Particularly right-side acute subdural hemorrhage. Skull base CT revealed a ‘ring’ fracture around the foramen magnum that involved the clivus, both petrous temporal bones and the posterior part of the foramen magnum. There were no signs of atlanto-occipital dislocation, and the remainder of the cervical spine was intact (Fig. 1). The patient was immediately admitted to the neurological intensive care unit (NICU). There were no subsequent neurological changes, and brain death was suspected. In review of his medical history, he was healthy before the accident. On arrival to the NICU, the patient was in a coma, with a Glasgow coma scale score of 3, and showed fixed, nonreactive pupils 6 mm in diameter. There were no signs of brain stem activity, although his vital signs were stable. At 27 days after admission, magnetic resonance imaging revealed swelling of the brain stem and cerebellum combined with transtentorial and foraminal herniation (Fig. 2). These findings indicated the presence of pontomedullary laceration. The patient remained fully comatose for 34 days after injury and then died of pneumonia with sepsis.

DISCUSSION

Specific types of skull base fracture, including ring (complete or incomplete) and hinge fractures, can be accompanied by brain stem injury. Ring fractures that occur at the skull base involve separation of the rim of the foramen magnum from the rest of the skull, accompanied by the fracture of one petrous temporal bone. The most common cause of death from trauma at the scene is acute hemorrhagic shock. However, advances in emergency resuscitation and rescue teams have been credited with significantly improved outcomes among such patients. In particular, trauma victims who would have died due to sudden heart arrest at the scene are now brought to the hospital following resuscitation. Most of these patients present with major organ injuries and hypovolemic shock at the time of trauma. However, head trauma associated with sudden heart arrest is rare. Here, we report a case of ring fracture with pontomedullary laceration that led to sudden heart arrest.
bone to the other across the midline and then posteriorly around the foramen magnum through the occiput. These fractures cause traumatic brainstem injury, and the pontomedullary junction is the most frequently injured site. These lacerations may be either partial or complete and are associated with hinge or ring fractures or fracture of the cervical spine. The potential mechanisms responsible for ring fracture including the pushing of the spine against the skull base and an extraction force owing to hyperextension of the neck. However, mandible fractures reduce energy transfer to the temporomandibular joints and protect the skull base and the brain. In cases of chin impact, the presence of a mandible fracture reduces the incidence of the pontomedullar laceration by 2.3-fold compared to the absence of such a fracture. In addition, ring fractures can also be accompanied by cerebrospinal fluid rhinorrhea and/or otorrhea.

Hyperextension without neck joint dislocation can produce brain stem injuries such as pontomedullary avulsion. Unexpectedly, victims of ring fracture show neither neck joint dislocation nor basal skull fracture. In such cases, soft tissue injuries to the chin area and hemorrhage can be observed in the neck muscles, indicating hyperextension or hyperflexion of the neck. However, mandible fractures reduce energy transfer to the temporomandibular joints and protect the skull base and the brain. In cases of chin impact, the presence of a mandible fracture reduces the incidence of the pontomedullar laceration by 2.3-fold compared to the absence of such a fracture. In addition, ring fractures can also be accompanied by cerebrospinal fluid rhinorrhea and/or otorrhea.

Fig. 1. A and B: Skull base computed tomography, with bone windows, reveals a ring fracture involving the clivus, both petrous temporal bones and the posterior part of the foramen magnum. C: Skull base 3-D reconstruction computed tomography reveals no signs of atlanto-occipital dislocation, and the remainder of the cervical spine is intact.

Fig. 2. Brain magnetic resonance imaging, after 27 days of admission, shows swelling of the brain stem and cerebellum combined with transtentorial and foraminar herniation. There are also signal changes on the lower part of the pons and cerebellum, and pontomedullar continuity is not observed. M: midbrain, P: pons, Cbl: cerebellum, Sc: spinal cord.

Hyperextension without neck joint dislocation can produce brain stem injuries such as pontomedullary avulsion. Unexpectedly, victims of ring fracture show neither neck joint dislocation nor basal skull fracture. In such cases, soft tissue injuries to the chin area and hemorrhage can be observed in the neck muscles, indicating hyperextension or hyperflexion of the neck. However, mandible fractures reduce energy transfer to the temporomandibular joints and protect the skull base and the brain. In cases of chin impact, the presence of a mandible fracture reduces the incidence of the pontomedullar laceration by 2.3-fold compared to the absence of such a fracture. In addition, ring fractures can also be accompanied by cerebrospinal fluid rhinorrhea and/or otorrhea.

With improvements in emergency resuscitation and rescue team efforts, more ring fracture patients who would have died due to sudden heart arrest at the scene are brought to the hospital following resuscitation. Despite the presence of significant internal injuries, victims of immediate post-traumatic heart arrest may have surprisingly few external manifestations of trauma, although most of these patients suffered from combined injury at the time of trauma. Ring fractures associated with pontomedullar laceration are the primary reason for head trauma-related sudden heart arrest. Thus, primary emergency doctors must keep in mind that patients resuscitated immediately after trauma and showing cerebrospinal fluid rhinorrhea and/or otorrhea without combined injury may have suffered ring fracture and brain stem injury.

CONCLUSION

Ring fracture of the skull base is a commonly fatal injury detected in victims of head trauma. Ring fracture can cause pontomedullary laceration and give rise to sudden cardiac arrest at the time of fracture. As a result, this condition was previously unfamiliar to forensic doctors. However, with improvements in emergency care, more patients with ring fractures survive to reach the hospital, and the diagnosis of ring fracture has become the job of forensic doctors until recently.
neurosurgeons. Accurate diagnosis and medical information improve the early evaluation of ring fracture and pontomedullar laceration. Thus, for the greater number of patients who survive this type of injury, we should aim to provide an early diagnosis and precise medical information for patients and their families.

References
1. Byard RW, Langlois N, Gilbert JD: Positive "water test"-an external indicator of base of skull hinge-ring fracture. J Forensic Sci 55: 519-520, 2010
2. Carter DA, Mehelas TJ, Savolaine ER, Dougherty LS: Basal skull fracture with traumatic polycranial neuropathy and occluded left carotid artery: significance of fractures along the course of the carotid artery. J Trauma 44: 230-235, 1998
3. Gan YC, Charkravarty D, Flint G: Ring fracture of the skull base: case report and review of the literature. Br J Neurosurg 16: 300-303, 2002
4. Gunji H, Mizusawa I, Hiraiwa K: The mechanism underlying the occurrence of traumatic brainstem lesions in victims of traffic accidents. Leg Med (Tokyo) 4: 84-89, 2002
5. Kahl JE, Calvo RI, Sise MJ, Sise CB, Thorndike JE, Shackford SR: The changing nature of death on the trauma service. J Trauma Acute Care Surg 75: 195-201, 2013
6. Kondo T, Saito K, Nishigami I, Ohshima T: Fatal injuries of the brain stem and/or upper cervical spinal cord in traffic accidents: nine autopsy cases. Sci Justice 35: 197-201, 1995
7. Konrad CJ, Fieber TS, Schaefer PK, Gerber HR: Are fractures of the base of the skull influenced by the mass of the protective helmet? A retrospective study in fatally injured motorcyclists. J Trauma 41: 854-858, 1996
8. Ohshima T, Kondo T: Forensic pathological observations on fatal injuries to the brain stem and/or upper cervical spinal cord in traffic accidents. J Clin Forensic Med 5: 129-134, 1998
9. Pfeifer R, Tarkin IS, Rocov B, Pape HC: Patterns of mortality and causes of death in polytrauma patients—has anything changed? Injury 40: 907-911, 2009
10. Zachariaides N, Mezitis M, Mourouzis C, Papadakis D, Spanou A: Fractures of the mandibular condyle: a review of 466 cases. Literature review, reflections on treatment and proposals. J Craniomaxillofac Surg 34: 421-432, 2006
11. Zhu BL, Quan L, Ishida K, Taniguchi M, Oritani S, Fujita MQ, et al.: Longitudinal brainstem laceration associated with complex basilar skull fractures due to a fall: an autopsy case. Forensic Sci Int 126: 40-42, 2002
12. Zivković V, Nikolić S, Babić D, Juković F: The significance of pontomedullar laceration in car occupants following frontal collisions: a retrospective autopsy study. Forensic Sci Int 202: 13-16, 2010