A BIOMETRIC WITH CRYPTOGRAPHY FOR REMOTE VOTING SYSTEM

Shameem Sulthanah E.S.1, Kanmani S.2

1Assistant Professor, AASC, Pondicherry, India. shamumunch@yahoo.com
2Professor & Head, PEC, Pondicherry, India. kanmani@pec.edu

Abstract

Abstract – In this modern world everything is possible and fast. In this paper we propose a multifaceted online e-voting system. The proposed system is capable to manage through internet with multiple scopes and focus on using evidence for making access control decisions in present computing environments. To protect the election accuracy, it is necessary to have an accurate electoral roll of eligible voters. The main goal of this work is it supports a remote voter registration scheme that increases the accuracy of the current systems. In this scheme the voter identification is carried out by means of combining cryptographic and biometrics techniques. This work implements the evidence-based approach on web service and it creates an ecosystem in which evidence providers can flourish.

Keywords: E-voting, Biometric System, Cryptography, Evidence, Security.

I. INTRODUCTION

Voter registration is the process of collecting the voters’ data in order to constitute an electoral roll. Most of the proposals have been focused in voting and tallying stages, giving least interest to voter registration stage. Voter registration is conventionally carried out face to face with the registration authority. Many voters are residing abroad during an election process, it has been necessary to have new methods to collect, remotely and in a secure manner, the information of such voters. As in most of the remote transactions, current remote voter registration systems face some security problems. These problems are mainly related to the inability to accurately verify the identity of the voter, which can facilitate impersonation or multiple registrations by the same voter with different data [1].

In this paper we propose a remote voter registration scheme, in which some biometric systems play an important role to protect the accuracy of the electoral roll. Biometric systems have already considered in electronic voting in the voting phase, e.g. [2, 3]. It is important to note that sometimes voter registration is related to the voter credential generation process. Some authors have made proposals about this subject [4, 5].

A Study on Current Remote Voter Registration Process

In many countries like The United Kingdom [6] or United States [7] it is common to carry out remote voter registration. These methods allow the voter to fill out his or her own paper registration form remotely (e.g., at home) and return this form to the registration officers by using a delivery channel or optionally attending in person to a registration site. Any other alternative channels such as fax or e-mail (attaching a scanned copy of the filled form) [7]. Furthermore, there are countries [8] introducing the use of web interfaces to allow voters to fill out the registration form online, speeding up the remote acquisition of voter registration information. After sending the registration form, the identification of the voter is done by one or the combination of the following techniques: the verification of personal information of the voter and the verification of some physical characteristics of the voter.

Analyzing the problems in current Remote Voting System:

To analyze the problem the first step consists of registration officers checking to see if the voter included in the form some personal information that it is also stored in the voter register. Some examples could be the date of 1 birth, the social security number or any other familiar information (e.g., mothers'mothers' maiden name, etc.). The problem with it using such information for identifying the voter is that this information could be available in other databases (e.g., the member database of a social club) or could be known by people close to the voter.

The second step consists of requiring verifying the identity of the based on checking some voter personal characteristics, such as a handwriting signature stamped on the form or the face or fingerprint of the voter against an image or template contained contained
in some identity card or database. In any case, the accuracy of this second technique of voter identification is based on the ability of the registration officers to validate the voter authentication data. The current remote voter registration methods do not check if the same person has filled out more than a registration form by using the names of different valid voters.

Problems Identified in Current Remote Voting Systems

The contents of the registration form can be altered after the voter has sent this form. The handwriting signature on the form can be reused by an attacker to fill out a different registration form. The problem identified in handwriting signature, in fact, that it is not bound to the contents of the register. Therefore, any change in the contents of the registration form or the re-use of a valid handwriting signature in a different form cannot be detected by simply verifying the signature. So, therefore, the following problems may occur in the current remote voting system.

- Accuracy to validate the voter identity;
- Prevention of multiple registers by voters;
- Integrity of voter registration information.

To increase the accuracy of remote registration process, we propose the combination of biometric systems and cryptographic functions. Below we analyze which are the improvements of adding both techniques in remote registration process.

II. PROPOSED SYST

In our proposed systems, we have developed a web site using ASP.NET and in that we have given the registration option to the voter. The voter must fill up the registration form and should upload the scanned copy of the voter ID card and a photo along with the registration form. After submitting the registration form, the voter status will be send to the voter through e-mail. Then, based on the given voter information, the voter will be verified with Election Commission server. If it is true, then the voter will receive the identity proof through e-mail which is generated using cryptography techniques.

![Fig. 1: E-voting System System](image)

Generating ID proof using Cryptographic System

The integrity proof is represented in a format that can be legible by the voter, for instance, a base-32 notation [9]. Figure 1 shows the interaction between the voter and the Registration Module to carry out the remote registration and get the integrity proof.

![Fig. 2: Generating Identity proof](image)

In order to get the integrity proof, it is used as a combination of MD5 and SHA1 hash functions. The latest is used in its MAC implementation. This combination is conceived with the aim of preventing collisions between the digest messages, such as was found in the last years for MD5 [10,11,12,13] and for SHA1 [10,11]. The integrity proof generation is then as follows:

1. Get a digest k from the registration information Mi:

 \[K = MD5 [Mi] \]

2. Use k as a key to get a HMAC-SHA1 from the same registration information Mi: $H = HMAC-SHA1 [Mi, KM_i, K]$ The resultant H is the integrity proof. Using a combination of MD5 and HMAC-SHA1, the probability to have a collision decreases significantly. An attacker needs to find a coincidence of collision for the same text on both systems. In
addition, we are reducing the probability of these collisions without increasing the size of the digest that remains the same as a SHA1 (160 bits). Since H is based on an HMAC-SHA1, it is 160 bits long, i.e. 2160 different digests. Therefore, a base-32 notation allows a representation of SHA1 in 32 characters. These 32 characters can be shown to the voter in five groups of five characters plus the two remaining ones. However, the integrity proof H can be truncated in order to give a higher usability. For example, taking the first 20 characters, they can be shown in five groups of four characters or four groups of five characters, which is usable enough.

2.2 Accuracy on Biometric System

The voter registration system may use biometrics system. Registration module verifies some physical characteristics that uniquely identify the voter. In our proposed system, the biometric system is used to help registration officers to improve the accuracy of voter identification. Biometric systems are electronic systems specialized on identifying a user by means of processing a unique physiological or behavioral characteristic of the user. Biometric systems are classified based on the unique characteristic of the user that is used for the identification. In this proposal, the biometric characteristics will fulfill all the biometric requirements. In our analysis, we considered additional requirements for remote voter registration: the biometric system must be remotely available for most of the voters. This reduces the number of potential candidates to face biometrics, since these allow biometric information to be acquired by means of capturing the face and compare it with the integrity proof.

Using pre-existing biometric systems comparative analysis [15, 16] and taking fingerprint biometrics as reference, the proposed biometrics systems fulfill the requirements. However, as we will explain in the definition of our proposal, fingerprints do not give any advantage over the current solution on remote registration environment. The values for face have been obtained by using capturing and storing the images in database [17, 18].

This proposal system will protect the contents of the voter registration information by binding such information to the voter. This is reached by means of combining biometrics and cryptographic techniques that do not require a public key infrastructure.

![Fig. 4: Accuracy on Biometrics](image)

The proposed biometric system will provide the highest level of accuracy in remote voting system. That means a biometric characteristic that can give at the same time both authentication and integrity to the contents.

2.3 Generation and Validation of a Registration Proof

Based on the previous analysis, we will use a face biometric system in this stage. The voter carries out a communication with the Validation Module. This communication is done by means of Web camera. Then the voter is asked to give the integrity proof. He or she types the proof previously shown by the Registration Module, i.e. the groups of characters that represent the integrity proof.

By doing this process, the face of the voter is bound to the contents of the registration information. The registration proof is then stored by the Validation Module. The validation process...
facilitates the detection of people who attempt to create more than one record. Therefore, the probability of impersonation is low in our proposed system. An additional validation consists on checking the voter registration information against the associated registration proof. This check will consist of verifying if the integrity proofs match. That means, if the hash of the voter registration record has the same value as the one recorded as part of the registration proof.

III. CONCLUSIONS

In this paper we proposed the use of biometrics systems to increase the voter identification accuracy of voters that make a remote registration. Current remote voter registration systems have important issues that can facilitate voter impersonation. These issues are mainly voter identification accuracy, integrity, and multiple registrations from the same person and voter registration information. In our proposed system an identification context, biometrics systems can automate the detection of multi registrations made by the same person. Finally, we identified and proposed some biometrics methods, such as face biometrics that can also bind the registration information to the voter identity. Combining this later feature with the use of cryptographic algorithms, such as hash functions, we also provided a way to protect the integrity of voter registration information that can be suitable to implement in current environment.

REFERENCES

[1] Election Law Blog. The Extremely Weak Evidence of Voter Fraud in Crawford, the Indiana Voter ID Case. May, 2007. Available at http://electionlawblog.org/archives/008378.html

[2] Victor Morales-Rocha, Jordi Jordi Puiggali, and Miguel Soriano, Secure Remote Voter Registration -. Proceeding of 3rd international Conference on Electronic Voting Voting, GI-Edition Lecture Notes in Informatics matics August 6th8th, 2008 in Castle Hofen, Bregenz, Bregenz, Austria. pg 95-108.

[3] Mohammed Khasawneh, Mohammad Malkawi, A Biometric-Secure e e-Voting System for Election Processes, Proceeding of the 5th International Symposium on Mechatronics and its Applications (ISMA08), Amman, Amman, Jordan, May 27-29, 2008.

[4] Krivoruchko, T: Robust Coercion Resistant Registration for Remote E-Voting. Proceedings of the IAVoSS Workshop on Trustworthy Elections (WOTE 2007), 2007.

[5] Requirements and Evaluation Procedures for eVoting. Melanie Volkamer, Margaret McGaley, ARES’07: Second International Conference on Availability, Reliability and Security, IEEE, 2007

[6] Electoral Commission’ website to register to vote. Available online at http://www.aboutmyvote.co.uk/register

[7] FVAP Voting Assistance Guide. Available online at http://www.fvap.gov/pubs/vag.htm1#ch3

[8] Department of Defense U.S., Report on IVAS 2006, As Required by Section Section 596 of the National Defense Authorization Act for Fiscal Year 2007, December 2006.

[9] RFC 4648. October 2006. Available at http://tools.ietf.org/html/rfc4648#section-6

[10] Wang, X. et. al.: Cryptanalysis of the hash functions MD4 and RIPEMD. Inm Advances in Cryptology -EUROCRYPT 2005 2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings (2005), vol. 3494 of Lecture Notes in Computer Science, Springer, pp. 19-35.

[11] Wang, X.; Yu, H.: How to break MD5 and other hash functions. In Advances in Cryptology -EUROCRYPT 2005 2005, 24th Annual Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings (2005), vol. 3494 of Lecture Notes in Computer Science, Springer, pp. 19-35.

[12] Hawkes, P. et. al.: MD5 collision, October 2005. Available at http://eprint.iacr.org/2004/264.
[13] Klima, V.: Finding MD5 collisions on a notebook PC using multi-message modifications. In International Scientific Conference Security and Protection of Information, May 2005.

[14] S. Prabhakar, S. Pankanti, and A. K. Jain, “Biometric recognition: Security and privacy concerns,” IEEE Security Privacy Mag., vol. 1, no. 2, pp. 33–42, 2003.

[15] Jain, A.; Ross, A.; Prabhakar, S: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for video Technology, Vol. 14, No.1, pp. 4-20, January 2004.

[16] Tilton, C.: The Role of Biometrics in enterprise Security. Dell Power Solutions. 2006. Available online at http://www.dell.com/downloads/global/power/ps1q06-20050132-Tilton-OE.pdf.

[17] Hof, S.: E-Voting and Biometric Systems? Electronic Voting in Europe. pp. 63-72. 2004.

[18] F. Song, H. Liu, David Zhang, J. Yang, A Highly scalable incremental facial feature extraction method, Neurocomputing vol:71(2008) pg:1883-1888.

[19] Schweisgut, J: Coercion-resistant electronic

Prof. E.S. Shameem

Sulthana received her MCA from Bharathidasan University, Trichy (May'2000) and she has completed M.Phil. (Comp. Science) from Mother Teresa Women's University, Kodaikanal (June'2005). Now, she is pursuing her Ph.D. in Bharathiar University, Coimbatore. Her research area is Web Service Security.

She worked as a LECTURER in Bharathidasan Arts & Science College. After that she served as a LECTURER in MCA department in Vivekananda Engineering College. At present she is working as a ASSISTANT PROFESSOR in Dept. of Computer Science, Acharya Arts & Science College, Pondicherry.

Her research interests are in Web Technology, Network Security, Web Security. She is a Life member of computer society of India, ISTE and institute of engineers India. She has published many papers in international conferences and journals.