Pharmacological drug strategies in Alzheimer's Disease

Estratégias farmacológicas de drogas na Doença de Alzheimer

Estrategias farmacológicas de fármacos en la enfermedad de Alzheimer

Rodrigo Lantyer Marques Dantas¹, Nathalia Clemente Baracho², Antoni Camins³, Miren Ettcheto⁴

1. Engenheiro Biomédico, Universidade Federal de São Paulo, discente do Programa Pós-Graduação Neurologia e Neurociências da Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo-SP, Brasil.
2. Fonoaudióloga, Universidade Estadual de Ciências da Saúde de Alagoas, discente do Programa Pós-Graduação Neurologia e Neurociências da Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo-SP, Brasil.
3. Professor Titular, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid; Institut de Neurociències, Universitat de Barcelona, Spain.
4. PhD en Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid; Institut de Neurociències, Universitat de Barcelona, Spain.

Resumo

Introdução. A doença de Alzheimer (DA) é uma doença neurodegenerativa de mau prognóstico e sem cura que afeta milhões de pessoas em todo o mundo. Os medicamentos atualmente em estudos clínicos tentam investigar possíveis efeitos terapêuticos que progridem ou interrompem a doença. Objetivo. Esta revisão é necessária para criar um panorama atual em 2021, descrevendo as principais vias em estudo para inibir importantes vias de progressão da doença, como vias do sistema colinérgico e inibidores de ROCK, bem como novas perspectivas de tratamento com possível combinação de drogas, para diminuir neuroinflamação e alterar o curso da doença. Método. Avaliado o ClinicalTrials.gov em 19 de janeiro de 2021, identificou todos os ensaios de agentes farmacológicos em desenvolvimento para o tratamento da DA na fase 3 do estudo clínico, obtendo assim um panorama global para conter essa doença devastadora, criando melhores perspectivas sobre o tratamento da DA. Resultados. Diferentes medicamentos (n=25) foram divididos por tipos de alvos de vias neurofisiológicas (inibidor de amiloloide; inibidor de tau; receptores de neurotransmissores; anti-inflamatórios não esteroides (AINEs), mitocôndrias e funções metabólicas; plasticidade sináptica). Conclusões. Os avanços nos ensaios clínicos trazem esperança e novos caminhos, pois os alvos para o tratamento da DA são encorajados e prometem novas linhas de tratamento. Novos estudos com mais combinações terapêuticas que alterem o curso da doença devem ser incentivados. Unitermos. Doença de Alzheimer; desenvolvimento de drogas; ensaios clínicos; inibidores ROCK

Abstract

Introduction. Alzheimer's disease (AD) is a neurodegenerative disorder with a poor prognosis and no cure that affects millions of people worldwide. Medicines today in clinical studies try to investigate possible therapeutic effects that progress or stop the disease. Objective. This review is necessary to create a current panorama in 2021, describing the main pathways under study to inhibit important pathways of disease progression, such as pathways cholinergic system and ROCK inhibitors, as well as new perspectives of treatment with possible combination of drugs, to decrease neuroinflammation and change the course of the disease.
Method. Reviewed ClinicalTrials.gov as of January 19, 2021, identified all trials of pharmacologic agents currently being developed for treatment of AD in phase 3 of clinical study, thus obtaining a global panorama to curb this devastating disease, creating better perspectives on the treatment of AD. **Results.** Different drugs (n = 25) were divided by types of targets of neurophysiological pathways (amyloid inhibitor; tau inhibitor; neurotransmitter receptors; non-steroidal anti-inflammatory drugs (NSAIDs), mitochondria and metabolic functions; synaptic plasticity). **Conclusions.** Advances in clinical trials bring hope and new avenues as targets for AD treatment are encouraged and show promise for new lines of treatment. New studies with more therapeutic combinations that change the course of the disease should be encouraged.

Keywords. Alzheimer’s Disease; drug development; clinical trials; ROCK inhibitors

INTRODUCTION

In the XXIst century, life expectancy has increased considerably, to a great extend thanks to advances in biomedicine which have decrease the mortality caused by multiple pathologies that some years ago were uncurable. However, this increase has also been accompanied by the appearance of age-related diseases, such as Alzheimer’s
disease (AD), which prevalence is rising due to the aging of the world population1, entailing a great social and personal burden at the health level2. AD is the most common form of dementia, progressive and, nowadays, uncurable that begins approximately 15-20 years before symptoms onset. Histologically, AD is characterized by the accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) in the brain. Specifically, Aβ plaques are extraneuronal deposits composed by aggregates of various Aβ peptides derived from amyloid precursor protein (APP). By contrast, NFT are intracellular filamentous inclusions of hyperphosphorylated Tau.

AD is classified into 2 groups: familial AD (FAD) and late onset or idiopathic AD (LOAD). FAD correspond to <5% of cases3 and normally appears between 30 and 50 years of age4. It has been associated to mutations mainly in three genes: APP, presenilin 1 (PSEN1) and presenilin 2 (PSEN2)5. By contrast, LOAD is the most common form which affects >95% of patients with this pathology. Its aetiology remains unclear; however, environmental and genetic factors seem to be involved in its development6, including APOE7.

Throughout the years, different hypotheses have been proposed to explain the origin of the disease, of which the amyloidogenic hypothesis has been one of the most accepted, proposed approximately thirty years ago. This hypothesis suggests that the accumulation of harmful Aβ peptides in the nervous system would be the cause of AD. These plaques are produced through APP processing in which
the enzymes β-secretase and γ-secretase cleavage APP, forming Aβ deposits in the human brain. Under physiological conditions, Aβ is quickly removed from the human brain by the withdrawal mechanism, ensuring a proper functioning of the system. However, in pathological situation, it is believed that there is a defect in the removal mechanism or excessive production which, culminates in an increase level of Aβ peptides, specifically those containing 42 amino acids. These peptides have a high tendency to bond generating oligomers, protofibrils, fibrils and Aβ plaques. Likewise, it is now well known that the disease correlates better with increased levels of soluble Aβ than with plaque formation, causing alterations in dendritic spines and synapses that would be responsible for the cognitive alterations that are observed at the beginning of the disease in the stage of mild cognitive impairment (MCI). In fact, its excess together with Tau accumulation impairs synaptic communications between neurons leading to neuronal death.

Despite the clinical symptoms observed and the biomarkers of cerebrospinal fluid (CSF) and positron emission tomography (PET) indicated strong evidence on AD in living patients, the definitive diagnosis of AD can only be achieved by evaluating post-mortem brain tissue. Abnormalities found in the CSF are low levels of Aβ peptides and increased levels of tau protein, not enough to conclude its diagnosis in its totality. So far, treatment for AD is restricted to the symptomatic level and there is no strategy
to combat the progressive neurodegeneration caused by AD and hence its fatal outcome12.

Apart from Tau and Aβ, several studies have shown that there are several risk factors for triggering LOAD7,13,14. A large study listed 20 risk factors for AD15. However, since its publication these data have been reviewed and, while some risk factors have been highlighted, others have fallen into disuse and others added16-18. Currently, it is known that the importance of a risk factor for AD is often assessed by the degree to which this factor influences APP metabolism, causing Aβ accumulation, neuronal death and, consequently, neural circuit damage. Although there is no consensus in the literature on all factors that are susceptible to AD development, the main risk factors currently considered and associated with AD have been: genetic, demographic issues (age, education, gender, race and social class), lifestyle (alcohol, lack of physical exercise and cognitive activity, malnutrition, poor diet, and smoking), medical conditions (cancer, cardiovascular disturbances, congestive heart failure, immune system dysfunction, micro heart attack, obesity, lack of control homeostatic cholesterol, lack of control of type 2 diabetes, stroke and head trauma), psychiatric disorders (depression, stress), environmental factors (air pollution, calcium deficiency, geographical location, metals: especially zinc, aluminium and copper, military service, organic solvents, type of work, vitamin deficiency) and infections (dental, fungicidal, viral and bacterial: \textit{Chlamydophila pneumonia, Treponema})13.

\textit{Rev Neuroscienc 2021;29:1-30.}
Among these risk factors, the most strongly associated with the onset of LOAD is advancing age, cardiovascular changes and especially, the allelic variation of ApoE. However, in recent years diet-related factors such as obesity and associated diseases including type 2 diabetes mellitus (T2DM) have been gaining ground, which accelerate aging rate by triggering the pathophysiological cascade of LOAD13.

Another risk factor for LOAD widely discussed in the literature which interestingly also contribute to T2DM development, is the neuroinflammation caused by microglia. Microglia are macrophages that rest in the brain and spinal cord, and it has been classified as M2 or resting and M1 or activated. In physiological homeostatic equilibrium conditions, the resting M2 microglial cells are responsible for the removal of Aβ from the brain. In the case of LOAD, it has been suggested that Aβ could be the responsible of a process of over-activation of the microglia favouring the M1 state, causing a release of cytokines such as TNFα, interleukin 1 and other cytokines and chemokines that induces neuronal injury and death in AD19.

Based on the previously commented and considering the need to stop the progression of the disease, several protective factors have been described. A healthy lifestyle throughout life, with physical exercise, cognitive activities and a balanced diet minimize the predisposition to LOAD. This protection occurs by reducing the impact on pathophysiological processes that these behaviours provide. However, none of them has been able to delay or modify the
course of this devastating disease. For this reason, it is necessary to develop drugs that stop its progression, that is, the patient remains in the state of MCI and does not develop LOAD.

Therefore, the goal of this review is to analyse drug treatments to seek new solutions for the hopefully near future, minimizing the personal and social damage caused by AD.

Current drugs for the treatment of Alzheimer’s Disease

Cholinergic system drugs have been shown to be an alternative treatment for AD, since studies have indicated that cholinergic neurons located in the basal forebrain are highly affected, contributing to memory and attention deficits\(^ {20,21}\). Acetylcholine (Ach) is the neurotransmitter used by cholinergic neurons which has a fundamental role in cognitive and motor processes, from memory acquisition to the recovery process\(^ {22,23}\). In AD brains, it has been observed that a clear reduction of Ach in the nervous system due to significant loss of neurons\(^ {24}\). Therefore, the most drugs approved by the food and drug administration (FDA) have focused on increasing Ach levels in the synaptic cleft by inhibiting acetylcholinesterase (AChE) enzymes, which also has been related to Aβ and Aβ fibrils formation and growth\(^ {25}\). The use of AChE inhibitors provides a significant improvement in the functional and cognitive aspects at an initial stage of LOAD impacting patients' quality of life.
However, there is no scientific evidence that this medication delays the disease's progression26.

The main drugs currently used as AChE inhibitors are donepezil, galantamine and rivastigmine27. Specifically, donepezil treatment in advanced stages of AD patients has indicated to be well tolerated at a daily dose of 5-10 mg and at a dose of 23 mg administrated on alternate days, being very efficient after 3 to 6 months of treatment \((p<0.001)\), with significant improvement not only in cognitive functions but also in language and visuospatial ability28. In turn, galantamine has been shown to be a more effective medication than donepezil and rivastigmine, significantly improving the cognitive and functional processes in patients after 3 months of treatment, in view of significant improvements \((p<0.001)\) after 1 year of medication. The initial doses are 16 mg / day until reaching doses of 24 mg / day, which may be lower, depending on patient’s tolerance to adverse effects such as nausea and vomiting29,30. In the case of rivastigmine, daily treatment at a dose of between 6 and 12 mg/day has shown to improve the cognitive functions in patients with AD31,32.

On the other hand, the fourth drug approved by the FDA for the treatment of AD is Memantine, a non-competitive antagonist of the NMDA receptor (channel blocker) that protects neurons from glutamate excitotoxicity by preventing their apoptosis and has low toxicity. This non-competitive antagonism will never exceed the concentration of the agonist, which in this case is glutamate or glycine,
having a role in controlling the excitotoxicity of glutamate, which deal to the prevention of nerve cells death. Therefore, it provides a therapeutic power in delaying the progress of AD. The dose administered is 20 mg/day and it has been shown a significant improvement in patients with cognitive impairment, but the damage caused by the disease's progress is not repaired. In summary, the fourth drugs previously mentioned have demonstrated to promote an improvement in cognitive function of AD patients, however, none of them has been able to stop the progression of LOAD. Therefore, new strategies have been considered.

Recently, some studies have already linked intestinal microbiota disorders to AD. Personalized therapy and interventions in the intestinal microbiota are already evaluated as a possible treatment for AD, since the gut and brain axis play a fundamental role in the communication of brain function signalling. The remodelling of the intestinal microbiota using GV-971, which are linear acids of oligosaccharides that vary from dimers to decamers, have been demonstrated to be effective in reducing neuroinflammation through reconditioning the intestinal microbiota. Specifically, the process of neuroinflammation and cognitive loss occurs from the intestine when there is peripheral inflammation caused by an increase in the production of metabolites, which induce the migration of immune system cells to the brain and its penetration, in consequence, M1 microglia is activated. GV-971 drug causes a redirection of the microbiota and normalizes the disordered
metabolites. Hence, neuroinflammation is reduced improving cognitive performance36,37.

Drug development for Alzheimer disease: phase 3 research studies

Currently, there are numerous drugs for the treatment of AD that are in phase III of clinical trials. This review summarizes the data posted from the database Alzforum.org and ClinicalTrials.gov as of January 19, 2021. Being returned on 25 agents in 39 tests that may be in the recruitment phase, or recruitment not started are summarized in Table 1.

Drugs targeting A\textsubscript{β} or inflammation processes represent 41.02\% (n=16) of studies that have already started or are in the process of starting the recruitment of volunteers. Among them, aducanumab is a human monoclonal antibody under investigation. Its clinical development program included two phase 3 trials, EMERGE and ENGAGE, and the PRIME phase 1b study. In March 2019, Biogen discontinued the ENGAGE and EMERGE trials, as they were unlikely to meet the primary endpoints upon completion. However, later in October, the company announced a new analysis of a larger data set that showed that aducanumab reduced clinical decline in patients with earlier AD as measured by pre-specified primary and secondary endpoints. Preliminary results demonstrated that the drug decreases A\textsubscript{β} plaques with high doses of antibodies, being a promising drug and with the application made for commercialization with the FDA38. Another monoclonal antibody which is in phase 3 is
gantenerumab. After a trial in futility-interrupted prodromal disease, obtained results suggested that higher doses may be effective. By contrast, Solanezumab in combination with gantenerumab has not been shown to be effective compared to the placebo group, but a new test is underway to verify the effectiveness in delaying the progression of AD-related brain damage39-41.

Other drug with promising results is Albutein® (therapeutic albumin, Grifols) which was developed as a therapeutic strategy with the aim to reduce the load of Aβ in the brain by inducing changes in the dynamics of Aβ transport across the blood-brain barrier. The idea was based on the existence of soluble oligomers of Aβ, more toxic than fibers, in plasma, bound to albumin in a high percentage, indicating that this protein may play a relevant role in avoid the aggregation of Aβ and the existence of a dynamic equilibrium between the peripheral and central Aβ levels. For this reason, the therapeutic strategy is focused on plasma exchange in which the extracted plasma is replaced with an equivalent volume of plasma. In therapeutic apheresis, the extraction of plasma aims to eliminate the pathogenic elements present in it. Thus, the sequestration of Aβ in plasma could increase the transport of free Aβ from the CSF to the plasma, to restore the intrinsic balance between the brain and the blood of the levels of Aβ and reduce the load of Aβ in the brain. According to the amyloid hypothesis of AD, the alteration of this balance could be central in the pathogenesis and progression of AD.
The development of Atuzaginstat (COR388) is based on the bacterial hypothesis of AD, associated to the discovery of bacterium *Porphyromonas gingivalis*. This bacterium commonly related with periodontitis, contains toxic virulence factors (proteases) called gingipains that have been identified in the brains of AD patients. In addition, elevated brain levels of gingipain have been correlated with tau\(^42\). Likewise, preclinical studies indicated that there was a blockade of A\(\beta\)1-42 production, reduced neuroinflammation and preserved neurons in the hippocampus of mice\(^43\). The clinical study of this drug (NCT03823404) is a randomized, double-blind, placebo-controlled study that will assess the efficacy, safety, and tolerability of 2 dose levels of COR388 oral capsules in subjects with probable AD dementia according to the National Institute on Aging-Alzheimer's Association criteria during 48-week treatment.

Other research line in which therapeutical strategies have focused are drugs that target tau protein inhibitors which represent 2.5% (n=1) of clinical trials at this stage. TRx0237 has long been used in research and for the treatment of malaria and other conditions. In this study they are investigating whether this drug progresses to AD. The trial is recruiting participants with behavioral variant frontotemporal dementia\(^44\).

Moreover, neurotransmitter receptors also have been designed as strategy for AD which correspond to 30.7% (n=12) of drug in this clinical stage. The main expected effect in this phase is that there is a significant reduction in
Aβ plaques in relation to the control group in each study, causing a reduction in neuroinflammation in patients with mild, moderate LOAD44.

Early 2021, the pharmacist Novo Nordisk published a note that the medication Semaglutide, which is already being studied for its efficacy and safety for T2DM, will start phase 3 with early AD patients. This drug is a hormone, with a metabolic function (10.25%; n=4) that stimulates insulin signaling. The aim of this strategy is to increase insulin signaling, due to it is thought to will improve the transport of glucose in the brain, reducing neurodegeneration45. In fact, the use of metformin (insulin synthesizer) in previous phases of the study has demonstrated a significant cognitive and memory improvements, even though it was a study with a small sample (n=20), indicating a tendency to use this drug as a treatment for AD46.

Ginkgo biloba is a tree of prehistoric origin highly resistant to viruses, fungi, and bacteria. The main component of ginkgo extract are flavonoids, which have been scientifically demonstrated that are able to protect neurons from oxidative stress, among other discoveries47,48.

The last group of drugs under study that targets synaptic plasticity / neuroprotection represents 15.38% (n = 6) and most have the therapeutic goal of improving patients' synaptic function44. Dysfunction of pathways of SV2A, which is directly involved in the distribution of exocytosis vesicles that are very important in the synaptic clefts where neurotransmissions occur, are related to neurodegenerative
diseases such as epilepsy and AD49. In phase II, SV2A modulating drugs, such as AGB101 (low-dose formulation of levetiracetam) have been shown to be effective in increasing cognition and significantly improving memory task performance in patients with AD50.

The contributions of metabolic diseases, vascular diseases are correlated with the loss of the dendritic spine, which can trigger the development and advancement of LOAD, so other drugs such as losartan, amlodipine and atorvastatin are studied51.

ROCK inhibitors as a strategy to improve cognition in AD

The process of storing information in the brain occurs due to synaptic connections which happen when neurons transmit information to other neurons through their axons and dendrites52. Adequate synapse function is an essential prerequisite for all neuronal processing, especially for higher cognitive functions like learning and memory in which cytoskeleton plays a crucial role. The process of synapse formation and their maintenance —i.e. ‘synaptogenesis’— is considered the final step of neuronal polarization, where axonal growth cones navigate through a specific pathway until contacting the appropriate targets, like dendrites, forming the boutons. The protrusions along the dendrites, highly concentrated in actin filaments, are called dendritic spines53.
Table 1. AD drug development in phase 3 Drugs in a different target type (ClinicalTrials.gov accessed January 19, 2021).

Target Type	Name	Sponsor	Mechanism of Action	Therapeutic Effects Purpose	ID
I - Amyloid-Related and/or Inflammation	Aducanumab	Biogen	Monoclonal antibody directed at plaques and oligomers	Remove Aβ	NCT04241068
	Albutein	Instituto Grifols, S.A.	Plasma blood	Reduced brain Aβ	NCT01561053
	COR388	Cortexyme	Bacterial protease inhibitor targeting gingipain produced by P. gingivalis	Reduce neuroinflammation and hippocampal degeneration	NCT03823404
	GV-971	Shanghai Green Valley Pharmaceuticals	Algae-derived Acidic oligosaccharides deaggregate Aβ	Reduced brain Aβ burden, tau hyperphosphorylation, and cognitive deficits	NCT04520412
	Gantenerumab	Chugai Pharmaceutical Co., Ltd., Hoffmann-La Roche	Monoclonal antibody; “brain-shuttle” gantenerumab	Remove Aβ	NCT0439413 NCT04374253 NCT03444870 NCT03443973 NCT01760005
	Lecanemab	Biogen, Eisai Co., Ltd.	anti-amyloid beta (Aβ) protofibril antibody	Reduce protofibrillar Aβ and Aβ plaques	NCT04468659 NCT03887455
	Levetiracetam	Beth Israel Deaconess Medical Center	SV2A modulator	Improve synaptic function; reduce Aβ - induced neuronal hyperactivity	NCT02002819 NCT03875638
	NE3107	Neurmedix Inc	Mitogen activated protein kinase 3 inhibitors; Mitogen-activated protein kinase 1 inhibitors; NF-kappa B inhibitors	Reduction neurodegeneration and neuroinflammation	NCT04669028
	Solanezumab	Eli Lilly & Co.	Monoclonal antibody directed atmonomers	Remove Aβ and prevent aggregation	NCT01760005 NCT02008357
Table 1 (cont.). AD drug development in phase 3 Drugs in a different target type (ClinicalTrials.gov accessed January 19, 2021).

II - Tau				
LMTM (TRx0237)	TauRx Therapeutics Ltd	Tau protein aggregation inhibitor	Reduce tau mediated neuronal damage	NCT03446001

III - Neurotransmitter Receptors				
AVP-786	Avanir Pharmaceuticals, Concert Pharmaceuticals, Inc., Otsuka Pharmaceutical Co., Ltd.	Sigma 1 receptor agonist; NMDA receptor antagonist	Improve neuropsychiatric symptoms (agitation)	NCT04464564 NCT04464564 NCT0393520 NCT02446132
Brexpiprazole	H. Lundbeck, Otsuka Pharmaceutical Co., Ltd.	D2 receptor partialagonist, serotonin-dopamine modulator	Improve neuropsychiatric symptoms (agitation)	NCT03594123 NCT03548584 NCT03724942 NCT03620981
Escitalopram	Johns Hopkins University, NIA	SSRI	Improve neuropsychiatric symptoms (agitation)	NCT03108846
Guanfacine	Imperial College London, UK National Institute of Health Research	Alpha-2 adrenergic agonist	Modulation of noradrenergic deficit (cognitive enhancer)	NCT03116126
Mirtazapine	University of Sussex	Alpha-1 antagonist	Improve neuropsychiatric symptoms (agitation)	NCT03031184
Octohydroaminoacridine Succinate	Shanghai Mental Health Center, Changchun-Huayang High-tech, Jiangsu Sheneryang High-tech	AchE inhibitor	Improve acetylcholine signaling (cognitive enhancer)	NCT03283059

IV - Mitochondria & Metabolic Function				
Ginkgo biloba dispersible tablets	Nanjing Medical University	Plant extract with antioxidant properties	Improve brainblood flow and mitochondrial function (cognitive enhancer)	NCT03090516
Semaglutide	Novo Nordisk A/S	GLP-1 analogue Semaglutide	Improved memory function and reduced phospho-tau accumulation	NCT04707469*
Specifically, the shape and number of them are continuously remodelled in adaptation to sensory stimuli or in learning and memory process, as occurs with synaptic activity.

In line with this process, it has been demonstrated that small changes in dendritic spines, such as density, number,
size, and shape cause cognitive deficits and neurodegenerative disorders, including AD54. Likewise, numerous reports have shown that synaptic markers and/or dendritic spine loss precede the formation of A\textsubscript{β} plaques and NFTs, suggesting that these molecules and structures are strongly correlated with cognitive impairment in AD54-56. More specifically, the selective loss of thin spines is strongly linked with impaired ability to learn in aged rhesus monkeys57. These alterations could be related with the MCI that is detectable in very early stages in AD patients54, supporting that synaptic loss is central to the progression of the pathology58 and providing cellular evidence that remodelling the structure of dendritic spines may be a mechanism of cognitive resilience. All these data sustain that synaptic structure and synaptic activity are clearly correlated with the cognition capacity. Therefore, the cellular and molecular events that control synapses can be an early target to treat cognitive impairment in AD.

The kinases proteins (ROCKs/Rho-quinase/Rho-quinase associated) belong to the serine/threonine family of small (~21 kDa) signalling G proteins which are part of the Ras superfamily. Several biological functions are mediated through the action of the ROCKs when they connect to GTPase59. Two ROCK isoforms have been described in mammals, ROCK1 and ROCK2 that are powerful regulators of the actin cytoskeleton. Therefore, the synaptic alterations observed at early stages of AD should be correlated with modifications in the dynamic actin cytoskeleton, controlled
by ROCKs60. Likewise, it has been described that Aβ induces aberrant stabilization of F-actin within dendritic spines, which impairs synaptic strength and plasticity, contributing to MCI.

Actin-depolymerization factor (ADF) is a group of small (15–22 kD) actin-binding proteins that include destrin, depactin, actophorin, collectively called ADF/cofilin family. Together with cofilin-1 (Cof1) regulate actin dynamics in dendritic spines, promoting actin depolymerization that contributes to the control of actin filament dynamics and reorganization61. Therefore, the close association between Cof-1 dysfunction and cognitive loss in AD and other neurological disorders is accepted62. This correlation would be explained by the fact that cofilin is crucial for the synaptic plasticity regulation63. Thus, in long-term potentiation (LTP), a synaptic enhancement induced by high-frequency electrical stimulation, the actin cytoskeleton needs to be polymerized in an inactivated cofilin-dependent manner, while in the phase of long-term-depression (LTD), the actin cytoskeleton needs to be depolymerized by activated cofilin61. Indeed, activated cofilin inhibits tau-induced microtubule assembly promoting tauopathy64. Finally, cofilin is also essential for the trafficking of AMPA receptors at the post-synaptic region during synaptic plasticity, which is associated with the memory acquisition65,66.

Regarding to the regulation of cofilin activity, it has been shown that phosphorylation of the serine residue at position 3 (Ser-3) inactivates this protein67. The serine phosphorylation is mainly mediated by LIM kinases (LIMK)
and testicular protein kinases (TESK), which are activated by Rho-GTPases. Rho GTPases influence both the maturation and the collapse of dendritic spines though cofillin activation68. Specifically, activation of the RhoA/ROCK pathway results in phosphorylation of Cof1 and is sufficient to mediate A\textbeta{}-induced actin stabilization synaptic impairment and synaptic loss63.

Importantly, brain tissue from AD patients and APP-expressing mouse models exhibits elevated ROCK levels and corresponding elevated levels of inactive p-Cof169. Furthermore, in other neurodegenerative diseases characterized by an early synaptic loss, such as Creutzfeld-Jacob’s disease, upregulation of p-Cof-1 has been described69. These data highlighting that Cof-1 exerts a pivotal role in the synaptotoxic process of neurodegenerative diseases67.

The reactivation of coflin occurs through dephosphorylation of p-Ser-3 by Slingshot family protein phosphatases (SSHs). In addition, a haloacid dehalogenase termed chronophin (CIN), and the more general proteins serine/threonine phosphatases, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) are also reported to be involved in coflin dephosphorylation.

Globally, Rho GTPases function as key intracellular switches that regulate axonal and dendritic growth together with synapsis structure and activity through actin binding proteins such as Cof-1.
Hydroxyfasudil, which is a pan-ROCK inhibitor, is being used in studies of older rats and indicates improvement in the learning and working memory of these animals. The commercial drug (Fasudil), in several different dosage protocols, is considered safe and well tolerated in humans. Moreover, the results of the study associated with the positive clinical use of the drug corroborate that this ROCK inhibitor improves cognition and memory dysfunction in humans70.

Interesting research carried out in the hippocampus of an in vivo mouse model suggested that ROCK2 is the most critical isoform for dendritic spine formation and synaptic function when compared to ROCK1. Interestingly, it was found that the ROCK2 isoform is involved in both presynaptic and postsynaptic transmission, while ROCK1 is involved only in postsynaptic transmission71.

In addition, it is well known that NSAIDs have been studied as a potential treatment of AD to inhibit the neuroinflammatory process as selective and non-selective cyclooxygenase (COX) inhibitors. NSAIDs such as ibuprofen, indomethacin, and sulindac have also been proposed to reduce the formation of Aβ\textsubscript{42}72, by inactivating RhoA73. Therefore, the inhibition of ROCK by some NSAIDs is not related to the inhibitory action of COX and constitutes a therapeutic target in the prevention of AD.

Aβ is also produced from ROCK2 phosphorylation in APP at some sites (T654 and S498), which highlights the importance of ROCK2 inhibition as a protective factor for AD
development, as ROCK2 acts as one of the mediators in axonal degeneration, leading to apoptosis74.

SR3677 (ROCK2 inhibitor) reduced the action of the APP cleavage enzyme from β (BACE1) and the production of Aβ in mice. Alteration of the endocytic distribution of BACE1 and promotion of traffic from APP to lysosomes was also identified in this study. In addition, SR3677 blocked ROCK2 phosphorylation in threonine 654 (T654). These observations suggest that ROCK2 inhibition reduces levels Aβ through independent mechanisms in the rat brain75.

As a therapeutic strategy for age-related memory loss and AD, pharmacological inhibition of ROCK1 and ROCK2 can be a promising treatment as it acts on increasing the density of the dendritic spines favouring synaptic transmission which improves the transmission of brain information and neural plasticity. However, more research should be done in order to clearly elucidate the specific role of each isoform and its specific targets.

Challenges and future of research in drug development for AD

The biggest challenge for the scientific class is to find an effective drug that reduces, slows down or regresses AD. Advances with monotherapies are evident in clinical tests. However, none of them has achieve its goal. In consequence, it has arisen the need to consider new strategies. One of them is the design of combinatorial therapies since it is well known that it has been effective for other diseases which share similar complexity, the fact that several pathogenic
Pathways or multiple targets are involved in its development. In fact, it has been demonstrated that the combination of memantine + AchE inhibitor produced positive effects in patients with AD77. By contrast, some studies with combined drugs such as: memantine + donepezil applied in patients with moderate to severe AD, did not show significant improvement (p>0.01) in relation to patients on monotherapy with one of the two drugs76. This negative result, indicate possibly, the need to add more drugs in the combinatory treatment.

Actually, there are only six works in progress with combinatorial drugs consulted at ClinicalTrials.gov (accessed on January 22, 2021). A drug combination approach with amyloid pathway inhibitors and NSAIDs, such as the use of ALZT-OP1 (cromolyn and ibuprofen, NCT04570644). Drugs like Ginkgo combined with AchE inhibitors have also been the subject of studies (Ginkgo + Donepezil, NCT03090516). Another drug that is in the 1/2 phases is Dasatinib + Quercetin (Tyrosine kinase inhibitor and flavonoid, NCT04063124), which reduces senescent cells and tau aggregation78.

We can conclude, AD is a complex disease where numerous pathways are involved in the neurodegenerative process. This complexity makes it necessary to address the disease by acting on different therapeutic targets such as the decrease in Aβ levels, decrease the neuroinflammatory process, act by maintaining the stability of the dendritic spines, in addition to, acting on the mitochondria to maintain
adequate levels of ATP and decrease levels of oxidative stress. Finally, it must be considered that these drugs should be administered in a state of the MCI in the disease to be effective and to be able to modify the course of the disease and delay the process of cognitive loss.

ACKNOWLEDGMENTS
CIBERNED (Grant CB06/05/2004 to AC).

REFERENCES
1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011;377:1019-31. https://doi.org/10.1016/S0140-6736(10)61349-9
2. de Abreu ID, Forlenza OV, de Barros HL. Demência de Alzheimer: Correlação entre memória e autonomia. Arch Clin Psychiatr 2005;32:131-6. https://doi.org/10.1590/S0101-60832005000300005
3. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Gen 1999;65:664-70. https://doi.org/10.1086/302553
4. Bateman RJ, Aisen PS, de Strooper B, Fox NC, Lemere CA, Ringman JM, et al. Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimer’s Res Ther 2011;3:1. http://alzres.biomedcentral.com/articles/10.1186/alzrt59
5. Tomita T, Maruyama K, Saito TC, Kume H, Shinozaki K, Tokuhiro S, et al. The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 1997;94:2025-30. https://doi.org/10.1073/pnas.94.5.2025
6. Shinohara M, Sato N, Shimamura M, Kurinami H, Hamasaki T, Chatterjee A, et al. Possible modification of Alzheimer’s disease by statins in midlife: Interactions with genetic and non-genetic risk factors. Front Aging Neurosci 2014;6:71. https://doi.org/10.3389/fnagi.2014.00071
7. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015;1:15056. https://doi.org/10.1038/nrdp.2015.56
8. de Strooper B, Vassar R, Golde T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 2010;6:99-107. https://doi.org/10.1038/nrneurol.2009.218
9. Mucke L. Neuroscience: Alzheimer’s disease. Nature 2009;461:895-7. https://doi.org/10.1038/461895a
10. Lane-Donovan C, Herz J. ApoE, ApoE Receptors, and the Synapse in Alzheimer’s Disease. Trends Endocrinol Metab 2017;28:273-84. https://doi.org/10.1016/j.tem.2016.12.001
11. Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: Implications for the practicing clinician. Neurologist 2012;18:356-63. https://doi.org/10.1097/NRL.0b013e31826a998d
12. Mossello E, Ballini E. Management of patients with Alzheimer’s disease: Pharmacological treatment and quality of life. Ther Adv Chronic Dis 2012;3:183-93. https://doi.org/10.1177/2040622312452387
13. Armstrong RA. Risk factors for Alzheimer’s disease. Folia Neuropathol 2019;57:87-105. https://doi.org/10.5114/fn.2019.85929
14. Silva MV, Loures CDMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci 2019;26: https://doi.org/10.1186/s12929-019-0524-7
15. Henderson AS. The risk factors for Alzheimer’s disease: a review and a hypothesis. Acta Psychiatr Scand 1988;78:257-75. Available from: https://doi.org/10.1111/j.1600-0447.1988.tb06336.x
16. Armstrong RA. What causes Alzheimer’s disease? Folia Neuropathol 2013;51:169-88. https://doi.org/10.5114/fn.2013.37702
17. Killin LOJ, Starr JM, Shieue IJ, Russ TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr 2016;16:175. https://doi.org/10.1186/s12877-016-0342-y
18. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet 2017;390:2673–734. https://doi.org/10.1016/S0140-6736(17)31363-6
19. Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Inter J Neurosci 2014;124:307-21. https://doi.org/10.3109/00207454.2013.833510
20. Bucci DJ, Holland PC, Gallagher M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J Neurosci 1998;18:8038-46. https://doi.org/10.1523/JNEUROSCI.18-19-08038.1998
21. Voytko M Iou, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL. Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 1994;14:167-86. https://doi.org/10.1523/JNEUROSCI.14-01-00167.1994
22. Blokland A, Honig W, Raaijmakers WGM. Effects of intra-hippocampal scopolamine injections in a repeated spatial acquisition task in the rat. Psychopharmacology (Berl) 1992;109:373-6. https://doi.org/10.1007/BF02245886
23. Boccia MM, Blake MG, Acosta GB, Baratti CM. Atropine, an anticholinergic drug, impairs memory retrieval of a high consolidated
avoidance response in mice. Neurosci Letters 2003;345:97-100. https://doi.org/10.1016/S0304-3940(03)00493-2
24. Mega MS. The cholinergic deficit in Alzheimer’s disease: impact on cognition, behaviour and function. Int J Neuropsychopharmacol 2000;3:3-12. https://doi.org/10.1017/S1461145700001942
25. de Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry 2001;40:10447-57. https://doi.org/10.1021/bi0101392
26. Raina P, Santaguida P, Ismaila A, Patterson C, Cowan D, Levine M, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: Evidence review for a clinical practice guideline. Ann Intern Med 2008;148:379-97. https://doi.org/10.7326/0003-4819-148-5-200803040-00009
27. Viegas Junior C, Bolzani VS, Furlan M, Fraga CAM, Barreiro EJ. Produtos naturais como candidatos a fármacos úteis no tratamento do Mal de Alzheimer. Quim Nova 2004;27:655-60. https://doi.org/10.1590/S0100-40422004000400021
28. Lee JH, Jeong SK, Kim BC, Park KW, Dash A. Donepezil across the spectrum of Alzheimer’s disease: Dose optimization and clinical relevance. Acta Neurol Scand 2015;131:259-67. https://doi.org/10.1111/ane.12386
29. Raskind MA, Peskind ER, Wessel T, Yuan W. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology 2000;54:2261-8. https://doi.org/10.1212/wnl.54.12.2261
30. Rockwood K, Mintzer J, Truyen L, Wessel T, Wilkinson D. Effects of a flexible galantamine dose in Alzheimer’s disease: A randomised, controlled trial. J Neurol Neurosurg Psychiatry 2001;71:589-95. https://doi.org/10.1136/jnnp.71.5.589
31. Cummings J, Winblad B. A rivastigmine patch for the treatment of Alzheimer’s disease and Parkinson’s disease dementia. Expert Rev Neurother 2007;7:1457-63. https://doi.org/10.1586/14737175.7.11.1457
32. Milelli A, de Simone A, Ticchi N, Chen HH, Betari N, Andrisano V, et al. Tacrine-based Multifunctional Agents in Alzheimer’s Disease: An Old Story in Continuous Development§. Curr Med Chem 2017;24:3522-46. https://doi.org/10.2174/0929867324666170309123920
33. Rogawski MA, Wenk GL. The Neuropharmacological Basis for the Use of Memantine in the Treatment of Alzheimer’s Disease. CNS Drug Rev 2006;9:275-308. https://doi.org/10.1111/j.1527-3458.2003.tb00254.x
34. Matsunaga S, Kishi T, Nomura I, Sakuma K, Okuya M, Ikuta T, et al. The efficacy and safety of memantine for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2018;17:1053-61. https://doi.org/10.1080/14740338.2018.1524870
35. Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil 2011;23:187-92. https://doi.org/10.1111/j.1365-2982.2010.01664.x
36. Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci 2016;59:1006-23. https://doi.org/10.1007/s11427-016-5083-9
37. Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 2019;29:787-803. https://doi.org/10.1038/s41422-019-0216-x
38. Schneider L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol 2020;19:111-2. https://doi.org/10.1016/S1474-4422(19)30480-6
39. Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther 2017;9:95. https://doi.org/10.1186/s13195-017-0318-y
40. Laske C. Phase 3 Trials of Solanezumab and Bapineuzumab for Alzheimer’s Disease. N Engl J Med 2014;370:1460. https://doi.org/10.1056/NEJMc1402193
41. Ezzati A, Davatzikos C, Wolk DA, Aisen PS, Lipton RB. Is it time to use predictive models to boost power of Alzheimer’s disease clinical trials? A post-hoc analysis of phase 3 solanezumab trials. Alzheimers Dem 2020;16:e043022. https://doi.org/10.1002/alz.043022
42. Haditsch U, Roth T, Rodriguez L, Hancock S, Cecere T, Nguyen M, et al. Alzheimer’s Disease-Like Neurodegeneration in Porphyromonas gingivalis Infected Neurons with Persistent Expression of Active Gingipains. J Alzheimers Dis 2020;75:1301-17. https://doi.org/10.3233/JAD-200393
43. Detke M, Lynch C, Holsinger L, Kapur S, Hennings D, Raha D, et al. COR388 for the Treatment of Alzheimer’s Disease (4098). Neurology 2020;94(15 Supplement):4098. https://n.neurology.org/content/94/15_Supplement/4098.abstract
44. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement 2020;6:e12050. https://doi.org/10.1002/trc2.12050
45. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102
46. Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a Randomized Placebo-controlled Crossover Study. Alzheimer Dis Assoc Disord 2017;31:107-13. https://doi.org/10.1097/WAD.0000000000000202
47. Liu H, Ye M, Guo H. An Updated Review of Randomized Clinical Trials Testing the Improvement of Cognitive Function of Ginkgo biloba Extract in Healthy People and Alzheimer’s Patients. Front Pharmacol 2020;10:1688. https://doi.org/10.3389/fphar.2019.01688
48. Oyama Y, Chikahisa L, Uehe T, Kanemaru K, Noda K. Ginkgo biloba extract protects brain neurons against oxidative stress induced by
hydrogen peroxide. Brain Res 1996;712:349-52. https://doi.org/10.1016/0006-8993(95)01440-3
49. Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 2016;30:1055-77. https://doi.org/10.1007/s40263-016-0384-x
50. Bakker A, Albert MS, Krauss G, Speck CL, Gallagher M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage Clin 2015;7:688-98. https://doi.org/10.1016/j.nicl.2015.02.009
51. Richardson K, Schoen M, French B, Umscheid CA, Mitchell MD, Arnold SE, et al. Statins and cognitive function: a systematic review. Ann Intern Med 2013;159:688-97. https://doi.org/10.7326/0003-4819-159-10-201311190-00007
52. van Strien NM, Cappaert NLM, Witter MP. The anatomy of memory: An interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 2009;10:272-82. https://doi.org/10.1038/nrn2614
53. Bellot A, Guiverneau B, Tajes M, Bosch-Morató M, Valls-Comamala V, Muñoz FJ. The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Res 2014;1573:1-16. https://doi.org/10.1016/j.brainres.2014.05.024
54. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 2010;33:121-9. https://doi.org/10.1016/j.tins.2010.01.001
55. Boros BD, Greathouse KM, Gentry EG, Curtis KA, Birchall EL, Gearing M, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol 2017;82:602-14. https://doi.org/10.1002/ana.25049
56. Boros BD, Greathouse KM, Gearing M, Herskowitz JH. Dendritic spine remodeling accompanies Alzheimer’s disease pathology and genetic susceptibility in cognitively normal aging. Neurobiol Aging 2019;73:92-103. https://doi.org/10.1016/j.neurobiolaging.2018.09.003
57. Walker CK, Greathouse KM, Boros BD, Poovey EH, Clearman KR, Ramdas R, et al. Dendritic Spine Remodeling and Synaptic Tau Levels in PS19 Tauopathy Mice. Neurosci 2021;455:195-211. https://doi.org/10.1016/j.neuroscience.2020.12.006
58. Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WGM, Lou W, et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 2010;30:7507-15. https://doi.org/10.1523/JNEUROSCI.6410-09.2010
59. Scheff SW, Price DA, Schmitt FA, Dekosky ST, Mufson EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007;68:1501-8. https://doi.org/10.1212/01.wnl.0000260698.46517.8f
60. Penzes P, Cahill ME, Jones KA, Vanleeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011;14:285-93. https://doi.org/10.1038/nn.2741
61. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 1996;271:20246-9. https://doi.org/10.1074/jbc.271.34.20246
62. Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton 2016;73:477-97. https://doi.org/10.1002/cm.21282
63. Deng Y, Wei J, Cheng J, Zhong P, Xiong Z, Liu A, et al. Partial Amelioration of Synaptic and Cognitive Deficits by Inhibiting Cofilin Dephosphorylation in an Animal Model of Alzheimer’s Disease. J Alzheimers Dis 2016;53:1419-32. https://doi.org/10.3233/JAD-160167
64. Rush T, Martinez-Hernandez J, Dollmeyer M, Frandemiche ML, Borel E, Boisseau S, et al. Synaptotoxicity in alzheimer’s disease involved a dysregulation of actin cytoskeleton dynamics through cofilin phosphorylation. J Neurosci 2018;38:10349-61. https://doi.org/10.1523/JNEUROSCI.1409-18.2018
65. Kang DE, Woo JA. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer’s Disease. J Alzheimers Dis 2019;72:S131-44. https://doi.org/10.3233/JAD-190585
66. Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 2010;13:1208-15. https://doi.org/10.1038/nn.2634
67. Rust MB. ADF/cofilin: A crucial regulator of synapse physiology and behavior. Cell Mol Life Sci 2015;72:3521-9. https://doi.org/10.1007/s00018-015-1941-z
68. Swanger SA, Mattheyses AL, Gentry EG, Herskowitz JH. ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell Logist 2015;5:e1133266. https://doi.org/10.1080/21592799.2015.1133266
69. Zafar S, Younas N, Sheikh N, Tahir W, Shafiq M, Schmitz M, et al. Cytoskeleton-Associated Risk Modifiers Involved in Early and Rapid Progression of Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2018;55:4009-29. https://doi.org/10.1007/s12035-017-0589-0
70. Huentelman MJ, Stephan DA, Talboom J, Corneveaux JJ, Reiman DM, Gerber JD, et al. Peripheral Delivery of a ROCK Inhibitor Improves Learning and Working Memory. Behav Neurosci 2009;123:218-23. https://doi.org/10.1037/a0014260
71. Yan J, Pan Y, Zheng X, Zhu C, Zhang Y, Shi G, et al. Comparative Study of ROCK1 and ROCK2 in Hippocampal Spine Formation and Synaptic Function. Neurosci Bull 2019;35:649-60. https://doi.org/10.1007/s12264-019-00351-2
72. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of
cyclooxygenase activity. Nature 2001;414:212-6. https://doi.org/10.1038/35102591
73.Zhou Y, Su Y, Li B, Liu F, Ryder JW, Wu X, et al. Nonsteroidal Anti-Inflammatory Drugs Can Lower Amyloidogenic Aβ 42 by Inhibiting Rho. Science 2003;302:1215-7. https://doi.org/10.1126/science.1090154
74.Sharma P, Roy K. ROCK-2-selective targeting and its therapeutic outcomes. Drug Discov Today 2020;25:446-55. https://doi.org/10.1016/j.drudis.2019.11.017
75.Herskowitz JH, Feng Y, Mattheyses AL, Hales CM, Higginbotham LA, Duong DM, et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model. J Neurosci 2013;33:19086-98. https://doi.org/10.1523/JNEUROSCI.2508-13.2013
76.Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Donepezil and Memantine for Moderate-to-Severe Alzheimer’s Disease. N Engl J Med 2012;366:893-903. https://doi.org/10.1056/NEJMoa1106668.
77.Gauthier S, Molinuevo JL. Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer’s disease. Alzheimers Dement 2013;9:326-31. https://doi.org/10.1016/j.jalz.2011.11.005
78.Kondo T, Imamura K, Funayama M, Tsukita K, Miyake M, Ohta A, et al. iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease. Cell Rep 2017;21:2304-12. https://doi.org/10.1016/j.celrep.2017.10.109