Social, Clinical and Microbiological Differential Characteristics of Tuberculosis among Immigrants in Spain

José-María García-García1,2*, Rafael Blanquer1,3, Teresa Rodrigo1,4, Joan A. Caylà1,5, José A. Caminero1,6,7, Rafael Vidal1,8,9, Martí Casals1,10,11,12, Juan Ruiz-Manzano1,8,13, the Working Group on Completion of Tuberculosis Treatment in Spain1

Abstract

Background: To identify the differential tuberculosis (TB) characteristics within the immigrant population with respect to natives in Spain.

Methodology/Principal Findings: A prospective cohort study design was implemented to examine the TB cases diagnosed and starting standard antituberculous treatment in Spain, between January 1st 2006 and March 31st 2007. A logistic regression analysis was performed to determine differential characteristics. 1,490 patients were included in the study population, 1,048 natives and 442 (29.7%) immigrants. According to the multivariate analysis, the following variables were significantly associated with immigrant TB cases: younger age (OR = 3.79; CI:2.16–6.62), living in group situation (OR = 7.61; CI:3.38–12.12), lower frequency of disabled (OR:0.08; CI:0.02–0.26) and retired (OR:0.09–0.48) employment status, lower frequency of pulmonary disease presentation (OR = 0.47; CI:0.24–0.92), primary or emergency care admission (OR = 1.80; CI:1.05–3.06 and OR = 2.16; CI:1.36–3.45), drug resistance (OR = 1.86; CI:1.01–3.46), treatment default (OR:2.12; CI:1.18–3.81), respectively, more directly observed treatment (OR = 1.68; CI:1.04–2.69), and poor understanding of TB disease and its treatment (OR = 0.11; CI:1.86–5.20). The low percentage of primary MDR-TB in the native population (0.1% vs. 2.2% of immigrants) should be noted.

Conclusions/Significance: The differences show the need to introduce specific strategies in the management of TB within the immigrant population, including the improvement of social and work conditions.

Introduction

The World Health Organization (WHO) estimated a tuberculosis (TB) annual incidence of 9.4 million cases (139/100,000 inhabitants) in 2008, of which 57% of pulmonary cases were smear-positive, 15% were co-infected with HIV and 11% were cases of multi-drug resistant TB (MDR-TB), defined as resistance to at least isoniazid and rifampin [1].

The global TB prevalence has progressively decreased in high-income countries, however HIV co-infection, immigration from high TB burden countries for economic reasons, MDR-TB and overcrowding within poor communities of large cities have hindered further decline. The decrease in TB rates began to taper in many industrialized countries and TB rates in some even started to increase in the early 1990s. However, incidence among the native population continued to decrease, resulting in a higher proportion of foreign-born cases. This trend has been documented in European countries such as Denmark, Holland, Sweden, the United Kingdom and Switzerland, where foreign-born cases comprise more than half of TB cases, with incidences such as 100/100,000 among immigrants versus 15/100,000 among the native population [2].
MDR-TB is a growing problem worldwide [3]. In 2008, an estimated 390,000 to 510,000 cases of MDR-TB emerged globally. Among all global incident TB cases, 3.6% are believed to have MDR-TB. Almost 50% of MDR-TB cases worldwide are estimated to occur in China and India, and another 7% in Russia and the former Soviet countries [4]. Immigrants in Europe may be from these and other high MDR-TB burden countries. The prevalence of MDR-TB among new TB cases ranged from 0% in some countries to 22.5% [3,5]. In 2008, MDR-TB caused an estimated 150,000 deaths [4]. The global expenditure in the diagnosis and treatment of MDR-TB and extensively drug-resistant TB (XDR-TB), defined as MDR-TB plus resistance to fluoroquinolones and at least one second-line injectable drug, were estimated at 700 million US dollars (USD) for 2009 and the cost of treatment for a MDR-TB case is estimated at 10,000USD versus 100USD for a drug-susceptible TB case [6].

A study performed in Spain by the Integrated Investigation Programme in TB (PII TB) of the Spanish Respiratory and Thoracic Surgery Society (SEPAR) showed a considerable increase in foreign-born TB cases, reaching 30% of the total cases [7]. In Barcelona, a Spanish city which has experienced a constant influx of immigrants, the percentage of foreign-born cases increased from 5% to 50% between 1995 and 2008 [8].

The objective of this study was to determine the differential social, clinical and microbiological characteristics between native and immigrant cases for the implementation of stricter control measures during treatment follow-up to monitor treatment completion among this group of patients.

Methods
Participants and description of procedures
This multi-center prospective cohort study of TB cases was supported by 61 collaborators, mainly respiratory and infectious disease physicians, from 53 health centers in the different regions of Spain. The study population included a cohort of TB patients of 18 years of age or older diagnosed between January 1st 2006 and March 31st 2007, who started standard anti-TB treatment with rifampin and isoniazid during 6 months, and pyrazinamide with ethambutol (defined as four drugs) or without ethambutol (defined as three drugs) for the first two months. Patients with known previous drug resistance or those for whom standard anti-TB treatment was contraindicated were excluded. Study data included socio-demographic information (patients born outside of Spain were assumed to have moved mainly for economic reasons), smoking (including smokers of one or more cigarettes per day and ex-smokers), drug and alcohol habits (men consuming over 280 g of alcohol per week, and women over 168 g, were considered alcoholics). Users of intravenous heroin and/or cocaine were classified as intravenous drug users (IVDU), anthropometrics, clinical history, diagnostic methods, drug susceptibility testing and results, anti-TB treatment, clinical response, and treatment adherence and outcome. This information was collected using electronic case reports which were available to collaborating investigators on the SEPAR website. All cases were followed according to an evaluation schedule (Table 1).

Ethics Statement
In accordance with the International Directory for Ethical Revision of Epidemiological Studies (Council for the International Organizations of Medical Sciences - CIOMS, Geneva, 1991) and the Spanish Epidemiology Society recommendations on ethical aspects of epidemiological research, this study was submitted to the Teknon Medical Center Investigation Ethical Committee in Barcelona for evaluation. Verbal informed consent was obtained for patient participation. All registries with patient identification information were handled in a confidential manner and in accordance with the Spanish Law 15/1999 on the Protection of Personal Character Data.

Statistical methods
A descriptive study was carried out on qualitative and quantitative variables to characterize the study population. Quantitative data are shown as medians and interquartile ranges and qualitative data as a percentage. Proportions were compared between groups using χ² tests, and when pertinent, the two-sided Fisher test. The Mann-Whitney U test was used to compare the values of diagnostic delay. Association was determined by odds ratio (OR) and their 95% confidence intervals (CI). The association of TB characteristics with the native or immigrant populations was

Table 1. Patient evaluation calendar.
Visit 1
Diagnosis
Inclusion/Exclusion criteria
Socio-demographic data
Smoking/alcohol habits
Anthropometrics
Clinical history
Diagnostic methods
Drug treatment
Clinical response
Treatment adherence
Sputum sample collection
Drug susceptibility testing
Treatment outcome

*If treatment is continued for more than 6 months.
doi:10.1371/journal.pone.0016272.t001
analyzed by a stepwise logistic regression including the factors associated on a bivariate level. The test of Hosmer and Lemeshow was used to check the goodness-of-fit of the model. A p-value of \(<0.05\) was considered significant. All of the analyses were completed using SPSS Statistical Package, version 13.0 (SPSS Inc, Chicago, IL, USA).

Results

Of the 1,500 patients enrolled during the study period, 10 were excluded because they did not satisfy inclusion criteria and the final total of analyzed cases was 1,490. Four hundred forty-two (29.7%) were immigrants from 48 countries; the largest proportions were from Romania (13.9%), Bolivia (13.5%), Morocco (11.5%), Pakistan (9.5%), Ecuador (7.5%), Senegal (4.6%), Colombia (4.4%), and Peru (4.4%).

In a bivariate analysis, the following TB characteristics were significantly associated with immigrant TB cases: lower frequency of disabled and retired employment status, pulmonary disease presentation, alcohol consumption, smokers. However the following characteristics were higher among immigrants: aged between 18–30 or 31–50 years, unemployment, living in group situation, primary care or emergency care admission (instead of specialized care), treatment with 4 drugs, drug resistance, treatment default, directly observed treatment (DOT) implementation, and poor understanding of TB disease and its treatment according to the perception of the doctor in charge of the patient. There were no statistically significant differences in sex, previous TB treatment, injection drug use (IDU), diagnostic tests performed, HIV infection, or diagnostic delay (Table 2).

According to the multivariate analysis, the following variables were significantly associated with immigrant TB cases compared to native cases: lower frequency of disabled and retired employment status, alcohol and cigarette consumption, pulmonary disease presentation, and higher frequency of age between 18–30 or 31–50 years, a group living situation, primary or emergency care admission, drug resistance, treatment default, DOT and poor understanding of TB disease and its treatment (Table 3). The highest odds ratios were calculated for living in group situation, aged between 18–30 years or 31–50 years, a group living situation, primary or emergency care admission, drug resistance, treatment default, DOT and poor understanding of TB disease and its treatment (Table 3). The highest odds ratios were calculated for living in group situation, aged between 18–30 years or 31–50 years, and for poor understanding of TB disease and its treatment. A higher rate of successful treatment outcome using standard treatment was found within the native population than among immigrants (91.9% of natives and 83.5% of immigrants) (Table 4). Similarly, treatment default was higher within the immigrant population.

Drug susceptibility was analyzed in 1,046 patients (70.2%), of whom 745 were natives and 301 were immigrants. Of the 959 patients who had never previously received TB treatment, 682 were natives and 277 were immigrants. The low percentage of primary MDR-TB in the native population (0.1% vs 2.2% of immigrants) and the absence of mono-resistance to rifampin in both groups of patients should be noted. Differences between global percentages of drug resistance (18.3% of immigrants vs. 7.9% of native cases) and primary drug resistance (16.6% vs. 6.6%, respectively) were statistically significant (p<0.001 for both), as well as for rates of MDR TB (Table 5). Drug susceptibility testing to fluoroquinolones and second-line injectable drugs was not performed routinely; so it was performed in few patients of our study population. Six patients presented criteria for XDR-TB, 2 among native cases and 4 among immigrant cases.

Discussion

This multi-center study of TB diagnosed patients who started standard anti-TB treatment resulted in a considerable percentage of the foreign-born cases (29.7%) and demonstrated that particular characteristic differences, personal, social as well as concerning treatment follow-up and drug resistance, exist when compared to native TB cases.

With respect to TB characteristics among the immigrant and native populations, two recent publications did not find significant differences of TB clinical presentation or risk factors, including HIV co-infection [9,10]. The studies also showed that undocumented immigrants have a larger diagnostic delay and present more severe symptoms and advanced disease, even when no statistically significant differences existed between the native and undocumented immigrant populations. According to the authors, all recently arriving immigrants should be screened, despite absence of symptoms [9,10]. Study results from Spain are somewhat heterogeneous and most discuss immigrant TB case characteristics only. Some mention higher prevalence of HIV co-infection [11,12] or higher latent TB infection rates [13], while others vary in the predominant clinical forms of TB [11,12,14], rates of drug resistance [13], or the proportion of lost to follow-up cases [15].

A significant difference in age existed in our study between immigrant cases, who were mainly under 50 years old, and native cases, who were predominantly older. These results are consistent with local and international publications [11,16,17] and parallel the demographic characteristics of the total immigrant population. Given the recent influx of immigrants to Spain and the young age of those who migrate most of them for economical reasons, this age difference between immigrant and native TB cases is logical. A group living situation was also more frequent among immigrants than the foreign-born population, even though successful treatment completion was higher for foreigners than native-born patients, even though successful treatment completion was higher for foreigners than native-born patients, even though successful treatment completion was higher for foreigners than native-born patients; although the health system in Spain is universal, this type of service is more accessible than a specialist clinic (where an appointment is necessary) to persons with frequent address changes or an undocumented legal status, both common characteristics in the foreign-born population. A similar result was observed in a study carried out in Madrid [11]. Immigrant TB cases also had lower average cigarette and alcohol consumption than their native counterparts, as shown in Switzerland as well [9]. We think that social and religious customs, as well as poor economical status within the immigrant population, could have contributed to their low consumption. Immigrant TB cases also had more difficulty understanding TB disease and treatment, most likely for language, social, and economical reasons. TB Programs should be adapted to migration changes [18]. The use of community health workers, who play the role of translators and culture mediators, has been demonstrated as useful to minimize this problem [19].

Regarding treatment follow-up and final outcome, the native population has a higher proportion of successful treatment completion (cured patients plus those who complete treatment) than the foreign-born population, even though successful treatment completion was high in both groups (91.9% of natives and 83.5% of immigrants) but in this group is lower than the recommendation of more than 85%). Treatment default was also more frequent among the immigrant population, though it was not considered high (8.4%). Given these findings [13,20], control measures, such as the use of DOT [13,21], more exhaustive clinical follow-up with more visits, better communication between healthcare professionals in different regions to locate transfer-out and lost to follow-up patients, and continued efforts to integrate and assimilate this population should be reinforced.

Drug susceptibility data was available in 70.2% of the study population because only some collaborating centers could
VARIABLES	Native N (%)	Immigrant N (%)	p value OR 95% CI	
SEX	Male 663 (64.7)	257 (60.2)	0.015 0.82 0.65 – 1.04	
Female 362 (35.3)	170 (39.8)	1		
AGE (YEARS)	285 (27.2)	212 (48.0)	<0.001 9.43 6.21 – 14.33	
31–50	395 (37.7)	201 (45.5)	<0.001 6.45 4.26 – 9.7	
>50	368 (35.1)	29 (6.6)	1	
EMPLOYMENT	Employed 591(56.4)	310 (70.1)	<0.001 9.43 6.21 – 14.33	
Disabled†	64 (6.1)	4 (0.9)	0.058 1.31 0.99 – 1.75	
Unemployed	152 (14.5)	105 (23.8)	<0.001 6.45 4.26 – 9.7	
Retired	210 (20.0)	10 (2.3)	<0.001 6.45 4.26 – 9.7	
Unknown	31 (3.0)	13 (2.9)	1	
LIVING SITUATION	Alone 128 (12.2)	29 (6.7)	0.003 0.35 0.18 – 0.70	
Homeless or incarcerated	33 (3.1)	21 (4.8)	1	
Group§	36 (3.4)	153 (34.6)	<0.001 6.45 4.26 – 9.7	
Family	835 (79.7)	227 (51.4)	<0.001 6.45 4.26 – 9.7	
Unknown	16 (1.5)	12 (2.7)	0.728 1.17 0.46 – 2.97	
CLINICAL CENTER	Primary care 185 (17.7)	83 (18.8)	0.001 2.09 1.35 – 3.25	
Emergency care	445 (42.5)	237 (53.6)	<0.001 2.49 1.68 – 3.67	
Unknown	245 (23.4)	85 (19.2)	0.028 1.62 1.05 – 2.49	
Specialist	173 (16.5)	37 (8.4)	1	
PREVIOUS TREATMENT	No 929 (88.6)	391 (88.5)	0.971 0.99 0.67 – 1.47	
Yes 92 (8.8)	39 (8.8)	0.905 1 0.48 – 2.27		
Unknown	27 (2.6)	12 (2.7)	1.04	
IDU§	No 616 (58.8)	256 (57.9)	0.582 1.33 0.48 – 3.66	
Unknown	416 (39.7)	181 (41.0)	0.524 1.39 0.502 – 3.85	
Yes 16 (1.5)	5 (1.1)	1		
DIAGNOSTIC METHODS	Smear (+) 611 (58.3)	265 (60.0)	0.631 0.885 0.53 – 1.45	
Smear (−)/Culture. (+)	258 (24.6)	76 (17.2)	0.066 0.601 0.34 – 1.03	
Smear (−)/Culture (−)	128 (12.2)	76 (17.2)	0.500 1.21 0.69 – 2.11	
Others	51 (4.9)	25 (5.7)	1	
SITE OF TUBERCULOSIS	Extra-pulmonary 99 (9.4)	60 (13.6)	0.718 0.89 0.50 – 1.61	
Mixed	40 (3.8)	27 (6.1)	1	
Pulmonary	899 (85.8)	350 (79.2)	0.003 0.57 0.34 – 0.95	
Unknown	10 (1.0)	2 (1.1)	0.618 0.74 0.22 – 2.40	
TREATMENT	3 Drugs 698 (66.6)	72 (16.3)	1	
4 Drugs	316 (30.2)	333 (75.3)	<0.001 10.21 7.66 – 13.61	
Unknown	34 (3.2)	37 (8.4)	<0.001 10.55 6.24 – 17.83	
DRUG SUSCEPTIBILITY	Susceptible 801(76.4)	318 (71.9)	0.007 1.95 1.20 – 3.17	
Resistant§	40 (3.8)	31 (7.0)	0.382 1.13 0.85 – 1.49	
Unknown	207 (19.8)	93 (21.0)	1	
TREATMENT DEFAULT	No 963 (91.9)	369 (83.5)	<0.001 3.24 2.11 – 4.98	
Yes 41 (3.9)	51 (11.5)	0.321 1.30 0.77 – 2.20		
Unknown	44 (4.2)	22 (5.0)	1	
ALCOHOL CONSUMPTION	No 694 (66.2)	370 (83.7)	<0.001 2.91 2.14 – 3.96	
Yes 317 (30.2)	58 (13.1)	1		
Unknown	37 (3.5)	14 (3.2)	1	
SMOKING§	No 406 (38.7)	270 (61.1)	<0.001 2.50 1.99 – 3.15	
Yes 630 (60.1)	167 (37.8)	0.402 1 0.54 – 4.52		
Unknown	12 (1.1)	5 (1.1)	1.57	
HIV INFECTION	No 717 (68.4)	343 (77.6)	0.547 1.18 0.68 – 2.04	
Yes 47 (4.5)	19 (4.3)	0.228 1 0.38 – 1.25		
Unknown	284 (27.1)	80 (18.1)	0.69	
DOT§	No 956 (91.2)	382 (86.4)	<0.001 1.63 1.15 – 2.30	
Yes 92 (8.8)	60 (13.6)	1		
COMPREHENSION§	Well 928 (88.5)	338 (76.5)	1	
Difficult	74 (7.1)	65 (14.7)	<0.001 2.41 1.69 – 3.44	
Unknown	46 (4.4)	39 (8.8)	<0.001 2.32 1.49 – 3.63	
DIAGNOSTIC DELAY§	Days: median (IQR)	48 (24–92)	42 (21–91)	0.074

1Disabled: lacking one or more of the physical or mental abilities that most people have.
2Group living or living in a group: People of different families who live together in the same flat.
3IDIU: Intravenous Drug Use.
4Resistant at least to one drug.
5In relation to tobacco: no (never smokers), yes (current or ex-smokers).
6DOT: Directly observed treatment.
systematically perform drug susceptibility testing for all new patients. However, the 1,046 patients with drug susceptibility testing results available for first-line drugs available is large sample, especially those 959 (682 natives and 277 immigrants) never receiving anti-TB drugs in the past (defined as primary drug resistance in this study). The inclusion criteria (only patients receiving anti-TB drugs in the past (defined as primary drug resistance because all new cases were included in the study. Our results also reveal low primary MDR-TB resistance (0.1%) in natives, as shown with other previous studies published in Spain [13,22,23]. The primary MDR-TB rate is one of the lowest of the world [4–6]. Free healthcare assistance offered by the Spanish Health System and the widespread use of fixed-dose combinations for more than 30 years could have contributed to the low rate of drug resistance in Spain.

The percentage of any drug resistance (primary or acquired), including MDR-TB, was higher among immigrants. This

VARIABLES	Native N (%)	Immigrant N (%)	p value	OR	95% CI
AGE (YEARS)					
18–30	285 (27.2)	212 (48.0)	<0.001	3.79	2.16–6.62
31–50	395 (37.7)	201 (45.5)	<0.001	3.53	2.03–6.14
>50	368 (35.1)	29 (6.6)			
EMPLOYMENT					
Employed	591 (56.4)	310 (70.1)			
Disabled	64 (6.1)	4 (0.9)	<0.001	0.08	0.02–0.26
Unemployed	152 (14.5)	105 (23.8)	0.683	1.07	0.74–1.55
Retired	210 (20.0)	10 (2.3)	<0.001	0.21	0.09–0.48
Unknown	31 (3.0)	13 (2.9)	0.358	0.69	0.32–1.50
LIVING SITUATION					
Alone	128 (12.2)	29 (6.7)	0.324	0.65	0.28–1.51
Homeless or incarcerated	33 (3.1)	21 (4.8)			
Group	36 (3.4)	153 (34.6)	<0.001	7.61	3.38–12.12
Family	835 (79.7)	227 (51.4)	0.223	0.63	0.30–1.32
Unknown	16 (1.5)	12 (2.7)	0.139	2.42	0.75–7.81
CLINICAL CENTER					
Primary care	185 (17.7)	83 (18.8)	0.030	1.80	1.05–3.06
Emergency care	445 (42.5)	237 (53.6)	0.001	2.16	1.36–3.45
Unknown	245 (23.4)	85 (19.2)	0.126	1.50	0.89–2.54
Specialist	173 (16.5)	37 (8.4)			
SITE OF TUBERCULOSIS					
Extra-pulmonary	99 (9.4)	60 (13.6)	0.700	0.86	0.39–1.85
Mixed	40 (3.8)	27 (6.1)			
Pulmonary	899 (85.8)	350 (79.2)	0.027	0.47	0.24–0.92
Unknown	10 (1.0)	5 (1.1)	0.108	0.26	0.05–1.33
DRUG SUSCEPTIBILITY					
Susceptible	801 (76.4)	318 (71.9)			
Resistant	40 (3.8)	31 (7.0)			
Unknown	207 (19.8)	93 (21.0)	0.047	1.86	1.01–3.46
TREATMENT DEFAULT					
No	963 (91.9)	369 (83.5)			
Yes	41 (3.9)	51 (11.5)			
Unknown	44 (4.2)	22 (5.0)	0.012	2.12	1.18–3.81
ALCOHOL CONSUMPTION					
No	694 (66.2)	370 (83.7)	<0.001	2.10	1.42–3.11
Yes	317 (30.2)	58 (13.1)	0.070	1	0.93–5.18
Unknown	37 (3.5)	14 (3.2)			
SMOKING					
No	406 (38.7)	270 (61.1)	<0.001	2.85	2.10–3.87
Yes	630 (60.1)	167 (37.8)	0.370	1	0.49–6.47
Unknown	12 (1.1)	5 (1.1)	1.79		
DOT					
No	956 (91.2)	382 (86.4)			
Yes	92 (8.8)	60 (13.6)	0.031	1.68	1.04–2.69
COMPRE-HENSION					
Well	928 (88.5)	338 (76.5)			
Difficult	74 (7.1)	65 (14.7)	<0.001	3.11	1.86–5.20
Unknown	46 (4.4)	39 (8.8)	0.111	1.70	0.88–3.28

1Including ex smokers.
2Cohort of 1,490 patients. Multivariate analysis.
3Diagnostic Delay: Median number of days between symptom onset and treatment initiation.
4Comprehension or understanding of TB: understanding of disease and its treatment according the perception of the doctor in charge of the patient.
5Tuberculosis characteristics in native and immigrants of Spain.

Table 3. Tuberculosis characteristics in native and immigrants of Spain.
difference was statistically significant for all the groups (global and primary, total, for rifampin, isoniazid and MDR-TB) except for the acquired resistance, most likely because of the previously mentioned bias. Differing patterns of primary resistance and that of isoniazid have also been documented in other studies [13,16]. We also found a significant difference between the two populations regarding MDR-TB prevalence, despite the low number of cases in our population, as documented in other studies [16,17]. Initial treatment using a four-drug regimen was most likely prescribed for immigrant cases because of a consensus recommendation [21] and our results support its continuation. Nonetheless, the difference in treatment prescription between immigrant and native cases will probably decrease because Spanish [24] and international TB treatment guidelines [25] now recommend that all cases should be initially treated with four drugs. The implementation of a prospective study examining primary and acquired drug resistance patterns is also necessary.

This study also provides two other interesting findings. The first is the absence of mono-resistance to rifampin in Spain, where all the strains with rifampin resistance were also resistant to at least isoniazid (MDR-TB). This strongly supports the use of rifampin resistance as a marker of MDR-TB [5]. Secondly, this study shows that XDR-TB cases do exist in Spain among both immigrant and native populations, despite the very low MDR-TB rate. Thus, drug susceptibility testing to fluoroquinolones and second-line injectable drugs should be performed systematically to all MDR-TB patients.

In this study we can also deduce that social determinants of health influence the epidemiological situation of TB among immigrants. In order to achieve a situation of equity, in these populations in Spain and in other countries with a high number of immigrants due mainly to economic reasons, several public health interventions are needed (favour their access to health system, directly observed therapy in some cases, TB programs with community health workers, etc) [21].

In conclusion, we have found that a considerable proportion of TB cases in Spain are immigrants and that significant differences exist between immigrant and native cases. We therefore reiterate that work and social conditions must be improved for the foreign community, as well as the availability of social workers and community health workers who address comprehension issues. Similarly, more exhaustive treatment follow-up efforts must be made, including the use of DOT, additional clinical visits, and more communication between healthcare professionals. Finally, standard TB treatment should start with a four-drug regimen and primary drug susceptibility testing should be performed systematically to optimize treatment, stop further transmission, and above all, prevent the emergence of drug resistances.

Table 4. Treatment outcome distribution among native and immigrant tuberculosis cases*.

TREATMENT OUTCOME	N NATIVE (%)	N IMMIGRANT (%)	N TOTAL (%)
Cured	583 (55.6)	209 (47.3)	792 (53.2)
Completed treatment	380 (36.3)	160 (36.2)	540 (36.2)
Incomplete	1 (0.1)	1 (0.2)	2 (0.1)
Transfer out	16 (1.5)	17 (3.8)	33 (2.2)
Default	13 (1.2)	14 (3.2)	27 (1.8)
Died	23 (2.3)	4 (0.9)	27 (1.8)
Lost to follow-up	28 (2.7)	37 (8.4)	65 (4.4)
Other	4 (0.4)	0 (0.0)	4 (0.3)
TOTAL	1048 (100.0)	442 (100.0)	1490 (100.0)

*Successful treatment outcome is the sum of cured cases plus case of completed treatment.

doi:10.1371/journal.pone.0016272.t004

Table 5. Distribution of drug resistance among native and immigrant tuberculosis patients with drug susceptibility testing performed.

RESISTANCE	N NATIVE N/total (%)	N IMMIGRANT N/total (%)	p value	OR	95% CI
Global					
Total	59/745 (7.9)	55/301 (18.3)	<0.001	2.60	1.72–3.93
Isoniazid	27/745 (3.6)	26/301 (8.6)	<0.001	2.5	1.39–4.54
Rifampin	2/745 (0.3)	8/301 (2.7)	<0.001	10.14	1.99–69.50
Pyrazinamide	6/745 (0.8)	4/301 (1.3)	0.817	10.14	1.99–69.50
Ethambutol	5/745 (0.7)	3/301 (1.0)	0.871		
Streptomycin	19/745 (2.6)	14/301 (4.7)	0.162		
MDR-TB	2/745 (0.3)	8/301 (2.7%)	0.001		
Primary					
Total	45/682 (6.6)	46/277 (16.6)	<0.001	2.82	1.7–4.47
Isoniazid	22/682 (3.2)	23/277 (8.3)	<0.001	2.72	1.43–5.16
Rifampin	1/682 (0.1)	6/277 (2.2)	0.002	15.08	1.80–33.87
Pyrazinamide	5/682 (0.7)	2/277 (0.7)	0.99	15.08	1.80–33.87
Ethambutol	4/682 (0.6)	3/277 (1.1)	0.689		
Streptomycin	13/682 (1.9)	12/277 (4.3)	0.05		
MDR-TB	1/682 (0.1)	6/277 (2.2)	0.002		
Acquired					
Total	14/63 (22.2)	9/24 (37.5)	0.24		
Isoniazid	5/63 (7.9)	3/24 (12.5)	0.80		
Rifampin	1/63 (1.6)	2/24(3.8)	0.37		
Pyrazinamide	1/63 (1.6)	2/24 (8.3)	0.37		
Ethambutol	1/63 (1.5)	0/24(0.0)	1		
Streptomycin	6/63 (9.5)	2/24 (8.3)	0.37		
MDR-TB	1/63 (1.6)	2/24 (8.3)	0.37		

MDR: Drug resistance to at least isoniazid (H) and rifampin (R).
doi:10.1371/journal.pone.0016272.t005

Tuberculosis among Immigrants in Spain
Acknowledgments

Working Group on Completion of Tuberculosis Treatment in Spain:

R. Aguero (H Marqués de Valdecilla, Santander); J.L. Alcázar (Instituto Nacional de Silicosis, Oviedo); L. Alubbe (H Galádaxoa, Galadaxao); F. Álvarez-Navasecues (H San Agustín, Avilés, Asturias); L. Anibarro (Unidad de Tuberculosis de Pontevedra, Vigo); M. Barrón (H San Millán-San Pedro, Logroño); S. Benoliel (H 12 de Octubre, Madrid); L. Borderías (H San Juan, Huesca); A. Bustamante (H Sierallarona, Torrelavega); J.L. Calpé (H La Marina Baixa, Villajoyosa); E. Cases (H Universitario La Fe, Valencia); R. Castrodeza (H El Bierzo Ponferrada-León, Ponferrada); M.L. De Souza (Unidad Previsión y Control Tuberculosis, Barcelona); J.D. Díaz (Complejo Hospitalario Juana Canalejo, La Coruña); B. Fernández (H de Navarra, Pamplona); A. Fernández (H Río Carrion, Galicia); C. García (H Universitario de Guadalajara, Guadalajara); M. Gallego (Corporación Sanitaria Parc Taulí, Sabadell); C. García (H General Isla Fuerteventura, Puerto del Rosario); J.J. Calpe (Hospital de Cruces, Valencia); R. Castrodeza (H El Bierzo Ponferrada-León, Ponferrada); J.A. Munoz-Calero (H Universitario Central, Oviedo); I. Parra (H Universitario de Vigo, La Arrixaca, El Palmar); T. Pascual (H de Cabueñes, Gijón); A. Penal (Complejo Hospitalario Xeral-Caide, La Coruña); J.A. Pérez (H Arnau de Vilanova, Valencia); P. Rivas (H Virgen Blanca, León); J. Sala (H Universitario Joan XXIII, Tarragona); M. Sánchez (Unidad Tuberculosis Distrito Poniente, Almería); P. Sánchez (H del Mar, Barcelona); E. Trujillo (Complejo Hospitalario de Ávila, Ávila); E. Valencia (H Carlos III, Madrid); A. Vargas (H Universitario Puerto Real, Cádiz); I. Vilad (Complejo Hospitalario Juan Canalejo, La Coruña); M. Vezcaza (Complejo Hospitalario Universitario de Albacete, Albacete); M. Zabaleta (H de Laredo, Laredo); G. Zubillaga (H Donostia-San Sebastián, San Sebastián).

Author Contributions

Conceived and designed the experiments: JMG-G RB TR JC RV JR-M. Performed the experiments: JMG-G RB TR JAC JC JR-M. Analyzed the data: TR MC J-MG-G JAC. Contributed reagents/materials/analysis tools: MC. Wrote the paper: J-MG-G RB TR JC MC. Collected the cases and reviewed the paper: WGCTTS.

References

1. WHO Report (2008) Global Tuberculosis Control 2008. Surveillance, planning, financing. World Health Organization. WHO/HTM/TB/2008.369.
2. Mahet D, Raviglione M (2005) Global epidemiology of tuberculosis. Clin Chest Med 26: 157–62.
3. Wright A, Zignol M, Van Deun A, Falzon D, Ruesch Gerdes S, et al. (2009) Tuberculosis in immigrants: differences in the epidemiology of drug-resistant tuberculosis infection among persons with pulmonary tuberculosis. Arch Bronconeumol; 45: 382–90.
4. World Health Organization (2010) Multidrug-resistant tuberculosis. Technical report. WHO/HTM/TB/2010.3.
5. World Health Organization (2010) Tuberculosis: epidemiology, risk factors and case finding. Int J Tuberc Lung Dis 14: 382–90.
6. World Health Organization (2009) Global Tuberculosis Control and Patient Care. A Ministerial meeting of High M/XDR-TB burden countries. Beijing, China 1–5 April 2009.
7. Cayla JA, Rodrigo T, Ruiz-Manzano J, Caminero JA, Vidal R, et al. (2009) Tuberculosis treatment adherence and fatality in Spain. Respiratory Research. In: www.plosmedicine.org. 4: 1230–48.
8. French CE, Antoine D, Gelbl D, Jones JA, Gilbert RL, et al. (2007) Tuberculosis in non-UK-born persons, England and Wales, 2001–2003. Int J Tuberc Lung Dis; 11: 577–584.
9. Vinh K, Benoit SR, Winston CA, Mac Kenzie WR (2008) Tuberculosis among foreign-born persons in the United States. JAMA 300: 405–412.
10. Van der Eerden J, Sánchez F, Patella H, García de Olaya P, Junas JM, et al. (2002) Tuberculosis importada: una enfermedad emergente en países industrializados. Med Clin (Barc); 118: 376–8.
11. Cayla JA, Orcau A (2003) Estudio de contactos en el siglo XXI: se precisan modelos de análisis. Enf Inf Microbiol Clín 2004; 22(6): 315–318.
12. World Health Organization (2010) Treatment of tuberculosis: guidelines for national programmes. Fourth edition. World Health Organization Document WHO/HTM/TB/2009.420 pp 1–147.