TESS's first planet: A super-Earth transiting the naked-eye star p Mensae

Citation for the original published paper (version of record):
Gandolfi, D., Barragán, O., Livingston, J. et al (2018)
TESS's first planet: A super-Earth transiting the naked-eye star p Mensae
Astronomy and Astrophysics, 619
http://dx.doi.org/10.1051/0004-6361/201834289

N.B. When citing this work, cite the original published paper.
We report on the confirmation and mass determination of π Mens c, the first transiting planet discovered by NASA’s TESS space mission. π Men is a naked-eye (V = 5.65 mag) quiet G0 V star that was previously known to host a sub-stellar companion (π Men b) on a long-period (P_\text{orb} = 2091 days) eccentric (e = 0.64) orbit. Using TESS time-series photometry, combined with Gaia data, published UCLES at AAT Doppler measurements, and archival HARPS at ESO-3.6m radial velocities, we found that π Men c is a close-in planet with an orbital period of P_\text{orb} = 6.27 days, a mass of M_c = 4.52 ± 0.81 M_\oplus, and a radius of R_c = 2.06 ± 0.03 R_\oplus. Based on the planet’s orbital period and size, π Men c is a super-Earth located at, or close to, the radius gap, while its mass and bulk density suggest it may have held on to a significant atmosphere. Because of the brightness of the host star, this system is highly suitable for a wide range of further studies to characterize the planetary atmosphere and dynamical properties. We also performed an asteroseismic analysis of the TESS data and detected a hint of power excess consistent with the seismic values expected for this star, although this result depends on the photometric aperture used to extract the light curve. This marginal detection is expected from pre-launch simulations hinting at the asteroseismic potential of the TESS mission for longer, multi-sector observations and/or for more evolved bright stars.

Key words. planetary systems – planets and satellites: detection – planets and satellites: fundamental parameters – planets and satellites: terrestrial planets – stars: fundamental parameters

1. Introduction

Successfully launched on 18 April 2018, NASA’s Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2015) will provide us with a leap forward in understanding the diversity of small planets (R_p < 4 R_\oplus). Unlike previous space missions, TESS is performing an all-sky transit survey focusing on bright stars (5 < V < 11 mag) so that detailed characterizations of the planets and their atmospheres can be performed. In its two-year prime mission, TESS observes first the southern and then the northern ecliptic hemisphere. The survey is broken up into 26 anti-solar sky sectors. TESS uses four cameras to observe each sector, resulting in a combined field of view of 24° × 96°. The overlap between sectors towards the ecliptic poles provides greater sensitivity to smaller and longer-period planets in those regions of the celestial sphere. TESS records full-frame images of its entire field of view every 30 min and observes approximately 200,000 pre-selected main-sequence stars with a cadence of ~2 min. The mission will certainly open a new era in the study of close-in small planets, providing us with cornerstone objects amenable to both mass determination – via Doppler spectroscopy – and atmospheric characterization – via transmission spectroscopy with NASA’s James Webb Space Telescope (JWST) and the next generation of extremely large ground-based telescopes (ELT, TMT, and GMT).

Following a successful commissioning of 3 months, TESS started the science operation on 25 July 2018 by photometrically monitoring its first sector (Sector 1), which is centered at coordinates α = 352.68°, δ = −64.85° (J2000). Shortly after ~30 days of (almost) continuous observations in Sector 1, 73 transiting planet candidates were detected in the two-minute cadence light curves by the TESS team and made available to the scientific community upon registration to a dedicated web portal hosted at the Massachusetts Institute of Technology (MIT) web page1.

In this letter, we present the spectroscopic confirmation of π Men c, the first transiting planet discovered by the TESS space mission. The host star is π Mensae (HD 39091; Table 1), a naked-eye (V = 5.65 mag), relatively inactive (log R^\prime_HK = −4.941; Gray et al. 2006) G0 V star already known to host a sub-stellar companion (π Men b) on a ~2100-day eccentric (e = 0.6) orbit (Jones et al. 2002). π Men c is a 2.06 R_\oplus planet with an orbital period of 6.27 days. Using Gaia photometry, archival HARPS Doppler data, and published UCLES high-precision radial velocities (RVs) we confirmed the planetary nature of the transiting signal detected by TESS and derived the planet’s mass. We note

* The entire RV data (Tables A.1, A.3 and full Table A.2) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/L10

1 Available at https://tess.mit.edu/alerts/
that in the final stage of preparing this manuscript, an independent investigation of this system was publicly announced by Huang et al. (2018).

2. TESS photometry

We downloaded the TESS Sector 1 light curves from the MIT web site. For the TESS object of interest TOI-144 (π Men, HD 39091, TIC 261136679), the light curve is provided by the NASA Ames Science Processing Operations Center (SPOC). The time-series includes 18 036 short-cadence (T = 2 min) photometric measurements. TESS observations started on 25 July 2018 and ended on 22 August 2018. We removed any measurements that have a non-zero “quality” flag, that is, those suffering from cosmic rays or instrumental issues. We removed any long-term stellar variability by fitting a cubic spline with a width of 0.75 days. We searched the light curve for transit signals using the Box-least-squares algorithm (BLS; Kovács et al. 2002). We detected the signal of π Men c with a signal-to-noise ratio (S/N) of 9.1 and our ephemeris is consistent with that reported by the TESS team. We did not find any additional transit signal with S/N > 6. We also performed a periodogram and auto-cross-correlation analysis in an attempt to extract the rotation period of the star from the out-of-transit TESS light curve, but we found no significant rotation signal in the light curve.

3. Limits on photometric contamination

As a result of the ∼21″ pixel scale of the TESS detectors, photometric contamination due to chance alignment with a background source is more likely than in previous transit surveys, such as Kepler. We investigated this possibility using archival images of π Men from the SERC-J and AAO-SES surveys2 and Gaia DR2 (Gaia Collaboration 2018). The TESS photometric aperture used to create the SPOC light curve is approximately 6 × 6 TESS pixels in extent. We thus executed a query of Gaia DR2 centered on the coordinates of π Men from the TESS Input Catalog3 (TIC; Stassun et al. 2018) using a search radius of 2′. The archival images were taken in 1978 and 1989, and therefore π Men appears significantly offset from its current position due to proper motion; no background source is visible near the current position of π Men. Figure 1 shows Gaia DR2 source positions overplotted on the archival images, along with the SPOC photometric aperture.

Assuming a maximum eclipse depth of 100%, the measured transit depth (see Sect. 9) puts an upper limit on the magnitude of a putative eclipsing binary within the photometric aperture, since a fainter source would be overly diluted by the flux from π Men. As the Gaia G band-pass is a good approximation to the TESS band-pass, we find a limiting magnitude of Gmax = 14.1 mag. Assuming an aperture radius of 60″ (120′′), a simulated stellar population along the line of sight to π Men from TRILEGAL4 (Girardi et al. 2005) implies a frequency of 0.3578 (1.4312) stars brighter than Gmax. Indeed, only one other Gaia DR2 source within 2′ of π Men is brighter than Gmax consistent with the expectation from TRILEGAL: Gaia DR2 4623036143819289344 (G = 12.1644 ± 0.0011 mag, separation = 118″). As this source is clearly outside of the TESS photometric aperture, we conclude that π Men is the true host of the transit signal as seen by TESS, and that photometric dilution from sources other than π Men is negligible.

4. Custom light curve preparation

Having established that π Men is the host of the transit signal based on the above analysis of the SPOC aperture and the corresponding light curve, we then performed an analysis of the TESS pixel data by downloading the target pixel file (TPF) for π Men from the MAST web page5. We extracted a series of light curves from the pixel data by producing aperture masks containing different contiguous sets of pixels centered on π Men, which appeared elongated due to CCD blooming preferentially along the columns of the detector. The apertures were produced by computing the 50th to 95th percentiles of the median image and selecting pixels with median counts above each percentile value. We then selected an optimal aperture by minimizing the

2 Available at http://archive.stsci.edu/cgi-bin/dss_form
3 Available at https://mast.stsci.edu/portal/Mashup/ Clients/Mast/Portal.html
4 Available at http://stev.oapd.inaf.it/cgi-bin/trilegal
5 Available at https://archive.stsci.edu/prepds/tess-data-alerts/
6.5 h combined differential photometric precision (CDPP) noise metric (Christiansen et al. 2012). We found that the light curves exhibited elevated noise levels between BJD\sim2450000\approx8347–8330, which corresponded to a deviation in spacecraft pointing. As no transits occur during this time we decided to mask it from each light curve before computing the value of the CDPP noise metric. An aperture somewhat larger than the SPOC aperture yielded the light curve with the best CDPP value, and we use this for our subsequent transit analysis. We note that, although our custom aperture is larger than the SPOC aperture, π Men is so much brighter than other nearby stars that photometric dilution remains negligible compared to the uncertainties of the data.

5. UCLES and HARPS archival spectra

Jones et al. (2002) reported on the detection of a long-period ($P_{\text{orb}} \approx 2100$ days), eccentric ($e \approx 0.6$), sub-stellar companion to π Men with a minimum mass of $M_6 \approx 10 M_{\text{Jup}}$. Their discovery is based on 28 RV measurements obtained between November 1998 and April 2002 using the UCLES spectrograph mounted at the 3.92-m Anglo-Australian Telescope at Siding Spring Observatory. Fourteen additional UCLES RVs taken between August 2002 and October 2005 were published by Butler et al. (2006). For the sake of clarity, we list the 42 UCLES RVs in Table A.1. We also retrieved from the ESO public archive 145 high-resolution ($R \approx 115,000$) spectra of π Men, taken with the HARPS spectrograph (Mayor et al. 2003) mounted at the ESO-3.6m telescope of La Silla observatory (Chile). The observations were carried out between 28 December 2012 and 17 March 2017 UTC, as part of the observing programs 072.C-0488, 183.C-0972, and 192.C-0852. The retrieved data-set includes Echelle and order-merged spectra in flexible image transport system (FITTS) format, along with additional FITS files containing the cross-correlation function (CCF) and its bisector, computed from the HARPS pipeline using a G2 numerical mask. From the FITS headers, we extracted the barycentric Julian dates, the RVs, and their uncertainties, along with the full width at half maximum (FWHM) and bisector span (BIS) of the CCF, and the S/N per pixel at 5500 Å. On June 2015, the HARPS fiber bundle was upgraded (Lo Curto et al. 2015). To account for the RV offset caused by the instrument refurbishment, we treated the HARPS RVs taken before/after June 2015 as two different data sets (Tables A.2 and A.3). Following Eastman et al. (2010), we converted the heliocentric Julian dates (HJD$_{\text{UTC}}$) of the UCLES time stamps and the barycentric Julian (BJD$_{\text{UTC}}$) of the HARPS time stamps into barycentric Julian dates in barycentric dynamical time (BJD$_{\text{TDB}}$).

6. Stellar fundamental parameters

We determined the spectroscopic parameters of π Men from the co-added HARPS spectrum, which has a S/N per pixel of \~1880 at 5500 Å. We used Spectroscopy Made Easy (SME; Valenti & Piskunov 1996; Valenti & Fischer 2005; Piskunov & Valenti 2017), a spectral analysis tool that calculates synthetic spectra and fits them to high-resolution observed spectra using a χ² minimizing procedure. The analysis was performed with the non-LTE SME version 5.2.2, along with ATLAS 12 one-dimensional model atmospheres (Kurucz 2013).

In order to estimate the micro-turbulent (v_{mic}) and macroturbulent (v_{mac}) velocities, we used the empirical calibration equations for Sun-like stars from Bruntt et al. (2010) and Doyle et al. (2014), respectively. The effective temperature T_{eff} was measured fitting the wings of the H_α line (Fuhrmann et al. 1993, 1994, 1997a,b; Axer et al. 1994). We excluded the core of H_α because of its origin in higher layers of stellar photospheres. The surface gravity $\log g_*$ was determined from the wings of the Ca i $\lambda \lambda 6102, \lambda 6122, \lambda 6162$ Å triplet, and the Ca i $\lambda 6439$ Å line. We measured the iron abundance [Fe/H] and projected rotational velocity $v \sin i_*$ by simultaneously fitting the unblended iron lines in the spectral region 5880–6600 Å.

We found an effective temperature of $T_{\text{eff}} \approx 5870 \pm 50$ K, surface gravity log $g_* \approx 4.33 \pm 0.09$ (cgs), and an iron abundance relative to solar of [Fe/H] $\approx 0.05 \pm 0.09$. We measured a [Ca/H] abundance of 0.07±0.10 dex. The projected rotational velocity was found to be $v \sin i_*$ = 3.3 ± 0.5 km s$^{-1}$, with $v_{\text{mic}} = 1.06 \pm 0.10$ km s$^{-1}$ and $v_{\text{mac}} = 3.35 \pm 0.4$ km s$^{-1}$. These values were confirmed by modeling the Na I doublet at 5898.95 and 5895.924 Å. We detected no interstellar sodium, as expected given the vicinity of the star (d = 18.3 pc).

We used the BAYesian Stellar Algorithm (BASTA, Silva Aguirre et al. 2015) with a large grid of GARSTEC stellar models (Weiss & Schlattl 2008) to derive the fundamental parameters of π Men. We built the spectral energy distribution (SED) of the star using the magnitudes listed in Table 1, and then fitted the SED along with our spectroscopic parameters ($T_{\text{eff}}, \log g_*, [\text{Fe/H}]$ and Gaia parallax to a grid of GARSTEC models. Following Luri et al. (2018), we quadratically added 0.1 mas to the nominal uncertainty of Gaia parallax to account for systematic uncertainties of Gaia astrometry. We adopted a minimum uncertainty of 0.01 mags for the Gaia magnitudes to account for systematic uncertainties in the Gaia photometry. Given the proximity of the star (d = 18.3 pc), we assumed no interstellar reddening.

We found that π Men has a mass of $M_6 \approx 1.02 \pm 0.03 M_\odot$ and a radius of $R_6 = 1.10 \pm 0.01 R_\odot$, implying a surface gravity of log g_* = 4.36 ± 0.02 (cgs), in agreement with the spectroscopically derived value of 4.33 ± 0.09. The stellar models constrain the age of the star to be 5.2 ± 1.1 Gyr. The fundamental parameters of π Men are given in Table A.4. We stress that the uncertainties on the derived parameters are internal to the stellar models used and do not include systematic uncertainties related to input physics or to the bolometric correction.

7. Seismic analysis

In order to better characterize the star, we performed an asteroseismic analysis of the SPOC light curve as well as the custom light curve optimized for characterization of the exoplanet (Sect. 4). For the former, the corrections we made consist of three steps. First, we corrected the SPOC flux performing a robust locally weighted regression as described in Cleveland (1979) in order to smooth long-period variation from the light curve without removing any transit signal. We also calibrated the data following the methods described in García et al. (2011). The results of both analyses provided similar seismic results, although the corrections applied were very different. As a second step we removed the transits by folding the light curve at the period of the planet transit and filtering it with a wavelet transform using an “à trous” algorithm (Starck & Murtagh 2002, 2006). Finally as the last step, the gaps of the resultant light curve were interpolated using inpainting techniques following García et al. (2014) and Pires et al. (2015). For the custom

6 We used the pre-search data conditioning simple aperture photometry (Smith et al. 2012).
aperture (Sect. 4), the first step consisted of correcting the light curve following only García et al. (2011) (as the two corrections methods led to similar results) and we applied the same steps two and three. We used the FliPer metric (Bugnet et al. 2018) to estimate log \(g \) directly from the global power of the power spectrum density of both light curves. Unfortunately, due to the high level of noise and the filters applied to the light curve to flatten it and properly remove the transits, part of the power below \(\sim 100 \mu \text{Hz} \) is removed providing only a loose limit of the value of surface gravity or the frequency of maximum power of the modes. We applied the standard seismic A2Z pipeline (Mathur et al. 2010) to look for the power excess due to acoustic modes. While the blind search did not yield a significant detection in either light curve, we estimated where we would expect the acoustic modes (Sect. 6). However, the asteroseismic analysis of the custom light curve does not reproduce the previous results, as the seismic signal is not statistically significant. A better knowledge of the optimal aperture mask for asteroseismology is required at this point, which is beyond the scope of this paper. We note that this marginal detection is expected for a star of this magnitude and evolutionary stage observed over the course of one month. Asteroseismic analysis with TESS will require multiple-sector data and/or more evolved bright stars, as predicted by pre-launch simulations (Campante 2017).

8. Frequency analysis of the Doppler data

We performed a frequency analysis of the UCLES and HARPS RVs in order to search for the presence of the transiting planet in the Doppler data, and look for possible additional periodic signals. The generalized Lomb-Scargle (GLS; Zechmeister & Kürster 2009) periodogram of the combined UCLES and HARPS RVs\(^7\) shows a very significant peak at the orbital frequency of the outer sub-stellar companion (\(f_c = 0.0005 \text{ c/d} \)), with a false-alarm probability (FAP) lower than \(10^{-10} \). The upper panel of Fig. 2 displays the GLS periodogram of the RV residuals following the subtraction of the Doppler reflex motion induced by the outer sub-stellar companion. Second and third panels: GLS periodogram of the BIS and FWHM of the HARPS CCF (data acquired with the old fiber bundle). Fourth panel: periodogram of the window function of the combined RV measurements. The dashed vertical red line marks the orbital frequency of the transiting planet (\(f_c = 0.16 \text{ c/d} \)).

\(^7\) We accounted for the instrumental offsets using the values derived in Sect. 9.

We also subtracted the Doppler reflex motion induced by the transiting planet from our RV data and searched the residuals for additional periodic signal but found no peak with FAP < \(10^{-4} \).

9. Joint analysis of the transit and Doppler data

We performed a joint analysis of our custom light curve (Sect. 4) and RV measurements (Sect. 5) using the software suite pycat (Barragán et al. 2019), which allows for parameter estimation from posterior distributions calculated using Markov chain Monte Carlo methods. We extracted 10 h of TESS data points centered around each of the five transits observed by TESS. The five segments were de-trended using the code exotrending (Barragán & Gandolfi 2017), fitting a second-order polynomial to the out-of-transit data. We used all 187 Doppler measurements presented in Sect. 5 and accounted for the RV offsets between the different instruments and the two HARPS setups.

The RV model consists of two Keplerians to account for the Doppler signal induced by planets \(b \) and \(c \). We fitted for a RV jitter term for each instrument/setup to account for instrumental noise not included in the nominal uncertainties, and/or to account for any stellar-activity-induced RV variation. We
10. Discussion and conclusion

π Men is a bright ($V = 5.65$ mag) Sun-like star (SpT = G0 V) known to host a sub-stellar companion (π Men b) on a long-period eccentric orbit (Jones et al. 2002). Combining Gaia photometry with archival RV measurements we confirmed that the $P = 6.27$ day transit signal detected in the TESS light curve of π Men is caused by a bona fide transiting super-Earth and derived its mass. π Men c becomes TESS’s first confirmed planet.

π Men joins the growing number of stars known to host both long-period Jupiter analogs and close-in small planets ($R_p < 4 R_{\oplus}$). Zhu & Wu (2018) pointed out that long-period, gas-giant planets are common around stars hosting super-Earths. Bryan et al. (2018) recently found that the occurrence rate of companions in the range 0.5–20 M_{Jup} at 1–20 AU in systems known to host inner small planets is 39 ± 7%, suggesting that the presence of outer gas giant planets does not prevent the formation of inner Earth- and Neptune-size planets. We performed a dynamical stability analysis of π Men using the software mercurv6 (Chambers 1999). Assuming co-planar orbits, we let the system evolve for 100,000 yr. For π Men b we found negligible changes of the semi-major axis and eccentricity of $< 1 \times 10^{-6}$, respectively. For π Men c we found no variation larger than 1×10^{-5} of its semi-major axis, with changes of its eccentricity $\lesssim 0.05$.

The actual orientation of the outer planet’s orbit is unknown. While we know the inner planet’s inclination, because it transits, its eccentricity is poorly constrained by the data. Compact multi-planet systems have been observed to have near-zero eccentricities (e.g., Hadden & Lithwick 2014; Van Eylen & Albrecht 2015; Xie et al. 2016). However, planets with only a single transiting planet often appear to be “dynamically hotter”, and many have a non-zero eccentricity, which can, for example, be described by the positive half of a zero-mean Gaussian distribution, with a dispersion $\sigma_e = 0.32 \pm 0.06$ (Van Eylen et al. 2018b). The outer planet, π Men c, has an orbital eccentricity of ~ 0.64.

A far-out giant planet, such as planet c, may in fact increase the orbital eccentricity of a close-in super-Earth, such as planet b (see, e.g., Mustill et al. 2017; Hansen 2017; Huang et al. 2017). Following Van Eylen et al. (2018b), we found an orbital eccentricity based on the transit data alone of [0.0, 0.45] at 68% confidence. Because the current RV observations cannot constrain the eccentricity either, we fixed it to zero in the above analysis (see Sect. 9). The brightness of the host star makes this planetary system an exciting target for further RV follow-up to measure the inner planet’s eccentricity.
The transiting planet \(\pi \) Men c has a mass of \(M_c = 4.52 \pm 0.81 \) \(M_\oplus \) and a radius of \(R_c = 2.06 \pm 0.03 \) \(R_\oplus \), yielding a mean density of \(\rho_c = 2.82 \pm 0.53 \) g cm\(^{-3}\). Figure 4 shows the mass-radius diagram for small planets whose masses have been determined with a precision better than 25\%. Theoretical models from Zeng et al. (2016) are overplotted using different lines and colors. The position of \(\pi \) Men c suggests a composition of Mg silicates and water. Alternatively, the planet might have a solid core surrounded by a gas envelope. At short orbital periods, super-Earths and sub-Neptunes are separated by a radius gap at \(\approx 1.8 \) \(R_\oplus \) (Fulton et al. 2017; Van Eylen et al. 2018a). The exact location of the radius gap is observed to be a function of the orbital period (Van Eylen et al. 2018a), as predicted by models of photo-evaporation (e.g., Owen & Wu 2013; Lopez & Fortney 2013). Van Eylen et al. (2018a) found that the radius gap is located at \(\log R = m \log P + a \), where \(m = -0.09 \pm 0.02 \) and \(a = 0.37 \pm 0.04 \). At the orbital period of \(\pi \) Men c, that is, \(P_{\text{orb}} = 6.27 \) days, the radius gap is then located at \(R_p = 1.99 \pm 0.20 \) \(R_\oplus \). This implies that \(\pi \) Men c, with a radius of \(R_c = 2.06 \pm 0.03 \) \(R_\oplus \), is located just around the radius gap, although the measured density suggests that the planet may have held on to (part of) its atmosphere.

The naked-eye brightness of \(\pi \) Men immediately argues that any transiting planet will be attractive for atmospheric characterization. Observations of a planetary atmosphere through transmission spectroscopy during transit provide opportunities to measure the extent, kinematics, abundances, and structure of the atmosphere (Seager & Deming 2010). Such measurements can be utilized to address fundamental questions such as planetary atmospheric escape and interactions with the host star (Cauley et al. 2017), formation and structure of planetary interiors (Owen et al. 1999), planetary and atmospheric evolution (Öberg et al. 2011), and biological processes (Meadows et al. 2010).

The left panel of Fig. 5 displays a relative atmospheric detection S/N metric normalized to \(\pi \) Men c for all known small exoplanets with \(R_p < 3 \) \(R_\oplus \). The sample is taken from the Exoplanet Orbit Database\(^8\) as of September 2018. The atmospheric signal is calculated in a similar way to Gillon et al. (2016) and Niraula et al. (2017). In particular, the relative atmospheric S/N plotted in Fig. 5 is calculated from Eqs. (1a) and (1b) from Niraula et al. (2017). This calculation assumes similar atmospheric properties (e.g., Bond albedo, mean molecular weight) for all planets. Large atmospheric signals result from hot, extended atmospheres of planets that transit small, cool stars. For this reason, planets transiting such stars as \(\text{GJ} 1214 \) and TRAPPIST-1 are excellent targets for this kind of study. Nevertheless, the brightness of the host star along with the period and duration of the transit also significantly contribute to the ability to build up a sufficiently high S/N to detect atmospheric signals. We used the \(J \)-band flux (e.g., \(H_2O \) measurements with JWST; Beichman et al. 2014) and weighted the metric to optimize the S/N over a period of time rather than per transit.

In the context of all small planets (\(R_p < 3 \) \(R_\oplus \)), \(\pi \) Men c has the seventh strongest atmospheric signal, behind \(\text{GJ} 1214 \) b and \(c \) planets, HD219134 b, and Kepler-42 c. However, \(\pi \) Men is unique among this notable group of stars in that it is the only G-type star (Fig. 5, right panel). All of the other exoplanets transit K- or M-type stars. The brightness of \(\pi \) Men is able to overcome the disadvantage of a small planet transiting a slightly larger star, to provide the best opportunity of probing the atmospheric properties of a super-Earth orbiting a solar type star. Given the significant changes in the structure of stellar coronae and stellar winds between G- and M-type stars, the atmospheric properties and evolution of \(\pi \) Men c may be distinctly different from the atmospheres detected around the sample of very-low-mass M-type stars (e.g., \(\text{GJ} 1214 \) and TRAPPIST-1). For example, the TRAPPIST-1 e, f, and g planets essentially orbit within the stellar corona of the host star and may be subject to a substantial stellar wind, which will result in a strong injection of energy in the atmosphere and may prevent the formation of a significant atmosphere (Cohen et al. 2018). When inferring the properties of coronae and winds of stars other than the Sun, we often have to use poorly constrained models and empirical correlations, the validity of which are best for stars that are quite similar to the Sun. In this respect, \(\pi \) Men is a unique laboratory because of its greater similarities to the Sun with respect to all the other stars known to host mini-Neptunes and Super-Earths amenable to multi-wavelength atmospheric characterization.

We further studied the long-term stability of a possible hydrogen-dominated atmosphere by estimating the mass-loss rates. To this end, we employed the interpolation routine described by Kubyshkina et al. (2018), which interpolates the mass-loss rate among those obtained with a large grid of one-dimensional upper-atmosphere hydrodynamic models for super-Earths and sub-Neptunes. Employing the values listed in Table A.4 and a Sun-like high-energy emission, which is a reasonable assumption given that \(\pi \) Men has a temperature and age similar to those of the Sun, we obtained a mass-loss rate of \(1.2 \times 10^{10} \) g s\(^{-1}\), which corresponds to \(\approx 1.4\% \) of the estimated planetary mass per gigayear. This indicates that the question of whether the planet still holds a hydrogen-dominated atmosphere or not greatly depends on the initial conditions, namely how much hydrogen the planet accreted during its formation. If the planet originally accreted a small hydrogen-dominated atmosphere with a mass of only a few percent of the total planetary mass, we can expect it to be, for the vast majority, lost, particularly taking into account that the star was more active in the past. In contrast, a significant hydrogen mass fraction would still be present if the planet originally accreted a large amount of hydrogen. The inferred bulk density hints at the possible presence of a hydrogen-dominated atmosphere, but it does not give a clear indication. Ultraviolet observations aiming at detecting hydrogen Ly\(\alpha \) absorption and/or carbon and oxygen in the upper atmosphere...
Fig. 5. Left panel: relative S/N of an atmospheric signal for all exoplanets with $R_p < 3R_\oplus$ as a function of planetary equilibrium temperature. The symbol size is inversely proportional to the planetary radius, emphasizing those closest to an Earth radius. The π Mensc planet is used as the atmospheric signal reference and it is indicated by the filled circle. It is among the top ten most favorable planets for atmospheric characterization. Right panel: as in the left panel, simply limited to solar type host stars (i.e., G-type stars; 5280 $< T_{\text{eq}} < 6040$ K). The π Mensc planet is by far the most favorable planet around such a star for atmospheric characterization. The other optimal atmospheric targets all transit K and M stars. For this reason, the coronal and stellar wind properties that interact with the π Mensc atmosphere may be distinctly different to those experienced by the rest of the sample.

planetary atmosphere would be decisive in identifying its true nature. While this manuscript was in preparation, Huang et al. (2018) publicly reported an independent analysis of the π Mens system, using a custom TESS photometry pipeline. They measured a mass and radius for π Mensc consistent within less than 1-σ with our measurements.

Acknowledgements. Davide Gandolfi is lovingly grateful to Conny Konnopke for her unique support during the preparation of this paper, and her valuable suggestions and comments. J.H.L. gratefully acknowledges the support of the Japan Society for the Promotion of Science (JSPS) Research Fellowship for Young Scientists. M.F. and C.M.P. gratefully acknowledge the support by DFG (Deutsche Forschungsgemeinschaft) grants HA 3279/1-1, PA525/18-1, PA525/19-1, PA525/20-1, and RA 714/14-1 within the DFG Schwerpunkt SPP 1992, “Exploring the Diversity of Extrasolar Planets.” S.M acknowledges support from the Ramon y Cajal fellowship number RYC-2015-17697. We acknowledge the use of TESS Alert data, which is currently in a beta test phase, from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Funding for the TESS mission is provided by NASA’s Science Mission directorate. Based on observations made with the ESO 3.6m telescope at La Silla Observatory under programme ID 072.C-0488, 183.C-0972, and 192.C-0852. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. We acknowledge the traditional owners of the land on which the AAT stands, the Gamilaraay people, and pay our respects to elders past and present. We are also very grateful to the referee, Steve Howell, for his helpful comments and suggestions, which resulted in an improved paper. We also thank him for his rapid review of the paper.

References

Axer, M., Fuhrmann, K., & Gehren, T. 1994, A&A, 291, 895
Barragán, O., & Gandolfi, D. 2017, Astrophysics Source Code Library [record ascl:1706.001]
Barragán, O., Gandolfi, D., & Antoniciello, G. 2019, MNRAS, 482, 1017
Beichman, C., Benneke, B., Knutson, H., et al. 2014, PASP, 126, 1134
Birnstiel, T., Crida, A., & Morbidelli, A. 2010, A&A, 518, 1007
Bryan, M., Knutson, H. A., & Fulton, B., et al. 2018, AJ, submitted [arXiv:1806.08799]
Bugnet, L., García, R. A., Davies, G. R., et al. 2018, A&A, in press, DOI: 10.1051/0004-6361/201833106
Butler, R. P., Wright, J. T., Marcy, G. W., et al. 2006, ApJ, 646, 505
Campante, T. L. 2017, Eur. Phys. J. Web Conf., 160, 01006
Cauley, F. W., Redfield, S., & Jensen, A. G. 2017, AJ, 153, 185
Chambers, J. E. 1999, MNRAS, 304, 793
Christiansen, J. L., Jenkins, J. M., Caldwell, D. A., et al. 2012, PASP, 124, 1279
Claret, A. 2017, A&A, 600, A30
Cleveland, W. S. 1979, J. Am. Stat. Assoc., 74, 829
Cohen, O., Glocer, A., Garralda, C., Drake, J. J., & Bell, J. M. 2018, ApJ, 856, L11
Cutri, R. M., Skrutskie, M. F., & van Dyk, S., et al. 2003, 2MASS All Sky Catalog of point sources
Doyle, A. P., Davies, G. R., Smalley, B., Chaplin, W. J., & Elsworth, Y. 2014, MNRAS, 444, 3592
Eastman, J., Siverd, R., & Gaudi, B. S. 2010, PASP, 122, 935
Fuhrmann, K., Axer, M., & Gehren, T. 1993, A&A, 271, 451
Fuhrmann, K., Axer, M., & Gehren, T. 1994, A&A, 285, 585
Fuhrmann, K., Pfeiffer, M., Frank, C., Reetz, J., & Gehren, T. 1997a, A&A, 323, 909
Fuhrmann, K., Pfeiffer, M. J., & Benz, K. P. 1997b, A&A, 326, 1081
Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109
Gaia Collaboration (Brown, A. G. A., et al.) 2018, A&A, 616, A11
Garraffo, L., Balona, L. A., & De Lee, J. 2018, A&A, 620, A7
García, R. A., Mathur, S., Pires, S., et al. 2014, A&A, 568, A10
Gillon, M., Jehin, E., Lederer, S. M., et al. 2016, Nature, 533, 221
Giada, E. L., Testi, L., & Zinnecker, H. 2005, A&A, 436, 895
Gray, R. O., Corbally, C. J., Garrison, R. F., et al. 2006, AJ, 132, 161
Hadden, S., & Lithwick, Y. 2014, ApJ, 787, 80
Hansen, B. M. S. 2017, MNRAS, 467, 1531
Huang, C. X., Petrovich, C., & Deibert, E. 2017, AJ, 153, 210
Huang, C. X., Burt, J., Vanderburg, A., et al. 2018, ApJL, accepted [arXiv:1809.05967]
Jones, H. R. A., Paul Butler, R., Tinney, C. G., et al. 2002, MNRAS, 333, 871
Kipping, D. M. 2010, MNRAS, 408, 1758
Kurucz, R. L. 2013, Astrophysics Source Code Library [record ascl:1303.024]
Lo Curto, G., Pepe, F., et al. 2015, The Messenger, 162, 9
Lopez, E. D., & Fortney, J. J. 2013, ApJ, 776, 2
Liu, X., Brown, A. G. A., Sarto, L. M., et al. 2018, A&A, 616, A9
Mandel, K., & Agol, E. 2002, ApJ, 580, L171
Matsumura, S., Marcy, G. W., Butler, R. P., et al. 2009, ApJ, 692, 971
Mathur, S., García, R. A., Régulo, C., et al. 2010, A&A, 511, A46
Mayor, M., Pepe, F., Queloz, D., et al. 2003, The Messenger, 114, 20
Meadows, V., & Seager, S. 2010, in Terrestrial Planet Atmospheres and Biosignatures, ed. S. Seager, 441

D. Gandolfi et al.: The planetary system orbiting π Mensae

L10, page 7 of 10
Appendix A: Additional tables

Table A.1. UCLES RV measurements of π Men.

BJD_{TDB}	RV	σ_r
-2450000	-	
829.993723	-0.0410	0.0048
1119.251908	-0.0674	0.0098
1230.033635	-0.0792	0.0060
1411.325662	-0.0858	0.0058
1473.267712	-0.0800	0.0048
1526.081162	-0.0930	0.0046
1527.082805	-0.0898	0.0041
1530.128708	-0.0879	0.0045
1629.912366	-0.0927	0.0056
1683.842991	-0.1005	0.0050
1828.182860	-0.0674	0.0048
1919.099660	-0.0350	0.0072
1921.139081	-0.0373	0.0047
1983.919846	-0.0028	0.0056
2060.840355	0.1361	0.0048
2092.337359	0.2120	0.0047
2093.525231	0.2094	0.0044
2127.328562	0.2878	0.0059
2128.336410	0.2861	0.0042
2153.324749	0.2899	0.0067
2151.292440	0.3079	0.0052

Notes. (a)Barycentric Julian dates are given in barycentric dynamical time.

Table A.2. HARPS RV measurements of π Men acquired with the old fiber bundle.

BJD_{TDB}	RV	σ_r
-2450000		
3001.830364	10.6600	0.0014
3034.607261	10.6665	0.0008
3289.869718	10.6448	0.0012
3289.870782	10.6428	0.0011
3289.871836	10.6464	0.0011
3289.872866	10.6464	0.0011
...

Notes. The entire RV data set is available at the CDS. (a)Barycentric Julian dates are given in barycentric dynamical time. (b)S/N per pixel at 550 nm.

Table A.3. HARPS RV measurements of π Men acquired with the new fiber bundle.

BJD_{TDB}	RV	σ_r
-2450000		
7298.853243	10.6750	0.0005
7298.858523	10.6747	0.0004
7327.755817	10.6744	0.0003
7354.783687	10.6674	0.0002
7357.725912	10.6727	0.0002
7372.705131	10.6664	0.0004
7372.708997	10.6662	0.0004
7372.717258	10.6654	0.0003
7423.591772	10.6630	0.0005
7423.597918	10.6628	0.0005
7424.586637	10.6645	0.0004
7424.592367	10.6643	0.0004
7462.517924	10.6612	0.0003
7462.523491	10.6612	0.0003
7464.499915	10.6612	0.0005
7464.503781	10.6627	0.0004
7464.507474	10.6611	0.0004

Notes. (a)Barycentric Julian dates are given in barycentric dynamical time. (b)S/N per pixel at 550 nm.
Table A.4. \(\pi\) Men system parameters.

Parameter	Prior\(^a\)	Derived value
Stellar parameters		
Star mass \(M_\star\) \((M_\odot)\)	\(\mathcal{U}[2076.0, 2106.0]\)	1.02 ± 0.03
Star radius \(R_\star\) \((R_\odot)\)	\(\mathcal{U}[6528.0, 6568.0]\)	1.10 ± 0.01
Effective temperature \(T_{\text{eff}}\) (K)	\(\mathcal{U}[5870 ± 50]\)	
Surface gravity \(\log g_\star\) (cgs)	\(\mathcal{U}[4.36 ± 0.02]\)	
Surface gravity \(\log g_\star\) (cgs)	\(\mathcal{U}[4.33 ± 0.09]\)	
Iron abundance \([\text{Fe/H}]\) (dex)	\(\mathcal{U}[0.05 ± 0.09]\)	
Projected rotational velocity \(v \sin i_\star\) (km \(s^{-1}\))	\(\mathcal{U}[3.3 ± 0.5]\)	5.2 ± 1.1
Age (Gyr)	\(\mathcal{U}[6528 ± 6]\)	

Model parameters of \(\pi\) Men b

Parameter	Prior\(^a\)	Derived value
Orbital period \(P_{\text{orb}, b}\) (days)	\(\mathcal{U}[2076.0, 2106.0]\)	6.26834 ± 0.00024
Time of inferior conjunction \(T_{\text{inf}, b}\) (BJD\(T_{\text{DB}}\)=2450000)	\(\mathcal{U}[6528.0, 6568.0]\)	13.10 ± 0.18
Radial velocity semi-amplitude variation \(K_b\) (m \(s^{-1}\))	\(\mathcal{U}[0, 10]\)	1.55 ± 0.27

Model parameters of \(\pi\) Men c

Parameter	Prior\(^a\)	Derived value
Orbit parameter \(b_c\)	\(\mathcal{U}[0, 1]\)	0.614 ± 0.0180
Radial velocity semi-amplitude variation \(K_c\) (m \(s^{-1}\))	\(\mathcal{U}[0, 10]\)	1.55 ± 0.27

Additional model parameters

Parameter	Prior\(^a\)	Derived value
Parameterized limb-darkening coefficient \(q_1\)	\(\mathcal{U}[0.36, 0.1]\)	0.33 ± 0.10
Parameterized limb-darkening coefficient \(q_2\)	\(\mathcal{U}[0.25, 0.1]\)	0.23 ± 0.10
Systemic velocity \(v_{\text{AAT}}\) (km \(s^{-1}\))	\(\mathcal{U}[0.021 ± 0.0011]\)	
Systemic velocity \(v_{\text{HS1}}\) (km \(s^{-1}\))	\(\mathcal{U}[10.53 ± 10.88]\)	10.70916 ± 0.00039
Systemic velocity \(v_{\text{HS2}}\) (km \(s^{-1}\))	\(\mathcal{U}[10.55 ± 10.90]\)	10.73156 ± 0.00071
RV jitter term \(\sigma_{\text{AAT}}\) (m \(s^{-1}\))	\(\mathcal{U}[0, 100]\)	4.26\(^\pm\)1.10
RV jitter term \(\sigma_{\text{HS1}}\) (m \(s^{-1}\))	\(\mathcal{U}[0, 100]\)	2.35\(^\pm\)0.19
RV jitter term \(\sigma_{\text{HS2}}\) (m \(s^{-1}\))	\(\mathcal{U}[0, 100]\)	1.69\(^\pm\)0.09

Derived parameters of \(\pi\) Men b

Parameter	Derived value
Planet minimum mass \(M_b\) \((M_\odot)\)	9.66 ± 0.20
Semi-major axis of the planetary orbit \(a_b\) (AU)	3.22 ± 0.03
Orbit eccentricity \(e_b\)	0.639 ± 0.0025
Argument of periastron of stellar orbit \(\omega_{\star, b}\) (deg)	330.65 ± 0.65
Time of periastron passage \(T_{\text{per}, b}\) (BJD\(T_{\text{DB}}\)=2450000)	6306.1 ± 4.6

Derived parameters of \(\pi\) Men c

Parameter	Derived value
Planet mass \(M_c\) \((M_\odot)\)	4.52 ± 0.81
Planet radius \(R_c\) \((R_\odot)\)	2.06 ± 0.03
Planet mean density \(\rho_c\) \((g \text{ cm}^{-3})\)	2.82 ± 0.53
Semi-major axis of the planetary orbit \(a_c\) (AU)	0.06702 ± 0.000109
Orbit eccentricity \(e_c\)	0 (fixed)
Orbit inclination \(i_c\) (deg)	87.31 ± 0.11
Equilibrium temperature \(T_{\text{eq}, c}\) (K)	1147 ± 12
Transit duration \(\tau_{14, c}\) (h)	2.969\(^\pm\)0.030

Notes: \(^a\)\(\mathcal{U}[a, b]\) refers to uniform priors between \(a\) and \(b\), and \(\mathcal{F}[a]\) to a fixed \(a\) value. \(^b\)From spectroscopy and isochrones. \(^c\)From spectroscopy. \(^d\)Assuming zero albedo and uniform redistribution of heat.