Integrated taxonomy reveals new threatened freshwater mussels (Bivalvia: Hyriidae: *Westralunio*) from southwestern Australia

Michael W. Klunzinger¹², Corey Whisson², Alexandra Zieritz³, Justin A. Benson⁴, Barbara A. Stewart⁴ & Lisa Kirkendale²

The freshwater mussel *Westralunio carteri* (Iredale, 1934) has long been considered the sole *Westralunio* species in Australia, limited to the Southwest and listed as vulnerable on the IUCN Red List and under Australian legislation. Here, we used species delimitation models based on COI mtDNA sequences to confirm existence of three evolutionarily significant units (ESUs) within this taxon and conducted morphometric analyses to investigate whether shell shape differed significantly among these ESUs. “*W. carteri*” I was found to be significantly larger and more elongated than “*W. carteri*” II and “*W. carteri*” II + III combined, but not different from “*W. carteri*” III alone. We recognise and redescribe “*W. carteri*” I as *Westralunio carteri* (Iredale, 1934) from western coastal drainages and describe “*W. carteri*” II and “*W. carteri*” III as *Westralunio inbisi* sp. nov. from southern and lower southwestern drainages. Two subspecies are further delineated: “*W. carteri*” II is formally described as *Westralunio inbisi inbisi* subsp. nov. from southern coastal drainages, and “*W. carteri*” III as *Westralunio inbisi meridiemus* subsp. nov. from the southwestern corner. Because this study profoundly compresses the range of *Westralunio carteri* northward and introduces additional southern and southwestern taxa with restricted distributions, new threatened species nominations are necessary.

Abbreviations

AMS The Australian Museum, Sydney, NSW, Australia
Bk Brook
BMNH The Natural History Museum, London, UK
FMNH Field Museum of Natural History, Chicago, IL, USA
ICZN International Code for Zoological Nomenclature
Lk Lake
MCZ Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
MU Murdoch University, Murdoch, WA, Australia
R River
Res Reservoir
UMCZ University Museum of Zoology Cambridge, UK
UMMZ University of Michigan Museum of Zoology, Ann Arbor, MI, USA
WAM Western Australian Museum, Perth, WA, Australia

There has been a growing interest in using multiple lines of evidence for delineating species boundaries, particularly for taxa such as freshwater mussels, which are highly threatened while containing undescribed cryptic diversity¹⁻⁸. Before the advent of modern molecular systematics and taxonomy, new freshwater mussel species were described based primarily on shell morphology and morphometry⁹⁻¹¹. However, recognition of freshwater...
mussel species based solely on morphology can be fraught with difficulties, with freshwater mussel taxonomy hindered, in part, by the tendency for shell forms to vary in response to environmental conditions12–15.

Freshwater mussels (Bivalvia: Palaeoheterodonta: Unionida) are comprised of six families with a total of 192 genera and 958 species worldwide16. Six unionid families are recognised as distinct based on larval morphology, the number and arrangement of ctenidial demibranchs containing marsupia, water tube and brood chamber morphology in the demibranchs, the presence or absence of a supra-anal aperture and mantle fusion relative to the inhalant and exhalant siphons17,18. Most freshwater mussels have a two-stage life cycle, whereby larvae are briefly parasitic on fishes and, in some cases, amphibians for a brief period of weeks to months and live the remainder of their lives as benthic filter-feeders. Larval forms include glochidia in the Hyriidae, Margaritiferidae and Unionidae and lasidia or haustoria in Etheriidae, Iridinidae and Mycetopodidae19.

The Hyriidae have a Gondwanan origin and include at least 96 species from 16 genera with a trans-Pacific distribution in Australasia and South America14,20–23. Included amongst these genera is the freshwater mussel genus \textit{Westralunio}. This genus is restricted to the Australasian region in the Southern Hemisphere and is represented by three species: \textit{Westralunio carteri} (Iredale, 19344) from southwestern Australia, \textit{Westralunio flyensis} (Tapparone Canefri, 188334) from Papua New Guinea and \textit{Westralunio albertisi} Clench, 195727 from Papua New Guinea and eastern Indonesian West Papua34. Iredale8 erected the genus \textit{Westralunio} based on hinge dentition, and established two subspecies, \textit{Westralunio ambiguus ambiguus} (Philippi, 184726) and \textit{Westralunio ambiguus carteri} Iredale, 19344 based on geography and shell form. McMichael & Hiscock10 later merged the two subspecies, stating that they could not be separated on anatomical or geographical grounds and elevated the name \textit{carteri} to specific rank, ceding the name \textit{ambiguous} to the genus \textit{Veleunio} from eastern Australia. As such, \textit{W. carteri} was recognised as the sole southwestern Australian freshwater mussel. McMichael & Hiscock10 also included \textit{W. flyensis} and \textit{W. albertisi} in the genus, stating that "\textit{Westralunio is, in most respects, a typical velesunione mussel, but it is easily distinguished from the related genera, \textit{Veleunio} and \textit{Alathyria}, by its more numerous and smaller teeth."

Two recent studies have investigated phylogenetic structural and the existence of Evolutionary Significant Units (ESUs) and Molecular Operational Taxonomic Units’ (MOTUs) in \textit{W. carteri}27,28. Klonzinger et \textit{al.}27 applied four species delimitation models based on 46 COI mtDNA sequences spanning 13 populations of \textit{W. carteri}, which revealed unanimous support for at least two MOTUs: "\textit{W. carteri} I" from west coast drainages and "\textit{W. carteri} II + III" from drainages of the south coast lower southwest of southwestern Australia. The degree of differentiation (2.8–3.4\%) between these two putative MOTUs and their apparent allopatry, led these authors to suggest that they be recognised as distinct species. Furthermore, one of the four models revealed a potential third MOTU ("\textit{W. carteri} III"), comprising individuals from the southwest corner of the region. The authors recommended further research was required to better characterise the observed differentiation among lineages and their distribution. Subsequent work by Benson et \textit{al.}28 incorporated COI and 16S sequences from an additional 119 individuals from 19 populations previously unsampled and showed that the distribution of the two primary lineages rarely overlapped, and that the third lineage appeared to be restricted to just two river systems.

These two independent lines of evidence (genetics and geographical distribution) lend support to the notion that these three \textit{Westralunio} lineages warrant species-level consideration and formal taxonomic description which, to date, has not been undertaken. Furthermore, \textit{W. carteri} also exhibits marked intraspecific variation in shell morphology, with specimens collected from locations on the south coast29 appearing to be less elongate and having more squarely truncated posterior than those from other parts of the species’ range (M.W. Klonzinger, pers. obs.).

As species are part of the fundamental unit of conservation assessment30, an integrated taxonomic evaluation is required for \textit{W. carteri}, incorporating analyses of morphological variation and the application of species delimitation models to the full data set (i.e., combining Klonzinger \textit{et al.}27 and Benson \textit{et al.}28). However, this has yet to be undertaken.

The purpose of this study was to revisit the taxonomy of \textit{W. carteri} based on an integrative taxonomic approach with a view to test the hypotheses that \textit{W. carteri} either represents a geographically variable, single species or consists of multiple taxa worthy of taxonomic recognition. More specifically, we (i) used three species delimitation models and a comprehensive data set of COI mtDNA sequences to confirm the existence of previously identified ESUs, (ii) tested whether these taxa are morphologically distinct, and (iii) formally described the ESUs recognised for \textit{W. carteri} as separate taxa.

Results

Genetic variation. The best fitting substitution models for COI codons 1–3 were identified as TN + F + G4, F81 + F + I, and TN + F, respectively. The maximum likelihood (ML) and Bayesian inference (BI) trees showed similar topologies of the main nodes, although the BI tree displayed greater resolution of the ingroup branches (Fig. 1). Furthermore, the BI tree revealed three monophyletic clades, while two of those clades were merged in the ML tree. Two of the three molecular species delimitation methods (ASAP and TCS) recovered three groups in the BI tree as distinct taxa (Fig. 1), corresponding to the three previously described ESUs27,28. The third method (bPTP) recovered between 8 and 43 groups (mean = 28.03) suggesting that there is evidence of additional genetic differentiation within the three groups identified by ASAP and TCS. The outputs of the three methods are provided in the Supplementary information. The molecular diagnosis uncovered several fixed nucleotide differences COI characters for each taxon (Table 1: "\textit{W. carteri} I = 10; "\textit{W. carteri} II = 3; "\textit{W. carteri} III = 5"). There were also 13 fixed nucleotide differences in \textit{W. carteri} for the 16S gene. The remaining two taxa had no fixed nucleotide differences for the 16S gene.

Variation in shell morphology. Based on results from analyses of variances (ANOVAs), shells of "\textit{W. carteri} I" were significantly larger (for size metrics total length (TL), maximum height (MH), beak height (BH))
Figure 1. Phylogenetic trees obtained by maximum likelihood (left) and Bayesian inference (right) analysis of "Westraluniono carteri" mtDNA COI sequences, including support values for the major genetic clades [ultrafast bootstrap values (left) and Bayesian posterior probabilities (right)]. Colour coded bars show support for the three major clades by the species delimitation methods (ASAP = dark shade; TCS = lighter shade). Green = WcI = "W. carteri" I; blue = WcIII = "W. carteri" III; red = WcII = "W. carteri" II. Results of bPTP analysis not shown (see supplementary data). Haplotype names correspond to Benson et al. [28]. Outgroup taxa are "Velasunio ambiguus" (Philippi, 1847) (Hyriidae: Vellesunioninae) and "Cucumerunio novaehollandiae" (Gray, 1834) (Hyriidae: Hyriinae: Hyridellini).

Table 1. Molecular diagnoses of "Westralunio carteri" Evolutionarily Significant Units (ESUs) from southwestern Australia (after Bolotov et al. [122] with reanalysis of data from Klunzinger et al. [27] and Benson et al. [28]). New taxa include "W. carteri" II and III. Supplementary files 1 and 2 contain the alignments used to determine the single pure characters and p-distances. The position of each diagnostic character refers to its location within those alignments. SE, standard error.
and beak length (BL)) and more elongated (i.e., had a lower maximum height index (MHI)) than shells of "W. carteri" II and "W. carteri" II + III combined (Table 2). However, there was no difference in size or shape metrics between "W. carteri" I and "W. carteri" III (Table 2). The lack of significant differences in beak height index (BHI) and beak length index (BLI) among any of the taxa (Table 2) indicates that wing and anterior shell development was not discernibly different between any of the ESUs.

This pattern was partly confirmed in the principal component analysis (PCA) of these three shell shape indices, where PC1, largely explained in variation in BLI (Fig. 2A), did not differ between the two species (i.e., "W. carteri" I vs. "W. carteri" II + III). The PC2, largely explained by variation in MHI and BHI (Fig. 2A), differed significantly between "W. carteri" I and "W. carteri" II (Table 2). Accordingly, 70% (70% jack-knifed) of specimens were assigned to the correct species in the corresponding discriminant analysis (DA), whilst this was true for only 55% (54%) at the MOTU-level.

The difference in shell elongation between "W. carteri" I and "W. carteri" II was confirmed by Fourier shape analysis. As visualised by synthetic outlines in Fig. 2B, shell elongation is expressed along the PCI (explaining 15% of total variation in Fourier coefficients). The PCI as well as PC2 scores differed significantly between the two species (i.e., "W. carteri" I vs. "W. carteri" II + III) as well as between "W. carteri" I and "W. carteri" II, respectively (Table 2). Combined with synthetic outlines, this indicated a tendency towards a more elongated, somewhat wedge-shaped shell in "W. carteri" I, whilst "W. carteri" II shells tended to be relatively high with a stout anterior margin (Fig. 2B). An analysis of similarities (ANOSIM) analysis on all Fourier coefficients revealed no significant difference between the two species (i.e., "W. carteri" I vs. "W. carteri" II + III; ANOSIM: R = 0.018, p = 0.097), but did indicate a significant difference between the three ESUs (ANOSIM: R = 0.0625, p = 0.0051). Specifically, "W. carteri" I differed significantly from "W. carteri" II (Bonferroni-corrected p = 0.0009). Only

Variable	"W. carteri" I min-max	Mean ± SE	n	"W. carteri" II min-max	Mean ± SE	n	"W. carteri" III min-max	Mean ± SE	n	df	F	P
TL	12.00–92.00	59.79 ± 0.68	294	28.38–79.00	51.68 ± 0.90	140	45.00–84.00	58.46 ± 2.89	12	443	24.5	< 0.0001
MH	8.50–59.00	37.25 ± 0.39	294	18.56–52.00	33.91 ± 0.57	140	32.00–50.00	37.92 ± 1.34	12	443	12.33	< 0.0001
BH	7.00–54.00	33.88 ± 0.39	294	14.72–49.00	30.63 ± 0.55	140	28.00–46.00	34.04 ± 1.37	12	443	11.87	< 0.0001
BL	4.00–30.00	19.04 ± 0.24	294	9.00–28.00	16.14 ± 0.29	140	13.00–26.00	17.75 ± 1.01	12	443	26.78	< 0.0001
MHI	0.46–0.89	0.66 ± 0.00	294	0.55–0.74	0.66 ± 0.00	140	0.60–0.71	0.65 ± 0.01	12	443	28.23	< 0.0001
BHI	0.76–1.04	0.91 ± 0.00	294	0.79–0.99	0.90 ± 0.00	140	0.84–0.93	0.90 ± 0.01	12	443	1.039	0.355
BLI	0.22–0.49	0.32 ± 0.00	294	0.23–0.51	0.32 ± 0.00	140	0.28–0.35	0.30 ± 0.01	12	443	1.775	0.171
PC1 (indices)	−3.94–6.36	−0.04 ± 0.07	294	−2.37–5.10	0.11 ± 0.10	140	−1.43–1.11	−0.24 ± 0.20	12	443	1.058	0.348
PC2 (indices)	−4.04–3.87	−0.21 ± 0.06	294	−1.87–2.85	0.40 ± 0.07	140	−1.00–1.80	0.43 ± 0.25	12	443	17.61	< 0.0001
PC1 (Fourier)	−0.07–0.047	0.003 ± 0.001	273	−0.057–0.047	−0.007 ± 0.002	126	−0.027–0.032	−0.001 ± 0.006	12	408	12.2	< 0.0001
PC2 (Fourier)	−0.048–0.062	0.003 ± 0.001	273	−0.047–0.035	−0.006 ± 0.001	126	−0.032–0.021	−0.004 ± 0.004	12	408	12.6	< 0.0001

Table 2. Shell size metrics [mm], shape indices [%] and scores for the first two principal components (PC) obtained by Principal Component Analysis of shell indices and 18 Fourier coefficients generated by Fourier Shape Analysis for each “Westralunio carteri” species and subspecies-level Evolutionarily Significant Units (ESUs); n, number of specimens measured; minimum (min) to maximum (max) and mean ± standard error (SE). P-value (P), degrees of freedom (df) and F-ratio (F) were obtained from ANOVAs comparing “W. carteri” I, II and III (upper section of the Table) and “W. carteri” I and II + III (lower section of the Table), respectively. P-values < 0.05 in bold; different superscript letters indicate significant differences between groups in Tukey’s pairwise posthoc-test. Shell size metrics: TL total length, distance from anterior to posterior apices of valve; MHI maximum height, distance from ventral edge to apex of posterior ridge; BH beak height, distance from ventral edge to beak apex; BL beak length, distance from anterior apex of valve to the 90-degree vertex aligning with the beak apex. Shape indices determined as: MHI = MH/TL, BHI = BH/MH, and BLI = BL/TL.
66% and 65% (62% and 62% jack-knifed) of specimens were assigned to the correct species and taxon in DAs on that dataset, respectively.

Taxonomic accounts.
Class: Bivalvia Linnaeus, 1758.
Subclass: Autobranchia Grobben, 1894.
Infraclass: Heteroconchia Gray, 1854.
Cohort: Palaeoheterodonta Newell, 1965.
Order: Unionida Gray, 1854 in Bouchet & Rocroi, 2010.
Superfamily: Unionoidea Rafinesque, 1820.
Family: Hyriidae Parodiz & Bonetto 1963.
Genus: *Westralunio* Iredale, 1934.
Type species: *Westralunio ambiguus carteri* Iredale, 1934 (by original designation).

Redescription: *Westralunio carteri* (Iredale, 1934). Synonymy. *Unio australis* Lamarck38: Menke39, p. 38, specimen 219. (Non *Unio australis* Lamarck, 181938).

Unio moretonicus Reeve40: Smith41, p. 3, pl. iv, Fig. 2. (misidentified reference to *Unio moretonicus* Reeve, 186540).

Hyridella australis (Lam.38): Cotton & Gabriel42 (in part), p. 156. (misidentified reference to *Unio australis* Lamarck, 181938).

Hyridella ambigua (Philippi26): Cotton & Gabriel42 (in part), p. 157. (misidentified reference to *Unio ambiguus* Philippi, 184726).

Westralunio ambiguus carteri: Iredale, 19349, p. 62.

Westralunio ambiguus (Philippi26): Iredale9, p. 62, pl. iii, Fig. 8, pl. iv, Fig. 8. (Non *Unio ambiguus* Phil. 184726), Iredale43, p. 190.

Centralhyria angasi subjecta Iredale, 19349, p. 67 (in part), Iredale43, p. 190.

Westralunio carteri Iredale8: McMichael & Hiscock10, pl. viii, Figs. 1, 2, 3, 4, 5, 6 and 7, pl. xvii, Figs. 4, 5.

Type material. Lectotype: AMS C.61724 (Fig. 3A) *Westralunio ambiguus carteri* Iredale, 19349.

Parallectotypes: AMS C.170635 *Westralunio ambiguus carteri* Iredale, 19349 (n = 4).

Type locality: Victoria Reservoir, Darling Range, 12 miles east of Perth, Western Australia (Fig. 4A).
Lectotype: BMNH 1840–10-21–29 *Centralhyria angasi subjecta* Iredale (selected by McMichael & Hiscock10).

Type locality: Avon River, Western Australia.

Material examined for redescription: For *W. carteri* (= "*W. carteri*" I), molecular data examined included 52 and 61 individual COI mtDNA and 16S rDNA sequences, respectively, for species delimitation. Additionally, Fourier shell shape outline analysis and traditional shell morphometric measurements were examined from 238 and 290 individuals, respectively. Complete details on all specimens examined are provided in Supplementary Table S1.

ZooBank registration: urn:lsid:zoobank.org:act:6B740F4D-40C3-4D6A-8938-B0FD7FD1F6D7.

Figure 3. (A) *Westralunio ambiguus carteri* Iredale, 1934, Lectotype: Victoria Reservoir, Darling Range, 12 mi E of Perth, AMS C.061724. Detail of fusion in anterior muscle scars from either valve represented by dashed lines and black polygons. Bottom image showing detail of hinge teeth. Photos provided with permission by Dr Mandy Reid, AMS. (B) Valves and detail of sculptured umbo of a juvenile *W. carteri* from Yule Brook, Western Australia, UMZC 2013.2.9. Photo by Dr Michael W. Klunzinger. (C) Glochidia of *W. carteri* from Canning River, Western Australia. Photo by Dr Michael W. Klunzinger.
Etymology: The species name *carteri* is most likely named after the surname of the collector who provided original type specimens to the Australian Museum, although Iredale\(^9\) did not specify this as the case. We have applied ICZN Articles 46.1 and 47.1\(^{14}\), designating *W. carteri* as the nominotypical species.

Revised diagnosis: Specimens of *W. carteri* are distinguished from other Australian *Westralunio* taxa by having shell series that are significantly larger and more elongated than *Westralunio inbisi inbisi* subsp. nov., but not different from *Westralunio inbisi meridiemus* subsp. nov. The species has 10 diagnostic nucleotides at COI (57 G, 117 T, 210 G, 249 T, 255 C, 345 G, 423 T, 447 T, 465 A, 499 T) and 13 at 16S (137 T, 155 C, 228 C, 229 T, 260 G, 290 A, 305 G, 307 T, 310 A, 311 C, 321 T, 330 A, 460 A), which differentiate it from its sister taxa, *W. inbisi inbisi* and *W. inbisi meridiemus* (each described below) using ASAP and TCS species delimitation models.

Figure 4. (A) Victoria Reservoir, Canning River, near Perth, Western Australia, type locality for *W. carteri*. Photo by Corey Whisson. (B) Goodga River, Western Australia, type locality for *W. inbisi inbisi*, at vertical slot fishway where holotype of *W. inbisi inbisi* was collected from. Photo provided with permission by Dr Stephen J. Beatty. (C) Margaret River, Western Australia, type locality for *W. inbisi meridiemus*, at Apex Weir. Photo by Dr Michael W. Klunzinger.

Figure 5. Live specimens of actively filtering freshwater mussels in the burrowed position. (A) *Westralunio carteri* (Iredale, 1934), Canning River at Kelmscott, Western Australia, inhalant siphon with 2–4 rows of papillae oriented toward substrate. Photo by Dr Michael W. Klunzinger. (B) *Westralunio inbisi meridiemus* subsp. nov., Canebreak Pool, Margaret River, Western Australia; inhalant siphon edges lined with protruding papillae facing towards water surface, away from substrate. Photo by Dr Michael W. Klunzinger.
Redescription. This species is of the ESU "*W. carteri*" \(^{17,28}\). Waterbodies: South Coast: 1—Waychinicup R, 2—Goodga R, 3—King George Sound (N.B. museum records provided locality which we presume include freshwater streams or rivers draining to King George Sound rather than being collected from the marine environment), 4—Marbellup Bk, 5—Kent R, 6—Bow R, 7—Frankland R, 8—Walpole R, 9—Deep R, 10—Inlet R, 11—Weld R, 12—Shannon R, 13—Gardner R, 14—Warren R, 15—Lk Yeagarup, 16—Lefroy Bk, 17—Donnelly R, 18—Scott R, 19—Chapman Bk, 20—St. John Bk; Capes: A—Boodjidup Bk, B—Ellens Bk, C—Margaret R, D—Wilyabrup Bk; West Coast: W1—Carbunup R, W2—Vasse R, W3—Abba R, W4—Ludlow R, W5—Capel R, W6—Preston R, W7—Collie R, W8—Serpentine Res/R/Birrega Drain, W9—Wungong Bk, W10—Neerigen Bk, W11—Canning Res, W12—Canning R, W13—Southern R, W14—Yule Bk, W15—Swan R, W16—Victoria Res, W17—Helena R, W18—Lk Leschenaultia, W19—Gingin Bk, W20—Marbling Bk. Mapping methods provided in text. River basins within the South West Coast Drainage Division of Australia as defined under AWRC\(^{102}\). Spatial data were mapped as vector data in QGIS Desktop 3.24.3 (https://qgis.org/en/site/) using the GCS_GDA_1994 coordinate system\(^{103}\). The country outline for Australia was drawn from the GADM database (www.gadm.org), version 2.0, December 2011 under license. The rivers were mapped from the Linear (Hierarchy) Hydrography of Western Australia dataset (https://catalogue.data.wa.gov.au/dataset/hydrography-linear-hierarchy/resource/9908c7d1-7160-4ca-884d-c5f631185859), under license.

Figure 6. Distribution of the *Westralunio* specimens used for analyses in this study. Stars indicate type localities, labelled in bold, with colours corresponding to taxa (red—*W. carteri*, blue—*W. inbisi inbisi*, yellow—*W. inbisi meridiemus*). Waterbodies: South Coast: 1—Waychinicup R, 2—Goodga R, 3—King George Sound (N.B. museum records provided locality which we presume include freshwater streams or rivers draining to King George Sound rather than being collected from the marine environment), 4—Marbellup Bk, 5—Kent R, 6—Bow R, 7—Frankland R, 8—Walpole R, 9—Deep R, 10—Inlet R, 11—Weld R, 12—Shannon R, 13—Gardner R, 14—Warren R, 15—Lk Yeagarup, 16—Lefroy Bk, 17—Donnelly R, 18—Scott R, 19—Chapman Bk, 20—St. John Bk; Capes: A—Boodjidup Bk, B—Ellens Bk, C—Margaret R, D—Wilyabrup Bk; West Coast: W1—Carbunup R, W2—Vasse R, W3—Abba R, W4—Ludlow R, W5—Capel R, W6—Preston R, W7—Collie R, W8—Serpentine Res/R/Birrega Drain, W9—Wungong Bk, W10—Neerigen Bk, W11—Canning Res, W12—Canning R, W13—Southern R, W14—Yule Bk, W15—Swan R, W16—Victoria Res, W17—Helena R, W18—Lk Leschenaultia, W19—Gingin Bk, W20—Marbling Bk. Mapping methods provided in text. River basins within the South West Coast Drainage Division of Australia as defined under AWRC\(^{102}\). Spatial data were mapped as vector data in QGIS Desktop 3.24.3 (https://qgis.org/en/site/) using the GCS_GDA_1994 coordinate system\(^{103}\). The country outline for Australia was drawn from the GADM database (www.gadm.org), version 2.0, December 2011 under license. The rivers were mapped from the Linear (Hierarchy) Hydrography of Western Australia dataset (https://catalogue.data.wa.gov.au/dataset/hydrography-linear-hierarchy/resource/9908c7d1-7160-4ca-884d-c5f631185859), under license.

Redescription. This species is of the ESU "*W. carteri*"\(^{17,28}\). Waterbodies: South Coast: 1—Waychinicup R, 2—Goodga R, 3—King George Sound (N.B. museum records provided locality which we presume include freshwater streams or rivers draining to King George Sound rather than being collected from the marine environment), 4—Marbellup Bk, 5—Kent R, 6—Bow R, 7—Frankland R, 8—Walpole R, 9—Deep R, 10—Inlet R, 11—Weld R, 12—Shannon R, 13—Gardner R, 14—Warren R, 15—Lk Yeagarup, 16—Lefroy Bk, 17—Donnelly R, 18—Scott R, 19—Chapman Bk, 20—St. John Bk; Capes: A—Boodjidup Bk, B—Ellens Bk, C—Margaret R, D—Wilyabrup Bk; West Coast: W1—Carbunup R, W2—Vasse R, W3—Abba R, W4—Ludlow R, W5—Capel R, W6—Preston R, W7—Collie R, W8—Serpentine Res/R/Birrega Drain, W9—Wungong Bk, W10—Neerigen Bk, W11—Canning Res, W12—Canning R, W13—Southern R, W14—Yule Bk, W15—Swan R, W16—Victoria Res, W17—Helena R, W18—Lk Leschenaultia, W19—Gingin Bk, W20—Marbling Bk. Mapping methods provided in text. River basins within the South West Coast Drainage Division of Australia as defined under AWRC\(^{102}\). Spatial data were mapped as vector data in QGIS Desktop 3.24.3 (https://qgis.org/en/site/) using the GCS_GDA_1994 coordinate system\(^{103}\). The country outline for Australia was drawn from the GADM database (www.gadm.org), version 2.0, December 2011 under license. The rivers were mapped from the Linear (Hierarchy) Hydrography of Western Australia dataset (https://catalogue.data.wa.gov.au/dataset/hydrography-linear-hierarchy/resource/9908c7d1-7160-4ca-884d-c5f631185859), under license.

Shell morphology: Shells of relatively small to medium size, generally less than 70 mm in length, but to a maximum length of approximately 100 mm\(^{10,45}\); anterior portion of shell with moderate development, BLI 22–49%; larger shells with abraded umbo scarcely winged; wing development variable, generally decreasing with size, BHI 76–104% (Table 2). Shell outline oblong-ovate to rounded; posterior end obliquely to squarely truncate, anterior end round; ventral edge slightly curved, nearly straight in larger specimens; hinge line curved, hinge strong. Umbos usually abraded in specimens > 20 mm in length; unabraded umbos with distinctive v- or w-shaped plicated sculpturing (Fig. 3B and Zieritz et al.\(^{46}\)). Shell substance typically thick; shells of medium width with pronounced posterior ridge; periostracum smooth, dark brown to reddish, with fine growth lines. Pallial line less developed in smaller specimens and prominent only in large specimens (e.g., > 60 mm TL). Pallial line less developed in smaller specimens and prominent only in large specimens (e.g., > 60 mm TL). Lateral teeth longer and blade-like, slightly serrated to smooth and singular in left valve, fitting into deep groove in right valve; pseudocardinal tooth in right valve coarsely serrated, thick, and erect, fitting into deeply grooved socket in left valve. Anterior muscle scars well impressed and anchored deeply in larger specimens; anterior retractor pedis and protractor pedis scars both small and fused with adductor muscle scar; posterior muscle scars lightly impressed; dorsal muscle scars usually with two or three deep pits anchored to internal umbo region.

Anatomy: Supra-anal opening absent, siphons of moderate size, not prominent but protrude beyond shell margin in actively filtering live specimens, pigmented dark brown with mottled lighter brown to orange splotches;
inhalant siphon aperture about 1.5 times size of exhalant and bearing 2–4 rows of internal papillae (Fig. 5A); ctenidial diaphragm relatively long and perforated. Outer lamellae of outer ctenidia completely fused to mantle, inner lamellae of inner ctenidia fused to visceral mass then united to form diaphragm; palps relatively small, usually semilunar in shape; marsupium well developed as a distinctive swollen interlamellar space in the middle third of the inner ctenidium of females. Outer ctenidia in both sexes thin, with numerous, short intrafilamentary junctions and few, irregular interlamellar junctions; in females similar, but marsupium has numerous, tightly packed, well-developed interlamellar junctions. Thus, brooding in females is endobranchous.

Life history: Sexes are separate in *W. carteri*, and hermaphroditism appears to be rare47–49. Males and females both produce gametes year-round but brooding of glochidia appears to be seasonal and ‘tachytetc’ (i.e., defined by Bauer & Wächtler19, fertilisation and embryonic development occurring in late winter/early spring and glochidia release in early summer)50. Glochidia are released within vitelline membranes, embedded in mucus which extrude from exhalant siphons of females (i.e., ‘amorphous mucus conglutinates’) during spring/summer. Glochidia attach to host fishes and live parasitically on fins, gills or body surfaces for 3–4 weeks while undergoing metamorphosis to the juvenile stage. Host fishes which have been shown to support glochidia metamorphosis to the juvenile stage in the laboratory include *Afarcagobius suppositus* (Sauvage, 188051), *Gambusia holbrooki* (Girard, 185952), *Nannoperca vittata* (Castelnau, 187353), *Pseudogobius olorum* (Sauvage, 188051) and *Tandanus bostocki* Whitley, 194454 but not *Carassisus auratus* Linnaeus, 175831 or *Geophagus brasiliensis* (Quoy & Gaimard, 182455). Wild-caught fishes observed to be carrying *W. carteri* glochidia have included *A. suppositus*, *B. porosa* Castelnau, 187353, *G. holbrooki*, *Galaxias occidentalis* Ogilby, 189956, *N. vittata*, *P. olorum*, *T. bostocki*, *Lepiatherina wallacei* (Prince, Ivantsoff & Potter, 198257), and *Phalloceros caudimaculatus* (Hensel, 186858). Juveniles which have detached from host fishes have a characteristic ciliated foot and two distinct adductor muscles47. Probable age at maturity is 4–6 years old and estimated longevity is at least 36 to 52 years59. Inheritance of mitochondria is doubly uniparental60.

Glochidium: Following release, glochidia hatch from vitelline membranes but remain tethered by a larval thread and characteristically ‘wink’: valves with single adductor muscle; shells subtriangular and scalene in shape with smooth surface which lack surface spikes and dotted with pores, 305–310 μm long, 249–253 μm high and have a hinge length of 210–214 μm; apex of the ventral edge protrudes and is off-centre and closest to the

Figure 7. *Westralunio inbisi inbisi* subsp. nov., (A) Paratype: Goodga River, Western Australia, WAM S5620. Detail of fusion in anterior muscle scars from either valve represented by dashed lines and black polygons. Bottom image showing detail of hinge teeth. Photos by Corey Whisson. (B) Holotype: Goodga River, Western Australia, WAM S82756. Photo by Corey Whisson. (C) Valves and detail of sculptured umbo of a juvenile, Lake Yeagarup, Western Australia, WAM S82697. Photo by Dr Michael W. Klunzinger. (D) *Westralunio inbisi meridiemus* subsp. nov. Holotype: Margaret River, Western Australia, WAM S56235. Photo by Corey Whisson.
posterior region of the glochidial shell, giving a sub-triangular scalene shape; larval teeth slightly curved towards adductor muscle with concave protuberance on base of the right valve tooth and convex protuberance on base of the left valve tooth; larval tooth of the right valve lanceolate, terminating with three sharp cusps; tooth of left valve blunt with two rounded cusps and groove at the midpoint to accommodate the middle cusp of the right valve; larval teeth lack microstylets (Fig. 3C and Klunzinger et al.45).

Distribution: Found in freshwater catchments from Gingin Brook, north of Perth to westerly flowing drainages north and west of the Blackwood River, within 150 km of the coast79,61 (Fig. 6).

Habitat: Found in freshwater streams, rivers and sometimes lakes or wetlands with permanent water, salinities less than about 3.0 mg/L, pH ranging from about 4.5 to 10 and more common in habitats not prone to nutrient pollution64.

Comments: McMichael & Hiscock10 suggested that the species aligns with other Velesunioninae in having smooth umbos, later refuted by Zieritz et al.46, as illustrated in Fig. 3B. Additionally, Iredale8 separated the genus *Westralunio* from *Velesusio* based on adult hinge tooth morphology, such that pseudocardinal hinge teeth are erect, serrated and strongly grooved in *Westralunio* as opposed to *Velesusio* which are suggested as not serrated and not strongly grooved. We contend that while *W. carteri* typically does have serrated pseudocardinal teeth that are usually erect/conspicuous and strongly grooved, so too are some *Velesusio* specimens (M. Klunzinger, unpublished data). In terms of distribution, there is one record of a specimen from the Gascoyne River collected ca. 1891 (BMNH-MP-110 listed as unpublished data). In terms of distribution, there is one record of a specimen from the Gascoyne River collected ca. 1891 (BMNH-MP-110 listed as unpublished data). In terms of distribution, there is one record of a specimen from the Gascoyne River collected ca. 1891 (BMNH-MP-110 listed as unpublished data)

Westralunio flyensis (Tapparone Canefri, 1883).

Synonymy: *Unio (Bariosta) flyensis* Tapparone Canefri, 188324, pp. 293–294, text Fig. 1.

Type material. *Holotype:* The Holotype is held at Museo Civico di Storia Naturale, Genoa, Italy.

Paratypes: Two Paratypes are held at Museo Civico di Storia Naturale, Genoa, Italy.

Type Locality: Fly River, Papua New Guinea.

Description: As described by McMichael & Hiscock10.

Distribution: Southern rivers of New Guinea.

Westralunio albertisi Clench, 1957.

Type material. *Holotype:* MCZ 212908.

Paratypes: AMS C.62268.

Type Locality: inland from Daru, Papua.

Description: As described by McMichael & Hiscock10.

Distribution: Lakes of the Fly River district, Papua New Guinea.

Westralunio inbisi sp. nov.

Type material. *Holotype:* WAM S82756 (Fig. 7A–C), collected by M.W. Klunzinger.

Type Locality: Goodga River at vertical slot fishway, Western Australia (34.9485°S, 118.0799°E, GDA94) (see Fig. 4B).

Paratypes: WAM S56200, WAM S56201, WAM S56202, WAM S56203, collected by M. W. Klunzinger.

Type Locality: Goodga River, Western Australia (34.9579°S, 118.0981°E, GDA94).

Material examined: For *W. inbisi* (= "W. carteri" II), molecular data examined included 82 and 93 individual 16S rDNA and COI mtDNA sequences, respectively, for species delimitation. Additionally, Fourier shell shape outline analysis and traditional shell morphometric measurements were examined from 127 and 139 individuals, respectively. Complete details on all specimens examined are provided in Supplementary Table S2.

Etymology: The specific epithet, *inbisi*, is derived from the Nyoongar word ‘inbi’, translating to ‘mussel, fresh water’ in English47.

Diagnosis: Specimens of *W. inbisi* are distinguished from other Australian *Westralunio* taxa by having shell series that are significantly smaller and less elongated than *W. carteri*, but not *W. inbisi meridiemus*. The subspecies has three diagnostic nucleotides at COI (75 A, 87 T, 318 T) and none at 16S, which differentiate it from its sister taxa, *W. carteri* and *W. inbisi meridiemus* using ASAP and TCS species delimitation models.

Description: This subspecies is of the ESU "W. carteri" II27,28. Shell morphology in juveniles and adults same as *W. carteri* as described above (see Fig. 7A–C). Total adult shell length generally < 80 mm but known to reach in excess of 90 mm48,69. MHI 55–74%; anterior portion of shell with moderate development, BLI 23–51%; larger shells with abraded umbos scarcely winged; wing development variable, generally decreasing with size, BHI 79–99% (Table 2); anatomy same as *W. carteri*; life history: sexes appear to be separate based on macroscopic examinations of marsupia in non-gravid and gravid females, examined in the field in September and March 2011, respectively; wild-caught fishes from Fly Brook, Lefroy Brook and Shannon River, observed to be carrying what we presume to be *W. inbisi* glochidia have included *B. porosa*, *N. vittata* and *T. bostockii*47. Mature glochidia of *W. inbisi* have not been formally described. Reproductive phenology, age and growth have not been elucidated in *W. inbisi*. **
distribution: Found in southerly to south-westerly flowing freshwater streams, rivers and sometimes lakes or wetlands with water salinities less than approximately 3.0 mg/L from Boodjidup Brook in the Capes region to the west of the blackwood river catchment to Waychinicup river within 150 km of the coast, primarily along the south coast of Western Australia27-29,49 (Fig. 6).

Habitat: Similar to W. carteri although habitats can also include perched dune lakes. Waters that W. inbisi inbisi inhabit are often more tannin stained due to their occurrence in more heavily forested catchments with greater densities of native riparian vegetation than for W. carteri.

W. inbisi meridiemus taxonomic framework for recognising species boundaries.

Distribution: Found in the neighbouring catchments of Margaret River and the Blackwood River of Western Australia, where it is sympatric with W. carteri and W. inbisi respectively27,28 (Fig. 6).

Habitat: Similar to W. carteri and W. inbisi inbisi in either lotic or lentic freshwater rivers, streams, and pools with varying degrees of riparian vegetation.

Discussion

This study is the first to integrate molecular species delimitation and morphological analyses to describe new taxa of Australian freshwater mussels. In their review of the taxonomy, phylogeography and conservation of freshwater mussels in Australasia, [Walker et al.][14] highlighted the need for such a taxonomic framework that uses both genetic and morphological data to gain a better understanding of species delimitation within this group. Overall, the study illustrates the value of using multiple data sources for species delimitation for cryptic taxa, provides an example when it is appropriate to recognise subspecies, and describes a case study of an IUCN listed species they investigated were members of a single, widespread species. Despite this growing trend of using multiple sources of evidence for species delimitation, several freshwater mussel taxa have been named based on shell morphology alone in recent decades. For example, the hyrids Lortiella oportana[10] and Triplotodon chodo Mansur & Pimpão, 2008[72] were erected as new species based on shell shape indices and sculpture pattern, respectively. Molecular analysis has yet to corroborate the taxonomy in these and other recently
described freshwater mussels. The propensity of shell shape to vary with the environment within freshwater mussel species can render it an often-unreliable character on which to base species taxonomy. Alternatively, relying on genetic data without morphological support can also be problematic; however, new species have been raised using this method. While this may not be appropriate for practical purposes, there is no doubt that recognising genetic differences between populations is an important aspect of describing biodiversity and indeed, has been used in several species' concepts.

Our study also provides an example where subspecies have been described in recognition of the existence of phenotypically similar, but genetically distinct evolutionary lineages within the W. carteri species complex. In our case, shell morphology for W. inbisi inbisi and W. inbisi meridiemus was mostly similar, yet these taxa possessed COI character attributes that were unique to each, largely geographically separated lineage, suggesting a degree of reproductive isolation and an evolutionarily significant process. We did have a low replicate number of shells of W. inbisi meridiemus to examine which may have accounted for the lack of statistical differences between this subspecies and W. inbisi inbisi if indeed differences might exist. While there is additional material available from Margaret and Blackwood Rivers in museum collections, we were restricted to examining only shells from which genetic information is available given Benson et al. found both taxa in the two river basins. The definition of a subspecies can vary but is widely accepted as an aggregate of phenotypically similar populations of a species inhabiting a geographic subdivision of the range of that species and differing taxonomically from other populations of that species. In their study of land snails, Páll-Gergely et al. suggest restricting subspecies to cryptic species delimitation, for example when molecular data support lineage separation but where no clear morphological differences are currently known. We agree with this definition but caution that molecular data can exhibit differentiation related to population structure and not speciation. Fixed molecular differences are critical to confirming reciprocal monophyly when molecular phylogenetic methods are employed. The use of subspecies in the Hyriidae is relatively common. Of the 261 species of Hyriidae, 57 (21.8%) have been used either exclusively as subspecies or as either species or subspecies. Here we recognise subspecies based on congruence in genetic and geographical differentiation but chose not to raise “W. carteri” III to species level given there was no significant difference in shell morphology between it and “W. carteri” II and because not all molecular species delimitation models revealed a separate taxon for “W. carteri” III.

These results confirm that current taxonomy underestimates species diversity of freshwater mussels in southwestern Australia and that this has implications for the listing of W. carteri as a threatened species. Freshwater mussels are amongst the most threatened aquatic species worldwide, and many authors have expressed concern about the global decline of this group. It is not surprising therefore that a recent review by Benson et al. revealed that 44% (18 of 41 species) of described freshwater mussel species known to occur in Mediterranean-climate regions have been listed globally as either Critically Endangered, Endangered or Vulnerable on the IUCN Red List. A further six species (15%) have been classified as Near Threatened. Freshwater mussels are also notorious in having shells which are morphologically plastic within the same taxa and taxa which have morphologically similar shells but are molecularly different, leading to 'cryptic speciation'. Given the increasing interest in using multiple data sets to confirm species boundaries in the group, amendments to the Red List conservation status of these listed species can be anticipated as species delimitation based originally on morphological characters is further clarified with this integrative taxonomy approach. In the case of W. carteri, the species is currently listed as 'Vulnerable' internationally (IUCN Red List), nationally under the Australian Environmental Protection and Biodiversity Conservation Act 1999 (EPBC Act) and at the state level under the Western Australia Biodiversity Conservation Act 2016. More recently, in a preliminary analysis based on past distribution data, Klunzinger et al. suggested that an estimated reduction of 72% in extent of occurrence (EOO) of the W. carteri lineage identified here might qualify this species as ‘Endangered’ under criterion A2c of the IUCN Red List. More robust analyses which include recent distribution records would be needed to confirm the conservation status of this species as well as the new species described in this study. Our evidence suggests that once formal re-diagnoses and descriptions of the Westralunio taxa are published, fresh nominations for listing as threatened would be required. This would entail submission of a nomination to the Threatened Species Scientific Committee to amend the conservation status of W. carteri, and the preparation of new nominations for one or both new subspecies if deemed necessary. As more studies use an integrative approach for delineating freshwater mussel species, implications for conservation are inevitable, and this is likely to take place on a global scale. For example, the suggestion that the freshwater mussel species Pleurobema clava (listed as Endangered under the Endangered Species Act in the USA) and P. oviforme (a species being considered for listing) are members of a single, widespread species will have management implications for these species.

Several research gaps in our knowledge of Westralunio will benefit from future investigation. The position of W. albertisi and W. flyensis from West Papua and Papua New Guinea within the genus Westralunio is unclear and employing molecular analyses will undoubtedly resolve this biogeographic and taxonomic conundrum. At a higher classification level, given that both species of juvenile Australian Westralunio have distinctive v- or w-shaped shell sculpturing on their umbos, in combination with strongly grooved and serrated pseudocardinal hinge teeth in adult shells, calls into question their placement within the Velesunioinae defined by McMichael & Hiscock. This is corroborated by phylogenetic data presented by Graf et al. and Santos-Neto et al. who showed Westralunio separate from the other Velesunioinae. However, until complete data are available for other Westralunio and other velesunioine species, we are reluctant to make any changes to the current arrangement of the subfamily. Also of value would be an examination of glochidia morphology and morphometry. Glochidia of W. carteri were described by Klunzinger et al., but the morphology and morphometry of glochidia from W. inbisi inbisi and W. inbisi meridiemus are entirely unknown and worthy of investigation. Indeed, glochidia morphology and morphometry has been shown to have taxonomic value for other species. For example, Jones et al. showed divergence in larval tooth arrangement and shell size in the south-east Australian Hyridella australis (Lamarck, 1819), Hyridella depressa (Lamarck, 1819) and Cucumerunio novaehollandiae (Gray, 1834).
Pimpão et al. were able to distinguish several species of Brazilian Hyriidae using glochidial characters and made taxonomic changes to some genera and subgenera on this basis. More recently, Melchior et al. presented contrasting glochidial release strategies and glochidia size in between two sympatric species of Echyridella from New Zealand, further strengthening the taxonomic division between Echyridella menziesii (Gray, 1843) and Echyridella aucklandica (Gray, 1843) recognised by Marshall et al.

This study has highlighted the utilisation of morphology and phylogeography to make sound decisions on drawing taxonomic boundaries between ESUs. Formalising the taxonomy of ESUs identified by Klunzinger et al. and Benson et al. for Westralunion taxa will be beneficial for conservation management of the species and sub-species identified in this study. We suggest that a similar approach of taxonomic division may be applied to other freshwater fauna of the region (and elsewhere), such as for the multiple lineages of pygmy perchs or galaxiids fishes alluded to by Morgan et al. and Buckley et al. Furthermore, the taxonomic approach illustrated in our study should be applied to other as yet undescribed ‘cryptic species’ of Australian freshwater mussels as a way forward in resolving taxonomic uncertainty within the group.

Methods

Mapping and provenance. River basins within the South West Coast Drainage Division of Australia as defined under AWRC. Spatial data were mapped as vector data in QGIS Desktop 3.24.3 (https://qgis.org/en/site/) using the GCS_GDA_1994 coordinate system. The country outline for Australia was drawn from the GADM database (www.gadm.org), version 2.0, December 2011 under license. The rivers were mapped from the Linear (Hierarchy) Hydrography of Western Australia dataset (https://catalogue.data.wa.gov.au/dataset/hydrography-linear-hierarchy/resource/99087cd1-7160-4cf4-884d-c5631185859), under license.

Gross anatomy. Siphon characters, which are not easily examined in preserved specimens (for example, due to tissue contraction and discoloration), were observed in live specimens of W. carteri in the Canning and Margaret Rivers with mask and snorkel and photographed in their natural state with a waterproof digital camera. Tissue anatomy of freshly dead and preserved specimens was examined employing well-established dissection methods on specimens collected for data published by Klunzinger et al. For shell sculpture examination, we drew on data published by Zieritz et al. Individual specimens of dry shells lacking soft anatomy, also examined for shell shape and measured morphometrically (see below) were examined for the arrangement of adductor and retractor muscle scars following McMichael & Hiscock.

Genetic methods. Sequence alignment construction. We assembled mitochondrial Cytochrome c Oxidase Subunit I (COI) and 16S rDNA (16S) gene sequences originally published by Klunzinger et al. and Benson et al. Available nuclear gene sequences (18S and 28S rDNA) were not used in our analysis because they have insufficient variation to be informative. Sequences were retrieved from GenBank, along with sequences for two other Hyrid species for use as outgroups (Velesunioninae: Velesunio ambiguous (Philippi, 1847) and Hyriinae: Hyridellini: Cucumerunio novaehollandiae (Gray, 1834) (see Table 3). We limited the outgroup species to two hyrids in our tree because of the extreme divergence of W. carteri, even from other Hyriidae (see Graf et al.). Individual alignments for both genes were built using the ClustalW accessory application in Bioedit 7.2.5, before inspecting and trimming to equal length in MEGA X version 10.1.8.

Phylogenetic analyses and species delimitation. The COI alignment, including outgroups, was reduced to unique haplotypes using DnaSP v6. Individual haplotype names correspond to those used in Benson et al. The alignment was partitioned by codon position in Mesquite version 3.61, and the best fitting substitution model for each partition was identified by jModelTest. This alignment was then used to construct Maximum likelihood (ML) and Bayesian inference (BI) trees in W-IQ-TREE and MrBayes version 3.2.7a respectively. The ML analysis was performed with 10,000 ultrafast bootstrap replicates using the standard settings of the selected substitution models. The BI analysis was performed with two independent runs of 1 × 10⁷ generations sampling every 500 generations to achieve an average standard deviation of the split frequencies that was consistently < 0.01, and ESS values > 200. Convergence of the MCMC chains was also confirmed in Tracer version 1.7.1.111. In order to determine the number of distinct taxa within W. carteri, three methods of species delimitation were applied to the COI dataset, excluding outgroups. Firstly, the distance-based method, Assemble Species, was implemented using the Jukes-Cantor (JC69) option on the online webserver (https://bioinfo.mnhn.fr/abi/public/asap/). Secondly, a statistical parsimony method was run in TCS 1.21 using a 95% connection limit. Finally, the BI tree was assessed using Bayesian implementation of the Poisson Tree Process (bPTP) on the bPTP webserver (https://species.b-its.org/ptp/) with the maximum allowable number of MCMC generations (5 × 10⁷) and 20% burn-in. The ML and BI trees were edited in FigTree v1.4.4 (http://tree.bio.eth.ac.uk/software/figtree/) and Inkscape v1 (https://inkscape.org).

Molecular diagnosis. For the molecular diagnosis of taxa within W. carteri we considered fixed nucleotide differences found within the alignments of the full dataset for each gene (i.e., character attributes that were present in all individuals of one taxon while being absent in all individuals of the other two taxa). For each gene, these characters were identified using the ‘toggle conserved sites’ option in MEGA X 10.1.8. The uncorrected p-distance (mean and SE) to the nearest neighbour of each taxon was determined in the same software.

Shell measurements. Shells were measured to the nearest 0.1 mm using manual callipers or, for photographed specimens, to the nearest 0.5 mm using a ruler as a scale bar appearing in each photograph. Shells...
BASIN/Locality	Waterbody	Taxon/ESU	COI	16S	Voucher/source
MANNING, NSW, Australia	Glochester River	*Cucumerunio novaehollandiae*	KP184901	KP184853	UMMZ 304501
HAWKSbury, NSW, Australia	Nepean River	*Veleunion ambiguus*	KP184915	KP184868	FMNH 337195
MOORE-HILL, WA, Australia	Gin Gin Brook	*Westralunio carteri* I	MT040666	-	WM827911
SWAN COAST, WA, Australia	Lake Leschenaultia	*Westralunio carteri* I	MT040670	KP184918	WM827390
SWAN COAST, WA, Australia	Maraboon Brook	*Westralunio carteri* I	MT040671	-	WM827920
SWAN COAST, WA, Australia	Nerrigan Brook	*Westralunio carteri* I	KP184917	KP184870	UMMZ 304516
SWAN COAST, WA, Australia	Wungong Brook	*Westralunio carteri* I	MT040656	MT040657	WM826225
MURRAY, WA, Australia	Serpentine River	*Westralunio carteri* I	MT040651	MT040652	WM826221
COLLIE, WA, Australia	Collie River	*Westralunio carteri* I	MT040628	MT040629	WM826220
PRESTON, WA, Australia	Preston River	*Westralunio carteri* I	MT040646	MT040647	WM826111
BUSSELTON COAST, WA, Australia	Capel River	*Westralunio carteri* I	MZ668727	MZ668847	WM826112
BUSSELTON COAST, WA, Australia	Ludlow River	*Westralunio carteri* I	MZ668728	MZ668848	WM826121
BUSSELTON COAST, WA, Australia	Abba River	*Westralunio carteri* I	MZ668732	MZ668852	WM826122
BUSSELTON COAST, WA, Australia	Carbanup River	*Westralunio carteri* I	MZ668734	MZ668853	WM826131
BUSSELTON COAST, WA, Australia	Eells Brook	*Westralunio carteri* I	MZ668735	MZ668854	WM826114
BUSSELTON COAST, WA, Australia	Wilyabrup Brook	*Westralunio carteri* I	MZ668736	MZ668855	WM826277
BUSSELTON COAST, WA, Australia	Boodjidup Brook	*Westralunio carteri* I	MZ668742	MZ668856	WM826219
BUSSELTON COAST, WA, Australia	Margaret River	*Westralunio carteri* I	MZ668752	MZ668857	WM826215
BUSSELTON COAST, WA, Australia	Scott River	*Westralunio carteri* I	MZ668747	MZ668858	WM826115
BLACKWOOD, WA, Australia	Scott River	*Westralunio carteri* II	MZ668752	MZ668859	WM826116
		Westralunio carteri III	MZ668745	MZ668860	WM826117
		Westralunio carteri II	MZ668746	MZ668861	WM826118
		Westralunio carteri I	MZ668742	MZ668862	WM826119
		Westralunio carteri I	MZ668743	MZ668863	WM826120
		Westralunio carteri I	MZ668744	MZ668864	WM826226
		Westralunio carteri I	MZ668745	MZ668865	WM826227
		Westralunio carteri I	MZ668746	MZ668866	WM826209
		Westralunio carteri I	MZ668747	MZ668867	WM826210
		Westralunio carteri I	MZ668748	MZ668868	WM826211
		Westralunio carteri I	MZ668749	MZ668869	WM826212
		Westralunio carteri I	MZ668750	MZ668870	WM826213
		Westralunio carteri I	MZ668751	MZ668871	WM826214
		Westralunio carteri I	MZ668752	MZ668872	WM826215
		Westralunio carteri I	MZ668753	MZ668873	WM826221
		Westralunio carteri I	MZ668754	MZ668874	WM826222
		Westralunio carteri I	MZ668755	MZ668875	WM826223
		Westralunio carteri I	MZ668756	MZ668876	WM826224
		Westralunio carteri I	MZ668757	MZ668877	WM826225
		Westralunio carteri I	MZ668758	MZ668878	WM826226
		Westralunio carteri I	MZ668759	MZ668879	WM826227
		Westralunio carteri I	MZ668760	MZ668880	WM826228
		Westralunio carteri I	MZ668761	MZ668881	WM826229
		Westralunio carteri I	MZ668762	MZ668882	WM826230
		Westralunio carteri I	MZ668763	MZ668883	WM826231
		Westralunio carteri I	MZ668764	MZ668884	WM826232
		Westralunio carteri I	MZ668765	MZ668885	WM826244
		Westralunio carteri I	MZ668766	MZ668886	WM826245

Continued
BASIN/Locality	Waterbody	Taxon/ESU	COI	16S	Voucher/source
BLACKWOOD, WA, Australia	Chapman River	"Westralunio carteri" III	MZ668807	MZ668927	WAM S112785^34
		"Westralunio carteri" II	MZ668808	MZ668928	WAM S112786^34
		"Westralunio carteri"	MZ668809	MZ668929	WAM S112787^34
		"Westralunio carteri" III	MZ668810	MZ668930	WAM S112788^34
			MZ668811	MZ668931	WAM S112789^34
BLACKWOOD, WA, Australia	St. Johns Brook	"Westralunio carteri" II	MT040659	MT040662	WAM S82773^27
		"Westralunio carteri"	MZ668832	MZ668952	WAM S66164^26
		"Westralunio carteri" III	MZ668833	MZ668953	WAM S66165^26
			MZ668834	MZ668954	WAM S112812^28
		"Westralunio carteri" II	MZ668835	MZ668955	WAM S112813^28
			MZ668836	MZ668956	WAM S112814^28
DONNELLY, WA, Australia	Donnelly River	"Westralunio carteri" II	MZ668802	MZ668922	WAM S112780^34
		"Westralunio carteri"	MZ668803	MZ668923	WAM S112781^34
		"Westralunio carteri" III	MZ668805	MZ668925	WAM S112783^34
			MZ668806	MZ668926	WAM S112784^34
WARREN, WA, Australia	Lake Yeagarup	"Westralunio carteri" II	MZ668797	MZ668917	WAM S112775^28
		"Westralunio carteri"	MZ668798	MZ668918	WAM S112776^28
		"Westralunio carteri" III	MZ668799	MZ668919	WAM S112777^28
			MZ668800	MZ668920	WAM S112778^28
			MZ668801	MZ668921	WAM S112779^28
WARREN, WA, Australia	Warren River	"Westralunio carteri" II	MZ668767	MZ668887	WAM S112745^28
		"Westralunio carteri"	MZ668768	MZ668888	WAM S112746^28
		"Westralunio carteri" III	MZ668769	MZ668889	WAM S112747^28
			MZ668770	MZ668890	WAM S112748^28
SHANNON, WA, Australia	Gardner River	"Westralunio carteri" II	MZ668772	MZ668922	WAM S112750^28
		"Westralunio carteri"	MZ668773	MZ668923	WAM S112751^28
		"Westralunio carteri" III	MZ668774	MZ668924	WAM S112752^28
			MZ668775	MZ668925	WAM S112753^28
			MZ668776	MZ668926	WAM S112754^28
SHANNON, WA, Australia	Shannon River	"Westralunio carteri" II	MZ668777	MZ668897	WAM S112755^28
		"Westralunio carteri"	MZ668778	MZ668927	WAM S112756^28
		"Westralunio carteri" III	MZ668779	MZ668928	WAM S112757^28
			MZ668780	MZ668929	WAM S112758^28
SHANNON, WA, Australia	Inlet River	"Westralunio carteri" II	MZ668782	MZ668937	WAM S112795^28
		"Westralunio carteri"	MZ668783	MZ668938	WAM S112796^28
		"Westralunio carteri" III	MZ668784	MZ668939	WAM S112797^28
			MZ668785	MZ668940	WAM S112798^28
SHANNON, WA, Australia	Deep River	"Westralunio carteri" II	MZ668786	MZ668941	WAM S112799^28
		"Westralunio carteri"	MZ668787	MZ668942	WAM S112800^28
		"Westralunio carteri" III	MZ668788	MZ668943	WAM S112801^28
			MZ668789	MZ668944	WAM S112802^28
SHANNON, WA, Australia	Walpole River	"Westralunio carteri" II	MZ668792	MZ668952	WAM S112803^28
		"Westralunio carteri"	MZ668793	MZ668953	WAM S112804^28
		"Westralunio carteri" III	MZ668794	MZ668954	WAM S112805^28
			MZ668795	MZ668955	WAM S112806^28
			MZ668796	MZ668956	WAM S112807^28
KENT COAST, WA, Australia	Bow River	"Westralunio carteri" II	MT040636	MT040508	WAM S56285^32
			MT040637	MT040509	WAM S56286^32
			MT040638	MT040538	WAM S56287^32
			MT040639	MT040539	WAM S56288^32
			MT040640	MT040540	WAM S56289^32
			MT040667	MT040506	WAM S82781^27
			MT040668	MT040507	WAM S82782^27
			MZ668792	MZ668912	WAM S112770^28
			MZ668793	MZ668913	WAM S112771^28
			MZ668794	MZ668914	WAM S112772^28
			MZ668795	MZ668915	WAM S112773^28
			MZ668796	MZ668916	WAM S112774^28
KENT COAST, WA, Australia	Kent River	"Westralunio carteri" II	MZ668837	MZ668957	WAM S112815^28
			MZ668838	MZ668958	WAM S112816^28
			MZ668839	MZ668959	WAM S112817^28
			MZ668840	MZ668960	WAM S112818^28
			MZ668841	MZ668961	WAM S112819^28

Continued
utilised for Fourier shape analysis (see below) from photos provided by Graf & Cummings63 were not measured because scales were not included in the photos. For shell morphometry, we followed measurement procedures defined by McMichael & Hiscock10 (Fig. 8): total length (TL), measured as the horizontal distance from the anterior apex to the posterior apex of the valve; maximum height (MH), measured as the vertical distance from the ventral edge to the point of the beak; beak height (BH), measured from the point of the beak to the ventral margin; beak length (BL), measured as the horizontal distance from the anterior apex to the imaginary line perpendicular to the apex of the beak.

Morphometric analysis. We conducted traditional morphometric analysis and outline (Fourier shape) analysis to assess whether shell shapes are different for each of the Westralunio ESUs identified27,28. Details of specimens used in these two analyses are provided in the ‘material examined’ sections below. Geographic distribution of these samples is illustrated in Fig. 6. A total of 446 and 411 specimens were included in traditional and Fourier shape analysis, respectively: 294 and 273 "W. carteri" I, respectively; 140 and 126 "W. carteri" II, respectively; and 12 and 12 "W. carteri" III, respectively.

Like Ponder & Bayer11 and Sheldon101, we tested for differences in shell measurements and sagittal shell shape between the two species and among the three taxa, respectively. 'Traditional' shell shape indices10 were calculated from shell measurements for maximum height index (MHI), beak height index (BHI), and beak length index (BLI), such that:

\[MHI = \frac{MH}{L}; \quad BHI = \frac{BH}{MH}; \quad BLI = \frac{BL}{L}. \]

Firstly, significant differences in TL, MH, BH, BL, MHI, BHI and BLI, respectively, were tested for using ANOVAs followed by pairwise Tukey’s posthoc comparisons. Secondly, a Principal Component Analysis (PCA) on these variables was performed, following ANOVAs and Tukey’s posthoc comparisons on the first two PC-axes. Thirdly, we employed Discriminant Analysis (DA) to assess the proportion of specimens that would be assigned to the correct taxa based on these shell indices.

Overall shell shape was analysed using Fourier shape analysis118. This method breaks information on sagittal shell outlines of specimens into a set number of harmonics, each of which is explained by two Fourier coefficients, which are then analysed statistically. Specimens held in the Western Australian Museum collections were photographed using a Canon EOS 3D digital camera. A photographic stand was set up to hold the camera at the

Table 3. Taxa used for phylogenetic analyses. Specimen provenance, GenBank accession numbers for mitochondrial Cytochrome c Oxidase Subunit I (COI) and 16S rDNA (16S) gene sequences, and voucher codes (in reference to source publications) are provided. Institution codes: FMNH Field Museum of Natural History, Chicago, Illinois, USA; UMMZ University of Michigan Museum of Zoology, Ann Arbor, Michigan, USA; WAM Western Australian Museum, Welshpool, Western Australia, Australia. ESU Evolutionary Significant Unit, NSW New South Wales, WA Western Australia.
same distance, angle and focus for each photographed specimen. Black felt was used as a background medium to minimise shadows in the photos and a silver ruler was included in each photo in the same position as a scale bar. Additional digital photos of shell specimens from other museum collections were obtained, with permission, from the Mussel Project website.4

Shell outlines of specimens were digitised into xy-coordinates using the program IMAGE119. The digitised outlines were then subjected to Fast Fourier transformation using the program HANGLE, applying a smoothing normalisation of 20 to eliminate high frequency pixel noise. Preliminary analysis indicated that the first 10 harmonics described the outlines with sufficiently high precision. Discarding of the first harmonic, which did not contain any shape information, resulted in a set of 18 Fourier coefficients per individual. After rotating outlines to maximum overlap with program HTREE, a PCA was performed on the 18 Fourier coefficients using program PAST120. Synthetic outlines of extreme shell forms were drawn using program HCURVE118.

To test for statistical differences in overall sagittal shell shape between the two species (W. carteri and W. inibis), we conducted t-tests on the first two PC-axes and carried out an analysis of similarities (ANOSIM; 9,999 permutations, Euclidean distance) and DA on the set of 18 Fourier coefficients. The degree of shell inflation (relative shell width) was not considered because, in contrast to sagittal shell shape, this morphological character is strongly influenced by ontogenetic growth in Unionida147,153. Statistical analyses were conducted in PAST 3.22121 (PCAs, DAs, ANOSIM), and R version 3.6.3 (ANOVA and Tukey’s post hoc comparisons).

Nomenclatural acts. The electronic edition of this article conforms to the requirements of the amended ICZN44.

Data availability
Spatial data for mapping are provided in the Methods section. Data for specimen records we examined for this study (Tables 3, S1, S2 and S3) are available online. Those held at the Western Australian Museum Collection and Research Centre, Perth, WA, Australia (WAM) and the Australian Museum, Sydney, NSW, Australia are available from the Online Zoological Catalogue of Australian Museums (OZCAM) at https://ozcam.org.au/ and the Atlas of Living Australia (ALA) at https://www.ala.org.au/. Additional specimen records are available from the Mussel Project Website (MusselP) at https://mussel-project.uwsp.edu/index.html and individual museum collections as follows—University of Michigan Museum of Zoology, Ann Arbor, MI, USA (UMMZ): https://fms02.isa.umich.edu/fmi/webd/umzm_mollusks; Field Museum of Natural History, Chicago, IL, USA (FMNH): https://www.fieldmuseum.org/science/research/area/invertebrates; The Natural History Museum, London, UK (BMNH): https://data.nhm.ac.uk/search#; Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA (MCZ): https://mcz.harvard.edu/malacology-research-collection. The genetic sequences utilised for this study (Tables 3, S1, S2 and S3) are available from GenBank (https://www.ncbi.nlm.nih.gov/nuccore/?term=Westrholunio+carteri). The dataset generated in this study is also available from the corresponding author on reasonable request.

Received: 20 August 2022; Accepted: 21 November 2022
Published online: 27 November 2022

References
1. Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends. Ecol. Evol. 22, 148–155 (2007).
2. Bolotov, I. N. et al. New taxa of freshwater mussels (Unionidae) from a species-rich but overlooked evolutionary hotspot in Southeast Asia. Sci. Rep. 7, 11573 (2017).
3. Bolotov, I. N. et al. Eight new freshwater mussels (Unionidae) from tropical Asia. Sci. Rep. 9, 12053 (2019).
4. Johnson, N. A. et al. Integrative taxonomy resolves taxonomic uncertainty for freshwater mussels being considered for protection under the U.S. endangered species act. Sci. Rep. 8, 15892 (2018).
5. Lopes-Lima, M. et al. Expansion and systematic redefinition of the most threatened freshwater mussel family, the Margaritiferae. Mol. Phylogen. Evol. 127, 98–118 (2018).
6. Lopes-Lima, M. et al. Freshwater mussels (Bivalvia: Unionidae) from the rising sun (Far East Asia): phylogeny, systematics, and distribution. Mol. Phylogen. Evol. 146, 106755 (2020).
7. Konopleva, E. S. et al. A new genus and two new species of freshwater mussels (Unionidae) from western Indochina. Sci. Rep. 9(4106), 1–14 (2019).
8. Smith, C. H., Johnson, N. A., Inoue, K., Doyle, R. D. & Randlev, C. R. Integrative taxonomy reveals a new species of freshwater mussel, Potamilus streckersoni sp. nov. (Bivalvia: Unionidae): implications for conservation and management. Syst. Biodiv. 17, 331–348 (2019).
9. Iredale, T. The freshwater mussels of Australia. Aust. Zool. 8, 57–78 (1934).
10. McMichael, D. F. & Hiscock, J. D. A monograph of the freshwater mussels (Mollusca: Pelecypoda) of the Australian Region. Aust. J. Mar. Freshw. Res. 9, 372–507 (1958).
11. Ponder, W. F. & Bayer, M. A new species of Lortiella (Mollusca: Bivalvia: Unionoida: Hyriidae) from northern Australia. Molluscan Res. 24, 89–102 (2004).
12. Balla, S. A. & Walker, K. F. Shape variation in the Australian freshwater mussel Alathryia jacksoni Iredale (Bivalvia, Hyriidae). Hydrobiologia 220, 89–98 (1991).
13. Mock, K. F. et al. Genetic structuring in the freshwater mussel Anodonta corresponds with major hydrologic basins in the western United States. Mol. Ecol. 19, 569–591 (2010).
14. Walker, K. F., Jones, H. A. & Klunzinger, M. W. Bivalves in a bottleneck: Taxonomy, phylogeography and conservation of freshwater mussels (Bivalvia: Unionida) in Australasia. Hydrobiologia 735, 61–79 (2014).
15. Williams, J. D. et al. A revised list of the freshwater mussels (Mollusca: Bivalvia: Unionida) of the United States and Canada. Freshw. Mol. Biol. Conserv. 20, 33–59 (2017).
16. Graf, D. L. & Cummings, K. S. A big data approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. J. Mollus. Stud. 87, 034 (2021).
17. Graf, D. L. & Cummings, K. S. Palaeoheterodonty diversity (Mollusca: Trigonoida + Unionoida): What we know and what we wish we knew about freshwater mussel evolution. Zool. J. Linn. Soc. Lond. 148, 343–394 (2006).
64. Simpson, C. T. A Descriptive Catalogue of the Naiaides, or Pearly Fresh-Water Mussels. Parts I–III. (1914).
65. Haas, F. Unsere bisherigen Kenntnisse der Najadenfauna Neu-Guineas. Nova Guinea 15, 65–76 (1924).
66. McMichael, D. F. Notes on the fresh water mussels of New Guinea. Nautilus 70, 38–48 (1956).
67. Bindon, P. A. & Chadwick, R. A. Nyongor Wordlist: From the South-west of Western Australia. (Western Australian Museum, 2011).
68. Benson, J. A., Close, P. G., Stewart, B. A. & Lymbery, A. J. Upstream recolonization by freshwater mussels (Unionoida: Hyriidae) following installation of a fishway. Aquat. Conserv. 28, 512–517 (2018).
69. Benson, J. A., Close, P. G., Stewart, B. A. & Lymbery, A. J. Freshwater tributary refuges provide refuge and recolonization opportunities for mussels following salinity reversal. Sci. Total Environ. 683, 231–239 (2019).
70. Carstens, B. C., Pelletier, T. A., Reid, N. M. & Satler, J. D. How to fail at species delimitation. Mol. Ecol. 22, 4369–4383 (2013).
71. Mansur, M. C. D. & Pimpão, D. M. Triplodon choda, a new species of pearly fresh water mussel from the Amazon Basin (Mollusca: Bivalvia: Unionioidea: Hyriidae). Rev. Bras. Zool. 25, 111–115 (2008).
72. Zieritz, A. & Aldridge, D. C. Identification of coenophytenic trends within three European freshwater mussel species (Bivalvia: Unionoida) using traditional and modern morphometric techniques. Biol. J. Linn. Soc. Lond. 98, 814–825 (2009).
73. Zieritz, A., Hoffman, J. I., Amos, W. & Aldridge, D. C. Phenotypic plasticity and genetic isolation-by-distance in the freshwater mussel Unio pictorum (Mollusca: Unionoida). Evol. Edn. 44, 923–938 (2010).
74. Garnett, S. T. & Christidis, L. Taxonomy anarchy hampers conservation. Nature 546, 25–27 (2017).
75. Wu, R., Liu, X., Ouyang, S. & X. Comparative analyses of the complete mitochondrial genomes of three Lamprotula (bivalvia: unionioidea) species: insight into the shortcomings of mitochondrial DNA for recently diverged species delimitation. Malacologia 63, 51–66 (2020).
76. Zachos, F. E. Species Concepts in Biology: Historical Development, Theoretical Foundations, and Practical Relevance (Springer, 2016).
77. Zachos, F. E. (New) Species concepts, species delimitation and the inherent limitations of taxonomy. J. Genet. 97, 811–815 (2018).
78. Mayr, E. & Ashlock, P. D. Principles of Systematic Biology (McGraw-Hill, 1991).
79. Páll-Gergely, B., Asami, T. & Sólymos, P. Subspecies description rates are higher in morphologically complex land snails. Zool. Scr. 48, 185–193 (2019).
80. Simpson, C. T. Synopsis of the naiaides, or pearly fresh-water mussels. Proc. U.S. Nat. Mus. 22, 501–1044 (1900).
81. Ortmann, A. E. South American naiaides, a contribution to the knowledge of the fresh-water mussels of South America. Mem. Carn. Mus. 8, 451–670 (1921).
82. Marretes, F. L. Ensai do catálogo dos moluscos do Brasil. Arq. Mus. Para. 7, 5–216 (1949).
83. Paradiz, J. J. Annotated catalogue of the genus Diplodon (Unionacea-Hyriidae). Sertikus 30, 1–22 (1968).
84. Haas, F. Superfamilia Unionacea. In Das Tierrich Lieferung Vol. 88 (eds Martens, R. et al.) (Walter de Gruyter and Co, 1969).
85. Fenwick, M. C. & Marshall, B. A. A new species of Echyridella from New Zealand, and recognition of Echyridella iucasi (Suter, 1905) (Mollusca: Bivalvia: Hyriidae). Molissicaea 26, 69–76 (2006).
86. Simone, L. R. L. Land and Freshwater Molluscs of Brazil (EGB, Fapesp, São Paulo, 2006).
87. Lyeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 (2004).
88. Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-4386-7 (2018).
89. Ferreira-Rodriguez, N. et al. Research priorities for freshwater mussel conservation assessment. Biol. Conserv. 231, 77–87 (2019).
90. Benson, J., Stewart, B. A., Close, P. G. & Lymbery, A. J. Freshwater mussels in Mediterranean-climate regions: Species richness, conservation status, threats and conservation actions needed. Aquat. Conserv. 31, 708–728 (2021).
91. Hughes, J. et al. Past and present patterns of connectivity among populations of four cryptic species of freshwater mussels Velasunio spp. (Hyriidae) in central Australia. Mol. Ecol. 13, 3197–3212 (2004).
92. Jones, H. A., Simpson, R. D. & Humphrey, C. L. The reproductive cycles and glochidia of freshwater mussels (Bivalvia: Hyriidae) of the Macleay River, northern New South Wales, Australia. Malacologia 27, 185–202 (1986).
93. Pimpão, D. M., Dreher Mansur, M. C., Aydos Bergonci, P. E. & Beasley, C. R. Comparative morphometry and morphology of glochidial shells of Amazonian Hyriidae (Mollusca: Bivalvia: Unioidea). Am. Malac. Bull. 30, 73–84 (2012).
94. Melchior, M., Collier, K. J. & Clearwater, S. J. First record of complex release strategies and morphometry of glochidia in sympatric Echyridella species (Bivalvia: Unionidae). Hydrobiologia 848, 3115–3126 (2021).
95. Gray, J. J. Travels in New Zealand Vol. 11 (E. Dieffenbach, 1843).
96. Morgan, D. L. et al. An overview of the ‘freshwater fishes’ of Western Australia. J. R. Soc. West. Aust. 97, 263–278 (2014).
97. Buckley, S. J. et al. Phylogenomic history of enigmatic pygmy perches: Implications for biogeography, taxonomy and conservation. R. Soc. Open Sci. 5, 172125 (2018).
98. Baker, A. M., Sheldon, F., Somerville, J., Walker, K. F. & Hughes, J. M. Mitochondrial DNA phylogenetic structuring suggests similarity between two morphometrically plastic genera of Australian freshwater mussels (Unionoida: Hyriidae). Mol. Phylogen. Evol. 52, 902–912 (2004).
99. Sheldon, F. Variable plasticity in shell morphology of some Australian freshwater mussels (Unionoida, Hyriidae). Trans. R. Soc. S. Aust. 141, 193–208 (2017).
100. AWRC. Review of Australia’s Water Resources 1975. (Australian Water Resources Council (AWRC), Department of Natural Resources, 1976).
101. Geoscience Australia. GEODATA TOPO 250K, Series 2. (National Mapping Division, Commonwealth of Australia Department of Industry, Tourism and Resources, 2003).
102. Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
103. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
104. Rojas, J. et al. Dnasp 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
105. Maddison, W. P. & Maddison, D. R. Mesquite: A Modular System for Evolutionary Analysis. Version 3.61. http://www.mesquiteproject.org (2019).
106. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. MrModelTest 2: More models, new heuristics and parallel computing. Nat. Method 9, 772 (2012).
107. Trifinopoulos, J., Nguyen, L., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44(W1), W232–W235 (2016).
108. Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference across a comprehensive model class. Syst. Biol. 61, 539–542 (2012).
109. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Prior phase summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
110. Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Res. 21, 609–620 (2021).
113. Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. *Mol. Ecol.* **9**, 1657–1659 (2000).
114. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. *Bioinformatics* **29**, 2869–2876 (2013).
115. Jörger, K. M. & Schrödl, M. How to describe a cryptic species? Practical challenges of molecular taxonomy. *Front. Zool.* **10**, 59 (2013).
116. Renner, S. S. A return to Linnaeus’s focus on diagnosis, not description: The use of DNA characters in the formal naming of species. *Syst. Biol.* **65**, 1086–1095 (2016).
117. Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. *Sci. Rep.* **7**, 3391 (2017).
118. Crampton, J. S. & Haines, A. J. Users’ manual for programs HANGLE, HMATCH and HCURVE for the Fourier shape analysis of two-dimensional outlines. *Inst. Geol. Nucl. Sci. Sci. Rep.* **96**, 1–28 (1996).
119. Rasband, W. ImageJ. *Image Processing and Analysis in Java*. http://rsbweb.nih.gov/ij (2008).
120. Hammer, Ø. & Harper, D. A. T. *PAST Version 1.57*. http://folk.uio.no/ohammer/past/ (2006).
121. Hammer, Ø., Harper, D. A. T. & Ryan, P. D. *PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Elec.* **4**, 1–9 (2001).
122. Bolotov, I. N. et al. New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. *Sci. Rep.* **10**, 6616 (2020).

Acknowledgements

Funding support for publication costs of this study was provided by the University of Western Australia and the Western Australian Museum. We thank the editors and three anonymous reviewers for helpful suggestions and feedback which greatly improved the quality of our publication. We thank Dr Mandy Reid and staff in the Malacology Section at the Australian Museum, Sydney for providing type specimen photos of *Westralunio ambigius carteri* Iredale, 1934 and Dr Stephen J. Beatty, Murdoch University, for providing the photo of the Goodga River type locality for *Westralunio inbisi inbisi*. We thank Associate Professor Daniel Graf for providing images of freshwater mussels from The Mussel Project for use in this study (cited as Graf & Cummings, 2018). We especially thank Associate Professor Alan J. Lymbery for collecting numerous specimens used in this study and WA Museum Research Associate Alan Longbottom for his assistance in registering new voucher specimen material used in this study. We acknowledge the Western Australian Museum Aboriginal Advisory Committee (WAMAAC), and especially Deanne Fitzgerald, Senior Aboriginal and Torres Strait Islander Advisor, for guidance and support in the selection of a culturally specific name for the new species. We acknowledge invaluable efforts collectors and curators have endured over many years to provide a library of specimens which made this study possible.

Author contributions

All authors contributed to writing the main manuscript text. M.K., J.B. and A.Z. wrote the Methods. J.B. analysed genetic data. M.K. measured shells. M.K. and C.W. photographed specimens. A.Z. analysed shell measurement data. M.K. measured shells. M.K. and C.W. registered specimens, collated genetic data. M.K. measured shells. M.K. and C.W. prepared supplementary data. All authors reviewed and revised the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-24767-5.

Correspondence and requests for materials should be addressed to M.W.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022, corrected publication 2023