The number of constant mean curvature isometric immersions of a surface

Brian Smyth Giuseppe Tinaglia

In Memoriam Katsumi Nomizu

Abstract

In classical surface theory there are but few known examples of surfaces admitting nontrivial isometric deformations and fewer still non-simply-connected ones. We consider the isometric deformability question for an immersion \(x: M \to \mathbb{R}^3 \) of an oriented non-simply-connected surface with constant mean curvature \(H \). We prove that the space of all isometric immersions of \(M \) with constant mean curvature \(H \) is, modulo congruences of \(\mathbb{R}^3 \), either finite or a circle (Theorem 1.1). When it is a circle then, for the immersion \(x \), every cycle in \(M \) has vanishing force and, when \(H \neq 0 \), also vanishing torque. Our work generalizes a rigidity result for minimal surfaces \[5\] to constant mean curvature surfaces (Theorem 5.2). Moreover, we identify closed vector-valued 1-forms whose periods give the force and torque.

1 Introduction.

It has long been wondered which smooth surfaces in \(\mathbb{R}^3 \) can undergo a nontrivial isometric deformation and the non-existence of such compact surfaces has been conjectured. Even if we allow immersions, non-compactness, non-completeness or all of these, the occurrence of such deformations for non-simply-connected surfaces still appears to be rare. Apart from flat surfaces, the only place in classical surface theory where local isometric deformations overtly present themselves is with surfaces of constant mean curvature. (See also the simply-connected examples of do Carmo-Dajczer \[13\])

Within the class of isometric immersions of simply-connected surfaces, every one of constant mean curvature admits a canonical \(2\pi \)-periodic isometric deformation — the associate deformation (see § 3) — through immersions with the same mean curvature; this family also captures (to within congruences of \(\mathbb{R}^3 \), i.e. orientation-preserving isometries of \(\mathbb{R}^3 \)) all isometric immersions of that surface.
with this constant mean curvature. However once the constant mean curvature surface \(M \) has topology (i.e. \(\pi_1(M) \neq 0 \)) there is of necessity a continuum of latent period conditions which must be satisfied for the canonical deformation, at the level of the universal cover \(\tilde{M} \), to descend to \(M \). Our purpose here is to give necessary conditions for the associate isometric deformation to exist.

A countable set of invariants associated with a constant mean curvature immersion \(x \) arises from two naturally defined closed vector-valued 1-forms \(\omega \) and \(\sigma \) on \(M \), introduced in \(\S 4 \), called here the force and the torque forms. Thus their periods over a cycle \(\gamma \) in \(M \), \(W([\gamma]) = \int_{\gamma} \omega \) and \(T([\gamma]) = \int_{\gamma} \sigma \), depend only on the homology class of \(\gamma \) and are called the force and torque of that class for the immersion \(x \) (see also [16, 17, 20]).

Theorem 1.1 Let \(x: M \to \mathbb{R}^3 \) be an isometric immersion of a smooth oriented surface with constant mean curvature \(H \). To within congruences, the family of all isometric immersions of \(M \) with constant mean curvature \(H \) is either finite or a circle.

If the family is a circle then for the immersion \(x \) every cycle has vanishing force and, when \(H \neq 0 \), vanishing torque also.

There was already a class of results on the isometric indefor mability of minimal or constant mean curvature surfaces with topology (see for instance [5, 17, 23, 26, 30, 32]). Typically, these follow for us from Theorem 1.1 by exhibiting a cycle with nonzero force. In fact, in \(\S 5 \), we discuss geometric conditions which guarantee the existence of such a cycle. The central questions remaining are:

Are there non-simply-connected constant mean curvature surfaces satisfying the vanishing force and torque conditions of Theorem 1.1 and do these conditions then guarantee the existence of a constant mean curvature isometric deformation?

Both questions are known to be answered affirmatively for minimal surfaces (see \(\S 4 \)). However, for non-simply-connected surfaces we know of no constant mean curvature isometric deformation when \(H \neq 0 \). Franz Pedit informs us that there are immersed constant mean curvature cylinders with vanishing force for which the associate deformation does not exist; the torque is unknown. Perhaps the best problem is:

A compact constant mean curvature surface admits no non-trivial constant mean curvature isometric deformations.

Among complete Riemannian surfaces \((M, g) \) the flat ones \(\mathbb{R}^2 \) and \(S^1 \times \mathbb{R} \) can be isometrically immersed in \(\mathbb{R}^3 \) with any constant mean curvature \(H \) (as
circular cylinders of radius $\frac{1}{2H}$. We note that if the metric is not flat and x is an isometric immersion of (M, g) with constant mean curvature H then H^2 is uniquely determined by the metric g: $-x$ is an isometric immersion with constant mean curvature $-H$.

Acknowledgements. We are grateful to Rob Kusner and Bill Meeks for their interest and helpful remarks on the results of this paper.

2 Isometric deformation of surfaces

Let $x: M \to \mathbb{R}^3$ be an immersion of a smooth oriented surface. The differential x_* of x is given by $x_*(X) = Xx$ where the right-hand side is the derivative of the vector-valued function x with respect to X. The induced metric g is given by

$$g(X, Y) = \langle x_*(X), x_*(Y) \rangle = \langle Xx, Yx \rangle$$

where \langle , \rangle is the Euclidean metric on \mathbb{R}^3. Let J denote the complex structure induced by the orientation of M and let ξ be the oriented unit normal field to the immersion x. The second fundamental form A of x is defined by

$$X\xi = -x_*(AX).$$

The Gauss equation is

$$\det A = K$$

where K is the curvature of the metric g and Codazzi’s equation is

$$(\nabla_X A) Y = (\nabla_Y A) X$$

where ∇ is the Levi-Civita connection of the metric g; from now on the metric will be denoted by \langle , \rangle. These equations come from differentiating the structure equation

$$XYx = x_*(\nabla_X Y) + \langle AX, Y \rangle \xi. \quad (1)$$

Now suppose $x_t: M \to \mathbb{R}^3$ is a smooth 1-parameter family of immersions each inducing the same metric \langle , \rangle; this is called an isometric deformation. The unit normal field and second fundamental form of each immersion x_t are denoted by ξ_t and A_t respectively. From now on prime denotes differentiation with respect to t.

Since $\langle Xx_t, Xx_t \rangle$ is independent of t we know that $\langle Xx_t', Xx_t \rangle = 0$. Hence $Xx_t' = k(x_t)x_t(JX) + p(X)\xi_t$ where k is a function on M and p is a 1-form on M, both dependent on t.

3
Since $\langle \xi_t, \xi_t \rangle = 1$ it follows that $\xi'_t = (x_t)_*(Z)$ where Z is a vector field on M, dependent on t. Since $\langle X x_t, \xi_t \rangle = 0$ it follows

$$\langle X x'_t, \xi_t \rangle + \langle X x_t, \xi'_t \rangle = 0$$

and so $p(X) = -\langle X, Z \rangle$. Thus

$$X x'_t = k (x_t)_*(J X) - \langle X, Z \rangle \xi_t.$$ \hfill (2)

In continuing the computation for the deformation we will drop the subscript t. From equation (1)

$$XY x' = X(k x_*(J Y) - \langle Y, Z \rangle \xi)$$

$$= X(k x_*(J Y) + k [x_*(\nabla X J Y) + \langle A X, J Y \rangle \xi] - X \langle Y, Z \rangle \xi + \langle Y, Z \rangle x_*(A X)$$

$$= x_*(X(k) J Y + k J \nabla X Y + \langle Y, Z \rangle A X) + (k \langle A X, J Y \rangle - X \langle Y, Z \rangle) \xi.$$

Differentiating equation (1) with respect to t and using equation (2) gives

$$XY x' = \nabla X Y (x') + \langle A' X, Y \rangle \xi + \langle A X, Y \rangle x_*(Z)$$

$$= k x_*(J \nabla X Y) - \langle \nabla X Y, Z \rangle \xi + \langle A' X, Y \rangle \xi + \langle A X, Y \rangle x_*(Z)$$

$$= x_*(k J \nabla X Y + \langle A X, Y \rangle Z) + (\langle A' X, Y \rangle - \langle \nabla X Y, Z \rangle) \xi.$$ \hfill (3)

Comparing normal components in equations (3) and (4) we obtain

$$A' X = -k J A X - \nabla_X Z$$ \hfill (5)

and comparing tangential components

$$X(k) J Y = \langle A X, Y \rangle Z - \langle Y, Z \rangle A X$$

which is equivalent to

$$\nabla k = -A J Z.$$ \hfill (6)

Equations (5) and (6) are the integrability conditions of the deformation. Finally note

$$X x' = (x_*(J Z) + k \xi) \times X x_t$$ \hfill (7)

where \times denotes the cross product on \mathbb{R}^3. The vector-valued function $\eta = x_*(J Z) + k \xi$ is called the Drehriss [1] and is used by Burns and Clancy in their recent work [3].
3 The associate surfaces of a constant mean curvature surface

Let \(x: M \to \mathbb{R}^3 \) be an oriented surface with constant mean curvature \(H \) then, for each \(t \in [0, 2\pi] \), the symmetric tensor field

\[
A_t = \cos(t)(A - HI) + \sin(t)J(A - HI) + HI
\]

satisfies the Gauss-Codazzi equations with respect to the induced metric \(\langle \cdot, \cdot \rangle \) and \(\nabla^2_{\mathcal{A}_t} \equiv H \). If \(M \) is simply-connected then, by the fundamental theorem of surface theory, we obtain a one-parameter family of isometric immersions \(x_t \) with second fundamental form \(A_t \) and therefore constant mean curvature \(H \) and \(x_0 = x \). These immersions are uniquely determined to within a congruence or rigid motion of \(\mathbb{R}^3 \), that is, an orientation preserving isometry of \(\mathbb{R}^3 \). Without loss of generality, we may assume \(x(p_0) = 0 \) for some \(p_0 \in M \) and normalize the family \(x_t \) by requiring that, for all \(t \), \(x_t(p_0) = 0 \), \(\xi_t(p_0) = \xi(p_0) \) and \((x_t)_{*p_0} = x_{*p_0} \circ \text{Rot}_{p_0}(-t) \) where \(\text{Rot}_{p_0}(\theta) \) denotes the oriented rotation of the tangent plane \(T_{p_0}M \) (with the induced metric) through an angle \(\theta \). The resulting normalized isometric deformation \(x_t: M \to \mathbb{R}^3, t \in [0, 2\pi] \) is called the associate deformation here (see also \([2, 4, 18]\)).

For example, let \(x: M \to \mathbb{R}^3 \) be an oriented simply-connected minimal surface and choose the origin of \(\mathbb{R}^3 \) on the surface, i.e. \(x(p_0) = 0 \) for a certain \(p_0 \in M \). Since \(\Delta x \equiv 0 \), where \(\Delta \) is the Laplace operator of the induced metric on \(M \), we have a complex conjugate \(y: M \to \mathbb{R}^3 \) of \(x \), unique to within a translation of \(\mathbb{R}^3 \). We may therefore assume \(y(p_0) = 0 \) also. Then

\[
x_t = \cos(t)x + \sin(t)y
\]

is a 1-parameter family of minimal isometric immersions of \(M \) into \(\mathbb{R}^3 \) with second fundamental form \(A_t \) as given in equation (8) above. Since by the Cauchy-Riemann equations \(x_*(X) = y_*(JX) \) and \(x_*(JX) = -y_*(X) \) it is easy to see that \(\xi_t \) does not change with \(t \) and \((x_t)_{*p} = x_{*p} \circ \text{Rot}_p(-t) \).

Returning now to the constant mean curvature case, if \(M \) is not simply-connected then we may lift \(x \) to \(\tilde{x}: \tilde{M} \to \mathbb{R}^3 \) and let \(\tilde{A}_t \) denote the lift of \(A_t \) to \(\tilde{M} \). By the earlier discussion, \(\tilde{A}_t \) is the second fundamental form of an isometric immersion \(\tilde{x}_t: \tilde{M} \to \mathbb{R}^3 \) with constant mean curvature \(H \) and is unique to within a motion of \(\mathbb{R}^3 \). Fixing \(p_0 \in M \) and \(\tilde{p}_0 \in \tilde{M} \) over \(p_0 \), we may assume \(\tilde{x}_t(\tilde{p}_0) = 0 \), \(\tilde{\xi}_t(\tilde{p}_0) = \xi(p_0) \) and \((\tilde{x}_t)_{*\tilde{p}_0} = \tilde{x}_{*\tilde{p}_0} \circ \text{Rot}_{\tilde{p}_0}(-t) \) for all \(t \). With this normalization we obtain a smooth isometric deformation

\[
\tilde{x}_t: \tilde{M} \to \mathbb{R}^3, \quad 0 \leq t \leq 2\pi
\]
with constant mean curvature H. Of course \tilde{x}_0 projects to $x: M \to \mathbb{R}^3$. Let $S = \{ t \in [0, 2\pi) | \tilde{x}_t \text{ projects to } x_t: M \to \mathbb{R}^3 \}$; this set of immersions of M in \mathbb{R}^3 will be called the associate family for $x: M \to \mathbb{R}^3$.

Lemma 3.1 If $x_m: M \to \mathbb{R}^3$, $m = 1, 2$, are isometric immersions with constant mean curvature H then x_2 is congruent to a unique associate of x_1.

Thus if $x: M \to \mathbb{R}^3$ is an immersion with constant mean curvature H, all other isometric immersions of M in \mathbb{R}^3 with the same constant mean curvature occur, to within congruences, in the family of associates of x.

Proof. Locally on M we may choose positive isothermal coordinates (u, v), i.e. $\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\}$ is a positively oriented frame and the metric is of the form $\langle \ , \ \rangle = e^{2\rho}(du^2 + dv^2)$. The second fundamental form of x_m with respect to the coordinate frame is written

$$A_m = \begin{bmatrix} H + \alpha_m & \beta_m \\ \beta_m & H - \alpha_m \end{bmatrix}$$

Now, $\omega_m = \langle A_m \frac{\partial}{\partial w}, \frac{\partial}{\partial w} \rangle$, is a complex function in the coordinate $w = u + iv$, where $\frac{\partial}{\partial w} = \frac{1}{2}(\frac{\partial}{\partial u} - i\frac{\partial}{\partial v})$, and $\langle \ , \ \rangle$ and A are extended by complex linearity. Clearly, $\Omega_m = \omega_m dw^2$ is a well defined complex quadratic differential on M; a simple computation gives $\omega_m = -\frac{i}{2}e^{2\rho}(\beta_m + i\alpha_m)$. Codazzi’s equation in these isothermal coordinates reads

$$\langle \omega_m \rangle w = \frac{1}{2}e^{2\rho}H_w$$

and, since H is constant, ω_m is holomorphic.

Since $|\omega_m|^2 = \frac{e^{4\rho}}{4}(\beta_m^2 + \alpha_m^2) = \frac{e^{4\rho}}{4}(H^2 - K)$, by Gauss’ equation, unless $x: M \to \mathbb{R}^3$ is a round sphere the umbilical points are isolated and it follows that the meromorphic function $\frac{\omega}{\omega_1}$ is constant and of modulus one. Hence, $\omega_2 = e^{-it}\omega_1$ for some real number t. It follows easily that

$$A_2 = \cos(t)(A_1 - HI) + \sin(t)J(A_1 - HI) + HI.$$

Hence, by the fundamental theorem of surface theory x_2 is congruent to an associate of x_1. \hfill \Box

We now consider the structure of S for a constant mean curvature surface M with topology. The first and most interesting question is whether S contains an open interval. Assume S contains an interval $[0, \varepsilon)$ then we have the associate deformation

$$x_t: M \to \mathbb{R}^3$$

for $0 \leq t \leq \varepsilon$. Since, by (8), $A' = J(A - HI)$ the integrability condition (5) becomes

$$\nabla_X JZ = (k + 1)AX - HX.$$

(9)
Replacing \(Y \) by \(JZ \) in the structure equation (1) and using equation (6) and (9)

\[
X x_\ast(JZ) = x_\ast(\nabla_X JZ) + \langle AX, JZ \rangle \xi \\
= x_\ast((k + 1)AX - HX) + \langle X, AJZ \rangle \xi \\
= x_\ast((k + 1)AX - HX) - \langle X, \nabla k \rangle \xi \\
= -X((k + 1)\xi + Hx)
\]

so that \((x_t)_\ast(JZ) + (k + 1)\xi_t + Hx_t = V_t \) is a constant vector field along each surface in the variation. From the normalization in the definition of the associate deformation we obtain \(Z(p_0) = 0\) and \((x_t)_\ast p_0 \circ \text{Rot}_{p_0}(-t)X\) gives

\[
\frac{d}{dt}(x_t)_\ast p_0 X = x_{\ast p_0}(-\sin(t)X - \cos(t)JX) = -x_{\ast p_0} \circ \text{Rot}_{p_0}(-t)JX.
\]

On the other hand, from equation (2),

\[
\frac{d}{dt}(x_t)_\ast p_0 X = X(x'_t) \big|_{p_0} = k(x_t)_\ast p_0 (JX) - \langle X, Z \rangle \xi_t(p_0) = k(p_0)x_{\ast p_0} \circ \text{Rot}_{p_0}(-t)JX.
\]

Hence \(k(p_0) = -1\) and so \(V_t(p_0) = 0\) and therefore \(V_t \equiv 0\), i.e.

\[
(x_t)_\ast(JZ) + (k + 1)\xi_t + Hx_t \equiv 0.
\]

Now

\[
X x'_t = ((x_t)_\ast(JZ) + k\xi_t) \times X x_t = -(Hx_t + \xi_t) \times X x_t
\]

and since \(\langle X x_t, \xi_t \rangle = 0\) it follows, also on differentiating with respect to \(t\), that

\[
\xi'_t = -(Hx_t + \xi_t) \times \xi_t.
\]

We collect these facts in the following lemma

Lemma 3.2 If the associate deformation of \(x: M \to \mathbb{R}^3\) exists then

\[
X x' = -(Hx + \xi) \times X x,
\]

\[
\xi' = -(Hx + \xi) \times \xi.
\]

Lemma 3.3 Let \(M\) be a complete oriented Riemannian 2-manifold and \(x_1\) and \(x_2\) isometric immersions with constant mean curvature \(H_1\) and \(H_2\). Either

(i) \(M\) is flat and each \(x_i\) is a circular cylinder of radius \(\frac{1}{2|H_i|}\), or

(ii) \(M\) is not flat, \(H_1^2 = H_2^2\) and \(x_2\) is an associate of \(\pm x_1\).
Proof. If $H_2 = \pm H_1$ then (ii) follows from Lemma 3.1. If $H_1^2 < H_2^2$ then, since $H_1^2 - K \geq 0$ on M, $H_2^2 - K$ is positive and bounded away from zero on M. The complete metric $g_0 = \sqrt{H_2^2 - K}g$ on M is flat. This is because if $g = e^{2\nu}(du^2 + dv^2)$ and $\Omega_2 = \omega_2 dw^2$ are local representation of the metric and the Hopf differential then $g_0 = |\omega_2|(du^2 + dv^2)$ is the local representations of g_0; this is flat since ω_2 is holomorphic (see § 3). The universal cover of (M, g_0) is conformally \mathbb{C} and $\frac{\Omega_1}{\Omega_2}$ is a holomorphic function on \mathbb{C} with $\frac{|\Omega_1|}{|\Omega_2|} = \sqrt{\frac{H_1^2 - K}{H_2^2 - K}} < 1$ and therefore constant. Thus K is constant and for conformal reasons it must be zero. It follows easily that x_i is an immersion of \mathbb{R}^2, or a cylindrical quotient thereof, as a cylinder of radius $\frac{1}{2|H|}$ in \mathbb{R}^3.

\[\square\]

4 The force and torque 1-forms on an immersed surface of constant mean curvature

To motivate the notions of force and torque take an embedded oriented surface

$$x : M \to \mathbb{R}^3$$

with oriented normal ξ and constant mean curvature $H \geq 0$. Imagining the surface as a liquid membrane in equilibrium under a constant normal pressure field F, the equilibrium equation is $F = -2H \tau \xi$ [34], where τ is the surface tension of the membrane. We may assume $\tau = 1$.

Take a compact domain D in M and along each oriented boundary component γ we insert a smooth embedded cap

$$k : K \to \mathbb{R}^3$$

that is $k(\partial K) = x(\gamma)$. The orientation of M determines the orientation of each connected component of γ: in fact, let $\eta = J\dot{\gamma}$ be the oriented unit normal to γ in M then $\xi = x_*\dot{\gamma} \times x_*\eta$. In turns, the orientation of γ determines an orientation on K and we let ν_k be the oriented unit normal to K (see Figure 1).

Considering the domain D with caps inserted on each boundary component γ, the resulting closed surface is maintained in equilibrium by the application of a total restorative force on each end — to counter the inherent forces due to pressure and surface tension of that end — which total

$$2H \int_K \nu_k da_k + \int_\gamma \eta ds$$

where da_k also denotes the area element in K.
Define $W(\gamma) = 2H \int_K \nu_k da_k + \int_\gamma \eta ds$ as the force of the component γ.

Let ω_0 be the 1-form on M defined by $\omega_0(X) = Hx \times x_*(X)$ then $d\omega_0 = 2H \xi da$ where da is the area element of M. The corresponding 1-form ω^k_0 on K, defined by $\omega^k_0(X) = Hk \times k_*(X)$, satisfies $d\omega^k_0 = 2Hk \nu_k da_k$. If ω is the 1-form defined on M by $\omega(X) = (Hx + \xi) \times x_*(X)$ then

$$\int_\gamma \omega = \int_\gamma \omega_0 + \int_\gamma \eta ds = \int_\gamma \omega^k_0 + \int_\gamma \eta ds,$$

since $\omega^k_0 = \omega_0$ along γ. By Stokes’ theorem

$$\int_\gamma \omega = \int_K d\omega^k_0 + \int_\gamma \eta ds = 2H \int_K \nu_k da_k + \int_\gamma \eta ds = W(\gamma).$$

(10)

Now ω is easily checked to be a closed 1-form on M for any immersed oriented surface

$$x: M \to \mathbb{R}^3$$

of constant mean curvature H; we call it the force form. Thus the quantity

$$W(\gamma) = \int_\gamma \omega$$

depends only on the homology class of the cycle γ. This will be called the force of the cycle γ for the immersion x.

Returning again to the domain D with ends capped as above the torque of the inherent forces of pressure and surface tension at the end γ totals

$$2H \int_K k \times \nu_k da_k + \int_\gamma x \times \eta ds.$$
Define the torque of γ by

$$T(\gamma) = 2H \int_K k \times \nu_k da_k + \int_\gamma x \times \eta ds.$$

Define $\sigma_0(X) = \frac{2}{3}H x \times (x \times x_*(X))$. We can easily compute $d\sigma_0 = 2H x \times \xi da$. The corresponding 1-form σ^k_0 on K defined by $\sigma^k_0(X) = \frac{2}{3}H k \times (k \times k_*(X))$ satisfies $d\sigma^k_0 = 2H k \times \nu_k da_k$. Thus

$$2H \int_K k \times \nu_k da_k = \int_{\partial K} \sigma^k_0 = \int_\gamma \sigma_0$$

since $\sigma^k_0 = \sigma_0$ along γ. Then $T(\gamma) = \int_\gamma \sigma_0 + \int_\gamma x \times \eta ds = \int_\gamma \sigma$ where σ is the 1-form defined by

$$\sigma(X) = \frac{2}{3}H x \times (x \times x_*(X)) + x \times x_*(JX) = \frac{1}{3}x \times [2(Hx + \xi) \times x_*(X) + x_*(JX)].$$

Again it is easy to check that σ is a closed 1-form on any immersed surface of constant mean curvature and we call it the torque form. Now

$$T([\gamma]) = \int_\gamma \sigma$$

depends only on the homology class of γ and is called the torque of the cycle γ for the immersion x.

To prove the second part of Theorem 1.1 announced in the introduction we need only show

Lemma 4.1 Let $x: M \to \mathbb{R}^3$ be an immersed surface of constant mean curvature H admitting a nontrivial isometric deformation through surfaces of constant mean curvature H then for the immersion x

(i) ω is exact;

(ii) σ is exact if $H \neq 0$.

Proof. Consider the associate family $x_t: M \to \mathbb{R}^3$ with $x_0 = x$ then, from the assumption of the lemma, x_t is defined for $0 \leq t < \varepsilon$, for some $\varepsilon > 0$. As we saw in §3,

$$X x' = -(Hx + \xi) \times Xx = -\omega(X).$$

Hence ω is exact.
We begin by calculating Xx''. Write $P = Hx + \xi$

$$
Xx'' = - (P \times Xx)' = - P' \times Xx + P \times (P \times Xx)
$$

$$
= - Hx' \times Xx - \xi' \times Xx + P \times (P \times Xx)
$$

$$
= - HX(x' \times x) + HXx' \times x - \xi' \times Xx + P \times (P \times Xx)
$$

$$
= - HX(x' \times x) - H(P \times Xx) \times x + (P \times \xi) \times Xx + P \times (P \times Xx)
$$

$$
= - H(x' \times x) - \xi' \times Xx + P \times (P \times Xx)
$$

$$
= - Hx(\xi \times Xx) - H\xi \times Xx + P \times (P \times Xx)
$$

$$
= - H\xi(\xi \times Xx) + \xi \times Xx + P \times (P \times Xx)
$$

$$
= - H\xi(\xi \times Xx) + \xi \times (P \times Xx)
$$

$$
= - H\xi(\xi \times Xx) - P \times (P \times Xx) + (P \times \xi) \times Xx + P \times (P \times Xx)
$$

Thus

$$
X(x'' + Hx' \times x + x) = Hx \times \{2P \times Xx + x_*(JX)\} = 3H\sigma(X).
$$

Hence, when $H \neq 0$, σ is exact if there exists an isometric deformation of x. \(\square\)

To complete the proof of Theorem 1.1 it remains to show:

Lemma 4.2 Let $x: M \to \mathbb{R}^3$ be an immersion of a smooth oriented surface with constant mean curvature H. Then either

(i) to within congruences there are only finitely many isometric immersions of constant mean curvature H, or

(ii) the associates $x_t: M \to \mathbb{R}^3$ exist for all $t \in [0, 2\pi]$.

Proof. Let \tilde{M} be the universal cover of M with the lifted metric and complex structure (denoted \langle , \rangle and J respectively), $\pi: \tilde{M} \to M$ the projection and \mathcal{D} be the group of deck transformations of this cover which are, of course, orientation preserving isometries. If \tilde{A} is the lift to \tilde{M} of the second fundamental form A of the immersion x then $\sigma_* \tilde{A}(p)(\sigma_*^{-1}) = \tilde{A}(\sigma(p))$ for all $\sigma \in \mathcal{D}$ and all $p \in \tilde{M}$.

The lift \tilde{A}_t of

$$
A_t = \cos t(A - HI) + \sin tJ(A - HI) + HI
$$

to the universal cover is the second fundamental form of the associate family

$$
\tilde{x}_t: \tilde{M} \to \mathbb{R}^3
$$
defined in § 3. Since each deck transformation \(\sigma \in D \) commutes with \(\tilde{A} \) and \(J \), it preserves the lifted second fundamental form \(\tilde{A}_t \), that is,
\[
\sigma_{*p} \tilde{A}_t(p)(\sigma_{*p})^{-1} = \tilde{A}_t(\sigma(p))
\]
for all \(p \in \tilde{M} \). It follows that \(\tilde{x}_t \circ \sigma \) and \(\tilde{x}_t \) have the same second fundamental form
\[
(\sigma_{*p})^{-1} \tilde{A}_t(\sigma(p))\sigma_{*p} = \tilde{A}_t(p)
\]
at each \(p \). Hence \(\tilde{x}_t \circ \sigma = \Phi_t(\sigma) \circ \tilde{x}_t \), where \(\Phi_t(\sigma) \in \mathcal{M} \) the group of motions of \(\mathbb{R}^3 \). It easy to see that
\[
\Phi_t : D \to \mathcal{M}
\]
is a homomorphism for each \(t \in [0, 2\pi] \) and \(\tilde{x}_t \) projects to \(x_t : M \to \mathbb{R}^3 \) if and only if \(\Phi_t(D) = \{I\} \).

Let \(S = \{ t \in [0, 2\pi] \mid \tilde{x}_t \) projects to \(M \} \). Assuming \(S \) is infinite there exists an infinite sequence of points \(\{t_n\} \) of points in \(S \) which we may assume converges to some \(t_0 \in [0, 2\pi] \). Since \(\Phi_{t_0}(\sigma) = I \) for all \(n \) it follows, by continuity, that \(\Phi_{t_0}(\sigma) = I \) for all \(\sigma \in D \). So \(t_0 \in S \). In the corresponding matrices \((\Phi_{s_n}(\sigma))_{ij} = \delta_{ij} \) for each \(t_n \) and so, by the Mean Value Theorem, \((\Phi'_{s_n}(\sigma))_{ij} = 0 \) for a sequence \(s_n \) converging to \(t_0 \). Hence \(\Phi'_{t_0}(\sigma) = 0 \) for all \(\sigma \in D \). Repeating the argument gives that the derivatives \(\Phi_{t_0}^{(n)}(\sigma) = 0 \) for all \(\sigma \in D \) and all integers \(n \geq 1 \). Since, for each \(\sigma \in D \), \(\Phi_t(\sigma) \) is an analytic curve in \(\mathcal{M} \), it follows that \(\Phi_t(\sigma) \equiv I \) for all \(t \) and all \(\sigma \in D \). Hence \(S = [0, 2\pi] \) if \(S \) is infinite. This proves Lemma 4.2. \(\square \)

Remark 4.3 For minimal immersions the associate \(x_\pi \) is in fact \(-x \) and thus always exists. However, if there exists an associate \(x_s \), \(s \notin \{0, \pi\} \), then they all exist and
\[
x_t = \frac{1}{\sin s} \{ \sin(s - t)x + \sin(t)x_s \}.
\]

Regarding the finiteness part of Theorem 1.1, we note Meeks’ conjecture that for a complete isometric embedding \(x : M \to \mathbb{R}^3 \) with constant mean curvature \(H \) there are no other isometric immersions with the same mean curvature \(H(\neq 0) \): when \(H = 0 \) and \(x \) is not a helicoid any other minimal isometric immersion is congruent to \(-x \) (see [21, 24]).

As we see in the next result the existence of associates of a constant mean curvature immersion \(x : M \to \mathbb{R}^3 \) is guaranteed if there are isometries of the induced metric on \(M \) which do not extend under the immersion \(x \) to a congruence of \(\mathbb{R}^3 \). However, we know of no non-simply-connected examples with nonzero constant mean curvature where an associate exists except for certain nodoids \(x \), i.e. non-embedded Delaunay surfaces, and then only for \(x_\pi \); for unduloids, i.e. embedded Delaunay surfaces, no associate exists (see for instance [30]).
Proposition 4.4 Let \(x: M \rightarrow \mathbb{R}^3 \) be an immersion of a smooth oriented surface with constant mean curvature \(H \). Let \(\Gamma(M) \) be the group of orientation preserving isometries of \(M \) and let \(\Gamma_0(M) \) be the subgroup of such isometries extending under \(x \) to a congruence of \(\mathbb{R}^3 \). Then \(\Gamma_0(M) \) extends under each associate \(x_t \) of \(x \) to a group of isometries of \(\mathbb{R}^3 \). If \(\Gamma(M) \setminus \Gamma_0(M) \) is infinite then \(x \) is isometrically deformed through immersions of constant mean curvature. If \(\Gamma(M) \setminus \Gamma_0(M) \) is finite of order \(m \) then each of the associates \(x_{\frac{2\pi r}{m}} \) exists, \(r = 1, \ldots, m \).

Proof. If \(\phi \in \Gamma_0(M) \) then \(\phi_{*p}A_p(\phi_{*p})^{-1} = A_{\phi(p)} \) for all \(p \in M \). Since \(\phi \) preserves the metric and complex structure of \(M \) we have \(\phi_{*p}A_p^t(\phi_{*p})^{-1} = A_{\phi(p)}^t \) for all \(p \in M \). Hence \(\phi \) extends under \(x_t \) to an isometry \(\Phi \) of \(\mathbb{R}^3 \).

Let \(\sigma \in \Gamma(M) \). Comparing the isometric immersions \(x \) and \(y = x \circ \sigma \) the respective oriented normals to these maps at \(p \) are \(\xi(p) \) and \(N(p) = \xi(\sigma(p)) \). If \(B \) is the second fundamental form of \(y \) then, by its definition, \((XN)_p = -y_{*p}(B(p))X = -x_{*\sigma(p)}(\sigma_{*p}(B(p))X \). But, since \(N = \xi \circ \sigma \),

\[
(XN)_p = \xi_{*\sigma(p)}(\sigma_{*p}X) = -x_{*\sigma(p)}(A(\sigma(p))\sigma_{*p}X).
\]

Taken together, these give

\[
B(p) = (\sigma_{*p})^{-1}A(\sigma(p))\sigma_{*p},
\]

so \(y \) has constant mean curvature \(H \). By Lemma 3.1, \(y = x \circ \sigma \) is congruent to a unique associate \(x_{t(\sigma)} \) of \(x \). This defines a map \(t: \Gamma(M) \rightarrow [0, 2\pi) \). Obviously, \(t(\sigma) = 0 \) if and only if \(\sigma \in \Gamma_0(M) \). To complete the proof of the theorem we must show that \(t \) is a homomorphism.

For \(\sigma, \tau \in \Gamma(M) \) let \(C \) denote the second fundamental form of \(x \circ \sigma \circ \tau \). As before,

\[
C(p) = ((\sigma \circ \tau)_{*p})^{-1}A((\sigma \circ \tau)(p))(\sigma \circ \tau)_{*p}
= (\tau_{*p})^{-1}(\sigma_{*\tau(p)})^{-1}A(\sigma(\tau(p)))\sigma_{*\tau(p)}\tau_{*p}
= (\tau_{*p})^{-1}B(\tau(p))\tau_{*p}.
\]

Since \(x \circ \sigma \) is congruent to the associate \(x_{t(\sigma)} \) of \(x \) we have \(B = e^{it(\sigma)}(A - HI) + HI \), where \(e^{it}(A - HI) = \cos t(A - HI) + \sin tJ(A - HI) \). Thus

\[
C(p) = e^{it(\sigma)}(\tau_{*p})^{-1}(A - HI)(\tau(p))\tau_{*p} + HI(p)
= e^{it(\sigma)}[(\tau_{*p})^{-1}(\tau(\tau(p))\tau_{*p} - HI(p))] + HI(p)
= e^{it(\sigma)}\{e^{it(\tau)}(A - HI)(p)\} + HI(p),
\]

since \(x \circ \tau \) is congruent to \(x_{t(\tau)} \). Thus

\[
C(p) = e^{it(\sigma) + t(\tau)}(A - HI(p)) + HI(p),
\]

and hence \(t(\sigma \circ \tau) = (t(\sigma) + t(\tau)) \mod 2\pi \) and the map \(t \) defines a homomorphism. \(\square \)
5 Applications

We begin with the observation that there exist complete, immersed minimal surfaces with genus zero and finitely many ends admitting a nontrivial isometric deformation through minimal surfaces. First, let us recall the Weierstrass representation theorem, see for instance [31],

Proposition 5.1 Let $x: M \to \mathbb{R}^3$ be a conformal minimal immersion of a Riemann surface M. Let g be the stereographic projection of its Gauss map, $dh = dx_3 - idx_3 \circ J$; g and dh are holomorphic. Then (up to a translation)

$$x = \text{Re} \int \Phi, \text{ where}$$

$$\Phi = (\Phi_1, \Phi_2, \Phi_3) = ((g^{-1} - g) \frac{dh}{2}, i(g^{-1} + g) \frac{dh}{2}, dh).$$

(12)

Conversely, let M be a Riemann surface, $g: M \to \mathbb{C} \cup \infty$ a meromorphic function and dh a holomorphic one-form on M. Then, provided that $\text{Re} \int_\alpha \Phi = 0$ for all closed curves α on M, equation (11) and (12) define a conformal minimal mapping of M into \mathbb{R}^3, which is regular provided the poles and zeros of g coincide with the zeros of dh. The holomorphic function g and holomorphic one form dh are the so-called Weierstrass data.

With Theorem 5.1 in mind, it is easy to check that, for an immersed minimal surface M, admitting a nontrivial isometric deformation through minimal surfaces is equivalent to the condition that $\text{Im} \int_\alpha \Phi = 0$ for all closed curves α on M. Take $p_1, ..., p_n \in \mathbb{C}$ and, for any $k \in \mathbb{N}$, consider the following Weierstrass data

$$g = \prod_{i=1}^{n} (z - p_i)^{2k} \text{ and } dh = dz.$$

One can check that this data yield non-simply-connected, genus zero minimal surfaces admitting a nontrivial isometric deformation through minimal surfaces.

There are many results on the isometric indeformability of a constant mean curvature surface with topology (e.g. [5, 17, 23, 26, 30, 32]). In what follows, we give a criterion which guarantees the isometric indeformability of a constant mean curvature surface. In particular this result is a generalization of a rigidity theorem of Choi-Meeks-White for minimal surfaces, see Theorem 1.2 in [5].

Theorem 5.2 Let $x: M \to \mathbb{R}^3$ be an isometric immersion of a smooth oriented surface with constant mean curvature H. Suppose that a plane π intersects $x(M)$
transversally in a closed unit speed curve $\gamma: [0, L] \to M$ then the component of the force of γ orthogonal to π is

$$\langle W([\gamma]), V \rangle = \int_0^L \frac{1}{\langle x_*(J\dot{\gamma}), V \rangle} \{\langle x_*(J\dot{\gamma}), V \rangle^2 + H\langle x \circ \gamma, \xi \rangle\} ds,$$

where V is a unit vector normal to π. If

$$\int_0^L \frac{1}{\langle x_*(J\dot{\gamma}), V \rangle} \{\langle x_*(J\dot{\gamma}), V \rangle^2 + H\langle x \circ \gamma, \xi \rangle\} ds \neq 0$$

then x does not admit a nontrivial isometric deformation through surfaces of constant mean curvature H. In particular, if x is minimal and the plane intersects it transversally in a closed curve then, to within congruences, M admits only one other minimal isometric immersion in \mathbb{R}^3, namely $-x$.

Proof. We may assume that π is the xy-plane and $V = e_3$. Clearly,

$$x \circ \gamma = \langle x \circ \gamma, x_*(\dot{\gamma}) \rangle x_*(\dot{\gamma}) + \langle x \circ \gamma, x_*(J\dot{\gamma}) \rangle x_*(J\dot{\gamma}) + \langle x \circ \gamma, \xi \rangle \xi$$

and, if the origin is chosen in π,

$$0 = \langle x \circ \gamma, e_3 \rangle = \langle x \circ \gamma, x_*(J\dot{\gamma}) \rangle \langle x_*(J\dot{\gamma}), e_3 \rangle + \langle x \circ \gamma, \xi \rangle \langle \xi, e_3 \rangle.$$

Since the plane intersects $x(M)$ transversally $\langle x_*(J\dot{\gamma}), e_3 \rangle \neq 0$ and consequently

$$\langle x \circ \gamma, x_*(J\dot{\gamma}) \rangle = -\frac{\langle x \circ \gamma, \xi \rangle \langle \xi, e_3 \rangle}{\langle x_*(J\dot{\gamma}), e_3 \rangle}.$$

The decomposition of $x \circ \gamma$ above yields the following computation for $\langle W([\gamma]), V \rangle$ where $W([\gamma])$ is the force form defined in § 4.

$$\langle W([\gamma]), V \rangle = \langle (\xi + Hx \circ \gamma) \times x_*(\dot{\gamma}), e_3 \rangle$$

$$= \langle x_*(J\dot{\gamma}) - H\langle x \circ \gamma, x_*(J\dot{\gamma}) \rangle \xi + H\langle x \circ \gamma, \xi \rangle x_*(J\dot{\gamma}), e_3 \rangle$$

$$= \langle x_*(J\dot{\gamma}), e_3 \rangle + H \{ -\langle x \circ \gamma, x_*(J\dot{\gamma}) \rangle \langle \xi, e_3 \rangle + \langle x \circ \gamma, \xi \rangle \langle x_*(J\dot{\gamma}), e_3 \rangle \}$$

$$= \langle x_*(J\dot{\gamma}), e_3 \rangle + H \langle x \circ \gamma, \xi \rangle \left\{ \frac{\langle \xi, e_3 \rangle^2}{\langle x_*(J\dot{\gamma}), e_3 \rangle} + \langle x_*(J\dot{\gamma}), e_3 \rangle \right\}$$

$$= \frac{1}{\langle x_*(J\dot{\gamma}), e_3 \rangle} \{ \langle x_*(J\dot{\gamma}), e_3 \rangle^2 + H \langle x \circ \gamma, \xi \rangle \}$$

The formula for $\langle W([\gamma]), V \rangle$ in Theorem 5.2 now follows. Thus in the minimal case the force of γ is clearly non-zero and the result follows from Theorem 1.1 and Remark 4.3.

\qed
Corollary 5.3 Let \(x: M \to \mathbb{R}^3 \) be an isometric immersion of a smooth oriented surface with constant mean curvature \(H \neq 0 \). Suppose that \(M \) has a plane of symmetry \(\pi \) which intersects \(x(M) \) in a closed curve \(\gamma: [0, L] \to M \). If \(x \circ \gamma \) lies in an open disk of radius \(\frac{1}{H} \) then there exists only finitely many isometric immersions of \(M \) with constant mean curvature \(H \).

Proof. We may assume that \(\pi \) is the \(xy \)-plane and \(V = e_3 \). Since \(\pi \) is a plane of symmetry, we can assume that \(\langle x_\ast (J_\gamma \dot{\gamma}), e_3 \rangle = 1 \). Therefore Theorem 5.2 gives

\[
\langle W([\gamma]), e_3 \rangle = L + H \int_0^L \langle x \circ \gamma, \xi \rangle ds.
\]

Suppose \(x \circ \gamma \) lies in an open disk of radius \(\frac{1}{H} \). Without loss of generality we can assume that the disk is centered at the origin. Then \(|H \int_0^L \langle x \circ \gamma, \xi \rangle ds| < L \) and therefore \(W([\gamma]) \neq 0 \). The result now follows from Theorem 1.1. \(\Box \)

Definition 5.4 An embedding \(x: M \to \mathbb{R}^3 \) has a plane of Alexandrov symmetry \(\pi \) if \(\pi \) is a plane of symmetry for \(x(M) \) and \(x(M) \setminus \{ x(M) \cap \pi \} \) consists of two graphs over \(\pi \).

For a complete proper surface \(x: M \to \mathbb{R}^3 \) with constant mean curvature \(H \neq 0 \) and a plane of Alexandrov symmetry Meeks-Tinaglia [29] showed that if \(\sup_M |A| < \infty \) and \(M \) has more then one end then \(x \) has no other associates. They show that \(M \) has an end asymptotic to an unduloid (see also [16]). Since for unduloids none of the associates exists as we remarked in \(\S \) 4, a compactness argument (which we also use at the end of the next proof) implies that \(x \) is the only isometric embedding of \(M \) with constant mean curvature \(H \) (see also [17, 30]).

We prove the following theorem.

Theorem 5.5 Let \(x: M \to \mathbb{R}^3 \) be a complete proper isometric embedding of a smooth oriented surface with constant mean curvature \(H \neq 0 \), with a plane of Alexandrov symmetry. Then

(i) there exists only finitely many isometric immersions of \(M \) with constant mean curvature \(H \), and

(ii) if \(\sup_M |A| = \infty \) and \(M \) has finite genus then \(x \) and possibly \(x_\pi \) are the only isometric embeddings of \(M \) with constant mean curvature \(H \).
Proof. We begin by proving item (i). Our goal is to show that there exists a plane which intersects M transversally in a simple closed curve which is not homologically trivial. Once this is done, by a result of Korevaar and Kusner (Theorem 1.12 in [15]) the force of such a curve is always nonzero. Thus, by Theorem 1.1 there exist only finitely many isometric immersions of M into \mathbb{R}^3 with constant mean curvature H and (i) will be proved.

Let Δ be the connected region of π over which $x(M) \setminus \{x(M) \cap \pi\}$ is graphical. If the boundary of Δ consists of more than one connected component, select two components α and β. Let π' be a plane perpendicular to π which intersects both α and β transversally. Choosing different boundary components of Δ, if necessary, we can assume that the intersection of π' with Δ contains a line segment connecting α and β. Since $x(M)$ is graphical over Δ, π' intersects M transversally in a simple closed curve γ intersecting α and β. Since α and β are different components of $\partial \Delta$, γ cannot be homologically trivial in M and thus its force is nonzero by [15].

If π intersects M in a single connected curve γ and γ is not closed, then M would have exactly one end and genus zero. However, a result of Meeks says that a properly embedded surface with nonzero constant mean curvature and finite genus must have more than one end (see [22]). Thus γ must be closed.

If Δ is the unbounded region of π outside γ then γ is homologically nontrivial. If Δ is the compact region of π bounded by γ then $x(M) \setminus \{x(M) \cap \pi\}$ consists of two compact graphs over Δ and M must be compact. This implies that $x(M)$ is a round sphere in which case the isometric immersion is always unique. In either case, whether Δ is compact or not, there exist only finitely many isometric immersions of M into \mathbb{R}^3 with constant mean curvature H.

We now prove item (ii). If M has unbounded second fundamental form, then for any $n \in \mathbb{N}$ there exists $p_n \in M$ such that $|A|(p_n) > n$. Recall that for graphs with constant mean curvature and zero boundary value there exists a constant C depending only on H such that $\sup_M |x_3||A| < C$ (see for instance [33]) therefore in our case $|x_3(p_n)| < \frac{C}{|A|(|p_n|)}$ (here x_3 is the third component of the point x). After a sequence of translations which take $x(p_n)$ to the origin, we obtain a sequence of immersion $y_n: M \to \mathbb{R}^3$, $y_n := x - x(p_n)$, with constant mean curvature and a plane of Alexandrov symmetry such that $y_n(p_n) = 0$. The distance from the origin to the plane of symmetry of y_n is bounded by $\frac{C}{|A|(|p_n|)}$.

Consider the sequence of non-negative functions $F_n: M \to \mathbb{R}$,

$$F_n(p) = (|y_n(p)| - 1)^2|A|^2(p)$$

over the connected component M_n of $\{p \in M : |y_n(p)| \leq 1\}$ containing p_n. The function F_n is zero on the boundary of M_n and therefore it attains its maximum
on M_n at a point in its interior. Let q_n be such a point, i.e.

$$F_n(q_n) = (|y_n(q_n)| - 1)^2|A|^2(q_n) = \max_{M_n} F_n(p) \geq F_n(p_n) = |A|^2(p_n).$$

Fix $\sigma_n > 0$ such that $2\sigma_n < 1 - |y_n(q_n)|$ and

$$4\sigma_n^2|A|^2(q_n) = 4|A|^2(p_n) = C_n^2.$$ Notice that σ_n is less than half the distance from $y_n(q_n)$ to the boundary of the ball of radius one centered at the origin. Let M_{σ_n} be the connected component of $\{p \in M_n : |y_n(p) - y_n(q_n)| \leq \sigma_n\}$ containing q_n. Since F_n achieves its maximum on M_n at q_n,

$$\sup_{M_{\sigma_n}} \sigma_n^2|A|^2 \leq \sup_{M_{\sigma_n}} \frac{F_n(p)}{(|y_n(p)| - 1)^2} \leq \frac{4\sigma_n^2}{(|y_n(q_n)| - 1)^2} \sup_{M_{\sigma_n}} F_n(p) = \frac{4\sigma_n^2}{(|y_n(q_n)| - 1)^2} F_n(q_n) = 4\sigma_n^2|A|^2(q_n).$$

For any n, we apply a translation which takes the plane of Alexandrov symmetry to the xy-plane and $y_n(q_n)$ on the z-axis, and let $z_n : M \to \mathbb{R}^3$, $z_n := y_n + v_n$ for a certain $v_n \in \mathbb{R}^3$, denote this new sequence of immersions. We have obtained the following

$$\sup_{M_{\sigma_n}} |A|^2 \leq 4|A|^2(q_n), 4\sigma_n^2|A|^2(q_n) = C_n^2, \text{ and } |(z_n)_3(q_n)| < \frac{C}{|A|(q_n)}.$$

Consider a new sequence of immersions $w_n : M \to \mathbb{R}^3$ obtained by rescaling z_n by a factor of $|A|(q_n)$, $w_n := |A|(q_n)z_n$. Note that $|(w_n)_3(q_n)| < C$ and that $|H_n| \leq \frac{|H|}{|A|(q_n)}$, where H_n denotes the mean curvature of the immersion w_n. Since we are assuming that the genus of M is finite, a standard compactness argument implies that this sequence converges in the C^2 convergence to a non-flat minimal embedding of a genus zero surface, $x_\infty : M_\infty \to \mathbb{R}^3$, with bounded second fundamental form and hence properly embedded (see [11] and also [28]). Since a proper embedding cannot be contained in a half-space (see [14]), the xy-plane must be a plane of symmetry. This implies that $x_\infty : M_\infty \to \mathbb{R}^3$ must be a catenoid (see [25] and [6, 7, 8, 9, 10, 12, 19, 27] and others). The following compactness argument (see also [30]) then implies that in either case, x and possibly x_π are the only isometric embeddings of M into \mathbb{R}^3 with constant mean curvature H.

18
Let $\gamma_\infty: [0, L] \to M_\infty$ denote the shortest closed geodesic on M_∞ and let $\gamma_n: [0, L_n] \to M_{\sigma_n}$ be the sequence of cycles in M_{σ_n} such that $z_n(\gamma_n)$ converges to $x_\infty(\gamma_\infty)$. Suppose that there exists θ different from zero or π such that the associate $x_\theta: M \to \mathbb{R}^3$ exists then, because of the convergence, $(z_n)_\theta(\gamma_n)$ converge to $(x_\infty)_\theta(\gamma_\infty)$. However, while $(z_n)_\theta(\gamma_n)$ must be a closed curve, an easy computation shows that when θ is different from zero or π, $(x_\infty)_\theta(\gamma_\infty)$ is not a closed curve. This contradicts the convergence and proves that x and possibly x_π are the only isometric embeddings of M into \mathbb{R}^3 with constant mean curvature H.

\begin{flushright}
\Box
\end{flushright}

References

[1] W. Blaschke. Vorlesungen über Differentialgeometrie, volume 1. Springer, 1930.

[2] O. Bonnet. Memoire sur la theorie des surfaces applicables. J. Ecole Polytechnique, 42, 1867.

[3] J. M. Burns and M. J. Clancy. Smyth surfaces and the drehriss. Proc. Edinburgh Math. Soc. (2), 48(3):549–555, 2005.

[4] E. Calabi. Quelques applications de l’analyse complexe aux surfaces d’aire minima. In Topics in Complex Manifolds, pages 59–81. Les Presses de l’Université de Montréal, 1967. H. Rossi, editor.

[5] T. Choi, W. H. Meeks III, and B. White. A rigidity theorem for properly embedded minimal surfaces in \mathbb{R}^3. J. of Differential Geometry, 32:65–76, 1990. MR1064865, Zbl 0704.53008.

[6] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold V; Fixed genus. Preprint math.DG/0509647 (2005).

[7] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold I; Estimates off the axis for disks. Annals of Math., 160:27–68, 2004. MR2119717, Zbl 1070.53031.

[8] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold II; Multi-valued graphs in disks. Annals of Math., 160:69–92, 2004. MR2119718, Zbl 1070.53032.
[9] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold III; Planar domains. *Annals of Math.*, 160:523–572, 2004. MR2123932, Zbl 1076.53068.

[10] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold IV; Locally simply-connected. *Annals of Math.*, 160:573–615, 2004. MR2123933, Zbl 1076.53069.

[11] T. H. Colding and W. P. Minicozzi II. The Calabi-Yau conjectures for embedded surfaces. *Annals of Math.*, 167:211–243, 2008.

[12] P. Collin. Topologie et courbure des surfaces minimales de \mathbb{R}^3. *Annals of Math. 2nd Series*, 145:1–31, 1997. MR1432035, Zbl 886.53008.

[13] M. do Carmo and M. Dajczer. Helicoidal surfaces with constant mean curvature. *Thok Math. J. (2)*, 34(3):425–435, 1982.

[14] D. Hoffman and W. H. Meeks III. The strong halfspace theorem for minimal surfaces. *Invent. Math.*, 101:373–377, 1990. MR1062966, Zbl 722.53054.

[15] N. Korevaar and R. Kusner. The global structure of constant mean curvature surfaces. *Invent. Math.*, 114:311–332, 1993.

[16] N. Korevaar, R. Kusner, and B. Solomon. The structure of complete embedded surfaces with constant mean curvature. *J. of Differential Geometry*, 30:465–503, 1989. MR1010168, Zbl 0726.53007.

[17] R. Kusner. *Global geometry of extremal surfaces in three-space*. PhD thesis, University of California, Berkeley, 1988.

[18] H. B. Lawson. Complete minimal surfaces in S^3. *Annals of Math.*, 92:335–374, 1970.

[19] F. J. López and A. Ros. On embedded complete minimal surfaces of genus zero. *J. of Differential Geometry*, 33(1):293–300, 1991. MR1085145, Zbl 719.53004.

[20] R. López. Wetting phenomena and constant mean curvature surfaces with boundary. *Rev. Math. Phys.*, 17(7):769–792, 2005.

[21] W. H. Meeks III. *Lectures on Plateau’s Problem*. Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, Brazil, 1978.

[22] W. H. Meeks III. The topology and geometry of embedded surfaces of constant mean curvature. *J. of Differential Geometry*, 27:539–552, 1988.
[23] W. H. Meeks III. The theory of triply-periodic minimal surfaces. *Indiana Univ. Math. J.*, 39(3):877–936, 1990. MR1078743, Zbl 721.53057.

[24] W. H. Meeks III and J. Pérez. Uniqueness of the helicoid and the global theory of minimal surfaces. Preprint, available at http://www.ugr.es/local/jperez/papers/papers.htm.

[25] W. H. Meeks III, J. Pérez, and A. Ros. Properly embedded minimal planar domains. Preprint, available at http://www.ugr.es/local/jperez/papers/papers.htm.

[26] W. H. Meeks III and H. Rosenberg. The global theory of doubly periodic minimal surfaces. *Invent. Math.*, 97:351–379, 1989. MR1001845, Zbl 676.53068.

[27] W. H. Meeks III and H. Rosenberg. The uniqueness of the helicoid. *Annals of Math.*, 161:723–754, 2005. MR2153399, Zbl pre02201328.

[28] W. H. Meeks III and H. Rosenberg. The minimal lamination closure theorem. *Duke Math. Journal*, 133(3):467–497, 2006. MR2228460, Zbl 1098.53007.

[29] W. H. Meeks III and G. Tinaglia. The CMC dynamics theorem in \mathbb{R}^3. Preprint, arXiv:0805.1427.

[30] W. H. Meeks III and G. Tinaglia. The rigidity of constant mean curvature surfaces. Preprint, arXiv:0801.3409.

[31] R. Osserman. *A Survey of Minimal Surfaces*. Dover Publications, New York, 2nd edition, 1986. MR0852409, Zbl 0209.52901.

[32] J. Pérez. A rigidity theorem for periodic minimal surfaces. *Comm. in Analysis and Geom.*, 7(1):95–104, 1999. MR1674113, Zbl 0947.53006.

[33] A. Ros and H. Rosenberg. Properly embedded surfaces with constant mean curvature. Preprint, available at http://people.math.jussieu.fr/~rosen.

[34] B. Smyth. Soliton surfaces in the mechanical equilibrium of closed membranes. *Communications in Mathematical Physics* 250, 1:81–94, 2004.