Au NP-Decorated g-C₃N₄-Based Photoelectrochemical Biosensor for Sensitive Mercury Ions Analysis

Mengjie Li,* Ying Wu, Siyu An, and Zhitao Yan

ABSTRACT: Herein, an efficient and feasible photoelectrochemical (PEC) biosensor based on gold nanoparticle-decorated graphitic-like carbon nitride (Au NPs@g-C₃N₄) with excellent photoelectric performance was designed for the highly sensitive detection of mercury ions (Hg²⁺). The proposed Au NPs@g-C₃N₄ was first modified on the surface of the electrode, which possessed a remarkable photocurrent conversion efficiency and could produce a strong initial photocurrent. Then, the thymine-rich DNA (S1) was immobilized on the surface of the modified electrode via Au−N bonds. Subsequently, 1-hexanethiol (HT) was added to the resultant electrode to block nonspecific binding sites. Finally, the target Hg²⁺ was incubated on the surface of the modified glassy carbon electrode (GCE). In the presence of target Hg²⁺, the thymine−Hg²⁺−thymine (T−Hg²⁺−T) structure formed due to the selective capture capability of thymine base pairs toward Hg²⁺, resulting in the significantly decrease of the photocurrent. Thereafter, the proposed PEC biosensor was successfully used for sensitive Hg²⁺ detection, as it possessed a wide linear range from 1 pM to 1000 nM with a low detection limit of 0.33 pM. Importantly, this study demonstrates a new method of detecting Hg²⁺ and provides a promising platform for the detection of other heavy metal ions of interest.

1. INTRODUCTION

In recent years, with the rapid development of industrialization, the accumulation of heavy metal ions in the environment has increased, which has drawn more and more attention to the pollution problem. In terms of environmental pollution, mercury ions (Hg²⁺) are some of the most toxic heavy metal ions, which are a great threat to human life. An excessive content of Hg²⁺ would cause genetic mutation, affect the cell inheritance, produce teratogenesis, and cause cancer. Therefore, the sensitive detection of Hg²⁺ has been an important issue in the fields of environmental and human health. At present, many methods such as colorimetry, fluorescence, electrochemiluminescence, and electrochemistry have been used to analyze of Hg²⁺. However, these methods still exhibit the problems of insufficient detection range, poor sensitivity, and expensive equipment. In order to overcome the limitations of the above methods, a novel, sensitive, and accurate Hg²⁺ detection method urgently needs to be established. As a new and developing analytical technology, photoelectrochemical (PEC) biosensors combine optical and electrochemical methods and possess the advantages of high sensitivity, excellent selectivity, simple equipment, and low cost. This technology has been widely used in various fields such as biological analysis, the pharmaceutical industry, environmental monitoring, and food safety. Given these advantages, the PEC assay might be a promising analytical approach for the development of a highly sensitive and accurate Hg²⁺ detection strategy.

Choosing appropriate photoelectric materials is the key to constructing a highly sensitive PEC sensing platform. Among numerous photoelectric materials, graphitic-like carbon nitride (g-C₃N₄) has a band gap of 2.7 eV, which has attracted wide attention due to g-C₃N₄’s excellent chemical stability, adjustable electronic structure, low price, convenient synthesis, and lack of toxicity. Unfortunately, the photoelectric performance of g-C₃N₄ is limited by the quick recombination rate of photogenerated electron−hole pairs and its low specific surface area. In order to improve the photoelectric performance of g-C₃N₄, many researchers have focused on modifying g-C₃N₄ to boost the charge separation through element doping, sensitization, and semiconductor coupling. In particular, a semiconductor modified with metal nanoparticles (NPs) could effectively improve the photoelectric performance of the semiconductor for two reasons. One is that metal nanoparticles, a type of conductive material with a large specific

Received: March 6, 2022
Accepted: May 6, 2022
Published: May 30, 2022
surface area and unique photoelectric performance, could promote electron capture and transfer in the semiconductor. More importantly, the surface plasmon resonance (SPR) phenomenon would occur with the introduction of metal nanoparticles, which could lead to the enhancement of the light absorption capacity and the charge transfer capacity of semiconductor.41−45. Inspired by these, we tried to combine g-C3N4 with gold nanoparticles (Au NPs) to prepare the Au NPs@g-C3N4 complex. In consequence, we have found that as-prepared Au NPs@g-C3N4 possessed an excellent photoelectric performance and could be used as an appropriate and promising photoelectric material for the construction of a PEC biosensor.

In this study, Au NPs@g-C3N4 as the photoelectric material was employed to construct a PEC biosensor to realize the highly sensitive and selective detection of Hg2+, which is shown in Scheme 1. First, Au NPs@g-C3N4 was modified on the electrode surface to generate a strong initial photocurrent signal. Afterward, the thymine-rich DNA (S1) was immobilized on the modified glassy carbon electrode (GCE) surface via Au−N bonds. Next, 1-hexanethiol (HT) was coated on the electrode surface to block nonspecific adsorption sites. Ultimately, Hg2+ was added, and the stable T−Hg2+−T coordination complex formed through the substitution of a proton with the nitrogen atom at thymine position 3 in the DNA molecule. The obtained T−Hg2+−T structure could block electron transfer, leading to an obviously decreased photocurrent signal for the detection of Hg2+. As expected, the PEC biosensor based on Au NPs@g-C3N4 exhibited high sensitivity, excellent selectivity, and stability for the Hg2+ assay, paving a new pathway for sensitive detection of other heavy metal ions.

2. EXPERIMENTAL SECTION

2.1. Materials and Reagents. Chemical Reagent Co. Ltd. (Chongqing, China) provided H2O2, HAuCl4·4H2O was obtained from China National Medicines Corporation Ltd. (Beijing, China). HT, Tris-HCl buffer, and K3[Fe(CN)6] were bought from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). KCl, NaCl, CaCl2, MgCl2·6H2O, Pb(NO3)2, and Hg(NO3)2 were purchased from Chengdu Kelong Chemical Co., Ltd. (Chengdu, China). This experiment used 0.1 M phosphate buffer solutions (PBS) (pH 7.0), including 0.1 M KCl, 0.1 M Na2HPO4 and 0.1 M KH2PO4. Ultrapure water was employed to prepare the solutions in this work. The oligonucleotide (S1) was synthesized by Sangon Inc. (Shanghai, China), and its sequence was as follows: 5′-NH2-CAAATGAACTTTGTTTCCCTTTTCATTTT-3′.

2.2. Apparatus. The PEC measurement was carried out on a CHI 660E electrochemistry workstation with the help of the TPEC10W LED light source. A three-electrode system, which contained a platinum wire counter electrode, a calomel (saturated KCl) reference electrode, and a glassy carbon working electrode (GCE, Φ = 4 mm), was utilized in this work. A CHI 660E electrochemistry workstation (Shanghai Chenhua Instrumission, China) was also employed for electrochemical measurements. The morphology of the nanomaterial was characterized by scanning electron microscopy (SEM, JSM-7800F, Japan) and transmission electron microscopy (TEM, FEI talos F200X, United States). Elemental analysis was performed on an X-ray photoelectron spectrometer (XPS, ESCALAB 250Xi, United States).

2.3. Preparation of g-C3N4 and Au NPs@g-C3N4. g-C3N4 was prepared based on the literature.46 First, 5 g of melamime was put into a crucible and dried for 24 h at 80 °C, then calcined in a muffle furnace for 3 h. The calcination temperature was 550 °C, and the heating rate was 5 °C·min−1. The obtained product was a powder, and its color was light yellow. Finally, the product was thoroughly washed with 0.1 M nitric acid and ultrapure water.

Au NPs@g-C3N4 could be synthesized by an in situ reduction method.47 Into 5 mL of the 2.0 mg·mL−1 g-C3N4 solution was dropped 20 μL of 10 mM HAuCl4, and the solution was then stirred in the dark for 2 h. Next, the newly prepared NaBH4 (30 μL, 0.01 M) was added to the above solution drop by drop, and the mixture was stirred continuously. When the gas evolution stopped, the reaction was complete. Subsequently, the obtained solution was placed in a centrifuge and washed by centrifugation to remove impurities. Finally, Au NPs@g-C3N4 was stored at 4 °C for subsequent experiments.

2.4. Construction of the PEC Biosensor. The GCE was fully polished with α-Al2O3 powder and then washed with ultrapure water before modification. Then, the clean GCE was coated with 10 μL of the as-prepared Au NPs@g-C3N4 solution and dried at 37 °C to generate a uniform film. Subsequently, the Au NPs@g-C3N4-modified electrode was incubated with 5 μL of 2 μM thymine-rich DNA (S1) at 4 °C overnight. S1 could be stably immobilized on the surface of Au NPs@g-C3N4/GCE via a Au−N bond. After the sample was blocked with 10 μL of 1 mM HT for 40 min, 10 μL of Hg2+ solution with different concentrations was dropped onto the modified electrode. The sample was incubated at 37 °C for 1 h. In the presence of Hg2+, the T-rich DNA (S1) could recognize and capture Hg2+ and quickly folded into the T−Hg2+−T structure, thus quenching the photocurrent signal. The construction process of the PEC biosensor was shown in Scheme 1.

2.5. PEC Measurement. The PEC measurement was performed in 5 mL of 0.1 M PBS containing 40 μL H2O2, where H2O2 was the electron donor. The LED lamp with a wavelength of 365−370 nm served as the excitation light source and was switched on, off, and on for 10, 20, and 10 s, respectively, under a 0.0 V potential.

3. RESULTS AND DISCUSSION

3.1. Characterization of the Different Materials. The morphology of the prepared material was characterized by SEM. As displayed in Figure 1A, the SEM image showed that...
the sample of g-C$_3$N$_4$ presented a layered structure with a mist-like edge. The diameter of g-C$_3$N$_4$ was about 110 nm. The SEM image of Au NPs@g-C$_3$N$_4$ is displayed in Figure 1B. It was observed that the surface of g-C$_3$N$_4$ was coated with numerous Au NPs. Meanwhile, TEM was also used to morphologically characterize Au NPs@g-C$_3$N$_4$. As shown in Figure 1C, a large number of small black spots of Au NPs were evenly distributed on the surface of g-C$_3$N$_4$. After being linked

Figure 1. SEM images of (A) g-C$_3$N$_4$ and (B) Au NPs@g-C$_3$N$_4$. (C) TEM image of Au NPs@g-C$_3$N$_4$.

Figure 2. XPS analysis of (a) the full region of Au NPs@g-C$_3$N$_4$, (b) the N 1s region, (c) the C 1s region, and (d) the Au 4f region.
with Au NPs, the average size increased by about 10 nm. Additionally, these results were in accordance with the literature, which showed that g-C₃N₄ and Au NPs@g-C₃N₄ were successfully synthesized.

In addition, XPS was used for elemental analysis. As shown in Figure 2, the peaks at 397 and 286 eV might correspond to N 1s and C 1s, respectively. This was consistent with literature, indicating the presence of N and C elements. Moreover, the peaks at 82 and 86 eV confirmed the presence of the Au element. These results demonstrated the successful preparation of Au NPs@g-C₃N₄.

3.2. Condition Optimization. To obtain an excellent analytical performance, the concentration of H₂O₂ in 5 mL of PBS and the wavelength of emitted light were optimized. As illustrated in Figure 3A, when the concentration of H₂O₂ increased from 0.02 to 0.08 M, the photocurrent also increased. However, the photocurrent decreased when the concentration of H₂O₂ increased from 0.08 to 0.12 M. Therefore, the optimal concentration of H₂O₂ was 0.08 M, corresponding to the photocurrent of 3.9 μA.

As shown in Figure 3B, no significant photocurrent was observed at irradiation wavelengths of 455−465 nm and the mixed white light of 5000−5500 K. A photocurrent of about 2.27 μA could be found at 395−405 nm. However, when the irradiation wavelength was 365−370 nm, the photocurrent was the highest at 3.9 μA. Therefore, the optimal irradiation wavelength in this work was 365−370 nm.

3.3. Comparison of PEC Signals of Different Materials. In order to prove the superiority of Au NPs@g-C₃N₄ as a photoelectric material, PEC signals of g-C₃N₄ and Au NPs@g-C₃N₄ were compared under the same experimental conditions. As illustrated in Figure 4, the PEC signal of g-C₃N₄ was 1.3 μA. Au NPs@g-C₃N₄ produced a higher PEC signal, which was almost three times larger than that of g-C₃N₄, because the existence of Au NPs could produce a strong SPR enhancement effect. From the result, it could be seen that Au NPs@g-C₃N₄ performed better than g-C₃N₄.

3.4. PEC Mechanism of the Biosensor. Figure 5A shows the electron transfer process after the incubation of Au NPs@g-C₃N₄ on the GCE surface. g-C₃N₄ absorbed the light energy, and the electrons were excited into its conduction band (CB). One part of the photogenerated electrons was transferred to the electrode, and the other part was transferred to Au NPs. At the same time, Au NPs would be excited by incident light, causing electrons to oscillate collectively due to the SPR effect. After that, these electrons could immediately move to the electrode. In addition, H₂O₂ as an electron donor contributed electrons to the valence band (VB) of g-C₃N₄. A strong photocurrent signal would be generated, as seen in Figure 5A.

Figure 5B is the electron transfer diagram of photocurrent quenching after the addition of Hg²⁺. The T−Hg²⁺−T structure formed by thymine-rich DNA (S1) and Hg²⁺ would produce the steric hindrance effect, which could reduce the ability of light to capture electrons and prevent H₂O₂ from providing electrons. In addition, the photogenerated electrons produced from g-C₃N₄ and Au NPs could flow to the T−Hg²⁺−T structure because Hg²⁺ possessed the electron-withdrawing property. As a result, the photocurrent signal was greatly quenched.

3.5. PEC Characterization of the Biosensor. In order to confirm the successful construction of the PEC biosensor, photocurrent characterization was carried out step by step. As seen in Figure 6, after Au NPs@g-C₃N₄ were incubated on the bare GCE surface, a sharply enhanced photocurrent was observed (curve b) compared with that of the bare GCE (curve a), mainly due to the favorable photoelectric properties of Au NPs@g-C₃N₄. The photocurrent evidently decreased (curve c) with the immobilization of S1 due to the poor

Figure 3. Effect of (A) the H₂O₂ concentration in the detection solution and (B) the irradiation wavelength on the photocurrent.

Figure 4. PEC signals of g-C₃N₄ and Au NPs@g-C₃N₄.

Figure 5. Mechanisms for (A) photocurrent generation and (B) photocurrent quenching.

Figure 6. PEC characterization of the biosensor.
conductivity of S1. Afterward, the photocurrent decreased again with addition of HT (curve d). Finally, when Hg$^{2+}$ was modified on the above GCE surface, the photocurrent decreased significantly (curve e) due to the formation of the T−Hg$^{2+}$−T structure. These results confirmed that the PEC biosensor was constructed successfully.

3.6. Electrochemical Characterization of the PEC Biosensor

In order to study the preparation process of the PEC biosensor, cyclic voltammetry (CV) was used to characterize the peak current of the PEC biosensor at each step. The corresponding electrode was placed in 2 mL of PBS (pH 7, 0.1 M) containing 5.0 mM [Fe(CN)$_6$]$^{3−/4−}$ and 0.1 M KCl at a scanning rate of 50 mV·s$^{-1}$. As shown in Figure 7A, the bare electrode (curve a) showed a couple of reversible redox peaks. However, the peak current (curve b) evidently decreased after the modification with Au NPs@g-C$_3$N$_4$ which was mainly attributed to the semiconductor properties of Au NPs@g-C$_3$N$_4$. With the addition of S1, the peak current (curve c) further decreased because S1 and [Fe(CN)$_6$]$^{3−/4−}$ both had negative charges and like charges repel each other. When HT was modified on the surface of the electrode, the peak current (curve d) continued to decrease. Finally, after Hg$^{2+}$ was incubated on the electrode’s surface, the peak current (curve e) decreased, which was again caused by the formation of T−Hg$^{2+}$−T structures.

Meanwhile, the processes of the PEC biosensor were also characterized by electrochemical impedance spectroscopy (EIS), which was carried out in 2 mL of PBS (pH 7.0, 0.1 M) with 5.0 mM [Fe(CN)$_6$]$^{3−/4−}$ and 0.1 M KCl. The frequency range was from 10 kHz to 0.1 Hz, the alternating current potential was 5 mV, and the direct current potential was 0.22 V. As displayed in Figure 7B, compared with bare GCE (curve a), the Au NPs@g-C$_3$N$_4$-incubated electrode exhibited a greater charge-transfer resistance ($R$$_c$) (curve b) because Au NPs@g-C$_3$N$_4$ could hinder electron transfer. After S1 was modified on the surface of Au NPs@g-C$_3$N$_4$/GCE, the $R$$_c$ increased once more (curve c) due to the repulsion between negatively charged S1 and [Fe(CN)$_6$]$^{3−/4−}$. When nonconductive HT was added to the electrode, $R$$_c$ further increased (curve d). $R$$_c$ continued to increase after the sample was incubated with Hg$^{2+}$ (curve e) because of the formation of the T−Hg$^{2+}$−T structures. These results demonstrated that the PEC biosensor was prepared successfully.

3.7. PEC Analysis of Hg$^{2+}$ at the Developed Biosensor

On the basis of the optimal conditions, photocurrents of samples incubated with different concentrations Hg$^{2+}$ were measured to evaluate the analytical performance of the PEC biosensor, as shown in Figure 8A. As the concentration of Hg$^{2+}$ increased from 1 pM to 1000 nM, the photocurrent decreased sharply. Figure 8B shows the linear response curve between the photocurrent and the logarithm of Hg$^{2+}$ concentrations. The regression equation was $I = −0.209lg c + 2.07$, with a correlation coefficient of 0.9988 (I is the photocurrent and c is Hg$^{2+}$ concentration). The inset of Figure 8B shows the linear response curve between the photocurrent and the Hg$^{2+}$ concentration at a low concentration range. The regression equation was $I = −23.485c + 2.727$. The detection limit (LOD) of 0.33 pM was calculated according to LOD = $3S_B/m$, where S_B was standard deviation of the blank signals and m was the analytical sensitivity. Meanwhile, a comparison was made between the analytical performance of the proposed PEC biosensor and other reported methods, which is illustrated in Table 1. The PEC biosensor constructed in this work had a better sensitivity and a wider linear range, which indicated that this sensing strategy was an excellent potential method for Hg$^{2+}$ detection.

3.8. Selectivity and Stability of the PEC Biosensor

In order to explore the selectivity of the proposed PEC biosensor, several interfering substances were evaluated, including Pb$^{2+}$, Na$^+$, Ca$^{2+}$, Mg$^{2+}$, and K$^+$. As shown in Figure 9A, after the sample was incubated with 100 nM interfering substances, the obvious photocurrents were obtained. The photocurrent of the

Figure 6. Photocurrent of (a) bare GCE, (b) Au NPs@g-C$_3$N$_4$/GCE, (c) S1/Au NPs@g-C$_3$N$_4$/GCE, (d) HT/S1/Au NPs@g-C$_3$N$_4$/GCE, and (e) Hg$^{2+}$/HT/S1/Au NPs@g-C$_3$N$_4$/GCE.

Figure 7. (A) CV and (B) EIS responses of (a) bare GCE, (b) Au NPs@g-C$_3$N$_4$/GCE, (c) S1/Au NPs@g-C$_3$N$_4$/GCE, (d) HT/S1/Au NPs@g-C$_3$N$_4$/GCE, and (e) Hg$^{2+}$/HT/S1/Au NPs@g-C$_3$N$_4$/GCE.
interfering substance was almost the same as that of the blank sample. However, when 1 nM Hg$^{2+}$ was incubated, the photocurrent significantly decreased. The result showed that the PEC biosensor had an excellent selectivity for Hg$^{2+}$ detection because the T$^-$T mismatch bases had a high affinity for Hg$^{2+}$. In addition, the stability of this PEC biosensor was investigated by recording the photocurrent of 1 nM Hg$^{2+}$-incubated PEC biosensor under nine consecutive cycles of “off–on–off” light. It can be seen in Figure 9B that the photocurrent was stable with a relative standard deviation (RSD) of 0.417%, which indicated that the proposed PEC biosensor possessed a good stability for Hg$^{2+}$ detection.

3.9. Preliminary Application of Hg$^{2+}$ Detection.

The standard addition method was applied to evaluate the applicability and reliability of the constructed PEC biosensor. Different concentrations of Hg$^{2+}$ were added into water and detected using this biosensor. As can be seen in Table 2, the concentrations of Hg$^{2+}$ were 500 nM, 50 nM, 500 pM, 50 pM, and 5 pM, and the corresponding recovery rates were 95.6%, 105.6%, 94.6%, 94.6%, and 103.2%. The above results indicated that the proposed PEC biosensor had great potential to detect Hg$^{2+}$ in real samples.

4. CONCLUSIONS

In summary, a novel and sensitive PEC biosensor has been developed for Hg$^{2+}$ detection based on Au NPs@g-C$_3$N$_4$ as the photoelectric material. The prepared Au NPs@g-C$_3$N$_4$ could provide an excellent initial photocurrent signal because the introduction of Au NPs to the surface of g-C$_3$N$_4$ could lead to the SPR phenomenon, thus enhancing both the absorption of visible light and the electron transfer ability. Besides, the chemical coordination of T$^-$Hg$^{2+}$T between S1 and Hg$^{2+}$ could hinder electron transfer, leading to a significant reduction of the PEC signal for achieving the quantitative analysis of Hg$^{2+}$. The as-proposed PEC biosensor displayed the advantages of simple preparation, sensitive detection, good stability, and high selectivity. Furthermore, this developed PEC strategy provides a modular platform for the analysis of various trace heavy metal ions, which is expected to be applied in environmental and disease detection.

Table 1. Comparison of Different Methods for Hg$^{2+}$ Detection

analytical method	detection limit	linear range	ref.
fluorescence	0.24 nM	10–600 nM	56
fluorescence	15.2 nM	0–350 nM	57
SERSa	0.1 nM	0.1–1000 nM	58
colorimetry	20 nM	50–1 mM	59
colorimetry	10.3 nM	0–20 μM	60
electrochemistry	0.13 nM	0.01–0.5 nM	61
PEC	5.7 pM	10 pM to 1.0 μM	62
PEC	0.33 pM	1 pM to 1000 nM	our work

aSurface-enhanced Raman scattering spectra.

Table 2. Detection of Hg$^{2+}$ with different concentrations by PEC biosensor

sample number	added (nM)	found (nM)	recovery (%)
1	500	478	95.6
2	50.0	52.8	105.6
3	5.00 × 10$^{-1}$	4.73 × 10$^{-1}$	94.6
4	5.00 × 10$^{-2}$	4.73 × 10$^{-2}$	94.6
5	5.00 × 10$^{-3}$	5.16 × 10$^{-3}$	103.2

Figure 8. (A) Photocurrent with various Hg$^{2+}$ concentrations. (B) Linear relationship between the photocurrent and the logarithm of the Hg$^{2+}$ concentration. The insert in panel B presents the calibration curve of the photocurrent value vs the concentration of Hg$^{2+}$ at a low concentration range.

Figure 9. (A) Exploration of the selectivity of the PEC biosensor. (B) Stability test of the biosensor at 1 nM Hg$^{2+}$.
Corresponding Author

Mengjie Li — School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing 401331, PR China; orcid.org/0000-0001-8573-7025; Email: mengjie@cqust.edu.cn

Authors

Ying Wu — School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing 401331, PR China

Siyu An — School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing 401331, PR China

Zhitao Yan — School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing 401331, PR China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c01335

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202101522) and the Research Start-up Fund for New Faculty of Chongqing University of Science and Technology (ckrc2020024).

REFERENCES

(1) Zhang, L.-X.; Li, P.; Feng, L.-P.; Chen, X.; Jiang, J.-T.; Zhang, S.; Zhang, C.-X.; Zhang, A.-C.; Chen, G.-F.; Wang, H. Synergetic AgS and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the "signal-on" analysis of mercury (II). J. Hazard. Mater. 2020, 387, 121715.

(2) Wu, S.; Zhao, Y.; Deng, X.-X.; Yang, X.-L.; Wang, X.-Y.; Zhao, Y.-Q. Oxygen defects engineered CdS/Bi2O2.33 direct Z-Scheme heterojunction for highly sensitive photoelectrochemical assay of Hg2+. Talanta 2020, 217, 121090.

(3) Li, Z.-Z.; Zhou, X.; Yang, J.; Fu, B.-H.; Zhang, Z.-H. Near-Infrared-Responsive Photoelectrochemical Aptsensing Platform Based on Plasmonic Nanoparticle-Decorated Two-Dimensional Photonic Crystals. ACS Appl. Mater. Interfaces 2019, 11, 21417−21423.

(4) Jiang, Q.-Q.; Wang, H.-J.; Wei, X.-Q.; Wu, Y.; Gu, W.-L.; Hu, L.-Y.; Zhu, C.-Z. Efficient BiVO4 photoanode decorated with TiO2-CxTx MXene for enhanced photoelectrochemical sensing of Hg(II) ion. Anal. Chim. Acta 2020, 1119, 11−17.

(5) Hao, Y.-Q.; Cui, Y.-L.; Qu, P.; Sun, W.-Z.; Liu, S.-P.; Zhang, Y.-T.; Li, D.-L.; Zhang, F.-Q.; Xu, M.-T. A novel strategy for the construction of photoelectrochemical sensing platform based on multifunctional photosensitizer. Electrochim. Acta 2018, 259, 179−187.

(6) Zhang, X.-Y.; Li, M.-Y.; He, L.-M.; Tian, D.-D.; Zhang, L.-J.; Zhang, J.-H.; Liu, M. Highly sensitive and selective photoelectrochemical sensor for mercury(II) detection based on efficient Bi2MoO6 photoanode decorated with CuS. J. Alloy. Compd. 2021, 864, 157905.

(7) Yin, M.-Y.; Wan, Y.-Q.; Li, S.; Zhao, X.-T.; Zhang, W.-W.; Zhang, Y.; Wang, H. Carbon nitride-doped melanine-silver adsorbents with peroxidase-like catalysis and visible-light photocatalysis: Colorimetric detection and detoxification removal of total mercury. J. Hazard. Mater. 2021, 408, 124978.

(8) Wang, J.-H.; Wu, J.-M.; Zhang, Y.-P.; Zhou, X.; Hu, Z.-W.; Liao, X.-J.; Sheng, B.-B.; Yuan, K.-S.; Wu, X.-Q.; Cai, H.-H.; Zhou, H.-B.; Sun, P.-H. Colorimetric and SERS dual-mode sensing of mercury (II) based on controllable etching of Au/Ag core/shell nanoparticles. Sensors Actuators B Chem. 2021, 330, 129364.

(9) Zhou, X.-Y.; Wang, C.-C.; Wu, L.-N.; Wei, W.; Liu, S.-Q. An OligGreen-responsive fluorescence sensor for sensitive detection of organophosphorus pesticide based on its specific selectivity towards T-Hg2+.T DNA structure. Spectrochim. Acta, Part A 2021, 247, 119155.

(10) Shi, Y.-Q.; Li, W.-T.; Feng, X.-P.; Lin, L.; Nie, P.-C.; Shi, J.-Y.; Zou, X.-B.; He, Y. Sensing of mercury ions in Pophyra by Copper @ Gold nanoclusters based ratiometric fluorescent aptasensor. Food Chem. 2021, 344, 128694.

(11) Cao, S.-P.; Luo, Q.-X.; Li, Y.-J.; Liang, R.-P.; Qiu, J. Gold nanoparticles decorated carbon nitride nanosheets as a coreactant regulate the conversion of the dual-potential electrochemiluminescence of Ru(bpy)2+ for Hg2+ detection. Chem. Commun. 2020, 56, 5625−5628.

(12) Babamiri, B.; Salimi, A.; Hallaj, R. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@Cds/dendrimer probe and Au nanoparticle quencher. Biosens. Bioelectron. 2018, 102, 328−335.

(13) Liao, N.; Zhong, X.; Liang, W.-B.; Yuan, R.; Zhou, Y. Metal-organic Frameworks (MOF)-based Novel Electrochemiluminescence Biosensing Platform for Quantification of H2O2 Releasing from Tumor Cells. Acta Chim. Sinica 2021, 79, 1257−1264.

(14) Wang, B.; Pan, M.; Zhao, Y. Construction of Electrochemiluminescence Sensing Interface Based on Silver Nanoclusters-Silica Nanoparticles and Biomolecular Recognition. Chem. J. Chinese Universities 2021, 42, 3519−3525.

(15) Liao, N.; Zhang, J.; Huang, Z.; Zhao, Y.; Chai, Y.; Yuan, R.; Zhou, Y. Construction of High Efficiency Uric Acid Sensor Based on the co-Crystal Enhanced Electrochemiluminescence from 9, 10-Diphenylanthracene-perylene Microcrystals. J. Chinese Universities 2020, 41, 1989−1995.

(16) Zhong, Y.-P.; Zhang, M.-T.; Li, X.-Y.; Zhao, M.-G.; Wang, C.-Y.; Chen, S.-G. Design of high-performance electrochemistry sensors: Elucidation of detection mechanism by DFT studies. J. Electroanal. Chem. 2020, 860, 113905.

(17) Zhao, M.; Guo, Y.-S.; Fu, G.-D.; Xue, A.-Q.; Shao, Q.-H.; Wang, Q.; Guo, D.-S. A novel near-infrared optical and redox-active receptor for the multi-model detection of Hg2+ in water and living cells. Spectrochim. Acta, Part A 2021, 248, 119252.

(18) Chen, M.; Mo, F.-J.; Meng, H.; Wang, C.; Guo, J.; Fu, Y.-Z. Efficient Curing Sensitive Agent-Induced Dual-Heterojunction Photoelectrochemical System for Highly Sensitive Immunoassay. Anal. Chem. 2021, 93, 2464−2470.

(19) Song, M.-L.; Sun, H.-H.; Yu, J.; Wang, Y.; Li, M.-F.; Liu, M.-C.; Zhao, G.-H. Enzyme-Free Molecularly Imprinted and Graphene-Functionalized Photoelectrochemical Sensor Platform for Pollutants. ACS Appl. Mater. Interfaces 2021, 13, 37212−37222.

(20) Huang, L.-J.; Yang, L.; Zhu, C.-C.; Deng, H.-M.; Liu, G.-P.; Yuan, Y.-L. Methylene Blue Sensitized Photoelectrochemical Bio-sensor with 3,4,9,10-Perylene Tetracarboxylic Acid Film as Photo-electric Material for Highly Sensitive Pb2+ Detection. Sensors Actuators B Chem. 2018, 274, 458−463.

(21) Li, Y.; Chen, F.-T.; Luan, Z.-Z.; Zhang, X.-R. A versatile cathodic "signal-on" photoelectrochemical platform based on a dual-signal amplification strategy. Biosens. Bioelectron. 2018, 119, 63−69.
a highly efficient photocathode for photoelectrochemical aflatoxin B1 sensing, *Sensors Actuators B Chem.* 2021, 329, 129146.

(40) Chen, X.; Zhang, W.-W.; Zhang, L.-X.; Feng, L.-P.; Zhang, C.-X.; Jiang, J.; Wang, H. Turning on the Photoelectrochemical Responses of Cd Probe-Deposited g-C$_3$N$_4$ Nanosheets by Nitrogen Plasma Treatment toward a Selective Sensor for H$_2$S. *ACS Appl. Mater. Interfaces* 2021, 13, 2052–2061.

(41) Xu, Y.-H.; Wen, Z.-R.; Wang, T.-S.; Zhang, M.; Ding, C.-F.; Guo, Y.-S.; Jiang, D.; Wang, K. Ternary Z-scheme heterojunction of Bi SP-promoted BiVO$_4$/g-C$_3$N$_4$ with effectively boosted photoelectrochemical activity for constructing oxytetracycline aptasensor. *Biosens. Bioelectron.* 2020, 166, 112453.

(42) Zhang, L.-X.; Feng, L.-P.; Li, P.; Chen, X.; Xu, C.-C.; Zhang, S.; Chen, A.-C.; Chen, G.-F.; Wang, H. Near-infrared light-driven photoelectrochemical sensor for mercury (II) detection using bead-chain-like Ag@Ag$_2$S nanocomposites. *Chem. Eng. J.* 2021, 409, 128154.

(43) Xiao, F.-X.; Liu, B. Plasmon-Directed Photo-Electrochemical Water Splitting for Solar-to-Chemical Energy Conversion: Current Status and Future Perspectives. *Adv. Mater. Interfaces* 2018, 5, 1701098.

(44) Wang, D.-D.; Ding, Z.-Y.; Zhou, H.; Chen, L.-P.; Feng, X.-J. Au Nanoparticle-Decorated TiO$_2$ Nanowires for Surface Plasmon Resonance-Based Photoelectrochemical Bioassays with a Solid-Liquid-Air Triphase Interface. *ACS Appl. Nano Mater.* 2021, 4, 9401–9408.

(45) Xu, Y.; Jiang, D.; Zhang, M.; Zhang, Z.-Z.; Qian, J.; Hao, N.; Ding, C.-F.; Wang, K. High-performance photoelectrochemical aptasensor for enrofloxacin based on Bi-doped ultrathin polymeric carbon nitride nanocomposites with SPR effect and carbon vacancies. *Sensors Actuators B Chem.* 2020, 316, 128142.

(46) Da, H.-M.; Liu, H.-Y.; Zheng, Y.-N.; Yuan, R.; Chai, Y.-Q. A highly sensitive VEGF(165) photoelectrochemical biosensor fabricated by assembly of aptamer bridged DNA networks. *Biosens. Bioelectron.* 2018, 101, 213–218.

(47) Deiminiat, B.; Roumarghi, G.-H. A novel visible light photoelectrochemical aptasensor for determination of bisphenol A based on surface plasmon resonance of gold nanoparticles activated g-C$_3$N$_4$ nanosheets. *J. Electroanal. Chem.* 2021, 886, 115122.

(48) Wu, L.; Hu, Y.-F.; Sha, Y.-H.; Li, W.-R.; Yan, T.-T.; Wang, S.; Li, X.; Guo, Z.-Y.; Zhou, J.; Su, X.-R. An “in-electrode”-type immunosensing strategy for the detection of squamous cell carcinoma antigen based on electrochemiluminescent AuNPs/g-C$_3$N$_4$ nanocomposites. *Talanta* 2016, 160, 247–255.

(49) Gu, Y.; Hu, Y.-L.; Zhang, F.-Y.; Yi, L.-Z.; Shang, Y.; Ren, D.-B.; Ge, Z.-H. Electrochemiluminescence sensor based on cyclic peptides-recognition and Au nanoparticles assisted graphitic carbon nitride for glucose determination. *Microchim Acta* 2021, 188, 151.

(50) Gu, C.-C.; Hou, T.; Zhang, S.-X.; Gai, P.-P.; Li, F. Light-driven ultrasensitive self-powered cytoensing of circulating tumor cells via integration of biofuel cells and a photoelectrochemical strategy. *J. Mater. Chem. B* 2019, 7, 2277–2283.

(51) Xu, L.; Ling, S.-Y.; Li, H.-N.; Yan, P.-C.; Xia, J.-X.; Qiu, J.-X.; Wang, S.-J.; Li, H.-M.; Yuan, S.-Q. Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites. *Sens. Actuators B Chem.* 2017, 240, 308–314.

(52) Tang, L.; Ouyang, X.-L.; Peng, B.; Zeng, G.-M.; Zhu, Y.; Yu, J.-F.; Feng, C.-Y.; Sang, S.-Y.; Zhu, X.; Tan, J.-S. Highly sensitive detection of microcystin-LR under visible light using a self-powered photoelectrochemical aptasensor based on a CoO/Ag/g-C$_3$N$_4$ Z-scheme heterojunction. *Nanoscale* 2019, 11, 12198–12209.

(53) Tao, X.-L.; Pan, M.-C.; Yang, X.; Yuan, R.; Zhuo, Y. CDs assembled metal-organic framework: Exogenous coatent-complex cation biosensing platform with pore confinement-enhanced electrochemiluminescence. *Chin. Chem. Lett.* 2022, DOI: 10.1016/j.ccl.2022.01.010.

(54) Zhang, Q.-L.; Yang, S.-Y.; Yin, S.-N.; Xue, H.-G. Over two orders of magnitude enhancement of the photocatalytic hydrogen...
evolution activity of carbon nitride via mediator-free decoration with
gold-organic microspheres. Chem. Commun. 2017, 53, 11814–11817.
(55) Li, M.-J.; Zheng, Y.-N.; Liang, W.-B.; Yuan, R.; Chai, Y.-Q. Using p-type PbS Quantum Dots to Quench Photocurrent of Fullerene-Au NP@MoS2 Composite Structure for Ultrasensitive Photocatalytic Detection of ATP. ACS Appl. Mater. Interfaces 2017, 9, 42111–42120.
(56) Li, Z.-H.; Sun, H.-J.; Ma, X.-Y.; Su, R.-F.; Sun, R.; Yang, C.-Y.; Sun, C.-Y. Label-free fluorescence “turn-on” strategy for mercury (II) detection based on the T-Hg2+-T configuration and the DNA-sensitized luminescence of terbium (III). Anal. Chim. Acta 2020, 1099, 136–144.
(57) Subedi, S.; Neupane, L.-N.; Yu, H.; Lee, K.-H. A new ratiometric fluorescent chemodosimeter for sensing of Hg2+ in water using irreversible reaction of arylboronic acid with Hg2+. Sens. Actuators B Chem. 2021, 338, 129814.
(58) Qi, L.; Xiao, M.-S.; Wang, F.; Wang, L.-H.; Ji, W.; Man, T.-T.; Aldalbahi, A.; Khan, M. N.; Periyasami, G.; Rahaman, M.; Alrohaili, A.; Qu, X.-M.; Pei, H.; Wang, C.; Li, L. Poly-cytosine-mediated nanotags for SERS detection of Hg2+. Nanoscale 2017, 9, 14184–14191.
(59) Zhang, M.; Qu, Y.; Li, D.-X.; Liu, X.-Y.; Niu, Y.-S.; Xu, Y.-H. To Love and to Kill: Accurate and Selective Colorimetry for Both Chloride and Mercury Ions Regulated by Electro-Synthesized Oxidase-like SnTe Nanobelts. Anal. Chem. 2021, 93, 10132–10140.
(60) Lan, L.-X.; Niu, Q.-F.; Li, T.-D. A highly selective colorimetric and ratiometric fluorescent probe for instantaneous sensing of Hg2+ in water, soil and seafood and its application on test strips. Anal. Chim. Acta 2018, 1023, 105–114.
(61) Bushira, F. A.; Kitte, S. A.; Xu, C.; Li, H.-J.; Zheng, L.-R.; Wang, P.; Jin, Y.-D. Two-Dimensional-Plasmon-Boosted Iron Single-Atom Electrochemiluminescence for the Ultrasensitive Detection of Dopamine, Hemin, and Mercury. Anal. Chem. 2021, 93, 9949–9957.
(62) Yang, X.-Y.; Zhang, M.-J.; Chen, Z.-X.; Bu, Y.-W.; Gao, X.; Sui, Y.-K.; Yu, Y.-Q. Sodium Alginate Micelle-Encapsulating Zinc Phthalocyanine Dye-Sensitized Photoelectrochemical Biosensor with CdS as the Photoelectric Material for Hg2+ Detection. ACS Appl. Mater. Interfaces 2021, 13, 16828–16836.