The Inflammatory Response Induced by Aspartic Proteases of *Candida albicans* Is Independent of Proteolytic Activity

Donatella Pietrella, Anna Rachini, Neelam Pandey, Lydia Schild, Mihai Netea, Francesco Bistoni, Bernhard Hube and Anna Vecchiarelli

Infect. Immun. 2010, 78(11):4754. DOI: 10.1128/IAI.00789-10. Published Ahead of Print 16 August 2010.

Updated information and services can be found at: http://iai.asm.org/content/78/11/4754

REFERENCES

These include:

This article cites 64 articles, 25 of which can be accessed free at: http://iai.asm.org/content/78/11/4754#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/

Journals.ASM.org
The Inflammatory Response Induced by Aspartic Proteases of *Candida albicans* Is Independent of Proteolytic Activity

Donatella Pietrella, Anna Rachini, Neelam Pandey, Lydia Schild, Mihai Netea, Francesco Bistoni, Bernhard Hube, and Anna Vecchiarelli

Department of Experimental Medicine and Biochemical Science, Microbiology Section, University of Perugia, Perugia, Italy; **Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany**; **Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands**; and **Friedrich Schiller University, Jena, Germany**

Received 21 July 2010/Returned for modification 29 July 2010/Accepted 4 August 2010

The secretion of aspartic proteases (Saps) has long been recognized as a virulence-associated trait of the pathogenic yeast *Candida albicans*. In this study, we report that different recombinant Saps, including Sap1, Sap2, Sap3, and Sap6, have differing abilities to induce secretion of proinflammatory cytokines by human monocytes. In particular Sap1, Sap2, and Sap6 significantly induced interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and IL-6 production. Sap3 was able to stimulate the secretion of IL-1β and TNF-α. All Saps tested were able to induce Ca²⁺ influx in monocytes. Treatment of these Saps with pepstatin A did not have any effect on cytokine secretion, indicating that their stimulatory potential was independent from their proteolytic activity. The capacity of Saps to induce inflammatory cytokine production was also independent from protease-activated receptor (PAR) activation and from the optimal pH for individual Sap activity. The interaction of Saps with monocytes induced Akt activation and phosphorylation of IκBα, which mediates translocation of NF-κB into the nucleus. Overall, these results suggest that individual Sap proteins can induce an inflammatory response and that this phenomenon is independent from the pH of a specific host niche and from Sap enzymatic activity. The inflammatory response is partially dependent on Sap denaturation and is triggered by the Akt/NF-κB activation pathway. Our data suggest a novel, activity-independent aspect of Saps during interactions of *C. albicans* with the host.

Candida albicans is a generally harmless commensal yeast that colonizes mucosal surfaces of the gastrointestinal or urogenital tract in most healthy people. In severe cases of infection, *C. albicans* may reach the bloodstream due to damage of barriers, for example, after polytrauma or surgery, or via penetration of the gastrointestinal mucosa in susceptible hosts, thereby causing hematogenously disseminated candidiasis (31). *C. albicans* has developed a battery of virulence factors that enables the fungus to colonize host tissues, to escape the immune response, and to cause disease (5, 22, 62). A variety of different virulence factors contribute to the infective process of the fungus, and these factors can be expressed in either a qualitative or quantitative manner, depending on the site of infection, the stage of infection, and the nature of the host immune response (12, 19).

The secretion of aspartic proteases (Saps), encoded by a gene family with 10 members, has long been recognized as a virulence-associated trait of this pathogenic yeast (34, 35). Individual Sap proteases have been purified from *C. albicans* culture supernatants (18) or by recombinant expression in *Pichia pastoris* (3) or *Escherichia coli* (24, 25), and their biochemical properties have been characterized (2, 3, 55). For example, the optimum pHs for individual Saps have been established as between pH 2.0 and 5.5 for Saps 1 to 3 and between pH 3.0 and 7.0 for Saps 4 to 6 (3). Sap9 and Sap10 have been identified as glycosylphosphatidylinositol (GPI)-anchored proteases which target proteins necessary for both cellular processes and host-pathogen interactions (1).

The expression of all SAP genes has been monitored in vivo during interaction with host cells in several studies (10, 37, 46, 49, 56, 57, 60). Furthermore, earlier studies have shown that Saps are recognized by the host and that anti-Sap antibodies are produced by patients (47). The role of *C. albicans* Saps during human infection has not been clarified completely. Saps have been described as critical virulence factors involved in promoting adhesion to, invasion of, and damage to epithelial cells and tissue (9, 21, 33, 35, 64). Consistent with this view, it has been reported that the aspartic protease inhibitor pepstatin A is able to inhibit the invasion of *C. albicans* during interaction with oral or intestinal epithelial cells (9, 36). In addition, inhibiting Sap activity by using pepstatin A has been shown to reduce human epithelial damage (27, 36, 52). Furthermore, it has been shown that mutants lacking Saps 1 to 3 cause a reduced proinflammatory response of epithelial cells (49, 51). Another report showed that Saps 4 to 6, but not Saps 1 to 3, play an important role in survival and escape of *C. albicans* during interaction with macrophages (3).

A more recent study on the cell surface-associated protease Sap9 showed that this protease can efficiently and rapidly degrade the antimicrobial peptide histatin 5, produced by oral epithelial cells, resulting in the loss of the anti-*Candida albicans* potency of histatin 5 (32). Another recent report indicates that deletion of SAP9 leads to a mitigated release of reactive oxygen intermediates (ROI) by human polymorphonuclear
leukocytes (PMNs) and decreases *C. albicans*-induced apoptosis triggered by ROI formation (17). Furthermore, Saps 1 to 3 have been shown to mediate evasion of human complement attack via degradation of complement components (13).

Pathogens initially interact with the innate immune system via binding between microorganism-specific chemical signatures (pathogen-associated molecular patterns [PAMPs]) and pattern recognition receptors (PRRs) on antigen-presenting cells. PAMPs bind specifically to two classes of PRRs, namely, Toll-like receptors (TLRs) and C-lectin-like receptors. PAMP-PRR interaction triggers signaling responses that culminate in release of proinflammatory cytokines. Moreover, it has been demonstrated that several microbial virulence factors are able to link PRRs and to activate the proinflammatory response. *Porphyromonas gingivalis* fimbriae, a major virulence factor of this pathogen, are able to link CD14 and CD11b/18, following which TLRs are recruited as signal receptors (14). The M1 protein of *Streptococcus pyogenes* binds to TLR2 and TLR4 (54). Both the native mannosylated MP65 protein (a β-glucanase adhesin) and the recombinant protein (rMP65) of *Candida albicans* were efficiently bound and taken up by macrophages and dendritic cells in a process involving both clathrin-dependent and clathrin-independent mechanisms. Moreover, the RGD sequence is involved in rMP65 uptake, to some extent. After internalization, rMP65 was partially localized in lysosomes and resulted in efficient protein degradation and presentation to CD4+ T cells (42).

Serine protease enzymes are able to activate protease-activated receptors (PARs), a newly identified family of G-protein-coupled receptors. As a consequence, proteases have the potential to modulate the inflammatory response (16).

The first cell interaction of foreign antigens with cell surface receptors leads to the stimulation of signal transduction cascades, starting with phosphatidylinositol 3-kinase (PI3K) activation, which is one of the most prevalent signal transduction events, if not the most prevalent event, associated with mammalian cell surface receptor activation (15). PI3K recruits pleckstrin homology domain-containing proteins, including Akt and phosphoinositide-dependent protein kinase, to the plasma membrane. The PI3K/Akt signaling cascade is crucial to widely divergent physiological processes, which include cell cycle progression, differentiation, transcription, translation, apoptosis, endocytosis, motility, and metabolism (30).

Given the many roles of *C. albicans* secreted aspartic proteases during interaction with the host through different mechanisms, we questioned whether Saps (i) are able to interact with PARs and (ii) retain immunomodulatory potential during interaction with host immune cells. Furthermore, we analyzed the response of primary human phagocytic cells (monocytes) to interaction with host immune cells. Furthermore, we analyzed the response of primary human phagocytic cells (monocytes) to interaction with host immune cells.

MATERIALS AND METHODS

Aspartic protease production. Recombinant *C. albicans* aspartic proteases rSap1, rSap2, rSap3, and rSap6 and the *Malassezia furfur* lipase MfLip1 were expressed as recombinant proteins by use of *Pichia pastoris* and pattern recognition receptors (PRRs) on antigen-presenting cells. PAMPs bind specifically to two classes of PRRs, namely, Toll-like receptors (TLRs) and C-lectin-like receptors. PAMP-PRR interaction triggers signaling responses that culminate in release of proinflammatory cytokines. Moreover, it has been demonstrated that several microbial virulence factors are able to link PRRs and to activate the proinflammatory response. *Porphyromonas gingivalis* fimbriae, a major virulence factor of this pathogen, are able to link CD14 and CD11b/18, following which TLRs are recruited as signal receptors (14). The M1 protein of *Streptococcus pyogenes* binds to TLR2 and TLR4 (54). Both the native mannosylated MP65 protein (a β-glucanase adhesin) and the recombinant protein (rMP65) of *Candida albicans* were efficiently bound and taken up by macrophages and dendritic cells in a process involving both clathrin-dependent and clathrin-independent mechanisms. Moreover, the RGD sequence is involved in rMP65 uptake, to some extent. After internalization, rMP65 was partially localized in lysosomes and resulted in efficient protein degradation and presentation to CD4+ T cells (42).

Serine protease enzymes are able to activate protease-activated receptors (PARs), a newly identified family of G-protein-coupled receptors. As a consequence, proteases have the potential to modulate the inflammatory response (16).

The first cell interaction of foreign antigens with cell surface receptors leads to the stimulation of signal transduction cascades, starting with phosphatidylinositol 3-kinase (PI3K) activation, which is one of the most prevalent signal transduction events, if not the most prevalent event, associated with mammalian cell surface receptor activation (15). PI3K recruits pleckstrin homology domain-containing proteins, including Akt and phosphoinositide-dependent protein kinase, to the plasma membrane. The PI3K/Akt signaling cascade is crucial to widely divergent physiological processes, which include cell cycle progression, differentiation, transcription, translation, apoptosis, endocytosis, motility, and metabolism (30).

Given the many roles of *C. albicans* secreted aspartic proteases during interaction with the host through different mechanisms, we questioned whether Saps (i) are able to interact with PARs and (ii) retain immunomodulatory potential during interaction with host immune cells. Furthermore, we analyzed the response of primary human phagocytic cells (monocytes) to interaction with host immune cells. Furthermore, we analyzed the response of primary human phagocytic cells (monocytes) to interaction with host immune cells.

Aspartic protease production. Recombinant *C. albicans* aspartic proteases rSap1, rSap2, rSap3, and rSap6 and the *Malassezia furfur* lipase MfLip1 were expressed as recombinant proteins by use of *Pichia pastoris* and pattern recognition receptors (PRRs) on antigen-presenting cells. PAMPs bind specifically to two classes of PRRs, namely, Toll-like receptors (TLRs) and C-lectin-like receptors. PAMP-PRR interaction triggers signaling responses that culminate in release of proinflammatory cytokines. Moreover, it has been demonstrated that several microbial virulence factors are able to link PRRs and to activate the proinflammatory response. *Porphyromonas gingivalis* fimbriae, a major virulence factor of this pathogen, are able to link CD14 and CD11b/18, following which TLRs are recruited as signal receptors (14). The M1 protein of *Streptococcus pyogenes* binds to TLR2 and TLR4 (54). Both the native mannosylated MP65 protein (a β-glucanase adhesin) and the recombinant protein (rMP65) of *Candida albicans* were efficiently bound and taken up by macrophages and dendritic cells in a process involving both clathrin-dependent and clathrin-independent mechanisms. Moreover, the RGD sequence is involved in rMP65 uptake, to some extent. After internalization, rMP65 was partially localized in lysosomes and resulted in efficient protein degradation and presentation to CD4+ T cells (42).

Serine protease enzymes are able to activate protease-activated receptors (PARs), a newly identified family of G-protein-coupled receptors. As a consequence, proteases have the potential to modulate the inflammatory response (16).

The first cell interaction of foreign antigens with cell surface receptors leads to the stimulation of signal transduction cascades, starting with phosphatidylinositol 3-kinase (PI3K) activation, which is one of the most prevalent signal transduction events, if not the most prevalent event, associated with mammalian cell surface receptor activation (15). PI3K recruits pleckstrin homology domain-containing proteins, including Akt and phosphoinositide-dependent protein kinase, to the plasma membrane. The PI3K/Akt signaling cascade is crucial to widely divergent physiological processes, which include cell cycle progression, differentiation, transcription, translation, apoptosis, endocytosis, motility, and metabolism (30).

Given the many roles of *C. albicans* secreted aspartic proteases during interaction with the host through different mechanisms, we questioned whether Saps (i) are able to interact with PARs and (ii) retain immunomodulatory potential during interaction with host immune cells. Furthermore, we analyzed the response of primary human phagocytic cells (monocytes) to different purified Saps, as well as the biological and molecular events that accompany this interaction.**
Secreted aspartic proteases (Saps) are important virulence factors of *Candida albicans* and may also contribute to the induction of an inflammatory host immune response (35, 51). To analyze a possible correlation between Sap secretion and induction of inflammatory cytokines, we tested whether induction of inflammatory cytokines in monocytes was affected by treatment with rSaps. Saps were first incubated with unlabeled rSaps (20 μg/ml) and then treated with FITC-conjugated rSap1 at 20 μg/ml for 30 min. Determination of phosphorylated Akt and IκBα. The levels of Akt and IκBα phosphorylation in monocytes were measured by flow cytometry. Monocytes were incubated with different doses of FITC-conjugated rSaps and FITC-conjugated rabbit anti-human phospho-Akt (Cell Signaling Technology). Cells were first incubated with FITC-conjugated rabbit anti-human phospho-IκBα antibody raised against amino acids 42 to 55, located inside the tethered ligand domain of PAR1; mouse anti-human PAR2 (SAM11); a mouse monoclonal IgG2a antibody raised against amino acids 37 to 50 (SLIGKVGDGTSHVTG), located inside the human PAR2 cleavage site; or mouse anti-human PAR3 (8E8), raised against amino acids 31 to 47, which include the cleavage site to inhibit the enzymatic activity of Saps. To study the role of Akt in the intracellular signaling activated by proteases, cells were pretreated with 5 μM wortmannin for 40 min before adding Saps. The presence of human tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 in culture supernatant fluids was measured with an enzyme-linked immunosorbent assay (ELISA) kit (BD Biosciences Pharmingen).

RESULTS

Secreted aspartic proteases (Saps) are important virulence factors of *Candida albicans* and may also contribute to the induction of an inflammatory host immune response (35, 51). To analyze a possible correlation between Sap secretion and the host immune response, we used the following recombinant secreted Saps: rSap1, rSap2, and rSap3, representing the Sap family subgroup Sap1-3, and rSap6, representing the Sap family subgroup Sap4-6. We tested the ability of secreted aspartic proteases to induce proinflammatory cytokines by coincubating human monocytes isolated from blood by healthy donors with the different rSaps. The results shown in Fig. 1A indicate that human monocytes recognize all Saps, but the capacity of human monocytes to secrete IL-1β, TNF-α, and IL-6 varied in response to different Saps. In particular, Sap1, Sap2, and Sap6 induced significant amounts of IL-1β, TNF-α, and IL-6. Sap3 was a strong inducer of TNF-α, while it was a poor inducer of IL-1β and IL-6. In contrast, the lipase of *M. furfur* and pepsin from porcine gastric mucosa, used as a control, did not cause significant induction of cytokines (Fig. 1B). A dose-dependent analysis performed with all rSaps showed that the optimal dose to stimulate TNF-α secretion was around 20 μg/ml (Fig. 1B). Similar results were obtained when additional cytokines, for example, IL-6 or IL-1β, were tested (data not shown). To exclude the possibility of the production of proinflammatory cytokines being influenced by LPS contamination, we performed experiments in the presence of polymyxin B (10 μg/ml). The results showed no differences for all proteases tested, while, as expected, TNF-α production induced by LPS was strongly reduced (Fig. 1C).

To compare a native Sap to the cognate recombinant pro tease, we also used purified native Sap2 and a culture supernatant containing high concentrations of native Sap2. The secretome was collected from the cultures of two strains of *C. albicans* (CAF2-1 and CEC987) grown in YCB-BSA medium for 48 h. Similar production of TNF-α was induced by native and recombinant Sap2 (Fig. 1D). The secretomes of both strains, diluted 1:10 and 1:100, were tested. The secretomes diluted 1:10 in both cases stimulated the secretion of TNF-α (Fig. 1D).

Preliminary experiments were performed to test for possible cytotoxicity of rSaps by treating monocytes with the recombinant proteases at doses ranging from 1 to 50 μg/ml. We observed no cytotoxicity after 4 h and 18 h of incubation for all rSaps, except rSap6, which was able to induce cytotoxicity in 40% of cells at a high dose (50 μg/ml). Based on the previous results, a concentration of 20 μg/ml was used in the subsequent experiments. The capacity of rSap1, rSap2, rSap3, and rSap6 to induce cellular activation was also confirmed by their ability to induce a Ca^2+ influx, and rSap1 was the best stimulator (data not shown).

Given the fact that most, if not all, of the biological effects of Saps have been attributed to their enzymatic activity (35, 50), we tested whether induction of inflammatory cytokines in monocytes was affected by treatment of Saps with pepstatin A, an aspartic protease inhibitor. Figure 2A shows that the addition of pepstatin A did not affect the production of TNF-α and IL-6, suggesting that proteolytic activity is not necessary to cause induction of these cytokines. Since it has been reported that Saps 1 to 3 have different pH optima for their enzymatic activity in the pH range of 2.0 to 5.5 (3), we tested the potential of rSap1, rSap2, and rSap3 to induce cytokine production at their optimal pHs (pHs 4 and 5). No production of cytokines was observed at these selected pH values (data not shown). Therefore, no cytokines were produced when Saps 1 to 3 were most active. Under these experimental conditions, even LPS was unable to induce cytokine production. This could be due to the difficulty of macrophages to accomplish vital biological functions at these acidic pH values.

Next, we analyzed whether the denaturation and inactivation of rSaps influenced the stimulation of cytokine production by monocytes. To this end, Saps were denatured by autoclaving and then used to stimulate the cells. Denaturation of rSaps strongly reduced the proinflammatory cytokine production induced by rSap2, rSap3, and rSap6 (Fig. 2B). In particular, the denaturation of these Saps strongly reduced the production of TNF-α and IL-1β, while proinflammatory cytokine induction by rSap1 was not modified. The induction of cytokine secretion.
was not modified when LPS, whether autoclaved or not, was used at a dose of 1 μg/ml (Fig. 2B). The dose of LPS was selected by testing TNF release after stimulation with various doses of LPS (0.001, 0.01, 0.1, 1, and 10 μg/ml). The results showed that the best stimulation occurred at 1 μg/ml and 10 μg/ml (data not shown).

Receptors of the PAR family are expressed in phagocytic cells, serve as sensors of serine proteases, e.g., thrombin, mast cell tryptase, trypsin, and cathepsin G, in these cells (40), and are considered key initiators of the inflammatory response. Since sensing via PARs initiates with a proteolytic digest, we tested the possible involvement of these receptors in the Sap-induced proinflammatory cytokine production. To this end, we blocked PAR1, PAR2, and PAR3, which are expressed mainly

FIG. 1. TNF-α, IL-6, and IL-1β production from monocytes after stimulation with Candida albicans rSaps. (A) Monocytes were treated with rSap1, rSap2, rSap3, and rSap6 (20 μg/ml), with lipase of M. furfur (20 μg/ml), with pepsin from porcine gastric mucosa, or with LPS (1 μg/ml) or were left untreated and then were incubated for 18 h at 37°C. After incubation, supernatants were recovered and tested for the presence of TNF-α, IL-6, and IL-1β. (B) Monocytes were treated with different concentrations of rSaps or pepsin, ranging from 1 to 50 μg/ml, or were left untreated and then were incubated for 18 h at 37°C. (C) Monocytes were treated with different rSaps (20 μg/ml) and LPS (1 μg/ml) in the presence or absence of 10 μg/ml of polymyxin B. (D) Monocytes were treated with native Sap2, rSap2, and culture supernatant. Data are expressed as means ± SD for three independent experiments. Statistical analysis was performed with an ANOVA test for multiple comparisons. *, P < 0.05; **, P < 0.01 (rSap-treated cells versus untreated cells).
in monocytes (53), by using a mouse anti-human PAR1 antibody directed against the tethered ligand domain and mouse anti-human antibodies to PAR2 or PAR3, specific for the cleavage sites. The data obtained showed that the blockage of PAR1, PAR2, and PAR3 did not affect the production of TNF-α/H9251, IL-6, and IL-1/H9252 induced by rSap1 (data not shown).

The induction of cytokines by rSaps in the presence of the aspartic protease inhibitor pepstatin A implied a direct interaction of rSaps with monocytic cells. To verify a direct interaction of rSaps with human monocytes, the interaction of FITC-labeled rSaps with monocytes was assayed using flow cytometry. Sap1 and Sap2, which showed high-level stimulation of proinflammatory cytokines, were chosen for this experiment. The results shown in Fig. 3 indicate a dose-dependent association of rSap1 and rSap2 with monocytes. Clearly, the interaction of rSap2 with cells was greater than that of rSap1.

Both Saps showed similar kinetics of association, reaching a plateau within 1 day and maintaining it for 4 days, after which the level declined, to become undetectable after 7 days of incubation. This could be due to degradation or extrusion of rSaps. Because the CTLA-4 receptor is not expressed on monocytes, FITC-conjugated CTLA-4 F(ab)2 was used as a negative control. This protein was not found to be associated with the cells at any tested concentration (Fig. 3).

The PI3K-Akt network mediates intracellular signals to regulate a variety of cellular responses, including cellular activation, protein synthesis, cell cycling, and survival (6, 39). Given that PI3K is involved in the signal transduction pathway associated with cell activation (15), we considered the possibility that Sap-induced activation may be related to phosphatidylinositol phosphate (PIP3) recruitment. Since recent evidence indicates that PI3K-dependent activation of Akt is linked to an increase of PI3K activity (15), we evaluated Akt and pAkt phosphorylation in cells stimulated with different rSaps. Monocytes treated with rSap1, rSap2, rSap3, or rSap6 for 1 h showed increased activation of pAkt compared to unstimulated cells (Fig. 4A).

Since Akt has been implicated in regulating the activation of proinflammatory cytokine genes (8, 11), we investigated whether rSap-mediated activation of proinflammatory cytokines in monocytes occurs via phosphorylation of IκBα, which would allow the translocation of NF-κB into the nucleus (23). After 4 h of coinoculation of monocytes with rSap1, rSap2, rSap3, and rSap6, activation of IκBα was observed (Fig. 4B), and the latter was related to gene transcription of proinflammatory cytokines (26). As a negative control, pepsin was used.

FIG. 2. Effects of heat inactivation of Saps, pepstatin A treatment, and anti-human PAR antibodies on cytokine production induced by Saps. Monocytes were treated with rSap1, rSap2, rSap3, and rSap6 (20 μg/ml) in combination with pepstatin A (15 μM) (A) or with heat-inactivated rSap1, rSap2, rSap3, rSap6, or LPS (1 μg/ml) (B). (C) Effect of pepstatin A (15 μM) or heat inactivation of native or recombinant Sap2 (20 μg/ml) on TNF-α production. After incubation, supernatants were recovered and tested for the presence of TNF-α, IL-1β, or IL-6. Data are expressed as means ± SD for three independent experiments. Statistical analysis was performed with an ANOVA test. *, P < 0.05 (heat-inactivated rSap-treated cells versus rSap-treated cells).

FIG. 3. Association of FITC-Saps with monocytes. Monocytes treated with different concentrations of FITC-labeled rSap1 or rSap2 or with FITC-conjugated CTLA-4 F(ab)2 for different times were analyzed by flow cytometry to assess rSap binding. FITC-rSap or FITC–CTLA-4 F(ab)2 binding by monocytes is expressed as the mean fluorescence intensity (MIF). Data are expressed as means ± SD for three independent experiments.
in parallel experiments. This aspartic protease was found to be unable to affect Akt and IκB pathways (Fig. 4C).

Wortmannin is known to be a potent inhibitor of the PIP3-Akt pathway (38, 43), so we evaluated whether the treatment of monocytes coincubated with wortmannin was able to inhibit the secretion of proinflammatory cytokines. Indeed, 5 μM wortmannin drastically reduced IL-1, TNF-α, and IL-6 secretion in rSap-treated monocytes (Fig. 5).

Taken together, our results indicate that Saps stimulate cytokine production independently of their enzymatic activity and that signal transduction is mediated via Akt.

DISCUSSION

Candida infections are a clinical problem of growing importance. The incidence of infections has grown dramatically over the past 2 to 3 decades, and it is very likely that this trend will continue in the years to come. *C. albicans* is the most common fungal pathogen and is the fourth leading cause of nosocomial infections (28, 45), with a high mortality rate for systemic infection (61). A variety of fungal virulence attributes are involved in the infection process, and some of these attributes are thought to have distinct roles during infection; for example,
Sap proteases have the potential to degrade tissue barriers during invasion, to inactivate host defense molecules, or to digest host proteins for nutrient supply (35). Many aspects of their activities have been studied, and it has been proposed that some particular Saps may be required and optimized for certain host niches and different stages of infection (36). Indeed, different members of the Sap family are known to be active at a broad range of pH values, ranging from pH 2.0 to 6.5; therefore, *C. albicans* provides proteases for a broad range of host niches (50).

Here we report that different Saps show differing abilities to induce secretion of proinflammatory cytokines by human monocytes. In particular, Sap1, Sap2, and Sap6 strongly induced upregulation of IL-1β, TNF-α, and IL-6, while Sap3 was able to stimulate the secretion of IL-1β and TNF-α. The treatment of Saps with pepstatin A did not diminish their ability to induce cytokine secretion, and consequently, the stimulatory effect of Saps was independent from their proteolytic activity. Sap-induced inflammatory cytokine production was also independent from PAR activation and from the optimal pH for Sap activity, confirming that cytokine stimulation does not correlate with activity. Stimulation of cytokine production by monocytes seems to be regulated via NF-κB, since Saps induced Akt activation and phosphorylation of IκBα, which initiates translocation of NF-κB into the nucleus (63).

Previous studies showed that Saps are important virulence factors of *Candida albicans* during mucosal and disseminated infections and may also contribute to the induction of an inflammatory host immune response (50). In particular, it has been shown that mutants lacking either SAP1 or SAP2 caused reduced tissue damage in a model of vaginal infections using reconstituted human vaginal epithelium (RHVE) and had a significantly reduced potential to stimulate cytokine expression (49). In contrast, mutants lacking SAP4 to SAP6 induced similar levels of cytokines to those in the wild-type strain. Addition of the aspartic protease inhibitor pepstatin A strongly reduced the cytokine response evaluated in the RHVE model (49, 51).

In our study, we documented a strong ability of Sap1, Sap2, and Sap6 to induce inflammatory cytokines, and these data seem to be consistent with the low capacity to induce inflammation of Sap null mutants lacking either SAP1 or SAP2 (51). However, in contrast with previous results (44), we were unable to mitigate the cytokine production by using pepstatin. There are at least two different explanations for these differences. First, the reduced induction of inflammation of Sap null mutants was associated with reduced tissue damage, which very likely also influenced the level of cytokine expression. We therefore propose that the previous induction of inflammation was induced primarily by fungal cells and their activity. Second, the previous study was based on epithelial cells only, while in this study human primary monocytes were analyzed.

Therefore, we report in this study, for the first time, that Saps are potent inducers of inflammatory cytokines, independent of their proteolytic activity. This view was supported by the observation that cytokine induction was independent from pH values necessary for optimal Sap activity. We therefore concluded that the antigenic structure of Saps caused the cytokine induction, a phenomenon previously observed for other virulence factors of *C. albicans*, such as the mannoprotein MP65, a well-known adhesin (42, 48). This conclusion is supported by the fact that heat denaturation of Sap proteins, and thus destruction of the antigenic structure, greatly mitigated proinflammatory cytokine release. However, the stimulatory activity of Sap1 appeared to be unaffected by heat treatment. This suggests that the stimulatory antigenic components of Sap2, Sap3, and Sap6 are heat labile, while these structures are heat stable in Sap1. Such immunogenic stability is consistent with earlier research indicating that the recognition of albumin, one of the most widely studied proteins, is only partially correlated with its native three-dimensional structure. Indeed, heat treatment and chemical denaturation (SDS treatment) of albumin are not able to significantly decrease its capability to bind to specific antibodies (44). Indeed, in our experimental system, Sap1 was the best stimulator of proinflammatory cytokine production. A possible explanation could be related to the different associations of rSaps with human cells, which may be crucial for inducing different levels of immunoregulation.

Our data indicate that Saps either bind to or are taken up by monocytes. This interaction of monocytes with rSaps was optimal within 1 to 4 days of incubation. After that time, the cells lost their capacity to bind to or take up Saps, suggesting either that Saps were degraded or extruded from cells after 7 days or that monocytes ceased their activity after day 4.

Given that the effects obtained with rSap2 were very similar to those obtained with native Sap2 and a culture supernatant from a *C. albicans* strain that contains a high level of Sap2, it seems feasible that these effects may also occur in vivo. Moreover, even though we do not know the exact concentrations of Saps secreted during infection, it is likely that high concentrations can be reached locally.

Serine proteases such as chymotrypsin and trypsin are released from host cells during inflammation and were originally thought to be primarily responsible for protein degradation. Different serine proteases differ in substrate specificity. For example, chymotrypsin prefers an aromatic side chain on the residue whose carbonyl carbon is part of the peptide bond to be cleaved. Trypsin prefers a positively charged Lys or Arg residue at this position. Recently, however, it was discovered that these proteases also function as signaling molecules through the activation of specialized G-protein-coupled receptors called PARs. So far, four PARs have been identified (PAR1 to -4) and have been detected in numerous cell types, including cells actively involved in the inflammatory response, such as neutrophils, and macrophages. PARs have a unique mechanism of receptor activation, since they all contain a serine protease cleavage site within the extracellular N terminus. Cleavage of this site results in the unmasking of a tethered ligand sequence which can then bind to and activate the receptor. The inflammatory activity induced by Saps was independent from PAR activation and, in particular, from PAR1, PAR2, and PAR3. These results support and extend the evidence given in a previous study in which PAR antagonists were unable to reverse the potentiation of cytokine production induced by soluble factors released by *C. albicans* (7).

The PI3K-Akt network mediates intracellular signals, which implies a variety of cellular responses, including cellular activation (6, 39). Given that PI3K is involved in the signal transduction pathway associated with cell activation (15), we considered the possibility that Sap-mediated activation might imply PI3K recruitment. Recent evidence indicates that PI3K-
dependent activation of Akt is synonymous with increased PI3K activity (15). Indeed, the activation of Sap-induced Akt implies that the signal triggered by Saps is via activation of PI3K, which binds to and activates the phosphoinositide-dependent protein kinase 1. This, in turn, phosphorylates and activates the downstream target Akt, which can then activate the NF-kB pathway. Therefore, Saps trigger the Akt/NF-kB pathway, which is known to regulate the gene transcription of inflammatory cytokines. This assumption was corroborated by the capacity of wortmannin, a PI3K-Akt pathway inhibitor, to completely block the Sap-induced production of cytokines such as IL-1β, TNF, and IL-6.

Taken together, these results reveal that the Sap-induced inflammatory response is independent from both enzymatic activity and PAR activation. In addition, Sap-induced inflammation is dependent on the antigenic structure and is triggered by the Akt/NF-kB activation pathway. This newly discovered immunoregulatory aspect sheds light on C. albicans virulence traits.

ACKNOWLEDGMENTS

We thank Michel Monod, CHUV, Lausanne, Switzerland, for providing Sap-producing *Pichia pastoris* strains and Catherine Macpherson for editorial and secretarial assistance.

This study was funded by the European Commission (FINSysB Marie Curie Initial Training 16 Network grant PITN-GA-2008-214004). M.N. was supported by a Vici Grant of the Netherlands Organization for Scientific Research.

REFERENCES

1. Albrecht, A., A. Felk, I. Pichova, J. R. Naglik, M. Schaller, P. de Groot, D. Maccallum, F. C. Odds, W. Schafer, F. Klis, M. Monod, and B. Hube. 2006. Glycoprophosphatidylinositol-anchored proteins of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J. Biol. Chem. 281:688–694.

2. Borelli, C., E. Ruge, J. H. Lee, M. Schaller, A. Vogelsang, M. Monod, B. C. Korting, R. Hube, and K. Maskos. 2008. X-ray structures of Sap1 and Sap5: structural comparison of the secreted aspartic proteases from Candida albicans. Proteins 72:1308–1319.

3. Borg-von Zeppelin, M., S. Bega, K. Boggian, D. Sanglard, and M. Monod. 1998. The expression of the secreted aspartic proteases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol. Microbiol. 28:543–554.

4. Brunke, S., and B. Hube. 2006. MILIPI, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology 152:547–555.

5. Calderone, R. A., and W. A. Fonzi. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9:337–335.

6. Cantley, L. C. 2002. The phosphoinositide 3-kinase pathway. Science 296:1655–1657.

7. Cheng, S. C., L. Y. Chai, L. A. Joosten, A. Vecchiarelli, B. Hube, J. W. Van Agtmael, K. Lavery, C. L'Oppio, et al. 2009. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Immunol. 47:465–475.

8. Hajishengallis, G., H. Sojar, R. J. Genco, and E. DeNardin. 2004. Intracellular signaling and cytokine induction upon interactions of Porphyromonas gingivalis fimbriae with pattern-recognition receptors. Immunol. Inves. 33:157–172.

9. Hawkins, P. T., K. E. Anderson, K. Davidson, and L. R. Stephens. 2006. Signaling through class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 34:647–662.

10. Hellenberg, M. D., and S. J. Compton. 2002. International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol. Rev. 54:203–211.

11. Hornbach, A., A. Heyken, L. Schild, B. Hube, J. LoBber, and O. Kurzai. 2009. The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils. Infect. Immun. 77:5216–5224.

12. Hube, B. 1996. Candida albicans secreted aspartyl proteases. Curr. Top. Med. Mycol. 7:55–69.

13. Hube, B. 2004. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr. Opin. Microbiol. 7:336–341.

14. Hube, B., M. Monod, D. A. Schofield, A. J. Brown, and N. A. Gow. 1994. Expression of seven members of the gene family encoding secretory aspartyl proteases in Candida albicans. Mol. Microbiol. 14:87–99.

15. Ibrahim, A. S., S. G. Filler, D. Sanglard, J. E. Edwards, Jr., and B. Hube. 1998. Secreted aspartyl proteases and interaction of Candida albicans with human endothelial cells. Infect. Immun. 66:3003–3005.

16. Karkowska-Kuleta, J., M. Rapala-Kozik, and A. Kozik. 2009. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim. Pol. 56:211–224.

17. Kawai, T., and S. Akira. 2006. TLR signaling. Cell Death Differ. 13:816–825.

18. Koelsch, G., J. Tang, J. A. Loy, M. Monod, K. Jackson, S. I. Foundling, and X. Lin. 2000. Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim. Biophys. Acta. 1480:117–131.

19. Koelsch, G., J. Tang, M. Monod, S. I. Foundling, and X. Lin. 1998. Primary substrate specificities of secreted aspartic proteases of Candida albicans. Adv. Exp. Med. Biol. 436:335–338.

20. Krishnan, J., G. Lee, and S. Choi. 2009. Drugs targeting Toll-like receptors. Arch. Pharm. Res. 32:1485–1502.

21. Lermann, U., and J. Morschhauser. 2008. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology 154:3281–3295.

22. Lewis, R. E. 2009. Overview of the changing epidemiology of candidiasis. Curr. Med. Res. Opin. 25:1752–1760.

23. Macdonald, F., and F. C. Odds. 1980. Inducible proteinase of Candida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J. Med. Microbiol. 13:423–435.

24. Martelli, A. M., F. Chiariini, C. Evangelisti, C. Grimaldi, A. Ognibene, L. Manzoli, A. M. Billi, and J. A. McCubrey, 2010. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histol. Histopathol. 25:669–680.

25. Mavor, A. L., S. Thewes, and B. Hube. 2005. Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence factors. Curr. Drug Targets 6:863–874.

26. Meiller, T. F., B. Hube, L. Schild, M. E. Shritfilm, M. A. Schepers, R. Winkler, A. Ton, and M. A. Jabra-Rizk. 2009. A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One 4:e5039.

27. Monod, M., and B. Borg-von Zeppelin. 2002. Secreted aspartic proteases as virulence factors of Candida species. Biol. Chem. 383:1087–1093.

28. Naglik, J., A. Albrecht, O. Badger, and B. Hube. 2004. Candida albicans proteases and host-pathogen interactions. Cell. Microbiol. 6:457–465.

29. Naglik, J. R., S. J. Challacombe, and B. Hube. 2003. Candida albicans secreted aspartyl proteases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67:809–826.

30. Naglik, J. R., D. Moyes, J. Makwana, P. Kanzaria, G. Weindl, A. R. Tappun, C. A. Rodgers, A. J. Woodman, S. J. Challacombe, M. Schaller, and B. Hube. 2008. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154:326–330.

31. Naglik, J. R., G. Newport, T. C. White, L. L. Fernandes-Naglik, J. S. Greenspan, D. Greenspan, S. P. Sweet, S. J. Challacombe, and N. Agabian. 1999. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Microbiology 145:245–251.

32. Okada, T., L. Sakuma, Y. Fukui, O. Hazeki, and M. U. 1994. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 269:3363–3367.

33. Okkenhaug, K., and B. Vanhaesebroeck. 2003. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 3:317–330.

34. Pagano, R. L., S. C. Sampaio, M. A. Juliano, L. Juliano, and R. Giorgi. 2010.
Involvement of proteinase-activated receptors 1 and 2 in spreading and phagocytosis by murine adherent peritoneal cells: modulation by the C-terminal of S100A9 protein. Eur. J. Pharmacol. 628:240–246.

Palmerini, C. A., M. Mazzon, C. Saccardi, and G. Arienti. 2008. The cytosolic calcium concentration is affected by S-nitrosocysteine in human lymphomonocytes. J. Biochem. Mol. Toxicol. 22:35–40.

Pietrella, D., P. Lupo, A. Rachi, S. Sandini, A. Ciervo, S. Perito, F. Bistoni, and A. Vecchiarelli. 2008. A Candida albicans mannoprotein deprived of its mannann moiety is efficiently taken up and processed by human dendritic cells and induces T-cell activation without stimulating proinflammatory cytokine production. Infect. Immun. 76:4359–4367.

Powis, G., R. Bonjouklian, M. M. Berggren, A. Gallegos, R. Abraham, C. Ashendel, L. Zalkow, W. F. Matter, J. Dodge, G. Grindey, et al. 1994. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res. 54:2419–2423.

Restani, P., A. Fiocchi, B. Beretta, T. Velonà, M. Giovannini, and C. L. Galli. 1997. Studies on the antigenic properties of serum albumins. Leit. Pept. Sci. 4:269–273.

Richardson, M. D. 2005. Changing patterns and trends in systemic fungal infections. J. Antimicrob. Chemother. 56(Suppl. 1):i5–i11.

Ripeau, J. S., M. Fiorillo, F. Aumont, P. Belhumeur, and L. de Repentigny. 1999. Secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 71:3227–3234.

Schaller, M., H. C. Korting, C. Borelli, G. Hamm, and B. Hube. 2005. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377.

Schaller, M., H. C. Korting, C. Borelli, G. Hamm, and B. Hube. 2003. Secreted aspartyl proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect. Immun. 71:2758–2765.

Schaller, M., H. C. Korting, W. Schafer, J. Bastert, W. Chen, and B. Hube. 1999. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol. Microbiol. 34:169–180.

Shpacovitch, V., M. Feld, N. W. Bunnett, and M. Steinhoff. 2007. Proteinase-activated receptors: novel PARtners in innate immunity. Trends Immunol. 28:541–550.

Sigurdardottir, T., V. Bjorck, H. Herwald, M. Morgen, S. Rutardottir, J. Tornebrant, and M. Bodelesson. 2010. M1 protein from Streptococcus pyogenes induces nitric oxide-mediated vascular hyporesponsiveness to phenyl-ephrine: involvement of Toll-like receptor activation. Shock 34:96–104.

Smolenski, G., P. A. Sullivan, S. M. Cutfield, and J. F. Cutfield. 1997. Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, Sap2, and Sap3 isoenzymes. Microbiology 143:349–356.

Staib, P., M. Kretschmar, T. Richterlein, H. Hof, and J. Morschhauser. 2000. Differential activation of a Candida albicans virulence gene family during infection. Proc. Natl. Acad. Sci. U. S. A. 97:6102–6107.

Staib, P., M. Kretschmar, T. Nathri, G. Kohler, S. Michel, H. Hof, J. Hacker, and J. Morschhauser. 1999. Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol. Microbiol. 32:533–546.

Stringaro, A., P. Crateri, G. Pellegrini, G. Arancia, A. Cassone, and F. De Bernardis. 1997. Ultrastructural localization of the secretory aspartyl proteinase in Candida albicans cell wall in vitro and in experimentally infected rat vagina. Mycopathologia 137:95–105.

Takahashi, A., P. Camacho, J. D. Lechleiter, and B. Herman. 1999. Measurement of intracellular calcium. Physiol. Rev. 79:1089–1123.

Taylor, B. N., P. Staib, A. Binder, A. Bisemenzie, M. Schal, M. Rollinghoff, J. Morschhauser, and K. Schroppel. 2005. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect. Immun. 73:1828–1835.

Verdú-Nuel, F. M., J. F. Meis, and A. Voss. 1999. Nosocomial fungal infections: candidemia. Diagn. Microbiol. Infect. Dis. 34:213–220.

Yang, Y. L. 2003. Virulence factors of Candida species. J. Microbiol. Immunol. Infect. 36:223–228.

Zhang, N., M. H. Absan, L. Zhu, L. C. Sambucetti, A. F. Puricho, and D. B. West. 2005. Regulation of IkappaBalpha expression involves both NF-kappaB and the MAP kinase signaling pathways. J. Inflamm. (London) 2:10.

Zhu, W., and S. G. Filler. 2010. Interactions of Candida albicans with epithelial cells. Cell. Microbiol. 12:273–282.