Dispersers are more likely to follow mucus trails in the land snail *Cornu aspersum*

Alexandre Vong1 · Armelle Ansart1 · Maxime Dahirel1,2

Received: 17 February 2019 / Revised: 24 June 2019 / Accepted: 25 June 2019 / Published online: 1 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Dispersal, movement leading to gene flow, is a fundamental but costly life history trait. The use of indirect social information may help mitigate these costs, yet we often know little about the proximate sources of such information, and how dispersers and residents may differ in their information use. Terrestrial molluscs, which have a high cost of movement and obligatorily leave information potentially exploitable by conspecifics during movement (through mucus trails), are a good model to investigate links between dispersal costs and information use. We studied whether dispersers and residents differed in their trail-following propensity in the snail *Cornu aspersum*. Dispersers followed mucus trails more frequently than expected by chance, contrary to non-dispersers. Trail-following by dispersers may reduce dispersal costs by reducing energy expenditure and helping snails find existing habitat or resource patches. Finally, we point that ignoring the potential for collective dispersal provided by trail-following may hinder our understanding of the demographic and genetic consequences of dispersal.

Keywords Costs of movement · Dispersal syndromes · Social information · Y-maze

Introduction
Dispersal, i.e. movement potentially leading to gene flow in space, is a key trait connecting ecological and evolutionary dynamics (Jacob et al. 2015a; Bonte and Dahirel 2017). Costs and uncertainty associated with dispersal (Bonte et al. 2012) can be reduced by obtaining information about current and prospective habitats (Cote et al. 2007; Clobert et al. 2009; Chaine et al. 2013). Indirect social information, obtained from the presence, traits and/or performance of conspecifics, can provide information about nearby habitats without the need for costly prospecting (Cote et al. 2007; Chaine et al. 2013; Jacob et al. 2015b).

Movement in terrestrial gastropods (snails and slugs) is among the costliest in animals, as mucus secretion leads to substantial energy and water losses even over short distances (Denny 1980; McKee et al. 2013). As mucus production is obligatory, many crawling gastropods have unsurprisingly evolved trail-following behaviour to locate conspecifics or potential gastropod prey (Ng et al. 2013). Information on phenotype can additionally be gathered from mucus trail physical and chemical characteristics (Ng et al. 2013). Crawling on pre-existing trails may reduce the need for mucus production, leading to significant energy savings (Davies and Blackwell 2007). However, trail-following has mostly been studied in aquatic gastropods and knowledge about its frequency and function in terrestrial snails is comparatively limited (Ng et al. 2013).

The brown garden snail *Cornu aspersum* (Müller) (Helicidae; syn. *Helix aspersa*) is a well-studied generalist land snail, able to thrive and disperse even in strongly fragmented habitats (Dahirel et al. 2016a; Balbi et al. 2018). *Cornu aspersum* snails are sensitive to mucus accumulations (Dan and Bailey 1982) and adjust dispersal decisions to conspecific density (Dahirel et al. 2016b). They appear to follow trails slightly more than expected by chance (Bailey 1989), but there is no evidence so far that they use trails during dispersal or that dispersers and residents react differently to social information. Using a Y-maze setup and ecologically relevant...
tests of dispersal propensity, we tested the hypotheses that *Cornu aspersum* snails are trail followers and that dispersers would be more likely to follow trails. Indeed, they would benefit more from potential energy savings and from information about conspecific presence than residents, which, given the costs of movement, are not expected to stray far from an already established group of conspecifics.

Methods

Rearing conditions

Snails (greater shell diameter > 25 mm) were obtained from two sources in April–May 2016. First, we selected 50 individuals (see below for details) among 120 snails used in a previous dispersal study (Dahirel et al. 2017), which were collected from natural populations in parks in Rennes, France ($= 1°38′ W, = 48°7′ N$, hereafter the “natural population”). We also tested 47 new individuals randomly chosen from a set of 130 stock snails obtained from a snail farm in Corps-Nuds, close to Rennes ($1°36′37″ W, 47°58′44″ N$, hereafter the “farm population”). Snails were kept under controlled conditions (20 ± 1 °C; 16L:8D; ad lib cereal-based snail food; Hélinove, Le Boupère, France), in polyethylene boxes covered by a net (30 × 45 × 8 cm) and lined by synthetic foam kept saturated with water. Snails were used in the experimental tests presented here between 3 and 6 weeks after collection. They were housed in groups of at most 40 before use, and then in groups of eight to ten individually marked snails (with paint markers) for at least 1 week before dispersal tests. Boxes were cleaned and linings were changed every week.

Behavioural tests

All snails were tested both for dispersal and trail-following (see below for protocols). Snails from the natural population were tested for dispersal first, within the framework of a previous study (Dahirel et al. 2017), and then 25 dispersers and 25 residents (randomly selected among snails with greater shell diameter > 25 mm) were tested for trail-following a week after dispersal testing. In the farm population, trail-following was instead tested before dispersal for logistical reasons. Dispersal was then assessed a week later; 15 out of 47 tested “farm” snails were dispersers.

Dispersal tests

We assessed dispersal in an outdoor asphalted area on the Beaulieu university campus, Rennes ($1°38′13″ W, 48°6′59″ N$; see Dahirel et al. 2017 for details on protocols and their relevance to *Cornu aspersum* ecology). Briefly, rearing boxes (including food and water) were placed in the middle of the test area and left open for one night (19:00 to 09:00). Snails found more than 1 m outside of the box in the morning, i.e. beyond the typical *Cornu aspersum* home range (Dan 1978; M. Dahirel, unpublished data), were considered dispersers. This protocol qualitatively recovers phenotypic- and context-dependency in dispersal previously found in more natural settings (Dahirel et al. 2016a, b, 2017). All dispersers were more than 1.5 m from their box, and all but one more than 3 m away; with one exception (found 10 cm from the box), all residents were found inside their box.

Trail-following experiment

We studied trail-following using Y-mazes (Ng et al. 2013) in a dark room, as snails are nocturnal (Fig. 1). The experimenter (AV) wore latex gloves during setup and experiments to limit uncontrolled disturbance by human odours. Plastified cardboard mazes were lined with watered synthetic foam (as in rearing boxes), and 7 g of snail food was placed at the extremities of both choice arms to stimulate movement. To limit escapes, Y-mazes were raised by 11 cm and the stand on which the starting arm of the maze rested was covered in soot, repulsive to snails (Shirtcliffe et al. 2012; Fig. 1). First, a “marker” snail randomly chosen among untested stock adult snails
was placed in the main arm of the maze and left free to move for 10 min. Trails with U-turns or using both choice arms were excluded from further tests. Within 10 min after removing the marker, a “tracker” snail was placed at the start of the maze and left free to move for 10 min. All tracker snails made a choice; they were counted as trail followers if they chose the same arm as the marker snail. Maze linings and feeders were discarded and replaced with pristine ones between each test (i.e. between each marker-tracker combination). Preliminary tests with no marker snail were done to confirm that snails had no intrinsic left-right bias (Ng et al. 2013) (47.5% chose the left side, binomial test against a 50% expectation, \(N = 40 \), \(p = 0.87 \)). Following this, left-right symmetry during actual tests was enforced by alternately proposing left-side and right-side trails to successive tracker snails, randomly selected from simultaneously generated trails.

Statistical analyses

We used a binomial generalized linear model to test for an effect of dispersal status, population of origin and their interaction on trail-following probability. Analyses were done using R, version 3.5.1 (R Core Team 2018).

Results

Dispersers were more likely to follow trails than residents (72.5% versus 47.4%, \(N = 40 \) and 57, \(\chi^2 = 6.40, p = 0.01 \); Fig. 2). Contrary to dispersers, residents were not more likely to follow trails than the 50% expected by chance (Fig. 2).

![Bar chart showing the probability of following a trail for dispersers and residents](chart.png)

Fig. 2 Trail-following rate as a function of dispersal status (model predictions and 95% confidence intervals based on binomial GLM, the non-significant effect of origin population is averaged out; \(N = 97 \))

There was no significant effects of population of origin or dispersal status × population interaction (\(\chi^2_1 = 0.17 \) and \(1.20, p = 0.68 \) and 0.27, respectively).

Discussion

Dispersers, but not residents, were more likely to follow trails than expected by chance, indicating that mucus trails are usable sources of indirect social information in *Cornu aspersum* snails. A non-exclusive alternative is that trail-following is an energy-saving measure (Davies and Blackwell 2007), which would be more useful for dispersers. Intuitively and importantly, our results also indicate that tests realized without knowledge of dispersal status may falsely conclude to the absence of trail-following behaviour under ecologically realistic dispersal rates (see Supplementary Material).

Mucus trails may even have higher value for dispersers compared with previously studied sources of indirect social information, as they may not only give information about meta-population level habitat quality or population density (Cote et al. 2007; Chaine et al. 2013; Jacob et al. 2015b) but also about the spatial location of other patches (or at least other snails), further reducing dispersal costs. This may be especially valuable in fragmented urban areas where *Cornu aspersum* is common, where artificial porous substrates may make movement more costly (McKee et al. 2013) and inter-patch distances are often larger than the (low) perceptual range of *C. aspersum* (Dahirel et al. 2016a). Following trails in the same direction as the trail layer, as in our experiment, would give dispersers information on patch location from residents homing back to their roosts (Bailey 1989). If they are also able to follow trails with negative polarity (which is likely; Ng et al. 2013), they might additionally be able to “walk back” trails left by immigrants to reach their departure point.

The well-documented effects of within-habitat mucus accumulations on life-history and behaviour are size- and species-specific (Dan and Bailey 1982), and recent evidence suggests this is also the case for trail-following in at least one land snail group (Holland et al. 2018). An important next step will be to determine how social information and phenotype combine to shape dispersal, especially in the context of matching habitat choice (Jacob et al. 2015a). Furthermore, dispersers following trails (potentially laid by previous dispersers) may provide a mechanism for collective dispersal in snails, several individuals following an initial trail-blazer (Cote et al. 2017). As pointed out by Cote et al. (2017), such collective dispersal would have wide-ranging yet poorly studied consequences for population dynamics, evolution and genetic structure, and affect our ability to infer spatial dynamics from population genetics data. Land snails, by combining ease of
behavioural study in controlled and naturalistic conditions, trail-following ability and a long and ongoing history as population genetic models (Backeljau et al. 2001; Balbi et al. 2018) are one of the best taxa to investigate these questions.

Acknowledgements We warmly thank Baptiste Averly for his involvement in the preliminary experiments that led to this study.

Data accessibility Data are available on Figshare (doi: https://doi.org/10.6084/m9.figshare.6840179).

Funding MD was funded by a Fysseen Foundation postdoctoral grant.

Compliance with ethical standards

Ethical approval All applicable international, national and institutional guidelines for the care and use of animals were followed. No ethical board recommendation is needed for the work on Cornu aspersum.

Conflict of interest The authors declare that they have no conflict of interest.

References

Backeljau T, Baur A, Baur B (2001) Population and conservation genetics. In: Barker GM (ed) The biology of terrestrial molluscs. CABI, Wallingford, pp 383–412
Bailey SER (1989) Daily cycles of feeding and locomotion in Helix aspersa. Halotis 19:23–31
Balbi M, Ernoult A, Poli P, Madec L, Guiller A, Martin MC, Nabucet J, Beaujouan V, Petit EJ (2018) Functional connectivity in replicated urban landscapes in the land snail (Cornu aspersum). Mol Ecol 27:1357–1370. https://doi.org/10.1111/mec.14521
Bonte D, Dahirel M (2017) Dispersal: a central and independent trait in life history. Oikos 126:472–479. https://doi.org/10.1111/oik.03801
Bonte D, Van Dyck H, Bullock JM et al (2012) Costs of dispersal. Biol Rev 87:290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x
Chaine AS, Legendre S, Clobert J (2013) The co-evolution of multiply-informed dispersal: information transfer across landscapes from neighbors and immigrants. PeerJ 1:e44. https://doi.org/10.7717/peerj.44
Clobert J, Le Galliard J-F, Cote J et al (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209. https://doi.org/10.1111/j.1461-0248.2008.01267.x
Cote J, Boudsocq S, Clobert J (2007) Density, social information, and space use in the common lizard (Lacerta vivipara). Behav Ecol 19:163–168. https://doi.org/10.1093/beheco/arm119
Cote J, Bocedi G, Debeffle L, Chudzińska ME, Weigang HC, Dytham C, Gonzalez G, Matthysen E, Travis J, Baguette M, Hewison AJM (2017) Behavioural synchronisation of large-scale animal movements – disperse alone, but migrate together? Biol Rev 92:1275–1296. https://doi.org/10.1111/brv.12279
Dahirel M, Séguret A, Ansart A, Madec L (2016a) Dispersal-related traits of the snail Cornu aspersum along an urbanisation gradient: maintenance of mobility across life stages despite high costs. Urban Ecosyst 19:1–13. https://doi.org/10.1007/s11252-016-0564-y
Dahirel M, Vardakis M, Ansart A, Madec L (2016b) Density-dependence across dispersal stages in a hermaphroditic land snail: insights from discrete choice models. Oecologia 181:1117–1128. https://doi.org/10.1007/s00442-016-3636-z
Dahirel M, Vong A, Ansart A, Madec L (2017) Individual boldness is life stage-dependent and linked to dispersal in a hermaphroditic land snail. Ecol Res 32:751–755. https://doi.org/10.1007/s11284-017-1484-x
Dan N (1978) Studies on the growth and ecology of Helix aspersa Müller. PhD thesis, University of Manchester
Dan N, Bailey SER (1982) Growth, mortality, and feeding rates of the snail Helix aspersa at different population densities in the laboratory, and the depression of activity of helicid snails by other individuals, or their mucus. J Molluscan Stud 48:257–265
Davies MS, Blackwell J (2007) Energy saving through trail following in a marine snail. Proc R Soc B 274:1233–1236. https://doi.org/10.1098/rspb.2007.0046
Denny M (1980) Locomotion: the cost of gastropod crawling. Science 208:1288–1290. https://doi.org/10.1126/science.208.4449.1288
Holland BS, Gousy-Leblanc M, Yew JY (2018) Strangers in the dark: behavioral and biochemical evidence for trail pheromones in Hawaiian tree snails. Invertebr Biol 137:124–132. https://doi.org/10.1111/ivb.12211
Jacob S, Bestion E, Legrand D, Clobert J, Cote J (2015a) Habitat matching and spatial heterogeneity of phenotypes: implications for metapopulation and metacommunity functioning. Evol Ecol 29:851–871. https://doi.org/10.1007/s10682-015-9776-5
Jacob S, Chaine AS, Schtickzelle N, Huet M, Clobert J (2015b) Social information from immigrants: multiple immigrant-based sources of information for dispersal decisions in a ciliate. Annu Ecol 84:1373–1383. https://doi.org/10.1111/1365-2656.12380
McKee A, Voltzow J, Pernet B (2013) Substrate attributes determine gait in a terrestrial gastropod. Biol Bull 224:53–61
Ng TPT, Salint SH, Davies MS, Johannesson K, Stafford R, Williams GA (2013) Snails and their trails: the multiple functions of trail-following in gastropods. Biol Rev 88:683–700. https://doi.org/10.1017/brv.12023
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Shirtcliffe NJ, McHale G, Newton MI (2012) Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces. PLoS One 7:e36983. https://doi.org/10.1371/journal.pone.0036983

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.