PLASTID ENGINEERING OF A MARINE ALGA, *NANNOCHLOROPSIS GADITANA*, FOR CO-EXPRESSION OF TWO RECOMBINANT PEPTIDES

Yulin Cui

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

Kang Wang

School of Life Sciences, Shandong University of Technology, Zibo 255049, China

Wenxin Xu

Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China

Yinchu Wang

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

Zhengquan Gao

School of Life Sciences, Shandong University of Technology, Zibo 255049, China

Hongli Cui

Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China

Chunxiao Meng

School of Life Sciences, Shandong University of Technology, Zibo 255049, China

and Song Qin

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

The purpose of this study was to establish a plastid transformation system for expressing recombinant proteins in *Nanochloropsis gaditana*. On the basis of the sequenced plastid genome, the homologous flanking region, 16S-*trnI/trnA*-23S, and the endogenous regulatory fragments containing the *psb*A promoter, *rbc*L promoter, *rbc*L terminator, and *psb*A terminator were amplified from *N. gaditana* as elements of a plastid transformation vector. Then, the herbicide-resistant gene (*bar*) was used as a selectable marker, regulated by the *psb*A promoter and *rbc*L terminator. Finally, two codon-optimized antimicrobial peptide-coding genes linked by endogenous ribosome binding site (RBS) in a polycistron were inserted into the constructed vector under the regulation of the *rbc*L promoter and *psb*A terminator. After microparticle bombardment, the positive clones were detected using polymerase chain reaction (PCR), and Southern and Western blotting were used to assess the co-expression of the two antimicrobial peptides from the plastid. *Nanochloropsis gaditana* showed the potential to express recombinant proteins for biotechnological applications, for example, for the development of oral vaccines in aquaculture.

Key index words: 16S-*trnI/trnA*-23S region; antimicrobial peptide; microparticle bombardment; *Nanochloropsis gaditana*; plastid transformation; ribosome binding site

Abbreviations: FACHB, Freshwater Algae Culture Collection of the Institute of Hydrobiology; RBS, ribosome binding site

1Received 6 May 2020. Revised 16 October 2020. Accepted 28 October 2020.
2Author for correspondence: e-mail: yulincui@yic.ac.cn.
Yulin Cui and Kang Wang are both first authors.
Editorial Responsibility: Y. Li (Associate Editor)
Nannochloropsis gaditana is a single-celled marine alga classified as Heterokontophyta, Eustigmatophyceae (Andersen et al. 1998), which has been used as aquaculture feed due to the intracellular abundance of nutrients, especially, polyunsaturated fatty acids (Li et al. 2014). In addition, N. gaditana is one of the few algae that have been successfully cultivated outdoors on a commercial scale (Radakovits et al. 2012), which has received considerable attention in biofuel applications (Jinkerson et al. 2013). Hence, genetic engineering of N. gaditana is required to develop it as a model microalga with important application prospects.

Until now, the nuclear transformation system with targeted integration has been established for Nannochloropsis sp. (Li et al. 2014, Kang et al. 2015). The initial attempt was on Nannochloropsis oculata, in which foreign promoters from Chlamydomonas reinhardtii or viral promoters were used; however, the transformants lost the foreign genes after 1.5 months of unselective cultivation (Chen et al. 2008). This problem was also observed in other algae, mainly because the expression of foreign genes from heterologous promoters was affected by the unique nuclear characteristics of host microalgae. Endogenous promoters are more efficient in generating stable transformants and driving foreign gene expression than heterologous promoters (Walker et al. 2005, Radakovits et al. 2012, Ajawi et al. 2017, Jackson et al. 2019). However, nuclear genetic engineering still remains challenging owing to the occurrence of gene silencing and position effects, resulting in poor expression of foreign genes (Li et al. 2016).

Compared to nuclear transformation, plastid genetic engineering shows many advantages, such as co-expression of multigenes, high expression and accumulation of foreign proteins, and homologous recombination without position effect (Quesada-Vargas et al. 2005, Wang et al. 2009, Wani et al. 2010). Currently, plastid transformation systems have been established in only a few microalgal species, such as Chlamydomonas reinhardtii, Phaeodactylum tricornutum, Haematococcus pluvialis, and Nannochloropsis oceanica (Boynton et al. 1988, Xie et al. 2014, Galarza et al. 2018, Gan et al. 2018). The key to successful plastid transformation is the selection of the intergenic insertion sites, transformation methods, marker genes, and efficient endogenous regulatory sequences (Narra et al. 2018). Generally, two adjacent genes are selected as homologous recombination fragments, such as rbcL/aceD, rps7/ndhB, and trnI/trnÄ (Wang et al. 2009, Adem et al. 2017, Narra et al. 2018), which can harbor foreign DNA fragments without affecting the function of any endogenous gene. Various transformation methods for microalgae have been developed, such as the biolistic method, Agrobacterium-mediated transformation, and electroporation (Nymark et al. 2016, Mini et al. 2018, Gan et al. 2018). To the best of our knowledge, only one species in Nannochloropsis, N. oceanica, harbors a mature plastid transformation system, which expresses the selectable marker, ble, under an endogenous promoter (Gan et al. 2018). However, plastid engineering of N. gaditana has not been possible owing to the lack of efficient plastid genetic tools, especially suitable homologous recombination fragments and polycistron constructs for multigene co-expression, which has hindered further studies and the application of this alga.

In this study, a plastid transformation system of Nannochloropsis gaditana was established for expressing recombinant proteins. For verifying the feasibility of this system, two short peptides were assembled into the newly constructed chloroplast transformation vector and successfully expressed in N. gaditana. This technique will improve genetic engineering of N. gaditana and enable the production of recombinant proteins of biotechnological importance, such as those used in aquaculture.

MATERIALS AND METHODS

Strain and cell growth. Nannochloropsis gaditana strain CCAP 849/5 was obtained from Freshwater Algae Culture Collection of the Institute of Hydrobiology (FACHB), Chinese Academy of Sciences. The cells were grown in modified F/2 medium at pH 7.6 - 7.8 and 22°C and illuminated using a 12:12 h light:dark cycle under a light intensity of roughly 75 µmol photons·m⁻²·s⁻¹ (Li et al. 2014).

Cell density (OD₆₀₀) of wildtype Nannochloropsis gaditana and transformants was determined at 600 nm using a UV-visible spectrophotometer TU-1810 (Puxi, China) and measured after every 2 d during 12 d of culture (Chu and Takiguchi 2015). The initial cell density of the cultures (day 0) was set to OD₆₀₀ = 0.1. All OD₆₀₀ data indicated the average of three experiments with standard deviation (± SD).

Cloning the elements for Nannochloropsis gaditana plastid transformation plasmid. The Nannochloropsis gaditana cultures were harvested via centrifugation at 8,000g for 5 min, and genomic DNA was extracted using the plant genomic DNA extraction kit (Tiangen Biotech, China) per the manufacturer's instructions. Gene-specific primers with homologous linkers and proper restriction enzyme sites were designed according to the plastid genome sequence of N. gaditana (https://www.ncbi.nlm.nih.gov/). All primers were synthesized by Ruibo Company (China) and are summarized in Table 1. The N. gaditana endogenous regulatory fragments, psbA promoter, rbcL terminator, rbcL promoter, and psbA terminator, were amplified using primer pairs S3-for/S3-rev, S4-for/S4-rev, S5-for/S5-rev, and S6-for/S6-rev, respectively. Similarly, the homologous flanking fragments, 16S-trnA and trnA-23S, were amplified using primer pairs S1-for/S1-rev and S2-for/S2-rev, respectively.

The herbicide Basta-resistant bar gene was used as the selectable marker and amplified from the pSBV vector (Thermo Fisher, USA) using a primer pair bar-for/bar-rev. Codon bias is an important determinant for protein expression in microalgal plastids. In this study, two antimicrobial peptide-coding genes (n21114, No.6k50_A; piscidin-4, No. AKA60777.2) were codon-optimized to resemble the plastid codon of Nannochloropsis gaditana (66.4% AT content; Table S1 in the Supporting Information) and were then determined to be ant1 and ant2 after codon optimization and synthesis by Ruibo Company. The primer pairs F1-for/F1-rev and

MATERIALS AND METHODS	PREFERENCES FOR DESIGN	OUTCOMES	CONCLUSIONS
Cell density (OD₆₀₀)	0.1		
OD₆₀₀ data	Average of three	± SD	
Cloning elements	Nannochloropsis gaditana		
psbA promoter	rbcL terminator	rbcL	psbA
bar gene			
Codon bias			
Optimized codon			
Antimicrobial peptides			
Basta-resistant bar			

Table 1. The results of cloning elements for Nannochloropsis gaditana plastid transformation plasmid.
F2-for/F2-rev, containing proper restriction enzyme sites, homologous linkers, and 6 × His tags were used to amplify ant1 and ant2, respectively. All the PCR products were electrophoresed on 0.8% agarose gel and the target bands were recovered using Quick Clean II gel extraction kit (GenScript, China). The purified fragments were sequenced by Ruibo Company.

Plasmid construction. To construct the plastid transformation vector of Nannochloropsis gaditana, homologous flanking fragments, endogenous promoters/terminators, the selectable marker bar, and the two short peptide genes were amplified as described method (Cui et al. 2012), using a range of restriction enzyme sites. The restriction sites were: HindIII and SacI for T1; AatII and XbaI for T2; and SbfI and HindIII for T3.

Selection of transformants. The restored cells were transfected with N. gaditana/pMD-F1 plasmid containing proper restriction enzyme sites. The bar-rev primers were used to confirm the presence of the bar gene, and the con-for and con-rev primers were used to confirm the insertion of the entire expression cassette. PCR with genomic DNA isolated from wildtype Nannochloropsis gaditana cells was used as the blank control.

Samples that were positive in PCR were further analyzed using Southern blotting. Genomic DNA (~ 4 μg) from resistant clones and wild Nannochloropsis gaditana was digested with Hinc II and BamHI and electrophoresed on 0.8% agarose gel. Subsequently, the digested DNA samples were transferred to positively charged GeneScreen nylon membranes (PerkinElmer, USA) using the electro transfer system (Bio-Rad, USA) after denaturation and neutralization. Digoxin-labeled probes were prepared using the PCR products of bar, ant1, and ant2 as templates. Probe labeling and hybridization were conducted as per the protocol of the DIG DNA labeling and detection kit (Roche, Germany). Southern blotting was performed using the DIG High Prime DNA labeling and detection starter (Roche, USA) and monitored using the ChemiDoc XRS + system (Bio-Rad).

Western blotting was performed to verify the expression of the two short peptides. Total soluble protein was extracted from cultures (200 mL per transformant) at post-logarithmic phase (OD600 at 1.2) using plant total protein extraction kit (Sangon Biotech, China). The proteins (~10 μg per sample) were separated via sodium dodecyl sulfate–polyacrylamide gel electrophoresis on 12% gradient gels and transferred to a polyvinylidene fluoride membrane (Immobilon-P, Millipore). The membranes were blocked with 5% skim milk in TBST (50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20) for 1 h. The membranes were then washed with TBST and incubated with 1:2000 dilution of anti-His antibody (Invitrogen, USA) at 4°C overnight. The membranes were washed again with TBST and incubated with 1:2000 dilution of HRP-conjugated anti-mouse secondary antibody (Santa Cruz, USA) for 1 h. The membranes were washed again with TBST and incubated with ECL substrate. The signals were visualized using X-ray film (Fujifilm).
Positive transformation efficiency was calculated using the following equation (Gutierrez et al. 2012):

\[\text{TE} = \frac{x}{y} \times \text{surviving cells/\mu gDNA} \]

RESULTS

Plastid transformation vector of Nannochloropsis gaditana was successfully constructed. Four endogenous elements were amplified to regulate the expression of foreign genes: psbA promoter (486 bp), rbcL promoter (486 bp), psbA terminator (230 bp), and rbcL terminator (220 bp). In addition, 16S-trnI and trnA-23S homologous flanking fragments were amplified as 1,030 bp and 1,000 bp products.

Using the elements above, the plasmid pT1/ch/bar-anti was constructed as shown in Fig. 1. In pT1/ch/bar-anti, the psbA promoter was used to drive the expression of bar, which was followed by the rbcL terminator. Downstream of the bar expression cassette, ant1 and ant2 were linked by RBS under the regulation of the rbcL promoter and psbA terminator in a polycistron.

Two short peptides were co-expressed from the Nannochloropsis gaditana plastids. The pT1/ch/bar-anti vector was transformed in Nannochloropsis gaditana via microparticle bombardment. After multiple rounds of selection, Basta-resistant colonies were visible on agar plates spread with pT1/ch/bar-anti treated cultures, while the Basta-sensitive cells died out. Finally, 40 clones were separated from the agar plates and cultured in liquid BG-11 medium (Fig. S1 in the Supporting Information).

After five rounds of subculture in the presence of Basta, the genomic DNA from these colonies were extracted and used as templates for PCR. Using bar-for and bar-rev primers, bar was amplified from the positive transformants as a 550-bp product, while this fragment was not amplified from wildtype Nannochloropsis gaditana (Fig. 2a).

To further confirm the insertion of foreign genes, Southern blotting was performed using the PCR-positive M1 transformants. Single strong signals were detected using digoxin-labeled bar, ant1, and ant2 probes in the M1 strain, while the wild Nannochloropsis gaditana did not show any signal (Fig. 2b). Furthermore, 2.1 kb (16S-trnI/trnA-23S) and 4.1 kb bands (expression cassette) were amplified using the con-for and con-rev primers from the M1 strain (Fig. 2c), while the wildtype strain showed only a 2.1-kb band. Thus, the integration of foreign fragments via homologous recombination in the plastid genome of the N. gaditana transformant M1 was confirmed. Based on the proportion of the positive transformants in total tested colonies, the final transformation efficiency was calculated to be 217 ± 47 clones · μg DNA⁻¹.

The expression of two antimicrobial peptides was verified using Western blotting. After hybridization, two bands of approximately 4.55 kDa and 9.56 kDa, which are similar to the weights of ANT1 and ANT2, were detected in the M1 strain (Fig. 2d), while no bands were detected in wildtype Nannochloropsis gaditana. Therefore, the two peptides were successfully co-expressed from the N. gaditana plastid.

The Nannochloropsis gaditana transformants grew normally. To assess the effect of foreign gene expression on cellular viability, the growth rate of the transformant M1 strain was determined. After 12 d of culture, similar growth curves of the M1 strain and wildtype Nannochloropsis gaditana were obtained, as shown in Figure 3. Both M1 and wildtype N. gaditana entered the logarithmic growth phase after 2 days of inoculation at a fixed concentration (OD600 = 0.1) and continued to grow for 8 days. The maximum cell densities (OD600) of the M1 and wildtype strains were 1.41 and 1.37, respectively, which were obtained on the 10th day of culture.

DISCUSSION

In recent years, the use of microalgae as recombinant platforms for biosynthesis has attracted increasing attention. Microagal plastids are considered ideal bioreactors for expressing transgenes due to high level of expression of foreign proteins and multigenes from engineered plastids (Adem et al. 2017). Hence, in this study, we developed a plastid transformation system of the microalgae, Nannochloropsis gaditana.

Insertion of foreign genes should not affect the function of the original genes post-plastid transformation. Previous studies in higher plants and microalgae have used two adjacent genes as homologous recombination fragments, namely rbcL/accD, psbA/trnK, and trnA/trnL, etc. (Wang et al. 2009, Adem et al. 2017, Narra et al. 2018). Among them, the trnA/trnL region was mostly used as an insertion site, which may be related to the localization of the region. trnA/trnL is located in the inverted repeat region of the plastid genome, and the orfA located in trnL facilitates rapid replication of foreign genes to two copies in one plastid genome (Narra et al. 2018). However, previous studies on Nannochloropsis oceanica have used chdl, a gene encoding a light-independent protoclorophyllide reductase subunit, as the insertion site (Gan et al. 2018). The introduction of exogenous genes perturbs chdl expression, which is detrimental for cell growth in the dark. Therefore, the trnL/trnA region as is more suitable...
as an insertion site for *N. gaditana* and other species of *Nannochloropsis* than other regions.

Although plastid transformation systems have been established in several microalgal species (such as *Chlamydomonas reinhardtii*, *Haematococcus pluvialis*, and *Nannochloropsis oceanica*), the gene regulatory sequences are scarce (Boynton et al. 1988, Xie et al. 2014, Galarza et al. 2018, Gan et al. 2018). In fact, the commonly used regulatory sequences in plastid transformation are endogenous promoters and terminators, such as the *psbA2* promoter, *rbcL* promoter, *psbA2* terminator, and *rbcL* terminator (Galarza et al. 2018, Gan et al. 2018). Considering that *psbA2* and *rbcL* encode high levels of enzymes related to photosynthesis, the endogenous regulatory sequences of *psbA2* and *rbcL* are generally believed to possess high regulatory activity (Lilly et al. 2002, Gutierrez et al. 2012, Gimpel et al. 2015). Hence, these four endogenous regulatory sequences were selected for regulating the expression of *ant1* and *ant2* in this study. Our results also confirmed that these four endogenous elements can be used to regulate the expression of foreign proteins in the chloroplast of *N. gaditana*.

Despite limited reports on plastid engineering, multigene co-expression with a polycistronic construct is one of the advantages of plastid transformation (Lee et al. 1999). An efficient RBS is crucial for the co-expression of multigenes; hence, an endogenous RBS was introduced between *ant1* and *ant2* to form a polycistronic structure in this study. The results showed stable expression of two proteins,

Fig. 1. Construction of pT1/ch/bar-anti vector. a, F1 fragment fused via fusion PCR using primer pair S1-for/S5-rev; b, F2 fragment fused via fusion PCR using primer pair S6-for/S2-rev; c, pT1/ch/bar vector and F3 fragment were digested with *Xba*I and *BamH*I restriction enzymes, resulting in pT1/ch/bar-anti vector. [Colour figure can be viewed at wileyonlinelibrary.com]
ANT1 and ANT2, indicating that it is feasible to co-express two or more genes in *Nannochloropsis gaditana* plastids.

Appropriate selection markers are also important for plastid transformation. The herbicide Basta (phosphinothricin or glufosinate), commonly used in agriculture, has an inhibitory effect on glutamine synthetase and can rapidly prevent photosynthesis (Day and Goldschmidt-Clermont 2011). Unlike other herbicides, it is characterized by low toxicity, high activity, and good environmental compatibility (Chèvre et al. 1997). The *bar* gene encoding phosphinothricin acetyltransferase has been cloned from *Streptomyces hygroscopicus*, which inactivates phosphinothricin by catalyzing its aminoacetylation, and has previously been used as a selection marker in tobacco (Day and Goldschmidt-Clermont 2011). In green microalgae, the phosphinothricin-resistant *bar* gene was successfully used in *Tetraselmis subcordiformis* plastid as a single selectable marker (Cui et al. 2014). This report shows that the selection strategy with phosphinothricin/*bar* gene is suitable for *Nannochloropsis* species.

Microparticle bombardment used in this study resulted in high transformation efficiency in *Nannochloropsis gaditana*. Considering the advantages of plastid engineering, *N. gaditana* can be engineered to produce oil or express high-value recombinant proteins. However, even after 3 months of screening, we were unable to obtain any homoplastic transformant (Fig. 2c; M1 strain showed both 2.1 kb and 4.1 kb bands). The homogenization of the plastid genome is a requirement for transgene stability of the transformants; therefore, continuous selection will be performed in future.

Nannochloropsis gaditana is a microalga with potential for application in biotechnology, such as for the development of oral feed for aquaculture. Antimicrobial peptides can be expressed in this microalga as a “functional feed” to reduce the risks in aquaculture (Dorrington and Gomez-Chiarri 2008, Li and Tsai 2009, Mu et al. 2012). *Nannochloropsis oculata* expressing codon-optimized bovine lactoferrin in cytoplasm showed a bactericidal effect on *Vibrio parahaemolyticus* and increased the survival rate of *Oryzias latipes* after oral-in-tube delivery (Li and Tsai 2009, Mu et al. 2012).
Fig. 3. Growth curves of M1 strain and wild Nannochloropsis gaditana. Cells were cultured in modified F/2 medium of pH 7.6 - 7.8 and illuminated using a 12 h/12 h light/dark cycle under a light intensity of 60 μmol photons - m⁻² - s⁻¹. P < 0.05 indicated significant difference. Each value represents mean ± SD (n = 3). WT, wildtype N. gaditana. [Colour figure can be viewed at wileyonlinelibrary.com]

2009). Considering the major advancements in plastid engineering, this study will further promote the improvement of this important microalgal species.

CONCLUSIONS

In the present study, the plastid transformation system of Nannochloropsis gaditana was established for expressing recombinant proteins. This is the first report of the co-expression of two recombinant peptides from a N. gaditana plastid. This study is expected to accelerate the application of N. gaditana in biotechnology.

We would like to thank Professor Hu Zhangli from Shenzhen University for providing the gene sequences of two short peptides. This work was supported by the National Key Research and Development Program of China (2016YFB0601001), National Natural Science Foundation of China (41876188, 31972815), the Natural Science Foundation of Shandong Province, China (ZR2018ZB0210), the Project of Innovation & Development of Marine Economy (HHCL201803), Major Basic Research Program of Shandong Province Natural Science Foundation (ZR2019ZD17), Key Research and Development Program of Shandong Province (Food for Special Medical Purpose; 2018YYSP016).

Adem, M., Beyene, D. & Feyissa, T. 2017. Recent achievements obtained by chloroplast transformation. Plant Methods 13:30.

Ajawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., Peach, L. et al. 2017. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35:647-52.

Andersen, R. A., Brett, R. W., Potter, D. & Sexton, J. P. 1998. Phylogeny of the Eustigmatophyceae based upon 18S rDNA, with emphasis on Nannochloropsis. Protist 149:61-74.

Boytont, G., Gillham, N., Harris, E., Hosler, J., Johnson, A., Jones, A., Randolph-Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B. & Sanford, J. C. 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534-8.

Chen, H. L., Li, S. S., Huang, R. & Tsai, H. J. 2008. Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). J. Physiol. 44:768-76.

Chevere, A. M., Eber, F., Baranger, A. & Renard, M. 1997. Gene flow from transgenic crops. Nature 389:924.

Chi, Y. & Takiguchi, Y. 2015. Comparison of the growth performance of Nannochloropsis oceanica IMET1 and Nannochloropsis gaditana CCMP2526 under various culture conditions. J. Plant Sci. 3:9-13.

Cui, Y., Jiang, P., Wang, J., Li, F., Chen, Y., Zheng, G. & Qin, S. 2012. Genetic transformation of Platymonas (Tetraselmis) subcordiformis (Prasinophyceae, Chlorophyta) using particle bombardment and glass-bead agitation. Chin. J. Oceanol. Limnol. 30:471-5.

Cui, Y., Qin, S. & Jiang, P. 2014. Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker. PLoS ONE 9:e98807.

Day, A. & Goldschmidt-Clermont, M. 2011. The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol. J. 9:540-53.

Dorrington, T. & Gomez-Chiarri, M. 2008. Antimicrobial peptides for use in oyster aquaculture: effect on pathogens, commensals, and eukaryotic expression systems. J. Shellfish Res. 27:365-73.

Galarza, J. L., Gimpel, J. A., Rojas, V., Arredondo-Vega, B. O. & Henriquez, V. 2018. Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algol Res. 31:291-7.

Gan, Q., Jiang, J., Han, X., Wang, S. & Lu, Y. 2018. Engineering the chloroplast genome of oleaginous marine microalga Nannochloropsis oceanica. Front. Plant Sci. 9:439.

Geng, D., Wang, Y., Wang, P., Li, W. & Sun, Y. 2003. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J. Appl. Phycol. 15:451-6.

Gimpel, J. A., Hyun, J. S., Schoepp, N. G. & Mayfield, S. P. 2015. Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol Bioeng. 112:393-45.

Gutierrez, C. L., Gimpel, J., Escobar, C., Marshall, S. H. & Henriquez, V. 2012. Chloroplast genetic tool for the green microalga Haematococcus pluvialis (Chlorophyceae, Volvocales). J. Phycol. 48:976-83.

Jackson, H. O., Berepiki, A., Baylay, A. J., Terry, M. J., Moore, C. M. & Bibby, T. S. 2019. An inducible expression system in the alga Nannochloropsis gaditana controlled by the nitrate reductase promoter. J. Appl. Phycol. 31:269-79.

Jinkerson, R. E., Radakovits, R. & Posewitz, M. C. 2013. Genomic engineering of the oleaginous marine microalga Nannochloropsis gaditana CCMP2526 under various culture conditions. J. Plant Sci. 3:9-13.

Kang, N. K., Jeon, S., Kwon, S., Koh, H. G., Shin, S., Lee, B., Choi, G., Yang, J., Jeong, B. & Chang, Y. K. 2015. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200.

Lee, W. K., Park, D. S. & Tae, G. S. 1999. Cloning and characterization of the polK gene encoding cytochrome b595 of the Panax ginseng photosystem II reaction center. J. Biochem. Mol. Biol. 32:189-95.

Li, D., Tang, N., Fang, Z., Xia, Y. & Cao, M. 2016. Co-transfer of talons construct targeted for chloroplast genome and chloroplast transformation vector into rice using particle bombardment. J. Nanosci. Nanotechnol. 16:12194-201.

Li, F., Gao, D. & Hu, H. 2014. High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Biosci. Biotechnol. Bioch. 5:812-27.

Li, S. S. & Tsai, H. J. 2009. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immun. 26:316-25.

Lilly, J. W., Maul, J. E. & Stern, D. B. 2002. The Chlamydomonas reinhardtii organellar genomes respond transcriptionally and
post-transcriptionally to abiotic stimuli. Plant Cell 14: 2681–706.

Mini, P., Demurtas, O. C., Valentini, S., Pallara, P., Aprea, G., Ferrante, P. & Giuliano, G. 2018. Agrobacterium-mediated and electroporation-mediated transformation of Chlamydomonas reinhardtii: a comparative study. BMC Biotechnol. 18:11.

Mu, F. Y., Li, H. & Hu, Z. L. 2012. Expression of tandem repeat cecropin b in Chlamydomonas reinhardtii and its antibacterial effect. Prog. Biochem. Biophys. 39:344–51.

Narra, M., Kota, S., Velivela, Y., Ellendula, R., Allini, V. R. & Abbagani, S. 2018. Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3. Biotech 8:140–50.

Nymark, M., Sharma, A. K., Sparstad, T., Bones, A. M. & Winge, P. 2016. A crispr/cas9 system adapted for gene editing in marine algae. Sci. Rep. 6:24951.

Quesada-Vargas, T., Ruiz, O. N. & Daniell, H. 2005. Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiol. 138:1746–62.

Radakovits, R., Jinkerson, R. E., Fuerstenberg, S. I., Tae, H., Settlage, R. E., Boore, J. L. & Posewitz, M. C. 2012. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat. Commun. 3:686.

Walker, T. L., Becker, D. K. & Collet, C. 2005. Characterisation of the Dunaliella tertiolecta RbcS genes and their promoter activity in Chlamydomonas reinhardtii. Plant Cell Rep. 23:727–35.

Wang, H. H., Yin, W. B. & Hu, Z. M. 2009. Advances in chloroplast engineering. J. Genet. Genom. 7:387–98.

Wani, S. H., Haider, N., Kumar, H. & Singh, N. B. 2010. Plant plastid engineering. Curr. Genom. 11:500–12.

Xie, W. H., Zhu, C. C., Zhang, N. S., Li, D. W., Yang, W. D., Liu, J. S., Sathishkumar, R. & Li, H. Y. 2014. Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Mar. Biotechnol. 16:538–46.

Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s web site:

Figure S1. Selection of transgenic Nannochloropsis gaditana with Basta.

Table S1. The sequences of ant1, ant2, and RBS used in this study.