Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity

Hai-yan He1, Wanhua Shen2, Lijun Zheng2, Xia Guo2 & Hollis T. Cline1

Functional circuit assembly is thought to require coordinated development of excitation and inhibition, but whether they are co-regulated cell-autonomously remains unclear. We investigate effects of decreased glutamatergic synaptic input on inhibitory synapses by expressing AMPAR subunit, GluA1 and GluA2, C-terminal peptides (GluA1CTP and GluA2CTP) in developing Xenopus tectal neurons. GluACTPs decrease excitatory synaptic inputs and cell-autonomously decreases inhibitory synaptic inputs in excitatory and inhibitory neurons. Visually evoked excitatory and inhibitory currents decrease proportionately, maintaining excitation/inhibition. GluACTPs affect dendrite structure and visual experience-dependent structural plasticity differently in excitatory and inhibitory neurons. Deficits in excitatory and inhibitory synaptic transmission and experience-dependent plasticity manifest in altered visual receptive field properties. Both visual avoidance behavior and learning-induced behavioral plasticity are impaired, suggesting that maintaining excitation/inhibition alone is insufficient to preserve circuit function. We demonstrate that excitatory synaptic dysfunction in individual neurons cell-autonomously decreases inhibitory inputs and disrupts neuronal and circuit plasticity, information processing and learning.
Activity plays a critical role in the refinement and maintenance of functional neural circuits, which are thought to require coordinated development of two principle components: excitatory and inhibitory neurons. Although proportional co-regulation of excitation and inhibition and a constant excitation/inhibition ratio have been widely observed during circuit development, our understanding of how glutamatergic excitatory inputs affect the development of inhibition at synaptic and neuronal levels remains incomplete. Mounting evidence from different brain regions and species suggests that perturbing activity or sensory experience delays development of inhibition and disrupts the maturation and specification of inhibitory neurons and circuits, however most of these studies perturbed activity broadly and were unable to resolve cell-autonomous and circuit-based outcomes. Direct evidence that glutamatergic synaptic inputs drive the cell autonomous development of inhibitory input in individual neurons remains elusive.

As the predominant mediator of fast excitatory synaptic transmission, AMPARs provide the initial depolarization that is essential for the activation of NMDARs and subsequent secondary signal transduction and synaptic plasticity mechanisms. Four types of AMPAR subunit (GluA1–4) form different hetero- and homo-dimers of AMARs, with GluA1 and GluA2 being the major AMPAR subunits. Regulation of the trafficking of postsynaptic AMPAR underlies activity-dependent plasticity of synaptic strength. Regulatory sites within the C-terminal region of GluA1 and GluA2 subunits are required for synaptic trafficking of AMPARs. Expression of peptides corresponding to the GluA C-terminal peptides (GluA1CTP or GluA2CTP) impairs AMPAR trafficking, decreases excitatory synaptic transmission, and disrupts experience-dependent synaptic plasticity. GluACTPs are therefore effective tools to disrupt AMPAR-mediated excitatory transmission in individual neurons, permitting study of outstanding questions concerning the role of excitatory synaptic inputs in structural and functional development of neurons and circuits.

Here, we express GluA1CTP or GluA2CTP, referred to collectively as GluACTPs, in individual tectal neurons to assess the effects of impaired excitatory synaptic transmission on inhibitory synaptic inputs and the development of structural and functional properties in excitatory and inhibitory neurons in vivo. We show that GluACTP expression proportionally decreases excitatory and inhibitory synaptic inputs, resulting in a constant balance of excitation to inhibition in both inhibitory and excitatory neurons. In vivo time-lapse imaging demonstrates that deficits in excitatory synaptic inputs have distinct effects on dendritic arbor development and experience-dependent structural plasticity in excitatory and inhibitory neurons. GluACTP-mediated decreases in excitatory and inhibitory transmission also manifest in deficits in visual information processing, recorded as impaired spatial and temporal receptive field properties, as well as visuomotor behavior. Finally, GluACTP expression blocks learning-induced behavioral plasticity. Our results demonstrate that excitatory synaptic dysfunction leads to cell-autonomous inhibitory synaptic dysfunction, which then ramifies to impair neuronal and circuit properties and degrade behavioral performance.

Results

GluACTP expression reduces E and I synaptic transmission. To test whether decreasing glutamatergic synaptic inputs in individual neurons affects GABAergic synaptic transmission, we sparsely transfected tectal neurons with constructs co-expressing GFP and GluA1CTP or GluA2CTP, and recorded mEPSCs and mIPSCs from GFP+ neurons 5–8 days later (Fig. 1a). mEPSC frequency was significantly reduced in both GluA1CTP and GluA2CTP-expressing neurons, with no significant change in mEPSC amplitudes (Fig. 1b, c). The decrease in mEPSC frequency likely reflects loss of synapses over several days of GluACTP expression. Interestingly, both the frequency and amplitude of mIPSCs were significantly reduced in GluACTP-expressing neurons (Fig. 1d, e), suggesting that excitatory synaptic inputs govern the development of inhibitory synaptic inputs in a cell-autonomous manner. By contrast, disrupting inhibitory synaptic inputs by interfering with GABA¸R trafficking does not affect excitatory input onto the same neurons. Paired pulse ratios of excitatory synaptic currents were comparable in neurons expressing GluA1CTP (n = 5), GluA2CTP (n = 5), and controls (n = 7) (Fig. 1f, g), consistent with a deficit in AMPAR trafficking into postsynaptic sites.

Tectal neurons receive direct excitatory retinal inputs as well as feed forward and feedback inhibitory inputs within tectal circuits. To determine if the decreased excitatory synaptic transmission affected the E/I balance of evoked synaptic responses, we recorded excitatory compound synaptic currents (eCSCs) and inhibitory compound synaptic currents (iCSCs) from transfected tectal neurons evoked by full-field visual stimulation in intact animals (Fig. 1h). Visually evoked eCSCs and iCSCs recorded from either GluA1CTP- or GluA2CTP-expressing neurons were significantly smaller than controls (Fig. 1i, j), however, the ratio of total integrated charge transfer between iCSCs and eCSCs remained unchanged between GluACTP-expressing and control neurons (Fig. 1k). These data further demonstrate that interfering with GluA1- and GluA2-containing AMPAR trafficking not only decreases excitatory synaptic transmission onto the transfected cells, but also induces a proportional decrease in the inhibitory synaptic transmission onto the same neurons.

Inhibition decreases cell-autonomously in E and I neurons. Excitatory and inhibitory tectal neurons demonstrate different visual experience-dependent structural and functional plasticity. To test whether disrupting excitatory synaptic transmission affects excitatory and inhibitory neurons differentially, we combined immunohistochemical labeling of the excitatory and inhibitory synaptic markers PSD95 and gephyrin, with GABA immunolabeling to examine the density of excitatory and inhibitory postsynaptic puncta in dendrites of GluACTP-expressing neurons.

In the optic tectum, individual tectal neurons express a mixture of AMPARs with different subunit compositions (GluA2-lacking or GluA2-containing). The proportion of GluA2-lacking to GluA2-containing AMPARs varies among individual tectal neurons such that more immature neurons show higher content of calcium permeable GluA2-lacking AMPARs. Both excitatory and inhibitory neurons express GluA1 and GluA2 in the developing optic tectum, as shown by double immunolabeling with GABA and GluA1 or GluA2 antibodies (Fig. 2a, b).

We examined the effects of GluACTP expression on the density of PSD95 and gephyrin puncta in dendrites of sparsely transfected excitatory or inhibitory tectal neurons. Excitatory and inhibitory tectal neurons receive excitatory and inhibitory synaptic inputs (Fig. 2c). Both PSD95 and gephyrin immunolabeling are highly punctate, with higher puncta density in the neuropil than the somatic region (Fig. 2d). GFP+ dendritic segments were identified as inhibitory or excitatory by GABA immunolabeling. In both excitatory and inhibitory neurons, GluA2CTP expression reduced the density of both PSD95 and gephyrin puncta (Fig. 2e–h), indicating a decrease in the number of both excitatory and inhibitory synapses onto transfected neurons. GluA1CTP expression decreased both PSD95 and gephyrin puncta in excitatory neurons but not in inhibitory neurons.
Given that over 70% of tectal neurons are excitatory, these results are consistent with decreased mEPSC and mIPSC frequency seen in electrophysiological recordings from randomly recorded neurons, and demonstrate cell-autonomous loss of inhibitory synaptic inputs induced by decreased excitatory input in both excitatory and inhibitory neurons.

Structural plasticity differently altered in E and I neurons. To assess effects of disrupted excitatory synaptic transmission on dendritic arbor development and experience-dependent structural plasticity in excitatory and inhibitory neurons, we performed in vivo time-lapse imaging of GluACTP and GFP-coexpressing individual neurons. Excitatory and inhibitory neurons were identified by post hoc GABA immunolabeling (Fig. 3a, b). Total dendritic branch length (TDBL) and total branch tip number (TBTN) from three-dimensional (3D) reconstructions of the imaged neurons indicated that GluA1CTP and GluA2CTP expression in excitatory neurons significantly decreased branch density, without affecting dendritic arbor branching pattern (Fig. 3c–e). GluA2CTP expression also significantly decreased TBTN in excitatory neurons (Fig. 3c). In inhibitory neurons, GluA2CTP expression significantly increased TDBL, without affecting TBTN or branch density (Fig. 3d). Interestingly, GluA2CTP expression also changed the branching pattern of inhibitory neurons, causing neurons to branch significantly farther from the soma (Fig. 3f), possibly reflecting a compensatory response to decreased excitatory inputs, consistent with observations of activity-dependent redistribution of synapse in the absence of normal activity.

Previous studies showed that 4 h of short term enhanced visual experience (STVE) increased dendritic arbor growth rate in tectal neurons.
neurons compared to 4 h in dark, and that GluACTP expression blocks this visual experience-dependent dendritic arbor structural plasticity. Since these previous studies imaged randomly sampled tectal neurons, the results likely reflect plasticity in excitatory neurons, the majority of tectal neurons. Inhibitory tectal neurons, on the other hand, demonstrate a bimodal experience-dependent plasticity, with an inverse correlation between the valence of plasticity in response to dark and STVE in individual neurons. Furthermore, inhibitory neurons cluster into two functional groups, one group increases dendritic arbor growth rate in response to STVE and decreases arbor growth rate in the dark, while the other decreases arbor growth rate in STVE and increases it in dark.

To test if the bimodal experience-dependent structural plasticity in inhibitory neurons is affected by disrupting excitatory synaptic inputs, we collected time-lapse images of individual tectal neurons coexpressing GFP and GluA1CTP or GluA2CTP in animals exposed to 4 h of dark followed by 4 h of STVE (Fig. 4a). In excitatory neurons, GluACTP blocked the STVE-induced dendritic arbor plasticity (Control: $\Delta TDBL, p < 0.01$, $\Delta TBTN, p < 0.05$. GluA1CTP: $\Delta TDBL, p = 0.52$, $\Delta TBTN, p = 0.83$. GluA2CTP: $\Delta TDBL, p = 0.94$, $\Delta TBTN, p = 0.82$. Wilcoxon test). Comparing dendritic arbor growth rates over 4 h in STVE and 4 h in dark for individual neurons demonstrated that GluACTP selectively blocked the structural plasticity of excitatory neurons in response to STVE but not in dark (Fig. 4b, c).
pooled population of inhibitory neurons showed no difference in dendritic arbor plasticity between dark and STVE in controls (ΔTDBL, p = 0.38, ΔTBTN, p = 0.59) or GluACTP-expressing neurons (GluA1CTP:ΔTDBL, p = 0.06, ΔTBTN, p = 0.48. GluA2CTP:ΔTDBL, p = 0.96, ΔTBTN, p = 0.92, Wilcoxon test). The magnitude of structural responses to either dark or STVE was not different between GluACTP-expressing and control neurons (Fig. 4d). By contrast, plotting dendritic arbor growth rates over 4 h in STVE versus dark for individual neurons demonstrates that GluACTP expression disrupted the inverse correlation between the valence of structural plasticity in dark and STVE observed in control inhibitory neurons (Fig. 4e).

Application of unsupervised cluster analysis based on ΔTBTN in response to STVE versus dark clustered control inhibitory neurons into two evenly sized subpopulations, called Group I and Group II neurons (Fig. 5a, Group I: n = 14; Group II: n = 16). Group I and Group II neurons displayed experience-dependent structural plasticity with opposite valence, accounting for the lack of experience-dependent plasticity in the pooled population (Fig. 4c). The plasticity profile of Group I inhibitory neurons was similar to excitatory neurons, retracting dendrites in the dark and extending them in STVE (Fig. 5a). We applied the same

Fig. 3 GluACTPs differentially affect dendritic arbor growth in excitatory and inhibitory neurons.

- **a, b** Representative images of excitatory (a) and inhibitory (b) neurons. Left panel: Example of the live image and reconstructed full dendritic arbor of an individual neuron (top). Post hoc GABA immunolabeling (bottom) of the same neuron. Green, GFP; gray/magenta, GABA. Scale bar: left 100 μm; middle and right 10 μm. Right panel: Representative live images (top) of inhibitory neurons expressing GFP only (control), GluA1CTP, or GluA2CTP, and reconstructed complete dendritic arbors (bottom).

- **c, d** Summary data of total dendritic branch length (TDBL), total branch tip number (TBTN), and branch density control, GluA2CTP- and GluA1CTP-expressing excitatory (c) and inhibitory (d) neurons. *P< 0.05, Kruskal–Wallis test with post hoc Mann–Whitney U test. Number of neurons in each group is shown in the graph.

- **e, f** Sholl analysis: neither GluA1CTP nor GluA2CTP affected dendritic arbor branching pattern in excitatory neurons (e). GluA2CTP but not GluA1CTP significantly increased branch density distal to the soma in inhibitory neurons (f) compared to controls. *P < 0.05, **P < 0.01, Kruskal–Wallis test with post hoc Mann–Whitney U test.
Fig. 4 GluACTP expression disrupts experience-dependent structural plasticity in excitatory and inhibitory neurons. a Representative images of complete dendritic arbor reconstructions from time-lapse images taken before (T_1) and after (T_2) 4 h of dark, and after 4 h of STVE (T_3) of individual excitatory and inhibitory neurons in each group. Top: schematic shows the experimental protocol and imaging time course. b Summary data of changes in TDBL (ΔTDBL) and TBTN (ΔTBTN) during the dark and STVE periods in excitatory neurons. GluA1CTP and GluA2CTP significantly decrease STVE-induced dendritic arbor growth. *P < 0.05, **P < 0.01, Kruskal–Wallis test with post hoc Mann–Whitney U test. c Scatter plots of ΔTBTN in response to STVE versus dark in individual excitatory neurons. Rho value of Pearson correlation is shown on each plot. d Summary data of ΔTDBL and ΔTBTN during dark and STVE periods in inhibitory neurons. e Scatter plots of ΔTBTN in response to STVE versus dark in individual inhibitory neurons.
cluster analysis to GluACTP-expressing inhibitory neurons and assigned the clustered subgroups by the difference between average F(t) in dark and STVE as in control neurons (Group I: F(t) in STVE > F(t) in dark; Group II: F(t) in STVE < F(t) in dark). GluACTP-expressing inhibitory neurons clustered into two groups with similar structural plasticity profiles as control neurons: Group I neurons retracted dendrites in dark and extended them in STVE. Group II neurons had opposite plasticity profiles. Both groups showed significant differences between plasticity in dark and STVE (Fig. 5b, Group I: n = 11; Group II: n = 6). By contrast, GluA2CTP-expressing inhibitory neurons clustered into groups that displayed distinct experience-dependent structural plasticity profiles from control neurons: Group I neurons extended dendrites and Group II neurons retracted them in both dark and STVE. Growth rates were not significantly different between dark and STVE in either subgroup (Fig. 5c, Group I: n = 5, p = 0.44; Group II: n = 12, p = 0.41, Wilcoxon sign rank test), and the experience-dependent bidirectional plasticity in dark and STVE seen in control inhibitory neurons was abolished. In addition, comparison of the structural plasticity in response to dark or STVE between GluACTP-expressing and control inhibitory neurons showed that within both Group I and Group II neurons, GluA2CTP expression significantly altered the plasticity in response to dark, not STVE (Fig. 5d–g). By contrast, the plasticity in response to either dark or STVE in GluA1CTP-expressing inhibitory neurons was not different from controls in either group. These results indicate that GluA2 is of particular importance for the bimodal plasticity in inhibitory neurons. Considering that only GluA2CTP expression significantly decreased PSD95 and gephyrin puncta in inhibitory neurons (Fig. 2g, h), these results again suggest that, unlike excitatory neurons, inhibitory tectal neurons are more sensitive to the disruption of GluA2-mediated AMPAR trafficking. The loss of the bimodal plasticity response indicates that disrupting excitatory synaptic inputs to inhibitory neurons changed their circuit connectivity.20

Using unsupervised cluster analysis, control excitatory neurons cluster into two groups distinguished by their plasticity in the dark (Fig. 6a, Group I: n = 13; Group II: n = 10): Group I excitatory neuron dendrites retract in dark and extend in STVE (n = 13, p < 0.001, Wilcoxon signed rank test). Group II excitatory neuron dendrites typically grow in both dark and STVE and grow significantly more in dark than in STVE (n = 10, p < 0.05). GluA1CTP expression significantly changed the plasticity profile in excitatory neurons: Group I neurons retract dendrites in both dark and STVE and Group II neurons extend dendrites in both dark and STVE. Responses to dark and STVE were not different within each group (Fig. 6b, Group I: n = 4, p = 0.75, Wilcoxon signed rank test). Interestingly, GluA2CTP expression changed the experience-dependent structural plasticity profile of excitatory neurons to a bimodal pattern resembling that of control inhibitory neurons: half retract dendrites in dark and extend them in STVE, and half have the opposite plasticity profile (Fig. 6c, Group I: n = 8. Group II: n = 8.). Comparison of the structural plasticity between GluACTP-expressing and control excitatory neurons within each group showed that GluA1CTP and GluA2CTP significantly affected the plasticity in response to STVE but not dark (Fig. 6d–g). The observation that decreased excitatory inputs significantly affected the STVE response in excitatory neurons, and the dark response in inhibitory neurons provides further evidence that the plasticity of inhibitory tectal neurons is actively regulated in dark.20

Decreased E and I synaptic inputs disrupt RF properties.

Interaction of excitatory and inhibitory inputs is thought to be essential for the developmental refinement of visual receptive field (RF) properties. Here, we showed that interfering with glutamatergic inputs compromises both excitatory and inhibitory inputs yet E/I remains constant. To test whether RF properties are affected by GluACTP expression, we measured the spatial and temporal RF properties in transfected neurons. We recorded spatial RFs in both cell-attached mode, to measure the spiking receptive fields (sRF), and whole-cell mode, to measure excitatory receptive fields (eRF) and inhibitory receptive fields (iRF) respectively in response to light off visual stimuli (Fig. 7a, sRFs, eRFs, and iRFs were all significantly smaller in GluA1CTP- and GluA2CTP-expressing neurons than controls (Fig. 7b–d). GluACTP expression disrupted the convergence of eRF and iRF as shown by significantly greater distance between the eRFs and iRFs centers (Fig. 7e). We generated temporal receptive field (TRF) maps by binning the number of spikes in 100 ms intervals over the 700 ms recording period following the OFF stimulus (Fig. 7f). The TRFs in control GFP+ neurons were confined to 200 ms following the stimulus (Fig. 7g). By contrast, the TRF in GluA1CTP- and GluA2CTP-expressing neurons extended up to 600 ms after the stimulus. Consequently, the average spike latency and the full width at the half maximal response (FWHM) of the TRFs in GluA1CTP- and GluA2CTP-expressing neurons were significantly greater than controls (Fig. 7h, i). The decreased convergence of eRF and iRF and the increased temporal span of the visually evoked spikes are consistent with a decreased inhibition. Together, these data indicate that decreasing excitatory synaptic inputs and the subsequent cell autonomous decrease in inhibitory synaptic inputs in tectal neurons disrupted the tectal circuits underlying visual information processing and impaired both spatial and temporal RF properties.

Behavioral impairments caused by GluACTP expression. We next addressed whether GluACTP expression affects visual avoidance behavior and behavioral plasticity. The results described above predict two outcomes of GluACTP expression: on one hand, if constant E/I is sufficient for circuit function underlying behavior, then the co-regulation of inhibitory inputs in response to GluACTP expression and the resultant constant E/I, predicts that visual avoidance behavior would be intact. By contrast, GluACTP expression impaired visual information processing and RF properties, predicting that circuit function and plasticity would be impaired. We bulk-electroporated tecta with GluA1CTP, GluA2CTP, or GFP expression constructs and evaluated visual avoidance behavior and avoidance behavior plasticity. We first tested whether changes in excitatory and inhibitory synaptic inputs occur after bulk electroporation, which results in ~15–30% transfection rate.16 We recorded visually evoked eCSCs and iCSCs from GFP+ neurons expressing either GluA1CTP or GluA2CTP and compared them to control neurons expressing GFP alone. As seen above, expressing GluA1CTP or GluA2CTP more broadly in tectal neurons significantly reduced both the eCSC and iCSC in transfected neurons, so E/I remains comparable to controls (Fig. 8a). The visual avoidance behavior is a teetally mediated behavior in which an animal changes swim trajectory in response to an approaching visual stimulus. Animals improve their avoidance behavior following a visual-conditioning training protocol. Control tadpoles avoided dots with diameters ranging from 0.2 to 0.6 cm, with the peak avoidance response to dots of 0.4 cm diameters (Fig. 8b, c). GluA1CTP- and GluA2CTP-expressing tadpoles had significantly lower avoidance indices to stimuli of 0.4 cm and 0.2 cm, and GluA2CTP-expressing animals also showed a significantly decreased response to 0.6 cm dots (Fig. 8c), indicating impaired visual behavior in these animals despite of balanced E/I.
GluA1CTP and GluA2CTP expression also blocked visual conditioning-mediated plasticity of the behavior (Fig. 8d). This learning deficit is consistent with the compromised experience-dependent structural plasticity and visual information processing observed in individual neurons expressing GluACTPs.

Discussion

Genetic variants of proteins associated with glutamatergic synaptic function, such as CTNAP2 and SHANK3, have been implicated in the etiology of neuropsychiatric disorders, placing excitatory synapse dysfunction in the spotlight as a candidate
mechanism underlying pathogenesis of these disorders. Animal models with these genetic defects also show reduced inhibitory tone, recapitulating human patient studies. Some of these neurological disorders are thought to have neurodevelopmental origins, such as ASD and schizophrenia, raising the intriguing questions: Is there a causal link between defective excitatory synaptic function during development and reduced inhibition? And how do deficits in excitatory synaptic function lead to deficits in inhibitory function?

Here we examined the role of glutamatergic excitatory synaptic transmission in the development of inhibition and excitation at synaptic, neuronal, circuit and behavioral levels, focusing on synaptic function during development and reduced inhibition?
Fig. 7 GluACTP expression disrupts spatial and temporal receptive visual field properties. a Representative maps of spiking RFs (sRFs), excitatory RFs (eRFs), and inhibitory RFs (iRFs) in control, GluA1CTP- and GluA2CTP-expressing neurons. b-d Both GluA1CTP and GluA2CTP expression significantly decreased the size of sRF (b, n = 28, 14, 8), eRF (c, n = 18, 19, 20), and iRF (d, n = 18, 12, 13). e The distances between eRF and iRF centers were significantly larger in GluA1CTP- and GluA2CTP-expressing neurons. f Representative TRF maps in control, GluA1CTP- and GluA2CTP-expressing neurons. g Plot of spike numbers over the 700 ms recording period normalized to peak spike numbers per 100 ms bin. The control TRF is limited to the first 200 ms while TRFs in GluA1CTP- and GluA2CTP-expressing neurons were significantly extended and delayed. h, i Both spike latency (h) and the full width at half maximum (FWHM, i) of the TRF spiking response increased significantly in GluA1CTP- and GluA2CTP-expressing neurons compared to control neurons. Control: n = 12; GluA1CTP: n = 9; GluA2CTP: n = 8. *P < 0.05, **P < 0.01. ANOVA with Newman–Keuls test.

Inhibitory synapses and neurons. Very little is known about whether and how E/I is maintained in inhibitory neurons. Interfering with AMPAR-mediated inputs specifically in parvalbumin neurons, either with GluA1 or GluA4 knockout, or by manipulating neuronal pentraxins, delayed inhibitory circuit maturation, blocked cortical plasticity, and resulted in behavioral deficits. We report a coordinated cell-autonomous reduction in synaptic inhibition in response to decreasing glutamatergic transmission by GluACTP expression in individual neurons. The decreased inhibitory input was not only observed in spontaneous activity but also in visually evoked inhibitory synaptic responses, which drastically altered the spatial and temporal visual receptive field properties in transfected tectal neurons. Disrupting excitatory transmission also blocked experience-dependent structural plasticity in both inhibitory and excitatory neurons. Interestingly, the structural plasticity deficit in inhibitory neurons occurred in the response to dark, whereas in excitatory neurons the deficit occurred in response to visual stimulation. These synaptic and cellular defects translated into behavioral deficits when GluACTPs were expressed more extensively in tectal neurons.

GluACTPs contain core regulatory sites for AMPAR trafficking but lack other functional domains. They compete with endogenous AMPARs for binding partners, thereby interfering with AMPAR trafficking into synapses and decreasing excitatory synaptic transmission. Different mechanisms may underlie the disruption of excitatory synaptic inputs by the expression of GluA1CTP and GluA2CTP due to different synaptic delivery mechanisms of GluA1- and GluA2-containing AMPARs. GluA1CTP does not affect basal AMPAR-mediated currents but abolishes activity-dependent synaptic potentiation. GluA2CTP significantly decreases basal AMPAR-mediated synaptic transmission, which produces greater synaptic potentiation in response to LTP-inducing protocols, but due to impaired synaptic delivery of GluA2-containing receptors, this increased synaptic strength is not maintained. AMPAR trafficking also affects homeostatic plasticity where GluA2CTP blocks inactivation-induced synaptic scaling of excitatory synaptic inputs. Our data demonstrate cell-type specific differences in the effects of GluA1- and GluA2-CTP. While GluA1- and GluA2-CTP affected excitatory neurons similarly, only GluA2-CTP significantly affected inhibitory neurons, both in terms of synaptic inputs, as well as dendritic morphology and structural plasticity. The differential effects of GluA1- and GluA2-CTP in inhibitory neurons are unlikely to result from their differential expression, because both subunits have equally wide expression in all tectal neurons. Inhibitory neurons may employ a CaMK pathway with much slower kinetics than excitatory neurons in coupling excitatory inputs to downstream regulatory pathways.

Considering the difference in GluA1 and GluA2 gating kinetics, this may contribute to the different sensitivity of inhibitory neurons to GluA1 expression and GluA2CTP expression. Further investigation will clarify the downstream cell type-specific mechanisms affected by manipulating excitatory input. Although many studies have examined circuit-wide regulation of E/I balance, whether inhibitory synaptic inputs are regulated cell-autonomously remains unclear. Knocking down all AMPAR-mediated glutamatergic transmission in a small subset of neurons reduced both mIPSC and evoked IPSCs in hippocampal slice culture, suggesting cell-autonomous regulation of E/I. Decreasing excitability by potassium channel expression in cortical pyramidal neurons resulted in postsynaptic neuron-specific decrease in inhibitory synaptic inputs from the same presynaptic parvalbumin neurons without affecting excitatory inputs, suggesting cell-autonomous regulation. However, conflicting results had been reported in cultured neurons that similar potassium channel over-expression induced a homeostatic
increase in excitatory synaptic inputs without changing inhibitory synaptic inputs2,39. Our results showing the proportional decrease in excitatory and inhibitory inputs in sparsely transfected GluACTP-expressing neurons provide in vivo evidence that cell-autonomous regulation of inhibitory inputs underlies the main-

taneous regulation of inhibitory inputs following loss of function expression of CNTNAP2 in cultured cortical neurons caused a cell-autonomous decrease in both excitatory and inhibitory synaptic input40. CNTNAP2 preferentially co-localizes with GluA1 and knocking it down in cultured neurons led to abnormal cytoplasmic aggregation of GluA1, suggesting a role in AMPAR trafficking41. The dysfunction of inhibitory synaptic transmission observed with CNTNAP2 knockdown may be a secondary consequence of disrupted excitatory transmission due to defective AMPAR trafficking, as we observed here. Another consequence of the coordinated decrease in inhibition induced by decreased excitation is that E/I remained relatively stable. E/I is thought to be critical for neural circuit stability and normal brain function1. Disrupted E/I is associated with several neurological diseases, including epilepsy, schizophrenia, and autism spectrum disorders42–44. Here we showed that even though E/I was resilient to disruption of excitatory inputs, nervous system function was still significantly compromised at both neuronal and circuit levels, shown by abnormal dendritic morphology, altered experience-dependent plasticity, and defective receptive field properties, suggesting that balanced E/I is not sufficient to maintain normal brain function. Mice with MECP2 knockout in forebrain excitatory neurons provide another example of simultaneous reduction in excitation and inhibition resulting in functional deficits despite relatively balanced E/I45. As we showed here, some of the defects in RF properties resulted from an insufficient excitatory drive, such as the decreased RF size and delayed peak response to visual stimulation. Others are typical results of decreased inhibitory inputs, e.g., decreased temporal precision. Both would contribute to the defective spatial and temporal tuning of visual responses and subsequent impairment of experience-dependent plasticity and animal behavior.

Specific cellular mechanisms underlying the cell-autonomous downregulation of inhibition by decreased excitatory inputs are still unclear. One potential mechanism is retrograde signaling through BDNF, which has been shown to regulate formation and maintenance of inhibitory inputs in response to excitatory inputs46. NO has also been proposed as a retrograde messenger

Fig. 8 GluACTP expression impairs visual avoidance behavior and behavioral plasticity. a Expression of GluA1CTP or GluA2CTP with bulk electroporation significantly decreased visually evoked eCSCs and iCSCs in transfected neurons compared to controls. The ratio of eCSCs to iCSCs in GluA1CTP- and GluA2CTP-expressing neurons remained comparable to control neurons. Control: n = 7; GluA1CTP: n = 8; GluA2CTP: n = 7. b Representative snapshots of tadpole behavior in response to upward moving spot stimuli (diameter 0.4 cm) in animals expressing GFP, GluA1CTP, or GluA2CTP in tectal neurons. Top panel: Control tadpoles turned to avoid an approaching stimulus. The swim trajectory over 500 ms is shown on the right. Tadpoles in which the optic tectum was electroporated with GluA1CTP (middle panel) or GluA2CTP (bottom panel) did not change swim trajectories in response to a moving stimulus. c Summary data: avoidance index in response to stimuli of diameters 0.04–0.6 cm for animals expressing GFP (control, n = 15) or GFP with GluA1CTP (n = 21) or GluA2CTP (n = 18) in the optic tectum. d GluA1CTP (n = 20) or GluA2CTP (n = 16) expression blocked visual experience-induced enhancement of visual avoidance behavior observed control tadpoles (n = 18). *P < 0.05, **P < 0.01. ANOVA with Newman–Keuls test. Error bar: mean ± s.e.m.
that mediates heterosynaptic potentiation of GABAergic synapses. Previous studies indicate that cell-autonomous regulation of inhibitory synaptic inputs is independent of postsynaptic spiking. Manipulation of neuronal intrinsic excitability with potassium channels expression suppresses neuronal spiking activity but does not prevent postsynaptic depolarization evoked by excitatory synaptic inputs, which allows local Ca\(^{2+}\) influx and can trigger downstream signaling pathways controlling the formation and maintenance of inhibitory synapses. When GABAergic currents are hyperpolarizing and AMPARs are the major source of synaptic depolarization, as is the case in our experiments, disrupting AMPAR-mediated excitatory synaptic inputs reduces the depolarization that is crucial for the activation of NMDARs, which has been shown to be obligatory for the development of inhibitory synaptic transmission.

Our data provide direct evidence for an essential role for glutamatergic excitatory transmission in the cell autonomous development of GABAergic inhibition and distinguished effects of excitatory inputs on excitatory and inhibitory neurons.

Methods

Animals and transfection. Xenopus laevis embryos were obtained from either in-house mating or from Xen Express (Brooksville, FL), and reared at 22–23 °C with a natural photoperiod (12:12 h light/dark cycle at 0.1x normal intensity). Stage 48–49 (tracheae in place but no obvious gills or uric chamber) and the tectum was co-electroporated with pG4a and either UAS::GluA1CTP-T2A-GFP or UAS::GluA2CTP-T2A-GFP or UAS::GFPM. Constructs. Animals from the same batches were randomly assigned to each experimental group. All animals were screened 5–8 days post electroporation for proper level of expression before experiments.

Electrophysiology. All recordings were performed at room temperature (20–22 °C). During the recordings, brains were perfused with extracellular saline containing (in mM): 115 NaCl, 2 KCl, 3 CaCl\(_2\), 1.5 MgCl\(_2\), 5 HEPES (pH 7.2). Solutions were bubbled with 95% O\(_2\), 5% CO\(_2\) until the pH dropped to 7.2. Whole-cell patch-clamp recordings were obtained using a patch pipette containing (in mM): 110 K-gluconate, 8 KCl, 5 NaCl, 0.67 KCl, 0.34 Ca(NO\(_3\))\(_2\), 0.83 MgSO\(_4\), 3.0 HEPES, pH 7.2. Animals were fixed at stage 47. All animal protocols were approved by the Institutional Animal Care and Use Committee of the Scripps Research Institute and the local ethics committee of the Hangzhou Normal University. Stage 46–48 animals were anesthetized in 0.2% MS-222 (Tricaine methanesulfonate, Sigma, St. Louis, MO), and the tectum was co-electroporated with pG4a and either UAS::GluA1CTP-T2A-GFP or UAS::GluA2CTP-T2A-GFP or UAS::GFPM. Constructs. Animals from the same batches were randomly assigned to each experimental group. All animals were screened 5–8 days post electroporation for proper level of expression before experiments.

Immunohistochemistry and image data analysis. For post hoc analysis of neurons imaged for in vivo time-lapse experiments, animals were fixed at the end of the imaging experiment with freshly made 4% paraformaldehyde and 2% glutaraldehyde (Sigma, St. Louis, MO). The animals were then fixed at 4 °C overnight and washed in 1× PBS using the microwave (150 mV on-off-on, 1 min each). In total, 30 μm vibratome sections of the dissected brain were cut for free-floating immunofluorescence labeling. Sections were incubated in 1% sodium borohydride (Sigma) in 1× PBS for 15 min to quench autofluorescence, blocked in 10% normal goat serum (Jackson Lab, ME) in PBS with 2% Triton X-100 (PBST) for 1 h in room temperature, followed by incubation in rabbit anti GABA polyclonal antibody (Sigma A2052, RRID: AB_776752; 1:2000 in PBST with 1% normal goat serum) for 18 h at 4 °C. Secondary antibody (goat anti rabbit Alexa Fluor 633, Thermo Fisher Scientific, Cat# A-21107, RRID: AB_2535731) was diluted 1:500 in PBST and incubated for an hour at room temperature. After 3 × 15 min rinses with PBST, sections were mounted on slides in Vectashield Mounting Medium with DAPI (Vector Laboratories, Cat# S-1014, RRID: AB_162542). Brains from control and experimental groups were embedded in TissueTek OCT, frozen at −23 °C and sectioned at 40 μm on a cryostat. Sections were mounted on glass slides and stored at −80 °C until use.

Neurons imaged for in vivo time-lapse experiments, animals were fixed in 4% PFA and 0.5% glutaraldehyde. Primary antibodies used include mouse anti GluA2 (N) antibody (1:200, Millipore, Cat# MAB397, RRID: AB_2113875) and mouse anti GluA1-N antibody (1:500, generous gifts from Dr. R. Huganir, Johns Hopkins University Medical School). For PSD93 and gephyrin puncta analysis, 7 days after electroporation of the corresponding DNA constructs, animals were fixed with 4% PFA with 1 h post fixation at room temperature. Free-floating vibrotaome sections were quenched and blocked as mentioned above, followed by incubation in the primary antibodies including rabbit anti-PSD95 polyclonal antibody (1:500, Thermo Fisher Scientific, Cat# A19914, RRID: AB_910111) and rabbit anti gephyrin monoclonal antibody (1:50, Synaptic Systems, Cat# 147021, RRID: AB_2232546), guinea pig-anti-GABA polyclonal antibody (1:1500, Millipore, Cat# AB175, RRID: AB_910111). Secondary antibodies used include goat-anti-guinea pig Alexa Fluor 568 (Thermo Fisher Scientific, Cat# A-11075, RRID: AB_141954), goat-anti-rabbit BVAQ (Thermo Fisher Scientific, Cat# A-31571, RRID: AB_162542). Confocal imaging was performed on an Olympus Fluoview 500 confocal microscope or a Nikon C2 confocal microscope. GFP fluorescence signal was well preserved in the fixed tissue, thus no antibody was needed for visualization. The GFP+ imaged neurons were located using a 20× objective and confirmed by location and dendritic spine branching patterns. Higher magnification images were taken at >3 different z-depth through the soma to examine GABA immunoreactivity. Samples with poor GABA immunostaining were not included in the analysis.

Images of PSD95 and Gephyrin immunolabeling were acquired on a Nikon C2 confocal microscope (Nikon Fluor Oil 100× objective, NA 1.3) at 2048 × 2048 to achieve a final resolution of 0.15 μm pixel\(^{-1}\). Analysis of dendritic puncta density was performed using SynPanal program. Transfected dendritic segments of control or experimental groups were defined solely based on the GFP signal. The dendritic segment was deemed inhibitory if the average GABA immunolabeling intensity within the segment was >0.5 times the intensity of the control group (Figs. 3–6) was a subset of a previously reported data set. These neurons were collected and processed in parallel with the GluACTP-expressing experimental groups.
transfected GFP+ dendritic segment. In a subset of dendritic segments (n = 496), for which the soma could be identified, 82.5% showed GABA immunoreactivity consistent with their soma, confirming the reliability of identifying GABAergic inhibitory dendritic segments based on GABA immunoreactivity within the segments. Puncta density values (per unit length of dendrite) of PSD95 and gephyrin puncta within the transfected dendritic segments were automatically measured in the program and were normalized to the average puncta density of the neuronal regions within the same section to control for immunostaining variability across sections. All image analysis was done blind to experimental conditions.

Visual avoidance assay and visual conditioning. The visual avoidance assay was conducted as previously described24. Tadpoles were placed in an 8 x 3 cm tank filled to a depth of ~1 cm with Steinberg’s rearing solution. Visual stimuli were presented to a back-projection screen on the bottom of the chamber using a microprojector (3 M, MPro110). Videos of tadpoles illuminated by IR LEDs were recorded with a Hamamatsu ORCA-ER digital camera. Visual stimuli were generated and presented by MATLAB. Randomly positioned moving spots of 0.04, 0.2, 0.4, and 0.6 cm diameter were presented in random order for 60 s. Visual avoidance behavior was scored as a change in the swimming trajectory in the first ten encounters between each tadpole and moving spots (the percentage of avoidance responses out of 10 encounters, plotted as avoidance index). For visual conditioning, animals were exposed to moving bars (1 cm width; 0.3 Hz; Luminance: 25 cd/m2) continuously for 2 or 4 h, or for three repeats of 5 min of moving bars interleaved by 5-min blank, for a total of 30 min, as described26.

Cluster analysis and statistical tests. Cluster analysis was performed based on ATBTN over STVE versus dark of individual neurons using an unsupervised agglomerative hierarchical tree method in MATLAB (linkage.m) based upon their pair-wise vectorial distance in the constructed 2D space (pdist.m)20. All data are presented as mean ± s.e.m. Data are considered significantly different when p values are less than 0.05. Where noted, either two-tailed Student’s t test or non-parametric Wilcoxon rank test was performed for within-cell comparison. For comparisons of multiple groups, either ANOVA with Newman–Keuls test or Kruskal–Wallis test with post hoc Mann–Whitney U test were performed. The statistical test used for each experiment is specified in the results. Sample size for each experiment was confirmed with power test using the program G* power. Experiments and analysis were performed blind to the experimental conditions.

Data availability. The data sets generated during and/or analyzed during the current study are available from the corresponding authors.

Received: 9 January 2018 Accepted: 8 June 2018
Published online: 24 July 2018

References

1. Froemke, R. C. Plasticity of cortical excitatory-inhibitory balance. Annu. Rev. Neurosci. 38, 195–219 (2015).
2. Hartman, K. N., Pal, S. K., Burrome, J. & Murthy, V. N. Activity-dependent regulation of excitatory transmission in hippocampal neurons. Nat. Neurosci. 9, 642–649 (2006).
3. Huang, Z. J., Di Cristo, G. & Ango, F. Development of GABAergic innervation in the cerebral and cerebellar cortices. Nat. Rev. Neurosci. 8, 673–686 (2007).
4. Jiang, B., Huang, Z. J., Morales, B. & Kirkwood, A. Maturation of GABAergic transmission and the timing of plasticity in visual cortex. Brain Res. Brain Res. Rev. 50, 126–133 (2005).
5. Liu, Y., Zhang, L. & Tao, H. W. Heterosynaptic scaling of developing GABAergic synapses: dependence on glutamatergic input and developmental stage. J. Neurosci. 27, 5301–5312 (2007).
6. Pieraut, S. et al. Experience-dependent remodeling of basket cell networks in the dentate gyrus. Neuron 84, 107–122 (2014).
7. Williams, B. & Fishell, G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat. Rev. Neurosci. 18, 299–309 (2017).
8. Aguil, G. & McBain, C. J. Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain. J. Physiol. 594, 5471–5490 (2016).
9. Bredt, D. S. & Nicolli, R. A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).
10. Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).
11. Wu, G., Malinow, R. & Clune, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).
12. Zhou, Z. et al. The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. Nat. Neurosci. 21, 50–62 (2018).
13. Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).
14. Haas, K., Li, J. & Clune, H. T. AMPA receptors regulate experience-dependent dendritic arbor growth in vivo. Proc. Natl Acad. Sci. USA 103, 12127–12131 (2006).
15. Yoon, B. J., Smith, G. B., Heynen, A. J., Neve, R. L. & Bear, M. F. Essential role for a long-term depression mechanism in ocular dominance plasticity. Proc. Natl Acad. Sci. USA 106, 9860–9865 (2009).
16. Shen, W., McKeown, C. R., Demas, J. A. & Clune, H. T. Excitation to inhibition ratio regulates visual system responses and behavior in vivo. J. Neurophysiol. 106, 2285–2302 (2011).
17. Gomis, J. & Clune, H. T. Neuronal responses to visual stimulation in Xenopus laevis. J. Physiol. 594, 1191–1210 (2012).
18. Pieraut, S. et al. Experience-dependent remodeling of basket cell networks in the dentate gyrus. Neuron 84, 107–122 (2014).
19. Williams, B. & Fishell, G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat. Rev. Neurosci. 18, 299–309 (2017).
20. Aguil, G. & McBain, C. J. Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain. J. Physiol. 594, 5471–5490 (2016).
21. Bredt, D. S. & Nicolli, R. A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).
22. Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).
23. Wu, G., Malinow, R. & Clune, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).
24. Zhou, Z. et al. The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. Nat. Neurosci. 21, 50–62 (2018).
41. Varea, O. et al. Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. *Proc. Natl Acad. Sci. USA* **112**, 6176–6181 (2015).

42. Fritschy, J. M. Epilepsy E/I balance and GABA(A) receptor plasticity. *Front. Mol. Neurosci.* **1**, 5 (2008).

43. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. *Nat. Rev. Neurosci.* **6**, 312–324 (2005).

44. Nelson, S. B. & Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. *Neuron* **87**, 684–698 (2015).

45. Banerjee, A. et al. Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. *Proc. Natl Acad. Sci. USA* **113**, E7287–E7296 (2016).

46. Lu, B., Wang, K. H. & Nose, A. Molecular mechanisms underlying neural circuit formation. *Curr. Opin. Neurobiol.* **19**, 162–167 (2009).

47. Nugent, F. S., Penick, E. C. & Kauer, J. A. Opioids block long-term potentiation of inhibitory synapses. *Nature* **446**, 1086–1090 (2007).

48. Bloodgood, B. L. & Sabatini, B. L. Ca2+ signaling in dendritic spines. *Curr. Opin. Neurobiol.* **17**, 345–351 (2007).

49. Gu, X., Zhou, L. & Lu, W. An NMDA receptor-dependent mechanism underlies inhibitory synapse development. *Cell Rep.* **14**, 471–478 (2016).

50. Danielson, E. & Lee, S. H. SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons. *PLoS ONE* **9**, e115298 (2014).

Acknowledgements

We thank Dr. Richard Huganir for sharing the GluA1 antibody and Dr. Eric Danielson for providing the SynPAnal puncta analysis software. We thank Dr. Daniel Choquet, Dr. Anton Maximov, Dr. Richard Huganir and members of the Cline lab for critical discussions. This work was supported by the NEI (EY011261 and EY027437) and the Hahn Family Foundation to H.T.C., and National Nature Sciences Foundation of China (NSFC 31271176) and Zhejiang Provincial Natural Science Foundation of China (LY17C090007) to W.S.

Author contributions

Designed research: H.-Y.H., W.S. and H.T.C., Performed research: H.-Y.H., W.S., L.Z. and X.G., Contributed analytic tools: H.-Y.H. and W.S., Analyzed data: H.-Y.H., W.S. and H.T.C., Wrote the paper: H.-Y.H., W.S. and H.T.C.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-05125-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018