Anthropogenic monoterpenes aggravating ozone pollution

Haichao Wang1,2,6,†, Xuefei Ma1,†, Zhaofeng Tan3,†, Hongli Wang4,†, Xiaorui Chen1, Shiyi Chen1, Yaqin Gao4, Ying Liu1, Yuhua Liu1, Xinping Yang1, Bin Yuan1,5, Limin Zeng1, Cheng Huang4, Keding Lu1,1,* and Yuanhang Zhang1,1*

ABSTRACT

Monoterpenes have been known to have a critical influence on air quality and climate change through their impact on the formation of fine particles. Here we present field evidence that monoterpane oxidations largely enhanced local ozone production in a regional site in eastern China. The observed monoterpane was most likely from biomass burning rather than biogenic emissions, as indicated by the high correlation with CO at night-time, and the observed ratio of these two species was consistent with previously determined values from biomass burning experiments. Fast monoterpane oxidations were determined experimentally based on direct radical measurements, leading to a daily ozone enhancement of 4–18 parts per billion by volume (ppb), which was 6%–16% of the total ozone production, depending on the speciation of monoterpenes. It demonstrates that the previously overlooked anthropogenic monoterpenes make an important contribution to O3 production in eastern China. The role could possibly be important at similar locations across China and other parts of the world that are characterized by massive emissions, especially where there are high NOx levels. Our results highlight that anthropogenic monoterpenes should be taken into account when proceeding with the coordinated mitigation of O3 and particulate matter pollution.

Keywords: monoterpenes, ozone pollution, biomass burning, anthropogenic emissions, radical chemistry

INTRODUCTION

Monoterpenes have been the second largest group of biogenic volatile organic compounds (BVOCs) in the atmosphere [1,2]. Their degradation by atmospheric oxidants, including hydroxyl radical (OH), nitrate radical (NO3) and O3, ultimately generates a variety of secondary pollutants [3–5]. These oxidation processes first generate complex organic peroxy radicals (RO2), subsequently form highly oxidized molecules under low nitrogen oxide conditions, and significantly contribute to new particle formation and secondary organic aerosol production [6–9]. Until now, many laboratory and field studies have focused on the effect of monoterpane oxidation on new particle formation and growth of secondary aerosol [10–20] while little attention has been paid to its impact on ozone production.

It is well acknowledged that ozone is produced during the photochemical oxidation of VOCs through the recycling of RO2 radicals (e.g. OH, HO2 and RO2 radicals) by nitrogen monoxide (NO). The importance of isoprene and dominant anthropogenic VOCs in ozone formation is generally addressed [21–23]. However, large uncertainties and gaps remain in our ability to accurately predict the response of ozone to its precursors owing to the complexity and non-linearity of the photochemistry. Monoterpene chemistry is overlooked in ozone formation, because of the limited biogenic monoterpenes emitted in urban regions during the day. Recent studies indicate that significant emissions of anthropogenic monoterpenes, like volatile chemical products in urban regions in the USA, can have a significant impact on regional air quality [24–26]. Therefore, direct field evidence for the relationship between O3 formation and monoterpene oxidations would greatly improve our understanding of photochemical O3 pollution.

Here, we report field observations of monoterpenes and their oxidation rates versus OH, NO3 and O3, along with O3, NOx, anthropogenic VOCs, isoprene, OH, N2O5 and other related parameters,
at a regional site in eastern China from 27 May to 8 June 2018 (see Materials and Methods, and Text S1 in the supplementary materials online). The comprehensive data set enables us to address the sources, the fate and the atmospheric impacts of monoterpenes. We show a fast monoterpene oxidation rate in air masses influenced by both anthropogenic and biogenic emissions in the Yangtze River Delta metropolitan areas, and reveal the significant role anthropogenic monoterpene oxidation plays in photochemical O_3 production.

RESULTS AND DISCUSSION

Experimentally determined fast oxidation of monoterpenes

Figure 1 shows the mean diurnal profiles of monoterpenes and the experimentally determined oxidation rates of monoterpenes through OH, O_3 and NO_3, respectively. Here, in the absence of further information regarding monoterpene speciation, all monoterpenes are assumed to be \(\alpha\)-pinene, which is justified to some extent as \(\alpha\)-pinene is the major monoterpene [27,28]. The uncertainty due to the simplification of monoterpene speciation is also tested by assuming that the observed monoterpenes are a much more reactive species, limonene. High monoterpene concentrations with an early morning peak and a near-noon peak are observed (Fig. 1A). The daytime (06:00–18:00) averaged concentration is 0.37 parts per billion by volume (ppb), which is comparable to the observed isoprene concentrations (0.34 ppb).

During this campaign, the hourly mean diurnal maxima of OH and O_3 were \(1.0 \times 10^7\) cm\(^{-3}\) and 92.6 ppb, respectively (Figs S1 and S2 in the supplementary materials online), which are representative of the conditions in urban agglomeration regions in eastern China in warm seasons, and are generally higher than those reported elsewhere [29–31]. The daytime NO_3 concentrations are experimentally derived from the steady-state calculation [32–34] (see Materials and Methods, and Text S1). The average daytime NO_3 concentration is 1.6 parts per trillion by volume (ppt), which is also much higher than those previously reported in other regions [27,32,34]. The high daytime NO_3 level is attributed to its high precursors (Fig. S3). The co-elevated daytime OH and monoterpene concentrations lead to a fast OH-induced monoterpene oxidation rate of 0.43 ppb/h, which accounts for 51.8% of monoterpene losses during the day. The monoterpene oxidation rate driven by NO_3 reaches an average of 0.20 ppb/h in the daytime, which is equal to that caused by O_3, and more than one order of magnitude higher than that reported in the southeast USA [35]. A similar fast daytime NO_3-driven monoterpene oxidation rate was reported in a high NOx and O_3 air mass on the Seoul tower [27]. This implies that NO_3-induced monoterpene oxidation might have an impact on photochemistry.

Combined with the monoterpene oxidation by OH, O_3 and NO_3, we demonstrate an unprecedented fast monoterpene oxidation rate of 0.83 ppb/h on average in the daytime in this field observation (Fig. 1B), even exceeding the daytime isoprene oxidation rate of 0.75 ppb/h. Given that \(\alpha\)-pinene is the least reactive monoterpene with respect to OH [36], the monoterpene oxidation rates, and therefore the estimated impact on ozone formation, represent a lower bound. When assuming that observed sum monoterpenes are limonene, a further high monoterpene oxidation rate would be derived (Fig. S4). It should be noted that the fast oxidation of monoterpenes is a result of simultaneous high concentrations of the monoterpenes and the oxidants, and thus it raises the question: what is the source that sustains such high monoterpene concentrations?

Anthropogenic monoterpene emissions

Several studies demonstrate that monoterpenes are not only from biogenic emissions but also from anthropogenic activities. Laboratory simulation experiments indicate that biomass burning of various kinds of crops can release high amounts of monoterpenes into the atmosphere. Since this campaign was conducted in a harvest season, biomass burning events occurred frequently during the campaign [37–39]. As shown in Fig. 2A, the observed monoterpenes show good correlation (\(R^2 = 0.69\)) with biomass-burning-emitted CO during night-time. The data set is restricted to night-time only,
The error bars show the standard deviation.

The field-derived emission ratio and the others are obtained by laboratory experiments. The leftmost bar in panel B is the field-derived emission ratio and the others are obtained by laboratory experiments [40]. The error bar shows the standard deviation.

Figure 2. (A) The correlation of observed monoterpenes and CO during nighttime and (B) an intercomparison of a field-derived emission ratio of monoterpenes to CO, with the experimental results from biomass burning activities. The leftmost bar in panel B is the field-derived emission ratio and the others are obtained by laboratory experiments [40]. The error bar shows the standard deviation.

when oxidants (OH, O₃) are at low levels, to avoid the effect of the fast loss of monoterpenes during the day and reflect the real emission ratio between monoterpenes and CO to some extent. The estimated emission ratio of monoterpenes to CO in the biomass burning plumes during this campaign is ~0.7 ppb/ppm, which is comparable to those obtained from laboratory simulation experiments that involved the burning of different crops [40] (Fig. 2B). This indicates that biomass-burning-emitted monoterpenes contributed a large portion of the observed sum of monoterpenes during this campaign. Our results provide field evidence that biomass burning is a significant source of monoterpenes in eastern China.

Monoterpene oxidation strongly enhances ozone formation

The rapid daytime oxidation of monoterpenes by OH, O₃ and NOₓ can efficiently trigger the production of peroxy radicals and significantly increase photochemical ozone production under elevated NOₓ levels. In the meantime, the oxidation of monoterpenes by O₃ can also provide an additional OH radical source [41], contributing ~6% to the total OH primary source during the day (Fig. S5); it therefore plays a dual role in promoting ozone production by offering additional reactivity and a primary radical source. The net ozone production, P(O₃), induced by monoterpene oxidation can be quantitatively determined by differentiating the P(O₃), derived from two box model runs based on Regional Atmospheric Chemical Mechanism version 2 (RACM2), with and without constraint to monoterpenes observation (see Materials and Methods).

As shown in Fig. 3A, the oxidation of monoterpenes is quantified to contribute an additional 4.0 ppb of ozone production per day on average (from 06:00 to 18:00) if we allocate observed monoterpenes to α-pinene, accounting for 6% of the daily integrated net ozone production. To underline the significance of anthropogenic activities on ozone production, we extract the biogenic emitted monoterpenes from the observed monoterpenes by applying a fixed emission ratio of biogenic emitted isoprene to monoterpenes. This ratio is assumed to be 4.65 in this study, the lower limit that the literature recommends (4.65~12.14), which represents the largest contribution of monoterpenes from biogenic emissions [42–44]. The diurnal variations of monoterpenes that have originated from different sources (biogenic and anthropogenic) are shown in Fig. 3B. As a result, anthropogenic monoterpenes make up 89% of monoterpenes during daytime, with the peak appearing in the late morning, and they contribute 83% of the total enhancement of net ozone production by monoterpene oxidation. Notably, ozone production by monoterpene oxidation is mostly pronounced in the late morning when both monoterpenes and NO are relatively high. After midday, although monoterpene concentration remains, the observed NO concentration drops to below 0.20 ppb, which is insufficient to propagate the radical chain reaction effectively when the ozone production is NOₓ-limited, and thus limits the ozone production. In the meantime, ozone destruction through ozonolysis of monoterpenes is enhanced simultaneously due to the increased ozone concentration in the afternoon.

Furthermore, if we concentrate on the first 4 days, when biomass burning is observed to be more active (Fig. 3D), the ozone enhancement by monoterpene oxidation increases to 8.9 ppb during the day, accounting for 13% of the daily integrated net ozone production (Fig. 3C), 90% of which is attributed to anthropogenic monoterpene oxidation. If we assume that observed sum monoterpenes are limonene, the role of monoterpene oxidation on ozone production will be much more significant (Fig. S6), which leads to an additional 17.9 ppb and 33.8 ppb of ozone production per day (from 06:00 to 18:00) for the whole campaign and the first 4 days averaged, respectively. The cases for identifying monoterpenes as limonene are considered to be an upper limit to account for possible uncertainties with regard to monoterpenes speciation in the measurements.

Dependence on nitrogen oxides for ozone enhancement by monoterpenes

The impacts of the daytime oxidation of monoterpenes on the local ozone production rate towards
Figure 3. The enhancement of ozone production by monoterpane (MT) oxidation (identified as be α-pinene, API). (A, C) The ozone enhancements from monoterpane oxidation are denoted by daytime (06:00–18:00) accumulated net ozone production rates, and contributions from anthropogenic and biogenic monoterpane oxidation are separately shown. (B, D) The mean diurnal profiles of biogenic and anthropogenic monoterpenes, and nitrogen monoxide (NO). Panels A and B denote the mean diurnal profiles for the whole campaign. Panels C and D denote the mean diurnal profiles for the first 4 days (from 27 to 30 May).

NO\textsubscript{x} are further extensively investigated through sensitivity tests for varied NO\textsubscript{2} conditions. The model is applied to different monoterpane emission rates estimated from previous field observations. The modeled ozone production rates, P(O\textsubscript{x}), for different sensitivity cases are normalized to the maximum P(O\textsubscript{x}) with zero monoterpane emission (max. P(O\textsubscript{x})\textsubscript{MT=0}). The differences between the normalized P(O\textsubscript{x}) for certain monoterpane emission rates and that for the zero monoterpane emission case are plotted against NO\textsubscript{2} to show the relative enhancement due to additional monoterpane emission (see Materials and Methods, Supplementary Data). This normalization works as a quantitative method to represent the ozone enhancement from monoterpane chemistry, and it allows us to synthesize the results from different campaigns. Figure 4 shows the impact of the monoterpane chemistry on the simulated ozone enhancements for varied NO\textsubscript{x} concentrations. A relatively small influence of monoterpane chemistry is deduced for the low NO\textsubscript{2} regime (i.e. NO\textsubscript{2} < 2 ppb) or even negative effects are found because monoterpenes efficiently consume both O\textsubscript{3} and NO\textsubscript{3}. This influence on the ozone enhancement has the potential to be significant with NO\textsubscript{2} > 3 ppb. The ozone enhancement increases with NO\textsubscript{2} and reaches a maximum around 20 ppb of NO\textsubscript{2}, then slightly decreases with a higher NO\textsubscript{2} level due to the competing radical loss processes that reduce the radical propagation chain length. In addition, the ozone enhancement due to monoterpane oxidation is proportional to the emission rate of the monoterpenes and the maximum enhancement also shifts towards a higher NO\textsubscript{2} with larger monoterpane emission rates. For example, when monoterpane emission equals 1.1 ppb/h, the resultant maximum ozone enhancement is 13\% around 20 ppb of NO\textsubscript{2}. This maximum ozone enhancement increased to 35\% around 25 ppb of NO\textsubscript{2} when the monoterpane emission rate was set as 2.9 ppb/h. The chemical condition for the averaged case of this campaign locates slightly left of the norm P(O\textsubscript{x}) peak. The slight difference between the two episodes (first 4 days and last 7 days) during the campaign is clearly shown in the NO\textsubscript{2} dependence. Relatively higher NO\textsubscript{x} and monoterpenes co-existed during the first 4 days. In this case, P(O\textsubscript{x}) is shifted to a more optimized NO\textsubscript{2} position leading to a higher P(O\textsubscript{x}) production rate, which is associated with enhanced anthropogenic activities as discussed before. The results demonstrate that the coexisting high NO\textsubscript{x} and anthropogenic monoterpane largely enhance ozone production in eastern China.

Very importantly, in this constructed theoretical framework, we can then predict the ozone enhancement ratio for different monoterpane emission scenarios, as well as changing NO\textsubscript{x} concentrations, to perform a meta-analysis of available previous field campaigns with high monoterpane concentrations reported. Figure 4 shows that monoterpane oxidation could enhance the P(O\textsubscript{x}) by 6\% on campaign average in East China, which may increase to 16\% if observed sum monoterpenes are identified as limonene (Fig. S7), while the enhancement is usually below 2\% in other studies, or even caused ozone net loss for forest environments due to the limited NO\textsubscript{x} conditions. A recent study found significant amounts of volatile chemical product emissions [25] for New York City, of which monoterpane was a major component with a daytime maximum of ~0.08 ppb. However, the influence of monoterpane oxidation on ozone production for the New York case is marginal due to its low NO\textsubscript{x} level (Fig. 4, letter H). The conditions for the two megacities (Mexico City and Delhi, denoted as the letters G and F in Fig. 4) of the developing countries are very similar, located on the right side of the NO\textsubscript{2} dependence curve. The enhancement is 2\%–6\% for Mexico City and up to 8\%–36\% for Delhi (see Fig. 4 and Fig. S7). Our generalized theoretical framework highlights the importance of the coexistence of appropriate monoterpenes and NO\textsubscript{x} for fast ozone production from the monoterpane oxidations. The high monoterpane accompanied by a moderate or high level of NO\textsubscript{x} seems to be a unique feature of developing countries (such as China and India), which may be attributed to intensive and increasing human activities.
monoterpene oxidations are denoted by the normalized increased-ozone production rates. A dependence of calculated ozone enhancements from monoterpene α-pinene (API). The letters on the circle points denote different measurement campaigns. A: SOAS, the Southern Oxidant and Aerosol Study, 2013 [45]. B: BEARPEX09, the Biosphere Effects on Aerosols and Photochemistry Experiment II, California [46]. C: OP3-I, Oxidant and Particle Photochemical Processes above a Southeast Asian tropical forest: first intensive measurements [47]. D: GABRIEL, Guyanas Atmosphere-Biosphere Exchange and Radicals Intensive Experiment with the Learjet [48]. E: PROPHET, Program for Research on Oxidants: Photochemistry, Emissions and Transport [49]. F: MCMA2006, Exploratory field measurements in the Mexico City Metropolitan Area, 2006 [50]. G: APHH-India, the Atmospheric Pollution and Human Health program in an Indian Megacity [51]. H: NY-ICE, the New York Investigation of Consumer Emissions [25]. I: this study. The averaged conditions are further divided into two parts (I1, from 27 to 30 May; I2, from 2 to 8 July).

CONCLUSIONS AND IMPLICATIONS

Our results show that anthropogenic activities, mostly biomass burning, emit large amounts of monoterpens in eastern China during summer time, which leads to a significant enhancement of ozone production along with an elevated NOx level. Our study highlights that urban ozone pollution control could be more challenging than expected if anthropogenic monoterpens are considered. Given that monoterpenes also strongly contribute to secondary aerosol formations [54,55], our findings suggest that the control of anthropogenic monoterpene emissions may provide a critical policy tool for achieving the joint control of ozone and particle pollution. Besides, for future carbon neutrality pathways in China, the coordinated reduction of NOx and VOCs, including monoterpenes, should also be considered for mitigation of air pollution and climate change. In future works, emission flux observations and speciated monoterpene observations are urgently needed to quantify anthropogenic monoterpene emissions directly. The measurement of speciated monoterpenes will also be very helpful in diagnosing ozone-NOx-VOC sensitivities. Moreover, setting up the speciated anthropogenic monoterpene emission inventory will be critical if the models are to simulate secondary pollution and plan for mitigation strategies regionally.

MATERIALS AND METHODS

Monoterpene measurements

A comprehensive suite of trace gas compounds and aerosol properties was measured in the field campaign. The instrument description and details of the sampling site can be found in Text S1. Monoterpene was measured by a commercial Proton Transfer Reaction with Quadrupule Interface Time-of-Flight Mass Spectrometer (PTR-Qi-TOF, IONICON Analytik GmbH, Austria). PTR-Qi-TOF was operated in the m/z from 0 to 530, with a mass resolution of 3500–5500 at m/z 45–204. The drift tube was operated at 850 V with a pressure of 3.8 mbar at 80°C. Calibrations for monoterpenes were performed by α-pinene in mixed gas standards (Spectra Gases Inc.) at five concentration levels (1.0, 2.5, 5.0, 7.0 and 10.0 ppbv). The sensitivity of α-pinene was 745.3 ncps ppbv−1 resulting in an limit of detection (LOD) of 6 ppt at 10 s resolution. Data were analyzed using Tofwerk software v2.5.7 (Tofwerk AG) for high-resolution peak fitting. Signal intensity was normalized by the signal of H3O+ ion and water clusters. The mixing ratios of monoterpenes were calculated using the ratio of the normalized signal intensity (unit, ncps) to the sensitivity of α-pinene, assuming all monoterpenes had the same detection sensitivity as α-pinene.

Numerical chemical model

An observation-constrained box model based on the RACM2 [56], with some modifications, is applied in this study. The isoprene mechanism is replaced according to the latest Leuven-Isoprene-Mechanism [57]. A detailed description of the implementation of RACM2 can be found in a previous publication for the summertime campaign in Wangdu, China [30]. In this study, the model
calculations are constrained to measurements of nitrous acid (HONO), NO₂, NO, O₃, CO, SO₂, C₂ − C₁₂ VOC and certain oxygenated VOCs such as HCHO, acetaldehyde, glyoxal and acetone, as well as to measured photolysis frequencies, temperature and pressure, and water vapor concentrations. The CH₄ and H₂ mixing ratios are assumed to be 1.9 ppm and 550 ppb, respectively. The measured monoterpenes are identified as α-pinene in the model with monoterpenes constrained if not specified. An additional sensitivity test allocating the monoterpenes to limonene is also performed. The model is operated in a time-dependent mode, in which constrained values are updated every 5 min. For all species that are produced in the model, an additional sink representing physical loss processes like dry deposition is implemented at a rate equivalent to a lifetime of 8 h. Furthermore, heterogeneous loss of dinitrogen pentoxide due to uptake into aerosol particles is also considered.

The photochemical O₃ production rate, P(Oₓ), is calculated by the difference between the NO₂ production rates from the reactions of peroxy radicals with NO (F(Oₓ), Equation 1) and the O₃ loss rates from the reactions of OH with NO₂, ozone with alkenes and NO with alkenes, as well as ozone photolysis, etc. (D(Oₓ), Equation 2). Therein, the rate constant kₜₜO₂+NO is taken from NASA JPL Publication 15–10. The rate constants (kₜₜO₂+NO) and NO₂ yields (αᵢ) for speciated RO₂ are taken from RACM2. The O₃ losses from NO₃ with alkenes are calculated based on the NO₃ steady-state assumption, and each NO₃ destruction is considered to consume two ozone molecules:

\[
F(O₃) = k_{HO₂+NO} [HO₂][NO] + \sum_i k_{RO₂+NO} [RO₂][NO]. \tag{1}
\]

\[
D(O₃) = J(Ο¹D)[Ο₃] \times \varphi + k_{Ο₅+Alkenes} [Alkenes] [Ο₅] + k_{Ο₅+ΟH} [ΟH] [Ο₅] + k_{Ο₅+ΟΟ₂} [ΟO₂] [Ο₅] + k_{ΟH+NO₂} [ΟH][NO₂] + 2 \times (k_{NO₂+Ο₅} [NO₂] [Ο₅] - k_{NO₃+Ο₅} [NO₃][NO₃] - j_{NO₃}[NO₃]). \tag{2}
\]

The dependence of ozone production rate on the NO₂ concentrations and monterpene emission rates is calculated using a chemical box model. The chemical mechanisms are the same as described above. To construct a chemical condition representing the eastern China region, the model calculations were constrained to measurements of CO, CH₄, C₂ − C₁₂ VOC and water vapor concentrations, as well as measured photolysis frequencies, temperature and pressure. The constraints of NO, NO₂ and oxygenated volatile organic compounds (OVOCs) in the model are removed. HONO concentrations are set proportional to NO₂ using the mean HONO-to-NO₂ ratio of 0.086 derived from the measurements. A series of model sensitivity tests with different monterpene emission rates (identifed as either α-pinene or limonene) is performed to extract the P(Oₓ) dependence on different NO₂ concentrations (Fig. S8). The direct constraint of monterpene concentrations in the model to investigate the NO₂ dependence could lead to flaws in accounting for the interaction between additional monoterpenes input and photochemical activities. Therefore, the model is applied to different monterpene emission rates, which is more representative of real-world conditions. For each NO₂ concentration and monterpene emission rate, a corresponding ozone production rate is derived from the steady-state calculation. For comparison with other campaigns, the P(Oₓ) for different NO₂ concentrations and monterpene emission rates are normalized to the maximum P(Oₓ) with zero monoterpenes (white circle in Fig. S8). This normalization constructs a general P(Oₓ) dependence on NO₂ for different campaigns (Table S2). In the main text, the normalization P(Oₓ) is shown for comparison between different studies.

DATA AVAILABILITY

The data underlying this article are available at: https://disk.pku.edu.cn:443/link/C037595A6771022D79CECBE86A058F2.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.

ACKNOWLEDGEMENTS

We thank the EXPLORE-YRD science team, especially Dr. Xin Li, Song Guo, Zhijun Wu, Shengrong Lou, Wanyi Qiu, Shule Li and Yishu Zhu for providing technical and logistical support during the campaign.

FUNDING

This work was supported by the National Research Program for Key Issue in Air Pollution Control (2019YFC0214800), the
Beijing Municipal Natural Science Foundation for Distinguished Young Scholars (JQ19031) and the National Natural Science Foundation of China (91544225, 21522701 and 42175111).

AUTHOR CONTRIBUTIONS

K.L. and Y.Z. designed the experiments. K.L., H.C.W., X.M. and Z.T. analyzed the data. H.L.W., Y.G. and Y.L. performed the measurement of monoterpenes. X.M. and X.Y. performed the measurement of N2O5. K.L., H.C.W., X.M. and Z.T. wrote the manuscript. All other co-authors discussed the results, commented on the manuscript and contributed to the study with measurements of relevant parameters.

Conflict of interest statement. None declared.

REFERENCES

1. Sindelarova K, Granier C and Bouarar I et al. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. *Atmos Chem Phys* 2014; **14**, 9317–41.
2. Guenther AB, Jiang X and Heald CL et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. *Geosci Model Dev* 2012; **5**, 1471–92.
3. Ehn M, Thornton JA and Kleist E et al. A large source of low-volatility secondary organic aerosol. *Nature* 2014; **506**, 476–9.
4. Jimenez JL, Canagaratna MR and Donahue NM et al. Evolution of organic aerosols in the atmosphere. *Science* 2009; **326**, 1525–9.
5. Wang H, Chen X and Lu K et al. NO3 and N2O5 chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. *Atmos Environ* 2020; **224**, 117180.
6. Perakyla O, Vogt M and Tikkanen O-P et al. Monoterpenes’ oxidation capacity and rate over a boreal forest: temporal variation and connection to growth of newly formed particles. *Boreal Environ Res* 2014; **19**, 293–310.
7. Wildt J, Mentel TF and Kiendler-Scharr A et al. Suppression of new particle formation from monoterpane oxidation by NOx. *Atmos Chem Phys* 2014; **14**, 2789–804.
8. Barthelme R and Pryor SC. A model mechanism to describe oxidation of monoterpenes leading to secondary organic aerosol - 1. alpha-pinene and beta-pinene. *J Geophys Res* 1999; **104**, 23657–99.
9. Zhao D, Kaminski M and Schlag P et al. Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes. *Atmos Chem Phys* 2015; **15**, 991–1012.
10. Ng NL, Brown SS and Archibald AT et al. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. *Atmos Chem Phys* 2017; **17**, 2103–62.
11. Ayres BR, Allen HM and Draper DC et al. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States. *Atmos Chem Phys* 2015; **15**, 13377–79.
12. Fry JL, Draper DC and Barsanti KC et al. Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons. *Environ Sci Technol* 2014; **48**, 11944–53.
13. Rollins AW, Kiendler-Scharr A and Fry JL et al. Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields. *Atmos Chem Phys* 2008; **9**, 6885–703.
14. Fry JL, Kiendler-Scharr A and Rollins AW et al. Organic nitrate and secondary organic aerosol yield from NO3 oxidation of beta-pinene evaluated using a gas-phase kinetics/aerosol partitioning model. *Atmos Chem Phys* 2009; **9**, 1431–49.
15. Pye HOT, Chan AWH and Barkley MP et al. Global modeling of organic aerosol: the importance of reactive nitrogen (NOx and NOy). *Atmos Chem Phys* 2010; **10**, 11261–76.
16. Kiendler-Scharr A, Mensah AA and Friese E et al. Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. *Geophys Res Lett* 2016; **43**, 7735–44.
17. McFiggans G, Mentel TF and Wildt J et al. Secondary organic aerosol reduced by mixture of atmospheric vapours. *Nature* 2019; **565**, 587–93.
18. Kiendler-Scharr A, Wildt J and Dal Maso M et al. New particle formation in forests inhibited by isoprene emissions. *Nature* 2009; **461**, 381–4.
19. Zhao Y, Thornton JA and Pye HOT. Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpane-derived peroxy radical chemistry. *Proc Natl Acad Sci USA* 2018; **115**, 12142–7.
20. Xu L, Guo H and Boyd CM et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. *Proc Natl Acad Sci USA* 2015; **112**, 37–42.
21. Tan Z, Lu K and Dong H et al. Explicit diagnosis of the local ozone production rate and the ozone-NOX-VOC sensitivities. *Sci Bull* 2018; **63**, 1067–76.
22. Chameides WL, Lindsay RW and Richardson J et al. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case-study. *Science* 1988; **241**, 1473–5.
23. Dreyfus GB, Schade GW and Goldstein AH. Observational constraints on the contribution of isoprene oxidation to ozone production on the western slope of the Sierra Nevada, California. *J Geophys Res* 2002; **107**:G85.
24. Qin MM, Murphy BN and Isaacs KK et al. Criteria pollutant impacts of volatile chemical products informed by near-field modelling. *Nat Sustain* 2020; **4**, 129–37.
25. Coggon MM, Gkatzelis GI and McDonald BC et al. Volatile chemical product emissions enhance ozone and modulate urban chemistry. *Proc Natl Acad Sci USA* 2021; **118** e2029665218.
26. McDonald BC, de Gouw JA and Gilman JB et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. *Science* 2018; **359**, 760–4.
27. Brown SS, An H and Lee M et al. Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: results from the Seoul tower during MAPS 2015. *Farad Discuss* 2017; **200**, 529–57.
28. Ding X, Zhang Y-Q and He Q-F et al. Spatial and seasonal variations of secondary organic aerosol from terpenoids over China. *J Geophys Res Atmos* 2016; **121**, 14681–78.
29. Lu KD, Rohrer F and Holland F et al. Observation and modelling of OH and H2O2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere. Atmos Chem Phys 2012; 12: 1541–69.

30. Tan Z, Fuchs H and Lu K et al. Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, H2O2 and RO2 radicals. Atmos Chem Phys 2017; 17: 683–90.

31. Tan ZF, Lu KD and Hofzumahaus A et al. Experimental budgets of OH, H2O2, and RO2 radicals and implications for ozone formation in the Pearl River Delta in China 2014. Atmos Chem Phys 2019; 19: 7129–50.

32. Brown SS, Osthoff HD and Stark H et al. Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry. J Photochem Photobiol A 2005; 176: 270–8.

33. Geyer A, Alicke B and Ackermann R et al. Direct observations of daytime NO3: implications for urban boundary layer chemistry. J Geophys Res 2003; 108: ACH7.

34. Osthoff HD, Sommariva R and Baynard T et al. Observation of daytime N2O5 in the marine boundary layer during New England Air Quality Study - Intercal- lindrical Transport and Chemical Transformation 2004. J Geophys Res 2006; 111: D23S14.

35. Zhang HF, Yee LD and Lee BH et al. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proc Natl Acad Sci USA 2018; 115: 2038–43.

36. Atkinson R and Arey J. Atmospheric degradation of volatile organic compounds. Chem Rev 2003; 103: 4605–38.

37. Huang DD, Kong L and Gao J et al. Insights into the formation and properties of secondary organic aerosol at a background site in Yangtze River Delta region of China: aqueous-phase processing vs. photochemical oxidation. Atmos Environ 2020; 239: 117716.

38. Wang TT, Zhao G and Tan TY et al. Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmos Environ 2021; 248: 118230.

39. Gao Y, Wang H and Liu Y et al. Unexpected high contribution of residual biomass burning to non-methane organic gases (NMOGs) in the Yangtze River Delta region of China. J Geophys Res Atmos 2022; 127: e2021JD035050.

40. Koss AR, Sekimoto K and Gilman JB et al. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmos Chem Phys 2018; 18: 3299–319.

41. Zhang D and Zhang R. Ozonolysis of alpha-pinene and beta-pinene: kinetics and mechanism. J Chem Phys 2005; 122: 114308.

42. Liu Y, Li L and An JY et al. Estimation of biogenic VOC emissions and its impact on ozone formation over the Yangtze River Delta region, China. Atmos Environ 2018; 186: 113–28.

43. Yang WZ, Cao J and Wu Y et al. Review on plant terpenoid emissions world- wide and in China. Sci Total Environ 2021; 787: 147454.

44. Cao J, Situ S and Hao YF et al. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmos Chem Phys 2022; 22: 2351–64.

45. Qin MM, Hu YT and Wang XS et al. Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: a case study of the SOAS campaign using CMAQ. Atmos Environ 2018; 184: 146–55.

46. Mao J, Ren X and Zhang L et al. Insights into hydroxyl measurements and atmospheric oxidation in a California forest. Atmos Chem Phys 2012; 12: 8009–20.

47. Langford B, Misztal PK and Nemitz E et al. Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. Atmos Chem Phys 2010; 10: 8391–412.

48. Lelieveld J, Butler TM and Crowley JN et al. Atmospheric oxidation capacity sustained by a tropical forest. Nature 2008; 452: 737–40.

49. Tan D, Faloona I and Simpas JB et al. OH budgets in a deciduous forest: results from the PROPHET summer 1998 campaign. J Geophys Res 2001; 106: 24407–27.

50. Dusanter S, Vimal D and Stevens PS et al. Measurements of OH and NO2 concentrations during the MCMA-2006 field campaign - Part 2: model comparison and radical budget. Atmos Chem Phys 2009; 9: 6655–75.

51. Nelson BS, Stewart GJ and Drysdale WS et al. In situ ozone production is highly sensitive to volatile organic compounds in the Indian megacity of Delhi, India. Atmos Chem Phys Discuss 2021; 21: 13609–30.

52. Decker ZCJ, Robinson MA and Barsanti KC et al. Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmos Chem Phys 2021; 21: 16293–317.

53. Decker ZCJ, Zarzana KJ and Coggon M et al. Nighttime chemical transformation in biomass burning plumes: a box model analysis initialized with aircraft observations. Environ Sci Technol 2019; 53: 2529–38.

54. Lee SH, Gordon H and Yu H et al. New particle formation in the atmosphere: from molecular clusters to global climate. J Geophys Res Atmos 2019; 124: 7098–146.

55. Zhang RY, Wang L and Khalizov AF et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution. Proc Natl Acad Sci USA 2009; 106: 17650–4.

56. Goliff WS, Stockwell WR and Lawson CV. The regional atmospheric chemistry mechanism, version 2. Atmos Environ 2013; 68: 174–85.

57. Peeters J, Muller J-F and Stavroudis T et al. Hydroxyl radical recycling in iso- prene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism. J Phys Chem A 2014; 118: 8625–43.