Reducing Senior High School Students’ Misconceptions through Inquiry Learning Model on Thermochemistry Material

by Susilawati Susilawati

Submission date: 01-Jul-2020 11:44AM (UTC+0700)
Submission ID: 1352094994
File name: Artikel_Rama.pdf (537.4K)
Word count: 5146
Character count: 29177
Reducing Senior High School Students’ Misconceptions through Inquiry Learning Model on Thermochemistry Material

Maria Erna*, Susilawati, Ramadani
Chemistry Study Program, Universitas Riau, Indonesia

Abstract: Misconceptions is a serious problem faced by high school students. Through the application of inquiry learning model, this study tries to reduce students’ misconceptions, especially on thermochemical material. The experimental method with the pretest-posttest randomized control group design was used in this study. The samples of the research were 72 eleventh-grade high school students. The inquiry model was applied to the experimental class and the scientific approach was applied to the control class. The three-tier multiple choice with the Certainty of Response Index (CRI) was used to look at misconceptions experienced by the students. The results of the statistical calculation found that the $t_{calculated}$ was greater than $t_{critical}$. The reduction of misconception categories and the percentage reduction of misconceptions in the experimental class was 47.53 % in the medium category. Based on the results, it can be concluded that the inquiry learning model helped the students to overcome the misconceptions in thermochemical material. The researcher recommends that the inquiry learning model can be applied to other chemistry materials because their learning can help students find the correct concepts and reduce misconceptions.

INTRODUCTION

The world of education is required to improve the quality of education by creating effective and enjoyable learning (Irwanandi & Juariyia, 2016; Puspitasari et al., 2018; Sugiauwati, 2013). Education is the most important part of human life because education is a source of strength and truth to achieve the desired goals (Adam et al., 2017; F. K. Suri et al., 2016; Setiowati et al., 2015).

The Indonesian government, through the Ministry of Education and Culture, has implemented the 2013 curriculum in the 2014/2015 school year. It focuses on 3 aspects, namely knowledge, attitude, and skills (Anitasari et al., 2019; O. Kurniawan & Noviana, 2017; Puspitasari et al., 2018). The knowledge understanding and character education aspects are the basis for optimizing students’ skills (Khoiriyah & Erlian, 2017).

Learning is said to be successful if someone is doing the processes to be able to lead something in a better direction (Suwarto, 2013). Learning occurs when there is an interaction between teachers and students to realize the learning objectives (Rusman, 2012). According to Sanjaya (2010), teaching is a form of living conditions or environments that enable the learning process to take place.

Learning is said to be good if there is a reciprocal relationship between teachers and students (Budimingsih, 2012). Chemistry is one branch of natural science that covers the conceptual
understanding and algorithmic understanding (Andrianie et al., 2018; Lintong et al., 2018; M. W. Sari & Nasrudin, 2015; Zidny, 2013). Based on literature studies, it is known that in chemistry lessons, thermochemical material is among the hardest ones to be studied (Aswita et al., 2015; Dewi et al., 2018; Piawi et al., 2018; Sugiharti & Habeahan, 2018).

Thermochemistry is a combination of theory and calculation (Sugiawati, 2013) where a good conceptual and algorithmic understanding is needed. If students do not understand it, then they will face difficulties in solving problems that will lead them toward misconceptions. The misconception is concept interception through a statement that cannot be accepted in theory (Bayuni et al., 2018; Safirda et al., 2017; Shofiyah, 2017; Siswaniingsih et al., 2014; Soeharto et al., 2019; Wijaya et al., 2016). Misconceptions harm students’ learning outcomes in every subject (Khomaria & Nasrudin, 2016; Lintong et al., 2018; Wijaya et al., 2016). One of the causes of the low learning outcomes is the teachers who pay less attention to the difficulties and misconceptions experienced by students (Milenkovic et al., 2016; Suparno, 2013; Wijaya et al., 2016). The low learning outcomes are caused by the misconception of essential concepts (Astuti et al., 2016). Therefore, misconceptions must be addressed immediately because they are harmful to students (Bayuni et al., 2018; Soeharto et al., 2019; Wahyuningsih et al., 2013).

Misconceptions that often occur in thermochemical material are exothermic and endothermic reactions, the changes in decomposition enthalpy standards, the changes in enthalpy of combustion standards, Hess’s law, and energy bond (Astuti et al., 2016; Aswita et al., 2015). Sugiawati (2013) also states that the misconception on thermochemical material is contained in the concept of combustion enthalpy changes.

To overcome the misconceptions experienced by the students, the teachers must choose a learning model that can emphasize the process of critical and analytical thinking to help them see and find their own answers to a problem (Irwandani & Rofiah, 2015; Khomaria & Nasrudin, 2016). One learning model that emphasizes critical and analytical thinking processes is the inquiry learning model (Chong et al., 2017; Eppes et al., 2020; Hastuti et al., 2018; Pedaste et al., 2015; Puspitasari et al., 2018; Shofiyah, 2017). In this study, the inquiry learning model was applied to assist students in elaborating their thinking skills and building their knowledge independently (Eppes et al., 2020; Hastuti et al., 2018; Mulyana et al., 2018; Puspitasari et al., 2018). The effect of developing knowledge independently can make the information obtained by students during the learning process more meaningful and stored in their long-term memory (Aini & Dwiningsih, 2014).

Based on the results of chemical representation research, to reduce students’ misconceptions on redox material through the application of student worksheet-assisted guided inquiry learning model, it is known that the guided inquiry learning model can reduce students’ misconception by 39% and can improve their cognitive learning outcomes (Andrianie et al., 2018). Based on the results of research on the application of guided inquiry learning model equipped with student worksheets to improve students’ learning activities and achievement on the solubility material for the eleventh-grade students of SMA Negeri 1 Banyudono, it is known that the guided inquiry learning model can increase learning activities and achievement solubility with percentages of 80% and 84% (Setiowati et al., 2015).
Efforts to reduce students' misconceptions on thermochemical material in this research were done by applying the inquiry learning model where the students find their own answers to problems so they are logically, systematically, critically, and confidently developed (Hastuti et al., 2018; Puspitasari et al., 2018). The method used to identify students' misconceptions in this research was the three-tier multiple-choice diagnostic test (Bayani et al., 2018; Monita & Suharto, 2016; Soeharto et al., 2019; Wijaya et al., 2016; Zafiri et al., 2018). This diagnostic test was chosen because it can identify misconceptions experienced by students more deeply, can determine the parts of the material that require more emphasis when learning, and design better learning to help reduce students' misconceptions (Hasyim et al., 2018; Istiyani et al., 2018; Mubarak et al., 2016; Wijaya et al., 2016).

Based on the research results by Inaningdyah & Sugiarini (2018), it was found that the inquiry learning model can reduce students' misconceptions by 20% and can increase their understanding of concepts with an N-gain value of 0.43. The results of Shofiyyah (2017) showed that students' understanding of concepts increased from an average score of 21.3 to 68.3. Based on the data analysis using the N-gain score, it can be concluded that the application of the modified free inquiry model has a moderate effect on decreasing students' misconceptions on fluid material. Furthermore, the results of research by Fatmawati et al. (2018) show that the Inquiry-Based Learning Design model assisted by Semi-Soft Scaffolding affects the reduction of students' misconceptions on animal kingdom material by 14%.

This study was aimed to determine the magnitude of the reduction of students' misconceptions and the category of students' misconceptions on thermochemical material after the inquiry learning model had been applied. It is hoped that this research can prove that the inquiry learning model can reduce students' misconceptions, especially on thermochemical material. In contrast to previous studies, this study employed the three-tier multiple-choice diagnostic test to detect the students' misconceptions about thermochemical material.

METHOD

This research was conducted at SMA 4 Pekanbaru in the 2019/2020 academic year. The data were collected on April-September 2019. The population of the research was all students of the eleventh-grade of the XI MIPA class. The samples were randomly selected after they were declared homogeneous, namely class XI MIPA 4 as the experimental class with 36 students and class XI MIPA 2 as the control class with 36 students. The samples’ average age range was 15-16 years. The design of the experimental research was the pretest-posttest randomized control group design (Sugiyono, 2016). The steps of inquiry learning in thermochemical material can be seen in Figure 1.

Figure 1. Steps of Inquiry Learning Model
a. Data Collection

The steps of data collection were as follows: (1) during the pre-research, the researchers collected test scores of previous material i.e hydrocarbons material, (2) the pre-tests were administered to the students before the treatments on the thermochemical material were given, (3) after the treatments, the post-tests were administered to both classes. The data obtained were tested for normality and homogeneity.

b. Hypothesis Testing

1) Assessment

The criteria of multiple-choice questions scoring are as follows: point given to the correct answers of the level 1 and 2 was 1 and 0 for incorrect answers (Arikunto, 2013).

2) Grouping the data

The results of the misconception test were further grouped into four criteria as can be seen in Table 1. Then, the percentages of misconceptions for each student based on test data were calculated.

| Table 1. Students’ Conception Grouping Criteria |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Level 1 | Level 2 | Level 3 | Criterion |
| T | 22 | C | KC |
| T | T | NC | G |
| T | F | C | MC |
| T | F | NC | G |
| T | F | C | MC |
| F | F | NC | DKC |
| F | T | C | MC |
| F | T | NC | G |

(Y. Kurniawan & Suhandi, 2015; Monita & Suharto, 2016; Waluyo et al., 2019)

Note:

T = True
F = False
C = Confident
NC = Not Sure

KC = Group of students who know the concept
dKC = Groups of students who do not know the concept
MC = groups of students showing misconceptions
G = groups of students who guess the answers

3) Using t-test

The t-test proved the research hypothesis that the inquiry learning model can reduce students’ misconceptions on thermochemical material by using the following formula (Sugiyono, 2015).

\[t = \frac{x_1 - x_2}{s_{x} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]

with

\[s_{x}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \]

4) Determining the level of misconceptions categories

After calculating the percentage of misconceptions, then the extent of misconceptions category was determined as shown in Table 2.

Table 2. Misconceptions Category
Percentage
0 < misconception ≤ 30
30 < misconception ≤ 70
70 < misconception ≤ 100

(Y. Kurniawan & Suhandi, 2015)

RESULT AND DISCUSSION

Students’ diagnostic test results before treatment (pretest) and after treatment (posttest) can be seen in Figure 2.
Figure 2. Students’ Diagnostic Test Results

Based on Figure 2, there was an increase in students' misconceptions, from the misconception into the concepts, after the inquiry learning model had been applied. After administering the pre-test and post-test, the hypothetical test was conducted.

The hypothetical test was used to investigate the difference in misconception before and after the treatments. The results of the analysis of the hypothetical test can be seen in Table 3.

Classes	n	\(\Sigma X \)	\(\bar{X} \)	S	\(t_{observed} \)	\(t_{critical} \)	Description
Experiment	36	1694.42	47.07	4.10	8.81	1.67	Hypothesis is accepted
Control	36	1361.11	37.81				

Description:
- n = Number of students
- \(\Sigma X \) = Total misconceptions difference values before and after the treatments
- \(\bar{X} \) = The average difference values before and after the treatments
- S = Combined Standard deviation before and after treatment

Table 3 shows that the research hypothesis was accepted because it met the criteria of \(t > t_{critical} \) with \(df = n_1 + n_2 - 2 \), criteria probability \(1 - \alpha \) is 1.67. The calculation obtained that \(t_{observed} > t_{critical} \) (8.81 > 1.67) which means that the hypothesis was accepted.

The magnitude of the reduction of students' misconceptions on each item in the experimental and control classes can be seen in Figures 3 and 4. It can be seen that the trends of misconceptions decrease after treatments were administered, i.e., the misconceptions in post-tests have decreased although the decline in control classes was not as high as the experimental class. The percentage of students' misconception reduction in the experimental and control classes can be seen in Figure 5.
Figure 3. The Percentage of Misconceptions Reduction for Each Item in the Experimental Class

Figure 4. The Percentage of Misconceptions Reduction for Each Item in the Control Class

Figure 5. The Average Percentage of Students’ Misconceptions

1

48 | Tadris: Jurnal Keguruan dan Ilmu Tarbiyah 5 (1): 43-54 (2020)
The moderate reduction of misconceptions with a value of 47.53\% by applying the inquiry model was done to the eleventh-grade students on thermochemical material at SMA N 4 Pekanbaru. Overall, there was a reduction in misconceptions about each item and concept as can be seen in Figures 3 and 4. However, in calculating the enthalpy change based on Hess's law, there was a high misconception reduction, precisely in item number 14. Some students understood the concept that Hess's law determines the change of enthalpy in a reaction depends on the initial state and the final state of the reaction. Problem number 14 was mostly answered by choosing option B. After applying the inquiry model, students built appropriate concepts relevant to the question. Students can build their own understanding through activities where they are the center while the teacher acts as a facilitator so that the student learning process can be active (Andrianie et al., 2018).

The inquiry learning model was chosen to reduce misconceptions because its steps can build activeness and responsibility during the learning process and lead students to understand concepts. The guidance given can be in the form of questions and discussions. The steps in inquiry learning in thermochemical material are explained below (Shofiyah, 2017). The first step is an orientation where students are directed to be ready to learn. The teacher sets the classroom atmosphere so that learning can run conducive, explains the rules in the learning process, and explains the learning objectives. The second step is the formulation of the problem where the students are allowed to raise problems regarding thermochemical material. The ability that students must achieve in this step is that they can grasp the phenomena that occur regarding thermochemical material so that they can determine the priority of the problem and utilize their knowledge to study and analyze the problems.

This ability includes the change of words into other words (for example paraphrasing), images into words, words into images, numbers into words, and so on. Inquiry learning is one of the strategies that can help students formulate problems. Student activities include experimental activities in groups and discuss the observations in the form of data which is then interpreted in graphical form. Then, the students are guided to change the words into equations.

The third step is to formulate a hypothesis. The teacher encourages students to formulate a hypothesis based on the problem in the second step. In the process of formulating problems and formulating hypotheses, the students are required to provide many variations of answers and to generate ideas (Zanzibar et al., 2015). In this activity, students are given directions to provide hypotheses about thermochemical concepts. Next, the students are guided to be able to identify the main characteristics of a concept.

The fourth step is to collect data or information by reading books or literature and conducting experiments to test the truth of the hypotheses. In this step, the first and second meetings are focused on collecting the data by doing a practicum.

The fifth step is evaluating the hypothesis based on the data that has been collected in the fourth step. The students are asked to evaluate through the student worksheets whether the hypotheses are accepted or rejected. The work result of the student worksheet is then discussed. In the fifth step, the students are expected to be able to express one sentence that represents information or the abstract of the theme. This evaluation can be done when the students discuss the data that have been found.
The sixth step is to make conclusions. The students are guided by the teacher to draw conclusions based on hypotheses and use these conclusions to build concepts or theories. The conclusions should include a series of examples or events. Conclusions are formed when students can summarize the concept or principle that consists of a series of examples or events by drawing connections between the characteristics. Next, students work on the evaluation questions.

According to Suardana (2007), the inquiry learning process is oriented towards classroom activity. Students, as a learning center, explore their own knowledge. Activating students optimally in the process of assimilation and accommodation of knowledge and experience according to Piaget (Budiningisih, 2012). Through this inquiry learning model, the students can manage cognitive conflict through stages of inquiry so that scientific concepts are developed that can ultimately reduce and improve students’ misconceptions (Ratnaningdyah & Sugiarli, 2018).

The inquiry model activities require students to be active, discover for themselves a concept, and be involved in each step of the learning so that the understanding obtained becomes more meaningful as suggested by Sularso et al. (2017) and Trianto (2009) states that the inquiry learning model means a series of learning activities that maximally involve all students’ abilities to critically, logically, analytically, and systematically search and investigate so that they can formulate their own findings with confidence. In the inquiry model, students learn to work hard to bring out their full potential so that they could be more active (Yeritita et al., 2018).

The inquiry learning model encourages students to think and work on their own initiative. It can have a good influence on the learning process and can reduce misconceptions. In the inquiry learning, the students are demanded to find answers to a problem to increase their activity in learning. Through the application of the inquiry learning model, teachers are expected to be able to carry out learning activities that emphasize the students’ activeness in finding their own answers to a problem. If students can achieve the goals set by the teacher, the learning process is considered successful (Oemar, 2003; Putra et al., 2018).

CONCLUSION

Based on the results and discussion, it can be concluded that there was a moderate reduction in students’ misconceptions on thermochemical material by 47.53% after the inquiry learning model had been applied. The reduction of misconceptions occurred because the inquiry learning model facilitated the students to be accustomed to freely exploring their own learning resources to find the correct concepts of science. Based on the results of this study, an effective learning model was obtained to reduce misconceptions and it is hoped that the inquiry learning model can be applied to other chemistry materials.

REFERENCES

Adam, F. F., Gani, T., & Hasri. (2017). Pengaruh Model Pembelajaran dan Motivasi Belajar Terhadap Hasil Belajar Kognitif Peserta Didik Kelas XI Ipa Madrasah Aliyah Syekh Yusuf Sunggunjuna (Studi Pada Materi Larutan Asam dan Basa). Chemistry Education Review, Pendidikan Kimia PPs UNM, 1(1), 73–83.

Aini, K., & Dwiningsih, K. (2014). Penerapan Model Pembelajaran Inkuiri Dengan Hands On Minds On Activity Untuk Meningkatkan Hasil Belajar Siswa Pada Materi Pokok Termokimia. Journal of Chemical Education., 1(1), 99–105.

Andrianie, D., Sudarmi, & Wardani, S. (2018). Representasi Kimia Untuk
Mereduksi Miskonsepsi Siswa Pada Materi Redoks Melalui Penerapan Model Pembelajaran Inkuiri Terbimbing Berbantuan L.K.S. Chemistry in Education, 7(2), 69–76.

Anitasari, B., Winarti, A., & Rusmansyah. (2019). Media Simulasi PhET (Physics Education Technology) untuk Mereduksi Miskonsepsi Siswa pada Konsep Asam Basa. QUANTUM: Jurnal Inovasi Pendidikan Sains, 10(1), 8–15.

Arikunto, S. (2013). Manajemen Penelitian. PT Rineka Cipta.

Astuti, F., Redjeki, T., & Nuhayati, N. D. (2016). Identifikasi Miskonsepsi Dan Penyebabnya Pada Siswa Kelas XI MIA SMA Negeri 1 Sukoharjo Pada Materi Pokok Stoikimetri. Jurnal Pendidikan Kimia (JPK), 5(2), 10–17.

Aswita, Rusman, & Rahmayani, R. F. I. (2015). Identifikasi Kesulitan Siswa dalam Memahami Materi Termokimia dengan Menggunakan Three-Tier Multiple Choice Diagnostic Instrument di Kelas XI MIA 5 MAN MODEL Banda Aceh. Abstrak Pendahuluan. Jurnal Ilmiah Mahasiswa Pendidikan Kimia (JIMP) 2(1), 35–44.

Bayuni, T. C., Sopandi, W., & Sujana, A. (2018). Identification misconception of primary school teacher education students in changes of matters using a five-tier diagnostic test Identification misconception of primary school teacher education students in changes of matters using a five-tier diagnostic. 4th International Seminar of Mathematics, Science and Computer Science Education IOP Publishing, 1013. https://doi.org/10.1088/1742-6596/1013/1/012086

Budiningsih, A. (2012). Belajar Dan Pembelajaran. Rineka Cipta.

Chong, J. S. Y., Chong, M. S. F., Shahrrill, M., & Abdullah, N. A. (2017). Implementing Inquiry-Based Learning And Examining. Journal on Mathematics Education, 8(2), 157–164. https://doi.org/http://dx.doi.org/10.22342/jme.8.2.3964.157-164

Dewi, K. M., Suja, I. W., & Sastrawidana, I. D. K. (2018). Model Mental Siswa Tentang Termokimia. Jurnal Pendidikan Kimia Undiksha, 2(2), 45–52. https://doi.org/10.23887/jjkp.v2i2.21165

Eppes, T. A., Milanovic, I., & Wright, K. (2020). Improving Student Readiness for Inquiry-Based Learning: An Engineering Case Study. JIOE, 16(1), 4–17. https://doi.org/https://doi.org/10.399 1/jioe.v16i01.12051 Tom

Fatmawati, D. A., Ramli, M., & Yustin, R. (2018). Pengaruh Model Pembelajaran Inquiry Based Learning Design Berbantu Semi-Soft Scaffolding terhadap Reduksi Miskonsepsi Siswa pada Materi Kingdom Animahla The Influence of Inquiry Based Learning Design Model Aided Semi-Soft Scaffolding to Reduce Student Mis. 15.

Hastuti, P. W., Tiaran, V. A., & Nurita, T. (2018). The Influence Of Inquiry-Based Science Issues Learning On Practical Skills Of Junior High School Students In Environmental Pollution Topic. Jurnal Pendidikan IPA Indonesia, 7(2), 232–238. https://doi.org/10.15294/jpii.v7i2.14263

Hasyim, W., Suwono, H., & Susilo, H. (2018). Three-tier Test to Identify Students’ Misconception of Human Reproduction System. Jurnal Pendidikan Sains, 6(2), 48–54.

Irwanadi, I., & Juarih, S. (2016). Pengembangan Media Pembelajaran Berupa Komik Fisika Berbantuan Media Social Instagram sebagai Alternatif Pembelajaran. Jurnal...
Ilmiah Pendidikan Fisika Al-Biruni, 5(1), 33. https://doi.org/10.24042/jpifalbiruni.v5i1.103

Irwandani, & Rofiah, S. (2015). Pengaruh Model Pembelajaran Generatif Terhadap Pemahaman Konsep Fisika Pokok Bahasan Bunyi Peserta Didik MTS Al-Hikmah. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 4(2), 165–177. https://doi.org/10.24042/jpifalbiruni.v4i2.90

Istiyani, R., Muchyidin, A., & Rahardjo, H. (2018). Analisis miskonsepsi siswa pada konsep geometri menggunakan Three-Tier Diagnostic Test. Cakrawala Pendidikan, 37(2), 223–236.

Khoiriyah, N. K., & Erman. (2017). Profil Pereduksi Miskonsepsi Yang Dialami Oleh Siswa Setelah Penerapan Model Pembelajaran Conceptual Change Di SMPN 33. E-Jurnal Pensa, 5(3), 330–334.

Khomaria, I. N., & Nasrudin, H. (2016). Penerapan Model Pembelajaran ECIRR Untuk Mereduksi Miskonsepsi Pada Materi Kesetimbangan Kimia Kelas XI MIA di SMA Negeri 1 Pacet. Unesa Journal of Chemical Education, 5(1), 98–106.

Kurniawan, O., & Noviana, E. (2017). Penerapan Kurikulum 2013 dalam Meningkatkan Keterampilan, Sikap, dan Pengetahuan. 6, 389–396.

Kurniawan, Y., & Suhendi, A. (2015). The Three-Tier For Identification The Quantity of Student’s Misconception on Newton’s First Law. Journal Global Illuminators, 2, 313–319.

Lintong, K., Bialangi, N., & Pikoli, M. (2018). Pengaruh Penerapan Strategi Pogil Terhadap Reduksi Miskonsepsi Siswa Pada Konsep Redoks di SMA Negeri 1 Tapa. Jurnal Entropi, 13(2), 215–220.

Milenkovic, D. D., Hrin, T. N., Sgedinac, M. D., & Horvat, S. (2016). Development Of A Three-Tier Test As A Valid Diagnostic Tool For Identification Of Misconceptions Related To Carbohydrates. Journal Of Chemical Education, 93(9), 1514–1520.

Monita, F. A., & Suharto, B. (2016). Identifikasi Dan Analisis Miskonsepsi Siswa Menggunakan Three-Tier Multiple Choice Diagnostic Instrument Pada Konsep Kesetimbangan Kimia. QUANTUM, Jurnal Inovasi Pendidikan Sains, 7(1), 27–38.

Mubarak, S., Susilansingsih, E., & Cahyono, E. (2016). Pengembangan Tes Diagnostik Three Tier Multiple Choice Untuk Mengidentifikasi Miskonsepsi Peserta Didik Kelas XI. Journal of Innovative Science Education, 5(2), 101–110.

Mulyana, S., Rusdi, & Vivanti, D. (2018). The Effect Of Guided Inquiry Learning Model And Scientific Performance On Student Learning Outcomes. Indonesian Journal of Science and Education, 2(1), 105–109. https://doi.org/10.31002/ijose.v2i1.5

Oemar, H. (2003). Proses Belajar Mengajar. PT Bumi Aksara.

Pedaste, M., Macots, M., Siiman, L. A., Jong, T. de., Riesen, S. A., van, Kamp, E. T., Manoli, C. C., Zeharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

Piawi, K., Kalmar Nizar, U., & Mawardi. (2018). Development of student worksheet based on guided inquiry with class activity and laboratory in thermochemistry material. International Conferences on Education, Social Sciences and
Technology, ICESST 201(June), 669–673. https://doi.org/10.29210/20181100
Puspitasari, J. R., Ashadi, & Saputro, A. N. C. (2018). Penerapan Model Pembelajaran Inkuiri Terbimbing Belajar Pada Materi Reaksi Redoks Siswa Kelas X MIPA SMA Negeri 1 Teras Boyolali Tahun Pelajaran 2016 / 2017. Jurnal Pendidikan Kimia, 7(2), 208–216.
Putra, B. K. B., Prayitno, B. A., & Maridi. (2018). The Effectiveness Of Guided Inquiry And Instad Towards Students ‘ Critical Thinking Skills On Circulatory System Materials. Jurnal Pendidikan IPA Indonesia, 7(4), 476–482. https://doi.org/10.15294/jpii.v7i4.14302
Ratnaningdyah, D., & Sugarti. (2018). Mereduksi Jumlah Mahasiswa yang Mengalami Miskonsepsi Fisika pada Materi Listrik dengan Model Pembelajaran Inkuiri. Jurnal Inovasi Dan Pembelajaran Fisika (JIPF), 5(2), 175–180.
Rusman. (2012). Belajar Dan Pembelajaran Berbasis Computer (Mengembangkan Profesionalisme Guru Abad 21). PT Raja Grafindo Persada.
Safrida, S., Dewi, C. R., & Abdullah, A. (2017). Penggunaan Modul Dan Media Animasi Dalam Mengurangi Miskonsepsi Siswa Pada Materi Sistem. Jurnal Pencerahan, 11(1), 39–45. https://doi.org/10.13170/jp.11.1.8115
Sanjaya, W. (2010). Penelitian Pendidikan: Jenis, Metode Dan Prosedur. Kencana Prenada Media Grup.
Sari, F. K., Farida, & Syazali, M. (2016). Pengembangan Media Pembelajaran (Modul) berbantuan Geogebra Pokok Bahasan Turunan Fisika. 7(2), 135–152.
Sari, M. W., & Nasrudin, H. (2015). Penerapan Model Pembelajaran Conceptual Change Untuk Mereduksi Miskonsepsi Siswa Pada Materi Ikatan Kimia Kelas X SMA Negeri 4 Surabaya. UNESA Journal of Chemical Education, 4(2), 315–324.
Setiowati, H., S., N. C., & Es, W. A. (2015). Penerapan Model Pembelajaran Inkuiri Terbimbing (Guided Inquiry) Dilengkapi LKS Untuk Meningkatkan Aktivitas Dan Prestasi Belajar Siswa Pada Materi Pokok Keluaran Dan Hasil Kali Keluaran Kelas XI MIA SMA Negeri 1 Banyudono. Jurnal Pendidikan Kimia (JPK), 4(4), 54–60.
Shofiyah, N. (2017). Penerapan Model Pembelajaran Modified Free Inquiry untuk Mereduksi Miskonsepsi Mahasiswa pada Materi Fluida. Science Education Journal, 1(1), 19–28. https://doi.org/10.21070/sej.v1i1.836
Siswaningsih, W., Anisa, N., Komalasari, N. E., & R., I. (2014). Pengembangan Tes Diagnostik Two-Tier Untuk Mengidentifikasi Miskonsepsi Pada Materi Kimia Siswa SMA. Jurnal Pengajaran MIPA, 19(1), 117–127.
Socharto, Creso, B., Sarimanah, E., Dewi, F. I., & Sbari, T. (2019). A Review Of Students ‘ Common Misconceptions In Science And Their Diagnostic Assessment Tools. Jurnal Pendidikan IPA Indonesia, 8(2), 247–266. https://doi.org/10.15294/jpii.v8i2.18469
Suwardana, I. K. (2007). Penilaian Portofolio Dalam Pembelajaran Fisika Berbasis Inkuiri Terbimbing Di SMP Negeri 2 Singaraja. Jurnal Penelitian Dan Pengembangan Pendidikan, 1(2), 122–134.
Sugiawati, V. A. (2013). Penggunaan Strategi Konflik Kognitif dalam Pembelajaran TPS untuk Mereduksi
Miskonsepsi Siswa Pada Materi Termokimia. *Jurnal Nalar Pendidikan*, 1(1), 26–31.
Sugiharti, G., & Habeahan, B. J. W. (2018). Influence of Learning Model Using Laboratory and Numeric Ability to Student Learning Result on Thermochemical Material. *International Education Studies*, 11(5), 154–160. https://doi.org/10.5539/ies.v11n5p154

Sugiyono. (2015). *Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif dan R&D*. Alfabeta.
Sugiyono. (2016). *Metode Penelitian Pendidikan*. Alfabeta.
Sutarso, Sunarto, W., & Sarwanto, (2017). Understanding students’ concepts through guided inquiry learning and free modified inquiry on static fluid material. *International Journal of Science and Applied Science: Conference Series*, 2(1), 363–367. https://doi.org/10.20961/ijssacs.v2i1.16746

Suparno, P. (2013). *Miskonsepsi Dan Perubahan Konsep Dalam Pendidikan Fisika*. PT Grasindo.
Suwarto. (2013). Pengembangan Tes Diagnosis Dalam Pembelajaran. Pustaka Pelajar.
Trianto. (2009). *Model Pembelajaran Terpadu Dalam Teori Dan Praktek*. Prestasi Pustaka.
Wahyuningsih, T., Raharjo, T., & Masithoh, D. F. (2013). Pembuatan instrumen Tes Diagnosis Fisika SMA Kelas XI. *Jurnal Pendidikan Fisika*, 1(1), 111–117.
Waluyo, E. M., Muchyidin, A., & Kusmanto, H. (2019). Analysis of Students Misconception in Completing Mathematical Questions Using Certainty of Response Index (CRI v). *Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah*, 4(1), 27–39. https://doi.org/10.24042/tadris.v4i1.2988
Wijaya, C. P., H. S. K., & Muhurjdito. (2016). The Diagnosis Of Senior High School Class X MIA B Students Misconceptions About Hydrostatic Pressure Concept Using Three-Tier. *Jurnal Pendidikan IPA Indonesia*, 5(1), 14–21. https://doi.org/10.15294/jpii.v5i1.5784
Yeritia, S., Wahyudi, & Rahayu, S. (2018). Pengaruh Model Pembelajaran Inkuiri Terbimbing Terhadap Penguasaan Konsep Dan Kemampuan Berpikir Kritis Fisika Peserta Didik Kelas X SMAN 1 Kuripan Tahun Ajaran 2017/2018. *Jurnal Pendidikan Fisika Dan Teknologi*, 3(2), 181–187.
Zafitri, R. E., Fitriyanto, S., & Yahya, F. (2018). Pengembangan Tes Diagnostik Untuk Miskonsepsi Pada Materi Usaha Dan Energi Berbasis Adobe Flash Kelas XI Di MA NW Samawa Sumbawa Besar Tahun Ajaran 2017/2018. *JURNAL KEPENDIDIKAN*, 2(2), 19–34.
Zanzibar, M., Surtikanti, H. K., & Kunci, K. (2015). Penerapan Model Pembelajaran Inkuiri Terbimbing Melalui Kegiatan Field Trip ke Bangka Botanical Garden (BBG) Untuk Meningkatkan Keterampilan Berpikir Kreatif Siswa. *Prosidings Simposium Nasional Inovasi Dan Pembelajaran Sains*, 601–604.
Zidny, R. (2013). Analisis Pemahaman Konsep Peserta Didik Sma Kelas X Pada Materi Persamaan Kimia Dan Stoikiometri Melalui Penggunaan Diagram Submikroskopik Serta Hubungannya Dengan Kemampuan Pemecahan Masalah. *Jurnal Riset Dan Praktik Pendidikan Kimia*, 1(1), 27–36.
Reducing Senior High School Students’ Misconceptions through Inquiry Learning Model on Thermochemistry Material

ORIGINALLITY REPORT

19% SIMILARITY INDEX
10% INTERNET SOURCES
15% PUBLICATIONS
% STUDENT PAPERS

PRIMARY SOURCES

1. "The Effects of the ECIRR Learning Model on Mathematical Reasoning Ability in the Curriculum Perspective 2013: Integration on Student Learning Motivation", European Journal of Educational Research, 2020

2. Johar Maknun. "Implementation of Guided Inquiry Learning Model to Improve Understanding Physics Concepts and Critical Thinking Skill of Vocational High School Students", International Education Studies, 2020

3. ejournal.unsri.ac.id

4. digilib.unimed.ac.id

5. M Arifuddin, M Aslamiah, M Misbah, D Dewantara. "The implementation of guided inquiry model on the subject matter harmonious
| | Title | Authors | Internet Source | Percentage |
|---|---|---|--------------------------------|------------|
| 6 | vibration"; Journal of Physics: Conference Series, 2020 | K Aini, Hobri, A C Prihandoko, D Yuniar, A K A Faozi, Asmoni. | ojs.umsida.ac.id | 1% |
| 7 | "The students’ mathematical communication skill on caring community-based learning cycle 5E"; Journal of Physics: Conference Series, 2020 | K Aini, Hobri, A C Prihandoko, D Yuniar, A K A Faozi, Asmoni. | Internet Source | 1% |
| 8 | Sudding, Taty Sulastry, Anugrah Alam. "The effect of prompting question on students’ worksheet - based on guided inquiry towards students’ learning achievement and activity of class X MIA of MA Negeri 1 Makassar (study on electrolyte and nonelectrolyte solution)"; Journal of Physics: Conference Series, 2019 | Sudding, Taty Sulastry, Anugrah Alam. | garuda.ristekdikti.go.id | 1% |
| 9 | Sudding, Taty Sulastry, Anugrah Alam. "The effect of prompting question on students’ worksheet - based on guided inquiry towards students’ learning achievement and activity of class X MIA of MA Negeri 1 Makassar (study on electrolyte and nonelectrolyte solution)"; Journal of Physics: Conference Series, 2019 | Sudding, Taty Sulastry, Anugrah Alam. | Internet Source | 1% |
| 10| H J Duda, F R E Wahyuni, A E Setyawan. "Misconception of the biology education students on the concepts of fermentation"; Journal of Physics: Conference Series, 2020 | H J Duda, F R E Wahyuni, A E Setyawan. | Internet Source | 1% |
| | | A Halim, E Mahzum, Zanaton, H Humairah. | | |
| | Title | Source |
|---|--|---|
| 11| Impact of the interactive media on reducing misconceptions of static fluid in high school students | Journal of Physics: Conference Series, 2020
Publication |
| 12| mafiadoc.com | Internet Source |
| 13| A N W Priyadi, H Kuswanto, Sumarna. "Android physics comics to train the mathematical representation ability on momentum and impulse of senior high school students" | Journal of Physics: Conference Series, 2020
Publication |
| 14| www.neliti.com | Internet Source |
| 15| Haratua Tiur Maria Silitonga, Erwina Oktavianty, Jamilah Jamilah, Masti Panjaitan. "THE APPLICATION OF GENERATIVE LEARNING MODEL BASED ON REMEDIAL INTEGRATION IN REDUCING STUDENT MISCONCEPTIONS" | Jurnal Pendidikan Matematika dan IPA, 2020
Publication |
| 16| "The Effectiveness of STEM-Based on Gender Differences: The Impact of Physics Concept Understanding" | European Journal of Educational Research, 2019
Publication |
S Latifah, I Irwandani, A Saregar, R Diani, O Fiani, W Widayanti, U A Deta. "How the Predict-Observe-Explain (POE) learning strategy remediates students’ misconception on Temperature and Heat materials?", Journal of Physics: Conference Series, 2019

Purwanti Wulandari Hastuti, Insih Wilujeng, Susilowati. "Creative Learning Model Toolkit: An Essential Element of Science Learning to Develop Learning Skills in Students", Journal of Physics: Conference Series, 2019

L E W Fajari, Sarwanto, Chumdari. "Influence of PBL-based multimedia and learning motivation on students’ critical-thinking skills in elementary schools", Journal of Physics: Conference Series, 2020

Ju, Liwei, Zhongfu Tan, Huanhuan Li, Qingkun Tan, Xiaobao Yu, and Xiaohua Song. "Multi-
objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China", Energy, 2016.

Ida Kaniawati, Sri Rahmadiani, Nuzulira Janeusse Fratiwi, Iyon Suyana, Agus Danawan, Achmad Samsudin, Endi Suhendi. "An Analysis of Students’ Misconceptions on the Implementation of Active Learning of Optics and Photonics Approach Assisted by Computer Simulation", International Journal of Emerging Technologies in Learning (iJET), 2020

M Taufiq, S Muntamah, P Parmin. "Remediation of misconception on straight line motion concept using guided inquiry model assisted by student worksheet based on science technology engineering and mathematics (STEM) on junior high school students", Journal of Physics: Conference Series, 2020

 journal.unnes.ac.id
Page	Internet Source	Website	<1%												
27		worldwidescience.org	<1%		Hsien-Sheng Hsiao. "A Five-Stage Prediction-Observation-Explanation Inquiry-Based Learning Model to Improve Students’ Learning Performance in Science Courses", EURASIA Journal of Mathematics, Science and Technology Education, 2017	<1%		A S U Putra, I Hamidah, Nahadi. "The development of five-tier diagnostic test to identify misconceptions and causes of students’ misconceptions in waves and optics materials", Journal of Physics: Conference Series, 2020	<1%		Astuti Wijayanti, Laily Rochmawati Listiyani. "Meningkatkan motivasi mahasiswa calon guru IPA melalui cooperative learning tipe take and give berbantuan mind mapping", JIPVA (Jurnal Pendidikan IPA Veteran), 2019	<1%		U. Hijriyah, E. Pratiwi, A. Susanti, W. Anggraini, A. P. Febriani. "The Effect of Problem Posing Type Post-Solution Posing Learning Model on Self-regulation Skills and Science Process Skill	<1%
of the Tenth-grade Students of Islamic Senior High School Kebumen, Tanggamus" , Journal of Physics: Conference Series, 2020