Risk of Malignant Neoplasm of the Pancreas in Relation to Diabetes

A population-based study in Taiwan

HUA-FEN CHEN, MD, MSC 1,2
PETER CHEN, MD 3
CHUNG-YI LI, PHD 4

OBJECTIVE—We prospectively assessed the age- and sex-specific incidence and relative risk of malignant neoplasm of the pancreas in Taiwan’s diabetic population.

RESEARCH DESIGN AND METHODS—A total of 615,532 diabetic patients and 614,871 age- and sex-matched control subjects were linked to inpatient claims (2000–2006) to identify the admissions for malignant neoplasm of the pancreas (ICD-9: 157). The Cox proportional hazards regression model was used to estimate the age- and sex-specific relative risk of pancreatic neoplasm.

RESULTS—Compared with the control group, the diabetic patients had a significantly increased risk of pancreatic cancer (hazard ratio [HR] 1.54 [95% CI 1.39–1.71]). The higher and significant age-specific HRs were observed in diabetic men (1.91) and women (1.80) aged 45–65 years.

CONCLUSIONS—Middle-aged diabetic men and women were associated with the most increased risk of malignant neoplasm of the pancreas.

Diabetes Care 34:1177–1179, 2011

Malignant neoplasm of the pancreas, a cancer with a high case-fatality rate (1), has been observed to be associated with diabetes. Some studies (2–6) reported that diabetes is a risk factor for pancreatic cancer, but others (7,8) concluded that diabetes is simply a consequence of pancreatic cancer. As a result of fewer cases of pancreatic cancer included in previous studies, most of the previous analyses were unable to provide reliable estimates of the incidence rate and relative risk of malignant neoplasm of the pancreas in diabetes, according to different age and sex stratifications. The current study used a national cohort retrieved from Taiwan’s National Health Insurance database to prospectively investigate the age- and sex-specific incidence rates and relative risks of pancreatic cancer in Taiwan’s diabetic population between 2000 and 2006.

RESEARCH DESIGN AND METHODS—Details of claim data and methods of selection of diabetic and control groups were described in our previous report (9). In brief, an individual was classified as a diabetic patient if she or he had an initial diabetes diagnosis (ICD-9: 250 or a code 181) at any time in 2000 and then experienced another one or more diagnoses within the subsequent 12-month follow-up periods. The first and last outpatient visits within 1 year must be >30 days apart to avoid accidental inclusion of miscoded patients. We further excluded those patients admitted for malignant neoplasm (ICD-9: 140–208) during 1997–1999, resulting in the final diabetic cohort of 615,532 patients, and the index date was the date of their first outpatient visit for diabetes in 2000.

A total of 614,871 age- and sex-matched control subjects were randomly selected from the registry of beneficiaries after excluding those who were included in the diabetic ambulatory care claim or hospitalized for any kind of malignancy between 1997 and 1999. The index date for control subjects was the first day (for those enrolled prior to 2000) or the first date of enrollment to the National Health Insurance in 2000.

We linked study subjects in both diabetic and control groups to the inpatient claim data from 2000 to 2006 to identify the possible onset of primary or secondary diagnoses of malignant neoplasm of the pancreas (ICD-9: 157). To account for the biologically relevant link between diabetes and pancreatic cancer, we retrieved only pancreatic neoplasm admission 1 year after the index date. The date of encountering pancreatic cancer was the 1st day of hospitalization.

The age- and sex-specific hazard rates were determined under the Poisson assumption. To assess the independent effects of diabetes on the risks of malignant neoplasm of the pancreas, we conducted Cox proportional hazards regression models with age, sex, geographic area, urbanization status, and various gastric and hepatobiliary comorbidities adjusted simultaneously in the model. All statistical analyses were performed with SAS (version 9.1; SAS Institute, Cary, NC). A P value <0.05 was considered statistically significant.

RESULTS—The overall incidence density for diabetic men and women was 3.34 and 2.58 per 10,000 patient-years, respectively, whereas the corresponding figures for control men and women were 1.88 and 1.71 per 10,000 patient-years, respectively. Irrespective of sex, the incidence density increased with age in both diabetic and control groups, and the highest incidence density was observed in those aged >65 years.
Table 1—Overall and age- and sex-specific incidence densities and relative hazards of malignant neoplasm of pancreas (ICD-9: 157) in diabetic and control groups

Variables*	Control group	Diabetic group	Crude HR (95% CI) in association with diabetic group‡	Adjusted HR (95% CI) in association with diabetic group§
	Incidence density (per 10,000 patient-years) (95% CI)†	Incidence density (per 10,000 patient-years) (95% CI)†		
Men	Patients (n)	Events (n)	Crude HR (95% CI) in association with diabetic group‡	Adjusted HR (95% CI) in association with diabetic group§
Age (years)				
<45	40,537	7	0.26 (0.07–0.45)	
45–65	141,899	120	1.28 (1.05–1.51)	
>65	113,127	193	2.66 (2.28–3.03)	
Total	295,563	320	1.88 (1.68–2.07)	
Women				
Age (years)				
<45	29,080	2	0.10 (–0.04 to 0.25)	
45–65	154,911	83	0.81 (0.63–0.98)	
>65	135,317	232	2.62 (2.28–2.95)	
Total	319,308	317	1.71 (1.54–1.89)	
Overall	614,871	637	1.79 (1.66–1.92)	

Data are HR (95% CI) unless otherwise indicated. *Inconsistency between total population and population summed for individual variable was a result of missing information. †Based on Poisson assumption. ‡Based on Cox proportional hazards regression without adjustment. §Based on Cox proportional hazards regression with adjustment for age, sex, and geographic area and urbanization status, status of hepatitis B, hepatitis C, cholecystitis, cholangitis, cholelithiasis, choledocholithiasis, cholecystectomy, gastric ulcer, and duodenal ulcer, and gastrectomy.

CONCLUSIONS—Compared with the control subjects, the age- and sex-matched control patients showed significantly increased risks of malignant neoplasm in the pancreas (HR of 1.91 [95% CI 1.72–2.15]) for both men and women aged 45–65 years (1.91 [1.52–2.39] and 1.80 [1.37–2.36], respectively).
of the pancreas has not been fully elucidated. Insulin resistance and accompanying compensatory hyperinsulinemia might increase local blood flow and cell division in the pancreas (11). They also might promote the growth of pancreatic cell lines (12).

In conclusion, over a 7-year study period, diabetic men and women in Taiwan were observed to experience significantly increased risks of malignant neoplasm of the pancreas. Diabetic men and women aged 45–65 years were found to experience the most increased age-specific HRs.

Acknowledgments—This study was supported in part by a contract with the National Scientific Council (NSC98-2314-B-227-001-MY2) and the Taiwan Department of Health (DOH99-TD-B-111-004/DOH99-TD-C-111-005).

No potential conflicts of interest relevant to this article were reported.

H.-F.C. wrote the manuscript and researched data. P.C. contributed to the discussion and reviewed and edited the manuscript. C.-Y.L. researched data and reviewed and edited the manuscript.

References
1. Royal RE, Wolff RA, Crane CH. Pancreatic cancer. In Cancer: Principles and Practice of Oncology. 8th ed., Vol 1. DeVita VT, Lawrence TS, Rosenberg SA, Eds. Philadelphia, Lippincott Williams and Wilkins, 2008, p. 1086–1089
2. Chow WH, Gridley G, Nyrén O, et al. Risk of pancreatic cancer following diabetes mellitus: a nationwide cohort study in Sweden. J Natl Cancer Inst 1995;87:930–931
3. Wideroff L, Gridley G, Mellemkjaer L, et al. Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst 1997;89:1360–1365
4. Silverman DT, Schiffman M, Everhart J, et al. Diabetes mellitus, other medical conditions and familial history of cancer as risk factors for pancreatic cancer. Br J Cancer 1999;80:1830–1837
5. Larsson SC, Permert J, Häkansson N, Näslund I, Bergkvist L, Wolk A. Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. Br J Cancer 2005;93:1310–1315
6. Yun JE, Jo I, Park J, et al. Cigarette smoking, elevated fasting serum glucose, and risk of pancreatic cancer in Korean men. Int J Cancer 2006;119:208–212
7. Gullo L, Pezzilli R, Morselli-Labate AM; Italian Pancreatic Cancer Study Group. Diabetes and the risk of pancreatic cancer. N Engl J Med 1994;331:81–84
8. Wang F, Gupta S, Holly EA. Diabetes mellitus and pancreatic cancer in a population-based case-control study in the San Francisco Bay Area, California. Cancer Epidemiol Biomarkers Prev 2006;15:1458–1463
9. Chen HF, Chen P, Li CY. Risk of malignant neoplasms of liver and biliary tract in diabetic patients with different age and sex stratifications. Hepatology 2010;52:155–163
10. Chuang LM, Tsai ST, Huang BY, Tai TY; DIABCARE (Taiwan) Study Group. The current state of diabetes management in Taiwan. Diabetes Res Clin Pract 2001;54 (Suppl. 1):S55–S65
11. Henderson JR, Daniel PM, Fraser PA. The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut 1981;22:138–167
12. Fisher WE, Boros LG, Schirmer WJ. Insulin promotes pancreatic cancer: evidence for endocrine influence on exocrine pancreatic tumors. J Surg Res 1996;63:310–313