A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment: Supplement material

Sibylle Schirm1,2, Christoph Engel1, Markus Loeffler1 and Markus Scholz*1,2

1Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
2LIFE Research Center of Civilization Diseases, University of Leipzig, Leipzig, Germany

Email: sibylle.schirm@imise.uni-leipzig.de; christoph.engel@imise.uni-leipzig.de; markus.loeffler@imise.uni-leipzig.de; markus.scholz@imise.uni-leipzig.de;

*Corresponding author

A Model Equations

Here we describe all major model variables, mechanisms and equations of the cell kinetic model. An overview of model variables and parameters is shown in table A.1. At first, we describe major model principles and corresponding equations.

A.1 Amplification Splitting

Influx and efflux of cells at one compartment are amplified, so that the product is the over-all amplification ($A_X^\text{in}(t) \cdot A_X^\text{out}(t) = A_X(t)$),

$$A_X^\text{in}(t) = \begin{cases}
\log 2 & \text{for } A_X \neq 1 \\
0 & \text{for } A_X = 0
\end{cases}$$

(A.1)

$$A_X^\text{out}(t) = \begin{cases}
\frac{A_X - 1}{\ln 2} & \text{for } A_X
eq 0, A_X \neq 1 \\
0 & \text{for } A_X = 0
\end{cases}$$

(A.2)

The effect is a delayed reaction of efflux and compartment size to changes in amplification rates. Amplification splitting is modelled for all compartments with amplification.
Table A.1: variables

quantity	meaning	type/calculation
C_X	content of compartment X function of time t	
C_X^{nor}	content of compartment X in steady state (normal value)	$C_X(0) = C_X^{\text{nor}}$
C_X^{rel}	content of compartments X relative to normal value	$C_X^{\text{rel}}(t) = \frac{C_X(t)}{C_X^{\text{nor}}}$
C_X^{in}	influx in compartment X parameter, see above	
C_X^{out}	efflux from compartment X function of time	
a_X	proliferative fraction in cell compartment X function of state, sometimes constant	
A_X	amplification in cell compartment X	
A_X^{in}	amplification of influx	
A_X^{out}	amplification of efflux	
n_X	average number of mitoses in cell compartment X function of state	$n_X = ldA_X$
p	self-renewal probability of stem cells function of state	
τ_X	average duration of cell cycle in compartment X function of time, sometimes constant	τ_X (not regulated)
T_X	average transit time of active cells in cell compartment X function of time	$T_X = n_X\tau_X$
T_X^{tot}	total transit time	
k	transition, degradation or toxicity coefficients function of time or parameter	
Y^{min}	quantity Y under minimum stimulation parameter to determine the regulatory function of Y	
Y_X^{nor}	quantity Y in steady state	
Y_X^{int}	quantity Y under intensified stimulation	
Y_X^{max}	quantify Y under maximum stimulation	
b_Y	sensitivity of Y under stimulation	

A.2 Regulatory Function

Amplification A and transition time T are regulated between a minimum Y^{min} and a maximum Y^{max} by the growth factors EPO or G-CSF according to the following regulatory function:

$$ Y = Z_Y(C_{\text{Cyto}}(t); Y^{\text{min}}, Y_X^{\text{nor}}, Y_X^{\text{max}}, b_Y) $$ \hspace{1cm} (A.3)

$$ Z_Y(C_{\text{Cyto}}) = \begin{cases}
Y^{\text{max}} - (Y^{\text{max}} - Y^{\text{min}}) e^{-\ln\left(\frac{Y^{\text{max}} - Y^{\text{min}}}{Y^{\text{max}} - Y_X^{\text{nor}}}\right)}(C_{\text{Cyto}})^{b_Y} & \text{for } Y^{\text{min}} < Y_X^{\text{nor}} < Y^{\text{max}} \text{ or } Y^{\text{max}} < Y_X^{\text{nor}} < Y^{\text{min}} \\
Y^{\text{nor}} & \text{for } Y^{\text{min}} < Y_X^{\text{nor}} < Y^{\text{max}} \end{cases} \hspace{1cm} (A.4)$$

where Y_X^{nor} is the steady state value of amplification or transition time, $C_{\text{Cyto}} \in \{C_{\text{EPO}}^{\text{int}}, C_{\text{GCSF}}^{\text{rel}}\}$ and b_Y is the sensitivity of Y under stimulation (see figure A.2 and [1], p. 69).
Figure 1: Regulatory function. As an example we plot the regulatory function of the amplification in compartment BE, $C_{\text{Cyto}} = \text{EPO concentration } C_{\text{int}}^{\text{EPO}}$.

A.3 Modelling of Delays

Several delays are included into the model such as delayed action of growth factors or chemotherapy. According to [2,3], these delays are modelled by a set of concatenated compartments with first order transitions

\[
\frac{d}{dt} C_X^1 = C_X - D_X C_X^1 \\
\frac{d}{dt} C_X^i = D_X \left(C_X^{i-1} - C_X^i \right) \quad i = 2, \ldots, N_X
\]

where C_X is a quantity to be delayed, D_X is the delay parameter and N_X is the number of delay compartments. The delayed quantity is now defined by

\[
C_X^{\text{del}} = D_X C_X^{N_X}
\]

i.e. as the efflux from the last delay compartment.

As explained in [2,3] this modelling of delays is in between a random, age-independent transition ($N_X = 1$) and a strict "first-in-first-out" kinetic ($N_X \to \infty$). By our modelling, one can mimic both, an expectation and a variance of individual delay times. This is achieved by setting $D_X = T_X/N_X$ where T_X is the desired expectation of the transition time and N_X determines its variance (see [2] for details).
A.4 Chemotherapy

The infusion of chemotherapeutic drugs is modelled by Heaviside functions

\[\text{CHEMO}^{\text{drug}}(t) = \sum_{i=1}^{N_{\text{cycle}}} (H(t - \tilde{t}_i) - H(t - \tilde{t}_i - t_{\text{inf}}^{\text{CHEMO}})), \]

(A.5)

where \(N_{\text{cycle}}\) is the number of chemotherapy cycles, \(\tilde{t}_i\) are the time points with application of a specific drug, and \(t_{\text{inf}}^{\text{CHEMO}}\) is the duration of chemotherapy application. The delayed effect of the drugs is modelled by four compartments

\[\frac{d\Psi_{\text{drug}}^{(i)}}{dt} = \Psi_{\text{drug, out}}^{(i-1)}(t) - k_{\text{Delay}}^{\text{drug}} \cdot \Psi_{\text{drug}}^{(i)}(t), \quad i = 1, \ldots, 4, \]

(A.6)

with

\[\Psi_{\text{drug}}^{(0)}(t) = \text{CHEMO}^{\text{drug}}(t), \]
\[\Psi_{\text{drug, out}}^{(i)}(t) = k_{\text{Delay}}^{\text{drug}} \cdot \Psi_{\text{drug}}^{(i)}(t). \]

The output-function \(\Psi_{\text{drug, out}}^{(4)}(t)\) is multiplied by the toxicity parameters of the single compartments \(k_{S}^{\text{drug}}, k_{\text{CG}}^{\text{drug}}, k_{\text{PGB}}^{\text{drug}}, k_{\text{MGB}}^{\text{drug}}, k_{\text{BE}}^{\text{drug}}, k_{\text{CE}}^{\text{drug}}, k_{\text{PEB}}^{\text{drug}}, k_{\text{MEB}}^{\text{drug}},\) and \(k_{\text{RET}}^{\text{drug}}\) respectively. If multiple cytotoxic drugs are applied, corresponding toxicity functions are added resulting in an overall toxic effect \(\Psi_X\) which is cell stage and chemotherapy specific. In complete analogy to our former work [3,4], the effect of chemotherapy is introduced to the balance equations of the bone marrow cell compartments by a first-order loss term. Hence, the schematic compartment equation has the form

\[\frac{d}{dt}C_X = A_{\text{in}}^{\text{in}} \cdot C_{X_{\text{in}}}^{\text{in}} - C_X^{\text{out}} - \Psi_X \cdot C_X. \]

In clinical practice often only leukocytes are available. We calculate the leukocyte count as the sum of lymphocytes and granulocytes. To avoid a full model of lymphopoiesis, we modelled the reduced lymphocyte count under chemotherapy by an exponential function of the corresponding toxicity function.

\[C_{\text{WBC}}(t) \approx c_{\text{LY}} \exp(-\Psi_{\text{LY}}(t)) + c_{\text{GRA}} \frac{C_{\text{GRA}}(t)}{C_{\text{GRA}}^{\text{norm}}} \]

(A.7)

where \(c_{\text{LY}} = 3000\) cells per \(\mu l\) and \(c_{\text{GRA}} = 4000\) cells per \(\mu l\) are the normal concentrations of lymphocytes and granulocytes respectively. \(\Psi_{\text{LY}}\) is the toxicity function for lymphocytes defined in analogy to the toxicity functions of bone marrow cell stages (see above).
A.5 Stem cell compartment S

Cells differentiating into granulopoietic or erythropoietic lineages originate from the same stem cell compartment. We adopted the corresponding stem cell model of Loeffler & Wichmann [1]. The output of the stem cell compartment is splitted into red or white cell lines under the assumption that 15% of the released cells differentiate into red blood cells ($\alpha_E = 0.15$), and 80% into the white blood cell line ($\alpha_G = 0.8$). The stem cell compartment S has self-renewal capability. Under steady state conditions, 50% of the stem cells remain in this compartment, and 50% differentiate into red or white blood cell lineages. Hence, the stem cell compartment equation is

$$\frac{d}{dt} C_S = (2p - 1)C_S \frac{a_S}{\tau_S} \quad \text{(A.8)}$$

and

$$C_{S}^{\text{out}} = 2(1 - p)C_S \frac{a_S}{\tau_S}, \quad \text{(A.9)}$$

where a_S is the proliferative fraction, τ_S is the average duration of a cell cycle, and p the self-renewal probability of stem cells.

The self renewal probability p is regulated by a competition of the stem cells ($C_{S}^{\text{rel}}(t)$), the granulopoietic ($C_{G}^{\text{rel}}(t)$), and the erythropoietic ($C_{E}^{\text{rel}}(t)$) bone marrow cells:

$$p = p(C_{S}^{\text{rel}}(t), C_{E}^{\text{rel}}(t), C_{G}^{\text{rel}}(t), p_S, \vartheta_E, \vartheta_G, \vartheta_S(t)),$$

where the parameters $\vartheta_E = -2, \vartheta_G = -8$, and $\vartheta_S(t)$ are hypothetical weighting factors representing the strength of the influence of the bone marrow cells $C_{S}^{\text{rel}}(t) = C_S(t), C_{E}^{\text{rel}}(t) = \frac{C_{BE}(t) + C_{CE}(t) + C_{PEB}(t) + C_{MEB}(t)}{C_{BE} + C_{CE} + C_{PEB} + C_{MEB}}$, and $C_{G}^{\text{rel}}(t) = \frac{C_{BG}(t) + C_{PGB}(t) + C_{MGB}}{C_{BG} + C_{PGB} + C_{MGB}}$. It is assumed that

$$p_S = p^\text{nor} - p^\text{min} = p^\text{max} - p^\text{nor},$$

$$\vartheta_S(t) = \begin{cases} \frac{2}{C_{S}^{\text{rel}}(t)^{\vartheta}} & \text{for } C_{S}^{\text{rel}}(t) \leq 1 \\ 2 & \text{for } C_{S}^{\text{rel}}(t) > 1 \end{cases}$$

$$p = p_S \tanh \left(-\vartheta_S(t)(C_{S}^{\text{rel}}(t) - 1) - \vartheta_E(C_{E}^{\text{rel}}(t) - 1) - \vartheta_G(C_{G}^{\text{rel}}(t) - 1) \right) + 0.5,$$

where the steady state value $p^\text{nor} = \frac{1}{2}$. Thus, for the initial conditions it holds that

$$C_S(0) = C_S^{\text{nor}} = 1 \quad \text{(A.10)}$$

$$C_{S}^{\text{out}}(0) = C_{S}^{\text{out,nor}} = 2(1 - p^\text{nor})C_S^{\text{nor}} \frac{a_S^{\text{nor}}}{\tau_S}, \quad \text{(A.11)}$$

The proliferative fraction a_S can be interpreted as the percentage of cells which are currently in cell cycle. The proliferative fractions a_X of the compartments S, BE and CG are regulated by the haematopoietic bone
marrow system $C_S^{rel}(t)$ and $C_G^{rel}(t)$ or $C_E^{rel}(t)$:

$$a_X = a_X \left(C_S^{rel}(t), C_E^{rel}(t), C_G^{rel}(t), a_X^{\text{min}}, a_X^{\text{nor}}, a_X^{\text{int}}, a_X^{\text{max}}, \omega_E, \omega_G, \omega_S\right).$$

The parameters $\omega_E = 0.3, \omega_G = 0.1$ and $\omega_S = 1$ are weighting factors. They represent the strengths of the influence of stem cells, erythropoietic and granulopoietic cells on the proliferative fraction of BE, CG and S.

With

$$x = \omega_E \ln C_E^{rel}(t) + \omega_G \ln C_G^{rel}(t)$$

$$y = -\frac{1}{2 \ln 2} \left(\ln \left(\frac{a_X^{\text{int}} - a_X^{\text{max}}}{a_X^{\text{min}} - a_X^{\text{int}}} \right) - \ln \left(\frac{a_X^{\text{nor}} - a_X^{\text{max}}}{a_X^{\text{min}} - a_X^{\text{nor}}} \right) \right)x + \frac{1}{2 \ln 2} \ln \left(\frac{a_X^{\text{nor}} - a_X^{\text{max}}}{a_X^{\text{min}} - a_X^{\text{nor}}} \right),$$

the proliferative fraction is given by

$$a_X = \begin{cases} \frac{a_X^{\text{max}} e^{-y} + a_X^{\text{min}} e^{y}}{a_X^{\text{int}} e^{-y} + a_X^{\text{int}} e^{y}} & \text{for } a_X^{\text{min}} < a_X^{\text{nor}} < a_X^{\text{int}} < a_X^{\text{max}} \\ a_X^{\text{nor}} & \text{for } a_X^{\text{min}} = a_X^{\text{nor}} = a_X^{\text{int}} = a_X^{\text{max}} \end{cases},$$

where X is one of the compartments S, BE, or CG. It is a monotone function with ranges between a_X^{min} and a_X^{max}. Low cell numbers in the bone marrow compartments cause a higher demand of proliferating cells and therefore a larger proliferative fraction a_X. The value of y defines the actual point on the regulatory curve.

The variable

x is a measure of the total bone marrow content. It is calculated as a weighted sum of the logarithms of the relative counts of stem cells, erythropoietic cells and granulopoietic cells. If any cell counts tend to zero, x tends to minus infinity, and with it, a becomes maximal. Parameter values a^{int} corresponds to $x = -\ln 2$ and a^{nor} corresponds to $x = 0$ (see figure 2).

A.6 Erythropoiesis

Compartment BE

The model equations of BE are similar to [4], but now the additional influence of the granulopoietic cell lineage on the proliferative fraction in BE is taken into account.

$$\frac{d}{dt} C_{BE} = \alpha_E C_S^{\text{out}} A_{BE} - C_{BE} \frac{a_{BE}}{T_{BE}} - \Psi_{BE} \cdot C_{BE}$$

$$C_{BE}^{\text{out}} = C_{BE} A_{BE} \frac{a_{BE}}{T_{BE}}$$
Figure 2: Regulation of the proliferative fraction - dependence on normalised stem cell count.

Cell stages C_E and C_G were set to normal values. The graph has the same shape if these quantities are varied instead of C_S. Parameter settings: $a_S^{\min} = 0.01, a_S^{\text{nor}} = 0.15, a_S^{\text{int}} = 0.45, a_S^{\max} = 1$.

with the initial values

\[
C_{BE}(0) = C_{BE}^{\text{nor}} = \alpha_E C_S^{\text{nor}} A_{BE}^{\text{nor}} T_{BE}^{\text{nor}} / a_{BE}^{\text{nor}}
\]

\[
C_{BE}^{\text{out, nor}} = C_{BE}^{\text{nor}} A_{BE}^{\text{nor}} T_{BE}^{\text{nor}} / a_{BE}^{\text{nor}} = \alpha_E C_S^{\text{out, nor}} A_{BE}^{\text{nor}}
\]

where $\alpha_E = 0.15$ is the proportion of cells differentiating into erythropoietic cell lineage [1].

Compartment CE

\[
A_{CE} = Z(C_{EPO}^{\text{int}})
\]

\[
\frac{d}{dt} C_{CE} = C_{CE}^{\text{out}} A_{CE}^{\text{nor}} - \frac{C_{CE}}{T_{CE}} - \Psi_{CE} \cdot C_{CE}
\]

\[
C_{CE}^{\text{out}} = C_{CE} A_{CE}^{\text{nor}} T_{CE}
\]

The initial values are

\[
C_{CE}(0) = C_{CE}^{\text{nor}} = C_{BE}^{\text{nor}} A_{CE}^{\text{nor}} T_{CE}^{\text{nor}}
\]

\[
C_{CE}^{\text{out, nor}} = C_{CE}^{\text{nor}} A_{CE}^{\text{nor}} T_{CE}^{\text{nor}}
\]

The amplification and transit time in the compartment CE are regulated by the growth factors EPO and G-CSF. This is modelled by regulatory functions acting on proliferation rate and transition time in the
compartment CE. The regulatory function of amplification is regulated by the internalised EPO \(Z_{A_CE} \left(C_{EPO}^{int} \right) \). The regulatory function of the transition time is also regulated by internalised EPO, \(Z_{T_CE} \left(C_{EPO}^{int} \right) \). But, it is additionally multiplied by a regulatory function regulated by G-CSF (\(F_{GCSF}(t) \)), mimicking the G-CSF effect on CE. In summary, amplification and transition time in CE are calculated by

\[
A_{CE} = Z_{A_CE} \left(C_{EPO}^{int} \right) \quad (A.13)
\]

\[
T_{CE} = Z_{T_CE} \left(C_{EPO}^{int} \right) \cdot F_{T_{GCSF}}(t). \quad (A.14)
\]

with

\[
F_{T_{GCSF}}(t) = \omega_P(t) \cdot Z_{T_{PEG}}(t) + (1 - \omega_P(t)) \cdot Z_{T_{Fil}}(t), \quad (A.15)
\]

where \(Z_{T_{PEG}}(t) \) and \(Z_{T_{Fil}}(t) \) are the regulation functions of the growth factors endogenous G-CSF and Filgrastim on one hand and Pegfilgrastim on the other hand (equation A.4), \(0 \leq \omega_P(t) \leq 1 \) is the weighting factor to model the superimposing effect of concurrent Filgrastim or endogenous G-CSF, and Pegfilgrastim (see [3]), and \(C_{EPO}^{int} \) is the internalised EPO (see [4]):

\[
\omega_P = Z_{\omega_P} \left(\frac{C_{GCSF}^{rel,peg}}{C_{GCSF}^{rel,fil}} \right) \quad (A.16)
\]

with \(\omega_{P}^{\text{min}} = 0 \) and \(\omega_{P}^{\text{max}} = 1 \)

Compartment PEB

\[
A_{PEB} = Z(C_{EPO}^{int})
\]

\[
\frac{d}{dt} C_{PEB} = C_{CE} A_{PEB} - \frac{C_{PEB}}{T_{PEB}} - \Psi_{PEB} \cdot C_{PEB}
\]

\[
C_{PEB}^{out} = C_{PEB} \frac{A_{PEB}^{out}}{T_{PEB}}
\]

The initial values are

\[
C_{PEB}(0) = C_{PEB}^{nor} = C_{CE}^{nor} A_{PEB}^{nor} T_{PEB}^{nor}
\]

\[
C_{PEB}^{out}(0) = C_{PEB}^{out,nor} = C_{CE}^{out,nor} A_{PEB}^{nor}.
\]
Compartment MEB

The maturation is modelled by splitting MEB into $N_{MEB} = 15$ subcompartments, without amplification.

\[
T_{MEB} = Z(C_{EPO}^{\text{int}})
\]

\[
C_{MEB} = \sum_{i=1}^{N_{MEB}} C_{MEB_i}
\]

\[
\frac{d}{dt} C_{MEB_i} = C_{\text{PEB}} - C_{MEB_i} \frac{N_{MEB}}{T_{MEB}} - \Psi_{MEB} \cdot C_{MEB_i}, \quad i = 2, \ldots, N_{MEB}
\]

\[
\frac{d}{dt} C_{MEB_1} = C_{\text{PEB}} - C_{MEB_1} \frac{N_{MEB}}{T_{MEB}} - \Psi_{MEB} \cdot C_{MEB_1}
\]

\[
C_{\text{out}}^{\text{PEB}} = C_{\text{out}}^{\text{MEB}_1} = \sum_{i=1}^{N_{MEB}} C_{\text{out}}^{\text{MEB}_i}, \quad i = 1, \ldots, N_{MEB}
\]

The initial values are

\[
C_{MEB}(0) = C_{\text{nor}}^{\text{MEB}} = C_{\text{PEB}}^{\text{nor}} \frac{T_{\text{nor}}^{\text{MEB}}}{T_{MEB}}
\]

\[
C_{\text{MEB}_i}(0) = C_{\text{nor}}^{\text{MEB}_i} = C_{\text{PEB}}^{\text{nor}} \frac{T_{\text{nor}}^{\text{MEB}_i}}{N_{MEB}}, \quad i = 1, \ldots, N_{MEB}
\]

\[
C_{\text{out}}^{\text{MEB}_i}(0) = C_{\text{nor}}^{\text{MEB}_i} = C_{\text{MEB}}^{\text{nor}} \frac{T_{\text{nor}}^{\text{MEB}_i}}{T_{MEB}} = C_{\text{out}}^{\text{nor}}^{\text{MEB}_i}, \quad i = 1, \ldots, N_{MEB}
\]

\[
C_{\text{out}}^{\text{MEB}}(0) = C_{\text{nor}}^{\text{MEB}} = C_{\text{MEB}}^{\text{nor}} = C_{\text{out}}^{\text{nor}}
\]

Compartment RET

\[
T_{RET} = T_{MEB}^{\text{nor}} + T_{RET}^{\text{nor}} - T_{MEB}
\]

\[
\frac{d}{dt} C_{RET} = C_{\text{out}}^{\text{MEB}} - C_{RET} \frac{T_{\text{nor}}^{\text{RET}}}{T_{RET}} - \Psi_{RET} \cdot C_{RET}
\]

\[
C_{\text{out}}^{\text{RET}} = \frac{C_{RET}}{T_{RET}}
\]

\[
C_{RET}(0) = C_{\text{nor}}^{\text{RET}} = C_{\text{MEB}}^{\text{nor}} \frac{q_{RET}}{1-q_{RET}}
\]

\[
C_{\text{out}}^{\text{RET}}(0) = C_{\text{nor}}^{\text{RET}} = C_{\text{out}}^{\text{nor}}^{\text{RET}}
\]

\[
T_{\text{nor}}^{\text{RET}} = \frac{C_{\text{out}}^{\text{RET}}}{C_{\text{RET}}^{\text{nor}}} = \frac{q_{RET}}{1-q_{RET}} \left(1 - s_{\text{ERY}}^{\text{nor}} T_{\text{ERY}_{\text{rd}}} + s_{\text{ERY}}^{\text{nor}} T_{\text{ERY}_{\text{age}}}
ight).
\]

q_{RET} is the proportion of reticulocytes to the total number of red blood cells in steady state. $s_{\text{ERY}}^{\text{nor}}, T_{\text{ERY}_{\text{rd}}}$, and $T_{\text{ERY}_{\text{age}}}$ were explained in the next section.

Compartment ERY

The compartment ERY is split into the compartments "RANDOM" and "AGE". In steady state, most erythrocytes die dependent on age. The age dependent reduction is modelled by divisions into subcompart-
ments.

Under stimulation, the depletion is more randomly (i.e. exponential decay, see [5]). Hence, the influxes into the compartments "RANDOM" and "AGE" are regulated by the factor \(s_{ERY} \), which depends on the bone marrow output of the reticulocytes. \(T_{ERY\text{_rand}} \) and \(T_{ERY\text{_age}} \) are transition times in the subcompartments "RANDOM" and "AGE". (See [1, 2, 5, 6].)

\[
s_{ERY} = \exp \left(\left(\frac{C_{out\text{_RET}}}{C_{out\text{_nor}}} \right)^{2} \ln s_{nor} \right)
\]

\[
C_{ERY} = C_{ERY\text{_age}} + C_{ERY\text{_rand}}
\]

\[
C_{ERY\text{_age}} = \sum_{i=1}^{N_{ERY}} C_{ERY\text{_age}_{i}}
\]

\[
\frac{d}{dt}C_{ERY\text{_age}_{1}} = s_{ERY}C_{out\text{_RET}} - \frac{C_{ERY\text{_age}_{1}}}{T_{ERY\text{_age}}} N_{ERY}
\]

\[
\frac{d}{dt}C_{ERY\text{_age}_{i}} = C_{out\text{_age}_{i-1}} - C_{out\text{_age}_{i-1}} - C_{out\text{_age}_{i}}, \quad i = 2, \ldots, N_{ERY}
\]

\[
\frac{d}{dt}C_{ERY\text{_rand}} = \left(1 - s_{ERY} \right)C_{out\text{_RET}} - \frac{C_{ERY\text{_rand}}}{T_{ERY\text{_rand}}} \frac{1}{N_{ERY}}
\]

with initial conditions

\[
C_{ERY}(0) = C_{nor\text{_ERY}} = C_{nor\text{_ERY\text{_age}}} + C_{nor\text{_ERY\text{_rand}}}
\]

\[
C_{ERY\text{_age}}(0) = C_{nor\text{_ERY\text{_age}}} = \sum_{i=1}^{N_{ERY}} C_{nor\text{_ERY\text{_age}_{i}}} = s_{nor\text{_ERY}}C_{out\text{_nor}\text{_RET}} T_{ERY\text{_age}}
\]

\[
C_{ERY\text{_age}_{1}}(0) = C_{nor\text{_ERY\text{_age}_{1}}} = s_{nor\text{_ERY}}C_{out\text{_nor}\text{_RET}} T_{ERY\text{_age}}
\]

\[
C_{ERY\text{_age}_{i}}(0) = C_{nor\text{_ERY\text{_age}_{i}}} = C_{out\text{_nor}\text{_RET}} T_{ERY\text{_age}} \quad i = 2, \ldots, N_{ERY}
\]

\[
C_{out\text{_age}_{i}}(0) = C_{nor\text{_ERY\text{_age}_{i}}} = s_{nor\text{_ERY}}C_{out\text{_nor}\text{_RET}} T_{ERY\text{_age}}
\]

\[
C_{ERY\text{_rand}}(0) = C_{nor\text{_ERY\text{_rand}}} = \left(1 - s_{ERY} \right)C_{out\text{_nor}\text{_RET}} T_{ERY\text{_rand}}
\]
Endogenous production of EPO

According to [6, 7], the endogenous production of EPO (EPO$_{\text{prod}}$) is assumed to depend on the oxygen partial pressure in the kidneys and the number of circulating red blood cells

$$EPO_{\text{prod}} = P_{\text{endo max}} e^{-b_{\text{EPO}} f}, \quad \text{where } EPO_{\text{prod}}(0) = 1 \quad \text{and } f = \frac{P'_O}{P_{\text{nor} O}_2}$$

$$P'_O = P_{50} \cdot \left(\frac{S'_{O_2}}{100 - S'_{O_2}} \right)^{\gamma} \quad \text{(Hill equation)}$$

$$S'_O = \frac{100}{\left(\frac{P_{50}}{P_{\text{nor} O}_2} \right) + 1} - \Delta SO_2 \cdot \frac{RET_{\text{nor}} + ERY_{\text{nor}}}{C_{\text{RET}} + C_{\text{ERY}}}$$

$$S'_{O_2} = \frac{100}{\left(\frac{P_{50}}{P_{\text{nor} O}_2} \right) + 1} - \Delta SO_2$$

$$P'_{O_2} = P_{50} \cdot \left(\frac{S'_{O_2}}{100 - S'_{O_2}} \right)^{\gamma}$$

The variables are explained in Table A.2. For further explanation and justification, see [4, 6, 7].

quantity	meaning	type/calculation
P'_O	kidney tissue oxygen tension	function of time [6, 7]
P'_{O_2}	kidney tissue oxygen pressure, normal value	[6, 7]
S'_O	percent saturation of hemoglobin	function of time [6, 7]
S'_{O_2}	normal value of percent saturation of hemoglobin	constant [6, 7]
P_{50}	partial oxygen pressure corresponding to $S'_{O_2} = 50\%$	26.5 mm Hg [6, 7]
P'_{A_2}	arterial oxygen pressure, normal value	97 mm Hg [6, 7]
ΔSO_2	desaturation of HB (arteriovenous difference), normal value	20 % [6, 7]
γ	Hills coefficient, describes the slope of the curve	2.65 [6, 7]
$P_{\text{endo max}}$	maximum production	200 (set) [6, 7]
b_{EPO}	sensitivity of EPO$_{\text{prod}}$ to changes in P'_O	$\ln 200$ (set) [6, 7]

Exogenous EPO Application

In our model, we use simple pulse functions EPO$_{\text{inj}}$ for intravenous injections. Regarding subcutaneous injections, the model adapted from [8] includes direct absorption from the subcutaneous tissue into the bloodstream, or indirect through the lymphatic system. In both processes, a time delay is assumed. A loss of EPO is included at the injection site (k^F) and in the lymphatic system (k^L). The structure of this
injection model is described in detail in [4, 8]. The model equations read as follows: The general EPO injection function $EPO_{\text{inj}}(t)$ is modelled by a sum of pulse functions

$$EPO_{\text{inj}}(t) = \frac{EPO_{\text{dose}}}{EPO_{\text{tinf}}} \sum_{i=1}^{N} (Hv(t - \tilde{t}_i) - Hv(t - \tilde{t}_i - EPO_{\text{tinf}})),$$

where (A.17)

$$Hv(t) = \begin{cases} 0 : t \leq 0 \\ 1 : t > 0 \end{cases}.$$

(A.18)

is the Heaviside-function, \tilde{t}_i are time points at which EPO at dose EPO_{dose} is administered. The injection time EPO_{tinf} is set to five minutes, and EPO_{dose} is the administered dose in IU/kg. The dynamics of the EPO concentration in the subcutaneous tissue $C_{\text{SC}EPO}(t)$ is described by:

$$\frac{d}{dt} C_{\text{SC}EPO}(t) = EPO_{\text{inj}}(t) - C_{\text{SC}EPO}(t) \cdot (k_a^F + k_{FL} + k_e^F),$$

(A.19)

where k_a^F is the absorption constant for the direct influx into the central compartment, k_e^F is a loss term at injection site, and k_{FL} is the absorption constant of the lymphatic system. The efflux from the subcutaneous tissue into the peripheral blood is delayed by four delay compartments, i.e.

$$\frac{d}{dt} C_{\text{EPO}Fout}^{(i)}(t) = C_{\text{EPO}Fout}^{(i-1)}(t) - k_{\text{Delay}}^F \cdot C_{\text{EPO}F}^{(i)}(t), \quad i = 1, \ldots, 4,$$

(A.20)

with the settings

$$C_{\text{EPO}Fout}^{(0)}(t) = C_{\text{SC}EPO}(t) \cdot k_a^F,$$

and

$$C_{\text{EPO}Fout}^{(i)}(t) = k_{\text{Delay}}^F \cdot C_{\text{EPO}F}^{(i)}(t), \quad i = 1, \ldots, 4.$$

$C_{\text{EPO}Fout}^{(4)}(t)$ enters the central EPO compartment. Analogously, the lymphatic absorption is modelled by a delay function with four compartments:

$$\frac{d}{dt} C_{\text{EPO}Lout}^{(i)}(t) = C_{\text{EPO}Lout}^{(i-1)}(t) - k_{\text{Delay}}^L \cdot C_{\text{EPO}L}^{(i)}(t), \quad i = 1, \ldots, 4,$$

(A.21)

$$C_{\text{EPO}Lout}^{(0)}(t) = C_{\text{SC}EPO}(t) \cdot k_{FL},$$

$$C_{\text{EPO}Lout}^{(i)}(t) = k_{\text{Delay}}^L \cdot C_{\text{EPO}L}^{(i)}(t), \quad i = 1, \ldots, 4,$$

where $C_{\text{EPO}Lout}^{(4)}(t)$ enters the central compartment. Thus, EPO dynamics in the lymphatic compartment $C_{\text{EPO}L}$ are given by

$$\frac{d}{dt} C_{\text{EPO}L}(t) = C_{\text{EPO}Lout}^{(4)}(t) - C_{\text{EPO}L}(t) \cdot (k_a^L + k_e^L),$$

(A.22)

$$C_{\text{EPO}L}(0) = 0.$$
where k_a^L is the absorption constant of the transition between the lymphatic and the central compartment and k_e^L is a loss term. Summarising the effluxes of the direct and the lymphatic way of absorption yields

$$EPO^{\text{exogen}}(t) = C_{\text{EPO}}^L(t) \cdot k_a^L + C_{\text{EPO, Ecent}}^L(t),$$ \hfill (A.23)

for subcutaneously administered EPO and

$$EPO^{\text{exogen}}(t) = EPO^{\text{inj}}(t).$$ \hfill (A.24)

for intravenous injections.

Central EPO Compartment

Dynamics of Erythropoietin in central compartment (circulation) is modelled in the following way (see [1, 4, 9]):

$$\frac{dC_{\text{EPO}}^{\text{cent}}}{dt} = P_{\text{EPO}}^{\text{endo}}(t) - k_{\text{on}} \cdot R(t) \cdot C_{\text{EPO}}^{\text{cent}}(t) + k_{\text{off}} \cdot C_{\text{EPO}}^{\text{rb}}(t) - k_{\text{cl}} \cdot C_{\text{EPO}}^{\text{cent}}(t)$$

$$- k_{12} \cdot C_{\text{EPO}}^{\text{cent}}(t) + k_{21} \cdot C_{\text{peri}}^{\text{EPO}}(t) + EPO^{\text{exogen}}(t),$$ \hfill (A.25)

with

$$P_{\text{EPO}}^{\text{endo}}(t) = (C_{\text{EPO}}^{\text{cent}}(0) \cdot k_{\text{cl}} - C_{\text{EPO}}^{\text{rb}}(0) \cdot k_{\text{off}} + k_{\text{on}} \cdot R(0) \cdot C_{\text{EPO}}^{\text{cent}}(0) \cdot \text{EPO}_{\text{prod}},$$ \hfill (A.26)

where EPO$_{\text{prod}}$ equals one in steady state, so that equation A.25 equals zero.

The peripheral compartment and the EPO-receptor complex are described by

$$\frac{dC_{\text{EPO}}^{\text{peri}}}{dt} = k_{12} \cdot C_{\text{EPO}}^{\text{cent}}(t) - k_{21} \cdot C_{\text{EPO}}^{\text{peri}}(t)$$

$$\frac{dC_{\text{EPO}}^{\text{rb}}}{dt} = k_{\text{on}} \cdot R(t) \cdot C_{\text{EPO}}^{\text{cent}}(t) - (k_{\text{off}} + k_{\text{int}}) \cdot C_{\text{EPO}}^{\text{rb}}(t).$$

The dynamics of the EPO receptors R is determined on the basis of the bone marrow content of the cell kinetic model, namely the compartments C_{BE}, C_{CE}, C_{PEB}, C_{MEB}, and C_{RET} [4].

To account for different receptor densities of erythropoietic bone marrow cells we introduced weighting factors w_{RET}, w_{MEB}, w_{PEB}, w_{CE}, and w_{BE}. CFU-E have the highest weighting factor due to the highest number of EPO receptors observed [10]: $w_{\text{BE}} \leq w_{\text{CE}}$. The receptor density declines with further maturation: $w_{\text{RET}} \leq w_{\text{MEB}} \leq w_{\text{PEB}} \leq w_{\text{CE}}$. Hence

$$\frac{dR}{dt} = k_{\text{off}} \cdot C_{\text{EPO}}^{\text{rb}}(t) - k_{\text{on}} \cdot R(t) \cdot C_{\text{EPO}}^{\text{cent}}(t) - k_{\text{deg}} \cdot R(t) + k_{\text{syn}} \cdot R_{\text{rel}}^{\text{rel}}(t)$$ \hfill (A.27)
where \(R_{rel}(t) = w_{RET} \cdot C_{RET} + w_{MEB} \cdot C_{MEB} + w_{PEB} \cdot C_{PEB} + w_{CE} \cdot C_{CE} + w_{BE} \cdot C_{BE} \) is the number of EPO receptors relative to steady-state \([4]\).

The initial values are derived from steady-state conditions

\[
C_{EPO}^{\text{rb}}(0) = \frac{k_{\text{on}}}{k_{\text{off}} + k_{\text{int}}} \cdot R(0) \cdot C_{\text{cent}}^{EPO}(0)
\]

\[
P_{\text{endo}}^{EPO}(0) = C_{EPO}^{\text{rb}}(0) \cdot k_{\text{cl}} - C_{EPO}^{\text{rb}}(0) \cdot k_{\text{off}} + k_{\text{on}} \cdot R(0) \cdot C_{EPO}(0)
\]

\[
P_{\text{peri}}^{EPO}(0) = \frac{k_{12}}{k_{21}} \cdot C_{EPO}^{\text{cent}}(0)
\]

where \(C_{\text{cent}}^{EPO}(0) = EPO_{\text{serum}} \cdot EPO_{Vc} \), \(EPO_{\text{serum}} = 15 \text{ IU/l} \) is the basic level of endogenous EPO, and \(EPO_{Vc} \) denotes the distribution volume of EPO \([9]\). According to \([9]\), we set \(R(0) = 64.31 \) and from equation A.27 it follows that \(k_{\text{syn}} = k_{\text{deg}} \cdot R(0) + k_{\text{int}} \cdot C_{EPO}^{\text{rb}}(0) \). The relative internalised EPO \(C_{\text{EPO,int}}^{\text{rel}} \) is used as argument of the regulatory functions regulated by EPO:

\[
C_{EPO,int}(t) = C_{EPO}^{\text{rb}}(t) \cdot k_{\text{int}}
\]

\[
C_{EPO,int}^{\text{rel}}(t) = \frac{C_{EPO,int}(t)}{C_{EPO,int}(0)}.
\]

A.7 Granulopoiesis

Here we present model equations of our granulopoiesis model (see also \([3]\)). Initial conditions are derived again from steady-state conditions.

Compartment CG

The model equations of CG are similar to \([3]\). The influence of red blood cell line on the proliferative fraction is modelled in analogy to \([1]\).

\[
A_{CG} = Z_{A_{CG}} \left(C_{\text{cent}}^{\text{GCSF}, \text{rel}} \right)
\]

\[
T_{CG} = Z_{T_{CG}} \left(C_{\text{cent}}^{\text{GCSF}, \text{rel}} \right)
\]

\[
\frac{d}{dt} C_{CG} = \alpha_{G} C_{S} C_{CG} - C_{CG} \frac{a_{CG}}{T_{CG}} - k_{CG} \Psi_{CG} C_{CG}
\]

(A.28)

where \(a_{CG} \) is the proliferative fraction and \(\alpha_{G} = 0.8 \) is the part of cells differentiating into the white blood cell line \([1]\). The amplification \(A_{CG} \) and the transit time \(T_{CG} \) are regulated by the concentration of G-CSF in the central compartment.
Compartment PGB

\[
\begin{align*}
A_{\text{PGB}} &= Z_{A_{\text{PGB}}} \left(C_{\text{GCSF}}^{\text{cent rel del}} \right) \\
T_{\text{PGB}} &= Z_{T_{\text{PGB}}} \left(C_{\text{GCSF}}^{\text{cent rel del}} \right) \\
\frac{d}{dt} C_{\text{PGB}} &= C_{\text{out}} C_{\text{PGB}} - \frac{C_{\text{PGB}}}{T_{\text{PGB}}} - k_{\text{PGB}} \Psi_{\text{PGB}} C_{\text{PGB}} \\
C_{\text{out}} &= A_{\text{PGB}} \frac{C_{\text{PGB}}}{T_{\text{PGB}}}
\end{align*}
\]

(A.29) (A.30) (A.31) (A.32)

Compartment MGB

This compartment is divided into three compartments denoted as \(G_4, G_5 \) and \(G_6 \). The compartments are again divided into \(N_X \) subcompartments to model the maturation process by a delay. In these subcompartments, the effect of postmitotic apoptosis is also implemented [2, 11] by introducing a postmitotic amplification denoted again as \(A \). It holds that \(A \leq 1 \) for all subcompartments.

\[
\begin{align*}
C_{\text{MGB}} &= C_{G_4} + C_{G_5} + C_{G_6} \\
C_{\text{out}}^{\text{MGB}} &= C_{\text{out}}^{\text{G_6}} \\
A_{G_4} &= Z_{A_{G_4}} \left(C_{\text{GCSF}}^{\text{cent rel del}} \right) \\
T_{G_4} &= Z_{T_{G_4}} \left(C_{\text{GCSF}}^{\text{cent rel del}} \right) \\
C_{G_4} &= \sum_{i=1}^{N_{G_4}} C_{G_4 i}
\end{align*}
\]

(A.33) (A.34) (A.35) (A.36) (A.37)

\[
\begin{align*}
\frac{d}{dt} C_{G_4 1} &= C_{\text{out}} - C_{G_4 1} \frac{N_{G_4}}{T_{G_4}} - k_{\text{MGB}} \Psi_{\text{MGB}} C_{G_4 1} \\
\frac{d}{dt} C_{G_4 i} &= C_{\text{out}} C_{G_4 (i-1)} - C_{G_4 i} \frac{N_{G_4}}{T_{G_4}} - k_{\text{MGB}} \Psi_{\text{MGB}} C_{G_4 i}, \quad i = 2, \ldots, N_{G_4} \\
C_{\text{out}}^{\text{G_4 i}} &= A_{G_4} C_{G_4} \frac{N_{G_4}}{T_{G_4}}, \quad i = 1, \ldots, N_{G_4} \\
C_{\text{out}}^{\text{G_4}} &= C_{\text{out}}^{\text{G_4} N_{G_4}}
\end{align*}
\]

(A.38) (A.39) (A.40) (A.41)

The total postmitotic amplification \(A_{G_4} \) is equally distributed over all subcompartments in which there is postmitotic amplification, e.g. if there is postmitotic amplification in all subcompartments, it holds that

\[
A_{G_4 i} = A_{G_4}^{1/N_{G_4}}.
\]

For \(G_5 \) and \(G_6 \) the equations are completely analogous to (A.35)–(A.41) if one replaces PGB by G4 and G5 respectively. In the present form of our model, postmitotic amplification is restricted to G6.
Compartment GRA

\[\frac{d}{dt} C_{\text{GRA}} = C_{\text{MGB}} - C_{\text{GRA}} \cdot \frac{1}{T_{\text{GRA}}} \]
(A.42)

\[T_{\text{GRA}} = T_{\text{nor}}^{\text{GRA}} (1 + T_{\text{GRA}}^{\text{Pred}} \Psi_{\text{Pred}}) \]
(A.43)

where \(\Psi_{\text{Pred}} \) is the characteristic function of Prednisone applications modelled as a step-function which is equal to one for the duration of one day after Prednisone application.

Granulopoietic cells

\[C_G = C_{\text{CG}} + C_{\text{PGB}} + C_{\text{MGB}} \]
(A.44)

G-CSF

According to [2], the relative G-CSF production \(P^{\text{endo}}_{\text{GCSF}} \) is a regulatory function of the relative content of segmented granulocytes in bone marrow and granulocytes in circulation.

\[P^{\text{endo}}_{\text{GCSF}} = Z \left(\frac{\omega_{\text{G}} C_{\text{G}}}{\omega_{\text{G}} + \omega_{\text{GRA}} C_{\text{GRA}}} \right), \]
(A.45)

where \(\omega_{\text{G}} \) and \(\omega_{\text{GRA}} \) are weighting parameters and \(P^{\text{endo}}_{\text{por}} = 1 \).

The G-CSF injection function reads as follows:

\[P^{\text{exo}}_{\text{GCSF}} = \sum_{i=1}^{L} d_{\text{GCSF}}(t_i) \frac{Hv(t - t_i) - Hv(t - t_i - t_{\text{inf}})}{t_{\text{inf}}} \]
(A.46)

where \(Hv(t) \) is the Heaviside-function (equation A.18), \(t_i \geq 0 \) (\(i = 1, \ldots, L \)) are the time points of G-CSF injections and \(d_{\text{GCSF}}(t_i) \) are the corresponding doses (in \(\mu\text{g} \)). The injection time \(t_{\text{inf}} \) is set to 5s. The injection function is specific for each G-CSF derivative (details see [3]).

The subcutaneous compartment is divided into two subcompartments \(sc_1 \) and \(sc_2 \) where the efflux of the first compartment is the influx to the second compartment. G-CSF is applied to the first subcompartment (second term of A.47). In the first subcompartment there is a dose-dependent loss of G-CSF modelled by a Michaelis-Menten kinetic (third term of A.47). For Filgrastim injections it holds that

\[\frac{d}{dt} C_{\text{GCSF}}^{sc_1} = P^{\text{exo}}_{\text{GCSF}} - k_{sc} C_{\text{GCSF}}^{sc_1} - \frac{v_{\text{max}} C_{\text{GCSF}}^{sc_1}}{k_m + C_{\text{GCSF}}^{sc_1}} \]
(A.47)

\[\frac{d}{dt} C_{\text{GCSF}}^{sc_2} = k_{sc} ^F (C_{\text{GCSF}}^{sc_1} - C_{\text{GCSF}}^{sc_2}) \]
(A.48)

with the initial values \(C_{\text{GCSF}}^{sc_1}(0) = C_{\text{GCSF}}^{sc_2}(0) = 0 \). For Pegfilgrastim injections the first term of the right-hand side of A.47 is substituted by \(P^{\text{exo}}_{\text{GCSF}}^{\text{peg}} \). Likewise, the Filgrastim parameters \(k_{sc} ^F, v_{\text{max}} ^F \) and \(k_m ^F \) are substituted by corresponding Pegfilgrastim parameters.

16
For Filgrastim injections it holds that

\[
\frac{dC_{\text{cent}}^{\text{GCSF}}}{dt} = P_{\text{GCSF}}^{\text{ref}} + P_{\text{endo}}^{\text{GCSF}} + k_F^{\text{cent}} C_{\text{cent}}^{\text{GCSF}} - k_u^{\text{cent}} C_{\text{cent}}^{\text{GCSF}} - k_F^{\text{sc}} C_{\text{sc}}^{\text{GCSF}}(A.49)
\]

The balance equation A.49 contains the following terms: \(P_{\text{GCSF}}^{\text{ref}}\) is the endogenous production, \(P_{\text{endo}}^{\text{GCSF}}\) is the intravenous injection, \(k_F^{\text{cent}} C_{\text{cent}}^{\text{GCSF}}\) is the influx from the subcutaneous compartment, \(k_u^{\text{cent}} C_{\text{cent}}^{\text{GCSF}}\) is the unspecific elimination, \(k_F^{\text{sc}} C_{\text{sc}}^{\text{GCSF}}\) is the influx from the peripheral compartment and \(v_{\text{GRA}}^{\text{max}} C_{\text{cent}}^{\text{GCSF}}\) is the specific elimination. The corresponding equation for Pegfilgrastim is the same except for the endogenous production, which is zero, the intravenous injection function which is substituted by \(P_{\text{exo}}^{\text{peg}}\), the parameters and the initial value which is again zero.

With \(C_{\text{cent}}^{\text{GCSF}}(0) = C_{\text{GCSF}}^{\text{nor}} = V_F D C_{\text{cent}}^{\text{ref}}\), the parameter \(P_{\text{GCSF}}^{\text{ref}}\) can be calculated from the steady-state conditions \(P_{\text{endo}}^{\text{GCSF}}(0) = 1, P_{\text{exo}}^{\text{GCSF}}(0) = 0\) and \(-k_F^{\text{sc}} C_{\text{cent}}^{\text{GCSF}}(0) + k_F^{\text{per}} C_{\text{per}}^{\text{GCSF}}(0) = 0:\)

\[
P_{\text{GCSF}}^{\text{ref}} = V_F D C_{\text{cent}}^{\text{ref}} \left(k_u + \frac{v_{\text{GRA}}^{\text{max}}}{k_m^{\text{GRA}} + C_{\text{cent}}^{\text{GCSF}}} \right), \quad (A.50)
\]

where \(V_F\) is the distribution volume and \(C_{\text{cent}}^{\text{GCSF}}^{\text{ref}}\) is the reference G-CSF serum concentration.

For both G-CSF derivatives, we have transitions between central and peripheral compartment:

\[
\frac{dC_{\text{per}}^{\text{GCSF}}}{dt} = k_c^{\text{per}} C_{\text{cent}}^{\text{GCSF}} - k_p^{\text{per}} C_{\text{per}}^{\text{GCSF}} \quad \text{(A.51)}
\]

\[
C_{\text{per}}^{\text{GCSF}}(0) = C_{\text{per}}^{\text{nor}} = V_D \left(k_p^{\text{per}} C_{\text{per}}^{\text{GCSF}}^{\text{ref}} \right) \quad \text{(A.52)}
\]

where the parameters \(k_c, k_p\) and \(V_D\) are specific for Filgrastim and Pegfilgrastim respectively. To model the competition of Pegfilgrastim and endogenous G-CSF with respect to receptor binding, the regulatory functions of Pegfilgrastim and Filgrastim were again combined using the weighting factor \(\omega_p\) defined in equation A.16:

\[
Z_Y = \omega_p \cdot Z_Y \left(C_{\text{GCSF}}^{\text{cent,rel,del,peg}} \right) + (1 - \omega_p) \cdot Z_Y \left(C_{\text{GCSF}}^{\text{cent,rel,del,fil}} \right)
\]

where \(Y\) is an arbitrary quantity regulated by G-CSF such as transition times or amplifications. For all these quantities we assumed the same regulatory function of the weighting parameter \(\omega_p\).

A.8 Parameters

Here, we present all parameters of the model, their values, and how they were determined. In table A.3 we present general parameters of the cell kinetic model of granulopoiesis.
Table A.3: G-CSF PK/PD parameters

parameter	meaning	value
α_G	percentage of stem cells differentiating to myeloid cells	0.8
α_E	percentage of stem cells differentiating to erythroid cells	0.15
S_{nor}	normal value of stem cells	1
τ_S	duration of cell cycle	8 [1], p. 70
p_{E}	self-renewal probability	0.1 [1], p. 70
a_{\min}	proliferative fraction under minimal stimulation	0.01 [1], p. 70
a_{nor}	proliferative fraction under normal stimulation	0.15 [1], p. 70
a_{int}	proliferative fraction under intensified stimulation	0.45 [1], p. 70
a_{\max}	proliferative fraction under maximal stimulation	1 [1], p. 70
w_E	weighting parameter E for regulation of a	0.3 [1], p. 70
w_S	weighting parameter S for regulation of a	1 [1], p. 70
p_{E}	weighting parameter E for regulation of p	-2 [1], p. 70
p_{G}	weighting parameter G for regulation of p	-8 [1], p. 70
N_{G4}	number of subcompartments in $G4$	5 set
N_{G5}	number of subcompartments in $G5$	5 set
N_{G6}	number of subcompartments in $G6$	5 set
a_{min}	proliferative fraction under minimal stimulation	0.1205 fitted
a_{nor}	proliferative fraction under normal stimulation	0.1252 fitted
a_{int}	proliferative fraction under intensified stimulation	0.8340 fitted
$w_{G\text{GRA}}$	influence of $G\text{GRA}$ on G-CSF production	1 set [12]
w_{G6}	influence of $G6$ on G-CSF production	0.2 set [12]
$P_{\text{endo} \text{max}}$	maximal G-CSF production	257.5 fitted
$P_{\text{endo} \text{nor}}$	normal G-CSF production	1 set
$P_{\text{endo} \text{min}}$	minimal G-CSF production	0.3179 fitted
p_{GCSF}	sensitivity parameter of G-CSF production	0.0220 fitted
$T_{\text{nor} \text{GRA}}$	transition time of granulocytes	5.576 fitted
$T_{\text{pred} \text{GRA}}$	prolongation of T_{GRA} under Prednisone	0.4659 fitted

In Table A.4 we present parameters of the granulopoiesis model which are assumed to be different for Filgrastim and Pegfilgrastim respectively. Note that for endogenous G-CSF, we assumed the same parameter setting as for Filgrastim.

Table A.4: G-CSF pharmacokinetic and -dynamic parameters

parameter	meaning	value	
k_F^{sc}	subcutaneous absorption	0.1613 fitted	
k_F^{GCSF}	Michaelis-Menten constant of subcutaneous elimination	34.68 fitted	
v_{max}	Maximum of subcutaneous elimination	67.27 fitted	
k_F^u	unspecific elimination	0.4408 fitted	
k_{G4}^{12}	transition central to peripheral	0.0001 fitted	
k_{G5}^{21}	transition peripheral to central	0.3564 indeterminable	
V_{D_F}	distribution volume	1.156 fitted	
$v_{\text{GRA} \text{F}}^{\max}$	Maximum of specific elimination	4.769 fitted	
Parameter	**Description**	**Value**	**Fit Type**
---------------	-----------------	-----------	--------------
k_{19}^{GRA}	Michaelis-Menten constant of specific elimination	22.38	fitted
$T_{CG, min}$	transition time in CG under minimal stimulation	82.02	fitted
$T_{CG, nor}$	transition time in CG under normal stimulation	78.19	fitted
$T_{CG, max}$	transition time in CG under maximal stimulation	286.3	fitted
h_{CG}	sensitivity of transition time in CG	0.5901	fitted
$A_{CG, min}$	amplification in CG under minimal stimulation	0.9101	fitted
$A_{CG, nor}$	amplification in CG under normal stimulation	104.6	fitted
$A_{CG, max}$	amplification in CG under maximal stimulation	206.2	fitted
$A_{PGB, b}$	sensitivity of transition time in PGB	0.0241	fitted
$A_{PGB, min}$	amplification in PGB under minimal stimulation	1.307	fitted
$A_{PGB, nor}$	amplification in PGB under normal stimulation	61.20	fitted
$A_{PGB, max}$	amplification in PGB under maximal stimulation	814.7	fitted
$A_{PGB, b}$	sensitivity of amplification in PGB	0.7212	fitted
$T_{PGB, min}$	transition time in PGB under minimal stimulation	4.640	fitted
$T_{PGB, nor}$	transition time in PGB under normal stimulation	40.89	fitted
$T_{PGB, max}$	transition time in PGB under maximal stimulation	217.1	fitted
$b_{PGB, b}$	sensitivity of transition time in PGB	0.1041	fitted
$A_{G4, b}$	postmitotic amplification in G4	1	set
$T_{G4, min}$	transition time in G4 under minimal stimulation	119.2	fitted
$T_{G4, nor}$	transition time in G4 under normal stimulation	11.37	fitted
$T_{G4, max}$	transition time in G4 under maximal stimulation	3.93	fitted
$b_{G4, b}$	sensitivity of transition time in G4	0.3661	fitted
$A_{G5, b}$	postmitotic amplification in G5	1	set
$T_{G5, min}$	transition time in G5 under minimal stimulation	48.3	fitted
$T_{G5, nor}$	transition time in G5 under normal stimulation	37.00	fitted
$T_{G5, max}$	transition time in G5 under maximal stimulation	4.64	fitted
$b_{G5, b}$	sensitivity of transition time in G5	0.4588	fitted
$A_{G6, min}$	postmitotic amplification in G6 under minimal stimulation	0.2005	fitted
$A_{G6, nor}$	postmitotic amplification in G6 under normal stimulation	0.2488	fitted
$A_{G6, max}$	postmitotic amplification in G6 under maximal stimulation	0.8495	fitted
$A_{G6, b}$	sensitivity of postmitotic amplification in G6	0.5034	fitted
$T_{G6, min}$	transition time in G6 under minimal stimulation	140.9	fitted
$T_{G6, nor}$	transition time in G6 under normal stimulation	82.02	fitted
$T_{G6, max}$	transition time in G6 under maximal stimulation	41.38	fitted
$b_{G6, b}$	sensitivity of transition time in G6	0.5260	fitted

Pegfilgrastim

Parameter	**Description**	**Value**	**Fit Type**
k_{F}	subcutaneous absorption	0.1071	fitted
k_{sc}	Michaelis-Menten constant of subcutaneous elimination	5.456	fitted
v_{max}^{sc}	Maximum of subcutaneous elimination	16.50	fitted
k_{u}	unspecific elimination	0.0874	fitted
v_{max}^{GRA}	Maximum of specific elimination	5.159	fitted
k_{19}^{GRA}	Michaelis-Menten constant of specific elimination	30.82	fitted
V_{D}	distribution volume	4.091	fitted
k_{12}^{P}	transition central to peripheral	0.0746	fitted
k_{P1}	transition peripheral to central	0.5475	fitted
ω_{min}^{P}	minimum of weighting function	0	set
ω_{max}^{P}	maximum of weighting function	1	set
ω_{P}	value of weighting function for 1µg Pegfilgrastim	0.4994	fitted
$A_{CG, min}$	transition time in CG under minimal stimulation	4.210	fitted
Next we present parameters of the cell kinetic model of erythropoiesis not presented in table A.3 and which do not depend on the kind of EPO derivative or their mode of application (table A.5).

A number of parameters depending on EPO derivative but not on mode of application is presented in table A.6.

Parameter	Description	Value	Type
$A_{\text{nor}}^{\text{CGP}}$	Transition time in CG under normal stimulation	356.7	fitted
$A_{\text{max}}^{\text{CGP}}$	Transition time in CG under maximal stimulation	668.7	fitted
A_{b}^{CGP}	Sensitivity of transition time in CG	0.1026	fitted
$T_{\text{min}}^{\text{CGP}}$	Amplification in CG under minimal stimulation	0.8480	fitted
$T_{\text{nor}}^{\text{CGP}}$	Amplification in CG under normal stimulation	1.687	fitted
$T_{\text{max}}^{\text{CGP}}$	Amplification in CG under maximal stimulation	57.60	fitted
T_{b}^{CGP}	Sensitivity of amplification in CG	0.0396	fitted
$A_{\text{min}}^{\text{PGBP}}$	Amplification in PGB under minimal stimulation	0.0669	fitted
$A_{\text{nor}}^{\text{PGBP}}$	Amplification in PGB under normal stimulation	24.54	fitted
$A_{\text{max}}^{\text{PGBP}}$	Amplification in PGB under maximal stimulation	47.00	fitted
A_{b}^{PGBP}	Sensitivity of amplification in PGB	0.3266	fitted
$T_{\text{min}}^{\text{PGBP}}$	Transition time in PGB under minimal stimulation	0.7558	fitted
$T_{\text{nor}}^{\text{PGBP}}$	Transition time in PGB under normal stimulation	24.66	fitted
$T_{\text{max}}^{\text{PGBP}}$	Transition time in PGB under maximal stimulation	24.69	fitted
T_{b}^{PGBP}	Sensitivity of transition time in PGB	0.1180	fitted
$A_{\text{nor}}^{\text{G4PCR}}$	Postmitotic amplification in G4	0.3266	fitted
$T_{\text{min}}^{\text{G4PCR}}$	Transition time in G4 under minimal stimulation	152.8	fitted
$T_{\text{nor}}^{\text{G4PCR}}$	Transition time in G4 under normal stimulation	14.19	fitted
$T_{\text{max}}^{\text{G4PCR}}$	Transition time in G4 under maximal stimulation	4.168	fitted
T_{b}^{G4PCR}	Sensitivity of transition time in G4	0.2246	fitted
$A_{\text{nor}}^{\text{G5PCR}}$	Postmitotic amplification in G5	0.3213	fitted
$T_{\text{min}}^{\text{G5PCR}}$	Transition time in G5 under minimal stimulation	152.8	fitted
$T_{\text{nor}}^{\text{G5PCR}}$	Transition time in G5 under normal stimulation	14.19	fitted
$T_{\text{max}}^{\text{G5PCR}}$	Transition time in G5 under maximal stimulation	4.168	fitted
T_{b}^{G5PCR}	Sensitivity of transition time in G5	0.2246	fitted
$A_{\text{min}}^{\text{G6PCR}}$	Postmitotic amplification in G6 under minimal stimulation	0.3213	fitted
$A_{\text{nor}}^{\text{G6PCR}}$	Postmitotic amplification in G6 under normal stimulation	0.3213	fitted
$A_{\text{max}}^{\text{G6PCR}}$	Postmitotic amplification in G6 under maximal stimulation	1.0000	fitted
A_{b}^{G6PCR}	Sensitivity of postmitotic amplification in G6	0.3213	fitted
$T_{\text{min}}^{\text{G6PCR}}$	Transition time in G6 under minimal stimulation	152.8	fitted
$T_{\text{nor}}^{\text{G6PCR}}$	Transition time in G6 under normal stimulation	14.19	fitted
$T_{\text{max}}^{\text{G6PCR}}$	Transition time in G6 under maximal stimulation	4.168	fitted
T_{b}^{G6PCR}	Sensitivity of transition time in G6	0.2246	fitted
Table A.5: Cell kinetic parameters of the erythropoiesis model

parameter	meaning	value	
q_{RET}	proportion of RET/RBC in steady state	0.016	
$T_{ERY_{rnd}}$	transition time in compartment “RANDOM”	1020.4 [14] set	
$T_{ERY_{age}}$	transition time in compartment “AGE”	3061.2 [14] set	
s_{ERY}	influx regulation factor of RANDOM and AGE	0.9 [6], p. 40 set	
N_{ERY}	number of subcompartments	10 [6], p. 41 set	
HKnor	normal value of HK	0.43 set	
ERYnor	normal value of ERY	4.5 set	
RETnor	normal value of RET	100 set	
RET$%^{nor}$	normal value of RET%	9.5 set	
HBnor	normal value of HB	13.5 set	
$P_{endo_{max}}$	maximal endogenous production	0.000031 set	
EPOV_c	volume of distribution	0.032 [9] set	
EPO$serum$	serum concentration	15 [9] set	
VB	blood volume	5.5 [15] set	
a_{BE}^{min}	proliferative fraction under minimal stimulation	0.3 [1], p. 71 set	
a_{BE}^{nor}	proliferative fraction under normal stimulation	0.33 [1], p. 71 set	
a_{BE}^{max}	proliferative fraction under maximal stimulation	0.66 [1], p. 71 set	
a_{BE}^{max}	proliferative fraction under intensified stimulation	1 [1], p. 71 set	
parameter	meaning	Alpha, Beta, Delta, endog. EPO	Darbepoetin Alfa
-----------	---------	-------------------------------	-----------------
k_{el}	unspecific elimination from central compartment	0.102 fitted	0.062 fitted
k_{12}	transition central to peripheral	0.079 fitted	0.294 fitted
k_{21}	transition peripheral to central	0.084 fitted	0.291 fitted
k_{on}	receptor binding rate	0.070 fitted	0.043 fitted
k_{off}	receptor dissociation rate	14.27 fitted	9.62 fitted
$R(0)$	EPO receptors (normal value)	64.31 set [9]	64.31 set
k_{int}	internalisation rate	2 set [9]	1.14 fitted
k_{deg}	receptor degradation rate	0.101 fitted	0.116 fitted
w_{RET}	weighting factor for receptor density (RET)	0.05 set	0.05 set
w_{MEB}	weighting factor for receptor density (MEB)	0.087 fitted	0.125 fitted
w_{PEB}	weighting factor for receptor density (PEB)	0.293 fitted	0.509 fitted
w_{CE}	weighting factor for receptor density (CE)	3.84 fitted	2.69 fitted

BE

parameter	meaning	Alpha, Beta, Delta, endog. EPO	Darbepoetin Alfa
T_{min}	transition time in BE under minimal stimulation	155.7 fitted	124.6 fitted
T_{nor}	transition time in BE under normal stimulation	40 set [14]	40 set
T_{max}	transition time in BE under maximal stimulation	28.60 fitted	34.22 fitted
A_{min}	amplification in BE under minimal stimulation	1.134 fitted	3.559 fitted
A_{nor}	amplification in BE under normal stimulation	25.04 fitted	47.10 fitted
A_{max}	amplification in BE under maximal stimulation	64 set [14]	64 set
A_{b}	sensitivity of amplification in BE	194.7 fitted	115.5 fitted
A_{BE}	amplification in CE under minimal stimulation	2.321 fitted	0.1659 fitted
A_{CE}	amplification in CE under normal stimulation	0.9645 fitted	0.5717 fitted
A_{max}	amplification in CE under maximal stimulation	32 set [14]	32 set
A_{b}	sensitivity of amplification in CE	104.7 fitted	127.8 fitted
T_{min}	transition time in CE under minimal stimulation	0.0438 fitted	0.3956 fitted
T_{nor}	transition time in CE under normal stimulation	186.7 fitted	387.3 fitted
T_{max}	transition time in CE under maximal stimulation	40 set [14]	40 set
A_{min}	amplification in CE under minimal stimulation	15.25 fitted	36.23 fitted
A_{nor}	amplification in CE under normal stimulation	0.3920 fitted	0.1305 fitted
A_{max}	amplification in CE under maximal stimulation	99.25 fitted	178.4 fitted
A_{b}	sensitivity of transition time in CE	48 set	48 set
T_{min}	transition time in PEB under minimal stimulation	8.809 fitted	15.74 fitted
T_{nor}	transition time in PEB under normal stimulation	1.301 fitted	1.847 fitted
T_{max}	transition time in PEB under maximal stimulation	0.6862 fitted	0.8078 fitted
A_{min}	amplification in PEB under minimal stimulation	64 set [14]	64 set
A_{nor}	amplification in PEB under normal stimulation	75.38 fitted	139.6 fitted
A_{max}	amplification in PEB under maximal stimulation	0.4135 fitted	0.1331 fitted
A_{b}	sensitivity of amplification in PEB	144.8 fitted	186.7 fitted
T_{min}	transition time in MEB under minimal stimulation	100.2 fitted	100.2 fitted
T_{nor}	transition time in MEB under normal stimulation	90.17 fitted	26.98 fitted
T_{max}	transition time in MEB under maximal stimulation	0.5395 fitted	0.1965 fitted
Finally, we present parameters which depend on the mode of application, i.e. parameters referring to absorption kinetics (table A.7).

Chemotherapy parameters are specific for cell stage, drug, drug doses, and sometimes, risk group of patients such as young or elderly patients. An overview of estimated parameters can be found in tables A.8 (toxicity to stem cells and granulopoiesis) and A.9 (toxicity to erythropoiesis and lymphopoiesis).
Table A.7: Parameters of EPO absorption kinetics in dependence on mode of application

Parameter	Description	Alfa, abdomen, upper arm	Alfa, forearm	Alfa, shoulder	Alfa, thigh	Beta, abdomen	Beta, thigh	Beta, forearm	Delta	Darbepoetin Alfa
k_{r}^{F}	transition from subcut. comp. to central comp.	0.5320	0.7786	0.7119	0.7374	0.3747	0.4528	0.4077	0.6657	3.0148
k_{r}^{E}	elimination from subcutaneous compartment	0.2713	0.1337	0.1263	0.3295	0.1062	0.0656	0.1873	0.1517	0.1938
k_{L}^{Delay}	delay in lymphatic system	0.0390	0.0510	0.1460	0.0298	0.0699	0.0410	0.0476	0.2367	0.0241
k_{L}^{T}	transition from lymph. comp. to central comp.	0.1172	0.0901	0.1326	0.1588	0.2309	0.2024	0.4687	0.1065	1.1192
k_{L}^{E}	elimination from lymphatic compartment	0.4334	0.4904	0.4066	0.4343	0.0950	0.0557	0.1587	0.3321	0.1769
k_{L}^{Delay}	delay in subcutaneous compartment	0.3275	0.3259	0.6029	0.1626	0.3705	0.2078	0.2819	0.7508	0.1161
k_{FL}	transition from subcut. comp. to lymph. comp.	1.0074	3.6252	3.9596	0.7213	1.2138	1.0453	1.1987	3.4461	5.5404
Table A.8: Chemotherapy parameters 1: We present toxicity parameters regarding stem cells and granulopoiesis lineage. Values in brackets could not be determined with sufficient accuracy due to lack of data and are irrelevant for the scenarios considered. Numbers after drug correspond to dose in mg/m^2.

Drug Combination	FC	Delay	S	CG	PGB	MGB
Cyclophosphamide 750, Doxorubicin 50	1.038	0.061	0.023	0.915	0.334	0.040
Etoposide 100						
Cyclophosphamide 750, Doxorubicin 50	8.425	0.116	0.000	0.008	0.500	0.002
Etoposide 100						
Procarbazine 100	1.042	0.019	0.000	0.010	0.010	0.057
Cyclophosphamide 650, Doxorubicin 25	1.038	0.061	0.087	0.591	0.013	0.000
Bleomycin 10						
Cyclophosphamide 1250, Doxorubicin 35	8.425	0.116	0.000	0.008	0.051	0.002
Etoposide 200						
Cyclophosphamide 1400, Doxorubicin 32.5	1.355	0.002	0.002	0.064	0.028	0.000
Etoposide 175						
Carboplatin, Paclitaxel 225	1.000	0.077	0.001	60.00	60.00	0.000
Doxorubicin 60	2.014	0.072	0.014	0.228	4.215	0.000
Docetaxel 75	1.277	0.018	0.301	0.891	3.495	0.001
Paclitaxel 225	1.277	0.018	0.000	0.891	3.495	0.001
Paclitaxel 175	1.121	0.064	0.136	0.733	0.093	0.000
Cyclophosphamide 600	1.308	0.050	0.000	0.054	0.189	0.001
Etoposide 40	3.341	0.116	0.000	0.037	0.012	0.000
Table A.9: Chemotherapy parameters 2: We present toxicity parameters regarding erythropoiesis and lymphopoiesis. Values in brackets could not be determined with sufficient accuracy due to lack of data and are irrelevant for the scenarios considered. Numbers after drug correspond to dose in mg/m^2.

Drug Combination	Delay	LY	BE	CE	PEB	MEB	RET
Cyclophosphamid 750	0.008	14.49	0.001	0.011	0.019	0.319	0.000
Doxorubicin 50							
Etoposid 100	0.106	0.042	0.000	0.000	0.034	0.028	0.000
Cyclophosphamid 750	0.008	17.68	0.001	0.011	0.016	0.319	0.000
Doxorubicin 50							
Etoposid 100	0.106	0.042	0.000	0.000	0.034	0.028	0.000
Procarbazine 100	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclophosphamid 650	0.008	20.00	0.000	0.001	0.000	0.003	0.000
Doxorubicin 25							
Bleomycin 10	0.000	0.000	0.005	0.044	0.000	0.092	0.000
Cyclophosphamid 1250	0.008	40.00	0.001	0.012	0.019	0.363	0.000
Doxorubicin 35							
Etoposid 200	0.106	3.602	0.000	0.000	0.009	0.019	0.000
Cyclophosphamid 1400	0.008	35.85	0.003	0.016	0.024	0.407	0.000
Doxorubicin 32.5							
Etoposid 175	0.106	50.00	0.003	0.002	0.034	0.050	0.002
Carboplatin, Paclitaxel 225	(0.000)	(0.000)	(1.615)	(1.292)	(4.103)	(0.235)	(0.000)
Doxorubicin 60							
Docetaxel 75							
Paclitaxel 225	0.140	0.350	0.001	1.797	0.984	0.153	0.001
Paclitaxel 175	0.140	0.334	0.000	1.423	0.046	0.010	0.000
Cyclophosphamid 600	0.028	4.747	0.001	0.003	0.035	0.018	0.001
Cyclophosphamid 2500	0.028	12.59	0.017	0.010	0.035	0.749	0.007
Epirubicin 90	0.030	2.697	0.000	0.023	0.170	0.023	0.001
Epirubicin 150	0.030	42.26	1.549	9.670	1.595	0.249	0.085
Cytarabine 2	1.000	1.000	0.000	0.000	0.034	0.028	0.000
Cisplatin 25	0.000	0.000	0.197	0.018	0.457	1.691	0.000
Etoposide 40	0.048	1.275	0.000	0.000	0.034	0.028	0.000
A summary of data used to identify model parameters and to validate our model can be found in table A.10.

Table A.10: **Available data sets.** Studies with access to raw data are indicated with an asterisk.

	EPO	G-CSF	chemotherapy	disease	
1	Alfa 300 IU/kg, sc (tigh)	none	none	none	[16]
2	Alfa 450 IU/kg, sc (tigh)	none	none	none	[16]
3	Alfa 600 IU/kg, sc (tigh)	none	none	none	[16]
4	Alfa 900 IU/kg, sc (tigh)	none	none	none	[16]
5	Alfa 1200 IU/kg, sc (tigh)	none	none	none	[16]
6	Alfa 1350 IU/kg, sc (tigh)	none	none	none	[16]
7	Alfa 1800 IU/kg, sc (tigh)	none	none	none	[16]
8	Alfa 2400 IU/kg, sc (tigh)	none	none	none	[16]
9	Alfa 300 IU/kg, sc	none	none	none	[17]
10	Alfa 400 IU/kg, sc	none	none	none	[17]
11	Alfa 600 IU/kg, sc	none	none	none	[17]
12	Alfa 750 IU, sc (upper arm)	none	none	none	[18]
13	Alfa 6000 IU, sc (upper arm)	none	none	none	[18]
14	Alfa 150 IU/kg, sc	none	none	none	[19]
15	Alfa 300 IU/kg, sc	none	none	none	[19]
16	Alfa 100 IU/kg, iv	none	none	none	[20]
17	Alfa 200 IU/kg, iv	none	none	none	[20]
18	Alfa 100 IU/kg, sc (shoulder)	none	none	none	[20]
19	Alfa 200 IU/kg, sc (shoulder)	none	none	none	[20]
20	Alfa 50 IU/kg, sc (upper arm)	none	none	none	[21]
21	Alfa 100 IU/kg, sc (abdomen)	none	none	none	[22]
22	Alfa 40000 IU, sc (forearm)	none	none	none	[15]
23	Alfa 150 IU/kg, sc (forearm)	none	none	none	[15]
24	beta 10 IU/kg, iv	none	none	none	[23]
25	beta 50 IU/kg, iv	none	none	none	[23]
26	beta 150 IU/kg, iv	none	none	none	[23]
27	beta 500 IU/kg, iv	none	none	none	[23]
28	beta 1000 IU/kg, iv	none	none	none	[23, 24]
29	beta 5000 IU	none	none	none	[25]
30	beta 1500 IU, sc	none	none	none	[26]
31	beta 3000 IU, sc (forearm)	none	none	none	[26]
32	beta 100 IU/kg, iv	none	none	none	[27]
33	beta 100 IU/kg, sc (tigh)	none	none	none	[27]
34	beta 100 IU/kg, sc (abdomen)	none	none	none	[27]
35	delta 15 IU/kg, iv	none	none	none	[28]
36	delta 40 IU/kg, iv	none	none	none	[28]
37	delta 75 IU/kg, iv	none	none	none	[28]
38	delta 75 IU/kg, sc	none	none	none	[28]
39	delta 100 IU/kg, iv	none	none	none	[28]
40	Darbepoetin alfa 120 IU/kg, sc	none	none	none	[29]
41	Darbepoetin alfa 140 IU/kg, sc	none	none	none	[29]
42	Darbepoetin alfa 240 IU/kg, sc	none	none	none	[29]
43	Darbepoetin alfa 360 IU/kg, sc	none	none	none	[29]
44	Darbepoetin alfa 780 IU/kg, sc	none	none	none	[29]
	Product	Dose	Schedule	Treatment	Disease
---	---------	------	----------	-----------	---------
46	Darbepoetin alfa 875 IU/kg, sc	none	none	none	none
47	Alfa Fil.	480 µg, d 3-10	E-T-C*	Breast cancer	
48	Darbepoetin alfa 300 µg	none	Platinum, Etoposide-21	Lung Cancer	
49	none	none	Platinum, Etoposide-21	Lung Cancer	
50	none	none	CHOEP-21*	NHL	
51	none	none	CHOP-21*	NHL	
52	none	none	BEACOPP-21*	HD	
53	Fil. 480 µg, d 4-13	CHOEP-21*	NHL		
54	Fil. 480 µg, d 6-12	CHOP-14*	NHL		
55	Fil. 480 µg, d 4-13	CHOEPE-14*	NHL		
56	Fil. 480 µg, d 6-13	CHOEP-21*	NHL		
57	Fil. 480 µg, d 6-13	CHOEP-14*	NHL		
58	Fil. 480 µg, d 8-15	BEACOPP-21*	HD		
59	Fil., 480 µg, d 3-10	E-T-C*	Breast cancer		
60	none	none	EC-T*	Breast cancer	
61	Fil. 5 x 5 µg/kg	none	NSCLC		
62	Fil. 1 x 3 µg/kg	none	none		
63	Fil. 1 x 5 µg/kg	none	none		
64	Fil. 1 x 10 µg/kg	none	none		
65	Fil. 1 x 5 µg/kg	none	none		
66	Fil. 1 x 10 µg/kg	none	none		
67	Fil. 10 x 75 µg	none	none		
68	Fil. 10 x 150 µg	none	none		
69	Fil. 10 x 300 µg	none	none		
70	Fil. 10 x 600 µg	none	none		
71	Fil. 14 x 30 µg	none	none		
72	Fil. 14 x 300 µg	none	none		
73	Fil. 4 µg/kg	none	none		
74	Fil. 8 µg/kg	none	none		
75	Fil. 5 µg/kg, d 1-13	none	none		
76	Fil. 375 µg	none	none		
77	Fil. 750 µg	none	none		
78	Peg. 30 µg/kg	none	none		
79	Peg. 60 µg/kg	none	none		
80	Peg. 100 µg/kg	none	none		
81	Peg. 300 µg/kg	none	none		
82	Peg. 30 µg/kg	none	NSCLC		
83	Peg. 100 µg/kg	none	NSCLC		
84	Peg. 300 µg/kg	none	NSCLC		
85	Fil. 5 µg/kg, d 2-13	TA	Breast cancer		
86	Peg. 30 µg/kg, d 2	TA	Breast cancer		
87	Peg. 60 µg/kg, d 2	TA	Breast cancer		
88	Peg. 100 µg/kg, d 2	TA	Breast cancer		
89	Peg. 6000 µg, d 2	TA	Breast cancer		
90	Peg. 6000 µg, d 2	TA	Breast cancer		
91	Peg. 30 µg/kg, d 2	CP	NSCLC		
Stability analysis

Using the above mentioned model parameters results in a stable steady state of the system. However, modifying certain parameters can result in stable oscillations. This especially applies for parameters of the long range stem cell feedback (see figure 3).

Figure 3: Oscillatory behaviour of the model for changed parameter settings of the stem cell feedback: A small perturbation (a single injection of 10 IU EPO at $t = 0$) leads to stable oscillations in compartment sizes. Modified parameter settings: $a^\text{min}_S = 0.01, a^\text{nor}_S = 0.05105, a^\text{int}_S = 0.71047, a^\text{max}_S = 1, p_S = 0.40858$ We present cell dynamics normalised to steady state values.
Sensitivity analysis

We analysed the sensitivity of newly introduced parameters by changing their values by 2.5% and calculating the corresponding deterioration of the fitness function. Results are shown in figure 4. Minimum and normal values of the G-CSF regulations of compartment CE have considerably higher precision than corresponding estimates of maximum values and b-parameters.

Figure 4: Sensitivity of the parameters describing the regulation in compartment CE. Parameters denoted with "*" could not be changed by 2.5% without violating constraints. Parameters were modified by ±2.5%. Relative change of the fitness function is shown as length of corresponding bars.

A.9 Simulation Results

In this section, we present all simulation results of our hybrid model and compare it with available data. We also present extensive comparisons of our hybrid model with the single lineage models of erythropoiesis and granulopoiesis.

Comparison of hybrid model and single lineage models
Figure 5: **Comparison of stem cell dynamics.** Comparison of the behaviour of the combined and the single lineage models after perturbation with EPO, Filgrastim, Pegfilgrastim and CHOP injections. We present stem cell dynamics normalised to steady state values.

Figure 6: **Comparison of CG dynamics.** Comparison of the behaviour of the combined and the single lineage models after perturbation with EPO, Filgrastim, Pegfilgrastim and CHOP injections. We present CG dynamics normalised to steady state values.
Figure 7: **Comparison of PGB dynamics.** Comparison of the behaviour of the combined and the single lineage models after perturbation with EPO, Filgrastim, Pegfilgrastim and CHOP injections. We present PGB dynamics normalised to steady state values.

Figure 8: **Comparison of WBC dynamics.** Comparison of the behaviour of the combined and the single lineage models relative to steady state after perturbation with EPO, Filgrastim, Pegfilgrastim and CHOP injections (WBC).
Figure 9: Comparison of CE dynamics. Comparison of the behaviour of the combined and the single lineage models relative to steady state after perturbation with EPO, Filgrastim, Pegfilgrastim and CHOP injections. We present CE dynamics normalised to steady state values.

Figure 10: Comparison of PEB dynamics. Comparison of the behaviour of the combined and the single lineage models after perturbation with EPO, Filgrastim, Pegfilgrastim and CHOP injections. We present PEB dynamics normalised to steady state values.
Figure 11: Comparison of HB dynamics. Comparison of the behaviour of the combined and the single lineage models relative to steady state after perturbation with EPO, Filgrastim, Pegfilgrastim and CHOP injections (HB).
A.9.1 Simulation Results of EPO applications into healthy volunteers

Flaharty et al. (1990), EPO Beta 10 IU/kg, iv
Flaharty et al. (1990), EPO Beta 50 IU/kg, iv
Flaharty et al. (1990), EPO Beta 150 IU/kg, iv
Flaharty et al. (1990), EPO Beta 500 IU/kg, iv
Flaharty et al. (1990), EPO Beta 1000 IU/kg, iv
Markham, Bryson (1995), EPO Alfa 100 IU/kg, iv
Markham, Bryson (1995), EPO Alfa 200 IU/kg, iv
Markham, Bryson (1995), EPO Alfa 100 IU/kg, sc (shoulder)
Markham, Bryson (1995), EPO Alfa 200 IU/kg, sc (shoulder)

Figure 12: Serum concentration of erythropoietin, percentage of reticulocytes, simulation (black line) and data (circle), data: [23, 24]

Figure 13: Serum concentration of erythropoietin (simulation and data), data: [20]
Figure 14: Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [27]

Figure 15: Serum concentration of erythropoietin and reticulocytes %, simulation (black line) and data (circle), data: [16]
Figure 16: Serum concentration of erythropoietin (simulation and data), data: [26]

Figure 17: Serum concentration of erythropoietin and reticulocytes %, simulation (black line) and data (circle), data: [16]
Figure 18: Serum concentration of erythropoietin, HB value, RBC, and reticulocytes %, simulation (black line) and data (circle), data: [9]

Figure 19: Intravenous injection (left) and subcutaneous injection (right): serum concentration of erythropoietin, Alfa iv, Alfa sc, data: [20]
Figure 20: Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [19]

Figure 21: Serum concentration of erythropoietin, HB and HK value, simulation (black line) and data (circle), data: [17], [57], from subjects required to have a baseline HK less than 48%. If the HK rose above 55%, phlebotomy was performed.
Figure 22: Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [29]

Figure 23: Serum concentration of erythropoietin, HB, RBC, and percentage of reticulocytes, simulation (black line) and data (circle), data: [22]
Figure 24: Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [18]

Figure 25: Serum concentration of erythropoietin, simulation (black line) and data (circle), data: [21]
Figure 26: reticulocytes, HB, HK and serum concentration of erythropoietin, simulation (black line) and data (circle), data: [28]
A.9.2 Simulation results of scenarios with combined EPO and chemotherapy applications

Figure 27: HB value: simulation (black line) and data (circle), mean ± standard deviation (grey line), Chemotherapy: Platinum plus Etoposide, without EPO support (left), with Darbepoetin alfa, sc (right), data: [31]

A.9.3 Simulation results of G-CSF injections into healthy volunteers

Figure 28: simulation (black line) and data (circle), data: [43, 44]. The blood cell donation in the scenario of Bensinger et al. [44] is not taken into account.
Figure 29: simulation (black line) and data (circle), data: [45]

Figure 30: simulation (black line) and data (circle), data: [41]
Figure 31: simulation (black line) and data (circle), data: [39, 46]
Figure 32: simulation (black line) and data (circle), data: [40, 42, 56]
A.9.4 Simulation results of scenarios with combined G-CSF and chemotherapy application

Figure 33: simulation (black line) and data (circle), data: [47, 49, 50]

Figure 34: simulation (black line) and data (circle), data: [38]
Figure 35: HB value, simulation (black line) and data (circle), percentile 25, 75 (grey line), Chemotherapy: CHOEP 21, CHOEP14, elderly patients, CHOP 21 younger patients, data: [33].

Figure 36: simulation (black line) and data (circle), data: [51–53].
Figure 37: HB value, simulation (black line) and data (circle), percentile 25, 75 (grey line), Chemotherapy: CHOP14, CHOEP 21, CHOEP14, younger patients, data: [33].

Figure 38: HB value, simulation (black line) and data (circle), percentile 25, 75 (grey line), Chemotherapy: CHOEP 21, CHOEP14, elderly patients, data: [32].
Figure 39: simulation (black line) and data (circle), data: [54]

Figure 40: HB value, simulation (black line) and data (circle), percentile 25, 75 (grey line), Chemotherapy: BEACOPP 21 escalated, BEACOPP 21, highCHOEP 21, highCHOEP 14, data: [34, 36, 37, 58]. Caused by Hodgkins lymphoma activity, an increased endogenous G-CSF production is assumed in BEACOPP treated patients, see [2].
References

1. Wichmann H, Loeffler M: Mathematical modeling of cell proliferation: Stem cell regulation in hemopoiesis, Vol. 1, 2. CRC Press 1985.

2. Scholz M, Engel C, Loeffler M: Modelling Human Granulopoiesis under Polychemotherapy with G-CSF Support. J Math Biol 2005, 50(4):397–439.

3. Scholz M, Schirm S, Wetzel M, Engel C, Loeffler M: Pharmacokinetic and -dynamic modelling of G-CSF derivatives in humans. Theoretical Biology and Medical Modelling 2012, 9:32, doi:10.1186/1742-4682-9-32.

4. Schirm S, Scholz M, Loeffler M, Engel C: A Biomathematical Model of Human Erythropoiesis under Erythropoietin and Chemotherapy Administration. PLoS ONE 2013, 8(6, e65630):doi:10.1371/journal.pone.0065630.

5. Loeffler M, Pantel K, Wulff H, Wichmann H: A mathematical model of erythropoiesis in mice and rats. Part 1: Structure of the model. Cell Tissue Kinet 1989, 22:13–30.

6. Pantel K: Erweiterung eines kybernetischen Modelles der Erythropoese und dessen Anwendung für normale und pathologische Mäuse. Dissertation, Universität zu Köln (in german) 1987.

7. Wichmann H: Computer modeling of erythropoiesis. In: Current Concepts in Erythropoiesis, Chapter V., John Wiley and Sons 1983.

8. Kota J, Machavaram K, McLennan D, Edwards G, Porter C, et al: Lymphatic Absorption of Subcutaneously Administered Proteins: Influence of Different Injection Sites on the Absorption of Darbepoetin Alfa Using a Sheep Model. Drug Metab Dispos 2007, 35(12):2211–2217.

9. Krzyzanski W, Wyska E: Pharmacokinetics and pharmacodynamics of erythropoietin receptor in healthy volunteers. Naunyn-Schmiedeberg’s Arch Pharmacol 2008, 377:637–645.

10. Sawada K, Krantz S, Kans J, Dessypris E, Sawyer S, et al: Purification of Human Erythroid Colony-forming Units and Demonstration of Specific Binding of Erythropoietin. J Clin Invest 1987, 80:357–366.

11. Mackey M, Aprikyan A, Dale D: The rate of apoptosis in post mitotic neutrophil precursors of normal and neutropenic humans. Cell Prolif 2003, 36:27–34.

12. Scholz M, Engel C, Loeffler M: Model-based design of chemotherapeutic regimens that account for heterogeneity in leucopoenia. Br J Haematol 2006, 132(6):723–735.

13. Schmitz S, Franke H, Loeffler M, Wichmann H, Diehl V: Model analysis of the contrasting effects of GM-CSF and G-CSF treatment on peripheral blood neutrophils observed in three patients with childhood-onset cyclic neutropenia. Brit J Haematol 1996, 95:616–625.

14. Franke M, Schmitz S: Modell Mensch aus Übersicht über die Modelle zur Hämatopoese 1979–1993. Universität zu Köln 1993.

15. Krzyzanski W, Jusko W, Wacholtz M, Minton N, Cheung W: Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci 2005, 26:295–306.

16. Cheung W, Goon B, Guilfoyle M, Wachholtz M: Pharmacokinetics and Pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther 1998, 8(4):309–317.

17. Goldberg M: Erythropoiesis, Erythropoetin, and Iron Metabolism in Elective Surgery: Preoperative Strategies for Avoiding Allogeneic Blood Exposure. Am J Surg 170 1995, (6a):378–438.

18. Togawa A, Tanaka T, Nagashima S, Keta H, Kobayashi Y, et al: A comparison of the bioequivalence of two formulations of epoetin alfa after subcutaneous injection. Br J Clin Pharmac 2004, 58(3):269–276.

19. McMahon F, Vargas R, Ryan M, Jain A, Abels R, et al: Pharmacokinetics and effects of recombinant human erythropoietin after intravenous and subcutaneous injections in healthy volunteers. Blood 1990, 76:1718–1722.

20. Markham A, Bryson H: Epoetin alfa. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in nonrenal applications. Drugs 1995, 49(2):232–254.
21. Souillard A, Audran M, Bressolle F, Garea R, Duvallet A, Chanal J: Recombinant human erythropoietin and pharmacodynamic parameters in athletes. Interest of blood sampling for doping control. Br J Clin Pharmacol 1996, 42(5):355–360.

22. Sörgel F, Thyroff-Friesinger U, Vetter A, Vens-Cappell B, Kinzig M: Bioequivalence of HX575 (Recombinant Human Epoetin Alfa) and a Comparator Epoetin Alfa after Multiple Subcutaneous Administrations. Pharmacology 2009, 38:122–130.

23. Flaherty K, Caro J, Erslev A, Whalen J: Pharmakokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin Pharmacol Ther 1990, 47(5):557–564.

24. Flaharty K: Clinical Pharmacology of Recombinant Human Erythropoietin (r-HuEPO). Pharmacotherapy 1990, 10(2 Pt 2):98–14S.

25. Lundby C, Thomsen J, Boushel R, Koskolou M, Warberg J, et al: Erythropoietin treatment elevates haemoglobin concentration by increasing red cell volume and depressing plasma volume. J Physiol 2007, 578:309–314.

26. Hayashi N, Kinoshita H, Yukawa E, Higuchi S: Pharmacokinetic analysis of subcutaneous erythropoietin administration with nonlinear mixed effect model including endogenous production (7). Br J Clin Pharmacol 1998, 46:11–19.

27. Jensen J, Madsen J, Jensen L, Pedersen E: Reduction absorption and elimination of erythropoietin in uremia compared with healthy volunteers. J Am Soc Nephrol 1994, 5:177–185.

28. Smith W, Dowell J, Pratt R: Pharmacokinetics and Pharmacodynamics of Epoetin Delta in Two Studies in Healthy Volunteers and Two Studies in Patients with Chronic Kidney Disease. Clinical Therapeutics 2007, 29(7):1368–1380.

29. Agoram B, Sutjandra L, Sullivan J: Population pharmacokinetics of darbepoetin alfa in healthy subjects. Br J Clin Pharmacol 2006, 63:41–52.

30. GBG: German Breast Group, Available: http://www.germanbreastgroup.de/studien/adjuvant/gain/unterlagen.html Accessed 2011 October 11.

31. Pirker R, Ramlau R, Schuette W, Zatloukal P, Ferreira I, et al: Safety and Efficacy of Darbepoetin Alfa in Previously Untreated Extensive-Stage Small-Cell Lung Cancer Treated With Platinum Plus Etoposide. J Clin Oncology 2008, 26.

32. Pfreundschuh M, Truemper L, Kloess M, Schmits R, Feller A, et al: 2-weekly or 3-weekly CHOP Chemotherapy with or without Etoposide for the Treatment of Elderly Patients with Aggressive Lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 2004, 104(3):634–641.

33. Pfreundschuh M, Truemper L, Kloess M, Schmits R, Feller A, et al: 2-weekly or 3-weekly CHOP Chemotherapy with or without Etoposide for the Treatment of Young Patients with Good Prognosis (Normal LDH) Aggressive Lymphomas: results of the NHL-B1 trial of the DSHNHL. Blood 2004, 104(3):626–633.

34. Diehl V, Franklin J, Pfreundschuh M, Lathan B, Paulus U, et al: Standard and Increased-Dose BEACOPP Chemotherapy Compared with COPP-ABVD for Advanced Hodgkin’s Disease. N Engl J Med 2003, 348.

35. Pfreundschuh M, Schubert J, Ziepert M, Schmits R, et al: Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol 2008, 9(2):105–116.

36. Pfreundschuh M, Zwick C, Zevalova S, Dürhens U, Pfliiger KH, et al: Dose-escalated CHOEP for the treatment of young patients with aggressive non-Hodgkin’s lymphoma: II. Results of the randomized high-CHOEP trial of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Ann Oncol 2008, 19:545–552.

37. Trümper L, Zwick C, Ziepert M, Hohloch K, Schmits R: German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Dose-escalated CHOEP for the treatment of young patients with aggressive non-Hodgkin’s lymphoma: I. A randomized dose escalation and feasibility study with bi- and tri-weekly regimens. Ann Oncol 2008, 19(3):538–544.
38. Johnston E, Crawford C, Blackwell S, Bjurstrom T, Lockbaum P, et al: Randomized, dose-escalation study of sd/01 compared with daily filgrastim in patients receiving chemotherapy. J. Clin. Oncol. 2000, 18(13):2522–2528.
39. Grigg A, Roberts A, Rainow H, Houghton S, Layton J, et al: Optimizing Dose and Scheduling of Filgrastim (Granulocyte Colony - Stimulating Factor) for Mobilization and Collection of Peripheral Blood Progenitor Cells in Normal Volunteers. Blood 1995, 86(12):4437–4445.
40. van der Auwera P, Platzer E, Xu Z, Schulz R, Feugeas O, et al: Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human g-csf mutant (Ro 25-8315) in healthy volunteers: comparison with single and multiple daily doses of filgrastim. Am. J. Hematol. 2001, 66(4):245–251.
41. Borleffs J, Boschaert M, Vrehen H, Schneider M, van Strijp J, et al: Effect of escalating doses of recombinant human granulocyte colony-stimulating factor (filgrastim) on circulating neutrophils in healthy subjects. Clin. Ther. 1998, 20(4):722–736.
42. Chatta G, Price T, Allen R, Dale D: Effects of in vivo recombinant methionyl human granulocyte colony-stimulating factor on the neutrophil response and peripheral blood colony-forming cells in healthy young and elderly adult volunteers. Blood 1994, 84(9):2923–2929.
43. Varki R, Pequignot E, Leavitt M, Ferber A, Kraft W: A glycosylated recombinant human granulocyte colony stimulating factor produced in a novel protein production system (AVI-014) in healthy subjects: a first-in human, single dose, controlled study. Blood 2009, 9(2).
44. Bensinger W, Price T, Dale D, Appelbaum F, Clift R, et al: The effects of daily recombinant human granulocyte colony-stimulating factor administration on normal granulocyte donors undergoing leukapheresis. Blood 1993, 81:1883–1888.
45. Wang B, Ludden T, Cheung E, Schwab G, Roskos L: Population pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J. Pharmacokinet. Pharmacodyn. 2001, 28:321–342.
46. Roskos L, Lum P, Lockbaum P, Schwab G, Yang B: Pharmacokinetic / pharmacodynamic modeling of pegfilgrastim in healthy subjects. J. Clin. Pharmacol. 2006, 46:747–757.
47. Holmes F, Jones S, O’Shaughnessy J, Vukelja S, George T, et al: Comparable efficacy and safety profiles of once-per-cycle pegfilgrastim and daily injection filgrastim in chemotherapy-induced neutropenia: a multicenter dose-finding study in women with breast cancer. Ann. Oncol. 2002, 13:903–909.
48. Green M, Koelb H, Baselga J, Galid A, Guillem V, et al: A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. DOI: 10.1093. Ann. Oncol. 2003, 14:29–35.
49. Zamboni W, Blackwell S: Pharmacokinetics of pegfilgrastim. Pharmacotherapy 2003, 23:9S–14S.
50. Yowell S, Blackwell S: Novel effects with polyethylene glycol modified pharmaceuticals. Cancer Treat Rev 2002, 28 Suppl A:3–6.
51. George S, Yunus F, Case D, Yang B, Hackett J, et al: Fixed-dose pegfilgrastim is safe and allows neutrophil recovery in patients with non-hodgkins lymphoma. J. Clin. Oncol. 2003, 44(10):1691–1696.
52. Mey U, Maier A, Schmidt-Wolf I, Ziske C, Forstbauer H, et al: Pegfilgrastim as hematopoietic support for dose-dense chemoimmunotherapy with R-CHOP-14 as first-line therapy in elderly patients with diffuse large B cell lymphoma. (DOI 10.1007/s00520-006-0201-z). Support Care Cancer 2007, 15:877–884.
53. Brusamolino E, Rusconi C, Montalbetti L, Gargantini L, Uziel L, et al: Dose-dense R-CHOP-14 supported by pegfilgrastim in patients with diffuse large B-cell lymphoma: a phase II study of feasibility and toxicity. Haematologica 2006, 91:496–502.
54. Vose J, Crump M, Lazarus H, Emmanouilides C, Schenkein D, et al: Randomized, Multicenter, Open-Label Study of Pegfilgrastim Compared With Daily Filgrastim After Chemotherapy for Lymphoma. Journal of Clinical Oncology 2003, 21(3):514–519.
55. Zwick C, Zeynalova S, Pöschel V, Nickenig C, et al: Randomized comparison of pegfilgrastim day 4 versus day 2 for the prevention of chemotherapy-induced leukocytopenia. Ann Oncology 2011, 22:1872–1877.
56. Wiczling P, Lowe P, Pigeolet E, dicke FL, Balser S, Krzyzanski W: Population Pharmacokinetic Modelling of Filgrastim in Healthy Adults following Intravenous and Subcutaneous Administrations. Clin Pharmacokinet 2009, 48(12):817–826.

57. Rutherford C, Schneider T, Dempsey H, Kirn D, Brugnara C, et al: Efficacy of Different Dosing Regimens for Recombinant Human Erythropoietin in a Simulated Perisurgical Setting: The Importance of Iron Availability in Optimizing Response. Am J Med 1994, 96:139–145.

58. Sieber M, Bredenfeld H, Josting A, Reineke T, Rueffer U, et al: 14-day variant of the bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone regimen in advanced-stage Hodgkin’s lymphoma: results of a pilot study of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol 2003, 21(9):1734–1739.