Effect of Factory Process and Location on Residential Area Noise Level

A. P. Azodo 1*, C. Onwubalili 2, T. C. Mezue 3, C. N. Nwaokocha 4, U. V. Akpan 5 and S. O. Giwa 6

1. Department of Mechanical Engineering, Federal University of Agriculture, Abeokuta
2. Department of Electrical and Electronic Engineering, Federal Polytechnic Oko
3. Department of Mechanical Engineering, University of Agriculture, Makurdi, Nigeria
4. Department of Mechanical Engineering, Olabisi Olabanjo University, Agoye-Iwoye

Corresponding Author; azodopat@gmail.com

Abstract-
Tranquility is one of the healthy environment factors on the residential areas which elevate the standard of living of the people and their psychological well-being. On the contrary, when there is a high level of noise intrusion at home, it might deprive one of these benefits. This study measured the industrial noise intrusion level in the residential area with respect to distance. A total of 40 residences, with 8 each around 5 food and drug processing factory sites in three local government areas (Idemili North, Onitsha North, and South) of Anambra state, Nigeria were selected as study site locations. Benetech Model GM 1352 digital sound level meter was used for the measurement of environmental outdoor noise levels at a height of 1.5 m and 3 m from any reflecting surfaces. The distance between the factory sites and the residences assessed was calculated using the coordinates of the study site points obtained with A Garmin GPS 72H on the CDXzipdistance2WP function on Microsoft Office Excel. All measurements were carried out during the daytime between 6:00 am – 10:00 pm. Three categories of environmental outdoor samples of noise levels were obtained; off work-hour, and work hour which comprises of generator usage and the national grid connection hours. The computed L_{Aeq} noise intensity level obtained at the residences assessed showed that 12(30.0) and 28(70.0) of the residences assessed were quiet and moderately loud during national grid connection hours which was; quiet 32(80) and moderately loud 8(20) during off work-hours. It, however, translated to moderately loud 24(60.0) and very loud 16(40.0) during the engagement of the services of electricity generator. The Pearson correlation analysis showed that there was a strong negative correlation between the distances of the residences assessed from the factory sites and the noise level which were significant at $p < 0.01$ for values of $r = -0.976$ during generator use and 0.981 when compared with the national grid. This implies that the closer factory sites are on the residential area the higher the noise intrusion level which is not healthy.

Key words: Noise, factory sites, residences, distance, L_{Aeq}

1. Introduction

The primary sources of data for the development planning of any city cover areas such as land use, housing, transportation, conservation and safety [1]. This is presumably skewed towards land use development planning to avoid issues of clustered and intermix development of the residential area and actual, or potential, sources of unpleasant sound such as airports and
factories in the same area [2]. Land irrespective of means of ownership or acquisition is necessarily subject to the local jurisdiction for any kind of development for a conducive environment that will accommodate and control different activities of man as well as towards effective urban growth and settlement pattern. The distinct feature which the urban development plan safety scheme addresses are issues on the public health and safety protection from natural or artificial hazards like noise, flood, fire, etc. [1].

Most urban areas of underdeveloped or developing countries of the world are besotted with enormous amounts of noise pollution from electricity generating plants, industrial equipment/tools, and on-road vehicles [3]. With advances in technology innovations, industrial growth and urban development, more and more acoustic problem evidence is being recorded [3 – 5]. Unpleasant or unwanted outdoor noise in the environment disrupts human life activity [6]. The range of outdoor noise levels is extremely large, ranging from the tranquil quiet of the wilderness to the noisy urban environment [7]. Mohd [5] put forward that most people are affected by noise exposure more than any other environmental stimulus. Noise from the electricity generating plant according studies is a significant contributor to the environmental noise pollution wherever they are used [8, 9]. Aaberg [10] noted that unaddressed noise levels from electricity generator set can approach 100 dBA or more. Current estimates on the electricity generating plants population made by Ibidapo-Obe and Ajibola [11] showed that more than ninety percent and thirty percent of businesses and homes have diesel-powered generators. This witnessed generator population in the nation is as a result of Nigeria’s persistent electricity crisis and the growing gap between power production and consumption. Evidently diesel-powered generators function as a supplement, emergency backup, or as the only means of electricity supply in many areas and locations where the electricity supply from the national grid is either the unreliable or non-existent. These include hospitals, banking sectors, learning institution and telecommunication networks [12, 13]. However, this is not only in Nigeria but around the globe and this has grossly undermined the industrialization process which culminate into production hitches, high cost of operation, and significantly compromising the efforts of government towards achieving sustainable economic growth and development thus, compelling the consumers to look for standby energy sources [13 – 15].

Generators being among the available options are predominantly relied on as a source for the power generation [13, 16 – 17]. Homeowners, businesspersons, and industrialists utilize generators as an off-grid source of the power generator. Industrial plant managers often engage the service of generators for almost all time electric power availability and operation efficiency of electric power dependent utility system for profit maximization, retention in business, target actualization and favorable competitiveness. Evidence in medical researches has shown that direct implication of ambient sound levels above 60 – 70 dB is significant health problems among many are depression, loss of hearing and hypertension [18 – 19]. Oyedepo [20] citing the World Health Organization stated that 60 dBA sounds for a period of 16 hours per day can affect hearing temporarily and when the sound level gets to 100 dBA it can cause permanent impairment. Mbamali et al. [21] found that noise levels beyond the World Health Organization’s (WHO) limit of 70 to 75 dB were associated with high blood pressure, abnormal fetal development, extreme emotions, and behavior. Considering that tranquility is a healthy environment factor on the residential area which elevates the standard of living of the people and their psychological well-being. High noise level intrusion might deprive one of these
benefits. Hence, this study measures the industrial noise intrusion level in the residential area with respect to distance.

2. Methodology
The study site locations in this study were residential areas around food and drug processing factory sites in three different local government areas (Idemili North, Onitsha North, and South) of Anambra state, Nigeria. A total of 40 residences were assessed 8 each in the vicinity of 5 factory sites. The characteristics of the study site locations within the Anambra state and the map are presented in the table 1 and figure 1 respectively. The geographical coordinates of Anambra state is 6° 16’ 33’’ North, 7° 0’ 25’’ East.

Table 1. Characteristics of the study site locations

Study area characteristics	Anambra state	Idemili North	Onitsha North	Onitsha South
Area	4,844 km²	115 km²	42.0 km²	10.0 km²
Population	4,177,828	431,005	125,918	137,191
Population density	1,141/km²	4,959/km²	3,967/km²	18,150/km²
Growth rate	+2.84 % per year			

Source: [22]

Figure 1. Map of Anambra state showing the study site locations
The environmental outdoor noise levels in the residences selected for this study were measured using a Benetech Model GM 1352 digital sound level meter calibrated by Benetech with slow response mode and A-weighting (dBA) setting (Shenzhen Jumaoyuan Science And Technology Co., Ltd., China), (Figure 3). Measurements were obtained at the outdoor of the residences at a height of 1.5 m and 3 m from any reflecting surfaces using 5 m tape rule (Figure 4). Three categories of samplings were adopted for the environmental outdoor noise levels; off work-hour, and work hour which comprises of generator and national grid power supply hours. All measurements were carried out during the day from 6:00 am – 10:00 pm. The official work hour of the factories were 8:00 am – 5 pm with break periods between 1:00 - 1:30 pm Mondays – Fridays but on Saturdays, the work hour is 8:00 am – 2:00 pm. The noise level measurements were obtained following the operation of the factories, Noise levels during the work hours were measured from 8:30 am – 1:00 pm and 1:30 – 5:00 pm while that of off work-hour measurements were obtained 7:00 – 8:00 and 1:00 – 1:30 pm. Interference of noise generated by the residences which were assessed such as the use of personal generating plants, sound system, human speeches, and animal cries was avoided. Distances between the factory sites and the residences were determined by first obtaining the coordinates of the measurement sites and the factory locations using a Garmin GPS 72H high-sensitivity handheld floatable global positioning system (Garmin Ltd. Kansas, United States) (Figure 2) then, followed by the distance was calculated using the CDXzipdistance2WP function on Microsoft Office Excel.

\[L_{Aeq} = 10 \log_{10} \left[\frac{1}{N} \sum_{i=1}^{N} \left(\text{anti} \log \frac{L_{Ai}}{10} \right) \right] \]

(1)

Where

- \(L_{Aeq} \) = A-weighted equivalent sound pressure level
- \(L_{Ai} \) = A-weighted sound pressure level in dB
- \(i = 1, 2, 3 \ldots N \)
N = total number of measurements

The A-weighted equivalent sound pressure level (L_{Aeq}) computed at each of the residences assessed were analyzed on the typical noise level scale for the noise intrusion intensity from factory sites. The categories of L_{Aeq} used for the noise intensity interpretation is presented in table 2

L_{Aeq} range	The noise intensity interpretation
L_{Aeq} < 30 dBA	Very quiet
30 < L_{Aeq} ≤ 50 dBA	Quiet
50 < L_{Aeq} ≤ 75 dBA	Moderately loud
75 < L_{Aeq} ≤ 100 dBA	Very loud
L_{Aeq} > 100 dBA	Uncomfortably loud

Source [10], [24].

Statistical Package for the Social Sciences (SPSS) version 16.0 and the Microsoft Office Excel version 2007 was used to analyze the data collected. A statistical measure of the strength of the relationship and the relative movements between the distances of the residences assessed from the factory sites and the noise level was determined using Pearson Product-Moment Correlation computed at the confidence level of 0.01 for significance. The interpretation of the linear relationship of the distance of the residences assessed from the factory sites and the noise level, Pearson’s Correlation Coefficient strength is constrained within the bounds of -1 < r < 1 which is further clarified in the table 3 below

Table 3. Interpretation of Pearson’s Correlation Coefficient

Pearson’s Correlation Coefficient (r)	Interpretation		
0 <	r	< 0.3	Weak correlation
0.3 <	r	< 0.7	Moderate correlation
	r	> 0.7	Strong correlation

Source: [25]

The interpretation of the linear relationship of the distance of the residences assessed from the factory sites and the noise level Pearson’s Correlation Coefficient strength is constrained within the bounds of -1 < r < 1 with three “extreme” correlation values of -1, 0 and 1 which is further clarified in the table 4 below. The closer the value is to 1 or −1, the stronger the linear correlation.

Table 4. Reliability of the Product Moment Correlation coefficients and Interpretation

Sign for Pearson’s Correlation Coefficient (r)	Interpretation
Positive (+)	Positive linear correlation
Zero (0)	No linear correlation
Negative (-)	Negative linear correlation

Source: [26]

3. **Result and discussions**
A summary of the descriptive statistics of obtained data in the survey is presented in table 5. This includes the minimum, maximum, mean and std. deviation of the calculated distances, the computed L_{Aeq} at the off work-hour and the work hour (noise during generating plant use and national grid connection). The highest average L_{Aeq} was obtained in residence around factory site 5 with a value of 73.49 dBA. During the national grid connection and usage by the factories’ residence around factory site 2 recorded the highest average L_{Aeq} of 62.9 dBA. The highest L_{Aeq} recorded during the off work-hour is 59.7 dBA in residence around factory site 5.

Table 5. Descriptive statistics of the calculated distances and the computed L_{Aeq} of the study site location

Characteristics	Variables	Factory 1	Factory 2	Factory 3	Factory 4	Factory 5
Distance	Minimum	17.37	18.83	10.81	12.46	10.81
	Maximum	73.02	75.03	64.58	64.72	56.29
	Mean	39.08	41.4	37.52	37.22	36.39
	Std. Deviation	19.22	18.66	18.91	18.31	16.26
Noise level from generator	Minimum	63.8	65.6	63.2	63.4	65
	Maximum	72.5	77.4	77.8	78.7	78.3
	Mean	68.18	73.08	70.45	73.49	73.03
	Std. Deviation	3.15	4.04	6.54	5.61	5.06
Noise level from Grid	Minimum	46.3	46.3	44.5	46.7	53.9
	Maximum	55.7	62.9	55.6	56.6	59.1
	Mean	55.7	62.9	55.6	56.6	59.1
	Std. Deviation	55.7	62.9	55.6	56.6	59.1
Off work noise level	Minimum	45.6	42.5	41.1	42.1	41.9
	Maximum	59.4	57.4	59.7	58.5	55.5
	Mean	59.4	57.4	59.7	58.5	55.5
	Std. Deviation	59.4	57.4	59.7	58.5	55.5

Interpretation of the L_{Aeq} computed at each of the residences on the typical noise level scale for the noise intrusion intensity from the factory sites showed that during the off work-hours the environmental outdoor noise level of the assessed residence were quiet 32(80) and moderately loud 8(20). The L_{Aeq} environmental outdoor noise level the assessed residence the shifted to 12(30.0) quiet and 28(70.0) moderately loud. The noise intensity level increase as the factory sites engaged the services of a generator for power supply to moderately loud 24(60.0) and very loud 16(40.0) (Table 6).

Table 6 Analysis of the residential environment outdoor L_{Aeq} on the typical noise level scale (See Table 2)

Noise intensity interpretation	Off work-hour	Work hour	
Very quiet	0(0.0)	0(0.0)	0(0.0)
Pearson correlation coefficient between the distances of the residences assessed from the factory sites and the noise level caused by generator use gave “r” value of -0.976 at the confidence level of 0.000 which is less than 0.01 (Table 7). This shows a strong negative linear correlation between the distances of the residences assessed from the factory sites and noise level emanating from the generator. It means that as the distance increases the noise level decreases. With the Pearson correlation coefficient value of -0.981 obtained between the distances of the residences assessed from the factory sites and noise level during national grid connection at \(p = 0.000 \) (Table 8), there is strong negative correlation between the distances and the noise level. This implies that the closer the factory sites are on the residential areas the high the noise intrusion level. The outcome obtained in this study similar to the findings in Larkin et al. [27] and Koper et al. [28]. The distance of the residences assessed from the factory sites and the noise level during the off work-hours of the factories’ correlation analysis for strength of linear relationship using Pearson correlation coefficient, \(r = 0.055 \) and \(p = 0.735 \) hence a weak positive correlation which is not significant since \(p > 0.01 \) (Table 9). This means that during the off work-hours there was no noise interference at the residence.

Table 7. The correlation between the distances of the residences assessed from the factory sites and the generator noise

Distance	Pearson Correlation	Sig. (2-tailed)	N	Effect of the generator noise
Quiet	32(80)	12(30.0)	0(0.0)	
Moderately loud	8(20)	28(70.0)	24(60.0)	
Very loud	0(0.0)	0(0.0)	16(40.0)	
Uncomfortably loud	0(0.0)	0(0.0)	0(0.0)	

**. Correlation is significant at the 0.01 level (2-tailed).

Table 8. The correlation between the distances of the residences assessed from the factory sites and factory noise during the national grid connection

Distance	Pearson Correlation	Sig. (2-tailed)	N	Effect of the generator noise
Distance				
Sig. (2-tailed)				
N				
Effect of the generator noise	Pearson Correlation	-0.976**	1	
Sig. (2-tailed)		0.000		
N		40	40	
Distance

Effect of the national grid noise	Distance	Pearson Correlation	Sig. (2-tailed)	N
		-0.981**	.000	40

**. Correlation is significant at the 0.01 level (2-tailed).

Table 9. Correlation between residences distances from the factory sites and noise at off work-hour.

Effect of the off work-hour noise	Distance	Pearson Correlation	Sig. (2-tailed)	N
		0.055	0.735	40

4. Conclusion

This study which measured the industrial noise intrusion level in the residential area with respect to distance under categories of samples; off work-hour, and work hour which comprises of the generator and the national grid power supply hours observed that the intensity of the noise intrusion level in the environmental outdoor of the residential areas has a strong negative correlation with the distance which implies that the closer the factory sites are on the residential areas the higher the intrusion noise levels from the factories. This deprives the residents’ tranquility which is a healthy environment factor on the residential area.

Reference

[1] Izueke E. M. C. & Eme O. I. (2013). Urban planning problems in Nigeria: A case of Onitsha metropolis of Anambra state. *Singaporean Journal of Business, Economics and Management Studies*, 1(12). 41-59.

[2] Chanaud, R. C. (2014). Noise ordinances tools for enactment, modification and enforcement of a community noise ordinance. Available at https://noisefree.org/wp-content/uploads/2017/12/Noise-Ordinance-Manual.pdf

[3] Azodo A. P. & Adejuyigbe S. B. (2013). Examination of noise pollution from generators on the residents of Obantoko, Ogun state, Nigeria. *Asian Journal of Engineering, Sciences*
& Technology, 3(1), 31-41. Available at http://www.ajest.iqra.edu.pk/pdf/download.php?Volume=PFljhye%3D&id=6

[4] Kuo, S. M., & Morgan, D. R. (1999). Active noise control: a tutorial review. Proceedings of the IEEE, 87(6), 943-973.

[5] Mohd, F. B. M. (2011). Design of a noise enclosure for portable generator. Bachelor of Mechanical Engineering (Structure & Materials). Universiti Teknikal Malaysia Melaka

[6] Ohwovoriole, C. Henry, Walter, O. I & Okpara, H. M. (2016). Exhaust system performance optimization of the domestic electric generating plant. African Journal of Physics, 3(3), 049-058

[7] Goodfriend, L. S. (1977). Range of sound levels in the outdoor environment. In: Heisler, Gordon M.; Herrington, Lee P., eds. Proceedings of the conference on metropolitan physical environment; Gen. Tech. Rep. NE-25. Upper Darby, PA: US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 172-182 (Vol. 25).

[8] Iqbal, Z & Lodhi, S. (2014). Noise pollution caused by electric generators and firing outside marriage halls in lahore: a sensitivity analysis using contingent valuation. International Journal of Research in Applied, Natural and Social Sciences, 2(11), 159-168.

[9] John, T. Z. & Dewan, G. A. (2015). Noise levels and noisiness of some power generators in federal college of education environs, Pankshin, Plateau State Nigeria. Journal of Environment and Earth Science, 5(12), 56 – 60.

[10] Aaberg, D. (2007). Generator set noise solutions: Controlling unwanted noise from on-site power systems. Cummins Power Generation Incorporated.

[11] Ibidapo-Obe, O. & Ajibola, O. O. E. (2011). Towards a renewable energy development for rural power sufficiency. Proceedings of International Conference on Innovations in Engineering and Technology. 894 – 905

[12] Aderoju, O. M., Ibrahim, M., Onuoha, H. U., Adebawale, R. K., & Oke, A. B. (2013). Assessment of the level of noise from base transceivers’ station using geospatial techniques: In Abuja municipal area council. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSRJESTFT). 7(3), 30-39.

[13] Nwogu, C. N., Eze, C. C., Okonkwo, D. U. & Agu, J (2017). Development of software for scheduled maintenance of diesel generator sets. Umudike Journal of Engineering and Technology (UJET), 3(1), 200 – 207.

[14] Hammad, U., Aizaz, A., Khan, A. A., & Qurehi, T. (2013). Design and development of noise suppression System for domestic generators. European Scientific Journal, ESJ, 4(special). 526 – 533.

[15] Azodo, A. P. (2014). Electric power supply, main source and backing: A survey of residential utilization features. International Journal of Research Studies in Management, 3(2), 87-102. Available at http://www.consortiacademia.org/index.php/ijrsm/article/view/880/405

[16] Frank, B., & Russell, R. (1939). U.S. Patent No. 2,177,687. Washington, DC: U.S. Patent and Trademark Office.

[17] Tanaka, Y., Fujii, S., Nishida, T., & Fujita, Y. (1989). U.S. Patent No. 4,859,886. Washington, DC: U.S. Patent and Trademark Office.

[18] Mikolajczyk, H., & Cieslewicz, A. (1982). Auditory threshold and the degree of its temporary and permanent shifts in the textile industry workers. Medycyna pracy, 33(1-3), 57-64.
[19] Hong, O., 2005. Hearing loss among operating engineers in American construction industry. Int. Arch. Occup. Environ. Health, 78(7): 565-574.

[20] Oyedepo, S. O. (2013). Effective noise control measures and sustainable development in Nigeria. World Journal of Environmental Engineering, 1(1), 5-15.

[21] Mbamali, I., Stanley, A. M., Zubairu, I. K. (2012). Environmental hazards of fossil fuel generators for electricity supply to buildings in Nigeria. Canadian Journal on Electrical and Electronics Engineering, 3(10), 505 – 509.

[22] https://www.citypopulation.de

[23] Oyedepo, S. O., Adeyemi, G. A., Olawole, O. C., Ohijeagbon, O. I., Fagbemi, O. K., Solomon, R., Ongbali, S. O., Babalola, O. P., Dirisu, J. O., Efemwenkiekie, U. K. & Adekeye, T. (2019). A GIS–based method for assessment and mapping of noise pollution in Ota metropolis, Nigeria. MethodsX, 6, 447-457.

[24] Azodo A. P., Idama O., Mezue, T. C. & Owoeye, F. T. (2018). Evaluation and analysis of environmental noise from petrol fueled portable power generators used in commercial areas. Journal of Experimental Research 6(2) 8 – 13.

[25] Gerstman, B.B., (2006). Correlation. San Jose State University. StatPrimer (Version 6.4), from http://www.sjsu.edu/.

[26] Sabellah, M. (2010). The Relationship between attitude and academic performance in chemistry among secondary school students. A case of central Kisii district, Kenya. Unpublished Masterial thesis, Moi University Eldoret, Kenya.

[27] Larkin, R. P., Pater, L. L., & Tazik, D. J. (1996). Effects of Military Noise on Wildlife. A Literature Review (No. USACERL-TR-96/21). Construction Engineering Research Lab (Army) Champaign Il.

[28] Koper, N., Leston, L., Baker, T. M., Curry, C., & Rosa, P. (2016). Effects of ambient noise on detectability and localization of avian songs and tones by observers in grasslands. Ecology and Evolution, 6(1), 245-255.