Enrofloxacin Promotes Plasmid-Mediated Conjugation Transfer of Fluoroquinolone-Resistance Gene qnrS

Yue Zhao1,2†, Zhengzheng Cao1,2†, Luqing Cui1,2, Tianyu Hu1,2, Kaixuan Guo1,2, Fan Zhang1,2, Xiangru Wang1, Zhong Peng1, Quan Liu1,2 and Menghong Dai1,2*†

1 The Co-operative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China, 2 Ministry of Agriculture (MOA) Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China

*Correspondence:
Menghong Dai
daimenghong@mail.hzau.edu.cn

††Present address:
Menghong Dai,
The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China

†These authors have contributed equally to this work and share first authorship

Specialty section:
This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

Received: 10 September 2021
Accepted: 17 December 2021
Published: 16 February 2022

Citation:
Zhao Y, Cao Z, Cui L, Hu T, Guo K, Zhang F, Wang X, Peng Z, Liu Q and Dai M (2022) Enrofloxacin Promotes Plasmid-Mediated Conjugation Transfer of Fluoroquinolone-Resistance Gene qnrS. Front. Microbiol. 12:773664. doi: 10.3389/fmicb.2021.773664

This study aimed to determine the effect of enrofloxacin (ENR) on the transfer of the plasmid-mediated quinolone resistance (PMQR) gene qnrS from opportunistic pathogen Escherichia coli (E2) to Salmonella Enteritidis (SE211) and to analyze the resistance characteristics of SE211-qnrS isolates. The plasmid carrying qnrS gene of E2 was sequenced by Oxford Nanopore technology. The plasmid carrying qnrS gene belonged to incompatibility group IncY.

In vitro, the transfer experiment of IncY plasmid was performed by the liquid medium conjugation method. The conjugation transfer frequency of the IncY plasmid was 0.008 ± 0.0006 in the absence of ENR, 0.012 ± 0.003 in 1/32 MIC ENR, 0.01 ± 0.008 in 1/8 MIC ENR, and 0.03 ± 0.015 (Mean ± SD) in 1/2 MIC ENR, respectively. After inoculation of E. coli E2 and SE211, chickens were treated with different doses of ENR (3.03, 10, and 50 mg/kg b.w.) for 7 days consecutively. To screen the SE211-qnrS strains from intestinal tract of chickens, the resistance genes and susceptibility of isolates were identified. The amount of E. coli E2 and the copy number of qnrS gene in the chicken intestinal tract were determined by colony counting and qPCR, respectively. In vivo, more SE211-qnrS strains were isolated from the treated group compared with the untreated group. SE211-qnrS strains not only obtained IncY plasmid, but also showed similar resistance phenotype as E2. In conclusion, ENR treatment can promote the spread of a IncY-resistance plasmid carrying the qnrS fluoroquinolone-resistance gene in Escherichia coli and the development of drug-resistant bacteria.

Keywords: qnrS, Escherichia coli E2, Salmonella enterica serovar enteritidis SE211, enrofloxacin, resistance transfer
INTRODUCTION

Escherichia coli (abbreviated as *E. coli*) is a common opportunistic pathogen in the gastrointestinal tract. An estimated 44 million *ETEC*-related diarrheal diseases occur annually, resulting in 113,000 deaths in 2015 (Roussel et al., 2020), and the mortality is 3–5% in *E. coli* infection. Non-typhoidal *Salmonella*, one of the leading causes of bacterial diarrhea worldwide, are estimated to cause approximately 153 million cases of gastroenteritis and 57,000 deaths globally each year. Fluoroquinolones (FQs) are commonly used in the treatment of colibacillosis and salmonellosis and can induce resistance of intestinal bacteria (Li J. et al., 2019). *QnrS* gene, a plasmid-mediated FQ-resistance gene, was the most prevalent quinolone gene in *E. coli* strains isolated from poultry feces (Gosling et al., 2012). Antibiotic resistance genes (ARGs) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens (Lerminiaux and Cameron, 2019). In the case of antibiotic abuse, whether opportunistic pathogens transfer ARGs to pathogens has attracted widespread attention. *E. coli* was used as a vector to transmit the *qnrS* gene, which could make pathogenic bacteria obtain drug-resistance genes and reach the level of clinical drug resistance (Gosling et al., 2012). Furthermore, the plasmid carrying *qnrS* gene in *E. coli* also contained other ARGs (Veldman et al., 2014; Slettemeas et al., 2019; Koyama et al., 2020), which could cotransfer with the *qnrS* gene. *Salmonella Enteritidis* 211 (abbreviated as SE211) is highly pathogenic (Cui et al., 2020, 2021), and it is sensitive to enrofloxacin. *E. coli* E2 carrying *qnrS* gene is a multidrug resistant (MDR) strain (Li et al., 2017). Previous research results show that the *qnrS* gene promotes the transfer efficiency of ARGs from *E. coli* E2 to *E. coli* strain EC600 in vitro, suggesting the intraspecies transfer capacity of resistance genes (opportunistic pathogen *E. coli* E2 to model recipient *E. coli* EC600). However, the interspecies transfer (opportunistic pathogen *E. coli* to pathogenic *Salmonella*) capacity of the *qnrS*-carrying *E. coli* under the antibiotic selection pressure in broiler chicken was unexplored. ENR can favor the broiler gastrointestinal (GI) tract acting as a niche for selection of MDR commensal coliforms (Li et al., 2017). Furthermore, the intestinal tract of chicken provides a habitat for different bacteria. The multifactorial and complex relationships of the microbiota ecosystem of the gut contribute to the spread of these bacteria between animals and humans (Tewari et al., 2019). Therefore, we analyzed the effect of enrofloxacin on the transfer of *qnrS* gene from *E. coli* E2 to SE211 both in vitro and in vivo and the resistance characteristic of SE211 carrying *qnrS* gene (SE211-*qnrS*). The transfer of *qnrS* gene from *E. coli* E2 to SE211 in the absence of ENR and in the presence of subminimal inhibitory concentration (sub-MIC) of ENR was performed by the liquid medium conjugation method. The chickens were gavaged with a bacteria suspension of *E. coli* E2 and SE211 before ENR administration. SE211-*qnrS* isolates were screened on plates supplemented with ENR. The colonization levels of *E. coli* E2 and SE211-*qnrS*, copy number of *qnrS*, were determined by traditional culture methods and molecular biology identification techniques.

MATERIALS AND METHODS

Ethics

The study in vivo was carried out in accordance with the guidelines established by the China Regulations for the Administration of Affairs Concerning Experimental Animals (1988) and Regulations for the Administration of Affairs Concerning Experimental Animals in Hubei province (2005) (Project No.2017YFC1600100 and Animal Welfare Assurance No. HZAU-2020-0005). All work was made to treat the experimental animals ethically and to minimize suffering in this study.

Experimental Strains and Reagents

Donor and Recipient Bacteria

E. coli E2 containing the *qnrS* gene was used as a donor strain (MIC\(_{\text{ENR}}\) = 128 mg/L). *Salmonella* SE211 was used as a recipient strain (MIC\(_{\text{ENR}}\) = 0.25 mg/L). They were preserved by the Cooperative Innovation Center for Sustainable Pig Production (HZAU), Huazhong Agricultural University.

Reagents

The standards of enrofloxacin, chloramphenicol, ampicillin, trimethoprim, and sulfamethoxazole were purchased from Dr. Ehrenstorfer (Germany). Ciprofloxacin standard was obtained from MedChemExpress (New Jersey, United States). Tetracycline standard was from China Institute of Veterinary Drug Control (Beijing, China), and 2 × EasyTaq PCR SuperMix and Phanta super-fidelity DNA Polymerase were purchased from Vazyme (Nanjing, China). The pUCm-T vector, IPTG, and X-Gal were from Beyotime Biotechnology (Nantong, China). The primers of this study were all synthesized by GenScript (Nanjing, China).

Plasmid Sequencing and Analysis

E. coli E2 was grown in LB broth, and the culture was centrifuged and quickly frozen in liquid nitrogen. Relying on Wuhan Bena Technology Service Limited Company, the genomic DNA was extracted by sodium dodecyl sulfate (SDS) and purified with a 13323 kit. The plasmid sequencing was performed by the Oxford Nanopore Technologies DNA sequencing platform. Annotation of plasmid type and resistance genes were carried out on the website.\(^3\) According to the plasmid sequencing result, NCBI was used to design the primers for plasmid replicon and resistance genes. Comparison of IncY plasmids was created by BRIG tools.\(^4\) The comparison of IncY plasmids was performed in the following order (inner to outer circles): pTET-GZE065 (GenBank accession no. CP048027), pTetA_020022 (CP032890), pE2 (CP086663).

\(^1\)http://www.who.int/news-room/fact-sheets/detail/e-coli

\(^2\)https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/salmonellosis-nontyphoidal

\(^3\)http://www.genomicepidemiology.org/index.html

\(^4\)https://sourceforge.net/projects/brig/
Conjugation Transfer and Construction of Animal Model
Transfer of qnrS in vitro

The conjugation experiment was conducted using the liquid mating procedure according to previous report (Lambrecht et al., 2018). E. coli E2 and SE211 with 4:1 volume ratio were cocultivated for 4 h in LB broth supplemented with 0, 1/2 MICENR (0.0125 mg/L), 1/8 MICENR (0.003 mg/L), and 1/32 MICENR (0.0007 mg/L). The coculture was diluted 10⁴ times by LB broth and spread on the chromogenic Salmonella agar (second generation) (Hopebio, Qingdao, China). The plates were supplemented with 0.25 mg/L of ENR to screen the SE211-qnrS strains. The conjugation transfer efficiency = \(\frac{\text{Number of transconjugants}}{\text{Number of recipients}} \).

Chickens and Housing

The animal trial was performed in the animal room at Ke Qian of HuaZhong Agricultural University. Twenty specific-pathogen-free (SPF) male chickens (1-day-old) were purchased from Beijing Boehringer Ingelheim Vital Biotechnology Limited Company and kept in four individual PQ3 type stainless steel poultry isolators (Suzhou Suhang Technology Equipment Co., Ltd., China), which can prevent pollution from external environmental factors. They were fed with sterile water and SPF feed (Beijing Ke Ao Xie Li Feed Limited Company, China).

Model Construction and Enrofloxacin Treatment

On day 7, all chickens were inoculated with 0.5 mL of the donor strain (~10⁹ CFU/mL). On day 10, all chickens were inoculated with 0.5 mL of the recipient strain (~10⁹ CFU/mL). The chickens were gavaged with bacterial suspension. After successful colonization of the intestine with the donor and recipient bacteria on day 12, the 20 chickens were equally divided into four groups. Then, they were treated with different dosages of ENR (10% enrofloxacin oral solution, Bayer, Germany). The first group (group 3.03) was given a prophylactic dose (3.03 mg/kg b.w.) (Li et al., 2017). The second group (group 10) was given the ENR (10 mg/kg b.w.) as a clinical recommended dose. The third group (group 50) was given a high dose (50 mg/kg b.w.), which could effectively inhibit pathogenic bacteria. The fourth group did not receive treatment and served as a non-treated control group (group NTC). The different dosages of ENR were given for 7 days consecutively (Figure 1).

Sample Collection and Strain Isolation
Collection of Fecal and Cloacal Samples

Prior to the inoculation with E. coli E2 and SE211, cloacal swabs were taken from each chicken, then cultivated on chromogenic Salmonella agar (second generation) plates and in LB broth (Hopebio, Qingdao, China). qnrS and repA genes were identified by PCR. None of the chickens was found to be positive for Salmonella, resistance gene qnrS, and IncY plasmid. No contamination of Salmonella, IncY plasmid, and qnrS gene was observed in the drinking water and SPF feed. Cloacal swabs and fecal samples were collected on day 12 (1 day before ENR treatment); days 13–19 (2, 4, 6, 8 days of the treatment of ENR); and days 21, 23, 25, 27, 33, and 40 (1 and 2 weeks after stopping ENR treatment), respectively (Figure 1).

Bacterial Isolation

Two swabs were taken from each chicken. One swab was emulsified in 2 mL of selenite cystine broth (SC) (Hopebio, Qingdao, China) and then further inoculated on chromogenic Salmonella agar (second generation) plates supplemented with 0.25 mg/L of ENR. Salmonella represented a typical purple single colony on the chromogenic Salmonella agar (second generation). The colonies were randomly screened for further amplification of qnrS and repA genes to identify SE211-qnrS strains. In the meantime, all the Salmonella and putative SE211-qnrS isolates were stored at ~20°C. Another swab was weighed, which was emulsified in 1 mL of sterile 0.9% NaCl and then further diluted 10⁵ times. An aliquot (50 μL) of the appropriate dilution was spread onto eosin-methylene blue agar (Hopebio, Qingdao, China) plates supplemented with ENR (32 mg/L). These plates were incubated at 37°C overnight to detect the colonization level of E. coli E2.

Quantitation PCR

Standard Curve

Snapgene software (Version 3.1.1) was used to design primers (5′-3′) for amplification of the full length (657 bp) of qnrS gene (F-5′-ATGGAAACCTACAATCATACATCGG-3′ and R-5′-TTAGTTCAGGATAAACAACAATACCC-3′). PCR product of qnrS gene was obtained by recycling from 1% agarose gels. Then, the recombinant DNA of pUCm-T-qnrS was obtained by ligation and transformation (DH5α). The plasmid pUCm-T-qnrS was extracted with E.Z.N.A.® Plasmid Mini Kit II (Wuhan Tianyuan Huida Biotechnology Limited Company, China). The copy number of qnrS gene was calculated by the equation: Copy number (copies/µL) = 6.02 × 10⁻¹³ × cDNA (g/mL)/MW, molecular weight (MW) = (plasmid vector length + insertion fragment length) × 660 dalton/bp. Then, pUCm-T-qnrS of 1.17 × 10⁸, 1.17 × 10⁷, 1.17 × 10⁶, 1.17 × 10⁵, and 1.17 × 10⁴ copies were used as the standards to determine the corresponding CT values. CT = –KlgC₀+b was used as the standard curve formula, and C₀ represented the copy number of qnrS gene.

DNA Isolation

Total DNA was extracted from 210 mg of fecal samples collected from chickens using by commercial extraction kits (Rapid extraction kit for fecal genomic DNA, Aidlab, Beijing, China) according to the manufacturer’s instruction and our modification. We increased the number of samples through the AC adsorption column and the proteinase K.

Analysis of the Quantities of the qnrS Gene

Quantitative PCR (qPCR) was performed by SYBR Green (Vazyme, Nanjing, China) detection in triplicate using a QuantStudio 3 real-time PCR detection system (Thermo Fisher Scientific, Germany) by the following procedure: 1 cycle at 95°C for 30 s, 40 cycles at 95°C for 10 s, 57°C for 10 s, 72°C for 30 s. The specificity of the PCR products was confirmed by melting curve. The copy number was calculated by equation of standard curve.
Verification of SE211-qnrS
All of the isolates were confirmed to be SE211 strains and then tested the IncY plasmid by the PCR method using the primer pairs (5′-3′) for qnrS (F-5′-CATAACATCGGCCACCCAAAC-3′ and R-5′-CAGGATAACAAACACACGGT-3′), repA (F-5′-AATTCTAAACACTGTGCAGCTG-3′ and R-5′-GCGAGAATGGACGATTACAAAACTTT-3′), and qnrS (F-5′-TTACGCAGCAGG-3′ and R-5′-GCGAGAATGGACGATTACAAAACTTT-3′). All of the SE211-qnrS strains were tested for the resistance genes located in the IncY plasmid by PCR method using the primers (5′-3′) for blrTEM–135 (F-5′-TTGATCTGGGAACCGGGAG-3′) and tet(A) (F-5′-CATTTCGCTTTGCCGATTTG-3′), repA (F-5′-CATTTCCGGTTGCCGATTTG-3′ and R-5′-TCATTCCGAGCATGAGTGGC-3′), and dfrA-14 (F-5′-CAACGATGTTACGCAGCAGG-3′ and R-5′-CAATCGCGGAAAAGGCGTAG-3′).

Susceptibility Tests
MICs of four antibiotics (enrofloxacin, ampicillin, chloramphenicol, tetracycline) for all SE211-qnrS strains were determined by the broth microdilution method, and their antibiotic resistance level was interpreted by the Clinical and Laboratory Standards Institute guidelines (CLSI) (CLSI, 2020). In particular, the resistant breakpoint of ampicillin, chloramphenicol, and tetracycline for Salmonella strains was interpreted by the CLSI criteria (ampicillin ≥ 32 mg/L, chloramphenicol ≥ 32 mg/L, tetracycline ≥ 16 mg/L), whereas no resistant breakpoint of ENR was interpreted. Ciprofloxacin was interpreted based on the CLSI breakpoint (R ≥ 1 mg/L). E. coli ATCC 25,922 served as a quality control strain.

Stability of Plasmid
In this study, the plasmid stability experiment was different from the other report (Wein et al., 2019), which was evaluated by serial passages. In this study, we aimed to obtain colonies of SE211-qnrS from the glycerol bacteria. Method 1: The SE211-qnrS glycerol bacteria were cultured in LB broth supplemented with ENR (0.25 mg/L) at 37°C for 12–16 h, and then 20 µL culture was spread on chromogenic Salmonella agar (second generation) plates supplemented with ENR (1 mg/L) and incubated at 37°C for 18–24 h. Then, colonies were randomly selected on the resistant plates as a template for PCR identification. Method 2: The glycerol bacteria of SE211-qnrS were cultured in LB broth supplemented with ENR (0.25 mg/L) and incubated at −20°C for 48 h. Cells of SE211-qnrS from the glycerol stock were supplemented with ENR (0.25 mg/L) and stored at −20°C for 48 h. The cells were cultured in LB broth supplemented with ENR (0.25 mg/L) at 37°C for 12 h, and 50 µL of the culture was spread on LB agar plates supplemented with (0.25 mg/L) and incubated again at 37°C for 12 h. Cells were harvested from these plates and resuspended in LB broth supplemented with (0.25 mg/L) and used as a template for PCR. QnrS and repA genes were amplified from resuscitative and eluotropic bacteria solutions to identify the SE211-qnrS strains.

Statistical Analysis
Using Graphpad Prism 7.0 statistical software, the value was expressed by mean ± SD, and the differences among different time points were analyzed by Student’s t-test. *P ≤ 0.05 was set as the significance level, and **P ≤ 0.01 was set as the extremely significance difference.

RESULTS
Genetic Characteristics of IncY Plasmids
The plasmid (pE2) harbored in E. coli E2 had a size of 94, 190 bp with an average G + C content of 49.59%. The replicon gene repA showed 100% identity with the replicon of IncY plasmids in the PlasmidFinder database. The plasmid distribution system parA and virB genes were associated with the self-transmitting of IncY plasmids. An oriT sequence was found between the positions 89,095 and 89,379 by oriTfinder. Multiple mobile elements were distributed on pE2, such as insertion sequences (IS) IS421, IS1, ISKpn19, IS26, IS5, IS91; integron functional element IntI1; and transposon Tn3. Additional resistance genes were found on the plasmid, such as tet(A), dfrA-14, blrTEM–135, and floR. The sequence of plasmid pE2 was highly similar to that of pTET-GZEC065 and pTetoA_020022 (85% query coverage and 100% sequence identity). These plasmids all contained the floR and tet(A) resistance genes, including insertion elements (Figure 2).
The Effect of Subminimal Inhibitory Concentration of Enrofloxacin on the Transfer Frequency of qnrS Gene in vitro

No significant changes in the transfer frequency of qnrS gene from resistant *E. coli* E2 to susceptible SE211 was observed under 0, 1/2 MIC_{ENR} (0.125 mg/L), 1/8 MIC_{ENR} (0.03 mg/L), and 1/32 MIC_{ENR} (0.007 mg/L) conditions. However, the transfer frequency increased with increasing concentration of ENR (Table 1).

The Effect of Enrofloxacin on the Persistence and the Transfer of qnrS Gene in vivo

Prior to inoculation, cloacal swabs of the chickens showed no *E. coli* carrying qnrS gene and *Salmonella* as judged by the EMB agar plates supplemented with ENR (32 mg/L) and the chromogenic *Salmonella* agar (second generation) plates. Before ENR treatment, *E. coli* E2 and SE211 strains had colonized the GI tracts of chickens. *E. coli* E2 reached levels of 10^5~10^7 CFU per g of feces (Figure 3). SE211 reached levels of 10^3~10^5 CFU per mL of feces. The chickens infected with the SE211 strain showed a somnolent state and cold sensitivity and also passed out green and white loose feces. The *E. coli* E2 strain was still detected in the ENR treatment period and within 3 weeks after termination of ENR treatment. In the NTC group, however, *E. coli* E2 was not detected on day 21 after termination of ENR treatment (Figure 3). This result suggests that the resistant *E. coli* E2 strain could persist in the intestinal tract of chickens under the selection pressure of ENR. In this study, although *E. coli* E2 was isolated from the GI tracts of chickens (Li J. et al., 2019), it was easily excreted from the chicken intestine without the selective pressure of antibiotics. Then, the copy number of the qnrS gene was determined to evaluate the prevalence of the
resistance gene in the chicken intestinal tract. The standard curve is $C_T = -3.237 \lg C_0 + 37.172$, $R^2 = 0.998$, Efficiency = 103.693\%.

This standard curve is credible. In the NTC group, the copy number of $qnrS$ gene was higher than the initial detection level on days 1 (1 day after ENR treatment), 3, 7, S.4 (4 days after termination of ENR treatment), S.6, S.14, and lower than the initial detection level on days 5, S.2, S.8, S.21, indicating that the $qnrS$ gene could persist in feces (Figure 4). In the prophylactic dose group, the copy number of the $qnrS$ gene in the intestinal tracts of chickens showed a downward trend within 3 days of ENR treatment. From days 3 to S.4, the copy number of $qnrS$ gene tended to a stable state. From days S.4 to S.21, the copy number of $qnrS$ gene increased slightly, but it was still lower than the level before ENR treatment.

In the clinically recommended dose group, the copy number of $qnrS$ gene was lower than that time point before ENR treatment except on days 7 and S.2. In the high-dose group, the copy number of $qnrS$ gene was higher than that time point before ENR treatment from the duration of ENR treatment to day S.4. Within 5 days of ENR treatment, the prophylactic and therapeutic doses of ENR reduced the copy number of $qnrS$ resistance gene in chicken intestinal microflora.

The high dose of ENR increased the copy number of the $qnrS$ gene. Similarly, in the clinically recommended dose group, the copy number of the $qnrS$ gene had an increasing trend during 5–7 days of ENR treatment. Therefore, high-dose (50 mg/kg b.w.) and long-term clinically recommended dose (> 5 days) ENR treatment increases the risk of $qnrS$ gene transmission.

Sensitivity of SE211-$qnrS$ to Four Antibiotics

The resistance phenotypes of SE211-$qnrS$ strains were similar to that of the donor strain E. coli E2, which exhibited the MDR phenotype as E. coli E2 (Table 3). 9 SE211-$qnrS$ strains also obtained the bla_{TEM-35}, dfRA-14, $floR$, and $tet(A)$ genes located on the IncY plasmid.

TABLE 1 | Transfer frequency of $qnrS$ gene under sub-MIC of ENR.

Concentration of ENR	Transfer frequency
0	0.008 ± 0.0006
1/32 MIC$_{ENR}$	0.012 ± 0.003
1/8 MIC$_{ENR}$	0.01 ± 0.008
1/2 MIC$_{ENR}$	0.03 ± 0.015

Three replicates in each group, the transfer frequency was analyzed by Student’s t-test.

TABLE 2 | The isolates of putative SE211-$qnrS$ obtained.

Sampling day	Group [n/(Total)]
NTC	3.03 mg/kg b. w.
	10 mg/kg b. w.
	50 mg/kg b. w.
1	15
2	15
3	15
S.2	15
S.21	15

S. presents discontinue medication; n, number of SE211-$qnrS$ strains; Total, total number of Salmonella isolates; –, no Salmonella isolates; NTC, presents non-treated control group.
Instability of Plasmid in Salmonella

The SE211-qnrS single colony was not recovered from the glycerol bacteria of 26 SE211-qnrS (17 in vitro and 9 in vivo). Although we identified two SE211-qnrS strains with positive repA and dfrA-14 genes in the screening process, they were still sensitive to trimethoprim/sulfamethoxazole when they were tested for the sensitivity to trimethoprim/sulfamethoxazole by glycerol bacteria resuscitation again. It suggested that the two strains also lost the IncY plasmid.

DISCUSSION

Subinhibitory Concentration of Enrofloxacin Promotes the Transfer of qnrS Gene

PMQR genes can be transmitted among bacteria through horizontal gene transfer (HGT). In this study, transfer of qnrS gene from E. coli E2 to SE211 was observed both in vitro and in vivo. Under the laboratory condition, the transfer frequency slightly increased with the increasing concentration of ENR, which might be correlated with the upregulation of conjugation-associated gene expression (Shun-Mei et al., 2018). In this experimental model of intestinal colonization in chickens with MDR E. coli E2 and sensitive SE211strains, more SE211-qnrS strains were isolated from the ENR-treated group than that from the non-treated control group. This suggests that the resistance gene qnrS can be easily transferred to Salmonella strains in vivo under selective pressure of antibiotics. However, one SE211-qnrS strain was also obtained from the NTC group. This indicates that transfer of qnrS gene in the intestinal tract of chicken might occur among different bacteria under natural conditions (Gosling et al., 2012), and this kind of horizontal transfer behavior was independent with antibiotic pressure (Le Devendec et al., 2011).

Enrofloxacin Accelerates the Emergence of Resistant Bacteria

The abuse of antibiotics in poultry and the residues of antibiotics in animals and the environment play a considerable role in the development of resistance among zoonotic food-borne microorganisms (Racewicz et al., 2020). The half-life of ENR is 59.1 days/115.0 days, 88.9 days, and 190.8 days in the dark/light, aerobic, and anaerobic conditions, respectively (Slana and Sollner-Dolenc, 2016). Thus, ENR can exist in chicken feces for a long time. The use of FQs can lead to the increase of resistant strains (Marshall and Levy, 2011). The horizontal transfer of resistance plasmids was the main reason for increasing the resistance level. The treatment of ENR promotes the transfer of the qnrS gene to the SE211strain in the intestinal environment of chickens. The isolates of SE211-qnrS from the ENR treatment groups were more than that from the NTC group, which confirms the hypothesis that ENR promotes qnrS gene transfer. In addition, antibiotics can promote the transfer of resistance genes in chickens (Chen et al., 2016). Similarly, horizontal transfer of plasmid-encoded resistance determinants is reported in the animal intestinal tract under both the presence and absence of antibiotic selective pressure, and the usage of florfenicol and ENR can facilitate the transmission of resistance gene oqxAB (Chen et al., 2016). Trimethoprim significantly increased both the HGT and vertical gene transfer frequencies (Li B. et al., 2019). Furthermore, the persistence of antibiotics may lead to the maintenance of resistant bacteria and resistance genes. The colonization results of E. coli E2 indicates that ENR can maintain the persistence of E. coli E2 carrying qnrS gene. It also indicates that treatment with ENR can increase the number of resistant E. coli in chicken gut (Roth et al., 2017). Therefore, it is necessary to continuously strengthen the monitoring of resistance genes in clinical strains and take effective measures to eliminate resistance genes and plasmids so as to prevent the spread of resistance genes from aggravating clinical drug resistance.

QnrS Cotransferred With Other Resistance Genes

The other resistance genes coexisting with the qnrS gene on the IncY plasmid were generally β-lactam-resistance genes. In the reported IncY plasmid carrying qnrS gene, it usually came from E. coli in the food chain (Roschanski et al., 2017) and healthy people (Mshana et al., 2016). Similar to this study, the IncY plasmid carried MDR genes to mediate MDR. IncY plasmid as a repository of MDR genes, E. coli can pose a
threat to human health through the food chain. Here, we found that the qnrS gene was cotransferred with the other resistance genes (blaTEM-135, tetA, floR, and dfrA-14) on the IncY plasmid. In E. coli, cotransfer of the qnrS gene with β-lactam-resistance genes is reported (Wu et al., 2008; Jiang et al., 2012, 2014). pTET-GZEC065, pTetA_020022, pE2 plasmids had high similarities, carrying different resistance genes, which might be Tn3-family members that confer resistance to antibiotics (Nicolas et al., 2015). Recently, there are many identified Tn3 family members with different combinations of antibiotic-resistance determinants (Stokes and Gillings, 2011; Nordmann et al., 2012). Antimicrobial susceptibility tests show that the resistance spectrum of the SE211-qnrS strain was similar to that of donor strain E. coli E2 (Table 3). The resistance phenotypes were consistent with the resistance genotypes. In addition, we also obtained a drug-resistant Salmonella strain (MIC_{ENR} = 4 mg/L) from the intestinal tract of chicken without the IncY plasmid and qnrS gene. We speculate that the resistance mechanism may be attributed to mutations in the parE gene. The emergence and increase of MDR bacteria pose a great threat to public health.

IncY Plasmid Instability in Conjugant

The level of conjugated plasmid-mediated drug resistance in Salmonella was found to be slightly higher than that in E. coli (Chen et al., 2018). Our research also confirms this finding. In this study, MIC_{ENR} of SE211-qnrS strains were 64 or 128 mg/L, whereas MIC_{ENR} of EC600-qnrS strain was 8 mg/L (Li et al., 2019). The plasmids generally impose a fitness cost on their hosts (Carroll and Wong, 2018). The replication of plasmids in the host bacteria caused metabolic load, and the expression of plasmid-encoded genes was one of the important reasons resulting in the metabolic load of plasmids in the host bacteria (Silva et al., 2012). The expression of plasmid-encoded resistance genes led to the stress response of the host bacteria, resulting in the loss of plasmids (Rozkov et al., 2004). In this study, IncY plasmid carried qnrS1, tet(A), floR, dfrA-14, and blaTEM-135 resistance genes and mediated the resistance of ENR, TET, CHL, TMP, and AMP. Compared with the reported IncY plasmid carrying qnrS, the pE2 resistance spectrum was larger. The expression of MDR genes in IncY plasmid undoubtedly increased the metabolic burden of the host bacteria. In addition, the plasmid also had several insertion elements IS421, IS1, ISKpn19, IS26, IS5, and IS91; integron functional elements IntI1; and transposon Tn3, the expression of IS elements and transposons caused the instability of plasmid DNA structure (Haddadin and Harcum, 2005). The copy number of plasmids was also one of the factors determining the metabolic load of plasmids, and the selective pressure of antibiotics was an important condition for maintaining the stability of resistance plasmids. Plasmids with high copy numbers, especially those containing the β-lactam-resistance gene, were unstable and lost quickly in Salmonella without antibiotic selection pressure both in vivo and in vitro (Zhang et al., 2005). In this study, we did not obtain SE211-qnrS colonies on plates supplemented with ENR. Although the repA and dfrA-14 genes of two SE211-qnrS strains were positive in the screening process, they were still sensitive to trimethoprim/sulfamethoxazole following glycerol bacteria resuscitation (data not shown). We speculate that antibiotic-free glycerol preserved SE211-qnrS strains might easily lose the IncY plasmid. In this study, loss of the IncY plasmid in SE211 might be caused by the absence of antibiotic selective pressure. Thus, antibiotics should be appropriately added to the glycerol bacteria of Salmonella transconjugants.

CONCLUSION

The QnrS gene located on IncY plasmid can transfer from E. coli E2 to Salmonella SE211 both under laboratory conditions and in the chicken intestinal environment. Sub-MIC of ENR and the clinically recommended dose of ENR can promote conjugation transfer of the qnrS gene. The selective pressure exerted by ENR on the intestinal environment of chickens contributed to the persistence of resistance E. coli and qnrS genes, thus increasing the risk of resistance gene transmission as well as the resistance gene reservoir.

DATA AVAILABILITY STATEMENT

The authors acknowledge that the data presented in this study must be deposited and made publicly available in an acceptable repository, prior to publication. Frontiers cannot accept a manuscript that does not adhere to our open data policies.

ETHICS STATEMENT

The animal study was reviewed and approved by the study in vivo was carried out in accordance with the guidelines established by the China Regulations for the Administration of Affairs Concerning Experimental Animals (1988) and Regulations for the Administration of Affairs Concerning Experimental Animals in Hubei province (2005) (Project No. 2017YFC1600100 and Animal Welfare Assurance No. HZAUCh: 2020-0005). Written informed consent was obtained from the owners for the participation of their animals in this study.

AUTHOR CONTRIBUTIONS

MD conceived and designed the study, wrote, reviewed, and edited the manuscript. YZ, ZC, LC, TH, KG, and FZ performed the experiments. YZ and ZC wrote the draft manuscript. All authors participated in the interpretation of the results and read and approved the manuscript.

FUNDING

This work was supported by the National Key R&D Program of China (grant no. 2017YFC1600100), Walmart Foundation (Project no. 61626817) of Walmart Food Safety Collaboration Center and the National Natural Science Foundation of China (NSFC) (grant no. 31772736).
REFERENCES

Carroll, A. C., and Wong, A. (2018). Plasmid persistence: costs, benefits, and the plasmid paradox. Can. J. Microbiol. 64, 293–304. doi: 10.1139/cjm-2017-0611

Chen, K., Dong, N., Zhao, S., Liu, L., Li, R., Xie, M., et al. (2018). Identification and characterization of conjugative plasmids that encode ciprofloxacin resistance in Salmonella. Antimicrob Agents Chemotherapy 8, e518–e575. doi: 10.1128/AAC.00575-18

Chen, Y., Sun, J., Liao, X., Shao, Y., Li, L., Fang, L., et al. (2016). Impact of enrofloxacin and florfenicol therapy on the spread of OqxAB gene and intestinal microbiota in chickens. Vet. Microbiol. 192, 1–9. doi: 10.1016/j.vetmic.2016.03.033

CLSI (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th Edn. Wayne, PA: CLSI. CLSI supplement M100.

Cui, L., Wang, X., Huang, D., Zhao, Y., Feng, J., Lu, Q., et al. (2020). CRISPR-cas9 of Salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens 9:53. doi: 10.3390/pathogens9010053

Cui, L., Wang, X., Zhao, Y., Peng, Z., Gao, P., Cao, Z., et al. (2021). Virulence comparison of Salmonella enterica Subsp. enterica isolates from chicken and whole genome analysis of the high virulent strain S. enteritidis 211. Frontiers in Microbiology | www.frontiersin.org 9 033

Dios, J. G., Cloutsing, C. S., Randall, L. P., Horton, R. A., and Davies, Haddadin, F. T., and Harcum, S. W. (2005). Transcriptome profiles for high-density recombinant and wild-type Escherichia coli. Biotechnol. Bioeng. 90, 127–153. doi: 10.1002/bit.20340

Jiang, X., Li, J., Zhang, Y., Yan, H., Wang, Y., Shi, L., et al. (2014). Detection of enrofloxacin and florfenicol therapy on the spread of OqxAB gene and whole genome analysis of the high virulent strain S. enteritidis 211. Frontiers in Microbiology | www.frontiersin.org 9 033

Jiang, X., Li, J., Hao, H., Dai, M., Zhang, H., Ning, J., Cheng, G., et al. (2019). Resistance and virulence mechanisms of Escherichia coli selected by enrofloxacin in chicken. Antimicrob. Agents Chemother. 63:e182418. doi: 10.1128/AAC.01824-18

Marshall, B. M., and Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24, 718–733. doi: 10.1128/CMR.00258-11

Mshana, S. E., Falgenhauer, L., Mirambo, M. M., Mushi, M. F., Moremi, N., Julius, R., et al. (2016). Predictors of blaCTX-M-15 in varieties of Escherichia coli genotypes from humans in community settings in Mwanza, Tanzania. BMC Infect Dis. 16:187. doi: 10.1186/s12879-016-1527-x

Nicolais, E., Lambin, M., Dandoy, D., Galloy, C., Nguyen, N., Oger, C. A., et al. (2015). The Tn3-family of replicative transposons. Microbiol. Spectr. 3, 693–726. doi: 10.1128/microbiolspec.MDNA3-0060-2014

Nordmann, P., Dortet, L., and Poirol, L. (2012). Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18, 263–272. doi: 10.1016/j.molmed.2012.03.003

Racewicz, P., Majewski, M., Madeja, Z. E., Lukomska, A., and Kubiak, M. (2020). Role of integrons in the proliferation of multiple drug resistance selected bacteria occurring in poultry production. Br. Poult. Sci. 61, 122–131. doi: 10.1080/00071668.2019.1697426

Roschanski, N., Guenther, S., Vu, T., Fischer, J., Semmler, T., Huehn, S., et al. (2017). VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Euro. Surveill. 22:1700032. doi: 10.2807/1560-7917.ES.2017.22.13.1700032

Roth, N., Mayrhofer, S., Gierau, M., Weingut, C., Schwarz, C., Doupovc, B., et al. (2017). Effect of an organic acids based feed additive and enrofloxacin on the prevalence of antibiotic-resistant E. coli in cecum of broilers. Poult. Sci. 96, 4053–4060. doi: 10.3382/ps/pex232

Roussel, C., De Paep, K., Galia, W., De Bodt, J., Chanloncan, S., Leriche, F., et al. (2020). Spatial and temporal modulation of enterotoxigenic E. coli H10407 pathogenesis and interplay with microbiota in human gut models. BMC Biol. 18:141. doi: 10.1186/s12915-020-00860-x

Rozkov, A., Avignone-Rossa, C. A., Ertl, P. F., Jones, P., O’Kennedy, R. D., Smith, J. J., et al. (2004). Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 88, 909–915. doi: 10.1002/bit.20327

Shu-Mei, E., Zeng, J., Yuan, H., Lu, Y., Cai, R., and Chen, C. (2018). Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb. Pathogenesis 114, 57–62. doi: 10.1016/j.micpat.2017.11.036

Silva, F., Queiroz, J. A., and Domingues, F. C. (2012). Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol. Adv. 30, 691–708. doi: 10.1016/j.bta.2011.12.005

Slana, M., and Sollner-Dolenc, M. (2016). Enrofloxacin degradation in broiler chicken manure under various laboratory conditions. Environ. Sci. Pollut. Res. Int. 23, 4422–4429. doi: 10.1007/s11356-015-624-y

Slettemeas, J. S., Sunde, M., Ulstad, C. R., Norstrom, M., Wester, A. L., and Urdahl, A. M. (2019). Occurrence and characterization of plasmid resistant Escherichia coli from Norwegian turkey meat and complete sequence of an IncX1 plasmid encoding qnrS1. Environ. Sci. Pollut. Res. Int. 26, 18080–18090. doi: 10.1007/s11356-020-0629-y

Stokes, H. W., and Gillings, M. R. (2011). Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35, 790–819. doi: 10.1111/j.1574-6976.2011.00273.x

Tewari, R., Mitra, S., Ganaie, F., Das, S., Chakraborty, A., Venugopal, N., et al. (2019). Dissemination and characterisation of Escherichia coli producing extended-spectrum beta-lactamases, AmpC beta-lactamases and metallo-beta-lactamases from livestock and poultry in Northeast India: a molecular surveillance approach. J. Glob. Antimicrob. Resist. 17, 209–215. doi: 10.1016/j.jgar.2018.12.025

Veldman, K., Kant, A., Dierikx, C., van Essen-Zandbergen, A., Wit, B., and Mevius, D. (2014). Enterobacteriaceae resistant to third-generation
cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia. *Int. J. Food Microbiol.* 177, 72–77. doi: 10.1016/j.ijfoodmicro.2014.02.014

Wein, T., Hulter, N. F., Mizrahi, I., and Dagan, T. (2019). Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. *Nat. Commun.* 10.2595. doi: 10.1038/s41467-019-10600-7

Wu, J. J., Wen-Chien, K., Wu, H. M., and Yan, J. J. (2008). Prevalence of Qnr determinants among bloodstream isolates of *Escherichia coli* and *Klebsiella pneumoniae* in a Taiwanese Hospital, 1999–2005. *J. Antimicrob. Chemother.* 6, 1234–1239. doi: 10.1093/jac/dkn111

Zhang, X. M., Jiao, X. A., Tang, L. H., Pan, Z. M., Huang, J. L., and Liu, X. F. (2005). Enhanced stability of plasmid pcDNA3.1+ with in *Salmonella* typhimurium by down regulation of the ampicillin resistance gene expression. *Microbial. China* 5, 51–55. doi: 10.13344/j.microbiol.china.2005.05.014

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zhao, Cao, Cui, Hu, Guo, Zhang, Wang, Peng, Liu and Dai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.