Updated studies on exomoons in the HD 23079 system

O. Jagtap1, B. Quarles2,3,* and M. Cuntz1

1Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA, 2Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30312, USA, and 3Department of Physics, Astronomy, Geosciences and Engineering Technology, Valdosta State University, Valdosta, GA 31698, USA

Abstract

We re-evaluate the outer edge of orbital stability for possible exomoons orbiting the radial velocity planet discovered in the HD 23079 system. In this system, a solar-type star hosts a Jupiter-mass planet in a nearly circular orbit in the outer stellar habitable zone. The outer stability limit of exomoons is deduced using N-body and tidal migration simulations considering a large range of initial conditions, encompassing both prograde and retrograde orbits. In particular, we extend previous works by evaluating many values in the satellite mean anomaly to identify and exclude regions of quasi-stability. Future observations of this system can make use of our results through a scale factor relative to the currently measured minimum mass. Using a constant time lag tidal model (Hut 1981), we find that plausible tidal interactions within the system are insufficient to induce significant outward migration toward the theoretical stability limit. While current technologies are incapable of detecting exomoons in this system, we comment on the detectability of putative moons through Doppler monitoring within direct imaging observations in view of future research capacities.

Keywords: astrobiology – instabilities – methods: numerical – planetary systems – stars: individual: HD 23079 – stars: late-type

(Received 4 August 2021; revised 7 October 2021; accepted 15 October 2021)

1. Introduction

The detection of HD 23079b, reported by Tinney et al. (2002), was a successful outcome of the Anglo-Australian Planet Search. HD 23079b, a Jupiter-type planet, is hosted by a solar-type star with a temperature of about 6 000 K (Bonfanti et al. 2015); see Table 1 for details. This system is located in the Southern sky in the constellation Reticulum. HD 23079b is in a nearly circular orbit situated at the outskirts of the stellar habitable zone (HZ) that extends between 0.87 and 2.03 au (optimistic limits; see Kopp et al. 2013, 2014).

The relatively low level of stellar activity of HD 23079, consistent with its age of ∼5 Gyr (see Section 2.1), tends to favour the existence of a habitable circumstellar environment; see, e.g., Ribas et al. (2005), Lammer et al. (2009), Ramirez (2018) for more general discussions. However, massive planets such as HD 23079b with orbits located within stellar HZ tend to thwart the existence of habitable terrestrial planets owing to the onset of orbital instabilities (e.g., Jones, Sleep, & Chambers 2001; Noble, Musielak, & Cuntz 2002; e.g., Jones, Sleep, & Chambers 2001; Noble, Musielak, & Cuntz 2002; Agnew et al. 2017, 2018). Nevertheless, there is a significant possibility for the existence of habitable Trojan planets and/or habitable exomoons (in orbit about HD 23079b), as demonstrated via detailed simulations; see Eberle et al. (2011) and Cuntz et al. (2013), respectively.

The search for exomoons has been an active endeavour after the launch of the Kepler Space Telescope, while many works (Sartoretti & Schneider 1999; Cabrera & Schneider 2007; Kipping 2009a, b) preceding the Kepler era laid the theoretical groundwork for their detection through transit timing and duration variations. However, such methods have limitations (Kipping & Teachey 2020; Kipping 2021) and photometric observations can still lead to false positives, including one candidate for Kepler-90g (Kipping et al. 2015a).

Fortunately, there are other methods proposed for exomoon detection including using a planet profile determined by the average light curve (Simon et al. 2012), optimising with respect to the orbital sampling effect (Heller 2014; Heller, Hippeke, & Jackson 2016; Hippeke 2015), Doppler monitoring of directly imaged exoplanets (Agol et al. 2015; Vanderburg, Rappaport, & Mayo 2018) or examining the radio emissions from giant exoplanets (Noyola, Satyal, & Musielak 2014, 2016). Another motivation for our study stems from the recent discovery of a circumplanetary disk (system PDS 70), indicating the ongoing formation of one or more exomoons in alignment with the Hill radius criterion (Benisty et al. 2021).

Theoretical constraints aid in the interpretation of observations and can be useful to quickly validate whether an exomoon candidate is plausible or not (Quarles, Li, & Rosario-Franco 2020b). One of these constraints is the combined tidal interaction between the host star, planet and moon (Barnes & O’Brien 2002; Sasaki, Barnes, & O’Brien 2012; Sasaki & Barnes 2014; Lainey et al. 2020) that generally depends on a wide range of parameters (e.g., tidal Love number and tidal quality factor). Spalding, Batygin, & Adams (2016) explored how the so-called ‘evjection resonance’ can cause significant growth in a moon’s eccentricity, which can lead to the moon’s tidal breakup or escape from the planet’s gravitational influence.

Nearby (Payne et al. 2013) and distant planetary companions (Grishin et al. 2017) can also drive an exomoon along a similar
path to destruction. Even without these confounding interactions, Domingos, Winter, & Yokoyama (2006) produced estimates for exomoon stability using three-body interactions, but these results represent the upper boundary of a transition region for stability (Dvorak 1986). Recently, Rosario-Franco et al. (2020) determined a revised fitting formula for the (more conservative) lower stability boundary for prograde satellites, whereas Quarles et al. (2021) derived a similar fitting formula for retrograde satellites.

In this study, we revisit the existence of possible exomoons in the HD 23079 system based on more generalised assumptions and an improved methodology. Our paper is structured as follows. In Section 2, we summarize our theoretical approach. Our results and discussion are conveyed in Section 3 including comparisons to previous works. Here we also comment on the observability of possible HD 23079 exomoons. In Section 4, we report our summary and conclusions.

2. Theoretical approach

2.1. Stellar and planetary parameters

HD 23079 is a solar-type star of spectral type F9.5V (Gray et al. 2006) with an effective temperature of about 6,003 K (Bonfanti et al. 2015); see Table 1. Its mass and radius are given as 1.01 ± 0.02 M⊙ and 1.08 ± 0.02 R⊙, respectively. HD 23079 has an age of approximately 5 Gyr (Saffe, Gómez, & Chavero 2005; Bonfanti et al. 2015), which largely excludes islands of quasi-stability due to MMRs (Mudryk & Wu 2006). The planet begins at its reference direction (θp = 0°) and retrograde (θp = 180°) satellite orbits, where the latter can be highly eccentric. Adaptive step integrators, although more accurate, can also be more computationally expensive.

We set the initial timestep equal to 5% of the shortest satellite orbital period (~0.007 yr for prograde or ~0.017 yr for retrograde) and define 0.0001 yr as the minimum allowed timestep with the default accuracy parameter 10−9 used for the IAS15 integrator. Cuntz et al. (2013) showed that the outcomes of simulations are identical for timesteps smaller than the prescribed minimum using other adaptive timestep methods. The simulation timescale of our N-body integrations is 105 years, which is typical for determining the stability limits for hierarchical systems within large parameter spaces (Rosario-Franco et al. 2020; Quarles et al. 2020a; Quarles et al. 2021).

Each simulation begins centered around the host star, HD 23079, with the host planet and satellite added hierarchically using a Jacobi coordinate system (see Figure 1). The planet begins at its periaster position ωp and the line of apsides Ωp is used as the reference direction (ωp = Ωp = 0°). An initial condition is classified as potentially stable if the satellite does not encounter either of our stopping criteria to detect instabilities. We stop our simulations and classify an initial condition as unstable if the putative satellite: (a) crosses the planet’s Hill radius thereby leaving the region over which the planet’s gravitational influence dominates over that of the star or (b) collides with the host planet over a given timescale. In addition, we require that a stable initial condition does not depend on the initial mean anomaly θ of the satellite (Figure 1), which largely excludes islands of quasi-stability due to MMRs (Mudryk & Wu 2006).

Cuntz et al. (2013) explored a parameter space that varied the initial planetary semimajor axis, eccentricity and the satellite’s semimajor axis a_sat. Recent observations (Wittenmyer et al. 2020) greatly narrowed the uncertainty of the planetary semimajor axis; therefore, we keep the planetary semimajor axis fixed (a_p = 1.586 au) throughout this work. However, we evaluate simulations varying the planetary eccentricity e_sat from 0.05 to 0.12 in 0.001 steps motivated by the observational uncertainties. The

![Table 1. Stellar and planetary parameters.](image)

Parameter	Value	Reference
Spectral type	F9.5V	Gray et al. (2006)
RA	03h 39m 43.0961′	Gaia Collaboration et al. (2018)
DEC	−52° 54′ 57.0161″	Gaia Collaboration et al. (2018)
Apparent magnitude V	7.12	Anderson & Francis (2012)
Distance (pc)	33.49 ± 0.03	Anderson & Francis (2012)
M (M⊙)	1.01 ± 0.02	Bonfanti et al. (2015)
T_eff (K)	6003 ± 36	Bonfanti et al. (2015)
R (R⊙)	1.08 ± 0.02	Bonfanti et al. (2015)
L (L⊙)	1.372 ± 0.005	Bonfanti et al. (2015)
Age (Gyr)	5.1 ± 1.0	Bonfanti et al. (2015)
m_p sin i (M⊙)	2.41 ± 0.6	Wittenmyer et al. (2020)
P (days)	724.5 ± 2.2	Wittenmyer et al. (2020)
a_p (au)	1.586 ± 0.003	Wittenmyer et al. (2020)
e_p	0.087 ± 0.031	Wittenmyer et al. (2020)

* All parameters and symbols have their customary meaning.

2.2. N-body simulations

To investigate the potential for exomoons in HD 23079, we perform a series of numerical simulations that identify the orbital stability of an Earth-mass satellite orbiting HD 23079b, a Jupiter-like planet. The numerical simulations are carried out using the general N-body software REBOUND (Rein & Liu 2012) with its IAS15 adaptive step integration scheme (Rein & Spiegel 2015). The IAS15 integrator is necessary because our study explores both prograde (i_sat = 0°) and retrograde (i_sat = 180°) satellite orbits, where the latter can be highly eccentric. Adaptive step integrators, although more accurate, can also be more computationally expensive.

In physical units, the Hill radius is approximately 0.144 au using the appropriate values from Table 1. This formulation of the Hill radius is appropriate because the planetary eccentricity is low and no significant third body exists that can substantially force the planetary eccentricity (Quarles et al. 2021).
anomaly
For each combination of planetary eccentricity and the satellite’s
migrate outward toward the Hill radius. The satellite’s migration
of angular momentum, the satellite can fall toward the planet or
its host planet, where the induced tidal bulge slows the planet’s
A satellite’s long-term evolution is affected by tides raised on
each simulation.

publications of the Astronomical Society of Australia
3
depends on whether its orbital period \(T_{\text{sat}} \) is greater than (outward
migration) or less than (inward migration) the host planet’s
rotation period \(P_{\text{rot}} \). We begin the satellite on a circular, coplanar
orbit relative to the Roche radius \((a_{\text{sat}} = 3 R_{\text{roche}}) \) with the satellite
as a fluid satellite, and Roche radius calculated via:

\[
R_{\text{roche}} \approx 2.44 R_p \left(\rho_p / \rho_{\text{sat}} \right)^{1/3},
\]

where the planet radius \(R_p \) is assumed to equal the radius of Jupiter
given the well-established trends in the mass radius relation for

giant planets (Fortney et al. 2007; Chen & Kipping 2017), the
planet density \(\rho_p = 1.33 \text{ g cm}^{-3} \) (Jupiter-like), and the satellite
density is \(5.515 \text{ g cm}^{-3} \) (Earth-like). A satellite at \(3 \times \) the Roche radius
begins an orbital period of \(\sim 18 \text{ h} \). From theoretical calculations
and numerical simulations of giant planet formation (Takata &
Stevenson 1996; Batygin 2018), giant planets are expected to be
rapid rotators (\(\sim 3 \text{ h} \)) due to gas accretion or rotate more slowly
(\(\sim 10–12 \text{ h} \)) like the Solar System giant planets if magnetic braking
is efficient. Since the satellite’s orbital period (\(\sim 18 \text{ h} \) at \(3 R_{\text{roche}} \))
is greater than the expected spin period of giant planets, the satellite
will undergo outward migration.

Equilibrium tidal models are commonly prescribed within
the two types: constant phase lag (CPL; Goldreich & Soter 1966)
or constant time lag (CTL; Hut 1981). Both models require an
assumption for the Love number \(k_2 \) (Love 1911) and a moment of
inertia factor \(\alpha \), for which we use Jupiter-like values (0.565 and
0.2756, respectively) determined from the Juno
probe (Ni 2018; Idini & Stevenson 2021). The tidal models differ in
their approach to approximating the tidal dissipation \(\epsilon \), where the CPL model
implements a constant \(Q \) and the CTL model uses a constant
time lag \(\tau \).

Both models yield similar results for small satellite-planet mass
ratios, but the CTL model more accurately represents the tidal
forcing frequencies (Ogilvie 2014); thus, we use a CTL model. The
constant time lag \(\tau \) is unknown for HD 23079b; hence, we assume a
Jupiter-like value (\(\tau_j \approx 0.035 \text{ s} \)) while evaluating models over several
orders of magnitude (\(10^{-2} – 10^2 \text{ s} \)). The planetary mass given
in Table 1 is determined through the RV method, which allows
an observer to determine the minimum mass \(m_p \). Therefore, we
evolve the tidal model considering three host planet masses (1,
1.5 and 2 \(m_j \)) with a Jupiter-like \(\tau \). Herein we use the CTL model
derived by Hut (1981) assuming zero planetary obliquity, which is
equivalent to the formalism described in more recent approaches
(Lecante et al. 2010; Heller, Lecante, & Barnes 2011; Barnes 2017).

The tidal evolution with respect to time \(t \) is described by the following equations:

\[
\frac{d a_j}{dt} = \frac{2 a_j^3 Z_{p j}}{G m_p m_j} \left(\frac{f_j(e_j)}{\beta^{13}(e_j)} \right) \left(\frac{\Omega_p}{\beta^{12}(e_j)} \right) \left(\frac{f_j(e_j)}{\beta^{13}(e_j)} \right),
\]

\[
\frac{d e_j}{dt} = \frac{11 a_j e_j Z_{p j}}{2 G m_p m_j} \left(\frac{f_j(e_j)}{\beta^{12}(e_j)} \right) \left(\frac{\Omega_p}{\beta^{12}(e_j)} \right) \left(\frac{18 f_j(e_j)}{11 \beta^{13}(e_j)} \right),
\]

and

\[
\frac{d \Omega_p}{dt} = \sum_j \frac{Z_{p j}}{2 \epsilon_p m_p R_p^2 n_j} \left(\frac{2 f_j(e_j)}{\beta^{12}(e_j)} \right) \left(\frac{f_j(e_j)}{\beta^{13}(e_j)} \right) \frac{\Omega_p}{n_j},
\]

where

\[
Z_{p j} = 3 G^2 k_2 \tau_j \tilde{m}_j^2 (m_p + m_j) \frac{R_p^5}{G},
\]

in each simulation, the moon begins on a circular orbit that
is apsidally aligned \((\omega_{sat} = \Omega_{sat} = 0^\circ) \) with the planetary orbit.
For each combination of planetary eccentricity and the satellite’s
semimajor axis, 20 simulations are evolved using a random mean
anomaly \(\theta \) for the satellite chosen from \(0^\circ – 359^\circ \). We use a param-
ter \(f_{j \text{ abs}} \) to summarize these trials, which represents the fraction of
stable simulations for a given \((e_j, \omega_{sat}) \) combination.

2.3. Satellite orbital migration due to tides
A satellite’s long-term evolution is affected by tides raised on
its host planet, where the induced tidal bulge slows the planet’s
rotation over billion-year timescales. Through the conservation of
angular momentum, the satellite can fall toward the planet or
migrate outward toward the Hill radius. The satellite’s migration

prograde simulations are evaluated using a satellite semimajor
axis from 0.25 to 0.5 \(R_H \) in steps of 0.001 \(R_H \), where \(R_H \) is the
planet’s Hill radius and the range in \(R_H \) is motivated by previous
observational and dynamical studies of satellites (Cruikshank
et al. 1982; Saha & Tremaine 1993; Domingos et al. 2006; Jewitt
& Haghighipour 2007; Donnison 2010; Rosario-Franco et al. 2020;
Quarles et al. 2021). Many studies (Henon 1970; Hamilton &
Burns 1991; Morais & Giuppone 2012; Grishin et al. 2017; Quarles
et al. 2021) have demonstrated that retrograde orbital stability
extends to larger values of the satellite semimajor axis compared
to the prograde case. Thus, we increased the \(a_{sat} \) range to 0.45–
0.70 \(R_H \) with a 0.001 \(R_H \) step size. In physical units, a 0.001 \(R_H \)
step corresponds to approximately 0.0001 au, noting that we scale
the steps with respect to the Hill radius as this approach will allow
our results to scale with improved characterisations of the plan-
tary and stellar parameters, if available. The parameter ranges for
our N-body simulations are summarized in Table 2.

In each simulation, the moon begins on a circular orbit that
is apsidally aligned \((\omega_{sat} = \Omega_{sat} = 0^\circ) \) with the planetary orbit.
For each combination of planetary eccentricity and the satellite’s
semimajor axis, 20 simulations are evolved using a random mean
anomaly \(\theta \) for the satellite chosen from \(0^\circ – 359^\circ \). We use a param-
ter \(f_{j \text{ abs}} \) to summarize these trials, which represents the fraction of
stable simulations for a given \((e_j, \omega_{sat}) \) combination.

Parameter	Range	Step
\(a_p \)	1.586 au	fixed
\(\epsilon_p \)	0.05–0.12	0.001
\(a_{sat} (\theta_{sat} = 0^\circ) \)	0.25–0.50 \(R_H \)	0.001 \(R_H \)
\(a_{sat} (\theta_{sat} = 180^\circ) \)	0.45–0.70 \(R_H \)	0.001 \(R_H \)
\(\theta_{sat} \)	0°–359°	Random
and

\[
\beta(e) = \sqrt{1 - e^2},
\]

\[
f_1(e) = 1 + \frac{31}{2} e^2 + \frac{255}{8} e^4 + \frac{185}{16} e^6 + \frac{25}{64} e^8,
\]

\[
f_2(e) = 1 + \frac{15}{2} e^2 + \frac{45}{8} e^4 + \frac{5}{16} e^6,
\]

\[
f_3(e) = 1 + \frac{15}{4} e^2 + \frac{15}{8} e^4 + \frac{5}{64} e^6,
\]

\[
f_i(e) = 1 + \frac{3}{2} e^2 + \frac{1}{8} e^4,
\]

\[
f_5(e) = 1 + 3e^2 + \frac{3}{8} e^4.
\]

Equations (3) and (4) describe the semimajor axis and eccentricity evolution of either the planet or satellite through the subscript \(i\). The subscript \(j\) represents either the host star or the satellite that is raising the tide on the planet, where \(n_j\) is the respective orbital mean motion. Equation (5) describes the spin evolution of the planet, where the moon is assumed to be synchronously rotating and the changes to the host star’s spin are negligible. The subscript \(j\) in Equation (5) represents either the host star or the satellite that is contributing to spin-down the planet. A Jupiter-like value is used for the moment of inertia factor \((\alpha_p = 0.565)\) and \(G\) represents the Newtonian constant of gravitation.

3. Results and Discussion

3.1. Model simulations

Recent observations by Benisty et al. (2021) revealed the existence of a circumplanetary disk around PDS 70c, a planet observed to be in the process of accreting gas. After this stage, more massive satellites could be acquired through processes of tidal capture and pull down (Hamers & Portegies Zwart 2018) as has been suggested for the candidate exomoon Kepler 1625b-I (Teachey & Kipping 2018). Assuming that exomoons form soon after the epoch of planet formation, such moons must survive against perturbations from the host star to be observed in the present day (∼5 Gyr; Bonfanti et al. 2015). Our goal is to determine the stability boundary of putative satellites around the host planet, HD 23079b. Previously, Eberle et al. (2011) and Cuntz et al. (2013) discussed the orbital stability limit of an Earth-mass object in this system as a Trojan planet or a natural satellite within the planet’s Hill radius.

We examine the orbital stability limit for prograde and retrograde orbits using N-body simulations with REBOUND (see Section 2.2). These simulations consider a range of initial planetary eccentricity consistent with current observational constraints (Wittenmyer et al. 2020). Rosario-Franco et al. (2020) and Quarles et al. (2021) provided rough estimates for the stability limit in terms of the planet’s Hill radius, whereas here we explore this system in much finer detail. Similar to Rosario-Franco et al. (2020) and Quarles et al. (2021), we use the lower critical orbit (Rabl & Dvorak 1988) to define the stability limit, which is a more conservative approach that excludes regions of quasi-stability.

Figure 2 demonstrates the results of our simulations in terms of initial semimajor axis of the satellite \(a_{\text{sat}}\) (in \(R_p\)) and the planetary eccentricity \(e_p\). Figure 2a and b are colour-coded using the parameter \(f_{\text{stab}}\), which is defined as the fraction of 20 simulations with random mean anomalies for the satellite that survive for 10^5 yr. The values of \(f_{\text{stab}}\) range from 0.0 to 1.0, where the cells with \(f_{\text{stab}} < 0.05\) (wholly unstable) are colored white. The fully stable (\(f_{\text{stab}} = 1\); black) cells are used in our calculation of the stability boundary, while the values between the extremes illustrate regions of quasi-stability. The dashed (cyan) curves mark the stability limit previously determined for prograde (Rosario-Franco et al. 2020) and retrograde (Quarles et al. 2021) orbiting exomoons. The green stars in (a) mark the previous estimates from Cuntz et al. (2013), which are found to lie at the border of the quasi-stable regime.

For prograde orbits (Figure 2a), the stability limit extends to 0.37 \(R_p\) for the lowest planet eccentricity and decreases to 0.35 \(R_p\) for larger planetary eccentricity. Our stability limit closely agrees with the stability fitting formula by Rosario-Franco et al. (2020). Beyond this boundary, there is a gradient of quasi-stability over a small range in satellite semimajor axis. At ∼0.43 \(R_p\), there is a 6:1 (first-order) mean motion resonance (MMR) between the planet and satellite orbits (Quarles et al. 2021). The MMR excites the satellite’s eccentricity over time, which allows for the satellite to escape as its apocenter extends beyond the upper critical orbit (∼0.5 \(R_p\); Domingos et al. 2006). The MMR’s resonant angle depends on the relative orientation (i.e., mean anomaly) of the
planetary and satellite orbits and particular starting angles can survive for longer periods, if the satellite returns to approximately the same phase after six orbits. Cuntz et al. (2013) used a single initial mean anomaly for the satellite, which largely corresponds to the upper critical orbit (green stars in Figure 2a).

For retrograde orbits (Figure 2b), the continuously stable region extends to ~0.59 R_H for e_p = 0.05 and recedes to ~0.57 R_H for e_p = 0.12 in a similar manner as the stability limit for Figure 2a. For the initial planetary eccentricity from 0.05 to 0.10, there is a stable peninsula corresponding to a 7:2 (second-order) MMR. As MMRs increase in order, the magnitude of the eccentricity excitation decreases (Murray & Dermott 1999). Moreover, the weakened Coriolis force and shorter interaction times for retrograde orbits (Henon 1970) also reduce the magnitude of secular eccentricity excitation. Quarles et al. (2021) considered a coarser grid of simulations, which did not resolve the gap created by the 4:1 (first-order) MMR. Hence, the stability limit was slightly over-estimated (dashed curve) in their work. However, it is a better approximation of the stability limit compared to previous works that focused on the upper critical orbit (Domingos et al. 2006; Cuntz et al. 2013). The limits for retrograde orbits from Cuntz et al. (2013) are larger than 0.7 R_H as are those by Domingos et al. (2006). Hence, the previous results from Cuntz et al. (2013) are not shown in Figure 2b.

Available mass measurements of HD 23079b are based on the RV method; thus, only the minimum mass is known implying the true mass of HD 23079b could be higher. Generally, we expect the true mass to differ by a factor of 1/sin (π/4) (or ~1.4) assuming an isotropic distribution restricted to prograde orbits for the planetary inclination on the sky plane. In Figure 2, we use the minimum mass m_p in all our calculations. Estimates of the exoplanet mass distribution (Jorissen, Mayor, & Udry 2001; Ananyeva et al. 2020) indicate that planets with a substantially increased mass are rare and thus we expect the true mass of HD 23079b to differ from the minimum mass by only a small factor. Hence, we perform another set of stability simulations for prograde moons with the host planet’s mass is increased to 1.5 m_p (i.e., 3.62 M_J).

Figure 3 shows the stability limit (in au) for the minimum mass m_p (black) and the increased mass m_p′ (red) as a function of the planetary eccentricity e_p. The stability limit (in au) clearly increases for a larger planet mass because the respective Hill radius is larger (see Equation (1)). Thus, we expect the red curve to scale by a factor μ = m_p′/m_p. Comparing the two curves (black and red) indicates that the stability limit increases by a factor of ~1.14 (i.e., 1.51/1.14). If future observations reveal a planetary mass beyond the minimum value, the stability limits as obtained can be readily adjusted through a simple scale factor (Wittenmyer et al. 2020).

3.2. Tidal migration

The orbits of natural satellites (including our Moon) have migrated since the time of their formation due to de-spinning of their host planet from tides raised from the Sun and the satellites (Goldreich & Soter 1966; Goldreich 1966; Touma & Wisdom, 1998; Cuk & Stewart 2012). We evaluate the possible extent of migration for a putative Earth-mass moon orbiting HD 23079b using Equations (3)–(5), which describe the tidal migration based on the CTL model (Hut 1981; Barnes 2017). The satellite begins on a circular orbit at 3R_H (or ≈ 0.015 R_H), where the initial planetary rotation period is varied from 3 to 12 h in 0.25 h steps. Piro (2018) showed that the satellite’s semimajor axis after 10 Gyr can differ depending on the assumed planetary rotation rate. To test this dependence on the assumed e_p, we consider a range of values from 0.05 to 0.13 in steps of 0.01.

From our calculations, we find that there were no notable changes in the final semimajor axis for all e_p values considered in this study. This is because the host planet is not close to the star and thus the stellar tides are largely negligible. However, the host star also has a larger influence on the satellite’s orbit and impacts the satellite’s eccentricity. This kind of forcing depends on the semimajor axis ratio (a_sat/a_p) and the planetary eccentricity (e_p/(1-e_p^2)) (e.g., Heppenheimer 1978; Andrade-Ines & Egg 2017); both of which are very small. Since the moon’s forced eccentricity is small, the eccentricity contribution to the star-planet and planet-moon tides is also small. Therefore, we present results that only use e_p = 0.09 in our simulations.

Figure 4 demonstrates the final semimajor axis of the satellite as a function of the assumed planetary rotation period due to the tidal evolution over 10 Gyr. We use the observationally determined minimum mass of the planet (m_p = 2.41 M_J) and an increased mass of m_p′ = 3.62-M_J (red). The best-fit curves scale as a power law with the mass ratio μ = m_p′/m_p. Note that the y-axis values are in physical units (au) instead of R_H.

![Figure 3](image-url) Stability limits for prograde exomoons assuming the minimum planet mass of m_p = 2.41M_J (black) and an increased mass of m_p′ = 3.62-M_J (red). The best-fit curves scale as a power law with the mass ratio μ = m_p′/m_p. Note that the y-axis values are in physical units (au) instead of R_H.
3.3. Observability of possible exomoons in the HD 23079 system

The detection of exomoons is currently extremely challenging but their detection is technically feasible, where Sartoretti & Schneider (1999) showed the transit method as a promising avenue for their eventual discovery. A dedicated search for exomoons within the Kepler data (Kipping et al. 2012, 2013a,b, 2014, 2015b) has yet to confirm an exomoon, while noting that Kepler 1625b-I represents an interesting candidate (Teachey & Kipping 2018). To observe an exomoon in the HD 23079 system, a different approach is required since the host planet was discovered through the RV method (Tinney et al. 2002; Wittenmyer et al. 2020) and is not known to transit its host star relative to our line-of-sight. The expected semi-amplitude K_p from the stellar motion about the center-of-mass is approximately 54 m s$^{-1}$, where the addition of an Earth-mass satellite orbiting HD 23079b would introduce a small additional variation (<1 m s$^{-1}$). Consequently, the most promising technique is Doppler monitoring within direct imaging observations (Vanderburg et al. 2018), where an RV signal is extracted from the host planet’s reflex motion after accounting for variations in the host planet’s reflected light.

The host planet’s semi-amplitude K_p induced by an exomoon (Vanderburg et al. 2018; Perryman 2018) is given by the following:

$$K_p = \left(\frac{m_{sat} \sin i_{sat}}{m_p + m_{sat}} \right) \sqrt{\frac{G m_{sat}}{a_{sat} (1 - e_{sat}^2)}},$$

where the satellite orbital inclination i_{sat} is relative to the observer’s line-of-sight and should be similar in magnitude to the observed planetary inclination due to tidal evolution of the planet-satellite pair (Porter & Grundy 2011). Although the system is not known to transit, we assume that $i_{sat} = 90^\circ$ to estimate the maximum K_p. Figure 5 demonstrates the maximum satellite induced K_p as a function of the satellite semimajor axis a_{sat} in units of R_H, where the reflex velocity on the planet’s orbit about the barycenter decreases as the satellite semimajor axis increases ($K_p \propto a_{sat}^{-1/2}$). The black, red, and blue solid curves mark when an Earth-mass, a Neptune (17 M$_{\oplus}$), and a standard super-Earth (8 M$_{\oplus}$) is used. The dashed curves are provided to show how much the satellite-induced RV signal decreases, if the assumed planetary mass is doubled ($2m_p$).

Figure 5 shows that massive ($\gtrsim 8$ M$_{\oplus}$), prograde-orbiting satellites could produce a Keplerian signal with an RV semi-amplitude greater than ~ 100 m s$^{-1}$, even with a satellite semimajor axis near the stability limit. Keplerian signals from prograde, Earth-mass satellites are limited to $\sim 20–40$ m s$^{-1}$. Retrograde-orbiting
saturates stably orbit at larger separations with \(a_{\text{sat}} \leq 0.59 ~ R_{\text{H}} \), but the resulting Keplerian signal would be less optimal for the observability.

The current best RV precision is \(\sim 1 \, \text{m s}^{-1} \), where this precision level is only attainable for bright (\(V < 10 \)) stars. The host star in HD 23079 is relatively bright (\(V = 7.12; \) Anderson \& Francis 2012), but the direct imaging method proposed by Vanderburg et al. (2018) would allow the analysis of the much fainter reflected light from the planet, which would be much more limited in precision (\(\sim 1000 \, \text{m s}^{-1} \)). However, large (30 m class) telescopes (e.g., Giant Magellan Telescope; Jaffe et al. 2016) are on the horizon and should be available in the foreseeable future. They would make Doppler surveys of directly imaged planets attainable due to the much larger S/N compared to current technology affecting the RV precision (Quanz et al. 2015). In particular, the detection of Keplerian signals from massive exomoons with an RV semi-amplitude greater than \(\sim 100 \, \text{m s}^{-1} \) would be feasible.

4. Summary and conclusions

The aim of our study is to further explore the possibility of exomoons in the HD 23079 system. In this system, a solar-type star of spectral class F9.5V hosts a Jupiter-mass planet in a nearly circular orbit situated in the outer segment of the stellar HZ. Previous studies have examined the orbital stability limit of an Earth-mass object in this system as a Trojan planet (Eberle et al. 2011) or a natural satellite (Cuntz et al. 2013). We focus on the latter to more accurately identify the stability limits for prograde and retrograde exomoons within observational constraints, including the recent work by Wittenmyer et al. (2020).

In the past year, Rosario-Franco et al. (2020) updated the fitting formulas for the stability limit for prograde-orbiting satellites in terms of the planet's Hill radius, whereas Quarles et al. (2021) improved the fitting formulas for retrograde systems. We follow the prior approaches, in much finer detail, for the HD 23079 system, where the stability limits determined herein specifically exclude regions of quasi-stability and resonances. Additionally, we evaluate multiple satellite mean anomalies, which allows us to overcome some limitations from previous works (e.g., Domingos et al. 2006).

Our study shows that the system of HD 23079 is a highly promising candidate for hosting potentially habitable exomoons despite the fact that the outer stability limit is modestly reduced. Noting that HD 23079b’s mass is not exactly known—as due to the RV detection technique only a minimum value could hitherto been identified—our results are still applicable, if a more precise mass value becomes available as the outer orbital stability limit follows a well-defined scaling law, i.e., \((m_{\text{p}}/m_2)^{1/3}\); see text for details. The outward migration due to tides does not greatly affect the potential stability of exomoons in a CTL tidal model (Hut 1981; Barnes 2017), where we find that a putative satellite’s migration distance the stellar lifetime scales inversely to the 1/12th power in mass ratio \(\mu \) when comparing different assumptions on planetary mass from the sky plane inclination. Moreover, we find that migration distance scales inversely to the 1/6th power in the assumed tidal time lag parameter \(\tau \) relative to a Jupiter-like value. Scaling relations, in either the mass or tidal time lag, would assist in the general search for exomoons as well as future observations of the HD 23079 system.

We also explore the observability of putative HD 23079 exomoons. Current technologies are incapable of identifying moons in that system; however, future developments hold promise. As the transit method is unavailable for finding exomoons in HD 23079, Doppler monitoring within direct imaging observations might offer positive outcomes. Note that large (30 m class) telescopes (e.g., Giant Magellan Telescope; Jaffe et al. 2016) should be available in the foreseeable future. The much larger S/N from telescopes with a large mirror would make Doppler surveys of directly imaged planets attainable, where the Keplerian signals from Earth-mass exomoons with an RV semi-amplitude greater than \(\sim 100 \, \text{m s}^{-1} \) would be possible (Vanderburg et al. 2018).

Acknowledgements. This research was supported in part through research cyberinfrastructure resources and services provided by the Partnership for an Advanced Computing Environment (PACE) at the Georgia Institute of Technology. The authors thank the anonymous reviewer for comments that helped improve the quality and clarity of the manuscript.

References

Agnew, M. T., Maddison, S. T., Thilliez, E., & Horner, J., 2017, MNRAS, 471, 4494

Agnew, M. T., Maddison, S. T., & Horner, J., 2018, MNRAS, 481, 4680

Agol, E., Jansen, T., Lacy, B., Robinson, T. D., & Meadows, V., 2015, ApJ, 812, 5

Ananyeva, V. I., Ivanova, A. E., Venkstern, A. A., Shashkova, I. A., Yudaev, A. V., Tavrov, A. V., Korablev, O. I., & Bertaux, J.-L. 2020, Icar, 346, 113773

Anderson, E., & Francis, C. 2012, AstL, 38, 331

Andrade-Inses, E., & Eggl, S., 2017, AJ, 153, 148

Barnes, J. W., & O’Brien, D. P. 2002, ApJ, 575, 1087

Barnes, R. 2017, CeMDA, 129, 509

Batygin, K., 2018, AJ, 155, 178

Benisty, M., et al. 2021, ApJ, 916, L2
