Initial decoherence in solid state qubits

G. Falci, A. D’Arrigo, A. Mastellone, and E. Paladino
Dipartimento di Metodologie Fisiche e Chimiche (DMFCI), Università di Catania, Viale A. Doria 6, 95125 Catania (Italy) & MATIS - Istituto Nazionale per la Fisica della Materia, Catania

We study decoherence due to low frequency noise in Josephson qubits. Non-Markovian classical noise due to switching impurities determines inhomogeneous broadening of the signal. The theory is extended to include effects of high-frequency quantum noise, due to impurities or to the electromagnetic environment. The interplay of slow noise with intrinsically non-gaussian noise sources may explain the rich physics observed in the spectroscopy and in the dynamics of charge based devices.

PACS numbers: 03.65.Yz, 03.67.Lx, 05.40.-a
Keywords: decoherence; quantum control; quantum bistable fluctuator; telegraph noise; 1/f-noise

Considerable progress has been recently achieved in implementing qubits with superconducting nanocircuits. Coherent oscillations and entanglement of coupled charge qubits have been observed. Limitations in the performances arise from noise due to material and device dependent sources. Noise due to individual impurities behaving as bistable fluctuators (BF) is a severe source of dephasing for charge based devices. Sets of BF’s determine 1/f noise, and effects due to individual BF’s has been observed both in spectroscopy and in time resolved dynamics. Observations show a variety of features, as the drastic reduction of the amplitude of the coherent signal or relaxation limited decoherence strongly dependent on the particular device and on details of the protocol. Theories of BF’s environments allow to understand several physical aspects, although a quantitative framework embedding the variety of phenomena is still missing. Phenomenological models of the environment as a suitable set of harmonic oscillators have also been studied. While they are unable to describe aspects related to the discrete nature of noise, gaussian environments may sometimes provide useful information.

In this work we study numerically a model of discrete noise which potentially explain the experimental features due to 1/f noise, and seek a classification of the possible effects on the basis of simple theoretical arguments. In particular we study inhomogeneous broadening due to slow noise and its interplay with additional noise sources, pointing out that the presence of BF’s may pose reliability problems for charge based devices.

We consider a qubit anisotropically coupled to classical stochastic process $\xi(t)$. The Hamiltonian is

$$H = H_Q - \frac{1}{2} \xi(t) \sigma_z$$

where $H_Q = -\frac{1}{2} \vec{\Omega} \cdot \vec{\sigma}$ refers to the qubit. Both the operating point, i.e. the angle θ between \vec{z} and $\vec{\Omega}$, and the splitting Ω are tunable. This also modulates sensitivity to noise. For weak coupling the relaxation $T_1^{-1} = s^2 S(\Omega)/2$ and the dephasing rate $T_2^{-1} = (2T_1)^{-1} + T_2^{-1}$, $T_2^{-1} = c^2 S(0)/2$ being the adiabatic term which gives secular broadening, are tuned by $c = \cos \theta$ and $s = \sin \theta$. Only the power spectrum of noise, $S(\omega) = \langle \xi(\omega) \rangle$, enters therefore in weak coupling the qubit is sensitive only to properties of the environment at the level of two point correlations. This picture breaks down if the environment extends to low frequencies. For instance Random Telegraph Noise (RTN) due to a single BF, $\xi(t) = \{0, v_0\}$, switching at a rate γ_0 is slow if $g_0 = (\Omega' - \Omega)/\gamma_0 > 1$, where the qubit frequencies Ω and $\Omega' = (\Omega(\gamma_0 + c^2 + s^2)^{1/2}$ correspond to the two values of ξ. This model describes an incoherently switching charged impurity close to a qubit. For $g_0 > 1$ features of the discrete nature of the BF become apparent.

A set of N_{bf} BFs (ξ_i) switching at rates γ_i, coupled with the qubit via $\xi(t) = \sum_i \xi_i(t)$, models 1/f noise if γ_i are distributed with $P(\gamma) \propto 1/\gamma$. The 1/f spectrum is $S_{1/f}(\omega) = \omega^{1/2}$, and if $\gamma_i \in [\gamma_m, \gamma_M]$, in the same interval of frequencies is approximated by $S_{1/f}(\omega) \approx (\pi/4) N_{bf}^2 \omega^2 / [\ln(\gamma_M/\gamma_m)]^{-1} \omega^{-1}$. Noise extends for several decades and in particular slow BFs ($g_i < 1$), an environment with memory, make unstable the calibration of the device. Hence the qubit dynamics will depend on details of the protocol. Decoherence due to BFs 1/f noise for various protocols has been studied for $\theta = 0$, where exact solutions are available. On the other hand the splitting is less sensitive to fluctuations at optimal working point, $\theta = \pi/2$ (parameters g_i become smaller), and part of the effects of the slow noise is eliminated at lowest order T_2^{-1} vanishes.

Ideal quantum protocols assume measurements of individual members of an ensemble of identical (meaning that preparation is controlled) evolutions of the qubit, defocusing occurring only during the time evolution. In practice for solid-state devices one collects several qubit evolutions, in an overall measurement time t_m. Lack of control on the environment preparation determines defocusing of the signal, analogous to inhomogeneous broadening in NMR. This is also true for single-shot measurements. In our case BFs active in additional broadening have $\gamma_i > \gamma^* \sim \min\{t_7/10, t_m^{-1}\}$.
We study an ensemble of time evolutions of the qubit, obtained as the product of the propagators between successive times. In order to minimize errors in generating 2000 RTN processes with proper distribution of parameters, we use a “waiting time” algorithm [21], which also reduces the computational time. The qubit propagator is evaluated as the product of the propagators between successive switches. Finally we perform the statistical average. We study an ensemble of time evolutions of the qubit, each lasting for a time \(t \). During the overall time \(t_m \) of the protocol the environment evolves in an uncontrolled way, so BFs with \(\gamma_i > 1/t_m \) average, whereas BFs with \(\gamma_i < 1/t_m \) are frozen. Thus for the simulation we consider \(> 10^5 \) realizations of \(\xi(t') \), for \(0 < t' < t \). For the individual BFs at \(t' = 0 \) we choose the same initial \(\xi(0) = 0,1 \) if \(\gamma_i < 1/t_m \) whereas if \(\gamma_i > 1/t_m \) we take a distribution with \(0 < \xi(0) < 1 \). This prescription has been checked against more accurate ones in Ref. [12].

Results at \(\theta = \pi/2 \) for an adiabatic \(1/f \) environment, \(\gamma_M \ll \Omega \), show the presence of several time scales (Fig. 1). Coherent oscillations of \(\langle \sigma_z \rangle \) are initially suppressed with a power law. Relaxation occurs on much longer time scales, given by the weak coupling result. The initial suppression is due to inhomogeneous broadening. This is apparent if we compare with results with a feedback protocol simulated by resetting \(\xi(0) \) at the same value for each realization of \(\xi(t') \).

Negligible relaxation allows to treat \(\xi(t) \) in the adiabatic approximation. Observables are then given by path-integrals over a weight \(P[\xi(t)] \) of the stochastic process. We study the averaged phase shift \(\Phi(t) \), defined as

\[
e^{-i\Omega t - i\Phi(t)} = \int D\xi(t') P[\xi(t')] e^{-i\int_0^t dt' \Omega(\xi(t'))}
\]

which gives the decay of the qubit coherences, \(\langle \sigma_y \rangle \propto \exp[3\Phi(t)] \). Here \(\Omega(\xi(t)) = \Omega[(\xi(t)/\Omega + c)^2 + \sigma_t^2]^{1/2} \) is the instantaneous qubit splitting. Numerical evaluation of the path-integral Eq. (2) fully agrees with the simulations. Further insight is obtained by approximating Eq. (2). The Static-Path Approximation (SPA), \(\xi(t') = \xi_0 \) accounts for lack of control on the environment preparation via a statistically distributed \(\xi_0 \). This blurs of the overall signal, an effect analogous to the rigid lattice line breadth in NMR [18]. For a set of BFs, if \(\xi_0 \) is large enough \(\xi_0 \) is gaussian distributed with variance \(\sigma_2^2 = \nu^2 N_b f / 4 = \int_0^\infty (d\omega/\pi) S(\omega) \), where it is intended that we consider only active BFs, \(\gamma_i > \gamma^* \). The result, plotted in Figs 2a, has been checked against more accurate ones in Ref. [12].

\[
-\frac{1}{2} \left(\frac{(c\xi t)^2}{1 + is^2\sigma_t^2 t/\Omega} - \frac{1}{2} \ln \left(1 + is^2\sigma_t^2 t/\Omega \right) \right)
\]

which is accurate close to \(\theta = 0 \) and \(\theta = \pi/2 \) for \(\sigma_t/\Omega \) small enough. The resulting suppression factor \(\exp(3\Phi) \)
turns from a \(\exp\left(-\frac{1}{2}c^2\xi^2t^2\right) \) behavior at \(\theta \approx 0 \) to a power law, \([1 + (s^2\sigma^2t/\Omega)^2]^{-1/4}, \) at \(\theta \approx \pi/2 \). These limits reproduce known results for gaussian \(1/f \) environments, namely at \(\theta = 0 \) the \(t \ll 1/\gamma_M \) limit of the exact result \[22\] and for \(\theta = \pi/2 \) the short-time result of the diagrammatic approach of Ref. \[3\]. This is not surprising since the SPA does not require knowledge of the dynamics of the noise sources, provided they are slow \[23\].

Eq. \[2\] can be systematically approximated by sampling better \(\xi(t) \) in \([0, t]\). For the first correction \(P\xi(t) \) is approximated by the joint distribution \(P\xi(t|\xi_00) \), where \(\xi_\ell = \xi(t) \). At \(\theta = \pi/2 \) for generic gaussian noise we find

\[
i\Phi(t) = \frac{1}{2} \ln \left[1 + i \frac{\sigma^2_\ell (1 - \pi(t) t)}{\Omega} \right] + \frac{1}{2} \ln \left[1 + i \frac{\sigma^2_\ell \pi(t) t}{3 \Omega} \right]
\]

where \(\pi(t) = \frac{\Omega}{\pi} \int_0^\infty (d\omega/\pi) S(\omega)(1 - e^{-i\omega t}) \) is a transition probability, depending on the stochastic process. For Ornstein-Uhlenbeck processes it reduces to the re-

ditions of the qubit can be written as

\[
\rho(t) = \int D\xi(t) P\xi(t) \rho_f[t|\xi(t)]
\]

where \(\rho_f[t|\xi(t)] \) is the qubit density matrix resulting from the elimination of the fast environment, under the “driv” \(\xi(t) \), and can be found within the weak coupling theory \[24\]. This is very simple if we treat slow noise in the SPA, where \(\xi(t) = \xi_0 \). We are left with averages over \(P(\xi_0) \) of the entries of \(\rho_f[t|\xi_0] \). For instance the decay of the coherences at \(\theta = \pi/2 \) is given by

\[
e^{-\frac{1}{2} \frac{S_f(\Omega) t}{\gamma} - \frac{1}{2} \ln [1 + \left[i\Omega + S_f(\Omega) - \frac{1}{2} S_f(\Omega) \right] \sigma^2 t/\Omega^2]}
\]

where \(S_f(\omega) \) refers to the set of fast BFs, whereas \(\sigma^2 \) refers to the set slow BFs. Eq. \[4\] agrees very well with simulations (Fig. 3).

![Fig. 3: Results of simulations with an adiabatic plus fast BF \(-1/f \) environment (same parameters of Fig. 1 except for \(\gamma_M = 10^{11} \text{ rad s}^{-1} \)). Relaxation (thin solid green line) is given by the weak coupling result (dots). The initial suppression of the oscillation amplitude is partially removed by a feedback protocol (shaded curves) and is well described by the two-stage elimination SPA theory (solid red line). Eq. \[4\].]

We notice that the validity of Eq. \[4\] is not limited to the \(\sim 1/\gamma \) distribution of switching rates giving rise to \(1/f \) noise. According to this description relaxation and inhomogeneous broadening are due to separate sets of BFs. Therefore no special relation is expected to hold between \(T_1 \) and \(T_2 \). The mixed term in Eq. \[4\], due to the interplay between slow and fast BFs does not qualitatively change this conclusion. Finally Eq. \[4\] is rather independent from the nature of the noise sources and the form of the spectrum and it is applicable in other situations, e.g. when slow impurity noise combines with fast electromagnetic noise. Eq. \[4\] becomes exact if \(\xi_f \) determines white noise, a scenario recently proposed to fit decoherence in phase-charge qubits.

We come now to effects of the discrete nature of noise. Results presented so far rely on the SPA and on the weak coupling theory, therefore they apply to situations where discrete and gaussian noise are indistinguishable. Striking differences appear when only decoherence during time evolution \[4, 16\] matters, or if the distribution of environment couplings \(v_i \) is wide \[5\], the realistic scenario for the solid state. We now study the interplay of \(1/f \) noise with RTN produced by one BF which is more strongly coupled with the qubit. The model for the BF is minimal: it is an incoherent slow fluctuator, having \(\gamma_0 \ll 1/t < \Omega \) but \(\gamma_0 \ll \Omega \). Even if the BF is not resonant with the qubit, \[24\] it strongly affects the output signal. If \(g_0 > 1 \), it determines beats in the coherent oscillations and split peaks in spectroscopy, which are signatures of a discrete environment. The additional BF makes bistable the working point of the qubit and amplifies defocusing due to \(1/f \) noise. Even if the device is initially optimally polarized, during \(t_m \) the BF may switch it to a different working point. The line shape of the signal will show two peaks, split by \(\sim \Omega - \Omega \) and differently broadened by the \(1/f \) noise in background. The corresponding time evolution will show damped beats, this phenomenology
FIG. 4: (a) $\langle \sigma_y \rangle$ at $\theta = \pi/2$, $\Omega = 10^{10}$Hz. The effect of weak adiabatic $1/f$ noise (light gray line) ($\gamma \in [10^5, 10^6]$ Hz, uniform $v = 0.002\Omega$, $n_d = 250$) is strongly enhanced by adding a single slow ($\gamma/\Omega = 0.005$) more strongly coupled ($v_0/\Omega = 0.2$) BF (black line), which alone would give rise to beats (red line). (b) When the BF is present the Fourier transform of the signal may show a split-peak structure. Even if peaks are symmetric for the single BF alone (dashed line), $1/f$ noise broadens them in a different way (solid line).

being entirely due to the non-gaussian nature of the environment. For illustrative purposes we show results of a simulation at the optimal point, where $1/f$ noise is adiabatic and weaker than the typical noise level in charge qubits. This picture applies to smaller devices. The fact that even a single impurity on a qubit can be developed, and will be presented elsewhere.

Recently effects of the resonant coupling of the qubit with a quantum two-level system, simulating defects in the tunnel oxide, have been proposed to explain features of the dynamics of phase Josephson qubits. We have shown that these effects are present even if the impurity behaves as a slow stochastic fluctuator. Our model describes a very common situation in the solid state, and it is a minimal model for charge noise in charge and charge-phase qubits. Finally the interplay between slow noise and fast noise with generic spectrum is likely to be important in general and can be studied with Eq. 4. The main open questions are the accurate characterization beyond phenomenology of the physics of the noise sources and the design of specific strategies to defeat them and to improve reliability of devices.

We acknowledge discussion with D. Esteve, R. Fazio, G. Ithier, Y. Nakamura, G. Schön and A. Shnirman. We acknowledge support from projects EU-SQUIDIT (IST-2001-390083) and MIUR-FIRB (RBAU01A9PM).

[1] Y. Nakamura et al., Nature 398, 786 (1999); Y. Yu et al., Science 296, 889 (2002); J. M. Martinis et al., Phys. Rev. Lett. 89, 117901 (2002); I. Chiorescu et al., Science, 299, 1869, (2003); T. Yamamoto et al., Nature 425, 941 (2003).
[2] D. Vion et al., Science 296, 886 (2002).
[3] T. Duty et al., Phys. Rev. B, 69, 140503(R) (2004); O. Astafiev et al., preprint 2004.
[4] Yu. A. Pashkin et al., Nature 421, 823 (2003).
[5] Y. Makhlin et al., Rev. Mod. Phys. 73, 357 (2001).
[6] E. Paladino et al., Phys. Rev. Lett., 88, 228304 (2002).
[7] E. Paladino et al., Adv. Sol. State Phys., 43, 747 (2003). E. Paladino et al. cond-mat/0407484.
[8] Y. M. Galperin et al., cond-mat/0312490.
[9] Y. Makhlin, A. Shnirman, Phys. Rev. Lett. 92, 178301 (2004).
[10] K. Rabenstein et al., cond-mat/0401519.
[11] M.B. Weissman, Rev. Mod. Phys. 60, 537 (1988).
[12] A.B. Zorin et al, Phys. Rev. B 53, 13682 (1996).
[13] Chalmers Group (Göteborg), NTT Group (Atsugi), private communications.
[14] Quantronics Group (Saclay), private communication.
[15] Y. Nakamura et al., Phys. Rev. Lett. 88, 047901 (2002).
[16] G. Falci et al., in Quantum Phenomena of Mesoscopic Systems, B. L. Altshuler and V. Tognetti Eds., IOS Press (2003), cond-mat/0312550.
[17] H. Gassmann et al., Phys. Rev. E 66, 041111 (2002).
[18] C. P. Slichter, Principles of Magnetic Resonance, Springer Verlag (1996).
[19] C. Cohen-Tannoudji et al., Atom-Photon Interactions, Wiley-Interscience (1993).
[20] O. Astafiev et al., cond-mat/0402619.
[21] H. P. Breuer, F. Petruccione The Theory of Open Quantum Systems, Oxford Univ. Press (2002).
[22] G. M. Palma et al., Proc. R. Soc. London A, 452, 567 (1996).
[23] Eq. 3 is also valid for Ornstein-Uhlembeck processes, see Ref. 11, whereas for RTN the discrete nature of $\xi(t)$ modifies this result 12.
[24] Unless they are individually strongly coupled 13, $\gamma_{ad} < v/\Omega$.
[25] R. W. Simmonds et al., Phys. Rev. Lett. 93, 077003 (2004).