Original Research Article

Study of price variation analysis of fluoroquinolones eye drops manufactured by various pharmaceutical companies in India

Dinesh Prasad Sinha¹, Bhuwaneshwari Sinha²*, Santosh Kumar³, Akash Chandra⁴

INTRODUCTION

Quinolone antibiotic comes under the group of broad-spectrum antimicrobial that share a bicyclic core structure related to the compound 4-quinolone. They are used in human and veterinary medicine to treat bacterial infections, as well as in animal husbandry. Nearly all quinolone antibiotics in modern use are fluoroquinolones, which contain a fluorine atom in their chemical structure and are effective against both Gram-negative and Gram-positive bacteria. One example is ciprofloxacin (Cipro), one of the most widely used antibiotics worldwide. Fluoroquinolones are often used for genitourinary infections and are widely used in the treatment of hospital-acquired infections associated with urinary catheters. In community-acquired infections, they are recommended only when risk factors for multidrug resistance are present or after other antibiotic regimens have failed. However, for serious acute cases of pyelonephritis or bacterial prostatitis...
where the patient may need to be hospitalised, fluoroquinolones are recommended as first-line therapy. Fluoroquinolones are featured prominently in guidelines for the treatment of hospital-acquired pneumonia. Quinolones and fluoroquinolones are chemotherapeutic bactericidal drugs, eradicating bacteria by interfering with DNA replication. Quinolones inhibit the bacterial DNA gyrase or the topoisomerase IV enzyme, thereby inhibiting DNA replication and transcription. Topoisomerase II is also a target for a variety of quinolone-based drugs. High activity against the eukaryotic type II enzyme is exhibited by drugs containing aromatic substituents at their C-7 positions. If tendonitis occurs, it generally appears within one month, and the most common tendon that is injured appears to be the Achilles tendon. Nervous system effects include insomnia, restlessness, and rarely, seizure, convulsions, and psychosis. Fluoroquinolones prolong the heart's QT interval by blocking voltage-gated potassium channels. Topical antibiotics are recommended in many ocular infections as bacterial corneal ulcer or conjunctivitis, keratitis, post operative ocular surgery.

METHODS

Price in INR of fluoroquinolones eye drops manufactured by different pharmaceutical companies in India, in the same or different strength was obtained from “Current Index of Medical Specialties” (CIMS) January to April-2020 edition and Drug Today April to June 2020 edition, volume 1 as they are readily available source of drug information and are updated regularly.

The drug formulation being manufactured by only one company or being manufactured by different companies; however, in different strengths were excluded.

Drugs (eye drops)	Dose	Number of brands	Maximum price [Rs]	Minimum price [Rs]	Cost ratio	Percentage cost variation
Ciprofloxacin (0.3%)	5ml	20	15.83	5.10	3.10	210.39
Ciprofloxacin (0.3%)	10ml	7	20.60	7.85	2.62	162
Gatifloxacin (0.3%)	5ml	6	64.21	25.06	2.56	156
Moxifloxacin (0.5%)	5ml	30	117	39.40	2.96	196.95
Ofloxacin (0.3%)	5ml	20	53.50	15.50	3.45	245.16
Ofloxacin (0.3%)	10ml	13	32.50	20	1.62	62.5
Norfloxacin (0.3%)	5ml	5	16	7.25	2.20	120.68
Sparfloxacin (0.3%)	5ml	3	27.35	25.25	1.08	8.31
Lomefloxacin (0.3%)	5ml	2	27.30	23.50	1.16	16.17

DISCUSSION

People living in developing countries pay heavy cost of medicines. The Indian market has over 100,000 formulations and there is no system of registration of Medicines. More than one company sells a particular drug under different brand names apart from the innovator company. This situation has led to greater price variation among drugs marketed. These wide variations in the prices of different formulations of the same drug have severe economic implications in India. People in developing countries pay the cost of medicines out-of-pocket. In India, more than 80% health financing is borne by patients.

Maximum and minimum Cost of the fluoroquinolones eye drops belong to different pharmaceutical companies was calculated.

Difference in the maximum and minimum price of the same drug formulation manufactured by different pharmaceutical companies and percentage variation in price was calculated.

Percentage cost variation was calculated as follows:

\[
\text{Percentage cost variation} = \frac{\text{Maximum cost} - \text{Minimum cost}}{\text{Minimum cost}} \times 100
\]

Cost ratio = Price of costliest brand ÷ Price of least costly brand

RESULTS

The analysis of data showed a large variation in costs of different brands of fluoroquinolones eye drops available in Indian market. Percentage variation in costs of fluoroquinolones eye drops marketed in India was found to be Ciprofloxacin (0.3%) of 5 ml:210.39, Ciprofloxacin (0.3%) of 10 ml:162, Gatifloxacin (0.3%) of 5 ml:156, Moxifloxacin (0.5%) of 5 ml:196.95, Ofloxacin (0.3%) of 5 ml:245.16, Ofloxacin (0.3%) of 10 ml:62.5, Norfloxacin (0.3%) of 5 ml:120.68, Sparfloxacin (0.3%):8.31, Lomefloxacin (0.3%):16.17.

Ofloxacin (0.3%) eye drop of 5 ml shows highest cost ratio and percentage cost variation as 3.45 and 245.16, while Sparfloxacin (0.3%) eye drop shows lowest cost ratio and percentage cost variation as 1.08 and 8.31.
Patients have to pay more unnecessarily if costly brands are prescribed. Many poor people frequently face a choice between buying medicines or buying food. In India, more than 80% health financing is borne by patients.11-13 The situation becomes more complex due to the presence of number of brands with variety of names and prices.14 The price variation assumes significance when the cost ratio exceeds 2 and percentage cost variation exceeds 100. By this fact the above analysis showed that cost ratio and percentage cost variation of Ofloxacin (0.3%, 10 ml), Sparfloxacin (0.3%, 5 ml), and Lomefloxacin (0.3%, 5 ml) is below 2 and 100, so these drugs do not show significant price variation and these drugs can be prescribed in poor patients. Significant price variation creates economic burden on poor patients. Costs of drugs are controlled by the drug cost control order 2013 (DPCO).	extsuperscript{15} Hence, we need to draw attention to the prices of various drug formulation brands available to reduce the cost of therapy.16 The treating physician should be made aware of the cheapest drug available among the various brands so that the patient bears lesser burden of treatment cost.17 In India, doctors have less awareness in the cost difference of different brands of the same drug. It is felt that physicians could provide better services and reduce costs of drugs if information about drug prices was readily available.

CONCLUSION

In now days prices of few drugs are under government control through DPCO. Hence the physician should always remember that he should not avoid treating the patients with a particular drug because it is expensive and should rather balance his therapeutic decisions in prescribing a particular drug by considering the patients socioeconomic status. There is a strong need to create awareness about this huge price variation among the general public, health care providers, health care payers, government agencies, policy makers, pharmacists for appropriate intervention to reduce economic burden on patients as well as the healthcare system.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Andriole VT. The Quinolones. Academic Press, 1989.
2. Andersson MI, MacGowan AP. Development of the quinolones”. Journal of Antimicrobial Chemotherapy. 2003;51(1):1-11.
3. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers.” FEMS Microbiology Reviews. 2011;35(2):247-74.
4. Liu H, Mulholland SG. Appropriate antibiotic treatment of gentamicin infections in hospitalized patients”, American Journal of Medicine. 2005;7A(7):14S-20S.
5. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. American Journal of Respiratory and Critical Care Medicine. 171(4):388-416.
6. Elsea SH, Osheroff N, Nittiss JL. Cytotoxicity of quinolones toward eukaryotic cells. Identification of topoisomerase II as the primary cellular target for the quinolone CP-115,953 in yeast.” J Biol Chem. 1992;267(19):13150-3.
7. Stephenson AL, Wu W, Cortes D, Rochon PA. Tendon Injury and Fluoroquinolone Use: A Systematic Review”. Drug safety. 2013;36(9):709-21.
8. Galati L, Giustini SE, Sessa A. Neuropsychiatric reactions to drugs: an analysis of spontaneous reports from general practitioners in Italy”. Pharmacological Research. 2005;51(3):211-6.
9. Heidelbaugh JJ, Holmstrom H. The perils of prescribing fluoroquinolones”. The Journal of Family Practice. 2013;62(4):191-7.
10. AAO Coreena/External Disease PPP Panel, Hoskins Center for Quality Eye Care, Conjunctivitis PPP. ONE Network.http://www.aoa.org/preferred-practice-pattern/conjunctivitis-ppp--2013. 2013. Accessed on 20th December, 2020.
11. Thomas M. Rational drug use and essential drug concept. In: A Text book of Clinical Pharmacy Practice. Parthasarthi G, Hasen K (Editors). 1st Ed. Himayatnagar, Hyderabad: Orient Longman. 2004;723.
12. Creese A, Kotwani A, Kutzin J, Pillay A. Evaluating pharmaceuticals for health policy in low and middle – income country settings. In: Evaluating Pharmaceuticals for Health policy and reimbursement. Freemantle N, Hills, eds. Massachusetts, USA: B lackwell Publication;(in collaboration with WHO Geneva). 2004;227-43.
13. Mahal A, Karan A, Engelgau M. The Economic Implications of Non-Communicable Disease for India. Washington, DC: World Bank. 2010. http://siteresources.worldbank.org/HEALTHNUTRITIONANDNANDPOPULATION/Resources/281627-1095698140167/Economic Implications of NCD for India .pdf. Accessed on 20th December, 2020.
14. Rataboli PV, Garg A. Confusing brand names: nightmare of medical profession. J Postgrad Med. 2005;51:13-6.
15. Drug cost control order, 2013 Government of India. http:// www.nppaindia.nic.in/DPCO2013.pdf. Last accessed on 20th December, 2020.
16. Vieira JL, Portal VL, Moriguichi EH. How much do we pay for a benefit? A descriptive cost analysis of the use of statins. The need for a national cost–effectiveness analysis. Ang Bras Cardiol. 2001;76(5):409-18.
17. Kumar L. Cost variation analysis of antimalarial drugs available in India. Int J Res Med Sci. 2017;5(9):4051-4.