This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: http://openaccess.city.ac.uk/21736/

Link to published version:

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.
Incentives and Gender in a Multi-task Setting: an Experimental Study with Real-Effort Tasks

Zahra Murad*
Corresponding Author
Economics and Finance, University of Portsmouth, Portsmouth PO2 1UP, UK.
Corresponding Author: zahra.murad@port.ac.uk

Charitini Stavropoulou
School of Health Sciences, City University of London, London EC1V 0HB, UK.
Charitini.Stavropoulou@city.ac.uk

Graham Cookson
Office of Health Economics, London SW1E 6QT
gcookson@ohe.org

Abstract
This paper investigates the behavioural effects of competitive, social-value and social-image incentives on men’s and women’s allocation of effort in a multi-task environment. Specifically, using two real-effort laboratory tasks, we investigate how competitive prizes, social-value generation and public awards affect effort allocation decisions between the tasks. We find that all three types of incentives significantly focus effort allocation towards the task they are applied in, but the effect varies significantly between men and women. The highest effort distortion lies with competitive incentives, which is due to the effort allocation decision of men. Women exert similar amount of effort across the three incentive conditions, with slightly lower effort levels in the social-image incentivized tasks. Our results inform how and why genders differences may persist in competitive workplaces.

Keywords: Incentives, Gender Differences, Multi-tasking, Experiments

Short Title: Incentives and Gender in a Multi-task Setting

Data: Data will be available openly upon publication on University of Portsmouth database

Acknowledgements: We thank seminar participants at 7th Southern Experimental Economists Meeting in Malta and at 4th and 6th London Experimental Workshop, Jo Blanden, Nigel Burnell, and Lingbo Huang, Bjoern Hartig for valuable comments and suggestions. We acknowledge the financial support from the Leverhulme Trust (Grant RL-2012-681).
1 Introduction

Incentives in multi-task settings have received increasing attention in recent years. More employers than ever before require employees to multitask between different job responsibilities, a trend that has increased with the economic downturn as a means to save on labor costs (Cain 2011; Jacobs 2013; DeVaro & Gurtler 2016). Multi-tasking is evident in academic jobs, where university lecturers are involved in teaching, research and administrative duties. Similarly, most clinically active surgeons in medical centers are required to conduct research as well as examine patients and perform clinical procedures (Schultz, Schreyoegg & von Reitzenstein 2013). It has been argued that in these multi-task settings gender inequalities prevail: leading figures from Cambridge University in the UK have recently argued that the lack of women in top academic positions may be attributed to the way different job tasks are rewarded (Sanders et al., 2014). Academic promotions, they claim, are based on rigid and highly competitive research outcomes, such as publications and research grants, and much less on teaching and public engagement. Therefore, the criteria for success may benefit men more than women. Motivated by this observation, our study explores how various incentive schemes affect effort distortion across multiple tasks and how incentive effects are determined by the employee’s gender and economic preferences.

Previous evidence on singleton tasks has shown that there are indeed gender variations in how men and women respond to different types of incentives. Under competitive incentive schemes men have been shown to perform better than women (Gneezy, Niederle & Rustichini. 2003; Dohmen & Falk 2011). This result is particularly strong for tasks that are male-stereotyped indicating the importance of stereotype threat (Iriberri & Rey-Biel, 2017). Competitive incentives have long been utilized in the private sector with emphasis given to relative performance evaluations. Increasingly governments have been arguing for the adoption of relative performance-related-pay schemes in public services such as healthcare, education, law enforcement and the civil service (Ray, Foley, Tsang, Walne & Bajorek 2014). In contrast, women tend to perform better when they are given social-value incentives (Croson, Handy & Shang 2010; Dufwenberg & Muren 2006). These types of schemes are
more prevalent in the public and non-profit sectors but are also becoming a feature in the private sector through firm engagement in corporate social responsibility and philanthropic projects.

Despite the growing evidence on gender differences in singleton settings, there is no empirical evidence on the effectiveness of competitive, social-value and social-image incentives on effort allocation levels for each gender in a multi-task setting. This remains one of the biggest gaps in the literature of multitasking, and an important one given the growing use of multi-task working environments (Brugen & Moers 2007; Hannan et al. 2012; Hecht et al. 2012). An editorial note by Kachelmeier (2010) calls for more research on heterogeneous effectiveness of incentives with a special emphasis on demographic characteristics such as gender, ethnicity, age and nationality. As far as we know, since then the research on the effects of competitive, social-value and social-image incentives in a multi-task environment is absent.

A number of studies from single-task settings have focused on one incentive type at a time. It has been shown that gender differences under competitive payment schemes (Gneezy et al. 2003; Dohmen & Falk 2011; Niederle et al. 2013) are due to differences in risk preferences, confidence (Reuben, Rey-Biel, Sapienza & Zingales 2012; Ertac & Gurdal 2012; Ferrara et al. 2015), aversion to receive relative performance feedback and willingness to compete (Niederle & Vesterlund 2007; Cardenas et al. 2014). Women have been shown to be more motivated by social-value generation compared to men (Bennett 2003; Croson et al. 2010; Dufwenberg & Muren 2006; Kamas & Preston 2012), due to differences in pro-sociality and attitudes towards social and non-profit organizations (Andreoni & Vesterlund 2001; Eagly and Koenig 2006; Croson & Gneezy 2009; Mesch, Brown, Moore & Hayat 2011). There is varied evidence of gender differences in response to social-image incentives. Gneezy et al. (2003) Kamas, Preston & Baum (2008) and Pan & Houser (2011) show that men are more motivated by social-image concerns than women which has been explained by the evolutionary motivation of men to raise their social-status (Eagly & Wood 1999; Rose & Smith 2011). More recent evidence from field and lab experiments (Kosfeld & Neckerman 2011; Gerhards & Siemers 2015; Blanes i Vidal & Nossol 2011; Gill et al. 2018), closely related to our design of social-image incentives,
found no evidence of higher performance of men compared to women in public award/ranking treatments. Our study thus closely link to this strand of literature, but investigates the effectiveness of incentives for each gender as an allocation decision in a multi-task setting: specifically we aim to investigate the effort decisions in the presence of another task, which provides a clear opportunity cost of effort in a task the additional incentive is applied to.

We use experimental methodologies to reach our aim of cleanly comparing the effectiveness of incentives by gender and economic preferences. The multi-task setting that we consider involves working on two distinct tasks under a restricted work time, which induces substitutability between the tasks. We pre-test five different real-effort tasks to choose the two with the most similar characteristics. We then use these two tasks where one of the tasks is always incentivized by a piece-rate in all treatments. In a between-subject design we vary the incentives applied to the other task. In the control condition, we use fixed pay and in three treatment conditions we use competitive, social-value and social-image incentives.

We find strong evidence that incentives have differential effects on the effort allocation decisions of men and women. All three types of incentives significantly distort effort allocation decisions towards the task to which they are applied on compared to the piece-rate paying second task. Subjects earn significantly less in the social-value and social-image treatments emphasising the social preferences of subjects and their willingness to sacrifice some of their earnings for a social cause. The highest distortion of effort across the tasks is in the competitive incentive treatment, which is solely due to the effort allocation decisions of men. Further we observe that men’s effort allocation under the social-image incentives is higher compared to the one under social-value incentives, underlining the importance of social-image concerns for men. The effort allocation decision of women, on the other hand, is the same across all three incentive treatments, with a marginally lower contribution under the social-image incentives compared to the one under social-value incentives which can be explained by the previously observed ‘wallflower effect’ (Jones & Linardi 2014). We find limited evidence of economic preferences determining the effectiveness of incentives: only the
attitudes towards donating to social causes significantly predicts effort allocation in a social-value generating task away from piece-rate paying task.

Our study contributes to the management, accounting and economics literatures on incentives in a number of ways. First, in economics and management there is great interest in performance-based incentive schemes stemming from the assumption that there exist moral hazard and adverse-selection in employment relationships. Our study shows that these incentive schemes affect individuals’ effort allocation decision in multi-task settings, but do so differently for men and women. This is important to know given that employees can also pursue employment contracts that align best with their innate skills, thereby mitigating the adverse-selection problem of hidden abilities (Bonner & Sprinkle 2002; Kachelmeier & Williamson 2010). Second, our study contributes to the growing experimental literature on gender in the labour market (Azmat & Petrongolo 2014). By comparing the effectiveness of incentives on the effort allocation in the presence of a second piece-rate paying task for each gender, we thus present holistic evidence on how men and women allocate their effort across differently incentivized tasks. This is similar to previous studies that have come up with novel methods to investigate gender differences in competitiveness as a continuous decision rather than previously studied binary decision variable (Saccardo & Gneezy 2017; Ifcher & Zarghamee 2016). We show that while competitive and social-image incentives are attractive to employers, as they drive up the effort on the tasks they are applied to, they will favour men as they are more responsive to these incentives compared to women. This could be a plausible explanation of gender gaps in career progression in organizations.

In contrast to the extant experimental studies in multi-task settings, we increase the external validity and generalizability of our results by designing an experiment with real effort rather than chosen effort tasks. A similar line of research was undertaken by Hecht et al. (2012) and Tonin & Vlassopoulos (2015) who also used real effort tasks and online experiments to increase the external validity of their studies. However, both of these studies use task complementarity to study the interaction between the performance-related private and social incentives and the effort allocation
decisions. One of the most similar designs to ours is by Van Dijk, Sonnemans & Van Winden (2001) who also use two tasks, keeping incentives in one task constant and varying incentives (piece-rate, team and tournament) in the other task, to explore how incentives affect effort allocation decisions. They find that competitive tournament incentives produce more variable and higher effort levels followed by team incentives and piece-rate incentives. Hannan, McPhee, Newman & Tafkov, (2012) is another study investigating the effectiveness of incentives across multiple real effort tasks. Their study finds that public visibility of relative performance feedback has a significant effect on effort allocation between the tasks: feedback improves subjects’ effort in total but distorts effort allocation towards the task in which performance feedback is publicly visible. While van Dijk et al. (2001) do not report any results pertaining to gender, Hannan et al. (2012) report that they do not find any gender differences. The main reason for this could be that performance-related feedback affect both genders similarly. We discuss further our findings in the light of previous studies and implications in Section 4 of the paper.

2 Experimental Design
Basic experimental design
The experiment consisted of two parts, a single-task and a multi-task part, both of which involved working on the slider task and the counting zeros task.\(^1\)

In the single-task part of our experiment, subjects sequentially received instructions about the two tasks they had to complete and had 5 minutes to complete each task. The order of the presentation of the two tasks was randomized to avoid any potential order effects. They had to complete each task

\(^1\) The selection of these two tasks was based on a pre-test experiment, which was conducted among 18 subjects. The pre-test experiment explored the within-subject correlations between five real-effort tasks. Five tasks, the circle task (Huang & Murad 2017), the counting zeros task (Abeler, et al. 2011), the ball-catching task (Gächter et al. 2015), the slider task (Gill & Prowse 2012; 2014) and the number adding task (Niederle et al. 2013) were presented to subjects in a random order. Based on a within-subject analysis, we found that the highest correlation was between the slider task and the counting zeros task both in terms of actual performance and perceptions of the difficulty level. Aiming for characteristically very similar tasks to control for heterogeneous preferences for and performances in each task, we selected these two tasks as the most suitable for the purposes of our main experiment. For more information about the pre-test experiment please refer to Huang & Murad (2017).
separately and the performance in each task served as a control for heterogeneous abilities. At the end of a task, subjects received feedback on the number of correctly positioned sliders and completed counting zeros tables, which eliminated any potential uncertainty in subjects’ knowledge of their absolute ability levels. They were paid a piece rate of £0.10 per correct completion both in the slider and counting zeroes tasks, and the total earning in the single-task part was the sum of piece-rate earnings from both tasks.

After the single-task part, subjects completed a mid-study questionnaire that elicited demographic information (gender, age, and nationality) and self-reported economic preferences (general risk attitudes, competitiveness, confidence and attitudes towards donating to charities and social institutions) on a 7-item Likert-scale. By eliciting a number of demographic and psychological constructs we aimed to remove the salience of gender that could activate gender-related stereotypes and eliminate any possible experimenter demand effects (Zizzo 2010). The main reason for using mid-study rather than end-of study questionnaire was to ask subjects to choose a charity organization that they regularly donate to or whose activities they support from a list of charities offered. They could also fill in the charity of their liking that was not on the list. The chosen charity was then used in the next part of the experiment, where we induced social-value incentives as donations to chosen charities. Additionally, we chose to elicit the four economic preferences as they were identified by the previous literature to predict competitiveness, social preferences and image-seeking behaviour of subjects in single-task settings. The self-reported measures of economic preferences were similar to the validated survey instruments developed by Falk et al. (2016) who show strong correlations of the measures with many real life and laboratory decisions. At the end of the questionnaire, we asked subjects which task they enjoyed most such that they could choose either one, both or neither. This question was aimed at controlling for subjects’ personal preferences for the tasks.

After the completion of the mid-study questionnaire, the multi-task part of the experiment started. Subjects had to multi-task for 10 minutes between the slider and the counting zeros tasks
presented to them on the same screen. This part of the experiment consisted of four between-subject treatments where all subjects in a session participated in the same treatment. In all four treatments, subjects had to position a minimum of 10 sliders to receive a fixed rate of £3 and additionally they could earn a piece rate of £0.10 per completed counting zeros table. If subjects positioned less than 10 sliders their earnings from the multi-task part would be equal to £0. The fixed rate of £3 for a minimum correctly completed 10 sliders served two purposes. First, it helped to control the experimenter demand effect (Zizzo 2010) that could affect the effort allocation decision in the slider task: subjects might have felt obliged to position a certain number of sliders since the task was on their screens. Second, our design mimicked the real world multi-task work environment where one of the tasks has a minimum required work load to be completed, otherwise the worker could get fired.²

Experimental treatments

Across the four treatments, we manipulated whether subjects received additional incentives for their effort in the slider task. The *Baseline* condition lacked any additional incentives other than those described above and served as a control condition. In the other three treatments, we manipulated the additional incentives applied to the fixed rate paying slider task whilst keeping the piece rate in the counting zeroes task constant. In the *Charity* treatment, the slider task was a social-value generating task where subjects could earn a donation of £0.10 for a charity of their choice per each slider they positioned correctly exceeding the minimum of 10 sliders.³ This treatment measured the effect of social-value incentives on effort allocation decisions between the tasks compared to the Baseline. The Charity treatment mimicked the environment of working in corporate social responsibility or corporate philanthropy projects, where certain job tasks and projects improve societal welfare (Collier & Esteban 2007; Bhattacharya et al. 2008). It also mimicked social service jobs such as academic

² For example, academics are required to provide a certain number of teaching hours (Bentley et al. 2012), surgeons have to see a certain number of patients in a week and manufacturing workers have to adhere to minimum quality standards.

³ While completing the mid-study questionnaire, subjects were not aware that we would use the chosen charities in the later parts of the experiment.
multitasking where academics have to undertake multiple job tasks for the university such as teaching, publishing articles, gaining research grants and administration. There is some debate in the literature whether these roles are complementary or substitutable (Shin & Zhang 2015), and the nature of teaching-research nexus depends on the academic discipline (soft sciences versus hard-applied sciences) and the level of teaching (undergraduate versus postgraduate) as shown by Barbezat (2006) and Matthews, Lodge & Bosanquet (2014). In situations where the academic tasks are substitutable, the effort spent on teaching has a direct third party benefit (to students) compared to research activities that are considered to have more of a private value in terms of career progression and job mobility (Gautier & Wauthy 2007).

We assessed the effect of social-image incentives on effort allocation decision across the tasks in the CharityImage treatment where we designed the treatment according to Heffetz & Frank’s (2008) definition of social-image being positional, desirable and non-tradable. In addition to donations earned for every slider exceeding the minimum of 10, subjects were told that the names of the top three highest donors in a session would be publicly announced and they would be awarded with a Thank You! certificate. The certificate was signed by the project grant holder and thanked the participants for their donation. This design choice was inspired by Kosfeld & Neckerman’s (2011) field experiment and Gerhards & Siemer’s (2015) lab experiment which show significant effect of public recognition and awards on effort. We chose to use a certificate award rather than the visibility of donations as our manipulation of social-image incentives to reduce the “wallflower effect” (an aversion to deviate from average behavior) previously reported in experiments (Jones & Linardi 2014).

Finally, in the Prize treatment, we measured the effect of competitive financial incentives on effort allocation decisions between the two tasks. In this treatment, in addition to Baseline incentives

4 Social image is achieved via favourable comparison to others in socially recognized situations, hence positional. Social image is also desirable, because good social image brings along some benefit. Finally, social image is non-tradable in the sense that it cannot be directly purchased. Instead, it must be gained individually and, therefore, it must be acquired through actions that are visible. Hence, in social value generating settings, people concerned with obtaining high social image will strive to appear more generous.

5 The “Thank you!” certificate is included in the Appendix A.
subjects could earn a £5 prize if their performance in the fixed rate paying slider task was in the top three performances in their session. The amount of £5 was determined so that the prize is slightly less than the total donation made in a Charity session divided by three, thus making the treatments comparable. We ran one session of the Charity treatment before the first session of the Prize treatment to identify the average amount donated in a session and calibrate its financial prize equivalent.

By comparing Charity to Baseline, we can determine how social-value generation affects effort allocation; by comparing CharityImage to Charity, we can determine whether social-image affects effort allocation and finally by comparing Prize to CharityImage we can identify the effect of competitive private monetary rewards as opposed to competitive social-value generation effects on effort allocation. After the presentation of the multi-task instructions, subjects had to answer control questions to make sure that they have understood the incentives correctly. Subjects could start the multi-tasking part only after they have answered all control questions correctly. The full questionnaire and the experimental instructions are presented in the Appendix A. Table 1 summarises the incentives used in the multi-task part.

It is worth noting that compared to previous literature that focuses on gender differences and incentives, we employ a continuous decision variable rather than a binary one (Niederle & Vesterlund 2007; Kamas & Preston 2012). This is similar to more recent studies that have looked at how subjects choose the percentage of their compensation to be based on piece-rate versus competitive incentive (Saccardo, Pietrasz & Gneezy 2017) or what subjects’ willingness to accept competitive incentive is (Ifcher & Zarghamee 2016). Similarly our experiment uses continuous effort allocation decision between two differently incentivized tasks and extends the incentives to social-value and social-image incentives as well as competitively incentivized tasks.
Procedures

At the beginning of the experiment subjects knew that only one of the (single-task or multi-task) parts would be randomly selected to be paid out. By using the random incentive system to pay subjects, we controlled for income effects and other potential interdependencies between the single-task and multi-task parts.\(^6\) At the end of the multi-task part, subjects received feedback about their performance in both parts, the amount of donations they contributed to their chosen charity (in the Charity and CharityImage treatments) and whether they were in the top three of the session in their slider task performance (in the CharityImage and Prize treatments). In the CharityImage treatment, we also publicly announced the participation numbers of the top three donors, made them stand up and awarded them with a “Thank You!” certificate. All subjects were then privately paid in their cubicles.

We recruited subjects through advertising our study via weekly student-union newsletter, posters and handouts distributed around the campus. In total, 210 subjects participated in the experiment with 54% female and 26% from social science departments. There were 42 subjects in the Baseline (4 sessions), 51 in the Charity (4 sessions), 65 in the CharityImage (5 sessions) and 52 in the Prize (5 sessions) treatments. The number of subjects in a session varied between 10 and 15 subjects depending on the number of fifteen registered subjects to show up to the experiment. While subjects knew that the experiment was for 15 participants when they signed up, they were not aware of how many exactly showed up as we seated them in their cubicles as soon as they arrived. This ensures that perceptions of probability of winning in Prize and CharityImage treatments were not affected by the actual number of subjects in a session. The experiments were conducted at a large university in the United Kingdom and were programmed using the software Ztree (Fischbacher 2007). We ensured that the timing of sessions for each treatment was counterbalanced to account for time and day-of-the-

\(^6\) The random incentive system is a widely used experimental procedure. For a discussion of its rationale and possible limitations see Bardsley et al. (2010).
week effects. Subjects received £5 for participating in one-hour session and additionally earned an average of £6.2.

Given our experimental design we lay-out a simple analytical framework to provide a decision problem for the subject. We formulate utility function of a subject in each treatment separately, where the utility function has components of valuation of monetary outcomes $\nu(\cdot)$, ability function that maps provided effort to actual performance $\alpha(\cdot)$, the altruism parameter α that adds positive element to utility if the completed sliders exceed the minimum required 10 sliders in Charity and CharityImage treatments, probability function that maps each effort level to a probability of being in the top 3 highest performers in the session and the image consideration parameter β that governs how being in the top 3 highest performers adds to utility. Moreover, altruists’ utility also depends on the balance between chosen effort for privately paying task and social-value generating task. This ensures that subject’s optimal effort level is not simply a corner solution. We leave the precise estimation of the utility functions out of the scope of the paper. Instead we can hypothesize that women will have higher α and lower β parameters which will determine their allocation of the effort levels across the two tasks. Men will allocate their effort to social-image and monetary prize paying task, whereas women will allocate their effort more to social-value generating task. The interaction between α and β parameters for women, also predicts that women can have negative β parameters which may counteract their improved effort level in the social-value generating slider task in the CharityImage treatment (Jones & Linardi 2014). For the discussion of these framework and its mathematical formulation please see Appendix A2.

Table 1: Incentives in the Multi-task Part

	Baseline:	**Charity:**
	£3 fixed rate for minimum of 10 sliders	Baseline + £0.10 donation per each additional slider in excess of the minimum
Piece rate	Piece rate of £0.10 for counting zeros task	**CharityImage:** Charity + public certificate award for the top three donors
Prize:	Baseline + £5 prize for the top three slider task performers	

The incentives for the counting zeros task was kept constant at £0.10 per correctly completed table across all treatments.
3 Results

We first present the descriptive statistics and conduct a parametric analysis of the determinants of single-task part performance in the slider and counting zeros tasks. We then look at the multi-task part and test whether competitive, social-value and social-image incentives distort effort allocation decisions between the two tasks compared to the Baseline condition. We test whether the effectiveness of the incentives shows gender variability and how men and women respond to each incentive and whether economic preferences of individuals predict their behaviour.

Single-task Effort

In the single-task part of the experiment, the average number (standard deviation) of completed sliders was 42.8 (12.3) with a minimum of 13 and maximum of 76 sliders. The average number (s.d.) of completed counting zeros tables were 28.2 (6.2) with a minimum of 9 and maximum of 48 counting zeros tables. In Table 2, we test whether any of the observable characteristics of subjects significantly predict the performance in the tasks. We observe a significantly lower performance in the Slider task and higher performance in the Counting Zeros task by females. The result is consistent with the previous finding of Gill & Prowse (2012; 2014) who also find lower performance of women in the Slider task; we are however not aware of previous evidence showing a higher performance of females in the counting zeros task. We also find a lower performance of older subjects in the slider task but not in the counting zeros task. These results have some potential implications on future experimental studies that use slider and counting zeros tasks in gender and age varied subject pools, especially if either of these variables are the main point of interest. We thus use subjects’ single-task performance as an individual ability control in the parametric analysis of multi-task part, which eliminates any potential issues studying the gender interaction with the effectiveness of incentives.

We find a significant correlation in performance between the two tasks consistent with the pre-test results that identified the Slider and Counting Zeros tasks as the most similar tasks. Absent any strategic considerations, the positive correlation between the tasks supports that there was not
an endogenous conflict between the tasks per se. This enables us to exogenously induce conflict into the multi-task part of the experiment by explicitly manipulating incentives and restricting work time. We find no significant correlation between favouring a task and performance in a task. The insignificance of the correlation between favouring a task and scoring high in a task is encouraging and potentially means that personal preferences play a negligible role in exerted effort levels under piece-rate incentives. Additionally, we check whether single-task performance measures were the same across the experimental sessions and treatment conditions. We cannot reject the hypothesis that effort in the single-task part was the same across the sessions and the treatments (all p-values >0.100). Overall, the results of the single-task part are reassuring and enable us to control for individual heterogeneity in performance and personal preferences independent of any other strategic considerations when analysing the effectiveness of incentives in the multi-task part.

Table 2: Single-task Part Performance

Dependent Variable	Slider task performance	Counting Zeros task performance
Female	-7.562 (1.65)***	2.015 (0.72)**
Age	-0.491 (0.09)***	-0.054 (0.04)
British	-0.724 (1.45)	1.391 (0.89)
RiskTaking	0.148 (0.64)	0.225 (0.37)
Confidence	-1.451 (0.66)**	0.246 (0.49)
Competitiveness	0.490 (0.52)	0.026 (0.39)
DonationAttitude	-0.424 (0.66)	-0.384 (0.21)
FavouriteSlider	-1.163 (1.61)	-0.997 (0.65)
FavouriteCountingZeros	-5.388 (1.44)***	1.849 (1.19)
CountingZeroSingletask	0.707 (0.10)***	
SliderSingletask		0.206 (0.03)***
Constant	46.02 (5.16)***	18.00 (3.34)***
N	210	210
Adj R²	0.3442	0.2370

The reported coefficients are from an OLS regression. Clustered standard errors at session level are reported in parentheses. * 10%, ** 5%, *** 1% significance levels. RiskTaking, Confidence, Competitiveness and DonationAttitude are self-reported economic preference measures from the mid-study questionnaire. FavouriteSlider and FavouriteCountingZeros are dummy variables of whether subjects reported enjoying one of the tasks more than the other.

Effort allocation in the multi-task part

In Figure 1, we present the distribution of effort allocated to the fixed rate paying slider task and piece-rate paying counting zeros task in the multi-task part of the experiment across the four
treatments. On inspection, the graphs show that all three incentive conditions are effective in increasing effort levels in the slider task that they are applied to. A non-parametric test on the equality of distributions shows significant differences between Baseline and the other three treatments. In the Baseline condition, the average number of completed sliders is 18 (s.d. 8.31), slightly above the minimum level of required 10 sliders. The average number of completed sliders is the highest in the Prize treatment with 51 (s.d. 40.23), followed by the CharityImage treatment with 37 (21.02) and the Charity treatment with 35 (s.d. 18.02) sliders. A Wilcoxon-ranksum test on the equality of distributions shows significant differences in average effort level in the slider task between the treatments and Baseline conditions (p-value<0.000). Comparing the distributions of effort levels in the slider task across the three treatment conditions, the results show significantly higher effort level in the Prize treatment compared to the Charity and CharityImage treatments (p-value=0.012 and 0.011, respectively). Table B1 of the Appendix B presents the results of an OLS regression across the three different model specifications to test whether the differences between the treatments are robust to model specifications. We find robust effect of incentives on the effort allocation in the slider task to the inclusion of additional variables such as single-task part performance, demographics and reported economic preferences. Panel (b) of Figure 1 presents the equivalent analysis of the effort level allocated in the counting zeros task demonstrating a mirror image of the effort allocations in the slider task. The only difference in the multi-task effort levels in the two tasks is in the differences in variance between the two charity treatments. The variability in effort levels in the slider task is higher in the two charity treatments than in the Baseline whereas variability in effort levels in the counting zeros task is not significantly different between the two charity treatments and the Baseline condition.

Result 1: Competitive, social-value and social-image incentives are effective in increasing effort levels distorting effort levels away from piece rate paying task. The highest distortion is observed in the case of competitive incentives.

7 Since we did not give our subjects any feedback on the number of correctly positioned sliders while they were performing the task, subjects took an extra care not to fall below the minimum threshold 10 sliders by completing on average 18 sliders.
We further explore whether the variability in the effort levels in the multi-task part within each treatment is significantly predicted by subjects’ economic preferences. In Table 3, we test for heterogeneous effects of incentives on effort allocation decisions reporting the results from a linear regression; the most notable finding is that controlling for other observable characteristics, subjects with higher attitudes to donating to charities complete higher number of sliders and lower number of counting zeros tables in the Charity and CharityImage treatments.

Given that we administered the questionnaire to subjects prior to them working in the multi-task part, it is highly improbable that the behaviour in the experiment affected subjects’ responses in the questionnaire. The opposite however can be true such that their responses in the questionnaire may have affected their effort allocation decisions in the multi-task part by psychologically triggering social and competitive cues. However, we find only very limited support of this. The variable measuring donation attitudes has a small effect on the effort allocation decision in the multi-task part (difference of ~2 sliders), while the other variables have no significant effect (e.g. contrary to expectations, reporting higher competitiveness has no effect on effort allocation into the competitive slider task).

As a measure of ability levels we find that in the Prize and CharityImage treatments, single-task performance in the slider task significantly predicts the number of sliders completed in the multi-task part. While we cannot test whether the higher number of completed sliders is due to the self-selection of more able subjects into competitively incentivized tasks or merely caused by their ability to complete more sliders in a given time, we can draw parallels with the previous literature who find similar results. There are number of previous findings of more able individuals reacting more positively to competitive environments by Gerhards & Siemer (2015) and Kosfeld & Neckerman (2011) on the effect of awards in a single-task settings and van Dijk et al. (2001) on the effect of competitive prizes on effort levels in a multi-task setting. Yet a field study by Neckerman et al. (2014) finds that in single-task settings awards can be similarly (or even more) motivating to underperforming employees compared to overperforming ones.
Result 2: We find limited evidence of the effectiveness of incentives depending on preferences of subjects. Only in the Charity and CharityImage treatments, individual attitudes to donating to charities significantly predict how much effort subjects redistribute from a piece-rate paying counting zeros task to a social-value generating slider task.

Figure 1: Effort Allocation in the Multi-task Part of the Experiment

Sliders	Baseline	Prize	Charity	Counting Zeros	Baseline	Prize	Charity
Pairwise comparison of distributions							
Wilcoxon ranksum p-value							
Prize	<0.001			0.000			
Charity	<0.001	0.232		0.000	0.409		
CharityImage	<0.001	0.306	0.734	0.000	0.086	0.354	
Pairwise Comparison of the means							
t-test p-value (2-tailed)							
Prize	<0.001			0.000			
Charity	<0.001	0.010		0.000	0.393		
CharityImage	<0.001	0.019	0.504	0.000	0.035	0.141	
Pairwise comparison of variances							
Levene’s robust p-value							
Prize	<0.001			0.001			
Charity	<0.001	<0.00		0.354	0.007		
CharityImage	<0.001	<0.00	0.125	0.549	0.002	0.707	
Table 3: Variation in multi-task effort and self-reported economic preferences

Dependent variable	Number of completed sliders in the multi-task part	Number of completed counting zeros tables in the multi-task part				
	Prize	Charity	CharityImage	Prize	Charity	CharityImage
Risk taking	(1)	(2)	(1)	(2)	(1)	(2)
	.89	1.78	-3.08	1.84	1.01	-1.83
	(2.76)	(2.96)	(2.22)	(2.10)	(2.79)	(2.52)
Confidence	1.11	1.72	-.30	-.22	-.13	.54
	(3.63)	(2.03)	(1.82)	(1.99)	(1.40)	(1.30)
Competitive	15.71	17.51	-1.77	-1.75	-5.05	-8.23
	(16.29)	(16.73)	(7.29)	(7.46)	(7.21)	(5.10)
Donation Attitude	1.25	.07	2.23*	2.42*	2.27**	2.45*
	(3.52)	(3.54)	(1.27)	(1.06)	(1.08)	(1.01)
Favourite ST	31.05*	35.06	-4.11	-3.56*	6.72	2.46
	(16.66)	(18.51)	(3.12)	(1.43)	(4.75)	(1.76)
Favourite CZT	5.80	11.28	4.55	5.06	-1.26	-1.14
	(15.81)	(15.96)	(4.56)	(5.61)	(4.84)	(3.23)
SliderSingletask	1.26**	.08	.80**	.06	.81**	
	(.470)	(.311)	(.27)	(.20)	(.27)	(5.56)
Constant	11.46	-48.84	39.35*	33.90	27.69	-13.5
	(33.99)	(31.15)	(16.49)	(35.90)	(15.88)	(21.84)
N	52	52	51	51	65	65
Adj R²	0.1881	0.3376	0.0867	0.088	0.0467	0.181

The reported coefficients are from an OLS regression. Clustered standard errors at session level are reported in parentheses. * 10%, ** 5%, *** 1% significance levels. ST and CZT stand for slider and counting zeros tasks respectively.
Gender differences in effort allocation

The visual evidence of the effectiveness of incentives on effort allocation decisions in the slider and counting zeros tasks for men and women is presented in Figure 2. In the Baseline condition, both women and men complete around 18 sliders. Men complete slightly higher number of counting zeros tables but this difference is not statistically significant: mean number of counting zeros tables completed is 54.5 for men and 49.5 for women (Wilcoxon-ranksum p-value = 0.355).\(^8\)

In the Prize treatment, we observe differences between men and women in the multi-task part: men and women on average complete 62.6 and 38.8 sliders (p-value=0.0315) and 29.4 and 37.9 counting zeros tables (p-value=0.1607), respectively. The parametric analysis of the data, reported in Table 4, provides further evidence of significant differences between men and women in their effort allocation decisions in the slider task. The coefficient of the interaction term FemalePrize is negative and significant under all three model specifications that control for individual single-task slider performance and other self-reported preferences of subjects. The result is consistent with the previous literature showing that when given a choice of incentives, men self-select into competitive work environments whereas women choose non-competitive payment schemes (e.g. Niederle et al. 2013; Dohmen & Falk 2011). Differently from these studies that focus on binary decision of men and women on whether to take up competitively incentivized task or not, our results provide evidence on how much effort to allocate between the two incentivized tasks, using a continuous dependent variable. This is similar to the recent papers by Ifcher & Zarghamee (2016) and Saccardo, Pietrasz & Gneezy (2017) who also use continuous measure of competitiveness and find that women have significantly lower willingness to accept competitive incentive schemes and only one-fifth of the most competitive quartile are women. Our subjects also had a choice of allocating positive amount of effort between competitively paid slider task or piece-rate paid counting zeros task and women choose to spend less effort on the slider task than men: 80% of women choose to complete less than 50 sliders.

\(^8\) The reported p-values are from a Wilcoxon-ranksum tests across the genders and treatment conditions, unless otherwise specified.
while this figure is 40% for men.

Result 3: In the presence of a piece-rate paying counting zeros task, men exert more effort than women on the slider task when the slider task is incentivized by competitive incentives. There are no gender difference in effort levels between men and women when the slider task is incentivized by social-value and social-image incentives.

Another novel result that we observe from Figure 2 is the similarity of effort allocation decisions of women in the slider task across the three treatment conditions: 38.8 in the Prize, 36.8 in the Charity and 34.7 in the CharityImage treatments (pairwise p-values >0.100). The effort levels of men, on the other hand, in the two charity treatments is significantly lower compared to the Prize treatment: 62.6 in the Prize treatment versus 30.7 in the Charity (p-value=0.003) and 40 in the CharityImage (p-value=0.015) treatments. Testing for the differences in allocated effort levels in the slider task of men between the Charity and CharityImage treatments, we observe a marginally higher effort in the CharityImage treatment compared to the Charity treatment (p-value=0.074). The parametric analysis of the number of completed sliders in the multi-tasking part (Table 5) provides further support for this result showing significant positive effect of the social-image incentives on men’s (post-estimation Wald p-values<0.050) and marginally significant negative effect on women’s (Wald p-values=0.089 in Model 2 specification) effort allocation decisions.

Figure 2: Effort Allocations in the Multi-task Part by Gender
Table 4: Incentives and Gender

Dependent Variable: Number of Completed Sliders in the Multi-task part	Model 1	Model 2	Model 3
Female	0.31 (2.31)	4.93 (3.08)	5.48 (3.69)
Prize	45.20 (8.15)***	47.11 (8.59)***	47.97 (7.91)***
Charity	13.34 (3.23)***	17.62 (4.61)***	17.16 (4.58)***
CharityImage	22.45 (3.05)***	24.59 (3.55)***	26.64 (4.74)***
FemalePrize	-24.11 (7.65)***	-25.22 (7.74)***	-25.12 (7.08)***
FemaleCharity	5.72 (5.89)	2.64 (6.35)	3.43 (6.44)
FemaleCharityImage	-5.45 (3.43)	-6.41 (3.06)*	-8.87 (4.06)**
SliderSingletask	0.43 (.14)***	0.55 (.18)***	

Controls	No	No	Yes
Constant	17.44 (1.66)	-4.82 (7.55)	-38.56 (17.10)**
N	210	210	210
Adj R²	0.2179	0.2500	0.3004

The reported coefficients are from an OLS regression. Clustered standard errors at session level are reported in parentheses. * 10%, ** 5%, *** 1% significance levels. Controls include the economic preferences self-reported in the mid-study questionnaire and a number of subjects in a session.

We also observe that the number of completed sliders is lower for women than for men in the CharityImage treatment (the coefficient of FemaleCharityImage is negative in two model specifications in Table 4). This result is in turn consistent with the previous literature showing that men are more motivated by social-image concerns and engage in more status-seeking behaviour compared to women (Pan & Houser 2011). Women on the other hand are more likely to demonstrate wallflower effect — aversion to stand out — in their cooperative and altruistic behaviour when the behaviour can be publicly observed (Jones & Linardi 2014).

Our results are also consistent with the findings that men are more motivated by competitive incentives where they can excel compared to their peers. The highly significant difference between CharityImage and Prize treatments for men (Wald p-value<0.000), though shows that a more drastic change in effort levels comes from the financial prize expectations rather than purely rank based incentive of scoring in the top three compared to the peers. We observe that while a quarter of variability in effort allocation decisions of men can be explained by the treatment conditions, only 8.7% of the variability can be explained for women which further increases to 14.6% with addition of other observable characteristics such as economics preferences. This in turn indicates that incentives
can predict effort decisions of men more than of women, shedding light on how gender differences in organizations may be more rigid to be tackled with the help of incentives. We discuss this point in more detail in the concluding section.

Result 4: For men, competitive incentives are more effective compared to social-value, and social-image incentives to raise effort levels in the slider task. For women, competitive, social-value and social-image incentives are equally effective in raising effort levels.

Table 5: Incentives and Gender

Dependent Variable: Number of Completed Sliders in the Multi-task part	Men	Women		
	Model 1	Model 2	Model 1	Model 2
Prize	45.20***	48.63***	21.09**	22.20**
	(8.14)	(7.58)	(8.11)	(8.56)
Charity	22.45***	13.81**	19.06	24.41***
	(3.04)	(5.38)	(2.81)	(3.65)
CharityImage	13.34***	26.38***	17.00***	18.12***
	(3.23)	(5.37)	(1.03)	(2.82)
(Wald p-value)				
Prize=Charity	(<0.001)	(0.001)	(0.814)	(0.846)
Prize=CharityImage	(<0.001)	(0.006)	(0.465)	(0.650)
Charity=CharityImage	(0.027)	(0.018)	(0.619)	(0.089)
Controls	No	Yes	No	Yes
Constant	17.44***	-33.61 (21.71)	17.75***	-26.71 (23.05)
	(1.65)		(0.82)	
N	92	92	118	118
Adj R^2	0.245	0.261	0.087	0.146

The reported coefficients are from an OLS regression. Clustered standard errors at session level are reported in parentheses. * 10%, ** 5%, *** 1% significance levels. Controls include the variables elicited in the mid-study questionnaire, SliderSingletask performance as a measure of ability and number of subjects in a session. The p-values for pairwise treatment comparisons are from post-estimation Wald test.

An additional analysis of the heterogeneous effects of incentives separately on women’s and men’s effort allocation decisions is presented in Table 6. Most notably, we find a significant positive effect of self-reported donation attitudes on men’s effort allocation in the slider task of the Charity treatment while no such correlation is detected for women. Men’s effort donation decisions are hence, governed by their preferences for charities and social institutions. Women’s effort allocation decision, on the other hand, may be affected by perceived norms of donation rather than their own preferences for donating, a measure that we have not elicited in our experiment. Previous literature shows significant
predictive power of norms on giving behaviour (Krupka & Weber 2013; Erkut et al. 2015), and how it
differs according to gender (Croson, Handy & Shang 2010; Zhang, Zhang & Palma 2018).

Result 5: The difference in the effectiveness of incentives between men and women cannot be solely
explained by their self-reported economic preferences.

Men:	Prize	Charity	CharityImage
SliderSingletask	1.43 (1.06)	0.06 (.49)	0.85 (.26)**
Age	0.33 (2.44)	-0.24 (.52)	0.33 (.59)
Risk Taking	1.38 (9.60)	0.15 (4.00)	1.77 (5.77)
Competitive	16.85 (35.40)	-13.87 (11.19)	-11.95 (6.15)*
Donation Attitude	-0.40 (7.24)	7.026 (1.82)**	1.45 (1.31)
Favorite ST	40.35 (40.10)	-4.74 (8.73)	6.24 (14.74)
Favorite CZT	1.67 (18.63)	4.95 (7.02)	-2.32 (14.83)
NumberSubjects	-5.79 (9.23)	2.48 (.64)*	-3.77 (2.37)
Const	10.53 (91.09)	-32.27 (45.49)	20.21 (40.62)
N	26	19	29
Adj R²	0.029	0.042	0.001

Women:	Prize	Charity	CharityImage
SliderSingletask	1.18 (.76)	0.29 (.27)	0.87 (.59)
Age	1.99 (2.06)	0.49 (.95)	0.10 (.22)
Risk Taking	3.16 (5.02)	-5.21 (2.60)	0.61 (2.31)
Competitive	19.29 (11.70)	0.61 (12.05)	-5.21 (6.47)
Donation Attitude	2.64 (2.13)	0.90 (6.31)	4.23 (2.31)
Favorite ST	34.27 (17.97)	-2.92 (7.07)	3.46 (12.11)
Favorite CZT	20.44 (16.96)	2.51 (12.24)	-3.14 (4.87)
NumberSubjects	-12.49 (6.72)	-1.24 (1.69)	-0.64 (2.69)
Const	29.65 (82.57)	50.13 (57.44)	-16.62 (19.49)
N	26	32	36
Adj R²	0.0165	0.002	0.117

The reported coefficients are from an OLS regression. Clustered standard errors at session level
are reported in parentheses. NumberSubjects is the number of subjects in a session as a
measure of probability of winning the prize/award. * 10%, ** 5%, *** 1% significance levels.

4 Conclusion

The incentive effects on women and men’s selection to work on one task or another is remarkably
different from each other. We find that while men are more responsive to competitive and social-image
incentives being applied to a fixed rate paying task, women exert similar amount of effort when competitive,
social-value and social-image incentive is applied on the fixed rate paying task.
Our findings on differential effects of incentives on women’s and men’s effort levels contribute to the field studies analyzing selection effects into the public and private sector education providers (see for instance Dohmen & Falk 2010), selection effect into more social or financial online work environments (Tonin & Vlassopoulos 2015) and studies on incentive effects in various laboratory experiments (Pan & Houser 2011; Dohmen and Falk 2011, Gneezy et al. 2003). While some studies find that women are more willing to exert effort in social-value generating tasks and tend to self-select into social environments more often (Bennet 2003; Croson et al. 2010; Dufwenberg & Muren 2006), when they are given a choice of social-value and piece-rate generating tasks, they do not exert more effort in social-value tasks than men or than when they are given a choice between competitive and piece-rate generating tasks.

Furthermore, although publicly awarding top three donors in a lab experiment might seem artificial, the incentives in our CharityImage treatment affect exerted effort levels of men similarly positively as public recognition of employees and students analyzed in natural field settings (Kosfeld & Neckerman 2011). Our results, moreover, resemble Gerhards & Siemer’s (2015) findings from laboratory experiments. A marginally negative effect of public recognition on women’s performance, on the other hand, is consistent with recent findings in the laboratory experiment that investigate ‘wallflower’ effects: Jones & Linardi (2014) find that women are more likely to avoid standing out when their behavior, in this case their donations to a charity, can be publicly observed. We cannot rule out that the specificities of our experimental design (i.e., awarding top three performers and public recognition in a laboratory setting) might have influenced this finding. A similar setup in an environment in which the employees’ self-esteem is more closely linked to their work might increase the positive incentive effects of social-image for men and eliminate negative incentives effects of social-image for women. However, the effects could also be reversed, for instance if the share of shy or introverted employees in the work force is sufficiently large. This implication needs further investigation.

While some studies have previously found men responding more strongly to relative performance feedback and competitive incentives (reviewed in Azmat & Petrongolo 2014), others find that men and women do not react differently to competitive situations per se (Gerhards & Siemer 2015, Neckerman & Kosfeld 2011; Blanes i Vidal & Nossol 2011). Taken together these results may indicate that gender
differences in competitive behavior may depend on the characteristics of the competition, such as for example, size of the prize (Gill & Prowse 2014) or the presence of a second task as in our experiment.

Similar to previous studies (Kosfeld & Neckermann 2011; Gerhard & Siemer 2015, Dohmen & Falk 2011), we find that more able individuals react more positively to competitive environments in both of our Prize and CharityImage treatments. However, differently from previous studies, (e.g. Falk et al. 2016), overall, we do not find predictive power of self-reported economic attitudes (competitiveness, risk, confidence and social) on effort levels allocated to competitive, social-value or social-image tasks. We only find that men’s attitudes towards charities and other non-profit organizations predict allocated effort levels to social-value task in the Charity treatment. This in turn, suggests the low power of self-reported measures to predict behavior in lab experiments and potentially field surveys contrary to the findings of the previous literature. This result is in itself an important contribution to the literature using self-reported non-incentivized measures of economic attitudes.

Significant differences in men’s responses to competitive and social-image incentives can shed further light why in sectors with heavily used competitive incentive such as the financial sector, men excel much more than women. This calls for careful consideration of incentive designers in organizations, who can improve upon such implicitly “discriminatory” incentives that are ethical at the outset but favor men over women; for example, putting employees in teams is shown to decrease the degree of gender differences in willingness to compete (Healy & Pate 2009; Dargnies 2012). At the same time, men have been found to have lower job satisfactions in equivalent public than private sector jobs (Buelens et al. 2007). Adding a competitive (non-financial) award incentives on some tasks of public sector jobs can motivate men to exert more effort as our study demonstrates. What is more, our results—that most of the subjects are ready to sacrifice some of their earnings to increase the social value created as donations to charities of their choice— provide empirical support for the growing recognition of the idea that some workers have an intrinsic motivation in advancing social causes. This explains the increasing involvement of firms in corporate social responsibility and philanthropy projects (Collier & Esteban 2007; Bhattacharya et al. 2008).
However, there is a possibility that employers can benefit from such a variability in behavior between genders in response to various incentives by allowing employees to self-sort into incentive schemes and tasks in a multi-task work environment and potentially improve employee motivation. Although we do not measure work motivation of our subjects across the treatment conditions, there is an evidence put forward by self-determination theorists that environments which allow people the autonomy to choose and self-select into their preferred environment have much higher intrinsic motivation and growth potential than externally imposed environments (Deci & Ryan 2002). The competitive incentive schemes applied in the Prize treatment may be more motivating and engaging for employees than delivering a minimum required outcome in the fixed rate paying task. This however should take into account that competitive incentives may attract and subsequently motivate more male than female workers. Further research should address this question and measure job motivation of male and female workers who work in multi-task settings with variable incentive schemes.

One limitation of our study, as with any experimental study is the generalizability of our results (Falk & Heckman 2009). In the current study, we improve upon the external validity of existing experimental studies on multi-task incentives by using a real effort task as opposed to “chosen” effort tasks. However, we still use university students as our main subject pool which some would argue is non-representative of the general population. In the context of our experiment, we need to point out that several studies found that nonstudents are generally more pro-socially motivated than and are similarly competitive and risk-seeking as students (Charness & Villeval 2009; Cappelen et al. 2015). Hence our results are more likely to underestimate the actual response of the general population who would exert more effort in social-value generating tasks. Secondly, the generalizability of the results to more than two task setting is not clear. While we adopted two tasks as simple case for the current research aims, we acknowledge that with more than two tasks and thus more than two incentives, the effort allocation problem may be different. However given our analytical framework there is no reason for a rational agent to behave differently when making a choice of effort across more than two
tasks as compared to just two tasks. Not incentivizing the elicitation of socio-economic preferences is another limitation of the study which we have discussed before. Future research should investigate if the results would differ if we have more than two multi-task environment and whether economic preferences are incentivized.

References

Abeler, J., Falk, A., Goette, L., & Huffman, D. (2011). Reference points and effort provision. *The American Economic Review, 101*(2), 470-492.

Al-Ubaydli, O., Andersen, S., Gneezy, U., & List, J. A. (2015). Carrots that look like sticks: Toward an understanding of multitasking incentive schemes. *Southern Economic Journal, 81*(3), 538-561.

Andreoni, J., & Vesterlund, L. (2001). Which is the fair sex? Gender differences in altruism. *Quarterly Journal of Economics, 293*-312.

Azmat, G., & Petrongolo, B. (2014). Gender and the labor market: What have we learned from field and lab experiments? *Labour Economics, 30*, 32-40.

Balafoutas, L., & Sutter, M. (2012). Affirmative action policies promote women and do not harm efficiency in the laboratory. *Science, 335*(6068), 579-582.

Barbezat, D. A. (2006). Gender differences in research patterns among PhD economists. *The Journal of Economic Education, 37*(3), 359-375.

Bardsley, N., Cubitt, R., Loomes, G., Moffatt, P., Starmer, C., & Sugden, R. (2010). Experimental economics: Rethinking the rules. Princeton University Press.

Bentley, P. J., & Kyvik, S. (2012). Academic work from a comparative perspective: a survey of faculty working time across 13 countries. *Higher Education, 63*(4), 529-547.

Belot, M., & Schröder, M. (2015). The spillover effects of monitoring: A field experiment. *Management Science*.

Bennett, R. (2003). Factors underlying the inclination to donate to particular types of charity. *International Journal of Nonprofit and Voluntary Sector Marketing, 8*(1), 12-29.

Bhattacharya, C., Sen, S., & Korschun, D. (2008). Using corporate social responsibility to win the war for talent. *MIT Sloan management review, 49*(2).

Blanes i Vidal, J., & Nossol, M. (2011). Tournaments without prizes: Evidence from personnel records. *Management science, 57*(10), 1721-1736.

Brüggen, A., & Moers, F. (2007). The role of financial incentives and social incentives in multi-task settings. *Journal of Management Accounting Research, 19*(1), 25-50.

Buelens, M., & Van den Broeck, H. (2007). An analysis of differences in work motivation between public and private sector organizations. *Public administration review, 67*(1), 65-74.

Cain, R. (2011, October). Working as an assistant professor: research, teaching and administration. Retrieved from https://www.theguardian.com/higher-education-network/blog/2011/oct/26/assistant-professor-role

Cappelen, A. W., Nygaard, K., Sørensen, E. Ø., & Tungodden, B. (2015). Social preferences in the lab: A comparison of students and a representative population. *The Scandinavian Journal of Economics, 117*(4), 1306-1326.

Cárdenas, J. C., Dreber, A., von Essen, E., & Ranehill, E. (2014). Gender and cooperation in children: Experiments in Colombia and Sweden. *PloS one, 9*(3), e90923.

Charness, G., & Villeval, M. C. (2009). Cooperation and Competition in Intergenerational Experiments in the Field and the Laboratory. *The American Economic Review, 99*(3), 956-978.
Collier, J., & Esteban, R. (2007). Corporate social responsibility and employee commitment. *Business ethics: A European review, 16*(1), 19-33.

Croson, R., & Gneezy, U. (2009). Gender differences in preferences. *Journal of Economic literature, 448*-474.

Croson, R. T., Handy, F., & Shang, J. (2010). Gendered giving: the influence of social norms on the donation behavior of men and women. *International Journal of Nonprofit and Voluntary Sector Marketing, 15*(2), 199-213.

Deci, E. L., & Ryan, R. M. (2002). *Handbook of self-determination research*. University Rochester Press.

Dohmen, T., & Falk, A. (2010). You get what you pay for: Incentives and selection in the education system. *The Economic Journal, 120*(546), F256-F271.

Dohmen, T., & Falk, A. (2011). Performance pay and multidimensional sorting: Productivity, preferences, and gender. *The American Economic Review, 556*-590.

Eagly, A. H., & Koenig, A. M. (2006). *Social Role Theory of Sex Differences and Similarities: Implication for Prosocial Behavior*: Lawrence Erlbaum Associates Publishers.

Falk, A., Becker, A., Dohmen, T. J., Huffman, D., & Sunde, U. (2016). The Preference Survey Model: A Validated Instrument for Measuring Risk, Time, and Social Preferences. *IZA Discussion Paper No. 9674*

Falk, A., & Heckman, J. J. (2009). Lab experiments are a major source of knowledge in the social sciences. *Science, 326*(5952), 535-538.

Falk, A., Meier, S., & Zehnder, C. (2013). Do lab experiments misrepresent social preferences? the case of self-selected student samples. *Journal of the European Economic Association, 11*(4), 839-852.

Ferrara, M., Bottasso, A., Tempesta, D., Carrieri, M., De Gennaro, L., & Ponti, G. (2015). Gender differences in sleep deprivation effects on risk and inequality aversion: evidence from an economic experiment. *PloS one, 10*(3), e0120029.

Gerhards, L., & Siemer, N. (2015). The impact of private and public feedback on worker performance - evidence from the lab. *Economic Inquiry, 54*(2), 1188-1201.

Gerhards, L. (2015). The incentive effects of missions—Evidence from experiments with NGO employees and students. *European Economic Review, 79*, 252–262.

Gill, D., Kissová, Z., Lee, J., & Prowse, V. (2018). First-place loving and last-place loathing: How rank in the distribution of performance affects effort provision. *Management Science*. forthcoming

Gill, D., & Prowse, V. (2012). A structural analysis of disappointment aversion in a real effort competition. *American Economic Review, 102*(1), 469-503.

Gill, D., & Prowse, V. (2014). Gender differences and dynamics in competition: The role of luck. *Quantitative Economics, 5*(2), 351-376.

Gneezy, U., Niederle, M., & Rustichini, A. (2003). Performance in competitive environments: Gender differences. *Quarterly Journal of Economics, 118*(3), 1049-1074.
Hannan, R. L., McPhee, G. P., Newman, A. H., & Tafkov, I. D. (2012). The effect of relative performance information on performance and effort allocation in a multi-task environment. The Accounting Review, 88(2), 553-575.

Hecht, G., Tafkov, I., & Towry, K. L. (2012). Performance spillover in a multitask environment. Contemporary Accounting Research, 29(2), 563-589.

Heffetz, O., & Frank, R. H. (2008). Preferences for status: Evidence and economic implications. HANDBOOK OF SOCIAL ECONOMICS, Jess Benhabib, Alberto Bisin, Matthew Jackson, eds, 1, 69-91.

Huang, L. & Murad, Z. (2016). Impact of Relative Performance Feedback on Beliefs, Preferences and Performance across Dissimilar Tasks. Better For Less DP No 02/2016.

Ifcher, J., & Zarghamee, H. (2016). Pricing competition: a new laboratory measure of gender differences in the willingness to compete. Experimental Economics, 19(3), 642-662.

Iriberri, N., & Rey-Biel, P. (2013). Stereotypes are only a threat when beliefs are reinforced: On the sensitivity of gender differences in performance under competition to information provision. Journal of Economic Behavior & Organization, 135, 99-111.

Jacobs, D. L. (2013, June). Want A Job? Prepare To Play Multiple Roles. Retrieved from http://www.forbes.com/sites/deborahljacobs/2013/06/12/want-a-job-prepare-to-play-multiple-roles/#7401ce7239f9

Jones, D., & Linardi, S. (2014). Wallflowers: Experimental evidence of an aversion to standing out. Management Science, 60(7), 1757-1771.

Kachelmeier, S. J. (2010). Introduction to a forum on individual differences in accounting behavior. The Accounting Review, 85(4), 1127-1128.

Kamas, L., & Preston, A. (2012). Gender and social preferences in the US: an experimental study. Feminist Economics, 18(1), 135-160.

Kamas, L., Preston, A., & Baum, S. (2008). Altruism in individual and joint-giving decisions: What’s gender got to do with it?. Feminist Economics, 14(3), 23-50.

Kosfeld, M., & Neckermann, S. (2011). Getting more work for nothing? Symbolic awards and worker performance. American Economic Journal: Microeconomics, 86-99.

Krupka, E. L., & Weber, R. A. (2013). Identifying social norms using coordination games: Why does dictator game sharing vary?. Journal of the European Economic Association, 11(3), 495-524.

Matthews, K. E., Lodge, J. M., & Bosanquet, A. (2014). Early career academic perceptions, attitudes and professional development activities: questioning the teaching and research gap to further academic development. International Journal for Academic Development, 19(2), 112-124.

Mesch, D. J., Brown, M. S., Moore, Z. I., & Hayat, A. D. (2011). Gender differences in charitable giving. International Journal of Nonprofit and Voluntary Sector Marketing, 16(4), 342-355.

Neckermann, S., Cueni, R., & Frey, B. S. (2014). Awards at work. Labour Economics, 31, 205-217.

Niederle, M., Segal, C., & Vesterlund, L. (2013). How costly is diversity? Affirmative action in light of gender differences in competitiveness. Management Science, 59(1), 1-16.

Pan, X. S., & Houser, D. (2011). Competition for trophies triggers male generosity. PloS one, 6(4), e18050.

Saccardo, S., Pietrasz, A., & Gneezy, U. (2017). On the size of the gender difference in competitiveness. Management Science, 64(4), 1541-1554.

Ray, K., Foley, B., Tsang, T., Walne, D., & Bajorek, Z. (2014). A review of the evidence on the impact, effectiveness and value for money of performance-related pay in the public sector. London: The Work Foundation.

Reuben, E., Rey-Biel, P., Sapienza, P., & Zingales, L. (2012). The emergence of male leadership in competitive environments. Journal of Economic Behavior & Organization, 83(1), 111-117.

Sanders, J et al., (2014) Promoting gender balance. Times Higher Education. Available at: https://www.timeshighereducation.com/comment/letters/promoting-gender-balance/2011428.article

Schultz, C., Schreyoegg, J., & von Reitzenstein, C. (2013). The moderating role of internal and external resources on the performance effect of multitasking: evidence from the R&D performance of
surgeons. Research Policy, 42(8), 1356-1365.
Rose, A. J. & Smith, R. L. (2011). Sex differences in peer relationships. in Handbook of peer interactions, relationships, and groups, Guilford Press, pp. 379-393.
Tonin, M., & Vlassopoulos, M. (2015). Corporate Philanthropy and Productivity: Evidence from an Online Real Effort Experiment. Management Science.
Van Dijk, F., Sonnemans, J., & Van Winden, F. (2001). Incentive systems in a real effort experiment. European Economic Review, 45(2), 187-214.
Zhang, L. F., & Shin, J. C. (2015). The research–teaching nexus among academics from 15 institutions in Beijing, Mainland China. Higher Education, 70(3), 375-394.
Zhang, Peilu and Zhang, Yinjunjie and Palma, Marco (2018): Social Norms and Competitiveness: My Willingness to Compete Depends on Who I am (supposed to be). https://mpra.ub.unimuenchen.de/89727/
Zizzo, D. J. (2010). Experimenter demand effects in economic experiments. Experimental Economics, 13(1), 75-98