Highly efficient hairy root genetic transformation and applications in citrus

Haijie Ma1†, Xinyue Meng1†, Kai Xu1, Min Li2, Fred G. GmitterJr3, Ningge Liu1, Yunpeng Gai4, Suya Huang1, Min Wang1, Min Wang2, Nian Wang3, Hairen Xu1, Jinhua Liu5*, Xuepeng Sun1* and Shuo Duan2*

1Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China, 2China-USA Citrus Huanglongbing Joint Laboratory (A Joint Laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Ganman Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China, 3Citrus Research and Education Center, Horticultural Sciences Department, University of Florida, Lake Alfred, FL, United States, 4School of Grassland Science, Beijing Forestry University, Beijing, China, 5Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, Zhejiang, China

Highly efficient genetic transformation technology is greatly beneficial for crop gene function analysis and precision breeding. However, the most commonly used genetic transformation technology for woody plants, mediated by Agrobacterium tumefaciens, is time-consuming and inefficient, which limits its utility for gene function analysis. In this study, a simple, universal, and highly efficient genetic transformation technology mediated by A. rhizogenes K599 is described. This technology can be applied to multiple citrus genotypes, and only 2–8 weeks were required for the entire workflow. Genome-editing experiments were simultaneously conducted using 11 plasmids targeting different genomic positions and all corresponding transformants with the target knocked out were obtained, indicating that A. rhizogenes-mediated genome editing was highly efficient. In addition, the technology is advantageous for investigation of specific genes (such as ACD2) for obtaining "hard-to-get" transgenic root tissue. Furthermore, A. rhizogenes can be used for direct viral vector inoculation on citrus bypassing the requirement for virion enrichment in tobacco, which facilitates virus-induced gene silencing and virus-mediated gene expression. In summary, we established a highly efficient genetic transformation technology bypassing tissue culture in citrus that can be used for genome editing, gene overexpression, and virus-mediated gene function analysis. We anticipate that by reducing the cost, required workload, experimental period, and other technical obstacles, this genetic transformation technology will be a valuable tool for routine investigation of endogenous and exogenous genes in citrus.

KEYWORDS
citrus, genetic transformation, genome editing, Agrobacterium rhizogenes, virus
Introduction

Citrus is among the most important fruit crops worldwide and is grown in more than 114 countries (Talon and Gmitter, 2008). Global predicted citrus production exceeded 146 million tons (FAOSTAT; https://www.fao.org/faostat/en). The citrus industry currently requires new cultivars with desirable traits to improve yields, nutritional value, and adaptability to biotic and abiotic stresses. The application of genetic transformation to improve citrus has increased in recent years (Peña, 2000; Boscariol et al., 2006; Fagoaga et al., 2006; Febres et al., 2008; Gambino and Gribaudo, 2012). Agrobacterium tumefaciens-mediated transformation of epicotyl segments requires tissue culture, which is widely employed to produce disease-resistant materials in the laboratory, remains the quickest method for improvement of citrus cultivars. To date, many important traits have been successfully introduced into different citrus species and hybrids, such as lime, sweet orange, and grapefruit (Dominguez et al., 2002; Fu et al., 2011; Jia et al., 2017; Peng et al., 2017; Jia et al., 2021). However, transformation mediated by Agrobacterium tumefaciens has many disadvantages, including that the procedure is time consuming, laborious, expensive, and inefficient. The low frequency of rooting is an additional limitation of A. tumefaciens-mediated transformation of epicotyl segments of citrus (Gutiérrez-E. et al., 1997). As a result, micrografting is frequently used for maintenance of transgenic plants (Poles et al., 2020). Therefore, a rapid and highly efficient genetic transformation method bypassing the need for tissue culture is critical for gene function analysis and genetic improvement of citrus.

Agrobacterium species are widely used to generate transgenic plants as the agrobacteria can integrate transfer DNA (T-DNA) into a host plant’s nuclear DNA genome. Agrobacterium tumefaciens transfers the tumor-inducing (Ti) plasmid into the host nucleus to incorporate exogenous DNA into a host chromosome and subsequently cause formation of a tumor at the plant wound site. This mechanism has been utilized for A. tumefaciens-mediated plant transformation of many plant species to improve crop traits and for research on gene function (Chetty et al., 2013; Kaur and Sah, 2014). In recent decades, A. tumefaciens has been widely applied in citrus breeding and gene functional research (Dominguez et al., 2002; Stover et al., 2013; Hongge et al., 2019). However, for most plants, especially woody species, when using A. tumefaciens, the generation of stable transformants requires plant regeneration from a few cells or even a single cell using exogenous phytohormones, and thus the process is time consuming and laborious. In addition, Agrobacterium rhizogenes has been successfully used in plant genetic transformation technologies (Estrada-Navarrete et al., 2007).

Materials and methods

Bacterial strains, plant material, and growth conditions

The Escherichia coli (DH5α) competent cells (CAT#: DL1002), A. rhizogenes (K599) competent cells (CAT#: AC1080), and A. tumefaciens (EHA105) competent cells (CAT#: AC1012) were obtained from Shanghai Weidi Biotechnology Co., Ltd. All transformed bacterial strains were stored in 15% glycerol and preserved in a freezer at −80°C. Escherichia coli cells were cultured in lysogeny broth medium at 37°C. The K599 and EHA105 strains were recovered and cultured at 28°C in tryptone yeast medium with corresponding antibiotics.

Branches of Citrus medica, C. limon, C. sinensis, and citrange ‘Carrizo’ were obtained from the National Citrus Engineering Research Center, Chongqing, China. Plants with transgenic hairy root were grown in a greenhouse at 26°C with a 16 h/8 h (light/dark) photoperiod. All citrus plants were cultured in a net greenhouse under natural conditions.
Transcriptome analysis

The RNA-sequencing experiments were conducted using three biological replicates of each sample. Sequencing libraries were generated using the NEBNext Ultra II RNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA) and were sequenced on an Illumina NovaSeq 6000 Sequencing System in paired-end mode. The raw reads were processed with Trimmomatic v. 0.36 (Bolger et al., 2014) to remove adaptor sequences and low-quality reads. The cleaned reads were aligned to the Citrus medica genome using HISAT2 v. 2.2.1 (Kim et al., 2015). The number of reads mapped to each gene was counted with htseq-count v. 1.9.92. Differential expression between the C. medica wild type and C. medica agroinfiltrated explants was analyzed using the ‘DESeq2’ R package (Love et al., 2014). Genes with an adjusted p-value ($p_{adj} ≤ 0.05$) and at least two-fold change in expression were assigned as DEGs. To explore the functions and pathways of the DEGs, GO terms and KEGG pathway enrichment analyses were performed using the ‘ClusterProfiler’ R package (Wu et al., 2021) and were visualized using the ‘ggplot2’ R package. The selected KEGG pathways associated with “plant hormone signal transduction”, “amino acid biosynthesis”, “plant–pathogen interaction”, and “MAPK signaling pathway” were visualized using the ‘Pathview’ R package (WeiJun and Cory).

Sequencing analysis

All transgenic roots and the wild-type plants were subjected to PCR (P111-01, Vazyme) using gene-specific primers (Table S1) to amplify DNA insertions or fragments including the target sites. The PCR amplicons were cloned into the pGEM® T Easy vector (Promega, Madison, WI, USA) for Sanger sequencing. The sequence chromatograms were analyzed with SnapGene software.

Visualization of GFP fluorescent signal

Transgenic roots were first confirmed with a hand-held excitation lamp (Luyor-3415RG). For microscopic inspection, roots were rinsed with ddH$_2$O and photographed under a Leica-M205FA stereomicroscope (Leica Microsystems, Wetzlar, Germany). Two different autofluorescence emission wavelength bands were used for detection: green (505–550 nm) and red (>560 nm), defined by optical filters. Transverse sections of the transgenic roots were cut with a razor blade as thinly as possible. The sections were mounted on a glass microscope slide in ddH$_2$O. The GFP signal was observed under a Leica-SP8MP confocal fluorescence microscope (Leica Microsystems). The fluorescence was observed under excitation
at 488 nm and emission at 505–550 nm. Simultaneously, images (1920 × 1024 pixels) were captured with a suitable scale bar.

β-Glucuronidase expression

The GUS (uidA) gene expression was detected using a GUS gene quantitative detection kit (SL7161, Coolaber) following the manufacturer’s instructions. Briefly, roots and hairy roots were incubated in 0.1 M sodium phosphate buffer with GUS substrate for 12 h at 37°C. The enzymatic reaction was stopped with 70% ethanol. Tissues were observed with a light stereomicroscope after GUS staining.

GRNA design

sgRNAs applied in this study were designed using the online tools CRISPRP v2.0 (http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR) based on their evaluation score (Rank from high to low), GC content (40%-60%) and putative off-target sites (Rank from low to high). target sequences with 20-bp were designed for each gene in the first exon. The purpose of this design will increase the possibility of affecting protein function and the likelihood that at least one site would be edited.

Virus inoculation

Prepare the *A. rhizogene* strain K599 harboring corresponding CLBV-based vector. Grow the corresponding *A. rhizogene* strain in YEP medium till OD$_{600}$ = 0.8. Spin down the pellets and wash twice with infiltration medium (MES medium: 10 mM MES, 10 mM MgCl$_2$, 200 µm acetosyringone). Re-suspend the pellets using infiltration medium till OD$_{600}$ = 0.5. Place the infiltration medium at 25°C for 3 hours in dark condition. Conduct vacuum agroinfiltration using citrus explants and maintain explants in greenhouse at 25°C. Observe the phenotypes after several months and confirm the transcription of target genes by RT-qPCR. All the experiments were conducted using at least three replicates.

Data availability statement

All datasets supporting the conclusions of this article are included in the article and supplementary files. The transcriptome project has been deposited at NCBI BioProject under the accession PRJNA800116 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA800116). All gene sequences, genome, gff3 file, and proteomes, gene ontology (GO), COG category, CAZy, KEGG, PFAMs, NR, eggNOG annotation of *C. medica* for bioinformatic analysis are available in the Zenodo repository at https://doi.org/10.5281/zenodo.5902607. The high-resolution figures are available on the figshare repository: https://doi.org/10.6084/m9.figshare.19060802.v1. The raw sequence data used for transcriptome analysis are available in NCBI under the Sequence Read Archive (SRA) with the SRA accession number for *C. medica* GFP agroinfiltrated explants: SRR17731820, SRR17731819, SRR17731818; *C. medica* wild-type: SRR17731817, SRR17731816, SRR17731815.

Results

Explants survival of different citrus genotypes in vermiculite

Agrobacterium rhizogenes integrates T-DNA from the Ri plasmid into the host plant genome when sensing signal substances, such as acetosyringone (AS), so as to induce formation of hairy roots and to synthesize substances needed for growth of the bacteria (Figure S1). To achieve genetic transformation bypassing tissue culture, the percentage explant survival of 22 citrus genotypes in vermiculite was first analyzed, ranging from 0% to 95% at 45 days post-incubation (Table S2). The four citrus genotypes with the highest percentage survival (>80%) were *Citrus medica*, *C. limon*, *C.grandis* ‘Shatianyou’, and *C. hystrix*. (Figure 1A). Most branches of these four genotypes eventually produced roots for more than 10 genotypes, the percentage survival was less than 40% within 45 days and most of the branches failed to produce roots (Figure 1B).

K599-mediated genetic transformation of citrus bypassing tissue culture

Based on the percentage survival, we selected *C. medica*, *C. limon*, and citrange ‘Carrizo’ for assessment of the efficiency of genetic transformation of citrus branches mediated by *A. rhizogenes* K599 harboring a binary plasmid (1380-Cas9-HA) overexpressing GFP (Figure S2; Table S3). Briefly, the genetic transformation protocol comprised three steps: K599 and explant preparation, vacuum infiltration, and explant incubation in vermiculite (Figure 2A; Table S4). The fluorescent transgenic hairy roots began to develop 2 weeks (*C. medica*) or 4 weeks (*C. limon* and citrange ‘Carrizo’) post-incubation in vermiculite (Figure S3). The length and number of fluorescent hairy roots increased significantly after 4 months (Figure 2B). Non-transgenic hairy roots lacking GFP signal also emerged, but these roots had no impact on subsequent research as they were easily distinguishable based on GFP fluorescence and were readily removed. Confocal microscopic examination confirmed that GFP fluorescence was universally distributed in transgenic hairy roots but was not observed in non-transgenic
hairy roots (Figure 2C). Subsequently, genetic transformation in
Citrange ‘Carrizo’ was performed using a different binary
plasmid carrying a gene encoding protein β-glucuronidase
(GUS) (Table S3). Staining of GUS revealed that dark blue-
stained transgenic hairy roots were induced by K599 harboring
the corresponding plasmid, whereas no GUS staining was
detected in the control (Figure 2D). The transformation rate of
corresponding plasmids or citrus species was listed in Table S5.

Compared with A. tumefaciens-mediated citrus genetic
transformation, which usually takes 3–6 months with a low
success rate, the K599-mediated genetic transformation method
was time-saving and cost-effective.

K599-mediated genetic transformation
and genome editing is highly efficient

To verify the efficiency of K599-mediated genetic
transformation and genome editing, transformation was
performed using 18 transformed K599 strains, each containing
a different plasmid. All 18 plasmids carried the GFP and Neo
encoding genes, and 11 contained genome-editing elements
targeting different loci in the citrus genome (Figure 3A; Figure
S4; Tables S3 and S6). Branches of C. medica were vacuum
infiltrated using these transformed K599 strains. After one
month, transgenic hairy roots corresponding to these 18
plasmids were obtained. Owing to the presence of the GFP
selection marker, non-transgenic hairy roots were easily detected
and removed, and thus C. medica with only transgenic hairy
roots was obtained (Figure 3B). The GFP and Neo genes were
both amplified from genomic DNA isolated from the transgenic
hairy roots (Figure S5). Sequencing revealed that the gRNA
target in the corresponding transgenic hairy roots had been
successfully edited (Figure 3C). The missing nucleotides in
edited transformants were mainly located at the 5’ end of the
PAM site, which is consistent with the properties of Cas9-
mediated DNA cleavage. To detect possible chimeras in the
transgenic hairy root tissue, primers (Table S1) were designed to
amplify the edited loci based on the sequencing results. No
fragments were amplified by PCR from the edited hairy roots,
and specific fragments of the expected length were amplified
from wild-type explants (Figure 3D), confirming the absence of
chimeras in the edited hairy roots. Furthermore, PCR
amplification and sequencing were performed on one
randomly selected edited hairy root (gRNA10) using primers
that flanked the gRNA-targeted locus (Table S1). A total of 20
random colonies were sequenced, which all contained changed
sequences at the gRNA targeted locus, further confirming that
the tested transformant was not a chimera (Figure S6).

Agrobacterium rhizogenes significantly
affects expression of genes involved in
hormone signal transduction

Compared with the wild-type explant lacking fluorescence,
several GFP fluorescence spots were observed in callus formed at
the wound surface of C. medica explants at 10 days post-
infiltration (Figure 4A), indicating that K599 successfully
transferred the binary plasmid into numerous cells.
Transcriptome sequencing (PRJNA800116) of callus from wild-type and agroinfiltrated explants was conducted. A total of 4,233 differentially expressed genes (DEGs), comprising 2,744 upregulated and 1,489 downregulated genes, were identified in agroinfiltrated tissues compared with the non-treated control (Figure 4B; Table S7). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that many DEGs in agroinfiltrated tissue were enriched in the “transcription factors” (87), “plant–pathogen interaction” (55), “amino sugar and nucleotide sugar metabolism” (41), “plant hormone signal transduction” (56), “transporters” (136), “starch and sucrose metabolism” (37), “glycosyltransferases” (50), “cytochrome P450” (32), and “enzymes with EC numbers” (66) (Figure 4C; Table S8). Gene ontology (GO) enrichment analysis revealed that many DEGs in agroinfiltrated tissue were enriched in “DNA-binding transcription factor activity” (274), “transcription regulator activity” (290), “response to external stimulus” (326), “response to oxygen-containing compound” (347), “response to other organism” (243), “response to external biotic stimulus” (243), “response to biotic stimulus” (243), and “defense response” (212) (Figure 4D; Table S9). Further analysis revealed that many DEGs enriched in the pathways “Plant hormone signal transduction” (Figure S7), “Phenylalanine, tyrosine and tryptophan biosynthesis” (Figure S8), “Plant–pathogen interaction” (Figure S9), and “MAPK signaling pathway” (Figure S10) were upregulated.

Agrobacterium rhizogenes-mediated genetic transformation complements “hard-to-get” transgenic materials and facilitates gene function analysis

Huanglongbing is among the most destructive citrus diseases worldwide and is caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas). Citrus
roots harbor the pathogens during CaLCaS infection and are difficult to treat with bactericides. Our previous studies revealed that overexpression of ACDD2 in citrus promotes CaLCaS multiplication (Pang et al., 2020). However, ACDD2-edited or ACDD2-silenced citrus roots have never been obtained using A. tumefaciens-mediated genetic transformation because ACDD2 family genes are involved in the regulation of cell death and all corresponding transgenic shoots ultimately die. In the present study, we successfully obtained ACDD2-edited citrus roots using K599-mediated genetic transformation (Figures 5A–C), indicating that this technology is advantageous for investigation of specific genes to obtain “hard-to-get” transgenic root tissue. In addition, A. rhizogenes-mediated citrus genetic transformation facilitates evaluation of tissue-specific promoters. When identifying exogenous genes that enhance resistance against a phloem-limited pathogen, a phloem-specific promoter is critical to reduce the impact of these genes on citrus biological traits (Dai et al., 2004; Tzean et al., 2020). In Arabidopsis, the companion cell-specific AtSUC2 promoter has been widely used in gene function analysis of phloem-related genes (Paultre et al., 2016). In the present study, the homologous sequence of the AtSUC2 promoter was identified in citrus and designated CsSUC2pro. Subsequently, we constructed three binary plasmids containing the GFP and GUS genes, of which CsSUC2pro, 35S, or no promoter was inserted at the 5′ end of GUS (Figure 5D). Using K599-mediated genetic transformation, we obtained transgenic citrus hairy roots harboring these three plasmids (Figure 5E). The results of GUS staining showed that all cells of 35S-GUS transgenic roots were stained blue, whereas only cells located in the phloem of CsSUC2-GUS transgenic roots were stained blue, and no cells of GUS (no promoter) transgenic roots were stained (Figure 5F).

Agrobacterium rhizogenes-mediated virus inoculation and its applications

Virus-induced gene silencing (VIGS), virus-mediated genome editing, or foreign gene overexpression technology have been widely used for gene function analysis in plants in recent years (Velázquez et al., 2016; Ellison et al., 2020). However, a viral vector cannot be transiently expressed in citrus leaves via Agrobacterium infiltration. Application of this technology to citrus is usually reliant on the use of tobacco (Nicotiana spp.) for virion enrichment. Given that K599-mediated genetic transformation of citrus is highly efficient, the feasibility of K599-mediated viral inoculation in citrus was examined. First, the Citrus leaf blotch virus (CLBV)-ChlI vector containing a partial sequence of ChlI (Magnesium chelatase subunit I) was constructed for ChlI silencing in citrus (Figure 6A). Citrus medica explants were infiltrated with K599 harboring the CLBV-ChlI viral vector. Agroinfiltrated explants displayed photobleaching phenotypes in new leaves after 3 months (Figure 6B). RT-qPCR results showed that the expression level of ChlI in CLBV-ChlI-transfected leaves was significantly downregulated, indicating that successful K599-mediated viral inoculation could be used for VIGS (Figure 6C). Subsequently, the CLBV-FT vector (Figure 6D)
containing the full-length sequence of the Arabidopsis thaliana FLOWERING LOCUS (FT) gene was constructed for FT overexpression in citrus based on a previously published method (Velázquez et al., 2016). The CLBV-FT vector was agroinfiltrated using 2-month-old C. medica seedlings, and the citrus infected with CLBV-FT flowered 9 months later (Figure 6E). The RT-qPCR results showed that the expression level of FT in CLBV-FT-transfected C. medica was significantly upregulated (Figure 6F).

Discussion

Currently, A. tumefaciens, electroporation, particle bombardment, and RNA interference are used for citrus genetic transformation, but these methods are laborious, expensive, time-consuming, and inefficient. The limitation of these methods is largely due to their reliance on tissue culture, which requires an aseptic environment. Using A. tumefaciens-mediated genetic transformation as an example, the acquisition of transgenic citrus requires 4- to 5-week-old seedlings germinated on Murashige and Skoog medium, co-incubation of explants with A. tumefaciens, and shoot regeneration, and each step involves tissue culture under aseptic conditions (Orbovic and Grosser, 2015). However, only few researchers have studied the genetic transformation of citrus bypassing tissue culture. With regard to A. tumefaciens, Chun-zhen Cheng developed an in planta genetic transformation approach for pomelo (Citrus maxima) and obtained transgenic plants using this method 3 months post-transformation (Zhang et al., 2017). On the other hand, virus-mediated genome editing in tobacco, Arabidopsis, and wheat has been reported (Ellison et al., 2020; Ghoshal et al., 2020; Ma et al., 2020; Luo et al., 2021). However, the aforementioned in planta genetic transformation
technology requires 3–5 months to obtain transformants. In addition, virus-mediated genome-editing technology for woody plants has not been reported to date.

In recent years, the technology for obtaining transgenic roots using \textit{A. rhizogenes} has been well developed in many herbaceous plants, such as soybean (Kereszt et al., 2007; Cao et al., 2009; Cheng et al., 2021), grain amaranth (Castellanos-Arévalo et al., 2020), rice (Raineri et al., 1990), and maize (Ishida et al., 2007). However, no report of \textit{A. rhizogenes}-mediated endogenous gene editing bypassing tissue culture in citrus is available. In the present study, the genetic transformation procedure for citrus using \textit{A. rhizogenes} bypassing tissue culture required only 2–4 weeks (\textit{C. medica}) or 1–2 months (\textit{C. limb}) and citrange ‘Carrizo’). The explants used in this study are branches, which are highly convenient to obtain. Subsequently, we established a highly efficient, convenient, and cost-effective genome-editing technology system in citrus using this technology. In addition, the procedure can be used for efficient inoculation with viral vectors. Furthermore, hairy roots induced by \textit{A. rhizogenes} often develop from single cells, which leads to a lower incidence of chimerism in transgenic roots (Roychowdhury et al., 2017). This phenomenon was confirmed using the technology in the present study. In our study, the transcriptome analysis of citrus callus induced by \textit{A. rhizogenes} revealed that hormone (IAA) pathway was significantly triggered, which provide evidence to explain the highly efficient transformation rate in citrus. To improve the efficiency of verification of transgenic hairy roots, the binary vector (1380-Cas9-HA) used contains the GFP reporter gene. Thus, the hairy roots can be identified by hand-held excitation light detection of GFP, which is time- and labor-saving. The establishment of a highly efficient genetic transformation technology mediated by \textit{A. rhizogenes} for multiple citrus species is of great importance for gene functional analysis in citrus.

In summary, we established a highly efficient genetic transformation technology bypassing tissue culture for citrus, which can be used for genome editing, gene overexpression, and virus-mediated gene function analysis. The advantages of this
technology are as follows: (1) the explant used for transformation are citrus branches, which is convenient to obtain; (2) the transformation process does not involve tissue culture and thus is convenient to implement; (3) the process is time-saving (2–8 weeks); (4) the procedure is less labor demanding (as few branches are required); (5) a high frequency of positive transformants is obtained (~57%, *C. medica*); (6) gene transformation or genome editing are achieved with high efficiency (Table S10). The problems that may be encountered during the experiment and the corresponding solutions were listed in Table S11. We anticipate that by removing the high cost, heavy workload, long experimental period, and other technical obstacles, this genetic transformation technology will be a valuable tool for routine investigation of endogenous and exogenous genes in citrus.

Data availability statement

The transcriptome data presented in the study are deposited in the NCBI repository, accession number PRJNA800116.

Author contributions

Conceptualization, HM, SD, XS; writing—original draft preparation, HM; writing—review and editing, SD, XS, FG, NW; supervision, HM, SD, XS, JL; project administration, HM, XM; transcriptome analysis, YG; experiment, XM, MW, NL, SH, ML; plants maintenance, XM, HX, KX, MW; funding acquisition, JL, ML. All authors contributed to the article and approved the submitted version.
Funding

This work was supported by the National Natural Science Foundation of China (32202427 and 32002021); the Key Project for New Agricultural Cultivar Breeding in Zhejiang Province, China (2021C02066-1); The Major Science and Technology R&D Program of Jiangxi Province (2019ABC28007).

Acknowledgments

We thank Honghong Deng, Fabieli Irizarry, Ming Huang, Chen Ling, Jiaying Fang, Hujing Wang, and Qibin Yu for assistance with plant materials and laboratory activities.

Conflict of interest

JL was employed by Natural Medicine Institute of Zhejiang YangShengTang Co., LTD.

References

Beigmohamadi, M., Sharaﬁ, A., and Jafari, S. (2019). An optimized protocol for Agrobacterium rhizogenes-mediated genetic transformation of Citrullus colocynthis. J. Appl. Biotechnol. Rep. 6, 113–117. doi: 10.29252/JABR.06.03.06

Bolger, A. M., Marc, L., and Bjorn, U. (2014). Trimmomatic: a flexible trimming for illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170

Boscarin, R. I., Monteiro, M., Takahashi, E. K., Chabregas, S. M., and Mendes, B. M. J. (2006). Attacin a gene from Trichoplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis ‘Hamlin’. J. Am. Soc. Hortic. Sci. 131, 530–536. doi: 10.21273/JASHIS.131.4.530

Cao, D., Hou, W., Song, S., Sun, H., Wu, C., Gao, Y., et al. (2009). Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell Tissue Organ Cult. 96, 45–52. doi: 10.1111/j.1745-4557.2008.00153.x

Castellanos-Arvelo, A. P., Estrada-Luna, A. A., Cabrera-Ponce, J. L., Valencia-Lozano, E., Herrera-Ubaldo, H., de Folter, S., et al. (2020). Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Rep. 39, 1143–1160. doi: 10.1007/s00299-020-02553-9

Cheng, Y., Wang, X., Cao, L., Ji, J., Liu, T., and Duan, K. (2021). Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Cell Physiol. 17, 1–12. doi: 10.1105/tpyl.107.00778-7

Chetty, V. J., Ceballos, N., Garcia, D., Narvaez-Vásquez, J., Lopez, W., and Orozco-Cárdenas, M. L. (2013). Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar micro-tom. Plant Cell Rep. 32, 239–247. doi: 10.1007/s00299-012-1358-1

Dai, S., Zhang, Z., and Chen, S. (2004). RF2h, a rice bZIP transcription activator, interacts with RF2a and is involved in symptom development of rice tungro disease [J]. Proceedings of the National Academy of Sciences 101 (2), 887–692.

Domínguez, A., Mendoza, A. H. D., Guerri, J., Cambra, M., Navarro, L., Moreno, P., et al. (2002). Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic mexican lime (Citrus aurantifolia (Christ.) swing.) plants expressing the coat protein gene. Mol. Breeding 10, 1–10. doi: 10.1023/A:1020347414533

Elisson, E. E., Nagalakshmi, U., Gamo, M. E., Huang, P. J., and Voytas, D. F. (2020). Multiplexed heritable gene editing using RNA viruses and mobile single-guide RNAs. Nat. Plants 6, 1–5. doi: 10.1038/s41477-020-0670-y

Estrada-Navarrete, G., Alvarado-Affantranger, X., Olivesa, J. E., Guillen, G., Diaz-Camino, C., Campos, F., et al. (2007). Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat. Protoc. 2, 1819–1824. doi: 10.1038/nprot.2007.259

Fagoaga, C., López, C., Mendoza, A., Moreno, P., Navarro, L., Flores, R., et al. (2006). Post-transcriptional gene silencing of the p32 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol. Biol. 60, 153–165. doi: 10.1007/s11103-005-3129-7

Febres, V. J., Lee, R. F., and Moore, G. A. (2008). Transgenic resistance to Citrus tristeza virus in grapefruit. Plant Cell Rep. 27, 93–104. doi: 10.1007/s00299-007-0319-7

Fu, X. Z., Chen, C. W., Yin, W., Liu, J. H., and Moriguchi, T. (2011). Ectopic expression of MsSPDS1 in sweet orange (Citrus sinensis osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Biol. 11, 1–15. doi: 10.1186/1471-2229-11-5

Gambino, G., and Gríbaudo, I. (2012). Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res. 21, 1163–1181. doi: 10.1007/s11248-012-9602-6

Ghonbali, B., Yong, B., Picard, C. L., Feng, S., Tam, J. M., and Jacobsen, S. E. (2020). A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana. Plant Genet. 16, e100983. doi: 10.1371/journal.pgen.100983

Gutierrez, E. M., Luth, D., and Moore, G. A. (1997). Factors affecting Agrobacterium-mediated hairy root transformation in citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep. 16, 745–753. doi: 10.1007/s002990050313

Habbib, P., Sa, M., Silva, A., Malkhousm, A., Costa, J., Boghetti, J. A., et al. (2016). Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiological & Molecular Biology Plants 22, 271–277. doi: 10.1007/s12298-016-0354-2

Hongge, J., Xuaping, Z., Vladimir, O., and Nian, W. (2019). Genome editing in citrus tree with CRISPR/Cas9 Methods Mol. Biol. 1917, 235–241. doi: 10.1007/978-1-4939-8991-1_17

Irigoien, S., Ramassamy, M., Pant, S., Nirzala, P., Bedre, R., Gurung, M., et al. (2020). Plant hairy roots enable high throughput identification of antimicrobials against candidatus liberibacter spp. Nat. Commun. 11 (1), 1–14. doi: 10.1038/s41467-020-19631-x

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.1039094/full#supplementary-material
Ishida, Y., Hiei, Y., and Komari, T. (2007). Agrobacterium-mediated transformation of maize. Nat. Protoc. 2, 1614–1621. doi:10.1038/nprot.2007.324

Jia, H., Zhang, Y., Orbović, V., Xu, J., White, F. F., Jones, J. B., et al. (2017). Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Wiley-Blackwell Online Open 15, 817–823. doi:10.1111/pbo.12677

Kaur, A., and Sah, S. K. (2014). Genetic transformation of rice: problems, progress and prospects. Rice Res. Open Access 3. doi:10.1111/rice.12375

Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. doi:10.1038/nmeth.3317

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21. doi:10.1186/s13059-014-0550-8

Luo, J., Li, S., Xu, J., Yan, L., Ma, Y., and Xia, L. (2021). Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiple gene editing. Mol. Plant 14, 847–850. doi:10.1016/j.molp.2021.03.024

Majumdar, S., Garai, S., and Jha, S. (2011). Genetic transformation of rice by wild type strains of Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat. Protoc. 2, 948–952. doi:10.1038/nprot.2007.141

Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. doi:10.1038/nmeth.3317

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21. doi:10.1186/s13059-014-0550-8

Luo, J., Li, S., Xu, J., Yan, L., Ma, Y., and Xia, L. (2021). Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiple gene editing. Mol. Plant 14, 847–850. doi:10.1016/j.molp.2021.03.024

Majumdar, S., Garai, S., and Jha, S. (2011). Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep. 30, 941–954. doi:10.1007/s00299-010-0840-8

Ma, X., Zhang, X., Liu, H., and Li, Z. (2020). Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nat. Plants 6, 773–779. doi:10.1038/s41477-020-0704-5

Orbović, V., and Grosser, J. W. (2015). “Citrus transformation using juvenile tissue explants,” in Agrobacterium protocols (New York, NY: Springer). 245–257. doi:10.1007/978-1-4939-1568-0_20

Pauld, D. S. G., Gustin, M. P., Molnar, A., and Oparka, K. J. (2016). Lost in transit: long-distance trafficking and phloem unloading of protein signals in Arabidopsis homografts. The Plant Cell 28 (9), 2016–2025.

Peta, L. (2000). Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J. Hortic. Sci. Biotechnol. 75, 26–30. doi:10.1080/14620316.2000.11511995

Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., et al. (2017). Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15, 1509–1519. doi:10.1111/pbi.12733

Poles, L., Liciardiello, C., Distefano, G., Nicolosi, E., and Malla, S. L. (2020). Recent advances of in vitro cloning for the application of new breeding techniques in citrus. Plants 9, 938. doi:10.3390/plants9080938

Raineri, D., Bottino, P., Gordon, M., and Nester, E. (1990). Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/technology 8, 33–38. doi:10.1016/0887-6045(90)90130-3

Richards, E., Reichardt, M., and Rogers, S. (1994). Preparation of genomic DNA from plant tissue. Curr. Protoc. Mol. Biol. 27, 2–3. doi:10.1002/0471142727.mb0203s27

Roychowdhury, D., Halder, M., and Jha, S. (2017). Mediated Transformation in Medicinal Plants: Genetic Stability in Long-Term Culture[]. Transgenesis Secondary Metab. 323–345. doi:10.1007/978-3-319-28669-3_8

Stover, E., Stange, R. R., Micollum, T. G., Jaynes, J., and Markov, E. (2013). Screening antimicrobial peptides in vitro for use in developing transgenic citrus resistant to huanglongbing and citrus canker. J. Am. Soc. Horticulturalence 138, 142–148. doi:10.21273/JASHS.138.2.142

Talon, M., and Gmitter, G. (2008). Citrus genomics. Int. J. Plant Genomics. 2008. doi:10.1155/2008/528361

Tsuro, M., Kubo, T., Shinakawa, Y., Takekoto, T., and Inaba, K. (2005). Agrobacterium rhizogenes is a useful transporter for introducing T-DNA of the binary plasmid into the chrysanthemum, Dendranthema grandiflorum kitamura, genome. Plant Cell Tissue Organ Culture 81, 175–181. doi:10.1007/s11240-004-4783-1

Tzean, Y., Chang, HII, Tu, TC, et al. (2020). Engineering plant resistance to tomato yellow leaf curl Thailand virus using a phloem-specific promoter expressing hairpin RNA[]. Molecular Plant-Microbe Interactions 33 (1), 87–97

Vélaquez, K., Agüero, J., Vives, M. C., Alera, P., Pina, J., Moreno, P., et al. (2016). Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnol. J. 14 (10), 1976–1985. doi:10.1111/pbi.12555

White, F. F., Taylor, B. H., Huffman, G. A., Gordon, M. P., and Nester, E. W. (1985). Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 164, 33–44. doi:10.1128/jb.164.1.33-44.1985

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2, 100141. doi:10.3390/innovation2040001

Zhang, Y. Y., Zhang, D. M., Zhong, Y., Chang, X. J., Hu, M. L., and Cheng, C. Z. (2017). A simple and efficient in plants transformation method for pommelo (Citrus maxima) using Agrobacterium tumefaciens. Scientia Hortic. 214, 174–179. doi:10.1016/j.scienta.2016.11.033

Frontiers in Plant Science 12