Research Article

Optimal Connected Cruise Control Design with Time-Varying Leader Velocity and Delays

Lihan Liu, Yi Xue, Huamin Chen, Zhuwei Wang, Chao Fang, Yang Sun, and Yanhua Sun

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
School of Information, Beijing Wuzi University, Beijing 101149, China
Purple Mountain Laboratory: Networking, Communications and Security, Nanjing, China

Correspondence should be addressed to Huamin Chen; chenhuamin@bjut.edu.cn

Received 14 October 2021; Accepted 23 November 2021; Published 10 December 2021

Academic Editor: Shahid Hussain

Copyright © 2021 Lihan Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of intelligent transportation system (ITS), owing to its flexible connectivity structures and communication network topologies, connected cruise control (CCC), increasing the situation awareness of the autonomous vehicle without redesigning the other vehicles, is an advanced cruise control technology attracted extensive attention. However, due to the uncertain traffic environment and the movement of the connected vehicles, the leader speed is typically highly dynamic. In this paper, taking the uncertain time-varying leading vehicle velocity and communication delays into consideration, an optimal CCC algorithm is proposed for both near-static case and general dynamic control cases. First, the analysis for discrete-time error dynamics model of the longitudinal vehicle platoon is performed. Then, in order to minimize the error between the desired and actual states, a linear quadratic optimization problem is formulated. Subsequently, in near-static control case, an efficient algorithm is proposed to derive the solution of the optimization problem by two steps. Specifically, the online step calculates the optimal control scheme according to the current states and previous control signals, and the off-line step calculates the corresponding control gain through backward recursion. Then, the results are further extended to the general dynamic control case where the leader vehicle moves at an uncertain time-varying velocity. Finally, simulation results verify the effectiveness of the proposed CCC algorithm.

1. Introduction

In recent years, the increasing number of vehicles has led to serious problems of congestion, air pollution, and traffic accidents. Intelligent transportation system (ITS), as a system integrating key technologies in the fields of electronics, computing, sensing, robotics, control, signal processing, and communications, will provide a more coordinated and safer traffic network by reducing driving load, increasing traffic information, and strengthening route management [1–3]. One of the typical applications of ITS is cruise control system, which plays an important role in improving on-road safety by relieving drivers’ burden [4–8].

Connected cruise control (CCC) has been recognized as an emerging cruise control technology that is significantly improving the reliability, stability, and safety of vehicles and has recently attracted considerable attention in both academia and industry [9–11]. In particular, CCC allows the autonomous vehicle to benefit from V2V information broadcast by multiple vehicles in front without requiring those vehicles to be equipped with sensors and actuators. Human-driven vehicles in a platoon only need to broadcast their motion information to the communication network, without the need to install other equipment. Furthermore, the CCC system has a flexible network topology that allows each vehicle to communicate with nearby members using vehicle-to-vehicle (V2V) communications [12–14]. CCC vehicles can exploit V2V communications to collect real-time status information such as the distance, speed, and acceleration of multiple vehicles from vehicles ahead [15, 16]. Then, a suitable control strategy is proposed to provide safe and stable driving according to the information received. In general, there is evidence that CCC is...
capable to meet the high requirements of future intelligent transportations, due to its flexible communication network topologies and connectivity structures [17–19].

Despite the merits mentioned above, various factors induced by wireless communication such as communication delays and connectivity topologies will cause the significant stability degradation of CCC system, which makes the controller design more challenging [20–22]. In [23–25], the influence of heterogeneous connectivity topologies on the dynamics of connected automated vehicles is investigated, and analytical conditions for stability are derived. To prevent the feasibility and efficiency of the CCC system from decreasing due to communication delays, the control design has been extensively concerned. In [15, 26], the authors propose relevant approaches to compensate for the communication delays of the CCC system. Molnár et al. [15] propose two predictor feedback control methods to deal with the destabilizing effect of the delay induced by the packet losses and sample-and-hold unit. In order to compensate for time delays including state delays and control input delays, a comprehensive predictive control method for automated vehicles is proposed by Liu and Li [26]. However, the works in [15, 26] are aimed at dealing with the specific delays. To promote the control performance and enhance the system stability, studies focus on the optimal control strategy of CCC system in the presence of communication delays [27, 28]. The work [27] derives the optimal feedback strategy to minimize the cost function in the infinite horizon considering both driver's reaction time and communication delays. In [28], in order to address the disturbances caused by stochastic communication delays, an optimal CCC control algorithm based on reverse iterative calculation is proposed. Unfortunately, although the above optimal control approaches take the uncertainty of wireless communication into consideration, they focus on near-static scenarios. However, the dynamic traffic environment and the movement of the controlled vehicle make the CCC system parameters a time-varying characteristic [29, 30]. Studies have shown that since the platoon is an interconnected coupling system, even if a small disturbance, the changing state of the leading vehicle may affect other vehicle or even amplify the error, which may trigger string instability of the system [31]. In other words, the traditional optimal control approaches which focus on static scenarios may lead to system instability and even safety issues when dealing with dynamic and complex traffic environments [32].

For the platoon control strategy under high dynamic characteristics, relevant research has been carried out [33–35]. In [36], the authors address the impact of external disturbances by introducing the stability of disturbance string, and design a controller track which proposed a control structure by estimating the dynamic parameters to make the heterogeneous CACC problem change into an error dynamics problem for each vehicle. Velocity disturbances are typically caused by environmental circumstances such as gust, rolling resistance, and ground friction [31, 37]. In [31], two distributed adaptive strategies are proposed for string stability of nonlinear vehicle following which take the uncertainty of nonlinear acceleration into consideration.

The authors in [37] propose a sampled-data adaptive dynamic programming strategy to handle the optimal control problem facing both the communication delays and the unpredictable changes in speed of the leading vehicle due to the driver behaviour and wind conditions. To handle the situation that the leading vehicle is moving at a time-varying velocity, Sun et al. [38] develop two coordinated tracking control schemes, integrating the distributed leader velocity observers, which is concerning with both constant and time-varying leader velocity cases, and then, the stability is proved by Lyapunov-Krasovskii method. Unfortunately, the research on optimal control design of discrete-time CCC systems in high dynamic scenarios in the presence of time delays is still not yet sufficient.

In this article, to tackle the above problems and challenges, for the discrete time domain multivehicle platoon with dynamic velocity of leading vehicle and communication delays, the optimal CCC design is comprehensively studied. We first formulate a linear discrete-time model of vehicle's error dynamics. Then, we solve the optimal longitudinal control problem of near-static case. Finally, we extend the results to the general time-varying velocity case. To summarize, this article makes the following contributions.

(i) According to the analysis of the vehicle platoon error dynamics considering the high dynamic characteristics including both uncertain time-varying leader vehicle velocity and communication delays, we formulate a CCC system model in discrete time domain.

(ii) In order to make the platoon reach the desired headway and velocity, we propose an optimization longitudinal control problem as a linear quadratic cost function according to error dynamics and then investigate the effects of both time-varying leader velocity and network-induced delays.

(iii) To address both near-static case and general dynamic control case, we formulate an optimal control algorithm. In near-static case, we derive a linear optimal control strategy, in which the function coefficient can be obtained off-line by using a backward recursion. Then, we extend the results to the general time-varying velocity case where the leading vehicle moves with an uncertain time-varying velocity.

(iv) Numerical simulation results corroborate the system effectiveness considering the effects of velocity uncertainty of leading vehicle and communication delay.

2. System Modeling and Optimization

Problem Formulation

2.1. Vehicle Dynamics Analysis. In general, vehicles in the connected vehicular platoon can be classified into two categories, namely, the human-driven vehicles and the autonomous CCC vehicles. The leading vehicle of the platoon is a tracking target. The other human-driven vehicles can transmit motion
The autonomous CCC vehicle equipped with a controller which can obtain information of headway and velocity from other vehicles using V2V communication.

As shown in Figure 1, consider total \(p \) vehicles in the whole longitudinal control system, including multiple \(q \) autonomous CCC vehicles, and then, the whole system can be split into \(q \) individual vehicular platoons. In particular, the first platoon is from the leading vehicle to the first CCC vehicle, which is consist of \(m + 1 \) vehicles. We denote the first CCC vehicle as \(#m + 1\) and the preceding human-driven vehicles as \(m, \cdots, 2, 1\), and the leading vehicle \#1 is moving at the determined desired speed. In the rest of \(q - 1 \) platoons, there are two CCC vehicles in each platoon. The last CCC vehicle in the \(j \)-th platoon is the leading vehicle of the \(j + 1 \)-th platoon. For example, as shown in Figure 1, the \(m + 1 \) CCC vehicle becomes the leading vehicle of the second platoon, and the vehicle \#m + n + 1 \#in the second platoon, which also is the leading vehicle of the third platoon.

For a given vehicular platoon, the dynamic equation for the headway and velocity of human-driven vehicles can be modelled as

\[
\begin{align*}
\dot{p}_j(t) &= \gamma_{j+1} \left(p^d(h_j(t)) - p_{j+1}(t) \right) + \eta_{j+1} \left(p_j(t) - p_{j+1}(t) \right), \\
\dot{h}_j(t) &= p_j(t) - p_{j+1}(t),
\end{align*}
\]

(1)

where \(p_j \) represents the velocity of the \(j \)-th vehicle, \(h_j \) represents the headway, \(\dot{p}_j \) denotes the derivative with respect to time \(t \), \(\gamma_j \) and \(\eta_j \) are system parameters related to driver’s behaviour, and the typical headway-based desired velocity policy \(p^d(h) \) is given by

\[
p^d(h) = \begin{cases} 0, & \text{if } 0 < h < h_{\min}\,^*, \\
\frac{p_{\max}}{2} \left(1 - \cos \left(\frac{\pi}{h_{\max} - h_{\min}} (h - h_{\min}) \right) \right), & \text{if } h_{\min} \leq h \leq h_{\max}, \\
p_{\max}, & \text{if } h > h_{\max},
\end{cases}
\]

(2)

where \(p_{\max} \) is the maximum velocity and \(h_{\min} \) and \(h_{\max} \) are the minimum and maximum headways, respectively.

The dynamic equation for the velocity, headway, and the control signal of the CCC vehicle can be written as

\[
\begin{align*}
\dot{p}_j(t) &= u(t - \tau(t)), \\
\dot{h}_j(t) &= p_{j+1}(t) - p_j(t),
\end{align*}
\]

(3)

where \(u(t) \) represents the control signal to determine the acceleration of CCC vehicle and \(\tau(t) \) denotes the communication delays caused by the characteristics of wireless V2V communications.

The target of the control system is to make each vehicle reach the desired headway \(h^*(t) \) and desired velocity \(p^*(t) = p^d(h^*(t)) \). Therefore, the velocity error and the headway error can be formulated as

\[
\begin{align*}
\dot{\hat{p}}(t) &= p(t) - p^*(t), \\
\dot{\hat{h}}(t) &= h(t) - h^*(t).
\end{align*}
\]

(4)

Then, for the CCC vehicle, the error dynamics can be derived as

\[
\begin{align*}
\dot{\hat{p}}_j(t) &= u(t - \tau(t)), \\
\dot{\hat{h}}_{j-1}(t) &= \hat{p}_{j-1}(t) - \hat{p}_j(t).
\end{align*}
\]

(5)

In the first platoon, the leading vehicle is moving at the constant speed with a near-static state. In this case, the desired velocity keeps as constant that \(p_1 = p^* \), and the desired headway \(h^*(t) = h^* \).

\[
\begin{align*}
\dot{\hat{p}}_{j+1}(t) &= \gamma_{j+1} \left(p^d(h_j(t)) - \hat{p}_{j+1}(t) \right) + \eta_{j+1} \left(\hat{p}_j(t) - \hat{p}_{j+1}(t) \right), \\
\dot{\hat{h}}_j(t) &= \hat{p}_j(t) - \hat{p}_{j+1}(t).
\end{align*}
\]

(6)

In other platoons, the leading vehicle is running in a time-varying velocity with a high dynamic state. Therefore, for the human-driven vehicles, the error dynamics can be derived as
where $\delta(t)$ is the extra acceleration interference term introduced by the dynamic time-varying characteristics of $h^*(t)$.

The number of vehicles is in each platoon independently. Assuming there are total n vehicles in the vehicular platoon and the first one is the leading vehicle, based on equation reference goes here (5) and (7), the error dynamics of the vehicles can be expressed as

$$\dot{\bar{y}}_{i+1}(t) = A\bar{y}_i(t) + Bu(t - \tau(t)) + \delta(t),$$

and here

$$\alpha_j = \gamma_j \bar{p}^j(h^*(t)),$$

$$\beta_j = -\eta_j.$$

2.2. Optimization Problem Formulation. In this subsection, the platoon model in discrete-time domain is proposed, and then, the optimal control problem is formulated as minimizing the state errors of CCC vehicle.

A new state vector is defined as

$$\bar{x}(t) = [\bar{h}_{n-1}(t), \bar{p}_n(t), \bar{h}_{n-2}(t), \bar{p}_{n-1}(t), \cdots, \bar{h}_1(t), \bar{p}_2(t)]^T.$$

Then, based on (8), the following vehicle-platoon model can be formulated.

$$\dot{\bar{x}}(t) = Ax(t) + Bu(t - \tau(t)) + \delta(t),$$

where

$$A = \begin{bmatrix}
0 & -1 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \alpha_{n-1} & \beta_{n-1} & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & 0 & \alpha_3 & \beta_3 & \gamma_3 & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & -1 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \alpha_2 & \beta_2 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{bmatrix},$$

$$B = [0, 1, 0, \cdots, 0]^T,$$

$$\delta(t) = [0, 0, \delta_{n-1}(t), 0, \cdots, \delta_2(t)]^T.$$
\[Q_0 = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \]

where \(I \) and 0 denote identity and zero matrices, respectively.

3. Optimal Controller Design

In this section, the optimal control strategy for the CCC vehicle is derived. First, a near-static case where the leading vehicle moves in a near-constant velocity is considered. Then, the results are extended to the general case where the leading vehicle that moves with a time-varying velocity.

3.1. Near-Static Control Strategy Design

When the leading vehicle is in a near-constant velocity, this situation can be seen as near-static case. In this case, the desired velocity keeps as constant that \(p_1 = p^* \); the acceleration of leading vehicle is equal to zero, so that \(G_k \) is equal to zero. Therefore, the corresponding discrete-time system can be simplified as

\[
x_{k+1} = A_k x_k + B_{1k} u_k + B_{2k} u_{k-1},
\]

Thus, the optimization problem can be written as the following equivalent form

\[
\min x_N^T Q_0 x_N + \sum_{k=0}^{N-1} (x_k^T Q_0 x_k + u_k^T R u_k),
\]

\[
\text{s.t. } x_{k+1} = A_k x_k + B_{1k} u_k + B_{2k} u_{k-1}.
\]

Define

\[
z_k = \begin{bmatrix} x_k \\ u_{k-1} \end{bmatrix}. \]

Then, the discrete-time dynamics can be derived as

\[
z_{k+1} = W_k z_k + Y_k u_k,
\]

where

\[
W_k = \begin{bmatrix} A_k & B_{2k} \\ 0 & 0 \end{bmatrix}, Y_k = \begin{bmatrix} B_{1k} \\ I \end{bmatrix}.
\]

Then, the optimization problem (15) can be simplified as

\[
\min z_N^T Q z_N + \sum_{k=0}^{N-1} \begin{bmatrix} z_k \\ u_k \end{bmatrix}^T \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} z_k \\ u_k \end{bmatrix},
\]

\[
\text{s.t. } z_{k+1} = W_k z_k + Y_k u_k.
\]

Theorem 1. For the near-static case, the optimal control problem (23) can be derived as

\[
u_k^* = -L_k z_k, \quad k = 0, 1, \ldots, N-1,
\]

where the optimal control gain \(L_k \) is iteratively calculated by

\[
L_k = (Y_k^T S_{k+1} Y_k + R)^{-1} Y_k^T S_{k+1} W_k,
\]

\[
S_k = W_k^T S_{k+1} W_k + \bar{Q} - L_k Y_k^T S_{k+1} W_k,
\]

\[
S_N = \bar{Q}.
\]

Proof. The residual cost function can be defined as

\[
V_k = z_N^T Q z_N + \sum_{i=k}^{N-1} \begin{bmatrix} z_i \\ u_i \end{bmatrix}^T \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} z_i \\ u_i \end{bmatrix}.
\]

It can be observed that the residual cost function \(V_k \) is a part of the cost function. Minimizing \(V_k \) is equal to minimizing the cost function. Then, to obtain the optimal control
gain L_k, the cost function can be iteratively calculated by the backwards recursion.

(1) $k = N$: when $k = N$, V_k is the last term of the cost function:

$$V_N = z_N^T Q_N z_N.$$ \hfill (27)

Set $S_N = \bar{Q}$, it can be obtained

$$V_N = z_N^T \bar{Q} z_N.$$ \hfill (28)

It is obvious that V_k is a quadratic function of z_N.

Algorithm 1: Optimal Control Design.

1. **Step1: Off-line**
 2. Initialize $\bar{S}_N = \bar{Q}$
 3. for $k = N-1 : -1 : 0$ do
 4. Calculate \bar{L}_k according to
 5. $\bar{L}_k = [\bar{Y}_k^T S_{k+1} \bar{Y}_k + \bar{R}]^{-1} \bar{Y}_k^T S_{k+1} \bar{W}_k$.
 6. Calculate \bar{S}_k according to
 7. $\bar{S}_k = \bar{W}_k^T S_{k+1} \bar{W}_k + \bar{Q} - \bar{L}_k \bar{Y}_k^T S_{k+1} \bar{W}_k$.
 8. end

9. **Step2: On-line**
 10. Initialize $x_i, u_i^0, k = 0, k \leq 0$.
 11. for $k = 0 : 1 : N-1$ do
 12. Update x_k and $z_k = [x_k^T, (\tilde{u}_{k-1}^*)^T]^T$.
 13. Calculate \tilde{u}_k^* according to $\tilde{u}_k^* = -\bar{L}_k z_k$.
 14. end

Figure 4: Velocity of CCC vehicle in near-static control case.

(2) $k = N-1$: V_{N-1} can be formulated into the following form:

$$V_{N-1} = V_N + \begin{bmatrix} z_{N-1} \\ u_{N-1} \end{bmatrix}^T \begin{bmatrix} \bar{Q} & 0 \\ 0 & \bar{R} \end{bmatrix} \begin{bmatrix} z_{N-1} \\ u_{N-1} \end{bmatrix} = z_{N-1}^T \bar{Q} z_{N-1} + \bar{u}_{N-1}^T \bar{R} u_{N-1}.$$ \hfill (29)

Based on (23) and (26), V_{N-1} can be derived as

$$V_{N-1} = z_{N-1}^T \bar{Q} z_{N-1} + \bar{u}_{N-1}^T \bar{R} u_{N-1}$$

$$= [W_{N-1} z_{N-1} + Y_{N-1}^T S_{N-1} W_{N-1}^T z_{N-1} + Y_{N-1}^T u_{N-1}] + z_{N-1}^T \bar{Q} z_{N-1} + \bar{u}_{N-1}^T \bar{R} u_{N-1}$$

$$= z_{N-1}^T [W_{N-1}^T S_{N-1} W_{N-1} + \bar{Q}] z_{N-1} + u_{N-1}^T Y_{N-1}^T S_{N-1} W_{N-1}^T z_{N-1} + z_{N-1}^T W_{N-1}^T S_{N-1} Y_{N-1}^T u_{N-1} + u_{N-1}^T [Y_{N-1}^T S_{N-1} Y_{N-1} + \bar{R}] u_{N-1}.$$ \hfill (30)

Then, V_{N-1} can be further simplified as

$$V_{N-1} = \begin{bmatrix} z_{N-1} \\ u_{N-1} \end{bmatrix}^T \begin{bmatrix} P_{1,1} & P_{1,2} \\ P_{2,1} & P_{2,2} \end{bmatrix} \begin{bmatrix} z_{N-1} \\ u_{N-1} \end{bmatrix},$$ \hfill (31)

where

$$P_{1,1} = W_{N-1}^T S_{N-1} W_{N-1} + \bar{Q},$$

$$P_{2,2} = Y_{N-1}^T S_{N-1} Y_{N-1} + \bar{R},$$

$$P_{1,2} = W_{N-1}^T S_{N-1} Y_{N-1},$$

$$P_{2,1} = P_{1,2}^T.$$ \hfill (33)
Evidently, V_{N-1} is determined by u_{N-1} and z_{N-1}. Therefore, Equation (30) can be rewritten as

$$V_{N-1} = z_{N-1}^T P_{1,1} z_{N-1} + u_{N-1}^T P_{2,1} z_{N-1} + z_{N-1}^T P_{1,2} u_{N-1} + u_{N-1}^T P_{2,2} u_{N-1}$$

$$= P_{2,2} \left(u_{N-1} + P_{2,2}^{-1} P_{2,1} z_{N-1} \right)^T + z_{N-1}^T P_{1,1} z_{N-1} - P_{2,2}^{-1} (P_{2,1} z_{N-1})^2. \tag{34}$$

To minimizing V_{N-1}, the optimal control strategy u_{N-1}^* can be derived as

$$u_{N-1}^* = -L_{N-1} z_{N-1}, \tag{35}$$

where

$$L_{N-1} = -P_{2,2}^{-1} P_{2,1} = \left[Y_{N-1}^T S_N Y_{N-1} + R \right]^{-1} Y_{N-1}^T S_N W_{N-1}. \tag{36}$$

According to u_{N-1}^* in (35), V_{N-1} is given by

$$V_{N-1} = z_{N-1}^T S_{N-1} z_{N-1}, \tag{37}$$

where

$$S_{N-1} = W_{N-1}^T S_N W_{N-1} + Q - L_{N-1}^T Y_{N-1}^T S_N W_{N-1}. \tag{38}$$

(3) $k = N - 2, N - 3, \ldots, 0$: when $i > k$, assuming V_i has the same quadratic form that

$$V_i = z_i^T S_i z_i, \tag{39}$$

According to (26) and (39), V_k is given by

$$V_k = z_k^T S_k z_k. \tag{40}$$

Similarly, since the form of (29) and (40) are the same, u_k can be derived as

$$u_k^* = -L_k z_k, \tag{41}$$
able with mean value zero and variance matrix \(\sigma_\omega \) by using a backward recursion based on (42).

The term \(z_k \) is dynamic to the following vehicles. Therefore, the optimal control problem should consider the uncertain time-varying velocity, which is typically assumed to be a stochastic variable with mean value zero and variance matrix \(\sigma_\omega \).

3.2. General Control Strategy Design. In general case, the leading vehicle is moving in a time-varying velocity, which is dynamic to the following vehicles. Therefore, the optimization problem should consider the uncertain time-varying term \(G_k \), which is typically assumed to be a stochastic variable with mean value zero and variance matrix \(\sigma_\omega \).

Then, based on the definition in (20), the general control problem can be rewritten as

\[
\min \mathbb{E} \left[z_N^T Q z_N + \sum_{k=0}^{N-1} z_k^T Q z_k + u_k^T R u_k \right] = \sum_{k=0}^{N-1} z_k^T Q z_k + u_k^T R u_k, \quad (44)
\]

where

\[
W_k = \begin{bmatrix} A_k & B_{2k} \\ 0 & 0 \end{bmatrix}, \quad Y_k = \begin{bmatrix} B_{1k} \\ I \end{bmatrix}. \quad (45)
\]

Theorem 2. For the general case, the optimal control problem can be similarly deduced as

\[
\tilde{u}_k^* = -\tilde{L}_k z_k, \quad k = 0, 1, \ldots, N - 1,
\]

where \(\tilde{L}_k \) is calculated iteratively by

\[
\tilde{L}_k = \left(\tilde{Y}_k^T \tilde{S}_{k+1} \tilde{Y}_k + R \right)^{-1} \tilde{Y}_k^T \tilde{S}_{k+1} \tilde{W}_k,
\]

\[
\tilde{S}_k = \tilde{W}_k^T \tilde{S}_{k+1} \tilde{W}_k + \tilde{Q} - \tilde{L}_k \tilde{Y}_k^T \tilde{S}_{k+1} \tilde{W}_k,
\]

and \(\tilde{V}_k \) can be written as

\[
\tilde{V}_k = z_k^T \tilde{S}_k z_k + \sum_{i=1}^{N-1} \text{tr} \left(\tilde{S}_i \sigma_\omega \right),
\]

where \(\text{tr}(\cdot) \) denotes the trace of the matrix, and \(\tilde{S}_i \) represents the \((1,1)\)th block of \(\tilde{S}_i \) with the same size of \(\delta_\epsilon \).

Proof. According to the derivation process in the last subsection from (21) to (30), the results can be extended to the general dynamic case.

\[(1) \quad k = N - 1: \tilde{V}_{N-1} \text{ can be derived as } \]

\[\tilde{V}_{N-1} = \mathbb{E} \left[z_{N-1}^T Q z_{N-1} + z_{N-1}^T R u_{N-1} \right] = \tilde{P}_{1,1} \tilde{P}_{2,2} \tilde{S}_{N-1} + \mathbb{E} \left[G_{N-1} \tilde{S}_{N-1} G_{N-1} \right] (49) \]

where

\[
\tilde{P}_{1,1} = \tilde{W}_{N-1}^T \tilde{S}_{N-1} \tilde{W}_{N-1} + \tilde{Q},
\]

\[
\tilde{P}_{2,2} = \tilde{Y}_{N-1}^T \tilde{S}_{N-1} \tilde{Y}_{N-1} + R,
\]

\[
\tilde{P}_{1,2} = \tilde{W}_{N-1}^T \tilde{S}_{N-1} \tilde{Y}_{N-1},
\]

\[
\tilde{P}_{2,1} = \tilde{Y}_{N-1}^T \tilde{S}_{N-1} \tilde{W}_{N-1},
\]

Then, the optimal strategy \(\tilde{u}_{N-1}^* \) is formulated by

\[
\tilde{u}_{N-1}^* = -\tilde{L}_{N-1} z_{N-1},
\]

where

\[
\tilde{L}_{N-1} = \tilde{P}_{2,2}^{-1} \tilde{P}_{2,1} = \left(\tilde{Y}_{N-1}^T \tilde{S}_{N-1} \tilde{Y}_{N-1} + R \right)^{-1} \tilde{Y}_{N-1}^T \tilde{S}_{N-1} \tilde{W}_{N-1}. \]
Figure 8: Acceleration of CCC vehicle in general control case.

Figure 9: Headway of the CCC vehicle of different algorithms in near-static control case.
Figure 10: Velocity of the CCC vehicle of different algorithms in near-static control case.

Figure 11: Acceleration of the CCC vehicle of different algorithms in near-static control case.
Figure 12: Headway of the CCC vehicle of different algorithms in general control case.

Figure 13: Velocity of the CCC vehicle of different algorithms in general control case.
and V_k can be formulated as

$$
\tilde{V}_{N-1} = z_{N-1}^T S_{N-1} z_{N-1} + \sum_{i=k+1}^{N-1} \text{tr} \left(S_i^1 \sigma_\omega \right),
$$

(53)

(2) $k = N - 2, \ldots, 1, 0$: assuming $\tilde{V}_i, i \geq k + 1$ also has the quadratic form that

$$
\tilde{V}_k = z_k^T S_k z_k + \sum_{i=k+1}^{N-1} \text{tr} \left(S_i^1 \sigma_\omega \right).
$$

(54)

Similar to the derivation from (39) to (43), the optimal control strategy for general dynamic case can be given by

$$
\tilde{u}_k^* = -\tilde{L}_k z_k,
$$

(55)

where \tilde{L}_k can be derived iteratively base on \tilde{S}_{k+1} as in (44), and

$$
\tilde{V}_k = z_k^T S_k z_k + \sum_{i=k+1}^{N-1} \text{tr} \left(S_i^1 \sigma_\omega \right).
$$

(56)

Thus, considering the uncertain item δ_k, the residual cost function has an extra cost item $\sum_{i=k+1}^{N} \text{tr} \left(S_i^1 \delta_\delta \right)$. Although time-varying items \tilde{W}_k, \tilde{Y}_k, and δ_k introduced by high dynamic features of leading vehicle exist, the control strategy can also be acquired through backward recursion, which is summarized as Algorithm 1.

3.3. Simulation Results. In this section, simulation results of the connected vehicle system have been provided to demonstrate the effectiveness of the proposed backward iteration algorithm in different situations. As described in Figure 1, we consider a three-vehicle platoon. The initial states for the vehicles are set as $p_1(0) = 10$ (m/s), $p_2(0) = 10$ (m/s), $p_3(0) = 10$ (m/s), $h_1(0) = 15$ (m), and $h_2(0) = 15$ (m). The sampling period T are chosen as 0.4 s and 0.2 s, and the communication delays are set as $\tau = 0.5T$. The other parameters are set as $p_{\text{max}} = 35$ (m/s), $h_{\text{min}} = 5$ (m), $h_{\text{max}} = 35$ (m), and $\gamma = \eta = 0.6$.

First, the headway, velocity, and acceleration of CCC vehicle in near-static control case with different network-induced delays are shown in Figures 3–5, respectively. We observe that the headway and velocity of CCC vehicle can be gradually close to the desired headway and velocity that the proposed two-step optimal control algorithm can ensure the system stability. It also can be seen that the network-induced delay causes the performance degradation of CCC system, because the time required for CCC vehicle to successfully catch up with the leading vehicle becomes larger with the network-induced delay increasing.

Then, the results are extended to the general control case that the leader velocity is time-varying. The headway h and velocity trajectories p of the CCC vehicle in this case are shown from Figures 6–8. It can be seen that the proposed optimal control algorithm is able to maintain the system stability with different network-induced delays. Similarly, when the time delay caused by the network becomes larger, it is much more difficult for CCC vehicles to achieve the required
headway and velocity. It indicates that the network-induced delays cause the degradation of system performance.

The performance comparisons between the proposed CCC algorithm and existing algorithm in [28] that ignores the dynamic feature of leading vehicle are shown from Figures 9–14. It can be observed from figures that the proposed CCC algorithm has faster convergence and better stability, which effectively compensates the influence of network-induced delays and dynamic leading velocity.

4. Conclusions

In this paper, we investigate an optimal control strategy design for the CCC system considering high dynamic characteristics including the uncertain time-varying acceleration of leading vehicle and network-induced delay. To control the CCC vehicle achieving the desired states, we propose a linear quadratic optimization problem with the objective of minimizing the errors between actual and desired states. Then, a backward recursion algorithm is developed to address this challenge in near-static case by two steps, and then, the algorithm is extended to general case. Simulation results have demonstrated the effectiveness of the proposed algorithm. More importantly, the simulation results provide that even if the leading vehicle moves as an uncertain time-varying acceleration, the control strategy can make the CCC vehicle quickly reach the desired states. Moreover, the network-induced delay will result in slower reactions of CCC vehicle.

In this paper, both the dynamic leader velocity and the communication delay are considered, and an interesting future work is to address the other constraints such as packet losses, channel interference, and communication bandwidth in the optimal CCC design. In addition, the cooperation between automated vehicles is not investigated in the proposed algorithm that only one CCC vehicle needs to be controlled in each individual longitudinal platoon. The cooperative adaptive cruise control for platoon merging with uncertain dynamics is another promising research topic in our future works [39, 40].

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the Beijing University of Technology Project–5G Algorithm Design and Development Simulation (40042001202109), Beijing Natural Science Foundation (L202016), Research on Key Technologies and Application for National Speed Skating Oval Intelligent Service (40106002201902), National Key Research and Development Program of China (2020YFF0305400), Scientific Research Plan of Beijing Municipal Commission of Education (KM201910005026), and Beijing Nova Program of Science and Technology (Z191100001119094)

References

[1] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, "Big data analytics in intelligent transportation systems: a survey," IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 1, pp. 383–398, 2019.
[2] K. N. Qureshi and A. H. Abdullah, "A survey on intelligent transportation systems," Middle-East Journal of Scientific Research, vol. 15, no. 5, pp. 629–642, 2013.
[3] Y. Fu, C. Li, F. R. Yu, T. H. Luan, and Y. Zhang, "A survey of driving safety with sensing, vehicular communications, and artificial intelligence-based collision avoidance," IEEE Transactions on Intelligent Transportation Systems, pp. 1–22, 2021.
[4] A. Zeer, P. K. Singh, and Y. Singh, "Intelligent transport system: a progressive review," Indian Journal of Science and Technology, vol. 9, no. 32, 2016.
[5] F. Qu, F.-Y. Wang, and L. Yang, "Intelligent transportation spaces: vehicles, traffic, communications, and beyond," IEEE Communications Magazine, vol. 48, no. 11, pp. 136–142, 2010.
[6] V. Milánés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, "Cooperative adaptive cruise control in real traffic situations," IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 1, pp. 296–305, 2014.
[7] B. van Arem, C. J. G. van Driel, and R. Visser, "The impact of cooperative adaptive cruise control on traffic-flow characteristics," IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp. 429–436, 2006.
[8] Y. Fu, C. Li, F. R. Yu, T. H. Luan, and Y. Zhang, "Hybrid autonomous driving guidance strategy combining deep reinforcement learning and expert system," IEEE Transactions on Intelligent Transportation Systems, pp. 1–14, 2021.
[9] G. Orosz, "Connected cruise control: modelling, delay effects, and nonlinear behaviour," Vehicle System Dynamics, vol. 54, no. 8, pp. 1147–1176, 2016.
[10] J. I. Ge and G. Orosz, "Connected cruise control among human-driven vehicles: experiment-based parameter estimation and optimal control design," Transportation Research Part C: Emerging Technologies, vol. 95, pp. 445–459, 2018.
[11] A. Talebpour and H. S. Mahmassani, "Influence of connected and autonomous vehicles on traffic flow stability and throughput," Transportation Research Part C: Emerging Technologies, vol. 71, pp. 143–163, 2016.
[12] J. I. Ge and G. Orosz, "Dynamics of connected vehicle systems with delayed acceleration feedback," Transportation Research Part C: Emerging Technologies, vol. 46, pp. 46–64, 2014.
[13] W. Gao, J. Gao, K. Ozbay, and Z.-P. Jiang, "Reinforcement-learning-based cooperative adaptive cruise control of buses in the Lincoln tunnel corridor with time-varying topology," IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3796–3805, 2019.
[14] Z. Ma, Q. Huo, X. Yang, and X. Zhao, "Safety cruise control of connected vehicles using radar and vehicle-to-vehicle communication," IEEE Systems Journal, vol. 14, no. 3, pp. 4602–4613, 2020.
[15] T. G. Molnár, W. B. Qin, T. Insperger, and G. Orosz, "Application of predictor feedback to compensate time delays in
connected cruise control,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 19, no. 2, pp. 545–559, 2018.

[16] W. B. Qin, M. M. Gomez, and G. Orosz, “Stability and frequency response under stochastic communication delays with applications to connected cruise control design,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 18, no. 2, pp. 388–403, 2017.

[17] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected vehicles: solutions and challenges,” *Internet of Things Journal*, vol. 1, no. 4, pp. 289–299, 2014.

[18] S. Gong, A. Zhou, and S. Peeta, “Cooperative adaptive cruise control for a platoon of connected and autonomous vehicles considering dynamic information flow topology,” *Transportation Research Record*, vol. 2673, no. 10, pp. 185–198, 2019.

[19] L. Cui, Z. Chen, A. Wang, J. Hu, and B. B. Park, “Development of a robust cooperative adaptive cruise control with dynamic topology,” *IEEE Transactions on Intelligent Transportation Systems*, pp. 1–12, 2021.

[20] W. B. Qin, M. M. Gomez, and G. Orosz, “Stability analysis of connected cruise control with stochastic delays,” in *2014 American Control Conference*, pp. 4624–4629, Portland, OR, USA, June 2014.

[21] Z. Wang, Y. Gao, C. Fang, L. Liu, S. Guo, and P. Li, “Optimal connected cruise control with arbitrary communication delays,” *IEEE Systems Journal*, vol. 14, no. 2, pp. 2913–2924, 2020.

[22] N. Zhao, H. Wu, F. R. Yu, L. Wang, W. Zhang, and V. C. Leung, “Deep reinforcement learning-based latency minimization in edge intelligence over vehicular networks,” *IEEE Internet of Things Journal*, p. 1, 2021.

[23] L. Zhang and G. Orosz, “Motif-based design for connected vehicle systems in presence of heterogeneous connectivity structures and time delays,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 17, no. 6, pp. 1638–1651, 2016.

[24] Y. Zheng, S. E. Li, J. Wang, D. Cao, and K. Li, “Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 17, no. 1, pp. 14–26, 2016.

[25] W. B. Qin and G. Orosz, “Experimental validation on connected cruise control with flexible connectivity topologies,” *IEEE/ASME Transactions on Mechatronics*, vol. 24, no. 6, pp. 2791–2802, 2019.

[26] W. Liu and Z. Li, “Comprehensive predictive control method for automated vehicles with delays,” *IEEE Access*, vol. 7, pp. 81923–81933, 2019.

[27] I. G. Jin and G. Orosz, “Optimal control of connected vehicle systems with communication delay and driver reaction time,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 18, no. 8, pp. 2056–2070, 2017.

[28] Z. Wang, Y. Gao, C. Fang, L. Liu, H. Zhou, and H. Zhang, “Optimal control design for connected cruise control with stochastic communication delays,” *IEEE Transactions on Vehicular Technology*, vol. 69, no. 12, pp. 15357–15369, 2020.

[29] S. Kwon, Y. Kim, and N. B. Shroff, “Analysis of connectivity and capacity in 1-d vehicle-to-vehicle networks,” *IEEE Transactions on Wireless Communications*, vol. 15, no. 12, pp. 8182–8194, 2016.

[30] A. Firooznia, J. Ploeg, N. Van De Wouw, and H. Zwart, “Co-design of controller and communication topology for vehicular platooning,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 18, no. 10, pp. 2728–2739, 2017.

[31] X. Guo, J. Wang, F. Liao, and R. S. H. Teo, “Distributed adaptive sliding mode control strategy for vehicle-following systems with nonlinear acceleration uncertainties,” *IEEE Transactions on Vehicular Technology*, vol. 66, no. 2, pp. 981–991, 2017.

[32] W. Gao, Z.-P. Jiang, and K. Ozbuy, “Data-driven adaptive optimal control of connected vehicles,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 18, no. 5, pp. 1122–1133, 2017.

[33] L. Zhang, J. Sun, and G. Orosz, “Hierarchical design of connected cruise control in the presence of information delays and uncertain vehicle dynamics,” *IEEE Transactions on Control Systems Technology*, vol. 26, no. 1, pp. 139–150, 2018.

[34] S. Yu and Z. Shi, “Dynamics of connected cruise control systems considering velocity changes with memory feedback,” *Measurement*, vol. 64, pp. 34–48, 2015.

[35] C. L. Melson, M. W. Levin, B. E. Hammit, and S. D. Boyles, “Dynamic traffic assignment of cooperative adaptive cruise control,” *Transportation Research Part C: Emerging Technologies*, vol. 90, pp. 114–133, 2018.

[36] B. Besselink and K. H. Johansson, “String stability and a delay-based spacing policy for vehicle platoons subject to disturbances,” *IEEE Transactions on Automatic Control*, vol. 62, no. 9, pp. 4376–4391, 2017.

[37] H. Mengzhe, G. Weinan, and J. Zhong-Ping, “Connected cruise control for a platoon of human-operated and autonomous vehicles using adaptive dynamic programming,” in *2017 36th Chinese Control Conference (CCC)*, pp. 9478–9483, Dalian, China, July 2017.

[38] Y. Sun, D. Dong, H. Qin, N. Wang, and X. Li, “Distributed coordinated tracking control for multiple uncertain Euler–Lagrange systems with time-varying communication delays,” *IEEE Access*, vol. 7, pp. 12598–12609, 2019.

[39] V. Jain, D. Liu, and S. Baldi, “Adaptive strategies to platoon merging with vehicle engine uncertainty,” *IFAC-PapersOnline*, vol. 53, no. 2, pp. 15065–15070, 2020.

[40] D. Liu, S. Baldi, V. Jain, W. Yu, and P. Frasca, “Cyclic communication in adaptive strategies to platooning: the case of synchronized merging,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 6, no. 3, pp. 490–500, 2021.