Investigation of performance measures of power generating unit of sewage treatment plant

Monika Saini, Drishty Goyal, Ashish Kumar and Deepak Sinwar

Department of Mathematics & Statistics
School of Basic Science
Manipal University Jaipur, Jaipur– 303007, India
Email: ashishbarak2020@gmail.com

*Department of Computer and Communication Engineering
Manipal University Jaipur, Jaipur-303007, Rajasthan, India
deepak.sinwar@gmail.com

Abstract
The main objective of present study to investigate the availability and profit of power generation systems established in sewage treatment plants. The sewage treatment plant is an industry in which waste sewage water has been treated and waste is used to generate power. For this purpose, a mathematical model has been proposed by considering constant failure and repair rates. The power generating unit in sewage treatment plant comprises six subsystems as sludge digester, gas holding tank, gas burner, gas scrubber, gas engine and power generation. By using appropriate redundancy technique in model development Chapman-Kolmogorov differential equations has been drawn with the help of the Markov birth death process. Availability and profit have been analysed based on making variation in the failure and repair rates. The numerical and graphical results have been depicted for a particular case. The derived results have been discussed with system designers and found useful.

Keywords: Power Generator Unit, Birth-Death Process, Exponential Distribution, Availability.

1. Introduction
As human civilization entered in techno-friendly world, lot of development has been made in the field of industrial, mechanical, medical and entertainment. But for the operation of such systems, electricity is the basic requirement. Without electricity, no one can expect industrial and economic growth. In a country like India in which a large portion of population lives in the villages and towns where no proper electricity is available. This population faces lots of problems in education, business, and daily survivals because of insufficient electricity supply. To overcome this situation, government, policy makers and scientists constantly trying to develop new techniques and technologies to reduce insufficient electricity problem. In past electricity was generated through thermal plants and steam turbine plants. But during last few decades, some other areas for electricity generation like nuclear energy, biofuels are also identified. The electricity generation through sewage water and sludge is a
new area for electricity generation. And sewage treatment plant can play an important role in this as it treats the raw sewage water and removes all sludge from it. After the complete treatment to generate some biogases which can be used to generate electricity. But the available plants are not sufficient in ratio of existing population. So, there is need to establish new plants and improve performance of existing plants. Hence, present study can help system developers to propose new design to enhance reliability of plants.

In exiting literature, it is observed that researchers studied importance of reliability measures in various areas. Ebeling (2008) suggested some techniques to investigate the reliability and availability approaches with the help of failure and repair data of various complete systems. Fytiti and Zabaniotou (2008) proposed and studied the model for maintenance of sewage treatment plants. Michael et al. (2009) analyzed the availability of a state transition system by using Markov process. Komal and Kumar (2010) suggested a technique and used RAM methodology to analyze the performance of the repairable system. Garg and Sharma (2012) conducted a two-stage approach to analyze the reliability and availability by using particle swarm optimization and some statistical methods. Modgil et al. (2013) optimized the performance of shoe manufacturing by using Markov process and analyzed the long-run availability of the system. Kumar and Malik (2014) analyzed repairable computer system by using the reliability model. Addabo et al. (2016) analyzed to analyze the reliability and availability of multicores control system of a UPS modular system. De Sanctis et al. (2016) suggested a methodology to reduce the environmental problems and to maintain the strategy for this by using Markov process. Mishra et al. (2016) proposed a method to analyze the availability of drum manufacturing system by using the Markov approach. Kumar et al. (2017) suggested a methodology to optimize the casting process by using reliability approach. Kumar et al. (2018) estimated mathematical modelling to analyze the reliability for sugar mill plant. Kumar et al. (2020) carried out reliability, dependability and maintainability analysis of power generating unit established in a STP using RAMD technique.

But as discussed above, it is revealed that not much work has been done by the researchers in sewage treatment plant by using the Markovian approach under constant failure and repair rates. So, this study has been conducted to develop a methodology for increasing the performance of the system.

The whole study has been divided into eight sections from which the first section is the introduction, second is the complete description of the system, third shows assumptions, fourth is notations, mathematical modelling is shown in section five, performance analysis carried out in section six while numerical analysis and result discussion has been made in section seven along followed by eight conclusion section.

2. System Description
As shown in (Fig 1) power generating unit of STP comprises six subsystems as sludge digester, gas holding tank, gas burner, gas scrubber, gas engine and power generation. In this unit, power is generated by treating remaining sludge waste after the complete water treatment process. All six subsystems are connected in series. Failure in any subsystem can cause a complete system failure. The detailed explanation of this unit are given below:
i. **Subsystem 'H' (Sludge Digester)**
The sludge digester unit comprise two unit in 2-out-of-2: G connected with subsystem gas holding tank. In this subsystem STP reduce the amount of sludge waste and form biogases.

ii. **Subsystem 'I' (Gas Holding Tank)**
The gas holding tank comprise only one unit connected with subsystem sludge digester, gas burner and gas scrubber. In this subsystem formed gases are stored and it balance the fluctuation in the production of biogases in digester.

iii. **Subsystem 'J' (Gas Burner)**
The gas burner comprise only one unit connected with subsystem gas holding tank. In this subsystem burner disposed excess and unwanted gases from the system.

iv. **Subsystem 'K' (Gas Scrubber)**
The gas scrubber comprise only one unit connected with subsystem gas holding tank and gas engine. This subsystem removes hydrogen sulfide, neutralize harmful components and absorb pollutant from this.

v. **Subsystem 'L' (Gas Engine)**
The gas engine comprise only one unit connected with subsystem gas scrubber and power generation. This subsystem runs on gaseous fuel and heated digester.

vi. **Subsystem 'M' (Power Generation)**
The power generation unit comprise two unit in 2-out-of-2: G connected with subsystem gas engine. In this subsystem power is generated with the help of gas engine and operate all STP units.

3. **Assumptions**
 a) A maintenance policy is available and there is no waiting time for server to repair system.
 b) The system will work as new with full capacity after repair.
 c) Failure rate and repair rates are considered as exponentially distributed.

4. **Notations**
 : System is working with full capacity
: System is in failure state
H, I, J, K, L, M : All subsystems are working with full capacity
h, i, j, k, l, m : Subsystem has failed
$\Psi_i (1 \leq i \leq 6)$: Respectively failure rates in subsystems H, I, J, K, L, M
$\Omega_i (1 \leq i \leq 6)$: Respectively repair rate in subsystems H, I, J, K, L, M
$P_0(t)$: Probability that system is working with full capacity
$P_i(t), (i = 1, \ldots, 6)$: Probability of subsystem on i^{th} state at time t
$S_i, (i = 0, 1, 2, \ldots, 6)$: State of the subsystem

Figure 2. State changeover of the system

5. Mathematical modeling of the system
The mathematical model of power generating unit has been developed by using Markov process and supplementary variable technique with the help of state changeover diagram (Fig.-2) where all repair rates are exponentially distributed. This model is described below:

\[
P_0(t + \Delta t) = [(1 - 2\Psi_1 - \Psi_2 - \Psi_3 - \Psi_4 - \Psi_5 - 2\Psi_6)P_0(t) + \Omega_1 P_1(t) + \Omega_2 P_2(t) + \Omega_3 P_3(t) + \Omega_4 P_4(t) + \Omega_5 P_5(t) + \Omega_6 P_6(t)] \Delta t
\]

\[
P_0(t + \Delta t) - P_0(t) = [(2\Psi_1 + \Psi_2 + \Psi_3 + \Psi_4 + \Psi_5 - 2\Psi_6)P_0(t) + \Omega_1 P_1(t) + \Omega_2 P_2(t) + \Omega_3 P_3(t) + \Omega_4 P_4(t) + \Omega_5 P_5(t) + \Omega_6 P_6(t)] \Delta t
\]

Dividing both side by Δt and limit $\Delta t \rightarrow \infty$
\[
\lim_{\Delta \to 0} \frac{P_0(t + \Delta t) - P_0(t)}{\Delta t} = \lim_{\Delta \to 0} \left[(-2\Psi_1 - \Psi_2 - \Psi_3 - \Psi_4 - \Psi_5 - 2\Psi_6)P_0(t) + \Omega_1 P_1(t) + \Omega_2 P_2(t) + \Omega_3 P_3(t) + \Omega_4 P_4(t) + \Omega_5 P_5(t) + \Omega_6 P_6(t) \right]
\]

\[
\left[\frac{dP_1(t)}{dt} \right] + (2\Psi_1 + \Psi_2 + \Psi_3 + \Psi_4 + \Psi_5 + 2\Psi_6)P_0(t) = \Omega_1 P_1(t) + \Omega_2 P_2(t) + \Omega_3 P_3(t) + \Omega_4 P_4(t) + \Omega_5 P_5(t) + \Omega_6 P_6(t)
\]

\[
\left[\frac{d}{dt} + \Omega_1 \right] P_1(t) = 2\Psi_1 P_0(t)
\]

\[
\left[\frac{d}{dt} + \Omega_2 \right] P_2(t) = \Psi_2 P_0(t)
\]

\[
\left[\frac{d}{dt} + \Omega_3 \right] P_3(t) = \Psi_3 P_0(t)
\]

\[
\left[\frac{d}{dt} + \Omega_4 \right] P_4(t) = \Psi_4 P_0(t)
\]

\[
\left[\frac{d}{dt} + \Omega_5 \right] P_5(t) = \Psi_5 P_0(t)
\]

\[
\left[\frac{d}{dt} + \Omega_6 \right] P_6(t) = 2\Psi_6 P_0(t)
\]

Initial Conditions:
\[P_0(0) = 1 \]
\[P_i(0) = 0, \ i=1 \text{to} \ 7 \]

To calculate long run availability we can take \(\frac{d}{dt} = 0 \) as \(t \to \infty \) and \(P_i(t) = P_i \)

From eq. (1-7), steady state probabilities are:
\[
P_1 = \frac{2\Psi_1}{\Omega_1} P_0 \quad P_2 = \frac{\Psi_2}{\Omega_2} P_0 \quad P_3 = \frac{\Psi_3}{\Omega_3} P_0
\]
\[
P_4 = \frac{\Psi_4}{\Omega_4} P_0 \quad P_5 = \frac{\Psi_5}{\Omega_5} P_0 \quad P_6 = \frac{2\Psi_6}{\Omega_6} P_0
\]

Using normalized condition \(\sum P_i = 1 \)
\[P_0 = \left(1 + \frac{2\Psi_1}{\Omega_1} + \frac{\Psi_2}{\Omega_2} + \frac{\Psi_3}{\Omega_3} + \frac{\Psi_4}{\Omega_4} + \frac{\Psi_5}{\Omega_5} + \frac{2\Psi_6}{\Omega_6}\right)^{-1} \]

long run availability \((A_r)\)

\[A_r = P_0 = \left(1 + \frac{2\Psi_1}{\Omega_1} + \frac{\Psi_2}{\Omega_2} + \frac{\Psi_3}{\Omega_3} + \frac{\Psi_4}{\Omega_4} + \frac{\Psi_5}{\Omega_5} + \frac{2\Psi_6}{\Omega_6}\right)^{-1} \]

6. Performance Analysis

In this section, a formula for performance analysis is proposed in which \(K_1\) represent the total revenue taken as per unit time, \(A_r\) represent the long-run availability which we have calculated above and \(K_2\) represented the total repair cost.

Performance = \(K_1A_r - K_2\)

\[= K_1\left(1 + \frac{2\Psi_1}{\Omega_1} + \frac{\Psi_2}{\Omega_2} + \frac{\Psi_3}{\Omega_3} + \frac{\Psi_4}{\Omega_4} + \frac{\Psi_5}{\Omega_5} + \frac{2\Psi_6}{\Omega_6}\right)^{-1} - K_2 \]

7. Numerical Analysis & Discussion

Here, variation in availability based on changes made in failure rates has been analyzed with respect to the failure rate \(\Psi_2\) range from 0.0009 to 0.0063. The varying failure rates of other subsystems as follows: \(\Psi_1 = 0.005\) to 0.05, \(\Psi_3 = 0.0003\) to 0.003, \(\Psi_4 = 0.0025\) to 0.025, \(\Psi_5 = 0.0007\) to 0.007 and \(\Psi_6 = 0.008\) to 0.08 by considering failure rate of subsystems follows exponential distribution and repair rates are: \(\Omega_1 = 1.75\), \(\Omega_2 = 0.35\), \(\Omega_3 = 0.08\), \(\Omega_4 = 1.2\), \(\Omega_5 = 0.12\) and \(\Omega_6 = 3\). This analysis reveals that availability of the system decreases 4.78% approximately when failure rate \(\Psi_1\) increase from 0.005 to 0.05. Availability of the system decrease 3.19% approximately when failure rate \(\Psi_3\) increase from 0.0003 to 0.003. Availability of the system decrease 1.79% approximately when failure rate \(\Psi_4\) increase from 0.0025 to 0.025. Availability of the system decrease 4.87% approximately when failure rate \(\Psi_5\) increase from 0.0007 to 0.007. Availability of the system decrease 4.47% approximately when failure rate \(\Psi_6\) increase from 0.008 to 0.08.

Table 1. Variation in availability of the system w.r.t. failure rate \(\Psi_2\)

\(\Psi_2\)	\(\Psi_1\)	\(\Psi_3\)	\(\Psi_4\)	\(\Psi_5\)	\(\Psi_6\)	
0.0009	0.795338	0.927515	0.9442552	0.9578216	0.9278228	0.9317184
0.0015	0.97371	0.9272751	0.9427292	0.9562515	0.9263548	0.9302326
Variation in availability based on variation in repair rates has been analyzed with respect to the repair rate Ω_2 range from 0.35 to 0.89. The varying repair rates of other subsystems as follows: $\Omega_1 = 1.75$ to 1.79, $\Omega_3 = 0.08$ to 0.12, $\Omega_4 = 1.2$ to 1.6, $\Omega_5 = 0.12$ to 0.16 and $\Omega_6 = 3$ to 3.4 by considering repair rate of subsystems follows exponential distribution and repair rates are: $\Psi_1 = 0.005$, $\Psi_2 = 0.0009$, $\Psi_3 = 0.0003$, $\Psi_4 = 0.0025$, $\Psi_5 = 0.0007$ and $\Psi_6 = 0.008$. This analysis reveals that availability of the system increase 0.012% approximately when repair rate Ω_1 increase from 1.75 to 1.79. Availability of the system increase 0.12% approximately when repair rate Ω_3 increase from 0.08 to 0.12. Availability of the system increase 0.051% approximately when repair rate Ω_4 increase from 1.2 to 1.6. Availability of the system increase 0.14% approximately when repair rate Ω_5 increase from 0.12 to 0.16. Availability of the system increase 0.06% approximately when repair rate Ω_6 increase from 3 to 3.4.

Table 2. Variation in availability of the system w.r.t. repair rate Ω_2
Variation in profit based on variation in failure rates has been analyzed with respect to the failure rate Ψ_2 range from 0.0009 to 0.0063. The varying failure rates of other subsystems as follows: $\Psi_1 = 0.005$ to 0.05, $\Psi_3 = 0.0003$ to 0.003, $\Psi_4 = 0.0025$ to 0.025, $\Psi_5 = 0.0007$ to 0.007, and $\Psi_6 = 0.008$ to 0.08 by considering failure rate of subsystems follows exponential distribution and repair rates are: $\Omega_1 = 1.75$, $\Omega_2 = 0.35$, $\Omega_3 = 0.08$, $\Omega_4 = 1.2$, $\Omega_5 = 0.12$, and $\Omega_6 = 3$. This analysis reveals that profit of the system decrease 5.32% approximately when failure rate Ψ_1 increase from 0.005 to 0.05. Profit of the system decrease 3.54% approximately when failure rate Ψ_3 increase from 0.0003 to 0.003. Profit of the system decrease 1.99% approximately when failure rate Ψ_4 increase from 0.0025 to 0.025. Profit of the system decrease 5.42% approximately when failure rate Ψ_5 increase from 0.0007 to 0.007. Profit of the system decrease 4.98% approximately when failure rate Ψ_6 increase from 0.008 to 0.08.
Table 3. Variation in system’s performance w.r.t. failure rate Ψ_2

Ψ_2	$A_0 = \Psi_i = 0.005$	$A_1 = \Psi_i = 0.05$	$A_2 = \Psi_i = 0.009$	$A_3 = \Psi_i = 0.009$	$A_4 = \Psi_i = 0.009$	$A_5 = \Psi_i = 0.009$	$A_6 = \Psi_i = 0.009$
0.0009	3891.237	3684.3203	3753.4066	3813.6723	3680.1986	3697.5591	
0.0015	3884.039	3677.7291	3746.6168	3806.706	3673.6192	3690.9302	
0.0021	3876.863	3671.1567	3739.8467	3799.7602	3667.0584	3684.3203	
0.0027	3869.709	3664.603	3733.9092	3792.835	3660.5163	3677.7291	
0.0033	3862.575	3658.0678	3726.3653	3785.93	3653.9927	3671.1567	
0.0039	3855.464	3651.5511	3719.6537	3779.0454	3647.4875	3664.603	
0.0045	3848.373	3645.0528	3712.9615	3772.1808	3641.0007	3658.0678	
0.0051	3841.304	3638.5728	3706.2884	3765.3364	3634.5321	3651.5511	
0.0057	3834.256	3632.111	3699.6346	3758.5119	3628.0816	3645.0528	
0.0063	3827.228	3625.6674	3692.9997	3751.7073	3621.6493	3638.5728	

Figure 5. Variation in system’s performance w.r.t. failure rate Ψ_2

Variation in profit based on variation in repair rates has been analyzed with respect to the repair rate Ω_2 range from 0.35 to 0.89. The varying repair rates of other subsystems as follows: $\Omega_1 = 1.75 to 1.79, \ Omega_2 = 0.08 to 0.12, \ Omega_3 = 1.2 to 1.6, \ Omega_4 = 0.12 to 0.16$ and $\Omega_6 = 3 to 3.4$ by considering repair rate of subsystems follows exponential distribution and repair rates are: $\Psi_2 = 0.0001, \ Psi_3 = 0.0009, \ Psi_4 = 0.0003, \ Psi_5 = 0.0025, \ Psi_6 = 0.0007$ and $\Psi_6 = 0.008$. This analysis reveals that profit of the system increase 0.014% approximately when repair rate Ω_3 increase from 1.75 to 1.79. Profit of the system increase 0.13% approximately when repair rate Ω_2 increase from 0.08 to 0.12. Profit of the system increase 0.056% approximately when repair rate Ω_4 increase from 1.2 to 1.6. Profit of the system increase 0.16% approximately when repair rate Ω_5 increase from
0.12 to 0.16. Profit of the system increased by approximately 0.068% when repair rate Ω_6 increased from 3 to 3.4.

Table 4. Variation in system’s performance w.r.t. repair rate Ω_2

Ω_2	$P_0 = \Omega_1 = 1.75$	$P_1 = \Omega_1 = 1.79$	$P_3 = \Omega_1 = 1.75$	$P_4 = \Omega_1 = 1.75$	$P_5 = \Omega_1 = 1.75$	$P_6 = \Omega_1 = 1.75$
0.35	3891.237	3891.7743	3896.4995	3893.4284	3897.3776	3893.8772
0.41	3892.82	3893.3576	3898.0859	3895.0128	3898.9647	3895.4619
0.47	3894	3894.5373	3899.268	3896.1934	3900.1472	3896.6427
0.53	3894.912	3895.4504	3900.1829	3897.1071	3901.0624	3897.5566
0.59	3895.64	3896.1779	3900.9119	3897.8351	3901.7917	3898.2848
0.65	3896.233	3896.7714	3901.5065	3898.429	3902.3865	3898.8787
0.71	3896.726	3897.2646	3902.0007	3898.9226	3902.8809	3899.3724
0.77	3897.143	3897.681	3902.418	3899.3393	3903.2983	3899.7892
0.83	3897.499	3898.0373	3902.775	3899.6958	3903.6555	3900.1458
0.89	3897.807	3898.3456	3903.0839	3900.0044	3903.9645	3900.4544

Figure 6. Variation in system’s performance w.r.t. repair rate Ω_2

8. Conclusion

The proposed model is very useful to improve performance of power generating units in sewage treatment plants. The similar kind of models can be developed and utilized to enhance performance of other industries also. The detailed outcome of the system has been shown in tables 1-4 which reveal the effect of variation in availability and performance of the system is highly affected by variation in failure and repair rates. From the above result, it is observed that there is significant variation from 1.79% to 4.78% variation in availability with respect to variation in various failure rates. The gas engine is a highly sensitive subsystem with approximately 4.87% variation in the availability in the comparison of other subsystems. So, the subsystem gas engine is needed highly consideration to
improve the performance of the system. It is also observed that repair rates are less sensitive with variation from 0.012% to 0.14%. The outcomes of the study are shared with the plant employees and found the results significant to improve the plant performance.

References
[1] Ebeling C. (2008), “An introduction to reliability and maintainability engineering”, 10th edn. Tata McGraw-Hill, New Delhi.
[2] Fytile, D.; Zabaniotou, A. (2008), “Utilization of sewage sludge in EU application of old and new methods”, A review, Renewable and Sustainable Energy Reviews, 12, 116-140.
[3] Michael, S., Mariappan, V., Amonkar, U.J. and Telang, A.D. (2009), “Availability analysis of transmission system using Markov model”, International Journal of Indian Culture and Business Management, Vol. 2 No. 5, pp. 551-570.
[4] Komal SP; Kumar SD. (2010), “RAM analysis of repairable industrial systems utilizing uncertain data”, Applied Soft Computing 10(4):1208–1221.
[5] Kumar, A., Goyal, D., & Saini, M. (2020). Reliability and Maintainability Analysis of Power Generating Unit of Sewage Treatment Plant. International Journal of Statistics and Reliability Engineering, 7(1), 41-48.
[6] Garg H; Sharma SP. (2012), “A two-phase approach for reliability and maintainability analysis of an industrial system”, International Journal of Reliability, Quality and Safety Engineering 19(3):19.
[7] Modgil V, Sharma SK, Singh J. (2013), “Performance modeling and availability analysis of shoe upper manufacturing unit”, International Journal of Quality & Reliability Management 30(8):816–831
[8] Kumar, A., & Malik, S. C. (2014), “Reliability Modelling of a Computer System with Priority to H/W Repair over Replacement of H/W and Up-gradation of S/W Subject to MOT and MRT”, Jordan Journal of Mechanical and Industrial Engineering, 8(4), pp. 233-241.
[9] Addabo T, Fort A, Mugnaini M, Vignoli V, Simoni E, Mancini M. (2016), “Availability and reliability modeling of multicore controlled UPS for data center applications”, Reliability Engineering and System Safety 149:56–62, (2016).
[10] De Sanctis I, Paciarotti C, Di Giovine O. (2016), “Integration between RCM and RAM: a case study”, International Journal of Quality & Reliability Management 33(6):852–880.
[11] Mishra, S., Bhardwaj, P. and Bhadauria, N. (2016), “Optimal Availability Analysis of Brake Drum Manufacturing System by using Markov Approach” International Journal of Engineering Technology, Management and Applied Sciences, 4, 147-154.
[12] Amit Kumar, Mangey Ram, Rohit Singh Rawat. (2017), “Optimization of casting process through reliability approach”, International Journal of Quality & Reliability Management, Vol. 34 Issue: 6, pp.833-848.
[13] Kumar, A. & Ram, M. (2018), “Mathematical Modelling for Reliability Measures to Sugar Mill Plant Industry”, Jordan Journal of Mechanical and Industrial Engineering. Vol. 12(4), pp. 269 – 279.