1. Introduction

Edge points are series of pixel locations having drastic change in intensities in digital images. Edge can be detected using spatial domain sharpening filters, given in. Several methods have also been reported. An ideal line edge should comprise one pixel thickness with high intensity value and is to be surrounded by two lower intensity lines. An edge with more than one pixels thickness gives rise to lot of problems regarding the exact locations of the object boundary and also gives rise to handling of more bits of high intensity. Thus edges with more than one pixel need be thinned. There have been a number of studies regarding edge thinning operation e.g. described some fundamental iterative process which was carried out in parallel and serial modes. This survey gives the idea about the deletion or addition of pixels in a local neighbourhood of a particular pixel. In the sequential based thinning algorithm pixels are deleted each iteration of some sequence of pixels as described in. A horizontal and vertical searching technique is used for edge thinning as given in. A novel concept of parallel and serial thinning algorithm is described in. Parallel thinning is carried out based on some predefined criteria for possible thinned patterns.

2. Proposed Method for Edge Detection

The proposed algorithm of the filter approaches the image by flipping the latter and detects edges along horizontal, vertical and diagonal directions. The one and two dimensional filtering mask (kernels) have been operated along both directions such as from left to right side, from top to bottom, from top left to right bottom and from top right to left bottom sides. The same procedures have also been followed along the reverse directions for each of the above operations. Normally, the edges are produced with more than one pixel thickness and thus requiring thinning. The double pixel thick edges are first required to be searched and the present algorithm has been prepared with that aim. Subsequently a pointer method has been
followed to find the location of the edge, after thinning along the direction having higher congregation of high intensity pixels. Two types of spatial convolution filters used in the present study as shown in Figure 1. Let \(f(x,y) \) be an image of dimension \(M \) (number of border pixels in horizontal direction) and \(N \) (number of border pixels in vertical direction). Edge profiles in different angles are mathematically derived as:

For 0° angle, \[g_0(s,t) = f(x,y) \ast w_1 \]

For 45° angle, \[g_{45}(s,t) = f(x,y) \ast w_3 \]

For 90° angle, \[g_9(s,t) = f(x,y) \ast w_2 \]

For 135° angle, \[g_{135}(s,t) = f(-x+M,y) \ast w_3 \]

For 180° angle, \[g_{180}(s,t) = f(-x+M,y) \ast w_1 \]

For 225° angle, \[g_{225}(s,t) = f(-x+M,-y+N) \ast w_3 \]

For 270° angle, \[g_{270}(s,t) = f(-x,-y+N) \ast w_2 \]

For 315° angle, \[g_{315}(s,t) = f(-x,-y+N) \ast w_3 \]

Where “\(\ast \)” symbol denotes spatial convolution and \(g(s,t) \) stands for convolution response. The edge detection output using proposed method is shown in Figure 2. Present technique is applied on Lena image (in Matlab), some natural images and a document image taken from courtesy of Google images. In all the cases, very precise edge profile is found.

2.1 Proposed Method for Edge Thinning

Proposed algorithm can be divided into two parts namely horizontal searching and vertical searching. After horizontal searching the vertical searching has to be done and the descriptions are given in following sections.

2.2 Horizontal Searching

Horizontal searching is carried out by taking 1x2 elements and checks the immediate preceding and next pixel. If the searching in this fashion fails, the method points to 3x2 elements and checks immediate top and bottom elements. Again if this condition does not satisfy then it is pointed to 4x3 elements. In horizontal searching choice starts from two adjacent pixels \(f(i+1, j+1) \) and \(f(i+1, j+2) \), for the initial values of \(i \) and \(j \) are 1.

Algorithm: \(M \) and \(N \) be the total number of rows and columns.

1. **Step 1:** for \(i = 1: M-1 \)

 for \(j = 1: N-1 \)

2. **Step 2:** Increment \(i \) and \(j \) by 1

3. **Step 3:** Select two elements as \(f(i,j) \) and \(f(i,j+1) \);

 if \(f(i,j) == 1 \) and \(f(i,j+1) == 1 \)

 goto step 3;

 else goto step 2;

Figure 1. One and two dimensional kernels, (a) \(w_1 \) kernel for vertical edge detection, (b) \(w_2 \) kernel for horizontal edge detection, and (c) \(w_3 \) kernel for diagonal edge detection.

Figure 2. Edge detected using proposed algorithm. Upper row shows original images and the lower row shows the edge detected images.
Step 3: Check \(f(i, j-1) \) and \(f(i, j+2) \)
 if \(f(i, j-1) == 1 \) or \(f(i, j+2) == 1 \)
 go to step 2;
 else go to step 4;
Step 4: Point to \(3 \times 2 \) element as \(f(i-1: i+1, j:j+1) \)
 if \(f(i-1, j) == 1 \) and \(f(i+1, j) == 1 \) and \(f(i-1, j+1) == 1 \) or \(f(i+1, j+1) == 1 \)
 set \(f(i, j+1) \) to zero;
 else if \(f(i-1, j) == 1 \) or \(f(i+1, j) == 1 \) and \(f(i-1, j+1) == 1 \) and \(f(i+1, j+1) == 1 \)
 set \(f(i, j) \) is set to zero;
 go to step 2;
 else go to step 5;
Step 5: Point to \(3 \times 4 \) element as \(f(i-1:i+1, j-1:j+2) \) and check the diagonal elements;
 if \(f(i-1, j-1) == 1 \) and \(f(i+1, j-1) == 1 \) and \(f(i-1, j+2) == 1 \) or \(f(i+1, j+2) == 1 \)
 set \(f(i, j+1) \) to zero;

2.3 Vertical Searching
Vertical searching is similar to that of horizontal searching; it can be viewed as a dual of horizontal searching. In vertical searching, the proposed algorithm searches two vertical elements on image matrix and the choice starts from \(f(i+1, j+1) \) and \(f(i+2, j+1) \), initial value of \(i \) and \(j \) is 1 and then dual of horizontal searching operation is performed.

3. Results and Discussion:
The study has been carried out in MATLAB (R2013a). The edges are detected on a gray level scanned
An Improved Study on Edge Based Image Segmentation and Subsequent Edge Thinning

document image (taken from Tripura Times, an Indian Daily) having dimension of 506x376 pixels as shown in Figure 3. The performance of the present method is measured by the metrics is also shown in 1. Pratt’s Figure Of Merit (PFOM), and 2. Edge Detection Error Rate (EDER) results are given in Table 1 for the Figure 3.

Table 1. Performance Metrics (Pratt’s figure of merit) of various edge detectors

PSNR (dB)	Metrics	Edge detection type	Sobel	LoG	Canny	Proposed Method
44	PFOM	0.9973	0.9933	0.9879	0.9986	
	EDER	0.0196	0.0151	0.0144	0.0138	
36	PFOM	0.9854	0.9842	0.9760	0.9868	
	EDER	0.0458	0.0364	0.0330	0.0331	
30	PFOM	0.9725	0.9523	0.9470	0.9777	
	EDER	0.0882	0.0723	0.0647	0.0625	
26	PFOM	0.9299	0.9075	0.9001	0.9323	
	EDER	0.1387	0.1149	0.1089	0.1043	
24	PFOM	0.9007	0.8836	0.8705	0.8895	
	EDER	0.1710	0.1476	0.1287	0.1343	

From Table 1, it can be concluded that PFOM is decreased and EDER is increased with the increase in noise power, but at any amount of added noise power. The value of PFOM should be high and EDER value should be low. Present method holds almost highest value for PFOM and almost least value for EDER at different levels of added noise power. A car image comprises document as number plate is shown in Figure 4, used for edge detection using proposed method and compared with some other novel methods. The precise edge detection of document section is highlighted. The novelty of the proposed study depends on the fact, that for spatial convolution operation in digital image processing, the spatial filter is flapped and dragged over the image from the left top corner pixel and completed to the right lowest corner pixel. In the proposed study, the spatial filter of various dimensions like one dimension horizontal, one dimensional vertical and two dimensional spatial filter are serially used and the effects have been studied. The use of one dimensional convolution masks and flipping of images are rarely seen, possibly has not been used so far. Although from the Table 1, it has been seen that the increase PFOM and EDER values are marginal in nature still the proposed method has greater flexibility of operation in a so called non-conventional way.

4. Conclusion

The proposed method has been found to yield better figure of merit in terms of Pratt’s figure of merit and edge detection error rate compared to those obtained by the Roberts, Prewitt, Sobel, Canny, and LoG operators. The results are expected to provide a basic knowledge of understanding the edge detection and edge thinning in a brisk manner.

Figure 4. Edge detection of an image of a car including number plate. a) Original image, (b) using Sobel, (c) using LoG, (d) using Canny, (e) using Proposed Method.
5. Acknowledgment

The authors are grateful to Director, Professors and other technical staffs of National Institute of Technology Agartala for providing a fabulous research environment throughout the Institute.

6. References

1. Gonzalez RC, Woods RE. Digital Image Processing, 3rd edition, Dorling Kindersley Pvt. Ltd. India, 2009.
2. Donga QY, Songa CC, Benb CS, Quana LJ. A fast Sub-pixel Edge Detection Method using Sobel–Zernike Moments Operator, Image and Vision Computing. 2005 Jan; 23(1):11–17.
3. Qiu T, Yan Y, Lu G. An Auto Adaptive Edge Detection Algorithm for Flame and Fire Image Processing, IEEE Transactions on Instrumentation and Measurement. 2012; 61(5):1486–93.
4. Agaian SS, Panetta KA, Nercessian SC, Danahy EE. Boolean Derivatives with Application to Edge Detection for Imaging Systems, IEEE Transactions on Systems, Man and Cybernetic. 2010 Apr; 40(2):371–82.
5. Ye J, Fu G, Poudel UP. High-Accuracy Edge Detection with Blurred Edge Model, Image and Vision Computing. 2005 May; 23(5):453–67.
6. Law T, Ioh H, Seki H. Image Filtering, Edge Detection and Edge Tracing using Fuzzy Reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996 May; 18(5):481–91.
7. Wu J, Yin Z, Xiong Y. The Fast Multilevel Fuzzy Edge Detection of Blurry Images, IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007 May; 14(5):343–47.
8. Wu J, Yin Z, Xiong Y. Detection and Classification of Edges in Colour Images, IEEE Signal Processing Magazine. 2005 Jan; 22(1):64–73.
9. Edge Detection of Image on the Local Feature. Date Accessed: 20/12/2008. Available at: http://ieeexplore.ieee.org/document/4739780/.
10. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M. Detection of Blood Vessels in Retinal Images using Two-Dimensional Matched Filters, IEEE Transactions on Medical Imaging. 1989 Sep; 8(3):263–69.
11. Chaple G, Daruwalla RD. Design of Sobel Operator Based Image Edge Detection Algorithm on FPGA, IEEE Conference on Communication and Signal Processing, India. 2014 Apr. p. 1040–44.
12. Du S, Chen S. Salient Object Detection via Random Forest, IEEE Signal Processing Letters. 2014 Jan; 21(1):51–54.
13. Molina CL, Baets BD, Bustince H, Sanz J, Barrenechea E. Multiscale Edge Detection Based on Gaussian Smoothing and Edge Tracking. Knowledge-Based Systems. 2013 May; 44:101–11.
14. Wang X. Laplacian Operator-Based Edge Detectors, IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007 May; 23(5):886–90.
15. Demigny D. On Optimal Linear Filtering for Edge Detection, IEEE Transactions on Image Processing. 2002 Feb; 11(7):728–37.
16. Nezhadarya E, Ward RK. A New Scheme for Robust Gradient Vector Estimation in Color Images, IEEE Transactions on Image Processing. 2011 Aug; 20(8):2211–20.
17. Lam L, Lee SW, Suen CY. Thinning Methodologies: A Comprehensive Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992 Sep; 14(9):869–85.
18. Chen YS, Yu YT. Thinning Approach for Noisy Digital Patterns, Pattern Recognition Letters. 1996 Nov; 29(11):1847–62.
19. Chang F, Lu YC, Pavlidis T. Feature Analysis using Line Sweep Thinning Algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992 Sep; 21(2):143–58.
20. Shanmugan KS, Paul C. A Fast Edge Thinning Operator, IEEE Transactions on Systems, Man and Cybernetics. 1982 Jul-Aug; 12(4):567–69.
21. Wang PS, Zhang YY. A FAST and Flexible Thinning Algorithm, IEEE Transactions on Computers. 1989 May; 38(5):741–45.
22. Zhang YY. Redundancy of Parallel Thinning. Pattern Recognition Letters. 1997 Jan; 18(1):27–35.
23. An Improved Parallel Thinning Algorithm. Date Accessed: 06/08/2003. Available at: http://ieeexplore.ieee.org/document/1227768/.
24. Image Edge Detection Based on Rotating Kernel Transformation. Date Accessed: 14/10/2014. Available at: http://ieeexplore.ieee.org/document/7003813/.
25. Pande S, Bhadouria VS, Ghoshal D. A Study on Edge Marking Scheme of Various Standard Edge Detectors. International Journal of Computer Applications. 2012 Apr; 44(9):33–37.
26. Jain AK. Fundamentals of Digital Image Processing. United States Edition (Prentice Hall Information and System Sciences Series. Prentice Hall), US Edition. Sep. 1988.
27. Pratt WK. Digital Image Processing. 4th Edition, A John Wiley & Sons Inc, New Jersey, 2007.