BROWNIAN DYNAMICS SIMULATIONS OF SINGLE-FILE MOTION THROUGH NANOCHANNELS

I. D. Kosińska and A. Fuliński

M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, PL-30-059 Kraków, Poland

Algorithm is constructed which models single-file motion of particles interacting with each other and with the surroundings. As an example, we present the results of Brownian Dynamics simulations of the motion of cations moving through a short very narrow channel containing a device called “gate”, which may open and close the channel.

1. Introduction

Nanochannel transport and physical mechanisms of its regulation are among leading open problems in nanoscience. Its importance results from the fact that controlled and selective flow of matter through proteins in the cell membrane – achieved by active and passive channels [1] – is one of most important biophysical processes in living cells. On the other hand, similar functions may be performed by synthetic nanopores which also can rectify the ionic currents [2, 3, 4] and pump the ions against their concentration gradients [5] and therefore may be used as simple models of biological (protein) channels, and, on the other hand, may serve as devices for manipulating the transport in the nanoscale. Therefore it is important to understand the conditions and properties of material transport inside the nanopore.

The well-known and rather obvious property of the transport of material through very narrow pores is that the particles (ions, molecules ...) can pass through such channels in the form of single file only [6].

In the absence of noise (i.e., in standard Molecular Dynamics simulations) time increments \(\delta t \) can be made arbitrarily small. This feature makes easy (in principle, at least) to keep all particles in prescribed unchanged order. In the Brownian Dynamics (BD) the action of random forces may result in arbitrarily high velocities and arbitrarily long jumps, time increment being irrelevant in this respect. Therefore it is impossible to keep particles in still the same ordering by reducing time increments, the more that in
the presence of noise the time increments cannot be arbitrary \[7, 8\]. Some additional procedures are needed.

We present here the developed by us algorithm which models single-file motion of particles interacting with each other and with the surroundings, moving in a short very narrow channel containing a device called “gate”, which may open and close the channel. To be specific, we shall discuss in this paper the electrostatic and hard-sphere interactions, though the formulas and the algorithms themselves can be easily adapted to any (sensible) form of interactions.

2. The model

We use the simplified model which does not take into account the details of the channel’s structure. Full MD simulations of a K\(^+\)-channel, including its molecular structure, water inside, all ions in the immediate vicinity, etc., requires use of total number of atoms in the simulation system above \(4 \times 10^4\), and time-steps 0.2 fs \[9,10\]. Such simulations have also some other drawbacks \[11\].

Little is known about the details of the gating mechanism, the more that the motions of dangling ends \[12\] in synthetic pores are probably quite different from the motions of the subunits of proteins constituting the biological channels. Therefore, without entering into details of equations of motion for the channel’s walls, we model the gating process by introducing inside the channel the artificial device called “gate” which can either allow or prevent the flow of particles through the channel.

The main assumptions are:

(i) We simulate the motions of the particles inside the simulation zone (SZ) of the length \(L\), narrow enough to force the particles inside SZ to move in the single-file order. Knowledge of the detailed shape (e.g. cylinder, cone, hour-glass) is not necessary from this point of view. Regions outside are treated as reservoirs for particles both outgoing from and ingoing into SZ.

(ii) We neglect the motions in radial directions, and describe the particles as moving along the \(z\)-axis of the SZ only (quasi-onedimensional motion). However, the physical system (electrostatic interactions, etc.) remains three-dimensional.

(iii) The opening and closing of the channel (so-called gating process) is modeled by the presence of the charged “gate” located inside SZ. The state of the gate is determined by its Brownian motion (Wiener process of intensity \(Q_b\)), and by electrostatic interactions with the ions inside SZ and with external electric field. The gate opens when the net force exceeds some threshold value, and closes otherwise. Minimal approach distance between
particle and gate is d_{cg}.

(iv) The real channels exhibiting the flicker noise are asymmetric and charged. We model these properties by the mentioned above gate, and by additional charges located outside SZ.

(v) Water molecules are not modeled explicitly but are described electrostatically by an effective dielectric constant and as the source of friction and noise – as is frequently done [13].

No periodic boundary conditions are imposed. Instead, in our simulations we assumed (when other rules are satisfied) that

(i) Particles can leave and enter the simulation zone (SZ) through both apertures.

(ii) Particle leaves the simulation zone (and can be counted to the current balance at the given aperture) when its center-of-mass position is smaller than the lower threshold, or greater then the higher threshold. In our case we accepted as thresholds the particle diameter d_c and SZ length L minus d_c.

(iii) Single-file assumption implies that when one particle leaves the simulation zone, another cannot enter through the same aperture in the same time (i. e., during the same time-step).

(iv) When rule (iii) allows, particle may enter SZ when nearest particle is farther that the prescribed smallest distance. In our case the smallest distance is $d_c + \epsilon$ ($\epsilon = 0.00001$ nm).

(v) Particles enter SZ with prescribed finite probabilities $P(0)$ and $P(L)$, which may be different for different apertures (i. e. at $x = 0$ and $x = L$). The probabilities of entrance simulate concentrations outside SZ – the lower concentration, the lower probability.

In our simulations we assumed that (when other rules are satisfied) during one time-step only one particle may enter the SZ through a given entrance, and, when entering, that it is located at the distance d_c from the aperture. This rule can be changed.

The Langevin-type equations of motion for the particles (cations) moving along the channel reads:

$$m_i \ddot{v}_i = -\gamma_i v_i + R_i(z_i) + F_i(z_i),$$
$$\dot{z}_i = v_i,$$

where v_i is the velocity of i-th ion, z_i – the position, m_i – the mass, γ_i – the friction coefficient, $F_i(z_i)$ – sum of deterministic forces, and $R_i(z_i)$ – the random force.

The gate is charged to prescribed value $q_g = Z_g e$, where Z_g is the valence and can be in two states: open and closed, respectively. In our simulation important is the absolute value of the force F_g acting on the gate. We assume F_g to be sum of deterministic and random forces described below.
The deterministic force $F_i(z_i)$ experienced by the cations and the gate consist of the applied external force (voltage), and the internal Coulomb force from other charges. The Coulomb interaction between two ions is modified by the addition of a short-range repulsive $1/r^{10}$ force, where r is the ion-ion distance \cite{S}.

The random force R_i acting on ions is assumed to be the thermal noise represented by the Gaussian white noise. On the other hand the random force experienced by the gate R_g is given by the Wiener process (gate’s Brownian motion) $R_g = \sum_i R_i$.

In the Brownian Dynamics calculations, δt should be of the order of m/γ \cite{L, E}. Using the Euler scheme

$$m\dot{v}(t) + \gamma v(t) = F(t) \rightarrow m\frac{v(t + \delta t) - v(t)}{\delta t} + \gamma v(t) = F(t) \quad (2)$$

would lead to obviously wrong result: $v(t + \delta t) = F(t)$. Therefore we use the following scheme of discretization:

$$m\frac{v(t + \delta t) - v(t)}{\delta t} + \frac{\gamma}{2}[v(t + \delta t) + v(t)] = F(t)$$
$$z(t + \delta t) - z(t) \quad \frac{\delta t}{\delta t} = v(t + \delta t). \quad (3)$$

This computational scheme is similar, though not identical, with that described recently in ref. \cite{L, E}. The “forward evaluation” (Eq.3) has stability and accuracy implications, and \cite{E} suggest using it for each extrapolative force calculations.

3. Numerical results

The length of the simulation zone is $L = 10$ nm. This corresponds to the real length of biological channels, and – roughly – to the length of the narrow part of the synthetic channel reported in \cite{D}.

The net flow of particles through the channel (simulation zone) was calculated either by keeping the balance of particles entering and leaving both apertures, or by counting the particles passing the gate in both directions. Both procedures lead to the same results.

Initial values of velocities of particles were drawn from the Maxwell distribution with the variance k_BT/m_c. The results are insensitive on the exact values of temperature and mass within rather wide range of temperatures and masses.

A list of the parameters used in the BD simulations is given below:

Temperature: $T = 298$ K and $k_BT = 4.12 \times 10^{-21}$ J,
Mass: $m_c = 6.5 \times 10^{-26} \text{ kg}$, Friction constant: $\gamma_c = 2.08 \times 10^{-12} \text{ kg/s}$, Dielectric constant: $\epsilon_w = 81$, Voltage: $U = 1.77 \times 10^{-2} \text{ V}$, Ion diameter: $d_c = 0.266 \times 10^{-9} \text{ m}$, Ion-gate min. distance: $d_{cg} = 2.5d_c$, Valences: $Z_c = +1$, $Z_g = -50$, Intensity of short-range force: $F_{SR}^0 = 444 \times 10^{-9} \text{ N}$, Intensity of noise: $Q_c = 0.47 \times 10^{-9} \text{ N}$, $Q_g = 0.01Q_i$. Intensity of the gate’s noise Q_g is different from cations’ one Q_c (and is taken as a free parameter) due to the difference of masses, and also due to a kind of “stiffness” of (or hindrances in) the motions of channel’s walls constituents. In all simulations first 10^6 steps were rejected. The power spectrum was calculated from runs of length $10^7 \delta t$. The power spectrum of the series $\{m_1, \ldots m_N\}$ is

$$S(f) = \frac{1}{N} \left| \sum_{n=1}^{N} m_n e^{-2\pi ifn} \right|^2,$$ \hspace{1cm} (4)

where m_n denotes either the net number of particles leaving SZ during the n-th step (then m_n can be either positive, zero, or negative), the number of particles inside SZ at the end of the n-th step ($m_n = N_p \geq 0$), or

Fig.1. Power spectra $S(f)$ of the stochastic series of subsequent values of the net number of cations m_n leaving the simulation zone. Red: $S(f)$ for 7 different realizations of the intrinsic noises, the same values of all parameters in every series: $\epsilon = 81$, $m_c = 6.5 \times 10^{-26} \text{ kg}$, $U = 1.77 \times 10^{-2} \text{ V}$, $\delta t = 31 \times 10^{-15}s$, $Q_g = 0.01Q_c$, $F_{SR}^0 = 444 \times 10^{-9} \text{ N}$, gate thresholds = ±1100 × 10^{-12} \text{ N}. Blue: $S(f)$ with the same realizations of the intrinsic noises, for 7 different values of all parameters in every series. In every series only one parameter is changed: $\epsilon = 0.93\epsilon^0$, $m = 0.77m^0$, $U = 1.33U^0$, $\delta t = 0.8\delta t^0$, $Q_g = 0.75Q_g^0$, $F_{SR} = 0.6F_{SR}^0$, where p^0 denotes the value of the given parameter from the panel A.
the state of the gate during the n-th step (then $m_n = \{0, 1\}$). All these power spectra are dimensionless. There are data that suggest that inside very narrow pores the physical properties of aqueous solutions, such as dielectric constant, density, diffusion coefficient, viscosity, solvation of ions (i.e., their effective diameters), etc. may differ from their bulk values [17]. Therefore we checked how the changes of such parameters influence our model. We found that the quantitative changes of calculated values of net currents and of frequency spectra resulting from reasonable variations of these parameters are within the limits of quantitative differences resulting from different realizations of the noise. The results are shown in Figs.1–3. These observations suggest robustness of the model. On the other hand, the model is sensitive with respect to the changes of relative strength of random and deterministic forces – decrease of the dielectric constant with noise unchanged, or increase of noise with electrostatic forces unchanged changed significantly the results. E.g., either too strong gate noise or too strong electrostatic force (i.e., low dielectric constant) dampen the flicker noise.

When the single-file limitations are removed, all the power spectra shown in Figs. 1-3 become $S(f) \sim f^{-1.5}$, i.e., the corresponding processes behave like the Wiener process.

4. Appendix

Here we present the codes for the single-file motion. The codes for entrances and exits of particles, for the number of particles located to the

Fig. 2. Power spectra $S(f)$ of the stochastic series of subsequent values of the number of cations N_p inside the simulation zone. Notation and values of parameters the same as in Fig. 1.
Fig. 3. Power spectra $S(f)$ of the stochastic series of subsequent values of the state of the gate. Notation and values of parameters the same as in Fig. 1.

left of the gate, as well as the codes for the determination of the state of the gate (open or closed), and for the equations of motion are standard and will not be reproduced here.

Single-file procedures are based on the fact that the given particle (cation) i cannot move farther that its neighbours $i - 1$ and $i + 1$, which in turn are limited by their neighbours, i and $i - 2$ or $i + 2$, etc. Therefore their positions need to be recalculated. In the simplest version, it is assumed that particles meet at the middle of their former positions. In the better versions such a pair of particles meets at the position calculated from their former positions and from their new velocities. On the other hand, the particles retain their velocities until a given pair meets, then they collide and – in the simplest version – exchange their velocities (behave as hard spheres). Again, it is possible to refine this simplest procedure. Because the results of the above-described procedure depend on whether the recalculation are done“up” or “down”, i.e., from particle number 1 to N, or from N to 1, both reorderings are realized independently, their results are averaged, and the whole scheme is iterated until self-consistency is attained.

Before using the SFM-codes below, one needs to supply the values of entries of three main arrays: $ZK[Nkmax]$, $VK[Nkmax]$, in which the positions and velocities of particles inside the simulation zone are stored, $ZK0[Nkmax]$ in which former positions are remembered, and two auxiliary ones: $ZKG[Nkmax]$ and $ZKH[Nkmax]$ for storing intermediate data. It is needless to say that these arrays should be declared as external variables.

$Nkmax$ denotes here the maximal, Nk (in the codes) – the actual number of particles inside the simulation zone.

We present here separate single-file codes for open and for closed channel.
Before calling the S-F code for a closed channel, one needs to calculate the number of particles located to the left of the gate, denoted in the codes as \(N_{kgl} \).

```c
// single-file ordering: open channel
nrep = 0; repeat = 1;
while(repeat == 1 && Nk > 1)
{
    repeat = 0; nrep++;
    orderlow(1,Nk,dcc); // pairs (1,2),...(Nk-1,Nk)
    orderup(0,Nk-1,Nk,dcc); // pairs (Nk,Nk-1),...(2,1)
    ave(1,Nk);
    subst(Nk);
}

// single-file ordering: closed channel
while(repeat == 1)
{
    repeat = 0; nrep++;
    // ordering to the right of the gate:
    if(Nkgl < Nk)
    {
        ic = ordergr(bp,Nkgl,Nkgl+1,Nk,dcc); // at the gate
        if(ic < Nk) // remaining particles
        {
            orderlow(ic,Nk,dcc); // pairs ic,ic+1),...(Nk-1,Nk)
            orderup(0,Nk-ic,Nk,dcc); // pairs Nk,Nk-1),...(ic+1,ic)
            ave(ic,Nk);
        }
    }
    // ordering to the left of the gate:
}

ic = ordergl(bl,Nkgl,0,Nkgl,dcc); // at the gate
if(ic > 1) // remaining particles
{
    orderlow(1,ic,dcc); // pairs (1,2),...(ic-1,ic)
    orderup(0,ic-1,ic,dcc); // pairs (ic-1,ic),...,2,1)
    ave(1,ic);
}

void orderlow(int m, int N, double d)
{

int i;
for(i=m;i<N;i++)
{
    if(ZK[i] > ZK[i+1] - d)
    {
        ZKH[i] = 0.5*(ZK0[i] + ZK0[i+1] - d);
        ZKH[i+1] = ZKH[i] + d + 0.00001;
        VKH[i] = VK[i+1]; VKH[i+1] = VK[i];
        repeat = 1;
    }
}
return;

void orderup(int m, int N, int M, double d)
{
    int i, j;
    for(j=m;j<N;j++)
    {
        i = M - j;
        if(ZK[i] < ZK[i-1] + d)
        {
            ZKG[i] = 0.5*(ZK0[i] + ZK0[i-1] + d);
            ZKG[i-1] = ZKG[i] - d - 0.00001;
            VKG[i] = VK[i-1]; VKG[i-1] = VK[i];
            repeat = 1;
        }
    }
    return ;
}

int ordergl(double b, int Nkgl, int m, int N, double d)
{
    int i, j, ii;
    double a, c;
    bc = b; ii = Nkgl; // bc = gate + dcd
    for(j=m;j<N;j++)
    {
        i = Nkgl - j;
        if(ZK[i] > bc)
        {
            ZK[i] = bc; ZKG[i] = bc; ZKH[i] = bc;
            bc -= d; ii = i;
        }
    }
    return ;
}
if(i == Nkgl) VK[i] = -VK[i]; else
{
    a = VK[i]; c = VK[i+1];
    if(fabs(a) > fabs(c))
    {
        VK[i] = a + c; VK[i+1] = 0;
    }
    else
    {
        VK[i+1] = a + c; VK[i] = 0;
    }
}
repeat = 1;
else break;
return ii;

int ordergr(double b, int Nkgl, int m, int N, double d)
{
    int i, ii;
    double a, c;
    bc = b; ii = Nkgl + 1;
    for(i=m; i<=N; i++)
    {
        if(ZK[i] < bc)
        {
            ZK[i] = bc; ZKG[i] = bc; ZKH[i] = bc;
            bc += d; ii = i;
            if(i == Nkgl+1) VK[i] = -VK[i]; else
            {
                a = VK[i]; c = VK[i-1];
                if(fabs(a) > fabs(c))
                {
                    VK[i] = a + c; VK[i-1] = 0;
                }
                else
                {
                    VK[i-1] = a + c; VK[i] = 0;
                }
            }
        }
    }
}
For simplicity, we give here, in the functions orderlow and orderup (lines \( ZKH[i] = 0.5(ZK0[i] + ZK0[i+1] - d), ZKG[i] = 0.5(ZK0[i] + ZK0[i-1] + d) \)) the simplest form of the recalculations of the correct positions of pairs of particles as contact positions of the pair in the middle of their former positions. These positions can be determined with better accuracy by taking into account particles’ velocities, and their equations of motion as well. The appropriate codes are obvious and are not reproduced here.

These codes can be written in a more compact way. The form presented here is – in our opinion – better legible and more self-explanatory.

REFERENCES
[1] B. Hille, *Ionic Channels of Excitable Membranes* (Sinauer, Sunderland, MA, 1992), 2nd ed.

[2] Z. Siwy, Y. Gu, H. Spohr, D. Baur, A. Wolf-Reber, R. Spohr, P. Apel, Y. E. Korchev, Europhys. Lett. 60, 349-355 (2002).

[3] Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, K. Voss, Surface Science 532-535, 1061-1066 (2003).

[4] A. Fuliński, I. Kosińska, and Z. Siwy, Europhys. Lett. 67, 683 (2004).

[5] Z. Siwy and A. Fuliński, Phys. Rev. Lett. 89, 198103-1-4 (2002).

[6] cf. e. g. B. Hille, and W. Schwarz, J. Gen. Physiol. 72, 409 (1978); S. Berneche, and B. Roux, Nature 414, 73 (2001); K. K. Mon, and J. K. Percus, J. Chem. Phys. 117, 2289 (2003), and references therein.

[7] A. Singer and Z. Schuss, Phys. Rev. E 71, 026115 (2005); cf. also: A. Singer, Z. Schuss, B. Nadler, and R. S. Eisenberg, Phys. Rev. E 70, 061106 (2004).

[8] G. Moy, B. Corry, S. Kuyucak, and S. H. Chung, Biophys. J. 78, 2349 (2000); B. Corry, S. Kuyucak, and S. H. Chung, Biophys. J., 78, 2364-2381 (2000).

[9] S. Berneche, and B. Roux, Nature 414, 73 (2001).

[10] J. N. Sachs, P. S. Crozier, and T. B. Woolf, J. Chem. Phys. 121, 10847 (2004).

[11] cf. e. g. D. G. Levitt, J. Gen. Physiol. 113, 789 (1999).

[12] Z. Siwy, and A. Fuliński, Phys. Rev. Lett. 89, 158101, (2002); 1/f noise in ion transport through nanopores: origins and mechanism, in Unsolved Problems of Noise and Fluctuations (Proc. Third Int. Conf. UPoN), Washington 2002, edited by S. M. Bezrukov (World Scientific, Singapore, 2003), pp. 273-282.

[13] e. g. H.-S. Chung, T. W. Allen, M. Hoyles, and S. Kuyucak, Biophys. J. 77, 2517 (1999); J. HU, S. Goldman, C. G. Gray, and H. R. Guy, Mol. Phys. 98, 535 (2000); B. Nadler, Z. Schuss, U. Hollerbach, and R. S. Eisenberg, Phys. Rev. E 70, 051912 (2004). Cf. also ref. [16].

[14] J. Franklin, and S. Doniach, J. Chem. Phys. 123, 124909 (2005)

[15] S. Kuyucak, O. S. Andersen and S-H. Chung, Rep. Prog. Phys, 64, 1427-1472 (2001).

[16] P. S. Crozier, R. L. Rowley, N. B. Holladay, and D. Henderson, Phys. Rev. Lett. 86, 2467 (2001).

[17] A. Alcaraz, E. M. Nestorovich, M. Aguilella-Arzo, V. M. Aguilella, and S. M. Bezrukov, Biophys. J. 87, 943 (2004).