ON ISOMORPHICALLY POLYHEDRAL \mathcal{L}_∞-SPACES

JESÚS M. F. CASTILLO AND PIER LUIGI PAPINI

ABSTRACT. We show that there exist \mathcal{L}_∞-subspaces of separable isomorphically polyhedral Lindenstrauss spaces that cannot be renormed to be a Lindenstrauss space.

1. ISOMORPHICALLY POLYHEDRAL SPACES

A Banach space is said to be polyhedral if the closed unit ball of every finite dimensional subspace is the closed convex hull of a finite number of points. Polyhedrality is a geometrical notion: c_0 is polyhedral while c is not. It is also an hereditary notion: every subspace of a polyhedral space is polyhedral. The isomorphic notion associated with polyhedrality is: A Banach space is said to be isomorphically polyhedral if it admits a polyhedral renorming. The simplest examples of isomorphically polyhedral spaces are the $C(\alpha)$ spaces for α an ordinal, and their subspaces. In [5] we surveyed what is known about polyhedral \mathcal{L}_∞-spaces, which can be summarized as follows:

(1) There are polyhedral spaces which are not \mathcal{L}_∞: indeed, any non \mathcal{L}_∞ subspace of $c_0(\Gamma)$ — recall from [11] that subspaces of $c_0(\Gamma)$ are \mathcal{L}_∞-spaces if and only if they are isomorphic to $c_0(\Gamma)$.
(2) There are Lindenstrauss spaces not polyhedral: $C[0,1]$.
(3) A result of Fonf [8] asserts that preduals of ℓ_1 are isomorphically polyhedral.
(4) Fonf informed us [9] that the result fails for $\ell_1(\Gamma)$: Kunen’s compact \mathcal{K} provides, under CH, a scattered, non metrizable, compact so that $C(\mathcal{K})$ space has the rare property that every uncountable set of elements contains one that belongs to the closure of the convex hull of the others. And this property was used by Jiménez and Moreno [13] to show that every equivalent renorming of $C(\mathcal{K})$ has only a countable number of weak*-strongly exposed points. Thus, no equivalent renorming can be polyhedral (see [10]). At the same time $C(\mathcal{K})^* = \ell_1(\Gamma)$ since \mathcal{K} is scattered.
(5) The trees T for which $C(T)$ is isomorphically polyhedral are characterized in [10]. Thus, there are scattered compact K (not depending on CH as it occurs with Kunen’s compact) such that $C(K)$ is not isomorphically polyhedral.

This research was partially supported by project MTM2013-45643-C2-1-P. The research of the second author has been partially supported by GNAMPA of the Instituto Nazionale di Alta Matematica.
Fonf [9] asked [5, Section 4, problem 5] whether isomorphically polyhedral L_∞-spaces are isomorphically Lindenstrauss. The purpose of this note is to show that the answer is no.

2. Preliminaries

A Banach space X is said to be a L_∞,λ-space if every finite dimensional subspace F of X is contained in another finite dimensional subspace of X whose Banach-Mazur distance to the corresponding space ℓ_∞^n is at most λ. The space X is said to be an L_∞-space if it is an L_∞,λ-space for some λ. The basic theory and examples of L_∞-spaces can be found in [18, Chapter 5]. A Banach space X is said to be a Lindenstrauss space if it is an isometric predual of some space $L_1(\mu)$. Lindenstrauss spaces correspond to $L_\infty,1+$-spaces. A Lindenstrauss space is an $L_\infty,1$-space if and only if it is polyhedral (i.e., the unit ball of every finite dimensional subspace is a polytope) [18, p.199].

A Banach space X is said to have Pełczyński’s property (V) if each operator defined on X is either weakly compact or an isomorphism on a subspace isomorphic to c_0. Pełczyński shows in [19] that $C(K)$-spaces enjoy property (V), and Johnson and Zippin [14] that Lindenstrauss spaces also have (V).

Let $\alpha : A \rightarrow Z$ and $\beta : B \rightarrow Z$ be operators acting between Banach spaces. the pull-back space PB is defined as $PB = PB(\alpha, \beta) = \{(a, b) \in A \oplus B : \alpha(a) = \beta(b)\}$. It has the property of yielding a commutative diagram

$$
\begin{array}{ccc}
P B & \xrightarrow{\beta} & A \\
\downarrow{\alpha} & & \downarrow{\alpha} \\
B & \xrightarrow{\beta} & Z
\end{array}
$$

in which the arrows after primes are the restriction of the projections onto the corresponding factor. Needless to say (1) is minimally commutative in the sense that if the operators $"\beta : C \rightarrow A$ and $"\alpha : C \rightarrow B$ satisfy $\alpha \circ "\beta = \beta \circ "\alpha$, then there is a unique operator $\gamma : C \rightarrow PB$ such that $"\beta = \beta \gamma$ and $"\beta = \beta \gamma$. Clearly, $\gamma(c) = ("\beta(c),"\alpha(c))$ and $\|\gamma\| \leq \max\{|"\beta|, |"\alpha|\}$. Quite clearly α is onto if α is. As a consequence of this, if one has an exact sequence

$$
\begin{array}{cccc}
0 & \xrightarrow{i} & Y & \xrightarrow{\pi} & X & \xrightarrow{\pi} & Z & \xrightarrow{\pi} & 0
\end{array}
$$

and an operator $u : A \rightarrow Z$ then one can form the pull-back diagram of the couple (π, u):

$$
\begin{array}{ccc}
0 & \xrightarrow{i} & Y & \xrightarrow{\pi} & X & \xrightarrow{\pi} & Z & \xrightarrow{\pi} & 0 \\
& \uparrow{u} & & \uparrow{u} & & \uparrow{u} & & \uparrow{u} & & \uparrow{u} \\
PB & \xrightarrow{\pi} & A
\end{array}
$$
Recalling that π is onto and taking $j(y) = (0, \psi(y))$, it is easily seen that the following diagram is commutative:

$$
\begin{array}{cccccc}
0 & \longrightarrow & Y & \overset{j}{\longrightarrow} & X & \overset{\pi}{\longrightarrow} & Z & \longrightarrow & 0 \\
\| & \| & \| & \| & \| & \| & \| & \| & \\
0 & \longrightarrow & Y & \overset{j}{\longrightarrow} & \text{PB} & \overset{\pi}{\longrightarrow} & A & \longrightarrow & 0 \\
\end{array}
$$

Thus, the lower sequence is exact, and we shall refer to it as the pull-back sequence.

The well-known (see e.g., [2]) splitting criterion is: the pull-back sequence splits if and only if u lifts to X; i.e., there is an operator $U : A \rightarrow X$ such that $\pi U = u$.

3. An isomorphically polyhedral L_∞-space that is not Lindenstrauss

Theorem 1. There is a separable isomorphically polyhedral L_∞ space that is not isomorphically Lindenstrauss. Moreover, it is a subspace of an isomorphically polyhedral Lindenstrauss space.

Proof. We need to recall from [1] the existence of nontrivial exact sequences

$$
0 \longrightarrow C(\omega_0) \longrightarrow \Omega \overset{q}{\longrightarrow} c_0 \longrightarrow 0
$$

in which the quotient map q is strictly singular. This fact makes Ω fail Pełczyński’s property (V). Since Lindenstrauss spaces share with $C(K)$-spaces Pełczyński’s property (V), the space Ω is not isomorphic to a Lindenstrauss space. Of course it is an L_∞-space since this is a 3-space property. Thus, our purpose is to show that there is an Ω as above that is isomorphically polyhedral.

We recall from [1] Section 3 the parameter $\rho_N(c_0)$, defined as the least constant such that if $T : c_0 \rightarrow \ell_\infty(\omega_N)$ is a bounded linear operator such that $\text{dist}(Tx, C(\omega_N)) \leq \|x\|$ for all $x \in c_0$ then there is a linear map $L : c_0 \rightarrow C(\omega_N)$ with $\|T - L\| \leq \rho_N(c_0)$. Theorems 3.1 and Lemma 3.2 in [1] show that $\lim \rho_N(c_0) = +\infty$. Now we need a specific choice for each N: this is provided by [1] Prop. 4.6: there is a bounded operator $T_N : c_0 \rightarrow \ell_\infty(\omega_N)$ so that $\text{dist}(T_N x, C(\omega_N)) \leq \|x\|$ for all $x \in c_0$ but such that if $E \subset c_0$ is a subspace of c_0 almost isometric to c_0 then $\rho_N(c_0) \leq 2\|T_N - L\|$ for any linear map $L : c_0 \rightarrow C(\omega_N)$.

Let, for each N, a linear continuous operator $T_N : c_0 \rightarrow \ell_\infty(\omega_N)$ as above. We form the twisted sum space

$$
C(\omega_N) \oplus_{T_N} c_0 = \left(C(\omega_N) \times c_0, \| \cdot \|_{T_N} \right)
$$

endowed with the norm $\| (h, x) \|_{T_N} = \max \{ \|h - T_N x\|, \|x\| \}$. This yields an exact sequence

$$
0 \longrightarrow C(\omega_N) \overset{i_N}{\longrightarrow} C(\omega_N) \oplus_{T_N} c_0 \overset{q_N}{\longrightarrow} c_0 \longrightarrow 0
$$
with embedding $i_N(f) = (f,0)$ and quotient map $q_N(f,x) = x$. The identity map $id : C(\omega^N) \oplus_{T_N} c_0 \to C(\omega^N) \oplus_{\infty} c_0$ is an isomorphism since
\[\|T_N\|^{-1}\|(f,x)\|_{T_N} \leq \|(f,x)\|_{\infty} \leq \|T_N\|\|(f,x)\|_{T_N} \]
and therefore the space $C(\omega^N) \oplus_{T_N} c_0$ is isomorphically polyhedral. We need now to use the main result in [7] asserting that in a separable isomorphically polyhedral space every norm can be approximated by a polyhedral norm. Let $\| \cdot \|_{P_N}$ be a polyhedral norm in $C(\omega^N) \oplus_{T_N} c_0$ that is 2-equivalent to $\| \cdot \|_{T_N}$.

The sequence (3) splits, but the norm of the projection goes to infinity with N: Indeed, if $P : C(\omega^N) \oplus_{T_N} c_0 \to C(\omega^N)$ is a linear continuous projection then P has to have the form $P(f,x) = (f-Lx,0)$, where $L : c_0 \to C(\omega^N)$ is a certain linear map. Thus, if $x \in c_0$ is a norm one element, one gets $P(T_N x, x) = (T_N x - Lx,0)$ and thus $\|T_N x - Lx\| \leq \|P\|\|x\|$, hence $\|T_N - L\| \leq \|P\|$. The choice of T_N forces $\lim_{N \to \infty} \inf \|P\| = +\infty$. Therefore, the c_0-sum
\[0 \longrightarrow c_0(C(\omega^N)) \longrightarrow c_0(C(\omega^N) \oplus_{P_N} c_0) \xrightarrow{(q_N)} c_0(c_0) \longrightarrow 0 \]
cannot split. The space $c_0(C(\omega^N) \oplus_{P_N} c_0)$ is isomorphically polyhedral as any c_0-sum of polyhedral spaces [12]. We now define a suitable operator Δ so that when making the pull-back diagram
\[\begin{array}{cccccc}
0 & \longrightarrow & c_0(C(\omega^N)) & \longrightarrow & c_0(C(\omega^N) \oplus_{P_N} c_0) & \xrightarrow{(q_N)} & c_0(c_0) & \longrightarrow & 0 \\
\|\| & \|\| & \|\| & \|\| & \|\| & \|\| & \|\| & \|\| & \|\|
\end{array} \]
\[\begin{array}{cccccc}
0 & \longrightarrow & c_0(C(\omega^N)) & \longrightarrow & \Omega & \xrightarrow{\delta} & \Omega & \xrightarrow{\Delta} & c_0 & \longrightarrow & 0 \\
0 & \longrightarrow & c_0(C(\omega^N)) & \longrightarrow & \Omega & \xrightarrow{q} & c_0 & \longrightarrow & 0 \\
\end{array} \]
the map q is strictly singular. That prevents Ω from being Lindenstrauss under any equivalent renorming.

Pick as Δ the diagonal operator $c_0 \to c_0(c_0)$ induced by the scalar sequence $(\rho_N(c_0)^{-1/2}) \in c_0$; i.e.,
\[\Delta(x) = (\rho_N(c_0)^{-1/2} x)_N. \]

Assume that q is not strictly singular. Then, there is a subspace E of c_0 and a linear bounded map $V : E \to \Omega$ so that $qV = \Delta|E$. By the c_0 saturation and the distortion properties of c_0, there is no loss of generality assuming that E is an almost isometric copy of c_0. By the commutativity of the diagram $(q_N)\delta V = \Delta|E$, which in particular means that $q_N\delta V(e) = \rho_N(c_0)^{-1/2}e$ for all $e \in E$. This means that the map δV has on E the form $(L_N e, \rho_N(c_0)^{-1/2}e)_N$ where $L_N : E \to C(\omega^N)$ is a linear map; by continuity, there is a constant M so that $\|(L_N e, \rho_N(c_0)^{-1/2}e)\| \leq M\|e\|$, which means
\[\|L_N e - T_N \rho_N(c_0)^{-1/2}e\| \leq M\|e\|. \]
and thus
\[\|\rho_N(c_0)^{1/2}L_N - T_N\| \leq M\rho_N(c_0)^{1/2}. \]
This contradicts the fact that \(E = c_0 \), the definition of \(\rho_N(c_0) \) and the choice of \(T_N \).

To conclude the proof, the definition of pull-back space implies that \(\Omega \) is actually a subspace of \(c_0(C(\omega^N) \oplus P_N c_0) \oplus \infty c_0 \), hence isomorphically polyhedral. \(\square \)

Since \(c_0(C(\omega^N)) \cong C(\omega^N) \), the space \(\Omega \) above yields a twisted sum
\[
0 \longrightarrow C(\omega^\omega) \longrightarrow \Omega \overset{q}{\longrightarrow} c_0 \longrightarrow 0
\]
in which \(q \) is strictly singular. The dual sequence
\[
0 \longrightarrow \ell_1 \longrightarrow \Omega^* \longrightarrow \ell_1 \longrightarrow 0
\]
necessarily splits and thus \(\Omega^* \) can be renormed to be \(\ell_1 \), although \(\Omega \) cannot be endowed with an equivalent norm \(\| \cdot \| \) so that \((\Omega, \| \cdot \|)^* = \ell_1 \). Moreover, \(\Omega \) is actually a subspace of the isomorphically polyhedral Lindenstrauss space \(c_0(C(\omega^N) \oplus P_N c_0) \oplus c_0 \).

4. An isomorphically polyhedral \(L_\infty \) space that is not a Lindenstrauss-Pelczyński space

We show now that one can produce an \(L_\infty \)-variation of \(\Omega \) still farther from Lindenstrauss spaces. Lazar [15] and Lindenstrauss [16] showed that Lindenstrauss polyhedral spaces \(X \) enjoy the property that compact \(X \)-valued operator admit equal norm extensions. In [3], the authors introduce the Lindenstrauss-Pelczyński spaces (in short \(\mathcal{L}\mathcal{P} \)-spaces) as those Banach spaces \(E \) such that all operators from subspaces of \(c_0 \) into \(E \) can be extended to \(c_0 \). The spaces are so named because Lindenstrauss and Pelczyński first proved in [17] that \(C(K) \)-spaces have this property. Lindenstrauss spaces have also the property (see [17] [6]) as well as \(L_\infty \)-spaces not containing \(c_0 \) [3] and, of course, all their complemented subspaces. The construction of the space \(\Omega \) above has been modified in [4] to show that for every subspace \(H \subset c_0 \) there is an exact sequence
\[
0 \longrightarrow C(\omega^\omega) \longrightarrow \Omega_H \longrightarrow c_0 \longrightarrow 0
\]
in which the space \(\Omega_H \) is not a Lindenstrauss-Pelczyński space [17]; more precisely, there is an operator \(H \rightarrow \Omega_H \) that cannot be extended to the whole \(c_0 \).

Proposition 1. There is an isomorphically polyhedral \(L_\infty \)-space that is not an \(\mathcal{L}\mathcal{P} \)-space.

Proof. Consider the exact sequence \(0 \rightarrow C(\omega^\omega) \rightarrow \Omega \rightarrow c_0 \rightarrow 0 \) with strictly singular quotient constructed above. Since every quotient of \(c_0 \) is isomorphic to a subspace of \(c_0 \), we can consider that there is an embedding \(u_H : c_0/H \rightarrow c_0 \). The pull-back sequence \(0 \rightarrow C(\omega^\omega) \rightarrow P_H \overset{p}{\rightarrow} c_0/H \rightarrow 0 \) also has strictly singular quotient map. We form the commutative diagram
to show, exactly as in [17] that Ω_H is not an \mathcal{LP}-space since j cannot be extended to c_0 through i. The space Ω_H has been obtained from a pull-back diagram

\[0 \to c_0(C(\omega^N)) \to \Omega \to c_0 \to 0 \]

and thus it is a subspace of $\Omega \oplus c_0$, hence isomorphically polyhedral. \qed

References

[1] F. Cabello Sánchez, J.M.F. Castillo, N.J. Kalton and D.T. Yost, Twisted sums with $C(K)$ spaces, Trans. Amer. Math. Soc. 355 (2003) 4523-4541.
[2] J.M.F. Castillo and M. González. Three-space problems in Banach space theory, Lecture Notes in Math. 1667. Springer-Verlag, 1997.
[3] J.M.F. Castillo, Y. Moreno and J. Suárez. On Lindenstrauss-Pełczyński spaces, Studia Math. 174 (2006) 213–231.
[4] J.M.F. Castillo, Y. Moreno and J. Suárez, On the structure of Lindenstrauss-Pełczyński spaces, Studia Math. 194 (2009) 105–115.
[5] J.M.F. Castillo and P.L. Papini, Hephaestus account on Trojanski’s polyhedral war, Extracta Math. 29 (2014) 35 - 51.
[6] J.M.F. Castillo and J. Suárez, Extension of operators into Lindenstrauss spaces, Israel J. Math. 169 (2009) 1-27.
[7] R. Deville, V. Fonf and P. Hajek, Analytic and polyhedral approximation of convex bodies in separable polyhedral Banach spaces, Israel J. Math. 105 (1998) 139 – 154.
[8] V.P. Fonf, *Massiveness of the set of extreme points of the dual ball of a Banach spaces and polyhedral spaces*, Funct. Anal. Appl. 12 (1978) 237-239.
[9] V.P. Fonf, *personal communications*.
[10] V.P. Fonf, A.J. Pallares, R.J. Smith and S. Troyanski, *Polyhedral norms on non-separable Banach spaces*, J. Funct. Anal. 255 (2008) 449 - 470.
[11] G. Godefroy, N.J. Kalton and G. Lancien. *Subspaces of c₀(N) and Lipschitz isomorphisms* Geom. Funct. Anal. 10 (2000) 798 - 820.
[12] A.B. Hansen and N.J. Nielsen, *On isomorphic classification of polyhedral preduals of L₁*, Preprint Series Aarhus University, 1973/74 No. 24.
[13] M. Jiménez Sevilla and José P. Moreno, *Renorming Banach spaces with the Mazur intersection property* J. Funct. Anal. 144 (1997) 486-504.
[14] W.B. Johnson and M. Zippin, *Separable L₁ preduals are quotients of C(Δ)*. Israel J. Math. 16 (1973) 198–202.
[15] A. J. Lazar, *Polyhedral Banach spaces and the extensions of compact operators*, Israel J. Math. 7 (1970) 357 - 364.
[16] J. Lindenstrauss, *On the extension of compact operators*, Mem. Amer. Math. Soc. 48 (1964).
[17] J. Lindenstrauss and A. Pełczyński, *Contributions to the theory of the classical Banach spaces*, J. Funct. Anal. 8 (1971) 225–249.
[18] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*. Lecture Notes in Math. 338. Springer-Verlag, 1973.
[19] A. Pełczyński, *On C(S)-subspaces of separable Banach spaces*, Studia Math. 31 (1968) 513–522.

Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06071-Badajoz, Spain
E-mail address: castillo@unex.es

via Martucci 19, 40136 Bologna, Italia
E-mail address: pierluigi.papini@unibo.it