Methylenetetrahydrofolate reductase gene rs1801133 polymorphism and essential hypertension risk from a comprehensive analysis

Yingchao Fan  
University of Shanghai for Science and Technology

Liting Wu  
University of Shanghai for Science and Technology

Zhuang Wenfang (czwf1991@163.com)  
University of Shanghai for Science and Technology

Research Article

Keywords: MTHFR, essential hypertension, polymorphism, meta-analysis

Posted Date: February 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-176622/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Essential hypertension (EH) is common and multifactorial disorders likely to be influenced by multiple genes. The methylenetetrahydrofolate reductase (MTHFR) gene rs1801133 polymorphism is related to MTHFR enzyme activity and to plasma homocysteine concentration. In addition, variations in MTHFR functions likely play roles in the etiology of EH. So far, larger number of studies between MTHFR rs1801133 polymorphism and EH have provided controversial or inconclusive results. To better assess the purported relationship, we performed a comprehensive analysis of 50 publications.

Methods

Eligible studies were identified by searching the PubMed, Wanfang and CNKI databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess this association.

Results

Overall, increased significant associations were detected between MTHFR rs1801133 polymorphism and EH risk (such as T vs. C: OR = 1.37, 95%CI = 1.24–1.52, P = 0.000), the same as in race subgroup (Asian: T vs. C: OR = 1.46, 95%CI = 1.29–1.67, P = 0.000; China: T vs. C: OR = 1.51, 95%CI = 1.30–1.74, P = 0.000). Similar associations were also found in source of control and genotype methods subgroups.

Conclusions

Our study showed evidence that MTHFR rs1801133 null genotype may increase EH risk. Future studies with larger sample size are warranted to further evaluate this association in more detail.

Background

Essential hypertension (EH) has a high prevalence rate worldwide, which is considered as a complex interaction of diverse gene-gene or environmental conditions[1, 2]. The present evidence-based treatment of EH is a critical intervention in reducing cardiovascular (CV) morbidity and mortality[3]. A contemporary meta-analysis of 123 studies with 613,815 hypertensive participants showed for every 10-mm Hg reduction in systolic blood pressure, there is a significant decreasing of the risk of major CV disease events (relative risk 0.80, 95% confidence interval [CI] 0.77–0.83), coronary heart disease (0.83, 0.78–0.88), stroke (0.73, 0.68–0.77), and heart failure (0.72, 0.67–0.78)[4]. EH accounts for 90%-95% of all patients with hypertension, and about 20%-60% of its etiology is related to genetic factors[5].

Because a high plasma concentration of homocysteine (Hcy) may predispose to atherosclerosis by injuring the vascular endothelium, which results in hypertension. Elevated Hcy has been identified as an independent risk factor for hypertension[6–9]. Methylenetetrahydrofolate reductase (MTHFR) plays an important role in the metabolism of Hcy. The C/T mutation of C667T site (rs1801133, a C to T transition at nucleotide position 677 in exon 4 generates an alanine to valine change at amino acid 222) of MTHFR gene may lead to the decrease of MTHFR activity and heat tolerance, which may lead to the metabolic damage of Hcy, and then to moderate increase of plasma Hcy level[10, 11]. Above information indicated that MTHFR rs1801133 may related to EH development and susceptibility. It makes sense to demonstrate the association between this polymorphism and EH risk, which may provide guidance for the prevention and diagnosis of EH in clinic.

So far, numerous studies have reported the association between MTHFR rs1801133 polymorphism and EH risk, however, this relationship remains ambiguous and controversial. We performed a comprehensive analysis including 50 different case-control studies to achieve a convinced conclusion.

Materials And Methods

Identification of eligible studies

The PubMed, Wanfang and CNKI databases (updated on Dec 30, 2020) were applied using following relative keywords: polymorphism/variant/mutation, hypertension/essential hypertension, and MTHFR/methylenetetrahydrofolate reductase. We included all studies that described the relationship between MTHFR rs1801133 polymorphism and EH susceptibility. All included studies should meet all of the following criteria: (1) association between MTHFR rs1801133 polymorphism and EH risk; (2) case-control study; (3) each genotype frequency is shown in Tables; (4) genotype distributions of control consistent with Hardy-Weinberg equilibrium (HWE) about control were more than 0.05.

Data extraction

We collected following information in our analysis: first author's last name, year of publication, origin for ethnicity, sample size (cases/controls), study design, HWE of controls and genotype methods, number of genotype frequency in cases/controls.

Quality assessment
In our current meta-analysis, the quality was assessed using the Newcastle-Ottawa Scale (NOS) for cross-sectional study quality assessment tool. The methodological quality of each study (sampling strategy, response rate, and representativeness of the study), comparability, and outcome were checked using the NOS tool. Studies with a score of more than 7 out of 10 were considered as achieving good quality. This cut-off point was declared after reviewing relevant kinds of literature[12].

### Statistical analysis

The extracted data were imported to Stata software (version 10.0, Corporation, College Station, Texas) for analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to measure the strength of the association[13, 14]. Subgroup analysis stratified by race was performed first. Race was categorized as European, Asian, Mixed, China and non-China five types. Source of control subgroups were performed on two classifications: hospital-based (HB) and population-based (PB). For MTHFR rs1801133, we investigated the relationship between genetic variants and LC risk in five different models (T-allele vs. C-allele, TT vs. CC, TC vs. CC, TT+TC vs. CC and TT vs. TC+CC).

Heterogeneity evaluation within the included studies was assessed using Cochrane's Q test (Chi-square) and $I^2$ (%) statistics. A fixed effect model will be applied when the effects are assumed to be homogenous ($P>0.05$, $I^2 \leq 50\%$); otherwise, the random effect model will be adopted ($P<0.05$, $I^2 \geq 50\%$).[15, 16] If heterogeneity is existed, to explore the source of heterogeneity, subgroup analysis will be performed through the ethnicity, publication year, study design and genotype methods.

The presence of potential publication bias is determined through the Egger/Begg's test and presented graphically by a funnel plot[17]. In addition, the departure of frequencies of MTHFR polymorphism from expectation under HWE is assessed by $\chi^2$ test in controls using the Pearson chi-square test[18]. Another, sensitivity analysis is conducted to assess the stability of the results. Finally, the power and sample size analysis of our meta-analysis was calculated by a program called PS: Power and Sample Size Calculation (http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize#Windows)[19].

### Genotyping methods

Genotyping for SNP of MTHFR gene polymorphisms was conducted using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), TaqMan, sequencing, PCR, amplification refractory mutation system-PCR (ARMS-PCR) and high-resolution melt (HRM) genotyping facility.

### Meta-regression

Considering the subgroup of publication year, ethnicity, source of control, genotype method as independent variables and the log as dependent variable, the random-effect meta-regression results were presented to define the source of publication bias[20].

### Gene interaction network of MTHFR gene

In order to fully understand the role and potential and functional partners of MTHFR in EH, String online server (http://string-db.org/) uses the gene-gene interaction network of MTHFR gene[21, 22].

### Results

#### Study selection and characteristics in our meta-analysis

We established databases according to the extracted information from each article. Using the keywords, we identified 353 articles from PubMed, 56 from CNKI and 362 from Wanfang databases. 547 articles were excluded after reading abstract section and 224 articles were left for full article evaluation. Among them, 38 article were about systematic analysis/meta-analysis/review; 24 just only were offered case group; 16 articles were duplicated with including other papers; 34 had no original numbers for case/control groups, only showed total numbers; 27 article were about H-type hypertension; 4 were related to aortic hypertension and 26 were hypertension-in-pregnancy (Figure 1). After above review, 54 articles about 55 case-control studies were left, in which 5 case-control studies were not consistent with HWE and were excluded, finally, 50 case-control studies from 54 different literatures were included in our current analysis. All essential information was listed in Table 1. Table 1 showed first author, publishing year, race, the numbers of cases and controls, HWE, genotype numbers in cases/controls, study design and genotype methods. So in our study, there are 10 European case-control studies, 36 Asian case-control studies and 4 Mixed. The T frequency in Asians was 45.55%, in Europeans was (47.88%), and in Mixed was (47.38), which did not exist statistically significant ($P>0.05$). The distribution of genotypes in all the controls was agreement with HWE. In addition, we checked the Minor Allele Frequency (MAF) reported for the seven main worldwide populations in the 1000 Genomes Browser[23] (https://www.ncbi.nlm.nih.gov/snp/rs1801133): Global (0.335); European (0.345); East Asian (0.328); South Asian (0.167); African (0.123); African American (0.125); Asian (0.265) (Figure 2A). In order to observe the frequency of T-allele and C-allele both in case and control groups, we analyzed and found the frequency between case and control was pretty much the same (Figure 2B). Finally, we analyzed the trend of rs1801133 polymorphism from TCGA database, TT (AA) frequency was relatively low than other genotypes (Figure 2C). This polymorphism is associated with coronary artery, rather than aorta artery left ventricle and tibial artery (https://www.gtexportal.org/home/) (Figure 2D).

### Quantitative data synthesis

Table 2 showed that the summary odds ratios of MTHFR based on1053 EH cases and 11743 matched controls, we observed increased association between the MTHFR rs1801133 polymorphism and EH in total population (for example: T-allele vs. C-allele: OR=1.37, 95%CI=1.24-1.52, $P<0.001$). Then, subgroup by ethnicity analysis, similar trend was also observed (T-allele vs. C-allele: OR=1.46, 95%CI=1.29-1.67, $P<0.001$, $I^2=50\%$). In order to fully understand the role and potential and functional partners of MTHFR in EH, String online server (http://string-db.org/) uses the gene-gene interaction network of MTHFR gene[21, 22].

Quantitative data synthesis

Table 2 showed that the summary odds ratios of MTHFR based on1053 EH cases and 11743 matched controls, we observed increased association between the MTHFR rs1801133 polymorphism and EH in total population (for example: T-allele vs. C-allele: OR=1.37, 95%CI=1.24-1.52, $P<0.001$, $I^2=50\%$).
homocysteine to methionine. The source of control and find the source of heterogeneity, HB and PB subgroups were calculated, significant increased relationships were shown (T-allele vs. C-allele: OR=1.49, 95%CI=1.28-1.75, \( p < 0.001 \), I-squared=85.4%), PCR-RFLP (T-allele vs. C-allele: OR=1.49, 95%CI=1.30-1.72, \( p < 0.001 \), I-squared=65.1%) and HRM(T-allele vs. C-allele: OR=1.32, 95%CI=1.15-1.51, \( p < 0.001 \), I-squared=47.5%) (Figure 3D, E).

**Publication bias and sensitive analysis**

The Begg's funnel plot and Egger's test were performed to access the publication bias of literature. Significantly obvious evidence of publication bias was detected in five genetic model analysis (such as Figure 4 A, B about T-allele vs. C-allele) (Table 3).

To delete studies which may influence the power and stability of the whole study, the sensitive analysis was applied, finally, no sensitive case-control studies were found for this SNP in five models (such as Figure 4C about T-allele vs. C-allele).

**Meta-regression**

The analysis showed significant relationship for allele model (T-allele vs. C-allele) for the ethnicity, source of control and genotype methods with a regression coefficient of 0.001, 0.004, 0.010 and 0.002, respectively, rather than publication year, which means the heterogeneity from rs1801133 polymorphism in EH may be from the ethnicity, source of control and genotype methods subgroups (Figure 5A-E).

**Gene-gene network diagram and interaction of online website**

String online server indicated that MTHFR gene interacts with numerous genes. The most ten significant genes from network of gene-gene interaction has been listed in Figure 6A-B. The ten genes are: methionine (MTR); thymidylate synthase (TYMS); C-1-tetrahydrofolate synthase (MTHFD1); serine hydroxymethyltransferase 1 (SHMT1); serine hydroxymethyltransferase 2 (SHMT2); bifunctional methylenetetrahydrofolate dehydrogenase (MTHFD2); probable bifunctional methylenetetrahydrofolate dehydrogenase (MTHFD2L); aminomethyltransferase (AMT) and methionine synthase reductase (MTRR).

**Discussion**

The cause of hypertension is unknown, the risk factors include genetic factors, age and unhealthy lifestyle, among which 70–80% of hypertension is related to unhealthy lifestyle. As the risk factors for high blood pressure accumulate, the risk of high blood pressure increases[24, 25].

Most people with hypertension do not have typical symptoms, it is easy to be ignored and can't go to see a doctor in time. Therefore, how to identify high-risk patients is a very meaningful work, which can predict the high-risk patients with high blood pressure as early as possible, timely monitor blood pressure, follow-up regularly, pay attention to improve unhealthy lifestyles. Once the blood pressure is rising, it can be immediate for detection, gain treatment timely, avoid complications, and ultimately reduce the incidence of hypertension and improve the quality of life of patients[3, 26, 27].

The detection of significant polymorphisms may be the suitable method to forecast the possible of individuals to the risk of hypertension. Our current study focused on EH, a common type of hypertensions, and included 10533 EH patients and 11743 health individuals. In the overall analysis, we found individuals carried TT or T-allele may increase EH risk than CC or C-allele (between 37% and 89%). Significant heterogeneity was indicated in all genetic models, so to search the source, we analyzed the associations in other subgroups, such as ethnicity, source of control and genotype method. In the same time, significant relationships were also observed from ethnicity, source of control and genotype method subgroups, which were proved that rs1801133 polymorphism was a risk factor for EH in further. In addition, we used the meta-regression to evaluate the source of heterogeneity, finally, which came from above three subgroups.

The power of our study was 1, which suggested our conclusions was convince and persuasive.

Previous, several meta-analyses about rs1801133 polymorphism and hypertension have been published. For example, Wu et al. included 30 case-control studies and supported rs1801133 polymorphism played a risk role in developing EH[28]. Kosmas et al. identified 23 comparisons related hypertensive disease of pregnancy and gained a conclusion that T-allele of rs1801133 polymorphism could increase the hypertensive in pregnancy by 1.21-fold[29]. Third, Qian et al. just combined 26 published studies both for hypertension and hypertension-in-pregnancy, and suggested rs1801133 polymorphism could be one independent risk factor[30]. Fourth, Yang et al. performed a meta-analysis of 27 studies including 5418 EH and 4997 controls and supported the evidence the carriers of the rs1801133T allele were susceptible to EH susceptibility[31]. Above studies have some disadvantages: first, the HWE in several studies were not consistent with more than 0.05, which may increase the heterogeneity and reduce the power of conclusions; second, each study omitted other related case-control studies from, our present study is a relative comprehensive analysis; third, some articles did not distinguish the types of hypertension, because different kinds of hypertension have different etiology, pathogenesis and genetic background, so it is better to focus on one kind; fourth, our analysis increased genotype subgroup and evaluation of power; fifth, we analyzed gene-gene interactions between the related genes and MTHFR to make clear the potential function. However, the conclusions from our current study was similar with previous meta-analysis.

The bright spot from our study was the gene-gene interaction. We showed the significant ten genes. The average score is more than 0.9, the top three genes are MTR (0.995), TYMS (0.992) and MTHFD1 (0.989). MTHFR and MTR both participate the homocysteine metabolism, which regular different stages, MTHFR converts 5,10-methylene-THF into 5-methyl-THF; however, MTR catalyzes the demethylation of 5-methyl-THF to THF and the re-methylation of homocysteine to methionine[32, 33]. MTR 2756 A/G polymorphism also was associated with hypertension risk[34].
Some limitations in our meta-analysis should be considered. Beginning, the heterogeneity was found in our study, which came from ethnicity, source of control and genotype methods, further studies should optimize the design of retrospective and prospective studies to overcome this deficiency. Second, EH is a complex disease including genetic and other factors (such as environment, diet, concomitant disease, etc.);[35], studies should analyze the gene-gene or gene environment interactions with larger sample studies. Third, further meta may include all kinds of hypertension, and analyze association for each kind and find the different genetic background. Fourth, the specific mechanism of rs1801133 polymorphism should be explored.

In present, our meta-analysis showed the evidence that MTHFR 677T null genotype was associated with increased EH risk. Therefore, further well-designed large studies are necessary. Also, we should focus on the mechanism of rs1801133T-allele in animal model to explain the complete chain of evidence for prevention of EH in the future.

Abbreviations

EH: essential hypertension; MTHFR: methylenetetrahydrofolate reductase; SNP: single nucleotide polymorphism; HB: hospital-based; PB: population-based; SOC: source of control; PCR-RFLP: ARMS-PCR: amplification refractory mutation system-PCR; HRM: high-resolution melt.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Links for database

1000 Genomes Browse: https://www.ncbi.nlm.nih.gov/snp/rs1801133
PubMed: https://pubmed.ncbi.nlm.nih.gov/
CNKI: https://kns.cnki.net/kns/brief/default_result.aspx
Wanfang: https://pubmed.ncbi.nlm.nih.gov/
Power: http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize%5C043Windows
String: http://string-db.org/

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by Shanghai Municipal Commission of Health and Family Planning (201740228) and Shanghai Yangpu District Key Discipline Project (YP19ZB03). The funding body play no direct role in the design of the study, and collection, analysis, and interpretation of data, and in writing the manuscript.

Author's contributions

YF and LW designed the study and drafted the manuscript; LW extracted, analyzed, interpreted the data, and collected the clinical data; LW and WZ performed the targeted sequencing, analyzed and interpreted the data; LW and WZ participated in the study coordination and revised the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements

Not applicable.

References

1. Bayramoglu A, Urhan Kucuk M, Guler Hl, Abaci O, Kucukkaya Y, Colak E: Is there any genetic predisposition of MMP-9 gene C1562T and MTHFR gene C677T polymorphisms with essential hypertension? Cytotechnology 2015, 67(1):115–122.
2. O'Donnell AJ, Bogner HR, Cronholm PF, Kellom K, Miller-Day M, McClintock HF, Kaye EM, Gabbay R: Stakeholder Perspectives on Changes in Hypertension Care Under the Patient-Centered Medical Home. Preventing chronic disease 2016, 13:E28.

3. Ferdinand KC, Nasser SA: Management of Essential Hypertension. Cardiology clinics 2017, 35(2):231–246.

4. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, Chalmers J, Rodgers A, Rahimi K: Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet (London, England) 2016, 387(10022):957–967.

5. Petramala L, Acca M, Francucci CM, D'Erasmo E: Hyperhomocysteinemia: a biochemical link between bone and cardiovascular system diseases? Journal of endocrinological investigation 2009, 32(4 Suppl):10–14.

6. Alam MA, Hussain SA, Narang R, Chauhan SS, Kabra M, Vasisht S: Association of polymorphism in the thermolabile 5, 10-methylene tetrahydrofolate reductase gene and hyperhomocysteinemia with coronary artery disease. Molecular and cellular biochemistry 2008, 310(1-2):111–117.

7. Tawakol A, Omland T, Gerhard M, Wu JT, Creager MA: Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 1997, 95(5):1119–1121.

8. Heux S, Morin F, Lea RA, Ovcaric M, Tajouri L, Griffiths LR: The methylenetetrahydrofolate reductase gene variant (C677T) as a risk factor for essential hypertension in Caucasians. Hypertension research: official journal of the Japanese Society of Hypertension 2004, 27(9):663–667.

9. Collaboration. HS: Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. Jama 2002, 288(16):2015–2022.

10. Froost P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP et al.: A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature genetics 1995, 10(1):111–113.

11. Goyette P, Pai A, Milos R, Froost P, Tran P, Chen Z, Chan M, Rozen R: Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR) Mammalian genome: official journal of the International Mammalian Genome Society 1998, 9(8):652–656.

12. Melisse B, de Beurs E, van Furth EF: Eating disorders in the Arab world: a literature review. Journal of eating disorders 2020, 8(1):59.

13. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Statistics in medicine 2002, 21(11):1539–1558.

14. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 2003, 327(7414):557–560.

15. DerSimonian R, Laird N: Meta-analysis in clinical trials. Controlled clinical trials 1986, 7(3):177–188.

16. Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute 1959, 22(4):719–748.

17. Hayashino Y, Noguchi Y, Fukui T: Systematic evaluation and comparison of statistical tests for publication bias. Journal of epidemiology 2005, 15(5):235–243.

18. Napolioli V: The relevance of checking population allele frequencies and Hardy-Weinberg Equilibrium in genetic association studies: the case of SLC6A4 5-HTTLPR polymorphism in a Chinese Han Irritable Bowel Syndrome association study. Immunology letters 2014, 162(1 Pt A):276–278.

19. Yu Q, Zhu J, Yao Y, Sun C: Complement family member CFI polymorphisms and AMD susceptibility from a comprehensive analysis. Biosci Rep 2020, 40(4).

20. Musso G, Sircana A, Saba F, Cassader M, Gambino R: Human methionine synthase A2756G polymorphism increases susceptibility to prostate cancer. Aging 2018, 10(7):1776–1788.

21. Drysdale R, McEntyre J, Durinx C: The Annual Indicator Monitoring and Periodic Review Processes: ELIXIR Core Data Resources and Deposition Databases [version 1: not peer reviewed]. F1000Research 2020, 9(ELIXIR):114 (document) (https://doi.org/10.1249/f100research.1117816.1117811).

22. Zhang LF, Xu K, Tang BW, Zhang W, Yuan W, Yue C, Shi L, Mi YY, Zuo L, Zhu LJ: Association between SOD2 V16A variant and urological cancer risk. Aging 2020, 12(1):825–843.

23. Lawes CM, Vander Hoorn S, Rodgers A: Global burden of blood-pressure-related disease, 2001. Lancet (London, England) 2008, 371(9623):1513–1518.

24. Tanira MO, Al Balushi KA: Genetic variations related to hypertension: a review. Journal of human hypertension 2005, 19(1):7–19.

25. Flack JM, Sica DA, Bakris G, Brown AL, Ferdinand KC, Grimm RH, Jr., Hall WD, Jones WE, Kountz DS, Lea JP et al.: Management of high blood pressure in Blacks: an update of the International Society on Hypertension in Blacks consensus statement. Hypertension (Dallas, Tex: 1979) 2010, 56(5):780–800.

26. Kjeldsen SE, Lund-Johansen P, Nilsson PM, Mancia G: Unattended Blood Pressure Measurements in the Systolic Blood Pressure Intervention Trial: Implications for Entry and Achieved Blood Pressure Values Compared With Other Trials. Hypertension (Dallas, Tex: 1979) 2016, 67(5):808–812.

27. Wu YL, Hu CY, Lu SS, Gong FF, Feng F, Qian ZZ, Ding XX, Yang HY, Sun YH: Association between methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and essential hypertension: a systematic review and meta-analysis. Metabolism: clinical and experimental 2014, 63(12):1503–1511.

28. Kosmas IP, Tatsioni A, Ioannidis JP: Association of C677T polymorphism in the methylenetetrahydrofolate reductase gene with hypertension in pregnancy and pre-eclampsia: a meta-analysis. Journal of hypertension 2004, 22(9):1655–1662.

29. Qian X, Lu Z, Tan M, Liu H, Lu D: A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. European journal of human genetics: EJHG 2007, 15(12):1239–1245.

30. Yang KM, Jia J, Mao LN, Men C, Tang KT, Li YY, Ding HX, Zhan YY: Methylenetetrahydrofolate reductase C677T gene polymorphism and essential hypertension: a meta-analysis of 10,415 subjects. Biomedical reports 2014, 2(5):699–708.

31. Barbosa PR, Stabler SP, Machado AL, Braga RC, Hirata RD, Hirata MH, Sampaio-Neto LF, Allen RH, Guerra-Shinohara EM: Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women.
European journal of clinical nutrition 2008, 62(8):1010–1021.
33. Hustad S, Midttun Ø, Schneede J, Vollset SE, Grotmol T, Ueland PM: The methylenetetrahydrofolate reductase 677C→T polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. American journal of human genetics 2007, 80(5):846–855.
34. Qin X, Li J, Cui Y, Liu Z, Zhao Z, Ge J, Guan D, Hu J, Wang Y, Zhang F et al: MTHFR C677T and MTR A2756G polymorphisms and the homocysteine lowering efficacy of different doses of folic acid in hypertensive Chinese adults. Nutrition journal 2012, 11:2.
35. Tylicki L, Födinger M, Puttiger H, Rutkowski P, Strozecki P, Tyszko S, Rutkowski B, Höfl WH: Methylenetetrahydrofolate reductase gene polymorphisms in essential hypertension relation: with the development of hypertensive end-stage renal disease. American journal of hypertension 2005, 18(11):1442–1448.

### Tables

**Table 1** Characteristics of studies of *MTHFR* gene rs1801133 polymorphism and essential hypertension risk included in our meta-analysis

| Author     | Year | Country | Ethnicity | Case | Control | Case | Control |
|------------|------|---------|-----------|------|---------|------|---------|
| Gao        | 1999 | China   | Asian     | 127  | 100     | 15   | 26      |
| Wang       | 2002 | China   | Asian     | 105  | 46      | 37   | 51      |
| Sun        | 2003 | China   | Asian     | 55   | 173     | 27   | 22      |
| Liu        | 2005 | China   | Asian     | 100  | 100     | 26   | 45      |
| Li         | 2006 | China   | Asian     | 26   | 30      | 2    | 6       |
| Hu         | 2006 | China   | Asian     | 110  | 115     | 16   | 39      |
| Tang       | 2007 | China   | Asian     | 252  | 195     | 20   | 93      |
| Lin        | 2008 | China   | Asian     | 50   | 123     | 4    | 27      |
| Zhang      | 2012 | China   | Asian     | 189  | 165     | 8    | 53      |
| Yin        | 2012 | China   | Asian     | 670  | 682     | 68   | 358     |
| Yao        | 2013 | China   | Asian     | 150  | 150     | 49   | 69      |
| Cai        | 2014 | China   | Asian     | 200  | 200     | 62   | 99      |
| Liu        | 2019 | China   | Asian     | 934  | 1075    | 295  | 439     |
| Ghogomu    | 2016 | China   | Asian     | 41   | 50      | 14   | 24      |
| Dai        | 2015 | China   | Asian     | 114  | 104     | 32   | 57      |
| Wen        | 2015 | China   | Asian     | 174  | 634     | 76   | 53      |
| Wu         | 2016 | China   | Asian     | 123  | 120     | 11   | 39      |
| Fan        | 2016 | China   | Asian     | 214  | 494     | 75   | 102     |
| Zhao       | 2017 | China   | Asian     | 200  | 200     | 47   | 99      |
| Sui        | 2020 | China   | Asian     | 102  | 109     | 31   | 52      |
| Yu         | 2020 | China   | Asian     | 137  | 128     | 5    | 47      |
| Yu         | 2020 | China   | Asian     | 163  | 160     | 31   | 79      |
| Nong        | 2019 | China   | Asian     | 122  | 110     | 49   | 58      |
| Zhao       | 2016 | China   | Asian     | 100  | 100     | 23   | 50      |
| Tian       | 2018 | China   | Asian     | 743  | 718     | 203  | 373     |
| Sui        | 2019 | China   | Asian     | 113  | 73      | 44   | 50      |
| Liu        | 2020 | China   | Asian     | 934  | 1075    | 295  | 439     |
| Zhang      | 2020 | China   | Asian     | 741  | 538     | 164  | 313     |
| Nishio     | 1996 | Japan   | Asian     | 47   | 82      | 5    | 26      |
| Nakata     | 1998 | Japan   | Asian     | 173  | 184     | 19   | 91      |
| Lwin       | 2006 | Japan   | Asian     | 116  | 219     | 19   | 58      |
| Hui        | 2007 | Japan   | Asian     | 261  | 271     | 49   | 129     |
| Markan     | 2007 | India   | Asian     | 153  | 133     | 8    | 40      |
| Nassreddine | 2015 | Morocco | Moroccan  | 101  | 102     | 14   | 40      |
| Candrasastra | 2020 | Indonesia | Asian | 213  | 202     | 6    | 73      |
| Arina      | 2019 | Indonesia | Asian | 53   | 53      | 5    | 16      |
| Benes      | 2001 | Czech   | European  | 193  | 209     | 27   | 93      |
| Kahleova   | 2002 | Czech   | European  | 164  | 173     | 27   | 55      |
| Rodriguez | 2003 | Spain   | European  | 232  | 215     | 34   | 115     |
| Heux       | 2004 | New Zealand | European | 247  | 249     | 35   | 125     |
| Tylicki    | 2005 | Austria/Poland | European | 90   | 90      | 11   | 39      |
| Ilhan      | 2008 | Turkey  | European  | 78   | 100     | 10   | 32      |
| Deshmukh   | 2009 | USA     | European  | 42   | 118     | 4    | 16      |
| Ng         | 2009 | Australia | European | 38   | 80      | 10   | 14      |
| Dowdar     | 2012 | Australia | European | 377  | 393     | 33   | 174     |
| Bayramoglu | 2013 | Turkey  | European  | 125  | 99      | 22   | 38      |
| Fridman    | 2013 | Argentina | Mixed  | 75   | 150     | 6    | 40      |
| Perez-Razo | 2015 | Mexico  | Mixed     | 373  | 391     | 87   | 174     |
| Perez-Razo | 2015 | Mexico  | Mixed     | 199  | 199     | 67   | 98      |

**Sources:**
- SOC: source of control;
- PCR-RFLP, PCR-SSCP: polymerase chain reaction followed by restriction fragment length polymorphism;
- HRM: High-Resolution Melt;
- ARMS-PCR: amplification refractory mutation system-PCR;
- HWE: Hardy-Weinberg equilibrium of control group.

HB: hospital-based; PB: population-based; NOS: Number of Studies.
### Table 2: Stratified analyses of MTHFR gene rs1801133 polymorphism and essential hypertension risk

| Variables | N   | Case/Control | OR(95%CI) | P_1 F_1 | OR(95%CI) | P_2 F_2 | OR(95%CI) | P_3 F_3 | OR(95%CI) | P_4 F_4 |
|-----------|-----|---------------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|
| Ethnicity |     |               |           |         |           |         |           |         |           |         |
| Asian     | 36  | 8186/9083     | 1.00      | 0.69    | 0.46      | 0.002   | 0.003     | 0.009   | 0.009     | 0.009   |
| European  | 10  | 1586/1726     | 1.00      | 0.85    | 1.85      | 0.007   | 0.313     | 0.005   | 0.005     | 0.005   |
| Mixed     | 4   | 841/934       | 1.00      | 0.95    | 0.95      | 0.003   | 0.003     | 0.005   | 0.005     | 0.005   |
| China     | 20  | 6899/7837     | 1.00      | 0.96    | 1.51      | 0.001   | 0.007     | 0.008   | 0.008     | 0.008   |
| Not-China | 22  | 3544/3906     | 1.00      | 0.84    | 1.00      | 0.96    | 0.005     | 0.005   | 0.005     | 0.005   |

### Table 3: Publication bias tests (Begg's funnel plot and Egger's test for publication bias test)

| Genotype methods | OR(95%CI) | P_1 F_1 | OR(95%CI) | P_2 F_2 | OR(95%CI) | P_3 F_3 | OR(95%CI) | P_4 F_4 |
|------------------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|
| PCR              | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   |
| ARMS-PCR         | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   |
| TaqMan           | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   |
| HRM              | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   | 1.51(1.18-1.94) | 0.000   |

### Figures
Figure 1

Flowchart illustrating the search strategy used to identify association studies for MTHFR gene rs1801133 polymorphisms and EH risk.
Figure 2

A. The MAF of minor-allele (mutant-allele) for MTHFR gene rs1801133 polymorphism from the 1000 Genomes online database. B. The frequency about T-allele or C-allele both in case and control groups. C. The distribution of each genotype from on online GTEx Portal (https://www.gtexportal.org/home/). D: The risk frequency of rs1801133 polymorphism to several disease from TCGA database.
Figure 3

T-allele frequencies for the MTHFR gene rs1801133 polymorphism among cases/controls stratified by subgroups in T-allele vs. C-allele model. A: regular ethnicity subgroup; B: China/Non-China subgroup; C: source of control subgroup; D: genotype method subgroup by random effect model; E: genotype method subgroup by fixed effect model.
Figure 4
A: Begg's funnel plot for publication bias test (T-allele vs. C-allele). B: Egger's publication bias plot (T-allele vs. C-allele). C: Sensitive analysis (T-allele vs. C-allele).
Figure 5

Random-effect meta-regression of log odds ratio versus publication year (A), regular ethnicity (B), China/Non-China (C), source of control (D), genotype methods (E) respectively in EH.
Figure 6

Human MTHFR interactions network with other genes obtained from String server. At least 10 genes have been indicated to correlate with MTHFR gene. A: the gene-gene interaction; B: the detail of relative ten core genes.