A equipe da revista Arquivos Brasileiro de Cirurgia Digestiva comunica publicação formal Retração para extração do artigo:

Fernandez OOA, Pereira JA, Campos FG, Araya CM, Marinho GE, Novo RS, Oliveira TS, Franceschi YT, Martinez CAR. EVALUATION OF ENEMAS CONTAINING SUCRALFATE IN TISSUE CONTENT OF MUC-2 PROTEIN IN EXPERIMENTAL MODEL OF DIVERSION COLITIS. Arq Bras Cir Dig. 2018 Aug 16;31(3):e1391. doi: 10.1590/0102-672020180001e1391

Desde que foi comprovada a publicação duplicada do artigo que foi disponibilizado em edição anterior da Revista Arquivos Brasileiro de Cirurgia Digestiva

Fernandez OOA, Pereira JA, Campos FG, Araya CM, Marinho GE, Novo RS, Oliveira TS, Franceschi YT, Martinez CAR. EVALUATION OF ENEMAS CONTAINING SUCRALFATE IN TISSUE CONTENT OF MUC-2 PROTEIN IN EXPERIMENTAL MODEL OF DIVERSION COLITIS. Arq Bras Cir Dig. 2017 Apr-Jun;30(2):132-138. doi: 10.1590/0102-6720201700020012

Cordialmente,
Prof. Dr. Osvaldo Malafaia
Editor-Chefe
INTRODUÇÃO

O epitélio do intestino grosso constitui-se na mais perfeita barreira morfocinético do corpo humano, impedindo a penetração de antígenos, toxinas e bactérias presentes na luz do cólon para o meio interno. Essa barreira é composta por diferentes linhas de defesa, principalmente representadas pela camada de muco que recobre a mucosa cólica; por uma única camada de células justapostas firmemente aderidas umas às outras que formam a superfície epitelial, pelos eficientes mecanismos

Trabalho realizado no Laboratório de Investigação Médica do Programa de Pós-Graduação em Ciências da Saúde, Universidade São Francisco, Bragança Paulista, SP, Brasil.

RESUMO - Racional: Os efeitos da aplicação tópica de sucralfato (SCF) no conteúdo tecidual da proteína mucina-2 (MUC-2) ainda não foram avaliados em modelos experimentais de colite de exclusão. O objetivo deste estudo foi avaliar o efeito de SCF no conteúdo tecidual de MUC-2 na mucosa cólica com e sem trânsito intestinal submetida à intervenção com SCF. Método: Trinta e seis ratos foram submetidos à derivação intestinal por colostomia proximal terminal e fistula mucosa distal. Foram divididos em três grupos segundo receberam clisteres contendo solução fisiológica (SF), SCF 1 g/kg/dia e SCF 2 g/kg/dia. Cada grupo foi dividido em dois subgrupos, segundo a eutanásia ser realizada após duas ou quatro semanas. O diagnóstico de colite foi estabelecido por estudo histopatológico e a intensidade da inflamação foi avaliada por escala validada. A expressão tecidual da MUC-2 foi identificada por imunoistoquímica e seu conteúdo mensurado por morfometria computadorizada. Resultados: A aplicação de clisteres com SCF na concentração de 2 g/kg/dia reduziu a intensidade da inflamação no cólon sem trânsito fecal. O conteúdo tecidual de MUC-2 no cólon sem trânsito dos animais submetidos à intervenção com SCF, independente do tempo de intervenção e da concentração utilizada, foi maior quando comparado aos animais tratados com SF (p<0,01). O conteúdo de MUC-2 após a intervenção com SCF na concentração de 2 g/kg/dia foi maior quando comparado aos animais submetidos à intervenção com concentração menor (p<0,01). O conteúdo de MUC-2 foi maior após intervenção com SCF na concentração de 2 g/kg/dia por quatro semanas (p<0,01). Conclusão: A aplicação preventiva de clisteres com SCF reduz o grau de inflamação e preserva o conteúdo tecidual de MUC-2, em segmentos desprovidos de trânsito intestinal, demonstrando-se uma estratégia terapêutica válida para preservar a camada de muco no recrunchamento epitelial.

Descritores - Côlon. Colite. Sucralfato. Mucina-2. Ácidos graxos voláteis.
de junções intercelulares que conectam uma célula à sua vizinha, pela membrana basal e por um complexo sistema de defesa imunológica. Esse sistema imunológico, considerado o mais eficiente do organismo humano, protege o hospedeiro dificultando a translocação de patógenos e toxinas a partir do lume intestinal. Portanto, a proteção conferida pelos diferentes mecanismos de defesa da barreira epitelial cólica é imprescindível para a preservação da vida humana.

As células do epitélio cólico são recobertas por uma camada gelatinosa de muco que atua como a primeira linha de defesa da barreira epitelial. O muco, além de funcionar como agente lubrificante facilitando a progressão do conteúdo fecal possui propriedades antibacterianas conferindo ainda, uma permeabilidade seletiva à parede intestinal. A camada de muco é formada predominantemente por mucinas, uma classe de glicoproteínas principais constituíntes da sua composição química e por sua função de barreira mecânica. As mucinas são produzidas pelas células caliciformes presentes em grande quantidade nas glândulas cólicas. Os ácidos graxos de cadeia curta (AGCC) constituem o substrato mais importante para que as células caliciformes obtenham energia suficiente para produzirem continuamente mucinas.

A estrutura molecular das moléculas de mucinas é composta por uma fração glicídica e outra proteica. Quando se considera sua fração glicídica subdividem-se em mucinas neutras mais abundantes no sistema digestivo superior e as ácidas, principalmente encontradas no intestino grosso. As mucinas ácidas, por sua vez, se subdividem em sulfomucinas quando há predominio de radicais sulfatados na sua estrutura molecular ou sialomucinas quando existe maior teor de ácido sialico. Com relação à fração proteica, da molécula, o suprimento adequado de AGCC possui papel importante na síntese das frações proteicas da glicoproteína. Demonstrou-se que os AGCC são capazes de aumentar em 20 vezes a expressão de genes MUC e, consequentemente, a transcrição do mRNA responsável pela tradução da proteína homóloga. Esses achados corroboram a importância do suprimento regular de AGCC para a adequada síntese de mucinas pelas células caliciformes, formando o epitélio cólico.

Estudos mostram, porém, que pode ocorrer alterações no tipo e conteúdo das mucinas que recobrem o epitélio cólico em diferentes doenças inflamatórias intestinais. Foram descritas modificações na espessura e constituição da camada de muco nas colites bacterianas, colite ulcerativa, colite de exclusão (CE), pólipos adenomatosos e no câncer colorretal. A estrutura molecular das moléculas de mucinas ainda não foi avaliada em estudos experimentais.

MÉTODO

Estudar o efeito do Sucralfato sobre a produção de muco nas glândulas da mucosa cólica desprovida de trânsito intestinal, onde a ação antioxidante e estimuladora da produção do fator de crescimento epitelial, importante nos processos de renovação celular, encontra-se relacionado à sua capacidade de aumentar a síntese e liberação de prostaglandina E2 estimulando a produção de muco a partir das células caliciformes. Os efeitos da aplicação de clisteres com SCF na quantidade e padrão de expressão das porções glicídicas das mucinas nas glândulas da mucosa cólica desprovida de trânsito fecal já foram estudados em modelos experimentais de CE. Todavia, o conteúdo tecedial da fração proteica das mucinas ainda não foi avaliado em estudos experimentais.

Asm, o objetivo deste estudo foi avaliar experimentalmente, os efeitos da aplicação de clisteres contendo SCF no conteúdo tecedial da proteína MUC-2 nas glândulas da mucosa cólica desprovida de trânsito intestinal.

FIGURA 1 - Algoritmo da divisão dos grupos experimentais

Durante o período pré-operatório (sete dias), eles foram isolados em gaiolas individuais, mantidos em estantes climatizadas, com controle de temperatura, luminosidade, umidade e ruídos. Permaneceram em jejum por 12 h, exceto para água, antes da intervenção cirúrgica. Cada gaiola foi marcada com o número de controle e localizada numa gaiola de condições confortáveis.

No dia da intervenção, os animais foram pesados para cálculo da dose anestésica a ser utilizada. A anestesia foi administrada utilizando-se o cloridrato de xilazina 2% e cloridrato de quetamina na dose de 0,1 ml/100 g, administrados por via intramuscular na pata traseira esquerda.

Técnica operatória

Depois de anestesiados foram colocados na prancha cirúrgica, em decúbito dorsal horizontal, sendo realizada tricotomia de toda a região abdominal. A antisepsia cutânea efetuada, com cloridrato de xilazina 2% e cloridrato de quetamina na dose de 0,1 ml/100 g, administrados por via intramuscular na pata traseira esquerda.
foi feita com aplicação de polivinilpirolidona-iodo sobre área depilada, posteriormente isolada para campo cirúrgico fisestradasténil. A laparotomia foi realizada por meio de incisão longitudinal mediana infra-umbilical com 3 cm de extensão. Aberta a cavidade abdominal, o ceço foi identificado e com o auxílio de um paquímetro mediu-se no intestino grosso o local escolhido para a secção do cólon direito, localizado a 4 cm após a papila ileocecal. Após ligadura dos vasos da arcada cólica marginal, seccionou-se o cólon no ponto pré-determinado e exteriorizou-se o intestino grosso proximal, como colostomia terminal, através de incisão circular, com 3 mm de diâmetro, localizada na fossa ilíaca direita. A colostomia foi fixada à pele com pontos separados de fio absorvível monofilamentar 4-0 nos quatro pontos cardinais, e depois entre eles, amarrando com três nós. Terminada a confecção do estoma proximal, o segmento caudal do intestino grosso seccionado foi cateterizado com sonda de polivinil (12 F). Após, o cólon cateterizado foi irrigado com 60 ml de solução fisiológica aquecida a 37º C, até que o efluente drenado pelo ânus não apresentasse a saída de cíclanos fecais. Terminada a limpeza do intestino grosso, o cateter foi removido e segmento caudal do cólon exteriorizado como uma fístula mucosa localizada no hipocondrion direito. Fixou-se a borda do colostoma com a mesma técnica utilizada na colostomia proximal. A síntese da parede abdominal foi feita em dois planos de sutura: peritônio e aponeurose com pontos contínuos de fio de ácido poliglicólico 4-0 e a pele com pontos separados de nylon 4-0.

Pós-operatório

Concluída a operação, os animais foram mantidos por 10 min sob aquecimento por meio de lâmpada incandescente. Ao recobrarem a vigília, foram alojados nas gaiolas individuais previamente identificadas sendo liberada a ingestão de água e alimento padronizada para roedores (Nuvilab CR1®). Eles permaneceram em gaiolas individuais até a data da eutanásia (duas ou quatro semanas), nas mesmas condições ambientais de temperatura, luminosidade e temperatura do período pré-operatório. Após a operação de desvio do fluxo fecal, não foi tomado qualquer cuidado adicional com relação à ferida operatória ou aos estomas. Nos três primeiros dias após a intervenção cirúrgica para a analgesia utilizou-se o paracetamol na dosagem de 200 mg/kg dissolvido na água do bebedouro e administrado duas vezes ao dia.

Intervenção com as soluções protetoras e gotele do material

Os animais foram submetidos à aplicação de tecido de glândulas cólicas com as soluções de intervenção padronizadas. A aplicação foi sempre realizada com o uso de rosete e polietileno graduado em centímetros, com diâmetro interno de 4 F. O cateter foi introduzido, cuidadosamente, pelo canal de profundidade padronizada em 3 cm a partir da borda anal. A seguir, aplicava-se lentamente o cílios em contato com a superfície intervenção proposta para cada grupo experimental. A temperatura ambiente, até que ela drenasse pela fístula mucosa distal (colostomia exclusa de eutanásia) localizada no hipocôndrio direito.

Na véspera da eutanásia (sete ou 14 dias), os animais foram novamente pesados e mantidos em jejum por 12 h, exceto para água. Todos receberam a aplicação do cílios com a solução de intervenção na manhã da data programada para a eutanásia realizada sempre no período da tarde. Para a remoção do segmento do intestino grosso a ser estudado, os animais foram anestesiados com a mesma técnica anteriormente descrita, realizando-se uma abertura mais ampla da cavidade abdominal. Após liberação das aderências, caso presentes, removido-se todo o cólon desprovido de trânsito fecal. Ainda anestesiados os animais foram sacrificados com dose letal intracardíaca de tiopental.

Depois de removidos os segmentos cólicos foram abertos cuidadosamente pela borda contramesentérica. Depois de abertos foram lavados com soro fisiológico a 0,9 % (SF) a 37º C, para remoção de resíduos fecais remanescentes. Remouve-se um fragmento longitudinal medindo 30 mm de comprimento interessando toda a parede intestinal. Esse fragmento foi sempre removido do segmento cólico derivado, submetido às soluções de intervenção. Foram desprendidos um segmento de 10 mm do cólon a partir da fixação do estoma a pele, bem como outro situado 2 cm acima do ânus, que incluía o canal anal. O fragmento colhido foi encaminhado para estudo histológico, através das técnicas padronizadas de coloração H&E e imunoistoquímica (anticorpo primário Anti-MUC2, Dako do Brasil, clone: NCH-38) na diluição de 1:100 e com controle positivo da expressão de MUC-2 feito a partir da aplicação da mesma técnica descrita em tecido obtido de cólon humano, enquanto o negativo foi realizado no mesmo tecido, contudo sem a adição do anticorpo primário durante a reação.

Avaliação histológica da presença de colite

Para confirmar o diagnóstico histopatológico de colite, consideraram-se os seguintes parâmetros: presença e número de ulcerações, grau e intensidade do infiltrado inflamatório, seguindo escala previamente utilizada e modificada. Nessa escala, o grau de atividade tecidual foi avaliado segundo a intensidade da inflamação neutrofílica na mucosa e o grau de perda epitelial. Os valores encontrados foram estratificados em quatro graus: 0 quando não havia inflamação neutrofílica nem perda epitelial; 1 quando havia inflamação de neutrófilos <50% das glândulas cólicas sem perda epitelial; 2 quando havia inflamação de neutrófilos <50% das glândulas cólicas e formação de até duas úlceras epiteliais; 3 quando havia inflamação de neutrófilos ≥50% das glândulas cólicas e formação de até duas úlceras epiteliais; 4 quando havia inflamação neutrofílica em ≥50% das glândulas cólicas e formação de mais de três úlceras epiteliais.

Medida do conteúdo tecidual de MUC-2

Para cada animal foram analisadas duas lâminas. A expressão da proteína MUC-2 foi estudada segundo o local e o conteúdo da imunocoloração nas glândulas cólicas. A imagem selecionada, após adequadamente focada, foi capturada por videocâmara acoplada ao microscópio óptico. O conteúdo tecidual da proteína foi mensurado por análise de imagem assistida por computador (morfometria computadorizada). A imagem capturada foi processada e analisada pelo programa NIS-Elements® (Nikon do Brasil Ltda., São Paulo) instalado em um microcomputador com boa capacidade de processamento de imagens. Quantificou-se o conteúdo da MUC-2 em cada uma das duas lâminas confeccionadas, em três criptas cólicas integras e contíguas presentes em três campos histológicos distintos. Assim, para cada animal o conteúdo tecidual de MUC-2 foi quantificado em 18 glândulas cólicas (nove em cada lâmina confeccionada).

A quantificação da proteína foi sempre realizada após a calibração do programa para o aumento selecionado no microscópio, sempre referente aos 0 mm² de leitura das duas lâminas. Para a quantificação da densidade de cor na imagem, utilizou-se filtro RGB adotando-se todo comprimento de onda que continha todo o espectro da cor marrom (cor que identificava a imunoespressão tecidual da proteína MUC-2). Com o programa transformou-se a coloração onde havia a imunoespressão na cor branca e o restante do campo de visão capturado, sem imunocoloração, em preto e branco assim uma imagem binária. Os valores encontrados para o conteúdo tecidual da MUC-2 foi sempre expresso em porcentagem por campo analisado (%/campo). O valor final adotado para os animais dos grupos controle e experimento (intervenção com SF, SCF-1 e SCF-2) foi sempre representado pelo valor médio da leitura das duas lâminas (18 glândulas cólicas), com o respectivo erro-padrão. Todas as imagens selecionadas foram arquivadas para posterior documentação científica.
AVALIAÇÃO DE ENEMAS COM SUCRALFATO NO CONTEÚDO TECIDUAL DA PROTEÍNA MUC-2 EM COLITE DE EXCLUSÃO EXPERIMENTAL

Análise estatística
Os resultados obtidos após a leitura foram sempre descritos pela média com respectivo erro-padrão. Adotou-se para todos os testes, nível de significância de 5% (p<0,05). Utilizou-se o teste de Mann-Whitney para analisar o grau de inflamação e o conteúdo tecidual da proteína MUC-2, comparando os animais do grupo controle e experimento. Empregou-se o teste ANOVA para análise de variância do conteúdo tecidual da proteína MUC-2 com relação ao tempo de intervenção. Para o estudo estatístico utilizou-se o programa BioStat (versão 5.1). Os valores significantes quando se compararam os segmentos irrigados com SF e SCF (1 g/kg/dia ou 2 g/kg/dia) foram marcados com um asterisco (*) quando o nível de significância encontrado foi menor que 5%, e com dois asteriscos (**) quando esse nível foi menor que 1%. Da mesma forma, os valores significantes encontrados quando se compararam os animais submetidos à intervenção com SCF na concentração menor (1 g/kg/dia) com os submetidos à irrigação com concentração maior (2 g/kg/dia) foram marcados com um boleto (+) quando o nível de significância foi menor que 5% ou dois (++) quando menor que 1%.

RESULTADOS
A Figura 2A mostra segmento obtido do cólon irrigado com SF por quatro semanas, enquanto a Figura 2B o cólon irrigado com SCF na concentração de 2,0 g/kg/dia pelo mesmo período de tempo. Verifica-se que nos animais do grupo controle existe nítida perda epitelial, desarranjo na arquitetura e no alinhamento das glândulas côlicas, enquanto nos submetidos à intervenção com SCF 2 g/kg/dia, a superfície epitelial encontra-se preservada, as criptas intestinais apresentam-se alinhadas, com padrão e distribuição normal e preservação da integridade das células caliciformes. É possível observar uma fina película eosinofílica de SCF recobrindo a superfície epitelial da mucosa côlica.

A Figura 3A mostra a expressão tecidual de MUC-2 no cólon irrigado com SF por quatro semanas e a 3B o cólon irrigado com SCF na concentração de 1 g/kg/dia pelo mesmo período de tempo. A Figura 3C mostra o cólon submetido à intervenção com SCF na concentração de 2 g/kg/dia por quatro semanas. Verifica-se que nos animais submetidos à intervenção com SF existe redução no conteúdo de MUC-2 nas células caliciformes, desarranjo na arquitetura e alinhamento dos figado côlicas. Nos submetidos à intervenção com SCF 1 e 2 g/kg/dia o conteúdo de MUC-2 é significativamente mais evidente nas células caliciformes. Nos animais tratados com concentração de SCF de 2 g/kg/dia identifica-se aumento maior no conteúdo de MUC-2 nas células caliciformes principalmente localizadas na superfície luminal das glândulas côlicas.

A Figura 4 compara o conteúdo de MUC-2 encontrado nos segmentos desprovidos de trânsito fecal após a intervenção com SF, SCF 1 g/kg/dia e 2 g/kg/dia, por duas e quatro semanas. Os resultados mostram que a intervenção com SCF, na concentração de 1 g/kg/dia e 2 g/kg/dia no segmento cólico derivado, permitiu conteúdo significativamente maior de MUC-2 após duas e quatro semanas de irrigação quando comparado aos animais do grupo controle. O maior conteúdo de MUC-2 encontrado é relacionado à dose de SCF administrada (p<0,01).
do SCF, em relação ao grupo controle. O conteúdo das mucinas neutras e ácidas nos grupos experimentais mostrou se superior ao grupo controle, nas concentrações de 1 g/kg/dia e 2 g/kg/dia de SCF, e em ambos os períodos de intervenção avaliados (p < 0,01).

TABELA 2 – Variação no conteúdo tecidual médio de MUC-2 segundo o tempo de intervenção nos animais submetidos à intervenção com SF, SCF 1 g/kg/dia e 2 g/kg/dia por duas e quatro semanas de intervenção

	Média ± E.P.			
	SF	SCF 1 g/kg/dia	SCF 2 g/kg/dia	
2 semanas	2 semanas	4 semanas	2 semanas	4 semanas
3,60±0,14	3,60±0,14	2,27±0,20	2,50±0,65	5,76±0,35
5,22±0,75	5,22±0,75	7,45±0,49	7,45±0,49	

DISCUSSÃO

Os AGCC são formados no cólon a partir da fermentação bacteriana de carboídratos ingeridos na dieta que escaparam da hidrólise no intestino delgado. O acetato, propionato e butirato são os subtipos mais comumente produzidos no interior do intestino grosso. Os AGCC apresentam diversas funções no intestino grosso, pois além de reduzirem o pH intestinal, estimulam a proliferação celular, aumentam o fluxo sanguíneo à mucosa cólica. Os AGCC representam ainda, o principal substrato energético necessário para as diferentes etapas do metabolismo celular.

A proporção entre os diferentes tipos de AGCC no intestino grosso é determinada pelo tipo de alimentação, assim como pela composição da microbiota intestinal que, por sua vez, também sofre influência da dieta ingerida. Os prebióticos estimulam a proliferação e a atividade de bifidobactérias do interior do cólon que interferem sobremaneira, na composição e no conteúdo luminal dos AGCC.

O butirato representa a principal fonte de energia para as células do epitélio cólico. A substância possui destaque efeito antimutagênico em muitas linhagens de células tumorais, desempenha papel significativo na manutenção da homeostase da mucosa cólica além de regular a expressão de genes responsáveis pelos processos de proliferação, diferenciação e apoptose. Dentre os AGCC, o butirato apresenta fundamental importância para manutenção da saúde na mucosa cólica. Quaisquer modificações na sua produção intraluminal ou no seu suprimento encontram-se associadas ao desenvolvimento de uma série de doenças do intestino grosso.

A CE caracteriza-se pelo desenvolvimento de processo inflamatório na mucosa do cólon e intestino grosso exclusos de trânsito fecal. A maioria das alterações atribui sua ocorrência à deficiência na produção de AGCC na luz intestinal, ocasionada pela ausência do suprimento de substrato e redução da microbiota responsáveis para sua produção. Essa possibilidade é reforçada quando se constata a reconstituição do trânsito, ou a irragiação dos segmentos exclusos com soluções nutricionais ricas em AGCC, reestabelecendo o fornecimento do principal substrato energético, são capazes de revertê-los alterações clínicas e histopatológicas encontradas nas portadoras da CE.

Os mecanismos moleculares pelos quais a deficiência no suprimento normal de AGCC leva ao aparecimento da CE parecem estar relacionados ao aumento na produção de radicais livres de oxigênio (RLO), pelas próprias células epiteliais desprovidas de sua principal fonte de energia. Sem o principal combustível energético as células epiteliais sofrem alterações no seu metabolismo energético celular ocasionando produção aumentada de RLO. O estresse oxidativo resultante ocasiona quebra dos mecanismos de defesa que formam a barreira mucosa cólica, permitindo a infiltração de bactérias e antígenos nas camadas estéreis da parede cólica, possibilitando o desenvolvimento da CE. Estudos mostraram que os RLO danificam os diferentes sistemas de defesa que formam a barreira mucosa cólica.

A camada de muco que recobre o epitélio cólico é um componente crítico desses mecanismos de defesa, pois além de conferir proteção mecânica, criando interface entre as bactérias intestinais e o epitélio cólico apresenta efeito antimicrobiano conferido pelos peptídeos existentes nas moléculas das mucinas. Estudos experimentais mostraram que a falta no suprimento de AGCC e o consequente estresse oxidativo tecidual provoca alterações significativas no conteúdo e padrão de distribuição das mucinas na mucosa intestinal. Esses estudos indicaram que a aplicação de clisteres contendo SCF para o tratamento da CE. Demonstrou-se que a administração diária de clisteres contendo SCF reduziu o grau de inflamação tecidual, aumentando a produção de glicoproteínas da mucina MUC-2 e reduzindo a produção de AGCC.
principalmente quando utilizado em maior concentração e por período de intervenção mais prolongado. Os animais submetidos à intervenção com SCF, independente da concentração usada ou do tempo de aplicação foi possível identificar a formação de uma película eosinofílica sobre superfície epitelial voltada para à luz do órgão confirmando a capacidade da substância em aderir-se firmemente ao epitélio lesado. Todos esses achados estão de acordo com os encontrados em estudos previamente publicados.

Com relação ao conteúdo da proteína MUC-2 na mucosa exclua de trânsito fecal, o presente estudo mostrou que a aplicação diária de clisteres contendo SCF, independente da dose utilizada aumentou significativamente a quantidade tecidual de MUC-2 quando comparado aos animais submetidos à intervenção com SF. O aumento no conteúdo tecidual da MUC-2 foi ainda mais evidente quando se utilizou clisteres com maior concentração de SCF por maior período de tempo. Os animais submetidos à intervenção com SCF apresentavam maior expressão da proteína MUC-2 em células caliciformes presentes em toda extensão das glândulas cólicas do colon, principalmente nas localizadas na superfície epitelial quando comparadas aos animais do grupo controle. Estes resultados vão de encontro aos estudos anteriores mostrando que a intervenção com SCF na mucosa exclusa de trânsito fecal submetida aumenta o conteúdo das frações glicídicas da molécula. Estudos mostraram que a administração de SCF aumentava em 8% a espessura da camada de muco que recobria o trato gastrointestinal, aumentando em 63% o conteúdo tecidual de sulfomucinas e em 81% de sialomucinas, justamente o subtipo de muco mais reduzido no epitélio sem trânsito fecal. Portanto, com os achados encontrados no presente é lícito supor que a intervenção com SCF é capaz de aumentar ambas as frações da molécula das mucinas.

Os motivos pelos quais a aplicação do SCF aumenta o conteúdo tecidual das mucinas ainda são pouco conhecidos. É possível que os efeitos do SCF sobre a produção da MUC-2 esteja relacionada às várias propriedades farmacológicas da droga. Estudo demonstrou que o SCF estimula a produção de muco nas células caliciformes por aumentar a produção de prostaglandina E2. Também se demonstrou que a adição de antioxidante ao SCF reduz RLO presentes em excesso nas células da mucosa intestinal, diminuindo a apoptose e, consequentemente, a integridade da barreira epitelial. É possível que o sulfato de amônio, a transcrição do gene MUC-2 relacionado à produção da proteína homónima no epitélio do cólon sem trânsito fecal, dos resultados do presente estudo, mostrando aumento no conteúdo tecidual da proteína MUC-2, sugere que esse fenómeno possa estar ocorrendo. Contudo, essa possibilidade só poderá ser confirmada após a realização de estudos que avaliem o efeito do gene MUC-2 no epitélio exclusivo de trânsito submetido à intervenção com SCF.

Os resultados encontrados no presente estudo mostraram que a aplicação de clisteres com SCF foi capaz de manter o conteúdo tecidual de MUC-2 nas células caliciformes presentes nas glândulas cólicas. Confirmou-se ainda resultados de estudos prévios demonstrando que a aplicação de clisteres com SCF preserva a integridade e reduz o grau de inflamação no epitélio cólico exclusivo de trânsito. Essas propriedades, aliadas a biodisponibilidade da substância, seu baixo custo e pequena incidência de efeitos colaterais, talvez possam tornar a droga uma nova opção medicamentosa para o tratamento da CE, bem como de outras doenças inflamatórias intestinais.

CONCLUSÃO

A aplicação preventiva de clisteres com SCF reduz o grau de inflamação e preserva o conteúdo tecidual de MUC-2, em segmentos desprovidos de trânsito fecal.

REFERÊNCIAS

1. Augenlicht L, Shi L, Mariadason J, Laboisse C, Velchik A, Reppression of MUC-2 gene expression by butyrate, a physiologic regulator of intestinal cell maturation. Oncogene. 2003 Aug;22(32):4983-92. PMID:12902981.

2. Awad AB, Kamei A, Horvath PJ, Fink CS. Prostaglandin synthesis in human cancer cells: influence of fatty acids and butyrate. Prostaglandins Leukot Essent Fatty Acids 1995 Aug;53(3):329-33.

3. Bonassia CE, Pereira JA, Capo CM, Rodrigues MR, Sato DT, Chaim FDM, Martinez CAR. Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate. Acta Cir Bras. 2011 May;26(5):328-38. PMID: 26019652.

4. Burger-van Puilen N, Vincent A, Flambox P, van der Sluis M, Bouma J, Boeheim G, van Gennip A, van Seuningen I, Renes EB. The regulation of intestinal mucin MUC2 expression via short-chain fatty acids: implications for epithelial protection. Biochem. Biophys. Res. Commun. 2009 May 13;382(1):211-5. PMID: 19348765.

5. Chaim FDM, Sato DT, Rodrigues MR, Dias AM, Silveira Júnior PP, Pereira JA, Martinez CAR. Evaluation of the administration of enemas containing sucralfate in tissue contact of neutral and acid mucins in experimental model of Brasser colon injury. Acta Cir Bras. 2014 Sep;29(9):544-52. PMID: 25252200. doi: 10.1590/1678-2539201400001.

6. Daly K, Shirazi-Behtash SF. Microarray analysis of butyrate regulated intestinal epithelial cells. DNA Cell Biol. 2006 Jan;25(1):49-62. PMID: 16323526.

7. De Novellis B, Gaubier E, Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001 Jun;73(6):1131S-1145S. PMID: 11939131.

8. Fenniel A, Avarakarnant AS, Taylor BA, Rhodes JM. Colonic mucin synthesis increased by sodium butyrate. Gut. 1995 Jun;36(3):93-9. PMID: 8790044.

9. Gaudier E, Hoebeler C. Physiological role of mucus in the colonic barrier integrity. Gastroenterol Clin Biol. 2006 Aug-Sep;30(8-9):965-74. PMID: 17075443.

10. Gaudier E, Jarry A, Blottière HM, De Cottet P, Buisine MP, Aubert JP, Laboisse C, Cherbuin H, Cebotier A, Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol. Gastrointest Liver Physiol. 2004 Dec;287(6):G1168-174. PMID: 15308471. doi: 10.1152/ajpgi.00219.2004.

11. Gaudier E, Rival M, Buisine MP, Robineau I, Hoebeler C. Butyrate enemas upregulate MUC genes expression but decrease adherent mucus thickness in mice colon. Physiol Res. 2007;56(1):111-19. PMID: 18198927.

12. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 1995 Jun;125(6):1401-04. PMID: 7782892.

13. Gore R, Glick ME, Goldman H, Proctitis and colitis following diversion of fecal stream. Gastroenterology. 1981 Mar;80(3):428-41. PMID:7450438.

14. Hamer HM, Jonkers DM, Vanhoutvin SA, Troost FJ, Rijgers G, De Bruijne A, De Bogaert A, Vaes K, Blomme DR, Vranken BM, Anejo A, Boeyens J, Van Damme W, Roosensacq J, Van Damme J, Van den Bulcke D, Van Hermel J, Van Limbergen E, Van Geel M. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin Nutr. 2010 Dec;29(6):738-44. PMID: 20471725. doi:10.1016/j.clnu.2010.04.002.

15. Hatayama I, Ishiwata J, Kawaijima A, Abe T. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun. 2005 Mar 10;326(3):599-603. PMID: 15737466. doi:10.1016/j.brc.2007.03.025

16. Hollander D, Tarnawski A, Gergely H, Zipser RD. Sucralfate protection against gastric cancer cell line, LS174T. Biochem Biophys Res Commun. 2007 May 11;356(3):599-603. PMID: 17373466. doi:10.1016/j.bbrc.2007.03.025

17. Kell E, Bouchouca M, Runcan V, Fábi CI, Cugnenc PH. Diversion related experimental colitis in rats. Dis Colon Rectum. 1997 Feb;40(2):222-8. PMID: 9075761.

18. Konturek SJ, Kwiecien N, Obtulowicz W, Kopp B, Oleksy J. Double blind crossover study comparing the effects of the short-chain fatty acid, butyrate, on the intestinal epithelial goblet cells deprived of glucose. Prostaglandins. 1990 Feb;22(1):19-21. PMID: 2131922.
21. Martinez CAR, Nonose R, Spadari APP, Máximo FR, Priolli DG, Pereira JA, Margarido NF. Quantification by computerized morphometry of tissue levels of sulfomucins and sialomucins in diversion colitis in rats. Acta Cir Bras. 2010 Jun;25(3):231-40. PMID: 20498935. doi: 10.1590/S0102-86502010000300004.

22. Martinez CAR, Ribeiro ML, Gambero A, Miranda DDC, Pereira JA, Nadal SR. The importance of oxygen free radicals in the etiopathogenesis of diversion colitis in rats. Acta Cir Bras. 2010 Oct;25(5):387-95. PMID: 20877947. doi: 10.1590/S0102-86502010000500002.

23. Martinez CAR, Rodrigues MR, Sato DT, da Silva CMG, Kanno DT, Mendonça RLS, Pereira JA. Evaluation of the anti-inflammatory and antioxidant effects of the sucralfate in diversion colitis. J. Coloproctol. (Rio J.). 2015 Apr-Jun;35(2):90-99. doi: 10.1016/j.jcol.2015.02.007.

24. Mello RO, Silva, CM, Fonte FP, Silva DL, Pereira JA, Margarido NF, Martinez CA. Evaluation of the number of goblet cells in crypts of the colonic mucosa with and without fecal transit. Rev Col Bras Cir, 2012 Apr;39(2):139-45. PMID: 22664521. doi: 10.1590/S0100-69912012000200010.

25. Nassri CGG, Nassri AB, Favero E, Rotto CM, Martinez CAR, Margarido NF. Influence of irrigation of nutritional solutions in the colon excluded of fecal stream. Experimental study in rats. Rev bras coloproctol. 2008 Jul-Sep;28(3):306-14. doi: 10.1590/S0100-69912008000300006.

26. Nonose R, Spadari APP, Priolli DG, Máximo FR, Pereira JA, Martinez CAR. Tissue quantification of neutral and acid mucins in the mucosa of the colon with and without fecal stream in rats. Acta Cir Bras. 2009 Jul-Aug;24(4):267-75. PMID: 19705025. doi:10.1590/S0102-86502009000400005.

27. Pereira JA, Rodrigues MR, Sato DT, Silva Junior PP, Dias AM, Silva CG, Martinez CAR. Evaluation of sucralfate enema in experimental diversion colitis. J. Coloproctol. (Rio J.). 2013 Nov-Dec;33(4):182-90. doi:10.1016/j.jcol.2013.08.005.

28. Pravda J. Radical induction theory of ulcerative colitis. World J. Gastroenterol. 2005 Apr 28;11(16):2371-84. PMID:15832404. doi:10.3748/WJGv11.i16.2371.

29. Sauer J, Richter KK, Pool-Zobel BL. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J Nutr Biochem. 2007 Nov;18(11):736-45. PMID: 17434725. doi: 10.1016/j.jnutbio.2006.12.012.

30. Scheiman JM, Kraus ER, Yoshimura K, Boland CR. Effect of sucralfate on components of mucosal barrier produced by cultured canine epithelial cells in vitro. Dig Dis Sci. 1992 Dec;37(12):1853-9. PMID: 1473434.

31. Slomiany BL, Piotrowski J, Tamura S, Slomiany A. Enhancement of the protective qualities of gastric mucus by sucralfate: role of phosphoinositides. Am J Med. 1991 Aug;91(2A):305-365. PMID: 1715671.

32. Sobrado, CW, Sobrado, UF. Management of acute severe ulcerative colitis: a clinical update. Arq Bras Cir Dig. 2016 Jul-Sep;29(3):201-5. PMID: 27759787. doi: 10.1590/0102-6720201600300017.

33. Swidsinski A, Loeving-Baucke V, Theiss F, Engelhardt H, Bengmark S, Koch S, Lochs H, Dörfel Y. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut. 2007 Mar;56(3):343-50. PMID: 16908512. doi: 10.1136/gut.2006.098160.

34. Tong LC, Wang Y, Wang ZL, Xu, Sun S, Li L, Su DF, Zhang LC. Propionate ameliorates extran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Front Pharmacol. 2016 Aug;7:253. PMID:27574508. doi:10.3389/fphar.2016.00253.

35. Wachtershauser A, Stein J. Role of the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000 Aug;39(4):164-71. PMID:11079736.

36. Willemsen L, Kruithof KI, Van Deventer SJ, Van Tol EA. Short chain fatty acids stimulate epithelial mucus expression through differential effects on prostaglandin E2 production by intestinal myofibroblasts. Gut. 2003 Sept;52(10):142-7. PMID:12970137.

37. Wong JM, de Souza R, Mall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006 Mar;40(3):235-43. PMID:16633129.