Extracellular vesicle-derived miRNA as a novel regulatory system for bi-directional communication in gut-brain-microbiota axis

Liang Zhao1, Yingze Ye2, Lijuan Gu2, Zhihong Jian2, Creed M. Stary3* and Xiaoxing Xiong2*

Abstract
The gut-brain-microbiota axis (GBMAx) coordinates bidirectional communication between the gut and brain, and is increasingly recognized as playing a central role in physiology and disease. MicroRNAs are important intracellular components secreted by extracellular vesicles (EVs), which act as vital mediators of intercellular and interspecies communication. This review will present current advances in EV-derived microRNAs and their potential functional link with GBMAx. We propose that EV-derived microRNAs comprise a novel regulatory system for GBMAx, and a potential novel therapeutic target for modifying GBMAx in clinical therapy.

Keywords: Exosomes, MiRNAs, MiRs, Inter-cellular communication, GBMAx

Background
The bidirectional communication and crosstalk between the gut and brain has been well recognized, termed the “gut-brain axis” [1–3]. Emerging evidence implicates gut microbiota in playing a pivotal role in the bidirectional communication that occurs in the gut-brain axis [4], leading to the more recent concept of the “gut-brain-microbiota axis” (GBMAx). Notably, this tripartite axis is coordinated by classical neuro-immune-endocrine and metabolic pathways [4], however the molecular regulation of GBMAx remains undetermined.

MicroRNAs (miRNAs) are small, non-coding RNA molecules capable of modulating gene expression at post-transcriptional level [5]. As an important intracellular component of extracellular vesicles (EVs) miRNAs can be secreted by and transferred to varied target cells [6]. Acting as a vital mediator of intercellular communication, EV-derived miRNAs have been implicated in microbiome-host communication [7, 8]. This review will present the current advances on EV-derived miRNAs and their functional link with GBMAx bi-directional communication. We propose that EV-derived miRNAs represent a novel regulatory system for GBMAx and a potential therapeutic target to modulate GBMAx function.

The gut-brain-microbiota axis (GBMAx)
The gut-brain-microbiota axis is composed of the following essential components: (1) the neural network, including central nervous system (CNS) the autonomic nervous system (ANS) and enteric nervous system (ENS); (2) the hypothalamic–pituitary–adrenal axis (HPA); (3) neuroendocrine networks including neurotransmitters, hormone and neuropeptides; (4) gut microbiota and their metabolic products; (5) the gut immune system; and, (6) the intestinal barrier and blood–brain barriers [9–14]. Gut microbiota are considered to be a relatively independent and varied mediator of GBMAx, which interact with other components via several neuroanatomic, neuroendocrine, enteroendocrine, neuroimmune and metabolic pathways [15].
Gut microbiota–miRNA interaction

miRNA-biogenesis and function

A primary miRNA transcript (pre-miRNA) can be processed by several biogenesis procedures to form the miRISC (miRNA-associated RNA-induced silencing complex) [16–19]. miRISC is then guided to target mRNA by complementary base pairing between the target sequence (TS) of the miRNA (nucleotides 2–8 in the 5’-end of the miRNA) and its target site in the 3’-untranslated region (UTR) of target mRNAs [20, 21]. Target gene expression can be down-regulated by either translational inhibition or mRNA degradation according to the extent of base pairing and the surrounding sequences of the TS [22]. Alternatively, some studies also demonstrate that miRNAs can up-regulate transcription of certain target mRNA [23–25]. Notably, a single miRNA can potentially target multiple mRNA, whereas one mRNA can be potentially targeted by multiple miRNAs, reflecting the complex regulatory function of miRNAs [16]. Recent methodological advances including miRNA profiling and loss-of-function studies enable high-fidelity analysis of bioinformation to better define the dynamic expression and functional link with various cellular processes and biological pathways in diverse tissues and from diverse species [18, 26, 27]. MiRNAs have been identified as promising candidates for biomarkers and therapeutic targets in a variety of diseases [28].

Gut miRNA regulate gut microbiota

In 2016, Liu et al. first profiled miRNA expression patterns within feces and gut luminal contents from mice and humans [7]. Intestinal epithelial cells (IEC) and homeobox gene (Hopx)-positive cells were identified as the major cellular source of fecal miRNAs. In vitro studies with cultured *Fusobacterium nucleatum* and *Escherichia coli* demonstrated that fecal miRNA could regulate bacterial gene transcripts and growth [7]. Targeted deletion of the miRNA biogenesis enzyme Dicer in mice resulted in imbalanced gut microbiota and exacerbated dextran sulfate sodium- (DSS) induced colitis, which was reversed by fecal miRNA transplantation from wild-type littermates, strongly suggesting a critical role of fecal miRNA in shaping gut microbiota and maintaining intestinal homeostasis [7].

More recent studies support an essential role of gut miRNA in inducing dysbiosis related to various disease states. In ovariectomized (OVX) mice, intestinal and fecal miR155/let-7 g expression were increased and associated with altered gut microbiota and cardiovascular function [29]. In another mouse model of total abdominal irradiation (TAI), the expression level of miR-34a-5p was elevated in small intestine, which closely correlated with composition shifting of gut microbiota, possibly contributing to associated cognitive impairment [30]. Distinct fecal or intestinal miRNA expression profiles and their potential link with disease and the abundance of gut microbiota have been identified in inflammatory bowel disease and colorectal cancer, underlying their potential clinical relevance as biomarkers or therapeutic targets [31, 32].

Gut microbiota regulate gut miRNA expression

The evidence regarding the impact of gut microbiota on host miRNA expression is primarily derived from miRNA expression profile studies comparing traditional mice with germ-free (GF), or colonized mice. Significant differences in miRNA expression profiles in the colon and ileum was detected between GF mice colonized with gut microbiota from GF mice and specific-pathogen free (SPF) colonized littermates [33]. Fecal miRNA expression patterns also exhibited apparent differences between conventional mice and GF mice [34]. Additionally, fecal miRNA profiles can be deferentially and specially regulated by various colitogenic and non-colitogenic microbiota [34]. The potential target mRNAs of those miRNAs may be involved in regulation of xenobiotic metabolism, intestinal barrier maintenance and regulation of immune system function [33, 34].

Other studies reveal that gut microbiota regulate intestinal miRNA profiles in a highly cell type-specific manner [35]. The miRNA expression patterns of intestinal epithelial stem cell (IESC) are most significantly altered in response to gut microbiota among all intestinal epithelial cell types, with miR-375-3p identified as selectively sensitive to microbiota from IESC [35]. In addition to intestinal miRNA, the expression of fecal miRNA can also be influenced by gut microbiota. Higher abundance of fecal miRNA profiles is detected in GF mice than SPF colonized littermates, and alterations in fecal miRNA expression patterns can be induced by depleting gut microbiota with antibiotic in SPF mice [7, 36].

In vitro studies demonstrate that commensal bacteria induce certain miRNA expression patterns in intestinal epithelial cells or dendritic cells, targeting miRNAs that regulate the innate immune response and barrier function [37, 38]. *Adherent-invasive E. coli* (AIEC), a pathogen with high prevalence in Crohn’s disease, has been shown to up-regulate miRNAs targeting genes responsible for the autophagy response (ATG5 and ATG16L1) in mouse enterocytes, which may facilitate AIEC replication and exacerbation of intestinal inflammation [39]. Probiotics including *E. coli Nissle 1917*, *lactobacilli*, *Lactobacillus rhamnosus GG*, *Enterococcus faecium NCIMB 10,415*, *Enteropathogenic E. coli* have also been shown to modulate miRNAs in intestinal epithelial cells or immune cells.
thereby altering intestinal immune regulation and barrier function [40–43].

Gut microbiota regulates brain miRNA expression

A large number of abnormal brain miRNAs implicated in anxiety-like behaviors have been detected in the region of amygdala and prefrontal cortex of GF mice or mice with microbiota depletion by an antibiotic cocktail [44]. Some dysregulated brain miRNAs in GF mice have been shown to be normalized by microbial colonization [44]. Gut microbiota have also been demonstrated to modulate hippocampal miRNA expression associated via kynurenine pathway enzymes which regulate hippocampal development and axon guidance pathway [45, 46]. A more recent report describes that a microbial product, *Bacteroides fragilis* lipopolysaccharide (BF-LPS) can act as a neurotoxin via induction of a series of miRNAs targeting genes that regulate synaptic architecture and deficits, amyloidogenesis, and cerebral inflammatory signaling [47]. Some other microbial metabolites including tryptophan, butyrate, acetylcholine, norepinephrine, serotonin, dopamine may also influence miRNA biology indirectly via regulation of astrocyte function and blood–brain-barrier integrity, or even by altering human behavior via disruption of normal neurotransmitter levels [48].

The gut microbiota—host miRNA interaction is summarized in Tables 1 and 2.

Table 1: Gut/fecal miRNA capable of modulating gut microbiota and their function

Gut/fecal miRNA	Function	Disease/experimental model	References
miR155/let-7 g	Cardiovascular function	Ovariectomized mice [29]	
miR-34a-5p	Cognitive impairment	Total abdominal irradiation (mice) [30]	
miR-182, miR-503, mir-17 ~ 92 cluster	Glycan production in recruiting bacteria to tumor	Colorectal cancer (patients) [31]	
miR-199a, miR-223-3p, miR-1226, miR-548ab, miR-515-5p	Disease activity and prognosis of inflammatory bowel disease	Inflammatory bowel disease (patients) [32]	

Table 2: Gut or brain miRNA modulated by gut microbiota/microbial products and their function

miRNA	Cell/tissue/organ	Function	References
miR10-a	Dendritic Cell	Innate immune responses	[37]
miR-21-5p	Intestinal epithelial cells	Intestinal epithelial barrier	[38]
miR-30c, miR-130A	Enterocyte	Autophagy response	[39]
miR-203, miR-483-3, miR-595	Intestinal epithelial cells	Intestinal epithelial barrier	[40]
miR-423-5p	Intestinal epithelial cells	Immune responses	[41]
miR-155, miR-223	Colon	Intestinal epithelial barrier	[42]
miR-146a	Intestinal epithelial and monocyctic Cells	Intestinal inflammation	[43]
miR-294-5p	Hippocampus	Kynurenine metabolism	[45]
miR-9, miR-34a, miR-125b, miR-146a, miR-155	Neuronal-glial cells	Inflammatory neurodegeneration	[47]
process related to gene transcription and translation, transcript and protein modifications, protein localization, and key enzymatic reactions [56–59]. MiRNAs have been detected in exosomes derived from cancer cells, virus-infected cells, and mesenchymal stem cells, playing a fundamental role in intercellular communication via transfer of translational control in various physiological and pathophysiological processes [60–70]. There have been four proposed pathways for sorting miRNAs into exosomes: (1) a neural sphingomyelinase 2 (nSMase2)-dependent pathway; (2) a sumoylated heterogeneous nuclear ribonucleoprotein (hnRNP)-dependent pathway; (3) guide dance by the 3’ end of the miRNA sequence; and, (4) mediation by the miRNA-induced silencing complex (miRISC) [71–76]. However, controversy remains on the exact composition of EVs secondary and the presence and abundance of EV miRNA and miRNA carriers [77–81].

Influencing factor for EV biogenesis
The biogenesis of EV is regulated by a variety of intracellular proteins, enzymes and signaling pathways including: (1) RNA-binding proteins such as hnRNPA2B1 and Argonaute-2; (2) membranous proteins such as Caveolin-1 and Neural Sphingomyelinases; (3) Rab GTPases, ARRD1C, and ESCRT complexes; (4) lipid rafts or membrane lipid microdomains; (5) cytosolic proteins (syntenin) and endosomal enzymes (Heparanase); and, (6) Intracellular calcium-signaling pathways [82–89]. Biogenesis processes can also be modulated by different extracellular stimuli including: (1) viral infection; (2) oncogenic transformation or stresses; (3) hypoxia; (4) alcohol exposure; (5) irradiation; (6) impaired autophagy; and, (7) circulating hormones, which all have important implications in elucidating the pathophysiological mechanisms for development of novel therapeutic targets [90–95].

EV entrapment of fecal miRNA
In their study on fecal miRNA expression profiles, Liu et al. detected EVs in fecal samples and demonstrated that the most abundant fecal miRNAs were also contained within EVs, suggesting that EVs are the major extracellular source of fecal miRNAs [7]. EVs protect fecal miRNAs from degradation via a phospholipid bilayer comprising membrane proteins of EV which entrapping miRNA [96, 97].

Brain-derived EVs
Recent studies describe a wide distribution of EV in the CNS, detected in oligodendrocytes, neurons, astrocytes, microglia, choroid plexus, and brain epithelial cells the interface of blood–brain barrier (BBB) and cerebrospinal fluid (CSF) [98–100]. Brain-derived EVs play a key role in cell-to-cell communication involved in neurogenesis, neural development, neuro-inflammation, synaptic communication and nerve regeneration [101–104]. Accumulating evidence suggest that brain-derived EVs, especially exosomes, play an important role in the pathogenesis of neurodegenerative diseases, infectious CNS diseases, neuroinflammation, psychiatric disease and brain tumors [105–111]. Their output and cargo can be cell-specific and disease-specific and varied with different events during disease progress, features that provide strong potential for use as a biomarker for CNS disease [108, 112, 113]. Furthermore, several other key features of EVs including stability, low immunogenicity, facility of crossing the BBB, accurate cell targeting and specific delivery make them an attractive candidate for therapeutic delivery vehicles in treating CNS disease [114–116].

MiRNAs have been demonstrated to play an important active biological role within brain-derived EVs from astrocytes, neurons, macrophage/microglial cells, prefrontal cortices cells, glioma cells, glioblastoma cells, and glioblastoma stem-like cells, playing a critical role in neurogenesis, response to stress, virus induced neurotoxicity, schizophrenia and bipolar disorder, brain tumor progress, brain metastasis outgrowth [101, 117–120]. More recent research indicates that brain-derived EVs can be detectable in plasma, and astrocyte-derived exosomes are capable of transferring miRNA to metastatic tumor cells, suggesting that brain-derived EVs may transfer molecular information to tissues remote from the CNS [120–122]. Several recent studies have demonstrated that altered miRNA profiles in brain EVs from Alzheimer’s patients, however the mechanisms and clinical significance underscoring these observations remain a focus of investigation [123–125]. Critically, the biological relevance for EV transfer from brain to gut has not been fully elucidated.

Microbiota-derived EV
Bacterial membrane vesicles, including outer-membrane vesicles (OMVs) derived from Gram-negative bacterium and membrane vesicles (MVs) derived from Gram-positive bacteria, parasites, fungi, mycobacteria, refer to a collection of nano-sized membrane vesicles released from bacteria into the extracellular environment [126, 127]. Bacterial membrane vesicles are currently regarded as microbiota derived-EVs since they share characteristic similarities in size, structure and biological function with EVs derived from mammalian cells [128]. Microbiota-derived EVs can transfer a broad range of cargo including bioactive proteins, lipids, nucleic acids, and virulence factors to neighboring bacteria or host cells (epithelial cells, endothelial cells, immune cells). This bioinformatic transferring plays a
critical role in cellular processes for both intra-king-
dom (bacteria-bacteria) interactions and inter-kingdom
(bacteria-host) communications [129, 130]. The effect
of microbiota derived EVs can be effectively differenti-
tiated from microbial metabolites or host by evaluat-
ing the effect of bacterial free microbiota-derived EVs
isolated from bacterial cultures on fecal samples [131].
Recent advances in this field reveal that microbiota-
derived EVs exhibit multiple regulatory functions cen-
tral for bacterial survival and nutrient acquisition,
bacterial virulence delivery, host colonization and
invasion, microbial interactions, antimicrobial resistant-
ce, stress and inflammatory response, endothelial cell
adhesion, and systemic inflammatory and metabolic
response, which all play key roles in the pathogen-
esis of diverse infectious and inflammatory diseases
[132–139]. Several key features of OMV including size,
antigen stability, high immunogenicity, accurate host
cell targeting, specific cargo delivery and host immune
response make them a promising novel candidate for a
vaccine target against bacterial infections, and as tar-
gested drug delivery against cancer and other diseases
[140–142]. Recent findings have focused on the modu-
lar effect of microbiota-derived EVs on intestinal
barrier function and the immune response, two impor-
tant components of GBMAx [143–148]. Furthermore,
relevant studies also reveal that microbiota-derived EVs
are released into the systemic circulation and cross
the BBB [8, 149, 150]. Staphylococcus aureus and Hel-
cobacter pylori-derived EVs have been detected in the
brain after oral administration or intramuscular injec-
tion via in vivo imaging procedures [151, 152]. Addi-
tionally, LPS, a key virulence factor in porphyromonas
gingivalis outer membrane vesicles has been found in
glia and the major cerebral vessels of patients with
Alzheimers disease (AD) by immunoblot [153]. It has
been hypothesized that microbiota-derived EV may be
absorbed into mesenteric veins, carried by the hepatic
portal vein and liver, to finally enter the brain via the
circulatory system [154]. These data strongly suggest
that microbiota-derived EVs may exert a direct effect
on the CNS and be an important central modulator for
GBMAx.

Small RNA (SRNA) within microbiota derived EV can
be internalized by host cells and play an important role
in host–pathogen interaction. miRNA-sized sRNA and
methionine transfer RNA (tRNA) secreted by bacterial
OMV (periodontal pathogens and Pseudomonas aerugi-
nosa) have been shown to enter host cells and modulate
host immunity [155, 156]. EV-contained miRNA secreted
by gastrointestinal nematode has been detected in cir-
culation, which can be internalized by small intestinal
epithelial cells and modulate host innate response [157].

Microbiota derived RNA may act as ligands for Toll-like
Receptor (TLR) and regulators for host innate immunity
[158, 159].

More recent research revealed that OMV may cross the
blood–brain barrier and contribute to neuroinflamma-
tion and cognitive impairment linked with neurodegen-
eration disease such as Alzheimers disease, Parkinson’s
disease and dementia. The possible mechanism may
involve transfer of small RNA non-coding RNA elements
contained within OMV into host cells, thereby regulating
host gene expression [160–165].

EV derived miRNA in metabolic disease

Obesity, Metabolic Syndrome and diabetic mellitus are
known risk factors for the development of CNS disor-
ders including cerebrovascular disease, neurodegenera-
tive diseases and dementia. Several lines of evidence have
revealed that EV derived miRNA originated from gut
microbiota, adipose tissue, steatotic hepatocytes, mesen-
chymal stromal cells (MSC), and pancreatic islets
play crucial role in the pathogenesis of those metabolic
disease and associated target organ injury [166–171].
Their role and relevance to GBMAXs and cerebral dis-
ease remains an area of active investigatgyon. The impact
of EV derived miRNA on neurological and metabolic dis-
 ease are summarized in Table 3.

Controversies and challenges

EV derived miRNA has gain great attention in the
research of GBMAX. However, controversies and chal-
enges remain in this fields.

EV classification and miRNA extraction

The heterogeneity of EV may be far greater than we have
recognized previously. A more complex classification
system based on EV proteome, nucleic acid distribu-
tion and biological function (rather than only 3 subsets
mentioned above) has been predicted1 [172–174]. Prac-
tical difficulty may exist in extraction of EV-derived
miRNA including (1) tedious and costly procedures of
ultracentrifugation and density gradient extraction, and
purification; (2) lack of standardization with technologi-
cal platforms and quantitative assays; (3) non-selective
enrichment of specific EV subpopulations or differential
cellular origins; and, (4) uncoupling from conventional
reverse transcriptase quantitative PCR [175–177]. Novel
extraction approach and technological improvements are
warranted.

Environmental and human genetic factors

It must be acknowledged that the regulatory system of
EV-derived miRNA on GBMAXs is not restricted to EV
or miRNAs originating from gut microbiota, gut or brain.
Environmental factors (e.g., diet, medications, smoking, environmental contaminants, stress) and human genetics also play a crucial modulatory role in GBMAXs via: (1) secreting miRNA containing EVs; (2) shaping gut microbiota; (3) stimulating microbial metabolic products; and, (4) regulation of miRNA expression and function of the host gut and brain [178–184]. The expression of host miRNA (fecal miRNA or intestinal epithelial cell-derived miRNA) and its associated function is impacted by these host genetic and environmental factors, which will ultimately modulate the composition of metabolite and function of gut microbiota [34, 185, 186]. Those environmental and genetic factors may be considered as an extension of the EV-derived miRNA system for GBMAXs, and should be taken into accounting novel drug development and therapeutic strategies targeting GBMAX.

Non-miRNA RNA biotypes and non-vesicle carriers

miRNA is the most studied extracellular RNA but only constitutes a minor composition of RNA biotype in the EV cargo. Other RNA biotypes including small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), long non-coding RNA (lncRNA), Y RNA may be more abundant in EV cargo [187–189]. EV is not the only RNA carrier for miRNA. Non-vesicular miRNAs presenting as ribonucleoprotein complex have been detected in various fluids and circulation, which are becoming candidates for biomarkers and therapeutic targets [190, 191]. The regulatory systems consisting of non-miRNA RNA biotypes and non-vesicle carriers in GBMAX and their relationship with EV derived miRNA should be explored in further study (Table 4).

Conclusions

MiRNAs play a potentially critical role in gut microbiota-gut interaction and gut microbiota-brain bi-directional communication. EVs can be derived from brain, gut and

Table 3 The impact of EV derived miRNA on neurological and metabolic disease

EV sRNA	EV origination	Function	References
hsa-miR-23a-3p, hsa-miR-126-3p, hsa-let-7i-5p, hsa-miR-151a-3p	Plasma	Unknown in Alzheimer’s disease	[123]
miR-212 and miR-132	Neurally derived plasma EV	Unknown in Alzheimer’s disease	[124]
miR-23a-3p, miR-223-3p, miR-190a-5p, miR-100-3p	Neurally Derived Plasma EV	Unknown in Alzheimer’s disease	[125]
miRNA cargo (periodontal bacteria)	Aggregatibacter actinomy- cetemcomitans	Neuroinflammation in Alzheimer’s disease	[165]
miR-27b, miR-126, miR-130, miR-296	Pancreatic islets	Beta cell-endothelium cross-talk in diabetes	[165]
miR-221-3p (up regulated)	Perivascular adipose tissue	Vascular remodeling in obesity	[168]
miR-1 (up regulated)	Steatotic hepatocytes	Atherogenesis in Non-alcoholic fatty liver disease	[170]
miR-136-3p, miR-4798-5p, miR-12136, miR-222-3p (Downregulated)	Mesenchymal stem cells	Renal tubular cells senescence in metabolic syndrome	[171]
miR-630, miR-144-3p, miR-143-5p, miR-4787-3p miR-769-5p, miR-8074, miR-181a-5p (up regulated)			

Table 4 The work-flow of the literature review

Topic	References
1. Gut-brain-microbiota axis (GBMax)	[1-4, 9-15]
2. microRNA (miRNA)	
2.1. miRNA biogenesis	[16-19]
2.2. miRNA function	[20-28]
3. Gut microbiota-host miRNA interaction	
3.1. gut microbiota-gut miRNA interaction	[7, 29-43]
3.2. gut microbiota-brain miRNA interaction	[44-48]
4. Extracellular vesicles (EVs)	
4.1. EV biogenesis	[49-55, 82-95]
4.2. EV function	[60-81, 172-177, 166-171, 187-191]
4.3. Environmental and genetic influence	[178-186]
4.4. EV entrapment of fecal miRNA	[7, 96, 97]
4.5. Brain-derived EVs	[98-125]
4.6. Microbiota derived EVs	[126-165]
gut microbiota, coordinating cell-to-cell communication via transfer of miRNAs. We hypothesize that an EV-miRNA system throughout GBMAx could play a central role in exchange of molecular information among gut microbiota, gut and brain. This EV-miRNA based regulatory system is schematically outlined in Fig. 1. However, current research in this field remains in the early stages. Further investigations should be performed to elucidate: (1) the direct effect of brain-derived EVs on gut and gut microbiota; (2) the precise regulatory mechanisms of EV miRNA transfer, and their biological function on GBMAx; (3) the functional link between EV-miRNA and other classical neuro-immune-endocrine pathways. Progress in this field will provide new insight into the comprehensive understanding of GBMAx and help advance the clinical development of novel biomarkers and therapeutic target for the variety of diseases associated with GBMAx imbalance.
Abbreviations
GBM Am: Gut-brain-microbiota axis; EVs: Extracellular vesicles; CNS. Central nervous system; ANS: Autonomic nervous system; ENs. Enteric nervous system; HPA. The hypothalamic–pituitary–adrenal axis; pre-miRNA. Primary miRNA transcript; miRISC. miRNA–associated RNA-induced silencing complex; IEC. Intestinal epithelial cells; Hopx. Homeobox gene; O VX. Ovaricectomized; TA I. Total abdominal irradiation; GF. Germ-free; SPF. Specific-pathogen free; IESC. Intestinal epithelial stem cell; LGG.: Lactobacillus rhamnosus GG; BF-LPS. Bacteroides fragilis lipopolysaccharide; MVs: Micro-vesicles; ILVs: Ntraluminal vesicles; MVBS: Formation of multi-vesicular bodies; AD. Alzheimer’s disease.

Acknowledgements
This study was supported by the National Natural Science Foundation of China Nos. 81870939, 81571147 to Dr. Xiong and American Heart Association award 14FTF19970029 to Dr. Stary.

Authors’ contributions
LZ wrote the initial draft. YZY contribute to collecting literature. Figures and submission prepared by LXJ, ZHJ prepared the final version. CMS and XXX recommended a structure for the review, substantially advanced the draft. All authors read and approved the final manuscript.

Funding
This study was supported by the National Natural Science Foundation of China No. 81571147 to Dr. Xiong and American Heart Association award 14FTF19970029 to Dr. Stary.

Availability of data and materials
Not applicable.

Declarations
Ethics approval and consent to participate:
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China. 2Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China. 3Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.

Received: 30 November 2019 Accepted: 27 November 2020
Published online: 11 May 2021

References
1. Beaumont W. Nutrition classics. Experiments and observations on the gastric juice and the physiology of digestion By william Beaumont. Plattsburgh. Printed by F. P. Allen. 1833. Nutr Rev. 1977;35:144–5.
2. Al Omran Y, Azz Q. The brain-gut axis in health and disease. Adv Exp Med Biol. 2014;817:135–53.
3. CANNON. The influence of emotional states on the functions of the alimentary canal. Sciences. 1908;137:480–486.
4. Mayer EA, Tillich K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125:926–38.
5. Zhou G, Zhou Y, Chen X. New insight into inter-kingdom communication: horizontal transfer of mobile small RNAs. Front Microbiol. 2017;18(8):768.
6. Van Niel G, d’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.
7. Liu S, da Cunha AP, Rezende RM, Calic R, Wei Z, Bry L, et al. The host shapes the gut microbiota via fecal microrna. Cell Host Microbe. 2016;19:32–43.
8. Ahmadi Badi S, Moshiri A, Fateh A, Rahimi Jammani F, Sanhar M, Vaziri F, Siadat SD. Microbiota-derived extracellular vesicles as new systemic regulators. Front Microbiol. 2017;24(8):1610.
9. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):208–206.
10. Dolapcioglu C, Dolapcioglu H. Structural brain lesions in inflammatory bowel disease. World J Gastrointest Pathophysiol. 2015;6:124–30.
11. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.
12. Matteoli G, Boeckxstaens GE. The vagal innervation of the gut and immune homeostasis. Gut. 2013;62(8):1214–22.
13. Pott J, Horner M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep. 2012;13(8):684–98.
14. Berck P, Park AJ, Sinclair D, Khosshdel A, Lu J, Huang X, et al. The anxiolytic effect of bifidobacterium longum ncc3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23:1132–9.
15. Martin CR, Ochschi V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133–48.
16. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.
17. Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51.
18. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.
19. Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
20. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J. 2012;18(3):215–22.
21. Pratt AJ, MacRae EI. The ma-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284:17897–901.
22. Croce CM. Causes and consequences of microrna dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.
23. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahyia R. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA. 2008;103(46):17337–42.
24. Janovski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol. 2007;3(3):166–73.
25. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4.
26. Park CY, Choi YS, McMannis MT. Analysis of microRNA knockouts in mice. Hum Mol Genet. 2010;19(R2):R165–78.
27. Gao L, Jiang F. Microrna (mirna) profiling. Methods Mol Biol. 2011;706:113–20.
28. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2009;10:704–14.
29. Dahiya R. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA. 2006;103(46):17337–42.
30. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.
31. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahyia R. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA. 2008;103(46):17337–42.
32. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4.
33. Park CY, Choi YS, McMannis MT. Analysis of microRNA knockouts in mice. Hum Mol Genet. 2010;19(R2):R165–78.
34. Gao L, Jiang F. Microrna (mirna) profiling. Methods Mol Biol. 2011;706:113–20.
35. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2009;10:704–14.
36. Dahiya R. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA. 2006;103(46):17337–42.
37. Janovski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol. 2007;3(3):166–73.
38. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4.
39. Park CY, Choi YS, McMannis MT. Analysis of microRNA knockouts in mice. Hum Mol Genet. 2010;19(R2):R165–78.
40. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.
41. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahyia R. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA. 2008;103(46):17337–42.
42. Janovski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol. 2007;3(3):166–73.
36. Moloney GM, Viola MF, Hoban AE, Dinan TG, Cryan JF. Faecal microRNAs: indicators of imbalance at the host-microbe interface? Benef Microbes. 2018;9(2):175–83.

37. Xue X, Feng T, Yao S, Wolf KJ, Liu CG, Liu X, Eizen CO, Cong Y. Microbiota downregulates dendritic cell expression of miR-19a, which targets IL-12/IL-23p40. J Immunol. 2011;187(11):5789–96.

38. Nakata K, Sugiy, Narabayashi Y, Kobayakawa T, Nakashima Y, Tsuda M, Hosono A, Kaminogawa S, Hanazawa S, Takahashi K. Commensal microbiota-induced microRNAs modulates intestinal epithelial permeability through the small GTPase ARF4. J Biol Chem. 2017;292(17):15246–33.

39. Dalmasso G, Singleton HTT, Fais T, Massier S, Bannich N, Delmas J, Bonnet R, Crohn's disease-associated adherent-invasive Escherichia coli manipulate host autophagy by impairing SUMOylation. Cells. 2019;8(1):35.

40. Veltman K, Hummel C, Sonnenborn U, Schmidt MA. Identification of specific miRNAs targeting proteins of the apical junctional complex that simulate the probiotic effect of E. coli Nissle 1917 on T84 epithelial cells. Int J Biochem Cell Biol. 2012;44(2):341–9.

41. Saharanwal H, Cichon C, Sonnenborn U, Schmidt M. Identification of specific miRNAs targeting proteins of the apical junctional complex that simulate the probiotic effect of E. coli Nissle 1917 on T84 epithelial cells. Int J Biochem Cell Biol. 2012;44(2):341–9.

42. Kreuzer-Riedler S, Bekurtz J, Acens D, Bortfeldt R, Kutz-Lohroff B, Starbatty S, et al. Identification of enterococcus faecium ncmb 10415 leads to intestinal mirta-423-5p-induced regulation of immune-relevant genes. Appl Env Microbiol. 2016;82:2263–9.

43. Rodriguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Mirri M, Baric N, Elson C, Cong Y. Microbiota-induced microRNA modulates intestinal epithelial permeability. Benef Microbes. 2018;9(11):2267–78.

44. Hoban AE, Stilling RM, Moloney RD, Shanahan F, Dinan TG, Kumar M, Singh P, Murugesan S, Vetizou M, McCulloch J, Badger JH, Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles. Methods and protocols. New York: Springer; 2020. p. 595–638.

45. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chalimarkant N, Gangoda L, Mathivanan S. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–92.

46. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, Schiefvleers RM, de Wit E, Berenger J, Ellenbroek SJ, Wurzinger T, Petteg RM, van Rheenen J. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(1):1046–57.

47. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chalimarkant N, Gangoda L, Mathivanan S. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–92.

48. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tese Mark M, Molina H, Kohsaka S, Di Giannattasio C, Red, Singh S, Williams C, Soplopa N, Uyyu K, Parhmer L, King T, Bojmar L, Davies AE, Arazo Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumlont-Cole KD, Kramer K, Wester LH, Narendran A, Schwartz GK, Healey JH, Sandstorm P, Labori KJ, Kure EH, Grandenett PM, Hollsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batka SR, Jarragin WR, Brady MS, Fedostad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar V, Chagkar CM, Matei I, Peinamoto H, Bromberg J, Lyden D. Tumour exosome integrons determine organotropic metastasis. Nature. 2015;527(7578):329–35.

49. Sastre B, Cañas JA, Rodrigo-Muñoz JM, Del Pozo V. Novel Modulators of Asthma and Allergy: Exosomes and MicroRNAs. Front Immunol. 2017;218(8):826.

50. Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle miRNAs in the central nervous system. Glia. 2018;66(11):2267–78.

51. Chen J, Zhao B, Zhao J, Liu S. Potential roles of extracellular MicroRNAs as diagnostic biomarkers and therapeutic application in Alzheimer's disease. Neural Plast. 2017;2017:7027380.

52. Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring mir-125a. J Cell Sci. 2016;129(11):2182–9.

53. Maemura T, Fukuyama S, Sugita Y, Lopes TIS, Nakao T, Noda T, Kawao Y. Lung-derived extrosomal mir-483-3p regulates the innate immune response to influenza virus infection. J Infect Dis. 2018;217(9):1372–82.

54. Salehi M, Sharif M. Exosomal miRNAs as novel cancer biomarkers: challenges and opportunities. J Cell Physiol. 2018;233(9):6370–80.

55. Wang S, Wang JQ, Lv XW. Exosomal miRNAs as biomarkers in the diagnosis of liver disease. Biomark Med. 2017;11(6):491–501.

56. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 2018;9:320.

57. Wang M, Yu F, Ding H, Wang Y, Li F, Wang K. Emerging function and clinical values of exosomal microRNAs in cancer. Mol Ther Nucleic Acids. 2019;16:791–804.

58. Yoshikawa FSY, Teixeira FME, Sato MN, Oliveira L. Delivery of microRNAs by extracellular vesicles in viral infections: could the news be packaged? Cells. 2019;8:1.

59. Valadi H, Ekstrom K, Bossios A, Stjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRnas and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–60.

60. Gibbings DJ, Ciaudo C, Erdhardt M, Vaznet O, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11(9):1143–9.

61. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandenett PM, Hollsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batka SR, Jarragin WR, Brady MS, Fedostad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar V, Chagkar CM, Matei I, Peinamoto H, Bromberg J, Lyden D. Tumour exosome integrons determine organotropic metastasis. Cell. 2015;161(5):1046–57.

62. Sadek P, Sie D, Zini N, Middeldorp JM, Ylstra B, de Menezes RX, Montano A, Mittelbrunn M, Sánchez-Madrid F. Sumoylated hnRNPA2B1 associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11(9):1143–9.

63. Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Dev Biol. 2014;30:255–89.

64. Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Dev Biol. 2014;30:255–89.

65. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofres N, Martínez-Herrera DJ, Pascual-Montano A, Meltzer-Müller B, Sanchez-Madrid F. Sumoylated hnrRPA2B1 controls the sorting of hnrRPs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.
76. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinform. 2015;13(3):17–24.

77. Sluijter JPG, Davidson SM, Boulanger CM, Buzás EI, de Kleijn DPV, Engel FB, Ginicc Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, MacDonald R, Perino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferrari A. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114(1):19–34.

78. Coumans FAW, Brisson AP, Buzas EI, Dignat-George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DF, Lecour S, Madonna R, Perrie Y, Raemaekers P, Matthijs M, Verderio C. Microvesicles released from microglia stimulate synaptic activity via enhanced spingolipid metabolism. EMBO J. 2012;31(5):1231–40.

79. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolar membrane coats. Cell. 1992;68:673–82.

80. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Cargo transfer: An isev position paper arising from the isev membranes and evs workshop. J Extracell Vesicles. 2019;8:1684862.

81. Wang T, Turko IV. Proteomic toolbox to standardize the separation of extracellular vesicles and lipoprotein particles. J Proteome Res. 2018;17(9):3104–13.

82. Simonos JB. What are we looking at? Extracellular vesicles, lipoproteins, or both? Circ Res. 2017;121(8):920–2.

83. Rothenberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolar membrane coats. Cell. 1992;68:673–82.

84. Baetti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-α1x regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85.

85. Li B, Antonyk MA, Zhang J, Cerione RA. Rhoa triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene. 2012;31:4740–9.

86. Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res. 2018;59(9):1325–40.

87. Russell AE, Sneath A, Witwer KW, Bergese P, Bhattacharyya SN, Cocks O, Bochaton-Piallat ML, Bouillot J, van der Pol E, Montagne L, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferrari A. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114(1):19–34.

88. Taylor J, Azimi I, Monteith G, Bebawy M. Ca(2+)-dependent extracellular vesicles. EMBO Mol Med. 2016;8(10):1162–83.

89. Figueroa JM, Skog J, Akers J, Li H, Komotar R, Jensen R, Ringel F, Yang I, Kalkanis S, Thompson R, LoGuidice L, Berghoff E, Pinto S, Toedling J, Trotter J, Kramer-Albers EM. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1652):20130510.

90. Lauret A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wyneken U, Henzi R. Astrocytes at the hub of the stress response: potential modulation of neurogenesis by miRNAs in astrocyte-derived exosomes. Stem Cells Int. 2017;2017:1719050.

91. Welton J, Lovelless S, Stone T, van Ruhlend C, Robertson NP, Clayton A. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J Extracell Vesicles. 2017;6(1):1369805.

92. Figueiroa JM, Skog J, Akers J, Li H, Kalkanis S, Thompson R, LoGuidice L, Berghoff E, Pinto S, Toedling J, Trotter J, Kramer-Albers EM. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1652):20130510.

93. Cserr FH, de Kleijn DPV, Engel FB, Ginnic Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, MacDonald R, Perino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferrari A. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114(1):19–34.

94. Russell AE, Sneath A, Witwer KW, Bergese P, Bhattacharyya SN, Cocks O, Bochaton-Piallat ML, Bouillot J, van der Pol E, Montagne L, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferrari A. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114(1):19–34.
116. Otero-Ortega L, de Frutos MC, Laso-García F, Rodríguez-Frutos B, Zhao et al. J Transl Med 2021;19:202

117. Yelamanchili SV, Lamberty BG, Rennard DA, Morsey BM, Hochfelder CG, Yang JK, Yang JP, Tong J, Jing SY, Fan B, Wang F, Sun GZ, Jiao BH. Exosomes derived from E. coli up-regulate expression of endothelial cell adhesion molecules in vitro and in vivo. PLoS ONE. 2013;8(3):e59276.

118. Jung AL, Stoiber C, Herkt CE, Schulz C, Bertrams W, Schmeck B. Legionella pneumophila-derived outer membrane vesicles promote bacterial replication in macrophages. PLoS Pathog. 2016;12(4):e1005592.

119. Jager J, Keese S, Roessle M, Steinert M, Schomm MB. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes. Cell Microbiol. 2015;17:607–20.

120. Roberts R, Moreno G, Bottero D, Gailllard ME, Fingermann M, Graeb A, Rumbo M, Hobzor D. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine. 2008;26(36):4639–46.

121. Wang S, Gao J, Wang Z. Outer membrane vesicles for vaccination and targeted drug delivery. Wiley Interdiscip Rev Nanobiototechnol. 2019;11(2):e1523.

122. Sierra CV, Campa HC, Vasconcello NM, Garcia IL, Izquierdo PL, Sotologo PF, Casevna GV, Rico CO, Rodriguez CR, Terry MH. Vaccine against group B streptococcal meningitis: a phase 2, randomised, open-label, single-blind, non-inferiority trial. Lancet Infect Dis. 2016;16(7):705–15.

123. Chelakkot C, Choy K, Kim DK, Park HT, Ghm J, Kwon Y, Jeon J, Kim MS, Jee YK, Gho YS, Park HS, Kim YK, Ryu SH. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50(2):e450.

124. Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, Park SK, Jeon SG, Roh TY, Myung SJ, Gho YS, Kim JG, Kim YK. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE. 2013;8(10):e76520.

125. Alvarez CS, Badia J, Bosch M, Giménez R, Baldomá L. Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol. 2016;15(7):1981.

126. Cañas MA, Fábrega MJ, Giménez R, Badia J, Baldomá L. Outer membrane vesicles from probiotic and commensal Escherichia coli activate NOD1-mediated immune responses in intestinal epithelial cells. Front Microbiol. 2018;9:209.

127. Cha DJ, Mengel D, Mustapic M, Liu W, Selkoe DJ, Kapogiannis D, et al. Serpente M, Fenoglio C, D’Anca M, Arcaro M, Sorrentino F, Visconte C, et al. Mira profiling in plasma neural-derived small extracellular vesicles in Alzheimer’s disease and dementia with Lewy bodies. Transl Neurodegener. 2019;8:31.

128. D’Anca M, Fenoglio C, Arcaro M, Sorrentino F, Visconte C, et al. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol. 1967;49(1–11).

129. Casanueva GV, Rico CO, Rodriguez CR, Terry MH. Vaccine against group B streptococcal meningitis: a phase 2, randomised, open-label, single-blind, non-inferiority trial. Lancet Infect Dis. 2016;16(7):705–15.

130. Chelakkot C, Choy K, Kim DK, Park HT, Ghm J, Kwon Y, Jeon J, Kim MS, Jee YK, Gho YS, Park HS, Kim YK, Ryu SH. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50(2):e450.

131. Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, Park SK, Jeon SG, Roh TY, Myung SJ, Gho YS, Kim JG, Kim YK. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE. 2013;8(10):e76520.

132. Alvarez CS, Badia J, Bosch M, Giménez R, Baldomá L. Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol. 2016;15(7):1981.

133. Cañas MA, Fábrega MJ, Giménez R, Badia J, Baldomá L. Outer membrane vesicles from probiotic and commensal Escherichia coli activate NOD1-mediated immune responses in intestinal epithelial cells. Front Microbiol. 2018;9:209.

134. Gao XJ, Li T, Wei B, Yan ZX, Yan R. Regulatory mechanisms of gut microbiota on intestinal CYP3A and P-glycoprotein in rats with dextran sulfate sodium-induced colitis. PLoS ONE. 2013;8(10):e76520.

135. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;14(9):392.

136. Soult MC, Dobrynneva Y, Wahab KH, Britt LD, Sullivan CJ. Outer membrane vesicles after inflammation and coagulation mediators. J Surg Res. 2014;192(1):34–42.

137. Kim JH, Yoon YJ, Lee J, Choi EJ, Yi N, Park KS, Park J, Lotvall J, Kim YK, Gho YS. Outer membrane vesicles derived from Escherichia coli up-regulate expression of endothelial cell adhesion molecules in vitro and in vivo. PLoS ONE. 2013;8(3):e59276.

138. Jung AL, Stoiber C, Herkt CE, Schulz C, Bertrams W, Schmeck B. Legionella pneumophila-derived outer membrane vesicles promote bacterial replication in macrophages. PLoS Pathog. 2016;12(4):e1005592.

139. Jager J, Keese S, Roessle M, Steinert M, Schomm MB. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes. Cell Microbiol. 2015;17:607–20.

140. Roberts R, Moreno G, Bottero D, Gailllard ME, Fingermann M, Graeb A, Rumbo M, Hobzor D. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine. 2008;26(36):4639–46.
and produce antidepressant-like effects in mice. Exp Neuropsychopharmacology. 2019;28:158-71.

155. Koeppen K, Hampton TH, Jarem K, Scharfe M, Gerber SA, McEwen B. Novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog. 2016;12:e1005672-e1005672.

156. Choi JW, Kim SC, Hong SH, Lee HJ. Secretory small RNAs via outer membrane vesicles in periodontal pathogenic. J Dent Res. 2017;96:458–66.

157. Buck AH, Coakley G, Simbari M, McSorley HJ, Quintana TF, Li Bihan T, et al. Erratum: Exosomes secreted by nematode parasites transform small RNAs into mammalian cells and modulate innate immunity. Nat Commun. 2015;6:8772.

158. Drexler SK, Foxwell BM. The role of Toll-like receptors in chronic inflammation. J Clin Biochem Cell Biol. 2010;42:506–18.

159. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Annu Rev Immunol. 2001;19:231–69.

160. Sun MF, Shen YQ. Dysbiosis of gut microbiota and microbial metabolism in Parkinson's disease. Ageing Res Rev. 2018;45:31–41.

161. Han EC, Choi SY, Lee Y, Park JW, Hong SH, Lee HJ. Extracellular rRNAs in periodontal pathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. Faseb J. 2019;33:13412–22.

162. Wei SC, Wei W, Peng WJ, Liu Z, Cai ZY, Zhao B. Metabolic alterations in the outer membrane vesicles of patients with Alzheimer's disease: an LC-MS/MS-based metabolomics analysis. Curr Alzheimer Res. 2018;15:1198–93.

163. Leclair-Visonneau L, Neunlist M, Derkinderen P, Lebouvier T. The gut microbiota in Parkinson's disease: bottom-up, top-down, or neither? Neurogastroenterol Motil. 2020;32:e13777.

164. Sun MF, Shen YQ. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev. 2019;55:S3–61.

165. Han EC, Choi SY, Lee Y, Park JW, Hong SH, Lee HJ. Extracellular rRNA in periodontal pathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. Faseb J. 2019;33:13412–22.

166. Wei SC, Wei W, Peng WJ, Liu Z, Cai ZY, Zhao B. Metabolic alterations in the outer membrane vesicles of patients with Alzheimer’s disease: an LC-MS/MS-based metabolomics analysis. Curr Alzheimer Res. 2018;15:1198–93.

167. Leclair-Visonneau L, Neunlist M, Derkinderen P, Lebouvier T. The gut microbiota in Parkinson's disease: bottom-up, top-down, or neither? Neurogastroenterol Motil. 2020;32:e13777.

168. Liu Y, Meng Y, Zhu X, Saadq M, Jordan KL, Erzin A, et al. Metabolic syndrome increases senescence-associated micro-RNAs in extracellular vesicles derived from swine and human mesenchymal stem/stromal cells. Cell Commun Signal. 2020;18:124.

169. Kowal J, Arras G, Colombo M, Jouve M, Morath J, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016;113:1.

170. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20:32–43.

171. Choi D, Lee TH, Spinelli C, Chenakrishnan S, D’Asti E, Rak J. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol. 2017;67:11–22.

172. Zocco D, Zarovni N. Extraction and analysis of extracellular vesicle-associated mirnas following antibody-based extracellular vesicle capture from plasma samples. Methods Mol Biol. 2017;1660:269–85.

173. Kaur S, Abu-Shahba AG, Paananen RO, Hongisto H, Hiedenmaa H, Skottman H, et al. Small non-coding RNA landscape of extracellular vesicles from human stem cells. Sci Rep. 2018;8:11550.

174. Lin OW, Jan MS, Kuo JS. The microRNA expression profiles in extracellular vesicles from hela cancer cells in response to catcotic lipid- or polyethylenimine-mediated gene delivery. J Drug Target. 2019;27:94–102.

175. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Israel D, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.

176. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.

177. Carbone J, Bacchelli S, Yoon S, Weisberg PM, videos D, et al. Metabolite landscapes of extracellular vesicles identify potential targets of mesenchymal stem cells. Sci Rep. 2018;8:15513.

178. Yuan C, Burns MB, Subramanian S, Blekhman R. Interaction between host microRNAs and the gut microbiota in colorectal cancer. mSystems. 2018;3:1.

179. Yuan C, Subramanian S. MicroRNA-mediated tumor-microbiota metabolic interactions in colorectal cancer. DNA Cell Biol. 2019;38:281–5.

180. Neuf J, Gut microbiota, obesity: Links with host genetics and epigenetics and potential applications. Adv Nutr. 2019;10:517–30.

181. Wei Z, Batagov AO, Schinelli S, Wang J, Wang Y, El Fatimy R, et al. Codornices from plasma samples. Methods Mol Biol. 2017;1660:269–85.

182. Xing SC, Huang CB, Mi JD, Wu YB, Liao XD. Bacillus coagulans r11 maintains intestinal villus health and decreased intestinal injury in lead-exposed mice by regulating the intestinal microbiota and influenced the function of faecal microRNAs. Environ Pollut. 2019;255:113139.

183. Xing SC, Huang CB, Mi JD, Wu YB, Liao XD. Bacillus coagulans r11 maintains intestinal villus health and decreased intestinal injury in lead-exposed mice by regulating the intestinal microbiota and influenced the function of faecal microRNAs. Environ Pollut. 2019;255:113139.

184. Yue J, Gut microbiota, host gene expression, and cell traffic via milk. Nestle Nutr Inst Workshop Ser. 2020;94:94–102.

185. Yuan C, Burns MB, Subramanian S, Blekhman R. Interaction between host microRNAs and the gut microbiota in colorectal cancer. mSystems. 2018;3:1.

186. Yuan C, Subramanian S. MicroRNA-mediated tumor-microbiota metabolic interactions in colorectal cancer. DNA Cell Biol. 2019;38:281–5.

187. Chevillet JR, Kang G, Ruff IK, Briggs HA, Voytech LN, Hughes SM, et al. Quantitative and stoichiometric analysis of the miRNA content of exosomes. Proc Natl Acad Sci USA. 2014;111:14888–93.

188. Lefebvre FA, Benoit Bouvrette LP, Peres L, Blanchet-Cohen A, Garnier D, Rak J, et al. Comparative transcriptomic analysis of human and drosophila extracellular vesicles. Sci Rep. 2016;6:27680.

189. Wei Z, Bartagov AO, Schinelli S, Wang J, Wang Y, El Fatimy R, et al. Codornices from plasma samples. Methods Mol Biol. 2017;1660:269–85.

190. Byniarski K, Ptak W, Martin E, Nazimek K, Szczepanik M, Sanak M, et al. Free extracellular miRNA functionally targets cells by transfecting exosomes from their companion cells. PLoS ONE. 2015;10:e0122991–e0122991.

191. Stremersch S, Braeckmans K, De Smedt S, Raemdonck K. Quantitative and stoichiometric analysis of the miRNA content of extracellular rRNA in human plasma samples. Methods Mol Biol. 2017;1660:269–85.

192. Kowal J, Arras G, Colombo M, Jouve M, Morath J, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016;113:1.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.