Comparison of cholinesterase inhibitor safety in real-world practice

Greg Carneya,b,*, Ken Bassetta,b,c, James M. Wrighta,b,d, Malcolm Maclurea,b, Nicolette McGuiree, Colin R. Dormutha,b

aTherapeutics Initiative, University of British Columbia, Vancouver, BC, Canada
bDepartment of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
cDepartment of Family Practice, University of British Columbia, Vancouver, BC, Canada
dDepartment of Medicine, University of British Columbia, Vancouver, BC, Canada
eResearch and Innovation Division, B.C. Ministry of Health, Victoria, BC, Canada

Abstract

Introduction: Cholinesterase inhibitors (ChEIs) are widely used to treat mild to moderate Alzheimer’s disease and related dementia. Clinical trials have focused on placebo comparisons, inadequately addressing within-class comparative safety.

Methods: New users of ChEIs in British Columbia were categorized into five study cohorts: low-dose donepezil, high-dose donepezil, galantamine, rivastigmine patch, and oral rivastigmine. Comparative safety of ChEIs assessed hazard ratios using propensity score adjusted Cox regression.

Results: Compared with low-dose donepezil, galantamine use was associated with a lower risk of mortality (adjusted hazard ratio: 0.84, 95% confidence interval: 0.60–1.18), cardiovascular serious adverse events (adjusted hazard ratio: 0.78, 95% confidence interval: 0.62–0.98), and entry into a residential care facility (adjusted hazard ratio: 0.72, 95% confidence interval: 0.59–0.89).

Discussion: Given the absence of randomized trial data showing clinically meaningful benefit of ChEI therapy in Alzheimer’s disease, our study suggests preferential use of galantamine may at least be associated with fewer adverse events than treatment with donepezil or rivastigmine.

© 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Cholinesterase inhibitor; Alzheimer’s disease; Dementia; Log-binomial regression; Cox proportional hazard; Propensity score; Epidemiology

1. Introduction

Alzheimer’s disease and related dementia (ADRD) is a growing problem in Canada, affecting an estimated 747,000 people in 2012, with 25,000 new cases diagnosed every year [1]. In British Columbia, cholinesterase inhibitors (ChEIs) are commonly prescribed for treatment of ADRD, where the B.C. Ministry of Health requires a baseline cognitive assessment as part of its Special Authority process [2]. Because little data exist beyond the 6-month to one-year clinical trials and this group of medications is frequently prescribed to patients with ADRD, there is an opportunity for observational data to assess longer-term safety and effectiveness [3].

ChEIs increase cholinergic function by preventing the breakdown of acetylcholine, a neurotransmitter that supports communication among nerve cells when its levels are sufficiently high. Acetylcholinesterase is an enzyme involved in the rapid hydrolysis of acetylcholine. Through inhibition of acetylcholinesterase, ChEIs, such as donepezil, rivastigmine, and galantamine, allow acetylcholine to accumulate. The rationale for prescribing ChEIs for treating symptoms of ADRD is to increase acetylcholine levels, which increases neuronal activity. However, this is a strategy that has low effectiveness [4], and there is no evidence that ChEIs prevent the underlying dementing process [5].

ChEIs have additional pharmacological actions. Rivastigmine inhibits butyrylcholinesterase with a similar
affinity to acetylcholinesterase. The therapeutic effect and resulting clinical consequences of this is unknown [6,7]. Galantamine potentiates the action of acetylcholine on nicotinic receptors, which may influence neuronal processes, such as synaptic efficacy and neuroprotection [8,9]. Evidence suggests the cholinergic adverse effects of these drugs may cause gastrointestinal, neurological, cardiovascular, and urinary disorders [10,11]. In severe instances, these drugs may increase vagal tone and, thereby, precipitate bradycardia [12]. Multiple U.S. Food and Drug Administration safety alerts have raised concerns of increased mortality and serious cardiovascular adverse events in patients taking ChEIs for mild cognitive impairment versus placebo-treated patients [13].

A Cochrane database systematic review (Russ [14]) found no significant difference in progression to dementia between ChEIs and placebo at 12 months. They found ChEIs increased overall adverse events compared with placebo but found no significant differences between the groups for serious adverse events, cardiac problems, depression, or death. Earlier systematic reviews found small improvements or unchanged cognitive benefits with ChEIs versus placebo [15]. In addition, some trials within the systematic reviews showed an unexplained increased death rate.

Effective October 22, 2007, the British Columbia Ministry of Health began providing financial coverage of the ChEIs through the Alzheimer’s Drug Therapy Initiative to address clinical knowledge gaps around the safety and effectiveness of these drugs [16]. Patients receiving a baseline assessment score on the Standardized Mini–Mental State Examination of mild to moderate cognitive impairment are eligible for full financial coverage of a ChEI.

We investigated the risk of mortality between the ChEIs for new users during the Alzheimer’s Drug Therapy Initiative. Serious cardiovascular events were investigated as a secondary outcome. We also looked at time to entry into a residential care facility. Supporting people with ADRD to function in their own homes for as long as possible is a stated priority of the B.C. Provincial Guide to Dementia Care [17].

2. Methods

2.1. Data

We obtained access to the B.C. Ministry of Health administrative health claims database through a secure access environment. The database contains linkable, but deidentified, health service records containing all prescriptions dispensed at community pharmacies, physician services, hospital separations, and vital statistics data in British Columbia. We assume that the completeness and accuracy of the data is comparable to other administrative databases [18,19].

2.2. Study design and source population

We conducted a retrospective, propensity score–adjusted cohort study. The source population for the study was all B.C. residents between October 2007 and March 2016 who were registered in the provincial universal medical services plan. Federally insured patients, such as indigenous people, federal police officers, and members of the armed forces and their families, were excluded from the source population because they are not included in the data set. Excluded patients composed about 7% of the provincial population. The source population numbered 4.42 million in 2016 [20].

2.3. Study cohorts

New users of ChEIs were identified during the study period as having no ChEI prescription in the previous 365 days. New users were categorized into 5 exposure groups based on their first prescription: (1) low-dose donepezil (≤7.5 mg/day), (2) high-dose donepezil (>7.5 mg/day), (3) galantamine, (4) rivastigmine patch, and (5) rivastigmine oral. Low-dose donepezil was defined based on receiving a dose equivalent to, or below, the World Health Organization’s Defined Daily Dose. Low-dose donepezil, the most frequently prescribed ChEI, was assigned as the reference drug, providing four comparison cohorts instead of a single multinomial regression approach.

The date of each patient’s first ChEI dispensing was defined as the index date. Patients were excluded from the study cohorts if they were under 50 years old on the index date, in a residential care facility in the 2-year period before index date, did not have continuous medical insurance in the 1-year period before index date, or dispensed more than one ChEI on index date.

2.4. Study outcomes

Our primary outcome was all-cause mortality. Secondary outcomes were (1) composite cardiovascular serious adverse events and (2) entry into a residential care facility. Composite cardiovascular events consisted of a hospital admission for myocardial infarction (ICD-9: 410), coronary artery disease (ICD-9: 411-414), heart failure (ICD-9: 428), arrhythmia (including atrial fibrillation) (ICD-9: 427), and peripheral arterial or vascular disease (ICD-9: 443.9, 440). Entry into a residential care facility was determined by the presence of a government-subsidized prescription under the residential care benefit plan.

2.5. Data analysis

Safety of ChEIs was compared using time-to-event Cox proportional regression. Four drug comparisons were made: (1) low-dose donepezil versus high-dose donepezil, (2) low-dose donepezil versus galantamine, (3) low-dose donepezil versus rivastigmine patch, and (4) low-dose donepezil versus oral rivastigmine. Patient follow-up was censored at the earliest occurrence of our study outcome, death, end of the study period (31 March 2016), emigration from BC, therapy discontinuation, or crossover to another study cohort. Sensitivity analyses used log-binomial regression to
estimate relative risk at 6-month and 12-month fixed follow-up periods [21]. All outcome models were adjusted for history of prior cardiovascular events, smoking, and high-dimensional propensity scores meant to capture other confounding factors. The high-dimensional propensity score methods have been previously described in detail here [22].

2.6. Confounders

Potential confounders were measured before exposure to a ChEI using hospital and physician diagnostic codes, dispensed prescription records, and patient demographic records. The following covariates were included in the outcome model if they occurred within two years before index date: arrhythmia (ICD-9: 427; ICD-10: I49), myocardial infarction (ICD-9: 410; ICD-10: I21), stroke (ICD-9: 430-434, 436; ICD-10: I60, I61, I64, I63), angina (ICD-9: 413; ICD-10: I20), congestive heart failure (ICD-9: 428; ICD-10: I50), cerebrovascular disease (ICD-10: I60-I69), coronary artery disease (ICD-9: 411, 412, 414; ICD-10: I22-I25, Z95.1, Z95.5, Z98.61), peripheral arterial disease (ICD-9: 440, 443.9; ICD-10: I70, I73.9), or diabetes (ICD-9: 250; ICD-10: E10-E14). Other covariates included sex, age group (50–64, 65–74, 75–84 as reference, 85+), or diabetes (ICD-9: 440, 443.9; ICD-10: I70, I73.9), angina (ICD-9: 413; ICD-10: I20), congestive heart failure (ICD-9: 428; ICD-10: I50), cerebrovascular disease (ICD-10: I60-I69), coronary artery disease (ICD-9: 411, 412, 414; ICD-10: I22-I25, Z95.1, Z95.5, Z98.61), peripheral arterial disease (ICD-9: 440, 443.9; ICD-10: I70, I73.9), or diabetes (ICD-9: 250; ICD-10: E10-E14). Other covariates included sex, age group (50–64, 65–74, 75–84 as reference, 85+), and smoking status (current or past smoker).

The following predefined demographic and diagnostic covariates were incorporated into the high-dimensional propensity score model: age group, sex, family income, index year, time since ADRD diagnosis, more than five distinct medications dispensed in previous year (yes/no), more than five physician visits in previous year (yes/no).

3. Results

There were 34,338 patients from the source population who initiated a ChEI between 22 October 2007 and 31 March 2016. Of those, 29,047 patients remained eligible for the study after exclusions for not meeting medical insurance eligibility criteria (5.4%), resident of a long-term care facility in prior two years (7.9%), initiating more than one ChEI on cohort entry date (1.8%), and age under 50 years (0.4%).

Baseline patient characteristics of the study cohorts (Table 1) were similar for average age of patients (80.5 years). The proportion of female patients was lowest in the oral rivastigmine (48%) cohort and highest in the low-dose donepezil (60%) cohort. Smokers, past or current, ascertained by the presence of a diagnosis of chronic obstructive pulmonary disease or use of a prescription smoking cessation therapy were similar among all cohorts. Galantamine users had the highest proportion of cardiovascular-related hospital admissions in the 2-year period before index date, including stroke, unstable angina, cerebrovascular disease, coronary artery disease, and peripheral arterial disease. Prior medication history was similar, other than prior use of antipsychotics, which was nearly double (19.5%) with oral rivastigmine compared with the low-dose donepezil cohort (10.0%).

Compared with low-dose donepezil, galantamine was associated with a 16% lower 3-year risk of mortality (adjusted hazard ratio [aHR]: 0.84, 95% confidence interval [CI]: 0.60–1.18). High-dose donepezil had similar risk (aHR: 0.97, 95% CI: 0.61–1.54), and the rivastigmine patch had 29% higher risk (aHR: 1.29, 95% CI: 0.93–1.79) (Table 2). The mortality differences were not statistically significant (P < .05).

Compared with low-dose donepezil, galantamine was associated with a lower risk of serious cardiovascular events (aHR: 0.78, 95% CI: 0.62–0.98) and entry into a residential care facility (aHR: 0.72, 95% CI: 0.59–0.89) (Table 2). Comparison with the oral rivastigmine could not be completed due to small-cell data restrictions.

In the 12-month fixed follow-up sensitivity analysis of cardiovascular events, galantamine was associated with an 18% lower risk (adjusted risk ratio [RR]: 0.82 (0.72–0.93) and rivastigmine patch was associated with a 15% higher risk (RR: 1.15 [1.01–1.32]), compared with low-dose donepezil. In the 6-month fixed follow-up analysis of cardiovascular events, there was no significant difference between low-dose donepezil and any of the study medications.

Compared with low-dose donepezil, galantamine was associated with a lower risk of mortality at 6 months (RR: 0.83, 95% CI: 0.69–1.01) and 12 months (RR: 0.82, 95% CI: 0.72–0.93), although the 6-month result was nonsignificant. The rivastigmine patch was associated with an increased risk of mortality at 6 months (RR: 1.21, 95% CI: 0.99–1.49) and at 12 months (RR: 1.15, 95% CI: 1.01–1.32), although the 6-month result was nonsignificant. Both formulations of rivastigmine, patch and oral, were also associated with a 12-month increased risk of entry into residential care (RR: 1.14, 95% CI: 1.03–1.26) and (RR: 1.275, 95% CI: 1.06–1.52), respectively (Tables 3 and 4).

4. Interpretation

This study compares ChEIs in terms of mortality, serious cardiovascular events, and entry into a residential care facility. Donepezil users were divided into low- and high-dose exposure groups based on WHO Defined Daily Dose. Nearly all users of galantamine and rivastigmine (98%) used the single WHO Defined Daily Dose.

The 3-year risk of serious cardiovascular events was 22% lower (aHR 0.78 CI: 0.62–0.98) and all-cause mortality was 16% lower (aHR 0.84 CI: 0.60–1.18) in galantamine versus low-dose donepezil, although the mortality results were not significant at the conventional α level of 0.05. Similar results were seen in both fixed follow-up sensitivity analyses. A Danish cross-national study comparing cardiovascular safety of dementia medications found similar benefits for galantamine (29% lower risk of heart failure [aHR 0.71 CI: 0.46–1.10]) [23].
Table 1
Baseline patient characteristics

Characteristics	Donepezil (low dose)	Donepezil (high dose)	Galantamine	Rivastigmine (patch)	Rivastigmine (oral)
	N or mean (n=15,586)	N or mean (n=2519)	N or mean (n=5926)	N or mean (n=4286)	N or mean (n=730)
Age (years), mean (IQR)	80.7 (76-86)	78.7 (74-85)	80.8 (77-86)	80.3 (76-85)	79.2 (75-84)
Female, n (%)	9366 60	1305 52	3400 57	2319 54	347 48
Low family income (< $30k), n (%)	3469 22	507 20	1389 23	1169 27	139 19
Year of study cohort entry, n (%)					
2007 (Oct 22-Dec 31)	323 2	97 4	229 4	- 0	64 9
2008	1763 11	437 17	1277 22	94 2	186 25
2009	1767 11	371 15	1277 22	558 13	120 16
2010	1966 13	375 15	1051 18	744 17	73 10
2011	2241 14	360 14	787 13	791 18	59 8
2012	2350 15	355 14	554 9	774 18	8 1
2013	2336 15	256 10	348 6	657 15	68 9
2014	2182 14	215 9	315 5	536 13	8 1
2015 (up to March 31)	658 4	53 2	88 1	132 3	20 3
Duration of ADRD (years), mean (SD)	1.04 2.3	1.02 2.3	1.07 2.4	1.10 2.3	1.09 2.2
High-dose first prescription, n (%)	- -	- -	113 1.9	23 0.5	10 1.4
High-dose second prescription, n (%)	3471 22	- -	134 2.3	11 0.3	11 1.5
Follow-up time (years), mean (SD)	3.41 (1.95)	3.86 (2.05)	4.14 (2.12)	3.28 (1.76)	3.95 (2.26)
Smoker (past or current), n (%)	6955 45	1075 43	2660 45	1967 46	311 43
Number of hospital admissions in previous year 0, n (%)	10,709 69	1777 71	4080 69	2768 65	482 66
1–2, n (%)	1778 11	288 11	729 12	523 12	108 15
3+, n (%)	3099 20	454 18	1117 19	995 23	140 19
Number of physician visits in previous year, mean (SD)	21 (18.2)	20.9 (16.7)	21 (17.2)	25.2 (21.6)	24.1 (19.8)
Prior medical history (2 years), n (%)					
Atrial fibrillation or flutter	2393 15.4	336 13.3	982 16.6	704 16.4	105 14.4
COPD, n (%)	2200 14.1	330 13.1	871 14.7	634 14.8	90 12.3
Diabetes mellitus	3834 24.6	621 24.7	1467 24.8	1160 27.1	183 25.1
Myocardial infarction	218 1.4	29 1.2	71 1.2	62 1.4	9 1.2
Hypertension	9545 61.2	1420 56.4	3701 62.5	2573 60.0	441 60.4
Prior hospital admission (2 years), n (%)					
Stroke	209 1.3	34 1.3	125 2.1	82 1.9	10 1.4
Unstable angina	113 0.7	19 0.8	54 0.9	30 0.7	5 0.7
Congestive heart failure	409 2.6	48 1.9	159 2.7	124 2.9	17 2.3
Cerebrovascular disease	303 1.9	55 2.2	165 2.8	112 2.6	19 2.6
Coronary artery disease	570 3.7	91 3.6	261 4.4	172 4.0	31 4.2
Peripheral arterial disease	70 0.4	6 0.2	32 0.5	11 0.3	2 0.3
Prior medication history (1 year), n (%)					
Other anticholinergics, n (%)	2491 16.0	374 14.8	952 16.1	732 17.1	150 20.5
Lipid-lowering agents, n (%)	6307 40.5	995 39.5	2546 43.0	1804 42.1	298 40.8
ACE inhibitors, n (%)	5146 33.0	718 28.5	2146 36.2	1375 32.1	268 36.7
ARBs, n (%)	2409 15.5	365 14.5	917 15.5	702 16.4	102 14.0
Beta-blockers, n (%)	3944 25.3	553 22.0	1563 26.4	1102 25.7	195 26.7
Antidepressants, n (%)	4898 31.4	711 28.2	1776 30.0	1482 34.6	255 34.9
Antipsychotics, n (%)	1565 10.0	235 9.3	569 9.6	592 13.8	142 19.5

(Continued)
Prior hospital admission for several cardiovascular conditions was highest among galantamine users. Although this usually suggests patients were at a higher risk of future cardiovascular events, an alternative explanation could be that these patients were more closely monitored and more aggressively treated for vascular risk factors, resulting in lower cardiovascular events.

Entry into residential care was studied as a co-secondary outcome as a measure of net benefit over harm. Our results show a 28% lower 3-year risk of entry into a residential care facility with galantamine versus low-dose donepezil (aHR: 0.72 CI: 0.62–0.98). These findings are also consistent with a net benefit of treatment over harm for galantamine and may also be related to a previous finding of longer persistence and better adherence for patients on galantamine versus donepezil [24].

Residual confounding is a possible limitation of our results because of the nonrandomized study design. Baseline characteristics of the study cohorts indicate comparable age, smoking status, and prior medical history. Low-dose donepezil had the highest proportion of females (60%). This was likely due to weight-based dosing. Rivastigmine users had the highest prior use of antipsychotics. There is a positive correlation between cognitive decline, progression of neurodegeneration, and psychosis in patients with ADRD [25]. Previous research has shown that rivastigmine users have a lower rate of antipsychotic prescriptions compared with donepezil patients in a base cohort of antipsychotic naïve patients [26]. These findings may influence physicians to preferentially prescribe rivastigmine over other ChEIs to patients with symptoms of psychosis. In addition, the Alzheimer’s Drug Therapy Initiative required regular cognitive assessments; our study findings may not be generalizable to jurisdictions with alternative health care systems.

A significant strength of our study was the use of the B.C. Ministry of Health administrative claims database, which captures all prescriptions dispensed at a community pharmacy regardless of payer. Dispensed prescriptions are

Table 1
Baseline patient characteristics (Continued)

Characteristics	Donepezil (low dose)	Donepezil (high dose)	Galantamine	Rivastigmine (patch)	Rivastigmine (oral)
N or mean (n)	N or mean (n)	N or mean (n)	N or mean (n)	N or mean (n)	N or mean (n)
anxiolytics/sedatives/hypnotics, n (%)	3717 23.8	605 24.0	1360 22.9	1181 27.6	208 28.5

Abbreviations: IQR, interquartile range; COPD, chronic obstructive pulmonary disease; ACE, angiotensin-converting enzyme; ARBs, angiotensin II receptor blockers.

*Net family income in Canadian dollars from the most recent income tax return (1 Canadian dollar = .75 US dollar).

High-dose defined as a dispensed daily dose on the first ChEI prescription that is higher than the WHO Defined Daily Dose (DDD).

Follow-up time shown for primary outcome (mortality).

Smoking status based on history of diagnosed COPD or use of a smoking cessation medication (varenicline, Zyban, or nicotine replacement products).

Hospital separation record or physician visit diagnosis within 2 years before the index date.

Table 2
Cox proportional hazards for mortality, serious cardiovascular events, and entry into a residential care facility

All-cause mortality, time-to-event, Cox proportional hazards	N or mean (n)	Cumulative mortality events	Crude rate per 100 PYs	Propensity score–adjusted hazard ratio
Low-dose donepezil (reference)	15,586	147	5.80	0.97 (0.61–1.54)
High-dose donepezil	2519	23	5.35	
Galantamine	5926	51	5.29	0.84 (0.60–1.18)
Rivastigmine—patch	4286	86	10.82	1.29 (0.93–1.79)
Rivastigmine—oral	730	^5	0.49 (0.17–1.36)	

Table 2
Cox proportional hazards for mortality, serious cardiovascular events, and entry into a residential care facility

Serious cardiovascular events, time-to-event, Cox proportional hazards	N or mean (n)	Cumulative mortality events	Crude rate per 100 PYs	Propensity score–adjusted hazard ratio
Low-dose donepezil (reference)	15,586	331	5.84	
High-dose donepezil	2519	50	5.39	1.02 (0.75–1.39)
Galantamine	5926	106	5.32	0.78 (0.62–0.98)
Rivastigmine—patch	4286	128	10.91	0.98 (0.77–1.25)
Rivastigmine—oral	730	16	3.53	0.87 (0.51–1.48)

Entry into residential care, time-to-event, Cox proportional hazards	N or mean (n)	Cumulative mortality events	Crude rate per 100 PYs	Propensity score–adjusted hazard ratio
Low-dose donepezil (reference)	15,586	447	5.86	0.97 (0.74–1.28)
High-dose donepezil	2519	66	5.41	0.97 (0.59–0.89)
Galantamine	5926	135	5.34	1.16 (0.95–1.42)
Rivastigmine—patch	4286	182	10.97	0.88 (0.56–1.37)
Rivastigmine—oral	730	22	2.55	
linkable to physician services, hospital discharge abstracts, and client demographic information via an encrypted patient identifier. The comprehensiveness of the databases for the B.C. population reduces the risk of exposure misclassification, which is known to substantially affect risk estimates in observational studies [27] and allows for generalizing results to a wide population.

Our study found that galantamine has a superior safety profile compared with low-dose donepezil and was associated with a lower risk of entry into a residential care facility. The rivastigmine patch was associated with a higher risk of mortality and a higher risk of entry into a residential care facility. High-dose donepezil had a similar safety and effectiveness profile compared with low-dose donepezil. Given the absence of significant differences in the safety profiles of the three cholinesterase inhibitors, clinicians may consider patient preference and cost when choosing a treatment option.

Table 3
Six-month fixed follow-up log-binomial regression

N	Number of outcomes	Crude risk ratio (95% confidence interval)	Age-sex adjusted	Fully adjusted		
			Risk ratio (95% confidence interval)	P-value	Risk ratio (95% confidence interval)	P-value
			P-value		P-value	
Crude and adjusted odds ratio, all-cause mortality, 6-month fixed follow-up						
Low-dose donepezil (reference)	15,586	440				
High-dose donepezil	2519	53	0.75 (0.56-0.99)	0.81 (0.61-1.08)	0.147	0.83 (0.62-1.11)
Galantamine	5926	150	0.90 (0.75-1.08)	0.89 (0.74-1.06)	0.194	0.83 (0.69-1.01)
Rivastigmine—patch	4286	158	1.31 (1.09-1.56)	1.31 (1.09-1.56)	0.003	1.21 (0.99-1.47)
Rivastigmine—oral	730	17	0.82 (0.51-1.33)	0.88 (0.54-1.41)	0.585	0.74 (0.45-1.22)

Crude and adjusted odds ratios, cardiovascular events, 6-month fixed follow-up

N	Number of outcomes	Crude risk ratio (95% confidence interval)	Age-sex adjusted	Fully adjusted		
			Risk ratio (95% confidence interval)	P-value	Risk ratio (95% confidence interval)	P-value
			P-value		P-value	
Crude and adjusted odds ratios, entry to residential care, 6-month fixed follow-up						
Low-dose donepezil (reference)	15,586	920				
High-dose donepezil	2519	108	0.73 (0.60-0.88)	0.81 (0.67-0.99)	0.037	0.82 (0.67-1.01)
Galantamine	5926	298	0.89 (0.79-1.00)	0.89 (0.78-0.99)	0.032	0.80 (0.70-0.92)
Rivastigmine—patch	4286	329	1.19 (1.05-1.35)	1.22 (1.08-1.39)	0.002	1.19 (1.03-1.36)
Rivastigmine—oral	730	63	1.46 (1.15-1.87)	1.62 (1.27-2.06)	0.0001	1.26 (0.98-1.63)

Bold values indicate a confidence interval that does not include 1.

Table 4
Twelve-month fixed follow-up log-binomial regression

N	Number of outcomes	Crude risk ratio (95% confidence interval)	Age- and sex-adjusted	Prop. Score adjusted		
			Risk ratio (95% confidence interval)	P-value	Risk ratio (95% confidence interval)	P-value
			P-value		P-value	
Crude and adjusted odds ratio, all-cause mortality, 12-month fixed follow-up						
Low-dose donepezil (reference)	15,586	990				
High-dose donepezil	2519	134	0.84 (0.70-0.99)	0.90 (0.76-1.07)	0.244	0.93 (0.77-1.11)
Galantamine	5926	298	0.85 (0.75-0.97)	0.86 (0.78-0.99)	0.032	0.82 (0.72-0.93)
Rivastigmine—patch	4286	329	1.21 (1.07-1.36)	1.21 (1.07-1.36)	0.002	1.15 (1.01-1.32)
Rivastigmine—oral	730	48	1.04 (0.78-1.37)	1.08 (0.82-1.43)	0.589	0.97 (0.72-1.29)

Crude and adjusted odds ratios, cardiovascular events, 12-month fixed follow-up

N	Number of outcomes	Crude risk ratio (95% confidence interval)	Age- and sex-adjusted	Prop. Score adjusted		
			Risk ratio (95% confidence interval)	P-value	Risk ratio (95% confidence interval)	P-value
			P-value		P-value	
Crude and adjusted odds ratios, entry to residential care, 12-month fixed follow-up						
Low-dose donepezil (reference)	15,586	914				
High-dose donepezil	2519	125	0.85 (0.71-1.02)	0.90 (0.75-1.08)	0.264	0.96 (0.80-1.16)
Galantamine	5926	300	0.86 (0.76-0.98)	0.86 (0.75-0.97)	0.016	0.83 (0.73-0.95)
Rivastigmine—patch	4286	240	0.95 (0.83-1.10)	0.96 (0.84-1.10)	0.560	0.94 (0.81-1.09)
Rivastigmine—oral	730	40	0.93 (0.69-1.27)	0.98 (0.72-1.33)	0.898	0.85 (0.61-1.16)

Crude and adjusted odds ratios, entry to residential care, 12-month fixed follow-up

N	Number of outcomes	Crude risk ratio (95% confidence interval)	Age- and sex-adjusted	Prop. Score adjusted			
			Risk ratio (95% confidence interval)	P-value	Risk ratio (95% confidence interval)	P-value	
			P-value		P-value		
Low-dose donepezil (reference)	15,586	1702					
High-dose donepezil	2519	218	0.79 (0.69-0.91)	0.88 (0.77-1.00)	0.051	0.90 (0.78-1.03)	0.117
Galantamine	5926	659	1.02 (0.94-1.11)	1.02 (0.94-1.11)	0.566	0.95 (0.87-1.04)	0.284
Rivastigmine—patch	4286	529	1.13 (1.03-1.24)	1.16 (1.06-1.27)	0.001	1.14 (1.03-1.26)	0.011
Rivastigmine—oral	730	113	1.42 (1.19-1.69)	1.54 (1.30-1.83)	<.0001	1.27 (1.06-1.52)	0.011

Bold values indicate a confidence interval that does not include 1.
of randomized trial data showing clinically meaningful benefit of ChEI therapy in ADRD, our study suggests that preferential use of galantamine may at least be associated with fewer adverse events than treatment with donepezil or rivastigmine and may also be associated with longer independent living before requiring a residential care facility.

Acknowledgments

The study was funded through a contribution agreement to the University of British Columbia from the British Columbia Ministry of Health. Their support is gratefully acknowledged. Carney had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Disclaimer: All inferences, opinions, and conclusions drawn in this manuscript are those of the authors and do not reflect the opinions or policies of the Data Stewards.

Ethics approval: The study received ethics approval from the University of British Columbia (UBC CREB Number H16-02922).

Data sharing statement: Statistical code available from the corresponding author at Greg.Carney@ti.ubc.ca

Supplementary Data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.trci.2019.09.011.

References

[1] Alzheimer’s Society of Canada. A New Way of Looking at the Impact of Dementia in Canada. Toronto: Alzheimer’s Society of Canada; 2012.

[2] Changes to PharmaCare Coverage for Cholinesterase Inhibitors. April 2016, http://www2.gov.bc.ca/assets/gov/health/health-drug-coverage/pharmacare/adii-health-professional-infosheet.pdf. Accessed October 21, 2019.

[3] Hogan DB. Long-term efficacy and toxicity of cholinesterase inhibitors in the treatment of Alzheimer disease. Can J Psychiatry 2014;59:618–23.

[4] Di Santo SG, Prinelli F, Adorni F, Caltagirone C, Muscio M. A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to severity of Alzheimer’s disease. J Alzheimer’s Dis 2013;35:349–61.

[5] Sadowsky C, Galvin J. Guidelines for the management of cognitive and behavioral problems in dementia. J Am Board Fam Med 2012; 25:350–66.

[6] Eskander MF, Nagykery NG, Leung EY, Khelghati B, Geula C. Rivastigmine is a potent inhibitor of acetyl- and butyrylcholinesterase in Alzheimer’s plaques and tangles. Brain Res 2005;1060:144–52.

[7] Pohanka M. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase meet immunity. Int J Mol Sci 2014;15:9809–25.

[8] Dugas-Bailador FA, Heinmala K, Wonnacott S. The allosteric potentiation of nicotinic acetylcholine receptors by galantamine is transduced into cellular responses in neurons: Ca2+ signals and neurotransmitter release. Mol Pharmacol 2003;64:1217–26.

[9] Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, et al. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 1997;280:1117–36.

[10] Jonas DE. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ 2003;169:557–64.

[11] Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging 2008;3:211–25.

[12] Park-Wyllie LY, Mamdani MM, Li P, Gill SS, Laupacis A, Juurlink DN. Cholinesterase inhibitors and hospitalization for brady-cardia: a population-based study. PLoS Med 2009;6:e1000157.

[13] US Food and Drug Administration [FDA]. Alert for Healthcare Professionals on Galantamine Hydrochloride (marketed as Reminyl). Rockville (Maryland): FDA; 2005. https://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm126138.pdf. Accessed May 29, 2019.

[14] Russ TC, Morling JR. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev 2012;CD009132.

[15] Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev 2006;CD001747.

[16] Fisher A, Carney G, Bassett K, Chappell N. Cholinesterase Inhibitor Utilization: the impact of provincial drug policy on discontinuation. Value Health 2016;19:688–96.

[17] B.C. Ministry of Health. Provincial Guide to Dementia Care in British Columbia: Achievements and Next Steps, 2016. http://www.health.gov.bc.ca/library/publications/year/2016/bc-dementia-care-guide.pdf. Accessed October 21, 2019.

[18] Williams JI, Young W. Inventory of Studies on the Accuracy of Canadian Health Administrative Databases. Technical report. Toronto: Institute for Clinical Evaluative Sciences (ICES); 1996.

[19] Fowles JB, Lawthers AG, Weiner JP, Garnick DW, Petrie DS, Palmer RH. Agreement between physicians’ office records and Medicare Part B claims data. Health Care Finance Rev 1995;16:189–99.

[20] Obtained online from B.C. Stats. and reduced by 7% to account for the federally insured, http://www2.gov.bc.ca/assets/gov/health/health-drug-coverage/pharmacare/health-professional-infosheet.pdf. Accessed February 23, 2017.
[21] McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol 2003;157:940–3.

[22] Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 2009;20:512–22.

[23] Fosbol EL, Peterson ED, Holm E, Gislason GH, Zhang Y, Curtis LH, et al. Comparative cardiovascular safety of dementia medications: a cross-national study. J Am Geriatr Soc 2012;60:2283–9.

[24] Fisher A, Carney G, Bassett K, Cormuth CR. Tolerability of cholinesterase inhibitors: a population-based study of persistence, adherence, and switching. Drugs Aging 2017;34:221–31.

[25] Merims D, Shabtai H, Korczyn AD, Peretz C, Weizman N, Giladi N. Antiparkinsonian medication is not a risk factor for the development of hallucinations in Parkinson’s disease. J Neural Transm 2004;111:1447–53.

[26] Scharre DW, Vekeman F, Lefebvre P, Mody-Patel N, Kahler KH, Duh MS. Use of antipsychotic drugs in patients with Alzheimer’s disease treated with rivastigmine versus donepezil: a retrospective, parallel-cohort, hypothesis-generating study. Drugs Aging 2010;27:903–13.

[27] Rothman KJ, Greenland S. Modern Epidemiology. 2nd ed. Philadelphia, PA: Lippincott-Raven; 1998. 347.