Solution Structure and Rpn1 Interaction of the UBL Domain of Human RNA Polymerase II C-Terminal Domain Phosphatase

Ji-Hye Yun¹, Sunggeon Ko¹, Chung-Kyung Lee², Hae-Kap Cheong², Chaejoon Cheong², Jong-Bok Yoon¹, Weontae Lee¹*

¹Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea, ²Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongwon, Chungbuk, Korea

Abstract

The ubiquitin-like modifier (UBL) domain of ubiquitin-like domain proteins (UDPs) interacts specifically with subunits of the 26 S proteasome. A novel UDP, ubiquitin-like domain-containing C-terminal domain phosphatase (UBLCP1), has been identified as an interacting partner of the 26 S proteasome. We determined the high-resolution solution structure of the UBL domain of human UBLCP1 by nuclear magnetic resonance spectroscopy. The UBL domain of hUBLCP1 has a unique β-strand (β3) and β3-α2 loop, instead of the canonical β4 observed in other UBL domains. The molecular topology and secondary structures are different from those of known UBL domains including that of fly UBLCP1. Data from backbone dynamics shows that the β3-α2 loop is relatively rigid although it might have intrinsic dynamic profile. The positively charged residues of the β3-α2 loop are involved in interacting with the C-terminal leucine-rich repeat-like domain of Rpn1.

Introduction

An enzymatic cascade composed of the enzymes E1, E2, and E3 conjugates ubiquitin to target proteins, followed by translocation to the 26 S proteasome, where ubiquitinated protein is removed by proteolysis [1]. Despite low sequence homology, ubiquitin-like proteins are classified as ubiquitin-like modifiers (UBLs) and ubiquitin-like domain proteins (UDPs) [2]. UBLs, such as NEDD8, SUMO, and FAT10, modify target proteins in a manner similar to ubiquitinylation [3]. UDPs, including Rad23, the human homolog of Rad25 (HRH23), Dsk2, ubiquilins 1–4 (human homologs of Dsk2), and parkin, bind to the 26 S proteasome in a UBL domain-dependent manner [4,5]. The UBL domain of UDPs interacts specifically with subunits of the 26 S proteasome. Rad23 and Dsk2 preferentially interact with the Rpn1/S2 subunit. UDPs have been implicated in neurodegenerative diseases caused by dysfunction of the ubiquitin proteasome system [6]. Recently, a novel UDP protein, ubiquitin-like domain-containing C-terminal domain phosphatase (UBLCP1) has been identified [7]. UBLCP1 consists of two independent domains, UBL and a phosphatase domain. It has been proposed that UBLCP1 directly interacts with Rpn1 of the 26 S proteasome through the UBL domain and that it serves as a transcription regulator via the phosphatase domain [8,9,10]. UBLCP1 also inhibits proteasome activity, dephosphorylating the 26 S proteasome [10]. The crystal structure of Drosophila UBLCP1 shows that the UBL domain and the phosphatase domain are connected by a flexible linker and that the UBL domain has a β-grasp fold with four β-strands and two α-helices [10]. Because UBLCP1 has diverse functions related to regulation of the phosphorylation state of the 26 S proteasome, it is of the essence to understand the detailed interactions between UBLCP1 and Rpn1 of the proteasome component. We determined the solution structure of the UBL domain of human UBLCP1 (hUBLCP1). Structural information indicated detailed intermolecular interactions between the UBL domain and Rpn1 on the atomic scale. Nuclear magnetic resonance (NMR) data revealed that the secondary structure of the UBL domain of hUBLCP1 differs from that of known UBL domains, especially β3 and β4. In addition, the structure of the UBL domain of hUBLCP1 is dramatically different from that of the fly UBLCP1 [10]. Interestingly, the positively charged clamp formed by the unique β3-α2 loop of the UBL domain of hUBLCP1 serves as a key motif in the interaction with Rpn1.

Materials and Methods

Cloning, Expression, and Purification of Human UBLCP1 and Rpn1

Polymerase chain reaction (PCR) products of both hUBLCP1 and Rpn1 were amplified from a Homo sapiens cDNA library. All sense primers encoded the recognition site of tobacco etch virus protease (ENLYFQG) for the clearance of affinity tags. For both the UBLCP1 and UBL domain (UBLCP1¹⁵¹), sense primers and
Edited and 13C-edited three-dimensional (3D) NOESY experiments were performed for resonance assignments of backbone amide protons were collected using different relaxation times, \(T_1 = 0.05, 0.15, 0.3, 0.5, 0.7, 1, \) and 1.5 sec and \(T_2 = 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, \) and 0.14 sec. \(T_1 \) and \(T_2 \) decay rates were calculated using the exponential decay function in the CURVEFIT program [http://cpmcnet.columbia.edu/dept/gasas/biochem/labs/palmer/software/curvefit.html]. The steady-state heteronuclear NOE (XNOE) experiments [22,23] were performed using a relaxation delay of 3 sec, and XNOE values were calculated from peak heights of unsaturated and saturated NOE peaks from HNCA, CBCACONH, and HNCACB experiments [11]. To obtain nuclear Overhauser effect (NOE) constraints for structure calculations, \(^{13}N \)-edited and \(^{1}C \)-edited three-dimensional (3D) NOESY experiments with two mixing times \((\tau = 100 \) and 150 ms) were performed. All NMR data were processed using NMRPipe [12] and analyzed using the SPARKY program. The in-phase-anti-phase (IPAP) program for residual dipolar coupling (RDC) measurements was performed using polyacrylamide gels prepared as described by Sas et al. [13]. The 6% polyacrylamide gels were made in a 3-mm inner-diameter tube, and dried after 3 days of dialysis. The \(^{15}N\)-labeled UBLCP11–81 (300 \(\mu \)M) was incorporated in the dried gel and placed in a Shigemi NMR tube, and the gel was compressed by the plunger. The \(^{1}D_{NH} \) dipolar coupling constants in both isotropic and anisotropic media were measured using the 2D IPAP experiments [14] on the Bruker DRX 500 spectrometer. The RDC constants were calculated from the difference of the \(^{1}J_{HN} \) splitting in isotropic and anisotropic media. The alignment tensor was calculated using REDCAT software [15].

NMR titration experiments for analysis of interaction of \(^{15}N\)-labeled UBLCP11–81 with Rpn1394–568 were conducted using a Bruker DRX 500 MHz equipped with a cryo-probe. Different molar ratios of UBLCP11–81 and Rpn1394–568 (1:0.5, 1:1, 1:2) were used for the NMR titration [16]. The average values of the chemical shift changes were analyzed using the equation, \(\Delta \delta_{AV} = (\Delta \delta_{15N})^2 + (\Delta \delta_{1H})^2 \). The symbols \(\Delta \delta_{AV} \), \(\Delta \delta_{15N} \), and \(\Delta \delta_{1H} \) designate average chemical shifts, \(^{1}H\) chemical shifts, and \(^{15}N\) chemical shift changes, respectively [17].

Structure calculations were performed using the CYANA 2.1 program [18] installed on a 16-node Linux cluster computer. The alignment tensor was used during the structure refinement procedure. From the RDC, \(D_A \) and \(R \) values were calculated as 1.44±0.015 and 0.622±0.016, respectively. The value of the Q-factor after back calculations was determined as 0.34. A total of 2080 NOE constraints, consisting of 1009 short-range NOEs (\(|i-j| \leq 5\)), 365 medium-range NOEs (\(|i-j| > 5 \) but \(< 10\)), 706 long-range NOEs (\(|i-j| > 15\)), and 100 angle constraints were used for structure calculations [19]. The PROCHECK program was used for structure evaluation [20] and the MOLMOL, NACCESS, and Pymol programs were used for structural analyses [21].

Backbone Dynamics

Dynamics experiments were performed as previously described [22]. Longitudinal (\(T_1 \)) and transverse (\(T_2 \)) relaxation data for backbone amide protons were collected using different relaxation times, \(T_1 = 0.05, 0.15, 0.3, 0.5, 0.7, 1, \) and 1.5 sec and \(T_2 = 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, \) and 0.14 sec. \(R_1 \) and \(R_2 \) decay rates were calculated using the exponential decay function in the CURVEFIT program [http://cpmcnet.columbia.edu/dept/gasas/biochem/labs/palmer/software/curvefit.html]. The steady-state heteronuclear NOE (XNOE) experiments [22,23] were performed using a relaxation delay of 3 sec, and XNOE values were calculated from peak heights of unsaturated and saturated NOE peaks from HNCA, CBCACONH, and HNCACB experiments [11]. To obtain nuclear Overhauser effect (NOE) constraints for structure calculations, \(^{13}N \)-edited and \(^{1}C \)-edited three-dimensional (3D) NOESY experiments with two mixing times \((\tau = 100 \) and 150 ms) were performed. All NMR data were processed using NMRPipe [12] and analyzed using the SPARKY program. The in-phase-anti-phase (IPAP) program for residual dipolar coupling (RDC) measurements was performed using polyacrylamide gels prepared as described by Sas et al. [13]. The 6% polyacrylamide gels were made in a 3-mm inner-diameter tube, and dried after 3 days of dialysis. The \(^{15}N\)-labeled UBLCP11–81 (300 \(\mu \)M) was incorporated in the dried gel and placed in a Shigemi NMR tube, and the gel was compressed by the plunger. The \(^{1}D_{NH} \) dipolar coupling constants in both isotropic and anisotropic media were measured using the 2D IPAP experiments [14] on the Bruker DRX 500 spectrometer. The RDC constants were calculated from the difference of the \(^{1}J_{HN} \) splitting in isotropic and anisotropic media. The alignment tensor was calculated using REDCAT software [15].

NMR titration experiments for analysis of interaction of \(^{15}N\)-labeled UBLCP11–81 with Rpn1394–568 were conducted using a Bruker DRX 500 MHz equipped with a cryo-probe. Different molar ratios of UBLCP11–81 and Rpn1394–568 (1:0.5, 1:1, 1:2) were used for the NMR titration [16]. The average values of the chemical shift changes were analyzed using the equation, \(\Delta \delta_{AV} = (\Delta \delta_{15N})^2 + (\Delta \delta_{1H})^2 \). The symbols \(\Delta \delta_{AV} \), \(\Delta \delta_{15N} \), and \(\Delta \delta_{1H} \) designate average chemical shifts, \(^{1}H\) chemical shifts, and \(^{15}N\) chemical shift changes, respectively [17].

Structure calculations were performed using the CYANA 2.1 program [18] installed on a 16-node Linux cluster computer. The alignment tensor was used during the structure refinement procedure. From the RDC, \(D_A \) and \(R \) values were calculated as 1.44±0.015 and 0.622±0.016, respectively. The value of the Q-factor after back calculations was determined as 0.34. A total of 2080 NOE constraints, consisting of 1009 short-range NOEs (\(|i-j| \leq 5\)), 365 medium-range NOEs (\(|i-j| > 5 \) but \(< 10\)), 706 long-range NOEs (\(|i-j| > 15\)), and 100 angle constraints were used for structure calculations [19]. The PROCHECK program was used for structure evaluation [20] and the MOLMOL, NACCESS, and Pymol programs were used for structural analyses [21].

Isothermal Titration Calorimetry

VP-ITC system (MicroCal) was used for ITC experiments of UBL domain and Rpn1 regulatory subunit 1 at 25°C in NMR buffer. In each titration, 20 \(\mu \)M Rpn1 regulatory subunit 1 in the cell was titrated with 25 injections of 400 \(\mu \)M UBL domain. Each injection was 6 \(\mu \)L. The resulting data were fitted to a one-site binding isotherm using Microcal Origin program for ITC data analysis.

Results and Discussion

NMR Structures of the UBL Domain of hUBLCP1

All backbone resonance assignments were completed with data from HNCA, CBCACONH, and HNCACB experiments (Fig. 1A). Most of the side chain assignments were made based on 3D HCCH-TOCSY and \(^{1}C\)-edited TOCSY-HSQC experiments. Secondary structures were determined from the chemical shift indices (CSIs), NOEs, and \(^{1}J_{HN} \) coupling constant values.
The UBL domain of hUBLCP1 consisted of four short β-strands (β1, β2, β3, and β4) and two α-helices (α1 and α2) (Fig. 1B and Fig. S1). A total of 50 distance geometry structures were used as starting conformers for dynamical simulated annealing calculations. The structures were further refined using the calculated alignment tensor from the IPAP experiment. The 20 lowest-energy structures were selected for the final analysis (Table 1). The final structures were well converged, with a root-mean-square deviation (RMSD) of 0.44 ± 0.13 Å and 0.74 ± 0.11 Å for all backbone and heavy atoms, respectively (Fig. 1C). Especially, a unique β3-α2 loop was well defined by a number of intra-loop NOEs (Fig. 1D and Fig. S2) observed in that region. The average structure was calculated from the geometrical average of the 20 final structures and subjected to restraint energy minimization to correct covalent bonds and angle distortions (Fig. 1D).

Structural Comparison with other UBL Domains

The molecular topology of the UBL domain of hUBLCP1 was quite different from that of the canonical UBL domain (Fig. 1B), especially in the organization of the secondary structures (β3 and β4; Fig. 2A and Fig. 2B). The pairwise RMSDs of Cα of ubiquitin and the UBL domains of hHR23α, hPLIC-2, and parkin with respect to that of hUBLCP1 were 2.405 Å, 1.391 Å, 3.457 Å, and 3.785 Å, respectively. The fourth strand (β4) in the other UBLs was not observed in hUBLCP1; however, a unique β3-α2 loop was observed in that region (Fig. 1B and Fig. 2A). In addition, unlike other UBL domains, the UBL domain of hUBLCP1 has a short β3, comprising residues Q43, K44, and L45. Most of the unique β3-α2 loop in UBLCP1 1–81 is exposed to the solvent (Fig. 2B).

Very recently, the crystal structure of dmUBLCP1 derived from Drosophila melanogaster was reported [10]. Although the UBL domain of dmUBLCP1 has a high percentage of sequence identity (54%) with that of human UBLCP1, dramatic differences between the two structures were observed (Fig. 2C, 2D, and 2E). Surprisingly, two α-helices (α1 and α2) are connected by a short linker in the UBL domain of the dmUBLCP1. This is very unusual because α2 is located far from α1 (next to β3/β4) in most of the UBL domains, including that of hUBLCP1 (Fig. 2A, 2B, and Fig. S1). However, the structural folds in the UBL domains of hUBLCP1 and dmUBLCP1 are strikingly similar.
hUBLCP1 and dmUBLCP1 are very similar, consistent with the backbone RMSD between the two structures of 1.778 Å (Fig. 2D).

Molecular Interaction between hUBLCP1 and Rpn1

Because the structure of the UBL domain of hUBLCP1 is unique, detailed analysis of Rpn1 binding is of the essence in understanding the mechanism underlying the interaction between the two molecules. Using an immunoprecipitation assay, we showed that hUBLCP1 directly interacts with the Rpn1 of the regulatory particle of the 26 S proteasome (Fig. 3A). A recent study suggests that leucine-rich repeat-like domains of Rpn1 recognize the ubiquitin motif [25]. Homology modeling and secondary structure predictions show that Rpn1 has two structural subunits, regulatory subunits 1 (Rpn1394–568) and 2 (Rpn1 640–772) with leucine-rich repeat-like-rich sequences (data not shown). Data from the GST pull-down assay showed that regulatory subunit 1 (Rpn1394–568) directly interacts with UBLCP1 1–81, whereas regulatory subunit 2 (Rpn1 640–772) of Rpn1 does not (Fig. 3B).

We performed NMR titration experiments to identify binding residues of the UBL domain of hUBLCP1 upon Rpn1 binding in solution. A number of chemical shift perturbations were observed upon Rpn1394–568 titration (Fig. 3C and 3D). Most of the resonance perturbations in the UBL domain of hUBLCP1 were found in the residues of the loop regions (i.e., W9, G11, T17, K49, K51, A55, and K65; Fig. 3E and 3F). Interestingly, K49, K51, and A55 in the β3-α2 loop are mainly involved in Rpn1 binding, which suggests the β3-α2 loop is responsible for Rpn1 binding. To determine the binding affinity of the UBL domain of hUBLCP1 for Rpn1394–568, we performed isothermal titration calorimetry experiments. The dissociation constant (Kd) and the enthalpy (ΔH) were calculated as 1.03×10⁻⁵±4.13×10⁻⁵ M and −5.38×10⁻⁵±6870 cal/mol, respectively.

Backbone Dynamics

Although the UBL domain of hUBLCP1 contains the canonical fold of UBL domains, the secondary structures and β3-α2 loop are very distinct. To correlate structure and dynamic properties of the UBL domain of hUBLCP1, we performed NMR backbone relaxation (Fig. 4A and 4B) and 15N-1H heteronuclear NOE experiments (Fig. 4C). The overall average R1, R2, and NOE values were determined as 2.44±0.13 s⁻¹, 6.73±0.61 s⁻¹, and 0.71±0.013, respectively. Interestingly, the average R1, R2, and NOE values of the residues in the β3-α2 loops were determined as 2.36±0.19 s⁻¹, 6.825±0.88 s⁻¹, and 0.62, indicating that the β3-α2 loop is relatively rigid although it might have intrinsic dynamic profile. The order parameters and conformational exchange supported all dynamic data, with the average value of order parameters calculated as 0.861±0.037 (Fig. 4D). The conformational exchange parameters suggest an evidence of rapid exchange characteristics for some residues in the β3-α2 loop (Fig. 4E).

Functional Implications

Although UBLCP1 has been classified as a member of the UDP family, it is important to note that the UBL domain of hUBLCP1 has a unique structural feature, which could be related to its specific function. It is well known that UBLs recognize the ubiquitin-associated domain or ubiquitin-interacting motif
through their conserved hydrophobic residues [26]. The hydrophobic residues in the β_3-β_4 loop and β_5 of hPLIC-2, hHR23a, and parkin are mainly involved in molecular interactions with their partner proteins [27–29]. Our findings suggest that the UBL domain of hUBLCP1 interacts with regulatory subunit 1 of Rpn1 via hydrophilic residues of the unique β_3-α_2 loop. Therefore, we hypothesize that the unique structure of the UBL domain of hUBLCP1 could be responsible for specific recognition of partner molecules, such as Rpn1. Data from proteomics studies have suggested that the peptidase activity of individual subunits of the murine cardiac 20 S proteasome is enhanced by phosphorylation and that the activity is tightly regulated by protein phosphatase 2A and protein kinase A [30,31]. The UBL domain of hUBLCP1 interacts with Rpn1 of the regulatory unit of the 26 S proteasome, and hUBLCP1 has been identified as one of the phosphatases functionally integrated with dephosphorylation of regulatory particles in the 26 S proteasome. Therefore, our findings will be directly applicable to future investigation of molecular interactions.

![Figure 2](image1.png)

Figure 2. Structural comparison of the UBL domains. (A) Sequence alignment and secondary structures of the UBL domain of hUBLCP1, ubiquitin, hHR23a, hPLIC-2, and parkin. (B) Structural overlay of the β_3-α_2 loop of the UBL domain (red) of hUBLCP1 with that of ubiquitin (blue-white), hHR23a (pale cyan), hPLIC-2 (light blue), and Parkin (white-gray), respectively. (C) Sequence alignment and secondary perturbations of the UBL domains of human (hUBLCP1) and D. melanogaster (DmUBLCP1) UBLCP1. (D) Structural comparison of the UBL domains of human and D. melanogaster UBLCP1. (E) Superposition of the β_3-α_2 loop regions of the UBL domains of hUBLCP1 (red) and dmUBLCP1 (pale cyan).

doi:10.1371/journal.pone.0062981.g002

![Figure 3](image2.png)

Figure 3. Intermolecular interaction between hUBLCP1 and Rpn1. (A) Immunoprecipitation (IP) of both hUBLCP1 and Rpn1 was performed. Immunoblotting was conducted using HA- and FLAG-antibodies to distinguish the two proteins. IP was performed for the a-FLAG-RPN1 and co-precipitation was confirmed by IB. (B) In vitro GST pull-down assay using the GST-fused UBL domain of hUBLCP1 (UBLCP11–81), the TRX-His6-fused regulatory subunit 1 (Rpn1394–568), and subunit 2 (Rpn1640–772). Lane 1 (upper and lower), GST-fused UBL domain of UBLCP1; Lane 2 (upper), TRX-His6-fused Rpn1394–568 and (lower), TRX-His6-fused Rpn1640–772; Lane 3 (upper and lower), pull-down elution using GST elution buffer containing 10 mM reduced glutathione. (C) 15N-labeled UBL domain was titrated with Rpn1394–568. Superimposed 2D 1H-1N HSQC spectra of UBL domain without Rpn1394–568 (black) and with Rpn1394–568 (purple). To assess chemical shift perturbations of the UBL domain on Rpn1 binding, titration of 0–2 molar equivalents of Rpn1394–568 was performed. Residues K49 and A55 in the β_3-α_2 loop, K65 in the α_2-β_4 loop and W9 in the β_1-β_2 loop are displayed. (D) Chemical shift changes ($\Delta \delta$) of the UBL domain upon Rpn1 binding are summarized. Chemical shift perturbations are shown by different colors: blue, 0 ppm $< \Delta \delta$ < 0.05 ppm; orange, 0.05 ppm $< \Delta \delta$ < 0.1 ppm; red, 0.1 ppm $< \Delta \delta$ $< $ disappeared. Residues that “disappeared,” due to peak broadening, are marked by asterisks and the secondary structures are also displayed. (E) Residues with significant chemical shift changes and less perturbed changes upon Rpn1 binding drawn by the Pymol program are shown by spheres and sticks, respectively. (F) Surface charge model of the UBL domain of the hUBLCP1. Electrostatic surfaces are shown for negative (red), positive (blue), and neutral (white) potential.

doi:10.1371/journal.pone.0062981.g003
Figure 4. Backbone dynamics of the UBL domain of hUBLCP1. The values for (A) spin-lattice relaxation time (T_1) and (B) spin-spin relaxation time (T_2) are shown. (C) Heteronuclear NOE (XNOE) data are displayed. Error values were calculated using the following equation: \(s\text{NOE} = [(\text{r}_{\text{obs}} - \text{r}_{\text{unsat}})^2 + (\text{r}_{\text{unsat}})^2]^{1/2}\) (D) Calculated order parameter (S_2) and (E) conformational exchange terms (R_{ex}) are shown. All relaxation parameters were determined by the FASTModelfree program.

doi:10.1371/journal.pone.0062981.g004

with the proteasome complex during regulation of the 26 S proteasome through posttranslational modification of regulatory particles.

Supporting Information

Figure S1 A summary of NOE connectivity of the UBL domain of hUBLCP1. (A) Strips of NH-NH NOEs from 3D 15N-edited 3D NOESY-HSQC spectrum. Sequential and medium-range NOEs from L61 to L64 are indicative of \(\alpha\)-helical structure. Sequential (d_{NH}) and medium-range NOEs (d_{NN}) are marked by red and blue lines, respectively. (B) A Summary of NOE connectivity and secondary structures predicted by the CSI program. NOEs and consensus CSI values show that the UBL domain of hUBLCP1 consists of two \(\alpha\)-helices and four \(\beta\)-strands. (TIF)

Figure S2 Short and medium range NOEs for a unique β-3-2 loop region of the UBL domain of hUBLCP1. (A) Examples of NOE peaks from the 3D 15N-edited 3D NOESY-HSQC spectrum. Intra-residue and inter-residue NOEs are shown in blue and red, respectively. (B) A list of observed NOEs in the β-3-2 loop region. NOE intensities are classified as strong \((s)\), medium \((m)\) and weak \((w)\). (TIF)

Author Contributions

Conceived and designed the experiments: WI, JHY. Performed the experiments: SK JHY GC CKL HKC. Analyzed the data: SK JHY. Contributed reagents/materials/analysis tools: GC. Wrote the paper: JHY WL.

References

1. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17: 7151–7160.
2. Hartmann-Petersen R, Gordon C (2004) Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 15: 247–259.
3. Jentsch S, Pyrowolakis G (2000) Ubiquitin and its kin: how close are the family ties? Trends Cell Biol 10: 335–342.
4. Wilkson CR, Steger M, Hartmann-Petersen R, Stone M, Wallace M, et al. (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3: 939–943.
5. Schauber C, Chen I, Tougawek P, Vega I, Lamberton D, et al. (1998) Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391: 715–718.
6. Lehman NL (2009) The ubiquitin-proteasome system in neuropathology. Acta Neuropathol 118: 329–347.
7. Zheng H, Ji G, Gu S, Shi B, Wang J, et al. (2005) Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. Biochem Biophys Res Commun 331: 1401–1407.
8. Ko S, Lee Y, Yoon JB, Lee W (2009) Purification and NMR studies of RNA polymerase II C-terminal domain phosphatase 1 containing ubiquitin like domain. Bull Korean Chem Soc 30: 1039–1042.
9. Cho H, Kim TK, Maneche H, Lane WS, Flores O, et al. (1999) A protein phosphatase function to recycle RNA polymerase II. Genes Dev 13: 1540–1552.
10. Guo X, Engel JL, Xiao J, Tagliabracci VS, Wang X, et al. (2011) UBLCP1 is a 26 S proteasome phosphatase that regulates nuclear proteasome activity. Nat Cell Biol 13: 289–302.
11. Grzesiek S, Dobeli H, Gentz R, Garotta G, Labhardt AM, et al. (1992) 1H, 13C, 15N NMR backbone assignments and secondary structure of human proteasome subunit S5a. Biochemistry 41: 1767–1777.
12. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, et al. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6: 277–293.
13. Sas HJ, Musco G, Stahl SJ, Wingfield PT, Grzesiek S, et al. (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual interference-gamma. Biochemistry 39: 8180–8190.
14. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, et al. (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33: 6004–6003.
15. Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115: 12593–12594.
16. Cole R, Loria JP (2003) FAST-Modelfree: A program for rapid automated analysis of solution NMR spin-relaxation data. J Biomol NMR 26: 203–213.
17. Elasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, et al. (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4: 725–730.
18. Hartmann-Petersen R, Gordon C (2004) Proteins interacting with the 26 S proteasome. Cell Mol Life Sci 61: 1589–1595.
19. Walters KJ, Kleijnen MF, Goh AM, Wagner G, Howley PM (2002) Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S10a. Biochemistry 41: 1767–1777.
20. Mueller TD, Feigon J (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8: 477–486.
21. Ko S, Yu EY, Shim J, Yoo HH, Tanaka T, et al. (2009) Solution structure of the DNA binding domain of rice-temere binding protein RTBPI. Biochemistry 48: 827–838.
22. Muratet P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278: 333–378.
23. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289–302.
24. Parkin binds the Rpn 10 subunit of 26 S proteasomes through its ubiquitin-like domains. EMBO J 22: 4634–4645.
25. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289–302.
26. Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, et al. (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4: 725–730.
27. Walters KJ, Kleijnen MF, Goh AM, Wagner G, Howley PM (2002) Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S10a. Biochemistry 41: 1767–1777.
28. Mueller TD, Feigon J (2003) Structural determinants for the binding of ubiquitin-like proteins to the proteasome. EMBO J 22: 4634–4645.
29. Sakata E, Yamaguchi Y, Kurimoto E, Kikuchi J, Yokoyama S, et al. (2003) MiBA1, a ubiquitin-like domain containing protein, is recruited to proteasomes by associating with proteasome subunit S10a. Biochemistry 42: 1767–1777.
30. Gomes AV, Zong C, Edmondson RD, Li X, Young GW, et al. (2006) Regulation of murine cardiac 20 S proteasomes: role of associating partners. Circ Res 99: 372–380.
31. Zong C, Gomes AV, Drews O, Li X, Young GW, et al. (2006) Regulation of murine cardiac 20 S proteasomes: role of associating partners. Circ Res 99: 372–380.