ON BODIES FLOATING IN EQUILIBRIUM IN EVERY ORIENTATION

DMITRY RYABOGIN

Abstract. Ulam’s problem 19 from the Scottish Book asks: is a solid of uniform density which floats in water in every position necessarily a sphere? We obtain several results related to this problem.

1. INTRODUCTION

Let the density of water be 1 and assume that a convex body $K \subset \mathbb{R}^3$ of uniform density $D \in (0, 1)$ is submerged into water. We say that K floats in equilibrium in the direction ξ orthogonal to the water surface if the line $\ell(\xi)$ connecting the center of mass of K and the center of mass of the submerged part is parallel to ξ. We say that K floats in equilibrium in every orientation if $\ell(\xi)$ is parallel to ξ for every ξ.

The following intriguing problem was proposed by Ulam [U, Problem 19]: If a convex body $K \subset \mathbb{R}^3$ made of material of uniform density $D \in (0, 1)$ floats in equilibrium in any orientation in water, must K be spherical?

Schneider [Sch1] and Falconer [Fa] showed that this is true, provided K is centrally symmetric and $D = \frac{1}{2}$. However, it has been recently proven in [R2] that there are non-centrally-symmetric convex bodies of density $D = \frac{1}{2}$ that float in equilibrium in every orientation.

The “two-dimensional version” of the problem is also very interesting. In this case, we consider floating logs of uniform cross-section, and seek for the ones that will float in every orientation with the axis horizontal. In other words, our cross-section K is a convex set in \mathbb{R}^2 and the water surface is a line that cuts off a set of the given area from K. If $D = \frac{1}{2}$, Auerbach [A] has exhibited logs with non-circular cross-section, both convex and non-convex, whose boundaries are so-called Zindler curves [Zi]. More recently, Bracho, Montejano and Oliveros [BMO] showed that for densities $D = \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ and $\frac{2}{5}$ the answer is affirmative, while Wegner proved that for some other values of $D \neq \frac{1}{2}$ the answer is negative, [Weg1], [Weg2]; see also related results of Várkonyi [V1], [V2]. Overall, the case of general $D \in (0, 1)$ is notably involved and widely open.

Key words and phrases. Floating bodies, Ulam’s problem, normal curvature.

The author is supported in part by Simons Collaboration Grant for Mathematicians program 638576, by U.S. National Science Foundation Grant DMS-1600753 and by United States - Israel Binational Science Foundation (BSF).
Let \(d \geq 3 \), let \(K \subset \mathbb{R}^d \) be a convex body and let \(\delta \in (0, \text{vol}_d(K)) \).

If \(K \) floats in equilibrium at the level \(\delta \) in every orientation, then, for all hyperplanes \(H \) that cut off the parts of volume \(\delta \) from \(K \), the cutting sections \(K \cap H \) have equal moments of inertia with respect to all \((d-2)\)-dimensional planes \(\Pi \subset H \) passing through the center of mass of \(K \cap H \) and these moments are independent of \(H \) and \(\Pi \).

Conversely, let \(K \) have a \(C^1 \)-smooth boundary and let the center of mass of \(K \) coincide with the center of mass of the surface of centers, i.e., the locus of the centers of mass of all parts of volume \(\delta \) that are cut off by the cutting hyperplanes \(H \). If all cutting sections \(K \cap H \) have equal moments of inertia with respect to all \((d-2)\)-dimensional planes \(\Pi \subset H \) passing through the center of mass of \(K \cap H \) and these moments are independent of \(H \) and \(\Pi \), then \(K \) floats in equilibrium at the level \(\delta \) in every orientation.

This Theorem gives an affirmative answer to a question mentioned in [CFG] page 20, line 14 from below: “It seems that the floating body problem is just (V, I)”. An analogous Theorem for \(d = 2 \) was obtained by Davidov [Da] and independently by Auerbach [A], see Theorem 6 and Remark 3 at the end of Section 4.

Corollary 1. Let \(d \geq 3 \), let a convex body \(K \) have a \(C^1 \)-smooth boundary and let \(\delta \in (0, \text{vol}_d(K)) \). Assume also that the center of mass of \(K \) coincides with the center of mass of the surface of centers. If for every hyperplane \(H \) that cuts off the part of volume \(\delta \) from \(K \) every cutting section \(K \cap H \) is \((d+1)\)-equichordal, i.e., if there exists a constant \(c \) such that for every line \(l \subset K \cap H \) passing through the center of mass \(C(K \cap H) \) and having two points of intersection \(\zeta_{\pm}(l) \) with the boundary of \(K \) one has

\[
\text{dist}^{d+1}(C(K \cap H), \zeta_+(l)) + \text{dist}^{d+1}(C(K \cap H), \zeta_-(l)) = c,
\]

then \(K \) floats in equilibrium in every orientation.

Using the results in [R1] and [R2] one can show that the converse is not true, provided \(\delta = \frac{\text{vol}_d(K)}{2} \), i.e., there exists a non-centrally-symmetric body of revolution \(K \) that floats in equilibrium in every orientation, yet not every section \(K \cap H \) by the hyperplane that cuts off the part of volume \(\delta \) is \((d+1)\)-equichordal. On the other hand, it was proved in [R1] that if \(K \) is a body of revolution, then the condition that \(K \cap H \) is \((d+1)\)-equichordal for every

1This result was also recently obtained in [FSWZ] Theorem 1.1], but the case \(\delta = \frac{\text{vol}_d(K)}{2} \) is considered under the assumption that the Dupin floating body coincides with the Bárány-Larman-Shütt-Werner floating body and it is a single point.
hyperplane H that cuts off the part of volume δ from K yields that it is the Euclidean ball.

Problem 1. Is it possible to construct a convex body K and find $\delta \in (0, \text{vol}_d(K))$, $\delta \neq \frac{\text{vol}_d(K)}{2}$, so that $K \cap H$ is $(d + 1)$-equichordal for every hyperplane H that cuts off the part of volume δ from K, but K is not an Euclidean ball?

We refer the reader to [CFG, pgs. 9-11], [Ga, Chapter 6] and references therein for the information about equichordal bodies.

We also have

Corollary 2. Let $d \geq 2$ and let a sequence $(\delta_n)_{n=1}^\infty$ of positive numbers be such that the Dupin floating body $K[\delta_n]$ coincides with the floating body K_{δ_n} for all $n \in \mathbb{N}$ and $\delta_n \to 0$ as $n \to \infty$. If K floats in equilibrium in every orientation for all levels δ_n, then K is a Euclidean ball.

Using Theorem 1 and the results of Myroshnychenko and Saroglou [MRS], one can also give a different proof of the aforementioned result of Schneider and Falconer obtained in [Sch1] and [Fa] via spherical harmonics.

Theorem 2. Let $d \geq 3$ and let $K \subset \mathbb{R}^d$ be a centrally-symmetric convex body. If K floats in equilibrium in every orientation at the level $\delta = \frac{\text{vol}_d(K)}{2}$ then K is a Euclidean ball.

Most of the results of this paper, as well as many other results on floating bodies, follow from the classical theorems of Dupin which, we believe, were missed by the mathematical community, [DVP, Chapter XXIV], [Zh, Hydrostatics, Part I]). In Sections 2 and 3 we formulate and prove these theorems in \mathbb{R}^d, $d \geq 3$ (see also [R2, Appendices A and B]).

We refer the interested reader to [M, pgs. 90-93], [CFG, pgs. 19-20], [Ga, pgs. 376-377], [Sch2, pgs. 560-563], and [G], for an exposition of known results related to Ulam’s Problem 19; see also [O], [Od], [HSW], [KO], [Gr] and [Mo] for related results. The floating body problems appear in several areas of mathematics and, among other things, are related to the Busemann-Petty problems in asymptotic geometric analysis [BP], to problems in statistics [NSW], and to problems about polytopal approximation, [B], [BL], [S2], [BLW]. We also refer the reader to [MR], [St], [S1], [SW1], [SW2], [W], and references therein for other works on floating bodies.

The paper is structured as follows. In the next section we recall some well-known facts about floating bodies and formulate the Theorems of Dupin in \mathbb{R}^d, $d \geq 3$. We prove these theorems in Section 3. The proofs of Lemma 1, Theorems 1 and 2, and Corollaries 1 and 2 are given in Section 4.

2. **Notation, basic definitions and Theorems of Dupin**

2.1. **Notation and basic definitions.** A convex body $K \subset \mathbb{R}^d$, $d \geq 2$, is a convex compact set with a non-empty interior $\text{int}K$. The boundary of K
is denoted by ∂K. We say that K is strictly convex if ∂K does not contain a segment. We say that K is origin-symmetric if $K = -K$ and centrally-symmetric if there exists $p \in \mathbb{R}^d$ such that $K - p = \{ q - p : q \in K \}$ is origin-symmetric. For $d \geq 2$ we denote by S^{d-1} the unit sphere in \mathbb{R}^d centered at the origin. Given $\xi \in S^{d-1}$ we denote by $\xi^\perp = \{ p \in \mathbb{R}^d : p \cdot \xi = 0 \}$ the subspace orthogonal to ξ, where $p \cdot \xi = p_1 \xi_1 + \cdots + p_d \xi_d$ is a usual inner product in \mathbb{R}^d. The symbol $\subset +$ stands for the usual Minkowski (vector) addition, i.e., given two sets D and E in \mathbb{R}^d, $D + E = \{ d + e : d \in D, e \in E \}$. Let W_j be a j-dimensional plane in \mathbb{R}^d, $1 \leq j \leq d$. The center of mass of a compact convex set $K \subset W_j$ with a non-empty relative interior will be denoted by $C(K)$,

$$C(K) = \frac{1}{\text{vol}_j(K)} \int_K x \, dx,$$

where $\text{vol}_j(K)$ is the j-dimensional volume of K in \mathbb{R}^j. We say that a hyperplane H is the supporting hyperplane of a convex body K if $K \cap H \neq \emptyset$, but $\text{int} K \cap H = \emptyset$.

If $K \subset \mathbb{R}^d$ is a convex body containing a point p in its interior, the radial function of K with respect to p in the direction $\theta \in S^{d-1}$ is defined as

$$\rho_{K,p}(\theta) = \max\{ \lambda > 0 : p + \lambda \theta \in K \}.$$

In particular, if p is the origin, we will use the notation

$$\rho_K(\theta) = \max\{ \lambda > 0 : \lambda \theta \in K \}.$$

Let $m \in \mathbb{N}$. We say that a convex body K is of class $C^m(\mathbb{R}^d)$ (or K has a C^m-smooth boundary) if for every point z on the boundary ∂K of $K \subset \mathbb{R}^d$ there exists a neighborhood U_z of z in \mathbb{R}^d such that $\partial K \cap U_z$ can be written as a graph of a function having all continuous partial derivatives up to the m-th order. The Hausdorff distance between two convex bodies K and L is defined as

$$d(K, L) = \sup_{\theta \in S^{d-1}} | h_K(\theta) - h_L(\theta) |,$$

where h_K, h_L are the support functions of bodies K, L, and for any $\theta \in S^{d-1}$, $h_K(\theta) = \sup_{y \in K} \theta \cdot y$. A symbol \square denotes end of the proof.

We recall several well-known facts and definitions. Let $d \geq 3$, let $K \subset \mathbb{R}^d$ be a convex body and let $\delta \in (0, \text{vol}_d(K))$ be fixed. Given a direction $\xi \in S^{d-1}$ and $t = t(\xi) \in \mathbb{R}$, we call a hyperplane

$$H(\xi) = H_t(\xi) = \{ p \in \mathbb{R}^d : p \cdot \xi = t \},$$

the cutting hyperplane of K in the direction ξ, if it cuts out of K the given volume δ, i.e., if

$$\text{vol}_d(K \cap H^-(\xi)) = \delta, \quad H^-(\xi) = \{ p \in \mathbb{R}^d : p \cdot \xi \leq t(\xi) \},$$

(see Figure [1]).
ON BODIES FLOATING IN EQUILIBRIUM IN EVERY ORIENTATION

Now we recall the notions of floating in equilibrium and the surface of centers, [DVP], [Zh].

Definition 1. Let $\xi \in S^{d-1}$ and let $C(\xi) = C_\delta(\xi)$ be the center of mass of the submerged part $K \cap H^-(\xi)$ satisfying (2). A convex body K floats in equilibrium in the direction $\xi \in S^{d-1}$ at the level δ if (2) holds and the line $l(\xi)$ connecting $C(K)$ with $C_\delta(\xi)$ is orthogonal to the “free water surface” $H(\xi)$, i.e., the line $l(\xi)$ is “vertical” (parallel to ξ, see Figure 1). We say that K floats in equilibrium in every orientation at the level δ if $l(\xi)$ is parallel to ξ for every $\xi \in S^{d-1}$.

Definition 2. Let K be a convex body, let $\xi \in S^{d-1}$ and let $C(\xi) = C_\delta(\xi)$ be the center of mass of the submerged part $K \cap H^-(\xi)$ satisfying (2). The geometric locus $\{C_\delta(\xi) : \xi \in S^{d-1}\}$ is called the surface of centers $S = S_\delta$ or the surface of buoyancy (see Figure 2).

One can show, see Theorem 3 below, that the surface of centers is a boundary of a strictly convex body.

Remark 1. It was recently proved in [HSW] that the surface of centers S is C^{k+1}-smooth, provided K is of class C^k, $k \geq 0$. In particular, if K is an arbitrary convex body, then S is C^1-smooth.

The following result is well-known, see [G] page 203, [V1] Section 2.1 and [HSW] Corollary 2.4. In the next section we give a different proof.

Lemma 1. Let $d \geq 2$, let K be a convex body and let $\delta \in (0, \text{vol}_d(K))$. If K floats in equilibrium in every orientation at the level δ, then the surface of centers S is a sphere. Conversely, if S is a sphere centered at $C(K)$, then K floats in equilibrium in every orientation.
It is known that the condition of \(S \) being centered at \(C(K) \) is satisfied for \(\delta = \frac{\text{vol}(K)}{2} \) (\(C(K) \) is an arithmetic average of \(C(K \cap H^+(\xi)) \) and \(C(K \cap H^-(\xi)) \) for every \(\xi \in S^{d-1} \)), and for any \(\delta \in (0, \text{vol}_d(K)) \), provided \(K \) is centrally-symmetric.

Now we recall the notion of a floating body. A floating body \(K[\delta] \) of \(K \) was introduced by C. Dupin in 1822, [D].

Definition 3. A non-empty convex set \(K[\delta] \) is the Dupin floating body of \(K \) if each supporting plane of \(K[\delta] \) cuts off a set of volume \(\delta \in (0, \text{vol}_d(K)) \) from \(K \).

We remark that \(K[\delta] \) does not necessarily exist for every convex \(K \), see [L] or [NSW, Chapter 5], but if \(K \) has a sufficiently smooth boundary and \(\delta > 0 \) is small enough, then \(K[\delta] \) exists, [L, Satz 2].

The notion of a convex floating body was introduced independently in [BL] and [SW1].

Definition 4. A body \(K_\delta \) is called the convex floating body of \(K \), provided

\[
K_\delta = \bigcap_{\xi \in S^{d-1}} H^+(\xi), \quad H^+(\xi) = \{ p \in \mathbb{R}^d : p \cdot \xi \geq t(\xi) \}.
\]

If \(K[\delta] \) exists, then \(K[\delta] = K_\delta; K_\delta \) is allowed to be an empty set, [SW1]. It was proved in [MR] Theorem 3, page 334 that \(K[\delta] = K_\delta \) for any \(0 < \delta \leq \frac{\text{vol}_d(K_\delta)}{2} \), provided \(K \) is centrally-symmetric. It was also shown in [MR] that the boundary of \(K_\delta \) is \(C^2 \)-smooth, provided the boundary of \(K \) is \(C^1 \)-smooth and for every \(x \) on the boundary of \(K \) there is a unique supporting hyperplane of \(K \) through \(x \).

Let \(K \) float in equilibrium in every orientation for some \(\delta \in (0, \text{vol}_d(K)), \delta \neq \frac{\text{vol}_d(K)}{2} \). It is not clear if the additional condition \(K[\delta] = K_\delta \) yields an affirmative answer to Ulam’s Problem 19.

2.2. Theorems of Dupin.

The solution of the problem of finding the directions in which the given convex body floats in equilibrium is contained in the following three results, proved by Dupin, (cf. [Zh] pgs. 658-660] and [Da] for \(d = 2 \), and [DVP] pgs. 287-288] for \(d = 3 \); see also [G]). For convenience of the reader, in this section we formulate these theorems for all \(d \geq 3 \) and include sketches of the proofs in the next section.

Let \(\xi \in S^{d-1} \) and let \(\mathcal{H}(\xi) \) be a tangent hyperplane to \(S \) at \(C(\xi) \) which is the center of mass of \(K \cap H^-(\xi) \), see Remark 1. The First Theorem of Dupin reads as follows.

Theorem 3. Let \(d \geq 2 \), \(K \subset \mathbb{R}^d \) be convex, and let \(\delta \in (0, \text{vol}_d(K)) \). If \(H(\xi), \xi \in S^{d-1}, \) is a cutting hyperplane, then \(\mathcal{H}(\xi) \) is parallel to \(H(\xi) \). Moreover, the bounded set \(L(S) \) with boundary \(S \) is a strictly convex body.

The Second Theorem of Dupin is
ON BODIES FLOATING IN EQUILIBRIUM IN EVERY ORIENTATION

Theorem 4. Let $d \geq 2$, $K \subset \mathbb{R}^d$ be convex, and let $\delta \in (0, \text{vol}_d(K))$. Assume that $H(\xi), \xi \in S^{d-1}$, is a cutting hyperplane and $\{H_n\}_{n=1}^{\infty}, H_n = H(\xi_n)$, is any sequence of cutting hyperplanes converging to $H(\xi)$ as $\xi_n \to \xi$ for $n \to \infty$ and such that the limit $\lim_{n \to \infty} H(\xi) \cap H(\xi_n)$ exists. Then the $(d-2)$-dimensional plane $\Pi = \lim_{n \to \infty} H(\xi) \cap H(\xi_n)$ passes through the center of mass of $K \cap H(\xi)$.

In order to formulate the third Theorem of Dupin in the case $d \geq 3$, we recall the notions of a metacenter [DVP, page 284] and of a moment of inertia [Zh, page 553].

To define the metacenter heuristically, assume that a body $K \subset \mathbb{R}^3$ is “cylindrical”. In naval architecture, [Tu], a ship floating originally at a horizontal waterline $H(\xi) \subset E$ is rotated through a small angle by an external
force and then floats at waterline $H(\eta) \subset E$ (it is assumed that $H(\xi)$ and $H(\eta)$ intersect at the center of mass of K). Then the point $M = l(\xi) \cap l(\eta)$ is the metacenter, where $l(\xi)$ is the line parallel to ξ passing through the old center of buoyancy $C(\xi)$ and $l(\eta)$ is the line parallel to η passing through the new center of buoyancy $C(\eta)$, see Figure 3.

Now we recall a rigorous definition. [DVP] pgs. 284, 285.

Definition 5. Let S be the surface of centers and let C be a point on S at which the normal curvatures exist. Assume that C belongs to some curve $\gamma \subset S$ with the tangent ζ at C. Take $C' \in \gamma$ close to C and consider the normal lines $l_\zeta, l_{\zeta'}$, to S at C and C'. If $\mu \mu'$ is a shortest distance between these lines, $\mu \in l_\zeta$, $\mu' \in l_{\zeta'}$, then the limiting position of the end μ of the segment $[\mu, \mu']$, when C' tends to C, is the metacenter $M_C(\zeta)$ related to C in the tangential direction ζ.

Let S be C^2-smooth. One can assume without loss of generality that the tangent hyperplane H to S at C is horizontal, i.e., H is the $x_1 \ldots x_{d-1}$-hyperplane and that C is the origin. Then, choosing properly the directions of the axes in H one can assume that the equation of S in a small neighborhood of C is

$$2x_d = k_1 x_1^2 + \cdots + k_{d-1} x_{d-1}^2 + o(x_1^2, \ldots, x_{d-1}^2),$$

where k_j, $j = 1, \ldots, d-1$, are some non-negative coefficients, $k_1 \leq k_2 \leq \cdots \leq k_{d-1}$.

Lemma 2. The x_d-coordinate of $M_C(\zeta)$ is

$$C_\mu = \frac{k_1 \zeta_1^2 + \cdots + k_{d-1} \zeta_{d-1}^2}{k_1^2 + \cdots + k_{d-1}^2}, \quad \text{where} \quad \zeta = (\zeta_1, \ldots, \zeta_{d-1}) \in S^{d-2}.$$

This formula is proved in [DVP, page 285] for $d = 3$, the general case can be shown similarly. For convenience of the reader we prove it in Appendix.

Remark 2. We see that $\frac{1}{k_{d-1}} \leq C_\mu \leq \frac{1}{k_1}$ and that C_μ is equal to one of $\frac{1}{k_j}$, $j = 1, \ldots, d-1$, provided ζ is one of the corresponding principal directions of S at C.

We refer the reader to [Sch2, pgs. 103-106] and [I], pgs. 82-89] for the definition of the principal directions and the normal curvatures. Alexandrov proved that if M is a convex body and $G(\xi)$ is its supporting hyperplane, then the normal curvatures exist at $M \cap G(\xi)$ for almost every $\xi \in S^{d-1}$, [BF], [AI], [H]. Hence, for an arbitrary convex body the metacenter is defined for almost every $\xi \in S^{d-1}$.

Now we define the moment of inertia. Let $d \geq 3$, let $\delta \in (0, \frac{\text{vol}_d(K)}{2})$, and let $\xi \in S^{d-1}$ be any direction. Consider a convex body K and the hyperplane $H(\xi)$ defined by $[1]$ such that $[2]$ holds. Choose any $(d-2)$-dimensional plane $\Pi \subset H(\xi)$ passing through the center of mass $C(K \cap H(\xi))$ and let
\[\eta_1, \ldots, \eta_{d-2}, \eta_{d-1} \text{ be an orthonormal basis of } \xi^\perp = \{ p \in \mathbb{R}^d : p \cdot \xi = 0 \} \text{ such that} \]

(5) \[\Pi = C(K \cap H(\xi)) + \text{span}(\eta_1, \ldots, \eta_{d-2}), \quad H(\xi) = C(K \cap H(\xi)) + \xi^\perp. \]

Definition 6. The moment of inertia \(I_{K \cap H(\xi)}(\Pi) \) of \(K \cap H(\xi) \) with respect to \(\Pi \) is calculated by summing \(\text{dist}(\Pi, v)^2 \) for every “particle” \(v \) in the set \(K \cap H(\xi) \), where \(\text{dist}(\Pi, v) = \min_{x \in \Pi} |v - x| \), (see Figure 4), i.e.,

(6) \[I_{K \cap H(\xi)}(\Pi) = \int_{K \cap H(\xi)} \text{dist}(\Pi, v)^2 dv = \int_{K \cap H(\xi) - C(K \cap H(\xi))} (u \cdot \eta_{d-1})^2 du. \]

Theorem 5. Let \(d \geq 3 \), let \(K \subset \mathbb{R}^d \) be a convex body and let \(\delta \in (0, \text{vol}_d(K)) \). If \(H(\xi), \xi \in S^{d-1} \), is a cutting hyperplane and \(C = C(\xi) \in \mathcal{S} \) is the corresponding center of mass at which the normal curvatures of \(\mathcal{S} \) exist in all directions and if a sequence of cutting hyperplanes \(\{H_n\}_{n=1}^\infty, H_n = H(\xi_n) \), converging to \(H(\xi) \) as \(n \to \infty \), is such that the limit \(\lim_{n \to \infty} H(\xi) \cap H(\xi_n) \) exists, then for the corresponding sequence of the centers of mass \(\{C_n\}_{n=1}^\infty, C_n = C(\xi_n), C = \lim_{n \to \infty} C_n \), one has

\[\mathcal{R}_{C(\xi)}(\xi) := \text{dist}(C(\xi), M_{C(\xi)}(\xi)) = \frac{1}{\delta} I_{K \cap H(\xi)}(\Pi), \]

Figure 4. Two-dimensional body \(K \cap H(\xi) \) with center of mass at the origin, and a line \(\Pi \) parallel to \(\eta_1 \); we have \(\text{dist}(\Pi, v)^2 = |v|^2 - (v \cdot \eta_1)^2 = (v \cdot \eta_2)^2 \).

The Third Theorem of Dupin reads as follows (cf. [DVP], page 288).
where \(\zeta = \lim_{n \to \infty} \frac{\mathcal{C}_n}{|\mathcal{A}_n|} \) and \(I_{K \cap H(\xi)}(\Pi) \) is the moment of inertia of \(K \cap H(\xi) \) with respect to the \((d - 2)\)-dimensional plane \(\Pi = \lim_{n \to \infty} H(\xi) \cap H(\xi_n) \).

If the reader does not want to deal with subtleties related to the almost everywhere existence of tangent hyperplanes or normal curvatures for general convex bodies, \([BF]\), \([Al]\), \([H]\), one can assume from now on that \(K \) is \(C^1 \). In this case, \(S \) is \(C^2 \)-smooth, \([HSW]\), and Theorem 5 holds for every \(\varsigma \in S^{d-1} \).

The following theorem can be found in \([Da]\) page 23 and \([A]\) in the case when \(K \) has \(C^1 \)-smooth boundary. It is the Third Theorem of Dupin for \(d = 2 \).

Theorem 6. Let \(K \subset \mathbb{R}^2 \) be convex and let \(\delta \in (0, \text{area}(K)) \). Then

\[
R(\xi) = \frac{\text{length}^2(K \cap H(\xi))}{12 \text{area}(K \cap H^{-}(\xi))} \quad \text{for almost every} \quad \xi \in S^1,
\]

where \(H(\xi) \) and \(H^{-}(\xi) \) are defined by \([1]\) and \([2]\), and \(R(\xi) \) is the radius of curvature of \(S \) at the point of tangency \(S \cap H(\xi) \).

3. **Proofs of Theorems of Dupin**

3.1. **Proof of Theorem 3** Rotating and translating if necessary we can assume that \(\varsigma \) is such that \(H(\varsigma) \) is “horizontal”, i.e., \(H(\varsigma) = e_1^+ \). Let \(\eta \in S^{d-1}, \eta \neq \varsigma \) and let \(\mathcal{H}(\varsigma) \) be a hyperplane parallel to \(H(\varsigma) \) and passing through \(C_\delta(\varsigma) \). We claim that \(C_\delta(\eta) \) is “above” \(\mathcal{H}(\varsigma) \), i.e., \(x_d(C_\delta(\varsigma)) < x_d(C_\delta(\eta)) \). Since \(x_d > 0 \) \(\forall x \in (K \cap H^{-}(\varsigma)) \backslash (K \cap H^{-}(\eta)) \) but \(x_d \leq 0 \) \(\forall x \in (K \cap H^{-}(\varsigma)) \backslash (K \cap H^{-}(\eta)) \), we have

\[
\begin{align*}
x_d(C_\delta(\varsigma)) &= \frac{1}{\delta} \left(\int_{(K \cap H^{-}(\varsigma)) \backslash (K \cap H^{-}(\eta))} x_d \, dx + \int_{K \cap H^{-}(\varsigma) \cap H^{-}(\eta)} x_d \, dx \right) < \\
\frac{1}{\delta} \left(\int_{(K \cap H^{-}(\varsigma)) \backslash (K \cap H^{-}(\eta))} x_d \, dx + \int_{K \cap H^{-}(\varsigma) \cap H^{-}(\eta)} x_d \, dx \right) &= x_d(C_\delta(\eta))
\end{align*}
\]

and the claim is proved. Thus, for any \(\xi \in S^{d-1} \) we have \(S \subset \mathcal{H}^+(\xi) \), \(S \cap \mathcal{H}(\xi) = C_\delta(\xi) \) and \(\min_{\{\xi \in S^{d-1}\}} |C(K) - C_\delta(\xi)| > 0 \). We conclude that \(L(S) = \bigcap_{\xi \in S^{d-1}} \mathcal{H}^+(\xi) \) is a strictly convex body.

3.2. **Proof of Theorem 4** Rotating and translating if necessary, assume that \(H(\varsigma) \) is “horizontal”, i.e., \(H(\varsigma) = e_1^+ \). Take \(n \) large enough and consider the \((d - 2)\)-dimensional plane \(\Pi_n = H(\varsigma) \cap H(\varsigma_n) \). Introduce the “moving” coordinates \((x_1, x_2, \ldots, x_{d-1}, x_d)\) so that \(\Pi_n \) is the \((x_2, \ldots, x_{d-1})\)-plane.

Denote by \(A \triangle B \) the symmetric difference of two sets \(A \) and \(B \), i.e., \(A \triangle B = (A \setminus B) \cup (B \setminus A) \), and let \(\Lambda_n = (K \cap H(\varsigma)) \triangle P_{H(\varsigma)}(K \cap H(\varsigma_n)) \),
where \(P_{H(\xi)} \) is the orthogonal projection onto \(H(\xi) \). Then,

\[
\Delta V = \text{vol}_d(K \cap H^{-}(\xi)) - \text{vol}_d(K \cap H^{-}(\xi_n)) = \\
\int_{K \cap H(\xi)} x_1 \tan \varepsilon_n \, dx - \int_{\Lambda_n} \zeta_d \, dx = 0,
\]

where \(x_1 = x_1(\xi, \xi_n) \) and \(\zeta_d = \zeta_d(\xi, \xi_n) \) is an error of \(x_d = x_1 \tan \varepsilon_n \) in \(\Lambda_n \) which is obtained during the computation of \(\Delta V \) using the first integral above (see Figure 5; observe that \(H(\xi) \cap H(\xi_n) \cap \text{int}K \neq \emptyset \) (see [O, p. 116] or [R2, Appendix A])). To see (7), consider on \(e_d \) an infinitesimally small element of the \((d-1) \)-dimensional volume \(dx \) as a base of an infinitesimally small prism “between” \(H(\xi) \) and \(H(\xi_n) \) of “height” \(\tan \varepsilon_n |x_1| \), where \(\varepsilon_n \) is a small angle between \(H(\xi) \) and \(H(\xi_n) \). The \(d \)-dimensional volume of the prism is \(\tan \varepsilon_n |x_1| \, dx \). Summing up the volumes of the corresponding prisms we obtain (7).

By (7), we have

\[
x_1(C(K \cap H(\xi))) = \frac{\int_{K \cap H(\xi)} x_1 \, dx}{\text{vol}_{d-1}(K \cap H(\xi))} = \frac{\int_{\Lambda_n} \zeta_d \, dx}{\text{vol}_{d-1}(K \cap H(\xi)) \tan \varepsilon_n}.
\]

Since \(\text{vol}_{d-1}(\Lambda_n) \rightarrow 0 \) as \(n \rightarrow \infty \) (see [O] p. 116] or [R2, Appendix A]), and since \(|\zeta_d| \leq D \tan \varepsilon_n \), where \(D \) is the diameter of \(K \), we obtain

\[
|x_1(C(K \cap H(\theta)))| \leq \frac{D \tan \varepsilon_n \text{vol}_{d-1}(\Lambda_n)}{\text{vol}_{d-1}(K \cap H(\xi)) \tan \varepsilon_n} \rightarrow 0
\]
as \(n \to \infty \). We see that the \((d - 2)\)-dimensional plane \(H(\xi) \cap H(\xi_n) \) tends, as \(n \to \infty \), to a limiting position \(\Pi \) that passes through the center of mass of \(K \cap H(\xi) \).

\[\square \]

\[\text{Figure 6. The normals } C_\mu \text{ and } C_n \mu_n \text{ to the surface of centers} \]

3.3. Proof of Theorem \(5\) As in the previous proofs, we assume that \(H(\xi) = e_d^\perp \). We take \(n \) large enough and put \(\Pi_n = H(\xi) \cap H(\xi_n) \). As above we introduce the “moving” coordinates \((x_1, x_2, \ldots, x_{d-1}, x_d)\) so that the \((d - 2)\)-dimensional plane \(\Pi_n \) is the \((x_2, \ldots, x_{d-1})\)-plane. Denote by \(v_{1,n} \) and \(v_{2,n} \) the \(d \)-dimensional bodies with the \(x_1 \)-coordinates having opposite signs,

\[v_{1,n} = (K \cap H^- (\xi_n)) \setminus (K \cap H^- (\xi)), \quad v_{2,n} = (K \cap H^- (\xi)) \setminus (K \cap H^- (\xi_n)), \]

and let \(y_{1,n}, z_{1,n} \) be the \(x_1 \)-coordinates of \(C = C_\delta(\xi) \) and \(C_n = C_\delta(\xi_n) \), see Figure 6 (cf. Figure 59, page 289 from [DVP]). Then

\[\delta y_{1,n} = \int_{K \cap H^- (\xi)} x_1 dx, \quad \delta z_{1,n} = \int_{K \cap H^- (\xi_n)} x_1 dx, \]

and looking at the difference, we have

\[\delta (y_{1,n} - z_{1,n}) = \int_{v_{1,n} \cup v_{2,n}} |x_1| dx. \]
Repeating the argument from the proof of Theorem 4 showing that the volumes \(\text{vol}_d(v_{1,n}) = \text{vol}_d(v_{2,n}) \) are (up to \(o(\epsilon_n) \)) the sums of volumes \(\epsilon_n x_1 dx \) of infinitesimal prisms, we obtain

\[
\delta(z_{1,n} - y_{1,n}) = \tan \epsilon_n \int_{K \cap H(\xi)} x_1^2 d\sigma_{d-1}(x) + o(\epsilon_n) = \\
\tan \epsilon_n I_{K \cap H(\xi)}(\Pi_n) + o(\epsilon_n).
\]

On the other hand, consider the normals \(C_\mu \) and \(C_n \mu_n \) to \(S \) at the points \(C = C_\delta(\xi) \) and \(C_n = C_\delta(\xi_n) \). The angle \(\epsilon_n \) between these normals is equal to the one between the hyperplanes \(H(\xi) \) and \(H(\xi_n) \). At the same time this is the angle between the \(x_1 \)-axis and \(C_n \mu_n \). By definition of the metacenter, the vector \(\mu \mu_n \) is “parallel” to \(\Pi_n \), so \(\mu \) and \(\mu_n \) have the same \(x_1 \)-coordinate; it is the \(x_1 \)-coordinate of the intersection of orthogonal projections of lines \(\ell, \ell_n \), containing \(C_\mu, C_n \mu_n \), onto the \(x_1 x_d \)-plane. We conclude that \(z_{1,n} - y_{1,n} \) is the projection of \(C_n \mu_n \) onto the \(x_1 \)-axis, i.e., \(z_{1,n} - y_{1,n} = \sin \epsilon_n |C_n \mu_n| \). Substituting this expression into (8) and passing to the limit as \(n \to \infty \) we see that

\[
|C_\mu| = \lim_{n \to \infty} |C_n \mu_n| = \frac{I_{K \cap H(\xi)}(\Pi)}{\delta},
\]

which is the desired conclusion. \(\square \)

4. Proofs of Lemma 1, Theorems 7, 2, and Corollaries 2, 1

We start with the proof of Lemma 1 (cf. [Gr], [Mo], [G, page 203] and [HSW, Corollary 2.4 and Proposition 2.2]).

Proof. At first we prove the converse statement. Using the fact that all normals of the sphere intersect at its center and Theorem 3 we see that for every \(\xi \in S^{d-1} \), the lines \(\ell(\xi) \) passing through \(C(K) \) and \(C_\delta(\xi) \) are orthogonal to \(H(\xi) \).

Now we prove the \(if \) part. Let \(\xi \in S^{d-1} \) and let \(\ell(\xi) \) be a line passing through \(C(K) \) and the center of mass \(C(\xi) \) of \(K \cap H(\xi) \). By Theorem 3 \(H(\xi) \) is parallel to \(H(\xi) \). Since \(K \) floats in equilibrium in the direction \(\xi \), the line \(\ell(\xi) \) is orthogonal to \(H(\xi) \). Since \(H(\xi) \) is parallel to \(H(\xi) \), \(\ell(\xi) \) is the normal line to \(S \) at \(C(\xi) \), and since the body floats in equilibrium in all directions \(\xi \in S^{d-1} \), we know that the lines \(\ell(\xi) \) passing through \(C(K) \) are the normal lines to \(S \) for every \(\xi \); we recall that \(S \) is \(C^1 \)-smooth, [HSW]. Consider any two-dimensional plane \(\Pi \) passing through \(C(K) \). Parametrizing the plane curve \(S \cap \Pi \) by the radius vector \(r \) going from \(C(K) \) to the corresponding \(S \cap \ell(\xi) \), we see that \(r \) is orthogonal to \(r' \), i.e., \(r \cdot r' = 0 \), \(|r| \) is constant, and \(S \cap \Pi \) is a circle. Since \(\Pi \) was chosen arbitrarily, applying [Ga, Corollary 7.1.4, page 272] to \(L(S) \) from Theorem 3 we obtain that \(S \) is a sphere. This gives the desired conclusion. \(\square \)
4.1. Proof of Corollary 2. Let $\delta_n \to 0$ and let S_n be the corresponding surfaces of centers, which are all spheres of the radii r_n. Since $d(K_{\delta_n}, K) \to 0$ as $n \to \infty$, and since $K_{\delta_n} \subset B^2_{r_n}(0) \subset K$, we have $d(B^2_{r_n}(0), K) \to 0$ as $n \to \infty$. Hence, K is the Euclidean ball $B^2_{\delta}(0)$. \qed

4.2. Proof of Theorem 1. It is a consequence of Lemma 1 and Theorems of Dupin. It will be convenient to reformulate Theorem 1 in terms of the radial function.

Given a direction $\xi \in S^{d-1}$ and a hyperplane (1) for which (2) holds, we will use the notation $\rho_{K\cap H(\xi)}(w)$ for the radial function of the $(d-1)$-dimensional convex body $K \cap H(\xi)$ with respect to the center of mass $C(K \cap H(\xi))$ in the direction $w \in S^{d-1} \cap \xi$, i.e., for

$$\rho_{K\cap H(\xi), C(K\cap H(\xi))}(w) = \max\{\lambda > 0 : \mathcal{C}(K \cap H(\xi)) + \lambda w \in (K \cap H(\xi))\}.$$

Theorem 7. Let $d \geq 3$, let K be a convex body and let $\delta \in (0, \text{vol}_d(K))$. If K floats in equilibrium at the level δ in every orientation, then for all $\xi \in S^{d-1}$ the cutting sections $K \cap H(\xi)$ have equal principal moments, i.e., we have

\begin{align*}
\int_{S^{d-1} \cap \xi} w_k^2 \rho_{K\cap H(\xi)}^{d+1}(w)dw &= (d+1)\delta R, \quad k = 1, 2, \ldots, d-1, \\
\int_{S^{d-1} \cap \xi} w_j w_k \rho_{K\cap H(\xi)}^{d+1}(w)dw &= 0, \quad 1 \leq k, j \leq d-1, \quad j \neq k,
\end{align*}

where R is the radius of the spherical surface of centers S.

Conversely, if $\mathcal{C}(S) = \mathcal{C}(K)$ and for every cutting hyperplane $H(\xi)$, $\xi \in S^{d-1}$, the cutting section $K \cap H(\xi)$ satisfies (3), (9) and (10) with some constant R, then the body K with C^1-smooth boundary floats in equilibrium in every orientation at the level δ.

Proof. Let $d \geq 3$. Fix any $\xi \in S^{d-1}$ and a cutting hyperplane $H(\xi)$. Let $\Pi \subset H(\xi)$ be a $(d-2)$-dimensional plane passing through $C(K \cap H(\xi))$, let $\Pi_n \subset H(\xi)$ be a sequence of $(d-2)$-dimensional planes converging and parallel to Π as $n \to \infty$, and let $H_n = H(\xi_n), H_n \cap H(\xi) = \Pi_n$, be the corresponding cutting hyperplanes. If $C_n = C(\xi_n)$ are the centers of mass of $K \cap H_n^{-}$ converging to $C = C(\xi)$ as $n \to \infty$, then, by Theorem 5 for $\zeta = \lim_{n \to \infty} \frac{C_n}{C}$, we have

$$\mathcal{R}_{C(\xi)}(\zeta) = \mathcal{R}(\zeta).$$

By Lemma 1, the surface of centers S is a sphere of certain radius R centered at $C(K)$. Since the radii of the normal curvatures of the sphere of radius R are equal to R at all points $C \in S$ in all directions and since Π was chosen arbitrarily, by Remark 2 we see that the function in the right-hand side of (11) is constant for almost every $\xi \in S^{d-1}$ and for all Π. Since the
function \((\xi, \Pi) \rightarrow I_{K \cap H(\xi)}(\Pi)\) is continuous, the right-hand side of (11) is constant for every \(\xi \in S^{d-1}\) and for all \(\Pi\).

Hence, using (6) we obtain that for all \(\xi \in S^{d-2}\) one has

\[
(12) \quad \frac{1}{d} \int_{K \cap H(\xi) - C(K \cap H(\xi))} (v \cdot \eta_{d-1})^2 \, dv = R \quad \forall \eta_{d-1} \in S^{d-1} \cap \xi^\perp,
\]

where we recall that \(\eta_1, \ldots, \eta_{d-2}, \eta_{d-1}\) is the orthonormal basis of \(\xi^\perp\) such that (5) holds. Passing to polar coordinates in \(H(\xi)\) with respect to \(C(K \cap H(\xi))\), we have

\[
(13) \quad \int_{K \cap H(\xi) - C(K \cap H(\xi))} (v \cdot \eta_{d-1})^2 \, dv = \int_{S^{d-1} \cap \xi^\perp} dw \int_0^{\rho_{K \cap H(\xi)}(w)} (rw \cdot \eta_{d-1})^2 r^{d-2} \, dr = \int_{S^{d-1} \cap \xi^\perp} \frac{1}{d+1} (w \cdot \eta_{d-1})^2 \rho_{K \cap H(\xi)}^{d+1}(w) \, dw, \quad \forall \eta_{d-1} \in S^{d-1} \cap \xi^\perp.
\]

This identity and (12) yield

\[
(14) \quad \int_{S^{d-1} \cap \xi^\perp} (w \cdot \eta_{d-1})^2 \rho_{K \cap H(\xi)}^{d+1}(w) \, dw = (d + 1) \delta R,
\]

where the right-hand side is independent of \(\eta_{d-1} \in S^{d-1} \cap \xi^\perp\). By choosing \(\eta_{d-1}\) to be the standard coordinate vectors in \(\xi^\perp\), we obtain (9). By taking \(\eta_{d-1} = (0, \ldots, \frac{\sqrt{2}}{2}, 0, \ldots, 0, \frac{\sqrt{2}}{2}, 0, \ldots, 0)\) for different \(1 \leq j, k \leq d - 1, j \neq k\), and using (9) we obtain (10). Since \(\xi\) was arbitrary, the proof of the if part is complete.

Now we prove the converse statement. Our goal is to show that the surface of centers is a sphere.

We will show at first that for almost every \(\xi \in S^{d-1}\) the points \(C(\xi) = S \cap H(\xi)\) are umbilical. Let \(\xi \in S^{d-1}\) be such that the normal curvatures at the corresponding point \(C(\xi) \in S\) exist. Assume that (9) and (10) are true. We can also assume that \(\Pi\) satisfies (5). Then, expanding the expression \((w \cdot \eta_{d-1})^2\) by writing \(w\) in the basis \(\eta_1, \ldots, \eta_{d-1}\) and using the identities (12) and (13), we see that (14) holds with some constant \(R\) in the right-hand side, i.e., it is independent of \(\eta_{d-1} \in S^{d-1} \cap \xi^\perp\). Hence, using (6), (12) and (13), we see that the right-hand side of (11) is independent of \(\Pi\) and \(\xi\).

Now let \(\zeta\) be any unit principal direction in the hyperplane \(H(\xi)\) tangent to \(S\) at \(C(\xi)\), and let \(\Pi\) be a two-dimensional subspace spanned by \(\zeta\) and the normal to \(S\) at \(C(\xi)\). Consider a sequence of unit directions \(\zeta_n\) tangent to the two-dimensional curve \(S \cap \Pi\) at the corresponding points \(C(\xi_n) \in (S \cap \Pi)\) and such that \(\zeta_n \rightarrow \zeta, C(\xi_n) \rightarrow C(\xi)\), as \(n \rightarrow \infty\). If \(\{H(\xi_n)\}_{n=1}^{\infty}\) is a sequence of
cutting hyperplanes $H(\xi_n)$ converging to $H(\xi)$ as $n \to \infty$ with $C(\xi_n)$ being the centers of mass of $K \cap H^{-}(\xi_n)$, applying Theorem 5 and passing to a subsequence if necessary to ensure the existence of $\lim_{n \to \infty} H(\xi_n)$, we see that the radii of the principal normal curvatures of S at $C(\xi)$ in the principal directions are the same and the value of the radii is independent of ξ and ζ for almost every $\xi \in S^{d-1}$ and for every principal direction ζ parallel to $H(\xi)$.

Thus, for almost every $\xi \in S^{d-1}$ the points $C(\xi)$ are umbilical. We claim that S is a sphere. Indeed, recall that by Remark 1 the surface of centers is C^2. Hence, by continuity, all the points on S are umbilical. Using [DC, Proposition 4, page 147] and [Ga, Corollary 7.1.4, page 272] we conclude that S must be a ($d-1$)-dimensional sphere. An application of Lemma 1 finishes the proof.

Remark 3. In the planar case an analogous result is a consequence of Lemma 7 and Theorem 6.

4.3. Proof of Corollary 1. The condition of the corollary reads as

$$\sum_{\xi \in S^{d-1}} \rho_{K \cap H(\xi)}^{d+1}(w) + \rho_{K \cap H(\xi)}^{d+1}(-w) = c \quad \forall w \in S^{d-1} \cap \xi_\perp.$$ \(15\)

The result follows from the second part of Theorem 2 by writing ρ_{K}^{d+1} as the sum of even and odd parts and substituting the even part from (15) into (9) and (10).

4.4. Proof of Theorem 2. We recall that a measurable function $f : S^{d-1} \to \mathbb{R}$ is isotropic if the signed measure $f \, dx$ is isotropic, i.e., its center of mass is at the origin and the map

$$S^{d-1} \ni y \mapsto \int_{S^{d-1}} (y \cdot w)^2 f(w) \, dw$$

is constant, [MP]. The following result was obtained in [MRS].

Theorem 8. Let $f : S^{d-1} \to \mathbb{R}$ be a measurable, bounded a. e. and even function, $d \geq 3$. If for almost every $\xi \in S^{d-1}$ the restriction $f|_{S^{d-1} \cap \xi_\perp}$ to $S^{d-1} \cap \xi_\perp$ is isotropic (i.e. the restriction of f to almost every equator is isotropic), then f is almost everywhere equal to a constant.

By the origin-symmetry, the centers of mass of all cutting sections are equal to the center of mass of K. Hence, we may apply Theorem 7 to see that there exists a constant c such that all second moments of the central sections $K \cap \xi_\perp$ are equal to c for all $\xi \in S^{d-1}$. The result follows from Theorem 8 with $f = \rho_{K}^{d+1}$.

5. Appendix: Proof of Lemma 2 from [DVP, page 285]

Let M be a point on C^2-smooth S and let $\gamma \subset S$ be a curve passing through M. Let $M' \in \gamma$ be a point infinitesimally close to M. Consider two
normal lines MT and $M'N'$ to S at M and M' and let $\mu\mu'$ be the shortest distance between these normal lines. We can assume that the tangent hyperplane to S at M is e_d^\perp and that its boundary is locally described by e_d^\perp.

Now drop the terms of the orders higher than 2. We have
\[
\frac{\partial x_j}{\partial x_j} = k_j x_j
\]
for $j = 1, \ldots, d - 1$. The normal line at $M = M'(x_1, \ldots, x_d)$ can be expressed in terms of the “running” coordinates (y_1, \ldots, y_d) by equations
\[
y_j - x_j = k_j x_j (y_d - x_d), \quad j = 1, \ldots, d - 1.
\]
The square of the distance between (y_1, \ldots, y_{d-1}) and $M\Gamma$ is
\[
d - 1 \sum_{j=1}^{d-1} y_j^2 = d - 1 \sum_{j=1}^{d-1} (x_j - k_j x_j (y_d - x_d))^2.
\]
The “ordinate” $y_d = C\mu$ of the metacenter gives the minimum of the above expression and annihilates its derivatives (at $x_d = 0$). Hence,
\[
d - 1 \sum_{j=1}^{d-1} k_j x_j (x_j - k_j x_j y_d) = 0, \quad \text{i.e.,} \quad C\mu = \frac{d - 1}{\sum_{j=1}^{d-1} k_j^2 x_j^2 - \sum_{j=1}^{d-1} k_j^2 x_j^2}.
\]
If MT is the unit tangent vector to γ at M, then, identifying e_d^\perp with \mathbb{R}^{d-1}, writing MT in spherical coordinates $\zeta = (\zeta_1, \ldots, \zeta_{d-1}) \in S^{d-2}$ and putting
\[
(\zeta_1, \ldots, \zeta_{d-1}) = \frac{(x_1, \ldots, x_{d-1})}{\sqrt{x_1^2 + \cdots + x_{d-1}^2}},
\]
we obtain $\mu\mu' = \frac{d - 1}{\sum_{j=1}^{d-1} k_j^2 x_j^2 - \sum_{j=1}^{d-1} k_j^2 x_j^2}$.

Acknowledgment. The author is very thankful to Mariangel Alfonseca, Alexander Fish, Carsten Schütt, Elisabeth Werner, Vlad Yaskin and Ning Zhang for very useful discussions. He is also very grateful to Daniel Hug and Christos Saroglou for explaining several results and providing references, and to Peter Várkonyi for pointing out the possible necessity of an extra condition in Lemma 1 for non-symmetric convex bodies.

References

[A] H. Auerbach, *Sur un problème de M. Ulam concernant l'équilibre des corps flottants*, Studia Mathematica 7 (1938), no. 1, 121-142.

[Al] Aleksandrov, *Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it* (in Russian), Uchenye Zapiski Len. Gos. Univ. Math. Ser. 6 (1939), 3-35.

[B] I. Bárány, *Random polytopes in smooth convex bodies*, Mathematika 39 (1992), 89-92; Corrigendum, Mathematika 51 (2004), 31.

[BL] I. Bárány and D. G. Larman, *Convex bodies, economic cap coverings, random polytopes*, Mathematika, 35(2) (1988), 274-291.

[BF] H. Busemann and W. Feller, *Krummungseigenschaften konvexer Flächen*, Acta Math., 66 (1935), 1-47.

[BLW] F. Besau, M. Ludwig and E. Werner, *Weighted floating bodies and polytopal approximation*, Trans. Am. Math. Soc., 370 (2018), 7129-7148.

[BMO] J. Bracho, L. Montejano, D. Oliveros, *Carousels, Zindler curves and the floating body problem*, Per. Mat. Hungarica, vol. 49 2 (2004), 9-23.
[BP] H. Busemann and C. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88–94.

[CFG] H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved problems in geometry, Problem Books in Mathematics, Springer-Verlag, New York, 1991, Unsolved Problems in Intuitive Mathematics, II.

[Da] A. Davidov, Theory of bodies floating in liquids in equilibrium, Matser Thesis, Moscow State University, 1848, in Life and works of A. Yu. Davidov, (in Russian), by N.E. Zhukovsky, P.A. Nekrasov and P.M. Pokrovsky, Math. Sh. 1890, vol. 15, 1, 1-57.

[DC] M. P. Do Carmo, Differential geometry of curves and surfaces, IMPA, Río de Janeiro, Brazil, ISBN 0-13-212589-7.

[D] C. Dupin, Application de géometrie et de mécanique á la marine, aux ponts et chaussées, Paris, 1822.

[DVP] CH. J. De La Vallée Poussin, Lecons De Mécanique Analytique, Vol II, Paris, 1925 (in French), see also the Russian translation, Moscow, 1949.

[Fa] K. J. Falconer, Applications of a Result on Spherical Integration to the Theory of Convex Sets, Amer. Math. Monthly, 90 (1983), 690-693.

[FSWZ] D. I. Florentin, K. Schütt, E. M. Werner and N. Zhang, Convex floating bodies of Equilibrium, arXiv:2010.09006.

[Ga] R. J. Gardner, Geometric tomography, second ed., Encyclopedia of Mathematics and its Applications, 58, Cambridge University Press, Cambridge, 2006.

[G] E. N. Gilbert, How things float, The American Mathematical Monthly, 98 (1991), no. 3, 201-216.

[Gr] H. Groemer, Eine kennzeichnende Eigenschaft der Kugel, Eiseign. Math. (2) 7 (1961), 275-276.

[H] R. Howard, Alexandrov’s theorem on the second derivatives of convex functions via Rademacher’s theorem on the first derivatives of Lipschitz functions, http://ralphhoward.github.io/SemNotes/Notes/alex.pdf

[HSW] H. Huang, B. Slomka and E. Werner, Ulam floating bodies, J. of London Math. Soc., 100 (2019), no. 2, 425-446.

[KO] A. Kurusa and T. Odor, Spherical floating bodies, Acta Sci. Math. (Szeged), (2015), 81:3-4, 699-714.

[L] K. Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Math., 56 (4), 429-464.

[M] R. D. Mauldin, The Scottish book, Mathematics from the Scottish Café with selected problems from the new Scottish book, Second Edition, Birkhäuser, 2015, ISBN 978-3-319-22896-9.

[MP] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, GAFA, Lecture Notes in Math., 1376 (1989), Springer Berlin, 64-104.

[Mo] L. Montejano, On a problem of Ulam concerning a characterization of the sphere, Studies Appl. Math. 53 (1974), 243-248.

[MR] M. Meyer and S. Reisner, A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces, Geom. Dedicata 37 (1991), no. 3, 327-337.

[MRS] S. Myroshnychenko, D. Ryabogin and C. Saroglou, Star bodies with completely symmetric sections, Int. Math. Res. Not., 10 (2019), 3015-3031.

[Na] F. Nazarov, Personal communication, 2010.

[NSW] S. Nagy, C. Schütt and E. Werner, Data depth and floating body, Statistics Surveys 13 (2019), 52-118.

[Od] K. Odani, Ulam’s floating body problem of two dimension, Bull. of Archi Univ. of Education, 58 (2009), 1-4.
ON BODIES FLOATING IN EQUILIBRIUM IN EVERY ORIENTATION

S. P. Olovjanischikoff, *Ueber eine kennzeichnende Eigenschaft des Ellipsoides*, Leningrad State Univ. Ann. (Uchen. Zap.) 83 (1941), 113-128.

D. Ryabogin, *On a equichordal property for a pair of convex bodies*, arXiv: mathematics 2010.09864

D. Ryabogin, *A negative answer to Ulam’s Problem 19 from the Scottish Book*, arXiv: mathematics 1201.0393

R. Schneider, *Functional equations connected with rotations and their geometric applications*, L’Enseign. Math. 16 (1970), 297-305.

R. Schneider, *Convex Bodies: The Brunn-Minkowski theory*, Encyclopedia of Mathematics and its Applications, Second expanded edition, 44, Cambridge University Press, Cambridge, 2014.

C. Schütt, *On the affine surface area*, Proc. AMS., 118 (1993), 1213-18.

C. Schütt, *Random polytopes and affine surface area*, Math. Nachr., 170 (1994), 227-249.

A. Stancu, *The floating body problem*, Bull. London Math. Soc., 38 (2006) 839–846.

C. Schütt and E. Werner, *The convex floating body*, Math. Scand. 66 (1990), 275-290.

C. Schütt and E. Werner, *Homothetic floating body*, Geom. Dedicata. 49 (1994), 335-348.

J. A. Thorpe, *Elementary topics in Differential Geometry*, Underg. Texts in Math., Springer, 1979, ISBN 3-540-90357-7.

E. C. Tupper, *An in Introduction to Naval Architecture* (Fifth Edition), 2013, ISBN: 9780080982373.

S. M. Ulam, *A Collection of Mathematical Problems*, Interscience, New York, 1960, p. 38.

P. L. Várkonyi, *Floating body problems in two dimensions*, Stud. Appl. Math. 122 (2009), no. 2, 195–218.

P. L. Várkonyi, *Neutrally floating objects of density $\frac{1}{2}$ in three dimensions*, Stud. Appl. Math. 130 (2013), no. 3, 295-315.

F. Wegner, *Floating bodies of equilibrium*, Stud. Appl. Math. 111 (2003), no. 2, 167–183.

F. Wegner, *Floating bodies in equilibrium in 2D, the tire track problem and electrons in a parabolic magnetic fields*, arXiv:physics/0701241v3 (2007).

E. Werner, *Illumination bodies and affine surface area*, Stud. Math., 110, (1994), 257-269.

N. E. Zhukovsky, *Classical mechanics*, Moscow, 1936 (in Russian).

K. Zindler, Über konvexe Gebilde II, Monatsh. Math. Phys. 31 (1921), 25-57.

Department of Mathematics, Kent State University, Kent, OH 44242, USA
Email address: ryabogin@math.kent.edu