0\(^+\) \rightarrow 2\(^+\) 0\(\nu\beta\beta\) decay triggered directly by the Majorana neutrino mass

T. Tomoda\(^1\)

Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan

and

The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako 351-0198, Japan

Abstract

We treat 0\(^+\) \rightarrow 2\(^+\) 0\(\nu\beta\beta\) decays taking into account recoil corrections to the nuclear currents. The decay probability can be written as a quadratic form of the effective coupling constants of the right-handed leptonic currents and the effective neutrino mass. We calculate the nuclear matrix elements for the 0\(^+\) \rightarrow 2\(^+\) 0\(\nu\beta\beta\) decays of \(^{76}\)Ge and \(^{100}\)Mo, and demonstrate that the relative sensitivities of 0\(^+\) \rightarrow 2\(^+\) decays to the neutrino mass and the right-handed currents are comparable to those of 0\(^+\) \rightarrow 0\(^+\) decays.

The neutrinoless double beta (0\(\nu\beta\beta\)) decay can take place through an exchange of neutrino between two quarks in nuclei if the electron neutrino is a Majorana particle and has a nonvanishing mass and/or right-handed couplings [1–3]. There may be other possible mechanisms such as those involving supersymmetric particles which also cause the decay of two neutrons into two protons and two electrons [4–6]. In the present work, however, we restrict ourselves to the conventional two-nucleon and \(\Delta\) mechanisms of 0\(\nu\beta\beta\) decay through light Majorana neutrino exchange. From the analyses of experimental data on 0\(^+\) \rightarrow 0\(^+\) 0\(\nu\beta\beta\) decays, stringent limits on the effective neutrino decay through the effective coupling constants of the right-handed leptonic currents have been deduced (see e.g. [3,7] and the references quoted therein). On the other hand it still seems to be believed widely that 0\(^+\) \rightarrow 2\(^+\) 0\(\nu\beta\beta\) decays are sensitive only to the right-handed currents. In view of the theorem that the electron neutrino should have a nonvanishing Majorana mass if 0\(\nu\beta\beta\) decay occurs anyway [8–10], an observation of 0\(\nu\beta\beta\) decay due to right-handed interactions would certainly mean also a nonvanishing Majorana mass of the electron neutrino. The purpose of the present work is, however, not to investigate the role of the

\(^{1}\) E-mail: tomoda@aomori-u.ac.jp
Majorana neutrino mass in such a sense, but to demonstrate that it causes $0^+ \rightarrow 2^+ \; 0\nu\beta\beta$ decays directly.

A direct contribution of the neutrino mass to $0^+ \rightarrow 2^+ \; 0\nu\beta\beta$ decays was considered in [3] taking into account the nuclear recoil currents, and the inverse half-life was given as

$$[\tau_{1/2}(0^+ \rightarrow 2^+)]^{-1} = F_{1+}(Z_{1+})^2 + F_{1-}(Z_{1-})^2 + F_{2+}(Z_{2+})^2 + F_{2-}(Z_{2-})^2,$$

(1)

where $F_{j\pm} \; (j = 1, 2)$ are the phase space integrals and

$$Z_{1\pm} = M_\lambda\langle\lambda\rangle - M_\eta\langle\eta\rangle \pm M_m \frac{\langle m_\nu \rangle}{m_e},$$

$$Z_{2\pm} = M'_\eta\langle\eta\rangle \pm M_m \frac{\langle m_\nu \rangle}{m_e},$$

(2)

with the electron mass m_e and

$$\langle m_\nu \rangle = \sum_j' U_{ej}^2 m_j,$$

$$\langle\lambda\rangle = \lambda \sum_j' U_{ej} V_{ej},$$

$$\langle\eta\rangle = \eta \sum_j' U_{ej} V_{ej}.$$

(3)

Here m_j is the mass of the eigenstate Majorana neutrino N_j, U_{ej} and V_{ej} are the amplitudes of N_j in the left- and right-handed electron neutrinos, and the summations should be taken over light neutrinos ($m_j \ll 100 \text{ MeV}$). The nuclear matrix elements $M_\alpha \; (\alpha = \lambda, \eta, m)$ are defined by

$$M_\alpha = \langle 2^+_F\| \frac{1}{2} \sum_{n,m} \tau_n^+ \tau_m^+ (M_\alpha)_{nm}\|0^+_I \rangle.$$

(4)

The explicit forms of the two body operators M_λ, M_η and M'_η were given in [11] including the contribution of the Δ mechanism, in which the $0\nu\beta\beta$ decay proceed through an exchange of a Majorana neutrino between two quarks in the same baryon in a nucleus. On the other hand the operator M_m was derived in [3] as

$$(M_m)_{nm} = -\frac{1}{2} i m_e \left\{ [\mathbf{r}_{nm} \otimes (\mathbf{\sigma}_n C_m - \mathbf{\sigma}_m C_n)]^{(2)} \right\}$$
\[+ (g_V / g_A)^2 \left[r_{nm} \otimes (D_n - D_m) \right]^{(2)} \} H(r_{nm}), \]

where \(r_{nm} = r_n - r_m \), \(H(r) \) is the neutrino propagation function, \(g_V \) and \(g_A \) the vector and axial vector coupling constants. \(C_n \) and \(D_n \) are the recoil correction terms to the axial vector and vector nuclear currents \([2,12]\) given by

\[
C_n = (p_n + p'_n) \cdot \sigma_n / 2M, \\
D_n = [p_n + p'_n - i\mu_\beta \sigma_n \times (p_n - p'_n)] / 2M,
\]

where \(p_n \) and \(p'_n \) are the initial and final nucleon momenta, \(M \) the nucleon mass, and \(\mu_\beta = 4.7 \). The above expression for \(M_m \) is, however, not suitable for numerical calculations as it stands. Therefore, as was done for \(M_\lambda, M_\eta \) and \(M'_\eta \) in \([11]\), we expand it in terms of the operators \(M_{inm} \) with simpler spin and orbital structures,

\[(M_m)_{nm} = \sum_i C_{mi} M_{inm}. \]

We define the matrix element \(M_i \) of the operator \(M_{inm} \) analogously to Eq. (4). The coefficients \(C_{mi} \) and the two-body operators \(M_{inm} \) are listed in Table 1, where

\[
h = r_{nm} H(r_{nm}), \\
h' = -r_{nm} H'(r_{nm}), \\
S_{\lambda nm} = [\sigma_n \otimes \sigma_m]^{(\lambda)}, \\
S_{\pm nm} = \sigma_n \pm \sigma_m, \\
y_K nm = i[\hat{r}_{nm} \otimes \hat{r}_{nm}]^{(K)}, \\
y'_{K nm} = i[\hat{r}_{nm} \otimes \hat{P}_{nm}]^{(K)}, \\
Y_{K nm} = [\hat{r}_{nm} \otimes \hat{r}_{nm} + \hat{r}_{nm}]^{(K)} (r_{+nm}/r_{nm}), \\
Y'_{K nm} = i[\hat{r}_{nm} \otimes \hat{P}_{nm}]^{(K)}, \\
\hat{r}_{+nm} = r_n + r_m, \\
\hat{a} = a / |a|, \\
p_{nm} = \frac{1}{2} (p_n - p_m), \\
P_{nm} = p_n + p_m. \tag{8}
\]

As was described in detail in \([11]\), \(M_\lambda \) and \(M_\eta \) can be expanded in terms of \(M_{inm} \) with \(1 \leq i \leq 5, 8 \leq i \leq 13 \), and \(M'_\eta \) in terms of \(M_{inm} \) with \(i = 6, 7 \) (for the definition of \(M_{inm} \) with \(6 \leq i \leq 13 \), which do not appear in Table 1, see \([11]\)). Of these operators, \(M_{inm} \) with \(8 \leq i \leq 13 \) are related to the \(0 \nu \beta \beta \) transitions which involve virtual \(\Delta \) particles in nuclei, and they are induced by the operator \(M_{2nm} \) interpreted as acting on two quarks in a nucleon or a \(\Delta \) particle.

The new operators \(M_{inm} \) with \(14 \leq i \leq 25 \) appear only in the expansion of \(M_m \). In the derivation of \(C_{mi} \) listed in Table 1, we have not taken into ac-
functions obtained in [11]. In order to calculate all M_i of the products the calculated matrix elements M_i constructed in the same manner as in the case of the 76^Ge decay, the calculation of the matrix elements M_i with $1 \leq i \leq 13$ has been performed in [11]. In the present work we calculate only the new ones with $14 \leq i \leq 25$ using the nuclear wave functions obtained in [11]. In order to calculate all M_i with $1 \leq i \leq 25$ for the 100^Mo decay, the nuclear wave functions of $100^\text{Mo}(0^+_1)$ and $100^\text{Ru}(2^+_1)$ are constructed in the same manner as in the case of the 76^Ge decay. Table 2 shows the calculated matrix elements M_i for the 76^Ge and 100^Mo decays as a sum of the products $C_{mi}M_i$. It should be noted that the matrix elements of the operators with rank 0 spin part, *i.e.* M_1, M_4, M_{14} and M_{15} have the dominant contributions to M_i. Table 3 summarizes the calculated matrix elements M_i, M'_η, $M'_{\eta'}$ and M_m for the 76^Ge and 100^Mo decays.

The differential rate for $0^+ \rightarrow 2^+ 0\nu\beta\beta$ decay with the energy of one of the emitted electrons ϵ_1 and the angle between the two electrons θ_{12} can be written as

$$\frac{d^2W_{0\nu}}{d\epsilon_1 d\cos\theta_{12}} = a^{(0)}(\epsilon_1) + a^{(1)}(\epsilon_1)P_1(\cos\theta_{12}) + a^{(2)}(\epsilon_1)P_2(\cos\theta_{12}).$$

Each of the angular correlation coefficients $a^{(k)}(\epsilon_1)$ ($k = 0, 1, 2$) can be expressed as a sum of the products of an electron phase space factor and a second order monomial of $Z_{j\pm}$ defined in Eq. (2). The explicit form of $a^{(0)}(\epsilon_1)$, which yields $(\ln 2)/2$ times the right hand side of Eq. (1) upon integration over ϵ_1, can be readily obtained by combining the relevant equations in [3]. Since the expressions for $a^{(1)}(\epsilon_1)$ and $a^{(2)}(\epsilon_1)$ are rather complicated, they will be given elsewhere. Numerical calculations show that $a^{(1)}(\epsilon_1)$ is dominated by a term with the factor $-(Z_{1+})^2 + Z_{2+}Z_{2-}$ times a positive function of ϵ_1, whereas $a^{(2)}(\epsilon_1)$ by a term with the factor $2Z_{1+}Z_{1-} - (Z_{2+})^2 - (Z_{2-})^2$. For later reference we denote these two factors as $z^{(1)}$ and $z^{(2)}$, respectively.

Figure 1 shows the single electron spectra $dW_{0\nu}/d\epsilon_1 = 2a^{(0)}$ and the ratios of
the angular correlation coefficients $a^{(1)}/a^{(0)}$ and $a^{(2)}/a^{(0)}$ for the three limiting cases, (a) $\langle \lambda \rangle \neq 0$, (b) $\langle \eta \rangle \neq 0$ and (c) $\langle m_\nu \rangle \neq 0$. Since the coefficients $a^{(k)}(\epsilon_1)$ depend on the parameters $\langle \lambda \rangle$, $\langle \eta \rangle$ and $\langle m_\nu \rangle$ through $Z_{j\pm}$, the results shown in Fig. 1 are independent of nuclear models for the cases (a) and (c). We can also easily understand the signs of $a^{(1)}$ and $a^{(2)}$ from the relations $z^{(1)} = -(M_\lambda \langle \lambda \rangle)^2$ and $z^{(2)} = 2(M_\lambda \langle \lambda \rangle)^2$ for the case (a), and $z^{(1)} = -2(M_m\langle m_\nu \rangle/m_e)^2$ and $z^{(2)} = -4(M_m\langle m_\nu \rangle/m_e)^2$ for the case (c). On the other hand for the case (b), we obtain $z^{(1)} = -(M_\eta \langle \eta \rangle)^2 + (M'_\eta \langle \eta \rangle)^2$ and $z^{(2)} = 2(M_\eta \langle \eta \rangle)^2 - 2(M'_\eta \langle \eta \rangle)^2$, and consequently a cancellation between the contributions of M_η and M'_η occurs when these are of comparable magnitudes. This is just the case for the 100Mo decay, but not for the 76Ge decay where M'_η is much smaller than M_η so that there is no significant difference between the cases (a) and (b) in the angular correlation. It should also be noted in Fig. 1 that the single electron spectra for all the three cases (a), (b) and (c) have approximately the same shape. This is in contrast with the $0^+ \rightarrow 0^+$ decays where the spectrum for $\langle \lambda \rangle \neq 0$ is very different from those for $\langle m_\nu \rangle \neq 0$ or $\langle \eta \rangle \neq 0$ [2,3].

Using the matrix elements in Table 3 and the phase space integrals $F_{j\pm}$ calculated in [3], we can deduce from the experimental data $\tau_{1/2}^{0\nu}(0^+ \rightarrow 2^+_1) > 8.2 \times 10^{23}$ yr (90% C.L.) [14] for the 76Ge decay the constraints on the right-handed current couplings and the effective neutrino mass listed in Table 4. As for the 100Mo decay, the Osaka group has obtained the limit $\tau_{1/2}^{0\nu}(0^+ \rightarrow 2^+_1) > 1.4 \times 10^{22}$ yr (68% C.L.) [15] assuming $\langle \lambda \rangle \neq 0$. Because of the differences in the angular correlation as we see from Fig. 1, an analysis of the same raw experimental data might yield a half-life limit significantly different from the above value especially for the case $\langle \eta \rangle \neq 0$. However we assume here just the same half-life limit also for the cases $\langle \eta \rangle \neq 0$ and $\langle m_\nu \rangle \neq 0$ in order to compare the resulting constraints with those from the 76Ge data.

The limits which can be deduced from the experimental bound $\tau_{1/2}^{0\nu}(0^+ \rightarrow 0^+) > 5.7 \times 10^{25}$ yr (90% C.L.) [16] on the $0^+ \rightarrow 0^+$ decay of 76Ge using the nuclear matrix elements of [17] are $|\langle \lambda \rangle| < 3.8 \times 10^{-7}$, $|\langle \eta \rangle| < 2.2 \times 10^{-9}$ and $|\langle m_\nu \rangle| < 0.19$ eV. Comparing these limits with those of Table 4, we notice the considerable difference in the absolute sensitivities between the $0^+ \rightarrow 0^+$ and $0^+ \rightarrow 2^+$ decays, which reflects the smaller Q-value as well as the higher electron partial waves associated with the latter. However, it should be stressed here that the relative sensitivities to $\langle m_\nu \rangle$ and $\langle \eta \rangle$ are comparable in both cases. In other words, $\langle m_\nu \rangle = 1$ eV would give roughly the same decay rate as $\langle \eta \rangle = 10^{-8}$ in the $0^+ \rightarrow 2^+$ as well as in the $0^+ \rightarrow 0^+$ decays. At the same time it should also be noted that the $0^+ \rightarrow 2^+$ decay is relatively more sensitive to $\langle \lambda \rangle$.

In summary, we have calculated $0^+ \rightarrow 2^+$ $0\nu\beta\beta$ decay rates taking into account the recoil corrections to the nuclear currents. As a result, the expression for the decay probability becomes a quadratic form of not only the effective
coupling constants $\langle \lambda \rangle$ and $\langle \eta \rangle$ of the right-handed leptonic currents but also the effective neutrino mass $\langle m_\nu \rangle$ which would be totally absent without the inclusion of the recoil corrections. In other words, the recoil corrections give the lowest order contribution to the $0^+ \rightarrow 2^+ 0\nu\beta\beta$ decay for the case where $\langle \lambda \rangle = \langle \eta \rangle = 0$ and $\langle m_\nu \rangle \neq 0$. Furthermore, by the numerical calculation of the relevant nuclear matrix elements, we have demonstrated that the relative sensitivities of $0^+ \rightarrow 2^+$ decays to $\langle m_\nu \rangle$ and $\langle \eta \rangle$ are comparable to those of $0^+ \rightarrow 0^+$ decays.

The author thanks S. Yamaji at RIKEN for his warm hospitality.

References

[1] W.C. Haxton and G.J. Stephenson, Jr., Prog. Part. Nucl. Phys. 12 (1984) 409.
[2] M. Doi, T. Kotani and E. Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1.
[3] T. Tomoda, Rep. Prog. Phys. 54 (1991) 53.
[4] R. Mohapatra, Phys. Rev. D34 (1986) 3457.
[5] J.D. Vergados, Phys. Lett. B184 (1987) 55.
[6] M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Phys. Rev. D53 (1996) 1329.
[7] A. Morales, Nucl. Phys. B (Proc. Suppl.) 77 (1999) 335.
[8] J. Schechter and J.W.F. Valle, Phys. Rev. D25 (1982) 2951.
[9] J.F. Nieves, Phys. Lett. 147B (1984) 375.
[10] E. Takasugi, Phys. Lett. 149B (1984) 372.
[11] T. Tomoda, Nucl. Phys. A484 (1988) 635.
[12] T. Tomoda, A. Faessler, K.W. Schmid and F. Grümmer, Nucl. Phys. A452 (1986) 591.
[13] K.W. Schmid, F. Grümmer and A. Faessler, Nucl. Phys. A431 (1984) 205.
[14] B. Maier, Nucl. Phys. B (Proc. Suppl.) 35 (1994) 358.
[15] N. Kudomi et al., Nucl. Phys. A629 (1998) 527c.
[16] L. Baudis et al., Phys. Rev. Lett. 83 (1999) 41.
[17] T. Tomoda and A. Faessler, Phys. Lett. B199 (1987) 475.
Fig. 1. Single electron spectrum $dW_{0\nu}/d\epsilon_1$ in arbitrary units and the ratios of the angular correlation coefficients $a^{(1)}/a^{(0)}$ and $a^{(2)}/a^{(0)}$ for the $0^+ \rightarrow 2^+_1$ $0\nu\beta\beta$ decay of 100Mo. They are all plotted against the kinetic energy fraction of one of the two emitted electrons, where $Q_{\beta\beta}(0^+ \rightarrow 2^+_1) = 2.494$ MeV. Only one of the three lepton number violating parameters is assumed to be nonvanishing for each of the three cases: (a) $\langle \lambda \rangle \neq 0$, (b) $\langle \eta \rangle \neq 0$ and (c) $\langle m_\nu \rangle \neq 0$.

$\langle \epsilon_1 - m_e c^2 \rangle / Q_{\beta\beta}$
Table 1
The operators M_{inm} and the coefficients C_{mi}, the latter in units of the electron-nucleon mass ratio m_e/M.

i	M_{inm}	C_{mi}
1	$-\sqrt{3}h'S_0y_2$	$-\frac{1}{2}[\mu_\beta(g_V/g_A) + \frac{1}{2}]$
2	$h'S_2$	$\frac{1}{6}[\mu_\beta(g_V/g_A) - 1]$
3	$h'[S_2 \otimes y_2]^{(2)}$	$-\frac{\sqrt{3}}{4\sqrt{3}}[\mu_\beta(g_V/g_A) - 1]$
4	$h'y_2$	$\frac{1}{2}(g_V/g_A)^2$
5	$h'[S_+ \otimes y_2]^{(2)}$	$\frac{\sqrt{3}}{4\sqrt{2}}[\mu_\beta(g_V/g_A)^2 - (g_V/g_A)]$
14	$-\sqrt{3}hS_0y'_2$	$\frac{1}{3}$
15	hy'_2	$-(g_V/g_A)^2$
16	HS_2	$-\frac{1}{2}[\mu_\beta(g_V/g_A) - 1]$
17	$hS_2y'_0$	$-\frac{1}{\sqrt{2}}$
18	$h[S_2 \otimes y'_1]^{(2)}$	$-\frac{\sqrt{3}}{2}$
19	$h[S_2 \otimes y'_2]^{(2)}$	$-\frac{\sqrt{7}}{2\sqrt{3}}$
20	$h[S_+ \otimes y'_1]^{(2)}$	$\frac{1}{2\sqrt{2}}(g_V/g_A)$
21	$h[S_+ \otimes y'_2]^{(2)}$	$\frac{\sqrt{3}}{2\sqrt{2}}(g_V/g_A)$
22	$h[S_1 \otimes Y'_1]^{(2)}$	$-\frac{1}{4}$
23	$h[S_1 \otimes Y'_2]^{(2)}$	$-\frac{\sqrt{3}}{4}$
24	$h[S_- \otimes Y'_1]^{(2)}$	$-\frac{1}{4\sqrt{2}}(g_V/g_A)$
25	$h[S_- \otimes Y'_2]^{(2)}$	$-\frac{\sqrt{3}}{4\sqrt{2}}(g_V/g_A)$
Table 2
Calculated matrix elements M_m for the ^{76}Ge and ^{100}Mo decays. The entries are the values of the products $C_m M_i$ and their sum M_m in units of 10^{-3}fm^{-1}.

i	^{76}Ge	^{100}Mo
1	-0.0229	-0.0077
2	0.0013	0.0003
3	0.0002	0.0008
4	-0.0017	-0.0011
5	-0.0003	0.0007
14	-0.0191	-0.0227
15	-0.0128	-0.0112
16	-0.0033	-0.0006
17	-0.0017	0.0000
18	-0.0028	0.0019
19	-0.0005	0.0001
20	0.0006	0.0005
21	0.0002	-0.0001
22	0.0020	-0.0000
23	0.0020	-0.0026
24	-0.0047	-0.0001
25	0.0012	-0.0010
sum	-0.0624	-0.0427

Table 3
Calculated matrix elements for the $0^+ \rightarrow 2_1^+ 0\nu\beta\beta$ decays of ^{76}Ge and ^{100}Mo in units of 10^{-3}fm^{-1}.

	M_λ	M_η	M'_η	M_m
^{76}Ge	1.81 a	13.37 a	0.18 a	-0.0624
^{100}Mo	-6.33	3.38	5.17	-0.0427

a Ref. [11].
Table 4
Constraints on the right-handed current couplings and the effective neutrino mass.

	76Ge	100Mo		
$	\langle \lambda \rangle	$	$< 8.9 \times 10^{-4}$	$< 3.9 \times 10^{-4}$
$	\langle \eta \rangle	$	$< 1.2 \times 10^{-4}$	$< 4.3 \times 10^{-4}$ a
$	\langle m_\nu \rangle	$ [eV]	$< 1.0 \times 10^4$	$< 2.2 \times 10^4$ a

a Assuming the same limit on $\tau_{1/2}^{0\nu}$ as the $\langle \lambda \rangle$ mode.