Self-Regularity of Non-Negative Output Weights for Overparameterized Two-Layer Neural Networks

Eren C. Kızıldağ (MIT)

Joint work with David Gamarnik (MIT) and Ilias Zadik (NYU)

https://arxiv.org/abs/2103.01887

2021 IEEE International Symposium on Information Theory
Overview

1 Motivation, Prior Work, and Setup

2 Contributions
 - Self-Regularity Results
 - Generalization Guarantees

3 Conclusion and Future Work
Motivation

NN models achieved great practical success:

Image recognition [HZRS16], image classification [KSH12], speech recognition [MDH11],
natural language processing [CW08], game playing [SSS+17],…

Overparameterization & Generalization:

- # Parameters \gg # Training Data.
- Conventional wisdom: Overfit, poor generalization.
- Exact opposite for NN models: [ZBH+16, BHMM19, ADH+19]…

Why?
Standard **VC Theory** does not help: [HLM17, BHL1M9].

Algorithm-independent front:

Norms of weights [NTS15, BFT17, LPRS17, GRS17, DR17, WZ+17], **PAC-Bayes theory** [NBS17, NBMS17], **compression-based bounds** [AGNZ18],...

Drawback: Mainly **a posteriori**. Need training to complete.

A priori guarantees: Algorithm-dependent front (soon).
Overparameterization & Generalization: Prior Work

Self-Regularization.

- Many parameter choices (near) **perfectly** interpolating data.
- Algorithms “prefer” regularized solutions: e.g., small norm.

Algorithm-specific front: analyze end results.

Gradient Descent [BG17, FCG19], Stochastic Gradient Descent [HRS16, LL18, AZLS19, CG19], Langevin dynamics [MWZZ18],....

Our Work.

Algorithm-independent route.

Well-controlled norm, under a certain non-negativity assumption.
Good generalization, through *fat-shattering dimension*.
Setup and Main Assumption

- Two-layer NN $(a, W) \in \mathbb{R}^\bar{m} \times \mathbb{R}^{\bar{m} \times d}$. j^{th} row of W, $w_j \in \mathbb{R}^d$.
- Width \bar{m} & activation $\sigma(\cdot)$.
- For $X \in \mathbb{R}^d$ computes
 \[
 \sum_{1 \leq j \leq \bar{m}} a_j \sigma(w_j^T X), \quad \sigma \in \{\text{ReLU, SGM, Step}\}.
 \]
- Output weights, $a = (a_j : 1 \leq j \leq \bar{m})$. Outer norm: $\|a\|_1$.

Assumption (Non-Negativity)

$a_j \geq 0$ for $j \in [\bar{m}] \triangleq \{1, 2, \ldots, \bar{m}\}$.
Non-Negativity Assumption

Non-negativity of a_j:
- Employed often in literature
 - [GLM17, DKKZ20, LMZ20, DL18, SS18, ZYWG19, GKM18],\ldots
- Inherent to real data (e.g. audio, muscular activity) [SV17].
- Related to non-negative matrix factorization (NMF).

Non-Negative Matrix Factorization

Given: Non-negative $M \in \mathbb{R}^{n \times m}$ and an $r \in \mathbb{N}$.

Goal: Find non-negative $A \in \mathbb{R}^{n \times r}$, $W \in \mathbb{R}^{r \times m}$ s.t. $\|M - AW\|$ small.

Many applications of NMF:
- Info retrieval, document clustering, segmentation, demography, chemometrics,\ldots [AGKM16].
Setup and Distributional Assumptions

Given training data \((X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}, 1 \leq i \leq N\), find a NN with small \textit{training error}:

\[
\hat{\mathcal{L}}(a, W) \triangleq \frac{1}{N} \sum_{1 \leq i \leq N} \left(Y_i - \sum_{1 \leq j \leq m} a_j \sigma(w_j^T X_i) \right)^2.
\]

Run any training algorithm (e.g. GD, SGD, MD).

Assumption (Distributional)

\textit{Input/label} \((X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}, 1 \leq i \leq N, i.i.d.

- **Input:** \(\exists C > 0, \mathbb{P}(\|X\|_2^2 \leq Cd) \geq 1 - \exp(-\Theta(d))\).
- **Label:** \(\mathbb{E}[|Y|] \triangleq M < \infty\).

\(X\) need \textbf{not} have \textit{independent} coordinates. Real data have \textbf{bounded} labels \cite{DLL18}.
Overview

1 Motivation, Prior Work, and Setup

2 Contributions
 - Self-Regularity Results
 - Generalization Guarantees

3 Conclusion and Future Work
Self-Regularity: ReLU Networks

- **Activation**: $\text{ReLU}(x) = \max\{x, 0\} = (x + |x|)/2$.
- **Positive homogenenous**: $\forall c \geq 0, \text{ReLU}(cx) = c\text{ReLU}(x)$. WLOG, $\|w_j\|_2 = 1$.
- **Data** $(X_i, Y_i), 1 \leq i \leq N$, i.i.d. with $\inf_{w: \|w\|_2 = 1} \mathbb{E}[\text{ReLU}(w^T X)] \geq \mu^*$ and $\mathbb{E}[|Y|] = M < \infty$.

Fix $\delta > 0$ and $\overline{m} \in \mathbb{N}$. Set,

$$G(\overline{m}, \delta) \triangleq \left\{(a, W) \in \mathbb{R}_{\geq 0}^{\overline{m}} \times \mathbb{R}^{\overline{m} \times d} : \|w_j\|_2 = 1, 1 \leq j \leq \overline{m}; \hat{L}(a, W) \leq \delta^2 \right\}.$$

$G(\overline{m}, \delta)$: two-layer ReLU NN. Width \overline{m} & training error δ^2.

Set $G(\delta) \triangleq \bigcup_{\overline{m} \in \mathbb{N}} G(\overline{m}, \delta)$.

D. Gamarnik, E.C. Kızıldağ, I. Zadik (MIT, NYU)
Self-Regularity of Output Weights
July 2021 10 / 21
Self-Regularity: ReLU Networks

Theorem (Gamarnik, K., and Zadik, 2021)

We have

\[
\sup_{(a,W) \in \mathcal{G}(\delta)} \|a\|_1 \leq 4(\delta + 2M)(\mu^*)^{-1}.
\]

with probability at least

\[
1 - \left(12\sqrt{Cd}/\mu^*\right)^d \exp(-\Theta(N)) - N \exp(-\Theta(d)) - o_N(1).
\]

Suffices to have **near-linear** \(N = \Theta(d \log d)\).

- For any ReLU NN with small \(\hat{L}(a, W)\) (and \(a_j \geq 0\)), \(\|a\|_1 = O(1)\).
- Oblivious to **training** algorithm.
- Oblivious to **width** \(m\). Assume **teacher/student** setting:
 - Data \((X_i, Y_i)\) generated by a teacher NN.
 - Any student NN (potentially overparameterized) has \(\|a\|_1 = O(1)\), provided \(\hat{L}(\cdot)\) is small.
Probability term $o_N(1)$. Can be made explicit.

- $O(1/N)$: If $\mathbb{E}[Y^2] < \infty$
- $\exp(-\Theta(N))$: If $Y_i, 1 \leq i \leq N$ satisfies large deviations estimates.
- Dropped altogether, if $|Y| \leq M$ almost surely.

μ^* term:

$$\inf_{w: \|w\|_2 = 1} \mathbb{E}[\text{ReLU}(w^T X)] \geq \mu^*.$$

Suppose $X \overset{d}{=} \mathcal{N}(0, l_d)$. Suffices to take $\mu^* = 1/\sqrt{2\pi}$.
Self-Regularity: Sigmoid and Step Networks

- **Activations:** \(\text{SGM}(x) = 1/(1 + \exp(-x)) \) and \(\text{Step}(x) = \mathbb{1}\{x \geq 0\} \).
- Let \(\delta, R > 0 \) and \(m \in \mathbb{N} \).
- For \(\sigma = \text{SGM}(x) \), define
 \[
 S(m, \delta, R) = \left\{ (a, W) \in \mathbb{R}^m_{\geq 0} \times \mathbb{R}^{m \times d} : \max_{1 \leq j \leq m} \|w_j\|_2 \leq R, \widehat{\mathcal{L}}(a, W) \leq \delta^2 \right\}.
 \]
- For \(\sigma = \text{Step}(x) \), define
 \[
 \mathcal{H}(m, \delta) = \left\{ (a, W) \in \mathbb{R}^m_{\geq 0} \times \mathbb{R}^{m \times d} : \|w_j\|_2 = 1, 1 \leq j \leq m; \widehat{\mathcal{L}}(a, W) \leq \delta^2 \right\}.
 \]
- Set
 \[
 S(\delta, R) = \bigcup_{m \in \mathbb{N}} S(m, \delta, R) \quad \text{and} \quad \mathcal{H}(\delta) = \bigcup_{m \in \mathbb{N}} \mathcal{H}(m, \delta).
 \]
Theorem (Gamarnik, K., and Zadik, 2021)

With high probability, we have

\[
\sup_{(a, W) \in \mathcal{S}(\delta, R)} \|a\|_1 \leq 3(1 + e)(\delta + 2M) \quad \text{and} \quad \sup_{(a, W) \in \mathcal{H}(\delta)} \|a\|_1 \leq 2(\delta + 2M)\eta^{-1}.
\]

Same remarks apply. Additionally,

- **SGM** is not homogeneous: Control parameter \(R \), \(\max_j \|w_j\|_2 \leq R \).
- \(\|a\|_1 = O(1) \), even when \(R = \exp(\text{Poly}(d)) \) (if \(N = \text{poly}(d) \)).
- For \(X \sim \mathcal{N}(0, I_d) \), \(\eta = 0.3 \) suffices.

Other activations: **Softplus** (\(\ln(1 + e^x) \)), **Gaussian** (\(\exp(-x^2) \)), . . .
So far: Small $\hat{L} \implies$ Controlled $\|a\|_1$ (if $a_i \geq 0$ & $N = \text{Poly}(d)$).

Prior Work [BLW96, Bar98]: Controlled $\|a\|_1 \implies$ Good generalization.

- Through \textit{fat-shattering dimension (FSD)} [KS94]
- A (scale-sensitive) measure of complexity (of model class).
Generalization Guarantees: Fat-Shattering Dimension

Theorem (Bartlett, 1998 [Bar98])

Let $\mathcal{M} > 0$; $\sigma : \mathbb{R} \to [-\mathcal{M}/2, \mathcal{M}/2]$ be non-decreasing. Define sets:

$$F \triangleq \left\{ X \mapsto \sigma(w^T X + w_0) : w \in \mathbb{R}^d, w_0 \in \mathbb{R} \right\},$$

$$H(A) \triangleq \left\{ \sum_{j=1}^{m} a_j f_j : m \in \mathbb{N}, f_j \in F, \|a\|_1 \leq A \right\},$$

where $A \geq 1$. Then for $\gamma \leq \mathcal{M} A$,

$$\text{FSD}_{H(A)}(\gamma) \leq \tilde{O}(\mathcal{M}^2 A^2 d / \gamma^2).$$

$H(A)$: two-layer NN with outer norm at most A.

∴ Two-layer NN with bounded $\|a\|_1$ has “low complexity”.

D. Gamarnik, E.C. Kızıldağ, I. Zadik (MIT, NYU)
Self-Regularity of Output Weights
July 2021
Learning Setting

Data: \(\mathcal{D} \) on \(\mathbb{R}^d \times \mathbb{R} \). \((X_i, Y_i) \sim \mathcal{D}, 1 \leq i \leq N\) i.i.d.

Bounded \(Y_i \): \(|Y_i| \leq M\) almost surely.

Focus: Any \((a, W) \in \mathbb{R}_\geq 0^m \times \mathbb{R}^m \times d\) with small \(\hat{\mathcal{L}}(\cdot, \cdot)\):

\[
\hat{\mathcal{L}}(a, W) \triangleq \frac{1}{N} \sum_{1 \leq i \leq N} \left(Y_i - \sum_{1 \leq j \leq m} a_j \sigma(w_j^T X_i) \right)^2 \leq \delta^2.
\]

Use “learned” \((a, W)\) to predict unseen data. Quantified by Generalization Error:

\[
\mathcal{L}(a, W) \triangleq \mathbb{E}_{(X,Y) \sim \mathcal{D}} \left[\left(Y - \sum_{1 \leq j \leq m} a_j \sigma(w_j^T X) \right)^2 \right].
\]
Generalization Guarantee: Main Result

\(\mathcal{L}(\delta) \): placeholder for \(S(\delta, R) \) (SGM case), \(\mathcal{G}(\delta) \) (ReLU case), and \(\mathcal{H}(\delta) \) (Step case).

\(\alpha \): controls generalization gap \(|\hat{\mathcal{L}}(a, W) - \mathcal{L}(a, W)|. \)

Theorem (Gamarnik, K., and Zadik, 2021)

Let \(N = Poly(d, \alpha^{-1}) \). Then, with high probability over \((X_i, Y_i), 1 \leq i \leq N, \)

\[\sup_{(a, W) \in \mathcal{L}(\delta)} \mathcal{L}(a, W) \leq \alpha + \delta^2. \]

Shown by combining our outer norm bounds + [Hau92, BLW96, ABDCBH97, Bar98].

- Complication for ReLU: unbounded output. Consider saturated version.
- \(S-\text{ReLU}(x) = \text{ReLU}(x) \) for \(x \leq 1 \); and \(S-\text{ReLU}(x) = 1 \) for \(x > 1 \).
Overview

1 Motivation, Prior Work, and Setup

2 Contributions
 - Self-Regularity Results
 - Generalization Guarantees

3 Conclusion and Future Work
Main Contributions

Two-layer NN with ReLU, SGM, and Step activations.

Assume \(a_j \geq 0 \).

Self-Regularity:
- \(\|a\|_1 = O(1) \) w.h.p. for any \((a, W)\) achieving small \(\hat{L}(\cdot)\) (on \(N = \text{poly}(d) \) data).
- Independent of width and training algorithm.
- Mild data assumption. Elementary proof: \(\epsilon\)-net argument.

Generalization:
- Small \(\hat{L}(\cdot, \cdot) \) \(\implies\) \(\|a\|_1 = O(1) \implies \) Good Generalization.
Future Work

- **Different activations.**
- **Non-negativity necessary?:** Yes, strictly speaking.
 - Teacher network, m^* neurons.
 - Student network $\overline{m} \geq m^*$ neurons.
 - Introduce “sign cancellations”.
 - Zero training error, but unbounded outer norm.

- **Deeper networks?**
Thank you!
Noga Alon, Shai Ben-David, Nicolo Cesa-Bianchi, and David Haussler, *Scale-sensitive dimensions, uniform convergence, and learnability*, Journal of the ACM (JACM) **44** (1997), no. 4, 615–631.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang, *On exact computation with an infinitely wide neural net*, Advances in Neural Information Processing Systems, 2019, pp. 8139–8148.

Sanjeev Arora, Rong Ge, Ravi Kannan, and Ankur Moitra, *Computing a nonnegative matrix factorization—provably*, SIAM Journal on Computing **45** (2016), no. 4, 1582–1611.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang, *Stronger generalization bounds for deep nets via a compression approach*, arXiv preprint arXiv:1802.05296 (2018).
Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song, *A convergence theory for deep learning via over-parameterization*, International Conference on Machine Learning, PMLR, 2019, pp. 242–252.

Peter L Bartlett, *The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network*, IEEE transactions on Information Theory **44** (1998), no. 2, 525–536.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky, *Spectrally-normalized margin bounds for neural networks*, Advances in Neural Information Processing Systems, 2017, pp. 6240–6249.

Alon Brutzkus and Amir Globerson, *Globally optimal gradient descent for a convnet with gaussian inputs*, Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 605–614.
Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian, *Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks.*, Journal of Machine Learning Research **20** (2019), no. 63, 1–17.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal, *Reconciling modern machine-learning practice and the classical bias–variance trade-off*, Proceedings of the National Academy of Sciences **116** (2019), no. 32, 15849–15854.

Peter L Bartlett, Philip M Long, and Robert C Williamson, *Fat-shattering and the learnability of real-valued functions*, journal of computer and system sciences **52** (1996), no. 3, 434–452.

Yuan Cao and Quanquan Gu, *Generalization bounds of stochastic gradient descent for wide and deep neural networks*, Advances in Neural Information Processing Systems, 2019, pp. 10836–10846.
Ronan Collobert and Jason Weston, *A unified architecture for natural language processing: Deep neural networks with multitask learning*, Proceedings of the 25th international conference on Machine learning, ACM, 2008, pp. 160–167.

Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis, *Algorithms and sq lower bounds for pac learning one-hidden-layer relu networks*, Conference on Learning Theory, PMLR, 2020, pp. 1514–1539.

Simon S Du and Jason D Lee, *On the power of over-parametrization in neural networks with quadratic activation*, arXiv preprint arXiv:1803.01206 (2018).

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai, *Gradient descent finds global minima of deep neural networks*, arXiv preprint arXiv:1811.03804 (2018).
Gintare Karolina Dziugaite and Daniel M Roy, *Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data*, arXiv preprint arXiv:1703.11008 (2017).

Spencer Frei, Yuan Cao, and Quanquan Gu, *Algorithm-dependent generalization bounds for overparameterized deep residual networks*, Advances in Neural Information Processing Systems, 2019, pp. 14797–14807.

Surbhi Goel, Adam Klivans, and Raghu Meka, *Learning one convolutional layer with overlapping patches*, International Conference on Machine Learning, PMLR, 2018, pp. 1783–1791.

Rong Ge, Jason D Lee, and Tengyu Ma, *Learning one-hidden-layer neural networks with landscape design*, arXiv preprint arXiv:1711.00501 (2017).
Noah Golowich, Alexander Rakhlin, and Ohad Shamir, *Size-independent sample complexity of neural networks*, arXiv preprint arXiv:1712.06541 (2017).

David Haussler, *Decision theoretic generalizations of the pac model for neural net and other learning applications*, Information and computation 100 (1992), no. 1, 78–150.

Nick Harvey, Christopher Liaw, and Abbas Mehrabian, *Nearly-tight vc-dimension bounds for piecewise linear neural networks*, Conference on Learning Theory, 2017, pp. 1064–1068.

Moritz Hardt, Ben Recht, and Yoram Singer, *Train faster, generalize better: Stability of stochastic gradient descent*, International Conference on Machine Learning, PMLR, 2016, pp. 1225–1234.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, *Deep residual learning for image recognition*, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
Michael J Kearns and Robert E Schapire, *Efficient distribution-free learning of probabilistic concepts*, Journal of Computer and System Sciences 48 (1994), no. 3, 464–497.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, *Imagenet classification with deep convolutional neural networks*, Advances in neural information processing systems, 2012, pp. 1097–1105.

Yuanzhi Li and Yingyu Liang, *Learning overparameterized neural networks via stochastic gradient descent on structured data*, Advances in Neural Information Processing Systems, 2018, pp. 8157–8166.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang, *Learning over-parametrized two-layer neural networks beyond ntk*, Conference on Learning Theory, PMLR, 2020, pp. 2613–2682.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes, *Fisher-rao metric, geometry, and complexity of neural networks*, arXiv preprint arXiv:1711.01530 (2017).
Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hinton, *Acoustic modeling using deep belief networks*, IEEE transactions on audio, speech, and language processing 20 (2011), no. 1, 14–22.

Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng, *Generalization bounds of sgld for non-convex learning: Two theoretical viewpoints*, Conference on Learning Theory, PMLR, 2018, pp. 605–638.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro, *Exploring generalization in deep learning*, Advances in Neural Information Processing Systems, 2017, pp. 5947–5956.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro, *A pac-bayesian approach to spectrally-normalized margin bounds for neural networks*, arXiv preprint arXiv:1707.09564 (2017).
References IX

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro, *Norm-based capacity control in neural networks*, Conference on Learning Theory, 2015, pp. 1376–1401.

Itay Safran and Ohad Shamir, *Spurious local minima are common in two-layer relu neural networks*, International Conference on Machine Learning, PMLR, 2018, pp. 4433–4441.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al., *Mastering the game of go without human knowledge*, Nature 550 (2017), no. 7676, 354.

Paris Smaragdis and Shrikant Venkataramani, *A neural network alternative to non-negative audio models*, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 86–90.

Lei Wu, Zhanxing Zhu, et al., *Towards understanding generalization of deep learning: Perspective of loss landscapes*, arXiv preprint arXiv:1706.10239 (2017).
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, *Understanding deep learning requires rethinking generalization*, arXiv preprint arXiv:1611.03530 (2016).

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu, *Learning one-hidden-layer relu networks via gradient descent*, The 22nd International Conference on Artificial Intelligence and Statistics, PMLR, 2019, pp. 1524–1534.