主論文要旨

骨肉腫は骨原発の悪性腫瘍である。肺転移に対する化学療法の奏功性が予後を左右し、治療抵抗性症例に対する新たな薬物治療の選択肢が望まれる。

骨肉腫細胞AXTは、Ink4a/Arfノックアウトマウスの骨髄間質細胞にc-Mycを過剰発現させた細胞に由来し、類骨産生、血行性肺転移など、ヒト骨肉腫の病態を模す腫瘍を形成する。マウスAXT皮下腫瘍組織破砕液のサイトカインスクリーニングから、血清中より高濃度で腫瘍内に存在する液性因子として、血小板由来成長因子（platelet-derived growth factor : PDGF）-BBが同定された。さらに皮下腫瘍での分子の発現を解析すると、腫瘍細胞自身はPDGF受容体（PDGFR）βを発現し、PDGF-BBは非腫瘍細胞由来であった。

PDGFは腫瘍を促進する増殖因子である。骨肉腫では一般的にPDGFRの発現が高く、過去には骨肉腫促進的な因子と考えられてきたが、臨床試験ではPDGFR阻害薬イマチニブ（imatinib : Imt）の骨肉腫に対する有効性が明らかにされていない。そこで、AXTを用いて骨肉腫に対するPDGFシグナルの役割を解析し、PDGFR標的療法の是非を再検討することを研究の目的とした。

血清非添加培養では、PDGF-BBはAXTの生存を支持したが、血清存在下の増殖に対する効果はなかった。また血清非添加培養で、PDGF-BBはPDGFRβを介しmitogen-activated protein kinase経路、phosphatidylinositol-3 kinase経路を活性化したが、血清添加培養では血清由来のシグナル活性化が優勢で、リガンドによる増強効果は殆ど検出されなかった。同様に、血清非存在下でのPDGF-BBによるAXT生存維持効果はImtで阻害されたが、血清によるシグナルの活性化には無効だった。

血清非存在下でのみPDGFシグナルの効果が観察されたため、血清飢餓で発生する細胞内イベントに着目した。血清飢餓は細胞内酸化ストレスを上昇させる。そこで、同様なストレス誘導効果を持つ抗癌剤アドリアマイシンとImtの併用効果を検討したところ、血清添加培養でAXTの増殖を相乗的に抑制した。

AXT皮下腫瘍マウスでも、Imt単剤では抗腫瘍効果がみられなかった。アドリアマイシンは単剤で皮下腫瘍、肺転移を縮小したが、Imtを併用することで、効果の増強を得た。

以上から、骨肉腫細胞がPDGFシグナルに生存を依存するの、血清飢餓などのストレス環境下に限られ、PDGFシグナルを標的としたImt単剤投与の効果は限局的であると考えられた。しかし、抗癌剤の併用など、Imtの抗腫瘍効果を得やすい状況を作ることで、同剤が新たな骨肉腫治療の選択肢となり得る可能性が示唆された。