Schrödinger spectrum generated by the Cornell potential

Richard L. Hall and Nasser Saad

1Department of Mathematics and Statistics, Concordia University,
1455 de Maisonneuve Boulevard West, Montréal, Québec, Canada H3G 1M8
2Department of Mathematics and Statistics, University of Prince Edward Island,
550 University Avenue, Charlottetown, PEI, Canada C1A 4P3.

The eigenvalues $E_n^d(a,c)$ of the d-dimensional Schrödinger equation with the Cornell potential $V(r) = -\frac{a}{r} + cr$, $a,c > 0$ are analyzed by means of the envelope method and the asymptotic iteration method (AIM). Scaling arguments show that it is sufficient to know $E(1,\lambda)$, and the envelope method provides analytic bounds for the equivalent complete set of coupling functions $\lambda(E)$. Meanwhile the easily-implemented AIM procedure yields highly accurate numerical eigenvalues with little computational effort.

PACS numbers: 03.65.Ge, 12.39.Pn, 11.10.Qr, 12.40.Qq, 14.40.Gx, 14.40.Jz.

Keywords: quarkonium, quark-antiquark bound states, confining potentials, Schrödinger’s equation, asymptotic iteration method, Airy functions.

I. INTRODUCTION

The Schrödinger equation with the Cornell potential is an important non-relativistic model for the study of quark-antiquark systems [1–9]. For example, it is used in describing the masses and decay widths of charmonium states. This Coulomb-plus-linear pair potential was originally proposed for describing quarkonia with heavy quarks [3–5]. It takes into account general properties expected from the interquark interaction, namely Coulombic behavior at short distances and a linear confining term at long distances [9]. By varying the parameters one can obtain good fits to lattice measurements for the heavy-quark-antiquark static potential [10]. Although such models have been studied for many years, exact solutions of Schrödinger’s equation with this potential are unknown. Most of the earlier work either relies on direct numerical integration of the Schrödinger equation or various techniques for approximating the eigenenergies [2, 11, 12]. Without specific reference to a particular physical system, we present a simple and very effective general method for solving Schrödinger’s equation to any degree of precision in arbitrary dimensional $d > 1$. We write the Cornell potential in the form

$$V(r) = -\frac{a}{r} + cr,$$ \hspace{1cm} (1)

where $a > 0$ is a parameter representing the Coulomb strength, and $c > 0$ measures the strength of the linear confining term. The method we use do not require any particular constraint on the potential parameters and thus they are appropriate for any physical problem that may be modelled by this class of potential. The method of solution is based on a special application of the asymptotic iteration method (AIM, [13]). AIM is an iterative algorithm originally introduced to investigate the analytic and approximate solutions of a second-order linear differential equation of the form

$$y'' = \lambda_0(r)y' + s_0(r)y, \hspace{1cm} (') = \frac{d}{dr}$$ \hspace{1cm} (2)

where $\lambda_0(r)$ and $s_0(r)$ are C^∞—differentiable functions. It states [13] that: Given λ_0 and s_0 in $C^\infty(a,b)$, the differential equation (2) has the general solution

$$y(r) = \exp \left(- \int^r \frac{s_{n-1}(t)}{\lambda_{n-1}(t)} dt \right) \left[C_2 + C_1 \int^r \exp \left(\int^t \left[\lambda_0(\tau) + \frac{2s_{n-1}(\tau)}{\lambda_{n-1}(\tau)} \right] d\tau \right) dt \right]$$

*Electronic address: richard.hall@concordia.ca
†Electronic address: nsaad@upei.ca
if for some \(n > 0 \)

\[
\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0.
\]

(3)

where \(\lambda_n \) and \(s_n \) are given by

\[
\lambda_n = \lambda'_{n-1} + s_{n-1} + \lambda_0 \lambda_{n-1} \quad \text{and} \quad s_n = s'_{n-1} + s_0 \lambda_{n-1}.
\]

(4)

Applications of AIM to a variety of problems have been reported in numerous publications over the past few years. In most applications the functions \(\lambda_0(r) \) and \(s_0(r) \) are taken to be polynomials or rational functions. However, we show in this paper that the applicability of the method is not restricted to a particular class of differentiable functions. We consider the case where \(\lambda_0(r) \) and \(s_0(r) \) involve higher transcendental functions, specifically Airy functions. Provided the computer-algebra system employed has sufficient information about the functions and their derivatives, they present no difficulty. The paper is organized as follows. In section II, we set up the d-dimensional Schrödinger equation for the Cornell potential and present some analytical spectral bounds based on envelope methods [14–18]. In particular we generalize to \(d > 1 \) dimensions an analytical formula, first derived [12] for \(d = 3 \), which exhibits energy upper and lower bounds for all the discrete eigenvalues of the problem. In section III, we present an asymptotic solution that allows us to express Schrödinger’s equation in a form suitable for the application of AIM. In section IV, we apply AIM to the Cornell potential and discuss some of its numerical results, in particular comparisons with the earlier results of Eichten et al. [4] and the recent work of Chung and Lee [2].

II. FORMULATION OF THE PROBLEM AND ANALYTICAL ESTIMATES IN \(d \) DIMENSIONS

The \(d \)-dimensional Schrödinger equation, in atomic units \(\hbar = 2\mu = 1 \), with a spherically symmetric potential \(V(r) \) can be written as

\[
[-\Delta_d + V(r)] \psi(r) = E \psi(r),
\]

(5)

where \(\Delta_d \) is the \(d \)-dimensional Laplacian operator, \(d > 1 \), and \(r^2 = \sum_{i=1}^{d} x_i^2 \). In order to express (5) in terms of \(d \)-dimensional spherical coordinates \((r, \theta_1, \theta_2, \ldots, \theta_{d-1})\), we separate variables using

\[
\psi(r) = r^{-(d-1)/2} u(r) Y_{\ell_1 \ldots \ell_{d-1}}(\theta_1 \ldots \theta_{d-1}),
\]

(6)

where \(Y_{\ell_1 \ldots \ell_{d-1}}(\theta_1 \ldots \theta_{d-1}) \) is a normalized spherical harmonic \([19]\) with characteristic value \(\ell(\ell + d - 2) \), and \(\ell = \ell_1 = 0, 1, 2, \ldots \) (the principal angular-momentum quantum number). One obtains the radial Schrödinger equation as

\[
\left[-\frac{d^2}{dr^2} + \frac{(k-1)(k-3)}{4r^2} + V(r) - E \right] \psi^{(d)}_{nl}(r) = 0,
\]

(7)

\[
\int_{0}^{\infty} \left\{ \psi^{(d)}_{nl}(r) \right\}^2 dr = 1, \quad \psi^{(d)}_{nl}(0) = 0,
\]

where \(k = d+2\ell \). We assume that the potential \(V(r) \) is less singular than the centrifugal term so that for \((k-1)(k-3) \neq 0 \) we have

\[
u(r) \sim A r^{(k-1)/2}, \quad r \to 0, \quad \text{where} \ A \ \text{is a constant}.
\]

(8)

Since \(d > 1 \) it follows that \(k > 1 \), and meanwhile \(k = 3 \) only when \(\ell = 0 \) and \(d = 3 \). Thus in the very special case \(k = 3, u(r) \sim Ar \) (as we have for the Hydrogen atom), and we see that Eq. (7) is also valid when \(k = 3 \). We note that the Hamiltonian and the boundary conditions of Eq. (7) are invariant under the transformation

\[
(d, \ell) \to (d \mp 2, \ell \pm 1),
\]

thus, given any solution for fixed \(d \) and \(\ell \), we can immediately generate others for different values of \(d \) and \(\ell \). Further, the energy is unchanged if \(k = d+2\ell \) and the number of nodes \(n \) is constant: this point has been discussed, for example, by Doren [20]. Repeated application of this transformation produces a large collection of states. In the present work, we study the \(d \)-dimension Schrödinger eigenproblem

\[
\left[-\frac{d^2}{dr^2} + \frac{(k-1)(k-3)}{4r^2} - \frac{a}{r} + cr \right] u^{d}_{nl}(r) = E^{d}_{nl} u^{d}_{nl}(r),
\]

(9)

\[
k = d+2\ell, \ a > 0, \ 0 < r < \infty, \quad u^{d}_{nl}(0) = 0.
\]
Because of the presence of the linear confining term in the potential, for $c > 0$ the spectrum of this problem is entirely discrete: a formal proof for $d > 2$ is given in Reed-Simon IV \[21\].

If the parametric dependence of the eigenvalues on the potential coefficients a and c is written $E = E(a,c)$, then elementary scaling arguments reduce the dimension of the parameter space to one by means of the equation

$$E(a,c) = a^2 E(1,\lambda), \quad \text{where} \quad \lambda = \frac{c}{a^3}. \quad (10)$$

Since $V(r)$ is at once a convex function of $-1/r$ and a concave function of r^2, the envelope method \[14\] can be used to derive lower and upper energy bounds based on the comparison theorem and the known exact solutions for the pure Hydrogenic and oscillator problems in d dimensions. It turns out \[12\] that the bounds can be expressed by a formula for λ as a function of $E(1,\lambda)$. We have generalized the $d = 3$ result of Ref. \[12\] to $d > 1$ dimensions and we obtain:

$$\lambda = \frac{2\nu^2 E^3 - E^2 \left(1 + 3\nu^2 E^2\right)^{\frac{1}{2}} - 1}{\left(1 + 3\nu^2 E^2\right)^{\frac{1}{2}} - 1} \equiv g(E), \quad E \geq -\frac{1}{4\nu^2}. \quad (11)$$

which formula yields an upper bound when $\nu = 2n + \ell + d/2$ and a lower bound when $\nu = n + \ell + (d - 1)/2$. It is interesting that this entire set of lower and upper (energy) curves are all scaled versions, for example, of the single ground-state curve. Again, $n = 0, 1, 2, \ldots$ counts the nodes in the radial eigenfunction. Thus by using a computer solve routine to invert the function $g(E)$ in Eq. (11) for each of the two values of ν, the energy bounds we can be written in the form

$$E(a,c) = a^2 g^{-1}(c/a^3). \quad (12)$$

For the s-states, sharper upper bounds may be obtained (via envelopes of the linear potential) in terms of the zeros of the Airy function. This is about as far as we can go generally and analytically with this spectral problem.

III. ASYMPTOTIC SOLUTION

We note first that the differential equation (9) has one regular singular point at $r = 0$ with exponents given by the roots of the indicial equation

$$s(s - 1) - \frac{1}{4}(k - 1)(k - 3) = 0, \quad (13)$$

and an irregular singular point at $r = \infty$. For large r, the differential equation Eq. (9) assumes the asymptotic form

$$\left[-\frac{d^2}{dr^2} + cr\right] u_{nl}^d(r) \approx 0 \quad (14)$$

with a solution

$$u_{nl}^d(r) \approx Ai\left(c^{1/3} r\right), \quad u_{nl}^d(\infty) \approx 0, \quad (15)$$

where $Ai(z)$ is the well-known Airy function \[22\]. Since the roots s of Eq. (13), namely,

$$s_1 = \frac{1}{2}(3 - k), \quad s_2 = \frac{1}{2}(k - 1),$$

determine the behavior of $u_{nl}^d(r)$ as r approaches 0, only $s > 1/2$ is acceptable, since only in this case is the mean value of the kinetic energy finite \[22\]. Thus, the exact solution of (9) assumes the form

$$u_{nl}^d(r) = r^{(k-1)/2} Ai\left(c^{1/3} r\right) f_n(r), \quad c \neq 0, \quad k = d + 2l, \quad (16)$$

where we note that $u_{nl}^d(r) \sim r^{(k-1)/2}$ as $r \to 0$. On insertion of this ansatz wave function into (9), we obtain the differential equation for the functions $f_n(r)$ as

$$-r f_n''(r) + \left(1 - k - 2r \frac{d}{dr} \ln[Ai(c^{1/3} r)]\right) f_n'(r) + \left(-a - E - (k - 1) \frac{d}{dr} \ln[Ai(c^{1/3} r)]\right) f_n(r) = 0. \quad (17)$$
IV. APPLICATION OF THE ASYMPTOTIC ITERATION METHOD

For arbitrary values of the potential parameters a and c, AIM is an effective method to compute the eigenvalues accurately as roots of the termination condition Eq. (23), which plays a crucial role. The AIM sequences $\lambda_n(r)$ and $s_n(r)$, $n = 0, 1, \ldots$, depend on the (unknown) eigenvalue E and the variable r: thus δ_n is an implicit function of E and r. If the eigenvalue problem is analytically solvable, the roots of the termination condition Eq. (3) are independent of the variable r in the sense that the roots of $\delta_n = 0$ are independent of any particular value of r. In this case, the eigenvalues are simple zeros of this function. For instance, in the case of a pure Coulomb potential $V(r) = -a/r$, $a > 0$, the exact solutions of Schrödinger equation

\[\left[-\frac{d^2}{dr^2} + \frac{(k+1)(k+2)}{4r^2} - \frac{a}{r}\right]u_n^d(r) = E_n^d u_n^d(r),\]

\[k = d + 2\ell, \quad a > 0, \quad 0 < r < \infty, \quad u_n^d(0) = 0.\]

By means of the asymptotic solutions near $r = 0$ and $r = \infty$, Eq. (18) assumes the form

\[u_n^d(r) = r^{(k-1)/2} e^{-\kappa r} f_n(r), \quad k = d + 2\ell, \quad \kappa = \sqrt{-E_n},\]

where the functions f_n satisfy the differential equation

\[f_n''(r) = \left(2\kappa + \frac{1-k}{r}\right)f_n'(r) + \frac{a + (k-1)\kappa}{r}f_n(r),\]

for $n = 0, 1, 2, \ldots$ Thus, continuing the pure Coulomb case, with

\[\lambda_0(r) = 2\kappa + \frac{1-k}{r}, \quad s_0(r) = -a + (k-1)\kappa\]

we use AIM to compute the sequences λ_n and s_n, $n = 0, 1, 2, \ldots$ initiated with $\lambda_1(r) = 1$ and $s_1(r) = 0$. The termination condition is $\delta_n = 0$, $n = 0, 1, 2, \ldots$ We observe that if $\delta_n = 0$, then $\delta_{n+1} = 0$ for all n. Direct computation implies

\[\delta_0 = 0, \quad E_0 = -\frac{a^2}{(k-1)^2},\]

\[\delta_1 = 0, \quad E_0 = \frac{a^2}{(k+1)^2}, \quad E_1 = -\frac{a^2}{(k+1)^2}, \quad E_2 = -\frac{a^2}{(k+3)^2}, \quad E_3 = -\frac{a^2}{(k+5)^2},\]

\[\delta_2 = 0, \quad E_0 = \frac{a^2}{(k-1)^2}, \quad E_1 = -\frac{a^2}{(k+1)^2}, \quad E_2 = -\frac{a^2}{(k+3)^2}, \quad E_3 = -\frac{a^2}{(k+5)^2},\]

and in general

\[\delta_n = 0 \implies E_j = -\frac{a^2}{(k+2j-1)^2}, \quad j = 0, 1, 2, \ldots, n.\]

as the well-know eigenvalue formula for the Coulomb potential in d-dimensions. The situation is quite different in the case of $c \neq 0$. Here we use AIM with (see equation Eq. (17))

\[\lambda_0(r) = \frac{(1-k)}{r} - 2\frac{d}{dr} \ln[Ai(c^{1/3} r)],\]

\[s_0(r) = -E - \frac{a}{r} - \frac{(k-1)}{r} \frac{d}{dr} \ln[Ai(c^{1/3} r)],\]

where the termination condition $\delta_n = 0$ is a function of both r and E, namely

\[\delta_n \equiv \delta_n(E; r) = 0.\]

The problem is then finding an initial value $r = r_0$ that would stabilize the recursive computation of the roots by the termination condition Eq. (23) for all n. This is still an open problem with no general strategy to locate this initial value. A good choice for r_0 depends on the shape of the potential under consideration and sometimes on the asymptotic solution process itself. Thus two policies for the choice of r_0 are: (1) the point where the minimum of
the potential occurs if it is not infinity; (2) the point where the maximum of the ground-state asymptotic solution occurs. For the Cornell potential, because of the attractive Coulomb term, the potential function is not bounded below and we therefore choose \(r_0 \) to be the location of the maximum of the ground-state wave function as follows. The asymptotic solution is given by:

\[
u_{ss}(r) \approx r^{(k-1)/2} \text{Ai} \left(e^{1/3} r \right),
\]

and we suppose that \(\hat{r} \) is the position of the maximum of \(u_{ss}(r) \). We start with \(r_0 = \hat{r} \), then we gradually increase the value of \(r_0 \) until we reach stability in the computational process, in the sense that it converges in few iterations. Thus, once a suitable value is found for \(r_0 \), we adopted the following strategy: we took \(r_0 \) as a point at which the tail of the asymptotic solution Eq. (24) starts to diminish rapidly. In Figure 1, we show plots of \(u(r) \) for different values of \(c \). These graphs suggest that the starting value of \(r_0 = 20 \) for the potential \(V(r) = -1/r + 0.01 r \), the starting value of \(r_0 = 5 \) for the potential \(V(r) = -1/r + r \), and \(r_0 = 1 \) for \(V(r) = -1/r + 100 r \). For the purpose of consistency we have calculated each eigenvalue to 12 significant figures and recorded in a subscript the minimum number of iterations required to reach this precision. The computation of the Airy function is straightforward, thanks to Maple, where the ‘\text{AiryAi}’ and its derivative are built-in functions. The eigenvalues reported in Table I were computed using Maple version 16 running on an Apple iMAC computer in a high-precision environment. In order to accelerate our computation we have written our own code for a root-finding algorithm instead of using the default procedure \text{Solve} of Maple 16. The results of AIM may be obtained to any desired degree of precision: we have reported most of our results to twelve decimal places, and those of Table III to fifteen places, as an illustration. Of course, once the energy eigenvalue has been determined accurately, it is straightforward to integrate Eq. (29) to find the corresponding wave function \(u(r) \), we exhibit the result in Fig. 2.

FIG. 1: The spatial spread of the asymptotic solution \(u_{ss} \) as \(c \) increases.

\(n \)	\(E_{nl}^{d=3,4} \)	\(n \)	\(E_{nl}^{d=3,4} \)
0	1.397 875 641 660_{N=58}	0	1.397 875 641 660_{N=70}
1	3.475 086 545 396_{N=73}	1	2.825 646 640 704_{N=56}
2	5.032 914 359 536_{N=73}	2	3.850 580 006 803_{N=54}
3	6.370 149 125 486_{N=72}	3	4.726 752 007 096_{N=43}
4	7.574 932 640 591_{N=66}	4	5.516 979 644 329_{N=37}
5	8.687 914 590 401_{N=82}	5	6.248 395 598 411_{N=33}
0	2.202 884 354 411_{N=56}	0	2.202 884 354 411_{N=56}
1	3.998 899 718 709_{N=67}	1	3.363 722 259 378_{N=54}
2	5.457 656 703 862_{N=68}	2	4.301 971 630 406_{N=48}
3	6.740 670 678 009_{N=67}	3	5.130 492 519 711_{N=41}
4	7.909 993 263 956_{N=63}	4	7.085 515 480 564_{N=37}
5	8.997 414 071 258_{N=58}	5	8.799 435 022 938_{N=41}

\(n \)	\(E_{nl}^{d=3,4} \)	\(n \)	\(E_{nl}^{d=3,4} \)
0	1.397 875 641 660_{N=58}	0	1.397 875 641 660_{N=70}
1	3.475 086 545 396_{N=73}	1	2.825 646 640 704_{N=56}
2	5.032 914 359 536_{N=73}	2	3.850 580 006 803_{N=54}
3	6.370 149 125 486_{N=72}	3	4.726 752 007 096_{N=43}
4	7.574 932 640 591_{N=66}	4	5.516 979 644 329_{N=37}
5	8.687 914 590 401_{N=82}	5	6.248 395 598 411_{N=33}

In Table I we report the eigenvalues for the Schrödinger equation with the potential \(V(r) = -1/r + 0.01 r \).
FIG. 2: The wave function $u(r)$ obtained by integrating Eq. (9) with $k = 4$ and the energy eigenvalue $E = E_{n\ell}^d = 8.997414071$ taken from Table I. This corresponds, for example, to the case $d = 4, \ell = 0,$ and $n = 6.$

AIM iterations used $r_0 = 20.$ In Table III we report the eigenvalues for the Schrödinger equation with the potential $V(r) = -1/r + 100 r$ where with $r_0 = 1.$ In Table IV we compare our AIM ground-state eigenenergies for the potential $V(r) = -a/r + r$ and different values of the parameter $a,$ with those computed earlier by Eichten et al. [4] using an interpolation technique and that of Chung and Lee [2] using the Crank-Nicholson method. Since the asymptotic solution Eq. (24) is independent of the Coulombic parameter a we use AIM with $r_0 = 1,$ as shown in Figure 1.

TABLE II: Eigenvalues $E_{n\ell}^{d=3,4}$ for $V(r) = -1/r + 0.01 r.$ The initial value used by AIM is $r_0 = 20$ or as indicated. The subscript N refers to the number of iteration used by AIM.

ℓ	n	$E_{n\ell}^{d=3}$	ℓ	n	$E_{n\ell}^{d=3}$
0	0	-0.221 030 563 404 N=79	0	0	-0.221 030 563 404 N=79
1	0	0.034 722 241 998 N=70	1	0	0.017 400 552 510 N=61
2	0.141 913 022 811 N=66	2	0	0.102 472 150 415 N=47	
3	0.220 287 171 811 N=60	3	0	0.159 830 894 613 N=39	
4	0.344 602 792 592 N=75	4	0	0.206 238 109 687 N=41	
5	0.448 055 673 514 N=85	5	0	0.246 682 072 100 N=34	

ℓ	n	$E_{n\ell}^{d=4}$	ℓ	n	$E_{n\ell}^{d=4}$
0	0	-0.057 503 250 143 N=69	0	0	-0.057 503 250 143 N=69
1	0.087 181 857 064 N=63	1	0	0.065 687 904 463 N=54	
2	0.176 559 165 345 N=72	2	0	0.133 067 612 356 N=43	
3	0.247 865 703 619 N=67	3	0	0.183 984 697 123 N=36	
4	0.309 777 243 695 N=69, r_0=25	4	0	0.227 037 524 190 N=37, r_0=25	
5	0.365 723 900 484 N=71, r_0=25	5	0	0.287 224 084 341 N=39, r_0=25	
TABLE III: Eigenvalues $E_{nl}^{d=3}$ for $V(r) = -1/r + 100r$. The initial value used by AIM is $r_0 = 1$ or as indicated. The subscript N refers to the number of iteration used by AIM.

ℓ	n	$E_{nl}^{d=3}$
0	0	46.402 258 652 779 $N=104$
1	85.339 271 687 574 $N=106$	
2	116.728 692 980 119 $N=103$	
3	144.315 456 241 781 $N=99$	
4	169.460 543 870 657 $N=102$	
5	192.850 291 861 086 $N=103$	

TABLE IV: A comparison between the eigenvalues the S-wave heavy quarkonium results of Eichten et al. [4], Chung and Lee [2] and those of the present work, $E_{nl}^{d=3}$ for ground state with the Coulombic parameter a in the potential $V(r) = -a/r + r$. The initial value used by AIM was fixed at $r_0 = 6$. The subscript N refers to the number of iteration used by AIM.

α	E_{00}^3 (Eichten et al.)	E_{00}^3 (AIM)
0.2	2.167 316	2.167 316 208 772 717 $N=104$
0.4	1.988 504	1.988 503 899 750 869 $N=105$
0.6	1.801 074	1.801 073 805 646 947 $N=104$
0.8	1.604 410	1.604 408 543 236 585 $N=103$
1.0	1.397 877	1.397 875 641 659 907 $N=102$
1.2	1.180 836	1.180 833 939 744 787 $N=109$
1.4	0.952 644	0.952 640 495 218 560 $N=110$
1.6	0.712 662	0.712 657 680 461 034 $N=115$
1.8	0.460 266	0.460 260 113 873 608 $N=117$

α	E_{00}^3 (Chung and Lee)	E_{00}^3 (AIM)
0.1	2.253 678	2.253 678 098 810 761 $N=104$
0.3	2.078 949	2.078 949 440 194 840 $N=103$
0.5	1.895 904	1.895 904 238 476 994 $N=106$
0.7	1.703 935	1.703 934 818 031 980 $N=104$
0.9	1.502 415	1.502 415 495 453 739 $N=99$
1.1	1.290 709	1.290 708 615 983 606 $N=105$
1.3	1.068 171	1.068 171 244 486 971 $N=109$
1.5	0.834 162	0.834 162 211 049 953 $N=111$
1.7	0.588 049	0.588 049 168 557 953 $N=115$

V. CONCLUSION

The solution procedure presented in this paper is based on the asymptotic iteration method and is very simple. It yields highly accurate eigenvalues with little computational effort. To our knowledge, this work is the first attempt to employ the asymptotic iteration method where the AIM sequences λ_n and $s_n, n = 0, 1, 2, \ldots$, are computed in terms of higher transcendental functions, rather than polynomials or rational functions. This simple and practical method can easily be implemented with any available symbolic mathematical software to elucidate the dependence of the energy spectrum on potential parameters. Once accurate eigenvalues are at hand, it is straightforward to obtain the corresponding wave functions.
Partial financial support of this work under Grant Nos. GP3438 and GP249507 from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged by us (respectively RLH and NS).

References

[1] J. Alford and M. Strickland, *Charmonia and bottomonia in a magnetic field*, Phys. Rev. D 88 (2013) 105017.
[2] H-S Chung and J. Lee, *Cornell potential parameters for S-Wave heavy quarkonia*, J. Korean Phys. Soc., 52 (2008) 1151.
[3] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T.-M. Yan, *Spectrum of Charmed Quark-Antiquark Bound States*, Phys. Rev. lett. 34 (1975) 369 [Erratum-ibid. 36, 1276 (1976)].
[4] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T.-M. Yan, *Charmonium: the model*, Phys. Rev. D 17 (1978) 3090.
[5] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T.-M. Yan, *Charmonium: comparison with experiment*, Phys. Rev. D 21 (1980) 203.
[6] P.W.M. Evans, C.R. Allton, and J.-I. Skullerud, *Ab initio calculation of finite-temperature charmonium potentials*, Phys. Rev. D 89 (2014) 071502.
[7] Jiao-Kai Chen, *Spectral method for the Cornell and screened Cornell potentials in momentum space*, Phys. Rev. D 88 (2013) 076006.
[8] M. Hamzavi and A. A. Rajabi, *Scalar-vector-pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries: 1+1 dimensions*, Ann Phys-New York 334 (2013) 316 - 320.
[9] Claudio O. Dib and Nicolás A. Neill, *χ_b(3P) splitting predictions in potential models*, Phys. Rev. D 86 (2012) 094011.
[10] R. L. Hall, *Simple eigenvalue formula for the Coulomb-plus-linear potential*, Phys. Rev. D 30 (1984) 2062.
[11] H. Ciftci, R. L Hall and N. Saad, *Asymptotic iteration method for eigenvalue problems*, J. Phys. A: Math. Gen. 36 (2003) 11807.
[12] R. L. Hall, *Energy trajectories for the N-boson problem by the method of potential envelopes*, Phys. Rev. D 22, 2062 (1980).
[13] R. L. Hall, *A geometrical theory of energy trajectories in quantum mechanics*, J. Math. Phys. 24, 324 (1983).
[14] R. L. Hall, *Kinetic potentials in quantum mechanics*, J. Math. Phys. 25, 2078 (1984).
[15] R. L. Hall, *Spectral geometry of power-law potentials in quantum mechanics*, Phys. Rev. A 39, 5500 (1989).
[16] R. L. Hall, *Envelope theory in spectral geometry*, J. Math. Phys. 34, 2779 (1993).
[17] K. Atkinson and W. Han, *Spherical harmonics and approximations on the unit sphere: An introduction* (Springer, New York, 2012).
[18] J. Dorey and D. R. Herschbach, *Inter-dimensional degeneracies, near degeneracies and their applications*, J. Chem. Phys. 85 (1986) 4557.
[19] M. Reed and B. Simon, *Methods of Modern Mathematical Physics, IV: Analysis of Operators*, Academic Press, New York, 1978. The appropriate discrete-spectrum result for the linear-plus-Coulomb potential is given by Theorem XIII.69 on p 250.
[20] M. Abramowitz and I. Stegun, *Handbook of mathematical functions*, Dover Publications: New York (1965).
[21] L. D. Landau and E. M. Lifshitz, *Quantum Mechanics: non-relativistic theory*, Pergamon, London, 1981.