Health Effects of Airborne Exposures from Concentrated Animal Feeding Operations

Dick Heederik,1 Torben Sigsgaard,2 Peter S. Thorne,3 Joel N. Kline,3 Rachel Avery,4 Jakob H. Bonløkke,2 Elizabeth A. Chrischilles,3 James A. Dosman,5 Caroline Duchaine,6 Steven R. Kirkhorn,7 Katarina Kulhankova,3 and James A. Merchant3

1University of Utrecht, Utrecht, the Netherlands; 2University of Aarhus, Aarhus, Denmark; 3The University of Iowa, Iowa City, Iowa, USA; 4University of North Carolina, Chapel Hill, North Carolina, USA; 5University of Saskatchewan, Saskatoon, Saskatchewan, Canada; 6Laval University, Québec City, Québec, Canada; 7National Farm Medicine Center, Marshfield, Wisconsin, USA

Toxic gases, vapors, and particles are emitted from concentrated animal feeding operations (CAFOs) into the general environment. These include ammonia, hydrogen sulfide, carbon dioxide, malodorous vapors, and particles contaminated with a wide range of microorganisms. Little is known about the health risks of exposure to these agents for people living in the surrounding areas. Malodor is one of the predominant concerns, and there is evidence that psychophysiological changes may occur as a result of exposure to malodorous compounds. There is a paucity of data regarding community adverse health effects related to low-level gas and particulate emissions. Most information comes from studies among workers in CAFO installations. Research over the last decades has shown that microbial exposures, especially endotoxin exposure, are related to deleterious respiratory health effects, of which cross-shift lung function decline and accelerated decline over time are the most pronounced effects. Studies in naïve subjects and workers have shown respiratory inflammatory responses related to the microbial load. This working group, which was part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, concluded that there is a great need to evaluate health effects from exposures to the toxic gases, vapors, and particles emitted into the general environment by CAFOs. Research should focus not only on nuisance and odors but also on potential health effects from microbial exposures, concentrating on susceptible subgroups, especially asthmatic children and the elderly, since these exposures have been shown to be related to respiratory health effects among workers in CAFOs. Key words: air quality, asthma, biological agents, endotoxin, inflammation, odor, poultry, swine. Environ Health Perspect 115:298–302 (2007). doi:10.1289/ehp.8835 available via http://dx.doi.org/ [Online 14 November 2006]

Background and Recent Developments

Gases and vapors. A number of toxic gases and vapors are emitted by concentrated animal feeding operations (CAFOs) into the work and general environments. In particular, occupational studies have yielded information about exposure levels of ammonia (NH3), hydrogen sulfide (H2S), and carbon dioxide (CO2). The characteristic odor of a CAFO is the result of a complex mixture of these gases and many volatile and semivolatile organic compounds. Odor emissions are especially associated with quality of life issues for exposed populations. Specific gases such as H2S are being used as proxies to estimate or regulate exposure to the whole complex mixture. Although this approach has the advantage of simplicity and exposure estimates can be compared with guideline exposure values, it also has several limitations. Situations may arise where the surrogate compound does not co-vary with other toxicants in the mixture. The issue of which specific community health effects may result from CAFO emissions is open and controversial. There is limited evidence that symptom patterns may be the result of CAFO exposures in individuals living in their vicinity. Changes in immunoglobulin A responses have been observed in individuals and associated with exposure to odor, suggesting that psychophysiological responses can occur (Avery et al. 2004). The underlying mechanistic explanation is that these physiologic changes are most likely stress related; however, other mechanisms including sensitization may also contribute.

Very little information exists about lung function changes among populations living in the vicinity of CAFOs. Emission studies, in combination with modeling approaches, are helpful but not sufficient to relate exposures to health effects because the exposure depends on personal activity patterns and time spent near different sources. A recent report from Germany found that people residing in proximity to many CAFOs (>12 within a 500-m radius) experienced significantly increased prevalence of self-reported wheezing and decreased forced expiratory volume in 1 sec (FEV1), indicative of inflammatory effects of CAFO emissions in the lungs (Radon et al. 2005). However, a problem with the interpretation is that clear differences existed in sensitization rates between rural participants and the urban comparison population. In addition, it can be expected that differences existed within the rural population associated with childhood exposure patterns to animals on these farms compared with those experienced with CAFOs. This raises methodologic issues regarding appropriate comparison populations and confounders or effect-modifying variables that need to be included in multiple regression models to make accurate comparisons. Nevertheless, the results from this study are of interest and similar studies need to be undertaken in other populations with more subjects living in proximity to CAFOs.

Most information on potential health effects comes from working populations. Gases seem to play a limited role in the explanation of work-related respiratory symptoms in CAFO workers, but this may not be true for humans living in the surrounding areas. The distribution of adverse effects by age is different, and susceptibility may be an important issue, with children and elderly individuals belonging to the most vulnerable populations. Also, socioeconomic relationships between workers and companies, as opposed to neighbors and companies, are different, and this will have an impact on the willingness to tolerate hazardous exposures, and bear an increased burden of ill health.

Exposure inside CAFOs. In early studies on respiratory health of CAFO workers, several constituents of dust have been considered. Exposure to allergens from pigs and storage mites has received some attention, but most studies have shown that sensitization rates to swine urine proteins among farmers are relatively low and cannot explain the high symptom rates in CAFO workers (Brouwer et al. 1990; Cormier et al. 1991; Crook et al. 1991;
Harries and Cromwell 1982; Katila et al. 1981). Similarly, responses against storage mites seem to be explained mainly by cross-reactivity to house dust mites.

Early studies have shown that the CAFO industry environment is rich in microbial life. Kitkahefer et al. (1995) made detailed microbial characterizations of the environment in various types of CAFOs across seasons and showed that moderately elevated culturable mold levels exist with an overall mean concentration of 5.3 × 10³ colony-forming units/m³ and mean total organisms (orgs) concentrations of 1.1 × 10⁶ orgs/m³. The prevalent fungal types were Cladosporium and Alternaria in the summer and fall and yeasts Penicillium and Fusarium in the winter and spring. Mainly gram-positive bacteria are found in CAFOs, but gram negatives play an important role as well. As a result, endotoxin levels are clearly elevated. Although microbial markers other than endotoxin have been associated with respiratory health and specific respiratory inflammation (Zhiping et al. 1996), endotoxin has been most extensively studied in experimental studies with naive subjects and epidemiologic studies using a range of study designs.

Endotoxin exposure. Particulate exposure in the environs surrounding CAFOs occurs but has not received much attention to date. Considerable information exists about workplace exposure to dust from CAFOs (Schenker et al. 1998), and since the 1980s, endotoxins have been identified as important causal and toxic agents (Attwood et al. 1987; Donham et al. 1984).

Endotoxin is composed of lipopolysaccharides (LPS) and is a nonallergenic cell-wall component of gram-negative bacteria with strong proinflammatory properties. Endotoxins are ubiquitous and currently present inside CAFOs, the general environment, and house dust (Douwe et al. 1998, 2000; Michel et al. 1991; Peterson et al. 1964; Schenker et al. 1998; Thorne et al. 2005). Very high endotoxin exposure occurs in farming, particularly livestock farming (Kullman et al. 1998; Schenker et al. 1998). Elevated endotoxin levels are present in homes where children have regular contact with farm animals and in homes where pets are present (Douwe et al. 2000; Thorne et al. 2003; von Mutius et al. 2000). Larger numbers of family members, poverty, and roach infestation are also associated with higher endotoxin in homes (Thorne et al. 2003, 2005). Inhalatory endotoxin exposure has been associated with a range of respiratory health effects in both the workplace and the domestic environment (Douwe and Heederik 1997; Douwe et al. 2002). Because results of research on respiratory health effects of endotoxin exposure were focused on different aspects for the occupational and domestic environments, overall results are reviewed briefly here for both environments.

Work environment exposures and adult onset allergy and asthma. Early studies on endotoxin exposure and farming activities began in about 1982. Swine production facilities have especially been studied since that period. Endotoxin exposure is high for workers in these industries, and several large-scale studies suggest that the mean exposure varies between a few hundred up to 15,000 endotoxin units (EU)/m³ of air in situations where ventilation is limited because of extreme climatic conditions (Douwe and Heederik 1997). These exposures have been associated with increased symptoms, both respiratory and systemic (Rylander et al. 1989), across-shift lung function changes (Donham et al. 2000), reduced lung function in cross-sectional studies and accelerated decline in lung function in longitudinal studies (Vogelzang et al. 1998). Neutrophil-mediated inflammation has been observed in naive subjects and swine confinement workers after exposure that is limited to periods of a few hours (Jagielo et al. 1996; Sandström et al. 1992; Von Essen and Romberger 2003). The exact pathophysiology is not clear, but it is well established that it is mediated by an acute inflammatory response involving a variety of cytokines, including interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor (TNF)-α, and the subsequent massive recruitment and activation of neutrophils in the lower and upper airways. The inflammatory reactions are orchestrated by alveolar macrophages that carry specific endotoxin binding receptors [LPS binding protein, CD14, MD2, toll-like receptor (TLR) 4], which play a crucial role in the activation of these cells and the subsequent inflammatory processes (Gioannini et al. 2003). Considerable interindividual variability in response to endotoxin has been observed in endotoxin provocation experiments with naive subjects (Kline et al. 1999).

Recent studies suggest that environmental endotoxin exposure might protect against the development of atopy and possibly allergic asthma (Gerada et al. 2000a, 2000b; Liu and Leung 2000; Martinez and Holt 1999; von Mutius et al. 2000). A low prevalence for atopy, hay fever, and to a lesser extent, asthma has been observed in the children and adolescents of farming families and first-year university students with a farming background (Braun-Fahrlander et al. 1999; Ernst and Cormier 2000; Kilpeläinen et al. 2000; Portengen et al. 2002; Riedler et al. 2004; von Ehrenstein et al. 2000). Contact with livestock in the first year of life appeared to be one underlying determinant of this reduced risk. These observations are usually referred to as the “hygiene hypothesis.” Hence, exposure to endotoxin may reflect two sides of a coin: a) producing a protective effect with regard to atopy, and b) inducing inflammation that leads to nonallergic asthma. Two recent studies of adult farmers are in agreement with this hypothesis (Douwe et al. 2002). In the European Community Respiratory Health Survey, which investigates occupational asthma in 15,637 randomly selected people 20–44 years of age, the highest risk of asthma was shown for farmers [odds ratio (OR) = 2.6; 95% confidence interval (CI), 1.3–5.4] and agricultural workers (OR = 1.8; 95% CI, 1.0–3.2) (Kogevinas et al. 1999). An increased risk of asthma morbidity and mortality for farmers has been reported in several other studies as well (Fishwick et al. 1997; Neijari et al. 1996; Toren et al. 1991). Farmers involved in animal production seem to have the highest risk for asthma compared with subjects not involved in animal production (Melbostad et al. 1998). In the same study population, asthma in the absence of atopic sensitization to common allergens was associated with an increased exposure to endotoxin (Eduard et al. 2004). Other studies have reported conflicting results for the association of endotoxin exposure and asthma in farmers (Kimbell-Dunn et al. 1999; Omland et al. 1999; Vogelzang et al. 1999). A study among Dutch pig farmers showed that the prevalence of atopic sensitization decreased sharply with increasing occupational endotoxin exposure, with the lowest prevalence at levels above 750 EU/m³ (Portengen et al. 2005). A study from Iowa showed an increased prevalence of childhood asthma on farms with increasing numbers of swine (Merchant et al. 2005). This raises the question as to whether exposures that begin in adulthood may lead to lowered risk for atopic sensitization as well, as opposed to the prevailing belief that a healthy worker selection is responsible for this phenomenon.

Domestic endotoxin exposure and allergy and asthma in children. Most research on domestic endotoxin exposures has focused on the question of whether this exposure can explain the observations made in several studies describing a protective effect related to the development of atopy and allergic asthma in children who have grown up on small, traditional farms (Braun-Fahrlander et al. 1999; Klinberg et al. 2001; Portengen et al. 2002; Riedler et al. 2000; von Ehrenstein et al. 2000). It was indicated that contact with livestock reduced the risk of atopic asthma in children (von Ehrenstein et al. 2000) and young adolescents (Portengen et al. 2002). Although there are no specific protective factors were determined in these studies, it has been suggested that respiratory exposure to endotoxin may play an important role (Klinberg et al. 2001; von Ehrenstein et al. 2000), as it is well known, especially from occupational studies, that animal husbandry is associated with high...
exposures to bacterial endotoxin. However, exposures to other bioaerosol components such as fungi, gram-positive and gram-negative bacteria, bacterial DNA motifs, storage mites, and allergens from crops and animals are expected to be higher on farms and could also play a role.

The immune system is known to be skewed toward a prototypic direction during fetal and perinatal life. It has been proposed that proinflammatory microbial products, such as bacterial endotoxin, prokaryotic DNA, and glucans, markedly modulate the response of the immune system away from its tendency to develop atopic immune responses (Liu and Leung 2000; Martinez and Holt 1999). This may be a dose-dependent phenomenon, with low doses of these compounds providing some protective effects (as accounted for in the hygiene hypothesis of allergic asthma and atopy) and higher doses leading to a skewed and harmful response. Bacterial endotoxin and prokaryotic DNA can strongly induce IL-12 production by antigen-presenting cells, leading to the elaboration of interferon (IFN)-γ, IL-18, and other mediators. These mediators, many of which are transduced through one of the conserved TLR, are well recognized as promoting T helper (Th)1 (counter to Th2) responses. It has also been shown that the protective effect of farming exposure is regulated by a TLR2 response, as only children with the wild type of this gene were protected from allergy, given they were born on a farm (Eder et al. 2004). More recently, however, the promotion of “regulatory” responses (e.g., regulatory CD4+ T-cells and antigen-presenting cells such as dendritic cells and macrophages) has received prominent attention. These cells, when activated by microbial products referred to as pathogen-association molecular patterns (PAMPs) use IL-10 and TGF-β to mediate their attenuation effects; regulatory responses can downregulate both Th1 and Th2 immune responses. This category of inflammation may account for the observations that both Th1-mediated diseases (e.g., diabetes mellitus) and Th2-mediated diseases (asthma and atopic disorders) have been rising in industrialized countries over the past several decades where children are exposed to lower levels of microbial products and infections than in the past or in preindustrialized or agricultural societies. Further infections associated with eosinophilia (e.g., helminth infestations), that promote both Th2 and regulatory responses, can protect against asthma and atopy (Kline et al. 1998; Shirakawa et al. 1997; Yandanabhiksh et al. 2002).

To date few studies have produced direct in vivo evidence that endotoxin exposure may protect against the development of atopy by enhancing Th1 responses. A U.S. study of infants with documented wheezing episodes showed that endotoxin levels were correlated with IFN-γ-producing T cells (Th1) but not with IL-4-, IL-5-, or IL-13–producing cell proportions (Th2) (Gereda et al. 2000b). A Swiss–German study of farm children showed a decreased capacity to release IFN-γ, TNF-α, IL-10, and IL-12 in peripheral blood leukocytes upon stimulation with LPS, with increasing endotoxin load in the beds (Braun-Fahrlander et al. 2002), which could be a consequence of “exhaustion” of the atopic immune system as proposed in association to atopy by Kruger et al. (2004). Animal experimental studies with ovalbumin and endotoxin have not yielded consistent results.

Studies that found a consistent protective effect of farming exposure against atopy (Braun-Fahrlander et al. 2002; von Mutius et al. 2000) have shown only a weak protective effect against asthma itself, or they have shown a dual response in children with atopic asthma and allergy to be lower with increasing LPS exposure, and contrary to this, an increased prevalence of nonatopic wheeze with increasing LPS exposure (Braun-Fahrlander et al. 1999). There is considerable evidence that endotoxin exposure may both exacerbate pre-existing asthma and induce new asthma. Several studies have also shown that endotoxin in house dust is associated with exacerbations of preexisting asthma in children and adults (Michel et al. 1991, 1996, 1997). A cohort study in 499 infants with a familial predisposition to asthma or allergy showed that early indoor endotoxin exposure was associated with an increased risk of repeated wheeze during the first year of life rather than a decreased risk (relative risk = 1.6; 95% CI, 1.03–2.38) (Shirakawa et al. 1997). A recent study of endotoxin in 831 homes across the United States demonstrated that indoor endotoxin was a significant risk factor for asthma symptoms, medication use, and wheezing. The adjusted OR for households with both bedding and bedroom floor endotoxin exceeding 19.6 EU/mg compared with those below was 2.83 (95% CI, 1.01–7.87). This effect was seen regardless of allergy status (Thorner et al. 2005).

Thus, for asthma alone, there is consistent evidence that endotoxin is both a secondary and primary cause of asthma, and that this occurs through nonatopic (i.e., nonimmunoglobulin E–mediated) mechanisms.

Because of the health effects related to environmental exposures, exposure standards have been suggested (Bylander 1997). The Health Council of the Netherlands proposed a health-based occupational exposure limit of 50 EU/m3 over 8 hr for the working environment, which has been modified to 200 EU/m3 because of feasibility issues. The introduction of this standard has been postponed because agricultural industries cannot meet this level, but exposure reduction action plans are being implemented so that this level can be met in a few years.

Workshop Recommendations

Priority research needs.

• Candidate agents: Most research has been focused on specific gases, organic dust, or on bioaerosols containing endotoxins. Occupational studies indicate that exposures occur to other agents, such as antibiotics and disinfectants, and that these agents may be related to increased risks for respiratory disease.

• Odor: There is a need to investigate in greater detail psychophysologic responses related to malodor exposures in people living in proximity to swine CAFOs, exploring different potential mechanisms. The influence of factors such as mood and coping styles on perceived responses to odors and physiologic responses has been minimally investigated in relation to CAFO exposures.

• CAFO mixed exposures: CAFO exposures involve, by definition, exposure to complex mixtures. These include pulmonary irritants, inflammatory agents, odoriferous compounds, allergens, and antibiotics. Problems of the interaction in mixtures need to be addressed.

• Environmental particulate matter exposures: Studies of particulate-matter exposure in rural areas are needed because of the huge gap in knowledge. Exposure mechanisms for particulates are expected to be different than those for gases because particulates from CAFOs are biologically active and are known to be relatively large. Therefore, sedimentation out of the air is expected to be considerable at short distances. Resuspension in the air, walk-in, and take-home exposures are important candidate mechanisms of transfer leading to exposure indoors. Finally, exposures arising from the handling and distribution of manure to the fields as primary aerosol and secondary re-suspension need to be addressed.

• Analytical techniques: International harmonization of methods for bioaerosol exposure assessment is needed. In the case of harmonization of endotoxin assay, the United States should give serious consideration to adoption of the existing European Committee for Standardization protocol.

• Susceptibility and genetics: Only scarce information is available for evaluating the susceptibility of groups to the effects of organic dust exposure. The candidate genes responsible for changes in the reactions to specific agents have been only sporadically investigated.

• Susceptibility and gender: Recent studies from Canada suggest that women are more prone than men to develop asthma from
Outcome assessment: There is a need to collect information regarding respiratory health in people living in proximity to CAFOs. Respiratory symptom status and lung function should be measured, as has been done in confinement workers in the last decades. Information on sensitization rates to common allergens and presence of allergic responses is crucial, as clear differences exist between nonrural populations and within rural populations, depending on early childhood exposure to animals. Recent developments in outcome assessment include more sensitive markers of inflammation, for example, IL-1, IL-8, TNFα, C-reactive protein, and new sources to be studied by noninvasive approaches such as tear fluid, nasal lavage, exhaled breath condensate, and whole blood. These markers can elucidate the nature of the inflammatory response and facilitate a more detailed interpretation of the available information.

Design: Panel studies have been shown to be powerful tools in air pollution research and should be pursued in studies of communities exposed to organic dust and CAFO emissions. They enroll sensitive individuals as a starting point and consider exacerbations of disease over time as the end point of interest. Exposure assessment in these studies requires combinations of exposure modeling, use of time-activity patterns and personal exposure assessment to calibrate the modelling. Alternatively, large-scale studies using hospital admission data in combination with spatial analysis to map the patients' homes and schools to CAFOs can be a cost effective and useful additional approach.

Translation of science to policy:

Surveillance studies of workers in agricultural industries and panel studies in communities are warranted.

The livestock industry should promote good housekeeping practices locally and worldwide and develop hygienic strategies to reduce exposure in the workplace and emissions to the general environment. Occupational health and hygiene expertise is scarce in these industries and should be improved. The cost effectiveness of various technological solutions should be established.

Exposure standards should be promulgated for some key agents, including endotoxin, and where they exist, exposure levels should be maintained below the current standards. International guidelines for occupational and community health are needed for specific toxics.
a working group report. Scand J Work Environ Health 1992;309–312.
Sandström T, Bjermer L, Rylander R. 1992. Lipopolysaccharide
(LPS) inhalation in healthy subjects increases neutrophils,
lymphocytes and fibronectin levels in bronchoalveolar
lavage fluid. Eur Respir J 5:992–996.
Schenker M, Christiani D, Cormier Y, Dimich-Ward H, Doekes G,
Dosman J, et al. 1998. Respiratory health hazards in agricul-
ture. Am J Respir Crit Care Med 158(suppl, pt 2):S1–S76.
Shirakawa T, Enomoto T, Shimazu S, Hopkin JM. 1997. The
inverse association between tuberculin responses and
atopic disorder. Science 275(5296):77–79.
Thorne PS, Kuhnhakova K, Yin M, Cahn R, Arbes S, Zeldin DC.
2003. Endotoxin in house dust is associated with asthma
but not allergy [Abstract]. Am J Respir Crit Care Med
167(8):A470.
Toren K, Horte L-G, Jarvholm B. 1991. Occupation and smoking
adjusted mortality due to asthma among Swedish men. Br J
Ind Med 48:323–326.
Vogelzang PF, van der Gulden JW, Folgering H, Kolk JJ, Heederik
D, Preller L, et al. 1998. Endotoxin exposure as a major deter-
minant of lung function decline in pig farmers. Am J Respir
Crit Care Med 157:15–18.
Vogelzang PF, van der Gulden JW, Tielen MJ, Folgering H,
von Schayck CP. 1999. Health-based selection for asthma,
but not for chronic bronchitis, in pig farmers: an evidence-
based hypothesis. Eur Respir J 13:187–189.
von Ehrenstein OS, von Mutius E, Illi S, Baumann L, Böhm O, von
Kries R. 2000. Reduced risk of hay fever and asthma among
children of farmers. Clin Exp Allergy 30:187–190.
Von Essen S, Romburger D. 2003. The respiratory inflammatory
response to the swine confinement building environment:
the adaptation to respiratory exposures in the chronically
exposed worker. J Afric Safety Health 9(3):185–196.
Von Essen S, Romberger D. 2003. The respiratory inflammatory
response to the swine confinement building environment:
the adaptation to respiratory exposures in the chronically
exposed worker. J Afric Safety Health 9(3):185–196.