THE ANTHOCYANIN BIOSYNTHETIC REGULATOR
MDMYB1 POSITIVELY REGULATES ASCORBIC ACID
BIOSYNTHESIS IN APPLE

Jianping AN, Xiaofei WANG, Chunxiang YOU, Yujin HAO (✉)

State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable
Production with High Quality and Efficiency, College of Horticultural Science and Engineering, Shandong
Agricultural University, Taian 271018, China

Front. Agr. Sci. Eng., Just Accepted Manuscript • https://doi.org/10.15302/J-FASE-2020367
http://journal.hep.com.cn on November 16, 2020
© The Author(s) 2020. Published by Higher Education Press. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0)

Just Accepted
This is a “Just Accepted” manuscript, which has been examined by the peer-review process
and has been accepted for publication. A “Just Accepted” manuscript is published online
shortly after its acceptance, which is prior to technical editing and formatting and author
proofing. Higher Education Press (HEP) provides “Just Accepted” as an optional and free
service which allows authors to make their results available to the research community as
soon as possible after acceptance. After a manuscript has been technically edited and
formatted, it will be removed from the “Just Accepted” Web site and published as an Online
First article.

Please note that technical editing may introduce minor changes to the manuscript text
and/or graphics which may affect the content, and all legal disclaimers that apply to the
journal pertain. In no event shall HEP be held responsible for errors or consequences arising
from the use of any information contained in these “Just Accepted” manuscripts. To cite this
manuscript please use its Digital Object Identifier (DOI(r)), which is identical for all formats
of publication.
THE ANTHOCYANIN BIOSYNTHETIC REGULATOR MDMYB1 POSITIVELY REGULATES ASCORBIC ACID BIOSYNTHESIS IN APPLE

Jianping AN, Xiaofei WANG, Chunxiang YOU, Yujin HAO (✉)

State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China

Received July 15, 2020; Accepted October 9, 2020.
Correspondence: haoyujin@sdau.edu.cn
© The Author(s) 2020. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

HIGHLIGHTS
• The contents of anthocyanin and AsA in red-flesh apples are higher than that in non-red-flesh apples.
• The anthocyanin biosynthetic regulator MdMYB1 directly activates the expression of dehydroascorbate reductase gene MdDHAR, thus promoting the activity of the DHAR enzyme and the accumulation of AsA.
• MdMYB1-MdDHAR module may play a key role in AsA-DHA homeostasis.

ABSTRACT Ascorbic acid (AsA, vitamin C) is involved in the regulation of many aspects of plant growth and development. It is an essential micronutrient for humans and can prevent scurvy, maintain the health of gums and blood vessels, reduce the level of plasma cholesterol and enhance the immune system. Apple cultivars Orin and Guanghui were crossed to obtain a group of hybrid offspring with and without red flesh in the course of assessing apple germplasm resources. Unexpectedly, the red-flesh apples had higher AsA contents than other apples. Further studies showed that the anthocyanin biosynthetic regulator MdMYB1 directly activates the expression of dehydroascorbate reductase gene MdDHAR, thus promoting the activity of the DHAR enzyme and the accumulation of AsA. This finding reveals the mechanism leading to high AsA levels in red-flesh apples and suggests a new idea to cultivate red-flesh apples with high AsA contents and produce AsA efficiently and without pollution.

KEYWORDS anthocyanin, apples, ascorbic acid, MdMYB1, vitamin C

GRAPHICAL ABSTRACT
Ascorbic acid (AsA) is an important antioxidant and has an essential role in plant resistance to oxidative stress. In addition to its ability to scavenge reactive oxygen species (ROS), AsA is involved in regulating many aspects of plant growth and development, including seed germination, flower induction, photosynthesis, fruit development, senescence and stress tolerance. The biosynthesis of AsA occurs mainly through four pathways, namely the D-glucoseone, D-galacturonate, myo-inositol and D-mannose-L-galactose pathways. The D-mannose/L-galactose synthesis pathway is particularly important in AsA biosynthesis. The biosynthesis of AsA is influenced by different stages of plant development (such as germination, fruit development, and senescence) and external light conditions. However, the molecular mechanism by which the environmental factors regulate the synthesis of AsA remains unclear. AsA is an essential micronutrient for humans and can prevent scurvy, maintain the health of gums and blood vessels, reduce the level of plasma cholesterol and enhance the immune system. However, high cost, waste resources and environmental pollution in AsA production have restricted the development of industrial AsA production. In the course of assessing apple germplasm resources, we crossed apple cultivars Oirin and Guangui to obtain a group of hybrid offspring with and without red flesh (Fig. 1(a)). The red-flesh apples contained large amounts of visible anthocyanin (Fig. 1(a)). In addition, they unexpectedly had higher AsA contents than other apples (Fig. 1(b)). This finding prompted us to explore the mechanism leading to high AsA levels in red-flesh apples.

AsA will be synthesized in large quantities as reactive oxygen scavengers when plants are under stress and excessive ROS are produced. AsA is oxidized to dehydroascorbic acid (DHA) by ascorbic acid oxidase in the process of scavenging ROS. Also, the enzyme dehydroascorbic acid reductase (DHAR) catalyzes the formation of AsA from DHA. The AsA-DHA cycle has an important role in maintaining the dynamic balance of AsA and regulating plant growth and stress response. Here, DHA contents and DHAR enzyme activity in red-flesh and other apples were also determined. Red-flesh apples had lower DHA contents and higher DHAR enzyme than other apples (Fig. 1(c,d)). Also, quantitative real-time (qRT)-PCR shows that the expression level of the MdMYB1 gene (GenBank accession number: MDP0000259614) was positively correlated with the expression level of MdDHAR (GenBank accession number: MDP0000175246), that is, the expression levels of MdMYB1 and MdDHAR in red-flesh apples were higher than in other apples (Fig. 1(e)). These results indicate a possible correlation between anthocyanins and AsA.

Anthocyanins are important secondary metabolites in addition to AsA and also have an important role in plant growth and development. At the transcriptional level, anthocyanin biosynthesis is regulated by the MYB-bHLH-WD40 protein complex and the MYB transcription factor has a central role. MdMYB1 and its alleles (MdMYB10 and MdMYBA) have been shown to be key positive regulators of anthocyanin biosynthesis in apples. The red flesh in apples is caused by the overexpression of MdMYB1 (MdMYB10) and we therefore obtained MdMYB1-overexpressing apple callus in order to determine the correlation between anthocyanin and AsA (Fig. 1(f)). As expected, the contents of AsA in MdMYB1-green fluorescent protein (GFP) transgenic apple callus were higher than in the control (GFP), while the contents of DHA were lower than in the control (GFP) (Fig. 1(g,h)). DHAR enzyme activity and MdDHAR gene expression level in MdMYB1-GFP transgenic apple callus were higher than in the control (GFP) (Fig. 1(i,j)). These results indicate that overexpression of the MdMYB1 gene may increase the activity of the DHAR enzyme by increasing the expression of the MdDHAR gene, thereby promoting the conversion of DHA into AsA, and finally increasing the contents of AsA. In addition, we found that overexpression of MdMYB1 in apple callus also promoted the expression of the ascorbate oxidase gene MdAO (GenBank accession number: XP_028958650.1), the ascorbate peroxidase gene MdAPX1 (GenBank accession number: MDP0000210077) and the monodehydroascorbate reductase gene MdMDHAR (GenBank accession number: MDP0000199989) (Fig. 1(j)), suggesting that MdMYB1 may play a key role in AsA-DHA homeostasis.

We analyzed the promoter sequence of MdDHAR in order to further reveal the transcriptional regulation mechanism of MdMYB1 on the MdDHAR gene. The MdDHAR promoter sequence was found to contain a binding site (P1) for the MYB transcription factor. Chromatin immunoprecipitation (ChIP)-PCR assays were conducted to determine the binding of MdMYB1 to the promoter of MdDHAR. MdMYB1 protein precipitated from MdMYB1-GFP transgenic callus and enrichment of MdDHAR promoter sequence detected by qRT-PCR. This indicates that the enrichment of the P1 region was higher than the control region (P2, Fig. 1(k)), and that MdMYB1 may directly bind to the P1 region of the MdDHAR promoter. We also conducted electrophoretic mobility shift assays to verify the interaction between MdMYB1 and the MdDHAR promoter. As shown in Fig. 1(l), MdMYB1 directly bound to the 5′-CTGTGG-3′ site of the
MdDHAR promoter, while MdMYB1 did not bind when the 5′-CTGTTG-3′ site was mutated to 5′-CGGTGG-3′. These data indicate that MdMYB1 binds to the **MdDHAR** promoter.

To study the transcriptional regulation function of MdMYB1 on **MdDHAR**, the promoter sequence of **MdDHAR** was cloned to the pCAMBIA1391-GUS vector and transformed into the apple callus (Fig. 1(m)). **GUS** activity detection results show that compared with **MdDHAR**-GUS callus alone, **MdMYB1** overexpressed on **MdDHAR**-GUS basis significantly increased its **GUS** activity (Fig. 1(n)). In addition, the promoter sequence of **MdDHAR** was cloned to the pGreen0800-LUC vector and full length **MdMYB1** was inserted into the pGreen62-SK vector (Fig. 1(o)). The recombinant plasmids were transformed into *Agrobacterium tumefaciens* and injected into tobacco leaves. The fluorescence detection results show that **MdMYB1** overexpression significantly increased the fluorescence activity of **MdDHAR** (Fig. 1(p)). These results suggest that **MdMYB1** activates the expression of **MdDHAR** by directly binding to its promoter.

Fig. 1 **MdMYB1** positively regulates AsA biosynthesis by activating **MdDHAR**. (a) Representative non-red-flesh and red-flesh apples. Apple crossbreeding groups (non-red-flesh and red-flesh apples) were harvested 140 days after full bloom. Measurement of (b) ascorbic acid (AsA) and (c) dehydroascorbic acid (DHA) contents. Error bars denote standard deviation. Different letters above the bars indicate significant differences (*P < 0.05*) obtained by one-way analysis of variance. (d) Measurement of dehydroascorbic acid reductase activity. The experiments were repeated three times and each experiment contained 3–5 apple fruits per variety. A representative picture is shown here. (e) Detection of the expression levels of **MdMYB1** and **MdDHAR** in non-red-flesh and red-flesh apples. The value for non-red-flesh apple was set to 1. qRT-PCR was conducted in three biological replicates and three technical replicates, and each sample contained 3–5 apple fruits. (f) Representative wild-type (GFP) and **MdMYB1**-overexpressing (**MdMYB1**-GFP) apple callus. Measurement of (g) AsA and (h) DHA contents. (i) Measurement of dehydroascorbic acid reductase activity. A representative picture is shown here. (j) Detection of the expression levels of **MdMYB1**, **MdDHAR**, **MdMDHAR**, **MdAO** and **MdAPX1** in transgenic apple callus. The value for GFP was set to 1. (k) Chromatin immunoprecipitation (ChIP)-PCR assays of **MdMYB1** binding to the promoter of the **MdDHAR** gene. The predicted 5′-CTGTTG-3′ sequences are indicated by the black line. Chromatin from the empty vector control (GFP) and 35S:**MdMYB1**-GFP apple callus (**MdMYB1**-GFP) were immunoprecipitated with and without anti-GFP antibodies. Two regions (P1 and P2) were examined by qRT-PCR. The enrichment of GFP was set to 1. (l) Electrophoretic mobility shift assay results showing that the **MdMYB1**-His fusion protein bound directly to the **MdDHAR** promoter. Unlabeled probes were used as competitors. In the mutated probe (Mut), the 5′-CTGTTG-3′ motif was replaced by 5′-CGGTGG-3′. (m) Schematic representation of the GUS reporter vector containing the **MdDHAR** promoter and the effector vector containing **MdMYB1**. (n) GUS activity detection of **MdDHAR**-promoter and **MdDHAR**-promoter/**MdMYB1** transgenic apple callus. **MdDHAR**-promoter/**MdMYB1** transgenic apple callus; **MdDHAR**-promoter/**MdMYB1**; **MdDHAR**-promoter and 35S:**MdMYB1**-GFP co-transformed apple callus. The value for **MdDHAR**-promoter was set to 1. (o) Schematic representations of the effector vectors containing **MdMYB1**, and the firefly luciferase reporter vectors containing the **MdDHAR** promoter. **MdDHAR**-promoter,**MdDHAR**-promoter-pGreen0800-LUC + pGreen62-SK; **MdDHAR**-promoter/**MdMYB1**,**MdDHAR**-promoter-pGreen0800-LUC + **MdMYB1**-pGreen62-SK. (p) Relative LUC/REN activity of effector plasmids and reporter plasmids. The value for **MdDHAR**-promoter was set to 1. (q) A working model of **MdMYB1** functioning in AsA biosynthesis.
Anthocyanin and AsA play similar biological roles in plant growth and development1,16. The crosstalk between them has never been revealed. Here, we found that apples with high anthocyanin content contained more AsA, suggesting that there may be a positive correlation between anthocyanin and AsA. We hypothesized that anthocyanin biosynthesis might disrupt AsA-DHA homeostasis. The biological function of anthocyanin may also require the coordination of AsA. Of course, the relationship between anthocyanin and AsA needs further study.

In summary, our studies reveal why the AsA contents of red-flesh apples are higher than those of other apples. This is because excessive MdMYB1 breaks the homeostasis of AsA and DHA in apple fruits, and MdMYB1 directly activates the expression of the dehydroascorbate reductase gene MDDHAR, thus promoting the activity of the DHAR enzyme and the accumulation of AsA (Fig. 1(q)). This finding reveals the mechanism leading to high AsA levels in red-flesh apples and provides new information that is useful in the cultivation of red-flesh apples with high AsA contents to produce AsA efficiently and without pollution.

Acknowledgements

This work was funded by grants from the Agricultural Variety Improvement Project of Shandong Province (2019LZGC007), Fruit quality improvement of Yunnan Province (2019ZG002), and the Natural Science Foundation of Shandong Province (ZR2019PC004).

Compliance with ethics guidelines

Jianping An, Xiaofei Wang, Chunxiang You, and Yujin Hao declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

REFERENCES

1. Akram N A, Shafiq F, Ashraf M. Ascorbic acid—a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers of Plant Science. 2017, 8: 613 doi:10.3389/fpls.2017.00613 PMID:28491070

2. Conklin P L. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, Cell & Environment. 2001, 24(4): 383–394 doi:10.1046/j.1365-3040.2001.00686.x

3. Barth C, De Tullio M, Conklin P L. The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany. 2006, 57(8): 1657–1665 doi:10.1093/jxb/erj198 PMID:16698812

4. Kotchoni S O, Larrimore K E, Mukherjee M, Kempinski C F, Barth C. Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis, Plant Physiology. 2009, 149(2): 803–815 doi:10.1104/pp.108.132324 PMID:19028878

5. Ioannidi E, Kalamaki M S, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannoni J, Kanellis A K. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. Journal of Experimental Botany. 2009, 60(2): 663–678 doi:10.1093/jxb/erm087

6. Gallie D R. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. Journal of Experimental Botany. 2013, 64(2): 433–443 doi:10.1093/jxb/ers330 PMID:23162122

7. Niu J P, Zhao L, Fan Y M, Shi S S, He L F, Hui W. The effects of ascorbic acid on breaking the seed dormancy of Malus sieversii. Journal of Plant Growth Regulation. 2019, 38(3): 909–918 doi:10.1007/s00344-018-9901-0

8. Wheeler G L, Jones M A, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature. 1998, 393: 365–369 doi:10.1038/30728 PMID:9620799

9. Smirnoff N, Conklin P L, Loewus F A. Biosynthesis of ascorbic acid in plants: a renaissance. Annual Review of Plant Physiology and Plant Molecular Biology. 2001, 52(4): 437–467 doi:10.1146/annurev.arplant.52.1.437 PMID:11337405
10. Wolucka B A, Van Montagu M. GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. Journal of Biological Chemistry. 2003. 278(48): 47483-47490 doi:10.1074/jbc.M309135200 PMID:12954627

11. Valpuesta V, Botella M A. Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends in Plant Science. 2004. 9(12): 573-577 doi:10.1016/j.tplants.2004.10.002 PMID:15564123

12. Matamoros M A, Loscos J, Coronado M J, Ramos J, Sato S, Testillano P S, Tabata S, Becana M. Biosynthesis of ascorbic acid in legume root nodules. Plant Physiology. 2006. 141(3): 1068-1077 doi:10.1104/pp.106.081463 PMID:16766673

13. Ishikawa T, Dowdle J, Smirnoff N. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum. 2006. 126(3): 343-355 doi:10.1111/j.1399-3054.2006.00640.x

14. An J P, Wang X F, Li Y Y, Song L Q, Zhao L L, You C X, Hao Y J. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiology. 2018. 178(2): 808-823 doi:10.1100/PP.18.00068 PMID:29925585

15. Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma L, Deng X W, Huang R. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell. 2013. 25(2): 625-636 doi:10.1105/tpc.112.106880 PMID:23424245

16. Allan A C, Hellens R P, Laing W A. MYB transcription factors that colour our fruit. Trends in Plant Science. 2008. 13(3): 99-102 doi:10.1016/j.tplants.2007.11.012 PMID:18280199

17. Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science. 2013. 18(9): 477-483 doi:10.1016/j.tplants.2013.06.003 PMID:23870661

18. Takos A M, Jaffé F W, Jacob S R, Bogs J, Robinson S P, Walker A R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology. 2006. 142(3): 1216-1232 doi:10.1104/pp.106.088104 PMID:17012405

19. Ban Y, Honda C, Hattuyama Y, Igarashi M, Bessho H, Moriguchi T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant & Cell Physiology. 2007. 48(7): 958-970 doi:10.1093/pchp/pcm066 PMID:17526919

20. Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant Journal. 2007. 49(3): 414-427 doi:10.1111/j.1365-313X.2006.02964.x PMID:17181777