Emergency Redo Mitral Valve Replacement Immediately after Caesarean Section

İbrahim Duvan, MD*, Ümit Pınar Sungur, MD, Burak Emre Onuk, MD, Mehmet Şanser Ateş, MD, İbrahim Sami Karacan, MD, Murat Kurtoğlu, MD

Güven Hospital, Department of Cardiovascular Surgery, Ankara, Turkey.

Received 13 June 2015; Accepted 14 July 2015

Abstract

Surgery for heart diseases during pregnancy, especially necessitating cardiopulmonary bypass, is believed to trigger maternal and fetal risks and should be performed only when medical therapy has been unsuccessful to alleviate the cardiac decompensation. A 33-year-old pregnant woman in her 33rd week of gestation was admitted to our hospital. She had rheumatic mitral valvular stenosis and had undergone mitral valve replacement (MVR) with a mechanical prosthesis 11 years earlier in another center. Echocardiography revealed a thrombotic mass obstructing the leaflets of the mechanical mitral valve. Emergency redo bioprosthetic MVR concomitant with caesarean section was performed uneventfully. Both mother and baby were discharged in good condition.

Introduction

Either an acquired or a congenital heart disease exists in 1–4% of pregnancies. Unless treated properly, it causes a decrease in cardiac performance and it is deemed responsible for 15% of maternal mortality. Indeed, it represents increased risk of both fetal morbidity and mortality.1

Surgery for heart diseases during pregnancy, especially when cardiopulmonary bypass (CPB) is necessary, is believed to pose maternal and fetal risks and should be performed only when medical therapy is unsuccessful in alleviating cardiac decompensation.2 It is, therefore, preferable to avoid performing cardiac operations in the pregnancy period, although certain circumstances render surgery unavoidable.3

Rheumatic valvular heart disease is the most common cause of acquired heart diseases seen in pregnancy, with the mitral valve being the most commonly affected.4 If the genesis of cardiac disorders during pregnancy is rheumatic mitral valvular stenosis, percutaneous balloon valvuloplasty and closed mitral valvulotomy are the first choices. Additionally, open mitral valvulotomy or mitral valve replacement (MVR) is also performed commonly.5 A case of an emergency redo MVR due to a thrombotic stuck mechanical valve in pregnancy is rare.

Case Report

A 33-year-old pregnant woman in her 33rd week of gestation was admitted to our hospital’s emergency department in a dyspneic condition with perioral cyanosis accompanied by diaphoresis and sinus tachycardia. She
had rheumatic mitral valvular stenosis and had undergone
MVR with a mechanical prosthesis 11 years previously in
another center. Transthoracic echocardiography revealed a
thrombotic mass, leading to an obstruction of the prosthetic
mitral valve and an immobile medial leaflet with a mean
diastolic mitral transvalvular gradient of 23 mm Hg and
a peak velocity of 3.36 m/s (Figure 1). Transesophageal
echocardiography confirmed the existence of the thrombus
on the prosthetic mitral valve. The medial leaflet was
immobile, and the mobility of the lateral leaflet was restricted
deeply while there was also a 3° mitral regurgitation with 2°
tricuspid regurgitation, demonstrating 60 mm Hg of systolic
pulmonary artery pressure.

The patient’s anticoagulation procedure was changed from
warfarin to enoxaparin upon confirmation of pregnancy. She
was managed by an obstetrician and a cardiologist during
her pregnancy period. A transthoracic echocardiographic
examination had been performed 20 days before her current
admission to our hospital, revealing no signs or symptoms
of any size of a thrombotic mass. Inadequate anticoagulation
therapy seemed to be the main reason for the thrombus
according to the notifications of the patient. Based on these
findings, the patient was transferred to our intensive care unit
(ICU), where the preparation period for an emergent redo
mitral valve surgery was started and continuous heparin
infusion (1000 IU/h) was initiated until the operation time.

Evaluation of the fetal conditions was performed
meticulously, and there were no symptoms or signs of
intrauterine gestational retardation. On the contrary,
findings about fetal maturity demonstrated the 34th week of
gestation. Fetal lung maturity was supported via surfactant
administration, and our obstetricians permitted an emergency
caesarean section (CS) concomitant with our procedure. The
multidisciplinary team’s final decision in this case was to
deliver the baby first by CS in order to prevent it from the
adverse effects of CPB, responsible for the risks of high fetal
mortality and morbidity rates.

CS was performed via general anesthesia, and a 1540-g
baby was delivered with an APGAR score of 9 in the 5th
minute. There were no problems with the hemostasis, so
the CS wound was closed rapidly by the obstetrician team.
Subsequently, emergent redo mitral valve surgery was started
with resternotomy, and then a densely adherent tissue to the
heart was dissected as quickly and meticulously as possible.
CPB was established by aortic and bicaval cannulation, and
antegrade and retrograde cardioplegia was administered after
the cross-clamping of the aorta. Moderate hypothermia (about
32 °C) was conducted. After left atriotomy, a disseminated
and tensely adhesive thrombus on the prosthetic mitral valve
was seen (Figure 2); it was resected carefully (Figure 3) and
redo MVR was performed with a mitral bioprosthetic valve
(# 29 St. Jude) in accordance with the patient’s desire and
her family’s request to have another child. CPB time was
58 minutes, cross-clamping time was 35 minutes, and the
total operation time was 180 minutes. Weaning from CPB
was uneventful; there was no need for support via either
an intra-aortic balloon pump or a ventricular assist device.
Nonetheless, 3–5 mcg/kg/min (+) inotropic support was
necessary in the ICU. It was subsequently discontinued, and
the patient was transferred to the ward 4 days after surgery. She was discharged on the 12th postoperative day, whereas her baby was discharged on the 15th postoperative day. They were both doing well 25 months after the operation.

Discussion

Pregnancy comes with an increased workload for the cardiovascular system because of the additional requirements of the feto-placental circulation. Patients during pregnancy have a limited tolerance capacity for deterioration in structural cardiac disorders. Medical therapy is the first choice, but cardiac surgery must be kept in mind for inevitable indications.

Thrombotic stuck mechanical mitral valve is an emergent case in cardiac surgery. A multidisciplinary approach by a team consisting of a cardiovascular surgeon, cardiologist, obstetrician, pediatrician, and hematologist is mandatory for a precise decision in these cases.

The rate of maternal mortality during pregnancy in cardiac surgery with CPB was reported to be 1.47% in recent data, similar to the rate in nonpregnant patients operated with CPB in the absence of emergency. Maternal mortality rates were reduced from 3–15% to 1.47%, but fetal mortality rates were still at 16–33% in recent studies. Fetal mortality rates are correlated directly with the period of maturity. The rates were reduced from 90% to 15% between the 25th and the 30th gestational weeks. John A. S. et al. performed CPB after delivery by CS in 7 cases. Two of the cases were delivered because of fetal distress, whereas 5 of them were delivered depending on their maturity and the complexity of the maternal cardiac disorders—as was the case in our patient. It is recommended to postpone the operation until the third trimester and deliver the baby by CS just before CPB; nevertheless, proper management of the optimal timing of surgery during pregnancy would be achieved by determining the procedures case by case.

We made all the necessary preparations for CPB institution via femoral arteriovenous cannulation versus a symptom of cardiac deterioration during general anesthesia and waited until the end of CS to avert excessive blood loss via the CS incision. Fortunately, the patient did not require femoral cannulation, and redo MVR with a bioprosthetic valve (# 29 St. Jude) was achieved uneventfully after CS. We replaced the mechanical mitral valve with a bioprosthetic valve at the patient’s request and also with a view to having a chance of avoiding anticoagulants in case of another pregnancy. The recent studies have also reported that pregnancy has no effects on increasing the deterioration and reducing the survival of bioprosthetic valves.

Cardiac diseases in pregnancy are still responsible for considerable maternal and fetal morbidity and mortality rates. In particular, stuck valves pose much more risk in these patients owing to thrombosis. A multidisciplinary approach will provide appropriate prenatal care and prevent the risks by prophylactic maneuvers, especially as regards thrombosis seen after valve replacement procedures performed in pregnant women.

Conclusion

In the case of a pregnant woman with a thrombotic stuck mitral valve indicated for surgery, emergent CS concomitant with redo MVR will be a reasonable surgical strategy in this challenging situation.

References

1. Arnoni RT, Arnoni AS, Bonini RC, de Almeida AF, Neto CA, Dinkhuysen JJ, Issa M, Chaccour P, Paulista PP. Risk factors associated with cardiac surgery during pregnancy. Ann Thorac Surg 2003;76:1605-1608.
2. John AS, Gurley F, Schaff HV, Wames CA, Phillips SD, Arendt KW, Abel MD, Rose CH, Connolly HM. Cardiopulmonary bypass during pregnancy. Ann Thorac Surg 2011;91:1191-1196.
3. Carpenter AJ. Invited commentary. Ann Thorac Surg 2011;91:1197.
4. Bhatla N, Lal S, Behera G, Kripilani A, Mittal S, Agarwal N, Talwar KK. Cardiac disease in pregnancy. Int J Gynaecol Obstet 2003;82:153-159.
5. Birincioglu CL, Kıcıker SA, Yapar EG, Yildiz U, Ulus AT, Yamak B, Katircioglu SF, Tasdemir O. Perinatal mitral valve interventions: a report of 10 cases. Ann Thorac Surg 1999;67:1312-1314.
6. Devbhandari MP, Jeeji R, Bewsher M, Odom N. Emergency redo mitral valve replacement and caesarean section in a patient with previous atriocentric septal defect repair in childhood. Interact Cardiovasc Thorac Surg 2009;8:164-165.
7. Martin SR, Foley MR. Intensive care in obstetrics: an evidence-based review. Am J Obstet Gynecol 2006;195:673-689.
8. Sutton SW, Duncan MA, Chase VA, Marce RJ, Meyers TP, Wood RE. Cardiopulmonary bypass and mitral valve replacement during pregnancy. Perfusion 2005;20:359-368.
9. El SF, Hassan W, Latrobe B, Helaly S, Hegazy H, Shabid M, Mohamed G, Al-Halees Z. Pregnancy has no effect on the rate of structural deterioration of bioprosthetic valves: long-term 18-year follow up results. J Heart Valve Dis 2005;14:481-485.