Electrochemical performance and reaction mechanism investigation of V$_2$O$_5$ positive electrode material for aqueous rechargeable zinc batteries

Qiang Fua, Jiaqi Wanga, Angelina Sarapulovaa, Lihua Zhua, Alexander Missyulc, Edmund Welterd, Xianlin Luoa, Ziming Dinge,f, Michael Knappa, Helmut Ehrenberga,b, Sonia Dsokea,b

aInstitute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
bHelmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
cCELLS-ALBA Synchrotron, E-08290 Cerdanyola del Valles, Barcelona, Spain
dDeutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
eInstitute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
fTechnische Universität Darmstadt, 64289 Darmstadt, Germany

Corresponding author: qiang.fu@kit.edu (Q. Fu)
Tel: 49-721 608-41445, Fax: 49-721 608-28521.
Figure S1 Discharge-charge profiles of V$_2$O$_5$ nanowires at 200 mA g$^{-1}$ in 1 M ZnSO$_4$
(b) 10th pattern of discharged V$_2$O$_5$
- Yobs
- Ycalc
- Difference
- Bragg

Intensity / a.u.
2 Theta / degree
Zn$_{0.15}$V$_2$O$_5$
Zn$_{3.8}$O$_5$$_2V_2O_2$$_2H_2$O

(c) 36th pattern, fully discharged V$_2$O$_5$
- Yobs
- Ycalc
- Difference
- Bragg

Intensity / a.u.
2 Theta / degree
1: Zn$_{0.84}$V$_2$O$_5$
2: Zn$_{3.8}$O$_5$$_2V_2O_2$$_2H_2$O
3: ZnSO$_4$Zn$_{5}$OH$_{5}$$_5H_2$O
Figure S2 Rietveld refinement based on the pattern of the pristine V_2O_5 (a), discharged state in the beginning of Region II with the capacity of 44 mAh g$^{-1}$ (10th pattern, 1.02 V) (b), first fully discharged V_2O_5 electrode at 0.3 V (36th pattern) (c), fully charged at 1.6 V(69th pattern) (d), and 2nd fully discharged V_2O_5 electrode at 0.3 V (97th pattern) (e)
Figure S3 In operando synchrotron diffraction of V$_2$O$_5$ during the first one and half cycles and the corresponding voltage profile at a current density of 50 mA g$^{-1}$
Figure S4 Images of separator from the 1st discharged V$_2$O$_5$ at 0.3 V (a) and the 1st charged V$_2$O$_5$ at 1.6 V (b)

Figure S5 Discharge-charge profiles of V$_2$O$_5$ in 1 M ZnSO$_4$ electrolyte for *in operando* XAS (50 mA g$^{-1}$)
Figure S6 STEM-HAADF EDX mapping of O (red), S (blue), V (magenta), and Zn (green) for the 1st discharged V$_2$O$_5$
Samples	Wavenumbers / cm\(^{-1}\)	assignments
Pristine and	994	V-O(1) stretching mode
charged V\(_2\)O\(_5\)	700	V–O(2) stretching vibration
	528	V–O(4) stretching vibration
	484	V–O(3) bending vibration
	405 and 284	V-O(1) stretching and bending vibrations
	304	V–O(4) bending vibrations
	197	δ(O2-V-O2)
	145	δ(O3-V-O2)
Discharged	1129, 967, and 610	\(v_3, v_1, v_4\) of SO₄²⁻ vibration in
V\(_2\)O\(_5\)	876 and 450	ZnSO\(_4\)Zn\(_3\)(OH)\(_n\)·nH\(_2\)O
		V-O and Zn-O vibration of Zn\(_x\)V\(_2\)O\(_5\) and
		Zn\(_3\)(OH)\(_2\)V\(_2\)O\(_7\)·2H\(_2\)O
Zn counter	440 and 566	Zn-O vibration of Zn\(_{1+x}\)O on the surface
electrode		of Zn
	1129, 967, and 398	\(v_3, v_1, v_4\) of SO₄²⁻ vibration in the
		ZnSO\(_4\)Zn\(_3\)(OH)\(_n\)·nH\(_2\)O