Seiberg-Witten invariants for manifolds with $b_+ = 1$

Christian Okonek and Andrei Teleman

Abstract – In this note we describe the Seiberg-Witten invariants, which have been introduced in [W], for manifolds with $b_+ = 1$. In this case the invariants depend on a chamber structure, and there exists a universal wall crossing formula. For every Kähler surface with $p_g = 0$ and $q=0$, these invariants are non-trivial for all Spinc-structures of non-negative index.

Les invariants de Seiberg-Witten pour les variétés avec $b_+ = 1$

Résumé – Dans cette note nous décrivons les invariants de Seiberg-Witten introduits dans [W], pour les variétés telles que $b_+ = 1$. Ces invariants dépendent d’un paramètre auxiliaire variant dans l’ensemble des chambres, et il existe une formule universelle de passage à travers un mur. Pour les surfaces kählériennes telles que $p_g = 0$ et $q = 0$, les invariants associés à toute Spinc-structure d’index non-négatif sont non-triviaux.
qui se projette sur \((g, c)\) et tout \(\beta\) dans un sous-ensemble ouvert dense de \(b\). Une telle forme \(\beta\) sera appelée régulière. La variété \(W^\gamma_{X, \beta}\) peut alors être orientée en choisissant une orientation \(\sigma\) du fibré \(\det(H^1(X, \mathbb{R})) \otimes \det(\mathbb{H}^2_{+g}(X)^\vee)\). Soit \([W^\gamma_{X, \beta}]_\sigma \in H_{w_\sigma}(\mathcal{B}(c)^*, \mathbb{Z})\) la classe fondamentale associée à \(\sigma\).

La forme de Seiberg-Witten associée à la donnée \((\sigma, (g, b), c)\) est l’élément \(SW^{(g, b)}_{X, \sigma}(c) \in \Lambda^*H^1(X, \mathbb{Z})\) défini par \(SW^{(g, b)}_{X, \sigma}(c)(l_1 \wedge \ldots \wedge l_r) = \left< \nu(l_1) \cup \ldots \cup \nu(l_r) \cup u^{\frac{\omega_g}{\omega_0}}[W^\gamma_{X, \beta}]_\sigma \right>\) sur les éléments décomposables \(l_1 \wedge \ldots \wedge l_r\) avec \(r \equiv w_c\) (mod 2). Ici \(\gamma \in \mathcal{C}\) se projette sur la paire \((g, c)\) et \(\beta \in b\) est régulière. \(SW^{(g, b)}_{X, \sigma}(c)\) ne dépend pas du choix de \(\gamma \in \beta\).

Si \(b_+ > 1\), \(SW^{(g, b)}_{X, \sigma}(c)\) ne dépend pas même du choix de la paire \(c\)-bonne \((g, b)\), donc on peut désigner cet invariant simplement par \(SW_{X, \sigma}(c) \in \Lambda^*H^1(X, \mathbb{Z})\). Si \(b_1 = 0\), on obtient des nombres que nous désignons par \(n^c_\sigma\); ces nombres peuvent être considérés comme des raffinements des nombres \(n^c_\sigma\) introduits en [W]. En effet \(n^c_\sigma = \sum n^c_\sigma\), où la somme est faite par rapport à \(c \in \pi_0(\mathcal{C}/\text{Aut}(\mathcal{P}))\).

Supposons maintenant que \(b_+ = 1\). Il y a une application naturelle \(\text{Met}_X \to \mathbb{P}(H^2_{\text{DR}}(X))\) qui associe à \(g \in \text{Met}_X\) la droite \(\mathbb{R}[\omega_+] \subset H^2_{\text{DR}}(X)\), où \(\omega_+\) est une 2-forme \(g\)-autoduale harmonique non-triviale. L’espace hyperbolique \(\mathcal{H} := \{\omega \in H^2_{\text{DR}}(X) | \omega^2 = 1\}\) a deux composantes connexes, et le choix d’une composante \(\mathcal{H}_0\) définit une orientation de la droite \(H^2_{\perp g}(X)\) pour toute métrique \(g\). Soit \(\omega_g\) le générateur de \(\mathbb{H}^2_{\perp g}(X)\) tel que \([\omega_g] \in \mathcal{H}_0\).

Définition. - Soit \(X\) une 4-variété avec \(b_+ = 1\), et \(c \in H^2(X, \mathbb{Z})\) un élément caractéristique. Le mur associé à \(c\) est l’hypersurface \(c^\perp := \{(\omega, b) \in \mathcal{H} \times H^2_{\text{DR}}(X) | (c - b) \cdot \omega = 0\}\). Les composantes connexes de \(\mathcal{H} \setminus c^\perp\) seront appelées chambres du type \(c\).

Les murs ne sont pas linéaires! Tout élément caractéristique \(c\) définit précisément quatre chambres du type \(c : \mathcal{C}_{H_0, \pm} := \{(\omega, b) \in H^2_{\text{DR}}(X) | (c - b) \cdot \omega < 0\}\), où \(H_0\) est l’une des deux composantes connexes de \(\mathcal{H}\). Toute chambre contient des paires de la forme \(([\omega_g], b)\). Choisissons maintenant une orientation \(\sigma_1\) de \(H^1(X, \mathbb{R})\).

Définition. - L’invariant de Seiberg-Witten associé à la donnée \((\sigma_1, H_0, c)\) est la fonction \(SW_{X, (\sigma_1, H_0)}(c) : \{\pm\} \to \Lambda^*H^1(X, \mathbb{Z})\) définie par \(SW_{X, (\sigma_1, H_0)}(c)(\pm) := SW^{(g, b)}_{X, \sigma}(c)\), où \(\sigma\) est l’orientation induite par \((\sigma_1, H_0)\), et \(([\omega_g], b)\) est une paire appartenant à \(\mathcal{C}_{H_0, \pm}\).

On vérifie facilement les relations \(SW_{X, (\sigma_1, H_0)}(c)(\pm) = -SW_{X, (\sigma_1, -H_0)}(c)(\mp)\) et \(SW_{X, (\sigma_1, H_0)}(c)(\mp) = -SW_{X, (\sigma_1, -H_0)}(c)(\pm)\). Soit \(u_c(a, b) := \frac{1}{2}(c \cup a \cup b, [X])\), pour \(a, b \in H^1(X, \mathbb{Z})\).

Théorème. - Supposons \(b^+(X) = 1\), soit \(\sigma_1\), le générateur de \(\Lambda^6(H^1(X, \mathbb{Z}))\) défini par l’orientation \(\sigma_1\), et soit \(r \geq 0, r \equiv w_c\) (mod 2) : Pour tout \(\lambda \in \Lambda^r(H^1(X, \mathbb{Z})/\text{Tors})\) on a

\[SW_{X, (\sigma_1, H_0)}(c)(\pm)(\lambda) - SW_{X, (\sigma_1, H_0)}(c)(\mp)(\lambda) = \left(\frac{\lambda \wedge u_c}{\|u_c\|^2}\right)(\lambda \wedge u_c^{\frac{\lambda \wedge u_c}{\|u_c\|^2}}, \sigma_1)\]

si \(r \leq \min(b_1, c_1)\), et la différence est nulle dans les autres cas.

Soit \((X, g)\) une surface kählérienne munie de sa Spîn\(^{(4)}\)-structure canonique et soit \(\omega_g\) sa forme de Kähler. Il y a une bijection naturelle entre les classes de Spîn\(^{(4)}\)-structures \(c\) de classe de Chern \(c\) et les fibrés en droites \(M\) dont la classe de Chern vérifie \(2c_1(M) - c_1(K_X) = c\). On désigne par \(\epsilon_M\) la classe définie par \(M\). Soit \(D\) l’espace de Douady des diviseurs effectifs \(D\) sur \(X\) tels que \(c_1(\mathcal{O}_X(D)) = m\).

Théorème. - Soit \((X, g)\) une surface kählérienne connexe, et soit \(\epsilon_M\) la classe des Spîn\(^{(4)}\)-structures associée au fibré en droites \(M\) de classe de Chern \(c_1(M) = m\). Soit
\(\beta \in A_{1,1}^\mathbb{Z} \) une forme représentant la classe \(b \) telle que \((2m - c_1(K_X) - b) \cup [\omega_2] < 0 \) \((> 0)\).

i) Si \(c \notin \text{NS}(X) \), on a \(\mathbb{W}_{X,\beta}^M = 0 \). Si \(c \in \text{NS}(X) \), il existe un isomorphisme réel analytique naturel \(\mathbb{W}_{X,\beta}^M \cong \text{Dou}(m) \) \((\text{Dou}(c_1(K_X) - m))\).

ii) \(\mathbb{W}_{X,\beta}^M \) est lisse en un point correspondant à \(D \in \text{Dou}(m) \) si et seulement si \(h^0(\mathcal{O}_D(D)) = \dim_D \text{Dou}(m) \). Cette condition est toujours satisfaite si \(h^1(\mathcal{O}_X) = 0 \).

iii) Si \(\mathbb{W}_{X,\beta}^M \) est lisse en un point correspondant à \(D \in \text{Dou}(m) \), il a la dimension prédéterminée en ce point si et seulement si \(h^1(\mathcal{O}_D(D)) = 0 \).

Toute surface complexe connexe avec \(p_g > 0 \) est difféomorphe à une surface possédant un diviseur canonique 0-connexe. De là on déduit une démonstration simple du

Corollaire. - ([\(W \)]) Tous les invariants de Seiberg-Witten non-triviaux d’une surface kählérienne avec \(p_g > 0 \) sont d’indice 0.

Au contraire, si \(p_g = 0 \), on a

Corollaire. - Soit \(X \) une surface kählérienne avec \(p_g = 0 \) et \(q = 0 \). Pour toute donnée \((\mathcal{H}_0, c)\) avec \(w_c \geq 0 \), on a \(\text{SW}_{X,\mathcal{H}_0}(c)(\{\pm\}) = \{0, 1\} \) ou \(\text{SW}_{X,\mathcal{H}_0}(c)(\{\pm\}) = \{0, -1\} \).

1. **The twisted Seiberg-Witten equations.** - Let \(X \) be a closed connected oriented 4-manifold, and let \(c \in H^2(X, \mathbb{Z}) \) be a class with \(c \equiv w_2(X) \pmod{2} \). A compatible Spin\(^c\)-bundle \(\mathcal{P} \) with \(c_1(\mathcal{P} \times_{\det} \mathbb{C}) = c \) such that its \(GL_+^+(4, \mathbb{R}) \)-extension \(\mathcal{P} \times_{\mathbb{R}} GL_+^+(4, \mathbb{R}) \) is isomorphic to the bundle of oriented frames in \(\Lambda_X^{+4} \). Let \(\Sigma^\pm := \mathcal{P} \times_{\det} \mathbb{C}^2 \) be the associated spinor bundles with \(\det \Sigma^\pm = \mathcal{P} \times_{\det} \mathbb{C} \pmod{[O1]} \).

Définition. - A **Clifford map** of type \(\mathcal{P} \) is a \(GL_+^+(4, \mathbb{R}) \)-isomorphism \(\gamma : \Lambda_X^{+4} \rightarrow \mathcal{P} \times_{\mathbb{R}} \mathbb{R}^4 \).

The \(SO(4) \)-vector bundle \(\mathcal{P} \times_{\mathbb{R}} \mathbb{R}^4 \) can be identified with the bundle \(\mathbb{R}SU(\Sigma^+, \Sigma^-) \) of real multiples of \(\mathbb{C} \)-linear isometries of determinant 1 from \(\Sigma^+ \) to \(\Sigma^- \). A Clifford map \(\gamma \) defines a metric \(g_\gamma \) on \(X \), a lift \(\mathcal{P} \rightarrow P_{g_\gamma} \) of the associated frame bundle, and it induces isomorphisms \(\Gamma : \Lambda_Z^+ \rightarrow su(\Sigma^\pm) \pmod{[O1]} \). Let \(\mathcal{C} = \mathcal{C}(\mathcal{P}) \) be the space of all Clifford maps of type \(\mathcal{P} \). There is a natural isomorphism \(\mathcal{C}/\text{Aut}(\mathcal{P}) \rightarrow \text{Met}_X \times \pi_0(\mathcal{C}/\text{Aut}(\mathcal{P})) \), where the second factor is a \(\text{Tors}^2 H^2(X, \mathbb{Z}) \)-torsor; it parametrizes the set of equivalence classes of exceptional structures on \(X \) with Chern class \(c \) on \((X, g)\), for an arbitrary metric \(g \). We use the symbol \(c \) to denote elements in \(\pi_0(\mathcal{C}/\text{Aut}(\mathcal{P})) \), and we denote by \(\mathfrak{c}_\gamma \) the connected component defined by \([\gamma] \in \mathcal{C}/\text{Aut}(\mathcal{P}) \). A fixed Clifford map \(\gamma \) defines a bijection between unitary connections in \(\mathcal{P} \times_{\det} \mathbb{C} \) and Spin\(^c\)-connections in \(\mathcal{P} \) which lift (via \(\gamma \)) the Levi-Civita connection in \(P_{g_\gamma} \), and allows to associate a Dirac operator \(\mathcal{D}_A \) to a connection \(A \in \mathcal{A}(\mathcal{P} \times_{\det} \mathbb{C}) \).

Définition. - Let \(\gamma \) be a Clifford map, and let \(\beta \in \mathbb{Z}_{\text{DR}}^2(X) \) be a closed 2-form. The **\(\beta \)-twisted Seiberg-Witten equations** are

\[
\mathcal{D}_A \Psi = 0 , \quad \Gamma ((F_A + 2\pi i \beta)^+) = 2(\Psi \bar{\Psi})_0 .
\]

These twisted Seiberg-Witten equations arise naturally in connection with certain non-abelian monopoles \([O2]\). They should **not** be regarded as perturbation of \(\text{SW}_0^0 \), since later the cohomology class of \(\beta \) will be fixed.
Let $W_{X,\beta}^{\gamma}$ be the moduli space of solutions $(A, \Psi) \in \mathcal{A}(\det \Sigma^+) \times A^0(\Sigma^+)$ of $(SW_{X,\beta}^{\gamma})$ modulo the natural action $((A, \Psi), f) \mapsto (A^f, f^{-1}\Psi)$ of the gauge group $G = C^\infty(X, S^1)$.

The moduli space $W_{X,\beta}^{\gamma}$ depends up to canonical isomorphism only on (g_γ, c_γ) and β, since two Clifford maps lifting the same pair (g, c) are equivalent modulo $\text{Aut}(\hat{P})$.

Now fix a class $b \in H^2_{DR}(X)$, consider $(SW_{X,\beta}^{\gamma})$ as equation for a triple $(A, \Psi, \beta, \gamma) \in \mathcal{A}(\det \Sigma^+) \times A^0(\Sigma^+) \times b/\mathcal{G}$ be the (infinite dimensional) moduli space of solutions. Finally we need the universal moduli space $W_X \subset \mathcal{A}(\det \Sigma^+) \times A^0(\Sigma^+) \times Z^2_{DR}(X) \times C/\mathcal{G}$ of solutions of $(SW_{X,\beta}^{\gamma})$ regarded as equations for tuples $(A, \Psi, \beta, \gamma) \in \mathcal{A}(\det \Sigma^+) \times A^0(\Sigma^+) \times Z^2_{DR}(X) \times C$. We complete the spaces $\mathcal{A}(\det \Sigma^+)$, $A^0(\Sigma^+)$ and A^2 with respect to the Sobolev norms L_2^2, L_2^n and L_2^{n-1}, and the gauge group \mathcal{G} with respect to L_2^{n+1}, but we suppress the Sobolev subscripts in our notations. As usual we denote by the superscript * the open subspace of a moduli space where the spinor component is non-zero.

Definition. Let $c \in H^2(X, \mathbb{Z})$ be characteristic. A pair $(g, b) \in \text{Met}_X \times H^2_{DR}(X)$ is c-good if the g-harmonic representant of $(c - b)$ is not g-anti-selfdual.

Proposition. Let X be a closed oriented 4-manifold, and let $c \in H^2(X, \mathbb{Z})$ be characteristic. Choose a compatible Spin$^c(4)$-bundle \hat{P} and an element $\epsilon \in \pi_0(C/\text{Aut}(\hat{P}))$.

1. The projections $p : W_X \to Z^2_{DR}(X) \times C$ and $p_{\gamma, b} : W_{X,\beta}^{\gamma} \to b$ are proper for all γ, b.
2. $W_{X,\beta}^{\gamma}$ and $W_{X,\beta}^{\gamma \ast}$ are smooth manifolds for all γ and b.
3. $W_{X,\beta}^{\gamma \ast} = W_{X,\beta}^{\gamma}$ if (g_γ, b) is c-good.
4. If (g_β, b) is c-good, then every pair (β_0, β_1) of regular values of $p_{\gamma, b}$ can be joined by a smooth path $\beta : [0, 1] \to b$ such that the fiber product $[0, 1] \times (\beta, p_{\gamma, b}) W_{X,\beta}^{\gamma}$ defines a smooth bordism between W_{X,β_0}^{γ} and W_{X,β_1}^{γ}.

5. If (g_0, b_0), (g_1, b_1) are c-good pairs which can be joined by a smooth path of c-good pairs, then there is a smooth path $(\beta, \gamma) : [0, 1] \to Z^2_{DR}(X) \times C$ with the following properties:
 1. $[\beta_1] = b_1$ and $g_{\gamma_i} = g_i$ for $i = 0, 1$.
 2. γ_t lifts (g_{γ_t}, c) and $(g_{\gamma_1}, [\beta_1])$ is c-good for every $t \in [0, 1]$.
 3. $[0, 1] \times (\gamma, \beta, p_{\gamma, b}) W_X$ is a smooth bordism between W_{X,β_0}^{γ} and W_{X,β_1}^{γ}.

6. If $b_+ > 1$, then any two c-good pairs (g_0, b_0), (g_1, b_1) can be joined by a smooth path of c-good pairs.

The proof uses techniques from [DK], [KM] and [T].

2. **Seiberg–Witten invariants for 4-manifolds with $b_+ = 1$.** Let X be a closed connected oriented 4-manifold, c a characteristic element, and \hat{P} a compatible Spin$^c(4)$-bundle. We put $B(c) := \mathcal{A}(\det \Sigma^+) \times (A^0(\Sigma^+) \setminus \{0\})/G$.

The space $B(c)$ has the weak homotopy type of $K(\mathbb{Z}, 2) \times K(H^1(X, \mathbb{Z}), 1)$ and there is a natural isomorphism $\nu : \mathbb{Z}[u] \otimes \Lambda^*(H_1(X, \mathbb{Z})/\text{Tors}) \to H^*(B(c)), \mathbb{Z}$.

Suppose that (g, b) is a c-good pair and fix $c \in \pi_0(C/\text{Aut}(\hat{P}))$. The moduli space $W_{X,\beta}^{\gamma}$ is a compact manifold of dimension $w_c := \frac{1}{4}(c^2 - 2e(X) - 3\sigma(X))$ for every lift γ of (g, c) and every regular value b of $p_{\gamma, b} : W_{X,\beta}^{\gamma} \to b$. It can be oriented by using the canonical complex orientation of the line bundle $\det(\text{index}(\hat{D}))$ over $B(c)$ together with a chosen orientation σ of the line $\det(H^1(X, \mathbb{R}) \otimes \det(\mathbb{H}_{2, g}(X))^\gamma)$. Let $|W_{X,\beta}^{\gamma}| \subset H_{w_c}(B(c)), \mathbb{Z}$ be the fundamental class associated with the choice of σ.

The Seiberg–Witten form $SW^{(g, b)}(\mathcal{O}) \in \Lambda^*H^1(X, \mathbb{Z})$ associated with $(c, (g, b), c)$ is defined by $SW^{(g, b)}_{X,\beta}(c)(l_1 \wedge \ldots \wedge l_r) = \langle \nu(l_1) \cup \ldots \cup \nu(l_r) \cup u^{w_c}, [W_{X,\beta}^{\gamma}] \rangle$ for decompos-
able elements $l_1 \wedge \ldots \wedge l_r$ with $r \equiv w_c (\text{mod} \ 2)$. Here γ lifts the pair (g, c) and $\beta \in b$ is a regular value of $p_{\gamma, b}$. The form $SW^{(g, b)}(c)$ is well-defined, since the cohomology classes $u, \nu(l_\gamma)$, as well as the trivialization of the orientation line bundle extend to $A(\det \Sigma^+) \times (A^0(\Sigma^+) \setminus \{0\}) \times \mathbb{R}_+$, and since the homology class defined by $[W_{X, b}]_{\mathcal{O}}$ in this quotient depends only on (g, γ, c) and b. Now there are two cases:

If $b_+ > 1$, then $SW^{(g, b)}(c)$ does not depend on (g, b), since the cohomology classes $u, \nu(l_\gamma)$ and the trivialization of the orientation line bundle extend to $\text{Aut}(\tilde{P})$-invariant objects on the quotient $A(\det \Sigma^+) \times (A^0(\Sigma^+) \setminus \{0\}) \times \mathbb{R}_+$, and thus we may simply write $SW_{X,\mathcal{O}}(c) \in \Lambda^* H^1(X, \mathcal{O})$. If $b_1 = 0$, then we obtain numbers n_c^2 which can be considered as refinements of the numbers n_c defined in [W]. Indeed, $n_c^2 = \sum n_c^2$, the summation being over all $c \in \pi_0(C/\text{Aut}(\tilde{P}))$.

Suppose now that $b_+ = 1$. There is a natural map $\mathcal{M}et_X \rightarrow \mathbb{P}(H^2_{\mathcal{DR}}(X))$ which sends a metric g to the line $\mathbb{R} \omega_+ \subset H^2_{\mathcal{DR}}(X)$, where ω_+ is any non-trivial g-selfdual harmonic form. The hyperbolic space $\mathcal{H} := \{\omega \in H^2_{\mathcal{DR}}(X) \mid \omega^2 = 1\}$ has two connected components, and the choice of one of them directs the line $\mathbb{R} \omega_+(X)$ for all metrics g. Having fixed a component \mathcal{H}_0 of \mathcal{H}, every metric defines a unique g-self-dual form $\omega_+ \subset \omega_+(X)$ with $[\omega_+] \in \mathcal{H}_0$.

Definition. - Let X be a manifold with $b_+ = 1$, and let $c \in H^2(X, \mathcal{O})$ be characteristic. The wall associated with c is the hypersurface $c^\perp := \{\omega, b) \in \mathcal{H} \times H^2_{\mathcal{DR}}(X) \mid (c - b) \cdot \omega = 0\}$. The connected components of $\mathcal{H} \setminus c^\perp$ are called chambers of type c.

Notice that the walls are non-linear! Every characteristic element c defines precisely four chambers of type c, namely $C_{\mathcal{H}_0, \pm} := \{(\omega, b) \in \mathcal{H}_0 \times H^2_{\mathcal{DR}}(X) \mid \pm (c - b) \cdot \omega < 0\}$, where \mathcal{H}_0 is one of the components of \mathcal{H}. Each of these four chambers contains pairs of the form $([\omega_+], b)$. Let σ_1 be an orientation of $H^1(X, \mathbb{R})$.

Definition. - The Seiberg-Witten invariant associated with $(\sigma_1, \mathcal{H}_0, c)$ is the function $SW_{X, (\sigma_1, \mathcal{H}_0)}(c) : \{\pm\} \rightarrow \Lambda^* H^1(X, \mathbb{Z})$ given by $SW_{X, (\sigma_1, \mathcal{H}_0)}(c)(\pm) := SW^{(g, b)}(c)$, where σ is the orientation defined by $(\sigma_1, \mathcal{H}_0)$, and (g, b) is a pair such that $([\omega_+], b) \in C_{\mathcal{H}_0, \pm}$.

Note that, changing the orientation σ_1 changes the invariant by a factor -1, and that $SW_{X, (\sigma_1, -\mathcal{H}_0)}(c)(\pm) = -SW_{X, (\sigma_1, \mathcal{H}_0)}(c)(\mp)$.

Remark. - A different approach - adapting ideas from intersection theory to construct "Seiberg-Witten multiplicities" - has been proposed by R. Brussee.

Define $u_c \in \Lambda^2 (H^1(X, \mathcal{O})/\text{Tors})$ by the formula $u_c(a, b) := \frac{1}{2} (c \cup a \cup b, [X])$, for elements $a, b \in H^1(X, \mathcal{O})$. The following wall crossing formula generalizes results of [W], [KM], [LL].

Theorem. - Let $b^+(X) = 1$, let l_{σ_1} be the generator of $\Lambda^b_1(H^1(X, \mathcal{O}))$ defined by the orientation σ_1, and let $r \geq 0, r \equiv w_c (\text{mod} \ 2)$. For every $\lambda \in \Lambda^r (H^1(X, \mathcal{O})/\text{Tors})$ we have

$$SW_{X, (\sigma_1, \mathcal{H}_0)}(c)(\pm)(\lambda) - SW_{X, (\sigma_1, \mathcal{H}_0)}(c)(\mp)(\lambda) = (-1)^{\left\lfloor \frac{b^+ - r}{2} \right\rfloor} \lambda \wedge u_c^{\left\lfloor \frac{b^+ - r}{2} \right\rfloor} l_{\sigma_1},$$

if $r \leq \min(b_1, w_c)$, and the difference is 0 otherwise.

Remark. - For manifolds admitting a metric of positive scalar curvature, the invariants are determined by Witten's vanishing result [W] and the wall crossing formula.

3. SEIBERG-WITTEN INVARIANTS OF KÄHLER SURFACES. - Let (X, g) be a Kähler surface with Kähler form ω_g, and let c_0 be the class of the canonical Spin$^c(4)$-structure.
of determinant K^X_γ on (X, g). The corresponding spinor bundles are $\Sigma^+ = \Lambda^{00} \oplus \Lambda^{02}$, $\Sigma^- = \Lambda^{01}$ [OT1]. There is a natural bijection between classes of Spin$^c(4)$-structures γ of Chern class c and isomorphism classes of line bundles with $2c_1(M) - c_1(K_X) = c$. We denote by γ_M the class defined by a line bundle M. The spinor bundles of γ_M are the tensor products $\Sigma^\pm \otimes M$, and the map $\gamma_M : \Lambda^1_X \longrightarrow \mathbb{R}SU(\Sigma^+ \otimes M, \Sigma^- \otimes M)$ given by $\gamma_M(\cdot) = \gamma_0(\cdot) \otimes 1$ is a Clifford map representing γ_M.

Let $\text{Dou}(m)$ be the Douady space of all effective divisors D on X with $c_1(O_X(D)) = m$.

Theorem. - Let (X, g) be a connected Kähler surface, and let γ_M be the class of the Spin$^c(4)$-structure associated to a line bundle M with $c_1(M) = m$. Let $\beta \in A_X^{1,1}$ be a closed form representing the class b such that $(2m - c_1(K_X) - b) \cup [\omega_g] < 0$ (> 0).

i) If $c \notin NS(X)$, then $W_{X,\beta}^M = 0$. If $c \in NS(X)$, then there is a natural real analytic isomorphism $W_{X,\beta}^M \simeq \text{Dou}(m) : (\text{Dou}(c_1(K_X) - m))$.

This condition is always satisfied when $h^1(O_X) = 0$.

ii) If $W_{X,\beta}^M$ is smooth at a point corresponding to $D \in \text{Dou}(m)$ iff $h^0(D) = \dim D \text{Dou}(m)$.

iii) If $W_{X,\beta}^M$ is smooth at a point corresponding to D, then it has the expected dimension in this point iff $h^1(D) = 0$.

It is easy to see that every connected complex surface with $p_g > 0$ is oriented diffeomorphic to a surface which possesses a 0-connected canonical divisor. This yields an easy proof of

Corollary. - ([W]) All non-trivial Seiberg-Witten invariants of Kähler surfaces with $p_g > 0$ have index 0.

On the other hand, for $p_g = 0$, we have

Corollary. - Let X be a surface with $p_g = 0$ and $q = 0$. For all data (H_0, c) with $w_c \geq 0$, we have $SW_{X, H_0}(c)(\{±\}) = \{0, 1\}$ or $SW_{X, H_0}(c)(\{±\}) = \{0, -1\}$.

Remark. - In this situation, the invariants are already determined by their reduction modulo 2. There exist examples of surfaces with $p_g = 0$ and $q = 0$, having infinitely many non-trivial invariants of any given non-negative index.

Example. - Let $X = \mathbb{P}^2$, let $h \in H^2(\mathbb{P}^2, \mathbb{Z})$ be the class of the ample generator, and let H_0 be the component of $H = \{± h\}$ which contains h. The classes of Spin$^c(4)$-structures are labelled by odd integers c and the corresponding index is $w_c = \frac{1}{4}(c^2 - 2)$. We find $SW_{\mathbb{P}^2, H_0}(\pm 1) = 0$, $SW_{\mathbb{P}^2, H_0}(c)(+) = 1$ if $c \geq 3$, and $SW_{\mathbb{P}^2, H_0}(c)(-) = -1$ if $c \leq 3$.

References

[DK] Donaldson, S.; Kronheimer, P.: *The Geometry of four-manifolds*, Oxford Sc. Publ. 1990.

[KM] Kronheimer, P.; Mrowka, T.: *The genus of embedded surfaces in the projective plane*, Math. Res. Lett. 1, 1994, 797-808.

[LL] Li, T.; Liu, A.: *General wall crossing formula*, Math. Res. Lett. 2, 1995, 797-810.

[OT1] Okonek, Ch.; Teleman A.: *The Coupled Seiberg-Witten Equations, Vortices, and Moduli Spaces of Stable Pairs*, Intern. J. Math. Vol. 6, No. 6, 1995, 893-910.

[OT2] Okonek, Ch.; Teleman A.: *Quaternionic monopoles*, Comm. Math. Phys. (to appear).

[T] Taubes, C.: *The Seiberg-Witten and Gromov invariants* Math. Res. Lett. 2, 1995, 221-238.

[W] Witten, E.: *Monopoles and four-manifolds*, Math. Res. Lett. 1, 1994, 769-796.

Ch. Okonek: Mathematisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich
A. Teleman: Mathematisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich

and Faculty of Mathematics, University of Bucharest

e-mail: okonek@math.unizh.ch ; teleman@math.unizh.ch