Supplementary Materials:

Fig. S1 The EACBE insulates the interactions between the left and the right DNA fragments. Quantification of the interactions of 4C data from the left viewpoint and the right viewpoint of EACBE was done with 4C-ker program.
Fig. S2 The chromatin architecture stripes in non-T cells. A) Hi-C heatmap of mESC, NPC, and neuron cells with 10kb resolution of the region spanning from the proximal Vα region to around 300kb downstream of Cα. B) Hi-C heatmap of mESC-CTCF-auxin cells, in which CTCF was degraded, and control E14D0 cells. It was presented in Hi-C data browser (http://promoter.bx.psu.edu/hi-c/view.php). mESC, NPC and neuron: mouse embryonic stem cells, neural progenitors and cortical neurons from the developing mouse embryonic neocortex. E14D0: Mouse ES cell lines were derived from E14 strain. mESC-CTCF-auxin: CTCF depleted with auxin-inducible degron system for two days.
Fig. S3 EACBE deletion didn’t influence with thymocyte development and TCR expression on surface. A) Percentages of thymocyte subsets and B) DN subsets from 6-week-old wild type and EACBE⁻/⁻ mice were analyzed by using flow cytometry. Data represent mean ± SD of three independent experiments. C) Flow cytometry plot and D) Cell numbers of CD4⁺ and CD8⁺ lymphocytes in spleen of 6-week-old wild type and EACBE⁻/⁻ mice were analyzed by using flow cytometry. The flow cytometry dot plots show gating of CD4⁺ and CD8⁺ cells in CD3⁺ population. E) Flow cytometry showed the TCRβ and CD3 on cell surface. Data are two independent experiments.
Fig. S4 Activation of EACBE-deleted T cells. A) Flow cytometry of CD4+ and CD8+ T cell from spleen or lymph node of wild type and EACBE−/− mice before and after 24-hour plate-bound CD3/CD28 stimulate. Cell proportion of activated CD4+ and CD8+ T cells from B) spleen and C) peripheral lymph node after 24-hour stimulate. Data are representative of seven (spleen) or four (PLN, peripheral lymph node) independent experiments (one mouse per experiment). * P < 0.05 by two-side Student’s T test.
Fig. S5 The repertoire of Tcrb and Tcrd in EACBE−/− thymocytes. Relative clonotype numbers of A) Jβ, B) Vβ genes and C) heatmap of Vβ–Jβ rearrangements determined by deep sequencing of Tcrb transcripts amplified by 5’RACE of wild type and EACBE−/− mice respectively. Data are representative of two independent experiments. D) Vδ usage determined by high-throughput sequencing of Tcrb transcripts amplified by 5’RACE of wild type and EACBE−/− mice respectively. Data are mean ± SD of two experiments. * P < 0.05, ** P < 0.01 by two side Student’s T test.
Fig. S6 EACBE deletion didn’t influence thymocyte survival. A) Flow cytometry plot of apoptosis assay of thymocytes cultured on 0, 6 hours, 24 hours, and 48 hours in medium with 10% FBS. Data are representative of three independent experiments. B) Apoptosis cell percentage and C) survival cell percentage of thymocytes after 0-hour, 6-hour, 24-hour-s, and 48-hour cultures. The data represent mean of three experiments with normalization to the 0-hour.
Fig. S7 EACBE is involved in chromatin organization of the Tcra-Tcrd locus. A) H3K4me3 and H3K27ac ChIP-seq on the Actb gene locus in Rag2^{−/−} (WT) and Rag2^{−/−} x EACBE^{−/−} (KO) DP thymocytes from anti-CD3 injected mice. Data are representative of two independent experiments. B) Heatmap and subtraction heatmap of 4Mb region on Chromosome 14. The 10 kb binned Hi-C data of DP thymocytes were generated from anti-CD3 injected EACBE^{+/−} x Rag1^{−/−} and EACBE^{−/−} x Rag1^{−/−} mice. 4C data normalized using 4C-ker program from C) EACBE right and D) INT viewpoint in CD3-stimulated-DP thymocytes of WT and EACBE^{−/−} mice at Rag2^{−/−} background. It was analyzed with two independent replicates. Filled circles highlight significant differences.
Fig. S8 EACBE mediates interactions of the Eα with the genes in the downstream sub-TAD. 4C data normalized using 4C-ker program from EACBE right and INT viewpoint in CD3-stimulated-DP thymocytes of WT and EACBE−/− mice at Rag2−/− background. It was analyzed with two independent replicates. Filled circles highlight significant differences.
Primers	Sequence	Use/figure
musActbp F	5'-GCTGTGGGCTCTATAAAACC	F2B,C;F4B,C;F5D
musActbp R	5’-CAACGAAGGGAGCTGCAAAGAA	F2B,C;F4B,C;F5D
MageA2C F	5'-AACGTTTTGTGAACGTCCTGAG	F2C, F5B,C
MageA2B R	5’-GACGCCTCAGAAACAAATGGC	F2C, F5B,C
mus Ea F	5’-CTGACATGGGCAAACAGGTC	F2C; F4B,C
mus Ea R	5’-GTGGCCCGAGAGATCCTTAT	F2C; F4B,C
Ea50k/CBE50k F	5’-AGGACCTTGCCACAACCTCTG	F2B; F5D
Ea50k/CBE50k R	5’-GCTCTCCCTGAATCTGTG	F2B; F5D
ChIP TEAp F	5’-ATGGGAAAGGGAGGGGATGA	F4B,C
ChIP TEAp R	5’-GCTCAAGAGGACACTGGAAGG	F4B,C
ChIP Trav17-F	5’-TCCCCAGTGACCACCTCTG	F4B,C
ChIP Trav17-R	5’-TGTCCTGTTGTGAGTTCTCTG	F4B,C
ChIP Trav21-F	5’-TGTCGGGTTGCTGCTTGAG	F4B,C
ChIP Trav21-R	5’-AACCTTACCCAAGGCCAGAG	F4B,C
ChIP Trdv2-2F	5’-TCCTGTTTGAAGGGTACAG	F4B,C
ChIP Trdv2-2R	5’-AGCCTTTCAACAGAGAGG	F4B,C
ChIP Trdd1 F	5’-TACGGCTGTGTTTCACTG	F4B,C
ChIP Trdd1 R	5’-GCTCAAGAGGACACTGGAAGG	F4B,C
ChIP Trdj1 F	5’-AGCTGCTGAGGTTTTGGAATG	F4B,C
ChIP Trdj1 R	5’-ATCCCTCAGACCTAACCAG	F4B,C
ChIP Trdj2 F	5’-GCTGGTCCACAGACTGTTATCT	F4B,C
ChIP Trdj2 R	5’-AACCTTACCCAAGGCCAGAG	F4B,C
ChIP Trdv5 F	5’-CTGGACTCTCTTTAACCACATC	F4B,C
ChIP Trdv5 R	5’-TCCCTGAGGATAGGTTACTACC	F4B,C
ChIP Traj61 F	5’-GCCATGACTGGAAGAGACTCAT	F4B,C
ChIP Traj61 R	5’-TCCATATTTTTGTTTTACTATTCTCCTGAG	F4B,C
ChIP Traj58 F	5’-TGGGCTCAAGCTGCTATTGG	F4B,C
ChIP Traj58 R	5’-TGGACTGAGCTGATTTTGGAATG	F4B,C
ChIP Traj47 F	5’-GCTGGGAAACCATTGTTGAG	F4B,C
ChIP Traj47 R	5’-CACCTTACCCAAGCTTTTGGT	F4B,C
ChIP Traj18 F	5’-AGAGCGGACAGAGACTGTT	F4B,C
ChIP Traj18 R	5’-TATCTACACAGTGGCCAGGCC	F4B,C
ChIP Traj7 F	5’-GTGCTCTACAGACCTCCTACA	F4B,C
ChIP Traj7 R	5’-AAAAACGACACATTTCCGCT	F4B,C
ChIP Traj2 F	5’-TCTAAGGAGTAGTAGGATGAGGC	F4B,C
ChIP Traj2 R	5’-GGTCCCTTTCCTCCGGAATGTTA	F4B,C
Ea 3’ F	5’-TCCCCAGGGGATACCTGTTA	F2B; F5D
Ea 3’ R	5’-ACCCCTTTTGCCATTTCTTAT	F2B; F5D
Dad1 CBE F	5’-CAGCACAGGTTGAGGAAGACA	F5D
Dad1 CBE R	5’-GACCAGGGGTTTCTTCTCAT	F5D
ACTB CTCF F	5’-ACGATGGGAGGGGGAATACAG	F5D; F6D; F6E

Table S1: the primer sequences used in the paper.
Gene	Forward Primer	Reverse Primer
ACTB	5'-TGATAGTTCGCCATGGATGAC	F5D; F6D; F6E
CTCF	5'-GAGCTCAAGTACTCCAGAG	F5D; F6D; F6E
Dad1_p	5'-GTATCCGAAGTCACCGTGTT	F5D; F6D; F6E
Abdh4_p	5'-TCAAGTTCTCCGAGATGAG	F5D; F6D; F6E
Prmt5_p	5'-CCCAGATTCAGCTCTCCAGT	F5D; F6D; F6E
Ajuba_p	5'-GAGCTCAAGTACTCCAGAG	F5D; F6D; F6E
Cdh24_p	5'-TCAAGTTCCTCCGAGATGAG	F5D; F6D; F6E
Prmt5_p	5'-CCCAGA TTCAGCCTTCCAGT	F5D; F6D; F6E
Ajuba_p	5'-GAGCTCAAGTACTCCAGAG	F5D; F6D; F6E
Cdh24_p	5'-TCAAGTTCCTCCGAGATGAG	F5D; F6D; F6E

DNA Jα usage
Trav12F
Trav13F
Trav14F
Trav17F
Trav19F
Trav21F
Traj61R
Traj57R
Traj53R
Traj49R
Traj40R
Traj37R
Traj31R
Traj17R
Traj2R
Actb-pF
Actb-pR

5' RACE
5' PCR IIA A501
5' PCR IIA A502
5' PCR IIA A503
5' PCR IIA A504
5' PCR IIA A505
5' PCR IIA A506
5' PCR IIA A507
5' PCR IIA A508
TRAC-R (N701)
TRBC-R (N701)
TRDC-R (N701)
TRAC-R (N702)
TRBC-R (N702)
TRDC-R (N702)
TRAC-R (N703) 5’-AGGCAGAAACACAGCAGGTTCTGGGTTC F3A,B
TRBC-R (N703) 5’-AGGCAGAAAGTGAGTACATTTCTCAG S5A,B
TRDC-R (N703) 5’-AGGCAGAAAGAACAGATGGTTGGGCG S5D
TRAC-R (N704) 5’-TGCTGAGCACAGCAGGTTCTGGGTTC F3A,B
TRBC-R (N704) 5’-TGCTGAGCGGTGGAGTCACAAGGCTCAG S5A,B
TRDC-R (N704) 5’-TGCTGAGCGAAAACAGATGGTTGGGCG S5D
TRAC-R (N705) 5’-CGACTCGAAGAAGAGTTGGGCG S5D
TRBC-R (N705) 5’-CGACTCGAAGGTGGAGTCACAGGCTCAG S5A,B
TRDC-R (N705) 5’-CGACTCGAAGAAAACAGATGGTTGGGCG S5D
TRAC-R (N706) 5’-TCCTGAGCACACAGCAGGTTCTGGGTTC F3A,B
TRBC-R (N706) 5’-TCCTGAGCGGTGGAGTCACAAGGCTCAG S5A,B
TRDC-R (N706) 5’-TCCTGAGCGAAAACAGATGGTTGGGCG S5D
TRAC-R (N707) 5’-GGACTCCTACACAGCAGGTTCTGGGTTC F3A,B
TRBC-R (N707) 5’-GGACTCCTACGGTGGAGTCACAAGGCTCAG S5A,B
TRDC-R (N707) 5’-GGACTCCTACAAAACAGATGGTTGGGCG S5D
TRAC-R (N708) 5’-TAGGCATGACACAGCAGGTTCTGGGTTC F3A,B
TRBC-R (N708) 5’-TAGGCATGGGTGGAGTCACAAGGCTCAG S5A,B
TRDC-R (N708) 5’-TAGGCATGGAAAACAGATGGTTGGGCG S5D
TRAC-R (N709) 5’-GGACTCCTACACAGCAGGTTCTGGGTTC F3A,B
TRBC-R (N709) 5’-GGACTCCTACGGTGGAGTCACAAGGCTCAG S5A,B
TRDC-R (N709) 5’-GGACTCCTACAAAACAGATGGTTGGGCG S5D
TRAC-R (N710) 5’-TGCAGGCTGACACAGCAGGTTCTGGGTTC F3A,B
TRBC-R (N710) 5’-TGCAGGCTGGGTGGAGTCACAAGGCTCAG S5A,B
TRDC-R (N710) 5’-TGCAGGCTGGAAAACAGATGGTTGGGCG S5D

DSB linker1 5’-GGCTTCGCCGATCTGAATTC F3E
DSB linker2 5’-GTCATTCAAGATC F3E
Linker primer 5’-CCGGGAGATCTGAATTCCAC F3E
DSB Traj61 primer 5’-TCGGAGAGAGGAGTGCTG F3E
DSB Traj61 probe 5’-TGAGGAACACGGAGTATCTC F3E
DSB Traj27 primer 5’-ATGGCAGATAGAATGGAGCGG F3E
DSB Traj27 probe 5’-CTGGCGGTGGAAAGACTATTG F3E
DSB Traj18 primer 5’-CTGCGGCGGTTGAAAGACTATTG F3E
DSB Traj18 probe 5’-TAAGCTCAGAGCGGACAGAA F3E
DSB Traj6 probe 5’-GACCAATGGAAAGGAGGT F3E
DSB Traj6 primer 5’-ATCAGACCAGACTGCTGCCCC F3E
DSB Traj2 primer 5’-GTGGAGCTCCACAGCAGCAGCAG F3E
DSB Traj2 probe 5’-GACCAATGGAAAGGAGGT F3E
Cd14 F 5’-GCTCAAACTTTCAGAATCTACCGAC F3E
Cd14 R 5’-AGTCAGTTCGTGGAGGGCGGAAATC F3E

Germline transcription

GT-Trav17 F 5’-TGGAGCGGACTCAGCAGACAGGAAATCT F4D
GT-Trav17 R 5’-CGTGCACAGAAGGTCTCAGG F4D
GT-Trav19 F 5’-CCAGCCTTCAAGAGACAGCAGCAG F4D
GT-Trav19 R 5’-AGGTCGGACTGACAGGTCCTTTTGT F4D
GT-Trav21 F 5’-CGGCTGTGTACCACTGTATCTCAGCAGCAG F4D
GT-Trav21 R 5’-CTGCGGCGGTTGAAAGACTATTG F4D
GT-Trdj1 F 5’-ATCAGACCAGACTGCTGCCCC F4D
GT-Trdj1 R 5’-ATCCCTCACCACTGCTCTTTC F4D
GT-Trdv5 R 5’-AGTCAGTTCGTGGAGGGCGGAAATC F4D
Gene expression	Primers	
Actb mRNA F	5' - ACACCCGCCACCAAGTTCC	
Actb mRNA R	3' - TACACCCGCCACCAAGTTCC	
Dad1 mRNA F	5' - TGTGGGAGCAGCTCCATCCTAG	
Dad1 mRNA R	3' - GTGTGGGAGCAGCTCCATCCTAG	
Abhd4 mRNA F	5' - TGGAGCAGCGATCCTCCAG	
Abhd4 mRNA R	3' - CATCACCAGAGGGGTGCGAT	
Prmt5 mRNA F	5' - GGTGTGGTGTTGCTTCCGATG	
Prmt5 mRNA R	3' - GCCATCTCCCCACCAAGCAT	
Ajuba mRNA F	5' - TGCTCTGCCCCCATAGATACCT	
Ajuba mRNA R	3' - GTCTCTGCCCCCATAGATACCT	
Cdh24 mRNA R	5' - CTGCTGGGGCTGCTGAGCCAG	
Cdh24 mRNA F	3' - GGGCCAGATCCTCGCCAGGT	
Acin1 mRNA F	5' - GATGAGACGCGCAGTCCCTCT	
Acin1 mRNA R	3' - CCCGTTCCCGCAGCAAGCA	
Homez mRNA F	5' - AGCAAGTGCTCATTTCCATTCC	
Homez mRNA R	3' - AGCAAGTGCTCATTTCCATTCC	
Pabpn1 mRNA F	5' - TCAAGAGCTGAGTCAGGAGGA	
Pabpn1 mRNA R	3' - ACGTAGATAGACGGGCATCA	
Ngdn mRNA F	5' - CACTGAGACAAAGTCTCGAGC	
Ngdn mRNA R	3' - AGAGGCGCTTGGCCAGGATAG	
4C primer		
Ea-MboII up:	5' - TGGCGAAGATGAGTTGACCTTGTGATC	
Ea-NlaIII2 up:	5' - CAGGCAGAGAAGCTCTCGAGC	
Ea-MboII I down:	5' - TGCCCATCATCCAGGTTGACATC	
Ea-NlaIII2 I down:	5' - CTGGGAGTTTGGCTCAGACCTCGT	
4C TEAp MboI:	5' - ACACCTCTTTACACAGCTGTGATC	
4C TEAp NlaIII:	5' - GCGTTCTGATTTCTCTGACTTTC	
4C TARV17 MboI:	5' - CATTCCTCCAGGATTCAGTGTGATC	
4C TARV17 NlaIII:	5' - GAAATGGAAAGGAGAAAGGGGT	
4C INT MboI:	5' - GATCTCAACAAAGCAGCTGCTGATC	
4C INT NlaIII:	5' - GTTTCCTGAGTTGGAGTAGC	
4C EACBE right Mbo1 up	5' - GCCTGGGTCCTGCTAAGGATC	S7D
------------------------	-----------------------------	-----
4C EACBE right Nla3 up:	5' - GGCAGAGAGCTAGACAGATGTAGT	S7D