Cohomology of $\mathfrak{osp}(2|2)$ acting on the spaces of linear differential operators on the superspace $\mathbb{R}^{1|2}$

Nizar Ben Fraj Maha Boujelben*

November 1, 2011

Abstract

We compute the first differential cohomology of the orthosymplectic Lie superalgebra $\mathfrak{osp}(2|2)$ with coefficients in the superspace of linear differential operators acting on the space of weighted densities on the (1, 2)-dimensional real superspace. We also compute the same, but $\mathfrak{osp}(1|2)$-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. This work is a simplest generalization of a result by Basdouri and Ben Ammar [Cohomology of $\mathfrak{osp}(1|2)$ with coefficients in $\mathcal{D}_{\lambda,\mu}$. Lett. Math. Phys.81, 239–251 (2007)].

Mathematics Subject Classification (2000). 53D55
Key words : Cohomology, Orthosymplectic superalgebra.

1 Introduction

The space of weighted densities with weight λ (or λ-densities) on \mathbb{R}, denoted by:

$$ \mathcal{F}_\lambda = \left\{ f(dx)^\lambda \mid f \in C^\infty(\mathbb{R}) \right\}, \quad \lambda \in \mathbb{R}, $$

is the space of sections of the line bundle $(T^*\mathbb{R})^\lambda$ for positive integer λ. Let $\text{Vect}(\mathbb{R})$ be the Lie algebra of all vector fields $X_F = F \frac{d}{dx}$ on \mathbb{R}, where $F \in C^\infty(\mathbb{R})$. The Lie derivative L_D along the vector field D makes \mathcal{F}_λ a $\text{Vect}(\mathbb{R})$-module for any $\lambda \in \mathbb{R}$:

$$ L_{X_F}(f(dx)^\lambda) = L_{X_F}^\lambda(f(dx)^\lambda) \quad \text{with} \quad L_{X_F}^\lambda(f) = F f' + \lambda f F', \quad (1.1) $$

where f', F' are $\frac{df}{dx}$, $\frac{dF}{dx}$. On the space $\mathcal{D}_{\lambda,\mu}$ of differential operators $\mathcal{F}_\lambda \to \mathcal{F}_\mu$ a $\text{Vect}(\mathbb{R})$-module structure is given by the formula:

$$ X_F \cdot A = L_{X_F}^\mu \circ A - A \circ L_{X_F}^\lambda, \quad (1.2) $$

for any differential operator $A : f(dx)^\lambda \mapsto (Af)(dx)^\mu$.

Lecomte, in [11], found the cohomology $H^1_{\text{diff}}(\mathfrak{sl}(2), \mathcal{D}_{\lambda,\mu})$ and $H^2_{\text{diff}}(\mathfrak{sl}(2), \mathcal{D}_{\lambda,\mu})$, where $\mathfrak{sl}(2)$ is realized as the Lie subalgebra of $\text{Vect}(\mathbb{R})$ spanned by $\{X_1, X_x, X_{x^2}\}$ and where H^*_{diff}

*Institut Supérieur de Sciences Appliquées et Technologie, Sousse, and Département de Mathématiques, Faculté des Sciences de Sfax, BP 802, 3038 Sfax, Tunisie. E-mails: ben-fraj_nizar@yahoo.fr, Maha.Boujelben@fss.rnu.tn
denotes the differential cohomology; that is, only cochains given by differential operators are considered. These spaces appear naturally in the problem of describing the deformations of the sl(2)-module $S_{\mu-\lambda} = \bigoplus_{k=0}^{\infty} F_{\mu-\lambda-k}$, the space of symbols of differential operators of $D_{\lambda,\mu}$. More precisely, the elements of $H^1(\mathfrak{sl}(2), V)$ classify the infinitesimal deformations of a sl(2)-module V and the obstructions to integrability of a given infinitesimal deformation of V are elements of $H^2(\mathfrak{sl}(2), V)$ (for examples, see [1, 2, 5, 12]).

Now, we can study the corresponding super structures. More precisely, we consider the superspace $\mathbb{R}^{1|n}$ equipped with a contact 1-form α_n, and introduce the superspace \mathfrak{S}_{λ}^n of λ-densities on the superspace $\mathbb{R}^{1|n}$. The spaces \mathfrak{S}_{λ}^n are modules over $\mathcal{K}(n)$, the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|n}$; the space $\mathfrak{D}_{\lambda,\mu}^n$ of differential operators $\mathfrak{S}_{\lambda}^n \rightarrow \mathfrak{S}_{\lambda}^n$ is, naturally, a $\mathcal{K}(n)$-module. The spaces $H^i_{\text{diff}}(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu}^n)$ for $i = 1$ and 2 need to be computed in order to describe deformations of the $\mathfrak{osp}(1|2)$-module $\mathfrak{S}_{\mu-\lambda}^{\lambda} = \bigoplus_{k\geq 0} \mathfrak{S}_{\mu-\lambda-k}^n$, a super analogue of $S_{\mu-\lambda}$, see [9].

In [3], Basdouri and Ben Ammar studied this question for $n = 1$. In this case, $\mathfrak{sl}(2)$ is replaced by the Lie superalgebra $\mathfrak{osp}(1|2)$ naturally realized as a subalgebra of $\mathcal{K}(1)$.

Since there seems to be no conceptual difference in the setting or results obtained in the study of the cohomology of $\mathfrak{osp}(n|2)$ acting on the spaces of linear differential operators on the superspace $\mathbb{R}^{1|n}$ for n considered so far (0, 1 and 2 in this paper), the point is not to treat in further articles the cases $n = 3$ and so on. The point is that the behavior and certain properties of the Lie superalgebras $\mathfrak{osp}(n|2)$ and $\mathcal{K}(n)$ are similar for $n < 4$ (K); the cases $n = 0$ and $n = 1$ are particularly close. However, in several questions, the case $n = 2$ is exceptional due to an occasional isomorphism $\mathcal{K}(n) \simeq \text{Vect}(\mathbb{R}^{1|1})$ ([10]), and one never knows a priori which type of questions will make a given particular n exceptional. We can expect that the properties of $\mathfrak{osp}(n|2)$ and $\mathcal{K}(n)$ become uniform only for $n > 6$. So somebody has to perform all the calculations in the hope to find an interesting result (such, for example, as mentioned in Subsection 4.3).

In this paper we consider the case $n = 2$. That is, we consider the orthosymplectic Lie superalgebra $\mathfrak{osp}(2|2)$ naturally realized as a subalgebra of $\mathcal{K}(2)$. We compute here $H^i_{\text{diff}}(\mathfrak{osp}(2|2), \mathfrak{D}_{\lambda,\mu}^2)$ and $H^i_{\text{diff}}(\mathfrak{osp}(2|2), \mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu}^2)$. Moreover, we give explicit formulae for all the nontrivial 1-cocycles. These spaces arise in the classification of infinitesimal deformations of the $\mathfrak{osp}(2|2)$-module $\mathfrak{S}_{\mu-\lambda}^{\lambda} = \bigoplus_{k\geq 0} \mathfrak{S}_{\mu-\lambda-k}^2$. We hope to be able to describe in the future all the deformations of this module.

2 Definitions and Notation

Recall that $C^\infty(\mathbb{R}^{1|2})$ consists of elements of the form:

$$F(x, \theta_1, \theta_2) = f_0(x) + f_1(x)\theta_1 + f_2(x)\theta_2 + f_{12}(x)\theta_1\theta_2,$$

where $f_0, f_1, f_2, f_{12} \in C^\infty(\mathbb{R})$, and where x is the even indeterminate, θ_1 and θ_2 are odd indeterminates, i.e., $\theta_i\theta_j = -\theta_j\theta_i$. Let $|F|$ be the parity of a homogeneous function F. Let

$$\text{Vect}(\mathbb{R}^{1|2}) = \left\{ F_0\partial_x + F_1\partial_1 + F_2\partial_2 \mid F_i \in C^\infty(\mathbb{R}^{1|2}) \right\},$$

where $\partial_i = \frac{\partial}{\partial \theta_i}$. Let $\mathcal{K}(2)$ be the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|2}$:

$$\mathcal{K}(2) = \left\{ X \in \text{Vect}(\mathbb{R}^{1|2}) \mid \text{there exists } F \in C^\infty(\mathbb{R}^{1|2}) \text{ such that } \mathfrak{L}_X(\alpha_2) = F\alpha_2 \right\},$$

2
where \(\mathcal{L}_X \) is the Lie derivative along the vector field \(X \) and

\[
\alpha_2 = dx + \theta_1d\theta_1 + \theta_2d\theta_2.
\]

Any contact vector field on \(\mathbb{R}^{1|2} \) can be expressed as

\[
X_F = F \partial_x - \frac{1}{2}(-1)^{|F|}\sum_{i=1}^{2} \eta_i(F)\eta_i, \quad \text{where} \quad F \in C^\infty(\mathbb{R}^{1|2})
\]

and \(\eta_i = \partial_i - \theta_i\partial_x \). The contact bracket is defined by \([X_F, X_G] = X_{\{F, G\}}\):

\[
\{F, G\} = FG' - F'G - \frac{1}{2}(-1)^{|F|}\sum_{i=1}^{2} \eta_i(F) \cdot \eta_i(G).
\] (2.3)

The orthosymplectic Lie superalgebra \(\mathfrak{osp}(2|2) \) can be realized as a subalgebra of \(\mathcal{K}(2) \):

\[
\mathfrak{osp}(2|2) = \text{Span}(X_1, X_x, X_2, X_{\theta_1}, X_{\theta_2}, X_\theta_1, X_\theta_2, X_{\theta_1\theta_2}).
\]

We easily see that \(\mathfrak{osp}(1|2) \) is subalgebra of \(\mathfrak{osp}(2|2) \):

\[
\mathfrak{osp}(1|2) = \text{Span}(X_1, X_x, X_2, X_{\theta_1}, X_{\theta_2}) \simeq \text{Span}(X_1, X_x, X_2, X_{\theta_2}, X_{\theta_1}).
\]

We define the space of \(\lambda \)-densities as

\[
\mathfrak{F}_2^\lambda = \left\{ F(x_1, x_2, \theta_1, \theta_2) \alpha_2^\lambda \mid F(x_1, x_2, \theta_1, \theta_2) \in C^\infty(\mathbb{R}^{1|2}) \right\}.
\] (2.4)

As a vector space, \(\mathfrak{F}_2^\lambda \) is isomorphic to \(C^\infty(\mathbb{R}^{1|2}) \), but the Lie derivative of the density \(G\alpha_2^\lambda \) along the vector field \(X_F \) in \(\mathcal{K}(2) \) is now:

\[
\mathcal{L}_{X_F}(G\alpha_2^\lambda) = \mathcal{L}_{X_F}^\lambda(G\alpha_2^\lambda), \quad \text{with} \quad \mathcal{L}_{X_F}^\lambda(G) = \mathcal{L}_{X_F}(G) + \lambda F'G.
\] (2.5)

Here, we restrict ourselves to the subalgebra \(\mathfrak{osp}(2|2) \), thus we obtain a one-parameter family of \(\mathfrak{osp}(2|2) \)-modules on \(C^\infty(\mathbb{R}^{1|2}) \) still denoted by \(\mathfrak{F}_2^\lambda \). As an \(\mathfrak{osp}(1|2) \)-module, we have

\[
\mathfrak{F}_2^\lambda \simeq \mathfrak{F}_2^\lambda \oplus \Pi(\mathfrak{F}_2^{\lambda+1})
\] (2.6)

where \(\Pi \) is the change of parity operator.

Since \(-\eta_2^2 = \partial_x \), and \(\partial_i = \eta_i - \theta_i\eta_2 \), every differential operator \(A \in \mathfrak{D}_2^\lambda \) can be expressed in the form

\[
A(F\alpha_2^\lambda) = \sum_{\ell,m} a_{\ell,m}(x, \theta) \eta_1^\ell \eta_2^m(F)\alpha_2^\theta,
\] (2.7)

where the coefficients \(a_{\ell,m}(x, \theta) \) are arbitrary functions.

Proposition 2.1. As a \(\mathfrak{osp}(1|2) \)-module, we have

\[
\mathfrak{D}_2^\lambda \simeq \mathfrak{D}_2^\lambda \oplus \mathfrak{D}_2^{\lambda+1} \oplus \Pi\left(\mathfrak{D}_2^\lambda \oplus \mathfrak{D}_2^{\lambda+1} \oplus \mathfrak{D}_2^{\lambda+2}\right).
\] (2.8)
Proof. Any element $F \in C^\infty(\mathbb{R}^2)$ can be uniquely written as follows: $F = F_1 + F_2 \theta_2$, where $\partial_2 F_1 = \partial_2 F_2 = 0$. Therefore, for any $X_H \in \mathfrak{osp}(1|2)$, we easily check that

$$\mathfrak{L}^\lambda_{X_H}(F) = \mathfrak{L}^\lambda_{X_H}(F_1) + \mathfrak{L}^{\lambda + \frac{1}{2}}_{X_H}(F_2) \theta_2.$$

Thus, the following map is an $\mathfrak{osp}(1|2)$-isomorphism:

$$\Phi_\lambda : \mathfrak{g}^2 \lambda \rightarrow \mathfrak{g}^{1}(\mathfrak{osp}(1|2)) \oplus \Pi(\mathfrak{g}^{1}(\mathfrak{osp}(1|2)))$$

$$F \mathfrak{a}_\lambda \mapsto \left(F_1 \mathfrak{a}_1^\lambda, \Pi(F_2 \mathfrak{a}_1^{\lambda + \frac{1}{2}}) \right) \quad (2.9)$$

So, we deduce an $\mathfrak{osp}(1|2)$-isomorphism:

$$\Psi_{\lambda, \mu} : \mathfrak{D}^{1}_{\lambda, \mu} \oplus \mathfrak{D}^{1}_{\lambda + \frac{1}{2}, \mu + \frac{1}{2}} \oplus \Pi \left(\mathfrak{D}^{1}_{\lambda, \mu + \frac{1}{2}} \oplus \mathfrak{D}^{1}_{\lambda + \frac{1}{2}, \mu} \right) \rightarrow \mathfrak{D}^{2}_{\lambda, \mu}$$

$$A \mapsto \Phi_{\mu}^{-1} \circ A \circ \Phi_{\lambda}. \quad (2.10)$$

Here, we identify the $\mathfrak{osp}(1|2)$-modules via the following isomorphisms:

$$\Pi \left(\mathfrak{D}^{1}_{\lambda, \mu + \frac{1}{2}} \right) \rightarrow \text{Hom}_{\text{diff}} \left(\mathfrak{g}^{1}, \Pi(\mathfrak{g}^{1}(\mathfrak{osp}(1|2))) \right) \quad \Pi(A) \mapsto \Pi \circ A,$$

$$\Pi \left(\mathfrak{D}^{1}_{\lambda + \frac{1}{2}, \mu} \right) \rightarrow \text{Hom}_{\text{diff}} \left(\mathfrak{g}^{1}(\mathfrak{osp}(1|2)), \Pi(\mathfrak{g}^{1}(\mathfrak{osp}(1|2))) \right) \quad \Pi(A) \mapsto A \circ \Pi,$$

$$\mathfrak{D}^{1}_{\lambda + \frac{1}{2}, \mu + \frac{1}{2}} \rightarrow \text{Hom}_{\text{diff}} \left(\Pi(\mathfrak{g}^{1}(\mathfrak{osp}(1|2)), \Pi(\mathfrak{g}^{1}(\mathfrak{osp}(1|2))) \right) \quad \Pi(A) \mapsto \Pi \circ A \circ \Pi.$$

\square

3 The space $H^1(\mathfrak{osp}(2|2), \mathfrak{D}^2_{\lambda, \mu})$

3.1 Lie superalgebra cohomology, see [7]

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a Lie superalgebra acting on a superspace $V = V_0 \oplus V_1$ and let \mathfrak{t} be a subalgebra of \mathfrak{g}. (If \mathfrak{t} is omitted it assumed to be $\{0\}$.) The space of \mathfrak{t}-relative n-cochains of \mathfrak{g} with values in V is the \mathfrak{g}-module

$$C^n(\mathfrak{g}, \mathfrak{t}; V) := \text{Hom}_{\mathfrak{g}}(\Lambda^n(\mathfrak{g}; \mathfrak{t}); V).$$

The coboundary operator $\delta_n : C^n(\mathfrak{g}, \mathfrak{t}; V) \rightarrow C^{n+1}(\mathfrak{g}, \mathfrak{t}; V)$ is a \mathfrak{g}-map satisfying $\delta_n \circ \delta_{n-1} = 0$. The kernel of δ_n, denoted $Z^n(\mathfrak{g}, \mathfrak{t}; V)$, is the space of \mathfrak{t}-relative n-cocycles, among them, the elements in the range of δ_n are called \mathfrak{t}-relative n-coboundaries. We denote $B^n(\mathfrak{g}, \mathfrak{t}; V)$ the space of n-coboundaries.

By definition, the n^{th} \mathfrak{t}-relative cohomology space is the quotient space

$$H^n(\mathfrak{g}, \mathfrak{t}; V) = Z^n(\mathfrak{g}, \mathfrak{t}; V)/B^n(\mathfrak{g}, \mathfrak{t}; V).$$

We will only need the formula of δ_n (which will be simply denoted δ) in degrees 0 and 1: for $v \in C^0(\mathfrak{g}, \mathfrak{t}; V) = V^\mathfrak{t}$, $\delta v(g) := (-1)^{|g||v|} g \cdot v$, where

$$V^\mathfrak{t} = \{ v \in V \mid h \cdot v = 0 \quad \text{for all} \ h \in \mathfrak{t} \},$$

and for $\Upsilon \in C^1(\mathfrak{g}, \mathfrak{t}; V)$,

$$\delta(\Upsilon)(g, h) := (-1)^{|g||\Upsilon|} g \cdot \Upsilon(h) - (-1)^{|h|(|g|+|\Upsilon|)} h \cdot \Upsilon(g) - \Upsilon([g, h]) \quad \text{for any} \ g, h \in \mathfrak{g}.$$
3.2 The main theorem

The main result in this paper is the following:

Theorem 3.1. The space $H^1_{\text{diff}}(\mathfrak{osp}(2|2), \mathcal{D}_{\lambda,\mu})$ is purely even. It has the following structure:

$$H^1_{\text{diff}}(\mathcal{K}(2), \mathcal{D}_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R}^2 & \text{if } \mu - \lambda = 0, \\ \mathbb{R}^3 & \text{if } (\lambda, \mu) = (-\frac{k}{2}, \frac{k}{2}) \text{ and } k \in \mathbb{N}\setminus\{0\}, \\ 0 & \text{otherwise}. \end{cases} \quad (3.11)$$

The following 1-cocycles span the corresponding cohomology spaces:

$$\begin{align*}
\mathcal{Y}_{\lambda,\lambda}(X_G) &= G' \\
\mathcal{T}_{\lambda,\lambda}(X_G) &= \begin{cases} \eta_1 \eta_2(G) & \text{if } \lambda = 0 \\
2 \lambda \eta_1 (\partial_2(G)) - (-1)^{|\cal G|} (\partial_2(G) \eta_1 + \theta_2 \eta_2 \eta_1(G) \eta_2) & \text{if } \lambda \neq 0 \end{cases} \\
\mathcal{T}_{-\frac{k}{2},\frac{k}{2}}(X_G) &= G' \eta_1 \eta_2^{k-1} \\
\mathcal{T}_{-\frac{k}{2},\frac{k}{2}}(X_G) &= k \eta_1(\partial_2(G)) \eta_1 \eta_2^{2k-1} - (-1)^{|\cal G|} \left(\partial_2(G) \eta_1^{2k+1} - \eta_1(\theta_2 \partial_2(G)) \eta_1^{2k+1} \right) \\
\mathcal{T}_{-\frac{k}{2},\frac{k}{2}}(X_G) &= (k - 1) G'' \eta_1 \eta_2^{2k-3} + (-1)^{|\cal G|} \left(\eta_2(G') \eta_1^{2k-1} - \eta_1(G') \eta_2^{2k-1} \right) \\
\end{align*} \quad (3.12)$$

The proof of Theorem 3.1 will be the subject of Section 5. In fact, we need first the description of $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}_{\lambda,\mu})$ and the $\mathfrak{osp}(1|2)$-relative cohomology $H^1_{\text{diff}}(\mathfrak{osp}(2|2), \mathfrak{osp}(1|2); \mathcal{D}_{\lambda,\mu})$. To describe the latter one, we need also the description of some bilinear $\mathfrak{osp}(1|2)$-invariant mappings.

4 Invariant Operators and Cohomology of $\mathfrak{osp}(1|2)$

4.1 Invariant bilinear differential operators

Observe that, as a $\mathfrak{osp}(1|2)$-module, we have

$$\mathfrak{osp}(2|2) \simeq \mathfrak{osp}(1|2) \oplus \Pi(\mathfrak{h}),$$

where \mathfrak{h} is the subspace of $\mathfrak{g}_{-\frac{1}{2}}$ spanned by $\{\theta_1 \alpha_1^{-\frac{1}{2}}, x \alpha_1^{-\frac{1}{2}}, \alpha_1^{-\frac{1}{2}}\}$. In fact, it is easy to see that, for the adjoint action, the Lie superalgebra $\mathcal{K}(2)$ is isomorphic to \mathfrak{g}_{-1} which is isomorphic, as $\mathfrak{osp}(1|2)$-module, to $\mathfrak{g}_{-1} \oplus \Pi(\mathfrak{g}_{-1})$. So, the space $\mathfrak{osp}(2|2)$ is isomorphic, as a $\mathfrak{osp}(1|2)$-module, to $\Phi(\mathfrak{osp}(2|2))$, where $\Phi(\mathfrak{osp}(2|2))$ is given by (2.49). More precisely, any element X_F is decomposed into $X_F = X_{F_1} + X_{F_2 \theta_2}$ where $\partial_2 F_1 = 0, \partial_2 F_2 = 0$, and then $X_{F_1} \in \mathfrak{osp}(1|2)$ and $X_{F_2 \theta_2}$ is identified to $\Pi(F_2 \alpha_1^{-\frac{1}{2}}) \in \Pi(\mathfrak{h})$ and it will be denoted $X_{\mathfrak{f}_{\mathfrak{f}_2}}$.

To compute the $\mathfrak{osp}(1|2)$-relative cohomology of $\mathfrak{osp}(2|2)$, we need the description of $\mathfrak{osp}(1|2)$-invariant mappings form $\mathfrak{h} \otimes \mathfrak{g}_{\lambda} \rightarrow \mathfrak{g}_{\mu}$. To do that, we first, describe the $\mathfrak{sl}(2)$-invariant mappings form $\mathfrak{h} \otimes \mathfrak{f}_{\mathfrak{f}_2} \rightarrow \mathfrak{f}_{\mathfrak{f}_2}$. Obviously, as a $\mathfrak{sl}(2)$-module, we have $\mathfrak{h} \simeq \mathfrak{h}_0 \oplus \Pi(\mathfrak{h}_1)$, where \mathfrak{h}_0 is the subspace of $\mathfrak{f}_{-\frac{1}{2}}$ spanned by $\{x(dx)^{-\frac{1}{2}}, (dx)^{-\frac{1}{2}}\}$ and \mathfrak{h}_1 is the subspace of \mathfrak{f}_0 spanned by 1.
Lemma 4.1. (see [3]) Let \(A : \mathfrak{h}_0 \otimes \mathcal{F}_\lambda \to \mathcal{F}_\mu, (h dx^{-\frac{k}{2}}, f dx^{\lambda}) \mapsto A(h, f) dx^\mu \) be an \(\mathfrak{sl}(2) \)-invariant nontrivial bilinear differential operator. Then \(\mu = \lambda + k - \frac{1}{2} \) where \(k \) is a non-negative integer satisfying
\[
k(k-1)(2\lambda + k - 1)(2\lambda + k - 2) = 0,
\]
and, up to a scalar factor, the map \(A \) is given by:
\[
A(h, f) = h f^{(k)} + k(2\lambda + k - 1) h' f^{(k-1)}.
\]

By a straightforward computation, we can also check the following lemma.

Lemma 4.2. Let \(B : \mathfrak{h}_1 \otimes \mathcal{F}_\lambda \to \mathcal{F}_\mu, (h, f dx^{\lambda}) \mapsto B(h, f) dx^\mu \) be a nontrivial \(\mathfrak{sl}(2) \)-invariant bilinear differential operator, then
\[
\mu = \lambda \quad \text{or} \quad (\lambda, \mu) = (\frac{1-k}{2}, \frac{1+k}{2}) \quad \text{and} \quad B(h, f) = ah f^{(\mu - \lambda)},
\]
where \(k \in \mathbb{N} \) and \(a \in \mathbb{R} \).

Proposition 4.3. Let \(A : \mathfrak{h} \times \mathfrak{f}_\lambda \to \mathfrak{g}_1 \), \((H \alpha_1^{-\frac{1}{2}}, F \alpha_1^\lambda) \mapsto A(H, F) \alpha_1^\mu \) be a non-zero \(\mathfrak{osp}(1|2) \)-invariant bilinear differential operator. Then one of the following holds:

i) If \(\mu = \lambda + k - \frac{1}{2} \) where \(k \) is a non-negative integer satisfying \(k(k-1)(2\lambda + k - 1) = 0 \), then, up to a scalar factor, the map \(A \) is given by:
\[
A(H, F) = H F^{(k)} + k(2\lambda + k - 1) H' F^{(k-1)} - (-1)^{|H'|} k H' \eta_1(H) \eta_1(F^{(k-1)}). \tag{4.13}
\]

ii) If \(\mu = \lambda + k \), where \(k \) is a non-negative integer satisfying \(k(2\lambda + k)(2\lambda + k - 1) = 0 \), then, up to a scalar factor, the map \(A \) is given by:
\[
A(H, F) = (-1)^{|H|} H \eta_1(F^{(k)}) + (2\lambda + k) \left(\eta_1(H) F^{(k)} + k H' \eta_1(F^{(k-1)}) \right). \tag{4.14}
\]

Remark 4.4. For \(k = 0, 1 \), the operators (4.13) and (4.14) are not only \(\mathfrak{osp}(1|2) \)-invariant, but also \(\mathcal{K}(1) \)-invariant.

Proof. Let \(A = A_0 + A_1 \) be the decomposition of \(A \) into even and odd parts. As \(\mathfrak{sl}(2) \)-module, we have
\[
\mathfrak{h} \times \mathfrak{g}_1 \simeq \mathfrak{h}_0 \otimes \mathcal{F}_\lambda \oplus \mathfrak{h}_0 \otimes \Pi(\mathcal{F}_{\lambda + \frac{1}{2}}) \oplus \Pi(\mathfrak{h}_1) \otimes \mathcal{F}_\lambda \oplus \Pi(\mathfrak{h}_1) \otimes \Pi(\mathcal{F}_{\lambda + \frac{1}{2}}). \tag{4.15}
\]
So, the map \(A_0 \) is decomposed into four maps:
\[
\begin{align*}
\mathfrak{h}_0 \otimes \mathcal{F}_\lambda & \to \mathcal{F}_\mu, & \mathfrak{h}_0 \otimes \Pi(\mathcal{F}_{\lambda + \frac{1}{2}}) & \to \Pi(\mathcal{F}_{\mu + \frac{1}{2}}), \\
\Pi(\mathfrak{h}_1) \otimes \mathcal{F}_\lambda & \to \Pi(\mathcal{F}_{\mu + \frac{1}{2}}), & \Pi(\mathfrak{h}_1) \otimes \Pi(\mathcal{F}_{\lambda + \frac{1}{2}}) & \to \mathcal{F}_\mu
\end{align*}
\tag{4.16}
\]
and \(A_1 \) is also decomposed into four maps:
\[
\begin{align*}
\mathfrak{h}_0 \otimes \mathcal{F}_\lambda & \to \Pi(\mathcal{F}_{\mu + \frac{1}{2}}), & \mathfrak{h}_0 \otimes \Pi(\mathcal{F}_{\lambda + \frac{1}{2}}) & \to \mathcal{F}_\mu, \\
\Pi(\mathfrak{h}_1) \otimes \mathcal{F}_\lambda & \to \mathcal{F}_\mu, & \Pi(\mathfrak{h}_1) \otimes \Pi(\mathcal{F}_{\lambda + \frac{1}{2}}) & \to \Pi(\mathcal{F}_{\mu + \frac{1}{2}}).
\end{align*}
\tag{4.17}
\]
Observe that the change of parity \(\Pi \) commutes with the \(\mathfrak{sl}(2) \)-action, therefore, according to Lemma 4.1 and Lemma 4.2, we can deduce the expressions of the operators (4.16) and (4.17). We conclude by using the invariance property with respect to \(X_{\theta_1} \) and \(X_{x \theta_1} \). \qed
4.2 The space $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^2_{\lambda,\mu})$

Let $\mathfrak{g} = \mathfrak{f} \oplus \mathfrak{p}$ be a Lie superalgebra, where \mathfrak{f} is a subalgebra and \mathfrak{p} is a \mathfrak{f}-module such that $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{f}$. Consider a 1-cocycle $\Upsilon \in Z^1(\mathfrak{g}, V)$, where V is a \mathfrak{g}-module. The cocycle relation reads

$$
\Upsilon([g,h]) = (-1)^{|g||\Upsilon|}g \cdot \Upsilon(h) + (-1)^{|h||g|+|\Upsilon|}h \cdot \Upsilon(g) = 0, \quad g, h \in \mathfrak{g}.
$$

Denote $\Upsilon_\mathfrak{f} = \Upsilon|_{\mathfrak{f}}$ and $\Upsilon_\mathfrak{p} = \Upsilon|_{\mathfrak{p}}$. Obviously, $\Upsilon_\mathfrak{f}$ is a 1-cocycle over \mathfrak{f} and if $\Upsilon_\mathfrak{f} = 0$ then $\Upsilon_\mathfrak{p}$ is \mathfrak{f}-invariant. Thus, the space $H^1(\mathfrak{g}, V)$ is closely related to the space $H^1(\mathfrak{f}, V)$. Furthermore, $\Upsilon_\mathfrak{f}$ and $\Upsilon_\mathfrak{p}$ subject to the following equations:

$$
\Upsilon_\mathfrak{p}([h, p]) = (-1)^{|h||\Upsilon|}h \cdot \Upsilon_\mathfrak{p}(p) + (-1)^{|p|(|h|+|\Upsilon|)}p \cdot \Upsilon_\mathfrak{f}(h) = 0, \quad h, p \in \mathfrak{f}, \quad p \in \mathfrak{p}, \quad (4.18)
$$

$$
\Upsilon_\mathfrak{f}([p, p']) = (-1)^{|p||\Upsilon|}p \cdot \Upsilon_\mathfrak{f}(p') + (-1)^{|p'||(|p|+|\Upsilon|)}p' \cdot \Upsilon_\mathfrak{p}(p) = 0, \quad p, p' \in p. \quad (4.19)
$$

In our situation, $\mathfrak{g} = \mathfrak{osp}(2|2)$, $\mathfrak{f} = \mathfrak{osp}(1|2)$, $\mathfrak{p} = \Pi(\mathfrak{h})$ and $V = \mathcal{D}^2_{\lambda,\mu}$. Thus, as a first step towards the proof of Theorem 4.11, we shall need to compute $H^1(\mathfrak{osp}(1|2), \mathcal{D}^2_{\lambda,\mu})$. According to isomorphism (2.8), we can see that the knowledge of $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^1_{\lambda,\mu})$ allows us to compute $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^2_{\lambda,\mu})$:

$$
H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^2_{\lambda,\mu}) \simeq H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^1_{\lambda,\mu}) \oplus H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^1_{\lambda+\frac{1}{2},\mu}) \oplus H^1_{\text{diff}}(\mathfrak{osp}(1|2), \Pi(\mathcal{D}^1_{\lambda,\mu+\frac{1}{2}})) \oplus H^1_{\text{diff}}(\mathfrak{osp}(1|2), \Pi(\mathcal{D}^1_{\lambda+\frac{1}{2},\mu})).
$$

(4.20)

Of course, we can deduce the structure of $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \Pi(\mathcal{D}^1_{\lambda,\mu}))$ from $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^1_{\lambda,\mu})$. Indeed, to any $\Upsilon \in Z^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^1_{\lambda,\mu})$ corresponds $\Upsilon^\prime \in Z^1_{\text{diff}}(\mathfrak{osp}(1|2), \Pi(\mathcal{D}^1_{\lambda,\mu}))$ where $\Upsilon^\prime(X_G) = \Pi(\sigma \circ \Upsilon(X_G))$ with $\sigma(F) = (-1)^{|F|}F$. Obviously, Υ is a coboundary if and only if Υ^\prime is a coboundary. Thus, we recall the space $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^1_{\lambda,\mu})$ which was computed in [3]:

$$
H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^1_{\lambda,\mu}) \simeq \begin{cases}
\mathbb{R} & \text{if } \lambda = \mu, \\
\mathbb{R}^2 & \text{if } \lambda = \frac{1-k}{2}, \mu = \frac{k}{2}, \quad k \in \mathbb{N} \setminus \{0\}, \\
0 & \text{otherwise}.
\end{cases}
$$

A basis for the space $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathcal{D}^1_{\lambda,\mu})$ is given by the cohomology classes of the 1-cocycles $\Gamma_{\lambda,\mu}$ and $\Gamma^\prime_{\lambda,\mu}$ defined by:

$$
\Gamma_{\lambda,\mu}(X_G) = G',
$$

$$
\Gamma^\prime_{\frac{1-k}{2},\frac{k}{2}}(X_G) = (-1)^{|G|} \pi_1(G) \eta_{1}^{2k-1},
$$

$$
\Gamma^\prime_{\frac{1-k}{2},\frac{k}{2}}(X_G) = (-1)^{|G|} (k-1) \pi_1(G) \eta_{1}^{2k-3} + \pi_1(G) \eta_{1}^{2k-2}.
$$

(4.21)

4.3 The space $H^1_{\text{diff}}(\mathfrak{osp}(2|2), \mathfrak{osp}(1|2); \mathcal{D}^2_{\lambda,\mu})$

In this subsection we compute the space $H^1_{\text{diff}}(\mathfrak{osp}(2|2), \mathfrak{osp}(1|2); \mathcal{D}^2_{\lambda,\mu})$ and we prove that it is nontrivial which is not the case for $n = 1$: $H^1_{\text{diff}}(\mathfrak{osp}(1|2), \mathfrak{sl}(2); \mathcal{D}^1_{\lambda,\mu}) = 0$, see [3]. Moreover, the first author, in [9], proved that the space $H^1_{\text{diff}}(\mathcal{K}(2), \mathcal{K}(1); \mathcal{D}^2_{\lambda,\mu})$ is nontrivial while the space $H^1_{\text{diff}}(\mathcal{K}(1), \text{Vect}(\mathbb{R}); \mathcal{D}^1_{\lambda,\mu})$ is trivial, see [4]. Hence, the case $n = 2$ appears as a special case.
Theorem 4.5. \(\dim H^1_{\text{diff}}(\mathfrak{osp}(2|2), \mathfrak{osp}(1|2); \mathcal{D}^2_{\lambda, \mu}) \leq 1. \) It is 1 only if \(\lambda = \mu \neq 0 \) or \((\lambda, \mu) = (-\frac{k}{2}, \frac{k}{2}) \), where \(k \in \mathbb{N} \setminus \{0\} \). The cohomology classes of the following 1-cocycles generate the corresponding spaces:

\[
\begin{align*}
\bar{\Upsilon}_{\lambda, \lambda}(X_G) &= 2\lambda \pi_1(\partial_2(G)) - (-1)^{|G|} \left(\partial_2(G)\pi_1 + \theta_2 \pi_2 \pi_1(G)\pi_2 \right), \\
\bar{\Upsilon}_{-\frac{k}{2}, -\frac{k}{2}}(X_G) &= k \pi_1(\partial_2(G))\pi_1\pi_2^{2k-1} - (-1)^{|G|} \left(\partial_2(G)\pi_2^{2k+1} - \pi_1(\theta_2 \partial_2(G))\pi_1^{2k+1} \right).
\end{align*}
\]

(4.22)

To prove Theorem 4.5, we need the following classical fact:

Lemma 4.6. Let \(\mathfrak{g} \) be a Lie superalgebra and \(A : U \otimes V \to W \) a bilinear map, where \(U, V \) and \(W \) are \(\mathfrak{g} \)-modules. We consider the following associated maps

\[
\begin{align*}
A_1 : \Pi(U) \otimes V &\to W, \quad A_2 : \Pi(U) \otimes \Pi(V) \to \Pi(W), \\
A_3 : \Pi(U) \otimes V &\to \Pi(W), \quad A_4 : \Pi(U) \otimes \Pi(V) \to W
\end{align*}
\]

defined by

\[
\begin{align*}
A_1(\Pi(u) \otimes v) &= (-1)^{|u|}A(\Pi(u) \otimes v), \quad A_2(\Pi(u) \otimes \Pi(v)) = (-1)^{|u|}\Pi(A(\Pi(u) \otimes v)), \\
A_3(\Pi(u) \otimes v) &= (-1)^{|u|}\Pi(A(\Pi(u) \otimes v)), \quad A_4(\Pi(u) \otimes \Pi(v)) = (-1)^{|u|}A(\Pi(u) \otimes v).
\end{align*}
\]

The maps \(A_1, A_2, A_3 \) and \(A_4 \) are \(\mathfrak{g} \)-invariant if and only if \(A \) is \(\mathfrak{g} \)-invariant.

Proof. (Theorem 4.5): Consider a 1-cocycle \(\Upsilon \) over \(\mathfrak{osp}(2|2) \) vanishing on \(\mathfrak{osp}(1|2) \). Thus, the equations (4.18) and (4.19) become

\[
\begin{align*}
X_G \cdot \Upsilon(X_H) - (-1)^{|G||\Upsilon|} \Upsilon([X_G, X_H]) &= 0, \tag{4.23} \\
(-1)^{|H_1||\Upsilon|} X_{H_1} \cdot \Upsilon(X_{H_2}) - (-1)^{|H_1||\Upsilon|}|H_2| X_{H_2} \cdot \Upsilon(X_{H_1}) &= 0, \tag{4.24}
\end{align*}
\]

for all \(X_H, X_{H_1}, X_{H_2} \in \Pi(\mathfrak{h}) \) and \(X_G \in \mathfrak{osp}(1|2) \). According to the isomorphism (2.9), the map \(\Upsilon \) is decomposed into four components:

\[
\begin{align*}
\Pi(\mathfrak{h}) \times \mathfrak{g}^1_\lambda &\to \mathfrak{g}^1_\mu, \quad \Pi(\mathfrak{h}) \times \Pi(\mathfrak{g}^1_{\lambda+\frac{1}{2}}) &\to \Pi(\mathfrak{g}^1_{\mu+\frac{1}{2}}), \\
\Pi(\mathfrak{h}) \times \mathfrak{g}^1_\lambda &\to \Pi(\mathfrak{g}^1_{\mu+\frac{1}{2}}), \quad \Pi(\mathfrak{h}) \times \Pi(\mathfrak{g}^1_{\lambda+\frac{1}{2}}) &\to \mathfrak{g}^1_\mu. \tag{4.25}
\end{align*}
\]

The equation (4.23) expresses the \(\mathfrak{osp}(1|2) \)-invariance of each of these bilinear maps. Thus, using Proposition 4.3 Lemma 4.6 and equation (4.24), we prove that, if \(\Upsilon \) is an odd 1-cocycle then, up to a scalar factor, \(\Upsilon \) is given by (with \(a, b \in \mathbb{R} \) and \(k \in \mathbb{N} \setminus \{0\} \)):

\[
\Upsilon = \begin{cases}
\delta (a \partial_2^k + b(\bar{\eta}_1 + \theta_2 \bar{\eta}_1 \bar{\eta}_2) \partial_2^{k-1}) & \text{if } (\lambda, \mu) = (\frac{k}{2}, \frac{k}{2}), \\
\delta (a \partial_2^k + b \theta_2 \bar{\eta}_1 \bar{\eta}_2 \partial_2^{k-1}) & \text{if } (\lambda, \mu) = (-\frac{k}{2}, \frac{k-1}{2}), \\
\delta (\partial_2) & \text{if } \mu = \lambda + \frac{1}{2} \text{ and } \lambda \neq 0, -\frac{1}{2}, \\
\delta (\theta_2) & \text{if } \mu = \lambda - \frac{1}{2}, \\
0 & \text{otherwise.}
\end{cases}
\]
Now, if Υ is an even 1-cocycle, by the same arguments as above, we get:

$$\Upsilon = \begin{cases}
 a \tilde{\Upsilon}_{\frac{k}{2}, \frac{k}{2}} + b \delta (\tilde{\eta}_1 \partial_2 \partial_{k-1}^1) & \text{if } (\lambda, \mu) = (-\frac{k}{2}, \frac{k}{2}), \\
 a \tilde{\Upsilon}_{\lambda, \lambda} + b \delta (\theta_2 \tilde{\eta}_2) & \text{if } \lambda = \mu \neq 0, \\
 \delta (\theta_2 (a \tilde{\eta}_1 + b \tilde{\eta}_2)) & \text{if } \lambda = \mu = 0, \\
 0 & \text{otherwise}.
\end{cases}$$

where $\tilde{\Upsilon}_{\lambda, \lambda}$ and $\tilde{\Upsilon}_{\frac{k}{2}, \frac{k}{2}}$ are those given in (4.22). Therefore, in order to complete the proof of Theorem 4.5, we have to study the cohomology classes of the 1-cocycles $\tilde{\Upsilon}_{\lambda, \lambda}$ and $\tilde{\Upsilon}_{\frac{k}{2}, \frac{k}{2}}$.

Lemma 4.7. The maps $\tilde{\Upsilon}_{\lambda, \lambda}$ and $\tilde{\Upsilon}_{\frac{k}{2}, \frac{k}{2}}$ are nontrivial $osp(1|2)$-relative 1-cocycles.

Proof. First, we can easily see that, for any even element $F \in C^\infty(\mathbb{R}^{1|2})$,

$$\tilde{\Upsilon}_{\frac{k}{2}, \frac{k}{2}} \left(X_{\theta_1 \theta_2} \right) (F \alpha_{2, \frac{k}{2}}) = -k \bar{\eta}_1 \bar{\eta}_2 \alpha_{2, \frac{k}{2}} (F \alpha_{2, \frac{k}{2}})$$

(4.26)

Next, assume that there exists an even operator $A \in \mathcal{D}^{2, \frac{k}{2}, \frac{k}{2}}$ such that $\tilde{\Upsilon}_{\frac{k}{2}, \frac{k}{2}}$ is equal to δA, that is

$$\tilde{\Upsilon}_{\frac{k}{2}, \frac{k}{2}}(X_G) = \Sigma_{X_G}^\frac{k}{2} \circ A - A \circ \Sigma_{X_G}^\frac{k}{2}.$$

(4.27)

The operator A is of the form (2.7); the condition (4.27) implies that its coefficients are constants (which is equivalent to the fact that $X_1 \cdot A = 0$). Then, it is now easy to check that the condition (4.27) has no solution: using formula (2.3), we can see that the expression (4.26) never appear in the right hand side of (4.27). This is a contradiction with our assumption. Similarly, we prove that the cocycle $\tilde{\Upsilon}_{\lambda, \lambda}$ is nontrivial. Lemma 4.7 is proved. Thus we have completed the proof of Theorem 4.5. \hfill \square

Corollary 4.8. Up to a coboundary, any 1-cocycle $\Upsilon \in Z^1_{\text{diff}}(osp(2|2), \mathcal{D}^{2, \lambda, \mu})$ is invariant with respect to the vector field $X_1 = \partial_x$. That is, the map Υ can be expressed with constant coefficients.

Proof. The 1-cocycle condition reads:

$$X_1 \cdot \Upsilon(X_F) - (-1)^{|F||\Upsilon|} X_F \cdot \Upsilon(X_1) - \Upsilon([X_1, X_F]) = 0.$$

(4.28)

But, from (4.21) and Theorem 4.5, it follows that, up to a coboundary, we have $\Upsilon(X_1) = 0$, and therefore the equation (4.28) becomes

$$X_1 \cdot \Upsilon(X_F) - \Upsilon([X_1, X_F]) = 0$$

which is nothing but the invariance property of Υ with respect to X_1. \hfill \square

5 Proof of Theorem 3.1

Consider a 1-cocycle $\Upsilon \in Z^1_{\text{diff}}(osp(2|2), \mathcal{D}^{2, \lambda, \mu})$. If $\Upsilon|_{osp(1|2)}$ is trivial then the 1-cocycle Υ is completely described by Theorem 4.5. Thus, assume that $\Upsilon|_{osp(1|2)}$ is nontrivial. Of course, up to coboundary, the general form of $\Upsilon|_{osp(1|2)}$ is given by (4.21) together with the isomorphism...
while $\Upsilon_{\Pi(b)}$ can be essentially described by equation (4.18) and Corollary 4.8. More precisely, according to (4.21) and the isomorphism (4.20), the 1-cocycle Υ can be nontrivial only, a priori, if $\lambda = \mu$, or $\lambda = \mu \pm \frac{1}{2}$, or $(\lambda, \mu) = (\lambda, \mu) = (\frac{1}{2}, \frac{k}{2})$, $(\frac{1}{2}, \frac{k-1}{2})$ where $k \in \mathbb{N}$. Thus, we have to distinguish all these cases. Hereafter all ε's are constants.

The case where $\lambda = \mu$

Considering (4.21) and the isomorphism (4.20), we see that there are two subcases:

i) $\lambda = \mu \neq 0$. In this case, the map $\Upsilon_{\text{osp}(1|2)}$ is, a priori, given by

$$
\Upsilon_{\text{osp}(1|2)}(X_{G_1})(F\alpha_2^\lambda) = (\varepsilon_1 G_1' F_1 + \varepsilon_2 G_1' F_2 \theta_2) \alpha_2^\lambda,
$$

where $F = F_1 + F_2 \theta_2$, with $\partial_2 F_1 = \partial_2 F_2 = 0$. By direct computation, using equations (4.18)–(4.19) and Corollary 4.8 we deduce that

$$
\varepsilon_1 = \varepsilon_2 \quad \text{and} \quad \Upsilon_{\text{osp}(1|2)}(X_{G_2})(F\alpha_2^\lambda) = \varepsilon_1 (-1)^{|F|} G_2' F \theta_2 \alpha_2^\lambda.
$$

Hence Υ is a multiple of $\Upsilon_{\lambda, \lambda}$, see (3.12).

ii) $\lambda = \mu = 0$. Here the map $\Upsilon_{\text{osp}(1|2)}$ is, a priori, given by

$$
\Upsilon_{\text{osp}(1|2)}(X_{G_1})(F) = \left(\varepsilon_1 G_1' F_1 + \left(\varepsilon_2 G_1' F_2 + (-1)^{|F_1|} (\varepsilon_3 G_1' \overline{\eta_1}(F_1) + \varepsilon_4 \eta_1(G_1' F_1)) \right) \theta_2 \right).
$$

The same arguments, as above, show that $\varepsilon_1 = \varepsilon_2$, $\varepsilon_3 = 0$ and

$$
\Upsilon_{\text{osp}(1|2)}(X_{G_2})(F) = \left(\varepsilon_1 G_2' \theta_2 + \varepsilon_4 (-1)^{|G_2|} \eta_1(G_2) \right) F.
$$

Hence Υ is linear combination of $\Upsilon_{0,0}$ and $\tilde{\Upsilon}_{0,0}$, see (3.12).

The case where $\mu - \lambda = k$ and $2\lambda = -k \neq 0$

In this case, the map $\Upsilon_{\text{osp}(1|2)}$ is, a priori, given by

$$
\Upsilon_{\text{osp}(1|2)}(X_{G_1})(F\alpha_2^{-\frac{k}{2}}) = \\
\left((-1)^{|F_1|} (\varepsilon_1 G_1' \overline{\eta_1}(F_1) + \varepsilon_2 \left(k G_1' \overline{\eta_1}^{k-1}(F_1) + \eta_1(G_1') \overline{\eta_1}^{2k}(F_1) \right) \theta_2 \\
+ (-1)^{|F_2|} (\varepsilon_3 (k-1) G_1' \overline{\eta_1}^{2k-3}(F_2) + \eta_1(G_1') \overline{\eta_1}^{2k-2}(F_2))) \right) \alpha_2^{-\frac{k}{2}}.
$$

Again by the same arguments, we prove that we have $\varepsilon_4 = -\varepsilon_1$, $\varepsilon_3 = \varepsilon_2$ and

$$
\Upsilon_{\text{osp}(1|2)}(X_{G_2})(F\alpha_2^{-\frac{k}{2}}) = \\
\left(\varepsilon_1 G_2' \overline{\eta_1}(F^{(k-1)}) \theta_2 - \varepsilon_2 G_2' \overline{\eta_1}^{2k-1}(F) \right) \alpha_2^{-\frac{k}{2}}.
$$

Hence Υ is linear combination of $\Upsilon_{-\frac{k}{2}, -\frac{k}{2}}$ and $\tilde{\Upsilon}_{-\frac{k}{2}, -\frac{k}{2}}$, see (3.12).

For the cases where $\lambda = \mu \pm \frac{1}{2}$, or $(\lambda, \mu) = (\frac{1}{2}, \frac{k}{2})$, $(\frac{1}{2}, \frac{k-1}{2})$, the same arguments as before, show that Υ is trivial. This completes the proof.

Acknowledgements We are pleased to thank Valentin Ovsienko, Claude Roger and Christian Duval for their interest in this work. Special thanks are due to Mabrouk Ben Ammar for his constant interest in this work and a number of suggestions that have greatly improved this paper.
References

[1] Agrebaoui, B., Ammar, F., Lecomte, P., Ovsienko, V.: Multi-parameter deformations of the module of symbols of differential operators. Internat. Mathem. Research Notices 16, 847–869 (2002)

[2] Agrebaoui, B., Ben Fraj, N., Ben Ammar, M., Ovsienko, V.: Deformations of modules of differential forms. J. Nonlinear Math. Phys. 10, 148–156 (2003)

[3] Basdouri, I., Ben Ammar, M., Cohomology of $\mathfrak{osp}(1|2)$ with coefficients in $\mathcal{D}_{\lambda,\mu}$. Lett. Math. Phys. 81, 239–251 (2007)

[4] Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelben, M., Kammoun, K.: Cohomology of the Lie Superalgebra of Contact Vector Fields on $K^{1|1}$ and Deformations of the Superspace of Symbols. J. Nonlinear Math. Phys. (2009, to appear)

[5] Ben Ammar, M., Boujelbene, M.: $\mathfrak{sl}(2)$-Trivial deformations of $\text{Vect}_{\mathbb{P}}(\mathbb{R})$-modules of symbols. SIGMA 4, 065 (2008)

[6] Ben Fraj, N.: Cohomology of $K(2)$ acting on linear differential operators on the superspace $\mathbb{R}^{1|2}$. Lett. Math. Phys. 86, 159-175 (2008).

[7] Conley, C. H.: Conformal symbols and the action of Contact vector fields over the superline, arXiv: 0712.1780v2 [math.RT]

[8] Feigin, B., Fuchs, D.: Cohomology of Lie groups and Lie algebras. In: Lie groups and Lie algebras-2. Itogi nauki i theniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, v. 21, VINITI, 1988, 121–209 (= English translation by Springer in Sov. Math. Encyclop. series)

[9] Gargoubi, H., Mellouli, N., Ovsienko, V.: Differential operators on supercircle: conformally equivariant quantization and symbol calculus. Lett. Math. Phys. 79, 5165 (2007)

[10] Grozman, P., Leites, D., Shchepochkina, I.: Lie superalgebras of string theories. Acta Mathematica Vietnamica, v. 26, 2001, no. 1, 27–63, arXiv:hep-th/9702120

[11] Lecomte, P. B. A, On the cohomology of $\mathfrak{sl}(n+1;\mathbb{R})$ acting on differential operators and $\mathfrak{sl}(n+1;\mathbb{R})$-equivariant symbols. Indag. Math. NS. 11(1), 95–114 (2000)

[12] Nijenhuis, A., Richardson, Jr. R. W.: Deformations of homomorphisms of Lie groups and Lie algebras. Bull. Amer. Math. Soc. 73, 175–179 (1967)