A minimal model for tag-based cooperation

Arne Traulsen∗ and Heinz Georg Schuster

Institut für Theoretische Physik und Astrophysik,
Christian-Albrechts Universität, Olshausenstraße 40, 24098 Kiel, Germany

(Dated: June 29, 2021)

Recently, Riolo et al. [R. L. Riolo et al., Nature 414, 441 (2001)] showed by computer simulations that cooperation can arise without reciprocity when agents donate only to partners who are sufficiently similar to themselves. One striking outcome of their simulations was the observation that the number of tolerant agents that support a wide range of players was not constant in time, but showed characteristic fluctuations. The cause and robustness of these tides of tolerance remained to be explored. Here we clarify the situation by solving a minimal version of the model of Riolo et al. It allows us to identify a net surplus of random changes from intolerant to tolerant agents as a necessary mechanism that produces these oscillations of tolerance which segregate different agents in time. This provides a new mechanism for maintaining different agents, i.e. for creating biodiversity. In our model the transition to the oscillating state is caused by a saddle node bifurcation. The frequency of the oscillations increases linearly with the transition rate from tolerant to intolerant agents.

PACS numbers: 02.50.Le, 87.23.-n, 89.65.-s

I. INTRODUCTION

The emergence of cooperation in evolving populations with exploitative individuals is still a challenging problem in biological and social sciences. Most theories that explain cooperation are based on direct reciprocity, as the famous iterated prisoner’s dilemma [1]. Cooperation can also arise from indirect reciprocity when agents help others only if these are known as sufficiently altruistic [2]. In most of these models a finite population of agents is simulated, pairs of agents meet randomly as potential donor and receiver. A donation involves some cost to the donor while it provides a larger benefit to the receiver. Agents reproduce depending on their payoffs after a certain number of such meetings. Obviously selfish individuals that do not donate would quickly spread in the population if help is not channeled towards more cooperative players. If agents do not meet repeatedly—as in a large population—direct reciprocity does not work. Indirect reciprocity can solve this problems when donations are given only to those individuals that are known as sufficiently helpful. This mechanism effectively protects a cooperative population against exploiters [2].

Riolo et al. [3] introduced a model in which cooperation is not based on reciprocity, but on similarity. In this model donations are channeled towards individuals that are sufficiently similar to the donor. To distinguish between different groups of individuals every agent i has a tag τi ∈ [0,1]. School ties, club memberships, tribal costumes or religious creeds are all tags that induce cooperation. In addition agents have a tolerance threshold T ≥ 0, which determines the tag interval that the agent classifies as its own group. An agent i donates to another agent j if their tags are sufficiently similar, |τi − τj| ≤ Ti. The cost of such a donation for i is c > 0 while the benefit for j is b > c. For simplicity, b is normalized to 1, since a multiplication of payoffs with a constant factor does not change the game. Initially, the tag and the tolerance threshold are uniformly distributed random numbers. In each generation every agent acts as a potential donor for P other agents chosen at random. Hence it is on average also chosen P times as a recipient. After each generation each agent i compares its payoff with the payoff of another randomly chosen agent j and adopts Tj and τj if j has a higher payoff. In addition every agent is subject to mutation. With probability 0.1 an agent receives a new τ drawn from a uniform distribution and also with probability 0.1 a new T which is Gaussian distributed with standard deviation σ = 0.01 around the old T. If this new T becomes smaller than zero it is set to 0. Obviously, it seems to be the best strategy for an individual to donate as little as possible, i.e. to have a very small T. However, the whole population would be better off if everybody would cooperate. This “tragedy of the commons” can be solved in different ways, e.g. by volunteering [4, 5, 6].

Riolo et al. solve this problem by channeling help towards others that are sufficiently similar to the donor. Instead of a cooperative population the formation and decay of cooperative clusters is observed for certain parameter ranges (high P and low c, see Fig. 1). The average tolerance of a cooperative cluster grows slowly over time. Occasionally it declines sharply. This decline occurs when the cluster is exploited by agents that are sufficiently similar to the cluster’s agents to get support, but do not help themselves. However, the mechanism that generates these tides of tolerance remained unclear [7].

Here we develop a minimal model for tag-based cooperation that displays these “tides of tolerance” if there is a net average drift towards more cooperation. We find

*Electronic address: traulsen@theo-physik.uni-kiel.de
that these fluctuations vanish if such a drift is not included in the model. The importance of this observation stems from the fact that if we have species that can distinguish between themselves and others and donate only to others with the same tag, then this would in the long run lead to a single group of cooperating species having a single tag. But if we introduce a small rate of biased conversions from intolerant to tolerant species we observe a waxing and waning in time of species with different tags.

This paper is organized as follows. First the model of Riolo et al. [3] is simplified in order to allow an analytical treatment. Then the system without the effects of cyclically at different times. This constitutes a new mechanism that generates biodiversity in a group of competing species.

In order to apply standard replicator dynamics [9] we calculate the mean payoffs from the payoff matrix as

$$\langle \Pi \rangle = \sum_{i=1}^{4} p_{i} \Pi_{i},$$

where Π_{i} is the payoff of the strategy with frequency p_{i}. With the replicator equations can be written as

$$p_{i}^{t+1} = p_{i} + p_{i} \beta (\Pi_{i} - \langle \Pi \rangle),$$

where $i = 1, \ldots, 4$. Here β determines the time scale. In the following we set $\beta = 1$. Our main interest is the attractors of the system, and a modification of β would only modify the velocities on the attractor.

II. SIMPLIFIED REPLICATOR MODEL

A. Definition of the model

Here we simplify the model of Riolo et al. [3] in order to allow for an analytical treatment. In a first step we restrict the game to only two tags, red and blue. Similarly we allow only two tolerances. The agents can either only donate to others bearing the same tag if they have zero tolerance $T = 0$ or to every other agent ($T = 1$). This leads to four possible strategies. Then we allow partners to donate and to receive in a single interaction instead of defining different roles for donators and receivers. We end up with the payoff matrix

(tag, T)	(red, 1)	(blue, 1)	(red, 0)	(blue, 0)
(red, 1)	b-c	b-c	b-c	-c
(blue, 1)	b-c	b-c	-c	b-c
(red, 0)	b-c	b	b-c	0
(blue, 0)	b	b-c	0	b-c

The strategies with $T = 1$ are obviously dominated by the strategies with $T = 0$, because the payoff of an intolerant player is always larger than the payoff of the corresponding tolerant player. There are pure Nash equilibria for the intolerant strategies (red, 0) and (blue, 0). In addition there is an evolutionary instable mixed Nash equilibrium if these two strategies are used with probability $\frac{1}{2}$.

If the intolerant agents do not even cooperate within their own group we recover the prisoners dilemma [3], see Appendix A.

Instead of simulating a finite group of agents we calculate only the evolution of the probability that an agent uses a certain strategy. In the following, p_{1} and p_{2} are the frequencies of tolerant red and tolerant blue agents, respectively. p_{3} and p_{4} are the frequencies of the corresponding red and blue intolerant agents. As $p_{1} + p_{2} + p_{3} + p_{4} = 1$ the state of the system is completely determined by $\mathbf{p}^{t} = (p_{1}^{t}, p_{2}^{t}, p_{3}^{t}, p_{4}^{t})$. The trajectory can therefore be visualized as a trajectory in the three dimensional simplex shown in Fig. 2.

In order to apply standard replicator dynamics [9] we calculate the mean payoffs from the payoff matrix as

$$\Pi_{1}^{t} = (b - c)(p_{1}^{t} + p_{2}^{t} + p_{3}^{t}) - c p_{4}^{t},$$

$$\Pi_{2}^{t} = (b - c)(p_{1}^{t} + p_{2}^{t} + p_{4}^{t}) - c p_{3}^{t},$$

$$\Pi_{3}^{t} = (b - c)(p_{1}^{t} + p_{3}^{t}) + b p_{2}^{t},$$

$$\Pi_{4}^{t} = (b - c)(p_{2}^{t} + p_{3}^{t}) + b p_{1}^{t}$$

(1)

where Π_{i} is the payoff of the strategy with frequency p_{i}. With the replicator equations can be written as

$$p_{i}^{t+1} = p_{i} + p_{i} \beta (\Pi_{i} - \langle \Pi \rangle),$$

where $i = 1, \ldots, 4$. Here β determines the time scale. In the following we set $\beta = 1$. Our main interest is the attractors of the system, and a modification of β would only modify the velocities on the attractor.
lead to fixed points where only one tag survives. The frequency of intolerant players is typically higher than the frequency of tolerant players here. There is a separatrix that divides the basins of attraction of the two tags. On one side of the separatrix red players will survive and on the other side blue players. In addition we find several fixed points on the edges described in the following.

\[p^* = \frac{1}{2} [1 - (1 - c)p_1^*(1 + c)p_2^*] \quad (3) \]

for points on the separatrix. As we have \((p_1^{t+1}p_2^t, p_3^t) - p^t(p_1^t, p_2^t, p_3^t)) \cdot e_3 = 0 \) the system never leaves this plane again.

In addition there are two fixed lines if only one tag is present: \(p^{red} = (1 - x, 0, x) \) and \(p^{blue} = (0, 1 - x, 0) \) where \(0 \leq x \leq 1 \) is the fraction of intolerant players. The stability of the fixed points on these lines depends on \(x \). For \(1 - x > c \) the points are instable and intolerant players with the opposite tag can invade (see Appendix B). Finally, there is an instable fixed line for a completely tolerant population, \(p^{T+} = (1 - y, y, 0) \), where \(0 \leq y \leq 1 \). The stability of this fixed line is discussed in Appendix B.

So far the system does not show any oscillation. It simply relaxes to one of the fixed points described above. In the next section a mechanism that generates oscillations will be discussed.

III. INTRODUCTION OF A BIASED DRIFT

In order to generate oscillations in the system we have to destabilize the attracting fixed points and force the system through the separatrix. This can be realized by introducing first ad hoc a drift that increases the fraction of tolerant agents at the cost of the intolerant fraction of the same tag. If we introduce such biased conversions into our model equation (2) becomes

\begin{align*}
 p_1^{t+1} &= p_1^t + p_1^t (\Pi_1^t - \langle \Pi_1 \rangle) + \varepsilon p_3^t \\
 p_2^{t+1} &= p_2^t + p_2^t (\Pi_2^t - \langle \Pi_2 \rangle) + \varepsilon (1 - p_1^t - p_2^t - p_3^t) \\
 p_3^{t+1} &= p_3^t + p_3^t (\Pi_3^t - \langle \Pi_3 \rangle) - \varepsilon p_3^t.
\end{align*}

The solution of these equations shown in Fig. 4 and Fig. 5 display oscillations in tolerance. These oscillations can be considered as the deterministic equivalent to the tides of tolerance in 3.

In the model of Riolo et al. such a drift is generated by truncated mutations. The average tolerance is usually of the order of \(\sigma \) Therefore the truncation of negative tolerances decreases the probability for mutations that lower the tolerance and leads to a drift towards higher tolerances. We repeated the simulations of Riolo et al. and found that 50.0% of the tolerance mutations increase \(T \) while only 39.8% decrease \(T \). The average mutation increases \(T \) by \(1.3 \cdot 10^{-4} \) (\(c = 0.1, P = 3 \), average over 10 000 realizations with 30 000 generations each). If we omit the tolerance mutations in the model of Riolo et al. one (low) tolerance is quickly inherited by the whole populations, see Fig. 6. The majority of players belongs to a dominant cluster. The mean tag of this cluster—and hence the donation rate—drifts slowly due to mutations of the tags. Without mutations of the tags one tag is inherited by the whole population after a short initial period. Consequently the donation rate becomes 100%, and tolerance mutations do no longer influence the system.

A. Qualitative behavior

The attractor of the system 3 is shown in Fig. 4 and the time evolution of the strategies can be seen in Fig. 5. If initially all strategies are present the system shows periodic oscillations for small \(\varepsilon \) and \(c = 0.1 \). One
tag becomes dominant. The fraction of tolerant players increases due to the biased conversions imposed by \(\varepsilon > 0 \) and intolerant players with the opposite tag can invade and destroy the cluster, giving rise to a new dominant cluster with the opposite tag. This attractor shown in Fig. 4 has essentially the whole simplex as a basin of attraction. Only for very small or very high values of \(c \) other fixed points become stable. The system can be analyzed in two parts for \(\varepsilon \ll 1 \). Near the edges \(\mathbf{p}^\text{red} \) and \(\mathbf{p}^\text{blue} \) the replicator dynamics becomes irrelevant and the system is mainly driven by biased conversions. Further away from these edges the system is driven by the replicator dynamics. Here the dynamics is not altered by the biased conversions.

Our biased conversions lead the system from an edge that is dominated by one color to an edge that is dominated by the other color. For small \(c \) the trajectory leaves these edges near the corners of the pure tolerant strategies, cf. Fig. 4. However, these corners are never crossed as they are fixed points.

B. Fixed points

Let us now analyze the system in more detail. The fixed line \(\mathbf{p}^{\text{red}} = (1 - y, y, 0) \) of (2) is still a fixed line of (4). For \(c < 2 \varepsilon \) a fraction of the fixed line remains stable, see Appendix C for details. However, as we are interested in \(\varepsilon \ll 1 \) the fixed line is usually unstable. Due to the flow from intolerant to tolerant players the edges \(\mathbf{p}^\text{red} \) and \(\mathbf{p}^\text{blue} \) are no longer fixed. The fixed point \(\mathbf{p}^+ = (0, 0, {\varepsilon \over c}) \) in the mixed Nash equilibrium moves away from the edge for \(\varepsilon > 0 \) and is now given by \(\mathbf{p}^d = ({\varepsilon \over c}, {\varepsilon \over c}, {1 - \varepsilon \over c}) \). The stability of this fixed point is discussed in Appendix B.

In addition we find two more fixed points \(\mathbf{p}^{+} \) and \(\mathbf{p}^{-} \). For \(\varepsilon = 0 \) they correspond to the points where the population with only one tag loses stability. These fixed points can be calculated analytically, see Appendix C for details. The expansion for \(\varepsilon \ll 1 \) of \(\mathbf{p}^+ \) is

\[
\mathbf{p}^+ \approx \begin{pmatrix} 1 - c - \frac{2\varepsilon}{c} - \frac{\varepsilon^2}{(c-1)c^2} \\ \frac{(1-2c)\varepsilon}{c^2} - \frac{\varepsilon^2}{(c-1)c^2} \end{pmatrix}.
\]

Due to the symmetry in the tags \(\mathbf{p}^{\pm} \) can easily be calculated by exchanging \(p_1 \) with \(p_2 \) and \(p_3 \) with \(p_4 = 1 - p_1 - p_2 - p_3 \). As described above we find \(\mathbf{p}^+ = (1 - c, 0, c) \) for \(\varepsilon = 0 \). Increasing \(\varepsilon \) moves it towards \(\mathbf{p}^d \).

For \(\varepsilon = c(1-c)/4 \) \(\mathbf{p}^{\pm} \) collapse, here \(\mathbf{p}^d \) becomes stable.

For \(c < 0.73 \) we have no fixed points that are stable in all directions. The whole simplex is essentially the basin of attraction of the attractor shown in Fig. 4.

C. Bifurcation at \(\varepsilon = 0 \)

The transition from the system without biased conversions, i.e., \(\varepsilon = 0 \), to the system with biased conversions...
FIG. 5: The waxing and waning of the four different groups of agents (red agents black, blue agents gray, full lines \(T = 1\), dashed lines \(T = 0\)) are caused by the following mechanism. A cluster of tolerant red agents is invaded by intolerant blue agents which convert via directed mutations to their tolerant counterpart, giving rise to a blue cluster which is then invaded by red intolerant agents. Although initially the number of red and blue tolerant agents differed only by one percent a tiny number (0.5%) of intolerant agents of each tag is enough to generate large clusters that are segregated in time \((\varepsilon = 0.01, c = 0.1, b = 1.0)\).

can be analyzed in detail by considering the Poincare map shown in Fig. 6.

At \(\varepsilon > 0\) the fixed lines where only one tag is present vanish. This is caused by a saddle node bifurcation \[10\]. A fixed line disappears at this bifurcation, and a small channel is opened through which the system moves slowly to the other side of the separatrix. The width of this channel is controlled by \(\varepsilon\). For small \(\varepsilon\) a linear dependence between \(\varepsilon\) and the oscillation frequency of the attractor is observed as shown in Fig. 6. Such a linear dependence is expected in a saddle node bifurcation with linear perturbation terms \(\varepsilon \rho_3\) and \(\varepsilon \rho_4\) \[11\].

In our model two small channels are opened by \(\varepsilon > 0\), as the separatrix is crossed twice in one oscillation. The reinjection in our model is caused by the replicator dynamics, which drives the system to the channel of the opposite tag. The dependence of the oscillation frequency on the parameter \(\varepsilon\) for \(c = 0.1\) is shown in Fig. 6. For values of \(\varepsilon > 0.02\) the dynamic changes. Here the fixed points \(\rho_{T^+}\) that become stable for \(\varepsilon = c/2\) begin to influence the dynamical system.

D. Influence of the cost of cooperation \(c\)

Here we analyze the influence of the cost of cooperation \(c\) on our system by defining different measures of order in our model and by observing the influence of \(c\) on these measures. The donation rate is the probability that one player donates to another, \(d = (1 - p_3)(p_2 + p_4) - p_4(p_1 + p_3)\). The fraction of tolerant individuals can be measured as \(p_{\text{tol}} = \langle p_1 + p_2 \rangle\), and the asymmetry between the tags as \(a = \langle p_1 + p_3 \rangle - \langle p_2 + p_4 \rangle\). Here \(\langle \cdot \rangle\) denotes a time average. In addition an average over different initial conditions is necessary.

Fig. 8 shows that these measures display changes at \(c \approx 0.02\), \(c \approx 0.66\), \(c \approx 0.73\), and \(c \approx 0.96\). We now discuss the reasons for these transitions. For \(c < \varepsilon\) the points \(\rho_{T^+} = (1 - y, y, 0)\) are stable fixed points. In the case of \(\varepsilon < c < 2 \varepsilon\) only a part of this fixed line is stable, see Appendix 3 for details. For \(c > 2 \varepsilon\) these fixed points become unstable, this leads to a decrease of the asymmetry between tags at \(c = 2 \varepsilon\).

For cooperation costs \(c > 2 \varepsilon\) the typical qualitative behavior is described above. The attractor of such a system can be seen in Fig. 8. For higher costs \(c\) the intolerant players can invade earlier as their advantage is larger. In the following we restrict ourselves to the case of \(\varepsilon = 0.01\). The qualitative behavior does not change until \(c \approx 0.661\). The attractor for \(c = 0.66\) can be seen in Fig. 8.

For \(c > 0.661\) the biased conversion can no longer drive the system through the separatrix. Two different attractors are observed for different initial conditions. In the original model this behavior corresponds to the establishment of one cooperative cluster which becomes tolerant due to the truncated mutations. Intolerant individuals with the other tag try to invade, but the dominant cluster becomes more intolerant again and prevents an invasion. At \(c \approx 0.73\) the fixed points \(\rho^{s, \pm}\) become
FIG. 7: Dependence of the oscillation frequency on the mutation rate \(\epsilon \). The squares and the triangles are the numerical values for \(c = 0.1 \) and \(c = 0.2 \), respectively. The line is a fit of the frequencies for \(\epsilon \leq 0.01 \). For small \(\epsilon \) the frequency increases as \(f = \alpha \epsilon^2 \). We found \(\beta = 1.0036 \pm 0.0003 \) for \(c = 0.1 \) and \(\beta = 1.0021 \pm 0.0002 \) for \(c = 0.2 \). A linear dependence is expected if the perturbation is linear in \(\epsilon \), as in our case. For high values of \(\epsilon \) the fixed line \(p^{\pm} \) becomes partially stable for \(\epsilon = c/2 \) and begins to influence the system. Therefore the frequency decreases \((b = 1.0)\).

stable (see Appendix C). For higher values of \(c \) oscillations are no longer observed. For one eigenvalue of the corresponding Jacobi matrix \(J^s \) we had \(|\lambda_1| < 1 \) even for smaller \(c \). In addition there is a pair of complex conjugated eigenvalues that crosses the unit circle at \(c \approx 0.73 \). Hence we are observing a Hopf-bifurcation here. For \(c > 0.73 \) the system spins into the fixed points \(p^{s\pm} \). For \(c \approx 0.93 \) the imaginary parts of the eigenvalues vanish. At \(c = \frac{1 + \sqrt{1 - 16\epsilon}}{2} \approx 0.96 \) the stable fixed points \(p^{s\pm} \) collapse with the instable fixed point \(p^d \) in a super-critical pitchfork bifurcation. For higher values of \(c \) the fixed point \(p^d \) is stable.

FIG. 8: Influence of the cost \(c \) on the donation rate (squares), the fraction of tolerant players (triangles) and the asymmetry between the tags (diamonds). All symbols are averages over 10 000 initial conditions and 100-10 000 time steps. The number of time steps is taken as a uniformly distributed random number to exclude effects resulting from changes of the oscillation frequency. The lines are the analytical results for \(c > 0.73 \), see Appendix C. The fraction of tolerant players decreases as the time intervals where the tag is invaded become longer. This has also an effect on the donation rate. For \(c \approx 0.66 \) a large change of the symmetry parameter is observed when one symmetric attractor is replaced by two attractors which are not symmetric. The fraction of tolerant players and the donation rate decrease slightly at \(c \approx 0.66 \). The donation rate and the symmetry parameter increase until the fixed points \(p^{s\pm} \) become stable at \(c \approx 0.73 \). Here these parameters decrease again. When \(p^d \) finally becomes stable at \(c = \frac{1 + \sqrt{1 - 16\epsilon}}{2} \approx 0.96 \) the symmetry is complete again.\((\epsilon = 0.01, b = 1.0)\).

IV. SUMMARY AND OUTLOOK

We developed a minimal model for cooperation based on similarity. This model shows oscillations in the population of tolerant agents as two different groups dominate the population successively. The mechanism that drives these oscillations is a drift towards more tolerance. Without such a drift a cooperative cluster cannot be destabilized and will not give way to a new cooperative cluster. In other words, the temporally segregated dynamical coexistence of different tags is only possible if such a drift towards more tolerance exists. Without such a drift only one species would be selected. This is similar to the dynamical coexistence of species in the rock-paper-scissors game [12]. The drift provides a new mechanism for maintaining a dynamical biodiversity in biological systems [13].

This mechanism prevents a single species from tak-
APPENDIX A: PRISONERS DILEMMA

The introduction of "never cooperate" agents which do not donate at all \(\text{red, } 0\) instead of the zero tolerance agents eliminates the difference between tags and leads to the payoff matrix

\[
\begin{array}{c|cc|cc}
\text{tag, } T & \text{red, } +1 & \text{blue, } +1 & \text{red, } 0 & \text{blue, } 0 \\
\hline
\text{red, } +1 & b - c & b - c & -c & -c \\
\text{blue, } +1 & b - c & b - c & -c & -c \\
\text{red, } 0 & b & b & 0 & 0 \\
\text{blue, } 0 & b & b & 0 & 0 \\
\end{array}
\]

which describes the prisoners dilemma \(\text{red, blue}\).

APPENDIX B: FIXED POINTS OF THE REPLICATOR DYNAMICS

The stability of the fixed points with only one tag can be calculated as follows. For \(\text{red} = (1 - x, 0, x)\) and \(\varepsilon = 0\) we find the Jacobian matrix

\[
J^\text{red} = \begin{pmatrix}
1 + (1 - x) (c - x + cx) & 0 & (c - 1) x^2 \\
(c - 1) x & 1 - x & cx \\
(1 - x) (c - x + cx) & 0 & 1 + (c - 1) x^2 \\
\end{pmatrix}
\]

with the eigenvalues \(\lambda_1 = 1, \lambda_2 = 1 - x\) and \(\lambda_3 = 1 + c - x\). The fixed point is marginal stable as long as \(x \geq c\), for \(x < c\) it becomes unstable. The reasoning can be adopted for the fixed line \(\text{blue} = (0, x, 0)\).

A fixed point that is conserved for \(\varepsilon > 0\) can be found if all players are tolerant. For \(\text{red} = (1 - y, y, 0)\) the Jacobian matrix is given by

\[
J^\text{red} = \begin{pmatrix}
1 + (c \gamma + y) \gamma & -c \gamma y - \varepsilon & 0 \\
(c \gamma + y) \gamma & 1 - c \gamma y - \varepsilon & 0 \\
2 \gamma y T + c \gamma + \varepsilon & -2 \gamma y T - c y - \varepsilon & 1 + c y - \varepsilon \\
\end{pmatrix}
\]

where \(\gamma = 1 - y\) and \(T = 1 - c\). The eigenvalues of this matrix are \(\lambda_1 = 1, \lambda_2 = 1 + cy - \varepsilon\) and \(\lambda_3 = 1 + c(1 - y) - \varepsilon\). \(\lambda_i < 1\) \((i = 1, 2, 3)\) is not possible for \(\varepsilon = 0\). Hence the fixed line is instable for \(\varepsilon = 0\). For \(\varepsilon > 0\) there is an interval of stability given by \(1 - \frac{c}{\varepsilon} < y < \frac{c}{\varepsilon}\) if all players are tolerant. For \(\varepsilon = 0\) the biased conversions ensure stability of the fixed point although the replicator dynamics alone would make this point instable. The first inequality can only be fulfilled for \(\varepsilon < 2\). For \(\varepsilon \leq \varepsilon\) it is always fulfilled and the whole fixed line \(\text{red}^+\) is stable.

The fixed point given by \(\text{blue} = (\varepsilon/c, \varepsilon/c, 1/2 - \varepsilon/c)\) reduces to the mixed Nash equilibrium for \(\varepsilon = 0\). The Jacobi matrix at this fixed point is

\[
J^\text{blue} = \begin{pmatrix}
1 + \frac{3 \varepsilon c + \varepsilon - c^2}{2 c} & \frac{-(1+c) \varepsilon}{c} & \frac{(1-c)(-c-2 \varepsilon)}{2 c} \\
\frac{(1+c) \varepsilon}{2 c} & 1 + \frac{\varepsilon c - c^2}{c} & \frac{(1-c)(-c-2 \varepsilon)}{2 c} \\
\frac{(1+c) \varepsilon}{2 c} & \frac{(1-c)(-c-2 \varepsilon)}{2 c} & 1 + \frac{\varepsilon c - c^2}{c} \\
\end{pmatrix}
\]

The eigenvalues of this matrix are

\[
\lambda_1 = 1 - \frac{\gamma}{2}
\]

\[
\lambda_2 = 1 + \gamma (2c-1) - \sqrt{\gamma (\gamma + 8 \varepsilon c + 8 \varepsilon^2c^2)}/4c
\]

\[
\lambda_3 = 1 + \gamma (2c-1) + \sqrt{\gamma (\gamma + 8 \varepsilon c + 8 \varepsilon^2c^2)}/4c
\]

where \(\gamma = 2\varepsilon - c\). For \(\varepsilon = 0\) we have \(\lambda_1 = \lambda_2 = 1 - \frac{c}{\varepsilon} < 1\) and \(\lambda_3 = \frac{3}{4} - \frac{c}{\varepsilon} > 1\). The third eigenvalue corresponds to an instable direction. The corresponding eigenvector is \(e_3 = (1 - c, 1 + c, 2)\), which is the normal of the separatrix for \(\varepsilon = 0\). In the case of \(\varepsilon > 0\) we have \(\lambda_3 < 1\) for \(i = 1, 2, 3\) if \(c > \frac{1 + \sqrt{16 \varepsilon^2 - 16 \varepsilon c}}{2}\). Hence \(\text{blue}^+\) becomes instable where it coincides with the fixed points \(\text{blue}^+\) described in appendix C. In all other cases, at least one eigenvalue of \(J^d\) is outside the unit circle.

APPENDIX C: ADDITIONAL FIXED POINTS

Numerical simulations show that the additional fixed points for \(\varepsilon > 0\) can always be found in the plane spanned by \((1 - c, 0, c), (0, 1 - c, 0)\) and \((0, 0, \frac{1}{2})\). Together with \(p_1^{t+1} = p_1^t\) and \(p_3^{t+1} = p_3^t\) we have three equations that describe these points. Two of the solutions are fixed points
not described above. The first fixed points p_s^+ can be written as
\[
p_{s}^{+} = \left(\frac{\alpha + \sqrt{\alpha \beta}}{\sqrt{\alpha \beta + 2(\alpha - \epsilon) - \sqrt{\alpha^2 + 4\alpha \beta + 4\alpha \sqrt{\alpha \beta}}}} \right) \tag{C1}
\]
where $\alpha = c(1 - c)$ and $\beta = \alpha - 4\varepsilon$. p_{s}^{-} can be calculated by exchanging p_1 with p_2 and p_3 with $p_4 = 1 - p_1 - p_2 - p_3$. These fixed points have only real coordinates for $\beta \geq 0$.

For $\beta = 0$ we have $p_{s}^{+} = p_{s}^{-} = p_d$.

The eigenvalues of the Jacobi matrix at the fixed points p_{s}^{\pm} can be calculated numerically. For $\varepsilon = 0$ the fixed points are only stable if $c > 0.73$. At $c = \frac{1 + \sqrt{1 - 16\varepsilon}}{2} \approx 0.96$ they collapse with p_d in a supercritical pitchfork bifurcation and form a single stable fixed point.

For $c > 0.73$ the fixed points p_{s}^{\pm} are the only stable attractors and the order measures described in Section [III.D] can be calculated analytically. We find for $c < 0.96$
\[
d = 1 - p_3(p_2 + p_4) - p_4(p_1 + p_3) = \frac{5\alpha - 4\varepsilon(1 + c) + 2\sqrt{\alpha \beta} - \sqrt{\alpha^2 + 4\alpha \beta + 4\alpha \sqrt{\alpha \beta}}}{4\alpha} \tag{C2}
\]

$\rho_{\text{vol}} = p_1 + p_2$
\[
\rho_{\text{vol}} = \frac{3\alpha - 4\varepsilon + 2\sqrt{\alpha \beta} - \sqrt{\alpha^2 + 4\alpha \beta + 4\alpha \sqrt{\alpha \beta}}}{2\alpha} \tag{C3}
\]
\[
a = \frac{|p_1 + p_3 - p_2 - p_4|}{2c} \tag{C4}
\]

For $c > 0.96$ the fixed point p_d becomes stable and we find $d = \frac{1}{2} + \frac{\varepsilon}{c}$, $\rho_{\text{vol}} = 2\varepsilon$ and $a = 0$.

ACKNOWLEDGMENTS

We thank R. Riolo, M. D. Cohen and R. Axelrod for very helpful correspondence and comments. A.T. acknowledges support by the Studienstiftung des Deutschen Volkes (German National Merit Foundation).

[1] R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984)
[2] M. A. Nowak and K. Sigmund, Nature 393, 573 (1998)
[3] R. L. Riolo, M. D. Cohen, and R. Axelrod, Nature 414, 441 (2001)
[4] C. Hauert, S. De Monte, J. Hofbauer and K. Sigmund, Nature 296, 1131 (2002)
[5] G. Szabó and C. Hauert, Phys. Rev. Lett. 89 118101 (2002)
[6] G. Szabó and C. Hauert, Phys. Rev. E. 66, 062903 (2002)
[7] K. Sigmund and M. A. Nowak, Nature 414, 403 (2001)
[8] H. G. Schuster, Complex Adaptive Systems (Scator Verlag, Saarbrücken, 2002)
[9] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge Univ. Press, Cambridge, 1998)
[10] J. Guckenheimer and P. Holmers, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields (Springer, New York, 1983)
[11] H. G. Schuster, Deterministic Chaos. An Introduction. (Wiley-VCH, Weinheim, 1995)
[12] M. Frean and E. R. Abraham, Proc. R. Soc. Biol. Sci. B 268, 1325 (2001)
[13] B. Kerr, M. A. Riley, M. W. Feldman, and B. J. M. Bohannan, Nature 418, 171 (2002)
[14] A. Traulsen and H. G. Schuster, in preparation
[15] G. Roberts and T. N. Sherratt, Nature 418, 499 (2002)