PRIMITIVE IDEALS FOR W-ALGEBRAS IN TYPE A

IVAN LOSEV

Abstract. In this note we classify the primitive ideals in finite W-algebras of type A.

1. Introduction

Let g be a semisimple Lie algebra over an algebraically closed field K of characteristic 0 and $e \in g$ be a nilpotent element. Then to the pair (g, e) one can assign an associative algebra \mathcal{W} called the W-algebra. This algebra was defined in full generality by Premet in [P1]. Two equivalent definitions of W-algebras are provided in Section 2. For other details on W-algebras the reader is referred to review [L5].

One of the reasons to be interested in \mathcal{W} are numerous connections between this algebra and the universal enveloping algebra U of g. For example, the sets of primitive ideals $Pr(\mathcal{W})$ and $Pr(U)$ of \mathcal{W} and U are closely related. Recall that an ideal in an associative algebra is called primitive if it is the annihilator of some irreducible module. The structure of $Pr(U)$ was studied extensively in 70’s and 80’s.

One of manifestations of a relationship between $Pr(\mathcal{W})$ and $Pr(U)$ is a map $I \mapsto I^\dagger : Pr(\mathcal{W}) \rightarrow Pr(U)$ constructed in [L1]. One can describe the image of this map. Namely, to each primitive ideal $\mathcal{J} \in Pr(U)$ one assigns its associated variety $V(U/\mathcal{J})$. According to a theorem of Joseph, the associated variety is the closure of a single nilpotent orbit in $g^* \cong g$. Thanks to [L1], Theorem 1.2.2(vii), an element $\mathcal{J} \in Pr(U)$ is of the form I^\dagger for some $I \in Pr(\mathcal{W})$ if and only if $O \subset V(U/\mathcal{J})$, where O stands for the adjoint orbit of e.

In general, the map \bullet^\dagger is not injective. However, the following result holds.

Theorem 1.1. The map $\bullet^\dagger : Pr(\mathcal{W}) \rightarrow Pr(U)$ is an injection provided $g \cong sl_n$.

This theorem provides a classification of primitive ideals in \mathcal{W} because the set of primitive ideals $\mathcal{J} \subset U$ with $V(U/\mathcal{J}) = \emptyset$ is known thanks to the work of Joseph, [J].

Acknowledgements. I would like to thank Jon Brundan for communicating this problem to me.

2. W-algebras and the map between ideals

2.1. Quantum slice. Let Y be an affine Poisson scheme equipped with a K^\times-action such that the Poisson bracket has degree -2. Let A_h be an associative flat graded $K[h]$-algebra (where h has degree 1) such that $[A_h, A_h] \subset h^2 A_h$ and $K[Y] = A_h/(h)$ as a graded Poisson algebra. Pick a point $\chi \in Y$. Let I_χ be the maximal ideal of χ in $K[Y]$ and let \tilde{I}_χ be the inverse image of I_χ in A_h. Consider the completion $A_h^{\wedge} := \lim_{\leftarrow n \rightarrow \infty} A_h/\tilde{I}_\chi^n$. This is a space.

[Supported by the NSF grant DMS-0900907.
MSC 2010: Primary 16S99, 17B35.
Address: Northeastern University, Department of Mathematics, 360 Huntington Avenue, Boston, MA 02115.
E-mail: i.losev@neu.edu.]
complete topological $\mathbb{K}[[\hbar]]$-algebra with $\mathcal{A}_h^\wedge \times (\hbar) = \mathbb{K}[Y]^{\wedge, \times}$, where on the right hand side we have the usual commutative completion. Moreover, as we have seen in [L4], Lemma 2.11, the algebra \mathcal{A}_h^\wedge is flat over $\mathbb{K}[[\hbar]]$.

The cotangent space $T^*_\chi Y = I_\chi/I_\chi^2$ comes equipped with a natural skew-symmetric form, say ω. Fix a maximal symplectic subspace $V \subset T^*_\chi Y$. One can choose an embedding $V \hookrightarrow \tilde{I}_\chi^\wedge$ such that $[\iota(u), \iota(v)] = \hbar^2 \omega(u, v)$ and whose composition with the projection $\tilde{I}_\chi^\wedge \to T^*_\chi Y$ is the identity. This is proved similarly to Proposition 3.3 in [Ka] (or can be deduced from that proposition, compare with the argument of Subsection 7.2 in [L3]). Consider the homogenized Weyl algebra $\mathcal{A}_h(V) = T(V)[\hbar]/(u \otimes v - v \otimes u - \hbar^2 \omega(u, v))$ and its completion $\Lambda_{\hbar, h}^\wedge(V)$ at zero. It is easy to show that

$$\Lambda_{\hbar, h}^\wedge := \Lambda_{\hbar, h}^\wedge(V) \widehat{\otimes}_{\mathbb{K}[[\hbar]]} \mathcal{A}_h^\prime,$$

where \mathcal{A}_h^\prime is the centralizer of V in $\Lambda_{\hbar, h}^\wedge$. We remark that the algebra \mathcal{A}_h^\prime is complete with respect to the topology induced by its maximal ideal. The symbol $\widehat{\otimes}$ stands for the completed tensor product of topological vector spaces.

The argument in the proof of [L6], Proposition 6.6.1, Step 2, shows that any two embeddings $\iota^1, \iota^2 : V \hookrightarrow \tilde{I}_\chi^\wedge$ satisfying the conditions in the previous paragraph differ by an automorphism of $\Lambda_{\hbar, h}^\wedge$ of the form $\exp(\frac{1}{\hbar^2} \text{ad}(z))$ with $z \in (\tilde{I}_\chi^\wedge)^3$. In particular, the algebra \mathcal{A}_h^\prime is defined uniquely up to a $\mathbb{K}[[\hbar]]$-linear isomorphism.

Now let us consider a compatibility of our construction with certain derivations. Suppose \mathcal{A}_h is equipped with a derivation D such that $D\hbar = \hbar$. The derivation extends to $\Lambda_{\hbar, h}^\wedge$. According to [L4], there is a derivation D' of \mathcal{A}_h^\prime, with the following properties. First, $D'\hbar = \hbar$. Second, we have $D - D' = -\frac{1}{\hbar^2} \text{ad}(a)$ for some element $a \in \Lambda_{\hbar, h}^\wedge$, where D' means the derivation that equals D' on \mathcal{A}_h^\prime and acts by 1 on the symplectic space V generating $\Lambda_{\hbar, h}^\wedge(V)$.

An easy special case of the previous construction is when the derivation D comes from a \mathbb{K}^\times-action on \mathcal{A}_h preserving χ. Here we can choose a \mathbb{K}^\times-stable V and a \mathbb{K}^\times-equivariant embedding $\iota : V \to \tilde{I}_\chi^\wedge$ and so we get a \mathbb{K}^\times-action on \mathcal{A}_h^\prime. Moreover, the algebra \mathcal{A}_h^\prime is now defined uniquely up to a \mathbb{K}^\times-equivariant $\mathbb{K}[[\hbar]]$-linear isomorphism.

Now let $Z(\mathcal{A}_h)$ denote the center of \mathcal{A}_h. Consider a \mathbb{K}^\times-equivariant $\mathbb{K}[[\hbar]]$-linear homomorphism $\lambda : Z(\mathcal{A}_h) \to \mathbb{K}[[\hbar]]$ and the corresponding central reduction $\mathcal{A}_{\lambda, h} : = \mathcal{A}_h/\ker \lambda$. Until the end of the subsection we assume that χ lies in the spectrum of $\mathcal{A}_{\lambda, h}^\wedge(\hbar)$.

Consider the induced homomorphism $Z(\mathcal{A}_h) \to \mathcal{A}_{\hbar, h}^\wedge = \mathcal{A}_{\hbar, h}^\wedge(V) \widehat{\otimes}_{\mathbb{K}[[\hbar]]} \mathcal{A}_h^\prime$. The image is central. The center of $\mathcal{A}_{\hbar, h}^\wedge(V)$ coincides with $\mathbb{K}[[\hbar]]$, so the image of $Z(\mathcal{A}_h)$ is contained in \mathcal{A}_h^\prime. Set $\mathcal{A}^\wedge_{\lambda, h} = \mathcal{A}_{\hbar, h}^\wedge/\ker \lambda$.

Then we have the completion $\mathcal{A}^\wedge_{\lambda, h}$ of $\mathcal{A}_{\lambda, h}$, and $\mathcal{A}^\wedge_{\lambda, h} = \mathcal{A}^\wedge_{\hbar, h}/\ker \lambda$. Furthermore, we have the following commutative diagram, where the horizontal arrows are isomorphisms and the vertical arrows are the natural quotients.
Now suppose that we have a reductive group Q that acts on A_h rationally by $\mathbb{K}[h]$-algebra automorphism fixing χ. Further, suppose that there is quantum moment map $\Phi^A : q \to A_h$, i.e., a Q-equivariant linear map with the property that $[\Phi^A(\xi), a] = \hbar^2 \xi.a$, where on the right hand side ξ is the derivation of A_h coming from the Q-action. Composing Φ^A with a natural homomorphism $A_h \to A_h^\times$, we get a quantum moment map $q \to A_h^\times$ again denoted by Φ^A.

We remark that we can choose V to be Q-stable. This gives rise to a Q-action on V by linear symplectomorphisms and hence to an action of Q on $A_h(V)$ by $\mathbb{K}[h]$-linear algebra automorphisms. There is a quantum moment map $\Phi^A : q \to A_h(V)$ that is the composition $q \to \text{sp}(V) = S^2V \hookrightarrow A_h(V)$.

Further, since Q is reductive, we can assume that the embedding $\iota : V \hookrightarrow A_h^\times$ is Q-equivariant. So we get a Q-action on A_h'. Let us produce a quantum moment map for this action. For $\xi \in q$ set $\Phi(\xi) = \Phi^A(\xi) - \Phi^A(\xi)$. The quantum moment map conditions for Φ^A, Φ^A imply that $\Phi(\xi)$ commutes with $A_h(V)^{\hbar^0}$ and hence the image of Φ is in A_h'. Now it is clear that $\Phi : q \to A_h'$ is a quantum moment map for the action of Q on A_h'.

We remark that the Q-action and the map Φ are defined by the previous construction uniquely up to an isomorphism of the form $\exp(\frac{1}{\hbar} \text{ad}(z))$, where, in addition to conditions mentioned above, z is Q-invariant. Also we remark that if we have a \mathbb{K}^\times-action on A_h as above but additionally commuting with Q and such that $\Phi^A(\xi)$ has degree 2 for each ξ, then the Q-action on A_h' also may be assumed to commute with \mathbb{K}^\times and $\Phi(\xi)$ may be assumed to have degree 2.

2.2. W-algebras via quantum slices.

We are going to consider a special case of the construction explained in the previous subsection.

Let G be a simply connected semisimple algebraic group and let \mathfrak{g} be the Lie algebra of G. Set $Y := \mathfrak{g}^\ast$. We remark that we can identify \mathfrak{g} with \mathfrak{g}^\ast by means of the Killing form. Pick a nilpotent orbit $O \subset \mathfrak{g}$ and an element $e \in O$. We take e for χ. Let us equip Y with a Kazhdan \mathbb{K}^\times-action defined as follows. Pick an \mathfrak{sl}_2-triple (e, h, f), where h is semisimple. Let $\gamma : \mathbb{K}^\times \to G$ be the one-parameter corresponding to h. We define a \mathbb{K}^\times-action on \mathfrak{g}^\ast by $t.\alpha = t^{-2}\gamma(t)\alpha, \alpha \in \mathfrak{g}^\ast, t \in \mathbb{K}^\times$. We remark that $t.\chi = \chi$.

For A_h we take the homogenized version U_h of the universal enveloping algebra defined by $U_h := T(\mathfrak{g})[h]/(\chi \otimes y - y \otimes \chi - h^2[\chi, y])$. We can extend the Kazhdan action to U_h. Explicitly, for $\xi \in \mathfrak{g}$ with $[h, \xi] = i\xi$ we have $t.\xi = t^{i+2}\xi$ and we set $t.h := th$.

Apply the construction of the previous subsection to A_h, χ. We get the $\mathbb{K}[[h]]$-algebra A_h' acted on by \mathbb{K}^\times together with a \mathbb{K}^\times-equivariant isomorphism $A_h^\times = A_h^{\hbar^0}(V) \otimes_{\mathbb{K}[[h]]} A_h'$. Here V has the same meaning as before but we can describe it explicitly: namely, for V we take the subspace $[\mathfrak{g}, f] \subset \mathfrak{g} = T_\chi^\ast Y$.

Let A_h' denote the subalgebra of all \mathbb{K}^\times-finite vectors in A_h'. It turns out that the algebra A_h'/hA_h', or, more precisely, the corresponding variety is well-known in the theory of nilpotent orbits – this is a so called Slodowy slice. In more detail, set $S := e + 3g(f)$ and view S as a subvariety in \mathfrak{g}^\ast via the identification $\mathfrak{g} \cong \mathfrak{g}^\ast$. Then S is \mathbb{K}^\times-stable and is transverse to Ge in e: $\mathfrak{g} = T_eS \oplus T_eGe$. Moreover, the Kazhdan action contracts S to e, meaning that $\lim_{t\to\infty} t.s = e$ for all $s \in S$. This implies that S is transversal to any G-orbit it intersects – $\mathfrak{g} = T_eS + T_eGe$ for all $s \in S$. Also the contraction property means that the grading on $\mathbb{K}[S]$ induced by the \mathbb{K}^\times-action is positive: there are no negative degrees, and the only elements in degree 0 are constants.
The contraction property for the \mathbb{K}^x-action on S implies that the subalgebra of $\mathbb{K}[S]^{\wedge x} = A_h'/hA_h'$ consisting of the \mathbb{K}^x-finite elements coincides with $\mathbb{K}[S]$. Moreover, since the degree of h is positive, this implies that $A_h'/hA_h = \mathbb{K}[S]$.

We set $A := A_h/(h-1)A_h$. This is a filtered associative algebra whose associated graded is $\mathbb{K}[S]$. The algebra A_A can be recovered as the Rees algebra of A, while A_h' is the completion $\mathcal{A}_h^{\wedge x}$.

Let us remark that the algebra A comes equipped with a homomorphism $Z \to A$, where Z is the center of the universal enveloping algebra $U(= U_h/(h-1)U_h)$ of \mathfrak{g}. Indeed, set $Z_h := U_h^G$. This is the center of U_h. Consider Z_h as a subalgebra of $A_h^{\wedge x}$. According to the previous subsection, we have $Z_h \subset A_h$. It is easy to see that Z_h consists of \mathbb{K}^x-finite vectors so $Z_h \subset A_h$. This gives rise to an embedding $Z \to A$. We remark that this embedding does not depend on the choice (that of the embedding $V \to \tilde{V}^{\wedge x}$) we have made. This is because that the two choices are conjugate by an automorphism that commutes with all elements of the center.

Consider the subgroup $Q := Z_G(e, h, f) \subset G$. This group acts on U_h and stabilizes χ (and S as well). The Q-action commutes with \mathbb{K}^x and there is a quantum moment map $q \to A_h$ whose image consists of functions of degree 2 with respect to the \mathbb{K}^x-action. So we get a Q-action on A_h as well as a quantum comoment map $q \to A_h$. Both the action and the quantum moment map descend to A.

2.3. Equivalence with a previous definition. Recall that the cotangent bundle T^*G carries a natural symplectic form ω. This form is invariant with respect to the natural $G \times G$-action. Moreover, for the \mathbb{K}^x-action by fiberwise dilations we have $t.\omega = t^{-1}\omega$, $t \in \mathbb{K}^x$.

We remark that we can trivialize T^*G by using left-invariant 1-forms hence $T^*G = G \times \mathfrak{g}^*$. Consider S as a subvariety in \mathfrak{g}^* and set $X := G \times S$. It turns out that the subvariety $X \subset T^*G$ is symplectic. It is easy to see that X is stable with respect to the left G-action, as well as to the Kazhdan \mathbb{K}^x-action on T^*G given by $t.(g, \alpha) = (g\gamma(t)^{-1}, t^{-2}\gamma(t)\alpha)$. Clearly, ω has degree 2 with respect to the Kazhdan action. Also Q acts on T^*G by $q.(g, \alpha) = (gq^{-1}, q\alpha)$ and X is Q-stable.

We remark that $\mu_G : T^*G \to \mathfrak{g}^*, \mu_G(g, \alpha) = g\alpha$ is a moment map, i.e., a G-equivariant map such that for any $\xi \in \mathfrak{g}$ the derivation $\mu_G^k(\xi)$ of $\mathbb{K}[T^*G]$ coincides with the derivation produced by ξ via the G-action. Similarly, $\mu_Q : T^*G \to \mathfrak{q}^*, \mu_Q(x, \alpha) = \alpha|_q$.

In [L1] the author proved that there is an associative product $*$ on $\mathbb{K}[X][h]$, where h is an independent variable, satisfying the following properties:

1. $* \text{ is } G \times \mathbb{K}^x$-equivariant, where $G \times \mathbb{K}^x$ acts on $\mathbb{K}[X]$ as usual, $g.h = h, t.h = th$.
2. For $f, g \in \mathbb{K}[X]$ we have $f \ast g = \sum_{i=0}^{\infty} D_i(f, g) h^i$, where D_i is a bi-differential operator of order at most i.
3. $f \ast g \equiv fg \mod h^2$.
4. $f \ast g - g \ast f \equiv h^2 \{f, g\} \mod h^4$.
5. The map $\mu^*_G : \mathfrak{g} \to \mathbb{K}[X][h], \mu^*_Q : \mathfrak{q} \to \mathbb{K}[X][h]$ are quantum moment maps.

The last property was established in [L2]. By definition, the W-algebra \mathcal{W} is the quotient of the invariant subalgebra $\mathbb{K}[X][h]^G$ by $h - 1$. The quantum moment map $\mu^* : \mathfrak{g} \to \mathbb{K}[X][h]$ gives rise to the homomorphism $Z = U(\mathfrak{g})^G \to \mathcal{W}$.

Proposition 2.1. We have a filtration preserving Q-equivariant isomorphism $\mathcal{W} \to A$ intertwining the embeddings of Z and the quantum moment maps from q.
Proof. Similarly to the above we have a star-product on T^*G having the properties analogous to (1)-(5). Set $x := (1, \chi) \in X \subset T^*G$. Consider the completions $\mathbb{K}[T^*G][[\hbar]]^\wedge_{Gx}, \mathbb{K}[X][[\hbar]]^\wedge_{Gx}$ of the corresponding algebras (w.r.t. star-products) at the ideals of Gx. According to Theorem 2.3.1 from [L2], we have a $G \times \mathbb{K}^\times$-equivariant (where we consider the Kazhdan \mathbb{K}^\times-actions) topological $\mathbb{K}[[\hbar]]$-algebra isomorphism

$$\mathbb{K}[T^*G][[\hbar]]^\wedge_{Gx} \sim \mathcal{A}_h^\wedge(V) \widehat{\otimes}_{\mathbb{K}[[\hbar]]} \mathbb{K}[X][[\hbar]]^\wedge_{Gx},$$

and this isomorphism intertwines the quantum moment maps for the G-action and Q-action (the Weyl algebra component of the quantum moment map for G on the right hand side is 0). The algebra of G-invariants of the left hand side is \mathcal{U}_h^\wedge, while on the right hand side we get $\mathcal{A}_h^\wedge(V) \widehat{\otimes}_{\mathbb{K}[[\hbar]]} \mathcal{W}_h^\wedge$, see loc. cit. So we can take \mathcal{W}_h^\wedge for \mathcal{A}_h^\wedge. It follows that we have Q-equivariant isomorphisms $\mathcal{W}_h \cong \mathcal{A}_h$ of graded $\mathbb{K}[[\hbar]]$-algebras and $\mathcal{W} \cong \mathcal{A}$ of filtered algebras. Both isomorphisms intertwine the quantum moment maps from q. Moreover, the embedding $\mathcal{U}_h \hookrightarrow \mathcal{U}_0 = \mathbb{K}[T^*G][[\hbar]]^G$ induced by the moment map is just the inclusion. This completes the proof of the proposition. \qed

2.4. Map between the set of ideals. Let us construct the map \bullet^\dagger mentioned in Theorem 1.4. We will start with the general setting explained in Subsection 2.1.

Consider the set $\mathfrak{J}_h(\mathcal{A}_h)$ of all \mathbb{K}^\times-stable h-saturated ideals $\mathcal{J}_h \subset \mathcal{A}_h$, where “$h$-saturated” means that $\mathcal{A}_h / \mathcal{J}_h$ is flat over $\mathbb{K}[[\hbar]]$. Similarly, consider the set $\mathfrak{I}_h(\mathcal{A}_h')$ of all D'-stable h-saturated ideals in \mathcal{A}_h'. The discussion of D' in Subsection 2.1 implies that an h-saturated $\mathfrak{I}_h \subset \mathcal{A}_h'$ is D'-stable if and only if $\mathcal{A}_h^\wedge \widehat{\otimes}_{\mathbb{K}[[\hbar]]} \mathfrak{I}_h \subset \mathcal{A}_h^\wedge$ is D'-stable. In particular, the set $\mathfrak{I}_h(\mathcal{A}_h')$ does not depend on the choice of D'.

We have maps between $\mathfrak{J}_h(\mathcal{A}_h)$ and $\mathfrak{I}_h(\mathcal{A}_h')$ constructed as follows. Take an ideal $\mathcal{J}_h \subset \mathcal{A}_h$ and form its closure $\mathcal{J}_h^\wedge \subset \mathcal{A}_h^\wedge$. This ideal is D'-stable but also one can check that it is actually h-saturated. As such, the ideal \mathcal{J}_h^\wedge has the form $\mathcal{A}_h^\wedge \widehat{\otimes}_{\mathbb{K}[[\hbar]]} \mathfrak{I}_h$ for a unique two-sided ideal \mathfrak{I}_h in \mathcal{A}_h. The ideal \mathfrak{I}_h is automatically D'-stable and h-saturated. We consider the map $\bullet^\dagger : \mathfrak{J}_h(\mathcal{A}_h) \to \mathfrak{I}_h(\mathcal{A}_h')$ sending \mathcal{J}_h to \mathfrak{I}_h.

Let us produce a map in the opposite direction. Take $\mathfrak{I}_h' \in \mathfrak{I}_h(\mathcal{A}_h')$. Then $\mathfrak{J}_h := \mathcal{A}_h \cap \mathcal{A}_h^\wedge \widehat{\otimes}_{\mathbb{K}[[\hbar]]} \mathfrak{I}_h'$ is a \mathbb{K}^\times-stable h-saturated ideal in \mathcal{A}_h. Consider the map $\bullet^\dagger : \mathfrak{I}_h(\mathcal{A}_h') \to \mathfrak{J}_h(\mathcal{A}_h)$ sending \mathfrak{I}_h' to \mathfrak{J}_h.

Now suppose that the grading on $\mathbb{K}[Y]$ induced by the \mathbb{K}^\times-action is positive. Then $\mathfrak{J}_h(\mathcal{A}_h)$ is in bijection with the set $\mathfrak{J}(\mathcal{A})$ of two-sided ideals in $\mathcal{A} := \mathcal{A}_h / (h - 1)$. Under this bijection, the ideal in \mathcal{A} corresponding to $\mathfrak{J}_h \in \mathfrak{J}_h(\mathcal{A}_h)$ is $\mathfrak{J}_h / (h - 1)\mathfrak{J}_h$.

Similarly, suppose that D' is also induced from some \mathbb{K}^\times-action such that \mathcal{A}_h' is the projective limit of some positively graded algebras (this is the case in the situation considered in Subsection 2.2). Then we have natural identifications $\mathfrak{J}_h(\mathcal{A}_h') \cong \mathfrak{J}_h(\mathcal{A}_h) \cong \mathfrak{J}(\mathcal{A})$. So we have maps between $\mathfrak{J}(\mathcal{A})$, $\mathfrak{I}(\mathcal{A})$ that still will be denoted by \bullet^\dagger, \bullet^\dagger.

In a special case we have some additional information about the maps \bullet^\dagger, \bullet^\dagger. Suppose that Y is still equipped with a contracting \mathbb{K}^\times-action and, moreover, has only finitely many symplectic leaves. For a symplectic leaf \mathcal{L} let $\mathfrak{J}_\mathcal{L}(\mathcal{A}_h)$ denote the subset of $\mathfrak{J}(\mathcal{A})$ consisting of all ideals \mathcal{J} such that $gr(\mathcal{A}/\mathcal{J})$ is supported on the closure of \mathcal{L}. The maximal elements in $\mathfrak{J}_\mathcal{L}(\mathcal{A})$ are precisely prime (=primitive by [L4]) ideals.

Now let \mathcal{L} be the leaf containing χ. Then \bullet^\dagger defines a map $\mathfrak{J}_\mathcal{L}(\mathcal{A}) \to \mathfrak{J}_{h,fin}(\mathcal{A}_h')$, where, by definition, the target set consists of all ideals \mathfrak{I}_h' such that $\mathcal{A}_h'/\mathfrak{I}_h'$ is free of finite rank over $\mathbb{K}[[\hbar]]$. For a prime ideal $\mathcal{J} \in \mathfrak{J}_\mathcal{L}(\mathcal{A})$ and any minimal prime ideal \mathfrak{I}_h' of \mathcal{J}_h we have
\(\mathcal{J} = (\mathcal{T}_h)^\dagger \), see [L4], Lemma A4. Corollary 3.17 from [ES] implies that there are finitely many prime ideals in \(\mathfrak{A}_{h,fin}(\mathcal{A}') \) and so \(\mathfrak{A}_{\mathcal{C}}(\mathcal{A}) \) also contains finitely many prime ideals.

We are interested in the special case when \(\mathcal{A} \) is a central reduction of \(\mathcal{U} \) at some central character \(\lambda \). Consider a unique \(\mathbb{K}^x \)-equivariant \(\mathbb{K}[h] \)-linear homomorphism \(Z(\mathcal{U}_\theta) \to \mathbb{K}[h] \) specializing to \(\lambda \) at \(h = 1 \). This homomorphism will also be denoted by \(\lambda \). So \(\mathcal{A}_h = \mathcal{U}_{\lambda,h} \) is the Rees algebra of \(\mathcal{U}_\lambda \). The underlying variety \(Y \) is the nilpotent cone \(\mathcal{N} \) of \(\mathfrak{g} \) and so contains finitely many symplectic leaves (=nilpotent orbits). Using the usual identification \(\mathfrak{g} = \mathfrak{sl}_n \), see [L4], Lemma A4. Corollary 3.17 from [ES] implies that there are finitely many prime ideals in \(\mathfrak{A}_{h,fin}(\mathcal{A}') \) and so \(\mathfrak{A}_{\mathcal{C}}(\mathcal{A}) \) also contains finitely many prime ideals.

\[\]
Proof. We will check that the intersection \(S \cap \overline{O}_1 \) is normal. Since \(S \cap \overline{O}_1 \) is \(\mathbb{K}^\times \)-stable and hence connected, the normality implies that \(S \cap \overline{O}_1 \) is irreducible. Being an open subvariety in \(S \cap \overline{O}_1 \), the variety \(S \cap O_1 \) is also irreducible.

Again, thanks to the contracting \(\mathbb{K}^\times \)-action it is enough to show that the completion \((S \cap \overline{O}_1)^\wedge_e \) at the point \(e \) is normal. Recall that the intersection \(S \cap O \) is transversal at \(e \). This implies that \(\overline{O}_1^\wedge_e \) decomposes into the direct product \(O^\wedge_e \times (S \cap \overline{O}_1)^\wedge_e \). According to Kraft and Procesi, [KP], the variety \(\overline{O}_1 \) is normal. Hence the formal scheme \(\overline{O}_1^\wedge_e \) is normal as well. The direct product decomposition now implies that \((S \cap \overline{O}_1)^\wedge_e \) is normal. \(\square \)

Remark 3.2. In fact, the techniques used below to prove Theorem 1.1 allow one to show that \(S \cap O_1 \) is irreducible for any (not necessarily nilpotent) orbit \(O_1 \).

3.2. Quantum level. Pick some nilpotent orbit \(\widetilde{O} \subset g \) whose closure contains \(O \), let \(\tilde{\chi} \in \widetilde{O} \cap S \), and let \(\widetilde{W} \) be the corresponding \(W \)-algebra. We claim that the inequalities

\[
(3.1) \quad |\Pr_{\tilde{\mathcal{O}} \cap S}(W_\lambda)| \leq |\Pr_{\tilde{\chi}}(\widetilde{W}_\lambda)|
\]

(for all possible \(\tilde{\mathcal{O}} \)) imply that \(\Pr_{\tilde{\mathcal{O}} \cap S}(W_\lambda) \) to \(\Pr_{\tilde{\chi}}(\widetilde{W}_\lambda) \) and is a bijection between the two sets.

Indeed, thanks to Proposition 2.2(3), the map \(\bullet^\dagger: \Pr_{\tilde{\chi}}(\widetilde{W}_\lambda) \to \Pr_{\tilde{\mathcal{O}}}(U_\lambda) \) is a bijection. On the other hand, the preimage of \(J \in \Pr_{\tilde{\mathcal{O}}}(U_\lambda) \) in \(\Pr(W_\lambda) \) contains at least one element from \(\Pr_{\tilde{\mathcal{O}} \cap S}(W_\lambda) \), assertion (2). Finally, by assertion (1), both sets \(\Pr(W_\lambda), \Pr(U_\lambda) \) are finite. So inequalities (3.1) imply the claim of the previous paragraph.

To prove the inequality \(|\Pr_{\tilde{\mathcal{O}} \cap S}(W_\lambda)| \leq |\Pr_{\tilde{\chi}}(\widetilde{W}_\lambda)| \) we will apply the general construction of Subsection 2.1 to \(Y = S \cap \mathcal{N}, \mathcal{A} = W_\lambda \) and the point \(\tilde{\chi} \in S \cap \widetilde{O} \).

Lemma 3.3. \(\mathcal{A}_h' \cong \widetilde{W}_h^\wedge, \) where \(\widetilde{W}_h \) is the homogenized version (=the Rees algebra) of the central reduction \(\mathcal{W}_h \) of \(\mathcal{W} \).

Proof. Set \(V_1 := T_{\tilde{\chi}}(S \cap \widetilde{O}) \) and let \(V_2 \) be the skew-orthogonal complement of \(V_1 \) in \(T_{\tilde{\chi}}\widetilde{O} \). We can form the corresponding completed homogenized Weyl algebras \(A_h(V_1)^\wedge, A_h(V_2)^\wedge \). Then we have

\[
(3.2) \quad U_h^\wedge = A_h(V_1 \oplus V_2)^\wedge \otimes_{\mathbb{K}[\hbar]} \widetilde{W}_h^\wedge,
\]

\[
(3.3) \quad W_h^\wedge = A_h(V_1)^\wedge \otimes_{\mathbb{K}[\hbar]} \mathcal{A}_h'.
\]

Applying the construction used in the proof of Proposition 2.1 to the point \((1, \tilde{\chi}) \in G \times S \subset T^*G \) we see that \(U_h^\wedge \cong A_h(V_2)^\wedge \otimes_{\mathbb{K}[\hbar]} \mathcal{W}_h^\wedge. \) From here and the description of the embedding \(Z \to \mathcal{W} \) provided in Subsection 2.3 one can see that

\[
(3.4) \quad U_h^\wedge \cong A_h(V_2)^\wedge \otimes_{\mathbb{K}[\hbar]} \widetilde{W}_h^\wedge.
\]

Combining (3.3) and (3.4), we get

\[
(3.5) \quad U_h^\wedge \cong A_h(V_1 \oplus V_2)^\wedge \otimes_{\mathbb{K}[\hbar]} \mathcal{A}_h'.
\]

From Subsection 2.1 we see that there is a \(\mathbb{K}[[\hbar]] \)-linear isomorphism \(\widetilde{W}_h^\wedge \cong \mathcal{A}_h' \). \(\square \)

Now we have two derivations of \(\widetilde{W}_h \), the derivation \(\tilde{D} \) induced by the Kazhdan action defined for the nilpotent element \(\tilde{\chi} \), and the derivation \(D' \) coming from an isomorphism \(\widetilde{W}_h^\wedge \cong \mathcal{A}_h' \). Both satisfy \(\tilde{D} \hbar = D' \hbar = \hbar \). Consider the sets \(\Pr_{\text{fin},h}(\widetilde{W}_h^\wedge), \Pr_{\text{fin},h}(\widetilde{W}_h^\wedge) \) that
consist of all prime (=maximal) h-saturated ideals $\mathcal{T}'_h \subset \widetilde{W}^\Lambda_h$ such that $\widetilde{W}^\Lambda_h / \mathcal{T}'_h$ is of finite rank over $\mathbb{K}[[h]]$ and such that \mathcal{T}'_h is, respectively, \widetilde{D}- and D'-stable. The set $\operatorname{Pr}_{f_{\text{fin}},h}(\mathcal{W}_h^\Lambda)$ is in natural bijection with $\operatorname{Pr}_{f_{\text{fin}}}(\mathcal{W}_h)$. On the other hand, by the results recalled in Subsection 2.4 the cardinality of $\operatorname{Pr}_{f_{\text{fin}},h}(\mathcal{W}_h^\Lambda)$ is bigger than or equal to that of $\operatorname{Pr}_{S\cap \mathfrak{G}}(\mathcal{W})$. So it remains to show that the two sets coincide.

It is enough to check that any derivation d of $\mathcal{A}'_h = \widetilde{W}^\Lambda_h$ with $d(h) = h$ fixes any maximal h-saturated ideal of finite corank. Consider the quotient $(\mathcal{A}'_h)^{(n)}$ of \mathcal{A}'_h by the ideal generated by the elements $s_{2n}(x_1, \ldots, x_{2n}) = \sum_{\sigma \in S_{2n}} \operatorname{sgn}(\sigma)x_{\sigma(1)} \ldots x_{\sigma(2n)}, x_1, \ldots, x_{2n} \in \mathcal{A}'_h$. This ideal is clearly d-stable. Also consider the analogous quotient $\mathcal{A}_h^{(n)}$ of $\mathcal{A}_h := \mathcal{W}_h$. It follows from Section 7.2 of [L3] that $\mathcal{A}_h^{(n)}$ has finite rank over $\mathbb{K}[[h]]$. But $(\mathcal{A}_h^{(n)})$ is the completion of $\mathcal{A}_h^{(n)}$ at $\tilde{\chi}$. So $(\mathcal{A}_h^{(n)})$ has finite rank over $\mathbb{K}[[h]]$. Therefore the localization $(\mathcal{A}_h^{(n)})[h^{-1}]$ is a finite dimensional $\mathbb{K}[h^{-1}, h]$-algebra.

Maximal h-saturated ideals of finite corank in \mathcal{A}_h' are in a natural one-to-one correspondence with maximal ideals of finite codimension in the $\mathbb{K}[h^{-1}, h]$-algebra $\mathcal{A}_h'[h^{-1}]$. Clearly $\mathcal{A}_h'[h^{-1}]^{(n)} = (\mathcal{A}_h'[h^{-1}])[h^{-1}]$. Thanks to the Amitsur-Levitzki theorem, every maximal ideal of finite codimension in $\mathcal{A}_h'[h^{-1}]$ is the preimage of an ideal in $\mathcal{A}_h'[h^{-1}]^{(n)}$ for some n. Of course, d induces a $\mathbb{K}[h^{-1}, h]$-linear derivation of $\mathcal{A}_h'[h^{-1}]^{(n)}$. Now it remains to use a fact that a maximal ideal in a finite dimensional algebra is stable under any derivation of this algebra. For reader’s convenience we will provide a proof here.

Let A be a finite dimensional algebra over some field K and let \mathfrak{m} be its maximal ideal. Replacing A with $A/\bigcap_{i=1}^{\infty} \mathfrak{m}^i$, we may assume that \mathfrak{m} is a nilpotent ideal and hence the radical of A. To complete the proof apply Lemma 3.3.3 from [D].

References

[D] J. Dixmier. Enveloping algebras. North-Holland Mathematical Library, Vol. 14.
[ES] P. Etingof, T. Schedler. Poisson traces and D-modules on Poisson varieties, GAFA 20(2010), 958-987.
[GG] W.L. Gan, V. Ginzburg. Quantization of Slodowy slices. IMRN, 5(2002), 243-255.
[Gi] V. Ginzburg. On primitive ideals. Selecta Math., new series, 9(2003), 379-407.
[J] A. Joseph. Sur la classification des idéaux primitifs dans l’algèbre enveloppante de $\mathfrak{sl}(n + 1, \mathbb{C})$. C.R. Acad. Sci. Paris Sér A-B, 287(1978), N5, A303-306.
[Ka] D. Kaledin. Symplectic singularities from the Poisson point of view. J. Reine Angew. Math. 600(2006), 135-156.
[KP] H. Kraft, C. Procesi. Closures of conjugacy classes of matrices are normal. Invent. Math. 53(1979), 227-247.
[L1] I. Losev. Quantized symplectic actions and W-algebras. J. Amer. Math. Soc. 23(2010), 34-59.
[L2] I. Losev. Finite dimensional representations of W-algebras. Duke Math J. 159(2011), n.1, 99-143.
[L3] I. Losev. 1-dimensional representations and parabolic induction for W-algebras, Adv. Math. 226(2011), 6, 4841-4883.
[L4] I. Losev. Appendix to [ES].
[L5] I. Losev. Finite W-algebras. Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010, p. 1281-1307.
[L6] I. Losev, Isomorphisms of quantizations via quantization of resolutions. arXiv:1010.3182.
[P1] A. Premet. Special transverse slices and their enveloping algebras. Adv. Math. 170(2002), 1-55.
[P2] A. Premet. Enveloping algebras of Slodowy slices and the Joseph ideal. J. Eur. Math. Soc, 9(2007), N3, 487-543.