_n \subseteq X \setminus C$.

Proof: Let F be a strategy of TWO. Let T be a given element of $\langle T \rangle$, and write $T = \bigcup_{n=1}^{\infty} T_n$, where each T_n is an element of T.

Starting with T_1 and the empty sequence of elements of $\mathcal{O}(T)$, apply Lemma 2 to choose an element S_0 of T such that $T_1 \subseteq S_0$, and for each open set $U \supseteq S_0$ there is an element $U \in \mathcal{O}(T)$ with $U = F(U)$. Since X is T-first countable, choose for each n an open set U_n such that $U_n \supseteq U_{n+1}$, and for each open set U with $S_0 \subseteq U$ there is an n with $U_n \subseteq U$. Using Lemma 2 choose for each n an element U_n of $\mathcal{O}(T)$ such that $U_n = F(U_n)$.

Now consider T_2, and for each n the one-term sequence (U_n) of elements of $\mathcal{O}(T)$. Since T is up-directed, choose an element T of T with $S_0 \cup T_2 \subseteq T$. Applying Lemma 2 to T and (U_n) choose an element $S(n) \in T$ such that for each open set $V \supseteq S(n)$ there is a $U \in \mathcal{O}(T)$ with $U = F(U, U)$. Since X is T-first countable, choose for each k an open set $U(n, k) \supseteq S(n)$ such that $U(n, k) \supseteq U(n, k+1) \supseteq S(n)$, and for each open set $V \supseteq S(n)$ there is a k with $V \supseteq U(n, k)$. Then choose for each n and k an element $U(n, k)$ of $\mathcal{O}(T)$ such that $U(n, k) = F(U(n), U(n, k))$.

In general, fix k and suppose we have chosen for each finite sequence (n_1, \ldots, n_k) of positive integers, sets $S(n_1, \ldots, n_k) \in T$, open sets $U(n_1, \ldots, n_k)$ and elements $U(n_1, \ldots, n_k)$ of $\mathcal{O}(T)$, $n < \infty$, such that:

1. $T_1 \cup \cdots \cup T_k \subseteq S(n_1, \ldots, n_k)$;
2. $\{U(n_1, \ldots, n_k) : n < \infty\}$ witnesses the T-first countability of X at $S(n_1, \ldots, n_k)$;
3. $U(n_1, \ldots, n_k) = F(U(n_1), \ldots, U(n_1, \ldots, n_k), U(n_1, \ldots, n_k), U(n_1, \ldots, n_k))$;

Now consider a fixed sequence of length k, say (n_1, \ldots, n_k). Since T is up-directed choose an element T of T such that $T_{k+1} \cup S(n_1, \ldots, n_k) \subseteq T$. For each n apply Lemma 2 to T and the finite sequence $(U(n_1), \ldots, U(n_1, \ldots, n_k))$: Choose a set $S(n_1, \ldots, n_k) \in T$ such that $T \subseteq S(n_1, \ldots, n_k)$ and for each open set $U \supseteq S(n_1, \ldots, n_k)$ there is a $U \in \mathcal{O}(T)$ such that $U = F(U(n_1), \ldots, U(n_1, \ldots, n_k), U(n_1, \ldots, n_k), U(n_1, \ldots, n_k))$. Since X is T-first countable, choose for each j an open set $U(n_1, \ldots, n_k, j)$ such that $U(n_1, \ldots, n_k, j+1) \subseteq U(n_1, \ldots, n_k, j)$, and for each open set $U \supseteq S(n_1, \ldots, n_k)$ there is a j with $U \supseteq U(n_1, \ldots, n_k)$. Then choose for each j an $U(n_1, \ldots, n_k, j) \in \mathcal{O}(T)$ such that $U(n_1, \ldots, n_k, j) = F(U(n_1), \ldots, U(n_1, \ldots, n_k), U(n_1, \ldots, n_k), U(n_1, \ldots, n_k, j))$.

This shows how to continue for all k the recursive definition of the items $S(n_1, \ldots, n_k) \in T$, open sets $U(n_1, \ldots, n_k)$ and elements $U(n_1, \ldots, n_k)$ of $\mathcal{O}(T)$, $n < \infty$ as above.

Finally, put $S = \bigcup_{\tau \in \mathbb{N}} S_{\tau}$. It is clear that $S \in \langle T \rangle$, and that $T \subseteq S$. Consider a closed set $C \subseteq X \setminus S$. Since $C \cap S_0 = \emptyset$, choose an n_1 so that
Theorem 5 Let X set T cofinal set F there is an T such that $T \subseteq C$ with G then TWO has a winning strategy in T-first countable. Call a subset G of a topological space is a G_δ-set if it is an intersection of countably many open sets.

When T is a collection of compact sets in a metrizable space X then X is T-first countable. Call a subset C of T cofinal if there is for each $T \in T$ a $C \in C$ with $T \subseteq C$. As an examination of the proof of Theorem 4 reveals, we do not need full T-first countability of X, but only that X is C-first countable for some cofinal set $C \subseteq T$. Thus, we in fact have:

Theorem 5 Let T be up-directed. If F is any strategy for TWO in $G_1(\mathcal{O}(T), \mathcal{O})$ and if X is C-first countable where $C \subseteq T$ is cofinal in T, then there is for each set $T \in \langle T \rangle$ a set $S \in \langle C \rangle$ such that: $T \subseteq S$ and for any closed set $C \subseteq X \setminus S$, there is an F-play

$$O_1, T_1, \cdots, O_n, T_n \cdots$$

such that $T \subseteq \bigcup_{n=1}^{\infty} T_n \subseteq X \setminus C$.

2 When player TWO has a winning strategy

Recall that a subset of a topological space is a G_δ-set if it is an intersection of countably many open sets.

Theorem 6 If the family T has a cofinal subset consisting of G_δ subsets of X, then TWO has a winning strategy in $G_1(\mathcal{O}(T), \mathcal{O})$ if, and only if, the space is a union of countably many members of T.

Proof: $2 \Rightarrow 1$ is easy to prove. We prove $1 \Rightarrow 2$. Let F be a winning strategy for TWO. Let $C \subseteq T$ be a cofinal set consisting of G_δ-sets.

By Lemma 1 choose $C_0 \in T$ associated to the empty sequence. Since C is cofinal in T, choose for C_0 a G_δ set G_0 in C with $C_0 \subseteq G_0$. Choose open sets $(U_n : n \in \mathbb{N})$ such that for each n we have $G_0 \subseteq U_{n+1} \subseteq U_n$, and $G_0 = \cap_{n \in \mathbb{N}} U_n$.

For each n choose by Lemma 1 a cover $U_n \in \mathcal{O}(T)$ with $U_n = F(U_n)$. Choose for each n a $C_n \in T$ associated to (U_n) by Lemma 1. For each n also choose a G_δ-set $G_n \in C$ with $C_n \subseteq G_n$. For each n_1 choose a sequence $(U_{n_1n} : n \in \mathbb{N})$ of open sets such that $G_{n_1} = \cap_{n \in \mathbb{N}} U_{n_1n}$ and for each n, $U_{n_1n+1} \subseteq U_{n_1n}$. For each n_1n_2 choose by Lemma 1 a cover $U_{n_1n_2} \in \mathcal{O}(T)$ such that $U_{n_1n_2} = F(U_{n_1n_2})$. Choose by Lemma 1 a $C_{n_1n_2} \in T$ associated to $(U_{n_1n_2}, U_{n_1n_2})$, and then choose a G_δ-set $G_{n_1n_2} \in C$ with $G_{n_1n_2} \subseteq G_{n_1n_2}$, and so on.

Thus we get for each finite sequence $(n_1n_2 \cdots n_k)$ of positive integers

1. a set $C_{n_1 \cdots n_k} \in T$,
2. a G_δ-set $G_{n_1 \cdots n_k} \in T$ with $C_{n_1 \cdots n_k} \subseteq G_{n_1 \cdots n_k}$,
3. a sequence \((U_{n_1\cdots n_k} : n \in \mathbb{N})\) of open sets with \(G_{n_1\cdots n_k} = \cap_{n \in \mathbb{N}} U_{n_1\cdots n_k}\) and for each \(n\) \(U_{n_1\cdots n_k n+1} \subseteq U_{n_1\cdots n_k n}\), and

4. a \(U_{n_1\cdots n_k} \in \mathcal{O}(T)\) such that for all \(n\)

\[U_{n_1\cdots n_k n} = F(U_{n_1}, \ldots, U_{n_1\cdots n_k n}).\]

Now \(X\) is the union of the countably many sets \(G_{\tau} \in \mathcal{T}\) where \(\tau\) ranges over \(\omega^*\). For if not, choose \(x \in X\) which is not in any of these sets. Since \(x\) is not in \(G_{\emptyset}\), choose \(U_{n_1}\) with \(x \notin U_{n_1}\). Now \(x\) is not in \(G_{n_1}\), so choose \(U_{n_1 n_2}\) with \(x \notin U_{n_1 n_2}\), and so on. In this way we obtain the \(F\)-play

\[U_{n_1}, U_{n_1 n_2}, U_{n_1 n_2 n_3}, \ldots\]

lost by TWO, contradicting that \(F\) is a winning strategy for TWO.

Examples of up-directed families \(\mathcal{T}\) include:

- \([X]^{<\aleph_0}\), the collection of finite subsets of \(X\);
- \(\mathcal{K}\), the collection of compact subsets of \(X\);
- \(\text{KFD}\), the collection of compact, finite dimensional subsets of \(X\);
- \(\text{CFD}\), the collection of closed, finite dimensional subsets of \(X\);
- \(\text{FD}\), the collection of finite dimensional subsets of \(X\).

A subset of a topological space is said to be \textit{countable dimensional} if it is a union of countably many zero-dimensional subsets of the space. A subset of a space is \textit{strongly countable dimensional} if it is a union of countably many closed, finite dimensional subsets. Let \(X\) be a space which is not finite dimensional. Let \(\mathcal{O}_{\text{ctd}}\) denote \(\mathcal{O}(\text{CFD})\), the collection of CFD-covers of \(X\). And let \(\mathcal{O}_{\text{fd}}\) denote \(\mathcal{O}(\text{FD})\), the collection of FD-covers of \(X\).

Corollary 7 For a metrizable space \(X\) the following are equivalent:

1. \(X\) is strongly countable dimensional.
2. TWO has a winning strategy in \(G_1(\mathcal{O}_{\text{ctd}}, \mathcal{O})\).

Proof: 1 \(\Rightarrow\) 2 is easy to prove. To see 2 \(\Rightarrow\) 1, observe that in a metric space each closed set is a \(G_\delta\)-set. Thus, \(T = \text{CFD}\) meets the requirements of Theorem 6.

For the next application we use the following classical theorem of Tumarkin:

Theorem 8 (Tumarkin) In a separable metric space each \(n\)-dimensional set is contained in an \(n\)-dimensional \(G_\delta\)-set.

Corollary 9 For a separable metrizable space \(X\) the following are equivalent:

1. \(X\) is countable dimensional.
2. TWO has a winning strategy in $G_1(O_{fd}, O)$.

Proof: $1 \Rightarrow 2$ is easy to prove. We now prove $2 \Rightarrow 1$. By Tumarkin’s Theorem, $T = FD$ has a cofinal subset consisting of $G_δ$-sets. Thus the requirements of Theorem 6 are met. ♦

Recall that a topological space is perfect if every closed set is a $G_δ$-set.

Corollary 10 In a perfect space the following are equivalent:

1. TWO has a winning strategy in $G_1(K, O)$.

2. The space is $σ$-compact.

Proof: In a perfect space the collection of closed sets are $G_δ$-sets. Apply Theorem 6. ♦

And when T is up-directed, Theorem 6 can be further extended to:

Theorem 11 If T is up-directed and has a cofinal subset consisting of $G_δ$-subsets of X, the following are equivalent:

1. TWO has a winning strategy in $G_1(O(T), Γ)$.

2. TWO has a winning strategy in $G_1(O(T), Ω)$.

3. TWO has a winning strategy in $G_1(O(T), O)$.

Proof: We must show that $3 \Rightarrow 1$. Since X is a union of countably many sets in T, and since T is up-directed, we may represent X as $\bigcup_{n=1}^{∞} X_n$ where for each n we have $X_n \subset X_{n+1}$ and $X_n \in T$. Now, when ONE presents TWO with $O_n \in O(T)$ in inning n, then TWO chooses $T_n \in O_n$ with $X_n \subset T_n$. The sequence of T_n’s chosen by TWO in this way results in a $γ$-cover of X. ♦

3 Longer games and player TWO

Fix an ordinal $α$. Then the game $G_1^α(A, B)$ has $α$ innings and is played as follows. In inning $β$ ONE first chooses an $O_β \in A$, and then TWO responds with a $T_β \in O_β$. A play

$$0_0, T_0, ..., O_β, T_β, ..., β < α$$

is won by TWO if $\{T_β : β < α\}$ is in B; else, ONE wins.

In this notation the game $G_1(A, B)$ is $G_1^ω(A, B)$. For a space X and a family T of subsets of X with $∪T = X$, define:

$$cov_X(T) = \min\{|S| : S \subseteq T \text{ and } X = ∪S\}.$$

When $X = ∪T$, there is an ordinal $α \leq cov_X(T)$ such that TWO has a winning strategy in $G_1^ω(O(T), O)$. In general, there is an ordinal $α \leq |X|$ such that TWO has a winning strategy in $G_1^ω(O(T), O)$.

$$tp_{S_1(O(T), O)}(X) = \min\{α : \text{TWO has a winning strategy in } G_1^α(O(T), O)\}.$$
3.1 General properties

The proofs of the general facts in the following lemma are left to the reader.

Lemma 12 1. If Y is a closed subset of X then $\text{tp}_{S_1(\mathcal{O}(T),\mathcal{O})}(Y) \leq \text{tp}_{S_1(\mathcal{O}(T),\mathcal{O})}(X)$.

2. If α is a limit ordinal and if $\text{tp}_{S_1(\mathcal{O}(T),\mathcal{O})}(X_n) \leq \alpha$ for each n, then $\text{tp}_{S_1(\mathcal{O}(T),\mathcal{O})}(\bigcup_{n<\infty} X_n) \leq \alpha$.

We shall now give examples of ordinals α for which TWO has winning strategies in games of length α. First we have the following general lemma.

Lemma 13 Let X be T-first countable. Assume that:

1. T is up-directed;

2. $X \notin \langle T \rangle$;

3. α is the least ordinal such that there is an element B of $\langle T \rangle$ such that for any closed set $C \subset X \setminus B$ with $C \notin T$, $\text{tp}_{S_1(\mathcal{O}(T),\mathcal{O})}(C) \leq \alpha$.

Then $\text{tp}_{S_1(\mathcal{O}(T),\mathcal{O})}(X) = \omega + \alpha$.

Proof: We must show that TWO has a winning strategy for $G_1^{\omega+\alpha}(\mathcal{O}(T),\mathcal{O})$, and that there is no $\beta < \omega + \alpha$ for which TWO has a winning strategy in $G_1^\beta(\mathcal{O}(T),\mathcal{O})$.

To see that TWO has a winning strategy in $G_1^{\omega+\alpha}(\mathcal{O}(T),\mathcal{O})$, fix a B as in the hypothesis, and for each closed set F disjoint from B, fix a winning strategy τ_F for TWO in the game $G_1^\alpha(\mathcal{O}(T),\mathcal{O})$ played on F. Now define a strategy σ for TWO in $G_1^{\omega+\alpha}(\mathcal{O}(T),\mathcal{O})$ on X as follows: During the first ω innings, TWO covers B. Let T_1, T_2, \ldots be TWO’s moves during these ω innings, and put $C = X \setminus \bigcup_{n=1}^\omega T_n$. Then C is a closed subset of X, disjoint from B. Now TWO follows the strategy τ_C in the remaining α innings, to also cover C.

To see that there is no $\beta < \omega + \alpha$ for which TWO has a winning strategy in $G_1^\beta(\mathcal{O}(T),\mathcal{O})$, argue as follows: Suppose on the contrary that $\beta < \omega + \alpha$ is such that TWO has a winning strategy σ for $G_1^\beta(\mathcal{O}(T),\mathcal{O})$ on X. We will show that there is a set $S \in \langle T \rangle$ and an ordinal $\gamma < \alpha$ such that for each closed set C disjoint from S, TWO has a winning strategy in $G_1^\gamma(\mathcal{O}(T),\mathcal{O})$ on C. This gives a contradiction to the minimality of α in hypothesis 3.

We consider cases: First, it is clear that $\alpha \leq \beta$, for otherwise TWO may merely follow the winning strategy on X and relativize to any closed set C to win on C in $\beta < \alpha$ innings, a contradiction. Thus, $\omega + \alpha > \alpha$. Then we have $\alpha < \omega^2$, say $\alpha = \omega \cdot n + k$. Since then $\omega + \alpha = \omega \cdot (n+1) + k$, we have that β with $\alpha < \beta < \omega + \alpha$ has the form $\beta = \omega \cdot n + \ell$ with $\ell \geq k$. The other possibility, $\beta = \omega \cdot (n+1) + j$ for some $j < k$, does not occur because it would give $\alpha + \omega > \beta = \omega \cdot n + (\omega + j) = (\omega \cdot n + k) + (\omega + j) = \alpha + \omega + j$.

Let F be a winning strategy for TWO in $G_1^\beta(\mathcal{O}(T),\mathcal{O})$. By the second hypothesis and Theorem [5] we have $\beta > \omega$. By Theorem [4] fix an element $S \in \langle T \rangle$ such that $B \subset S$, and for any closed set $C \subset X \setminus S$, there is an...
versions the elements of the family C and put $\alpha < \omega$ by Tumarkin’s Theorem, for some V_3: according to the winning strategy F and put C and $\gamma = \infty$ as strategy to play this game on C. Choose an hypothesis. Let ($\beta < \alpha$): α to the minimality of F-play ($\beta < \alpha$), and let ($\beta < \alpha$). The following is one of our main tools for these constructions:

Lemma 14 If G is any G_δ-subset of \mathbb{R}^N with $\mathbb{R}_\infty \subset G$, then $G \setminus \mathbb{R}_\infty$ contains a compact nowhere dense subset C which is homeomorphic to $[0, 1]^\mathbb{N}$.

We call $[0, 1]^\mathbb{N}$ the Hilbert cube. From now on assume the Continuum Hypothesis. Let ($F_\alpha : \alpha < \omega_1$) enumerate all the finite dimensional G_δ-subsets of \mathbb{R}^N, and let ($C_\alpha : \alpha < \omega_1$) enumerate the G_δ-subsets which contain \mathbb{R}_∞. Recursively choose compact sets $D_\alpha \subset \mathbb{R}^N$, each homeomorphic to the Hilbert cube and nowhere dense, such that $D_0 \subset C_0 \setminus (\mathbb{R}_\infty \cup F_0)$, and for all $\alpha > 0$,

$$D_\alpha \subset (\cap_{\beta < \alpha} C_\beta) \setminus (\mathbb{R}_\infty \cup (\bigcup \{D_\beta : \beta < \alpha\}) \cup (\bigcup_{\beta < \alpha} F_\beta)).$$

Version 1: For each α, choose a point $x_\alpha \in D_\alpha$ and put

$$B := \mathbb{R}_\infty \cup \{x_\alpha : \alpha < \omega_1\}.$$

Version 2: For each α, choose a strongly countable dimensional set $S_\alpha \subset D_\alpha$ and put

$$B := \mathbb{R}_\infty \cup (\bigcup \{S_\alpha : \alpha < \omega_1\}).$$

Version 3: For each α, choose a countable dimensional set $S_\alpha \subset D_\alpha$ and put

$$B := \mathbb{R}_\infty \cup (\bigcup \{S_\alpha : \alpha < \omega_1\}).$$

In all three versions, B is not countable dimensional: Otherwise it would be, by Tumarkin’s Theorem, for some $\alpha < \omega_1$ a subset of $\bigcup_{\beta < \alpha} F_\beta$. Thus TWO has no winning strategy in the games $G_1(\mathcal{O}_\text{std}, \mathcal{O})$ and $G_1(\mathcal{O}_\text{std}, \mathcal{O})$. Also, in all three versions the elements of the family \mathcal{C} of finite unions of the sets S_α are G_δ-sets.
in X, and in fact X is C-first-countable. This is because the Dα’s are compact and disjoint, and ℝN is D-first countable, where D is the family of finite unions of the Dα’s, and this relativizes to X.

For Version 1 TWO has a winning strategy in Gω1(OSd, O) and in Gω1(OSd, C), and for Gωω(K, O). For Version 2 TWO has a winning strategy in Gωω(OSd, O), and for Version 3 TWO has a winning strategy in Gωω(OSd, C).

To see this, note that in the first ω innings, TWO covers ℝ∞. Let {Un : n ∈ ℕ} be TWO’s responses in these innings. Then G = ∪n=1 ∞ Un is an open set containing ℝ∞, and so there is an α < ω1 such that:

Version 1: B \ G ⊆ {xβ : β < α} is a closed, countable subset of X and thus closed, zero-dimensional. In inning ω + 1 TWO chooses from ONE’s cover an element containing the set B \ G.

Version 2: B \ G ⊆ ∪β<α Sβ. But ∪β<α Sα is strongly countable dimensional, and so TWO can cover this part of B in the remaining ω innings. By Lemma 13 TWO does not have a winning strategy in fewer then ω + ω innings.

Version 3: B \ G ⊆ ∪β<α Sβ. But ∪β<α Sα is strongly countable dimensional, and so TWO can cover this part of B in the remaining ω innings. By Lemma 13 TWO does not have a winning strategy in fewer then ω + ω innings.

With these examples established, we can now upgrade the construction as follows: Let α be a countable ordinal for which we have constructed an example of a subspace S of ℝN for which tpS1(OS(T), O)(S) = α. Then choose inside each Dβ a set Cβ for which tpS1(OS(T), O)(Cβ) = α. Then the resulting subset B constructed above has, by Lemma 12 tpS1(OS(T), O)(B) = ω + α. In this way we obtain examples for each of the lengths ω · n and ω · n + 1, for all finite n.

By taking topological sums and using part 2 of Lemma 12 we get examples for ω2.

4 Conclusion

One obvious question is whether there is, under the Continuum Hypothesis, for each limit ordinal α subsets Xα and Yα of ℝN such that tpS1(OSd, O)(Xα) = α, and tpS1(OSd, O)(Yα) = α + 1. And the same question can be asked for tpS1(OSd, C).

In [1] countable dimensionality of metrizable spaces were characterized in terms of the selective screenability game. A natural question is how S1(OSd, O) and S1(OSd, C) are related to selective screenability. It is clear that S1(OSd, O) ⇒ S1(OSd, C). The relationship among these two classes and selective screenability is further investigated in [2] where it is shown, for example, that S1(OSd, O) implies selective screenability, but the converse does not hold. Thus, these two classes are new classes of weakly infinite dimensional spaces.
References

[1] L. Babinkostova, *Selective screenability and covering dimension*, Topology Proceedings 29:1 (2005), 13 - 17

[2] L. Babinkostova, *When does the Haver property imply selective screenability?*, submitted.

[3] J. Gerlits and Zs. Nagy, *Some properties of C(X), I*, Topology and its Applications 14 (1982), 151 – 161.

[4] W. Hurewicz, *Normalbereiche und Dimensionstheorie*, Mathematische Annalen 96:1 (1927), 736 - 764.

[5] G. Di Maio, Lj.D.R. Kočinac and E. Meccariello, *Applications of k-covers*, Acta Mathematica Sinica, English Series 22:4 (2006), 1151 - 1160.

[6] L. Tumarkin, *Über die Dimension nicht abgeschlossener Mengen*, Mathematische Annalen 98:1 (1928), 637 - 656.

Addresses

Liljana Babinkostova
Boise State University
Department of Mathematics
Boise, ID 83725 USA
e-mail: liljanab@math.boisestate.edu

Marion Scheepers
Department of Mathematics
Boise State University
Boise, Idaho 83725 USA
e-mail: marion@math.boisestate.edu