SOME BOUNDS FOR THE PSEUDOCHARACTER OF THE SPACE \(C_\alpha(X,Y) \)

ÇETIN VURAL

Abstract. Let \(C_\alpha(X,Y) \) be the set of all continuous functions from \(X \) into \(Y \) endowed with the set-open topology where \(\alpha \) is a hereditarily closed, compact network on \(X \). We obtain that:

i) \(\psi(f, C_\alpha(X,Y)) \leq w_{\alpha c}(X) \cdot \sup_{A \in \alpha} (\psi(f(A), Y) \cdot \sup_{A \in \alpha} (w(f(A))) \)

ii) \(\psi(f, C_\alpha(X,Y)) \leq w_{\alpha c}(X) \cdot psw_{\psi}(f(X), Y) \).

1. Introduction and Terminology

Let \(X \) and \(Y \) be topological spaces, and let \(C(X,Y) \) denote the set of all continuous mappings from \(X \) into \(Y \). Let \(\alpha \) be a collection of subsets of \(X \). The topology having subbase \(\{[A, V] : A \in \alpha \text{ and } V \text{ is an open subset of } Y \} \) on the set \(C(X,Y) \) is denoted by \(C_\alpha(X,Y) \) where \([A, V] = \{f \in C(X,Y) : f(A) \subseteq V \} \). If \(\alpha \) consists of all finite subsets of \(X \), then the set \(C(X,Y) \) endowed with that topology is called pointwise convergence topology and denoted by \(C_p(X,Y) \).

The cardinality and the closure of a set is denoted by \(|A|\) and \(\text{cl}(A)\), respectively. The restriction of a mapping \(f : X \to Y \) to a subset \(A \) of \(X \) is denoted by \(f|_A \). \(T(X) \) denotes the set of all non-empty open subsets of a topological space \(X \). \(\text{ord}(x,A) \) is the cardinality of the collection \(\{A \in A : x \in A \} \). Throughout this paper \(X \) and \(Y \) are regular topological spaces, and \(\alpha \) is a hereditarily closed, compact network on the domain space \(X \). (i.e., \(\alpha \) is a network on \(X \) such that each member of it is compact and each closed subset of a member of it is a member of \(\alpha \).)

Without loss of generality, we may assume that \(\alpha \) is closed under finite unions. Recall that the weak \(\alpha \)-covering number of \(X \) is defined to be \(w_{\alpha c}(X) = \min \{|\beta| : \beta \subseteq \alpha \text{ and } \bigcup \beta \text{ is dense in } X \} \). The weight, density and character of a space \(X \) are denoted by \(w(X) \), \(d(X) \) and \(\chi(X) \), respectively. The \(i \)-weight of a topological space \(X \), is the least of cardinals \(w(Y) \) of the Tychonoff spaces \(Y \) which are continuous one-to-one images of \(X \). The pseudocharacter of a space \(X \) at a subset \(A \), denoted by \(\psi(A,X) \), is defined as the smallest cardinal number of the form \(|\mathcal{U}| \), where \(\mathcal{U} \) is a family of open subsets of \(X \) such that \(\bigcap \mathcal{U} = A \). If \(A = \{x\} \) is a singleton, then we

2010 Mathematics Subject Classification. 54C35, 54A25, 54C05.
Key words and phrases. Pseudocharacter, function space.

The author acknowledge Mr. Hasan G"ul for the first draft of manuscript.
write $\psi(x, X)$ instead of $\psi(\{x\}, X)$. The pseudocharacter of a space X is defined to be $\psi(X) = \sup\{\psi(x, X) : x \in X\}$. The diagonal number $\Delta(X)$ of a space X is the pseudocharacter of its square $X \times X$ at its diagonal $\Delta_X = \{(x, x) : x \in X\}$.

The pseudocharacter of the space $C(X, Y)$ has been studied, and some remarkable equalities or inequalities was obtained between the pseudocharacter of the space $C(X, Y)$ for certain topologies and some cardinal functions on the spaces X and Y. For instance, in [3], the inequalities $\psi(Y) \leq \psi(C_p(X, Y)) \leq \psi(Y) \cdot d(X)$ and, in [1] and [2], the equalities $\psi(C_p(X, \mathbb{R})) = d(X) = iw(C_p(X, \mathbb{R}))$, and in [6], $\psi(C_\alpha(X, \mathbb{R})) = \Delta(C_\alpha(X, \mathbb{R})) = \omega c(X)$ were obtained. In this paper, when the range space Y is an arbitrary topological space instead of the space \mathbb{R}, we obtained some inequalities between the pseudocharacter of the space $C_\alpha(X, Y)$ at a point f and the weak α-covering number of the domain space X and some cardinal functions on the range space Y.

We assume that all cardinal invariants are at least the first infinite cardinal \aleph_0.

Notations and terminology not explained above can be found in [4] and [5].

2. Main Results

First, we give an inequality between the pseudocharacter of a point f in the space $C_\alpha(X, Y)$ and some cardinal functions on spaces X and Y.

Theorem 2.1. For each $f \in C_\alpha(X, Y)$, we have

$$\psi(f, C_\alpha(X, Y)) \leq \omega c(X) \cdot \sup_{A \in \alpha} (\psi(f(A), Y)) \cdot \sup_{A \in \alpha} (w(f(A)))$$

Proof. Let $\omega c(X) \cdot \sup\{\psi(f(A), Y) : A \in \alpha\} \cdot \sup\{w(f(A)) : A \in \alpha\} = \kappa$. The inequality $\omega c(X) \leq \kappa$ gives us a subfamily $\beta = \{A_i : i \in I\}$ of α such that $|I| \leq \kappa$ and $X = cl(\bigcup \beta) = cl(\bigcup \{A_i : i \in I\})$. Since $\psi(f(A_i), Y) \leq \kappa$ for each $i \in I$, there exists a family \mathcal{V}_i consisting of open subsets of the space Y such that $|\mathcal{V}_i| \leq \kappa$ and $f(A_i) = \bigcap \{V : V \in \mathcal{V}_i\}$ for each $i \in I$. Since $w(f(A_i)) \leq \kappa$ for each $i \in I$, the subspace has a base \mathcal{B}_i with $|\mathcal{B}_i| \leq \kappa$. For each $i \in I$, let $\mathcal{H}_i = \{[A_i, f^{-1}(cl(G)), Y \setminus cl(U)] : G, U \in \mathcal{B}_i \text{ and } cl(G) \cap cl(U) = \emptyset\}$, $\mathcal{R}_i = \{[A_i, V] : V \in \mathcal{V}_i\}$ and $\mathcal{W} = (\bigcup_{i \in I} \mathcal{R}_i) \cup (\bigcup_{i \in I} \mathcal{H}_i)$. It is clear that $|\mathcal{W}| \leq \kappa$ and $f \in \mathcal{W}$ for each $W \in \mathcal{W}$. Now, we shall prove that $\bigcap \mathcal{W} = \{f\}$. Take a $g \in \bigcap \mathcal{W}$. We claim that $g|_{A_i} = f|_{A_i}$ for each $i \in I$. Assume the contrary. Suppose $g|_{A_j} \neq f|_{A_j}$ for some $j \in I$ that is, we have an $x \in A_j$ such that $f(x) \neq g(x)$. Since $g \in \bigcap \mathcal{W}$ and $f(A_j) = \bigcap \{V : V \in \mathcal{V}_j\}$, we have $g(A_j) \subseteq f(A_j)$. Therefore $g(x) \in f(A_j)$ and $f(x) \in f(A_j)$. Since $f(x) \neq g(x)$ and the space Y is regular, there exist G and U in \mathcal{B}_j such that $f(x) \in cl(G)$, $g(x) \in cl(U)$ and $cl(G) \cap cl(U) = \emptyset$. On the other hand, since $[A_j \setminus f^{-1}(cl(G)), Y \setminus cl(U)] \in \mathcal{H}_j$ and
Lemma 2.5. Let \(Z \) be a subspace of the space \(X \). Then we have \(\psi (Z, X) \leq \kappa \).

Proof. Let \(A \) be a family of open subsets of \(X \) satisfying \(\psi (A, Z) \leq \kappa \) and \(\bigcap \{ V \in A : v \in Z \} = \{ z \} \), for each \(z \in Z \). Let \(K \) be any compact subspace of \(Z \) and let \(\mu = \{ W : W \subseteq V \text{ and } W \text{ is a minimal finite open cover for } K \} \). By Miščenko’s lemma, we have \(|\mu| \leq \kappa \).

Define the family \(\mathcal{O} = \{ \bigcup_{W \in \mu} W : W \in \mu \} \). It is clear that \(|\mathcal{O}| \leq \kappa \) and it can be easily seen that \(\bigcap \mathcal{O} = K \). Hence \(\psi (K, X) \leq \kappa \). \(\square \)

Lemma 2.6. Let \(Z \) be subspace of the space \(X \) such that \(\psi (Z, X) \leq \kappa \). Then we have \(w (K) \leq \kappa \) for each compact subset \(K \) of \(Z \).

Proof. Let \(K \) be a compact subset of \(Z \). Clearly, \(ps w (K) \leq ps w (Z) \leq ps w (Z, X) \). The compactness of \(K \) leads us to the fact that \(w (K) = ps w (K) \). [in [5], Ch. 1, Theorem 7.4]. Hence the claim. \(\square \)

Now, we are ready to give another bound for the pseudocharacter of the space \(C_\alpha (X, Y) \) at a point \(f \).

Theorem 2.7. For each \(f \in C_\alpha (X, Y) \), we have

\[
\psi (f, C_\alpha (X, Y)) \leq \omega c (X) \cdot ps w (f (X), Y) .
\]
Proof. Let $\omega c(X) \cdot psw_{\epsilon}(f(X), Y) = \kappa$, and let $\beta = \{A_i : i \in I\}$ be a subfamily of α such that $cl(\bigcup \beta) = X$ and $|I| \leq \kappa$. The compactness of A_i for each $i \in I$ and the inequality $psw_{\epsilon}(f(X), Y) \leq \kappa$ lead us to the facts that $\psi(f(A_i), Y) \leq \kappa$ and $w(A_i) \leq \kappa$ for each $i \in I$, by lemmas 2.4 and 2.5. Therefore, by Theorem 2.1, we have $\psi(f, C_\alpha(X, Y)) \leq \kappa$. □

References

[1] A. V. Arkhangel’skii, Function spaces in the topology of pointwise convergence. Part I: General Topology: function spaces and dimension, Moskovsk. Gos. Univ., (1985) 3–66.
[2] A. V. Arkhangel’skii, Topological Function Spaces, Kluwer Academic Publishers, Netherlands, 1992.
[3] J. A. Guthrie, ‘Ascoli theorems and the pseudocharacter of mapping spaces’, Bull. Austral. Math. Soc., 10 (1974) 403–408.
[4] K. Kunen, Set Theory, Elsevier, Amsterdam, 1980.
[5] K. Kunen and J. E. Vaughan(Eds.), Handbook of Set Theoretic Topology, Elsevier, Amsterdam, 1984.
[6] R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions., Lecture Notes in Mathematics-1315, Springer-Verlag, Berlin, 1988.

Gazi Universitesi, Fen Fakultesi, Matematik Bolumu, 06500 Teknikokullar, Ankara, Turkey
E-mail address: cvural@gazi.edu.tr