A division theorem for nodal projective hypersurfaces

Nikolay Konovalov\(^1\)\(^,\)\(^2\)

Received: 25 February 2022 / Accepted: 1 August 2022 / Published online: 29 August 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Let \(V_{n,d} \) be the variety of equations for hypersurfaces of degree \(d \) in \(\mathbb{P}^n(\mathbb{C}) \) with singularities not worse than simple nodes. We prove that the orbit map \(G' = SL_{n+1}(\mathbb{C}) \to V_{n,d}, \ g \mapsto g \cdot s_0, s_0 \in V_{n,d} \) is surjective on the rational cohomology if \(n > 1, d \geq 3, \text{ and } (n, d) \neq (2, 3) \).

As a result, the Leray–Serre spectral sequence of the map from \(V_{n,d} \) to the homotopy quotient \((V_{n,d})_hG'\) degenerates at \(E_2 \), and so does the Leray spectral sequence of the quotient map \(V_{n,d} \to V_{n,d}/G' \) provided the geometric quotient \(V_{n,d}/G' \) exists. We show that the latter is the case when \(d > n + 1 \).

We write \(\Pi_{n,d} \) for the space of homogeneous complex polynomials of degree \(d \) in \(n + 1 \) variables, \(U_{n,d} \subset \Pi_{n,d} \) for the affine subvariety of those homogeneous polynomials which give smooth hypersurfaces in \(\mathbb{P}^n(\mathbb{C}) \), and \(\Sigma_{n,d} = \Pi_{n,d} \setminus U_{n,d} \) for its complement. Define for \(l = 1, \ldots, n + 1 \)

\[
\Sigma_{n,d}^{(l)} = \{ f \in \Sigma_{n,d} \mid V(f)_{\text{sing}} \cap \Lambda_{n-l+1} \neq \emptyset \}.
\]

Here, \(V(f) \subset \mathbb{P}^n(\mathbb{C}) \) is the zero locus of \(f \), \(V(f)_{\text{sing}} \) is the singular locus of the hypersurface \(V(f) \), and \(\Lambda_{n-l+1} \) is a fixed linear subspace in \(\mathbb{P}^n(\mathbb{C}) \) of codimension \(l - 1 \). In other words, \(f \in \Sigma_{n,d}^{(l)} \) if and only if \(V(f) \) has at least one singular point in \(\Lambda_{n-l+1} \). Note that \(\Sigma_{n,d}^{(l)} \subset \Sigma_{n,d} \) is an irreducible subvariety of codimension \(l \) in \(\Pi_{n,d} \), so it defines a fundamental class in the singular Borel-Moore homology:

\[
[\Sigma_{n,d}^{(l)}] \in H_{BM}^{n-l+1}(\Sigma_{n,d}, \mathbb{Z}).
\]

We denote by \(\text{Lk}_l \in H^{2l-1}(U_{n,d}, \mathbb{Z}) \) the Alexander dual cohomology class of \([\Sigma_{n,d}^{(l)}] \). We point out that \(\text{Lk}_l \) does not depend on the choice of \(\Lambda_{n-l+1} \subset \mathbb{P}^n(\mathbb{C}) \).

Note that the group \(G = GL_{n+1}(\mathbb{C}) \) acts on \(\Pi_{n,d} \) by change of variables and this action preserves \(U_{n,d} \). We will denote by \(U_{n,d}/G \) the geometric quotient of the affine variety \(U_{n,d} \) by the \(G \)-action, which exists if \(d \geq 3 \) by [11, Proposition 4.2] and is affine. (In this paper we use the definition of the geometric quotient given in [11].)

Fix an element \(s_0 \in U_{n,d} \) and consider the orbit map \(O : G \to U_{n,d}, g \mapsto g \cdot s_0 \). C. Peters and J. Steenbrink [12] proved the following theorem:

\(^1\) Faculty of Mathematics, HSE University, 6 Usacheva ulitsa, Moscow 119048, Russia

\(^2\) Department of Mathematics, University of Notre Dame, 255 Hurley Hall, Notre Dame, IN 46556, USA
Theorem 1 ([12]) The induced map \(O^*: H^*(U_{n,d}, \mathbb{Q}) \to H^*(G, \mathbb{Q}) \) does not depend on \(s_0 \), and the classes \(O^*(Lk_l) \in H^*(G, \mathbb{Q}), l = 1, \ldots, n + 1 \) are multiplicative generators if \(d \geq 3 \). In particular, there is an isomorphism of rings:

\[
H^*(U_{n,d}, \mathbb{Q}) \cong H^*(G, \mathbb{Q}) \otimes H^*(U_{n,d}/G, \mathbb{Q})
\]

compatible with mixed Hodge structures. \(\square \)

Later this theorem was generalized by A. Gorinov and the author in [5] to the case of a general reductive group action on the space of regular sections of an equivariant vector bundle over a smooth complex compact variety. In this paper, we study a generalization in a different direction. Namely, we consider a group action not only on the space of regular sections, but on a space of sections with singularities of a certain type.

Let \(V_{n,d} \) be the open subvariety of \(\Pi_{n,d} \) formed by all homogeneous polynomials \(f \) such that the kernel of the Hessian matrix of \(f \) at any non-zero singular point is one-dimensional (or, equivalently, the hypersurface \(V(f) \) has no singularities other than simple nodes.) The special linear group \(G' = SL_{n+1}(\mathbb{C}) \) acts on \(V_{n,d} \). Fix \(s_0 \in V_{n,d} \) and consider the orbit map \(O': G' \to V_{n,d}, g \mapsto g \cdot s_0 \). In Theorem 2, we will show that the induced map of the rational cohomology

\[
O'^*: H^*(V_{n,d}, \mathbb{Q}) \to H^*(G', \mathbb{Q})
\]

is surjective if \(n > 1, d \geq 3, \) and \((n, d) \neq (2, 3) \). This implies that there is an isomorphism of rings

\[
H^*(V_{n,d}, \mathbb{Q}) \cong H^*(G', \mathbb{Q}) \otimes H^*_G(V_{n,d}, \mathbb{Q})
\]

compatible with mixed Hodge structures, where \(H^*_G(V_{n,d}, \mathbb{Q}) \) is the equivariant cohomology ring. Finally, we show in Proposition 3 that a geometric quotient \(V_{n,d}/G' \) exists if \(d > n + 1 \), and so in this case we have \(H^*_G(V_{n,d}, \mathbb{Q}) \cong H^*(V_{n,d}/G', \mathbb{Q}) \), see Corollary 3.

We also note that Theorem 2 was used in [3] to compute the cohomology ring \(H^*(V_{n,d}, \mathbb{Q}) \) if \((n, d) = (2, 4) \).

We begin with generalities on spaces of regular sections and sections with nodal singularities. Let \(L \) be a line bundle over a smooth complex projective variety \(X \). Let us denote by \(J^rL \) the \(r \)-th jet bundle of \(L \), cf. [6, Chapter 16.7]. We recall that \(J^0L = L \) and there are maps of vector bundles over \(X \):

\[
j_r: X \times \Gamma(X, L) \to J^rL.
\]

Moreover, there are short exact sequences:

\[
0 \to \text{Sym}^r(\Omega_X^1) \otimes L \to J^rL \to J^{r-1}L \to 0,
\]

and the right map is compatible with (1). If \(L \) is very ample, then \(j_1 \) is surjective, cf. [7, Proposition II.7.3]; we denote its kernel by \(\Sigma(L) \subset X \times \Gamma(L) \). By (2), the map \(j_2 \) restricted to \(\Sigma(L) \) lifts to a map

\[
\tilde{j}_2: \Sigma(L) \to L \otimes \text{Sym}^2(\Omega_X^1) \hookrightarrow L \otimes \Omega_X^1 \otimes \Omega_X^1.
\]
and

\[p_*(p^*(\Omega_X^1)) \cong \Omega_X^1. \]

These isomorphisms and the projection formula give a canonical isomorphism:

\[L \otimes \Omega_X^1 \otimes \Omega_X^1 \cong p_*(p^*(L \otimes \Omega_X^1) \otimes O_{\mathbb{P}(T_X)}(1)). \]

We now apply the adjunction \(p^* \dashv p_* \) to (3) and obtain a map:

\[h : p^*(\tilde{\Sigma}(L)) \rightarrow p^*(L \otimes \Omega_X^1) \otimes O_{\mathbb{P}(T_X)}(1). \] (4)

Informally, \(h \) works as follows. If \(x \in X \) is a point, then over \(x \) we have

\[h_x : \mathbb{P}(T_{x,X}) \times \tilde{\Sigma}_X(L) \rightarrow \mathbb{P}(T_x, X) \times (L_x \otimes \Omega_{x,X}^1) \]

\[h_x([l], s) = ([l], j_2(s)(x)(l)) \] (5) (6)

Here, \(l \in T_{x,X}, [l] \in \mathbb{P}(T_x, X) \) is its equivalence class, and we consider \(j_2(s)(x) \) as a map from \(T_{x,X} \) to \(L_x \otimes \Omega_{x,X}^1 \) using \(j_1(s)(x) = 0 \). We note that the twist by \(O_{\mathbb{P}(T_X)}(1) \) is necessary to make (6) independent of a choice of a representative \(l \) for \([l]\).

Suppose now that \(h \) is surjective and denote its kernel by \(\tilde{N}(L) \). Note that

\[\varphi : \tilde{N}(L) \rightarrow \tilde{\Sigma}(L) \]

is a proper map between the total spaces of vector bundles. We wish to compute

\[\varphi_* : H_{BM}^*(\tilde{N}(L), \mathbb{Z}) \rightarrow H_{BM}^*(\tilde{\Sigma}(L), \mathbb{Z}), \]

where \(H_{BM}^*(-, \mathbb{Z}) \) are the singular Borel-Moore homology groups with integer coefficients. Since \(\tilde{N}(L) \) and \(\tilde{\Sigma}(L) \) are oriented vector bundles over \(\mathbb{P}(T_X) \) and \(X \) respectively, we have the Thom isomorphisms

\[H_*(X, \mathbb{Z}) \cong H_{*+2rk\Sigma(L)}(\tilde{\Sigma}(L), \mathbb{Z}), \] (7)

\[H_*(\mathbb{P}(T_X), \mathbb{Z}) \cong H_{*+2rk\tilde{N}(L)}(\tilde{N}(L), \mathbb{Z}). \] (8)

Here, \(\text{rk} \) denotes the complex rank of a vector bundle. The next proposition is well known, cf. [10].

Proposition 1 Under the Thom isomorphisms (7), (8), the map

\[\varphi_* : H_{BM}^*(\tilde{N}(L), \mathbb{Z}) \rightarrow H_{BM}^*(\tilde{\Sigma}(L), \mathbb{Z}) \] (9)

identifies with

\[H_*(\mathbb{P}(T_X), \mathbb{Z}) \rightarrow H_{*-2(r_1-r_2)}(X, \mathbb{Z}) \]

\[y \mapsto p_*(y - e), \] (10) (11)

where \(r_1 = \text{rk} \tilde{\Sigma}(L), r_2 = \text{rk} \tilde{N}(L), \) and \(e \in H^{2(r_1-r_2)}(\mathbb{P}(T_X), \mathbb{Z}) \) is the Euler class of the quotient bundle

\[p^*(\tilde{\Sigma}(L))/\tilde{N}(L) \cong p^*(L \otimes \Omega_X^1) \otimes O_{\mathbb{P}(T_X)}(1). \]

\[\square \]
In the sequel, we want (11) to be surjective. However, it is more convenient to check that the dual map

$$y \mapsto p^*(y) \sim e, \quad y \in H^*(X, \mathbb{Z}). \quad (12)$$

is injective on (singular) cohomology. Recall that the projection $p: \mathbb{P}(TX) \to X$ is a map between compact oriented manifolds, so we have the pushforward map on cohomology

$$p_*: H^*(\mathbb{P}(TX), \mathbb{Z}) \to H^*\!-\!2n+2(X, \mathbb{Z})$$

defined via the Poincaré duality. Here $n = \dim X$ is the complex dimension of X.

Proposition 2 $p_!(e) = nc_1(L) - 2c_1(TX)$.

Proof. Recall that

$$H^*(\mathbb{P}(TX)) = H^*(X)[c]/(c^n + c_1(TX)c^{n-1} + \ldots + c_n(TX)),$$

where $c = c_1(\mathcal{O}_{\mathbb{P}(TX)}(1))$ is the first Chern class of the line bundle $\mathcal{O}_{\mathbb{P}(TX)}(1)$. Note that $p_!(e^k) = 0$ if $k < n - 1$, $p_!(e^{n-1}) = 1$, and $p_!(e^n) = -c_1(TX)$. Set $E = L \otimes \Omega^1_X$, then by the splitting principle we have

$$e = c_n(p^*(E) \otimes \mathcal{O}_{\mathbb{P}(TX)}(1)) = \sum_{i=0}^n c^{n-i} p^*(c_i(E)).$$

Finally, by the projection formula:

$$p_!(e) = p_!(e^n + e^{n-1} p^* c_1(E)) = -c_1(TX) + c_1(\Omega^1_X \otimes L)$$
$$= -c_1(TX) + c_1(\Omega^1_X) + nc_1(L) = -2c_1(TX) + nc_1(L). \quad \square$$

Corollary 1 Let $X = \mathbb{P}^n(\mathbb{C})$, $L = \mathcal{O}(d)$, $n > 1$, $d > 2$. Then the morphism h (see (4)) is a surjective map of vector bundles over $\mathbb{P}(TX)$. Moreover, if $(n, d) \neq (2, 3)$ and $* < \dim(\Sigma(L))$, then the map

$$\varphi_*: H^*_{BM}(\widetilde{N}(L), \mathbb{Q}) \to H^*_{BM}(\widetilde{\Sigma}(L), \mathbb{Q})$$

is surjective on the rational Borel-Moore homology.

Proof The map h is surjective by a straightforward computation. Indeed, $s \in \Gamma(\mathbb{P}^n(\mathbb{C}), \mathcal{O}(d))$ is a homogeneous polynomial of degree d in $n + 1$ variables. The condition that $j_1(s)([x]) = 0$, $[x] \in \mathbb{P}^n(\mathbb{C})$ is equivalent to $x \neq 0$ being a critical point of s. Then $j_2(s)([x])$ is the matrix of the second derivatives of s at x, i.e. the Hessian matrix of s at x. Hence it suffices to show that for each $[x] \in \mathbb{P}^n(\mathbb{C})$ there exists a polynomial s of degree d such that x is a critical point of s and the Hessian matrix of s at x has kernel of dimension ≥ 2. The latter is clear.

By Proposition 1 and the projection formula, it is enough to check that $p_!(e) \neq 0$ if $(n, d) \neq (2, 3)$. By Proposition 2, we have

$$p_!(e) = (nd - 2(n + 1))H \in H^2(\mathbb{P}^n(\mathbb{C}), \mathbb{Z}),$$

where $H = c_1(\mathcal{O}(1))$ is a multiplicative generator of $H^*(\mathbb{P}^n(\mathbb{C}), \mathbb{Z})$. This expression is zero if and only if $(n, d) = (1, 4)$ or $(n, d) = (2, 3). \quad \square$

Recall that $\Pi_{n,d}$ denotes the space of homogeneous polynomials of degree d in $n + 1$ variables z_0, \ldots, z_n, i.e. $\Pi_{n,d} = \Gamma(\mathbb{P}^n(\mathbb{C}), \mathcal{O}(d))$. We let

$$\Sigma_{n,d} = \{ f \in \Pi_{n,d} \mid f \text{ has a critical point outside 0} \},$$
and we set $N_{n,d}$ to be the subvariety of $\Sigma_{n,d}$ formed by all f such that the kernel of the Hessian matrix of f at some nonzero critical point x contains a 2-plane $P \ni x$ (or, equivalently, the hypersurface $V(f)$ has a singularity other than a simple node).

Corollary 2 Suppose that $n > 1$, $d > 2$, and $(n, d) \neq (2, 3)$. For $l > 1$ there exists a cohomology class $a_l \in H^*(\Pi_{n,d} \setminus N_{n,d}, \mathbb{Q})$ such that $a_l|_{\Pi_{n,d} \setminus \Sigma_{n,d}} = Lk_l$.

Proof Let $L = \mathcal{O}(d)$. We have that

$$\tilde{\Sigma}(L) = \{(p, f) \in \mathbb{P}^n(\mathbb{C}) \times \Pi_{n,d} \mid df|_p = 0\}.$$

We denote by $\tilde{\Sigma}^{(l)}(L)$ the subvariety of $\tilde{\Sigma}(L)$ given by

$$\tilde{\Sigma}^{(l)}(L) = \{(p, f) \in \Lambda^{n-l+1} \times \Pi_{n,d} \mid df|_p = 0\} \subset \tilde{\Sigma}(L),$$

where Λ^{n-l+1} is the fixed linear subspace of $\mathbb{P}^n(\mathbb{C})$. The projection map

$$\pi : \tilde{\Sigma}(L) \to \Sigma_{n,d}$$

is proper and generically finite of degree 1. Moreover,

$$[\Sigma^{(l)}_{n,d}] = \pi_*(b_l),$$

where $b_l = [\tilde{\Sigma}^{(l)}(L)] \in H^*_{BM}(\tilde{\Sigma}(L))$. By Corollary 1, $b_l = \varphi_*(c_1)$, $c_1 \in H^*_{BM}(\tilde{N}(L))$ if $l \neq 1$. Finally, let $\pi_1 : \tilde{N}(L) \to N_{n,d}$ be the projection map and $\iota : N_{n,d} \hookrightarrow \Sigma_{n,d}$ be the embedding. Then $[\Sigma^{(l)}_{n,d}] = \iota_*\pi_1*(c_1)$ if $l > 1$ and a_l is the Alexander dual of $\pi_{1*}(c_1)$. \hfill \Box

Let $G' = SL_{n+1}(\mathbb{C}) \subset G$ be the special linear group. Recall that the *universal G'-bundle* EG' is a contractible space with a free continuous right G'-action such that $EG' \to EG'/G'$ is a locally trivial fiber bundle. We denote by $H^*_G(V_{n,d}, \mathbb{Q})$ the equivariant cohomology of $V_{n,d}$, that is the cohomology of the homotopy quotient

$$(V_{n,d})_{hG'} = EG' \times_{G'} V_{n,d}.$$

For a more detailed account of equivariant cohomology we refer the reader e.g. to Part I of [13]. Furthermore, since G' is an algebraic group and $V_{n,d}$ is an algebraic G'-variety, we endow equivariant cohomology groups $H^*_G(V_{n,d}, \mathbb{Q})$ with a (functorial) mixed Hodge structure. The construction of this mixed Hodge structure seems to be well-known and it is implicitly contained in [4]; see e.g. [3, Proposition A.5] for more details.

There is a fiber sequence

$$G' \to EG' \times_{G'} V_{n,d} \to EG' \times_{G'} V_{n,d},$$

and the second component of the first map is $O' : G' \to V_{n,d}$ given by $g \mapsto g \cdot s_0$ for some $s_0 \in V_{n,d}$. Using Theorem 1 and Corollary 2, we immediately obtain:

Theorem 2 Suppose $n > 1$, $d \geq 3$, and $(n, d) \neq (2, 3)$. Then the classes $O'^*(a_l) \in H^*(G', \mathbb{Q})$, $l = 2, \ldots, n+1$ are multiplicative generators. In particular, the Leray–Serre spectral sequence associated with (13) degenerates at E_2, i.e. there is an isomorphism of rings

$$H^*(V_{n,d}, \mathbb{Q}) \cong H^*_G(G', \mathbb{Q}) \otimes H^*_{G'}(V_{n,d}, \mathbb{Q})$$

compatible with mixed Hodge structures. \hfill \Box
Remark 1 The fact that \(O^{rs}(\text{Lk}_i) \in H^*(G', \mathbb{Q}) \), \(l = 2, \ldots, n + 1 \) are multiplicative generators implies that the connected component \((G'_s)^0\) of the stabilizer subgroup \(G'_s \subset G' \) is unipotent for all \(s \in V_{n,d} \). Using that one can see that Theorem 2 is false for \((n, d) = (2, 3)\). Indeed, the polynomial \(s = z_0z_1z_2 \) is in \(V_{2,3} \) and the stabilizer \(G'_s \) contains a torus.

Remark 2 If a geometric quotient \(V_{n,d}/G' \) exists and the quotient map \(q : V_{n,d} \to V_{n,d}/G' \) is affine, then, under the assumptions of Theorem 2, the stabilizer subgroups \(G'_s, s \in V_{n,d} \) are finite, see \([5, \text{Theorem 3.1.1 and Proposition 3.1.3}]\). Furthermore, by ibid., Section 4.2.1, the order \(|G'_s| \) divides in this case the following number
\[
\prod_{i=2}^{n+1} ((d - 1)^{n+1} + (-1)^{i+1}(d - 1)^{n+1-i}).
\]

Corollary 3 Suppose that \((n, d)\) are as in Theorem 2, there exists a geometric quotient \(V_{n,d}/G' \), and the stabilizer subgroups \(G'_s, s \in V_{n,d} \) are finite. Then there is an isomorphism:
\[
H^*_G(V_{n,d}, \mathbb{Q}) \cong H^*(V_{n,d}/G', \mathbb{Q}),
\]
and the Leray spectral sequence for \(q \) degenerates at \(E_2 \).

Proof The first statement seems to be folklore; for details see e.g. Proposition A.4 and the remark after Theorem A.3 in \([3]\). For the second part we again apply Theorem 1 and Corollary 2 to show that the orbit map \(O^{rs} \) is a surjective map of the rational cohomology. Thus the Leray spectral sequence for \(q \) degenerates at \(E_2 \) by \([12, \text{Theorem 2}]\) and the example after it, cf. \([3, \text{Theorem A.3}]\). \(\Box \)

Remark 3 In Corollary 3, the finiteness of the stabilizer subgroups is not a restrictive assumption. Indeed, by the Matsumura-Monsky theorem \([9, \text{Theorem 1}]\), the stabilizer subgroups \(G'_s \) are finite if \(s \in U_{n,d}, d \geq 3, \) and \(n \geq 3 \). Moreover, if a geometric quotient \(V_{n,d}/G' \) exists, then \(\dim(G'_s) \) is a constant function on \(V_{n,d} \) by the remark before Proposition 0.2 in \([11]\). Thus \(G'_s, s \in V_{n,d} \) are finite groups if \(d \geq 3, n \geq 3, \) and \(V_{n,d}/G' \) exists.

Finally, we show that the geometric quotient \(V_{n,d}/G' \) exists if \(d > n + 1 \).

Proposition 3 There exists a geometric quotient \(V_{n,d}/G' \) if \(d > n + 1 \). Moreover, \(q : V_{n,d} \to V_{n,d}/G' \) is affine.

Proof The proof is based on the geometric invariant theory and we will use the terminology and notation from \([11]\). Namely, we show that \(V_{n,d} \) is contained in the subset of \(G' \)-stable points \(\Pi^s_{n,d} \subset \Pi_{n,d} \). More precisely, \(\Pi^s_{n,d} \) is the preimage of the set of properly \(G' \)-stable points in the projective space \(\mathbb{P}(\Pi_{n,d}) \) with respect to the standard \(SL_{n+1}(\mathbb{C}) \)-linearization of \(O(1) \). Then the geometric quotient \(\Pi^s_{n,d}/G' \) exists (by Theorem 1.10 in ibid.), and so does \(V_{n,d}/G' \). Moreover, the morphism \(V_{n,d} \to V_{n,d}/G' \) is affine by ibid., Theorem 1.10(i).

We will show that if \(f \in \Pi_{n,d} \) is not properly stable, then the hypersurface \(V(f) \) has a singularity worse than a simple node. Suppose that
\[
f = \sum a_{i_0, \ldots, i_n} z_0^{i_0} \cdots z_n^{i_n} \in \Pi_{n,d}
\]
is not a properly stable point. By Theorem 2.1 ibid., there exists a (non-trivial) one-parametric subgroup \(\lambda : \mathbb{C}^* \to G' \) such that \(\mu(f, \lambda) \leq 0 \). Any one-parametric reductive subgroup of
G' is conjugate to a one in the subgroup of diagonal matrices, so we can assume that
\[
\lambda(t) = \begin{pmatrix}
 t^{r_0} & 0 & \cdots & 0 \\
 0 & t^{r_1} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & t^{r_n}
\end{pmatrix},
\]
where $r_0, \ldots, r_n \in \mathbb{Z}$ and $r_0 + \ldots + r_n = 0$. By permuting coordinates, we assume further that $r_0 \geq r_1 \geq \ldots \geq r_n$, cf. [11, Section 4.2, pp. 81-82]. In this case,
\[
\mu(f, \lambda) = \max\{i_0 r_0 + \ldots + i_n r_n \mid a_{i_0}, \ldots, a_{i_n} \neq 0\}.
\]

Since $d > n + 1$, we have following inequalities for any sequence $r_0 \geq \ldots \geq r_n$, $r_0 + \ldots + r_n = 0$:
\[
d r_0 > 0,
\]
\[
(d - 1)r_0 + r_i > nr_0 + r_i \geq r_0 + \ldots + r_n = 0, \text{ if } 0 < i \leq n;
\]
\[
(d - 2)r_0 + 2r_i > (n - 1)r_0 + r_i + r_{i+1} \geq r_0 + \ldots + r_n = 0, \text{ if } 0 < i < n;
\]
\[
(d - 2)r_0 + r_i + r_j > (n - 1)r_0 + r_i + r_j \geq r_0 + \ldots + r_n = 0, \text{ if } 0 < i, j \leq n, \text{ } i \neq j.
\]
Since $\mu(f, \lambda) \leq 0$, these inequalities imply that the coefficients of f for $z_0^d, z_0^{d-1} z_i, z_0^{d-2} z_i^2$ ($i \neq n$, $z_0^{d-2} z_i z_j$ are zero. Therefore, the point $p = (1, 0, \ldots, 0)$ is a critical point for f and $\text{dim ker Hess}_p(f) \geq 2$. \hfill \Box

Remark 4 It seems likely that the geometric quotient $V_{n,d}/G'$ exists for $3 \leq d \leq n + 1$ as well; at least this was proven in several particular cases. For instance, $V_{n,d}/G'$ exists if (n, d) is $(3, 3)$, $(4, 3)$, and $(5, 3)$ by [2, Proposition 6.5], [1], and [8] respectively.

Acknowledgements The author is grateful to Aleksandr Berdnikov and Alexey Gorinov for many helpful discussions.

References

1. Allcock, D.: The moduli space of cubic threefolds. J. Algebr. Geom. **12**(2), 201–223 (2003)
2. Beauville, A.: Moduli of cubic surfaces and Hodge theory (after Allcock, Carlson, Toledo). In Géométries à courbure négative ou nulle, groupes discrets et rigidités, volume 18 of Sémin. Congr., pages 445–466. Soc. Math. France, Paris, (2009)
3. Berdnikov, A. S., Gorinov, A. G.: Conical resolutions and cohomology of the moduli spaces of nodal hypersurfaces, arXiv:1402.5946v2, (2022), preprint
4. Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math., (44):5–77, (1974)
5. Gorinov, A., Konovalov, N.: Topology of spaces of regular sections and applications to automorphism groups, arXiv:1712.02578v4, (2021), preprint
6. Grothendieck, A.: Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie. Publications Mathématiques de l’IHÉS, 32:5–361, (1967)
7. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, (1977)
8. Lazza, R.: The moduli space of cubic fourfolds. J. Algebr. Geom. **18**(3), 511–545 (2009)
9. Matsumura, H., Monsky, P.: On the automorphisms of hypersurfaces. J. Math. Kyoto Univ. **3**, 347–361 (1963)
10. Milnor, J. W., Stasheff, J. D.: Characteristic classes. Annals of Mathematics Studies, No. 76. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, (1974)
11. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, (1994)
12. Peters, C.A.M., Steenbrink, J.H.M.: Degeneration of the Leray spectral sequence for certain geometric quotients. Mosc. Math. J. 3(3), 1085–1201 (2003)
13. Tu, L. W.: Introductory lectures on equivariant cohomology, volume 204 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, (2020). With appendices by Tu and Alberto Arabia

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.