Soft sponges with tricky tree: On the phylogeny of dictyoceratid sponges

Dirk Erpenbeck1,2 | Adrian Galitz1 | Merrick Ekins3,4 | Steve de C. Cook5 | Rob W. M. van Soest6 | John N. A. Hooper3,7 | Gert Wörheide1,2,8

1Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
2GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
3Biodiversity Program, Queensland Museum, South Brisbane, QLD, Australia
4School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
5Formerly Department of Zoology, School of Biological Sciences, University of Auckland, Auckland, New Zealand
6Naturalis Biodiversity Center, Leiden, The Netherlands
7Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
8SNSB-Bavarian State Collection of Palaeontology and Geology, Munich, Germany

Correspondence
Dirk Erpenbeck, Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.
Email: erpenbeck@lmu.de

Funding information
Sixth Framework Programme, Grant/Award Number: MOIF-CT-2004; Deutsche Forschungsgemeinschaft, Grant/Award Number: Er611/5-1; LMUexcellent within the framework of the German Excellence Initiative

Abstract
Keratose (horny) sponges constitute a very difficult group of Porifera in terms of taxonomy due to their paucity of diagnostic morphological features. (Most) keratose sponges possess no mineral skeletal elements, but an arrangement of organic (spongin) fibers, with little taxonomic or phylogenetic information. Molecular phylogenetics have targeted this evolutionary and biochemically important lineage numerous times, but the conservative nature of popular markers combined with ambiguous identification of the sponge material has so far prevented any robust phylogeny. In the following study, we provide a phylogenetic hypothesis of the keratose order Dictyoceratida based on nuclear markers of higher resolution potential (ITS and 28S C-region), and particularly aim for the inclusion of type specimens as reference material. Our results are compared with previously published data of CO1, 18S, and 28S (D3-D5) data, and indicate the paraphyly of the largest dictyoceratid family, the Thorectidae, due to a sister group relationship of its subfamily Phyllospongiinae with Family Spongiidae. Irciniidae can be recovered as monophyletic. Results on genus level and implications on phylogenetic signals of the most frequently described morphological characters are discussed.

Keywords
Dictyoceratida, Keratosa, Porifera, Spongiidae, Thorectidae
1 | INTRODUCTION

In the last couple of decades, our knowledge on phylogenetic relationships of sponges, particularly demosponges, experienced major turmoil when molecular data demonstrated serious pitfalls in the classical, morphology-based classification (see, e.g., Bouy-Esnault, 2006; Cárdenas, Pérez, & Bouy-Esnault, 2012; Erpenbeck & Wörheide, 2007; Redmond et al., 2013; Wörheide et al., 2012). This resulted in a fundamentally revised classification at order level (Morrow & Cárdenas, 2015). However, revisions of most intra-ordinal relationships are still due for revision. A particularly difficult order of sponges is the Dictyoceratida (Subclass Keratosa), which possess a skeleton of organic material (spongin) only and lack mineral skeletal elements (with the exception of Vaceletia, which possesses a hypercalcified secondary limestone skeleton instead of spongin fibers, see Wörheide, 2008). Therefore, these sponges were historically assigned to the “horny” sponges. The spongion skeleton renders specimens of some genera useful as bathing sponges, but at the same time limits the suite of diagnostic features for morphological classification and phylogeny. Morphologically, all dictyoceratids share the presence of this anastomosing spongin fiber skeleton that often make up a significant proportion of the body volume. Fibers develop from multiple points and are organized into primary, secondary, and sometimes tertiary fibers (Cook & Bergquist, 2002e). Earlier molecular studies supported monophyly of Dictyoceratida, their sister group relationship to order Dendroceratida as subclass Keratosa, and their distinction from other horny sponge lineages (e.g., Verongiida, subclass Verongimorpha) (Borchiellini et al., 2004; Erpenbeck, Sutcliffe, et al., 2012; Hill et al., 2013; Redmond et al., 2013; Thacker et al., 2013). Internal relationships, however, are still insufficiently understood, although are mandatory for a variety of downstream research (Boufridi et al., 2017; Chianese et al., 2017; see e.g., Erpenbeck, Hooper, et al., 2012).

At the last major (morphology-based) revision of sponge classification, in the Systema Porifera (Hooper & Van Soest, 2002), Dictyoceratida were separated into the four taxa at the family level Dysideidae, Irciniidae, Spongidae, and Thorectidae, with the latter being divided into the subfamilies Thorectinae and Phyllospongiinae (Cook & Bergquist, 2002d, 2002e). A fifth family, Verticillitidae, was added subsequently (Morrow & Cárdenas, 2015; Wörheide, 2008). So far, molecular studies targeting shallow-level relationships of Dictyoceratida provided insufficient resolution or conflicting data: The first comprehensive molecular approach based on the partial mitochondrial cytochrome c oxidase subunit 1 gene (CO1) and the D3-D5 partition of the nuclear large ribosomal subunit gene (28S) confirmed monophyly of the families Dysideidae and Irciniidae, and confirmed Dysideidae as sister to all other families as well, but failed to resolve Spongidae and Thorectidae relationships (Erpenbeck, Sutcliffe, et al., 2012). Likewise, Redmond et al. (2013) and Thacker et al. (2013) confirmed the distinct position of Dysideidae, based on the nuclear small ribosomal subunit gene (18S) and full-length 28S, respectively, but could not robustly resolve the relationships of other dictyoceratid taxa either. Undoubtedly, the molecular markers used so far bear insufficient resolution potential to answer all dictyoceratid phylogenetic questions.

In the present study, we aim to unravel the phylogenetic relationships of dictyoceratid sponges by employing faster evolving molecular markers. We use the C-region of 28S, which has been successfully used in sponge molecular taxonomic studies (Erpenbeck, Voigt, et al., 2016; e.g., Voigt & Wörheide, 2016), and the internal transcribed spacers 1 and 2 (ITS, including the 5.8S rRNA gene). ITS is a classical marker on species level and below (see, e.g., Borchelliini, Chombard, Lafay, & Bouy-Esnault, 2000), but in Dictyoceratida so far recruited for studying metabolite distribution only (Boufridi et al., 2017; Chianese et al., 2017; Erpenbeck, Hooper, et al., 2012).

Conclusive (molecular) phylogenies must be based on well-identified species. Most dictyoceratid phylogenies, however, suffer from incomplete and ambiguous specimen identification (Erpenbeck, Sutcliffe, et al., 2012; Redmond et al., 2013; Thacker et al., 2013) due to the difficult (morphology-based) taxonomy (see also Cook, 2007). Type specimens, particularly holotypes, are the only unambiguous reference points for taxonomic delineation, but not frequently used for sponge molecular phylogenetic studies due to difficult accessibility and bad DNA qualities (see review in Erpenbeck, Ekins, et al., 2016). The present study therefore attempts to use type material where possible, or other well-identified specimens such as Systema Porifera reference material. The results of the new dictyoceratid ITS and 28S (C-region) molecular analyses are compared with phylogenies obtained from 18S (Redmond et al., 2013), CO1, and 28S (D3-D5) (Erpenbeck, Sutcliffe, et al., 2012) markers in order to summarize our current knowledge and formulate a phylogenetic hypothesis for dictyoceratids.

2 | MATERIALS AND METHODS

Sponge specimens or fractions thereof, including type material, were borrowed or obtained from the Queensland Museum (Brisbane, Australia), Australian Museum (Sydney, Australia), from the Universal museum Joanneum (Graz, Austria; formerly Landesmuseum Joanneum Graz), from the Naturhistorisches Museum Basel (Basel, Switzerland), from the Zoological Museum Amsterdam (now NCB Leiden, the Netherlands), from the Natural History Museum London, Great Britain, and from the collections of Steve de C. Cook (Auckland, New Zealand) (see Appendix 1 for a complete list of specimens).

PCR amplifications were conducted in 12.5 μl reactions: 5X Green GoTaq® Flexi Reaction Buffer (Promega), 25 mM MgCl₂ (Promega), 10 mM dNTP (Bioline), 5 mM of each primer (Metabion), and 1 unit of Taq polymerase (GoTaq, Promega). Usage of the additive bovine serum albumin (BSA, 10 mg/ml) significantly improved the amplification yields. Polymerase chain reactions (PCRs) for both ITS and 28S were conducted under the following conditions: 3 min at 95°C (denaturation), 35 cycles at 95°C for 30 s (heating), 51°C for 30 s (annealing, for primer combinations, see Table 1), and 72°C for 1 min (extension), followed by 72°C for 5 min (final
extension). For some samples, touchdown PCRs prove to be more efficient than the standard protocol: 3 min at 95°C (denaturation), 20 cycles at 95°C for 30 s (heating), 55–45°C (annealing; −0.5°C per cycle), and 72°C for 1 min (extension), followed by 20 cycles at 95°C for 30 s (heating), 50°C (annealing), and 72°C for 1 min (extension), concluded by 72°C for 5 min (final extension). PCR products were isolated cleaned up with the freeze-squeeze method (Tautz & Renz, 1983) from 1.5% agarose gels. Cycle sequencing products were generated with BigDye Terminator v3.1 followed by Sanger sequencing on an ABI 3730 in the Genomic Sequencing Unit of the LMU Munich. Forward and reverse reads were assembled and corrected with CodonCode Aligner 3.7.1 (http://www.codoncode.com) after checking for contaminants by BLAST against NCBI GenBank. Intragenomic polymorphisms (IGP) were recoded following the IUPAC ambiguity codes for nucleotides. The assembled and checked sequences were aligned with MAFFT (Katoh & Standley, 2013) under default settings as implemented in Geneious Prime® 2019.0.4 (http://www.geneious.com; Kearse et al., 2012) and subsequently optimized by eye. The data set was complemented with homologous sequences of the ITS regions and 28S (D3-D5) as published in GenBank (see Figures S1–S4). Data for CO1 and 28S (D3-D5) consist predominantly of previously published sequences (see Figures S1–S4), plus 39 yet unpublished sequences (1 of 28S (D3-D5), 38 of CO1) generated in course of the study of Erpenbeck, Sutcliffe, et al. (2012). See boldfaced accession numbers in Appendix 1 and Erpenbeck, Sutcliffe, et al. (2012) for details of sequence generation.

All sequences are submitted to the European Nucleotide Archive (see Appendix 1 for accession numbers [LR#####]). For all four data sets (ITS, 28S C-region, 28S (D3-D5), and CO1) maximum-likelihood reconstructions were generated with RAxML 8 (Stamatakis, 2014) as implemented in Geneious Prime® 2019.0.4 under the GTR GAMMA I model and 1,000 rapid bootstrap replicates. The alignments used in this study are freely available at https://github.com/PalMuc/Soft-Sponges-Tricky-Tree.

Results and Discussion

For a total of 236 dictyoceratid specimens, new sequences were generated (see Appendix 1). As not all fragments for every specimen were amplifiable and/or available from NCBI GenBank, the data sets for ITS (93 taxa of which 91 newly sequenced for this study)/ 808 characters), 28S C-Region (148 (121)/ 347), 28S D3-D5 region (76 (1)/ 549), and CO1 (152 (38)/ 495) (see Appendix 1 and Figures S1–S4 for the individual gene trees) differ in their taxon content. The summarizing overview on the phylogenetic results is given in Figure 1.

The dictyoceratid taxa fall into clades differently supported by the individual fragments (see Figure 1). These molecular analyses, as currently the most comprehensive to unravel the phylogenetic relationships of dictyoceratid sponges including type (and other reference) material, demonstrate that family Thorectidae sensu Cook and Bergquist (2002d) cannot be upheld. Thorectidae was erected by Bergquist (1978) who regarded concentric fiber lamination as a distinct and combining feature among dictyoceratid sponges as opposed to the homogeneous fibers in Spongiidae. However, Sanders and van Soest (1996) remarked that several members of Spongiidae

Table 1

ITS and 28S (C-Region) primers used in this study

Name (reference)	Nucleotide sequence	Target region	Amplicon size
RA2_keratose (fwd)*	5’ GRA TGG TTT AGT GAG ATC TT 3’	ITS	~660 bp
ITS2.2_keratose (rev)*	5’ AAA TTC AGC GGG TAG YCT GG 3’	ITS	~365 bp
5.8S_keratose (fwd)*	5’ TGA CAA CTT CTG ACG GT 3’	ITS-2	~340 bp
28S-C2_keratose (fwd)*	5’ GAA AAG AAC TTT GRA RAG AGA GTC 3’	28S	
28S-D2_keratose (rev)*	5’ CCG TGT TTC AAG ACG GGT CGR ACG AG 3’	28S	
RA2-fwdb	5’ GTC CCT GCC CTT TGT ACA CA 3’	ITS	~660 bp
ITS2.2-revb	5’ CCT GGT TAG TTT CTT TTC CTC CGC 3’	ITS	~330 bp
5.8S-1-fwdc	5’ GTC GAT GAA GAA CGC AGC 3’	ITS-2	
28S-C2-fwcd	5’ GAA AAG AAC TTT GRA RAG AGA GT 3’	28S	~340 bp
28S-D2-revd	5’ TCC GTG TTT CAA GAC GGG 3’	28S	

*a Galitz et al. (2018).
*b Wörheide (1998).
*c Chombard, Boury-Esnault, and Tillier (1998).
possess laminated fibers, usually invisible with light microscopy rendering fiber lamination an unsuitable phylogenetic character. Despite these concerns, Bergquist et al. (1999) reclassified foliose Dictyoceratida from Spongiidae into Thorectidae, based on fiber structure, erecting a distinct subfamily Phyllospongiinae (foliose sponges) alongside all other thorectids (which formed Subfamily Thorectinae). Nevertheless, Cook and Bergquist (2002d) regarded Thorectinae as “heterogeneous group of sponges,” “difficult to objectively define,” and as a “catch-all” for all non-phyllospongiine thorectids. Our studies demonstrate that Thorectidae (particularly Subfamily Thorectinae) constitute a paraphyletic assemblage of dictyoceratid taxa, as indicated in earlier molecular studies (Erpenbeck, Sutcliffe, et al., 2012; see discussion in Morrow & Cárdenas, 2015; Redmond et al., 2013; Thacker et al., 2013). Fiber laminations (see, e.g., fig. 15 in Cook, 2007), as observed in Thorectidae (see, e.g., Cook & Bergquist, 2002d), are also reported for Dysideidae (Cook & Bergquist, 2002a) that branch first from all other dictyoceratid families. Therefore, such thorectid fiber lamination should be regarded as an ancient dictyoceratid trait, plesiomorph in thorectids, and therefore not suitable to morphologically define any phylogenetic clade within the Dictyoceratida.

Subfamily Phyllospongiinae, however, can be recovered, although with a taxon composition emended back to Keller’s (1889) core taxa Carteriospongia and Phyllospongia, plus Strepsichordaia.
This constellation is underlined by several in-depth studies that included types of Strpeischoridae lendenfeldi Bergquist, Ayling & Wilkinson (AM Z5026), and Cartierispongia foliascens (Pallas) BMNH 1925.11.1.41 (see Abdul Wahab, Fromont, Whalan, Webster, & Andreakis, 2014; Galitz et al., 2018) (sequencing of the holotype of Phyllospongia papryacea (Esper) BMNH 1931.4.1.1 was attempted but unsuccessful). Of the remaining phyllospongiine genera (Cook & Bergquist, 2002d), Candiasidaria Bergquist, Sorokin & Karuso, 1999 has been identified as Dysideidae (Galitz et al., 2018; Redmond et al., 2013) and Lendenfeldia Bergquist, 1980 requires revision—lectotype sequencing of its type species L. frondosa (Lendenfeld) (BMNH 1877.5.21.1697) has been attempted, but without success. Further details on the internal relationships of Phyllospongiinae and paraphly of its genera are given in Abdul Wahab et al. (2014) and Galitz et al. (2018).

However, Phyllospongiinae form a clade with Spongiidae, thereby corroborating the former Spongiidae sensu Gray. Spongiidae were mostly recovered as monophyletic. This clade comprises all the specimens of Spongia (including a Systema Porifera reference of type species Spongia officinalis (Linnaeus) SDCC/RF001), Rhopaloeides (including a Systema Porifera reference of type species Rhopaloeides odorabile Thompson, Murphy, Bergquist & Evans, SDCC/RF067), and Hippaspongia from several different studies as published in NCBI GenBank. Several specimens identified or published as Spongia do not form a clade and prompt for a revision of the spongiid taxa (see also Redmond et al., 2013). Unfortunately, success rate of type and reference material of Spongiidae was low, as PCR of the neotype of S. officinalis BMNH 1883.12.4.28 failed, likewise sequencing the holotypes of R. odorabile (AM Z4965) and Leiosella levis (Lendenfeld) (BMNH 1886.8.2.7.319) furthermore historic comparative material for Hippaspongia communis (Lamarck) (as H. equa (Schmidt) BMNH 1899.5.2.2, see Cook & Bergquist, 2002c) did not result in sequences suitable for phylogenetic analyses. Consequently, we refrain from hypothesizing on the internal phylogenetic relationships of Spongiidae until more molecular data from reference material are obtained. A morphological feature combining Phyllospongiinae and spongiids might be found in the apparently more homogeneous fiber structure in contrast to Thorectinae. Phyllospongiinae were described with “successive fibrous layers,” which remain tightly adherent, producing an overall homogeneous structure with visible contiguous laminae” (Cook & Bergquist, 2002e), and Spongiidae are defined by their homogenous fiber structure (Cook & Bergquist, 2002c; objected by Sanders & Van Soest, 1996).

The thorectid genera Thorectandra, Thorectaxia, Fascaplysinopsis, and Petrospaspongia form a clade with the latter splitting first. Genus Petrospaspongia Bergquist, 1995 currently comprises two species, and the holotype of the type species Petrospaspongia nigra Bergquist (QM G304685) was analyzed. Thorectandra, Thorectaxia, and Fascaplysinopsis form a monophyletic group. The holotype for Thorectandra corticatus Lendenfeld, type species of Thorectandra, is unknown (Hooper & Wiedenmayer, 1994), but its reference material analyzed for the Systema Porifera was sequenced (SDCC/RF016, see Cook & Bergquist, 2002d). Although histologically regarded as similar (Cook & Bergquist, 2002d), Thorectaxia is phylogenetically distant to Thorecta (see below), prompting a re-evaluation of histological characters for keratose sponge systematics. Instead, Thorectandra is recovered close to the monotypic genus Fascaplysinopsis. Bergquist (1980) remarks Fascaplysinopsis recalling Thorectandra species in the pronounced gelatinous appearance of the matrix, the yellow internal pigmentation and the coarse nature of the fibres” besides similarities in secondary metabolites. Unfortunately, DNA extraction from the holotype of Fascaplysinopsis reticulata Bergquist (Aplysinopsis reticulata Hentschel SMF904) was yet unsuccessful, but we managed to include the reference sample SDCC/RF017 from Systema Porifera (see Cook & Bergquist, 2002d). However, several additional cf. Fascaplysinopsis samples in our data set urge for a revision of this genus. We found a close relationship of Fascaplysinopsis and Thorectandra to the monotypic genus Thorectaxia, of which a sample of Thorectaxia papuensis Pulitzer-Finali & Pronzato from the type location (Papua New-Guinea) could be sequenced.

Molecular data reveal phylogenetic signal of a close relationship of (Thorectandra + Thorectaxia + Fascaplysinopsis + Petrospaspongia) to Hyrtios, Cacospongia, Scalarispongia, and Semitaspongia, whose inter- and intrageneric relationships require revision. Genus Scalarispongia, represented by a sequence of the type species Scalarispongia scalaris (Schmidt) LMJG 15406/0, and several Hyrtios species, H. erectus (Keller), H. altus (Poléjaeff), and H. reticulatus (Thiele), form a clade, to which Cacospongia (including the lectotype LMJG 15405/19 of its type species C. mollior Schmidt) is sister. Cacospongia mycofijiensis (Kakou, Crews & Bukas), however, is distant, therefore resulting in the paraphyly of Cacospongia. Specimens of Hyrtios proteus Duchassaing & Michelotti, the nominal type species of Hyrtios, fall outside this clade. This confirms earlier findings on non-monophyly of the genus Hyrtios, demonstrating the need for a revision of this genus (Erpenbeck et al., 2017; Erpenbeck, Sutcliffe, et al., 2012; Redmond et al., 2013). Cook and Bergquist (2002d), remark that Cacospongia species other than C. mollior and C. sert (Lendenfeld) require revision. A partial ITS sequence of the C. sert holotype BMNH 1886.8.27.166, so far the only specimen of this species known (Cook & Bergquist, 2000), falls outside this clade, but verification from a longer sequence is required. In the past, C. mycofijiensis classification underwent numerous changes in its relatively young taxonomic history, triggered by overlapping morphological characteristics to other genera (see review in Sanders & Van Soest, 1996). An assignment of C. mycofijiensis to Petrospaspongia (suggested in Bergquist et al., 1999) can be rejected following our data, but assignment to Cacospongia (Sanders & Van Soest, 1996) or Scalarispongia (objected in Manconi, Cadeddu, Ledda, & Pronzato, 2013) requires thorough revision of the three genera. Both Scalarispongia and Semitaspongia have been erected by Cook and Bergquist (2000) to accommodate members of the “Cacospongia” group which is supported by the present data.

A further major clade unites Lufiariella, Thorecta, Fenestraspongia, Taonura, and Fasciospongia. Thorecta Lendenfeld is in our data set
represented by T. reticulata Cook & Bergquist [reference specimen SDCC/NZ097 in Cook and Bergquist (1996)] and a specimen of Thorecta freija Lendenfeld. Sequencing results from the holotype of the type species T. exemplum var. tertia Lendenfeld (BMNH 1886.8.27.188) were ambiguous. Santos et al. (2010) noted on the shortcomings in the classification of Thorecta and regarded eleven species as valid including T. reticulata, while T. freija was reclassified as Taonura. Genus Taonura in this analysis is represented by two specimens of the type species Taonura flabelliformis Carter (lectotype BMNH 1844.9.13.3 and the Systema Porifera reference specimen SDCC/RF024). Although only a partial ITS 2 fragment of the lectotype could be recovered, preventing the resolution of intergeneric relationships, the phylogenetic placement with Luffariella + Thorecta + Fenestraspongia clade is indicated. Our 28S reconstruction recovers Thorecta as paraphyletic with a sister group relationship between T. freija and T. flabelliformis, supporting Santos et al. (2010). Cook and Bergquist (2002d) described Taonura as a “hybrid of skeletal morphologies seen in Cacospongia, Semitaspongia, and Scalarispongia,” but our molecular results cannot second the phylogenetic signal of Taonura skeletal morphology to those genera. Closely related to Thorecta is Fenestraspongia, represented by the holotype of its type species F. intertexta (Carter) BMNH 1886.12.15.238. Luffariella Thiele comprises the type species L. variabilis (Polejaff) (holotype BMNH 1885.8.8.52), L. calculata Bergquist (holotype QM G304686), and L. cylindrica Bergquist (holotype QM G304687) and outside Thorecta + Fenestraspongia. Luffariella and Fenestraspongia were regarded as the only Thorectinae with tertiary fibers (Cook & Bergquist, 2002d). A phylogenetic signal of tertiary fibers is not given due to the phylogenetic position of Thorecta and the presence of tertiary fibers in Phyllospongiinae and Petrosaspongia species (see Uriz & Cebrian, 2006). Genus Fasciospongia Burton is in our analyses represented by a F. costifera (Lamarck, 1814) from its type locality (Western Australia) and a South African F. cf. cycni sequence from GenBank. Type region of F. cycni (Lendenfeld) is Western Australia; therefore, the taxonomy of this sample remains to be confirmed.

For Smenospongia and Dactylospongia, Bergquist relationships to the other dictyoceratid taxa are unresolved as sister to either Luffariella + Thorecta + Fenestraspongia + Taonura or Phyllospongiinae + Spongiidae. Dactylospongia is here represented by the lectotype (NMB-PORI 44), several samples of the type species D. elegans (Thiele), and a reference specimen for the Systema Porifera (SDCC/RF047 D. metachromia (Laubenfels)). For Smenospongia the type species, S. auere (Hyatt) and other Smenospongia samples (Redmond et al., 2013) were considered. Dactylospongia was erected to accommodate Luffariella elegans Thiele, which appeared morphologically distinct to Luffariella (Bergquist, 1965). Dactylospongia was subsequently assigned to Thorectidae based on its stratified fiber structure and due to morphological and pigment biochemical similarity to Smenospongia (Cook & Bergquist, 2002d). Both, distinction from Luffariella and similarity to Smenospongia, can be confirmed by our molecular data. A transfer of D. metachromia to the genus Petrosaspongia as suggested by Kwak, Schmitz, and Kelly (2000) based on terpenic compounds is in strong conflict with our molecular findings (see Uriz and Cebrian (2006) for a discussion).

Family Irciniidae, currently consisting of the genera Ircinia, Psammocinia, Bergquistia, and Sarcotragus, is monophyletic. Irciniidae share the apomorphic fine collagenous filaments in the mesohyl (Cook & Bergquist, 2002b). While molecular studies unequivocally supported irciniid monophyly of its largest genus Ircinia, this remains uncertain in respect to Sarcotragus (Erpenbeck, Sutcliffe, et al., 2012; see also Pöppe, Sutcliffe, Hooper, Wörheide, & Erpenbeck, 2010). Cook and Bergquist (2002b) regard the status of Sarcotragus, which differs from Ircinia only by the extent of fiber fasciculation and coring, as uncertain, likewise the distinction of Bergquistia, from which so far no molecular marker has been published, to Sarcotragus is uncertain (Cook, 2007). Distinction between Psammocinia and Ircinia, however, has molecularly been shown (Pöppe et al., 2010). Irciniidae frequently resemble species of Coscinodera in shape, texture, and surface (Sim & Kim, 2014). Genus Coscinodermata is a disjunct and species-poor genus with rare occurrence (but see Sim & Kim, 2014; Voultsiadiou Koukoura, Van Soest, & Koukouras, 1991), currently classified as Spongidae. Its species possess very fine, meandering ("woolly"), uncoiled secondary fibers. For example C. mathewsi (Lendenfeld), here represented by the reference specimen of the Systema Porifera (SDCC/RF077), is repeatedly recovered as sister to (this study) or within (Redmond et al., 2013) Irciniidae. A similar phylogenetic placement is observed from a GenBank specimen published as C. sporadense Voultsiadiou-Koukoura, van Soest & Koukouras as published (KX866774, see Idan et al., 2018). In contrast, a C. lanuga Laubenfels specimen, a species described as poorly known, but valid (Bergquist, 1980;Voultsiadiou Koukoura et al., 1991), falls into the Spongidae resulting in a phyletic genus Coscinodera. Clearly, examination of the type species C. pesleonis (Lamarck, 1813) is required to resolve the classification of this genus.

For the monospecific genus Collospongia, the holotype C. auris Bergquist, Cambie & Kernan (AM Z5035) has been analyzed (Galitz et al., 2018). Cook and Bergquist (2002c) remarked on morphological similarities with the Phyllospongiinae, but with different secondary metabolite composition and a unique skeletal structure, which allegedly makes classification into any of the thorectid subclasses difficult. We recover Collospongia among the first branching thorectid genera and clearly distant from Phyllospongiinae (see also Galitz et al., 2018).

Genus Vaceletia is the only lineage among the dictyoceratids with a mineral (although secondary hypercalcified aragonitic) skeleton. It is regarded as the only extant representative of the fossil family Verticillitidae on the basis of its sphinctozoan bauplan (see Vacelet, 2002). The lack of clear synapomorphies shared with any other extant sponge lineage hampered the (morphological) classification of Vaceletia (Vacelet, 2002) until molecular data unequivocally revealed the dictyoceratid origin (Wörheide, 2008), followed by the placement of Verticillitidae as fifth family of Dictyoceratida (Morrow & Cárdenas, 2015). Molecular data recover an early branching of
Vaceletia from the remaining thorectid + spongiid + irciniid taxa, probably as sister group.

3.1 | Implications for dictyoceratid morphological character evolution

Our reconstructed phylogenetic hypothesis has consequences for our current understanding of character evolution in dictyoceratid sponges. The sister group relationship of Dendroceratida to Dictyoceratida with Dysideidae splitting first from all other dictyoceratid families implies an ancestral nature of euryypylous choanocyte chambers for Keratosa in general and Dictyoceratida in particular (Erpenbeck, Sutcliffe, et al., 2012). Verticilliitidae (Vaceletia) are the only Keratosa with aphodal choanocyte chambers, while the thorectid + spongiid + irciniid sister group can be distinguished by their diploid choanocyte chambers, which are apomorphic within the Keratosa (Figure 1).

Possession of an armor, that is, a substantial ectosomal layer of foreign material, is frequently used for the discrimination of taxa, but our phylogenetic reconstruction does not indicate any phylogenetic signal in this character. Skeletal features constitute the most important source for phylogenetic and systematic characters in spiculose as well as non-spiculose sponges. Some of these characters have likewise been plotted on the phylogeny in Figure 1. The coring of primary or secondary fibers, that is, the inclusion of foreign mineral material into the fibers, did not harbor any phylogenetic signal. In Dysideidae, coring of both primary and secondary fibers potentially combines Dysidea, Lamelloodysidea, and Acanthodendrilla, although the extent of this character as apomorphy in dysideids has yet to be shown (Erpenbeck, Sutcliffe, et al., 2012), particularly as secondaries in Candidaspongia are uncored (Cook & Bergquist, 2002a). The possession of tertiary fibers is a combining character for the Phyllospongiinae, and the tertiary fiber-lacking alleged phyllosponge Candidaspongia was revealed as dysideid (Galitz et al., 2018; Redmond et al., 2013). Tertiary fibers are further present in Luffariella and Fenestraspongia, two closely related genera. Some Spongia possess structures referred to as "pseudo-tertiary fibers" due to structural differences to those found in, for example, Luffariella (Cook & Bergquist, 2001), which leaves the possibility of tertiary fiber convergent evolution.

The arrangement of fibers into fascicles or into a regular (e.g., rectangular) skeleton does not constitute a reliable combining character either. While the closely related Thorecta and Taonura share this feature, histologically similar Thorectandra (cf. Cook & Bergquist, 2002d) are clearly distant.

In conclusion, clear-cut and unambiguous morphological apomorphies for the discrimination and classification of dictyoceratid sponges are scarce and too prone to homoplasies. The current morphology-based classification of the inter- and infrafamiliar relationships of thorectids, spongiids, Irciniidae, and Verticilliitidae is incongruent to phylogenetic hypotheses of independent molecular markers and prompt for a re-classification and re-evaluation of synapomorphies based on integrative taxonomy.

ACKNOWLEDGEMENTS

We like to thank Dorte Janussen (SMF, Frankfurt), Ulrike Hausl-Hofstätter (Universalmuseum Johaneum, Graz), Carsten Lüter (MfN, Berlin), Emma Sherlock (NHM, London), Urs Wüest (Naturhistorisches Museum Basel), Andreas Dietzel (now JCU), Ratih Aryasari (Universitas Gadjah Mada, Yogyakarta), Gabriele Büttner, Nora Dotzler, and Simone Schätzle (LMU) for various support for this study. DE acknowledges financial support of the European Union under a Marie-Curie outgoing fellowship (MOIF-CT-2004 Contract No 2882) and Deutsche Forschungsgemeinschaft (DFG: Er611/5-1). GW acknowledges funding by LMU Munich’s Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative. Renata Manconi, Roberto Pronzato, Editors, and anonymous reviewers are thanked for their constructive comments that improved the manuscript considerably.

ORCID

Dirk Erpenbeck https://orcid.org/0000-0003-2716-1085
Merrick Ekins https://orcid.org/0000-0002-4825-462X
Gert Wörheide https://orcid.org/0000-0002-6380-7421

REFERENCES

Abdul Wahab, M. A., Fromont, J., Whalan, S., Webster, N., & Andreakis, N. (2014). Combining morphometrics with molecular taxonomy: How different are similar foliose keratose sponges from the Australian tropics? *Molecular Phylogenetics and Evolution*, 73, 23–39. https://doi.org/10.1016/j.ympev.2014.01.004
Bergquist, P. R. (1965). The Sponges of Micronesia, Part I. The Palau Archipelago. *Pacific Sciences*, 19(2), 123–204.
Bergquist, P. R. (1978). Sponges. London, UK: Hutchinson University Library.
Bergquist, P. R. (1980). The ordinal and subclass classification of the Demospongiae (Porifera): Appraisal of the present arrangement and proposal of a new order. *New Zealand Journal of Zoology*, 7, 1–16. https://doi.org/10.1080/03014223.1980.10423761
Bergquist, P. R., Sorokin, S., & Karuso, P. (1999). Pushing the boundaries: A new genus and species of Dictyoceratida. *Memoirs of the Queensland Museum*, 44, 57–61.
Borchicielli, C., Chombard, C., Lefay, B., & Boury-Esnault, N. (2000). Molecular systematics of sponges (Porifera). *Hydrobiologia*, 420, 15–27.
Borchicielli, C., Chombard, C., Manuel, M., Alivon, E., Vacelet, J., & Boury-Esnault, N. (2004). Molecular phylogeny of Demospongiae: Implications for classification and scenarios of character evolution. *Molecular Phylogenetics and Evolution*, 32(3), 823–837. https://doi.org/10.1016/j.ympev.2004.02.021
Boufridi, A., Lachkar, D., Erpenbeck, D., Beniddir, M. A., Evanno, L., Petek, S., Poupon, E. (2017). Ilimaquinone and 5-epi-ilimaquinone: Beyond a simple diastereomeric ratio, biosynthetic considerations from NMR-based. *Analysis, Australian Journal of Chemistry*, 70(6), 743–750. https://doi.org/10.1071/CH16445
Boury-Esnault, N. (2006). Systematics and evolution of Demospongiae. *Canadian Journal of Zoology-Revue Canadienne De Zoologie*, 84(2), 205–224. https://doi.org/10.1139/z06-003
Redmond, N. E., Morrow, C. C., Thacker, R. W., Díaz, M. C., Boury-Esnault, N., Cardenas, P., … Collins, A. G. (2013). Phylogeny and systematics of Demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Integrative and Comparative Biology, 53(3), 388–415. https://doi.org/10.1093/icb/icct078

Sanders, M. L., & Van Soest, R. W. M. (1996). In P. Willenz (Ed.), Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Recent Advances in Sponge Biodiversity Inventory and Documentation (Vol. 66, pp. 117–122). Brussels, Belgium: Institut royal des sciences naturelles de Belgique.

Santos, J. P., Da Silva, S. M., Bonifacio, P. H. O., Esteves, E. L., Pinheiro, U. S., & Muricy, G. (2010). A new species of Thorecta (Porifera: Demospongiae) from the western Atlantic, with remarks on the taxonomy of the genus. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom, 90(4), 775–782. https://doi.org/10.1093/mmb/auq088

Sim, C. J., & Kim, Y. A. (2014). Eight new species of genus Coscinoderma (Demospongiae: Dictyoceratida: Spongiidae) from Chuuk Island, The Federated States of Micronesia. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom, 90(4), 775–782. https://doi.org/10.1017/s0025315409990701

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Tautz, D., & Renz, M. (1983). An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Analytical Biochemistry, 132(1), 14–19. https://doi.org/10.1016/0003-2697(83)90419-0

Thacker, R. W., Hill, A. L., Hill, M. S., Redmond, N. E., Collins, A. G., Morrow, C. C., … Bangalore, P. V. (2013). Nearly complete 28S rRNA gene sequences confirm new hypotheses of sponge evolution. Integrative and Comparative Biology, 53(3), 373–387. https://doi.org/10.1093/icb/icct071

Uriz, M.-J., & Cebrian, E. (2006). Presence of the Indo-Pacific genus Petrosaspongia Bergquist, 1995 (Porifera: Demospongiae) in the Atlantic with description of a new species (P. pharmamari n. sp.). Zootaxa, 1209, 61–68. https://doi.org/10.11646/zootaxa.1209.1.3

Vacelet, J. (2002). Systema Porifera. A guide to the classification of sponges. In J. N. A. Hooper, & R. W. M. Van Soest (Eds.), Recent “Sphinctozoa”, Order Verticillitida, Family Verticillitidae Steinmann, 1882 (Vol. 1, pp. 1097–1098). New York, Boston, Dordrecht, London, Moscow: Kluwer Academic/Plenum Publishers.

Vacelet, O., & Wörheide, G. (2016). A short LSU rRNA fragment as a standard marker for integrative taxonomy in calcareous sponges (Porifera: Calcarea). Organisms, Diversity & Evolution, 16(1), 53–64. https://doi.org/10.1007/s13127-015-0247-1

Voultsiadou Koukoura, E., Van Soest, R. W. M., & Koukouras, A. (1991). Coscinoderma sporadense sp. n. from the Aegean Sea with comments on Coscinoderma confragosum (Porifera,Dictyoceratida). Zoologica Scripta, 20(3), 195–199.

Wörheide, G. (1998). The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific – Micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies, 38, 1–88. https://doi.org/10.1007/BF02537358

Wörheide, G. (2008). A hypercalcified sponge with soft relatives: Vaceletia is a keratose demosponge. Molecular Phylogenetics and Evolution, 47(1), 433–438. https://doi.org/10.1016/j.ympev.2008.01.021

Wörheide, G., Dohrmann, M., Erpenbeck, D., Larroux, C., Maldonado, M., Voigt, O., … Lavrov, D. V. (2012). Deep phylogeny and evolution of sponges (Phylum Porifera). In M. A. Becerro, M. J. Uriz, M. Maldonado, & X. Turon (Eds.), Advances in marine biology (Vol. 61, pp. 1–78). London, UK: Academic Press.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1. ITS reconstruction.
Figure S2. 28S C-region reconstruction.
Figure S3. 28S D3-D5 region reconstruction.
Figure S4. CO1 reconstruction.

How to cite this article: Erpenbeck D, Galitz A, Ekins M, et al. Soft sponges with tricky tree: On the phylogeny of dictyoceratid sponges. J Zool Syst Evol Res. 2020;58:27–40. https://doi.org/10.1111/jzs.12351
APPENDIX 1
Specimens newly sequenced for this study. “HT”, “NT,” and “LT” following the voucher number indicate holotype, neotype, and lectotype, respectively. Accession numbers in bold indicate sequences newly obtained in the course of this study. Accession numbers of previously published sequences of the same specimen used in this study are given in regular font.

Species	Voucher number	Accession numbers	Type status	CO1	ITS	28S-C	28S-D3D5
Dysideidae							
Candidaspongia flabellata	QM G305536	LR699438					
Candidaspongia flabellata	QM G305606	LR699439					
Candidaspongia flabellata	QM G306588	LR699440					
Candidaspongia flabellata	QM G307326	LR699441					
Candidaspongia flabellata	QM G314439	LR699332	HT	JQ082714			
Candidaspongia flabellata	QM G320157	LR699323	LT	JQ082716			
Candidaspongia flabellata	QM G322756	LR699442					
Dysidea cf. arenaria	QM G301096	LR699478					
Dysidea cf. arenaria	QM G301107	LR699479					
Dysidea cf. arenaria	QM G304690	LR699480					
Dysidea cf. arenaria	QM G305915	LR699481					
Dysidea cf. arenaria	QM G306542	LR699482					
Dysidea cf. arenaria	QM G306942	LR699483					
Dysidea cf. arenaria	QM G306943	LR699484					
Dysidea cf. arenaria	QM G324696	LR699485					
Dysidea fragilis	QM G301252	LR699486					
Dysidea sp.	QM G333259	LR699487					
Lamellodysidea herbacea	QM G301070	LR699509					
Lamellodysidea herbacea	QM G301191	LR699510					
Irciniidae							
Ircinia sp.	AM Z3989	LR699350					
Ircinia sp.	QM G306067	LR699351					
Ircinia sp.	QM G321282	LR699352					
Ircinia sp.	QM G322564	LR699353					
Psammocinia sp.	QM G303277	LR699528					
Psammocinia sp.	QM G303290	LR699529					
Psammocinia sp.	QM G303916	LR699530					
Psammocinia sp.	QM G304115	LR700203					
Sarcotragus muscarum	ZMA POR19029	LR699420					
Sarcotragus sp.	QM G318919	LR699372					
Spongidiidae							
Cf. Coscinoderma nardorus	QM G303003	LR699466					
Cf. Coscinoderma nardorus	QM G304449	LR699467					
Coscinoderma lanuga	ZMA POR17975	LR699454					
Coscinoderma mathewsi	QM G301075	LR699455					
Coscinoderma mathewsi	QM G303125	LR699456					
Coscinoderma mathewsi	QM G304249	LR699457					
Coscinoderma mathewsi	QM G304282	LR699458					
Coscinoderma mathewsi	QM G304283	LR699459					
Coscinoderma mathewsi	QM G304295	LR699460					

(Continues)
APPENDIX 1 (Continued)

Species	Voucher number	Accession numbers	Type status	CO1	ITS	28S-C	28S-D3D5
Coscinoderma mathewsi	QM G305068	LR699461					
Coscinoderma mathewsi	QM G313086	LR699330					
Coscinoderma mathewsi	QM G322760	LR699331	LR699462	JQ082718			
Coscinoderma mathewsi	QM G322762	LR699463					
Coscinoderma mathewsi	QM G322765	LR699332	JQ082719				
Coscinoderma mathewsi	QM G324713	LR699464					
Coscinoderma mathewsi	SDCC RF048	LR699465					
Hippopospongia ammata	QM G306900	LR699344	LR699493				
Hippopospongia communis	ZMA POR14572	LR699345					
Hyattella intestinalis	QM G300839	LR699494					
Hyattella intestinalis	QM G304652	LR699495					
Rhopaloaeidodes odorabile	QM G303923	LR699531					
Rhopaloaeidodes odorabile	QM G304220	LR699532					
Rhopaloaeidodes odorabile	QM G322761	LR699417	LR699369	LR699533	JQ082768		
Rhopaloaeidodes odorabile	QM G322813	LR699418	LR699370	JQ082769			
Rhopaloaeidodes odorabile	SDCC RF067	LR699419	LR699371	LR699534			
Spongia (Spongia) cf. irregularis	SDCC NZ002	LR699375	JQ082674				
Spongia (Spongia) cf. irregularis	SDCC NZ007	LR699376	LR699537	JQ082675			
Spongia (Spongia) hispida	QM G303209	LR699538					
Spongia (Spongia) cf. hispida	ZMA POR19756	LR699377					
Spongia (Spongia) officinalis	ZMA POR14396	JQ082842	LR699378	LR699075			
Spongia sp.	QM G324326	LR699539					
Spongidae sp.	QM G304328	LR699379					
Spongidae sp.	QM G305535	LR699380					
Spongidae sp.	QM G322786	LR699423	LR699381				
Spongidae sp.	QM G322830	LR699424	LR699382				
Spongidae sp.	RMNH 2283	LR699425					
Thorectidae							
Cacospongia cf. mollior	SDCC RF139	LR699316	LR699347	LR699437	JQ082658		
Cacospongia mollior	LMJG 15405, LT	LR699317					
Cacospongia mycofijiensis	QM G301467	LR699396	LR699318	LR699435			
Cacospongia mycofijiensis	QM G312707	LR699398					
Cacospongia mycofijiensis	QM G313245	LR699319					
Cacospongia mycofijiensis	ZMA POR18574	LR699399	LR699320				
Cacospongia mycofijiensis	ZMA POR18575	LR699400	LR699321	LR699436			
Cacospongia sp.	QM G306016	LR699397	LR700205				
Cacospongia sp.	QM G314076	LR700206					
Cacospongia sp.	QM G315096	LR700207					
Carteriospongia contorta	QM G303874	LR699443					
Carteriospongia contorta	SDCC RF018	LR699324	LR699444	JQ082663			
Carteriospongia flabellifera	QM G303017	LR699445					
Carteriospongia flabellifera	QM G304084	LR699446					
Carteriospongia flabellifera	QM G304114	LR699447					
Carteriospongia flabellifera	QM G304192	LR699448					

(Continues)
Species	Voucher number	Accession numbers	Type status	CO1	ITS	28S-C	28S-D3D5
Carteriospongia flabellifera	QM G306728	LR699449					
Carteriospongia flabellifera	QM G313227	LR699401					JQ082664
Carteriospongia flabellifera	QM G315231	LR699325					JQ082665
Carteriospongia flabellifera	QM G322820						JQ082662
Carteriospongia flabellifera	QM G315298	LR699450					JQ082666
Carteriospongia foliascens	BMNH 1925.11.1.411, NT	LR699326	LR699451				
Carteriospongia foliascens	QM G304326	LR699452					
Carteriospongia foliascens	QM G317494	LR699402					
Carteriospongia foliascens	QM G322818	LR699327					JQ082667
Collospongia auris	AM Z5035 HT	LR699453					
Dactylospongia elegans	NMB-PORI 44, LT	LR699333					
Dactylospongia elegans	QM G304125	LR699468					
Dactylospongia elegans	QM G304225	LR699469					
Dactylospongia elegans	QM G304296	LR699470					
Dactylospongia elegans	QM G305092	LR699471					
Dactylospongia elegans	QM G305998	LR699472					
Dactylospongia elegans	QM G306931	LR699473					
Dactylospongia elegans	QM G307754	LR699474					
Dactylospongia elegans	QM G313054	JQ082802	LR699334				
Dactylospongia elegans	QM G313637	LR699335					JQ082683
Dactylospongia elegans	QM G325555	LR699475					
Dactylospongia metachromia	SDCC RF047	LR699336	LR699476	LR699476	JQ082684		
Dactylospongia sp.	QM G311348	LR699408	LR699337	LR699476	JQ082682		
Cf. Fascaplysinospis reticulata	QM G322803	JQ082812	LR699338	LR699489	JQ082812		
Cf. Fascaplysinospis reticulata	SDCC RF017	LR699339	LR699489	LR699489	JQ082706		
Cf. Fascaplysinospis sp.	CASIZ300177	LR699488					
Cf. Fascaplysinospis sp.	QM G307325	LR699405					
Cf. Fascaplysinospis sp.	QM G313004	LR699406	LR699340	LR699490	JQ082682		
Cf. Fascaplysinospis sp.	QM G314831	LR700208					
Cf. Fascaplysinospis sp.	QM G320018	LR699407	LR699341	LR699491	JQ082682		
Cf. Fascaplysinospis sp.	QM G331054	LR699432	LR699491	LR699491	JQ082682		
Cf. Fascaplysinospis sp.	QM G333241	LR700209					
Cf. Fascaplysinospis sp.	QM G333299	LR700210	LR700202	LR699492	JQ082682		
Fenestraspongia intertexta	BMNH 1886.12.15.238, HT	LR699343	LR699410	LR699410	JQ082682		
Hyrtios altus	QM G311014	LR699410					
Hyrtios erectus	QM G301134	LR699496					
Hyrtios erectus	QM G301248	LR699497					
Hyrtios erectus	QM G303305	LR699498					
Hyrtios erectus	QM G303883	LR699500					
Hyrtios erectus	QM G303906	LR699501					
Hyrtios erectus	QM G303445	LR699499					
Hyrtios erectus	QM G303917	LR699502					
Hyrtios erectus	QM G304193	LR699503					
Hyrtios erectus	QM G304223	LR699504					
Species	Voucher number	Accession numbers					
--------------------------------------	----------------	-------------------					
	Type status	CO1	ITS	285-C	28S-D3D5		
Hyrtios erectus	QM G304346	LR699505					
Hyrtios erectus	QM G304354	LR699506					
Hyrtios erectus	QM G304362	LR699507					
Hyrtios erectus	QM G305776	LR699508					
Hyrtios erectus	SDCC RF049		LR699346				
Hyrtios erectus	SNSB-BSPG.GW6170		LR699347				
Hyrtios proteus	ZMA POR14381	JQ082820	LR699348				
Hyrtios reticulatus	SDCC RF031		LR699349				
Lendenfeldia chondrodes	SNSB-BSPG.GW27611		LR699513				
Lendenfeldia chondrodes	SNSB-BSPG.GW27619		LR699514				
Lendenfeldia chondrodes	SNSB-BSPG.GW27699		LR699515				
Lendenfeldia chondrodes	SNSB-BSPG.GW8481		LR699516				
Lendenfeldia plicata	QM G303343	LR699517					
Lendenfeldia plicata	QM G304093	LR699518					
Lendenfeldia plicata	QM G319507	LR699519					
Lendenfeldia plicata	QM G322766	LR699340					
Lendenfeldia plicata	QM G312964	LR699341					
Lendenfeldia cf. plicata	QM G304324	LR699342					
Luffariella calculata	QM G304686, HT	LR699343					
Luffariella cylindrica	QM G304687, HT	LR699344					
Luffariella variabilis	BMNH 1885.8.8.52, HT	LR699345					
Petrosaspongia nigra	QM G304685, HT	LR699346					
Petrosaspongia nigra	QM G313020	LR699351					
Petrosaspongia nigra	QM G315543	LR699352					
Phyllospongia lamellosa	QM G304169	LR699353					
Phyllospongia lamellosa	QM G304677	LR699354					
Phyllospongia lamellosa	QM G322790	LR699355					
Phyllospongia lamellosa	QM G322848	LR699356					
Phyllospongia papyracea	QM G300316	LR699357					
Phyllospongia papyracea	QM G304332	LR699358					
Phyllospongia papyracea	QM G307267	LR699359					
Phyllospongia papyracea	QM G307268	LR699360					
Phyllospongia papyracea	QM G318009	LR699361					
Phyllospongia papyracea	QM G322855	LR699362					
Phyllospongia papyracea	QM G322863	LR699363					
Phyllospongiinae sp.	SNSB-BSPG.GW26545	LR735997					
Scalarispongia scalaris	LMJG 15406	LR699373					
Semitaspongia sp.	SDCC NZ066	LR699374					
Semitaspongia sp.	SDCC NZ121	LR699375					
Smenospongia aurea	ZMA POR13807	LR699376					
Strepsichordaia aliena	RMNH 2284	LR699377					
Strepsichordaia caliciformis	QM G311299	LR699378					
Cf. Strepsichordaia lendenfeldi	QM G322810	LR700211					
Species	Voucher number	Accession numbers	Type status				
---------------------------------	----------------	---------------------------------	-------------				
Strepsichordaia lendenfeldi	AM Z5026 HT	LR699427 LR699385 LR699540 JQ082776					
Strepsichordaia lendenfeldi	QM G303854						
Strepsichordaia sp.	QM G306046	LR699403 LR699328					
Strepsichordaia sp.	QM G306072	LR699404					
Taonura flabelliformis	BMNH 1844.9.13.3, HT	LR699386					
Taonura flabelliformis	SDCC RF024	LR699542 LR699387 LR699543 JQ082778					
Thorecta freja	QM G303743	LR699387 LR699543					
Thorecta reticulata	SDCC NZ097	LR699544 LR699547					
Thorecta sp.	QM G303206						
Thorectandra excavatus	QM G303331	LR699428 LR699389 LR699545 JQ082781					
Thorectandra excavatus	QM G303563	LR699546					
Thorectandra excavatus	QM G303575	LR699547					
Thorectandra excavatus	ZMA POR14042	JQ082845 LR699390 JQ082782					
Thorectandra sp.	SDCC RF016	LR700212 LR700204					
Thorectaxia papuensis	ZMA POR19767	LR699548					
Thorectidae sp.	SNSB-BSPG.GW26569	LR700215					
Thorectidae sp.	CASIZ302695	LR699549					
Thorectidae sp.	QM G306003	LR700213 JQ082707					
Thorectinae sp.	CASIZ302698	LR699550					
Thorectinae sp.	QM G301060	LR699551					
Thorectinae sp.	QM G307378	LR699431 LR699391 JQ082710					
Thorectinae sp.	QM G313051	LR699432 LR699393					
Thorectinae sp.	SDCC RF053	LR699552 LR699430 JQ082743					
Thorectinae sp.	SNSB-BSPG.GW26644	LR699430					
Thorectinae sp.	ZMA POR11466	LR699433					
Thorectinae sp.	ZMA POR15722	JQ082831 JQ082744					
Thorectinae sp.	ZMA POR16798	JQ082813 LR700214					
Thorectinae sp.	ZMA POR17995	LR699434 LR699395					
Uncategorized							
Dictyoceratida sp.	SDCC NZ147	LR700201					
Dictyoceratida sp.	SNSB-BSPG.GW27609	LR699477					