Proper diagnosis and treatment of renal abscess: A case report

Lyh-Jyh Hao, Ray-Shyang Wang, Chien-Ta Chen, Shao-Wen Wu, Wei-Jen Yao, Ming-Jui Wu

ABSTRACT

Introduction: Diagnosis and proper treatment of renal abscesses remain a challenge for physicians. Reports have illustrated that small renal abscesses could be effectively treated with a course of intravenous antibiotics. However, delay in diagnosis and treatment could lead to higher morbidity and mortality.

Case Report: We present a 43-year-old female with a small renal abscess after incomplete treatment of acute pyelonephritis, which was associated with renal stone and Escherichia coli bacteremia. Patient was then treated with enough intravenous antibiotics without any classical surgical drainage, and came out to be fully healthy.

Conclusion: This case highlights the need for early identification of risk factors as well as the subtle feature of renal abscess by proper diagnosis and adequate treatment.
Proper diagnosis and treatment of renal abscess: A case report

Lyh-Jyh Hao, Ray-Shyang Wang, Chien-Ta Chen, Shao-Wen Wu, Wei-Jen Yao, Ming-Jui Wu

ABSTRACT

Introduction: Diagnosis and proper treatment of renal abscesses remain a challenge for physicians. Reports have illustrated that small renal abscesses could be effectively treated with a course of intravenous antibiotics. However, delay in diagnosis and treatment could lead to higher morbidity and mortality. Case Report: We present a 43-year-old female with a small renal abscess after incomplete treatment of acute pyelonephritis, which was associated with renal stone and Escherichia coli bacteremia. Patient was then treated with enough intravenous antibiotics without any classical surgical drainage, and came out to be fully healthy. Conclusion: This case highlights the need for early identification of risk factors as well as the subtle feature of renal abscess by proper diagnosis and adequate treatment.

Keywords: Acute pyelonephritis, Antibiotics, Renal abscess, Renal stone

How to cite this article

Hao Lyh-Jyh, Wang Ray-Shyang, Chen Chien-Ta, Wu Shao-Wen, Yao Wei-Jen, Wu Ming-Jui. Proper diagnosis and treatment of renal abscess: A case report. Int J Case Rep Images 2014;5(12):854–858.
doi:10.5348/ijcri-2014148-CR-10459

INTRODUCTION

Renal and perirenal abscesses are uncommon diseases originated mainly from infections in or around the kidney. The former one is accounted for around 0.02% and the latter case is for about 0.2% of hospital admissions in Altemeier’s series of 540 intra-abdominal abscesses [1]. A delay in renal abscess diagnosis may lead to higher morbidity and mortality, which has been reduced to 12% since the accessibility of computed tomography (CT) scan and magnetic resonance imaging (MRI) scan [2, 3]. Classical treatment for renal abscesses include surgical exploration, incision and drainage, or nephrectomy [4, 5]. In fact, simply invasive treatment appeared in early 1970s, and the trend towards conservative treatment is frequent due to the progress in imaging techniques and new antibiotics. Small renal abscesses could be effectively treated with the sufficient drainage and a course of intravenous antibiotics in the previous reports [4, 6–8]. Herein, we report a small renal abscess after incomplete treatment of acute pyelonephritis, which was completely restored to health by adequate antibiotic treatment.
CASE REPORT

A 43-year-old female, with left renal stone, presented to our hospital after two days of fever and left flank pain. The initial evaluation revealed high fever (body temperature 39.7°C), tachycardia (heart rate, 112 beats per minute), leukocytosis (white blood cell, 24,560 per micrometer) with a left shift of elevated C-reactive protein (18.98 mg/dL), and left flank tenderness, but no thrombocytopenia. There was no diabetes mellitus history of this female. However, bilateral calyceal renal stones and relative swelling of left kidney were noted on abdomen sonography. Moreover, the blood cultures yielded *Escherichia coli* and hematuria without pyuria were noted. Thus, left side acute pyelonephritis was impressed and intravenous antibiotics with cefazolin 1 g q8h and gentamycin 80 mg q12h were prescribed for 5 days. The patient requested discharge due to family problem when the fever was subsided for two days with follow-up white blood cell count 11690/μm and C-reactive protein 6.11 mg/dL.

Oral ciprofloxacin (250 mg tablet twice per day) was prescribed to her after discharge and she was informed to follow-up at our outpatient department (OPD) one week later. Unfortunately, chilliness, low grade fever, left flank pain, leukocytosis (white blood cell, 15620/μm) and high C-reactive protein (13.39 mg/dL) recurred three days later after discharge. She was re-admitted to ward via OPD and followed-up abdomen sonography showing a 2.16 cm heterogenous hypoechoic nodule in lower pole of the left kidney, favor renal abscess (Figure 1). After admission, medical treatment without therapeutic drainage was suggested by infectious disease specialist and urologist. Intravenous antibiotics with ciprofloxacin 400 mg q12h and amikacin 250 mg q12h were prescribed for two weeks. Fever subsided and mild local left flank area knocking pain was noted. Normal white blood cell count (8540/μm) and mild elevated C-reactive protein (1.09 mg/dL) were noted. Follow-up abdomen computed tomographic scan revealed a 1-cm abscess in lower pole of the left kidney with focal perirenal fatty blurring, indicating that partial resolution of the left renal abscess was considered (Figure 2). She was then discharged and oral ciprofloxacin (250 mg tablet twice per day) was continuously prescribed for four more weeks at OPD, and follow-up abdomen sonography revealed less than 8 mm renal stone without any more abscess (Figure 3). Extracorporeal shock wave lithotripsy (ESWL) of left renal stone was suggested by the urologist, but the patient refused. She was instructed to drink eight glasses of fluid daily to maintain adequate hydration and to decrease the chance of urinary supersaturation with stone-forming salts. Other dietary guidelines were suggested to avoid excessive salt and protein intake and moderation of calcium and oxalate intake. There was no more pyelonephritis or renal abscess recurrence of this patient three years later after discharge.

DISCUSSION

The diagnosis of perinephric or renal abscess, as well as splenic abscess, is frequently delayed, and the mortality rate in some cases is extensive. Thus, perinephric and renal abscesses should be seriously taken care when a patient presents with symptoms of pyelonephritis and remains feverish after four or five days of treatment [1]. Besides, diagnoses should be entertained when a urine...
culture yields a polymicrobial flora; a patient is known to have renal stones; or fever and pyuria coexist with a sterile urine culture. Meanwhile, renal ultrasonography and abdominal CT should be exploited to confirm the authentic cause.

Report has suggested an algorithmic approach to manage renal abscesses, which illustrated that main management with antibiotics was recommended in <3 cm in diameter small abscesses, and drainage (percutaneous or surgical) was recommended in >5 cm large abscesses. Both approaches could be applied in medium-sized abscesses (3–5 cm) [6]. Another report further suggested avoiding the aggressive treatment on renal and perinephric abscesses with 5 cm in diameter or less, which could have complete decrease after antibiotic therapy [9]. However, study also illustrated that aggressive drainage is suitable in abscesses >3 cm [6]. In fact, additional study has demonstrated that percutaneous abscess drainage might have several complications [10].

The total duration of antibiotic treatment course is dependent on the patient's clinical response. The current recommendations are to continue parenteral antimicrobial therapy for at least one to two days after clinical improvement, and oral antibiotic therapy can then be administered for an additional two weeks [11].

In previous several studies, renal stones and urinary obstruction have been reported as common predisposed conditions with an incidence of 24–54% and 21–50% of renal abscess, respectively [12, 13]. More than 75% of perinephric and renal abscesses arise from a urinary tract infection, which ascends from the bladder to the kidney with pyelonephritis occurring prior to abscess development [1]. E. coli, Proteus spp., and Klebsiella spp. are the organisms most frequently encountered in perinephric and renal abscesses [1]. Patients with renal abscesses have a higher rate of E. coli infection in urine cultures, and a female predominance (91.8%) could be observed [4]. This may be a result of the development of renal abscesses via an ascending infection by organisms already isolated within the urinary tract [7].

The intravenous antimicrobial therapy may be a good alternative treatment if therapeutic drainage is believed to have considerable risk. Large abscesses, obstructive uropathy, severe vesicoureteral reflux, diabetes, old age, and urosepsis with gas forming organisms are the factors associated with antimicrobial treatment failure [2]. Percutaneous nephrostomy should be considered when there is a large abscess or obstructive uropathy, and no clinical improvement occurs after 48 to 72 hours of appropriate antibiotic therapy [2]. An incision and drainage is preferred when the open drainage is required. Nephrectomy is reserved for patients whose renal parenchyma is diffusely damaged and for elderly patients whose survival depends upon urgent surgical intervention [7].

Renal stone is an important risk factor for our case and incomplete intravenous antibiotics treatment course of acute pyelonephritis resulted in the renal abscess formation. In fact, medium-sized as well as small-sized renal abscesses can be treated successfully with adequate IV antibiotics without surgical drainage [4]. Empirical therapy with broad-spectrum antibiotics (ampicillin or vancomycin in combination with an aminoglycoside or third-generation cephalosporin or a fluoroquinolone) is usually recommended because it is often very difficult to identify the correct causative organisms from the urine or blood. Percutaneous drainage under CT or ultrasound guidance is indicated if the patient does not respond within 48 hours of treatment [6]. The drained fluid should be cultured for the causative organisms. The total duration of the treatment was conditioned by the clinical response and is about one to two months in most patients. The healing of the abscess assessment criteria include absence of pain, reduction of fever, normalization of ESR or CRP, disappearance of the abscess on ultrasound or CT scan which usually reveals a cortical scar. The best indicator of healing is the absence of recurrence of clinical signs and infection symptoms. If the clinical and laboratory parameters come within normal limits, then the antibiotic treatment can be stopped 10 days later. The patient must be followed up over an interval of two weeks, two or three months after the end of the treatment [14]. Asymptomatic renal stones may be followed conservatively. However, patients can be advised that about 50% of small renal calculi become symptomatic within five years [15]. Some surgical procedures may be required for larger stones (i.e., ≥ 7 mm) that are unlikely to pass spontaneously. In some cases, hospitalizing a patient with a large stone to facilitate surgical stone intervention is reasonable. However, acute renal colic mostly can be treated on an ambulatory care [16]. General treatment of renal stones is with hydration to increase urine output and with analgesia. Renal calculi less than
2 cm in size can generally be treated with extracorporeal shock wave lithotripsy (ESWL) [17]. After passage of the stones, treatment is directed at prevention of recurrent stones formation. The foundation of renal stones therapy is maintenance of high urine output (2–3 L/day) with oral hydration and a low-salt diet (<2 g/day) [18].

CONCLUSION

This case report is an example of a small renal abscess after incomplete treatment of acute pyelonephritis which was associated with renal stone and E. coli bacteremia. Several reports observed that small renal abscesses were effectively treated with a course of intravenous antibiotics. The total duration of the treatment was conditioned by the clinical response. This case highlights the need for early identification of risk factors as well as the subtle features of renal abscess for appropriate diagnosis and adequate treatment.

Author Contributions

Lyh-Jyh Hao – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Ray-Shyang Wang – Substantial contributions to conception and design, Analysis and interpretation of data, Drafting the article, Final approval of the version to be published

Chien-Ta Chen – Acquisition of data, Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Shao-Wen Wu – Acquisition of data, Analysis and interpretation of data, Drafting the article, Final approval of the version to be published

Wei-Jen Yao – Acquisition of data, Analysis and interpretation of data, Drafting the article, Final approval of the version to be published

Ming-Jui Wu – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2014 Lyh-Jyh Hao et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Baron MJ, Kasper DL. Intraabdominal infections and abscesses – Perinephric and renal abscesses. In: Longo DL et al., eds. Harrison’s principles of internal medicine, 18th ed. New York, NY: McGraw-Hill Companies 2012;127:1082–3.

2. Yen DH, Hu SC, Tsai J, et al. Renal abscess: Early diagnosis and treatment. Am J Emerg Med 1999 Mar;17(2):192–7.

3. Meng MV, Mario LA, McAninch JW. Current treatment and outcomes of perinephric abscesses. J Urol 2002 Oct;168(4 Pt 1):1337–40.

4. Lee SH, Jung HJ, Mah SY, Chung BH. Renal abscesses measuring 5 cm or less: outcome of medical treatment without therapeutic drainage. Yonsei Med J 2010 Jul;51(4):569–73.

5. Anderson KA, McAninch JW. Renal abscesses: classification and review of 40 cases. Urology 1980 Oct;16(4):333–8.

6. Siegel JF, Smith A, Moldwin R. Minimally invasive treatment of renal abscess. J Urol 1996 Jan;155(1):52–5.

7. Lin HS, Ye JJ, Huang TY, Huang PY, Wu TS, Lee MH. Characteristics and factors influencing treatment outcome of renal and perinephric abscess—a 5-year experience at a tertiary teaching hospital in Taiwan. J Microbiol Immunol Infect 2008 Aug;41(4):342–50.

8. Dalla Palma L, Pozzi-Mucelli F, Ene V. Medical treatment of renal and perirenal abscesses: CT evaluation. Clin Radiol 1999 Dec;54(12):792–7.

9. Bamberger DM. Outcome of medical treatment of bacterial abscesses without therapeutic drainage: review of cases reported in the literature. Clin Infect Dis 1996 Sep;23(3):592–603.

10. Lang EK. Renal, perirenal, and pararenal abscesses: Percutaneous drainage. Radiology 1990 Jan;174(1):109–13.

11. Dembry LM, Andriole VT. Renal and Perinephric abscesses. Infect Dis Clin North Am 1997 Sep;11(3):663–80.

12. Fowler JE Jr, Perkins T. Presentation, diagnosis and treatment of renal abscesses: 1972-1988. J Urol 1994 Apr;151(4):847–51.

13. Angel C, Shu T, Green J, Orihuela E, Rodriguez G, Hendrick E. Renal and peri-renal abscesses in children: Proposed physiopathologic mechanisms and treatment algorithm. Pediatr Surg Int 2003 Apr;19(1-2):35–9.

14. Velciov S, Ghiuvsachi G, Trandafirescu V, et al. Specifics of the renal abscess in nephrology: Observations of a clinic from a county hospital in Western Romania. Rom J Intern Med 2011;49(1):59–66.

15. Glowacki LS, Beecroft ML, Cook RJ, Pahl D, Churchill DN. The natural history of asymptomatic urolithiasis. J Urol 1992 Feb;147(2):319–21.
16. Wen CC, Nakada SY. Treatment selection and outcomes: Renal calculi. Urol Clin North Am 2007 Aug;34(3):409–19.
17. Lingeman JE, Siegel YI, Steele B, Nyhuis AW, Woods JR. Management of lower pole nephrolithiasis: A critical analysis. J Urol 1994 Mar;151(3):663–7.
18. Goldberg S, Coyne D. Renal diseases: Nephrolithiasis. In: HemantGodara, eds. The Washington Manual of Medical Therapeutics, 34RD edition. Lippincott Williams and Wilkins 2014;13:470–1.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

Edorium Journals: On Web
Browse Journals

This page is not a part of the published article. This page is an introduction to Edorium Journals and the publication services.