One Health approach on human seroprevalence of anti-Toxocara antibodies, Toxocara spp. eggs in dogs and sand samples between seashore mainland and island areas of southern Brazil

Ruana Renostro Delai a, Aaronson Ramathan Freitas a, Louise Bach Kmetiuk b, Yslla Fernanda Fitz Balo Merigueti c, Isabella Braghin Ferreira c, Susana Angélica Zevallos Lescano d, William Henry Roldan Gonzáles d, Ana Pérola Drulla Brandão e, Ivan Roque de Barros-Filho a, Christina Pettan-Brewer f, i, Fabiano Borges Figueiredo b, Andrea Pires dos Santos g, Cláudia Turra Pimpão h, Vamilton Alvares Santarém c, Alexander Welker Biondo a, *

a Department of Veterinary Medicine, Federal University of Paraná (UFPR), Curitiba, Paraná (PR) 80035-050, Brazil
b Laboratory of Cell Biology, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
c Laboratory of Veterinary Parasitology, Veterinary Teaching Hospital, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
d Laboratory of Medical Investigation, Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
e Department of Preventive Veterinary Medicine, University of São Paulo, São Paulo, Brazil
f Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, USA
g Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
h Department of Animal Science, School of Life Sciences, Pontifical Catholic University of Paraná, Curitiba, Brazil

One Health Brasil, Brazil

ARTICLE INFO

Keywords:
One Health
Toxocariasis
Toxocara canis
Toxocara cati
Zoonoses

ABSTRACT

Toxocariasis, caused by Toxocara spp. nematodes, is among the top 5 neglected parasitic diseases worldwide; however, no comprehensive study to date has serologically compared infections in people and their dogs and environmentally contaminated soil or sand of mainland and island locations. Accordingly, this study aimed to assess the seroprevalence of anti-Toxocara antibodies in traditional human seashore populations, the presence of eggs in dogs’ feces and hair, and the presence of eggs in environmental samples from islands compared to the adjacent mainland of southern Brazil. Overall, 212/328 (64.6%) people were positive for Toxocara spp. antibodies, including 125/190 (65.8%) island and 87/138 (63.0%) mainland residents. For dog samples, 12/115 (10.43%) were positive for the presence of Toxocara spp. eggs, all from dogs living in islands, and 22/104 (21.15%) dog hair samples contained eggs of Toxocara spp. Environmental contamination with Toxocara spp. eggs was observed in 50/130 (38.46%) samples from all sampled sites. No significant association was found between risk factors (age, sex, educational level, monthly income, owning dogs or cats, ingestion of treated water, and consumption of raw or uncooked meat) and Toxocara spp. seropositivity. The present study is the first concurrent report on people, their dogs, and environmental contamination of Toxocara spp. The high prevalence we observed in the seashore populations of both in island and mainland areas may be caused by exposure to contaminated sand and climatic factors favoring frequent exposure to Toxocara spp. In conclusion, seashore lifestyle and living conditions of both island and mainland areas may have predisposed higher contact with infected pets and contaminated soil, favoring the high prevalence of toxocariasis.
1. Introduction

Toxocariasis is a neglected zoonotic disease caused by nematode parasites of the genus *Toxocara* that have a worldwide distribution [1]. Toxocariasis is one of top five neglected parasitic diseases targeted for public health action [1,2]. A systematic review and meta-analysis estimated the global anti-*Toxocara* spp. seroprevalence to be 19%, meaning that approximately one-fifth of the human population has been exposed to toxocariasis agents [3]. Human toxocariasis is commonly an asymptomatic infection; however, larvae migration may cause a range of diseases affecting organs in visceral toxocariasis, eyes in ocular toxocariasis, or the central nervous system in neurotoxocariasis [4].

Considered accidental hosts, humans may acquire infection by ingestion of embryonated or larvated eggs of *Toxocara canis* and *T. cati*, present in soil and contaminated food [2]. Foodborne toxocariasis may occur by ingestion of encapsulated *Toxocara* larvae in raw or uncooked tissues of paratenic hosts, contaminated water, or contact with dog hair [5,6]. The main source of human infection is the ingestion of *Toxocara* spp. eggs in soil, particularly by children due to their higher exposure to contaminated soil in public parks, schoolyards, and playground sandboxes [7]. As definitive hosts of *Toxocara* spp., dogs and cats have reportedly played essential roles in transmitting *T. canis* and *T. cati*, respectively, by shedding eggs in feces into the environment [6]. A systematic review and meta-analysis verified a global prevalence of 21% of *Toxocara* spp. eggs in public places, with the highest prevalence associated with high geographic longitude, low latitude, and high humidity [8]. Soil contamination has also been observed on beaches. In southeastern Brazil, a study showed the presence of *Toxocara* spp. eggs in 59.4% of the soil samples evaluated [9]. Another study in southeast coast of Brazil evaluated the environmental contamination of sandy soil of an urban beach and a virgin beach, one that remains in natural state, without exploration or exploitation by humans. It was reported that 38/120 (31.7%) of urban beach samples were positive for eggs of *Toxocara* spp. while all the samples from the virgin beach were negative. This difference was attributed to the presence of dogs and garbage [10] on urban beaches.

A systematic metanalysis review on the global seroprevalence of human *Toxocara* spp. infection has identified several associated risk factors found in seashore areas, including social vulnerability and low income, unhealthy dog populations with access to public areas, close human contact with dogs, cats, or soil, lower latitude, consumption of raw meat, consumption of untreated drinking water, young age, higher humidity and precipitation, and higher temperature [3]. Therefore, human populations living along mainland seashores and islands may be highly exposed, particularly in developing countries, probably due to low income, poor housing and sanitation, poor hygiene practices, presence of free-roaming dogs, and lack of medical and veterinary health care.

One Health has been applied as a tool to solve problems such as zoonoses by research groups in Brazil, taking advantage of the National Health System, which has provided simultaneous human-animal-soil samplings on different vulnerable populations and their animals, including animal hoarders, homeless, incarcerated, indigenous and traditional island populations. With this approach, domestic animals have been concurrently surveyed along with their owners and environment, holistically providing new pathogen roles in different settings. An island-effect hypothesis has been proposed to describe the overlap of associated risk factors for human *Toxocara* spp. infection in traditional island populations. In the scenario herein, island-effect is hypothesized to describe potentially exacerbated pathogen transmission due to isolation and continuous exposure in islands, particularly for environmental, foodborne, or vector-borne transmission with a daily occurrence and multiple cycle pathways favored by the climate. The term, island-effect, has been used in other three situations: (1) Foster’s rule, also island-effect, where populations of animals in isolated islands may change in size; (2) Urban heat island, to designate a spatial-temporal distribution of temperature in urban areas; and (3) Nut island effect, as management principle for an isolated team which lowers its efficiency.

Previous studies have shown parasite dissemination in Fernando de Noronha, a top Brazilian island tourist destination with overlapping human-animal environments. In such studies, a high *T. gondii* seroprevalence was found in 172/341 (50.4%) human islanders, related to high serology of the cat population and environmental contamination of oocysts [11,12].

Finally, no study to date has serologically compared continental (mainland) and island seroprevalence for *Toxocara* spp. along with a survey to detect *Toxocara* spp. eggs in dog feces and sand samples, and additionally assess island-effect occurrence. Accordingly, the present study aimed to assess toxocariasis exposure and the presence of eggs in dogs and the environment in an island compared to the adjacent mainland seashore of southern Brazil.

2. Material and methods

2.1. Ethics

This study was approved by the Ethical Appreciation at Ethics Committee in Human Health of the Brazilian Ministry of Health (protocol number 46994521.00000.0102) and by the Ethics Committee of Animal Use (protocol number 036/2021) of the Federal University of Parana.

2.2. Study design

This study represents a cross-sectional seroepidemiological approach describing human and dog populations living on oceanic islands and seashore mainland cities in the state of Paraná, southern Brazil. The study was conducted from July 2019 through February 2020.

2.3. Study areas

The study was conducted on three oceanic islands, Ilha do Mel island, Superaguí Island, and Peñas Island; and two mainland seashore cities, Pontal do Paraná and Guaíraqueçaba, all within the Paraná State (Table 1). The islands are environmentally preserved conservation units. The Ilha do Mel island State Park and the Superaguí National Park are covered by the largest continuous remnant of the Atlantic Forest in Brazil.

Table 1

Location	Coordinates	Population	Sampling %	
Islands				
Ilha do Mel	25°34′12″S and 48°18′57″W	1094	113	10.3
Superagui	25°27′19″S and 48°14′50″W	700	49	7.0
Peñas	25°27′22″S and 48°20′07″W	350	28	8.0
Mainland				
Pontal do Paraná	25°40′26″S and 48°30′39″W	5000*	46	0.92
Guaíraqueçaba	25°18′25″S and 48°19′44″W	2182*	92	4.21
Total				

* Only considered neighborhood area of the mainland port of Pontal do Sul. Pontal do Paraná City had an estimated 27,915 habitants at the time.

b Considered only the mainland port at the city urban area. Guaíraqueçaba city had an overall estimated 7594 inhabitants at the time.
2.4. Population

Socioeconomic characteristics varied with location. On the islands of Superagui and Peças, the population comprised of traditional fisherman communities, with strong environment connections that rely on natural resources for living, mostly fishing and craftsmanship. Although ecological tourism in these two islands has grown in the past five years, both islands lack adequate health, education, and infrastructure systems, with most supplies (e.g., clothes and construction materials) coming from the mainland by boat.

Both Superagui and Peças islands are part of Guaraqueçaba city which is located within an environmentally protected area. It is one of the seven seashore cities of Parana State, and is semi-isolated relying mainly on sea transportation or use of a 90 km (56 miles) unpaved road that takes 3 h to travel each way by passenger car. This makes for difficult living conditions but contributes to environmental preservation [13]. With 95% of its area under permanent environmental protection and a mainland port in Pontal do Paraná city, tourism is the main form of income on Ilha do Mel island. The island has two major seashore non-communicating villages (New Brasilia and Encantadas) and the population increases 5-fold at high season [14].

Ponta do Paraná city is the closest and mainland source for daily supplies for Ilha do Mel island, Superagui islands, and Peças islands. In addition, some of the health and education personal come daily from mainland cities to the islands.

2.5. Sample collection

2.5.1. Blood sampling

Human participants were sampled following signed consent and completion of an epidemiological questionnaire. Human blood samples were collected by cephalic venipuncture, dog and cat blood samples were collected by jugular venipuncture. Blood samples placed in sterile vacuum tubes containing ethylenediaminetetraacetic acid (EDTA) and serum separator gel. Packed cell volume (PCV) and total plasma proteins (TPP) were measured by centrifugation and refractometry, respectively. All samples were also collected in tubes without anti-coagulant and kept at room temperature (25 °C) until visible clot retraction, centrifuged at 800g for five minutes, and serum separated and kept at −20 °C until processing. The samples stored in tubes containing serum separator gel were kept at room temperature (25 °C) until visible clots formed and were then centrifuged at 800g for five minutes to separate the serum, kept at −20 °C until processing.

2.5.2. Dog feces and hair samplings

Using physical restraint, dog fecal samples were collected from the rectum, placed into individual plastic bags, and kept under refrigeration (4 °C) until processing. Hair sections from the dog’s lower back and perineal regions were carefully cut (to avoid skin injury) by sterile scalp blade. Samples were placed in plastic bags and kept under refrigeration (4 °C) until processing, as previously established [15].

2.5.3. Soil sampling

Soil samples were randomly collected on each island consisting of ten samples: five beach and five trail. During sampling, characteristics of sites were recorded, including the presence of children and adults in direct contact with the soil, the presence of dogs and cats, and the presence of feces at the site. Approximately 100 g of soil sample at a depth of 5 to 10 cm was collected, as previously established [16], placed into a plastic bag, and stored under refrigeration (4 °C) until processing [7].

2.6. Serological tests

2.6.1. *Toxocara canis* excretory-secretory (TES) antigen preparation

Adult forms of *T. canis* were obtained from naturally infected puppies that spontaneously released the parasites. Adultfemale nematodes were exposed to 1% sodium hypochlorite for 5 min to remove dermis, followed by washing with 0.9% saline for three minutes. After washing, the anterior third of the worm was sectioned to collect eggs [17].

The eggs were incubated in 2% formalin for approximately 30 days at 28 °C, and hatched larvae were incubated at 37 °C in serum-free Eagle medium, according to a previously described protocol [18]. The culture supernatant was removed weekly, treated with 5.0 μL/mL of the protease inhibitor phenylmethylsulphonyl fluoride (PMSF; 200 mM), concentrated in a commercially available kit (Amicon Ultra Centrifugal Filter Unit, Millipore, Danvers, MA, USA), dialyzed with distilled water, centrifuged 18,500 g for 60 min at 4 °C, and filtered with 0.22 μm filter membranes (Millipore). The protein concentration was determined using the method of Lowry et al. [19].

2.6.2. Pre-adsorption of sera with *Ascaris suum* adult worm extract

Serum samples were pre-adsorbed with *A. suum* adult worm extract (AWE) following an established protocol [18], to remove antibodies elicited by exposure to *Ascaris* spp. that could cross-react with *Toxocara* antigens, and, consequently, to enhance the specificity of the ELISA assay [20]. Adult nematodes, recovered from the intestine of slaughtered pigs, were macerated in distilled water, and one part 1.5 M NaOH was added to nine parts of water to make a final concentration of 0.15 M. After incubation at room temperature for 2 h, the pH of the material was neutralized with 6 M HCl and centrifuged (at 18,500 g for 20 min at 4 °C). After removing lipids with ether, the supernatant was filtered through 0.22 μm filter membranes. All serum samples were pre-incubated for 30 min at 37 °C with an AWE solution (25.0 μg/μL) in 0.01 M phosphate-buffered saline (PBS, pH 7.2) containing 0.05% Tween 20 (PBS-T) (Sigma, St. Louis, MO, USA).

2.6.3. Indirect enzyme-linked immunosorbent assay (ELISA)

Polystyrene 96-well microtiter plates (Corning, Costar, New York, USA) were coated for 1 h at 37 °C and then for 18 h at 4 °C, with 1.9 μg/μL well of TES antigens in 0.06 M carbonate-bicarbonate buffer, at pH 9.6 and subsequently blocked for 1 h at 37 °C with 3% commercial skimmed milk PBS-Tween 5%. After adsorption with *A. suum* somatic antigen, anti-Human IgG (Fc-specific) peroxidase antibody produced in goat (Sigma A6029) was added at a 1:5000 dilution (45 min at 37 °C, performing three 5-min washing).

The reaction was revealed using the substrate o-phenylenediamine (0.4 mg/mL, Sigma). The reaction was interrupted by adding 2 N sulfuric acid. Positive and negative controls were included in each plate. Absorbance was read at 492 nm, defining the cut-off as the mean absorbance of 96 negative control sera plus three standard deviations. The present test has shown 78.3% sensitivity and 92.3% of specificity, as previously reported [21,22]. Antibody levels were expressed as reactivity indices (RI), which were calculated as the ratio between the absorbance values of each sample and the cut-off value, set at 0.400.

2.7. Fecal and hair analyses

Fecal samples were examined using two standard techniques: centrifuge sedimentation and flotation in hyper-saturated sodium chloride [23].

Hair samples were examined for *Toxocara* spp. eggs according to a previously described protocol [15] with modifications [24]. Each sample was transferred into 50 mL Falcon tubes. Hair was rinsed (distilled water plus 0.2 mL of Tween 80) and kept overnight. Next, additional distilled water (20 mL) was added, and the tubes were rigorously homogenized for 3 min with a vortex. A second washing was performed (two drops of Tween 80 in 40 mL of distilled water). Then, the material was filtered through 300 μm, 212 μm, and 38 μm metallic sieves. After filtration, the hair was discarded, and the washing material obtained (38 μm sieve) was centrifuged 800 xg for five min). A total of 500 μL of resulting sediment was transferred to a slide and microscopically observed for eggs. The eggs were counted using an electronic pipette and the number of *Toxocara* spp. eggs per hair was determined.
analyzed at 10× and 40× magnifications.

2.8. Soil analysis

Soil analysis followed the protocol described by Otero et al. [7], with some modifications. From each soil point collected, 20 g were weighed, rinsed with anionic detergent (100 mL of Tween 80 5%), homogenized (1 min), and allowed to stand for 12 h. The contents were then sieved (300 μm, 212 μm, 90 μm, and 38 μm), and samples were washed in running water (10 min). The soil retained in the sieve of 38 μm was collected and transferred to a graduated tube and centrifuged (800 xg for 5 min). Following centrifugation, the sediment (500 μL) was evaluated. The remaining material was subjected to a centrifuge-flotation technique using a zinc sulfate solution (d = 1.35 g/cm³).

Dog hair and soil samples were evaluated under optical microscopy (10× and 40× objective) for counting and morphological evaluation of the eggs. Toxocara spp. eggs were classified according to the stage of development: viable (intact egg with content), non-viable (egg not intact or with damaged wall), embryonating (egg with two or more cell divisions), and embryonated (egg containing larvae of the parasite).

2.9. Epidemiological data collection

Epidemiological analysis of human characteristics was based on a questionnaire that assessed potential exposure to Toxocara and included the geographical location of residence, age, sex, education level, household income, animal ownership, drinking water source/type, washing fruits and vegetables before consumption, sanitizing/hand washing before meals, consumption of raw or undercooked meat. For the epidemiological analysis of the characteristics of dogs and cats, the questionnaire gathered data on sex, breed, animal origin, geographical location of residence, diet, raw meat intake, drinking water source/type, access to trails and beaches and forests, hunting habits, ectoparasite presence and control, deworming, vomiting, weight loss, and diarrhea.

2.9.1. Statistical analyses

The data were organized in spreadsheets, and the analytical process started with a descriptive exploration of the databases. The chi-square test was used to verify the association between Toxocara spp. results in humans and the collection sites. Fisher exact test was used to verify the association between the Toxocara spp. results of humans in relation to their dogs. The Mann-Whitney test was used to examine Toxocara spp. serology of humans and their PCV and TTP results.

Bivariate analysis was performed for all independent variables, calculating the odds ratio (OR) and confidence interval (CI) and the P value (P). Multivariate analysis was performed by fitting the variables in a multilevel logistic regression model, in which spatial dependence was tested. The best-fitting model was considered the one that included significantly associated variables (P < 0.05) and minimized the Akaike Information Criterion (AIC) value.

As computational support, R software [25] was used. All tests performed considered a two-way significance level α of 5% and a 95% CI.

3. Results

Out of 328 human samples, 190 (57.9%) were collected on islands and 138 (42.1%) on the seashore mainland. Overall, 212/328 (64.6%) were positive for anti-Toxocara spp. (CI = 59.46–69.80), including 125/190 (65.79%) on islands (CI = 58.04–72, 54) and 87/138 (63.04%) on the mainland (CI = 54.99–71.09).

Seropositivity was 194/301 (64.5%) in adults and 16/22 (72.7%) in children. All individuals were clinically healthy at the time of sampling, with no self-reported clinical complaint. Results were reported to the City Secretary of Health, and future visits recommended for seropositive persons (including specialty exams as ophthalmology, cardiology, and neurology), to provide medical assistance and appropriate treatment, if necessary. No statistical difference was observed between the anti-Toxocara antibody result and PCV (P = 0.786) or TTP (P = 0.352) in humans. The descriptive statistics for these variables are shown in Supplementary Table 1.

Regarding PCV and TTP, the descriptive analysis of parameters in humans, dogs, and cats, according to the result for Toxocara spp. are shown in Supplementary Table 2.

No associated risk factor assessed by the questionnaire was statistically significant for anti-Toxocara antibodies in humans, either in the bivariate or multivariate analysis (Table 2).

Hair samples were selected from 75/104 (72.1%) dogs from islands and 29/104 (27.9%) from mainland areas. Overall, 22/104 (21.2%) hair samples contained eggs of Toxocara spp. Viable eggs were observed in 19/22 (86.4%) samples, either in cell division or not yet embryonated, and 3/22 (13.6%) were non-viable or degenerated. Descriptive analysis of dog and cat samples is presented in Supplementary Table 3.

No statistical association was observed between the sampling site and human toxocarasis among five sites (P = 0.172) or between islands and mainland areas (P = 0.641). Such comparison was not performed for pets since all infected dogs lived on islands, and no infected cats were found. Sample distribution according to sampling site and results for human anti-Toxocara antibodies and Toxocara spp. eggs in pets are shown in Supplementary Table 4.

Overall, 295/328 (89.9%) individuals were dog owners, of whom 103/295 (34.9%) had their dog sampled. While 7/103 (6.8%) positive owners had positive dogs, 25/103 (24.3%) negative owners had negative dogs. Different results between owners and their dogs were found in 71/103 cases (68.9%). No statistical difference was found between Toxocara spp. seropositivity in owners and presence of eggs in dogs (P = 0.325). The complete association analyzes between owner and dog results is presented in Supplementary Table 5. No association was found between human seropositivity to Toxocara spp. and positive dogs for fecal Toxocara spp. (OR = 0.5303; 95% CI = 0.1540–1.827; P = 0.3246).

Environmental contamination (recovery of Toxocara spp. eggs) was observed in 50/130 (38.5%) samples from all sites. In Ilha do Mel island, sampling was performed in the two largest island communities, Encantadas and Brasília. A total of 3/10 (30%) beach and 8/10 (80%) trail sets had recovery of Toxocara spp. eggs in Encantadas, while 5/10 (50%) beach and 10/10 (100%) trail sets were positive in Brasília. On the other two islands, 1/10 (10%) beach and 6/10 (60%) trail sets were positive on Superagui Island, and 6/10 (60%) beach sets were positive on Peças Island, with no trail samples. On mainland, a total of 4/10 (40%) sets were positive on central square, including 1/10 (10%) soccer field, with 0/10 (0%) positive beach set in Guararapesba. In Pontal do Sul, three sites were sampled, the wharf to Ilha do Mel island 4/10 (40%), the access trail to the main beach 2/10 (20%), and the beach, where 0/10 (0%) sets were positive. (Table 3).

In all sites, children and adults in direct contact with the soil were observed because the sites were beaches for bathers and the trails give access to the communities (houses, grocery stores, churches, schools, and health centers). The presence of dogs and cats and the presence of feces at the sites were also observed.

4. Discussion

This study shows an overall 212/328 (64.6%) seroprevalence for anti-Toxocara antibodies in populations of both islands and mainland cities in southern Brazil. Compared to other seroprevalence studies in Brazil, the prevalence herein was higher, except for one study that
reported 247/344 (71.8%) seropositive adults living in a rural area in the Rio Grande do Sul State (RS), also in southern Brazil [26]. Reports with lower prevalence reported include 194/376 (51.6%) in urban recreation areas of north-central mesoregion, Paraná State, Brazil [27], 18/280 (6.43%) of pregnant women presented at the Obstetric Center, RS, Brazil [28], and other Brazilian regions [29–31]. To the author’s knowledge, the prevalence of seropositivity in children/teens observed herein is the highest reported to date in Brazil, according to a recent review [32].

In this study, no significant association was found between risk factors (age, sex, educational level, monthly income, owning dogs or cats, ingestion of treated water, and consumption of raw or uncooked meat) and Toxocara seropositivity in humans. In a survey reporting 382/413 (92.49%) seropositive pregnant women in Nigeria, the lack of significant association between risk factors and Toxocara spp. seropositivity was related to the difficulty of obtaining statistical significance due to high seropositivity [33]. Thus, the high prevalence reported herein may have also impaired assessment of associated risk factors for toxocariasis.

The high prevalence observed in the shore populations, both in island and mainland areas, may be caused by contaminated sand and climatic factors favoring a frequent exposure to Toxocara spp. Sero-positivity for anti-Toxocara antibodies in humans has been considered common in tropical and subtropical countries, including Brazil [34]. The tropical climate and living conditions have reportedly predisposed survival of pathogens such as Toxocara spp. in the environment [3, 35]. According to a meta-analysis and compared to this study, anti-Toxocara seroprevalence was higher in children (OR = 1.9) than in adults, [3] likely secondary to frequent ingestion of infective Toxocara spp. eggs from soil/sand [1, 34]. A serosurvey has shown a high prevalence of 144/166 (86.8%) in children aged 7–12 years in the Marshall Islands [35]. Some studies have shown that professionals, such as waste pickers and workers in contact with animals, are at high risk of toxocariasis due to exposure to contaminated soil [36, 37]. The population of this study

Variables	Population	ELISA positive	OR	95% CI	P value
Site					
Island					
Mainland					
Age					
Children/teens					
Adults/elderly					
Sex					
Female					
Male					
Education					
≤ Elementary school					
> Elementary school					
Income					
≤ 1 minimum wage					
> 1 minimum wage					
Dog owner					
Yes					
No					
Cats owner					
Yes					
No					
Treated water					
No					
Yes					
Wash fruits/vegetables					
No					
Yes					
Wash hands					
No					
Yes					
Consumption of raw or uncooked meat					
Yes					
No					

Table 3 Environmental contamination with Toxocara spp. eggs in island and mainland areas, in different sets and locations, southern Brazil.

Location	Beach	Trail	Central Square	Soccer Field	Wharf	Total
Island						
Ilha do Mel island – Encantadas	3/10	8/10	NS	NS	NS	11/20 (55.0%)
Ilha do Mel island – Brasília	5/10	10/10	NS	NS	NS	15/20 (75.0%)
Superagui Island	1/10	6/10	NS	NS	NS	7/20 (35.0%)
Peças Island	6/10	NS	NS	NS	NS	6/10 (60.0%)
Mainland						
Guaruquezaba	0/10	NS	4/10	1/10	NS	5/30 (16.7%)
Pontal do Sul	0/10	2/10	NS	NS	4/10	6/30 (20.0%)
Total	15/60 (25.0%)	26/40 (65.0%)	4/10 (40.0%)	1/10 (10.0%)	4/10 (40.0%)	50/130 (38.5%)

*NS: not sampled.
was composed of traditional communities living on fishing and touristic activities and having frequent soil contact. Most soil samples assessed in this study were contaminated with *Toxocara* spp. eggs, some of them appearing viable. Furthermore, the presence of free-roaming dogs accessing public places, including trails and beaches, was a common observation during the samplings. Thus, contact with soil containing *Toxocara* spp. eggs may have exposed most of the island and mainland populations independent of the age of the inhabitants.

Human contact with dogs or cats has also been considered a risk factor for toxocariasis, most likely in non-dewormed pets [1,34]. In the present study, most people interviewed declared owning at least a dog, mostly unleashed and free-roaming. The fecal and hair analysis showed the presence of dogs infected by *T. canis*. Regular and systematic pet deworming should be recommended to mitigate toxocariasis transmission and reduce environmental contamination by *Toxocara* spp. eggs, including household backyard trails, and beaches.

Consuming undercooked/raw meat from paratenic hosts has been considered another risk factor (OR: 1.59; 95%CI: 1.03–2.47) associated with toxocariasis [3], most frequently in Asian countries due to cultural behavior of ingesting raw meat [38]. Despite being readily available, fish consumption may present a low risk of foodborne toxocariasis, according to a recent experimental study [39]. In addition, most study participants declared beef as the primary source of animal protein, and the vast majority did not have a habit of eating raw/undercooked meat. Thus, the lack of association of ingesting raw meat and toxocariasis may reflect the low impact of transmission via flesh in the studied population independent of animal sources.

Consumption of improper or contaminated drinking water has also been considered a risk factor for toxocariasis [3,34]. Despite the social vulnerability observed in the studied population herein, participants mostly declared drinking treated water, washing hands before meals, and washing vegetables before consumption. Although not statistically significant, such habits may have a protective effect for infection by *Toxocara* spp.

Anthropic actions related to close associations domestic animals may favor disease cycles, particularly zoonoses, that could impact public health, native fauna, and the natural environment. Geographically isolated areas, with overlapping human and animal populations, may increase potential impact, in an island-effect of increased disease transmission, but this was not observed in this study for the soil-borne pathogen, *Toxocara* spp.

As limitations, the present study may have not detected an island-effect of exacerbated *Toxocara* spp. transmission due to cross-household individuals, since persons may have been born or previously lived in islands and moved to mainland, or vice-versa, or may have worked in daily boat transportation and commercial trading, with frequent mainland-island circulation. In addition, proximity of the mainland and islands may have also decreased the degree of isolation, with mainland distance of 4 km (2.5 miles) from the Ilha do Mel island, 10 km (6.2 miles) from the Peças Island, and 10 km (6.2 miles) from the Superagui island. Finally, frequency of walking and playing on trails, trailside households, soccer activity on sand fields and beaches, as well as daily swimming, surfing, and other sand-contact activities have not been fully assessed.

5. Conclusions

The present study is the first concurrent report of anti-*Toxocara* spp. serology in people and the presence of *Toxocara* spp. eggs in their dogs and environmental samples in islands and mainland areas. The high seroprevalence observed in this study suggests that seashore lifestyle and living conditions in both island and mainland areas may have predisposed higher contact with infected pets and contaminated soil, favoring toxocariasis. The island-effect of increased disease transmission was not observed for the soil-borne pathogen *Toxocara* spp.

Funding

The research was funded through the Araucária Foundation for Scientific and Technological Development of Paraná State (US2020111000014).

Declaration of Competing Interest

We declare that we do not have any conflict of interest associated with manuscript.

Acknowledgments

The authors thank the State Secretary of Environment for assistance on blood sampling of human beings and dogs. Raúna Renostro Delai and Aaronson Ramathan Freitas have been supported by a Ministry of Health fellowship for their residency program on Shelter Medicine. Ysila Meriguet and Isabela B. Ferreira have been supported by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) for her Post-graduation. The authors kindly thank the Suzanne Pratt for editing and improving the article.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejohet.2021.100353.

References

[1] G. Ma, C.V. Holland, T. Wang, A. Hofmann, C.-K. Fan, R.M. Maizels, P.J. Hoter, R. B. Gasser, Human toxocariasis, Lancer Infect. Dis. 18 (2018) e14–e24, https://doi.org/10.1016/S1473-3099(17)30221-6.
[2] P.A.M. Overgaauw, F. van Knapen, Veterinary and public health aspects of *Toxocara* spp, Vet. Parasitol. 193 (2013) 398–403, https://doi.org/10.1016/j.vetpar.2012.12.035.
[3] A. Rostami, S.M. Rahi, C.V. Holland, A. Taghigour, M. Khalili-Femesh, Y. Fakhri, F.V. Ozmair, P.J. Hoter, R.B. Gasser, Seroprevalence estimates for toxocariasis in people worldwide: a systematic review and meta-analysis, PLoS Negl. Trop. Dis. 13 (2019), e0007809.
[4] S. McGuinness, K. Ledder, Global burden of Toxocariasis: a common neglected infection of poverty, Curr. Trop. Med. Rep. 1 (2014), https://doi.org/10.1097/s40475-013-0012-5.
[5] H.L.C. da Amaral, G.L. Rassier, M.S. Pepe, T. Gallina, M.M. Villela, M.O. de Nobre, C.J. Scaini, M.E.A. Berne, Presence of Toxocara canis eggs on the hair of dogs: a risk factor for Necvisar Larva Migrants, Vet.Parasitol. 174 (2010) 115–118, https://doi.org/10.1016/j.vetpar.2010.07.016.
[6] C.V. Holland, Knowledge gaps in the epidemiology of Toxocariasis: the enigma remains, Parasitology 144 (2017) 81–94, https://doi.org/10.1017/S0031182015001407.
[7] D. Otero, A.M. Alho, R. Nijssse, J. Roelfsema, P. Overgaauw, L. Madeira de Carvalho, Environmental contamination with Toxocara spp. eggs in public parks and playground sandpits of Greater Lisbon, Portugal, J. Infect. Public Health 11 (2017), https://doi.org/10.1016/j.jiph.2017.05.002.
[8] Y. Fakhri, R.B. Gasser, A. Rostami, C.K. Fan, S.M. Ghasem, M. Javannah, M. Bayani, B. Armoon, B. Moradi, Toxocara eggs in public places worldwide - a systematic review and meta-analysis, Environ. Pollut. 242 (2018) 1467–1475, https://doi.org/10.1016/j.envpol.2018.07.087.
[9] S. Rocha, R. Pinto, A. Floriano, L. Teixeira, B. Bassili, A. Martinez, S. Costa, M. Cazeiro, Environmental analyses of the parasitic profile found in the sandy soil from the Santos municipality beaches, SP, Brazil, Rev. Inst. Med. Trop. Sao Paulo 53 (2011) 277–281, https://doi.org/10.1590/S0036-46562011000500007.
[10] E.L. Ramos, C. Gómez-Hernández, L. Queiroz, R. Moura, N. Nogueira, G. Ferreira, K. Rezende-Oliveira, Parasite detection in sand from bays on the North Coast of São Paulo State, Brazil, Rev. Patol. Trop./J. Trop. Pathol. 49 (2020), https://doi.org/10.5216/rpt.v49i3.63783.
[11] F.J.R. Magalhães, M. Ribeiro-Andrade, F.M. Souza, C.D.P. Lima Filho, A.W. Biondo, O. Vidotto, I.T. Navarro, R.A. Mota, Seroprevalence and spatial distribution of Toxoplasma gondii infection in cats, dogs, pigs and equines of the Fernando de Noronha Island, Brazil, Parasitol. Int. 66 (2017) 43–46, https://doi.org/10.1016/j.parint.2016.11.016.
[12] M.C. da Carvalho, M. Ribeiro-Andrade, R.P.B. de Melo, D.M. Garden, J.W. Pinheiro Junior, E.F.T.S.F. Cavalcanti, F.J.R. Magalhães, R.A. Mota, Cross-sectional survey for toxoplasma gondii infection in humans in Fernando de Noronha island, Brazil, Rev. Bras. Parasitol. Vet. 30 (2021), e005121, https://doi.org/10.1590/S1984-926120210562.
[13] P.H.C. da Garcia, Acupuntura ecológica en área de protección ambiental: el caso de Guaraqueçaba (PR), 2010, https://doi.org/10.11066/D.16.2010.TDE-11082010-100446.

[14] Plano de Manejo - Parque Estadual Ilha do Mel | Instituto Água e Terra. http://www.iat.pr.gov.br/Pagina/Plano-de-Manejo-Parque-Estadual-Ilha-do-Mel, 2012 (n.d., accessed July 25, 2021).

[15] G. Roettle, C. Holland, P. Stafford, A. Wolfe, Contamination of fox hair with eggs of *Toxocara* canis, J. Helminthol. 82 (2008) 293–296, https://doi.org/10.1016/j.jhelmin.2002-2241X3(08)96954.

[16] M. Choobineh, F. Mikaeili, S. Sadjadi, S. Ebrahimi, S. Sadjadi, Molecular characterization of *Toxocara* spp. eggs isolated from public parks and playgrounds in Shiraz, Iran, J. Helminthol. 93 (2019) 306–312, https://doi.org/10.1016/j.jhelmin.2020.02.007.

[17] C.-K. Fan, H.-S. Lan, C.-C. Hung, W.-C. Chung, C.-W. Liao, W.-Y. Du, K.-E. Su, Seroprevalence of *Toxocara* canis infection among children in Taiwan, J. Trop. Med. Hyg. 71 (2004) 216–221.

[18] G.R. Elephant, S.H. Shimizu, M.C.A. Sanchez, C.M.A. Jacob, A.W. Ferreira, A serological follow-up of toxocariasis patients after chemotherapy based on the detection of IgG, IgA, and IgE antibodies by enzyme-linked immunosorbent assay, J. Clin. Lab. Anal. 20 (2006) 164–172, https://doi.org/10.1002/jcla.20126.

[19] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with *Folin phenol reagent*, J. Biol. Chem. 193 (1951) 265–275.

[20] R Core Team, European Environment Agency, n.d. https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006, 2020 (accessed July 25, 2021).

[21] A. Araújo, M. Marreiro Villela, C. Colli, G. Rubinsky-Elefant, M. Paludo, D. Falavigna, E. Guilherme, S. Mattia, S. Marques de Araújo, E. Ferreira, I. Previdelli, A. Falavigna-Guilherme, Serological, clinical and epidemiological evaluation of toxocariasis in urban areas of south Brazil, Rev. Inst. Med. Trop. Sao Paulo 60 (2018), e28, https://doi.org/10.1590/s1678-9946201860028.

[22] P.C. Santos, L.M. Lehmann, C. Lorenzi, C. Hirsch, P.L. Telmo, G.T. Mattos, P. S. Cadore, G.B. Klarke, M.E.A. Berne, C.V. Gonzálezes, C.J. Scalfi, The seropositivity of *Toxocara* spp. antibodies in pregnant women attended at the university hospital in Southern Brazil and the factors associated with infection, PLoS One 10 (2015), e0131058.

[23] E.C. Negri, V.A. Santarem, G. Rubinsky-Elefant, R. Giaffrida, Anti-Toxocara spp. antibodies in an adult healthy population: serosurvey and risk factors in Southeast Brazil, Asian Pac. J. Trop. Biomed. 3 (2013) 211–216, https://doi.org/10.1016/S2221-1691(13)60052-0.

[24] L.E. Prestes-Carneiro, G. Rubinsky-Elefant, A.W. Ferreira, P.R. Araujo, C. Troiani, S.C. Zago, M. Kairabara, L. Sasso, A. Bha, A. Vaz, Seroprevalence of toxoplasmosis, toxocariasis and cysticercosis in a rural settlement, São Paulo State, Brazil, Pathog. Glob. Health 107 (2013) 88–95, https://doi.org/10.1179/1753605012y.0000000079.

[25] L.C. Pereira, G.R. Elephant, Y.M. Nóbrega, T. Vital, N. Nitz, L. Gandolfi, R. Pratesi, M. Hecht, Toxocara spp. seroprevalence in pregnant women in Brazilia, Brazil, Rev. Soc. Bras. Med. Trop. 49 (2016) 641–643, https://doi.org/10.1590/0037-8682-0126-2016.

[26] P.P. Chieffi, S.A. Zevallos Lescano, G. Rodrigues E Fonseca, S.V. Dos Santos, Human Toxocariasis: 2010 to 2020 contributions from Brazilian researchers, Res. Rep. Trop. Med. 12 (2021) 81–91, https://doi.org/10.2147/RRTM.S27733.

[27] K. Ibotun, O. Sowemimo, C.-M. Chou, K. Ajenifuja, T.-W. Chuan, S. Azoalu, O. Akinwale, V. Gyang, T. Nwafor, E. Henry, C.-K. Fan, High seroprevalence of *Toxocara* antibodies in pregnant women attending an antenatal clinic at a university hospital in Ille-Ife, Nigeria, Trans. R. Soc. Trop. Med. Hyg. 114 (2020), https://doi.org/10.1093/trstmh/trz116.

[28] G. Ma, A. Rostami, T. Wang, A. Hofmann, P.J. Hotez, R.B. Gasser, Global and regional seroprevalence estimates for human toxocariasis: a call for action, Adv. Parasitol. 109 (2020) 275–290, https://doi.org/10.1016/bs.apar.2020.01.011.

[29] C.-J. Fu, T.-W. Chuang, H.-S. Lin, C.-H. Wu, Y.-C. Liu, M.K. Langinlur, M.-Y. Lu, W.-W. Hsiao, C.-K. Fan, Seroprevalence of *Toxocara* canis infection among primary schoolchildren in the capital area of the Republic of the Marshall Islands, BMC Infect. Dis. 14 (2014) 261, https://doi.org/10.1186/1471-2334-14-261.

[30] J.A. Haagsma, L. Tariq, D.J. Heederik, A.H. Havelaar, Infectious disease risks associated with occupational exposure: a systematic review of the literature, Occup. Environ. Med. 69 (2012) 140–146, https://doi.org/10.1136/oemed-2011-100496.

[31] C. Alvarado-Esquível, Toxocariasis in waste pickers: a case control seroprevalence study, PLoS One 8 (2013), e54897, https://doi.org/10.1371/journal.pone.0054897.

[32] C.-M. Chou, C.-K. Fan, Chapter Twenty-two - seroprevalence of *Toxocara* spp. infection in Southeast Asia and Taiwan, in: D.D.B.T.-A. in P. Bowman (Ed.), Toxocariasis and Toxocariasis, Academic Press, 2020, pp. 449–463, https://doi.org/10.1016/bsapar.2020.01.020.

[33] E.A. de Oliveira, Y.F.F.B. Merigueti, I.B. Ferreira, L.S. Garcia, A.S. Pereira, R.S. de Santos, L.B. Kmetiuk, A.P. Dos Santos, A.W. Biondo, V.A. Santar, The role of Nile Tilapia (*Oreochromis niloticus*) in the life cycle of *Toxocara* spp., Front. Vet. Sci. 8 (2021), 685911, https://doi.org/10.3389/fvets.2021.685911.