Exploring individual differences through network topology

Yuval Samoilov-Katz1,2*, Yoram Louzoun1,2*, Lev Muchnik3, Adam Zaidel1+

1Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel
2Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
3School of Business Administration, The Hebrew University of Jerusalem, 91905, Israel.

*These authors contributed equally towards this study

*Corresponding author:
Adam Zaidel
Gonda Multidisciplinary Brain Research Center
Bar Ilan University
Ramat Gan, 5290002
Israel
Tel: +972-3-738-4431
Email: adam.zaidel@biu.ac.il

Keywords: personality traits; the big five; social networks; network analysis; deep learning

Financial disclosures: None to report

Funding sources: This research was supported by the Israel Science Foundation (ISF, grant No. 1291/20 to AZ and 1777/17 to LM).
Abstract

Social animals, including humans, have a broad range of personality traits, which can be used to predict individual behavioral responses and decisions. Current methods to quantify individual personality traits in humans rely on self-report questionnaires, which require time and effort to collect, and rely on active cooperation. However, personality differences naturally manifest in social interactions such as online social networks. Here, we explored this option and found that the topology of an online social network can be used to characterize the personality traits of its members. We analyzed the directed social graph formed by the users of the LiveJournal (LJ) blogging platform. Individual user personality traits, inferred from their self-reported domains of interest (DOIs), were associated with their network measures. Empirical clustering of DOIs by topological similarity exposed two main self-emergent DOI groups that were in alignment with the personality meta-traits plasticity and stability. Closeness, a global topological measure of network centrality, was higher for bloggers associated with plasticity (vs. stability). A local network motif (a triad of 3 connected bloggers) also separated the personality meta-traits. Finally, topology-based classification of DOIs (without analyzing the blog content) attained > 70% accuracy (average AUC of the test-set). These results indicate that personality traits can be detected in social network topology. This has serious implications for user privacy. But, if used responsibly, network identification of personality traits could aid in early identification of health-related risks, at the population level.
Introduction

Each individual (human and animal) has his/her own unique characteristics, formed by a combination of both nature and nurture1,2. Availability of detailed individual-level data has demonstrated the value of personalized treatment in numerous domains3–5, ranging from medicine, marketing, education, consumption of news, digital and retail products. Simultaneously, the discovery of the effectiveness of personalized treatment has led to a surge in the concern for individual privacy and privacy-oriented research. Extensive research has demonstrated over the years that a number of personal characteristics are closely associated with behavior and can be used to explain the response to interventions. However, quantifying these traits remains a labor-prone task with numerous privacy implications.

Many current methods for quantifying personality differences across individuals rely on self-reported measures (such as questionnaires), or they are subject to lab-based conditions (which are often conducted over small samples). Accordingly, collection of such data requires significant effort, and its scale is limited6–8 thus narrowing their use in practice.

The development of modern computational tools combined with the exponential growth of data in recent years allows for the large-scale analysis of individual differences, without the need for explicit questionnaires9,10. Specifically, network analyses using big data, applied in several recent animal experiments, have yielded important insights, inferred directly from behavior. For example, different brain activity patterns in zebrafish have been linked to inter-individual behavioral differences11, and individual traits in mice have been linked to gene expression in the brain12. Also, two recent studies of rock hyrax natural social networks found that specific network properties (centrality and ranking) were related to longevity and mating success13,14. This shows that non-questionnaire-based approaches can be used to infer individual differences (including personality differences) which can also be applied to humans. So too, the goal of studying natural human behavior using large data could be further advanced by network analysis techniques.

Despite the abundance and richness of the available data, it rarely contains direct information on personal traits, thus limiting the application of the available theory for practical purposes. Some methods to relate observable user-generated data to personal traits were developed in recent years. For instance, one could apply natural language processing techniques to reveal
individual traits with relatively high accuracy. Here we suggest exploring this issue by mining online social networks for associations between their topology and personal attributes.

Social network formation is governed among other factors by the activity of the individuals comprising the network, their interests, demographics, and other attributes. One can expect that the topology of online social networks retains at least part of that information and that it can be mined. Several network properties were previously associated with specific personality traits. However, these studies have typically relied on questionnaires and were performed in small networks. The need to investigate whether this information can be extracted from large-scale networks without self-reported measures still lacks a good solution.

In online social media platforms, humans interact by posting their opinions and sharing information from other users and from around the web. To optimize information exchange, they develop and maintain social networks thus altering the information they are exposed to and the reach of the content they publish. Finally, to establish a solid online presence, social media platform users publish details about themselves on their profile pages. Together, these data provide a rich source of information about the relation between personality traits, content, and network structure.

In this study, we analyzed user profiles and social network data from LiveJournal (LJ)—a large-scale social network of bloggers. To analyze the LJ network, we defined the bloggers as nodes, connected by directed and unweighted edges according to the bloggers’ friendships. Blogger’s domains of interest (DOIs, a free text keyword or phrase the blogger chooses to describe his/her interests) were associated with personality traits. This was done based on previously described relationships between keywords/free text (here, DOIs) and personality traits.

We further used this relationship to explore whether individual user’s personality traits, as inferred from their DOIs, are evident in LJ network. For that, we leverage LJ structure so that each node (blogger) was characterized by a set of 20 topological features (in a network attribute vector approach). An empirical clustering of the correlations of DOIs with these 20 NAV features, from an unsupervised perspective, yielded two main DOIs groups. We found that these groups were in alignment with personality meta-traits—plasticity and stability. Plasticity (vs. stability) associated bloggers (by DOI proxy) had larger values of closeness, a global topological feature of network centrality. This trend was also evident in a local network triad (a specific motif of 3 connected bloggers), that correlated with closeness. Finally, we
demonstrate that DOIs are related to the network structure, and enable the classification of DOIs. Using a graph-based learning approach based on network topology and label propagation alone (without using the actual blog content), we attained accuracy (by AUC of test-set) exceeding 70% over the first and final snapshots. Analysis of sequential network snapshots (first and final snapshots) helped to further increase the scale of the training set and validated our method.
Methods

Network data
The social network analyzed in this study was the LiveJournal (LJ) blogging platform22,23 which is a free online platform that allows bloggers to communicate and share information in the form of distinct text entries (stories, ideas, etc.). LJ is a large network, which at the time of this study had around 10 million bloggers with over 120 million friendships among them. LJ friendships are not necessarily symmetric as each blogger can select the profiles he/she follows independently.

Blogger profiles contain a section with a list of self-declared domains of interest (DOI). We used these details to characterize each blogger’s main personality traits24–27. For that, from the list of 100 most popular DOI’s, we extracted 94 which were in English.

The structure of LJ is dynamic, and can change over time - i.e., DOIs and/or edges (friendships) can change (created or eliminated) at a particular point in time. For computational reasons, we analyzed the first and final snapshots of LJ (out of the sequence of 19 snapshots collected over the course of about 22 months). We mainly focused on the final snapshot (unless explicitly stated), since it reflects a more evolved version of the LJ network.

Individual differences and free text
One of the popular frameworks used to characterize human personality uses the Five-Factor Model to produce five key attributes designated as “the big five”29. The big five personality traits can be split into two personality meta-traits, \textit{stability} and \textit{plasticity}30,31. The \textit{stability} meta-trait reflects an individual’s tendency to restrain potentially disruptive behavior. It comprises a combination of three traits from the big five personality dimensions: \textit{conscientiousness} (an individual’s degree of organization and persistence), \textit{agreeableness} (an individual’s degree of kindness), and \textit{neuroticism} (reversed; the degree to which an individual experiences the world as distressing, threatening, or unsafe). The \textit{plasticity} meta-trait reflects an individual’s tendency for exploration. It comprises a combination of the other two traits from the big five personality dimensions: \textit{openness to experience} (an individual’s degree of curiosity) and \textit{extraversion} (an individual’s degree of assertiveness and dominance).

The lexical hypothesis proposes that an individual’s choice of language is indicative of his/her personality traits24. Specific keywords have been previously associated with the big five personality traits26,27. It was shown that an online profile is reflective of user’s real “offline”
personality. Hence, for this exploratory analysis, these keywords can be used as proxies for individual personality differences, when studying a network. Accordingly, we used these associations to couple DOIs from the network with the personality meta-traits (Table 1; Not enough DOIs are associated with each of the big five personality traits with high enough accuracy to study them individually).

Table 1: Associations between personality meta-traits, the Big Five traits, and DOI keywords.

Meta-trait	Personality trait	DOI
Stability	**Conscientiousness**	T.V., Cats, Movies
	Agreeableness	Drinking, Laughing, Sex
	Neuroticism	Sleep, Sleeping, Life
Plasticity	**Openness to experience**	Love, Poetry, Literature
	Extraversion	Internet, Drawing, Fantasy, Books, Video Games, Anime, Manga, Reading, Computers

Network measures

A network can be projected onto a graph consisting of nodes (also known as vertices, their count represented by V) and edges (count represented by E) that connect pairs of nodes. Nodes were defined by the bloggers, and edges were defined by (directional) friendships between bloggers. When a blogger had marked someone as a friend, an edge was defined ‘out’ from that blogger, ‘in’ to his/her friend. When available, the directionality and weights of an edge (i.e., with a beginning and an end node) carry additional information. Here, we studied directional edges, assuming all friendships are equal, i.e., unweighted edges. Accordingly, we projected the LJ network onto a directed and unweighted graph.

To learn the association between the blogger’s personality traits and the topology of his/her social network, we analyzed each blogger’s social network to compute a list of network measures. This list of features packed in a vector is sometimes designated as the Network Attribute Vector (NAV) and reflects both local and global network topology associated with the specific user. The following features were used for each blogger:

(a) **In-degree, out-degree**: the number of other nodes that are connected to (in) or from (out) the measured node. **In-degree** is proportional to how many times the blogger was chosen...
as a friend, and the *out-degree* is proportional to how many friends the blogger had chosen to follow.

(b) Four node centrality measures: *Closeness, k-core, and breadth-first search (BFS)* first and second moments.

Closeness (formally known as *closeness centrality*) is the average length of the shortest path between the node and all other nodes in the graph35. *Closeness* is sometimes associated with the rate at which the information originating at a node can reach the entire network36. *K-core* is a measure of a node’s degeneracy. This feature reflects the maximal degree (*k*) for which the node remains a member of a *k*-degenerate subgraph (one in which all nodes have *k* or more edges) and can help ranking nodes by access to other central nodes in the network37.

BFS first and second moments are the average and the standard deviation of the BFS distance distribution (respectively).

(c) *PageRank*: the probability of reaching the node by a random walk with episodic random relocations, when starting at a random location. This is a global measure, that models navigation over the network and was used by Google to rank nodes, by the probability that they are the target of one’s search38,39.

(d) *Motif3*: representing the number of times that the node participated in a unique (specific) subgraph of three connected nodes (triads). Over (or under)-represented triads hint upon the processes guiding network evolution and its functionality. *Motif3*-x represents thirteen possible triad combinations in directed graphs and contributes 13 features to the user’s NAV. We defined the specific triad numbers according to a recent study40 which highlighted their importance over diverse real-life networks, as can be seen in Supplementary Figure 1.

Together these measurements comprise the 20-features-long NAV.

Network analysis

First, we uniformly sampled the original network over \(~2\times10^6\) nodes (bloggers), taking the largest connected component (Fig. 1a). This reduction (from \(1\times10^7\) bloggers to \(~2\times10^6\) bloggers) was done for computational reasons. It was recently shown that this type of random selection of nodes is less biased on larger samples41.

This resulted in a sample of \(V = 1,218,319\) unique bloggers (with \(E = 7,225,480\) links defined by friendship relations). We then calculated the NAV for each blogger in the sampled network, forming a \(V\) (blogger) \(\times\) 20 (NAV features) matrix. This network features matrix is
complemented with a V × 94 matrix in which each row represents one-hot encoded (binary) DOI’s of the corresponding blogger (Fig. 1b).

To understand the relationship between the user network properties and his/her domains of interest, we calculated a network topology correlation matrix. Each cell of this 94 x 20 matrix contains the correlation between one DOI and one social network feature (Fig. 1c). Considering that the relationship between many of the pairs of these variables is not linear and many of the network measures are heavy-tailed, we used Spearman’s rank correlation rather than the more common Pearson (calculated using the SciPy python library).

The importance of topological features varies among different social networks. To analyze and compare the topological profiles of DOIs in this sampled network, the correlation matrix was reduced to a low-dimensional representation. The resulting correlation matrix reflects the extent to which each NAV feature is associated with the DOI of interest. This captures the broader social network aspects of DOIs in a concise form. The main advantage of using this correlation matrix (vs. the raw NAV features) is that it allows us to compare topological features in a normalized manner. By contrast, the NAVs contain a variety of features that can be discrete or continuous and with or without bounds. And, the distribution of discrete variables in networks (e.g., in- and out-degrees) is often heavy-tailed.

To map the relationship between DOIs and NAV features, DOIs were grouped by topological similarity by optimization of minimum variance between clusters using agglomerative hierarchical clustering of the correlation matrix (Fig. 1d, bottom left). Then, we analyzed the different DOIs using principal component analysis (PCA; Fig 1d, bottom right). For an illustration of the distribution of DOIs over the PCA space, the eight most popular DOIs are represented by the blue labels on the right plot. This analysis was done to identify the major topological features across DOIs, i.e., features that carry most of the DOIs-related information.

Neural network

To demonstrate that this relationship can be used to decode DOIs, we implemented an artificial neural network (ANN) for the classification of DOIs, based on the raw NAV features. The goal was to train a classifier to predict DOIs by their network properties and by label propagation. We implemented a binary classifier – specifically a feedforward neural network composed of three layers. This was defined similarly to our recent publication. However, we implemented two minor adjustments to prevent overfitting when optimizing the parameters. First, we applied a penalty to prevent the weight matrices from being too large (regularization). We used L2
regularization - with a 0.1 rate regulation (penalty) for the first layer, and 0.01 rate regulation for the second layer. We used a dropout rate of 0.2 for both the input layer and the hidden layer.

Input to the neural network

Classification of vertices in networks can be done through two main mechanisms: (i) Label propagation, based on the concept that neighboring nodes have similar labels (here, DOIs), and (ii) topological information. Label propagation is useful for node classification48, especially when combined with network topology34,46. Thus, for DOI classification we used a combination of network topology (using all 20 NAV features) and label propagation (4 additional features, as described below in further detail). Both were calculated separately over the first and final snapshots of the network (1st and 19th snapshots accordingly).

For label propagation, the sampled network was first divided into separate training and test sets, comprising 80\% and 20\% of the nodes, respectively. To measure label propagation for the training set, we computed the number of first neighbors each blogger had with and without a given DOI. Specifically, for each DOI and for each node, we counted the number of nodes pointing to it with and without this DOI, and the number of nodes he points to with and without this DOI. This process resulted in four features per DOI, which were added (to topological information) as input to the ANN.

Data analysis and statistics

For the clustering and classification analyses, we used the Scikit-learn and Keras (with Theano backend) packages49,50. To measure the precision of the classifier for each DOI, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated on the test set. Statistical tests (t-tests and χ^2) were computed using JASP51 (version 0.13.1.0). Given the exploratory nature of this analysis, raw p-values are reported (no correction for multiple comparison). The datasets generated and analyzed in this study and network analysis code are available from the authors upon request.
Results

This study aimed at exploring whether individual personality differences can be detected in social network topology, without the use of self-reported personality measures like questionnaires. To do so, we projected a sample of LJ bloggers onto a connected (directional) network, as depicts in Figure 1. The network nodes were defined as bloggers, and edges/links were defined as friendships among them (i.e., an edge exists from blogger ‘i’ to blogger ‘j’ only if ‘i’ had marked ‘j’ as his/her friend). We analyzed the network by the DOIs from profiles of the LJ bloggers, which reflect different personal interests (see Methods). Using earlier studies, the association of the ninety-four most popular English language DOIs with one of the two personality meta-traits26,27 (stability and plasticity) were defined (Table 1; we studied the 100 most frequent DOI, but 6 were not in English). This resulted in three groups: stability (N = 9), plasticity (N = 12) and non-associated DOIs (N = 73). Based on these DOIs, we investigated how individual differences in personality traits (by DOI proxy) are represented in the network.

Topology-based clustering of DOIs reveals two main groups

We first analyzed the network topology correlation matrix to find DOI groups (see ‘Network analysis’ section in Methods for elaboration). Specifically, we looked at the self-emergent grouping of DOIs by their topological similarity using unsupervised hierarchical clustering28.

11
Figure 2 presents the hierarchical clustering of the 94 most popular DOIs by this correlation matrix. The split of these DOIs reveals two groups – one containing 57 DOIs, and another composed of 37 DOIs. For instance, ‘reading’ and ‘writing’ were clustered together in one group, whereas ‘football’ and ‘basketball’ in the other.

Figure 1. Network topology analysis stages. (a) Uniform sample of bloggers from the LiveJournal (LJ) network, taking the largest connected component (resulting in $V = 1,218,319$ unique bloggers). A sample graph (right) depicts an example subnetwork of LJ network. (b) Each node (blogger) was characterized by (i) a set of 20 topological features (network attribute vector, NAV; marked by dark gray) and (ii) a set of 94 most popular DOIs (domains of interest; reflects the blogger’s personal interests; marked by blue) in a binary representation. (c) The correlation of DOIs with NAV features resulted in a matrix of size 94x20, i.e. 20 features for each of the 94 DOIs (by the characteristics of each node from (b)). (d) Analysis of these correlations (as a proxy of network topology) using agglomerative hierarchical clustering (bottom left) and principal component analysis (PCA, bottom right). The blue labels mark the eight most popular DOIs in PCA space.
We then analyzed the extent to which these two main hierarchical clusters match the meta-traits of personality. The split of DOIs by hierarchical clustering and by meta-traits of personality is presented in Table 2. There was a significant relationship between the unsupervised hierarchical clusters (cluster I and II as presented in Fig. 2 by the top and bottom clusters respectively) and meta-traits of personality ($\chi^2 = 5.743, p = 0.017$; Cramer’s $V = 0.523$). These results indicate that topological clustering of DOIs grouped them largely per the meta-traits of personality.

Table 2: Meta-traits of personality and topological similarities by DOI keywords

#	Cluster I	Cluster II	Total
Stability	2	7	9
Plasticity	9	3	12
Total	11	10	21

Figure 2. Hierarchical clustering of the network topology correlation matrix reveals two main DOI clusters. Correlation (Spearman’s ρ) of the 94 most popular DOIs with 20 NAV features.
Network topology exposes meta-traits of personality

To find the most influential topological features we projected the DOIs onto a low-dimensional representation of network topology using principal component analysis (PCA). The PCA projection can be seen in Fig. 3, wherein the first PC accounts for 63.0% of the variance. Therefore, we further studied the specific NAV features that contributed most to PC1. To explore these features, we compared the top five topological features (the top five contributors, based on their PC1 weights; Fig. 3b) between plasticity vs. stability associated DOIs.

Figure 3. Personality meta-traits plasticity and stability over PC space. Principle component analysis (PCA) was performed on the network topology correlation matrix. (a) Data are presented over PC1×PC2 (top plot) and PC1×PC3 (bottom plot). The percentages in parenthesis present the amount of variance explained by that PC. Each datapoint (circle markers) represents one DOI (per scatter plot). DOIs associated with personality meta-traits plasticity and stability are marked by blue and red circles, respectively (unassociated DOIs in gray). Plus markers represent the mean values ± SEM for plasticity (blue) and stability (red). (b) NAV features with highest PC1 weights.
When comparing the top five NAV features of DOIs associated with plasticity vs. stability, plasticity had larger values for closeness ($t(19) = 3.130$, $p = 0.006$, uncorrected p-value). Motif3-8 showed a similar trend ($t(19) = 2.481$, $p = 0.023$, uncorrected p-values). We present the distribution of DOIs for these two network features (closeness - the average length of the shortest path between the node and all other nodes; motif3-8 – three vertices, with two out of three connected by bi-directed edges) in Figure 4a. For illustration, closeness and motif3_8 values are presented for the example graph in Figure 4b (purple numbers on the nodes, and the specific triad marked by the green ellipse, respectively). Higher values for plasticity-related DOIs (blue) compared to stability-related DOIs (red) can be seen for both features. Closeness and motif3-8 were themselves highly correlated ($\rho = 0.983$, $p < 0.001$). The association between DOI and stability vs plasticity can thus be seen at the global level (closeness), but evident also at the local level (motif3-8). The values of k-core, in-degree and motif3-4 did not differ between plasticity and stability ($t(19) = 1.703$, $p = 0.105$, $t(19) = 1.479$, $p = 0.156$, and $t(19) = 1.070$, $p = 0.298$, respectively; uncorrected p-values).

Figure 4. Closeness and the network triad motif3-8 dissociate personality meta-traits. (a) Distribution of these two topological features over DOIs (circle markers). DOIs associated with personality meta-traits plasticity and stability are marked by blue and red circles, respectively (unassociated DOIs in gray). Plus markers represent the mean values \pm SEM for plasticity (blue) and stability (red). Comparing these features between stability vs. plasticity meta-traits yielded **$p = 0.006$ for closeness, and *$p = 0.023$, for motif3-8 (uncorrected values).** (b) Closeness scores are presented on the nodes of the example graph from Figure 1a (purple numbers; numbers in parenthesis are closeness scores for an undirected graph). An example motif3-8 subgraph is marked by the green ellipse.
Topology-based classification of DOIs

Social networks, including LJ, are dynamic and change over time. For example, new DOIs can be added and friendships can change. Current methods for node classification (based on label propagation, i.e. the spread of a specific label/class through the network) use information from their surrounding neighbors. Class propagation is based on the assumption that in analogy with social network homophily, neighboring nodes have similar classes. It was recently shown that network topology information is complementary to label propagation features, and that classification accuracy of graph components (nodes/edges) improves when integrating both. Also, network topology-based classification is less sensitive to the training set size than propagation-based classification. Accordingly, we classified DOIs using network topology combined with label propagation. This process of classification relied only on those network features and did not take into account the blog’s content. Finally, we tested whether classification was robust to network changes, by analyzing the first and final snapshots of the LJ network.

For this, a feed-forward deep learning classifier (see ‘Neural network’ section in Methods) was applied separately to the first and last snapshots. We chose a training size of 20% (of the sampled network). A total of 24 network measures were used - 20 NAV features and 4 label propagation features (based on first neighbors; see ‘Input to neural network’ section in Methods).

We classified 43 (of the 94 DOIs; randomly chosen) over the first and last (19th) snapshots. On average, the DOI classification accuracy (estimated by the AUC of the test set) was 70.8% ± 2.5% and 72.2% ± 2.8% for the first and last snapshots respectively (mean ± SD; range = [65.6%, 79.3%]). AUC for the eight DOIs from Figure 1d, together with the two DOIs with highest (‘manga’) and lowest (‘internet’) AUC are presented in Figure 5a. These data show that topology-based classification of DOIs is possible (compared to a random classification), with above 70% accuracy over these two snapshots (1st and 19th snapshots).

Finally, by grouping DOIs according to their associations with personality traits (Table 1), we classified personality using the combination of network topology and label propagation. For extraversion (which was associated with more than three DOIs) we randomly selected 3 DOIs from its list (‘video games', 'manga', 'fantasy') to be comparable to the others. Practically, we concatenated the DOIs, forming a topological profile of personality by feature dimension. These profiles of personality were then decoded, with an average classification accuracy (AUC
of the test set) of 73.4% ± 1.4% and 73.7% ± 2.3% on the 1st and 19th snapshots respectively (Fig 5b; mean ± SD).

![Figure 5. Topology-based classification of DOIs and personality traits.](image)

Figure 5. Topology-based classification of DOIs and personality traits. Classification of (a) 10 representative DOIs (the eight DOIs from Figure 1d, plus the two DOIs with the lowest and highest classification accuracy) and (b) personality traits using NAV features combined with information propagation features. Accuracy, measured by area under the curve (AUC) of the test set, is presented for two different snapshots of the LJ network (taken about 22 months apart). Each personality dimension was represented by a combination of three associated DOIs.
Discussion

In this study, we tested the relationship between the structure of LJ, a real-life social network of bloggers, and personality traits. Specifically, we tested whether individual personality differences are empirically evident in the network topology. An important advantage of our approach is that it does not depend on personality questionnaires, which are the primary method to measure personality differences. Rather, we found that personality differences can be exposed in the LJ network through topological features. Hierarchical unsupervised clustering of network topology divided DOIs largely according to their prior associations with personality meta-traits. We found that plasticity-related bloggers had larger closeness values vs. stability-related bloggers. This statistical relationship likely reflects a tendency of individuals with plasticity-dominant personality traits to interact more and to take more central positions in the network52,53. Hence, we have shown that the huge amount of “raw” behavioral data accumulated on online social networks can be used to identify personality traits.

Local and global topological features were used to measure network topology. Both types of features (local and global) were influential in our analysis (top five). In terms of global features, few recent studies highlighted the importance of centrality measures, beyond simple degree measures, in specific behavioral differences in online social networks (e.g., the judgment of other users by their centrality in the network34 or identifying influential spreaders54 by closeness and k-core respectively). Here, we built on this and demonstrated the importance of closeness in identifying personality differences in the LJ network. In terms of local features, motif3-8 was highly correlated with the global feature closeness. A trend for a difference in personality meta-traits was also observed for motif3-8 (higher values for plasticity). This unique social triad may thus be used as a local proxy of closeness, suggesting that more central individuals engage more often in this social triad (motif3-8). This expands the importance of local motifs in real-life social networks34,40,55. Note that few recent studies suggest efficient computational alternatives to closeness, all are based on local features54,56,57.

Many personality-related network studies analyze undirected datasets/networks19–21,58,59. These ignore directional information. Yet the direction of social interactions (or friendships) is at the basis of real-life communication, i.e., one-way communication is not the same as mutual friendship. This directional information (of communication between humans) is used to learn patterns from human language in state-of-the-art natural language processing (NLP) algorithms
(e.g. 60 etc.). In real-life networks, few recent studies also show the importance of using directed measures in both online social 34,46 and biological 30,55 networks.

Inferring personality traits from the structure of small networks may lead to inconsistent results (e.g. \textit{extraversion} and strength of social ties19,21) due to \textit{network extraversion bias}59. By contrast, large-scale networks offer more consistent, albeit modest correlations, mainly for \textit{plasticity}-related dimensions31,61. \textit{Plasticity} reflects an exploration tendency of bloggers, characterized by both behavioral and cognitive aspects30 (by \textit{extraversion} and \textit{openness to experience} respectively). We found evidence for a combination of those aspects, in more central locations throughout the network. As recently suggested20,62,63, this might strengthen the existence of \textit{personality homophily}, affecting the underlying structure of online social networks - where individuals with higher levels of \textit{plasticity} (reflecting a higher exploration tendency) are connected to individuals who are more likely to explore ideas with them. This is consistent with efficient knowledge sharing in strategic network locations52,54.

The differences in personality we found (i.e. higher \textit{closeness} for \textit{plasticity}) might be explained by confounding variables. Demographical information (e.g. age64 or geographic locations63,65) and specific cognitive/social skills (e.g. information seeking preferences66 and/or relationships quality67) should be dissociated in future work. We only analyzed here the correlation between personality traits and network topology (we do not prove a causal relation). Additional evidence for this causal relationship between humans behavior and social online networks was recently shown17. We did not study individual items of the big five because there were not enough DOIs associated with each, but our approach provides the basis for future research. Here we identified personality from network topological features without self-reported measures. Future work should specifically label DOIs or text to expand our analysis to the big five, test other (directed) social networks, and introduce additional global and local network measures (not included as part of the NAV features used in this work, such as \textit{betweenness centrality}68 or \textit{motif4}).

An online social network user does not expect to reveal details about his/her personality, without an explicit approval. These details can potentially be processed to obtain personality profiles for every user, and provide a better understanding of their online behavioral aspects. Such “personality hacking” can be used in negative manners (e.g., mass persuasion by psychological targeting69 or the Facebook-Cambridge Analytica scandal70). Thus, the possibility to accurately extract such details directly from online activity raises privacy
concerns. And this should not be neglected by policymakers (or users), who should strive for transparency regarding the utility derived from the collected data (e.g., “personality hacking” warnings, a clear third-party data distribution policy and data compartmentalization could repel violation of user privacy).

From a different point of view, an improved ability to detect a specific personality profile (directly from online behavior in social networks) can be implemented positively across different domains. First, high extraversion is associated with an increased risk for accidents\(^1\) (on average they are more prone to take risks) so that accurate detection of this personality profile, can be the target for safety education. Second, a specific combination of the big five dimensions (high neuroticism combined with low extraversion and low openness to experience) was associated with a higher risk of developing Parkinson’s disease\(^2\) (PD) or Alzheimer’s disease\(^3\) (AD). This example is of unique importance, wherein the communality of PD and AD might be used for early identification without self-report measures over online social networks. The clinical evaluation of these neurodegenerative diseases includes elements of self-report measures - part II of UPDRS\(^4\) for PD or MMSE\(^5\) for AD. Therefore, alternatives should be further explored (e.g.\(^6\)) based on real-life behavior and decisions.
References

1. Hernandez LM, Blazer DG. Genes, Behavior, and the Social Environment: Moving beyond the Nature/Nurture Debate.; 2006. doi:10.17226/11693

2. Kitayama S, Salvador CE. Culture Embrained: Going Beyond the Nature-Nurture Dichotomy. Perspect Psychol Sci. 2017;12(5):841-854. doi:10.1177/1745691617707317

3. Belmaker RH, Bersudsky Y, Agam G. Individual differences and evidence-based psychopharmacology. BMC Med. 2012;10. doi:10.1186/1741-7015-10-110

4. Falcon MI, Jirsa V, Solodkin A. A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain. Curr Opin Neurol. 2016;29(4):429-436. doi:10.1097/WCO.0000000000000344

5. Strafella C, Caputo V, Galota MR, et al. Application of precision medicine in neurodegenerative diseases. Front Neurol. 2018;9(AUG). doi:10.3389/fneur.2018.00701

6. Yarkoni T. Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power—Commentary on Vul et al. (2009). Perspect Psychol Sci. 2009;4(3):294-298. doi:10.1111/j.1745-6924.2009.01127.x

7. Szucs D, Ioannidis JPA. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biol. 2017;15(3). doi:10.1371/journal.pbio.2000797

8. Podsakoff PM, MacKenzie SB, Lee JY, Podsakoff NP. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J Appl Psychol. 2003;88(5):879-903. doi:10.1037/0021-9010.88.5.879

9. Boyd RL, Pasca P, Lanning K. The Personality Panorama: Conceptualizing Personality Through Big Behavioural Data. Eur J Pers. 2020;34(5):599-612. doi:10.1002/per.2254

10. Youyou W, Stillwell D, Schwartz HA, Kosinski M. Birds of a Feather Do Flock Together: Behavior-Based Personality-Assessment Method Reveals Personality Similarity Among Couples and Friends. Psychol Sci. 2017;28(3):276-284. doi:10.1177/0956797616678187

11. Pantoja C, Larsch J, Laurell E, Marquart G, Kunst M, Baier H. Rapid Effects of Selection on Brain-wide Activity and Behavior. Curr Biol. 2020;30(18):3647-3656.e3. doi:10.1016/j.cub.2020.06.086

12. Forkosh O, Karamihalev S, Roeh S, et al. Identity domains capture individual differences from across the behavioral repertoire. Nat Neurosci. 2019;22(12):2023-2028. doi:10.1038/s41593-019-0516-y

13. Barocas A, Ilany A, Koren L, Kam M, Geffen E. Variance in centrality within rock hyrax social networks predicts adult longevity. PLoS One. 2011;6(7). doi:10.1371/journal.pone.0022375

14. Bar Ziv E, Ilany A, Demartsev V, Barocas A, Geffen E, Koren L. Individual, social, and sexual niche traits affect copulation success in a polygynandrous mating system.
15. Kazameini A, Fatehi S, Mehta Y, Eetemadi S, Cambria E. Personality Trait Detection Using Bagged SVM over BERT Word Embedding Ensembles. *arXiv*. Published online 2020. http://arxiv.org/abs/2010.01309

16. McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: Homophily in social networks. *Annu Rev Sociol*. 2001;27:415-444. doi:10.1146/annurev.soc.27.1.415

17. Muchnik L, Pei S, Parra LC, et al. Origins of power-law degree distribution in the heterogeneity of human activity in social networks. *Sci Rep*. 2013;3. doi:10.1038/srep01783

18. Brot H, Muchnik L, Goldenberg J, Louzoun Y. Evolution through bursts: Network structure develops through localized bursts in time and space. *Netw Sci*. 2016;4(3):293-313. doi:10.1017/nws.2016.13

19. Kalish Y, Robins G. Psychological predispositions and network structure: The relationship between individual predispositions, structural holes and network closure. *Soc Networks*. 2006;28(1):56-84. doi:10.1016/j.socnet.2005.04.004

20. Selfhout M, Burk W, Branje S, Denissen J, van Aken M, Meeus W. Emerging Late Adolescent Friendship Networks and Big Five Personality Traits: A Social Network Approach. *J Pers*. 2010;78(2):509-538. doi:10.1111/j.1467-6494.2010.00625.x

21. Rapp C, Ingold K, Freitag M. Personalized networks? How the Big Five personality traits influence the structure of egocentric networks. *Soc Sci Res*. 2019;77:148-160. doi:10.1016/j.ssresearch.2018.09.001

22. Backstrom L, Huttenlocher D, Kleinberg J, Lan X. Group formation in large social networks. In: *Proceedings of the 12th [International Conference on Knowledge Discovery and Data Mining]*; 2006:44. doi:10.1145/1150402.1150412

23. Leskovec J, Lang KJ, Dasgupta A, Mahoney MW. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. *Internet Math*. 2009;6(1):29-123. doi:10.1080/15427951.2009.10129177

24. Pennebaker JW, King LA. Linguistic styles: Language use as an individual difference. *J Pers Soc Psychol*. 1999;77(6):1296-1312. doi:10.1037/0022-3514.77.6.1296

25. Pennebaker JW, Mehl MR, Niederhoffer KG. Psychological Aspects of Natural Language Use: Our Words, Our Selves. *Annu Rev Psychol*. 2003;54:547-577. doi:10.1146/annurev.psych.54.101601.145041

26. Yarkoni T. Personality in 100,000 Words: A large-scale analysis of personality and word use among bloggers. *J Res Pers*. 2010;44(3):363-373. doi:10.1016/j.jrp.2010.04.001

27. Schwartz HA, Eichstaedt JC, Kern ML, et al. Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach. *PLoS One*. 2013;8(9). doi:10.1371/journal.pone.0073791

28. Muchnik L, Itzhack R, Solomon S, Louzoun Y. Self-emergence of knowledge trees: Extraction of the Wikipedia hierarchies. *Phys Rev E - Stat Nonlinear, Soft Matter Phys*. 2007;76(1). doi:10.1103/PhysRevE.76.016106
29. Digman JM. Personality structure: emergence of the five-factor model. *Annu Rev Psychol*. 1990;41(1):417-440. doi:10.1146/annurev.ps.41.020190.002221

30. DeYoung CG. Personality Neuroscience and the Biology of Traits. *Soc Personal Psychol Compass*. 2010;4(12):1165-1180. doi:10.1111/j.1751-9004.2010.00327.x

31. Liu D, Campbell WK. The Big Five personality traits, Big Two metatraits and social media: A meta-analysis. *J Res Pers*. 2017;70:229-240. doi:10.1016/j.jrp.2017.08.004

32. Back MD, Stopfer JM, Vazire S, et al. Facebook profiles reflect actual personality, not self-idealization. *Psychol Sci*. 2010;21(3):372-374. doi:10.1177/0956797609360756

33. Gosling SD, Augustine AA, Vazire S, Holtzman N, Gaddis S. Manifestations of personality in online social networks: Self-reported facebook-related behaviors and observable profile information. *Cyberpsychology, Behav Soc Netw*. 2011;14(9):483-488. doi:10.1089/cyber.2010.0087

34. Naaman R, Cohen K, Louzoun Y, Benzi M. Edge sign prediction based on a combination of network structural topology and sign propagation. *J Complex Networks*. 2018;7(1):54-66. doi:10.1093/comnet/cny012

35. Freeman LC. Centrality in social networks conceptual clarification. *Soc Networks*. 1978;1(3):215-239. doi:10.1016/0378-8733(78)90021-7

36. Okamot K, Chen W, Li XY. Ranking of closeness centrality for large-scale social networks. In: *Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*. Vol 5059 LNCS.; 2008:186-195. doi:10.1007/978-3-540-69311-6_21

37. Kitsak M, Gallos LK, Havlin S, et al. Identification of influential spreaders in complex networks. *Nat Phys*. 2010;6(11):888-893. doi:10.1038/nphys1746

38. Morandi A, Limousin M, Sayers J, et al. X-ray, lensing and Sunyaev-Zel’dovich triaxial analysis of Abell 1835 out to R200. *Mon Not R Astron Soc*. 2012;425(3):2069-2082. doi:10.1111/j.1365-2966.2012.21196.x

39. Hubbell CH. An Input-Output Approach to Clique Identification. *Sociometry*. 1965;28(4):377. doi:10.2307/2785990

40. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: Simple building blocks of complex networks. *Science (80-).*. 2002;298(5594):824-827. doi:10.1126/science.298.5594.824

41. Son SW, Christensen C, Bizhani G, Foster D V., Grassberger P, Paczuski M. Sampling properties of directed networks. *Phys Rev E - Stat Nonlinear, Soft Matter Phys*. 2012;86(4). doi:10.1103/PhysRevE.86.046104

42. Barabási AL, Albert R. Emergence of scaling in random networks. In: *The Structure and Dynamics of Networks*. Vol 9781400841.; 2011:349-352. doi:10.1515/9781400841356.349

43. de Winter JCF, Gosling SD, Potter J. Comparing the pearson and spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. *Psychol Methods*. 2016;21(3):273-290. doi:10.1037/met0000079

44. Millman KJ, Aivazis M. Python for scientists and engineers. *Comput Sci Eng*.
45. Rosen Y, Louzoun Y. Topological similarity as a proxy to content similarity. *J Complex Networks*. 2014;4(1):38-60. doi:10.1093/comnet/cnv012

46. Abel R, Benami I, Louzoun Y. Topological based classification using graph convolutional networks. Published online 2019:1-15. http://arxiv.org/abs/1911.06892

47. Fan J, Cohen K, Shekhtman LM, et al. Topology of products similarity network for market forecasting. *Appl Netw Sci*. 2019;4(1):69. doi:10.1007/s41109-019-0171-y

48. Leskovec J, Huttenlocher D, Kleinberg J. Predicting positive and negative links in online social networks. In: *Proceedings of the 19th International Conference on World Wide Web, WWW ’10.* ; 2010:641-650. doi:10.1145/1772690.1772756

49. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. *J Mach Learn Res*. 2011;12:2825-2830.

50. Chollet F, others. Keras: deep learning library for theano and tensorflow. 2015. *There is no Corresp Rec this Ref.* 2015;7(8):1-21. url: https://keras.io/k

51. JASP Team. JASP (Version 0.11.1)[Computer software]. *JASP - Free User-Friendly Stat Sofw*. Published online 2019.

52. Baek SI, Bae SH. The Effect of Social Network Centrality on Knowledge Sharing. *J Serv Sci Res*. 2019;11(2):183-202. doi:10.1007/s12927-019-0009-2

53. Semenkovich SA, Tsukanova OA. On the Algorithms of Identifying Opinion Leaders in Social Networks. In: *Procedia Computer Science*. Vol 162. ; 2019:778-785. doi:10.1016/j.procs.2019.12.050

54. Pei S, Muchnik L, Andrade JS, Zheng Z, Makse HA. Searching for superspreaders of information in real-world social media. *Sci Rep.* 2014;4. doi:10.1038/srep05547

55. Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. *Nat Genet*. 2002;31(1):64-68. doi:10.1038/ng881

56. Du Y, Gao C, Chen X, Hu Y, Sadiq R, Deng Y. A new closeness centrality measure via effective distance in complex networks. *Chaos An Interdiscip J Nonlinear Sci*. 2015;25(3):033112. doi:10.1063/1.4916215

57. Gao S, Ma J, Chen Z, Wang G, Xing C. Ranking the spreading ability of nodes in complex networks based on local structure. *Phys A Stat Mech its Appl*. 2014;403:130-147. doi:10.1016/j.physa.2014.02.032

58. Wehrli S. Personality on social network sites: An application of the five factor model. *ETH Zurich Sociol Work Pap*. 2008;(7):1-17.

59. Feiler DC, Kleinbaum AM. Popularity, Similarity, and the Network Extraversion Bias. *Psychol Sci*. 2015;26(5):593-603. doi:10.1177/0956797615569580

60. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. In: *NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference*. Vol 1. ; 2019:4171-4186.
61. Stachl C, Au Q, Schoedel R, et al. Predicting personality from patterns of behavior collected with smartphones. *Proc Natl Acad Sci U S A*. 2020;117(30):17680-17687. doi:10.1073/pnas.1920484117

62. Noe N, Whitaker RM, Allen SM. Personality homophily and the local network characteristics of facebook. In: *Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016*. ; 2016:386-393. doi:10.1109/ASONAM.2016.7752263

63. Noë N, Whitaker RM, Allen SM. Personality homophily and geographic distance in facebook. *Cyberpsychology, Behav Soc Netw*. 2018;21(6):361-366. doi:10.1089/cyber.2017.0615

64. Al Zamal F, Liu W, Ruths D. Homophily and latent attribute inference: Inferring latent attributes of Twitter users from neighbors. In: *ICWSM 2012 - Proceedings of the 6th International AAAI Conference on Weblogs and Social Media*. ; 2012:387-390.

65. Liben-Nowell D, Novak J, Kumar R, Raghavan P, Tomkins A. Geographic routing in social networks. *Proc Natl Acad Sci U S A*. 2005;102(33):11623-11628. doi:10.1073/pnas.0503018102

66. Schulz L, Rollwage M, Dolan RJ, Fleming SM. Dogmatism manifests in lowered information search under uncertainty. *Proc Natl Acad Sci U S A*. 2020;117(49):31527-31534. doi:10.1073/pnas.2009641117

67. Roberts SGB, Wilson R, Fedurek P, Dunbar RIM. Individual differences and personal social network size and structure. *Pers Individ Dif*. 2008;44(4):954-964. doi:10.1016/j.paid.2007.10.033

68. Nagarajan K, Muniyandi M, Palani B, Sellappan S. Social network analysis methods for exploring SARS-CoV-2 contact tracing data. *BMC Med Res Methodol*. 2020;20(1). doi:10.1186/s12874-020-01119-3

69. Matz SC, Kosinski M, Nave G, Stillwell DJ. Psychological targeting as an effective approach to digital mass persuasion. *Proc Natl Acad Sci U S A*. 2017;114(48):12714-12719. doi:10.1073/pnas.1710966114

70. Isaak J, Hanna MJ. User Data Privacy: Facebook, Cambridge Analytica, and Privacy Protection. *Computer (Long Beach Calif)*. 2018;51(8):56-59. doi:10.1109/MC.2018.3191268

71. Clarke S, Robertson IT. A meta-analytic review of the Big Five personality factors and accident involvement in occupational and non-occupational settings. *J Occup Organ Psychol*. 2005;78(3):355-376. doi:10.1348/096317905X26183

72. Santangelo G, Garramone F, Baiano C, et al. Personality and Parkinson’s disease: A meta-analysis. *Park Relat Disord*. 2018;49:67-74. doi:10.1016/j.parkreldis.2018.01.013

73. D’Iorio A, Garramone F, Piscopo F, Baiano C, Raimo S, Santangelo G. Meta-Analysis of Personality Traits in Alzheimer’s Disease: A Comparison with Healthy Subjects. *J Alzheimer’s Dis*. 2018;62(2):773-787. doi:10.3233/JAD-170901

74. Perlmutter JS. Assessment of parkinson disease manifestations. *Curr Protoc Neurosci*. 2009;(SUPPL.49). doi:10.1002/0471142301.ns1001s49
75. Pangman VC, Sloan J, Guse L. An examination of psychometric properties of the Mini-Mental State Examination and the standardized Mini-Mental State Examination: Implications for clinical practice. *Appl Nurs Res*. 2000;13(4):209-213. doi:10.1053/apnr.2000.9231

76. Sampaio C. Can focusing on UPDRS Part II make assessments of Parkinson disease progression more efficient? *Nat Clin Pract Neurol*. 2009;5(3):130-131. doi:10.1038/ncpneuro1049