Identification of Wilms’ Tumor 1-associating Protein Complex and Its Role in Alternative Splicing and the Cell Cycle*§

Keiko Horiuchi‡, Takeshi Kawamura‡, Hiroko Iwanari‡, Riuko Ohashi§, Makoto Naito§, Tatsuhiko Kodama‡, and Takao Hamakubo‡‡

From the ‡Department of Quantitative Biology and Medicine and the §Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan and the ¶Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan

Background: WTAP is a ubiquitously expressed nuclear protein that is required for mammalian early embryo development and cell cycle progression.

Results: WTAP forms a complex with several splicing regulators.

Conclusion: WTAP regulates both the cell cycle and alternative splicing by the formation of a protein complex.

Significance: Characterization of this protein complex will help to elucidate the critically important function of WTAP in alternative splicing and cell proliferation.

Alternative splicing is the process by which multiple mRNAs are obtained from a single gene, thereby substantially increasing both protein diversity and complexity. Almost all of the transcripts of genes encoding multiple exons are alternatively spliced, and strict patterns of alternative splicing are critically important for health and normal development (1–3). The concept of alternative splicing as a major controller of gene expression was largely established on the basis of genetic studies of the Drosophila sex determination pathway, where female-specific expression of the RNA-binding protein SXL (sex-lethal) regulates the alternative splicing of Sxl, transformer, and msl-2 (male-specific-lethal 2) pre-mRNA, which control sex-specific alternative splicing and/or translation of the genes responsible for sexual differentiation and behavior (4–8). Genetic analyses have revealed that three additional genes are required for female-specific alternative splicing of Sxl: snf (sans fille) (9), vir (virilizer) (10), and fl(2)D (11). Previous studies with FL(2)D (female lethal d) antibodies showed the physical interaction of FL(2)D with SXL (12, 13), VIR (12), Snf, U2AF, U2A50, and U2AF38 (13) in embryo nuclear extracts, suggesting that FL(2)D may act at an early step in the SXL-dependent regulation of alternative splicing.

Wilms’ tumor 1-associating protein (WTAP),2 a mammalian homologue of fl(2)D, was identified as a protein that specifically interacts with Wilms’ tumor 1 (WT1) in both in vitro and in vivo assays (14). WTAP and WT1 are present together throughout the nucleoplasm as well as in speckles and colocalize in part with splicing factors (14). In addition, WTAP has been found in functional human spliceosomes (15). Other proteomic studies have also isolated WTAP as a component of the interchromatin granule clusters that correspond to nuclear speckles, where a variety of proteins involved in gene expression, such as transcription factors and splicing factors, are assembled, modified and sorted (16). Thus, WTAP is considered to have an evolutionarily conserved role in the regulation of splicing in mammalian cells. However, the detailed molecular mechanism is not well understood, although its essential role has been established in mouse early embryo development and cell cycle regulation (17, 18).

We previously reported that WTAP is required for G2/M cell cycle transition through the stabilization of cyclin A2 mRNA

2 The abbreviations used are: WTAP, Wilms’ tumor 1-associating protein; aa, amino acids; RIP, RNA co-immunoprecipitation; HUVEC, human umbilical vein endothelial cell.
and is vital for early mouse development (17). WTAP stabilizes cyclin A2 mRNA through the 3’-UTR sequence, and a suppression of WTAP expression by siRNA resulted in G2 phase accumulation in HUVECs and human neonatal dermal fibroblasts. On the other hand, Small et al. (19, 20) reported that WTAP inhibits SMC proliferation and activates apoptosis by modulating the alternative splicing of the apoptosis regulator survivin. In addition, recent studies have shown that WTAP is overexpressed in glioblastoma (21) and cholangiocarcinoma (22) and promotes the migration and invasion of these cancer cells with an effect on cell proliferation under a condition of 1% FBS. The cell type-specific effect of WTAP on cell proliferation suggests a sensitive dependence on the cellular context, such as the requisite presence of certain binding partners.

In the work presented here, we generated anti-WTAP monoclonal antibodies and identified the proteins that interact with WTAP using shotgun proteomics. The components of the WTAP complex are enriched in proteins that are involved in post-transcriptional regulation, such as pre-mRNA splicing, mRNA stabilization, polyadenylation, and/or mRNA export. Among them, double knockdown of the SR-like proteins BCLAF1 (BCL2-associated transcription factor 1) and THRAP3 (thyroid hormone receptor-associated protein 3) resulted in a decrease in the speckle localization of WTAP, whereas the nuclear speckles were intact. Depletion of the major components of the complex, such as Virilizer homolog, KIAA0853, BCLAF1/THRAP3, Hakai, and RBM15 (RNA-binding motif protein 15) resulted in reduced cell proliferation with G2 phase accumulation. Moreover, we found that the WTAP complex regulates alternative splicing of the WTAP pre-mRNA and, thereby, the expression of full-length WTAP protein. Taken together, our findings suggest that WTAP localizes to nuclear speckles through the interaction of BCLAF1 or THRAP3 and thus takes part in posttranscriptional regulation.

Experimental Procedures

Cell Culture—HUVECs (Lonza) were cultured in EGM2 medium (culture medium supplemented with growth factors) (Lonza) and used within the first six passages. HeLa and HEK293T cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum.

Antibodies—The expressed GST-full-length human WTAP protein (396 amino acids (aa)) was purified on glutathione-agarose beads (Sigma) and injected into BALB/c mice to produce the monoclonal antibodies H1122 and H1137. The Y6828 monoclonal antibody against the human WTAP N terminus was raised using a baculoviral display system, as described previously (23). Monoclonal antibodies for Virilizer (Y1639, aa 1421–1480 were used as the immunogen), Hakai (Y6048, aa 430–491), and RBM15 (Z9701, aa 430–491) were also generated. Polyclonal anti-human WTAP antibodies raised in rabbits were used for immunoblotting (17). The following antibodies were purchased and used: BCLAF1 (A300-608A, Bethyl), THRAP3 (A300-956A, Bethyl), Virilizer (A302-124A, Bethyl), KIAA0853 (ab70802, Abcam), Hakai (ARP39623_T100, Aviva Systems Biology), RBM15 (ab70549, Abcam), V5 (R960-25, Invitrogen), α-tublin (T5168, Sigma), and SC35 (S4045, Sigma).

Immunopurification of the WTAP Complexes from the Whole Cell Lysate of HUVEC, HEK293, and HeLa Cells.—Cells were grown to 75–80% confluence in a 150-mm dish, harvested, suspended in 1 ml of lysis buffer (20 mM HEPES (pH 7.9), at 4 °C, 10% glycerol, 250 mM KCl, 0.2 mM EDTA, 0.1% Nonidet P-40, 0.2 mM PMSF) with protease inhibitors (Roche Applied Science) and 50 units of Benzonase (Novagen), and then incubated on ice for 30 min. After centrifugation for 30 min at 12,000 × g at 4 °C, the supernatant was frozen with liquid nitrogen and stored at −80 °C as the cell lysate. Immunopurification was performed with 2 μg of antibody-cross-linked Dynabeads protein G (Invitrogen), as described previously (24).

Cross-linking and Immunopurification—HeLa cells were cross-linked with 1% paraformaldehyde for 10 min. After neutralization with 0.2 M glycine, cells were collected, resuspended in SDS lysis buffer (10 mM Tris-HCl, 150 mM NaCl, 1% SDS, 1 mM EDTA (pH 8.0), RNase inhibitor, protease inhibitor mixture), and fragmented with a sonicator (Sonifier 250, Branson; 4 min, 60% duty, output level 4). The sonicated solution was diluted with 3 volumes of dilution buffer (20 mM Tris–HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100) and was used for immunoprecipitation with the H1122 antibody-conjugated magnetic beads. The immunoprecipitates were eluted in elution buffer (50 mM Tris–HCl (pH 8.0), 1 mM EDTA, 1% SDS) at 65 °C for 15 min and then concentrated with methanol/chloroform, washed with ice-cold acetone, and dried.

Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS)—The immunopurified (IP) samples were subjected to in-solution trypsin digestion followed by LC/MS/MS using an LTQ Orbitrap XL ETD mass spectrometer (Thermo Scientific), as described previously (25). All of the MS/MS samples were analyzed using Mascot (version 2.4.0; Matrix Science, London, UK). Mascot was set up to search against the human Swiss-Prot database assuming a digestion with trypsin. The fragment and parent ion mass tolerances were 0.8 Da and 3 ppm, respectively. Three missed cleavages were allowed. The analysis of the data was carried out with Scaffold software (version 3; Proteome Software Inc., Portland, OR). Peptide identifications were only accepted if they could be established at >95.0% probability.

Generation of the Hakai Expression Vector and Stable Cell Lines—The Hakai coding sequence was subcloned into a pCMV2-FLAG vector (Sigma). Hakai deletion mutants for the RING finger and phosphotyrosine binding region were constructed by mutagenesis. For stable cell line generation, we used a Hakai truncated mutant (aa 1–417) having a V5 sequence at the C terminus (Hakai-V5), which can interact with WTAP, because full-length Hakai was not sufficiently expressed. A RING finger deletion mutant (Hakai-delRING-V5) was also constructed using mutagenesis. Dox-inducible HEK293 stable cells expressing Hakai-V5 and Hakai-delRING-V5 were generated using the Flp-In™ T-REX™ core kit (Invitrogen) according to the manufacturer’s protocol. 100 ng/ml doxycycline (BD Biosciences) was used for the induction.

siRNA Transfection—siRNAs against WTAP, Virilizer, BCLAF1, THRAP3, KIAA0853, Hakai, and RBM15 as well as negative control siRNA were purchased from Ambion (s18433, s24832, s18875, s19360, s23010, s36537, and s224626, respectively). These siRNAs were transfected with Lipofectamine 2000 medium supplemented with 10% fetal bovine serum.

EXPERIMENTAL PROCEDURES

Cell Lysate of HUVEC, HEK293, and HeLa Cells—The Hakai coding sequence was subcloned into a pCMV2-FLAG vector (Sigma). Hakai deletion mutants for the RING finger and phosphotyrosine binding region were constructed by mutagenesis. For stable cell line generation, we used a Hakai truncated mutant (aa 1–417) having a V5 sequence at the C terminus (Hakai-V5), which can interact with WTAP, because full-length Hakai was not sufficiently expressed. A RING finger deletion mutant (Hakai-delRING-V5) was also constructed using mutagenesis. Dox-inducible HEK293 stable cells expressing Hakai-V5 and Hakai-delRING-V5 were generated using the Flp-In™ T-REX™ core kit (Invitrogen) according to the manufacturer’s protocol. 100 ng/ml doxycycline (BD Biosciences) was used for the induction.

siRNA Transfection—siRNAs against WTAP, Virilizer, BCLAF1, THRAP3, KIAA0853, Hakai, and RBM15 as well as negative control siRNA were purchased from Ambion (s18433, s24832, s18875, s19360, s23010, s36537, and s224626, respectively). These siRNAs were transfected with Lipofectamine...
Identification of WTAP Complex

2000 RNAi MAX (Invitrogen) according to the manufacturer’s protocol.

Fluorescence Image Analysis—Cells were fixed with 4% (w/v) paraformaldehyde in PBS for 5 min, permeabilized with 0.5% (v/v) Triton X-100 in PBS for 5 min on ice, blocked with PBS containing 10% BlockAce (Yukijirushi, Japan), and incubated with the primary antibodies against WTAP (1:200; rabbit polyclonal antibody, 1:100; Y6828, SC-35; 1:2000; S4045, Sigma), BCLAF1 (1:100; A300-608A, Bethyl), THRAP3 (1:200; A300-956A, Bethyl), Virilizer (1:250; A302-124A, Bethyl), KIAA0853 (1:100; ab70802, Abcam), Hakai (1:80; ARP39625_T100, Aviva Systems Biology), and RBM15 (1:80; ab70549, Abcam) for 30 min at room temperature. Alexa Fluor 488 anti-mouse IgG (1:500; Invitrogen) and Alexa Fluor 594 anti-rabbit IgG (1:500; Invitrogen) were used as secondary antibodies. Cells were mounted in Prolong Gold Antifade Reagent (Invitrogen) with DAPI nuclear staining except for the immunofluorescence of Hakai-WT-V5 and Hakai-delRING-V5, where TO-pro3 was used for nuclear staining. RNA FISH was performed according to the protocol reported by Tripathi et al. (26). To detect MALAT1 RNA, cells were rinsed briefly in PBS and then fixed in 4% formaldehyde in PBS (pH 7.4) for 15 min at room temperature. The cells were permeabilized in PBS containing 0.5% Triton X-100 and 5 mM VRC (New England Biolabs) on ice for 10 min, washed with PBS 3 × 10 min, and rinsed once in 2 × SSC prior to hybridization. Hybridization was carried out using a nick-translated cDNA probe (Abbott Molecular) in a moist chamber at 37 °C for 12–16 h according to the manufacturer’s instructions. After RNA-FISH, cells were again fixed for 10 min in 2% paraformaldehyde, and immunofluorescence staining was performed as described above. Fluorescence images were acquired with a confocal laser-scanning microscope (IX81/FV1000, Olympus) using a ×100, 1.40 numerical aperture objective or a confocal laser-scanning microscope (LSM510META, Carl Zeiss), and the images were processed using Imager (National Institutes of Health) and Zeiss 3D software. Quantification of the colocalization coefficients, derived from the measured pixel overlaps between WTAP or MALAT1 and SC35, was performed with Zeiss LSM510 META colocalization analysis software using 20 independent single-cell images.

RNA Co-immunoprecipitation (RIP) and Quantitative RT-PCR—RIP was performed based on a ChIP protocol. HUVECs were trypsinized, centrifuged, and washed with PBS. Cells were resuspended in 5 volumes of hypotonic buffer (10 mM HEPES (pH 7.9) at 4 °C, 1.5 mM MgCl2, 10 mM KCl, 0.2 mM PMSF, protease inhibitor mixture, RNAsin) and incubated for 10 min on ice. Suspended cells were homogenized by eight passages through a 21-gauge needle, and the nuclei were collected by centrifugation for 15 min at 3000 rpm and cross-linked with 4% paraformaldehyde in PBS for 10 min. After neutralization with 0.2 mM glycine, cells were collected, resuspended in SDS lysis buffer (10 mM Tris–HCl, 150 mM NaCl, 1% SDS, 1 mM EDTA (pH 8.0), protease inhibitor mixture, RNAsin), and sonicated (Sonifier 250, Branson; 4 min, 60% duty, output level 4). The sonicated solution was diluted with ChIP dilution buffer (20 mM Tris–HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100) and used for IP, and 1% of the starting materials were used as the input. An anti-WTAP antibody (H1122) bound with Protein G magnetic beads was used. After IP, samples were reverse cross-linked, total RNA was extracted using TRIzol LS (Invitrogen) and treated with RNase-free DNase I (Promega), and then RT-PCR was conducted using random hexamer primers following the manufacturer’s instructions (Invitrogen).

RNase Protection Assay—The RNase protection assay was performed using an RPAlI ribonuclease protection assay kit (Ambion) according to the manufacturer’s protocol. The WTAP cDNA fragment was amplified from the total HUVEC RNA by RT-PCR. The amplified cDNA was cloned into the pCRII vector (Invitrogen), verified by sequencing, and used as the template for a riboprobe.

Statistical Analysis—All experiments were performed a minimum of three times. Data points represent the mean ± S.D. calculated from multiple independent experiments. Statistically significant differences were calculated by using either the unpaired t test or analysis of variance and Tukey-Kramer multiple comparison tests with Statcel3 software (OMS Publishing Inc., Saitama, Japan). p values less than 0.05 were considered significant.

All of the primers used in this study are listed in supplemental Table S2.

RESULTS

Identification of the WTAP Complex Components—To characterize the role of WTAP in the cellular machinery, we purified WTAP and its interacting proteins from HUVEC extracts by immunopurification using three specific monoclonal antibodies against human WTAP and performed shotgun proteomics. We generated three monoclonal antibodies. H1122 and H1137 recognize the C terminus of the human WTAP protein, whereas Y6828 was generated against the N-terminal sequence of the human WTAP protein corresponding to aa 1–50 (Fig. 1A; see “Experimental Procedures”). The specificity for WTAP was tested by immunoblotting (Fig. 1B). Endogenous WTAP corresponding to a ~50 kDa band was detectable by all three antibodies and disappeared after WTAP knockdown with siRNA against WTAP. These antibodies were conjugated to protein G magnetic beads and used for immunopurification.

The immunopurification of the native protein complexes was based on a highly sensitive immunoprecipitation system (24). WTAP was immunoprecipitated effectively by each antibody but not with the antiviral protein antibody K7124, which was used as a negative control (Fig. 1C). The non-specific bands observed in the immunoblot performed with H1137 (Fig. 1B) were undetectable in the immunoprecipitates obtained with H1137 (data not shown). From the results of the protein staining of the purified fractions, the purification quality was regarded as sufficient to carry out shotgun proteomics (Fig. 1C). The proteins in the immunoprecipitates were digested in solution, and the resulting peptides were identified using high performance liquid chromatography combined with tandem mass spectrometry (LC/MS/MS). WTAP was identified with approximately a 70% sequence coverage in all three samples (supplemental Table S1). The overlapping binding candidates that were isolated with all three of the anti-WTAP antibodies, but not with the negative control antibody K7124, included the
Virilizer homolog, zinc finger protein KIAA0853, Hakai, mRNA export cofactor RBM15, and the SR-like proteins BCLAF1 and THRAP3 (Fig. 1D). Vir has been reported to interact with \(f(2)d \) both genetically and physically in *Drosophila* (10, 12, 13). The presence of Virilizer homolog in the purified fractions verified the biological relevance of the WTAP complex. Gene ontology analysis of the identified proteins revealed a high level of enrichment of the interacting proteins in terms of RNA processing, such as RNA splicing and translation (Fig. 1E). These proteins were also isolated in experiments using HeLa cells with an H1122 antibody (supplemental Table S1), indicating that these complexes are not exclusive to HUVECs.

We next examined the interaction between WTAP and one of the interaction candidates, Hakai (also known as CBLL1), which is a C3HC4-type RING finger containing E3 ubiquitin ligase that mediates ubiquitination of the E-cadherin complex (27). In addition to its role in cell-cell contact, Hakai has recently been shown to promote cell proliferation in *Drosophila* embryo (28) and mammalian cells and to enhance the RNA-binding ability of polypyrimidine tract-binding protein-associ-
Hakai contains a RING finger (aa 106–148) and a phosphotyrosine-binding domain (aa 148–206) called the Hakai Tyr(P)-binding (HYB) domain, as characterized by biochemical and crystal structural analyses (30), and a proline-rich domain in the C terminus. The RING finger domain of Hakai is required for the regulation of cell proliferation (29). Thus, the interaction of Hakai with WTAP was confirmed using the Hakai mutants (Fig. 2B). The use of several different Hakai mutants showed that the Hakai mutant lacking the RING finger (i.e. Hakai-delRING) did not interact with WTAP (Fig. 2A), suggesting that the interaction between WTAP and Hakai is involved in cell cycle regulation. We next generated tetracycline-inducible HEK293 stable cell lines expressing a V5-tagged Hakai or Hakai-delRING, respectively, and confirmed the nuclear localization of both proteins (Fig. 2B). Then we isolated the interacting proteins using an anti-V5 antibody (Fig. 2C). Interestingly, WTAP and its interacting proteins that were mentioned above, such as Virilizer, KIAA0853, BCLAF1, THRAP3, RBM15, FMR1, FXR1, FXR2, and MTA70 (N6-adenosine methyltransferase 70-kDa sub-

Identification of WTAP Complex

FIGURE 2. Proteomic profile of the WTAP complexes. A, the domains and unique amino acid repeats in the Hakai protein. Various Hakai deletion mutants are shown. The interaction of these mutants with WTAP was assessed by means of co-immunoprecipitation (IP) experiments. B, the cellular localization of Hakai-V5 and Hakai-delRING-V5. The nucleus was stained with TO-PRO-3 reagent. C, Immunopurified Hakai and its interacting proteins were resolved by SDS-PAGE and stained with SYPRO Ruby solution. The efficiency of immunoprecipitation was determined by Western blot. D, the proteomic profile of the WTAP complexes. This list shows the proteins isolated using the H1122, H1137, or Y6828 antibodies with a unique peptide number of 33296.
Identification of WTAP Complex

WTAP Localizes to Nuclear Speckles through an Interaction with BCLAF1/THRAP3—The SR-like proteins BCLAF1/THRAP3 as well as WTAP have been shown to reside in interchromatin granule clusters (16) and also in affinity-purified mRNP complexes (33). Thus, we examined the cellular localization of WTAP and BCLAF1/THRAP3 by immunofluorescence analysis. When HUVECs were stained with an anti-WTAP antibody (Y6828), a strong signal was observed in the nuclear speckles as well as the nucleoplasm (Fig. 4A). The speckle distribution pattern was overlapped with the nuclear speckle marker SC35. Similar results were obtained from the immunofluorescence using an anti-BCLAF1 or anti-THRAP3 antibody together with anti-SC35 (Fig. 4A). Furthermore, we examined the cellular localization of the other components of the complex and found that Virilizer, KIAA0853, Hakai, and RBM15 also localize to nuclear speckles and the nucleoplasm (Fig. 4A). Next we confirmed the colocalization of WTAP and BCLAF1 or THRAP3 in the nucleoplasm and nuclear speckles (Fig. 4B). Then we examined the effect of the depletion of BCLAF1 and THRAP3 on the localization of WTAP. Interestingly, we found that the depletion of BCLAF1 and THRAP3 resulted in a decreased nuclear speckle distribution of WTAP.

The WTAP Complex Is Required for Cell Proliferation—We next examined the effect of the respective depletion of the major components Hakai, Virilizer, KIAA0853, BCLAF1, THRAP3, and RBM15 on cell proliferation in HUVECs. BCLAF1 and THRAP3 were depleted together due to their sequence similarity and possible functional redundancy (Fig. 3A). We have shown previously that WTAP reduction leads to growth inhibition and G2 phase accumulation in the cell cycle (17). As shown in Fig. 3B, control siRNA-treated cells grew moderately for the first 48 h after siRNA transfection and then increased 7-fold in cell number by 72 h. In contrast, WTAP, Hakai, Virilizer, KIAA0853, RBM15, or BCLAF1/THRAP3 siRNA-treated cells exhibited growth inhibition, as evidenced by the evidently reduced increase in cell number. Moreover, flow cytometric analysis revealed that WTAP, Hakai, Virilizer, KIAA0853, RBM15, or BCLAF1/THRAP3 siRNA-treated cells exhibited a significantly higher proportion in the G2 phase than control cells (Fig. 3C), providing further evidence of their functional relationship in cell cycle regulation.

The WTAP Complex Transiently Interacts with General Splicing Regulators—Recent studies have shown that a combination of chemical cross-linking, affinity purification, and mass spectrometry analysis provides a direct method of determining stable, weak, or transient protein-protein interactions with high confidence (31, 32). Formaldehyde has been routinely used as an effective cross-linker that forms covalent bonds between proteins, nucleic acids, and other reactive molecules. In an effort to capture the more transient protein-protein and/or RNA-dependent interactions, we purified WTAP-interacting proteins from HeLa cells with the H1122 antibody after formaldehyde cross-linking (Fig. 2E). The purified complexes were reverse cross-linked and identified by shotgun proteomics. General splicing regulators, including heterogeneous nuclear ribonucleoprotein, SR proteins, and small nuclear ribonucleoproteins as well as the proteins described above, were enriched among the proteins cross-linked to WTAP (Fig. 2D, columns 5 and 7, and supplemental Table S1), whereas only WTAP was identified from the cross-linked (~) IP fraction, due to a series of stringent washing steps (compare columns 6 and 7 in Fig. 2D). These results indicate a transient and/or RNA-dependent interaction of WTAP with the splicing machinery.

WTAP and its interacting proteins form a complex with Hakai through the RING finger domain. The major components Hakai, Virilizer, KIAA0853, BCLAF1, or THRAP3 as well as WTAP have been shown to reside in interchromatin granule clusters (16) and also in affinity-purified mRNP complexes (33). Thus, we examined the cellular localization of WTAP and BCLAF1/THRAP3 by immunofluorescence analysis. When HUVECs were stained with an anti-WTAP antibody, a strong signal was observed in the nuclear speckles as well as the nucleoplasm (Fig. 4A). The speckle distribution pattern was overlapped with the nuclear speckle marker SC35. Similar results were obtained from the immunofluorescence using an anti-BCLAF1 or anti-THRAP3 antibody together with anti-SC35 (Fig. 4A). Furthermore, we examined the cellular localization of the other components of the complex and found that Virilizer, KIAA0853, Hakai, and RBM15 also localize to nuclear speckles and the nucleoplasm (Fig. 4A). Next we confirmed the colocalization of WTAP and BCLAF1 or THRAP3 in the nucleoplasm and nuclear speckles (Fig. 4B). Then we examined the effect of the depletion of BCLAF1 and THRAP3 on the localization of WTAP. Interestingly, we found that the depletion of BCLAF1 and THRAP3 resulted in a decreased nuclear speckle distribution of WTAP.
Identification of WTAP Complex

(Fig. 4C), although the nuclear speckles were still present, as indicated by the speckle localization of SC35 (Fig. 4D). Co-localization analysis using Zeiss LSM510 META colocalization analysis software also confirmed the reduced speckle localization of WTAP by BCLAF1/THRAP3 depletion (Fig. 4E). These findings indicate that BCLAF1/THRAP3 facilitates the nuclear speckle localization of WTAP. Nuclear speckles are highly dynamic subnuclear domains enriched with pre-mRNA splicing/processing factors (34) and the long nuclear-retained regulatory RNA, MALAT1 (35, 36). It has been reported that MALAT1 modulates the distribution and phosphorylation of splicing factors in nuclear speckles and regulates alternative splicing and cell cycle progression (26, 37, 38). To examine the interaction between WTAP and MALAT1, we performed RIP analysis using the anti-WTAP antibody H1122 followed by quantitative PCR. Significant enrichment of MALAT1 in the immunoprecipitates treated with H1122 was observed, indicating that WTAP interacts with MALAT1 (Fig. 5A). We further

FIGURE 4. The intracellular localization of the WTAP complex. A, immunofluorescence analysis of HUVEC using anti-WTAP (rabbit polyclonal antibody), anti-BCLAF1, anti-THRAP3, anti-Virilizer, anti-KIAA0853, anti-Hakai, anti-RBM15, and anti-SC35 antibodies. WTAP, BCLAF1, THRAP3, Virilizer, KIAA0853, and RBM15 are all partially co-localized with SC35 in nuclear speckles and are also present in the nucleoplasm. B, the intracellular localization of WTAP (Y6828), BCLAF1, and THRAP3. WTAP is co-localized with BCLAF1 and THRAP3 in nuclear speckles and the nucleoplasm. C, the nuclear speckle localization of WTAP became dispersed upon knockdown of BCLAF1/THRAP3. HUVECs were treated with BCLAF1/THRAP3 siRNAs or control siRNA and, after 48 h, immunostained with an anti-WTAP antibody (Y6828) together with anti-BCLAF1 or anti-THRAP3 antibodies. The WTAP signal became evidently more dispersed in BCLAF1/THRAP3 knockdown cells compared with the signal in control cells. D, confocal images of WTAP (rabbit polyclonal antibody) and SC35 in control or BCLAF1/THRAP3 siRNA-treated HUVECs. The DNA is counterstained with DAPI (blue). E, the quantification of the colocalization coefficient between WTAP and SC35. The values are the average of 20 independent single-cell images. *, p < 0.05 (t test). Error bars, S.D. Bar, 10 μm.
examined the nuclear localization of MALAT1 by RNA-FISH in the presence or absence of BCLAF1/THRAP3. As shown in Fig. 5B, MALAT1 was detected in the nuclear speckles with SC35 and the nucleoplasm in control cells, consistent with a previous report (37). Unlike WTAP, the speckle distribution of MALAT1 was unchanged upon the knockdown of BCLAF1/THRAP3 (Fig. 5, B and C).

The WTAP Complex Autoregulates Alternative Splicing of WTAP Pre-mRNA—While investigating the effect of the depletion of WTAP-interacting proteins by siRNA, we found that WTAP protein expression was up-regulated in BCLAF1/THRAP3, Virilizer, KIAA0853, and Hakai siRNA-treated cells (Fig. 6A). WTAP has two transcript variants due to alternative splicing and alternative polyadenylation, one of which encodes the shorter isoform, ending just after exon 6, referred to as KIAA0105. It includes the retained sequences of intron 6, leading to a “bleeding” exon with immediate translation termination. The stop codon is skipped when the 3’ splice site of exon 6 is used, generating an mRNA that encodes the full-length WTAP protein (Fig. 6B). To determine whether the up-regulation of WTAP protein expression was due to alternative splicing, we performed RNase protection analysis using riboprobes that were able to detect the isoforms separately. Both the shorter isoform (~70%) and longer isoform (~30%) were present in control cells (Fig. 6B). The BCLAF1/THRAP3, Virilizer, KIAA0853, and Hakai siRNA-treated cells displayed a significantly higher ratio of the longer isoforms compared with the control cells (p < 0.05), suggesting that the WTAP complex acts as a repressor of WTAP gene splicing in a concentration-dependent manner, and the resulting splicing alteration is probably responsible for the up-regulation of WTAP protein expression in the cells depleted of each of the respective proteins in the complexes. To examine the interaction between WTAP and WTAP pre-mRNA, we performed RIP analysis. Significant enrichment of WTAP in the immunoprecipitates with H1122 was observed (Fig. 6C, p < 0.05), suggesting the direct regulation of alternative splicing of WTAP pre-mRNA by the complex.

DISCUSSION

In the present study, we identified the WTAP complex, which is involved in RNA processing and cell cycle, using a
Identification of WTAP Complex

highly sensitive shotgun proteomics. To detect the intrinsic complex, we generated several monoclonal antibodies against WTAP. The three clones we used in the present study recognize the N-terminal or C-terminal portions of the WTAP protein, which could compensate for any loss of a complex by one clone due to a covering of the epitope by binding proteins. The specificity of the interaction with WTAP was further supported by the observation that WTAP and its interacting proteins were isolated with Hakai-V5 but not with Hakai-delRING-V5. This also probably indicates that these proteins form a large complex with WTAP and act as the complex. From the results of serial proteomic analyses using HUVECs with three monoclonal antibodies, HeLa cells, and HEK293 cells expressing Hakai-V5 or Hakai-delRING-V5, it was determined that Virilizer, KIAA0853, Hakai, BCLAF1, THRAP3, and RBM15 are the major components of the WTAP complex (Fig. 2D).

In addition, we demonstrated a transient interaction of the WTAP complexes with the splicing machinery using a combined cross-linking and immunopurification method. This method was confirmed to be effective in both purifying a protein of interest and also identifying the transiently associated protein complexes in cultured mammalian cells. From these proteomic analyses, the binding candidates to WTAP also include FMRP, the FMR1 (fragile X mental retardation 1) gene product, and its autosomal paralogues, FXR1 and FXR2 (fragile X mental retardation syndrome-related protein 1 and 2, respectively), ERH (enhancer of rudimentary homologue), and MTA70 (Fig. 2D). Fragile X syndrome, the most common heritable X-linked neurodevelopmental disorder, is caused by the loss of function of FMRP. FMRP has been implicated in translational control, associating with actively translating polyribosomes in ribonucleoprotein particles (reviewed in Ref. 39). ERH is a highly conserved protein that has been implicated in nuclear gene expression (40, 41) and cell growth (42–44). Recent studies have reported that ERH-depleted cells show severe chromosome misalignment with a loss of kinetochore localization of CENP-E (centromere-associated protein E) (45, 46). ERH interacts with spliceosomes and is required for the mRNA splicing of CENP-E (45). MTA70 is the S-adenosylmethionine-binding subunit of human mRNA:m(6)A methyltransferase, an enzyme that sequence-specifically methylates adenines in pre-mRNA. The biological significance of this modification remains unclear. Interestingly, plant MTA is potently expressed in dividing tissues and has been shown to bind to FIP37, a plant homologue of WTAP (47). Thus, in addition to mRNA stabilization and alternative splicing regulation, our proteomic data suggest that WTAP dynamically takes part in several posttranscriptional processes by forming a protein complex with these components.

We further demonstrated the interaction of WTAP and the non-coding RNA MALAT1 by RIP analysis. The interaction of WTAP with MALAT1 may contribute to the formation and/or modification of the complex in nuclear speckles. Upon the knockdown of BCLAF1/THRAP3, the nuclear speckle localization of WTAP became dispersed, whereas the speckle distribution of MALAT1 persisted. It is possible that the interaction of WTAP with MALAT1 may be reduced in the absence of BCLAF1/THRAP3.

It has been proposed that RNA processing is associated with cell cycle regulation, as demonstrated by the fact that several pre-mRNA splicing mutants (prp) from temperature-sensitive Schizosaccharomyces pombe strains have cell division cycle defects (48). A growing body of evidence has indicated a functional connection between RNA splicing and cell cycle regulation (49–51). Although the precise mechanisms mediating the role of splicing and/or spliced variants in the cell cycle are not well understood, it is believed that specific splicing factors are involved in the control of the splicing of cell cycle-related genes, especially the alternative splicing of apoptotic regulators (52) and/or genomic stability (53). The prototypic SR protein splicing factor SF2/ASF is up-regulated in various human tumors and is a potent oncoprotein, whose overexpression by as little as 2-fold is sufficient to transform rodent fibroblasts (51). Conversely, the knockdown of SF2/ASF induces G2 cell cycle arrest and apoptosis, presumably through the accumulation of DNA double strand breaks (54). Similarly, the loss of the SR protein SC35 in mouse embryonic fibroblasts induces G2/M cell cycle arrest and genomic instability (55). Moreover, it is reported that SRp20 and polypyrimidine tract-binding protein are highly expressed in epithelial ovarian cancer, and the knockdown of those factors leads to growth arrest and apoptosis (50). We demonstrated that the depletion of each of the respective WTAP complex components, namely WTAP, Virilizer, KIAA0853, BCLAF1/THRAP3, Hakai, and RBM15, resulted in cell cycle arrest at G2 phase, suggesting that the responsible mechanism for the cell cycle progression is carried out by this protein complex. Genome instability was not observed in WTAP knockdown cells examined with immunofluorescence of phosphorylated γH2AX to detect induced foci that had accumulated on broken DNA (data not shown).

In the regulation of WTAP transcripts by the WTAP complex, the data indicate that the WTAP complex probably prevents the 3′ splicing of intron 6 and/or promotes alternative polyadenylation of intron6 so as to produce a shorter isoform that does not encode the full-length protein, thereby negatively controlling the WTAP protein expression. In Drosophila, SXL regulates the splicing of Sxl (56–58), tra (7, 59, 60), and msl-2 RNA (61, 62) via a blockade that occurs by binding to the poly(U) sequences present at the 5′ splice site and/or the polypyrimidine tract of the 3′ splice site. There might be such a mechanism that is conserved in Drosophila and mammals in the alternative splicing regulation effected by WTAP.

In conclusion, we have identified and characterized the WTAP complex, which is involved in both alternative splicing and cell cycle regulation. Additional studies, such as a comprehensive analysis of the binding sites for the complex in RNA transcripts, will help to elucidate the detailed molecular mechanisms of the alternative splicing and cell cycle regulation carried out by the WTAP complex.

Acknowledgment—We thank Dr. Kevin Boru of Pacific Edit for review of the manuscript.

REFERENCES

1. Kalsotra, A., and Cooper, T. A. (2011) Functional consequences of developmentally regulated alternative splicing. Nat. Rev. Genet. 12, 715–729
Identification of WTAP Complex

2. Venables, J. P., Klinck, R., Koh, C., Gervais-Bird, J., Bramard, A., Inkel, L., Durand, M., Couture, S., Froehlich, U., Lapointe, E., Lucier, J. P., Tibbault, P., Bancourt, C., Treemlay, K., Prinos, P., Chabot, B., and Elela, S. A. (2009) Cancer-associated regulation of alternative splicing. *Nature Struct. Mol. Biol.* 16, 670–676

3. Wang, E. T., Sandberg, R., Luo, S., Khrustevka, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schrøth, G. P., and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. *Nature* 456, 470–476

4. Nagoshi, R. N., McKeown, M., Burts, K. C., Beleto, J. M., and Baker, B. S. (1988) The control of alternative splicing at genes regulating sexual differentiation in *D. melanogaster*. *Cell* 53, 229–236

5. Bashaw, G. J., and Baker, B. S. (1995) The msl-2 dosage compensation gene of *Drosophila* encodes a putative DNA-binding protein whose expression is sex-specifically regulated by Sex-lethal. *Development* 121, 3245–3258

6. Bell, L. R., Horabin, J. I., Schedl, P., and Cline, T. W. (1991) Positive autoregulation of sex-lethal by alternative splicing maintains the female-determined state in *Drosophila*. *Cell* 65, 229–239

7. Inoue, K., Hoshijima, K., Sakamoto, H., and Shimura, Y. (1990) Binding of the *Drosophila* sex-lethal gene product to the alternative splice site of transformer primary transcript. *Nature* 344, 461–463

8. Kelley, R. L., Wang, J., Bell, L., and Kuroda, M. I. (1997) Sex lethal controls dosage compensation in *Drosophila* by a non-splicing mechanism. *Nature* 387, 195–199

9. Flickinger, T. W., and Salz, H. K. (1994) The *Drosophila* sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A spRNp protein. *Genes Dev.* 8, 914–925

10. Hilfiker, A., Amrein, H., Dübendorfer, A., Schneider, R., and Nöthiger, R. (1995) The sex virilizer is required for female-specific splicing controlled by Sxl, the master gene for sexual development in *Drosophila*. *Development* 121, 4017–4026

11. Granadino, B., Campuzano, S., and Sánchez, L. (1990) The *Drosophila melanogaster* fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. *EMBO J.* 9, 2597–2602

12. Ortega, A., Níksík, M., Bachi, A., Wilm, M., Sánchez, L., Hastie, N., and Valcárcel, J. (2003) Biochemical function of female-lethal (2)D/Wilms’ tumor suppressor-1-associated proteins in alternative pre-mRNA splicing. *J. Biol. Chem.* 278, 3040–3047

13. Penn, J. K., Graham, P., Deshpande, G., Calhoun, G., Chaouki, A. S., Salz, H. K., and Schiedl, P. (2008) Functioning of the *Drosophila* Wilms’-tumor-1-associated protein homolog, Fl(2)d, in Sex-lethal-dependent alternative splicing. *Genetics* 178, 737–748

14. Little, N. A., Hastie, N. D., and Davies, R. C. (2000) Identification of WTAP, a novel Wilms’ tumour 1-associating protein. *Hum. Mol. Genet.* 9, 2231–2239

15. Zhou, Z., Licklider, L. J., Gygi, S. P., and Reed, R. (2002) Comprehensive proteomic analysis of the human spliceosome. *Nature* 419, 182–185

16. Saitoh, N., Spahr, C. S., Patterson, S. D., Bubulya, P., Neuwald, A. F., and Valcárcel, J. (2003) Biochemical function of female-lethal (2)D/Wilms’ tumor suppressor-1-associated proteins in alternative pre-mRNA splicing. *J. Biol. Chem.* 278, 3040–3047

17. Vasilescu, J., Guo, X., and Kast, J. (2004) Identification of protein-protein interactions using in vivo cross-linking and mass spectrometry. *Proteomics* 4, 3845–3854

18. Kim, K. M., Yi, E. C., and Kim, Y. (2012) Mapping protein receptor-ligand interactions using in vivo chemical crosslinking, affinity purification, and differential mass spectrometry. *Methods* 56, 161–165

19. Merz, C., Urlaub, H., Will, C. L., and Lührmann, R. (2007) Protein composition of human mRNPs spaced in vitro and differential requirements for mRNP protein recruitment. *RNA* 13, 116–128

20. Lamond, A. I., and Spector, D. L. (2003) Nuclear speckles. A model for nuclear retention of paraspeckles. *Nat. Rev. Mol. Cell Biol.* 4, 605–612

21. Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminser, A. W., Fox, A. H., Chess, A., and Lawrence, J. B. (2009) An architectural role for a nuclear noncoding RNA. *NEAT1 RNA is essential for the structure of paraspeckles*. *Mol. Cell* 33, 717–726

22. Tripathi, V., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., Freier, S. M., Bennett, C. F., Sharma, A., Bubulya, P. A., Blencowe, B. J., Prasanth, S. G., and Prasanth, K. V. (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. *Mol. Cell* 39, 925–938

23. Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leder, H. E., Behrens, J. Sommer, T., and Birchmeier, W. (2002) Hakai, a c-Cbl-like protein, ubiquititates and induces endocytosis of the E-cadherin complex. *Nat. Cell Biol.* 4, 222–231

24. Kaido, M., Wada, H., Shindo, M., and Hayashi, S. (2009) Essential requirement for RING finger E3 ubiquitin ligase Hakai in early embryonic development of *Drosophila*. *Genes Cells* 14, 1067–1077

25. Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., Freier, S. M., Bennett, C. F., Sharma, A., Bubulya, P. A., Blencowe, B. J., Prasanth, S. G., and Prasanth, K. V. (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. *Mol. Cell* 39, 925–938

26. Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leder, H. E., Behrens, J. Sommer, T., and Birchmeier, W. (2002) Hakai, a c-Cbl-like protein, ubiquititates and induces endocytosis of the E-cadherin complex. *Nat. Cell Biol.* 4, 222–231

27. Vasilescu, J., Guo, X., and Kast, J. (2004) Identification of protein-protein interactions using in vivo cross-linking and mass spectrometry. *Proteomics* 4, 3845–3854

28. Kim, K. M., Yi, E. C., and Kim, Y. (2012) Mapping protein receptor-ligand interactions using in vivo chemical crosslinking, affinity purification, and differential mass spectrometry. *Methods* 56, 161–165

29. Merz, C., Urlaub, H., Will, C. L., and Lührmann, R. (2007) Protein composition of human mRNPs spaced in vitro and differential requirements for mRNP protein recruitment. *RNA* 13, 116–128

30. Lamond, A. I., and Spector, D. L. (2003) Nuclear speckles. A model for nuclear organelles. *Nat. Rev. Mol. Cell Biol.* 4, 605–612

31. Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminser, A. W., Fox, A. H., Chess, A., and Lawrence, J. B. (2009) An architectural role for a nuclear noncoding RNA. *NEAT1 RNA is essential for the structure of paraspeckles*. *Mol. Cell* 33, 717–726

32. Hutchinson, J. N., Ensminser, A. W., Clemson, C. M., Lynch, C. R., Lawrence, J. B., and Chess, A. (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. *BMCC Genomics* 8, 39

33. Bernard, D., Prasanth, K. V., Tripathi, V., Colasse, S., Nakamura, T., Xuan, Z., Zhang, M. Q., Sedel, F., Jourdain, L., Couplier, F., Triller, A., Spector, D. L., and Bessis, A. (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. *EMBO J.* 29, 3082–3093

34. Tripathi, V., Shen, Z., Chakraborty, A., Giri, S., Freier, S. M., Wu, X., Zhang, Y., Gorospe, M., Prasanth, S. G., Lal, A., and Prasanth, K. V. (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regul-
Identification of WTAP Complex

-lating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 9, e1003368
39. Cook, D., Nuro, E., and Murali, K. K. (May 31, 2013) Increasing our understanding of human cognition through the study of fragile X syndrome. Dev. Neurobiol. 10.1002/dneu.22096
40. Amante, S., Napolitano, G., Licciardo, P., Monti, M., Pucci, P., Lania, L., and Majello, B. (2005) Identification of proteins interacting with the RNA-PiF CP1 phosphatase. FCP1 forms a complex with arginine methyltransferase PRMT5 and it is a substrate for PRMT5-mediated methylation. FEBS Lett. 579, 683–689
41. Lukasik, A., Uniewicz, K. A., Kulis, M., and Kozlowski, P. (2008) CIZ1, a novel molecular partner for human enhancer of rudimentary homolog. FEBS J. 275, 332–340
42. Onyango, P., and Feinberg, A. P. (2011) A nucleolar protein, H19 opposite telomeric RNAs, interacts with a homolog of a sex-specific splicing factor.
43. Smyk, A., Szuminska, M., Uniewicz, K. A., Graves, L. M., and Kozlowski, P. (2008) CIZ1, a novel molecular partner for human enhancer of rudimentary homolog.
44. Zafrakas, M., Losen, I., Knüchel, R., and Dahl, E. (2008) Enhancer of the rudimentary gene homologue (ERH) expression pattern in sporadic human breast cancer and normal breast tissue. BMC Cancer 8, 145
45. Weng, M. T., Lee, J. H., Wei, S. C., Nuro, E., and Murai, K. K. (May 31, 2013) Increasing our understanding of human cognition through the study of fragile X syndrome. Dev. Neurobiol. 10.1002/dneu.22096
46. Fujimura, A., Kishimoto, H., Yanagisawa, J., and Kimura, K. (2012) Enhancer of rudimentary homolog (ERH) plays an essential role in the progression of mitosis by promoting mitotic chromosome alignment. Biochem. Biophys. Res. Commun. 423, 588–592
47. Zhong, S., Li, H., Bodi, Z., Button, J., Vesper, L., Herzog, M., and Fray, R. G. (2008) MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20, 1278–1288
48. Potashkin, I., Kim, D., Fons, M., Humphrey, T., and Frendewey, D. (1998) Cell-division-cycle defects associated with fission yeast pre-mRNA splicing mutants. Curr. Genet. 34, 153–163
49. Anczuków, O., Rosenberg, A. Z., Akerman, M., Das, S., Zhan, L., Karni, R., Muthuswamy, S. K., and Krainer, A. R. (2012) The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat. Struct. Mol. Biol. 19, 220–228
50. He, X., Arslan, A. D., Pool, M. D., Ho, T. T., Darcy, K. M., Coon, J. S., and Beck, W. T. (2011) Knockdown of splicing factor SRp20 causes apoptosis in ovarian cancer cells and its expression is associated with malignancy of epithelial ovarian cancer. Oncogene 30, 356–365
51. Karni, R., de Stanchina, E., Lowe, S. W., Sinha, R., Mu, D., and Krainer, A. R. (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193
52. Schwerk, C., and Schulze-Osthoff, K. (2005) Regulation of apoptosis by alternative pre-mRNA splicing. Mol. Cell 19, 1–13
53. Li, X., and Manley, J. L. (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378
54. Li, X., Wang, J., and Manley, J. L. (2005) Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev. 19, 2705–2714
55. Xiao, R., Sun, Y., Ding, J. H., Lin, S., Rose, D. W., Rosenfeld, M. G., Fu, X. D., and Li, X. (2007) Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian organogenesis. Mol. Cell. Biol. 27, 5393–5402
56. Horabin, J. I., and Schedl, P. (1993) Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5′ splice site. Mol. Cell. Biol. 13, 7734–7746
57. Sakamoto, H., Inoue, K., Higuchi, I., Ono, Y., and Shimura, Y. (1992) Control of Drosophila Sex-lethal pre-mRNA splicing by its own female-specific product. Nucleic Acids Res. 20, 5533–5540
58. Wang, J., and Bell, L. R. (1994) The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicing regulation. Genes Dev. 8, 2072–2085
59. Sosnowski, B. A., Belote, J. M., and McKeown, M. (1989) Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell 58, 449–459
60. Valcárcel, J., Singh, R., Zamore, P. D., and Green, M. R. (1993) The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 362, 171–175
61. Förch, P., Merendino, L., Martínez, C., and Valcárcel, J. (2001) Modulation of msl-2 5′ splice site recognition by Sex-lethal. RNA 7, 1185–1191
62. Merendino, L., Guth, S., Bilbao, D., Martínez, C., and Valcárcel, J. (1999) Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG. Nature 402, 838–841