Depositional Controls on the Quality of Clastic Reservoirs: A Review

Oladapo Akinlotan

Department of Geography, University of Sussex, Brighton, United Kingdom

Email address: o.akinlotan@sussex.ac.uk, dapo.akinlotan@yahoo.com

To cite this article: Oladapo Akinlotan. Depositional Controls on the Quality of Clastic Reservoirs: A Review. Earth Sciences. Vol. 10, No. 3, 2021, pp. 70-82. doi: 10.11648/j.earth.20211003.11

Received: February 18, 2021; Accepted: March 8, 2021; Published: May 27, 2021

Abstract: A comprehensive review of important data from eighty-one clastic reservoirs across the world has yielded important conclusions on the relationship between the depositional environments and clastic reservoir quality. High porosity and permeability have significant controls on the amount of hydrocarbon recoverable in clastic reservoirs, but they may not necessarily guarantee the highest possible recoverable. Permeability can vary very significantly with the same porosity and sometimes the highest permeability does not necessarily occur with the highest porosity. There is a drastic reduction in porosity at depth greater than 3450m regardless of the depositional environment. Gas reservoirs have tendency to recover higher amount of hydrocarbon at relatively lower porosity and permeability when compared to oil reservoirs. The present review suggests that an oil reservoir with porosity of about 20% and a permeability of around 1100mD may recover about 43.6% of oil in place provided all other necessary geologic factors are in place. Gas reservoirs are likely to recover more than 43.6% with similar or lower porosity and permeability. This review will serve as a useful guide to petroleum geologists and sedimentologists in understanding the quality of clastic reservoirs in different environments.

Keywords: Clastic Reservoirs, Porosity, Permeability, Hydrocarbon, Depositional Environments

1. Introduction

Depositional environments exert significant controls on the quality of clastic reservoirs and have significant influence on many factors including overall architecture, geometry, heterogeneity, facies, grain composition and size, sorting, pay thickness, and net to gross of reservoirs [1-3, 51, 54, 62, 67]. These factors in turn control porosity, permeability, and the amount of hydrocarbon recoverable in sandstone reservoirs. Porosity and permeability exert substantial controls on the quality of hydrocarbon reservoirs [11, 12, 54] because they define the amount of hydrocarbon that can be recovered from any reservoir [13, 45] The quality of clastic hydrocarbon reservoirs is of great economic importance because this determines the amount of hydrocarbons that can be recovered at any given time.

The aim of this paper is to review the relationship between depositional environments and the quality of clastic reservoirs and examine the influence and controls of depositional environments on the quality of clastic reservoirs. This relationship will be useful to petroleum geologists and sedimentologists in predicting and understanding the quality of clastic reservoirs in different depositional environments.

2. Methodology

In this review, important reservoir data from over eighty clastic reservoirs across major depositional environments are reviewed. The reservoir data include porosity, permeability, depth, pay thickness, net to gross, area, hydrocarbon type, hydrocarbon in place and recoverable, depositional environment, stratigraphic unit and age, name of field, basin, and the country of location and are presented in Tables 1-6. The data were sourced from the literature and analysed using Microsoft Excel spreadsheet. Additional details including the depositional environments and the measurements details on the reservoir analysed are available in their original sources, which are available in the reference list.

3. Results and Interpretations

3.1. Fluvial Reservoirs

From thirty-two fluvial reservoirs (Table 1), the average
porosity is 19.4%. The relationship between porosity and depth is not straightforward (Figure 1a). The highest porosity (35%) occurs at a depth of 152m while the second highest porosity of 29% occurs at a depth of 2779m. On the other hand, the second lowest porosity of 10% occurs at a depth of 2195m while the deepest reservoir at the depth of 3450m has porosity of 21.5% which is higher than the average porosity. About 85.7% of the data points plots within porosity range of 15 and 29% while 78.5% plots within 15 and 24%. These porosity values point to an important factor, which may also facilitate a negligible diagenetic destruction of the primary porosity.

Table 1. Details of fluvial reservoirs. Abbreviations for Tables 1-5: L: Lower, M: Middle, U: Upper, E: Early, Lt: Late, Cam: Cambrian, Sil: Silurian, Dev: Devonian, Carb: Carboniferous, Per: Permian, Tr: Triassic, Ju: Jurassic, Cr: Cretaceous, Pal: Palaeocene, Eo: Eocene Olig: Oligocene, Mio: Miocene, Pli: Pliocene, Ple: Pleistocene, Ss: Sandstone, O: Oil, G: Gas. MMBO: Million Barrels of Oil, BCFG: Billion Cubic Feet Gas. Average values in brackets.

Field	Basin	Location	Strat Unit	Age	Depositional Environment
Messla	Sirte	Libya	Sarir Ss	L- Cr	Stacked fluvial, braided channels
McArthur River	USA	Hemlock Ss-S-	Olig	Alluvial-fluvial	
October	Egypt	Nubia Ss	Carb-Cr	Stacked fluvial, blanketed sandstone	
Hassi Messaoad	Algeria	Ra Ss	Cam	Blanket sandstone	
Brent	UK	Stafford	U. Tr- L. Ju	Braided/meandering	
Buchan	UK	Old Red	Dev-Carb	Braided	
Caister B	UK	Bunter Ss	Tr	Channel/sheet flood	
Caister C	UK	Coal Measures	Carb	Braided/low sinuosity	
Esmond Complex	UK	Bunter Ss	Tr	Braided/alluvial fan	
Heidrum	Norway	Garn	M. Ju	Braided/meandering	
Hewett	UK	Bunter Ss	Tr	Alluvial plain	
Morecambe	UK	Sherwood Ss	Tr	Braided	
Snorre	Norway	Lunde Ss	L. Tr	Braided channels	
Snorre	Norway	Stafford	L. Tr	Braided/low sinuosity	
Statford	UK/Norway	Statford	U. Tr-L. Ju	Braided/meandering?	
Azal	Yemen	Alif	Cr	Braided/sandstone/blanket channel	
Bu Attifel	Libya	Sarir Ss	L. Cr	Braided	
North Rankin	Australia		Lr- L. Ju	Braided	
Poco	Western Interior	Canada	Belly River	Lr- Cr	Braided/single channel
Prudhoe Bay	Colville Trough	Alaska	Ivishak Ss	Per-Tr	Braided, fluvo-deltaic
South Belridge	San Joaquin Valley	USA	Tulare	Ple	Braided, fluvo-deltaic
Ninian	UK	Brent	Ju	Fluvio-deltaic	
Tiffany	Venezuela	Misoa Ss	Eo	Fluvio-deltaic	
Weixing	Songliao	NE China	Putahua	L. Cr	Fluvio-deltaic
Main Consolidated	Illinois	USA	Caseyville	L. Carb	Fluvio-estuarine
Sarir C-Main	Libya	Sarir Ss	L. Cr	Braided	
Vacas Muertas	Argentina	Barancas	Cr	Alluvial fan	
Rocky Ridge	Williston	USA	Tyler	L. Carb	Meander belt
Little Creek	Mississippi Salt	USA	Tyler	L. Cr	Meander belt
			Tuscaloosa	Fluvio-deltaic	
Greater Burgan	Kuwait	Burgan	L. Cr	Fluvio and tidal dominated	
Crawford	UK		Tr-Cr	Fluvio channel fills	
Wytch Farm	UK	Sherwood Ss	Tr	Braided	
Barryroe	Celtic Sea	Ireland	Wealden	L. Cr	Fluval?
Crystal	Western Interior	Canada	Viking	E. Cr	Estuary
Senlac	Western Canada	Canada	Lloydminster/ Mannville	E. Cr	Estuary

Table 1. Continued.

Depth (m)	Porosity (%)	Permeability (mD)	Thickness of Pay (m)	Net/Gross (%)	Area (Sq Km)	Type	In Place (MMBO/BCFG)	Recoverable (MMBO/BCFG)	References
2644	17	500	300	230	O	3000	1000-1500 (33-50%)	Clifford et al. [18]	Morse [54]
2560	17	80		570	O	3000			
Table 2. Details of deltaic reservoirs.

Field Basin	Location	Strat Unit	Age	Depositional Environment
Senecaville Appalachian	USA	Clinton	E. Sil	Deltaic
Cano Limon Llanos	Colombia	Mirador Ss, Carbonera	Lt. Cr-Oli	River-dominated deltaic, stacked channels, shallow marine
Northwest Hutton/East Shetland	UK	Brent	M. Ju	Shallow marine/ fluvo-deltaic
Burgan	Kuwait	Wasia	Cr	Deltaic and shallow shelf
Safaniya	Saudi Arabia	Khafji	U. Cr	Stacked delta plain, mouth bar and bay fill
Hibernia	Canada	Hibernia	U. Ju	Delta plain, straight channel, fluvial delta
Badak	Indonesia	Balikpapan	Mio-Pl	Stacked delta plain, channel, mouth bar and delta front
Bekapai	Indonesia	Balikpapan	Mio-Pl	Stacked delta plain, channel, mouth bar and delta front
Oseberg	Norway	Oseberg Ness		Delta lobes stacked with delta plain
Smorbbuk	Norway	Tille, Iie, Garn		Tidal influence shoreline and braided delta complex
Statford	UK/Norway	Brent and Statford	Ju	Delta front, mouth bar and channels
Cambay-Hazard (1)	India	Hazad	M. Mio	Prograding deltaic Sandstone
Prudhoe Bay	USA	Sadlerochit	L. Tr	Deltaic, fluvial
Island Block 300	Gulf of Mexico			Delta front Sandstone on marine shelf
Medora/Williston	USA	Tyler	L. Carb	Barrier Island
Table 2. Continued.

Depth (m)	Porosity (%)	Permeability (mD)	Thickness of Pay (m)	Net/Gross (%)	Area (Sq Km)	Type	In Place (MMBO/BCFG)	Recoverable (MMBO/BCFG)	References
1710	2-16 (8)	0.01-5 (0.5)	18	32	7.7	G,O	4.2 (60%)		Keltch et al. [37]
2286-2500	12-32 (25)	10.0-8000 (1450)	65-150	23-76	60	O	1940	1050 (54%)	Cleveland and Molina [17]
145	8-24 (18)	0.1-2000 (99)	55	45	48	O,G	670 MMBO	200 (30%)	Scotman and Johnes [61]
300-2500	20-35	250-8000				O	66000		Morse [54]
1500	20-35	250-8000				O	88000	32300 37%	Morse [54]
3720	16	500	68			G,O	200.1	3160 BCFG	Morse [54]
1372	22	200				O	1420	770 MMBO (51%)	Morse [54]
1300	25-35	1000				O,G	1180		Hagen and Kvalheim [26]
2120-2700	24	2000				O,G	1420	770 MMBO (51%)	Morse [54]
3800-4400	11	10-1000	300			O	1180		Ehrenberg et al. [22]
2585	29	250-1500				O,G	5600	3400 (61%)	Kirk [39]
2750	12-22	250				O	2700		Biswas et al. [10]
2438	20	500				O,G	14900		Morse [54]
1290-3600	30	1000	330			O	400		Holland et al. [31]
2367	2-22 (12)	0.1-750 (90)	4.3	100	17.8	O	24.8	7.1 (29%)	Barwis [8]

Figure 1. Key data from fluvial reservoirs.

Permeability generally increases with porosity although it sometimes varies significantly with similar porosity values (Figure 1b). With a porosity of 15%, permeability ranges from 315 to 670mD while permeability varies from 80 to 850mD for porosity of 17%. The average amount of hydrocarbon recoverable in these reservoirs is 40% and this generally increases with porosity and permeability. However, the top three recoverable values (75, 80, and 81%) occur with porosity of 20.5, 14.5 and 10.5% respectively. The three reservoirs with the highest recoverable of 81, 80 and 75% are producing gas which demonstrates that gas has tendency for higher recovery than oil.

A large proportion of the porosity range between 15 and 29% are well represented above depth of 2195m (Figure 1a). The amount of hydrocarbon also increases significantly well above this depth. Most of the fluvial reservoirs appear to have good quality above this depth and this may suggest a significant increase in the quality of fluvial reservoirs above 2100m. Apart from the reservoir with the lowest depth of 100m, recoverable generally increases with the average depth of reservoir (2068m) in this environment (Figure 1a).

Figure 2. Key data from deltaic reservoirs.
3.2. Deltaic Reservoirs

From thirteen deltaic reservoirs (Table 2), the average porosity is 20.5%. Majority of the reservoirs have porosity between 15 and 30%. There is a correlation between porosity and the depth of reservoirs (Figure 2a). Apart from one reservoir, the top six porosity values are in the depth below (2500m). In the three reservoirs with the smallest porosity, one of them (11%) occurred in the shallowest depth of 410m. The maximum depth recorded in this environment is 3270m while 145m is the shallowest depth (Figure 2a). There is a correlation between increasing porosity and decreasing depth but this is not a clear pattern (Figure 2a). However, the reservoir at the highest depth (3270m) in this environment has a porosity of 16% which is lower than the average of 20.5%.

The average permeability for these reservoirs is 1143.2mD. Permeability generally increases with porosity (Figure 2b). The highest permeability in this environment does not occur with the highest porosity. The average of the amount of hydrocarbon recoverable in these reservoirs is 47.5%. The recoverable generally increases with porosity and permeability (Table 2) and the highest recoverable value of 61% occurs with the highest porosity of 29%. It is important to point out that a reservoir with a relatively low porosity (8%) and permeability (0.5mD) has as a significant amount of recoverable (60%). This is a gas and oil-producing reservoir. This once again confirms that gas reservoirs have the tendency to recover significantly higher hydrocarbon with relatively smaller porosity and permeability when compared to oil reservoir.

Table 3. Details of shallow marine reservoirs.

Field	Basin	Location	Strat Unit	Age	Depositional Environment
Troll	Norwegian	Viking	U. Ju	Stacked shelf, prograding shoreface	
Snohvit	Norwegian	Sto and Nordmela	U. Ju	Transgressive coastal plain, inner shelf, tidal channels	
Draugen	Norwegian	Rogn	U. Ju	Shallow marine shelf sand bars	
Piper	UK	Piper Ss	U. Ju	Marginal marine shelf	
Northern	Niger Delta	Nigeria	U. Eo- L. Mio	Paralic, shoreface, shell, barrier bars and channel sands	
Niger Delta	Niger Delta				
Takula	Cabinda	Vermelha Ss	U. Cr	Stacked nearshore, coastal sands, foreshore, tidal channels	
Cueta-Tomporo	Venezuela	Lagerinillas	U. Oli	Shallow coastal bars and fluvo-deltaic channels	
El Furrial	Papua New Guinea	Toro Ss	L. Cr	Shallow marine and barrier bars	
Lagif/ Hedinia					
Fortescue	Southeast	Australia	Eo	Transgressive coastal plain, coastal plain, shoreface	
		Latrobe			
Venture	Canada	Venture Ss	U. Cr	Shallow marine, deltaic	
Tom O’Connor	USA	Frio	OI	Inner-middle shelf to foreshore, beach	
Middle Ob	Russia		L. Cr	Shallow marine and fluvo-deltaic	
Cupiaguia	Colombia	Llanos Foothills/ Mirador	Lt. Cr- Lt. Eo	Shallow marine- alluvial	
Tom Walsh-Owen	USA	Olmos	L. Cr	Marine shelf	
Thomasville	Mississippi Interior Salt	Smackover	L. Ju	Nearshore-mid ramp	
Gudao	China	Guantao	Mio	Lakeshore beaches, fan delta, fluvial channels	

Table 3. Continued.

Depth (m)	Porosity (%)	Permeability (mD)	Thickness of Pay (m)	Net/Gross (%)	Area (Sq Km)	Type	In Place (MMBO/ BCFG)	Recoverable (MMBO/ BCFG)	References
1300-1500	25	500-1000	G	O,G	9000 MMBO	Morse	[54]		
2280-2418	5-15	200	G	O,G	4.5	Morse	[54]		
1600	28	700-1000	O	O	1100		410 (37.2%)	Provan [56]	
2195	24	4000	O	O	600		600	Mahers [43]	
1700	15-25	1000-2000	O,G	O,G	4500	Morse	[54]		
971-1038	25	1000	O	O	2100	Dale	[20]	Ramirez and Marciano [58]	
4510-5180	12-17	10-1200	O	O	1400		890 (19.7%)	Prieto and Valdes [55]	
3962-4120	11-16	10-1200	O	O	4500		280 (66.6%)	Hendrich et al. [30]	
2438	13	300	O	O	150		500	Matzek et al. [46]	
2300-2400	20	100-10000	O	O	420		250 (66.6%)	Hendrich et al. [30]	
4436-5800	16	10-40	G	G	130		250	Mills [53]	
1371-1928	31	500-2000	O,G	O,G	670	Morse	[54]		
2380-2820	3-25	0.01-300	O	O	30	James	[36]		
3935-4590	2-8.1	0.1-90	O,G	O,G	1100/4.5		550 (2.25) (51%)	Ramon and Fajardo [59]	
2195	8-23 (15)	0.01-8 (0.4)	6.1	57	90	G	228	Snowden and Jump [64]	
6075	5-10 (7)	0.001-6 (0.35)	90	43	50.3	G	600	Shew and Garner [63]	
1190-1300	30-32	500-2000	G	O	60		60	Chen and Wang [15]	
3.3. Shallow Marine Reservoirs

The average porosity from thirteen shallow marine reservoirs (Table 3) is 18.7%. There is a correlation between porosity and the depth of reservoirs. Porosity increases with decreasing depth of reservoirs (Figure 3a). However, there are two reservoirs with an exception. These reservoirs with 14.5% and 16% porosity below the average porosity (18.7%) are located at depths of 4845 and 5118m respectively.

Permeability generally increases with porosity although this is not a straight-line relationship (Figure 3b). As in fluvial reservoirs, permeability varies with the same porosity values. In two different reservoirs with 20% porosity, permeability ranges from 1500 to 5050mD while permeability also ranges from 1000 to 5250mD when porosity is 25% in two other reservoirs (Figure 3b). As in fluvial and deltaic reservoirs, the highest permeability does not occur with the highest porosity. The permeability of 1250mD, which occurs with the highest porosity (1623.9mD) for the shallow marine reservoirs. The maximum permeability does not occur with the highest porosity (1245mD). A reservoir with a relatively low porosity (5.1%) and permeability (45.1mD) has as a significant amount of recoverable (51%) which is very close to the average for this environment. This reservoir produces oil and gas and the amount of total recoverable may have been significantly increased by the amount of gas recoverable.

3.4. Deep Marine Reservoirs

From ten deep marine reservoirs (Table 4), the average porosity is 27.4% which is the highest among all the environments. The maximum porosity of 35% is the joint highest in all the environments while minimum porosity of 17.5% is the highest of all the minimum porosity. There is a correlation between porosity and the depth of reservoirs as in other reservoirs. Porosity generally increases with decreasing depth of reservoirs (Figure 4a). The top three porous reservoirs have the shallowest depths. Apart from one reservoir, the amount recoverable in this environment increases with porosity and has a straight-line relationship with porosity (Table 4).

Table 4. Details of deep marine reservoirs.

Field	Basin	Location	Stratigraphic	Age	Depositional Environment
Yowlamme	San Joaquin	USA	Stevens Ss	L. Mio	Submarine fan
Forties	Central Garben	UK	Forties	U. Pal	Submarine fan
Midway-Sunset (Webster Zone)	San Joaquin	USA	Webster Zone	L. Mio	Turbidite
Arbuckle	Sacramento	USA	Forbes	L. Cr	Deep sea fan
Alba	North Sea	UK	Alba	Eo	Deep sea fan, channel and levee complex
Miller	North Sea	UK	Brae	U. Ju	Submarine fan
Marlin	Brazil	Carapebus Ss	U. Olig	Submarine fan	
Albacora	Brazil	Carapebus Ss	U.Cr-Mio	Submarine fan, lobe and channels	
Namorado	Brazil	Brazil	U. Cr	Submarine fan, stacked channels and lobes	
Marlima	Brazil	Brazil	U. Cr	Turbidite	
Willimington	Los Angeles	USA	Puente, Repetto	U. Mio- U. Pli	Turbidite

Table 4. Continued.

Depth (m)	Porosity (%)	Permeability (mD)	Thickness of Pay (m)	Net/Gross (%)	Area (Sq Km)	Type	In Place (MMBO/BCFG)	Recoverable (MMBO/BCFG)	References
3445-4085	5-23 (18)	1-700 (100)	46	75	13.4	O	280	78 (28%)	Berg and Royo [9]
2135	24-27 (26)	500-2000 (1000)	120	25-100	96	O	4300	2500 (59%)	Kulpeetz and Van Guem [40]
210-365	28-35 (33)	800-4000 (1000)	15-76	60-80	2.9	O	75		Hulst and Link [27]
1525-1980	20-25 (23)	3-46	50-100	46.6	G	1100			Imperato and Nilsen [35]
1860	35	2800	90		O	1100			
3890-4090	12-23	50-1200	60	60	O,G	670	400 MMBO (59.7%)		McClure and Brown [49]
2500-2700	30	1200	200		O	8200			Morse [54]
2350-3260	25	1500	110		O	4000			Morse [54]
2980-3080	30	1000		250	O	470	170 (36.1%)		Bacoccoli et al. [6]
2700	27	1000		250	O	9600	2500 (26%)		Horschutz et al. [32]
610-1830	30-35	700-1500	>600		O	9600			Mayuga [48]
Figure 3. Key data from shallow marine reservoirs.

The average permeability (1202.5mD) for these reservoirs is the second highest permeability after shallow marine reservoirs among all the environments. Permeability increases with porosity (Figure 4b). Unlike other environments, the highest permeability occurs in the same reservoir with the highest porosity. This may suggest that the porosity in this reservoir is an effective porosity. Unlike other reservoirs, the variability of permeability with the same porosity is not well pronounced.

Table 5. Details of Aeolian reservoirs.

Field	Basin	Location	Stratigraphic Unit	Age	Depositional Environment
Caprock	Permian	USA	Shattuck/ Queen	Per	Aeolian, desert fluvial, and sabkha
Piggah Anticline	Mississippi Interior Salt	USA	Norphlet	L. Ju	Aeolian
South State Line	Mississippi Interior Salt	USA	Norphlet	L. Ju	Aeolian
Viking	UK		Leman Ss	L. Per	Aeolian with Sabkha and alluvial beds
Urucu	Brazil	C. Itaituba			Aeolian
Painter	USA	Nuggest Ss			Aeolian

Table 5. Continued.

Depth (m)	Porosity (%)	Permeability (mD)	Thickness of Pay (m)	Net/Gross (%)	Area (Sq Km)	Type	In Place	Recoverable (MMBO/ BCFG)	References
945	15-30	30-650	3	50	100	O	290	75.5 (26%)	Malicse and Mazzullo [44]
4880-5180	1-24 (12)	0.05-1200 (1)	151-362	100	57.6	G	2000	1300 (65%)	Studlick et al. [66]
5460	1-21 (9.5-16.5)	0.1-84 (0.6-15.5)	181	100	6.5	G	0.6		Thomson and Stancliffe [69]
2850-2877	14	30-80	244			O	70		Gage [23]
10-30	10-1200	23	260			O,G	910 MMBO		Mello et al. [50]
2918	14								Lamb [41]

3.5. Aeolian Reservoirs

From only six aeolian reservoirs (Table 5), the average porosity is 15.9% and this is the lowest average among the entire depositional environments. The maximum and minimum porosity are 22.5% and 11% respectively. The
minimum porosity of 11% is higher than the minimum porosity in fluvial and deltaic reservoirs. The porosity increases with depth (Figure 5a). Permeability generally increases with porosity (Figure 5b). The average depth of reservoir is 3443.4m and it is the highest among all the environments. The maximum depth recorded in this environment is as high as 5460m while 945m is the shallowest depth. Since permeability depends on the effective porosity, the depth of burial of the reservoirs may have affected permeability. The reservoir at the maximum depth has porosity of 11% and permeability of 42mD that are lower than the average for this environment. The relatively deeper burial depth of these reservoirs may partly explain the lower porosity and permeability. There is a good correlation between increasing porosity and decreasing depth (Figure 5a). Recoverable data are available from only two reservoirs in this environment and these are 65% and 26%. A significant amount of recoverable (65%) is obtainable at relatively high depth of 5030m.

4. Discussion

From the available data (Table 6), the average porosity of all the reservoirs is 20.1%. When compared with the averages in the different environments, only the deep marine and deltaic reservoirs have higher porosities (Table 7). About 47% of the reservoirs have porosity above 20% (Figure 6a). As expected, permeability generally increases with porosity (Figure 6a). The average permeability is 1100.6mD. Only the shallow marine, deep marine and deltaic reservoirs have higher permeability than this. About 72% of the reservoirs have permeability of 1100mD or less while about 15% have permeability equal to or greater than 2000mD. It appears that in many reservoirs, once the porosity gets to 20% and above, the permeability jumps significantly to 4000mD and above. In some reservoirs once the porosity reaches 35% and above, the permeability hovers around 1000mD and beyond. The average depth of reservoirs is 2350.2m. Aeolian, shallow, and deep marine reservoirs in increasing order have higher depths than this average.

When all these averages (Table 6) are taken into consideration, it is likely that a reservoir with porosity of about 20% and a permeability of around 1100mD may recover about 41% of hydrocarbon in place provided all other necessary factors are favourable. In addition to this, gas reservoirs are likely to recover more than 41% with porosity of 20% or less because gas reservoirs generally recover relatively higher hydrocarbon with similar or lower porosity and permeability than oil reservoirs. Permeability varies with same porosity in many reservoirs across all the depositional environments. The implications of this for hydrocarbon exploration may include but not limited to: (1) the variation in the effective porosity of reservoir sandstones with similar total porosity. Significant difference in the connectivity of pores may also account for variation in the permeability of sandstones with similar or same porosity, (2) spatial and temporal variations and heterogeneity at different scales may also cause variation in the permeability when the reservoir sandstones have similar porosity [45, 54, 62].

Except for secondary porosity, it is generally expected that porosity will decrease with depth in sandstones due to
diagenesis and other related processes. In the current review, the impact of depth on porosity is clearly evident especially in the aeolian reservoirs (Figure 5a). On the average they have the deepest burial depth and as a result have the lowest porosity and permeability among the reservoirs in all the environments. The deep burial may have resulted in significant reduction in the original porosity of these reservoir sandstones. From the smallest porosity of 5.1% to below 20%, the depth of reservoirs reaches maximum depth of 6075m (Figure 6b). However, once the porosity reaches 20% and above, the depth of reservoirs dropped to 3450m. This may suggest that the quality of reservoir porosity may be significantly affected and reduced beyond this depth. However, based on other factors of individual reservoirs, there may be some exceptions to the relationship between depth and porosity described above. However, other factors such as facies, heterogeneity, subsidence, faulting, fracturing, etc will have to be taken into consideration when considering the effect of depth on the porosity and permeability of clastic reservoirs [45, 51, 54, 62].

The average value of the amount recoverable from all the reservoirs is 41.8%. Apart from the fluvial and deep marine reservoirs, the reservoirs in the other environments have higher recoverable than this average (Table 7). There is a correlation between the amount and type of hydrocarbon recoverable. The present data shows that a gas reservoir recovers significantly higher hydrocarbon than an oil reservoir even when the former has lower porosity and permeability. The viscosity of gas may be an important factor responsible for this. The two gas reservoirs with the highest recoverable (81 and 80%) have porosity and permeability that are significantly lower than the average of 20% and 1100mD respectively. In addition, the minimum recoverable amount for a gas reservoir is 51% and this was achieved with lower than average porosity and permeability. There is no clear trend with depth of reservoirs and the amount of hydrocarbon recoverable although more than 85% of the data on recoverable are recorded at depth of 2700m or below (Table 6).

Table 6. Key data from clastic reservoirs based on Tables 1-5.

Type	Porosity (%)	Permeability (mD)	Depth (m)	Recoverable (%)
Oil & Gas	5.1	45.1	4271.5	51
	7	0.35	6075	
Gas & Oil	8	0.5	1710	60
Oil	9	1.05	-	18
Oil & Gas	10	5	2195	10
	10	200	2349	
Gas	10.5	200	-	81
Oil	10.5	200	1750	34
	11	505	410	
Oil	12	500.5	-	15
Oil	12	90	2367	29
Gas	12	1	5030	65
	13	8.1	5460	
	13	300	2438	
	14	55	2864	
	14	23	2918	
	14	150	2600	
Gas	14.5	50.5	-	80
	14.5	605	4845	
Oil	15	315	-	25
Oil & Gas	15	350	100	23
Oil & Gas	15	670	380	33
Gas	15	0.4	2195	51
	16	50	-	
Oil	16	115	2470	30
	16	500	3270	
	16	25	5118	
	17	80	2560	
	17	236	3350	
	17	500	2644	41.5
Oil & Gas	17	850	-	
	17	250	2750	
	17.5	500	-	
Oil	17.5	217	-	9.6
Oil & Gas	17.5	625	3990	59.7
Oil & Gas	18	99	145	30
Oil	18	100	3765	28
	19	1000	-	
	20	240	2800	-
Type	Porosity (%)	Permeability (mD)	Depth (m)	Recoverable (%)
--------------	--------------	------------------	----------	-----------------
-	20	500	2438	-
-	20	605	-	-
-	20	1500	1700	-
Oil	20	5050	2350	66.6
-	20.5	200	1320	-
Gas	20.5	500.5	-	75
Oil	20.5	1500	-	42
-	21	625	-	-
-	21.5	92.5	3450	-
Oil & Gas	22	400	2620	56
-	22	805	1372	-
-	22.5	1255	-	-
Oil & Gas	22.5	5010	-	45.8
Oil	22.5	340	945	26
Oil	24	100	3283	67
Oil	24	427.5	2526	31
Oil	24	1650	-	37
Oil & Gas	24	2000	2410	51
-	24	4000	2195	-
Oil	25	1450	2393	54
-	25	5250	1400	-
-	25	1000	1004.5	-
-	25	1500	2805	-
Oil	26	1000	2135	59
Oil	27	1700	2700	36.1
-	27.5	4125	1400	-
Oil	27.5	4125	1400	37
Oil	28	5350	1600	37.2
Oil	28.8	2750	790	7.5
-	29	1000	2779	-
Oil	29	875	2585	61
-	30	1000	1300	-
-	30	1000	3030	-
-	30	1200	2600	-
-	31	9000	-	-
-	31	1250	1245	-
-	31	1250	1599.5	-
Oil	32.5	1100	1220	26
-	33	1000	287.5	-
-	35	3000	152	-
-	35	2800	1860	-
Average	20.1	1100.6	2350.2	41.8
Maximum	35	9075	6075	81
Minimum	5.1	0.35	100	7.5
N	81	81	62	38

Table 7. The summary of key data from clastic reservoirs based on Tables 1-5.

5. Conclusions

Based on a comprehensive review of reservoir data from eighty-one clastic reservoirs across the world, the following conclusions can be made. Porosity and permeability have significant controls on the amount of hydrocarbon recoverable in clastic reservoirs although they may not necessarily
guarantee the highest possible recoverable. Within a reservoir, the permeability can vary considerably with the same porosity and the highest permeability may not occur with the highest porosity in other reservoirs. A drastic reduction in porosity at depth greater than 3450m was observed in all the reservoirs regardless of the depositional environments. Gas reservoirs consistently demonstrate tendency to recover higher amount of hydrocarbon than oil reservoirs even with lower porosity and permeability. It is likely that an oil reservoir with porosity of about 20% and a permeability of around 1100mD may recover about 41% of oil in place provided all other necessary geologic factors are in place. Gas reservoirs are likely to recover more than 41% even when they have similar or lower porosity and permeability compared to oil reservoirs. The result of this review, though not exhaustive will serve as a useful guide to petroleum geologists and sedimentologists in predicting and understanding the quality of reservoirs in different continental environments.

Acknowledgements

The data used in this review were sourced during a doctoral research conducted at the University of Brighton, United Kingdom. Many thanks to the reviewers who made constructive comments to improve the final draft.

References

[1] Akinlotan, O. O., 2015. The Sedimentology of the Ashdown Formation and the Wadhurst Clay Formation, Southeast England. (PhD thesis), University of Brighton, United Kingdom.

[2] Akinlotan, O. O., 2016. Porosity and permeability of the English (Lower Cretaceous) sandstones. Proceedings of the Geologists’ Association 127, 681-690.

[3] Akinlotan, O. O., Jolly, B. A., Anyiam, O. A., 2018. Hydrocarbon Generation Potentials of Cenozoic Lacustrine Source Rocks: Gulf of Thailand, Southeast Asia. International Journal of Geology and Earth Sciences 4, 35-55.

[4] Albright, W. A., Turner, W. L., Williamson, K. R., 1980. Ninian field, UK sector, North Sea. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir pp. 173-193.

[5] Atkinson, C. D., McGowen, J. H., Bloch, S., Lundell, L. L., Trumbly, P. N., 1990. Braidplain and deltaic reservoir, Prudhoe Bay Field, Alaska. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences, pp. 7-29.

[6] Bacoccoli, G., Morales, R. G., Campos, O. A. J., 1980. The Namorao Oil Field: A Major Oil Discovery in the Campos Basin, Brazil. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir 30, pp. 328-338.

[7] Balducchi, A., Pommier, G., 1970. Cambrian oil field of Hassi Messaoud, Algeria. In: M. T. Halbouty (Ed.), Geology of giant petroleum fields American Association of Petroleum Geologists Memoir pp. 477-488.

[8] Barwis, J. H., 1990. Flood-tidal delta reservoirs, Medora-Dickson Trend, North Dakota. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 389-412.

[9] Berg, R. B., Royo, G. R., 1990. Channel-fill turbidite reservoir, Yowlumen Field, California. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 467-487.

[10] Biswas, S. K., Rangaraju, M. K., Thomas, J., Bhattacharya, S. K., 1994. Cambay-Hazad (?) Petroleum System in the South Cambay Basin, India. In: L. B. Magoon, W. G. Dow (Eds.), The Petroleum System--From Source to Trap. American Association of Petroleum Geologists Memoir 60, pp. 615-624.

[11] Bloch, S., 1991. Empirical Prediction of Porosity and Permeability in Sandstones (1). American Association of Petroleum Geologists Bulletin 75, 1145-1160.

[12] Bloch, S., Lander, R. H., Bonnell, L., 2002a. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG bulletin 86, 301-328.

[13] Bloch, S., Lander, R. H., Bonnell, L., 2002b. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. American Association of Petroleum Geologists Bulletin 86, 301-328.

[14] Bushell, T. P., 1986. Reservoir Geology of the Morecambe Field. In: J. Brooks, J. Goff, B. Van Hoorne (Eds.), Habitat of Palaeozoic Gas in N. W. Europe. Geological Society, London, Special Publications, pp. 189-208.

[15] Chen, S., Wang, P., 1980. Geology of Gudao Oil Field and Surrounding Areas. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir 30 pp. 471-486.

[16] Clark, J. E., Reinson, G. E., 1990. Continuity and performance of an estuarine reservoir, Crystal Field, Alberta, Canada. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 343-361.

[17] Cleveland, M. N., Molina, J., 1990. Deltaic reservoirs of the Cano Limon Field, Colombia, South America. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 281-315.

[18] Clifford, H. J., Grund, R., Musrati, H., 1980. Geology of a stratigraphic giant: Messla oil field, Libya. In: Giant oil and gas fields of the decade 1968-1978. In: M. T. Halbouty (Ed.). American Association of Petroleum Geologists Memoir 30 pp. 507-524.

[19] Cooke-Yarborough, P., 1991. The Hewett Field, Blocks 48/28-29-30, 52/4a-5a, UK North Sea. Geological Society, London, Memoirs 14, 433-441.

[20] Dale, C. T., Lopes, J. R., Abitiio, S., 1992. Takula oil field and the greater Takula area, Cabinda Angola. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 197-215.
81 Oladapo Akinlotan: Depositional Controls on the Quality of Clastic Reservoirs: A Review

[21] Dutton, S. P., Loucks, R. G., 2010. Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200–6700 m) burial, Gulf of Mexico Basin, U.S.A. Marine and Petroleum Geology 27, 69-81.

[22] Ehrenberg, S. N., Gjerstad, H. M., Hadler-Jacobson, F., 1992. Smorbuuk field, a gas condensate fault trap in the Haltenbanken Province offshore mid-Norway. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 323-348.

[23] Gage, M., 1980. A Review of the Viking Gas Field. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir 30, pp. 39-57.

[24] Gardiner, S., Thomas, D. V., Bowering, E. D., McMinn, L. S., 1990. A braided fluvial reservoir, Peco Field, Alberta, Canada. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 31-56.

[25] Gluyas, J., Swarbrick, R., 2003. Petroleum Geoscience. Blackwell Publishing, Oxford, 359 pp.

[26] Hagen, J., Kvalheim, B., 1992. Oseberg Field. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 417-428.

[27] Hall, B. R., Link, M. H., 1990. Reservoir description of a Miocene turbidite sandstone, Midway-Sunset Field, California. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 509-533.

[28] Harris, N. B., 1989. Reservoir geology of fangst group (middle Jurassic), Heidrun field, offshore mid-Norway. American Association of Petroleum Geologists Bulletin 73, 1415-1435.

[29] Hastings, J. O., 1990. Coarse grained meander belt reservoirs, Rocky Ridge Field, North Dakota. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 57-84.

[30] Hendrich, J. H., Palmer, I. D., Schwebel, D. A., 1992. Fortescue Field, Gippsland Basin, Offshore Australia: Flank Potential Realized, Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 483-492.

[31] Holland, D. S., Nunan, W. E., Lammlein, D. R., Woodhams, R. L., 1980. Eugene Island Block 330 field, offshore Louisiana. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir 30, pp. 253-280.

[32] Horschutz, P. M. C., de Freitas, L. C. S., Stank, C. V., da Silva Barrosos, A., a Cruz, W. M., 1992. The Linguado, Carapeba, Vermelho, and Marimba Giant Oil Fields, Campos Basin, Offshore Brazil. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 137-153.

[33] Howard, R. H., Whitaker, S. T., 1990. Fluvial-estuarine valley fill at the Mississippian-Pennsylvanian unconformity, Main Consolidated Field, Illinois. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 319-341.

[34] Huurdeman, A., Breunese, J., Al-Asbahi, A., Lutgert, J., Floris, F., 1991. Assessment of halite-cemented reservoir zones. Journal of Petroleum Technology 43, 518-523.

[35] Imperato, D. P., Nilsen, T. H., 1990. Deep-sea fan channel-levee Complexes, Arbuckle Field, Sacramento Basin, California. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 535-555.

[36] James, R. A., 1996. Causes of permeability variation in a Lower Cretaceous reservoir unit in the West Siberian Basin, Russia. Marine and Petroleum Geology 13, 393-406.

[37] Keltch, B. W., Wilson, D. A., Potter, P. E., 1990. Deltaic depositional controls on Clinton sandstone reservoirs, Senecaville Gas Field, Guernsey County, Ohio. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 263-280.

[38] Ketter, F. J., 1991. The Esmond, Forbes and Gordon Fields, Blocks 43/8a, 43/13a, 43/15a, 43/20a, UK North Sea. Geological Society, London, Memoirs 14, 425-432.

[39] Kirk, R. H., 1980. Salt field-a Nort Sea giant. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir 30, pp. 95-116.

[40] Kulpecew, A. A., Van Geuns, L. C., 1990. Geologic modeling of a turbidite reservoir, Forties Field, North Sea. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 489-507.

[41] Lamb, C. F., 1980. Painter Reservoir Field—Giant in the Wyoming Thrust Belt. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir 30, pp. 281-288.

[42] Lefek, J. J., Shepherd, D. B., Stone, D. M., Abdine, A. S., 1992. October field, the latest giant under development in Egypt's Gulf of Suez. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir pp. 231-249.

[43] Maher, C. E., 1980. Piper oil field. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir 30, pp. 131-172.

[44] Malicse, A., Mazzullo, J., 1990. Reservoir properties of the desert Shattuck Member, Caprock Field, New Mexico. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 133-152.

[45] Martin, J. H., 1993. A review of braided fluvial hydrocarbon reservoirs: the petroleum engineer's perspective. In: J. L. Best, C. S. Bristow (Eds.), Braided Rivers. Geological Society, London, Special Publications, pp. 333-367.

[46] Matkze, R. H., Smith, G. J., Foo, W. K., 1992. Lagifu/Hedinia oil field first oil from the Papuan fold and thrust belt. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1968-1978. American Association of Petroleum Geologists Memoir 30, pp. 131-172.
[47] Mattingly, G. A., Brethoura, H. H., 1992. The Alba Field: A Middle Eocene Deep Water Channel System in the UK North Sea. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 297-305.

[48] Mayuga, M. N., 1970. Geology and Development of California’s Giant—Wilmington Oil Field. In: M. T. Halbouty (Ed.), Geology of giant petroleum fields American Association of Petroleum Geologists Memoir 14, pp. 158-184.

[49] McClure, N. M., Brown, A. A., 1992. Miller Field: A Subtle Upper Jurassic Submarine Fan Trap in the South Viking Graben, United Kingdom Sector, North Sea. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 307-322.

[50] Mello, M. R., Koutsoukos, E. A. M., Mohriak, W. U., Bacoccoli, G., 1994. Selected Petroleum Systems in Brazil. In: L. B. Magoon, W. G. Dow (Eds.), The Petroleum System—From Source to Trap. American Association of Petroleum Geologists Memoir 60, pp. 499-512.

[51] Miall, A. D., 1996. The geology of fluvial deposits. Springer, Berlin, 575 pp.

[52] Miller, D. D., McPherson, J. G., Covington, T. E., 1990. Fluviodeltaic reservoir, South Belridge Field, San Joaquin Valley, California. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 109-130.

[53] Mills, H. G., 1970. Geology of Tom O’Connor Field, Refugio County, Texas. In: M. T. Halbouty (Ed.), Geology of giant petroleum fields American Association of Petroleum Geologists Memoir 14, pp. 292-300.

[54] Morse, D. G., 1994. Siliciclastic reservoir rocks. In: L. B. Magoon, W. G. Dow (Eds.), The Petroleum System—From Source to Trap. American Association of Petroleum Geologists Memoir 60, pp. 121-139.

[55] Prieto, R., Valdes, G., 1992. El Furrial oil field a new giant field in an old basin. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 155-161.

[56] Provan, D. M. J., 1992. Draugen oil field, Haltenbanken Province, offshore Norway. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 371-382.

[57] Providence, 2013. The Barryroe Oil Field. http://www.providenceresources.com/sep%201-11.aspx. (Accessed: 29/10/2013).

[58] Ramirez, E., Marcano, F., 1992. Ceuta-Tomoporo field, Venezuela. In: M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1978-1988. American Association of Petroleum Geologists Memoir 54, pp. 163-173.

[59] Ramon, J. C., Fajardo, A., 2006. Sedimentology, sequence stratigraphy and reservoir architecture of the Eocene Mirador Formation, Cupiagua field, Llanos Foothills, Columbia. In: P. M. Harris, L. J. Weber (Eds.), Giant hydrocarbon reservoirs of the world: from rocks to reservoir characterisation and modelling. American Association of Petroleum Geologists Memoir 88/SEPM Special Publication, pp. 433-469.

[60] Ritchie, J. S., Pratsides, P., The Carster Fields, Block 44/23a UK North Sea. In: J. R. Parker (Ed.), Petroleum Geology of NW Europe: Proceedings of the 4th Conference. 1993, Geological Society, pp. 759-770.

[61] Scotman, I. C., Johns, L. H., 1990. Wave-dominated deltaic reservoirs of the Brent Group, Northwest Hutton Field. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 227-261.

[62] Selley, R. C., 1996. Ancient sedimentary environments and their sub-surface diagnosis. Psychology Press.

[63] Shew, R. D., Gardner, M. M., 1990. Reservoir characteristics of nearshore and shelf sandstones in the Jurassic Smackover Formation, Thomasville Field, Mississippi. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 437-464.

[64] Snedden, J. W., Jumper, R. S., 1990. Shelf and shoreface reservoirs, Tom Walsh-Owen Field, Texas. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 415-436.

[65] Strohmenger, C. J., Patterson, P. E., Al-Salah, Mitchell, J. C., Feldman, H. R., Demko, T. M., Wellner, R. W., Lehmann, P. J., McConnon, G. G., Broomhall, R. W., Al-Ajmi, N., 2006. Sequence stratigraphy and reservoir architecture of Burgan and Bauddud Formations (Lower Cretaceous), Kuwait. In: P. M. Harris, L. J. Weber (Eds.), Giant hydrocarbon reservoirs of the world: from rocks to reservoir characterisation and modelling. American Association of Petroleum Geologists Memoir 88/SEPM Special Publication, pp. 213-245.

[66] Studlick, J. R. J., Shew, R. D., Basye, G. L., Ray, J. R., 1990. A giant carbon dioxide accumulation in the Norphlet Formation, Pisgah Anticline, Mississippi. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 181-204.

[67] Sun, S., Shu, L., Zeng, Y., Cao, J., Feng, Z., 2007. Porosity–permeability and textural heterogeneity of reservoir sandstones from the Lower Cretaceous Putaochua Member Of Yaojia Formation, Weixing Oilfield, Songliao Basin, Northeast China. Marine and Petroleum Geology 24, 109-127.

[68] Talukdar, S. C., Marcano, F., 1994. Petroleum Systems of the Maracaibo Basin, Venezuela. In: L. B. Magoon, W. G. Dow (Eds.), The Petroleum System—From Source to Trap. American Association of Petroleum Geologists Memoir 60, pp. 463-481.

[69] Thomson, A., Stancliffe, R. J., 1990. Diagenetic controls on reservoir quality, Eolian Norphlet Formation, South State Line Field Mississippi. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 205-224.

[70] Werren, E. G., Shew, R. D., Adams, E. R., Stancliffe, R. J., 1990. Meander-belt reservoir geology, mid-dip Tuscaloosa, Little Creek Field, Mississippi. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 85-107.

[71] Zaitlin, B. A., Shultz, B. C., 1990. Wave-influenced estuarine sand body, Senlac Heavy Oil Pool, Saskatchewan, Canada. In: J. H. Barwis, J. G. McPherson, J. R. Studlick (Eds.), Sandstone Petroleum Reservoirs: casebooks in earth sciences. Springer Verlag, New York, pp. 363-387.