A Novel Direct Active and Reactive Power Control Method Using Fuzzy Super Twisting Algorithms and Modified Space Vector Modulation Technique for an Asynchronous Generator-based Dual-rotor Wind Powers

H. Benbouhenni*

Departement de Génie Electrique, Ecole Nationale Polytechnique d’Oran Maurice Audin, BP 1523 EL M’NAOUER, Es- Sénia, Oran, Algérie

PAPER INFO

Paper history:
Received 13 April 2021
Accepted in revised form 16 May 2021

Keywords:
Asynchronous generator
Direct active and reactive powers
Dual-rotor wind power
Fuzzy super-twisting sliding mode

ABSTRACT

This work presents a novel direct active and reactive powers command (DARPC) scheme based on fuzzy super twisting algorithms (FSTAs) of an asynchronous generator (ASG) integrated into dual-rotor wind power (DRWP) systems. The DRWP has two sets of blades. So it is more efficient for collecting power from wind in comparison to a traditional wind turbine. The scientific works indicate that a DRWP could extract additional 20-30% power compared to a traditional wind turbine. The conventional DARPC control scheme using the conventional integral-proportional (PI) regulators (DARPC-PI) has considerable reactive and active power oscillations. In order to guarantee an effective DARPC technique for the ASG-based DRWP system and minimize these oscillations, FSTAs are used in this work. Both DARPC strategies are presented and simulated from two tests using Matlab software. Simulation results showed the effectiveness of the designed DARPC control technique especially on the quality of the provided active and reactive power comparatively to the traditional DARPC control scheme with PI controllers.

doi: 10.5829/ijee.2021.12.02.02

INTRODUCTION

DARPC or direct active and reactive powers command is a technique to control asynchronous generators (ASGs) by utilizing stator active and reactive powers. But the reactive and active power oscillations are occurred in the traditional DARPC strategy [1]. The principle of the DARPC strategy is detailed in literature [2–4]. In addition, DPC offers many advantages include: simplicity in calculations, robustness against ASG parameters, and fast dynamic response [5–7]. Although the DARPC strategy is getting more and more popular, it suffers from some drawbacks such as the large ripples of reactive and active powers. In order the overcome these disadvantages many researchers have been investigating on the DARPC strategy and they can be grouped under several headlines:

- Using artificial intelligence methods (Neural networks and fuzzy logic) on different sections of the system
- Using different inverter topologies:
- Using sliding mode controller (SMC).

In this work, a novel fuzzy super-twisting algorithm (FSTA) and modified space vector modulation (MSVM) strategy has been designed to improve the stator active and reactive powers of the ASG on the DARPC technique.

The aim of this work is to improve the performance of the DARPC using FSTA controllers for ASG-based dual-rotor wind turbine (DRWT) system under variable speed wind and also to reduce fluctuations in reactive power, current, torque, and active power.

The FST method in the proposed technique rates active and reactive power errors and described the optimum space vector to reduce stator reactive and active power errors and oscillations. The simulation studies have been performed using Matlab logiciel board to effectiveness testing of the designed control strategy. In part II of this paper, the basic principles of the DARPC...
technique with PI controllers are presented. In part III, detailed information about the proposed strategy is introduced. Part IV gives the simulation results of the proposed technique. In conclusion, we provided a summary of the work performed.

MATHEMATICAL MODELING OF DRWP SYSTEM

The DRWP system with ASG is shown in Figure 1. The DRWP consists of two wind powers. The mechanical power captured from the DRWP system is given by Benbouhenni [8]:

\[P_{DRWP} = P_{AT} + P_{MT} \] \hspace{1cm} (1)

where, \(P_{AT} \) is the mechanical power of auxiliary turbine, and \(P_{MT} \) is the mechanical power of auxiliary turbine.

The torque of DRWP is given by:

\[T_{DRWP} = T_{AT} + T_{MT} \] \hspace{1cm} (2)

where, \(T_{AT} \) is the torque of auxiliary turbine, and \(T_{MT} \) is the torque of auxiliary turbine.

Equations (3) and (4) represent the torque of the output main and auxiliary turbines [9].

\[T_{AT} = \frac{1}{2\lambda_{AT}} \rho \cdot \pi \cdot R_{AT}^5 \cdot C_p \cdot W_{AT}^2 \] \hspace{1cm} (3)

\[T_{MT} = \frac{1}{2\lambda_{MT}} \rho \cdot \pi \cdot R_{MT}^5 \cdot C_p \cdot W_{MT}^2 \] \hspace{1cm} (4)

where, \(\lambda_{AT}, \lambda_{MT} \): the tip speed ratio of the main and auxiliary turbines, \(R_{MT}, R_{AT} \): blade radius of the auxiliary and main turbines, \(\rho \): the air density and \(W_{AT}, W_{MT} \): the mechanical speed of the auxiliary and main turbines.

The tip speed ratios of the auxiliary and main turbines are given below:

\[\lambda_{AT} = \frac{\Omega_{MT} \cdot R_{AT}}{V_{AT}} \] \hspace{1cm} (5)

\[\lambda_{MT} = \frac{\Omega_{AT} \cdot R_{MT}}{V_{MT}} \] \hspace{1cm} (6)

where \(\Omega_{MT} \) is the rotational speed of the main rotor, and \(\Omega_{AT} \) is the rotational speed of the auxiliary rotor.

The power coefficient \(C_p \) equation is approximated using a non-linear function according to.

\[C_p(\lambda, \beta) = \frac{1}{\lambda + 0.08\beta} - \frac{0.035}{\beta^2 + 1} \] \hspace{1cm} (7)

where, \(\beta \) is pitch angle.

The wind speed on the main turbine is given below [10]:

\[V_r = V_c(1 - \sqrt{1 - \frac{1}{\lambda}})(1 + \frac{2\alpha}{\sqrt{1 + 4\lambda^2}}) \] \hspace{1cm} (8)

with \(V_c \) is the velocity of the disturbed wind between rotors at point \(x \) and \(C_t \) the trust coefficient, which is taken to be 0.9: \(x \): the non-dimensional distance from the auxiliary rotor disk. So, with respect to \(x = 15 \), the value of the \(V_c \) close to the main rotor is computable (rotors are located 15 meters apart from each other).

MODIFIED SVM TECHNIQUE

The proposed SVM technique named as modified SVM (MSVM) technique is an effective modulation technique for uncertain inverter and it overcomes the main disadvantages of the traditional SVM strategy.

Figure 2 shows a block diagram representation of the MSVM technique approach for a two-level inverter in wind power. The principle of MSVM is detailed by Benbouhenni et al. [11]. This proposed strategy is based on calculation of the minimum and maximum of three-phase voltages. In this strategy, the sector and angle are not necessary to calculate. Modified SVM technique is used to minimize harmonic distortion (THD) in three-phase output current waveform compared to PWM technique.

The MSVM modulation technique is used to generate gate pulses to the IGBT switches of the ASG-based DRWP systems. The proposed MSVM technique is a simple algorithm compared to the classical SVM method and is more robust compared to the traditional PWM strategy. Benbouhenni et al. [12] proposed the use of an MSVM technique applied to the four-level inverter of ASG. The fuzzy MSVM technique is proposed to reduces the active and reactive powers [13]. The simulation results have shown the superiority of the two-level fuzzy MSVM strategy. Mehedri et al. [14], have proposed an MSVM to control the five-phase inverter and the results indicate that the proposed MSVM strategy-based technique is good at minimizing the torque undulation, THD value of stator current, and stator flux undulation.
The rotor flux amplitude is given by:

$$\psi_r = \sqrt{\psi_{ra}^2 + \psi_{rb}^2}$$ \hspace{1cm} (13)

where:

$$|\psi_r| = \frac{V_s}{w_r}$$ \hspace{1cm} (14)

The reactive and active PI regulators gains (Ki and Kp) were found after performing simulations in Matlab logiciel. The gains of PI regulator is stated in Table 1.

THE FSTA METHOD BASED DARPC METHOD

The DARPC scheme with PI controllers (DARPC-PI) offers some drawbacks associated with the large active and reactive powers ripples. In order to reduce these ripples, an STA technique with a fuzzy controller (FC) was designed. The origin of the DARPC-FSTA method is like to the DARPC-PI technique. The difference is using an FSTA algorithm to replace the conventional PI controllers. Also, the FLC is not dependent on the accurate mathematical model of the system [17]. It is based on ‘IF…THEN’ rules and experiences of human beings. In this work, using the advantage of FLC and STA, a DARPC method is presented.

A. Design of PI controller based on STA algorithm

The STA algorithm is based on the design of the discontinuous command signal that drives the system states toward special surfaces in state space [18]. Two

Ki	0.6
Kp	0.00005

![Figure 3. DARPC-PI technique](image-url)
STA algorithms are selected for stator reactive and active power command. On the other hand, the STA algorithm is one of the robust techniques [19]. It is a particular operation mode of variable structure control systems. These techniques were used in numerous research works in the past years [20–24]. In the ASG command using the STA algorithm, the manifolds are chosen according to the error between the measured signals and the reference input signal. Considering that e_1 and e_2 are the errors of the stator active and the reactive power, we have the following:

\[
\begin{bmatrix}
e_1 \\
e_2
\end{bmatrix} = \begin{bmatrix}
 P_{ref} - P_s \\
 Q_{ref} - Q_s
\end{bmatrix}
\]

(15)

The expression of the manifolds has the following form:

\[
\begin{bmatrix}
 S(P_s) \\
 S(Q_s)
\end{bmatrix} = \begin{bmatrix}
 P_{ref} - P_s \\
 Q_{ref} - Q_s
\end{bmatrix}
\]

(16)

The STA algorithms active and reactive power controllers are designed to respectively change the q and d-axis voltages as in Equations (17) and (18) [11].

\[
\begin{align*}
 V_{d*} &= K_1 S_{Q_s} \left(\text{sign}(S_{Q_s}) \right) + V_{d*1} \\
 V_{d*1} &= K_2 \text{sign}(S_{Q_s}) \\
 V_{q*} &= K_1 S_{T \text{em}} \left(\text{sign}(S_{T \text{em}}) \right) + V_{q*1} \\
 \frac{dV_{q*1}}{dt} &= K_2 \text{sign}(S_{T \text{em}})
\end{align*}
\]

(17)

(18)

where, the constant gains k_1 and k_2 must check the stability conditions.

Figure 4 shows the block diagram of STA algorithms of active and reactive powers.

B. Design of FLC based on STA algorithm

FSTA algorithm is a merge between the STA algorithm and FLC technique, where the switching term, $\text{Sign}(S(x))$, has been replaced by the FLC technique. The proposal of an STA algorithm incorporating the FLC method helps in achieving minimized active and reactive powers oscillations, easy method, simple technique, and robust technique compared to vector command method. The proposed FSTA algorithm, which is proposed to command the active and reactive powers of the ASG is shown in Figure 5. The fuzzy sets have been defined as follows: NB: Negative Big, NM: Negative Middle, NS: Negative Small, PS: Positive Small, PB: Positive Big, EZ: Equal Zero, and PM: Positive Middle. Membership functions in triangular shape are shown in Figures 6 and 7, respectively. Table 2 shows the proposed rule bases for the FSTA algorithms [25, 26].
The proprieties of our regulators are given in the Table 3.

Method	NS	NM	NB	PS	EZ	PS	PM	PB
And	NB	NB	NB	NS	EZ	PS	PM	PM
Or	NB	NB	NB	NB	NM	NS	EZ	PS
Implication	PM	NB	NB	NB	NM	NS	EZ	PS
Aggregation	PS	EZ	PS	PM	PB	PB	PB	PB
Defuzzification	PM	NS	EZ	PS	PM	PB	PB	PB

Table 4. THD value of both techniques

Technique	THD value
DARPC-PI	3.31%
DARPC-FSTA	3.07%

From the simulation results are presented in Figures 9 and 10. It is apparent that the THD value of current for the DARPC-FSTA strategy is reduced (see Table 4).

From the system responses given in Figures 11 and 12 for DARPC-PI and DARPC-FSTA technique the stator active and reactive power tracks the reference powers without overshoot, with zero steady-state error. Figure 13 shows the torque of both techniques. Note that torque is related to active power.

From Figure 14 can be seen that the amplitudes of the stator phase currents depend on the state of the drive system and the value of the load active power.

The zoom in the active power, torque, and stator current are shown in Figures 15, 16 and 17, respectively. It can be seen that the DARPC control with FSTA algorithms minimize the undulations in active power, torque, and current compared to the DARPC strategy with PI controllers.
Robustness test (RT)
In this test, the nominal value of the R_s and R_r is multiplied by 2, the values of inductances L_s, M, and L_r are multiplied by 0.5. Simulation results are presented in Figures 18-23. As it’s shown by these figures, these variations present an apparent effect on the torque, current, active and reactive power curves, and that the effect appears more significant for the DARPC using PI controllers compared to DARPC using FSTA algorithms (See Figures 24-26).

The THD value of the current in the DARPC using the FSTA algorithms has been minimized significantly (See Figures 22 and 23). Table 5 shows the THD value of both strategies. Thus it can be concluded that the proposed DARPC using FSTA algorithms is more robust than the DARPC using the PI controllers.

![Figure 11. Active power](image1)

![Figure 12. Reactive power](image2)

![Figure 13. Electromagnetic torque](image3)

![Figure 14. Stator current](image4)

![Figure 15. Zoom in the active power](image5)

![Figure 16. Zoom in the torque](image6)

![Figure 17. Zoom in the stator current](image7)

![Figure 18. Active power](image8)

![Figure 19. Reactive power](image9)

![Figure 20. Torque](image10)
On the other hand, this design technique reduced the THD value of current compared to other techniques (see Table 5). Based on the results above, it can be said that the DARPC-FSTA control technique has proven its efficiency in reducing ripples and chattering phenomena in addition to keeping the same advantages of the traditional DARPC method.

Ref.	Method Name	THD (%)
[22]	Second Order Continuous Sliding Mode – Direct Torque Control SOC-SM-DTC	0.98
[27]	Virtual-Flux Direct Power Control VFDPC	4.88
[28]	Sliding Mode Control SMC	4.19
[29]	Field Oriented Control FOC	3.05
Proposed techniques	DARPC-PI	2.9
	DARPC-FSTA	0.15

CONCLUSION

In this work, a robust strategy is designed to improve the effectiveness of the DARPC-PI for the ASG-based DRWP systems. FSTA technique is proposed to replace the classical PI controllers of the DARPC-PI control scheme. The proposed strategy preserves the advantages of the traditional DARPC such as less parameter dependence and simplicity. The effectiveness of DARPC-PI and designed strategy is studied under THD value of current and powers oscillations. By comparing the performances of the designed strategy with conventional DARPC-PI, it can be concluded that the designed strategy has minimized the THD value of current. The proposed strategy has been very successful in improving the energy quality provided by the wind generator.

REFERENCES

1. Amrane, F., and Chaib, A. 2016. “A novel direct power control for grid-connected doubly fed induction generator based on hybrid artificial intelligent control with space vector modulation.” Revue...
2. Shehata, E. G., and Sallama, G. M. 2013. “Direct power control of DFIGs based wind energy generation systems under distorted grid voltage conditions.” International Journal of Electrical Power and Energy Systems, 53, pp. 956–966. https://doi.org/10.1016/j.ijepes.2013.06.006

3. Jou, S.-T., Lee, S.-B., Park, Y.-B., and Lee, K.-B. 2009. “Direct/Indirect Power Control of a DFIG in Wind Turbines to Improve Dynamic Responses.” Journal of Electronics: Power Systems, 9(5), pp. 781–790. Retrieved from https://www.koreascience.or.kr/articleJAKO200931559974840.pdf

4. Wu, Y. K., and Yang, W. H. 2016. “Different Control Strategies on the Rotor Side Converter in DFIG-Based Wind Turbines.” Energy Procedia, 100, pp. 551–555. https://doi.org/10.1016/j.egypro.2016.10.217

5. Heydari, E., Rafiee, M., and Pichan, M. 2018. “Fuzzy-genetic algorithm-based direct power control strategy for DFIG.” Iranian Journal of Electrical and Electronic Engineering, 14(4), pp. 353–361. https://doi.org/10.22068/IJEEE.14.4.353

6. Izanlo, A., Kazemi, M. V., and Asghar Gholami, S. 2018. “Comparative study between two sensor-less methods for direct power control of doubly fed induction generator.” Revue Roumaine des Sciences Techniques. Série Électrotechnique et Énergétique, 62, pp. 358–364. Retrieved from https://www.researchgate.net/publication/322364899

7. Shehata, E. G. 2015. “Sliding mode direct power control of DFIG for DFIGs driven by variable speed wind turbines.” Alexandria Engineering Journal, 54(4), pp. 1067–1075. https://doi.org/10.1016/j.aej.2015.06.006

8. Benbouhenni, H. 2021. “Intelligent super twist high order sliding mode controller of dual-rotor wind power systems with direct attack based on doubly-fed induction generators.” Journal of Electrical Engineering, Electronics, Control and Computer Science, 7(4), pp. 1–8. Retrieved from https://ieeexnet.index.php/journal/article/view/219

9. Yahdou, A., Djilali, A. B., Boujema, Z., and Mehdidi, F. 2020. “Improved Vector Control of a Counter-Rotating Wind Turbine System Using Adaptive Backstepping Sliding Mode.” Journal Européen des Systèmes Automatisés, 53(5), pp. 645–651. https://doi.org/10.18280/jesa.530507

10. Yahdou, A., Hemici, B., and Boujema, Z. 2015. “Sliding mode control of dual rotor wind turbine system.” he Mediterranean Journal of Measurement and Control, 11(2), pp. 412–419. Retrieved from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sliding+mode+control+of+dual+rotor+wind+turbine+system&btnG=

11. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2020. “Direct power control with nsm algorithm for dfig using wspm technique.” Iranian Journal of Electrical and Electronic Engineering, 17(1), pp. 1–11. https://doi.org/10.22068/IJEEE.17.1.1518

12. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2019. “Using four-level NSVM technique to improve DVC control of a DFIG based wind turbines systems.” Periodica Polytechnica Electrical Engineering and Computer Science, 63(3), pp. 144–150. https://doi.org/10.3311/P Pee.13636

13. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2018. “Indirect Vector Control of a DFIG Supplied By a Two-level FSVM Inverter for Wind Turbine System.” Majlesi Journal of Electrical Engineering, 13(1), pp. 45–54. Retrieved from http://mjnee.iaumajlesi.ac.ir/index.php/ce/article/view/2693

14. Mehdidi, F., Yahdou, A., Djilali, A., and Benbouhenni, H. 2020. “Direct Torque Flux Controlled Drive for Multi-phase IPM&SM Based on SVM Technique.” Journal Européen des Systèmes Automatisés, 53(2), pp. 259–266. https://doi.org/10.18280/jesa.530213

15. Massoum, S., Meroufel, A., Massoum, A., and Wia, P. 2017. “A direct power control of the doubly-fed induction generator based on the SVM strategy.” Elektrotehniški Vestnik, 84(5), pp. 235–240. Retrieved from https://ev.fe.uni-lj.si/s-5/2017/Massoum.pdf

16. Djeriri, Y., Meroufel, A., Massoum, A., and Boudjema, Z. 2014. “A comparative study between field oriented control strategy and direct power control strategy for DFIG.” Journal of Electrical Engineering, 14(2), pp. 1–9. Retrieved from http://hew.jee.rafindex.php/jee/article/view/WC1734511392W51t651206e644

17. Chabni, F., Taleb, R., Benbouali, A., and Bouthiba, M. A. 2016. “The Application of Fuzzy Control in Water Tank Level Using Ardino.” (IJAACS) International Journal of Advanced Computer Science and Applications, 7(4), pp. 261–265. Retrieved from https://pdfs.semanticscholar.org/82f9/29592c049008d580737025fc7aca24627b1b1b.pdf

18. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2018. “Neuro-second order sliding mode control of a DFIG supplied by a two-level NSVM inverter for wind turbine system.” Iranian Journal of Electrical and Electronic Engineering, 14(4), pp. 362–373. https://doi.org/10.22068/IJEEE.14.4.362

19. Benbouhenni, H. 2018. “Fuzzy Second Order Sliding Mode Controller Based on Three-Level Fuzzy Space Vector Modulation of a DFIG for Wind Energy Conversion System.” Majlesi Journal of Mechatronic Systems, 7(3), pp. 17–26. Retrieved from http://journals.iaumajlesi.ac.ir/ms/index/index.php/Article/view/369

20. Yahdou, A., Boudjema, Z., Hemici, B., and Boudjema, Z. 2016. “Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter.” Journal of Electrical Engineering, 1(1), pp. 1–11. Retrieved from https://www.researchgate.net/publication/317216127

21. El, S. A., Ardjoun, M., and Abid, M. 2015. “Fuzzy sliding mode control applied to a doubly fed induction generator for wind turbines.” Turkish Journal of Electrical Engineering & Computer Sciences, 23(6), pp. 1673–1686. https://doi.org/10.3906/elk-1404-64

22. Boudjema, Z., Taleb, R., Djeriri, Y., and Yahdou, A. 2017. “A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system.” Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), pp. 965–975. https://doi.org/10.3906/elk-1510-89

23. Benbouhenni, H. 2018. “Neuro-sconde order sliding mode field oriented control for DFIG based wind turbine.” International Journal of Smart Grid, 2(4), pp. 209–217. Retrieved from https://www.academia.edu/download/58084192/25-144-1-PB.pdf

24. Bouyekni, A., Taleb, R., Boudjema, Z., and Kahal, H. 2018. “A second-order continuous sliding mode based on DPC for wind-turbine-driven DFIG.” Elektrotehniški Vestnik, 85(2), pp. 29–36. Retrieved from https://ev.fe.uni-lj.si/s-1/2-2018/Bouyekni.pdf

25. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2018. “DFIG-based WT system using FPWM inverter.” International Journal of Smart Grid-Smart Grid, 2(3), pp. 142–154. Retrieved from https://www.ijsmartgrid.com/index.php/ismartgridnew/article/view/6w16

26. Benbouhenni, H. 2018. Comparative Study Between NSVM and FSVM Strategy for a DFIG-based Wind Turbine System Controlled by Neuro-Second Order Sliding Mode. Majlesi Journal of Mechatronic Systems, 7(1), pp. 33–43. Retrieved from https://iranjournals.nlai.ir/article/view/1234356789/712266

27. Mohd Yusoff, N. A., Razali, A., Abdul Karim, K., Satikno, T., and Jidan, A. 2017. “A Concept of Virtual-Flux Direct Power Control of Three-Phase AC-DC Converter.” International Journal of Electrical and Computer Science, 11(1), pp. 85–95. https://doi.org/10.22068/IJEEE.11.1.85

116
چکیده
این کار یک طرح جدید قدرت مستقیم و راکتور فرمان (DARPC) مبتکر بر الگوریتم فیزیک فوقالعاده فازی (FSTA) یک زناتور ناهامزمان (ASG) برای ژنراتور هیبرید الکتریکی (EIG) دو روتور (DRWP) در دو سیستم تابعه است. در این سیستم، مقایسه بین توان آنتی یک تابعی با توان اولی دو می‌باشد. فیلتر کنترلی که از دو اجزای اصلی (PI-DARPC) تشکیل شده است. کارهای علمی نشان می‌دهد که کنترل کننده‌ها به‌طور مناسب کار می‌کنند. این کنترل با استفاده از نرم‌افزار Matlab در دو آزمون ارائه شده و نتایج آن‌ها برای دو مورد نشان می‌دهد. طراحی شده به ویژه بر یک چرخه ارتباطی دو روتور ارائه شده، این طرح کنترل سنتک‌ Pride DARPC با کنترل‌کننده‌های FSTA نشان می‌دهد.