Characterizations of a class of Pilipović spaces by powers of harmonic oscillator

Ahmed Abdeljawad1 · Carmen Fernández2 · Antonio Galbis2 · Joachim Toft3 · Rüya Üster4

Received: 18 June 2019 / Accepted: 14 April 2020 / Published online: 14 May 2020
© The Author(s) 2020

Abstract
We show that a smooth function f on \mathbb{R}^d belongs to the Pilipović space $\mathcal{H}_{b_\sigma}(\mathbb{R}^d)$ or the Pilipović space $\mathcal{H}_{0,b_\sigma}(\mathbb{R}^d)$, if and only if the L^p norm of $H_d^N f$ for $N \geq 0$, satisfy certain types of estimates. Here $H_d = |x|^2 - \Delta_x$ is the harmonic oscillator.

Keywords Harmonic oscillator · Pilipović spaces

Mathematics Subject Classification 46F05 · 42B35 · 30Gxx · 44A15

0 Introduction

In the paper we characterize Pilipović spaces of the form $\mathcal{H}_{b_\sigma}(\mathbb{R}^d)$ and $\mathcal{H}_{0,b_\sigma}(\mathbb{R}^d)$, considered in [3,11], in terms of estimates of powers of the harmonic oscillator, on the involved functions.

C. Fernández and A. Galbis were partially supported by the projects MTM2016-76647-P, GV Prometeo/2017/102 (Spain). J. Toft was partially supported by Vetenskapsrådet (Sweden) within the project 2019-04890.

✉ Joachim Toft
joachim.toft@lnu.se
Ahmed Abdeljawad
ahmed.abdeljawad@ricam.oeaw.ac.at
Carmen Fernández
fernand@uv.es
Antonio Galbis
antonio.galbis@uv.es
Rüya Üster
ruya.uster@istanbul.edu.tr

1 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria
2 Departament d’Anàlisi Matemàtica, Universitat de València, València, Spain
3 Department of Mathematics, Linnaeus University, Växjö, Sweden
4 Department of Mathematics, Istanbul University, Istanbul, Turkey
The set of Pilipović spaces is a family of Fourier invariant spaces, containing any Fourier invariant (standard) Gelfand-Shilov space. The (standard) Pilipović spaces $\mathcal{H}_s(\mathbb{R}^d)$ and $\mathcal{H}_{0,s}(\mathbb{R}^d)$ with respect to $s \in \mathbb{R}_+$, are the sets of all formal Hermite series expansions

$$f(x) = \sum_{\alpha \in \mathbb{N}^d} c_{\alpha}(f)h_\alpha(x)$$

(0.1)

such that

$$|c_{\alpha}(f)| \lesssim e^{-r|\alpha|^{\frac{1}{2}}}$$

(0.2)

holds true for some $r > 0$ respective for every $r > 0$. Here $f(\theta) \lesssim g(\theta)$ means that $f(\theta) \leq cg(\theta)$ for some constant $c > 0$ which is independent of θ in the domain of f and g (see also [6] and Sect. 1 for notations). Evidently, $\mathcal{H}_s(\mathbb{R}^d)$ and $\mathcal{H}_{0,s}(\mathbb{R}^d)$ increase with s. It is proved in [7] that if $S_s(\mathbb{R}^d)$ and $\Sigma_s(\mathbb{R}^d)$ are the Gelfand-Shilov spaces of Roumieu respective Beurling type of order s, then

$$\mathcal{H}_s(\mathbb{R}^d) = S_s(\mathbb{R}^d), \quad s \geq \frac{1}{2},$$

(0.3)

$$\mathcal{H}_{0,s}(\mathbb{R}^d) = \Sigma_s(\mathbb{R}^d), \quad s > \frac{1}{2},$$

(0.4)

and

$$\mathcal{H}_{0,s}(\mathbb{R}^d) \neq \Sigma_s(\mathbb{R}^d) = \{0\}, \quad s = \frac{1}{2}.$$

It is also well-known that $S_s(\mathbb{R}^d) = \{0\}$ when $s < \frac{1}{2}$ and $\Sigma_s(\mathbb{R}^d) = \{0\}$ when $s \leq \frac{1}{2}$. These relationships are completed in [11] by the relations

$$\mathcal{H}_s(\mathbb{R}^d) \neq S_s(\mathbb{R}^d) = \{0\}, \quad s < \frac{1}{2}$$

and

$$\mathcal{H}_{0,s}(\mathbb{R}^d) \neq \Sigma_s(\mathbb{R}^d) = \{0\}, \quad s \leq \frac{1}{2}.$$

In particular, each Pilipović space is contained in the Schwartz space $\mathcal{S}(\mathbb{R}^d)$.

For $\mathcal{H}_s(\mathbb{R}^d)$ ($\mathcal{H}_{0,s}(\mathbb{R}^d)$) we also have the characterizations

$$f \in \mathcal{H}_s(\mathbb{R}^d) \quad (f \in \mathcal{H}_{0,s}(\mathbb{R}^d)) \iff \|H_d^Nf\|_{L^\infty} \lesssim r^N N!^{2s}$$

(0.5)

for some $r > 0$ (for every $r > 0$) concerning estimates of powers of the harmonic oscillator

$$H_d = |x|^2 - \Delta_x, \quad x \in \mathbb{R}^d,$$

acting on the involved functions. These relations were obtained in [7] for $s \geq \frac{1}{2}$, and in [11] in the general case $s > 0$.

In [3,11] characterizations of $\mathcal{H}_s(\mathbb{R}^d)$ and $\mathcal{H}_{0,s}(\mathbb{R}^d)$ were also obtained by certain spaces of analytic functions on \mathbb{C}^d, via the Bargmann transform. From these mapping properties it follows that near $s = \frac{1}{2}$ there is a jump concerning these Bargmann images. More precisely, if $s = \frac{1}{2}$, then the Bargmann image of $\mathcal{H}_s(\mathbb{R}^d)$ (of $\mathcal{H}_{0,s}(\mathbb{R}^d)$) is the set of all entire functions F on \mathbb{C}^d such that F obeys the condition

$$|F(z)| \lesssim e^{\left(\frac{1}{2} - r\right)|z|^2} \quad (|F(z)| \lesssim e^r|z|^2)$$

(0.6)
for some \(r > 0 \) (for every \(r > 0 \)). For \(s < \frac{1}{2} \), this estimate is replaced by

\[
|F(z)| \lesssim e^{r(\log(1+|z|))^{1-\frac{1}{2s}}}
\]
(0.7)

for some \(r > 0 \) (for every \(r > 0 \)), which is indeed a stronger condition compared to the case \(s = \frac{1}{2} \).

An important motivation for considering the spaces \(\mathcal{H}_{b_\sigma}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,b_\sigma}(\mathbb{R}^d) \) is to make this gap smaller. More precisely, \(\mathcal{H}_{b_\sigma}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,b_\sigma}(\mathbb{R}^d) \), which are Pilipović spaces of Roumieu respectively Beurling type, is a family of function spaces, which increases with \(\sigma \) and such that

\[
\mathcal{H}_{s_1}(\mathbb{R}^d) \subset \mathcal{H}_{0,b_\sigma}(\mathbb{R}^d) \subset \mathcal{H}_{b_\sigma}(\mathbb{R}^d) \subset \mathcal{H}_{0,b_2}(\mathbb{R}^d), \quad s_1 < \frac{1}{2}, \ s_2 \geq \frac{1}{2}.
\]

The spaces \(\mathcal{H}_{b_\sigma}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,b_\sigma}(\mathbb{R}^d) \) consist of all formal Hermite series expansions (0.1) such that

\[
|c_\alpha| \lesssim r^{|\alpha|} \alpha!^{-\frac{1}{2s}}
\]
(0.8)

hold true for some \(r > 0 \) respectively for every \(r > 0 \). For the Bargmann images of \(\mathcal{H}_{b_\sigma}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,b_\sigma}(\mathbb{R}^d) \), the conditions (0.6) and (0.7) above are replaced by

\[
|F(z)| \lesssim e^{r|z|^\frac{2s}{2s+1}},
\]

for some \(r > 0 \) respectively for every \(r > 0 \). It follows that the gaps of the Bargmann images of \(\mathcal{H}_{s}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,s}(\mathbb{R}^d) \) between the cases \(s < \frac{1}{2} \) and \(s \geq \frac{1}{2} \) are drastically decreased by including the spaces \(\mathcal{H}_{b_\sigma}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,b_\sigma}(\mathbb{R}^d) \), \(\sigma > 0 \), in the family of Pilipović spaces.

In [3], characterizations of \(\mathcal{H}_{b_1}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,b_1}(\mathbb{R}^d) \) in terms of estimates of powers of the harmonic oscillator acting on the involved functions which corresponds to (0.5) are deduced. On the other hand, apart from the case \(\sigma = 1 \), it seems that no such characterizations for \(\mathcal{H}_{b_\sigma}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,b_\sigma}(\mathbb{R}^d) \) have been obtained so far.

In Sect. 2 we fill this gap in the theory, and deduce such characterizations. In particular, as a consequence of our main result, Theorem 2.1 in Sect. 2, we have

\[
f \in \mathcal{H}_{b_\sigma}(\mathbb{R}^d) \quad (f \in \mathcal{H}_{0,b_\sigma}(\mathbb{R}^d)) \quad \iff \quad \|H_0^N f\|_{L^\infty} \lesssim 2^N r^{\frac{N}{\log(N\sigma)}} \left(2N\sigma \frac{2}{\log(N\sigma)} \right)^{N(1-\frac{1}{\log(N\sigma)})}
\]

for some (every) \(r > 0 \). By choosing \(\sigma = 1 \) we regain the corresponding characterizations in [3] for \(\mathcal{H}_{b_1}(\mathbb{R}^d) \) and \(\mathcal{H}_{0,b_1}(\mathbb{R}^d) \).

1 Preliminaries

In this section we recall some facts about Gelfand-Shilov spaces, Pilipović spaces and modulation spaces.

Let \(s > 0 \). Then the (Fourier invariant) Gelfand-Shilov spaces \(S_s(\mathbb{R}^d) \) and \(\Sigma_s(\mathbb{R}^d) \) of Roumieu and Beurling type, respectively, consist of all \(f \in C^\infty(\mathbb{R}^d) \) such that

\[
\|f\|_{S_{s,r}} \equiv \sup_{\alpha,\beta \in \mathbb{N}^d} \left(\|x^\alpha D^\beta f\|_{L^\infty}(\mathbb{R}^d)\right) r^{\alpha+\beta!(\alpha!\beta!)^s}
\]
(1.1)
is finite, for some \(r > 0 \) respectively for every \(r > 0 \). The topologies of \(S_\varepsilon (\mathbb{R}^d) \) and \(\Sigma_\varepsilon (\mathbb{R}^d) \) are the inductive limit topology and the projective limit topology, respectively, supplied by the norms \((1.1)\). We refer to [1,5] for more facts about Gelfand-Shilov spaces.

For \(\mathcal{H}_s (\mathbb{R}^d) \) and \(\mathcal{H}_{0,s} (\mathbb{R}^d) \) we consider the norms

\[
\| f \|_{\mathcal{H}_{s,r}} = \sup_{\alpha \in \mathbb{N}^d} \left(|c_\alpha(f)| e^{r|\alpha|^{2r}} \right) \quad \text{when } s \in \mathbb{R},
\]

and

\[
\| f \|_{\mathcal{H}_{s,r}} = \sup_{\alpha \in \mathbb{N}^d} \left(|c_\alpha(f)| r^{-|\alpha|} \right) \quad \text{when } s = b_\sigma,
\]

when \(r > 0 \) is fixed. Then the set \(\mathcal{H}_{s,r} (\mathbb{R}^d) \) consists of all \(f \in C^\infty (\mathbb{R}^d) \) such that \(\| f \|_{\mathcal{H}_{s,r}} \) is finite. It follows that \(\mathcal{H}_{s,r} (\mathbb{R}^d) \) is a Banach space.

The Pilipović spaces \(\mathcal{H}_s (\mathbb{R}^d) \) and \(\mathcal{H}_{0,s} (\mathbb{R}^d) \) are the inductive limit and the projective limit, respectively, of \(\mathcal{H}_{s,r} (\mathbb{R}^d) \) with respect to \(r > 0 \). In particular,

\[
\mathcal{H}_s (\mathbb{R}^d) = \bigcup_{r > 0} \mathcal{H}_{s,r} (\mathbb{R}^d) \quad \text{and} \quad \mathcal{H}_{0,s} (\mathbb{R}^d) = \bigcap_{r > 0} \mathcal{H}_{s,r} (\mathbb{R}^d)
\]

and it follows that \(\mathcal{H}_s (\mathbb{R}^d) \) is complete, and that \(\mathcal{H}_{0,s} (\mathbb{R}^d) \) is a Fréchet space. It is well-known that the identities \((0.3)\) and \((0.4)\) also hold in topological sense (cf. [7]).

By extending \(R_+ \) into \(R_\# = R_+ \cup \{ b_\sigma \}_{\sigma > 0} \) and letting

\[
s_1 < b_\sigma_1 < b_\sigma_2 < s_2 \quad \text{when} \quad s_2 \geq \frac{1}{2}, \ s_1 < \frac{1}{2} \quad \text{and} \quad \sigma_1 < \sigma_2,
\]

we have

\[
\mathcal{H}_{s_1} (\mathbb{R}^d) \subseteq \mathcal{H}_{0,s_2} (\mathbb{R}^d) \subseteq \mathcal{H}_{s_2} (\mathbb{R}^d), \quad s_1, s_2 \in R_\# \text{ and } s_1 < s_2.
\]

We also need some facts about weights and modulation spaces, a family of (quasi-)Banach spaces, introduced by Feichtinger in [2]. A weight on \(\mathbb{R}^d \) is a function \(\omega \in L^\infty_{\text{loc}} (\mathbb{R}^d) \) such that \(\omega(x) > 0 \) for every \(x \in \mathbb{R}^d \) and \(1/\omega \in L^\infty_{\text{loc}} (\mathbb{R}^d) \). The weight \(\omega \) on \(\mathbb{R}^d \) is called moderate of polynomial type, if there is an integer \(N \geq 0 \) such that

\[
\omega(x + y) \leq \omega(x)(1 + |y|)^N, \quad x, y \in \mathbb{R}^d.
\]

The set of moderate weights of polynomial type on \(\mathbb{R}^d \) is denoted by \(\mathcal{P}(\mathbb{R}^d) \).

Let \(p, q \in (0, \infty], \phi \in \mathcal{P}(\mathbb{R}^d) \setminus 0 \) and \(\omega \in \mathcal{P}(\mathbb{R}^{2d}) \) be fixed. Then the modulation space \(M_{\omega}^{p,q} (\mathbb{R}^d) \) consists of all \(f \in \mathcal{P}(\mathbb{R}^d) \) such that

\[
\| f \|_{M_{\omega}^{p,q}} = \| V_\phi f \cdot \omega \|_{L^p L^q}
\]

is finite. Here \(V_\phi f \) is the short-time Fourier transform of \(f \) with respect to \(\phi \), given by

\[
V_\phi f(x, \xi) = (2\pi)^{-\frac{d}{2}} (f, e^{i\langle \cdot, \xi \rangle} \phi(\cdot - x))
\]

and

\[
\| F \|_{L^p L^q} = \| F \|_{L^p L^q(\mathbb{R}^{2d})} = \| gF \|_{L^p L^q(\mathbb{R}^d)} \quad \text{when} \quad gF(\xi) = \| F(\cdot, \xi) \|_{L^p(\mathbb{R}^d)}
\]

and \(F \) is measurable on \(\mathbb{R}^{2d} \).

Modulation spaces possess several convenient properties. For example we have the following proposition (see [2,4] for proofs).

\[\square \]
2 Characterizations of \(\mathcal{H}_{p,q} (\mathbb{R}^d) \) and \(\mathcal{H}_{0,b,q} (\mathbb{R}^d) \) in terms of powers of the harmonic oscillator

In this section we deduce characterizations of the test function spaces \(\mathcal{H}_{p,q} (\mathbb{R}^d) \) and \(\mathcal{H}_{0,b,q} (\mathbb{R}^d) \).

More precisely we have the following.

Theorem 2.1 Let \(\sigma > 0, \ N, N_0 \in \mathbb{N} \) be such that \(N_0 \sigma > 1, \ p_0 \in [1, \infty), \ p, q \in (0, \infty], \ \omega \in \mathcal{P}(\mathbb{R}^{2d}) \) and let \(f \in C^\infty(\mathbb{R}^d) \) be given by (0.1). Then the following conditions are equivalent:

1. \(f \in \mathcal{H}_{p,q} (\mathbb{R}^d) \) (\(f \in \mathcal{H}_{0,b,q} (\mathbb{R}^d) \));
2. for some \(r > 0 \) (for every \(r > 0 \)) it holds
 \[
 \{ c_\alpha (f) r^{-|\alpha|} (\sigma \alpha!)^{1/\sigma} \}_{\alpha \in \mathbb{N}^d} \in \ell^q (\mathbb{N}^d);
 \]
3. for some \(r > 0 \) (for every \(r > 0 \)) it holds
 \[
 \| H_N^d f \|_{L^p (\mathbb{R}^d)} \lesssim 2^N r^{N/\log (N \sigma)} \left(\frac{2N \sigma}{\log (N \sigma)} \right)^N (1 - \frac{1}{\log (N \sigma)}), \quad N \geq N_0;
 \]
 \[
 (2.1)
 \]
4. for some \(r > 0 \) (for every \(r > 0 \)) it holds
 \[
 \| H_N^d f \|_{M_{p,q} (\mathbb{R}^d)} \lesssim 2^N r^{N/\log (N \sigma)} \left(\frac{2N \sigma}{\log (N \sigma)} \right)^N (1 - \frac{1}{\log (N \sigma)}), \quad N \geq N_0.
 \]
 \[
 (2.2)
 \]

We need some preparations for the proof. In the following proposition we treat separately the equivalence between (3) and (4) in Theorem 2.1.

Proposition 2.2 Let \(p_0 \in [1, \infty], \ p, q \in (0, \infty], \ \sigma > 0 \ N_0 > \sigma^{-1} \) be an integer and let \(\omega \in \mathcal{P}(\mathbb{R}^{2d}) \). Then the following conditions are equivalent:

1. \(\text{(2.1) holds for some } r > 0 \) (for every \(r > 0 \));
2. \(\text{(2.2) holds for some } r > 0 \) (for every \(r > 0 \)).

We need the following lemma for the proof of Proposition 2.2.

Lemma 2.3 Let \(R \geq e, I = (0, R) \),

\[
 g(r, t_1, t_2) \equiv \frac{r_{t_2}^2}{r_{t_1}^2} \quad \text{and} \quad h(t_1, t_2) \equiv \begin{cases} 2t_1 (1 - \frac{1}{\log t_2}) & \text{if } 2t_1 \geq 1 \\ \frac{2t_1}{\log t_1} & \text{if } 2t_1 < 1 \end{cases},
\]
when \(t_1, t_2 > e \) and \(r > 0 \). Then
\[
0 \leq g(r, t_1, t_2) \leq C \quad \text{and} \quad 0 \leq h(t_1, t_2) \leq \left(\frac{2t_1}{\log t_1} \right)^C
\] \hspace{1cm} (2.3)

when
\[
t_1, t_2 > R, \ 0 \leq t_2 - t_1 \leq R, \ r \in I,
\]
for some constant \(C > 0 \) which only depends on \(R \).

Proof Since \(t \mapsto \frac{t}{\log t} \) is increasing when \(t \geq e \), \(g \) is upper bounded by one when \(r \leq 1 \), and the boundedness of \(g \) follows in this case.

If \(r \geq 1 \), \(t = t_1, u = t_2 - t_1 > 0 \) and \(\rho = \log r \), then
\[
0 \leq \log g(r, t_1, t_2) = \left(\frac{t + u}{\log(t + u)} - \frac{t}{\log t} \right) \rho
\]
\[
= \frac{t}{\log t} \left(\frac{1 + \frac{u}{t}}{1 + \frac{u}{\log t}} - 1 \right) \rho = \frac{t}{\log t} \left(\frac{\frac{u}{t} - \frac{1}{\log t}}{1 + \frac{1}{\log t}} \right) \rho
\]
\[
< \frac{t}{\log t} \cdot \frac{u}{t} \cdot \rho
\]
\[
= \frac{u \rho}{\log t} \leq C
\]
for some constant \(C \) which only depends on \(R \). This shows the boundedness of \(g \).

Next we show the estimates for \(h(t_1, t_2) \) in (2.3). By taking the logarithm of \(h(t_1, t_2) = h(t, t_2) \) we get
\[
\log h(t, t_2) = t_2 \log \left(\frac{2t_2}{\log t_2} \right) - t \log \left(\frac{2t}{\log t} \right) - b(t, t_2),
\]
where
\[
b(t, t_2) = \left(\frac{t_2}{\log t_2} \log \left(\frac{2t_2}{\log t_2} \right) - \frac{t}{\log t} \log \left(\frac{2t}{\log t} \right) \right).
\]
Since \(b(t, t_2) > 0 \) when \(t_2 > t \), we get
\[
\log h(t_1, t_2) < t_2 \log \left(\frac{2t_2}{\log t_2} \right) - t \log \left(\frac{2t}{\log t} \right)
\]
\[
= (t + u) \left(\log \left(\frac{2t}{\log t} \right) + \log \left(\frac{1 + \frac{u}{t}}{1 + \frac{1}{\log t}} \right) \right) - t \log \left(\frac{2t}{\log t} \right)
\]
\[
\leq u \log \left(\frac{2t}{\log t} \right) + t \log \left(1 + \frac{u}{t} \right) + C
\]
\[
\leq u \log \left(\frac{2t}{\log t} \right) + u + C
\]
for some constant \(C \geq 0 \). Here we have used that \(t_1, t_2 > R \geq e \) and the fact that \(t \mapsto \frac{t}{\log t} \) increases for \(t \geq R \).
Proof of Proposition 2.2.} First we prove that (2.2) is independent of \(N_0 > \sigma^{-1} \) when \(p, q \geq 1 \). Evidently, if (2.2) is true for \(N_0 \), then it is true for any larger replacement of \(N_0 \). On the other hand, the map

\[
H_d^N : M_{(v_N,\omega)}^{p,q}(\mathbb{R}^d) \to M_{(\omega)}^{p,q}(\mathbb{R}^d), \quad v_N(x, \xi) = (1 + |x|^2 + |\xi|^2)^N,
\]

and its inverse are continuous and bijective (cf. e.g. [8, Theorem 3.10]). Hence, if \(\sigma^{-1} < N_1 \leq N_0 \), \(N_2 = N_0 - N_1 \geq 0 \) and (2.2) holds for \(N_0 \), then

\[
\| H_d^{N_1} f \|_{M_{(\omega)}^{p,q}} \lesssim \| H_d^{N_0} f \|_{M_{(\omega)}^{p,q}} \lesssim \| H_d^{N_0} f \|_{M_{(\omega)}^{p,q}} < \infty,
\]

and a straightforward combination of these estimates and (2.3) shows that (2.2) holds for \(N_1 \) in place of \(N_0 \). This implies that (2.2) is independent of \(N_0 > \sigma^{-1} \) when \(p, q \geq 1 \).

Next we prove that (2.2) is independent of the choice of \(\omega \in \mathcal{P}(\mathbb{R}^{2d}) \). By the first part of the proof, we may assume that \(N_0 \sigma > e \). For every \(\omega_1, \omega_2 \in \mathcal{P}(\mathbb{R}^{2d}) \), we may find an integer \(N_0 > \sigma^{-1}e \) such that

\[
\frac{1}{v_{N_0}} \lesssim \omega_1, \omega_2 \lesssim v_{N_0},
\]

and then

\[
\| f \|_{M_{(1/v_{N_0})}^{p,q}} \lesssim \| f \|_{M_{(1/v_{N_0})}^{p,q}}, \quad \| f \|_{M_{(1/v_{N_0})}^{p,q}} \lesssim \| f \|_{M_{(1/v_{N_0})}^{p,q}}.
\]

Hence the stated invariance follows if we prove that (2.2) holds for \(\omega = v_{N_0} \), if it is true for \(\omega = 1/v_{N_0} \).

Therefore, assume that (2.2) holds for \(\omega = 1/v_{N_0} \). Let \(f_N = H_d^N f, u = 2N_0 \sigma, t = t_1 = N \sigma, N_2 = N + 2N_0 \) and \(t_2 = t_1 + u = N_2 \sigma \). If \(N \geq 2N_0 \), then the bijectivity of (2.4) gives

\[
\begin{align*}
\| f_N \|_{M_{(1/v_{N_0})}^{p,q}}^{\sigma} & \lesssim \left(\frac{N_2}{\log(N_2)} \right)^{N_2} + t \left(\frac{t}{\log(t)} \right)^{t} \left(\frac{1}{1 - \log(t)} \right) \left(\frac{N_2}{\log(N_2)} \right)^{N_2} \left(\frac{t}{\log(t_2)} \right)^{t_2} \left(\frac{1}{1 - \log(t_2)} \right) \\
& = 2^u g(r, t_1, t_2) h(t_1, t_2), \quad \frac{\| f_N \|_{M_{(1/v_{N_0})}^{p,q}}^{\sigma}}{\| f_N \|_{M_{(1/v_{N_0})}^{p,q}}^{\sigma}} \lesssim \frac{\| f_N \|_{M_{(1/v_{N_0})}^{p,q}}^{\sigma}}{\| f_N \|_{M_{(1/v_{N_0})}^{p,q}}^{\sigma}},
\end{align*}
\]

where \(g(r, t_1, t_2) \) and \(h(t_1, t_2) \) are the same as in Lemma 2.3. A combination of Lemma 2.3, (2.6) and the fact that \(N \sigma > e \) shows that (2) is independent of \(\omega \in \mathcal{P}(\mathbb{R}^{2d}) \). For general \(p, q > 0 \), the invariance of (2.2) with respect to \(\omega, p \) and \(q \) is a consequence of the embeddings

\[
M_{(v_N,\omega)}^{\infty}(\mathbb{R}^d) \subseteq M_{(\omega)}^{p,q}(\mathbb{R}^d) \subseteq M_{(\omega)}^{\infty}(\mathbb{R}^d), \quad N > d \left(\frac{1}{p} + \frac{1}{q} \right)
\]

(see e.g. [4, Theorem 3.4] or [10, Proposition 3.5]).
The equivalence between (1) and (2) now follows from these invariance properties and the continuous embeddings
\[M^{p_0,q_1} \subseteq L^{p_0} \subseteq M^{p_0,q_2}, \quad q_1 = \min(p_0, p'_0), \quad q_2 = \max(p_0, p'_0), \]
which can be found in e.g. [9, Proposition 1.7].

Proposition 2.4 Let \(f \in C^\infty(\mathbb{R}^d) \) and \(\sigma > 0 \). If
\[
\| H_d^N f \|_{L^2} \lesssim 2^N r \frac{2N\sigma}{\log(N\sigma)} \left(\frac{N(1 - \frac{1}{\log(N\sigma)})}{\log(N\sigma)} \right)^N, \quad N \in \mathbb{N}, \ N\sigma \geq e, \tag{2.7}
\]
for some \(r > 0 \) (for every \(r > 0 \)), then
\[
|c_\alpha(f)| \lesssim r^{|\alpha|}|\alpha|^{-\frac{|\alpha|}{2r}}, \quad \alpha \in \mathbb{N}^d, \tag{2.8}
\]
for some \(r > 0 \) (for every \(r > 0 \)).

Proposition 2.5 Let \(f \in C^\infty(\mathbb{R}^d) \) and \(\sigma > 0 \). If (2.8) holds for some \(r > 0 \) (for every \(r > 0 \)), then (2.7) holds for some \(r > 0 \) (for every \(r > 0 \)).

For the proofs we need some preparation lemmas.

Lemma 2.6 Let \(\sigma > 0, \sigma_0 \in [0, \sigma] \) and let
\[
F(r, t) = \left(\frac{2t}{\log t} \right)^{t \left(1 - \frac{1}{\log t} \right)} r^{\frac{t}{\log t}}, \quad r \geq 0, \quad t \geq e \cdot \max(1, \sigma).
\]
Then
\[
F(r, t) \leq F(r, t + \sigma_0), \quad r \in [1, \infty), \tag{2.9}
\]
and
\[
F(r, t) \leq F(r^{1 - \frac{1}{r}}, t + \sigma_0), \quad r \in (0, 1]. \tag{2.10}
\]

Proof If \(r \geq 1 \), then it follows by straight-forward tests with derivatives that \(F(r, t) \) is increasing with respect to \(t \geq e \). This gives (2.9).

In order to prove (2.10), let \(t_1 = t + \sigma_0 \) and
\[
h(t_1, \sigma_0) = \frac{1 - \frac{\sigma_0}{t_1}}{1 + \frac{\sigma_0}{\log(t_1)}},
\]
where \(0 \leq \sigma_0 \leq \sigma \). Then
\[
\left(\frac{2t}{\log t} \right)^{t \left(1 - \frac{1}{\log t} \right)} r^{\frac{t}{\log t}} \leq \left(\frac{2t_1}{\log t_1} \right)^{t_1 \left(1 - \frac{1}{\log t_1} \right)} r^{\frac{t_1}{\log t_1}} \tag{2.11}
\]
and
\[
\frac{2t}{\log t} = h(t_1, \sigma_0) \cdot \frac{2t_1}{\log t_1}.
\]
Since
\[
0 \leq \frac{\sigma_0}{t_1} \leq \frac{1}{e} \quad \text{and} \quad -1 < \frac{\log \left(1 - \frac{\sigma_0}{\sigma} \right)}{\log t_1} \leq 0
\]
we get

\[h(t_1, \sigma_0) \geq 1 - \frac{\sigma_0}{t_1} \geq 1 - \frac{1}{e}. \]

Hence the facts \(\frac{r}{\log t} \geq 1 \) and \(0 < r \leq 1 \) give

\[r \frac{r}{\log t} = r^{h(t_1, \sigma_0)} \frac{r}{\log t_1} \leq r^{(1 - \frac{1}{e})} \frac{r}{\log t_1}. \]

A combination of the latter inequality with (2.11) gives

\[F(r, t) \leq \left(\frac{2t_1}{\log t_1} \right)^{t_1 \left(1 - \frac{1}{\log t_1} \right)} \left(r^{1 - \frac{1}{e}} \right)^{\frac{r}{\log t_1}} = F \left(r^{1 - \frac{1}{e}}, t_1 \right). \]

\[\Box \]

Lemma 2.7 Let \(s \geq \sigma (e + 1) + e^2 \)

\[\Omega_1 = [e, \infty) \cap (\sigma \cdot N) \quad \text{and} \quad \Omega_2 = [e, \infty). \]

Then the following is true:

1. For any \(r_2 > 0 \), there is an \(r_1 > 0 \) such that

\[\inf_{t \in \Omega_j} \left(s - t \left(\frac{2t}{\log t} \right)^{t \left(1 - \frac{1}{\log t} \right)} \left(r_1^{1 - \frac{1}{e}} \right)^{\frac{r}{\log t_1}} \right) \leq r_2 s^{-\frac{1}{e}}, \quad j = 1, 2; \]

(2.12)

2. For any \(r_1 > 0 \), there is an \(r_2 > 0 \) such that (2.13) holds.

Proof First prove the result for \(j = 2 \). Let

\[x = \log t, \quad y = \log s \geq \log(\sigma (e + 1) + e^2) > 2, \quad \rho_j = \log r_j, \quad j = 1, 2. \]

By applying the logarithm on (2.12), the statements (1) and (2) follow if we prove:

1. For any \(\rho_2 \in \mathbb{R} \), there is a \(\rho_1 \in \mathbb{R} \) such that

\[\inf_{x \geq x_0} F(x) \leq 0, \quad x_0 = \log(\sigma (e + 1) + e^2) \]

(2.13)

where

\[F(x) = -e^x y + e^x \left(1 - \frac{1}{x} \right) (x + \log 2 - \log x) + \rho_1 \frac{e^x}{x} - \rho_2 e^y + \frac{e^y y}{2} \]

(2.14)

2. For any \(\rho_1 \in \mathbb{R} \), there is a \(\rho_2 \in \mathbb{R} \) such that (2.13) holds.

We choose

\[x = y + \log y - \log 2 \geq \log s \geq x_0 \quad \text{and let} \quad h = g(y), \]

where

\[g(u) = \frac{\log u - \log 2}{u}. \]

Obviously, \(x \) increases with \(y \), and by function investigations it follows that

\[0 = g(2) < g(u) \leq g(2e) = \frac{1}{2e}, \quad u > 2, \]
Let C for some large number 2.6 can be applied since $\epsilon > 1$. Then (2.14) becomes

$$
e^{-\gamma} F(y + \log y - \log 2) = -\frac{y^2}{2} + \frac{y}{2} \left(1 - \frac{1}{y + \log \frac{y}{2}}\right) \left(y + \log y - \log \left(y + \log \frac{y}{2}\right)\right)$$

$$+ \frac{\rho_1 y}{2(y + \log \frac{y}{2})} - \rho_2 + \frac{y}{2}$$

$$= -\frac{y}{2} \log(1 + h) + \frac{\log y + \log(1 + h)}{2(1 + h)} + \frac{\rho_1 - \log 2}{2(1 + h)} - \rho_2.$$

If $\rho_1 \in \mathbb{R}$ is fixed, then we choose $\rho_2 \in \mathbb{R}$ such that

$$\rho_1 - \log 2 \leq -C_0$$

(2.15)

for some large number $C_0 > 0$. In the same way, if $\rho_2 \in \mathbb{R}$ is fixed, then we choose $\rho_1 \in \mathbb{R}$ such that (2.15) holds. For such choices and the fact that $0 < h < 1$, the inequalities

$$0 < h - \frac{h^2}{2} \leq \log(1 + h) \leq h$$

give

$$F(y + \log y - \log 2) \leq e^y \left(-\frac{y}{2} \log(1 + h) + \frac{\log y + \log(1 + h)}{2(1 + h)} - C_0\right)$$

$$\leq e^y \left(-\frac{y}{2} \log(1 + h) + \frac{\log y + \log(1 + h)}{2} - C_0\right)$$

$$\leq e^y \left(-\frac{\log y - \log 2}{2} + \frac{(\log y - \log 2)^2}{4y} + \frac{1}{2} (\log y + h) - C_0\right)$$

$$\leq e^y \left(\frac{1}{2} \log 2 + \frac{(\log y - \log 2)^2}{4y} + \frac{h}{2} - C_0\right) < 0,$$

provided C_0 was chosen large enough. This gives the result in the case $j = 2$.

Next we prove the result for $j = 1$. Let $t_2 > 0$. By the first part of the proof, there are $t_1 \geq e(\sigma + 1) + \sigma$ and $r_0 > 0$ such that

$$s^{-t_1} \left(\frac{2t_1}{\log t_1}\right)^{t_1} \left(1 - \frac{1}{\log t_1}\right) = r_0^{t_1} \leq r_2^{x-t} s^{-t}.$$

Let $r_1 = r_0$ if $r_0 \geq 1$ and $r_1 = r_0^{x-t}$ otherwise. By Lemma 2.6 it follows that

$$s^{-t} \left(\frac{2t}{\log t}\right)^{t} \left(1 - \frac{1}{\log t}\right) r_1^{t} \leq r_2^{x-t} s^{-t}$$

holds when $t = N\sigma$ and $N \in \mathbb{N}$ is chosen such that $0 \leq t_1 - N\sigma \leq \sigma$. Observe that Lemma 2.6 can be applied since $N\sigma \geq e(\sigma + 1)$. This gives (1) for $j = 1$.

By similar arguments, (2) for $j = 1$ follows from (2) in the case $j = 2$. The details are left for the reader. \hfill \Box

Proof of Proposition 2.4. Suppose that (2.7) holds for some $r = r_1 > 0$. By

$$c_{\alpha}(H^{N}_{\delta} f) = (2|\alpha| + d)N c_{\alpha}(f), \quad |c_{\alpha}(H^{N}_{\delta} f)| \leq \|H^{N}_{\delta} f\|_{L^2}$$

(2.16)
and (2.7) we get
\[
|c_\alpha(f)| = \frac{|c_\alpha(H_d^N f)|}{(2|\alpha| + d)^N} \\
\leq \left(|\alpha| + \frac{d}{2}\right)^{-N} r_1^{\frac{N}{\log(N\sigma)}} N^\left(1 - \frac{1}{\log(N\sigma)}\right) \\
\leq \left(|\alpha|^{-N\sigma} r_1^{\frac{N\sigma}{\log(N\sigma)}} N^\sigma \left(1 - \frac{1}{\log(N\sigma)}\right)\right)^{\frac{1}{\sigma}}.
\]

By taking the infimum over all \(N \geq 0 \), it follows from Lemma 2.7 (2) that
\[
|c_\alpha(f)| \lesssim \left(r_2^{|\alpha|} |\alpha|^{-\frac{|\alpha|}{2}}\right)^{\frac{1}{\sigma}} = r^{|\alpha|} |\alpha|^{-\frac{|\alpha|}{2\sigma}}, \quad |\alpha| \geq 2\sigma (e + 1) + e^2,
\]
for some \(r_2 > 0 \), where \(r = r_2^{\frac{1}{\sigma}} \). Hence (2.8) holds for some \(r > 0 \).

By similar arguments, using (1) instead of (2) in Lemma 2.7, it follows that if (2.7) holds for every \(r > 0 \), then (2.8) holds for every \(r > 0 \).

For the proof of Proposition 2.5 we will use the following result which is essentially a slight clarification of [3, Lemma 2]. The proof is therefore omitted.

Lemma 2.8 Let \(r > 0 \) and
\[
f(s, t, r) = \frac{s^{2t} (2r e)^s}{s^s}, \quad s > 1, \ t \geq 0.
\]

Then there exist a positive increasing function \(\theta \) on \([0, \infty)\) and a constant \(t_0 = t_0(r) > e \) which only depends on \(r \) such that
\[
\max_{s > 0} f(s, t, r) \leq \left(\frac{2t}{\log t}\right)^{2t} (\theta(r))^\frac{2t}{\log t}, \quad t \geq t_0(r). \quad (2.17)
\]

Remark 2.9 The constants \(s, t \) and \(t_0(r) \) in Lemma 2.8 are denoted by \(t, N \) and \(N_0(r) \), respectively in Lemmas 1 and 2 in [3]. In the latter results it is understood that \(N \) and \(N_0(r) \) are integers. On the other hand, it is evident from the proofs of these results that they also hold when \(N \) and \(N_0(r) \) are allowed to be in \(\mathbb{R}_+ \).

Proof of Proposition 2.5. Let \(\theta \) be as in Lemma 2.8 and let \(\rho \in (0, 1) \). Suppose that (2.8) holds for some \(r > 0 \) and let \(r_2 > r^\sigma \). From (2.8) and (2.16) we get
\[
\|H_d^N f\|_{L^2}^2 = \sum_{\alpha \in \mathbb{N}^d} |(2|\alpha| + d)^N c_\alpha(f)|^2 \\
\leq \sup_{|\alpha| \geq 1} \left(2|\alpha| + d\right)^{2N} r_2^{2|\alpha| |\alpha|^{-\frac{|\alpha|}{\sigma}}} \\
= \sup_{s \geq 1} \left(2^{2t} \left(s + \frac{d}{2}\right)^{2t} r_2^{2s} s^{-\frac{s}{\sigma}}\right)^{\frac{1}{\sigma}}.
\]
where $s = |\alpha|$ and $t = N\sigma$. Since $0 < \rho < 1$ we have

$$s^s = (s - \frac{d}{\rho})^{s - \frac{d}{\rho}} \leq \left(s - \frac{d}{2}\right)^{s - \frac{d}{2}} \left(1 + \frac{d}{2s - d}\right)^{s - \frac{d}{2}}.$$

This gives

$$\|H_N^d f\|_2^2 \lesssim \sup_{s \geq 1} \left(2^{2t} \left(s + \frac{d}{2}\right) 2^{4s} s^{-\frac{d}{2}} \right)\frac{1}{\sigma}$$

Using (2.18) and Lemma 2.8 we obtain

$$\|H_N^d f\|_2^2 \lesssim \sup_{s \geq 1 + \frac{d}{2}} \left(2^{2t} s^{2t} \left(\frac{r_2}{\rho}\right) 2s - s^{\frac{d}{2}} \right)\frac{1}{\sigma}$$

when $c \in (0, 1)$, which shows that (2) is independent of the choice of q. The equivalence between (1) and (2) now follows by the definitions and choosing $q = \infty$ in (2).

Proof of Theorem 2.1. We have

$$\|\{c_\alpha(f)^r - |\alpha|^r(\alpha!)^{\frac{1}{\alpha'}}\}_{\alpha \in \mathbb{N}^d}\|_{\ell^\infty(\mathbb{N}^d)} \leq \|\{c_\alpha(f)^r - |\alpha|^r(\alpha!)^{\frac{1}{\alpha'}}\}_{\alpha \in \mathbb{N}^d}\|_{\ell^q(\mathbb{N}^d)}$$

when $c \in (0, 1)$, which shows that (2) is independent of the choice of q. The equivalence between (1) and (2) now follows by the definitions and choosing $q = \infty$ in (2).
By Proposition 2.2 we may assume that $p = 2$. The result now follows from Propositions 2.4 and 2.5, together with the fact that

$$(d \cdot e)^{-|\alpha|} |\alpha|^{|\alpha|} \leq \alpha! \leq |\alpha|^{|\alpha|}, \quad \alpha \in \mathbb{N}^d.$$

\[\square\]

Acknowledgements Open access funding provided by Linnaeus University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Chung, J., Chung, S.-Y., Kim, D.: Characterizations of the Gelfand-Shilov spaces via Fourier transforms. Proc. Am. Math. Soc. 124, 2101–2108 (1996)
2. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical report, University of Vienna, Vienna, 1983. In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and Their Applications, pp. 99–140. Allied Publishers Private Limited, NewDelhi (2003)
3. Fernández, C., Galbis, A., Toft, J.: The Bargmann transform and powers of harmonic oscillator on Gelfand-Shilov subspaces. RACSAM 111, 1–13 (2017)
4. Galperin, Y.V., Samarah, S.: Time-frequency analysis on modulation spaces $M_{p,q}^m$, $0 < p, q \leq \infty$. Appl. Comput. Harmon. Anal 16, 1–18 (2004)
5. Gelfand, I.M., Shilov, G.E.: Generalized Functions, II–III. Academic Press, NewYork (1968)
6. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer, Berlin (1983)
7. Pilipović, S.: Tempered ultradistributions. Boll. UMI 7, 235–251 (1988)
8. Signahl, M., Toft, J.: Mapping properties for the Bargmann transform on modulation spaces. J. Pseudo Differ. Oper. Appl. 3, 1–30 (2012)
9. Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential operators. I. J. Funct. Anal. 207, 399–429 (2004)
10. Toft, J.: Gabor analysis for a broad class of quasi-Banach modulation spaces. In: Pilipović, S., Toft, J. (eds.) Pseudo-differential Operators, Generalized Functions, Operator Theory: Advances and Applications, pp. 249–278. Birkhäuser, Berlin (2015)
11. Toft, J.: Images of function and distribution spaces under the Bargmann transform. J. Pseudo Differ. Oper. Appl. 8, 83–139 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.