In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9

Beatriz Álvarez1, Mario Mencía2, Víctor de Lorenzo3 & Luis Ángel Fernández1

In vivo mutagenesis systems accelerate directed protein evolution but often show restricted capabilities and deleterious off-site mutations on cells. To overcome these limitations, here we report an in vivo platform to diversify specific DNA segments based on protein fusions between various base deaminases (BD) and the T7 RNA polymerase (T7RNAP) that recognizes a cognate promoter oriented towards the target sequence. Transcriptional elongation of these fusions generates transitions C to T or A to G on both DNA strands and in long DNA segments. To delimit the boundaries of the diversified DNA, the catalytically dead Cas9 (dCas9) is tethered with custom-designed crRNAs as a “roadblock” for BD-T7RNAP elongation. Using this T7-targeted dCas9-limited in vivo mutagenesis (T7-DIVA) system, rapid molecular evolution of the antibiotic resistance gene TEM-1 is achieved. While the efficiency is demonstrated in E. coli, the system can be adapted to a variety of bacterial and eukaryotic hosts.
Directed evolution enables the selection of protein variants with improved properties. The generation of genetic variability followed by a screening process are the essential steps of directed evolution. In vitro mutagenesis techniques quickly produce large number of variants of the target gene, but their selection requires, in most cases, cloning and transformation into a host cell for expression. These steps are time-consuming and labor-intensive, especially when iterative cycles of mutagenesis and selection are needed. Cell-free selection methods are also feasible, but they are technically demanding and functional expression of complex membrane and oligomeric proteins is difficult to achieve. Hence, in vivo mutagenesis systems are preferred because the generation of variants, their expression, and selection can be done in a continuous process, which accelerates directed evolution.

Long-established in vivo mutagenesis methods (e.g., chemical mutagens, radiations, and mutator strains) do not target specific genes and are deleterious for the host cell due to accumulation of random mutations in the genome. In vivo mutagenesis systems with targeted specificity have been reported for Escherichia coli and yeast cells, which are the preferred hosts for cloning and expression of gene libraries. For instance, an error-prone variant of E. coli DNA polymerase I enables the mutagenesis of genes cloned in CoE1 plasmids, although it concentrates mutations close to the replication origin. A different approach involves the transformation of E. coli with mutant oligonucleotide libraries, targeting one or multiple loci in the chromosome, which induce mutation during DNA replication in vivo. Iterative cycles of transformation with oligonucleotide libraries followed by high-throughput screenings are needed. In yeast, generation of variability can be achieved by cloning the target DNA segments up to 5 kb in retrotransposons having an error-prone retrotranscriptase. Recently, an in vivo mutagenesis system, named OrthoRep, uses a highly error-prone orthogonal DNA polymerase and a linear plasmid pair that allows the directed evolution of DNA segments of at least 18 kb. However, directed evolution of gene segments or domains is challenging since the orthogonal DNA polymerase replicates the whole plasmid.

A versatile mutagenic system for different hosts is based on the tethering of base deaminases (BDs), such as cytosine deaminases (CDs) and adenosine deaminases (ADs), to a target DNA using catalytically dead Cas9 (dCas9) targeted with a CRISPR RNA (crRNA) or guide RNA (gRNA). Expression of CDs, such as human AID (activation-induced cytidine deaminase), and orthologs from rat (rAPOBEC1, rat apolipoprotein B mRNA editing enzyme 1) and lamprey (pmCDA1, lamprey cytidine deaminase 1), induce random C to T transitions. For instance, an error-prone variant of E. coli DNA polymerase I enables the mutagenesis of genes cloned in CoE1 plasmids, although it concentrates mutations close to the replication origin. A different approach involves the transformation of E. coli with mutant oligonucleotide libraries, targeting one or multiple loci in the chromosome, which induce mutation during DNA replication in vivo. Iterative cycles of transformation with oligonucleotide libraries followed by high-throughput screenings are needed. In yeast, generation of variability can be achieved by cloning the target DNA segments up to 5 kb in retrotransposons having an error-prone retrotranscriptase. Recently, an in vivo mutagenesis system, named OrthoRep, uses a highly error-prone orthogonal DNA polymerase and a linear plasmid pair that allows the directed evolution of DNA segments of at least 18 kb. However, directed evolution of gene segments or domains is challenging since the orthogonal DNA polymerase replicates the whole plasmid.

Hence, in vivo mutagenesis systems with high specificity and processivity are of great interest. In this study, we report a strategy that fulfills these criteria enabling in vivo mutagenesis of a target gene (full or partial), using different highly processive protein fusions of BDs and the bacteriophage T7 RNA polymerase (T7RNAP). The specificity of the mutagenesis is provided by a distinct T7RNAP promoter (P_{T7}) driving transcription through the target DNA. By placing the P_{T7} at the 3′-end of the target gene, in reverse orientation, expression of the target gene can be preserved from its endogenous 5′-promoter recognized by the host RNAP. Two recent independent studies have also reported the mutagenic activity of CD fusions to T7RNAP, in E. coli and in mammalian cells. Moore et al. described a chimeric fusion between rAPOBEC1 and T7RNAP (MutaT7) that in E. coli introduces mutations within a plasmid DNA segment downstream of P_{T7}. Due to the high processivity of this fusion, an array of at least four copies of the T7 terminator were needed downstream of the target gene to restrict the mutagenesis. The study in mammalian cells uses fusions of rAPOBEC1 or a hyperactive mutant AID to T7RNAP. Mutations in a DNA segment of at least 2000 bp were reported, but no brake system was included to delimit the edited window. In this work, we describe the mutagenic action of different BDs (i.e., AID, rAPOBEC1, pmCDA1, and TadA*) fused to T7RNAP on a target genomic DNA segment in E. coli chromosome. Further, we show that a DNA-bound crRNA/dCas9 complex hinders elongation BD-T7RNAP hybrids, protecting the downstream DNA in the chromosome, even within the coding sequence of the target gene, where an array of T7 terminators cannot be inserted without disrupting the coding sequence. We also demonstrate that this T7-targeted dCas9-limited in vivo mutagenesis (T7-DIVA) system is useful for continuous directed evolution experiments, using the antibiotic resistant gene TEM-1. Given the demonstrated functionality of BDs, T7RNAP, and dCas9 in different hosts, T7-DIVA has the potential to be implemented in diverse organisms other than E. coli.

Results

An E. coli reporter strain to test the BD-T7RNAP fusions. A scheme of the overall strategy followed in this study is shown in Fig. 1a. To measure both the mutagenic and transcriptional activity of BD-T7RNAP fusions, we designed a gfp-URA3 genetic cassette comprising two gene reporters in reverse orientation: a promoter-less gfp gene and the URA3 gene from Saccharomyces cerevisiae (Fig. 1b). Transcription of the URA3 gene was placed under the PtcA promoter recognized by E. coli RNAP. Yeast URA3 encodes the enzyme orotidine 5′-phosphate decarboxylase involved in the synthesis of uridine monophosphate (UMP). The activity of URA3, and that of the E. coli orthologue pyrF, allows cell growth in the absence of uracil in the medium (positive selection). In addition, URA3 expression makes yeast and E. coli cells sensitive to 5′-fluoroorotic acid (FOA) allowing selection of null mutants (negative selection or counterselection). To enable specific recruitment of BD-T7RNAP fusions, the promoter P_{T7} was placed downstream of URA3, in reversed orientation to the coding sequence of URA3, but in the same orientation that the promoter-less gfp gene (Fig. 1b). Thus, expression of GFP acts as a reporter of the transcriptional activity of BD-T7RNAP fusions. The gfp-URA3 cassette, flanked by transcriptional terminators (T1 and T0), was integrated in the chromosome of E. coli K-12 replacing the flu gene. The E. coli K-12 strain used for integration (MG1655^{ΔpyrF}) was derived from the reference strain MG1655^{ΔpyrF} having a deletion of pyrF and a corrected pyrF gene (Supplementary Information) that eliminates a natural mutation reducing its expression (Supplementary Fig. 1a). The pyrF gene
is required in the efficient incorporation of FOA to produce the toxic 5-FUMP. Deletion of pyrF makes bacteria auxotrophic for uracil and resistant to FOA (Supplementary Fig. 1b). The final reporter strain with the integrated cassette, named MG*-URA3, grows well in minimal media (M9) lacking uracil and is highly sensitive to FOA (Supplementary Fig. 1b). Lastly, an ung deletion mutant was obtained from this strain (MG*-URA3Δung).

Mutagenic activity of different CD-T7RNAP fusions. First, we investigated different N- and C-terminal fusions of human CD AID connected with a flexible peptide linker (G3S) to T7RNAP, and some including N-terminal thioredoxin 1 (TrxA) and a cytosolic version of the maltose-binding protein (MBPc). Native T7RNAP and these fusions were cloned under the control of the tetracycline-inducible promoter (TetR-PtetA) in a low copy-number plasmid (pSEVA221) and expressed in MG*-URA3. These experiments revealed that all N-terminal fusions to T7RNAP produce a transcriptionally active polypeptide in E. coli with similar mutagenic activity (Supplementary Notes, and Supplementary Figs. 2 and 3a). We chose the AID-T7RNAP fusion, lacking any additional protein partner, to continue our work. Then, we constructed similar N-terminal fusions with other CDs, namely pmCDA1 and rAPOBEC1, in the same vector (Fig. 2a). MG*-URA3Δung strains carrying plasmids encoding native T7RNAP, AID-T7RNAP, pmCDA1-T7RNAP, rAPOBEC1-T7RNAP, or pSEVA221 (negative control), were grown and induced with anhydrotetracycline (aTc). Western blot analysis of whole-cell protein extracts revealed slightly higher expression levels of pmCDA1-T7RNAP and rAPOBEC1-T7RNAP than AID-T7RNAP, and the overexpression of native T7RNAP (Fig. 2b). Flow cytometry analysis showed similar levels of GFP in bacteria encoding AID, pmCDA1, and rAPOBEC1 fusions, roughly half of those found in bacteria with T7RNAP (Fig. 2c and Supplementary Fig. 3b). Thus, all CD-T7RNAP fusions were expressed and transcriptionally active in E. coli.

Next, we determined the mutant frequency in URA3 (on-target) and rpoB (off-target) upon induction of native T7RNAP, AID, pmCDA1, rAPOBEC1 fusions, and pSEVA221, in three different E. coli strains: MG*-URA3 (ung*), MG*-URA3Δung, and MG*-URA3ΔungΔPT7 (lacking the PPT7 in URA3). Bacteria were plated on M9 + uracil and M9 + uracil + FOA to determine the URA3 mutant frequency for each strain as the ratio of FOA colony forming units (CFU ml⁻¹) vs. total CFU ml⁻¹ (Fig. 2d). The frequency of URA3 mutants in MG*-URA3Δung bacteria was 10⁻⁶ for the control (pSEVA221), ~10⁻⁵ for native T7RNAP, and increased to ~10⁻³ for AID-T7RNAP, to ~5 × 10⁻² for rAPOBEC1-T7RNAP, and up to ~10⁻¹ for pmCDA1-T7RNAP (Fig. 2d). Thus, all CD fusions have a clear mutagenic activity over control strain (>100-fold) in the Δung mutant, with rAPOBEC1 and pmCDA1 fusions having a higher activity than AID fusion (~50- to 100-fold, respectively). All CD fusions showed a much lower mutagenic activity in the ung+ strain (<1% that in Δung; Fig. 2d). Importantly, the frequency of URA3 mutants for all CD fusions and native T7RNAP dropped to background levels in the strain lacking the T7 promoter (MG*-URA3ΔungΔPT7; strain; Fig. 2d). Noticeable, induction of native T7RNAP increased URA3 mutation rate ~10-fold in a PPT7-dependent manner, but irrespective of UNG (Fig. 2d). Bacteria from these cultures were also plated on rifampicin (Rif)-containing plates to evaluate the specificity of the fusions. RifR colonies of E. coli are known to contain mutations in rpoB, encoding the β-subunit of the E. coli RNA polymerase. Thus, RifR was used to determine the off-target rpoB mutant frequency as the ratio of RifR CFU ml⁻¹ vs. total CFU ml⁻¹ (Fig. 2e). The frequency of spontaneous RifR mutants of the control strain (~10⁻⁷) was only mildly increased (~2 to 5-fold) by the expression of AID fusion, and ~10⁻²-fold with the more active pmCDA1 and rAPOBEC1 fusions (Fig. 2e). Hence, the mutagenic activity of CD-T7RNAP fusions in URA3 requires the presence of PPT7, is more efficient in the Δung mutant and has a strong preference for the target URA3 gene vs. off-target rpoB.

Mutagenic activity of TadA*-T7RNAP fusion. To broaden the mutagenic capacity of the system, a fusion was constructed with TadA* (Fig. 3a). TadA* deaminate adenines in DNA generating inosines that lead to A>T/G:C transitions. TadA*-T7RNAP was expressed in MG*-URA3Δung at higher levels than AID-T7RNAP, as determined by western blot (Fig. 3b), but produced only slightly higher level of GFP (Fig. 3c and Supplementary Fig. 3c). The mutagenic capacity of TadA*-T7RNAP was evaluated in different genetic backgrounds, using AID-T7RNAP and pSEVA221 as positive and negative controls, respectively (Fig. 3d). Expression of TadA*-T7RNAP generated URA3 mutants with a frequency of ~2.5 × 10⁻⁴ (~100-fold that of the control) in both ung+ and Δung strains, indicating that TadA* activity is independent of UNG (Fig. 3d). The gene nfi encodes the endonuclease V of E. coli, which eliminates inosines. When TadA*-T7RNAP was expressed in Δnfi mutants (MG*-URA3Δnfi and MG*-URA3ΔungΔnfi), the frequency of URA3 mutants increased to ~10⁻³, similar to that of AID-T7RNAP in Δung (Fig. 3d). Deletion of nfi had no effect on AID-T7RNAP (Fig. 3d). Notably,
Characterization of the mutations. We randomly picked 30 FOAR colonies (URA3 mutants) from each of the MG*-URA3Δung strains expressing native T7RNAP, AID, pmCDA1, and rAPOBEC1 fusions, and 30 additional FOAR colonies from MG*-URA3ΔungΔPT7 expressing TadA*-T7RNAP. The chromosomal Ptac-URA3-P17 region from these colonies was amplified by PCR and sequenced. As a control, identical region was sequenced from 13 FOA-sensitive (nonmutant) colonies from MG*-URA3ΔungΔPT7. The histograms **d** and **e** show the single values (black dots), the means (bars), and standard errors (lines) of at least three independent experiments (n = 3, except for the strain MG*-URA3Δung n = 6). The statistical analysis was done using two-tailed Mann-Whitney test. Exact p values (p) are indicated in the figure. A p value < 0.05 was considered significant. Source data are provided as a Source data file.

Expression of TadA*-T7RNAP did not produce any significant increase in the levels of off-target mutagenesis in **rpoB** (Fig. 3e). In addition, the mutagenic activity of TadA*-T7RNAP in URA3 requires the presence of P17, dropping to background levels in MG*-URA3ΔungΔPT7 (Fig. 3f). These data demonstrate that TadA*-T7RNAP fusion has a specific mutagenic activity for the target DNA having P17. This activity is independent of UNG and increases moderately when endonuclease V is absent.

Fig. 2 Expression and mutagenic activity of AID-T7RNAP, pmCDA1-T7RNAP, and rAPOBEC1-T7RNAP.

a Scheme of the different CDs fused to the T7RNAP by the linker (G3S). **b** Expression of the different fusions determined by western blot analysis of the cell extracts from induced cultures of the strain MG*-URA3Δung. A representative immunoblot is shown from two independent experiments with similar results. **c** Processivity of the fusions assessed by flow cytometry analysis to detect expression of GFP in the induced cultures. The gating strategy and the corresponding pseudocolor plots are shown in Supplementary Fig. 3b. **d**, **e** Mutagenic activity in **URA3** (**d**) and **rpoB** (**e**) of the different fusions using as hosts MG*-URA3, MG*-URA3Δung, and MG*-URA3ΔungΔPT7. The histograms **d** and **e** show the single values (black dots), the means (bars), and standard errors (lines) of at least three independent experiments (n = 3, except for the strain MG*-URA3Δung n = 6). The statistical analysis was done using two-tailed Mann-Whitney test. Exact p values (p) are indicated in the figure. A p value < 0.05 was considered significant. Source data are provided as a Source data file.
Fig. 3 Expression and activity of TadA*-T7RNAP.

a. Scheme of the fusion TadA*-T7RNAP with the linker (G3S)7.

b. Expression of the fusion TadA*-T7RNAP in comparison to AID-T7RNAP determined by western blot analysis of cell extracts from induced cultures. A representative immunoblot is shown from two independent experiments with similar results.

c. Processivity of the fusions assessed by flow cytometry analysis to detect expression of GFP in the induced cultures. The gating strategy and the corresponding pseudocolor plots are shown in Supplementary Fig. 3c.

d, e. Mutagenic activity of the AID- and TadA*-T7RNAP fusions in URA3 (d) and rpoB (e), using as hosts MG*-URA3, MG*-URA3Δung, MG*-URA3Δnfi, and MG*-URA3ΔungΔnfi (n = 3 independent experiments). f. URA3 mutant frequency when TadA*-T7RNAP is expressed in MG*-URA3Δung and MG*-URA3ΔungΔnfi (pSEVA221 n = 4, TadA*-T7RNAP n = 6). The histograms (d-f) show the single values (black dots), the means (bars), and standard errors (lines) of multiple independent experiments. The statistical analysis was done using two-tailed Student’s t test. Exact p values (p) are indicated in the figure. A p value < 0.05 was considered significant. Source data are provided as a Source data file.
MG*-URA3Δung (pSEVA221), showing no mutation from wild-type allele. In contrast, all FOAR colonies expressing CD-T7RNAP fusions had multiple transitions C:G > T:A in both DNA strands along the P_tac and URA3 gene, but none in P_T7 (Fig. 4a). URA3 alleles from bacteria expressing TadA*-T7RNAP contained transitions A:T > G:C in both DNA strands, except a single C:G > T:A transition (Fig. 4b). No other type mutations, deletions, or insertions, were observed in any URA3 alleles from BD-T7RNAP fusions. This was not the case in FOAR colonies expressing native T7RNAP, which contained different types of mutations, including transitions, transversions, deletions, and insertions in URA3 (Supplementary Fig. 4). Showing correlation to the mutagenic capacity of the BD-T7RNAP fusions, the highest total number of mutations was found with pmCDA1-T7RNAP (426) followed by rAPOBEC1-T7RNAP (95), AID-T7RNAP (42) and TadA*-T7RNAP (37) (Fig. 4c). The average number of mutations per clone presented the same hierarchy: pmCDA1-T7RNAP (14.2) > rAPOBEC1-T7RNAP (3.2) > AID-T7RNAP (1.4) > TadA*-T7RNAP (1.2) (Fig. 4d). For all CD-T7RNAP fusions, transitions G to A were detected more frequently than C to T in the URA3 coding strand (Fig. 4a, c), indicating a higher mutation rate of Cs in the noncoding strand of URA3, which corresponds to the non-template strand for the CD-T7RNAP fusions (Supplementary Fig. 5). This bias toward the non-template strand of T7RNAP is less pronounced for AID (62%) than for rAPOBEC1 (74%) or pmCDA1 (91%) fusions (Fig. 4c). For TadA* fusion, we also found a bias favoring T to C mutations in the coding strand of URA3 (84%), corresponding to A to G mutations in the non-template strand of T7RNAP (Fig. 4c and Supplementary Fig. 5). Therefore, DNA sequencing of URA3 mutants demonstrates that BD-T7RNAP fusions induce the expected mutations with a bias toward the non-template strand.

For deeper analysis, a 284 bp PCR fragment of the URA3 gene was amplified from an induced culture of MG*-URA3Δung expressing AID-T7RNAP without FOA selection, and was subjected to massive next-generation sequencing (NGS). The same region was subjected to NGS from a control MG*-URA3Δung strain expressing TadA*-T7RNAP fusion. The promoters P_tac and P_T7 are shown with green and red arrow heads, respectively, and delimited by dashed lines. The gene URA3 is shown with a yellow filled arrow. The indicated base changes correspond to the coding sequence of URA3.

The statistical analysis was done using two-tailed Mann-Whitney test. Exact p values (p) are indicated in the figure. A p value < 0.05 was considered significant. Source data are provided as a Source data file.

Fig. 4 Characterization of URA3 mutations found in FOAR colonies expressing BD-T7RNAP fusions.

- **a** Number of mutations per nucleotide identified in the URA3 locus from 30 FOAR colonies isolated from each MG*-URA3Δung strain expressing the indicated CD-T7RNAP fusions and b from MG*-URA3ΔungΔungfli strain expressing TadA*-T7RNAP fusion. The promoters P_tac and P_T7 are shown with green and red arrow heads, respectively, and delimited by dashed lines. The gene URA3 is shown with a yellow filled arrow. The indicated base changes correspond to the coding sequence of URA3.

- Different base substitutions found are labeled with the color codes on the right. A single G to A transition found with TadA*-T7RNAP is labeled with an asterisk.

- **Total number of mutations for each BD-T7RNAP fusion indicating the base substitutions found.**

- Different base substitutions found are labeled with the color codes on the right. A single G to A transition found with TadA*-T7RNAP is labeled with an asterisk.

- **Total number of mutations for each BD-T7RNAP fusion indicating the base substitutions found.**

- Different base substitutions found are labeled with the color codes on the right. A single G to A transition found with TadA*-T7RNAP is labeled with an asterisk.

- **Variant calling analysis of a 200 bp region of URA3 after its massive DNA sequencing (ca. 10^6 reads).** The number of reads with different variants vs. total reads are represented with circles (empty plasmid) and squares (AID-T7RNAP or TadA*-T7RNAP). The lines represent the means and the standard errors from each group. The statistical analysis was done using two-tailed Mann-Whitney test. Exact p values (p) are indicated in the figure. A p value < 0.05 was considered significant. Source data are provided as a Source data file.
sequencing results of individual URA3 mutants, and confirms that BD-T7RNAP fusions generate only the expected mutations. We also confirmed the adequacy of the RifR phenotype as reporter of the off-target activity of CD and AD fusions. The RifR phenotype is mostly caused by rpoB mutations in a region between amino acid 507 and 687 of the β-subunit of E. coli RNA polymerase (E.coli RNAP known as RIF-resistant determining region (RRDR))43. We sequenced the rpoB-RRDR segment in 30 RifR colonies from strains MG*-URA3Δung and MG*-URA3Δnfi carrying pSEVA221. Among other mutations, transitions C to T and G to A were readily found in rpoB-RRDR from RifR MG*-URA3Δung (Supplementary Fig. 8a). Similarly, RifR MG*-URA3Δnfi contained diverse transitions A to G and T to C in rpoB-RRDR (Supplementary Fig. 8b). Consequently, different bases within rpoB-RRDR that are sensitive to CD and AD mutagenesis can generate RifR mutants, validating rpoB to assess the off-target activity of BDs.

Protection of downstream regions using dCas9. The BD-T7RNAP fusions were able to transcribe the gfp gene downstream of URA3 (respective to the elongation of T7RNAP) potentially generating mutations beyond URA3. To confirm this, we inserted sacB from Bacillus subtilis in the gfp-URA3 cassette as an additional counterselection gene39. B. subtilis sacB codes for the exoenzyme levensucrase, which utilizes sucrose to produce toxic levans, which accumulates in the periplasm of E. coli killing the bacterium. A Ptac-sacB fragment was cloned in gfp-URA3 and the new sacB-gfp-URA3 cassette (Fig. 5a) was integrated replacing the chromosomal flu gene in MG*-ApryFΔungΔnfi. The resulting strain, MG*-SacB-URA3ΔungΔnfi, was sensitive to sucrose with a frequency of spontaneous mutants of ~5 × 10^-6. When AID-T7RNAP was expressed in this strain, the frequency of sacB mutants increased to ~6 × 10^-4 (Supplementary Fig. 9), whereas that of URA3 (~1.7 × 10^-3) was similar to that observed previously (Fig. 2d). This confirms that BD-T7RNAP fusions are able to mutate regions downstream of the target gene.

To delimit the mutagenic activity within the target gene, we investigated the possibility of blocking elongation of BD-T7RNAP with dCas9. dCas9 can bind a target DNA sequence using crRNAs (or gRNAs) and has been used as transcriptional repressor for the endogenous E. coli RNA polymerase40. Co-expression of two gRNAs targeting the non-template strand of a gene enhances the transcription repression of E. coli RNA polymerase by dCas941. Therefore, we designed two crRNAs (a and b) against the non-template strand of gfp (Fig. 5a, b), generating a double crRNA array (b.a). Plasmid pdCas940 was used for the constitutive expression of dCas9, the trans-activating CRISPR RNA (tracrRNA), and the designed crRNA arrays. MG*-SacB-URA3ΔungΔnfi strains carrying pdCas9b.a, or control pdCas9, were transformed with the plasmid encoding AID-T7RNAP or pSEVA221 control. After growth and aTc induction, we determined that GFP expression by AID-T7RNAP was reduced by the double crRNA.b.a to ~30% of that produced in the isogenic strain lacking crRNA (Fig. 5c). Basal levels of GFP were detected in strains carrying pSEVA221 and were considered 0. Protection of sacB from AID-T7RNAP mutagenesis was assessed by the ratio of the mutation in sacB vs. URA3 for each strain. This ratio was normalized as 1 for the strain expressing AID-T7RNAP and carrying pdCas9 without crRNAs (Fig. 5d). In concordance with the reduction of GFP expression, the mutagenesis of sacB dropped ~10-fold when the double crRNA.b.a was expressed (Fig. 5d). Then, we tested whether the blockade of AID-T7RNAP could be enhanced with a triple (b.a.c) crRNA array (Fig. 5a). Expression of dCas9 and crRNA.b.a.c repressed the levels of GFP to ~20% of those found with pdCas9 lacking crRNA, and the mutant frequency in sacB vs. URA3 decreased ~14-fold (Fig. 5c, d). Therefore, dCas9 directed with crRNAs is able to hamper the progression and mutagenesis of BD-T7RNAP fusions along the DNA, being a triple crRNA array more effective.

To evaluate whether dCas9 can be used to protect a particular region within a gene, we designed a new triple crRNA array (d.e.f) targeting URA3 (Fig. 6a). Cultures of MG*-SacB-URA3ΔungΔnfi strain expressing AID-T7RNAP and dCas9 with crRNA.d.e.f (targeting URA3), or crRNA.b.a.c (targeting gfp) as a control, were induced and the URA3 alleles from 30 FOA colonies from each culture were sequenced. As expected, mutations in FOA clones expressing crRNA.b.a.c (targeting gfp) were found distributed all along URA3, whereas mutations in FOA clones expressing crRNA.d.e.f (targeting URA3) were only found in the gene segment between the recognition sites of the crRNAs and P17 (Fig. 6b). Interestingly, albeit mutations in URA3 were not detected more distant than the hybridization site of crRNA d, we found mutations in regions between the hybridization sites of crRNAs d to e and e to f (Fig. 6b), as well as in the URA3 segment proximal to P17. Collectively, these results demonstrate that targeted dCas9 blockade with a triple crRNA array can be used to concentrate the mutagenesis activity of BD-T7RNAP fusions to a specific target gene or gene segment, reducing the mutagenesis of downstream DNA regions.

Fast directed evolution of the TEM-1 gene. To test this in vivo mutagenesis system in a directed evolution process, we chose the antibiotic resistance gene TEM-1 as proof-of-principle. This gene encodes the TEM-1 β-lactamase that confers resistance to penicillins, cephalosporins, and related β-lactams42. The evolution of this enzyme has been extensively documented due to its clinical relevance, with the description of >170 variants, some of them having increased resistance to third-generation cephalosporins, such as ceftazidime (CAZ)42. We planned to evolve TEM-1 in vivo to obtain variants that confer resistance to CAZ. To this end, the URA3 gene in the sacB-gfp-URA3 cassette was replaced by TEM-1, and the new sacB-gfp-TEM-1 cassette was inserted, replacing flu in the chromosome of MG*-ApryFΔungΔnfi (Fig. 7a). The resulting strain (MG*-SacB-TEM-1ΔungΔnfi) was transformed with plasmids encoding AID-T7RNAP and dCas9-crRNA.b.a.c (to protect downstream genes). Three independent transformants were cultured separately and subjected to two iterative cycles of growth and induction with aTc (Fig. 7b). As controls of non-induced evolution (i.e., spontaneous TEM-1 mutation), three colonies from the same strain carrying the empty vectors (pSEVA221 and pdCas9) were grown and induced in parallel. At the end of each induction cycle, serial dilutions of each culture were plated on LB agar with increasing concentrations of CAZ (0, 1, 4, and 16 μg ml^-1) to calculate the frequency of CAZ^R-mutants at each concentration, expressed as the ratio of CAZ^R CFU ml^-1 vs. total CFU ml^-1 (Fig. 7c). After one cycle, the frequency of CAZ^R-mutants in cultures expressing AID-T7RNAP and dCas9-crRNA.b.a.c was ~6.5 × 10^-5 at 1 μg ml^-1, and ~3 × 10^-7 at 4 μg ml^-1 of CAZ, with no resistant colonies detected to 16 μg ml^-1. In contrast, spontaneous CAZ^R-mutants in control cultures appeared at ~2000-fold lower frequency at 1 μg ml^-1 of CAZ, and no resistant colonies appeared at any higher concentration (Fig. 7c). Interestingly, bacterial cultures expressing AID-T7RNAP, and subjected to two cycles of growth and induction increased the frequency of CAZ^R-mutants at 1 and 4 μg ml^-1 of CAZ by ~10-fold (~5 × 10^-4 and ~2 × 10^-6, respectively) and CAZ^R colonies arose at the highest CAZ concentration (16 μg ml^-1) with a frequency of ~2 × 10^-7 (Fig. 7c). In contrast, after two cycles of growth, spontaneous CAZ^R-mutants were not detected in control cultures at 4 or 16 μg ml^-1 of CAZ, and CAZ^R clones only
appeared at low frequency (~1 × 10^{-7}) in plates containing 1 μg ml^{-1} of CAZ. These data indicate that AID-T7RNAP was producing mutations within TEM-1 at a significant rate above spontaneous mutation (>1000-fold/mutagenic cycle), with mutations being accumulated in each cycle generating variants with different levels of resistance to CAZ. To characterize the TEM-1 variants from the evolved cultures expressing AID-T7RNAP, we sequenced TEM-1 alleles from 12 CAZR colonies (four from each triplicate culture) were isolated at 1 μg ml^{-1} CAZ after cycle 1, and from 12 CAZR colonies isolated at 16 μg ml^{-1} CAZ after cycle 2. This revealed that all mutations found in the TEM-1 alleles were the expected from the CD activity of AID, being transitions G > A more frequent than C > T in the coding strand of TEM-1 (Table 1). All sequenced TEM-1 variants from 1 μg ml^{-1} CAZ had mutations in residue R164 (R164C or R164H), and only two clones contained additional mutations (A249V and G267R). In contrast, all TEM-1 variants selected at 16 μg ml^{-1} CAZ after two cycles invariable contained R164H and E104K mutations, frequently associated to additional mutations (e.g., V33I and A150T). Mutations R164H and E104K are reported to provide increased resistance to CAZ. We confirmed this determining the minimal inhibitory concentration (MIC) to CAZ of mutant R1.10 (R164H) and of mutant R2.2 (E104K and R164H) (Table 2), demonstrating that TEM-1 variants with increased resistance to CAZ were obtained in a fast and continuous manner using this in vivo mutagenesis system.
Discussion

The in vivo mutagenesis system reported in this work is highly specific for the target gene based on the tethering of BDs fused to T7RNAP, which selectively recognizes PT7. By placing PT7 in reverse orientation at the 3′-end of the target gene, expression from its endogenous 5′-end promoter can be maintained. Expression of the BD-T7RNAP fusions is inducible with aTc. An inducible expression of the mutagenic enzyme reduces potential toxicities associated to the constitutive expression of BD and/or T7RNAP, and it is valuable to control the mutagenic process.

The use of different BDs (AID, rAPOBEC1, pmCDA1, and TadA*) confers flexibility to the system due to their different mutagenesis profile and activities. For CD-T7RNAP fusions, AID was the less active and pmCDA1 was the most active. TadA*–T7RNAP broads the mutation spectrum generating transitions A:T > G:C with a mutant frequency similar in Δung strains to AID–T7RNAP in Δung strains (ca. 10⁻³). A single mutant isolated from TadA*–T7RNAP contained an unexpected C:G > T:A, which could be caused by a nonspecific activity of TadA* or by the use of a Δung background. Massive DNA sequencing of URA3 without selection detected only the expected transitions C:G > T:A for AID and A:T > G:C for TadA*. Importantly, no other type of mutations (e.g., deletions and insertions) were found among the mutants isolated after expression of the BD-T7RNAP fusions. This contrasts with the various types of URA3 mutations found after expression of native T7RNAP. Transcription by native T7RNAP increases the mutant frequency by a mechanism that is independent of BDs and UNG, but which might be related to conflicts of high transcription with other cellular machineries (e.g., replisome)⁴⁵.

Elimination of the DNA repair enzymes UNG (Δung) and endonuclease V (Δnfi) enabled to obtain higher mutant frequencies for BDs. An interesting alternative to Δung deletion for CDs is its transient expression of UGI from bacteriophage PBS2¹⁷. TadA* fusion was not affected by UNG, and its activity was increased moderately by the lack of endonuclease V. This might be due to a lower activity of endonuclease V for the removal of inosines generated by TadA*¹⁹. Lack of endonuclease V has no effect on the activity of AID fusion.

Also interesting is that the mutagenic activity of all BD-T7RNAP fusions is biased toward the non-template strand. This phenomenon is less pronounced for AID fusion, but it is found in all of them. This observation was also reported for rAPOBEC1 in MutaT7²¹. The reason of this strand preference is unclear, but it might be caused by a higher exposure of bases in the non-template strand at the transcription bubble. The template strand is less accessible due its insertion in the catalytic core of the T7RNAP and the formation of the ssDNA:RNA hybrid⁴⁶.

A key property of a targeted mutagenesis system is the specificity toward the on-target sequence, keeping as low as possible the off-target mutagenesis. The specificity of T7-DIVA system was assessed by two different approaches: monitoring mutations in
Fig. 7 TEM-1 evolution using the mutagenesis system.

a Scheme of the cassette with the TEM-1 gene in the strain MG*-SacB-TEM-1ΔungΔnfi. Thin arrows indicate the tac (Ptac) and T7 (PT7) promoters, lollipop shapes indicate terminators TO and T1. The genes sacB, gfp, and URA3 are represented with orange, green, and yellow filled arrows, respectively. Red lines mark targeting sequences of the crRNAs a, b, and c.

b Scheme of the continuous evolution process with iterative cycles of mutagenesis induction. Transformed colonies of MG*-SacB-TEM-1ΔungΔnfi with the plasmids pdCas9b.a.c and pSEVA221AID-T7RNAP were grown overnight (O/N) in LB with Cm and Km at 37 °C with shaking (250 r.p.m.). The next day, the cultures were diluted 1:100 in fresh medium and incubated under the same conditions for 2 h. Then anhydrotetracycline (aTc; 200 ng ml⁻¹) was added for induction and the cultures were incubated for 1 h. To start the second cycle of mutagenesis, the induced cultures were diluted 1:100 in new medium and grown O/N repeating the same steps as above. To monitor the mutagenic process, after every induction the cultures were washed with 1× PBS and serially diluted prior to being plated on LB agar alone and with increasing concentrations of ceftazidime (CAZ; 1, 4, and 16 µg ml⁻¹). The strain MG*-SacB-TEM-1ΔungΔnfi with the plasmids pdCas9 and pSEVA221 was used as a control of the spontaneous mutations occurring in TEM-1.

c Resistance frequency to increasing concentrations of ceftazidime (CAZ) after each cycle of the cytosine deaminase induced cultures of MG*-SacB-TEM-1ΔungΔnfi pdCas9b.a.c pSEVA221AID-T7RNAP (CD). As negative control (C−), the strain MG*-SacB-TEM-1ΔungΔnfi with the plasmids pdCas9 and pSEVA221 was used. The histogram shows the single values (color coded dots), means (bars), and standard errors (black lines) from three independent cultures for each strain (n = 3). The statistical analysis was done using a two-tailed paired t test. Exact p values (p) are indicated in the figure. A p value < 0.05 was considered significant. Source data are provided as a Source data file.
Table 1 TEM-1 mutations in ceftazidime resistant (CAZ²) clones.

Amino acid change	Transition	CAZ (µg ml⁻¹)	
		1	16
S4N	G to A	0	1
V33I	G to A	0	1
E104K	G to A	0	12
E110K	G to A	0	1
V191	G to A	0	1
A150T	G to A	0	2
R164C	C to T	4	0
R164H	G to A	8	12
P174S	C to T	0	1
A249V	C to T	1	0
V262I	G to A	0	1
G267R	G to A	1	0

*Residues numbered according to Ambler et al.14.

We have also demonstrated that T7-DIVA system is an efficient tool for the directed evolution of genes of interest, using TEM-1 as proof-of-principle. After only two iterative cycles of mutagenesis, in a continuous process, we found that mutations within TEM-1 were accumulative given rise to CAZ² variants at 1, 4, and 16 µg ml⁻¹ with elevated frequencies. Sequence analysis of the TEM-1 variants revealed the presence of different mutations that have been previously reported to provide increased levels of resistance to CAZ.2 This highlights the potential of this in vivo mutagenesis system for the molecular evolution of proteins of interest, in a simple and continuous process. Evolution of TEM-1 was made upon integration in the chromosome of E. coli. This approach can be followed with any other gene of interest, but other alternatives exist. For instance, the T7 promoter itself can be integrated downstream of genes or operons found in the genome of E. coli (or other host). The integration of multiple T7 promoters in different parts of the genome (e.g., downstream of genes involved in a metabolic pathway or in antibiotic resistance) would render in a multiplex genome editing for directed evolution of a complex cell phenotype. Alternatively, a plasmid that carries the target gene(s) and the T7 promoter would be used as shown with Mutat17.21 The use of multicopy plasmids can ease the initial steps, but selection of a particular variant among the multiple copies of the plasmid require their isolation and retransformation, increasing manipulation and difficulting a continuous evolution.

In conclusion, the T7-DIVA system hereby documented represents a simple workflow for continuous molecular evolution of proteins of interest (e.g., antibodies and enzymes), metabolic engineering of enzymatic pathways, diversification of gene libraries, and other applications (e.g., predicting evolution of antibiotic resistance genes).

Table 2 Minimal inhibitory concentration (MIC) to ceftazidime (CAZ) of parental strain and evolved mutants.

Strain	MIC CAZ (µg ml⁻¹)
MG*·SacB·TEM-1ΔungΔnfi	0.25
R1.10 (R164H)	6
R2.2 (E104K, R164H)	>256

Methods

Bacterial strains, media, and growth conditions. A full list of the bacterial strains used in this study can be found in Supplementary Table 1. For plasmid propagation and cloning the E. coli strains used were DH10B1R and BW25141 (for the dependent suicide plasmid derivatives). All the strains were grown in lysogeny broth (LB) at 37 °C and shaking at 250 r.p.m.48. For solid medium, 1.5 % (w/v) agar was added to LB. The following antibiotics were added to the medium when needed: 50 µg ml⁻¹ kanamycin (Km), 30 µg ml⁻¹ chloramphenicol (Cm), 30 µg ml⁻¹ ampicillin (Amp), and 50 µg ml⁻¹ Rif. Antibiotics were obtained from Duchefa-Biochemie. All other chemical reagents were obtained from Merck-Sigma unless indicated otherwise. For monitoring the mutagenic process, minimal medium M9 plates were used.48 This medium contains: 1 M salts (1 g l⁻¹ NH₄Cl 3 g l⁻¹ KH₂PO₄ and 6 g l⁻¹ Na₂HPO₄), 2 mM MgSO₄, 0.4 % (w/v) glucose, 0.0005 % (w/v) thiamine, and 1.6 % (w/v) agar for solidification. When required, the minimal medium was supplemented with 20 µg ml⁻¹ uracil and 250 µl ml⁻¹ FOA (Zymo Research) or 60 g l⁻¹ sucrose (counterselection with sacB).

Plasmids, primers, and cloning procedures. A list of the plasmids used in this study can be found in the Supplementary Table 2. All the primers used in this study are listed in the Supplementary Table 3. Cloning procedures were performed following standard protocols of DNA digestion with restriction enzymes and ligation.48 All DNA constructs were sequenced by the chain-termination Sanger method (Macrogen) and the sequences are deposited in GenBank (Supplementary Table 2). The plasmid pSe2AV11 (Km, Rk2-origin) was used for expression of the TEM-1 and other resistance genes.48 This medium contains: 1 M salts (1 g l⁻¹ NH₄Cl 3 g l⁻¹ KH₂PO₄ and 6 g l⁻¹ Na₂HPO₄), 2 mM MgSO₄, 0.4 % (w/v) glucose, 0.0005 % (w/v) thiamine, and 1.6 % (w/v) agar for solidification. When required, the minimal medium was supplemented with 20 µg ml⁻¹ uracil and 250 µl ml⁻¹ FOA (Zymo Research) or 60 g l⁻¹ sucrose (counterselection with sacB).

Generation of the reporter strains. The reporter strains for the mutagenesis system were derived from the reference of E. coli K-12 strain MG1655.18 The strain MG1655* with higher sensitivity to FOA was generated by an oligo-mediated allelic replacement method11 (Supplementary Methods). The oligonucleotides used

rpoB and in URA3 lacking P₇₇. We found very high on-target vs. off-target ratios for all BD-T7RNAP fusions (ca. ≥10⁸). Off-target mutagenesis increased only moderately (ca. twofold) by expression of AID and TadA* fusions, and more noticeable with more active pmCDA1 and rAPOBEC1. A different situation is caused by off-target mutations in downstream sequences (relative to P₇₇) of the target gene, due to the high processivity of the BD-T7RNAP fusions. To deal with this problem, the Mutat17 system included an array of at least four copies of T7 terminator downstream the target gene.21 However this approach does not allow to define edited DNA windows within a gene. To overcome this limitation, we have used dCas9 directed with crRNAs to block transcriptional elongation, and consequently restrict the mutagenesis of BD-T7RNAP fusions to the target sequence, even within the coding sequence of a gene. Triple crRNA array/dCas9 complexes inhibited more efficiently elongation of BD-T7RNAP fusions and protected from their mutagenic activity downstream genes. When triple crRNA were directed within the coding sequence of URA3, mutagenesis was restricted to the gene segment proximal to P₇₇, and in regions between the hybridization of sites of the crRNAs. Yet, protection was not complete and this could be improved with dCas9 variants having increased blockade activity.47

One interesting feature of the reported method is that it could be adapted for its use in different hosts since BDs, T7RNAP, and dCas9 have been expressed in different bacteria, yeast, and mammalian cells.14,15,23,24 For modulation of the DNA repair systems, the expression of UGI would avoid the need of delete ung in host cells. Elimination of nfi is not essential for TadA*-T7RNAP activity, but the modified TadA* pairs with the endogenous TadA of E. coli for activity. Therefore, in hosts lacking endogenous TadA, a heterodimeric construct fusing TadA and TadA* is required.19
The amplicons were sent to the Genomic Unit of the Madrid Scientific BaseSpace Sequence Hub version 5.28 software (Illumina, Inc.). These reads were 300 bp long to acquire ~1,000,000 reads per sample. The raw data were collected with 12 cycles in this method are listed in the Supplementary Table 6. All the successive modifications were performed using Mann–Whitney test (Figs. 2d and 4e, 1 and Supplementary Figs. 6 and 7), two-tailed Student’s t test (Figs. 3d, f and 5d) and paired t test (Fig. 7c) from at least three independent experiments. A value of p < 0.05 was considered significant.

Flow cytometry analysis. Levels of expression of gfp from induced cultures were determined by flow cytometry analysis as follows: the volume corresponding to one unit of optical density (OD) at 600 nm of the induced cultures was collected by centrifugation (3300 × g, 5 min) and resuspended in 500 μl 1× PBS. The cell suspension was diluted transferring 200 μl to a tube with 1200 μl of 1× PBS, and its fluorescence levels was determined using a Gallios FC500 flow cytometer (Beckman Coulter). Data were collected with the software CXP Cytometer version 3.2 (Beckman Coulter Inc) and analyzed with Kaluza Analysis version 2.1 (Beckman Coulter Inc). The gating strategy is shown in Supplementary Fig. 3.

Western blot analysis. To detect the expression of the fusion proteins in cell extracts of induced cultures, western blot analysis was performed. From induced cultures, 0.5 OD was collected in 60 μl of PBS and resolved in 15 μl SDS–PAGE sample buffer. The samples were boiled 10 min before loaded into 8% polyacrylamide SDS gels, and electrophoresis was done using the MiniProtean III system (Bio-Rad) during 1 h 30 min at 170 V. The gels were then transferred to a nitrocellulose membrane. The membranes were blocked with PBS 0.1% (w/v) skim milk powder, and successively incubated with monoclonal mouse anti-T7RNAP antibodies at a dilution of 1:10,000 (Novagen, Merck ref 70566-3, kit batch number D00143325) and POD-labeled goat anti-mouse antibodies at a dilution of 1:5000 (Sigma A2554). Membranes were developed by chemiluminescence using the Clarity Western ECL Substrate kit (Bio-Rad) and images were acquired using a ChemiDoc Touch system (Bio-Rad).

DNA sequencing and analysis. To identify the mutations that caused Rif resistance, the RRDR of the rpoB genes, a DNA fragment of 773 bp containing the RRDR was amplified using the pair of primers F_rpoB/R_rpoB (Supplementary Table 7), with the GoTaq Flexi DNA polymerase (Promega) by colony PCR following manufacturer’s instructions. The resulting amplicon was sequenced by the Sanger chain-termination method (Macrogen) using the same primers. From the resulting two reads per colony were mapped against the rrdr reference sequence to detect variants, using the program SeqMan Pro (DNASTAR).

To determine the DNA sequence of the URA3 alleles in the FOA resistant colonies, the same strategy as with the RRDRs was followed. In this case, 1191 bp amplicons were obtained with the pair of primers F_GFPseq/R_T0ter (Supplementary Table 7), and subsequently sequenced by the Sanger chain-termination method (Macrogen) using the same primers. The variants were deposited in Sequencing Read Archive (SRA) in the Bioproject ID PRJNA675288.

Data availability

Data that support the findings of this work can be found in the main manuscript and in the Supplementary Table 2. Sequencing data from highthroughput PCR DNA sequencing experiments and evolved mutants were assessed with the ITEST method (Liobiflem), following manufacturer’s instructions.

Statistics. Means and standard errors of experimental values were calculated using Prism 8.0 (GraphPad software Inc). Statistical analyses comparing groups in pairs were performed using Mann–Whitney test (Figs. 2d and 4e, 1, and Supplementary Figs. 6 and 7), two-tailed Student’s t test (Figs. 3d, f and 5d) and paired t test (Fig. 7c) from at least three independent experiments. A value of p < 0.05 was considered significant.

Received: 21 November 2019; Accepted: 20 November 2020; Published online: 22 December 2020

References

1. Porter, J., L. Rusli, R. A. & bloss, D. L. Directed evolution of enzymes for industrial biocatalysis. ChemBioChem 17, 197–203 (2016).
2. Davis, A. M., Plowright, A. T. & Valeur, E. Directing evolution: the next revolution in drug discovery? Nat. Rev. Drug Discov. 16, 681 (2017).
3. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–390 (2015).
4. Simon, A. J., O’Delsnitz, S. & Ellington, A. D. Synthetic evolution. Nat. Biotechnol. 37, 730–743 (2019).
5. Jijakli, K. et al. The in vitro selection world. Methods 106, 3–13 (2016).
6. Foster, P. L. In vivo mutagenesis. Methods Enzymol. 204, 114–125 (1991).
7. Muteeb, G. & Sen, R. Random mutagenesis using a mutator strain. Methods Mol. Biol. 634, 411–419 (2010).
8. Irving, R. A., Kortt, A. A. & Hudson, P. J. Affinity maturation of recombinant antibodies using E. coli mutator cells. Immunochemistry 2, 127–143 (1996).
9. Camps, M., Naukārinen, J., Johnson, B. P. & Loeb, L. A. Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc. Natl Acad. Sci. USA 100, 9727–9732 (2003).
10. Wutz, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).
11. Nyerges, A. et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc. Natl Acad. Sci. USA 113, 2502–2507 (2016).
12. Crook, N. et al. In vivo continuous evolution of genes and pathways in yeast. Nat. Commun. 7, 13051 (2016).
13. Ravikumar, A., Azrumanayan, G. A., Obadi, M. K. A., Javanpour, A. A. & Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175, 1946–1957.e1913 (2018).
14. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. *Nature* **533**, 420–424 (2016).

15. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. *Science* **353**, aaf8729 (2016).

16. Lada, A. G. et al. Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. *Biochemistry* **76**, 131–146 (2018).

17. Wang, Z. G., Smith, D. G. & Mosbaugh, D. W. Overproduction and characterization of the uracil-DNA glycosylase inhibitor of bacterial phage PBS2. *Gene* **99**, 31–37 (1991).

18. Krokan, H. E. & Bjoras, M. Base excision repair. *Cold Spring Harb. Perspect. Biol.* **5**, a012583 (2013).

19. Gaudelli, N. M. et al. Programmable base editing of AT to GC in genomic DNA without DNA cleavage. *Nature* **551**, 464 (2017).

20. Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. *Nature* **560**, 248–252 (2018).

21. Moore, C. L., Papa, L. J. & Eguchi, M. D. A processesive protein chimera introduces mutations across defined dna regions in vivo. *J. Am. Chem. Soc.* **140**, 11560–11564 (2018).

22. Chen, H. et al. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. *Nat. Biotechnol.* **38**, 165–168 (2020).

23. Dower, K. & Rosbash, M. T7 RNA polymerase-directed transcripts are processed in yeast and link 3′ end formation to mRNA nuclear export. *RNA* **8**, 684–697 (2002).

24. Lieber, A., Sandig, V. & Strauss, M. A mutant T7 phage promoter is specifically transcribed by T7-RNA polymerase in mammalian cells. *Eur. J. Biochem.* **217**, 387–394 (1993).

25. Jones, M. E. O. Orotidylate decarboxylase of yeast and man. *Biochem. J.* **104**, 67–75 (1967).

26. Ruano-Gallego, D., Álvarez, B. & Fernández, L. A. Engineering the controlled assembly of filamentous injectisomes in *E. coli* K-12 for protein translocation into mammalian cells. *ACS Synth. Biol.* **4**, 1030–1041 (2015).

27. Li, H. et al. The Sequence Alignment/Map format and SAMtools. *Genome Res.* **20**, 252–258 (2010).

28. Bushnell, B., Rood, J. & Singer, E. BBRmerge - accurate paired shotgun read merging via overlap. *PLoS ONE* **12**, e0180566 (2017).

29. Liao, C. et al. Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. *Nat. Commun.* **62**, 6294 (2018).

30. Herring, C. D., Glasner, J. D. & Blattner, F. R. Gene replacement without selection: regulated suppression of amber mutations in *Escherichia coli*. *Gene* **311**, 153–163 (2003).

31. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. *Science* **286**, 276–280 (2000).

32. Conticello, S. G. The AID/APOBEC family of nucleic acid mutators. *Annu. Rev. Biochem.* **76**, 248–269 (2007).

33. Ragozin, L. B. et al. Evolution and diversification of lampry antigen receptors: evidence for involvement of an AID-APOBEC family cytokine downregulation. *Nat. Immunol.* **8**, 647–656 (2007).

34. Jensen, K. F. The *Escherichia coli* K-12 “wild types” W3110 and MG1655 have an rpf frameshift mutation that leads to pyrimidine starvation due to low pyrF expression levels. *J. Bacteriol.* **175**, 3401–3407 (1993).

35. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. *Nature* **418**, 99–103 (2002).

36. Bertram, R. & Hillen, W. The application of Tet repressor in prokaryotic gene regulation and expression. *Microb. Biotechnol.* **1**, 2–16 (2008).

37. Silva-Rocha, R. et al. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phages. *Nucleic Acids Res.* **41**, D666–D675 (2013).

38. Severinov, K., Soshiko, M., Goldfarb, A. & Nikiforov, V. Růžička et al. in *Prokaryotic RNA polymerase*. *Science* **299**, 1330–1335 (2003).

39. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration detection in cancer by exome sequencing. *Genome Res.* **22**, 568–576 (2012).

40. Ambler, R. P. et al. A standard numbering scheme for the class A beta-lactamases. *Biochem. J.* **276**, 269–270 (1991).
