Steroid-Responsive Gradenigo’s Syndrome Mimicking Subdural Hematoma

Yi Liu 1, Po-Kuan Yeh 1, Yu-Pang Lin 2, Yueh-Feng Sung 1

1. Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, TWN
2. Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, TWN

Corresponding author: Yueh-Feng Sung, sungyf@mail.ndmctsgh.edu.tw

Abstract

Gradenigo’s syndrome (GS) is featured by a clinical triad of otorrhea, retro-orbital pain, and a sixth nerve palsy. Clinical examination is crucial prior to considering neuroimaging. The majority of cases are secondary to infection thus requiring long-term broad-spectrum antibiotics; severe cases also require surgical intervention for risk of intracranial abscess or even death.

The patient was a 35-year-old female who presented with right temporal headache and right retro-orbital pain. The initial diagnosis from the local clinic was of subdural hemorrhage. Cranial nerve (CN) VI paresis was noted upon examination and inflammatory process was documented based on brain MR. The patient was diagnosed with Gradenigo’s syndrome and administered antibiotics and steroids. Symptoms recurred after cessation of steroids and once antibiotics-related fever developed. The symptoms resolved after stopping the antibiotics and reintroducing steroids. The MRI performed after three months recorded no brain inflammation.

We report a Gradenigo’s syndrome caused by chronic inflammation with good response to steroids. To our best knowledge, there were merely approximately 80 patients who were reported with Gradnigo or Gradenigo’s syndrome before. Infection comprised 76% of cases, thus broad-spectrum and long-term antibiotics use have been emphasized instead of steroid use. However, steroids also play an important role in reducing nerve injury by edematous change.

Introduction

Gradenigo’s syndrome (GS) was first described in a case series by Giuseppe Gradenigo in 1904 [1]. GS is characterized by the clinical triad of otorrhea, retro-orbital pain, and sixth nerve palsy. Moreover, it is commonly caused by the progression of untreated or incompletely treated otitis media. However, the classical triad may not always be observed in GS. Even in the original series by Gradenigo, only 42% (24 of the 57 cases) of patients presented with the classic triad. Other patients exhibited the complete triad of symptoms without evidence of petrous bone inflammation.

The patient was a 35-year-old female who presented with right temporal headache and right retro-orbital pain. The initial diagnosis from the local clinic was of subdural hemorrhage. Cranial nerve (CN) VI paresis was noted upon examination and inflammatory process was documented based on brain MR. The patient was diagnosed with Gradenigo’s syndrome and administered antibiotics and steroids. Symptoms recurred after cessation of steroids and once antibiotics-related fever developed. The symptoms resolved after stopping the antibiotics and reintroducing steroids. The MRI performed after three months recorded no brain inflammation.

We report a Gradenigo’s syndrome caused by chronic inflammation with good response to steroids. To our best knowledge, there were merely approximately 80 patients who were reported with Gradnigo or Gradenigo’s syndrome before. Infection comprised 76% of cases, thus broad-spectrum and long-term antibiotics use have been emphasized instead of steroid use. However, steroids also play an important role in reducing nerve injury by edematous change.

Categories: Emergency Medicine, Neurology, Otolaryngology

Keywords: gradenigo syndrome, gradenigo’s syndrome, sixth nerve palsy, retro-orbital pain, otorrhea, subdural hematoma, petrous apicitis

Case Presentation

A 35-year-old woman without a significant medical history presented to a regional hospital due to severe pain over the right temporal and right retro-orbital area for two weeks, followed by double vision and right
facial numbness for three days. The patient claimed the absence of fever, ear pain, hearing loss, and head trauma. However, she had a habit of picking the right ear for several years. Non-contrast-enhanced brain CT scan showed a high-density region along the right falx cerebri to the tentorium cerebelli. Thus, she was referred to our hospital for suspected subdural hemorrhage.

Neurological examination revealed right abducens palsy and paresthesia in the area involving the maxillary and mandibular branches of the right trigeminal nerve. The tympanic membrane was normal. Blood examinations showed a normal white blood cell count (6.16 × 10³/uL), but elevated inflammatory marker levels (erythrocyte sedimentation rate [ESR]: 86 mm/h, C-reactive protein level: 1.81 mg/dL). The cerebrospinal fluid assessment results were normal, except for elevated total protein levels (88 mg/dL), and cultures were sterile. Moreover, autoimmune and coagulation disorders including HIV were ruled out. The homocysteine, antinuclear antibodies (ANA), rheumatic factor, antistreptolysin O titer (ASOT), C3, C4, IgG, IgM, IgA, d-dimer, anti-thrombin III, lupus anticoagulant, protein C and S, rapid plasma reagin (RPR), anti-cardiolipin IgG, alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), cancer antigen (CA)-125, CA-153, CA19-9, squamous cell carcinoma (SCC), and hemoglobin A1C (HbA1c) levels and thyroid function were normal. After adjusting the window of initial brain CT at clinic, there was less pneumatized mastoid air cell system suggesting chronic otitis media at right ear (Figure 1A). Contrast-enhanced brain MRI showed pachymeningitis involving the right tentorium cerebelli and the right temporal region, leptomeningitis in the right temporo-occipital region (Figure 1B), cerebritis in the right temporal lobe (Figure 1C), inflammation in the right side of the Meckel cave (Figure 1D) and the Dorello canal (Figure 1E), and right otomastoiditis with petrous apicitis. Thus, the patient was diagnosed with GS, and broad-spectrum antibiotics were administered. Symptoms resolved five days after steroid treatment (Figure 2). However, the patient developed high fever after two weeks, which was refractory to antipyretic medications. Next, she presented with generalized skin rash, but not until developing a drug reaction with eosinophilia and systemic symptoms (DRESS) for lacking of eosinophilia nor internal organs dysfunction [4]. Her symptoms initially improved after methylprednisolone therapy but recurred after discontinuation. To rule out infection, right modified radical mastoidectomy and myringotomy with Grommet insertion were performed for pathologic assessment. Results showed chronic inflammation with fibrosis. Since the bacterial culture results were negative, antibiotic therapy was discontinued, and methylprednisolone therapy was maintained. Fever then subsided after two days, and symptoms improved simultaneously. The patient was discharged after one month, with complete resolution of symptoms and without neurological sequelae. Although the patient was asymptomatic, she was treated with methylprednisolone 4 mg 0.5-2 tabs per day due to elevated ESR levels in the outpatient department. Follow-up brain MRI was performed after three months, and results showed complete resolution of signal abnormalities (Figures 1C, 1F).
FIGURE 1: Brain computed tomography (CT) scan and magnetic resonance imaging (MRI) results indicated Gradenigo’s syndrome, which was characterized by pachymeningitis, leptomeningitis, and cerebritis.

Non-contrast-enhanced brain CT scan showed right petrous apicitis with ill-defined irregular edges, and there was soft tissue in the mastoid cavity and less pneumatized mastoid air cell system (arrowhead) as compared to the opposite side suggesting chronic otitis media. (A). Brain MRI revealed pachymeningitis, leptomeningitis, and cerebritis involving the right tentorium cerebelli (B) and the right temporal region (C). Moreover, there was inflammation in the Meckel cave and CN V (arrowhead) (D). The right Dorello canal was swollen compared with the left one (arrowheads) (E). Follow-up MRI revealed the complete resolution of previous signal abnormalities. Cerebritis in the right temporal area [(F) vs (C)].
FIGURE 2: Right abducens nerve paresis improved after steroid treatment.

(A) At the initial presentation, right abducens nerve paresis was observed, and the patient presented with diplopia, particularly looking toward the right side. (B) Diplopia disappeared gradually after 5 days of steroid treatment, and there were no limitations in eyes movement.

Discussion

Herein, we describe a young woman with idiopathic GS that responded well to steroids. Data that can be used as a guide by clinicians in the workup, treatment, and assessment of similar cases is limited. Hence, more scientific evidence must be collected.

We searched Medline, PubMed, and Google scholar and Google search engines using the following keywords: (Gradnigo OR Gradenigo’s syndrome OR Gradenigo’s OR apicitis OR idiopathic Gradnigo). Then, the references and citations of each study, published from 1980 to 2021, were assessed. Reports describing apicitis but not GS were excluded. Finally, we retrieved 60 relevant articles, which included 80 patients diagnosed with GS (Table 1) [1,5-63].

Reference	Age (yrs)/gender	Medical history/Preceding events	Etiology	Treatment	Prognosis	
1980, Paolucci, et al. [5]	NA	NA	Metastasis of prostatic carcinoma	NA	NA	
1983, Chole, et al. [6]	78M; 57M; 18F; 46M; 65M; 73M; 28M	Histiocytic lymphoma; cholesteatoma; severe deep ear pain; ototmea and hearing loss*; ototmea(12yrs); healthy; deafness; congenital petrous apex cholesteatoma	Bacterial infection	All surgery	Vernet's syndrome and died (73M)	
1984, Capanna, et al. [7]	19M	NA	Gunshot	craniotomy	NA	
1988, Ggraaf, et al. [8]	58F	Otosclerosis, right stapes	Bacterial infection	NA	NA	
1989, Norwood, et al. [9]	13M	Healthy	T Cell lymphoma	chemotherapy and radiotherapy	NA	
Year	Authors	Gender	Age/Additional Details	Diagnosis	Treatment	Outcome
-------	---------------------	--------	------------------------	---	--	--
1991	Grewal, et al.	3 Patients	NA	TB	NA	NA
1992	Hehl, et al.	36F_bilateral	NA	NA	hyperbaric oxygenation	NA
1993	Linstrom, et al.	42M	HIV	B-cell non-Hodgkin's lymphoma	chemotherapy	NA
1995	Hardjasudarma, et al.	32M	Healthily	Bacterial infection	Abx	NA
1997	Morales, et al.	44M	HIV, right ear surgery recent	Bacterial infection	Abx	NA
1998	Bourne, et al.	45M	myeloma	Intracranial plasmacytoma	NA	NA
1999	Minotti, et al.	47F; 36F(bilateral)	Healthy; bilateral chronic otitis media	Bacterial infection	Surgery and Abx; Surgery, Abx, dexamethasone, mannitol, and Dilantin.	NA
2000	Motamed, et al.	78M	T2DM	Bacterial infection	Abx	Vernet's syndrome, aspiration pneumonia.
2001	Penas-Prado M, et al.	53M	Healthy	NPC	Radiotherapy	NA
2002	Mathew, et al.	25M; 12M	Healthy; Healthy	Bacterial infection	Abx, mastoidectomy; Abx, mastoidectomy	NA
2004	Sherman, et al.	55M	T2DM	Bacterial infection	6wks Abx(ceftrin), myringotomy	NA
2005	Burston, et al.	6M(bila.), 71M	Nil, bilateral chronic suppurative otitis media, and a left pars tensa perforation	Bacterial infection	Abx(cef), myringotomies; Abx(metro 4w, ceftr 6w, Cipro 6w, clinda)Streptococcus milleri	remained well over the ensuing 12 months
2006	Jana, et al.	15M	NM	NPC	Chemotherapy+ RT	NA
2007	Bravo, et al.	53M	Healthy	Bacterial infection	chloramphenicol and ceftriaxone, for 21 days	NA
2010	Ilias Kantas, et al.	24F	infection of the upper respiratory tract one month ago	Bacterial infection	Abx Streptococcus pneumoniae	hearing loss was recovered
2010	Tornabene, et al.	60F	breast cancer	Bacterial infection	Abx	complete resolution of her facial pain and right abducens nerve palsy after 2 months
2011	José Luiz Pedroso, et al.	33F	smoked for 9 years.	Diffuse giant B-cell non-Hodgkin’s lymphoma and a nasopharyngeal mass	chemotherapy	NA
2012	Burak Ulkumen, et al.	56M	Healthy	Bacterial infection	Abx	NA
Year	Authors	Age	Gender	Diagnosis	Treatment	Outcome
------------	--------------------------------	-----	--------	-----------	-------------------------------------	--
2012	Delgado, et al. [28]	28F	Healthy	Bacterial infection	Staphylococcus aureus	NA
2012	Esteban Espinola Duarte, et al.	29M	deaf-mute	NPC	Chemotherapy + RT	NA
2013	Bhatt, et al. [30]	72M	CSOM	Aspergillus	Prednisolone 60 mg QD + Augmentin, ceftr; metro, liposomal amphotericin B, voriconazole	Facial palsy was still present at three months' follow up and was managed with tarsorrhaphy.
2013	Macasaet, et al. [31]	54F	Ear discharge 6 months prior	post-mastoidectomy recurrent chronic supplicative otitis media with cholesteatoma formation	Ceftriaxone, Amikacin, Gentamicin, Ceftriaxone, Amikacin, Gentamicin	Hoarseness and lateral gaze palsy remained.
2014	Chen, et al. [32]	64F, 33F, 58M, 46M	Pulmonary TB; COM; HTN; Healthy; previous tympanoplasty	TB	Mastoidectomy; Abx for 13 months; mastoidectomy, Abx for 12 months; mastoidectomy, Abx; mastoidectomy, Abx	Recovery of CN deficits after operation 20 d to 4 months
2014	Khalatbari, et al. [33]	46M	NA	Solitary Osseous plasmacytosis	Radiotherapy	No recurrence or progression to multiple myeloma 4 yrs later
2014	Valles, et al. [34]	36F	NA, 23 weeks pregnant	Sinus thrombosis	Enoxaparin	NA
2014	Yuvatiya Poddai, et al. [35]	63M	NA	Bacterial infection	Ceftriaxime + Levofoxacin	Complete recovery 2 months later
2015	Lattanzi, et al. [36]	60F	NA	Cholesterol granuloma.	NA	NA
2016	Elham Ouspid, et al. [37]	65F	NA	NPC	Radiotherapy	4 months later patient expired due to fulminant sepsis
2017	Jbali Souheil, et al. [38]	55F	NA	Budd Chiari syndrome,	Radiotherapy	NA
2016	Jensen, et al. [39]	5M, 46F, 70F, 13M	AOM 1 mo, AOM 1 mo	Bacterial infection complicate with sinus thrombosis; Hemolytic streptococcus group A; Streptococci species; GNB; Candida	Mastoidectomy, Abx, LMWH; Abx; Abx; mastoidectomy; Abx, mastoidectomy, Abx, surgery	No relapse in 18 months, nil, nil, ni;
2016	Nayya, et al. [40]	55F	NA	Bacterial infection	Abx, mastoidectomy	Well
2017	Grade, et al. [41]	40 years follow up of 44 patients	Mainly infection	Abx and surgery	1 of them died	
2017	Nicholas Taklalsingh, et	30F	Left ear discharge since 10-15 years	Congenital neuroenteric cyst and bacterial infection	Abx	NM
2017	Jensen, et al. [43]	9F	Year-long history of CSOM	Bacterial infection	Abx and mastoidectomy	Mortality
2017	Nicholas Taklalsingh, et					Residual neurological
Year	Author(s)	Age	Gender	Diagnosis	Treatment	Outcome
------------	----------------------------------	-----	--------	-----------	----------------------	---
2017	Suresh Mani, et al. [45]	25M	NA	CSOM	Bacterial infection	Abx at least, NA
2017	Tayebeh Kazemi, et al. [46]	33M	NA	CSOM	Bacterial infection	Abx, temporal bone CT 6 weeks later improved
2018	Ahmad, et al. [47]	61M	NA	CSOM	Abx and exploration	Successful result after postoperative follow-up
2018	Aina Brunet-Garcia, et al. [48]	40M	NM	CSOM	Abx and surgery	NM
2018	Asude Aksyoy, et al. [49]	52M	Healthy	CSOM	Abx and steroids, CCRT	Without any medical treatment and complaint in follow-up
2018	Rajneesh Thaku, et al. [50]	51M	on and off discharge from his left ear since the age of 25 years	Bacterial infection	Abx, mastoidectomy and petrous exploration	Loss follow up
2019	Petrenko, et al. [51]	22F	T1DM	Mucormycosis	Amphotericin B	NA
2019	Conor Bowman, et al. [52]	67M	NA	CSOM	Abx	Has not been readmitted
2019	Esmanhotto, et al. [53]	37F	SLE	CSOM	Abx	NA
2019	Savasta, et al. [54]	11M	recurrent upper airways infections, frequently resulting in episodes of AOM since age 4	Bacterial infection	Abx and steroids	Symptoms free for the 30 months follow-up
2019	Rossi, et al. [55]	4F	Recent sinusitis	Bacterial infection	Abx and surgery	Notable improvement after 2 week
2020	Chandran, et al. [56]	54F; 23F	3-year otalgic disease; contact with TB	TB	Anti-TB therapy	NA
2020	Guilherme Correa Guimaraes, et al. [57]	63F	HTN, T2DM	Bacterial infection*	Abx, enoxaparin	Complicated with cavernous sinus Thrombosis; total recovery 4 months after the first symptom presentation
2020	Hodges, et al. [58]	24M	Asthma	CSOM	Surgery, steroids, Abx	NA
2020	McLaren, et al. [59]	5F	Healthy	CSOM	Abx	Symptoms free
2020	Meena V. Kale, et al. [60]	3male 30-40yrs	NA	Bacterial infection*	Abx up to 8wks	NA
2020	Nilam, et al. [61]	57M	Previous ear infection	Bacterial infection and chronic inflammation	Mastoidectomy, Abx	Lateral rectus palsy completely recovered
2020	Ghammam, et al. [62]	6F	Healthy	CSOM	Abx	Full recovery
2021	Parekh, et al. [63]	71M	T2DM	NA	Surgical and medical	Vernet's syndrome,
TABLE 1: Previous published cases of Gradengo’s syndrome from 1980 to 2021/06

*Pseudomonas aeruginosa, gram-positive cocci in pair, Proteus mirabilis, Alcaligenes faecalis, Enterococcus faecalis, Citrobacter koseri, and Bordetella trematum, pseudomonas aeruginosa, staphylococcus aureus, Streptococcus pneumonia, Klebsiella pneumonia
Abx: antibiotics
AOM: acute otitis media
CSOM: chronic suppurative otitis media
NA: not available
NPC: nasopharyngeal carcinoma
Surgery: radical mastoidectomy with petrous apicectomy, myringotomy
TB: tuberculosis

Male predominance was observed, with a male-to-female ratio of 1.74. The average age of patients is 41.9, with the youngest aged four and the oldest 78. Approximately 76% of patients had infection. Six patients presented with nasopharyngeal carcinoma, five with cholesterol granuloma, and three with lymphoma. Moreover, other conditions including primary tumor, plasmacytoma, sinus thrombosis, and gunshot were reported. It’s crucial to identify head trauma for relatively high frequency of traumatic pathology in otolaryngologic practice, especially in young adults and males [64]. Immunosuppressed patients (HIV, type 2 diabetes mellitus, etc) were considered risk factors. Further, preceding otologic surgery and infection were commonly observed in all cases (Table 2).

Classification (available cases/All cases)	Detailed
Gender (74/80)	M:F=1.74:1 (47M, 27F)
Age (74/80)	Average 41.9 years old
Etiology (79/80)	Infection (n=60); including bacterial infection (n=49), tuberculosis (n=9), aspergillus (n=1), and mucormycosis (n=1)
	Malignance (n=12); including nasopharyngeal carcinoma (n=6), metastasis of prostatic carcinoma (n=1), mass (n=1), lymphoma (n=3) and plasmacytoma (n=1)
	Cholesterol granuloma (n=5)
	Others (n=2); including gunshot (n=1) and sinus thrombosis (n=1)

TABLE 2: Epidemiology and causes of Gradeno’s syndrome

Male is predominant with male to female ratio 1.74, average age is 41.9 with the youngest one aged 4 and the oldest aged 78. Infection composed of 76%; there were 12 cases of malignance, 5 cases of cholesterol granuloma, and also sinus thrombosis and gunshot. Immunoscompromises like HIV (case number=2) and type 2 diabetes mellitus (case number=4) were considered as the risk factors, also, preceding otologic surgery and infection were found common in all reported cases.

To the best of our knowledge, this is the first case of chronic inflammatory GS. Although the habit of ear picking does not cause otitis media but may cause otitis externa, clinicians should raise the concern of malignant otitis externa and skull base osteomyelitis caused by ear picking, particularly in immunocompromised patients. In cases of infection, high-dose broad-spectrum antibiotics are recommended. Moreover, surgery is indicated in more severe cases. The possible complications of GS include labyrinthitis, meningitis, intracranial abscess, venous sinus thrombosis, and carotid artery stenosis.

The current case is clinically defined as classic GS, which is attributed to chronic inflammation. In our patient, it was difficult to differentiate hemorrhage from inflammation due to focal high-density dural thickening on non-contrast-enhanced brain CT scan. Hence, the condition was initially misdiagnosed in the regional hospital. Subdural hemorrhage in young women is rare, and emergent vascular events including...
venous thrombosis must be ruled out as first priority for the opposite management manner and major complication if left untreated. Based on both clinical characteristics and brain MRI findings, hemorrhage and thrombosis were ruled out, and the patient was diagnosed with GS. Furthermore, we considered chronic inflammation correlated with GS after ruling out bacterial (tuberculous), fungal, and viral infections. In addition, there is no evidence of venous thrombosis or malignancy based on the assessments performed using the current diagnostic tools. We believe that the pathophysiology was associated with chronic inflammation; hence, the patient substantially benefited from steroid treatment.

Brain radiography revealed petrous apicitis that developed into leptomeningitis, pachymeningitis, and cerebritis. Even without evidence of bacterial infection, meropenem, vancomycin, and metronidazole were still administered initially via intravenous infusion to prevent progression into brain abscess and, subsequently, other morbidities and even mortality.

Steroid is used for the treatment of active inflammation, and it may be beneficial for cases with nerve compression. In our case, symptoms significantly improved after one dose of methylprednisolone 500 mg STAT. Then, methylprednisolone 8 mg every eight hours for three days was administered based on the study of Kazemi et al. [46]. However, in the current case, the condition was associated with idiopathic inflammatory process rather than pathogenic infection. Thus, prolonged treatment with steroids, rather than antibiotics, might be more suitable. We extended the treatment with methylprednisolone 8 mg every eight hours for six days, followed by a dose of 8 mg every 12 hours. Then, the treatment was changed to oral methylprednisolone 4 mg every 12 hours for three days and then once daily.

In a previous case, a teenager was finally diagnosed with Tolosa-Hunt syndrome with an apparent presentation of GS [2]. In another case, mastoiditis complicated by GS was attributed to immune-induced hypertrophic pachymeningitis [3]. There is no evidence confirming the efficacy of steroid, even though it has beneficial effects against inflammation and nerve damage. In several cases of GS, combination treatment with antibiotics and steroids has been effective [34,46,54].

Therefore, cautious clinical history taking, physical examination, and neuroimaging are required to diagnose GS. In most cases, the condition is caused by bacterial infections requiring broad-spectrum antibiotics. However, patients with chronic inflammation can have similar presentations and imaging findings and may require steroid treatment. Also, in the present case which developed also drug-related reactions, a complete allergy panel should be performed to exclude cross reactivity and exposure to environmental factors increasing chronic inflammation [65].

Conclusions

This is the first case of GS due to chronic mastoiditis (asymptomatic) based on radiological features; patients might miss subtle aura symptoms like past otalgia, aural fullness, dull pain etc.; which successfully resolved after steroid treatment. Unlike in previous cases in which patients were primarily treated with antibiotics, the current study highlighted the importance of steroids in treating inflammation and reducing nerve edema in GS after the management of infection.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that they have no financial services. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Pedroso JL, de Aquino CC, Abrahão A, et al.: Gradenigo’s syndrome: beyond the classical triad of diplopia, facial pain and otorrhea. Case Rep Neurol. 2011, 3:45-7. 10.1159/000324179
2. Reddy RK, Reddy RK, Jyung RW, Eloy JA, Liu JK: Gruber, Gradenigo, Dorello, and Vai: key personalities in the historical evolution and modern-day understanding of Dorello’s canal. J Neurosurg. 2016, 124:224-33. 10.3171/2014.12.ONS14835
3. Hafidh MA, Keogh I, Walsh RM, Walsh M, Rawluk D: Otogenic intracranial complications. a 7-year retrospective review. Am J Otolaryngol. 2006, 27:390–5. 10.1016/j.amjoto.2006.05.004
4. Vrinceanu D, Dumitru M, Stefan A, Neagos A, Musat G, Nica EA: Severe DRESS syndrome after carbamazepine intake in a case with multiple addictions: a case report. Exp Ther Med. 2020, 20:2377-80. 10.3892/etm.2020.8894
5. Metastatic syndrome involving multiple cranial nerves on the right. (2021). Accessed: July 6, 2021: https://pubmed.ncbi.nlm.nih.gov/7466206/
6. Chole RA, Donald PJ: Petrous apicitis. Clinical considerations. Ann Otol Rhinol Laryngol. 1983, 92:544-51.
Jensen PV, Avnstorp MB, Dzongodza T, Chidziva C, von Buchwald C: https://www.researchgate.net/publication/316685379_Post-tympanoplasty_Gradenigo_Syndrome_-_Don

128:195-201.

Gadre AK, Chole RA:

Evol Med Dent Sci. 2016, 74:5517-20.

Nayyar SS, Gupta AK: Gradenigo's syndrome and pachymeningitis with consequent communicating hydrocephalus. J Laryngol Otol. 1999, 108:599-702. 10.1136/jnl.108.08.0997

Morales C, Tachauer A: Gradenigo syndrome in a human immunodeficiency virus-positive patient. Arch Intern Med. 1997, 157:2149. 10.1001/archinte.1997.00440390153018

Bourne RR, Maclaren BE: Intracranial plasmodiomyastasia masquerading as Gradenigo's syndrome. Br J Ophthalmol. 1998, 82:458-9. 10.1136/bjo.82.4.456c

Minotti AM, Koumaki SE: Management of abducens palsy in patients with petroitis. Ann Otol Rhinol Laryngol. 1999, 108:997-1002. 10.1177/000348949910800914

Motamed M, Kalan A: Gradenigo's syndrome. Postgrad Med J. 2000, 76:559-60. 10.1136/pmj.76.899.559

Penas-Prado M: Gradenigo syndrome as the form of presentation of nasopharyngeal carcinoma. Rev Neurol. 2003, 32:638-40. 10.3358/rc.3207.2003a87

Mathew L, Singh S, Rejee R, Varghese AM: Gradenigo's syndrome: findings on computed tomography and magnetic resonance imaging. J Postgrad Med. 2002, 48:314-6.

Sherman SC, Buchanan A: Gradenigo syndrome: case report and review of a rare complication of otitis media. J Emerg Med. 2004, 27:235-6. 10.1016/j.jemermed.2004.05.014

Burston BJ, Pretorius PM, Ramsden JD: Gradenigo's syndrome: successful conservative treatment in adult and paediatric patients. J Laryngol Otol. 2005, 119:235-9. 10.1258/0022215054020215

Aspergillus petrous apicitis associated with cerebral and peritubular abscesses. Arch Iran Med. 2014, 17:676-9. 10.7162/S1809-977720120S1PC-033

Gradenigo's syndrome secondary to chronic otitis media on a background of previous radical mastoidectomy: a case report. J Med Case Rep. 2012, 28:735-7

Delgado ME, Del Brutto OH: Teaching neuroimages: Gradenigo syndrome. Neurology. 2012, 79:e141. 10.1223/WNL.0b013e51826e9898

Duarte E, Roig J, Arias J, Ferreira A, Ortiz H: Gradenigo syndrome as the form of presentation of nasopharyngeal carcinoma. Int Arch Otorhinolaryngol. 2012, 16:10762-8099-977720120S1PC-053

Bhatt YM, Pahade N, Nair B: Gradenigo's syndrome: unusual consequence of otitis media. Acta Otolaryngol. 2007, 127:95-7. 10.1080/00034894501207583

Kantas I, Papadopoulos A, Balatsouras DG, Aspis A, Marangos N: Therapeutic approach to Gradenigo's syndrome: a case report. J Emerg Med. 2010, 41:151. 10.1186/1752-1947-4-151

Tornabene S, Villier GM: Gradenigo's syndrome. J Emerg Med. 2010, 38:449-51. 10.1101/jjem.med.2007.08.074

Ulukmen A, Kaplan Y: Conservative treatment of Gradenigo's syndrome triggered by acute otitis media. Pak J Med Sci. 2012, 28:735-7

Valley JM, Fekete R: Gradenigo syndrome: unusual consequence of otitis media. Case Rep Neurol. 2014, 6:197-201. 10.1159/000365843

Ploypai Y, Hirunpat S, Kiddee W: Gradenigo syndrome as a sudden chronic otitis media on a background of previous radical mastoidectomy: a case report. J Med Case Rep. 2014, 8:217. 10.1186/1752-1947-8-217

Lattanzi S, Cagnetti C, Di Bella P, Provinciali L: Mystery case: cholesterol granuloma of the petrous apex in Gradenigo syndrome. Neurology. 2015, 84:e122-3. 10.1223/WNL.0000000000001510

Ouspis E, Sariaslan P: Gradenigo syndrome as the form of presentation of nasopharyngeal carcinoma. Zh neatel R Med Sci. 2016, 18:10.17955/zne-2015-10

Souheil J, Mohamed D, Sawssen D, et al.: Gradenigo syndrome and primitive sphenoid sinus cancer. Egypt J Ear, Nose, Throat Allied Sci. 2017, 18:177-8. 10.1186/13420751.2016.12.009

Jensen PV, Hansen MS, Møller MN, Saunte JP: The forgotten syndrome? Four cases of Gradenigo's syndrome and a review of the literature. Strabismus. 2016, 24:21-7. 10.3109/09273972.2015.1130067

Nayyar SS, Gupta AK: Gradenigo's syndrome and petrous apicitis: a rare complication of com: case report . J Evol Med Dent Sci. 2016, 74:5517-20.

Gadre AK, Chole RA: The changing face of petrous apicitis-a 40-year experience . Laryngoscope. 2018, 128:195-201. 10.1002/lary.26571

Post-Tympanoplasty Gradenigo Syndrome - Don't Panic. (2021). Accessed: July 6, 2021: https://www.researchgate.net/publication/316685379_Post-tympanoplasty_Gradenigo_Syndrome_-_Don

Jensen PV, Avnstorp MB, Dzongodza T, Chidziva C, von Buchwald C: A fatal case of Gradenigo's syndrome
in Zimbabwe and the Danish-Zimbabwean ENT collaboration. Int J Pediatr Otorhinolaryngol. 2017, 97:181-4. 10.1016/j.ijporl.2017.04.014

44. Taklalsingh N, Falcone F, Velayudhan V: Gradenigo’s syndrome in a patient with chronic suppurative otitis media, petrous apicitis, and meningitis. Am J Case Rep. 2017, 18:1039-45. 10.12659/ajcr.904645

45. Mani S, Rekha A: Unusual case—revisited—Gradenigo’s syndrome. Iran J Otorhinolaryngol. 2017, 29:165-9. 10.22038/ijorl.2017.8651

46. Al-Juboori A, Al Hail AN: Gradenigo’s syndrome and labyrinthitis: conservative versus surgical treatment. Case Rep Otolaryngol. 2018, 2018:1-4. 10.1155/2018/6015385

47. Brunet-Garcia A, Barrios-Crispi MV, Faubel-Serra M: Carotid canal bone erosion. Gradenigo’s syndrome. Acta Otorrinolaringol Esp (Engl Ed). 2018, 69:246-7. 10.1016/j.otorri.2017.04.008

48. Kazemi T: Acute otitis media-induced gradenigo syndrome, a dramatic response to intravenous antibiotic. 10.22038/ijorl.2017.8651

49. Al-Juboori A, Al Hail AN: Gradenigo’s syndrome and labyrinthitis: conservative versus surgical treatment. Case Rep Otolaryngol. 2018, 2018:1-4. 10.1155/2018/6015385

50. A case of abducens nerve palsy: Gradenigo’s syndrome. 10.1016/j.ijporl.2017.04.014

51. Petrenko O, Talal A, Belissa R, Wiese-Rometsch W: Invasive rhinocerebral mucormycosis leading to Gradenigo’s syndrome in type I diabetic. Endocr Pract. 2019, 25:144.

52. Bowman C, Nakhla N, Amedu V, et al.: A rare complication of otitis media: Gradenigo’s syndrome successfully managed on outpatient antimicrobial therapy. Clin Infect Pract. 2020, 3:100012. 10.1016/j.clinpr.2019.100012

53. Esmanhotto BB, de Araújo G, da Silva Faco A Jr, Pasqualli A, Yared JH: Gradenigo’s syndrome in a woman with systemic lupus erythematosus. Acta Neurol Belg. 2020, 120:179-80.

54. Savasta S, Canzi P, Aprile F, Michev A, Foisadelli T, Manfrin M, Benazzo M: Gradenigo’s syndrome with abscess of the petrous apex in pediatric patients: what is the best treatment? Childs Nerv Syst. 2019, 35:2265-72.

55. Rossi N, Swayne ML, Reichert L, Young D: Gradenigo’s syndrome in a four-year-old patient: a rare diagnosis in the modern antibiotic era. J Laryngol Otol. 2019, 133:335-

56. Chandran A, Sagar P, Monga R, Singh S: Unusual manifestation of Koch’s disease: Gradenigo-Lannois syndrome. BMJ Case Rep. 2020, 13:10.1136/bcr-2020-236779

57. Guimaraes GC, de Freitas PP, da Silva VA, Castilho AM: Conservative management of petrous apex abscess and Gradenigo’s syndrome in a diabetic patient: case report and literature review. Clin Case Rep. 2021, 9:742-6. 10.1002/ccr3.5.3625

58. Hodges J, Matsumoto J, Jaeger N, Wispelwey B: Gradenigo’s syndrome and bacterial meningitis in a patient with a petrous apex cholesterol granuloma. Case Rep Infect Dis. 2020, 2020:1-6. 10.1155/2020/882055

59. McLaren J, Cohen MS, El Saleby CM: How well do we know Gradenigo? A comprehensive literature review and proposal for novel diagnostic categories of Gradenigo’s syndrome. Int J Pediatr Otorhinolaryngol. 2020, 152:10994. 10.1016/j.ijporl.2020.109942

60. Kale MV, Gaikwad NS, Chhabria SC: Gradenigo’s syndrome: a petrous apex lesion. J Otolaryngol Rhinol. 2020, 6:10.23937/2572-4193.150901

61. Nalam US, Dharmishtha RK, Anjali T, et al.: A rare presentation of Gradenigo’s syndrome. J Otolaryngol Rhinol. 2020, 6:10.3892/etm.2021.9706

62. Anghel I, Anghel AG, Soreanu CC, Dumitru M: Craniofacial trauma produced by a violent mechanism Coltea ENT Clinic experience. Rom J Leg Med. 2012, 20:215-8. 10.4323/rjlm.2012.215

63. Parekh MA, Pacheco VH: Gradenigo’s and Vernet’s syndrome in an adult man with Candida mastoiditis. BMJ Case Rep. 2021, 14:10.1136/bcr-2020-241006

64. Vrinceanu D, Bergho R, Cergan R, Dumitru M, Cuslaveca RC, Giuranzeau G, Neag A: Urban allergy review: allergic rhinitis and asthma with plane tree sensitization (Review). Exp Ther Med. 2021, 21:275. 10.3892/etm.2021.9706