Introduction

Due to their unlimited self-renewal and multilineage differentiation potential, human pluripotent stem cells have become key cell sources for cell differentiation research, disease modeling, drug discovery, and have potential for cell replacement strategies [1]. In human, pluripotent stem cell lines can be derived from in vitro cultured inner cell mass (ICM) cells of blastocyst stage embryos, producing embryonic stem cell lines (hESCs) [2]. More recently, factor-driven reprogramming of somatic cells has provided a long-sought strategy to generate patient- and disease-specific pluripotent stem cells, termed induced pluripotent (iPS) cells [3]. Pluripotent stem cell types, i.e. ES and iPS cells, and different lines of the same type exhibit considerable variations in respect to epigenetic status, gene expression profiles, and differentiation propensity, preventing generalized approaches but allowing for the correlation of gene expression patterns with differentiation propensities [4]. One specific ESC type that is unique in this respect is parthenogenetic (PG) ESCs that are derived from blastocysts resulting from the activation and subsequent development of an unfertilized oocyte. While ascensional offspring from an oocyte without male genetic contribution (parthenogenesis) occurs naturally in various invertebrate and some vertebrate species [5], mammalian uniparental (PG, gynogenetic: GG, or androgenetic: AG, with only paternally derived genomes) embryos do not develop to term as a consequence of imbalanced expression of imprinted genes with parent of origin-dependent allele-specific expression patterns [6]. Despite this developmental limitation, stable ESC lines can be isolated from uniparental blastocysts of several species including human [7–10]. The ability of human parthenogenetic (PG) embryonic stem cells (hpESCs) to undergo neural lineage and cell type-specific differentiation is undefined. We determined the potential of hpESCs to differentiate into various neural subtypes. Concurrently, we examined DNA methylation and expression status of imprinted genes. Under culture conditions promoting neural differentiation, hpESC-derived neural stem cells (hpNSCs) gave rise to glia and neuron-like cells that expressed subtype-specific markers and generated action potentials. Analysis of imprinting in hpESCs and in hpNSCs revealed that maternal-specific gene expression patterns and imprinting marks were generally maintained in PG cells upon differentiation. Our results demonstrate that despite the lack of a paternal genome, hpESCs generate proliferating NSCs that are capable of differentiation into physiologically functional neuron-like cells and maintain allele-specific expression of imprinted genes. Thus, hpESCs can serve as a model to study the role of maternal and paternal genomes in neural development and to better understand imprinting-associated brain diseases.

Abstract

Parent of origin imprints on the genome have been implicated in the regulation of neural cell type differentiation. The ability of human parthenogenetic (PG) embryonic stem cells (hpESCs) to undergo neural lineage and cell type-specific differentiation is undefined. We determined the potential of hpESCs to differentiate into various neural subtypes. Concurrently, we examined DNA methylation and expression status of imprinted genes. Under culture conditions promoting neural differentiation, hpESC-derived neural stem cells (hpNSCs) gave rise to glia and neuron-like cells that expressed subtype-specific markers and generated action potentials. Analysis of imprinting in hpESCs and in hpNSCs revealed that maternal-specific gene expression patterns and imprinting marks were generally maintained in PG cells upon differentiation. Our results demonstrate that despite the lack of a paternal genome, hpESCs generate proliferating NSCs that are capable of differentiation into physiologically functional neuron-like cells and maintain allele-specific expression of imprinted genes. Thus, hpESCs can serve as a model to study the role of maternal and paternal genomes in neural development and to better understand imprinting-associated brain diseases.

Citation: Ahmad R, Wolber W, Eckardt S, Koch P, Schmitt J, et al. (2012) Functional Neuronal Cells Generated by Human Parthenogenetic Stem Cells. PLoS ONE 7(8): e42800. doi:10.1371/journal.pone.0042800

Editor: Mike O. Karl, Center for Regenerative Therapies Dresden, Germany

Received January 20, 2012; Accepted July 11, 2012; Published August 6, 2012

Copyright: © 2012 Ahmad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the BMBF-funded project 01GN0825 and 01GN1009B, the IZKF Würzburg project D-103, the DFG (SFB-TR3 D2), the EU 7FP project Neurostemcell (222943) and the Hertie Foundation. RA was supported by a grant of the German Excellence Initiative to the Graduate School of Life Sciences (GSLS), University of Würzburg. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Ruslan Semechkin has the following financial competing interest: Ownership of stocks or shares and Paid employment in International Stem Cell Corporation, Oceanside, CA, USA. Oliver Brüstle has the following Financial competing interest Ownership of stocks or shares and Paid employment in Life and Brain GmbH. Oliver Brüstle is the Director and co-founder of Life and Brain GmbH. The rest of the authors have declared that no competing interests exist. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: albrecht.mueller@uni-wuerzburg.de

PLoS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e42800
Studies of the developmental capacity of murine PG and AG ICM cells following aggregation with biparental embryos revealed that PG cells preferentially seeded to the neocortex, striatum and hippocampus while AG cells contributed to hypothalamus and septum but were not found in the cortex [10]. Recent high-resolution scans in the mouse suggest that the developing and adult brain may be subject to complex effects of imprinting, including cell type and subregion specific effects, and temporal bias, with maternal-derived gene expression at earlier stages in the developing embryonic day 13 brain and paternal gene expression bias in both the prefrontal cortex and the hypothalamus of the adult brain [19].

In vitro differentiation studies have shown that hpESCs are capable of generating multiple cell lineages including mesenchymal stem cells, hepatocytes, pancreatic endocrine cells, retinal pigmented epithelial and neural progenitor cells [20–24]. However, more detailed investigation is required to verify the differentiation capability of hpESCs, particularly the potential for neurogenesis and further differentiation into functional neural subtypes. The apparent contribution bias of PG and AG ICM cells to different structures of the developing brain, the large number of imprinted brain genes, and the existence of imprinting-associated neuropsychiatric diseases [17,25] could indicate that hpESCs have limited neural potential. Here, we establish that hpESCs can differentiate in vitro via NSCs into functional neuronal cells without apparent changes in imprinting status.

Materials and Methods

hpESCs culture

hpESCs (HLA heterozygous cell lines LLC6P (previously referred to as phESC-3) and LLC9P, phESC-6) were previously derived and described by the International Stem Cell Corporation [10]. Cell culture was performed as described [10] with slight modifications. hpESCs were maintained on mitomycin C-treated human foreskin fibroblasts (HFFs) (ATCC-LGC Standards, Wesel, Germany) at 5% CO2 in a medium containing knockout-DMEM, 20% knockout serum replacement (both Gibco Invitrogen, Karlsruhe, Germany), 1% non-essential amino acids, 2 mM L-glutamine (both PAA Laboratories, Colbe, Germany), 0.1 mM β-mercaptoethanol (Sigma-Aldrich, Schnelldorf, Germany) and 4 ng/mL FGF2 (PeproTech, Hamburg, Germany). Cultures were passaged at a 1:3–1:4 split ratio every 5–7 days. Medium was changed every day. For passage of hpESCs, the medium was removed and cells were incubated with Dispase (BD Biosciences, Heidelberg, Germany) at 5% CO2 in a medium containing knockout-DMEM, 20% knockout serum replacement (both Gibco Invitrogen), 1% non-essential amino acids, 2 mM L-glutamine (both PAA Laboratories, Co¨lbe, Germany), 0.1 mM β-mercaptoethanol (Sigma-Aldrich, Schnelldorf, Germany) and 4 ng/mL FGF2 (PeproTech, Hamburg, Germany). Cultures were passaged at a 1:3–1:4 split ratio every 5–7 days. Medium was changed every day. For passage of hpESCs, the medium was removed and cells were incubated with Dispase (BD Biosciences, Heidelberg, Germany). After 8–10 minutes, the reaction was stopped by centrifugation and removing supernatant. Cells were changed to neural stem cell medium (NSCM) containing N2 medium supplemented with 200 ng/mL SHH, 100 ng/mL FGF8b (both R&D Systems), and 160 μM ascorbic acid (Sigma-Aldrich) for 8 days. Differentiation was performed for additional 20 days in differentiation media containing BDNF (20 ng/mL), 10 ng/mL GDNF (both R&D systems), 160 μM ascorbic acid, and 0.5 mM dibutyryl-cAMP (both Sigma-Aldrich). For induction of motoneurons [28], 1 μM retinoic acid (Sigma-Aldrich) was added to NSCM for 6 days in the presence of B27 supplement (1:50) and adding 1 μg/mL SHH from day 5. From day 7, media was changed to NSCM (without FGF2 and EGF) but with B27 (1:50), 1 μg/mL SHH and 0.01 μM RA for another 6 days. SHH was reduced to 50 ng/mL for the following 14 days, and cells were differentiated in the presence of 20 ng/mL BDNF and 20 ng/mL GDNF in differentiation media.

Immunostaining of cultured cells

For multicolor fluorescent imaging, a SP5 Confocal Microscope (Leica, Wetzlar, Germany) was used. Cells grown on coverslips and were fixed in 4% formaldehyde, permeabilized in 0.1% Triton-X and 0.2% gelatin (Applichem, Darmstadt, Germany) and stained with the following antibodies: mouse anti-Nestin (Abcam, Cambridge, UK), rabbit anti-Sox1 (Millipore, Billerica, MA, USA), mouse anti-Sox2 (Abcam), mouse anti-Vimentin (Abcam), mouse anti-NeuN (Millipore), mouse anti-Tuj-1 (Millipore), mouse anti-MAP2 (Millipore), mouse anti-GFAP (Novocasta, Wetzlar, Germany), mouse anti-O4 (R&D systems), rabbit anti-TH (Sigma-Aldrich),anti antibody against 100 ng/mL collagen type I, mouse anti-cleaved caspase-3 (Cell Signaling Technology, Danvers, MA), mouse anti-H3 (Abcam), rabbit anti-β-actin (Sigma-Aldrich), goat anti-H9 (Santa Cruz Biotechnology, Heidelberg, Germany), rabbit anti-PLXNA4 (Cell Signaling Technology, Danvers, MA) and rabbit anti-PL2S (Cell Signaling Technology, Danvers, MA).

Whole cell patch clamp analysis

Cells grown on glass coverslips in differentiation media for 28 days were transferred into a recording chamber and continuously superfused with extracellular solution containing 125 mM NaCl, 25 mM NaHCO3, 25 mM glucose, 2.5 mM KCl, 1.25 mM Na2HPO4, 2 mM CaCl2, 2 mM MgCl2 purged by 95% CO2/5% O2. The ion channel antagonists tetrodoylaminommonium chloride (TEA, Sigma-Aldrich, 30 mM) or tetrodotoxin (TTX, PLoS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e42800
Sigma-Aldrich, 1 μM) were added to the extracellular solution when indicated. All experiments were performed at room temperature using an EPC 10 double patch clamp amplifier and pulse software (HEKA, Lambrecht, Germany). Electropores were pulled from thick-walled borosilicate glass and filled with intracellular solution (140 mM KCl, 10 mM Hepes, 10 mM EGTA, 2 mM Na2ATP, 2 mM MgCl2) and had a resistance between 3 and 4.5 MΩ. Cells were held in whole-cell configuration at ~80 mV and were discarded if the series resistance was higher than 25 MΩ at the beginning of the measurements.

Analysis of gene expression using semi-quantitative RT-PCR

Feeder cells were depleted by repeated passages on Matrigel-coated plates. Total RNA was isolated from biparental hESCs (13 and 99 cell lines), hESC-derived neural crest cells (hNSCs), hpNSCs and hpESCs using peqGOLD RNAPure™ (Peqlabs, Gottingen, Germany). Passage numbers of hpESCs that were used to generate hpNSCs were identical. Before cDNA generation, RNA preparations were treated with DNase I (Applied Biosystems, Darmstadt, Germany). 1 μg RNA was reverse transcribed into cDNA using M-MLV reverse transcriptase (Gibco Invitrogen). For control experiments cDNA was generated from human parthenogenetic neural crest stem cells (hpNSCs) (isolated from differentiating hpESCs at the attached embryoid body stage, human fetal brain between 18 and 19 weeks, female; Stratagene, Santa Clara, CA, USA) and from human adipose tissue-derived mesenchymal stromal cells (hMSCs). For amplification Taq Polymerase (HT biotechnology, Cambridge, UK) was used. PCR conditions were: 94°C, 1 min, 55°C to 62°C, 60 sec according to the primers, 72°C, 60 seconds according to the primers, 72°C, 60 seconds. GAPDH was used as control. All reactions were performed at room temperature using an EPC 10 double patch clamp amplifier and pulse software with the outer primers for H19 f: 5′-CTC ACC AAC ATG TCA CCG GAG-3′, r: 5′-AGC CGG CCG ATG CTG CTC-3′; Dlk1 f: 5′-CCA CAC AAT GGT ACT GCA-3′; r: 5′-CCG GGT CTT CAG TAC CA-3′; FoxD3 f: 5′-CTG AGG GAG TCA GAG-3′, r: 5′-GGA CCA TGG GAG ATG AGA GA-3′; HoxA1 f: 5′-CTT GGA CTT TGA GTC-3′, r: 5′-ATA CCA CAA CCA GAG-3′; Nestin f: 5′-TTC AGC AAA ATG CCC TCT CT-3′, r: 5′-ATG ACG GGC CAT GCC CCA-3′; Oct4 f: 5′-TCT GGC TTT GGG GTT CTC TTG-3′, r: 5′-CAA TGG ATG TTT TGC TGG CAA-3′; S100B f: 5′-AAA GAG GAG GTT GGT G-3′, r: 5′-AGG AAA GGT TTG CCT GGT GCT GCT TT-3′, 60°C; Tagl f: 5′-CAA CAG CAC GGC CAT CCA GG-3′, r: 5′-CTT GGG GCC CTG GCC CTG CCA-3′, 60°C. Expression analysis of mitotic checkpoint and extracellular matrix genes by RT-PCR were performed using QuantiTect Primer Assays (Qiagen, Dusseldorf, Germany).

Analysis of imprinted gene expression using quantitative RT-PCR

RT-PCR reactions were held and quantified using a Rotor-Gene 3000 (Corbett Life Science, LTF Labortechnologie, Wasserburg, Germany) and Absolute QPCR SYBR Green Mix (ABgene, Hamburg, Germany). RT-PCR conditions were: 94°C, 30 seconds, 60°C, 30 seconds and 72°C, 30 seconds (35 cycles). The relative gene expression levels were calculated with the 2-ΔΔCT method. The Ct-values indicate a difference of Ct-values between reference gene and target gene. The housekeeping gene GAPDH was used as reference. The expression level of target genes in hESCs and hNSCs were set to 1 in order to determine differences of target gene expression in hpESCs and hpNSCs respectively. The primer sequences (Eurofins MWG Operon) used were: Cdkn1c f: 5′-TGG AGG ACC AGC TTC TCT CTT CG-3′, r: 5′-TTT TCC TCG GCA GTT TCT TGG-3′; Dlk1 f: 5′-CCA AGC AGG CAG AAG AA-3′, r: 5′-GGA AGG CGA GGT ACT GAC TG-3′; GAPDH f: 5′-GGG CTC AAG GGA GGA ATG TTG-3′; H19 f: 5′-CCG ACA CAA AAT CCG CTA GCT TGG AA-3′, r: 5′-GGC TAA TGG AAT GGT ATG AAC AAT-3′; Nanog f: 5′-ACT TAT TGG CTT TGG GCC CCA-3′, r: 5′-GTA GGG GGC CAT GCC CCA-3′; Nanog f: 5′-CAG CTA TCC AGT CTT TGA-3′, r: 5′-CTG AAT CAA AAC ACC GCA CCA C-3′; Nestin f: 5′-CTG AGG GCC GAA GGA AAC TGC GTG CTA-3′, r: 5′-GGA CCA TGG GAG ATG GAG-3′; Oct4 f: 5′-TCT GGC TTT GGG GTT CTC TTG-3′, r: 5′-CAA TGG ATG TTT TGC TGG CAA-3′; S100B f: 5′-AAA GAG GAG GTT GGT G-3′, r: 5′-AGG AAA GGT TTG CCT GGT GCT GCT TT-3′, 60°C; Tagl f: 5′-CAA CAG CAC GGC CAT CCA GG-3′, r: 5′-CTT GGG GCC CTG GCC CTG CCA-3′, 60°C. Expression analysis of mitotic checkpoint and extracellular matrix genes by RT-PCR were performed using QuantiTect Primer Assays (Qiagen, Dusseldorf, Germany).

Bisulfite sequencing

Genomic DNA isolated from ESCs and NSCs using DNeasy Tissue Kit (Qiagen) was modified using the EZ DNA Methylation-Gold kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Modified DNA was amplified by PCR with the outer primers for H19 f: 5′-AGG GGT TTT GGG ATG TTG AGT GAT GAT GG-3′ and r: 5′-TGC CCT ATT AAA TAT CCT ATT CCC AAA TAA CC-3′ [29] (6005–6326 of AB077017, 18 CpG) and for KvDMR f: 5′-TTG TTG TTT TGT AGT TAT TAT GGA AGG ATT AA-3′ and r: 5′-CTG ACC CCT AAT ACA AAA AAC TTA AAA CCT CTA-3′ [30] (2008–260 bp fragment – 24 CpG 65531–66801 of U90099). PCR was performed using a modified touchdown protocol that consisted of an initial denaturation step at 94°C for 3 min, followed by 4 cycles of 94°C for 30 seconds, 62°C for 40 seconds and 72°C for 45 second. After additional 6 cycles of the same length with 60°C annealing temperature, 20 cycles were performed with successive annealing temperature decrements of 0.5°C in every cycle, followed by 15 cycles with 52°C annealing temperature. The amplified DNA fragments were sub-cloned into pGel1.2/blunt (Fermentas, Glen Burnie, Maryland).
land, USA) for sequencing. Analysis of sequences and diagram generation was performed using BISMA [31].

Data analysis

Results were expressed as the mean ± SEM. Statistical analysis was performed using the Student t-test.

Results

Neural differentiation of hpESCs

Uniparental hpESCs (ESC lines LLC9P and LLC6P [10]) were cultured using a multi-step in vitro differentiation protocol that can produce NSCs from pluripotent stem cells [26]. Initial differentiation of hpESCs produced floating embryoid bodies (EB) that formed neural rosettes after attachment (Fig. 1A, Fig. S1 A). Isolated neural rosettes could be expanded as floating neurospheres that formed monolayers with NSC-like homogeneous morphology after plating onto polyornithine/laminin-coated plates (Fig. 1A right panel). The NSC identity of monolayer cells was confirmed by gene expression analysis revealing upregulation of NSC markers Sox1, Nestin, Pax6, and Musashi1 (MS1) (Fig. 1B, Fig. S1 B), silencing of pluripotency marker genes (Oct4 or Nanog), and absence of activation of markers of non-neural lineage commitment, including neural crest (Snai2, FoxD3) and mesoderm (Acta1). Expression of the neural stem cell markers Nestin, Sox1, Sox2 and Vimentin in hpNSC cultures was ubiquitous and not limited to subsets of cells (Fig. 1C and Fig. S1 C). Upon differentiation, two 10 cm² plate dishes of LLC9P hpESCs yielded a mean of 29 (±3.5) million hpNSCs whereas LLC6P hpESCs generated 11.8 (±1.7) million cells. As a recent report described aberrant expression levels of molecules related to spindle formation and chromosome segregation in hpESCs [20], we verified expression of these markers in undifferentiated LLC6P and LLC9P hpESCs, and detected variations in gene expression not only between PG and N cells but also between individual hpESCs (Fig. S2 A). Additionally, reduced levels of extracellular matrix (ECM) transcripts had been detected in PG compared to N (biparental) ESCs [22]. We observed variation in ECM transcript levels of ECM molecules between individual PG and N cell lines, with lower expression in LLC6P hpESCs compared to LLC9P
cells and to hESCs (Fig. S2 B). In conclusion, hpESCs can differentiate into hpNSCs that express neural stem cell markers in the absence of pluripotency or neural crest cell marker expression.

Terminal differentiation of hpESC-derived hpNSCs

To study the neural differentiation potential of hpNSCs (LLC9P), cells were subjected to growth factor withdrawal to induce terminal differentiation (Fig. 2A). In contrast to undifferentiated hpESCs and similar to a human fetal brain isolate, hpNSC-derived cells (differentiated for 28 days) expressed neuronal (\textit{Tuj1} - class III beta-tubulin), astrocyte (\textit{GFAP} - glial fibrillary acidic protein; \textit{S100B} - S100 calcium binding protein B) and oligodendrocyte (\textit{Olig2} - oligodendrocyte transcription factor 2) lineage-specific transcripts (Fig. 2B) and cell type-specific protein markers \textit{Tuj1}, \textit{NeuN}, \textit{MAP2} (microtubule-associated protein 2, neurons), \textit{GFAP} (astrocytes) and \textit{O4} (oligodendrocytes) (Fig. 2C). Expression of the presynaptic vesicle protein \textit{Synapsin1}, the dendritic marker \textit{MAP2} and the axonal marker \textit{Tau} was also detectable at this stage of differentiation (Fig. 2C). 95\% of \textit{Tuj1}/DAPI positive cells co-expressed the neurotransmitter GABA (\textit{\gamma}-aminobutyric acid) (Fig. 2C). Overall, we observed that hpNSCs favor neuronal differentiation (61\% of cells), whereas glial cells were less frequently detectable (17\% of cells). Oligodendrocytes were detected only after 6 weeks of differentiation (2\% of cells) (Fig. 2D). Similar results of neuronal and astroglial differentiation were observed for the hpESC line LLC6P (Fig. S3 A, B), with the exception that \textit{O4}-positive cells were not detected (Fig. S3 C).

Next we analyzed whether hpNSCs remain responsive to instructive regionalization cues known to induce dopaminergic [27] or motoneuron differentiations [28]. To induce formation of \textit{TH}$^+$ (tyrosine hydroxylase)-neurons, hpNSCs were first cultured in media supplemented with sonic hedgehog (SHH) and FGF8b, followed by culture in media containing BDNF and GDNF (Fig. 3A, top). After 28 days of differentiation, cells expressed transcripts for the midbrain-specific \textit{Nurr1} (nuclear receptor related 1 protein), \textit{En1} (engrailed homeobox 1) and \textit{Pax2} (paired box gene 2) (Fig. 3B). Immunocytochemical staining verified upregulation of the midbrain markers \textit{En1} and \textit{Pitx3} (paired-like homeodomain 3), which are transcription factors required for differentiation and survival of midbrain dopaminergic neurons, and for \textit{TH} (dopamine biosynthesis) (Fig. 3B). We observed 79.8\% of \textit{En1}, 10.8\% of \textit{Pitx3} and 13.3\% \textit{TH} positive cells (Fig. 3B).
To explore the motoneuron potential of hpNSCs, we exposed cells to sequential growth factor combinations that induce a motoneuron fate (Fig. 3A). After 28 days of differentiation, transcripts of the motoneuron markers *HoxA1* and *HoxA2* were detectable in differentiated cultures but not in undifferentiated hpESCs. Correspondingly, immunostaining revealed nuclear expression of *Isl1* (ISL LIM homeobox1, marker for motoneuron progenitors), *Nkx2.2* (NK2 homeobox 2, ventral brain marker), *HB9* (motor neuron and pancreas homeobox 1, motoneuron marker) and *MAP2* (neuronal marker) (Fig. 3C). hpNSCs generated 80.1 ± 3% *Isl1*, 70.9 ± 2.6% *Nkx2.2* and 79.1 ± 2.9% *HB9* positive cells (Fig. 3C). In summary, these data indicate that hpNSCs are responsive to instructive regionalization cues and that hpNSCs can differentiate into cells that express dopaminergic and motoneuron markers. Neuronal cells that express dopaminergic or motoneuron markers were also observed upon differentiation of hpESC line LLC6P (Fig. S4).

Electrophysiological analysis of PG neurons

We further investigated whether PG neurons can functionally mature in vitro. As shown in Table S1, electrophysiological properties of PG neurons at 28 days of differentiation were comparable to those reported in literature for human *in vitro* induced neuronal cells [32]. PG neurons showed typical neuronal Na⁺/K⁺ currents in voltage clamp mode (vc stimulation pattern: −80 mV to +55 mV, step size 15 mV, stimulation time 20 ms) (Fig. 4A). Depolarizing step current injections over a 500 ms time period elicited multiple action potentials with a maximum frequency of 30 Hz (Fig. 4B). When maximum in- and outward currents were plotted against the corresponding stimulation voltage, PG neurons depicted a typical neuron-like current pattern (Fig. 4C) that responded to selective pharmacological blockers of sodium (tetrodotoxin) and potassium (tetraethylammonium) channels (Fig. 4D).

Analysis of imprinted genes

To assess the status of epigenetic marks involved in the control of imprinted gene expression during neural differentiation of hpESCs, we analyzed the methylation status of CpG islands of two differentially methylated regions, the 5′ region of the long non-coding RNA *Kcnq1ot1* (KvDMR1) and the H19 DMR1 (Fig. 5). Methylation of KvDMR1 on the maternal allele, acquired during germ cell development, is associated with silencing of *Kcnq1ot1*, whereas *Kcnq1ot1* expression from the unmethylated paternal allele is involved in domain-wide chromatin repression of a cluster of genes including *Cdkn1c* and *Kcnq1* [33]. Consistent with PG origin,
CpGs of the KvDMR1 were mostly methylated in hpESCs and hpNSCs, while conventional hESCs and hNSCs exhibited 50% methylation, indicating the presence of maternal and paternal alleles (Fig. 5A). Quantitative RT-PCR analysis revealed absence of Kcnq1ot1 RNA in hpESCs and hpNSCs, and higher expression of Kcnq1 but not Cdkn1c in PG compared to N cells (Fig. 5B).

Differential germline-acquired methylation of the H19 DMR, a chromatin insulator, controls reciprocal allelic silencing of the Igf2 and H19 genes. On the unmethylated maternal allele, CTCF binding blocks enhancer-initiated transcription of Igf2, allowing H19 expression, while methylation on the paternal allele abolishes insulator function permitting Igf2 expression and leading to silencing of H19 in cis [34]. The majority of DMR1 CpGs were methylated in N cells, whereas PG cells exhibited partial or complete absence of CpG methylation (Fig. 5C). Parent of origin-specific expression of Igf2 and H19 was maintained in PG cells with absence of Igf2 expression and overexpression of H19 in PG compared to N cells (Fig. 5D).

Expression analyses of additional imprinted genes revealed that silencing of the paternally expressed Snrpn and Nnat genes was preserved in hpESCs and hpNSCs. Levels of the maternally expressed Gld2, Dlk5 and Kcnk9 genes were overall higher in hpESC and hpNSC compared to N cells. However, Igf2r expression was elevated only in hpESCs but not in hpNSCs (Fig. 5E, Fig S5). Together, parent of origin-specific gene expression control appears to be largely maintained in hpESC lines LLC6P and LLC9P, and neural differentiation is not associated with a loss of silencing of paternally expressed genes that were analyzed.

Discussion

Our objective was to define the neural differentiation potential of hpESCs in vitro. In summary, we describe that hpESCs - despite having a maternal genome only - generate proliferating NSCs that are capable of differentiating towards neurons that express specific markers for neuronal transmitters and synaptic proteins and show electrical activity. PG cells maintain allele-specific expression of imprinted genes.

Our results confirm the neural differentiation potential of hpESCs. In particular, the results show that hpESCs can generate proliferating hpNSCs, which can further differentiate not only to early neural lineages as described earlier [8–10] but also into mature neural and glial cell types. hpNSCs respond to signals directing the derivation of ventral midbrain dopaminergic and motoneurons. Similar to earlier reports on conventional NSCs, we observed high frequencies of GABAergic neurons [26,35,36]. The reason for the preference of hpNSCs towards GABAergic...
differentiation is not clear, although the high concentrations of mitogens present during the expansion of hpNSCs are likely a contributing factor. The preference towards neuronal and less glial differentiation outcomes mimics the developmental potential of NSCs in the developing brain [37]. We further show that PG neuron-like cells were capable to generate action potentials and possessed membrane characteristics similar to newly formed neurons [26,35]. The unperturbed neural differentiation potential of hpESCs is consistent with earlier reports of successful murine AG ESC-derived neurogenesis [11,12,16]. Our analyses indicate that uniparental ESCs are less restricted in their neural developmental potential than predicted from in vivo studies [18,38].

Previous analyses of neural differentiation potential of hpESC via sphere formation suggested that hpESCs yielded low quantities and less mature neural cells compared to conventional ESCs [22]. Our results are in contrast to this report, with several factors likely to contribute to such a difference. Firstly, we subjected hpESC lines (a subset of those used by [22]) to an alternative differentiation protocol, which was optimized towards the derivation of a homogeneous population of NSCs, and minimized spontaneous differentiation and lineage restriction. Secondly, our results revealed differences in gene expression of extracellular matrix proteins not only between hpESCs and hESCs but also between individual hpESC cell lines. Therefore, low yields of ES-derived NSCs from LLC6P compared to LLC9P hpESCs may be related to poor cell-cell interaction caused by low levels of ECM gene expression in LLC6P [22].

Figure 5. Analysis of the methylation status of differentially methylated regions (DMRs) and expression analysis of imprinted genes. Shown are comparative bisulfite sequencing analysis and analysis of imprinted gene expression in hESCs, hNSCs (I3) and in hpESCs, hpNSCs (LLC9P) respectively. (A) Bisulfite sequencing of KvDMR1 (position: 66531–66801) in N and PG cells. The location of KvDMR1 and the transcriptional start sites of Cdkn1c, Kcnq1ot1 and Kcnq1 are indicated (maternal allele). Black boxes represent methylated CpGs; grey boxes show unmethylated CpGs; white boxes: not analyzed. Percentages of CpG methylation are indicated. (B) Shown are RT-PCR analyses of imprinted genes regulated by Kcnq1ot1 long non-coding RNA in PG and N cells. The relative expression represents the fold change of gene expression in PG compared to N cells, respectively. Fold change was calculated by the 2−ΔΔCt method. The housekeeping gene GAPDH was used as a reference gene. Expression levels of N cells were set to 1. (C) Shown are the location of DMR1 (position: 66531–66801), gene regions of Igf2 and H19 (maternal allele) and results of bisulfite sequencing analyses of DMR1. (D) Shown are gene expression analyses of Igf2 and H19 in N and PG cells. n = 3. (E) Expression analysis of imprinted genes of other loci by quantitative RT-PCR. n = 3, * p<0.05, ** p<0.01, *** p<0.001 by Student’s t-test.

doi:10.1371/journal.pone.0042800.g005
46,XX karyotype suggesting that the cells under study are chromosomally normal [10].

ESC lines may undergo epigenetic changes during in vitro culture [42–44]. Although hESC exhibit a substantial degree of epigenetic stability, despite differences in genetic background, derivation and expansion conditions [44], imprinted loci have been found to exhibit varying susceptibility to culture-induced epigenetic changes, with more stability at the Kcnq1ot1 locus and less at H19/Igf2 [43]. Consistent with such observations, we detected conservation of maternal-specific CpG methylation at the KvDMR, low expression of Kcnq1ot1, and upregulation of maternally expressed Kcnq1 in PG cells, although Cdkn1c transcripts were only upregulated in one PG cell line (LLC6P). Our analyses of methylation of DMR1 of the H19/Igf2 locus agree with previous reports suggesting that late passage hESCs are prone to hypermethylation this region [43]. Here we observe hypermethylation in hESCs and hNSCs, and modest gain of CpG methylation in hpESCs. Despite these changes, Igf2 and H19 transcript levels in hpESCs and NSCs remained consistent with PG origin, indicating that regulatory mechanisms other than CpG methylation are involved in imprinting control of H19 and Igf2 [45]. Other paternal (Snrpn and Nnat) and maternal (Dlx5, Gld2, Ube3a and Kcnk9) imprinted genes maintained their parent of origin-specific gene expression pattern. Igf2r expression was elevated only in hpESCs but not in hpNSCs. The molecular basis for this remains unclear. Increased methylation in the higher passage hESCs used in our study may be a consequence of the in vitro expansion of ESCs, however, overall, our analyses indicate that PG cells are epigenetically as stable as N cells.

Considering the putative prevalence of imprinted genes expressed in the developing mammalian brain [17] and the altered expression of ECM genes and molecules related to spindle formation and chromosome segregation [20,22], the capacity of hpESCs to undergo similar in vitro neural differentiation as hESCs seems surprising. This suggests either that there is a less stringent role for imprinted gene expression during neuronal in vitro differentiation, or that a requirement for balanced expression of imprinted genes is not required for differentiation to the stages analyzed. While we show the successful in vitro differentiation of hpESCs into neural subtypes and that PG neurons develop synaptic contacts and electrical activity, transplant models will ultimately be required to assess the broader neural differentiation potential of hpESCs.

Supporting Information

Figure S1 hpESC-derived hpNSCs (hpESC line LLC6P). (A) Images of individual differentiation stages during the derivation of hpNSCs. hpESCs, floating embryoid bodies, attached embryoid bodies which exhibit rosette-like structures, floating neurospheres and hpNSCs. Scale bars, left panel: 0.5 mm; other panels: 0.25 mm. (B) Expression of Oct4, Nanog, Sox1, Nestin, Pax6 and MS1 in hESCs, hNSCs, hpESCs, and hpNSCs by RT-PCR. GAPDH is the house-keeping control. (C) Immunostaining of hpESC-derived hpNSCs for Nestin, Sox1, Sox2 and Vimentin expression. Nuclei were counterstained with DAPI. Confocal images of a representative analysis are shown. Scale bars: 50 μm; n = 3. (TIF)

Figure S2 Expression analysis of mitotic checkpoint and extracellular matrix genes by RT-PCR. (A) Expression level in PG (LLC9P and LLC6P) and N (I3 and H9) ESCs were analyzed by RT-PCR. The genes analyzed are mitotic arrest deficient 1 (MAD1), budding uninhibited by benzimidazoles 1 (BUB1), centromere protein E (CENPE), TTK kinase (human homologue of the yeast monopolar spindle 1 kinase), aurora A kinase, Myc-associated factor X (MAF), SWI-Independent 3 (SWI3). (B) RT-PCR expression analysis of extracellular matrix molecules: matrix metalloproteinase 1 (MMP1), matrix metalloproteinase 7 (MMP7), collagen type XI alpha 1 (COL11A1), neural cell adhesion molecule 1 (NCAM1), vascular cell adhesion molecule 1 (VCAM1) and integrin alpha-6 (ITGA6) in hpESCs (LLC9P and LLC6P) compared to hESCs (I3 and H9). Expression levels of N cells were set to 1. Fold change was calculated by the 2−ΔΔCt method. The housekeeping gene GAPDH was used as a reference. n = 3, * p<0.05, ** p<0.01, *** p<0.001 by Student’s t-test. (TIF)

Figure S3 In vitro differentiation of hpNSCs into neural subtypes (LLC6P). (A) Expression of neuronal and glial markers Tuj1, GFAP, S100B, Igf2 and the house-keeping gene GAPDH by RT-PCR. (B) hpNSC-derived neuronal and glial cells were stained with antibodies specific for: Tuj1, NeuN, MAP2, GFAP, GABA, Synaptol or Tau. The nuclear stain DAPI was used. n = 4. (C) Percentages of immuno-reactive neuronal and glial subtypes are given. Scale bars: 50 μm; n=4. (TIF)

Figure S4 Differentiation of hpNSCs towards dopaminergic and motoneurons (LLC6P). (A) RT-PCR analysis for expression of Nurr1, En1, Pax2 and TH. Percentage of cells immunostained for En1, Pax3, TH and co-stained with DAPI. (B) Expression of HoxA1 and HoxA2 analyzed by RT-PCR. Immunostainings for expression of motoneuron markers: Isl1, Nkx2.2 and HB9. Nuclei were counterstained with DAPI. Percentage cell counts of Isl1, Nkx2.2 and HB9- and DAPI-positive cells are indicated. Scale bars: 50 μm; n = 3. (TIF)

Figure S5 RT-PCR analysis of imprinted genes in hpESCs and hpNSCs (LLC6P). Relative expression levels of the imprinted genes: Igf2, Snrpn, Nnat and Kcnq1ot1 (paternally expressed) and Dlx5, H19, Ube3a, Igf2r, Kcnq1, Cdkn1c, Gld2 and Kcnk9 (maternally expressed) were analyzed by RT-PCR in PG and N cells (I3 and H9). The 2−ΔΔCt method was used to calculate fold change in the expression of imprinted genes. Expression levels N cells were set to 1. GAPDH was used as a reference gene. n = 3, * p<0.05, ** p<0.01, *** p<0.001 by Student’s t-test. (TIF)

Table S1 Electrophysiological characteristics of PG neurons. (DOCX)

Acknowledgments

We thank Doris Heim for expert technical assistance for immunocytochemistry, Daniel Besser and Sebastian Diecke, MDC-Berlin for assistance with hpESC culture and Gregory Harms, Rudolf Virchow Center, University of Würzburg for assistance with confocal microscopy.

Author Contributions

Conceived and designed the experiments: AM. Performed the experiments: RA WW SE PK JS. Analyzed the data: RA WW SE PK RS CG MH OB JKM ALS AM. Contributed reagents/materials/analysis tools: PK RS CG MH OB. Wrote the paper: RA SE JKM ALS AM.
References

1. Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, et al. (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8: 618–628.

2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.

3. Yamakaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1: 39–49.

4. Kiskinis E, Verstappen G, Gu H, Boulting G, et al. (2011) Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144: 439–452.

5. Neaves WB, Baumann F (2011) Unisexual reproduction among vertebrates. Trends Genet 27: 81–88.

6. Kono T, Ohata Y, Wu Q, Nisw K, Oto Y, et al. (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428: 860–864.

7. Kim K, Ng K, Rugg-Gunn PJ, Shiehl JH, Kirak O, et al. (2007) Recombination signatures distinguishing embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1: 346–352.

8. Mai Q, Yu Y, Li T, Wang L, Chen MJ, et al. (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17: 999–1006.

9. Liu G, OuYang Q, Zhou X, Gu Y, Yuan D, et al. (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17: 999–1006.

10. Reik W, Murrell A (2000) Genomic imprinting. Silence across the border. Nature 405: 408–409.

11. Teramura T, Onodera Y, Murakami H, Ito S, Mihara T, et al. (2009) Mouse parthenogenetic cell lines. Stem Cell Rev 5: 340–352.

12. Dinger TC, Eckardt S, Choi SW, Camarero G, Kurosaka S, et al. (2008) Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro. Stem Cells 26: 1474–1483.

13. Eckardt S, Leu NA, Yanchik A, Hatada S, Kyba M, et al. (2011) Gene therapy assessment of transgene expression in human embryonic stem cells derived by parthenogenesis and genomic imprinting in human embryonic stem cells as revealed by a large cohort of human ESCs. Stem Cell Rev 7: 215–221.

14. Issaean J, Dupont JM, Vazerour C, Le Tessier D, Cuisset L, et al. (2000) Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet 9: 2183–2187.

15. Reulke R, Bala-Rhodaine S, Mery L, Blachere T, Guerin JF, et al. (2008) Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J Med Genet 45: 583–588.

16. Reulke R, Zhang Y, Reikhardt J, Jetsch A (2010) BISMA fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 11: 230.

17. Jinno Y, Sengoku K, Nakao M, Tamate K, Miyamoto T, et al. (1996) Mouse/human embryonic stem cell lines derived from human parthenogenetic blastocysts. Cell Res 6: 495–506.

18. Zhang SC, Verstappen G, Gu H, Boulting G, et al. (2011) Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell Stem Cell 1: 346–352.

19. Lehnertz C, Kim K, Lerou P, Daley GQ (2007) Differentiation potential of histocompatible parthenogenetic embryonic stem cells. Ann N Y Acad Sci 1109: 209–218.

20. Tanemura T, Onodera Y, Murakami H, Ito S, Mihara T, et al. (2009) Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro. J Reprod Dev 55: 283–292.

21. Wilkinson LS, Davies W, Isles AR (2007) Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8: 832–843.

22. Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA (1996) Genomic imprinting and the differential roles of parental genomes in brain development. Nat Rev Neurosci 8: 832–843.

23. Isaes DA, Garitoandia I, Abramihina TV, Zogovic-Kapsali T, West RA, et al. (2012) In vitro differentiation of human parthenogenetic stem cells into neural lineages. Regen Med 7: 37–45.

24. Turovets N, Fair J, West R, Ostrowska A, Semechkin R, et al. (2012) Derivation of high-purity definitive endoderm from human parthenogenetic stem cells using an in vitro analog of the primitive streak. Cell Transplant 21: 217–234.

25. Williams JF, Ubeda F (2011) Diseases associated with genomic imprinting. Prog Mol Biol Transl Sci 101: 401–445.

26. Koch P, Opitz T, Steinbeck JA, Ladewig J, Breule O (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A 106: 3225–3230.

27. Perrier AL, Tabar V, Barbieri T, Rubio ME, Bruse J, et al. (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 101: 12543–12548.

28. Li XJ, Do ZW, Zarnowska ED, Pankratz M, Hansen LO, et al. (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23: 215–221.

29. Kestjan A, Dupont JM, Vazerour C, Le Tessier D, Cuisset L, et al. (2000) Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet 9: 2183–2187.

30. Lin G, OuYang Q, Zhou X, Gu Y, Yuan D, et al. (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17: 999–1007.

31. Reik W, Murrell A (2000) Genomic imprinting. Silence across the border. Nature 405: 408–409.

32. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, et al. (2010) Murine centrosome amplification and chromosomal instability in human and animal cell lines. Nat Biotechnol 28: 743–747.

33. Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32: 426–431.

34. Jinno Y, Sengoku K, Nakao M, Tamate K, Miyamoto T, et al. (1996) Mouse/human embryonic stem cell lines derived from human parthenogenetic blastocysts. Cell Res 6: 495–506.

35. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32: 149–184.

36. Zhang SC (2006) Neural subtype specification from embryonic stem cells. Brain Pathol 16: 132–142.

37. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32: 149–184.

38. Mann JR, Gadi I, Harlison ML, Abbondanzo SJ, Stewart CL (1990) Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeric rat males. I: A potential source of progenitor cells. Cell 62: 251–260.

39. Knox R, Singey I, Ditter M, Pantazis G, Capetian P, et al. (2010) Mouse features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5: e8809.

40. Osafune K, Caron I, Borovick M, Martinez RJ, Fitz-Gerald CS, et al. (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26: 313–315.

41. Brevini TA, Pennarossa G, Maffioli S, Tettamanti G, Vaneli A, et al. (2012) Centrosome Amplification and Chromosomal Instability in Human and Animal Parthenogenetic Cell Lines. Stem Cell Rev.

42. Humpherys D, Eggan K, Akhurst H, Hochedlinger K, Rideout VM, et al. (2001) Epigenetic instability in ES cells and cloned mice. Science 293: 95–97.

43. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2005) Epigenetic status of human embryonic stem cells. Nat Genet 37: 505–507.

44. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2007) Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum Mol Genet 16 Spec No. 2: R243–251.

45. Reik W, Murrell A (2000) Genomic imprinting. Silence across the border. Nature 405: 408–409.