Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses

Kelly B. McClellan
Washington University School of Medicine in St. Louis

Shivaprakash Gangappa
Emory University

Samuel H. Speck
Emory University

Herbert W. Virgin IV
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

Recommended Citation
McClellan, Kelly B.; Gangappa, Shivaprakash; Speck, Samuel H.; and Virgin, Herbert W. IV, "Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses." PLoS Pathogens. 2,6. 578-590. (2006).
https://digitalcommons.wustl.edu/open_access_pubs/442

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker.
For more information, please contact vanam@wustl.edu.
Antibody-Independent Control of γ-Herpesvirus Latency via B Cell Induction of Anti-Viral T Cell Responses

Kelly B. McClellan¹, Shivarapaksh Gangappa², Samuel H. Speck³, Herbert W. Virgin IV**

1 Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America, 2 Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, United States of America, 3 Division of Microbiology and Immunology, Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia, United States of America

B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL)-specific B cells can contribute to the control of murine γ-herpesvirus 68 (γHV68) latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell−/− mice during the early phase of γHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell−/− mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of γ-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.

Introduction

γ-Herpesviruses such as Epstein Barr virus (EBV), Kaposi’s sarcoma herpesvirus (KSHV), and murine γ-herpesvirus 68 (γHV68) latently infect lymphocytes and other cells as part of a strategy for maintaining life-long infection. Latent infection represents a balance between the virus and the host to which immunity makes an essential contribution. γ-herpesvirus latency and replication of virus that has reactivated from latently infected cells contribute to γ-herpesvirus-associated diseases [1–7]. The stability of this balance between virus and host is demonstrated by the observation in mice that a latency set point exists such that the same number of cells are latently infected regardless of the dose or route of infection [8], and in humans by the observation that individuals have a stable level of EBV latency over years [9]. Despite the stability of γ-herpesvirus latency, the balance between virus and host is delicate since γ-herpesvirus-induced disease is most often seen in immunocompromised hosts. In addition, deletion of individual host [7,10,11] or viral [12–14] genes disrupts this balance with consequent inefficient infection or development of disease.

To understand the stable but delicate balance between the host and γ-herpesviruses present during life-long infection, it is necessary to define mechanisms of immunity responsible for holding the virus at bay. To define these mechanisms many groups have studied infection of mice with γHV68, which provides a relevant small animal model for γ-herpesvirus infection and immunity. After clearance of acute infection, γHV68 latently infects macrophages, B cells, and dendritic cells [8,15–18]. γHV68 infection is associated with development of B cell malignancies, vasculitis, and atherosclerosis [2,7,19,20].

Immunity controls latent γHV68 infection by limiting the number of cells carrying viral genome during latency [10,21,22] and by regulating the efficiency with which these cells reactivate from latency when explanted [10,11,23,24]. In addition, the immune system regulates persistent viral replication, which is detected as the presence of preformed infectious virus in tissues after clearance of the acute infection [7,10,11,17,23]. Persistent γHV68 replication is distinct from replication occurring during acute infection (acute replication) since the γHV68 v-cyclin and v-Bcl-2 genes are required for persistent but not acute replication [12–14]. Persistent replication is observed in normal mice, and is more prominent in immunocompromised mice such as those lacking B cells or interferon-γ (IFNγ) [7,10,14,17,23]. It is likely that persistent replication involves virus that has reactivated from latently infected cells since the v-cyclin and v-Bcl-2 genes are required for both efficient reactivation from latency and for persistent replication [12,13]. Persistent replication may contribute to latency via infection of new cells that enter the latent pool [25,26].

There are two forms of γHV68 latency that are distinguishable experimentally [8,10–12]. The early form of latency is measurable 16 d after infection when acute infection has
Synopsis

B cells can control virus infection by making specific antibodies that bind to virus and infected cells. However, it is unknown whether B cells perform other anti-viral functions to protect the host during infection. The authors addressed this question by infecting mice with murine \(\gamma \)-herpesvirus 68 (\(\gamma \)HV68), a relative of Epstein-Barr virus and Kaposis sarcoma-associated virus, which establishes lifelong latent infection in mice. Mice lacking B cells (B cell−/−) failed to control latent \(\gamma \)HV68 infection and had reduced T cell activity compared to wild-type mice. In order to determine if virus non-specific B cells can control latency, the authors engineered mice that contain B cells, but cannot generate antibodies that bind to \(\gamma \)HV68. Virus non-specific B cells restored normal control of latency and T cell activation defects observed in B cell−/− mice, and could present virus-encoded antigen to T cells. Thus, B cells can play a critical role in control of chronic viral infection independent of their capacity to make anti-viral antibody. Defining the mechanisms for this unique activity of B cells may provide novel ways to treat or control chronic viral infection.

been cleared. At this time most cells carrying latent viral genome reactivate when cultured ex vivo [11]. The late form of latency, typically measured at 42 d after infection, is characterized by inefficient reactivation ex vivo with 10% or less of genome bearing cells reactivating when explanted [10,11]. Latency is typically measured in the spleen as a lymphoid site and the peritoneum as a body cavity site. Analysis of these sites is of interest since both EBV and KSHV establish latency in lymphoid sites and KSHV causes body cavity based lymphomas [3–5]. Both the early and late forms of latency in splenocytes and peritoneal cells are observed regardless of the route (intraperitoneal or intranasal) or dose of viral inoculation [8].

Several components of the immune system contribute to the control of latent and persistent \(\gamma \)HV68 infection. These include CD8 T cells [10,21,22], CD4 T cells [21,27–29], perforin [10], granzymes [30], caspase 3 [30], IFN\(\gamma \) [6,7,10,24,29], IFN\(\alpha \) [23], and antibody and B cells [11,25,26]. Of these, the role of B cells is of particular interest because \(\gamma \)-herpesviruses including EBV, KSHV, and \(\gamma \)HV68 establish latency in B cells. In addition to serving as a site of latency in B cells, B cells regulate latency in non-B cells [11]. B cell−/− mice exhibit increased frequencies of reactivating and viral genome bearing cells compared to B6 mice [11], and show increased persistent replication in lung and aorta [6,7,14,31]. Thus, removal of one latent reservoir, B cells, increases the level of latency in non-B cells, and diminishes control of persistent replication. Lack of specific anti-viral antibody likely explains some of the abnormalities in latency and persistence seen in B cell−/− mice. Passive transfer of antibody significantly decreases the frequency of latently infected cells in B cell−/− or T cell depleted CD28−/− mice [25,26]. However, it is not known whether the important role of B cells in control of \(\gamma \)HV68 latency and persistent replication is explained by production of anti-viral antibody or other antigen-specific B cell receptor (BCR)-dependent activities of B cells.

To identify B cell activities during infection that are independent of antibody production and expression of a virus antigen-specific BCR we bred a mouse that contained B cells but cannot mount an antigen specific anti-viral B cell response (HELMET mice). We found that the abnormal control of latency in B cell−/− mice was largely normalized by the presence of viral antigen non-specific B cells. Furthermore, abnormalities in CD8 and CD4 T cell expansion and IFN\(\gamma \) production observed in B cell−/− mice were reversed in HELMET mice. Depletion of either T cell subset resulted in increased latent infection in HELMET mice but had minimal effects in B cell−/− mice. B cells therefore have critically important antibody- and antigen-specific BCR-independent functions during chronic \(\gamma \)HV68 infection that are at least in part explained by B cell-dependent induction of CD8 and CD4 T cell responses.

Results

HEL-Specific B Cells Decrease the Frequency of Splenocytes That Reactivate from Latency and Decrease the Efficiency of Reactivation from Latency

B cell−/− mice have higher numbers of cells carrying latent \(\gamma \)HV68 than wild type mice [11]. We wanted to determine whether the effects of B cells on latent \(\gamma \)HV68 infection require production of anti-viral antibody and engagement of a virus antigen-specific BCR. One approach to this question would be to study the effects of adoptively transferred B cells on \(\gamma \)HV68 infection of B cell−/− mice. However, adoptively transferred B cells do not persist in this setting [32,33], necessitating a genetic approach to engrafting virus antigen non-specific mice onto a B cell−/− background. We therefore bred the HEL-specific IgM/IgD BCR bearing the IgM* allotype from MD4 mice [34] onto the \(\mu \)MT B cell−/− background [35] (Figure 1, HELMET mice). HELMET mice contained IgM* and CD19 double positive B cells in spleen (Figure 1) and lymph nodes (unpublished data) while B6 mice and B cell−/− mice did not.

To determine if HEL-specific B cells can control the late form of latency in a lymphoid site we examined splenic latency in B6, HELMET, and B cell−/− mice (Figure 2). We confirmed a prior report [11] that the frequency of splenocytes from B cell−/− mice that reactivate from latency ex vivo is significantly elevated compared to the frequency observed in splenocytes from B6 mice (\(p = 0.003 \), Figure 2A). The frequency of splenocytes from HELMET mice that reactivated ex vivo was indistinguishable from the frequency observed in splenocytes from B6 mice and was significantly lower than that observed in splenocytes from B cell−/− mice (\(p = 0.0001 \)). Therefore, the presence of HEL-specific B cells
normalized defects in the control of splenic latency observed in B cell−/− mice.

We next determined whether effects of HEL-specific B cells on splenic latency were due to alterations in the frequency of viral genome bearing cells or in the efficiency of reactivation of explanted latently infected cells (defined as the frequency of cells reactivating ex vivo divided by the frequency of cells bearing viral genome multiplied by 100). The frequencies of genome positive splenocytes in B cell−/−, HELMET, and B6 mice were similar (Figure 2B, right panel). About 15% of viral genome positive splenocytes from B cell−/− mice reactivated ex vivo compared to about 2% in B6 mice and 3% in HELMET mice (Figures 2A and 2B, right panels). Therefore the effects of HEL-specific B cells on splenic latency were due to changes in the efficiency of ex vivo reactivation rather than the frequency of cells bearing viral genome.

HEL-Specific B Cells Decrease the Frequency of Peritoneal Cells That Reactivate from Latency and That Carry Latent γHV68 Genome

To determine whether viral antigen non-specific B cells can restore normal regulation of latency in a body cavity site we compared the late form of latency in B6, HELMET, and B cell−/− mice. Consistent with previous results [11], the frequency of reactivating peritoneal cells in HELMET mice was 20-fold higher than in peritoneal cells from B6 mice (Figure 2A, left panel, \(p = 0.008\)). HEL-specific B cells were able to decrease reactivation from latency in peritoneal cells since the frequency of reactivating cells was 20-fold less in HELMET mice in comparison to B cell−/− mice (\(p = 0.0053\)). However, the frequency of reactivating peritoneal cells in HELMET mice was 11-fold higher than that in peritoneal cells from B6 mice (Figure 2A, left panel, \(p = 0.05\)). These data demonstrate that HEL-specific B cells limit reactivation from latency in peritoneal cells, but do not fully compensate for the presence of normal B cells.

We next determined whether the decreased frequency of peritoneal cells that reactivate from latency in HELMET mice compared to B cell−/− mice was due to a decrease in the frequency of latently infected cells by measuring the efficiency of reactivation. Consistent with published results [11], the frequency of viral genome-positive cells was 10-fold higher in peritoneal cells from B cell−/− mice than in B6 mice (Figure 2B, left panel, \(p = 0.01\)). Thus, roughly 100% of latently infected peritoneal cells from B cell−/− mice reactivated from latency when explanted while only 6% of latently infected peritoneal cells from B6 mice reactivated (compare Figures 2A and 2B). HEL-specific B cells decreased the frequency of cells carrying latent viral genome to levels similar to those observed for B6 mice (\(p = 0.36\)). However, about 81% of viral genome bearing peritoneal cells from HELMET mice reactivated when explanted. Thus the effect of HEL-specific B cells on latency in peritoneal cells is largely via decreasing the frequency of cells carrying latent viral genome.

Heliospecifc B Cells on γHV68 Latency Are Not Due to Cross-Reactivity between HEL and γHV68

The data provided above show that the presence of HEL-specific B cells has significant effects on γHV68 latency in two different sites. To determine whether these effects were virus-specific antibody independent we needed to determine whether anti-γHV68 antibody is generated in either B cell−/− or HELMET mice. To address this issue we used enzyme-linked immunosorbent assay (ELISA), viral neutralization assays, and passive transfer experiments (Figure 3).

As expected, anti-viral antibody was found by ELISA in serum from infected B6 mice but not in serum from infected B cell−/− or HELMET mice (Figure 3A, left panel). Antibody specific to HEL was detected in mock infected and γHV68 infected HELMET mice (unpublished data). Similarly, serum from γHV68 infected B6 mice neutralized γHV68, while serum from infected B cell−/− or HELMET mice did not (Figure 3A, right panel). Thus anti-HEL antibodies do not cross-react with γHV68 in ELISA or neutralization assays and infected B cell−/− and HELMET mice fail to make detectable antibody to γHV68.

To rule out the possibility that ELISA and neutralization assays failed to detect physiologically relevant anti-γHV68 antibody in the serum of HELMET mice and that HEL specific antibody in the serum of HELMET mice might alter γHV68 latency, we compared the effect of passively transferred serum from infected HELMET or B6 mice on latency in B cell−/− mice. We and others previously demonstrated that the passive transfer of anti-viral antibody can decrease the number of latently infected cells [25] and decrease the recrudescence of lytic virus [26] in latently infected mice by blocking lytic viral replication [25]. The transfer of control serum from either B6 or HELMET mice had no effect on latency in B cell−/− mice (compare Figures 2A and 3B). As previously published [25], passively transferred immune
Virus Non-Specific B Cells Limit Latency

A. Antibody generated in HELMET mice is not virus-specific

B. HELMET serum has no effect on reactivation from latency

Figure 3. Control of γHV68 Latency by HEL-Specific B Cells Is Not due to Production of Cross-Reactive Antibody
(A) (Left) ELISA for γHV68-specific antibodies in serum from mock infected and virus infected B6, HELMET, and B cell-/- mice. Data are representative of two independent experiments. (Right) Sera from mock infected and γHV68 infected B6, HELMET, and B cell-/- mice were incubated with γHV68 and tested for their ability to neutralize γHV68 infection. Percent neutralization was normalized to results obtained using serum from mock-infected mice of the same genotype. (B) Beginning at day 16 post-infection, B cell-/- mice were treated with serum from mock infected or γHV68 infected B6 and HELMET mice. Ex vivo reactivation from latency was assessed 42 d after infection. DOI: 10.1371/journal.ppat.0020058.g003

Figure 4. HEL-Specific B Cells Restore Acute Phase γHV68 Replication to the B Cell-/- Background
Splenic viral titer measured at days 4 and 9 after γHV68 infection. Solid lines represent the mean viral titer. Dotted lines represent the limit of detection of the assay. Each symbol represents the viral titer in a single mouse. Data were pooled from two independent experiments. DOI: 10.1371/journal.ppat.0020058.g004

serum from γHV68 infected B6 mice decreased the frequency of peritoneal cells reactivating from latency more than 100-fold compared to the transfer of control serum from mock infected B6 mice (Figure 3B, p = 0.05), and of splenocytes more than 4-fold (Figure 3B, p = 0.01). In contrast, serum from infected HELMET mice had no effect on latency (Figure 3B).

Together these data show that there is no γHV68-reactive antibody in infected HELMET mice and that HEL-specific antibody in serum of HELMET mice did not alter γHV68 latency. We conclude that the control of latency observed in HELMET mice (Figures 2A and 2B) is dependent on the presence of HEL-specific B cells rather than antibody or a virus antigen-specific BCR.

Effects of HEL-Specific B Cells on Latency Are Not Explained by Decreases in Acute γHV68 Replication

The above data showed that B cells that do not produce anti-viral antibody or express a virus antigen-specific BCR may nevertheless have significant effects on latent γHV68 infection. To define the mechanism responsible for this effect, we first determined whether effects of HEL-specific B cells on acute γHV68 replication might explain decreases in γHV68 latency detected in HELMET mice. We therefore measured γHV68 replication in B6, HELMET, and B cell-/- mice 4 and 9 d after infection. 4 d after infection, viral titers were similar in B6, HELMET, and B cell-/- mice (p > 0.2, Figure 4). On day 9, γHV68 titers were more than 100-fold greater in B6 mice (p < 0.0001) than in B cell-/- mice (Figure 4), reflecting the importance of B cells for maintaining γHV68 replication [36]. The presence of HEL-specific B cells led to increased γHV68 replication compared to B cell-/- mice (p < 0.0001) 9 d after infection, but did not fully normalize splenic titers (p < 0.0001). These data show that decreased latency in HELMET mice compared to B cell-/- mice cannot be explained by decreased γHV68 replication in HELMET mice.

HEL-Specific B Cells Correct Abnormalities in Splenocyte Numbers Observed in B cell-/- Mice

Based on studies in other systems comparing responses to infection in the presence and absence of B cells [33,37–40], we reasoned that increases in T cell responses in the presence of HEL-specific B cells might contribute to control of γHV68 latency. We therefore determined whether HEL-specific B cells restore abnormalities in splenic cellularity that have been reported in B cell-/- mice including reduced numbers of splenocytes, CD8 T cells, and CD4 T cells compared to B6 mice [41]. We confirmed that mock infected or naïve B cell-/- had decreased numbers of CD4 T cells compared to B6 mice [41] (Figure 5). In contrast to B cell-/- mice, we found that the absolute number of splenocytes, B cells, CD4 T cells, and CD8 T cells was comparable between naïve and mock-infected B6 and HELMET mice (Figure 5). Thus, the presence of HEL-specific B cells effectively corrected deficiencies in T cell numbers found in uninfected B cell-/- mice.

We next evaluated the T and B cell response to γHV68 infection in HELMET mice compared to B6 and B cell-/- mice by quantifying the spleen cell populations 16 and 42 d after infection. Consistent with previous data [36], we found that γHV68 infection of B6 increased total splenocytes (p = 0.03), CD4 T cells (p = 0.03), CD8 T cells (p < 0.0001), and B cells (p = 0.02) compared to uninfected mice 16 d after...
Splenic cellularity in B6, HELMET, and B cell−/− mice

Figure 5. HEL-Specific B Cells Normalize Some but Not All Abnormalities in Splenic Cellularity Observed in B Cell−/− Mice

Splenocytes from pooled naive or mock infected and γHV68 infected B6, HELMET, and B cell−/− mice were counted and stained with antibodies against CD8, CD4, and CD19. The splenocyte numbers were the same in naïve and mock-infected mice, and data from mock infected and naïve mice were pooled. Numbers represent number of cells/spleen in three to five mice per experiment.

DOI: 10.1371/journal.ppat.0020058.g005

infection. B cell−/− mice did not show increased total splenocytes (p = 0.37) or CD4 T cells (p > 0.05). Although there were slight increases in CD8 T cells (p = 0.005) in B cell−/− mice, the number was significantly reduced in comparison to the number of CD8 T cells in B6 mice 16 d after infection (p = 0.0006). At 16 d after infection the presence of HEL-specific B cells normalized total splenocyte numbers (p = 0.78) and CD4 (p = 0.91), and CD8 T cell numbers (p = 0.81) to levels observed in B6 mice (Figure 5). Taking these data together, HEL-specific B cells restored defects in cell numbers observed in infected B cell−/− mice 16 d after infection. We did not identify all of the types of cells present in the spleens of the different mice used here, and thus it is possible that the presence of B cells alters the number of cells other than CD4 and CD8 T cells. The B cell response to infection observed in B6 mice was not fully restored by the presence of HEL-specific B cells (Figure 5). In addition, HEL-specific B cells did not restore CD4 or CD8 responses to the level seen in B6 mice 42 d after infection. Thus, HEL-specific B cells can normalize splenic lymphocyte numbers in uninfected mice early after infection with γHV68, but HEL-specific B cells do not replace all normal B cell functions.

HEL-Specific B Cells Are Activated during Early γHV68 Latency

The normalization of T cell proliferative responses early after infection in the presence of HEL-specific B cells raised the question of whether HEL-specific B cells are activated in response to infection. To address this we used flow cytometry to determine the percentage of activated B cells in B6 and HELMET mice 16 d after infection (Figure 6). Compared to mock-infected controls, we found that the percentage of B cells that expressed CD69 increased 2-fold in both B6 (p = 0.01) and HELMET mice (p = 0.002) (Figure 6A) compared to mock infected mice. Further histological examination analysis showed that germinal center-like structures formed in HELMET and B6 mice after γHV68 infection (unpublished data). Thus, HEL-specific B cells can be activated during γHV68 infection independent of a virus antigen-specific BCR or antiviral antibody.

We questioned whether this activation might be explained by direct infection of HEL-specific B cells by γHV68. We therefore determined whether HEL specific B cells carry latent γHV68 16 d after infection. We found that approximately 1/150 CD19+ cells in HELMET mice carried viral genome compared to 1/700 total splenocytes (Figure 6B). We entertained the possibility that our purification procedure non-specifically enriched for viral genome bearing cells, but found that <1/10,000 CD8 T cells purified in parallel, carried viral genome (unpublished data). As an additional control we determined the frequency of viral genome bearing cells in CD19-depleted splenocytes. We found that only 1:4,400 CD19-depleted splenocytes carried viral genome. By multiplying these frequencies times the numbers of cells per spleen from Figure 5, we determined that HEL-specific B cells account for the majority of latently infected splenocytes in HELMET mice (3.3 × 10^5 viral genome bearing B compared to 3.4 × 10^5 viral genome bearing non-B cells). These findings in HELMET mice agree with previously reported data in B6 mice showing that B cells carry the majority of γHV68 genome 16 d after infection [17,18,42]. Interestingly, the frequency of viral genome bearing HEL-specific B cells was 33-fold lower than the frequency of HEL-specific B cells expressing CD69 (compare Figures 6A and 6B), indicating that direct virus infection cannot fully explain activation of HEL-specific B cells during γHV68 infection.

Virus Non-Specific B Cells Rescue T Cell Defects in B Cell−/− Mice

Taken together the experiments above indicate that HEL-specific B cells play an important role in generating a full CD4 and CD8 T cell proliferative response to γHV68 infection. Since CD4 and CD8 T cells are important for the control of γHV68 latency [10,21,22,27], we postulated that HEL-specific B cells could control latent γHV68 infection by promoting protective CD4 and CD8 T cell responses. To address this postulate, we further characterized T cell expansion and activation in B6, HELMET, and B cell−/− mice after infection.

The CD8 T cell response to γHV68 is heavily biased toward T cells whose receptors are encoded by the Vβ4 gene, and expansion of Vβ4+ CD8 T cells is dependent on the presence of B cells [43–46]. We used flow cytometry to evaluate the Vβ4+ T cell receptor (TCR)+ CD8 T cell expansion at 21 d after infection, a time when it has been consistently observed in wild-type mice [47] (Figure 7). Flow-cytometry revealed a 10-fold expansion of Vβ4+ TCR+ CD8 T cells in B6 (p = 0.0053) and HELMET mice (p = 0.016) relative to mock-infected controls (Figure 7A). As expected, we did not detect the Vβ4+ TCR+ CD8 T cell expansion after γHV68 infection in B cell−/− mice. Thus, the B cell-dependent induction of Vβ4+ CD8 T cell responses to γHV68 does not require anti-viral antibody or a virus antigen-specific BCR.

To further examine T cell activation, we used flow
cytometry to assess the number of CD8 and CD4 T cells that produce IFN\(\gamma\). Chronic activation of CD8 T cells has been reported during long term \(\gamma\)HV68 infection \[48–50\]. We measured the number of T cells that produce IFN\(\gamma\) 16 d after infection based on studies showing that day 16 falls within the peak of T cell activation during \(\gamma\)HV68 infection \[50\] and that IFN\(\gamma\) is important for the control of \(\gamma\)HV68 latency \[10,24\]. Compared to mock infection, \(\gamma\)HV68 at day 16 induced a 10-fold expansion of CD8 T cells that produced IFN\(\gamma\) in B6 (\(\text{p} = 0.0027\)) and HELMET mice (\(\text{p} = 0.01\)) while no significant expansion was observed in B cell\(\sim\)/C0 mice (unpublished data). Similar studies of CD4 T cells revealed a 6-fold expansion of IFN\(\gamma\) producing CD4 T cells in B6 mice (\(\text{p} = 0.002\)) and in HELMET mice (\(\text{p} = 0.006\)), but not in B cell\(\sim\) mice (Figure 7C). Together these data show that the presence of HEL-specific B cells allows the induction of an activated population of CD8 and CD4 T cells in \(\gamma\)HV68 infected mice.

HELMET Mice Use Both CD4 T Cell- and CD8 T Cell-Dependent Mechanisms to Limit \(\gamma\)HV68 Latent Infection

We questioned whether the observed differences between HELMET and B cell\(\sim\) mice in T cell numbers and activation were functionally relevant to the control of latency. We reasoned that activated T cells present in HELMET mice and wild-type mice but not B cell\(\sim\) mice might contribute to the control of latent \(\gamma\)HV68 infection observed in B6 and HELMET mice. To investigate this, we determined the effect of T cell depletion on latency in B cell\(\sim\) and HELMET mice (Figure 8).

Treatment with isotype control had some effect on levels of peritoneal cell latency in both B cell\(\sim\) and HELMET mice (compare Figures 2A and 8A). We therefore considered the levels of latency observed in isotype control antibody treated mice as the proper control for treatment with T cell depleting antibodies. CD4-depletion of B cell\(\sim\) mice had a small effect on latency in peritoneal cells relative to isotype-control treated mice (Figure 8A), increasing the frequency of reactivating peritoneal cells 3-fold (\(\text{p} < 0.0001\)) in both HELMET mice and B cell\(\sim\) mice. CD4-depletion had no effect on the frequency of viral genome bearing peritoneal

Figure 6. HEL-Specific B Cells Are Activated during \(\gamma\)HV68 Infection and Are Infected by \(\gamma\)HV68

(A) Splenocytes from mock infected and \(\gamma\)HV68 infected B6 and HELMET mice were stained with antibodies specific for CD19 and CD69 16 d after infection. Shown are the percentages of splenic CD19\(^+\) cells that express CD69 (left). Shown are representative dot plots (right).

(B) Frequency splenic HEL-specific B cells that carry viral genome 16 d post infection (left). Shown is a representative histogram of the purity of the B cell population after purification (right). These data are representative of two independent experiments using five mice per experiment.

DOI: 10.1371/journal.ppat.0020058.g006
Virus Non-Specific B Cells Limit Latency

A. HELMET B cells restore TCR V\(^{b}4\)+ CD8 T cells

![Graph showing number of TCR V\(^{b}4\)+ CD8 T cells in HELMET and B cell-/- mice.](image)

B. HELMET B cells restore IFN\(\gamma\)+ CD8 T cells

![Graph showing number of IFN\(\gamma\)+ CD8 T cells in HELMET and B cell-/- mice.](image)

C. HELMET B cells restore IFN\(\gamma\)+ CD4 T cells

![Graph showing number of IFN\(\gamma\)+ CD4 T cells in HELMET and B cell-/- mice.](image)

Figure 7. Virus Non-Specific B Cells Restore CD8 T Cell Defects Found in B Cell-/- Mice

Splenocytes from mock infected and \(\gamma\)HV68 infected B6, HELMET, and B cell-/- mice at day 21 (A) or day 16 (B and C) were counted and stained with antibodies specific for CD8 and TCR V\(^{b}4\) (A) or CD8, CD4, and IFN\(\gamma\) (B and C). Shown are the numbers of CD8 T cells/spleen that are TCR V\(^{b}4\)+ (A) and the numbers of CD8 and CD4 T cells/spleen that produce IFN\(\gamma\) upon restimulation with PMA/-ionomycin (B and C). These data were pooled from two to three independent experiments using three to five mice per experiment.

DOI: 10.1371/journal.ppat.0020058.g007

cells in HELMET mice or in B cell-/- mice compared to isotype control treated mice. Thus, CD4-depletion increased the efficiency with which peritoneal cells reactivate from latency.

We observed that CD4-depletion had no effect on latency in splenocytes from B cell-/- mice (Figure 8A and 8B). However, we observed a five-fold increase in reactivating HELMET splenocytes upon CD4-depletion \((p < 0.0001,\) Figure 8A). CD4-depletion also increased the frequency of splenocytes carrying viral genome more than 6-fold in HELMET mice \((p < 0.0001,\) Figure 8B). Therefore, the increase in reactivation was partially due to an increase in the frequency of viral genome-bearing splenocytes. We interpreted these data to mean that CD4 T cells are important for the control of latent \(\gamma\)HV68 infection in HELMET mice.

As previously shown [29], CD8 T cell depletion of B cell-/- mice had no effect on the frequency of peritoneal cells that reactivated ex vivo or the frequency of viral genome-bearing peritoneal cells compared to mice treated with isotype-control antibodies (Figures 8A and 8B). Depletion of CD8 T cells from HELMET mice resulted in a 15-fold increase in the frequency peritoneal cells that reactivated from latency compared to isotype-control treated groups \((p < 0.0001,\) Figure 8A). This increase in reactivation was largely due to an increase in the frequency of cells harboring viral genome because 12-fold more peritoneal cells carried viral genome in CD8 T cell-depleted HELMET mice compared to isotype control treated HELMET mice \((p < 0.0001,\) compare Figures 8A and 8B). Thus, CD8 T cells are important for controlling latency in peritoneal cells from HELMET mice.

Similar to the results obtained from peritoneal cells, CD8-depletion of B cell-/- mice had no effect on the frequency of splenocytes reactivating ex vivo or the frequency of viral genome-bearing splenocytes compared to isotype-control treated mice (Figures 8A and 8B). Administration of isotype control antibodies had no effect on splenic latency (compare Figures 2A and 8A). However, the frequency of splenocytes reactivating ex vivo in CD8 T cell-depleted HELMET mice was conservatively estimated to be at least 3-fold greater than in isotype control treated HELMET mice \((p < 0.0001,\) Figure 8A). Furthermore, CD8-depletion led to a 5-fold increase in the frequency of splenocytes carrying viral genome compared to isotype control treated HELMET mice \((p < 0.0001\) Figure 8B).

Together these data indicate that CD4 and CD8 T cell dependent mechanisms control \(\gamma\)HV68 latency in HELMET mice, but not in B cell-/- mice.

Figure 8.

Virus Non-Specific B Cells Present Virally Encoded Antigen to CD8 T Cells

We hypothesized that antigen presentation by B cells could provide one explanation for the observed differences in CD8 T cell activation and function between HELMET and B cell-/- mice. To test this hypothesis, antigen presentation assays were performed using the response of T cell receptor transgenic T cells specific for the SIINFEKL epitope of ovalbumin (OVA, OT1 T cells, Figure 9). Purified splenic B cells from HELMET mice were infected in vitro with either \(\gamma\)HV68.OVA or \(\gamma\)HV68.LacZ and subsequently cultured with CFSE labeled OT1 CD8 T cells. We quantitatively measured the ability of infected B cells to induce antigen-specific OT1 T cell proliferation. \(\gamma\)HV68.OVA infected B cells were able to induce about 10-fold more OT1 T cell proliferation than \(\gamma\)HV68.LacZ infected B cells \((p = 0.03,\) Figure 9A). We additionally found that antigen presentation was dependent on the number of antigen presenting cells (APCs) (unpublished data). To determine whether virus replication was required for antigen presentation, we incubated B cells with UV-inactivated \(\gamma\)HV68.OVA. Incubation with UV-inactivated \(\gamma\)HV68.OVA did not induce OT1 proliferation beyond levels observed with \(\gamma\)HV68.LacZ infection (Figure 9A). Therefore, effective antigen presentation required virus replication.

Although the fractionated B cell population was >98% pure across multiple experiments (Figure 9B) and we depleted CD11b/c+ cells prior to B cell purification, we wanted to exclude the possibility that the < 2% contaminat-
ing cells ($<1 \times 10^4$ cells) accounted for the observed antigen presentation. To address this issue, antigen presentation assays were performed using purified CD11b/c$^+$ cells in place of B cells. While purified CD11b/c$^+$ cells were able to elicit OT1 proliferation at higher numbers (unpublished data), $<1 \times 10^4$ purified CD11b/c$^+$ cells were unable to induce significant OT1 proliferation (Figure 9B), indicating that contaminating CD11b/c$^+$ cells in purified B cell preparations did not explain antigen presentation by infected B cells. Taking these data together, we conclude that B cells present virally encoded antigen to CD8 T cells.

Discussion

We show here that B cells can have a significant role in the control of chronic \(\gamma\)-herpesvirus infection even when they do not produce antiviral antibody and do not express a virus antigen-specific B cell receptor. The presence of virus-antigen non-specific B cells normalized defective CD4 and CD8 T cell responses observed in B cell$^-/-$ mice, generating T cells sufficient for the control of latent infection. Furthermore, B cell activation during \(\gamma\)-herpesvirus infection occurs independent of virus antigen-specific BCR expression, a phenomenon that is not explained by latent infection of proliferating B cells. Identification of physiologically important effects of virus antigen non-specific B cells on virus infection suggests that exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection. Identification of molecular mechanisms responsible for these antibody- and BCR-independent effects on virus infection, and for B cell activation during virus infection in the absence of cognate antigen, may provide fundamental insights into B cell biology and immune physiology.

Viral Antigen Non-Specific B Cells Can Control Chronic \(\gamma\)HV68 Infection

Since B cell$^-/-$ mice lack B cells as well as antiviral antibody, it was unclear whether phenotypes observed in these mice such as increased \(\gamma\)HV68 latency and increased persistent \(\gamma\)HV68 replication are due to the lack of B cells, the lack of antiviral antibody, or both [7,11,14,31]. Previous reports found that a significant portion of the polyclonal antibody response that occurs after \(\gamma\)HV68 infection is not specific to \(\gamma\)HV68 [25,50,51], suggesting that virus antigen non-specific B cell responses are induced by \(\gamma\)HV68 infection. The physiologic importance of these responses was not clear, but provided an impetus for development of the HELMET mouse model for analysis of virus antigen non-specific B cells during \(\gamma\)HV68 infection.

We conclude here that B cells can control both the number...
of latently infected cells and the efficiency with which these cells reanimate from latency without producing antibody or being activated by a virus-antigen specific BCR. The lack of a complete cellular and molecular definition of \(\gamma H V 68 \) latency led us to measure latency using the simple parameters of the number and reactivation phenotype of the total latent cell pool. Thus, these studies demonstrate a fundamentally important function of antigen non-specific B cells on the overall level of latency, but do not address the role of B cells in the regulation of latency in individual cell compartments or at the molecular level.

Our conclusion that virus non-specific B cells can control latency \(\gamma H V 68 \) infection rests in part on our data showing that HEL-specific antibody does not bind \(\gamma H V 68 \) specifically as measured by neutralization assays or ELISA. However, since not all physiologically important activities of antibody are recapitulated in vitro assays [52–54], we also performed passive transfer experiments to test for the presence of serum components that would control \(\gamma H V 68 \) infection. Despite the capacity of immune serum from normal mice to control infection in B cell \(-/-\) mice, serum from HELMET mice had no effect on latent infection. These data conclusively show that production of virus-specific antibody is not required in order for B cells to have profound effects on chronic herpesvirus infection.

Antibody-Dependent Effects of B Cells on \(\gamma H V 68 \) Infection

While we show here that not all effects of B cells on chronic \(\gamma H V 68 \) infection require antiviral antibody production, previously published data and data presented here make it clear that antigen specific B cell responses play an important role in control of \(\gamma H V 68 \) infection and the normal immune response to \(\gamma H V 68 \) infection. Passive transfer of polyclonal antibody or antibody specific for lytic cycle viral antigens significantly decreases acute and latent \(\gamma H V 68 \) infection [25,50]. Furthermore, passive transfer of immune serum prior to infection can significantly limit latent infection [56]. Antibody specific for \(\gamma H V 68 \) can neutralize virus infectivity (this study and [25,50]). Together these data convincingly show that specific antibody can limit \(\gamma H V 68 \) infection.

In addition to studies directly showing that antibody specific for \(\gamma H V 68 \) can control \(\gamma H V 68 \) infection, data from this study shows that HEL-specific B cells fail to fully complement all abnormalities observed in \(\gamma H V 68 \) infected B cell \(-/-\) mice. For example, the presence of HEL-specific B cells failed to reconstitute abnormal splenic T cell responses in B cell \(-/-\) mice observed 42 days after \(\gamma H V 68 \) infection (Figure 9).
Mechanisms by Which HEL-Specific B Cells Contribute to Control of Latent Infection

There are multiple explanations for how HEL-specific B cells might control latency, but we focused our attention on the possibility that the mechanism of control of latency in HELMET mice involved B cell dependent T cell responses. Other groups have found that CD8 T cell responses to several pathogens including lymphocytic choriomeningitis virus [39] and Listeria monocytogenes [38] are abnormal in B cell−/− mice. We therefore addressed two points: (i) whether T cell responses to γHV68 in B cell−/− mice are abnormal during chronic γHV68 infection, and if so (ii) whether HEL-specific B cells can control T cell responses. We confirmed prior reports that the expansion of Vβ4+ CD8 T cells induced by γHV68 infection is compromised in B cell−/− mice [43,44,46,57]. While the physiologic role of these Vβ4+ CD8 T cells has not been demonstrated [58], their expansion provides one measure of CD8 T cell proliferative responses to γHV68 infection. Abnormal Vβ4 biased CD8 responses observed in B cell−/− mice were restored by the presence of HEL-specific B cells. Several investigators have observed chronic activation of T cells during γHV68 infection [18,49]. We found that both CD4 and CD8 T cells were activated in γHV68 infected B6 and HELMET mice, but not in B cell−/− mice.

These results, together with the demonstration that CD4 and CD8 T cells are critical for control of latent γHV68 infection [10,21,22,27], led us to question whether the correlation between T cell expansion and activation and control of γHV68 latency in HELMET mice was physiologically meaningful. Similar to previous reports [29], CD8 T cell depletion had no effect on latent infection in B cell−/− mice. However, CD4 T cell depletion slightly increased the frequency of reactivating peritoneal cells in B cell−/− mice. Depletion of either T cell subset increased latency in HELMET mice. We interpreted these data to mean that CD4 and CD8 T cells were functionally relevant to the control of γHV68 latency in HELMET mice. Thus, the presence of HEL-specific B cells resulted in expansion and activation of CD4 and CD8 T cells that are required for control of γHV68 infection.

Since B cells are the major reservoir of γHV68 latency in the spleen of normal mice [18,42,58], the latency observed in B cell−/− mice resides in non-B cells. HEL-specific B cells decreased splenic latency overall, despite being themselves latently infected (Figures 2A and 2B). Thus, the presence of virus antigen non-specific B cells is associated with significant decreases in splenic latency in non-B cells. Our data do not directly address whether B cell-dependent T cells control latency in B cells. Additionally, while we showed that HEL-specific B cell control viral latency in splenocytes and peritoneal cells, our data do not address whether this effect is direct or via control of the persistent replication in the lung or aorta that have been observed in B cell−/− mice [7,17,59]. As the level of latency in B cell−/− mice is dependent on ongoing replication of γHV68 [25], it is possible that T cells control latency by controlling persistent replication at sites other than the spleen or peritoneum.

How Do HEL-Specific B Cells Promote Normal T Cell Responses?

Several groups have shown that antigen non-specific B cells can take up and present LCMV-derived peptides [60] and HEL-derived peptides [61] to CD4 T cells. In addition, γHV68 infected B cells can present a ligand to CD8 T cells bearing Vβ4 with consequent activation of the Vβ4+ T cells [46,57]. These data, together with the demonstration that HEL-specific B cells can be infected by γHV68, suggest the possibility that HEL-specific B cells may function as antigen presenting cells. Our data further support this hypothesis by demonstrating that HEL-specific B cells can present virally encoded antigen to CD8 T cells.

An alternative mechanism by which HEL-specific B cells might contribute to normalized T cell responses is via restoration of abnormalities in splenic architecture and chemokine environment observed in B cell−/− mice [41]. Intact splenic architecture is critical for the control of LCMV [62]. In this regard it is important to note that HEL-specific B cells restored some of the abnormalities in splenic cellularity observed in uninfected and infected B cell−/− mice. γHV68 infection of LT−/− mice, which lack lymph nodes and have a disrupted splenic architecture [63], results in the eventual control of latent infection [64]. These data imply that, although intact splenic architecture is required for the control of some viral infections, it might not be an absolute requirement for controlling γHV68 latency. Data presented here do not rule out the possibility that intact splenic architecture in HELMET mice is important for T cell-mediated control of γHV68 latency.

Activation of B Cells during γ-Herpesvirus Infection

During EBV infection, viral genes expressed in latently infected B lymphocytes [4] drive B cell expansion. In addition to proliferating, EBV transformed B cells express surface phenotypes consistent with those seen during antigen activation [65]. Studies of B cell activation during γHV68 infection have been limited to date. A component of the expansion of B cells in vivo during γHV68 is dependent on CD4 T cells [66]. However, exposure of splenocytes to γHV68 infection in culture results in a CD4 T cell independent expansion and activation of B cells to express CD69 [66,67]. The requirement for virus infection and BCR specificity in those studies was not established. However, data presented here argues that B cells can be activated in vivo independent of either antibody or a γHV68-specific BCR and that this is not explained by latent virus infection as might have been predicted based on studies with EBV.

It is notable that despite expressing CD69, HEL-specific B cells did not significantly proliferate during γHV68 infection. One explanation for this is that by fixing BCR expression at the IgM/IgD stage via transgenesis, we have prevented a physiologically important proliferative response that required cognate antigen-specific BCR engagement. Lastly, it may be that antibody produced by virus-specific B cells is
critical to maintaining B cell responses, possibly through retaining and sequestering antigen.

Implications of these Findings for Understanding of Immune Control of Chronic Viral Infection

It is not clear how general our finding that antigen non-specific B cells can influence anti-viral responses will be. It is possible, for example, that the tropism of γHV68 for B cells during both acute and chronic infection results in a fundamental role for antigen-non-specific B cells during this infection that will not be present in infections by other pathogens. However, several other studies have found a lack of correlation between anti-viral antibody effects and B cell effects on viral infection [39, 68, 69]. Together with studies presented here, these data suggest that virus antigen non-specific B cells may play a generally important role in the control of virus infection.

Materials and Methods

Mice, infections, cells, and tissue harvests. HELMET mice were bred and maintained at Washington University School of Medicine, St. Louis, Missouri, United States, in accordance with all federal and University policies. B6 mice were purchased from The Jackson Laboratory, Bar Harbor, Maine, United States. Unless otherwise stated, mice were age and sex matched and infected at 7–12 wk of age with an MOI of 10 for plating units (PFU) of γHV68 by intraperitoneal injection (IP) in 500 μl complete DMEM [13]. Peritoneal cells, splenocytes, and lymph node cells were harvested and processed as described from groups of five mice per experiment in two to six independent experiments [36]. Crossing MD4 transgenic mice [34] to the HELMET mice (also referred to as Jl/littermate) background generated HELMET mice and B cell–litterate controls used in these studies. The presence of HEL-specific B cells was confirmed by flow cytometric analysis of peripheral blood using alloantispecies-specific antibodies to IgM⁺ (DS-1, Pharmingen, San Jose, California, United States).

Viruses, tissue culture, neutralization, and plaque assays. γHV68 clone WUMS (ATCC VR1465) was passaged, grown, and titered in NIH 3T12 cells or BALB/c or C57Bl/6 (B6) murine embryonic fibroblasts (MEFs) as described [13]. γHV68.OVA and γHV68.LacZ were generated and handled as previously described [28], Neutralization and plaque assays were performed as previously described [25].

Latency assays. The frequency of cells reactivating from latency ex vivo was determined using a limiting dilution reactivation assay as previously described [11]. Briefly, we performed serial 2-fold dilutions of harvested cells (24 wells per dilution starting at 1 × 10⁶ cells per well for splenocytes and 4 × 10⁴ cells per well for peritoneal cells). These cells were plated onto permissive mouse embryonic fibroblast monolayers for 21 d and then scored for cytopathic effect due to reactivating virus [11]. Preformed virus in tissues was detected by plating parallel cell samples that had been subjected to mechanical disruption using a procedure that does not significantly inactivate virus [36]. Samples reported here did not contain detectable persistently replicating virus. The frequency of cells harboring the γHV68 genome was determined in serial dilutions of latently infected cells by a limiting dilution nested PCR assay that amplifies γHV68 gene 50 or gene 72 sequences with single copy sensitivity [11]. Ten PCR reactions were analyzed for each of six-cell dilutions per sample per experiment. There were no false-positive reactions in assays reported here, and all assays demonstrated an approximately one-copy sensitivity for plasmid DNA, with control reactions containing 10, 1, or 0.1 copies of plasmid DNA positive in 87%, 37%, and 4% of all reactions.

In vivo depletion of lymphocyte subsets and lymphocyte purification. Monoclonal antibodies (mAbs) specific to CD8⁺, H35, [21] were used to deplete latently infected mice of CD8 T cells. Beginning 28 d after γHV68 infection, 1 mg of lymphocyte-depleting antibody or an isotype-matched control antibody, SFR3-DR5, IgG2b, ATCC HB-151, [70] was administered to each mouse by IP injection. mAb treatment was repeated every fourth day. The efficacy of depletion was monitored using flow cytometric analysis of splenocytes using anti-mouse CD8⁺. The efficacy of depletion was >95% in B cell–litterate mice and >90% in HELMET mice. CD19-positive B cells and CD8⁺ T cells were fractionated to >99% purity via magnetic beads (Miltenyi Biotech, Auburn, California, United States) according to the manufacturer’s directions for limiting dilution PCR assays.

For antigen presentation assays, APCs were isolated as previously described [71]. First, cells expressing CD11b and CD11c were isolated simultaneously using CD11b and CD11c microbeads (CD11b/c subset) (Miltenyi). CD19⁺ cells were then isolated from the CD11b/c depleted flow through. More than 84% of cells within the CD11b/c subset expressed CD11b, CD11c, or both CD11b and CD11c. In this population, about 10% of cells expressed both CD11b and CD11c and 95%, expressed CD19 alone. Cells in the CD10⁺ subset were >98% CD19⁺. We did not detect any CD11b⁺ cells in the CD10⁺ fraction, however 4% of the CD19⁺ cells were also CD11b⁺. CD8⁺ T cells were isolated from OT1 or OT1/RAG mice using magnetic beads according to the manufacturer’s instructions (Miltenyi). CD8⁺ T cells were then stained with CFSE using the CellTraceTM CFSE proliferation kit according to the manufacturer’s instructions (Molecular Probes, Eugene, Oregon, United States) [25].

Antibodies and flow cytometry. The following antibodies and isotype-matched controls were purchased from BD Pharmingen (San Jose, California, United States): anti-CD4-APC (RM4-5), anti-CD19-APC (1D3), anti-CD69-PE (H1.2F3), and unlabeled/diluted anti-CD40 Human (R139.121). Anti-CD8-TC (H35, [21]) was purchased from Miltenyi (Auerburg, Germany, United States). Single-cell suspensions were incubated with Fc-block (2.4G2) and then stained for cell surface markers in 96-well round-bottom plates prior to analysis using a FACSCalibur cytometer BD Biosciences Pharmingen, and FCS Express, version 2 (DeNovo software, Toronto, Ontario, Canada). For intracellular staining, cells were activated with 20ng/ml PMA plus1μM ionomycin for 4–6 h in the presence of GolgiPlug from the Cytofix/ Cytoperm kit from BD Pharmingen. After staining the cells for surface markers, cells were fixed and permeabilized using the Cytofix/ Cytoperm kit according to the manufacturer’s instructions. Next, the cells were stained with antibodies specific to IFNγ, washed and resuspended in FACS buffer prior to analysis.

Antigen presentation assays. CD19⁺ and CD11b/c⁺ subsets were incubated with either γHV68.OVA, or γHV68.LacZ [72] and multi- plicity of infection (MOI) of 10 for 1 h (positive and controls using 1μM SINIFEK and media alone were also performed in each experiment). APCs were then washed and incubated with 2.5 × 10⁵ CFSE-labeled OT1 T cells in U-bottom 96-well plates with 200 μl of complete RPMI media with 13,500 dilution of anti-CD40 mAb. 4 d later, flow cytometry was performed to determine the percentage of proliferating T cells.

Statistical methods. All data were analyzed using GraphPad Prism software (GraphPad Software, San Diego, California, United States). Frequencies were obtained from the cell number at which 63% of the positive and negative controls using 1μM SINIFEK and media alone were also performed in each experiment). APCs were then washed and incubated with 2.5 × 10⁵ CFSE-labeled OT1 T cells in U-bottom 96-well plates with 200 μl of complete RPMI media with 13,500 dilution of anti-CD40 mAb. 4 d later, flow cytometry was performed to determine the percentage of proliferating T cells.

Acknowledgments

We would like to acknowledge the contributions of Darren and Alan Krabelmeyer and Jennifer Tobias to the breeding of HELMET mice. Author contributions. KBM, SG, SHS, and HWV conceived and designed the experiments. KBM and SG performed the experiments. KBM, SG, and HWV analyzed the data. KBM and HWV wrote the paper.

Funding. HWV was supported by NIH grant HL60990 and CA74770. SHS was supported by NIH grant RO1 CA74770. SG was supported by T32AI07163. KBM was supported by training grant AI07163-27.

Competing interests. The authors have declared that no competing interests exist.
References

1. Grundhoff A, Ganem D (2004) Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113: 124–136.

2. Sunil-Chandra NP, Efstathiou S, Nash AA (1992) Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73: 2373–2383.

3. Homann D, Tishon A, Berger DP, Weigle WO, von Herrath MG, et al. (1998) Evidence for an underlying CD4+ T helper and CD8+ T-cell defect in B-cell-deficient mice. J Virol 72: 4996–5002.

4. Andreansky S, Liu H, Adler H, Koszinowski UH, Efstathiou S, et al. (1997) Pathogenesis of an infectious mononucleosis-like disease induced by gamma-herpesvirus. J Virol 71: 3848–3860.

5. Marion TN, Topham DJ, D’Costa S, Cardin RD, Sangster MY, et al. (2000) Identification of the in vivo role of a viral bcl-2. J Exp Med 195: 931–940.

6. Sangster MY, Topham DJ, D’Costa S, Cardin RD, Marion TN, et al. (2000) Terminal differentiation of B cells lacking interferon-gamma responsiveness: A new model for virus induced vascular disease. Nat Med 3: 1346–1353.

7. Moisio NM, Narita M, Knipe DM (2001) Kaposi’s Sarcoma-associated herpesvirus (KSHV/HHV-8) in lymphoproliferative diseases. Semin Cancer Biol 11: 179–189.

8. Weck KE, Kim SS, Virgin HW, Speck SH (1999) B cells regulate murine gammaherpesvirus 68 latency. J Virol 73: 4651–4661.

9. Flano E, Moore J, Woodland DL, Blackman MA (2003) Requirement for CD4+ T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN-gamma. Proc Natl Acad Sci U S A 101: 1941–1945.

10. Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash TA (1998) Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 188: 1243–1252.

11. Van Dyk LF, Virgin HW, Speck SH, Virgin HW (1996) Mature B cells are required for acute spleen infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70: 6775–6780.

12. Sunil-Chandra NP, Efstathiou S, Nash AA (1992) Murine gammaherpesvirus 68 infects large vessel arteritis in mice lacking interferon-gamma responsiveness: A new model for virus induced vascular disease. Nat Med 3: 1346–1353.

13. Topham DJ, Doherty PC (1998) Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence of B cells. J Virol 72: 943–952.

14. Flano E, Barton ES, Lutzke ML, Rochford R, Virgin HW (2005) Alpha/beta interferon blocks gammaherpesvirus reactivation from latency. J Virol 79: 12159–12162.

15. Lamarre C, Doherty PC, Virgin HW, Speck SH, Virgin HW (1997) Antigen-specific B cells limit latency of a murine gammaherpesvirus. J Virol 70: 4587–4592.

16. Vaccaro C, Wozniak A, Zhang J, Shaulsky G, Widmer DL, et al. (2003) Latent murine gammaherpesvirus infection accelerates atherosclerosis in the apolipoprotein E-/- mice. Circulation 102: 779–785.

17. Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, et al. (1991) AIDS-related Kaposi’s sarcoma pathogenesis. J Clin Invest 113: 124–136.

18. Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash TA (1998) Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 188: 1243–1252.

19. Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash TA (1998) Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 188: 1243–1252.

20. Alber DG, Powell KL, Vallance P, Goodwin DA, Grahame-Clarke C (2000) Identification of the in vivo role of a viral bcl-2. J Exp Med 195: 931–940.

21. McClellan JS, Tibbetts SA, Gangappa S, Brett KA, Virgin HW (2004) Critical gamma-herpesvirus latency requires viral cyclin in the absence of B lymphocytes. J Virol 78: 6836–6845.

22. Flano E, Moore J, Woodland DL, Blackman MA (2003) Differential gamma-herpesvirus distribution in distinct anatomical locations and cell subsets during persistent infection in mice. J Immunol 170: 5838–5843.

23. Homann D, Tishon A, Berger DP, Weigle WO, von Herrath MG, et al. (1998) Evidence for an underlying CD4+ T helper and CD8+ T-cell defect in B-cell-deficient mice. J Virol 72: 4996–5002.

24. Sangster MY, Topham DJ, D’Costa S, Cardin RD, Marion TN, et al. (2000) Identification of the in vivo role of a viral bcl-2. J Exp Med 195: 931–940.

25. Immune response to a murine gammaherpesvirus. J Virol 72: 943–949.

26. Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, et al. (1988) Apparent MHC-independent stimulation of CD8+ T cells in vivo during latent murine gammaherpesvirus infection. J Immunol 161: 9650–9654.

27. Andreansky S, Liu H, Adler H, Koszinowski UH, Efstathiou S, et al. (2004) The limits of protection by “memory” T cells in Ig-/-mice persistently infected with a gamma-herpesvirus. Proc Natl Acad Sci U S A 101: 2017–2022.

28. Flano E, Barton ES, Lutzke ML, Rochford R, Virgin HW (2005) Alpha/beta interferon blocks gammaherpesvirus reactivation from latency. J Virol 79: 12159–12162.
reactivity during infectious mononucleosis and persistent gammaherpesvirus infection in mice. J Immunol 172: 3078–3085.

58. Flano E, Husain SM, Sample JT, Woodland DL, Blackman MA (2000) Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol 165: 1074–1081.

59. Dal Canto AF, Virgin HW, Speck SH (2000) Ongoing viral replication is required for gammaherpesvirus 68-induced vascular damage. J Virol 74: 11304–11310.

60. Hunziker L, Recher M, Macpherson AJ, Ciurea A, Freigang S, et al. (2003) Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nat Immunol 4: 343–349.

61. Zhong GM, Sousa CRE, Germain RN (1997) Antigen-unspecific B cells and lymphoid dendritic cells both show extensive surface expression of processed antigen-major histocompatibility complex class II complexes after soluble protein exposure in vivo or in vitro. J Exp Med 186: 673–682.

62. Berger DP, Naniche D, Crowley MT, Koni PA, Flavell RA, et al. (1999) Lymphotoxin-beta-deficient mice show defective antiviral immunity. Virol 260: 136–147.

63. Banks TA, Rouse BT, Kerley MK, Blair PJ, Godfrey VL, et al. (1995) Lymphotoxin-alpha-deficient mice show defective antiviral immunity. J Immunol 155: 1085–1093.

64. Lee BJ, Santee S, Von Geschen S, Ware CF, Sarawar SR (2000) Lymphotoxin-alpha-deficient mice can clear a productive infection with murine gammaherpesvirus 68 but fail to develop splenomegaly or lymphocytosis. J Virol 74: 2786–2792.

65. Thorley-Lawson DA (2001) Epstein-Barr virus: Exploiting the immune system. Nat Rev Immunol 1: 75–82.

66. Stevenson PG, Doherty PC (1999) Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol 73: 1075–1079.

67. Dutia BM, Stewart JP, Clayton RA, Dyson H, Nash AA (1999) Kinetic and phenotypic changes in murine lymphocytes infected with murine gammaherpesvirus-68 in vitro. J Gen Virol 80: 2729–2736.

68. Ramakrishna C, Stohlman SA, Atkinson RD, Shiomchik MJ, Bergmann CC (2002) Mechanisms of central nervous system viral persistence: The critical role of antibody and B cells. J Immunol 168: 1204–1211.

69. Christensen JP, Kauffmann SO, Thomsen AR (2003) Deficient CD4+(+) T cell priming and regression of CD8+(+) T cell functionality in virus-infected mice lacking a normal B cell compartment. J Immunol 171: 4733–4741.

70. Radka SF, Machamer C, Cresswell P, Kostys DD, Ward FE, et al. (1983) SFR3-DR5, a monoclonal antibody with HLA-DR5 specificity. J Immunol 130: 1863–1866.

71. Byersdorfer CA, DiPaolo RJ, Petzold SJ, Unraine ER (2004) Following immunization antigen becomes concentrated in a limited number of APCs including B cells. J Immunol 173: 6627–6634.

72. Braaten DC, Sparks-Thissen RL, Kreher S, Speck SH, Virgin HW (2005) An optimized CD8+(+) T-cell response controls productive and latent gammaherpesvirus infection. J Virol 79: 2573–2583.