INTRODUCTION

Castleman disease (CD) is an uncommon benign lymphoproliferative disorder, characterized by hyperplasia of lymphoid follicles. Histologically, CD can be classified into hyaline-vascular and plasma cell types. And clinically, it also can be divided into localized and disseminated types. Ninety six percent of localized CD is hyaline vascular type, and on the other hand, disseminated CD is usually a plasma cell type. CD is commonly located in the mediastinum. Retroperitoneal and pararenal locations are relatively uncommon accounting for 7% and 2% of all cases, respectively. To date, to the best of our knowledge, there have been 100 cases of renal involvement in CD. Sixty eight cases were disseminated and 32 cases were localized CD. Among localized CD, only 6 cases confined to the kidney have been reported (1-8). There are no reports in the radiologic literature describing CD, involving both kidney and pararenal space, mimicking renal cell carcinoma with lymph node metastasis. Here, we present a case of renal and pararenal Castleman disease, mimicking renal cell carcinoma with retroperitoneal lymphadenopathy.

CASE REPORT

A 36-year-old man was hospitalized in our institute, complaining of abdominal discomfort. The physical examination showed no remarkable finding, such as a palpable mass or tenderness. Complete blood count and routine blood biochemistry were within normal limits and the results of urinalysis re-
Castleman disease (CD), which is also called angiofollicular lymph node hyperplasia, giant lymph node hyperplasia, lymphoid hamartoma and follicular lymphoreticuloma, represents not a neoplasm, but a morphologically distinct form of a rare atypical lymphoproliferative disorder. According to the literature, the disease is mainly in the thoracic (70%), followed by the cervix (14%), retroperitoneum (7%), axillary region (4%) and pararenal location (2%) (1-8).

CD can be classified into two pathological subtypes; “Hyaline vascular type” (30%) and “Plasma cell type” (70%). Patients with the former subtype may have a good, self-limited clinical course, whereas patients with the latter subtype tend to be more aggressive, with a higher risk of recurrence and transformation to lymphoma.

In our case, the patient had a well-demarcated yellowish mass, measuring 2.2 × 1.8 cm in size. Pathologic examination of the resected tumor from the left kidney and retroperitoneal lymph nodes showed increased lymphoid follicles with relatively small germinal centers. These germinal centers were penetrated by hyalinised venules and the follicles were separated by hypervascular interfolllicular tissues. These findings were consistent with a diagnosis of hyaline vascular type CD (Fig. 1D). We also performed immunohistochemical study to rule out B cell lymphoma. On immunohistochemical staining, CD 20 was positive, but CD 5, 10 and Bcl-2, 6 were negative, with which B-cell lymphoma can be excluded.

Discussion

Castleman disease was first described in 1956 by Benjamin Castleman and later classified into two subtypes based on clinical presentation and histopathology. The hyaline vascular type is characterized by a proliferation of lymphoid follicles with small germinal centers, while the plasma cell type is characterized by a proliferation of plasma cells. The hyaline vascular type is more common and has a better prognosis, whereas the plasma cell type is more aggressive and can be associated with a higher risk of transformation to lymphoma.

In conclusion, Castleman disease should be considered in the differential diagnosis of any patient presenting with a retroperitoneal mass, especially if there is evidence of lymphadenopathy. A thorough evaluation including imaging studies and immunohistochemical staining may be necessary to arrive at a definitive diagnosis.

Fig. 1. A 36-year-old man with Castleman disease involving both kidney and pararenal space.
A. Noncontrast CT of abdomen shows iso to slightly high attenuated mass (black arrow) in the upper pole of the left kidney. And, there are several enlarged lymph nodes (white arrow) at the left pararenal space.
B. Contrast enhanced CT in corticomedullary phase shows homogeneous enhancement of the tumor (black arrow). Note that the several enlarged lymph nodes (white arrow) at left pararenal space demonstrate similar density of enhancement as the mass in the kidney, with Hounsfield unit of 109 and 95-99 in renal mass and lymph nodes, respectively.
C. Contrast enhanced CT in nephrographic phase reveals slow wash out enhancement pattern of the left renal mass (black arrow) and retroperitoneal lymph nodes (white arrow), with Hounsfield unit of 99 and 88-90 in the renal mass and lymph nodes, respectively.
D. Microscopic finding demonstrates increased lymphoid follicles with small germinal centers (black arrows) traversed by hyalinized blood vessels (white arrow). These findings are characteristics of the Castleman disease (Hematoxylin-Eosin, × 200).
vascular type" and "Plasma cell type". The hyaline vascular type accounts for approximately 90% of CD, and is usually a solitary tumor, characterized by giant lymphoid follicles with a hyalinized central vessel. If there are more plasma cells in the tumor, the disease can be classified as a plasma cell type (9). And clinically, CD may also be categorized into two subgroups, according to the extent of the spread; localized and disseminated type. The two clinical types have distinct pathological and biological differences. Of the localized CD, 96% is hyaline vascular type with favorable prognosis after excision of the tumors. The pathology of disseminated CD is mainly a plasma cell type, which is treated with chemoradiation, but the prognosis is poor (10).

Localized CD usually manifests on CT as a single, well demarcated, and homogeneous mass with soft-tissue attenuation. The enhancement pattern of hyaline vascular CD is characterized by homogeneous enhancement in the early phase and persistent enhancement in the delayed phase. Relatively strong enhancement can be attributed to the abundance of blood supply and focal vascular proliferation of capillary vessels. Another distinguishing radiologic finding of localized CD is the absence or rare presence of cystic or necrotic degeneration in the tumor. This might be due to good circulation and low susceptibility of lymphatic follicles to necrosis (10). Additionally, Kim et al. (9) reported another unique feature of localized hyaline vascular CD of the abdomen; a single dominant mass with small satellite nodules, which is suggestive of regional lymphadenopathy. A main mass was found in various locations, including perirenal, para-aortic, mesenteric, perigastric, peripancreatic and adrenal regions, but not in the kidney.

On the other hand, plasma or disseminated type CD is characterized by the infiltration of plasma cells in and between the lymphoid follicles, and vascular proliferation is rare. Therefore, a strong enhancement of the lesion is not definite in this type (10).

The radiologic differential diagnosis of CD in the kidney and pararenal space would be lymphoma, angiomyolipoma with minimal fat, accessory spleen, and most importantly, renal cell carcinoma. Conventional renal cell carcinoma originates from the renal cortex, and typically exhibits an expansile growth pattern. Strong enhancement and rapid washing out pattern may help distinguish conventional renal cell carcinoma from other malignancies (11). Homogeneity of tumor enhancement are valuable CT finding for lymphoma, and angiomyolipoma with minimal fat can be another differential diagnosis when the mass is high attenuating on noncontrast CT and shows homogeneous, prolonged enhancement pattern. However, all of these imaging findings are overlapped, which make accurate diagnosis of enhancing renal mass very challenging.

Complete surgical resection in an en-bloc manner, if possible, is nearly always successful, regardless of the type. The surgical removal of involved lymph nodes can resolve local and systemic symptoms and is associated with a good prognosis (12).

In conclusion, due to the overlapping imaging characteristics of renal cell carcinoma, lymphoma, angiomyolipoma with minimal fat and CD, preoperative diagnosis of CD is difficult. Therefore, surgical resection and histological evaluation should be mandatory to make an accurate diagnosis. However, if there is a strong enhancing renal mass with regional lymphadenopathy, CD can be included in the differential diagnosis, in addition to the primary and secondary renal neoplasms.

REFERENCES

1. Yuan XG, Hu W, Chen FF, Huang BF, Zhao XY. Renal complications of Castleman's disease: report of two cases and analysis of 75 cases. Clin Exp Nephrol 2011;15:921-926
2. Xu D, Lv J, Dong Y, Wang S, Su T, Zhou F, et al. Renal involvement in a large cohort of Chinese patients with Castleman disease. Nephrol Dial Transplant 2011 [Epub ahead of print]
3. Won JE, Jeong SJ, Cho JH, Kim JY, Kim EJ, Kim HJ, et al. A case of Castleman's disease with kidney involvement. Korean J Nephrol 2007;26:767-771
4. Kaneko T, Ogushi T, Asakage Y, Kitamura T. [Hyaline vascular type of Castleman's disease confined to the kidney]. Nihon Hinyokika Gakkai Zasshi 2008;99:597-600
5. Mah NA, Peretsman SJ, Teigland CM, Banks PM. Castleman disease of the hyaline-vascular type confined to the kidney. Am J Clin Pathol 2007;127:465-468
6. Hatano K, Fujita S, Tsujimoto Y, Takada T, Honda M, Tsujimoto M, et al. Rare case of the hyaline vascular type of Castleman's disease of the kidney. Int J Urol 2007;14:1098-1100
7. Huang WJ, Chang YH, Chen KK. Castleman's disease of the kidney: a case report and literature review. JTUA 2004;15:
Castleman Disease in the Kidney and Retroperitoneum Mimicking Renal Cell Carcinoma with Retroperitoneal Lymphadenopathy

119-122
8. De Feudis L, Carota G, Sargiacomo R, Traisci G. [Castleman’s disease with isolated renal location: clinical case]. Ann Ital Med Int 1998;13:117-120
9. Kim TJ, Han JK, Kim YH, Kim TK, Choi BI. Castleman disease of the abdomen: imaging spectrum and clinicopathologic correlations. J Comput Assist Tomogr 2001;25:207-214
10. Zhou LP, Zhang B, Peng WJ, Yang WT, Guan YB, Zhou KR. Imaging findings of Castleman disease of the abdomen and pelvis. Abdom Imaging 2008;33:482-488
11. Prasad SR, Humphrey PA, Catena JR, Narra VR, Srigley JR, Cortez AD, et al. Common and uncommon histologic subtypes of renal cell carcinoma: imaging spectrum with pathologic correlation. Radiographics 2006;26:1795-1806; discussion 1806-1810
12. Bo P, Junhua Z, Qiruo G, Hong Li. A case report of retroperitoneal Castleman disease. Can Urol Assoc J 2009;3: E14-E16

국소 림프절 종대를 동반한 신세포암처럼 보였던 신장과 후복막강을 침범한 캐슬만병: 증례 보고

고희선·우지영·홍혜숙·정아영·양익·이열

캐슬만병은 매우 드문 림프구양의 증식성 질환으로, 대개는 종격동에서 발생하거나 신장이나 후복막강에서 발생한 경우도 여러 차례 보고된 바 있다. 하지만 신장과 신장 주위 공간을 동시에 침범하여 국소 림프절 종대를 동반한 신장암과 유사한 모습을 보였던 경우는 매우 드물고, 그 영상의학적 소견의 보기는 아직까지 없어 증례 보고를 하고자 한다.

한림대학교 의과대학 강남성심병원 영상의학과