Context fear learning specifically activates distinct populations of neurons in amygdala and hypothalamus

Lidia Trogrlic,1 Yvette M. Wilson,1 Andrew G. Newman, and Mark Murphy2

Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, Victoria 3010, Australia

The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-fos-regulated transgene following context fear conditioning. Here, we have extended these studies to look throughout the amygdala for learning-specific activation. We identified two further neuronal populations, in the amygdalo–striatal transition area and medial amygdala, that show learning-specific activation. We also identified a population of hypothalamic neurons that show strong learning-specific activation. In addition, we asked whether these neurons are activated following recall of fear-conditioning memory. None of the populations of neurons we identified showed significant memory-recall–related activation. These findings suggest that a series of discrete populations of neurons are involved in fear learning in amygdala and hypothalamus. The lack of reactivation during memory recall suggests that these neurons either do not undergo substantial change following recall, or that c-fos is not involved in any such activation and change.

Pavlovian fear conditioning is one of the best-characterized models for the study of learning and memory and its neural correlates. It involves the association of a neural stimulus, the conditioned stimulus (CS) such as a sound or context, with an aversive unconditioned stimulus (US) such as a footshock. Fear conditioning is quite robust, and a large percentage of trained animals show fear learning. It can be examined with respect to several excellent nonlearning controls. Some of the major areas of the brain that are necessary for expression of fear conditioning have been determined by lesioning experiments, with the amygdala playing a central role in the process (Pitkanen et al. 1997; LeDoux 2000; Sah et al. 2003; Fanselow and Poulos 2005; Ehrlich et al. 2009).

A large body of evidence implicates the lateral amygdala in the formation and storage of fear memories in the amygdala (LeDoux 1993; Fanselow and LeDoux 1999; Maren and Quirk 2004; Pare et al. 2004; Rodrigues et al. 2004); however, this region does not act in isolation. Anterograde and retrograde tracing studies have yielded a plethora of amygdalar efferents and afferents. The amygdala itself is comprised of several heavily interconnected nuclei and receives a massive array of both cortical (McDonald 1998) and subcortical inputs (Pitkanen et al. 1997; Sah et al. 2003). The amygdala also receives modulatory monoaminergic input from hypothalamic nuclei (Asan et al. 2005); however, this remains poorly characterized.

In moving beyond basic functional neuroanatomy, progress in our understanding of the brain requires not only a comprehensive overview of the mechanisms of plasticity, but also of the localized circuits involved in specific behaviors. Our previous development of the transgenic fos-tau-lacZ (FTL) mouse (Wilson et al. 2002; Murphy et al. 2007) has emerged as an excellent tool for visualizing functionally activated early gene expression in brain subnuclei associated with learning and memory. Here, we sought to expand upon the initial finding that a distinct population of cells in the lateral amygdala (LA) is activated by fear learning (Wilson and Murphy 2009). An examination of incidental activation of

other brain nuclei should provide insight into the regions involved in fear-learning circuitry.

The present study has examined all amygdala subnuclei to look for learning-specific activation in the FTL mice. We have compared FTL activation following fear-conditioning training, with activation seen following a series of different sensory controls as well as following fear-memory recall. Using this multicomparison approach, we have sought to distinguish learning-specific activation from nonlearning-related activation such as that related to sensory input, fear expression, and memory recall. We identify a series of different amygdala nuclei in addition to a region in the hypothalamus that shows activation patterns specific to fear learning.

Results

Behavioral analysis of fear conditioning

We undertook context fear conditioning of FTL mice in order to identify brain regions that were activated by fear learning and recall of fear memory. Two sets of behavioral experiments were undertaken. The first set involved training the mice in fear conditioning (the training set), then analyzing FTL activation after 4 h. FTL expression here is due to training. The second set of experiments involved training the mice on fear conditioning, testing the mice 4 d later for recall of fear memory (the recall set), and then analyzing FTL activation 4 h later. FTL expression here is due to testing or recall.

In the training set, the conditioned (learning) group was placed in a shock chamber and received a small shock after 3 min. We used a number of different control groups in order to distinguish between FTL activation due to context fear learning and FTL activation due to nonlearning experiences. To control for a simple sensory experience, we used a context group that received no shock and an immediate shock group. To control for the two serial novel stimuli (context, then shock), which the conditioned mice received, we used two further groups. The first was a tone control, wherein the mice received an auditory stimulus in place of a shock 3 min after being placed in the shock chamber. This control is thus a presentation of two novel serial stimuli,
but without conditioning. The second involves a context pre-exposure 1 d prior to fear conditioning. The context pre-exposure makes the context familiar when the mice are conditioned, and thus effectively means the mice only receive one novel stimulus during conditioning.

Neither context, immediate shock, or tone mice displayed any significant freezing behavior during training or testing, denoting no fear conditioning to the context (Fig. 1A). The tone mice showed a small decrease in movement following the presentation of the tone, but there was no significant decrease at testing (Fig. 1B). Conditioned mice showed a clear freezing response. The conditioned group froze significantly more both during the post-shock interval ($P < 0.05$) and when placed back into the chamber for testing ($P < 0.001$) compared with pre-shock ($F_{2,23} = 12.28$). Conditioned mice also showed significant decreases in movement during post-shock ($P < 0.001$) and testing ($P < 0.001$) time intervals compared with pre-shock ($F_{2,23} = 48.18$; Fig. 1B). Mice that were pre-exposed to the context prior to being conditioned showed a very similar pattern of responses to the conditioned mice (Fig. 1A,B), but showed higher freezing responses on testing ($P < 0.05$; $F_{5,48} = 10.13$; Fig. 1A). These findings demonstrate that only the conditioned groups acquired fear learning and memory.

In the recall set, we used two groups: a group that had previously been trained to acquire fear conditioning using the conditioned protocol described above (conditioned recall group) and a group that was exposed only to context in the initial training (context recall group). Again, in this set only the conditioned recall group of mice exhibited behavior consistent with context fear conditioning (Fig. 2A,B). The analysis of freezing response during training and testing revealed that conditioned recall mice froze significantly more at testing for memory recall than during the pre-shock training time interval ($F_{2,23} = 9.417$; $P < 0.001$; Fig. 2A) and moved significantly less post-shock and at testing compared with pre-shock ($F_{2,23} = 130.3; P < 0.001$; Fig. 2B). There were no effects on freezing or moving behavior in the context recall group (Fig. 2A,B).

Analysis of FTL expression in amygdala following fear-conditioning training and following recall

Lateral amygdala—ventrolateral region

Our previous work identified a specific population of neurons in the amygdala that express *FTL* following context fear learning (Wilson and Murphy 2009). This population of neurons was in the ventrolateral region (vl) of the lateral amygdala (LA). These learning-specific neurons were also found only in mid to posterior levels of the LA (Bregma −1.78 to −1.98 mm). In order to determine whether a similar learning-specific population was activated in the present experiment, the LA was examined for each behavioral group of both the training set as well as the recall set (Figs. 3, 4). A significant increase in the number of *FTL*+ cells was observed in the conditioned groups compared with all other groups ($F_{8,33} = 32.56$; Fig. 4). In addition, the pre-expose conditioned group showed a further increase in *FTL*+ neuron number compared with the conditioned group ($P < 0.01$). There were apparent increases in *FTL*+ neurons in context, immediate shock, and tone groups compared with home cage, but these were not significant (Figs. 3, 4). The *FTL*+ cells in the LA from the trained mice had the same multiprocess stellate appearance and large diameter (Fig. 3G) as described in our previous study (Wilson and Murphy 2009).

For the analysis of *FTL* expression during recall, an additional control group was added. This group, conditioned recall 0 h, had the same training and testing as the conditioned recall group, except the mice were killed immediately after testing for recall. In this group, there can be no *FTL* expression due to testing. This group was included to account for any *FTL* expression that could have resulted from the initial fear learning 4 d previously. There were no significant differences in the number of *FTL*+ neurons within the recall set or compared with the home-cage group (Figs. 3, 4). The only significant increases in *FTL*+ neuron number over any other group were in the conditioned groups (Fig. 4). These findings suggest that c-fos-related activation of the *FTL* transgene within the LAvl is specifically related to fear learning.

Amygdalo–striatal transition area

The amygdalo–striatal transition area (AST) also showed learning-specific differences in *FTL* expression. This population of neurons is located between the central amygdala and the LA (Fig. 5) and from Bregma −1.06 to −1.36 mm (Franklin and Paxinos 2007). As in the LAvl, analysis was conducted of the training and recall sets. In the training set, there were significant increases in the number of *FTL*+ neurons in both conditioned...
Specific neurons activated in fear learning

groups compared with all other groups ($F_{(8,29)} = 22.86$; Fig. 6A). The increases represented an approximately fourfold increase compared with the home-cage group, and an approximately two-fold increase compared with context, immediate shock, or tone groups. There was also a significant increase in the numbers of FTL^+ neurons in context, immediate shock, and tone groups (Fig. 5B,C) compared with the home cage ($P < 0.05$) and conditioned recall 0-h group ($P < 0.01$; Fig. 6A).

Within the recall set there were small, but insignificant trends suggesting an increase in FTL^+ neuron following both context recall and conditioned recall (Fig. 6A). In summary, these findings suggest that FTL activation within the AStr is predominantly associated with fear learning.

FTL staining within this region from the conditioned mice highlighted the morphology of these cells (Fig. 5G). The neurons appeared to be fairly heterogeneous in size and appearance, including many small neurons. The diameter of the neurons ranged from 6.7 to 15 μm, with an overall average of 9.8 ± 1.4 μm ($n = 177$). The size distribution did not fall into discrete classes, but it was also not normally distributed. Possibly, more than one neuronal type was present.

Medial amygdala

The medial amygdala (MeA) was the third amygdala region to show learning-related changes in FTL expression (Fig. 5). The learning-specific neurons were located between Bregma 1.16 and 1.36 mm (Franklin and Paxinos 2007). The changes in the MeA showed a trend similar to that seen for both AStr and AStr, with the conditioned groups showing highly significant increases in FTL^+ neurons compared with all other groups ($F_{(8,29)} = 21.36$; Fig. 6B). The increase in the number of FTL^+ neurons in the conditioned group was approximately fourfold compared with home cage, and conditioned recall 0-h controls and approximately twofold compared with the other groups (Fig. 6B). The pre-expose conditioned group had a further increase in neuron number compared with the conditioned group ($P < 0.05$; Fig. 6B). These findings suggest that the main effect on FTL activation within MeA in these experiments is specifically associated with fear learning.

There was a considerable variation in appearance of the FTL^+ neurons within the MeA (Fig. 5H), similar to that seen in the AStr. Possibly, this variation was due to different classes of neurons being activated during learning. The mean diameter of the neurons was 11.45 ± 2.27 μm ($n = 168$).

Hypothalamus

A region within the hypothalamus that appeared to show strong learning-associated changes in FTL expression was also studied (Fig. 7). The learning-related changes were within the region of the anterior and ventromedial hypothalamus (VMH), and Bregma -1.04 to -1.44 mm. By comparison with the Mouse Brain Atlas (Franklin and Paxinos 2007), the activated neurons appeared to mainly fall within the VMH, but also extended into the posterior part of the anterior hypothalamic area (Fig. 7).

The conditioned groups had increased numbers of FTL^+ neurons compared with the other groups in the VMH ($F_{(8,30)} = 26.29$; $P < 0.001$; Fig. 8). This increase in neuron number was at least threefold compared with all other groups. The pre-expose conditioned group had a further increase in neuron number compared with the conditioned group ($P < 0.01$; Fig. 8). There were no other significant changes (Figs. 7, 8). The learning-specific cells of this region generally appeared to be large, densely stained neurons (diameter 14.77 ± 2.86 μm [$n = 143$]; Fig. 7G).

Discussion

The objective of this study was to identify populations of neurons that are specifically activated in context fear learning and to determine whether these same populations were activated following fear-memory recall. For this purpose, we used FTL mice to visualize functionally activated early gene expression in neurons, which use the c-fos promoter. Induction of c-fos not only requires depolarization and increases in firing rate, but is also associated with strong activation of neurotransmitter receptors and substantial changes in intracellular Ca^{2+} (Cirelli and Tononi 2000; Kovacs 2008). Thus, c-fos activation is considered to be indicative of strong activation of cell functioning during periods of plasticity or high rates of metabolic activity, and not simply a marker of neuronal firing (Cirelli and Tononi 2000; Kovacs 2008).

Initially, only the amygdala was studied, but intense learning-specific FTL expression was obvious within the hypothalamus, and thus, this brain area was also included in the analysis.
Specific neurons activated in fear learning

Increases in the number of FTL$^+$ neurons were found in LAvl, ASr, MeA, and VMH following fear learning. We undertook an extensive range of behavioral tests to more completely control for FTL activation due to nonlearning experiences. The inclusion of these tests enabled us to control for expression due to context, shock, or two serial novel stimuli, which the mice receive during normal conditioning. Further, our tests for recall reveal expression not only due to recall of fear memory, but also to the expression of fear, which the mice express following both recall and fear conditioning training. Little increase in numbers of FTL$^+$ neurons were found in LAvl, ASr, MeA, and VMH following these control tests. There was also little FTL activation in these regions following recall of fear memory and the expression of fear. These data thus support the argument that the neurons we identified are specifically activated by fear learning.

It should be noted that we have only investigated areas that show c-fos activation. There may be areas within amygdala and hypothalamus that show learning-specific decreases in c-fos expression. For example, other studies show that conditioned fear results in decreased c-fos expression in central amygdala (Day et al. 2008). Such decreases in c-fos expression suggest that these areas were specifically inhibited, as shown by the studies of Day et al. (2005, 2008), who correlated inhibition of central amygdala by unconditioned stressors with decreased c-fos expression in the same area following conditioned fear.

Learning-specific neurons in the LAvl

Our previous studies identified a discrete population of neurons within the LAvl that were specifically activated following context fear learning (Wilson and Murphy 2009). Here, we confirm and extend these findings. In our current fear-conditioning experiments, we find learning-specific FTL expression in the same region of the LAvl as previously reported (Wilson and Murphy 2009). Other studies have reported c-fos or other immediate early gene expression in LA following fear conditioning or footshock (Radulovic et al. 1998; Rosen et al. 1998; Savonenko et al. 1999; Schettino and Otto 2001; Radwanska et al. 2002; Majak and Pitkanen 2003; Holahan and White 2004; Knapska et al. 2007; Lanuza et al. 2008; Furlong et al. 2010). However, these studies also suggested that this expression was either not specifically fear-learning related, or the cause of this expression could not be determined. Further, the pattern of activation seen in these studies did not correspond to the tight cluster of neurons we see along the border of the LAvl, but was more randomly distributed throughout the LA. However, analysis of the study of ERK/MAP kinase expression in LA following fear conditioning (Schafe and LeDoux 2000) suggests that similar populations of neurons may show FTL expression and MAP kinase, as previously discussed (Wilson and Murphy 2009). Other studies show that inducing CREB expression in neurons in LA renders these neurons more likely to be involved in fear-memory formation (Han et al. 2007, 2009). Selectively deleting these neurons after learning blocked expression of that fear memory, which shows that the same cells involved in memory formation are involved in memory recall (Han et al. 2009). It would be interesting to determine the CREB status of the neurons that we identified in LAvl following conditioning.

There is extensive evidence that suggests that the LA plays a major role in the formation of CS–US associations in fear conditioning (Pape and Stork 2003; Maren and Quirk 2004; Rodrigues et al. 2004; Kim and Jung 2006). These associations are thought

Figure 3. Learning-specific FTL activation in lateral amygdala. Images of mid-posterior LA are shown for FTL mice from the following training groups: (A) home cage, (B) context, (C) immediate shock, (D) tone, (E) conditioned, (F) pre-expose conditioned. (G) A high-power view of FTL$^+$ neurons within the area of the LAvl that was counted from a pre-exposed conditioned mouse. Images of LA are shown from the following recall groups: (H) conditioned recall 0 h, (I) context recall, and (J) conditioned recall 4 h. The rectangle represents the area within LAvl in which FTL$^+$ neurons were counted for each condition. The LA subnuclei are outlined and indicated: (d) dorsal; (vl) ventrolateral; (vm) ventromedial. Scale bar: A–F, H–J = 200 μm; G = 100 μm.

Figure 4. Numbers of FTL$^+$ neurons in lateral region of LAvl following fear conditioning and recall. Numbers of FTL$^+$ neurons were determined for each group as described in Materials and Methods and are shown as mean ± SEM. (Condition) Conditioned; (rec) recall. (*) $P < 0.05$; (**) $P < 0.01$; (***$P < 0.001$. The pre-expose conditioned group is significantly different from all nonconditioned groups: $P < 0.001$. Learning & Memory
to occur in projection neurons in the LA that receive both CS and US input (Ehrlich et al. 2009). In our previous work, we also showed that the learning-specific FTL+ population in the LAvl are most likely large excitatory projection neurons (Wilson and Murphy 2009). We thus hypothesized that FTL+ neurons that we identified may be directly involved in fear learning. The c-fos-related expression within these neurons following learning may be related to the formation of the CS–US association.

We found no increase in numbers of FTL+ neurons in LAvl following recall of fear memory compared with basal levels, indicating that these neurons do not express c-fos following fear-memory recall. Our findings are consistent with studies that find no increase in c-fos or other immediate early gene activation across the LA following recall of fear conditioning (Rosen et al. 1998; Hall et al. 2001) and in related studies that utilized predictive fear learning (Furlong et al. 2010). Others do find c-fos activation across the LA following recall (Scicli et al. 2004). The reason for these different findings is not known, but may be associated with different training and testing conditions between these studies. In any case, the pattern of c-fos activation in LA seen in the study of Scicli et al. (2004) did not correspond to the discrete population of neurons we see in LAvl. In summary, these findings suggest that the discrete population of neurons we identified in LAvl only express c-fos following fear learning. An interpretation of this

Figure 5. FTL expression in the amygdalo–striatal transition area and MeA following fear conditioning and fear recall. Images of the anterior region of amygdala are shown for FTL mice from the following training groups: (A) home cage, (B) context, (C) immediate shock, (D) tone, (E) conditioned, (F) pre-expose conditioned. Amygdala subnuclei are indicated, including the location of AStr and MeA (Franklin and Paxinos 2007). The indicated rectangles for AStr and MeA show the areas in which FTL+ cells were counted for each group. High-power views are shown of FTL+ neurons within the area of the AStr (G) and MeA (H), which were counted from a pre-expose conditioned mouse. Images of anterior amygdala are shown from the following recall groups: (I) conditioned recall 0 h, (J) context recall, and (K) conditioned recall 4 h. (AStr) Amygdalo–striatal transition area; (BLA) basolateral amygdala; (MeA) medial amygdala; (OT) optic tract. Scale bar: A–G = 200 μm; H, I = 50 μm.
fear conditioning and recall. Numbers of FTL+ neurons were determined for each group as described in the Materials and Methods and are shown as mean ± SEM. (condition) Conditioned; (rec) recall. (*) P < 0.05; (**) P < 0.01; (***) P < 0.001. The pre-expose conditioned group is significantly different from all nonconditioned groups: P < 0.001.

Figure 6. Numbers of FTL+ neurons in AStr (A) and MeA (B) following fear conditioning and recall. Numbers of FTL+ neurons were determined for each group as described in the Materials and Methods and are shown as mean ± SEM. (condition) Conditioned; (rec) recall. (*) P < 0.05; (**) P < 0.01; (***) P < 0.001. The pre-expose conditioned group is significantly different from all nonconditioned groups: P < 0.001.

The learning-specific FTL expression we identified in AStr may reflect changes involved in the formation of memory, such as synaptic change or other uncharacterized cellular changes. The AStr also receives sensory information from the thalamus and olfactory bulbs. It is thus possible that this region could also be a stimulus convergence region for multiple sensory inputs, in addition to receiving inputs from amygdala (Jolkkonen et al. 2001). Alternatively, this expression may be learning related, but indirectly involved with plasticity underlying encoding of memory. For example, there is substantial evidence that amygdala modulates emotional memories via influencing changes in other brain regions (McGaugh 2004).

The LA, as well as the accessory basal nuclei of the amygdala, provide heavy projections to the AStr, and this region is probably a major target of both of these amygdala regions (Jolkkonen et al. 2001). It is possible that the AStr receives direct projections from the learning-specific neurons that we have identified within the LAvL. A substantial output of the AStr includes basal ganglia including striatum, nucleus accumbens, and substantia nigra (Shammah-Lagnado et al. 1999). It has been proposed that emotional stimuli can evoke behavioral responses via these pathways, such as the orienting response (Jolkkonen et al. 2001). Recent studies using unit and local field-potential recordings show coupling of BLA with striatum during learning (Popescu et al. 2009). The different basal ganglia are implicated in regulation of movement and complex motor function (Saint-Cyr et al. 1995). This activation of basal ganglia could thus be involved in the regulation of higher order fear-related behaviors. Where such behaviors have not been studied in our model of fear conditioning and where freezing behavior is a predominant response, they might include fear responses such as avoidance and escape.

The FTL+ neurons in the AStr displayed mixed size and morphology, suggesting that different classes of neurons were activated. There were both large and small neurons with FTL activation. These neurons may represent both excitatory as well as inhibitory neurons within the AStr.

In order to determine what role the AStr may have in fear learning and memory, further studies need to be undertaken to examine the function of the FTL+ AStr neurons and determine the FOS-related changes that occur within these neurons after fear learning. FOS up-regulation implies increased transcription and translation (Knapska et al. 2007); thus, determining which genes are transcribed and translated within AStr following fear conditioning may help us to understand how the AStr neurons are involved.

Some neurons within basolateral amygdala (BLA) have reported activation following both training and recall (Reijmers et al. 2007). Under our experimental conditions, there may have been conditioned recall-induced activation within BLA, but we were unable to distinguish it from activation due to other stimuli (i.e., in our control groups). In addition, a recent study reported a common pattern of neurons in the dorsal LA following auditory fear conditioning (Bergstrom et al. 2011), but this pattern was not detectable in our context fear-conditioning experiments.
Specific neurons activated in fear learning

Medial amygdala
The FTL+ population of cells identified in the MeA were found in anterior-to-midsections of this region. The cells here were, like in the AStr, of mixed morphology, with large and small neurons. The MeA contains both excitatory and inhibitory neurons (Bian et al. 2008), and the large and small neurons may represent this mixed population. In this area, there was a very clear increase in the number of FTL+ neurons in the conditioned group compared with all other groups and a further significant increase in the conditioned group. Any other increases over the home-cage baseline were not significant. This pattern of expression suggests a clear activation of neurons specifically associated with fear learning in the MeA.

Other studies have reported increases in FOS in MeA following different types of fear-conditioning training (Pezzone et al. 1992; Milanovic et al. 1998; Radulovic et al. 1998; Rosen et al. 1998; Savonenko et al. 1999), but none of these studies distinguished whether this expression was due to learning or non-learning experiences of the animals during fear conditioning. Some studies have analyzed c-fos expression in MeA following fear-conditioning recall, showing either no effect (Rosen et al. 1998) or some increase (Pezzone et al. 1992; Campeau et al. 1997). In the study of Pezzone et al. (1992), no quantitative analyses were undertaken, so it is difficult to know how much c-fos activation occurred in MeA following recall and how significant it was. In the study of Campeau et al. (1997), the greatest c-fos expression was seen in MeA in unconditioned mice re-exposed to context, suggesting that the c-fos expression was associated with context exposure rather than recall of fear conditioning. One possibility to explain these different results is that MeA will show increased c-fos expression in response to context exposure to different extents in different experiments. In our experiments, there is a trend for increased FTL expression in all mice exposed to context, although this trend is statistically insignificant.

The MeA has been implicated in processing of olfactory signals implicated in fear (Walker et al. 2005) and social olfactory signals (Brennan and Kendrick 2006). Thus, this region may act as a possible interface between olfactory input and emotional output (Dienlenberg and McGregor 2001). It is known that the MeA sends efferents to the hypothalamus (Usunoff et al. 2009) as well as the bed nucleus of the stria terminalis (Canteras et al. 1995; Dong et al. 2001), both of which are involved in fear expression. Thus, these studies implicate MeA in the processing of olfactory cues for fear. Other experiments support a role for MeA in fear learning involving olfactory cues. For example, increases in expression of FOS have been previously identified in MeA following olfactory fear conditioning (Schettino and Otto 2001), albeit it could not be determined whether this increase was olfactory-learning related. Further, lesioning studies show a requirement for MeA in fear conditioning involving predator odor as the US (Takahashi et al. 2007). Lesioning the MeA with ibotenic acid produced significant reductions in cat odor-induced conditioned fear-related behavior, suggesting that this nucleus is involved in consolidation or retrieval of the predator odor memory (Takahashi et al. 2007). Our results indicate context fear learning results in specific increases in FOS-related activation in this region. It is possible that this activation is related to undefined olfactory stimuli present during our context fear-conditioning experiments.

Not all experiments support a role for MeA in odor-related fear learning. Injection of either an NMDA or an AMPA/kainate...
receptor antagonist into MeA prior to training for context of olfactory fear conditioning did not block fear conditioning (Walker et al. 2005). However, injection of AMPA/kainate receptor antagonist prior to testing did affect fear-potentiated startle. These results were interpreted as the MeA being either an embedded component of the conditioned response pathway, or an indirect modulator of that pathway (Walker et al. 2005). Further studies need to be done in order to determine what the changes in FOS-related expression represent.

Ventromedial hypothalamus

A population of neurons within the VMH show increased *ftl* activation only following conditioning, and thus correlate specifically with fear learning. *ftl* neurons found in this region were generally large, multipolar, and intensely stained. The VMH is critical for the generation of affective responses to threats (Colpaert 1975). For example, pharmacological blockade of VMH inhibitory circuits with a GABA_A receptor antagonist enhanced fear behavior (Zagrodzka et al. 2000), suggesting that the VMH contains neurons important for defensive behaviors, and that these are inhibited by GABAergic transmission. Electrical stimulation of VMH produces autonomic and motor responses similar to those induced by natural threats (Lipp and Hunsperger 1978; Lammers et al. 1988).

The VMH is part of a large network of hypothalamic nuclei that are involved in defensive or fear-related behavior (Swanson 2000). Many of the neurons within this network and within VMH show increased FOS expression when rats are exposed to predators or predator odors, which elicit fear expression (Canteras et al. 1997; Dielenberg and McGovern 2001; Staples et al. 2005; Martinez et al. 2008).

In our experiments the VMH shows only low levels of FOS-related (*ftl*) expression following fear-memory recall, when the animals show strong fear expression. There is an apparent small increase in *ftl* activation in VMH following recall, but in the context of our entire study this increase is statistically insignificant, and the predominant increase in activated neurons is only in the conditioned groups. Others have reported increases in c-fos expression in VMH following recall of conditioned fear to a cue (Campeau et al. 1997) or exposure to a previously shocked context (Wilson and Murphy 2009). For the training set, mice were subjected to the following treatments. On the training day, home-cage controls were mice taken directly from their home cage with no other treatment and killed. Context control mice were placed in a shock chamber for 3 min. Immediate control mice were placed in the chamber and administered a shock (0.2 mA for 3 sec) within the first 10 sec of being placed in the chamber, then left in the chamber for another 3 min. Tone control mice were placed in the chamber, and after 3 min they were given a 3-sec 75-dB tone, then left in the chamber for a further 1 min. Conditioned mice were placed in the chamber and after 3 min they were given a 3-sec 0.2-mA shock, then left in the chamber for a further minute.

Pre-exposed conditioned mice were treated the same way as conditioned mice on the training day; however, 1 d prior to training, these mice were placed in the shock chamber for 3 min and then returned to their home cages. Following training, all mice were removed from the shock chamber and returned to their home cages. Four hours following training, all mice were retention tested by being placed back into the shock chamber for 3 min. Upon removal from the chamber following testing, mice were terminally anesthetized and perfused.

For the recall set of treatments, the mice were treated as follows: Conditioned recall mice were conditioned as described above, but given a 1.5-mA shock and tested 4 d later. Conditioned recall 0-h mice were removed from the chamber and killed immediately; conditioned recall 4-h mice were killed 4 h after removal from the chamber. Context recall mice were treated the same way as context control mice, but were tested 4 d later and killed 4 h after testing. The higher shock levels were administered for the recall set of experiments to ensure strong fear responses during testing 4 d later.

During the training and testing, mice were scored on the following parameters; time spent freezing (Blanchard et al. 1990). For the training set, mice were treated the same way as conditioned mice on the training day; however, 1 d prior to training, these mice were placed in the shock chamber for 3 min and then returned to their home cages. Following training, all mice were removed from the shock chamber and returned to their home cages. Four hours following training, all mice were retention tested by being placed back into the shock chamber for 3 min. Upon removal from the chamber following testing, mice were terminally anesthetized and perfused.

For the recall set of treatments, the mice were treated as follows: Conditioned recall mice were conditioned as described above, but given a 1.5-mA shock and tested 4 d later. Conditioned recall 0-h mice were removed from the chamber and killed immediately; conditioned recall 4-h mice were killed 4 h after removal from the chamber. Context recall mice were treated the same way as context control mice, but were tested 4 d later and killed 4 h after testing. The higher shock levels were administered for the recall set of experiments to ensure strong fear responses during testing 4 d later.

Histochemical procedures

At the specified times described above, *ftl* mice were deeply anesthetized with an intraperitoneal overdose (100 μL) of Lethabarb (Virbac), then perfused intracardially with 12 mL of 10% sucrose in water, followed by 24 mL of 4% pafaromide (PFA) containing 0.005% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). After 30 min, brains were dissected out and post-fixed in fresh 4% PFA for 15 min, washed twice in PBS to remove fixative, cryoprotected in 20% sucrose/PBS for 48–76 h at 4°C, and then...
frozen in OCT (Sakura Finetek) and kept at −30°C. Coronal sections (100 μm) were cut in a cryostat and placed into the wells of 24-well tissue culture plates (one to two sections/well) in PBS. For detection of β-galactosidase activity, PBS was aspirated and sections incubated in assay buffer (20 mM MgCl2, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, and 1.5 mg/ml 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside [X-gal; Astral] for 18 h at room temperature (RT) with agitation. After staining, sections were rinsed in PBS and stored in 4% PFA until mounted on glass slides. These procedures are more completely described elsewhere (Murphy et al. 2007).

Microscopic examination and data analysis

Sections were analyzed microscopically and areas which were βgal positive were identified by comparison with an atlas of the mouse brain (Franklin and Paxinos 2007). Slides containing serial sections of the brains were scanned using a MIRAX SCAN (Zeiss) and studied using MIRAX viewer software to compare between the levels of activation between training and recall groups within amygdala and hypothalamus. Areas that showed a qualitative difference in the level of activation were then examined quantitatively. Quantitative analysis was undertaken by counting FTL+ cells in matched sections for each group of mice. The counting was performed in an area of the same shape and size for each brain region (see the Results section for further details on which areas were counted).

Cell counts were done using an Olympus microscope (BX61) at a final magnification of 100 x. For all areas where neurons were counted, the area of section was examined in detail by focusing throughout its thickness. For LAvl, neurons that were counted were contained within 200 μm of the border of the LAvl with the external capsule, were clearly FTL+, and had a stellate morphology with at least two processes. For the AStr and MeA regions, all cells that were clearly identifiable were counted, even cells with relatively weak FTL staining. For the VMH, only the large stained neurons with visible processes within the defined region (see Results) were included in the count. For quantification of all regions, the following numbers of mice were used: home cage, n = 5; context, n = 4; immediate, n = 4; tone, n = 4; conditioned, n = 5; pre-exposure conditioned, n = 4; conditioned recall 0 h, n = 4; context recall, n = 4; conditioned recall 4 h, n = 5.

Statistical significance was determined using a one way ANOVA, with Tukey’s post hoc test for comparison between groups. Prism software (GraphPad Software) was used for performing statistical analysis.

Acknowledgments

We thank Laura Smith, Ata Ali, and Dania Jailuddin for their involvement in some of the experimental aspects of this work, as well as Marica Kesar and the staff of the Biomedical Animal Services Facility, University of Melbourne.

References

Asan E, Yilmazer-Hanke DM, Ellava M, Hantsch M, Lesch KP, Schmitt A. 2005. The corticotropin-releasing factor (CRF)-system and monoaminergic afferents in the central amygdala: Investigations in different mouse strains and comparison with the rat. *Neuroscience* 131: 953–967.

Beck CH, Fügiger HC. 1995. Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos. With and without diazepam pretreatment. *J Neurosci* 15: 709–720.

Bergstrom HC, McDonald CG, Johnson LR. 2011. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual mice. *PLoS One* 6(6): e15098. doi: 10.1371/journal.pone.0015098.

Bian X, Yanagawa Y, Chen WR, Luo M. 2008. Cortical-like functional organization of the pheromone-processing circuits in the medial amygdala. *J Neurophysiol* 99: 77–86.

Blanchard DC, Blanchard RJ. 1988. Ethoexperimental approaches to the biology of emotion. *Annu Rev Psychol* 39: 43–68.

Blanchard DC, Blanchard RJ, Tom P, Rodgers RJ. 1990. Diazepam changes risk assessment in an anxiety/defense test battery. *Psychopharmacology* 101: 511–518.

Brennan PA, Kendrick KM. 2006. Mammalian social odours: Attraction and individual recognition. *Philos Trans R Soc Lond B Biol Sci* 361: 2061–2078.

Campeau S, Falls WA, Cullinan WE, Helmreich DL, Davis M, Watson SJ. 1997. Elicitation and reduction of fear: Behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. *Neuroscience* 78: 1087–1104.

Canteras NS, Simerly RB, Swanson LW. 1995. Organization of projections from the medial nucleus of the amygdala: A PHAL study in the rat. *J Comp Neurol* 360: 213–245.

Canteras NS, Chiavegatto S, Ribeiro do Valle LE, Swanson LW. 1997. Severe reduction of rat defensive behavior to a predator by discrete hypothalamic chemical lesions. *Brain Res Bull* 44: 297–305.

Cirelli C, Tononi G. 2000. On the functional significance of c-fos induction during the sleep-waking cycle. *Sleep* 23: 453–469.

Colpaert FC. 1975. The ventromedial hypothalamus and the control of avoidance behavior and aggression: Fear hypothesis versus response-suppression theory of limbic system function. *Behav Biol* 15: 27–44.

Day HE, Nebel S, Sasse S, Campeau S. 2005. Inhibition of the central extended amygdala by loud noise and restraint stress. *Eur J Neurosci* 21: 441–454.

Day HE, Krysikow EM, Nyhus TJ, Herlihy L, Campeau S. 2008. Conditioned fear inhibits c-fos mRNA expression in the central extended amygdala. *Brain Res* 1229: 137–146.

Dielenberg RA, McGregor IS. 2001. Defensive behavior in rats towards predatory odors: A review. *Neurosci Biobehav Rev* 25: 597–609.

Dong HW, Petrovich GD, Swanson LW. 2001. Topography of projections from amygdala to bed nuclei of the stria terminalis. *Brain Res Brain Res Rev* 38: 192–246.

Ehrlich I, Humeau Y, Grenier F, Ciocci S, Herry C, Luthi A. 2009. Amygdala inhibitory circuits and the control of fear memory. *Neuron* 62: 757–771.

Fanselow MS, LeDoux JE. 1999. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. *Neuron* 23: 229–232.

Fanselow MS, Poulos AM. 2005. The neuroscience of mammalian associative learning. *Annu Rev Psychol* 56: 207–234.

Franklin KBJ, Paxinos G. 2007. *The mouse brain in stereotaxic coordinates*, 3rd ed. Academic Press, San Diego, CA.

Furlong TM, Cole S, Hamlin AS, McNally GP. 2010. The role of prefrontal cortex in predictive fear learning. *Behav Neurosci* 124: 574–586.

Hall J, Thomas KL, Evertt BJ. 2001. Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. *Annu Rev Neurosci* 24: 1453–1483.

Han JH, Kushner SA, Yu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA. 2007. Neuronal competition and selection during memory formation. *Science* 316: 457–460.

Han JH, Kushner SA, Yu AP, Hsiang HL, Ruch T, Waisman A, Bontempi E, Neve RL, Frankland PW, Josselyn SA. 2009. Selective erasure of a fear memory. *Science* 323: 1492–1496.

Holahan MR, White NM. 2004. Amygdala c-Fos induction corresponds to unconditioned and conditioned aversive stimuli but not to freezing. *Behav Brain Res* 152: 109–120.

Jolkkonen E, Pikkarainen M, Kemppainen S, Pitkanen A. 2001. Interconnectivity between the amygdaloid complex and the amygdalo-striatal transition area: A PHAL study in the rat. *J Comp Neurol* 431: 39–58.

Kim JJ, Jung MW. 2006. Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. *Neurosci Biobehav Rev* 30: 188–202.

Knapska E, Radwanska K, Werka T, Kaczmarek L. 2007. Functional internal complexity of amygdala: Focus on gene activity mapping after behavioral training and drugs of abuse. *Physiol Res* 56: 1113–1123.

Kovacs KJ. 2008. Measurement of immediate-early gene activation—c-fos and beyond. *J Neuroendocrinol* 20: 665–672.

Lammers JH, Kruk MR, Meelis W, van der Poel AM. 1988. Hypothalamic substrates for brain stimulation-induced patterns of locomotion and Novelty jumps in the rat. *Neurosci Lett* 99: 294–310.

Lanuza E, Moncho-Bogani J, Ledoux JE. 2008. Unconditioned stimulus pathways to the amygdala: Effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala. *Neuroscience* 153: 959–968.

LeDoux JE. 1993. Emotional memory: In search of systems and synapses. *Annu N Y Acad Sci* 702: 149–157.
LeDoux JE. 2000. Emotion circuits in the brain. *Anna Rev Neurosci* **23**:155–184.

Lipp HP, Humsperger RW. 1978. Threat, attack and flight elicited by electrical stimulation of the ventromedial hypothalamus of the marmoset monkey *Callithrix jaccus*. *Brain Behav Evol* **15**:260–293.

Majak K, Pitkanen A. 2003. Activation of the amygdalo-entorhinal pathway in fear-conditioning in rat. *Eur J Neurosci* **18**:1652–1659.

Maren S, Quirk GJ. 2004. Neuronal signalling of fear memory. *Nat Rev Neurosci* **5**:844–852.

Martinez RC, Carvalho-Netto EF, Amaral VC, Nunes-de-Souza RL, Canetanas NS. 2008. Investigation of the hypothalamic defensive system in the marmoset. *Behav Brain Res* **192**:185–190.

McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. *Prog Neurobiol* **55**:257–332.

McGaugh JL. 2004. The amygdala modulates the consolidation of memories of emotionally arousing experiences. *Anna Rev Neurosci* **27**:1–28.

Milanovic S, Radulovic J, Laban O, Stiedl O, Henn F, Spiess J. 1998. Production of the Fos protein after contextual fear conditioning of C57BL/6N mice. *Brain Res* **784**:37–47.

Murphy M, Gerefrar U, Wilson YM. 2007. A method for detecting functional activity related expression in gross brain regions, specific brain nuclei and individual neuronal cell bodies and their projections. *Biol Proced Online* **9**:1–8.

Nithianantharajah J, Levis H, Murphy M. 2004. Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. *Neurobiol Learn Mem* **81**:200–210.

Pape HC, Stork O. 2003. Genes and mechanisms in the amygdala involved in the formation of fear memory. *Ann NY Acad Sci* **965**:92–105.

Pare D, Quirk GJ, LeDoux JE. 2004. New vistas on amygdala networks in the formation of fear memory. *J Neurophysiol* **92**:1–9.

Pezzone MA, Lee WS, Hoffman GE, Rabin BS. 1992. Induction of c-Fos immunoreactivity in the rat forebrain by conditioned and unconditional aversive stimuli. *Brain Res* **597**:41–50.

Pitkanen A, Savander V, LeDoux JE. 2000. Cerebral hemisphere regulation of motivated behavior. *Annu Rev Neurosci* **23**:113–164.

Pitkanen A, Karmmerle J, Spiess J. 1998. Relationship between dopamine and the medial nucleus of the amygdala in the mouse. *Brain Res* **849**:20–28.

Radulovic J, Kammermeier J, Spiess J. 1999. Neuronal oscillations couple the amygdala and striatum during learning. *J Neurophysiol* **82**:801–807.

Radulovic J, Kammermeier J, Spiess J. 1998. Organization of intra-amygdaloid circuits in the rat: An emerging framework for understanding functions of the amygdala. *Trends Neurosci* **20**:517–523.

Radwanska K, Nikolaev E, Knapska E, Kaczmarek L. 2002. Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. *Neuroreport* **13**:2241–2246.

Reijmers LG, Perkins BL, Matsuo N, Mayford M. 2007. Localization of a stable neural correlate of associative memory. *Science* **317**:1230–1233.

Rodrigues SM, Schaef GE, LeDoux JE. 2004. Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. *Neuron* **44**:75–91.

Rosen JB, Funselsow MS, Young SL, Sitcoske M, Maren S. 1998. Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. *Brain Res* **796**:132–142.

Sah P, Faber ES, Lopez De Armentia M, Power J. 2003. The amygdaloid complex: Anatomy and physiology. *Physiol Rev* **83**:803–834.

Saint-Cyr JA, Taylor AE, Nicholson K. 1995. Behavior and the basal ganglia. *Adv Neurool* **65**:1–28.

Savonenko A, Filipkowski RK, Werka T, Zielinski K, Kaczmarek L. 1999. Defensive conditioning-related functional heterogeneity among nuclei of the rat amygdala revealed by c-fos mapping. *Neuroscience* **94**:723–733.

Schafe GE, LeDoux JE. 2000. Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. *J Neurosci* **20**:RC96.

Schettino LF, Otto T. 2001. Patterns of Fos expression in the amygdala and ventral perirhinal cortex induced by training in an olfactory fear-conditioning paradigm. *Behav Neurosci* **115**:1257–1272.

Scicl AP, Petrovich GD, Swanson LW, Thompson RF. 2004. Contextual fear conditioning is associated with lateralized expression of the immediate early gene c-fos in the central and basolateral amygdalar nuclei. *Behav Neurosci* **118**:5–14.

Shammah-Lagnado SJ, Alheid GF, Heimer L. 1999. Afferent connections of the interstitial nucleus of the posterior limb of the anterior commissure and adjacent amygdalostriatal transition area in the rat. *Neuroscience* **94**:1097–1123.

Staples LG, Hunt GE, Cornish JL, McGregor IS. 2005. Neural activation during cat odor-induced conditioned fear and ‘trial 2’ fear in rats. *Neurosci Biobehav Rev* **29**:1265–1277.

Swanson LW. 2000. Cerebral hemisphere regulation of motivated behavior. *Brain Res* **886**:113–164.

Takahashi LX, Hubbard DT, Lee I, Dar Y, Spies SM. 2007. Predator odor-induced conditioned fear involves the basolateral and medial amygdala. *Behav Neurosci* **121**:100–110.

Touzani K, Sclatani A. 2002. Lateral hypothalamic lesions impair flavour-nutrient and flavour-toxin trace learning in rats. *Eur J Neurosci* **16**:2425–2433.

Usunoff KG, Schmitt O, Itzev DE, Haas SJ, Lazarov NE, Rolfs A, Wee A. 2009. Efferent projections of the anterior and posterior rostral regions of the medial nucleus of the amygdala in the marmoset. *Cells Tissues Organs* **190**:256–285.

Walker DL, Paschall GY, Davis M. 2005. Glutamate receptor antagonist insusions into the basolateral and medial amygdala reveal differential contributions to olfactory vs. context fear conditioning and expression. *Learn Mem* **12**:120–129.

Wilson YM, Murphy M. 2009. A discrete population of neurons in the lateral amygdala is specifically activated by contextual fear conditioning. *Learn Mem* **16**:357–361.

Wilson Y, Nag N, Davenport P, Oldfield BJ, McKinley MJ, Gerefrar U, Murphy M. 2002. Visualization of functionally activated circuitry in the brain. *Proc Natl Acad Sci* **99**:3252–3257.

Zagrodzka J, Romanuk A, Wiecezek M, Boguszewski P. 2000. Bicuculline administration into ventromedial hypothalamus: Effects on fear and regional brain monoamines and GABA concentrations in rats. *Acta Neurobiol Exp (Wars)* **60**:333–343.
Context fear learning specifically activates distinct populations of neurons in amygdala and hypothalamus

Lidia Trogrlic, Yvette M. Wilson, Andrew G. Newman, et al.

Learn. Mem. 2011, 18:
Access the most recent version at doi:10.1101/lm.2314311

References
This article cites 68 articles, 10 of which can be accessed free at:
http://learnmem.cshlp.org/content/18/10/678.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

© 2011 Cold Spring Harbor Laboratory Press