REGULARITY OF POWERS OF EDGE IDEALS OF UNICYCLIC GRAPHS

ALI ALILOOEE, SELVI KARA, AND S. SELVARAJA

Abstract. Let G be a finite simple graph and $I(G)$ denote the corresponding edge ideal. In this paper we prove that if G is a unicyclic graph then for all $s \geq 1$ the regularity of $I(G)^s$ is exactly $2s + \text{reg}(I(G)) - 2$. We also give a combinatorial characterization of unicyclic graphs with regularity $\nu(G) + 1$ and $\nu(G) + 2$ where $\nu(G)$ denotes the induced matching number of G.

1. Introduction

Let $G = (V(G), E(G))$ denote a finite simple (no loops, no multiple edges) undirected graph with vertices $V(G) = \{x_1, \ldots, x_n\}$ and edge set $E(G)$. By identifying the vertices with the variables in the polynomial ring $R = K[x_1, \ldots, x_n]$ where K is a field, we can associate each graph G to a monomial ideal $I(G)$ generated by the set $\{x_i x_j \mid \{x_i, x_j\} \in E(G)\}$. The ideal $I(G)$ is called the edge ideal of G. Recently, building a dictionary between combinatorial data of graphs and the algebraic properties of the corresponding edge ideals has been studied by various authors, (cf. [4], [5], [15], [18], [20], [22], [23], [24], [26], [27], [31], [32]). In particular, establishing a relationship between Castelnuovo-Mumford regularity of the edge ideals and combinatorial invariants associated with graphs such as induced matching number, matching number and co-chordal cover number is an active research topic, (cf. [20], [24], [31]).

Our motivation to study regularity of powers of edge ideals springs from a famous result: for a homogeneous ideal I in a polynomial ring, $\text{reg}(I^s)$ is asymptotically a linear function for $s \gg 0$, (cf. [7], [10], [25], [29]), i.e., there exist non-negative integers a, b, s_0 such that

$$\text{reg}(I^s) = as + b$$

for all $s \geq s_0$.

While the coefficient a is well-understood ([10], [25], [29]), the constants b and s_0 are quite mysterious. In this regard, there has been an interest in finding the exact form of the linear function and determining the stabilization index s_0 where $\text{reg}(I^s)$ becomes linear (cf. [3], [8], [12], [13], [17]). It turns out that even in the case of monomial ideals it is challenging to find the linear function and s_0 (cf. [9], [18]). In this paper, we consider $I = I(G)$, the edge ideal of G. In this case, there exist integers b and s_0 such that $\text{reg}(I^s) = 2s + b$ for all $s \geq s_0$. Our objective in this paper is to find b and s_0 in terms of combinatorial invariants of the graph G when G is a unicyclic graph, i.e. a graph containing exactly one cycle. There are few classes of graphs for which b and s_0 are explicitly computed (see, for example, [1], [2], [4], [15], [23], [26]).

Key words and phrases. Regularity, Edge ideal, Unicyclic graph, Asymptotic linearity of regularity, Monomial ideal.

AMS Classification 2010: 05C25, 05C38, 05E40, 13D02, 13F20.
In [4], Kara, Hà and Trung proved that $2s + \nu(G) - 1 \leq \text{reg}(I(G))s$ for $s \geq 1$ and any graph G where $\nu(G)$ denote the induced matching number of G. They also proved that the equality holds for $s \geq 1$ when G is a forest and for $s \geq 2$ when G is a cycle. A natural class of graphs to consider next is unicyclic graphs. The regularity of edge ideal of a unicyclic graph is investigated in [4] and the depth of powers of edge ideal of a unicyclic graph have been studied in [30]. Throughout the paper, we shall restrict our attention to unicyclic graphs which are connected and not cycles.

We then compute the regularity of powers of edge ideals of unicyclic graphs. The main result of the paper is the following.

Theorem 1.1. (Theorem 5.4.) If G is a unicyclic graph, then for all $s \geq 1$,
\begin{equation}
\text{reg}(I(G)^s) = 2s + \text{reg}(I(G)) - 2.
\end{equation}

Note that for this class of graphs, we have $b = \text{reg}(I(G)) - 2$ and $s_0 = 1$. As an immediate consequence, we derive one of the main results of [26], that the above equality holds for whiskered cycle graphs.

To prove Theorem 1.1, we establish the upper bound $\text{reg}(I(G)^s) \leq 2s + \text{reg}(G) - 2$ for all $s \geq 1$ when G is a unicyclic graph (Lemma 5.3). This upper bound coupled with the lower bound given in [4] Theorem 4.5 leads us to the following.

\begin{equation}
2s + \nu(G) - 1 \leq \text{reg}(I(G)^s) \leq 2s + \text{reg}(I(G)) - 2.
\end{equation}

It follows from the above inequalities that $\text{reg}(I(G)^s) = 2s + \nu(G) - 1$ for all $s \geq 1$ when $\text{reg}(I(G)) = \nu(G) + 1$. In the case where $\text{reg}(I(G)) = \nu(G) + 2$, we present an induced subgraph of G, say H, such that $\text{reg}(I(H)^s) = 2s + \nu(G)$. Thus by making use of [4] Corollary 4.3 and the upper bound, we prove that $\text{reg}(I(G)^s) = 2s + \nu(G)$ for all $s \geq 1$.

The first key step in the proof of the main result is to compute $\text{reg}(I(G))$ for a unicyclic graph G and the results obtained in this step are of independent interest. It is known that for any unicyclic graph G,
\begin{equation}
\nu(G) + 1 \leq \text{reg}(I(G)) \leq \nu(G) + 2.
\end{equation}

The lower bound was proved by Katzman, [24] and the upper bound was proved by Bıyıkolu and Civan, [5]. In this paper, we provide the complete combinatorial characterization of unicyclic graphs where the regularity is $\nu(G) + 1$ and $\nu(G) + 2$.

In the pursuit of the desired characterization, we make use of an important yet a basic observation related to the structure of unicyclic graphs: a unicyclic graph is obtained from a cycle by attaching trees to some of the vertices of the cycle. We then call those vertices of the cycle as roots and introduce the notation $\Gamma(G)$ to denote the neighbors of roots which are not on the cycle.

Our first result in this context gives the characterization of unicyclic graphs when $\text{reg}(I(G)) = \nu(G) + 2$.

Theorem 1.2. (Corollary 3.9.) Let G be a unicyclic graph with cycle C_n. Then $\text{reg}(I(G)) = \nu(G) + 2$ if and only if $n \equiv 2 \pmod{3}$ and $\nu(G \setminus \Gamma(G)) = \nu(G)$ where $G \setminus \Gamma(G)$ is the induced subgraph of G on $V(G) \setminus \Gamma(G)$.

In order to prove Theorem 1.2, we provide necessary conditions for a unicyclic graph to have regularity $\nu(G) + 1$ (Lemma 3.3 and Theorem 3.6) and $\nu(G) + 2$ (Theorem 3.8).
The characterization of unicyclic graphs with regularity $\nu(G) + 1$ (Corollary 3.11) follows from Theorem 1.2.

Our paper is organized as follows. In section 2, we collect the necessary notation and terminology that will be used in the paper. In Section 3, we prove Theorem 1.2. Section 4 is devoted to finding bounds for regularity of special colon ideals related to paths and cycles. Finally, we prove Theorem 1.1 in Section 5 by using the main result of Section 4.

2. Preliminaries

In this section, we set up the basic definitions and terminology needed for the main results.

Let G be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex x in a graph G, let $N_G(x) = \{y \in V(G) \mid \{x, y\} \in E(G)\}$ be the set of neighbors of x and set $N_G[x] = N_G(x) \cup \{x\}$. An edge e is incident to a vertex x if $x \in e$. If $e = \{x, y\}$ then set $N_G[e] = N_G[x] \cup N_G[y]$. We often use $xy \in E$ instead of $\{x, y\} \in E(G)$. By abusing notation, we use the notation xy to refer to both the edge $xy \in E(G)$ and the monomial $xy \in I(G)$.

The degree of a vertex $x \in V(G)$, denoted by $\deg_G(x)$, is the number of edges incident to x. If $\deg_G(x) = 1$, then x is called a leaf of G. If x is a leaf and $N_G(x) = \{y\}$, then we also call the edge $e = \{x, y\}$ a leaf (also called whisker) of G. Let C_n denote the cycle on n vertices and P_n denote the path on n vertices. The length of a path, or a cycle is its number of edges.

Let $e \in E(G)$, then define $G \setminus e$ to be the subgraph of G obtained from G by deleting the edge e but keeping its vertices. If $W \subseteq V(G)$ in G, then $G \setminus W$ denotes the subgraph of G with the vertices in W and all incident edges deleted. When $W = \{x\}$ consists of a single vertex, we shall write $G \setminus x$ instead of $G \setminus \{x\}$.

A graph H is called an induced subgraph of G if the vertices of H are the vertices of G, and for the vertices x and y in H, $\{x, y\}$ is an edge in H if and only if $\{x, y\}$ is an edge in G. The induced subgraph of G over a subset $W \subseteq V(G)$ is obtained by deleting all the vertices that are not in W from G.

Let G and H be graphs. Their union, denoted by $G \cup H$, is a graph with the vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If G and H disjoint graphs (i.e., $V(G) \cap V(H) = \emptyset$), we denote the disjoint union of G and H by $G \sqcup H$.

A matching in a graph G is a collection of pairwise disjoint edges $\{e_1, \ldots, e_s\}$. We call a collection of edges $\{e_1, \ldots, e_s\}$ an induced matching if they form a matching in G, and they are exactly the edges of the induced subgraph of G over the vertices $\bigcup_{i=1}^s e_i$. The largest size of an induced matching in G is called its induced matching number and denoted by $\nu(G)$. Note that if H is an induced subgraph of G, then $\nu(H) \leq \nu(G)$. Furthermore, if G and H are disjoint graphs, then $\nu(G \sqcup H) = \nu(G) + \nu(H)$.

Example 2.1. Let G be a graph with $V(G) = \{x_1, \ldots, x_7\}$.
Figure 1. A finite simple graph

Then \(\{x_1x_6, x_2x_3, x_4x_7\} \) forms a matching, but not an induced matching (the induced subgraph on \(\{x_1, x_2, x_3, x_4, x_6, x_7\} \) also contains edges \(\{x_1x_2, x_3x_4\} \)). The induced matching number \(\nu(G) \) is 2.

The following observation will be used repeatedly in our proofs.

Observation 2.2. Let \(G \) be a graph with a leaf \(u \) and its unique neighbor \(v \), say \(e = \{u, v\} \). If \(\{e_1, \ldots, e_s\} \) is an induced matching in \(G \setminus V_G[v] \), then \(\{e_1, \ldots, e_s, e\} \) is an induced matching in \(G \). Therefore, \(\nu(G \setminus N_G[v]) + 1 \leq \nu(G) \).

Definition 2.3. Let \(R \) be a standard graded polynomial ring over a field \(K \). The *Castelnuovo-Mumford regularity* (or regularity) of a finitely generated graded \(R \) module \(M \), written \(\text{reg}(M) \) is given by

\[
\text{reg}(M) := \max \{ j - i \mid \text{Tor}_i(M, K)_j \neq 0 \}.
\]

When discussing the regularity of edge ideals, for simplicity of notation, we shall use \(\text{reg}(G) \) to also refer to \(\text{reg}(I(G)) \).

Let \(I \) be a non-zero proper homogeneous ideal of \(R \). Then it is straight from the definition that \(\text{reg}(R/I) = \text{reg}(I) - 1 \).

For a homogeneous ideal \(I \) in \(R \) and any homogeneous element \(M \in R \) of degree \(d \), the following short exact sequence is a standard tool in commutative algebra:

\[
0 \rightarrow R \frac{I: M}{M}(-d) \rightarrow R \frac{I}{M} \rightarrow R \frac{I}{I+M} \rightarrow 0 \quad (2.1)
\]

By taking the long exact sequence of local cohomology modules associated to (2.1) we have the following useful inequality

\[
\text{reg}(I) \leq \max \{ \text{reg}(I : M) + d, \text{reg}(I, M) \}. \quad (2.2)
\]

We use the following well-known theorem to prove an upper bound for the regularity of edge ideals inductively:

Theorem 2.4. Let \(G = (V(G), E(G)) \) be a graph.

1. [8] Lemma 3.1 If \(H \) is an induced subgraph of \(G \), then \(\text{reg}(I(H)) \leq \text{reg}(I(G)) \).
2. [11] Lemma 2.10 Let \(x \in V(G) \). Then

\[
\text{reg}(I(G)) \leq \max \{ \text{reg}(I(G \setminus x)), \text{reg}(I(G \setminus N[x])) + 1 \}.
\]
The concept of even-connectedness was introduced by Banerjee in [2]. This notion has emerged as a fine tool in the inductive process of computing asymptotic regularity.

Definition 2.5. Let $G = (V(G), E(G))$ be a graph. Two vertices u and v (u may be the same as v) are said to be even-connected with respect to an s-fold product $e_1 \cdots e_s$ where e_i's are edges of G, not necessarily distinct, if there is a path $p_0p_1 \cdots p_{2k+1}, k \geq 1$ in G such that:

1. $p_0 = u, p_{2k+1} = v$.
2. For all $0 \leq l \leq k - 1$, $p_{2l+1}p_{2l+2} = e_i$ for some i.
3. For all $i, \{l \geq 0 \mid p_{2l+1}p_{2l+2} = e_i\} \leq \{j \mid e_j = e_i\}$.
4. For all $0 \leq r \leq 2k$, $p_{r}p_{r+1}$ is an edge in G.

Example 2.6. In Example 2.1 if we set $e_1 = x_1x_5$ and $e_2 = x_3x_4$, then we have x_6 and x_7 are even-connected in G with respect to e_1e_2 since we have the path $(p_0 = x_6)x_1x_5x_3x_4(x_7 = p_5)$. Also note that x_2 is even-connected to itself with respect to e_1e_2 since we have the path $x_2x_1x_5x_4x_3x_2$.

As 2.2 points out, analyzing the ideal $(I(G)^{s+1} : M)$ for a minimal monomial generator of $I(G)$ can be used as an important asset in the computation of asymptotic regularity. In [2], it is proved that these ideals are generated in degree two for any graph and the description of the generators of this ideal is given by using the notion of even-connection.

Theorem 2.7. [2] Theorem 6.1 and Theorem 6.7] Let G be a graph with edge ideal $I = I(G)$, and let $s \geq 1$ be an integer. Let M be a minimal generator of I^s. Then $(I^{s+1} : M)$ is minimally generated by monomials of degree 2, and uv (u and v may be the same) is a minimal generator of $(I^{s+1} : M)$ if and only if either $\{u,v\} \in E(G)$ or u and v are even-connected with respect to M.

Polarization is a process to obtain a squarefree monomial ideal from a given monomial ideal and it behaves well under regularity. For details of polarization we refer to [14] and [21].

Definition 2.8. Let $M = x_1^{a_1} \cdots x_n^{a_n}$ be a monomial in $R = k[x_1, \ldots, x_n]$. Then we define the squarefree monomial $P(M)$ (polarization of M) as

$$P(M) = x_{11} \cdots x_{1a_1}x_{21} \cdots x_{2a_2} \cdots x_{n1} \cdots x_{na_n}$$

in the polynomial ring $S = k[x_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq a_i]$. If $I = (M_1, \ldots, M_q)$ is an ideal in R, then the polarization of I, denoted by I^{pol}, is defined as $I^{\text{pol}} = (P(M_1), \ldots, P(M_q))$.

Corollary 2.9. [21] Corollary 1.6.3.d] Let $I \subset R$ be a monomial ideal and $I^{\text{pol}} \subset S$ be its polarization. Then $\text{reg}(R/I) = \text{reg}(S/I^{\text{pol}})$.

3. **Regularity of unicyclic graphs**

The regularity of unicyclic graphs is studied in [3] and the authors proved that it is either $\nu(G) + 1$ or $\nu(G) + 2$. In this section, we provide the combinatorial characterization of unicyclic graphs with regularity $\nu(G) + 1$ and regularity $\nu(G) + 2$.

The following theorem by Bıyıkoğlu and Civan turns out to be crucial in proving our main results.
Theorem 3.1. [5, Corollary 4.12] If \(G \) is a unicyclic graph, then
\[
\nu(G) + 1 \leq \text{reg}(I(G)) \leq \nu(G) + 2.
\]

We start our investigation by computing the regularity of a unicyclic graph with exactly one leaf.

Lemma 3.2. Let \(G \) be obtained from \(C_n : x_1x_2 \cdots x_n \) by attaching a leaf, say \(y \), to a vertex \(x_i \) where \(1 \leq i \leq n \). Then
\[
\text{reg}(I(G)) = \nu(G) + 1.
\]

Proof. By [6, Lemma 3.25], we have
\[
\text{reg}(I(G)) = \text{reg}(I(G \setminus y)) \quad \text{or} \quad \text{reg}(I(G)) = \text{reg}(I(G \setminus N_G[x_i])) + 1.
\]
If \(\text{reg}(I(G)) = \text{reg}(I(G \setminus y)) \), then by [22, Theorem 7.6.28]
\[
\text{reg}(I(G)) = \text{reg}(I(G \setminus y)) = \text{reg}(I(C_n)).
\]
If \(n \equiv \{0, 1\} (\text{mod} \ 3) \), then \(\text{reg}(I(G)) = \text{reg}(I(C_n)) = \nu(G) + 1 \). If \(n \equiv 2 (\text{mod} \ 3) \), then \(\text{reg}(I(G)) = \text{reg}(I(C_n)) = \nu(C_n) + 2 = \nu(G) + 1 \). If \(\text{reg}(I(G)) = \text{reg}(I(G \setminus N_G[x_i])) + 1 \), then by [32, Theorem 2.18] and Observation 2.2
\[
\text{reg}(I(G)) = \text{reg}(I(G \setminus N_G[x_i])) + 1 = \nu(G \setminus N_G[x_i]) + 2 \leq \nu(G) + 1.
\]
By [24, Lemma 2.2], we have \(\text{reg}(I(G)) = \text{reg}(I(G \setminus N_G[x_i])) + 1 = \nu(G) + 1 \). Therefore \(\text{reg}(I(G)) = \nu(G) + 1 \). \(\square \)

The first general case we consider is based on the size of the cycle in a unicyclic graph.

Lemma 3.3. Let \(G \) be a unicyclic graph with cycle \(C_n \). If \(n \equiv \{0, 1\} (\text{mod} \ 3) \), then
\[
\text{reg}(I(G)) = \nu(G) + 1.
\]

Proof. By [24, Lemma 2.2], we have \(\text{reg}(I(G)) \geq \nu(G) + 1 \). It suffices to show that \(\text{reg}(I(G)) \leq \nu(G) + 1 \). Let \(F \) be the graph with \(E(F) = E(G) \setminus E(C_n) = \{f_1, \ldots, f_k\} \). We use induction on \(k \). If \(k = 1 \), then by Lemma 3.2, we have \(\text{reg}(I(G)) = \nu(G) + 1 \). Assume that \(k \geq 2 \). There is a leaf \(y \) in \(G \) such that \(\{x\} = N_G(y) \). Set \(G' = G \setminus x \) and \(G'' = G \setminus N_G[x] \). By Theorem 2.4, we have
\[
\text{reg}(I(G)) \leq \max\{\text{reg}(I(G')), \text{reg}(I(G'')) + 1\}. \tag{3.1}
\]
Note that \(G' \) is a unicyclic graph, a forest, or a cycle and also \(G'' \) is a unicyclic graph, a forest, or a cycle. Therefore
\[
\text{reg}(I(G')) = \nu(G') + 1 \leq \nu(G) + 1
\]
by the induction hypothesis or [32, Theorem 2.18] or [22, Theorem 7.6.28].

By Observation 2.2, \(\nu(G'') < \nu(G) \). Then it follows from the induction hypothesis or [32, Theorem 2.18] or [22, Theorem 7.6.28] that
\[
\text{reg}(I(G'')) = \nu(G'') + 1 \leq \nu(G).
\]
Therefore \(\text{reg}(I(G)) \leq \nu(G) + 1 \) by Equation 3.1. \(\square \)
A unicyclic graph can be viewed as a graph obtained by attaching trees to some vertices of a cycle C_n. Those vertices of the cycle C_n can be thought as the roots of attached trees.

In the above graph, vertices x_1, x_2 and x_5 can be considered as roots of the trees. Let T_1 be the tree with the root x_1 and the edges $\{\{x_1, y_1\}, \{x_1, y_2\}\}$, T_2 be the tree with root x_2 and the edges $\{\{x_2, y_6\}, \{x_2, y_3\}, \{y_3, y_4\}, \{y_4, y_5\}\}$, and T_3 be the tree with root x_5 and the edge $\{\{x_5, y_7\}\}$.

Understanding the relationship between the induced matching numbers of a unicyclic graph and collection of some induced subgraphs of the attached rooted trees plays a key role in the classification of regularity of unicyclic graphs. For this purpose, we introduce the following notation and use it in the rest of the paper.

3.1. Notation.
Let G be a unicyclic graph with cycle $C_n : x_1 x_2 \cdots x_n$ and T_1, \ldots, T_m be the rooted trees of G with roots $\{x_{i_1}, \ldots, x_{i_m}\} \subseteq V(C_n)$. Consider all the neighbors of $\{x_{i_1}, \ldots, x_{i_m}\}$ in the rooted trees and denote that collection by $\Gamma(G)$.

$$\Gamma(G) = \bigcup_{j=1}^{m} N_{T_j}(x_{i_j}) := \{y_1, \ldots, y_t\} \subseteq \bigcup_{j=1}^{m} V(T_j).$$

Note that none of the vertices in $\Gamma(G)$ can be a vertex on the cycle C_n. Let H_j be the induced subgraph of T_j obtained by deleting the elements of $\Gamma(G)$ that are vertices in T_j.

$$H_j = T_j \setminus \{z_k \mid z_k \in V(T_j) \cap \Gamma(G)\}.$$

Note that H_j is either a forest or a tree, and H_j’s are disjoint. Thus

$$G \setminus \Gamma(G) = C_n \coprod \left(\coprod_{j=1}^{m} H_j \right) \text{ and } \nu(G \setminus \Gamma(G)) = \nu(C_n) + \sum_{j=1}^{m} \nu(H_j). \quad (3.2)$$

Example 3.4. Let G be the graph in Figure 2. Then $\Gamma(G) = \{y_1, y_2, y_3, y_6, y_7\}$ and $G \setminus \Gamma(G) = C_5 \coprod H_2$ where $\{y_4, y_5\}$ is the only edge of H_2.

It turns out that induced matching of G is preserved under deletion of vertices of $\Gamma(G)$ if it is preserved on each rooted tree.

Lemma 3.5. If $\nu(H_j) = \nu(T_j)$ for all $1 \leq j \leq m$, then $\nu(G \setminus \Gamma(G)) = \nu(G)$.
Proof. Since $G \setminus \Gamma(G)$ is an induced subgraph of G, we have $\nu(G \setminus \Gamma(G)) \leq \nu(G)$. It remains to prove the reverse inequality. It follows from the assumption and Equation 3.2 that

$$\nu(G \setminus \Gamma(G)) = \nu(C_n) + \sum_{j=1}^{m} \nu(T_j).$$

If C is an induced matching of G, then C can be decomposed as a union of an induced matching in C_n and induced matchings in T_j’s. Hence

$$\nu(G) \leq \nu(C_n) + \sum_{j=1}^{m} \nu(T_j).$$

It concludes that $\nu(G \setminus \Gamma(G)) = \nu(G)$. \qed

With the help of Lemma 3.5, we get another sufficient condition for $\text{reg}(I(G)) = \nu(G) + 1$ when G is a unicyclic graph.

Theorem 3.6. If $\nu(G \setminus \Gamma(G)) < \nu(G)$, then $\text{reg}(I(G)) = \nu(G) + 1$.

Proof. By [24, Lemma 2.2], we have $\text{reg}(I(G)) \geq \nu(G) + 1$. It suffices to show that $\text{reg}(I(G)) \leq \nu(G) + 1$. Since $\nu(G \setminus \Gamma(G)) < \nu(G)$, by Lemma 3.5, there exists a rooted tree T_r with root x_{i_r} such that $\nu(H_r) < \nu(T_r)$ for some $r \in \{1, \ldots, m\}$.

Let $G_1 = G \setminus x_{i_r}$ and $G_2 = G \setminus N_G[x_{i_r}]$. By Theorem 2.4 we have

$$\text{reg}(I(G)) \leq \max\{\text{reg}(I(G_1)), \text{reg}(I(G_2))\} + 1. \quad (3.3)$$

Since G_1 and G_2 are forests, by [32, Theorem 2.18], we have

$$\text{reg}(I(G_i)) = \nu(G_i) + 1 \text{ for } i = 1, 2.$$

It is clear that $\text{reg}(I(G_1)) \leq \nu(G) + 1$. Thus proving $\nu(G_2) + 1 \leq \nu(G)$ yields to the desired equality.

Observe that G_2 can be written as a disjoint union of H and H_r where H is the induced subgraph of G obtained by deleting the vertices of T_r and $N_G[x_{i_r}]$. Let C be an induced matching of G_2. Then C can be decomposed as a disjoint union of an induced matching in H and H_r. Let C_H and C_{H_r} denote the corresponding induced matchings of H and H_r, respectively.

Suppose $C_{H_r} = \{h_1, \ldots, h_3\}$. Since $\nu(H_r) < \nu(T_r)$, there exists an edge e incident to z_j for some $z_j \in V(T_r) \cap \Gamma(G)$ such that $\{e, h'_1, \ldots, h'_3\}$ is an induced matching in T_r. Note that $\{h'_1, \ldots, h'_3\}$ is an induced matching in H_r. Furthermore, $C_H \cup \{e, h'_1, \ldots, h'_3\}$ is an induced matching in G due to the fact that neighbors of x_{i_r} are deleted to construct H and $z_j \in N_G[x_{i_r}]$. Therefore $\text{reg}(I(G_2)) = \nu(G_2) + 1 \leq \nu(G)$. It follows from Equation 3.3 that

$$\text{reg}(I(G)) \leq \nu(G) + 1. \quad \square$$

Example 3.7. Let G be the graph in Figure 2. Note that $\nu(G \setminus \Gamma(G)) = 2 < \nu(G) = 3$. Thus by Theorem 3.6, we have $\text{reg}(G) = 4$.

Our next step is to provide sufficient conditions for $\text{reg}(I(G)) = \nu(G) + 2$ when G is a unicyclic graph.

Theorem 3.8. Let G be a unicyclic graph with cycle C_n. If $\nu(G \setminus \Gamma(G)) = \nu(G)$ and $n \equiv 2 \ (\text{mod} \ 3)$, then $\text{reg}(I(G)) = \nu(G) + 2$.
Proof. Recall that \(\nu(G \setminus \Gamma(G)) = \nu(C_n) + \nu(\bigcup_{i=1}^{t} H_i) \) for some \(t \geq 0 \) by Equation 3.2.

Then

\[
\begin{align*}
\text{reg}(I(G \setminus \Gamma(G)) &= \text{reg}(I(C_n)) + \text{reg}(I(\bigcup_{i=1}^{t} H_i)) - 1 \quad \text{(31 Lemma 8)} \quad \text{(22 Theorem 7.6.28) and} \\
&= \nu(C_n) + 2 + \nu(\bigcup_{i=1}^{t} H_i) \\
&= \nu(G \setminus \Gamma(G)) + 2 \\
&= \nu(G) + 2.
\end{align*}
\]

As \(G \setminus \Gamma(G) \) is an induced subgraph of \(G \), we have \(\text{reg}(I(G)) \geq \nu(G) + 2 \) by Theorem 2.4. Hence \(\text{reg}(I(G)) = \nu(G) + 2 \) by Theorem 3.1. \(\square \)

One of the main results in this section is an immediate corollary of Theorem 3.6 and Theorem 3.8.

Corollary 3.9. Let \(G \) be a unicyclic graph with cycle \(C_n \). Then \(\text{reg}(I(G)) = \nu(G) + 2 \) if and only if \(n \equiv 2 \pmod{3} \) and \(\nu(G \setminus \Gamma(G)) = \nu(G) \).

Proof. It is known that \(\text{reg}(I(G)) = \nu(G) + 1 \) or \(\text{reg}(I(G)) = \nu(G) + 2 \) due to Theorem 3.1. Thus the proof follows directly from Lemma 3.3, Theorem 3.6 and Theorem 3.8. \(\square \)

Remark 3.10. Let \(G \) be a unicyclic graph with cycle \(C_n \). If \(G \) satisfies the conditions from Corollary 3.9, then \(\text{reg}(I(G)) > 3 \).

Recall that regularity of a unicyclic graph \(G \) is either \(\nu(G) + 1 \) or \(\nu(G) + 2 \). Thereby, taking the contrapositive of Corollary 3.9 completes the characterization of unicyclic graphs with regularity \(\nu(G) + 1 \).

Corollary 3.11. Let \(G \) be a unicyclic graph with cycle \(C_n \). Then \(\text{reg}(I(G)) = \nu(G) + 1 \) if and only if \(n \equiv \{0, 1\} \pmod{3} \) or \(\nu(G \setminus \Gamma(G)) < \nu(G) \).

Application of Corollary 3.9 and Corollary 3.11 yields yet another positive result, namely, a partial answer to a question posed by Hä, [18, Problem 6.3].

Corollary 3.12. Let \(G \) be a unicyclic graph with cycle \(C_n \). Then \(\text{reg}(I(G)) = 3 \) if and only if \(\nu(G) = 2 \) and \(n \equiv \{0, 1\} \pmod{3} \) or \(\nu(G \setminus \Gamma(G)) < \nu(G) \).

For a graph \(G \) on \(n \) vertices, let \(W(G) \) be the whiskered graph on \(2n \) vertices obtained by adding a pendent vertex (an edge to a new vertex of degree 1) to every vertex of \(G \).

As a consequence of Corollary 3.11, we derive the following result in [26].

Corollary 3.13. [26, Proposition 1.1] If \(G = W(C_n) \) for \(n \geq 3 \), then \(\text{reg}(I(G)) = \nu(G) + 1 \).

Proof. If \(n \equiv \{0, 1\} \pmod{3} \), then by Corollary 3.11, \(\text{reg}(I(G)) = \nu(G) + 1 \). If \(n \equiv 2 \pmod{3} \), then we can observe that \(\nu(G \setminus \Gamma(G)) = \nu(C_n) < \nu(G) \). Therefore by Corollary 3.11, \(\text{reg}(I(G)) = \nu(G) + 1 \). \(\square \)
4. Regularity bounds for colon ideals of cycles

Let \(\tilde{G} \) denote the graph associated to edge ideal \((I(G)^{s+1} : M)^{\text{pol}}\) where \(M \) is a minimal monomial generator of \(I(G)^s \) for some \(s \geq 1 \). In this section, we investigate the regularity of \(\tilde{G} \cup F \) where \(F \) is a forest attached to \(G \) at some of its vertices. In particular, we consider the cases when \(G \) is a path and a cycle. Furthermore, we obtain an upper bound on regularity of \(\tilde{G} \cup F \) in terms of the induced matching number of \(G \cup F \). These bounds are interesting on their own but they will also be used later in the proofs of our main result.

Let \(C_n \) be a cycle with vertices \(x_1, \ldots, x_n \) (in order) and \(M \) be a minimal monomial generator of \(I(C_n)^s \) for \(s \geq 1 \). In order to compute regularity of powers of cycles, authors of [4] studied generators of \((I(C_n)^{s+1} : M)\) and bounded its regularity in terms of induced matching of \(C_n \). We start the section by rephrasing couple relevant results from the proof of Theorem 5.2 in [4]. Motivated by these results, we start developing the main machinery of this section.

Remark 4.1. Let \(J \) be the polarization of \((I(C_n)^{s+1} : M)\) and \(\tilde{C}_n \) be the graph associated to \(J \). It is known due to Theorem 2.7 that \(E(C_n) \subseteq E(\tilde{C}_n) \) and all the remaining edges of \(\tilde{C}_n \) come from even connections. In particular, \(\{u, v\} \in E(\tilde{C}_n) \) when \(u \) and \(v \) are even-connected with respect to \(M \), and whiskers \(\{x_{ij}, z_j\} \in E(\tilde{C}_n) \) where \(z_j \) is a new variable obtained by polarizing \(x_{ij}^2 \) if \(x_{ij}^2 \in (I(C_n)^{s+1} : M) \). Note that \(u \neq v \) in this setting.

Let \(C_n^{\text{even}} \) be the graph with all such even-connected edges \(\{u, v\} \). It is shown in [4] Theorem 5.2 that deleting whisker does not change the regularity and
\[
\text{reg}(\tilde{C}_n) = \text{reg}(C_n \cup C_n^{\text{even}}) \leq \nu(C_n) + 1.
\]

Understanding the new edges coming from even-connections in a graph plays an essential role in computing the regularity of powers of an edge ideal (see [2, 23]). The following result considers the case when the even-connection paths in \(G \) are independent from a subgraph of \(G \).

Lemma 4.2. Let \(G_1, G_2 \) be subgraphs of \(G \) such that \(E(G_1) \cup E(G_2) = E(G) \) and \(E(G_1) \cap E(G_2) = \emptyset \). Suppose \(M \) is a minimal monomial generator of \(I(G_1)^s \) for \(s \geq 1 \) such that none of the vertices in \(G_2 \) divides \(M \). Then
\[
(I(G)^{s+1} : M) = (I(G_1)^{s+1} : M) + I(G_2).
\]

Proof. The statement holds trivially when \(E(G_2) = \emptyset \). Thus we may assume that \(E(G_2) \neq \emptyset \). It is clear that \((I(G_1)^{s+1} : M) + I(G_2) \subseteq (I(G)^{s+1} : M)\) by Theorem 2.7. If \(uv \) is a minimal generator of \((I(G)^{s+1} : M)\), then either \(\{u, v\} \in E(G) \) or \(u \) and \(v \) are even-connected with respect to \(M \). If \(\{u, v\} \in E(G) \), then \(uv \in (I(G_1)^{s+1} : M) + I(G_2) \) by Theorem 2.7.

Let \(M = e_1 \cdots e_s \) where \(e_1, \ldots, e_s \in E(G_1) \). Suppose \(u \) and \(v \) are even-connected in \(G \) with respect to \(M \). Let \(u = p_0p_1 \cdots p_{2r}p_{2r+1} = v \) be an even-connection in \(G \) such that \(p_{2l+1}p_{2l+2} = e_i \) for some \(1 \leq i \leq s \) and \(0 \leq l \leq r - 1 \). Note that each \(p_i \) divides \(M \) for \(1 \leq i \leq 2r \) while none of the vertices of \(G_2 \) divides \(M \), thus \(p_i \in V(G_1) \setminus V(G_2) \) for all \(1 \leq i \leq 2r \). If \(u \in V(G_2) \setminus V(G_1) \), then \(p_0p_1 \) is an edge of \(G \) but neither an edge of \(G_1 \) or \(G_2 \) which is a contradiction to the assumption that \(E(G) = E(G_1) \cup E(G_2) \). It can be
shown similarly that \(v \in V(G_1) \). Thus \(u \) and \(v \) are even-connected in \(G_1 \) with respect to \(M \) and the equality holds.

\[\square \]

The following example shows that Lemma 4.2 is no longer true if \(G_2 \) has a vertex which divides \(M \).

Example 4.3. Let \(G \) be the graph as shown in Figure 2. Let \(G_1 \) and \(G_2 \) be the subgraphs of \(G \) with \(E(G_1) = \{ \{x_1,x_2\}, \{x_2,x_3\}, \{x_3,x_4\}, \{x_4,x_5\}, \{x_1,x_5\} \} \) and \(E(G_2) = \{ \{x_1,y_1\}, \{x_1,y_2\}, \{x_2,y_3\}, \{x_2,y_6\}, \{y_3,y_4\}, \{y_4,y_5\}, \{x_5,y_7\} \} \) respectively. Set \(M = x_1x_5 \). Then \(y_2y_7 \in (I(G)^2:M) \) but \(y_2y_7 \notin (I(G_1)^2:M) + I(G_2) \).

If \(G_1 \) is a path and \(G_2 \) is a forest in the statement of Lemma 4.2, we can bound the regularity of \((I(G)^{s+1}:M) \) by the induced matching of \(G \).

Lemma 4.4. Let \(P_n \) be a path on \(n \)-vertices and \(F \) be a forest attached to \(P_n \) on some of its vertices. Let \(M \) be a minimal monomial generator of \(I(P_n)^s \) for some \(s \geq 1 \) and \(\tilde{P}_n \) denote the associated graph to \((I(P_n)^{s+1}:M)_{\text{pol}} \). Suppose that none of the roots of \(F \) divides \(M \). Then

\[\text{reg}(\tilde{P}_n \cup F) \leq \nu(P_n \cup F) + 1. \]

Proof. If \(E(F) = \emptyset \), we have

\[\text{reg}(I(P_n)^{s+1}:M) \leq \text{reg}(I(P_n)) = \nu(P_n) + 1 \]

by [23, Corollary 4.12 (2)] and [32, Theorem 2.18]. Thus the statement holds.

Suppose that \(E(F) \neq \emptyset \). It follows from Lemma 4.2 that

\[(I(P_n)^{s+1}:M) + I(F) = (I(P_n \cup F)^{s+1}:M). \]

Thus

\[I(\tilde{P}_n \cup F) = (I(P_n)^{s+1}:M)_{\text{pol}} + I(F) = (I(P_n \cup F)^{s+1}:M)_{\text{pol}}. \]

Note that \(\text{reg}(I(P_n \cup F)^{s+1}:M)_{\text{pol}} = \text{reg}(I(P_n \cup F)^{s+1}:M) \). Since \(P_n \cup F \) is a forest, we have

\[\text{reg}(\tilde{P}_n \cup F) = \text{reg}(I(P_n \cup F)^{s+1}:M) \leq \text{reg}(I(P_n \cup F)) = \nu(P_n \cup F) + 1 \]

by [23, Corollary 4.12 (2)] and [32, Theorem 2.18].

\[\square \]

Similarly, if \(G_1 \) is a cycle and \(G_2 \) is a forest in the statement of Lemma 4.2, the regularity of \((I(G)^{s+1}:M) \) can be bounded by the induced matching of \(G \).

Lemma 4.5. Let \(C_n \) be a cycle on the vertices \(x_1, \ldots, x_n \) (in order) and \(F \) be a forest attached to \(C_n \) on some of its vertices such that \(C_n \cup F \) is a unicyclic graph. Let \(M \) be a minimal monomial generator of \(I(C_n)^s \) for some \(s \geq 1 \) and \(\tilde{C}_n \) denote the associated graph to \((I(C_n)^{s+1}:M)_{\text{pol}} \). Suppose that none of the roots of \(F \) divides \(M \). Then

\[\text{reg}(\tilde{C}_n \cup F) \leq \nu(C_n \cup F) + 1. \]
Proof. If $E(F) = \emptyset$, the statement is clear by Remark 4.1. Assume that $E(F) \neq \emptyset$. We use induction on $k := |E(F)|$ where $k \geq 1$.

If $k = 1$, there must be a leaf, say y, in $C_n \cup F$ with its unique neighbor, say x. Note that y is a leaf in $\tilde{C}_n \cup F$ by Lemma 4.2. Without loss of generality, we may assume that $x = x_1$. It follows from [6, Lemma 3.25] that

$$\text{reg}(\tilde{C}_n \cup F) = \max\{\text{reg}(\tilde{C}_n), \text{reg}(\tilde{C}_n \setminus N_{\tilde{C}_n}[x_1]) + 1\}. \quad (4.1)$$

It follows from Remark 4.1 that $\text{reg}(\tilde{C}_n) \leq \nu(C_n) + 1$. Thus $\text{reg}(\tilde{C}_n) \leq \nu(C_n \cup F) + 1$ as C_n induced subgraph of $C_n \cup F$.

Let $G := \tilde{C}_n \setminus N_{\tilde{C}_n}[x_1]$ and $P := C_n \setminus N_{\tilde{C}_n}[x_1]$. Note that P is the path on the vertices x_3, \ldots, x_{n-1} (in order). Let $\{g_1, \ldots, g_t\}$ be the collection of edges of P that appear in M and $M' := g_1 \ldots g_t$. Consider the graph associated to $(I(P)^{t+1}, M')_{\text{pol}}$ and denote this graph by \tilde{P}. We have the following useful inequality:

$$\text{reg}(\tilde{P}) \leq \text{reg}(P) \quad \text{(by [23, Corollary 4.12 (2)])}$$
$$= \nu(P) + 1 \quad \text{(by [32, Theorem 2.18])} \quad (4.2)$$
$$\leq \nu(C_n \cup F). \quad \text{(by Observation 2.2)}$$

Claim 4.6. G is an induced subgraph of \tilde{P}, i.e.,

1. $V(G) \subseteq V(\tilde{P})$ and
2. For $x_i, x_j \in V(G)$, $x_ix_j \in E(\tilde{P})$ if and only if $x_ix_j \in E(G)$.

Proof. It is clear that $V(G) \subseteq V(\tilde{P})$, thus (1) holds. Suppose that $x_i, x_j \in V(G)$.

First assume that $x_ix_j \in E(\tilde{P})$. Recall from Theorem 2.7 that $x_ix_j \in E(P)$ or x_i and x_j are even-connected in P with respect to M'. If $x_ix_j \in E(P)$, then $j = i + 1$ as P is the path on the vertices x_3, \ldots, x_{n-2} and $x_ix_{i+1} \in E(C_n) \subseteq E(\tilde{C}_n)$. Since $x_i, x_{i+1} \notin N_{\tilde{C}_n}[x_1]$, the edge x_ix_{i+1} is preserved in G after the deletion of $N_{\tilde{C}_n}[x_1]$. Suppose that $x_ix_j \notin E(\tilde{P})$. Then x_i and x_j are even-connected in P with respect to M'. This implies that x_i and x_j are even-connected in C_n with respect to M and $x_ix_j \in E(C_n)$ where $x_i, x_j \notin N_{\tilde{C}_n}[x_1]$. Thus $x_ix_j \in E(G)$.

For the reverse direction, assume that $x_ix_j \in E(G)$. Then $x_ix_j \in E(C_n)$ or x_i and x_j are even-connected in C_n with respect to M whereas $x_i, x_j \notin N_{\tilde{C}_n}[x_1]$. If $x_i, x_j \in E(C_n)$, then $x_ix_j \in E(P)$ as $x_i, x_j \notin N_{\tilde{C}_n}[x_1]$. If x_i and x_j are even-connected in C_n with respect to M, then x_2x_3 and $x_{n-1}x_n$ can not appear on an even-connection path between x_i and x_j. Otherwise, x_i or $x_j \in N_{\tilde{C}_n}[x_1]$ by [2, Observation 6.4], a contradiction. Thus x_i and x_j are even-connected in P with respect to M' and $x_ix_j \in E(\tilde{P})$. Hence (2) holds. \hfill \square

Observe that $\text{reg}(G) \leq \text{reg}(\tilde{P}) \leq \nu(C_n \cup F)$ by Theorem 2.4 and Equation (4.2). Hence Equation (4.1) indicates that $\text{reg}(\tilde{C}_n \cup F) \leq \nu(C_n \cup F) + 1$ for $k = 1$.

Suppose that $k > 1$. Let $G := \tilde{C}_n \cup F$. Then there exists a leaf y in $C_n \cup F$ with its unique neighbor, say x, and let $e := \{x, y\} \in E(F)$. It follows from [6, Lemma 3.25] that

$$\text{reg}(G) = \max\{\text{reg}(G \setminus e), \text{reg}(G \setminus N_G[x]) + 1\}.$$
Note that $G \setminus e = \widetilde{C}_n \cup (F \setminus e)$ is an induced subgraph of $\widetilde{C}_n \cup F$. Thus application of the induction hypothesis to $G \setminus e$ results with the following inequality.
\[
\text{reg}(G \setminus e) \leq \nu(C_n \cup (F \setminus e)) + 1 \leq \nu(C_n \cup F) + 1.
\]

Let $H := G \setminus N_G[x]$. It suffices to show that $\text{reg}(H) \leq \nu(C_n \cup F)$ to complete the proof. In order to achieve this inequality, we consider the following three cases.

CASE 1: Suppose $N_G[x] \cap V(C_n) = \emptyset$. In this case, we observe that
\[
H = G \setminus N_G[x] = \widetilde{C}_n \cup (F \setminus N_F[x]).
\]

Thus
\[
\text{reg}(H) \leq \nu(C_n \cup (F \setminus N_F[x])) + 1 \quad \text{(by the induction hypothesis)}
\]
\[
= \nu(C_n \cup F) \quad \text{(by Observation 2.2)}.
\]

CASE 2: Suppose $N_G(x) \cap V(C_n) = \{x_i\}$ for some $1 \leq i \leq n$. Without loss of generality, we may assume that $x_i = x_1$. In this case x_1 can not divide M by our assumption as x_1 is a root of F. This implies that $e_1 = x_1x_2$ and $e_n = x_i x_n$ can not appear in M.

Let $P := C_n \setminus x_1$, namely P is the path on the vertices x_2, \ldots, x_n (in order). Notice that all the edges that appear in M are edges in P. Let \tilde{P} be the graph associated to $(I(P)^{s+1} : M)^\text{pol}$. Observe that if x_i is even-connected to x_1 in C_n with respect to M, then x_1x_i is not an edge in H. It follows that $\widetilde{C}_n \setminus x_1 = \tilde{P}$ and
\[
H = (\widetilde{C}_n \cup F) \setminus (\{x_1\} \cup N_F[x])
\]
\[
= (\widetilde{C}_n \setminus x_1) \cup (F \setminus N_F[x])
\]
\[
= \tilde{P} \cup (F \setminus N_F[x]).
\]

Therefore, we have
\[
\text{reg}(H) \leq \nu(P \cup (F \setminus N_F[x])) + 1 \quad \text{(by Lemma 4.4)}
\]
\[
\leq \nu(P \cup F) \quad \text{(by Observation 2.2)}
\]
\[
\leq \nu(C_n \cup F) \quad \text{(since P is an induced subgraph of C_n)}
\]

CASE 3: Suppose $x = x_i$ for some $1 \leq i \leq n$. Without loss of generality, we may assume that $x_i = x_1$. Let $P := C_n \setminus N_{C_n}[x_1]$, namely P is the path on the vertices x_3, \ldots, x_{n-1}. Let $\{g_1, \ldots, g_t\}$ be the collection of edges of P that appear in M. Consider the graph associated to $(I(P)^{t+1} : M')^\text{pol}$ where $M' = g_1 \ldots g_t$ and denote this graph by \tilde{P}.

Notice that
\[
H = (\widetilde{C}_n \cup F) \setminus N_{\widetilde{C}_n}[x_1]
\]
\[
= (\widetilde{C}_n \setminus N_{\widetilde{C}_n}[x_1]) \cup (F \setminus N_F[x_1]).
\]

It follows from Claim 4.6 that $\widetilde{C}_n \setminus N_{\widetilde{C}_n}[x_1]$ is an induced subgraph of \tilde{P}. Thus H is an induced subgraph of $\tilde{P} \cup (F \setminus N_F[x_1])$. Therefore,
\[
\text{reg}(H) \leq \text{reg}(\tilde{P} \cup (F \setminus N_F[x])) \quad \text{(by Theorem 2.4)}
\]
\[
\leq \nu(\tilde{P} \cup (F \setminus N_F[x])) + 1 \quad \text{(by Lemma 4.4)}
\]
\[
\leq \nu(\tilde{P} \cup F) \quad \text{(by Observation 2.2)}
\]
\[
\leq \nu(C_n \cup F) \quad \text{(since P is an induced subgraph of C_n.)}
\]
Hence the lemma is proved. \hfill \blacksquare

The following example shows that the equality can be achieved in Lemma 4.5.

Example 4.7. Let $C_5 \cup F$ be the graph on $\{x_1, \ldots, x_5, y_1, \ldots, y_6\}$ as given in the figure below. Let $M = x_3x_4$ and $\widetilde{C}_5 \cup F$ be the graph associated to $(I(C_5 \cup F)^2 : M)$. The even-connected edge is presented by the dotted line.

![Figure 3. Graphs $C_5 \cup F$ and $\widetilde{C}_5 \cup F$](image)

It can be easily verified that $\nu(C_5 \cup F) = 4$. By \cite{31} Theorem 14, $\text{reg}(I(\widetilde{C}_5 \cup F)) = 5 = \nu(C_5 \cup F) + 1$.

In the previous result, we focus on particular minimal monomial generators of $I(C_n)^s$ for some $s \geq 1$. Our next result generalizes Lemma 4.5 by considering any minimal monomial generator of $I(C_n)^s$.

Lemma 4.8. Let C_n be a cycle on the vertices x_1, \ldots, x_n (in order) and F be a forest attached to C_n at some of its vertices such that $C_n \cup F$ is a unicyclic graph. Let $E(F) = \{f_1, \ldots, f_k\}$ and M be a minimal monomial generator of $I(C_n)^s$ for some $s \geq 1$. Then

$$\text{reg}((I(C_n)^{s+1}, f_1, \ldots, f_k) : M) \leq \nu(C_n \cup F) + 1.$$

Proof. Let $J := ((I(C_n)^{s+1}, f_1, \ldots, f_k) : M)$. Since all the ideals being used here are monomial ideals, we can rewrite J as follows.

$$J = (I(C_n)^{s+1} : M) + (f_1 : M) + \cdots + (f_k : M).$$

Let G be the graph associated to J^{pol}. Our goal is to show that $\text{reg}(G) \leq \nu(C_n \cup F) + 1$.

Recall that F is a collection of rooted trees with roots on the cycle C_n. If M is a minimal generator of $I(C_n)^s$ for some $s \geq 1$ such that none of the roots divide M, then the statement holds from Lemma 4.5 since $(f_i : M) = (f_i)$ for all $1 \leq i \leq k$. Suppose that there exists at least one root of F, say x, such that x divides M. For the sake of simplicity we use x to denote a root which is essentially a vertex x_j in C_n for some $1 \leq j \leq n$.

Let F_1 be the collection of rooted trees in F such that none of its roots divide M and F_2 be the collection of rooted trees of F such that every root in F_2 divides M. Note that F is the disjoint union of its induced subgraphs F_1 and F_2.

Observe that $(f : M) = (f)$ for all $f \in E(F_1)$. The colon ideal $(f : M)$ behaves differently when $f \in E(F_2)$. If the edge $f \in E(F_2)$ is incident to a root x, then there exists a vertex $y \in V(F_2)$ such that $f = xy$ and $(f : M) = (y)$. Let $N := \{y_1, \ldots, y_p\}$ be the collection of all such vertices y, i.e., for any $y \in N$ there exists a root x such that $xy \in E(F_2)$.
In the light of above observations, the ideal $I(G) = J^{\text{pol}}$ takes the following form.

$$ I(G) = I(\tilde{C}_n) + (y_1, \ldots, y_p) + I(F_1) + I(F_2 \setminus N) $$

$$ = I(\tilde{C}_n \cup F_1) + (y_1, \ldots, y_p) + I(F_2 \setminus N). $$

Note that $\{y_1, \ldots, y_p\}$ are isolated vertices of G and we can drop them without affecting the regularity by [31, Remark 2.5]. It follows from the construction of F_1 and $F_2 \setminus N$ that

$$ \nu(C_n \cup F_1) + \nu(F_2 \setminus N) \leq \nu((C_n \cup F_1) \prod (F_2 \setminus N)). $$

(4.3)

Therefore,

$$ \text{reg}(G) = \text{reg}(\tilde{C}_n \cup F_1) + \text{reg}(F_2 \setminus N) - 1 \quad (\text{by } [31 \text{ Lemma 8}]) $$

$$ \leq \nu(C_n \cup F_1) + \nu(F_2 \setminus N) + 1 \quad (\text{by Lemma 4.5 and } [32 \text{ Theorem 2.18}]) $$

$$ \leq \nu((C_n \cup F_1) \prod (F_2 \setminus N)) + 1 \quad (\text{by Equation (4.3)}) $$

$$ \leq \nu(C_n \cup F) + 1 \quad (\text{by } (C_n \cup F_1) \prod (F_2 \setminus N) = C_n \cup (F \setminus N)) $$

□

We are now ready to prove the main result of this section.

Theorem 4.9. Let C_n be a cycle on the vertices x_1, \ldots, x_n (in order) and F be a forest attached to C_n at some of its vertices with $E(F) = \{f_1, \ldots, f_k\}$ such that $C_n \cup F$ is a unicyclic graph. Then for $s \geq 1$,

$$ \text{reg}(I(C_n)^{s+1}, f_1, \ldots, f_k) \leq 2s + \nu(C_n \cup F) + 1. $$

Proof. The proof is based on induction on s. We first develop a machinery to use in our induction arguments.

Suppose $\{m_1, \ldots, m_q\}$ be the minimal monomial generators of $I(C_n)^s$ for $s \geq 1$ and the monomials $\{m_1, \ldots, m_q\}$ are ordered by using the ordering given in [21, Discussion 4.1]. Let $J := (I(C_n)^{s+1}, f_1, \ldots, f_k)$. We wish to prove that $\text{reg}(J) \leq 2s + \nu(C_n \cup F) + 1$.

Consider the following short exact sequence:

$$ 0 \rightarrow \frac{R}{(J : m_1)}(-2s) \rightarrow \frac{R}{J} \rightarrow \frac{R}{(J, m_1)} \rightarrow 0. $$

(4.4)

Let $J_l = (J, m_1, \ldots, m_l)$ where $1 \leq l \leq q$ and set $J_0 = J$. Then, for $0 \leq l \leq q - 1$, we have

$$ 0 \rightarrow \frac{R}{(J_l : m_{l+1})}(-2s) \rightarrow \frac{R}{J_l} \rightarrow \frac{R}{(J, m_{l+1})} \rightarrow 0. $$

(4.5)

Combination of Equation 4.4 and Equation 4.5 yields the inequality below.

$$ \text{reg}(J) \leq \max\{\text{reg}(J_l : m_{l+1}) + 2s, 0 \leq l \leq q - 1, \text{ reg}(I(C_n)^s, f_1, \ldots, f_k)\}. $$

(4.6)

Understanding the ideal $J_l : m_{l+1}$ is essential to establish our upper bound. Recall that all the ideals of interest are monomial ideals. Thus it follows from [21, Theorem 4.12] that $J_l : m_{l+1} = ((I(C_n)^{s+1}, f_1, \ldots, f_k) : m_{l+1}) + (\text{variables}).$

Then we obtain the following inequality to employ in Equation (4.6) for all $0 \leq l \leq q - 1$.

□
\[
\begin{align*}
\reg(J : m_{t+1}) & \leq \reg((I(C_n)^{s+1}, f_1, \ldots, f_k) : m_{t+1}) \quad \text{(by [4, Remark 2.5])} \\
& \leq \nu(C_n \cup F) + 1 \quad \text{(by Lemma 4.8)}
\end{align*}
\]

and Equation (4.6) yields to the following.
\[
\reg(J) \leq \max\{\nu(C_n \cup F) + 2, \reg(I(C_n)^s, f_1, \ldots, f_k)\}.
\] (4.7)

Our next step is to complete the proof by using induction on \(s\) with the use of above inequality. Let \(s = 1\). Then Equation (4.7) is
\[
\reg(J) \leq \max\{\nu(C_n \cup F) + 3, \reg(I(C_n), f_1, \ldots, f_k)\}.
\]

It follows from Theorem 3.1 that \(\reg(I(C_n), f_1, \ldots, f_k) \leq \nu(C_n \cup F) + 2\). Hence \(\reg(J) \leq \nu(C_n \cup F) + 3\) by Equation (4.7) and the statement holds for \(s = 1\).

Suppose \(s > 1\). Then we have \(\reg(I(C_n)^s, f_1, \ldots, f_k) \leq 2s + \nu(C_n \cup F) - 1\) by the induction hypothesis. Therefore, we get the desired inequality from Equation (4.7) and this completes the proof.

\[\square\]

5. Regularity of powers of unicyclic graphs

In this section, we obtain precise expressions for the regularity of powers of edge ideals of unicyclic graphs. We first establish an upper bound for \(\reg(I(G)^s)\) in terms of \(\reg(I(G))\) for all \(s \geq 1\) and use this bound to compute regularity explicitly. Moreover, this upper bound proves that the (below) conjecture of Alilooee, Banerjee, Kara and Hà holds for unicyclic graphs. We also prove that the provided upper bound is the exact value for the regularity of powers for this class of graphs.

Conjecture 5.1. [Alilooee, Banerjee, Kara, Hà] Let \(G\) be a finite simple graph. Then for all \(s \geq 1\),

\[
\reg(I(G)^s) \leq 2s + \reg(I(G)) - 2.
\]

We shall use the below construction and notation for the rest of the chapter. Recall that a unicyclic graph \(G\) can be obtained from a cycle \(C_n\) by attaching a forest to the cycle at some of its vertices. Let \(F\) denote the forest attached to \(C_n\) and \(k := |E(F)|\). Note that the regularity of powers of cycles is studied in [4]. We may assume that \(k \geq 1\).

Observation 5.2. Let \(G\) be a unicyclic graph with cycle \(C_n\) and a forest \(F\). We can order the edges of \(F\) in such a way that deletion of the edges of \(F\) with respect to that order results with an induced subgraph of \(G\) at each step and that induced subgraph is also unicyclic.

Precisely, since \(G\) is unicyclic there exists a leaf in \(G\), say \(f_1\). Then \(G \setminus f_1\) is an induced subgraph of \(G\) and a unicyclic graph. If \(G \setminus f_1 \neq C_n\), then there exists a leaf in \(G \setminus f_1\), say \(f_2\). Similarly, \((G \setminus f_1) \setminus f_2\) is unicyclic and an induced subgraph of \(G \setminus f_1\) and \(G\). Following this fashion we can order the edges of \(F\) as \(f_1, \ldots, f_k\) such that \(f_i\) is a leaf in \(G_{i-1} := G \setminus \{f_1, \ldots, f_{i-1}\}\) for \(2 \leq i \leq k\) and set \(G_0 = G, G_k = C_n\). Note that \(G_i\) is unicyclic and an induced subgraph of \(G_{i-1}\) and \(G\).
If f_1 is a leaf in G, we can easily observe that

$$I(G)^s = I(G_1)^s + \sum_{j=1}^{s} I(G_1)^{s-j} f_1^j.$$

Therefore, we get the following equalities for each $1 \leq i \leq k$

$$(I(G)^s, f_1, \ldots, f_i) = (I(G_i)^s, f_1, \ldots, f_i).$$

Note that $(I(G)^s, f_1, \ldots, f_k) = (I(C_n)^s, f_1, \ldots, f_k)$.

Our first result of the section introduces an upper bound for the regularity of powers for unicyclic graphs.

Lemma 5.3. If G is a unicyclic graph, then for all $s \geq 1$,

$$\text{reg}(I(G)^s) \leq 2s + \text{reg}(I(G)) - 2.$$

Proof. The statement is clear for $s = 1$. Assume that $s \geq 2$. We consider the following short exact sequence:

$$0 \longrightarrow \frac{R}{(I(G)^s : f_1)}(-2) \longrightarrow \frac{R}{I(G)^s} \longrightarrow \frac{R}{(I(G)^s, f_1)} \longrightarrow 0.$$

Since f_1 is a leaf of G, by [27] Lemma 2.10, $(I(G)^s : f_1) = I(G)^{s-1}$. By making use of Equation 5.1, the short exact sequence yields to the following inequality

$$\text{reg}(I(G)^s) \leq \max\{\text{reg}(I(G)^{s-1}) + 2, \text{reg}((I(G_1)^s, f_1))\}.$$

We have $\text{reg}(I(G))^{s-1} + 2 \leq 2s + \text{reg}(I(G)) - 2$ by the induction hypothesis. Thus it remains to show that $\text{reg}(I(G_1)^s, f_1)) \leq 2s + \text{reg}(I(G)) - 2$. This follows from the following more general claim:

Claim: For each $1 \leq i \leq k$, denote the induced subgraph of G whose edge set is \{ f_1, \ldots, f_i \} by F_i and $G_i = G \setminus F_i$. Let F_i' be any induced subgraph of F_i such that $G_i \cup F_i'$ is an induced subgraph of G. Then for all $s \geq 1$,

$$\text{reg}(I(G_i)^s + I(F_i')) \leq 2s + \text{reg}(I(G)) - 2.$$

Proof of the claim: We prove the claim by using induction on s. If $s = 1$, the statement holds as $\text{reg}(I(G_i \cup F_i')) \leq \text{reg}(I(G))$ by Theorem 2.4 (1). Suppose $s > 1$. Consider the following exact sequence:

$$0 \longrightarrow \frac{R}{((I(G_i)^s + I(F_i')) : f_{i+1})(-2)} \longrightarrow \frac{R}{I(G_i)^s + I(F_i')} \longrightarrow \frac{R}{I(G_i)^s + I(F_i') + (f_{i+1})} \longrightarrow 0.$$

Recall from Observation 5.2 that f_{i+1} is a leaf in G_i for each $1 \leq i \leq k - 1$. Thus

$$(I(G_i)^s + I(F_i')) : f_{i+1} = (I(G_i)^s : f_{i+1}) + (I(F_i') : f_{i+1}) = I(G_i)^{s-1} + I(F_i'') + (\text{variables})$$

where F_i'' is the graph whose edge ideal is $I(F_i'') := (I(F_i') : f_{i+1})$. Note that $I(F_i'')$ is either $I(F_i')$ or $I(F_i' \setminus N[f_{i+1}])$. It follows that F_i'' is an induced subgraph of F_i and $G_i \cup F_i''$ is an induced subgraph of G. Furthermore, we have

$$I(G_i)^s + I(F_i') + (f_{i+1}) = I(G_{i+1})^s + I(F_{i+1}),$$

where F_{i+1} is an induced subgraph of F_{i+1} with the edge set $E(F_i') \cup \{ f_{i+1} \}$. It can be easily verified that F_{i+1} is an induced subgraph of F_{i+1} by making use of the condition
Let ν be a unicyclic graph, then for all $s \geq 1$,
\[\text{reg}(I(G)^s) = 2s + \text{reg}(I(G)) - 2. \]

Proof. If $\text{reg}(I(G)) = \nu(G) + 1$, then by Lemma [5.3] and [4] Theorem 4.5 for all $s \geq 1$,
\[\text{reg}(I(G)^s) = 2s + \nu(G) - 1 = 2s + \text{reg}(I(G)) - 2. \]

Let $H = G \setminus \Gamma(G) = C_n \bigcup (\bigcup_{i=1}^t H_i)$ where $n \equiv 2 (mod 3)$. Note that $\nu(H) = \nu(C_n) + \nu(H_1) + \ldots + \nu(H_t)$.

Claim: $\text{reg}(I(H)^s) = 2s + \nu(H)$ for all $s \geq 1$.

Proof of the claim: It follows from [4] Theorem 4.7, Theorem 5.2 and [28] Theorem 5.7 that for $s \geq 3$ we have
\[\text{reg}(I(H)^s) = 2s + \nu(H). \]

The case $s = 1$ is proved by using [31] Lemma 8 and the remaining case $s = 2$ follows from [19] Proposition 2.7 (ii). Thus the claim is proved.
If \(\text{reg}(I(G)) = \nu(G) + 2 \), then by Corollary 3.9, \(\nu(H) = \nu(G) \). Hence \(\text{reg}(I(H)^s) = 2s + \nu(G) \). Therefore it follows from [1 Corollary 4.3] and Lemma 5.3 that for all \(s \geq 1 \),
\[
\text{reg}(I(G)^s) = 2s + \nu(G) = 2s + \text{reg}(I(G)) - 2.
\]

\[\square\]

Remark 5.5. The equality given in Theorem 5.4 is not true when \(G \) is a bicyclic graph. For example, if
\[
I = (x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_1x_5, x_6x_7, x_6x_8, x_8x_9, x_9x_{10}, x_{10}x_{11}, x_{11}x_{12}, x_{12}x_8),
\]
then computation in Macaulay2 [16] shows that the \(\text{reg}(I) = 5 \), \(\text{reg}(I^2) = 6 \), \(\text{reg}(I^3) = 8 \), and \(\text{reg}(I^4) = 10 \) and \(\text{reg}(I^5) = 12 \). Since whiskered cycle graphs are unicyclic graphs, we derive the main results of [26] from Corollary 3.13 and Theorem 5.4.

Corollary 5.6. [26, Theorem 2.5] Let \(G = W(C_n) \) be a whiskered cycle graph. Then for all \(s \geq 1 \),
\[
\text{reg}(I(G)^s) = 2s + \nu(G) - 1.
\]

Remark 5.7. Our main focus in this paper is on regularity of powers of connected unicyclic graphs. However, one can extend the results to disconnected unicyclic graphs and provide a precise expression for \(\text{reg}(I(G)^s) \) when \(G \) is a disconnected unicyclic graph.

Suppose \(G = G_1 \bigsqcup (\bigsqcup_{i=2}^t G_i) \) where \(G_1 \) is a connected unicyclic graph and \(G_2, \ldots, G_t \) are trees. By Theorem 5.4 and [4 Theorem 4.7], we have

1. \(\text{reg}(I(G_1)^s) = 2s + \text{reg}(I(G_1)) - 2 \) for all \(s \geq 1 \).
2. \(\text{reg}(I(\bigsqcup_{i=2}^t G_i)^s) = 2s + \nu(\bigsqcup_{i=2}^t G_i) - 1 = 2s + \text{reg}(I(\bigsqcup_{i=2}^t G_i)) - 2 \) for all \(s \geq 1 \).

By [28, Theorem 5.7], we obtain \(\text{reg}(I(G)^s) = 2s + \text{reg}(I(G)) - 2 \) for all \(s \geq 2 \).

Acknowledgement: We would like to express our gratitude and appreciation to Tái Huy Hà, A. V. Jayanthan, and Arindam Banerjee for many useful suggestions related to this paper. Authors are deeply grateful to the referee for their useful comments and suggestions which improved the manuscript in many ways. We heavily used commutative algebra package, Macaulay2 [16], for verifying our results. The third author is funded by National Board for Higher Mathematics, India.

References

[1] A. Alilooee and A. Banerjee. Powers of edge ideals of regularity three bipartite graphs. *J. Commut. Algebra*, 9(4):441–454, 2017.

[2] A. Banerjee. The regularity of powers of edge ideals. *J. Algebraic Combin.*, 41(2):303–321, 2015.

[3] D. Berlekamp. Regularity defect stabilization of powers of an ideal. *Math. Res. Lett.*, 19(1):109–119, 2012.

[4] S. Kara, H. T. Hà, and T. N. Trung. Regularity of powers of forests and cycles. *J. Algebraic Combin.*, 42(4):1077–1095, 2015.

[5] T. Byykoğlu and Y. Civan. Bounding Castelnuovo-Mumford regularity of graphs via Lozin’s transformation. *ArXiv e-prints*, Feb. 2013.

[6] T. Byykoğlu and Y. Civan. Castelnuovo-Mumford regularity of graphs.open -a TeXshop *.bbl ArXiv e-prints*, Mar. 2015.
[7] M. Chardin. Some results and questions on Castelnuovo-Mumford regularity. In Syzygies and Hilbert functions, volume 254 of Lect. Notes Pure Appl. Math., pages 1–40. Chapman & Hall/CRC, Boca Raton, FL, 2007.

[8] M. Chardin. Powers of ideals and the cohomology of stalks and fibers of morphisms. Algebra Number Theory, 7(1):1–18, 2013.

[9] A. Conca. Regularity jumps for powers of ideals. In Commutative algebra, volume 244 of Lect. Notes Pure Appl. Math., pages 1–32. Chapman & Hall/CRC, Boca Raton, FL, 2006.

[10] S. D. Cutkosky, J. Herzog, and N. V. Trung. Asymptotic behaviour of the Castelnuovo-Mumford regularity. Compositio Math., 118(3):243–261, 1999.

[11] H. Dao, C. Huneke, and J. Schweig. Bounds on the regularity and projective dimension of ideals associated to graphs. J. Algebraic Combin., 38(1):37–55, 2013.

[12] D. Eisenbud and J. Harris. Powers of ideals and fibers of morphisms. Math. Res. Lett., 17(2):267–273, 2010.

[13] D. Eisenbud and B. Ulrich. Notes on regularity stabilization. Proc. Amer. Math. Soc., 140(4):1221–1232, 2012.

[14] S. Faridi. Monomial ideals via square-free monomial ideals. In Commutative algebra, volume 244 of Lect. Notes Pure Appl. Math., pages 85–114. Chapman & Hall/CRC, Boca Raton, FL, 2006.

[15] R. Fröberg. On Stanley-Reisner rings. In Topics in algebra, Part 2 (Warsaw, 1988), volume 26 of Banach Center Publ., pages 57–70. PWN, Warsaw, 1990.

[16] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

[17] H. T. Hà. Asymptotic linearity of regularity and a^*-invariant of powers of ideals. Math. Res. Lett., 18(1):1–9, 2011.

[18] H. T. Hà. Regularity of squarefree monomial ideals. In Connections between algebra, combinatorics, and geometry, volume 76 of Springer Proc. Math. Stat., pages 251–276. Springer, New York, 2014.

[19] H. T. Hà, N. V. Trung, and T. N. Trung. Depth and regularity of powers of sums of ideals. Math. Z., 282(3-4):819–838, 2016.

[20] H. T. Hà and A. Van Tuyl. Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. J. Algebraic Combin., 27(2):215–245, 2008.

[21] J. Herzog and T. Hibi. Monomial ideals, volume 260 of Graduate Texts in Mathematics. Springer-Verlag London, Ltd., London, 2011.

[22] S. Jacques. Betti numbers of graph ideals. PhD thesis, University of Sheffield, 2004.

[23] A. V. Jayanthan, N. Narayanan, and S. Selvaraja. Regularity of powers of bipartite graphs. J. Algebraic Combin., 47(1):17–38, 2018.

[24] M. Katzman. Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A, 113(3):435–454, 2006.

[25] V. Kodiyalam. Asymptotic behaviour of Castelnuovo-Mumford regularity. Proc. Amer. Math. Soc., 128(2):407–411, 2000.

[26] M. Moghimian, S. A. S. Fahari, and S. Yassemi. Regularity of powers of edge Ideal of whiskered cycles. Comm. Algebra, 45(3):1246–1259, 2017.

[27] S. Morey. Depths of powers of the edge ideal of a tree. Comm. Algebra, 38(11):4042–4055, 2010.

[28] H. D. Nguyen and T. Vu. Powers of sums and their homological invariants. ArXiv e-prints, July 2016.

[29] N. V. Trung and H.-J. Wang. On the asymptotic linearity of Castelnuovo-Mumford regularity. J. Pure Appl. Algebra, 201(1-3):42–48, 2005.

[30] T. N. Trung. Stability of depths of powers of edge ideals. J. Algebra, 452:157–187, 2016.

[31] R. Woodroofe. Matchings, coverings, and Castelnuovo-Mumford regularity. J. Commut. Algebra, 6(2):287–304, 2014.

[32] X. Zheng. Resolutions of facet ideals. Comm. Algebra, 32(6):2301–2324, 2004.
University of Wisconsin-Stout, Department of Mathematics and Statistics, Jarvis Hall-Science Wing, Menomonie, WI, USA

E-mail address: a20480m2018@gmail.com

University of South Alabama, Department of Mathematics and Statistics, 411 University Boulevard North, Mobile, AL 36688-0002, USA

E-mail address: selvi@southalabama.edu

Institute of Mathematical Sciences, C. I. T. Campus, Chennai 600 113, INDIA

E-mail address: selva.y2s@gmail.com