ABSTRACT & REFERENCES

DOI: 10.15587/2519-4852.2021.242997

STRUCTURAL MODIFICATION OF CIPROFLOXACIN AND NORFLOXACIN FOR SEARCHING NEW ANTIBIOTICS TO COMBAT DRUG-RESISTANT BACTERIA

p. 4–11

Halyna Hryhoriv, PhD, Department of Pharmaceutical Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
E-mail: galkagrigoriv@gmail.com
ORCID: https://orcid.org/0000-0001-6761-4478

Ilia Mariutsa, Postgraduate Student, Department of Organic Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-1545-967X

Sergiy M. Kovalenko, Doctor of Chemical Sciences, Professor, Department of Organic Chemistry, V. N. Karazin Kharkiv National University, Svobody sq., 4, Kharkiv, Ukraine, 61022
ORCID: https://orcid.org/0000-0003-2222-8180

Lyudmila Sidorenko, Doctor of Pharmaceutical Sciences, Professor, Department of Pharmaceutical Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0001-8431-8398

Lina Perekhoda, Doctor of Pharmaceutical Sciences, Professor, Department of Medicinal Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-8498-331X

Nataliia Filimonova, Doctor of Medical Sciences, Professor, Department of Microbiology, Virology and Immunology, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0001-7447-6579

Olga Geyderikh, PhD, Associate Professor, Department of Microbiology, Virology and Immunology, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-5244-6632

Victoriya Georgiyants, Doctor of Pharmaceutical Sciences, Professor, Department of Pharmaceutical Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0001-8794-8010

The aim of the work. Among all the representatives of four generations of fluoroquinolones ciprofloxacin (CIPRO) and norfloxacin (NOR) remain widely used and prescribed antibiotics in clinical practice. However, the problem of resistance towards them is gradually increasing. Thus, our investigation is dedicated to chemical modification of C-7 position of Ciprofloxacin and Norfloxacin ring as a promising solution to combat antibiotic resistance and open a pathway towards convenient synthesis of new fluoroquinolones derivatives.

Materials and methods. The subjects of the research were N-piperazine-substituted ciprofloxacin and norfloxacin. The methods of molecular docking and organic synthesis were applied in the study. The structures of the obtained compounds were confirmed by 1H NMR, 13C NMR, 19F NMR, LC/MS, IR, UV spectroscopy. The antimicrobial activity was measured by the method of double serial dilutions against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (ATCC 6633), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (NCTC 885-633) and diffusion in agar method against clinical strains.

The results. 7-(4-(2-Cyanoacetyl)piperazin-1-yl)-1-R-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acids were synthesized and their structures were confirmed. The obtained compounds showed the antibacterial activity on the reference level for double dilution method and exceeded control for “well” method.

Conclusions. The current investigation revealed the promising route for the expanding of the existing fluoroquinolones diversity. Pharmacodynamics and pharmacokinetics changes could be achieved by chemical modifications of C-7 position of the initial ring. Further research utilizing the obtained compounds as starting ones opens a promising way to novel active molecules synthesis and combating the problem of antibiotic resistance.

Keywords: fluoroquinolones, ciprofloxacin, norfloxacin, synthesis, antibiotic resistance, molecular docking, antibacterial activity

References
1. The evolving threat of antimicrobial resistance. Options for action. WHO. Available at: http://apps.who.int/iris/bitstream/handle/10665/44812/9789241503181_eng.pdf?sequence=1
2. Polk, R. E., Fox, C., Mahoney, A., Letcavage, J., MacDougall, C. (2007). Measurement of Adult Antibacterial Drug Use in 130 US Hospitals: Comparison of Defined Daily Dose and Days of Therapy. Clinical Infectious Diseases, 44 (5), 664–670. doi: http://doi.org/10.1086/511640
3. Birnbaum, D. (2003). Resistance CCaO. Antimicrobial resistance: a deadly burden no country can afford to ignore. Canada Communicable Disease Report, 29 (18), 157–164.
4. Feshchenko, Yu. I., Humeniuk, M. I., Denysov, O. S. (2010). Antibiotykorrezystentnist mikroorhanizmiv. Stan probleny ta shliakhyy vyriishenja. Ukrainskyi khimioterapevtychnyi zhurnal, 1-2 (23), 4–10.
5. Suaffan, G. A. R. Y., Mohammed, A. A. M. (2019). Fluoroquinolones structural and medicinal developments (2013–2018): Where are we now? Bioorganic & Medicinal Chemistry, 27 (14), 3005–3060. doi: http://doi.org/10.1016/j.bmc.2019.05.038
6. Bush, N. G., Diez-Santos, I., Abbott, L. R., Maxwell, A. (2020). Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules, 25 (23), 5662. doi: http://doi.org/10.3390/molecules25235662
7. Dalhoff, A. (2012). Global Fluoroquinolone Resistance Epidemiology and Implications for Clinical Use. Interdisciplinary Perspectives on Infectious Diseases, 2012, 1–37. doi: http://doi.org/10.1155/2012/976273
8. Fasugba, O., Gardner, A., Mitchell, B. G., Mnatzaganian, G. (2015). Ciprofloxacin resistance in community- and hospital-acquired Escherichia coli urinary tract infections: a
systematic review and meta-analysis of observational studies. BMC Infectious Diseases, 15 (1). doi: http://doi.org/10.1186/s12879-015-1282-4

9. Savchenko, T. I., Silin, O. V., Kovalenko, S. M., Musatov, V. I., Nikitchenko, V. M., Ivachtenko, A. V. (2007). Alkylation of 3-Phenyl-1H-pyrazolo[4,3-c]quinoline: Theoretical Analysis of Regioselectivity. Synthetic Communications, 37 (8), 1321–1330. doi: http://doi.org/10.1080/00397910701227077

10. Ivachtenko, A. S., Silin, O., Savchenko, T., Kovalenko, S., Nikitchenko, V. (2004). Synthesis of 5H-Pyrrozolo[4,3-c] quinolines. Heterocycles, 63 (8), 1883–1890. doi: http://doi.org/10.3987/com-04-10092

11. Bylov, I. E., Bilokin, Y. V., Kovalenko, S. M. (1999). Specific Features of Reactions of 2-Aminobenzotrifluoride and Anthranilates with Ethyl Cyanoacetate – Expeditious Routes to 3-Substituted 4-Amino- and 4-Hydroxyquinolin-2(1H)-Ones. Heterocyclic Communications, 5 (3). doi: http://doi.org/10.1515/hc.1999.5.3.281

12. Naidu, K. M., Nagesh, H. N., Singh, M., Sriram, D., Yogeewarsi, P., Gowri Chandra Sekhar, K. V. (2015). Novel amide and sulfonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors. European Journal of Medicinal Chemistry, 92, 415–426. doi: http://doi.org/10.1016/j.ejmech.2015.01.013

13. Black, T. A., McNicholas, P. M., Walker, S. S., Xu, Y., Ting, P. C. (2008). Patent/WO2008115385A2. Piperazine-substituted pyridazinone derivatives useful as glucan synthase inhibitors. Available at: https://patents.google.com/patent/WO2008115385A2/en

14. Pushpan, S., Ramachandran, U., Kundu, M., Anantharaman, V., Subramanian, S., Viswanathan R., Tadiparthi, R. et. al. (2008). Novel compounds and their use. Patent WP2009001192A2. Available at: https://patents.google.com/patent/WP2009001192A2/en

15. Mohapatra, R. K., El-ajaily, M. M., Alassbaly, F. S., Sarangi, A. K., Das, D., Maihub, A. A. et. al. (2020). DFT, anticancer, antioxidant and molecular docking investigations of some ternary Ni(II) complexes with 2-[(E)-[4-(dimethylamino)phenyl]methyleneamino]phenol. Chemical Papers, 75 (3), 1005–1019. doi: http://doi.org/10.1007/s11696-020-01342-8

16. Mohapatra, R. K., Perekhoda, L., Azam, M., Suleiman, M., Sarangi, A. K., Semenets, A. et. al. (2021). Computational investigations of three main drugs and their comparison with synthesized compounds as potent inhibitors of SARS-CoV-2 main protease (Mpro): DFT, QSAR, molecular docking, and in silico toxicity analysis. Journal of King Saud University – Science, 33 (2), 101315. doi: http://doi.org/10.1016/j.jksus.2020.101315

17. Volianskyi, Yu. L., Hrytsenko, I. S., Shyrobovok, V. P. (2004). Vyznachennia chutlyvosti mikroorhanizmiv do anty-bakterialnykh preparativ (2007). Metodychni vkazivky, 70.

18. Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41 (4), 1437–1451. doi: http://doi.org/10.1039/c1cs15219j

19. Sheldon, R. A. (2019). The greening of solvents: Towards sustainable organic synthesis. Current Opinion in Green and Sustainable Chemistry, 18, 13–19. doi: http://doi.org/10.1016/j.cogsc.2018.11.006

DOI: 10.15587/2519-4852.2021.243040
STUDY OF FACTORS AFFECTING THE IN VITRO RELEASE OF DICLOFENAC SODIUM FROM HYPROMELLOSE-BASED GELS

The aim of our study was to identify factors affecting the in vitro release of diclofenac sodium (DS) from hypromellose-based gels (HPMC).
Materials and methods. Gels with HPMC and liquids without HPMC were studied by viscosity-rotating viscometer method and spin probe electron paramagnetic resonance spectroscopy. Rheograms were used to determine the flow behavior and the apparent viscosity, and the EPR spectra were used to determine the rotational correlation time (τr) of the dissolved spin probes. The in vitro release tests were performed using vertical diffusion cells according to a validated procedure. The assay of DS and isopropyl alcohol (IPA) in the receptor medium was performed by high performance liquid chromatography (HPLC) and gas chromatography (GC) according to validated procedures, and the water content was determined using semi-micro method.

Results. The apparent viscosity of the gels increased with increasing HPMC content and depended on the HPMC grade. The high apparent viscosity of the gels did not affect the values of τr, of the dissolved spin probes. In viscous gels and Newtonian fluids, the composition of which corresponded to the dispersion medium of gels, the values of τr were identical and were in the range of rapid rotation, which is a prerequisite for similar and rapid release of the dissolved substances from gels and liquids. It was shown that the HPMC-based gel and Newtonian liquid without HPMC in terms of in vitro release parameters DS and IPA were equivalent. During in vitro testing the release of dissolved DS increased with increasing its concentration in the gel and depended on the dispersed state of DS. When the content of IPA was changed from 45.0 % to 22.5 %, the water absorption by the gel and the release of IPA increased, which was due to the decrease in the solubility of DS in the gel.

Conclusions. HPMC, which provided high apparent viscosity of the gels, did not affect the value of τr of the dissolved spin probes and the in vitro release of DS from the gels. The gel and Newtonian liquid were equivalent in terms of in vitro release of DS and IPA. The release of DS altered proportionally with the concentration of DS and depended on its dispersed state. As the content of IPA decreased, the release of IPA decreased, but the release of DS increased because of the decrease in the solubility of DS in the gel.

Keywords: hypromellose, gel, liquid, diclofenac sodium, isopropyl alcohol, viscosity, rotational correlation time (τr), in vitro release test (IVRT)

References
1. The European Pharmacopoeia (2019). European Directorate for the Quality of Medicines & HealthCare of the Council of Europe. Strasbourg, 5224.
2. Sheskey, P. J., Hancock, B. C., Moss, G. P., Goldfarb, D. J. (Eds.) (2020). Handbook of Pharmaceutical Excipients. London: Pharm. Press, 1296.
3. Lyapunov, A. N., Bezuglaya, E. P., Lyapunov, N. A., Kirilyuk, I. A. (2015). Studies of Carbonber Gels Using Rotational Viscometry and Spin Probes. Pharmaceutical Chemistry Journal, 49 (9), 639–644. doi: http://doi.org/10.1007/s11094-015-1344-3
4. Mašková, E., Kubová, K., Raimi-Abraham, B. T., Vllasaliu, D., Vohlidalová, E., Turánek, J., Mašč, J. (2020). Hypromellose – A traditional pharmaceutical excipient with modern applications in oral and ophthalmal drug delivery. Journal of Controlled Release, 324, 695–727. doi: http://doi.org/10.1016/j.jconrel.2020.05.045
5. Kolli, S., Vijaya, K., Murthy, P. N., Sirisha, K. V. R. (2018). Solubility Enhancement of Itraconazole by Hypromellose Formulated by Solution-Suspension Layering Technique. Research Journal of Pharmacy and Technology, 11 (11), 4850–4853. doi: http://doi.org/10.5958/0974-360x.2018.00882.x
6. Dharmalingam, K., Anandakalshami, R. (2019). Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications. International Journal of Biological Macromolecules, 134, 815–829. doi: http://doi.org/10.1016/j.ijbiomac.2019.05.027
7. Asare-Addo, K., Kaialy, W., Levi, M., Rajabi-Siahboomi, A., Ghori, M. U., Supuk, E. et. al. (2013). The influence of agitation sequence and isometric strength on in vitro drug release from hypromellose (E4M and K4M) ER matrices – The use of the USP III apparatus. Colloids and Surfaces B: Biointerfaces, 104, 54–60. doi: http://doi.org/10.1016/j.colsurfb.2012.11.020
8. Mason, L. M., Campizhe, M. D., Pygall, S. R., Burrey, J. C., Gupta, P., Storey, D. E. et. al. (2015). The influence of polymer content on early gel-layer formation in HPMC matrices: The use of CLSM visualisation to identify the percolation threshold. European Journal of Pharmaceutics and Biopharmaceutics, 94, 485–492. doi: http://doi.org/10.1016/j.ejpb.2015.06.019
9. Franke, F., Holm, P., Larsen, F., Steffansen, B. (2014). Interaction between fed gastric media (Ensure Plus®) and different hypromellose based caffeine controlled release tablets: Comparison and mechanistic study of caffeine release in fed and fasted media versus water using the USP dissolution apparatus 3. International Journal of Pharmaceutics, 461 (1-2), 419–426. doi: http://doi.org/10.1016/j.ijpharm.2013.12.003
10. Ghori, M. U., Ginting, G., Smith, A. M., Conway, B. R. (2014). Simultaneous quantification of drug release and erosion from hypromellose hydrophilic matrices. International Journal of Pharmaceutics, 465 (1-2), 405–412. doi: http://doi.org/10.1016/j.ij.pharm.2014.02.028
11. Derzhavnyi reiestr liakarskykh zasobiv Ukrainy. Available at: http://www.drlz.kiev.ua/
12. Gosudarstvennii reestr lekarstvennykh sredstv (GRLS). Available at: http://grls.rozminzdrav.ru
13. Altman, R., Bosch, B., Brune, K., Patrignani, P., Young, C. (2015). Advances in NSAID Development: Evolution of Diclofenac Products Using Pharmaceutical Technology. Drugs, 75 (8), 859–877. doi: http://doi.org/10.1007/s40265-015-0392-z
14. Buckingham, R. (Ed.) (2020). Martindale: The Complete Drug Reference. London: Pharmaceutical Press, 4912.
15. Seefried, L., Blyth, M., Maheshwari, R., McDonnell, S. M., Frappin, G., Hagen, M., Maybaum, N. Moreira, S., Pandit H. (2020). Penetration of topical diclofenac into synovial tissue and fluid of osteoarthritic knees: a multicenter, randomized, placebocontrolled, pharmacokinetic study. Therapeutic Advances in Musculoskeletal Disease, 12, 1–13. doi: 10.1177/1759720X20943088
16. The United States Pharmacopoeia, 41 – NF 36 (2018). The United States Pharmacopoeial Convention. Rockville. Available at: https://www.worldcat.org/title/united-states-pharmacopeia-2018-usp-41-the-national-formulary-nf-36/oclc/1013752699
17. Draft guideline on quality and equivalence of topical products (2018). CHMP/QWP/708282/2018. Available at: www.ema.europa.eu/en/quality-equivalence-topical-products
18. Ilić, T., Pintelić, I., Savić, S. (2021). The Implications of Regulatory Framework for Topical Semisolid Drug Products: From Critical Quality and Performance Attributes towards Establishing Bioequivalence. Pharmaceuticals, 13 (5), 710. doi: http://doi.org/10.3390/pharmaceutics13050710
The genus Salvia L. has more than 900 species distributed throughout the globe. 21 species are growing in Ukraine. All species of this genus have essential oils. Salvia officinalis and Salvia sclarea have been used in the culture and are widely used in medical practice. The chemical composition of other species of sage and the possibility of their use in pharmaceutical and medical practice are almost not studied. Taking into account the results of chemotaxonomic studies of species of the flora genus of Ukraine, their prevalence and prospects for introduction into the culture, for further studies were selected raw materials of S. grandiflora, S. pratensis and S. verticillata. The aim. The aim of the study was to conduct a chromatography-mass spectrometric study of the aboveground organs of S. grandiflora L., S. pratensis L. and S. verticillata L. to establish the prospects for the use of raw materials of these species in medical and pharmaceutical practice.
Materials and methods. The objects of the study were leaves of S. officinalis, leaves, stems and flowers of S. grandiflora, S. pratensis and S. verticillata, which were harvested on the basis of the botanical garden of Ivan Franko National University of Lviv. The research of volatile substances in the objects of the research was carried out by the method of GC-MS on the basis of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry of Zaporizhia State Medical University.

Results. As a result of the study, 243 substances were found in the objects of the study, of which 149 were identified. 77 substances were found in the leaves of S. officinalis, 80, 26 and 63 substances in the leaves, stems and flowers of S. grandiflora, respectively, in the leaves, stems and flowers of S. pratensis – 28, 30 and 48 substances, respectively, in leaves, stems and flowers of S. verticillata – 39, 22 and 39 substances, respectively. Dominant compounds among substances of terpenoid nature are: cyclofenchene, camphene, 1,8-cineole, α-thujone, β-thujone, camphor borneol, carophyllumene, humulene, viridiflorol, sabine, pyranone, pyrrole, phytol, kolavenol, β-copan, looliolide, pseudolimonene and spatulenol. Among the dominant substances, 8 were detected for the first time in these species: cyclofenchene, viridiflorol, sabine, pyranone, pyrrole, phytol, kolavenol, looliolide and pseudolimonene.

Conclusions. The leaves of S. officinalis, leaves, stems and flowers of S. grandiflora, S. pratensis and S. verticillata of the flora of the Ukraine were studied by chromato-mass spectrometric method. As a result of the study, 243 substances were identified, of which 149 were identified. Promising raw materials containing terpene compounds for S. grandiflora there are leaves, and for S. pratensis and S. verticillata – flowers, so they are promising agents for introduction into pharmaceutical practice.

Keywords: Salvia, leaves, flowers, stems, terpenes, chromatoo-mass spectrometry

References

1. Komarov, V. L. (1954). Salvia. Flora SSSR. Moscow-Leningrad, 21, 244–374.
2. Komarov, V. L. (1991). Rastitelnye resursy SSSR: TSvetkovye rasteniia, ikh khimicheskii sostav, ispolzovanie. Saint Petersburg: Nauka, 200.
3. Kamatou, G. P. P., Viljoen, A. M., Steenkamp, P. (2010). Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chemistry, 119 (2), 684–688. doi: http://doi.org/10.1016/j.foodchem.2009.07.010
4. Shanaida, M., Hudz, N., Korzeniowska, K., Wieczorek, P. P. (2018). Antioxidant activity of essential oils obtained from aerial part of some Lamiaceae species. International Journal of Green Pharmacy, 12 (3), 200–204.
5. Eidi, M., Eidi, A., Bahar, M. (2006). Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition, 22 (3), 321–326. doi: http://doi.org/10.1016/j.nut.2005.06.010
6. Tildesley, N., Kennedy, D., Perry, E., Ballard, C., Wenes, K., Schole, A. (2005). Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiology & Behavior, 83 (5), 699–709. doi: http://doi.org/10.1016/j.physbeh.2004.09.010
7. Mahdizadeh, R., Moein, S., Soltani, N., Malekzadeh, K., Moein, M. (2018). Study of molecular mechanism of Salvia species in prevention of diabetes. International Journal of Pharmaceutical Sciences and Research, 9, 4512–4521. doi: http://doi.org/10.13040/ijpsr0975-8232.9(11),4512-21
8. Eidi, M., Eidi, A., Zamanizadeh, H. (2005). Effect of Salvia officinalis L. leaves on serum glucose and insulin in healthy and streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 100 (3), 310–313. doi: http://doi.org/10.1016/j.ejep.2005.03.008
9. Bjarnason, I., Scarpignato, C., Holmgren, E., Olsson, M., Rainsford, K. D., Lanas, A. (2018). Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology, 154 (3), 500–514. doi: http://doi.org/10.1053/j.gastro.2017.10.049
10. Ghorbani, A., Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine, 7 (4), 433–440. doi: http://doi.org/10.1016/j.jtcme.2016.12.014
11. Zagayko, A. L., Kolisnyk, T. Y., Chumak, O. I., Ruban, O. A., Koshovy, O. M. (2018). Evaluation of anti-obesity and lipid-lowering properties of Vaccinium myrtillus leaves powder extract in a hamster model. Journal of Basic and Clinical Physiology and Pharmacology, 29 (6), 697–703. doi: http://doi.org/10.1515/jbcp-2017-0161
12. Nizhenkovska, I. V., Tsurban, O. O., Sedko, K. V. (2014). Shvaviia likarska – suchasni aspekti zastosuvannia (Ohiapad literatury). Fitoiterapiia. Chasopisy, 2, 58–61.
13. Raja, R. R. (2012). Medicinally Potential Plants of Labiatae (Lamiaceae) Family: An Overview. Research Journal of Medicinal Plant, 6 (3), 203–213. doi: http://doi.org/10.3923/rjmp.2012.203.213
14. Koshovy, O. N., Vovk, G. V., Akhmedov, E. Yu., Komissarenko, A. N. (2015). The study of the chemical composition and pharmacological activity of Salvia officinalis leaves extracts getting by complex processing. Azerbaijani Pharmaceutical and Pharmacotherapy Journal, 15 (1), 30–34.
15. Verkhovodova, Yu., Kireyev, I., Koshovy, O., Myha, M., Osoledchenko, T. (2020). The effect of common sage extracts on the intestinal microbiota in experimental infectious colitis. Georgian Medical News, 4 (301), 165–170.
16. Nikavar, B., Abolhasani, L., Izadpanah, H. (2008). Alpha-amylase inhibitory activities of six salvia species. Iranian Journal of Pharmaceutical Research, 7, 297–303. doi: http://doi.org/10.22037/ijpr.2010.779
17. Khan, A., Rehman, N., ALKhafry, K. M., Gilani, A.-H. (2011). Antidiarrheal and antispasmodic activities of Salvia officinalis are mediated through activation of K+ channels. Bangladesh Journal of Pharmacology, 6 (2), 111–116. doi: http://doi.org/10.3329/bjp.v6i2.9156
18. Hamidpour, M., Hamidpour, R., Hamidpour, S., & Shahleri, M. (2014). Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer. Journal of Traditional and Complementary Medicine, 4 (2), 82–88. doi: http://doi.org/10.4103/2225-4110.130573
19. Mashkovskii, M. D. (2010). Lekarstvennye sredstva. Moscow: OOO «Lzd-vo Novaia Volna», 1216.
20. Kovalenko, V. N. (2020). Compendium 2020 – Medicines. Kyiv: MORION, 2700.
21. Koshovy, O., Raal, A., Kovaleva, A., Myha, M., Illina, T., Borodina, N., Komissarenko, A. (2020). The phytochemical and chemotaxonomic study of Salvia spp. growing
in Ukraine. Journal of Applied Biology & Biotechnology, 8 (3), 29–36. doi: http://doi.org/10.7324/jabb.2020.083036.

22. Semenchenko, O. M., Tsurkan, O. O., Korablova, O. A., Burnaka, O. V. (2013). Determination of volatile compounds of essential oils of different species of genus of Salvia by chromatography-mass spectrometric method. Farmatevtsychnyi zhurnal, 1, 62–65.

23. Jasicka-Misiak, I., Poliwoda, A., Petecka, M., Buslovych, O., Shlyapnikov, V. A., Wieczorek, P. P. (2018). Antioxidant Phenolic Compounds in Salvia officinalis L. and Salvia sclarea L. Ecological Chemistry and Engineering S, 25 (1), 133–142. doi: http://doi.org/10.1015/j.eces-2018-0009

24. Khazarain, N. (2013). Identification of flavonoids in leaves of seven wild growing Salvia L. (Lamiaceae) species from Iran. Progress in Biological Sciences, 3 (2), 81–98. doi: http://doi.org/10.22059/PBS.2013.35842

25. Myha, M., Koshyovyi, O. Galymy, O., Iliina, T., Borodina, N., Vlasova, I. (2020). Phytochemical study of Salvia grandiflora and Salvia officinalis leaves for establishing prospects for use in medical and pharmaceutical practice. ScienceRise: Pharmaceutical Science, 1 (23), 23–28. doi: http://doi.org/10.15587/2519-4852.2020.197299

26. Ramí, K., Zheng Guo, L. (2011). Antimicrobial activity of essential oil of Salvia officinalis L. collected in Syria. African Journal of Biotechnology, 10 (42), 8397–8402. doi: http://doi.org/10.5897/ajb.10.2615

27. Khedher, M. R., Khedher, S. B., Chaieb, I., Tounsi, S., Hammami, M. (2017). Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI Journal, 16, 160–173. doi: http://doi.org/10.1719/excli2016-832

28. Gericke, S., Lübken, T., Wolf, D., Kaiser, M., Hannig, C., Speer, K. (2018). Identification of New Compounds from Sage Flowers (Salvia officinalis L.) as Markers for Quality Control and the Influence of the Manufacturing Technology on the Chemical Composition and Antibacterial Activity of Sage Flower Extracts. Journal of Agricultural and Food Chemistry, 66 (8), 1843–1853. doi: http://doi.org/10.1021/jacs.jafc.8b00581

29. Koshevoi, O. N. (2011). Amino-acid and monosaccharide compositions of Salvia officinalis leaves. Chemistry of Natural Compounds, 47 (3), 492–493. doi: http://doi.org/10.1007/s10600-011-9976-3

30. Dobrochavea, D. N., Kotox, M. I., Prokudin, Y. N., Barbarich, A. I. (1999). Opredelelivyy vysshikh rasteni Ukrainy. Kyiv: Naukova dumka.

31. Koshevoy, N., Zabolotny, A., Koshevoy, I., Kostenko, E. M., Rozhnova, T. (2019). Research of moisture-meter device for bulk and liquid materials. 29th International Scientific Symposium Metrology and Metrology, MMA. doi: http://doi.org/10.1109/mma.2019.8935983

32. Korobichuk, I., Bezvesilna, O., Kachniarz, M., Koshyovyi, M., Kvasnikov, V. (2018). Methods and Ways of Piezoelectric Accelerometers Fastening on the Objects of Research. Acta Physica Polonica A, 133 (4), 1112–1115. doi: http://doi.org/10.12693/aphyspola.133.1112

33. Derzhavna Farmakopeia Ukrainy. Vol. 1. (2015). Kharkiv: Derzhavne pidприємство «Українські наукові Farmakopeinii».

34. Krivoruchko, E., Markin, A., Samoilova, V. A., Iliina, T., Koshyovyi, O. (2018). Research in the chemical composition of the bark of sorbus aucuparia. Ceska a Slovenska Farmacie, 67 (3), 113–115.
CONCLUSIONS. The tendencies of regulatory policy in relation to cosmetic products in a number of foreign states and Ukraine are established. The analysis of the main provisions of the Technical Regulations for cosmetic products is carried out and the methodology of its introduction is developed.

Keywords: technical regulation, cosmetic products, Technical regulations for cosmetic products, standards, quality management system

References
1. Annual growth of the global cosmetics market from 2004 to 2020. Available at: https://www.statista.com/statistics/297070/growth-rate-of-the-global-cosmetics-market/
2. Cosmetics Market. Available at: https://www.lorealfinance.com/en/annual-report/2020/cosmetics-market-2-1-0/
3. Lebedynets, V. O., Kazakova, I. S. (2020). The analysis and determination of prospects for the development of the market of medicinal cosmetic products in Ukraine. Social Pharmacy in Health Care, 6 (2), 44–60. doi: http://doi.org/10.24959/sphcj.20.185
4. Pro zatverdzhennia Tehnikhchnoho rehamentu na kosmetichnyh tovarakh v Ukraini. Medyko-pravovi aspekty ta suchasna koniunktura na vnitrishnem rynku. Kyiv: FOP «Klymenko», 447.
5. Baitset, R. I., Kordiak, Yu. M. (2015). Aktualni problemy ta perspektivy rozvitku kosmetichnoi haluzi. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Avtomatyka, vymiruvannya ta keruvannya, 821, 44–49.
6. Burd, N. B., Hebriants, V. A., Polovko, N. P., Hryzodub, O. I. (2016). Likuvalna kosmetyka v Ukraini: realii ta perspektivy. Farmatsevtychnyi zhurnal, 6, 41–44.
7. Popko, O. V. (2016). Unifikatsiia vymoh tekhnichnoho rehamentu parfumerno-kosmetichnoho rynku Ukraini z normamy YeS: tovaroznavchi aspekty. Instytutualistsiia protsev yevropeiskh rynkakh: suspil’stvo, ekonomika, administruvannya. Rivne, 198.
8. Beg, M. R. (2020). Cosmetic-Regulations, Research Marketing challenges and global compliance: An overview. doi: http://doi.org/10.31219/osf.io/d8tzu
9. Lores, M., Celeiro, M., Rubio, L., Llompart, M., Garcia-Jares, C. (2018). Extreme cosmetics and borderline products: an analytical-based survey of European regulation compliance. Analytical and Bioanalytical Chemistry, 410 (27), 7085–7102. doi: http://doi.org/10.1007/s00216-018-1312-3
10. Monteiro Rodrigues, L., Fluhr, J. W. (2019). EEMCO Guidance for the in vivo Assessment of Biomechanical Properties of the Human Skin and Its Annexes: Revisiting Instrumentation and Test Modes. Skin Pharmacology and Physiology, 33 (1), 44–60. doi: http://doi.org/10.1159/000504063
11. Amberg, N. (2018). Environmentally conscious consumer behaviour in the cosmetics markets of the United States and Europe. Available at: https://www.researchgate.net/publication/338233673_ENVIRONMENTALLY_CONSCIOUS_CONSUMER_BEHAVIOUR_IN_THE_COSMETICS_MARKETS_OF_THE_UNITED_STATES_AND_
PROBLEMS OF FALSE MEDICINES’ DISTRIBUTION AND PROSPECTS OF COMBAT: SURVEY OF SPECIALISTS AND CONSUMERS RESULTS

Serhii Lebed, Postgraduate Student, Department of Organization and Economics of Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002, Head of Service, State Service for Medicines and Drug Control in the Rivne region, 16 Lypnia str., 38, Rivne, Ukraine, 33028

DOI: 10.15587/2519-4852.2021.243240

Alla Nemchenko, Head of Department Department of Organization and Economics of Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

E-mail: asnemchenko@ukr.net

ORCID: https://orcid.org/0000-0003-1601-8881

The aim: comparative analysis of the results of a questionnaire survey of pharmaceutical and medical professionals and consumers, conducted by the authors during 2019-2021 to identify opinions on which there are coincidences and differences, as well as an assessment of the problem of drug counterfeiting in Ukraine to develop approaches to prevent their spread.

Materials and methods. The study used scientific publications, as well as the results of a survey of specialists of the State Service of Ukraine for Medicines and Drug Control (State Medical Service) and its territorial bodies, pharmaceutical and medical professionals of health care institutions and consumers on the fight against drug falsification. The research was conducted using the methods of questionnaires, systematization and generalization.

Results. According to the results of a comprehensive questionnaire during 2019–2021, it was found that the share of CM in the Ukrainian pharmaceutical market is estimated at 5 % by a majority of respondents on average 58.5 %, including 59.7 % of experts of the State Medical Service, 42.3 % of pharmacy specialists, 11.4 % by doctors and 73.5 % by consumers. Respondents’ answers about the signs of drug falsification differ significantly, so most experts believe that this is a change in the usual signs (taste, smell, color), while pharmacy specialists – labelling in a foreign language, doctors – no therapeutic effect, for consumers it is a change in packaging design (labels) and a significantly lower price. The main sales channels of CM for experts and pharmacy specialists are commerce (68.7 % and 75.7 %, respectively), while the majority of consumers could not determine. Many experts and pharmacy specialists pointed to the need to introduce special security features of packaging in the form of 2d barcodes as the main method for protection and detection of CM (79.1 % and 39.6 %, respectively). Most of the surveyed pharmacy workers and consumers believe that the risk of purchasing counterfeit drugs is higher in the pharmacies of individual entrepreneurs or small pharmacy chains.

The main problem that hinders the effective fight against drug counterfeiting was the imperfect legislation (68.7 %). Regarding effective tools in the fight against counterfeit drugs, experts called a significant strengthening of the powers of the regulatory body – following the example of the FDA (70.1 %).

Conclusions. It is established that the most important priorities of the state policy for combating CM in Ukraine are the improvement of the system of state control and quality assurance of medicines, in particular 2d coding, as well as the need to strengthen the responsibility for drug falsification. The results of research on the problem of drug falsification indicate the feasibility of introducing a systematic survey for a wider range of respondents – professionals and consumers.

Keywords: falsification, medicines, questionnaires, expert evaluation, efficiency, experts, pharmaceutical specialists, doctors, consumers

References
1. Schneider, M., Ho Tu Nam, N. (2020). Africa and counterfeit pharmaceuticals in the wake of COVID-19. Journal
of Intellectual Property Law & Practice, 15 (6), 417–418. doi: http://doi.org/10.1093/jiplp/jpa0073

2. Counterfeit drugs 2021: Statistics and Facts on how Blockchain can fight the pandemic? (2021). Available at: https://vaultsecurity.io/counterfeit-drugs-2021

3. A study on the public health and socioeconomic impact of substandard and falsified medical products (2017). WHO. Available at: https://www.who.int/medicines/regulation/ssfcc/publications/SE-Study_EN_web.pdf?ua=1

4. Ciapponi, A., Donato, M., Gülmezoglu, A. M., Alconada, T., Bardach, A. (2021). Mobile apps for detecting falsified and substandard drugs: A systematic review. PLOS ONE, 16 (2), e0246061. doi: http://doi.org/10.1371/journal.pone.0246061

5. Chitre, M., Sapkal, S., Adhikari, A., Mullla, S. (2019). Monitoring Counterfeit Drugs using CounterChain. 2019 International Conference on Advances in Computing, Communication and Control (ICAC3). doi: http://doi.org/10.1109/icac3.2019.9036794

6. Felicity, T. (2021). Securing Each Dose: Reducing Falsification Risk with Dosage Level Authentication. Pharmaceutical Technology, 2, 29–31.

7. May, C. (2019). Counterfeit medicines – fake drugs and falsified medicines – are endangering lives. Available at: https://www.pharmout.net/counterfeit-medications-global-statistics/

8. Alifadl, A., Ibrahim, M., Maraghi, F., Mohammad, K. (2016). An examination of income effect on consumers’ ethical evaluation of counterfeit drugs buying behaviour: a cross-sectional study in Qatar and Sudan. Journal of Clinical and Diagnostic Research, 10 (9), IC01–IC04. doi: http://doi.org/10.7860/jcdr/2016/19526.4810

9. Funestrand, H., Liu, R., Lundin, S., Troein, M. (2019). Substandard and falsified medical products are a global public health threat. A pilot survey of awareness among physicians in Sweden. Journal of Public Health, 41 (1), e95–e102. doi: http://doi.org/10.1093/pubmed/fdy092

10. Tulegenova, A. R., Dilbarhanova, J. R., Sokurenko, I. A. (2018). Analysis of the results of pollution of pharmaceutical workers on the problem of falsification of pharmaceutical drugs and their illegal turnover on the pharmaceutical market of the Republic of Kazakhstan. Management, economies and quality assurance in pharmacy 1 (53), 63–71. doi: http://doi.org/10.24959/uekj.18.7

11. Gutorova, N. (2019). Vidpovidalnist za falsyfikatsiiu likarskykh zasobiv: chy stvorena v Ukraini naleznja pravova baza? Apteka, 2 (117). Available at: https://www.apteka.ua/article/485029

12. Galt, K., Fuji, K., Kaufman, T., Shah, S. (2019). Health Information Technology Use and Patient Safety: Study of Pharmacists in Nebraska. Pharmacy, 7 (1), 7. doi: http://doi.org/10.3390/pharmacy7010007

13. Cvetanovski, F., Asanova, B., Brezovska, K. (2016). Comparative analysis of EU and USA falsified medicine legislation. Macedonian pharmaceutical bulletin, 62, 681–682. Available at: https://core.ac.uk/download/pdf/80818116.pdf#page=681

14. Yolanda, R., Jean, C., Casauay, B., Paul I. (2016). Addressing the Barriers to Effective Monitoring, Reporting and Containment of Spurious/ Substandard/ Falsely-labelled/ Falsified/ Counterfeit Medical Products through Sustainable Multi-stakeholder Collaboration and Community/ Consumer-based Interventions. Final Report. Available at: https://www.who.int/medicines/areas/coordination/SSFFC_Report.pdf

15. Houlton, S. (2018). Tackling the problem of falsified medicines in the UK. Prescriber, 29 (7), 33–35. doi: http://doi.org/10.1002/psb.1690

16. Lain Abril, J., Holt, D. W. (2016). Falsified Medicines in the European Union and North America: What are we doing to Protect Public Health? Journal of Pharmacovigilance, 4 (3). doi: http://doi.org/10.4172/2329-6887.1000213

17. Cuomo, R. E., Mackey, T. K. (2014). An exploration of counterfeit medicine surveillance strategies guided by geospatial analysis: lessons learned from counterfeit Avastin detection in the US drug supply chain. BMJ Open, 4 (12), e006657. doi: http://doi.org/10.1136/bmjopen-2014-006657

18. Counterfeit medicine in America 9th Annual Drug Abuse Symposium (2018). Available at: https://www.in.gov/bi terpill/files/Safdar-Counterfeit-IN-AG-Opioid-Summit-2018-10-29-FINAL.pdf

19. Counterfeit medications a growing problem in Canada, warns new report (2018). Available at: https://www.ctvnews.ca/health/counterfeit-medications-a-growing-problem-in-canada-warns-new-report-1.3795239

20. Hensey, C. C., Gwee, A. (2016). Counterfeit drugs: an Australian perspective. Medical Journal of Australia, 204 (9), 344–344. doi: http://doi.org/10.5694/mja16.00105

21. Sur, S. (2021). Stvorennia, rozvytok i zanepad systemy borotby z falsyfikatsiieiu likarskykh zasobiv v Ukraini. Apteka, 3 (1274). Available at: https://www.apteka.ua/article/581247

DOI: 10.15587/2519-4852.2021.243361

COMPARATIVE ANALYSIS OF THE FATTY ACID COMPOSITION OF RAW MATERIAL OF RYE (KHAMARKA VARIETY) AND BARLEY (SHEDEV R VARIETY) OF UKRAINIAN SELECTION

p. 57–63

Ganna Tartynska, PhD, Assistant, Department of Chemistry of Natural Compounds and Nutritiology, National University of Pharmacy, Pushkinska str., 53, Kharkov, Ukraine, 61002

E-mail: annatartynskaya1984@gmail.com

ORCID: https://orcid.org/0000-0001-5107-7778

Iryna Zhuravel, Doctor of Pharmaceutical Sciences, Professor, Department of Chemistry of Natural Compounds and Nutritiology, National University of Pharmacy, Pushkinska str., 53, Kharkov, Ukraine, 61002

ORCID: https://orcid.org/0000-0001-8092-733X

Viktoriia Kyslychenko, Doctor of Pharmaceutical Sciences, Professor, Head of Department, Department of Chemistry of Natural Compounds and Nutritiology, National University of Pharmacy, Pushkinska str., 53, Kharkov, Ukraine, 61002

ORCID: https://orcid.org/0000-0002-0851-209X

Viktoriia Hutsol, PhD, Associate Professor, Department of Pharmacy, National Pirogov Memorial Medical University, Pyrkova str., 56, Vinnytsia, Ukraine, 21018

ORCID: https://orcid.org/0000-0003-1477-2186

Sowing rye (Secale cereale L.) and common barley (Hordeum vulgare L.) are annual herbaceous plants of the Poaceae family,
they are widely cultivated in many countries around the world as cereals and fodder crops. Sufficient raw material base of sowing rye and barley makes them promising sources for new drugs.

Materials and methods. The fatty acid composition in lipophilic fractions of seeds, stems and leaves of sowing (Khamarka variety) and common barley (Shedevr variety) was studied by gas chromatography. Results. As a result of the study, the quantitative content of 14 fatty acids in the stems and leaves of barley, 13 – in the leaves of rye and 12 – in the stems of rye and in both types of studied seeds was identified and established. In all types of the studied raw materials, unsaturated fatty acids were quantitatively predominant, the content of which prevailed in seeds of rye – 82.89 % and barley – 76.35 %. In stems of common barley their content was 64.04 %, leaves of common barley – 66.31 % of the amount. In stems and leaves of rye, the predominance of unsaturated fatty acids over saturated ones was insignificant: 49.00 % vs. 47.05 % and 53.70 % vs. 43.03 %, respectively. Among the unsaturated fatty acids, linoleic and linolenic acids dominated. Palmitic acid predominated among the studied raw materials in all types of studied raw materials

Conclusions. Quantitative content of fatty acids in seeds, stems and leaves of sowing rye (Khamarka variety) and common barley (Shedevr variety) was identified and established by gas chromatography. The results of the research indicate a rich fatty acid composition of the studied raw materials and can be used to create drugs based on them

Keywords: Rye (Khamarka variety), common barley (Shedevr variety), fatty acid composition, gas chromatography

References

1. Cardiovascular diseases statistics. Eurostat. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cardiovascular_diseases_statistics

2. Sokola-Wysoczkańska, E., Wysoczkiński, T., Wagner, J., Czyż, K., Bodkowski, R., Lochyński, S., Patkowski-Sokola, B. (2018). Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders – A Review. Nutrients,10 (10), 1561–1582. doi: http://doi.org/10.3390/nu10101561

3. Bulba, P. O., Hubskyi, I. S. (2017). Faktory ryzyku khorob sertso-sudynnoi systemy v ramkah plaktatychnych zakhodiv. Aktualni problemy ta perspektyvy rozvytku pryrodnoi polityky ta prodovolstva Ukrainy, 525.

4. Buts, M. A. (2016). Terms of origin, prophylaxis and treatment of cardiovascular illnesses of children and teenagers. Molodyi vchynyi, 1, 9–13.

5. Sakhanda, I. V. (2018). Statistics of the incidence of some varieties of barley and sorghum grains. Grasas y Aceites,49 (8), 4090–4096. doi: http://doi.org/10.1021/jf0101758

6. omega-3 fatty acid medicines no longer considered effective in preventing heart disease (2019). European Medicines Agency, 1, 19056–19058.

7. Del Gibbo, L. C., Imamura, F., Aslibekyan, S., Marklund, M., Virtanen, J. K. et. al. (2016) 6-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Internal Medicine, 176 (8), 1155–1166. doi: http://doi.org/10.1161/circ.129.suppl_1.p357

8. Andreasen, M. F., Landbo, A.-K., Christensen, L. P., Hansen, Å., Meyer, A. S. (2001). Antioxidant Effects of Phenolic Rye (Secale cereale L.) Extracts, Monomeric Hydroxycinnamates, and Ferulic Acid Dehydrodimers on Human Low-Density Lipoproteins. Journal of Agricultural and Food Chemistry, 49 (8), 4090–4096. doi: http://doi.org/10.1021/jf0101758

9. Gozukirmizi, N., Kaarli, E. (2017). Barley (Hordeum vulgare L.) improvement past, present and future. Brewing Technology. IntechOpen, 49–78. doi: http://doi.org/10.5772/interopen.68359

10. Kulichová, K., Sokol, J., Nemeček, P., Máliarová, M., Malíar, T., Havrlentová, M., Kraje, J. (2019). Phenolic compounds and biological activities of rye (Secale cereale L.) grains. Open Chemistry, 17 (1), 988–999. doi: http://doi.org/10.1515/chem-2019-0103

11. Chiknavati, T., Miftahudin, Gustafson, J. P. (2013). Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Simple Sequence Repeat Variation within Secale spp. (Poaceae). HAYATI Journal of Biosciences, 20 (4), 163–170. doi: http://doi.org/10.4308/hjb.20.4.163

12. Bagci, A., Dursun, N., Ozcan, M. M., Tamkoc, A., Ozer, I. (2019). The Oil Yield, Mineral Content, and Fatty Acid Compositions of Some Rye (Secale cereale) Grains. Irons journal of chemistry and chemical engineering, 38 (5), 285–292.

13. Derzhavnyi reiestr sortovy solryn, prydatnykh dlia poshyrennia v Ukraini na 2021 rik (2021). Kyiv: Ministerstvo ahrarnoi polityky ta prodovolstva Ukrainy, 525.

14. Tartynska, G. S., Kyslychenko, V. S., Popyk, A. I. (2018). The study of macro- and microelement composition of rye and barley. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 10 (2), 314–317.

15. Tartynska, H. S., Zhuravel, I. O., Kyslychenko, V. S., Hutson, I. V., Martynov, A. V. (2021). Doslidzhennia aminokyslotnogho skladu travy yachmenyu zvychnainogo i zhyta posivnomo. Medychna ta klinichna khimiia, 2, 98–103.

16. Pietkova, I. B., Unhurian, L. M., Horiacha, L. M., Kyslychenko, V. S., Zhuravel, I. O., Kuznietsova, V. Yu., Panasenko, O. I. (2020) Composition of fatty acids in Centaurea cyanus (L.). Ceska a Slovenska Farmacie, 69, 194–197.

17. Pinkevych, V. O., Dababneh, M. F., Burda, N. Y., Zhuravel, I. O. (2021). Fatty acid composition of night-scented stock (Matthiola bicornis (Sibth. & Sm.) DC.) raw materials. Current Issues in Pharmacy and Medical Sciences, 34 (1), 34–41. doi: http://doi.org/10.2478/cipms-2021-0007

18. Osman, R. O., El-Gelil, F. M. A., El-Noamany, H. M., Dawood, M. G. (2000). Oil content and fatty acid composition of some varieties of barley and sorghum grains. Grasas y Aceites, 51 (3), 157–162. doi: http://doi.org/10.3989/gya.2000.v51.i3.472

19. Magnusdottir, O. K., Landberg, R., Gunnarsdottir, I., Cloetens, L., Åkesson, B., Rosqvist, F. et. al. (2014). Whole Grain Rye Intake, Reflected by a Biomarker, Is Associated with Favorable Blood Lipid Outcomes in Subjects with the Metabolic Syndrome – A Randomized Study. PLoS ONE, 9 (10), e110827. doi: http://doi.org/10.1371/journal.pone.0110827

20. Makhatova, B. G., Datkhayev, U. M., Burda, N. Y., Kyslychenko, V. S. (2016). Fatty acids from Verbascum songaricum herb. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7 (2), 277–279.

21. Molfino, A., Gioia, G., Fanelli, F., Muscaritoli, M. (2014). The Role for Dietary Omega-3 Fatty Acids Supplementation in Older Adults. Nutrients, 6 (10), 4058–4072. doi: http://doi.org/10.3390/nu6104058

22. Zheng, C. J., Yoo, J.-S., Lee, T.-G., Cho, H.-Y., Kim, Y.-H., Kim, W.-G. (2005). Fatty acid synthesis is a target for antibacterial
activity of unsaturated fatty acids. FEBS Letters, 579 (23), 5157–5162. doi: http://doi.org/10.1016/j.febslet.2005.08.028

23. Watson, K. S., Boukloufi, I., Boweman, M., Parson, S. H. (2021). The Relationship between Body Composition, Fatty Acid Metabolism and Diet in Spinal Muscular Atrophy. Brain Sciences, 11 (2), 131. doi: http://doi.org/10.3390/brainsci11020131

DOI: 10.15587/2519-4852.2021.201074

RESEARCH OF APPROACHES TO FORMATION OF LEGISLATION IN THE SPHERE OF ONLINE RETAIL SELLING (DISTANCE SELLING) OF MEDICINES

p. 64–70

Alina Volkova, PhD, Associate Professor, Department of Social Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkov, Ukraine, 61002

ORCID: https://orcid.org/0000-0003-2718-5407

Galyna Boldar, PhD, Associate Professor, Department of Social Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkov, Ukraine, 61002

ORCID: https://orcid.org/0000-0001-8497-4977

Oksana Ryschenko, PhD, Assistant, Department of Social Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkov, Ukraine, 61002

E-mail: hakamachi@gmail.com

ORCID: https://orcid.org/0000-0002-8542-4333

Iana Proskurova, PhD, Assistant, Department of Social Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkov, Ukraine, 61002

ORCID: https://orcid.org/0000-0001-9429-0149

The aim of the study is to study approaches to the formation of legislation in the field of the online retail selling (distance selling) of medicines in the EU with further development of areas for improvement of phar-maceutical legislation of Ukraine.

Materials and methods. During the research, scientific methods were used, in particular, system-analytical, content analysis, comparative legal, graphic, etc.

Results. The main provisions of the EU Directives 2000/31/EU “On some legal aspects of information services, in particular, electronic commerce; in the internal market” (Directive on electronic commerce) and EU Directive 2001/83 EU “On the Community code relating to medicinal products for human use”, the Council of Europe Convention “On counterfeiting medical products and similar involving threats to public health”; Implementing Regulation of the EU Commission No. 699/2014 of June 24, 2014, as well as the Law of Ukraine “On Electronic Commerce”, “On medicines”, Resolution of the Cabinet of Ministers of Ukraine (CMU) of March 23, 2020 No. 220, of November 30, 2016 No. 929 and others.

Conclusions. The main directions of improving the current legislation of Ukraine in the field of the online retail selling of medicines are proposed. The necessity to supplement the Regulation “On the State Service of Ukraine for Medicines and Drug Control” (Resolution of the Cabinet of Ministers of Ukraine of November 30, 2016 No. 929) with certain norms has been substantiated. In particular, to impose on this state body the obligation to register business entities that plan to sell drugs using information and communication means, as well as maintain their Register

Keywords: medicines, e-retail, information and communication facilities, licensing conditions, pharmaceutical legislation, regulations

References

1. Association Agreement between the European Union and Ukraine Association Agreement between the European Union and Ukraine. Government portal. Available at: https://www.kmu.gov.ua/en/yevropejska-integraciia/yugoda-pro-associacu

2. Pro ratyfikatsiu Uhody pro asotsiatsiu mizh Ukrainoiu, z odnii stony, ta Yevropeiskym Souzom, Yevropeiskym spiv-tovarystvom z atomoi enerhii i yikhnyi derzhavamy-chlenamy, z inshoi stony (2014). Zakon Ukrainy # 1678-VII. 16.09.2014. Available at: https://zakon.rada.gov.ua/laws/show/1678-18#Text

3. Pro vnesennia zmin do statti 19 Zakonu Ukrainy «Pro likarskiy zasoby» shchodo zdiisnennia elektronnoi rozdrintnoi tohirvli likarskymy zosobami (2020). Zakon Ukrainy No. 904-IX. 17.09.2020. Available at: https://zakon.rada.gov.ua/laws/show/904-IX#Text

4. Kotvitska, A. A., Kubariieva I. V., Volkova, A. V., Boldar, G. E., Cherkashyna, A. V. (2020). Determining the position of pharmaceutical law in the modern legal system of Ukraine. Pharmaceutical Review, 4, 89–97. doi: http://doi.org/10.11603/2312-0967.2020.4.11542

5. Kotvitska, A. A., Volkova, A. V., Boldar, G. Y., Proskurova, I. O. (2020). The substantiation of modern pedagogical technologies for improving the quality of teaching the discipline “Pharmaceutical law and legislation.” Management, Economy and Quality Assurance in Pharmacy, 4 (64), 18–26. doi: http://doi.org/10.24959/uekj.20.29

6. Boldar, H. Ye., Ryschenko, O. O. (2021) Analysis of modern pedagogical technologies for the formation of legal competence of applicants for higher pharmaceutical education. Project approach in the didactic process of universities – international dimension, 3, 12–21.

7. Kotvitsa, A., Surikova, I. (2020). Rationale of the methodology classification of medication related errors during the retail sales of drugs in Ukraine. ScienceRise: Pharmaceutical Science, 1 (23), 4–9. doi: http://doi.org/10.15587/2519-4852.2020.197342

8. Posilkina, O., Bondarieva, I., Malvi, Y., Timanyuk, I., Mala, Z. (2021). Peculiarities of effective management of products assortment depending on different sizes of pharmacy chains. ScienceRise: Pharmaceutical Science, 2 (30), 55–63. doi: http://doi.org/10.15587/2519-4852.2021.230287

9. Fittler, A., Böszé, G., Botz, L. (2013). Evaluating Aspects of Online Medication Safety in Long-Term Follow-Up of 136 Internet Pharmacies: Illegal Rogue Online Pharmacies Flourish and Are Long-Lived. Journal of Medical Internet Research, 15 (9), 199–209. doi: http://doi.org/10.2196/jmir.2606

10. Littlejohn, C., Baldacchino, A., Schifano, F., Deluca, P. (2005). Internet pharmacies and online prescription drug sales: a cross-sectional study. Drugs: Education, Prevention and Policy, 12 (1), 75–80. doi: http://doi.org/10.1080/0968763042000275326

11. Ignjatović, D., Cogolović, M. (2019). The importance of modern pharmacy marketing to conquer new markets through electronic pharmacy. International Review, 3-4, 121–125. doi: http://doi.org/10.5937/intrev1903121i

12. WTO Reports on COVID-19 and World Trade: E-commerce, Trade and the COVID-19 Pandemic. (2020.) World
Comparative Pharmacognostical Study of Roots of Rosa majalis Herrm. and Rosa canina L.

Tetiana Oproshanska, PhD, Assistant Professor, Department of Management and Economics of Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

E-mail: arctic55@ukr.net

ORCID: https://orcid.org/0000-0002-3992-7183

Olga Khvostov, Doctor of Pharmaceutical Sciences, Professor, Department of Chemistry of Natural Compounds and Nutrition, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: https://orcid.org/0000-0002-9534-1507

Kateryna Skrebtsova, PhD, Assistant, Department of Chemistry of Natural Compounds and Nutrition, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: https://orcid.org/0000-0002-7421-8761

Konradas Vitkevicius, Doctor of Pharmacy, Professor, Department of Analytical and Toxicological Chemistry, Medical academy, Lithuanian University of Health Sciences, A. Mickeviciaus str., 9, Kaunas, Lithuania, LT-44307

ORCID: https://orcid.org/0000-0001-6897-5267

The aim is to conduct a comparative pharmacognostical study of the series of roots of Rosa (R.) majalis Herrm. and Rosa (R.) canina L. with the establishment of diagnostic features of morphological and anatomical structure and boundary limits of numerical indicators of raw materials.

Materials and methods. The fresh and dry raw materials were used to study the macroscopic microscopic features by microscope Delta optical BioLight 300 (Poland). Determination of total polyphenols was performed by spectrophotometry (on a spectrophotometer Optitzen POP (Korea)) and HPLC (chromatograph an Agilent 1200 3 D LC System Technologies (USA)).

Results. The morphological (nature of the surface (periderm) and fracture) and anatomical (color of cell walls and their cavities; location of the sclerenchyma; the presence of a crystalline coating of the sclerenchyma at the root of R. canina; of various elements of the remains of the xerarchic conducing bundle in the center of the root) diagnostic features of roots of R. majalis and R. Canina were established.

Comparing the numerical values of loss on drying (not more than 10 %), total ash (not more than 5 %), extractable matter (not less than 9 %) and the quantitative content of total polyphenols (not less than 4 %) it was determined that both types of raw materials according to these indicators are almost indistinguishable.

Conclusions. Loss on drying, total ash, extractable matter and content of total polyphenols of the root of R. majalis and R. canina do not have significant differences, that is why the root of both plant species can be used as medicinal plant raw materials such as “Rose root”. The obtained data will be used in further research when creating methods of quality control of plant raw materials and phytotherapeutics.

Keywords: root, Rosa, diagnostic features, morphological and anatomical structure, numerical indicators

References

1. Vasileva, O. Iu. (2006). Osobennosti ontogeneza nekotorykh vidov roda Rosa (Rosaceae). Rastitelnye resurny, 42 (3), 25–37.

2. Navruzov, A. R., Shamsizade, L. A. (2011). Antotsia ny plodov dvukh vidov roda Rosa. Khimiia prirodnykh soedinii, 1, 107.

3. The plant list. A working list of all plant species. Available at: http://www.thepplantlist.org/tpl1.1/search?q=rosa

4. Kapelian, A. I. (2015). Sezonnii ritm razvitii introdutsirovannykh vidov roda Rosa (Rosaceae) v parke botanich-

DOI: 10.15587/2519-4852.2021.243525

Comparative Pharmacognostical Study of Roots of Rosa majalis Herrm. and Rosa canina L.

Tetiana Oproshanska, PhD, Assistant Professor, Department of Management and Economics of Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

E-mail: arctic55@ukr.net

ORCID: https://orcid.org/0000-0002-3992-7183

Olga Khvostov, Doctor of Pharmaceutical Sciences, Professor, Department of Chemistry of Natural Compounds and Nutrition, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: https://orcid.org/0000-0002-9534-1507

Kateryna Skrebtsova, PhD, Assistant, Department of Chemistry of Natural Compounds and Nutrition, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: https://orcid.org/0000-0002-7421-8761

Konradas Vitkevicius, Doctor of Pharmacy, Professor, Department of Analytical and Toxicological Chemistry, Medical academy, Lithuanian University of Health Sciences, A. Mickeviciaus str., 9, Kaunas, Lithuania, LT-44307

ORCID: https://orcid.org/0000-0001-6897-5267

The aim is to conduct a comparative pharmacognostical study of the series of roots of Rosa (R.) majalis Herrm. and Rosa (R.) canina L. with the establishment of diagnostic features of morphological and anatomical structure and boundary limits of numerical indicators of raw materials.

Materials and methods. The fresh and dry raw materials were used to study the macroscopic microscopic features by microscope Delta optical BioLight 300 (Poland). Determination of total polyphenols was performed by spectrophotometry (on a spectrophotometer Optitzen POP (Korea)) and HPLC (chromatograph an Agilent 1200 3 D LC System Technologies (USA)).

Results. The morphological (nature of the surface (periderm) and fracture) and anatomical (color of cell walls and their cavities; location of the sclerenchyma; the presence of a crystalline coating of the sclerenchyma at the root of R. canina; of various elements of the remains of the xerarchic conducing bundle in the center of the root) diagnostic features of roots of R. majalis and R. Canina were established.

Comparing the numerical values of loss on drying (not more than 10 %), total ash (not more than 5 %), extractable matter (not less than 9 %) and the quantitative content of total polyphenols (not less than 4 %) it was determined that both types of raw materials according to these indicators are almost indistinguishable.

Conclusions. Loss on drying, total ash, extractable matter and content of total polyphenols of the root of R. majalis and R. canina do not have significant differences, that is why the root of both plant species can be used as medicinal plant raw materials such as “Rose root”. The obtained data will be used in further research when creating methods of quality control of plant raw materials and phytotherapeutics.

Keywords: root, Rosa, diagnostic features, morphological and anatomical structure, numerical indicators

References

1. Vasileva, O. Iu. (2006). Osobennosti ontogeneza nekotorykh vidov roda Rosa (Rosaceae). Rastitelnye resurny, 42 (3), 25–37.

2. Navruzov, A. R., Shamsizade, L. A. (2011). Antotsia ny plodov dvukh vidov roda Rosa. Khimiia prirodnykh soedinii, 1, 107.

3. The plant list. A working list of all plant species. Available at: http://www.thepplantlist.org/tpl1.1/search?q=rosa

4. Kapelian, A. I. (2015). Sezonnii ritm razvitii introdutsirovannykh vidov roda Rosa (Rosaceae) v parke botanich-
THE EFFECT OF FLUOXETINE AND IMIPRAMINE ON THE IMPROVEMENT OF DEPRESSIVE-LIKE BEHAVIORS AND HPA AXIS (HYPOTHALAMIC-PITUITARY-ADRENAL CORTEX) ACTIVITY – AN ANIMAL MODEL

p. 79–88

Raghad Abdulssalam Khaleel, Department of Pharmacology, College of Medicine, Al Iraqia University, Baghdad, Iraq, 10071
ORCID: https://orcid.org/0000-0001-5757-5356

Saja Majeeed Shareef, Department of pharmacy, Al-Esraa University College, Baghdad, Iraq, 10071
ORCID: https://orcid.org/0000-0002-9246-2741

Zinah Essam Hameed, Department of pharmacy, Al-Esraa University College, Baghdad, Iraq, 10071
ORCID: https://orcid.org/0000-0002-1392-9391

Khulood Majid Alsaraf, Department of pharmacy, Al-Esraa University College, Baghdad, Iraq, 10071
ORCID: https://orcid.org/0000-0002-2455-2585

Maadh Fawzi Nassar, Department of Chemistry, Faculty of Science, University Putra Malaysia, UPM Serdang, Selangor, Malaysia, 43400
E-mail: nassarmaadh@gmail.com
ORCID: https://orcid.org/0000-0003-0643-7337

Depression is one of the most common mental disorders and numerous medications are used to reduce the psychotic symptoms.

The aim of this study was to evaluate the therapeutic effects of two commonly used antidepressant drugs, including Fluoxetine (Flx) and Imipramine (IMP) to improve depressive-like behaviors as well as the activity of hypothalamic pituitary-adrenal cortex (HPA).

Methods: Initially, 40 adult male albino rats weighing 25±5 g were selected for this experimental study. The animals were kept or housed in separate cages under standard temperature (25±1 °C) and light-dark conditions (12 hours light/dark cycle). Rats were divided into four groups: each group containing 10 rats, control, immobility stress, Flx receiver, and IMP receiver. Polyethylene restrainer was used to induce immobility stress for 14 days. Finally, the parameters of IMT, ST, serum levels of corticosterone and glucose were evaluated in all four mentioned groups.
Results: The results showed that the patient group’s immobility time (IMT) increased compared to the control group, but the patient group’s swimming time (ST) decreased compared to the control group. The effect of immobility stress on IMT, ST, corticosterone, and glucose factors in the patient group was increasing and decreasing, respectively, whereas the effect of Flx drug on these mentioned factors was decreasing and increasing, respectively, while the effect of IMP on all mentioned factors was decreasing and increasing, respectively.

Conclusion: Based on the results, it can be concluded that the antidepressant Flx and IMP drugs have various effects on the HPA activity, and the application of immobility stress causes depressive behavior. Moreover, Flx is more effective than IMP in the treatment of depressive behaviors.

Keywords: Depressive-like behaviors, HPA axis, Fluoxetine, Imipramine, Animal model

References
1. Doron, R., Lotan, D., Einat, N., Yaffe, R., Winer, A., Marom, I. et al. (2014). A novel herbal treatment reduces depressive-like behaviors and increases BNDF levels in the brain of stressed mice. Life Sciences, 94 (2), 151–157. doi: http://doi.org/10.1016/j.lfs.2013.10.025
2. Cao, X., Li, L.-P., Wang, Q., Wu, Q., Hu, H.-H., Zhang, M. et al. (2013). Astrocyte-derived ATP modulates depressive-like behaviors. Nature Medicine, 19 (6), 773–777. doi: http://doi.org/10.1038/nm.3162
3. Abildgaard, A., Elfvings, B., Hokland, M., Wegener, G., Lund, S. (2017). Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology, 79, 40–48. doi: http://doi.org/10.1016/j.psyneuen.2017.02.014
4. Norden, D. M., Devine, R., Bicer, S., Jing, R., Reiser, P. J., Wold, L. E. et al. (2015). Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue. Physiology & Behavior, 140, 230–235. doi: http://doi.org/10.1016/j.physbeh.2014.12.045
5. Park, S.-W., Kim, Y.-K., Lee, J.-G., Kim, S.-H., Kim, J.-M., Yoon, J.-S. et al. (2007). Antidepressant-like effects of the traditional Chinese medicine kami-shoyo-san in rats. Psychiatry and Clinical Neurosciences, 61 (4), 401–406. doi: http://doi.org/10.1111/j.1440-1819.2007.01676.x
6. Galeyk, P., Szemraj, J., Bieńkiewicz, M., Zboralski, K., Galeyka, E. (2009). Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Human Psychopharmacology: Clinical and Experimental, 24 (4), 277–286. doi: http://doi.org/10.1002/hup.1014
7. Sakr, H. F., Abbas, A. M., Elsamamoudy, A. Z., Ghoneim, F. M. (2015). Effect of fluoxetine and resveratrol on testicular functions and oxidative stress in a rat model of chronic mild stress-induced depression. Journal of Physiology and Pharmacology, 66 (4), 515–527.
8. Salmon, E. (2007). A review of the literature on neuroimaging of serotoninergic function in Alzheimer’s disease and related disorders. Journal of Neural Transmission, 114 (9), 1179–1185. doi: http://doi.org/10.1007/s00702-007-0636-5
9. Shah, S. K., Dangre, S. C., Charbe, N. B. (2012). Development of RP-HPLC Method for Simultaneous Estimation of Alprazolam and Fluoxetine Hydrochloride in Pharmaceutical Tablet Dosage Form. Research Journal of Pharmacy and Technology, 5 (7), 938–941.
10. Cowen, P. (2008). Serotonin and depression: pathophysiological mechanism or marketing myth? Trends in Pharmacological Sciences, 29 (9), 433–436. doi: http://doi.org/10.1016/j.tips.2008.05.004
11. Hellweg, R., Zueger, M., Fink, K., Hörtogl, H., Gass, P. (2007). Olfactory bulbectomy in mice leads to increased BDNF levels and decreased serotonin turnover in depression-related brain areas. Neurobiology of Disease, 25 (1), 1–7. doi: http://doi.org/10.1016/j.nbd.2006.07.017
12. Benfield, P., Heel, R. C., Lewis, S. P. (1986). Fluoxetine. Drugs, 32 (6), 481–508. doi: http://doi.org/10.2165/00003495-198632600-00002
13. Dixit, N., Trivedi, A., Ahirwar, D. (2020). Synthesis of Citosan Nanocarrier Systems for Improving SSRI-Fluoxetine Efficacy in MDD. Research Journal of Pharmacy and Technology, 13 (5), 2387. doi: http://doi.org/10.5958/0974-3665.2020.00429.1
14. Zarrindast, M. R., Shamsi, T., Azarmina, P., Rostami, P., Shafaghi, B. (2004). GABAergic system and imipramine-induced impairment of memory retention in rats. European Neuropsychopharmacology, 14 (1), 59–64. doi: http://doi.org/10.1016/s0924-977x(03)00068-3
15. Akhondzadeh, S., Fallah-Pour, H., Akham, K., Jamshidi, A.-H., Khaliighi-Cigourudi, F. (2004). Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: A pilot double-blind randomized trial [ISRCTN45683816]. BMC Complementary and Alternative Medicine, 4 (1). doi: http://doi.org/10.1186/1472-6882-4-12
16. Chen, Y.-C., Shen, Y.-C., Hung, Y.-J., Chao-Ha, C., Yeh, C.-B., Perng, C.-H. (2007). Comparisons of glucose–insulin homeostasis following maprotiline and fluoxetine treatment in depressed males. Journal of Affective Disorders, 103 (1-3), 257–261. doi: http://doi.org/10.1016/j.jad.2007.01.023
17. Hajrasouliha, S., Khakpour, S. (2020). Comparison of antidepressant effect of Melissa officinalis L. hydroalcoholic extract with fluoxetine in male mice. Medical Science Journal of Islamic Azad University-Tehran Medical Branch, 30 (4), 418–424. doi: http://doi.org/10.29252/iau.30.4.418
18. Shafei, Z., Abbasi Maleki, S., Ghaderi-Pakdel, F. (2018). Evaluation of the antidepressant-like effect of Viola odorata hydroalcoholic extract in male mice. Journal of Birjand University of Medical Sciences, 25 (4), 286–296.
19. Bayramlou, R., Mohammadzadeh, M., Babaei Balderlou, F. (2018). A Comparative Survey of the Effects of Fluoxetine and Imipramine on Depression-Like Behavior and Serum Levels of Corticosterone and Glucose in Male Rats under Immobilization Stress. Qom University of Medical Sciences Journal, 12 (2), 1–10. doi: http://doi.org/10.29252/qums.12.2.1
20. Wang, W., Hu, X., Zhao, Z., Liu, P., Hu, Y., Zhou, J. et. al. (2008). Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32 (5), 1179–1184. doi: http://doi.org/10.1016/j.pnpbp.2007.12.021
21. Dias Elpo Zomkowski, A., Oscar Rosa, A., Lin, J., Santos, A. R. S., Batista Calixto, J., Lúcia Severo Rodrigues, A. (2012). Evidence for serotonin receptor subtypes involvement in BDNF levels and decreased serotonin turnover in depression-related brain areas. Neurobiology of Disease, 25 (1), 1–7. doi: http://doi.org/10.1016/j.nbd.2006.07.017
22. Mitic, M., Simic, I., Djordjevic, J., Radojicic, M. B., Adzic, M. (2013). Gender-specific effects of fluoxetine on hippocampal glucocorticoid receptor phosphorylation and behavior in chronically stressed rats. Neuropharmacology, 70, 100–111. doi: http://doi.org/10.1016/j.neuropharm.2012.12.012
23. Roghani, M., Arbab-Soleymani, S. (2013). The Effect of Oral Feeding of Tribulus Terrestris Fruit on Some Markers of Oxidative Stress in the Brain of Diabetic Rats. SSU Journals, 21 (2), 127–135.

24. Pytka, K., Podkowa, K., Rapacz, A., Podkowa, A., Żmudzka, E., Olczyk, A. et. al. (2016). The role of serotoninergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacological Reports, 68 (2), 263–274. doi: http://doi.org/10.1016/j.pharep.2015.08.007

25. Liu, L., Zhou, X., Zhang, Y., Liu, Y., Yang, L., Pu, J. et. al. (2016). The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression. Behavioural Brain Research, 305, 148–156. doi: http://doi.org/10.1016/j.bbr.2016.03.005

26. Yoon, S. H., Kim, B.-H., Ye, S.-K., Kim, M.-H. (2014). Chronic Non-Social Stress Affects Depressive Behaviors But Not Anxiety in Mice. The Korean Journal of Physiology & Pharmacology, 18 (3), 263. doi: http://doi.org/10.4196/kjpp.2014.18.3.263

27. Parihar, V. K., Hattiangady, B., Kuruba, R., Shuai, B., Shetty, A. K. (2009). Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Molecular Psychiatry, 16 (2), 171–183. doi: http://doi.org/10.1038/mp.2009.130

28. Buyntksy, T., Mostofsky, D. I. (2009). Restraint stress in biobehavioral research: Recent developments. Neurosciences & Biobehavioral Reviews, 33 (7), 1089–1098. doi: http://doi.org/10.1016/j.neubiorev.2009.05.004

29. Safari, H., Miladi Gorji, H. (2013). Anxiety-like behavior profile in morphine dependent rats exposed to acute and chronic stress. Tehran University Medical Journal, 709–716.

30. Sirisha, G., Prakash, R. A., Usha, N. S. (2014). Evaluation of antidepressant effect of chronic administration of tramadol alone and in combination with fluoxetine in low doses in albino mice. International Journal of Pharmacy and Pharmaceutical Sciences, 6 (6), 101–105.

31. Nagasawa, M., Otsuka, T., Yasuo, S., Furuse, M. (2015). Chronic imipramine treatment differentially alters the brain and plasma amino acid metabolism in Wistar and Wistar Kyoto rats. European Journal of Pharmacology, 762, 127–135. doi: http://doi.org/10.1016/j.ejphar.2015.05.043

32. Heidari, M. (2014). The effect of interference of morphine and immobility stress on performance of pituitary-adrenal axis in mature male rats. Hormozgan Medical Journal, 18 (1), 11–20.

33. Heidari Oranjaghi, N., Ghasemi, E., Mahdipour, H., Salehi, B., Sojibadi, M., Erami, E., Azhdari Zarmehri, H. (2012). Effects of acute and chronic immobilization stress on formalin test on the male rat. Journal of Rafsanjan University of Medical Sciences, 11 (4), 391–402.

34. Fagerholm, V., Haaparanta, M., Scheinin, M. (2011). α2-Adrenergic Receptor Regulation of Blood Glucose Homeostasis. Basic & Clinical Pharmacology & Toxicology, 108 (6), 365–370. doi: http://doi.org/10.1111/j.1742-7843.2011.00699.x

35. Hashemi, S. S., Jelodar, G. A., Rafati, A. (2014). Investigating the effects of fluoxetine on cortisol and thyroid hormone levels in rats. Journal of Arak University of Medical Sciences, 17 (2), 82–89.

36. Frost, P., Bornstein, S., Ehrhart-Bornstein, M., O’Kirwan, F., Hutson, C., Heber, D. et. al. (2003). The Prototypic Antidepressant Drug, Imipramine, but not Hypericum perforatum (St. John’s Wort), Reduces HPA-Axis Function in the Rat. Hormone and Metabolic Research, 35 (10), 602–606. doi: http://doi.org/10.1055/s-2003-43507

37. Heydendaul, W., Jacobson, L. (2010). Widespread hypothalamic-pituitary-adrenocortical axis-relevant and mood-relevant effects of chronic fluoxetine treatment on glucocorticoid receptor gene expression in mice. European Journal of Neuroscience, 31 (5), 892–902. doi: http://doi.org/10.1111/j.1460-9568.2010.07131.x

38. Bambauer, K. Z., Soumerai, S. B., Adams, A. S., Mah, C., Zhang, F., McLaughlin, T. J. (2004). Does Antidepressant Adherence Have an Effect on Glycemic Control among Diabetic Antidepressant Users? The International Journal of Psychiatry in Medicine, 34 (4), 291–304. doi: http://doi.org/10.2190/kkgw-y42p-baab-jdj0

39. McIntyre, R. S., Soczynska, J. K., Konarski, J. Z., Kennedy, S. H. (2005). The effect of antidepressants on glucose homeostasis and insulin sensitivity: synthesis and mechanisms. Expert Opinion on Drug Safety, 5(1), 157–168. doi: http://doi.org/10.1517/14740338.5.1.157

40. Carvalho, F., Barros, D., Silva, J., Rezende, E., Soares, M., Fregoneze, J., De Castro e Silva, E. (2004). Hyperglycemia induced by acute central fluoxetine administration: role of the central CRH system and 5-HT3 receptors. Neuropoetides, 38 (2-3), 98–105. doi: http://doi.org/10.1016/j.npep.2004.04.004

41. Khosa, S., Barner, J. C. (2011). Glucose dysregulation associated with antidepressant agents: an analysis of 17 published case reports. International Journal of Clinical Pharmacy, 33 (3), 484–492. doi: http://doi.org/10.1007/s11096-011-9507-0
АНОТАЦІЇ

DOI: 10.15587/2519-4852.2021.228132

РОЗРОБКА МЕТОДИК ВИЗНАЧЕННЯ КВЕТІАПІНУ ФУМАРУ ДЛЯ СУДОВО-ФАРМАЦЕВТИЧНИХ ЦІЛЕЙ (с. 4–12)

О. В. Бевз, І. В. Сич, А. М. Шапошник, І. А. Сич, О. В. Криванич, С. Г. Таран, Л. О. Перехода

Кветіапіну фумарат (нейролептик) входить до складу численних препаратів-генериків, які користуються доволі широким попитом у населення, тому все частіше з’являються дані щодо фальсифікації та контрабанди засобів, а також незаконного використання, які є загрозливими для життя населення та пояснюють високу поширеність активного компоненту як об’єкта судової експертизи.

Мета. Розробити алгоритм проведення судово-фармацевтичної експертизи та запропонувати методики визначення кветіапіну фумарату для судово-фармацевтичних цілей.

Матеріали і методи. Усі дослідження проводились з використанням реактивів, що задовольняють вимогам ЄФ/ДФУ, посуду класу А та на кваліфікованому обладнанні.

Ідентифікацію методом ІЧ-спектроскопії проводили на ділянці від 500 до 4000 см⁻¹ на приладі «Nicolet 380 FT-IR Spectrometer by Thermo Fisher Scientific» за допомогою приставки «Smart Perfomer» з кристалом ZnSe.

УФ-спектри поглинання розчинів реєстрували за допомогою спектрофотометру Specord 205 фірми «Analytik Jena AG» (Німеччина).

ТШХ проводили на хроматографічних пластинках Merck (силікагель 60G F254, Німеччина). Як рухомі фази використовували системи: гексан–ацетон–25 % розчин амоніаку (60:40:2); метанол–25 % розчин амоніаку (100:1.5), гексан–ацетон–25 % розчин амоніаку (50:45:5). Детектування проводили при УФ-світлі (254 нм), з подальшим обприскуванням реактивом Драгендорфа.

Аналіз методом газової хроматографії з мас-детектуванням проводили з використання газового хроматографу GC з мас-спектрометричним детектором GCMS-QP2020. Дані аналізували за допомогою програми: GCMSolution, LabSolutions Insight (Shimadzu Corporation, Токіо, Японія).

Результати. Розроблено алгоритм проведення судово-фармацевтичної експертизи згідно чинного законодавства України, запропоновано методики визначення кветіапіну для судово-фармацевтичних цілей.

Висновки. Розроблені методики визначення кветіапіну задовольняють вимогам чинного законодавства України та Міністерства юстиції України. Отримані дані доводять високу чутливість і відтворюваність методик та доводять можливість впровадження їх в практику судової експертизи.

Ключові слова: кветіапіну фумарат, судово-фармацевтична експертиза, спектральний аналіз, хроматографія

DOI: 10.15587/2519-4852.2021.242997

СТРУКТУРНА МОДИФІКАЦІЯ ЦИПРОФЛОКСАЦИНУ ТА НОРФЛОКСАЦИНУ З МЕТОЮ ПОШУКУ НОВИХ АНТИБІОТИКІВ ЗАДЛЯ ПОДОЛАННЯ РЕЗИСТЕНТНОСТІ ДО НІХ (с. 4–11)

Г. В. Григорів, І. О. Маріуца, С. М. Коваленко, Л. В. Сидоренко, Л. О. Перехода, Н. І. Філімонова, О. Г. Гейдеріх, В. А. Георгіянц

Мета роботи. Серед існуючих представників чотирьох поколінь фторхінолонів ципрофлоксацин (CIPRO) та норфлоксацин (NOR) залишаються широко використовуваними в клінічній практиці антибіотиками. Однак поступово зростає проблема резистентності до них. Дане дослідження присвячене хімічній модифікації положення C-7 ципрофлоксацину та норфлоксацину як перспективному підходу до боротьби зі стійкістю до антибіотиків та пошуку нових методик задля синтезу похідних фторхінолонів.

Матеріали та методи. Предметами дослідження були ципрофлоксацин та норфлоксацин. У дослідженні були застосовані методи молекулярного докінгу та органічного синтезу. Структури отриманих сполук були доведені методами ЯМР, РХ/МС, ІЧ, УФ-спектроскопії. Антимікробну активність вимірювали методом подвійних серійних розведень проти Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (ATCC 6633), Pseudomonas aeruginosa (ATCC 27953), Candida albicans (NCTC 885-653) та методом дифузії в агар проти клінічних штамів.

Результати. Синтезовано 7-(4-(2-ціаноацетил)піперазин-1-іл)-1-R-6-фтор-4-оксо-1,4-дигідрохінолін-3-карбонові кислоти та доведено їх структуру. Отримані сполуки продемонстрували антибактеріальну активність на рівні контролю для методу подвійних серійних розведень та перевищили контроль у методі дифузії в агар.

Висновки. Проведене дослідження виявило перспективний шлях розширення існуючого різноманіття фторхінолонів. Фармакодинамічні та фармакокінетичні зміни можуть бути дослідженні шляхом хімічних модифікацій положення C-7 відповідних молекул. Подальші дослідження з використанням отриманих сполук як вихідних відкривають перспективний шлях до синтезу нових активних молекул i боротьби з проблемою стійкості до антибіотиків.

Ключові слова: фторхінолони, ципрофлоксацин, норфлоксацин, синтез, стійкість до антибіотиків, молекулярний докінг, антибактеріальна активність
Перспективною сировиною, яка містить терпенові сполуки, для S. grandiflora є листя, а для S. pratensis та S. verticillata – квітки, тому саме вони є перспективними агентами для введення у фармацевтичну практику.

Висновки

Гіпромелоза, гель, рідина, диклофенак натрію, ізопропіловий спирт, в'язкість, час кореляції обертальної дифузії (τ –1), випробуваний вивільнення in vitro (IVRT)

Мета

Метою дослідження було провести хромато-масс-спектрометричне дослідження надземних органів S. grandiflora, S. pratensis та S. verticillata L. для встановлення перспективи використання сировини цих видів у медичній та фармацевтічній практиці.

Матеріали та методи. Об'єктом дослідження було листя S. officinalis, листя, стебла та квітки S. grandiflora, S. pratensis та S. verticillata, які було збірало на базі ботанічного саду Львівського національного університету імені Івана Франка. Дослідження здійснено в відкритих умовах. В якості вивчених речовин використано: диклофенак натрію, ізопропіловий спирт, в'язкість, час кореляції обертальної дифузії (τ –1). Розглянуто такі фактори, як концентрація DS в гелі, HPMC – досліджували гелі на основі HPMC і рідини без HPMC методами ротаційної віскозиметрії та газової хроматографії (ГХ). Відомо, що підвищення вмісту HPMC збільшує відвід і вивільнення DS з гелів. Гель є відрізняється від гідравлічної рідини ізопропіловим спиртом, в'язкість, час кореляції обертальної дифузії (τ –1), випробуваний вивільнення in vitro (IVRT)

Результати. В результаті проведеного дослідження було виявлено 243 речовини, з них ідентифіковано – 149. Переоснащеною сировиною, яка містить терпенові сполуки, для S. grandiflora є листя, а для S. pratensis та S. verticillata – квітки, тому саме вони є перспективними агентами для введення у фармацевтічну практику.
З 2021 р. косметична продукція є об’єктом технічного регулювання Міністерства охорони здоров’я, на яке покладено
повноваження щодо забезпечення впровадження Технічних регламентів, затвердження методичних рекомендацій щодо їх
застосування, національних стандартів відповідно до вимог Технічних регламентів. Прийнятий на початку 2021 р. Технічний
рекламент на косметичну продукцію вперше в Україні застосовує до косметичної продукції принципи технічного регулювання,
повноваження щодо затвердження яких покладаються на профільне Міністерство охорони здоров’я.

Метою даної роботи є розробка методології впровадження Технічного регламенту на косметичну продукцію як об’єкта
повноваження Міністерство охорони здоров’я.

Як матеріали дослідження вивчені процеси технічного регулювання косметичної продукції, використані логічний, дослідний
методи дослідження, а також метод контент-аналізу.

Результати. Проведено аналіз практики регулювання об’єгу косметичної продукції в ряді зарубіжних країн, визначено та
систематизовано потенційні ризики при впровадженні принципів й технічного регулювання. На підставі аналізу причинно-
наслідкових зв’язків в процесі реалізації вимог Технічного регламенту на косметичну продукцію, запропонована методологія
його практичного застосування.

Висновки. Встановлено тенденції регуляторної політики по відношенню до косметичної продукції в ряді зарубіжних стан
і України. Проведено аналіз основних положень Технічного Регламенту на косметичну продукцію і розроблена методологія
його впровадження

Ключові слова: технічне регулювання, косметична продукція, Технічний регламент на косметичну продукцію, стандарти, система
менеджменту якості

DOI: 10.15587/2519-4852.2021.243240

Проблеми поширення фальсифікованих лікарських засобів та перспективи
боротьби: результати опитування фахівців та споживачів [c. 49–56]

С. О. Лебедь, А. С. Немченко

Мета: порівняльний аналіз результатів анкетного опитування фармацевтичних і медичних фахівців та споживачів, яке проводилося авторами впродовж 2019–2021 рр. для визначення думок за якими спостерігаються співпадіння та розбіжності, а також оцінка масштабів проблеми фальсифікації ліків в Україні для напрацювання підходів щодо запобігання їх поширенню.

Матеріали і методи. Дослідження було виконано на основі наукових публікацій, а також результатів анкетування фахівців Державної служби України з лікарських засобів та контролю за наркотиками (Держлікслужби) та її територіальних органів, фармацевтичних і медичних фахівців закладів охорони здоров’я й споживачів щодо проблем боротьби з фальсифікацією ліків. Дослідження проводилось з використанням методів анкетного опитування, систематизації та узагальнення.

Результати дослідження. За результатами комплексного анкетного опитування впродовж 2019–2021 рр. було встановлено, що частина ФЛЗ на українському фармацевтичному ринку оцінюється до 5 % більшості респондентів в середньому 58,5 %, зокрема 59,7 % експертами Держлікслужби, 42,3 % фахівцями аптечних закладів, 11,4 % лікарів та 73,5 % споживачами. Відповіді респондентів щодо ознак фальсифікації ЛЗ значно відрізняються, так більшість експертів вважають, що це зміна зовнішніх ознак (смак, запах, колір), натомість фахівці аптечних закладів - маркування на іноземній мові, лікарі – відсутність терапевтичного ефекту, для споживачів це зміна дизайну упаковки (етикетки) та суттєво нижча ціна. Основними каналами збуту ФЛЗ для експертів та фахівців є інтернет-торгівля (68,7 % та 75,7 % відповідно), натомість більшість та споживачі не зазначали інших каналів збуту ФЛЗ.

Висновки. Встановлено, що найважливіші пріоритети державної політики для боротьби з ФЛЗ в Україні є засади технічного регулювання, косметична продукція, Технічний регламент на косметичну продукцію, стандарти, система менеджменту якості
Жито посівне (Secale cereale L.) та Ячмінь звичайний (Hordéum vulgáre L.) – однорічні трав'янисті рослини родини Злакових (Poaceae), їх широко культивують в багатьох країнах світу як зернові та кормові культури. Достатня сировина база жита посівного та ячменю звичайного потрібна для удосконалення діагностичних ознак морфологічної і анатомічної будови та пограничних меж числових показників сировини.

Методи і методики. Методом газової хроматографії досліджено жирнокислотний склад у ліпофільних фракціях насіння, стебел і листі жита посівного (сорт Хамарка) та ячменю звичайного (сорт Шедевр).

Результати. У результаті проведенного дослідження ідентифіковано та встановлено кількісний вміст 14 жирних кислот у стеблах та листі жито посівного, 13 – у листі жита посівного і 12 – у стеблах жита посівного та в обох видах досліджуваного насіння. В усіх видах досліджуваної сировини кількісно переважали ненасичені жирні кислоти, вміст яких переважав у насінні жита посівного – 82.89 % та ячменю звичайного – 76.35 %. У стеблах ячменю звичайного їх вміст склав 64.04 %, листя ячменю звичайного – 66.31 % від суми. В стеблах та листі жита посівного перевага вмісту ненасичених жирних кислот над насиченими була несуттєва: 49.00 % проти 47.05 % та 53.70 % проти 43.03 % відповідно. Серед ненасичених жирних кислот домінувало лінолева та ліноленова кислоти. Серед насичених у всіх видах досліджуваної сировини переважала пальмітинова кислота.

Висновки. Методом газової хроматографії ідентифіковано та встановлено кількісний вміст жирних кислот у насінні, стеблах і листі жита посівного (сорт Хамарка) та ячменю звичайного (сорт Шедевр). Одержані результати проведених досліджень свідчать про багатий жирнокислотний склад досліджуваної сировини і можуть бути використані для створення лікарських засобів на їх основі.

Ключові слова: жито посівне (сорт Хамарка), ячмінь звичайний (сорт Шедевр), жирнокислотний склад, газова хроматографія
Результати. В результаті дослідження сировини встановлено морфологічні (характер поверхні (перидерми) та зламу) та анатомічні (колір клітинних оболонок та їх порожнин; розташування склеренхім у корені R. canina; різі елементи залишків тетраархного провідного пучка в центрі кореня) діагностичні ознаки кореня R. majalis і R. canina.

Порівняння числових показників – втрата в масі при висушуванні (не більше 10 %), загальна зола (не більше 5 %), екстрактивні речовини (не менше 9 %), кількісний вміст суми поліфенолів (не менше 4 %) – показало, що обидва види сировини за цими показниками практично неможливо відрізнити.

Висновки. Вперше проведено порівняльне фармакогностичне дослідження коренів R. majalis і R. canina та встановлені їх макро- і мікроскопічні загальні та відмінні ознаки. Втрата в масі при висушуванні, загальна зола, екстрактивні речовини, вміст суми поліфенолів в корені R. majalis та R. canina не мають значних відмінностей, тому корінь обох видів рослин може використовуватися як лікарська рослина сировина «Шипшин корінь». Отримані дані будуть використані у подальших дослідженнях при створені методів контролю якості сировини та фітозасобів.

Ключові слова: корінь, шипшина, діагностичні ознаки, морфолого-анатомічна будова, числові показники

Рагхад Абдулсалам Кхалел, Рагхад Абдулсалам Кхалел, Сажа Мажед Шариф, Зина Асэм Хамед, Кхулуд Мажид Альсараф, Маадх Фавзі Насар

Депресія є одним з найпоширеніших психічних розладів, і для зменшення психотичних симптомів використовуються численні ліки. Метою цього дослідження була оцінка терапевтичних ефектів двох широко використовуваних антидепресантів, включаючи флуоксетин (Flx) та іміпрамін (IMP), для покращення депресивної поведінки, а також активності гіпоталамо-гіпофізарно-надниркової осі (HPA).

Методи: Спочатку для цього експериментального дослідження було відібрано 40 дорослих самців щурів-альбіносів вагою 25±5 г. Тварин утримували в окремих клітках при стандартній температурі (25±1°C) та умовах світло-темря (12-годинний цикл світло/темрява). Щури були розділені на чотири групи: контрольну групу, групу іммобілізаційного стресу, групу, що отримувала Flx та групу, що отримувала IMP. Поліетиленовий фіксатор використовувався для створення іммобілізаційного стресу протягом 14 днів. Нарешті, параметри IMT, ST, сироваткові рівні кортикостерону та глюкози оцінювали у всіх чотирьох зазначених групах.

Результати: Результати показали, що час нерухомості (IMT) у групі пацієнтів збільшився порівняно з контрольною групою, але час плавання (ST) у групі пацієнтів зменшився порівняно з контрольною групою. Вплив іммобілізаційного стресу на фактори IMT, ST, кортикостерон та глюкози у групі пацієнтів збільшувався та зменшувався відповідно, тоді як вплив препарату Flx на ці фактори зменшувався, збільшувався та посилювався, відповідно, тоді як вплив IMP на всі згадані фактори відповідно зменшувався та посилювався.

Висновки: Ґрунтуючись на отриманих результатах можна зробити висновок, що антидепресанти Flx та IMP мають різні впливи на активність HPA, а застосування іммобілізаційного стресу викликає депресивну поведінку. Крім того, Flx більш ефективний, ніж IMP, у лікуванні депресивної поведінки.

Ключові слова: депресивна поведінка, вісь HPA, флуоксетин, іміпрамін, експериментальна модель на тваринах