IMPACT OF CADMIUM TOXICITY ON LEAF AREA AND STOMATAL CHARACTERISTICS IN FABA BEAN

Beaťa Piršelová1*, Veronika Kubová1, Peter Boleček1, Alžbeta Hagedušová2

Address(es):
1Constantine the Philosopher University in Nitra, Faculty of Natural Sciences, Department of Botany and Genetics, Náměstie mliečne 91, 949 74 Nitra, Slovakia.
2Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Vegetable Production, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.

*Corresponding author: bpirselova@ukf.sk

ABSTRACT

Although changes in stomatal response to elevated doses of cadmium has already been observed in several plants, few studies have focused on this phenomenon in more detail. The effects of different doses of cadmium Cd2+ (50 and 100 mg.kg−1 soil) on leaf area and stomatal characteristics (number of stomata, number of epidermal cells, stomatal index and size of stomata) of faba bean (Vicia faba L. cultivar Astar) were studied after 15 days of heavy metal treatment. No visual changes on adaxial or abaxial side of leaves of the tested variety of faba bean were found. The leaf area was higher by 14.15 % at lower and by 12.23 % at the higher doses of Cd. The tested doses of Cd did not lead to a change in the number of stomata. The number of epidermal cells was increased on adaxial side by 4.98 % at dose Cd50. Stomatal index was decreased due to the effect of higher dose of cadmium by 11.38 % on adaxial side of leaves. In stomatal widths, decrease by 2.04 % (adaxial side) and 2.26 % (abaxial side) was observed at higher doses of Cd. In stomatal length decrease by 1.85 % was observed at higher dose of Cd on adaxial and decrease by 3.89 % (Cd50) and 4.63 % (Cd100) on abaxial side of leaves respectively. The variations of response could be signals of tolerance or adaptive mechanisms of the leaves of tested bean cultivar under the used concentrations of cadmium.

Keywords: plant defense, faba bean, cadmium, stomata, leaf area

INTRODUCTION

Cadmium (Cd) does not have an essential function in any living organism; thus even a low concentration of this metal is toxic to organisms. Due to high accumulation potential of cadmium, the single links of the food chain get contaminated relatively fast (Demková et al., 2017). Agricultural crops show varied levels of sensitivity to the given metal; with majority of them accumulating Cd in roots (Vamerali et al., 2012; Wu 1990). In plants, exposure to Cd causes oxidative stress, inhibition of growth, nutritional imbalances, changes in the activity of many enzymes, reduction of a transpiration rate and water content (Barceló and Poschenrieder, 1988; Benavides et al., 2005; Kuklová et al., 2017). In addition, it causes stomatal closure due to entry of Cd into the guard cells in competition to Ca2+ (Perkus-Barboch et al., 2002). Decrease in stomatal density is also characteristic symptom of Cd stress resulting in lesser conductance to CO2 (Pietrini et al., 2010) which consequently leads to inhibition of photosynthesis. However, it is accepted that the factors limiting photosynthesis have stomatal and non-stomatal nature (Vassilev and Yordanov, 1997). Reduced photosynthetic activity is often due to iron deficiency in cadmium treated leaves (Zhang et al., 2011). The changes in the stomatal density, size of stomata and epidermal cells as a response to environmental stress are important means of regulating the rate of absorption of risk elements by plants, while the stomatal index often remains unchanged (Gostín, 2009). Several authors suggest that leaves of resistant species show xeromorph characteristis, which most probably help plants adapt to the increased concentrations of heavy metals and gases (Kutschera-Mitter et al., 1982; Nikolauvski, 1989). Many studies have attempted to clarify the mechanism of heavy metal toxicity in plants (Benavides et al., 2005; Procházková et al., 2014; Kohanová et al., 2018). However, the high variability in the response of different genotypes to ions of Cd often results in contradictory relations between toxicity and physiological processes occurring in plants (Vassilev and Yordanov, 1997). In addition, Cd can interfere in several ways on the parameters that affect this physiological processes in leaves (Poschenrieder and Barceló, 2004). Although fabaceae are relatively sensitive to higher doses of metals (Inohue et al., 1994), results of several studies suggest that plants such as Lupinus albus, Vicia faba and Trifolium repens show tolerance to cadmium and may be used in re-vegetation and phytostabilization of cadmium contaminated soils (Verma et al., 2006, Pichtel and Bradway, 2008; Bidar et al., 2009).

In the present article, the influence of different concentrations of cadmium ions (50 and 100 mg.kg−1 soil) on leaf area, stomata size and frequency in faba bean cv. Astar are presented.

MATERIAL AND METHODS

Plant material and growth conditions

Seeds of beans (Vicia faba cv. Astar) were surface-sterilized with 5 % sodium hypochloride for 5 min and planted in pots containing mix of soil (BORA, pH 6; 1.0 % N; 0.3 % P2O5; 0.4 % K2O) and perlite (4:1). The plants were cultivated in a growth chamber at 20 °C, 12 hours light/12 hours dark period (illumination of 400 lux), and relative humidity 60 – 70 %. Pots were watered daily to 60 % water-holding capacity of the soil. The first developing leaves were developed, plants were supplied with distilled water (control) or two Cd2+ ion solutions with concentrations of 50 and 100 mg.kg−1 soil (Cd50 and Cd100). Cadmium was added as Cd(NO3)2·4H2O (Piršelová et al., 2016). On day 15 after application of metal solutions, the following characteristics were determined: leaf area, stomatal density, stomatal index, length and width of stomata in both adaxial (upper) and abaxial (lower) surface of leaves. Three replications were used per treatment and 8 plants per pot were analyzed (altogether 24 plants).

Number of stomata, size of stomata and stomatal index determination

The number and size of stomata were assessed after 15 days of growth in contaminated soil on upper (adaxial) and lower (abaxial) sides of leaves using clear nail polish, tape, and a glass slide. Leaves of similar size and maturity were used. The stomatal samples were collected at conditions with a temperature of 25 °C during 9:30-11:00 am. In total 24 microscopic fields of each epimernis and variant of experiments were randomly selected and examined using the Zeiss Axioskop II optical microscope and then they were counted. The number of stomata was expressed per mm2 of leaf area. To determine stomatal length and width, 50 randomly chosen stomata on each leaf (variant of experiments) were measured at 400× magnification. Images were obtained using Sony DXCS500.
digital camera and analysed with AxioVision AC software (Zeiss, Germany). Stomatal density was defined as the number of stomata per square millimeter of leaf surface. Stomatal index (SI) was calculated using the equation of Salisbury (1927). It is defined as:

\[
\text{SI} (\%) = \frac{\text{stomatal density} \times \text{epidermal cell density}}{100}
\]

Determination of leaf area

Leaf area was determined gravimetrically.

Measurements of cadmium content in leaves

Dried plant material (0.5 g roots and shoots) was digested in the mixture of 5 mL water, 5 mL of concentrated HNO₃ p.a. (Merck, Darmstadt, Germany), and 1.5 mL of H₂O₂ p.a. (Slavas, Bratislava) by using the microwave oven Mars Xpress (CEM Corporation, Matthews, USA). Decomposition temperature was 140 °C, ramp time 15 min, and hold time 13 min. After digestion, the solution was diluted to 25 mL with deionised water and filtered through an acid-resistant cellulose filter (Whatman No. 42). Blank samples were prepared in a similar way. The cadmium was determined by electrothermal atomic absorption spectroscopy (AAS Perkin Elmer 1100B, Norwalk, Connecticut, USA) (Dohovšická et al., 2013, Piršelová et al., 2016).

Statistical analysis

Data were analyzed by one-way ANOVA or Kruskal-Wallis tests using XLSTAT software. Data are expressed as the means ± standard deviation.

RESULTS AND DISCUSSION

Plant growth

Plants grown for 15 days in soil contaminated with cadmium did not show any visual symptoms of metal toxicity, such as chlorosis, necrotic lesions or wilting. Similar contradictions were presented in a study by Dohovšická et al. (2013) with soybeans exposed to dose of Cd of 50 mg.kg⁻¹ soil. Changes in the evaluated parameters of shoots (fresh and dry weight of shoots, shoot length) were statistically insignificant compared to the control; a decrease in the content of root biomass was noted (Piršelová et al., 2016).

Cadmium accumulation

The rate of cadmium accumulation in the roots and shoots was proportional to the dose of cadmium applied (Table 1). The accumulation of Cd in the roots was more pronounced, the reduced transport of Cd to the shoots may contribute to the plant tolerance to higher doses of Cd. (Zornoza et al., 2002).

Variant of experiment	Root (μg·g⁻¹ dry weight)	Shoot (μg·g⁻¹ dry weight)
Control	0.50 ± 0.01 Aa	0.10 ± 0.03 Ab
Cd50	62.26 ± 9.60 Ba	13.73 ± 3.27 Bb
Cd100	86.40 ± 0.99 Ba	16.53 ± 4.37 Bb

Legend: Different upper case letters within a column and different lower case letters within a row indicate significant differences at p < 0.05 (Kruskal-Wallis test).

Since the level of translocation of Cd from the roots to the shoots proved to be low, we assume its translocation to the seeds to be also low. However, single varieties of faba bean can have different levels of accumulation of Cd in their tissues. The selection of plant genotypes with low cadmium accumulation using genetic markers can contribute to rapid identification of plants suitable for growing in soils with a certain metallic load (Socha et al., 2015; Vollmann et al., 2015).

Number of stomata, size of stomata and stomatal index determination

Changes in the size and number of stomata are a manifestation of the plants' response to changes in the environment and are an important tool in regulating the absorption of pollutants by plants (Gośtin, 2009). Compared with guard cell length, stomatal density is relatively plastic and potentially adaptive to environmental changes (Sekiya and Yano, 2008). Leaves treated with Cd50 and Cd100 showed decreased number of stomata by 5.72 % and 2.9 % respectively on the adaxial side and by 5.13 and 1.0 % respectively on the abaxial side; these changes were insignificant (Figure 1).

The number of epidermal cells was increased significantly on adaxial surfaces (by 4.98 %) and decreased, but not significantly (by 13.37 %) on abaxial surfaces at doses Cd50 and Cd100 respectively (Figure 1). Stomatal index decreased significantly on adaxial side of leaves (Figure 2).

Results of the studies aimed at observing the number of stomata and epidermal cells affected by heavy metals are contradictory. Several authors (Kastori et al., 1992; Chwil, 2005; Shi and Caia, 2009) mentioned that number of stomata of epidermis increased with increased concentration of heavy metals. In contrast, however, cadmium decreased number of stomata on abaxial side of leaves of sorghum (Sorghum bicolor) Kasim (2006). Decrease in the number of stomata caused by the effect of cadmium was observed also on the leaves of oilseed rape by Baryl et al. (2001). Decrease in the number of epidermal cells due to metal contamination was also recorded by Makonkova (2001) and Gostin (2009). The given contradictions can be caused also by the differing reactions of the single parts of leaves to the different types of stress (Saidulu et al., 2014). Positive and negative correlations were also noticed among the metal concentrations and the number of stomata on the both sides of the leaves (Chwil, 2005). Stomatal index was decreased due to the effect of both doses of cadmium by 9.83 % and 11.38 % (adaxial side) and by 3.07 % and 1.00 % (abaxial side), however only decrease on adaxial side of leaf at higher dose of cadmium was statistically significant (Figure 3). These changes may be the result of increased oxidative stress in the leaves of the test variety of beans at a dose of cadmium 100 mg.kg⁻¹ soil (Piršelová et al., 2016).

![Figure 1](image-url)
Application of the lower doses of Cd resulted in less pronounced changes, while these mostly reflect the negative impact of Cd on the size of stomata, especially the length on abaxial leaf side (Figure 3). Shortening the stomata on the adaxial side of leaves of Arabis hypogaea L. after application of cadmium is reported also by Shi and Caia (2009) in their study.

Several other authors reported decreasing size of stomata with increasing concentrations of Cd ions applied in the form of CdCl₂ solution (Gostín, 2009; Pereira et al., 2016). Increase in stomatal density, the number of stomata and reduction in the size of guard cells per unit area represent a self-defense system, which is developed in plants under stress conditions and helps them survive in the contaminated environment (Azmat et al., 2009).

Effect of cadmium on leaf area

The change in leaf area due to cadmium is a common phenomenon associated with a reduction in the transpiration rate (Lai et al., 2015). In our experiments the leaf area was higher by 14.15 % at lower and by 12.23 % at the higher doses of cadmium (Figure 4).

The stimulatory effect of low doses of chemicals on plant growth is referred to as hormesis (Calabrese, 2009). Although the knowledge about mechanisms of hormesis is growing, the phenomenon is not sufficiently explained so far. Stimulation tends to increase plant defense and is mainly due to induction of synthesis of defense molecules (stress proteins), secondary metabolites, alteration of antioxidant enzyme activity and reduction of oxidative stress by inhibiting lipid peroxidation of membranes (Allender et al., 1997). In the tested cultivar enhanced accumulation of PR proteins (chitinases) was recorded in roots treated of cadmium, lead and arsenic (Bílkésiová et al., 2008).

CONCLUSION

We observed no visual symptoms of toxicity on the leaves of the tested variety of faba bean caused by the test doses of cadmium. The leaf area was higher by 14.15 % at lower and by 12.23 % at the higher doses of cadmium. We recorded no statistically significant changes in the monitored parameters of stomata caused by the lower dose of cadmium (Cd50) except of the length of stomata on the bottom side of leaves. Higher dose (Cd100) caused decrease in the size of stomata on both sides of leaves and increase of the number of epidermal cells on adaxial side at the unchanged number of stomata, which lead to a decrease of the stomatal index. The variations of response could be signals of tolerance or adaptive mechanisms of the leaves under the determined concentrations. Deeper morphological and physiological studies can contribute to the explanation of the role of cell epidermis of faba bean in its adaptation to ions of cadmium.

Acknowledgments: This work was supported by projects APVV-18-0154 and VEGA 1/0073/20.

REFERENCES

Allender, W. J., Cresswell, G. C., Kaldor, J. & Kennedy, I. R. (1997). Effect of lithium and lanthanum on herbicide induced hormesis in hydroponically-grown cotton and corn. Journal of Plant Nutrition, 20, 81–95. https://doi.org/10.1080/01904169709365235

Azmat, R., Haider, S., Nasreen, H., Aziz, F. & Riaz, M. (2009). A viable alternative mechanism in adapting the plants to heavy metal environment. Pakistan Journal of Botany, 41(6), 2729-2738.
Brassica napus - grown on cadmium soils and plants. Cd accumulation in topsoil and plants of spruce ecosystems. Kutschera et al. (2018). Cadmium tolerance in plants. Slovakian Agriculture and grain yield of sunflower. Plant Science, 30, 402-408. https://doi.org/10.17221/36/2017-PSE

Kutscher-Mitter, L., Lichtenegger, E. & Sobotik, M. (2018). Vegetationswand und Schadgasbelastung auf Grun- und Ackerland. In: Halbwachs, G. (ed.), Das Immisionskologische Projekt Arnlodstein. Sonderh. 39, 1982, 121-168. Lai, H. Y. V. (2015). Effects of leaf area and transpiration rate on accumulation and compartmentalization of cadmium in Impatiens patensiana. Water, Air, and Soil Pollution, 226, 2246. https://doi.org/10.1007/s11270-014-2246-9 Makovnikov, J. (2001). Distribution of Cd and Pb in main soil types of Slovakia. Agriculture, 47, 903-911. Nakaew, V. (2016). Ecocology-Morphological basis of gas resistance of plants. Moscow, Inst. Forest. Publ., Moscow (in Russian). Pereira, M. P., Correa, F. F., Castro, E. M., Ribeiro, V. E. & Pereira, F. J. (2016). Cadmium tolerance in Schinus molle trees is modulated by enhanced leaf anatomy and photosynthesis. Trees, 30, 807-814. https://doi.org/10.1007/s00468-015-1220-2 Perflis-Babrowski, L., Leonhardt, N., Vavaseur, A. & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32(4), 539-548. https://doi.org/10.1046/j.1365-313X.2002.01442.x Pietrini, F., Zaccinni, M., Lorni, V., Petrosanti, L., Ferreri, M. & Massacci, A. (2018). Spatial distribution of cadmium in leaves and on photosynthetic tissues of different strategies in willow and poplar clones. Plant Biology, 12(2), 355-363. Pichetl, J. & Bradway, D. J. (2008). Conventional cro-ps and organic amendments for Pb, Cd and Zn treat-ment at a severely contaminated site. Bioresource Technology, 99(5), 1242-1251. Piščelová, B., Kuna, R., Lukáč, P. & Havřentová, M. (2016). Effect of cadmium on growth, photosynthesis pigments, iron and cadmium accumulation of faba bean (Vicia faba cv. Atast). Agriculture, 62(2), 72-79. https://doi.org/10.1515/agr-2016-0008 Poschenrieder, C. & Barceló J. (2004). Water relations in heavy metal stressed plants. In: Prasad M.N.V. (ed.): Heavy Metals Stress in Plants: From Biomolecules to Ecosystems, 2nd Edition. Springer Verlag, Berlin, 249-270. http://doi.org/10.1007/978-3-662-07743-9 Procházková, D., Haisel, D., Pavlíková, D., Száková, J. & Wilhelmová, N. (2014). The impact of increased soil risk elements on carotenoid contents. Central European Journal of Biology, 9(7), 678-685. https://doi.org/10.2478/s11505-014-0303-4 Saidul, C. H., Venkateshwar, C., Gangadharr S. R. & Ramkrishna, N. (2014). Morphological studies of medicinal plant of Withania somnifera (L.) Dunal grown in heavy metal treated (contaminated) soil. Journal of Pharmacognocy and Phytochemistry, 3(1), 37-42. Sekiya, N. & Yano, K. (2008). Stomatal density of cowpea correlates with carbon isotope discrimination in different phosphorus, water and CO2 environments. New Physiologit, 179, 799-807. https://doi.org/10.1111/j.1469-1825.2008.01821.x Salisbury, E. J. (1927). On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philosophical Transactions of the Royal Society of London B, 216, 1-65. https://doi.org/10.1098/rstb.1928.0001 Shi, G. & Cai, Q. (2009). Leaf plasticity in peanut (Arachis hypogaea L.) in response to heavy metal stress. Environmental and Experimental Botany, 67, 112-117. https://doi.org/10.1016/j.envexpbot.2009.02.009 Socha, P., Bernstein, N., Rybinský, E., Mészáros, P., Gálusová, T., Spieš, N., Libantová, J., Moravčíková, J. & Matušíková, I. (2015). Cd accumulation potential as a marker for heavy metal tolerance in soybean. Israel Journal of Plant Sciences, 62(3), 160-166. https://doi.org/10.1007/s11270-015-0434-7 Vamerlí, T., Marchiol, H., Bundiera, M., Fellet, G., Dickinson, N. M., Lucchini, P., Mosca, G. & Zerbi, G. (2012). Advances in agronomic management of phyto-remediation: Methods and results from a 10-year study of metal polluted soils. Italian Journal of Agronomy, 7(4), 323-330. https://doi.org/10.4081/agr.2012.e42 Vassilev, A. & Yordanov, I. (1997). Reductive analysis of factors limiting growth of cadmium treated plants: a review. Bulgarian Journal of Plant Physiology, 23, 114-133. Vermis, R. B., Mahmoduzzafar, Siddiqui, T. O. & Iqbal, M. (2006). Foliar response of Ipomea pes-tigridis L. to coal-smoke pollution. Turkish Journal of Botany, 30(5), 413-417. Vollmann, J., Lošák, T., Pachner, M., Watanabe, D., Musilová, L. & Hulíek, J. (2015). Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica, 203, 177-184. https://doi.org/10.1007/s10681-014-1727-8 Wu, L. (1990). Colonization and establishment of plants in contaminated sites. In Shaw, A. J. (Ed) Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press: Boca Raton, 269-284. Zhang, X. W., Zhang, M., Wang, Q. H., Qu, X. K., Hu, G. Q. & Dong, Y. J. (2011). Effect of exogenous nitric oxide on physiological characteristic of peanut under iron-deficient stress. Journal of Plant Nutrition and Fertilization, 17, 665-673. https://doi.org/10.1007/s00367-013-6870-9 Zornoza, P., Vázquez, S., Esteban, E., Fernández, P. & Barceló J. (2009). Leaf Cu accumulation in absence of contaminated soil and plants. New Phytologist, 179, 799-807. https://doi.org/10.1111/j.1469-1825.2008.01821.x