Identifying the mechanisms driving adaptive radiations is key to explaining the diversity of life. The extreme reliance of spiders upon silk for survival provides an exceptional system in which to link patterns of diversification to adaptive changes in silk use. Most of the world’s 41,000+ species of spiders belong to two apical lineages of spiders that exhibit quite different silk ecologies, distinct from their ancestors. Orb spiders spin highly stereotyped webs that are suspended in air and utilize a chemical glue to make them adhesive. RTA clade spiders mostly abandoned silk capture webs altogether. We recently proposed that these two clades present very different evolutionary routes of achieving the same key innovation—escape from the constraints imposed by spinning webs that contain a relatively costly type of physically adhesive cribellate silk. Here, we test the prediction that orb and RTA clade spiders are not only more diverse, but also have higher fecundity than other spiders. We show that RTA clade spiders average 23% higher fecundity and orb spiders average 123% higher fecundity than their ancestors. This supports a functional link between the adaptive escape from cribellate silk and increased resource allocation to reproduction in spiders.

Adaptative radiations explain much of the modern earth’s diversity of life. Yet, identifying the mechanisms driving the success of those radiations is difficult. Spiders provide an exceptional system in which to test links between putative adaptations and patterns of speciation because of their extreme reliance on silk. Spider webs epitomize the adaptive use of high performance biomaterials in animal architecture. All of the world’s 41,000+ species of spiders spin silk fibers with strength to weight ratios up to five times greater than steel. Thus, it is not surprising that the spectacular evolutionary and ecological success of spiders is generally attributed to key innovations in the production and use of different silks. The aerial orb webs of the Orbiculariae are one such example, which utilize a composite architecture including a framework of stiff, exceedingly strong major ampullate silk radii to suspend a highly elastic capture spiral coated with droplets of liquid glue (Fig. 1). The capacity of orb webs to reliably absorb the high energy impact of flying prey helped to make orbicularian spiders dominant predators of aerial insects in many ecosystems.

However, such silk production is not without cost. Silk threads are composed primarily of proteins and a single orb web can be as much as 0.1–1% of a spider’s wet body mass. Thus, replacing lost webs from body reserves is presumably expensive. Furthermore, some silks cost more energy to spin than others. In particular, the cribellate silk used as adhesive fibers in relatively primitive spider webs functions through van der Waals interactions and physical entanglement. This contrasts with the chemically adhesive glycoproteins found in the aggregate glue droplets of modern orb spiders. In a time and energy-consuming process, cribellate spiders physically comb out puffs of silk containing the hundreds to thousands of nanoscale fibrils required for adhesive.
function (Fig. 1A). Consequently, spiders that utilize cribellate silk tend to show high fidelity to individual webs. In contrast, most derived spiders have either abandoned capture webs entirely or evolved chemically adhesive, aggregate glue, which allows webs to be constructed quickly and for silk to be recycled when webs are taken down and consumed.17,18 We recently used a total evidence based phylogeny of spiders to demonstrate that these two behavioral patterns of silk use are derived strategies that mark the two most successful clades of spiders—wandering hunter/ambushers in the RTA clade (~22,000 species) and the orb-weaving Araneoidea (~12,000 species). We suggested that “escape” from the constraints imposed by use of expensive cribellate silk was causally related to the latter adaptive radiations of RTA clade and Araneoidea, such that the evolutionary shifts away from the use of capture silk altogether and to chemically adhesive glue, played an important role in shaping the diversification of modern spiders. In turn, the hypothesis predicts that adaptive changes in silk use should be accompanied by increased fecundity. Here, we test this prediction by examining the correlation between changes in web use and fecundity across spiders.

Comparing Spider Fecundity

Reproductive output of spiders, measured as clutch size, generally increases with body size of spiders, both within and among species.19-21 Here, we present data on reproductive output from 343 species across 60 of the 105 extant families of spiders, representing all higher lineages (see appendix). Comparative data is best analyzed in a phylogenetic framework, such as independent contrasts, to control for the inflation of degrees of freedom that can occur when comparing close relatives.22 However, this is not feasible for the current data because most spider phylogeny is largely unknown. Prior studies also show that the relationship between spider body size and fecundity is relatively similar regardless of the use of “raw” or phylogenetically independent data.19,20 Therefore, we concentrate on the phenotypic data themselves, with an understanding that Type I error may be somewhat inflated by this approach.
Spider length was highly correlated with spider fecundity in a regression analysis ($R^2 = 0.49, p < 0.00001$), we therefore used the standardized residuals of fecundity vs. body length to compare the reproductive output of orbicularian and RTA clade spiders versus all other taxa ("outgroup"). The lineage of spiders had a highly significant effect on residual fecundity (ANOVA $F_{2,340} = 40.4, p < 0.00001$). Both RTA clade and orbicularian spiders had higher fecundity than all other spiders (23 and 123% respectively). Furthermore, orbicularians were significantly more fecund than the RTA clade (Fig. 3).

While other factors also contribute to reproductive output, we argue that clutch size is a good overall estimator. Energy content of eggs is similar across a broad survey of spider taxa. Many spiders can produce more than one clutch of eggs over their lifetime, but past studies suggest that individual clutch size strongly correlates positively with number of clutches. Finally, there is currently no consensus on the potential for an egg size-number tradeoff within clutches, with near simultaneous studies proposing evidence for and against the hypothesis. Thus, single clutch remains at least a reasonably accurate estimator of overall spider reproductive effort.

Fecundity and Spider Evolution

The derived predatory behaviors considered here, development of aerial webs and loss of capture webs all together, are quite different. But, both allow “escape” from dependence on expensive cribellate silk. Moreover, we show here that this escape is significantly correlated with increased reproductive output in both clades.

The clutch sizes of orb spiders are much higher than either distant outgroup taxa or their sister lineage, the RTA clade (Fig. 3). The evolution of the stereotyped behaviors and the aerial frameworks of dragline silk used in the construction of orb webs may therefore have enabled access to a new source of abundant prey, flying insects, which neither hunter/ambushers nor primitive cribellate spiders can easily catch. Indeed, growing ecological data support the hypothesis that...
evolution has placed a premium on a fast growth life history for orb spiders. Positive, fecundity-based selection on female body size in orb spiders necessitates high rates of prey capture. While spiders are famous for their low metabolic rates, orb spiders are exceptions. Many orb spiders have notably higher metabolisms and they require high rates of prey capture for survival and reproduction. In contrast, some wolf spiders (RTA clade) and filistatids (an “outgroup” taxon in this study) can survive 200 days without food. Thus, while the evolution of glue-coated orb webs represents a major evolutionary innovation in spiders that facilitates increased reproductive output; it may also have imposed a new set of ecological constraints that further shaped the evolution of silk use in these spiders.

Acknowledgements

This research was supported by National Science Foundation awards #DEB-0516038 and IOS-0745379 to T.A.B. and EAR-0228699 to J.A.C., as well as by Slovenian Research Agency fellowship ARRS Z1-9799-0618-07 to I.A.

References

1. Wagner WL, Funk VA, eds. Hawaiian biogeography: Evolution on a hot spot archipelago. Washington, DC: Smithsonian Institution Press 1995.
2. Orr MR, Smith TB. Ecology and speciation. Trends Ecol Evol 1998; 13:502-6.
3. Coddington JA. Cladistic tests of adaptional hypotheses. Cladistics-Int J Willi Hennig Soc 1988; 4:3-22.
4. Schluter D. The ecology of adaptive radiation. New York: Oxford University Press 2000.
5. Losos JB, Jackman TR, Larson A, de Queiroz K, Garcia-Huidobro A, de la Riva CR, Eswaran V, de Queiroz K. Contingency and determinism in replicated adaptive radiations of island lizards. Science 1998; 279:2115-8.
6. Denno R. Physical properties of spider’s silks and their role in design of orb-webs. J Exp Biol 1976; 65:483-506.
7. Vollrath F. Spider Webs and Silks. SciAm 1992; 267:70-6.
8. Bond JE, Opell BD. Texting adaptive radiation and key innovation hypotheses in spiders. Evolution 1998; 52:403-14.
9. Blackledge TA, Coddington JA, Gillespie RG. Are spiders in Araneae males? J Arachnol 2001; 29:72-87.
10. Anderson JF, Prestwich KN. Respiratory gas exchange in spiders. Physiol Zool 1982; 55:72-90.
11. Anderson JF, Prestwich KN. Respiratory gas exchange in spiders. Physiol Zool 1982; 55:72-90.
12. Anderson JF. Comparative energetics of comb-footed spiders (Araneae, Theridiidae). Comp Biochem Physiol A Physiol 1994; 109:181-9.
13. Greenstone MH, Bennett AF. Foraging strategy and metabolic rate in spiders. Ecology 1980; 61:1255-9.
14. Vanmer S, Casas J. Spider webs designed for rare but life-saving catches. Proc Roy Soc B 2005; 272:1587-92.
15. Anderson JE. Responses to starvation in the spiders Lycosa lenta Hentzi and Filistata hibernalis (Hentz). Ecology 1974; 55:576-85.
16. Deng LL, Dai JY, Cao H, Xu MQ. Effects of an organophosphorous insecticide on survival, fecundity and development of Hylyphantes grammicola (Sundevall) (Araneae: Linyphiidae). Environ Toxicol Chem 2006; 25:3073-7.
17. Doran NE, Richardson AMM, Swain R. The reproductive behaviour of the Tasmanian cave spider Archaeodictyna troglodytes (Araneae: Arentiidae). J Zool 2001; 253:605-18.
18. Downes MF. The life-history of Badumna candida (Araneae, Amurobiidae). Aust J Zool 1993; 41:441-66.
19. Edwards RL, Edwards EH, Edwards AD. Observations of Theritina minutissimus (Araneae, Ochroceratidae), a parthenogenetic spider. J Arachnol 2001; 31:274-7.
20. Forrest RR, Platnick NI. A review of the archaeid spiders and their relatives, with notes on the limits of the superfamily Palpimanida (Arachnida, Araneae). Bull Amer Mus Nat Hist 1984; 178:1-106.
21. Griswold CE, Meikle-Griswold T. A review of the archaeid spiders and their relatives, with notes on the limits of the superfamily Palpimanida (Arachnida, Araneae). Bull Amer Mus Nat Hist 1984; 178:1-106.
22. Griswold CE, Meikle-Griswold T. Arachaeodictyna troglodytes, a new species (Araneae: Dictynidae), a remarkable kleptoparasite of group-living eretid spiders (Stegodyphus spp., Araneae: Eresidae). Am Mus Novit 1987; 2897:1-11.
23. Guendert-Harith, Hoyl A, Roland C. Costs and benefits of maternal care in a subsocial spider, Coelotes terestris. Ethology 1997; 103:915-25.
24. Hormiga G. A revision and cladistic analysis of the spider family Pimodinae (Araneoidea: Araneae). Smithsonian Contrib Zool 1994; 549:1-104.
25. Kaznich BJ. Spiders of Connecticut. State Geological and Natural History Survey of Connecticut 1981.
26. Kim KW, Roland C, Hord A. Functional value of morphotypy in the spider Amaurobius ferox. Ethology 2000; 106:729-42.
27. Fischer ML, Vasoncellos-Neto J. Parameters affecting fecundity of Loxosceles intermedia Mello-Leitao 1934 (Araneae, Sicariidae). J Arachnol 2005; 33:670-80.
28. Griswold CE. A revision of the phylogenetic analysis of the spider subfamily Pholcidae (Araneae, Mygalomorphae). Zool Anz 1997; 235:30-35.
29. Zwick MB, Zwick MB. The monophyletic origin of the orb web. In: Shear WA, ed. Spiders: webs, behavior and evolution. Stanford: Stanford University Press 1986; 319-63.
30. Coddington JA, Scharff N, Coddington JA, Scharff N, Coddington JA, Scharff N. Reconstructing web evolution and spider diversity in the molecular era. Proc Natl Acad Sci USA 2009; 106:5229-34.
