Unraveling the Mott-Peierls intrigue in Vanadium dioxide

F. Grandi,1,2 A. Amaricci,1,3 and M. Fabrizio1
1Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
2Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
3CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, I-34136 Trieste, Italy
(Dated: June 26, 2019)

Vanadium dioxide is one of the most studied strongly correlated materials. Nonetheless, the intertwining between electronic correlation and lattice effects has precluded a comprehensive description of the rutile metal to monoclinic insulator transition, in turn triggering a longstanding “the chicken or the egg” debate about which comes first, the Mott localisation or the Peierls distortion. Here, we show that this problem is in fact ill-posed: the electronic correlations and the lattice vibrations conspire to stabilise the monoclinic insulator, and so they must be treated on equal footing not to miss relevant pieces of the VO₂ physics. Specifically, we design a minimal model for VO₂ that includes all the important physical ingredients: the electronic correlations, the multi-orbital character, and the two components antiferrodistortive mode that condenses in the monoclinic insulator. We solve this model by dynamical mean-field theory within the adiabatic Born-Oppenheimer approximation. Consistently with the first-order character of the metal-insulator transition, the Born-Oppenheimer potential has a rich landscape, with minima corresponding to the undistorted phase and to the four equivalent distorted ones, and which translates into an equally rich thermodynamics that we uncover by the Monte Carlo method. Remarkably, we find that a distorted metal phase intrudes between the low-temperature distorted insulator and high-temperature undistorted metal, which sheds new light on the debated experimental evidence of a monoclinic metallic phase.

I. INTRODUCTION

Vanadium dioxide (VO₂) is a transition metal compound with tremendous potential for technological applications, essentially in reason of its nearly room temperature metal-to-insulator transition [1–10]. Over the years, VO₂ has been subject to an intense investigation, which dates back to the first decades of the last century [11–20], but that is yet alive [21–23] and, to some extent, debated [24–30]. At the critical temperature \(T_c \sim 340 \text{ K} \) and ambient pressure, VO₂ undergoes a first-order transition from a metal (\(T > T_c \)) to an insulator (\(T < T_c \)) [31, 32], both phases being paramagnetic [33–35]. In concomitance with the metal-insulator transition, a structural distortion occurs from a high-temperature rutile (R) structure to a low temperature monoclinic (M1) one.

The crystal structure of rutile VO₂ is formed by equally spaced apart Vanadium atoms sitting at the centre of edge-sharing oxygen octahedra that form linear chains along the R c-axis, which we shall denote as c\(_R\), see Fig. 1. The tetragonal crystal field splits the 3d\(_{\pi}\)-manifold into two higher e\(_\pi\) and three lower t\(_{2g}\) levels. In the oxidation state V\(^{1+}\), the single valence electron of Vanadium can, therefore, occupy any of the three t\(_{2g}\) orbitals, which are in turn distinguished into a singlet a\(_{1g}\) (or d\(_{xy}\)) and a doublet e\(_{\pi}\) (or d\(_{xy}\)), having, respectively, bonding and non-bonding character along the c\(_R\)-axis. The M1 phase is instead characterised by an anti-ferroelectric displacement of each Vanadium away from the centre of the octahedra, see Fig. 1, so that the above-mentioned chains, from being straight in the R phase, turn zigzag and dimerise [36, 37].

A simple portrait of the transition in VO₂ was proposed in 1971 by Goodenough [38]. According to his proposal, the basal-plane component of the anti-ferroelectric distortion raises the energy of e\(_{\pi}\) with respect to the a\(_{1g}\) [39]. In addition, the c\(_R\) component of the distortion, which drives the chain dimerisation, opens a hybridisation gap between bonding and anti-bonding combinations of the a\(_{1g}\). For large enough crystal field splitting and hybridisation gap, the bonding combination of the a\(_{1g}\) fills completely, while the anti-bonding as well as the e\(_{\pi}\) get empty, hence the insulating behaviour. The Goodenough’s mechanism for the metal-insulator transition in VO₂ thus relies on a single-particle description: the Peierls instability of the quasi-one-dimensional a\(_{1g}\) band that becomes half-filled after the growth of the crystal field drained the e\(_{\pi}\) orbital.

However, Zylbersztejn and Mott [40] soon after argued that the role of electronic correlation cannot be neglected as in the Goodenough’s scenario. Indeed, a tiny ~ 0.2% substitution of V with Cr changes the low-temperature insulator from the M1 crystal structure to a new monoclinic phase, named M2, where dimerised and zigzag chains alternate [34, 41]. The M2 phase can be also stabilised under hydrostatic pressure or uniaxial stress [31, 32, 42–45]. In addition, a triclinic (T) phase with intermediate structural properties [41] was shown to intrude between M1 and M2. The zigzag undimerised chains in M2 are still insulating and display magnetic properties akin those of a spin-1/2 antiferromagnetic Heisenberg chain [41, 43, 46]. This likeness can be rationalised only invoking sizeable electronic correlations. Given the low concentration of substitutional Chromium or the small value of uniaxial stress required to stabilise
M2, it is reasonable to conclude that M1 must be as correlated as M2 [47–50].

We believe that, even though electronic correlations are likely necessary, they are nonetheless not sufficient to explain the phase diagram of VO$_2$. It is known that a strong enough repulsion may drive a Mott transition in a three-band Hubbard model at the density of one electron per site [51]. Therefore, it is well possible that the insulating phase of VO$_2$ is driven by correlations alone, and that the structural distortion below T_c is just the best way the Mott insulator can freeze the residual spin and orbital degrees of freedom to get rid of their entropy. However, should that be the case, VO$_2$ would most likely remain insulating even above T_c, which is not the case, all the more so because k_BT_c is more than one order of magnitude smaller than the optical gap in the M1 phase [52]. For the same reason, we must exclude a transition merely driven by the larger electronic entropy of the metal.

We are thus inclined to believe that the structural distortion is also necessary to stabilise the insulating phase in VO$_2$, but, once again, not sufficient in view of the behaviour of the M2 phase, and of the bad metal character of the R phase [53–55]. It is therefore quite likely that Goodenough’s scenario is after all correct, though it requires an active contribution from electronic correlations.

Indeed, different DFT-based calculations, which should properly account for the effects of the lattice distortion on the electronic structure, though within an independent-particle scheme, do not agree one with another, and none explains at once all experiments. For instance, straight LDA or GGA methods do not find any gap opening in M1 and M2 phases [56, 57]. Such gap is instead recovered by GW [58–60] or LDA+U [61–63], in all its variants. However, GW does not give easy access to the total energy, and therefore it does not explain why low temperatures should favour the M1 distorted phase against the rutile undistorted one. In turns, LDA+U or GGA+U calculations, known to overemphasise the exchange splitting, predict the existence of local moments even in the rutile phase [61–63], not observed in experiments [64]. Relatively recent calculations based on HSE hybrid functionals bring even worst results: both rutile and M1 phases are predicted to be magnetically ordered insulators, with the former lower in energy [65, 66], even though earlier calculations were claimed to be more in accordance with experiments [25]. In turn, mBJ exchange potentials seem to predict the proper conducting behaviour of the R and M1 phases, as well as their lack of magnetism [67], which is erroneously predicted to occur also in the M2 phase [63]. This suggests that suppression of magnetic moments is somehow the rule of mBJ functionals applied to VO$_2$, which only by chance is the correct result for R and M1 phases. Finally, calculations based on PBE0 hybrid functionals properly account for the magnetic and electronic properties of M1 and M2 phases, but predict ferromagnetism in the rutile structure, at odds with experiments [33], as well as the existence of a never observed ferromagnetic and insulating monoclinic phase, dubbed M0 [68], also predicted by PBEsol functionals [69].

One might expect that combining ab-initio techniques with many-body tools, e.g., DFT with dynamical mean-field theory (DMFT) [70], should work better and finally provide uncontroversial results in accordance with experiments. Unfortunately, different calculations by state-of-the-art DFT+DMFT methods do not even agree about an unanimous view of the M1 monoclinic phase. Specifically, M1 has been regarded from time to time as a correlation-assisted Peierls insulator [24, 71], or, vice versa, as a Peierls-assisted Mott insulator [72], or, finally, as a genuine Mott insulator [26, 73, 74].

In view of the above controversial results, we think it is worth desisting from describing VO$_2$ straight from first principles, and rather focusing on a minimal model, which can include all the ingredients that are, by now, widely accepted to be essential. As we mentioned, electron-electron correlations must play an important role and thus need to be included and handled in a truly many-body scheme. At the meantime, the coupling of the electrons to the lattice is equally important and must be included as well. We earlier mentioned that the monoclinic distortion in the M1 phase actually entails two different antiferrodistortive components: the basal-plane displacement of V from the octahedron centre, resulting into a zigzag shape of the formerly straight chains, and

Figure 1. (Color online) The rutile crystal structure, where the large (small) spheres represent Vanadium (oxygen) atoms. A cartoon of the X_1 and X_2 lattice distortions is also depicted, where the X_1 component acts as a dimerisation along the c_R axis and the X_2 component acts as a tilting in the perpendicular plane. The monoclinic M1 phase is actually characterised by finite displacements both of X_1 and X_2.

the out-of-plane displacement that produces the chain dimerisation. The two phenomena may actually occur separately, as indeed proposed by Goodenough [38], who argued that, generically, the basal-plane distortion should appear at higher temperatures than dimerisation. Indeed, time-resolved spectroscopy measurements during a photoinduced monoclinic-to-rutile transition have shown that dimerisation melts on earlier time-scales than the basal-plane displacement [37, 75, 76], which therefore must be distinct and actually more robust than the former. We must mention, however, that this conclusion does not agree with other experiments [77–80]. More convincing evidence is offered by the monoclinic metal that intrudes, under equilibrium conditions, between rutile metal and monoclinic insulator at ambient pressure [81–84], and nor just above a critical pressure as originally believed [85]. This phase might correspond to a semiconductor [81–84], and nor just above a critical pressure as originally believed [85]. This phase might correspond to a crystal structure where dimerisation is almost melted unlike the zigzag distortion [69, 83], so that e_g^π are still above the a_{1g}, though the dimerisation is too weak to stabilise at that temperature an hybridisation gap within the a_{1g} band [27]. Even the disappearance prior to the metal-insulator transition [86] of the so-called singlet peak, which is associated to dimerisation and observed in optics, can be regarded as a consequence of the melting of dimerisation preceding the complete monoclinic-to-rutile transformation. All the above experimental facts point to the need to treat separately the basal-plane displacement and the out-of-plane one. Finally, the importance of the basal plane antiferrodistortive mode suggests the last ingredient to be considered: the multi-orbital physics. This aspect was originally emphasised by Goodenough [38] and successively confirmed by many optical measurements [52, 87, 88].

To summarise, we shall consider a microscopic model which includes and treats on equal footing the following relevant features:

1. the electron-electron correlations and the coupling to the lattice distortion [46, 53, 89–109];

2. the existence of two different antiferrodistortive components, each playing its own distinctive role [37, 38, 75];

3. the multi-orbital physics [38, 52, 87, 88].

with the minimal requirement of capturing, at least at a qualitative level, the following aspects of the V\textsubscript{O}2 physics:

A. the existence of an undistorted paramagnetic metal and a monoclinic distorted insulator [42, 110–113];

B. the first-order character of the transition between them [18, 114–124];

C. the possible existence of an intermediate monoclinic metal [81–83, 125–133];

Many models have been already put forth to describe V\textsubscript{O}2. However, most of them focus either on the role of the electron-electron correlations, or on that of the electron-lattice coupling [27, 29, 134–147], and thus do not allow accessing in a single framework the whole V\textsubscript{O}2 phase diagram, e.g., the points A., B. and C. above. There are actually some exceptions where electron-electron and electron-lattice interactions have been considered on equal footing [148–150]. In particular, the model studied in [149] includes explicitly all ingredients listed above, for instance, the two distinct effects of the monoclinic distortion parametrised, however, just by a single phonon mode. Nonetheless, the mean-field treatment of the electron-electron interaction, despite its strength being comparable to the conduction bandwidth, yields not surprisingly to the formation of local moments in the rutile metal, not in accordance with magnetic measurements [64]. This negative result, highlighted by the same authors of Ref. [149], solicits for a more rigorous treatment of the interaction.

This is actually the scope of the present work, which is organised as follows. In Sec. II we introduce a simple model that includes the three ingredients previously outlined, which we believe should capture the main physics of Vanadium dioxide. In Sec. III we discuss the dynamical mean-field theory (DMFT) approach to the model Hamiltonian, and presents in Sec. III A its ground state phase diagram. In Sec. IV we discuss the insulator-metal transition that occurs in our model upon raising the temperature. In Sec. IV A we discuss the case in which such transition is driven solely by the electronic entropy, hence neglecting the lattice contribution to entropy, whereas in Sec. IV B the opposite case. We will show that the latter situation is rather suggestive, since it foresees different transition temperatures of the two antiferrodistortive components, as predicted by Goodenough [38]. In turn, this result might explain the evidence supporting the existence of a monoclinic metal phase. Finally, Sec. V is devoted to concluding remarks.

II. THE MODEL

As we mentioned, the orbitals that are relevant to describe the physics of V\textsubscript{O}2 are the Vanadium 3d – t_{2g} ones, comprising the a_{1g} singlet and e_g^π doublet, which host a single conduction electron. We believe that in this circumstance the doublet nature of the e_g^π is not truly essential; what really matters is the distinction between a_{1g} and e_g^π based on their bonding character with the ligands and response to atomic displacement. Therefore, in order to simplify our modelling without spoiling the important physics, we shall associate the e_g^π doublet with just a single orbital [135, 151], which, together with the other orbital mimicking the a_{1g} singlet, give rise to two bands, band 1 \leftrightarrow a_{1g} and band 2 \leftrightarrow e_g^π, which accommodate one electron per site, i.e., they are quarter filled.

The other ingredient that is necessary to properly de-
scribe VO$_2$ is the electron-electron Coulomb interaction. However, since the main role that Coulomb repulsion is believed to play is to suppress charge fluctuations on V$^{4+}$, we shall ignore the long range tail and replace Coulomb repulsion with a short-range interaction.

Finally, we need to include the coupling to the lattice. For simplicity, we shall focus our attention only on the rutile and monoclinic M1 phases, as such ignoring the M2 phase, which is actually regarded by some as just a metastable modification of the M1 structure [43, 44, 145]. Under this assumption, we can model the lattice anti-ferrodistortion through a two-component zone boundary mode at momentum Q, with displacement $\mathbf{X} = (X_1, X_2)$ and classical potential energy $\Phi(X_1, X_2)$. The X_1 and X_2 components model, respectively, the dimerising out-of-plane displacement and the band-splitting basal-plane one, see Fig. 1 [134, 152].

The model Hamiltonian is thus written as the sum of three terms:

$$
\mathcal{H} = \mathcal{H}_{el} + \Phi(X_1, X_2) + \mathcal{H}_{el} - \mathbf{X}.
$$

(1)

\mathcal{H}_{el} is the purely electronic component reading:

$$
\mathcal{H}_{el} = \sum_{a=1}^{2} \sum_{\mathbf{k}} (\epsilon_{a\mathbf{k}} - \mu) n_{a\mathbf{k}} + \frac{U}{2} \sum_{i} n_{i} (n_{i} - 1),
$$

(2)

where $n_{a\mathbf{k}}$ is the occupation number at momentum \mathbf{k} of the band $a = 1, 2$, n_{i} the electron number operator at site i, μ the chemical potential used to enforce the quarter filling condition and, finally, U is the on-site Hubbard repulsion.

With the aim to reduce the number of independent Hamiltonian parameters, we assume that the density-of-states (DOS) $\mathcal{D}_1(\epsilon)$ and $\mathcal{D}_2(\epsilon)$, of the band 1 and 2, respectively, have same bandwidth and centre of gravity, which we shall take as the zero of energy. In addition, we consider both DOS symmetric with respect to their centre, and such that $\epsilon_{1\mathbf{k}} = -\epsilon_{1\mathbf{k}+\mathbf{Q}}$, where \mathbf{Q} is the wave-vector of the anti-ferrodistortive mode \mathbf{X}. This assumption actually overestimates the dimensionisation strength, since it entails that any $X_1 \neq 0$ is able to open a hybridisation gap in the middle of band 1, which, we remark, does not coincide with the chemical potential unless band 2 is pushed above it. This implies that a finite hybridisation gap within band 1 does not stabilise an insulator so long as band 2 still crosses the Fermi energy. Therefore our simplified modelling does not spoil that a distorted insulating phase may occur only above a critical threshold of the Hamiltonian parameters, although it affects the value of that threshold, whose precise determination is however behind the scope of the present model-study.

In order to emphasise the bonding character of the a_{1g}, band 1, along the c_R axis, as opposed to the more isotropic e_g band 2, we choose the following forms of the two corresponding DOS’s:

$$
\mathcal{D}_1(\epsilon) = \frac{1}{N} \left[a \epsilon^2 - b \epsilon^4 + D^2 (bD^2 - a) \right],
$$

$$
\mathcal{D}_2(\epsilon) = \frac{2}{\pi D} \sqrt{1 - \left(\frac{\epsilon}{D} \right)^2},
$$

(3)

with $\epsilon \in [-D, D]$ and N a normalisation factor. We take $b > a/D^2 > 0$ so that $\mathcal{D}_1(\epsilon)$ has a double-peak structure evocative of a one-dimensional DOS [71, 149, 153]. Hereafter, we take the half bandwidth $D = 1$ as our energy unit, and fix $aD^4 = 1.9$ and $bD^6 = 2.1$. The resulting DOS’s are shown in Fig. 2 (a) and (b). There we note the two-peak structure of the band 1 DOS, mimicking the Van Hove singularities of a quasi one-dimensional band structure, in contrast to the structureless band 2 DOS.

We highlight that the electron-electron interaction in Eq. (2) only includes the monopole Slater integral $U > 0$, and not higher order multipoles responsible of Hund’s rules. This approximation, that makes the analysis more transparent, requires some justification. The Coulomb interaction of a single Vanadium projected onto the t_{2g} manifold, which effectively behaves as an $l = 1$ atomic shell, can be written in terms of two Slater integrals as:

$$
\mathcal{H}_{t_{2g}} = \frac{U_{t_{2g}} - 3J_{t_{2g}}}{2} n^2 - \frac{J_{t_{2g}}}{2} \left(4S(S+1) + L(L+1) \right),
$$

(4)

where n, S and L are the total occupation, spin, and angular momentum, respectively. Common values of the parameters are $U_{t_{2g}} \simeq 4 \text{ eV}$ and $J_{t_{2g}} \simeq 0.68 \text{ eV} \simeq U_{t_{2g}}/6$ [24]. Denoting as $E_0(n)$ the lowest energy with n electrons in the t_{2g} shell, the effective Hubbard U for V$^{4+}$ can be defined through:

$$
U = E_0(0) + E_0(2) - 2E_0(1) = U_{t_{2g}} - 3J_{t_{2g}} \simeq 1.96 \text{ eV},
$$

(5)
to be compared with the VO$_2$ bandwidth of about 2.6 eV [56]. In units of the half-bandwidth, $U \simeq 1.5$, the value we shall use hereafter [154, 155]. We observe that the Coulomb exchange J_{ex} has no effect on the configurations with $n = 0, 1$, while it splits those with $n = 2$ into triplets, with $(S, L) = (0, 0), (1, 1), (0, 2)$, which are spread out over an energy $\simeq J_{\text{ex}}$, about a quarter of the full bandwidth. Such small effects are not expected to qualitatively alter the physical behaviour, see, e.g., [156], which justifies our neglect of the exchange splitting in the model Hamiltonian (2).

We model the potential energy $\Phi(X_1, X_2)$ using a Landau functional for improper ferroelectrics [56, 75, 157] expanded up to the sixth order in the lattice displacements:

$$\Phi(X_1, X_2) = N \left[\frac{\alpha}{2} (X_1^2 + X_2^2) + \frac{\beta_1}{4} (2X_1X_2)^2 + \frac{\beta_2}{4} (X_1^2 - X_2^2)^2 + \frac{\gamma}{6} (X_1^4 + X_2^4)^2 \right],$$

where N is the number of sites and the couplings α to γ are all positive. The terms proportional to α, i.e. the harmonic part of the potential, and that proportional to γ have full rotational symmetry in the X_1-X_2 plane. On the contrary, β_1 favours a lattice distortion only along one of the two components, whereas β_2 a distortion with $|X_1| = |X_2|$. In the specific case of VO$_2$, $\beta_2 > \beta_1$, and thus it is preferable to equally displace both modes [75] rather than just one of them.

Finally, we write the electron-lattice coupling as:

$$\mathcal{H}_{\text{el}} = \mathcal{H}_{\text{el}}[X_1, X_2] = -\frac{g}{2} \sum_{k, \sigma} \left(c_{1k\sigma}^\dagger c_{1k+Q\sigma} + \text{H.c.} \right) - \frac{\delta}{2} \sum_{k, \sigma} \left(n_{1k} - n_{2k} \right),$$

where $c_{1k\sigma}$ creates an electron at momentum k in orbital 1 with spin σ, and we recall that, by construction, $c_{1k}^\dagger = -c_{1k+Q}$.

The dimerisation induced by the out-of-plane displacement X_1 is controlled by the coupling constant g, while δ parametrises the strength of the crystal field splitting generated by the basal-plane displacement X_2. The quadratic coupling in X_2 is intentional and has a physical explanation. Indeed, X_2 corresponds to the Vanadium displacement parallel to the diagonal of the rutile basal plane away from the centre of the Oxygen octahedron. As a result, the hybridisation between the e_g^o and the Oxygen ligands closer to the new Vanadium position increases, whereas the hybridisation with the further Oxygen diminishes. At linear order in the V-displacement X_2, the two opposite variations of the hybridisation cancel each other, but, at second order, they add up to a net rise in energy of the e_g^o level, hence the expression in Eq. (7). The Hamiltonian Eq. (1) is invariant under the transformations $X_1 \rightarrow -X_1$, $X_2 \rightarrow -X_2$, reflecting a $Z_2 \times Z_2$ (also known as K_4 or “Vierergruppe”) symmetry.

Despite the great simplification effort, the model Hamiltonian Eq. (1) has still several parameters to be fixed. We emphasise that our main goal is to reproduce qualitatively the physics of VO$_2$, without any ambition of getting also a quantitative agreement. Nonetheless, just to be sure not to explore a Hamiltonian parameter space completely detached from the real VO$_2$ compound, we choose parameters in line with the existing literature. We already mentioned our choice of $U = 1.5$, in units of the half-bandwidth, which is in line with the value used in realistic calculations [24, 48, 149, 158–160]. The other parameters involve the phonon variables. We shall choose $g = 0.4$, $\delta = 0.2$, $\alpha = 0.155$, $\beta_1 = 1.75 \cdot 10^{-3}$, $\beta_2 = 2\beta_1$ and $\gamma = 6.722 \cdot 10^{-4}$, which are compatible with various estimates of the electron-phonon coupling [135, 161], of the lattice energy change across the rutile-to-monoclinic transition [162], as well as with direct experimental fits of those coupling constants [75, 163].

III. DMFT SOLUTION

We solve the model Hamiltonian Eq. (1) by means of dynamical mean-field theory (DMFT) [164] within the adiabatic Born-Oppenheimer approximation. This approach will allow us to treat correlation effects non-perturbatively beyond an independent-particle description. Within DMFT, the lattice problem at a fixed displacement $X = (X_1, X_2)$ is mapped onto a quantum impurity model with an effective bath subject to a self-consistency condition. We solve the DMFT equations using as impurity solver exact diagonalization at zero and finite temperature [165, 166], which requires discretisation of the effective bath in a finite number N_b of levels. In this work, we take $N_b = 8$, though we did test the validity of our results with respect to N_b. We calculate the total electronic energy, or the free-energy at finite temperature, which renormalizes the Born-Oppenheimer adiabatic potential of the displacement $\Phi(X_1, X_2) \rightarrow \Phi_{\text{eff}}(X_1, X_2)$ through:

$$\Phi_{\text{eff}}(X_1, X_2) = \Phi(X_1, X_2) + \langle H_{\text{el}} \rangle + \langle H_{\text{el}} - X \rangle.$$

We shall restrict our analysis to the paramagnetic sector forcing spin $SU(2)$ symmetry. However, we did check that magnetic solutions are higher in energy. We first present results at zero-temperature $T = 0$, and then move to those at $T > 0$.

A. Ground state phase diagram

In Fig. 3a we show the adiabatic potential $\Phi_{\text{eff}}(X_1, X_2)$ in (8) calculated by DMFT at $U = 1.5$. The energy landscape shows five minima. A local minima is located at the origin $X_1 = X_2 = 0$, and corresponds to an undistorted metal that we identify with the R phase of Vanadium dioxide. Four degenerate global minima are instead located at $X_1 \simeq \pm 1.5$ and $X_2 \simeq \pm 2.1$, which are related...
Figure 3. (Color online) (a) The zero-temperature colour map of the internal energy of the system as function of the amplitude of the crystal distortions X_1 and X_2 for $U = 1.5$. The system displays five minima, one at $X_1 = X_2 = 0$ corresponding to a metallic undistorted phase, the others at $X_1 \approx \pm 1.5$ and $X_2 \approx \pm 2.1$ corresponding to four equivalent insulating and distorted states. (b),(c) Evolution of the zero temperature internal energy along the paths shown in panel (a), where the symbols close to them correspond to the ones used in panels (b) or (c); the coordinate $X = \sqrt{X_1^2 + X_2^2}$ is computed along the lines as depicted in panel (a). Filled symbols correspond to a two band metallic solution, instead empty symbols correspond to an insulating solution everywhere except for the black curve with the circles, where they correspond to a single band metallic phase. Particularly, in panel (b): the circles (diamonds) correspond to the evolution of the internal energy along the line that involves just the distortion X_2 (X_1) and the squares correspond to the line that connects the undistorted metal and the distorted insulator found in the X_1, $X_2 > 0$ sector. In panel (c) the up-triangles (down-triangles) correspond to the line that connects the minimum observed in panel (b) along the line with the circles (diamonds) that involves just the distortion X_1 (X_2) to the global insulating minimum at $(X_1, X_2) = (1.5, 2.1)$.

Figure 4. (Color online) The zero-temperature internal energy of the system (in arbitrary units) as function of the amplitude of the crystal distortion $X = \sqrt{X_1^2 + X_2^2}$ (coordinate taken along the line that connects the rutile solution and one of the monoclinic minima) for several values of the Hubbard interaction U. Filled (open) symbols correspond to a metallic (insulating) solution. The continuous (dashed) horizontal lines indicate the values of the metallic (insulating) minimum at each value of U. Arrows indicate the position of the absolute minimum for each value of the interaction.
potential. We note that already in the absence of interaction, $U = 0$, the different shapes of the DOS’s, see Fig. 2, lead to a larger occupation of band 1 than band 2. Such population unbalance is increased by $U > 0$, which effectively enhances the crystal field, leading to an even larger occupation of band 1 at expenses of 2 $[151, 170, 171]$. This is evident in the spectral function of the undistorted metal at $U = 1.5$, reported in Fig. 5(a) and Fig. 5(b), where the occupied $\omega \leq 0$ part of $A_1(\omega)$ overwhelms that of $A_2(\omega)$ more than in the $U = 0$ case of Fig. 2. We also note in the figures 5(a) and 5(b) side peaks that correspond to the Hubbard bands.

The scenario is radically different in the insulating solution, see Fig. 5(c) and Fig. 5(d). Here we observe the formation of a hybridisation gap opening at the chemical potential inside the band 1. Two coherent-like features flank the gap. The band 2 is instead pushed above the Fermi energy, and therefore is empty. We still observe Hubbard sidebands in $A_1(\omega)$, as well as signatures of the upper Hubbard band in $A_2(\omega)$, though rather spiky because of the bath discretisation.

We note that in the insulating solution the lowest gap corresponds to transferring one electron from band 1 to band 2, i.e., from a_{1g} to e_g^π in the VO$_2$ language, and has a magnitude of about $E_{\text{gap}} \sim 0.8$ eV, for a realistic value of the half-bandwidth of 1.3 eV $[56]$. This value of the gap is not too far from the experimental one, $E_{\text{gap}}^{\text{ex}} \sim 0.6 - 0.7$ eV $[35, 52, 118]$. Therefore, our simplified modelling yields results that are not only qualitatively correct but, rather unexpectedly, also quantitatively not far off the actual ones. The band 1 \rightarrow band 1 transition, i.e., $a_{1g} \rightarrow a_{1g}^\pi$, though being slightly higher in energy, has a much steeper absorption edge since it involves the two coherent peaks in Fig. 5(c). This result is in loose agreement with XAS linear dichroism experiments $[86, 172]$ that are able to distinguish the two absorption processes.

In order to assess the degree of electronic correlations, we calculate the quasiparticle residue of each band in the undistorted metal phase, defined by:

$$Z_a = \left(1 - \frac{\partial \text{Re} \Sigma_{aa}(\omega)}{\partial \omega} \right)_{\omega = 0}^{-1},$$

(10)

with $a = 1, 2$. We find that the two bands at $X_1 = X_2 = 0$ show almost the same value $Z_{1/2} \sim 0.67$, not inconsistent with more realistic calculations $[24, 72, 159, 173]$. Such agreement, a priori, not guaranteed, gives further support to our simple modelling.

IV. PHASE TRANSITION AT FINITE TEMPERATURE

Our main scope here is however to describe the first-order phase transition upon heating from the low-temperature M1 monoclinic insulator to the high-temperature rutile metal. In general, we can envisage a
phase transition primarily driven either by the electron entropy or by the lattice one.

Indeed, we note that the electron free energy of the metal solution, which is metastable at $T = 0$, must drop faster upon raising temperature than the insulator free energy since the metal carries more electron entropy than the insulator. This effect alone, that is ignoring lattice entropy, would be able to drive a first-order transition when insulator and metal free energies cross. On the other hand, since the distorted ground state breaks the $Z_2 \times Z_2$ symmetry of the adiabatic lattice potential $\Phi_{\text{eff}}(X_1, X_2)$ in Fig. 3, we might expect such symmetry to be recovered by raising temperature only because of lattice entropy effects, i.e., ignoring the electronic contribution to entropy.

In reality, both effects should combine to drive the transition. However, dealing together with lattice and electron entropies within our computational scheme would imply to calculate the adiabatic potential $\Phi_{\text{eff}}(X_1, X_2)$ at any temperature, which is a rather heavy task. For this reason, in what follows we shall analyse separately electron and lattice entropy effects, and at the end argue what would happen should they act together.

A. Electron-driven transition

Let us first neglect the lattice entropy and study the temperature evolution of the free energies of the two inequivalent minima that we found at zero temperature. For that, we need to evaluate the electronic entropy, which can be obtained through:

$$S(X_1, X_2, T) = \int_0^T dT' \frac{1}{T} \frac{\partial \Phi_{\text{eff}}(X_1, X_2, T')}{\partial T'}$$

The last equality corresponds to a change of integration variable from the temperature T' to the adiabatic potential Φ_{eff}, which is also the internal energy.

From the entropy S we can estimate the free energy:

$$F(X_1, X_2, T) = \Phi_{\text{eff}}(X_1, X_2, T) - TS(X_1, X_2, T)$$

which, we emphasise once more, does not include the lattice contribution to entropy. We shall compare the free energy of the undistorted metal solution at $X = 0$, with that of the distorted insulator at $X \neq 0$. In principle, the equilibrium displacement in the insulator should change with temperature. In practice, since the entropy of the insulator is negligible for all temperatures under consideration, we shall fix X at the $T = 0$ value. The temperature evolution of the metal and insulator free energies so obtained are shown in Fig. 6. As expected, the larger entropy of the metal pushes its free energy below the insulator one at relatively low temperature, $T_{\text{cl}} \sim 0.021$, substantially smaller than the insulating gap, and thus justifying our assumption of frozen X. T_{cl} identifies the insulator-metal transition, which is evidently first order since the two free energies cross with different slopes. Incidentally, $T_{\text{cl}} \sim 0.021$ in half-bandwidth units, corresponds to ~ 320 K for a realistic bandwidth of 2.6 eV, which has the right order of magnitude when compared with the true critical temperature of 340 K.

B. Lattice driven transition

We now move to study the properties of the lattice-driven transition. For that, we first need to model the lattice dynamics. However, since the tetragonal R to monoclinic M1 transition is a complex structural transformation, with martensitic features, especially in films [174–178], our modelling ought to be oversimplified, and aimed just to get qualitatively reasonable results, with no pretension of quantitative accuracy.

As a first step, we must relax our previous assumption of a global antiferrodistortive mode, and instead introduce a displacement field, i.e., a site dependent displacement $X_i = (X_{1i}, X_{2i})$. We assume that X_i feels the local adiabatic potential $\Phi_{\text{eff}}(X_i)$ of Fig. 3a, temperature independent since we are neglecting the electron entropy. In addition, we suppose that the displacements of nearest-neighbour sites are coupled to each other by an $SO(2) \cong U(1)$ invariant term that tends to minimise the strain. With those assumptions the classical Hamiltonian
 increasing N on a three-dimensional cubic lattice of side N_x what we are going to investigate in the following.

Specific heat for the same model as in panel (a) as function of the reduced temperature. The data are for $N_x = 4 \times 10^5$ MC sweeps of the lattice and different linear size N_x (solid lines and open symbols). The dashed line in the critical region is a fit of the form $A(1 - t)^{1/2}$, with $A = 0.96$.

reads:

$$H_{ph}(X) = J \sum_{(i,j)} (X_i - X_j) \cdot (X_i - X_j) + \sum_i \Phi_{eff}(X_i),$$

where X denotes a configuration of all the displacement vectors. The model (13) is equivalent to a generalized XY-model, where X_i plays the role of two-component spin of variable length, while $J > 0$ is the conventional spin stiffness. Both length and direction of X_i are controlled by the anisotropic potential $\Phi_{eff}(X_i)$, which is not invariant under $U(1)$ but under separate $X_1 \rightarrow -X_1$ and $X_2 \rightarrow -X_2$ transformations, i.e., $Z_2 \times Z_2$. The phase diagram of an XY model in presence of an anisotropy term that lowers $U(1)$ down to Z_n is already known [179–181]. In particular, the anisotropy Z_n for $n \geq 4$ is a dangerously irrelevant perturbation that does not change the XY universality class of the transition [180, 181]. Our specific case study, where $U(1) \rightarrow Z_2 \times Z_2$, has not been considered yet, at least to our knowledge, but it should most likely change the XY universality class, which is what we are going to investigate in the following.

We study the classical model Eq. (13) at different temperatures by the standard Monte Carlo (MC) method [182] on a three-dimensional cubic lattice of side N_x.

In Fig. 7(a) we plot the modulus of the average displacement $|\langle X \rangle|$ as function of the temperature. For small system size (e.g. $N_x = 10$) $|\langle X \rangle|$ shows a smooth crossover in temperature. However, increasing N_x unveils the existence of a continuous phase-transition at a critical value T_c of the temperature, which is controlled by the value of J because Φ_{eff} has been calculated earlier. Since J is unknown, we have preferred to use T_c as the unit of temperature in Fig. 7 and in those that follow. In order to better reveal the second order character of the transition, we also show in Fig. 7(a) the fit with a mean-field square-root behaviour. The fit is rather good, although we known that close to the transition the actual critical behaviour must deviate from mean-field.

A closer look to the temperature dependence of the order parameter uncovers a non-trivial two-step evolution, which is more evident in Fig. 7(b), where we show the specific heat $C_v = \partial \langle E \rangle / \partial T$ vs. T. Indeed, C_v clearly displays two peaks that are suggestive of two distinct transitions. The first transition at $T = T_d$, below which $|\langle X \rangle|$ acquires a finite value, is followed by a second one at lower $T = T_d < T_c$.

In order to understand the nature of both transitions, in Fig. 8 we show at $T > T_c$, left panels, $T_d < T < T_c$, middle panels, and $T < T_d$, right panels, the endpoint distribution after $N_x = 4 \times 10^5$ MC sweeps of the lattice of the N_x^3 displacement vectors superimposed to the potential landscape in the (X_1, X_2) space (top panels), and a real space snapshot within a single layer of the cubic lattice (bottom panels). At high temperature, $T > T_c$, the X_i’s cover homogeneously the whole potential landscape, see top-left panel, without any appreciable spatial correlation, see the bottom-left panel. Lowering T slightly below T_c, we observe a significant change in the displacement distribution, see middle panels. Specifically, the system seems to break ergodicity first along X_2, in the simulation corresponding to the figure it localises in the $X_2 > 0$ half-plane, while it is still uniform along X_1. Consequently, clusters of parallel displacement vectors form in real space. The alignment direction has $X_2 > 0$ for all clusters, while the X_1 component changes from cluster to cluster, see bottom-middle panel. Only below T_d, full ergodicity breakdown occurs, with the system trapped around just one of the four equivalent minima, in the figure that with $X_2 > 0$ and $X_1 > 0$. In other words, the $Z_2 \times Z_2$ symmetry of the model Eq. (13) gets broken in two steps upon cooling: first, the Z_2 symmetry $X_2 \rightarrow -X_2$ spontaneously breaks, and next, the residual $X_1 \rightarrow -X_1$ symmetry, leading to two consecutive Ising-like transitions. This is summarised in Fig. 9, where we see that at T_c $\langle X_2 \rangle$ becomes finite, and thus also $|\langle X \rangle|$, while $\langle X_1 \rangle$ is still zero. Only below T_d also X_1 acquires a finite average value.

Translated in the language of VO$_2$, these results suggest the existence of an intermediate monoclinic phase for $T_d < T < T_c$, where the V atoms are displaced only within the basal plane, i.e., the chains are tilted but not yet dimersised. In our model Hamiltonian (1), such phase with $\langle X_1 \rangle = 0$ describes a monoclinic metal, which, as discussed in Sec. I, has been reported in several experiments [81–83, 125–133]. Only below T_d, both components of the antiferrodistortive displacement are finite, leading to the M1 insulating phase.

In conclusion, without including the electron entropy...
Figure 8. (Color online) **Top panels**: distribution of the displacements X_i at the end of the MC simulation, superimposed to the adiabatic potential Φ_{eff}, properly normalised so that $\Phi_{\text{eff}} \in [-1, 0]$. Data are for $N_x = 50$, $N_s = 4 \times 10^5$ MC sweeps of the lattice, and reduced temperatures $t = T/T_c$: $t = 1.03$ (left), 0.82 (center), 0.71 (right). Each (black) dot represents one of the N^2_3 endpoints of the calculation. **Bottom panels**: displacement field configuration within a single plane of the cubic lattice, with the same parameters of the top panels. If $X_i = |X_i| (\cos \theta_i, \sin \theta_i)$, the color code represents $\theta_i \in [0, 2\pi]$, and the arrow length $|X_i|$. At high temperature $T > T_c$ (left panels) X_i have random length and orientation, thus covering homogeneously the entire potential landscape. For $T_d < T < T_c$ (center panels) the displacement orientation shows breaking of the Z_2 symmetry $X_2 \rightarrow -X_2$. At lower temperature $T < T_d < T_c$, also the residual Z_2 symmetry $X_1 \rightarrow -X_1$ gets broken; most of the X_i’s have length and direction corresponding to just one of the potential global minima.

we find two transitions that look continuous and in the Ising universality class: one at T_d between a monoclinic insulator and a monoclinic metal, and another at $T_c > T_d$ from the monoclinic metal to a rutile one. On the contrary, neglecting the lattice entropy and just including the electronic one, we found in Sec. IV A a single first-order transition at T_{el}, directly from the monoclinic insulator to the rutile metal. We can try now to argue what we could have obtained keeping both entropy contributions still within the Born-Oppenheimer adiabatic approximation. Evidently, if $T_{el} \gtrsim T_c$ the scenario should not change qualitatively with respect to the two-transition one uncovered in this section. We cannot exclude that the electron entropy and all the lattice effects we did not include in the simple model (13) could change the transitions into first-order ones, but we do expect still two distinct transitions. On the contrary, if $T_{el} < T_d$ we would predict a single first-order transition like in Sec. IV A.

The experimental evidence supporting the existence of a monoclinic metal phase intruding between the M1 insulator and R metal [81–83, 125–133] suggest that, should our modelling be indeed representative of VO$_2$, then the Hamiltonian parameters should be such that $T_{el} \gtrsim T_c$. We also observe by comparing Fig. 6 with 7 that the loss of lattice entropy upon cooling across the transitions overwhelms that of electron entropy, suggesting lattice driven transitions in agreement with experimental [89] and theoretical [183] proposals.

V. CONCLUSIONS

We have constructed a minimal model that we believe contains all essential ingredients to correctly capture the physics of the metal-insulator transition in vanadium dioxide.

The model comprises two orbitals per site, one mimicking the a_{1g} and the other the e_{π}, thus neglecting the twofold nature of the latter, which broaden into two bands. The a_{1g} band has a double peak structure reflecting its bonding character along the rutile c-axis, while the e_{π} one is structureless. Both have the same bandwidth and centre of gravity. The density corresponds to one electron per site, i.e., the two bands are at quarter filling. The electrons feel an on-site Hubbard repulsion, and are coupled to two zone-boundary lattice modes, corresponding, respectively, to the basal plane component, i.e., the tilting of the Vanadium chains, and out-of-plane component, responsible of the chain dimerisation, of the antiferrodistortive displacement that acquires a finite expectation value below the transition from the high temperature rutile structure to the low temperature monoclinic one (M1). Using realistic Hamiltonian parameters
Figure 9. (Color online) magnetization m as a function of the reduced temperature $t = T/T_\text{c}$. Data are for $N_s = 6 \times 10^5$ MC sweeps, $N_s = 24$. The solid line (black with open square) is the modulus of the average magnetization vector. The dashed lines (green and blue with open triangles) indicate the behavior of the average of the magnetization components. The solid (orange) vertical lines indicate the two critical temperatures $T_d < T_c$ associated to the two stage transition.

One of the messages of our model calculation is that and assuming the Born-Oppenheimer adiabatic approximation, we find at low temperatures phase coexistence between a stable distorted insulator, the monoclinic M1 insulator, and a metastable undistorted metal, the rutile metal. Upon rising temperature, we observe a two-step transition. First, the dimerisation component of the antiferrodistortive displacement melts, leading to a transition from the monoclinic insulator to a monoclinic metal. At higher temperature also the tilting component disappears, and the monoclinic metal turns into the rutile one. Such a two-transition scenario, not in disagreement with experiments, is mostly driven by the lattice entropy, also in accordance with experiments.

One of the messages of our model calculation is that the electron-electron interaction has the role to effectively enhance the coupling to the lattice, stabilising a distorted phase otherwise metastable in the absence of interaction. This also implies that we could have obtained similar results with weaker electronic correlations but stronger electron-lattice coupling. This conclusion is actually supported by the phenomenology of Niobium dioxide NbO$_2$, which, *mutatis mutandis*, is akin to that of VO$_2$. NbO$_2$ also undergoes a metal-insulator transition, though at substantially higher temperature of $T_{\text{MIT}} \sim 1080$ K [184–187]. This transition occurs slightly below a structural one at $T_a \sim 1123$ K [188], from a high-temperature rutile structure to a low-temperature body centred tetragonal one that locally resembles the M1 phase of VO$_2$ [189–192]. However, the single 4d-electron in Nb$^{4+}$ is expected to be less correlated than the 3d-electron in V$^{4+}$. This loss of correlations, testified by the VO$_2$ M2 phase having no counterpart in NbO$_2$ [193], and by the efficacy of *ab initio* methods to describe NbO$_2$ [74, 194–196], is actually overcompensated by the increase in covalency due to the broader spatial distribution of the 4d orbitals [197], which, in turn, yields a stronger coupling with the zone-boundary lattice modes, and thus a higher transition temperature. The intermediate poorly metallic phase for $T_{\text{MIT}} < T < T_a$ [188, 189, 198, 199] is thus the counterpart of the monoclinic metal in VO$_2$, although the former is more clearly established than the latter.

ACKNOWLEDGEMENTS

F.G. likes to thank Sergiy Lysenko for the useful discussions about the thermodynamic potential for the two phononic modes, as well as for the choice of the parameters appearing there. F.G. thanks also Maja Berović and Daniele Guerci for the discussions concerning the manuscript. A.A. thanks M.Capone and S.Sorella for useful discussions. We thank Martin Eckstein for fruitful debatings. We acknowledge support from the H2020 Framework Programme, under ERC Advanced Grant No. 692670 “FIRSTORM”. A.A. also acknowledges financial support from MIUR PRIN 2015 (Prot. 2015C5SEJJ001) and SISSA/CNR project ”Superconductivity, Ferroelectricity and Magnetism in bad metals” (Prot. 232/2015).

[1] Zheng Yang, Changhyun Ko, and Shriram Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annual Review of Materials Research 41, 337–367 (2011).
[2] T. Driscoll, Hyun-Tak Kim, Byung-Gyu Chae, Bong-Jun Kim, Yong-Wook Lee, N. Marie Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[3] J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “Vo2 thermochromic smart window for energy savings and generation,” Scientific Reports 3, 3029 (2013).
[4] Wan-xia Huang, Xiao-gang Yin, Cheng-ping Huang, Qian-jin Wang, Teng-fei Miao, and Yong-yuan Zhu, “Optical switching of a metamaterial by temperature controlling,” Applied Physics Letters 96, 261908 (2010).
[5] Yuju Ke, Shancheng Wang, Guowei Liu, Ming Li, Timothy J. White, and Yi Long, “Vanadium dioxide: The multistimuli responsive material and its applications,” Small 14, 1802025 (2018).
[6] M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium
dioxide metamaterial,” *Nature* **487**, 345 (2012).

[7] N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” *Nature Materials* **11**, 917 (2012).

[8] Mikhail A. Kats, Romain Blanchard, Shuyan Zhang, Patrice Genevet, Changhyun Ko, Shriram Ramanathan, and Federico Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” *Phys. Rev. X* **3**, 041004 (2013).

[9] Javier del Valle, Pavel Salev, Federico Tesler, Nicolás M. Vargas, Yoav Kalcheim, Paul Wang, Juan Trastoy, Min-Han Lee, George Kassabian, Juan Gabriel Ramirez, Marcelo J. Rozenberg, and Ivan K. Schuller, “Sub-thermal firing in mott nanodevices,” *Nature* , 1476–1487 (2019).

[10] Caifhong Zhang, Gaochao Zhou, Jingbo Wu, Yahua Tang, Qiyu Wen, Shaoxian Li, Jiaguang Han, Biaoing Jin, Jian Chen, and Peiheng Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” *Phys. Rev. Applied* **11**, 054016 (2019).

[11] Ernst Hoschek and Wilhelm Klemm, “Weitere beiträge zur kenntnis der vanadinioxyde,” Zeitschrift für anorganische und allgemeine Chemie **242**, 63–69 (1939).

[12] O. A. Cook, “High-temperature heat contents of v_{2}o_{3}, v_{2}o_{4} and v_{2}o_{5},” *Journal of the American Chemical Society* **69**, 331–333 (1947).

[13] Georg Andersson, “Studies on vanadium oxides. i. phase analysis,” *Acta Chemica Scandinavica* **8**, 1599–1606 (1954).

[14] M. S. Archer, D. S. P. Roebuck, and F. J. Whitby, “Magnetic susceptibility of vanadium dioxide,” *Nature* **174**, 754 (1954).

[15] A. Magnéli and G. Andersson, “On the moo2 structure type,” *Acta Chemica Scandinavica* **9**, 1378–1381 (1955).

[16] Georg Andersson, “Studies on vanadium oxides. ii. the crystal structure of vanadium dioxide,” *Acta Chemica Scandinavica* **10**, 623–628 (1956).

[17] W. Rüdorff, G. Walter, and J. Stadler, “Magnetismus, leitfähigkeit und reflexionseffekt von vanadinioxyd und vanadinioxyd-titanioxyd-mischkristallen,” Zeitschrift für anorganische und allgemeine Chemie **297**, 1–13 (1958).

[18] F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” *Phys. Rev. Lett.* **3**, 34–36 (1959).

[19] S. Westman, “Note on a phase transition in vo2,” *Acta Chemica Scandinavica* **15**, 217 (1961).

[20] W. Klemm and L. Grimm, “Über die wärmetönung bei der paramagnetischen curie-temperatur” des vanadinioxyds,” Naturwissenschaften **27**, 787–787 (1939).

[21] A. X. Gray, M. C. Hoffmann, J. Jeong, N. P. Aetukuri, D. Zhu, H. Y. Hwang, N. C. Brandt, H. Wen, A. J. Sternbach, S. Bonetti, A. H. Reid, R. Kukreja, C. Graves, T. Wang, P. Granitzka, Z. Chen, D. J. Higley, T. Chase, E. Jal, E. Ahreu, M. K. Liu, T.-C. Weng, D. Sokaras, D. Nordlund, M. Chollet, R. Alonso-Mori, H. Lemke, J. M. Glownia, M. Trigo, Y. Zhu, H. Ohldag, J. W. Freeland, M. G. Samant, J. Berakdar, R. D. Averitt, K. A. Nelson, S. S. P. Parkin, and H. A. Dürr, “Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide,” *Phys. Rev. B* **98**, 045104 (2018).

[22] Simon Wall, Shan Yang, Luciana Vidas, Matthieu Chollet, James M. Glownia, Michael Kozina, Tetsuo Katayama, Thomas Henighan, Mason Jiang, Timothy A. Miller, David A. Reis, Lynn A. Boatner, Olivier Delaire, and Mariano Trigo, “Ultrafast disordering of vanadium dimers in photoexcited vo2,” *Science* **362**, 572–576 (2018).

[23] Shi Chen, Zhaowu Wang, Hui Ren, Yuliang Chen, Wensheng Yan, Chengming Wang, Bowen Li, Jun Jiang, and Chongwen Zou, “Gate-controlled vo2 phase transition for high-performance smart windows,” *Science Advances* **5** (2019), 10.1126/sciadv.aav6815.

[24] S. Biemann, A. Poteryaev, A. I. Lichtenstein, and A. Georges, “Dynamical singlets and correlation-assisted peierls transition in v_{2}o_{3},” *Phys. Rev. Lett.* **94**, 026404 (2005).

[25] V. Eyert, “vo_{2}: A novel view from band theory,” *Phys. Rev. Lett.* **107**, 016401 (2011).

[26] W. H. Brito, M. C. O. Aguia, K. Haule, and G. Kotliar, “Metal-insulator transition in vo_{2}: A DFT + DMFT perspective,” *Phys. Rev. Lett.* **117**, 056402 (2016).

[27] O. Nájera, M. Civelli, V. Dobrosavljević, and M. J. Rozenberg, “Resolving the vo_{3} controversy: Mott mechanism dominates the insulator-to-metal transition,” *Phys. Rev. B* **95**, 035113 (2017).

[28] Dušan Plašienka, Roman Martoňák, and Marcus C. Newton, “Ab initio molecular dynamics study of the structural and electronic transition in vo_{2},” *Phys. Rev. B* **96**, 054111 (2017).

[29] O. Nájera, M. Civelli, V. Dobrosavljević, and M. J. Rozenberg, “Multiple crossovers and coherent states in a mott-peiersl insulator,” *Phys. Rev. B* **97**, 045108 (2018).

[30] Sooran Kim, Kyoo Kim, Chang-Jong Kang, and B. I. Min, “Correlation-assisted phonon softening and the orbital-selective peierls transition in vo_{2},” *Phys. Rev. B* **87**, 195106 (2013).

[31] J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, “Measurement of a solid-state triple point at the metal-insulator transition in vo_{2},” *Nature* **500**, 431 (2013).

[32] Y. Chen, S. Zhang, F. Ke, C. Ko, S. Lee, K. Liu, B. Chen, J. W. Ager, R. Jeanloz, V. Eyert, and J. Wu, “Pressure-temperature phase diagram of vanadium dioxide,” *Nature* **435**, 435704 (2016).

[33] Y. Chen, S. Zhang, F. Ke, C. Ko, S. Lee, K. Liu, B. Chen, J. W. Ager, R. Jeanloz, V. Eyert, and J. Wu, “Pressure-temperature phase diagram of vanadium dioxide,” *Nano Letters* **17**, 2512–2516 (2017).

[34] Weiss Alarich, “John b. goodenough: Magnetism and the chemical bond. interscience publishers. new york, london 1963. 393 Seiten, 89 Abbildungen. Preis: Dm 95 S.” Berichte der Bunsengesellschaft für physikalische Chemie **68**, 996–996 (1964).

[35] G. Villeneuve and P. Hagenmuller, “Metal-insulator transitions in pure and doped vo_{2},” in *Localization and Metal-Insulator Transitions*, edited by H. Fritzsch and D. Adler (Springer US, Boston, MA, 1985) pp. 39–52.

[36] C. N. Berglund and H. J. Guggenheim, “Electronic properties of vo_{2} near the semiconductor-metal transition,” *Phys. Rev. 185*, 1022–1033 (1969).

[37] Y-R Jo, M-W Kim, and B-J Kim, “Direct correlation of structural and electrical properties of electron-doped individual vo_{2} nanowires on devised tem grids,” *Nanotechnology* **27**, 435704 (2016).

[38] Peter Baum, Ding-Shyue Yang, and Ahmed H. Zewail, “3d visualization of transitional structures in phase transformations by electron diffraction,” *Science* **318**, 788–792 (2007).
[38] John B. Goodenough, “The two components of the crystallographic transition in vo2,” Journal of Solid State Chemistry 3, 490 – 500 (1971).

[39] Augusto Marcelli, Marcello Coreno, Matus Stredansky, Wei Xu, Chongwen Zou, Lele Fan, Wangsheng Chu, Shiqiang Wei, Albano Cossaro, Alessandro Ricci, Antonio Bianconi, and Alessandro DELia, “Nanoscale phase separation and lattice complexity in vo2: The metal-insulator transition investigated by xanes via auger electron yield at the vanadium l23-edge and resonant photoemission,” Condensed Matter 2 (2017), 10.3390/cond-mat2040038.

[40] A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).

[41] J. Pouget and H. Launois, “Metal-insulator phase transition in VO2,” Journal de Physique Colloques 37, C4–49–C4–57 (1976).

[42] C. N. Berglund and A. Jayaraman, “Hydrostatic-pressure dependence of the electronic properties of vo2 near the semiconductor-metal transition temperature,” Phys. Rev. 185, 1034–1039 (1969).

[43] J. P. Pouget, H. Launois, T. M. Rice, P. Dernier, A. Gossard, G. Villeneuve, and P. Hagemmuller, “Dimerization of a linear heisenberg chain in the insulating phases of V1−xCrxO2,” Phys. Rev. B 10, 1801–1815 (1974).

[44] J. P. Pouget, H. Launois, J. P. D’Haenens, P. Merenda, and T. M. Rice, “Electron localization induced by uniaxial stress in pure vo2,” Phys. Rev. Lett. 35, 873–875 (1975).

[45] N. F. Quackenbush, H. Paik, M. J. Wahila, S. Sallis, M. E. Holtz, X. Huang, A. Ganose, B. J. Morgan, D. O. Scanlon, Y. Gu, F. Xue, L.-Q. Chen, G. E. Sterbinsky, C. Schlueter, T.-L. Lee, J. C. Woicik, J.-H. Guo, J. D. Brock, D. A. Muller, D. A. Arena, D. G. Schlom, and L. F. J. Piper, “Stability of the m2 phase of vanadium dioxide induced by coherent epitaxial strain,” Phys. Rev. B 94, 085105 (2016).

[46] M. Marezio, D. B. McWhan, J. P. Remeika, and P. D. Dernier, “Structural aspects of the metal-insulator transitions in cr-doped vo2,” Phys. Rev. B 5, 2541–2551 (1972).

[47] T. M. Rice, H. Launois, and J. P. Pouget, “Comment on v02: Peierls or mott-hubbard? a view from band theory,” Phys. Rev. Lett. 73, 3042–3042 (1994).

[48] N. F. Mott and L. Friedman, “Metal-insulator transitions in vo2, ti2o3 and ti2−xvxo3,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 30, 389–402 (1974).

[49] Alexander Pergament, “Metal-insulator transition: the mott criterion and coherence length,” Journal of Physics: Condensed Matter 15, 3217 (2003).

[50] Z. Zinamon and N. F. Mott, “Metal-non-metal transitions in narrow band materials; crystal structure versus correlation,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 21, 881–895 (1970).

[51] Philipp Werner, Emanuel Gull, Matthias Troyer, and Andrew J. Mills, “Spin freezing transition and non-fermi-liquid self-energy in a three-orbital model,” Phys. Rev. Lett. 101, 166405 (2008).

[52] M. M. Qazilbash, A. A. Schafgans, K. S. Burch, S. J. Yun, B. G. Chae, B. J. Kim, H. T. Kim, and D. N. Basov, “Electrodynamics of the vanadium oxides Vo2 and v2o3,” Phys. Rev. B 77, 115121 (2008).

[53] Sangwook Lee, Kedar Hippalgaonkar, Fan Yang, Jiawang Hong, Changhyun Ko, Joonki Suh, Kai Liu, Kevin Wang, Jeffrey J. Urban, Xiang Zhang, Chris Dames, Sean A. Hartnoll, Olivier Delaire, and Junqiao Wu, “Anomalously low electronic thermal conductivity in metallic vanadium dioxide,” Science 355, 371–374 (2017).

[54] M. M. Qazilbash, M. Brehm, Byung-Gyu Chae, P.-C. Ho, G. O. Andreev, Bong-Jun Kim, Sun Jin Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, Hyun-Tak Kim, and D. N. Basov, “Mott transition in vo2 revealed by infrared spectroscopy and nano-imaging,” Science 318, 1750–1753 (2007).

[55] M. M. Qazilbash, K. S. Burch, D. Whisler, D. Shrekenhamer, B. G. Chae, H. T. Kim, and D. N. Basov, “Correlated metallic state of vanadium dioxide,” Phys. Rev. B 74, 205118 (2006).

[56] V. Eyert, “The metal-insulator transitions of vo2: A band theoretical approach,” Annalen der Physik 11, 650–704 (2002).

[57] A. Liebsch, H. I. Ishida, and G. Bihlmayer, “Coulomb correlations and orbital polarization in the metal-insulator transition of vo2,” Phys. Rev. B 71, 085109 (2005).

[58] A. Continenza, S. Massidda, and M. Posternak, “Self-energy corrections in vo within a model GW scheme,” Phys. Rev. B 60, 15699–15704 (1999).

[59] Matteo Gatti, Fabien Bruneval, Valerio Olevano, and Lucia Reining, “Understanding correlations in vanadium dioxide from first principles,” Phys. Rev. Lett. 99, 266402 (2007).

[60] R. Sakuma, T. Miyake, and F. Aryasetiawan, “Quasiparticle band structure of vanadium dioxide,” Journal of Physics: Condensed Matter 21, 061226 (2009).

[61] M. A. Korotin, N. A. Skorikov, and V. I. Anisimov, “Variation of orbital symmetry of the localized 3d3 electron of the v4+ ion upon the metal-insulator transition in vo2,” The Physics of Metals and Metallography 94, 17–23 (2002).

[62] A. V. Kozhevnikov, V. I. Anisimov, and M. A. Korotin, “Calculation of the electronic structure of the vanadium dioxide vo2 in the monoclinic low-temperature phase m1 using the generalized transition state method,” The Physics of Metals and Metallography 104, 215–220 (2007).

[63] Xun Yuan, Yubo Zhang, Tesfaye A. Abtew, Peihong Zhang, and Wenqing Zhang, “Vo2: Orbital competition, magnetism, and phase stability,” Phys. Rev. B 86, 235103 (2012).

[64] R. Zhang, Q. S. Fu, C. Y. Yin, C. L. Li, X. H. Chen, G. Y. Qian, C. L. Lu, S. L. Yuan, X. J. Zhao, and H. Z. Tao, “Understanding of metal-insulator transition in vo2 based on experimental and theoretical investigations of magnetic features,” Scientific Reports 8, 17093 (2018).

[65] Ricardo Grau-Crespo, Hao Wang, and Udo Schwingenschl"ogl, “Why the heyd-scuseria-ernzerhof hybrid functional description of vo3 phases is not correct,” Phys. Rev. B 86, 081101 (2012).

[66] John E. Coulter, Efstratios Manousakis, and Adam Gali, “Limitations of the hybrid functional approach to electronic structure of transition metal oxides,” Phys. Rev. B 88, 041107 (2013).
A. S. Barker, H. W. Verleur, and H. J. Guggenheim, John B. Goodenough, “Direct cation- -cation interaction in vanadium dioxide,” Phys. Rev. B 10, 490–495 (1974).

Ramakant Srivastava and L. L. Chase, “Raman spectrum of semiconducting and metallic vanadium dioxide,” Phys. Rev. Lett. 27, 727–730 (1971).

C. Sommers, R. De Groot, D. Kaplan, and A. Zylerbyszaktej, “Cluster calculations of the electronic d-states in vanadium dioxide,” J. Physique Lett. 36, 157–160 (1975).

G. J. Hyland, “On the electronic phase transitions in the lower oxides of vanadium,” Journal of Physics C: Solid State Physics 1, 189 (1968).

G. J. Hyland and A. W. B. Taylor, “Clausius-clapeyron equation and the v2o4, v2o3 phase transitions,” Journal of the Physical Society of Japan 26, 490–495 (1974).

Hiromu Sasaki and Akinori Watanabe, “A new growing micrometer x-ray diffraction study with the metal insulator transition,” Phys. Rev. B 11, 466–470 (2011), pMID: 21166443.

Hyun-Tak Kim, Yong Wook Lee, Bong-Jun Kim, Byung-Gyu Chae, Sun Jin Yun, Kwang-Yong Kang, Kang-Jeon Han, Ki-Ju Yee, and Yong-Sik Lim, “Monolayer x-ray diffraction study of vanadium dioxide nanobeam,” Nano Letters 12, 103532 (2012).

D. Okuyama, M. Nakano, S. Takeshita, H. Ohsumi, S. Tardif, K. Shibuya, T. Hatazo, H. Umoto, T. Koyama, H. Ohashi, M. Takata, M. Kawasaki, T. Arima, Y. Tokura, and Y. Iwasa, “Gate-tunable gigantic lattice deformation in vanadium dioxide,” Applied Physics Letters 104, 023507 (2014).

David Adler, “Insulating and metallic states in transition metal oxides,” (Academic Press, 1968) pp. 1 – 113.

Hiromu Sasaki and Akinori Watanabe, “A new growing method for vanadium dioxide single crystals,” Journal of the Physical Society of Japan 19, 1748–1748 (1964).

Larry A. Ladd and William Paul, “Optical and transport properties of high quality crystals of v2o4 near the metallic transition temperature,” Solid State Communications 7, 425 – 428 (1969).

C. R. Everhart and J. B. MacChesney, “Anisotropy in the electrical resistivity of vanadium dioxide single crystals,” Journal of Applied Physics 39, 2872–2874 (1968).

P.F. Bongers, “Anisotropy of the electrical conductivity of vanadium dioxide single crystals,” Solid State Communications 3, 275 – 277 (1965).

Wei-Tao Liu, J. Cao, W. Fan, Zhao Hao, Michael C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic optical properties of vanadium dioxide near the insulator-metal transition,” Nano Letters 11, 466–470 (2011), pMID: 21166443.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatazo, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 450 (2012).

Tatsuyuki Kawakubo and Takehiko Nakagawa, “Phase transition in vanadium dioxide,” Japanese Journal of Applied Physics 6, 1060 (1967).

Bong-Jun Kim, Yong Wook Lee, Sun Jin Yun, Hyun-Tak Kim, Tae-Ju Shin, and Hwa-Sick Yun, “Micrometer x-ray diffraction study of v2o3 films: Separation between metal-insulator transition and structural phase transition,” Phys. Rev. B 77, 235401 (2008).

Joyeeta Nag, Richard F. Haglund, E. Andrew Pazvant, and Karren L. More, “Non-congruence of thermally driven structural and electronic transitions in vanadium dioxide,” Journal of Applied Physics 112, 103532 (2012).

Shixiong Zhang, Jung Yen Chou, and Lincoln J. Lauhon, “Direct correlation of structural domain formation with the metal insulator transition in a vanadium dioxide nanobeam,” Nano Letters 9, 4527–4532 (2009), pMID: 19902918.

Hyun-Tak Kim, Yong Wook Lee, Bong-Jun Kim, Dyung-Gyu Chae, Sun Jin Yun, Kwang-Yong Kang, Kang-Jeon Han, Ki-Ju Yee, and Yong-Sik Lim, “Monoclinic and correlated metallic phase in vanadium dioxide as evidence of the mott transition: Coherent phonon analysis,” Phys.
Phys. Rev. B 97, 266401 (2006).

[129] T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B 85, 155120 (2012).

[130] Suhas Kumar, John Paul Strachan, Matthew D. Pickett, Alexander Bratkovsky, Yoshio Nishi, and R. Stanley Williams, “Sequential electronic and structural transitions in v02 observed using x-ray absorption spectroscopy,” Advanced Materials 26, 7505–7509 (2014).

[131] A. V. Ilinskiy, O. E. Kvashenkina, and E. B. Shadrin, “Nature of the electronic component of the thermal phase transition in v02 films,” Semiconductors 46, 1171–1185 (2012).

[132] A. V. Ilinskiy, O. E. Kvashenkina, and E. B. Shadrin, “Phase transition and correlation effects in vanadium dioxide,” Semiconductors 46, 422–429 (2012).

[133] Changhong Chen, Renfan Wang, Lang Shang, and Chongfeng Guo, “Gate-field-induced phase transitions in v02: Monoclinic metal phase separation and switchable infrared reflections,” Applied Physics Letters 93, 171101 (2008).

[134] D. C. Mattis and W. D. Langer, “Role of phonons and band structure in metal-insulator phase transition,” Phys. Rev. Lett. 25, 376–380 (1970).

[135] C. J. Hearn, “Phonon softening and the metal-insulator transition in v02,” Journal of Physics C: Solid State Physics 5, 1317 (1972).

[136] Jan M. Tomczuk, Ferdi Aryasetiawan, and Silke Biermann, “Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic v02,” Phys. Rev. B 78, 115103 (2008).

[137] Tatsuyuki Kawakubo, “Crystal distortion and electric and magnetic transition in v02,” Journal of the Physical Society of Japan 20, 516–520 (1965).

[138] C. J. Hearn, “The metal-insulator transition in v02,” Physics Letters A 38, 447–448 (1972).

[139] G. J. Hyland, “Semiconductor ⇔ metal phase transitions,” Journal of Solid State Chemistry 2, 318 – 331 (1970).

[140] David Adler, Julius Feinleib, Harvey Brooks, and William Paul, “Semiconductor-to-metal transitions in transition-metal compounds,” Phys. Rev. 155, 851–860 (1967).

[141] T. K. Mitra, S. Chatterjee, and G. J. Hyland, “A l.c.c.a.o approach to the band structure of rutile v02,” Physics Letters A 37, 221 – 222 (1971).

[142] S. Chatterjee, T. K. Mitra, and G. J. Hyland, “A.p.w band structure of metallic v02,” Physics Letters A 42, 56 – 58 (1972).

[143] Ed Caruthers, Leonard Kleinman, and H. I. Zhang, “Energy bands of metallic v02,” Phys. Rev. B 7, 3753–3760 (1973).

[144] Ed Caruthers and Leonard Kleinman, “Energy bands of semiconducting v02,” Phys. Rev. B 7, 3760–3766 (1973).

[145] S. M. Woodley, “The mechanism of the displaceable phase transition in vanadium dioxide,” Chemical Physics Letters 453, 167 – 172 (2008).

[146] Makondelele Ntsianda, Phuti E. Ngoepe, C. Richard A. Catlow, and Scott M. Woodley, “The displaceable phase transition of vanadium dioxide and the effect of doping with tungsten,” Chemistry of Materials 20, 1764–1772 (2008).

[147] A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, “Symmetry relationship and strain-induced transitions between insulating m1 and m2 and metallic r phases of vanadium dioxide,” Nano Letters 10, 4409 (2010).

[148] A. M. de Graaf and R. Luzzi, “Crystalllographic distortion, electron-electron interaction and the metal-nonmetal transition,” Helvetica Physica Acta 41, 764 (1968).

[149] D. Paquet and P. Leroux-Hugon, “Electron correlations and electron-lattice interactions in the metal-insulator, ferroelastic transition in v02: A thermodynamical study,” Phys. Rev. B 22, 5284–5301 (1980).

[150] Jia Shi, Robijn Bruinsma, and Alan R Bishop, “Theory of vanadium dioxide,” Synthetic Metals 43, 3527 – 3530 (1991), proceedings of the International Conference on Science and Technology of Synthetic Metals.

[151] Matteo Sandri, Massimo Capone, and Michele Fabrizio, “Finite-temperature gutzwiller approximation and the phase diagram of a toy model for v02,” Phys. Rev. B 87, 205108 (2013).

[152] A O Shoychakov, A L Rakmanov, and K I Kugel, “Effect of electron-lattice interaction on the phase separation in strongly correlated electron systems with two types of charge carriers,” Journal of Physics: Condensed Matter 22, 415601 (2010).

[153] M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H.-J. Lin, C. T. Chen, D. I. Khomskii, and L. H. Tjeng, “Orbital-assisted metal-insulator transition in v02,” Phys. Rev. Lett. 95, 196404 (2005).

[154] Bi-Ching Shih, Tesfaye A. Abtew, Xun Yuan, Wenqing Zhang, and Peihong Zhang, “Screened coulomb interactions of localized electrons in transition metals and transition-metal oxides,” Phys. Rev. B 86, 165124 (2012).

[155] A. Fujimori, I. Hase, H. Namatame, Y. Fujishima, Y. Tokura, H. Eisaka, S. Uchida, K. Takegahara, and Y. Muromachi, “Symmetry relationship and strain-induced transitions and electron-lattice interactions in the metal-insulator, ferroelastic transition in v02,” Journal of the Physical Society of Japan 20, 516–520 (1965).

[156] Luca de’ Medici, Jernej Mravlje, and Antoine Georges, “Janus-faced influence of hund’s rule coupling in strongly correlated materials,” Phys. Rev. Lett. 107, 256401 (2011).

[157] A. P. Levanyuk and D. G. Sannikov, “Improper ferroelectrics,” Soviet Physics Uspekhi 17, 199 (1974).

[158] G. J. Hyland, “Lattice polarization and coulomb energies in v02,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 20, 837–841 (1969).

[159] Bence Lazarovits, Kyoo Kim, Kristjan Haule, and Gabriel Kotliar, “Effects of strain on the electronic structure of v02,” Phys. Rev. B 81, 115117 (2010).

[160] C. Sommers and S. Doniach, “First principles calculation of the intra-atomic correlation energy in v02,” Solid State Communications 28, 133 – 135 (1978).

[161] K. Okazaki, H. Wadati, A. Fujimori, M. Onoda, Y. Murakoa, and Z. Hiroi, “Photoemission study of the metal-insulator transition in v02/110:001 : evidence for strong electron-electron and electron-phonon interaction,” Phys. Rev. B 69, 165104 (2004).
sitions in semiconducting niobium dioxide,” Phys. Rev. B 59, 13650–13656 (1999).

[194] V Eyert, “The metal-insulator transition of NbO2: An embedded peierls instability,” Europhysics Letters (EPL) 58, 851–856 (2002).

[195] Andrew O’Hara, Timothy N. Nunley, Agham B. Posadas, Stefan Zollner, and Alexander A. Demkov, “Electronic and optical properties of nbo2,” Journal of Applied Physics 116, 213705 (2014).

[196] Andrew O’Hara and Alexander A. Demkov, “Nature of the metal-insulator transition in Nbo2,” Phys. Rev. B 91, 094305 (2015).

[197] Franklin J. Wong, Nina Hong, and Shriram Ramanathan, “Orbital splitting and optical conductivity of the insulating state of nbo2,” Phys. Rev. B 90, 115135 (2014).

[198] G. Bélanger, J. Destry, G. Perluzzo, and P. M. Raccah, “Electron transport in single crystals of niobium dioxide,” Canadian Journal of Physics 52, 2272–2280 (1974).

[199] Kimiko Sakata, “Electrical and magnetic properties of nbo2,” Journal of the Physical Society of Japan 26, 867–867 (1969).