Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.202110674

High-Voltage Aqueous Mg-Ion Batteries Enabled by Solvation Structure Reorganization

Qiang Fu,* Xiaoyu Wu, Xianlin Luo, Sylvio Indris, Angelina Sarapulova, Marina Bauer, Zhengqi Wang, Michael Knapp, Helmut Ehrenberg, Yingjin Wei,* and Sonia Dsoke
Supporting Information

High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization

Qiang Fu*, Xiaoyu Wu, Xianlin Luo, Sylvio Indris, Angelina Sarapulova, Marina Bauer, Zhengqi Wang, Michael Knapp, Helmut Ehrenberg, Yingjin Wei*, Sonia Dsoke

Figure S1. Ionic conductivity (κ) and viscosity (η) of a series of designed aqueous Mg-ion electrolytes (AMEs). Ionic conductivity (a), viscosity (b), and log (η⁻¹) vs log(κ) plot (c) of 0.8 m Mg(TFSI)₂-xPEG-(1-x)H₂O, where all measurements were done at room temperature and 25°C, respectively, x=0, 75%, 80%, 85%, 90%, and 95%. When x=0, it has a high ionic conductivity of 37.75 mS cm⁻¹ and the lowest viscosity of 2 × 10⁻³ Pa s. Pure PEG solvent has viscosity of ~0.110 Pa s. Note it took around 2 days to completely dissolve Mg(TFSI)₂ into the 95%PEG solvent due to the relatively low solubility of Mg(TFSI)₂ and the strong viscosity of the electrolyte.
Figure S2. Flammability evaluation. (a) A burning cotton swab was soaked in the commercial LP30 (1 M LiPF$_6$ in ethylene carbonate:dimethyl carbonate in a ratio of 1:1, w/w) (snapshot of Video S1) and 0.8 m Mg(TFSI)$_2$-85%PEG-15%H$_2$O (snapshot of Video S2), where LP30 was fired immediately, while the fire of cotton swab was extinguished in 0.8 m Mg(TFSI)$_2$-85%PEG-15%H$_2$O. (b) Flammability testing of glass fiber immersed in LP30 (snapshot of Video S3) and 0.8 m Mg(TFSI)$_2$-85%PEG-15%H$_2$O (snapshot of Video S4).

Figure S3. Electrochemical stability window of AMEs 0.8 m Mg(TFSI)$_2$-85%PEG-15%H$_2$O on GC and SS between −2.5 V and 2.0 V vs AgCl/Ag at 0.5 mV s$^{-1}$. These potential limits correspond to 0.08 V and 3.78 V vs Mg$^{2+}$/Mg shifted by 2.58 V against the values for the used AgCl/Ag reference.
Figure S4. Illustration of the evolution of the total energy and root-mean-square deviation (RMSD) of Mg in the 0.8 m Mg(TFSI)$_2$-H$_2$O (a, b) and 0.8 m Mg(TFSI)$_2$-85%PEG-15%H$_2$O (c, d) system during MD simulation at 300 K. The radial distribution function (RDF) g(r) (solid lines) and corresponding integrated coordination numbers (ICN) n(r) (dashed lines) (e) of Mg$^{2+}$-TFSI' in both 0.8 m Mg(TFSI)$_2$-H$_2$O and 0.8 m Mg(TFSI)$_2$-85%PEG-15%H$_2$O.

The g(r) profile of Mg$^{2+}$-TFSI' in 0.8 m Mg(TFSI)$_2$-H$_2$O electrolyte shows a first peak at around 0.43 nm, whereas it displays one first peak at around 0.21 nm with the ICN of 0.73 in 0.8 m Mg(TFSI)$_2$-85%PEG-15%H$_2$O (Figure S4e), where TFSI' is much closer to Mg$^{2+}$ than that in 0.8 m Mg(TFSI)$_2$-H$_2$O electrolyte and belongs to the first solvation shell of Mg$^{2+}$, demonstrating the “quasi-water-in-salt” property of 0.8 m Mg(TFSI)$_2$-85%PEG-15%H$_2$O electrolyte.
Figure S5. Structure and morphology study of V$_2$O$_5$ nanowires (Mo K$_\alpha_1$ radiation, $\lambda=0.70932$ Å). (a) Rietveld refinement based on X-ray diffraction data and (b) SEM image of pristine V$_2$O$_5$ nanowires.

Figure S6. Cyclic voltammetry (CV) in 0.8 m Mg(TFSI)$_2$-100%H$_2$O at a scan rate of 0.05 mV s$^{-1}$ in the potential range of 1.88-3.33 V vs Mg$^{2+}$/Mg (-0.75, 0.75 V vs AgCl/Ag).

Figure S7. Charge–discharge curves (a) and cycling performance (b) of V$_2$O$_5$ in 0.8 m Mg(TFSI)$_2$-100%H$_2$O at 50 mA g$^{-1}$ in 0.8 m Mg(TFSI)$_2$-100%H$_2$O in the potential range of 1.88-3.33 V vs Mg$^{2+}$/Mg.
Figure S8. Rietveld refinement based on X-ray diffraction data of V$_2$O$_5$ nanowires at 2.15 V, about 50% of depth of discharge (a), where an additional small reflection at 16.7° might be related to MgO and the other one at 21.06° cannot be indexed on any known phase. Le Bail fitting based on synchrotron diffraction data of V$_2$O$_5$ at 1.58 V, 100% of depth of discharge (b), and at 2.76 V, about 50% of depth of charge (c).
Electrolyte	Ionic conductivity (mS cm\(^{-1}\))	Viscosity (Pa s)		
1 0.8 m Mg(TFSI)\(_2\)-100%H\(_2\)O	37.75	2 × 10\(^{-3}\)		
2 0.8 m Mg(TFSI)\(_2\)-75%PEG-25%H\(_2\)O	0.634	0.289(17)		
3 0.8 m Mg(TFSI)\(_2\)-80%PEG-20%H\(_2\)O	0.346	0.516(20)		
4 0.8 m Mg(TFSI)\(_2\)-85%PEG-15%H\(_2\)O	0.183	0.951(30)		
5 0.8 m Mg(TFSI)\(_2\)-90%PEG-10%H\(_2\)O	0.093	1.995(67)		
6 0.8 m Mg(TFSI)\(_2\)-95%PEG-5%H\(_2\)O	0.043	4.752(38)		
Electrolyte	Battery-type	Ionic conductivity (mS cm\(^{-1}\))	Year	Reference
---	--------------	--------------------------------------	------	-----------
“Water-in-Salt” 21 m LiTFSI	LIBs	8.21 (25 °C)	2015	[1]
“Water-in-Bisalt” 21 m LiTFSI-7 m LiOTf	LIBs	6.5 (25 °C)	2016	[2]
“Hydrate Melt” Li(TFSI)\(_{0.7}\)(BETI)\(_{0.3}\)2H\(_2\)O	LIBs	3.0 (30 °C)	2016	[3]
(19.4 m LiTFSI-8.3 m LiBETI)	LIBs	5.0 (30 °C)	2018	[4]
“Hybrid Aqueous/Nonaqueous” 21 m LiTFSI in H\(_2\)O-9.25 m LiTFSI in DMC\(\text{wt\%}=1:1\)	LIBs	0.1 (30 °C)	2019	[5]
“Monohydrate Melt” Li(PTFSI)\(_{0.6}\)(TFSI)\(_{0.4}\)1H\(_2\)O	MIBs	several	2000	[8]
(22.2 m LiTFSI-33.3 m LiPTFSI) Li(TFSI)\(_{0.3}\)(MM3411)\(_{0.2}\)-1.4H\(_2\)O	MIBs	0.33 (25 °C)	2019	[6]
31.4 m LiTFSI-7.9 m LiMM3411	MIBs	0.5 (25 °C)	2014	[7]
0.5 M Mg[TFSI]\(_2\) in a glyme/diglyme mixture	MIBs	5.2 (25 °C)	2017	[9]
Mg(AlCl\(_2\)BuEt)\(_2\)/Tetrahydrofuran	MIBs	0.07 (600 °C)	2000	[10]
(PhMgCl)\(_2\)-AlCl\(_3\)/Tetrahydrofuran	MIBs	10 \(^{-3}\) (150 °C)	2014	[12]
0.6 M MgBOR(hfip)/DME	MIBs	7.23 (725 °C)	2016	[14]
MgCl\(_2\)-Mg(TFSI)\(_2\)/1,2-dimethoxyethane (DME)	MIBs	6.8 (25 °C)	2017	[10]
Mg(BH\(_4\))(NH\(_2\))	MIBs	6 \times 10 \(^{-3}\) (30 °C)	2017	[15]
Mg\(_{1-2x}\)(Zr\(_1-x\)Nb\(_x\))P\(_2\)O\(_{24}\) x = 0.15 in MgZr\(_4\)P\(_6\)O\(_{24}\)	MIBs	2.9-5.8 (25 °C)	2013	[11]
Magnesium Ethylenediamine Borohydride, Mg(NH\(_2\)CH\(_2\)CH\(_2\)NH\(_2\))\(_2\)	MIBs	6 \times 10 \(^{-2}\) (70 °C)	2017	[15]
MgSc\(_2\)Se\(_4\)	MIBs	0.01 (25 °C)	2017	[16]
poly(ethylene glycol) dimethacrylate (PEGDMA)-Mg(TFSI)\(_2\) gel electrolyte	MIBs	0.1 (25 °C)	2019	[17]
poly(methylmethacrylate) (PMMA)-Mg(CF\(_3\)SO\(_3\))\(_2\) gel electrolyte	MIBs	0.4 (20 °C)	2002	[18]
Mg(AlCl\(_2\)EtBu)\(_2\)/tetruglyme/PVdF polynomial (ethylene oxide) (PEO)	MIBs	3.7 (25 °C)	2003	[19]
poly(vinylidene fluoride) (PVDF)-Mg(TFSI)\(_2\)	MIBs	1.2 \times 10 \(^{-2}\) (70 °C)	2016	[20]
LiTFSI-Mg(TFSI)\(_2\)-acetamide with molar ratio of 10:1:40	LMIBs	85 (25 °C)	2020	[21]
Table S3. The electrochemical stability window (ESW) of several Mg-ion organic electrolytes

Electrolyte	ESW	Reference
Mg Organoborate Moieties (Mg(BBu₃Ph₂)₂ in THF)	~1.9 V	[22]
Magnesium haloalky aluminate complex	~2.2 V	[8]
(Mg(AlCl₃BuEt)₂)		
Mg(TFSI)₂-MgCl₂ in DME	~3.0 V	[23]
Magnesium hexamethyldisilazide Mg(HMDS)₂–4MgCl₂ in THF	~2.8 V	[24]
Mg(BH₄)₂ in THF	~2.3 V	[25]
(PhMgCl)₂–AlCl₃ in THF (APC)	~3.3 V	[9]
Magnesium aluminum	~3.5 V	[26]
hexafluoroisopropoxideMg[Al(HFIP)₄]₂		
[Mg(THF)₆][AlCl₄]₂ in PYR14TFSI/THF	~2.5 V	[27]
Magnesocene/THF	~1.8 V	[28]
Magnesium tetrakis(hexafluoroisopropyloxy) borate	~4.5 V	[29]
Mg-[B(hfip)₄]₂ (hfip = OC(H)(CF₃)₂)	~3.5 V	[10]
Boron-centered anion-based magnesium electrolyte (BCM electrolyte)		
Hybrid AlCl₃/MgCl₂/Mg(TFSI)₂-THF	~2.6 V	[30]
[Mg(G4)][TFSA]₂/[PYR13][TFSA], tetraglyme(G4)	~4.1 V	[31]
Perfluorinated pinacolatoborate, Mg[B(O₂C₂(CF₃)₄]₂	~4.0 V	[32]
(Mg-FPB)		
LiTFSI-Mg(TFSI)₂-acetamide with molar ratio of 10:1:40	~3.0 V	[21]

Table S4. Hydrogen-bonds (HBs) contribution of both electrolytes and lifetime of HBs from molecular dynamics (MD) calculations

Electrolyte	Origin of HBs contribution	lifetime of HBs		
	TFSI-H₂O	H₂O-H₂O	PEG-H₂O	
0.8 m Mg(TFSI)₂-100%H₂O	5.4/TFSI	1.5/H₂O	--	50.86 ps
0.8 m Mg(TFSI)₂-85%PEG-15%H₂O	1.6/TFSI	1/H₂O	1.9/PEG	79.33 ps

Table S5. The first peak position and corresponding integrated coordination numbers (ICN) of solvation structure in both electrolytes from MD calculations

Electrolyte	First peak position (nm)/corresponding ICN		
	Mg²⁺-H₂O	Mg²⁺-TFSI	Mg²⁺-PEG
0.8 m Mg(TFSI)₂-100%H₂O	0.20/5.47	0.43/--	
0.8 m Mg(TFSI)₂-85%PEG-15%H₂O	0.20/3.5	0.21/0.73	0.19/2.0
Table S6. Electrochemical performance comparison of V2O5 in different electrolytes

Electrolyte	Working voltage (V vs Mg2+/Mg)/ Temperature	Initial (max) discharge capacity (mAh g⁻¹)/ current density (mA g⁻¹)	Capacity retention (cycles)	Ref
V2O5	0.8 m Mg(TFSI)₂−85%PEG−15%H2O	1.58-3.68	359/50	80% (100) This work
metastable ζ- V2O5	0.2 M Mg(TFSI)₂ in PC	0.2-3.4/50°C	140/6	64 (100) [33]
V2O5 nanoclusters /carbon	0.2M [Mg₂(μ-Cl)₂(DME)₄][AlCl₄]₂ in DME	0.5-2.8	340 /40	26% (40) [34]
V2O5-PEO nanocomposites	0.5 M Mg(ClO₄)₂ in acetonitrile	1.0-3.0	125/10	77%(35) [35]
V2O5	1.0 M Mg(TFSI)₂ in diglyme with 2600 ppm water	0.5-4.2	60(260)/(20μA cm⁻²)	[36]
GO/V2O5	0.25 M Mg(AlCl₂EtBu)₂ in THF	1.0-2.8	178/0.2C	79%(20) [37]
V2O5 film	0.1 M Mg(TFSI)₂ in acetonitrile	2.2-3.0	150/ (0.5μA cm⁻²)	[38]
ζ-V2O5	0.5 M MgTFSI₂−PY₁₄TFSI in 3.6/120°C	0.7-1.1	130/15	[39]
Amorphous V2O5	0.3 M Mg(TFSI)₂ in glyme: diglyme	1.1-3.4	30(180)/30	71%(40) [40]
V2O5	0.5 M MgTFSI₂−PY₁₄TFSI in 3.5/110°C	1.3-3.5	295/(C/20, C/5)	76%(50) [41]

Video S1: Flammability testing of commercial LP30 in EC/DMC electrolyte. The commercial LP30 in the EC/DMC electrolyte started to burn after an ignited cotton swab was immersed in the electrolyte, identifying that the electrolyte is flammable.

Video S2: Flammability testing of the 0.8 m Mg(TFSI)₂−85%PEG−15%H₂O electrolyte. The fire of an ignited cotton swab was extinguished after being immersed in the 0.8 m Mg(TFSI)₂−85%PEG−15%H₂O electrolyte, demonstrating that the electrolyte is non-flammable and safe.

Video S3: Flammability of LP30. LP30 electrolyte soaked glass fiber was ignited, indicating LP30 electrolyte is flammable.

Video S4: Flammability of 0.8 m Mg(TFSI)₂−85%PEG−15%H₂O. 0.8 m Mg(TFSI)₂−85%PEG−15%H₂O electrolyte soaked glass fiber was not ignited, while LP30 electrolyte soaked one was ignited, indicating that 0.8 m Mg(TFSI)₂−85%PEG−15%H₂O electrolyte displays superior safety compared to LP30 electrolyte.
References:

[1] L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 2015, 350, 938.
[2] L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang, F. Wang, T. Gao, Z. Ma, M. Schroeder, A. von Cresce, S. M. Russell, M. Armand, A. Angell, K. Xu, C. Wang, Angew. Chem. 2016, 55, 7136.
[3] Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Nat. Energy 2016, 1, 16129.
[4] F. Wang, O. Borodin, M. S. Ding, M. Gobet, J. Vatamanu, X. Fan, T. Gao, N. Eidson, Y. Liang, W. Sun, S. Greenbaum, K. Xu, C. Wang, Joule 2018, 2, 927.
[5] S. Ko, Y. Yamada, K. Miyazaki, T. Shimada, E. Watanabe, Y. Tateyama, T. Kamiya, T. Honda, J. Akikusa, A. Yamada, Electrochim. Commun. 2019, 104, 106488.
[6] J. Forero-Saboya, E. Hosseini-Bab-Anari, M. E. Abdelhamid, K. Moth-Poulsen, P. Johansson, J. Phys. Chem. Lett. 2019, 10, 4942.
[7] S. Y. Ha, Y. W. Lee, S. W. Woo, B. Koo, J. S. Kim, J. Cho, K. T. Lee, N. S. Choi, ACS Appl. Mater. Interfaces 2014, 6, 4063.
[8] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovitch, E. Levi, Nature 2000, 407, 724.
[9] O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, J. Electrochem. Soc. 2008, 155, A103.
[10] Z. Zhao-Karger, M. E. Gil Bardaji, O. Fuhr, M. Fichtner, J. Mater. Chem. A 2017, 5, 10815.
[11] P. Saha, M. K. Datta, O. I. Velikokhatnyi, A. Manivannan, D. Alman, P. N. Kumta, Prog. Mater. Sci. 2014, 66, 1.
[12] S. Higashi, K. Miwa, M. Aoki, K. Takechi, ChemComm 2014, 50, 1320.
[13] N. Imanaka, Electrochem. Solid-State Lett. 2000, 3, 327.
[14] M. Adamu, G. M. Kale, J. Phys. Chem. C 2016, 120, 17909.
[15] E. Roedern, R. S. Kuhnel, A. Remhof, C. Battaglia, Sci. Rep. 2017, 7, 46189.
[16] P. Canepa, S.-H. Bo, G. Sai Gautam, B. Key, W. D. Richards, T. Shi, Y. Tian, Y. Wang, J. Li, G. Ceder, Nat. Commun. 2017, 8, 1759.
[17] L. C. Merrill, H. O. Ford, J. L. Schaefer, ACS Appl. Energy Mater. 2019, 2, 6355.
[18] G. G. Kumar, N. Munichandraiah, Electrochim. Acta 2002, 47, 1013.
[19] O. Chusid, Y. Gofer, H. Gizbar, Y. Vestfrid, E. Levi, D. Aurbach, I. Riech, Adv. Mater. 2003, 15, 627.
[20] R. Rathika, S. A. Suthanthiraraj, Macromol. Res. 2016, 24, 422.
[21] L. Ma, X. Li, G. Zhang, Z. Huang, C. Han, H. Li, Z. Tang, C. Zhi, Energy Stor. Mater. 2020, 31, 451.
[22] T. D. Gregory, R. J. Hoffman, R. C. Winterton, J. Electrochem. Soc., 1990, 137, 775.
[23] I. Shterenberg, M. Salama, H. D. Yoo, Y. Gofer, J.-B. Park, Y.-K. Sun, D. Aurbach, J. Electrochem. Soc. 2015, 162, A7118.
[24] C. Liao, N. Sa, B. Key, A. K. Burrell, L. Cheng, L. A. Curtiss, J. T. Vaughey, J. J. Woo, L. B. Hu, B. F. Pan, Z. C. Zhang, J. Mater. Chem. A 2015, 3, 6082.
[25] R. Mohtadi, M. Matsui, T. S. Arthur, S.-J. Hwang, Angew. Chem. 2012, 51, 9780.
[26] J. T. Herb, C. A. Nist-Lund, C. B. Arnold, ACS Energy Lett. 2016, 1, 1227.
[27] W. Li, S. Cheng, J. Wang, Y. Qiu, Z. Zheng, H. Lin, S. Nanda, Q. Ma, Y. Xu, F. Ye, M. Liu, L. Zhou, Y. Zhang, Angew. Chem. 2016, 55, 6406.
[28] R. Schwarz, M. Pejic, P. Fischer, M. Marinaro, L. Jörissen, M. Wachtler, Angew. Chem. 2016, 55, 14958.
[29] Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C. Bonatto Minella, X. Yu, A. Manthiram, R. J. Behm, M. Ruben, M. Fichtner, *ACS Energy Lett.* **2018**, *3*, 2005.

[30] Y. He, Q. Li, L. Yang, C. Yang, D. Xu, *Angew. Chem.* **2019**, *58*, 7615.

[31] T. Mandai, K. Tatesaka, K. Soh, H. Masu, A. Choudhary, Y. Tateyama, R. Ise, H. Imai, T. Takeguchi, K. Kanamura, *Phys. Chem. Chem. Phys.* **2019**, *21*, 12100.

[32] J. Luo, Y. Bi, L. Zhang, X. Zhang, T. L. Liu, *Angew. Chem.* **2019**, *58*, 6967.

[33] J. L. Andrews, A. Mukherjee, H. D. Yoo, A. Parija, P. M. Marley, S. Fakra, D. Prendergast, J. Cabana, R. F. Klie, S. Banerjee, *Chem* **2018**, *4*, 564.

[34] Y. Cheng, Y. Shao, V. Raju, X. Ji, B. L. Mehdi, K. S. Han, M. H. Engelhard, G. Li, N. D. Browning, K. T. Mueller, J. Liu, *Adv. Funct. Mater.* **2016**, *26*, 3446.

[35] S. D. Perera, R. B. Archer, C. A. Damin, R. Mendoza-Cruz, C. P. Rhodes, *J. Power Sources* **2017**, *343*, 580.

[36] N. Y. Sa, H. Wang, D. L. Proffit, A. L. Lipson, B. Key, M. Liu, Z. X. Feng, T. T. Fister, Y. Ren, C. J. Sun, J. T. Vaughey, P. A. Fenter, K. A. Persson, A. K. Burrell, *J. Power Sources* **2016**, *323*, 44.

[37] X. Du, G. Huang, Y. Qin, L. Wang, *RSC Adv.* **2015**, *5*, 76352.

[38] G. Gershinsky, H. D. Yoo, Y. Gofer, D. Aurbach, *Langmuir* **2013**, *29*, 10964.

[39] I. D. Johnson, G. Nolis, L. Yin, H. D. Yoo, P. Parajuli, A. Mukherjee, J. L. Andrews, M. Lopez, R. F. Klie, S. Banerjee, B. J. Ingram, S. Lapidus, J. Cabana, J. A. Darr, *Nanoscale* **2020**, *12*, 22150.

[40] D. Kim, J. H. Ryu, *Electron. Mater. Lett.* **2019**, *15*, 415.

[41] H. D. Yoo, J. R. Jokisaari, Y.-S. Yu, B. J. Kwon, L. Hu, S. Kim, S.-D. Han, M. Lopez, S. H. Lapidus, G. M. Nolis, B. J. Ingram, I. Bolotin, S. Ahmed, R. F. Klie, J. T. Vaughey, T. T. Fister, J. Cabana, *ACS Energy Lett.* **2019**, *4*, 1528.