Short Communication

Arthropod Community in Hybrid Hazelnut Plantings in the Midwestern United States

Ariadna Chediack,1,2,3,5 Patrick J. Liesch,4,6 Hailey N. Shanovich,3,6 and Brian H. Aukema3,6

1University of Wisconsin-Madison, Bayfield County Extension, Washburn, WI, 54891, USA 2Current address: P.O. Box 155, Washburn, WI 54891, USA 3Department of Entomology, University of Minnesota, 1980 Folwell Ave., 432 Hodson Hall, Saint Paul, MN 55108, USA 4Department of Entomology, University of Wisconsin–Madison, 1630 Linden Drive, 240 Russell Labs. Madison, WI 53706, USA and 5Corresponding author, e-mail: ariadna.chediack@gmail.com

Received 16 February 2022; Editorial decision 23 May 2022.

Abstract

There is a lack of knowledge of the arthropod communities in both wild hazelnut and cultivated hybrid hazelnut ecosystems in the Midwestern United States. Our goal was to characterize the composition of these arthropod communities in hazelnut plantings. We surveyed six experimental plantings of hazelnuts in Wisconsin and two in Minnesota during growing seasons, from May 2017 to August 2021. We used four methods to survey the arthropod community of these plantings: ad libitum survey of specimen observations and collection, dissection of hazelnut buds and nuts, cone traps placed on the ground, and beat sheet sampling of plants. We registered 116 different morphospecies of five classes and 83 families. Arthropods with known feeding habits were grouped into four guilds: 59 herbivores, 36 carnivores (predators, parasites, and parasitoids), 4 decomposers (detritivores and scavengers), and 4 omnivores. While we registered 12 herbivorous species that could potentially cause damage to hazelnuts, we directly observed nine of them feeding upon or damaging plant parts: Phytoptus avellanae s.l. Nalepa (Eriophyoidea: Phytoptidae), Curculio obtusus Blanchard and Strophosoma melanogrammum Förster (Coleoptera: Curculionidae), Popillia japonica Newman (Coleoptera: Scarabaeidae), Parthenolecanium sp. (Hemiptera: Coccidae), Euschistus servus euschistoides Say (Hemiptera: Pentatomidae), aphids (Hemiptera: Aphididae), Acleris sp., and Choristoneura rosaceana Harris (Lepidoptera: Tortricidae). We also registered eight species of parasites or parasitoids that could offer biocontrol services in the cropping system. These findings provide a foundation for future targeted studies on potential pests and beneficial arthropods, as well as ecological interactions within the hybrid hazelnut ecosystem in the Midwest.

Resumen

Hay una falta de información sobre las comunidades de artrópodos tanto en ecosistemas naturales como en cultivos de avellanas en la región Medio Occidental de los Estados Unidos. Nuestro objetivo fue caracterizar la composición de estas comunidades de artrópodos en plantaciones experimentales de avellanas. Muestreamos en seis plantaciones en Wisconsin y dos en Minnesota, durante el periodo de crecimiento de las plantas, desde mayo del 2017 a agosto del 2021. Usamos cuatro métodos de muestreo: relevamiento ad libitum de especímenes, disección de yemas de avellanas y nueces, trampas cono para gorgojos ubicadas sobre el suelo, y técnica del paño. Registramos 116 morfoespecies, de cinco clases y 83 familias. Las morfoespecies con hábitos alimentarios conocidos fueron agrupadas en 4 grupos: 59 morfoespecies de herbívoros, 36 de carnívoros (predadores, parásitos y parasitoides), 4 de descomponedores (detritívoros y carroñeros) y 4 de omnívoros. Si bien identificamos 12 especies que podrían causar daño a las avellanas, sólo observamos nueve especies alimentándose de o dañando plantas de avellanas: Phytoptus avellanae s.l. Nalepa (Eriophyoidea: Phytoptidae), Curculio obtusus Blanchard y Strophosoma melanogrammum Förster (Coleoptera: Curculionidae), Popillia japonica Newman (Coleoptera: Scarabaeidae), cochinillas Parthenolecanium sp. (Hemiptera: Coccidae), Euschistus servus euschistoides Say (Hemiptera: Pentatomidae), pulgones (Hemiptera: Aphididae), Acleris sp. y Choristoneura rosaceana Harris (Lepidoptera: Tortricidae). Registramos ocho especies de parásitos y parasitoides que podrían ser agentes de control biológico en estos ecosistemas.
Hazel plants (*Corylus avellana* Linnaeus) (Fagales: Betulaceae) are trees whose nuts have been prehistorically a source of food for humans (Holst 2010). They have been cultivated in Eurasia for hundreds of years. In the United States, the European hazelnut is mainly cultivated in the Pacific Northwestern (PNW) states of Oregon and Washington. About 99% of the hazelnut crop in the United States is produced in Oregon, setting this country in fourth place with about 5% of the world crop (Mehlenbacher and Olsen 1997, Oregon Department of Agriculture 2021). In the Midwestern region of the United States, the climatic conditions and presence of disease, like the Eastern Filbert Blight, are not suitable for the introduction of hazelnut plantings. In the Eastern and Midwest states, there is a growing initiative to develop hybrid hazelnuts (*C. avellana × C. americana* or *C. avellana × C. cornuta* Marshall). In the Eastern and Midwest states, there are two native *Corylus* species to this region, the American hazelnut (*Corylus americana* Marshall) and the beaked hazelnut (*Corylus cornuta* Marshall). In the Eastern and Midwest states, there is a growing initiative to develop hybrid hazelnuts (*C. avellana × C. americana* or *C. avellana × C. cornuta*) that combine the disease resistance and cold hardiness of the native species with yield and processing characteristics of nuts of *C. avellana* for production in these regions. The global demand for hazelnuts is rising, both for fresh eating and for oil because the nuts are high in vitamins and oil content (Molnar et al. 2005, Braun and Jensen 2015, Braun et al. 2019).

Like in other cropping systems, there is a diverse suite of arthropods associated with *Corylus* spp. Descriptions of arthropod communities associated with hazelnut ecosystems, including harmful pests, are mostly from plantings of European hazelnuts in the Eastern Hemisphere (Villaronga and Garcia-Mari 1988, Trevilla et al. 1997, Snare 2006) and the PNW region in the United States (AliNiazee 1980,1998; Brenner 1986; Walton et al. 2007, 2009; Wiman and Bell 2021). According to AliNiazee (1998), there are 280 species of insects and mites associated with hazelnuts plantings in Turkey, with approximately 150 species feeding on hazelnut plants, but only 47 species cause most of the damage. In the United States, AliNiazee (1998) identified about 150 species of insects and mites in hazelnut ecosystems in the PNW, with approximately half of those species being beneficial. AliNiazee (1980), Snare (2006), Walton et al. (2007, 2009), and Wiman and Bell (2021) mention 27 species of arthropods that cause damage to hazelnut cultivars in Oregon and Washington spanning both specialist and generalist feeding habits.

Arthropods associated with hazelnut plantings have never been surveyed in the Eastern or Midwest regions of the United States. Little is known about arthropod communities associated with native beaked hazelnut or American hazelnut other than the hazelnut weevil (*Curculio obtusus* Blanchard) (Coleoptera: Curculionidae) (Treadwell 1996). Our goal was to characterize the composition of arthropod communities present in hazelnut experimental plantings in the Upper Midwestern United States. Knowledge of potential arthropod pests and beneficial natural enemies is a crucial first step in ecological research needed to create pest management recommendations, should they become required.

Methods

We surveyed arthropods in eight hybrid hazelnut research plantings throughout the Upper Midwestern United States, six in Wisconsin: Bayfield, Ashland, Hayward, Spooner, Tomahawk, and Stoughton; and two in Minnesota: Rosemount and Saint Paul (Table 1). In each of these locations, there are trials of hybrid hazelnut genotypes. Plantings’ ages varied from 12 yr to a few months; the latter where new plants were installed within the primary plantings. The weed control methods used varied among plantings (Table 1). No insecticide was used in any plantings.

We used four methods of arthropod sampling (with some variability across sites, described below): 1) ad libitum survey by species collection and visual observations while working in the field throughout each growing season at all locations (both on hazelnut plants and other vegetation within the plantings); 2) collection and dissection of hazelnut buds and nuts, both during the growing period and after harvest, at all locations; 3) four metal mesh cone entrapments; and 4) four metal mesh cone entrapments.

Table 1. Location and characteristics of each experimental hybrid and American hazelnut planting in the Upper Midwest of the United States

Planting	State	Coordinates	Size (ha)	Year planted	Weed control
Ashland	Wisconsin	46°35′04″N, 90°57′56″W	0.19	2012	Herbicide in early spring, weed-whipping and hand weeding as needed, and one mowing in late summer.
Bayfield	Wisconsin	46°50′19″N, 90°50′02″W	1.53	2009	Herbicide in early spring, weed-whipping and hand weeding as needed, and one mowing in late summer.
Hayward	Wisconsin	45°59′47″N, 91°30′26″W	0.83	2014	Herbicide in early spring, weed-whipping and hand weeding as needed, and two mowing or three times per season.
Spooner	Wisconsin	45°49′22″N, 91°52′05″W	0.36	2011	Herbicide in early spring, weed-whipping and hand weeding as needed, and mowing two or three times per season.
Stoughton	Wisconsin	42°56′37″N, 89°09′41″W	0.35	2011	Mowing once or twice per season.
Tomahawk	Wisconsin	45°30′23″N, 89°32′59″W	0.21	2012	Weed whipping once in late summer.
Rosemount	Minnesota	44°43′36″N, 93°05′59″W	0.18	2011-2013	Weed whipping and mowing as needed
Saint Paul	Minnesota	44°59′53″N, 93°10′30″W	0.68	2009	Weed whipping and mowing as needed
weevil traps placed on the ground, each one under a different hazelnut plant in Bayfield only in 2019 and 2020, checked weekly with all arthropod specimens collected (Treadwell 1996 and Mulder et al. 2012); 4) beat sheet sampling done weekly from May to July of 2020 and 2021 in both Minnesota locations via beating 12 random hazel plants with a stick 10 times over a one square meter white canvas. Across all methods, the Bayfield planting was the most visited and intensely sampled planting in Wisconsin.

For Wisconsin locations, arthropods were collected or observed for 5 yr, from May to October 2017 to 2020, and May to July in 2021. Specimens were collected into sealable plastic bags or 7 ml plastic vials and stored in a refrigerator at ~4°C or in 70% isopropyl alcohol. Specimens representing new records for the state of Wisconsin were deposited in the Wisconsin Insect Research Collection. Specimens were identified to species level when possible. Some specimens, such as larvae, were identified to family or genus level based on the availability of taxonomic keys for those groups (MacKay 1962; McAlpine 1981, 1987; Vickery and Kevan 1986; Stehr 1987, 1991; Anderson and Howden 1994; Arnett and Thomas 2001, 2002; Wagner et al. 2001; Johnson and Triplehorn 2004; Wagner 2005; Packer et al. 2007; Bright and Bouchard 2008; Paiero et al. 2013; Hoebeke and Sprichier 2016; Whitehead et al. 2018).

For Minnesota locations, arthropods were observed or collected from April to August of 2020 and 2021. All weevils were collected into sealable plastic bags and frozen until they could be identified to species. Buprestid specimens were identified to genus by Patrick Perish (University of Minnesota). All other arthropods were identified by HNS and confirmed by uploading photographs to iNaturalist (www.inaturalist.org).

We organized all specimens or morphospecies into four guilds according to their feeding habits: carnivores (natural enemies such as predators, parasites and parasitoids), decomposers (detritivores and scavengers), herbivores, and omnivores. In the cases where the juveniles are carnivorous, but the adults are herbivorous, we placed the arthropod into the carnivore guild. When we could not identify the species, or the taxa has a wide spectrum of feeding habits, we elected not to assign a guild. We did not include ticks, some spiders, adult Lepidoptera, or common species of Diptera unless of natural enemy importance, such as syrphid flies.

Results

We recorded 116 morphospecies of 83 families, 18 orders, and five classes. One superfamily (Chalcidoidea; Hymenoptera), was included in our tally, as well as two of Odontata and Trichoptera that were not identified to family level. Of the 116 morphospecies, only 75 of them were identified to species or genera (Table 2). For the four guilds, we recorded 59 morphospecies of arthropods that are considered herbivores, 36 carnivores, 4 omnivores, and 4 decomposers.

Eight species of herbivores, C. obtusus, Phytoptus avellanae s.l. Nalepa (Eriophyoidea: Phytoptidae), Agrilus spp. (Coleoptera: Buprestidae), Strophosoma melanogrammum Förster (Coleoptera: Curculionidae), Popillia japonica Newman (Coleoptera: Scarabaeidae), Euschistus servus Say (Hemiptera: Pentatomidae), Parthenolecanium sp. (Hemiptera: Coccidae), and aphids (Hemiptera: Aphididae) were observed feeding on various parts of the hazelnut plants. Aderis sp. (Lepidoptera: Tortricidae) and Choristoneura rosaceana Harris (Lepidoptera: Tortricidae) larvae were collected from rolled hazel leaves on the plant. Larvae of two species of tent caterpillars (Malacosoma disstria Hübner and M. americanum Fabricius) (Lepidoptera: Lasiocampidae) and sawfly larvae (Craesus sp., (Lepidoptera: Tenthredinidae) were observed on hazelnut leaves with signs of herbivory; however, we did not directly see these larvae feeding on the plants. In 2017, we collected the first record of S. melanogrammum for Wisconsin.

Among the carnivores, we identified eight species of spiders, and eight parasites and parasitoids. We found two natural enemies inside galls formed by P. avellanae: a predatory mite (Mesostigmata: Phytoseiidae) and a tube-tailed thrips (Thysanoptera: Thripidae). We also found a tachinid fly larva (Diptera: Tachinidae) inside a slug moth caterpillar (Lathicidae sp.) (Lepidoptera: Limacodidae) and a mummy wasp, Aleiodes sp. (Braconidae: Hymenoptera), parasitizing an unidentified caterpillar.

Discussion

Hazelnut planting ecosystems in the Midwestern United States have a richness of species close to that described by AliNiazee (1998) for the PNW, with about half of the species known as, or with the potential, to be beneficial arthropod species. Of the two species of filbert bud mites (Eriophyoidae) reported causing bud galls in hazelnuts, only P. avellanae was present in our eight plantings. This mite is an exotic species, that arrived in the United States most likely from the introduction of European hazelnut cultivars (Ourecky and Slate 1969). Other pest arthropods reported by AliNiazee (1980, 1998), Treadwell (1996), Snare (2006), Walton et al. (2007), and Wiman and Bell (2021) present in our hazelnut plantings are C. rosaceana, Parthenolecanium sp. scales, M. disstria and C. obtusus. This latter mentioned species is the only one found inside the hazelnut shell feeding on the kernel. Except for P. avellanae and C. obtusus, none of the other herbivorous species or morphospecies observed were seen in quantities that sparked concern of economically damaging levels. The Japanese beetle (P. japonica), present in Minnesota and Wisconsin, was abundant, although it is not known to what extent it may cause damage of economic consequence to hazelnut.

Strophosoma melanogrammum and Otiorynchus ovatus Linnaeus (Coleoptera: Curculionidae) are two introduced and invasive species from Europe observed and collected in abundance in Bayfield. Based on reports from Alford (2014), Nielsen et al. (2004), and Urban (1999), S. melanogrammum is considered a pest on oaks, hazels, and greenery plantations in Europe as it feeds on hazelnut vegetative and floral buds, among other vegetative parts. Strophosoma melanogrammum is a parthenogenetic species that may have the potential to become a pest to hazelnut plantings in the Midwestern region. This species was only recorded in Bayfield. We do not know how or when it arrived at the area.

Natural enemies found in Oregon hazelnut orchards that we also observed in our plantings included one species of Chrysopidae, Forficula auricularia Linnaeus (Dermaptera: Forficulidae), ladybird beetles (Coleoptera: Coccinellidae), and syrphid flies (Diptera: Syrphidae) (Walton et al. 2009). We also noted several species of ground beetles (Coleoptera: Carabidae) and spiders. Collectively, none of these natural enemies likely have large impacts on hazelnut pests such as C. obtusus. The two predatory morphospecies we detected inside the galls formed by P. avellanae, a predatory mite and a tube tailed thrips, may be natural enemies of the harmful filbert bud mites and warrant future studies. Other important beneficial morphospecies recorded were tachinid flies and two families of parasitoid wasps, Braconidae and Ichneumonidae, that were quite abundant. Some species found were beneficial for reasons other than biological control of hazelnut pests, such as Larinus obtusus Gyllenhal (Coleoptera: Curculionidae). The latter insect aids in the control of the spotted knapweed (Centaurea stoebe Linnaeus).
Table 2. Arthropods observed and collected in hybrid hazelnut experimental plantings in six Wisconsin locations (A=Ashland, B=Bayfield, H=Hayward, S=Spooner, St=Stoughton, T=Tomahawk), and two in Minnesota (R=Rosemount, and SP=Saint Paul). Feeding habits (D=detritivore, H=herbivore, Pr=predator, Ps=parasite or parasitoid, O=omnivore, S=scavenger) separated by commas include habits of different spp. within the group, separated by hyphen are habit of immature vs adult individual within the species.

Class	Order	Family	Scientific name	Common name	Feeding habits	Location	Life Stage
Arachnida	Eriophyoidea	Phytoptidae	*Phytoptus avellanae s.l.* (Nalepa)	Filbert bud mite	H	A, B, H, S, T, R, SP	Immature and adult
Mesostigmata	Phytoseiida	Araneidae	*Araneus trifolium* (Hentz)	Shamrock orbweaver	Pr	B	Adult
Araneae	Phytoseiida	Araneidae	*Argiope sp.*	Yellow garden spider	Pr	B, S	Adult
Araneae	Phytoseiida	Araneidae	*Argiope annanta* (Lucas)	Whitebacked garden spider	Pr	S	Adult
Araneae	Mesostigmata	Mesostigmata	*Thanatus sp.*		Pr	B	Adult
Salticidae	*Dendryphantina* sp.	Salticidae	*Phidippus sp.*	Bold jumper spider	Pr	R, SP	Adult
Thomisidae	Mesostigmata	Mesostigmata	*Meconema sp.*	Crab spiders	Pr	S	Adult
	Entomobryomorpha	Entomobryidae	*Biresia caudata* urina* (Fabricius)	Spring tail	D, Pr	B	Adult
Insecta	Coleoptera	Buprestidae	*Agrilus spp.*	Jewel beetles	H	R, SP	Adult
Diplopora	Polyxenida	Polyxenidae		Bristle millipedes	D, Pr	B	Adult
Carabidae	*Harpalus sp.*	*Anomoa latexata* (Forster)	Claycolored leaf beetle	H	T	Adult	
Chrysomelidae	*Diachus annatus* (Fabricius)	*Pachybrachis sp.*	Bronze leaf beetle	H	B	Adult	
Chrysomelidae	*Trichocoma sp.*	*Trichocoma sp.*	*Chrysomelidae*	Scriptured leaf beetle	H	B	
Coccinellidae	*Braconica arbusta* (Fabricius)	*Braconica septemonticata* (Linnaeus)	Weevil	Pr	SP		
Coccinellidae	*Braconica sp.*	*Braconica sp.*	*Coccinella coturnix* (Linnaeus)	Sevenspotted lady beetle	Pr	B	
Leptinidae	*Hypena sp.*	*Anomoa latexata* (Forster)	Claycolored leaf beetle	H	R	Adult	
Curculionidae	*Barphetes pellucidus* (Bohemian)	*Laterna carinata* (Schoenherr)	Imported long-horned weevil	H	R	Adult	
Curculionidae	*Laterna obtusata* (Blanchard)	*Laterna obtusata* (Schoenherr)	Canada thistle bud weevil	H	R, S	Adult	
Lixus conicus	*Lixus conicus* (Suy)	*Lixus conicus* (Schoenherr)	Canada thistle bud weevil	H	B, H	Adult	
Olotrochystus otusius	*Olotrochystus otusius* (Linnaeus)	*Phyllobius oblongus* (Linnaeus)	Strawberry root weevil	H	R	Adult	
Phyllobius oblongus	*Phyllobius oblongus* (Linnaeus)	*Phyllobius oblongus* (Linnaeus)	European snout weevil	H	B	Adult	
Polydrusus formosus	*Polydrusus formosus* (Mayer)	*Polydrusus formosus* (Mayer)	Green immigrant leaf weevil	H	B, H, R, SP, T	Adult	

Class	Order	Family	Scientific name	Common name	Feeding habits	Location	Life Stage
			Polydrusus impressifrons (Gyllenhall)	Pale green weevil or leaf weevil	H	R, SP	Adult
			Romualdis scaber (Linnaeus)	Crusted root weevil	H	B	Adult
			Systobosma melanogramma (Forster)	Nut leaf weevil	H	B	Adult
Elaterida			*Tychus sp.*	Alfalfa weevil	H	B	Adult
			Aeolus sp.	Click beetle	H	B	Adult
			Melanotus spp.	Click beetle	H	B	Adult
Lampyridae			*Photinus sp.*	Firefly	Pr	B	Adult
			Corticaria sp.	Minute brown scavenger beetle	S	B	Adult
Latridiida			*Calopetron reticulatum* (Fabricius)	Banded net-wing beetle	Pr-H	B	Adult
			Typhaea stercorea (Linnaeus)	Hairy fungus beetle	B		
			Phalacrisidae	Shining flower beetle	H	B	Adult
			Ptinidae	Primit or Anobiid beetle	H, O, S	B	Adult
Scarabeida			*Popelis japonica* (Newman)	Japanese beetle	H	R, SP	St
			Isomera sp.	Comb-clawed beetle	S	B	Adult
			Forficula auricularia (Linnaeus)	European earwig	O	B, S	Adult
Hemiptera			*Alydus sp.*	Broad headed bug	H, S	B, S	Adult
			Alyrdae	Broad headed bug	H, S	B, S	Adult
			Aphidae	Aphids	H	B	Immature and adult
			Caliscelidae	Piglet bug	H	B	Adult
			Cercopidae	Spittle bug	H	B	Immature and adult
Class	Order	Family	Scientific name	Common name	Feeding habits	Location	Life Stage
---------------	-------------	--------------------------	-----------------	-------------------	----------------	--------------------	------------------
		Cicadellidae	Parthenolecanium sp.	Leafhopper	H	B	Adult
		Coccidae	Lecanium scales	Leafflower	H	B, H, S	All stages
		Dictyopharidae	Planthopper	Planthopper	H	B	Adult
		Lygaeidae	Milkweed bug	Milkweed bug	H	B	Immature
		Pentatomidae	Euschistus servus	Brown stink bug	H	B, S, A, SP	Immature and adult
			euschistodes (Say)				
			Euschistus tritigm	Dusky stink bug	H	SP	
			us (Say)				
			Podisus maculiventris	Spined soldier bug	H	SP	Adult
		Reduviidae (Lateille)	Slaterohiis insignis (Uhler)	Dirt-colored seed bug	H	B	Adult
Hymenoptera		Andrenidae	Mining bees	Mining bees	H	B	Adult
		Apidae	Apid bees	Apid bees	H	B, S	Adult
		Braconidae	Parasitoid wasp	Parasitoid wasp	Ps	B	Adult and mass of cocoons
			Ps. B Adult				
		Superfam:	Aleiodes sp.	Mummy-wasp	Ps	H, S	Paraisotid in a caterpillar
		Chalcidoidea	Crabronid wasp	Crabronid wasp	Pr	B	Adult
		Crabronidae (Latreille)					
		Eupelmidae	Chalcid wasp	Chalcid wasp	Ps	B	Adult
		Formicidae (Santschi)	Field ants	Field ants	Pr	B, S	Adult
		Hylaeidae	Formica sp.	Pavement ant	O	B	Adult
			Lasioglossum sp.				
		Ichneumonidae	Sphecodes sp.	Cuckoo bee	Ps-H	B	Adult
		Megachilidae	Lasius sp.	Sweat bee	H	B	Adult
		Pompilidae (Lateille)	Osmia sp.	Mason bee	H	B	Adult
		Tenthrediniida	Craesus sp.	Sawfly	H	R, S	Immature
Lepidoptera		Sphiceida	Threaded-waist wasp	PS-H	B	Adult	
		Vespidae	Polistes sp.	Paper wasp	Pr-H	S	Nest and adult
		Coleophoridae	Casebearer	Pale or banded tussock moth	H	B, S, SP	Cocoon
		Erebididae	Hylidsota tessellaris (J. E. Smith)				
		Geometridae	Lymantria dispar (Linnaeus)	Gypsy moth	H	B	Immature
		Lasiocampidae	Enamis tiliares (Harris)	Linden looper caterpillar	H	S	Immature
		Limacodidae	Malacosoma americanum (Fabricius)	Eastern tent caterpillar	H	T	Immature
			Malacosoma disstria (Hubner)	Forest tent caterpillar	H	B, S	Immature
			Lithacodes sp.	Yellow-shouldeered slug moth	H	S	Immature

Table 2. Continued
Table 2. Continued

Class	Order	Family	Scientific name	Common name	Feeding habits	Location	Life Stage
Noctuidae			Schizura unicornis (J.E. Smith)	Unicorn moth	H	B	Immature
Notodontidae			Danaus plexippus (Linnaeus)	Monarch	H	B, H	Adult
Psychidae			Psycha casta (Pallas)	Bagworm	H	B	Adult and cocoons
Saturniidae			Antheraea polyphemus (Cramer)	Polyphemus moth	H	B, R, S, SP	Immature, cocoon, and adult
			Hydophora cecropia (Linnaeus)	Cecropia moth or giant silk moth	H	H, S	Immature
Sphingidae			Poxus excaciata (J.E. Smith)	Blind sphinx moth	H	B, H, S	Immature
Tortricidae			Adelis sp.	Leafroller	H	B	Immature
			Obstronomyrosaceana (Harnis)	Oblique banded leafroller	H	B	Immature and adult
Neuroptera			Chrysopidae	Green lacewing	Pr	B	Adult
			Mantispidae	Brown mantid fly	Pr	R	Adult
			Odonata	Dragonflies	Pr	A, B, H, S	Adult
			Orthoptera	Two-striped grasshopper	H	A, B, S	Immature and adult
			Acrididae	Slanted faced grasshopper	H	B	Immature
Phasmatodea			Diapheromera femorata (Say)	Northern walkingstick	H	S	Adult
			Diapheromera femorata	Slanted faced grasshopper	H	B	Immature
			Tubetailed thrips	Pr	B	Adult, in hazelnut bud infested with filbert bud mites	
Trichoptera			Phlaeothripidae	Caddisfly	B	Adult	
Malacostraca			Isopoda	Sowbugs	D	B	Adult
(Asterales: Asteraeaceae) (Panke et al. 2012, WSU 2021), which is an introduced aggressive invasive plant species. Many other species found that were either assigned a decomposer guild or not assigned a guild could provide other essential services to the hazelnut ecosystem such as carbon cycling and serving as alternative food sources for natural enemies.

This base line list of species or morphospecies present in hybrid hazelnut plantings in the Upper Midwest provides a foundation for future research on possible pests, beneficial arthropods, and ecological interactions which are needed to understand the complexity of these ecosystems, and to develop pest management plans for this novel crop.

Acknowledgments
We thank Jason Fischbach (University of Wisconsin-Madison, Bayfield County Extension) for comments on earlier drafts of this work. We thank Alexa Koch, Patrick Perish, and Phylean Anderson (University of Minnesota) for help sampling arthropods in Minnesota plantings, and Hannah Figgins (University of Wisconsin) for helping sampling in Wisconsin plantings. We thank Dr. Matthew Bertone (North Carolina State University) for identifying the filbert bud mites found in Minnesota plantings and Drs. Ralph Holzenthal and Robin Thompson (University of Minnesota Insect Collection) for assistance in procuring Curculionidae taxonomic keys. We thank Patric Perish (University of Minnesota) for identification of buprestids, Theresa LaChappelle (University of Wisconsin-Madison, Bayfield County Extension) for assistance in mailing samples; and Schraufnagel Glass (Ashland, WI) for donating metal mesh for the weevil traps. This work was supported in part by funds from the USDA-Specialty Crop Multi-State Grant Program #SCMP1702 and USDA-Specialty Crop Research Initiative #H007913501 and United States Department of Agriculture-Specialty Crop Research Initiative Grant 2019-51181-30025.

Author Contributions
A.Ch.: Conceptualization; Investigation; Data curation; Methodology; Writing—original draft. P.J.L.: Investigation; Writing—review and editing. HNS: Investigation; Data curation; Methodology; Writing—review and editing. B.H.A.: Funding acquisition; Project administration; Resources; Writing—review and editing.

References Cited
Alford, D.V. 2014. Pests of fruit crops: a colour handbook. 2nd edition. Ch. 4: p. 170. CRC Press, Boca Raton, FL.
AliNiaeez, M.T. 1980. Filbert insects and mite pests. Agricultural Experiment Station, Oregon State University, Corvallis. Station Bulletin 643, pp 15.
AliNiaeez, M.T. 1998. Ecology and management of hazelnut pests. Annu. Rev. Entomol. 43: 395–419.
Anderson, R., and A. T. Howden. 1994. Tychius meliolti Stephens new to Canada with a brief review of the species of Tychius Germar introduced into North America (Coleoptera: Curculionidae). Can. Entomol. 126: 1363–1368.
Arnett, R.H. and M.C. Thomas (eds.). 2001. American beetles, vol I. CRC Press, New York, NY.
Arnett, R.H. and M.C. Thomas (eds.). 2002. American beetles, vol II. CRC Press, New York, NY.
Braun, L., C. M. Demchick, J. A. Fischbach, K. Turnquist, and A. Kern. 2019. Yield, quality and genetic diversity of hybrid hazelnut selections in the Upper Midwest of the USA. Agroforest Syst. 93: 1081–1091.
Braun, L., and J. Jensen. 2015. Growing hybrid hazelnuts. Rural Advantage. Promoting the interconnection of agriculture, the environment and rural communities. 3rd version. Pp 12. https://www.midwesthazelnuts.org/uploads/3/8/3/5/38359971/hazel_production_guide_v_3__jan_2015.pdf
Brenner, D. McCaskie. 1986. Variation in wild hazel nuts (Corylus cornuta, Marsb) of the Northwest United States. Master’s thesis, University of Oregon. Pp 118.
Bright, D.E. and P. Bouchard. 2008. Insects and arachnids of Canada, Pt. 25: coleoptera, curculionidae, entiminae. National Research Council Canada, Ottawa, CA.
Gold, K. M. 2016. Eastern filbert Blight. University of Wisconsin Garden Facts. XHT1253. Extension, University of Wisconsin-Madison. Pp 2. https://hort.extension.wisc.edu/files/2017/01/Eastern_Filbert_Blight.pdf
Hoebeke, E. R., and S. -E. Sprichiger. 2016. Larinus turbinatus gyllenhall (Coleoptera: Curculionidae: Lixinae), a Eurasian weevil new to North America with a summary of other adventive Larinus in North America and a key to species. Proc. Entomol. Soc. Wash. 118: 261–272.
Holst, D. 2010. Hazelnut economy of early Holocene hunter-gatherers: a case study from Mesolithic Dvunecen, northern Germany. J. Archaeol. Sci. 37: 2871–2880.
Johnson, N. and C.A. Triplehorn. 2004. Bower and DeLong’s introduction to the study of insects, 7th ed. Brooks/Cole, Florence, KY.
MacKay, M. R. 1962. Larvae of the North American tortricinae. Mem. Ent. Soc. Can. 94: 5–182.
McAlpine, J. F. (Ed.) 1981. Manual of Nearctic Diptera, vol I. Research Branch Agriculture Canada, Ottawa, CA.
McAlpine, J. F. (Ed.) 1987. Manual of Nearctic Diptera, vol II. Research Branch Agriculture Canada, Ottawa, CA.
Mehlenbacher, S. A., and J. Olsen. 1997. The hazelnut industry in Oregon, USA. Acta Hort. 1997:445–445. doi:10.17660/ActaHortic.1997.445.45
Molnar, T.J., J. C. Goffreda and C.R. Funk. 2005. Developing hazelnuts for the Eastern United States. In: Proc. Vth Internal. Congress of Hazelnut, Eds. J. Tous, M. Rovira and A. Romero. Acta Hortic. 686:609–617.
Mulder, P. G., M. K. Harris, and R. G. Grantham. 2012. Biology and management of the pecan weevil (Coleoptera: Curculionidae), J. Integ. Pest Manag. 3: 1–9.
Nielsen, C., J. Eilenberg, S. Harding and S. Vestergaard. 2004. Biological Control of Weevils (Strophosoma melanagrommum and S. capitatum) in Greenery Plantations in Denmark. Pesticides Research No. 91. Ministry of the Environment. Environmental Protection Agency. Pp 75. https://www.researchgate.net/publication/266094043
Oregon Department of Agriculture. 2021. Oregon agricultural statistics. https://www.oregon.gov/oda/shared/Documents/Publications/Administration/ORAgFactsFigures.pdf
Ourecky, D.K., G. L. Slate. 1989. Susceptibility of filbert varieties and hybrids to the filbert bud mite, Phytoptus avellanea Nasl. Northern Nut Growers Association Annual Report: 89–91.
Packer, L., J.A. Genaro and C.S. Sheffield. 2007. The bee genera of eastern Canada. Can. J. Arthropod. Identif, 3. doi:10.3752/cjai.2007.03
Paiero, S.M., S.A. Marshall, J.E. McPherson and M.-S. Ma. 2013. Stink bugs (Pentatomidae) and parent bugs (Acanthosomatidae) of Ontario and adjacent areas: a key to species and a review of the fauna. Can. J. Arthropod. Identif. 24. doi:10.3752/cjai.2013.24
Panke, B., R. deRegnier and M. Renz. 2012. Spotted knapweed (Centarea stoebe). University of Wisconsin-Extension, Fact Sheet. Management of invasive plants in Wisconsin: Spotted Knapweed (A3924-13), Madison, Wisconsin. Pp 4.
Snare, L. 2006. Pest and disease analysis in hazelnuts. NSW Department of Primary Industries. Horticultural Australia Ltd., Sydney, NSW. Pp 68. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/117984/pest-disease-analysis-of-hazelnuts.pdf
Stehr, F. (Ed.) 1987. Immature insects, vol. I. Kendall/Hunt, Dubuque, IA.
Stehr, F. (Ed.) 1991. Immature insects, vol. II. Kendall/Hunt, Dubuque, IA.
Taghavi, T., A. Dale, P. Saxena, D. Galic, A. Rahemi, J. Kelly, and E. Suarez. 2018. Flowering of hazelnuts cultivars and how it relates to temperature in southern Ontario. Act. Hort. 1226: 134–136.
Tavella, L., A. Arzone; C. Sariotto, and C. Sonnati. 1997. Coreidae and Pentatomidae harmful to hazelnuts in Northern Italy (Rhynchota
Heteroptera). IV International Symposium on Hazelnut. *Acta Hortic.* 445:65.

Treadwell, L. 1996. *Aspects of larval development, intershrub movement, and nut infestation by the hazelnut weevil (Curculio obtusus) utilizing discrete shrubs of beaked hazelnut (Corylus cornuta).* Master’s thesis, University of Maine. Pp 66.

Urban, J. 1999. *Strophosoma melanogrammum Forst. – A pest on young beech trees and European mountain ash in the Zdár region.* *J. of Forest Sci.* 45: 64–80.

Vickery, V.R. and D.K. McE. Kevan. 1986. *The Insect and arachnids of Canada, part 14: the grasshoppers, crickets, and related insects of Canada and adjacent regions.* Biosystematics Research Institute, Ottawa, CA.

Villaronga, P., y F. García-Mari. 1988. *Los ácaros tetraníquidos y sus enemigos naturales del cultivo del avellano en Cataluña.* *Bol. San. Veg. Plagas,* 14:39–44.

Wagner, D.L. 2005. *Caterpillars of eastern North America; a guide to identification and natural history.* Princeton University Press, Princeton, NJ.

Wagner, D.L., D.C. Ferguson, T.L. McCabe, and R.C. Reardon. 2001. *Geometroid caterpillars of northeastern and Appalachian forests.* U.S. Dept. of Agriculture, Forest Service, Washington, DC.

Walton, V.M., U. Chambers, A. Dreves, D.J. Bruck, and J. Olsen. 2007. *Identification of invasive and reemerging pests on hazelnuts.* Oregon State University, Extension Service. EM 8946E. Pp 5. https://catalog.extension.oregonstate.edu/em8946

Walton, V., U. Chambers, and J. Olsen. 2009. *Hazelnut pest and beneficial insects: an identification guide.* Oregon State University, Extension Service. EM 8979-E. Pp 4.

Wiman, N. and N. Bell. 2021. *Hazelnut pests. Section H: Nut crops. In Pacific Northwest Pest Management Handbooks.* Pp H 2-13. Oregon State University, Washington State University and University of Idaho. https://pnwhandbooks.org/sites/pnwhandbooks/files/insect/chapterpdf/nut.pdf

Whitehead, D. R., M. L. Chamorro, and R. S. Anderson. 2018. An illustrated key to the species of Curculio Linnaeus (Coleoptera: Curculionidae) of North America east of the Mississippi River. *Proc. Entomol. Soc. Wash.* 120: 616–641.

Washington State University, Extension (WSU). 2021. *Integrated weed control. Larinus obtusus.* WSU, Puyallup, WA. http://invasives.wsu.edu/biological/larinusohtus.htm