Oxygenated Volatile Organic Compounds (Anti-freezing Agents) in Decorative Water-based Paints Marketed in Nigeria

Ajoke F. Idayat Apanpa-Qasim1,2, Adebola A. Adeyi1

1 Department of Chemistry, University of Ibadan, Ibadan-Nigeria
2 CSIR-National Environmental Engineering and Research Institute, Nagpur, India

Corresponding Author:
Adebola A. Adeyi
bolaoketola@yahoo.com

Introduction

Volatile organic compounds (VOCs) and oxygenated VOCs such as alcohols, aldehydes, ketones, phenols, esters, ethers, carboxylic acids and their derivatives are considered to be priority pollutants of the atmosphere and aquatic environment.1 They are reported to have carcinogenic and mutagenic properties, a high degree of ecotoxicity and also play a significant role in the formation of secondary air pollutants, such as tropospheric ozone.2-5 Anti-freezing agents such as propylene glycol, ethylene glycol, diethylene glycol and triethylene glycol are important oxygenated VOCs. They are used in paints for flow control and application properties, stability while in the liquid state and suitability to all weather conditions.6 Anti-freezing agents not only irritate the eyes and skin, but also affect the kidney and central nervous system, sometimes inducing renal failure and brain injury.7,8 The European Union has set 500 ppm as the permissible limit of VOCs in low emission paints, while ethylene glycol and diethylene glycol are prohibited in paints.9 Presently, there are no national regulations controlling anti-freezing agents in paints in Nigeria.

Propylene glycol (1, 2-propanediol) is an organic compound with multiple uses including as a humectant, food additive, drug solvent and a moisturizer in medicines, cosmetics, and tobacco products. Propylene glycol has been used as a carrier in fragrance oils, non-toxic antifreeze for winterizing drinking water systems, paints production, as a coolant in liquid cooling systems and is the main ingredient in deodorant sticks.10,11 Ethylene glycol is a colorless, practically odorless organic compound whose reactivity and solubility provide the basis for many applications, including solvent

Background. Consumer products such as paints are a potentially significant source of volatile organic compounds (VOCs) and oxygenated VOCs. Paints for construction and household use have been rapidly changing from oil-based to water-based paints and are one of the commonly identified sources of oxygenated VOCs in indoor environments.

Objectives. Four different anti-freezing agents were identified and analyzed in 174 water-based paint samples, purchased from popular paint markets in two metropolitan cities in Nigeria, Lagos and Ibadan.

Methods. Paint samples were solvent extracted using acetonitrile and milli-Q water. Anti-freezing agents in the extracts were identified and quantified using gas chromatography (GC)-mass spectrometry and a GC-flame ionization detector, respectively.

Discussion. Four different anti-freezing agents were identified in the samples, ethylene glycol, diethylene glycol, triethylene glycol and propylene glycol. Their levels ranged from 1,000-1,980 ppm, diethylene glycol; 1,000-3,900 ppm, triethylene glycol; 1,090-2,510 ppm, propylene glycol and 1,350-2,710 ppm, ethylene glycol. Levels of anti-freezing agents in all of the paint samples were above the permissible limits of the European Union for VOCs in paints of 500 ppm. Results of multivariate statistical analyses clearly showed that triethylene glycol was the most commonly used anti-freezing agent in paints despite its numerous harmful health effects.

Conclusions. We concluded that water-based paints marketed in Nigeria contain high concentrations of anti-freezing agents, which have harmful environmental and human health effects, especially to sensitive individuals such as children.

Competing Interests. The authors declare no competing financial interests.

Keywords: water-based paints, anti-freezing agents, human exposure, glycols, volatile organic compounds

Received December 10, 2017. Accepted May 7, 2018
J Health Pollution 18: 180606 (2018)
© Pure Earth
coupler, freezing point depression in water-based formulations, solvent and humectant. Triethylene glycol is a transparent, colorless, low-volatility, moderate-viscosity, water soluble liquid. It has properties similar to other glycols and may be used preferentially in applications requiring a higher boiling point, higher molecular weight, or lower volatility than diethylene glycol. It may be used directly as a plasticizer or modified by esterification. The solubility property of triethylene glycol is important for many applications. End-uses of triethylene glycol are numerous; including hygroscopicity, gas dehydation, as a solvent and for freezing point depression. Diethylene glycol is a colorless, low-volatility, low viscosity, and hygroscopic liquid. Because of its higher molecular weight, diethylene glycol is considerably less volatile than ethylene glycol and differs sufficiently in that it has specialized uses. It is used for hygroscopicity, as a lubricant, solvent coupler (stabilizer for soluble oil dispersions), compatibilizer for dye and printing ink components, as a solvent in aromatic and paraffinic hydrocarbon separations, printing ink/paint pigment/dye, for freezing point depression in latex paint, deicing fluid and heat transfer fluid.

Changes in building designs to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Advances in construction technology have also led to much greater use of synthetic building materials. While these improvements have led to more comfortable buildings, they also lead to indoor environments in which contaminants, VOCs and oxygenated VOCs such as anti-freezing agents are readily produced and may build-up to much higher concentrations than are found outside. Previous studies on VOCs emitted by consumables in indoor environments include burning of candles, tobacco smoke, as well as cooking, heating, and office equipment, paint and associated supplies, adhesive, detergent, wax, furnishing, clothing, building materials, combustion materials, and appliances. The present study identifies and assesses the levels of anti-freezing agents used in water-based paints sold in Nigeria and their associated health effects. It also compares anti-freezing agent levels in paints with the available permissible limit and threshold limit. Data were interpreted using multivariate statistical analysis.

Methods

Paint sample collection

Water-based paint samples were purchased in popular paint markets in Ibadan and Lagos, Nigeria, based on color availability and those most commonly used as presented in Table 1. A total of 174 paint samples from 14 different manufacturers were collected. Some of the products purchased were imported by manufacturer C, but their country of production was not disclosed by the paint vendor and retailer at the point of purchase, thus their origin was not known. Samples were stored in airtight plastic containers, transported and analyzed at the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR-NERI).

Table 1—Paint Samples Collected in Lagos and Ibadan Metropolises, Nigeria

Serial No.	Manufacturer codes	Number of different paint colors collected	Number of paint samples collected	NIS/ISO registration
1	A	10	20	Available
2	B	9	18	Available
3	C	9	18	Available
4	D	5	10	Available
5	E	5	10	Available
6	F	6	12	Available
7	G	4	8	Not available
8	H	5	10	Not available
9	I	4	8	Not available
10	J	5	10	Not available
11	K	6	12	Not available
12	L	8	16	Not available
13	M	7	14	Not available
14	N	4	8	Not available

Abbreviations: ISO, International Organization for Standardization; NIS, Nigerian Industrial Standard

Note: Number of paint colors collected per manufacturer was based on availability

Abbreviations

PCA Principal component analysis

VOCs such as anti-freezing agents are readily produced and may build-up to much higher concentrations than are found outside. Previous studies on VOCs emitted by consumables in indoor environments include burning of candles, tobacco smoke, as well as cooking, heating, and office equipment, paint and associated supplies, adhesive, detergent, wax, furnishing, clothing, building materials, combustion materials, and appliances. The present study identifies and assesses the levels of anti-freezing agents used in water-based paints sold in Nigeria and their associated health effects. It also compares anti-freezing agent levels in paints with the available permissible limit and threshold limit. Data were interpreted using multivariate statistical analysis.
Research Institute Laboratory, Nagpur – Maharashtra, India.

Sample pre-treatment and analysis

Approximately 2.5 mL of paint samples were carefully measured into 50 mL polypropylene radiation sterilized centrifuge tubes and extracted using liquid-liquid extraction with milli-Q water followed by acetonitrile in the ratio 3:4 (v/v). The centrifuge tubes were shaken and mixed on a cyclo-mixer at 50 cycles (CM 101) for sample homogeneity. The tubes were centrifuged at 5000 rpm at 20°C for 20 minutes. After phase separation, the acetonitrile phase was dehydrated with 1.0 g of sodium sulphate, filtered using a glass micro-fiber filter of 90 mm diameter and stored in 2 mL vials. The aqueous phase was filtered using polytetrafluoroethylene micro-fiber syringe filter of 13 mm diameter and 0.22-micron pore size, and stored in 2 mL Maxipense plastic vials prior to analysis. The acetonitrile phase was identified using gas chromatography (GC)-mass spectrometry while the aqueous phase was quantified using a gas chromatography flame ionization detector (GC-FID).

A recovery study was carried out using 2.5 mL of selected paint samples, which were measured into 50 mL polypropylene sterilized centrifuge tubes and extracted using the liquid-liquid extraction described above. Samples were spiked with different concentrations of anti-freezing agents (100-300 ppm) and analyzed using GC-FID. Recovery was calculated using Equation 1. The recovery of anti-freezing agents ranged from 93.5-103% as presented in Table 2.

\[
\text{% Recovery} = \frac{A - B \times 100\% \times D}{Z}
\]

Where,
- \(A\) = spiked sample result
- \(B\) = unspiked sample result
- \(D\) = dilution factor
- \(Z\) = known concentration of analyte added

A recovery study was carried out using 2.5 mL of selected paint samples, which were measured into 50 mL polypropylene sterilized centrifuge tubes and extracted using the liquid-liquid extraction described above. Samples were spiked with different concentrations of anti-freezing agents (100-300 ppm) and analyzed using GC-FID. Recovery was calculated using Equation 1. The recovery of anti-freezing agents ranged from 93.5-103% as presented in Table 2.

\[
\text{% Recovery} = \frac{A - B \times 100\% \times D}{Z}
\]

Where,
- \(A\) = spiked sample result
- \(B\) = unspiked sample result
- \(D\) = dilution factor
- \(Z\) = known concentration of analyte added

VOCs	MS	MSD	MEAN ±SD
DEG	87.0	100	93.5±9.2
TEG	105	101	103±3.0
EG	99.9	98.9	99.4±0.7
PG	94.1	96.9	95.5±2.0

Table 2—Recovery Study of Anti-freezing Agents in Paint Samples

Abbreviations: MS, Matrix spike; MSD, Matrix spike duplicate; SD, standard deviation; DEG, diethylene glycol; EG, ethylene glycol; PG, propylene glycol; TEG, triethylene glycol

Anti-freezing agents	Monitoring ions (m/z)
Ethylene glycol	31, 33, 29
Propylene glycol	45, 75, 76
Triethylene glycol	45, 58, 89
Diethylene glycol	45, 75, 43

Table 3—Monitoring Ions Used for the Identification of Anti-freezing Agents in Paint Samples

Note: The underlined number is the m/z of the ion used for quantification

Instrument operation conditions

A Perkin Elmer – Clarus 500 GC model with Packard FID was used for quantification. An Agilent J&W DB-624 UI, polar column (30 m × 320 μm × 1.80 μm) was used. Ultrapure hydrogen was used as the carrier gas with a flow rate of 45 mL/minute. Operating conditions were: injection temperature of 250°C, detector temperature of 280°C and column temperature of 50°C for 3 minutes ramped to 100°C at 6°C/minute and 250°C at 10°C/minute for 3 minutes with total run time of 29.33 minutes.

Multivariate statistical analysis

The Statistical Package for the Social Sciences (SPSS Windows version 18) and Excel 2010 software were used for multivariate statistical analysis.
Correlation coefficient, cluster analysis, and principal component analysis (PCA) are statistical tools used for better interpretation of large data. Cluster analysis is used for dividing the studied parameters into similar classes with respect to their normalized concentration levels. The correlation coefficient shows pair wise association of a set of variables indicating their common source. Principal component analysis is designed to transform the original variables into new, uncorrelated variables (axes), called the principal component, to find the directions (components) that maximize the variance in the dataset. The outcome of the reduced dimension data set will allow the evaluation of spot trends, patterns and outliers in the data, far more easily than would have been possible without performing PCA. Hence, it is used for source identification, facilitating correlation of associated groups of pollutants or contaminants of interest to their sources.

Results

Identification and percentage composition of VOCs and oxygenated VOCs in paint samples

The identification of the anti-freezing agents and some other VOCs present in the samples was confirmed based on retention times and molecular formula. Twenty different compounds classified as VOCs and oxygenated VOCs were identified in the samples. They included glycols (19%) which are

Table 4—Compounds Identified in Paint Samples

Serial No.	Retention times (min)	NIST nomenclature	Molecular weight	Molecular formula	Class of compounds
1	2.28	2-Butanone, 3,3-dimethyl	100	C₄H₈O	Ketone
2	2.45	Propylene glycol	76.09	C₃H₈O₂	Glycol
3	3.20	Ethylene glycol butyl ether	118.17	C₆H₁₂O₂	Glycol ether
4	3.50	Ethylene glycol ethyl ether acetate	132.16	C₆H₁₂O₃	Ester
5	5.36	Diethylene glycol	106.12	C₄H₁₀O₃	Glycol
6	6.05	Ethylene glycol	62.07	C₄H₈O	Glycol
7	6.61	Ethylene glycol butyl ether acetate	160.21	C₆H₁₄O₃	Ester
8	7.30	Diethylene glycol butyl ether	162.23	C₆H₁₄O₃	Glycol ether
9	8.71	Triethylene glycol	150.17	C₆H₁₈O₄	Glycol
10	9.59	2,2,4-trimethyl-1,3-pentane diol diisobut	286	C₆H₉O₄	Texanol
11	9.85	Propanoic acid, 2-methyl-3-hydroxy-2,4	216	C₁₃H₂₆O₃	Texanol
12	11.66	Phenol 2,4-Bis (1,1-dimethyl ethyl)-	206	C₁₄H₁₂O	Phenol
13	12.20	1, Hexadecene	224	C₁₆H₃₂	Alkene
14	12.45	Furan, tetrahydro-2-methyl	86	C₅H₁₀O	Furan
15	13.30	Dihexyl fumarate	284	C₁₆H₃₂O₄	Ester
16	14.38	3 Eicosene	280	C₂₀H₄₀	Ester
17	16.32	Dibutyl phthalate	278	C₁₂H₂₂O₄	Ester
18	18.05	1, Nonadecene	266	C₁₉H₃₈	Alkene
19	19.65	11- Tricosene	322	C₂₁H₄₆	Alkene
20	21.13	Oxalic acid, allyl tetradecyl ester	326	C₁₉H₃₈O₄	Ester
the anti-freezing agents and include ethylene glycol, diethylene glycol, triethylene glycol, and propylene glycol; glycol ethers (37%); esters (15%) and alkenes (15%). Others are texanol (2%), ketone (1%) and furans (8%) as shown in Figure 1.

Antifreezing agent concentrations

Fourteen paint manufacturers were selected: six registered with the Nigerian Industrial Standard (NIS) and International Organization for Standardization (ISO) and eight unregistered manufacturers without NIS and ISO certification, producing different colors of water-based paints. Four anti-freezing agents: ethylene glycol, triethylene glycol, diethylene glycol and propylene glycol were identified in the 174 paint samples collected in Lagos and Ibadan. The antifreezing agents’ concentrations across different manufacturers are presented in Supplemental Material 1, while Table 5 shows the mean concentrations of the antifreezing agents in all of the samples. Variations in the concentrations of the antifreezing agents with respect to manufacturers are presented in Figure 2.

Diethylene glycol

The concentrations of diethylene glycol in all of the 174 paint samples ranged from ND, 980 ppm. The highest concentration was 1,980 ppm obtained in paint samples produced by manufacturer F, a registered manufacturer. This was followed by 1,910 ppm and 1,880 ppm in products produced by manufacturers A (a registered manufacturer) and M (an unregistered manufacturer). The highest mean concentration of diethylene glycol was 1,590±91 ppm obtained in paints produced by manufacturer D. This was followed by 1,460±45 ppm and 1,430±64 ppm in paints produced by manufacturers A and M, respectively, while the lowest mean concentration was 1,240±60 ppm in paints produced by manufacturer F. Diethylene glycol was not detected in the paint samples produced by manufacturers C and E (registered manufacturers) and G, I, K, and N (unregistered manufacturers), but was detected in the products produced by the remaining 8 manufacturers.

Triethylene glycol

The concentrations of triethylene glycol in the paint samples ranged from ND-3,900 ppm. The highest concentration of triethylene glycol was 3,900 ppm obtained in paint...
Oxygenated Volatile Organic Compounds in Decorative Water-based Paints Marketed in Nigeria

Apanpa-Qasim, Adeyi

Research

produced by manufacturer G, an unregistered manufacturer. This was followed by 3,850 ppm and 3,550 ppm in paints produced by manufacturers G and K, respectively, (unregistered manufacturers). The highest mean concentration of triethylene glycol was 2,840±130 ppm obtained in paints produced by manufacturer G. This was followed by 2,670±96 ppm and 2,280±97 ppm in paints produced by manufacturer K and M (unregistered manufacturers). The lowest mean concentration was 1,590±36 ppm in paints produced by manufacturer D. Triethylene glycol was absent in the paints produced by manufacturers C, E (both registered manufacturers) and N (an unregistered manufacturer), but present in the products manufactured by the other 11 manufacturers.

Propylene glycol

The concentrations of propylene glycol in the paint samples ranged from ND-2,510 ppm. The highest concentration was 2,510 ppm obtained in paint produced by manufacturer N, an unregistered manufacturer. This was followed by 2,460 ppm and 2,350 ppm, also in paints produced by manufacturer N. The highest mean concentration of propylene glycol with respect to manufacturers was 2,400±64 ppm obtained in paints produced by manufacturer N. This was followed by 2,190±44 ppm and 2,180±35 ppm in paints produced by manufacturers N and E, respectively. Propylene glycol was not present in any of the paint samples except for those produced by manufacturers A, E and N.

Ethylene glycol

The concentrations of ethylene glycol ranged from ND-2,710 ppm. The highest concentration was 2,710 ppm obtained in paint produced by manufacturer L, an unregistered manufacturer. This was followed by 2,700 ppm and 2,520 ppm, in products produced by the same manufacturer. The highest mean concentration of ethylene glycol was 2,220±84 ppm in paints produced by manufacturer L. This was followed by 2,180±35 ppm and 1,860±57 ppm in paints produced by manufacturers N and E, respectively. Ethylene glycol was not detected in any of the paint samples except for those produced by manufacturers E, G, L and N.
Concentration of anti-freezing agents in paint samples with respect to color

The concentrations of anti-freezing agents with respect to paint colors are presented in Table 6, while the variation with respect to colors is presented in Figure 3.

Diethylene glycol

The concentrations of diethylene glycol in the paint samples with respect to colors ranged from ND-1,980 ppm. The highest concentration was 1,980 ppm in white paint, followed by 1,910 ppm in cream and 1,880 ppm in white paints. The highest mean concentration of diethylene glycol was 1,730±220 ppm in white paints, followed by 1,700±36 ppm in grey and 1,530±77 ppm in chocolate paints. The lowest concentration, 1,280±100 ppm, was obtained in orange paints. All of the paint colors contained diethylene glycol except violet colored paints.

Triethylene glycol

The concentrations of triethylene glycol in the 174 paint samples ranged from ND-3,900 ppm. The highest concentration was 3,900 ppm in green paint, followed by 3,850 ppm and 3,550 ppm in green and white paints, respectively. The highest mean concentration of triethylene glycol was 2,720±170 ppm in grey paint, followed by 2,320±81 ppm in white and 2,190±67 ppm in orange paints. The lowest concentration (1,930±110 ppm) was in cream paints. All of the paint colors contained triethylene glycol except violet paints.

Propylene glycol

The concentrations of propylene glycol ranged from ND-2,510 ppm. The highest propylene glycol concentration was 2,510 ppm obtained in blue paint,
Oxygenated Volatile Organic Compounds in Decorative Water-based Paints Marketed in Nigeria

Apanpa-Qasim, Adeyi

Research

The highest mean concentration of propylene glycol was 1,850±74 ppm in pink paints, followed by 1,840±140 ppm in white and 1,750±100 ppm in cream paints. The lowest mean concentration, 1,230±1.7 ppm, was obtained in brown paints. All the paint colors contained propylene glycol except orange and violet paints.

Ethylene glycol

The concentrations of ethylene glycol ranged from ND-2,710 ppm. The highest ethylene glycol concentration was 2,710 ppm in white paint, followed by 2,700 ppm also in white paint and 2,520 ppm in pink paint. The highest mean concentration of ethylene glycol was 2,430±120 ppm in pink paints, followed by 2,280±4.4 ppm in orange paints and 2,220±45 ppm in chocolate paints. The lowest concentration (1,490±170 ppm) was obtained in brown paints.
brown paints. Ethylene glycol was present in all of the paint samples except for grey, red and violet.

Generally, the highest mean concentration of the four anti-freezing agents in all of the 174 paint samples was 2,720±170 ppm, triethylene glycol obtained in grey paints. This was followed by 2,430±120 ppm, ethylene glycol in pink paints and 2,320±81 ppm, triethylene glycol in white paints. The lowest anti-freezing agent concentration was 1,230±1.7 ppm, propylene glycol in brown colored paints. No anti-freezing agents were present in violet paints, and propylene glycol and ethylene glycol were not detected in orange and grey paints, respectively.

Multivariate statistical analyses

Correlation coefficient

The data obtained in the present study were subjected to Pearson’s correlation coefficient analysis. Triethylene glycol had a positive correlation with manufacturers versus diethylene glycol, and ethylene glycol versus manufacturers (Table 7). There was a possible linear association between manufacturers and diethylene glycol and ethylene glycol. Triethylene glycol and diethylene glycol were found in all of the colors except for violet (Table 6).

Principal component analysis

One principal component was extracted using PCA, hence there was no rotated component matrix. Corresponding components, variable loadings, and variances are presented in Table 8. Only PCs with eigenvalues greater than 1 were considered. Principal component analysis of the whole data set yielded one data set explaining 45.55% of the total variance. The component was responsible for 45.55% of variance and was best represented by triethylene glycol. Triethylene glycol was extensively used by most of the manufacturers (A, B, D, F and G-M), except for manufacturers C, E and N, despite its potential acute health effects on humans and animals.

Cluster analysis

Cluster analysis was performed on the data set using the between-groups linkage method and squared Euclidean distance using hierarchical clustering with Statistical Package for the Social Sciences software. Figure 4 shows the cluster analysis of anti-freezing agents in the paint samples as a dendrogram. Two clusters were obtained. Cluster 1: propylene glycol and ethylene glycol were well correlated with one
another and found in the same colors and manufacturers (manufacturers E and N); Cluster 2 was associated with diethylene glycol and triethylene glycol and was found in all of the paint samples except in samples produced by manufacturers G, I, K, N; and C, E and N, respectively. Excessive exposure to their vapors may cause central nervous system depression, metabolic acidosis and nephrotoxicity as nausea, vomiting, abdominal pain, diarrhea, respiratory tract irritation and even death.

Discussion

The levels of the four anti-freezing agents in the samples in the present study were above the European Union permissible limit of 500 ppm, which came into effect in 2010. The anti-freezing agents concentrations in the 174 samples collected in Lagos and Ibadan are presented in Supplemental Material 1, while Table 9 shows a comparison of the concentrations of anti-freezing agents in the paint samples obtained in this study with a previous study. Out of the 14 manufacturers considered in this study, only 3 manufacturers (manufacturers A, E and N) used propylene glycol in their paint production. Ethylene glycol was only detected in samples from manufacturers E, G, I and N. Triethylene glycol was not detected in any of the paint samples except for those produced by manufacturers C, E (registered manufacturers) and N (unregistered manufacturer). Only manufacturer C did not use any of the 4 anti-freezing agents in its paint production. Manufacturers I and K used only triethylene glycol in their products. Most of the paint manufacturers used between 2 to 3 anti-freezing agents in their products. Variations in the concentrations of compounds found in the paint samples might be attributed to different paint formulations used by manufacturers. Some of the factors which might affect the levels of anti-freezing agents in paint formulations include cost of raw materials, final cost of paint production, availability of raw materials, characteristics of the finished paint products with regard to the different percentages of the raw materials used, acceptability of the different finished paint products by the consumer and others. The order of anti-freezing agent concentrations in paints with respect to manufacturers were:

- **Diethylene glycol:** \(D > A > M > J > L > B > H > F \)
- **Triethylene glycol:** \(G > K > M > L > I > F > J > H > A > B > D \)
- **Propylene glycol:** \(N > A > E \)
- **Ethylene glycol:** \(L > N > E > G \)

All of the paint colors contained anti-freezing agents except for violet paints. This might be attributed to the pigment used in the color production and the presence of other raw materials in the paints. Ethylene glycol was present in all of the paint colors considered in this study except for grey, red and violet; propylene glycol was present in all of the paint colors except for orange and violet; and triethylene glycol and diethylene glycol were present in all of the paint colors except for violet. The order of anti-freezing agents with respect to paint colors were:

- **Diethylene glycol:** white > grey > chocolate > pink > brown > red > blue = cream = green > yellow > orange;
- **Triethylene glycol:** grey > white > orange > yellow > pink > green > brown > chocolate > red > blue > cream;
- **Propylene glycol:** pink > white > cream > green > blue > red > grey = yellow > chocolate > brown;
- **Ethylene glycol:** pink > orange > chocolate > white > blue > green > cream > yellow > brown.

Propylene glycol (1,2-propanediol) is generally considered safe, but when used in high amounts or for prolonged exposure periods, toxicity can occur. The reported adverse effects of propylene glycol include central nervous system toxicity, hyperosmolarity, hemolysis, cardiac arrhythmia, seizures, agitation, and lactic acidosis. People at risk of toxicity include infants, those with renal or hepatic insufficiency, epilepsy, and burn patients receiving extensive dermal applications of propylene glycol-containing products. The widespread use of ethylene glycol as an anti-freezing agent is based on its ability to lower the freezing point when mixed with water. Ethylene glycol ingestion may cause serious poisoning due to high toxicity. It is readily absorbed from the gastrointestinal tract, and the maximum blood concentration is reached within 2-4 hours. Ethylene glycol toxicity includes central nervous system depression, renal failure and coma. Depending on dose, cardiorespiratory symptoms with elevations in heart rate and blood pressure after 12-24 hours and renal failure after 24 to 72 hours have been reported. Exposure to triethylene glycol can cause peripheral sensory irritant effect, while repeated exposure to triethylene glycol aerosol may result in respiratory tract irritation with cough, shortness of breath and tightness of the chest.
Diethylene glycol has been classified as hazardous under the Globally Harmonized System of Classification and Labeling of Chemicals due to its health effects.\(^4\)\(^,\)\(^5\) Ingestion may cause central nervous system depression, damage to the digestive tract, lungs, liver, brain, kidney, and pancreas.\(^6\)

Conclusions

The present study identified VOCs present in 174 paint samples marketed in Lagos and Ibadan, Nigeria and assessed four oxygenated VOCs: ethylene glycol, diethylene glycol, triethylene glycol and propylene glycol present in paint samples. In most cases, the levels of anti-freezing agents in water-based paints sold in Nigeria were above the European Union permissible limits of 500 ppm. Concentrations were higher in products produced by unregistered manufacturers compared to those produced by registered manufacturers. As reported by the European Union, ethylene glycol and diethylene glycol are prohibited anti-freezing agents.\(^7\) Results of the multivariate statistical analysis clearly showed that triethylene glycol was the commonly used anti-freezing agent, and had the highest concentration of 3,900 ppm in green paints produced by an unregistered manufacturer, manufacturer G. Presently, there are no national regulations in place to control the use of these compounds in paints. In addition, there are no indications of solvents or other raw materials on paint labels. Volatile organic compounds and other raw materials in consumer products such as paints requiring caution should be indicated clearly on product labels. An assessment of toxic compounds in paints marketed in Nigeria and their emissions is needed. There is also a need for stringent regulations to safeguard public health from occupational exposures to toxic and prohibited compounds in paints.

Acknowledgements

Financial support from the World Academy of Sciences for the Advancement of Science in Developing Countries and the Council of Scientific and Industrial Research (FR number: 3240275040) is gratefully acknowledged. The director of the National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India is highly appreciated for his kind support. In addition, anonymous reviewers are greatly appreciated for their time and contributions in the review of this manuscript.

Copyright Policy

This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).

References

1. Boczkaj G, Makos P, Przyjazny A. Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents. Anal Methods [Internet]. 2016 [cited 2018 May 13];8(17):3570-7. Available from: http://pubs.rsc.org/en/content/articlepdf/2016/ap/c5ay0343a
2. IARC monographs on the evaluation of the carcinogenic risk of carcinogenic risks to humans [Internet]. Vol. 71. Geneva: World Health Organization; 1999 [cited 2018 May 15]. 1597 p. Available from: http://monographs.iarc.fr/EN/GM/Monographs/vol71/index.php
3. Health effects notebook for hazardous air pollutants [Internet]. Washington, D.C.: Environmental Protection Agency; 2013? [cited 2017 Dec 20]. Available from: https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
4. Dimitriades B. Scientific basis of an improved EPA policy on control of organic emissions for ambient ozone reduction. J Air Waste Manag Assoc [Internet]. 1999 [cited 2018 May 15];49(7):831-8. Available from: https://doi.org/10.1080/10473289.1999.10646385
5. Jenkin ME, Hayman GD. Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmos Environ [Internet]. 1999 Apr [cited 2018 May 15];33(8):1275-93. Available from: https://doi.org/10.1016/S1352-2310(98)00261-1
6. Nakashima H, Nakajima D, Takagi Y, Goto S. Volatile organic compound (VOC) analysis and anti-VOC measures in water-based paints. J Health Sci [Internet]. 2007 [cited 2018 May 15];53(3):311-9. Available from: https://doi.org/10.1248/jhs.53.311
7. Landry GM, Martin S, McMartin KE. Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro. Toxicol Sci [Internet]. 2011 Nov [cited 2018 May 15];124(1):35-44. Available from: https://doi.org/10.1093/toxsci/kfr204
8. Toxicological profile for propylene glycol [Internet]. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 1997 [cited 2017 Dec 20]. Available from: http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=1122&tid=240
9. Revision of European ecolabel and development of green public procurement criteria for indoor and outdoor paints and varnishes: consultation document to analyse the scope and existing criteria for paints and varnishes [Internet]. Brussels: Joint Research Centre; 2011 Oct [cited 2017 Dec 20]. 38 p. Available from: a. http://susproc.jrc.ec.europa.eu/paints/docs/Consultation%20Document%20for%20Paints%20Ecolabel%20criteria.pdf
10. Generally Recognized as Safe (GRAS): status of propylene glycol. Silver Spring, MD: Food and Drug Administration. 1972 - [cited 2017 Dec 20]. Available from: https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/default.htm
11. Lim TY, Poole RL, Pageler NM. Propylene glycol toxicity in children. J Pediatr Pharmacol Ther [Internet]. 2014 Oct-Dec [cited 2018 May 15];19(4):277-82. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341412/
12. Patocka J, Hon Z. Ethylene glycol, hazardous substance in the household. Acta Medica (Hradec Kralove) [Internet]. 2010 [cited 2018 May 15];53(1):19-
Oxygenated Volatile Organic Compounds in Decorative Water-based Paints Marketed in Nigeria

Apanpa-Qasim, Adeyi

23. Available from: ftp://orbis.lfhk.cuni.cz/Acta_Medica/2010/2010_19.pdf
24. Dikshith TS. Hazardous chemicals: safety management and global regulations. Boca Raton, FL: CRC Press; 2013. 680 p.
25. Ballantyne B, Snellings WM. Triethylene glycol H0(CH2CH2O)3H. J Appl Toxicol [Internet]. 2007 May-Jun [cited 2018 May 15];27(3):291-9. Available from: https://doi.org/10.1002/jat.1220 Subscription required to view.
26. Jones AP. Indoor air quality and health. Atmos Environ [Internet]. 1999 Dec [cited 2018 May 15];33(28):4535-64. Available from: https://doi.org/10.1016/S1352-2310(99)00272-1 Subscription required to view.
27. Long CM, Suh HH, Koutrakis P. Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manag Assoc [Internet]. 2011 Oct [cited 2018 May 15];61(10):1236-50. Available from: https://doi.org/10.1080/10473289.2010.10464154 Subscription required to view.
28. Fan CW, Zhang J. Characterization of emissions from portable household combustion devices: particle size distributions, emission rates and factors, and potential exposures. Atmos Environ [Internet]. 2000 Jul [cited 2018 May 15];34(7):1236-50. Available from: https://doi.org/10.1016/S1352-2310(00)00399-X Subscription required to view.
29. Kataoka H, Ohashi Y, Mamiya T, Nami K, Saito K, Ohcho K, Takigawa T. Indoor air monitoring of volatile organic compounds and evaluation of their emission from various building materials and common products by gas chromatography-mass spectrometry [Internet]. In: Mohd MA, editor. Advanced gas chromatography: progress in agricultural, biomedical and industrial applications. Rijeka, Croatia: Intech; 2012 Mar [cited 2018 May 15]. p. 161-84. Available from: https://www.intechopen.com/books/advanced-gas-chromatography-progress-in-agricultural-biomedical-and-industrial-applications/indoor-air-monitoring-of-volatile-organic-compounds-and-evaluation-of-their-emission-from-various-bu
30. Destaillats H, Maddalena Rl, Singer BC, Hodgson AT, McKone TE. Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ [Internet]. 2009 Mar [cited 2018 May 15];42(7):1371-88. Available from: https://doi.org/10.1016/j.atmosenv.2007.10.080 Subscription required to view.
31. Hellgren UM, Palomaki E, Lahtinen M, Riutiala H, Reiujla K. Complaints and symptoms among hospital staff in relation to indoor air and the condition and need for repairs hospital buildings. Scand J Work Environ Health [Internet]. 2008 [cited 2018 May 15];Suppl 2008(4):58-63. Available from: https://www.sjweh.fi/show_abstract.php?abstract_id=1211
32. Ho DX, Kim KH, Sohn JR, Oh YH, Ahn JW. Emission rates of volatile organic compounds released from newly produced household furniture products using a large-scale chamber testing method. ScientificWorldJournal [Internet]. 2011 [cited 2018 May 15];11:1597-622. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201684/
33. Caselli M, de Gennaro G, Saracino MR, Tutino M. Indoor contaminants from newspapers: VOCs emissions in newspaper stands. Environ Res [Internet]. 2009 Feb [cited 2018 May 15];109(2):149-57. Available from: https://doi.org/10.1016/j.envres.2008.10.011 Subscription required to view.
34. Orecchio S. Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos Environ [Internet]. 2011 Mar [cited 2018 May 15];45(10):1888-95. Available from: https://doi.org/10.1016/j.atmosenv.2010.12.024 Subscription required to view.
35. Chang YM, Hu WH, Fang WB, Chen SS, Chang CT, Ching HW. A study on dynamic volatile organic compound emission characterization of water-based paints. J Air Waste Manag Assoc [Internet]. 2011 Jun [cited 2018 May 15];61(6):345-45. Available from: https://www.tandfonline.com/doi/pdf/10.3155/1047-3289.61.1.35
36. Wilke O, Jann O, Brodner D. VOC- and SVOC-emissions from adhesives, floor coverings and complete floor structures. Indoor Air [Internet]. 2004 [cited 2018 May 15];14 Suppl 8:98-107. Available from: https://doi.org/10.1111/j.1600-0668.2004.00314.x Subscription required to view.
37. Kirkoskov L, Wittertsch T, Funch LW, Kristiansen K, Jethahy KA, Nicholson WJ, Schiffman F. Agitation by sedation. Lancet. 2003;361(9354):308.
38. O’Donnell J, Merli SL, Kelly WN. Propylene glycol toxicity in a pediatric patient: the dangers of diluents. J Pharm Pract [Internet]. 2000 Jun [cited 2018 May 15];13(3):214-25. Available from: https://doi.org/10.1177/089719000013000310 Subscription required to view.
39. Hananec WM, Bauer R. Presumptive secondary ethylene glycol (antifreeze) toxicity in a turkey vulture (a case report). Jordan J Biol Sci. 2015 Mar;8(1):171-2.
40. Hoffmann U, Abel P, Neurath H. Acute ethylene glycol poisoning after intentional ingestion. Toxicichem Krimtech [Internet]. 2008 [cited 2018 May 15];5(3):130-3. Available from: http://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.485.3910
41. Leth PM, Gregersen M. Ethylene glycol poisoning. Forensic Sci Int [Internet]. 2005 Dec 20 [cited 2018 May 15];155(2-3):179-84. Available from: https://doi.org/10.1016/j.forsciint.2004.11.012 Subscription required to view.
42. Toth-Manikowski SM, Menn-Josephy H, Bhatia J. A case of chronic ethylene glycol intoxication in.
presenting without classic metabolic derangements.

Case Rep Nephrol [Internet]. 2014 [cited 2018 May 15];2014:128145. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158266/

39. Fraser AD. Clinical toxicologic implications of ethylene glycol and glycolic acid poisoning. Ther Drug Monit [Internet]. 2002 Apr [cited 2018 May 15];24(2):232-8. Available from: https://insights.ovid.com/pubmed?pmid=11897969 Subscription required to view.

40. Cox RD, Phillips WJ. Ethylene glycol toxicity. Mil Med. 2004 Aug;169(8):660-3.

41. Winek CL, Shingleton DP, Shanor SP. Ethylene and diethylene glycol toxicity. Clin Toxicol [Internet]. 1978 [cited 2018 May 15];13(2):297-324. Available from: https://doi.org/10.3109/15563657808988239 Subscription required to view.

42. Armstrong EJ, Engelhart DA, Jenkins AJ, Balraj EK. Homicidal ethylene glycol intoxication: a report of a case. Am J Forensic Med Pathol [Internet]. 2006 Jun [cited 2018 May 15];27(2):151-5. Available from: https://insights.ovid.com/pubmed?pmid=16738434 Subscription required to view.

43. Soil and groundwater remediation guidelines for diethlyene glycol and triethylene glycol. Edmonton, Canada: Alberta Environment: 2010. 132 p.

44. Global Product Strategy (GPS) safety summary: diethylene glycol [Internet]. Houston, TX: LyondellBasell; 2015 Jun [cited 2017 Dec 20]. 5 p. Available from: https://www.lyondellbasell.com/globalassets/documents/safety-summaries/diethylene-glycol-gps-safety-summary?id=6103

45. Minna A. Diethylene glycol poisoning [Internet]. San Francisco, CA: California Poison Control System: 2012 [cited 2018 May 15]. [about 3 screens]. Available from: https://calpoison.org/news/diethylene-glycol-poisoning

46. Ferrari LA, Giannuzzi L. Clinical parameters, postmortem analysis and estimation of lethal dose in victims of a massive intoxication with diethylene glycol. Forensic Sci Int [Internet]. 2005 Oct 4 [cited 2018 May 15];153(1):45-51. Available from: https://doi.org/10.1016/j.forsciint.2005.04.038 Subscription required to view.