Local definitions of formations of finite groups

L.A. Shemetkov
Department of Mathematics, F. Scorina Gomel State University,
Gomel 246019, Belarus;
E-mail: shemetkov@gsu.by

Abstract
A problem of constructing of local definitions for formations of finite groups is discussed in the article. The author analyzes relations between local definitions of various types. A new proof of existence of an \(\omega\)-composition satellite of an \(\omega\)-solubly saturated formation is obtained. It is proved that if a non-empty formation of finite groups is \(X\)-local by Förster, then it has an \(X\)-composition satellite.

2000 Mathematics Subject Classification: 20D10
Keywords: Frattini subgroup, saturated formation, satellite

1. Introduction

We consider only finite groups. So, all group classes considered are subclasses of the class \(\mathcal{E}\) of all finite groups. Recall that a formation is a group class closed under taking homomorphic images and subdirect products (see [1]). A formation \(\mathcal{F}\) is said to be \(p\)-saturated (\(p\) a prime) if the condition:

\[G/N \in \mathcal{F}\text{ for a }G\text{-invariant }p\text{-subgroup }N\text{ of }\Phi(G)\]

always implies \(G \in \mathcal{F}\). A formation \(\mathcal{F}\) is said to be \(\mathcal{N}_p\)-saturated if the condition

\[G/\Phi(N) \in \mathcal{F}\text{ for a normal }p\text{-subgroup }N\text{ of }G\]

always implies \(G \in \mathcal{F}\).

If a formation is \(p\)-saturated for any prime \(p\), then it is called saturated. Clearly, every \(p\)-saturated formation is \(\mathcal{N}_p\)-saturated. The converse is not true:
there is an extensive class of \mathcal{N}_p-saturated formations which are not p-saturated. However, as it is established in [2], between local definitions of these two types of formations there is a close connection.

The concept of local definitions of saturated formations was considered for the first time by W. Gaschütz [1]. Following [3], we formulate it in the general form.

A local definition is a map $f: \mathcal{E} \to \{\text{formations}\}$ together with a f-rule which decide whether a chief factor is f-central or f-eccentric in a group. In addition, we follow the agreement that the local definition f does not distinguish between non-identity groups with the same (up to isomorphism) set of composition factors. Therefore, for any fixed prime p, f is not distinguish between any two non-identity p-groups; we will denote through $f(p)$ a value of f on non-identity p-groups.

If a class \mathcal{F} coincides with the class of all groups all of whose chief factors are f-central, we say that f is a local definition of \mathcal{F}. It generalises the concept of nilpotency. Thus, the problem of finding local definitions for group classes is equivalent to a problem of finding classes of generalized nilpotent groups.

In this paper we analyze relations between local definitions of different types and give a new proof of a theorem on a local definition of a formation which is \mathcal{N}_p-saturated for any p in a set ω of primes.

2. Preliminaries

We use standard notations and definitions [4]. We say that a map f does not distinguish between \mathcal{H}-groups if $f(A) = f(B)$ for any two groups A and B in \mathcal{H}. Following Gaschütz, the \mathcal{F}-residual $G^{\mathcal{F}}$ of a group G is the least normal subgroup with quotient in \mathcal{F}. The Gaschütz product $\mathcal{F} \circ \mathcal{H}$ of formations \mathcal{F} and \mathcal{H} is defined as the class of all groups G such that $G^{\mathcal{F}} \in \mathcal{F}$. If \mathcal{F} is closed under taking of normal subgroups, then $\mathcal{F} \circ \mathcal{H}$ coincides with the class $\mathcal{F}\mathcal{H}$ of all extensions of \mathcal{F}-groups by \mathcal{H}-groups.

\mathbb{P} is the set of all primes; $\text{Char}(\mathcal{X})$ is the set of orders of all simple abelian groups in \mathcal{X}. A group G is called a pd-group if its order is divisible by a prime p; C_p is a group of order p; if $\omega \subseteq \mathbb{P}$, then $\omega' = \mathbb{P} \setminus \omega$; an ωd-group (a chief ωd-factor) is a group (a chief factor) being pd-group for some $p \in \omega$; $G_{\omega d}$ is the largest normal subgroup all of whose G-chief factors are ωd-groups ($G_{\omega d} = 1$ if all minimal normal subgroups in G are ω'-groups). If \mathcal{H} is a class of groups, then \mathcal{H}_ω is the class of all ω-groups in \mathcal{H}. A chief factor H/K of G is called a chief \mathcal{H}-factor if $H/K \in \mathcal{H}$. The socle $\text{Soc}(G)$ of a group $G \neq 1$ is the product
of all minimal normal subgroups of G.

$[A]B$ is a semidirect product with a normal subgroup A; $O_{\omega}(G)$ is the largest normal ω-subgroup in G; $\pi(G)$ is the set of all primes dividing the order of a group G; $\pi(\mathfrak{F}) = \cup_{G \in \mathfrak{F}} \pi(G)$; \mathfrak{A} is the class of all nilpotent groups; \mathfrak{A} is the class of all abelian groups; $\text{Com}(G)$ is the class of all groups that are isomorphic to composition factors of a group G; $\text{Com}(\mathfrak{F}) = \cup_{G \in \mathfrak{F}} \text{Com}(G)$; $\text{Com}^+(\mathfrak{F})$ is the class of all abelian groups in $\text{Com}(\mathfrak{F})$; $\text{Com}^-(\mathfrak{F})$ is the class of all non-abelian groups in $\text{Com}(\mathfrak{F})$; (G) is the class of all groups isomorphic to G; \mathfrak{J} is the class of all simple (abelian and non-abelian) groups; if \mathfrak{L} is a subclass in \mathfrak{J}, then $\mathfrak{L}' = \mathfrak{J} \setminus \mathfrak{L}$; \mathfrak{L}^{+} is the class of all abelian groups in \mathfrak{L}, $\mathfrak{L}^{-} = \mathfrak{L} \setminus \mathfrak{L}^{+}$. $\text{E}_{\mathfrak{F}}$ is the class of all groups G such that $\text{Com}(G) \subseteq \mathfrak{F}$; $G_{\text{E}_{\mathfrak{F}}}$ is the $\text{E}_{\mathfrak{F}}$-radical of G, the largest normal $\text{E}_{\mathfrak{F}}$-subgroup in G. If $S \in \mathfrak{J}$, then $C^{S}(G)$ is the intersection of centralizers of all chief $E(S)$-factors of G ($C^{S}(G) = G$ if $S \notin \text{Com}(G)$); if $S = C_{p}$, we write $C^{p}(G)$ in place of $C^{S}(G)$.

Lemma 2.1 (see [3], Lemmas 2-3). (a) If S is a non-abelian simple group, then $C^{S}(G)$ is the $E(S)^{'+}$-radical of G, the largest normal subgroup not having composition factors isomorphic to S.

(b) Let p be a prime, and \mathfrak{F} be the class of all groups all of whose chief p-factors are central. Then $C^{p}(G)$ is the $G_{\mathfrak{F}}$-radical of G, for every group G.

The following three lemmas are reformulations of Lemmas IV.4.14–IV.4.16 in [4] whose proofs use only p-solubly saturation.

Lemma 2.2. Let \mathfrak{F} be an \mathfrak{N}_{p}-saturated formation, p a prime. If $C_{p} \in \text{Com}(\mathfrak{F})$, then $\mathfrak{N}_{p} \subseteq \mathfrak{F}$.

Lemma 2.3. Let \mathfrak{F} be an \mathfrak{N}_{p}-saturated formation containing \mathfrak{N}_{p}, p a prime. Let N be an elementary abelian normal p-subgroup in G such that $[N](G/N) \in \mathfrak{F}$. Then $G \in \mathfrak{F}$.

Lemma 2.4. Let p be a prime, and let \mathfrak{F} be an \mathfrak{N}_{p}-saturated formation containing \mathfrak{N}_{p}. Let N be an elementary abelian normal p-subgroup in G such that $G/N \in \mathfrak{F}$ and $[N](G/C_{G}(N)) \in \mathfrak{F}$. Then $G \in \mathfrak{F}$.

Proof. Set $M = [N](G/N)$, $C = C_{G}(N)$. Evidently, $C/N = C_{G/N}(N)$. In the group M we have $C_{M}(N) = N \times C/N$ and C/N is normal in M. Hence $M/(C/N) \cong [N](G/C) \in \mathfrak{F}$. Since $M/N \in \mathfrak{F}$, it follows that $M/N \cap (C/N) \cong M \in \mathfrak{F}$. Now we apply Lemma 2.3.

Lemma 2.5. Let \mathfrak{F} be an \mathfrak{N}_{p}-saturated formation containing \mathfrak{N}_{p}, p a prime.
Let $H \in \mathfrak{F}$ and let $C_p(H/L) \leq L \triangleleft H$. If N is an irreducible $\mathbb{F}_p(H/L)$-module, then $[N](H/L) \in \mathfrak{F}$.

Lemma 2.6 (see [4], Proposition IV.1.5). Let \mathfrak{F} be a formation and $G \in \mathfrak{F}$. Let S, R, K be normal subgroups in G such that $S \subseteq R$ and $K \subseteq C_G(R/S)$. Then $[R/S](G/K) \in \mathfrak{F}$.

Lemma 2.7 (see [5] or [6], Theorem 7.11). If $H/\Phi(G) = \text{Soc}(G/\Phi(G))$, then $C_G(H) \subseteq H$.

Lemma 2.8 (see [4], Lemma IV.4.11). Let p be a prime, $L = \Phi(O_p(G))$. Then $C_p(G/L) = C_p(G)/L$.

3. Local and ω-local satellites

The following type of a local definition was proposed by W. Gaschütz [1].

Definition 3.1. Let f be a local definition such that

$$f(A) = \bigcap_{p \in \pi(A)} f(p)$$

for any group $A \neq 1$. Let an f-rule be defined as follows: a chief factor H/K of a group G is f-central if $G/C_G(H/K) \in f(H/K)$. Then f is called a local satellite.

Definition 3.2 (see [4], p. 387). Let A be a group of operators for a group G, and f a local satellite.

(i) We say that A acts f-centrally on an A-composition factor H/K of G if $A/C_A(H/K) \in f(p)$ for every prime $p \in \pi(H/K)$.

(ii) We say that A acts f-hypercentrally on G if A acts f-centrally on every A-composition factor of G.

The convenient notation $LF(f)$ for a group class with a local satellite f was introduced by Doerk and Hawkes [3]. Clearly, $LF(f)$ is a non-empty formation (we have always $1 \in LF(f)$).

The following proposition is evident.

Proposition 3.1. Let f be a local satellite and $\pi = \{p \in \mathbb{P} \mid f(p) \neq \emptyset\}$. Then $LF(f)$ consists precisely of π-groups G satisfying the following condition: $G/O_{\pi'}(p)(G) \in f(p)$ for any $p \in \pi(G)$. Thus, if $\pi = \emptyset$, we have $LF(f) = \{1\}$. If $\pi \neq \emptyset$, we have that

$$LF(f) = \mathcal{E}_\pi \bigcap_{p \in \pi} (\mathcal{E}_p \mathcal{E}_p f(p)).$$
We remember the reader that a formation \mathfrak{F} is saturated if $G/\Phi(G) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$ (by definition, the empty set is a saturated formation). W. Gashütz has shown that every formation with a local satellite is saturated. This fact follows also from the following theorem of P. Schmid.

Theorem 3.1 (see [4], Theorem IV.6.7). Let f be a local satellite, and let A be a group of operators for a group G. If A acts f-hypercentrally on $G/\Phi(G)$, then A acts likewise on G.

The following remarkable result is known as the Gaschütz–Lubeseder–Schmid theorem, see [4], Theorem IV.4.6.

Theorem 3.2. A non-empty formation has a local satellite if and only if it is saturated.

It is straightforward to verify that if \mathfrak{F} is a non-empty formation, then $\mathfrak{N} \mathfrak{F}$ is a formation with a local satellite f such that $f(p) = \mathfrak{F}$ for every prime p. Evidently, the formation $\mathfrak{A}_p \times \mathfrak{N}_p'$ of all nilpotent groups with an abelian Sylow p-subgroup is not saturated, but for every prime $q \neq p$, $G/(\Phi(G) \cap O_q(G)) \in \mathfrak{A}_p \times \mathfrak{N}_p'$ always implies $G \in \mathfrak{A}_p \times \mathfrak{N}_p'$. One more fact of the same sort is the following. Consider a saturated formation of the form $\mathfrak{M} \circ \mathfrak{F}$. Here \mathfrak{F} can be non-saturated, but for every prime $p \in \mathbb{P} \setminus \mathfrak{P}(\mathfrak{M})$, $G/(\Phi(G) \cap O_p(G)) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$. The facts of such kind lead to the concept of a ω-saturated formation [11].

Definition 3.3. Let ω be a set of primes. A formation \mathfrak{F} is called ω-saturated if for every prime $p \in \omega$, $G/(\Phi(G) \cap O_p(G)) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$.

The problem of finding of local definitions of ω-saturated formations was considered in [7] and [3]. While solving this problem the following concept of small centralizer was useful (see [8]).

Definition 3.4. Let H/K be a chief factor of a group G. The *small centralizer* $c_G(H/K)$ of H/K in G is the subgroup generated by all normal subgroups N of G such that $\text{Com}(NK/K) \cap \text{Com}(H/K) = \varnothing$.

With the help of Definition 3.4 we can introduce the concept ‘ω-saturated satellite’ as follows.

Definition 3.5. Let ω be a set of primes, and f a local definition which does not distinguish between all non-identity ω'-groups; if $\omega' \neq \varnothing$, we denote
through \(f(\omega') \) a value of \(f \) on non-identity \(\omega' \)-groups. In addition, we assume that
\[
 f(A) = \bigcap_{p \in \pi(A) \cap \omega} f(p)
\]
for any \(\omega \)-group \(A \). Let an \(f \)-rule be defined by the following way: a chief factor \(H/K \) of \(G \) is \(f \)-central in \(G \) if either \(H/K \) is an \(\omega \)-group and \(G/C_G(H/K) \in f(H/K) \) or else \(H/K \) is an \(\omega' \)-group and \(G/C_G(H/K) \in f(\omega') \). Then \(f \) is called an \(\omega \)-local satellite. We denote by \(LF_\omega(f) \) the class of all groups all of whose chief factors are \(f \)-central. By definition, \(1 \in LF_\omega(f) \).

Clearly, if \(\omega = \mathbb{P} \), then an \(\omega \)-local satellite \(f \) is a local satellite, and \(LF_\omega(f) = LF(f) \). If \(\omega \neq \mathbb{P} \) and \(f(\omega') = \emptyset \), then \(LF_\omega(f) = LF(h) \) where \(h(p) = f(p) \) if \(p \in \omega \), and \(h(p) = \emptyset \) if \(p \in \omega' \).

Lemma 3.1 (see [3], Lemma 1). Let \(\mathcal{E} \) be a subclass in \(\mathcal{F} \), and \(\{S_i \mid i \in I\} \) be the set of all \(E\mathcal{E} \)-factors of a group \(G \). Then \(\bigcap_{i \in I} c_G(S_i) \) is the \(E(\mathcal{E}') \)-radical \(G_{E(\mathcal{E}')} \) of \(G \).

Remark 3.1. In Lemma 3.1 the set \(\{c_G(S_i) \mid i \in I\} \) can be empty. We always follow the agreement that the intersection of an empty set of subgroups of \(G \) coincides with \(G \).

The following proposition is similar to Proposition 3.1.

Proposition 3.2. Let \(f \) be an \(\omega \)-local satellite, and \(\omega \) a proper subset in \(\mathbb{P} \). Let \(\pi = \{p \in \omega \mid f(p) \neq \emptyset\} \). Then:

1. if \(\pi = \emptyset \) and \(f(\omega') = \emptyset \), then \(LF_\omega(f) = (1) \);
2. if \(\pi = \emptyset \) and \(f(\omega') \neq \emptyset \), then \(LF_\omega(f) = \mathcal{E}_{\omega'} \cap f(\omega') \);
3. if \(f(\omega') \neq \emptyset \), then \(LF_\omega(f) \) consists precisely of groups \(G \) such that \(G/G_{\omega d} \in f(\omega') \) and \(G/O_{\omega',p}(G) \in f(p) \) for any \(p \in \pi(G) \cap \omega \).

Proof. Statements (1) and (2) are evident.

Prove (3). Assume that \(f(\omega') \neq \emptyset \), and let \(G \in LF_\omega(f) \). Let \(\mathcal{E} \) be the set of all chief \(\omega' \)-factors in \(G \). If a chief factor \(H/K \) of \(G \) is an \(\omega' \)-group, then \(G/c_G(H/K) \in f(\omega') \). Therefore, \(G/\bigcap_{H/K \in \mathcal{E}} c_G(H/K) \in f(\omega') \). By Lemma 3.1, \(\bigcap_{H/K \in \mathcal{E}} c_G(H/K) = G_{\omega d} \). So, \(G/G_{\omega d} \in f(\omega') \). If \(p \in \omega \) and \(H/K \) is an chief \(\omega \)-factor, then \(G/C_G(H/K) \in f(p) \), and we have \(G/O_{\omega',p}(G) \in f(p) \).

Conversely, let \(G \) be a group such that \(G/G_{\omega d} \in f(\omega') \) and \(G/O_{\omega',p}(G) \in f(p) \) for any \(p \in \pi(G) \cap \omega \). Clearly, we have that all \(G \)-chief \(\omega d \)-factors are \(f \)-central. Let \(H/K \) be a \(G \)-chief \(\omega' \)-factor of \(G \). Then \(G_{\omega d} H/K \subseteq c_G(H/K) \), and \(G/G_{\omega d} \in f(\omega') \) implies \(G/c_G(H/K) \in f(\omega') \). □
The following result extends Theorem 3.2 to \(\omega\)-saturated formations.

Theorem 3.3 (see [7], Theorem 1). *Let \(\omega\) be a set of primes. A non-empty formation has a \(\omega\)-local satellite if and only if it is \(\omega\)-saturated.*

4. Composition and \(\mathcal{L}\)-composition satellites

Gaschütz’s main idea [1] was to study groups modulo \(p\)-groups, and he implemented it through local satellites of soluble formations. While considering non-soluble formations, we have to follow the following principle: study groups modulo \(p\)-groups and simple groups. That approach was proposed in the lecture [9] at the conference in 1973; in that lecture composition satellites were considered under the name ‘primarily homogeneous screens’.

Definition 4.1. Let \(f\) be a local definition, and let an \(f\)-rule be defined as follows: a chief factor \(H/K\) of a group \(G\) is \(f\)-central if \(G/C_G(H/K) \in f(H/K)\). Then \(f\) is called a *composition satellite*. We denote by \(CF(f)\) the class of all groups all of whose chief factors are \(f\)-central.

Definition 4.2. Let \(A\) be a group of operators for a group \(G\), and \(f\) a composition satellite.

(i) We say that \(A\) acts \(f\)-centrally on an \(A\)-composition factor \(H/K\) of \(G\) if \(A/C_A(H/K) \in f(H/K)\).

(ii) We say that \(A\) acts \(f\)-hypercentrally on \(G\) if it acts \(f\)-centrally on every \(A\)-composition factor of \(G\).

As an example, we consider the class \(\mathfrak{N}^*\) of all quasinilpotent groups (for the definition of a quasinilpotent group, see [12], Definition X.13.2). It is easy to check that \(\mathfrak{N}^* = CF(f)\) where \(f\) is a composition satellite such that \(f(p) = (1)\) for every prime \(p\), and \(f(S) = \text{form}(S)\) for every non-abelian simple group \(S\). Here \(\text{form}(S)\) is a least formation containing \(S\); it consists of all groups represented as a direct product \(A_1 \times \cdots \times A_n\) with \(A_i \simeq S\) for any \(i\). The formation \(\mathfrak{N}^*\) is non-saturated, but it is solubly saturated.

As pointed out in [4], formations with composition satellites were also considered—in different terminology—by R. Baer in his unpublished manuscript. By R. Baer, a formation \(\mathfrak{F}\) is called *solubly saturated* if the condition \(G/\Phi(G_\mathfrak{F}) \in \mathfrak{F}\) always implies \(G \in \mathfrak{F}\) (here \(G_\mathfrak{F}\) is the soluble radical of \(G\)). The question of the coincidense of the family of non-empty solubly saturated formations and the family of formations with composition satellites was solved by the following result due to R. Baer.
Theorem 4.1 (see [4], Theorem IV.4.17). A non-empty formation has a composition satellite if and only if it is solubly saturated.

A composition satellite h is called integrated if $h(S) \subseteq CF(h)$ for any simple group S. If $\mathcal{F} = CF(f)$, then $\mathcal{F} = CF(h)$ where $h(S) = f(S) \cap \mathcal{F}$ for any simple group S. Thus, if a formation has a composition satellite, then it has an integrated composition satellite.

Remark 4.1. Let $\{CF(f_i) \mid i \in I\}$ be a family of formations having composition satellites. Let $f = \cap_{i \in I} f_i$ be a composition satellite such that $f(S) = \cap_{i \in I} f_i(S)$ for every $S \in \mathcal{F}$. Clearly, $CF(f) = \cap_{i \in I} CF(f_i)$.

Remark 4.2. Let X be a set of groups. Let $\{\mathcal{F}_i \mid i \in I\}$ be the class of all formations \mathcal{F}_i satisfying the following two conditions: 1) $X \subseteq \mathcal{F}_i$; 2) \mathcal{F}_i has a composition satellite. Set $cform(X) = \cap_{i \in I} \mathcal{F}_i$. By Remark 4.1, $cform(X)$ has a composition satellite. In the subsequent we will use that notation $cform(X)$.

Remark 4.3. Assume that a non-empty formation \mathcal{F} has an composition satellite. Let $\{f_i \mid i \in I\}$ be the class of all composition satellites of \mathcal{F}. Having in mind Remarks 4.1 and 4.2 we see that $f = \cap_{i \in I} f_i$ is a composition satellite of \mathcal{F}; f is called the minimal composition satellite of \mathcal{F}.

Lemma 4.1. Let X be a set of groups, and S a simple group. Then $\mathcal{H} = Q(G/C^S(G) \mid G \in form(X))$ is a formation, and $Com(\mathcal{H}) \subseteq Com(X)$.

Proof. By Proposition IV.1.10 in [4], \mathcal{H} is a formation. By Lemma II.1.18 in [4], $form(X) = QR_0 X$. Therefore, inclusion $Com(\mathcal{H}) \subseteq Com(X)$ is valid.

Lemma 4.2. Let X be a non-empty set of groups, and f be a composition satellite such that $f(S) = Q(G/C^S(G) \mid G \in form(X))$ if $S \in Com(X)$, and $f(S) = \emptyset$ if $S \in \mathcal{J} \setminus Com(X)$. Then f is the minimal composition satellite of $cform(X)$.

Proof. Let f_1 be the minimal composition satellite of $\mathcal{F} = cform(X)$ (see Remark 4.3). We will prove that $f_1 = f$.

Since $X \subseteq \mathcal{F}$, $G/C^S(G) \in f_1(S)$ for any group $G \in X$ and any $S \in Com(G)$ and therefore $f(S) \subseteq f_1(S)$. So $CF(f) \subseteq \mathcal{F} \subseteq CF(f_1)$. On the other hand, $X \subseteq CF(f)$. Thus $\mathcal{F} = CF(f)$ and $f = f_1$.

The following theorem proved independently in [13] and [14] was the first important result on composition formations.
Theorem 4.2. Let f be an integrated composition satellite. Let A be a group of automorphisms of a group G. If A acts f-hypercentrally on G, then $A \in CF(f)$.

Applying Theorem 4.2 to the formation \mathfrak{U} of all supersoluble groups, we have the following result.

Theorem 4.3 (see [13], Theorem 2.4). Let A be a group of automorphisms of a group G. Assume that there exists a chain of A-invariant subgroups
\[G = G_0 > G_1 > \cdots > G_n = 1 \]
with prime indices $|G_{i-1}:G_i|$. Then A is supersoluble.

In 1968 S.A. Syskin tried to prove Theorem 4.3 in the soluble universe, but his proof [15] is false.

In [2] there has been begun studying of local definitions of ω-solubly saturated formations.

Definition 4.3. Let ω be a set of primes. A formation \mathfrak{F} is called:

1. **ω-solubly saturated** if the condition
 \[G/N \in \mathfrak{F} \text{ for } G\text{-invariant } \omega\text{-subgroup } N \text{ in } \Phi(G_{\omega,0}) \]
 always implies $G \in \mathfrak{F}$ (here $G_{\omega,0}$ is the ω-soluble radical of G);

2. **\mathfrak{M}_{ω}-saturated** if for every prime $p \in \omega$, the condition $G/\Phi(O_p(G)) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$.

Later we will establish that the p-solubly saturation is equivalent to the \mathfrak{M}_p-saturation, and therefore a formation \mathfrak{F} is ω-solubly saturated if and only if it is p-solubly saturated for every $p \in \omega$.

Definition 4.4. Let \mathfrak{L} be a class of simple groups. Let f be a local definition which does not distinguish between all non-identity $E(\mathfrak{L}')$-groups; if $\mathfrak{L}' \neq \emptyset$, we denote by $f(\mathfrak{L}')$ an value of f on non-identity $E(\mathfrak{L}')$-groups. Let f-rule be defined as follows: a chief factor H/K of a group G is f-central in G if either H/K is an $E\mathfrak{L}$-group and $G/C_G(H/K) \in f(H/K)$ or H/K is a $E(\mathfrak{L}')$-group and $G/c_G(H/K) \in f(H/K) = f(\mathfrak{L}')$. Then f is called an \mathfrak{L}-composition satellite. We denote by $CF_\mathfrak{L}(f)$ the class of all groups all of whose chief factors are f-central. By definition, $1 \in CF_\mathfrak{L}(f)$.

Clearly, if $\mathfrak{L} = \mathfrak{F}$, then an \mathfrak{L}-composition satellite f is a composition satellite, and $CF_\mathfrak{L}(f) = CF(f)$. If $\mathfrak{L} \neq \mathfrak{F}$ and $f(\mathfrak{L}') = \emptyset$, then $CF_\mathfrak{L}(f) = CF(h)$ where $h(S) = f(S)$ if $S \in \mathfrak{L}$, and $h(S) = \emptyset$ if $S \in \mathfrak{L}'$.

\[9\]
Proposition 4.1. Let \(\mathfrak{L} \) be a class of simple groups, and \(f \) an \(\mathfrak{L} \)-composition satellite. Let \(\mathfrak{F} = \{ S \in \mathfrak{L} \mid f(S) \neq \varnothing \} \). Then:

1. if \(\mathfrak{F} = \varnothing \) and \(f(\mathfrak{L}') = \varnothing \), then \(\mathcal{CF}_\mathfrak{L}(f) = (1) \);
2. if \(\mathfrak{F} = \varnothing \) and \(f(\mathfrak{L}') \neq \varnothing \), then \(\mathcal{CF}_\mathfrak{L}(f) = \mathcal{E}(\mathfrak{L}') \cap f(\mathfrak{L}') \);
3. if \(f(\mathfrak{L}') \neq \varnothing \), then \(\mathcal{CF}_\mathfrak{L}(f) \) consists precisely of groups \(G \) such that \(G/\mathcal{G}_\mathfrak{L} \in f(\mathfrak{L}') \) and \(G/\mathcal{C}_S(G) \in f(S) \) for every \(S \in \text{Com}(G) \cap \mathfrak{L} \).

Proof. Statements (1) and (2) are evident.

Prove (3). Assume that \(f(\mathfrak{L}') \neq \varnothing \), and let \(G \in \mathcal{CF}_\mathfrak{L}(f) \). Let \(\mathfrak{T} \) be the set of all chief \(\mathcal{E}(\mathfrak{L}') \)-factors in \(G \). If a chief factor \(H/K \) of \(G \) is an \(\mathcal{E}(\mathfrak{L}') \)-group, then \(G/\mathcal{C}_G(H/K) \in f(\mathfrak{L}') \). Therefore, \(\mathcal{G} = \bigcap_{H/K \in \mathfrak{T}} \mathcal{C}_G(H/K) \in f(\mathfrak{L}') \). By Lemma 3.1, \(\mathcal{G} = G_{\mathfrak{L}'} \). So, \(G/\mathcal{G}_{\mathfrak{L}'} \in f(\mathfrak{L}') \). If \(S \in \mathfrak{L} \) and \(H/K \) is an chief \(\mathcal{E}(\mathfrak{L}) \)-factor, then \(G/\mathcal{C}_G(H/K) \in f(S) \), and we have \(G/\mathcal{C}_S(G) \in f(S) \).

Conversely, let \(G \) be a group such that \(G/\mathcal{G}_{\mathfrak{L}'} \in f(\mathfrak{L}') \) and \(G/\mathcal{C}_S(G) \in f(S) \) for every \(S \in \text{Com}(G) \cap \mathfrak{L} \). Clearly, all chief \(\mathcal{E}(\mathfrak{L}) \)-factors of \(G \) are \(f \)-central. Let \(H/K \) be a chief \(\mathcal{E}(\mathfrak{L}') \)-factor of \(G \). Then \(\mathcal{G}_{\mathfrak{L}'} \subseteq \mathcal{C}_G(H/K) \), and therefore \(G/\mathcal{G}_{\mathfrak{L}'} \in f(\mathfrak{L}') \) implies \(G/\mathcal{C}_G(H/K) \in f(\mathfrak{L}') \).

An \(\mathfrak{L} \)-composition satellite \(f \) is called integrated if \(f(S) \in \mathcal{CF}_\mathfrak{L}(f) \) for every \(S \in \mathfrak{F} \). If \(\mathfrak{F} = \mathcal{CF}_\mathfrak{L}(f) \), then \(\mathfrak{F} = \mathcal{CF}_\mathfrak{L}(h) \) where \(h(S) = f(S) \cap \mathfrak{F} \) for any simple group \(S \). Thus, if a formation has an \(\mathfrak{L} \)-composition satellite, then it has an integrated \(\mathfrak{L} \)-composition satellite.

Lemma 4.3. If \(\mathfrak{F} = \mathcal{CF}_\mathfrak{L}(f) \), then \(\mathfrak{F} = \mathcal{CF}_\mathfrak{L}(h) \) where \(h \) is an integrated \(\mathfrak{L} \)-composition satellite such that \(h(S) = \mathfrak{F} \) for every \(S \in (\mathfrak{L}^+) \).

Proof. We can assume without loss of generality that \(f \) is integrated. Let \(\mathfrak{F} = \mathcal{CF}_\mathfrak{L}(h) \) where \(h(S) = f(S) \) if \(S \in \mathfrak{L}^+ \), and \(h(S) = \mathfrak{F} \) if \(S \in (\mathfrak{L}^+) \). Evidently, \(\mathfrak{F} \subseteq \mathfrak{F} \). Assume that \(\mathfrak{F} \not\subseteq \mathfrak{F} \), and choose a group \(G \) of minimal order in \(\mathfrak{F} \). Then \(L = G^{\mathfrak{F}} \) is a unique minimal normal subgroup in \(G \), and \(L \) is not \(f \)-central. Clearly, \(c_G(L) = 1 \), and \(c_G(L) = 1 \) if \(L \) is non-abelian. Let \(A \in \text{Com}(L) \). Applying Definition 4.4 and considering the cases \(A \in \mathfrak{L}^+ \), \(A \in \mathfrak{L}^- \) and \(A \in \mathfrak{L} \), we arrive at a contradiction.

Theorem 4.4 (see [10], Theorem 2). Let \(\mathfrak{F} \) be a non-empty formation, \(\mathfrak{L} \) a class of simple groups. The following statements are equivalent:

1. \(\mathfrak{F} \) has an \(\mathfrak{L} \)-composition satellite;
2. \(\mathfrak{F} \) has an \(\mathfrak{L}^+ \)-composition satellite.

Proof. (1) \(\Rightarrow \) (2). Let \(\mathfrak{F} = \mathcal{CF}_\mathfrak{L}(f) \). Applying Lemma 4.3 we can suppose
that \(f \) is integrated and \(f(S) = \mathfrak{F} \) for every \(S \in (\mathfrak{L}^+)' \). Let \(\mathfrak{H} = CF_{\mathfrak{L}^+}(h) \) where \(h \) is an \(\mathfrak{L}^+ \)-composition satellite such that \(h(S) = f(S) \) if \(S \in \mathfrak{L}^+ \), and \(h(S) = \mathfrak{F} \) if \(S \in \mathfrak{L}^+ \cup \mathfrak{L}^- = (\mathfrak{L}^+)' \). We will prove that \(\mathfrak{F} = \mathfrak{H} \).

If \(G \) is a group of minimal order in \(\mathfrak{F} \setminus \mathfrak{H} \), then \(L = G^\mathfrak{F} \) is a unique minimal normal subgroup in \(G \), and \(L \) is not \(h \)-central. Clearly, \(c_G(L) = 1 \), and \(C_G(L) = 1 \) if \(L \) is non-abelian. Applying Definition 4.4 we see that \(L \) is \(h \)-central, a contradiction. Thus \(\mathfrak{F} \subseteq \mathfrak{H} \).

Let \(G \) be a group of minimal order in \(\mathfrak{H} \setminus \mathfrak{F} \). Then \(L = G^\mathfrak{F} \) is a unique minimal normal subgroup in \(G \), and \(L \) is not \(f \)-central. Clearly, \(c_G(L) = 1 \), and \(C_G(L) = 1 \) if \(L \) is non-abelian. Applying again Definition 4.4 we see that \(L \) is \(f \)-central, and we arrive at a contradiction. Thus \(\mathfrak{H} \subseteq \mathfrak{F} \).

(2) \(\Rightarrow \) (1). Let \(\mathfrak{F} = CF_{\mathfrak{L}^+}(f) \). Applying Lemma 4.3 we can suppose that \(f \) is integrated and \(f((\mathfrak{L}^+)') = \mathfrak{F} \). Let \(h \) be an \(\mathfrak{L} \)-composition satellite such that \(h(S) = f(S) \) if \(S \in \mathfrak{L}^+ \), and \(h(S) = \mathfrak{F} \) if \(S \in (\mathfrak{L}^+)' \). It is easy to see that \(\mathfrak{F} = CF_{\mathfrak{F}}(h) \). \(\square \)

Remark 4.4. It follows from Theorem 4.4 that every non-empty formation \(\mathfrak{F} \) with the property \(\text{Com}^+(\mathfrak{F}) \cap \mathfrak{L} = \emptyset \) has an \(\mathfrak{L} \)-composition satellite.

Remark 4.5. When \(\mathfrak{L} = \mathfrak{L}^+ \) and \(\omega = \pi(\mathfrak{L}) \), we usually use the term ‘\(\omega \)-composition satellite’ and the notations \(CF_\omega(f) \), \(f(\omega') \) in place of the term ‘\(\mathfrak{L} \)-composition satellite’ and the notations \(CF_{\mathfrak{L}}(f) \), \(f(\mathfrak{L}) \), respectively.

Theorem 4.5 (see [2], Theorems 3.1 and 3.2). Let \(\mathfrak{F} \) be a non-empty formation, \(\omega \) a set of primes. The following statements are pairwise equivalent:

1. \(\mathfrak{F} \) is \(\mathfrak{R}_\omega \)-saturated;
2. \(\mathfrak{F} \) is \(\omega \)-solubly saturated;
3. \(\text{cform}(\mathfrak{F}) \subseteq \mathfrak{R}_\omega \mathfrak{F} \);
4. \(\mathfrak{F} = CF_\omega(f) \) where \(f \) is a \(\omega \)-composition satellite satisfying the following conditions:
 \begin{enumerate}
 \item \(f(p) = Q(G/C_p(G) \mid G \in \mathfrak{F}) \) if \(p \in \omega \) and \(C_p \in \text{Com}(\mathfrak{F}) \);
 \item \(f(p) = \emptyset \) if \(p \in \omega \) and \(C_p \notin \text{Com}(\mathfrak{F}) \);
 \item \(f(S) = \mathfrak{F} \) if \(S \in \mathfrak{F} \setminus \{C_p \mid p \in \omega\} \).
 \end{enumerate}

Proof. (1) \(\Rightarrow \) (3). Set \(\mathfrak{H} = \text{cform}(\mathfrak{F}) \). Fix \(p \in \omega \). Since \(\mathfrak{H} \subseteq \mathfrak{R}_\omega \mathfrak{F} \), it is sufficient to show that \(\mathfrak{H} \subseteq \mathfrak{R}_p \mathfrak{F} \). Let \(G \) be a group of minimal order in \(\mathfrak{H} \setminus \mathfrak{R}_p \mathfrak{F} \). Clearly, \(G \) is monolithic and \(L = \text{Soc}(G) \) is the \(\mathfrak{R}_p \mathfrak{F} \)-residual of \(G \). Since \(\mathfrak{F} \subseteq \mathfrak{R}_p \mathfrak{F} \), it follows that \(G^\mathfrak{F} \geq L \). Since \(G \in \mathfrak{H} \subseteq \mathfrak{R}_p \mathfrak{F} \), we have
\(G^3 \in \mathfrak{N}\). Since \(G\) is monolithic and \(G \not\in \mathfrak{N}_p \mathfrak{F}\), it follows that \(G^3\) is a \(p\)-group. From \(G/L \in \mathfrak{N}_p \mathfrak{F}\) it follows that \((G/L)^3 = G^3 / L\) is a \(p'\)-group. Therefore, \(G^3 = L = G^{3p\mathfrak{F}}\). By Lemma 4.2, \(\mathfrak{F}\) has a composition satellite \(h\) such that \(h(p) = Q(A/C^p(A) \mid A \in \mathfrak{F})\). Since \(L\) is a \(p\)-group, we have \(C_p \in \text{Com}(G)\). Now from Lemma 4.1 it follows that \(C_p \in \text{Com}(\mathfrak{F})\). Thus, applying Lemma 2.2, it follows that \(\mathfrak{N}_p \subseteq \mathfrak{F}\). Since \(L\) is a composition satellite of \(\mathfrak{F}\), we have that \(G/C_G(L) \in h(p)\). Therefore \([L](G/C_G(L)) \in \mathfrak{F}\), and \(G/C_G(L)\) acts fixed-point-free on \(L\). It follows that \(G/C_G(L) \simeq T/N, T = A/C^p(A), A \in \mathfrak{F}\). If \(C_p \notin \text{Com}(A)\), then \(A = C_p(A), T = 1\) and \(G = L \in \mathfrak{F}\). Assume that \(C_p \in \text{Com}(A)\). Since \(G/C_G(L) \simeq T/N\), we can consider \(L\) as an irreducible \(\mathbb{F}_p(T/N)\)-module. Then \(L\) becomes an irreducible \(\mathbb{F}_p T\)-module by inflation (see [H], p. 105). Since \(T = A/C^p(A)\), we have by Lemma 2.5 that \([L]T \in \mathfrak{F}\). By Lemma 2.6 it then follows that \([L](T/N) \in \mathfrak{F}\). From this and \(T/N \simeq G/C_G(L)\) we deduce that \([L](G/C_G(L)) \in \mathfrak{F}\). Hence, by Lemma 2.4 it follows that \(G \in \mathfrak{F}\).

\((3) \Rightarrow (2)\). It is sufficient to consider only the case \(\omega = \{p\}\). Let \(H\) be a \(p\)-soluble normal subgroup in \(G\), \(L = O_p(H) \cap \Phi(H)\), and \(G/L \in \mathfrak{F}\). We need to prove that \(G \in \mathfrak{F}\). If \(O_p(H) \neq 1\), then \(LO_p'(H)/O_p'(H) \leq \Phi(H/O_p'(H))\), and by induction we have \(G/O_p'(H) \in \mathfrak{F}\). From this and \(G/L \in \mathfrak{F}\) it follows that \(G \in \mathfrak{F}\). Assume that \(O_p(H) = 1\). By Lemma 4.2, \(\mathfrak{F} = \text{cform}(\mathfrak{F})\) has a composition satellite \(h\) such that \(h(p) = Q(A/C^p(A) \mid A \in \mathfrak{F})\). Let \(t\) be a local satellite such that \(t(p) = h(p)\) and \(t(q) = \mathfrak{F}\) for every prime \(q \neq p\). Since \(G/L \in \mathfrak{F}\), \(L = \Phi(H)\), \(G\) acts \(t\)-hypercentrally on \(H/\Phi(H)\). By Theorem 3.1, \(G\) acts \(t\)-hypercentrally on \(L = \Phi(H)\). But then \(G\) acts \(t\)-hypercentrally on \(L = \Phi(H)\), and we get \(G \in \mathfrak{F} \subseteq \mathfrak{N}_p \mathfrak{F}\). Thus, \(G^3 \in \mathfrak{N}_p \cap \mathfrak{N}_p = (1)\). So, \(G \in \mathfrak{F}\), as required.

\((1) \Rightarrow (4)\). Assume that \(\mathfrak{F}\) is \(\mathfrak{N}_\omega\)-saturated. Let \(h\) be the minimal composition satellite of \(\mathfrak{F} = \text{cform}(\mathfrak{F})\). Let \(\mathfrak{M} = \text{CF}_\omega(f)\) where \(f\) is an \(\omega\)-composition satellite satisfying the following conditions:

1. \(f(p) = h(p)\) if \(p \in \omega\);
2. \(f(S) = \mathfrak{F}\) if \(S \in \mathfrak{F} \setminus \{C_p \mid p \in \omega\}\).

Inclusion \(\mathfrak{F} \subseteq \mathfrak{M}\) is evident. Assume that the converse inclusion is false, and let \(G\) be a group of minimal order in \(\mathfrak{M} \setminus \mathfrak{F}\). Then \(L = G^3\) is a unique minimal normal subgroup in \(G\). If \(L\) is not an abelian \(\omega\)-group, it follows from \(G \in \mathfrak{M}\) and \(c_\omega(L) = 1\) that \(G \simeq G/c_\omega(L) \in \mathfrak{F}\). Therefore \(L\) is an \(\omega\)-group for some \(p \in \omega\), and we have \(G/C^p(G) \in f(p) = h(p)\). Thus \(G \in \mathfrak{F}\). Since \((1) \Rightarrow (3)\), we get \(G \in \mathfrak{N}_p \mathfrak{F}\), and therefore \(G^3 \in \mathfrak{N}_p \cap \mathfrak{N}_p = (1)\). So \(\mathfrak{F} = \mathfrak{M}\). We notice that by Lemma 4.2 we have \(f(p) = h(p) = \emptyset\) if \(p \in \omega\) and \(C_p \notin \text{Com}(\mathfrak{F})\).
(4) \Rightarrow (1). Let \(G/L \in \mathcal{F} \) and \(L = \Phi(O_p(G)), \ p \in \omega \). By Lemma 2.8, \(C^p(G)/L = C^p(G/L) \). Applying Proposition 4.1 to \(G/L \), we have \(G/O_p(G) \cong (G/L)/O_p(G/L) \in \mathcal{F} \) and \(G/C^p(G) \cong (G/L)/C^p(G/L) = (G/L)/C^p(G/L) \in f(p) \). But then by Proposition 4.1 we get \(G \in \mathcal{F} \).

Corollary 4.5.1. If a non-empty formation \(\mathcal{F} \) is \(p \)-solubly saturated and \(C_p \in \text{Com}(\mathcal{F}) \), then \(\mathcal{F} \) has a \(p \)-composition satellite \(f \) such that \(f(p') = \mathcal{F} \) and \(f(p) = Q(G/C^p(G) \mid G \in \mathcal{F}) \).

Corollary 4.5.2. If a non-empty formation \(\mathcal{F} \) is solubly saturated, then \(\mathcal{F} = CF(f) \) where \(f \) is a composition satellite satisfying the following conditions:

(i) \(f(p) = Q(G/C^p(G) \mid G \in \mathcal{F}) \) if \(p \in \omega \) and \(C_p \in \text{Com}(\mathcal{F}) \);

(ii) \(f(S) = \mathcal{F} \) for every \(S \in \text{Com}^- (\mathcal{F}) \);

(iii) \(f(S) = \emptyset \) for every \(S \in \mathcal{F} \setminus \text{Com}(\mathcal{F}) \).

Theorem 4.6 (see [2], Theorem 3.1(b)). Let \(\mathcal{F} \) be a non-empty \(\omega \)-saturated formation, and \(h \) be the minimal composition satellite of \(\text{cform}(\mathcal{F}) \). Then \(\mathcal{F} = LF_\omega (f) \) where \(f \) is an \(\omega \)-local satellite such that \(f(p) = h(p) \) for every \(p \in \omega \).

Proof. We may suppose without loss of generality that \(\omega \subseteq \pi(\mathcal{F}) \). By Lemma 4.2, \(h(S) = Q(H/C^S(H) \mid H \in \mathcal{F}) \) if \(S \in \text{Com}(\mathcal{F}) \), and \(h(S) = \emptyset \) if \(S \in \mathcal{F} \setminus \text{Com}(\mathcal{F}) \).

Let \(p \) be a prime in \(\omega \), and \(S \) be a non-abelian \(pd \)-group in \(\text{Com}(\mathcal{F}) \). We will now prove that \(h(S) \subseteq h(p) \). Consider \(R = H/C^S(H), H \in \mathcal{F} \). By Lemma 2.1, \(C^S(H) \) is the largest normal subgroup not having composition factors isomorphic to \(S \). Clearly, \(O^{p'}_{p'}(R) = 1 \). Let \(A_p(R) \) be the \(p \)-Frattini module, i.e., the kernel of the universal Frattini, \(p \)-elementary \(R \)-extension:

\[
1 \to A_p(R) \xrightarrow{\mu} E \xrightarrow{\nu} R \to 1.
\]

Here \(E/A_p(R) \cong R, \) and \(A_p(R) \) is an elementary abelian \(p \)-group contained in \(\Phi(E) \). Let \(N_1, \ldots, N_t \) be all minimal normal subgroups in \(E \) contained in \(A_p(R) \). Since \(\mathcal{F} \) is \(p \)-saturated, we have \(E \in \mathcal{F} \subseteq \text{cform}(\mathcal{F}) \), and therefore \(E/\cap_i C_E(N_i) \in h(p) \). Since \(N_1, \ldots, N_t \) are simple submodules of the \(\mathbb{F}_pR \)-module \(A_p(R) \), it follows that \(R/\text{Ker}(R \text{ on } (N_1 \ldots N_t)) \in h(p) \). By theorem of Griess and P. Schmid, \(\text{Ker}(R \text{ on } (N_1 \ldots N_t)) = O^{p'}_{p'}(R) \) (see [17] or [4], p. 833). Since \(O^{p'}_{p'}(R) = 1 \), it follows that \(R \in h(p) \). Thus, \(h(S) = Q(H/C^S(H) \mid H \in \mathcal{F}) \subseteq h(p) \) if \(S \in \text{Com}(\mathcal{F}) \) and \(p \in \omega \cap \pi(S) \).

Let \(f \) be an \(\omega \)-local satellite such that \(f(p) = h(p) \) if \(p \in \omega \), and \(f(\omega') = \mathcal{F} \) if \(\omega' \neq \emptyset \). We will prove now that \(\mathcal{F} = LF_\omega (f) \).
Let G be a group of minimal order in $\mathfrak{F} \setminus LF_\omega(f)$. Then $L = G^{LF_\omega(f)}$ is a unique minimal normal subgroup in G, and L is not f-central in G. If L is an ω'-group, then $c_O(L) = 1$ and $G \cong G/c_O(L) \in f(\omega') = \mathfrak{F}$. If L is a non-abelian pd-group for some $p \in \omega$ and $S \in \text{Com}(L)$, then $C_G(L) = 1$ and we have $G \cong G/C_G(L) \in h(S) \subseteq h(p) \subseteq \mathfrak{F}$. Assume that L is a p-group, $p \in \omega$. Since L is not f-central, $L \not\subseteq Z(G)$. By Lemma 2.1 we have $C_p(G) = 1$. So $G \in h(p) = Q(H/C_p(H) \mid H \in \mathfrak{F})$, i.e., L is f-central, a contradiction. Thus, $\mathfrak{F} \subseteq LF_\omega(f)$.

Let G be a group of minimal order in $LF_\omega(f) \setminus \mathfrak{F}$. Then $L = G^\mathfrak{F}$ is a unique minimal normal subgroup in G. Clearly, $c_G(L) = 1$, and $C_G(L) = 1$ if L is non-abelian. Hence, it follows from $G \in LF_\omega(f)$ that if L is an ω'-group, then $G \in f(\omega') = \mathfrak{F}$, and if L is a non-abelian pd-group for some $p \in \omega$, then $G \in f(p) = h(p) \subseteq \mathfrak{F}$, and we get a contradiction. Assume that L is a p-group, $p \in \omega$. Evidently, L is not contained in $\Phi(G)$ (recall that \mathfrak{F} is p-saturated). By Lemma 2.7, $L = C_G(L)$. Since L is f-central, we obtain that $G = [L:T]$ where $T \in f(p)$. Therefore, $T \simeq R/K$ where $R = H/C_p(H)$ for some $H \in \mathfrak{F}$. Now we can consider L as an irreducible F_pR-module by inflation (see [1], p. 105). By Lemma 2.5 we have $[L]R \in \mathfrak{F}$. Since K acts identically on L, it follows from Lemma 2.6 that $[L](R/K) \simeq LT = G \in \mathfrak{F}$, and we again arrive at a contradiction. So $LF_\omega(f) = \mathfrak{F}$.

Corollary 4.6.1. If a non-empty formation \mathfrak{F} is ω-saturated, then \mathfrak{F} has an ω-local satellite f such that $f(p) = Q(G/C_p(G) \mid G \in \mathfrak{F})$ if $p \in \omega \cap \pi(\mathfrak{F})$, $f(p) = \emptyset$ if $p \in \omega \setminus \pi(\mathfrak{F})$, and $f(\omega') = \emptyset$ if $\omega' \neq \emptyset$.

Corollary 4.6.2. If a non-empty formation \mathfrak{F} is saturated, then $\mathfrak{F} = LF(f)$ where f is a local satellite such that $f(p) = Q(G/C_p(G) \mid G \in \mathfrak{F})$ for every $p \in \pi(\mathfrak{F})$, and $f(p) = \emptyset$ for every prime $p \notin \pi(\mathfrak{F})$.

4. \mathfrak{X}-local formations

In 1985 Förster [13] introduced the concept ‘\mathfrak{X}-local formation’ in order to obtain a common extension of Theorem 3.2 and 4.1.

Definition 5.1. Let \mathfrak{X} be a class of simple groups such that $\text{Char}(\mathfrak{X}) = \pi(\mathfrak{X})$. Consider a map

$$f : \pi(\mathfrak{X}) \cup \mathfrak{X}' \rightarrow \{\text{formations}\}$$

which does not distinguish between any two non-identity isomorphic groups. Denote through $LF_\mathfrak{X}(f)$ the class of all groups G satisfying the following conditions:
(i) if H/K is a chief $E\mathcal{X}$-factor of a group G, then $G/C_G(H/K)$ belongs to $f(p)$ for any $p \in \pi(H/K)$;

(ii) if G/L is a monolithic quotient of G and $\text{Soc}(G/L) \in E(\mathcal{X}')$, then $G/L \in f(S)$ where $S \in \text{Com}(\text{Soc}(G/L))$.

The class $LF_X(f)$ is a formation; it is called an \mathcal{X}-local formation.

\mathcal{X}-local formations were investigated in [20] [19] [21] [22] [23]. In [24] it was proved with help of some lemmas in [22] that every \mathcal{X}-local formation has a \mathcal{X}^+-composition satellite. Now we give a direct proof of that fact.

Theorem 5.1. Let \mathcal{F} be a non-empty formation, \mathcal{X} a class of simple groups such that $\text{Char}(\mathcal{X}) = \pi(\mathcal{X})$. Let \mathcal{L} be a class of simple groups such that $\mathcal{L}^+ = \mathcal{X}^+$.

1. If \mathcal{F} is an \mathcal{X}-local formation, then \mathcal{F} has an \mathcal{L}-composition satellite.

2. If \mathcal{F} has an \mathcal{L}-composition satellite, then \mathcal{F} is an \mathcal{X}^+-local formation.

Proof. Set $\omega = \text{Char}(\mathcal{X})$. Evidently, $\mathcal{L}^- \cup \mathcal{L}' = \mathcal{X}^- \cup \mathcal{X}' = (\mathcal{L}^+)' = (\mathcal{X}^+)'$.

1. Let \mathcal{F} be a \mathcal{X}-local formation, $\mathcal{F} = LF_X(f)$. Consider an \mathcal{L}-composition satellite h such that $h(p) = f(p) \cap \mathcal{F}$ if $p \in \omega$, and $h(S) = \mathcal{F}$ if $S \in \mathcal{L}^- \cup \mathcal{L}'$. We will prove that $\mathcal{F} = CF_\mathcal{L}(h)$.

Suppose that $\mathcal{F} \not\subseteq CF_\mathcal{L}(h)$. Let G be a group of minimal order in $\mathcal{F} \setminus CF_\mathcal{L}(h)$. Then G is monolithic, and $G/M \in CF_\mathcal{L}(h)$ where M is the socle of G. Clearly, M is the $CF_\mathcal{L}(h)$-residual of G, and every chief factor between G and L is h-central. Assume that M is an $E(\mathcal{L}^- \cup \mathcal{L}')$-group. Since $G \in \mathcal{F}$, we have that $G \in h(S)$ where $S \in \text{Com}(M)$. Since $c_G(L) = 1$, we have that M is h-central in G, and so $G \in CF_\mathcal{L}(h)$. Assume now that M is a p-group, $p \in \omega$. Since $G \in \mathcal{F}$, we have $G/C_G(M) \in f(p) \cap \mathcal{F} = h(p)$, i. e., M is h-central. We see that $G \in CF_\mathcal{L}(h)$, a contradiction. Thus, $\mathcal{F} \subseteq CF_\mathcal{L}(h)$.

Suppose now that $CF_\mathcal{L}(h) \not\subseteq \mathcal{F}$. Choose a group G of minimal order in $CF_\mathcal{L}(h) \setminus \mathcal{F}$. Then G is monolithic, and $G/M \in \mathcal{F}$ where $M = G^\mathcal{F}$ is the socle of G. Assume that M is an $E(\mathcal{L}^- \cup \mathcal{L}')$-group. Then from $c_G(L) = 1$ and h-centrality of L it follows that $G/c_G(M) \simeq G \in \mathcal{F}$. Assume that M is a p-group, $p \in \omega$. Then

$$G/C_G(M) \in h(p) = \mathcal{F} \cap f(p) \subseteq f(p).$$

We see that all the chief factors and all the quotients of G satisfies conditions (1) and (2) of Definition 5.1. So, $G \in \mathcal{F}$, a contradiction. Thus, $\mathcal{F} = CF_\mathcal{L}(h)$.

(2) Let \mathcal{F} be a formation having an \mathcal{L}-composition satellite. By Lemma 4.3, $\mathcal{F} = CF_\mathcal{L}(f)$ where f is an \mathcal{L}-composition satellite such that $f(S) = \mathcal{F}$.
for every $S \in \mathcal{L}^- \cup \mathcal{L}'$. Consider an \mathcal{X}^+-local formation $\mathfrak{F} = LF_{\mathcal{X}^+}(h)$ where $h(p) = f(p)$ for any $p \in \omega$, and $h(S) = \mathfrak{F}$ for every $S \in (\mathcal{X}^+)'$. It easy to check that $\mathfrak{F} = \mathfrak{H}$.

References

[1] W. Gaschütz, “Zur Theorie der endlichen auflösaren Gruppen”, Math. Z., 80, No. 4, 300–305 (1963).

[2] L. A. Shemetkov, “Frattini extensions of finite groups and formations”, Comm. Algebra, 25, No. 3, 955–964 (1997).

[3] L. A. Shemetkov, “On partially saturated formations and residuals of finite groups”, Comm. Algebra, 29, No. 9, 4125–4137 (2001).

[4] K. Doerk, and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York (1992).

[5] P. Schmid, “Über die Automorphismengruppen endlicher Gruppen”, Arch. Math., 23, No. 3, 236–242 (1972).

[6] L. A. Shemetkov, Formation of finite groups [in Russian], Nauka, Moscow (1978).

[7] L. A. Shemetkov, and A. N. Skiba, “Multiply ω-local formations and Fitting classes of finite groups”, Siberian Advances in Mathematics, 10, No. 2, 112–141 (2000).

[8] A. Ballester-Bolinches, and L. A. Shemetkov, “On lattices of p-local formations of finite groups”, Math. Nachr., 186, No. 1, 57–65 (1997).

[9] L. A. Shemetkov, “Two directions in the development of the theory of non-simple finite groups” (a lecture delivered at the Twelth All-Union Algebra Colloquium held in Sverdlovsk in September,1973), Russian Math. Surveys, 30, No. 2, 186–206 (1975).

[10] L. A. Shemetkov, “On the product of formations” [in Russian], Dokl. Akad. Nauk BSSR, 28, No. 2, 101–103 (1984).

[11] L. A. Shemetkov, and A. N. Skiba, “On partially local formations” [in Russian], Dokl. Akad. Nauk Belarus, 39, No. 3, 9–11 (1995).

[12] B. Huppert, and N. Blackburn, Finite Groups II, Springer-Verlag, Berlin–Heidelberg–New York (1982).
[13] L. A. Shemetkov, “Graduated formations of finite groups”, Math. USSR Sbornik, 23, No. 4, 593–611 (1974); translated from Matem. Sbornik, 94, No. 4, 628–648 (1974).

[14] P. Schmid, “Locale Formationen endlicher Gruppen”, Math. Z., 137, No. 1, 31–48 (1974).

[15] S. A. Syskin, “Over-solvable groups of automorphisms of finite solvable groups”, Algebra and Logic, 7, No. 3, 193–194 (1968); translated from Algebra Logika, 7, No. 3, 105–107 (1968).

[16] L. A. Shemetkov, and A. N. Skiba, “Multiply Λ-composition formations of finite groups”, Ukrainian Math. Journal, 52, No. 6, 898–913 (2000).

[17] R. L. Griess, and P. Schmid, “Frattini module”, Arch. Math., 30, No. 3, 256–266 (1978).

[18] P. Förster, “Projective Klassen endlicher Gruppen Ia. Gesättigte Formationen: ein allgemeiner Satz von Gaschütz–Lubeseder–Baer Typ”, Publ. Sec. Mat. Univ. Autònoma Barcelona, 29, No. 2–3, 39–76 (1985).

[19] A. Ballester, “Remarks on formations”, Isr. J. Math., 73, No. 1, 97–106 (1991).

[20] A. Ballester-Bolinches, C. Calvo, and R. Esteban-Romero, “X-saturated formations of finite groups”, Comm. Algebra, 33, No. 4, 1053–1064 (2005).

[21] A. Ballester-Bolinches, C. Calvo, and R. Esteban-Romero, “Products of formations of finite groups”, J. Algebra, 299, No. 2, 602–615 (2006).

[22] A. Ballester-Bolinches, C. Calvo, and L.A. Shemetkov, “On partially saturated formations of finite groups”, Sbornik: Mathematics, 198, No. 6, 757–775 (2007); translated from Matem. Sbornik, 198, No. 6, 3–24 (2007).

[23] A. Ballester-Bolinches, and L. M. Ezquerro, Classes of finite groups, Springer, Dordrecht (2006).

[24] L. A. Shemetkov, “A note on Χ-local formations”, Problems in Physics, Mathematics and Technics, 4(5), 64–65 (2010).