BIODEGRADATION AND ANTIMICROBIAL ACTIVITY OF GUANIDINE-CONTAINING POLYETHYLENE OXIDE HYDROGEL

G. O. Iutynska 1, M. Ya. Vortman 2, D. R. Abdulina 1, Zh. P. Kopteva 1, A. Ye. Kopteva 1, A. V. Rudenko 3, V. V. Tretyak 3, V. N. Lemeshko 2, V. V. Shevchenko
Biodegradation of various materials in the environment is important because many synthetic materials are stable for a long time. At the end of the service life, the materials must be involved in the natural cycle and decompose. In modern polymer chemistry, one of the promising areas is to obtain and study the properties of hydrogel systems, among which a significant place is occupied by polyethylene oxide hydrogels. The aim of the study was to determine the biodegradation of guanidine-containing polyethylene oxide hydrogel under the action of bacteria and to study its antimicrobial properties.

The antimicrobial activity of a guanidine-containing oligomer and its newly synthesized polyethylene oxide hydrogel was studied by a disco-diffusion method. The enzymatic activities of bacteria were determined by spectrophotometry. To study the resistance of guanidine-containing polyethylene oxide hydrogel to microbial destruction, bacteria were grown in Tauson's liquid medium with the addition of meat peptone broth at a temperature of 28±2 °C. Changes in the chemical composition of the studied materials were analyzed by infrared Fourier spectroscopy of the Tensor 37 (Bruker) and 1H NMR spectroscopy.

The antimicrobial properties and biodegradation of guanidine-containing polyethylene oxide hydrogels were determined, which were obtained by reacting oligoxyethylene glycol MW 6000 with toluene diisocyanate and guanidine-containing oligomer, which acted as a crosslinking, ion-containing and antibacterial-agent. The synthesized hydrogel showed antimicrobial activity against gram-positive and gram-negative bacteria. The biodegradation of hydrogels under the action of various bacterial strains and enzymes that they synthesize was studied. The presence of the tested materials lead to a decrease in the enzymatic activity of bacteria in 1.4 – 2.5 times compared with the control. Synthesized guanidine-containing polyethylene oxide hydrogel showed antimicrobial activity against the studied test cultures. The introduction of the studied materials into Tauson's environment as additional sources of carbon and energy helped to reduce the catalase and lipase activities of hydrocarbon-oxidizing bacteria. Under the influence of the studied bacteria, the hydrogels were destroyed with 88.4% from the initial value.
Key words: Guanidine-containing polyethylene oxide hydrogel, antibacterial properties, gram-positive and gram-negative bacteria, catalase and lipase activities, biodegradation, IR spectra.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2020

1. Shtilman M. I. Biodegradation of Polymers. J. Sib. Federal Un-ty. Biology 2. 2015, N 8, P. 113-130. (In Russian).
 https://doi.org/10.17516/1997-1389-2015-8-2-113-130

2. Kuznetsov A. E., Gradova N. B., Lushnikov S. V. Applied ecobiotechnology: textbook: in 2 vols. V.1

2. Kuznetsov A. E., Gradova N. B., Lushnikov S. V. Applied ecobiotechnology: textbook: in 2 vols. V.1
3. Vinogradova O. N., Prudnikova S. V., Zobova N. V., Kolesnikova V. L. Microbial Degradation of Poly-3-Hydroxybutyrate in Samples of Agrogenically Changed Soils. J. Sib. Federal Un-ty. Biology 2. 2015, N 8, P. 199-209. (In Russian).

https://doi.org/10.17516/1997-1389-2015-8-2-199-209

4. Andreyuk K. I., Kozlova I. P., Kopteva Zh. P., Pilyashenko-Novokhatny A. I., Zanina V. V., Purish L. M. Microbial corrosion of underground structures. Kyiv: Nauk. dumka. 2005, 258 p. (In Ukrainian). ISSN 0201-8462

5. Kopteva Zh. P., Zanina V. V., Boretskaya M. A., Kopteva A. E., Kozlova I. A. Influence of lipolytic a...
6. Teeraphatpormchai T., Nakajima-Kambe T., Shigeno-Akutsu Y., Nakayama M. L. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics. Biotechnol. Lett. 2003, 25 (1), 283-284.

https://doi.org/10.1023/A:1021713711160

7. Kireeva N. A., Tarasenko E. M., Shamaeva A. A., Novoselova E. N. The effect of oil and oil products... Sci. Microbiol. Biotechnol. 2019, N 2, P. 51-64. (In Russian). http://dx.doi.org/10.18524/2307-4663.2019.2(46).169092/
8. Tugay T. I., Zhdanova N. M., Buzarova O. I. Influence of ionizing radiation of low intensity on activity of catalase and superoxide dismutase of Hormoconis resine. Mikrobiol. Zh. 2009, 71 (1), 16-21. (In Ukrainian).

9. Graham N., Zultigar M. Interaction of Polyethylene oxide with solvents. Synthesis and swelling in water. J. Polym. Sci.: Polym. Chem. Ed. 1989, 27, 2130-2135. https://doi.org/10.1002/pol.1989.170270802

10. Gnanou Y., Hild H., Rempp P. Hydrophilic polyurethane networks based on polyethylene oxide. Synthesis, characterization and properties. Potential Applications and Biomaterials. Amer. Chem. Soc. 1984, 17, 945-952.
11. Burke G., Cao Z., Devine M.. Preparation of biodegradable polyethylene glycol dimethacrylate hydrogels. Polymers. 2019, V. 11, P. 1339-1345.
https://doi.org/10.3390/polym11081339

12. Silviya P., Jennie Z., Leach B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules. 2010, V. 11, P. 1348-1357.
https://doi.org/10.1021/ma00134a069
13. Saez-Martinez V., Olalde B., Martinez-Redondo D. Degradable poly(ethylene glycol)-based hydrogels: Synthesis, physico-chemical properties and in vitro characterization. J. Bioactive Compatible Polymers: Biomed.l Appl. 2014, V. 29, P. 270-276.

https://doi.org/10.1177/0883911514528597

14. Deshmukh M., Singh Y., Gunaseelan S. Biodegradable poly(ethylene glycol) hydrogels based on...
15. Jain E., Sheth S. Polito K. Storage stability of biodegradable polyethylene glycol microspheres. Mater. Res. Express. 2017, 4 (10), 123-126.

https://doi.org/10.1088/2053-1591/aa8e37

16. Im S., Choi Y., Subramanyam E. Synthesis and characterization of biodegradable elastic hydrogels. Macrom. Res. 2007, 15 (4), 363-369.

https://doi.org/10.1007/BF03218800
17. Vointseva I. I., Gembitsky P. A. Polyguanidine disinfectants and multifunctional additives in composite materials. Moskva: Lakokr. prom. 2009, 300 p. (In Russian).

https://doi.org/10.15372/KhUR20160610

18. Zhang C., Yin Z., Luo Q. Poly(hexamethylene guanidine)-based hydrogels with long lasting antimicrobial activity and low toxicity. J. Polym. Chem. 2017, 55 (12), 2027-2035.

https://doi.org/10.1002/pola.28581

19. Ochirov O. S, Mognonov D. M, Stel'makh S. A. Polymeric hydrogels based on polyhexamethylene guanidine. J. Appl. Chem. 2015, 88 (2), 331-334. (In Russian).
https://doi.org/10.1134/S1070427215020238

20. Workshop on microbiology. Ed. by A. I. Netrusov. Moskva: Publishing Center "Academy". 2005, 608 p. (In Russian).

21. Eisenberg V. L., Karpel V. I., Syrchin S. A. Approbation of a quantitative method for determining lipolytic activity using a chromogenic substrate. Mikrobiol. Zh. 1995, 57 (5), 84–89. (In Russian).
22. Korolyuk M. A., Ivanova L. I., Mayorov I. G. Method for determining catalase activity. Lab. Case. 1988, N 1, P. 16-18. (In Russian).

23. Abdulina D. R., Kopteva Zh. P., Kopteva A. E. Influence of polymeric and rubber materials on hydrocarbon-oxidizing bacteria. Microbiol. Biotechnol. 2019, 46 (2), 51-64. (In Russian).

https://doi.org/10.18524/2307-4663.2019.2(46).169092

24. Gogoleva O. A. Catalase activity of hydrocarbon-oxidizing bacteria. Author's ref. Dissertation of Cand. Biol. Sci. Orenburg. 2012, 18 p. (In Russian).
25. Kireeva N. A., Tarasenko E. M., Shamaeva A. A. Influence of oil and oil products on lipase activity.

https://doi.org/10.1134/S106422930608014X
1. Shtilman M. I. Biodegradation of Polymers. *J. Sib. Federal Un-ty. Biology* 2. 2015, N 8, P. 113–130.
2. Kuznetsov A. E., Gradova N. B., Lushnikov S. V. Applied ecobiotechnology: textbook: in 2 vols. V1. Moskva: Binom. 2012, 629 p. (In Russian).

ISBN 978-5-9963-2631-0

3. Vinogradova O. N., Prudnikova S. V., Zobova N. V., Kolesnikova V. L. Microbial
Degradation of Poly-3-Hydroxybutyrate in Samples of Agrogenically Changed Soils.

J. Sib. Federal Un-ty

Biology 2.

2015, N 8, P. 199
4. Andreyuk K. I., Kozlova I. P., Kopteva Zh. P., Pilyashenko-Novokhatny A. I., Zanina V. V.,

Purish L

M

Microbial corrosion of underground structures.
Kyiv:

Nauk. dumka

2005, 258 p.

In Ukrainian.

ISSN 0201-8462
5. Kopteva Zh. P., Zanina V. V., Boretskaya M. A., Kopteva A. E., Kozlova I. A. Influence of lipolytic and catalase activity of heterotrophic bacteria on physical and mechanical properties of Poliken 980-25 coating.

Mikrobiol. zh
. 2013, 75 (1), 41–47.

In Russian).
6. Teeraphatpornchai T., Nakajima-Kambe T., Shigeno-Akutsu Y., Nakayama M. L. Isolation and characterization of a bacterium that degrades various polyester–based biodegradable plastics. Biotechnol. Lett. 2003, 25 (1), 283–284.
7. Kireeva N. A., Tarasenko E. M., Shamaeva A. A., Novoselova E. N. The effect of oil and oil...
products on the activity of lipase of the gray forest soil.

Soil Sci.

Microbiol. Biotechnol.

2019

N 2, P. 51–64.
In Russian).

http://dx.doi.org/10.18524/2307-4663.2019.2(46).169092/
8. Tugay T. I., Zhdanova N. M., Buzarova O. I. Influence of ionizing radiation of low intensity on activity of catalase and superoxide dismutase of *Hormoconis resine.*
i

ol. Zh

. 2009, 71 (1), 16–21.

(In Ukrainian).
9. *Graham N., Zultigar M.* Interaction of Polyethylene oxide with solvents. Synthesis and swelling in water of cross-linked polyethylene glycol urethane networks.

Polymer. V. 30, P. 2130–2135. https://doi.org/10.1016/0032-3861(89)90305-4
10. Gnanou Y., Hild H., Rempp P. Hydrophyllic polyurethane networks based on polyethyleneoxide. Synthesis, characterization and properties. Potential Applications and Biomaterials.

Amer
1

7, P. 945–952.

https://doi.org/10.1021/ma00134a069
11. Burke G., Cao Z., Devine M. Preparation of biodegradable polyethylene glycol dimethacrylate hydrogels. *Polymers*. 2019, V. 11, P. 1339–134
12. Silviya P., Jennie Z., Leach B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties.

Biomacromolecules

. 2010, V. 11, P. 1348–1357.
13. Saez-Martinez V., Olalde B., Martinez-Redondo D. Degradable poly(ethylene glycol)-based hydrogels: Synthesis, physico-chemical properties and in vitro characterization.
J. Bioactive Compatible Polymers: Biomed.I Appl

. 2014

V. 29, P. 270–276.

https://doi.org/10.1177/0883911514528597
14. Deshmukh M., Singh Y., Gunaseelan S. Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism.

Biomaterials.

2010,

31

(26)

, 6675–6684. https://doi.org/10.1016/j.biomaterials.2010.05.021

15. Jain E., Sheth S. Polito K. Storage stability of biodegradable polyethylene glycol microspheres.

Mater. Res. Express.

2017,

4

(1

0)

, 123–126. https
16. Im S., Choi Y., Subramanyam E. Synthesis and characterization of biodegradable elastic hydrogels based on poly(ethylene glycol) and poly(ε-caprolactone) blocks. *Macrom. Res.* 2007, 15(4), 363–369.

17. Vointseva I. I., Gembitsky P. A. Polyguanidine disinfectants and multifunctional additives in composite materials. *Moskva: Lakokr. prom.* 2009, 300 p. (In Russian).

18. Zhang C., Yin Z., Luo Q. Poly(hexamethylene guanidine)-based hydrogels with long lasting antimicrobial activity and low toxicity. *J. Polym. Chem.* 2017, 55(12), 2027–2035.
19. Ochirov O. S, Mognonov D. M, Stel’makh S. A. Polymeric hydrogels based on polyhexamethylene guanidine hydrochloride and formaldehyde. J. Appl. Chem. 2015, 88 (2), 331–334. (In Russian).

https://doi.org/10.1134/S1070427215020238

20. Workshop on microbiology. Ed. by A. I. Netrusov. Moskva: Publishing Center "Academy". 2005, 608 p. (In Russian).

21. Eisenberg V. L., Karpel V. I., Syrchin S. A. Approbation of a quantitative method for determining lipolytic activity using a chromogenic substrate. Mikrobiol. Zh. 1995, 57 (5), 84.
22. Korolyuk M. A., Ivanova L. I., Mayorov I. G. Method for determining catalase activity. Lab. Case. 1988, N 1, P. 16–18. (In Russian).

23. Abdulina D. R., Kopteva Zh. P., Kopteva A. E. Influence of polymeric and rubber materials on hydrocarbon-oxidizing bacteria. Microbiol. Biotechnol. 2019, 46 (2), 51–64. (In Russian). http://dx.doi.org/10.18524/2307-4663.2019.2(46).169092/

24. Gogoleva O. A. Catalase activity of hydrocarbon-oxidizing bacteria. Author's ref. Dissertation of Cand. Biol. Sci. Orenburg. 2012, 18 p. (In Russian). 25. Kiereeva N, Tarasenko E, Shamaeva A. Influence of oil and oil products on lipase activity of gray forest soil. Soil Sci. 2006, N 8, P. 1005–1011. (In Russian).
