A high-mobility two-dimensional electron gas at the spinel/perovskite interface of $\gamma$-Al$_2$O$_3$/SrTiO$_3$

Y.Z. Chen$^1$, N. Bovet$^2$, F. Trier$^1$, D.V. Christensen$^1$, F.M. Qu$^3$, N.H. Andersen$^4$, T. Kasama$^5$, W. Zhang$^1$, R. Giraud$^6,7$, J. Dufouleur$^6$, T.S. Jespersen$^8$, J.R. Sun$^3$, A. Smith$^1$, J. Nygård$^8$, L. Lu$^3$, B. Büchner$^6$, B.G. Shen$^3$, S. Linderøth$^1$ & N. Pryds$^1$

The discovery of two-dimensional electron gases at the heterointerface between two insulating perovskite-type oxides, such as LaAlO$_3$ and SrTiO$_3$, provides opportunities for a new generation of all-oxide electronic devices. Key challenges remain for achieving interfacial electron mobilities much beyond the current value of approximately 1,000 cm$^2$ V$^{-1}$ s$^{-1}$ (at low temperatures). Here we create a new type of two-dimensional electron gas at the heterointerface between SrTiO$_3$ and a spinel $\gamma$-Al$_2$O$_3$ epitaxial film with compatible oxygen ions sublattices. Electron mobilities more than one order of magnitude higher than those of hitherto-investigated perovskite-type interfaces are obtained. The spinel/perovskite two-dimensional electron gas, where the two-dimensional conduction character is revealed by quantum magnetoresistance oscillations, is found to result from interface-stabilized oxygen vacancies confined within a layer of 0.9 nm in proximity to the interface. Our findings pave the way for studies of mesoscopic physics with complex oxides and design of high-mobility all-oxide electronic devices.
high-mobility two-dimensional electron gases (2DEGs) confined in epitaxially grown semiconductor heterostructures form the basis of modern electronic and photonic devices, and have constituted the material basis for the development of quantum transport and mesoscopic physics, for example, the resultant discoveries of the integer and fractional quantum Hall effects\(^1\)\(^\text{,}\)\(^2\)\(^\text{,}\)\(^3\) Different from those in semiconductors, strongly correlated electrons in complex oxides with partially occupied \(d\) orbitals give rise to a variety of extraordinary electronic properties, such as high-temperature superconductivity, colossal magnetoresistance, ferromagnetism, ferroelectricity and multiferroicity. Therefore, the high-mobility 2DEGs at atomically engineered complex oxide interfaces not only show promise for multifunctional all-oxide devices with probably even richer behaviour than that in bulk\(^4\)\(^\text{,}\)\(^5\)\(^\text{,}\)\(^6\)\(^\text{,}\)\(^7\)\(^\text{,}\)\(^8\)\(^\text{,}\)\(^9\)\(^\text{,}\)\(^10\) but would also provide a wealth of opportunities to study mesoscopic physics with strongly correlated electrons confined in nanostructures. Nevertheless, this requires a large-enough electron mobility, so that the characteristic lengths of the system, such as the mean free path or the phase coherence length, become sizeable with respect to the typical dimension of quantum devices.

The enhancement of electron mobilities for complex oxide 2DEGs, however, meets formidable challenges. To date, these 2DEGs have been fabricated exclusively at oxide interfaces between perovskite bilayers\(^4\), such as the (001)-oriented polar LaAlO\(_3\) (LAO) films grown epitaxially on (001)-oriented non-polar SrTiO\(_3\) (STO) single crystals with a TiO\(_2\) termination\(^5\). The two-dimensional (2D) electron mobility in these perovskite-type oxide interfaces is typically \(\sim 1000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\) at 2 K (refs 4, 10), with a sheet carrier density, \(n_s\), being \(1 \times 10^{13} - 10^{14} \text{ cm}^{-2}\). This Hall mobility is still much lower than those for three-dimensional oxygen-deficient STO single crystals\(^1\)\(^\text{,}\)\(^2\)\(^\text{,}\)\(^3\) and La-doped STO epitaxial films\(^2\),\(^12\), amounting to \(1.3 \times 10^4\) and \(3.2 \times 10^5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\), respectively. The 2DEGs at these perovskite-type oxide interfaces are suggested to result from electronic reconstructions due to a polar discontinuity at the interface; however, mechanisms such as ion transfer across the interface and formation of defects have also been identified to have important roles on the transport properties\(^13\)\(^\text{,}\)\(^14\). Harnessing the impurities and defects at these polar complex oxide interfaces remains elusive\(^15\). Despite deliberate efforts, the highest electron Hall mobility observed in the LAO/STO-based oxide interfaces is limited to the order of \(5000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\) at 2 K (refs 16, 17). Besides interface polarity, we have recently found that chemical redox reactions at the oxide interface between STO single crystals and other complex oxides containing Al, Ti, Zr and Hf elements can provide an alternative approach to creating 2DEGs in complex oxide heterostructures\(^16\). Nevertheless, establishing electron confinement with increased carrier mobilities in STO-based heterointerfaces remains a challenge\(^18\).

Here we present a novel 2DEG with electron Hall mobilities as large as \(1.4 \times 10^{14} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\) and \(n_s\) as high as \(3.7 \times 10^{14} \text{ cm}^{-2}\) at 2 K by creating a spinel/perovskite complex oxide interface between epitaxial alumina (Al\(_2\)O\(_3\)) films and STO single crystals (Fig. 1a). To our knowledge, it is the first time that complex oxide interfaces based on STO are found to exhibit carrier mobilities larger than any yet reported for either electron-doped STO single crystals\(^12\) or optimized epitaxial doped STO films\(^12\). Moreover, such a high mobility opens the door to the design of mesoscopic quantum devices based on complex oxides.

Electrical transport properties of \(\gamma\text{-Al}_2\text{O}_3/\text{STO}\) interfaces. The investigation of conductivity in our \(\gamma\text{-Al}_2\text{O}_3/\text{STO}\) heterostructures shows that the interface between the two insulators can become metallic with electrons as the dominant charge carriers (see Supplementary Fig. S2). Of note, under the condition of our film growth, the bare STO substrate remains highly insulating without film deposition. More strikingly, 2DEGs with extremely high Hall mobilities are obtained when the \(\gamma\text{-Al}_2\text{O}_3\) film is grown at an oxygen background pressure of \(10^{-4} \text{ mbar}\) and a growth temperature of \(600\) °C. The epitaxial growth of ionic oxides, when all film components are supplied simultaneously, the oscillation period corresponds to the minimum unit of the chemical composition needed to ensure charge neutrality\(^21\)\(^\text{–}\)\(^23\). For \(\gamma\text{-Al}_2\text{O}_3\) grown along the (001) direction, one intensity oscillation corresponds to the growth of one quarter unit cell film (Fig. 1e), as the \(\gamma\text{-Al}_2\text{O}_3\) unit cell consists of four neutral \('\text{AlO}_x'\) subunit cells with an interlayer distance of about 0.2 nm. Similar subunit cell layer-by-layer film growth has been observed in the epitaxial growth of spinel magnetite (Fe\(_2\)O\(_3\))\(^24\). The persistent layer-by-layer, 2D film growth results in a high-quality cubic-on-cubic \(\gamma\text{-Al}_2\text{O}_3/\text{STO}\) epitaxial heterointerface with no obvious dislocations as confirmed by scanning transmission electron microscopy (STEM) (Fig. 1f,g).

Results

Subunit cell layer-by-layer growth of \(\gamma\text{-Al}_2\text{O}_3\) films. Al\(_2\)O\(_3\) is a widely used oxide and is also one of the best insulating materials in nature, with a band gap normally above 8.0 eV. The synthesis of nanoscale Al\(_2\)O\(_3\) usually results in \(\gamma\text{-Al}_2\text{O}_3\) with a spinel-type structure, rather than the common \(\alpha\text{-Al}_2\text{O}_3\) with a corundum structure, because the \(\gamma\text{-Al}_2\text{O}_3\) has a lower surface energy than \(\alpha\text{-Al}_2\text{O}_3\) (ref. 19). Remarkably, as illustrated in Fig. 1b–d, despite differences in cation sublattices, the oxygen sublattice of the spinel \(\gamma\text{-Al}_2\text{O}_3\) matches closely with that of the perovskite STO, as the lattice parameter of \(\gamma\text{-Al}_2\text{O}_3\) is twice that of STO (\(a_{\text{STO}} = 3.905\) Å, \(a_{\gamma\text{-Al}_2\text{O}_3} = 7.911\) Å (ref. 20)), lattice mismatch of 1.2%). Such an excellent lattice match between oxygen sublattices, together with the low surface energy of \(\gamma\text{-Al}_2\text{O}_3\), makes it compatible to grow epitaxially \(\gamma\text{-Al}_2\text{O}_3/\text{STO}\) spinel/perovskite heterostructures in a persistent 2D layer-by-layer growth mode (see Supplementary Fig. S1). Figure 1e shows typical intensity oscillations of the reflection high-energy electron diffraction (RHEED) pattern during the growth of a 3-unit cell (uc) \(\gamma\text{-Al}_2\text{O}_3\) film at a growth temperature of 600 °C. For the epitaxial growth of ionic oxides, when all film components are supplied simultaneously, the oscillation period corresponds to the minimum unit of the chemical composition needed to ensure charge neutrality\(^21\)\(^\text{–}\)\(^23\). For \(\gamma\text{-Al}_2\text{O}_3\) grown along the (001) direction, one intensity oscillation corresponds to the growth of one quarter unit cell film (Fig. 1e), as the \(\gamma\text{-Al}_2\text{O}_3\) unit cell consists of four neutral \('\text{AlO}_x'\) subunit cells with an interlayer distance of about 0.2 nm. Similar subunit cell layer-by-layer film growth has been observed in the epitaxial growth of spinel magnetite (Fe\(_2\)O\(_3\))\(^24\). The persistent layer-by-layer, 2D film growth results in a high-quality cubic-on-cubic \(\gamma\text{-Al}_2\text{O}_3/\text{STO}\) epitaxial heterointerface with no obvious dislocations as confirmed by scanning transmission electron microscopy (STEM) (Fig. 1f,g).
diffusion of the Ti-cations across the interface as observed by electron energy-loss spectroscopy (EELS; see Supplementary Fig. S4).

2D quantum oscillations of the conduction in γ-Al₂O₃/STO. The 2D nature of the conduction in our spinel/perovskite heterostructures is indicated by angle-dependent Shubnikov-de Haas (SdH) quantum oscillations, which are superimposed on a huge background of positive magnetoresistance (Fig. 3a). After subtracting the magnetoresistance background, the SdH oscillations become apparent (Fig. 3b) and the extrema positions show a cosine dependence with the angle \( \theta \) between the magnetic field and the surface normal (Fig. 3c). This reveals the 2D nature of the electron gas formed at our γ-Al₂O₃/STO interfaces. Besides, the
absence of oscillations at $\theta = 90^\circ$ further confirms that the spatial width of the 2DEG is smaller than at least the cyclotron radius at 15 T, the typical value of which is below 10 nm for our heterostructures. Moreover, the angular dependence of the SdH oscillations measured at high magnetic fields suggests a multilayer contribution to charge transport. For instance, an extra feature is observed at $\theta = 50^\circ$ with $B_{\cos \theta} = 7.2$ T, which may result from a $\pi$ shift of the oscillations due to a spin-split band. Such a phase shift has been observed in the high-mobility 2DEG of GaN/AlGaN interfaces when the Zeeman energy (depending on the total $B$) and the cyclotron energy (depending on the perpendicular component of $B$) are equal. To confirm the high mobility achieved in our $\gamma$-Al$_2$O$_3$/STO 2DEGS, we increased the visibility of the SdH oscillations by cooling one sample ($d = 2.25$ uc) down to 22 mK in a dilution refrigerator. Ultra-low noise measurements allow us to evidence the oscillations down to about 1 T (Fig. 4a), which directly shows that the quantum mobility extracted from the SdH oscillations, $\mu_{SdH}$, is in the range of $10^4$ cm$^2$ V$^{-1}$ s$^{-1}$, as inferred from the onset of oscillations. Importantly, the field dependence of the SdH oscillations reveals the typical behaviour due to a single band. According to theory\textsuperscript{28}, the oscillations amplitude $\Delta R_{xx}$ can be described as:

$$\Delta R_{xx} = 4R_0e^{-\pi T_D x T / \sinh(x(T))}$$

where, $x = 2\pi^2 k_B/\hbar \omega_c$, $\omega_c = eB/m^*$ is the cyclotron frequency, $m^*$ is the carrier effective mass, $k_B$ is Boltzmann’s constant and $\hbar$ is Planck’s constant divided by $2\pi$. $R_0$ is the classical resistance in zero field. $T_D = \hbar/2\pi k_B \tau$ is the Dingle temperature, $\tau$ is the total scattering time. At a fixed magnetic field, $m^*$ can be deduced by fitting the temperature-dependent oscillation amplitude with $\Delta R_{xx}(T)/\Delta R_{xx}(T_0) = T \sinh(x(T))/T_0 \sinh(x(T_0))$ ($T_0 = 22$ mK). As shown in Fig. 4b, for $B = 2.04$ T the fit leads to an effective mass of $m^* = (1.22 \pm 0.03) m_e$ ($m_e$ is the bare electron mass), consistent with those reported for other STO-based heterostructures\textsuperscript{16,27–30}. At a fixed temperature, $T_D$ or $\tau$ can be deduced from the slope of the Dingle plot, that is, $\ln[\Delta R_{xx}(x(T))/4R_0 x T]$ versus $1/B$ (Fig. 4c for $T = 200$ mK), which gives a $\tau = 4.96 \times 10^{-12}$ s or $T_D = 0.24$ K, corresponding to a quantum mobility $\mu_{SdH} = e\tau/m^*$ of $7.2 \times 10^3$ cm$^2$ V$^{-1}$ s$^{-1}$. Such an unprecedented high $\mu_{SdH}$ in our $\gamma$-Al$_2$O$_3$/STO 2DEGS is more than one order of magnitude higher than those observed in the perovskite/perovskite LAO/STO\textsuperscript{16,17,27} and GaTiO$_3$/STO\textsuperscript{30} heterostructures, which are typically below 300 cm$^2$ V$^{-1}$ s$^{-1}$. Note that the difference between $\mu_{Hall}$ and $\mu_{SdH}$ in our $\gamma$-Al$_2$O$_3$/STO heterostructures could come from a different scattering time (that is, the transport scattering time and the total scattering time, respectively), which has also been reported in the LAO/STO\textsuperscript{16,17,27} and δ-doped STO heterostructures\textsuperscript{28,29}, as well as the GaAs/AlGaAs heterostructures\textsuperscript{31}. In short, the SdH measurements support the formation of highmobility 2DEGS at our spinel/perovskite heterointerfaces (see also Supplementary Fig. S5).

Spatial confinement of the $\gamma$-Al$_2$O$_3$/STO interface 2DEG. To determine the origin and depth-profile for the conduction in the $\gamma$-Al$_2$O$_3$/STO heterostructures, angle-resolved X-ray photoelectron spectroscopy (XPS) measurements are performed. We find that the electrons are exclusively accumulated on the otherwise empty 3d shell of Ti$^{4+}$ on the STO side. The most remarkable XPS result is that the Ti$^{3+}$ signal in $\gamma$-Al$_2$O$_3$/STO heterointerfaces shows strong dependence on the photoelectrons detection angle, $\phi$, with respect to the surface normal. An increase of the Ti$^{3+}$ signal with increasing $\phi$, as shown in Fig. 5a, is clearly detected for $d = 2.5$ uc with the highest Hall mobility. This further confirms that the conduction in our $\gamma$-Al$_2$O$_3$/STO heterointerface is highly confined at the interface region. To make more quantitative analyses, we assume a simple case that the 2DEG extends from the interface to a depth, $t$, into the STO substrate\textsuperscript{32}. The interface region is further assumed to be stoichiometric, sharp and characterized by a constant fraction, $p$, of Ti$^{3+}$ per STO unit cell. Taking into account the attenuation length of photoelectrons,
2DEG at the crystalline γ-Al2O3/STO heterointerface is formed at a high temperature of 600 °C, where the oxygen ions in STO are already highly mobile. This is normally expected to level out any difference in the depth-profile of oxygen distribution in STO. However, this is not the case in the crystalline γ-Al2O3/STO heterostructures as inferred from both Figs 3 and 5. Moreover, the conduction at the interface of thick films, for example, at $d = 8$ uc, can survive the annealing at 300 °C for 24 h in 1 bar pure O2 with only negligible changes in the conductivity (see Supplementary Fig. S6). These features strongly suggest that the oxygen vacancies and the 2DEGs are stabilized by an interface effect, such as by the formation of a space charge region near the heterointerface. It is worth noting that an inherent oxygen ion deficiency has also been predicted if the barrier height of the grain boundary is deliberately controlled \[35\]. The high electron mobility of STO-based oxide materials at low temperatures is generally related to the polarization shielding of the ionized defect scattering centres driven by the large dielectric constant of STO \[36\]. The higher mobility of our spinel/perovskite oxide interface compared with the perovskite-type oxide heterointerface may be due to the better lattice match and, thereby, a more perfect structure and well-defined interface. Though further investigations are needed to reveal how the interface properties increase the mobility and the associated strong suppression of the defect and impurity scattering, our results strongly suggest that defect engineering of oxygen vacancies is crucial for the high mobility of 2DEGs confined at the interface between complex oxides.

In conclusion, we have demonstrated that high-mobility 2DEGs with clear quantum magnetoresistance oscillations and strong spatial confinement can be created at well-defined spinel/perovskite γ-Al2O3/STO oxide interfaces. The strong spatial confinement of charge carriers achieved directly in the as-deposited spinel/perovskite γ-Al2O3/STO oxide heterointerfaces could be due to the presence of outward diffusion of the Ti-cations into alumina films, where Ti\textsuperscript{4+} (Fig. 2c). This could be due to the presence of outward diffusion of the Ti-cations into alumina films, where Ti\textsuperscript{4+} is the dominant component (see Supplementary Figure S4). Such concern is also consistent with the fact that the out-diffused Ti is found to have a negligible contribution to the measured interface conduction. For example, the interface conduction remains unaffected when the capping alumina film is etched away by a 4-M aqueous NaOH solution. This strongly suggests that the effective charge carriers are mainly located on the STO side.

Discussion

As each layer of the (001)-oriented γ-Al2O3/STO heterointerface is nominally charge neutral, the polar discontinuity-induced electronic reconstruction as expected in the LAO/STO interface may not contribute here. The presence of Ti\textsuperscript{3+} is probably a signature of the formation of oxygen vacancies on the STO side. This scenario is consistent with the fact that the interfacial conductivity can be completely removed when the Ti\textsuperscript{3+} content is significantly suppressed by suitable annealing in 1 bar pure O2 at a temperature higher than 200 °C (see Supplementary Fig. S6).

Such an oxygen-vacancy-dominated 2DEG is expected to be formed as a consequence of chemical redox reactions occurring on the STO surface during the film growth of γ-Al2O3, analogous to what has been observed in metallic amorphous STO-based heterostructures grown at room temperature \[18\]. Note that the ratio of Ti\textsuperscript{3+} to Ti\textsuperscript{4+} signal, $I(Ti^{3+})/I(Ti^{4+})$, as a function of $\varphi$ can be calculated as \[32\]:

$$I(Ti^{3+}) = \frac{\rho[1 - \exp(-\mu/\cos \varphi)]}{1 - \rho[1 - \exp(-\mu/\cos \varphi)]}$$

where, $\lambda$ is the electron escape depth in STO. According to the NIST database (NIST Standard Reference Database 71, version 1.2), $\lambda$ is approximately 2.2 nm for our setup. As shown in Fig. 5b, the best fitting of the experimental $I(Ti^{3+})/I(Ti^{4+})$ ratios gives a $\rho \sim 0.31$, which equals to an $n_s \sim 2.1 \times 10^{14} \text{cm}^{-2}$ and a $t$ of 0.9 nm. Therefore, the electrons at our γ-Al2O3/STO heterointerfaces are strongly confined within approximately the first 2 uc of STO surface in proximity to the interface. Note that the $n_s$ deduced here is slightly lower than that obtained from Hall data (Fig. 2c). This could be due to the presence of outward diffusion of the Ti-cations into alumina films, where Ti\textsuperscript{4+} is the dominant component (see Supplementary Figure S4). Such concern is also consistent with the fact that the out-diffused Ti is found to have a negligible contribution to the measured interface conduction. For example, the interface conduction remains unaffected when the capping alumina film is etched away by a 4-M aqueous NaOH solution. This strongly suggests that the effective charge carriers are mainly located on the STO side.

Methods

Sample growth. The γ-Al2O3 thin films were grown by pulsed laser deposition \[37\] using a KrF laser (λ = 248 nm) with a repetition rate of 1 Hz and laser fluence of 1.5 J cm\textsuperscript{-2}. The target-substrate distance was fixed at 5.6 cm. Commercial orthorhombic γ-Al2O3 single crystals were used as targets. Singly TiO\textsubscript{2}-terminated (001) STO single crystals with a size of 5 × 5 × 0.5 mm\textsuperscript{3} were used as substrates. Note that the TiO\textsubscript{2} termination of our substrates is obtained by chemical etching using HCl-HNO\textsubscript{3} as acidic solution \[38\], which is found to produce less defects on the STO surface compared with the conventional buffered hydrofluoric acid etch method \[39\]. The film growth process was monitored by in-situ high pressure RHEED. During deposition, the oxygen pressure was fixed at 10 \textsuperscript{14} mbar with the deposition temperature changing from room temperature (20 °C) to 700 °C. After film deposition, the samples were cooled down to room temperature at the deposition pressure. The film thickness was determined by both RHEED oscillations and X-ray reflectivity measurements.

Electrical transport measurement. The transport properties of the buried interface were measured using a four-probe Van der Pauw method, with ultrasonically wire-bonded aluminium wires as electrodes, placed at the corners of the square sample. The temperature-dependent electrical transport and Hall-effect measurements were performed in a CRYOGENIC cryogen-free measurement system, with the temperature ranging from 300 K down to 2 K and magnetic fields up to 16 T. To confirm the carrier density and mobility, some Hall-bar patterned samples were...
also measured, which were prepared directly through a mechanical mask. Note that the use of a mechanical mask at deposition temperatures higher than 500 °C may have a deleterious effect on the carrier mobility, as the high oxygen ion diffusion can unintentionally disturb the oxygen equilibrium for realizing high mobility. The angle-dependent SDH measurements were performed in a sorption-pumped UHV cryostat with standard lock-in technique at 0.3 K, with magnetic fields up to 15 T by changing the angles manually. The temperature-dependent SDH measurements were performed in a dilution refrigerator with a base temperature of 22 mK and an improved temperature stability, using ultra-low noise electronics. During all the transport measurements, the applied currents were within 1–10 μA (for AC current, the frequency was 327 Hz). Special care was taken to avoid heating effect.

**XPS measurements.** The XPS measurements were performed in a Kratos Axis Ultra DLD instrument, using a monochromatic Al Kα X-ray source with photon energy of 1,486.6 eV. This leads to a kinetic energy of Ti 2p electrons of roughly 1.025 eV. According to the NIST database (NIST Standard Reference Database 71, version 1.2), the electron escape depth is approximately 22 Å at this kinetic energy. The pass energy used for the high resolution scan was 20 eV. The detection angle of the electrons varied between 0° and 60° with respect to the sample normal. For analysing the Ti 2p peaks (Ti IV 9 is 1.6 eV lower), a Shirley background was subtracted and the spectra were normalized to the total area below the Ti peaks ([11I = 1 111 + 2 113] = 100%).

**STEM and EELS measurements.** aberration-corrected STEM measurements were performed by an FEI Titan 80–300ST TEM equipped with a high brightness ShortLaB2000 source (X-FEG) and a Gatan Image Filter (Tridium). High-angle annular dark-field (HAADF) images were acquired at 300 kV, where the probe size, convergence angle and HAADF collection angle were 0.8–1 Å, 20 mrad and 60 mrad, respectively. For EELS in the STEM, an accelerating voltage of 120 kV (probe size of 1.5–2.0 Å) was used to reduce knock-on damage to the specimen. The energy resolution of EELS was 120 kV (probe size of 1.5–2.0 Å) was used to reduce knock-on damage to the specimen. The energy resolution of EELS was ~0.9 eV. Spectrum imaging was used to collect spectra across the interface. Typically we recorded the spectrum images consisting of 40 ten-analysis point lines (that is, 10×40) parallel to the interface and acquired each line by an increment of 0.28 nm. Each spectrum was obtained at a dispersion of 0.1 eV for 0.2–0.4 s. Then the spectra along the lines were summed after removing the spectra from beam-damaged regions according to the HAADF contrast to increase signal/background ratio.

**References**

1. Klitzing, K. v., Dorda, G. & Pepper, M. New methods for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
2. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetoresistance in the high mobility region of the electron gas. Phys. Rev. Lett. 48, 1565–1568 (1982).
3. Cobden, S. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 interface. Nature 427, 423–426 (2004).
4. Mannhart, J. & Schlohm, D. G. Oxide interfaces: an opportunity for electronics. Nature Mater. 236802 (2010).
5. McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline alumina. Science 277, 788–791 (1997).
6. Zhou, R. S. & Snyder, R. L. Structures and transformation mechanisms of the γ-Al2O3 and α transition aluminas. Acta. Cryst. B 47, 617–630 (1991).
7. Terasima, T. et al. Reflection high-energy electron diffraction oscillations during epitaxial growth of high-temperature superconducting oxides. Phys. Rev. Lett. 65, 2684–2687 (1990).
8. Rijnders, A. J. H. M. The initial growth of complex oxides: study and manipulation. PhD thesis. Univ. Twente (2001).
9. Barber, Z. H. The control of thin film deposition and recent developments in oxide film growth. J. Mater. Chem. 16, 334–344 (2006).
10. Reisinger, D. et al. Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films. Appl. Phys. A 77, 619–621 (2003).
11. Knop, W. et al. Spin and interaction effects in Shubnikov-de Haas oscillations and the quantum Hall effect in GaN/AlGaN heterostructures. J. Phys. Condens. Mat. 16, 3421–3432 (2004).
12. Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, England, 1984).
13. Son, J. et al. Creation of a two-dimensional electron gas at an oxide interface on silicon. Nat. Commun. 3, 92–94 (2012).
14. Chakhalan, J., Millin, A. J. R. & Rondinelli, J. Whither the oxide interface. Nat. Mater. 11, 91 (2012).
15. Wang, Y., Wang, Y. Z. et al. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B 75, 121404 (2007).
16. Chambers, S. A. Understanding the mechanism of conductivity at the LaAlO3/SrTiO3 (001) interface. Surface Sci. 605, 1133–1140 (2011).
17. Caviglia, A. D. et al. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105, 236802 (2010).
18. Huijben, M. et al. High mobility interface electron gas by defect scavenging in a modulation doped oxide heterostructure. Preprint at http://arXiv:1008.1896v1 (2010).
19. Chen, Y. Z. et al. Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures. Nano Lett. 11, 3774–3778 (2011).
20. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magneto-electric oscillations in the Ti 2p electrons of roughly 1.025 eV. According to the NIST database (NIST Standard Reference Database 71, version 1.2), the electron escape depth is approximately 22 Å at this kinetic energy. The pass energy used for the high resolution scan was 20 eV. The detection angle of the electrons varied between 0° and 60° with respect to the sample normal. For analysing the Ti 2p peaks (Ti IV 9 is 1.6 eV lower), a Shirley background was subtracted and the spectra were normalized to the total area below the Ti peaks ([11I = 1 111 + 2 113] = 100%).