Do novae have optically thick winds during outburst with large deviations from spherical symmetry?

M. Friedjung*

Institut d’Astrophysique de Paris - UMR 7095, CNRS/Université Pierre et Marie Curie, 98 bis Boulevard Arago, 75014 Paris, France

Received, Accepted, Draft September 29, 2011

ABSTRACT

Context. The evidence for the presence of optically thick winds, produced by classical novae after optical maximum, has been challenged in recent papers. In addition, signs of orbital phase dependent photometric variations, sometimes seen quite early in the development of nova outbursts, are hard to interpret in the framework of optically thick envelopes and especially winds.

Aims. A general discussion for belief in the presence of optically thick winds with increasing ejection velocities during the early stages of novae after their explosion, must be given. This has to be done in order to clarify ideas about novae as well as to contribute in particular to the understanding of the behaviour of nova V1500 Cyg and V1493 Aql showing phase dependent variations during very early decline after the outburst.

Methods. Possible ways of overcoming the apparent contradiction of phase dependent variations through the production of deviations from spherical symmetry of the winds, are looked at and order of magnitude estimates are made for different theoretical scenarios, which might produce such deviations.

Results. It is found that large deviations from spherical symmetry of the optically thick winds in early phases after the explosion can easily explain the problem of variations. In particular, the presence of a magnetic field might have had a non-negligible effect on the wind of V1500 Cyg, while at the present there is not enough information available concerning V1493 Aql.

Conclusions. Optically thick winds/envelopes are almost certainly present in the early stages after optical maximum of a nova, while it is difficult to make pure Hubble flow models fit the observations of those stages. New more detailed observational and theoretical work, in particular including the effects of magnetic fields on the winds, is needed.

Key words. Stars: binaries: novae – Stars: individual: V1493 Aql – Stars: individual: V1500 Cyg – Stars: winds

1. Introduction

Observations of novae soon after maximum brightness in the optical, appear to require the presence of expanding optically thick envelopes and probably winds, hiding the central remnant (e.g. Friedjung[1996] Short et al. [2001]). An envelope consists of circumstellar material, while a wind with continuous ejection from a central star is a special case. In this situation one does not usually expect to observe photometric variations depending on the orbital phase of the binary in the very early stages after maximum. However, in a few cases, phase dependent orbital variations seen very early after the nova outburst, appear to pose a challenge to any sort of optically thick envelope theory, including in particular those including optically thick winds. Models based on instantaneous ejection of a thick envelope with a linear gradient of velocity, or “Hubble flow” models, might seem to better fit the observations, provided that the envelope started to become optically thin when the variations are observed. Here we first describe the two types of model and then give in some detail reasons for believing that the optically thick envelopes of classical novae after optical maximum contain winds, whose velocities increase with time.

Following that discussion we make a detailed examination of two novae showing photometric variations of the order of magnitude of the orbital period, very soon after optical maximum. Finally, we try to see how the variations might be produced because of deviations of the winds from spherical symmetry.

2. Processes in classical nova outbursts

Following their explosions, classical novae show complex phenomena, whose interpretation is not obvious. Observations indicate the presence of regions, producing line absorption and line emission with different velocities, belonging to what are called the “pre–maximum”, “principal”, “diffuse–enhanced” and “Orion” systems. Each system tends to produce P Cygni profiles with absorption components of many spectrum lines having very similar Doppler shifts, as well as central emission. Such profiles of different systems are often superposed. Each P Cygni profile can be understood as being produced by material expanding with a well defined range of velocities, and becoming visible at different times.

In this situation, the interpretation of spectral line profiles requires care. Classical work, using photographic spectra showed that the “pre – maximum” system absorption components, seen before optical maximum, had a velocity which sometimes decreased with time; the somewhat higher velocity “principal” system appeared around maximum, while the former system disappeared soon after. According to such work, the Doppler broadening of the emission lines of the principal system is that of the emission lines of the ejected nebula seen in the late “nebular” stage, though weak “Orion” emission wings have sometimes been seen in the that stage (Payne-Gaposchkin[1957]). The higher velocity “diffuse–enhanced” system, usually appears
some days later than the principal system. Lines from more ionised atoms belong to the Orion system, which often (but not always) has a higher velocity than the diffuse-enhanced system. Hence, systems with higher velocities tend to appear later than those with lower velocities. Absorption components of different systems with different ionisations, such as those of the principal and Orion systems, are simultaneously visible over typical timescales of weeks. The velocity distribution and geometry are quite hard to interpret. This is why there have been over the years strong disagreements between different researchers who study the processes of classical novae in the early stages after their explosions. These disagreements involve the geometry and velocity field of the ejected envelopes: either ejection is almost instantaneous, or optically thick (in the continuum) winds play a major role in continued ejection.

The first point of view is discussed in a recent review by Shore (2008). The model he supports is one of “instantaneous ejection type II” or “Hubble flow”, where after an initial acceleration, a geometrically thick envelope has a linear gradient of velocity, with velocity increasing outwards. The highest velocity material has travelled the furthest and there is little change in the velocities and geometry during the further evolution of the envelope. Note that models, involving a Hubble flow, have been quite successfully applied to supernovae. According to this model an inhomogeneous nova envelope has both an inner and an outer edge, while a still expanded white dwarf, undergoing nuclear burning could still lie below the inner edge. The optical thickness of the envelope decreases with time and the inner, more slowly expanding regions at greater optical depths, become visible in later stages of post maximum nova development. Shore (2008) explains by this model the shapes of certain emission line profiles. The narrowing with time of the Doppler broadened emission line profiles, seen sometimes after optical maximum, might in addition be considered as strong evidence for Hubble flow because of the increasing visibility of the more slowly expanding material with time. However Hubble flow neither explains the emission line widening, often observed in earlier stages after maximum (see Table 1), nor the rounded profiles typical of winds, seen in the earlier stages of for instance V603 Aql (Payne-Gaposhkin 1957) and V4169 Sgr (Scott et al. 1995).

3. Evidence for the presence of optically thick winds during outburst

Models adding optically thick winds are more elaborate, as they must take account of the complex phenomena revealed by the optical and ultraviolet observations of classical novae. As discussed in early papers by McLaughlin (1947, 1965), the outwards expansion velocities are higher in deeper layers, which are nearer the centre of the exploding star soon after optical maximum. More recently Seitter (1990) came to similar conclusions. McLaughlin explained the greater excitation/ionisation of the high velocity systems, by their being due to material in the more central regions of the envelope nearer the source of ionising radiation. From UV observations of nova V1974 Cyg Cassatella et al. (2003) found that, when the velocities of absorption lines belonging to the same system were compared, the velocities of lines of the more ionised atoms were somewhat larger (70 km s⁻¹ between the Fe ii lines and the Fe iii lines belonging to the principal system).

There are other more precise reasons of why it is necessary to believe in the presence of optically thick envelopes with increasing ejection velocities during the early stages after the explosions of classical novae. In the two papers of McLaughlin, just quoted, that conclusion is drawn when line emission and absorption from different systems are superposed. For instance, in the spectrum of DQ Her the principal system absorption of Sc ii 4247 Å remained strong and sharp in the longwards wing of the diffuse-enhanced emission of Fe ii 4233 Å. Moreover, that slowly developing nova showed partial or complete obliteration of the diffuse-enhanced absorption by overlying principal emission. The strong diffuse-enhanced Si ii multiplet (19) 6371 Å absorption was obliterated in later February 1935 by [O i] emission, unlike the Si ii 6347 Å line belonging to the same multiple. A similar argument was given by him for the obliteration of the strongest multiplet (19) line of Ti ii at 4395 Å in the spectrum of that nova. McLaughlin gives the same argument for the Orion system absorption of multiplet (1) Ni i lines in the spectrum of the fast nova V603 Aql. When one of these lines was absent, it had shifted into coincidence with an emission maximum of O i of the principal system.

What is decisive is the result of combining ultraviolet continuum observations with information derived from absorption line radial velocities. Cassatella et al. (2002) found that the ultraviolet spectra of classical novae generally show a change in the continuum temperature with decreasing optical brightness after optical maximum, this being also shown by the appearance as the nova fades in the optical, of lines of atoms with increasing ionisation (Cassatella et al. 2005). The measurements in 20 Å wide UV bands at 2885 Å and 1455 Å, that are free of strong line emission and absorption, indicate a rising colour temperature soon after optical maximum, which can later fall, possibly because of a contribution of the Balmer continuum. The rising colour temperatures are suggestive of a shrinking photosphere. Such a conclusion is also reached just assuming the bolometric luminosity constant during the fading of the optical continuum. The photosphere, which according to Cassatella et al. (2004) lasts about t√3, the time to fade 3 magnitudes, may have near maximum a size not much smaller than the whole envelope, because the beginning of the explosion is normally only a few days before maximum. For example it was only about 5 days before maximum for V1974 Cyg (Cassatella et al. 2003). Soon after the envelope is much larger than the photosphere. A detailed study by Friedjung (1987a) of FH Ser, fitting empirically the energy distribution from the ultraviolet to the near infrared with a Planck distribution, indicated that the photosphere had shrunk by a factor of more than 5 over several weeks. None-LTE modelling of the spectrum of V1974 Cyg by Short et al. (2001) indicated also a photospheric shrinkage by about a factor of 3, the photosphere being there defined as where the continuum optical depth at 5000 Å was equal to unity. In the case of a Hubble flow, as already stated, more slowly expanding material should have become more visible with time, as the optical thickness of each layer of the envelope decreased. But in fact V1974 Cyg showed an increase with time of the velocity of the principal system absorption, as usually occurs for classical novae. The same comment is also true for the diffuse-enhanced absorption lines of V1974 Cyg.

The behaviour of nova emission lines is less clear-cut (Table 1), but narrowing was seen when the width was only measured after the appearance of the diffuse-enhanced system as for V603 Aql, V 382 Vel and 1974 Cyg. Their emission line narrowing can then be associated with decreasing emission from the diffuse-enhanced system compared with that of the principal system, which can be both due to a decreasing wind mass loss rate and increasing ionisation with time of principal system material. V 1500 Cyg is particularly instructive as the appearance of
diffuse-enhanced absorption (Duerbeck and Wolf 1977) was associated with rapid line widening (Friedjung et al. 1999), followed by slower line narrowing (Boyarchuk et al. 1976).

Therefore, after the disappearance of the pre-maximum system, observations appear to require the presence of an optically thick wind, whose velocity increases with time, formed inside another region producing the principal system. The optical thickness of the latter becomes small after optical maximum, so allowing higher velocity deeper levels to become visible. The higher velocity regions of the wind, in deeper layers, should be then ejected later as long as this wind lasts. The ejection of the diffuse-enhanced and Orion systems, appear parts of the same physical process, that is wind production, directly related to the photospheric radius and the mass ejection rate at a particular time. Actually, using photospheric radii derived from Zanstra-type temperatures, Friedjung (1956) found that the diffuse-enhanced system absorption component velocities, of V603 Aql, RR Pic and DQ Her, which had post-optical maximum oscillations in their light curves, corresponded to what would be expected for the varying Orion system absorption component velocity, when the decreasing photospheric radius was very large. That suggests that the material producing the lower velocity diffuse-enhanced absorption, should be ejected earlier, (i.e. when the photosphere is larger), than that producing the Orion system. Let us also consider that the disappearance of the diffuse-enhanced system absorption has been explained by the collision of a faster moving inner discrete shell with that of the principal system; such an explanation was also recently suggested by Cassatella et al. (2004) for V1974 Cyg. However, what may be involved could rather be the collision of an absorbing cloud of the diffuse-enhanced system in the line of sight.

Let us note that a short lived Hubble flow before optical maximum during the “fireball” stage, can explain the properties of the pre-maximum system. The velocity of its absorption components sometimes decreases with time; a very large effect of this kind was observed for DQ Her. Perhaps velocity decreases of that system would be observed for all novae, if they were observed early enough. The always larger velocity of the principal system absorption component shown by Payne-Gaposchkin (1957) for classical novae after maximum, suggests that the principal system material sweeps up all those parts of the pre-maximum system, which have a lower velocity. Friedjung (1987b) indeed suggested that the principal system is formed by the sweeping up of pre-maximum material, by the faster optically thick wind. Difficulties with this explanation were however found by Cassatella et al. (2004), in their analysis of V1974 Cyg, so the situation appears to be less simple.

X-ray observations also suggest the presence of a wind, though they do not indicate whether the wind is optically thick in the optical. A shock front may be expected to be formed between a wind and the region of formation of the principal system, with the production of hot plasma and X-rays. A general review of X-ray observations has been given by Krautter (2008). Some of the observed X-rays are soft and are understood as being emitted by a hot white dwarf remnant in later stages of post optical maximum development. Harder X-rays with energies higher than ~1 keV are most probably produced in a hot shocked plasma. O’Brien et al. (1994) performed theoretical calculations, involving collisions between material ejected at different velocities, with a fast wind blowing out the confining slow wind. They gave an explanation for the detected X-rays of 838 Her, though their assumed constant mass loss rate of 4.74 × 10^{-9} M_⊙ yr^{-1} seems not realistic. Many other observers have also detected hard X-ray emission such as Balman et al. (1998) who derived a maximum luminosity of 0.8–2.0 × 10^{34} erg s^{-1} for V1974 Cyg. Mukai and Ishida (2001) as well as Orio et al. (2001) studied X-ray emission of V382 Vel. Tsujimoto et al. (2009) found for V458 Vul that a single temperature (0.64 KeV) hot plasma with a luminosity of 6 × 10^{34} erg s^{-1} in the 0.3–3 Kev band and an emission measure of 7 × 10^{57} cm^{-3}, due to the collision between a wind and slower moving outer material, may well explain the observations. Results of later observations of X-ray emission with the SWIFT satellite are given in recent papers, such as those by Page et al. (2009) of V598 Pup and by Ness et al. (2009) of V2491 Cyg. Page et al. (2009) explain the observed late hard X-ray emission of V598 Pup between 147 and 255 days after the outburst by collisions between material having differential motion between 400 and 800 km s^{-1}. However, Russel et al. (2007) found that the infrared lines had a HFWM of 2000 km s^{-1}, so the X-ray production may have there involved more complicated physics. These X-ray luminosities can be compared with those of normal O stars, where X-rays are thought to be produced by collisions inside their winds. Naze et al. (2010) found from XMN-Newton observations, that the mean log ratio of O star 0.5–10 KeV X-ray emission to the bolometric luminosity was −6.45 ± 0.51. Using the basic stellar parameters of Drilling and Landolt (2000), this result for an O5 main sequence star would correspond to a flux of 1.2 × 10^{33} erg s^{-1}, much smaller than the above mentioned X-ray fluxes of novae.

Finally let us note following the X-ray discussion, that collisions involving the wind and slower moving outer material, like in the case of spherical symmetry studied by O’Brien et al. (1994), have not been sufficiently examined up to the present time, to give predictions for novae of different classes. In addition instabilities can occur with the wind breaking up the principal system formation region. In that way holes and separate clouds may be created. Some of the faster unshocked cooler material might therefore overtake the lower velocity clouds and then settle down into a Hubble flow after the disappearance of the wind. In addition material belonging to the fastest regions of the pre-maximum system, which were not swept up by the principal system material, could also still be present, so contributing to a Hubble flow. Such a situation is difficult to calculate, making numerical estimates unreliable. Indications of that sort of structure of the ejected nebula of V1974 Cyg two years after outburst, with faster moving material at the outside, were given by Panagia (2002). In this connection we can also mention the work of Ederoclite et al. (2006) on V5114 Sgr, who found that the mass of Hα emitting clumps as well as their filling factor decreased with time; that can be explained if the clumps dissolved slowly into lower density more massive material, producing less emission.

We can conclude that though much more work remains to be done to understand all the processes involved and to refine the observational evidence, models including optically thick winds have a much larger power to explain many different sorts of observation. Nevertheless, at both very early and quite late times, the kinematics of certain regions can be one of a Hubble flow. A nova wind, unlike the more common O star winds, can in principle be accelerated by radiation pressure at large continuum optical depths, as for instance discussed by Friedjung (1966) and Kato and Hachisu (1994).

4. Novae with periodic photometric variations very early after the optical maximum

Photometric variation with a period consistent with the orbital period of the nova binary systems has been observed in a number...
Table 1. Temporal behaviour of typical novae

Nova	t_0(days)	line width	remarks
V1500 Cyg	3.6	w-n	(a) (1) (2)
V1493 Aql	7	n	(b) (3)
V603 Aql	8	n	(4)
V458 Vul	9	n	(5)
V1722 Aql	16	w-n	(6)
V2491 Cyg	21	n-w	(c) (7)
V382 Vel	21	n	(8)
V5114 Sgr	21	w	(9)
V1974 Cyg	42	n	(10)
PW Vul	97	w	(11)
RR Pic	150		(d) (12)
HR Del	230		(e) (13)

Symbols: n, w general narrowing/widening of emission lines' width with time, $n - w$ emission line narrowing before widening, $w - n$ emission line widening before narrowing.

Notes: after maximum (a) very rapid widening of the emission lines, (b) no absorption seen, (c) Ha width, probably no diffuse–enhanced absorption system seen, (d) width stable when seen, (e) width of each emission component of profile increasing.

(1) Friedjung et al. (1999), (2) Boyarchuk et al. (1976), (3) Arkipova et al. (2002), (4) Payne-Gaposchkin (1957), (5) Tarasova (2007), (6) Munari et al. (2010), (7) Munari et al. (2011), (8) Della Valle et al. (2002), (9) Ederoclite et al. (2006), (10) Cassatella et al. (2004), (11) Andrillat and Houziaux (1987), (12) Payne-Gaposchkin (1957), (13) Hutchings (1970)

of novae after the optical maximum. Here we discuss the most significant cases of two fast novae.

A classical case of such variations is V1500 Cyg, which showed periodic photometric variations as early as 10 days after maximum and perhaps even 5 days after maximum according to Rosino and Tempesti (1977). The spectroscopic line profiles showed signs of even earlier variations at about 3 days after maximum according to Hutchings et al. (1978). This nova is now understood as being a polar, that is as containing a white dwarf with a very strong magnetic field. In this framework, the decrease of period, understood as being the white dwarf’s rotation period (which is not far from the orbital period), can moreover be explained. The periodic photometric variations, found by Campbell (1976), were interpreted by a model with spherical symmetry. Hutchings et al. (1978) proposed a rotatingmarshlight model, with a polar axis inclined 50° to the line of sight. In later work Horne and Schneider (1989) studied 1981 radial velocity and flux variations. They concluded that the emission lines arose near the secondary component of the binary. The binary inclination was according to them equal to or more than 40°.

It should be noted that the emission lines of highly ionised atoms appeared later than the periodic variations of V1500 Cyg, according to the observations of Rosino and Tempesti (1977) and by Hutchings et al. (1978). For example He II, produced by the recombination of twice ionised helium, was only detected two weeks after maximum, which is explicable by supposing that radiation, able to doubly ionise helium, at wavelengths where the optical thickness of the wind was large, was absorbed at earlier dates, without needing to suppose deviations from spherical symmetry.

It is necessary to emphasize that the proposed deviations from spherical symmetry are those of the wind, which need not be those of the massive outer envelope. The rapidly disappearing wind would appear to have much less mass than the latter. Slavin et al. (1995) found that the image of the nebular ejecta of V1500 Cyg was nearly circular with randomly scattered enhancements; in addition they proposed a correlation between the aspect ratio of the nebular ejecta and the speed of development of novae after optical maximum, so that faster developing novae like V1500 Cyg have more spherical envelopes. However Downes and Duerebeck (2000) were doubtful about the statistical significance of the correlation.

The short period variations of V1493 Aql appear to be much more difficult to explain in a framework of spherical symmetry. Photometric variations with a period of 0.156 days were observed, the first signs being seen only 5 days after maximum, as found by Dobrotka et al (2005) and by Novak et al. (1999). The light curve moreover suggests the presence of eclipses. The development of this nova after maximum was slower than that of V1500 Cyg, with a value of t_0 of 7 days (see table 1). The lines seen in the spectrum appear to be not those characteristic of a high temperature small central object, needed for its luminosity to be near the Eddington limit. It was for this reason that Friedjung et al. (2006) and Dobrotka et al. (2006) conclude that V1493 Aql was an object with a much lower luminosity than that of a classical nova. On the other hand, most of the light curve of V1493 Aql, (except for the secondary peak which Hachisu and Kato (2010) suspected as being due to a magnetic field), and the light curve of V1500 Cyg, fit the universal decline law for the brightness of classical novae. Let it be noted that Bonifacio et al. (2000) found for V1493 Aql a non classical time variation in $B-V$, with the nova being apparently bluer near maximum.

We find however much less information for the less observed V1493 Aql than for the well observed V1500 Cyg. In fact the distance of the former of 4–5 kpc (Arkipova et al. 2002) Hachisu and Kato (2010) is more than 4 times that of the latter. Even much larger distances of 19 kpc and 26 kpc are estimated by Bonifacio et al. (2000) and Venturini et al. (2004).

5. Deviations from spherical symmetry

It is easy to see that a solution to the problem of variations over an orbital period early in the development of a nova after its explosion exists in principle, if the optically thick wind (or envelope) has large departures from spherical symmetry. In particular if the wind is considerably stronger near the poles with a considerably larger optical depth than near the equator, it might be possible to detect eclipses of the central binary. In that case the inclination of the orbit should be large. Explanations involving the presence of the companion star, rotation of the source of the wind and/or magnetic fields can indeed be imagined.

Preseence of the companion star

According to nova wind models, soon after maximum the companion star should be revolving in deep layers of the wind. One might expect, in a rather simplistic way, that such effects would produce a spiral disturbance in the wind, as was in fact suggested by Fabian and Pringle (1977). The bottom of the spiral should rotate with the orbital period, while if angular momentum is conserved in the wind, the top moves much more slowly, producing only long timescale variations. As the mass flux of the wind decreased, radiation from lower more rapidly rotating parts of the spiral would escape, so the variations would become more easily detectable. The period of such variations would decrease during the mass flux decrease, that is rapidly in the case
of rapidly developing novae after maximum like the fast novae V1500 Cyg and V1493 Aql. However, the observed variations are not of this nature.

According to the models of Kato and Hachisu (1994), the “drag” luminosity produced by the companion star’s motion in the outflow, should be small in most cases. However their calculations, made only for a one dimensional model, are unsuitable for predicting to what extent there should be differences between the wind in the plane of the orbit and perpendicularly to that plane. Better “2.5D” calculations (according to the authors) of the effects of the underlying binary system were performed by Lloyd et al. (1997). They take account of the “common envelope phase”, when the binary is far below the photosphere. The frictional drag of the companion star causes orbital energy and angular momentum to be transferred to the ejecta, resulting in a highly anisotropic flow. The calculations permit rotation about the symmetry axis, though the flow is constrained to be axisymmetric. The ejection velocity increases with time. Fast novae, with high ejection velocities, produced envelopes which were more spherical, while very low initial ejection velocity novae produced envelopes with density enhancements along the polar axis. However the two novae described above, with photometric variations early in their post optical maximum development, were fast with high ejection velocities. It is therefore not clear, to what extent such calculations are relevant to the present problem.

Rotation

Rotation has been invoked by other authors to explain asymmetries of the ejected envelope. Scott (2000) considered the cooling of the equatorial regions relative to the polar regions of the underlying white dwarf if it were rotating fast. In that case the pressure of the layers, and the Fermi temperature, needed to break electron degeneracy and produce a thermonuclear runaway, would be higher at the poles. The rate of energy production is indeed extremely sensitive to the temperature and material ejected early in the outburst, can show departures from spherical symmetry because of rotation. Other effects are however needed to shape the wind.

Scott (2000) recalls that the critical point of a rotating wind will be higher near the equator, where the terminal velocity is larger. In addition the flow near the equator is hindered by a “centrifugal barrier” there. He quotes work by Ruggles and Bath (1979), and by Kato and Hachisu (1994), who predicted higher photospheric wind velocities, when the critical radius is smaller, but makes no calculations himself on winds. Lamers and Cassinelli (1999) discuss rotating winds more generally, both for winds driven by a luminosity above the Thomson scattering limit, studied by Shaviv (2001). Outwards “centrifugal acceleration” reduces the effective gravity near the equator. Owocki (2004) examines the situation when the critical point is near the stellar surface. If von Zeipel’s theorem describes gravity darkening, the stellar radiation flux scales with the effective gravity, taking into account the “centrifugal force”. Then

\[F(\theta) = K (1 - \Omega \sin^2\theta) \]

Here \(F \) is the stellar surface radiation flux and \(K \) is a constant. \(\Omega \), the ratio of centrifugal force to gravity at the equator equals \(\frac{V_{\text{rot}}^2}{2GM} \), in terms of the stellar rotation velocity \(V_{\text{rot}} \), radius \(R \), and mass \(M \). \(\theta \) is the co-latitude. Then the effective Eddington parameter, which equals the ratio of radiative acceleration to effective gravity, is independent of latitude. When the distribution of the opacities of lines in the case of line driven winds in CAK theory follows a power law the mass flux at colatitude \(\theta \) turns out to be

\[\frac{m_\text{eff}'}{m_\text{eff}} = 1 - \Omega \sin^2\theta \]

The result is that the wind is weakest near the equator. The same sort of calculation can be made for the previously mentioned porosity modulated winds. Again assuming von Zeipel’s theorem, the same expression is found for \(m_\text{eff}'/m_\text{eff} \), when the luminosity is far above the Eddington limit (see Owocki 2004). It is clear that, as also for other sorts opacity variation, such rotational effects will only be large when the slowly moving layers near the base of the wind are not too far from rotational breakup. In the case of V1500 Cyg, for which the information is available, the rotation velocity of the white dwarf in quiescence of the order of a few km s^{-1} is far below the velocity of rotational breakup of the order of several thousands of km s^{-1}. Ejection of a wind from originally slowly moving outer layers of a white dwarf during the development of a nova outburst, would make the situation worse for any effect involving rotation, if the angular momentum of the ejected material were conserved.

Magnetic Fields

Magnetic fields will have a major effect, if the magnetic pressure is not much less than the pressure accelerating the wind. In order to make very approximate order of magnitude estimates, which can be indications about what are the conditions, when magnetic fields start to become important, it is easiest at the present stage of knowledge to refer to published calculations, assuming the continuity equation for spherical symmetry. Such estimates will fail when magnetic fields are stronger.

Kato and Hachisu (1994) made calculations for optically thick winds, where acceleration by a locally super-Eddington luminosity occurs above the critical point, due to a change of the theoretical OPAL opacity of the flow. In lower layers acceleration is by gas pressure and we can use their fig. 4 for a wind of a 1.0 M⊙ white dwarf with critical points at 0.2 R⊙ and 0.65 R⊙, to approximately estimate the gradients of gas pressure there. The order of magnitude of the gradient of the gas pressure accelerating the wind \(\rho d\psi / d\rho \) (\(\rho \) being the density, \(\psi \) the wind velocity and \(r \) the distance from the centre of the wind), should be compared with the order of magnitude of the gradient of the pressure of the magnetic field \(d|\mathbf{B}|^2 / (8\pi) \), needed to produce substantial deviations of the wind from spherical symmetry. When the continuity equation for spherical symmetry is valid, \(\rho \psi \) varies as \(r^{-2} \) and the pressure gradient of the wind equals \(2\psi \rho \omega (n/E) r^{-1} \) with \(n \) and \(\rho \) the values of \(n \) and \(\rho \) at a reference radius \(r_0 \), which we shall take as that at the critical
point. A dipole field varies at large distances from the dipole as r^{-3} and the gradient of the pressure of the magnetic field equals

$$\frac{d P_{\text{mag}}}{dr} = \frac{\mu_0 H_0}{c^2 r^4},$$

with H_0 equal to H at $r = r_0$. We find that, for the two critical points of 0.2 and 0.65 R_\odot, magnetic fields of about 10^{15} and 10^{16} Gauss are required near the white dwarf surface to have a substantial effect on a spherically symmetric wind at $r = r_0$.

No detailed models of the porous winds studied by Shaviv (2001) are available, for which the effect of magnetic fields can be estimated. However Kato and Hachisu (2005) modelled the Thomson scattering super-Eddington luminosity of V1974 Cyg, with an artificially reduced opacity, to take account of the clumpiness of the envelope. The fairly similar results for different reduction factors of the luminosity with a white dwarf mass of 1.0 M_\odot are shown in their figure 1. The average position of the critical point is at 10^{11} cm. The magnetic fields at $r = 10^{18}$ cm, needed to have a substantial effect in accelerating the wind near the critical point, are then of the order of 10^{15} Gauss.

The white dwarf of V1500 Cyg has a strong magnetic field, of the order of 35 Mega Gauss according to the estimates quoted by Warner (1995) in his table 6.8. Our estimates of the effect of a magnetic field, indicate that it might produce major deviations from spherical symmetry of its wind during outburst. As we have seen, modelling of the system by Hutchings et al. (1978) and by Horne and Schneider (1989) suggest a large inclination of the polar axis to the line of sight of more than 40$^\circ$, so the wind could be weak in the direction of the line of sight. Much less can be said about V1493 Aql, which has a larger distance. It is not in the Chandra X-ray source catalogue and its problem will requires further studies.

6. Conclusions

Firstly, we have emphasized that optically thick winds are almost certainly present in the early stages of a nova after its optical maximum. Conversely, it is difficult to make rival pure Hubble flow models fit the observations of those stages.

The winds may have large deviations from spherical symmetry with a maximum mass loss along the polar axis, while when the total mass in the wind is small compared with the total mass of the envelope, most ejected mass can be concentrated at the same time in a nearly spherical envelope. Such deviations may enable variations with a period of the order of the orbital period to be detectable soon after optical maximum. This could be the case of V1500 Cyg whose wind could be strongly affected by its magnetic field, but much less can be now said about V1493 Aql. The order of magnitude estimates given in the present paper are intended to stimulate more detailed theoretical and observational work, in particular including the effects of magnetic fields, could be crucial.

Acknowledgements. The author must thank Izumi Hachisu and Stan Woosley for useful discussions, as well as an anonymous referee who made useful suggestions for the first draft of this paper. Roberto Viotti improved the style.

Note in memoriam. Dr. Michael Friedjung passed away on October 22, 2011 in Paris just after having completed the present article to which he devoted his remaining energies. This work is the last of a long series of articles started 45 years ago, devoted to the study of the physics of classical novae during their explosive evolution. Michael Friedjung has been a worldwide known expert of interacting binaries; in particular, besides novae, he promoted important studies on symbiotic stars. He has also developed a useful tool, the self absorption curve method, to investigate hot sources with a rich emission line spectrum, in particular of Fe II, that can be applied to a large variety of astrophysical objects.

References

Andrillat, Y., Houziaux, L. 1987, A&A Suppl., 67, 111
Annuk, K., Kolka, I., Leedjari, L. 1993, A&A, 269, 15
Arkhipova, V.P., Burlak, M.A., Eupiov, V.F. 2002, Astron. Rep., 28, 100
Balman, S., Krautter, J., Ogelman, H., 1998, ApJ 499, 395
Bonifacio, P., Selvelli, P.L., Caffau, E, Gersh, 2000, A&A, 356, L53
Boyarchuk, A. A., Galinka, T. S., Gershberg, R. E., Krasnobaibov, V. I., Rachikovskaya, T. M., Shakhovskaya, N. I., 1976, Sov. Astron. Letters, 2, 166
Campbell, B., 1976, ApJ 207, L41
Cassatella, A., Altmare, A., González-Riestra, R., 2002, A&A, 384, 1023
Cassatella, A., Lamers, H.J.G.L.M., Rossi, C., González-Riestra, R., 2004, A&A 420, 571
Cassatella, A., Altmare, A., González-Riestra, R., 2005, A&A, 439, 305
Della Valle, M., Pasquini, L., Daou, D., Williams, R.E., 2002, A&A 390, 155
Dobrotka, A., Retter, A., Hric, L., Novák, R., 2005, in “The Astrophysics of Cataclysmic Variables and Related Objects”, ed. J.-M. Hameury & J.-P. Lasota, ASP Conf. Ser, 330, 163
Dobrotka, A., Friedjung, M., Retter, A., Hric, L., Novák, R., 2006, A&A, 448, 1107
Downes, R.A., Duerbeck, H.W., 2000, ApJ 120, 2007
Drilling, J.S., Landolt, A.U. 2000 in “Astrophysical Quantities”, fourth edition, ed A.N. Cox, Springer and AIP Press, 381
Drilling, H.W., Wolf, B., 1977, A&AS, 29, 297
Ederoclite, A., Mason, E., Della Valle, M., et al., 2006, A&A, 459, 875
Fabian, A.S., Pringle, J.E., 1977, MNRAS 180, 749
Friedjung, M., 1966, MNRAS, 132, 317
Friedjung, M., 1987a, A&A, 179, 164
Friedjung, M., 1987b, A&A, 180, 155
Friedjung, M., 1996, Mem. Astr. Soc. It., 67, 281
Friedjung, M., Mikolajewska, J., Mikojajewski, M., 1999, A&A, 348, 475
Friedjung, M., Dobrotka, A., Retter, A., Hric, L., Novák, A., 2006, Astrophys. Space. Sci. 304, 317
Friend, D.B, Abbott, D.C, 1986, ApJ, 311,701
Hachisu, I., Kato, M., 2010, ApJ., 709, 680
Horne, K., Schneider, D.P., 1989, ApJ., 343, 888
Hutchings, J.B., 1970, Publ. Dom Astrophys. Obs. 13, 347
Hutchings, J.B., Bernard, J.E., Margetish, L., 1978, ApJ, 224, 899
Kato, M., Hachisu, I., 1994, ApJ., 437, 802
Kato, M., Hachisu, I., 2005, ApJ., 633, L117
Krautter, J., 2008, in “Classical Novae”, second edition, ed. A. Evans, M.F. Bode 232
Lamers, H.J.G.L.M., Cassinelli, J.P., 1999, “Introduction to Stellar Winds”, Cambridge University Press
Lloyd, H.M., O’Brien, T.J., Bode, M.F., 1997, MNRAS., 284, 187
McLaughlin, D.B., 1947, PASP, 59, 244
McLaughlin, D.B., 1965 in “Colloque International sur les Novae, Supernovae, Novoïdes”, Centre National de la Recherche Scientifique, in discussion 123 also published in AnAp, 1964, 494
Mukai, K., Ishida, M., 2001, ApJ 551, 1024
 Munari, U., Henden, A., Valisa, P., Dallaporta, S., Rigbetti, G.L., 2010, PASP, 122, 898
 Munari, U., Siviero, A., Dallaporta, S., Cherini, G., Valisa, P., Tomasella, L., 2011, arXiv:1009.0822v1
Nažė, T., 2010, A&A, 506, 1055
Ness, J.U., et al., 2009, AJ 137, 4160
Novák, R., Retter, A., Lipkin, Y., 1999, IAU, 744
O’Brien, T.J., Lloyd, H.M., Bode, M.F., 1994, MNRAS., 271, 155
Oro, M., Farmar, A., Benjamim, R., et al., 2001, MNRAS, 326, L13
Owocki, S. P., 2004, in “Evolution of Massive Stars, Mass Loss and Winds”, ed. M. Heydari-Malayeri, Ph. Stee, J.-P. Zahn, EDP Sciences, 163
Page, K.L., Osborne, J.P., Read, A.M., Evans, P.A., Ness, J-U., Beardenmore, A.P., Bode, M.F., Schwartz, G.J., Starrfield, S., 2009, A&A, 507, 923
Panagia, N., 2002, in discussion, Mem. Societ. Astron. Ital, 73, 251
Payne-Gaposchkin, C, 1957, The Galactic Novae, North Holland
Paszynski, M., Lemoine, F., 1991, in “Physics of Classical Novae”, ed A.N. Cox, Springer and AIP Press, 381
Payseka, W.C., 1990, in “Physics of Classical Novae”, ed. A. Cassatella & R.Viotti, Springer, 79
Shaviv, N., 2001, MNRAS, 326, 126
Shore, S.N., 2008, in “Classical Novae”, 2nd edition, ed A. Evans, M.F. Bode, Cambridge, 194
Short, C.I., Hauschildt, P., Starrfield, S., Baron, E., 2001, ApJ, 547, 1057
Slavin, A.J., O’Brien, T.J., Dunlop, J.S., 1995, MNRAS, 276, 353
Tarasova, T.N., 2007, IBVS 5807
Tsujimoto, M., Takei, D., Drake, J.J., et al., 2009, PASJ 61, S69
Venturini, C.C., Rudy, R.J., Lynch, D.K., Mazuk, S., Puetter, R.C., 2004, ApJ, 128, 405
Warner, B., 1995, Cataclysmic Variable Stars, Cambridge University Press