Variations in TcdB Activity and the Hypervirulence of Emerging Strains of *Clostridium difficile*

Jordi M. Lanis, Soumitra Barua, Jimmy D. Ballard*

Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America

Abstract

Hypervirulent strains of *Clostridium difficile* have emerged over the past decade, increasing the morbidity and mortality of patients infected by this opportunistic pathogen. Recent work suggested the major *C. difficile* virulence factor, TcdB, from hypervirulent strains (TcdBHV) was more cytotoxic in vitro than TcdB from historical strains (TcdBHIST). The current study investigated the in vivo impact of altered TcdB tropism, and the underlying mechanism responsible for the differences in activity between the two forms of this toxin. A combination of protein sequence analyses, in vivo studies using a *Danio rerio* model system, and cell entry combined with fluorescence assays were used to define the critical differences between TcdBHV and TcdBHIST. Sequence analysis found that TcdB was the most variable protein expressed from the pathogenicity locus of *C. difficile*. In line with these sequence differences, the in vivo effects of TcdBHV were found to be substantially broader and more pronounced than those caused by TcdBHIST. The increased toxicity of TcdBHV was related to the toxin's ability to enter cells more rapidly and at an earlier stage in endocytosis than TcdBHIST. The underlying biochemical mechanism for more rapid cell entry was identified in experiments demonstrating that TcdBHV undergoes acid-induced conformational changes at a pH much higher than that of TcdBHIST. Such pH-related conformational changes are known to be the inciting step in membrane insertion and translocation for TcdB. These data provide insight into a critical change in TcdB activity that contributes to the emerging hypervirulence of *C. difficile*.

Introduction

Clostridium difficile is a gram-positive, spore-forming anaerobe, first described by Hall and O'Toole over 75 years ago [1]; however, the organism was not associated with human disease until 1978 [2,3]. Over the past three decades *C. difficile* has become a major nosocomial pathogen and is the leading cause of diarrhea in hospitalized patients [4]. *C. difficile* associated disease (CDAD) is routinely treated by supportive therapy and regimens of vancomycin and metronidazole, but treatment of CDAD has become more difficult due to the emergence of hypervirulent (NAP1/BI/027) strains of *C. difficile* [5,6,7]. Elucidating the major differences between historical strains of *C. difficile* and the NAP1/BI/027-related strains of *C. difficile* is critical to understanding how this serious human pathogen continues to emerge.

The phenotypes of hypervirulent and historical strains of *C. difficile* are different [7,8,9]. *C. difficile* NAP1/BI/027 produces more toxin and sporulates with higher efficiency than historical strains [6,7,8,9,10]. NAP1/BI/027 strains also produce a binary toxin, CDT, which is thought to enhance colonization of *C. difficile* by triggering the formation of microtubule protrusions on cells of the gastrointestinal epithelium [11,12,13]. Finally, *C. difficile* NAP1/BI/027 strains are resistant to fluoroquinolones due to mutations in DNA gyrase genes [7,14,15,16]. The extent to which one or more of these differences between the two strains contributes to hypervirulence has not been determined.

Recent work from Stabler and colleagues identified several genetic variations between epidemic and historical strains of *C. difficile* [17]. For example, the historical *C. difficile* strain, 630, was found to contain 505 unique coding sequences compared to hypervirulent strains. This analysis also identified differences in flagellar genes, metabolic genes, phage islands, and transcriptional regulators. Of interest to our work was the finding that TcdB from *C. difficile* hypervirulent strains had a greater cytotoxic effect on a variety of cell types than TcdB isolated from a *C. difficile* historical strain. The steps in cellular intoxication that account for these differences in TcdB activity, and whether in vivo tropism varies between the historical and hypervirulent TcdB have not been reported.

TcdB (∼269 kDa) is a 2366 residue single polypeptide toxin encoded on a *C. difficile* pathogenicity locus (PaLoc) that also includes genes for two regulators (TcdC and TcdR) of toxin expression, a putative holin (TcdE), and TcdA [18,19]. TcdB has at least four functional domains that contribute to cell entry and glucosylation of small-GTPases within the cytosol of the cell [20]. TcdB's glucosyltransferase domain is included in the first 516 residues of the toxin, which also includes a conserved DXD motif (Asp286/Asp288) and Trp102, which form a complex with Mn$^{2+}$ and UDP-Glucose [21,22,23,24,25]. A substrate recognition domain is located between residues 365–516 [26]. The cysteine protease domain at residues 544–953 is necessary for autoproteolytic activity and delivery of the enzymatic domain into the cytosol.
Author Summary

Clostridium difficile is a spore-forming bacterium that contaminates hospitals and infects patients undergoing antibiotic therapy. C. difficile is now the leading cause of hospital-acquired diarrhea in developed countries. Most concerning has been the recent increase in mortality of C. difficile patients due to the emergence of a hypervirulent strain of this pathogen. Results from the current study suggest this change in disease severity may be due to new strains producing a variant form of C. difficile’s major virulence factor, TcdB. The findings indicate TcdB from hypervirulent strains targets a much broader range of cells in vivo and is able to translocate into target cells more quickly than TcdB from historical strains of C. difficile. The more rapid cell entry by TcdB from hypervirulent C. difficile appears to be due to the toxin’s capacity to undergo conformational changes necessary for membrane translocation at a higher pH than TcdB from historical strains. To date, very little has been learned about the underlying reasons for the increased virulence of emerging C. difficile strains. These findings provide insight into this problem and suggest variations in TcdB activity could be an important contributing factor to the hypervirulence of emerging strains of C. difficile.

[27,28,29]. A putative membrane-spanning domain resides between residues 956–1128, yet whether this domain is required for intoxication is not known. Finally, the fourth functional domain of TcdB is located within the carboxy-terminal region of the toxin, and is predicted to interact with receptors on target cells [30,31,32,33].

Sequence variations in one or more of the functional domains of TcdB could account for the differences in cytotoxicity between historical and hypervirulent isolates. In the current work we test this hypothesis and demonstrate that TcdB from hypervirulent strains exhibits broader tropism in vivo. We also demonstrate TcdB from hypervirulent C. difficile undergoes hydrophobic conformational changes at a higher pH than toxin from the historical strain, and this correlates with more rapid cell entry. These findings provide insight into a possible mechanism through which hypervirulent C. difficile causes more severe illness than historical strains of this organism.

Results

Sequence comparison of the functional domains of TcdB from a historical strain (TcdBHIST) and TcdB from a hypervirulent strain (TcdBHV)

The carboxy-terminal sequence of TcdB varies between isolates of C. difficile, including hypervirulent and historical strains [17,34]. Yet, whether sequence variations are more extensive in TcdB compared to other genes in the PaLoc or if the sequences outside of the carboxy-terminal domain of TcdB also varied among different strains of C. difficile has not been reported.

We compared the sequences of proteins encoded within the PaLoc of C. difficile 630 (a non-NAP1/BI/027 strain) and C. difficile R20291 (a 027 strain). The sequence of TcdR, a positive regulator of toxin expression was found to be 100% identical between the two strains of C. difficile. TcdE, the putative holin encoded in the middle of the PaLoc exhibited 99% identity and 100% similarity between the two strains of C. difficile. The enterotoxin, TcdA, exhibited 98% identity and 99% similarity between the two strains. The gene encoding TcdC from the hypervirulent strain encodes a stop codon and contains a deletion, which made it difficult to precisely compare this protein in the two strains. However, at the DNA level the gene was 95% homologous in the intact coding regions of tcdC. In contrast to these almost exact identities of TcdR, TcdE, and TcdA from the two strains, the amino-acid sequence of TcdB from the two strains was found to have the most variation with 92% identity and 96% similarity.

We next compared the functional regions of TcdBHIST and TcdBHV (Fig. 1). The enzymatic region of TcdB (encompassing residues 1–343) was found to be 96% identical and 98% similar between the two strains of C. difficile. Residues critical for catalytic activity, W102 and the DXD motif, did not vary between the two forms of TcdB (Fig. 1A). The substrate specificity domain of TcdB (residues 365 to 516) [26] exhibited 99% identity and 100% similarity (Fig. 1A). The autoproteolytic region (residues 544 to 955) was found to contain 96% identity and 98% similarity. Moreover, the reported catalytic triad (DS87, H653, and C698) was conserved between the two forms of TcdB. Interestingly however, the analysis found a rearrangement of a second cysteine residue in this region of TcdB. TcdBHIST contains a cysteine at residue 870, but this residue is a tyrosine in TcdBHV (Fig. 1B). Conversely, TcdBHV has a cysteine residue at 1477, but this was found to be a glycine residue in TcdBHIST. The third putative functional domain of TcdB is between residues 956 and 1644, and encodes a hydrophobic region thought to mediate membrane insertion. Comparison of this region found 91% identity and 96% similarity (Fig. 1C).

In line with earlier reports [17,34] the carboxy-terminal region, encompassing residues 1643 to 2366, exhibited the highest degree of sequence variation in the toxin. The carboxy-terminal region showed 88% identity and 95% similarity between the two forms of TcdB. The number of CROP regions is identical, with TcdBHIST and TcdBHV containing 24 regions based on the YF consensus motif [30,32,35,36]. However, eight of these regions in TcdBHV were found to exhibit less than 80% sequence identity to TcdBHIST (Fig. 1D).

Fig. 1E shows an SDS-PAGE analysis of TcdBHIST and TcdBHV purified from wild-type strains of C. difficile as described in the materials and methods. Both forms of the toxin were obtained at greater than 95% purity based on minimal detection of contaminating proteins.

In vivo assessment of TcdBHIST and TcdBHV

We next used a zebrafish model to compare the in vivo effects of the two forms of this toxin. Our group has previously utilized the zebrafish embryo as a model to examine the effects of TcdBHIST in real time, and found that this toxin had potent cardiotoxic effects [37]. The zebrafish provides a distinct advantage for the purpose of examining tissue damage and tropism because it is possible to visualize these events directly with this model.
physiological damage from this toxin. These findings indicate that TcdBHIST impacts a broader number of cell types in vivo compared to TcdBHV. However, corresponding to our previous report TcdBHIST preferentially targets cardiac cells in the zebrafish embryo system.

Recent studies determined the relative cytotoxicity of TcdBHV and TcdBHIST on eight different cell types [17]. Because this analysis did not include cells of cardiac lineage, we compared the two toxins on HL-1 cells, which are derived from mouse cardiac tissue [38]. We also examined the effects of the two toxins on CHO cells for a relative comparison to the cardiomycocytes. As shown in Fig. 3, similar to previous observations, TcdBHV was more cytotoxic to CHO cells (TCD50 2.37 x 10^-13 M) than was TcdBHIST (TCD50 2.55 x 10^-11 M). In contrast, TcdBHV was not more cytotoxic on cardiomyocytes and displayed a similar activity to TcdBHIST. Upon further investigation of the cardiomycocytes, the cytotoxicity of TcdBHV was found to be slightly lower than TcdBHIST (p<0.05) with a TCD50 approximately 10-fold higher (3.37 x 10^-10 M) than TcdBHIST (TCD50 2.80 x 10^-11 M). These data indicate that while TcdBHV has a broader cell tropism and is most likely more cytotoxic overall, TcdBHIST cardiotropism is more pronounced between the two forms of this toxin.

Comparison of Intracellular Effects of TcdBHV and TcdBHIST

We next determined if the variation in cytotoxicity was due to differences in the cytosolic activities of the two forms of TcdB. As an approach to this problem we took advantage of a previously described system used for heterologous delivery of proteins and protein fragments into the cytosol of target cells [39,40]. This system is composed of the cell entry components of anthrax lethal toxin. Briefly, protective antigen (PA) delivers lethal factor (LF) into the cytosol of mammalian cells. The heterologous delivery system is derived from the amino-terminus of LF (LFn), which interacts with PA and can be delivered into cells, but lacks enzymatic activity. In our experiments, the DNA fragment encoding the enzymatic domain of TcdB was genetically fused to lfn, yielding a DNA construct that expresses the cell entry portion of LF with the enzymatic component of TcdB. This heterologous delivery system allowed us to regulate the cell entry of the enzymatic component of TcdBHV and TcdBHIST so that these domains were identical in the way in which they entered the cell. We predicted that if the differences in cytotoxicity were due to factors other than intracellular activity of these forms of TcdB, then the fusions should exhibit identical cytotoxic effects.

The results of the PA, LFn-TcdB fusion experiments are shown in Fig. 4. CHO cells were treated with a fixed amount of PA (500 nM) plus a range of concentrations of LFnTcdBHIST(enz) or LFnTcdBHV(enz) in order to generate a standard killing curve for this assay. As controls, CHO cells were treated with PA or LFnTcdBHV(enz), or LFnTcdBHIST(enz) separately. Following 24 h of treatment the cells were assayed for viability using WST-8 colorimetric assay and the percent survival was plotted versus concentration of the fusion protein. Treatment with each of the components alone had no effect on cell viability in this assay (data not shown). The results from this experiment suggested that the differences in cytotoxicity of LFnTcdBHV(enz) and LFnTcdBHIST(enz) were not due to variations in intracellular activities of the enzymatic domains.
Flow-cytometry analysis of TcdBHIST and TcdBHV interaction with CHO cells and cardiomyocytes

The results from the experiment using an identical method of cell entry, suggested the differences in cytotoxicity might be associated with early steps in cell binding and cell entry. To address this hypothesis, we compared the interaction of TcdBHV and TcdBHIST with cultured cells. Cultured cells were incubated with Alexa-647-labeled TcdBHV or Alexa-647-labeled TcdBHIST and the extent of toxin binding was determined by flow cytometry. This analysis was performed on CHO cell and HL-1 cardiomyocytes. As shown in Fig. 5, CHO cells and HL-1 cells exhibited a higher degree of fluorescence when incubated with labeled TcdBHIST than when incubated with labeled TcdBHV. A biphasic profile was detected in CHO cells with a smaller population of cells exhibiting a distinct, reduced, toxin-binding pattern. In contrast, binding to cardiomyocytes was uniform and revealed a profile expected for a single population of cells.

Experiments were next performed to determine the apparent Kd for binding of TcdBHIST and TcdBHV. Interestingly, within the constraints of these experimental conditions we were not able to achieve saturable binding of either form of the toxin to target cells. Fig. 5C shows a nearly linear correlation between the increase in toxin concentration and the mean fluorescence intensity (MFI) of HL-1 cells despite reaching toxin concentrations of over 300 nM. Additionally, Fig. 5C further emphasizes the extremely low level of interaction of TcdBHV with target cells in comparison to the high MFI achieved with TcdBHIST. These data suggest that cell binding involves a higher order and more complex process than expected for a single receptor-ligand interaction.

Rates of cell entry differ between TcdBHIST and TcdBHV

Experiments were next performed to assess the difference in the rates of cell entry between the two toxins. In previous work on historical TcdB, we found that lysosomotropic inhibitors could completely block cytopathic effects of the toxin for up to 16 h, even if added up to 20 min following exposure of the cells to the toxin [41]. These findings indicate interaction with the cell, uptake, and then translocation into the cytosol requires at least 20 min and acidification of endosomes is necessary. To determine if TcdBHV differed from TcdBHIST in rates of cell entry, cultured CHO cells were treated with the two forms of the toxin and a lysosomotropic agent was added to the cells at time-points ranging from 5 to 60 min following treatment with toxin. The lysosomotropic agent was also added prior to or at the same time cells were treated with the toxins. The lysosomotropic agent was also added prior to or at the same time cells were treated with the toxins. The effect of the lysosomotropic agent was assessed by determining the level of cytopathic effects (CPE) either 2 h or 12 h after treatment with the toxin. The lysosomotropic agent was added after 20 min following exposure of the cells to the toxin [41]. These findings indicate interaction with the cell, uptake, and then translocation into the cytosol requires at least 20 min and acidification of endosomes is necessary. To determine if TcdBHV differed from TcdBHIST in rates of cell entry, cultured CHO cells were treated with the two forms of the toxin and a lysosomotropic agent was added to the cells at time-points ranging from 5 to 60 min following treatment with toxin. The lysosomotropic agent was also added prior to or at the same time cells were treated with the toxins. The effect of the lysosomotropic agent was assessed by determining the level of cytopathic effects (CPE) either 2 h or 12 h after treatment with the toxin. For this experiment CPE was determined rather than cytotoxicity due to toxicity of ammonium chloride at the later time points necessary for cytotoxicity assays. As shown in Fig. 6, based on the extent of cell rounding, there appeared to be a clear difference in the rates of translocation between TcdBHV and TcdBHIST. Unlike our earlier findings on TcdBHIST, the cytotoxic effects of TcdBHV could not be prevented when the lysosomotropic agent was added.
as soon as 10 min following treatment with the toxin (Fig. 6A). Furthermore, addition of the lysosomotropic agent within 10 min of treatment of TcdBHIST only provided a slight delay in CPE, as all inhibitor treated cells showed complete rounding by 12 h (Fig. 6B). In contrast, the CPE of TcdBHIST could be prevented by adding the inhibitor up to 30 min following treatment with the toxin. These findings indicate TcdBHIST translocates to the cytosol more rapidly than TcdBHIST.

Hydrophobic transitions occur at a higher pH in TcdBHIST

Previous studies from our group found that acidic pH triggers hydrophobic transitions in TcdBHIST [41]. Studies by Barth et al. found that this hydrophobic transition in TcdB correlated with membrane insertion by the toxin [42]. These conformational changes corresponded to the decrease in endosome pH that led to translocation of the toxin into the cytosol. Thus, it was reasonable to suspect that TcdBHIST translocates more quickly into the cytosol because the hydrophobic transition was induced at a higher pH and thus at an earlier stage of endocytosis. To address this possibility, in the next series of experiments we identified the pH dependent conformational transitions of TcdBHIST by observing changes in TNS fluorescence when the toxin was incubated at various pHs. To identify whether TcdBHIST exhibits differential transitions compared to TcdBHIST, the proteins were preincubated with 150 μM TNS at pH 4.0, 5.0, 6.0, and 7.0, and then analyzed for changes in TNS fluorescence. As shown in Fig. 7, TcdBHIST exhibited a significant increase in hydrophobicity at pH 5.0, while TcdBHIST did not undergo this transition until pH 4.0. Further examination of a narrower pH range revealed that a significant

Figure 3. Comparative dose response of TcdBHIST and TcdBHIST.

CHO or HL-1 cells were exposed to TcdB for 24 h and cell viability was determined by WST-8 staining. (A) TcdBHIST (black) and TcdBHIST (gray) intoxication of CHO cells. (B) TcdBHIST (black) and TcdBHIST (gray) intoxication of HL-1 cardiomyocyte cells. The error bars represent the standard deviation from the mean of three samples. * p < 0.05, *** p < 0.001.

doi:10.1371/journal.ppat.1001061.g003
shift occurred between pH 5.4 and 5.6 in TcdBHV (Fig. 7D). In comparison, TNS fluorescence of TcdBHIST at these pHs was just above background levels.

These pH transitions were also studied using the inherent fluorescence of TcdBHIST and TcdBHV from the emission of tryptophan residues. Unfolding of the hydrophobic region should expose portions of the protein to a more aqueous environment, quenching tryptophan fluorescence. Environmental changes surrounding the tryptophan residues over a broad range of pH are shown in Fig. 8A and 8B. A gradual quenching of fluorescence was detected in TcdBHIST from pH 7 to pH 4, while the tryptophan emission spectra of TcdBHV indicated a sudden shift between pH 5 and pH 6. Fig. 8D reveals that this shift took place between pH 5.4 and 5.2, similar to the increase in TNS fluorescence seen at pH 5.4.

Discussion

In the current study we compared the sequences and activities of TcdB from hypervirulent and historical strains of C. difficile. Because TcdB has been shown to be the major virulence factor of C. difficile [43], we reasoned that changes in the activity of this toxin could have a profound impact on the severity of disease. The findings support this notion, as TcdBHV exhibited a broader tropism and higher potency than TcdBHIST. Among the possible explanations for this increased toxicity are the observations that TcdBHV enters cells more rapidly than TcdBHIST, and TcdBHV undergoes conformational changes at a higher pH than TcdBHIST.

Based on the sequence comparisons and the results of the experiments using the heterologous delivery system (Figs. 1 and 3), it appears that the differences in tropism and cytotoxicity are due to changes in regions outside of the enzymatic domain. Rapid cell entry could lead to more efficient cell killing by providing the toxin an endocytic condition in which the toxin is not subject to possible destruction by lysosomal proteases. The data from the lysosomotropic inhibitor assays (Fig. 6) support the idea that TcdBHV does not reside within the endosome as long as TcdBHIST. Among the possible reasons for more rapid cell entry is a differential sensitivity to levels of IP₆ that trigger autoproteolytic processing associated with translocation. We also noted a difference in the sequence of the hydrophobic region of TcdB, and if, as has been proposed [41,42], this region mediates membrane insertion, such differences could allow TcdBHV to insert into the membrane at an earlier stage of cell entry. We reasoned that if this possibility were true, there should be a difference in the pH-induced transitions of the two forms of TcdB, with the hydrophobic regions of TcdBHV becoming exposed at a pH higher than the pH necessary for triggering this transition in TcdBHIST. The results from the TNS experiments (Fig. 7) indicate that TcdBHV is able to undergo the hydrophobic transition at a higher pH than TcdBHIST, providing further evidence that TcdBHV has higher translocation efficiency than TcdBHIST. Studies looking at the environment surrounding tryptophan residues of TcdBHIST and TcdBHV at lower pH (Fig. 8)
support the idea that TcdBHV undergoes a structural change at higher pH than TcdBHIST. Additionally, these experiments revealed that the transition of TcdBHIST occurs gradually, while TcdBHV demonstrates sudden shifts upon lowering the pH. This could be indicative of a more efficient unfolding of TcdBHV, which may contribute to an enhanced ability to traverse the endosomal membrane. Our current working model is that TcdBHV is able to translocate at an earlier point in endocytosis and this contributes, at least in part, to a more efficient intoxication.

We also recognize that the expanded tropism, along with more efficient cell entry could combine to enhance the in vivo toxicity of TcdBHV. The results from the zebrafish experiments (Fig. 2) indicate TcdBHV targets a broader array of cells in vivo than does TcdBHIST. Defining the specific tropism in the murine model or an infection model is more difficult, but it is reasonable to consider the possibility that TcdBHV is more lethal because the toxin targets an extensive variety of cell types systemically. Unfortunately, the TcdB receptor has been difficult to identify. Several attempts by

Figure 6. Comparison of the timing of cell entry between TcdBHV and TcdBHIST. CHO cells were pretreated with TcdBHIST or TcdBHV and the lysosomotropic inhibitor, ammonium chloride, was added at the indicated time points. Cytopathic effects were determined at 2 h (A) and 12 h (B), and black bars represent cells treated with TcdBHV while gray bars represent TcdBHIST. The error bars mark the standard deviation from the mean. C, untreated control. I, inhibitor alone. T, TcdB alone.

doi:10.1371/journal.ppat.1001061.g006

Figure 7. TNS analysis of pH-induced hydrophobic transitions in TcdBHIST and TcdBHV. TcdBHIST or TcdBHV was incubated with TNS for 20 min at 37°C. Samples were analyzed for changes in TNS fluorescence, and the emission profile of each pH is shown and labeled. Panels (A) and (B) represent pH 4.0 to pH 7.0 and panels (C) and (D) show TNS fluorescence of TcdB between pH 5.0 and 6.0. Each spectrum represents the experimental sample with background (TNS and buffer alone) subtracted.

doi:10.1371/journal.ppat.1001061.g007
our group to identify the TcdB receptor using standard techniques that have been successful with other toxins have failed. The results from the flow analyses in the current study suggest that the interaction of TcdB with the cell surface does not fit a single ligand-receptor model; this observation may explain why it has been so difficult to identify a receptor for this toxin. We were not able to achieve saturable binding, and interestingly TcdBHv interacted less efficiently than TcdBHst, despite the fact that TcdBHv is clearly more cytotoxic than TcdBHst. Undoubtedly, future studies on characterizing this complex interaction with target cells will provide important insight into a novel mechanism of TcdB intoxication.

Previous work by Razaq et al. found that C. difficile BI/NAP1/027 strains were more lethal than historical strains of C. difficile [44]. As mentioned in the introduction of this paper, there are several differences in the phenotypes of the hypervirulent and historical strains of C. difficile. NAP1 strains sporulate at a higher efficiency and are resistant to fluoroquinolones. Both of these characteristics may make the NAP1 strains more difficult to manage in the hospital setting and increase the frequency of disease, but are unlikely to increase virulence. Likewise, the binary toxin has been shown to enhance colonization [13], but clinical data have revealed little correlation between the increase in disease severity and production of this toxin [15,46]. In addition, previous work found binary toxin to be enterotoxic, but strains producing binary toxin alone did not cause disease in hamsters [47]. Clearly, an increase in toxin production such as that reported for NAP1 strains could enhance virulence, but a recent report suggests that the tcdC mutation in epidemic strains does not always correlate with the overexpression of TcdA and TcdB [48]. Based on the findings from the current study, we suggest that variations in TcdB sequence and activity could be an important determining factor in the hypervirulence of NAP1 strains.

The recent work of Lyras et al. [43] found that TcdB is critical to C. difficile virulence in a hamster model of CDAD. Thus, variations in the antigenic region (e.g. carboxy terminus) of TcdB could allow repeated C. difficile infections of the same host by strains with antigenic variants of this toxin. In a recent publication by He and colleagues it was estimated that C. difficile diverged into a distinct species between 1.1 and 85 million years ago, and has gone through remarkable genetic variation over time [49]. The authors also posited that immune selection could have influenced the genetic variation, and they examined candidate immunogenic proteins that might fit this profile and 12 such proteins were identified. TcdB was not among these candidate proteins. It is unclear whether TcdB fits the criteria established for a positively selected core gene of C. difficile in this study, but it is reasonable to suspect the gene may have varied to avoid immune responses and this hypervariability enriched for a more potent form of the toxin. It is worth noting that while the protein identity was around 92%, the DNA homology was 93%. Nearly all of the residue changes occur as a single nucleotide substitution that result in amino acid substitutions. This further suggests a possible change in the sequence of TcdB that has been selected through an enhancement in virulence and perhaps by immune evasion.

Materials and Methods

Reagents and cell culture

Chinese hamster ovary-K1 (CHO) cells were maintained in F-12K medium (American Tissue and Culture Collection; ATCC) along with 10% fetal bovine serum (ATCC). HL-1 cardiomyocytes...
were obtained from the Claycomb laboratory [38] and maintained in Claycomb medium (Sigma) supplemented with 10% fetal bovine serum (ATCC), 0.1 mM Norepinephrine (Sigma), and 2 mM L-glutamine (Invitrogen). Cultures were grown at 37 °C in the presence of 6% CO₂. C. difficile VPI 10463 (produces TcdB with identical sequence to the 630 strain) and C. difficile BI17 6493 (a gift from Dr. Dale Gerding), were used in this study for the purification of TcdBHIST and TcdBV. The tcdB gene was sequenced from both of these strains and the sequence was confirmed as exact matches to Genbank deposited sequences of the 630 strain and R20291 (Genbank numbers AM180355 and FN543026). Cultures were grown as previously described [41], and TcdB was isolated by consecutive steps of anion-exchange (Q-Sepharose) and high-resolution anion-exchange (Mono-Q) chromatography in 20 mM Tris-HCl, 20 mM CaCl₂ pH 8.0. Purification steps were followed by protein determination using the Bradford method, visualization of a single band by SDS-PAGE, and LC/MS/MS analysis (University of Oklahoma Health Science Center) to confirm protein identity. Cytotoxicity was determined using a WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt] (Dojindo Laboratories) according to manufacturer’s instructions.

Zebrafish husbandry and experiments
Zebrafish maintenance and experiments were performed in accordance with the PHS Principles for The Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training, and followed the recommendations in the Guide for the Care and Use of Laboratory Animals under the approval of The University of Oklahoma Health Sciences Center Campus IACUC (OUHSC #06-126). Zebrafish were obtained from Aquatic Eco-System (Apopka, FL). Zebrafish were maintained at 28.5°C on a 14 h light/10 h dark cycle in 10 gallon tanks equipped with pumps for mechanical and chemical filtration. Matings were performed in false bottom tanks, and embryos were washed briefly with 0.5% bleach after collection. Embryos were incubated in embryo water (60 mM NaCl, 1.2 mM NaHCO₃, 0.9 mM CaCl₂, 0.7 mM KCl) in petri dishes at 28.5°C, and water was changed daily. For TcdB treatment experiments, embryos were used between 48 and 72 h post fertilization, with chorions removed. Embryos were placed (5 embryos per well) into 48-well plates and treated with TcdB₄₉₅ or TcdB₁₈₅ in embryo water at concentrations ranging from 50 nM to 0.01 nM. The embryos were observed for 72 h after treatment for morphological changes by using a SZX-7 microscope with a DP70 camera (Olympus). All images were captured and processed by using DP controller and DP manager software (Olympus).

Construction of LFn-fusions and related assays
The region encoding the enzymatic domain of TcdB₄₉₅ was amplified from C. difficile NAPI genomic DNA by PCR using the forward primer 5’-AGCTGCCGGAGTGGTATTGTTAATAA-3’ and the reverse primer 5’-ACTGGATCCTCATTATACTGAGTCTTTTGG-3’ to generate the tcdB gene fragment encoding residues 1 to 1668 of tcdB (tcdBl₁₆₆₈) with a 5′ XmaI/Smal and a 5′ BamHI site. The restricted gene fragment was fused to lfn by overnight ligation at 16°C with a XmaI/BamHI-restricted pET15b derivate containing lfn. The resulting plasmid was cloned into E. coli XL-1 blue (Novagen) and candidate clones were screened for the correct insert and orientation by restriction analysis and DNA sequencing. LFnTcdBHI(T4eag) which had been previously cloned and described [40] and the newly synthesized LFnTcdB₁₈₅(T4eag) were expressed using E. coli BL-21 Star (Invitrogen). Both fusions were purified by Ni²⁺ affinity chromatography (His-Trap, GE Life Sciences) and the purified protein migrated within the predicted size range of ~94 kDa on SDS-PAGE. Protective antigen was expressed and purified as previously described [50].

Cell binding analyses
TcdB₄₉₅ or TcdB₁₈₅ were labeled with Alexa Fluor 647 C₅ maleimide (Invitrogen) according to manufacturer’s instructions. Briefly, a 10 M excess of dye was added to TcdB in 20 mM Tris-HCl, pH 8.0, and incubated overnight at 4°C. Conjugated protein was separated from unincorporated dye using Sephadex G-25, and efficiency of labeling was confirmed to be between 80% and 100%. The activity of labeled TcdB was confirmed by cytotoxicity on CHO and HL-1 cells and was not reduced by >10%. Binding of each toxin to CHO and HL-1 cells was examined as follows. Cells were dissociated from flasks using 1 mM EDTA in PBS, centrifuged at 500 x g, and washed once with PBS. One hundred thousand cells were incubated with a range from 10 nM to 320 nM of labeled toxin in 1 mL of PBS on ice for 1 h, washed twice, and the pellets were resuspended in 1 mL of PBS. The samples were analyzed using a FACScan flow cytometer (University of Oklahoma Health Sciences Center) and FLOWJO software (Tree Star, San Carlos, CA). The emission wavelength was set to 665 nm, and the excitation was set at 633 nm with a bandpass of 30 nm.

Lysosomotropic inhibitor assays
CHO cells were plated at 5 x 10⁵ cells/well in a 96-well plate and incubated overnight. The following day, TcdB₄₉₅ or TcdB₁₈₅ was added to the cells at a final concentration of 0.1 μg/mL. At the indicated time points, the cells were washed to remove unbound toxin, and ammonium chloride (Sigma) was added to the cells at final concentration of 100 mM. Each sample was monitored for 24 h, and CPE (cytopathic effect) was determined by visualization. Percent CPE was calculated by counting a minimum of 100 cells in 3 different fields for each sample. Cells scored positive for CPE only when fully rounded, and the percent CPE was calculated as % rounded cells/total - % rounded cells/control, where control refers to cells treated with media alone.

TNS assays and tryptophan analysis
2-[p-Toluidinyl] naphthalene-6-sulfonic acid, sodium salt (TNS; Invitrogen) solutions were prepared to a final concentration of 150 μM in pH specific buffers. For pHs ranging from 4.0 to 6.0, 100 mM NaCl-100 mM ammonium acetate-1 mM EDTA was used. For pH 6.0 to 7.0, 100 mM NaCl-100 mM MES-1 mM EDTA was used. For pH 7.0 to 8.0, 100 mM NaCl-100 mM HEPES-1 mM EDTA was used. 40 pmol of TcdB₄₉₅ or TcdB₁₈₅ was added to the buffer/TNS mixture in a final volume of 2.5 mL and allowed to incubate for 20 min and 37°C. Each sample was analyzed on a Fluorolog R928P PMT fluorometer (HORIBA Jobin Yvon) with an excitation of 366 nm and an emission scan of 380 to 500 nm with a slit width of 2.0. Tryptophan fluorescence of TcdB₄₉₅ and TcdB₁₈₅ was also compared in the same manner, using an excitation of 270 nm and an emission scan of 310 nm to 400 nm.

Statistical analyses
Data are expressed as the means ± S.E.M. Statistical analyses were performed using two-tailed unpaired Student’s t-test in
Acknowledgments
The authors thank Dr. Rodney Tweten and Allison Farrand for helpful advice on fluorescence assays.

References
1. Hall IC, O'Toole E (1935) Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacinella difficilis. Am J Dis Child 39: 490–492.
2. George RH, Symonds JM, Dinnock F, Brown JD, Arabi Y, et al. (1978) Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J 1: 685–687.
3. Chang TW, Bartlett JG, Gorbalch SB, Undercork AB (1978) Clindamycin-induced enterocolitis in hamsters as a model of pseudomembranous colitis in patients. Infect Immun 20: 526–529.
4. Barthel JG (1992) Antibiotic-associated diarrheaa. Clin Infect Dis 15: 9.
5. Muto CA, Pokrywka M, Shutt K, Mendelsohn AB, Nouri K, et al. (2005) A Large Outbreak of Clostridium difficile-Associated Disease With an Unexpected Proportion of Deaths and Colectomies at a Teaching Hospital Following Inhaled Fluoroquinolone Use. Infection Control and Hospital Epidemiology 26: 273–278.
6. Loo VG, Poirier I, Miller MA, Oughton M, Libman MD, et al. (2005) A Prevalent and Monolinal Multi-Institutional Outbreak of Clostridium difficile-Associated Diarrhea with High Morbidity and Mortality. N Engl J Med 353: 2443–2449.
7. McDonald LC, Killgore GE, Thompson A, Owens RC, Jr., Kazakova SV, et al. (2005) An Epidemic, Toxin Gene-Variant Strain of Clostridium difficile. N Engl J Med 353: 2453–2441.
8. Warzy M, Poppia J, Fang A, Killgore G, Thompson A, et al. (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. The Lancet 366: 1079–1084.
9. Akersaud T, Persson I, Uemo M, Noen M, Tsvengonu G, et al. (2008) Increased Sponation Rate of Epidemic Clostridium difficile Type 027/NAP1. J Clin Microbiol 46: 1530–1533.
10. MacCannell DR, Louie TJ, Gregson DN, Gerding DN, Grabnar M, et al. (2004) Distribution of Clostridium difficile among Outpatients in Eastern and Western Canada. J Clin Microbiol 44: 2147–2152.
11. Geric B, Rupnik M, Gerding DN, Grabnar M, Johnson J, et al. (2004) Identification of Clostridium difficile variant toxynotypes and strains with binary toxin genes among clinical isolates in an American hospital. J Med Microbiol 53: 887–894.
12. Goncalves C, Decre D, Barbut F, Decre D, Barbut F, et al. (2004) Prevalence and Characterization of a Binary Toxin (Actin-Specific ADP-Ribosyltransferase from Clostridium difficile). J Clin Microbiol 42: 1933–1939.
13. Schwank C, Stecher Br, Tsurbekal F, van Ham M, Rohde M, et al. (2009) Clostridium difficile Toxin CDT Induces Formation of Microtubule-Based Protrusions and Increases Adherence of Bacteria. PLoS Pathog 5: e1000266.
14. Bourgaul A-M, Lamotro F, Loo VG, Poirier I, the CDAD-CSI Study Group (2006) In Vitro Susceptibility of Clostridium difficile Clinical Isolates from a Multi-Institutional Outbreak in Southern Quebec, Canada. Antimicrob Agents Chemother 50: 3473–3475.
15. Drudy D, Quinn T, O'Mahony R, Kyne L, O’Gorzo P, et al. (2006) High-level resistance to motifoxin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive C. difficile. J Antimicrob Chemother 55: 1264–1267.
16. Drudy D, Kyne L, ROM S, Fanning (2007) gyrD mutations in fluoroquinolone-resistant Clostridium difficile PCR-027. Emerg Infect Dis 13: 2.
17. Stabler R, Mc M, Davenport L, Martin M, Valiere F, et al. (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biology 10: R102.
18. Tan KS, Wei BY, Song KP (2001) Evidence for hid as functional of tcdE gene in the pathogenicity of Clostridium difficile. J Med Microbiol 50: 613–619.
19. Hammond GA, Johnson JL (1995) The toxigenic element of Clostridium difficile strain VPI 10463. Microbial Pathogenesis 19: 203–213.
20. Just I, Selzer J, Wilm M, Eichel-Streiber C, Mann M, et al. (1995) Identification of the N-Terminal Region Involved in Protein Substrate Cleavage of Clostridium difficile Toxins A and B Depends on Cysteine Protease Activity. J Biol Chem 270: 25314–25321.
21. Dingle T, Wei S, Mulvey GL, Greco A, Kito Y, et al. (2006) Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 16: 698–706.
22. Wren BW (1991) A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5: 797–803.
23. Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, Schulze J, Sauerborn M, et al. (1999) Comparative sequence analysis of the Clostridium difficile toxins A and B. Molecular and General Genetics 259: 260–268.
24. von Eichel-Streiber C, Sauerborn M, et al. (1998) Identification of Clostridium difficile toxin A carries a C-terminal repetitive structure homologous to the carbohydrate binding region of streptococcal glucosyltransferases. Gene 96: 107–113.
25. Stabler RA, Gerling DN, Songer JG, Drudy D, Brazier JS, et al. (2006) Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 188: 7297–7305.
26. von Eichel-Streiber C, Sauerborn M, Kuramitsu HK (1992) Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins A and B. J Bacteriol 174: 6607–6610.
27. Allsbe-Jovel D, Bertrand T, Carpenter EP, Swain GV, Lim J, et al. Four Distinct Structural Domains in Clostridium difficile Toxin B Visualized Using SAXS. Journal of Molecular Biology 396: 1260–1270.
28. Hamm EE, Voth DE, Ballard JD (2006) Identification of Clostridium difficile toxin B carboxydityoxing using a zebrafish embryo model of intoxication. Proc Natl Acad Sci U S A 103: 14176–14181.
29. Claycomb GC, Lamon N, Stalworth BS, Egeland DB, Delcarper JB, et al. (1996) HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 93: 2979–2984.
30. Ballard JD, Collier RJ, Sarnbach MN (1996) Anthrax toxin-mediated delivery of a cytoytic T-cell epitope in vivo. Proc Natl Acad Sci U S A 93: 12531–12534.
31. Spires LM, Qu’Dann M, Meader A, Tomasek J, Howard EW, et al. (2001) Cytosolic Delivery and Characterization of the TcdB Glucosylating Domain by Using a Heterologous Protein Fusion. Infect Immun 69: 599–601.
32. Qu’Dann M, Spires LM, Ballard JD (2000) pHI-Induced Conformational Changes in Clostridium difficile Toxin B. Infect Immun 68: 2470–2474.
33. Barth H, Plöier G, Holmam F, Mai E, Berz R, et al. (2001) Low pH-induced Formation of Ion Channels by Clostridium difficile Toxin B in Target Cells. J Biol Chem 276: 10670–10676.
34. Lyons D, O’Connor JR, Howarth PM, Sambol SP, Carter GP, et al. (2009) TcdB is essential for virulence of Clostridium difficile. Nature 458: 1176–1179.
35. Razaq N, Sambol S, Nagao K, Zukowski W, Chelnish A, et al. (2007) Characterization of PathLoc of clinical isolates does not predict Hypervirulence. J Infect Dis 190: 1813–1819.
36. Rupnik M, Grabner M, Geric B (2003) Binary toxin producing Clostridium difficile strains. Anaerobe 9: 289–294.
37. Barbut F, Decre D, Lalande V, Barbut F, Moussier L, et al. (2005) Clinical features of Clostridium difficile-associated diarrheaa due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. J Med Microbiol 54: 181–185.
38. Geric B, Carman RJP, Rupink M, Genheime CGI, Sambol SP, et al. (2006) Binary Toxin Producing, Large Clostridial Toxin Negative Clostridium difficile Strains Are Enterotoxigen; but Do Not Cause Disease in Hamsters. J Infect Dis 193: 1143–1150.
39. Murray R, Boyd D, Levet P, Mulvey M, Alfa M, et al. (2009) Truncation in the toxic region of the Clostridium difficile PathLoc of clinical isolates does not predict hypervirulence. J Med Microbiol 58: 1143–1150.

Author Contributions
Conceived and designed the experiments: JML, JDB. Performed the experiments: JML, SB. Analyzed the data: JML, SB, JDB. Wrote the paper: JML, JDB.
increased biological activity of Toxin B or Toxin A. BMC Infectious Diseases 9: 103.

49. He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, et al. (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A: 107: 7527–7532.

50. Voth DE, Hamm EE, Nguyen LG, Tucker AE, Salles II, et al. (2005) Bacillus anthracis oedema toxin as a cause of tissue necrosis and cell type-specific cytotoxicity. Cell Microbiol 7: 1139–1149.