Research Article

Topological Indices of Derived Networks of Benzene Ring Embedded in \(P \)-Type Surface on 2D

Feng Yin,1 Muhammad Numan,2 Saad Ihsan Butt3 Adnan Aslam4 and Andleeb Kausar2

1Suzhou Vocational Technical College, Suzhou, China
2Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan
3Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
4Department of Natural Sciences, University of Engineering and Technology, Lahore, Pakistan

Correspondence should be addressed to Adnan Aslam; adnanaslam15@yahoo.com

Received 20 December 2020; Accepted 27 January 2021; Published 9 February 2021

Academic Editor: Teodorico C. Ramalho

Copyright © 2021 Feng Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Topological index (TI) is a numerical number assigned to the molecular structure that is used for correlation analysis in pharmacology, toxicology, and theoretical and environmental chemistry. Benzene ring embedded in the \(P \)-type surface on 2D network has stability similar to \(C_{60} \) and can be defined as 3D linkage of \(C_8 \) rings. This structure is the simplest possible tiling of the periodic minimal surface \(P \) which contains one type of carbon atom. In this paper, we compute general Randić, general Zagreb, general sum-connectivity, first Zagreb, second Zagreb, and \(ABC \) and \(GA \) indices of two operations (simple medial and stellation) of 2D network of benzene ring. Also, the exact expressions of \(ABC_4 \) and \(GA_5 \) indices of these structures are computed.

1. Introduction and Preliminaries

All the graphs in this work are finite and connected. Let \(\mathcal{H} \) be a graph with vertex set and edge set denoted by \(V(\mathcal{H}) \) and \(E(\mathcal{H}) \), respectively. We denote the degree of a vertex \(u \in V(G) \) by \(d_u \) and it is the number of edges incident to \(u \). The neighborhood of a vertex \(u \) is the set of all its neighbors and is denoted by \(N(u) \). Let \(S(G) \) be the sum of degrees of all the vertices that are adjacent to \(u \). In other words,

\[
S(u) = \sum_{v \in N(u)} d_v, \quad \text{where } N(u) = \{ v \in V(\mathcal{H}) : uv \in E(\mathcal{H}) \}.
\]

(1)

For more insight on basic definitions and terminologies of graph theory, see [1].

In this paper, we consider two operations, stellation and simple medial of 2D network of benzene ring. The medial of a graph \(\mathcal{H} \), denoted by \(M(\mathcal{H}) \), is defined as follows: we put a new vertex in the middle of every old edge of \(\mathcal{H} \) and the new vertices have an edge if they lie on the consecutive edges. Note that the medial of a graph \(\mathcal{H} \) is a 4-regular planner graph and not necessarily simple. Sjostrand [2] introduced the idea of transforming the graph with multiple edges and loops into a simple graph by finite sequence of double edge swaps. If \(M(\mathcal{H}) \) is not simple, we transform the graph into simple graph and call it the simple medial of \(\mathcal{H} \), denoted by \(SM(\mathcal{H}) \). Stellation of a graph planar \(\mathcal{H} \), denoted as \(St(\mathcal{H}) \), is obtained by putting a vertex in every face of \(\mathcal{H} \) and then we join this vertex to each vertex of respective face.

In the last couple of decades, topological and graph theoretical models have shown applications in many scientific research areas such as theoretical physics, chemistry, pharmaceutical chemistry, and toxicology. The interaction of graph theory with chemistry has enriched both the field. Topological index/descriptor is a numerical number attached to a molecular graph which is expected to predict certain physical or chemical properties of the underlying molecular structure. The simplest topological descriptors one can attach to a graph \(\mathcal{H} \) is its order and size. The importance of the topological indices is because of their use in quantitative structure activity relationship (QSAR)/
quantitative structure property relationship (QSPR). The first topological index was introduced by Weiner in 1947, who showed that the index is well correlated with boiling point of alkanes. In 1975, the first degree based topological index was proposed by Milan Randić [3]. After that many degree-based topological indices were defined which were found to be useful in modeling the properties of organic molecules. Few of the important degree-based topological indices are presented in Table 1.

The Randić index was first named as branching index and is found appropriate for calculating the extent of branching of the carbon atom skeleton of saturated hydrocarbons. In 1975, the first degree based topological index was defined which were found to be useful in modeling the properties of organic molecules. Few of the important degree-based topological indices are presented in Table 1.

The Randić index was first named as branching index and is found appropriate for calculating the extent of branching of the carbon atom skeleton of saturated hydrocarbons. In 1975, the first degree based topological index was defined which were found to be useful in modeling the properties of organic molecules. Few of the important degree-based topological indices are presented in Table 1.

2. Topological Indices of Simple Medial of \(P[m, n] \)

The preparation [26] of \(C_{60} \) leads to assumption about the stability of other crystalline forms of three coordinated carbons. In particular, Mackay and Terrones [27] raised the interesting prospect of creating possible tricoordinated solid carbon forms by lining the infinite periodic minimal surfaces known as \(P \) and \(D \). These surfaces divide the space into two unconnected labyrinths. O’Keeffe et al. [28] reported the results of initial calculations of molecular dynamic relaxation in the simplest treatment, which contains only one type of carbon atom. These structures contain six- and eight-membered rings in ratio of 2 : 3 and their primitive single cells have only 24 atoms. The stability of this structure is similar to \(C_{60} \) and it can be defined as a three-dimensional connection of \(C_{60} \) rings. This structure is the simplest possible treatment of the periodic minimum surface \(P \), which has only one type of carbon atom. From now onward, we denote the molecular structure of 2 \(D \) network of benzene ring embedded in \(P \)-type surface by \(P[m, n] \). Figure 1 depicts the molecular graph of \(P[m, n] \).

Note that \(P[m, n] \) contains \(24mn \) vertices and \(32mn - 2m - 2n \) edges. The medial of \(P[m, n] \) is obtained as follows:

we put a new vertex in the middle of every old edge of \(P[m, n] \) and the new vertices have an edge if they lie on the consecutive edges. The graph of medial of \(P[m, n] \) is depicted in Figure 2. Observe that the graph of medial of \(P[m, n] \) contains multiple edges. It can be made simple by using the double edge swaps defined by Sjostrand [2]. Figure 3 depicts the graph of simple medial of \(P[m, n] \) and we denote it by \(SM(P[m, n]) \). By a simple calculation, we can compute that \(SM(P[m, n]) \) contains \(32mn - 2m - 2n \) vertices and \(64mn - 20m - 20n + 12 \) edges. Suppose \(V_i = \{ u \in V(SM(P[m, n])) : d_u = i \} \) and \(E_{ij} = \{ uv \in E(SM(P[m, n])) : d_u = i, d_v = j \} \). Let \(n_i \) and \(e_{ij} \) be the cardinalities of \(V_i \) and \(E_{ij} \), respectively.

Theorem 1. Let \(\mathcal{X} \) be the graph of \(SM(P[m, n]) \) and \(\alpha \) is a real number, then we have

1. \(M_{\alpha}(\mathcal{X}) = (16m + 16n - 12)2^{\alpha} + (32mn - 18m - 18n + 12)4^{\alpha} \)
2. \(R_{\alpha}(\mathcal{X}) = (4m + 4n)2^{2\alpha} + (24m + 24n - 24)2^{\alpha} + (64mn - 48m - 48n + 36)2^{4\alpha} \)
3. \(\chi_{\alpha}(\mathcal{X}) = (4m + 4n)2^{3\alpha} + (24m + 24n - 24)6^{\alpha} + (64mn - 48m - 48n + 36)2^{5\alpha} \)
4. \(ABC(\mathcal{X}) = (1/\sqrt{2}) (28m + 28n - 24) + (1/2) \sqrt{(3/2)} (64mn - 48m - 48n + 36) \)
5. \(GA(\mathcal{X}) = (4m + 4n) + (\sqrt{2}/3)(24m + 24n - 24) + (64mn - 48m - 48n + 36) \)
6. \(PM_1(\mathcal{X}) = 2^{192mn - 136m - 136n + 108} \times e^{24mn + 24n - 24} \)
7. \(PM_2(\mathcal{X}) = 2^{256mn - 112m - 112n + 72} \)

Proof. We can partition \(V(\mathcal{X}) \) into three sets based on vertex degrees. Table 2 shows this partition. By using the values presented in Table 2, the general Zagreb index of \(\mathcal{X} \) can be computed as follows:

\[
M_{\alpha}(\mathcal{X}) = \sum_{u \in V(\mathcal{X})} (d_u)^{\alpha} = (16m + 16n - 12)2^{\alpha} + (32mn - 18m - 18n + 12)4^{\alpha}.
\]
Table 1: Degree-based topological descriptors.

Topological descriptors	Mathematical forms
General Randić index [4,5]	$R_{\alpha}(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} (d_u d_v)^{\alpha}$
General sum-connectivity index [6]	$\chi_{\alpha}(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} (d_u + d_v)^{\alpha}$
First general Zagreb index [7]	$M_{\alpha}(\mathcal{G}) = \sum_{u \in V(\mathcal{G})} (d_u)^{\alpha}$
Randić index [3]	$R_{(-1/2)}(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} (1/\sqrt{d_u d_v})$
First Zagreb index [8]	$M_1(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} (d_u + d_v)$
Second Zagreb index [8]	$M_2(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} (d_u \times d_v)$
First multiplicative Zagreb index [9]	$PM_1(\mathcal{G}) = \prod_{uv \in E(\mathcal{G})} (d_u + d_v)$
Second multiplicative Zagreb index [10]	$PM_2(\mathcal{G}) = \prod_{uv \in E(\mathcal{G})} (d_u \times d_v)$
Hyper-Zagreb index [11]	$HM(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} (d_u + d_v)^2$.
Atom-bond connectivity index [12]	$ABC(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} \sqrt{((d_u + d_v - 2)/(d_u d_v))}$
Geometric arithmetic index [13]	$GA(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} ((2\sqrt{d_u d_v})/(d_u + d_v))$
Fourth version of atom-bond connectivity index [14]	$ABC_4(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} \sqrt{((S(u) + S(v) - 2)/(S(u) S(v)))}$
Fifth version of geometric arithmetic index [15]	$GA_5(\mathcal{G}) = \sum_{uv \in E(\mathcal{G})} ((2\sqrt{S(u) S(v)})/(S(u) + S(v)))$

![Figure 1: Graph of $P[m, n]$.](image1)

![Figure 2: Molecular graph of medial of $P[m, n]$.](image2)

![Figure 3: Molecular graph $SM(P[m, n])$ of simple medial of $P[m, n]$.](image3)
\[R_{m}(\mathcal{X}) = \sum_{u,v \in E(\mathcal{X})} (d_u d_v)^{\alpha} \]

\[= (4m + 4n)(2 \times 2)^{\alpha} + (24m + 24n - 24)(2 \times 4)^{\alpha} + (64mn - 48m - 48n + 32)(4 \times 4)^{\alpha} \]

\[= (4m + 4n)2^{2\alpha} + (24m + 24n - 24)2^{3\alpha} + (64mn - 48m - 48n + 36)2^{4\alpha}, \]

\[\chi_{m}(\mathcal{X}) = \sum_{u,v \in E(\mathcal{X})} (d_u + d_v)^{\alpha} \]

\[= (4m + 4n)(2 + 2)^{\alpha} + (24m + 24n - 24)(2 + 4)^{\alpha} + (64mn - 48m - 48n + 32)(4 + 4)^{\alpha} \]

\[= (4m + 4n)2^{2\alpha} + (24m + 24n - 24)2^{3\alpha} + (64mn - 48m - 48n + 36)2^{4\alpha}, \]

\[ABC(\mathcal{X}) = \sum_{u,v \in E(\mathcal{X})} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}} \]

\[= (4m + 4n)\sqrt{\frac{2 + 2 - 2}{2 \times 2}} + (24m + 24n - 24)\sqrt{\frac{2 + 4 - 2}{2 \times 4}} \]

\[+ (64mn - 48m - 48n + 32)\sqrt{\frac{4 + 4 - 2}{4 \times 4}} \]

\[= \frac{1}{\sqrt{2}}(28m + 28n - 24) + \frac{1}{2} \left(\frac{3}{2}(64mn - 48m - 48n + 36), \right) \]

\[(3) \]

\[GA(\mathcal{X}) = \sum_{u,v \in E(\mathcal{X})} \frac{2\sqrt{d_u d_v}}{d_u + d_v} \]

\[= (4m + 4n)\frac{2\sqrt{2 \times 2}}{2 + 2} + (24m + 24n - 24)\frac{2\sqrt{2 \times 4}}{2 + 4} \]

\[+ (64mn - 48m - 48n + 32)\frac{2\sqrt{4 \times 4}}{4 + 4} \]

\[= (4m + 4n) + \sqrt{2} \left(24m + 24n - 24 \right) + (64mn - 48m - 48n + 36), \]

\[PM_1(\mathcal{X}) = \prod_{u \in E(\mathcal{X})} (d_u + d_v) \]

\[= (2 + 2)^{1m+4n} \times (2 + 4)^{24m+24n-24} \times (4 + 4)^{64mn-48m-48n+32} \]

\[= 2^{192mn - 136m - 136n + 108} \times 6^{24m + 24n - 24}, \]

\[PM_2(\mathcal{X}) = \prod_{u \in E(\mathcal{X})} (d_u d_v) \]

\[= (2 \times 2)^{1m+4n} \times (2 \times 4)^{24m+24n-24} \times (4 \times 4)^{64mn-48m-48n+32} \]

\[= 2^{256mn - 112m - 112n + 72}, \]
Table 2: Vertex partition of \mathcal{X}.

V_i	2	4
n_i	$16m + 16n - 12$	$32mn - 18m - 18n + 12$

Table 3: Edge partition E_{ij} of \mathcal{X}.

E_{ij}	$E_{2,2}$	$E_{2,4}$	$E_{4,4}$
c_{ij}	$4m + 4n$	$24m + 24n - 24$	$64mn - 48m - 48n + 36$

From Theorem 1, we can compute the values of Randić, first Zagreb, second Zagreb, and hyper-Zagreb index of \mathcal{X}.

Corollary 1. Let \mathcal{X} be the graph of simple medial of $P[m,n]$, then we have

\[(1) ABC_4(\mathcal{X}) = \frac{1}{3} \sqrt{2} (4m + 4n) + \sqrt{\frac{7}{30}} (8m + 8n) + \sqrt{\frac{1}{5}} (4m + 4n) + \frac{1}{2} \sqrt{\frac{5}{7}} (4m + 4n - 8) + \frac{12}{5} \sqrt{2} + \frac{1}{2} \sqrt{21} (4m + 4n - 8) + \frac{1}{2} \sqrt{2} (4m + 4n - 8) + \frac{11}{10} (4m + 4n - 8) + \frac{1}{8} \sqrt{72} (64mn - 60m - 60n + 56), \]

\[(2) GA_3(\mathcal{X}) = (4m + 4n) + \frac{1}{4} \sqrt{15} (8m + 8n) + \frac{4}{9} \sqrt{5} (4m + 4n) + \frac{4}{11} \sqrt{7} (4m + 4n - 8) + \frac{1}{3} \sqrt{35} (4m + 4n - 8) + \frac{2}{13} \sqrt{42} (4m + 4n - 8) + \frac{4}{7} \sqrt{3} (4m + 4n - 8) + \frac{4}{15} \sqrt{14} (4m + 4n - 8) + 64mn - 60m - 60n - 56. \]

Proof. The edge partition of \mathcal{X} depending on the sum of degree of end vertices is presented in Table 4. The result follows by using the values from Table 4 in the definition of $ABC_4(\mathcal{X})$ and $GA_3(\mathcal{X})$. □

3. Topological Indices of Stellation of $P[m,n]$

Let \mathcal{L} be the molecular graph of stellation of $P[m,n]$. It is obtained adding a vertex in each face of $P[m,n]$ and then joining this vertex to each vertex of the respective face. The graph of \mathcal{L} is shown in Figure 4. In \mathcal{L}, there are $32mn - 2n + 1$ vertices and $96mn - 22m - 22n + 12$ edges. Suppose $V_f = \{ u \in V(\mathcal{L}) : d_u = i \}$ and $E_{ij} = \{ uv \in E(\mathcal{L}) : d_u = i, d_v = j \}$. Let n_i and c_{ij} be the cardinalities of the vertex set V_f and edge set E_{ij}, respectively.

Theorem 3. Let \mathcal{L} be the graph of stellation of $P[m,n]$ and α is a real number, then we have

\[(1) M_{\alpha}(\mathcal{L}) = (8m + 8n - 4)^{3}\alpha + (8m - 4m - 4n + 4)^{4}\alpha + (8m + 8n - 8)^{5}\alpha + (20mn - 12m - 12n + 8)^{6}\alpha + (2mn - 6m - 6n)^{8}\alpha + (2mn - m - n + 1)^{12}\alpha, \]

\[(2) R_{\alpha}(\mathcal{L}) = (4m + 4n)^{3}\alpha + (8m + 8n - 8)^{5}\alpha + (8m + 8n - 12)^{8}\alpha + (4m + 4n)^{18}\alpha + (24mn - 16m - 16n + 12)^{24}\alpha + (24mn - 16m - 16n + 12)^{48}\alpha + (4m + 4n - 4)^{28}\alpha + (12m + 12n - 16)^{30}\alpha + (4m + 4n - 4)^{40}\alpha + (4m + 4n - 4)^{60}\alpha + (32mn - 26m - 26n + 20)^{62}\alpha + (16mn - 12m - 12n - 8)^{72}\alpha, \]

\[(3) \chi_{\alpha}(\mathcal{L}) = (4m + 4n)^{6}\alpha + (8m + 8n - 8)^{8}\alpha + (12m + 12n - 4)^{10}\alpha + (24mn - 16m - 16n + 12)^{10}\alpha + (8m + 8n - 8)^{10}\alpha + (4m + 4n - 4)^{10}\alpha + (12m + 12n - 16)^{10}\alpha + (4m + 4n - 8)^{10}\alpha + (32mn - 26m - 26n + 20)^{12}\alpha + (16mn - 12m - 12n - 8)^{14}\alpha + (16mn - 12m - 12n - 8)^{18}\alpha, \]

\[(4) ABC(\mathcal{L}) = ((24\sqrt{3} + 2\sqrt{12} + 16\sqrt{10} + 16\sqrt{3} / 3) + 8mn + (((4\sqrt{14} + 16\sqrt{3} - 4\sqrt{12} - 13\sqrt{10} - 4) / 3) + (8\sqrt{10} + 2\sqrt{35} + 6\sqrt{30} + 11\sqrt{10} - 12\sqrt{5} / 5)(m + n)) + (((-2\sqrt{14} + 12\sqrt{3} + 10\sqrt{10} + 8\sqrt{2} / 3) + (8\sqrt{12} - 8\sqrt{3} - 2\sqrt{110} - 8\sqrt{10} / 5)) / 4) + (5) GA_{\alpha}(\mathcal{L}) = (32 + (48\sqrt{6} / 5) + (32\sqrt{6} / 3) + (92\sqrt{3} / 7)mn + (16\sqrt{5}) / 9 + (32\sqrt{6} / 5) + (24\sqrt{30} / 11) + (16\sqrt{10} / 13) + (8\sqrt{2} / 3) + (50\sqrt{15} / 17) - (62\sqrt{3} / 7)(m + n)) + (4\sqrt{6} / 5) - (32\sqrt{30} / 11) - (32\sqrt{10} / 13) + (8\sqrt{2} / 3) + (46\sqrt{3} / 7) / 2\sqrt{15}}, \]

\[(6) PM_{\alpha}(\mathcal{L}) = \frac{(15\sqrt{12mn - 76m - 76n + 56}) \times 3 \times (64mn - 22m - 22n + 28) \times 5 \times (4m + 4n - 4)^{2}\alpha + (16\sqrt{12mn - 12n + 22n}) \times 11 \times (12m + 12n - 16) \times 13 \times (4m + 4n - 4)^{6}\alpha + \times 17 \times (4m + 4n - 4) \times 10 \times (4m + 4n - 4)^{10}\alpha, \]

Next, we will compute the $ABCD_4$ and GA_3 indices of \mathcal{X}. For this, we need to find the edge partition S_{ij} of the graph \mathcal{X}, where $S_{ij} = \{ uv \in E(\mathcal{X}) : S_u = i, S_v = j \}$. Let m_{ij} denote the cardinality of the set S_{ij}. The edge partition S_{ij} of \mathcal{X} is given in Table 4.

Theorem 2. Let \mathcal{L} be the graph of simple medial of $P[m,n]$, then we have
Table 4: Edge partition \(S_{ij} \) of \(\mathcal{L} \).

\(S_{ij} \)	\(S_{6,6} \)	\(S_{6,10} \)	\(S_{8,10} \)	\(S_{8,12} \)	\(S_{8,14} \)	\(S_{10,10} \)
\(m_{ij} \)	\(4m + 4n \)	\(8m + 8n \)	\(4m + 4n \)	\(4m + 4n - 8 \)	\(4m + 4n - 8 \)	\(4 \)
\(S_{ij} \)	\(S_{10,14} \)	\(S_{12,14} \)	\(S_{12,16} \)	\(S_{14,16} \)	\(S_{16,16} \)	
\(m_{ij} \)	\(4m + 4n - 8 \)	\(64mn - 60m - 60n + 56 \)				

Figure 4: Molecular graph of \(st(P[m, n]) \).

(7) \(PM_2(\mathcal{L}) = 2^{(216mn - 100m - 100n + 64)} \times 3^{(144mn - 60m - 60n + 48)} \times 5^{(40mn + 40n - 40)}. \)

Proof: We can partition \(V(\mathcal{L}) \) into six sets based on vertex degrees. Table 5 shows this partition. By using the values presented in Table 5, the general Zagreb index of \(\mathcal{L} \) can be computed as

\[
M_2(\mathcal{L}) = \sum_{u \in V(\mathcal{L})} (d_u)^2 \\
= (8m + 8n - 4)3^a + (8mn - 4m - 4n + 4)^a + (8m + 8n - 4)^a \\
+ (20mn - 12m - 12n + 8)6^a + (2mn - m - n)^8 + (2mn - m - n + 1)12^a.
\]

(5)

Similarly, we can partition \(E(\mathcal{L}) \) into three sets based on the degree of end vertices of each edge. Table 6 shows this partition.

By using the values presented in Table 6, the values of \(R_2, \chi_a, ABC, GA, PM_1 \), and \(PM_2 \) indices of \(\mathcal{L} \) can be computed as

\[
R_2(\mathcal{L}) = \sum_{u \in E(\mathcal{L})} (d_u d_v)^a \\
= (4m + 4n)(3 \times 3)^a + (24mn - 16m - 16n + 12)(3 \times 5)^a + (8m + 8n - 8)(3 \times 6)^a \\
+ (4m + 4n)(4 \times 5)^a + (8m + 8n - 8)(4 \times 6)^a + (8mn - 4m - 4n + 4)(4 \times 12)^a \\
+ (4m + 4n - 4)(5 \times 5)^a + (12m + 12n - 16)(5 \times 6)^a + (4m + 4n - 8)(5 \times 8)^a \\
+ (4m + 4n)(5 \times 12)^a + (32mn - 26m - 26n + 20)(6 \times 6)^a \\
+ (16mn - 12m - 12n + 8)(6 \times 8)^a + (16mn - 12m - 12n + 8)(6 \times 12)^a \\
= (4m + 4n)3^{2a} + (8m + 8n - 8)15^a + (8m + 8n - 4)18^a + (4m + 4n)20^a \\
+ (24mn - 16m - 16n + 12)24^a + (24mn - 16m - 16n + 12)48^a + (4m + 4n - 4)5^{2a} \\
+ (12m + 12n - 16)30^a + (4m + 4n - 8)40^a + (4m + 4n)60^a \\
+ (32mn - 26m - 26n + 20)6^{2a} + (16mn - 12m - 12n + 8)72^a.
\]
\[X_a(\mathcal{L}) = \sum_{u \in E(\mathcal{L})} (d_u + d_v)^a\]

\[= (4m + 4n)(3 + 3)^a + (24mn - 16m - 16n + 12)(3 + 5)^a + (8m + 8n - 8)(3 + 6)^a + (4m + 4n)(4 + 5)^a + (8m - 4m - 4n + 4)(4 + 12)^a + (4m + 4n)(5 + 5)^a + (12m + 12n - 16)(5 + 6)^a + (4m + 4n - 8)(5 + 8)^a + (4m + 4n)(5 + 12)^a + (32mn - 26n - 26n + 20)(6 + 6)^a + (16mn - 12m - 12n + 8)(6 + 8)^a + (16mn - 12m - 12n + 8)(6 + 12)^a + (4m + 4n)^a + (8m + 8n - 8)^a + (12m + 12n - 4)^a + (24mn - 16m - 16n + 12)10^a + (8m - 4m - 4n + 4)16^a + (4m + 4n - 4)10^a + (12m + 12n - 16)18^a + (4m + 4n - 4)18^a + (16mn - 12m - 12n + 8)18^a.
\]

\[ABC(\mathcal{L}) = \sum_{u \in E(\mathcal{L})} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}\]

\[= (4m + 4n)\sqrt{\frac{3 + 3 - 2}{3 \times 3}} + (24mn - 16m - 16n + 12)\sqrt{\frac{3 + 5 - 2}{3 \times 5}} + (8m + 8n - 8)\sqrt{\frac{3 + 6 - 2}{3 \times 6}} + (4m + 4n)\sqrt{\frac{4 + 5 - 2}{4 \times 5}} + (8m + 8n - 8)\sqrt{\frac{4 + 6 - 2}{4 \times 6}} + (8mn - 4m - 4n + 4)\sqrt{\frac{4 + 12 - 2}{4 \times 12}} + (4m + 4n - 4)\sqrt{\frac{5 + 5 - 2}{5 \times 5}} + (12m + 12n - 16)\sqrt{\frac{5 + 6 - 2}{5 \times 6}} + (4m + 4n - 8)\sqrt{\frac{5 + 8 - 2}{5 \times 8}} + (4m + 4n)\sqrt{\frac{5 + 12 - 2}{5 \times 12}} + (32mn - 26m - 26n + 20)\sqrt{\frac{6 + 6 - 2}{6 \times 6}} + (16mn - 12m - 12n + 8)\sqrt{\frac{6 + 12 - 2}{6 \times 12}} + (16mn - 12m - 12n + 8)\sqrt{\frac{6 + 12 - 2}{6 \times 12}}
\]

\[= \frac{24\sqrt{3} + 2\sqrt{42} + 16\sqrt{10} + 16\sqrt{2} + 8}{6}mn + \frac{8\sqrt{10} + 2\sqrt{35} + 6\sqrt{30} + 10\sqrt{10} - 12\sqrt{2}}{4} + \frac{8\sqrt{2} - 8\sqrt{30} - 2\sqrt{10} - 8\sqrt{10} + 4}{5}
\]

\[GA(\mathcal{L}) = \sum_{u \in E(\mathcal{L})} \frac{2\sqrt{d_u d_v}}{d_u + d_v}
\]

\[= (4m + 4n)\frac{2\sqrt{3} \times 3}{3 + 3} + (24mn - 16m - 16n + 12)\frac{2\sqrt{3} \times 5}{3 + 5} + (8m + 8n - 8)\frac{2\sqrt{3} \times 6}{3 + 6} + (4m + 4n)\frac{2\sqrt{4} \times 5}{4 + 5} + (8m + 8n - 8)\frac{2\sqrt{4} \times 6}{4 + 6} + (4m + 4n - 4)\frac{2\sqrt{5} \times 5}{5 + 6} + (12m + 12n - 16)\frac{2\sqrt{5} \times 8}{5 + 8} + (4m + 4n - 8)\frac{2\sqrt{5} \times 12}{5 + 12} + (32mn - 26m - 26n + 20)\frac{2\sqrt{6} \times 6}{6 + 6} + (16mn - 12m - 12n + 8)\frac{2\sqrt{6} \times 8}{6 + 8} + (16mn - 12m - 12n + 8)\frac{2\sqrt{6} \times 12}{6 + 12}
\]

\[= \left(32 + \frac{48\sqrt{6} + 32\sqrt{2} + 92\sqrt{3} + 6 + 12}{5} \right)\frac{mn}{9} + \frac{16\sqrt{3} - 32\sqrt{6} + 24\sqrt{30} + 16\sqrt{10} - 8\sqrt{2} + 50\sqrt{15} - 62\sqrt{3} + 7}{13} + \frac{24\sqrt{6} - 32\sqrt{30} - 32\sqrt{10} + 8\sqrt{2} + 46\sqrt{3} - 2}{7}.
\]
Corollary 2. Let \(\mathcal{L} \) be the graph of stellation of \(P[m, n] \), then we have

1. \(R_\mathcal{L}(\mathcal{L}) = (\sqrt{24} + (24/\sqrt{48}) + (16/\sqrt{72}) + (16/3)) \cdot \frac{mn + ((8/\sqrt{15}) - (8/\sqrt{18}) + (4/\sqrt{20}) - (16/\sqrt{24})) - (16/\sqrt{48}) + (16/\sqrt{30}) + (4/\sqrt{40}) - (4/\sqrt{60}) - (12/\sqrt{72}) - (11/5))}{(m+n) - (8/\sqrt{15}) - (4/\sqrt{18}) - (8/\sqrt{24}) + (12/\sqrt{48}) - (16/\sqrt{30}) - (8/\sqrt{40}) + (8/\sqrt{72}) + (12/5)} \)

From Theorem 3, we can compute the values of Randić, first Zagreb, second Zagreb, and hyper-Zagreb index of \(\mathcal{L} \).

Next, we will compute the ABC\(_4\) and GA\(_5\) indices of \(\mathcal{L} \). For this, we need to find the edge partition \(S_{i,j} \) of the graph \(\mathcal{L} \), where \(S_{i,j} = \{ uv \in E(\mathcal{L}) : S_u = i, S_v = j \} \). Let \(m_{i,j} \) denote...
the cardinality of the set S_{ij}. The edge partition S_{ij} of \mathcal{L} is given in Table 7.

Theorem 4. Let \mathcal{L} be the graph of stellation of $P[m, n]$, then we have

\begin{align*}
(1) \quad ABC_4(\mathcal{L}) &= \left(8 \sqrt{\frac{82}{21}} + \frac{8\sqrt{2}}{3} + \frac{4\sqrt{42}}{7} + \frac{4\sqrt{273}}{21} + \frac{\sqrt{690}}{15} + \frac{8\sqrt{77}}{21} + 2\right)mn + \left(\frac{2\sqrt{10}}{5} + \frac{\sqrt{58}}{15} + \frac{3\sqrt{6}}{14}\right), \\
&= \left(4\sqrt{3458} + \frac{2\sqrt{41538}}{249} + \frac{2\sqrt{5}}{7} + \frac{2\sqrt{26}}{7} + \frac{2\sqrt{14}}{7} + \frac{2\sqrt{39962}}{377} + \frac{2\sqrt{5510}}{145} + \frac{2\sqrt{80852}}{1189} + \frac{2\sqrt{19229}}{287} + \frac{6\sqrt{130}}{65}\right) + \frac{2\sqrt{160310}}{943} + \frac{12\sqrt{161}}{161} + \frac{6\sqrt{1722}}{287} + \frac{3\sqrt{82}}{7} + \frac{8\sqrt{2}}{7} + \frac{2\sqrt{42}}{7} + \frac{2\sqrt{273}}{7} + \frac{\sqrt{690}}{7} + \frac{4\sqrt{77}}{7} + \frac{2\sqrt{160022}}{899} + \frac{2\sqrt{256742}}{1271} + \frac{4\sqrt{186}}{31} + \frac{4\sqrt{7378}}{217} - 2(m + n) + \left(-\frac{3\sqrt{6}}{7} - \frac{8\sqrt{3458}}{91} - \frac{8\sqrt{41538}}{483} - \frac{8\sqrt{5}}{7} - \frac{4\sqrt{26}}{7}\right).

(2) \quad GA_5(\mathcal{L}) &= \left(8 \sqrt{\frac{35}{3}} + \frac{128\sqrt{21}}{37} + \frac{64\sqrt{15}}{15} + \frac{64\sqrt{42}}{42} + \frac{64\sqrt{30}}{30} + \frac{64\sqrt{14}}{14} + 16\right)mn + \left(\frac{4\sqrt{105}}{11} + \frac{4\sqrt{91}}{5}\right), \\
&= \left(4\sqrt{483} + \frac{8\sqrt{2}}{3} + \frac{8\sqrt{182}}{27} + \frac{8\sqrt{754}}{55} + \frac{8\sqrt{870}}{59} + \frac{4\sqrt{1189}}{35} + \frac{4\sqrt{287}}{69} + \frac{2\sqrt{195}}{35} + \frac{8\sqrt{1066}}{67} + \frac{8\sqrt{1886}}{87}\right) + \frac{8\sqrt{322}}{37} + \frac{8\sqrt{1722}}{83} - \frac{8\sqrt{35}}{37} - \frac{128\sqrt{21}}{31} - \frac{64\sqrt{15}}{31} + \frac{192\sqrt{42}}{31} + \frac{96\sqrt{30}}{47} + \frac{96\sqrt{14}}{15} + \frac{8\sqrt{1798}}{91} + \frac{8\sqrt{2542}}{103} + \frac{8\sqrt{465}}{23} + \frac{8\sqrt{651}}{26} - 10(m + n) + \left(-\frac{8\sqrt{91}}{5} - \frac{8\sqrt{483}}{11} - \frac{16\sqrt{182}}{27} - \frac{16\sqrt{754}}{37} - \frac{16\sqrt{870}}{37} - \frac{16\sqrt{1189}}{37} - \frac{16\sqrt{287}}{37} - \frac{16\sqrt{1066}}{37} - \frac{16\sqrt{1886}}{37}\right).

(7)
Proof. The edge partition of \(\mathcal{L} \) depending on the sum of degree of end vertices is presented in Table 7. The result follows by using the values from Table 7 in the definition of \(A_{BC_4}(\mathcal{L}) \) and \(GA_5(\mathcal{L}) \).

4. Conclusion

In this work, we have considered two transformations (medial and stellation) on benzene ring embedded in P-type surface on 2D network. We have computed general Randić, general Zagreb, general sum-connectivity, first Zagreb, second Zagreb, first multiple Zagreb, second multiple Zagreb, \(ABC \), \(GA \), \(ABC_4 \), and \(GA_5 \) indices of these transformation graphs.

Data Availability

No data were used in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] K. H. Rosen and K. Krithivasan, Discrete Mathematics and its Applications: With Combinatorics and Graph Theory, Tata McGraw-Hill Education, New York, NY, USA, 2012.
[2] J. Sjostrand, “Making multigraphs simple by a sequence of double edge swaps,” 2019, http://arxiv.org/abs/1904.06999.
[3] M. Randić, “Characterization of molecular branching,” Journal of the American Chemical Society, vol. 97, no. 23, pp. 6609–6615, 1975.
[4] B. Bollobás and P. Erdős, “Graphs of extremal weights,” Ars Combinatoria, vol. 50, pp. 225–233, 1998.
[5] D. Amic, D. Beso, B. Lucic, S. Nilolic, and N. Trinajstić, “The vertex-connectivity index revisited,” Journal of Chemical Information and Modeling, vol. 38, pp. 819–822, 1998.
[6] B. Zhou and N. Trinajstić, “On general sum-connectivity index,” Journal of Mathematical Chemistry, vol. 47, no. 1, pp. 210–218, 2010.
[7] X. Li and H. Zhao, “Trees with the first three smallest and largest generalized topological indices,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 50, pp. 57–62, 2004.
[8] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals: total \(\varphi \)-electron energy of alternant hydrocarbons,” Chemical Physics Letters, vol. 17, no. 4, pp. 535–538, 1972.
[9] I. Gutman, “Multiplicative Zagreb indices of trees,” Bulletin of the Veterinary Institute in Pulawy, vol. 1, pp. 13–19, 2011.
[10] M. Ghorbani and N. Azimi, “Note on multiple Zagreb indices,” Mathematical Chemistry, vol. 3, pp. 137–143, 2012.
[11] G. H. Shirdel, H. RezaPour, and A. M. Sayadi, “The hyper-Zagreb index of graph operations,” Iranian Journal of Mathematical Chemistry, vol. 4, pp. 213–220, 2013.
[12] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes, NICSAIR-CSIR, India, 1998.
[13] D. Vukivevic and B. Furtula, “Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges,” Journal of Mathematical Chemistry, vol. 46, no. 4, pp. 1369–1376, 2009.
[14] M. Ghorbani and M. Hosseinzadeh, “Computing Abbott index of nanostar dendrimers,” Optoelectronics and Advanced Materials, Rapid Communications, vol. 4, pp. 1419–1422, 2010.
[15] Z. Du, B. Zhou, and N. Trinajstić, “On geometric-arithmetic indices of (molecular) trees, unicyclic graphs and bicyclic graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 66, pp. 681–697, 2011.
[16] M. Ghorbani and M. A. Hosseinzadeh, Optoelectronics and Advanced Materials, Rapid Communications, vol. 4, pp. 1419–1422, 2010.
[17] S. H. Bertz and W. F. Wright, “The graph theory approach to synthetic analysis: Definition and application of molecular complexity and synthetic complexity,” Graph Theory Notes of New York, vol. 35, pp. 32–48, 1998.
[18] S. Nikoli, I. M. Toli, and N. Trinajstić, MATCH Communications in Mathematical and in Computer Chemistry, vol. 40, pp. 187–201, 1999.
[19] A. Golbraikh, D. Bonchev, and A. Trophsa, “Novel ZE-isomerism descriptors derived from molecular topology and their application to QSAR analysis,” Journal of Chemical Information and Computer Sciences, vol. 42, no. 4, pp. 769–787, 2002.
[20] A. Miličević and S. Nikolić, “On variable zagreb indices,” *Croatica Chemica Acta*, vol. 77, no. 1-2, pp. 97–101, 2004.

[21] E. Estrada, “Atom-bond connectivity and the energetic of branched alkanes,” *Chemical Physics Letters*, vol. 463, no. 4, pp. 422–425, 2008.

[22] I. Gutman, J. Tosovic, S. Radenkovic, and S. Markovic, “On atom-bond connectivity index and its chemical applicability,” *Indian Journal of Chemistry*, vol. 51A, pp. 690–694, 2012.

[23] A. Aslam, Y. Bashir, S. Ahmad, and W. Gao, “On topological indices of certain dendrimer structures,” *Zeitschrift für Naturforschung A*, vol. 72, no. 6, pp. 559–566, 2017.

[24] A. Aslam, S. Ahmad, and W. Gao, “On certain topological indices of boron triangular nanotubes,” *Zeitschrift für Naturforschung A*, vol. 72, no. 8, pp. 711–716, 2017.

[25] A. Aslam, M. K. Jamil, W. Gao, and W. Nazeer, “Topological aspects of some dendrimer structures,” *Nanotechnology Reviews*, vol. 7, no. 2, pp. 123–129, 2018.

[26] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, “Solid C60: a new form of carbon,” *Nature*, vol. 347, no. 6291, p. 354, 1990.

[27] A. L. Mackay and H. Terrones, “Diamond from graphite,” *Nature*, vol. 352, no. 6338, p. 762, 1991.

[28] M. O’Keeffe, G. B. Adams, and O. F. Sankey, “Predicted new low energy forms of carbon,” *Physical Review Letters*, vol. 68, no. 15, pp. 23–25, 1992.