Search and study of treatment spring water: A case study of Jizzakh region in Uzbekistan

S A Tashpulatova

Department of Ecology and Environmental Protection, Jizzakh Polytechnic Institute, Jizzakh, Uzbekistan

*Email: sabo_8728@mail.ru

Abstract Determining the amount of groundwater sources (springs) and analyzing their quality has always been an important issue, because the health of the population largely depends on the quality of the water. This article presents the analytical results of a study of 242 springs in the Jizzakh region for 2018-2020. During these years, 242 sources (springs) in Farish, Bakhmal, Zaamin and other districts located in the mountain side of the Jizzakh region and 164 (68%) of 242 in the Farish district, 33 (14%) in the Bakhmal district, 27 (11%) in the Zaamin district and 18 (7%) located in the Gallaorol. Analysis of chemical and physical properties (total mineralization of the sampled water, iron, silicon compounds, bromine, iodine, carbon dioxide content, organic matter, pH, hardness, etc.) showed that 107 out of 242 springs are natural sources for human health and diseases prevention. The largest number of these springs is 68 (64%) in Farish district, 29 (27%) in Bakhmal district, 9 (8%) in Zaamin district and 1 (1%) in Gallaaral, respectively. These results will play an important role to research with large-scale quantitative and qualitative on healing springs in the future.

1. Introduction
Population growth and urbanization are leading to a sharp rise in global demand for freshwater for drinking, sanitation, agriculture, energy production [1-7], industry, and environmental protection. But the sustainability of the freshwater supply is seriously threatened because of widespread depletion of groundwater, surface water pollution, and climate change impacts [8]. In recent years, climate change impacts such as changes in the reliability of stream flow, erratic monsoons, and flooding have been pronounced; these, coupled with other anthropogenic causes, have led to serious water shortages [9]. Drought and over pumping of groundwater to supply population growth and support irrigated agricultural production have been linked to reductions in spring flow [10, 11].

All life forms especially humans depend on their surrounding biophysical environment for their well-being and survival but due to overuse of these resources, environment has been degrading rapidly. Among these fundamental resources, water is one of the most important natural resource for humans, wildlife and the whole environment. Assessment of ambient water quality determines its use for humans and ecological purposes [12]. Water quality represents the purity of water and expresses the suitability of water for various uses like drinking, industrial water supply, and irrigation, propagation of aquatic organisms and generation of hydro power [13, 14, 15]. The water quality is assessed in order to determine its portability, safety of human contact and ecosystem health. Poor quality of water is due to high level of organic and inorganic substance that does not fit in the standard limits given by government.
quality indicated by various physical parameters such as pH, total solids, total dissolved solids, total suspended solids, alkalinity, free CO₂, dissolved oxygen, hardness, chlorine content, and sodium content. Nitrate contamination results from human and animal wastes, soil nitrogen content, plant debris, industrial effluents and chemicals, and seepage and silage through drainage system [16, 17]. Springs described as «bowls of liquid light» [18], are one of the most wonderful and scenic places in nature. Moreover, springs are the best area for swimming, picnicking and diving; they are one of the oldest tourist attractions [19] for people. A spring is a water resource formed when the side of a hill, a valley bottom or other excavation intersects a flowing body of groundwater at or below the local water table, below which the subsurface material is saturated with water [17]. The turbidity in the groundwater is an indication of pollution of water resulting from deterioration of organic matter and improper disposal of domestic and industrial solid wastes and wastewater. Electrical conductivity (EC) is a measure of the presence of dissolved salts in water which are responsible to conduct electric current [20]. Total hardness (mg/l) is defined as the sum of magnesium and calcium carbonate contents. High magnesium content affects the domestic use of water [21]. High levels of water hardness lead to heart diseases and kidney stone formation [22].

The stable flow rate of spring-run rivers and their relatively constant water temperature make springs ideal habitats for many unique native and migratory species [23]. Water deterioration of springs can be attributed to the strong interaction of surface water and groundwater. It is strongly affected by the hydrogeological conditions and the surrounding environment. Thus, there is a need for intensive, long-term monitoring of groundwater level and water quality. This can lead to a better evaluation of the groundwater contamination [24]. Industrial objects are the source of contamination for natural springs both chemically and ecologically [25].

Water quality influences to human organism positively which contains of minerals and essential substances [26, 27, 28]. Due to this, in 2018-2020, 633 samples from 242 springs of the Jizzakh region were analyzed, and the following goals were achieved:

i. To determine the physical (pH and etc.) quality of the Jizzakh region spring water;
ii. To assess the chemical quality of the Jizzakh spring water;
iii. To analyze and compare all results and select the high quality springs water in the Jizzakh.
iv. To list the essential springs in the Jizzakh.
v. To determine the coordination of location of springs in the Jizzakh.

2. Methodology

2.1. Study Area
The study area (Farish, Bakhmal, Zaamin, Gallaaral) is located in Jizzakh of Uzbekistan. Geographically, Jizzakh region is located in the central part of the Republic of Uzbekistan between the Syrdarya and Zarafshan rivers. It is bordered on the north and northeast by the Republic of Kazakhstan and the Syrdarya region, on the southeast by the Republic of Tajikistan, on the west by the Navoi region and on the southwest by the Samarkand region [29]. The peculiarity of the region is that it does not form a single natural-geographical district; it covers a certain part of the natural-geographical regions of Kyzylkum, Mirzachul and Zarafshan, and is also located between the desert and the mountains. Jizzakh region is divided into two very different parts. The northern part of the region is represented by lowlands, and in the southern part - by the mountain ranges of Turkestan from east to west and northwest.

2.2. Research Design
The research was an experiment. Water samples were collected from Farish, Bakhmal, Zaamin and Gallaaral in Jizzakh region and tested at the State Unitary enterprise of the Uzbekhydrogeology laboratory. As an external control, about 10% of the samples taken were examined at the "Central Chemical Laboratory" of the State Committee for Geology. Analysis accepted for 14 months - in 2018 - 3 months (August, September, October), in 2019 - 8 months (March - October), in 2020 - 3 months (March, April, May) with a cyclic of 1.5 years of springs quality control. The instrumental GPS was used to measure the coordinates of location each source (topographic indicator).
2.3. Sampling Procedure
Samples were taken in polyethylene bottles (500 ml). A total of 633 water samples from 242 sources were timely analyzed in the laboratory for physical (pH and hardness) and chemical analysis, respectively.

2.4. Data collection and Analysis
All samples were analyzed physically and chemically. The data were analyzed using Microsoft excel computer software.

2.4.1. Physical Quality Analysis Methods
The physical examinations focused mainly on pH and water properties. The table pH meter was used to measure the pH level of the Jizzakh region spring water. The electrode was immersed in the sample. Reading was taken after 20-30 seconds after the water readings have stabilized.

2.4.2. Chemical Quality Analysis Methods
Hardness, free content of CO$_2$, Fe (Fe$^{2+}$ + Fe$^{3+}$), Br, J, silicic acids (H$_2$SiO$_3$ + HSiO$_3^-$), organic substances, and total mineralization was determined.

3. Results and Discussion
Of the 242 selected sources, 107 were found to be qualitatively beneficial to human health. Table 1 shows the main criteria for assessing (determining) the treatment properties of mineral waters in Uzbekistan. All results obtained in the laboratory were analyzed and sources with medicinal properties were selected based on these criteria (Table 1).

Important indicators	The norm for classifying waters as minerals	Name and subdivision of waters
General mineralization	1 g/l	< 1.0 g/l – weak mineralization
		1.0 – 5.0 g/l – low mineralization
		5.0 – 10 g/l – normal mineralization
		10 – 35 g/l – high mineralization
		35 – 150 g/l – salty
		> 150 g/l – strong salty
Content of CO$_2$ free (dissolved)	0.5 g/l	0.5 – 1.4 g/l – weakly carbon dioxide
		1.4 – 2.5 g/l – carbon dioxide with norm concentration
		> 2.5 g/l – strong carbon dioxide
		(«carbonating»)
Content of H$_2$S generally. (H$_2$S +HS$^-$)	10 mg/l	10.0 – 50.0 mg/l – weakly hydrogen sulfide
		50.0 – 100.0 mg/l – hydrogen sulfide with medium concentration
		100.0 – 250.0 mg/l – strong hydrogen sulfide
		> 250 mg/l – very strong hydrogen sulfide
Content of As	0.7 mg/l	0.7 – 5.0 mg/l – arsenic
		5 – 10 mg/l – strong arsenic
		> 10 mg/l – very strong arsenic
Content of Fe(Fe$^{2+}$ + Fe$^{3+}$)	10 mg/l	10.0 – 40.0 mg/l – ferruginous
		40.0 – 100 mg/l – strong ferruginous
		> 100.0 mg/l – very strong ferruginous
The content of free CO₂, Fe (Fe²⁺ + Fe³⁺), Br, J, silicic acids (H₂SiO₃ + HSiO₃⁻), organic substances, and total mineralization were determined. These criteria help to determine healing water in spring significantly.

3.1. Physical Quality Results (pH)

Springs name	Farish district	Bakhmal district
Mujrumsay 2 – 7.2; Andigansoy 7.2; Hayot (Uxumsay) 6.4; Asrofsay 6.7; Old Farish 1 – 6.7; Old Farish 4 – 6.5; Kakmishsay 2 – 6.7; Kamishsay 5 – 6.6; Kamishsay 6 – 6.7; Kamishsay 9 – 6.6; Akbulak 7.7; Tangisay 7.2; Yotokkishtak 7.2; Yotokkishtol 2 – 7.15; Kurukkishtay 6.9; Kurukkishtak 2 – 7.05; Middle village spring 7.2; Kuybulaksay 7.0; Yamchi 1 – 6.9; Yamchi 2 – 7.0; Yangisay 6.8; Eshansisay 6.7; Yamchisay 7.0; Khujursay 1 – 6.8; Khujursay 2 – 7.0; Khujursay 3 – 7.2; Ilonchisay 6.7; The rest area spring of «Zangori olov» 7.0; Akbulak ota 6.9; Matlubotchi 1 – 7.4; Tangibuloq 6.6; Bandalosmon 1 – 7.1; Bandalosmon 2 – 7.3; Kayragach 1 – 7.1; An – Muna 2 – 7.1; A – Muna 3 – 7.3; A – Muna 4 – 7.1; Karatas 1 – 7.4; Karatas 2 – 7.2; Karatas 3 – 7.7; Karatas 4 – 7.2; Khujabogbon ota 7.1; Kutirbulak 7.8; Egizbulak 1 – 7.8; Egizbulak 2 – 7.4; Egizbulak 3 – 7.4; Egizbulak 5 – 7.4; Egizbulak 6 – 7.3; Egizbulak 7 – 7.8; Garasha 1 – 6.4; Garasha 2 – 6.4; Garasha 3 – 6.55; Jandakhor ota 6.7; Khaydar ota 1 – 6.8; Khaydar ota 2 – 6.8; Khaydar ota 3 – 6.6; Khaydar ota 4 – 6.3; Yassikechuv 4 – 6.55; Koraabdol ota 2 – 6.5; Akbulak 7.4; Doriston 6.5; Sovurdovon 7.4; Mikhin 1 – 7.8; Mikhin 3 – 7.6; Yamchisoy 7.2; Yamchisoy (Kutirbulak) 7.5; Sayyod Uratepa 7.5; Korakhon 7.4; Korakhon 2 – 7.4; Katartol 6.5; Vadigan 5.1; Tangitopdi 3.0; Akkurangsay 1 – 3.1; Akkurangsay 2 – 6.3; Olim bogi spring 1 – 5.6; Olim bogi spring 2 – 6.65; Kirkkishtak spring 1 – 6.25; Kirkkishtak spring 2 – 6.5; Kukjarkishtak spring 1 – 6.1; Kukjarkishtak spring 2 – 6.5; Bakhmalsay 2.8; Palakhmansay 6.7; Ak-Mulla (Jilbulak) 1 – 6.25		
3.2. Chemical Quality Results

a). General mineralization (1 g/l)

The general index of mineralization in the spring of Farish district is different: Kamysay - 6 - 1.04, Kamishsay - 9 - 1.04, Jandakhor ota - 1.35, Karashakshak - 1.01, Garasha - 1.5, and also mineralization indicators were obtained for the Tamtumsay - 1 - 1.36, the Tamtumsay - 2 - 1.33, Suvlisay - 0.91, Shurbulak - 2.39 in the Zaamin district, which means that the highest mineralization index was obtained. It can be seen that Shurbulak (2.39) is the best indicator, but Farish is in the lead as an area with springs that meet the established rate of total mineralization. General mineralization is from 2.39 to 0.91 in the different areas in the Jizzakh region.

b) Fe (Fe²⁺+Fe³⁺) (10 mg/l)

When analyzed the iron content in the water of the Andigan located in the Farish region was 11.0 mg / l. In all other sources, the chemical element iron was below the established norm. The best indicator with Fe (Fe²⁺+Fe³⁺) is Andigansay in the Zaamin region.

c) Br (25 mg/l)

Mujrumsay - 2 - 54, Andigansay - 110, Eski Forish - 1 - 41.0, Eski Forish - 4 - 34.0, Karashakshak - 2 - 70.2 in the Farish district. It can be concluded that Br has a high content of chemical elements in the Farish.

d) J (5 mg/l)

It can be seen that the iodine content in the water of the Karamazor spring in the Zaamin is much closer to the established normative norm - 4 mg / l compared to 5 mg / l (normative).

e) CO₂ (0.5 g/l)

1. Bakhmal district springs: Katortol – 0.53, Vadigan – 0.57, Tangitopdi – 0.53, Dangara Akkurgansay – 0.7, Dangara Akkurgansay – 2 – 0.79, Olim bog – 1.06, Olim bog – 2 – 1.06, Kirkkishlak – 0.53, Kukjar – 0.62, Kukjar – 2 – 0.75, Baxmalsay – 0.97, Poloxmonsay – 0.62, Jibulak – 0.88, Ak – Mulla – 1.1, Korongusay – 0.96, Kizilsuv – 1.76, Supikishlak – 0.75, Supikishlak – 2 – 1.06, Muzbulak (Korashakshak) – 1 – 2.95, Muzbulak – 2 – 0.88, Muzbulak – 5 – 1.06, Nishonsuv – 3.78; Qizilsuv temirli – 5.7.

2. Zaamin district springs: Karakhan - 2 - 1.3, Garasha - 2.2.

According to the results of the analysis, it can be seen that the Bakhmal district is the leader in terms of area with the largest number of free CO₂ in the springs. There are different indicators from 5.7 to 0.53.

These results indicate that water of springs is different with pH indicators in every district. Springs of Farish indicate from 6.3 to 7.8 and springs of Bakhmal from 2.4 to 7.4, springs of Zaamin from 2.9 to 7.9. Finally, Gallaral spring is 7, 3 the indicator of pH.
The following table shows the healing properties of springs distributed in the territory of Jizzakh region in Bakhmal district.

Table 5. The indicators of organic substances in spring of Jizzakh
Farish district
Tangisoy - 20.41; Yotokkishlak - 16.14; Yotokkishlak – 2 - 19.46; Kurukkulsoy - 17.56; Kurukkulsoy – 2 - 18.04; Urta kishlak – 1 - 20.41; Kuybulaksay - 13.76; Yomchi – 1 - 20.88; Yomchi – 2 - 18.98; Yangisoy - 16.61; Eshonlisay - 5.22; Yomchi - 22.31; Khujursay - 19.94; Khujursoy – 2 - 21.42; Khujursoy – 3 - 18.75; Ilonchisoy - 20.35; Zangori olov - 20.35; Akbulak ota - 21.42; Matlibotchi - 16.06; Tangibulak - 13.92; Balandosmon – 1 - 19.28; Balandosmon – 2 - 18.75; Kayragach - 17.14; Kurbonxuja – 2 - 15.53; Kurbonxuja – 3 - 15.53; Kurbonxuja – 4 - 17.99; Korajon – 1 - 17.99; Korajon – 2 - 18.99; Korajon – 3 - 16.49; Korajon – 4 - 20.99; Khujabogbon - 15.49; Kuturbulak - 10.49; Egizbulak – 1 - 11.99; Egizbulak – 2 - 19.49; Egizbulak – 3 - 15.99; Egizbulak – 5 - 15.99; Egizbulak – 6 - 7.49; Egizbulak – 7 - 18.49; Garasha – 1 - 7.57; Garasha – 2 - 5.68; Garasha – 3 - 13.3; Garasha - 9.46; Khaydar ota – 1 - 7.22; Khaydar ota – 2 - 7.2; Khaydar ota – 3 - 6.06; Khaydar ota – 4 - 5.68; Davlan – 4 - 5.25; Uzunbulak – 2 - 6.65; Diriston - 8.06
Bakhmal district
Zamin district
Gallaorl district

The table describes that the maximal indicator of organic substances is 22.31 in Yomchi spring in Farish district and the minimal indicator is 5.07 in spring of Zaamin district. Farish dominates with springs which saturated with organic substances in water than other area. Khovuzbulak is only spring in Gallaorl and Supi kishlak spring one source in Bakhmal district with rich organic substances in water. 49 spring are located in Farish district, 3 in Zaamin, 1 is Gallaorl and Bakhmal.

g). H$_2$SiO$_3$+HSiO$_3$ (50 mg/l)

Table 4 shows the results of H$_2$SiO$_3$+HSiO$_3$ in water of spring in Farish and Bakhmal district.

Table 4. H$_2$SiO$_3$+HSiO$_3$ in water of spring in Farish and Bakhmal district
Farish district
Hayot – 52; Asrofsay – 44.2; Kamishsay – 5 – 49.4; Korasuv – 52; Kizilsuv – 52; Sovurdovon – 60; Mikhin - 1 - 62; Mikhin 3 - 69; Yamchisoy – 60; Yamchisoy (Kutirbulak) – 51; Sayyod Uratepa – 64; Yamchisoy – 51; Kattabogdon – 55; Ana – Muna – 1 – 55; Koraxon – 1 – 55; Koraxon – 2 – 60
Bakhmal district

The indicators show the different results from 69 to 44.2 respectively. 24 springs are rich with H$_2$SiO$_3$+HSiO$_3$, however Farish is first with 15, and Bakhmal has 9. There are 16 springs in Farish and 9 in Bakhmal district.

The following table shows the healing properties of springs distributed in the territory of Jizzakh region (Table 5).
Table 5. Treatment springs and their characteristics located in the Farish district

№	Spring name	The factor that determines the healing properties of the sources (springs)	№	Spring name	The factor that determines the healing properties of the sources (springs)
1	Kamishsay – 6	General mineralization	35	Kurbonkuja – 3	Organic substance
2	Kamishsay – 9	General mineralization	36	Kurbonkuja – 4	Organic substance
3	Jandakhor ota shrine spring	General mineralization	37	Karajan – 1	Organic substance
4	Koraobdol	General mineralization	38	Karajan – 2	Organic substance
5	Garasha	General mineralization	39	Karajan – 3	Organic substance
6	Andigansay	Fe (Fe²⁺+Fe³⁺), Br	40	Karajan – 4	Organic substance
7	Mujrmsay – 2	Br	41	Khujabogbon ota shrine	Organic substance
8	Eski Farish – 1	Br	42	Kuturbulak	Organic substance
9	Eski Farish – 4	Br	43	Egizbulak	Organic substance
10	Korakhon – 2	Br	44	Egizbulak – 2	Organic substance
11	Tangisay	Organic substance	45	Egizbulak – 3	Organic substance
12	Yotokkishlak	Organic substance	46	Egizbulak – 5	Organic substance
13	Yotokkishlak – 2	Organic substance	47	Egizbulak – 6	Organic substance
14	Kurukkulsay	Organic substance	48	Egizbulak – 7	Organic substance
15	Kurukkulsay – 2	Organic substance	49	Garasha – 2	Organic substance
16	Urta kishlak – 1	Organic substance	50	Garasha – 3	Organic substance
17	Kuybulaksay	Organic substance	51	Khaydar ota – 1	Organic substance
18	Yomchi – 1	Organic substance	52	Khaydar ota – 2	Organic substance
19	Yomchi – 2	Organic substance	53	Khaydar ota – 3	Organic substance
20	Yangisay	Organic substance	54	Khaydar ota – 4	Organic substance
21	Eshonlisay	Organic substance	55	Davlan – 4	Organic substance
22	Yomchi	Organic substance	56	Uzunbulak – 2	Organic substance
23	Khujursay	Organic substance	57	Deriston	Organic substance
24	Khujursay – 2	Organic substance	58	Hayot	$H_2SiO_3+HSiO_3$
25	Khujursay – 3	Organic substance	59	Arsofsay	$H_2SiO_3+HSiO_3$
26	Ilonchisay	Organic substance	60	Kamishsay – 5	$H_2SiO_3+HSiO_3$
27	Zangori olov rest area spring	Organic substance	61	Sovurdovon	$H_2SiO_3+HSiO_3$
28	Aqbulak ota shrine spring	Organic substance	62	Mikhin – 1	$H_2SiO_3+HSiO_3$
29	Matlibotchi rest area spring	Organic substance	63	Mikhin – 3	$H_2SiO_3+HSiO_3$
30	Tangibulak	Organic substance	64	Yamchisay children rest area	$H_2SiO_3+HSiO_3$
31	Balandosmon – 1	Organic substance	65	Sayyod Uratepa	$H_2SiO_3+HSiO_3$
32	Balandosmon – 2	Organic substance	66	Kattabogdon mosque spring	$H_2SiO_3+HSiO_3$
33	Kayragoch	Organic substance	67	Ana – Muna – 1	$H_2SiO_3+HSiO_3$
34	Kurbonkuja – 2	Organic substance	68	Korakhon – 2	$H_2SiO_3+HSiO_3$
The spring waters in Farish often contain large amounts of organic matter, followed by silicon and its compounds, and followed by total mineralization and finally, the element of Br.

Table 6. Healing springs and their characteristics located in the Bakhmal region

№	Spring name	The factor that determines the healing properties of the source (springs)
1	Katartal	CO₂
2	Vadigan	CO₂
3	Tangitopdi	CO₂
4	Dangara Akkurgansay	CO₂
5	Dangara Akkurgansay – 2	CO₂
6	Olim bog	CO₂
7	Olim bog – 2	CO₂
8	Kirkkishlak	CO₂
9	Kirkkishlak – 2	CO₂
10	Kukjar	CO₂
11	Kukjar – 2	H₂SiO₃+HSiO₃
12	Baxmalsay	CO₂
13	Polokhmansonay	CO₂
14	Jilbulak	CO₂
15	Ak – Mulla	CO₂
16	Karangusay	CO₂
17	Karasuv	CO₂
18	Supikishlak	Organic substances
19	Supikishlak – 2	CO₂
20	Muzbulak (Karashakshak) - 1	CO₂
21	Muzbulak – 2	CO₂
22	Muzbulak – 5	CO₂
23	Nishansuv	CO₂
24	Kizilsuv temirli	CO₂
25	Ak – Mulla – 2	H₂SiO₃+HSiO₃
26	Ak – Mulla – 3	H₂SiO₃+HSiO₃
27	Jadik	H₂SiO₃+HSiO₃
28	Aykar togbulak	H₂SiO₃+HSiO₃
29	Kizilsuv say – temirli – 2	H₂SiO₃+HSiO₃

Springs in the Bakhmal district are characterized by a high content of readily soluble CO₂, followed by sources with silicon and its compounds.

Table 7. Healing springs in the Zaamin district and their characteristics

№	Spring name	A factor determining the healing properties of the spring
1	Tamtumsay – 1	General mineralization
2	Tamtumsay – 2	General mineralization
3	Suvlisay – 1	General mineralization
4	Shurbulak	General mineralization
5	Karamazar	J (iodine)
High content of total mineralization prevail in the Zaamin district, followed by springs saturated with organic matter, and then free CO₂, and, finally, springs rich with iodine (J).

Table 8. Healing springs located in the Gallaorol district and their characteristics

№	Spring name	The factor that determines the healing properties of the source
1	Khovuzbulak – 2	Organic substance

In the Gallaorol region, it was discovered that 1 source, rich in organic matter, has treatment properties.

Table 9. Treatment springs of Jizzakh region

№	Spring name	Location	№	Spring name	Location
1	Kamishsay – 6	Farish district	54	Khujursay	Farish district
2	Kamishsay – 9	Farish district	55	Khujursay – 2	Farish district
3	Tamtumsay – 1	Zaamin district	56	Khujursay – 3	Farish district
4	Tamtumsay – 2	Zaamin district	57	Ilonchisay	Farish district
5	Suvlisay – 1	Zaamin district	58	Zangori olov	Farish district
6	Jandakhor ota	Farish district	59	Akbulak ota	Farish district
7	Karaobdol	Farish district	60	Matlibotchi	Farish district
8	Garasha	Farish district	61	Tangibuloq	Farish district
9	Shurbulak	Zaamin district	62	Balandosmon – 1	Farish district
10	Andigansay	Farish district	63	Balandosmon – 2	Farish district
11	Mujrumsay – 2	Farish district	64	Kayragach	Farish district
12	Eski Farish – 1	Farish district	65	Kurbankhuja	Farish district
13	Eski Farish – 4	Farish district	68	Karajan – 1	Farish district
14	Karakhon – 2	Farish district	69	Karajan – 2	Farish district
15	Karamazar	Zaamin district	70	Karajan – 3	Farish district
16	Katartal	Bakhmal district	71	Karajan – 4	Farish district
17	Vadigan	Bakhmal district	72	The shrine of	Farish district
				Kujabogbon ota	
18	Tangitopdi	Bakhmal district	73	Qo’urbulak	Farish district
19	Dangara Akkurgonsay	Bakhmal district	74	Egizbulak – 1	Farish district
20	Dangara Akkurgonsay	Bakhmal district	75	Egizbulak – 2	Farish district
21	Olim bog	Bakhmal district	76	Egizbulak – 3	Farish district
22	Olim bog	Bakhmal district	77	Egizbulak – 5	Farish district
23	Kirkkishlak	Bakhmal district	78	Egizbulak – 6	Farish district
24	Kirkkishlak – 2	Bakhmal district	79	Egizbulak – 7	Farish district
25	Kukjar	Bakhmal district	80	Garasha – 2	Farish district
26	Kukjar – 2	Bakhmal district	81	Garasha – 3	Farish district
27	Baxmalsay	Bakhmal district	82	Khaydar ota – 1	Farish district
28	Poloxmonsay	Bakhmal district	83	Khaydar ota – 2	Farish district
29	Jibulak	Bakhmal district	84	Khaydar ota – 3	Farish district
30	Ak – Monsay	Bakhmal district	85	Khaydar ota – 4	Farish district
31	Karangusay	Bakhmal district	86	Davlan – 4	Farish district
32	Karasuv	Bakhmal district	87	Uzunbulak – 2	Farish district
Analysis of chemical and physical properties (total mineralization of the sampled water, iron, silicon compounds, bromine, iodine, carbon dioxide content, organic matter, pH, hardness, etc.) showed that 107 out of 242 sources are sources for human health was recognized as a source of healing water.

Table 10. Coordination of the location of some sources (springs) located in the Jizzakh region

Place and name of the spring	X	Y	Absolute /Mark
Bakhmal district Nauka ota	39°44’23,42610“	67° 42’41,32512“	1155,756
Bakhmal district Usmansay	39°40’26,37945“	67° 36’24,77773“	1281,894
Bakhmal district Lattavan	39°38’24,66958“	67° 33’25,85887“	1207,843
Bakhmal district Dangara	39°41’23,28724“	67° 54’36,92918“	1533,97
Bakhmal district Kirkkishlak	39°43’08,25875“	68° 00’19,90233“	1303,144
Bakhmal district Supikishlak	39°42’45,75540“	68° 08’00,88518“	1529,804
Bakhmal district Muzbulak	39°42’54,11695“	68° 07’47,61584“	1522,672
Bakhmal district Muzbulak	39°42’59,26387“	68° 07’45,32498“	1520,524
Location	Latitude	Longitude	Population
--------------------------	------------	------------	------------
Muzbulak /2	39°43'01,99676″	68° 07’28,30263″	1509,062
Muzbulak /3	39°43'06,26855″	68° 05’38,08546″	1450,997
Supikishlak /2	39°43'03,76652″	68° 05’35,08960″	1443,306
Supikishlak /3	39°44'11,18279″	68° 05’56,18413″	1545,832
Bakhmal district Ak – Mulla	39°41'58,04189″	68° 01’56,89994″	1385,736
Bakhmal district Kukcha	39°39'46,16007″	68° 03’53,02511″	1548,698
Bakhmal district Teraklisay	39°39'06,93524″	68° 06’23,46072″	1684,9
Bakhmal district Bakhmal sanatorium	39°39'33,08730″	68° 06’06,62644″	1645,884
Bakhmal district Rest area for children	39°44'51,90928″	67° 56’30,58060″	1183,805
Bakhmal district Korbulak	39°42'16,63092″	67° 42’51,84508″	1604,132
Bakhmal district Kizilsuv	39°49'22,14225″	68° 09’41,67576″	1094,613
Zaamin district Karimkishlak	39°47'50,80215″	68° 09’09,56370″	1394,538
Zaamin district Karamazar	39°45'55,79781″	68° 14’50,79932″	1197,945
Zaamin district Uvalsay	39°45'53,47730″	68° 14’52,09581″	1205,632
Zaamin district Uvalsay/2	39°38'14,59427″	68°28’39,07173″	2319,231
Zaamin district Sherbulak	39°37'43,86796″	68°29’34,45126″	2006,13
Zaamin district Sharshara	39°39'33,67443″	68°29’59,45158″	1722,039
Farish district Osmansoy	40°19'12,93680″	67°27’08,46003″	618,57
Farish district Egizbulak	40°17'48,81235″	67°24’54,54810″	817,905
Farish district Egizbulak /2	40°19'43,24664″	67°19’56,69203″	905,127
Farish district Korakhon	40°19'42,07571″	67°19’59,11462″	908,669
Farish district Korakhon /2	40°21'27,48439″	67°22’29,06049″	738,217
Farish district Khojibobo	40°21'35,92025″	67°22’49,59730″	681,181
Farish district Kutirbulak	40°20’59,39644″	67°20’15,08575″	699,482
Farish district Korakhon	40°20’58,50371″	67°20’18,32977″	700,603
Farish district Korakhon /2	40°21’38,44836″	67°20’14,76019″	647,112
Location	Latitude	Longitude	Population
-------------------	------------------	-------------------	------------
Ana – Muna	40°20'07.08762"	67°13'33.23695"	961,861
Farish district			
Kattabogdon	40°19'54.55893"	67°14'31.57518"	870,226
Okbulak	40°19'53.76558"	67°14'31.34297"	871,853
Okbulak /2	40°19'54.55893"	67°14'33.31877"	873,546
Matlubotchi	40°19'54.74519"	67°14'36.40002"	876,815
Matlubotchi /2	40°19'54.56312"	67°14'36.07961"	874,865
Matlubotchi /3	40°35'06.03403"	66°43'44.89469"	704,369
Majrum	40°35'00.47857"	66°43'34.87839"	717,942
Majrum /2	40°31'35.27795"	66°46'21.83868"	962,548
Hayot	40°31'34.18877"	66°46'19.11083"	970,307
Hayot /2	40°31'35.54675"	66°46'22.30430"	964,695
Hayot /3	40°31'32.97308"	66°48'12.94787"	855,209
Ukhum	40°33'07.45343"	66°50'25.12488"	681,658
Asrafay	40°33'03.97929"	66°50'25.49828"	687,716
Asrafay /2	40°31'23.72852"	66°56'34.33527"	550,471
Birlashgan	40°31'20.26567"	66°56'31.78199"	552,135
Birlashgan /2	40°28'53.32917"	67°01'53.51324"	596,787
Kizilkishlak	40°25'54.43892"	67°02'35.91643"	786,506
Uchumsay	40°26'45.18370"	67°02'30.90119"	667,553
Uchumsay /2	40°27'35.60504"	67°03'04.93560"	593,928
Uchumsay /3	40°26'26.52318"	67°04'27.73356"	637,193
Itron	40°25'56.62877"	67°05'22.72894"	652,5
Abdukarim	40°24'59.83237"	67°05'27.28852"	785,812
Dirston	40°22'18.86469"	67°05'33.00555"	958,734
Kelvasoy	40°22'18.49549"	67°05'34.60066"	957,222
Kelvasoy /2	40°22'10.08354"	67°06'03.40629"	889,865

Note: The coordinates and population data are approximate and may vary slightly.
Location	Latitude	Longitude	Population
Kelvasoy /3	40°21'00.53052"	67°06'42.05234"	952,793
Saurdovon	40°20'29.32068"	67°06'46.62944"	1076,769
Saurdovon /2	40°18'16.42394"	67°04'43.64502"	924,065
Sanatorium	40°22'01.42726"	66°54'23.79015"	978,502
Jondakhur	40°23’46.65092"	66°53’55.29417"	1140,769
Ingichka	40°24’31.71550"	66°55’16.88859"	1111,901
Mikhin	40°24’14.54028"	66°55’25.94758"	1076,919
Mikhin /2	40°23’34.59407"	66°55’08.71976"	1028,738
Mikhin /3	40°21’36.47319"	66°56’39.66009"	1033,672
Mirab	40°19’50.88705"	66°57’16.84849"	907,202
Ilonli	40°21’50.30699"	67°00’08.50831"	1057,232
Khaydarota	40°21’33.28153"	66°59’28.98689"	1054,804
Khaydarota /2	40°22’15.43182"	67°01’56.24703"	1042,799
Kattasay	40°23’44.05187"	67°00’32.74209"	1312,783
Kattasay /2	40°23’45.63885"	67°00’21.75116"	1341,15
Kattasay /3	40°17’08.90150"	67°07’01.06904"	970,768
Uzunbulak	40°17’40.30429"	67°07’34.31013"	1029,514
Uzunbulak /2	40°16’43.70435"	67°05’17.72697"	861,676
Shokhusman	40°16’49.25593"	67°17’20.30877"	1362,684
Narvon	40°16’47.14592"	67°17’22.60986"	1362,12
Narvon /2	40°16’39.71007"	67°17’07.98601"	1642,464
Narvon /3	40°16’37.83386"	67°16’17.06526"	1231,078
Narvon /4	40°16’36.78848"	67°16’14.46344"	1226,342
Narvon /5	40°16’17.26071"	67°15’21.13762"	1177,022
Narvon /6	40°13’56.37401"	67°13’01.68451"	1020,519
Table 10 shows that the absolute mark is different among the districts and coordination data will help us to make a map of treatment springs in Jizzakh region.

4. Conclusions
It turned out that the Jizzakh region is rich in groundwater sources - springs. It was found that most of the springs studied in the regions have medicinal properties. Their most common medicinal feature is that they are rich with organic matter. It became clear that organic rich sources are the leaders in the Farish district. The next place is occupied by the amount of free CO₂ in water, and such sources are most common in the Bakhmal district. It was found that Farish and then springs in Bakhmal districts contain large amounts of H₂SiO₃ + HSiO₃. Chemical elements important for human life, such as bromine, iron, iodine, were found in four districts: Farish, Bakhmal, Zaamin, Gallaaral. Considering the importance of identifying and depth study of healing springs and their preventive role for human health and diseases, plays an important role the construction of sanatoriums near the springs or the development of local and international tourism.

Acknowledgments
The author gratefully acknowledges that the present research is supported by State Unitary enterprise of the Uzbekhydrogeology.

References:
[1] Tursunov O, Tilyabaev Z 2019 J Energy Institute 92(1) 18-26.
[2] Tursunov O, Dobrowolski J, Zubek K, Czerski G, Grzywacz P, Dubert F, Lapczynska-Kordon B, Klima K, Handke B 2018 Thermal Science 22 3057-3071.
[3] Tursunov O, Zubek K, Czerski G, Dobrowolski J 2020 J Therm Anal Calorim 139 3481-3492.
[4] Tursunov O, Zubek K, Dobrowolski J, Czerski G, Grzywacz P 2017 Oil & Gas Science and Technology – Rev. IEP Energies Nouvelles 72(6) 37.
[5] Tursunov O, Isa KM, Abduganiev N, Mirzaev B, Kodirov D, Isakov A, Sergienko SA 2019 Procedia Environmental Science, Engineering and Management 6(3) 365-374.
[6] Tursunov O, Abduganiev N 2020 Materials Today: Proceedings 25(1) 67-71.
[7] Tursunov O, Kustov L, Tilyabaev Z 2019 J Petroleum Science and Development 72(6) 37.
[8] Durga D, Poudel, et al 2020 Mountain Research and Development 37(1) 35-36.
[9] Durga DP, Timothy WD 2017 Mountain Research and Development 37(1): 35-46.
[10] Scott TM et al 2004 Spring of Florida, Bulletin 66, Florida Geological Survey, Tallahassee, Florida.
[11] Pittman C 2012 Florida’s Vanishing Springs, Tampa Bay Times, St. Petersburg, Florida.
[12] Batool A, Samad N, et al 2018 MedCrave 2(1) 41-46.
[13] Kodirov D, Tursunov O, Parpieva S, Toshpulatov N, Kubyashev K, Davirov A, Klichov O 2019 E3S Web of Conferences 135 01036.
[14] Kodirov D, Tursunov O 2019 E3S Web of Conferences 97 05042.
[15] Kodirov D, Tursunov O 2020 IOP Conf. Ser.: Earth Environ. Sci. 883 012085.
[16] Singh J, et al 2020 Applied Water Science 10 73.
[17] Vilane BRT, et al 2016 Journal of Agricultural and Engineering 2(5) 40-45.
[18] Kays J 2005 Explore 10 11-15.
[19] Wu Q, Bi X et a 2018 Water 10 1379.
[20] Prakash KL, Somashekar RK 2006 Journal of Environmental Biology 27(4) 633-637.
[21] Sagar SS, Chavan RP, Patil CL, Shinde DN, Kekane SS 2015 International Journal of Chemical Studies 3(4) 24-28.
[22] Krishnan RR, Dharmaraj K, Kumari BD 2007 Journal of Environmental Biology 28(1) 105-108.
[23] Tallahasse FL, 2000 Florida Springs Task Force, Florida’s Springs: Strategies for Protection and Restoration, Florida Department of Environmental Protection, Florida.
[24] Daghara A, et al 2019 Journal of Environmental and Public Health 2019 8631732.
[25] Khodjiev M, Abbazov I, Alimov O, Karimova R 2019 International Journal of Engineering and Advanced Technology 8 279-283
[26] Posoxov EV, Tolistixin NM 1977 Energetic, industrial and treatment mineral water, Leningrad. Nedra, Leningrad.
[27] Ovchinnikov AN 1963 Mineral water, Gosgeoletxizdat, Moscow.
[28] Dobrowolski JW, Bedla D, Czech T, Gambus F, Gorecka K, Kiszczak W, Kuzniar T, Mazur R, Nowak A, Sliwka M, Tursunov O, Wagner A, Wieczorek J, Swiatek M 2017 Integrated Innovative Biotechnology for Optimization of Environmental Bioprocesses and a Green Economy Optimization and Applicability of Bioprocesses eds Purohit H, Kalia V, Vaidya A, Khardenavis A (Singapore: Springer) chapter 3 pp 27-71.
[29] Nigmatov AN, et al 2014 Ecotourism and its practical aspects, Sangzar Publishing House, Sanzaz.