Exploring the Structural Basis of Substrate Preferences in Baeyer-Villiger Monooxygenases
INSIGHT FROM STEROID MONOOXYGENASE

Franceschini, Stefano; van Beek, Hugo L.; Pennetta, Alessandra; Martinoli, Christian; Fraaije, Marco W.; Mattevi, Andrea

Published in:
The Journal of Biological Chemistry

DOI:
10.1074/jbc.M112.372177

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Franceschini, S., van Beek, H. L., Pennetta, A., Martinoli, C., Fraaije, M. W., & Mattevi, A. (2012). Exploring the Structural Basis of Substrate Preferences in Baeyer-Villiger Monooxygenases INSIGHT FROM STEROID MONOOXYGENASE. The Journal of Biological Chemistry, 287(27), 22626-22634. https://doi.org/10.1074/jbc.M112.372177

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SUPPLEMENTAL DATA

Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase

Stefano Franceschini¹, Hugo L. van Beek², Alessandra Pennetta¹, Christian Martinoli¹,

Marco W. Fraaije²*, Andrea Mattevi¹*

¹ Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
² Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute,
 University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Running Title: Steroid monooxygenase from Rhodococcus rhodochrous
SUPPLEMENTARY FIGURES

Figure S1. Quality of the final electron density with reference to the crystal structure of STMO bound to NADP⁺ (Table 1). The density was calculated with weighted 2Fo-Fc coefficients and is contoured at 1.3 σ level. Carbons are in purple, nitrogens in blue, oxygens in red, sulfurs in yellow, and phosphorous in orange.
Figure S2. Superposition of STMO (blue ribbon) and CHMO (green ribbon; open conformation; PDB entry 3GWF) active sites. FAD and NADP⁺ of STMO are depicted with yellow and orange carbons, respectively. The Cα atoms of the STMO residues targeted by mutagenesis are shown as blue spheres (Table 3).