Assessment of trace elements pollution in the sea ports of New South Wales (NSW), Australia using oysters as bioindicators

Sayka Jahan & Vladimir Strezov

In this study Sydney rock oysters (S. glomerata) from six major sea ports of NSW, Australia were used as bioindicators to assess the distribution and levels of trace element accumulation in the ports. Substantial enrichment of Cu, Pb and Zn in the oysters of the sea ports were detected when compared to their background samples and the US Environmental Protection Agency (USEPA) provisional tolerable intake standard. Enrichment of As, Al, Fe, Mn, Br, Sr were also found in the oysters at the port areas. The bioconcentration ratios of the trace elements illustrated significant Fe, Cu, Zn, As, Mn, Al, Pb and Cr accumulation in S. glomerata. The biota sediment accumulation factor suggested Cu, Mn and Zn accumulation at two of the ports (Port Yamba and Botany), indicating availability of these metals in the oysters as strong metal accumulators. In addition, integrated metal contamination illustrated notable Fe, Zn, Cu and Al contamination at port environment, whereas cluster analysis portrayed interconnection between the contaminants and the study sites.

Trace element contamination is considered as one of the major issues in marine and estuarine environment due to their diverse sources, persistence, bioaccumulation, non-degradability and harmful effects on biota1–7. The ecological status of the aquatic environment can be evaluated by analyzing the distribution of trace elements in water, sediments and marine organisms8. In most cases, contaminated site assessment typically demands analysis of water and sediments to measure total trace elements concentrations, but often this is not a sufficient predictor of trace element toxicity to biota9,10. To overcome the problem, biomonitoring offers advantage as marine organisms’ (oysters, mussels, and clams) manifest greater spatial tolerant to elemental toxicity compared to water and sediments and therefore gained universal acceptance as the most reliable medium to ascertain sources of biologically available trace element contamination11. However, bivalve mollusks are considered to be one of the best bioindicators for coastal pollution studies due to their specific life traits, such as a sessile and filter-feeding behavior, a wide geographical distribution, abundance, sedentary and a relative resilience to pollutants6,11. Moreover, mollusc bivalves have the potential to accumulate chemical compounds at levels of 103 at 105 times more than other species12. Hence, since 1970’s a Worldwide scheme for monitoring ocean health by using mussels and oysters has been introduced6,13.

The specific ability of oysters to accumulate pollutants makes them candidate species for biomonitoring contaminant exposure to their potential biological effects6,12,13,18,19. Furthermore, oysters are often used as sentinel organisms due to their rapid adaptive capacity to the new environment. In Australia an integrated approach, including analysis of oysters as bioindicator and for quantification of elements in biota, was analyzed to monitor the impact of trace elements on port ecosystems20,21. As a common food source, it also urges investigation of the impact of marine activities on trace elements pollution in oysters.

Australian sea ports, which accommodate industry, commerce, tourism and recreation, often exacerbate trace elements contamination from different port related activities (transport and storage of hazardous materials, industrial installation, recreational shipping etc)22–28. This influences the growth rate and fecundity of marine biota and ultimately reduces the population diversity26–31 and reduces their suitability as a food source for humans32.

Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University NSW, 2109, Sydney, Australia. Correspondence and requests for materials should be addressed to S.J. (email: sayka.jahan@students.mq.edu.au)
Among Pacific oysters, *S. glomerata* has been evidenced to be one of the most suitable organisms for biomonitoring chemical contamination in coasts and estuaries. This has preferentially been selected as a sentinel organism for its capability to concentrate pollutants, its lethargy, its limited ability to metabolize accumulated contaminants, its abundance, persistence, and ease of collection, all of which make it a good stable assimilator of the environment. In the present study, *S. glomerata* was used as the bioindicator to investigate the levels of trace element contamination in port environment, also applied by Goldberg et al. and Thompson et al. Evidence also suggested that *S. glomerata* is widely distributed species along the coastal belts of NSW that also acts as a potential accumulator of trace elements. The objective of this study was to assess the trace elements concentrations in the oysters of NSW sea ports to determine the variations of trace element bioaccumulation in the oysters under different port activities and to explore the level of trace element pollution in oysters which ultimately gives a scenario of stress on port environments. Finally, the present study typifies a new perspective for biomonitoring and risk assessment of trace elements in aquatic ecosystems using principal component and hierarchical cluster analysis methods.

Materials and Methods

Study area. The field study was conducted at the six major seaports in NSW, Australia, namely Port Jackson, Botany, Kembla, Newcastle, Yamba and Eden (Fig. 1). These ports are away from each other and are engaged with different shipping activities (23 km–1198 km). Port Jackson of Sydney harbour, which accommodates cruise shipping, pleasure boating and water sports, is a well-mixed estuary. Port Botany is another important port of Sydney mainly engaged with shipping of containers, crude oil, fossil fuel, chemicals and bio-fuels. Port Kembla is a prime export location for coal, grain terminal, bulk liquids, oil, fertiliser, pulp and steel products. The port is important for export and import of different mineral ores and petroleum products. Port Newcastle is the world largest port for coal export by tonnage that is also engaged with export and import of raw materials for steelworks, fertiliser and aluminium industries, grain, steel products, mineral sands and woodchips. Port Yamba is the eastern most sea port of New South Wales located at the mouth of the Clarence River. It is the second largest fishing port of New South Wales dealing with container liquid berth-livestock and explosive products. The Port of Eden is located in the South Coast region of New South Wales, Australia. The Port is the largest fishing port of New South Wales also engaged with export and import of woodchips, break bulk, machinery and equipment for the oil and gas industry. The study locations are shown in Fig. 1.

Sample collection and processing. Oyster samples known as Sydney rock oyster (*S. glomerata*) of different shell sizes (3 cm–7 cm) were collected from the six sea ports from April–June 2017. Three sampling points from each port were selected to collect samples among which one is background point selected from the same hydrogeological area but away from any influence of the port and other industrial activities. In this study, >40 indigenous oysters from each sampling point were collected by hand from dock columns and rocks in surface water (0–1 m). Immediately after collection, the oysters were stored in bags in a cooler box with ice and transported to the laboratory. About 20 oyster samples were selected from each sampling point and were weighed, and their tissues and shells were separated. The tissues were then dried in an oven at 105 ± 5°C for 8 hours to a constant weight. The soft tissue, after the removal of the liquid, was then weighted. Prior to analysis, the dried samples were ground and the powdered sample then used for analysis where each analysis was replicated twice.

Analytical procedure. The oyster tissue samples (0.05 g) were digested in 1 mL concentrated HNO₃ acid at 80°C on the hot plate for 24 hours until the samples were completely digested. The sample solutions were then diluted three times with Milli-Q water. Metals and major element (twenty three) concentrations in the samples...
were determined by inductively coupled plasma mass spectrometry (ICP-MS Agilent 7700X and Varian vista-pro ICP-AES) respectively, while mercury was determined by cold vapour atomic absorption spectroscopy (CV-AAS) to reach the PQLs (practical quantitation limits). Quality and accuracy of the experimental procedure and the equipment was ensured using replicate analyses, certified reference material (CRM) (oyster tissue, SRM 1566b) and sample spikes. The recovery percentage of all trace metals in CRM were 90–110% and the analytical precision expressed as coefficients of variance was <10% for all the metals based on replicate analysis. The detection limit of the method (MDL) was estimated as the standard error of 10 blank replicates. The recovery percentage and detection limits of all trace elements are presented in Table 1.

Data Processing. Bioconcentration Ratio (BCR). Bioconcentration is a process in which biological organisms absorb a chemical compound from their surrounding environment through different body parts. It is a quantitative measure of the biota's bioaccumulative capacity. The measured bioconcentration ratios also form the base for assessing the risk of adverse effects of hazardous substances on specific biota. The extent of bioconcentration is calculated by using the formula (1):

\[BCR = \frac{C_{\text{organism}}}{C_{\text{Water}}} \]

where \(C_{\text{organism}} \) is the concentration (mg/kg) of an element in the oyster, which was measured in this study, while \(C_{\text{Water}} \) is the concentration (mg/l) of the same element in the water of the same study locations, which was derived from the mean values published by Jahan and Strezov. When the BCR is >1, bioaccumulation is considered.

Biota sediment accumulation factor (BSAF). Biota sediment accumulation factor (BSAF) is the ratio between the concentration of element in a biota to the concentration of same element in sediment. The BSAF for each element in the sample is calculated with equation (2):

\[BSAF = \frac{C_{\text{organism}}}{C_{\text{Sediment}}} \]

where \(C_{\text{organism}} \) and \(C_{\text{Sediment}} \) are the concentrations (mg/kg) of trace elements in the oyster and in sediment. Typically, BSAF value >1 indicates bioaccumulation of trace element. In this study, the sedimentary trace element concentrations for the same study locations were derived from the mean values published by Jahan and Strezov.

Integrated metal contamination (IMC). The severity of metal pollution can be determined using the integrated metal contamination equation (3) given by Liu and Wang:

\[IMC = \sum_{i=0}^{n} C_{\text{Contaminated}}(i) - C_{\text{Clean}} \]

where \(C_{\text{Contaminated}}(i) \) is the concentration (mg/kg) of metal i in a contaminated oyster obtained from the port area, \(C_{\text{Clean}}(i) \) is a reference value (mg/kg) for the metal i in oyster obtained from the background site of each port, while m is the number of metals investigated, which is m = 13 for this calculation.

Table 1. Recovery (%) and practical quantification limit (mg/kg dry wt.) of analyzed trace elements.

Trace elements	Recovery (%)	Detection limit (mg/kg dry wt.)
Al	96.3	0.99
As	102	3.99
Cr	105	0.09
Cu	103	0.09
Fe	108	0.99
Mn	102	0.99
Pb	95.6	0.99
Zn	101	0.09
Hg	98.3	0.1
Cd	106	0.4
Br	104	3.99
Si	99.8	9.99
Sr	109	0.99
Ti	106	0.99

Statistical analysis. Statistical analysis was performed by using Microsoft excel and SPSS version 24. Analyzed metal concentrations were presented as normalized concentration for standardized weight and length. The normality distribution of data were tested by Kolmogorov-Smirnov test and then normalized and analyzed using the multivariate statistical tools principal component analysis (PCA) and hierarchical cluster analysis.
Table 2. Comparison of the studied trace elements concentrations (normalized concentration mean ± SD. for 30–40 g standardized weight and 5–7 cm length) in S. glomerata with that of the maximum permissible limits set forth by various organizations. Bg = background, Bd = below detection, dry wt. = dry weight, PTI = Provisional tolerable intake. *Background concentration by Scanes & Roach50. 1Standard quality guidelines for bivalve mollusks (FAO, 1989). 2USEPA (2013). 3US Food and Drug Administration, 1993.

Results and Discussion

Bioaccumulation pattern and normalized concentrations of trace elements (whose concentrations are significantly high) in the soft tissue of the oysters (30–40 g and 5–7 cm) (Saccostrea glomerata) are shown in Table 2. The concentrations of As in port Jackson, Botany, Kembla and Eden range from 5 to 9 mg/kg which are significantly higher than their background concentrations (1.88 mg/kg) in oysters of the NSW coast given by Scanes and Roach50. Cu concentrations in the oyster of all ports were found to be higher than the USEPA (provisional tolerable intake) standard (0.05 mg/kg) and FAO standard quality guidelines for bivalve mollusks (4 mg/kg) given by FAO51. However, in Australia and New Zealand, the regulation applied to seafood is related to inorganic arsenic. This is because marine organisms and plants, such as shellfish, molluscs and seaweed, can contain high levels of arsenic, but mostly in organic arsenosugar forms52.

The Cu concentrations in the oyster of all ports were found to be higher than the USEPA (provisional tolerable intake)53 standard (0.05 mg/kg) and FAO standard quality guidelines for bivalve mollusks (20 mg/kg)51. The highest concentration of Cu was detected at port Yamba (61 mg/kg), which is significantly above the standards but mostly in organic arsenosugar forms52. The Pb concentrations in the studied sites are also associated with higher assimilation efficiencies and bioavailability in the port environment. The normalized Pb concentration (2–7 mg/kg) in this port is also higher than its background site and all other standards (0.2 0.025 and 1.7 mg/kg by FAO, USEPA and USFDA respectively) shown in Table 2. However, Cu concentrations found in oysters are unsafe for human consumption. The Pb concentration (2–7 mg/kg) in this port is also higher than its background site and all other standards (0.2 0.025 and 1.7 mg/kg by FAO, USEPA and USFDA respectively) shown in Table 2. Unlike port Eden, the oysters in all other ports contained higher concentrations of Mn than the background values given by Scanes and Roach50. The results also portray remarkably Mn bioaccumulation inside port Jackson, Botany, Kembla and Yamba comparing to their background sites. Notable amounts of Al, Fe, Br, Si and Sr were detected in almost all ports although they do not have any standard values to compare. Significant amounts of Ti is also found in the oysters at port Kembla. In addition, concentrations of some elements (Hg, Cd, Ag, Ni, Co, Ba, Sn) were measured but found bellow detection limit in all study points, therefore they were not reported further.
Bioconcentration ratio (BCR). BCR values in *S. glomerata* shown in Fig. 2 present an order of Fe > Cu > Zn > As > Mn > Al > Pb > Cr although they show variations among ports. BCR values of As, Cr and Pb in some of the ports are less than 1 which demonstrate almost similar concentrations of those elements in oyster and water. However, only eight metals are calculated because of others are below detection limit in water. BCR values greater than 1000 indicate significant and slow accumulation. High BCR values also demonstrate the uptake of free metal ions from solution more effectively via dermal organs. BCR values of Fe and Cu in almost all ports are >1000 with the highest values (Fe = 46,470, Cu = 10,588) at Port Kembla which demonstrate considerable Fe and Cu concentrations in the port environment. Except Port Kembla and Yamba, significant Zn concentrations (as BCR > 1000) were found in all other ports.

Biota sediment accumulation factor (BASF). The average concentration of the trace element was then applied to determine the biota sediment accumulation factor, as presented in Fig. 3. Significant bioaccumulation of Cu at port Botany (7), Newcastle (2.63) and Yamba (40) and bioaccumulation of Zn (2.43 and 4.33) and Mn (4.70 and 1.33) at port Botany and Yamba indicates availability of these metals in the port environment as well as high-level absorbing capacity in the soft tissues of the oysters. Bioaccumulation of As and Sr were observed at port Jackson whereas Si bioaccumulation was also found in the oysters at port Kembla. Based on the results, *S. glomerata* is considered to be strong accumulators for Cu and moderate accumulators for Zn and Mn.

Integrated metal concentration. The severity of metal pollution by integrated metal concentration (IMC) is presented in Table 3. The results suggest that the oysters at port Eden and Botany are comparatively less contaminated than the oyster samples from the other port sites. The results also imply that the oysters at port Kembla are severely contaminated followed by port Jackson and port Yamba with notable enrichment of Fe, Zn, Cu and Al. For calculation of IMC reference site values are required. If the reference values are affected by non-point pollution sources the IMC values may be affected because of the undue influence of one of the measurements used in the final composite values. Therefore, no threshold for maximum pollution is given for this index.

Figure 2. Bioconcentration Ratio (BCR) in oysters (*S. glomerata*) from the seaports of NSW, Australia.
Figure 3. Biota sediment accumulation factors (BSAFs) for oysters in the study ports of NSW, Australia.

Table 3. Integrated metal contamination (mg/kg) in the oysters of NSW seaports.

Study Area	Df	P-Value
Port Jackson	24	0.45
Port Botany	24	0.46
Port Kembla	24	0.42
Port Newcastle	24	0.7
Port Yamba	24	0.29
Port Eden	24	0.76

Table 4. Significance (variations were significant at P < 0.05) analysis of trace elements concentrations between the background and port oysters.
Table 5. Correlation analysis of trace elements in the oyster of the seaports of NSW, Australia. "Bold**" mark denotes strong correlation.

Length	Weight	Al	As	Cd	Cr	Cu	Fe	Mn	Ni	Pb	Zn	B	Si	Br	Sr	Ti	I
1.000	0.987*	0.000	−0.051	0.946	0.600	0.000	0.317	0.468	0.617	0.000	−0.541	0.000	0.317	0.468	0.617	0.000	−0.541

Table 6. Component matrix of the oysters of NSW seaports. Extraction Method: Principal Component Analysis. *4 components extracted.

Eigenvectors	PC1	PC2	PC3	PC4
Cu	0.94	0.136	−0.127	−0.282
Mn	0.887	0.136	−0.127	−0.282
U	0.783	0.602	−0.133	
Fe	0.769	0.602	−0.133	
Zn	−0.754	0.385	0.462	0.232
Cd	0.707	−0.536	0.333	0.224
T	0.688	0.330	0.114	0.636
As	−0.641	0.457	0.174	−0.211
Pb	−0.184	0.866	0.145	0.36
Cr	0.819	0.464	−0.328	
Al	0.392	0.735	−0.509	0.147
Si	0.562	0.667	−0.431	0.203
Bo	−0.27	0.362	−0.858	
Sr	−0.507	0.23	0.732	0.384

The variations of trace elements concentrations in the oysters between the background and study port areas by means of ANOVA are shown in Table 4. The results revealed that the variations were insignificant (P > 0.05). Correlation analysis was also performed on the normalized data set to test the relationship between the environmental parameters and significant correlations among metals are presented in Table 5. According to the Pearson statistical analysis (significant at P < 0.05) strong positive relationship exists between weight and length of oyster (r² = 0.98). Al shows strong positive correlation with Cu, Mn and Si whereas Cr shows strong positive relation with Pb and Ti. However, Cu shows strong positive correlation with Mn and Si, while Mn is strongly correlated with Si and I. Analysis results also reveal that a strong positive correlation exists between Pb and Sr.

Principal component analysis (PCA) of the oyster data summarizes four groups of pollutants and the contamination levels of each group of pollutants in the oysters of the studied ports. Four significant principal component groups were determined by deriving the eigenvalues and eigenvectors from the correlation matrix. The percentage of the total variance of each principal component (PC) group is shown in Table 6. Four component groups generating about 95.8% of the total variance were obtained. The first component group consists of 37.75% of the
variation with the greatest weights (>0.70) for Cu, Mn, U, Cd and Br, and moderate weights for I and Si. PC$_2$ accounted for 27.64% of the variation with the important components comprising of Fe, Pb, Cr and Al. PC$_3$ and PC$_4$ exhibited 21.03% and 9.37% of the variation respectively and had moderate weights for U, Br and I.

The cluster analysis (HCA) results for the sampling sites based on the trace element concentrations were presented as a dendrogram shown in Fig. 4. Two main different clusters were identified from the trace element enrichment dendrogram (Fig. 4a). The first cluster group comprising Se, Cd, U, Cr, V, Pb and Ti with two sub-groups of Se, Cd, U as one sub-group and Cr, V, Pb and Ti as the second sub-group. The second HCA cluster group also consists of two sub-cluster groups, one of which comprises of Cu, Mn and I and the other group includes Fe, Si, Zn, Al, B, Sr, Br and As.

The dendrogram can also help to explain and group the impact of port activities on trace element enrichments, as presented in Fig. 4b. The analysis results demonstrated that the fishing fleet activities and trade of woodchip, break and bulk machinery for the oil and gas industry at port Eden are significantly responsible for the trace element contamination in oyster followed by the container, crude oil and bulk liquid operations (fossil fuel, chemical and bio-fuel) at port Botany and bulk liquids, oil, fertiliser, pulp, steel products and various ores related activities at port Kembla.

Conclusion

The present study showed the pattern distribution of trace elements in the sea port environments using oyster (S. glomerata) as a bioindicator. S. glomerata has been known as an effective ecological tool to trace the heavy metals or toxic elements (for example, Cu, Zn, As, Pb, Fe, Mn and Sr) as it is widely grown in the Pacific coastal areas. The results illustrate that the varying levels of trace elements in the oyster and their concentrations were highly

Figure 4. Hierarchical dendrogram showing the clustering of (a) trace elements and (b) study sites of the sea ports of NSW, Australia.
dependent on the nature of the ports and human activities in the vicinity of the port areas. The BCR and BSAF analyses demonstrate significant accumulation of Fe, Cu, Mn, Zn, As and Sr, which reflect their availability in seawater and sediments. Likewise, the integrated metal contamination analysis determined severe contamination of Fe, Zn, Cu and Al contamination in the oysters at all port areas. G. glomerata is an important bioindicator to detect the distribution of contaminants in the port environment. Further measures are still required for suitable and effective management of the toxic trace elements in the NSW ports to alleviate the anthropogenic impacts on the sea environment.

Data Availability
The datasets generated during and/or analyzed during the current study are available in supplementary dataset.

References
1. Pan, K. & Wang, W.-X. Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment 421–422, 3–16 (2012).
2. Wang, S. L., Xu, X. R., Sun, Y. X., Liu, J. L. & Li, H. B. Heavy metal pollution in coastal areas of South China: a review. Marine Pollution Bulletin 76, 7–15 (2013).
3. Wang, W.-X., Pan, K., Tan, Q., Guo, L. & Simpson, S. L. Estuarine pollution of metals in China: science and mitigation. Environmental Science and Technology 48, 9975–9976 (2014).
4. Kumar, V. et al. Linking environmental heavy metal concentrations and salinity gradients with metal accumulation and their effects: a case study in 3 mussel species of Vitória estuary and Espírito Santo bay, southeast Brazil. Science of the Total Environment 523, 1–15 (2015).
5. Lee, T. T., Zimmermann, S. & Sures, B. How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure? Environmental Pollution 212, 257–268 (2016).
6. Yin, Q. & Wang, W. Relating metals with major cations in oyster Crassostrea hongkongensis: A novel approach to calibrate metals against salinity. Science of the Total Environment 577, 299–307 (2017).
7. Weng, N. & Wang, W.-X. Dynamics of maternally transferred trace elements in oyster larvae and latent growth effects. Scientific Reports 7, 3580 (2017).
8. Bazzi, A. Heavy metals in seawater, sediments and marine organisms in the Gulf of Chabahar, Oman Sea. Journal of Oceanography and Marine Science 5, 29–29 (2014).
9. Topcuoglu, S., Ergül, H., Baysal, A., Olmez, E. & Kut, D. Determination of radionuclide and heavy metal concentrations in biota and sediment samples from Pazar and Rize stations in the Eastern Black Sea. Fresenius Environmental Bulletin 12, 695–699 (2003).
10. Jahan, S. & Strezov, V. Assessment of trace elements pollution in sea ports of New South Wales (NSW), Australia using macrophytobenthic plant Ecklonia radiata as a bio-indicator. Chemosphere 218, 643–651 (2019).
11. Spooner, D. R., Mahet, W. & Otway, N. Trace Metal Concentrations in Sediments and Oysters of Botany Bay, NSW, Australia. Archives of Environmental Contamination and Toxicology 45, 92–101 (2003).
12. Goldberg, E. D. The mussel watch concept. Environmental Monitoring and Assessment 7, 91–103 (1986).
13. Meng, J., Wang, W., Li, L., Yin, Q. & Zhang, G. Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Scientific Reports 7, 11716 (2017).
14. Goldberg, E. D. The mussel watch: a first step in global monitoring. Marine Pollution Bulletin 6, 111 (1975).
15. Watling, L. & Watling, R. Trace metals in oysters from Krymska Estuary. Marine Pollution Bulletin 7, 45–48 (1976).
16. Phillips, D. J. H. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments - A review. Environmental Pollution 13, 281–317 (1977).
17. Davies, I. M. & Pirie, J. M. Evaluation of a “mussel watch” project for heavy metals in Scottish coastal waters. Marine Biology 57, 87–93 (1980).
18. Oliver, L., Fisher, W., Winstead, J., Hemmer, B. & Long, E. Relationships between tissue contaminants and defense-related characteristics of oysters (Crassostrea virginica) from five Florida bays. Aquatic Toxicology 55, 203–222 (2001).
19. Valdez Domingos, F. Multibiomarker assessment of three Brazilian estuaries using oysters as bioindicators. Environmental Research 105, 350–363 (2007).
20. Nascel, C. et al. Clam transplantation and stress-related biomarkers as useful tools for assessing Water quality in coastal environments. Marine Pollution Bulletin 39, 255–260 (1999).
21. Séguin, A. et al. Metal bioaccumulation and physiological condition of the Pacific oyster (Crassostrea gigas) reared in two shellfish basins and a marina in Normandy (northwest France). Marine Pollution Bulletin 106, 202–214 (2016).
22. Jahan, S. & Strezov, V. Comparison of pollution indices for the assessment of heavy metals in the sediments of seaports of NSW, Australia. Marine Pollution Bulletin 128, 295–306 (2018).
23. Batley, G. Heavy metal speciation in waters, sediments and biota from Lake Macquarie, New South Wales. Australian Journal of Marine and Freshwater Research 38, 591–606 (1987).
24. Birch, G., Evenden, D. & Teutsch, M. Dominance of point source in heavy metal distributions in sediments of a major Sydney estuary (Australia). Environmental Geochemistry 28, 169–174 (1996).
25. Birch, G. & Taylor, S. Source of heavy metals in sediments of the Port Jackson estuary, Australia. Science of the Total Environment 227, 123–138 (1999).
26. Roach, A. Assessment of metals in sediments from Lake Macquarie, New South Wales, Australia, using normalization models and sediment quality guidelines. Marine Environmental Research 59, 453–472 (2005).
27. Creighton, N. & Twinning, J. Bioaccumulation from food and water of cadmium, selenium and zinc in an estuarine fish, Ambassis jacksoniensis. Marine Pollution Bulletin 60, 1815–1821 (2010).
28. Ellis, J. J. et al. Multiple stressor effects on marine infauna: Responses of estuarine taxa and functional traits to sedimentation, nutrient and metal loading. Scientific Reports 7(1), 12013 (2017).
29. Stark, I. Heavy metal pollution and microbiobenthic assemblages in soft sediment in two Sydney estuaries, Australia. Marine and Freshwater Research 49, 533–540 (1998).
30. Mccready, S., Birch, G., Long, E., Spyrrakis, G. & Greely, C. Relationships between toxicity and concentrations of chemical contaminants in sediments from Sydney Harbour, Australia, and vicinity. Environmental Monitoring and Assessment 120, 187–220 (2006).
31. Twinning, J., Creighton, N., Hollins, S. & Szymczak, R. Probabilistic risk assessment and risk mapping of sediment metals in Sydney Harbour embayments. Human and Ecological Risk Assessment 14, 1202–1225 (2008).
32. Ahdy, H., Abdallah, A. & Tayel, F. Assessment of heavy metals and nonessential content of some edible and soft tissues. Egyptian Journal of Aquatic Research 33, 85–97 (2007).
33. Luna-Acosta, A. Integrative biomarker assessment of the effects of chemically and mechanically dispersed crude oil in Pacific oysters, Crassostrea gigas. Science of the Total Environment 598, 713–721 (2017).
34. Goldberg, E. D., Koide, M., Hodge, V., Flegal, A. & Martin, J. United States mussel watch – 1977–1978 results on trace metals and radionuclides. Estuarine and Coastal Shelf Sciences 16, 69–93 (1983).
35. Thompson, E. et al. A proteomic analysis of the effects of metal contamination on Sydney rock oyster (Saccostrea glomerata) haemolymph. Aquatic Toxicology 103, 241–249 (2011).
36. Lanlan, X., Chenglong, J., Huifeng, W., Qiaoquo, T. & Wen-Xiong, W. A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis. Marine Pollution Bulletin 112, 436–442 (2016).
37. Jahan, S. & Strezov, V. Water quality assessment of Australian ports using water quality evaluation indices. PloS One 12, e0189284 (2017).
38. Harris, P. & O’Brien, P. Australian Ports In: DIVISION, P. A. M. (ed.) Environmental Data and Risk Analysis. Australian Geological Survey Organization, Canberra, Australia (1998).
39. Baltas, H. et al. Experimental study on copper uptake capacity in the Mediterranean mussel (Mytilus galloprovincialis). Environmental Science and Pollution Research 23, 10983–10989 (2016).
40. Federal Register. Definition and procedure for determination of the method detection limit. EPA, 40 CFR Part 136, Appendix B, Revision 1.11 (11), 198–199 (1984).
41. Jonathan, M. P. et al. Bioaccumulation of trace metals in farmed pacific oysters Crassostrea gigas from SW Gulf of California coast, Mexico. Chemosphere 187, 311–319 (2017).
42. Zalewska, T. & Suplińska, M. Reference organisms for assessing the impact of ionizing radiation on the environment of the southern Baltic Sea. Oceanographical and Hydrobiological. Studies 41(4), 1–7 (2012).
43. IAEA. Handbook of Parameter Values for the Prediction of Radionuclide Transfer to Wildlife. IAEA Technical Reports Series 479, Vienna, Austria (2014).
44. Arnot, J. A. & Gobas, F. A. P. C. A review of Bioconcentration Factor (BCF) and Bioaccumulation Factor (BAF) assessments for organic chemical in aquatic organisms. Environmental Reviews 14, 257–297 (2006).
45. Thomann, R. V., Mahony, J. D. & Mueller, R. Steady state model of biota-sediment accumulation factor for metals in two marine bivalves, Environ. and Toxic. 4, 989–998 (1995).
46. Negri, A., Burns, K., Boyle, S., Brinkman, D. & Webster, N. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution 143, 456–467 (2006).
47. Liu, F. & Wang, W.-X. Proteome pattern in oysters as a diagnostic tool for metal pollution. Journal of Hazardous Materials 239–240, 241–248 (2012).
48. Kaiser, H. F. The application of electronic computers to factor analysis. Educational and Psychological Measurement 20, 141–151 (1960).
49. Loska, K. & Wiechula, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik reservoir. Chemosphere 51, 723–733 (2000).
50. Scanes, P. & Roach, A. Determining natural “background” concentrations of trace metals in oysters from New South Wales, Australia. Environmental Pollution 105, 437–446 (1999).
51. FAO. Report of the Workshop and Study Tour on Mollusk Sanitation and Marketing, Regional Sea Farming Development and Demonstration Project RAS/ 86/024 15-28 October [On Line]. http://www.fao.org/docrep/field/003/ AB710E24.htm (1989).
52. Arnot, J. A. & Gobas, F. A. P. C. A review of Bioconcentration Factor (BCF) and Bioaccumulation Factor (BAF) assessments for organic chemical in aquatic organisms. Environmental Reviews 14, 257–297 (2006).
53. USEPA. Human Health Risk Assessment. In: AGENCY, U. N. E. P. (ed.) Environmental Data and Risk Analysis. Australian Gelogical Survey Organization, Canbera, Australia (1998).
54. FDA. Guidance Document for Arsenic, Cadmium, Chromium, Lead, Nickel in Shellfish. US Department of Health and Human Services. Public Health Service, Office of Seafood (HFS-416). Food and Drug Administration, Washington, D.C, 39–45 (1993).
55. Thomann, R. V., Mahony, J. D. & Mueller, R. Steady state model of biota-sediment accumulation factor for metals in two marine bivalves, Environ. and Toxic. 4, 989–998 (1995).
56. Negri, A., Burns, K., Boyle, S., Brinkman, D. & Webster, N. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution 143, 456–467 (2006).
57. Andrewes, P. et al. Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar. Environmental Science & Technology 38, 1410–1414 (2004).
58. EPA. Human Health Risk Assessment. In: AGENCY, U. N. E. P. (ed.) Environmental Data and Risk Analysis. Australian Gelogical Survey Organization, Canbera, Australia (1998).
59. Pazi, I. et al. Potential risk assessment of metals in edible fish species for human consumption from the Eastern Aegean Sea. Marine Pollution Bulletin 120, 409–413 (2017).
60. FDA. Guidance Document for Arsenic, Cadmium, Chromium, Lead, Nickel in Shellfish. US Department of Health and Human Services. Public Health Service, Office of Seafood (HFS-416). Food and Drug Administration, Washington, D.C, 39–45 (1993).
61. Zalewska, T. & Suplińska, M. Reference organisms for assessing the impact of ionizing radiation on the environment of the southern Baltic Sea. Oceanographical and Hydrobiological. Studies 41(4), 1–7 (2012).
62. IAEA. Handbook of Parameter Values for the Prediction of Radionuclide Transfer to Wildlife. IAEA Technical Reports Series 479, Vienna, Austria (2014).
63. Arnot, J. A. & Gobas, F. A. P. C. A review of Bioconcentration Factor (BCF) and Bioaccumulation Factor (BAF) assessments for organic chemical in aquatic organisms. Environmental Reviews 14, 257–297 (2006).
64. Thomann, R. V., Mahony, J. D. & Mueller, R. Steady state model of biota-sediment accumulation factor for metals in two marine bivalves, Environ. and Toxic. 4, 989–998 (1995).
65. Andrewes, P. et al. Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar. Environmental Science & Technology 38, 1410–1414 (2004).
66. USEPA. Human Health Risk Assessment. In: AGENCY, U. N. E. P. (ed.) Environmental Data and Risk Analysis. Australian Gelogical Survey Organization, Canbera, Australia (1998).
67. Pazi, I. et al. Potential risk assessment of metals in edible fish species for human consumption from the Eastern Aegean Sea. Marine Pollution Bulletin 120, 409–413 (2017).
68. FDA. Guidance Document for Arsenic, Cadmium, Chromium, Lead, Nickel in Shellfish. US Department of Health and Human Services. Public Health Service, Office of Seafood (HFS-416). Food and Drug Administration, Washington, D.C, 39–45 (1993).
69. Luoma, S. N. & Rainbow, P. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environmental Science and Technology 39, 1921–1931 (2005).
70. Paez-Osuna, F. & Osuna-Martínez, C. C. Biomonitors of coastal pollution with reference to the situation in the Mexican coasts: a review on the utilization of organisms. Hydrobiologia 21, 229–238 (2011).
71. Eisler, R. Z. In: Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals, vol. 1. Metals. (ed. Boca Raton, F. L.) 605–714 (Lewis Publishers 2000).
72. Kwok, C. K. et al. Bioaccumulation of heavy metals in fish and Ardeid at Pearl River estuary, China. Ecotoxicology and Environmental Safety 106, 62–67 (2014).
73. Jayaprakash, M. et al. Bioaccumulation of metals in fish species from water and sediments in macro-tidal Ennore creek, Chennai, SE Coast of India: A Metropolitan City effect. Ecotoxicology and Environmental Safety 120, 243–255 (2015).
74. Delvalls, T. A., Forja, J. M. & Gómez-Parras, A. Integrated assessment of sediment quality in two littoral ecosystems from the Gulf of Cádiz, Spain. Environ. Toxicol. Chem. 17, 1073–1084 (1998).

Acknowledgements
The authors honorably appreciate Macquarie University for the funding (iMQRES, grant no-2016237) of this research.

Author Contributions
Study Conception and Design: Vladimir Strezov and Sayka Jahan Acquisition of Data: Vladimir Strezov and Sayka Jahan Analysis and Interpretation of Data: Vladimir Strezov and Sayka Jahan Drafting of Manuscript: Sayka Jahan Critical Revisions: Vladimir Strezov.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-38196-w.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license and indicated either as a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019