Detection of virus-specific polymeric immunoglobulin A in acute hepatitis A, C, E virus serum samples using novel chimeric secretory component

Khayriyyah Mohd Hanafiah1,2,3*, Mary L. Garcia1, Nadine C. Barnes1 and David A. Anderson1,4

Abstract
Objective: To conduct a proof-of-concept study on preferential binding of polymeric IgA (pIgA) using a novel recombinant rabbit/human chimeric secretory component (cSC) and preliminary assessment of the diagnostic potential of virus-specific pIgA in discriminating acute hepatitis A, E, and C (HAV, HEV, HCV) patients and uninfected controls using an indirect enzyme-linked immunoassay.

Results: cSC binds > 0.06 μg/ml of purified human and mouse pIgA with negligible cross-reactivity against IgM and IgA. Virus-specific pIgA was significantly higher in serum of acute HAV (n = 6) and HEV (n = 12) patients than uninfected samples (HEV: p < 0.001; HAV: p = 0.001), and had low correlation with virus-specific IgM (HEV r: −0.25, 95% CI −0.88 to 0.71, p = 0.636; HAV r: 0.05, 95% CI −0.54 to 0.60, p: 0.885). Anti-HCV pIgA peaked early in HCV seroconversion panels (n = 14), and was undetectable after 4 weeks post-primary bleed, even in ongoing infections, while serum anti-HCV IgA, IgG and IgM persisted. Patients with early acute HCV infection had significantly higher levels of anti-HCV pIgA compared to those with chronic infections (p < 0.01). The use of novel cSC demonstrates the presence of virus-specific pIgA in sera of patients with acute HAV, HEV, and HCV infection, and posits its potential utility as a diagnostic biomarker that warrants further validation on larger sample populations.

Keywords: Polymeric immunoglobulin A, Polymeric immunoglobulin receptor, Secretory component, Biomarkers, Serodiagnostics, Hepatitis A virus, Hepatitis E virus, Hepatitis C virus

Introduction
Viral hepatitis contributes significant global disease burden [1]. Hepatitis A and hepatitis E viruses (HAV, HEV) are enterically transmitted but replicate in and cause acute inflammation of the liver [2, 3], while parenterally transmitted hepatitis C virus (HCV) causes chronic hepatitis in 75–85% of infected individuals [4]. These infections begin and/or persist in mucosal tissues where polymeric immunoglobulin (Ig) A (pIgA) is the predominant antibody produced [5–7]. PlgA is transported by the polymeric immunoglobulin receptor (pIgR) to the epithelial surface where the pIgA-bound secretory component (SC) of pIgR is cleaved, releasing secretory IgA (SIgA) [5, 8–10]. Anti-HAV and anti-HEV IgA have been reported in the acute phase of disease [2, 3], but the proportion of pIgA is unknown. Anti-HCV IgM cannot discriminate chronic from acute HCV infections; and IgG cannot discriminate current from past HCV infections, and less is known on the role of anti-HCV IgA. With HEV being recognised as an emerging disease in industrialized countries [11, 12], chronic HCV causing of mortality from liver cancer and cirrhosis worldwide [1] and HAV a major source of food-borne outbreaks [13], there is interest in improved biomarkers to diagnose these infections.

*Correspondence: kye@usm.my; kye.mohdhanafiah@burnet.edu.au
1 School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
Full list of author information is available at the end of the article

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons License, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
While entirely polymeric in most animals, only 1–15% of human serum IgA is plgA, the rest is monomeric [14–18]. Previous studies of antigen-specific plgA in human disease relied on gel filtration to separate plgA [19, 20]—cumbersome for translational studies of immune responses. Consequently, the role of plgA as a diagnostic biomarker remains underexplored. In this study, a recombinant chimeric SC (cSC) was expressed based on described methods [21–23], and a novel enzyme-linked immunoassay (ELISA) was designed to enable preferential binding of low amounts of pIgA present in patient sera (∼0.2 mg/ml dIgA versus ∼1 mg/ml IgM). Using the cSC-based ELISA, plgA responses in HAV, HCV, HEV infections were examined as proof-of-concept for serodiagnostic application in viral hepatitis.

Main text

Materials and methods

Sample population

ELISA-confirmed anti-HEV IgM+ acutely infected (n=6) and uninfected sera (n=8) were from a Nepalese prison study (Dr IL Shrestha, Siddhi Polyclinic), and anti-HAV IgM+ acutely infected (n=12) and healthy sera (n=4) were commercially sourced (BBI Diagnostics, SeraCare; West Bridgewater, MA) and from Alfred Hospital, respectively. HCV ribonucleic nucleic acid (RNA)-confirmed early incident seroconversion panels (n=14), patients chronically infected/RNA+ >6 months (n=5), patients who spontaneously cleared HCV after 6 months/late clearers (n=5) and uninfected/RNA− controls (n=5) were from the HITS-i cohort study [24] (Professor Andrew Lloyd) and commercially sourced (n=5) (BBI diagnostics). Samples were de-identified and analyzed anonymously, with approval from the Alfred Ethics Committee (581/14).

Cloning and expression

Soluble cSC, 6XHistidine-tagged cSC (cSC-His) and human CD4 cytoplasmic domain (D)-containing cSC (cSC-CD4), human SC (hSC-CD4) and rabbit SC (rSC-CD4) were expressed using modified published methods [22]. The hSC and rSC sequences were obtained from Genebank NM_002644.3 and X00412.1, respectively. Chimera of rSC-D1/hSC-D2-D5 were generated by splice overlap extension polymerase chain reaction with primers that introduced silent mutations in D1/D2 overlaps, followed by rSC/hSC-D1 exchange using EcoRI and SalI restriction digestion, and cloning in eukaryotic expression vector pCDNA3.1 Zeo (Invitrogen; San Diego, CA). Constructs were confirmed by DNA sequencing. Human embryonic kidney 293T (HEK293T) cells [25] were grown in Dulbecco's Modified Eagle Medium (DMEM)-GlutaMAX, 2.5% foetal calf serum (FCS), 100 U/ml Penicillin and 100 μg/ml Streptomycin (Invitrogen; San Diego, CA). HEK293T cells were transfected with plasmid encoding rSC-D1/hSC-D2-D5 using Lipofectamine 2000 (Invitrogen; San Diego, CA) based on manufacturer's protocol, plus 25 ml DMEM-GlutaMAX+10% FCS+1% Penicillin/Streptomycin. The cSC-containing supernatants were harvested 48–72 h post-transfection and centrifuged to remove cells.

Gel and western blot

Samples mixed with 2xLaemmli reducing loading buffer, boiled, and electrophoresed in 4–15% Mini-Protein TGX precast polyacrylamide gel (BioRad; Hercules, California) for 40 min at 150 V were dry-blotted to nitrocellulose membranes using iBlot® (Life Technologies; Carlsbad, California). Membranes were incubated rolling in 5% skim milk in phosphate buffered saline (PBS)-0.05% Tween-20 (Amresco; Solon, OH) for 1 h at RT, then in mouse monoclonal anti-human SC (1 μg/ml) (Abcam; Abingdon, UK) at 4 °C overnight, then in horseradish peroxidase (HRP)-labelled anti-mouse Ig (1:1000) (Dako; Glostrup, Denmark) for 1 h at RT and finally in Luminata Forte Western HRP Substrate (Millipore; Massachusetts, USA) for 1 min at RT before imaging (CL-Xposure Film, Thermo Scientific; Illinois, USA). Membranes were washed thrice in PBS-0.05% Tween-20 between incubations.

ELISA

Purified human IgA dimer (dIgA) (Nordic-MUbio; Susteren, Netherlands), mouse plgA (in-house, 3H1-hybridoma [26]), human IgM (Millipore; Billerica, MA), or human IgA serum standard (Nordic-MUbio; Susteren, Netherlands) at 1 μg/ml in pH9 carbonate/bicarbonate buffer diluted four-fold to 0.0625 μg/ml were incubated on 96-well Medisorp Nunc microtiter plates (Thermo Scientific; Waltham, MA) overnight at 4 °C. HRP-labelled polyclonal donkey anti-sheep (Jackson ImmunoResearch; Suffolk, UK) (1:5000) were added and incubated for 30 min at 37 °C. Alternatively, microtiter plates were coated with cSC-CD4 (1:5), incubated overnight at 4 °C and blocked for 1 h at 37 °C to capture aforementioned purified antibodies, followed by HRP-labelled goat anti-human IgA (Abcam; Abingdon, UK) (1:10,000), HRP-labelled anti-human IgM (Millipore;
Commercial anti-HEV IgM (MP Diagnostics, Singapore) and anti-HCV IgG (Monolisa HCV Plus v2, Biomin-Rad; Hercules, California) ELISAs were run according to manufacturer’s protocol and using in-house protocols to detect anti-HEV plgA, IgA and IgM as described earlier. For anti-HEV and anti-HCV plgA, sera/plasma were diluted 1:21 or 1:5, respectively, in cSC (1:5) for 1 h, then added to antigen pre-coated wells and incubated overnight at 4 °C. For anti-HCV IgA and IgM detection, plasma samples (1:5) were incubated for 1 h at 37 °C. For anti-HEV and anti-HCV pIgA, sera/plasma were diluted 1:21 or 1:5, respectively, in cSC (1:5) for 1 h, then added to antigen pre-coated wells and incubated overnight at 4 °C. For anti-HCV IgA and IgM detection, plasma samples (1:5) were incubated for 1 h at 37 °C. For anti-HAV pIgA, cSC-CD4 (1:5) or goat anti-human IgM (Jackson Immunoresearch; West Grove, PA) coated microtiter plates were incubated overnight at 4 °C, washed, blocked and sera samples (1:40 for plgA; 1:80 for IgM) were added to washed plates and incubated overnight at 4 °C. 1 μg/ml HAV pHM-175 antigen (Meridian Life Science; Memphis, TN) was added and incubated for 1 h at 37 °C, then anti-HAV K3-biotin and anti-human IgA1-biotin (Millipore; Billerica, MA) (1:1000) for 1 h at 37 °C. HRP-labelled streptavidin (Millipore; Billerica, MA) (1:2000) was added and incubated for 1 h at 37 °C.

All assays were run with samples in duplicate, 100 μl/well/incubation and blocked with 200 μl/well/of 1% Bovine Serum Albumin (Sigma-Aldrich; St. Louis, MO)-PBS-0.05% Tween-20, washed thrice with 350 μl/well PBS-0.05% Tween-20, developed with 3,3,5,5′-Tetramethylbenzidine (KPL; Gaithersburg, MD), stopped with 0.5 M H2SO4 (Sigma-Aldrich; Steinheim, Germany) and read at 450/620 nm.

Sera IgM-depletion
To demonstrate that the reactivity observed in cSC assays was not due to cross-reactive IgM, HEV+ sera samples were IgM-depleted using Capture Select™ agarose microbeads following manufacturer’s protocol (Life Technologies; Naarden, The Netherlands).

Liver enzymes
Alanine and aspartate aminotransferases (ALT and AST) were measured on Samsung LABGEO Biochemistry Test 15 (Samsung; Gyeonggi-do, Korea) according to manufacturer’s protocol.

Statistical analysis
Signal-to-cut-off ratios (S/Co) were calculated using two standard deviations (SD) from mean of uninfected samples. Welch’s t-test was used to analyze cSC binding of different antibodies and Chi-square test for comparison of avidity. Mann–Whitney U test and Pearson correlation analysis were performed to compare antibody reactivity between acute samples and uninfected controls; the Wilcoxon test for non-parametric paired analysis was conducted to determine effect of IgM-depletion on virus-specific plgA and IgM reactivity in acute samples. Antibody profiles over time were analyzed by Friedman’s non-parametric two-way ANOVA for repeated measures. Analyses were conducted in Microsoft Excel, Stata-11 (StataCorp LP; College Station, TX) and GraphPad Prism-6 (GraphPad Software; La Jolla, CA). p < 0.05 was considered statistically significant.

Results

cSC selectively binds plgA

cSC binds >0.06 μg/ml of purified human and mouse dIgA with negligible cross-reactivity against purified IgM and human IgA, while hSC retains IgM-binding with high reactivity (Fig. 1a–c). Immobilized cSC does not bind mouse dIgA, likely from steric hindrance arising from immobilization. Recombinant SCs are detectable by anti-human SC on immunoblot (Fig. 1d).

Anti-HEV and anti-HAV plgA

Individuals with acute HEV and HAV infection have significantly higher levels of anti-HEV and anti-HAV plgA, respectively, compared to uninfected controls (HEV: p < 0.001; HAV: p = 0.001) (Fig. 2a). Levels of anti-HEV and anti-HAV plgA were comparable to anti-HEV and anti-HAV IgM, but with higher background reactivity from uninfected samples observed for IgM. In particular for HAV, an uninfected control immunized with intramuscular HAV vaccine 2 weeks prior (C0704), exhibits high reactivity for anti-HAV IgM but negligible reactivity for anti-HAV plgA. The low correlation between virus-specific plgA and IgM in acute infection samples for both HEV and HAV (HEV r: −0.25, 95% CI −0.88 to 0.71, p = 0.636; HAV r: 0.05, 95% CI −0.54 to 0.60, p: 0.885) suggests that plgA production is independent of IgM in acute phase response, and may have higher diagnostic potential based on higher S/Co observed (Fig. 2b). While IgM-depleted samples have slight reduction of anti-HEV plgA (paired test p = 0.016; unpaired test p = 0.394), anti-HEV IgM is undetectable after IgM-depletion (paired test p = 0.007; unpaired test p = 0.002) (Fig. 2c), supporting the plgA-specific nature of the cSC.

Anti-HCV plgA serological profile over time

Anti-HCV IgG increased over time and was higher in later timepoints and in patients who were chronically infected or cleared the infection after 6 months.
Anti-HCV pIgA declined over time even in ongoing infections—unlike anti-HCV IgA and ALT, which may persist, as observed in panel 901 and 400062 (Fig. 3a). Anti-HCV pIgA and IgA in acutely infected individuals were significantly higher at week-0 (p: 0.003), week-2 (p: 0.006) and week-4 (p: 0.022) post-1st bleed compared to chronically infected individuals. In contrast, anti-HCV IgG is significantly lower in acutely infected individuals at week-0 (p < 0.001), week-2 (p < 0.001), and week-4 (p: 0.014) compared to chronically infected individuals (Fig. 3b). These observations suggest that pIgA is produced predominantly during the acute phase even for infections that may progress to chronicity.

Discussion

Previous detection of antigen-specific pIgA in serum of individuals infected with rubella, measles and varicella required physical separation of pIgA from IgA [19], and did not assess diagnostic potential. This study highlights use of recombinant cSC for measuring serum pIgA by ELISA (including in zoonotic hosts as binding is conserved among tetrapods [27]), and virus-specific pIgA as a novel biomarker of acute hepatotrophic infections. Data from patients with acute HAV, HCV and HEV infection suggests: (1) virus-specific pIgA is detectable in patients during the acute phase of infection (Fig. 2); (2) transient profile of serum anti-HCV pIgA may differ from total anti-HCV IgA, and discriminate acute from chronic HCV infections (Fig. 3b); (3) anti-HEV pIgA is not correlated with and has higher specificity than anti-HEV IgM; and (4) anti-HAV pIgA is undetectable in HAV-vaccinated individual and may be more specific to natural infection.

Anti-HEV IgA is reportedly a potential marker of acute HEV infection [28–30], although it persists >30 days longer than IgM [29]. In contrast, pIgA is
known to have a shorter half-life in serum [31], which may serve as a better marker of recent infection. Unlike anti-HCV IgM, detectable in 51–82% of patients after 6 months and beyond [32, 33], data from HCV seroconversion panels suggest that plgA detected in acute phase is transient, even in an ongoing infection. Low correlation between virus-specific IgM and plgA and varying propensity of antibody-isotype response observed may relate to the duration of infection, and/or to the proportion of antigens circulating systemically or localized to the liver [34]. Detection of virus-specific plgA may complement existing ELISA and rapid immunochromatographic assays for acute viral hepatitis infections [35, 36], which merits further investigation.

Limitations

Although highly dynamic, the source of serum virus-specific plgA, either from mucosal production [37, 38] or produced in sudden response to antigens [31, 39–41], remains contentious. Serodiagnostic measure of plgA used limited numbers of samples and controls, and without a standard curve. Application in
other diseases of interest may depend on the route of transmission and the major site(s) of pathogen replication, with limited diagnostic use in patients with IgA nephropathy glomerulonephritis due to increased production of antigen-specific plgA [42, 43]. The signal of anti-HCV plgA in these samples was low compared to anti-HEV and anti-HAV plgA, but may be amplified through biotinylation.
Abbreviations
ALT: alanine transferase; AST: aspartate aminotransferases; cSC: chimeric secretory component; D: domain; dIgA: dimeric immunoglobulin A; DMEM: Dulbecco’s Modified Eagle Medium; ELISA: enzyme-linked immunosassay; HAV: hepatitis A virus; HCV: hepatitis C virus; HEK: human embryonic kidney; HDV: hepatitis E virus; HP: horseradish peroxidase; hSC: human secretory component; Ig: immunoglobulin; PBS: phosphate buffered saline; pIgA: polymeric immunoglobulin A; pIgR: polymeric immunoglobulin receptor; RNA: ribonucleic acid; rSC: rabbit secretory component; S/Co: signal-to-cut-off; SC: secretory component; SD: standard deviation; SigA: secretory immunoglobulin A.

Authors’ contributions
DA designed the study; NB performed cloning and expression. MG, and KMH performed assays. KMH analyzed data and prepared manuscript. All authors read and approved the final manuscript.

Author details
1 Life Sciences, Macfarlane Burnet Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia. 2 Department of Immunology, Monash University, 86 Commercial Road, Melbourne, VIC 3004, Australia. 3 School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia. 4 Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.

Acknowledgements
We thank Rosemary Ffrench for critical input, Andrew Lloyd, IL Shrestha, Suzy Teutsch and Hui Li for sera samples, and Yenny Webb-Vargas for biostatistical advice.

Competing interests
The authors are named on a patent related to the chimeric secretory component (PCT/AU2013/001291).

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Use of archived sera samples were de-identified and analyzed anonymously, with approval from the Alfred Ethics Committee (381/14), Alfred Health, Melbourne, Victoria, Australia.

Funding
The authors would like to acknowledge the contribution of the Victorian Operational Infrastructure Support Program (Department of Health, Victoria, Australia) to the Burnet Institute. There are no other specific funding for this study.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 August 2018 Accepted: 27 September 2018 Published online: 01 October 2018

References
1. Stanaway JF, Flaxman AD, Naghavi M, Fitzmaurice C, Vos T, Abubakar I, Abu-Raddad LJ, Assadi R, Bhaula N, Cowie B, Forouzanfar MH, Groeger J, Mohd Hanafiah K, Jacobsen K, James SL, MacLachlan J, Malekzadeh R, Martin NK, Mokdad AA, Mokdad AH, Murray CJ, Dass P, Rana S, Rein DB, Hendrik Richardus J, Sanabria J, Saylan M, Shahraz S, So S, Vlassov VV, Weiderpass E, Wiersma ST, Younis M, Yu C, El Sayed Zaki M, Cooke GS. The global burden of viral hepatitis 1990–2013. Lancet. 2016;388(10049):1081–8. https://doi.org/10.1016/S0140-6736(16)30579-7.
2. Aggarwal R. Diagnosis of hepatitis E. Nat Rev Gastroenterol Hepatol. 2013;10:24–33.
3. Naiman OV, Xia G, Vaughan G, Margolis HS. Diagnosis of hepatitis A virus infection: a molecular approach. Clin Microbiol Rev. 2006;19:63–79.
4. Ansaldi F, Orsi A, Stocchi L, Bruzzone B, Icardi G. Hepatitis C virus in the new era: perspectives in epidemiology, prevention, diagnostics and predictors of response to therapy. World J Gastroenterol. 2014;20:9633–52.
5. Kaetzel CS, Bruno MEC. Epithelial transport of IgA by the polymeric immunoglobulin receptor. In: Kaetzel CS, editor. Mucosal immune defense: Immunoglobulin A. 1st ed. New York: Springer; 2010. p. 44–77.
6. Mestecky J, Russell MW, Elson CO. Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut. 1999;44:2–5.
7. Gommersman JL, Rojas OL, Fritz JH. Re-thinking the functions of IgA(+) plasma cells. Gut Microbes. 2014;5:652–62.
8. Asano M, Komiyama K. Polymeric immunoglobulin receptor. J Oral Sci. 2011;53:147–56.
9. Brandtzæg P. Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol. 2009;70:505–15.
10. Woof JM, Russell MW. Structure and function relationships in IgA. Mucosal Immunol. 2011;4:590–7.
11. Khuroo MS, Khuroo MS. Hepatitis E: an emerging global disease - from discovery towards control and cure. J Viral Hepat. 2016;23:68–79. https://doi.org/10.1111/jvhe.12445.
12. Sayed M, Vercouter AS, Abdelwahab SB, Vercruyten K, Meuleman P. Is hepatitis E virus an emerging problem in industrialized countries? Hepatology. 2015;62:1883–92.
13. Severi E, Verhoef L, Thornton L, Guzman-Herrador BR, Faber M, Sundqvist L, et al. Large and prolonged food-borne multistate hepatitis A outbreak in Europe associated with consumption of frozen berries, 2013 to 2014. Euro Surveill. 2015;20:21192.
14. Newkirk MM, Klein MH, Katz A, Fisher MM, Underdown BJ. Expansion of polymeric IgA in human serum: an assay based on binding of radiolabeled human secretory component with applications in the study of IgA nephropathy, IgA monoclonal gammopathy, and liver disease. J Immunol. 1983;130:1176–81.
15. Longet S, Miled S, Lhotscher M, Miersch SM, Zuercher AH, Corthesy B. Human plasma-derived polymeric IgA and IgM antibodies associate with secretory component to yield biologically active secretory-like antibodies. J Biol Chem. 2013;288:4085–94.
16. Mestecky J, McGhee JR. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol. 1987;40:153–245.
17. Mestecky J, Maldovanu Z, Elson CO. Immune response versus mucosal tolerance to mucosally administered antigens. Vaccine. 2005;23:1800–3.
18. Tarkowski A, Moldoveanu Z, Koopman WJ, Radl J, Haaijman JJ, Mestecky J. Cellular origins of human polymeric and monomeric IgA: enumeration of single cells secreting polymeric IgA1 and IgA2 in peripheral blood, bone marrow, spleen, gingiva and synovial tissue. Clin Exp Immunol. 1991;85:341–8.
19. Negro Porzi A, Merlino C, Angeretti A, Penna R. Virus-specific polymeric immunoglobulin A antibodies in serum from patients with rubella, measles, varicella, and herpes zoster virus infections. J Clin Microbiol. 1985;22:505–9.
20. Jones C, Mermelstein N, Kincaid-Smith P, Powell H, Robertson D. Quantitation of human serum polymeric IgA, IgA1 and IgA2 immunoglobulin by enzyme immunoassay. Clin Exp Immunol. 1988;72:344–9.
21. Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 2011;4:598–602.
22. Roe M, Norderhaug IH, Brandtzæg P, Johansen FE. Fine specificity of ligand-binding domain 1 in the polymeric Ig receptor: importance of the CDR2-containing region for IgM interaction. J Immunol. 1999;162:6046–52.
23. Braathen R, Sorensen V, Brandtzæg P, Sandlie I, Johansen FE. The carboxy-terminal domains of IgA1 and IgM direct isotype-specific polymerization and interaction with the polymeric immunoglobulin receptor. J Biol Chem. 2002;277:42755–62.
24. Cameron B, Galbraith S, Li H, Lloyd A, Investigators H. Correlates and characteristics of hepatitis C virus-specific T-cell immunity in exposed uninfected high-risk prison inmates. J Viral Hepat. 2013;20:e96–106.
25. Liu X, Malins LR, Roche M, Sterjovski J, Duncan R, Garcia ML, et al. Site-selective solid-phase synthesis of a CCR5 sulfopeptide library to interrogate HIV binding and entry. ACS Chem Biol. 2014;9:2074–81.

26. Counihan NA, Anderson DA. Specific IgA enhances the transcytosis and excretion of hepatitis A virus. Sci Rep. 2016;6:21855.

27. Braathen R, Hohman VS, Brandtzæg P, Johansen FE. Secretory antibody formation: conserved binding interactions between J chain and polymeric Ig receptor from humans and amphibians. J Immunol. 2007;178:1589–97.

28. Zhang S, Tian D, Zhang Z, Xiong J, Yuan Q, Ge S, et al. Clinical significance of anti-HEV IgA in diagnosis of acute genotype 4 hepatitis E virus infection negative for anti-HEV IgM. Dig Dis Sci. 2009;54:2512–8.

29. Tian DY, Chen Y, Xia NS. Significance of serum IgA in patients with acute hepatitis E virus infection. World J Gastroenterol. 2006;12:3919–23.

30. Takahashi M, Kusakai S, Mizuo H, Suzuki K, Fujimura K, Masuko K, et al. Simultaneous detection of immunoglobulin A (IgA) and IgM antibodies against hepatitis E virus (HEV) Is highly specific for diagnosis of acute HEV infection. J Clin Microbiol. 2005;43:49–56.

31. Mascart-Lemone F, Duchateau J, Conley ME, Delacroix DL. A polymeric IgA response in serum can be produced by parenteral immunization. Immunology. 1987;61:409–13.

32. Quiroga JA, Campillo ML, Catillo I, Bartolome J, Porres JC, Carreno V. IgM antibody to hepatitis C virus in acute and chronic hepatitis C. Hepatology. 1991;14:38–43.

33. Brillianni S, Masco C, Ricci P, Miglioli M, Barbara L. Significance of IgM antibody to hepatitis C virus in patients with chronic hepatitis C. Hepatology. 1992;15:998–1001.

34. Stapleton JT. Host immune response to hepatitis A virus. J Infect Dis. 1995;171(Suppl 1):59–14.

35. Wiedmann M, Boehm S, Schumacher W, Svyshen C, Zauke M. Evaluation of three commercial assays for the detection of hepatitis A virus. Eur J Clin Microbiol Infect Dis. 2003;22:129–30.

36. Shouval D, Ashur Y, Adler R, Lewis JA, Armstrong ME, Davide JP, et al. Single and booster dose responses to an inactivated hepatitis A virus vaccine: comparison with immune serum globulin prophylaxis. Vaccine. 1993;11(Suppl 1):59–14.

37. Andre C, Berthoux FC, Andre F, Gillon J, Genin C, Sabatier JC. Prevalence of IgA2 deposits in IgA nephropathies: a clue to their pathogenesis. N Engl J Med. 1980;303:1343–6.

38. Vossenkamper A, Blair PA, Safinia N, Fraser LD, Das L, Sanders TJ, et al. A role for gut-associated lymphoid tissue in shaping the human B cell repertoire. J Exp Med. 2013;210:1665–74.

39. Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med. 1987;106:892–9.

40. Mascart-Lemone F, Carlsson B, Jall F, Hahn-Zoric M, Duchateau J, Hans LA. Polymeric and monomeric IgA response in serum and milk after parenteral cholera and oral typhoid vaccination. Scand J Immunol. 1988;28:443–8.

41. Russell MW, Lue C, van den Wall Bake AW, Moldoveanu Z, Mestecky J. Molecular heterogeneity of human IgA antibodies during an immune response. Clin Exp Immunol. 1992;87:1–6.

42. Tissandie E, Morelle W, Berthelot L, Vrtovnisk F, Daugas E, Walker F, et al. Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89-IgA and IgG-IgA complexes: common mechanisms for distinct diseases. Kidney Int. 2011;80:1352–63.

43. Layward L, Allen AC, Harper SJ, Hattersley JM, Feehally J. Increased and prolonged production of specific polymeric IgA after systemic immunization with tetanus toxoid in IgA nephropathy. Clin Exp Immunol. 1992;88:394–8.