Defining \mathbb{A} in $G(\mathbb{A})$

Dan Segal

July 23, 2020

It is shown in the papers [NST] and [ST] that for many integral domains R, the ring is bi-interpretable with various Chevalley groups $G(R)$. The model theory of adèle rings and some of their subrings has attracted some recent interest ([DM], [D], [AMO]), and it seemed worthwhile to extend the results in that direction.

Let \mathbb{A} denote the adèle ring of a global field K, with $\text{char}(K) \neq 2, 3, 5$. We consider subrings of \mathbb{A} of the following kind:

$$R = \mathbb{A},$$

$$R = \prod_{p \in \mathcal{P}} \mathcal{O}_p$$

where \mathcal{O} is the ring of integers of K and \mathcal{P} may be any non-empty set of primes (or places) of K. For example, R could be the whole adèle ring of \mathbb{Q}, or $\hat{\mathbb{Z}} = \prod_{p \mid \mathcal{P}} \mathbb{Z}_p$.

Theorem 1 The ring R is bi-interpretable with each of the groups $\text{SL}_2(R)$, $\text{SL}_2(R)/\langle -1 \rangle$, $\text{PSL}_2(R)$.

Theorem 2 Let G be a simple Chevalley-Demazure group scheme of rank at least 2. Then R is bi-interpretable with the group $G(R)$.

The special cases where $R = \mathcal{O}_p$ were established in [NST], §4 and [ST].

For a rational prime p we write $R_p = \prod_{p \in \mathcal{P}, p \mid p} \mathcal{O}_p$.

Lemma 3 R has a finite subset S such that every element of R is equal to one of the form

$$\xi^2 - \eta^2 + s$$

with $\xi, \eta \in R^*$ and $s \in S$.

Proof. In any field of characteristic not 2 and size > 5, every element is the difference of two non-zero squares. It follows that the same is true for each of the rings \mathcal{O}_p with $N(p) > 5$ and odd.
If $N(p)$ is 3 or 5 then every element of \mathfrak{o}_p is of the form (1) with $\xi, \eta \in \mathfrak{o}_p^*$ and $s \in \{0, \pm 1\}$. If p divides 2, the same holds if S is a set of representatives for the cosets of $4p$ in \mathfrak{o}.

Now by the Chinese Remainder Theorem (and Hensel’s lemma) we can pick a finite subset S_1 of $R_3 \times R_3 \times R_3$ such that every element of $R_3 \times R_3 \times R_3$ is of the form (1) with $\xi, \eta \in \mathfrak{o}_p^*$ and $s \in S_1$. Finally, let S be the subset of elements $s \in R$ that project into S_1 and have \mathfrak{o}_p-component 1 for all $p \mid 30$ (including infinite places if present).

Remark If $K = \mathbb{Q}$ one could choose $S \subset \mathbb{Z}$ (diagonally embedded in R). The plethora of parameters in the following argument can then be replaced by just three - $h(\tau)$, $u(1)$, $v(1)$ - or even two when $R = A$, in which case we replace $h(\tau)$ by $h(2)$, which can be expressed in terms of $u(1)$ and $v(1)$ by the formula (5) below. Also the formula (5) can be replaced by the simpler one:

$$y_2 = u^x u_y u^s \land y_3 = y_1^x y_y^s y_1^s.$$

For a finite subset T of \mathbb{Z} let

$$R_T = \{ r \in R \mid r_p \in T \text{ for every } p \}.$$

This is a definable set, since $r \in R_T$ if and only if $f(r) = 0$ where $f(X) = \prod_{t \in T}(X - t)$.

Choose S as in Lemma 3 with 0, 1 $\in S$, and write $S^2 = S.S$.

Let $\Gamma = SL_2(R)/Z$ where Z is 1, $\langle -1 \rangle$ or the centre of SL$_2(R)$. For $\lambda \in R$ write

$$u(\lambda) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}, \quad v(\lambda) = \begin{pmatrix} 1 & 0 \\ -\lambda & 1 \end{pmatrix}, \quad h(\lambda) = \begin{pmatrix} \lambda^{-1} & 0 \\ 0 & \lambda \end{pmatrix} \quad (\lambda \in R^*)$$

(matrices interpreted modulo Z; note that $\lambda \mapsto u(\lambda)$ is bijective for each choice of Z).

Fix $\tau \in R^*$ with $\tau_p = 2$ for $p \nmid 2$, $\tau_p = 3$ for $p \mid 2$. It is easy to verify that

$$C_{\tau}(h(\tau)) = h(R^*) := H. \quad (2)$$

Proposition 4 The ring R is definable in Γ.

Proof. We take $h := h(\tau)$ and $\{u(c) \mid c \in S^2\}$ as parameters, and put $u := u(1)$. ‘Definable’ will mean definable with these parameters. For $\lambda \in R$ and $\mu \in R^*$ we have

$$u(\lambda) h(\mu) = u(\lambda \mu^2).$$

Now (2) shows that H is definable. If $\lambda = \xi^2 - \eta^2 + s$ and $x = h(\xi), y = h(\eta)$ then

$$u(\lambda) = u^x u^{-y} u(s).$$

It follows that

$$U := u(R) = \bigcup_{s \in S} \{ u^x u^{-y} u(s) \mid x, y \in H \}.$$

2
is definable.

The map \(u : R \to U \) is an isomorphism from \((R, +)\) to \(U\). It becomes a ring isomorphism with multiplication * if one defines

\[
u(\beta) * u(\alpha) = u(\beta \alpha).
\] (3)

We need to provide an \(L_{\text{gp}} \) formula \(P \) such that for \(y_1, y_2, y_3 \in U \),

\[
y_1 * y_2 = y_3 \iff \Gamma \models P(y_1, y_2, y_3).
\] (4)

Say \(\alpha = \xi^2 - \eta^2 + s \), \(\beta = \zeta^2 - \rho^2 + t \). Then

\[
u(\beta \alpha) = u(\beta)^{xy} u(\beta)^{-y} u(s)^{zt} u(s)^{-t} u(st)
\]

where \(x = h(\xi) \), \(y = h(\eta) \), \(z = h(\zeta) \) and \(r = h(\rho) \).

So we can take \(P(y_1, y_2, y_3) \) to be a formula expressing the statement: there exist \(x, y, z, r \in H \) such that for some \(s, t \in S \)

\[
y_1 = u^x u^{-r} u(t), \quad y_2 = u^y u^{-y} u(s),
\]

\[
y_3 = y_1^x y_2^y u(s)^{zt} u(s)^{-t} u(st).
\] (5)

\[\]

Proposition 5 The group \(\Gamma \) is interpretable in \(R \).

Proof. When \(\Gamma = \text{SL}_2(R) \), clearly \(\Gamma \) is definable as the set of \(2 \times 2 \) matrices with determinant 1 and group operation matrix multiplication. For the other cases, it suffices to note that the equivalence relation ‘modulo \(Z \)' is definable by \(A \sim B \) iff there exists \(Z \in \{ \pm 1_2 \} \) with \(B = AZ \), resp. \(Z \in H \) with \(Z^2 = 1 \) and \(B = AZ \). □

To complete the proof of Theorem \(\square \) it remains to establish **Step 1** and **Step 2** below.

We take \(v = v(1) \) as another parameter, and set \(w = uvu = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \).

Then \(u(\lambda)^w = v(\lambda) \), so \(V := v(R) = U^w \) is definable. Note the identity (for \(\xi \in R^* \)):

\[
h(\xi) = v(\xi) u(\xi^{-1}) v(\xi) w^{-1} = w^{-1} u(\xi) w. u(\xi^{-1}) w^{-1} u(\xi).
\] (6)

Step 1: The ring isomorphism from \(R \) to \(U \subset M_2(R) \) is definable. Indeed, this is just the mapping

\[
r \mapsto \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}.
\]

Step 2: The map \(\theta \) sending \(g = (a, b; c, d) \) to \((u(a), u(b); u(c), u(d)) \in \Gamma^4 \) is definable; this is a group isomorphism when \(U \) is identified with \(R \) via \(u(\lambda) \mapsto \lambda \).
Assume for simplicity that $\Gamma = \text{SL}_2(R)$. We start by showing that the restriction of θ to each of the subgroups U, V, H is definable. Recall that $u(0) = 1$ and $u(1) = u$.

If $g \in U$ then $g\theta = (u,g;1,u)$. If $g = v(-\lambda) \in V$ then $g^{-w} = u(\lambda) \in U$ and $g\theta = (u,1;g^{-w},u)$.

Suppose $g = h(\xi) \in H$. Then $g = w^{-1}xwyw^{-1}x$ where $x = u(\xi)$, $y = u(\xi^{-1})$, and $g\theta = (y,1,1,x)$. So $g\theta = (y_1, y_2; y_3, y_4)$ if and only if

$$y_4 \ast y_1 = u, \ y_2 = y_3 = 1, \ g = w^{-1}y_4wy_1w^{-1}y_4.$$

Thus the restriction of θ to H is definable.

Next, set $W := \{x \in \Gamma \mid x_p \in \{1,w\} \text{ for every } p \}$. To see that W is definable, observe that an element x is in W if and only if there exist $y, z \in u(R_{(0,1)})$ such that

$$x = yz^w y \text{ and } x^4 = 1.$$

Note that $u(R_{(0,1)})$ is definable by (the proof of) Proposition 3.

Put

$$\Gamma_1 = \{g \in \Gamma \mid g_{11} \in R^*\}.$$

If $g = (a,b;c,d) \in \Gamma_1$ then $g = \tilde{v}(g)\tilde{h}(g)\tilde{u}(g)$ where

$$\tilde{v}(g) = v(-a^{-1}c) \in V$$

$$\tilde{h}(g) = h(a^{-1}) \in H$$

$$\tilde{u}(g) = u(a^{-1}b) \in U.$$

This calculation shows that in fact $\Gamma_1 = VHU$, so Γ_1 is definable; these three functions on Γ_1 are definable since

$$x = \tilde{v}(g) \iff x \in V \cap HUG$$

$$y = \tilde{u}(g) \iff y \in U \cap HVG$$

$$z = \tilde{h}(g) \iff z \in H \cap VGU.$$

Let $g = (a,b;c,d)$. Then $gw = (-b,a;-d,c)$. We claim that there exists $x \in W$ such that $gx \in \Gamma_1$. Indeed, this may be constructed as follows: If $a_p \in \mathfrak{g}_p^*$ take $x_p = 1$. If $a_p \in p\mathfrak{g}_p$ and $b_p \in \mathfrak{g}_p^*$ take $x_p = w$. If both fail, take $x_p = 1$ when $a_p \neq 0$ and $x_p = w$ when $a_p = 0$ and $b_p \neq 0$. This covers all possibilities since for almost all p at least one of a_p, b_p is a unit in \mathfrak{g}_p, and a_p, b_p are never both zero.

As $gx \in \Gamma_1$, we may write

$$gx = \tilde{v}(gx)\tilde{h}(gx)\tilde{u}(gx).$$
We claim that the restriction of θ to W is definable. Let $x \in W$ and put $P = \{p \mid x_p = 1\}$, $Q = \{p \mid x_p = w\}$. Then $(u^x)_p$ is u for $p \in P$ and v for $p \in Q$, so $u^x \in \Gamma_1$ and

$$\tilde{u}(u^x)_p = \begin{cases} u & (p \in P) \\ 1 & (p \in Q) \end{cases}.$$

Recalling that $u = u(1)$ and $1 = u(0)$ we see that

$$x\theta = \begin{pmatrix} \tilde{u}(u^x) & \tilde{u}(u^x)^{-1}u \\ u^{-1}\tilde{u}(u^x) & \tilde{u}(u^x) \end{pmatrix}.$$

We can now deduce that θ is definable. Indeed, $g\theta = A$ holds if and only if there exists $x \in W$ such that $gx \in \Gamma_1$ and

$$A.x\theta = \tilde{v}(gx)\theta.$$

(of course the products here are matrix products, definable in the language of Γ in view of Proposition 4).

This completes the proof of Theorem 1 for $\Gamma = \text{SL}_2(R)$. When $\Gamma = \text{SL}_2(R)/Z$, the same formulae now define θ as a map from Γ into the set of 2×2 matrices with entries in U modulo the appropriate definable equivalence relation. ■

Now we turn to the proof of Theorem 2. This largely follows [ST], §§3, 4, but is simpler because we are dealing here with 'nice' rings. Henceforth G denotes a simple Chevalley-Demazure group scheme of rank at least 2. The root subgroup associated to a root α is denoted U_α, and Z denotes the centre of G. Put $\Gamma = G(R)$.

Let S be any integral domain with infinitely many units. According to [ST], Theorem 1.5 we have

$$U_\alpha(S)Z(S) = Z(C_{G(S)}(v))$$

whenever $1 \neq v \in U_\alpha(S)$. This holds in particular for the rings $S = \alpha_p$. Take $u_\alpha \in U_\alpha(R)$ to have p-component $x_\alpha(1)$ for each $p \in P$ (or every p when $R = A$); then

$$U_\alpha(R)Z(R) = Z(C_{G(R)}(u_\alpha)).$$

Given this, the proof of Corollary 1.6 of [ST] now shows that $U_\alpha(R)$ is a definable subgroup of Γ; the result is stated for integral domains but the argument remains valid, noting that in the present case $R/2R$ is finite.

Associated to each root α there is a morphism $\varphi_\alpha : \text{SL}_2 \to G$ sending $u(r) = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}$ to $x_\alpha(r)$ and $v(r) = \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix}$ to $x_{-\alpha}(r)$ ([S], Chapter 3). This morphism is defined over \mathbb{Z} and satisfies

$$K_\alpha := \text{SL}_2(R)\varphi_\alpha \leq G(R).$$

Lemma 6 $K_\alpha = U_{-\alpha}(R)U_{\alpha}(R)U_{-\alpha}(R)U_{\alpha}(R)U_{-\alpha}(R)U_{\alpha}(R)U_{-\alpha}(R)U_{\alpha}(R)$.

5
Proof. This follows from the corresponding identity in SL₂(R), which in turn follows from (6) and the fact that \(w = uuw \). ■

We may thus infer that each \(K_\alpha \) is a definable subgroup of \(G(R) \). Fixing a root \(\gamma \), we identify \(R \) with \(U_\gamma(R) \) by \(r \mapsto r' = x_\gamma(r) \). Proposition 4 now shows that \(R \) is definable in \(G(R) \).

As above, \(G(R) \) is \(R \)-definable as a set of \(d \times d \) matrices that satisfy a family of polynomial equations over \(\mathbb{Z} \), with group operation matrix multiplication.

To complete the proof we need to establish

1. The ring isomorphism \(R \to U_\gamma(R); r \mapsto x_\gamma(r) \in M_d(R) \) is definable in ring language. This follows from the definition \(x_\gamma(r) = \exp(rX_\gamma) = 1 + rM_1(\gamma) + \ldots + r^qM_q(\gamma) \) where each \(M_i(\gamma) \) is a matrix with integer entries ([S], Chaps. 2, 3).

2. The group isomorphism \(\theta: G(R) \to G(R') \subseteq M_d(U_\gamma(R)) \) is definable in group language.

To begin with, Lemma 3.5 of [ST] shows that for each root \(\alpha \), the restriction of \(\theta \) to \(U_\alpha(R) \) is definable (this is established for \(R \) an integral domain, but the proof is valid in general). Next, we observe that \(G(R) \) has ‘finite elementary width’ in the sense of [ST]:

Lemma 7 There is a finite sequence of roots \(\beta_i \) such that

\[
G(R) = \prod_{i=1}^{N} U_{\beta_i}(R).
\]

Proof. This relies on results from Chapter 7 of [S]. Specifically, Corollary 2 to Theorem 18 asserts that if \(R \) is a PID, then (in the above notation) \(G(R) \) is generated by the groups \(K_\alpha \). It is clear from the proof that each element of \(G(R) \) is in fact a product of bounded length of elements from various of the \(K_\alpha \); an upper bound is given by the sum \(N_1 \), say, of the following numbers: the number of positive roots, the number of fundamental roots, and the maximal length of a Weyl group element as a product of fundamental reflections. If the positive roots are \(\alpha_1, \ldots, \alpha_n \) it follows (if \(R \) is a PID) that

\[
G(R) = \left(\prod_{j=1}^{n} K_{\alpha_j} \right) \cdot \left(\prod_{j=1}^{n} K_{\alpha_j} \right) \cdots \left(\prod_{j=1}^{n} K_{\alpha_j} \right) \quad (N_1 \text{ factors}).
\]

As each of the rings \(\mathfrak{a}_p \) is a PID (or a field), the same holds for our ring \(R \) in general.

The result now follows by Lemma 6, taking \(N = 8nN_1 \). ■

Thus \(\theta \) is definable as follows: for \(g \in G(R) \) and \(A \in M_d(U_\gamma(R)) \), \(g\theta = A \) if and only if there exist \(v_i \in U_{\beta_i}(R) \) and \(A_i \in M_d(U_\gamma(R)) \) such that \(g = v_1 \ldots v_N \).
\(A = A_1 \cdots A_N \) and \(A_i = v_i \theta \) for each \(i \). Here \(A_1 \cdot A_2 \) etc denote matrix products, which are definable in the language of \(G \) because the ring operations on \(R' = U_n(R) \) are definable in \(G \).

This completes the proof.

Acknowledgment. Thanks to Jamshid Derakhshan for references and advice.

References

[AMO] P. D’Aquino, A. J. Macintyre and M. Otero, Some model-theoretic perspectives on the structure sheaves of \(\hat{\mathbb{Z}} \) and the ring of finite adèles over \(\mathbb{Q} \), arXiv: 2002.06660 [math. AC]

[D] J. Derakhshan, Model theory of adèles and number theory, arXiv:2007.09237 [math.LO], 2020

[DM] J. Derakhshan and A. Macintyre, Model theory of adèles I, arXiv: 1603.09698 [math.LO]

[NST] A. Nies, D. Segal and K. Tent, Finite axiomatizability for profinite groups, arXiv:1907.02262v4 [math.GR], 2020

[ST] D. Segal and K. Tent, Defining \(R \) and \(G(R) \), arXiv:2004.13407v3 [math.GR], 2020

[S] R. Steinberg, Lectures on Chevalley groups, A. M. S. University Lecture Series 66, 2016.