Ketosteroid Standardized *Cissus quadrangularis* L. Extract and its Anabolic Activity: Time to Look Beyond Ketosteroid?

Atul N. Jadhav, Mohammed Rafiq, Rajendran Devanathan, Mohammed Azeemuddin, Suryakanth D. Anturlikar, Akhil Ahmed, Ramchandran Sundaram, U. V. Babu, Rangesh Paramesh

Department of Phytochemistry, 1Department of Pharmacology, 2Analytical Development Laboratory, 1Head, R and D Center, The Himalaya Drug Company, Makali, Tumkur Road, Bangalore 562 123, India

Submitted: 14-12-2015 Revised: 02-02-2016 Published: 11-05-2016

ABSTRACT

Background: *Cissus quadrangularis* (CQ) L. reported to contain 3-ketosteroids and have bone health benefits. **Aim:** This study aimed at establishing the relationship between the ketosteroid content and anabolic as well as bone health-promoting activities of various *Cissus* extracts in well-established orchidectomized (ORX) rat model. **Materials and Methods:** Supercritical carbon dioxide, ethyl acetate, and aqueous extracts (AE) of CQ L. were prepared and standardized for ketosteroid content by two methods used in commerce. Moreover, ketosteroid standardized extracts of this plant were evaluated for anabolic activity in rats in well-established ORX rat model. **Results:** The increase in the absolute weight was appreciable in the CQ-AE treated group. Similarly, with respect to bone parameters, a similar trend was seen. The mean bone density, strength, and calcium content were found to be highest in the group treated with CQ-AE compared to groups treated with other extracts. This study reveals for the first time that 3-ketosteroids are not linked to the beneficial activities on bone and highlights the need for extensive characterization of biological active principles from CQ L. **Conclusion:** In light of the above estimation studies, we believe that current standardization of *Cissus* extraction “3-ketosteroids” is incorrect. We also did not find any report suggesting the presence of androgenic steroids in this plant and hence the characterization based on “3-ketosteroids” is scientifically incorrect. This study highlights the insufficient understanding of biological active principles from CQ L and underlines the need for extensive bioactivity guided studies. **Key words:** Anabolic activity, bone health, *Cissus quadrangularis* L., ketosteroid, standardization

SUMMARY

- *Cissus quadrangularis* (CQ) L. reported to contain 3-ketosteroids and have bone health benefits.

- We did not find correlation between ketosteroid content obtained by conventional methods and its biological effect

INTRODUCTION

Cissus quadrangularis (CQ) (Synonyms: *Vitis quadrangularis* Wall. ex Wight; Family: *Vitaceae*) is a long fleshy climber with joined stem, leaf, and tendrils. It is distributed throughout India and known locally as “Hadjod (bone setter).”[1][2]

The entire parts (root, stem, and leaves) of the plant have been cited in both Ayurvedic and Unani systems for its medicinal values. Due to its bone ligations properties, the plant is referred to as “Asthisamharaka” in Sanskrit and “Hadjod” in Hindi. Traditionally, the stems of CQ L. are used in healing of fractures.[3][4] Various biological activities such as antihelminthic, aphrodisiac, anodyne, ophthalmic, and union promoting are attributed to this plant.[5][6] The plant is recommended for the treatment of anorexia, dyspepsia, colic flatulence, leprosy, hemolysis, otorhrea, chronic ulcer, tumors, epilepsy, fractures, inflammation, etc. It has been reported to contain three unsymmetric tetracyclic triterpenoids along with β-sitosterol, β-amyrin, and β-amyrone. The chemical structures of unsymmetric tetracyclic triterpenoids have been determined to beonocer-7-ene-3β, 21β-diol, onocer-7-ene-3β, 21α-diol, and 7-oxo, and onocer-8-ene-3β, 21α-diol.[6][7] Hexane extract of aerial parts of CQ L. has been identified to contain certain lipids and triterpenes - friedelan-3-one, taraxerol, and taraxeryl acetate.[6] Phytochemical investigation of CQ L. growing in Nigeria led to the isolation of two flavonoids which were identified as quercetin and kaempferol and three new stilbene derivatives, quadrangularis A, B, and C together with four known ones: Resveratrol, piceatannol, pallidol, and...
The presence of any official method, following two nonofficial methods are Ketosteroid analyses were performed by gravimetric methods and in the USA contain CQ L. extract standardized to ketosteroid content and suggest having anabolic activity. In the present communication, we aimed to establishing the relationship between the ketosteroid content and anabolic as well as bone health-promoting activities of various Cissus extracts in well-established orchidectomized (ORX) rat model. Different Cissus extracts were prepared, and ketosteroid content was analyzed by two different commercially used methods.

MATERIALS AND METHODS

Plant materials

Stems of CQ L. (Synonyms: Vitis quadrangularis Wall. ex Wight; Family: Vitaceae) was obtained from the adjoining areas of Nelamangala, Bengaluru, India (13.5°N 77.23°E), in December 2012 and was identified by a certified botanist. The sample of plant material was deposited in the herbarium (NPD/820/13), The Himalaya Drug Company, Bengaluru, India.

Extracts preparation

Ethyl acetate extract was prepared by macerating powdered stems (8.8 kg, mesh size 8–10) of CQ L. with ethyl acetate (25 L × 3) at room temperature and three different washes pooled together and concentrated in vacuo to yield CQ-EE (yield - 2.27% w/w). Aqueous extract (AE) was obtained from commercial batches used in Hadjod (CQ-AE, The Himalaya Drug Company) which in brief was prepared in an extractor by hot extraction with demineralized water at 80–90°C for 3 h. This process was repeated thrice, and extracted solution was pooled together, concentrated, and spray dried (yield - 10% w/w). CQ-supercritical fluid extract (CQ-SFE) was procured from Nisarga Biotech, Satara, India.

Solvents and chemicals

Solvents used were locally obtained from approved vendors and were of LR or AR grades. β-sitosterol and friedelin (Technical grade) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). The testosterone – Direct ELISA kit was obtained from Diagnostics Biochem Canada Inc., (Cat. No.: CAN-TE-250).

Ketosteroid analysis

Ketosteroid analyses were performed by gravimetric methods and in the absence of any official method, following two nonofficial methods are prevalent in commercial operation. In this study, ketosteroid analysis was performed using both methods for comparison [Scheme 1].

Method A

It includes dissolving 5 g of extract in 50 mL of 80% v/v methanol with warming. The residue available after filtration was rinsed with 5 mL each of 80% v/v methanol. Combined filtrates were concentrated to 25 mL and water (15 mL) was added. This was then partitioned with solvent ether which after washing was dried to constant weight which is 3-ketosteroid expressed as % w/w of dry extract.

Method B

This method is used by some of the manufacturers with slight modifications. It consists of extraction of the dry extract in diethyl ether. The filtered extract was first washed by alkali solution and then by water. The washed extract is then dried to constant weight and expressed as 3-ketosteroids on % w/w basis.

High-performance thin layer chromatography fingerprinting

All samples were dissolved in methanol (100 mg/mL) and were applied (10 μL) on precoated aluminum silica gel plates (TLC silica gel 60 F254, Merck, Darmstadt, Germany) using Linomat V applicator (band size; 13 mm, distance between two bands; 9 mm). The plates were then developed in a presaturated 20 cm × 10 cm twin trough glass chamber (Camag, Muttenz, Switzerland) saturated with the mobile phase using Whatman filter paper No. 1, solvent system: Hexanecyclacetate (8.2 v/v). It was visualized at 254 nm and was subsequently derivatized with anisaldehyde–sulfuric acid reagent. The length of chromatogram run was 10 cm. Densitometric scanning was performed using a Camag TLC scanner III in the reflectance-absorbance mode and operated by winCATS software (V 3.15, Camag, Minneapolis, United States).

Scheme 1: Ketosteroid analysis

Pharmacognosy Magazine, Apr-Jun 2016, Vol 12, Issue 46 (Supplement 2)
Anabonic effect of different solvent extracts of *Cissus quadrangularis* in orchidectomized rats

Experimental animals

Inbred 6-week-old male Wistar rats (120–140 g) were used, which were housed in standard conditions of temperature (22 ± 3°C), relative humidity (55 ± 5%), and light (12 h light/dark cycles) before and during the study. Normal group animals were fed with standard pellet diet (Provimi Animal Nutrition India Pvt. Ltd., India), and water *ad libitum*. The experimental protocols were approved by the Institutional Animal Ethics Committee of The Himalaya Drug Company, Bangalore, and the animals received human care as per the guidelines prescribed by the Committee for the Purpose of Control and Supervision on Experiments on Animals, The Ministry of Environment and Forests, Government of India. Animal experiments were conducted in accordance with the EEC Directive of 1986 for laboratory animal use and care. Animals were not found to show any signs of mortality pre- and post-experimentation.

Methodology

6-week-old rats (120–140 g) were ORX at the beginning of the study, and a group of sham-operated male rats were also included as intact control; the surgical procedures were carried out under aseptic conditions. The ORX animals were randomized into six groups of 10 each. Animals were maintained for 12 weeks after orchidectomy to allow for the maximum decrease in soleus muscle mass. Group I and II received vehicle and served as normal control and untreated positive (orchidectomized) control, respectively. Group III–Group V animals were treated CQ-EE, CQ-SFE, and CQ-AE, respectively, at a dose of 200 mg/kg body weight p.o./day, based on the animal doses used in the literature.[13,14] Group VI animals were treated with testosterone propionate at a dose of 5 mg/kg body weight once a week subcutaneously. Body weight and feed intake were recorded on day-1, and later once a week for 8 weeks. All the rats were maintained on normal diet, along with oral administration of respective test drugs. The treatment of respective groups was continued for 8 weeks. At the end of the treatment, blood was collected from retro-orbital sinus of overnight fasted animals and subjected for serum testosterone estimation. Animals were sacrificed, and the soleus, gastrocnemius, and levator ani muscle were dissected and weighed immediately for the estimation of anabolic activity. Femur bone was removed and subjected to bone density, strength, ash value, calcium, and phosphate. For androgenic activity, bulbis cavernous, glans penis, and the soleus, gastrocnemius, and levator ani muscle were dissected and subjected for serum testosterone estimation. Animals were sacrificed, and the soleus, gastrocnemius, and levator ani muscle were dissected and weighed immediately for the estimation of anabolic activity. Femur bone was removed and subjected to bone density, strength, ash value, calcium, and phosphate. For androgenic activity, bulbis cavernous, glans penis, and the soleus, gastrocnemius, and levator ani muscle were dissected and weighed.[16–18]

Estimation of femur bone volume, density, breaking strength, and bone mineral content

After removing the blood for biochemical analyses, the animals were sacrificed. The femur bones were removed and were freed of soft tissue using small scissors, tweezers, and cotton gauge. The bone was dried overnight in the oven and weighed. The left femur bone was subjected to the bone volume and density, which was measured by Archimedes principle as per the well-described procedure.[19,20] Bone volume (mL) and density were then calculated using the formula:

\[
\text{Bone volume} = \frac{(\text{Mass in air} - \text{Mass in water})}{\text{Density of water and bone}} = \frac{\text{Mass in air}}{\text{Volume (mL)}}.
\]

The right femur bone of all the animals was subjected to testing bone strength and bone mineral content, briefly; the breaking strength of femur bone was estimated using hardness tester.[15] The samples were then kept for ashing in tared fused silica crucibles, weighed, dried to a constant weight at 110°C, and ashed for 24 h at 650°C.[21] The ash weights were determined before dissolving in 1 mL concentrated hydrochloric acid. The samples were suitably diluted with deionized water and assayed for calcium and phosphorus. Since the femur density correlates well with bone calcium content, the bone calcium was expressed in mg/cc bone volume.

Statistical analysis

All the values were expressed as mean ± standard deviation, the results were statistically analyzed by one-way ANOVA followed by Dunnett’s post test, using Prism, GraphPad 4.03 software (Prism GraphPad 4.03 Software, Inc. CA, USA) (Windows version). The value *P* < 0.05 was considered statistically significant.

RESULTS

Ketosteroids from CQ have been the focus for standardization of commercially available extract [Figure 1]. The initial reports about ketosteroids go back to 1964 when reported an oxo steroid (m.p. 134–6°C, acetyl derivative m.p. 124°C) with α, β-unsaturated ketone.[22] Subsequently, in 1966, presence of other ketosteroids have also been reported.[23] The structures of these ketosteroids are not known, and commercially, their analysis has been performed by gravimetric methods. The reported method involves partition chromatography with ethyl ether, whereas other prevalent commercial method by ingredient manufacturers is direct extraction using diethyl ether.[14] [Scheme 1]. Both these methods predict the 3-ketosteroid content in the extract based on the gravimetric analysis. Due to the polarity of the solvents used in this analysis, phyto-sterols (along with other nonpolar/medium polar constituents) are invariably extracted in both method A and B. These methods are typically used commercially to estimate 3-ketosteroids in *Cissus* extract.

In this study, ketosteroid analysis of CQ-EE was found to be 1.40% w/w and 12.92% w/w, respectively, by method A and B. Method B yields significantly higher value of 3-ketosteroid as compared to method A. Due to the difference in the process of determination, this inherent difference [Scheme 1] in the 3-ketosteroid values is seen to be continued in the rest of the analysis [Table 1]. Due to the lack of an official method, both the results can be claimed for 3-ketosteroid content. Among the obtained three extracts, highest 3-ketosteroid content was found to be in CQ-SFE as it effectively extracts all the low polar to medium polar constituents. In high-performance thin layer chromatography fingerprint studies [Figure 2], CQ-SFE and CQ-EE show similar profile with presence of β-sitosterol in both extracts leaving only CQ-AE where no visible phytosterol pattern seen. In our studies, the standardized extracts of CQ were subjected to screening for anabolic and bone health-promoting properties in rat ORX model.
the ORX animals, extracts/samples having anabolic activity should show corresponding increase in the weight of androgen sensitive tissues, which forms the basis of present experiment. From 3-ketosteroid analysis, the activities should be highest in CQ-SFE, followed by CQ-EE and the least active was expected to be CQ-AE (CQ-SFE > CQ-EE > CQ-AE). However, in our studies with respect to the parameters pertaining to the anabolic and androgenic activity (absolute weight of androgen-sensitive tissues in ORX-rats) as summarized in Table 2, the results indicates that there was a trend of increase in the absolute weight of androgen-sensitive tissues which though was not found to be statistically significant. The increase in the absolute weight was appreciable in the CQ-AE treated group (CQ-AE > CQ-EE > CQ-SFE), similarly with respect to bone parameters [Table 3], a similar trend was seen. The mean bone density, strength, and calcium content were found to be highest in the group treated with CQ-AE compared to groups treated with other extracts. It was also observed that in none of the treatment group has increased the serum testosterone level to a significant extent as compared to untreated control [Figure 3]. All the above observations were in contrary to the existing understanding of ketosteroid constitution of CQ L.

DISCUSSION

Current understanding about the active principles of CQ is rather limited. Previously reported studies have shown bone healing activity to extracts ranging from hexane to aqueous. However, a recent study demonstrated that hexane extract showed beneficial effects in bone health in ovariectomized mice. Another similar study in female Wistar rats identified a phytoestrogenic fraction rich in friedelin to be active. We have also compared all the extract on TLC for phytoestrogen profile along with friedelin, β-sitosterol as representatives. Although above-mentioned studies were on ovariectomized animals suggestive more of estrogenic potential instead of effect on bone healing, a previous report in 2009 showed that EE increases bio-mineralization through upregulation of mitogen-activated protein kinase-dependent alkaline phosphatase activity in osteoblasts. Cissus is reported to contain certain stilbenes such as resveratrol, some of which are known to have a beneficial effect in bone health. However, the quantities reported earlier suggest that the presence of these compounds is minimal.

CONCLUSION

In light of the above estimation studies, we believe that current standardization of Cissus extraction “3-ketosteroids” is incorrect. We also

Table 2: Effect of CQ variants on absolute organ weight

Sample	Method A	Method B
CQ-EE	1.40	12.92
CQ-SFE	2.90	17.0
CQ-AE	0.21	0.37

CQ-SFE: Cissus quadrangularis-supercritical fluid extract; CQ-AE: Cissus quadrangularis-ethanolic extract

Table 3: Effect of CQ variants on Bone parameters

Bone parameters	Normal control	Positive untreated control	CQ-EE (200 mg/kg)	CQ-SFE (200 mg/kg)	CQ-AE (200 mg/kg)	TP (5 mg/kg)
Bone density (g/mL)	0.18±0.01	0.13±0.00	0.13±0.01	0.12±0.01	0.24±0.01**	0.25±0.01**
Bone strength (Kg/cm²)	2.06±0.54	2.85±0.28**	6.50±0.40	6.75±0.41	8.07±0.32*	7.77±0.54**
Bone calcium (% of ash weight)	42.80±0.58	36.05±1.03*	37.41±0.87	40.56±1.11	59.19±2.03**	56.73±1.48**
Bone phosphate (% of ash weight)	10.27±1.69	5.37±0.19**	5.35±0.12	5.77±0.19	5.95±0.29	5.74±0.31

P<0.05 compared to normal control, **P<0.01 compared to normal control, *P<0.05 compared to positive untreated control

Figure 2: High-performance thin layer chromatography fingerprint of different extracts with phytochemical standards. Spots from left to right: 1: Cissus quadrangularis-ethanolic extract; 2: Cissus quadrangularis-supercritical fluid extract; 3: β-sitosterol (Rf = 0.34); 4: Friedelin (Rf = 0.46); 5: Commercial sample; 6: Cissus quadrangularis-aqueous extract (Hadjod); Solvent system: Hexanes: ethyl acetate (8:2); Derivatization: Anisaldehyde-sulfuric acid reagent

Table 2: Total 3-ketosteroids by method A and B (% w/w)

Sample	Method A	Method B
CQ-EE	1.40	12.92
CQ-SFE	2.90	17.0
CQ-AE	0.21	0.37

CQ-SFE: Cissus quadrangularis-supercritical fluid extract; CQ-AE: Cissus quadrangularis-ethanolic extract; CQ-EE: Cissus quadrangularis-aqueous extract

Table 3: Effect of CQ variants on Bone parameters

Bone parameters	Normal control	Positive untreated control	CQ-EE (200 mg/kg)	CQ-SFE (200 mg/kg)	CQ-AE (200 mg/kg)	TP (5 mg/kg)
Bone density (g/mL)	0.18±0.01	0.13±0.00	0.13±0.01	0.12±0.01	0.24±0.01**	0.25±0.01**
Bone strength (Kg/cm²)	2.06±0.54	2.85±0.28**	6.50±0.40	6.75±0.41	8.07±0.32*	7.77±0.54**
Bone calcium (% of ash weight)	42.80±0.58	36.05±1.03*	37.41±0.87	40.56±1.11	59.19±2.03**	56.73±1.48**
Bone phosphate (% of ash weight)	10.27±1.69	5.37±0.19**	5.35±0.12	5.77±0.19	5.95±0.29	5.74±0.31

P<0.05 compared to normal control, **P<0.01 compared to normal control, *P<0.05 compared to positive untreated control

Pharmacognosy Magazine, Apr-Jun 2016, Vol 12, Issue 46 (Supplement 2)
Effect of
Pharmacognosy Magazine, The authors work for The Himalaya Drug Company, which markets CQ
Conflicts of interest
The Himalaya Drug Company, Bangalore, India for funding this work. Authors are thankful to Dr. Shyam Ramakrishnan and management of The Himalaya Drug Company, Bangalore, India for funding this work.

Acknowledgment
Authors are thankful to Dr. Shyam Ramakrishnan and management of The Himalaya Drug Company, Bangalore, India for funding this work.

Financial support and sponsorship
Authors are thankful to Dr. Shyam Ramakrishnan and management of The Himalaya Drug Company, Bangalore, India for funding this work.

Conflicts of interest
The authors work for The Himalaya Drug Company, which markets CQ extract as “Hadjod.”

REFERENCES
1. Anonymous. Quality Standards of Indian Medicinal Plants. New Delhi, India: Indian Council of Medical Research, Oxford University Press 2005;2:62-8.
2. Premila MS. Ayurvedic Herbs: A Clinical Guide to the Healing Plants of Traditional Indian Medicine. Binghamton: Haworth Press; 2006. p. 219-20.
3. Warrier PK, Nambiar VP, Ramakutty C. Indian Medicinal Plants: A Compendium of 500 Species. India: Orient Blackswan Publishers; 1994. p. 112.
4. Bhutani KK, Kapoor R, Atal CK. Two unsymmetric tetracyclic triterpenoids from Cissus quadrangularis. Phytochemistry 1984;23:407-10.
5. Gupta MM, Verma RK. Unsymmetric tetracyclic triterpenoids from Cissus quadrangularis. Phytochemistry 1990;29:336-7
6. Gupta MM, Verma RK. Lipid constituents of Cissus quadrangularis. Phytochemistry 1991;30:875-8.
7. Adesanya SA, Nia R, Martin MT, Boukamtha N, Montagnc A, Pais M. Stilbenoida derivatives from Cissus quadrangularis. J Nat Prod 1999;62:1684-5.
8. Mehta M, Kaur N, Bhatani KK. Determination of marker constituents from Cissus quadrangularis Linn and their quantitation by HPTLC and HPLC. Phytothem Anal 2001;12:91-5.
9. Singh G, Rawat P, Mauura R. Constituents of Cissus quadrangularis. Nat Prod Res 2007;21:522-8.
10. Udupa KN, Prasad G, Sen SP. The effect of phytoestrogenic anabolic steroid in the acceleration of fracture repair. Life Sci 1986;4:317-27.
11. Sharma N, Patni V. Isolation of phytosteroids from static tissue cultures of Cissus quadrangularis L. Vitexaceae– A potent bone healer. Plant Cell Biotech Mol Biol 2007;8:93-6.
12. Muthusami S, Senthilkumar K, Vignesh C, Ilangoon G, Stanley J, Sellamurugan N, et al. Effects of Cissus quadrangularis on the proliferation, differentiation and matrix mineralization of human osteoblast like SaOS-2 cells. J Cell Biochem 2011;112:1038-45.
13. Stohs SJ, Ray SD. A review and evaluation of the efficacy and safety of Cissus quadrangularis extracts. Phytother Res 2013;27:1107-14.
14. Rapal V. Standardization of Botanicals: Testing and Extraction Methods of Medicinal Herbs. New Delhi, India: Eastern Publishers; 2002. p. 79.
15. Aswar UM, Mohan V, Bodhanakar SL. Antiosteoporotic activity of phytoestrogen-rich fraction separated from ethanol extract of aerial parts of Cissus quadrangularis in ovariectomized rats. Indian J Pharmacol 2012;44:345-60.
16. Gao W, Reiser PJ, Coss CC, Phelps MA, Kearby JD, Miller DD, et al. Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in ovariectomized rats. Endocrinology 2005;146:4887-97.
17. Parr MK, Lautenbach-Leschowski U, Höfer N, Schönzer W, Diet P Anabolic and anabolic activity of 19-norandrosterone after oral and subcutaneous administration – Analysis of side effects and metabolism. Toxicol Lett 2009;188:137-41.
18. Hale DH. The effect of orchidectomy and administration of testosterone propionate or nandrolone phenyl propionate to ovariectomised rats on their growth and carcass composition. S Afr J Anim Sci 1973;3:39-44.
19. Kalu DN, Masoro EJ, Yu BP, Hardin RH, Hollis BW. Modulation of age-related hyperparathyroidism and seminal bone loss in Fischer rats by soy protein and food restriction. Endocrinology 1989;122:1847-54.
20. Donahue HJ, Mazzeo RS, Horvath SM. Endurance training and bone loss in calcium-deficient and ovariectomized rats. Metabolism 1988;37:741-4.
21. Rude RK, Kirchen ME, Gruber HE, Meyer MH, Luck JS, Crawford DL. Magnesium deficiency-induced osteoporosis in the rat: Uncopling of bone formation and bone resorption. Magnes Res 1999;12:257-67.
22. Sen SP. Active constituents (oxo steroids) of Cissus quadrangularis. Indian J Pharm 1964;26:247-8.
23. Sen SP. Studies on the active constituents of Cissus quadrangularis. I. Curr Sci 1966;35:317.
24. Puthornwichaiwat T, Suivayawat V, Sabaisata A, Piyachaturawat P, Soonthornthaveanon N, Prantharanug S. Antiosteoporotic effect of sequential extracts and freeze dried juice of Cissus quadrangularis L. in ovariectomized mice. Asian Biomed 2007;21:522-8.
25. Aswar UM, Bhaskaran S, Mohan V, Bodhanakar SL. Estrogenic activity of friedelin rich fraction (IND-HE) separated from ethanol extract of Cissus quadrangularis on in vitro differentiation of human osteoblast like SaOS-2 cells. J Cell Biochem 2011;112:1038-45.
26. Parishanjan D, Singhpanidt W, Chittaveekong T, Kongotkamaw S. Cissus quadrangularis extract enhances biomineralization through up-regulation of MAP-dependent alkaline phosphatase activity in osteoblasts. In Vitro Cell Dev Biol Anim 2009;45:194-200.
27. Ha H, Ho J, Shin S, Kim K, Sook S, Kim IH, et al. Effects of Eucommiae Cortex on osteoblast-like cell proliferation and osteoelastic inhibition. Arch Pharm Res 2003;26:929-36.

ABOUT AUTHOR
Dr. Atul N. Jadhav, holds bachelors in Pharmacy from Pune University. Post bachelors, he did his M.S. and Ph.D. in Natural Product Chemistry from NIPER-Mohali. He worked at National Center for Natural Products Research of University of Mississippi as a postdoctoral fellow on USFDA sponsored project - “Science base for Botanical.” Subsequent to this assignment, he has been working in various herbal drug industries in different capacities. He is currently working as Principal Scientist with the Phytochemistry Department of Himalaya Drug Company, Bengaluru, India. His current research interest includes the development of novel ingredients, standardization of herbs and extracts, and bioactivity guided fractionation of herbal extracts. His team has contributed several marketed products related to herbal pharmaceuticals, dietary supplements, and animal wellness. He has published 15 research articles in national/international journals and also presented work at national/international forums.