Supporting Information

Open-Ended Metallodithiolene Complexes with the 1,2,4,5-Tetrakis(diphenylphosphino)benzene (tpbz) Ligand: Modular Building Elements for the Synthesis of Multimetal Complexes

by

Satyendra Kumar,†,‡ Malathy Selvachandran,†,‡ Kuppuswamy Arumugam,§ Mohamed C. Shaw,† Che Wu,† Michael Maurer,† Xiaodong Zhang,† Stephen Sproules,¥ Joel T. Mague,† and James P. Donahue†,*

†Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana, 70118, U.S.A.
‡Current Address: Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana, 70125, U.S.A.
§Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio, 45435-0001, U.S.A.
¥WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom.

†Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana, 70118, U.S.A.
‡Current Address: Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana, 70125, U.S.A.
§Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, Ohio, 45435-0001, U.S.A.
¥WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
Table of Contents

Procedures for Crystal Growth, Collection and Processing of Diffraction Data, and Solving and Refining of Structures. S6-S8

Computational Details S8-S9

References S9-S10

Table S1. Unit cell and refinement data for compounds 1, 4, 5 and 7 S11
Table S2. Unit cell and refinement data for compounds 8, 9, 11, and 10 S12
Table S3. Unit cell and refinement data for compounds 12, 15, and 16 S13
Table S4. Unit cell and refinement data for compounds 17, 18, and [19]2[I3]2 S14
Table S5. Selected bond distances and angles for [(dpdbO2)Ni][I3]2 S14

Figure S1. Thermal ellipsoid plot (50%) of [tpbz]NiCl2. S15
Figure S2. Thermal ellipsoid plot (50%) of [(NC)2C2S2]Ni(η2-tpbz)]. S16
Figure S3. Thermal ellipsoid plot (50%) of interstitial CHCl3 in [(NC)2C2S2]Ni(η2-tpbz)] 2(CHCl3). S16
Figure S4. Thermal ellipsoid plot (50%) of [(Me2C2S2)Ni(η2-tpbz)]. S17
Figure S5. Thermal ellipsoid plot (50%) of [(Me2C2S2)Ni(η2-tpbz)] with interstitial CH2Cl2 S17
Figure S6. Thermal ellipsoid plot (50%) of [(Me2C2S2)Pt(η2-tpbz)]. S18
Figure S7. Thermal ellipsoid plot (50%) of [(Me2C2S2)Pt(η2-tpbz)] with interstitial CH2Cl2 S19
Figure S8. Thermal ellipsoid plot (50%) of [(Ph2C2S2)Ni(η2-tpbz)]. S20
Figure S9. Thermal ellipsoid plot (50%) of [(Ph2C2S2)Pd(η2-tpbz)]. S20
Figure S10. Thermal ellipsoid plot (50%) of [(Ph2C2S2)Pt(η2-tpbz)]. S21
Figure S11. Thermal ellipsoid plot (50%) of [(Ph2C2S2)2Pt(η2-tpbz)]. S22
Figure S12. Thermal ellipsoid plot (50%) for interstitial solvent in [(Ph2C2S2)2Pt(η2-tpbz)] 2(CICH2CH2Cl). S22
Figure S13. Thermal ellipsoid plot (50%) of [(CH3O-p-C8H4)2C2S2]Ni(η2-tpbz)] with one positional variant of a disordered phenyl group shown. S23
Figure S14. Thermal ellipsoid plot (50%) of [(CH3O-p-C8H4)2C2S2]Ni(η2-tpbz)] with the second of two positional variants of a disordered phenyl group shown. S23
Figure S15. Thermal ellipsoid plot (50%) of [(Ph2C2S2)Pt(tpbz)Ni(S2C2Me2)]. S24
Figure S16. Thermal ellipsoid plot (50%) and atom labeling for interstitial solvent in [(Ph2C2S2)Pt(tpbz)Ni(S2C2Me2)] 2/3(CICH2CH2Cl). S24
Figure S17. Thermal ellipsoid plot (50%) of [(Me2C2S2)Pt(η2-tpbzO2)]. S25
Figure S18. Thermal ellipsoid plot (50%) of [(Ph2C2S2)Ni(η2-tpbzO2)]. S26
Figure S19. Thermal ellipsoid plot showing interstitial CH2Cl2 in [(Ph2C2S2)Ni(η2-tpbzO2)]-CH2Cl2. S26
Figure S20. Thermal ellipsoid plot (50%) of [(Me2C2S2)Ni(η2-tpbzS2)]. S27
Figure S21. Thermal ellipsoid plot (50%) with full atom labelling for [Ni(dpdbO2)]2+ (triclinic polymorph). All H atoms are omitted for clarity. S28
Figure S22. Thermal ellipsoid plot (50%) with partial atom labelling for [Ni(dpdbO2)][I3]2 (triclinic polymorph). All H atoms are omitted for clarity. S29
Figure S23. Thermal ellipsoid plot (50%) with full atom labelling for [Ni(dpdbO2)][I3]2 (monoclinic polymorph). All H atoms are omitted for clarity. S30
Table of Contents, Continued

Figure S24. 1H NMR spectrum (CD$_2$Cl$_2$) of [Cl$_2$Ni(tpbz)].
Figure S25. 31P NMR spectrum (CD$_2$Cl$_2$) of [Cl$_2$Ni(tpbz)].
Figure S26. 1H NMR spectrum (DMSO-d$_6$) of [Cl$_2$Pd(tpbz)].
Figure S27. 31P NMR spectrum (DMSO-d$_6$) of [Cl$_2$Pd(tpbz)].
Figure S28. 1H NMR spectrum (DMSO-d$_6$) of [Cl$_2$Pt(tpbz)].
Figure S29. 31P NMR spectrum (DMSO-d$_6$) of [Cl$_2$Pt(tpbz)].
Figure S30. 1H NMR spectrum (CDCl$_3$) of [(mnt)Ni(tpbz)].
Figure S31. 1H NMR spectrum (CDCl$_3$) of [(mnt)Ni(tpbz)] – close-up of aromatic region.
Figure S32. 31P NMR spectrum (CDCl$_3$) of [(mnt)Ni(tpbz)].
Figure S33. IR spectrum (KBr disk) of [(mnt)Ni(tpbz)].
Figure S34. MALDI mass spectrum (positive ion mode) of [(mnt)Ni(tpbz)].
Figure S35. Cyclic voltammogram of [(mnt)Ni(tpbz)] in CH$_2$Cl$_2$.
Figure S36. Differential pulse voltammogram of [(mnt)Ni(tpbz)] in CH$_2$Cl$_2$.
Figure S37. 1H NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Ni(tpbz)].
Figure S38. 1H NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Ni(tpbz)] – close-up of aromatic region.
Figure S39. 31P NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Ni(tpbz)].
Figure S40. UV-vis spectrum (CH$_2$Cl$_2$) of [(Me$_2$C$_2$S$_2$)Ni(tpbz)].
Figure S41. ESI mass spectrum (positive ion mode) of [(mdt)Ni(tpbz)].
Figure S42. CV (100 mV/sec) of [(mdt)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte.
Figure S43. DPV (oxidizing direction, pulse amplitude 50 mV) of [(mdt)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte.
Figure S44. DPV (reducing direction, pulse amplitude 50 mV) of [(mdt)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte.
Figure S45. 1H NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Pd(tpbz)].
Figure S46. 31P NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Pd(tpbz)].
Figure S47. UV-vis spectrum (CH$_2$Cl$_2$) of [(Me$_2$C$_2$S$_2$)Pd(tpbz)].
Figure S48. ESI mass spectrum (positive ion mode) of [(Me$_2$C$_2$S$_2$)Pd(tpbz)].
Figure S49. 1H NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Pt(tpbz)].
Figure S50. 31P NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Pt(tpbz)].
Figure S51. UV-vis spectrum (CH$_2$Cl$_2$) of [(Me$_2$C$_2$S$_2$)Pt(tpbz)].
Figure S52. ESI mass spectrum (positive ion mode) of [(Me$_2$C$_2$S$_2$)Pt(tpbz)].
Figure S53. 1H NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)].
Figure S54. 1H NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)] – close-up of aromatic region.
Figure S55. 31P NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)].
Figure S56. ESI mass spectrum (positive ion mode) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)].
Figure S57. CV (100 mV/sec) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte, +0.80 - -2.00 V window.
Figure S58. CV (100 mV/sec) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte, +1.70 - -2.00 V window.
Figure S59. DPV (oxidizing direction, pulse amplitude 50 mV) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte.
Table of Contents, Continued

Figure S60. Elemental analysis of [(Ph2C2S2)Ni(tpbz)] from Midwest Microlab, LLC. S51
Figure S61. ^1^H NMR spectrum (CDCl3) of [(Ph2C2S2)Pd(tpbz)]. S52
Figure S62. ^3^P NMR spectrum (CDCl3) of [(Ph2C2S2)Pd(tpbz)]. S52
Figure S63. ESI mass spectrum (positive ion mode) of [(Ph2C2S2)Pd(tpbz)]. S53
Figure S64. CV (100 mV/sec) of [(Ph2C2S2)Pd(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S54
Figure S65. DPV (oxidizing direction, pulse amplitude 50 mV) of [(Ph2C2S2)Pd(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S54
Figure S66. Elemental analysis of [(Ph2C2S2)Pt(tpbz)] from Galbraith, Laboratories, Inc. S55
Figure S67. ^3^P NMR spectrum (CDCl3) of [(Ph2C2S2)Pt(tpbz)]. S56
Figure S68. ESI mass spectrum (positive ion mode) of [(Ph2C2S2)Pt(tpbz)]. S56
Figure S69. CV (100 mV/sec) of [(Ph2C2S2)Pt(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S57
Figure S70. DPV (oxidizing direction, pulse amplitude 50 mV) of [(Ph2C2S2)Pt(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S57
Figure S71. Elemental analysis of [(Ph2C2S2)Pt(tpbz)] from Galbraith, Laboratories, Inc. S58
Figure S72. ^1^H NMR spectrum (CD2Cl2) of [(Ph2C2S2)Pt(tpbz)]. S59
Figure S73. ^3^P NMR spectrum (CD2Cl2) of [(Ph2C2S2)Pt(tpbz)]. S59
Figure S74. ESI mass spectrum (positive ion mode) of [(Ph2C2S2)Pt(tpbz)]. S60
Figure S75. CV (100 mV/sec) of [(Ph2C2S2)Pt(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S60
Figure S76. ^1^H NMR spectrum (CDCl3) of [((MeO-p-C6H4)2C2S2)Ni(tpbz)]. S61
Figure S77. ^3^P NMR spectrum (CDCl3) of [((MeO-p-C6H4)2C2S2)Ni(tpbz)]. S61
Figure S78. ESI mass spectrum (positive ion mode) of [((MeO-p-C6H4)2C2S2)Ni(tpbz)]. S62
Figure S79. CV (100 mV/sec) of [((MeO-p-C6H4)2C2S2)Ni(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S62
Figure S80. DPV of [((MeO-p-C6H4)2C2S2)Ni(tpbz)] (oxidizing direction, pulse amplitude 50 mV) of [mdt]Ni(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S63
Figure S81. DPV of [((MeO-p-C6H4)2C2S2)Ni(tpbz)] (reducing direction, pulse amplitude 50 mV) of [mdt]Ni(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S63
Figure S82. Elemental analysis of [((MeO-p-C6H4)2C2S2)Ni(tpbz)] from Kolbe. S64
Figure S83. ^1^H NMR spectrum (CDCl3) of [((MeO-p-C6H4)2C2S2)Pd(tpbz)]. S65
Figure S84. ^3^P NMR spectrum (CDCl3) of [((MeO-p-C6H4)2C2S2)Pd(tpbz)]. S65
Figure S85. UV-vis spectrum (CH2Cl2) of [((MeO-p-C6H4)2C2S2)Pd(tpbz)]. S66
Figure S86. ESI mass spectrum (positive ion mode) of [((MeO-p-C6H4)2C2S2)Pd(tpbz)]. S66
Figure S87. CV (100 mV/sec) of [((MeO-p-C6H4)2C2S2)Pd(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S67
Figure S88. DPV of [((MeO-p-C6H4)2C2S2)Pd(tpbz)] (oxidizing direction, pulse amplitude 50 mV) of [mdt]Ni(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S68
Figure S89. DPV of [((MeO-p-C6H4)2C2S2)Pd(tpbz)] (reducing direction, pulse amplitude 50 mV) of [mdt]Ni(tpbz)] in CH2Cl2 with ["Bu4N][PF6] supporting electrolyte. S68
Table of Contents, Continued

Figure S90. 1H NMR spectrum (CDCl$_3$) of [((MeO-p-C$_6$H$_4$_2)C$_2$S$_2$)Pt(tpbz)]. S69
Figure S91. 31P NMR spectrum (CDCl$_3$) of [((MeO-p-C$_6$H$_4$_2)C$_2$S$_2$)Pt(tpbz)]. S69
Figure S92. UV-vis spectrum (CH$_2$Cl$_2$) of [((MeO-p-C$_6$H$_4$_2)C$_2$S$_2$)Pd(tpbz)]. S70
Figure S93. ESI mass spectrum (positive ion mode) of [((MeO-p-C$_6$H$_4$_2)C$_2$S$_2$)Pt(tpbz)]. S70
Figure S94. CV (100 mV/sec) of [((MeO-p-C$_6$H$_4$_2)C$_2$S$_2$)Pt(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte. S71
Figure S95. DPV of [((MeO-p-C$_6$H$_4$_2)C$_2$S$_2$)Pt(tpbz)] (oxidizing direction, pulse amplitude 50 mV) of [(mdt)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte. S71
Figure S96. 1H NMR spectrum of [(pdt)Pt(tpbz)Ni(mdt)] in CDCl$_3$. S72
Figure S97. 31P NMR spectrum of [(pdt)Pt(tpbz)Ni(mdt)] in CDCl$_3$. S72
Figure S98. UV-vis spectrum (CH$_2$Cl$_2$) of [(pdt)Pt(tpbz)Ni(mdt)]. S72
Figure S99. Mass spectrum (ESI, positive ion mode) of [([Ph$_2$C$_2$S$_2$]Pt(tpbz)Ni(S$_2$C$_2$Me$_2$)]. S73
Figure S100. Cyclic voltammogram of [([Ph$_2$C$_2$S$_2$]Pt(tpbz)Ni(S$_2$C$_2$Me$_2$)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$]. S74
Figure S101. 1H NMR spectrum (CDCl$_3$) of [([Ph$_2$C$_2$S$_2$]Ni(tpbzO$_2$)]. S75
Figure S102. 31P NMR spectrum (CDCl$_3$) of [([Ph$_2$C$_2$S$_2$]Ni(tpbzO$_2$)]. S75
Figure S103. UV-vis spectrum (CH$_2$Cl$_2$) of [([Ph$_2$C$_2$S$_2$]Ni(tpbzO$_2$)]. S76
Figure S104. Mass spectrum (ESI, positive ion mode) of [([Ph$_2$C$_2$S$_2$]Ni(tpbzO$_2$)]. S76
Figure S105. Cyclic voltammogram of [([Ph$_2$C$_2$S$_2$]Ni(tpbzO$_2$)] in CH$_2$Cl$_2$ S77 with ["Bu$_4$N][PF$_6$].
Figure S106. 1H NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Pt(tpbzO$_2$)]. S78
Figure S107. 31P NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Pt(tpbzO$_2$)]. S78
Figure S108. Mass spectrum (ESI, positive ion mode) of [(Me$_2$C$_2$S$_2$)Pt(tpbzO$_2$)]. S79
Figure S109. 1H NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Ni(tpbzS$_2$)]. S80
Figure S110. 31P NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Ni(tpbzS$_2$)]. S80
Figure S111. UV-vis spectrum (CH$_2$Cl$_2$) of [(Me$_2$C$_2$S$_2$)Ni(tpbzS$_2$)]. S81
Figure S112. Mass spectrum (ESI, positive ion mode) of [(Me$_2$C$_2$S$_2$)Ni(tpbzS$_2$)]. S81
Figure S113. Elemental analysis of [(Me$_2$C$_2$S$_2$)Ni(tpbzS$_2$)] from Galbraith. S82
Figure S114. UV-vis spectrum (CH$_2$Cl$_2$) of [Ni(dpbbO$_2$)$_2$][I$_3$]2. S83
Figure S115. Mass spectrum (ESI, positive ion mode) of [Ni(dpbbO$_2$)$_2$]2. S83
Figure S116. MO energy level diagram showing frontier MOs for [(pdt)Ni(tpbz)]. S84

Table S6. Atomic coordinates for optimized geometry of [(pdt)Pt(tpbz)Ni(mdt)]. S85-S88
Table S7. Atomic coordinates for optimized geometry of [(pdt)Ni(tpbz)]. S89-S91
Procedures for Crystal Growth, Collection and Processing of Diffraction Data, and Solving and Refining of Structures.

All crystals used in X-ray diffraction data collections were obtained by the vial-in-a-vial vapor diffusion technique. The following solvent pairs identify specific combinations successfully employed as solvent/diffusing vapor for crystal growth: [Cl₂Ni(tpbz)]·Et₂O (orange plates): CH₂Cl₂/Et₂O; [(NC)₂C₂S₂]Ni(tpbz)·2(CHCl₃) (orange blocks): CHCl₃/MeOH; [(Me₂C₂S₂)]Ni(tpbz)·2(CH₂Cl₂) (light brown-green columns): CH₂Cl₂/Et₂O; [(Me₂C₂S₂)Pt(tpbz)]: 2(CH₂Cl₂) (yellow plates): CH₂Cl₂/Et₂O; [(Ph₂C₂S₂)Ni(tpbz)] (clear yellow blocks): CH₂Cl₂/Et₂O; [(Ph₂C₂S₂)Pd(tpbz)] (pale orange columns): CH₂Cl₂/Et₂O or ClCH₂CH₂Cl/Et₂O; [(Ph₂C₂S₂)Pt(tpbz)] (yellow columns): CH₂Cl₂/n-pentane; [(Ph₂C₂S₂)₂PtIV(η²-tpbz)]: 2ClCH₂CH₂Cl (dark blue blocks): ClCH₂CH₂Cl/Et₂O or ClCH₂CH₂Cl/n-pentane; [(MeO-p-C₆H₄)₂C₂S₂]Ni(tpbz)] (clear yellow blocks): chlorobenzene/hexanes or chlorobenzene/BuOMe; [(Ph₂C₂S₂)Pt(tpbz)Ni(S₂C₂Me₂)]: 2½(ClCH₂CH₂Cl) (orange plates): ClCH₂CH₂Cl/BuOMe or ClCH₂CH₂Cl/hexanes; [(Ph₂C₂S₂)Ni(tpbzO₂)₂]·CH₂Cl₂ (orange plates): CH₂Cl₂/Et₂O; [(Me₂C₂S₂)Pt(tpbzO₂)]: 2CH₂Cl₂ (orange plates): CH₂Cl₂/Et₂O; [(Me₂C₂S₂)Ni(tpbzS₂)] (yellow needles): CH₂Cl₂/Et₂O or CH₂Cl₂/n-pentane; [Ni(dppbO₂)₃][I₃]₂ (orange-red plates): CH₂Cl₂/Et₂O for both triclinic and monoclinic polymorphs.

All crystals were coated with paratone oil and mounted on the end of a nylon loop attached to the end of the goniometer. Data were obtained at a temperature of 100, 150 or 158 K that was maintained by a cold nitrogen stream supplied under the control of an Oxford Cryostream 800 attachment. The data collection instrument was either a Bruker D8 Venture Photon 100 instrument, the radiation source for which was a Cu Incoatec I microfocus source generating X-rays with λ = 1.54178 nm, a Bruker Smart APEX II CCD diffractometer equipped with a Mo fine-focus sealed tube providing radiation at λ = 0.71073 nm, or a Bruker D8 Quest Photon 3 diffractometer that similarly operated with the Mo Kα 0.71073 nm light source.

The data sets obtained with the D8 Venture were hemispheres of data comprised from the following assemblies of ω-scan frames and frame times: [(Ph₂C₂S₂)Ni(tpbz)]: 10 sets of 326 or 330 frames at 10 or 20 sec/frame; [(MeO-p-C₆H₄)₂C₂S₂]Ni(tpbz)]: 7 sets of 368 or 371 frames at 40 or 20 sec/frame. The data sets that were collected with the APEX II diffractometer implemented one of the following programmed routines: (1) Three sets of 363 frames in ω (0.5°/scan) with φ held constant at 0, 120, and then 240°; (2) Three sets of 606 frames in ω (0.3°/scan) with φ held
constant at 0, 120, and then 240º; (3) Three sets of 400 frames in ω (0.5º/scan), collected at φ = 0.00, 90.00 and 180.00º and two sets of 800 frames in φ (0.45º/scan) collected with ω constant at -30.00 and 210.00º. The data collection program and frame time used for these data sets were as follows: [(Me2C2S2)Ni(tpbz)]·2(CH2Cl2): Routine 3, 60 sec; [(Me2C2S2)Pt(tpbz)]·2(CH2Cl2): Routine 2, 30 sec; [(Ph2C2S2)Pd(tpbz)]: Routine 1, 40 sec; [(Ph2C2S2)Pt(tpbz)]: Routine 1, 80 sec; [(Ph2C2S2)2Pt(tpbz)]:2(ClCH2CH2Cl): Routine 3, 60 sec; [(Me2C2S2)Ni(tpbzS2)]: Routine 2, 90 sec; triclinic [Ni(dppbO2)3][I3]: Routine 2, 60 sec; [Cl2Ni(tpbz)]·Et2O: Routine 2, 50 sec; [((NC)2C2S2)Ni(tpbz)]·2(CHCl3): Routine 3: 25 sec. The data sets gathered with the D8 Quest Photon 3 ([(Ph2C2S2)Pt(tpbz)Ni(S2C2Me2)]·2½(ClCH2CH2Cl), [(Ph2C2S2)Ni(tpbzO2)·CH2Cl2, [(Me2C2S2)2Pt(tpbzO2)], and monoclinic [Ni(dppbO2)3][I3]) were comprised of sets of frames, each of 0.5º width in either ω or φ, whose number and scan parameters were determined by the “Strategy” routine in APEX3.

All data were collected under control of either the Bruker SMART,1 APEX22a-2f or APEX32g software packages. Raw data were reduced to F² values using the SAINT+3 or SAINT4 software, and a global refinement of unit cell parameters was performed using ~3,660–9,990 selected reflections from the full data set. For [(Ph2C2S2)Pt(tpbz)Ni(S2C2Me2)]·2½(ClCH2CH2Cl), analysis of 1675 reflections having I/σ(I) > 20 and chosen from the full data set with CELL_NOW showed the crystal to belong to the triclinic system and to be twinned by a 180º rotation about c*. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW; and an absorption correction was applied using the TWINABS routine.6 All other data sets were corrected for absorption on the basis of multiple measurements of symmetry equivalent reflections or by numerical methods with the use of SADABS,7 as described by Krause et al.8 All structure solutions were obtained by direct methods using SHELXM,9 SHELXS10 or SHELXT,11 while refinements were accomplished by full-matrix least-squares procedures using SHELXL.12 Both the SHELXS and SHELXL programs are incorporated into the SHELXTL13 and APEX2/APEX32 software suites.

All structure refinements were routine except as noted: (1) In the structure of [(Me2C2S2)Ni(tpbzS2)] (JPD184), one terminal sulfido ligand was disordered between two positions and was modeled as an 88:12 distribution between the two sites; (2) For [((MeO-p-C6H4)2C2S2)Ni(tpbz)] (JPD950), one phenyl group was disordered between two positions and refined with isotropic thermal parameters as a best-fit distribution between the two sites; (3) For
[(Ph₂C₂S₂)₂PtIV(η²-tpbz)]·2CICH₂CH₂Cl (JPD736), minor disorder for one phenyl group of the tpbz ligand and one Cl atom of the interstitial solvent was observed and similarly treated with split atom models. (4) In the structure of [(Ph₂C₂S₂)Ni(tpbzO₂)]·(CH₂Cl₂), residual density attributed to partially occupied/disordered solvent CH₂Cl₂ sites was removed with PLATON SQUEEZE14 (Spek, 2015). Furthermore, five reflections determined to be partially or wholly obscured by the beamstop were omitted from the final refinement. (5) The structure of [(Ph₂C₂S₂)Pt(tpbz)Ni(S₂C₂Me₂)]·2.5(CICH₂CH₂Cl) was refined as a two-component twin, and the disordered interstitial CICH₂CH₂Cl molecules were refined with constraints approximating ideal geometries. (6) The monoclinic polymorph of [Ni(dppbO₂)₃][I₃] showed one triiodide ion (I₁···I₃) to be disordered over two closely neighboring sites in a 0.703(4)/0.297(4) ratio. The two components of the disorder were refined as rigid rods. Additionally, a small peak appearing to be a partially occupied lattice water site was removed with PLATON SQUEEZE14. Seven reflections partially or totally obscured by the beamstop were omitted from the final refinement. In all the structures, hydrogen atoms were added in calculated positions and included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the carbon atoms to which they were attached. Thermal ellipsoid images have been created with the use of XP, which also is part of the SHELXTL package. All structures were checked for overlooked symmetry and other errors by the checkCIF service provided by the International Union of Crystallography.15 Final unit cell data and refinement statistics are collected in Tables S1-S4.

Computational Details

The density functional theory (DFT) calculations were carried out at the supercomputing facility at Tulane University, using the GAUSSIAN-09 package.16 Geometry optimizations of structures were carried out with no symmetry restrictions beginning with the coordinates of the molecules from X-ray crystallographic data. The geometries were optimized at the Becke, 3-Parameter, Lee-Yang-Parr (B3LYP) level of theory17 with typical basis sets. Frequency calculations were done to confirm the validity of optimized structures. For the transition metals (nickel, palladium and platinum), a double-ζ (DZ) basis set with an effective electron core potential (LANL2DZ ECP) was implemented.18 The 6-31G (d,p) basis set was chosen for the light main group elements (C and N), whereas the triple-ζ (TZVP) was used for the heavier elements (S and P), and a Gaussian split valence (SV) basis set19 was used for the hydrogen atoms. The molecular
orbital (MOs) plots were created using the Chemcraft program package (http://www.chemcraftprog.com).

References

1) SMART, Version 5.625, Bruker-AXS, Madison, Wisconsin, 2000.
2) (a) APEX2, Version 2008.6-1, Bruker-AXS, Madison, Wisconsin, 2008. (b) APEX2, Version 2009.1-0, Bruker-AXS, Madison, Wisconsin, 2009. (c) APEX2, Version 2009.9-0, Bruker-AXS, Madison, Wisconsin, 2009. (d) APEX2, Version 2009.11-0, Bruker-AXS, Madison, Wisconsin, 2009. (e) APEX2, Bruker-AXS, Inc., Madison, Wisconsin, USA, 2014. (f) APEX2, Bruker-AXS, Inc., Madison, Wisconsin, USA, 2015. (g) APEX3, Bruker-AXS, Inc., Madison, Wisconsin, USA, 2016. (h) APEX3, Bruker-AXS, LLC, Madison, Wisconsin, USA, 2020.
3) SAINT+, Bruker-AXS, Version 7.03, Madison, Wisconsin, 2004.
4) (a) SAINT, Version 7.60A, Bruker AXS, Inc., Madison, Wisconsin, 2008. (b) SAINT, Version 7.68A, Bruker AXS, Inc., Madison, Wisconsin, 2009. (c) SAINT, Bruker AXS, Inc., Madison, Wisconsin, 2014. (d) SAINT, Bruker AXS, Inc., Madison, Wisconsin, 2015. (e) SAINT, Bruker AXS, LLC, Madison, Wisconsin, 2020.
5) Sheldrick, G. M. CELL_NOW, University of Göttingen, Göttingen, Germany, 2008.
6) Sheldrick, G. M. TWINABS, University of Göttingen, Göttingen, Germany, 2009.
7) (a) Sheldrick, G. M. SADABS, Version 2.05, Universität Göttingen, Göttingen, Germany, 2002. (b) Sheldrick, G. M. SADABS, Version 2007/4, Universität Göttingen, Göttingen, Germany, 2007. (c) Sheldrick, G. M. SADABS, Version 2008/2, Universität Göttingen, Göttingen, Germany, 2008. (d) SADABS, Bruker AXS, Inc., Madison, Wisconsin, 2014. (e) SADABS, Bruker AXS, Inc., Madison, Wisconsin, 2015. (f) SADABS, Bruker AXS, Inc., Madison, Wisconsin, 2016.
8) Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke; D. Comparison of Silver and Molybdenum Microfocus X-ray Sources for Single-Crystal Structure Determination. J. Appl. Cryst. 2015, 48, 3-10.
9) Sheldrick, G. M. SHELXM, Version 2004/1, University of Göttingen, Göttingen, Germany, 2004.
10) (a) Sheldrick, G. M. SHELXS-97, University of Göttingen, Göttingen, Germany, 1997. (b) Sheldrick, G. M. SHELXS-97, University of Göttingen, Göttingen, Germany, 2008. (c) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr., Sect. A: Foundations Adv. 2008, 64, 112-122.
11) (a) SHELXT, Bruker AXS, Inc., Madison, Wisconsin, 2014. (b) Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr., Sect. A: Foundations Adv. 2015, 71, 3-8.
12) (a) Sheldrick, G. M. SHELXL-97, University of Göttingen, Göttingen, Germany, 1997. (b) Sheldrick, G. M. SHELXL-97, University of Göttingen, Göttingen, Germany, 2008. (c) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112-122. (d) Sheldrick, G. M. SHELXL-2014. University of Göttingen, Göttingen, Germany, 2014. (e) Sheldrick, G. M. SHELXL-2014/7. University of Göttingen, Göttingen, Germany, 2015. (f) Sheldrick, G. M.
SHELXL. University of Göttingen, Göttingen, Germany, 2015. (g) Sheldrick, G. M. SHELXL-2018/1 University of Göttingen, Göttingen, Germany, 2018.

(13) (a) SHELXTL, Version 6.10, Bruker-AXS, Madison, Wisconsin, 2000. (b) SHELXTL, Version 2008/4, Bruker-AXS, Madison, Wisconsin, 2008. (c) SHELXTL, Bruker-AXS, Madison, Wisconsin, 2014. (d) SHELXTL, Bruker-AXS, Madison, Wisconsin, 2015. (e) SHELXTL, Bruker-AXS, Madison, Wisconsin, 2016.

(14) Spek, A.L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 9-18.

(15) See http://checkcif.iucr.org/

(16) Gaussian 09, Revision A. 02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

(17) (a) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density Phys. Rev. B 1988, 37, 785-789.

(18) https://bse.pnl.gov/bse/portal. (Accessed Mach 4, 2021).

(19) Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571-2577.

(20) Chemcraft, Version 1.8 (build 445); http://chemcraftprog.com (accessed March 4, 2021).
Table S1. Unit Cell and Refinement Data for Compounds 1, 4, 5 and 7.

compound	[Cl2Ni(tpbz)]	[(mnt)Ni(tpbz)]	[(mnt)Ni(tpbz)]	[(mnt)Pt(tpbz)]
compound #	JPD412	JPD267	JPD751	JPD150
structure #	Et2O	2CHCl3	2CH2Cl2	2CH2Cl2
solvent/cocrystallite formula	C₅₈H₇₂Cl₅NiOP₄	C₆₀H₴₄Cl₂Ni₂P₂S₂	C₆₀H₵₂Cl₅NiP₄S₂	C₆₀H₵₂Cl₄P₄PtS₂
fw, g/mol	1018.49	1252.38	1161.52	1297.91
temperature, K	100	100	100	100
wavelength, Å	0.71073	0.71073	0.71073	0.71073
20 range, deg.	2.34 – 55.70	4.22 – 56.74	3.24 – 60.44	3.22 – 56.56
crystal system	orthorhombic	orthorhombic	monoclinic	monoclinic
a, Å	34.703(3)	13.510(3)	15.7180(18)	21.157(5)
b, Å	9.2939(9)	16.403(3)	15.836(4)	15.836(4)
c, Å	15.5064(14)	25.380(5)	16.713(18)	16.576(4)
dOH, deg.	90	90	90	90
dOD, deg.	90	90	100.039(2)	99.604(4)
Z	4	4	4	4
volume, Å³	5001.2(8)	5624.2(19)	5489.6(11)	5476(2)
density, g/cm³	1.353	1.479	1.405	1.574
µ, mm⁻¹	0.664	0.860	0.780	2.991
crystal size	0.02 x 0.12 x 0.32	0.09 x 0.14 x 0.17	0.04 x 0.09 x 0.47	0.05 x 0.15 x 0.24
color, habit	orange plate	orange block	brwn-grn column	yellow plate
limiting indices, h	-44 < h < 45	-17 < h < 18	-29 < h < 29	-28 < h < 27
limiting indices, k	-12 < k < 12	-21 < k < 21	-22 < k < 22	-20 < k < 20
limiting indices, l	-20 < l < 19	-33 < l < 33	-23 < l < 23	-21 < l < 21
reflections collected	40918	100119	52873	24025
independent data	11569	14060	7799	6526
restraints	1	0	0	0
parameters refined	597	676	322	322
GooF	1.090	1.048	1.105	1.035
R1, eR2	0.0574, 0.1259	0.0413, 0.1087	0.0450, 0.1434	0.0308, 0.0750
R1, eR2	0.0725, 0.1327	0.0481, 0.1141	0.0590, 0.1468	0.0360, 0.0776
largest diff. peak, eÅ⁻³	0.734	0.650	2.930	1.601
largest diff. hole, eÅ⁻³	-0.755	-1.153	-0.572	-0.790
abs structure parameter	0.013(15)	-0.012(11)	-	-

*GooF = \(\frac{\sum w(F_o^2 - F_c^2)^2}{(n-p)}\), where \(n\) is the number of reflections and \(p\) is the total number of parameters refined; *R1 = \(\frac{\sum |F_o| - |F_c|}{\sum |F_o|}\); *R indices for data cut off at 1 > 2σ(I); *wR2 = \(\frac{\sum w(F_o^2 - F_c^2)^2}{\sum w(F_o^2)^2}\); *w = 1/\(\sigma^2(F_o^2) + (xP)^2 + yP^2\), where \(P = [2F_o^2 + Max(F_o^2,0)]/3; *R indices for data.
Table S2. Unit Cell and Refinement Data for Compounds 8, 9, 11, and 10.

compound	structure #	solvent/cocrystallite	formula	fw, g/mol	temperature, K	wavelength, Å	20 range, deg.	crystal system	space group	a, Å	b, Å	c, Å	α, deg.	β, deg.	γ, deg.	volume, Å³	density, g/cm³	color, habit	limiting indices, h	limiting indices, k	limiting indices, l	reflections collected	independent data	restraints	parameters refined	R1, wR²	wR²	largest diff. peak, e Å⁻³	largest diff. hole, e Å⁻³	abs structure parameter	
8	JP659	none	C₆₀H₅₂Ni₃P₂S₂	1115.80	1.54178	6.84 – 148.77	monoclinic	C2/c	21.951(4)	16.7831(3)	16.4070(3)	90	112.864(1)	90	5569.75(18)	1.331	yellow block	-27 ≤ h ≤ 27	-20 ≤ k ≤ 20	-20 ≤ l ≤ 20	35518	5650	339	339	0.0340, 0.0918	0.0408, 0.1122	0.0362, 0.0836	0.492	-0.199	-	1063
9	JP757	none	C₆₀H₅₂P₄PdS₂	1163.49	0.71073	3.14 – 58.44	monoclinic	C2/c	21.7574(15)	16.9716(12)	16.2670(11)	90	112.666(1)	90	5542.87(7)	1.394	pale orange column	-29 ≤ h ≤ 28	-23 ≤ k ≤ 23	-22 ≤ l ≤ 22	26293	7084	339	339	0.0376, 0.0952	0.0558, 0.1179	0.0487, 0.0870	1.247	-0.457	-	1074
11	JP798	none	C₆₀H₅₂P₄PtS₂	1252.18	0.71073	3.14 – 57.39	monoclinic	C2/c	21.7804(15)	16.9661(12)	16.2774(12)	90	112.727(1)	90	5547.9(7)	1.499	yellow column	-29 ≤ h ≤ 28	-22 ≤ k ≤ 22	-21 ≤ l ≤ 21	26168	7003	339	339	0.0433, 0.1044	0.0555, 0.1177	0.0487, 0.0870	1.883	-0.995	-	9063
10	JP736	2(CIC₃H₃CHCl)	C₆₀H₅₀Cl₃P₃PtS₄	1692.43	0.71073	3.03 – 59.72	triclinic	P-1	13.9324(12)	14.0989(12)	21.2092(18)	89.716(1)	13.9324(12)	21.2092(18)	3955.7(6)	1.421	dark blue block	-19 ≤ h ≤ 19	-19 ≤ k ≤ 19	-29 ≤ l ≤ 29	77174	21625	2	2	0.0433, 0.1044	0.0554, 0.1180	0.0487, 0.0870	3.844	-2.215	-	8482

aGoof = \[\frac{\sum w(F_o^2 - F_c^2)^2}{\sum n(w(F_o^2)^2)(n-p)^2}\], where n = number of reflections and p is the total number of parameters refined; bR1 = \[\sum ||F_o|| - ||F_c||/\sum ||F_o||\] R indices for data cut off at 1 > 2σ(I); c\(wR2 = \frac{\sum w(F_o^2 - F_c^2)^2}{\sum w(F_o^2)^2}\) \(w = 1/\sigma^2(F_o^2) + (xP)^2 + yP^2\), where P = \[\sum F_o^2 + \sum F_c^2\]/3; dR indices for all data.
Compound	Compounds 12, 15, and 16 Unit Cell and Refinement Data	Compound	Compounds 12, 15, and 16 Unit Cell and Refinement Data	Compound	Compounds 12, 15, and 16 Unit Cell and Refinement Data			
Compound	((adt)Ni(tpbz))	([ppt)Pt(tpbz)Ni(mdt)]	([ppt)Ni(tpbzO)]	Structure #	JPD950	JPD1139	JPD1132	
Solvent	none	2½(CICCH2CH2Cl)	C2H2ClNiP4PtS4	Formula	C70H56NiO2P4S2	1676.48	CH2Cl2	C69H54Cl2NiO2P4S2
Molecule	1175.85	150	150	Temperature, K	150	150	150	
Wavelength, Å	1.54178	0.71073	0.71073	Solvent	none	2½(ClCH2CH2Cl)	CH2Cl2	
Crystal System	monoclinic	triclinic	triclinic	Crystal System	monoclinic	triclinic	triclinic	
Space Group	P21/n	P-1	P-1	Space Group	P21/n	P-1	P-1	
a, Å	12.0422(4)	12.5374(6)	13.4505(18)	a, Å	12.0422(4)	12.5374(6)	13.4505(18)	
b, Å	38.5014(13)	12.5692(6)	16.597(2)	b, Å	38.5014(13)	12.5692(6)	16.597(2)	
c, Å	14.0003(6)	24.7673(13)	16.653(2)	c, Å	14.0003(6)	24.7673(13)	16.653(2)	
α, deg.	90	92.953(2)	64.068(4)	α, deg.	90	92.953(2)	64.068(4)	
β, deg.	112.798(2)	91.560(2)	70.817(4)	β, deg.	112.798(2)	91.560(2)	70.817(4)	
γ, deg.	90	108.166(2)	72.092(4)	γ, deg.	90	108.166(2)	72.092(4)	
Volume, Å3	5984.0(4)	3699.6(3)	3098.4(7)	Volume, Å3	5984.0(4)	3699.6(3)	3098.4(7)	
Density, g/cm3	1.305	1.505	1.321	Density, g/cm3	1.305	1.505	1.321	
μ, mm−1	2.484	2.565	0.615	μ, mm−1	2.484	2.565	0.615	
Color, Habit	yellow-grn plate	orange plate	orange plate	Color, Habit	yellow-grn plate	orange plate	orange plate	
Limiting Indices, h	-14 < h < 14	-19 < h < 19	-19 < h < 19	Limiting Indices, h	-14 < h < 14	-19 < h < 19	-19 < h < 19	
Limiting Indices, k	-44 < k < 46	-19 < k < 19	-23 < k < 23	Limiting Indices, k	-44 < k < 46	-19 < k < 19	-23 < k < 23	
Limiting Indices, l	-16 < l < 14	0 < l < 38	-23 < l < 23	Limiting Indices, l	-16 < l < 14	0 < l < 38	-23 < l < 23	
Reflections Collected	51648	32993	144627	Reflections Collected	51648	32993	144627	
Independent Data	11399	32993	19027	Independent Data	11399	32993	19027	
Parameters Refined	703	856	728	Parameters Refined	703	856	728	
GooF2	1.039	1.277	1.044	GooF2	1.039	1.277	1.044	
R1, wR2	0.0479, 0.1008	0.0751, 0.1691	0.0488, 0.1165	R1, wR2	0.0479, 0.1008	0.0751, 0.1691	0.0488, 0.1165	
R1, wR2	0.0699, 0.1106	0.0827, 0.1717	0.0878, 0.1350	R1, wR2	0.0699, 0.1106	0.0827, 0.1717	0.0878, 0.1350	
Largest Diff. Peak, eÅ3	0.830	2.720	0.802	Largest Diff. Peak, eÅ3	0.830	2.720	0.802	
Largest Diff. Hole, eÅ3	-0.388	-6.777	-0.915	Largest Diff. Hole, eÅ3	-0.388	-6.777	-0.915	
Abs Structure Parameter	-	-	-	Abs Structure Parameter	-	-	-	

Notes:
1. GooF2 = Σ(w(Fo2 – Fc2)/|Fo2|)²/(n – p)², where n = number of reflections and p is the total number of parameters refined;
2. R1 = Σ(|Fo2| – |Fc2|)/Σ|Fo2|;
3. R indices for data cut off at I > 2σ(I);
4. wR2 = Σ(w(Fo2 – Fc2)²)/Σ(w(Fo2)²); w = 1/[σ(Fo2)² + (xP)² + yP], where P = [2Fo2 + Max(Fo2)²]/3;
5. R indices for all data.
Table S4. Unit Cell and Refinement Data for Compounds 17, 18 and [19][I].

compound	([mtd]Pt(tpbzO)_3)	([mtd]Ni(tpbzS)_2)	([dppbO)_2]Ni[I]_2	([dppbO)_2]Ni[I]_2			
compound #	JPD1146	JPD184	JPD334	JPD1118			
structure #	none	none	none	none			
solvent	C_{53}H_{40}O_2P_4P_4S_2	C_{53}H_{40}NiP_4S_2	C_{90}H_{72}O_6NiO_6P_6	C_{90}H_{72}O_6NiO_6P_6			
fw, g/mol	1160.05	1055.79	2255.41	2255.40			
temperature, K	150	100	100	150			
wavelength, Å	0.71073	0.71073	0.71073	0.71073			
2θ range, deg.	4.18 – 66.45	0.05	2.46 – 49.52	12.02	3.12 – 54.00	1.82	3.628 – 46.660
crystal system	monoclinic	monoclinic	monoclinic	monoclinic			
space group	P2_1/c	P2_1/c	P-1	P2_1/c			
a, Å	17.0751(11)	9.3284(12)	13.0484(12)	15.0552(10)			
b, Å	16.0625(10)	30.3864(4)	13.3478(12)	26.0258(18)			
c, Å	20.5241(13)	19.858(3)	26.880(3)	22.6547(15)			
α, deg.	90	90	102.137(1)	90			
β, deg.	108.283(2)	98.487(2)	92.504(1)	101.217(2)			
γ, deg.	90	90	106.961(1)	90			
volume, Å³	5345.0(6)	5567.1(13)	4350.1(7)	8707.1(10)			
Z	4	4	2	4			
density, g/cm³	1.442	1.260	1.722	1.721			
μ, mm⁻¹	2.864	0.649	2.514	2.512			
crystal size	0.21 x 0.21 x 0.26	0.03 x 0.03 x 0.18	0.02 x 0.13 x 0.21	0.05 x 0.06 x 0.28			
color, habit	dark orange column	yellow needle	orange plate	orange-red plate			
limiting indices, h	-26 ≤ h ≤ 26	-10 ≤ h ≤ 10	-16 ≤ h ≤ 16	-15 ≤ h ≤ 16			
limiting indices, k	-24 ≤ k ≤ 24	-35 ≤ k ≤ 35	-17 ≤ k ≤ 17	-28 ≤ k ≤ 28			
limiting indices, l	-31 ≤ l ≤ 31	-23 ≤ l ≤ 23	-34 ≤ l ≤ 34	-25 ≤ l ≤ 25			
reflections collected	403235	39326	37066	153572			
independent data	20472	9510	18761	12505			
restraints	0	1	0	36			
parameters refined	606	610	985	989			
Goof/	1.081	0.964	0.945	1.023			
R1, %	0.0239, 0.0594	0.0898, 0.1686	0.0427, 0.0931	0.0505, 0.1241			
wR2, %	0.0314, 0.0641	0.1753, 0.2007	0.0707, 0.1017	0.0794, 0.1403			
largest diff. peak, e Å⁻³	2.242	0.873	1.226	2.552			
largest diff. hole, e Å⁻³	-0.781	-0.405	-1.590	-1.094			

*Goof = [Σw(Fo² - Fc²)|²/(n-p)]¹/², where n = number of reflections and p is the total number of parameters refined; R1 = Σ||Fo|| - |Fc||/Σ|Fo||; R1 is for data cut off at 1 > 2σ(I); wR2 = (Σ[w(Fo² - Fc²)]²)/Σ[w(Fo²)]²; w = 1/[σ²(Fo²) + (apF)² + bP²], where P = [2F² + Max(Fo²,0)]/3; R1 is for all data.

Table S5. Selected bond lengths (Å) and angles (deg.) for the two polymorphs of [(dppbO)_2]Ni[I]. Chemically identical values are averaged.a

bond	Nickel	Monoclinic
Ni–O	2.061[1]	2.060[2]
P–O	1.495[1]	1.493[2]
P–C	1.823[2]	1.828[3]
O–Ni–Otrans	173.26[7]	173.65[10]
O–Ni–Ocis, intra-ligand	85.86[7]	86.47[10]
O–Ni–Ocis, inter-ligand	91.47[4]	91.28[6]
θ	58.7	55.6

*aUncertainties are propagated according to Taylor, J. R. An Introduction to Error Analysis; 2nd ed.; University Science Books: Sausalito, CA, 1997, pp 73-77. cCarbon atom of central C4H4 arene ring. cFold angle between NiO2 plane and P2_1/c mean plane of central arene ring.
Figure S1. Full atom labeling for [(tpbz)NiCl$_2$]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S2. Full atom labeling for \[\{(\text{NC})_2\text{C}_2\text{S}_2\text{Ni}(\eta^2-\text{tpbz})\}\]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.

Figure S3. Atom labeling for interstitial CHCl$_3$ in \[\{(\text{NC})_2\text{C}_2\text{S}_2\text{Ni}(\eta^2-\text{tpbz})\}\cdot2(\text{CHCl}_3)\]. The thermal ellipsoid plot is drawn at the 50% level.
Figure S4. Full atom labeling for [(Me$_2$C$_2$S$_2$)Ni(η$_2$-tpbz)]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.

Figure S5. Thermal ellipsoid plot of [(Me$_2$C$_2$S$_2$)Ni(η$_2$-tpbz)] at the 50% level with interstitial CH$_2$Cl$_2$ molecule shown.
Figure S6. Full atom labeling for [(Me₂C₂S₂)Pt(η²-tpbz)]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S7. Atom labeling for interstitial CH$_2$Cl$_2$ in [(Me$_2$C$_2$S$_2$)Pt(η2-tpbz)]·2(CH$_2$Cl$_2$). The thermal ellipsoid plot is drawn at the 50% level. The second CH$_2$Cl$_2$ molecule is symmetry-related to that which is shown.
Figure S8. Full atom labeling for \([\text{Ph}_2\text{C}_2\text{S}_2]\text{Ni(}\eta^2\text{-tpbz})]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.

Figure S9. Full atom labeling for \([\text{Ph}_2\text{C}_2\text{S}_2]\text{Pd(}\eta^2\text{-tpbz})]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S10. Full atom labeling for [(Ph₂C₂S₂)Pt(η²-tpbz)]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S11. Full atom labeling for [(Ph₂C₂S₂)₂Pt(η²-tpbz)]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.

Figure S12. Full atom labeling for the interstitial ClCH₂CH₂Cl molecules in [(Ph₂C₂S₂)₂Pt(η²-tpbz)]·2(ClCH₂CH₂Cl). The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity. Chlorine atom Cl₄ is disordered over two positions and refined with a split atom model.
Figure S13. Full atom labeling for [(CH₃O-p-C₆H₄)₂C₂S₂]Ni(η²-tpbz)]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity. For the phenyl ring defined by C47-C52, one position of two over which it is disordered is shown.

Figure S14. Full atom labeling for [(CH₃O-p-C₆H₄)₂C₂S₂]Ni(η²-tpbz)]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity. For the phenyl ring defined by C47-C52, the second position of two over which it is disordered is shown.
Figure S15. Full atom labeling for \([\text{Ph}_2\text{C}_2\text{S}_2]\text{Pt(tpbz)}\text{Ni(S}_2\text{C}_2\text{Me}_2)]\). The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.

Figure S16. Full atom labeling for the interstitial solvent in \([\text{Ph}_2\text{C}_2\text{S}_2]\text{Pt(tpbz)}\text{Ni(S}_2\text{C}_2\text{Me}_2)]\cdot2\frac{1}{2}(\text{ClCH}_2\text{CH}_2\text{Cl})\). The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity. The atoms of these solvent molecules have been handled with a mixture of anisotropic and isotropic refinement owing to the positional disorder that they show.
Figure S17. Full atom labeling for [(Me₂C₂S₂)Pt(η²-tpbzO₂)]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S18. Full atom labeling for \([\text{Ph}_2\text{C}_2\text{S}_2]\text{Ni}(\eta^2-\text{tpbzO}_2)\]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.

Figure S19. Atom labeling for interstitial \(\text{CH}_2\text{Cl}_2\) in \([\text{Ph}_2\text{C}_2\text{S}_2]\text{Ni}(\eta^2-\text{tpbzO}_2)\cdot\text{CH}_2\text{Cl}_2\). The thermal ellipsoid plot is drawn at the 50% level. Chlorine atom 1 and carbon atom 69 are disordered over two positions and consequently refined using a split atom model.
Figure S20. Full atom labeling for [(Me₂C₂S₂)Ni(η²-tpbzS₂)]. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S21. Full atom labeling for [Ni(dpdpbO$_2$)$_3$]$^{2+}$ in [Ni(dpdpbO$_2$)$_3$][I$_3$]$_2$ (triclinic polymorph). The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S22. Partial atom labeling for [Ni(dppbO$_2$)$_3$][I$_3$]$_2$ (triclinic polymorph) with counteranions shown. One full I$_3^-$ anion and two half I$_3^-$ anions are paired with the dication. The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S23. Full atom labeling for $[\text{Ni(dppbO}_2\text{)}_3]^{2+}$ in $[\text{Ni(dppbO}_2\text{)}_3][\text{I}_3]_2$ (monoclinic polymorph). The thermal ellipsoid plot is drawn at the 50% level, and all H atoms are omitted for clarity.
Figure S24. 1H NMR spectrum of $[\text{Cl}_2\text{Ni(tpbz)}]$ in CD$_2$Cl$_2$. Signals not corresponding to [Cl$_2$Ni(tpbz)] are marked with “x”.

Figure S25. 31P NMR spectrum of $[\text{Cl}_2\text{Ni(tpbz)}]$ in CD$_2$Cl$_2$.
Figure S26. 1H NMR spectrum of [Cl$_2$Pd(tpbz)] in DMSO-d$_6$. Signals not corresponding to [Cl$_2$Pd(tpbz)] are marked with “x”.

Figure S27. 31P NMR spectrum of [Cl$_2$Pd(tpbz)] in DMSO-d$_6$.
Figure S28. 1H NMR spectrum of [Cl$_2$Pt(tpbz)] in DMSO-d$_6$. Signals not corresponding to [Cl$_2$Pt(tpbz)] are marked with “x”.

Figure S29. 31P NMR spectrum of [Cl$_2$Pt(tpbz)] in DMSO-d$_6$.
Figure S30. 1H NMR spectrum (CDCl$_3$) of [(mnt)Ni(tpbz)].

Figure S31. Close-up of the aromatic region of the 1H NMR spectrum (CDCl$_3$) of [(mnt)Ni(tpbz)].
Figure S32. 31P NMR spectrum (CDCl$_3$) of [(mnt)Ni(tpbz)].

Figure S33. IR spectrum (KBr disk) of [(mnt)Ni(tpbz)].
Figure S34. MALDI mass spectrum (positive ion mode) of [(mnt)Ni(tpbz)].
Figure S35. Cyclic voltammogram of [(mnt)Ni(tpbz)] in CH$_2$Cl$_2$. The working electrode was Pt disk, the scan speed 100 mV/sec, and the supporting electrolyte ["Bu$_4$][PF$_6$].

Figure S36. Differential pulse voltammogram of [(mnt)Ni(tpbz)] in CH$_2$Cl$_2$. The working electrode was Pt disk, the scan speed 100 mV/sec, and the supporting electrolyte ["Bu$_4$][PF$_6$].
Figure S37. 1H NMR spectrum (CDCl$_3$) of [(mdt)Ni(tpbz)]. Signals not belonging to [(mdt)Ni(tpbz)] are designated with "x".

Figure S38. Close-up 1H NMR spectrum (CDCl$_3$) of [(mdt)Ni(tpbz)].
Figure S39. 31P NMR spectrum (CDCl$_3$) of [(mdt)Ni(tpbz)].

Figure S40. UV-vis absorption spectrum (CH$_2$Cl$_2$) of [(mdt)Ni(tpbz)].
Figure S41. ESI mass spectrum (positive ion mode) of [(mdt)Ni(tpbz)].

Figure S42. Cyclic voltammogram of [(mdt)Ni(tpbz)] in CH$_2$Cl$_2$. The working electrode was glassy carbon, the scan speed 100 mV/sec, and the supporting electrolyte ["Bu$_4$][PF$_6$].
Figure S43. Differential pulse voltammogram (oxidizing direction) of [(mdt)Ni(tpbz)] in CH₂Cl₂. The working electrode was glassy carbon, and the supporting electrolyte was ["Bu₄][PF₆].

Figure S44. Differential pulse voltammogram (reducing direction) of [(mdt)Ni(tpbz)] in CH₂Cl₂. The working electrode was glassy carbon, and the supporting electrolyte was ["Bu₄][PF₆].
Figure S45. 1H NMR spectrum (CDCl$_3$) of [(mdt)Pd(tpbz)].

Figure S46. 31P NMR spectrum (CDCl$_3$) of [(mdt)Pd(tpbz)].
Figure S47. UV-vis spectrum (CH$_2$Cl$_2$) of [(Me$_2$C$_2$S$_2$)Pd(tpbz)].

Figure S48. ESI mass spectrum (positive ion mode) of [(Me$_2$C$_2$S$_2$)Pd(tpbz)].
Figure S49. 1H NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Pt(tpbz)].

Figure S50. 31P NMR spectrum (CDCl$_3$) of [(Me$_2$C$_2$S$_2$)Pt(tpbz)].
Figure S51. ESI mass spectrum (positive ion mode) of [(Me$_2$C$_2$S$_2$)Pt(tpbz)].

Figure S52. ESI mass spectrum (positive ion mode) of [(Me$_2$C$_2$S$_2$)Pt(tpbz)].
Figure S53. 1H NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)].

Figure S54. Close-up of the aromatic region of the 1H NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)].
Figure S55. 31P NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S)$_2$Ni(tpbz)].
Figure S56. ESI mass spectrum (positive ion mode) of [(Ph$_2$C$_2$S)$_2$Ni(tpbz)].
Figure S57. Cyclic voltammogram of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.

Figure S58. Cyclic voltammogram of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.
Figure S59. Differential pulse voltammogram of [(Ph₂C₂S₂)Ni(tpbz)] in CH₂Cl₂ with ["Bu₄N][PF₆] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The pulse amplitude was 50 mV.
Figure S60. Elemental analysis of [(Ph₂C₂S₂)Ni(tpbz)] from Midwest Microlab, LLC. The form is reproduced with the permission of Midwest Microlab.
Figure S61. 1H NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S$_2$)Pd(tpbz)].

Figure S62. 31P NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S$_2$)Pd(tpbz)].
Figure S63. ESI mass spectrum (positive ion mode) of [(Ph₂C₂S₂)Pd(tpbz)].
Figure S64. Cyclic voltammogram of [(Ph$_2$C$_2$S$_2$)Pd(tpbz)] in CH$_2$Cl$_2$ with [nBu$_4$N][PF$_6$] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.

Figure S65. Differential pulse voltammogram of [(Ph$_2$C$_2$S$_2$)Ni(tpbz)] in CH$_2$Cl$_2$ with [nBu$_4$N][PF$_6$] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The pulse amplitude was 50 mV.
Figure S66. Elemental analysis of [(Ph₂C₂S₂)Pd(tpbz)] from Galbraith Laboratories, Inc. The form is reproduced with the permission of Galbraith Laboratories.
Figure S67. 31P NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S)$_2$Pd(tpbz)].

Figure S68. ESI mass spectrum (positive ion mode) of [(Ph$_2$C$_2$S)$_2$Pt(tpbz)].
Figure S69. Cyclic voltammogram of [(Ph₂C₂S₂)Pt(tpbz)] in CH₂Cl₂ with ["Bu₄N][PF₆] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.

Figure S70. Differential pulse voltammogram of [(Ph₂C₂S₂)Pt(tpbz)] in CH₂Cl₂ with ["Bu₄N][PF₆] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The pulse amplitude was 50 mV.
Figure S71. Elemental analysis of [(Ph₂C₂S₂)Pt(tpbz)] from Galbraith Laboratories, Inc. The form is reproduced with the permission of Galbraith Laboratories.
Figure S72. 1H NMR spectrum (CD$_2$Cl$_2$) of [(Ph$_2$C$_2$S$_2$)$_2$Pd(tpbz)].

Figure S73. 31P NMR spectrum (CD$_2$Cl$_2$) of [(Ph$_2$C$_2$S$_2$)$_2$Pd(tpbz)].
Figure S74. ESI mass spectrum (positive ion mode) of [(Ph₂C₂S₂)₂Pt(tpbz)].

Figure S75. CV of [(Ph₂C₂S₂)₂Pt(tpbz)] in CH₂Cl₂ with ["Bu₄N][PF₆] supporting electrolyte, Pt disk working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.
Figure S76. 1H NMR spectrum of [(MeO-p-C$_6$H$_4$)$_2$C$_2$S$_2$]Ni(tpbz)] in CDCl$_3$.

Figure S77. 31P NMR spectrum of [(MeO-p-C$_6$H$_4$)$_2$C$_2$S$_2$]Ni(tpbz)] in CDCl$_3$.
Figure S78. ESI mass spectrum (positive ion mode) of $[([\text{MeO-}p-\text{C}_6\text{H}_4])_2\text{C}_2\text{S}_2\text{Ni}(\text{tpbz})]$.

Figure S79. Cyclic voltammogram of $[((\text{MeO-}p-\text{C}_6\text{H}_4))_2\text{C}_2\text{S}_2\text{Ni}(\text{tpbz})]$ in CH$_2$Cl$_2$ with $[\text{Bu}_4\text{N}][\text{PF}_6]$ supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.
Figure S80. Differential pulse voltammogram, moving in the direction of positive potential, of \[((\text{CH}_3\text{O})_p\text{C}_6\text{H}_4\text{C}_2\text{S}_2)\text{Ni(tpbz)}\] in CH\(_2\)Cl\(_2\) with [\text{nBu}_4\text{N}][\text{PF}_6]\] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The pulse amplitude was 50 mV.

Figure S81. Differential pulse voltammogram, moving in the direction of negative potential, of \[((\text{CH}_3\text{O})_p\text{C}_6\text{H}_4\text{C}_2\text{S}_2)\text{Ni(tpbz)}\] in CH\(_2\)Cl\(_2\) with [\text{nBu}_4\text{N}][\text{PF}_6]\] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The pulse amplitude was 50 mV.
Figure S82. Elemental analysis of [((MeO-p-C₆H₄)₂C₂S₂)Ni(tpbz)] from Kolbe Microanalytical Laboratory. The form is reproduced with the permission of Kolbe Microanalytical Laboratory.

Sample Name	% C	% H	% N	% P	% S	Argon	V2
JPD 175 - b	71.29	4.86	10.41	5.51		x	>
							x

Kind regards

Patrick Springer

Anal. Calcd for [((MeO-p-C₆H₄)₂C₂S₂)Ni(tpbz)], [C₇₀H₆₈NiO₃P₂S₄]: C, 71.50; H, 4.80; P, 10.54; S, 5.45.
Figure S83. 1H NMR spectrum of $[((\text{MeO-}p\text{-C}_6\text{H}_4)\text{C}_2\text{S}_2)\text{Pd(tpbz)\}}$ in CDCl$_3$.

Figure S84. 31P NMR spectrum of $[((\text{MeO-}p\text{-C}_6\text{H}_4)\text{C}_2\text{S}_2)\text{Pd(tpbz)\}}$ in CDCl$_3$.
Figure S85. UV-vis spectrum (CH₂Cl₂) of [(MeO-p-C₆H₄)₂C₂S₂]Pd(tpbz)].

Figure S86. ESI mass spectrum (positive ion mode) of [(MeO-p-C₆H₄)₂C₂S₂]Pd(tpbz)].
Figure S87. Cyclic voltammogram of [((CH$_3$O-p-C$_6$H$_4$)$_2$C$_2$S$_2$)Pd(tpbz)] in CH$_2$Cl$_2$ with ["Bu$_4$N][PF$_6$] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.
Figure S88. Differential pulse voltammogram, moving in the direction of positive potential, of \([\text{[(CH}_3\text{O}-p\text{-C}_6\text{H}_4)\text{C}_2\text{S}_2)\text{Pd(tpbz)}]}\) in \(\text{CH}_2\text{Cl}_2\) with \([\text{"Bu}_4\text{N}][\text{PF}_6]\) supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The pulse amplitude was 50 mV.

Figure S89. Differential pulse voltammogram, moving in the direction of negative potential, of \([\text{[(CH}_3\text{O}-p\text{-C}_6\text{H}_4)\text{C}_2\text{S}_2)\text{Pd(tpbz)}]}\) in \(\text{CH}_2\text{Cl}_2\) with \([\text{"Bu}_4\text{N}][\text{PF}_6]\) supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The pulse amplitude was 50 mV.
Figure S90. 1H NMR spectrum of [(MeO-p-C$_6$H$_4$)$_2$C$_2$S$_2$]Pt(tpbz)] in CDCl$_3$.

Figure S91. 31P NMR spectrum of [(MeO-p-C$_6$H$_4$)$_2$C$_2$S$_2$]Pt(tpbz)] in CDCl$_3$.
Figure S92. UV-vis spectrum (CH$_2$Cl$_2$) of [((MeO-p-C$_6$H$_4$)$_2$C$_2$S$_2$)Pt(tpbz)].

Figure S93. ESI mass spectrum (positive ion mode) of [((MeO-p-C$_6$H$_4$)$_2$C$_2$S$_2$)Pt(tpbz)].
Figure S94. Cyclic voltammogram of [(CH₃O-p-C₆H₄)₂C₂S₂)Pt(tpbz)] in CH₂Cl₂ with [⁷Bu₄N][PF₆] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.

Figure S95. Differential pulse voltammogram, moving in the direction of positive potential, of [(CH₃O-p-C₆H₄)₂C₂S₂)Pt(tpbz)] in CH₂Cl₂ with [⁷Bu₄N][PF₆] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The pulse amplitude was 50 mV.
Figure S96. 1H NMR spectrum of [(pdt)Pt(tpbz)Ni(mdt)] in CDCl$_3$.

Figure S97. 31P NMR spectrum of [(pdt)Pt(tpbz)Ni(mdt)] in CDCl$_3$.
Figure S98. UV-vis spectrum in CH₂Cl₂ of [(Ph₂C₂S₂)Pt(tpbz)Ni(S₂C₂Me₂)].

Figure S99. Mass spectrum (ESI, positive ion mode) of [(Ph₂C₂S₂)Pt(tpbz)Ni(S₂C₂Me₂)].
Figure S100. Cyclic voltammogram of [(Ph₂C₂S₂)Pt(tpbz)Ni(S₂C₂Me₂)] in CH₂Cl₂ with [⁷Bu₄N][PF₆] supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.
Figure S101. 1H NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S)$_2$Ni(tpbzO$_2$)].

Figure S102. 31P NMR spectrum (CDCl$_3$) of [(Ph$_2$C$_2$S)$_2$Ni(tpbzO$_2$)].
Figure S103. UV-vis spectrum (CH₂Cl₂) of [(Ph₂C₂S₂)Ni(tpbzO₂)].

Figure S104. Mass spectrum (ESI, positive ion mode) of [(Ph₂C₂S₂)Ni(tpbzO₂)].
Figure S105. Cyclic voltammogram of \([\text{Ph}_2\text{C}_2\text{S}_2]\text{Ni(tpbzO}_2\text{)}\) in CH\(_2\text{Cl}_2\) with \([^6\text{Bu}_4\text{N}]\text{PF}_6\) supporting electrolyte, glassy carbon working electrode, Pt wire counter electrode and AgCl/Ag reference electrode. The scan rate was 100 mV/s.
Figure S106. 1H NMR spectrum (CDCl$_3$) of [((CH$_3$)$_2$C$_2$S)$_2$Pt(tpbzO$_2$)].

Figure S107. 31P NMR spectrum (CDCl$_3$) of [((CH$_3$)$_2$C$_2$S)$_2$Pt(tpbzO$_2$)].
Figure S108. Mass spectrum (ESI, positive ion mode) of [(Me₂C₃S₂)Pt(tpbzO₂)].
Figure S109. 1H NMR spectrum (CDCl$_3$) of $[[\text{C}_8\text{H}_{14}]_2\text{S}_2]\text{Ni(tpbS}_2$.

Figure S110. 31P NMR spectrum (CDCl$_3$) of $[[\text{C}_8\text{H}_{14}]_2\text{S}_2]\text{Ni(tpbS}_2$.
Figure S111. UV-vis spectrum (CH$_2$Cl$_2$) of [(Me$_2$C$_2$S$_2$)Ni(tpbzS$_2$)].

Figure S112. Mass spectrum (ESI, positive ion mode) of [(Me$_2$C$_2$S$_2$)Ni(tpbzS$_2$)].
Figure S113. Elemental analysis of [(Me₂C₂S₂)Ni(tpbzS₂)] from Galbraith Laboratories, Inc. The form is reproduced with the permission of Galbraith Laboratories.
Figure S114. UV-vis spectrum (CH$_2$Cl$_2$) of [Ni(dppbO$_2$)$_3$][I$_3$].

Figure S115. Mass spectrum (ESI, positive ion mode) of [Ni(dppbO$_2$)$_3$]$^{2+}$.

S83
Figure S116. Molecular orbital energy level diagram illustrating the frontier MOs for [(pdt)Ni(tpbz)]. Images are presented at the 0.03 contour level.
Table S6. Atomic Coordinates for Optimized [(pdt)Pt(tpbz)Ni(mdt)].

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	X	Y	Z
1	78	0		3.232403	0.004368	0.196555
2	28	0		-5.639882	-0.002076	0.084196
3	16	0		4.890738	-1.620118	-0.202738
4	16	0		4.901464	1.624287	-0.181603
5	16	0		-7.143396	1.555500	0.486837
6	16	0		-7.150263	-1.55337	0.477940
7	15	0		1.573089	-1.566811	0.622692
8	15	0		1.570967	1.575478	0.617154
9	15	0		-4.070032	1.536363	-0.401172
10	15	0		-4.067756	-1.541147	-0.392166
11	6	0		7.589531	-1.530392	-0.643226
12	6	0		7.613052	-2.581740	-1.576699
13	1	0		6.736779	-2.755777	-2.20317
14	6	0		8.740351	-3.390254	-1.716559
15	1	0		8.738215	-4.196285	-2.453868
16	6	0		9.867246	-3.171365	-0.922964
17	1	0		10.749742	-3.805367	-1.031925
18	6	0		9.854234	-2.137340	0.014923
19	1	0		10.727037	-1.961406	0.647712
20	6	0		8.728000	-1.329089	0.156726
21	1	0		8.721201	-0.529688	0.897626
22	6	0		6.379189	-0.679820	-0.475239
23	6	0		6.380549	0.677736	-0.483504
24	6	0		7.558513	1.522630	-0.823215
25	6	0		8.282393	1.305445	-2.00845
26	1	0		7.979572	0.497278	-2.674411
27	6	0		9.371203	2.109202	-2.340232
28	1	0		9.918172	1.920983	-3.266817
29	6	0		9.57796	3.154814	-1.499761
30	1	0		10.610187	3.785495	-1.761183
31	6	0		9.042347	3.389552	-0.324866
32	1	0		9.335151	4.204687	0.340786
33	6	0		7.953081	2.585330	0.008500
34	1	0		7.400339	2.771836	0.929972
35	6	0		1.462487	-3.055592	-0.451374
36	6	0		1.840367	-2.930034	-1.797820
37	1	0		2.242056	-1.982672	-2.159040
38	6	0		1.729096	-4.020032	-2.660205
39	1	0		2.031633	-3.915146	-3.703623
40	6	0		1.254407	-5.244854	-2.186590
41	1	0		1.177574	-6.095533	-2.861434
42	6	0		0.891713	-5.378925	-0.845951
43	1	0		0.531361	-6.337461	-0.467867
44	6	0		0.994624	-4.290390	0.021539
45	1	0		0.715496	-4.408027	1.068610
46	6	0		1.521517	-2.192831	2.354311
Table S6 Continued. Atomic Coordinates for Optimized [(pdt)Pt(tpbz)Ni(mdt)].

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
47	6	0	0.327144	-2.44176	3.046910
48	1	0	-0.638841	-2.255163	2.578958
49	6	0	0.363458	-2.936748	4.352051
50	1	0	-0.572273	-3.126230	4.881328
51	6	0	1.587087	-3.184347	4.975230
52	1	0	1.612090	-3.567738	5.997120
53	6	0	2.778064	-2.934136	4.291597
54	1	0	3.738711	-3.120160	4.774991
55	6	0	2.750515	-2.434752	2.989987
56	1	0	3.682955	-2.224317	2.463170
57	6	0	1.461018	3.066379	-0.454148
58	6	0	0.967355	4.293034	0.014396
59	1	0	0.665917	4.403062	1.056137
60	6	0	0.868332	5.384017	-0.850271
61	1	0	0.487620	6.336035	-0.475642
62	6	0	1.261605	5.261012	-2.183425
63	1	0	1.188776	6.118022	-2.855746
64	6	0	1.762244	4.044865	-2.652209
65	1	0	2.089608	3.948992	-3.68893
66	6	0	1.868863	2.952121	-1.792649
67	1	0	2.291309	2.012166	-2.149259
68	6	0	1.515533	2.199620	2.349889
69	6	0	2.742844	2.437777	2.990026
70	1	0	3.676192	2.224820	2.465744
71	6	0	2.767471	2.935210	4.292141
72	1	0	3.726852	3.117784	4.779707
73	6	0	1.574965	3.187658	4.972541
74	1	0	1.597618	3.569596	5.995022
75	6	0	0.352857	2.943755	4.345049
76	1	0	-0.584132	3.134651	4.871576
77	6	0	0.319677	2.452723	3.039213
78	1	0	-0.645249	2.265976	2.568155
79	6	0	-0.046184	-0.700864	0.352107
80	6	0	-0.046984	0.706609	0.347664
81	6	0	-1.240375	1.395068	0.100881
82	1	0	-1.241754	2.485251	0.093888
83	6	0	-2.433334	0.703120	-0.136555
84	6	0	-2.432530	-0.703775	-0.131810
85	6	0	-1.238622	-1.392509	0.109998
86	1	0	-1.238470	-2.482730	0.109920
87	6	0	-4.065650	2.059426	-2.168518
88	6	0	2.891673	2.351214	-2.894297
89	6	0	-1.913060	2.199338	-2.427760
90	6	0	2.965681	2.716662	-4.228513
91	6	0	-2.046370	2.911451	-4.784071
92	6	0	-4.206979	2.865913	-4.848987
Table S6 Continued. Atomic Coordinates for Optimized [(pdt)Pt(tpbz)Ni(mdt)].

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
93	1	0	-4.260963	3.178150	-5.893757
94	6	0	-5.377055	2.608666	-4.133242
95	1	0	-6.350557	2.717704	-4.614634
96	6	0	-5.311553	2.201460	-2.800883
97	1	0	-6.225209	1.989096	-2.242424
98	6	0	-3.924515	3.082865	0.585636
99	6	0	-4.235269	3.021214	1.953733
100	1	0	-4.614652	2.092210	2.380551
101	6	0	-4.089408	4.151605	2.756863
102	1	0	-4.340031	4.095497	3.817695
103	6	0	-3.648682	5.355087	2.20179
104	1	0	-3.544642	6.241442	2.830948
105	6	0	-3.55572	5.426521	0.839997
106	1	0	-3.022777	6.367870	0.398633
107	6	0	-3.492556	4.296413	0.031784
108	1	0	-3.266237	4.364799	-1.032262
109	6	0	-4.059792	-2.076727	-2.155911
110	6	0	-2.884167	-2.333540	-2.878643
111	1	0	-1.906403	-2.210458	-2.412249
112	6	0	-2.955274	-2.745436	-4.209828
113	1	0	-2.034584	-2.940935	-4.762856
114	6	0	-4.195304	-2.904253	-4.830409
115	1	0	-4.247050	-3.224655	-5.872819
116	6	0	-5.367044	-2.646014	-4.117742
117	1	0	-6.339656	-2.762440	-4.599210
118	6	0	-5.304474	-2.228332	-2.788491
119	1	0	-6.219633	-2.015128	-2.232777
120	6	0	-3.921805	-3.080653	0.605440
121	6	0	-4.241957	-3.011561	1.970971
122	1	0	-4.628616	-2.081576	2.389038
123	6	0	-4.096142	-4.136013	2.782427
124	1	0	-4.354026	-4.074168	3.841194
125	6	0	-3.646132	-5.340964	2.238553
126	1	0	-3.542120	-6.222720	2.873759
127	6	0	-3.343630	-5.419901	0.878831
128	1	0	-3.003428	-6.362521	0.445906
129	6	0	-3.480522	-4.295770	0.062366
130	1	0	-3.247017	-4.370129	-0.999748
131	6	0	-9.844807	1.579070	1.035042
132	1	0	-10.762792	1.011245	1.249381
133	1	0	-10.044932	2.227085	0.162661
134	1	0	-9.654780	2.249469	1.892491
135	6	0	-8.664654	0.676346	0.781978
136	6	0	-8.667486	-0.671186	0.778674
137	6	0	-9.851316	-1.570101	1.028104
138	1	0	-9.663036	-2.245991	1.881615
Table S6 Continued. Atomic Coordinates for Optimized [(pdt)Pt(tpbz)Ni(mdt)].

Center Number	Atomic Number	Atomic Type	X	Y	Z
139	1	0	-10.055389	-2.212472	0.152471
140	1	0	-10.766534	-0.999470	1.246780
Table S7. Atomic Coordinates for Optimized [(pdt)Ni(tpbz)].

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	
		X	Y	Z
1	28	-2.350486	0.045313	0.144352
2	16	-3.850573	-1.546188	-0.102497
3	15	-0.738110	1.613401	0.386474
4	15	4.854019	1.578207	-0.905455
5	6	-5.404174	-0.707782	-0.325439
6	6	-0.628609	2.305665	2.091245
7	6	-1.832671	2.576314	2.762263
8	1	-2.783228	2.356920	2.272132
9	6	-1.813400	3.116865	4.047671
10	1	-2.756005	3.323953	4.557673
11	6	-0.599075	3.382122	4.682404
12	1	-0.587137	3.798324	5.691744
13	6	0.600875	3.107354	4.025465
14	1	1.554710	3.307953	4.517546
15	6	0.588631	2.571920	2.736764
16	1	1.534796	2.360774	2.237550
17	6	0.876341	0.757073	0.102139
18	6	2.066269	1.419305	-0.227926
19	1	2.062330	2.505088	-0.323560
20	6	3.261084	0.718965	-0.445702
21	6	5.719196	1.676621	0.729042
22	6	5.104713	1.473521	1.974228
23	1	4.038512	1.247918	2.025705
24	6	5.846684	1.547894	3.155044
25	1	5.352465	1.384658	4.115283
26	6	7.211982	1.832756	3.110869
27	1	7.790673	1.890710	4.034865
28	6	7.834908	2.036928	1.878486
29	1	8.904171	2.253431	1.833929
30	6	7.096478	1.950248	0.698852
31	1	7.596386	2.091066	-0.262110
32	6	4.307519	3.326535	-1.181229
33	6	4.342448	4.336246	-0.206800
34	1	4.663267	4.102043	0.808822
35	6	3.979406	5.645817	-0.527136
36	1	4.019257	6.420461	0.241731
37	6	3.568595	5.965610	-1.821597
38	1	3.286987	6.990688	-2.070499
39	6	3.527299	4.970072	-2.799719
40	1	3.210326	5.212454	-3.815848
41	6	3.905507	3.666027	-2.484837
42	1	3.894261	2.898734	-3.262708
43	16	-3.912671	1.561800	-0.195916
44	15	-0.734974	-1.460883	0.602816
45	15	4.834299	-1.633991	-0.694162
46	6	-5.426381	0.648456	-0.396353
Table S7 Continued. Atomic Coordinates for Optimized [(pdt)Ni(tpbz)].

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
47	6	0	-0.640668	-1.920097	2.383087
48	6	0	0.569491	-2.159483	3.053131
49	1	0	1.520769	-2.070948	2.527471
50	6	0	0.567058	-2.513401	4.402738
51	1	0	1.514524	-2.696900	4.913396
52	6	0	-0.638630	-2.631675	5.095902
53	1	0	-0.636834	-2.907156	6.152468
54	6	0	-1.844767	-2.391730	4.436404
55	1	0	-2.791258	-2.477749	4.973161
56	6	0	-1.850089	-2.032659	3.068600
57	1	0	-2.792745	-1.836446	2.574157
58	6	0	0.875413	-0.644294	0.210703
59	6	0	2.059928	-1.350459	-0.030377
60	1	0	2.049858	-2.439109	0.025660
61	6	0	3.250851	-0.696760	-0.370420
62	6	0	4.497077	-3.230766	0.182225
63	6	0	4.066801	-4.411930	-0.439407
64	1	0	3.866196	-4.422373	-1.511088
65	6	0	3.889002	-5.582018	0.303245
66	1	0	3.554451	-6.492246	-0.198736
67	6	0	4.133332	-5.589836	1.676233
68	1	0	3.994054	-6.505514	2.254252
69	6	0	4.567335	-4.420897	2.306567
70	1	0	4.772567	-4.420569	3.379178
71	6	0	4.758477	-3.256529	1.564415
72	1	0	5.122549	-2.353626	2.061354
73	6	0	4.667863	-2.071654	-2.484976
74	6	0	3.451363	-2.197988	-3.174369
75	6	0	5.864438	-2.270969	-3.193073
76	6	0	3.434821	-2.522948	-4.531500
77	6	0	5.847147	-2.604115	-4.547488
78	6	0	4.631196	-2.728828	-5.220473
79	1	0	2.505955	-2.042625	-2.653035
80	1	0	6.819915	-2.156975	-2.676473
81	1	0	2.479619	-2.615867	-5.052417
82	1	0	6.787678	-2.756875	-5.080639
83	1	0	4.615443	-2.981291	-6.282635
84	6	0	-0.663603	-3.041954	-0.330650
85	6	0	-0.232825	-4.244888	0.245751
86	6	0	-1.033983	-3.022843	-1.685425
87	6	0	-0.158023	-5.405995	-0.525785
88	6	0	-0.951218	-4.183673	-2.452428
89	6	0	-0.513052	-5.377000	-1.874382
90	1	0	0.045196	-4.280618	1.299239
91	1	0	-1.408672	-2.100011	-2.129996
92	1	0	0.177718	-6.337206	-0.065802
Table S7 Continued. Atomic Coordinates for Optimized [(pdt)Ni(tpbz)].

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
93	1	0	-1.246616	-4.158640	-3.502932
94	1	0	-0.457387	-6.287361	-2.474554
95	6	0	-0.709965	3.064978	-0.737338
96	6	0	-1.186100	2.894810	-2.047110
97	6	0	-0.234589	4.322023	-0.336935
98	6	0	-1.166630	3.960752	-2.944714
99	6	0	-0.223375	5.387297	-1.238064
100	6	0	-0.687087	5.208159	-2.541583
101	1	0	-1.596698	1.931705	-2.351702
102	1	0	0.122387	4.475330	0.681849
103	1	0	-1.545355	3.819083	-3.958422
104	1	0	0.147775	6.361728	-0.916102
105	1	0	-0.683602	6.045221	-3.242630
106	6	0	-6.614363	1.478982	-0.722815
107	6	0	-7.421422	1.178581	-1.835142
108	6	0	-6.940343	2.612492	0.043200
109	6	0	-8.521758	1.970397	-2.156645
110	6	0	-8.041513	3.404245	-0.279967
111	6	0	-8.838961	3.086823	-1.380343
112	1	0	-7.173315	0.315520	-2.452820
113	1	0	-6.322344	2.864614	0.905639
114	1	0	-9.132620	1.717009	-3.026110
115	1	0	-8.278588	4.275739	0.334638
116	1	0	-9.700506	3.708105	-1.634392
117	6	0	-6.591731	-1.598539	-0.377544
118	6	0	-7.720459	-1.345445	0.422999
119	6	0	-6.605023	-2.742950	-1.195454
120	6	0	-8.825411	-2.193566	0.392451
121	6	0	-7.710892	-3.591348	-1.223520
122	6	0	-8.827723	-3.320748	-0.431538
123	1	0	-7.721523	-0.474030	1.077649
124	1	0	-5.736646	-2.958736	-1.818953
125	1	0	-9.689574	-1.975658	1.024187
126	1	0	-7.699916	-4.470453	-1.872020
127	1	0	-9.693340	-3.986349	-0.452917