DIAGNOSIS

The diagnosis of sepsis requires first of all the presence of infection, which is not always easy to determine. Klein Klouwenberg et al [2] showed that among patients admitted to the Intensive Care Unit (ICU) for sepsis, 13% did not present an infectious disease and in the 30% it was only possible. The study concludes that the diagnosis of sepsis at admission corresponds poorly with the final diagnosis. Other studies carried out on necropsies have shown in patients admitted to the ICU that the clinical and anatomopathological diagnoses do not match with certain frequency, with type I errors being the most frequent. These errors are characterized because if it had knowledge of the true diagnosis, the therapeutic attitude would have changed. The discrepancy between the clinical diagnosis and that of the necropsy occurs in both senses. That is, patients diagnosed clinically for an infectious process did not present it at necropsy and infection was demonstrated in patients without this clinical diagnosis [3].

The complex physiopathology of the septic syndrome may justify the difficulties in establishing the clinical diagnosis (table 1) [4]. Another aspect that makes it difficult is the progressive increase in the age of the attended population, and the fact that this one more frequently presents important comorbidity or immunosuppression, aspects that make that the clinical and analytical manifestations of our patients are often atypical [5].

RISK STRATIFICATION

As a result of the publication of the definitions of Sepsis-3, an important controversy about the effectiveness of quick sequential organ failure assessment (qSOFA) as a screening tool to detect patients with suspected sepsis has been established in the literature. In the last year, new studies have been published that evaluate the prognostic accuracy of the qSOFA and other scales such as the National Early Warning
TREATMENT

Multiple articles show that complying with the 3-hour bundles (measuring lactate, taking blood cultures and administering antibiotics) leads to a reduction in mortality in patients with sepsis or septic shock. A more rapid completion of a 3-hour bundle of sepsis care and quick administration of antibiotics, but not quick completion of an initial bolus of intravenous fluids, were associated with lower risk-adjusted in-hospital mortality [12]. However, studies that assess adherence to these recommendations show that only 25% of physicians achieve this goal. Among patients with severe sepsis or septic shock receiving antimicrobials in the emergency department, door-to-antimicrobial times varied five-fold among treating physicians. Given the association between antimicrobial delay and mortality, interventions to reduce physician variation in antimicrobial initiation are likely indicated [13].

Studies show that Emergency Department crowding was significantly associated with lower compliance with the entire resuscitation bundle and decreased likelihood of the timely implementation of the bundle elements [14]. The structured care by a code for the patient with sepsis has led in multiple publications to a significant reduction in the mortality [15].

However, even in this, there is controversy. SSC guidelines affirm that administration of antimicrobials should begin as soon as possible after sepsis identification and within the first hour for both sepsis and septic shock (strong recommendation, moderate quality of evidence). However, the IDSA, fearing that this will lead to overprescription of antibiotics in uninfected population or the overuse of broad spectrum antimicrobials, and considering that this recommendation is supported only by observational studies, recommends that in patients with...
sepsis (without shock), is better to completed studies in order to determine if infection is the responsible of the patient’s clinical manifestations, and once it is confirmed start antibiotic treatment as soon as possible [16].

Finally, SSC guidelines suggest that in septic shock, combined treatment with 2 antimicrobials, both active against the microorganism, may be useful. It is recommended to continue until the clinical improvement or resolution of the infection, independently of the microbiological results of susceptibility. The IDSA, on the contrary, states that there are no solid data to support these recommendations. The evidence would support the empirical use of two active agents against Gram-negative bacilli for the empirical treatment in septic shock in order to increase the chances of administering at least one active agent, but once the susceptibility is known available data suggest that there is no evidence to support the treatment continuation with two agents [16].

A recent Spanish study corroborates that there is no difference, once the susceptibility is known, between maintaining biotera or establishing monotherapy with the active agent [17]. However, it is important to note that this study excludes neutropenic patients and infection by Pseudomonas spp, where future studies are required.

DECALOGUE

The discrepancy in the results showed by the different studies that address the problem of sepsis is given because they try to label different profile patients with the same definitions and therapeutic attitudes. Sepsis is an heterogeneous syndrome secondary to different etiologies and with a wide range of severity. The clinical presentation, the prognosis and the therapeutic approach will depend on the source of infection, the immunological situation of the host, age, comorbidity, and timing. Two patients can meet the definition of septic shock by requiring inotropes or having high lactic acid, but nevertheless have different age, comorbidity or site of infection. All these factors can conditioned the therapeutic approach or the outcome of the episode.

Kalil et al. [18] make a recommendation of approaching the infected patient based on 4 points: identify the site of the infection, source control, evaluate the immunological status of the host and establish whether it is in shock or not. The site of infection can conditionate the etiology and, therefore, the selection of the antimicrobial treatment. But it also has connotations in the prognosis since it is known that certain sources of infection, such as respiratory or abdominal, have higher mortality than others such as urinary tract infection [19]. The source control has been shown to be essential in improving the patient’s prognosis and poor control is associated with increased mortality [20]. The immunological situation can condition the mortality and the etiology of the process. Therefore, it is necessary to know if the patient has a solid organ or hematopoietic cells transplant, cancer, chemotherapy, immunotherapy, HIV with less than 250 CD4, takes immunosuppressive medication or biological therapy, or receives chronic corticosteroid treatment [21]. Finally, the shock situation must be evaluated since it conditions a higher mortality. To the contribution of Kalil et al [18] we thought that the consideration of comorbidity should be added, since this will be related to higher mortality and have therapeutic implications. It is known that a Charlson index greater than 2 leads to an 10% excess of in-hospital mortality [22].

CONCLUSION

The approach based on the 5 previous points is valid to decide the therapeutic attitude. Severity stratification should be based not only on risk scores, which have a modest AUC around 0.75, but should be supported by biomarkers such as lactate or proadrenomodulin. Procalcitonin can be helpful in diagnosing infection.

In any case, when faced with an infection, cultures must be taken, antibiotics must be prescribed and the source control must be established, attitudes that must be completed as soon as possible regardless of the severity. Risk stratification is useful in establishing priorities.

Regarding the timing of antibiotic administration, in relation to the dispute between SSC and IDSA, we comment that both agree in what attitude must be follow against the shock. Regarding sepsis, we must consider that this definitions means that the patient has failure of at least two organs, and therefore it has an increase mortality of 10%. In this context, considering the risk-benefit evaluation, we think that early antibiotic administration must be done, especially considering that we are speaking of an initial moment where there can be great uncertainty both diagnostic and prognostic. We do not think that the administration of a single dose of antibiotic could condicionate a risk of serious adverse event on the patient or a significant modification on the ecosystem.

REFERENCES

1. Freund Y, Ortega M. Sepsis and prediction of in-hospital mortality. Emergencias. 2017;29:79-80. PMID: 28825247.
2. Klein Klouwenberg PM, Cremer OL, van Vught LA, Ong DS, Frenken JF, Schultz MJ, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care. 2015;19:319. PMID: 26346055 PMCID: PMC4562354 DOI: 10.1186/s13054-015-1035-1
3. Magret Iglesias M, Vidaur Tello L, Fernández Olína S, García Fontgivell JF, Blázquez Vilas S, Alonso Rubio S, et al. Discrepancies between clinical and pathological diagnosis in a polyvalent intensive care unit. Med Intensiva. 2006;30:95–100. PMID: 16729476.
4. Fontova-Almató A, Sufer-Soler R. Importance of triage in hospital emergency departments. Emergencias. 2017;29:205-6.
5. 16.- González Del Castillo J, Martín-Sánchez FJ. Resistant microorganisms in the emergency department: what should we do to meet the challenge?. Emergencias. 2017;29:303-5. PMID: 29077288
6. García-Villalba E, Cano-Sánchez A, Alcaraz-García A, Cinesi-Gómez C, Piñera-Salmerón P, Marin I, et al. Nomogram to predict a poor outcome in emergency patients with sepsis and at low risk of organ damage according to Sepsis-related Organ Failure Assessment (SOFA). Emergencias. 2017;29:81-6. PMID: 28825248

7. Serafim R, Gomes JA, Salluh J, Póvoa P. A Comparison of the Quick-SOFA and Systemic Inflammatory Response Syndrome Criteria for the Diagnosis of Sepsis and Prediction of Mortality: A Systematic Review and Meta-Analysis. Chest. 2018;153:646-655. PMID: 29289687 DOI: 10.1016/j.chest.2017.12.002

8. Fernando SM, Tran A, Taljaard M, Cheng W, Rochwerg B, Seely AJE, et al. Prognostic Accuracy of the Quick Sequential Organ Failure Assessment for Mortality in Patients With Suspected Infection: A Systematic Review and Meta-analysis. Ann Intern Med. 2018;168:266-275. PMID: 29404582 DOI: 10.7326/M17-2820

9. Hamilton F, Arnold D, Baird A, Albur M, Whiting P. Early Warning Scores do not accurately predict mortality in sepsis: A meta-analysis and systematic review of the literature. J Infect. 2018;76:241-248. PMID: 29337035 DOI: 10.1016/j.jinf.2018.01.002

10. Estella A, Gamazo-Del Rio J, Álvarez-Manzanares J, Julián-Jiménez A, González Del Castillo J. Prognostic accuracy of qsofa according to the site of infection in older patient attended in Emergency Department. Eur J Intern Med. 2018. pii: S0953-6205(18)30005-0. PMID: 29307503 DOI: 10.1016/j.ejim.2018.01.005

11. Torres Bonafonte OH, Gil Olivas E, Pérez Macho E, Pacho Pacho C, Mateo Roca M, Casademont Pou J, et al. Predictors of drug-resistant pathogens in community-onset pneumonia: Are factors considered in health-care-associated pneumonia useful in the emergency department?. Emergencias. 2017;29:306-12. PMID: 29077289.

12. Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med. 2017;376:2235-2244. PMID: 28528569 PMCID: PMC5538258 DOI: 10.1056/NEJMoA1703058.

13. Peltan ID, Mitchell KH, Rudd KE, Mann BA, Carlbom DJ, Hough CL, et al. Physician Variation in Time to Antimicrobial Treatment for Septic Patients Presenting to the Emergency Department. Crit Care Med. 2017;45:1011-1018. PMID: 28426466 PMCID: PMC5538258 DOI: 10.1097/CCM.0000000000002436

14. Shin TG, Jo LJ, Choi DJ, Kang MJ, Jeon K, Suh GY, et al. The adverse effect of emergency department crowding on compliance with the resuscitation bundle in the management of severe sepsis and septic shock. Crit Care. 2013;17:R224. PMID: 24093643 PMCID: PMC4055965 DOI: 10.1186/cc13047.

15. Ferreras Amez JM, Arribas Entrala B, Sarrat Torres MA, García Noain A, Caudeau Martínez A, Colás Oros C, et al. Before-after study of the effect of implementing a sepsis code for emergency departments in the community of Aragon. Emergencias. 2017;29:154-60. PMID: 28825234.

16. Gilbert DN, Kalil AC, Klompas M, Masur H, Winslow DL. IDSA Position Statement: Why IDSA Did Not Endorse the Surviving Sepsis Campaign Guidelines. Clin Infect Dis. 2017. PMID: 29182749 DOI: 10.1093/cid/cix997