Environmental Research Communications

LETTER

Differences in snow-induced radiative forcing estimated from satellite and reanalysis surface albedo datasets over the Northern Hemisphere landmass for the overlapping period of 1982–2012

Chen Xiaona¹,², Liang Shunlin¹ and Yang Yaping¹

¹ State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, People’s Republic of China
² Department of Geographical Sciences, University of Maryland, College Park 20740, United States of America

E-mail: chenxn@igsnrr.ac.cn

Keywords: snow cover, land surface albedo, Northern Hemisphere, energy budget, radiative forcing

Abstract

The snow-induced radiative forcing (SnRF) measures the instantaneous perturbation to Earth’s shortwave radiation at the top of the atmosphere (TOA) caused by the presence of snow cover. Land surface albedo (αs) is a key parameter in estimation of SnRF. Previous studies have focused on using satellite or reanalysis αs data in SnRF quantifications. However, their spatial and temporal differences remain unclear. In this study, SnRF over the Northern Hemisphere (NH) estimates from two satellite and four reanalysis αs datasets were compared for the overlapping period of 1982–2012. The 31-year annual-mean SnRF was estimated at −1.81 to −1.59 W m⁻² from satellite αs datasets, with a peak of −4.01 W m⁻² and Standard Deviation (SD) of 1.54 W m⁻² in April. The comparable SnRF from reanalysis αs was −1.48 to −2.30 W m⁻², with a peak of −4.77 W m⁻² and SD of 0.81 W m⁻² in the same month. In the seasonal cycle, SnRF from satellite αs displayed lower values from October to January, but higher values from February to July, compared with SnRF using reanalysis αs. Moreover, the annual-mean SnRF declined by 0.39–1.25 W m⁻² during 1982–2012 from satellite αs datasets, which is much smaller than the results using reanalysis αs datasets. Furthermore, changes in monthly-mean SnRF from satellite αs displayed an enhance trend in snow accumulation seasons, which are largely different with the comparable changes from reanalysis-based SnRF, indicating that there are large interannual and intra-annual biases between SnRF estimates from satellite and reanalysis αs datasets. Based on above results, we conclude that the large discrepancies between SnRF estimations from satellite and reanalysis αs should be considered in evaluating the response and feedback of snow cover to Earth climate change in future studies, especially in radiation budget anomalies.

1. Introduction

Surface albedo (αs) is defined as the ratio of the solar radiation reflected from the Earth’s surface to the solar radiation incident upon it, is critical in the regulation of Earth’s surface energy budget and characterizing the Earth’s radiative regime (Lofgren 1995, Liang et al 2010, Liang et al 2019). Published studies have proved that snow cover extent (SCE) changes are positively correlated with αs anomalies because of its high reflectance (Qu and Hall 2014, Chen et al 2015, Chen et al 2017, Zhang et al 2019). When the snow cover shrinks, the αs decreases, with less solar radiation reflected back into the space. Meanwhile, the remaining snow generally has a lower αs caused by snow metamorphosis (Qu and Hall 2014). The solar radiation perturbation induced by αs anomalies that are driven by SCE changes is defined as snow-induced radiative forcing (SnRF) (Flanner et al 2011, Chen et al 2015, Chen et al 2016a), which is vital in measuring the feedback of snow cover to Earth radiation budget (Flanner et al 2011, Singh et al 2015) and climate projections (Perket et al 2014, Qu and Hall 2014) under the climate change background.

© 2020 The Author(s). Published by IOP Publishing Ltd
To estimate radiative forcing caused by snow cover changes, several studies have estimated the SnRF at different time spans and spatial scales in recent decades (Flanner et al. 2011, Chen et al. 2015, Singh et al. 2015, Chen et al. 2017). For example, Flanner et al. (2011) quantified the radiative forcing from the Northern Hemisphere (NH, the half of the Earth that lies north of the equator) cryosphere during 1979–2008 and reported that the cryospheric cooling declined by 0.45 W m\(^{-2}\) during 1979–2008, with nearly equal contributions from changes in land snow cover and sea ice. Chen et al. (2015) estimated the SnRF induced by snow cover phenology changes over the NH for the period 2001–2014 and found that the contrasting changes in snow cover phenology led to contrasting anomalies of SnRF among the NH middle and high latitudes, which accounted for 51% of the total shortwave flux anomalies at the top of the atmosphere (TOA) during 2001–2014. Singh et al. (2015) quantified the global land shortwave cryosphere radiative effect during 2001–2013 and reported that the NH land SnRF estimates from Moderate Resolution Imaging Spectroradiometer (MODIS) were approximately 18% smaller than previous estimates derived from coarse-resolution advanced very high resolution radiometer (AVHRR) data during the overlap period of 2001–2008. However, being limited by the uncertainty of \(a_s\) datasets and shortage of long-term \(a_s\) datasets, the differences in SnRF evaluated from longterm satellite and reanalysis \(a_s\) datasets are remain unclear.

The \(a_s\) is one of the most important parameters in the calculation of SnRF, which measures the amount of solar radiation reflected back into the space caused by snow cover changes (Groisman et al. 1994, Flanner et al. 2011, Perket et al. 2014, Chen et al. 2015, Singh et al. 2015). However, \(a_s\) is among the main radiative uncertainties in current climate modeling (Liang 2001, Liang et al. 2002), which may bring a cumulative error in the SnRF estimation. For example, Myher and Myher (2003) reported that cropland \(a_s\) values is the most important factor yielding the large range in estimated radiative forcings caused by land use changes. Bright and Kvalevåg (2013) confirmed that through perturbations in \(a_s\), land use activities affected shortwave radiative forcing at the TOA. As one of the most notable component of land cover type over the NH, with large spatial coverage and rapid changes, presence of snow cover are largely related with land use changes over the NH. Published studies have proven that SCE in the NH has experienced a well-documented rapid decrease since late 1960s (Déry and Brown 2007, Brown et al. 2010, Derksen and Brown 2012, Chen et al. 2016a). Moreover, climate projections suggest that the SCE will continue shrinking in the future (Brown and Robinson 2011, IPCC 2013). Thus, to make clear the spatial and temporal differences in SnRF estimation caused by \(a_s\) datasets is necessary to reduce the radiative uncertainties in climate change studies.

Published scholars have reported large differences among current \(a_s\) products, e.g., By analyzing the global \(a_s\) climatology and spatial-temporal variation during 1981–2010, He et al. (2014) showed that at latitudes higher than 50°, the maximum difference in winter zonal albedo ranged from 0.1 to 0.4 among the nine satellite datasets. Assessment of Community Land Model (CLM2) \(a_s\) using MODIS data, Oleson et al. (2003) reported that in regions with extensive snow cover, the CLM2 overestimated white-sky and black-sky \(a_s\) by up to 20%. As the largest single component of the cryosphere in terms of spatial extent, the discrepancy between the satellite-derived and reanalyzed \(a_s\) is evident. Although published studies have estimated SnRF from local to global scales, few of them have provided a comprehensive analysis of the uncertainties in SnRF estimations induced by \(a_s\) datasets.

The objective of the present study is to comprehensively examine the performance of satellite and reanalysis \(a_s\) datasets in representing the large scale spatiotemporal variability and long term change in SnRF over the NH. Additionally, the study aims to understand the differences between reanalysis and satellite \(a_s\) in the context of characterizing radiative forcing within the NH climate system, which is crucial for accurately characterizing NH climate patterns and assessing the underlying evolution of the NH climate system.

2. Methodology and datasets

To calculate SnRF over the NH and cross-compare SnRF results from satellite and reanalysis \(a_s\) datasets, we first introduce the methodology in calculation of SnRF. Then, we give a brief introduction of datasets used in this study.

2.1. Methodology

2.1.1. Estimation of SnRF

To calculate SnRF over the NH, the radiative kernel approach (Shell et al. 2008, Soden et al. 2008) was employed in this study. The radiative kernel approach separates the radiative responses to land surface albedo \(a_s\) induced by snow cover changes with other climate parameters (such as temperature, water vapor, and CO\(_2\)). In this study, the albedo radiative kernels, expressed as the TOA shortwave flux anomalies associated with a 1% change in \(a_s\), were employed to estimate SnRF driven by snow cover changes. The time \(t\) dependence of SnRF (W m\(^{-2}\)), within a region \(R\) (here, the NH) of area \(A\), composed of grid cells \(r\) can be expressed as follows:
(Flanner et al 2011, Chen et al 2015):

\[
S_{nRF}(t, R) = \frac{1}{A(R)} \int_{r} S(t, r) \frac{\partial \alpha_{s}}{\partial S}(t, r) \frac{\partial F}{\partial \alpha_{s}}(t, r) dA(r)
\]

(1)

where \(S(t, r)\) is the domain of SCE over the NH, \(\partial \alpha_{s}/\partial S(t, r)\) is the rate of variation of land surface albedo \(\alpha_{s}\) with snow cover change, and \(\partial F/\partial \alpha_{s}(t, r)\) is the response of the TOA net shortwave radiation anomalies to \(\alpha_{s}\) changes. Following Flanner et al (2011), we assumed that the temporally and spatially varying \(\partial \alpha_{s}/\partial S\) and \(\partial F/\partial \alpha_{s}\) were constant with the snow cover fraction \(S\) and \(\alpha_{s}\), respectively. Therefore, \(\partial \alpha_{s}/\partial S\) could be replaced with the mean albedo contrast \((\Delta \alpha_{s})\) induced by the snow cover anomaly and \(\partial F/\partial \alpha_{s}\) can obtained from the albedo radiative kernels (Flanner et al 2011, Chen et al 2015).

2.2.2.1. CLARA-A2 land surface albedo dataset

The CLARA-A2 dataset provides 5-day black-sky \(\alpha_{s}\) dataset (wavelengths of 0.25–2.5 \(\mu m\)), which is generated based on a homogenized AVHRR radiance time series and is created by using algorithms to separately derive \(\alpha_{s}\) based on a homogenized AVHRR radiance time series and is created by using algorithms to separately derive \(\alpha_{s}\) at weekly intervals for January 1982 through February 2012.

2.2.2.2. Satellite-retrieved land surface albedo datasets

Two longterm satellite \(\alpha_{s}\) datasets were employed to estimate \(S_{nRF}\) over the NH and to cross-compare with \(S_{nRF}\) estimates from reanalysis \(\alpha_{s}\) for the overlapping period of 1982–2012.

2.2.2.2.1. CLARA-A2 land surface albedo dataset

The CLARA-A2 dataset provides 5-day black-sky \(\alpha_{s}\) dataset (wavelengths of 0.25–2.5 \(\mu m\)), which is generated based on a homogenized AVHRR radiance time series and is created by using algorithms to separately derive \(\alpha_{s}\) based on a homogenized AVHRR radiance time series and is created by using algorithms to separately derive \(\alpha_{s}\).
for different land use areas, including snow, sea ice, open water, and vegetation (Karlsson et al 2017). Currently, the CLARA-A2 a_s dataset is the only available longterm a_s product derived from AVHRR imagery. In this study, the CLARA-A2 black-sky a_s over the NH at the spatial resolution of 0.05°, covering from 1982 to 2012 were used to cross-compare S_nRF estimates from GLASS and reanalysis a_s datasets. The CLARA-A2 a_s dataset has been used to estimate sea ice albedo changes (Riihelä et al 2013) and sea ice a_s comparison (Cao et al 2016) over the Arctic regions.

2.2.2.2. GLASS broadband albedo dataset

The GLASS Broadband Albedo Version 40 product is based on the integration of two algorithms through a temporal filter scheme (Liu et al 2013, Zhao et al 2013) using AVHRR and MODIS version 6 radiance data. The GLASS products provide a_v at total shortwave, visible and near-IR under actual atmospheric conditions spectral ranges. To match black-sky a_s obtained from CLARA-A2, the 8-day GLASS total shortwave black-sky a_s at the spatial resolution of 0.05°, covering from 1982 to 2012 were used in this study. The GLASS a_s dataset has been used to quantify the albedo induced radiative forcing of snow melting over Greenland (He et al 2013), forest disturbances over northeastern China (Zhang and Liang 2014) and snow cover phenology changes over the NH (Chen et al 2015, Chen et al 2016a) with high quality and fine spatial resolution.

2.2.3. Reanalysis land surface albedo datasets

Four longterm reanalysis a_s datasets were selected to quantify S_nRF over the NH and to cross-compare with S_nRF estimates from satellite a_s from 1982 to 2012, including JRA-55, CFSR, MERRA-2, and ERA-5.

2.2.3.1. ERA-5 reanalysis land surface albedo datasets

The ERA-5 product is the latest global atmospheric reanalysis dataset produced by the ECMWF (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) (C3S 2017). ERA-5 has important changes relative to the former ERA-Interim atmospheric reanalysis, including higher spatial and temporal resolutions with a latest model and data assimilation system (Albergel et al 2018).

The monthly ERA-5 a_s was calculated with clear sky surface downward and upward shortwave fluxes at a 0.125 spatial resolution from 1979 to present. By using eight independent observations including evapotranspiration, gross primary production, soil moisture, and leaf area index from remote sensing observations and soil moisture, turbulent heat fluxes, river discharges and snow depth from in situ observations, Albergel et al (2018) reported that the ERA-5 showed a consistent improvement over ERA-Interim. To cross-compare S_nRF results from satellite and other reanalysis datasets, the monthly ERA-5 a_s at the spatial resolution of 0.125°, covering NH from 1982 to 2012 were employed in this study.

2.2.3.2. JRA-55 reanalysis land surface albedo datasets

The JRA-55 is the longest reanalysis dataset that uses the full observing system (in contrast, products like ERA-20C and NOAA 20CR assimilate a very limited set of observations while NCEP R1 uses an antiquated model and assimilation scheme) spanning 1958 to present (https://climatedataguide.ucar.edu/climate-data/jra-55). The monthly JRA-55 a_s product is parameterized as functions of solar zenith angle and surface skin temperature
In this study, the monthly JRA-55 a_s at the spatial resolution of 0.5°, covering NH from 1982 to 2012 were used in quantification of S_aRF over the NH.

2.2.3.3. MERRA-2 reanalysis land surface albedo datasets
The MERRA-2 is a global atmospheric reanalysis derived from the Goddard Earth Observing System atmospheric general circulation model, version 5 (GEOS-5) (Guemard et al 2019) (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). The MERRA-2 is the first satellite-era global reanalysis to assimilate space-based observations of aerosols and represent their interactions with other physical processes in the climate system spans from 1980 to 2017. To cross-compare S_aRF results from satellite and other reanalysis datasets, the monthly MERRA-2 a_s at the spatial resolution of 0.5°, covering NH from 1982 to 2012 were used in this study.

2.2.3.4. CFSR reanalysis land surface albedo datasets
The NCEP CFSR is a global, high resolution, atmosphere–ocean–land surface–sea ice coupled system over the period January 1979 to November 2017 (Saha et al 2010) (https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr). The CFSR was designed to provide the best estimate of the state of these coupled domains over this period. The monthly NCEP CFSR a_s was calculated using the land model Noah described by Rai et al (2019). To cross-compare S_aRF results from satellite and other reanalysis datasets, the monthly CFSR a_s at the spatial resolution of 0.5°, covering NH from 1982 to 2012 were used in this study.

2.2.4. MCD43GF snow-free land surface albedo dataset
To obtain climatology of monthly-mean snow-free surface albedo α_{sf} needed in S_aRF calculation, the gap-filled daily MCD43GF α_{sf} at spatial resolution of 1 km (Schaaf 2019) was used in this study, which representing the a_s after removing the presence of snow cover. The MCD43GFα_{sf} product are computed for MODIS spectral bands 1 through 7 as well as shortwave-infrared, visible and near-infrared bands from 2001 to 2017. To compare with white-sky a_s from CLARA-A2 and GLASS datasets, the daily shortwave broadband white-sky α_{sd} from 2001 to 2012 was used in this study.

2.2.5. Albedo radiative kernels datasets
To reduce radiative uncertainty in S_aRF estimation caused by albedo radiative kernels, three monthly albedo radiative kernels: CAM3 gridded at 2.81° horizontal resolution from Shell et al (2008), AM2 gridded at 2.50° horizontal resolution from Soden et al (2008), and ECHAM6 gridded at 1.875° horizontal resolution from Mauritsen et al (2013) were used in this study. The seasonal cycle of albedo radiative kernels from CAM3, AM2 and ECHAM6 over the NH are shown in figure 1.

2.2.6. Data preparation
Considering the time span and spatial resolution of individual datasets, this study was carried out among the overlapping period of 1982–2012 in 0.5° spatial resolution. Because of missing AVHRR surface reflectance data in 1994, the satellite a_s datasets from CLARA-A2 and GLASS were incomplete in this year. Thus, we excluded 1994 in this study. Due to difficulties in discriminating snow from ice over Greenland, this region was excluded from the analysis.

Before calculation, datasets used in this study in table 1 were regridded and remapped at a spatial resolution of 0.5° with geographic latitude/longitude projection with the help of gdalwarp (http://www.gdal.org/gdalwarp.html).
For datasets with spatial resolution greater than 0.5°, we used ‘average’ in the resampling process, which computed the average of all non-NODATA contributing pixels in the domain of our study. For datasets with spatial resolution lower than 0.5°, we used ‘cubic-spline’ in the resampling process.

To match the temporal interval of albedo radiative kernels, the weekly NHSCE snow cover dataset, 8-day GLASS, 5-day CLARA-A2, and daily MCD43GF datasets were temporally aggregated to produce a monthly-averaged series in the calculation. To make sure the quality of datasets, the quality control flags of ‘00’ and ‘01’ of the 8-day GLASS as, indicating uncertainties of <5% and <10%, were used to generate the monthly mean as series. Quality assurance values between ‘0’ and ‘1’ of daily MCD43GF, representing the majority of high-quality and good quality full inversion values, were used to generate the monthly mean snow-free surface albedo and climatology snow-free surface albedo over the NH.

3. Climatology of S_nRF over NH

The annual-mean and monthly-mean of S_nRF over the NH for the period 1982–2012 were used to explore the climatology differences between 31-year averaged S_nRF derived from satellite and reanalysis as datasets. For S_nRF estimates using a given as dataset, we first calculated the monthly S_nRF using CAM3, AM2, and ECHAM6 albedo radiative kernels, respectively. Then, we obtained the annual-mean S_nRF by averaging the monthly-mean S_nRF from January to December. The numbers in parenthesis indicate the SD of averaged annual-mean S_nRF between three S_nRF results.

3.1. Annual-mean S_nRF

The spatial distributions of the 31-year annual-mean S_nRF estimates from two satellite and four reanalysis as datasets during 1982–2012 are presented in figure 2. As shown in figure 2(a), S_nRF estimates from both satellite and reanalysis as datasets displayed similar spatial distribution over the NH during 1982–2012, with generally larger values in the high latitude areas of Eurasia and North America, and the high elevation Rocky Mountains, Tibetan Plateau, and Stanovoy Range, but smaller values in the low latitude and low elevation regions.

The annual mean S_nRF over the NH during 1982–2012 was estimated at -1.81 ± 0.06 W m$^{-2}$, -1.59 ± 0.10 W m$^{-2}$, -2.30 ± 0.15 W m$^{-2}$, -1.48 ± 0.16 W m$^{-2}$, -1.74 ± 0.07 W m$^{-2}$, and 1.49 ± 0.06 W m$^{-2}$ using the GLASS, CLARA-A2, ERA-5, CFSR, JRA-55, and MERRA-2 as datasets, respectively.

Compared with S_nRF estimates from GLASS as (figure 2(a)), the results from CLARA-A2 (figure 2(b)) was minor at high latitudes, especially in regions of Eurasia near the Arctic Ocean. However, compared with S_nRF derived from GLASS and CLARA-A2, most of the S_nRF estimates from reanalysis as displayed minor values in high latitude and high elevation regions, especially JRA-55 (figure 2(d)) and MERRA-2 (figure 2(e)). Moreover, as shown in figure 2(c), the S_nRF estimates from ERA-5 as displayed higher values in mountainous regions, such as the Rocky Mountains, Tibetan Plateau, and Stanovoy Range. In contrast, S_nRF estimates from CFSR as was minor in the high elevation Rocky Mountains, Tibetan Plateau, and Stanovoy Range, which indicate that there are large differences exist between S_nRF results from individual as dataset, even among reanalysis as datasets.
3.2. Seasonal cycle of the SnRF

The climatology of monthly-mean SnRF in each month for a given dataset was calculated by averaging the three SnRF estimates using CAM3, AM2, and ECHAM6 albedo radiative kernels. The climatology of seasonal SnRF over the NH for the period 1982–2012 derived from two satellite and four reanalysis datasets are displayed in Figure 3. The satellite-based SnRF in Figure 3 were calculated by averaging SnRFs estimate from GLASS and CLARA-A2 datasets. The reanalysis-based SnRF in Figure 3 were calculated by averaging SnRFs estimate from JRA-55, CFSR, MERRA-2, and ERA-5 datasets.

As shown in the seasonal cycle of SnRF over the NH estimates from six individual datasets during 1982–2012 (Figure 3(a)), the SnRF from both satellite and reanalysis datasets captured the seasonal cycle of SnRF over the NH. The SnRF broadly peaked at approximately -5.97 ± 0.07 W m$^{-2}$ to -4.22 ± 0.05 W m$^{-2}$ in April because of the high solar radiation and large SCE over the NH in April. Meanwhile, the SnRF valleys were broad at -0.33 ± 0.003 W m$^{-2}$ to -0.08 ± 0.001 W m$^{-2}$ in August because of low SCE and albedo radiative kernels values in August caused by higher cloud optical thickness over the NH.

However, there were large differences between seasonal cycles of SnRF derived from satellite and reanalysis datasets. Compared with the SnRF estimates from GLASS and CLARA-A2 datasets, SnRF calculated from the ERA-5 dataset displayed higher values in snow accumulation seasons from October to January, but lower values in snow melting seasons from February to July, which indicated that the reanalysis-based SnRF could not capture the actual seasonal cycle of SnRF over the NH during 1982–2012.

Figure 3. Seasonal cycle of SnRF over the NH from 1982 to 2012. (a) The climatology of monthly-mean SnRF calculated from six individual datasets, (b) the monthly-averaged SnRF and associated error range between SnRFs derived from six individual datasets, and (c) error ranges between SnRFs derived from satellite and reanalysis products. Error Range indicates differences between the maximum and minimum value of SnRF for a given month.
4. Changes in SnRF over the NH

Changes in annual-mean and monthly-mean SnRF were used to explore the ability of SnRF derived from satellite and reanalysis datasets in capturing the radiative feedback of snow cover to Earth climate system for the period 1982–2012. Changes were calculated as linear trends multiplied by the time interval.

4.1. Changes in annual-mean SnRF

4.1.1. Spatial distribution of changes in annual-mean SnRF

The spatial distribution of 31-year changes in annual-mean SnRF estimates from six individual datasets during 1982–2012 are displayed in Figure 4.

As shown in Figures 4(a) and (b), the NH experienced weakened cooling effects with a smaller magnitude of SnRF changes in high latitudes near the Arctic Ocean, but strengthened cooling effects with a larger magnitude of SnRF changes in the mid-latitudes, including the central United States and Tibetan Plateau during 1982–2012. Compared with SnRF changes based on satellite datasets, the comparable changes using ERA-5 (Figure 4(c)) and JRA-55 (Figure 4(d)) displayed general positive anomalies over the NH, except for the TP regions. Moreover, the large scale negative SnRF changes in the United States and Northern China from satellite-based SnRF results were not captured in SnRF estimates from ERA-5 (Figure 4(c)), JRA-55 (Figure 4(d)), and MERRA-2 (Figure 4(e)). Moreover, the CFSR-based SnRF displayed significant negative changes among most of the NH landmass, except for the high latitudes of Eurasia, which is in conflict with the published findings of rapid snow cover extent reduction in recent decades (Brown et al. 2007, Déry and Brown 2007, Chen et al. 2016a).

4.1.2. Interannual variability of annual-mean SnRF over the NH

Detailed comparisons of 31-year annual-mean SnRF variabilities over the NH calculated from six individual a_s datasets during 1982–2012 are provided in Figure 5. The large discrepancies between SnRFs estimate from two satellites and four reanalysis a_s datasets are clearly displayed in Figure 6.

Both satellite and reanalysis-based SnRF present generally positive changes with the shrinking of the SCE over the NH during 1982–2012 (figure 5). The peak of annual-mean SnRF ($-$1.67 ± 0.03 W m$^{-2}$) occurred in 2012, whereas in the valley, the peak at $-$1.92 (±0.05) W m$^{-2}$ occurred in 2004 in GLASS-based SnRF estimations. Compared with GLASS-based SnRF, the magnitude of SnRF from CLARA-A2 was much smaller, with the peak and valley being $-$1.38 ± 0.08 W m$^{-2}$ in 2000 and $-$1.83 ± 0.11 W m$^{-2}$ in 1992, respectively. For SnRF estimates from reanalysis a_s datasets, the ERA-5 and JRA-55-based SnRF series presented peak values in 2007 with $-$1.99 ± 0.14 W m$^{-2}$ and $-$1.59 ± 0.12 W m$^{-2}$, respectively. Moreover, the valleys of the ERA-5 and JRA-55-based SnRF series occurred in 1985, with $-$2.60 ± 0.19 W m$^{-2}$ and $-$1.94 ± 0.15 W m$^{-2}$.

The SnRF over the NH declined by 0.39 W m$^{-2}$ to 1.25 W m$^{-2}$ during 1982–2012 based on series from satellite a_s datasets, which was much smaller than the comparable results calculated from the reanalysis-based SnRF (2.02 W m$^{-2}$ to 2.65 W m$^{-2}$), which may have overestimated the role of snow cover in climate change.
studies and future climate projections. Thus, the discrepancies between S_{RF} estimations from satellite and reanalysis datasets should be considered when evaluating the snow-induced energy budget and climate system anomalies in future studies.
4.2. Changes in seasonal S_nRF

The 31-year linear changes of S_nRF over the NH in each month derived from two satellites and four reanalysis datasets from 1982–2012 are shown in figure 7. Changes in S_nRF in a given month from 1982 to 2012 were calculated as linear trends multiplied by the time interval.

Driven by the decreased SCE over the NH in spring and summer seasons (Chen et al. 2016a), the S_nRF calculated from both GLASS and CLARA-A2 datasets displayed positive changes from April to August, which coincided with the S_nRF changes derived from reanalysis datasets. However, the negative S_nRF changes calculated from GLASS and CLARA-A2 in the snow accumulation seasons from November to February were largely different from the S_nRF changes derived from reanalysis datasets, except for CFSR, especially in January. The changes in S_nRF calculated from GLASS ($-0.10 \pm 0.010\ W\ m^{-2}$) and CLARA-A2 ($-0.41 \pm 0.06\ W\ m^{-2}$) datasets were negative in January, which indicated an enhanced cooling effect caused by snow cover. However, this phenomenon could not be adequately represented by a reanalysis-based S_nRF.

As reported by Chen et al. (2016a) and Cohen et al. (2012), driven by Arctic Amplification, increasing snow cover and widespread boreal winter cooling occurred from the 1990s onward. With increased snow cover extent and greater albedo contrast, additional solar radiation was reflected to space, which resulted in a strengthened cooling effect of snow cover and negative changes in S_nRF. In contrast, with the rapid decline of spring and summer SCE over the NH (Brown and Robinson 2011, Derksen and Brown 2012, Chen et al. 2016a), obviously weakened cooling effects should have been detected from S_nRF. Compared with satellite observations, the reanalysis field captured the S_nRF changes.

5. Discussion and conclusions

The S_nRF is a vital indicator to evaluate the contribution of snow cover to Earth radiation budget under the background of global warming and rapid SCE reduction over the NH in the past few decades. As a key parameter in S_nRF estimation with large bias between satellite and reanalysis products, a comprehensively examine the performance of satellite and reanalysis a_s datasets in representing the large scale spatiotemporal variability and long term change in S_nRF over the NH are necessary. Using two satellite and four reanalysis a_s datasets coupled with several ancillary datasets, this study explored the differences between satellite- and reanalysis-based S_nRFs over the NH for the overlapping period of 1982–2012.

Although both satellite- and reanalysis-based S_nRFs captured the climatology of the annual-mean and seasonal cycle of S_nRF over the NH during 1982–2012, large differences still exist between them. For climatology of annual-mean S_nRF, the reanalysis-based S_nRF displayed lower values in high latitude and high elevation regions compared with satellite-based S_nRF, which may underestimate the radiative forcing and feedback of snow cover to climate change in those regions. For the seasonal cycle, the reanalysis-based S_nRF displayed higher values in snow accumulation seasons from October to January, but a lower value from February to July, compared with satellite-based S_nRF over the NH from 1982 to 2012.

Changes in S_nRF over the NH during 1982–2012 derived from satellite and reanalysis a_s datasets were also cross-compared in this study. The annual-mean S_nRF over the NH declined by $0.39\ W\ m^{-2}$ to $1.25\ W\ m^{-2}$ during 1982–2012 from satellite-based S_nRF, which is much smaller than the results calculated from the reanalysis-based S_nRF. In addition, changes in monthly-mean S_nRF from satellite-based S_nRF series displayed an
enhance trend in snow accumulation season over the NH from 1982 to 2012, which are largely different with the comparable changes from reanalysis-based S_rRF, indicating that the reanalysis-based S_rRF results cannot capture the actual inter-annual and intra-annual changes of S_rRF over the NH.

Compared with previous research, the present study investigated the spatial and temporal differences between S_rRF over the NH using satellite and reanalysis a_s datasets for the overlapping period of 1982–2012, which is important for current climate change studies and future climate projections. However, several unresolved issues remain in our study. Subjected to the coarse resolution of NHSCE snow range and reanalysis a_s datasets, this study was carried out at 0.5 spatial resolution, which may mixed the radiative forcing induced by snow cover and other land cover types, especially vegetation and permafrost (Johansson et al 2013). As an integral component of the global climate system with rapid changes, more detailed evaluation and analysis of radiative forcing and feedback induced by snow cover changes with fine resolution is necessary in future studies. Since CLARA-A2 only provides white-sky surface albedo products, this study used white-sky surface albedo products from satellite observations in the cross-comparisons with reanalysis-based annual-mean and monthly-mean S_rRF results. However, previous studies have reported that the differences between S_rRF with white-sky albedo and black-sky albedo are slightly (Flanner et al 2011, Qu and Hall 2014, Chen et al 2016b), which will not influence the results of this study. Considering the large discrepancies in S_rRF results from different surface albedo datasets, the uncertainties in S_rRF estimations should be considered in future studies.

Acknowledgments

We would like to thank all people fighting with COVID-19 and the anonymous reviewers for their constructive comments and suggestions. This study was jointly funded by the comprehensive survey of biodiversity over the Mongolian Plateau (2019FY102001), the National Key Research and Development Program of China (NO. 2016YFA0600103) and the National Earth System Science Data Sharing Infrastructure (NO. 2005DKA32300). The Climate Data Record of Northern Hemisphere Snow Cover Extent and MCD43GF land surface albedo products were provided by the https://earthdata.nasa.gov/. The GLASS land surface albedo dataset were available at the national earth system science data center http://www.geodatcn/. The CLARA-A2 land surface albedo dataset were obtained from the https://wui.cmsaf.eu/safira/, The JRA-55, CFSR and MERRA-2 reanalysis land surface albedo data were obtained from https://rda.ucar.edu/datasets. The ERA5 reanalysis land surface albedo data were obtained from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The albedo radiative kernels were obtained from https://climatedataguide.ucar.edu/climate-data/radiative-kernels-climate-models.

ORCID iDs

Chen Xiaona https://orcid.org/0000-0003-0092-8004

References

Albergel C, Dutra E, Munier S, Calvet J C, Munoz-Sabater J, de Rosnay P and Balsamo G 2018 ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better? Hydrol. Earth Syst. Sci. 22 3515–32
Bright R and Kvalevåg M 2013 Technical note: evaluating a simple parameterization of radiative shortwave forcing from surface albedo change Atmos. Chem. Phys. 13 11169–74
Brodzik M and Armstrong R 2013 Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent, Version 4. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center (https://nsidc.org/data/NSIDC-0046/versions/4/) (https://doi.org/10.5067/P7O0HGLYUQU)
Brown R, Derksen C and Wang L 2007 Assessment of spring snow cover duration variability over northern Canada from satellite datasets Remote Sens. Environ. 111 367–81
Brown R, Derksen C and Wang L 2010 A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008 J. Geophys. Res. 115 D16111
Brown R and Robinson D 2011 Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty Cryosphere 5 219–29
Copernicus Climate Change Service (C3S) 2017 ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate Copernicus Climate Change Service Climate Data Store (CDS) (https://cds.climate.copernicus.eu/cdsapp#!/home) (https://doi.org/10.24381/cds.1f7050d7)
Cao Y, Liang S, He T and Chen X 2016 Evaluation of four reanalysis surface albedo data sets in arctic using a satellite product IEEE Geosci. Remote Sens. Lett. 13 384–8
Chen X, Liang S and Cao Y 2016a Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013 Environ. Res. Lett. 11 084002
Chen X, Liang S, Cao Y and He T 2016b Distribution, attribution, and radiative forcing of snow cover changes over China from 1982 to 2013 Clim. Chang. 137 363–77
Chen X, Liang S, Cao Y, He T and Wang D 2015 Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014 Sci. Rep. 5 16820
