Compatibel braiding with Hopf Links, multiloop, and Borromean rings in (3+1)-dimensional spacetime

Zhi-Feng Zhang and Peng Ye*
School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
(Dated: Wednesday 26th May, 2021)

Braiding phases among topological excitations are key data for physically characterizing topological orders. In this paper, we provide a field-theoretical approach towards a complete list of mutually compatible braiding phases of topological orders in (3+1)D spacetime. More concretely, considering a discrete gauge group as input data, topological excitations in this paper are bosonic particles carrying gauge charges and loops carrying gauge fluxes. Among these excitations, there are three classes of root braiding processes: particle-loop braiding processes [i.e., the familiar Aharonov-Bohm phase of winding an electric charge around a thin magnetic solenoid], multi-loop braiding processes [Phys. Rev. Lett. 121, 061601 (2018)], and particle-loop and multi-loop braiding processes [i.e., Borromean Rings braiding. In Phys. Rev. Lett. 121, 061601 (2018)]. A naive way to exhaust all topological orders is to arbitrarily combine these root braiding processes. Surprisingly, we find that there exist illegitimate combinations in which certain braiding phases cannot coexist, i.e., are mutually incompatible. Thus, the resulting topological orders are illegitimate and must be excluded. It is not obvious to identify these illegitimate combinations. But with the help of the powerful (3+1)D topological quantum field theories (TQFTs), we find that illegitimate combinations violate gauge invariance. In this way, we are able to obtain all sets of mutually compatible braiding phases and all legitimate topological orders. To illustrate, we work out all details when gauge groups are Z and $N = 1 \times 1 \times 1 \times 3, 1 \times 3 \times 3 \times 1, 3 \times 1 \times 1 \times 3, 3 \times 3 \times 1 \times 3$. Finally, we concisely discuss compatible braiding processes and TQFTs in (4+1)D spacetime.

CONTENTS

I. Introduction 1

II. Review on root braiding processes and gauge transformations 3
A. Microscopic origins of discrete gauge groups, topological excitations, and TQFT actions 3
B. Particle-loop braiding and BdA term 5
C. Multiloop braiding and AAdA, AAAA terms 5
D. Borromean Rings braiding and AAB term 6

III. Compatible braiding processes 7
A. $G = Z_{N_1}$ and $G = Z_{N_1} \times Z_{N_2}$ 7
B. $G = Z_{N_1} \times Z_{N_2} \times Z_{N_3}$ 8
C. $G = Z_{N_1} \times Z_{N_2} \times Z_{N_3} \times Z_{N_4}$ 8
D. Results for general gauge groups 10

IV. Incompatible braiding processes 11
A. Absence of BR braiding when $G = \prod_{i=1}^{2} Z_{N_i}$ 11
B. Incompatibility: $\Theta_{1,2}^{BR, 3}$ and $\Theta_{2,3}^{BR, 1}$ 13
C. Incompatibility: $\Theta_{1,3}^{IL, 1}$ and $\Theta_{1,2}^{BR, 3}$ 13
D. Incompatibility: $\Theta_{2,3}^{IL, 1}$ and $\Theta_{1,2}^{BR, 3}$ 13
E. Incompatibility: $\Theta_{2,3}^{IL, 1}$ and $\Theta_{1,2}^{BR, 3}$ 15
F. Incompatibility: $\Theta_{1,2}^{IL, 3,4}$ and $\Theta_{1,2}^{BR, 3}$ 16

V. Compatible braiding processes in (4+1)D spacetime 16
A. Excitations and braiding processes in (4+1)D 16
B. An overview of compatible braiding processes in (4+1)D 17

VI. Conclusion 18
A. Microscopic derivation of the TQFT action 19
B. All legitimate TQFT actions when $G = \prod_{i=1}^{4} Z_{N_i}$ 24
C. Some technical details 24
1. Derivation for the incompatibility of A and $A^2 B^3$ 24
2. Derivation of the incompatibility between $A^1 A^3 dA^3$ and $A^1 A^2 B^3$ 26
3. Derivation of gauge transformations for $S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{N_2}{2\pi} A^1 A^2 dA^3 + \frac{N_3}{2\pi} (2\pi)^2 A^1 A^2 B^3$ 29
4. Derivation of incompatibility between $A^1 A^2 A^3 A^4$ and $A^1 A^2 B^4$ 32

References 34

I. INTRODUCTION

The order parameter, which is designed for characterizing orders, is one of fundamental concepts of many-body physics. Symmetry-breaking orders are characterized by local order parameters—local functions of spacetime. However, topological orders (e.g., fractional quantum Hall states) [1–4] in gapped systems are characterized by intrinsically nonlocal order parameters, such as adiabatic quantum phases accumulated by braiding topological excitations (e.g., anyons) [5].
In topological orders, topological excitations are usually geometrically compact manifold-like after taking continuum limit, such as point-like particle excitations, string-like loop excitations, etc.\(^1\) Braiding phases of topological excitations are proportional to integer-valued invariants of knots or links formed by world-lines of particles and world-sheets of loops, thereby being quantized and robust against local perturbations. In addition to topological orders, braiding phases have also been applied to characterization of symmetry protected topological (SPT) phases\(^7\)\(^–\)\(^11\) despite that SPT bulk excitations are topologically trivial. The core reason is that SPTs can be properly dualized to specific topological orders\([7]\).

One quantitatively efficient and powerful approach to braiding phases is topological quantum field theory (TQFT)\([12]\). For example, braiding data of two-dimensional topological orders are encoded in \((2 + 1)\)D Chern-Simons theory\([2, 5, 13]\). In this paper, we focus on deconfined phases of \((3 + 1)\)D Chern-Simons theory\([2, 5, 13]\). When more than one particle (loop) are simultaneously involved in the same braiding process, superscripts will be added properly to \(c_i (m_i)\).

Among these elementary excitations, there exist three classes of braiding processes that have been studied before: particle-loop braiding\([15, 16, 22\)–\)\(^25]\), multi-loop braiding\([26\)–\)\(^44]\), and particle-loop-loop braiding (i.e., Borromean braiding)\([45]\). For the purpose of this paper, we regard these braiding processes as \textit{root braiding processes}. Within each class of root braiding processes, depending on gauge group assignment, there are still many different braiding phases among which compatibility is crucial. To proceed further, let us briefly introduce the three classes of root braiding.

\textbf{In the first class}, within each gauge subgroup, e.g., \(Z_{N_i}\), there is a well-defined particle-loop braiding phase \(\Theta_i^{\text{HL}} = \frac{2\pi}{N_i} \mod 2\pi\) when the Hopf linking invariant is one\(^3\). Here, the Hopf link is formed by an elementary particle’s trajectory \(c_i\) and an elementary loop \(m_i\). This braiding phase always exists since it physically encodes the cyclic group structure of \(Z_{N_i}\). For the whole gauge group, the root braiding phases of the first class form a set \(\{\Theta_i^{\text{HL}}\}_G\) with \(i = 1, \cdots, n\). A subscript \(G\) is added for specifying the gauge group \(G\). Apparently, all braiding phases in the set belong to distinct gauge subgroups, thereby being mutually compatible and linearly independent. In the language of TQFT, one may compute braiding phases from gauge-invariant correlation functions of Wilson operators of the topological \(BF\) theories with action \(S^\text{BF} = \int \sum_i \frac{N_i}{2\pi} B^i \wedge dA^i\) (abbreviated as \(BdA\))\([16, 46\)–\)\(^49]\). Here, the 1-form \(A^1\) and 2-form \(B^i\) are compact \(U(1)\) gauge fields describing the loop current \(\left(\frac{1}{N_i}\right) dA^i\) and particle current \(\left(\frac{1}{N_i}\right) * dB^i\) degrees of freedom, respectively. As a natural higher-dimensional generalization of the Chern-Simons theory, the \(BF\) theory has been broadly applied to condensed matter systems, such as superconductors\([16]\), bosonic and fractional topological insulators and more general 3D SPTs\([49\)–\)\(^53]\).

\textbf{In the second class}, i.e., multi-loop (three or four) braidings, all objects involved in the braids are loops. More specifically, a three-loop braiding\([26]\) consists of three elementary loops, and lead to a set of braiding phases \(\{\Theta_i^{\text{HL}}, \Theta_j^{\text{HL}}\}_G\), where \(G = \prod_{i=1}^n Z_{N_i}\) with \(n \geq 2\). As mentioned above, when \(G\) is given, \(\Theta_i^{\text{HL}}\) always exists. Here \(j, k, l\) indicate that three elementary loops (denoted by \(m_1 \), \(m_2 \), \(m_3 \) respectively) carry the elementary gauge flux of \(Z_{N_j}, Z_{N_k}, Z_{N_l}\) gauge subgroups. Geometrically, the loop \(m_1\) right after the symbol “\(|\)”, which carries elementary gauge flux of \(Z_{N_j}\) gauge subgroup, is called “base loop”\([26]\). The latter is simultaneously \textit{hopfily} linked to the other two loops, i.e., \(m_2^+, m_3^+\). Under this geometric setting, the three-loop braiding can be regarded as an anyonic braiding process on the Seifert surface bounded by the base loop. Braiding phases in the set \(\{\Theta_i^{\text{HL}}, \Theta_j^{\text{HL}}\}_G\) satisfy a series of remarkably elegant constraints such that mutually compatible braiding datasets can be unambiguously determined. The result was obtained in Ref.\([26]\) by means of general properties of discrete gauge group and adiabaticity of braiding processes. The same result can also be obtained from TQFTs with topological terms of \(BdA + AAdA\) form\([27\)–\)\(^34, 44]\). Moreover, in the second class, if we consider four loops from four distinct gauge subgroups, the four-loop braiding phases form a set \(\{\Theta_i^{\text{HL}}, \Theta_j^{\text{HL}}\}_G\), where \(G = \prod_{i=1}^n Z_{N_i}\) with \(n \geq 4\), and the four loops carry elementary gauge fluxes of four different gauge subgroups \(Z_{N_1}, Z_{N_2}, Z_{N_3}, Z_{N_4}\) respectively. The four-loop braiding is associated with the quadruple linking number of surfaces, thereby being quantized\([28]\). The corresponding TQFTs can be symbolically expressed as \(BdA + AAAA\).\([27\)–\)\(^34, 44]\).

\(^1\) For non-manifold-like excitations, Ref.\([6]\) provides some examples in a class of exotic stabilizer codes that support spatially extended excitations with restricted mobility and deformability.

\(^2\) In order to reconcile different conventions in condensed matter physics and high energy physics, we take the following convention: gauge theories/field theories are always associated with spacetime dimensions but quantum states, “Hamiltonian-type” lattice model, or topological phases of matter (topological order, SPTs, etc.) are associated with spatial dimensions only.

\(^3\) The superscript \(H\) in \(\Theta_i^{\text{HL}}\) stands for Hopf. As an angle, the \(2\pi\) period is important but obvious, so we will not write it explicitly hereafter. To characterize topological orders, it is sufficient to consider braiding processes in which the linking number is unit.
In the third class, i.e., the particle-loop-loop braiding or Borromean Rings (BR) braiding [45], an elementary particle carrying unit gauge charge of \(\mathbb{Z}_{N_2} \) gauge subgroup moves around two loops (denoted by \(m_1 \), \(m_2 \)) that respectively carry unit gauge fluxes of \(\mathbb{Z}_{N_1} \) and \(\mathbb{Z}_{N_3} \), such that the particle’s trajectory \(\gamma_{ek} \) and the two loops together form a Borromean Rings link, or general Brunnian link. The corresponding braiding phase is denoted as \(\Theta_{i,j,k,l}^{BR} \) which is proportional to the Milnor’s triple linking number \(\bar{\mu} \) [45, 54, 55]. Likewise, one may define a set of braiding phases: \(\{ \Theta_i^H; \Theta_{j,k,l}^{4L}; \Theta_{m,n,o,p}^{4L}; \Theta_{g,r,s}^{BR} \} \), in arbitrary combinations and try to exhaust all topological orders. We find that, not all possible gauge group assignments (i.e., the subscripts \(i, j, k, l, \cdots \)) are realizable. Not all braiding phases in a given set are linearly independent. As we reviewed above, within each class, compatible braiding phases have been studied via various approaches. By “compatible”, we mean that these braiding processes can be supported in the same system. In other words, the compatible braiding phases together as a set of braidings characterize a legitimate topological order. If there are two mutually incompatible braiding processes in the set, then both braiding processes must always lead to two trivial braiding phases, i.e., \(0 \mod 2\pi \) regardless the values of linking numbers of the braidings. As we will show, gauge invariance is broken if any one of two braidings has a nontrivial braiding phase. Therefore, in order to exhaust all legitimate topological orders, it is sufficient to find all sets of braidings formed by mutually compatible braiding processes. For this purpose, in this paper, through TQFT approach, we compute all braiding processes in a unified framework, and figure out all cases of incompatibility that are tightly related to gauge noninvariance. Especially, we focus on cases of incompatibility that occur when two or three distinct classes of root braiding processes have nontrivial braiding phases. Compatible braiding phases for different gauge groups are summarized in Table I (\(G = \mathbb{Z}_{N} \) and \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \)), Table II (\(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \)), and Table III (\(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \mathbb{Z}_{N_4} \)). More general cases with more than four \(\mathbb{Z}_{N} \) gauge subgroups can be straightforwardly analyzed by applying the results in these four tables, as shown in Sec. III D. In addition to braiding phases, in these tables, we also provide the corresponding TQFTs and definitions of gauge transformations therein. All other sets of braiding phases are incompatible and not realizable. Some typical examples of incompatibility will be analyzed in details in this paper.

The remainder of this paper is structured as follows. In Sec. II, we concretely analyze root braiding processes one by one, in order to lay the foundation for the forthcoming discussions on compatibility. In Sec. III, by combining all root braiding processes together, we study the corresponding TQFTs and extract all sets of compatible braiding processes. Then, in Sec. IV, some sets of incompatible braiding processes are illustrated in some concrete examples. In Sec. V, along the same line, we concisely discuss compatible braidings and TQFTs in \((4+1) \)-dimensional topological orders. Conclusions are made in Sec. VI. Several technical details are collected in Appendices.

II. REVIEW ON ROOT BRAIDING PROCESSES AND GAUGE TRANSFORMATIONS

In this section, we review TQFTs of root braiding processes. We emphasize the correspondence between root braiding processes, topological terms and braiding phases, which is illustrated as the following triangle:

![Braiding Process](image)

A braiding process can be identified from a topological term or a braiding phase, and vice versa. In this manner, we can study the braiding processes within the framework of TQFT. More concretely, in order to extract braiding phases from a TQFT, one can either add gauge-invariant source terms [30, 45] or study algebra of Wilson operators [34, 40], such that the braiding phases of a given braiding process are connected to a linking / knot invariant formed by the spacetime trajectories of particles and loops.

A. Microscopic origins of discrete gauge groups, topological excitations, and TQFT actions

As our basic goal is to utilize TQFTs and braiding processes to characterize and classify topological orders of underlying quantum many-body systems, it is very important to identify microscopic origins of input data of TQFTs and braiding processes.

Hamiltonian realization, especially exactly solvable model proposal, is always the most powerful stimulus of the progress of topological orders. For example, toric code model proposed by Kitaev [20] elegantly unveils all key properties of nonchiral Abelian topological orders in \((2+1)D \). String-net models constructed by Levin and Wen [56] are applied to exhaust non-Abelian topological orders in \((2+1)D \). In \((3+1)D \) topological orders that are within Dijkgraaf-Witten cohomology classification [57] have Hamiltonian realization in Ref. [38], which uses 4-cocycles to cover all particle-loop and multi-loop braidings. However, exactly solvable models for Borromean Rings braiding [45] are not known, which is an interesting future direction. Ref [58] and [59] present strategies for constructing higher-dimensional Abelian and non-Abelian topological phases via coupling quantum wires, which may shed light on constructing exactly solvable lattice model for BR braiding.

While exactly solvable models have Hamiltonian form, the Hamiltonians often look very intricate and unrealistic (four-
spin, six-spin interactions, and more). Furthermore, it is unclear for us to rigorously connect the Hamiltonians to TQFTs. The latter have been proved to be a very powerful machine to study topological orders since the discovery of the fractional quantum Hall effect. But, to the best of our knowledge, it is highly impossible to perform a standard perturbation theory to renormalize the intricate interacting electron system of the ν = 1/3 Laughlin state to a beautiful Chern-Simons gauge theory ∫ AdA where A is an emergent gauge field. Although there are many effective ways, e.g., parton construction and hydrodynamical approach, to handle strongly-correlated physics, it is still kind of mysterious to derive emergent dynamical gauge fields from the very beginning.

In order to identify microscopic origins, below we will provide an effective way of thinking, following the spirit of the previous works [16, 29, 34, 50, 52, 60]. From this effective derivation, we can find how discrete gauge groups, topological terms, quantized Wilson integral arise from a quantum many-body system. We can also find particle excitations and loop excitations are gauge charges and gauge fluxes of gauge groups. Below, we take ∫ BdA + AAB as an example by means of exotic boson condensate and vortexline condensate. The detailed derivation is given in Appendix A. Here we just briefly sketch the key idea.

We start from a multi-layer condensate in 3D space in which one layer is in vortexline condensation phase (from disordering a 3D superfluid) while the others are in charge condensation phases (“bosonic superconductors”): The former can be regarded as the Higgs phase of two-form gauge fields while the latter can be regarded as the usual Higgs phase of 1-form gauge fields.

\[
\mathcal{L} = \frac{\beta_3}{2} \left(\partial_\mu \Theta_\nu - N_3 B_{\mu \nu}^3 \right)^2 + \frac{\beta_1}{2} \left(\partial_\mu \theta^1 - N_1 A_{\mu}^1 \right)^2 \\
+ \frac{\beta_2}{2} \left(\partial_\mu \theta^2 - N_2 A_{\mu}^2 \right)^2 \\
+ i \lambda \varepsilon^{\mu \nu \lambda \rho} \left(\partial_\mu \Theta_\nu - N_3 B_{\mu \nu}^3 \right) \left(\partial_\lambda \theta^1 - N_1 A_{\lambda}^1 \right) \times \left(\partial_\rho \theta^2 - N_2 A_{\rho}^2 \right),
\]

where \(\partial_\mu \Theta_\nu = \partial_\mu \Theta_\nu - \partial_\nu \Theta_\mu \). The vector-like phase angle \(\Theta_\mu \) describes the phase field of vortexline condensation [50], while \(\theta^1 \) and \(\theta^2 \) are the usual phase angles of boson condensation. The coefficients \(\beta_1, \beta_2, \beta_3 \) represent phase rigidity of condensates. The last term of the above Lagrangian couple three condensates together in a gauge-invariant fashion. By introducing Hubbard-Stratonovich fields \(\Sigma_{\mu \nu}^3, j_1^\lambda \) and Lagrange multiplier fields \(\xi_1^\lambda \) and \(\eta_1^\lambda \), we obtain:

\[
\mathcal{L} = \frac{1}{2\beta_1} \left(j_1^1 \right)^2 - i \theta^1 \partial_\lambda j_1^\lambda - i N_1 A_{\lambda}^1 j_1^\lambda + \frac{1}{2\beta_2} \left(j_2^2 \right)^2 - i \theta^2 \partial_\rho j_2^\rho - i N_2 A_{\rho}^2 j_2^\rho + \frac{1}{8\beta_3} \left(\Sigma_{\mu \nu}^3 \right)^2 - i \Theta_\mu \partial_\nu \Sigma_{\mu \nu}^3 - i \frac{1}{2} N_3 B_{\mu \nu}^3 \Sigma_{\mu \nu}^3 \\
+ i \lambda \varepsilon^{\mu \nu \lambda \rho} \left[2 \Theta_\mu \partial_\nu \left(N_1 A_{\nu}^1 A_{\mu}^1 \right) + \right. 2 \theta^1 \partial_\lambda \left(N_2 A_{\rho}^2 N_3 B_{\mu \nu}^3 \right) + \left. \theta^2 \partial_\rho \left(N_3 B_{\mu \nu}^3 N_1 A_{\lambda}^1 \right) \right] \\
+ i \eta_1^\lambda \left[\xi_1^\lambda - \lambda \varepsilon^{\mu \nu \lambda \rho} \frac{1}{2} \partial_\nu \theta^2 N_3 B_{\mu \rho}^3 \right] + i \theta^1 \partial_\lambda \xi_1^\lambda + i \eta_1^\rho \left[\xi_1^\rho - \lambda \varepsilon^{\mu \nu \lambda \rho} \frac{1}{2} \partial_\theta^1 N_3 B_{\mu \rho}^3 \right] + i \theta^2 \partial_\rho \xi_2^\rho \\
+ i \eta_1^\rho \left[\xi_2^\rho - \lambda \varepsilon^{\mu \nu \lambda \rho} \left(2 \theta^1 \partial_1 N_2 A_{\rho}^2 + 2 \theta^2 \partial_2 N_1 A_{\lambda}^1 \right) \right] + i \Theta_\mu \partial_\nu \xi_3^\nu - i N_1 N_2 N_3 \lambda \varepsilon^{\mu \nu \lambda \rho} A_{\lambda}^1 A_{\mu}^2 B_{\nu}^3 + \text{boundary terms}.
\]

Integrating out \(\Theta_\mu, \theta^1 \) and \(\theta^2 \) yields constraints in the path-integral measure. These constraints can be solved by introducing 1-form gauge field \(A^1 \), 2-form gauge fields \(B^1 \) and \(B^2 \) respectively:

\[
\Sigma_{\mu \nu}^3 = \frac{1}{2\pi} \varepsilon^{\mu \nu \lambda \rho} \partial_\lambda A_{\rho}^3 + \xi_3^\mu - \lambda \varepsilon^{\mu \nu \lambda \rho}, \ 2 N_1 N_2 A_{\lambda}^1 A_{\rho}^2, \\
\xi_1^\mu = \frac{1}{4\pi} \varepsilon^{\rho \mu \nu \lambda} \partial_\rho B_{\nu}^1 + \xi_1^\mu - \lambda \varepsilon^{\mu \nu \lambda \rho} \left(N_2 A_{\nu}^2 N_3 B_{\mu \rho}^3 - \frac{1}{2} \eta_1^\rho N_3 B_{\mu \rho}^3 - 2 \eta_1^\rho N_2 A_{\rho}^2 \right), \\
\xi_2^\rho = \frac{1}{4\pi} \varepsilon^{\rho \lambda \mu \nu} \partial_\rho B_{\mu \nu}^2 + \xi_2^\rho - \lambda \varepsilon^{\mu \nu \lambda \rho} \left(N_3 B_{\mu \rho}^3 N_1 A_{\lambda}^1 - \frac{1}{2} \eta_1^\lambda N_3 B_{\mu \rho}^3 - 2 \eta_3^\rho N_1 A_{\lambda}^1 \right).
\]

The physical meaning of \(\Sigma_{\mu \nu}^3 \) is the current of loop while those of \(j_1^\lambda \) and \(j_2^\rho \) are the currents of particles of layer 1 and 2 respectively. In this manner, one can figure out the microscopic origins of particle and loop excitations. Substituting \(\Sigma_{\mu \nu}^3, j_1^\lambda \) and \(j_2^\rho \) into Lagrangian (2) and integrating out the Lagrange multiplier fields, we end up with

\[
\mathcal{L} = \frac{i N_1}{4\pi} \varepsilon^{\mu \nu \lambda \rho} B_{\mu \rho}^1 \partial_\lambda A_{\nu}^1 + \frac{i N_2}{4\pi} \varepsilon^{\mu \nu \lambda \rho} B_{\mu \rho}^2 \partial_\lambda A_{\nu}^2 \\
+ rac{i N_3}{4\pi} \varepsilon^{\mu \nu \lambda \rho} B_{\mu \rho}^3 \partial_\lambda A_{\nu}^3 + i N_1 N_2 N_3 \lambda \varepsilon^{\mu \nu \lambda \rho} A_{\lambda}^1 A_{\mu}^2 B_{\nu}^3.
\]

Finally, we effectively obtain the TQFT action for a BR braiding:

\[
S = \int \mathcal{L} dx dt = \int \frac{N_3}{2\pi} B^{\mu} dA^\mu + A^1 A^2 B^3.
\]

In this theory, the particle excitations are \(e_1, e_2, e_3 \) carrying gauge charges of \(\mathbb{Z}_{N_1}, \mathbb{Z}_{N_2}, \mathbb{Z}_{N_3} \) and minimally couple
to A^1, A^2, A^3. The loop excitations are m_1, m_2, m_3 carrying gauge fluxes of $\mathbb{Z}_{N_1}, \mathbb{Z}_{N_2}, \mathbb{Z}_{N_3}$ and minimally couple to B^1, B^2, B^3.

B. Particle-loop braiding and BdA term

The particle-loop braiding is essentially a quantized Aharonov-Bohm effect in a discrete gauge theory where local interactions are completely screened and long-range statistical interactions lead to nontrivial braiding phases. Given a \mathbb{Z}_{N_i} gauge subgroup, an elementary particle e_1 is braided around a static elementary loop m_1. The trajectory γ_{e_1} and m_1 as a whole form a Hopf link, as shown in Fig. 1. The corresponding braiding phase is given by $\Theta^{H}_{i} = \frac{2\pi}{N_i}$ for unit Hopf linking number. The classification of equivalent trajectories of e_1 is essentially related to the mathematics of fundamental group and link homotopy, which was preliminarily introduced in the Supplemental Materials of Ref. [45]. The corresponding TQFT is the following multi-component BF action\(^4\) ($F = dA$, \wedge is omitted):

$$S = \int \sum_{i=1}^{n} \frac{N_i}{2\pi} B^i dA^i,$$ \hspace{1cm} \hspace{1cm} \hspace{1cm} (5)

where N_i are positive integers that specify the discrete gauge group G. \{$A^i = \sum \mu_i d x_{\mu}$\} and \{ $B^i = \frac{1}{2\pi} \sum \mu \nu B^{\mu \nu} d x_{\mu} d x_{\nu}$\} are 1-form and 2-form compact $U(1)$ gauge fields respectively. Although one may expect a general matrix formalism $\sim K^{ij} B^i dA^j$, the matrix K can always be sent to a diagonal matrix with positive elements via two independent $\text{GL}(n, \mathbb{Z})$ transformations. The two transformations respectively act on B fields and A fields (A relevant discussion on basis transformations can be found in Refs. [30, 53]). The action (5) keeps invariant up to boundary terms under gauge transformations

$$A^i \to A^i + d\chi^i,$$

$$B^i \to B^i + dV^i,$$ \hspace{1cm} \hspace{1cm} \hspace{1cm} (6)

where \{χ^i\} and \{V^i\} are respectively 0-form and 1-form compact $U(1)$ gauge parameters with $\int d\chi \in 2\pi \mathbb{Z}$ and $\int dV \in 2\pi \mathbb{Z}$. Once these integrals are nonzero, the corresponding gauge transformations are said to be “large”. The coefficient quantization, i.e., N_1 is integral, is guaranteed by the invariance of the partition function $Z = \int \mathcal{D}B \mathcal{D}A e^{\frac{N_1}{2\pi} B dA}$ under large gauge transformations on any compact oriented manifold.

C. Multiloop braiding and $AAdA, AAAA$ terms

Next, we consider three-loop and four-loop braiding processes introduced in Sec. I. The minimal number of gauge subgroups is two: $G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2}$. For this gauge group, we consider a three-loop braiding process (Fig. 2) with braiding phase denoted as $\Theta_{2,2,1}^{H}$. The TQFT action for this three-loop braiding process is

$$S = \int \sum_{i=1}^{2} \frac{N_i}{2\pi} B^i dA^i + \frac{q_{122}}{(2\pi)^2} A^1 A^2 dA^2.$$ \hspace{1cm} \hspace{1cm} \hspace{1cm} (7)

S is invariant up to boundary terms under gauge transformations

$$A^i \to A^i + d\chi^i,$$

$$B^1 \to B^1 + dV^1 + \frac{q_{122}}{2\pi N_1} d\chi^2 A^2,$$

$$B^2 \to B^2 + dV^2 - \frac{q_{122}}{2\pi N_2} d\chi^1 A^1.$$ \hspace{1cm} \hspace{1cm} \hspace{1cm} (8)

The coefficient q_{122} is quantized and periodic: $q_{122} = \frac{k N_1 N_2}{N_{12}}$, where $k \in \mathbb{Z}_{N_{12}}$ and N_{12} is the greatest common divisor (GCD) of N_1 and N_2.

When $G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3}$, we consider a three-loop braiding process (Fig. 3) associated with the braiding phase $\Theta_{3,3,1}^{H}$. The corresponding TQFT action is

$$S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{q_{123}}{(2\pi)^3} A^1 A^2 dA^3.$$ \hspace{1cm} \hspace{1cm} \hspace{1cm} (9)

The gauge transformations are defined as:

$$A^i \to A^i + d\chi^i,$$

$$B^i \to B^i + dV^i + \frac{q_{123}}{2\pi N_1} i j k d\chi^j A^j,$$ \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} (10)

\(4\) In this paper, each summation is indicated by a \sum symbol.
The coefficient is q_{GZ}. In this case, the base loop m_1^b carries the Z_{N_3} gauge flux, m_2^b carries the Z_{N_3} gauge flux, and m_3^b carries the Z_{N_3} gauge flux.

where ϵ is the Levi-Civita symbol with $\epsilon^{123} = -\epsilon^{213} = 1$. The coefficient is $q_{123} = kN_{23}$ where $k \in Z_{N_{123}}$ and N_{123} is the GCD of N_1, N_2 and N_3.

When $G = Z_{N_1} \times Z_{N_2} \times Z_{N_3} \times Z_{N_4}$, four-loop braiding processes are realizable, in which four loops carry the unit gauge fluxes of Z_{N_1}, Z_{N_2}, Z_{N_3}, Z_{N_4} gauge subgroups respectively. The corresponding TQFT action is

$$ S = \int \sum_{i=1}^{4} \frac{N_i}{2\pi} B_i^i dA^i + \frac{q_{1234}}{(2\pi)^3} A^1 A^2 A^3 A^4 $$

The action (11) is invariant up to boundary terms under gauge transformations

$$ A^i \rightarrow A^i + d\chi^i, $$
$$ B^i \rightarrow B^i + d\nu^i $$

$$ -\frac{1}{2} \sum_{j,k,l} \frac{q_{1234}}{(2\pi)^3} \epsilon^{ijkl} A^i A^k \chi^l $$

$$ + \frac{1}{2} \sum_{j,k,l} \frac{q_{1234}}{(2\pi)^3} \epsilon^{ijkl} A^i \chi^k d\chi^l $$

$$ + \frac{1}{6} \sum_{j,k,l} \frac{q_{1234}}{(2\pi)^3} \epsilon^{ijkl} \chi^j d\chi^k d\chi^l, $$

where ϵ is the Levi-Civita symbol with $\epsilon^{1234} = -\epsilon^{1324} = 1$. The coefficient is $q_{1234} = kN_{1234}$ where $k \in Z_{N_{1234}}$ and N_{1234} is the GCD of N_1, N_2, N_3 and N_4. Till now, we have only reviewed gauge transformations in this review section. It is hard to visualize four-loop braiding in three-dimensional real space. We recommend Fig. 6 of Ref. [28].

D. Borromean Rings braiding and AAB term

Last, we consider the particle-loop-braiding or Borromean Rings braiding with its braiding phase denoted as Θ^{B}_{ijk} [45]. Likewise, the input data of BR braiding are Abelian gauge group $G = \prod_{i=1}^{n} Z_{N_i}$, but with $n \geq 3$, such that all particles and loops can be labeled by gauge charges and gauge fluxes in a specific gauge subgroup Z_{N_i}. This braiding is beyond Dijkgraaf-Witten gauge theory classification $H^4(G, U(1))$. The latter only includes braiding phases of particle-loop braiding and multi-loop braiding. By further taking BR braiding into account, we need to study proper combinations of all braiding together to exhaust all topological orders.

The corresponding topological term of BR braiding is $A^i A^j B^k$. For example, consider a BR braiding process shown in Fig. 4, the corresponding TQFT action is

$$ S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{p_{123}}{(2\pi)^2} A^1 A^2 B^3, $$

where $p_{123,1} = \frac{l_{123,1} N_1 N_2 N_3}{N_{123}}$, $l_{123,1} \in Z_{N_{123}}$, N_{123} is the GCD of N_1, N_2 and N_3. Ref. [45] points out that $l_{123,1} = -l_{123,1}$ and $l_{i,j,k} = 0$ if any of the two indices are same. The quantization of $p_{123,1}$ is due to the large gauge invariance. The gauge transformations for (13) are

$$ A^1 \rightarrow A^1 + d\chi^1, $$
$$ A^2 \rightarrow A^2 + d\chi^2, $$
$$ A^3 \rightarrow A^3 + d\chi^3 + X^3, $$
$$ B^1 \rightarrow B^1 + dV^1 + Y^1, $$
$$ B^2 \rightarrow B^2 + dV^2 + Y^2, $$
$$ B^3 \rightarrow B^3 + dV^3, $$

where

$$ X^3 = -\frac{p_{123}}{2\pi N_3} \left(\chi^1 A^1 + \frac{1}{2} \chi^1 d\chi^2 \right) $$
$$ + \frac{p_{123}}{2\pi N_3} \left(\chi^2 A^1 + \frac{1}{2} \chi^2 d\chi^3 \right), $$

$$ Y^1 = -\frac{p_{123}}{2\pi N_1} \left(\chi^2 B^1 - A^2 V^3 + \chi^2 dV^3 \right), $$
$$ Y^2 = \frac{p_{123}}{2\pi N_2} \left(\chi^1 B^3 - A^1 V^3 + \chi^1 dV^3 \right). $$

X^3, Y^1 and Y^2 are so-called shift terms. The Dirac quantization of A^3, B^1 and B^2 requires that $\frac{1}{2\pi} \int dX^3 \in Z$, $\frac{1}{2\pi} \int dY^1 \in Z$ and $\frac{1}{2\pi} \int dY^2 \in Z$. The Z_{N_i} cyclic group structures are encoded in the cyclic Wilson integrals of A^1, A^2 and B^3 respectively: $\oint A^1 \in \frac{2\pi}{N_1} Z_{N_1}$, $\oint A^2 \in \frac{2\pi}{N_2} Z_{N_2}$ and $\oint B^3 \in \frac{2\pi}{N_3} Z_{N_3}$.
Since we have reviewed the correspondence between topological terms, braiding processes and braiding phases, we may naively think that we can design a system which can support arbitrary combinations of braiding processes. However, this is not true. In other words, there are illegitimate combinations in which the braiding processes are mutually incompatible. Such incompatibility reveals that some topological terms are forbidden to form a legitimate TQFT action.

In this section, we will compute the sets of compatible braiding phases for different gauge groups, from which the compatible braiding processes can be read out. For this purpose, we seek for a legitimate TQFT action consisting of as many topological terms as possible for a given gauge group.

In order to verify a TQFT action is legitimate or not, we need to take care of the following aspects. First of all, a gauge group is encoded in the above standard gauge transformation, the gauge transformations are required to preserve the cyclic group structure. This requirement means that, if the \(Z_N \) cyclic group structure is encoded in \(A^i \in \mathbb{Z}_N \), \(A^i \) must have the standard gauge transformation: \(A^i \rightarrow A^i + d\chi^i \) such that the Wilson integrals of \(A^i \) (\(B^i \)) are gauge-invariant. \(\chi^i \) and \(V^i \) are 0-form and 1-form compact \(U(1) \) gauge parameters with \(\int d\chi^i \in 2\pi \mathbb{Z} \) and \(\int dV^i \in 2\pi \mathbb{Z} \) respectively. From the perspective of microscopic origins (Sec. II A), if \(A^i \) has the above standard gauge transformation, the \(i \)-th layer condensate must be a charge-\(N_i \) boson condensate that higgses the Wilson integrals of \(A^i \) down to \(Z_{N_i} \), and \(B^i \) comes from the duality transformation shown in Sec. II A and Appendix A; likewise, if \(B^i \) has the above standard gauge transformation, the \(i \)-th layer condensate must be a charge-\(N_i \) vortexine condensate that higgses the Wilson integrals of \(B^i \) down to \(Z_{N_i} \), and \(A^i \) comes from the duality transformation shown in Sec. II A and Appendix A. In summary, in a legitimate action, at least one of gauge fields (\(A^i \) and \(B^i \)), for a given \(i \), should have the above standard gauge transformations and thus have the \(Z_{N_i} \) quantized Wilson integrals. For example, see Eq. (6), Eq. (8), Eq. (10), Eq. (12), Eq. (14).

Next, the gauge transformation of each gauge field should respect the Dirac quantization. Last but not least, a legitimate TQFT action should consist of topological terms with non-trivial coefficients. If the coefficient of a topological term is identical to 0, otherwise the action cannot be gauge invariant under gauge transformations, this topological term is actually incompatible with others in the action.

A. \(G = \mathbb{Z}_{N_1} \) and \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \)

When \(G = \mathbb{Z}_{N_1} \), the elementary particle (loop) is \(e_1 \) (\(m_1 \)) carrying unit gauge charge (flux) of \(\mathbb{Z}_{N_1} \) gauge group. The only nontrivial braiding process in this case is the particle-loop braiding described by

\[
S = \int \frac{N_1}{2\pi} B^1 dA^1. \tag{16}
\]

The gauge transformations for (16) are

\[
A^1 \rightarrow A^1 + d\chi^1, \quad B^1 \rightarrow B^1 + dV^1. \tag{17}
\]

The braiding phase of this particle-loop braiding is

\[
\Theta^1_{\mathbf{H}} = \frac{2\pi}{N_1}. \tag{18}
\]

When \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \), the elementary particles (loops) are denoted as \(e_1 \) and \(e_2 \) (\(m_1 \) and \(m_2 \)) carrying unit gauge charge (flux) of \(\mathbb{Z}_{N_1} \) and \(\mathbb{Z}_{N_2} \) gauge subgroups respectively. Beside particle-loop braidings, three-loop braidings can be supported. There are 4 kinds of three-loop braiding phases in this case, described by two linearly independent \(AAdA \) terms:

1. \(\Theta^{3L}_{2,11}: m_1^I, m_1^J \) and \(m_2^I \) respectively carry unit gauge flux of \(\mathbb{Z}_{N_1}, \mathbb{Z}_{N_2} \), and \(\mathbb{Z}_{N_2} \) gauge subgroup;

2. \(\Theta^{3L}_{1,21}: m_1^I, m_1^J \) and \(m_2^I \) respectively carry unit gauge flux of \(\mathbb{Z}_{N_2}, \mathbb{Z}_{N_1} \), and \(\mathbb{Z}_{N_1} \) gauge subgroup;

3. \(\Theta^{3L}_{1,12}: m_1^I, m_1^J \) and \(m_2^I \) respectively carry unit gauge flux of \(\mathbb{Z}_{N_1}, \mathbb{Z}_{N_2} \), and \(\mathbb{Z}_{N_1} \) gauge subgroup;

4. \(\Theta^{3L}_{2,11}: m_1^I, m_1^J \) and \(m_2^I \) respectively carry unit gauge flux of \(\mathbb{Z}_{N_2}, \mathbb{Z}_{N_1} \), and \(\mathbb{Z}_{N_2} \) gauge subgroup.

The first two braiding processes are described by \(A^1 A^2 dA^2 \) and the remainder by \(A^2 A^1 dA^1 \). All these three-loop braidings and particle-loop braidings are compatible, described by a TQFT action

\[
S = \int \sum_{i=1}^{2} \frac{N_i}{2\pi} B^i dA^i + \frac{q_{122}}{(2\pi)^2} A^1 A^2 dA^2 + \frac{q_{211}}{(2\pi)^2} A^2 A^1 dA^1, \tag{19}
\]

where \(q_{122} = \frac{k N_1 N_2}{N_{12}}, k \in \mathbb{Z}_{N_{12}}, \) and \(q_{211} = \frac{k' N_2 N_1}{N_{12}}, k' \in \mathbb{Z}_{N_{12}} \). \(N_{12} \) is the GCD of \(N_1 \) and \(N_2 \). The gauge transformations for (19) are

\[
\begin{align*}
A^1 & \rightarrow A^1 + d\chi^1, \\
B^1 & \rightarrow B^1 + dV^1 \\
B^2 & \rightarrow B^2 + dV^2 \\
A^1 & \rightarrow A^1 + \frac{q_{122}}{(2\pi) N_1} d\chi^2 A^2 - \frac{q_{211}}{(2\pi) N_1} d\chi^2 A^1, \\
B^1 & \rightarrow B^1 + \frac{q_{211}}{(2\pi) N_2} d\chi^1 A^1 + \frac{q_{122}}{(2\pi) N_2} d\chi^1 A^2.
\end{align*} \tag{20}
\]
The phases of particle-loop braiding and three-loop braiding are

\[
\Theta^H_i = \frac{2\pi}{N_i},
\]

(21)

\[
\Theta^{{\text{3L}}}_{2,2|1} = -\frac{4\pi q_{122}}{N_1 N_2},
\]

(22)

\[
\Theta^{{\text{3L}}}_{1,2|2} = -\frac{2\pi q_{122}}{N_1 N_2},
\]

(23)

\[
\Theta^{{\text{3L}}}_{1,1|2} = \frac{4\pi q_{211}}{N_1 N_2},
\]

(24)

\[
\Theta^{{\text{3L}}}_{2,1|1} = -\frac{2\pi q_{211}}{N_1 N_2},
\]

(25)

Legitimate TQFT actions for \(G = \mathbb{Z}_{N_1} \) and \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \) are summarized in Table I. The sets of compatible braiding phases for \(G = \mathbb{Z}_{N_1} \) and \(G = \prod_{i=1}^2 \mathbb{Z}_{N_i} \) are respectively

\[
\left\{ \Theta^H_i = \frac{2\pi}{N_i} \right\}_{\mathbb{Z}_{N_1}}
\]

and

\[
\left\{ \Theta^H_i, \Theta^{{\text{3L}}}_{2,2|1}, \Theta^{{\text{3L}}}_{1,2|2}, \Theta^{{\text{3L}}}_{1,1|2}, \Theta^{{\text{3L}}}_{2,1|1} \right\}_{\prod_{i=1}^2 \mathbb{Z}_{N_i}}
\]

(27)

where the underlines denote the linear dependence of two braiding phases, for example, \(\Theta^{{\text{3L}}}_{2,2|1}, \Theta^{{\text{3L}}}_{1,2|2} \) indicates that \(\Theta^{{\text{3L}}}_{2,2|1} = -2 \cdot \Theta^{{\text{3L}}}_{1,2|2} \).

B. \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \)

When \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \), the elementary particles (loops) are \(e_1, e_2, e_3 \) \((m, m_2, m_3)\) carrying unit gauge charge (flux) of \(\mathbb{Z}_{N_1}, \mathbb{Z}_{N_2} \) and \(\mathbb{Z}_{N_3} \) gauge subgroups respectively. Besides particle-loop braids and three-loop braids discussed in Sec. III A, BR braids described by \(AAB \) terms and three-loop braids described by \(A^n A^n A^n \) terms \((m, n, o \text{ are mutually different})\) are realizable. For the reason why BR braiding is absent when \(G = \prod_{i=1}^2 \mathbb{Z}_{N_i} \), one can refer to Sec. IV A.

The compatibility issues of \(G = \prod_{i=1}^2 \mathbb{Z}_{N_i} \) are discussed as follows. First of all, if we neglect BR braiding, all particle-loop braids and three-loop braids are compatible, we can write down a legitimate TQFT action for all root braiding processes except BR braiding:

\[
\int \sum_{i=1}^3 \frac{N_i}{2\pi} B^i dA^i + \frac{q_{122}}{2\pi} A^1 A^2 dA^2 + \frac{q_{211}}{2\pi} A^2 A^1 dA^1
\]

+ \frac{q_{133}}{2\pi} A^1 A^3 dA^3 + \frac{q_{211}}{2\pi} A^3 A^1 dA^1
\]

+ \frac{q_{233}}{2\pi} A^2 A^3 dA^3 + \frac{q_{122}}{2\pi} A^3 A^2 dA^2
\]

+ \frac{q_{123}}{2\pi} A^1 A^2 dA^3 + \frac{q_{231}}{2\pi} A^2 A^3 dA^1,
\]

(28)

where \(q_{ijk} = \frac{\langle N_i, N_j, N_k \rangle}{N_i} \), \(i \in \mathbb{Z}_{N_i,j}, \) \(N_i \) \((N_i,j)\) is the GCD of \(N_i, N_j \) (and \(N_k \)). Next, we consider a BR braiding, say, \(\Theta^{{\text{BR}}}_{1,2|3} \) described by an \(A^1 A^2 B^3 \) term. All particle-loop braids are compatible with this BR braiding. However, among three-loop braiding phases, only \(\Theta^{{\text{3L}}}_{2,2|1}, \Theta^{{\text{3L}}}_{1,2|2}, \Theta^{{\text{3L}}}_{1,1|2} \) and \(\Theta^{{\text{3L}}}_{2,1|1} \) are compatible with \(\Theta^{{\text{BR}}}_{1,2|3} \). Other \(\Theta^{{\text{3L}}}_{ijk} \)’s with one index equal to 3 are not compatible with \(\Theta^{{\text{BR}}}_{1,2|3} \). The reasons for this incompatibility between three-loop braids and BR braids are discussed in Sec. IV B, IV D and IV E. The total TQFT action for \(\Theta^{{\text{3L}}}_{1,2|3} \) and its compatible braiding is

\[
\int \sum_{i=1}^3 \frac{N_i}{2\pi} B^i dA^i + \frac{p_{123}}{2\pi} A^1 A^2 B^3
\]

+ \frac{q_{122}}{2\pi} A^1 A^2 dA^2 + \frac{q_{211}}{2\pi} A^2 A^1 dA^1,
\]

(29)

where \(p_{123} = \frac{\langle N_1, N_2, N_3 \rangle}{N_1 N_2}, \) \(i \in \mathbb{Z}_{N_i,j}, \) and \(q_{12} = \frac{\langle N_i, N_j \rangle}{N_i} \), \(i \in \mathbb{Z}_{N_i,j} \). Furthermore, if we consider two different BR braids, we find that it is impossible to write down a legitimate TQFT action which contains two different \(AAB \) terms. The reason is explained in Sec. IV B. Nevertheless, if the gauge group is \(G = \prod_{i=1}^n \mathbb{Z}_{N_i} \) with \(n \geq 4 \), legitimate TQFT actions for two different BR braids are possible, which is detailed in Sec. III C.

By checking all combinations of braiding processes with the criteria of compatibility, we summarized all legitimate TQFT actions for \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \) and corresponding gauge transformations in Table II. The sets of compatible braiding phases for \(G = \prod_{i=1}^3 \mathbb{Z}_{N_i} \) can be summarized as

\[
\left\{ \Theta^H_i, \Theta^{{\text{3L}}}_{3,3|2}, \Theta^{{\text{3L}}}_{1,1|2}, \Theta^{{\text{3L}}}_{1,3|2}, \Theta^{{\text{3L}}}_{3,1|2}, \Theta^{{\text{3L}}}_{2,1|1}, \Theta^{{\text{3L}}}_{2,2|1} \right\}_{\prod_{i=1}^3 \mathbb{Z}_{N_i}},
\]

(30)

\[
\left\{ \Theta^H_i, \Theta^{{\text{3L}}}_{3,3|2}, \Theta^{{\text{3L}}}_{1,1|2}, \Theta^{{\text{3L}}}_{1,3|2}, \Theta^{{\text{3L}}}_{3,1|2}, \Theta^{{\text{3L}}}_{2,1|1}, \Theta^{{\text{3L}}}_{2,2|1}, \Theta^{{\text{3L}}}_{2,3|3} \right\}_{\prod_{i=1}^3 \mathbb{Z}_{N_i}},
\]

(31)

\[
\left\{ \Theta^H_i, \Theta^{{\text{3L}}}_{1,3|2}, \Theta^{{\text{3L}}}_{3,1|2}, \Theta^{{\text{3L}}}_{1,1|2}, \Theta^{{\text{3L}}}_{1,3|2}, \Theta^{{\text{3L}}}_{3,1|2}, \Theta^{{\text{3L}}}_{2,3|2} \right\}_{\prod_{i=1}^3 \mathbb{Z}_{N_i}},
\]

(32)

and

\[
\left\{ \Theta^H_i, \Theta^{{\text{3L}}}_{1,2|1}, \Theta^{{\text{3L}}}_{3,1|2}, \Theta^{{\text{3L}}}_{1,1|2}, \Theta^{{\text{3L}}}_{1,2|1}, \Theta^{{\text{3L}}}_{2,3|2} \right\}_{\prod_{i=1}^3 \mathbb{Z}_{N_i}},
\]

(33)

where the underlines denote the linear dependence between two compatible braiding phases: \(\Theta^{{\text{3L}}}_{3,3|2} = -2 \cdot \Theta^{{\text{3L}}}_{2,3|3} \), \(\Theta^{{\text{3L}}}_{2,3|3} = -\Theta^{{\text{3L}}}_{1,2|2} \), etc.

C. \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \mathbb{Z}_{N_4} \)

Similar to the case in Sec. III B, particle-loop braids and multi-loop braids are compatible with each other when
TABLE 1. Compatible braiding phases and TQFTs when \(G = \mathbb{Z}_{N_1} \) and \(G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \). Each row represents a class of topological order(s). The 1\(^{st}\) row stands for a topological order whose braiding data is given by \(\{ \Theta^i \}_{i=1}^{3} \) with \(i = 1, 2, 3 \). The 2\(^{nd}\) row represents topological orders which are characterized by \(\{ \Theta^i_{ji} \text{ or } \Theta^{ij}_{ji} \} \). The coefficient of \(A \text{d}A \) term is given by \(q_{ij} = \frac{n_i n_j}{N_i N_j} \), which is determined by the large gauge invariance. \(\chi \) and \(V \) are 0-form and 1-form compact U(1) gauge parameters with \(\int \text{d}x \) \(2\pi \mathbb{Z} \) and \(\int \text{d}V \) \(2\pi \mathbb{Z} \).

Compatible braiding phases	TQFT actions	Gauge transformations
\(\Theta^1_i = \frac{2\pi}{N_i} \mathbb{Z}_{N_i} \)	\(\int \frac{N_i}{2\pi} B^1 \text{d}A^1 \)	\(A^1 \rightarrow A^1 + \text{d}x^1 \)
\(\Theta^1_{ij} = \frac{2\pi}{N_i} \mathbb{Z}_{N_i} \)	\(\int \frac{N_j}{2\pi} B^1 \text{d}A^1 \)	\(B^1 \rightarrow B^1 + \text{d}V^1 \)
\(\Theta^{2L}_{ji} = 2 - \Theta^1_{2ij} = \frac{4\pi q_{ij2}}{N_i N_j} \)	\(\sum_{i=1}^{2} \frac{N_i}{2\pi} B^1 \text{d}A^1 \)	\(A^1 \rightarrow A^1 + \text{d}x^1 \)
\(\Theta^{2L}_{ji} = 2 - \Theta^1_{2ji} = \frac{4\pi q_{2ji}}{N_i N_j} \)	\(\sum_{i=1}^{2} \frac{N_i}{2\pi} B^1 \text{d}A^1 \)	\(B^1 \rightarrow B^1 + \text{d}V^1 \)
	\(\frac{q_{ij2}}{(2\pi)^2} A^1 A^2 \text{d}A^2 \)	\(+ \frac{q_{ij2}}{(2\pi)^2} A^2 \text{d}A^2 \)
	\(\frac{q_{2ji}}{(2\pi)^2} A^1 A^2 \text{d}A^2 \)	\(+ \frac{q_{2ji}}{(2\pi)^2} A^2 \text{d}A^2 \)

\[G = \prod_{i=1}^{3} \mathbb{Z}_{N_i} \]. The TQFT action for them is

\[
\int \sum_{i=1}^{4} \frac{N_i}{2\pi} B^i \text{d}A^i + \sum_{i<j} \left[\frac{q_{ij}}{(2\pi)^2} A^i A^j \text{d}A^j + \frac{q_{ji}}{(2\pi)^2} A^j A^i \text{d}A^i \right] \tag{34}
\]

The set of compatible braiding phases for (34) is

\[
\{ \Theta^i_{ji}, \Theta^{ij}_{ji}, \Theta^i_{ji}, \Theta^{ij}_{ji}, \Theta^i_{ji}, \Theta^{ij}_{ji}, \Theta^i_{ji}, \Theta^{ij}_{ji}, \Theta^i_{ji}, \Theta^{ij}_{ji}, \Theta^i_{ji}, \Theta^{ij}_{ji}, \Theta^i_{ji}, \Theta^{ij}_{ji} \} \prod_{i=1}^{3} \mathbb{Z}_{N_i} \tag{35}
\]

where \(i < j < k \) and \(\{ i, j, k \} \subset \{1, 2, 3, 4\} \).

When \(G = \prod_{i=1}^{4} \mathbb{Z}_{N_i} \), if we take BR braiding into account, we need to treat them carefully. If these BR braids involve only one kind of elementary particles, say, \(e_1 \), corresponding to \(A^2 A^3 B^1, A^2 A^4 B^1 \) and \(A^3 A^4 B^1 \) terms, the legitimate TQFT action is

\[
\int \sum_{i=1}^{4} \frac{N_i}{2\pi} B^i \text{d}A^i + \sum_{i<j} \left[\frac{q_{ij}}{(2\pi)^2} A^i A^j \text{d}A^j + \frac{q_{ji}}{(2\pi)^2} A^j A^i \text{d}A^i \right] \tag{36}
\]

\[
\frac{q_{234}}{(2\pi)^2} A^2 A^3 A^4 \text{d}A^4 + \frac{q_{234}}{(2\pi)^2} A^3 A^4 \text{d}A^2 \]

\[
\frac{P_{234}}{(2\pi)^2} A^2 A^3 B^1 + \frac{P_{234}}{(2\pi)^2} A^3 A^2 \text{d}B^1 + \frac{P_{234}}{(2\pi)^2} A^2 A^4 B^1,
\]

corresponding to the set of compatible braiding phases

\[
\{ \Theta^i_{ji}, \Theta^{ij}_{ji}, \Theta^i_{ji}, \Theta^{ij}_{ji} \} \prod_{i=1}^{3} \mathbb{Z}_{N_i} \tag{37}
\]

with \(r \neq 1 \) and \(s \neq 1 \). In other words, any multi-loop braiding which involves elementary loop \(m_1 \) is incompatible with BR braids which involve elementary particle \(e_1 \).

If we consider BR braiding which involve two kinds of elementary particles, e.g., \(e_1 \) and \(e_2 \), the legitimate TQFT action is

\[
\int \sum_{i=1}^{4} \frac{N_i}{2\pi} B^i \text{d}A^i + \sum_{i<j} \left[\frac{q_{ij}}{(2\pi)^2} A^i A^j \text{d}A^j + \frac{q_{ji}}{(2\pi)^2} A^j A^i \text{d}A^i \right] \tag{38}
\]

\[
\frac{q_{234}}{(2\pi)^2} A^2 A^3 A^4 \text{d}A^4 + \frac{q_{234}}{(2\pi)^2} A^3 A^4 \text{d}A^2 \]

\[
\frac{P_{234}}{(2\pi)^2} A^2 A^3 B^1 + \frac{P_{234}}{(2\pi)^2} A^3 A^2 \text{d}B^1 + \frac{P_{234}}{(2\pi)^2} A^2 A^4 B^1,
\]

which excludes multi-loop braids which involve elementary loops \(m_1 \) and \(m_2 \). The compatible braiding phases form a set:

\[
\{ \Theta^i_{ji}, \Theta^{ij}_{ji}, \Theta^i_{ji}, \Theta^{ij}_{ji} \} \prod_{i=1}^{3} \mathbb{Z}_{N_i}. \tag{39}
\]

Notice that when we write down a BR braiding which involves one kind of elementary particles, we have 4 choices since there are 4 distinct gauge subgroups. If we consider two BR braids with two kinds of elementary particles, we have 6 different combinations of these two different elementary particles. Therefore, there are total 1 + 4 + 6 = 11 legitimate TQFT actions, i.e., 11 different sets of compatible braiding phases, when \(G = \prod_{i=1}^{4} \mathbb{Z}_{N_i} \). Due to the limiting space of page, Table III only list 3 examples of TQFT actions and their gauge transformations. By properly reassigning the indices of the TQFT actions listed in Table III, we can construct all legitimate TQFT actions and corresponding gauge transformations. One can find details in Appendix B and Table IV therein.
TABLE II. Compatible braiding phases and TQFTs when $G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3}$. Each row represents a class of topological orders which are characterized by braiding data $\{\Theta^i; \text{combinations of compatible braiding phases}\}$. Take the 2nd row as an example: the sets of braiding phases $\{\Theta^1; \Theta^{3L}_{3,3L}\}$, $\{\Theta^2; \Theta^{3L}_{2,3L}\}$, $\{\Theta^3; \Theta^{3L}_{1,3L}\}$, $\{\Theta^4; \Theta_{3,3L}^{3L}, \Theta_{2,3L}^{3L}, \Theta_{1,3L}^{3L}\}$, etc., respectively characterize a topological order. The coefficients are given by $q_{i,j,k} = \frac{m_{N_3}}{N_{i,j,k}}$, $m \in \mathbb{Z}_{N_{i,j,k}}$ and $p_{i,j,k} = \frac{\delta_{i,j,k} N_{i,j,k}}{N_{i,j,k}}$, $i,j,k \in \mathbb{Z}_{N_{i,j,k}}$, as a result of large gauge invariance. $\Theta^{ij,k} = -\Theta^{i,k,j} = 0$ if any of the two indices are the same. The Levi-Civita symbol is defined by $\epsilon^{i_1i_2\cdots i_n} = \prod_{1 \leq i < j \leq n} \text{sgn} (a_j - a_i)$ where $\text{sgn} (x) = 1$, or -1 if $x > 0$, $x < 0$, or $x = 0$.

Compatible braiding phases	TQFT actions	Gauge transformations
$\Theta^1 = \frac{2\pi}{N_1}$	$A^i \rightarrow A^i + d\chi^1$	$-\frac{1}{2\pi N_1} \left(2\pi dA^i + d\chi^1 \right)$
$\Theta^2 = \frac{2\pi}{N_2}$	$A^i \rightarrow A^i + d\chi^2$	$-\frac{1}{2\pi N_2} \left(2\pi dA^i + d\chi^2 \right)$
$\Theta^3 = \frac{2\pi}{N_3}$	$A^i \rightarrow A^i + d\chi^3$	$-\frac{1}{2\pi N_3} \left(2\pi dA^i + d\chi^3 \right)$
$\Theta^{3L}_{3,3L} = \frac{4\pi q_{33}}{N_3}$	$B^i \rightarrow B^i + dV^i$	$-\frac{1}{2\pi N_3} \left(2\pi B^i + dV^i \right)$
$\Theta^{3L}_{2,3L} = \frac{4\pi q_{32}}{N_3}$	$B^i \rightarrow B^i + dV^i$	$-\frac{1}{2\pi N_3} \left(2\pi B^i + dV^i \right)$
$\Theta^{3L}_{1,3L} = \frac{4\pi q_{31}}{N_3}$	$B^i \rightarrow B^i + dV^i$	$-\frac{1}{2\pi N_3} \left(2\pi B^i + dV^i \right)$
$\Theta^{3L}_{2,2L} = \frac{2\pi q_{12}}{N_1 N_2}$	$A^i \rightarrow A^i + d\chi^1$	$-\frac{1}{2\pi N_1 N_2} \left(2\pi dA^i + d\chi^1 \right)$
$\Theta^{3L}_{1,1L} = \frac{2\pi q_{11}}{N_1 N_2}$	$A^i \rightarrow A^i + d\chi^1$	$-\frac{1}{2\pi N_1 N_2} \left(2\pi dA^i + d\chi^1 \right)$
$\Theta^{3L}_{1,2L} = \frac{2\pi q_{21}}{N_1 N_2}$	$A^i \rightarrow A^i + d\chi^2$	$-\frac{1}{2\pi N_1 N_2} \left(2\pi dA^i + d\chi^2 \right)$
$\Theta^{3L}_{2,1L} = \frac{2\pi q_{21}}{N_1 N_2}$	$A^i \rightarrow A^i + d\chi^2$	$-\frac{1}{2\pi N_1 N_2} \left(2\pi dA^i + d\chi^2 \right)$
$\Theta^{3L}_{1,1L} = \frac{2\pi q_{21}}{N_1 N_2}$	$A^i \rightarrow A^i + d\chi^2$	$-\frac{1}{2\pi N_1 N_2} \left(2\pi dA^i + d\chi^2 \right)$

D. Results for general gauge groups

In fact, our previous discussions can be easily generalized to the case where the number of \mathbb{Z}_{N_i} subgroups are arbitrary. As we can see in the previous main text, compatibility is always guaranteed for particle-loop braiding and multi-loop braiding, or, particle-loop braiding and BR braiding. The general rule of incompatibility is that if two braiding processes (multi-loop braiding and BR braiding, or two different BR braiding processes) involve particle and loop that carry gauge charge and gauge flux of the same \mathbb{Z}_{N_i} gauge subgroup, these two braiding processes are incompatible with each other. In the language of TQFT, a \mathbb{Z}_{N_i} gauge subgroup is associated with a topological term $B^i dA^i$. In a legitimate TQFT action, given the BF term $B^i dA^i$, only A^i or B^i, not both, can appear in the twisted terms (i.e., $A^i dA^i$, AAA and AAB). Otherwise, the TQFT action would be illegitimate, e.g., violating
the gauge invariance.

Viewed from the microscopic origin of topological terms, the rule of incompatibility is natural. Each layer of condensate (corresponding to each \(\mathbb{Z}_N \), gauge subgroup) is either in the charge condensation or in the vortexline condensation, never both. The \(\mathbb{Z}_N \), charge condensation implies particles that carry gauge charge \(e_i \) (corresponding to \(A_i \)), while the \(\mathbb{Z}_N \), string condensation results in loops that carry gauge flux \(m_i \) (corresponding to \(B_i \)). If a multi-loop braiding or BR braiding involves the \(\mathbb{Z}_N \), particle, it is incompatible with other braiding process that involves the \(\mathbb{Z}_N \) loop, and vice versa.

IV. INCOMPATIBLE BRAIDING PROCESSES

In Sec. III, we discuss the compatible braiding processes in different cases. We find that, when the gauge group is given, the set of compatible braiding processes is only a subset of \{all possible root braiding processes\}. This means that some braiding processes are mutually incompatible. For example, when \(G = \prod_{i=1}^{3} \mathbb{Z}_i \) (see Sec. III B), a set of compatible braiding phases is \(\{e_i^{H}, \theta_{1,2,1}^{H}, \theta_{2,1,2}^{H}, \theta_{1,1,2}^{L}, \theta_{2,1,1}^{L}, \theta_{1,2,2}^{L} \} \). We can see that, among all possible root braiding phases, \(\theta_{1,1,1} \), \(\theta_{3,2,1} \), and \(\theta_{3,1,2} \) are excluded from this set, because they are not compatible with \(\theta_{1,2,2}^{L} \). In this section, we will demonstrate several examples of such incompatibility between braiding processes via the TQFT perspective. The basic idea is: if an action consists of topological terms corresponding to incompatible braiding processes, it would never be a legitimate TQFT action.

A. Absence of BR braiding when \(G = \prod_{i=1}^{3} \mathbb{Z}_i \)

In Sec. II D, we review the BR braiding in which a particle carrying unit \(\mathbb{Z}_{N_1} \) gauge charge moves around two loops which carry unit \(\mathbb{Z}_{N_2} \) and \(\mathbb{Z}_{N_3} \) gauge flux respectively. Such a braiding process is only possible when there are three distinct \(\mathbb{Z}_N \), gauge subgroups. It is natural to ask: why it is impossible when there are only two \(\mathbb{Z}_N \), gauge subgroups, i.e., \(G = \prod_{i=1}^{2} \mathbb{Z}_N \)? Without loss of generality, we can consider the following braiding process: a particle \(e_2 \) carrying unit \(\mathbb{Z}_{N_2} \) gauge charge moves around two loops \(m_1 \) and \(m_2 \) which carry unit \(\mathbb{Z}_{N_1} \) and \(\mathbb{Z}_{N_3} \), respectively. Such that the trajectory of \(e_1 \) and two loops form a Borromean Rings link. One may naively think that, this braiding process, along with its braiding phase \(\Theta_{12,2}^{BR} \), is described by the topological term \(A_1^2 B_2^2 \), analogous to the case in Sec. II D. The corresponding TQFT action should be

\[
S = \int \sum_{i=1}^{2} \frac{N_i}{2\pi} B_i^i dA_i + \frac{p}{(2\pi)^2} A_i^2 B_i^2.
\]

However, the action (40) is not a legitimate TQFT action because we cannot find gauge transformations which respects gauge invariance and \(\mathbb{Z}_N \) cyclic group structure simultaneously. We are going to illustrate this in details.

In the action (40), \(B_i^2 \) serves as a Lagrange multiplier imposing a local constraint \(dA_1 = 0 \). This means that the gauge transformation of \(A_1 \) is \(A_1 \rightarrow A_1 + d\chi_1 \). Thus, the \(\mathbb{Z}_N \), cyclic group structure is encoded in \(\frac{\pi}{N} \cdot \mathbb{Z}_N \). The \(\mathbb{Z}_N \) cyclic group structure requires that at least one of \(A_2 \rightarrow A_2 + d\chi_2 \) and \(B_2 \rightarrow B_2 + dV_2 \) holds.

First, we assume that the gauge transformations are

\[
A_1 \rightarrow A_1 + d\chi_1,
B_1 \rightarrow B_1 + dV_1 + Y_1,
\]

(41)

where \(Y_1 \) is a shift term with \(\frac{\pi}{N} \), hence the \(\mathbb{Z}_N \) cyclic group structure is encoded in \(\frac{\pi}{N} \cdot \mathbb{Z}_N \). Under the gauge transformations (41), the variation of action (40) (boundary terms are neglected) is

\[
\Delta S = \int \frac{N_1}{2\pi} Y_1 dA_1 + \frac{N_2}{2\pi} Y_2 dA_2 + \frac{p}{(2\pi)^2} [\left(dA_1 A_2 B_1 + A_1 dA_2 B_2 + d\chi_1 d\chi_2 B_2 \right)
+ \left(A_1 A_2 dV_2 + d\chi_1 A_2 dV_2 + A_1 dV_2 dV_2 \right)
+ \left(A_1 A_2 Y_2 + d\chi_1 A_2 Y_2 + A_1 dY_2 dV_2 + d\chi_1 Y_2 dV_2 \right)]
\]

(42)

which should be an integral of total derivative terms in order to be gauge invariant. Focus on the \(dA_1 A_2 B_2 \) term which is not a total derivative term: we want to eliminate it by subtraction or by absorbing it into a total derivative term. If we want to eliminate \(d\chi_1 A_2 dV_2 \) by subtraction, the only way is to require

\[
\frac{p}{(2\pi)^2} d\chi_1 d\chi_2 B_2 + \frac{p}{(2\pi)^2} d\chi_1 d\chi_2 Y_2
= -\frac{p}{(2\pi)^2} d\chi_1 d\chi_2 (B_2 - B_2 + \ldots)
\]

(43)

since \(d\chi_1 d\chi_2 Y_2 \) is the only term containing \(d\chi_1 d\chi_2 \) in (42). However, Eq. (43) means that \(Y_2 = -B_2 + \ldots \), thus the gauge transformation of \(B_2 \) is

\[
B_2 \rightarrow dV_2 + \ldots,
\]

(44)

which is not a proper gauge transformation for \(B_2 \). If we want to absorb \(d\chi_1 A_2 B_2 \) to a total derivative term, we could make use of

\[
d(A_1^2 B_2^2) = dA_1^2 dB_2^2 - \chi_1 d\chi_2 dB_2.
\]

(45)

However, this attempt fails since there is no \(-\chi_1 d\chi_2 dB_2 \) term in \(\Delta S \). Therefore, (41) is not the proper gauge transformations for \(S \).

Next, we assume that gauge transformations are

\[
A_1 \rightarrow A_1 + d\chi_1,
A_2 \rightarrow A_2 + d\chi_2 + X^2,
B_1 \rightarrow B_1 + dV_1 + Y_1,
B_2 \rightarrow B_2 + dV_2,
\]

(46)
TABLE III. Compatible braiding phases and TQFTs when $G = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \mathbb{Z}_{N_4}$. Each row represents a class of topological orders which are characterized by braiding data $\{ \Theta^{ij}_k \}$; combinations of compatible braiding phases. Only 3 of 11 (see the main text) legitimate TQFT actions and gauge transformations are given in Table IV. By properly assigning the indices in the general expressions, one can obtain all legitimate TQFT actions for $G = \prod_{i=1}^4 \mathbb{Z}_{N_i}$. Coefficients are given by $q_{ijkl} = \frac{mN_i}{N_j} - \frac{nN_i}{N_k}$, $n \in \mathbb{Z}_{Nijkl}$ and $p_{ijkl} = \frac{l_{ij,k}N_j}{N_i}$, $l_{ij,k} \in \mathbb{Z}_{Nijkl}$ as a result of large gauge invariance. $l_{ij,k} = -l_{ij,k}$ and $l_{ij,k} = 0$ if any of the two indices are the same. The Levi-Civita symbol is defined by $\epsilon^{ijkl} = 2$ if any of the two indices are the same. The variation of action (40) is

$$\delta \int \frac{dV}{N_1} \left(\dot{X}^2 + \dot{Y}^2 \right)$$

where X^2 and Y^1 are shift terms with $\delta X^2 \notin \frac{2\pi}{N_2} \mathbb{Z}_{N_2}$ and $\delta Y^1 \notin \frac{2\pi}{N_2} \mathbb{Z}_{N_2}$. The \mathbb{Z}_{N_2} cyclic group structure is encoded in $\delta B^2 \in \frac{2\pi}{N_2} \mathbb{Z}_{N_2}$. Under (46), the variation of action (40) is

$$\Delta S = \int \frac{N_1}{2\pi} Y^1 dA^1 + \frac{N_2}{2\pi} B^2 dX^2$$

$$+ \frac{p}{(2\pi)^2} (dX^1 A^2 B^2 + A^1 dX^2 B^2 + dX^1 dX^2 B^2)$$

$$+ \frac{p}{(2\pi)^2} (A^1 X^2 B^2 + dX^1 X^2 B^2)$$

$$+ \frac{p}{(2\pi)^2} (A^1 A^2 dV^2 + dX^1 A^2 dV^2 + A^1 dX^2 dV^2)$$

Compatible braiding phases	TQFT actions	Gauge transformations
$\Theta^H_i = \frac{2\pi}{N_i}$	$\sum_{i=1}^4 \frac{N_i}{2\pi} B^i dA^i$	$A^i \rightarrow A^i + d\chi^i$
$\Theta^{3L}_{i,j,i} = -2 \cdot \Theta^{3L}_{i,j,j}$	$\Theta^{3L}_{i,j,i} = \frac{4\pi q_{ij}}{N_i N_j}$	$B^i \rightarrow B^i + d\chi^i$
$\Theta^{3L}_{i,j,i,j} = -2 \cdot \Theta^{3L}_{i,j,j,i}$	$\sum_{i,j} \frac{q_{ij}}{2\pi} A^i A^j dA^i$	$B^i \rightarrow B^i + d\chi^i$
$\Theta^{3L}_{i,j,k,l}$	$\Theta^{3L}_{i,j,k,l} = \frac{2\pi q_{ijkl}}{N_i N_j N_k N_l}$	$- \sum_{a,b} \frac{p_{ijkl}}{2\pi N_a} \delta_{a,b} \left(\chi^a A^a + \frac{1}{2} \chi^b d\chi^b \right)$
$\Theta^{3L}_{i,j,k,l}$	$\sum_{i,j,k} \frac{q_{ijkl}}{2\pi} A^i A^j A^k dA^i$	$B^i \rightarrow B^i + d\chi^i$
$\Theta^{3L}_{i,j,k,l}$	$\Theta^{3L}_{i,j,k,l} = \frac{2\pi q_{ijkl}}{N_i N_j N_k N_l}$	$- \sum_{a,b} \frac{p_{ijkl}}{2\pi N_a} \delta_{a,b} \left(\chi^a A^a + \frac{1}{2} \chi^b d\chi^b \right)$
$\Theta^{3L}_{i,j,k,l}$	$\Theta^{3L}_{i,j,k,l} = \frac{2\pi q_{ijkl}}{N_i N_j N_k N_l}$	$B^i \rightarrow B^i + d\chi^i$
$\Theta^{3L}_{i,j,k,l}$	$\Theta^{3L}_{i,j,k,l} = \frac{2\pi q_{ijkl}}{N_i N_j N_k N_l}$	$B^i \rightarrow B^i + d\chi^i$
$\Theta^{3L}_{i,j,k,l}$	$\Theta^{3L}_{i,j,k,l} = \frac{2\pi q_{ijkl}}{N_i N_j N_k N_l}$	$B^i \rightarrow B^i + d\chi^i$
$\Theta^{3L}_{i,j,k,l}$	$\Theta^{3L}_{i,j,k,l} = \frac{2\pi q_{ijkl}}{N_i N_j N_k N_l}$	$B^i \rightarrow B^i + d\chi^i$
which should be an integral of total derivative terms. Focus on
the $d\chi^1 A^2 dV^2$ term: we want to eliminate it by subtraction or
by absorbing it into a total derivative term. If we want to elim-
nate $d\chi^1 A^2 dV^2$ by subtraction, the only way is to require,

$$
\frac{p}{(2\pi)^2} d\chi^1 A^2 dV^2 + \frac{p}{(2\pi)^2} d\chi^1 X^2 dV^2
= \frac{p}{(2\pi)^2} d\chi^1 (A^2 - A^2 + \cdots) dV^2,
$$

(48)

which means that $X^2 = -A^2 + \cdots$ hence

$$
A^2 \to d\chi^2 + \cdots,
$$

(49)

an ill-defined gauge transformation for A^2. If we want to
absorb $d\chi^1 A^2 dV^2$ into a total derivative term, we need a
$\chi^1 dA^2 dV^2$ term since

$$
d (\chi^1 A^2 dV^2) = d\chi^1 A^2 dV^2 + \chi^1 dA^2 dV^2,
$$

(50)

but there is no a $\chi^1 dA^2 dV^2$ term in ΔS, so this attempt fails.
Therefore, Eq. (46) is not the proper gauge transformations
for the action (40) either.

Since neither (41) nor (46) serves as proper gauge transfor-
mations, it is impossible to construct gauge transformations
respecting \mathbb{Z}_{N_2} cyclic group structure for the action (40).
This means that the action (40) is not a legitimate TQFT action.
Therefore, $\Theta^{BR}_{1,2|3}$ is not even a well-defined braiding phase,
not to mention its compatibility with other braiding phases. In
other words, when $G = \prod_{i=1}^{N_2} \mathbb{Z}_{N_i}$, BR braidings cannot be
realized.

B. Incompatibility: $\Theta^{BR}_{1,2|3}$ and $\Theta^{BR}_{2,3|1}$

In previous sections we have known that the $A^1 A^2 B^3$ term
describes the BR braiding with a phase denoted as $\Theta^{BR}_{1,2|3}$. One
may expect that, in the same system, there could exist another
BR braiding process described by an $A^2 A^3 B^1$ term and its
braiding phase $\Theta^{BR}_{2,3|1}$. Assumed that these two BR braidings
could be supported in the same system, the TQFT action should be

$$
S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{p_{12,3}}{(2\pi)^2} A^1 A^2 B^3 + \frac{p_{23,1}}{(2\pi)^2} A^2 A^3 B^1.
$$

(51)

In the action (51), B^2 is a Lagrange multiplier imposing
d$A^2 = 0$, i.e., $A^2 \to A^2 + d\chi^2$. Therefore the \mathbb{Z}_{N_2} cyclic
group structure is encoded in $\Theta^{BR}_{2,3|1}$, i.e., $A^2 \in \frac{2\pi}{N_2} \mathbb{Z}_{N_2}$. In order to
preserve the \mathbb{Z}_{N_1} and \mathbb{Z}_{N_2} cyclic group structure, at least one
of $A^1 \to A^1 + d\chi^1$ and $B^i \to B^i + dV^i$ ($i = 1, 3$) is re-
ned. We find that, if the gauge transformations preserve
\mathbb{Z}_{N_1} and \mathbb{Z}_{N_2} cyclic group structure, the action (51) would
never be gauge invariant, i.e., the braiding processes it de-
scribes are gauge-dependent. The reason is that no matter
how we modify the gauge transformations, there are “stub-
born terms” in ΔS which cannot be eliminated by subtraction
nor be absorbed into a total derivative term, making ΔS could
never be $0 \mod 2\pi$. The details of calculation can be found in
Appendix C 1. Therefore, $A^1 A^2 B^3$ and is incompatible
with $A^2 A^3 B^1$, i.e., $\Theta^{BR}_{2,3|1}$ is incompatible with $\Theta^{BR}_{1,2|3}$.

In the same manner, we can derive that any two of
$\Theta^{BR}_{1,2|3}, \Theta^{BR}_{3,1|2}, \Theta^{BR}_{1,2|3}$ are mutually incompatible.

C. Incompatibility: $\Theta^{NL}_{3,1|2}$ and $\Theta^{BR}_{1,2|3}$

In this and following subsections, we investigate the incompat-
ibility between three-loop braidings and BR braidings.
As the first example, we consider these two braiding pro-
cesses: a three-loop braiding with phase $\Theta^{NL}_{3,1|2}$, correspond-
ing to an $A^1 A^2 dA^3$ term, and a BR braiding with phase
$\Theta^{BR}_{1,2|3}$, corresponding to an $A^1 A^2 B^3$ term. If these two
braiding processes are compatible, the total TQFT action should be:

$$
S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{q_{13}}{(2\pi)^2} A^1 A^3 dA^3 + \frac{p_{12,3}}{(2\pi)^2} A^1 A^2 B^3.
$$

(52)

In the action (52), B^1 and B^2 serve as Lagrange multipliers,
imposing $dA^1 = dA^2 = 0$, i.e., $A^1,2 \to A^1,2 + d\chi^1,2$. The
\mathbb{Z}_{N_1} and \mathbb{Z}_{N_2} cyclic group structure are encoded in
$\Theta^{BR}_{1,2|3}$. For the \mathbb{Z}_{N_3} cyclic group structure, we have two choices: we can encoded it in
$\Theta^{NL}_{3,1|2}$, corresponding to gauge transformations

$$
A^1 \to A^1 + d\chi^1,
$$

(53)

or $\Theta^{BR}_{1,2|3}$, corresponding to gauge transformations

$$
A^1,2 \to A^1,2 + d\chi^1,2,
$$

$$
A^3 \to A^3 + d\chi^3 + X^3,
$$

$$
B^1,2 \to B^1,2 + dV^1,2 + Y^1,2,
$$

$$
B^2 \to B^2 + dV^3.
$$

(54)

However, similar to the case in Sec. IV A and Sec. IV B, nei-
ther (53) nor (54) could make the action (52) gauge invari-
ant up to boundary terms, due to the existence of “stubborn
terms”. Details of derivations can be found in Appendix C 2.
If the action is forced to be gauge invariant up to boundary
terms, the \mathbb{Z}_{N_3} cyclic group structure would be violated. This
dilemma reveals that (52) is not a legitimate TQFT action. So
we conclude that $A^1 A^2 dA^3$ is incompatible with $A^1 A^2 B^3$,
i.e., $\Theta^{NL}_{3,1|2}$ is incompatible with $\Theta^{BR}_{1,2|3}$.

D. Incompatibility: $\Theta^{NL}_{2,3|1}$ and $\Theta^{BR}_{1,2|3}$

In this subsection, we consider these two braiding pro-
cesses: a three-loop braiding corresponding to $\Theta^{NL}_{2,3|1}$ and an
$A^1 A^2 dA^3$ term, and a BR braiding corresponding to $\Theta^{BR}_{1,2|3}$.
and an $A^1 A^2 B^3$ term. If $\Theta_{2,3}^{\text{III}}$ is compatible with $\Theta_{1,2}^{\text{BR}}$, the total TQFT action should be:

$$S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{g_{123}}{(2\pi)^2} A^1 A^2 dA^3 + \frac{p_{123}}{(2\pi)^2} A^1 A^2 B^3,$$

where the coefficients are $g_{123} = \frac{k_1 N_1 N_2}{N_{123}}$, $k_1 \in \mathbb{Z}_{N_{123}}$ and $p_{123} = \frac{k_2 N_1 N_2 N_3}{N_{123}}$, $k_2 \in \mathbb{Z}_{N_{123}}$, determined by the large

$$\begin{align*}
A^1 &\to A^1 + d\chi^1, \\
A^2 &\to A^2 + d\chi^2, \\
A^3 &\to A^3 + d\chi^3 + X^3, \\
B^1 &\to B^1 + dV^1 + Y^1, \\
B^2 &\to B^2 + dV^2 + Y^2, \\
B^3 &\to B^3 + dV^3,
\end{align*}$$

where

$$X^3 = -\frac{p_{123}}{(2\pi)^2} \left(\chi^1 A^2 + \frac{1}{2} \chi^1 d\chi^2 \right) + \frac{p_{123}}{(2\pi)^2} \left(\chi^2 A^1 + \frac{1}{2} \chi^2 d\chi^1 \right),$$

$$Y^1 = \frac{\sum_{i=1}^{3} N_i}{2\pi} \left(\chi^1 A^2 + \frac{1}{2} \chi^1 d\chi^2 \right) - \frac{2p_{123}}{(2\pi)^2} \left(\chi^2 A^1 + \frac{1}{2} \chi^2 d\chi^1 \right)$$

$$+ \frac{g_{123}}{(2\pi)^2} \left(\chi^1 B^3 + A^1 V^3 + \frac{1}{2} \chi^1 dV^3 \right) + \frac{g_{123}}{(2\pi)^2} \left(\chi^2 B^3 + A^2 V^3 + \frac{1}{2} \chi^2 dV^3 \right) + \frac{g_{123}}{(2\pi)^2} \left(\chi^3 B^3 + A^3 V^3 + \frac{1}{2} \chi^3 dV^3 \right),$$

Nevertheless, the action (55) is still not a legitimate TQFT theory: the coefficient of $A^1 A^2 dA^3$ in (55) is actually identical to 0. To see this, we first integrate out A^1 in S, i.e., sum over all possible nontrivial compactness contributions from dA^3, leading to a constraint

$$\int \frac{g_{123}}{(2\pi)^2} A^1 A^2 + \frac{N_3}{2\pi} B^3 \in \mathbb{Z}. \quad (59)$$

Since the \mathbb{Z}_{N_3} cyclic group structure is encoded in $\frac{g_{123}}{(2\pi)^2} B^3 \in \mathbb{Z}$, Eq. (58) requires that

$$\int \frac{g_{123}}{(2\pi)^2} A^1 A^2 \in \mathbb{Z},$$

i.e., (consider a 2-manifold $M^2 = S^1 \times S^1$)

$$\frac{g_{123}}{(2\pi)^2} \int_{M^2} A^1 A^2 = \frac{k_1 N_1 N_2}{(2\pi)^2 N_{12}} \int_{S^1} A^1 \int_{S^1} A^2$$

$$= k_1 \frac{N_1 N_2}{(2\pi)^2 N_{12}} \cdot \frac{2\pi m_1}{N_1} \cdot \frac{2\pi m_2}{N_2}$$

$$= \frac{k_1 m_1 m_2}{N_{12}} \in \mathbb{Z},$$

where $k_1 \in \mathbb{Z}_{N_{123}}$, $m_1 \in \mathbb{Z}$, $m_2 \in \mathbb{Z}$. Since m_1 and m_2 can be arbitrary integers, the sufficient condition for Eq. (60) is

$$k_1 = l N_{12}, l \in \mathbb{Z}. \quad (61)$$

On the other hand, N_{12} is the integral multiple of N_{123}, thus

$$k_1 = l N_{12} = l (n N_{123}) = (ln) N_{123}, \quad (62)$$

where $n = \frac{N_{12}}{N_{123}}$. Notice that $k_1 \in \mathbb{Z}_{N_{123}}$, this means that

$$k_1 = (ln) N_{123} \simeq 0. \quad (63)$$

Therefore the coefficient of $A^1 A^2 dA^3$ term is required to be identical to 0:

$$q_{123} = k_1 \frac{N_1 N_2}{N_{12}} \simeq 0. \quad (64)$$

So far, we have argued that, in order to preserve the \mathbb{Z}_{N_3} fusion structure with arbitrary values of N_1, N_2 and N_3, the coefficient of $A^1 A^2 dA^3$ term in (55) is required to be trivial. If the coefficient of $A^1 A^2 dA^3$ is nontrivial, the action (55) cannot be gauge invariant up to boundary terms while
the \mathbb{Z}_N cyclic group structure is preserved. The restriction on the coefficient of $A^1 A^2 dA^3$ indicates the incompatibility between $A^1 A^2 dA^3$ and $A^1 A^2 B^3$, i.e., the incompatibility between $\Theta_{1,2,3}$ and $\Theta_{1,2,3}^{BR}$.

E. Incompatibility: $\Theta_{3,1,2}^{ML}$ and $\Theta_{1,2,3}^{BR}$

As the last example of the incompatibility between three-loop braiding and BR braiding, we consider a three-loop braiding corresponding to $\Theta_{3,1,2}^{ML}$ as well as an $A^2 A^3 dA^1$ term, and a BR braiding corresponding to $\Theta_{1,2,3}^{BR}$ as well as an $A^1 A^2 B^3$ term. The total action should be:

$$ S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{q_{231}}{(2\pi)^2} A^2 A^3 dA^1 + \frac{p_{123}}{2\pi} A^1 A^2 B^3 $$

(65)

where the coefficients are $q_{231} = \frac{kN_2 N_3}{N_{23}}$, $k \in \mathbb{Z}_{N_{123}}$, and $p_{123} = \frac{iN_1 N_2 N_3}{N_{123}}$, determined by the large gauge invariance. In the action (65), B^1 and B^2 serve as Lagrange multipliers, imposing $dA^1 = dA^2 = 0$, i.e., $A^{1,2} \rightarrow A^{1,2} + dg^{1,2}$.

If the \mathbb{Z}_N cyclic group structure is encoded in $A^3 \in \frac{2\pi}{N_3} \mathbb{Z}_N$, i.e., $A^3 \rightarrow A^3 + d\chi^3$, we cannot find a set of gauge transformations with $A^i \rightarrow A^i + d\chi^i$ ($i = 1, 2, 3$) under which the action (65) is invariant up to boundary terms. The reason is same as those in Sec. IV A and Sec. IV C.

If we encode the \mathbb{Z}_N cyclic group structure in $B^3 \in \frac{2\pi}{N_3} \mathbb{Z}_N$, i.e., $B^3 \rightarrow B^3 + dV^3$, we can find a set of gauge transformations under which (65) is invariant up to boundary terms:

$$ A^1 \rightarrow A^1 + dg^1, n2^2 \rightarrow A^2 + dg^2, nA^3 \rightarrow A^3 + d\chi^3 + \frac{p_{123}}{2\pi N_3} \left(-\chi^1 A^2 + A^1 \chi^2 - \chi^1 d\chi^2\right), $$n$B^1 \rightarrow B^1 + dV^1 - \frac{p_{123}}{2\pi N_3} \left(\chi^2 B^3 - A^2 V^3 + \chi^2 dV^3\right)n- \frac{q_{231}}{(2\pi)^2} N_1 \left(\chi^2 A^3 + A^2 \chi^3 + A^2 X^3 + \chi^2 X^3\right), $$n$B^2 \rightarrow B^2 + dV^2 + \frac{p_{123}}{2\pi N_2} \left(\chi^1 B^3 - A^1 V^3 + \chi^1 dV^3\right), $$n$B^3 \rightarrow B^3 + dV^3.n(66)$

At first glance, one may think that (66) is a proper set of gauge transformations for (65) thus the action (65) is a legitimate TQFT action. However, we argue that this is not true. We provide the following two arguments.

In the first argument, we consider the gauge transformations at limiting cases. Let us set $p_{12,3} = 0$, i.e., turn off the $A^1 A^2 B^3$ term, the action (65) becomes

$$ S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{q_{231}}{(2\pi)^2} A^2 A^3 dA^1 $$

(67)

and the corresponding gauge transformations should be

$A^1 \rightarrow A^1 + d\chi^1,$

$B^1 \rightarrow B^1 + dV^1,$

$B^2 \rightarrow B^2 + dV^2 + \frac{q_{231}}{2\pi N_2} d\chi^3 A^1,$

$B^3 \rightarrow B^3 + dV^3 - \frac{q_{231}}{2\pi N_3} d\chi^2 A^1.$

(68)

According to Ref [34], gauge transformations (68) is motivated by a microscopic derivation of the action (67). However, if we set $p_{12,3} = 0$ in (66), we cannot correctly recover the gauge transformations to (68). Therefore, we claim that (66) is not proper gauge transformations for the action (65).

In fact, if we expect that by setting $q_{231} = 0$ or $p_{12,3} = 0$ the gauge transformations for the action (65) would recover to (15) or (68), the gauge transformations for the action (65) should take the form of
\[A^1 \rightarrow A^1 + d\chi^1, \]
\[A^2 \rightarrow A^2 + d\chi^2, \]
\[A^3 \rightarrow A^3 + d\chi^3 + \frac{p_{12,3}}{(2\pi)^2} N_3 \left(-\chi^1 A^2 + A^1 \chi^2 - \chi^1 d\chi^2\right) + f_A^3 (p_{12,3}, q_{231}) \]
\[B^1 \rightarrow B^1 + dV^1 - \frac{p_{12,3}}{(2\pi) N_1} \left(\chi^2 B^3 - A^2 V^3 + \chi^2 dV^3\right) + f_B^1 (p_{12,3}, q_{231}) \]
\[B^2 \rightarrow B^2 + dV^2 + \frac{q_{231}}{2\pi N_2} d\chi^3 A^1 + \frac{p_{12,3}}{(2\pi) N_2} \left(\chi^1 B^3 - A^1 V^3 + \chi^1 dV^3\right) + f_B^2 (p_{12,3}, q_{231}) \]
\[B^3 \rightarrow B^3 + dV^3 - \frac{q_{231}}{2\pi N_3} d\chi^2 A^1 + f_B^3 (p_{12,3}, q_{231}), \]

where the gauge parameters \(f_A^3 (p_{12,3}, q_{231}) \) and \(f_B^i (p_{12,3}, q_{231}) \) with \(i = 1, 2, 3 \) are identical to 0 once \(p_{12,3} = 0 \) or \(q_{231} = 0 \). We can see that, the \(\mathbb{Z}_{N_3} \) cyclic group structure is no longer preserved under gauge transformation (69).

The second argument exploits the identity
\[A^2 A^3 dA^1 = d \left(A^1 A^2 A^3 \right) - A^3 A^1 dA^2 - A^1 A^2 dA^3. \] (70)

Using (70) we can rewrite the action (65) as
\[
S = \sum_{i=1}^{3} \frac{N_i}{2\pi} B_i^i dA^i + \frac{p_{12,3}}{(2\pi)^2} A^1 A^2 B^3 + \frac{q_{231}}{(2\pi)^2} \left[d \left(A^1 A^2 A^3 \right) - A^3 A^1 dA^2 - A^1 A^2 dA^3 \right].
\]

(71)

Similar to the case in Sec. IV D, we can integrate out \(A^3 \) and obtain a constraint
\[
\int \frac{N_3}{2\pi} B^3 - \frac{q_{231}}{(2\pi)^2} A^1 A^2 \in \mathbb{Z}. \] (72)

Since in the gauge transformations (56) the \(\mathbb{Z}_{N_3} \) cyclic group structure is encoded in \(\hat{\gamma} B^3 = \frac{2\pi}{N_3} \mathbb{Z} N_3 \), we require that
\[
\int \frac{q_{231}}{(2\pi)^2} A^1 A^2 \in \mathbb{Z}. \] (73)

In other words, we require that (consider \(\mathcal{M}^2 = S^1 \times S^1 \))
\[
\int_{\mathcal{M}^2} A^1 A^2 = \frac{k N_2 N_3}{(2\pi)^2 N_{23}} \int_{S^1} A^1 \int_{S^1} A^2 = \frac{k N_2 N_3}{(2\pi)^2 N_{23}} \frac{2\pi m_1}{N_1} \frac{2\pi m_2}{N_2} = \frac{k N_3 m_1 m_2}{N_1 N_{23}} \in \mathbb{Z}, \] (74)

where \(k \in \mathbb{Z}_{N_{23}} \). Since \(m_1 \) and \(m_2 \) can be arbitrary integers, we need
\[
k = \frac{k N_3}{N_1 N_{23}} \in \mathbb{Z}. \] (75)

Since \(\frac{N_3}{N_{23}} \in \mathbb{Z} \), the sufficient condition for Eq. (74) to hold is
\[
k = m N_1, m \in \mathbb{Z}. \] (76)

Notice that \(\frac{N_3}{N_{23}} \in \mathbb{Z} \) and \(k \in \mathbb{Z}_{N_{23}} \), therefore
\[
k = m N_1 = m n N_{23} \simeq 0, \] (77)

where \(n = \frac{N_3}{N_{23}} \in \mathbb{Z} \). We see that the coefficient of \(A^2 A^3 dA^1 \) is required to be identical to 0:
\[
q_{231} = k N_2 N_3 N_{23} \simeq 0, \] (78)

to ensure that the \(\mathbb{Z}_{N_3} \) cyclic group structure is preserved no matter what the values of \(N_1, N_2 \) and \(N_3 \) are. This restriction on the coefficient of \(A^2 A^3 dA^1 \) reveals that, \(A^2 A^3 dA^1 \) is incompatible with \(A^1 A^2 B^3 \), hence \(\Theta_{12}^{\text{BR}} \) and \(\Theta_{12}^{\text{BR}} \) are mutually incompatible.

F. Incompatibility: \(\Theta_{1,2,3,4}^{\text{BR}} \) and \(\Theta_{1,2,3,4}^{\text{BR}} \)

Since we have demonstrated the incompatibility between BR braidings and three-loop braidings, one may wonder whether BR braiding is compatible with four-loop braiding or not. The conclusion is that, when \(G = \prod_{i=1}^{4} \mathbb{Z}_{N_i} \), no BR braiding is compatible with four-loop braiding, i.e., each \(\Theta_{i,j,k}^{\text{BR}} \) is incompatible with \(\Theta_{1,2,3,4}^{\text{BR}} \). The proof of this claim, which follows the same idea discussed in previous sections, is detailed in Appendix C 4. Notice that, if \(G = \prod_{i=1}^{n} \mathbb{Z}_{N_i} \), \(\Theta_{i,j,k}^{\text{BR}} \) is compatible with \(\Theta_{1,2,3,4}^{\text{BR}} \) as long as \(i \neq 5, j \neq 5 \) and \(i \neq j \). Such compatibility due to an extra gauge subgroup can be checked by applying the criteria for legitimacy of TQFT actions.

V. COMPATIBLE BRAIDINGS IN (4+1)D SPACETIME

In the above discussions, we have obtained compatible braidings in \((3+1)D \) spacetime. In the following, we concisely discuss compatible braidings in \((4+1)D \) spacetime. More systematic and quantitative studies will appear in Ref. [61] separately.

A. Excitations and braiding processes in \((4+1)D \)

We limit the gauge group to be \(G = \prod_{i=1}^{n} \mathbb{Z}_{N_i} \), where \(n \) is the total number of cyclic subgroups. In \((4+1)D \) spacetime,
Besides particles and loops, there is a kind of exotic topological excitations, dubbed *membranes*, which are closed 2D surface objects in the continuum limit. The membrane excitations in 3-dimensional space is topologically trivial because they are impenetrable hence identified as particle excitations. However, in 4-dimensional space, the interior of a membrane excitation becomes accessible due to the extra dimension. Therefore, nontrivial braiding processes involving particles, loops and membranes are possible in (4 + 1)D spacetime.

In field theory, a \mathbb{Z}_N gauge theory is realized by a BF term in the continuum limit. In (3 + 1)D spacetime, the \mathbb{Z}_N cyclic group structure is encoded in the $B^i dA^i$ term, the only possible BF term in (3 + 1)D spacetime which corresponds to the particle-loop braiding (see Sec. II B). In (4 + 1)D spacetime, there are two kinds of BF terms with distinct physical meanings: $C^i dA^i$ and $\tilde{B}^i d\tilde{B}^i$, where the 3-form C^i, 1-form A^i, 2-form \tilde{B}^i and 2-form B^i are respectively compact $U(1)$ gauge fields. Therefore, we can encode the \mathbb{Z}_N cyclic group structure either in $C^i dA^i$, corresponding to a particle-membrane braiding; or in $\tilde{B}^i d\tilde{B}^i$, corresponding to a loop-loop braiding. If we consider a $\prod_{i=1}^n \mathbb{Z}_N_i$ topological order in (4 + 1)D spacetime, we can encode some \mathbb{Z}_N_i gauge subgroups in $C^i dA^i$ terms while the others in $\tilde{B}^i d\tilde{B}^i$ terms, which would lead to a more complicated situation in which different gauge fields can couple together resulting in many nontrivial braiding processes.

Since there are three kinds of topological excitations in (4 + 1)D spacetime, we can classify the braiding processes and identify the corresponding topological terms: (1)particle-membrane braiding, $C dA$; (2)particle-membrane-membrane braiding: $C A A$; (3)loop-loop braiding, $B d\tilde{B}$; (4)loop-membrane braiding, $B B A$, $B A dA$, $A A A B$ and $A A dA B$; (5)multi-membrane braiding, $A A A A A A$, $A A A dA$ and $A dA dA A$.

B. An overview of compatible braiding processes in (4 + 1)D

Following the discussions in (3 + 1)D spacetime, we can investigate the compatibility of braiding processes in (4 + 1)D spacetime. In other words, we check the legitimacy of TQFT actions consisting of topological terms, then distinguish compatible/incompatible braiding processes in (4 + 1)D spacetime.

First, if all \mathbb{Z}_N_i cyclic group structures are encoded in particle-membrane braiding, i.e., $C^i dA^i$ terms, the compatible braiding processes are multi-membrane braiding and particle-membrane-membrane braiding. Here are some examples. When $G = \prod_{i=1}^5 \mathbb{Z}_N_i$, one of legitimate TQFT actions is

$$S \sim \int \sum_{i=1}^5 \frac{N_i}{2\pi} C^i dA^i + A^1 A^2 A^3 A^4 A^5 + \sum_{i,j,k=1}^5 A^i dA^j dA^k$$

(79)

where the quantized coefficients of topological terms are neglected. The action (79) indicates the compatibility of particle-membrane braidings and multi-membrane braidings when $G = \prod_{i=1}^5 \mathbb{Z}_N_i$. We believe that TQFT action (79) describes braiding processes within the Dijkgraaf-Witten model. There are also braiding processes beyond the Dijkgraaf-Witten model. Consider $G = \prod_{i=1}^5 \mathbb{Z}_N_i$, one of legitimate TQFT actions (coefficients neglected) is

$$S \sim \int \sum_{i=1}^3 \frac{N_i}{2\pi} C^i dA^i + C^3 A^1 A^2$$

(80)

as an analog of the BR braiding in (3 + 1)D, $S_{BR} \sim \int \sum_{i=1}^3 B^i dA^i + A^1 A^2 B^3$. We have known that, in (3 + 1)D, a BR braiding is incompatible with some of the multi-loop braiding (Sec. IV C, IV D and IV E). Similar incompatibility occurs in (4 + 1)D. When $G = \prod_{i=1}^3 \mathbb{Z}_N_i$, a multi-membrane braiding described by the $A^1 A^2 A^3 dA^1$ term is incompatible with the loop-membrane-membrane braiding described by the $C^3 A^1 A^2$ term. Using the language of TQFT, we claim that a legitimate TQFT action in (4 + 1)D can only include one of $C^3 A^1 A^2$ term and $A^1 A^2 A^3 dA^1$ term. When $G = \prod_{i=1}^3 \mathbb{Z}_N_i$, two of the legitimate TQFT actions are

$$S \sim \int \sum_{i=1}^3 \frac{N_i}{2\pi} C^i dA^i + \sum_{i,j,k=1}^2 A^i dA^j dA^k$$

and

$$S \sim \int \sum_{i=1}^3 \frac{N_i}{2\pi} C^i dA^i + \sum_{i=1}^3 A^1 A^2 A^3 dA^i + \sum_{i,j,k=1}^3 A^i dA^j dA^k$$

(81)

(82)

Next, we consider the case in which all \mathbb{Z}_N_i, cyclic group structures are encoded in $\tilde{B}^i d\tilde{B}^i$ terms, i.e., loop-loop braiding. In this case, the only topological excitations are loops, thus only loop-loop braiding can be supported. We can simply write down the legitimate TQFT action:

$$S = \int \sum_{i=1}^n \frac{N_i}{2\pi} \tilde{B}^i d\tilde{B}^i.$$

(83)

Last, we tackle the more complicated yet more interesting situation: some \mathbb{Z}_N cyclic group structures (e.g., \mathbb{Z}_N_i, gauge subgroups) are encoded in $\frac{N_i}{2\pi} C^i dA^i$ terms while the others (e.g., \mathbb{Z}_K, gauge subgroups) in $\frac{k}{2\pi} \tilde{B}^i d\tilde{B}^i$ terms. Different assignments for N_i‘s and k_i‘s correspond to different topological orders in (4 + 1)D. In this case, there are particle, loop and membrane excitations in the system. All nontrivial braiding processes in (4 + 1)D should be taken into consideration. In the followings we will demonstrate several examples of legitimate TQFT actions from which we can directly read out compatible braiding processes in (4 + 1)D.
Consider a $\prod_i Z_{N_i}$ case in which the Z_{N_i} and Z_{N_2} cyclic group structures are encoded in CdA while the Z_K, cyclic group structure in BdB, i.e., the gauge group is $G = Z_{N_1} \times Z_{N_2} \times Z_K$, the legitimate TQFT actions is

$$S \sim \int \frac{N_1}{2\pi} C_i^1 dA_i^1 + \frac{N_2}{2\pi} C_i^2 dA_i^2 + \frac{K_1}{2\pi} B_i^1 dB_i^1$$

$$+ \sum_{i,j,k=1} A_i^1 dA_j^1 dA_k^1 + \sum_{i=1} B_i^1 B_i^1 A_i$$

$$+ 2 \sum_{i,j} B_i^1 A_i^1 dA_i + \sum_{i,j} B_i^1 A_i^1 dA_i$$

Consider again a $\prod_i Z_{N_i}$ case but this time $G = Z_{N_1} \times Z_{K_1} \times Z_{K_2}$, the corresponding legitimate TQFT action is

$$S \sim \int \frac{N_1}{2\pi} C_i^1 dA_i^1 + \frac{K_1}{2\pi} B_i^1 dB_i^1 + K_2 \frac{B_i^2 dB_i^2}{2\pi}$$

$$+ \sum_{i,j,k} A_i^1 dA_j^1 dA_k^1$$

$$+ \sum_{i=1} B_i^1 B_i^1 A_i$$

$$+ 2 \sum_{i=1} B_i^1 A_i^1 dA_i$$

Consider a $\prod_{i=1}^4 Z_{N_i}$ case in which $G = Z_{N_1} \times Z_{N_2} \times Z_{N_3} \times Z_{K_1} \times Z_{K_2}$, the legitimate TQFT actions is

$$S \sim \int \sum_{i=1}^3 \frac{N_i}{2\pi} C_i^i dA_i^i + \frac{K_i}{2\pi} B_i^1 dB_i^1$$

$$+ \sum_{i,j,k=1} A_i^1 dA_j^1 dA_k^1 + \sum_{i=1} C_i^i A_i^1 A_i$$

$$+ \sum_{i=1}^3 B_i^1 B_i^1 A_i + \sum_{i,j} B_i^1 A_i^1 dA_i$$

Consider a $\prod_{i=1}^5 Z_{N_i}$ case in which $G = Z_{N_1} \times Z_{N_2} \times Z_{N_3} \times Z_{K_1} \times Z_{K_2}$, the legitimate TQFT actions is

$$S \sim \int \sum_{i=1}^5 \frac{N_i}{2\pi} C_i^i dA_i^i + \sum_{i=1}^2 K_i \frac{B_i^1 dB_i^1}{2\pi}$$

$$+ \sum_{i,j,k=1} A_i^1 dA_j^1 dA_k^1$$

$$+ \sum_{i,j,k=1} 3 B_i^1 B_i^1 A_i$$

$$+ \sum_{i,j,k=1} B_i^1 A_i^1 dA_i$$

$$+ C^3 A_i^1 A_i^1$$

We should point out that the BC term is also a topological term in $(4 + 1)D$ spacetime, but we do not regard that it corresponds to any braiding process in the discussion above. Naively, because the 2-form B is related to the loop current Σ via $\Sigma = \frac{1}{2\pi} * dB$ and the 3-form C is related to the particle current J via $J = \frac{1}{2\pi} * dC$, one may think that BC is related to the particle-loop braiding in $(4 + 1)D$. But we argue that particle-loop braiding is actually trivial in $(4 + 1)D$ spacetime thus the BC term does not describe the particle-loop braiding. To show the triviality of particle-loop braiding in $(4 + 1)D$ spacetime, we can first consider the particle-loop braiding in $(3 + 1)D$ spacetime in which the Hopf link formed by trajectory γ_e of the particle e and the loop m (e.g., Fig. 1) cannot be unlinked in 3D space. However, in 4D space, due to an extra dimension, we can smoothly deform γ_e such that it is unlinked with the loop m. This argument is analogous to the fact that the nontrivial particle-particle braiding in $(2 + 1)D$ spacetime becomes trivial in $(3 + 1)D$ spacetime. In this case, we claim that the particle-loop braiding in $(4 + 1)D$ spacetime is trivial.

A question naturally arises: what is the physical effect of the BC term? We noticed that there are topological terms which can generate trivial fermions from a bosonic model: $\frac{k}{2\pi} AdA$ with an odd integer k in $(2 + 1)D$ and BB in $(3 + 1)D$. We conjecture that the effect of BC term is similar: the emergence of trivial fermions is possible in a bosonic model described by the action $S \sim \int CdA + BdB + BC$.

VI. CONCLUSION

In this paper, when a gauge group is given, we investigate the compatibility between all three classes of root braiding processes in $(3 + 1)D$ spacetime, i.e., particle-loop braiding, multi-loop braiding and Borromean rings braiding. We find that not all root braiding processes are mutually compatible, which is not so obvious on a superficial level. By incompatibility we mean that two braiding processes cannot be supported in the same system, i.e., there is no legitimate topological order in $(3 + 1)$-dimensional spacetime characterized by incompatible braiding phases. In the language of TQFT, a TQFT action describing incompatible braiding processes is not gauge invariant while preserving the cyclic group structure of each gauge subgroup. Our conclusions are drawn as follows.

When the gauge group is $G = Z_{N_i}$, only one class of root braiding processes, i.e., particle-loop braiding, is realizable. Therefore, there is no incompatibility when $G = Z_{N_i}$. The set of compatible braiding phase is simply $\{ \Theta_i \}{Z_{N_i}}$. The corresponding TQFT action and gauge transformations are listed in Table I.

When $G = \prod_{i=1}^2 Z_{N_i}$, besides particle-loop braiding, three-loop braiding are realizable. In this case, all braiding processes are compatible with each other. The set of compatible braiding phase is the collection of all possible braiding phases: $\{ \Theta_{i,1,2,1} | i \in \{ 1, 2 \} \}$ Table I lists the TQFT action corresponding to compatible braiding phases along with its gauge transformations.

As for $G = \prod_{i=1}^3 Z_{N_i}$, the possible braiding processes are particle-loop braiding, three-loop braiding and BR braiding.
ings. We find that, particle-loop braidings are compatible with three-loop braiding or BR braidings respectively. However, incompatibility occurs between three-loop braiding and BR braidings, even between different BR braidings. In general notations, a BR braiding phase $\Theta_{i,j}^{BR}$ is incompatible with three-loop braiding phases $\Theta_{n,o|m}^{3L}$ in which one of the indices $\{m, n, o\}$ is equal to k. Moreover, in the case of $G = \prod_{i=1}^{3} \mathbb{Z}_{N_i}$, $\Theta_{i,j}^{BR}$ is incompatible with $\Theta_{r,s|t}^{3L}$ ($k \neq t$) if $k = r$ or $k = s$. From the viewpoint of TQFT, such incompatibility can be explained by that there are no proper gauge transformations for the TQFT action which consists of topological terms corresponding to incompatible braiding processes. Compatible braiding phases and corresponding TQFT actions of $G = \prod_{i=1}^{3} \mathbb{Z}_{N_i}$ are summarized in Table II.

For the case of $G = \prod_{i=1}^{4} \mathbb{Z}_{N_i}$, besides the braiding mentioned above, four-loop braiding is realizable, classified as one of multi-loop braiding. Similar to the case of $G = \prod_{i=1}^{3} \mathbb{Z}_{N_i}$, when $G = \prod_{i=1}^{4} \mathbb{Z}_{N_i}$, particle-loop braiding and multi-loop braiding still exists. $\Theta_{i,j}^{BR}$ is only compatible with those $\Theta_{s,t|r}^{3L}$ in which none of the indices $\{s, t, r\}$ is equal to k. No $\Theta_{i,j}^{BR}$ is compatible with $\Theta_{1,2,3,4}^{3L}$. Different from the case of $G = \prod_{i=1}^{3} \mathbb{Z}_{N_i}$, when $G = \prod_{i=1}^{4} \mathbb{Z}_{N_i}$, different BR braiding may be compatible: for example, $\{\Theta_{1,2|4}, \Theta_{1,3|4}, \Theta_{2,3|4}\}$ and $\{\Theta_{1,2|3}, \Theta_{1,2|4}\}$ is respectively a subset of the sets of compatible braiding phases. Table III and Table IV list all possible sets of compatible braiding phases, legitimate TQFT actions and corresponding gauge transformations at the case of $G = \prod_{i=1}^{4} \mathbb{Z}_{N_i}$.

Motivated by the compatibility of braiding processes in $(3+1)$D spacetime, we initiate an attempt to the physics of braiding processes in $(4+1)$D spacetime and their compatibility. Several results are given in Sec. V. A comprehensive understanding of compatible braiding processes and TQFTs in $(4+1)$D topological orders will be discussed in Ref. [61].

There are several interesting future investigations based on the compatibility analysis of braiding phases. For example, it is interesting to study the connection between incompatibility and quantum anomaly [32]. Meanwhile, we have not considered BB term [47, 50, 62–65] which can switch self-statistics (either bosonic or fermionic) of particles. In this sense, adding BB term may be useful when considering compatible braiding phases of either fermionic systems or bosonic systems with fermionic particle excitations that carry nontrivial gauge charges. Our work focuses only on topological orders where all particles are bosonic, so it is unnecessary to consider BB. In addition, BB can drastically change the gauge group. In other words, the gauge group G is simultaneously determined by the coefficients of BF term and BB term. Nevertheless, this complexity leads to superfluous difficulty in determining gauge group and does not provide new braiding among topological excitations. In addition, from experiences in two-dimensional topological orders, exhausting all non-Abelian braidings with non-Abelian group are very challenging if still applying the present field theory method. Algebraic tools from mathematics may be a much better way. It is definitely interesting to explore how to exhaust all legitimate topological orders with a non-Abelian gauge group.

ACKNOWLEDGMENTS

The authors would like to thank AtMa P.O. Chan, Shinssei Ryu, Zheng-Cheng Gu, Juven Wang, Meng Cheng, Eduardo Fradkin, Huan He, Apoorv Tiwari, and Xiao-Gang Wen for earlier discussions and/or collaborations on topological phases of matter in higher dimensions. This work was supported in part by the Sun Yat-sen University startup grant, Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100, National Natural Science Foundation of China (NSFC) Grant (No. 11847608 & No. 12074438).
Appendix A: Microscopic derivation of the TQFT action $S \sim \int \sum_{i=1}^{3} B^i dA^i + A^3 A^2 B^3$

We can derive the integral $B dA + AAB$ action from a 3-layer 3D superfluid where the layer 1 and 2 are in charge-N_1 and charge-N_2 particle condensations while the layer 3 is in charge-N_3 vortexline condensation. To illustrate the vortexline condensation picture, we start with a normal superfluid state:

$$\mathcal{L}_3 = \frac{\rho_3}{2} \left(\partial_\mu \theta^3 \right)^2 .$$ \hspace{1cm} (A1)

Separate the phase angle into smooth part and singular part $\theta^3 = \theta^3 + \theta^3_s$ and introduce a Hubbard-Stratonovich auxiliary vector field J_μ^3, the above \mathcal{L}_3 can be expressed as

$$\mathcal{L}_3 = \frac{1}{2 \rho_3} \left(J_\mu^3 \right)^2 + i J_\mu^3 \left(\partial_\mu \theta^3_s + \partial_\mu \theta^3_s \right) .$$ \hspace{1cm} (A2)

Integrating out the smooth part θ^3_s leads to a constraint $\partial_\mu J_\mu^3 = 0$, which can be solved by introducing a 2-form noncompact $U(1)$ gauge field $B^3_{\mu\nu}$:

$$J_\mu^3 = \frac{1}{4\pi} \varepsilon^{\mu\nu\lambda\rho} \partial_\nu B^3_{\mu\rho} .$$ \hspace{1cm} (A3)

Thus \mathcal{L}_3 is dualized to the following gauge theory

$$\mathcal{L}_3 = \frac{1}{2 \rho_3} \left(\frac{1}{4\pi} \varepsilon^{\mu\nu\lambda\rho} \partial_\nu B^3_{\mu\rho} \right)^2 + i \frac{1}{4\pi} \varepsilon^{\mu\nu\lambda\rho} \partial_\nu B^3_{\mu\rho} \partial_\mu \partial_\nu \theta^3 \hspace{1cm} (A4)$$

The string current operator is defined by

$$\Sigma^3_{\mu\nu} = \frac{1}{2\pi} \varepsilon^{\mu\nu\lambda\rho} \partial_\lambda \partial_\rho \theta^3 .$$ \hspace{1cm} (A5)

Now consider a 3-layer 3D superfluid where the layer 1 and 2 are in particle condensation while the layer 3 is in string condensation. The Lagrangian is

$$\mathcal{L} = \frac{\rho_3}{2} \left(\partial_\mu \Theta_\nu \right)^2 - N_3 B^3_{\mu\nu} + \frac{\rho_1}{2} \left(\partial_\mu \theta^1 - N_1 A^1_{\mu} \right)^2 + \frac{\rho_2}{2} \left(\partial_\mu \theta^2 - N_2 A^2_{\mu} \right)^2 + i \Lambda \varepsilon^{\mu\nu\lambda\rho} \partial_\mu \Theta_\nu \partial_\nu \theta^3 - i \Lambda \varepsilon^{\mu\nu\lambda\rho} \partial_\mu \Theta_\nu \partial_\nu \theta^3 \hspace{1cm} (A6)$$

where $\partial_\mu \Theta_\nu = \partial_\mu \Theta_\nu - \partial_\nu \Theta_\mu$. Introduce Hubbard-Stratonovich fields $\Sigma^3_{\mu\nu}$, j^1 and j^2:

$$\mathcal{L} = \frac{1}{8 \rho_3} \left(\Sigma^3_{\mu\nu} \right)^2 + i \frac{\rho_3}{2} \Sigma^3_{\mu\nu} \left(\partial_\mu \Theta_\nu - N_3 B^3_{\mu\nu} \right) + \frac{1}{2 \rho_1} \left(j^1 \right)^2 + i j^1 \left(\partial_\mu \theta^1 - N_1 A^1_{\mu} \right) + \frac{1}{2 \rho_2} \left(j^2 \right)^2 + i j^2 \left(\partial_\mu \theta^2 - N_2 A^2_{\mu} \right) + i \Lambda \varepsilon^{\mu\nu\lambda\rho} \left(2 \Theta_\mu \partial_\nu \left(\partial_\lambda \theta^1 N_1 A^1_{\rho} \right) \right) + i \Lambda \varepsilon^{\mu\nu\lambda\rho} \left(2 \Theta_\mu \partial_\nu \left(\partial_\lambda \theta^2 N_2 A^2_{\rho} \right) \right) + i \Lambda \varepsilon^{\mu\nu\lambda\rho} \left(\frac{1}{2} \left(\partial_\lambda \partial_\rho \left(\partial_\mu \theta^3 N_3 B^3_{\mu\nu} \right) \right) \right) - i \Lambda \varepsilon^{\mu\nu\lambda\rho} \left(2 \Theta_\mu \partial_\nu \left(\partial_\lambda \partial_\rho \theta^1 N_1 A^1_{\mu} \right) \right) + i \Lambda \varepsilon^{\mu\nu\lambda\rho} \left(- \theta^1 \partial_\lambda \left(N_2 A^2_{\rho} N_3 B^3_{\mu\nu} \right) \right) + i \Lambda \varepsilon^{\mu\nu\lambda\rho} \left(- \theta^2 \partial_\lambda \left(N_3 B^3_{\mu\nu} N_1 A^1_{\lambda} \right) \right) - i \Lambda \varepsilon^{\mu\nu\lambda\rho} \left(A^1_{\lambda \rho} A^2_{\mu \lambda} N_3 B^3_{\mu\nu} \right) + \mathcal{L}_{\text{Maxwell}} + \text{boundary terms} \hspace{1cm} (A7)$$
Further introduce Lagrange multiplier fields ξ^I and η^I to decouple terms like $i\Lambda \varepsilon^{\mu \nu \lambda \rho} \left[-\theta^1 \partial_{\lambda} \left(\partial_{\rho} \theta^2 N_3 B_{\mu \nu}^3 \right) \right]$:

$$
\mathcal{L} = \frac{1}{8\rho_3} \left(\Sigma_{\mu \nu}^3 \right)^2 - i\Theta_\mu \partial_\nu \Sigma_{\mu \nu}^3 - i\frac{1}{2} N_3 B_{\mu \nu}^3 \Sigma_{\mu \nu}^3 \\
+ \frac{1}{2\rho_1} \left(j_3^1 \right)^2 - i\theta^1 \partial_{\lambda} j_3^1 + i\frac{1}{2} N_3 B_{\mu \nu}^3 \Sigma_{\mu \nu}^3 \\
+ i\Lambda \varepsilon^{\mu \nu \lambda \rho} \left[2\Theta_\mu \partial_\nu (N_1 N_2 A_{\lambda}^3 A_{\rho}^2) + \theta^1 \partial_{\lambda} (N_2 A_{\rho}^2 N_3 B_{\mu \nu}^3) + \theta^2 \partial_{\rho} (N_3 B_{\mu \nu}^3 N_1 A_{\lambda}^1) \right] \\
- iN_1 N_2 N_3 \Lambda \varepsilon^{\mu \nu \lambda \rho} A_{\lambda}^1 A_{\rho}^2 B_{\mu \nu}^3 \\
+ i\eta_1 \xi_3^I - \Lambda \varepsilon^{\mu \nu \lambda \rho} \left[\frac{1}{2} \partial_\nu \theta^2 N_3 B_{\mu \nu}^3 \right] + i\theta^1 \partial_{\lambda} \xi_3^I \\
+ i\eta_2 \xi_3^I - \Lambda \varepsilon^{\mu \nu \lambda \rho} \left[\frac{1}{2} \partial_\lambda \theta^1 N_3 B_{\mu \nu}^3 \right] + i\theta^2 \partial_\rho \xi_3^I \\
+ i\eta_3 \xi_3^I - \Lambda \varepsilon^{\mu \nu \lambda \rho} \left(2\partial_\nu \theta^1 N_2 A_{\rho}^2 + 2\partial_\rho \theta^2 N_1 A_{\lambda}^1 \right) \\
+ i\Theta_\rho \partial_\sigma \xi_3^I + \mathcal{L}_{\text{maxwell}} + \text{boundary terms}
$$

(A8)

Integrating out Θ_μ, θ^1 and θ^2 yield constraints

$$
\partial_\nu \left[\Sigma_{\mu \nu}^3 - \xi_3^I + \Lambda \varepsilon^{\mu \nu \lambda \rho} \cdot 2N_1 N_2 A_{\lambda}^1 A_{\rho}^2 \right] = 0, \quad \text{(A9)}
$$

$$
\partial_\lambda \left[j_3^1 - \xi_3^I + \Lambda \varepsilon^{\mu \nu \lambda \rho} \left(N_2 A_{\rho}^2 N_3 B_{\mu \nu}^3 - \frac{1}{2} \eta_\rho^2 N_3 B_{\mu \nu}^3 - 2\eta_\mu^2 N_3 A_{\rho}^2 \right) \right] = 0, \quad \text{(A10)}
$$

and

$$
\partial_\rho \left[j_3^2 - \xi_3^I + \Lambda \varepsilon^{\mu \nu \lambda \rho} \left(N_3 B_{\mu \nu}^3 N_1 A_{\lambda}^1 - \frac{1}{2} \eta_\lambda^2 N_3 B_{\mu \nu}^3 - 2\eta_\mu^2 N_1 A_{\lambda}^1 \right) \right] = 0. \quad \text{(A11)}
$$

These constraints can be solved by

$$
\Sigma_{\mu \nu}^3 = \frac{1}{2\pi} \varepsilon^{\mu \nu \lambda \rho} \partial_\lambda A_{\rho}^2 + \xi_3^I - \Lambda \varepsilon^{\mu \nu \lambda \rho} \cdot 2N_1 N_2 A_{\lambda}^1 A_{\rho}^2, \quad \text{(A12)}
$$

$$
j_3^1 = \frac{1}{4\pi} \varepsilon^{\mu \nu \lambda \rho} \partial_\rho B_{\mu \nu}^3 + \xi_3^I - \Lambda \varepsilon^{\mu \nu \lambda \rho} \left(N_2 A_{\rho}^2 N_3 B_{\mu \nu}^3 - \frac{1}{2} \eta_\rho^2 N_3 B_{\mu \nu}^3 - 2\eta_\mu^2 N_2 A_{\rho}^2 \right), \quad \text{(A13)}
$$

$$
j_3^2 = \frac{1}{4\pi} \varepsilon^{\mu \nu \lambda \rho} \partial_\lambda B_{\mu \nu}^3 + \xi_3^I - \Lambda \varepsilon^{\mu \nu \lambda \rho} \left(N_3 B_{\mu \nu}^3 N_1 A_{\lambda}^1 - \frac{1}{2} \eta_\lambda^2 N_3 B_{\mu \nu}^3 - 2\eta_\mu^2 N_1 A_{\lambda}^1 \right). \quad \text{(A14)}
$$
Then we obtain

\[
\mathcal{L} = -\frac{i}{2} N_3 B^3_{\mu\nu} \left[\frac{1}{2\pi} \epsilon^{\mu\nu\lambda\rho} \partial_\lambda A^3_\rho + \xi^3_{\mu\nu} - \Lambda \epsilon^{\mu\nu\lambda\rho} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho \right]
- iN_1 A^1_\lambda \left[\frac{1}{4\pi} \epsilon^{\lambda\mu\nu\rho} \partial_\rho B^1_\mu + \xi^1_\lambda - \Lambda \epsilon^{\mu\nu\lambda\rho} \left(N_2 A^2_\rho N_3 B^3_{\mu\nu} - \frac{1}{2} \eta^3_{\mu\nu} N_3 B^3_{\mu\nu} - 2\eta^3_{\mu\nu} N_2 A^2_\rho \right) \right]
- iN_2 A^2_\rho \left[\frac{1}{4\pi} \epsilon^{\rho\lambda\mu\nu} \partial_\lambda B^2_\mu + \xi^2_\rho - \Lambda \epsilon^{\mu\nu\lambda\rho} \left(N_3 B^3_{\mu\nu} N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_{\mu\nu} - 2\eta^3_{\mu\nu} N_1 A^1_\lambda \right) \right]
+ \frac{1}{8\rho_3} \left[\frac{1}{2\pi} \epsilon^{\mu\nu\lambda\rho} \partial_\lambda A^3_\rho + \xi^3_{\mu\nu} - \Lambda \epsilon^{\mu\nu\lambda\rho} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho \right]^2
+ \frac{1}{2\rho_1} \left[\frac{1}{4\pi} \epsilon^{\lambda\mu\nu\rho} \partial_\rho B^1_\mu + \xi^1_\lambda - \Lambda \epsilon^{\mu\nu\lambda\rho} \left(N_2 A^2_\rho N_3 B^3_{\mu\nu} - \frac{1}{2} \eta^3_{\mu\nu} N_3 B^3_{\mu\nu} - 2\eta^3_{\mu\nu} N_2 A^2_\rho \right) \right]^2
+ \frac{1}{2\rho_2} \left[\frac{1}{4\pi} \epsilon^{\rho\lambda\mu\nu} \partial_\lambda B^2_\mu + \xi^2_\rho - \Lambda \epsilon^{\mu\nu\lambda\rho} \left(N_3 B^3_{\mu\nu} N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_{\mu\nu} - 2\eta^3_{\mu\nu} N_1 A^1_\lambda \right) \right]^2
+ i\rho_1^4 \xi^1_1 + i\rho_2^4 \xi^2_2 + i\rho_3^4 \xi^3_3 - iN_1 N_2 N_3 \Lambda \epsilon^{\mu\nu\lambda\rho} A^1_\lambda A^2_\rho B^3_{\mu\nu} + \mathcal{L}_{\text{Maxwell}} + \text{boundary terms}
\]

Let us write \(\mathcal{L} = \mathcal{L}_{A^1} + \mathcal{L}_{A^2} + \mathcal{L}_{B^3} - iN_1 N_2 N_3 \Lambda \epsilon^{\mu\nu\lambda\rho} A^1_\lambda A^2_\rho B^3_{\mu\nu} + \mathcal{L}_{\text{Maxwell}} \), where

\[
\mathcal{L}_{B^3} = -\frac{iN_3}{4\pi} \epsilon^{\mu\nu\lambda\rho} B^3_{\mu\nu} \partial_\lambda A^3_\rho + \frac{i}{2} \Lambda \epsilon^{\mu\nu\lambda\rho} N_3 B^3_{\mu\nu} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho
\]
\[
+ \frac{1}{8\rho_3} \left[\frac{1}{2\pi} \epsilon^{\mu\nu\lambda\rho} \partial_\lambda A^3_\rho - \Lambda \epsilon^{\mu\nu\lambda\rho} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho \right]^2
+ \frac{1}{8\rho_3} (\xi^3_{\mu\nu})^2
\]
\[
+ \frac{1}{2\rho_1} \left[\frac{1}{4\pi} \epsilon^{\lambda\mu\nu\rho} \partial_\rho B^1_\mu + \Lambda \epsilon^{\mu\nu\lambda\rho} \left(N_2 A^2_\rho N_3 B^3_{\mu\nu} - \frac{1}{2} \eta^3_{\mu\nu} N_3 B^3_{\mu\nu} - 2\eta^3_{\mu\nu} N_2 A^2_\rho \right) \right]^2
+ \frac{1}{2\rho_1} (\xi^1_\lambda)^2
\]
\[
+ \frac{1}{2\rho_2} \left[\frac{1}{4\pi} \epsilon^{\rho\lambda\mu\nu} \partial_\lambda B^2_\mu + \Lambda \epsilon^{\mu\nu\lambda\rho} \left(N_3 B^3_{\mu\nu} N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_{\mu\nu} - 2\eta^3_{\mu\nu} N_1 A^1_\lambda \right) \right]^2
+ \frac{1}{2\rho_2} (\xi^2_\rho)^2
\]
Integrate out \(\xi^3_{\mu\nu} \):

\[
\mathcal{L}_{B^3} = -\frac{iN_3}{4\pi} \epsilon^{\mu\nu\lambda\rho} B^3_{\mu\nu} \partial_\lambda A^3_\rho + \frac{i}{2} \Lambda \epsilon^{\mu\nu\lambda\rho} N_3 B^3_{\mu\nu} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho
\]
\[
+ \frac{1}{8\rho_3} \left[\frac{1}{2\pi} \epsilon^{\mu\nu\lambda\rho} \partial_\lambda A^3_\rho - \Lambda \epsilon^{\mu\nu\lambda\rho} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho \right]^2
\]
\[
- \frac{1}{8\rho_3} \left[\frac{1}{2\pi} \epsilon^{\mu\nu\lambda\rho} \partial_\lambda N_3 A^3_\rho - \Lambda \epsilon^{\mu\nu\lambda\rho} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho \right]^2
\]
\[
- iN_3 \frac{\rho_3}{4\pi} \epsilon^{\mu\nu\lambda\rho} B^3_{\mu\nu} \partial_\rho A^3_\lambda + iN_1 N_2 N_3 \Lambda \epsilon^{\mu\nu\lambda\rho} B^3_{\mu\nu} A^1_\lambda A^2_\rho
\]
\[
+ \rho_3 \left(\frac{\rho_3}{2} (2\eta^3_{\mu\nu} - N_3 B^3_{\mu\nu})^2 - \frac{i}{2} (2\eta^3_{\mu\nu} - N_3 B^3_{\mu\nu}) \left(\frac{1}{2\pi} \epsilon^{\mu\nu\lambda\rho} \partial_\rho A^3_\lambda - \Lambda \epsilon^{\mu\nu\lambda\rho} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho \right) \right)
\]
\[
= \frac{\rho_3}{2} (2\eta^3_{\mu\nu} - N_3 B^3_{\mu\nu})^2 - \frac{i}{2\pi} \epsilon^{\mu\nu\lambda\rho} \eta^3_{\mu\nu} A^3_\lambda + i\Lambda \epsilon^{\mu\nu\lambda\rho} \eta^3_{\mu\nu} \cdot 2N_1 N_2 A^1_\lambda A^2_\rho
\]
Integrate out ξ^1:

\[
\mathcal{L}_{A^1} = -\frac{iN_1}{4\pi} e^{\lambda\mu\nu\rho} A^1_\mu \partial_\nu B^1_\rho + i\Lambda e^{\mu\nu\lambda\rho} N_1 A^1_\lambda \left(N_2 A^2_\rho N_3 B^3_\mu - \frac{1}{2} \eta^2_\mu N_3 B^3_\rho - 2\eta^3_\mu N_2 A^2_\rho \right) \\
+ \frac{1}{2\rho_1} \left[\frac{1}{4\pi} e^{\lambda\mu\nu\rho} \partial_\mu B^1_\rho - \Lambda e^{\mu\nu\lambda\rho} \left(N_2 A^2_\rho N_3 B^3_\mu - \frac{1}{2} \eta^2_\mu N_3 B^3_\rho - 2\eta^3_\mu N_2 A^2_\rho \right) \right]^2 \\
- \frac{1}{2\rho_1} \left[i\rho \left(\eta^3_\lambda - N_1 A^1_\lambda \right) + \frac{1}{4\pi} e^{\lambda\mu\nu\rho} \partial_\rho B^1_\mu - \Lambda e^{\mu\nu\lambda\rho} \left(N_2 A^2_\rho N_3 B^3_\mu - \frac{1}{2} \eta^2_\mu N_3 B^3_\rho - 2\eta^3_\mu N_2 A^2_\rho \right) \right]^2 \\
= -\frac{iN_1}{4\pi} e^{\lambda\mu\nu\rho} A^1_\mu \partial_\nu B^1_\rho + i\Lambda e^{\mu\nu\lambda\rho} N_1 A^1_\lambda \left(N_2 A^2_\rho N_3 B^3_\mu - \frac{1}{2} \eta^2_\mu N_3 B^3_\rho - 2\eta^3_\mu N_2 A^2_\rho \right) \\
+ \rho_1 \left(\eta^3_\lambda - N_1 A^1_\lambda \right)^2 - i \left(\eta^3_\lambda - N_1 A^1_\lambda \right) \left[\frac{1}{4\pi} e^{\lambda\mu\nu\rho} \partial_\rho B^1_\mu - \Lambda e^{\mu\nu\lambda\rho} \left(N_2 A^2_\rho N_3 B^3_\mu - \frac{1}{2} \eta^2_\mu N_3 B^3_\rho - 2\eta^3_\mu N_2 A^2_\rho \right) \right] \\
= \rho_1 \left(\eta^3_\lambda - N_1 A^1_\lambda \right)^2 - \frac{i}{4\pi} e^{\lambda\mu\nu\rho} \eta^1_\rho \partial_\rho B^1_\mu + i\Lambda e^{\mu\nu\lambda\rho} \eta^1_\lambda \left(N_2 A^2_\rho N_3 B^3_\mu - \frac{1}{2} \eta^2_\mu N_3 B^3_\rho - 2\eta^3_\mu N_2 A^2_\rho \right) \\
\tag{A18}
\]

Integrate out ξ^2:

\[
\mathcal{L}_{A^2} = -\frac{iN_2}{4\pi} e^{\mu\nu\lambda\rho} A^2_\rho \partial_\nu B^1_\mu + i\Lambda e^{\mu\nu\lambda\rho} N_2 A^2_\lambda \left(N_3 B^3_\mu N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_\mu - 2\eta^3_\mu N_1 A^1_\lambda \right) \\
+ \frac{1}{2\rho_2} \left[\frac{1}{4\pi} e^{\rho\lambda\mu\nu} \partial_\nu B^2_\rho - \Lambda e^{\mu\nu\lambda\rho} \left(N_3 B^3_\mu N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_\mu - 2\eta^3_\mu N_1 A^1_\lambda \right) \right]^2 \\
- \frac{1}{2\rho_2} \left[i\rho_2 \left(\eta^3_\rho - N_2 A^2_\rho \right) + \frac{1}{4\pi} e^{\rho\lambda\mu\nu} \partial_\nu B^2_\rho - \Lambda e^{\mu\nu\lambda\rho} \left(N_3 B^3_\mu N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_\mu - 2\eta^3_\mu N_1 A^1_\lambda \right) \right]^2 \\
= -\frac{iN_2}{4\pi} e^{\mu\nu\lambda\rho} A^2_\rho \partial_\nu B^2_\mu + i\Lambda e^{\mu\nu\lambda\rho} N_2 A^2_\lambda \left(N_3 B^3_\mu N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_\mu - 2\eta^3_\mu N_1 A^1_\lambda \right) \\
+ \rho_2 \left(\eta^3_\rho - N_2 A^2_\rho \right)^2 - i \left(\eta^3_\rho - N_2 A^2_\rho \right) \left[\frac{1}{4\pi} e^{\rho\lambda\mu\nu} \partial_\nu B^2_\rho - \Lambda e^{\mu\nu\lambda\rho} \left(N_3 B^3_\mu N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_\mu - 2\eta^3_\mu N_1 A^1_\lambda \right) \right] \\
= \rho_2 \left(\eta^3_\rho - N_2 A^2_\rho \right)^2 - \frac{i}{4\pi} e^{\rho\lambda\mu\nu} \eta^1_\rho \partial_\rho B^2_\mu + i\Lambda e^{\mu\nu\lambda\rho} \eta^1_\lambda \left(N_3 B^3_\mu N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_\mu - 2\eta^3_\mu N_1 A^1_\lambda \right) \\
\tag{A19}
\]

We end up with

\[
\mathcal{L} = \rho_3 \left(2\eta^3_\mu - N_3 B^3_\mu \right)^2 - \frac{i}{2\pi} e^{\mu\nu\lambda\rho} \eta^3_\rho \partial_\lambda A^3_\mu + i\Lambda e^{\mu\nu\lambda\rho} \eta^3_\mu \cdot 2N_1 N_2 A^1_\lambda A^2_\rho \\
+ \rho_1 \left(\eta^3_\lambda - N_1 A^1_\lambda \right)^2 - \frac{i}{4\pi} e^{\lambda\mu\nu\rho} \eta^1_\rho \partial_\lambda B^1_\mu + i\Lambda e^{\mu\nu\lambda\rho} \eta^1_\lambda \left(N_2 A^2_\rho N_3 B^3_\mu - \frac{1}{2} \eta^2_\mu N_3 B^3_\rho - 2\eta^3_\mu N_2 A^2_\rho \right) \\
+ \rho_2 \left(\eta^3_\rho - N_2 A^2_\rho \right)^2 - i \frac{i}{4\pi} e^{\rho\lambda\mu\nu} \eta^1_\rho \partial_\rho B^2_\mu + i\Lambda e^{\mu\nu\lambda\rho} \eta^1_\rho \left(N_3 B^3_\mu N_1 A^1_\lambda - \frac{1}{2} \eta^1_\lambda N_3 B^3_\mu - 2\eta^3_\mu N_1 A^1_\lambda \right) \\
- \frac{1}{2\rho_1} \left(\eta^3_\lambda - N_1 A^1_\lambda \right) \left(\eta^3_\rho - N_2 A^2_\rho \right) - \frac{1}{2\rho_2} \left(\eta^3_\rho - N_2 A^2_\rho \right) \left(\eta^3_\rho - N_2 A^2_\rho \right) \\
+ i\Lambda e^{\mu\nu\lambda\rho} \left[2 \left(\eta^3_\lambda - N_1 A^1_\lambda \right) \left(\eta^3_\rho - N_2 A^2_\rho \right) \left(\eta^3_\mu - \frac{1}{2} N_3 B^3_\mu \right) - 2N_1 N_2 N_3 \eta^3_\lambda \eta^3_\rho \eta^3_\mu \right] + \mathcal{L}_{\text{Maxwell}} \\
\tag{A20}
\]

Since we consider the vortexline condensation for ρ_3 and particle condensation for ρ_1 and ρ_2, i.e., $\rho_3 \to \infty$, $\rho_1 \to \infty$ and
\[\rho_2 \to \infty \text{ are taken. These limit conditions enforce that } \eta^1_\lambda = N_1 A^1_\lambda, \eta^2_\mu = N_2 A^2_{\mu}, \text{ and } \eta^3_{\mu\nu} = \frac{1}{2} N_3 B^3_{\mu\nu}. \text{ So we obtain} \]

\[
\mathcal{L} = -\frac{i}{2\pi} \varepsilon^{\mu\nu\lambda\rho} \frac{1}{2} N_3 B^3_{\mu\nu} \partial_\lambda A^1_\rho - \frac{i}{4\pi} \varepsilon^{\lambda\rho\mu\nu} N_1 A^1_\lambda \partial_\rho A^1_{\mu\nu} - \frac{i}{4\pi} \varepsilon^{\lambda\mu\nu\rho} N_2 A^2_\lambda \partial_\rho B^2_{\mu\nu} - i N_1 N_2 N_3 \varepsilon^{\lambda\mu\nu\rho} A^1_\lambda A^2_{\rho\mu\nu} + \mathcal{L}_{\text{Maxwell}}
\]

\[
= -\frac{i N_3}{4\pi} \varepsilon^{\mu\nu\lambda\rho} B^3_{\mu\nu} \partial_\lambda A^1_\rho + \frac{i N_1}{4\pi} \varepsilon^{\lambda\rho\mu\nu} B^1_{\lambda\rho} \partial_\mu A^1_{\nu} + \frac{i N_2}{4\pi} \varepsilon^{\lambda\mu\nu\rho} B^2_{\lambda\mu} \partial_\nu A^2_{\rho} - i N_1 N_2 N_3 \varepsilon^{\lambda\mu\nu\rho} A^1_\lambda A^2_{\rho\mu\nu} + \mathcal{L}_{\text{Maxwell}}
\]

\[
= -\frac{i N_3}{4\pi} \varepsilon^{\mu\nu\lambda\rho} B^3_{\mu\nu} \partial_\lambda A^1_\rho + \frac{i N_1}{4\pi} \varepsilon^{\lambda\rho\mu\nu} B^1_{\lambda\rho} \partial_\mu A^1_{\nu} + \frac{i N_2}{4\pi} \varepsilon^{\lambda\mu\nu\rho} B^2_{\lambda\mu} \partial_\nu A^2_{\rho} - i N_1 N_2 N_3 \varepsilon^{\lambda\mu\nu\rho} A^1_\lambda A^2_{\rho\mu\nu} + \mathcal{L}_{\text{Maxwell}}.
\]

The Maxwell kinetic term \(\mathcal{L}_{\text{Maxwell}} \) can be neglected since its scaling dimension is more irrelevant than the other topological terms. Finally, we can drop the overall minus sign by relabeling indices and then obtain

\[
\mathcal{L} = \frac{i N_1}{4\pi} \varepsilon^{\mu\nu\lambda\rho} B^1_{\mu\nu} \partial_\lambda A^1_\rho + \frac{i N_2}{4\pi} \varepsilon^{\mu\nu\lambda\rho} B^2_{\mu\nu} \partial_\lambda A^2_\rho + \frac{i N_3}{4\pi} \varepsilon^{\mu\nu\lambda\rho} B^3_{\mu\nu} \partial_\lambda A^3_\rho + i N_1 N_2 N_3 \varepsilon^{\lambda\mu\nu\rho} A^1_\lambda A^2_{\rho\mu\nu} A^3_{\rho\mu\nu}. \]

(A21)

**Appendix B: All legitimate TQFT actions when} \ G = \prod_{i=1}^{4} \mathbb{Z}_{N_i} \]

The general expression of legitimate TQFT actions and corresponding gauge transformations are listed in Table IV. By properly reassigning the indices \{i, j, k, l\} (see the captions in Table IV), we can obtain all possible legitimate TQFT actions. As discussed in Sec. III C, when \(G = \prod_{i=1}^{4} \mathbb{Z}_{N_i} \), the legitimate TQFT actions can be classified by the properties of BR braiding they describe:

1. **S with no AAB terms.** The set of compatible braiding phases is

\[
\left\{ \Theta^H_{r,s,r,s}, \Theta^H_{s,r,s}, \Theta^L_{r,s,r,s}, \Theta^L_{s,r,s}, \Theta^L_{s,t,r}, \Theta^L_{r,s,t}, \Theta^L_{s,r,s} \right\} \prod_{i=1}^{4} \mathbb{Z}_{N_i}.
\]

(B1)

where \(r < s < t \) and \(\{r, s, t\} \subset \{1, 2, 3, 4\} \). The underlines denote the linear dependence between braiding phases: \(\Theta^L_{s,r,s} = \Theta^L_{r,s,t} = \Theta^L_{s,t} - \Theta^L_{r,s} - \Theta^L_{s,s} \), etc.

2. **S with AAB terms which involve one flavor of \(B^1 \).** The set of compatible braiding phases is

\[
\left\{ \Theta^H_{r,s,r,s}, \Theta^L_{s,r,s}, \Theta^L_{j,k,i,j}, \Theta^L_{k,i,j}, \Theta^L_{j,i,j}, \Theta^L_{i,j,k}, \Theta^L_{i,k,j}, \Theta^L_{k,j,i} \right\} \prod_{i=1}^{4} \mathbb{Z}_{N_i}.
\]

(B2)

where \(r \neq s, r \neq t, s \neq l \), and the assignments for \(\{i, j, k, l\} \) are \(\{1, 2, 3, 4\} \) or \(\{1, 2, 3, 4\} \) and \(\{1, 2, 3, 4\} \).

3. **S with AAB terms which involve two flavors of \(B^1 \).** The set of compatible braiding phases is

\[
\left\{ \Theta^H_{r,s,l,l}, \Theta^L_{j,j,l}, \Theta^L_{i,j,l}, \Theta^L_{j,i,j}, \Theta^L_{i,j,k}, \Theta^L_{i,k,j}, \Theta^L_{k,j,i} \right\} \prod_{i=1}^{4} \mathbb{Z}_{N_i}.
\]

(B3)

where the assignments for \(\{i, j, k, l\} \) are \(\{3, 4, 1, 2\} \), \(\{2, 4, 1, 3\} \), \(\{2, 3, 1, 4\} \), \(\{4, 1, 2, 3\} \), \(\{3, 1, 2, 4\} \) and \(\{1, 2, 3, 4\} \).

Appendix C: Some technical details

1. **Derivation for the incompatibility of \(A^1 A^2 B^3 \) and \(A^2 A^3 B^1 \)**

We try to find proper gauge transformations for this action:

\[
S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{P_{12,3}}{(2\pi)^2} A^1 A^2 B^3 + \frac{P_{23,1}}{(2\pi)^2} A^2 A^3 B^1.
\]

(C1)

We list all 4 possible test gauge transformations respecting the \(\mathbb{Z}_{N_i} \) and \(\mathbb{Z}_{N_3} \) cyclic group structure and corresponding \(\Delta S \)'s in Table V and Table VI. We point out that there always exist “stubborn terms” which cannot be eliminated by subtraction not be absorbed into a total derivative term, making \(\Delta S \) nonvanishing. If we impose that \(\Delta S = 0 \mod 2\pi \), the \(\mathbb{Z}_{N_i} \) and \(\mathbb{Z}_{N_3} \) cyclic group structure are no longer respected. Such dilemma indicates that (C1) is not a legitimate TQFT action, thus \(A^1 A^2 B^3 \) and \(A^2 A^3 B^1 \) are incompatible.
The 1st row: since no AAB terms in the TQFT action, no assignment for (i, j, k, l) is needed.

The 2nd row: for actions with $(A'A'B' + A'A'B')$ terms, the assignments for (i, j, k, l) are $(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2)$ and $(4, 1, 2, 3)$. For example, by taking $(i, j, k, l) = (1, 2, 3, 4)$, we re-obtain the 2nd TQFT action in Table III.

The 3rd row: for actions with $(A'A'B' + A'A'B')$ terms, there are 6 assignments for (i, j, k, l): $(3, 4, 1, 2), (2, 4, 1, 3), (2, 3, 1, 4), (4, 1, 2, 3), (3, 1, 2, 4)$ and $(1, 2, 3, 4)$. By taking $(i, j, k, l) = (1, 2, 3, 4)$, we re-obtain the 3rd TQFT action in Table III.

Compatible braiding phases	TQFT actions	Gauge transformations
$\Theta^H_{i,j,k,l} = 2\pi N_r$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$A' \rightarrow A' + d\chi^r$
$\Theta^H_{s,t,r,u} = -2 \cdot \Theta^H_{r,s,t,u} = 4\pi q_{rss} N_s N_r$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$B' \rightarrow B' + dV^r$
$\Theta^u_{i,j,k,l} = -2 \cdot \Theta^u_{i,j,k,l} = 4\pi q_{ii} N_s N_r$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$A' \rightarrow A' + d\chi^r$
$\Theta^u_{s,t,r,u} = -2 \cdot \Theta^u_{r,s,t,u} = 4\pi q_{ijs} (2\pi)^2 A' dA^i$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$B' \rightarrow B' + dV^r$
$\Theta^u_{i,j,k,l} = -\Theta^u_{i,j,k,l} = 2\pi q_{ijs} N_s N_r$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$A' \rightarrow A' + d\chi^r$
$\Theta^u_{s,t,r,u} = -\Theta^u_{s,t,r,u} = 2\pi q_{ijs} (2\pi)^2 A' dA^i$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$B' \rightarrow B' + dV^r$
$\Theta^u_{i,j,k,l} = -\Theta^u_{i,j,k,l} = 2\pi q_{ijs} N_s N_r$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$A' \rightarrow A' + d\chi^r$
$\Theta^u_{s,t,r,u} = -\Theta^u_{s,t,r,u} = 2\pi q_{ijs} (2\pi)^2 A' dA^i$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$B' \rightarrow B' + dV^r$
$\Theta^u_{i,j,k,l} = -\Theta^u_{i,j,k,l} = 2\pi q_{ijs} N_s N_r$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$A' \rightarrow A' + d\chi^r$
$\Theta^u_{s,t,r,u} = -\Theta^u_{s,t,r,u} = 2\pi q_{ijs} (2\pi)^2 A' dA^i$	$\int \frac{4}{N_r} \sum_{r=1} B' dA'$	$B' \rightarrow B' + dV^r$
For the 2nd column of Table VI, it may not so straightforward to see that ΔS is nonvanishing. Below we make some illustration. The gauge transformations are

\[
\begin{align*}
A^1 &\to A^1 + d\chi^1 + X^1, \\
A^2 &\to A^2 + d\chi^2, \\
A^3 &\to A^3 + d\chi^3 + X^3, \\
B^1 &\to B^1 + dV^1, \\
B^2 &\to B^2 + dV^2 + Y^2, \\
B^3 &\to B^3 + dV^3.
\end{align*}
\tag{C2}
\]

The variation of action (boundary terms neglected) is

\[
\Delta S = \int \frac{N_1}{2\pi} B^1 dX^1 + \frac{N_2}{2\pi} Y^2 dA^2 + \frac{N_3}{2\pi} B^3 dX^3 \\
+ \frac{p_{12,3}}{(2\pi)^2} (A^1 d\chi^2 B^3 + d\chi^1 A^2 B^3 + d\chi^1 A^2 B^3 + X^1 A^2 B^3 + X^1 d\chi^2 B^3) \\
+ \frac{p_{12,3}}{(2\pi)^2} (A^1 A^2 dV^3 + A^1 d\chi^2 dV^3 + d\chi^1 A^2 dV^3 + X^1 A^2 dV^3 + X^1 d\chi^2 dV^3) \\
+ \frac{p_{23,1}}{(2\pi)^2} (d\chi^2 A^3 B^1 + A^2 d\chi^3 B^1 + d\chi^2 A^3 B^1 + A^2 X^3 B^1 + d\chi^2 X^3 B^1) \\
+ \frac{p_{23,1}}{(2\pi)^2} (A^2 A^3 dV^1 + d\chi^2 A^3 dV^1 + A^2 d\chi^3 dV^1 + A^2 X^3 dV^1 + d\chi^2 X^3 dV^1).
\tag{C3}
\]

If we want to eliminate the $A^1 A^2 dV^3$ term by subtraction, we can only require that

\[
\frac{N_3}{2\pi} dV^3 dX^3 + \frac{p_{12,3}}{(2\pi)^2} A^1 A^2 dV^3 = \frac{p_{12,3}}{(2\pi)^2} \left[dV^3 \left(\frac{N_3}{2\pi} \cdot \frac{(2\pi)^2}{p_{12,3}} dX^3 + A^1 A^2\right)\right]
\]

\[
= \frac{p_{12,3}}{(2\pi)^2} \left[dV^3 \left(\frac{N_3}{2\pi} \cdot \frac{(2\pi)^2}{p_{12,3}} \cdot (-A^1 A^2 + \cdots) + A^1 A^2\right)\right]
\tag{C4}
\]

which requires

\[
dX^3 = -A^1 A^2 + \cdots.
\tag{C5}
\]

However (C5) is impossible since $A^1 A^2$ is not exact in general. If we want to absorb $A^1 A^2 dV^3$ into a total derivative term, we would need a $(dA^1 A^2 V^3 - A^1 dA^2 V^3)$ term since $\delta (A^1 A^2 V^3) = dA^1 A^2 V^3 - A^1 dA^2 V^3 + A^1 A^2 dV^3$. We may have a $-A^1 dA^2 V^3$ term contributed by $\frac{N_3}{2\pi} Y^2 dA^2$, but we do not have a $dA^1 A^2 V^3$ term since no term containing dA^1 in ΔS. Therefore, action $S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B_i dA^i + \frac{p_{12,3}}{(2\pi)^2} A^1 A^2 B^1 + \frac{p_{23,1}}{(2\pi)^2} A^2 A^3 B^1$ is not gauge invariant under (C2).

2. Derivation of the incompatibility between $A^1 A^3 dA^3$ and $A^1 A^2 B^3$

The TQFT action is assumed to be

\[
S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B_i dA^i + \frac{q_{133}}{(2\pi)^2} A^1 A^3 dA^3 + \frac{p_{12,3}}{(2\pi)^2} A^1 A^2 B^1.
\tag{C6}
\]

First, we assume that the gauge transformations are

\[
A^i \to A^i + d\chi^i, \\
B^i \to B^i + dV^i + Y^i,
\tag{C7}
\]

\[
\text{which requires}
\]

\[
dX^3 = -A^1 A^2 + \cdots.
\tag{C5}
\]
TABLE V. Test gauge transformations with $A^1 \rightarrow A^1 + d\chi^1$ for $S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{p_{12.3}}{(2\pi)^2} A^1 A^2 B^3 + \frac{p_{23.1}}{(2\pi)^2} A^2 A^3 B^1$. The “stubborn terms” are terms which cannot be eliminated by subtraction nor be absorbed into a total derivative term, making $\Delta S \neq 0 \mod 2\pi$.

Test gauge transformations	ΔS	Stubborn terms
$A^1 \rightarrow A^1 + d\chi^1$	$\int \sum_{i=1}^{3} \frac{N_i}{2\pi} Y^i dA^i + \frac{p_{12.3}}{(2\pi)^2} (d\chi^1 A^2 B^3 + A^1 d\chi^2 B^3 + d\chi^3 d\chi^2 B^3)$	$d\chi^1 d\chi^2 B^3$
$A^2 \rightarrow A^2 + d\chi^2$	$A^1 A^2 dV^3 + d\chi^1 A^2 dV^3 + A^1 d\chi^2 dV^3 + d\chi^3 d\chi^2 dV^3$	$d\chi^3 d\chi^2 B^1$
$A^3 \rightarrow A^3 + d\chi^3$	$d\chi^1 A^2 Y^3 + d\chi^2 A^2 Y^3 + A^1 d\chi^2 Y^3 + d\chi^3 d\chi^2 Y^3$	$d\chi^2 d\chi^3 B^1$
$B^1 \rightarrow B^1 + dV^3 + Y^1$	$d\chi^2 A^3 B^1 + A^2 d\chi^3 B^1 + d\chi^2 d\chi^3 B^1$	$d\chi^2 d\chi^3 B^1$
$B^2 \rightarrow B^2 + dV^3 + Y^2$	$A^2 A^3 dV^1 + d\chi^2 A^3 dV^1 + A^2 d\chi^3 dV^1 + d\chi^2 d\chi^3 dV^1$	$d\chi^2 d\chi^3 dV^1$
$B^3 \rightarrow B^3 + dV^3 + Y^3$	$d\chi^2 A^3 Y^1 + d\chi^2 A^3 Y^1 + A^2 d\chi^3 Y^1 + d\chi^2 d\chi^3 Y^1$	$d\chi^2 d\chi^3 dV^1$

TABLE VI. Test gauge transformations with $B^1 \rightarrow B^1 + dV^1$ for $S = \int \sum_{i=1}^{3} \frac{N_i}{2\pi} B^i dA^i + \frac{p_{12.3}}{(2\pi)^2} A^1 A^2 B^3 + \frac{p_{23.1}}{(2\pi)^2} A^2 A^3 B^1$. The “stubborn terms” are terms which cannot be eliminated by subtraction nor be absorbed into a total derivative term, making $\Delta S \neq 0 \mod 2\pi$.

Test gauge transformations	ΔS	Stubborn terms
$A^1 \rightarrow A^1 + d\chi^1 + X^1$	$\int \frac{N_1}{2\pi} dV^1 dA^1 + \frac{N_1}{2\pi} B^1 dX^1 + \frac{N_1}{2\pi} dV^1 dX^1 + \sum_{i=2}^{3} \frac{N_i}{2\pi} Y^i dA^i$	$d\chi^1 d\chi^2 B^3$
$A^2 \rightarrow A^2 + d\chi^2$	$A^1 A^2 dV^3 + d\chi^1 A^2 dV^3 + d\chi^2 A^2 dV^3 + d\chi^1 d\chi^2 dV^3 + X^1 A^2 dV^3 + X^1 d\chi^2 dV^3$	$d\chi^3 d\chi^2 B^1$
$A^3 \rightarrow A^3 + d\chi^3$	$d\chi^2 A^3 Y^3 + d\chi^1 A^3 Y^3 + d\chi^2 A^3 Y^3 + d\chi^1 d\chi^2 Y^3 + X^1 A^3 Y^3 + X^1 d\chi^2 Y^3$	$d\chi^2 d\chi^3 B^1$
$B^1 \rightarrow B^1 + dV^1$	$d\chi^2 A^3 B^1 + A^2 d\chi^3 B^1 + d\chi^2 d\chi^3 B^1$	$d\chi^2 d\chi^3 B^1$
$B^2 \rightarrow B^2 + dV^2 + Y^2$	$A^2 A^3 dV^1 + d\chi^2 A^3 dV^1 + A^2 d\chi^3 dV^1 + d\chi^2 d\chi^3 dV^1$	$d\chi^2 d\chi^3 dV^1$
$B^3 \rightarrow B^3 + dV^3 + Y^3$	$d\chi^2 d\chi^3 Y^1 + d\chi^2 A^3 Y^1 + A^2 d\chi^3 Y^1 + d\chi^2 d\chi^3 Y^1$	$d\chi^2 d\chi^3 dV^1$
i.e., the \mathbb{Z}_{N_3} cyclic group structure is encoded in

$$\oint A^3 \in \frac{2\pi}{N_3} \mathbb{Z}_{N_3}. \quad \text{(C8)}$$

Under the gauge transformations, the variation of action is (boundary terms neglected) is

$$\Delta S = \int \frac{N_1}{2\pi} Y^1 dA^1 + \frac{N_2}{2\pi} Y^2 dA^2 + \frac{N_3}{2\pi} B^3 dX^3$$

$$+ \frac{q_{133}}{(2\pi)^2} (d\chi^1 A^3 dA^3 + A^1 d\chi^3 dA^3)$$

$$+ \frac{p_{123}}{(2\pi)^2} [(A^1 d\chi^2 B^3 + d\chi^1 A^2 B^3 + d\chi^1 d\chi^2 B^3)$$

$$+ (A^1 A^2 dV^3 + A^1 d\chi^2 dV^3 + d\chi^1 A^2 dV^3)$$

$$+ (A^1 A^2 Y^3 + A^1 d\chi^2 Y^3 + d\chi^1 A^2 Y^3 + d\chi^1 d\chi^2 Y^3)] \quad \text{(C9)}$$

ΔS is expected to be boundary terms. However, we are going to prove that this is impossible: the $d\chi^1 d\chi^2 B^3$ term cannot be eliminated by subtraction nor be absorbed into a total derivative term. If $d\chi^1 d\chi^2 B^3$ can be eliminated by subtraction, it is required that

$$d\chi^1 d\chi^2 B^3 + d\chi^1 d\chi^2 Y^3 = d\chi^1 d\chi^2 (B^3 - B^3 + \cdots), \quad \text{(C10)}$$

i.e.,

$$Y^3 = -B^3 + \cdots \quad \text{(C11)}$$

but this is not allowed otherwise the gauge transformation of B^3 is ill-defined. If $d\chi^1 d\chi^2 B^3$ can be absorb into a total derivative term, ΔS should (but in fact does not) contain a $-\chi^1 d\chi^2 dB^3$ term since

$$d(\chi^1 d\chi^2 B^3) = d\chi^1 d\chi^2 B^3 - \chi^1 d\chi^2 dB^3. \quad \text{(C12)}$$

Therefore, the action (C6) is impossible to be gauge invariant under gauge transformation (C7), hence it is not a legitimate TQFT action.

Next, we assume that the gauge transformations are

$$A^{1,2} \rightarrow A^{1,2} + d\chi^{1,2},$$

$$A^3 \rightarrow A^3 + d\chi^3 + X^3,$$

$$B^{1,2} \rightarrow B^{1,2} + dV^{1,2} + Y^{1,2},$$

$$B^3 \rightarrow B^3 + dV^3. \quad \text{(C13)}$$

The \mathbb{Z}_{N_3} cyclic group structure is encoded in

$$\oint B^3 \in \frac{2\pi}{N_3} \mathbb{Z}_{N_3}. \quad \text{(C14)}$$

Under the gauge transformation, the variation of action is (boundary terms neglected) is

$$\Delta S = \int \frac{N_1}{2\pi} Y^1 dA^1 + \frac{N_2}{2\pi} Y^2 dA^2 + \frac{N_3}{2\pi} B^3 dX^3$$

$$+ \frac{q_{133}}{(2\pi)^2} (d\chi^1 A^3 dA^3 + A^1 d\chi^3 dA^3)$$

$$+ \frac{q_{133}}{(2\pi)^2} (A^1 X^3 dA^3 + d\chi^1 X^3 dA^3)$$

$$+ \frac{q_{133}}{(2\pi)^2} (A^1 A^3 dX^3 + d\chi^3 A^3 dX^3 + A^1 d\chi^3 dX^3)$$

$$+ \frac{q_{133}}{(2\pi)^2} (A^1 X^3 dX^3 + d\chi^1 X^3 dX^3)$$

$$+ \frac{p_{123}}{(2\pi)^2} (d\chi^1 A^2 B^3 + A^1 d\chi^2 B^3 + d\chi^1 d\chi^2 B^3)$$

$$+ \frac{p_{123}}{(2\pi)^2} (A^1 A^2 dV^3 + d\chi^1 A^2 dV^3 + A^1 d\chi^2 dV^3). \quad \text{(C15)}$$
Similarly, ΔS is impossible to be boundary terms since the term $d\chi^1 A^3 dA^3$ cannot be eliminated by subtraction nor be absorbed into a total derivative term. The only way to eliminate $d\chi^1 A^3 dA^3$ by subtraction is to require that

$$d\chi^1 A^3 dA^3 + d\chi^3 X^3 dA^3 = 0,$$

which means that

$$X^3 = - A^3 + \cdots.$$ \hfill (C16)

If so, the gauge transformation of A^3 is

$$A^3 \to d\chi^3 + \cdots$$ \hfill (C17)

which is not well-defined. If $d\chi^1 A^3 dA^3$ can be absorbed into a total derivative term, ΔS should (but in fact does not) contain a $\chi^1 dA^3 dA^3$ term since

$$d (\chi^1 A^3 dA^3) = d\chi^1 A^3 dA^3 + \chi^1 dA^3 dA^3,$$

which is incompatible with

$$\sum_{i=1}^3 \frac{N_i}{\pi} B^i dA^i + \frac{q_{123}}{(2\pi)^2} A^i A^2 dA^3 + \frac{p_{123}}{(2\pi)^2} A^i A^2 B^3$$

Therefore, (C13) cannot be the proper gauge transformations for (52).

So far, we have seen that if the \mathbb{Z}_{N_3} cyclic group structure is respected, we cannot find a proper set of gauge transformations under which the action (52) is invariant up to boundary terms. If the action is imposed to be gauge invariant up to boundary terms, the \mathbb{Z}_{N_3} cyclic group structure would be violated. This dilemma reveals that the action (52) is not a legitimate TQFT theory. In other words, $A^1 A^2 B^3$, i.e., $\Theta_{3,3|1}^{3L}$ is incompatible with $\Theta_{1,2|3}^{3R}$.

3. Derivation of gauge transformations for $S = \int \sum_{i=1}^3 \frac{N_i}{\pi} B^i dA^i + \frac{q_{123}}{(2\pi)^2} A^i A^2 dA^3 + \frac{p_{123}}{(2\pi)^2} A^i A^2 B^3$

The action is

$$S = \int \sum_{i=1}^3 \frac{N_i}{\pi} B^i dA^i + \frac{q_{123}}{(2\pi)^2} A^i A^2 dA^3 + \frac{p_{123}}{(2\pi)^2} A^i A^2 B^3$$ \hfill (C20)

First, we assume $A^3 \to A^3 + d\chi^3$. The test gauge transformations are

$$A^i \to A^i + d\chi^i,$$

$$B^i \to B^i + dV^i + Y^i.$$ \hfill (C21)

Under (C21), the variation of action is (boundary terms neglected)

$$\Delta S = \int \sum_{i=1}^3 \frac{N_i}{\pi} Y^i dA^i$$

\begin{align}
+ \frac{q_{123}}{(2\pi)^2} (A^i d\chi^2 dA^3 + d\chi^1 A^2 dA^3 + d\chi^1 d\chi^2 dA^3) \\
+ \frac{p_{123}}{(2\pi)^2} \left[(d\chi^1 A^2 B^3 + A^1 d\chi^2 B^3 + d\chi^1 d\chi^2 B^3) \\
+ (A^1 A^2 dV^3 + d\chi^1 A^2 dV^3 + A^1 d\chi^2 dV^3) \\
+ (A^1 A^2 Y^3 + d\chi^1 A^2 Y^3 + A^1 d\chi^2 Y^3 + d\chi^1 d\chi^2 Y^3) \right].
\end{align} \hfill (C22)

Notice that the term $d\chi^1 d\chi^2 B^3$ cannot be eliminated by subtraction nor absorbed into a total derivative term. Therefore, action (55) is not gauge invariant under transformation (C21).

Second, we assume $B^3 \to B^3 + dV^3$. The test gauge transformations are

$$A^{1,2} \to A^{1,2} + d\chi^{1,2},$$

$$A^3 \to A^3 + d\chi^3 + X^3,$$

$$B^{1,2} \to B^{1,2} + dV^{1,2} + Y^{1,2},$$

$$B^3 \to B^3 + dV^3.$$ \hfill (C23)
Under (C23), the variation of action is (boundary terms neglected)

$$\Delta S = \int \frac{N_1}{2\pi} Y^1 dA^1 + \frac{N_2}{2\pi} Y^2 dA^2 + \frac{N_3}{2\pi} B^3 dX^3$$

$$+ \frac{q_1}{2\pi^2} \left(A^1 d\chi^2 dA^3 + d\chi^1 A^2 dA^3 + d\chi^1 d\chi^2 dA^3 \right)$$

$$+ \frac{q_2}{2\pi^2} \left(A^1 A^2 dX^3 + A^1 d\chi^2 dX^3 + d\chi^1 A^2 dX^3 + d\chi^1 d\chi^2 dX^3 \right)$$

$$+ \frac{q_3}{2\pi^2} \left(A^1 A^2 B^3 + A^1 d\chi^2 B^3 + d\chi^1 d\chi^2 B^3 \right)$$

$$+ \left(A^1 A^2 dV^3 + d\chi^1 A^2 dV^3 + d\chi^1 d\chi^2 dV^3 \right).$$

(C24)

We expect that ΔS is an integral of total derivative terms. For this purpose, we need to properly construct the shift terms, i.e., X^3, Y^1 and Y^2, such that ΔS is zero up to boundary terms.

For the M term, notice that

$$A^1 d\chi^2 A^3 + d\chi^1 A^2 dA^3 + d\chi^2 A^3 dA^1 - d\chi^1 A^3 dA^2$$

$$= d\chi^2 d (A^1 A^3) + d\chi^1 d (A^1 A^2),$$

(C25)

thus we can let

$$Y^1 = \ldots + \frac{q_1}{2\pi^2} \frac{2\pi}{N_1} d\chi^2 A^3 + \ldots$$

and

$$Y^2 = \ldots + \frac{q_2}{2\pi^2} \frac{2\pi}{N_2} (-d\chi^1 A^3) + \ldots$$

(C26)

(C27)

in order to construct the total derivative terms in Eq. (C25).

For the O term, it cannot be absorbed into a total derivative term since there is no terms containing dB^3 in ΔS. Therefore we have to eliminate the O term by subtraction. To do this, one can assume that

$$\frac{N_1}{2\pi} B^3 dX^3 + \frac{p_1}{2\pi^2} \left(d\chi^1 A^2 B^3 + A^1 d\chi^2 B^3 + d\chi^1 d\chi^2 B^3 \right) = 0$$

(C28)

which leads to

$$dX^3 = \frac{p_1}{2\pi^2} \frac{2\pi}{N_3} \left(-d\chi^1 A^2 - A^1 d\chi^2 - d\chi^1 d\chi^2 \right).$$

(C29)

However, we cannot find a X^3 satisfying Eq. (C29). Alternatively, we can add terms containing dA^1 or dA^2. We can let

$$X = \frac{p_2}{2\pi^2} \frac{2\pi}{N_3} \left(-d\chi^1 A^2 + A^1 d\chi^2 - d\chi^1 d\chi^2 \right)$$

(C30)

hence

$$dX^3 = \frac{p_1}{2\pi^2} \frac{2\pi}{N_3} \left(-d\chi^1 A^2 - \chi^1 dA^2 + dA^1 d\chi^2 - A^1 d\chi^2 - d\chi^1 d\chi^2 \right).$$

(C31)

Then we notice that

$$0 = \frac{N_3}{2\pi} B^3 dX^3 + \frac{p_1}{2\pi^2} \left(d\chi^1 A^2 B^3 + A^1 d\chi^2 B^3 + d\chi^1 d\chi^2 B^3 \right)$$

$$+ \frac{p_2}{2\pi^2} \left(d\chi^1 B^3 dA^2 - \chi^2 B^3 dA^1 \right).$$

(C32)
Therefore, we can let
\[Y^1 = \ldots + \frac{p_{12,3}}{(2\pi)^2} \frac{2\pi}{N_1} (-\chi^2 B^3) + \ldots \]
(C33)
and
\[Y^2 = \ldots + \frac{p_{12,3}}{(2\pi)^2} \frac{2\pi}{N_2} (\chi^1 B^3) + \ldots \]
(C34)
in order to contribute the \(\frac{p_{12,3}}{(2\pi)^2} \) \((\chi^1 B^3 dA^2 - \chi^2 B^3 dA^1)\) term in Eq. (C32).
The \(N\) term, with \(dX^3\) known in Eq. (C31), is (the underlines and underbraces are used to identify terms between equal signs)
\[N = \frac{q_{123}}{(2\pi)^2} \frac{2\pi}{N_3} \left(A^1 dA^2 + A^1 d\chi^2 + d\chi^1 A^2 + d\chi^1 d\chi^2 \right) dX^3 \]
\[= \frac{q_{123}}{(2\pi)^2} \frac{2\pi}{N_3} \left(A^1 dA^2 + A^1 d\chi^2 + d\chi^1 A^2 + d\chi^1 d\chi^2 \right) \left(-A^1 d\chi^2 - d\chi^1 A^2 - \chi^1 dA^2 + \chi^2 dA^1 - d\chi^1 d\chi^2 \right) \]
\[= \frac{q_{123}}{(2\pi)^2} \frac{2\pi}{N_3} \left(-A^1 d\chi^2 - d\chi^1 A^2 - \chi^1 dA^2 + \chi^2 dA^1 \right) \left(A^1 d\chi^2 + A^1 d\chi^2 + d\chi^1 A^2 + d\chi^1 d\chi^2 \right) \]
\[= \frac{q_{123}}{(2\pi)^2} \frac{2\pi}{N_3} \left[-A^1 d\chi^2 - d\chi^1 A^2 + \left(A^1 dA^2 + A^1 d\chi^2 + d\chi^1 A^2 + d\chi^1 d\chi^2 \right) dA^1 \right.
\[+ \left. \left(-A^1 d\chi^2 - d\chi^1 A^2 - \chi^1 dA^2 + \chi^2 dA^1 \right) \right] \]
(C35)
Notice that
\[-A^1 d\chi^2 d\chi^1 A^2 = A^1 A^2 d\chi^1 d\chi^2 \]
(C36)
and
\[A^1 A^2 d\chi^1 d\chi^2 + \chi^1 A^2 d\chi^2 dA^1 - d (A^1 A^1) \chi^2 dA^2 \]
\[= -A^1 d\chi^1 A^2 d\chi^2 + dA^1 A^2 d\chi^2 - d (A^1 A^1) \chi^2 dA^2 \]
\[= d (A^1 A^1) A^2 d\chi^2 - d (A^1 A^1) \chi^2 dA^2 \]
\[= -d (A^1 A^1) d (A^2 \chi^2), \]
(C37)
we could have \(\frac{N_3}{2\pi} Y^1 dA^2 + \frac{N_2}{2\pi} Y^2 dA^2 + \text{term } N = \text{total derivative terms, if} \)
\[Y^1 = \ldots + \frac{q_{123}}{(2\pi)^2} \frac{2\pi}{N_3} \frac{2\pi}{N_1} \left[A^1 A^2 d\chi^2 - (A^1 A^2 \chi^2 + A^1 d\chi^2 \chi^2 + d\chi^1 A^2 \chi^2 + d\chi^1 d\chi^2 \chi^2) \right] + \ldots \]
(C38)
and
\[Y^2 = \ldots + \frac{q_{123}}{(2\pi)^2} \frac{2\pi}{N_3} \frac{2\pi}{N_2} \left[-d (A^1 A^1) \chi^2 + (A^1 A^2 \chi^1 + A^1 d\chi^2 \chi^1 + d\chi^1 A^2 \chi^1 + d\chi^1 d\chi^2 \chi^1) \right] + \ldots \]
(C39)
For the \(P\) term, notice that
\[d (A^1 A^2 V^3) + d (\chi^1 A^2 dV^3) - d (A^1 \chi^2 dV^3) \]
\[= dA^1 A^2 V^3 - A^1 dA^2 V^3 + \chi^1 dA^2 dV^3 - dA^1 \chi^2 dV^3 + A^1 A^2 dV^3 + d\chi^1 A^2 dV^3 + A^1 d\chi^2 dV^3, \]
(C40)
thus we can let

\[Y^1 = \cdots + \frac{p_{12,3}}{(2\pi)^3 N_1} \frac{2\pi}{(2\pi)^3} (A^2V^3 - \chi^2dV^3) + \cdots \]

(C41)

and

\[Y^2 = \cdots + \frac{p_{12,3}}{(2\pi)^3 N_2} \frac{2\pi}{(2\pi)^3} (-A^1V^3 + \chi^1dV^3) + \cdots \]

(C42)

in order to provide the \((dA^1A^2V^3 - A^1dA^2V^3 + \chi^1dA^2dV^3 - dA^1\chi^2dV^3)\) term in Eq. (C40).

According to Eqs. (C26), (C27), (C33), (C34), (C38), (C39), (C41) and (C42), \(\Delta S = \int \) (total derivative terms) or \(S \) is invariant up to total derivative terms under transformation

\[
\begin{align*}
A^1 &\rightarrow A^1 + d\chi^1, \\
A^2 &\rightarrow A^2 + d\chi^2, \\
A^3 &\rightarrow A^3 + d\chi^3 + X^3, \\
B^1 &\rightarrow B^1 + dV^1 + Y^1, \\
B^2 &\rightarrow B^2 + dV^2 + Y^2, \\
B^3 &\rightarrow B^3 + dV^3;
\end{align*}
\]

(C43)

where

\[
\begin{align*}
X^3 &= -\frac{p_{12,3}}{(2\pi)^3 N_3} \left(\chi^1 A^2 + \frac{1}{2}\chi^1 d\chi^2 \right) + \frac{p_{12,3}}{(2\pi)^3} \left(\chi^2 A^1 + \frac{1}{2}\chi^2 d\chi^1 \right), \\
Y^1 &= \frac{q_{123}}{2\pi N_1} d\chi^1 A^3 - \frac{p_{12,3}}{(2\pi)^3} \left(\chi^2 B^3 - A^2V^3 + \chi^2 dV^3 \right) \\
&\quad + \frac{q_{123}}{(2\pi)^2} \frac{2\pi}{(2\pi)^3 N_3} \left[\chi^1 A^2 d\chi^2 - (A^1 A^2 \chi^2 + A^1 d\chi^2 \chi^2 + d\chi^1 A^2 \chi^2 + d\chi^1 d\chi^2 \chi^2) \right], \\
Y^2 &= -\frac{q_{123}}{2\pi N_2} d\chi^1 A^3 + \frac{p_{12,3}}{(2\pi)^3} \left(\chi^1 B^3 - A^1V^3 + \chi^1 dV^3 \right) \\
&\quad + \frac{q_{123}}{(2\pi)^2} \frac{2\pi}{(2\pi)^3 N_3} \left[-d(A^1 \chi^1) \chi^2 + (A^1 A^2 \chi^1 + A^1 d\chi^2 \chi^1 + d\chi^1 A^2 \chi^1 + d\chi^1 d\chi^2 \chi^1) \right].
\end{align*}
\]

(C44)

4. Derivation of incompatibility between \(A^1A^2A^3A^4 \) and \(A^1A^2B^4 \)

If we assume that \(A^1A^2A^3A^4 \) are compatible with \(A^1A^2B^4 \), the TQFT action should be

\[
S = \sum_{i=1}^{4} \frac{N_i}{2\pi} B^i dA^i + \frac{q_{123}}{(2\pi)^3} A^1 A^2 A^3 A^4 + \frac{p_{12,3}}{(2\pi)^3} A^1 A^2 B^4.
\]

(C45)

In the action (C45), \(B^1, B^2 \) and \(B^3 \) serve as Lagrange multipliers, imposing \(dA^1 = dA^2 = dA^3 = 0 \), i.e., the gauge transformations of \(A^1, A^2 \) and \(A^3 \) are \(A^{1,2,3} \rightarrow A^{1,2,3} + d\chi^{1,2,3} \). The \(\mathbb{Z}_{N_1}, \mathbb{Z}_{N_2} \) and \(\mathbb{Z}_{N_3} \) cyclic group structures are encoded in \(\hat{A}^I \in \frac{2\pi}{N_I} \mathbb{Z}_{N_I} \), where \(I = 1, 2, 3 \). The remaining \(\mathbb{Z}_{N_4} \) cyclic group structure can be encoded in \(\hat{A}^4 \in \frac{2\pi}{N_4} \mathbb{Z}_{N_4} \) or \(\hat{B}^I \in \frac{2\pi}{N_I} \mathbb{Z}_{N_I} \), corresponding to \(A^4 \rightarrow A^4 + d\chi^4 \) or \(B^4 \rightarrow B^4 + dV^4 \) respectively. In the following text, we are going to examine both cases. However, we will find that neither of them would result in gauge transformations under which the action (C45) is gauge invariant up to boundary terms.
First, we assume that the gauge transformations are

\[
\begin{align*}
A_1 &\to A_1 + d\chi_1, \\
A_2 &\to A_2 + d\chi_2, \\
A_3 &\to A_3 + d\chi_3, \\
A_4 &\to A_4 + d\chi_4, \\
B_1 &\to B_1 + dV^1 + Y^1, \\
B_2 &\to B_2 + dV^2 + Y^2, \\
B_3 &\to B_3 + dV^3 + Y^3, \\
B_4 &\to B_4 + dV^4 + Y^4.
\end{align*}
\]

\[(C46)\]

Under (C46), the variation of action is (boundary terms neglected)

\[
\Delta S = \int \sum_{i=1}^{4} \frac{N_i}{2\pi} Y^i dA^i \\
+ \frac{q_{1234}}{(2\pi)^3} (d\chi_1 A^2 A^3 A^4 + A^1 d\chi_2 A^3 A^4 + A^1 A^2 d\chi_3 A^4 + A^1 A^2 A^3 d\chi_4) \\
+ d\chi_1 d\chi_2 A^3 A^4 + d\chi_1 A^2 d\chi_3 A^4 + A^1 d\chi_2 d\chi_3 A^4 + d\chi_1 A^2 A^3 d\chi_4 + A^1 A^2 d\chi_3 d\chi_4 \\
+ A^1 d\chi_2 d\chi_3 d\chi_4 + d\chi_1 A^2 d\chi_3 d\chi_4 + d\chi_1 d\chi_2 d\chi_3 A^4 + d\chi_1 d\chi_2 d\chi_3 A^4 \\
+ \frac{p_{12,4}}{(2\pi)^2} (A^1 A^2 B^4 + d\chi_1 A^2 B^4 + d\chi_1 d\chi_2 B^4) \\
+ \frac{p_{12,4}}{(2\pi)^2} (A^1 A^2 dV^4 + A^1 d\chi_2 dV^4 + d\chi_1 A^2 dV^4 + d\chi_1 d\chi_2 dV^4) \\
+ \frac{p_{12,4}}{(2\pi)^2} (A^1 A^2 Y^4 + A^1 d\chi_2 Y^4 + d\chi_1 A^2 Y^4 + d\chi_1 d\chi_2 Y^4).
\]

\[(C47)\]

We recognize that \(d\chi_1 d\chi_2 B^4\) is a stubborn term, i.e., it cannot be eliminated by substraction or be absorbed into a total derivative term. Due to the existence of stubborn term, \(\Delta S\) cannot be written as an integral of total derivative terms. Therefore, the action (C45) is not gauge invariant up to boundary terms under (C46).

Next, we assume that the gauge transformations are

\[
\begin{align*}
A_1 &\to A_1 + d\chi_1, \\
A_2 &\to A_2 + d\chi_2, \\
A_3 &\to A_3 + d\chi_3, \\
A_4 &\to A_4 + d\chi_4 + X^4, \\
B_1 &\to B_1 + dV^1 + Y^1, \\
B_2 &\to B_2 + dV^2 + Y^2, \\
B_3 &\to B_3 + dV^3 + Y^3, \\
B_4 &\to B_4 + dV^4.
\end{align*}
\]

\[(C48)\]
Under (C46), the variation of action is (boundary terms neglected)

\[
\Delta S = \int \frac{3}{2\pi} \sum_{i=1}^{N} N_i V_i dA_i + \frac{N_4}{2\pi} B^4 dX^4 \\
+ \frac{q_{1234}}{(2\pi)^4} \left(d\chi_1 A^2 A^3 A^4 + A^1 d\chi_2 A^3 A^4 + A^1 A^2 d\chi_3 A^4 + A^1 A^2 A^3 d\chi_4 \\
+ d\chi_1 d\chi_2 A^3 A^4 + d\chi_1 A^2 d\chi_3 A^4 + A^1 d\chi_2 d\chi_3 A^4 + d\chi_1 A^2 A^3 d\chi_4 + A^1 A^2 d\chi_3 A^4 + A^1 A^2 d\chi_3 d\chi_4 \\
+ A^1 d\chi_2 d\chi_3 d\chi_4 + d\chi_1 A^2 d\chi_3 d\chi_4 + d\chi_1 d\chi_2 A^3 d\chi_4 + d\chi_1 d\chi_2 d\chi_3 A^4 \right) \\
+ \frac{q_{1234}}{(2\pi)^4} \left(A^1 A^2 A^3 X^4 + A^1 d\chi_2 d\chi_3 A^4 + d\chi_1 A^2 A^3 X^4 + d\chi_1 d\chi_2 A^3 X^4 \right) \\
+ \frac{q_{1234}}{(2\pi)^4} \left(A^1 d\chi_2 A^3 X^4 + A^1 d\chi_2 d\chi_3 X^4 + d\chi_1 A^2 d\chi_3 X^4 + d\chi_1 d\chi_2 d\chi_3 X^4 \right) \\
+ \frac{p_{124}}{(2\pi)^2} \left(A^1 d\chi_2 B^4 + A^1 A^2 B^4 + d\chi_1 d\chi_2 B^4 \right) \\
+ \frac{p_{124}}{(2\pi)^2} \left(A^1 A^2 dV^3 + A^1 d\chi_2 dV^3 + d\chi_1 A^2 dV^3 \right) \\
\] (C49)

We recognize that \(d\chi_1 d\chi_2 d\chi_3 A^4 \) cannot be eliminated by subtraction or be absorbed into a total derivative term. If we want to eliminate \(d\chi_1 d\chi_2 d\chi_3 A^4 \) by subtraction, we could only expect that

\[
d\chi_1 d\chi_2 d\chi_3 A^4 + d\chi_1 d\chi_2 d\chi_3 X^4 = d\chi_1 d\chi_2 d\chi_3 (A^4 - A^4 + \cdots) \] (C50)

which means that \(X^4 = -A^4 + \cdots \), hence the gauge transformation of \(A^4 \) is ill-defined:

\[
A^4 \rightarrow d\chi_4 + \cdots. \] (C51)

If we want to absorb \(d\chi_1 d\chi_2 d\chi_3 A^4 \) into a total derivative term, we need a \(\chi_1 d\chi_2 d\chi_3 dA^4 \) term in \(\Delta S \) since

\[
d(\chi_1 d\chi_2 d\chi_3 A^4) = d\chi_1 d\chi_2 d\chi_3 A^4 + \chi_1 d\chi_2 d\chi_3 dA^4. \] (C52)

However, this \(\chi_1 d\chi_2 d\chi_3 dA^4 \) term does not exist in \(\Delta S \). Therefore, due to the “stubborn term” \(d\chi_1 d\chi_2 d\chi_3 A^4 \), the action (C45) is not gauge invariant up to boundary terms under (C46).

Finally, we can conclude that the action (C45) could never be gauge invariant up to boundary terms under gauge transformations which respect \(Z_N \), cyclic group structures, hence it is not a legitimate TQFT action. Therefore \(A^1 A^2 A^3 A^4 (\Theta_{1,2,3,4}^{4L}) \) is incompatible with \(A^1 A^2 B^4 \) \((\Theta_{1,2,3,4}^{PR})\).

[1] Xiao-Gang Wen, “Topological orders and edge excitations in fractional quantum hall states,” Adv. Phys. 44, 405–473 (1995).
[2] Xiao-Gang Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons (Oxford University Press, New York, 2004).
[3] Michael Levin and Xiao-Gang Wen, “Colloquium: Photons and electrons as emergent phenomena,” Rev. Mod. Phys. 77, 871–879 (2005).
[4] Tian Lan, Liang Kong, and Xiao-Gang Wen, “Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with onsite symmetries,” Phys. Rev. B 95, 235140 (2017).
[5] Xiao-Gang Wen, “A theory of 2+1D bosonic topological orders,” arXiv e-prints, arXiv:1506.05768 (2015), arXiv:1506.05768 [cond-mat.str-el].
[6] Meng-Yuan Li and Peng Ye, “Fracton physics of spatially extended excitations,” Phys. Rev. B 101, 245134 (2020).
[7] Michael Levin and Zheng-Cheng Gu, “Braiding statistics approach to symmetry-protected topological phases,” Phys. Rev. B 86, 115109 (2012).
[8] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group,” Phys. Rev. B 87, 155114 (2013).
[9] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
[10] Frank Pollmann, Elzer Berg, Ari M. Turner, and Masaki Oshikawa, “Symmetry protection of topological phases in one-dimensional quantum spin systems,” Phys. Rev. B 85, 075125 (2012).
[11] Zheng-Cheng Gu and Xiao-Gang Wen, “Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order,” Phys. Rev. B 80, 155131 (2009).
[12] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma, “Non-abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083–1159 (2008).
[13] B. Blok and X. G. Wen, “Effective theories of the fractional quantum hall effect at generic filling fractions,” Phys. Rev. B 42, 8133–8144 (1990).
[14] Eduardo Fradkin, *Field theories of condensed matter physics* (Cambridge University Press, New York, 2013).
[15] Lawrence M. Krauss and Frank Wilczek, “Discrete gauge symmetry in continuum theories,” Phys. Rev. Lett. 62, 1221–1223 (1989).
[16] T. H. Hansson, Vadim Oganesyan, and S. L. Sondhi, “Superconductors are topologically ordered,” Annals of Physics 313, 497–534 (2004).
[17] Clement Delcamp and Apoorv Tiwari, “From gauge to higher gauge models of topological phases,” Journal of High Energy Physics 2018, 1–69 (2018).
[18] Clement Delcamp and Apoorv Tiwari, “On 2-form gauge models of topological phases,” Journal of High Energy Physics 2019, 1–84 (2019).
[19] Alioscia Hamma, Paolo Zanardi, and Xiao-Gang Wen, “String and membrane condensation on three-dimensional lattices,” Phys. Rev. B 72, 035307 (2005).
[20] Alexei Kitaev, “Anyons in an exactly solved model and beyond,” Ann. Phys. 321, 2–111 (2006).
[21] John Preskill, “Lecture notes for physics 219: Quantum computation,” (1999).
[22] Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev. 115, 485–491 (1959).
[23] John Preskill and Lawrence M. Krauss, “Local discrete symmetry and quantum-mechanical hair,” Nuclear Physics B 341, 50 – 100 (1990).
[24] M. G. Alford and Frank Wilczek, “Aharonov-bohm interaction of cosmic strings with matter,” Phys. Rev. Lett. 62, 1071–1074 (1989).
[25] Mark G. Alford, Kai-Ming Lee, John March-Russell, and John Preskill, “Quantum field theory of non-abelian strings and vortices,” Nuclear Physics B 384, 251 – 317 (1992).
[26] Chenjie Wang and Michael Levin, “Braiding statistics of loop excitations in three dimensions,” Phys. Rev. Lett. 113, 080403 (2014).
[27] Juven C. Wang, Zheng-Cheng Gu, and Xiao-Gang Wen, “Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond,” Phys. Rev. Lett. 114, 031601 (2015).
[28] Pavel Putrov, Juven Wang, and Shing-Tung Yau, “Braiding statistics and link invariants of bosonic/fermionic topological quantum matter in 2+1 and 3+1 dimensions,” Annals of Physics 384, 254 – 287 (2017).
[29] Peng Ye and Zheng-Cheng Gu, “Topological quantum field theory of three-dimensional bosonic abelian-symmetry-protected topological phases,” Phys. Rev. B 93, 205157 (2016).
[30] Shang-Qiang Ning, Zheng-Xin Liu, and Peng Ye, “Symmetry enrichment in three-dimensional topological phases,” Phys. Rev. B 94, 245120 (2016).
[31] J. Wang, X.-G. Wen, and S.-T. Yau, “Quantum Statistics and Spacetime Surgery,” arXiv e-prints, arXiv:1406.7278 (2014), arXiv:1602.05951 [cond-mat.str-el].
[32] Apoorv Tiwari, Xiao Chen, and Shinsei Ryu, “Wilson operator algebras and ground states of coupled BF theories,” Phys. Rev. B 95, 245124 (2017).
[33] Ye Peng, “Gauge theory of strongly-correlated symmetric topological phases,” Acta Physica Sinica 69, 077102 (2020).
[34] Bo Han, Huajia Wang, and Peng Ye, “Generalized wen-zee terms,” Phys. Rev. B 99, 205120 (2019).
[35] AtMa P. O. Chan, Peng Ye, and Shinsei Ryu, “Braiding with borromean rings in (3 + 1)-dimensional spacetime,” Phys. Rev. Lett. 121, 061601 (2018).
[36] Edward Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys. 121, 351–399 (1989).
[37] Gary T Horowitz, “Exactly soluble diffeomorphism invariant theories,” Commun. Math. Phys. 125, 417–437 (1989).
[38] John C. Baez and John Huerta, “An invitation to higher gauge theory,” General Relativity and Gravitation 43, 2335–2392 (2011).
[39] Peng Ye and Juven Wang, “Symmetry-protected topological phases with charge and spin symmetries: Response theory and dynamical gauge theory in two and three dimensions,” Phys. Rev. B 88, 235109 (2013).
[40] Peng Ye and Zheng-Cheng Gu, “Vortex-line condensation in three dimensions: A physical mechanism for bosonic topological insulators,” Phys. Rev. X 5, 021029 (2015).
[41] Ashvin Vishwanath and T. Senthil, “Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect,” Phys. Rev. X 3, 011016 (2013).
[42] Peng Ye, Meng Cheng, and Eduardo Fradkin, “Fractional s-duality, classification of fractional topological insulators, and surface topological order,” Phys. Rev. B 96, 085125 (2017).
[43] Peng Ye, Taylor L. Hughes, Joseph Maciejko, and Eduardo Fradkin, “Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry,” Phys. Rev. B 94, 115104 (2016).
[44] John Milnor, “Link groups,” Ann. Math. 59, 177 (1954).
[55] Blake Mellor and Paul Melvin, “A geometric interpretation of Milnor’s triple linking numbers,” Algebr. Geom. Topol. 3, 557–568 (2003).

[56] Michael A. Levin and Xiao-Gang Wen, “String-net condensation: A physical mechanism for topological phases,” Phys. Rev. B 71, 045110 (2005).

[57] Robbert Dijkgraaf and Edward Witten, “Topological gauge theories and group cohomology,” Commun. Math. Phys. 129, 393–429 (1990).

[58] Thomas Iadecola, Titus Neupert, Claudio Chamon, and Christopher Mudry, “Wire constructions of abelian topological phases in three or more dimensions,” Phys. Rev. B 93, 195136 (2016).

[59] Thomas Iadecola, Titus Neupert, Claudio Chamon, and Christopher Mudry, “Ground-state degeneracy of non-abelian topological phases from coupled wires,” Phys. Rev. B 99, 245138 (2019).

[60] Zheng-Cheng Gu, Juven C. Wang, and Xiao-Gang Wen, “Multikink topological terms and charge-binding domain-wall condensation induced symmetry-protected topological states: Beyond Chern-Simons/BF field theories,” Phys. Rev. B 93, 115136 (2016).

[61] Zhi-Feng Zhang and Peng Ye, (2021), unpublished.

[62] Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett, “Generalized global symmetries,” J. High Energy Phys. 2015, 1–62 (2015).

[63] Anton Kapustin and Nathan Seiberg, “Coupling a QFT to a TQFT and duality,” Journal of High Energy Physics 2014, 1 (2014).

[64] C. W. von Keyserlingk and F. J. Burnell, “Walker-Wang models and axion electrodynamics,” Phys. Rev. B 91, 045134 (2015).

[65] Kevin Walker and Zhenghan Wang, “(3+1)-TQFTs and topological insulators,” Frontiers of Physics 7, 150–159 (2012).