Toeplitz algebras associated to Endomorphisms of
Ore semigroups

S. Sundar
March 4, 2015

Abstract

In this paper, we consider the Toeplitz algebra associated to actions of Ore semigroups on C^*-algebras. In particular, we consider injective and surjective actions of such semigroups. We use the theory of groupoid dynamical systems to represent the Toeplitz algebra as a groupoid crossed product. We also discuss the K-theory of the Toeplitz algebra in some examples. For instance, we show that for the semigroup of positive matrices, the K-theory of the associated Toeplitz algebra vanishes.

AMS Classification No. : Primary 22A22; Secondary 54H20, 43A65, 46L55.
Keywords. Toeplitz C^*-algebras, Semigroups, Groupoid dynamical systems.

Contents

1 Introduction 2
2 Groupoid dynamical systems 6
3 Wiener-Hopf groupoid 9
4 The Toeplitz algebra associated to Endomorphisms of P 12
5 The injective case 15
6 The surjective case 25
7 Morita equivalence 35
1 Introduction

Group C^*-algebras and the associated crossed products have always been at the centre of interest in the theory of C^*-algebras. In the nineties, Gerard J. Murphy in a series of papers studied C^*-algebras associated to semigroups and semigroup actions. The reader is referred to [Mur90], [Mur94] and the references therein for the work of Murphy on semigroup C^*-algebras. Semigroup C^*-algebras is revived again in the past 7 years with the work [Cun08] of Cuntz on the C^*-algebras associated to the "ax+b"-semigroup. We refer to [Li12], [Li13] for recent developments on semigroup C^*-algebras. Even though we can now say that the literature on semigroup C^*-algebras and semigroup crossed products is vast, the literature on C^*-algebras associated to topological semigroups is few in comparison to that on discrete semigroups.

The paper [MR82] by Muhly and Renault on Wiener-Hopf C^*-algebras associated to cones in \mathbb{R}^n can be considered as the first systematic attempt in the direction of topological semigroups. Renault and Muhly made extensive use of groupoid techniques to explore the Wiener-Hopf algebras associated to polyhedral cones and self-dual cones. Later the works of Nica ([Nic87], [Nic90]), Hilgert and Neeb ([HN95b], [HN95a]) extended the analysis initiated in [MR82] to other semigroups in particular, by Hilgert and Neeb, to subsemigroups of Lie groups. In [RS14], based on the techniques used in [HN95b], the Wiener-Hopf C^*-algebras associated to Ore semigroups are studied and a groupoid picture is obtained for them. Nevertheless, up to the author’s knowledge, the only reference in the literature where Wiener-Hopf or Toeplitz type C^*-algebra associated to actions of topological semigroups is considered is [KS97]. The action of the semigroup of positive real line on a C^*-algebra is considered by Khoshkam and Skandalis in [KS97].

Acknowledgement: This work should be seen as a continuation of my work done in collaboration with Prof. Renault. I would like to thank Prof. Renault for inviting me for a month at Orleans during Sept-Oct 2013. For, the results of this paper are shaped by the discussions that I had with Prof. Renault on groupoids. I would also like to thank Prof. Emmanuel Germain of university of Caen for funding my visit and Anne Liger for taking care of everything at Orleans.
fact, the present paper is an outgrowth of the author’s effort to understand \([KS97]\), the author’s desire to place \([KS97]\) within the framework of groupoids and to extend some of the results in \([KS97]\) to possibly more general semigroups. This article owes its existence to \([KS97]\). In fact, the title of this paper is inspired by that of \([KS97]\).

A brief outline of the problem considered in this paper is given below. First let us recall the construction of the reduced crossed product. Let \(G\) be a locally compact group, \(A\) be a \(C^*\)-algebra and \(\alpha : G \to Aut(A)\) be a strongly continuous action. Consider the Hilbert \(A\)-module \(E := A \otimes L^2(G) = L^2(G, A)\). Let \(L_A(E)\) be the \(C^*\)-algebra of adjointable operators on \(E\). Define \(\tilde{\pi} : A \to L_A(E)\) and \(\tilde{U} : G \to L_A(E)\) by the formula:

\[
\tilde{\pi}(x)(\xi)(h) := \alpha^{-1}_h(x)\xi(h) \\
\tilde{U}_g(\xi)(h) := \xi(g^{-1}h)
\]

for \(x \in A, g \in G\) and \(\xi \in L^2(G, A)\). The reduced crossed product \(A \rtimes_{\text{red}} G\) is defined as the \(C^*\)-algebra generated by \(\{ \int \tilde{\pi}(f(g))\tilde{U}_g dg : f \in C_c(G, A) \}\). Here \(C_c(G, A)\) denotes the algebra of compactly supported continuous functions on \(G\) taking values in \(A\). The definition of the algebra \(A \rtimes_{\text{red}} G\), at first sight, seems to rely on the representation \(\tilde{\pi}\) which in turn depends on the fact that \(G\) acts by automorphisms on \(A\). Thus, it is not clear how to define the reduced crossed product \(A \rtimes_{\text{red}} G\) when \(G\) is just a subsemigroup of a group and the action is only by endomorphisms. However the representations \(\tilde{\pi}\) and \(\tilde{U}\) can be twisted using the unitary on \(L^2(G)\) induced by the inversion operation \(G \ni g \mapsto g^{-1} \in G\) up to the modular function. Thus define \(\pi : A \to L_A(E)\) and \(U : G \to L_A(E)\) by the formulas:

\[
\pi(x)(\xi)(h) := \alpha_h(x)\xi(h) \\
U_g(\xi)(h) := \xi(hg^{-1})\Delta(g)^{-\frac{1}{2}}
\]

Let \(V\) be the unitary on \(L^2(G, A)\) defined by \(V\xi(g) := \xi(g^{-1})\Delta(g)^{-\frac{1}{2}}\). Then \(V\tilde{\pi}(.)V^* = \pi(.)\) and \(V\tilde{U}_g V^* = U_{g^{-1}}\) for \(g \in G\). Thus \(A \rtimes_{\text{red}} G\) can be defined as the \(C^*\)-algebra generated by \(\{ \int \pi(f(g))U_g dg : f \in C_c(G, A) \}\). The representation \(\pi\) and \(U\) makes sense as long as \(G\) is just a subsemigroup of a locally compact group and \(\alpha\) is just an action by endomorphisms.

Let \(P \subset G\) be a closed subsemigroup of a locally compact group \(G\) containing the identity element. In this paper, we consider only semigroups of Ore type. We assume that \(P\) is right Ore i.e. \(PP^{-1} = G\) and \(Int(P)\) is dense in \(P\). At present, it is not clear to the author whether this assumption can be relaxed. Nevertheless, this covers quite a few examples like polyhedral cones in \(\mathbb{R}^n\), cones of positive matrices in \(M_n(\mathbb{C})\),
the subsemigroup of positive elements in the Heisenberg group etc. Thus let $P \subset G$ be a right Ore closed subsemigroup of G such that $\text{Int}(P)$ is dense in P. Let $\alpha : P \to \text{End}(A)$ be a strongly continuous homomorphism where $\text{End}(A)$ denote the algebra of \ast-endomorphisms. Consider the Hilbert A-module $E := A \otimes L^2(P) = L^2(P, A)$. Let $\pi : A \to \mathcal{L}_A(E)$ and $V : P \to \mathcal{L}_A(E)$ be defined by the formulas:

$$
\pi(x)(\xi)(a) : = \alpha_a(x)\xi(a)
$$

$$
V_b(\xi)(a) : = \xi(ab^{-1})\Delta(b)^{-\frac{1}{2}}
$$

Then π is a representation and V is a strictly continuous representation of P as isometries. Moreover we have the covariance relation

$$
V_a^*\pi(x)V_a = \pi(\alpha_a(x))
$$

for $a \in P$ and $x \in A$. Just like in the group case, we call the C^*-algebra generated by $\{\int \pi(f(a))V_a da : f \in C_c(P, A)\}$ as the reduced crossed product of A by P and denote it by $A \rtimes_{\text{red}, \alpha} P$. There is another related C^*-algebra which we call the Wiener-Hopf or the Toeplitz algebra associated to the action α. For $g \in G$, write $g = ab^{-1}$ with $a,b \in P$ and let $W_g := V_b^*V_a$. Then it is trivial to verify that W_g is well defined and the map $G \ni g \to W_g \in \mathcal{L}_A(E)$ is strictly continuous. We denote the C^*-algebra generated by $\{\pi(f(g))W_g dg : f \in C_c(G, A)\}$ as $\mathfrak{T}(A, P, \alpha)$. Note that if $A = \mathbb{C}$, then $\mathfrak{T}(A, P, \alpha)$ is just the usual Wiener-Hopf algebra whose study was initiated in [MR82]. The Toeplitz algebra $\mathfrak{T}(A, P, \alpha)$ is studied in [KS97] when P is either \mathbb{N} or the additive semigroup $[0, \infty)$ of positive reals.

In this paper, we examine the C^*-algebra $A \rtimes_{\text{red}, \alpha} P$ in the following two cases

1. The algebra A is unital and the action α is unital and injective i.e. for each $a \in P$, α_a is unital and injective.

2. The action α is surjective i.e. α_a is surjective for each $a \in P$.

We show that $A \rtimes_{\text{red}, \alpha} P$ coincides with $\mathfrak{T}(A, P, \alpha)$ is both the injective and the surjective case. The main result(s) of this paper is to represent $\mathfrak{T}(A, P, \alpha)$ as a groupoid crossed product in both the injective and the surjective case (Thm. 5.8 and Thm. 6.12).

Let $C(G)$ be the space of closed subsets of G endowed with the Vietoris topology. With respect to the Vietoris topology $C(G)$ is compact. Moreover G acts on $C(G)$ on the right by right multiplication. Denote the closure of $\{P^{-1}a : a \in P\}$ by Ω. Then Ω is compact and is left invariant under P. Let G be the groupoid obtained by restricting
the transformation groupoid \(C(G) \rtimes G \) to \(\Omega \). The groupoid \(G \) is the same as the Renault-Deaconu semi-direct product groupoid \(\Omega \rtimes P \) which we also call as the Wiener-Hopf groupoid. It is shown in [RS14] the Wiener-Hopf groupoid possesses a Haar system, one such is given by the Haar measure restricted to the fibres.

In both the injective and the surjective cases, we construct an upper semi-continuous bundle \(\mathcal{A} \) over the unit space \(\Omega \) and a left action of the Wiener-Hopf groupoid \(\mathcal{G} := \Omega \rtimes P \) on \(\mathcal{A} \). However the construction of the bundle \(\mathcal{A} \) is different in both the cases and at present the author is not able to uniformise the construction. The construction of the bundle \(\mathcal{A} \) (its fibres) in the injective case relies on a dilation principle whereas in the surjective case it relies on a quotient construction. But in both the cases, we show that \(\mathcal{T}(A,P,\alpha) \) is isomorphic to the reduced crossed product \(A \rtimes_{red} \mathcal{G} \). This along with the fact that \(\Omega \rtimes P \) is equivalent to a transformation groupoid of the form \(\tilde{\Omega} \rtimes G \) implies that \(A \rtimes_{red,\alpha} P \) is Morita-equivalent to a reduced crossed product of the form \(B \rtimes_{red} G \) for some \(C^* \)-algebra. This Morita equivalence is then used to derive some \(K \)-theoretic consequences. For example, we prove that if \(P \) is the cone of positive matrices then \(K_i(A \rtimes_{red} P) = 0 \). This generalises the classic result that if \(\alpha : \mathbb{R} \to Aut(A) \) is a strongly continuous action then the Toeplitz extension of \(A \rtimes_\alpha \mathbb{R} \) has trivial \(K \)-theory. The vanishing of the \(K \)-theory of the Toeplitz extension of \(A \rtimes_\alpha \mathbb{R} \) forms the basis of Rieffel’s proof of Connes-Thom isomorphism.

This paper is organised as follows.

In Section 2, we recall the necessary preliminaries regarding groupoid dynamical systems. Even though excellent references are available regarding groupoid dynamical systems, [KS04] and [MW08] to mention two, I believe that devoting two pages to recall the basics will make this paper more readable.

In Section 3, we recall the construction of the Wiener-Hopf groupoid and a few results from [RS14]. In Section 4, we formally define the Toeplitz algebra and the reduced crossed product associated to an action of an Ore semigroup on a \(C^* \)-algebra.

Sections 5 and 6 form the heart of this paper. In Section 5, we further make the assumption that \(P \) is left Ore i.e. \(P^{-1}P = G \). We construct, in Section 5, a groupoid dynamical system \((\mathcal{A}, \mathcal{G}, \alpha)\) associated to a unital injective action \(\alpha : P \to End(A) \). We make use of the dilation principle which roughly says that injective actions of Ore semigroups can be dilated to bijective actions. In Section 6, we treat the surjective case where the groupoid dynamical system \((\mathcal{A}, \mathcal{G}, \alpha)\) is obtained using a quotient construction. We show in Sections 5 and 6 that the Toeplitz algebra \(\mathcal{T}(A,P,\alpha) \) is isomorphic to the reduced crossed product \(\mathcal{A} \rtimes_{red} \mathcal{G} \). We also show that \(\mathcal{T}(A,P,\alpha) \) coincides with \(A \rtimes_{red} P \).
We use the results of Sections 5 and 6 in Section 7 to prove that in both the surjective and the injective case, the reduced crossed product $A \rtimes_{red} P$ is Morita-equivalent to a genuine crossed product of the form $B \rtimes_{red} G$ for some C^*-algebra B. Using this Morita equivalence, we derive some K-theoretic consequences in Section 8 under the assumption that G satisfies the Connes-Thom isomorphism and P is connected. We must mention that the Morita equivalence derived in Section 7 can be used to obtain K-theoretic results for discrete semigroups like \mathbb{N}. But we don’t pursue this case in this paper.

We conclude, in Section 9, by discussing the example of the semigroup of positive elements in a formally real special Jordan algebra i.e. real vector subspaces of self-adjoint matrices which contains the identity and closed under taking the anti-commutator of two elements. We make use of the Cayley transform to embed self-adjoint matrices in the unitary group and extend the action of self-adjoint matrices on itself by addition to an action on the unitary group. We obtain an explicit picture of the Wiener-Hopf groupoid in this case and use it to prove that $K_i(A \rtimes_{red} P) = 0$ where P is the semigroup of positive elements in a formally real special Jordan algebra.

2 Groupoid dynamical systems

In this section, we recall the necessary preliminaries regarding groupoid dynamical systems. For more details and proofs, we refer to [KS04] and [MW08]. We use the the notion of an upper semi-continuous bundle of C^*-algebras over a topological space for which the reader is refered to [Wil07]. We also make use of vector valued integration for which [Wil07] is the reference. The author claims no originality of what follows in this section.

Let \mathcal{A} be an upper semi-continuous bundle of C^*-algebras over X with the projection map $p : \mathcal{A} \to X$. For $x \in X$, let $A_x := p^{-1}(x)$. The space of continuous sections of \mathcal{A} vanishing at infinity is denoted by $\Gamma_0(X, \mathcal{A})$. For $f \in \Gamma_0(X, \mathcal{A})$, let

$$||f|| := \sup_{x \in X} ||f(x)||.$$

Then $\Gamma_0(X, \mathcal{A})$ is a C^*-algebra where the algebraic operations are defined using the corresponding ones on the fibres $\{A_x\}_{x \in X}$. Moreover for $\phi \in C_0(X)$ and $f \in \Gamma_0(X, \mathcal{A})$, define $\phi f \in \Gamma_0(X, \mathcal{A})$ by the equation

$$(\phi f)(x) := \phi(x)f(x) \in A_x.$$

Thus $\Gamma_0(X, \mathcal{A})$ is a $C_0(X)$ module. We denote the space of compactly supported continuous sections by $\Gamma_c(X, \mathcal{A})$. Clearly $\Gamma_c(X, \mathcal{A})$ is dense in $\Gamma_0(X, \mathcal{A})$. If X is compact, we
simply denote $\Gamma_0(X,\mathcal{A})$ by $\Gamma(X,\mathcal{A})$.

Remark 2.1 We will assume that all the upper semi-continuous bundles that we consider have enough sections i.e. for every $x \in X$, the map $\Gamma_0(X,\mathcal{A}) \ni f \to f(x) \in A_x$ is onto. Moreover we will assume that \mathcal{A} is first countable and X is locally compact, second countable and Hausdorff. Thus it is enough to consider sequences instead of nets.

Next we recall the notion of a groupoid dynamical system and the associated reduced crossed product. In what follows, \mathcal{G} denotes a second countable, locally compact Hausdorff groupoid with a Haar system $\{\lambda^x : x \in \mathcal{G}^{(0)}\}$ where $\mathcal{G}^{(0)}$ is the unit space of \mathcal{G}. The range and source maps are denoted, as usual, by r and s. For $x \in \mathcal{G}^{(0)}$, we denote $r^{-1}(x)$ and $s^{-1}(x)$ by $\mathcal{G}^{(x)}$ and $\mathcal{G}(x)$ respectively.

Definition 2.2 Let \mathcal{A} be an upper semi-continuous bundle of C^*-algebras over $\mathcal{G}^{(0)}$. We say \mathcal{G} acts on \mathcal{A} if for every $\gamma \in \mathcal{G}$, there exists a map $\alpha_\gamma : A_{s(\gamma)} \to A_{r(\gamma)}$ such that

1. For $\gamma \in \mathcal{G}$, the map $\alpha_\gamma : A_{s(\gamma)} \to A_{r(\gamma)}$ is a $*$-algebra isomorphism,

2. If $r(\eta) = s(\gamma)$, $\alpha_\gamma \alpha_\eta = \alpha_{\gamma \eta}$, and

3. For $\gamma \in \mathcal{G}$, $\alpha_{\gamma^{-1}} = \alpha_\gamma^{-1}$.

4. The map $\mathcal{G} \ast \mathcal{A} \ni (\gamma, a) \to \alpha_\gamma(a) \in \mathcal{A}$ is continuous where $\mathcal{G} \ast \mathcal{A} \subset \mathcal{G} \times \mathcal{A}$ is defined as $\mathcal{G} \ast \mathcal{A} := \{(\gamma, a) : a \in A_{s(\gamma)}\}$. The subset $\mathcal{G} \ast \mathcal{A}$ is given the subspace topology inherited from the product topology on $\mathcal{G} \times \mathcal{A}$.

We call the triple $(\mathcal{A}, \mathcal{G}, \alpha := \{\alpha_\gamma\})$ a groupoid dynamical system.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a groupoid dynamical system. Then $r^*\mathcal{A} := \{(\gamma, a) \in \mathcal{G} \times \mathcal{A} : a \in A_{r(\gamma)}\}$ is an upper semi-continuous bundle over \mathcal{G} and is called the pull-back bundle corresponding to the range map $r : \mathcal{G} \to \mathcal{G}^{(0)}$. We denote its space of compactly supported sections by $\Gamma_c(\mathcal{G}, r^*\mathcal{A})$. Thus

$$\Gamma_c(\mathcal{G}, r^*\mathcal{A}) = \{f : \mathcal{G} \to \mathcal{A} : f \text{ is continuous and } f(\gamma) \in A_{r(\gamma)} \text{ for } \gamma \in \mathcal{G}\}.$$

For $f, g \in \Gamma_c(\mathcal{G}, r^*\mathcal{A})$, let

$$ (f \ast g)(\gamma) := \int f(\eta)\alpha_\eta(g(\eta^{-1}\gamma))d\lambda^{r(\gamma)}, $$

$$ f^*(\gamma) := \alpha_\gamma(f(\gamma^{-1})^*). $$
With the multiplication and involution defined above, \(\Gamma_c(\mathcal{G}, r^*A) \) forms a \(*\)-algebra. Also \(\Gamma_c(\mathcal{G}, r^*A) \) forms a pre-Hilbert right \(\Gamma_c(\mathcal{G}^{(0)}, A) \) module where the right multiplication and the inner product are given as follows:

For \(f, g \in \Gamma_c(\mathcal{G}, A) \) and \(\phi \in \Gamma_c(\mathcal{G}^{(0)}, A) \), let

\[
(f \cdot \phi)(\gamma) := f(\gamma)\alpha_\gamma(\phi(s(\gamma))) \quad \text{for} \quad \gamma \in \mathcal{G}, \quad \text{and} \\
(f, g)(x) := (f \ast g)(x) = \int_\mathcal{G} \alpha_\gamma(f(\gamma^{-1})^*\alpha_\gamma(g(\gamma^{-1})))d\lambda^x(\gamma) \quad \text{for} \quad x \in \mathcal{G}^{(0)}.
\]

On completion, we obtain a Hilbert \(B := \Gamma_0(\mathcal{G}^{(0)}, A) \)-module which we denote by \(E \). The Hilbert module \(E \) contains \(\Gamma_c(\mathcal{G}, r^*A) \) as a dense subspace. For \(f \in \Gamma_c(\mathcal{G}, r^*A) \), let \(\Lambda(f) \) be the operator on \(\Gamma_c(\mathcal{G}, r^*A) \) given by \(\Lambda(f)g = f \ast g \) for \(g \in \Gamma_c(\mathcal{G}, r^*A) \). One checks that for \(f \in \Gamma_c(\mathcal{G}, r^*A) \), \(\Lambda(f) \) extends to an adjointable operator on \(E \) which we still denote by \(\Lambda(f) \). For a proof of this fact, see Section 3.6 of \([KS04]\). In fact, \(\|\Lambda(f)\| \leq \|f\|_I \) where

\[
\|f\|_I := \max \left\{ \sup_{x \in \mathcal{G}^{(0)}} \int \|f(\gamma)||d\lambda^x(\gamma), \sup_{x \in \mathcal{G}^{(0)}} \int \|f(\gamma^{-1})||d\lambda^x(\gamma) \right\}.
\]

Thus one obtains a faithful \(*\)-representation \(\Lambda : \Gamma_c(\mathcal{G}, r^*A) \to \mathcal{L}_B(E) \). The reduced crossed product denoted \(A \rtimes_{\text{red}} \mathcal{G} \) is the closure of \(\{\Lambda(f) : f \in \Gamma_c(\mathcal{G}, r^*A)\} \) in \(\mathcal{L}_B(E) \). For \(f \in \Gamma_c(\mathcal{G}, r^*A) \), we let \(\|f\|_{\text{red}} := \|\Lambda(f)\| \). We also remark that the I-norm \(\|\|_I \) is a Banach algebra norm on \(\Gamma_c(\mathcal{G}, r^*A) \) and the involution is isometric.

Remark 2.3 For \(f \in C_c(\mathcal{G}) \) and \(g \in \Gamma_c(\mathcal{G}, r^*A) \), the convolution product \(f \ast g \) defined by

\[
f \ast g(\gamma) := \int_\mathcal{G} f(\eta)\alpha_\gamma(g(\eta^{-1} \gamma))d\lambda^{(r(\gamma))}
\]

is a continuous compactly supported section of the bundle \(r^*A \). Moreover \(\|f \ast g\|_I \leq \|f\|_I\|g\|_I \) for \(f \in C_c(\mathcal{G}) \) and \(g \in \Gamma_c(\mathcal{G}, r^*A) \).

For \(x \in \mathcal{G}^{(0)} \), let \(\epsilon_x \) be the map \(B := \Gamma_0(\mathcal{G}^{(0)}, A) \ni f \to f(x) \in A_x \). For every \(x \in X \), by Rieffel’s Induction, one obtains a representation \(\Lambda_x \) of \(A \rtimes_{\text{red}} \mathcal{G} \) on \(E_x := E \otimes_B A_x \) i.e \(\Lambda_x(f) = \Lambda(f) \otimes 1 \).

Fix \(x \in \mathcal{G}^{(0)} \). Denote the external tensor product \(L^2(\mathcal{G}^{(x)}) \otimes A_x \) by \(L^2(\mathcal{G}^{(x)}, A_x) \). The Hilbert \(A_x \)-module \(L^2(\mathcal{G}^{(x)}, A_x) \) can also be regarded as the completion of \(C_c(\mathcal{G}^{(x)}, A_x) \) where for \(\xi, \eta \in C_c(\mathcal{G}^{(x)}, A_x) \), the inner product \(\langle \xi, \eta \rangle \) is given by

\[
\langle \xi, \eta \rangle(x) := \int \xi(\gamma)^*\eta(\gamma)d\lambda^x(\gamma)
\]
for $x \in G^{(0)}$. The map $\Gamma_c(\mathcal{G}, r^*\mathcal{A}) \otimes_B \mathcal{A}_x \ni \xi \otimes a \to \hat{\xi} \in C_c(\mathcal{G}^{(x)}, \mathcal{A}_x)$ where $\hat{\xi}(\gamma) = \alpha_\gamma(\xi(\gamma^{-1}))a$ extends to a unitary isomorphism. Thus we identify E_x with $L^2(\mathcal{G}^{(x)}, \mathcal{A}_x)$. Under this isomorphism, for $f \in \Gamma_c(\mathcal{G}, r^*\mathcal{A})$ and $\xi \in C_c(\mathcal{G}^{(x)}, \mathcal{A}_x)$, $\Lambda_{x}(f)\xi$ is given by

$$(\Lambda_{x}(f)\xi)(\gamma) := \int \alpha_\gamma(f(\gamma^{-1}\gamma_1))\xi(\gamma_1)d\lambda^{(x)}(\gamma_1).$$

The following are easily verifiable.

(1) For $f \in \Gamma_c(\mathcal{G}, r^*\mathcal{A})$, $||f||_{red} = \sup\{||\Lambda_{x}(f)|| : x \in G^{(0)}\}$. This is because the family of $*$-morphisms $\{e_x : x \in G^{(0)}\}$ separates elements of B. For the same reason, it follows that if D is a dense subset of $G^{(0)}$, $||f||_{red} := \sup\{||\Lambda_{x}(f)|| : x \in D\}$ for $f \in \Gamma_c(\mathcal{G}, r^*\mathcal{A})$.

(2) Let $\gamma \in \mathcal{G}$ be such that $s(\gamma) = x$ and $r(\gamma) = y$. Then $||\Lambda_{x}(f)|| = ||\Lambda_{y}(f)||$ for $f \in \Gamma_c(\mathcal{G}, r^*\mathcal{A})$.

(3) Thus if $x_0 \in G^{(0)}$ is such that its \mathcal{G}-orbit i.e.

$$\{y \in G^{(0)} : \text{there exists } \gamma \in \mathcal{G} \text{ such that } s(\gamma) = x \text{ and } r(\gamma) = y\}$$

is dense in $G^{(0)}$ then Λ_{x_0} is a faithful representation of $\mathcal{A} \rtimes_{red} \mathcal{G}$.

Remark 2.4 We need the following facts whose proofs we invite the reader to supply.

(1) If $\mathcal{A} := G^{(0)} \times \mathbb{C}$ and if α_γ is the identity map for $\gamma \in \mathcal{G}$, one obtains the reduced groupoid C^*-algebra $C_{red}^*(\mathcal{G})$.

(2) Let $\mathcal{G} := X \rtimes G$ be a transformation groupoid where the group G acts on X on the right. Suppose $(\mathcal{A}, \mathcal{G}, \alpha)$ be a groupoid dynamical system. Then the group G acts on the C^*-algebra the $\Gamma_0(X, \mathcal{A})$ where the action $\tilde{\alpha}$ is given by formula : For $g \in G$, and $f \in \Gamma_0(X, \mathcal{A})$, let $\tilde{\alpha}_g(f)(x) := \alpha_{(x,g)} (f(x.g))$ for $x \in X$. Then $\mathcal{A} \rtimes_{red} \mathcal{G}$ is isomorphic to the reduced crossed product $\Gamma_0(X, \mathcal{A}) \rtimes_{\tilde{\alpha}, red} G$.

3 Wiener-Hopf groupoid

Let G be a locally compact, second countable, Hausdorff topological group. Let $P \subset G$ be a closed subsemigroup containing the identity element e. We say that P is a right reversible Ore semigroup of G if

(a) The interior of P, denoted $Int(P)$, is dense in P,
(b) The group $G = PP^{-1}$.

We say P is left reversible if $P^{-1}P = G$. For the rest of the article, we reserve the letters P and G to mean that P is a closed, right reversible Ore semigroup of G containing the identity element of G. We denote the left Haar measure on G by dg and the modular function by Δ.

For $a, b \in P$, we say $a \leq b$ ($a < b$) if and only if $a^{-1}b \in P$ ($a^{-1}b \in \text{Int}(P)$). If P is right reversible then the partially ordered set (P, \leq) is directed i.e. given $a, b \in P$ there exists $c \in P$ such that $a, b \leq c$.

Remark 3.1 Note that $\text{Int}(P)$ is closed under right and left multiplication by P. Thus $G := \text{Int}(P)\text{Int}(P)^{-1}$ if P is right reversible. Note that $(\text{Int}(P), <)$ is directed.

Let $C(G)$ denotes the space of closed subsets of G with the Vietoris topology. Then $C(G)$ is a compact, metrisable space. The convergence of sequences in $C(G)$ is given as follows. Let d be a metric on G inducing the topology of G. Let (X_n) be a sequence in $C(G)$. Define

$$\limsup X_n := \{g \in G : \liminf d(g, X_n) = 0\}$$
$$\liminf X_n := \{g \in G : \limsup d(g, X_n) = 0\}.$$

Here for a closed X and $g \in G$, $d(g, X) := \inf_{a \in A} d(g, a)$. Then (X_n) converges in $C(G)$ if and only if $\limsup X_n = \liminf X_n$. Moreover if $X = \limsup X_n = \liminf X_n$ then (X_n) converges to X.

The group G acts continuously on $C(G)$ on the right by right multiplication i.e. for $X \in C(G)$ and $g \in G$, $X.g = Xg$. Consider the transformation groupoid $C(G) \rtimes G$. Let

$$\Omega := \{P^{-1}a : a \in P\}.$$ \hspace{1cm} (3.1)

Then Ω, being the closure of $\{P^{-1}a : a \in P\}$ in $C(G)$, is compact and is invariant under the right action of P. We call Ω the order compactification of P. Let $\mathcal{G} := \Omega \rtimes P$ be the semi-direct product groupoid (See [RS14] for its construction). In this case, \mathcal{G} is just the restricted groupoid $C(G) \rtimes G|_{\Omega}$ i.e. $\mathcal{G} := \{(X, g) \in \Omega \times G : X.g \in \Omega\}$ where the groupoid operations are given by the formula:

$$(X, g)(X.g, h) = (X, gh)$$
$$(X, g)^{-1} = (X.g, g^{-1})$$

We call the semi-direct product groupoid $\Omega \rtimes P$ as the Wiener-Hopf groupoid associated to the pair (P, G).
Remark 3.2 We recall some of the important results from [RS14] needed in this paper.

(1) The Wiener-Hopf groupoid has a left Haar system. For $X \in \Omega$, let

$$Q_X := \{ g \in G : X.g \in \Omega \}.$$

Then $G(X) = X \times Q_X$ for $X \in \Omega$. With this identification, a left Haar system $(\lambda(X))_{X \in \Omega}$ on G is given by $\lambda(X) := 1_{Q_X} dg$. We use only this left Haar system in this paper. Also for $X \in \Omega$, $Q_X = X^{-1}$ (See Proposition 5.1 of [RS14]).

(2) The crucial fact in proving (1) is that if (X_n) is a sequence in Ω converging to X then $1_{X_n} \to 1_X$ a.e. (See the proof of the implication $(4) \Rightarrow (5)$ of Theorem 4.3 of [RS14]).

(3) For $X \in \Omega$, $\mathrm{Int}(X)$ is dense in X. (See Lemma 4.1 of [RS14])

Let $\tilde{\Omega} := \bigcup_{a \in P} \Omega a^{-1}$. Note that $\tilde{\Omega}$ is G-invariant. For Ω is P-invariant and $PP^{-1} = G$. Let $\Omega_0 := \Omega \mathrm{Int}(P)$. Then

$$\Omega_0 = \{ X \in \Omega : X \cap \mathrm{Int}(P) \neq \emptyset \}. \quad (3.2)$$

(See the proof of Proposition 5.1 in [RS14]). Hence Ω_0 is open in Ω.

Lemma 3.3 We have the following.

(1) The set Ω_0 is open in $\tilde{\Omega}$,

(2) $\tilde{\Omega} = \bigcup_{a \in \mathrm{Int}(P)} \Omega_0 a^{-1} = \bigcup_{a \in P} \Omega a^{-1}$, and

(3) The space $\tilde{\Omega}$, equipped with the subspace topology, is locally compact.

The Wiener-Hopf groupoid $\Omega \rtimes P$ is equivalent to $\tilde{\Omega} \rtimes G$.

Proof. We claim that $\Omega_0 := \{ X \in \tilde{\Omega} : X \cap \mathrm{Int}(P) \neq \emptyset \}$. Clearly the inclusion \subset holds. Now let $X \in \tilde{\Omega}$ be such that $X \cap \mathrm{Int}(P) \neq \emptyset$. Write $X := Ya^{-1}$ for $Y \in \Omega$ and $a \in P$. Choose a sequence $b_n \in P$ such that $P^{-1}b_n \to Y$. Then $P^{-1}b_n a^{-1} \to X$. Since $\{ Z \in C(G) : Z \cap \mathrm{Int}(P) \neq \emptyset \}$ is open, it follows that $P^{-1}b_n a^{-1}$ intersects $\mathrm{Int}(P)$ eventually. But $P\mathrm{Int}(P) \subset \mathrm{Int}(P)$. Hence $b_n a^{-1} \in \mathrm{Int}(P)$ eventually and it follows that X, being the limit of $P^{-1}b_n a^{-1}$, belongs to Ω_0. From Equation (3.2) it follows that $X \in \Omega_0$. Now the openness of Ω_0 in $\tilde{\Omega}$ follows from the equality $\Omega_0 := \{ X \in \tilde{\Omega} : X \cap \mathrm{Int}(P) \neq \emptyset \}$. This proves (1).
The proof of (2) follows from the fact that $\text{Int}(P)P \subset \text{Int}(P)$ and $\text{Int}(P)$ is non-empty. Since G acts continuously on $\tilde{\Omega}$, it follows that for $a \in P$, Ωa^{-1} is open in $\tilde{\Omega}$ and its closure in $\tilde{\Omega}$ is the compact set Ωa^{-1}. The local compactness of $\tilde{\Omega}$ follows from this. This proves (3). The equivalence between $\Omega \rtimes P$ and $\tilde{\Omega} \rtimes G$ follows from Prop. 6.4 and Thm 6.2 of [RS14]. This completes the proof.

\section{The Toeplitz algebra associated to Endomorphisms of P}

Let A be a C^*-algebra. Let $\text{End}(A)$ denote the set of $*$-algebra homomorphisms on A. By a strongly continuous left action of P on A, we mean a map $\alpha : P \to \text{End}(A)$ such that

1. For $a, b \in P$, $\alpha_{ab} = \alpha_a \alpha_b$,

2. For the identity element e of P, $\alpha_e = \text{id}_A$, and

3. For $x \in A$, the map $P \ni a \to \alpha_a(x) \in A$ is continuous.

We say the action α is injective/surjective if for every $a \in P$, α_a is injective/surjective. If A is unital, we say α is unital if α_a is unital for $a \in P$. Since we will consider only strongly continuous actions of P, we will drop the adjective strongly continuous from now on.

\begin{example}
Let \mathcal{H} be a separable Hilbert space and $\mathcal{A}(\mathcal{H})$ be the CAR-algebra on \mathcal{H} i.e. the universal unital C^*-algebra generated by symbols $\{a(\xi) : \xi \in \mathcal{H}\}$ such that

$$a(\xi)a(\eta) + a(\eta)a(\xi) = 0$$

$$a(\xi)^*a(\eta) + a(\eta)a(\xi)^* = \langle \eta, \xi \rangle$$

$$a(\lambda \xi + \mu \eta) = \lambda a(\xi) + \mu a(\eta)$$

for $\xi, \eta \in \mathcal{H}$ and $\lambda, \mu \in \mathbb{C}$.

Denote the set of isometries on \mathcal{H} by $\mathcal{V}(\mathcal{H})$. Suppose $W : P \to \mathcal{V}(\mathcal{H})$ be a strongly continuous semigroup homomorphism. For $a \in P$, define $\alpha_a : \mathcal{A}(\mathcal{H}) \to \mathcal{A}(\mathcal{H})$ by $\alpha_a(a(\xi)) = a(W_a \xi)$. Then $\alpha : P \to \text{End}(\mathcal{A}(\mathcal{H}))$ is a unital injective action. The action is injective. Car, the CAR-algebra is simple. We can take \mathcal{H} to be $L^2(P)$ and $W : P \to \mathcal{V}(L^2(P))$ to be the left regular representation.
\end{example}
Example 4.2 Let X be a compact space and suppose P acts continuously on the right injectively on X. Then for $a \in P$, let $\alpha_a : C(X) \to C(X)$ be defined by

$$\alpha_a(f)(x) := f(xa)$$

for $f \in C(X)$. Then $\alpha : P \to \text{End}(C(X))$ is a surjective action.

We will consider the Hilbert space $L^2(P)$ as a closed subspace of $L^2(G)$ by extending an element of $L^2(P)$ to $L^2(G)$ by declaring its value outside P to be zero. For $g \in G$, let $w_g : L^2(P) \to L^2(P)$ be defined by the formula: For $\xi \in L^2(P)$, let

$$w_g\xi(a) = \xi(ag^{-1})\Delta(g)^{-\frac{1}{2}} \text{ for } a \in P.$$

For $a \in P$, let $v_a := w_a$. Then

- For $a \in P$, v_a is an isometry,
- For $a, b \in P$, $v_{ab} = v_b v_a$,
- If $g = ab^{-1}$ with $a, b \in P$ then $w_g = v_b^* v_a$, and
- The map $G \ni g \to w_g \in B(L^2(P))$ is strongly continuous.

Let A be a C^*-algebra and $\alpha : P \to \text{End}(A)$ be an action. Consider the Hilbert A-module $E := L^2(P) \otimes A$. For $g \in G$, let $W_g := w_g \otimes 1$ and let $V_a := v_a \otimes 1$ for $a \in P$. The map $G \ni g \to W_g \in \mathcal{L}_A(E)$ is strictly continuous. For $x \in A$, let $\pi(x) \in \mathcal{L}_A(E)$ be the operator defined on the dense subspace $C_c(P, A) \subset E$ as follows: For $\xi \in C_c(P, A)$,

$$(\pi(x)\xi)(a) := \alpha_a(x)\xi(a).$$

The covariance condition $V_a^* \pi(x)V_a = \pi(\alpha_a(x))$ holds for every $a \in P$ and $x \in A$.

To verify this, let $\rho : A \to B(\mathcal{H})$ be a faithful non-degenerate representation on a Hilbert space \mathcal{H}. Consider the Hilbert space $\tilde{\mathcal{H}} := L^2(P, \mathcal{H}) = L^2(P) \otimes \mathcal{H}$. Let $\tilde{\rho} : A \to B(\tilde{\mathcal{H}})$ be the representation defined by the formula: For $x \in A$, $\xi \in \tilde{\mathcal{H}}$, let

$$(\tilde{\rho}(x)\xi)(a) := \rho(\alpha_a(x))\xi(a) \text{ for } a \in P.$$

For $g \in G$, let $\tilde{W}_g \in B(\tilde{\mathcal{H}})$ be defined by $\tilde{W}_g\xi(b) := \xi(bg^{-1})\Delta(g)^{-\frac{1}{2}}$ for $\xi \in \tilde{\mathcal{H}}$ and $a \in P$. For $a \in P$, let $\tilde{V}_a = W_a$. Then $\tilde{V}_a^* = W_{a^{-1}}$ for $a \in P$. Then it is easily verifiable that $\tilde{V}_a^* \tilde{\rho}(x)\tilde{V}_a = \tilde{\rho}(\alpha_a(x))$.
for $x \in A$ and $a \in P$.

Consider the internal tensor product $E \otimes_\rho \mathcal{H}$ which is a Hilbert space. The map $\mathcal{L}_A(E) \ni T \to T \otimes 1 \in B(E \otimes_\rho \mathcal{H})$ is injective. Define $U : (L^2(P) \otimes A) \otimes_\rho \mathcal{H} \to \tilde{\mathcal{H}}$ by $U((\xi \otimes x) \otimes \eta) = \xi \otimes \rho(x)\eta$ for $\xi \in L^2(P)$, $x \in A$ and $\eta \in \mathcal{H}$. Then U extends to a unitary from $E \otimes_\rho \mathcal{H}$ to $\tilde{\mathcal{H}}$. We leave it to the reader to verify that for $g \in G$, $x \in A$,

$$U(\pi(x) \otimes 1)U^* = \tilde{\rho}(x)$$
$$U(W_g \otimes 1)U^* = \tilde{W}_g.$$

Hence it follows that $V^*_a\pi(x)V_a = \pi_\alpha(\alpha_a(x))$ for $x \in A$ and $a \in P$. Henceforth, we will simply denote $\pi(x)$ by x for $x \in A$. Also note that the relation $V^*_aV_a = \alpha_a(x)$ and the fact that $V^*_aV_a$ commutes with x implies that $V^*_a = \alpha_a(x)V^*_a$ for $a \in P$ and $x \in A$.

For $f \in C_c(G, A)$, let

$$W_f := \int f(g)W_gdg \in \mathcal{L}_A(E).$$

Since the map $g \to W_g$ is strictly continuous, it follows that the above integral exists in $\mathcal{L}_A(E)$. For $f \in C_c(G, A)$, let us call W_f the Wiener-Hopf operator with symbol f.

The Toeplitz algebra denoted $\mathcal{T}(A, P, \alpha)$ is defined as the C^*-subalgebra of $\mathcal{L}_A(E)$ generated by $\{W_f : f \in C_c(G, A)\}$. We will denote the C^*-subalgebra of $\mathcal{L}_A(E)$ generated by $\{W_f : f \in C_c(Int(P), A)\}$ by $A \rtimes_{\text{red}, \alpha} P$ and call it the **reduced crossed product** A by P. We will denote $A \rtimes_{\text{red}, \alpha} P$ by $A \rtimes_{\text{red}} P$ if the action α is clear.

Remark 4.3 Alternatively, $\mathcal{T}(A, P, \alpha)$ can defined (by choosing a non-degenerate representation ρ of A on \mathcal{H}) as the C^*-subalgebra of $B(\tilde{\mathcal{H}})$ generated by the integrals

$$\left\{ \int \tilde{\rho}(f(g))\tilde{W}_g dg : f \in C_c(G, A) \right\}$$

where $\tilde{\mathcal{H}}$, $\tilde{\rho}$ and \tilde{W}_g are defined as in the preceding paragraphs.

The Toeplitz algebra $\mathcal{T}(A, P, \alpha)$ was studied by Khoskham and Skandalis in [KS97] for the additive semigroups \mathbb{N} and $[0, \infty)$. In this paper, we describe $\mathcal{T}(A, P, \alpha)$ as a groupoid crossed product when either the action α is unital and injective or when the action α is surjective. Moreover we show in both the cases that the two algebra $\mathcal{T}(A, P, \alpha)$ and $A \rtimes_{\text{red}} P$ coincide. When $A = \mathbb{C}$ then $\mathbb{C} \rtimes_{\text{red}} P$ is the usual Wiener-Hopf algebra whose study, from the groupoid point of view, was initiated in [MR82].

We end this section with a lemma which is essential in proving $\mathcal{T}(A, P, \alpha) = A \rtimes_{\text{red}} P$.

Notation: For $f \in C_c(G)$ and $a \in G$, let $L_a(f) \in C_c(G)$ be defined by the formula $L_a(f)(x) = f(a^{-1}x)$ for $x \in G$.

14
Lemma 4.4 Let
\[\mathcal{F} := \{ \phi \ast \psi : \phi \in C_c(Int(P)) \text{ and } \psi \in C_c(Int(P^{-1})) \}. \]

Then the linear span of \(\mathcal{F} \) is dense in \(C_c(G) \) in the inductive limit topology.

Proof. The proof is an imitation of the proof of Lemma 2.3 of [RSL14] where the density of \(\text{span}(\mathcal{F}) \) is proved in the \(L^1 \)-norm. Let \(f \in C_c(G) \) be given and \(K := \text{supp}(f) \). Since \(G = \text{Int}(P)\text{Int}(P)^{-1} \), it follows that there exists \(a_1, a_2, \ldots, a_m \in \text{Int}(P) \) such that \(K \subset \bigcup_{i=1}^m a_i\text{Int}(P)^{-1} \). By choosing a partition of unity, we can write \(f = \sum_{i=1}^m f_i \) with \(f_i \in C_c(G) \) and \(\text{supp}(f_i) \subset a_i\text{Int}(P)^{-1} \). For \(i = 1, 2, \ldots, m \), let \(\tilde{f}_i := L_{a_i^{-1}}f_i \). Note that \(\text{supp}(\tilde{f}_i) \subset \text{Int}(P)^{-1} \) for every \(i \).

Note that the intersection \(U := \bigcap_{i=1}^m \text{Int}(P)^{-1}a_i \) contains the identity element \(e \) and hence \(U \cap P \) is non-empty. Since \(\text{Int}(P) \) is dense in \(P \), it follows that \(U \cap \text{Int}(P) \neq \emptyset \).

Choose \(b \in U \cap \text{Int}(P) \). Then \(b^{-1}\text{Int}(P) \) is an open set containing \(e \).

Now choose a countable base \(\{ U_n : n \in \mathbb{N} \} \), which we can assume to be decreasing, at \(e \) such that \(U_n \subset b^{-1}\text{Int}(P) \). We can also assume that each \(U_n \) has compact closure. Choose \(\phi_n \in C_c(G) \) such that \(\phi_n \geq 0, \text{supp}(\phi_n) \subset U_n \) and \(\int \phi_n(t)dt = 1 \). Then \(\{ \phi_n \}_{n \in \mathbb{N}} \) forms an approximate identity for the convolution product when \(C_c(G) \) is given the inductive limit topology. Note \(L_{a_i}\phi_n \) is supported in \(a_ib^{-1}\text{Int}(P) \) for every \(i \). But the choice of \(b \) implies that \(a_ib^{-1} \in \text{Int}(P) \). Hence for every \(i \), \(\text{supp}(L_{a_i}\phi_n) \subset \text{Int}(P) \).

Note that \(\mathcal{F} \ni \sum_{i=1}^m L_{a_i}\phi_n \ast \tilde{f}_i = \sum_{i=1}^m L_{a_i}(\phi_n \ast \tilde{f}_i) \). Since left translations are continuous linear operators in the inductive limit topology, it follows that as \(n \) tends to infinity, \(\sum_{i=1}^m L_{a_i}\phi_n \ast \tilde{f}_i \) converges, in the inductive limit topology, to \(\sum_{i=1}^m L_{a_i}\tilde{f}_i = f \). This completes the proof.

5 The injective case

Throughout this section, we assume that \(A \) is a unital separable \(C^* \)-algebra and the strongly continuous action \(\alpha : P \to \text{End}(A) \) is unital and injective. We also assume that \(P \) is left reversible i.e. \(P^{-1}P = G \). Note that in this case \(G = \text{Int}(P)^{-1}\text{Int}(P) \).

By Laca’s dilation theorem (Thm 2.1.1, [Lac00]), there exists a unital \(C^* \)-algebra \(B \), a left \(G \)-action \(\tilde{\alpha} : G \to \text{Aut}(B) \) and an unital embedding \(j : A \to B \) such that:

1. For \(a \in P \) and \(x \in A \), \(j(\alpha_a(x)) = \tilde{\alpha}(j(x)) \), and
(2) The union $\bigcup_{a \in P} \tilde{a}^{-1}(j(A))$ is dense in B.

Moreover the G-C^*-algebra B, together with the embedding $j : A \to B$, is unique up to a G-equivariant isomorphism. We will fix such a G-C^*-algebra B and will identify A with a unital C^*-subalgebra of B. For $g \in G$, we will simply denote \tilde{a}_g by α_g.

Claim: The action of G on B is strongly continuous.

Since B is the closure of $\bigcup_{a \in P} \alpha_a^{-1}(A)$, it is enough to show that for $x \in A$ and for $a \in P$, the map $G \ni g \mapsto \alpha_g \alpha_a^{-1}(x) = \alpha_g a^{-1}(x) \in B$ is continuous. The map $G \ni g \mapsto ga^{-1} \in G$ is a homeomorphism for $a \in P$. Thus it is enough to show that for $x \in A$, the map $G \ni g \mapsto \alpha_g(x)$

Let $x \in A$ and let (g_n) be a sequence in G such that $(g_n) \to g$. Write $g = a^{-1}b$ with $a, b \in \text{Int}(P)$. Then $g_n \in a^{-1}\text{Int}(P)$. Thus eventually $g_n \in a^{-1}\text{Int}(P)$. For large n, write $g_n = a^{-1}b_n$ with $b_n \in \text{Int}(P)$. Then $b_n \to b$. Since the action $\alpha : P \to \text{End}(A)$ is strongly continuous, it follows that $\alpha_{b_n}(x) \to \alpha_b(x)$. Hence the sequence $\alpha_{g_n}(x) = \alpha_a^{-1} \alpha_{b_n}(x) \to \alpha_a^{-1} \alpha_{b_n}(x) = \alpha_g(x)$. This proves the claim.

Note that since A is separable, the equality $B = \bigcup_{a \in P} \alpha_a^{-1}(A)$ and the fact that the action is strongly continuous implies that B is separable. Recall that we have assumed that P is second countable.

Thus for the rest of the section, we assume that B is a unital separable C^*-algebra with a strongly continuous action $\alpha : G \to \text{Aut}(B)$ and $A \subset B$ is a unital (i.e. $1_B \in A$) C^*-subalgebra which is P-invariant.

Let $G := \Omega \times P$ be the Wiener-Hopf groupoid associated to P. Recall that Ω is the closure of $\{P^{-1}a : a \in P\}$ in the space of closed sets of G equipped with the Vietoris topology. For $X \in \Omega$, let $A_X := C^\ast \{\alpha_g^{-1}(x) : g \in X, x \in A\}$ i.e. A_X is the C^*-subalgebra of B generated by $\bigcup_{g \in G} \alpha_g^{-1}(A)$.

Note that

- For $a \in P$, $A_{P^{-1}a} = \alpha_a^{-1}(A)$, and

- Let $g \in G$ and $X, Y \in \Omega$ be such that $Y = Xg$. Then the map α_g maps A_Y onto A_X and is an isomorphism from A_Y onto A_X.

- For $X \in \Omega$, $A \subset A_X$. This is because $e \in X$ for $X \in \Omega$.

Let
\[
A := \{(X, x) : X \in \Omega, x \in A_X\}
\]

(5.3)
We equip A with the subspace topology induced from the product topology on $\Omega \times B$. Denote the projection map $A \ni (X, x) \to X \in \Omega$ by p. Note that $p^{-1}(X) = A_X$ for
Lemma 5.1 Let \(X \in \Omega \). For \((X, g) \in \Omega \times \mathcal{P}\), let \(\alpha_{(X, g)} : A_{X, g} \rightarrow A_X \) be the map \(\alpha_g \) restricted to \(A_{X, g} \). Thus the Wiener-Hopf groupoid \(\mathcal{G} \) acts on the bundle \(\mathcal{A} \) via the maps \(\{\alpha_{(X, g)} : (X, g) \in \mathcal{G}\} \).

We denote both the action of \(\mathcal{G} \) on \(\mathcal{A} \) and the action of the group \(\mathcal{G} \) on \(\mathcal{B} \) by the same letter \(\alpha \).

We will identify a section of the bundle \(\mathcal{A} \) with a map \(F : \Omega \rightarrow \mathcal{A} \) such that \(F(X) \in A_X \) for every \(X \in \Omega \).

Lemma 5.1 Let \(x \in A \) and \(f \in C_c(G) \) be given. Define \(F_{x, f} : \Omega \rightarrow \mathcal{A} \) by the formula

\[
F_{x, f}(X) := \int \alpha_g^{-1}(x)f(g)1_X(g)dg.
\]

Then \(F_{x, f} \) is a continuous section (i.e. \(p \circ F_{x, f} = \text{id} \)).

Also for every \(X \in \Omega \), the \(*\)-subalgebra generated by \(\{F_{x, f}(X) : x \in A, f \in C_c(G)\} \) is dense in \(A_X \).

Proof. Let \(x \in A \) and \(f \in C_c(G) \) be given. By definition, it follows that \(F_{x, f}(X) \in A_X \) for \(X \in \Omega \). Let \((X_n) \rightarrow X \) in \(\Omega \). By Remark 3.2, we have \(1_{X_n} \rightarrow 1_X \) a.e. Then by the dominated convergence theorem, it follows that \(F_{x, f}(X_n) \rightarrow F_{x, f}(X) \). Hence \(F_{x, f} \) is continuous.

Now let \(X \in \Omega \) be given. As \(Int(X) \) is dense in \(X \) (Remark 3.2), we have that \(A_X \) is the \(C^* \)-subalgebra generated by \(\{\alpha_g^{-1}(x) : g \in Int(X), x \in A\} \). Now let \(g_0 \in Int(X) \), \(x \in A \) and \(\epsilon > 0 \) be given. Since the action \(\alpha : \mathcal{G} \rightarrow Aut(B) \) is strongly continuous, there exists an open set \(U \subset Int(X) \) containing \(g_0 \) such that \(\|\alpha_g^{-1}(x) - \alpha_{g_0}^{-1}(x)\| \leq \epsilon \) for \(g \in U \). Choose \(f \in C_c(G) \) such that \(f \geq 0 \), \(supp(f) \subset U \) and \(\int f(g)dg = 1 \). Now observe that

\[
\|F_{x, f}(X) - \alpha_{g_0}^{-1}(x)\| = \left\| \int_{g \in U} \alpha_g^{-1}(x)f(g)1_X(g)dg - \int_{g \in U} \alpha_{g_0}^{-1}(x)f(g)dg \right\|
\]

\[
= \left\| \int_{g \in U} (\alpha_g^{-1}(x) - \alpha_{g_0}^{-1}(x))f(g)dg \right\|
\]

\[
\leq \int_{g \in U} \|\alpha_g^{-1}(x) - \alpha_{g_0}^{-1}(x)\|f(g)dg
\]

\[
\leq \epsilon
\]

Thus the \(*\)-subalgebra generated by \(\{F_{x, f}(X) : x \in A, f \in C_c(G)\} \) is dense in \(A_X \). This completes the proof. \(\square \)

Let \(\mathcal{E} \) be the subalgebra generated by \(\{F_{x, f} : x \in A, f \in C_c(G)\} \) in \(C(\Omega, B) \) where \(C(\Omega, B) \) denotes the algebra of continuous functions from \(\Omega \) to \(B \). Note that \(\mathcal{E} \) is \(*\)-closed.
Proposition 5.2 We have the following.

(1) The map \(p : \mathcal{A} \to \Omega \) is an open surjection.
(2) The triple \((\mathcal{A}, p, \Omega)\) is an upper semi-continuous bundle of \(C^*\)-algebras.
(3) The linear span of \(\{\psi F : F \in \mathcal{E}, \psi \in C(\Omega)\}\) is dense in \(\Gamma(\Omega, \mathcal{A})\).
(4) The triple \((\mathcal{A}, \mathcal{G}, \alpha)\) is a groupoid dynamical system.

Proof. Let \(U \subset \mathcal{A} \) be an open set and let \(V := p(U) \). Consider a point \(X \in V \). Then there exists \(a \in A_X \) such that \((X, a) \in U\). By Lemma 5.1 there exists \(F \in \mathcal{E} \) such that \(F(X) \in U \). Since \(F \) is continuous, there exists an open set \(W \subset \Omega \) containing \(X \) such that \(F(Y) \in U \) for \(Y \in W \). But \(p \circ F = \text{id} \). Thus \(W \subset p(U) \) and contains \(X \). This shows that \(p(U) \) is open. This proves (1).

The other conditions needed to show (2) follows trivially from the fact that \(\Omega \times B \) is an upper semi-continuous (in fact continuous) bundle over \(\Omega \). Lemma 5.1 and Proposition C.24 in Appendix C of [Wil07] implies (3). The fact that \(\alpha : G \to \text{Aut}(B) \) is a strongly continuous action implies (4). This completes the proof. \(\Box\)

We will identify a section of \(r^\ast \mathcal{A}\) over \(\mathcal{G}\) with a map \(f : G \to B\) such that \(f(\gamma) \in A_{r(\gamma)}\) for \(\gamma \in \mathcal{G}\). Thus

\[
\Gamma_c(\mathcal{G}, r^\ast \mathcal{A}) := \left\{ f : \mathcal{G} \to B : f \text{ is continuous, compactly supported and } f(\gamma) \in A_{r(\gamma)} \right\}.
\]

The convolution product and involution are given by the following formulas: For \(\phi, \psi \in \Gamma_c(\mathcal{G}, r^\ast \mathcal{A})\) and \((X, s) \in \mathcal{G}\),

\[
(\phi \ast \psi)(X, s) = \int \phi(X, t) \alpha_t(\psi(Xt, t^{-1}s)) 1_X(t^{-1}) dt, \\
\phi^\ast(X, s) = \alpha_s(\phi(Xs, s^{-1}))^\ast.
\]

For \(f \in C_c(G, A)\), let \(\tilde{f} : \mathcal{G} \to \mathcal{A}\) be defined by

\[\tilde{f}(X, s) := f(s) \text{ for } (X, s) \in \mathcal{G}.\]

Since \(A \subset A_X\) for \(X \in \Omega\), it follows that \(\tilde{f} \in \Gamma_c(\mathcal{G}, r^\ast \mathcal{A})\). Since we have assumed \(A\) is unital, we will identify \(C_c(G)\) with a subset of \(C_c(G, A)\).

Let us recall Proposition 3.5 of [MR82]. The reader is referred to Lemma 5.4 and Theorem 5.5 of [RST14] for a few remarks concerning Proposition 3.5 of [MR82].
Theorem 5.3 (Prop 3.5 [MR82]) Let G be the Wiener-Hopf groupoid associated to the Ore semigroup P. For $f \in C_c(G)$, let $\tilde{f} \in C_c(G)$ be defined by

$$\tilde{f}(X, s) = f(s) \text{ for } (X, s) \in G.$$

Then the \ast-algebra generated by $\{\tilde{f} : f \in C_c(G)\}$ is dense in $C_c(G)$ in the topology induced by the $\| \cdot \|_I$-norm.

We prove an analog of the above theorem for which a bit of preparation is needed. For $a \in P$ and $\psi \in \Gamma_c(G, r^*A)$, let $R_a(\psi) \in \Gamma_c(G, r^*A)$ be defined by

$$R_a(\psi)(X, s) = \alpha_a(\psi(X.a, a^{-1}s)).$$

Lemma 5.4 Let $\psi \in \Gamma_c(G, r^*A)$ and let (a_n) be a sequence in P such that $a_n \to a \in P$. Then $R_{a_n}(\psi) \to R_a(\psi)$ in the inductive limit topology.

Proof. Let $\Omega \times K$ be a compact set containing the support of ψ and L be a compact subset of P containing $\{a_n : n \in \mathbb{N}\}$. Then for every n, $R_{a_n}(\psi)$ and $R_a(\psi)$ are supported inside $\Omega \times LK$. If $R_{a_n}(\psi) \not\to R_a(\psi)$, it follows that there exists $\epsilon > 0$ and a subsequence $(a_{n_k}, X_{n_k}, s_{n_k}) \in P \times G$ such that

$$||\alpha_{a_{n_k}}(\psi(X_{n_k}a_{n_k}, a_{n_k}^{-1}s_{n_k})) - \alpha_a(\psi(X_{n_k}a, a^{-1}s_{n_k}))|| \geq \epsilon. \quad (5.4)$$

This implies in particular that $s_{n_k} \in LK$. Hence $(X_{n_k}, a_{n_k}, s_{n_k}) \subset \Omega \times L \times LK$ which is a compact subset of $\Omega \times P \times G$. By passing to a subsequence, if necessary, we can assume that $(X_{n_k}, a_{n_k}, s_{n_k})$ converges and let its limit be (X, a, s). Since α is strongly continuous and ψ is continuous, it follows that the sequences $\alpha_{a_{n_k}}(\psi(X_{n_k}a_{n_k}, a_{n_k}^{-1}s_{n_k}))$ and $\alpha_a(\psi(X_{n_k}a, a^{-1}s_{n_k}))$ converge to $\alpha_a(\psi(Xa, a^{-1}s))$. Hence their difference converge to zero which is a contradiction to Eq. 5.4. This completes the proof. \hfill \Box

The following corollary is an immediate consequence of the preceding lemma. We leave the proof to the reader.

Corollary 5.5 Let $\psi \in \Gamma_c(G, r^*A)$ and $a \in P$ be given. Given $\epsilon > 0$, there exists an open set $U \subset G$ containing a such that

$$||R_b(\psi)(X, s) - R_a(\psi)(X, s)|| \leq \epsilon$$

for $b \in U \cap P$ and $(X, s) \in G$.

19
Now we prove the analog of Theorem 5.3. We use the following notation in the proof. For \(\phi \in C(\Omega) \) and \(f \in C_c(G) \), let \(\phi \otimes f \in C_c(G) \) be the function defined by \((\phi \otimes f)(X, s) = \phi(X) f(s)\) for \((X, s) \in G\). For \(\phi \in C(\Omega) \) and \(\psi \in \Gamma_c(G, r^*\mathcal{A}) \), let \(\phi \cdot \psi \in \Gamma_c(G, r^*\mathcal{A}) \) be the function defined by \((\phi \cdot \psi)(X, s) = \phi(X) \psi(X, s)\). We will identify \(C_c(G) \) with a \(*\)-subalgebra of \(\Gamma_c(G, r^*(\mathcal{A})) \). This is because we have assumed \(A \) is unital and \(\alpha \) is unital.

Before we prove the main proposition, we need the following lemma which is the analog of Lemma 5.4 in [RS14]. In [RS14], the proof is provided for the case when \(A = \mathbb{C} \) and w.r.t. the inductive limit topology. Here we use the \(I\)-norm. Since the proof is almost identical, we omit the proof. For \(\phi \in \Gamma(\Omega, \mathcal{A}) \) and \(f \in C_c(G) \), we define \(\phi \otimes f \in \Gamma_c(G, r^*\mathcal{A}) \) by the equation
\[
(\phi \otimes f)(X, s) = \phi(X) f(s)
\]
for \((X, s) \in G\).

Lemma 5.6 Let \(\mathcal{E}' \subset \Gamma(\Omega, \mathcal{A}) \) be a subset which is closed under conjugation. Suppose that \(\Gamma(\Omega, \mathcal{A}) \) is generated by \(\mathcal{E}' \). Then the \(*\)-subalgebra generated by \(\{ \phi \otimes f : \phi \in \mathcal{E}', f \in C_c(G) \} \) is dense in \(\Gamma_c(G, r^*\mathcal{A}) \) w.r.t. the \(I\)-norm.

Note that if we set \(\mathcal{E}_0 := \{ \phi F_{x,f} : \phi \in C(\Omega), x \in A, f \in C_c(G) \} \) then \(\mathcal{E}_0 \) satisfies the hypothesis of Lemma 5.6.

Proposition 5.7 The \(*\)-algebra generated by \(\{ \tilde{f} : f \in C_c(G, A) \} \) is dense in \(\Gamma_c(G, r^*\mathcal{A}) \) in the topology induced by the norm \(|| ||_I \).

Proof. Let \(\mathcal{D} \) be the \(*\)-subalgebra of \(\Gamma_c(G, r^*\mathcal{A}) \) generated by \(\{ \tilde{f} : f \in C_c(G, A) \} \) and denote the closure of \(\mathcal{D} \) with respect to the \(|| ||_I \) by \(\overline{\mathcal{D}} \). Let \(x \in A, f, g \in C_c(G) \) be given. Define \(\psi : \mathcal{G} \to B \) by the formula: For \((X, s) \in \mathcal{G}\), let
\[
\psi(X, s) := \left(\int \alpha_t(x) f(t) 1_X(t^{-1}) dt \right) g(s).
\]
(5.5)

First we claim that that there exists a sequence \(\psi_n \in \mathcal{D} \) such that \(\psi_n \to \psi \) in the inductive limit topology. It is enough to prove when \(x \) is positive. Thus let \(x \) be positive and write \(x = y^* y \) for some \(y \in A \).

Let \(K \) be the support of \(g \). Let \(\epsilon > 0 \) be given. Choose a compact open neighbourhood \(V \ni e \) such that if \(s, t \in G \) and \(st^{-1} \in V \) then \(|g(s) - g(t)| \leq \epsilon \). Since \(f \) is compactly supported, there exists \(t_1, t_2, \cdots, t_n \in G \) such that \(supp(f) \subset \bigcup_{i=1}^n V t_i \). Choose a
partition of unity \(\{ \phi_i \}_{i=1}^n \) such that \(\phi_i \geq 0 \), \(\text{supp}(\phi_i) \subset Vt_i \) for every \(i \) and \(\sum_{i=1}^n \phi_i = 1 \) on \(\text{supp}(f) \). For every \(i \), let \(f_i, g_i \in C_c(G,A) \) be defined by the equation \(f_i(t) = yf(t^{-1})\phi_i(t^{-1}) \) and \(g_i(s) = yg(t_is) \). Let \(\psi_n := \sum_{i=1}^n \tilde{f}_i \ast \tilde{g}_i \).

Note that for every \(i \), \(\tilde{f}_i \ast \tilde{g}_i \) is supported in \(\Omega \times VK \). Hence \(\psi_n \) is supported in \(\Omega \times VK \) for every \(n \). Also note that for every \(i \),

\[
|\phi_i(t)(g(s) - g(t, t^{-1}s))| \leq \epsilon \phi_i(t)
\]

for \(t, s \in G \). If \(t \in \text{supp}(\phi_i) \subset Vt_i \) then \(s(t, t^{-1}s)^{-1} \in V \). Then by the choice of \(V \), it follows that \(|\phi_i(t)(g(s) - g(t, t^{-1}s))| \leq \epsilon \phi_i(t) \) for \(t \in \text{supp}(\phi_i) \) and \(s \in G \). The inequality clearly holds when \(t \notin \text{supp}(\phi_i) \).

Now calculate as follows to find that for \((X, s) \in G \),

\[
\| \psi(X, s) - \psi_n(X, s) \| = \left\| \sum_{i=1}^n (\int \alpha_t(x)f(t)\phi_i(t)1_X(t^{-1})g(s)dt - \int \alpha_t(y^*)f(t)\phi_i(t)\alpha_t(y)g(t, t^{-1}s)1_X(t^{-1})dt) \right\|
\]

\[
\leq \sum_{i=1}^n \int \| \alpha_t(x)f(t)\phi_i(t)(g(s) - g(t, t^{-1}s))1_X(t^{-1}) \| dt
\]

\[
\leq \sum_{i=1}^n \int \|x\| |f(t)| \epsilon \phi_i(t)dt
\]

\[
\leq \epsilon \|x\| \int |f(t)|dt
\]

This proves that \(D \ni \psi_n \to \psi \) in the inductive limit topology. As a consequence, it follows that \(\psi \in \overline{D} \).

Next we claim that \(\phi \psi \in \overline{D} \). Thus let \(\phi \in C(\Omega) \). We have just shown that \(\psi \in \overline{D} \).

Consider an element \(a \in \text{Int}(P) \). Choose a countable base of compact neighbourhoods \(\{ U_n : n \in \mathbb{N} \} \) at \(a \). We can assume that \(U_n \subset \text{Int}(P) \) and is decreasing. For every \(n \), let \(f_n \in C_c(G) \) be such that \(f_n \geq 0 \), \(\text{supp}(f_n) \subset U_n \) and \(\int f_n(g) dg = 1 \). Now observe that

\[
((\phi \otimes f_n) * \psi)(X, s) = \phi(X) \int f_n(t)\alpha_t(\psi(X,t,t^{-1}s)1_X(t^{-1})dt
\]

\[
= \phi(X) \int_{t \in U_n} f_n(t)\alpha_t(\psi(X,t,t^{-1}s)dt
\]

\[
= \phi(X) \int_{t \in U_n} f_n(t)R_t(\psi(X,s))dt
\]

Let \(\epsilon > 0 \) be given. Then by Corollary 5.5, it follows that there exists an open set \(U \subset \text{Int}(P) \) containing \(a \) such that \(\| R_t(\psi)(X, s) - R_a(\psi)(X, s) \| \leq \epsilon \) for \(t \in U \) and
(X, s) ∈ G. Choose N such that \(U_N \subset U \). Now observe that for \(n \geq N \),

\[
\|(\phi \otimes f_n) \ast \psi(X, s) - \phi(X)R_a(\psi)(X, s)\| \\
= \left\| \phi(X) \int_{t \in U_n} f_n(t)(R_t(\psi(X, s))dt - R_a(\psi)(X, s))dt \right\| \\
\leq \|\phi\|_\infty \epsilon \int f_n(t)dt \\
\leq \epsilon \|\phi\|_\infty
\]

Hence \((\phi \otimes f_n) \ast \psi \to \phi \cdot R_a(\psi) \) in the inductive limit topology. By Theorem 5.3, it follows that \((\phi \otimes f_n) \ast \psi \in \mathcal{D} \) for every \(n \in \mathbb{N} \). Hence for every \(a \in Int(P) \), \(\phi \cdot R_a(\psi) \in \mathcal{D} \).

Since \(Int(P) \) is dense in \(P \), choose a sequence \((a_n) \in Int(P) \) such that \(a_n \to e \) where \(e \) is the identity element of \(G \). Then by Lemma 5.4 it follows that \(\phi \cdot R_{a_n}(\psi) \to \phi \cdot R_e(\psi) \) in the inductive limit topology and consequently in the \(I \)-norm. Thus it follows that \(\phi \cdot \psi \in \mathcal{D} \).

Let \(\mathcal{E}_0 := \{ \phi F_{x,f} : x \in A, f \in C_c(G) \} \). We have shown that \(\mathcal{E}_0 \otimes_{alg} C_c(G) \) is contained in \(\mathcal{D} \). Now the Proposition follows by applying Lemma 5.6 to \(\mathcal{E}_0 \). This completes the proof.

The rest of the discussion is similar to the case when \(A = \mathbb{C} \) (MR82, RS14). Let \(X_0 := P^{-1} \in \Omega \). Then the \(G \)-orbit of \(X_0 \) in \(\Omega \) is dense in \(\Omega \). Thus the representation \(\Lambda_{X_0} \) is a faithful representation of \(\mathcal{A} \rtimes_{red} \mathcal{G} \). Also note that \(\mathcal{G}^{(X_0)} = \{ X_0 \} \times P \) and \(\mathcal{A}_{X_0} = A \). Thus \(L^2(\mathcal{G}^{(X_0)}, \mathcal{A}_{X_0}) = L^2(P, A) \) up to an obvious identification. For \(f \in C_c(G, A) \), let \(\tilde{f} \in C_c(G, A) \) be defined by \(\tilde{f}(g) = f(g^{-1})\Delta(g)^{-\frac{1}{2}} \). Note that \(C_c(G, A) \ni f \to \tilde{f} \in C_c(G, A) \) is a linear bijection.

Let \(\xi \in C_c(P, A) \) be given. Now observe that for \(b \in P \),

\[
(\Lambda_{X_0}(\tilde{f})\xi)(b) = \int a_b(f(b^{-1}a))\xi(a)1_P(a)db \\
= \int a_b(f(u))\xi(bu)1_P(bu)du \\
= \int a_b(f(u^{-1}))\Delta(u)^{-\frac{1}{2}}\xi(bu^{-1})1_P(bu^{-1})\Delta(u)^{-\frac{1}{2}}du \\
= (\int \tilde{f}(u)W_u\xi)(b)
\]

Thus \(\Lambda_{X_0}(\tilde{f}) = W_\tilde{f} \).

Theorem 5.8 The Toeplitz algebra \(\mathcal{A}(A, P, \alpha) \) is isomorphic to the reduced crossed product \(\mathcal{A} \rtimes_{red} \mathcal{G} \).
Proof. We have that observed, Λ_{X_0} is a faithful representation of $A \rtimes_{red} G$ on the Hilbert A-module $L^2(P, A)$ and $\Lambda_{X_0}(\tilde{f}) \in \mathcal{T}(A, P, \alpha)$ for $f \in C_c(G, A)$. Hence the range of Λ_{X_0} contains $\mathcal{T}(A, P, \alpha)$. Now Proposition 5.7 implies that the range of Λ_{X_0} is contained in $\mathcal{T}(A, P, \alpha)$. Thus the range of Λ_{X_0} is $\mathcal{T}(A, P, \alpha)$. This completes the proof. \hfill \Box

We end this section by proving $\mathcal{T}(A, P, \alpha) = A \rtimes_{red} P$ (under the hypotheses of this section).

Lemma 5.9 The C^*-algebra $A \rtimes_{red} P$ contains $\{ \int f(a)V_a^* \, da : f \in C_c(\text{Int}(P), A) \}$.

Proof. Observe that it suffices to to prove that for $x \in A$ and $f \in C_c(\text{Int}(P))$, the integral $\int xf(a)V_a^* \, da \in A \rtimes_{red} P$. Note that for $y \in A$ and $f \in C_c(\text{Int}(P))$, $\int \alpha_a(y)f(a)V_a^* \in A \rtimes_{red} P$. For the adjoint of $\int yf(a)V_a \, da$ is $\int \alpha_a(y)\phi(a)V_a^*$. This is because $V_a^*y = \alpha_a(y)V_a^*$ for $a \in P$.

Let $x \in A$ and $f \in C_c(\text{Int}(P))$ be given. We claim that for every $c \in \text{Int}(P)$, $\int \alpha_c(x)L_c(f)(a)V_a^* \, da \in A \rtimes_{red} P$.

Let (U_n) be a sequence of open sets containing the identity element e such that $\{ U_n : n \in \mathbb{N} \}$ is a neighbourhood base at e and $\bigcap_n U_n = \{ e \}$. We can also assume that $\{ U_n \}$ is decreasing. Let $c \in \text{Int}(P)$ be given. Choose $\phi_n \in C_c(G)$ such that $\phi_n \geq 0$, $\int \phi_n = 1$ and $\text{supp}(\phi_n) \subset U_n$. Let $c \in \text{Int}(P)$ be given. Define for $n \in \mathbb{N}$, $\psi_n := L_c(\phi_n)$. Then $\text{supp}(\psi_n) \subset cU_n$. The collection $\{ cU_n : n \in \mathbb{N} \}$ forms a neighbourhood base at $c \in \text{Int}(P)$. Hence there exists $N \in \mathbb{N}$ such that $cU_n \subset \text{Int}(P)$ for $n \geq N$.

Since A is unital, it follows that $\int f(a)V_a^* \in A \rtimes_{red} P$. Thus, for $n \geq N$, $A \rtimes_{red} P$ contains the product $(\int \alpha_b(x)\psi_n(b)V_b^* \, db)(\int f(a)V_a^* \, da) = \int \int \alpha_b(x)\psi_n(b)f(a)V_b^*V_a^* \, db \, da$.

Now observe that

$$\left\| \int \int \alpha_b(x)\psi_n(b)f(a)V_b^*V_a^* \, db \, da - \int \int \alpha_c(x)\psi_n(b)f(a)V_b^*V_a^* \, db \, da \right\| \leq \sup_{b \in cU_n} (\| \alpha_b(x) - \alpha_c(x) \|) \| f \|_1$$

Now the strong continuity of the action, together with the fact that $\{ cU_n : n \in \mathbb{N} \}$ forms a neighbourhood base at c with $\{ cU_n \}$ decreasing implies that the difference

$$\int \int \alpha_b(x)\psi_n(b)f(a)V_b^*V_a^* \, db \, da - \int \int \alpha_c(x)\psi_n(b)f(a)V_b^*V_a^* \, db \, da \to 0$$

in the norm.
Now calculate as follows to find that
\[
\int \int \alpha_c(x)\psi_n(b)f(a)V_b^*V_a^*dadb = \int \int \alpha_c(x)\psi_n(b)f(a)V_a^*dadb
\]
\[
= \int \int \alpha_c(x)\psi_n(b)f(b^{-1}a)V_a^*dadb
\]
\[
= \int \alpha_c(x)\left(\int \psi_n(b)f(b^{-1}a)db \right)V_a^*da
\]
\[
= \int \alpha_c(x)(\psi_n * f)(a)V_a^*da
\]
\[
= \int \alpha_c(x)L_c(\phi_n * f)(a)V_a^*da
\]
\[
\rightarrow \int \alpha_c(x)L_c(f)(a)V_a^*da.
\]

The last line follows from the fact that (ϕ_n) is an approximate unit in $L^1(G)$ and left translations are continuous as bounded linear operators on $L^1(G)$. As a consequence, we have $\int \int \alpha_b(x)\psi_n(b)f(a)V_b^*V_a^*dadb \rightarrow \int \alpha_c(x)L_c(f)(a)V_a^*$. Since for $n \geq N$, $\int \int \alpha_b(x)\psi_n(b)f(a)V_b^*V_a^*dadb \in A \rtimes_{red} P$, it follows that $\int \alpha_c(x)L_c(f)(a)V_a^*da \in A \rtimes_{red} P$. This proves our claim.

Now choose a sequence $c_n \in Int(P)$ such that $c_n \to e$. We leave it to the reader to prove that $\int \alpha_c(x)L_c(f)(a)V_a^*da \to xf(a)V_a^*da$. Thus $xf(a)V_a^*da \in A \rtimes_{red} P$. This completes the proof. \(\square\)

Another way of stating the above lemma is that the Wiener-Hopf operators $W_f \in A \rtimes_{red} P$ if $f \in C_c(Int(P)^{-1}, A)$. For let $f \in C_c(Int(P)^{-1}, A)$ be given. Define $f_1 \in C_c(G, A)$ by $f_1(g) = f(g^{-1})\Delta(g)^{-1}$. Then $f_1 \in C_c(Int(P), A)$. Now note that
\[
W_f = \int f(g)W_g dg
\]
\[
= \int f(g^{-1})W_{g^{-1}}\Delta(g)^{-1}dg
\]
\[
= \int_{a \in Int(P)} f_1(a)V_a^*da \in A \rtimes_{red} P.
\]

Proposition 5.10 The $*$-algebra generated by $\{\tilde{f} : f \in C_c(Int(P), A)\}$ is dense in $\Gamma_c(G, r^*A)$ with respect to the I-norm. Thus $\mathfrak{F}(A, P, \alpha) = A \rtimes_{red} P$.

Proof. Let D_+ be the $*$-algebra generated by $\{\tilde{f} : f \in C_c(Int(P), A)\}$. Let $x \in A$ and $\phi, \psi \in C_c(Int(P))$ be given and let $f := x \otimes \phi$. Define $\psi_1 \in C_c(G)$ by $\psi_1(g) = \psi(g^{-1})$. The map $C_c(Int(P)) \ni \psi \rightarrow \psi_1 \in C_c(Int(P)^{-1})$ is a bijection. Now observe that
\(\tilde{f} \ast \psi^* = \tilde{g} \) where \(g = x \otimes (\phi \ast \psi_1) \). Now the density of \(D_+ \) follows from Lemma 4.4 and Proposition 5.7.

Clearly \(A \rtimes_{red} P \subset \mathfrak{T}(A, P, \alpha) \). Recall the representation \(\Lambda_{X_\alpha} \) considered in Theorem 5.8. Then we have shown that \(\ast \)-algebra generated \(\{ \Lambda_{X_\alpha}(\tilde{f}) : f \in C_c(Int(P), A) \} = \{ W_f : f \in C_c(Int(P)^{-1}, A) \} \) is dense in \(\mathfrak{T}(A, P, \alpha) \). But \(W_f \in A \rtimes_{red} P \) if \(f \in C_c(Int(P)^{-1}, A) \). Hence \(\mathfrak{T}(A, P, \alpha) \subset A \rtimes_{red} P \) and consequently \(A \rtimes_{red} P = \mathfrak{T}(A, P, \alpha) \). This completes the proof. \(\square \)

6 The surjective case

Throughout this section, \(A \) stands for a separable \(C^* \)-algebra, possibly non-unital, and \(\alpha : P \to \text{End}(A) \) is a strongly continuous surjective action i.e. for every \(a \in P \), \(\alpha_a \) is surjective. We do not demand that \(P \) is left-reversible. Let \(\mathcal{G} := \Omega \rtimes P \) be the Wiener-Hopf groupoid. For \(X \in \Omega \), let

\[
I_X := \{ x \in A : P^{-1}a_n \to X, a_n \in P \Rightarrow ||\alpha_a(x)|| \to 0 \}.
\]

Note that for \(X \in \Omega \), \(I_X \) is a closed two sided ideal of \(A \).

Remark 6.1 If \(P^{-1}a = P^{-1}b \) for \(a, b \in P \), then there exists \(c \in P \cap P^{-1} \) such that \(a = cb \). Hence for \(x \in A \), \(||\alpha_a(x)|| = ||\alpha_c(x)|| \). This is because \(\alpha_c : A \to A \) is an isomorphism if \(c \in P \cap P^{-1} \).

Lemma 6.2 Let \(X \in \Omega \), \(a \in P \) and \(x \in A \) be given. Then \(\alpha_a(x) \in I_X \) if and only if \(x \in I_{X_a} \).

Proof. Let \(X \in \Omega \), \(a \in P \) and \(x \in A \) be given. Suppose \(x \in I_{X_a} \). Let \(P^{-1}a_n \) be a sequence, with \(a_n \in P \), in \(\Omega \) converging to \(X \). Then \(P^{-1}a_n a \to Xa \). Thus by definition \(\alpha_a a_n(x) = \alpha_{a_n}(\alpha_a(x)) \to 0 \). Hence \(\alpha_a(x) \in I_X \). This proves the “if” part.

We prove the “only if” part first for the case when \(a \in \text{Int}(P) \). Thus assume \(a \in \text{Int}(P) \) and \(\alpha_a(x) \in I_X \). Suppose \(P^{-1}a_n \to Xa \). Since \(e \in X \), it follows that there exists \(b_n \in P \) such that \(b_n^{-1}a_n \to a \). But \(a \in \text{Int}(P) \) and \(\text{Int}(P) \) is open in \(G \). Thus \(c_n := b_n^{-1}a_n \in \text{Int}(P) \) eventually. Since \(P^{-1}a_n \to Xa \) and \(b_n^{-1}a_n \to a \), it follows that \(P^{-1}b_n \to X \). Hence \(\alpha_{b_n}(\alpha_a(x)) \to 0 \). Now observe that

\[
||\alpha_{a_n}(x)|| = ||\alpha_{b_n c_n}(x)|| \\
\leq ||\alpha_{b_n}(\alpha_a(x))|| + ||\alpha_{b_n}(\alpha_{c_n}(x) - \alpha_a(x))|| \\
\leq ||\alpha_{b_n}(\alpha_a(x))|| + ||\alpha_{c_n}(x) - \alpha_a(x)||.
\]
In the right hand side of the above inequality, we have just observed that the first term converges to zero. Since \(c_n \to a \), the strong continuity of the action \(\alpha \) implies that the second term also converges to zero. Hence \(\alpha_{a_n}(x) \to 0 \). This proves the ”only if” part when \(a \in \text{Int}(P) \).

Now let \(a \in P \) and suppose \(\alpha_a(x) \in I_X \). Choose \(c \in \text{Int}(P) \). Since \(\alpha_c \) is surjective, let \(y \in A \) be such that \(x = \alpha_c(y) \). Then \(\alpha_{ac}(y) \in I_X \). But \(ac \in \text{Int}(P) \). Thus by the ”only if” part (that is just proved), it follows that \(y \in I_{Xac} \). Then the ”if part” implies that \(x = \alpha_c(y) \in I_{Xa} \). This completes the proof. \(\square \)

Lemma 6.3 For \(a \in P \), \(I_{P^{-1}a} = \text{Ker}(\alpha_a) \).

Proof. Clearly the inclusion \(I_{P^{-1}a} \subset \text{Ker}(\alpha_a) \) holds. For the constant sequence \((P^{-1}a)^\infty_{n=1} \to P^{-1}a \). Hence if \(x \in I_{P^{-1}a} \) then \(\alpha_a(x) = 0 \).

We prove the reverse inclusion first for \(a \in \text{Int}(P) \). Let \(a \in \text{Int}(P) \) and \(x \in \text{Ker}(\alpha_a) \) be given. Consider a sequence \(P^{-1}a_n \to P^{-1}a \) with \(a_n \in P \). Thus there exists a sequence \(b_n \in P \) such that \(c_n := b_n^{-1}a_n \to a \). But \(a \in \text{Int}(P) \). Hence \(c_n \in \text{Int}(P) \) eventually. Write \(a_n = b_nc_n \). Now \(c_n \to a \) implies that \(\alpha_{c_n}(x) \to \alpha_a(x) = 0 \). Now observe that for \(n \geq 1 \), \(||\alpha_{a_n}(x)|| = ||\alpha_{b_n}\alpha_{c_n}(x)|| \leq ||\alpha_{c_n}(x)|| \). It follows that \(\alpha_{a_n}(x) \to 0 \). That is \(x \in I_{P^{-1}a} \).

Now let \(a \in P \) and \(x \in \text{Ker}(\alpha_a) \) be given. Choose \(c \in \text{Int}(P) \) and write \(x = \alpha_c(y) \) for some \(y \in A \). Then \(y \in \text{Ker}(\alpha_{ac}) \) and \(ac \in \text{Int}(P) \). By what we have proved just now, it follows that \(y \in I_{P^{-1}ac} \). Now Lemma 6.2 implies that \(x = \alpha_c(y) \in I_{P^{-1}a} \). This proves the reverse inclusion and the proof is complete. \(\square \)

Remark 6.4 Note that Lemma 6.3 implies in particular that \(I_{P^{-1}a} = 0 \).

For \(X \in \Omega \), let \(A_X := A/I_X \) and let

\[A := \coprod_{X \in \Omega} A_X \]

be the disjoint union and \(p : A \to \Omega \) be the surjection sending \(A_X \to X \). Thus \(A \) is a bundle of \(C^* \)-algebras over \(\Omega \). The next proposition is crucial in endowing a topology on \(A \) so that \(A \) becomes an upper semi-continuous bundle.

We need a little lemma before proving it.

Lemma 6.5 Let \(B \) be a \(C^* \)-algebra with norm \(||.|| \). Let \(||.||_1 \) be a \(C^* \)-norm on \(B \). Suppose \(||x||_1 \leq ||x|| \) for every \(x \in B \) then \(||x|| = ||x||_1 \) for every \(x \in B \).
Proof. The point of the lemma is that we do not assume \((B, ||.||_1)\) is complete. Let \(\overline{B}\) be the completion of \(B\) w.r.t. the norm \(||.||_1\). The hypothesis of the lemma implies that the inclusion \((B, ||.||) \hookrightarrow (\overline{B}, ||.||_1)\) is continuous, injective and is a *-homomorphism. Hence the image is closed. That is \((B, ||.||_1)\) is complete. Hence the two norms on ||.|| and ||.||_1 are equal. This completes the proof.

\[\square\]

Lemma 6.6 We have the following.

1. Let \(x \in A\) and \(X \in \Omega\) be given. Then \(||x + I_X|| = \limsup_{P^{-1}a \rightarrow X} ||\alpha_a(x)||\). \(^2\)

2. For \(x \in A\) the map \(\Omega \ni X \mapsto ||x + I_X||\) is upper semi-continuous.

Proof. Let \(X \in \Omega\) be given. For \(x \in A\), let

\[||x||_1 := \limsup_{P^{-1}a \rightarrow X} ||\alpha_a(x)||.\]

Note that \(||.||_1\) is a \(C^*\)-semi-norm on \(A\) and \(||x||_1 \leq ||x||\) for \(x \in A\). We claim that \(I_X := \{x \in A : ||x||_1 = 0\}\). Let \(x \in A\) be such that \(||x||_1 = 0\). Consider a sequence \((P^{-1}a_n) \rightarrow X\) and let \(\epsilon > 0\) be given. Since \(||x||_1 = 0\), it follows that there exists an open set \(U \subset \Omega\) containing \(X\) such that \(P^{-1}a \in U\) implies \(||\alpha_a(x)|| \leq \epsilon\). Since \(P^{-1}a_n \rightarrow X\), it follows that \(P^{-1}a_n \in U\) eventually. Hence \(||\alpha_{a_n}(x)|| \leq \epsilon\) eventually. This proves that \(x \in I_X\).

Now let \(x \in I_X\). Suppose \(||x||_1 > 0\). Choose a countable base \(\{U_n : n \in \mathbb{N}\}\) of open subsets of \(\Omega\) containing \(X\). We can assume that \(U_n\) is decreasing. Since \(||x||_1 > 0\), for every \(n\), there exists \(a_n \in P\) such that \(P^{-1}a_n \in U_n\) and \(||\alpha_{a_n}(x)|| > \frac{||x||_1}{2}\). Then \(P^{-1}a_n \rightarrow X\) but \(\alpha_{a_n}(x) \rightarrow 0\). This contradicts the fact that \(x \in I_X\). Hence \(||x||_1 = 0\).

This proves our claim. Consequently \(||.||_1\) descends to a \(C^*\)-norm on \(A/I_X\) which we again denote by \(||.||_1\).

Note that for \(x \in A\) and \(y \in I_X\), \(||x||_1 = ||x - y||_1 \leq ||x - y||\). Thus \(||x||_1 \leq ||x + I_X||\) for \(x \in A\). Thus \(||x + I_X||_1 \leq ||x + I_X||\) for \(x \in A\). Now by Lemma 6.5 applied to the \(C^*\)-algebra \(A/I_X\) implies that \(||x + I_X||_1 = ||x + I_X||\) for every \(x\) in \(A\). This proves (1).

Let \(x \in A\) and \(\epsilon > 0\) be given. To show (2), it is enough to show that the set

\[V := \{X \in \Omega : ||x + I_X|| < \epsilon\}\]

is open in \(\Omega\). Let \(X_0 \in V\). Then, by (1), \(\limsup_{P^{-1}a \rightarrow X_0} ||\alpha_a(x)|| < \epsilon\). Choose \(r > 0\) such that \(\limsup_{P^{-1}a \rightarrow X_0} ||\alpha_a(x)|| < r < \epsilon\). Hence there exists an open set \(U \subset \Omega\) containing \(X_0\)

\[^2\] Here \(\limsup_{P^{-1}a \rightarrow X} ||\alpha_a(x)|| := \inf_{X \in U\text{-open}} \left(\sup_{P^{-1}a \in U} ||\alpha_a(x)|| \right)\).
Then the collection $\{\mathcal{W}(U, x, \epsilon) : X \in U \} \in \Omega$ implies that the map $\mathcal{W}(U, x, \epsilon)$ acts on $A := \bigoplus_{x \in \Omega} A_x$ such that $p : A \to \Omega$ is an upper semi-continuous bundle and the map $\Omega \in X \to x + I_X$ is a continuous section for every $x \in A$. Here $p : A \to \Omega$ is the surjection which send A_X to X for $X \in \Omega$. For an open subset $U \subset \Omega$, $x \in A$ and $\epsilon > 0$, define

$$\mathcal{W}(U, x, \epsilon) := \{y + I_X \in A : X \in U \text{ and } ||(y - x) + I_X|| < \epsilon\}.$$

Then the collection $\{\mathcal{W}(U, x, \epsilon)\}$ forms a basis for the topology τ. In fact, since we have assumed that A is separable, it follows that A is second countable.

Let $a \in P$ be given and $X \in \Omega$ be given. Now Lemma 6.2 and the surjectivity of α_{a} implies that the map $A_{X_a} \ni x + I_{X_a} \to \alpha_a(x) + I_X \in A_X$ is an isomorphism. We denote this map by $\alpha_{(X,a)}$. Note that for $X \in \Omega$ and $a,b \in P$, $\alpha_{(X,a)} \alpha_{(X,b)} = \alpha_{(X,ab)}$.

The Wiener-Hopf groupoid $\mathcal{G} = \Omega \times P$ acts on A as follows. Let $(X,g) \in \mathcal{G}$ be given and let $Y = Xg$. Write $g = ab^{-1}$ with $a,b \in P$. Define $\alpha_{(X,g)} : A_Y \to A_X$ by the formula $\alpha_{(X,g)} := \alpha_{(X,a)}^{-1}$. First we need to verify that $\alpha_{(X,g)}$ is well-defined.

Suppose $g = a_1 b_1^{-1} = a_2 b_2^{-1}$. Then $a_1^{-1} a_2 = b_1^{-1} b_2$. Choose $c,d \in P$ such that $a_1^{-1} a_2 = cd^{-1}$. Then $a_1 c = a_2 d$. Similarly $b_1 c = b_2 d$. Also $Xa_i = Yb_i$ for $i = 1,2$. Note that

$$\alpha_{(X,a_1)} \alpha_{(X,b_1)}^{-1} = \alpha_{(X,a_1)} \alpha_{(X,a_1,c)} \alpha_{(X,a_1,c)}^{-1} \alpha_{(Y,b_1)}^{-1}$$
$$= \alpha_{(X,a_1)} \alpha_{(X,a_1,c)} \alpha_{(Y,b_1,c)}^{-1}$$
$$= \alpha_{(X,a_1,c)}^{-1} \alpha_{(Y,b_1,c)}^{-1}$$

Similarly $\alpha_{(X,a_2)} \alpha_{(X,b_2)}^{-1} = \alpha_{(X,a_2,d)} \alpha_{(Y,b_2,d)}^{-1}$. Since $a_1 c = a_2 d$ and $b_1 c = b_2 d$, it follows that $\alpha_{(X,g)}$ is well-defined.

We leave it to the reader to verify that $\{\alpha_{(X,g)} : (X,g) \in \mathcal{G}\}$ defines a left action of \mathcal{G} on A. In fact, the action is continuous, which is the content of the next proposition.

Lemma 6.7 Let (X_n, a_n, y_n) be a sequence in $\Omega \times P \times A$ and let $(X,a,y) \in \Omega \times P \times A$. Set $x_n := \alpha_{a_n}(y_n)$ and $x := \alpha_{a}(y)$. Suppose that $a_n \to a$. Then $x_n + I_{X_n} \to x + I_X$ in A if and only if $y_n + I_{X_na_n} \to y + I_{Xa}$ in A.

28
Proof. Suppose \(x_n + I_{X_n} \to x + I_X \) in \(A \). Choose a basic open set \(W(U, z, \epsilon) \) of \(A \) containing \(y + I_{X_a} \). Then \(X_a \in U \) and \(||(y - z) + I_{X_a}|| < \epsilon \). Since the map \(\Omega \times P \ni (Z, b) \to Zb \in \Omega \) is continuous, there exists an open set \(V \subset \Omega \) containing \(X \) and an open subset \(W \subset P \) (i.e. open in the subspace topology) containing \(a \) such that \(VW \subset U \). Choose \(r > 0 \) such that \(||(y - z) + I_{X_a}|| < r < \epsilon \). Since \(a_n \to a \) and \(X_n \to X \), there exists \(N_0 \in \mathbb{N} \) such that \(n \geq N_0 \) implies \(X_n \in V \), \(a_n \in W \) and \(||\alpha_{a_n}(z) - \alpha_a(z)|| < \epsilon - r \). In particular, for \(n \geq N_0 \), \(X_n a_n \in U \).

The fact that \(\alpha_{(X,a)} : A_{X_a} \to X \) is an isomorphism implies that \(||(x - \alpha_a(z)) + I_X|| < r \). Hence \(x + I_X \in W(V, \alpha_a(z), r) \). Since \(x_n + I_{X_n} \to x + I_X \), it follows that there exists \(N \) which we can assume to be larger than \(N_0 \) such that for \(n \geq N \), \(x_n + I_{X_n} \in W(V, \alpha_a(z), r) \).

For \(n \geq N \), \(X_n a_n \in U \) and calculate as follows to find that

\[
|| (y_n - z) + I_{X_n a_n} || = || (\alpha_{a_n}(y_n) - \alpha_{a_n}(z)) + I_{X_n} ||
\]

\[
\leq ||(x_n - \alpha_a(z)) + I_{X_n} || + ||(\alpha_{a_n}(z) - \alpha_a(z)) + I_{X_n} ||
\]

\[
\leq ||(x_n - \alpha_a(z)) + I_{X_n} || + ||(\alpha_{a_n}(z) - \alpha_a(z)) ||
\]

\[
< r + \epsilon - r \quad \text{(for } x_n + I_{X_n} \in W(V, \alpha_a(z), r) \text{)}
\]

\[
< \epsilon.
\]

Thus for \(n \geq N \), \(y_n + I_{X_n a_n} \in W(U, z, \epsilon) \). This proves the "only if" part.

Now suppose assume that \(y_n + I_{X_n a_n} \to y + I_{X_a} \). First assume that \(a \in \text{Int}(P) \). Then without loss of generality, we can assume that \(a_n \in \text{Int}(P) \). Let \(W(U, z, \epsilon) \) be a basic open set containing \(x + I_X \) and write \(z = \alpha_a(\tilde{z}) \). Now the assumption, \(y_n + I_{X_n a_n} \to y + I_{X_a} \) implies that \(X_n a_n \to Xa \). But \(\Omega \) is compact and the right action of \(P \) on \(\Omega \) is injective. Hence it follows that \(X_n \to X \). The fact that the open set \(U \) contains \(X \) implies that there exists \(N_1 \) such that \(n \geq N_1 \) implies \(X_n \in U \).

Since \(x + I_X \in W(U, z, \epsilon) \) there exists \(r > 0 \) for which \(||(x - z) + I_X|| < r < \epsilon \) i.e. \(||\alpha_a(y) - \alpha_a(\tilde{z}) + I_X|| < r \). Hence \(||(y - \tilde{z}) + I_{X_a}|| < r \). Then \(y + I_{X_a} \in W(\Omega_0, \tilde{z}, r) \) where \(\Omega_0 = \Omega \text{Int}(P) \). Recall that \(\Omega_0 \) is open in \(\Omega \). Since \(y_n + I_{X_n a_n} \to y + I_{X_a} \) and \(a_n \to a \), choose \(N \geq N_1 \) such that for \(n \geq N \), \(y_n + I_{X_n a_n} \in W(\Omega_0, \tilde{z}, r) \) and \(||\alpha_{a_n}(\tilde{z}) - \alpha_a(\tilde{z})|| < \epsilon - r \).

Now calculate as before to find that for \(n \geq N \),

\[
|| (x_n - z) + I_{X_n} || \leq ||(\alpha_{a_n}(y_n) - \alpha_{a_n}(\tilde{z})) + I_{X_n} || + ||(\alpha_{a_n}(\tilde{z}) - \alpha_a(\tilde{z})) + I_{X_n} ||
\]

\[
\leq ||(y_n - \tilde{z}) + I_{X_n a_n} || + ||\alpha_{a_n}(\tilde{z}) - \alpha_a(\tilde{z}) ||
\]

\[
< r + \epsilon - r \quad \text{(for } y_n + I_{X_n a_n} \in W(\Omega_0, \tilde{z}, r) \text{)}
\]

< \epsilon.

29
This proves that for $n \geq N$, $x_n + I_{X_n} \in \mathcal{W}(U, z, \epsilon)$.

Now suppose $a \in P$. Choose $c \in \text{Int}(P)$ and write $y_n = \alpha_c(\tilde{y}_n)$, $y = \alpha_c(\tilde{y})$. Now the fact that $y_n + I_{X_{n}a_n} \to y + I_{Xa}$ and the ”only if” part that we proved in the first half of the lemma implies that $\tilde{y}_n + I_{X_{n}a_n} \to \tilde{y} + I_{Xa}$. But $ac \in \text{Int}(P)$ and $a_n c \to ac$. Thus by what we have proved just now (for the ”if part”), it follows that $\alpha_{ac}(\tilde{y}_n) + I_{X_n} \to \alpha_{ac}(\tilde{y}) + I_X$. Hence $x_n + I_{X_n} \to x + I_X$. This completes the proof.

Just as in the injective case, we will denote both the action of P on A and the action $\{\alpha_{(X,g)}\}$ of G on A by α.

Proposition 6.8 The left action $\alpha := \{\alpha_{(X,g)} : (X, g) \in G\}$ of G on A is continuous.

Proof. Suppose $(X_n, g_n) \to (X, g) \in G$. Define $Y_n := X_n g_n$ and $Y = Xg$. Let $y_n + I_{Y_n}$ be a sequence in A converging to $y + I_Y$. To complete the proof, we need to show that the sequence $\alpha_{(X_n, g_n)}(y_n + I_{Y_n}) \to \alpha_{(X, g)}(y + I_Y)$. Since $G = \text{Int}(P) \cap \text{Int}(P)^{-1}$, there exists $a, b \in \text{Int}(P)$ such that $g = ab^{-1} \in \text{Int}(P)b^{-1}$ which is an open subset of G. Hence $g_n \in \text{Int}(P)b^{-1}$ eventually. Write $g_n = a_n b^{-1}$ for large n. Then $a_n \to a$. Choose $z_n \in A$ and $z \in A$ such that $y_n = \alpha_b(z_n)$ and $y = \alpha_b(z)$.

Now Lemma 6.7 implies that $z_n + I_{X_n} \to z + I_{Xb}$. Since $Y_n b = X_n a_n$ and $Yb = Xa$, it follows that $z_n + I_{X_n a_n} \to z + I_{Xa}$. Now again by Lemma 6.7 it follows that the sequence $\alpha_{a_n}(z_n) + I_{X_n} \to \alpha_a(z) + I_X$. Thus by definition, it follows that $\alpha_{(X_n, g_n)}(y_n + I_{Y_n}) \to \alpha_{(X, g)}(y + I_Y)$. This completes the proof.

Notation: For $x \in A$ and $g \in C_c(G)$, we denote the function $G \ni s \to x g(s) \in A$ by $x \otimes g$. For $f \in C_c(G, A)$, let $\tilde{f} \in \Gamma_c(G, r^* A)$ be defined by

$$\tilde{f}(X, s) := f(s) + I_X$$

for $(X, s) \in G$. From the definition of the topology on A, it follows that \tilde{f} is continuous when $f = x \otimes g$ for some $x \in A$ and $g \in C_c(G)$. Now the continuity of \tilde{f} for $f \in C_c(G, A)$ follows from the fact that the linear span of $\{x \otimes g : x \in A, g \in C_c(G)\}$ is dense in $C_c(G, A)$ in the inductive limit topology.

Next we proceed towards proving a proposition analogous to Proposition 5.7.

Lemma 6.9 Let \mathcal{F} be the closure of the linear span of $\{\tilde{f} : f \in C_c(G, A)\}$ in $\Gamma_c(G, r^* A)$ with respect to the $|| \cdot ||_{r}$-norm. Then \mathcal{F} is *-closed.

Proof. It is enough to show that if $f = x \otimes g$ for some $x \in A$ and $g \in C_c(G)$ then $(\tilde{f}^*) \in \mathcal{F}$. Thus, let $x \in A$ and $g \in C_c(G)$ be given. Define $\psi \in \Gamma_c(G, r^* A)$ by the equation

$$\psi(X, s) = (x^* + I_X)g(s^{-1})$$

for $(X, s) \in G$. From the definition of the topology on A, it follows that \tilde{f} is continuous when $f = x \otimes g$ for some $x \in A$ and $g \in C_c(G)$. Now the continuity of \tilde{f} for $f \in C_c(G, A)$ follows from the fact that the linear span of $\{x \otimes g : x \in A, g \in C_c(G)\}$ is dense in $C_c(G, A)$ in the inductive limit topology.
for \((X, s) \in \mathcal{G}\). To complete the proof, it is enough to show that \(\psi^* \in \mathcal{F}\).

Let \(K\) be the support of \(g\). Since \(G = \text{Int}(P)\text{Int}(P)^{-1}\) and \(K\) is compact, it follows that there exists \(b_1, b_2, \ldots, b_n \in \text{Int}(P)\) such that \(K \subset \text{Int}(P)b_i^{-1}\). Choose \(b \in P\) such that \(b \geq b_i\) for \(i = 1, 2, \ldots, n\). Then \(b \in \text{Int}(P)\) and \(K \subset \text{Int}(P)b^{-1}\). Choose an open set \(U\) containing \(K\) such that \(\overline{U}\) is compact. Write \(x = \alpha_b(y)\) for some \(y \in A\).

Let \(\epsilon > 0\) be given. Since the action \(\alpha : P \to \text{End}(A)\) is strongly continuous, for every \(a \in \text{Int}(P)\), there exists an open set \(V_a \subset \text{Int}(P)\) containing \(a\) such that \(\|\alpha_t(y) - \alpha_s(y)\| \leq \epsilon\) for \(t, s \in V_a\). Now \(\bigcup_{a \in \text{Int}(P)} V_a b^{-1}\) contains \(K\). Choose finitely many \(V_a\)'s, whose right translates by \(b^{-1}\) cover \(K\). Call them \(V_1, V_2, \ldots, V_n\). By replacing \(V_i\) by \(V_i \cap Ub\), we can assume that \(V_i \subset Ub\). For every \(i\), choose \(a_i \in V_i\). Then

- (a) \(a_i \in V_i\) for \(i = 1, 2, \ldots, n\),
- (b) if \(t \in V_i\) then \(\|\alpha_t(y) - \alpha_{a_i}(y)\| \leq \epsilon\) for all \(i\), and
- (c) the support \(K \subset \bigcup_{i=1}^n V_i b^{-1}\) and \(V_i \subset Ub\).

Choose a partition of unity \(\{\chi_i : i = 1, 2, \ldots, n\}\) such that \(\chi_i \geq 0\), \(\text{supp}(\chi_i) \subset V_i b^{-1}\) and \(\sum_{i=1}^n \chi_i = 1\) on \(K\). Let \(\tilde{\psi} \in \mathcal{F}\) be defined by

\[
\tilde{\psi}(X, s) = \sum_{i=1}^n (\alpha_{a_i}(y) + I_X g(s)) \chi_i(s)
\]

for \((X, s) \in \mathcal{G}\). Note that \(\text{supp}(\tilde{\psi}) \subset \Omega \times K\). For \((X, s) \in \mathcal{G}\), calculate as follows to find that

\[
\|\psi^*(X, s) - \tilde{\psi}(X, s)\| = \|\sum_{i=1}^n ((\alpha_{(X, s)}(x + I_{X, s}) - (\alpha_{a_i}(y) + I_X)) \chi_i(s) g(s))\|
\]

\[
= \|\sum_{i=1}^n ((\alpha_{(X, s)}(\alpha_b(y) + I_{X, s}) - (\alpha_{a_i}(y) + I_X)) \chi_i(s) g(s))\|
\]

\[
\leq \sum_i \|((\alpha_{\beta}(y) - \alpha_{a_i}(y)) + I_X) \chi_i(s) g(s)\| 1_{V_i b^{-1}}(s)
\]

\[
\leq \sum_i \|((\alpha_{\beta}(y) - \alpha_{a_i}(y))| 1_{V_i b^{-1}}(s) \chi_i(s) g(s)\|
\]

\[
\leq \epsilon \sum_i \chi_i(s) g(s)
\]

\[
\leq \epsilon \|g\|_{\infty}.
\]

This implies that there exists a sequence \(\psi_n \in \mathcal{F}\) such that \(\psi_n \to \psi^*\) in the inductive limit topology and hence in the \(I\)-norm. This completes the proof. \(\Box\)
Remark 6.10 Denote the closure of the linear span of \(\{ \tilde{f} : f \in C_c(\text{Int}(P), A) \} \) and the closure of the linear span of \(\{ \tilde{f} : f \in C_c(\text{Int}(P)^{-1}, A) \} \) w.r.t. the I-norm by \(\mathcal{F}_+ \) and \(\mathcal{F}_- \) respectively. The proof of Lemma 6.9 shows that \(\mathcal{F}_+ \subset \mathcal{F}_- \) and \(\mathcal{F}_+ \subset \mathcal{F}_- \). Hence \(\mathcal{F}_+ = \mathcal{F}_- \) and \(\mathcal{F}_+ = \mathcal{F}_- = \mathcal{F}_+ \).

Let \(\mathcal{D} \) be the \(\ast \)-subalgebra of \(\Gamma_c(G, r^*A) \) generated by \(\{ \tilde{f} : f \in C_c(G, A) \} \). Denote the closure of \(\mathcal{D} \) in the I-norm by \(\overline{\mathcal{D}} \). For \(f \in C_c(G) \), let \(\tilde{f} \in C_c(G) \) be as defined in Theorem 5.3. Let \(\mathcal{D}_0 \) be the \(\ast \)-subalgebra of \(C_c(G) \) generated by \(\{ \tilde{f} : f \in C_c(G) \} \). Denote the closure of \(\mathcal{D}_0 \) in the I-norm by \(\overline{\mathcal{D}_0} \). Note that \(\overline{\mathcal{D}_0} = C_c(G) \).

We claim that \(\overline{\mathcal{D}_0} \ast \overline{\mathcal{D}} \subset \overline{\mathcal{D}} \). Note that it is enough to show that for \(f \in C_c(G) \) and \(g \in C_c(G, A) \), \(\tilde{f} \ast \tilde{g} \in \overline{\mathcal{D}} \) and \(\tilde{f} \ast (\tilde{g})^* \in \overline{\mathcal{D}} \). In view of Lemma 6.9, it is enough to show that \(\tilde{f} \ast \tilde{g} \in \overline{\mathcal{D}} \) for \(f \in C_c(G) \) and \(g \in C_c(G, A) \). Again, we can assume \(g \) is of the form \(x \otimes \phi \) for some \(\phi \in C_c(G) \). We can also assume \(x \) is positive.

Thus let \(f, g \in C_c(G) \) and \(x \in A \) be given. Suppose that \(x \) is positive and write \(x = y^*y \). Let \(\psi \in \Gamma_c(G, r^*A) \) be defined by

\[
\psi(X, s) = (x + I_X)g(s)
\]

for \((X, s) \in \mathcal{G} \). Claim: \(\tilde{f} \ast \psi \in \overline{\mathcal{D}} \).

Proof of the claim. Let \(f_1, g_1 \in C_c(G, A) \) be defined by \(f_1(t) = yf(t^{-1}), g_1(t) = yg(t) \) for \(t \in G \). Then note that for \((X, s) \in \mathcal{G} \),

\[
(\tilde{f}_1 \ast \tilde{g}_1)(X, s) = \int \tilde{f}_1(X, t)\alpha(X,t)(y + I_X,t)g(t^{-1}s)1_X(t^{-1})dt = \int \alpha(X,t)(y^* + I_X,t)\alpha(X,t)(y + I_X,t)f(t)g(t^{-1}s)1_X(t^{-1})dt = \int \alpha(X,t)(x + I_X,t)f(t)g(t^{-1}s)1_X(t^{-1})dt = (\tilde{f} \ast \psi)(X, s)
\]

This proves that \(\tilde{f} \ast \psi \in \overline{\mathcal{D}} \). As a consequence, we have \(C_c(G) \ast \overline{\mathcal{D}} \subset \overline{\mathcal{D}} \).

We now prove the analog of Proposition 5.7 in the surjective case. We will be brief in the proof as it is similar to that of Proposition 5.7.

For \(\psi \in \Gamma_c(G, r^*A) \) and \(a \in P \), let \(R_a(\psi) \in \Gamma_c(G, r^*A) \) be defined by the formula \(R_a(\psi)(X, s) := \alpha(X,a)\psi(Xa, a^{-1}s) \) for \((X, s) \in \mathcal{G} \). Then Lemma 5.4 and Corollary 5.5 holds in the surjective case as well. Since the proof is almost the same, word for word, we leave the verification to the reader. Recall also the following notation from the injective case.
Notation: For \(\phi \in C(\Omega) \) and \(f \in C_c(G) \), let \(\phi \otimes f \in C_c(G) \) be the function defined by \((\phi \otimes f)(X,s) = \phi(X)f(s)\) for \((X,s) \in G\). For \(\phi \in C(\Omega) \) and \(\psi \in \Gamma_c(G, r^*A) \), let \(\phi \cdot \psi \in \Gamma_c(G, r^*A) \) be the function defined by \((\phi \cdot \psi)(X, s) = \phi(X)\psi(X, s)\). We now prove the analog of Proposition 5.7 in the surjective case. We will be brief in the proof as it is similar to that of Proposition 5.7.

Proposition 6.11 The \(*\)-algebra generated by \(\{ \tilde{f} : f \in C_c(G, A) \} \) is dense in \(\Gamma_c(G, r^*A) \) in the topology induced by the norm \(|| \cdot ||_I \).

Proof. Let \(\mathcal{D} \) be the \(*\)-algebra generated by \(\{ \tilde{f} : f \in C_c(G, A) \} \) in \(\Gamma_c(G, r^*A) \) and denote its closure w.r.t. the \(I \)-norm by \(\overline{\mathcal{D}} \). Note that sections of the form \(\phi \cdot \psi \) where \(\phi \in C(\Omega) \) and \(\psi \) is of the form \(\psi(X, s) = (x + I_X)f(s) \) where \(x \in A \) and \(f \in C_c(G) \) is dense in the \(I \)-norm. This follows from a partition of unity type argument and Proposition C.24 in Appendix C in [Wil07]. Let \(\phi \in C(\Omega), x \in A \) and \(f \in C_c(G) \) be given. Define \(\psi \in \mathcal{D} \) by \(\psi(X, s) = (x + I_X)f(s) \). To complete the proof, it is enough to show that \(\phi \cdot \psi \in \overline{\mathcal{D}} \).

Using the fact that \(C_c(G) * \overline{\mathcal{D}} \subset \overline{\mathcal{D}} \) and arguing as in the injective case (Prop. 5.7), it follows that for \(a \in \text{Int}(P) \), \(\phi.R_a(\psi) \in \overline{\mathcal{D}} \). Now choose a sequence \(a_n \in \text{Int}(P) \) such that \(a_n \to e \) the identity element of \(G \). Then \(\phi.R_{a_n}(\psi) \to \phi \cdot \psi \) in the inductive limit topology and hence in the \(I \)-norm. Thus \(\phi \cdot \psi \in \overline{\mathcal{D}} \). This completes the proof.

The rest is similar to that of the injective case. Note that for \(X_0 = P^{-1} \), the fibre \(A_{X_0} = A \). Arguing as in the injective case, we obtain that \(\Lambda_{X_0} \) is a faithful representation of \(A \rtimes_{\text{red}} G \) on \(L^2(P, A) \) and for \(f \in C_c(G, A) \),

\[
\Lambda_{X_0}(\tilde{f}) = W_{\tilde{f}}
\]

where \(\tilde{f}(s) = f(s^{-1})\Delta(s)^{-\frac{1}{2}} \) and \(W_{\tilde{f}} \) is the Wiener-Hopf operator with symbol \(\tilde{f} \).

Thus, together with Proposition 6.11, we obtain the following theorem

Theorem 6.12 With the foregoing notation, the Toeplitz algebra \(\Sigma(A, P, \alpha) \) is isomorphic to the reduced crossed product \(A \rtimes_{\text{red}} G \).

Just like in the injective case, we prove that \(\Sigma(A, P, \alpha) = A \rtimes_{\text{red}} P \) under the hypotheses of the present section. We start with a little lemma. For \(x \in A \) and \(f \in C_c(\text{Int}(P), A) \), let \(F_{x,f} \in C_c(\text{Int}(P), A) \) be defined by \(F_{x,f}(a) := \alpha_a(x)f(a) \).

Lemma 6.13 The span of \(\{ F_{x,f} : x \in A, f \in C_c(\text{Int}(P), A) \} \) is dense in \(C_c(\text{Int}(P), A) \) where the latter is equipped with the inductive limit topology.
Proof. It suffices to approximate functions of the type $x \otimes f$ where $x \in A$ and $f \in C_c(\text{Int}(P))$. Let $x \in A$ and $f \in C_c(\text{Int}(P))$ be given. Denote the support of f by K. Choose an open set U containing K such that $U \subset \text{Int}(P)$ and \overline{U} is compact. Let $\epsilon > 0$ be given. For $c \in K$, choose $y_c \in A$ such that $\alpha_c(y_c) = x$. Then for $c \in K$, there exists an open set V_c containing c such that $||\alpha_c(y_c) - \alpha_c(y_c)|| \leq \epsilon$ for $b \in V_c$. We can assume that $V_c \subset U$. Then $\bigcup_c V_c$ contains K. Since K is compact, there exists c_1, c_2, \ldots, c_n such that $K \subset \bigcup_{c \in K} V_c$. Choose a partition of unity $\{\phi_i : i = 1, 2, \ldots, n\}$ such that $\sum_{i=1}^n \phi_i = 1$ on K, $\phi_i \geq 0$ and $\text{supp}(\phi_i) \subset V_{c_i}$. We will denote y_{c_i} by y_i and V_{c_i} by V_i.

Let $f_i := \phi_i f$. Then $\text{supp}(F_{y_i,f_i}) \subset U$. Now calculate as follows to conclude that for $a \in \text{Int}(P)$,

$$||xf(a) - \sum_{i=1}^n F_{y_i,f_i}(a)|| = ||\sum_{i=1}^n \phi_i(a)\alpha_{c_i}(y_i)f(a) - \sum_{i=1}^n \alpha_a(y_i)\phi_i(a)f(a)||$$

$$\leq \sum_{i=1}^n \phi_i(a)||f(a)||||\alpha_{c_i}(y_i) - \alpha_a(y_i)||$$

$$\leq \sum_{i=1}^n \phi_i(a)||f(a)||\sup_{a \in V_i}||\alpha_a(y_i) - \alpha_{c_i}(y_i)||$$

$$\leq \epsilon \sum_{i=1}^n \phi_i(a)||f(a)||$$

$$\leq \epsilon||f||_\infty$$

This completes the proof. \qed

Hence for $f \in C_c(\text{Int}(P), A)$, $\int f(a)V_a^*da \in A \rtimes_{\text{red}} \text{P}$. This is because for $x \in A$ and $f \in C_c(\text{Int}(P))$, $\int F_{x,f}(a)V_a^*da = \left(\int xf(a)V_a da\right)^* \in A \rtimes_{\text{red}} \text{P}$. In other words, the Wiener-Hopf operators $W_f \in A \rtimes_{\text{red}} \text{P}$ for $f \in C_c(\text{Int}(P)^{-1}, A)$.

Proposition 6.14 The \ast-algebra generated by $\{\tilde{f} : f \in C_c(\text{Int}(P), A)\}$ is dense in $\Gamma_c(\mathcal{G}, r^*A)$ in the topology induced by the I-norm. Thus $\mathfrak{I}(A, P, \alpha) = A \rtimes_{\text{red}} \text{P}$.

Proof. Let \mathcal{D}_+ denote the closure of the \ast-algebra generated by $\{\tilde{f} : f \in C_c(\text{Int}(P), A)\}$ in $\Gamma_c(\mathcal{G}, A)$ with respect to the I-norm. Recall the notations $\mathcal{F}_+, \mathcal{F}_-$ from Remark 6.10. Then $\mathcal{F}_+, \mathcal{F}_- \subset \mathcal{D}_+$. Let $x \in A$ be positive, $f \in C_c(\text{Int}(P))$ and $g \in C_c(\text{Int}(P)^{-1})$ be given. Write $x = y^*y$ for some $y \in A$. By Lemma 6.13, it follows that there exists $z_n \in A$ and $f_n \in C_c(\text{Int}(P))$ such that $F_{z_n,f_n} \rightarrow y \otimes f$ in the inductive limit topology. Let $\phi_n := y^* \otimes f_n$ and $\psi_n := z_n \otimes g$. Note that ϕ_n and $\psi_n \in \mathcal{D}_+$.

34
Calculate as follows to find that for \((X, s) \in G\),
\[
(\tilde{\phi}_n \ast \tilde{\psi}_n)(X, s) = \int \tilde{\phi}_n(X, t)\alpha_t(X, t) (\tilde{\psi}_n(X, t, t^{-1}s)1_X(t^{-1})dt
\]
\[
= \int_{t \in \text{Int}(P)} (y^* + I_X)(\alpha_t(z_n) + I_X)f_n(t)(t^{-1}s) \quad \text{[For supp}(f_n) \subset \text{Int}(P) \subset X^{-1}] \\
= \int (y^* + I_X)\tilde{F}_{z_n, f_n}(X, t)g(t^{-1}s)dt
\]
Now the fact that \(F_{z_n, f_n} \to y \otimes f\) in the inductive limit topology and consequently in the \(I\)-norm implies that \(\tilde{\phi}_n \ast \tilde{\psi}_n \to \tilde{\psi}\) in the \(I\)-norm where \(\psi := x \otimes (f \ast g)\). Now Lemma \[4.4\] and Proposition \[6.11\] implies that \(D_+ = \Gamma_c(G, r^*A)\).

Now the equality \(\mathcal{F}(A, P, \alpha) = A \rtimes_{\text{red}} P\) follows exactly as in Prop. \[5.10\]. We leave the details to the reader. ~\(\blacksquare\)

Remark 6.15 From now on, since we will only be considering injective (and unital) or surjective actions, we will not make the distinction between \(\mathcal{F}(A, P, \alpha)\) and \(A \rtimes_{\text{red}} P\).

7 Morita equivalence

The aim of this section is to show that \(A \rtimes_{\text{red}} P\), in the two cases that we considered, is Morita-equivalent to a crossed product \(C^*\)-algebra. This follows from a construction, which is called the basic construction by Muhly and Williams in [MW08], and the fact that the Wiener-Hopf groupoid is equivalent to a transformation groupoid. First we recall the "basic construction" [Section 9.2, page 57] from [MW08]. We need the notion of groupoid actions for which we refer the reader to [MRW87].

Let \(G\) and \(H\) be locally compact Hausdorff second countable groupoids with Haar systems. Let \(Z\) be a locally compact Hausdorff space which is a \((G, H)\) equivalence. This means that there exists two open surjective maps \(r : Z \to G^{(0)}\) and \(s : Z \to H^{(0)}\), a left \(G\)-action i.e. a map
\[
G \ast Z := \{ (\gamma, z) \in G \times Z : s(\gamma) = r(z) \} \to \gamma z \in Z
\]
and a right \(H\)-action i.e. a map
\[
Z \ast H := \{ (z, \gamma) \in Z \times H : r(\gamma) = s(z) \} \to z\gamma \in Z
\]
such that the actions commute and the "source" map \(s : Z \to H^{(0)}\) and the "range" map \(r : Z \to G^{(0)}\) descend to a homeomorphism from \(G \setminus Z\) to \(H^{(0)}\) and a homeomorphism from \(Z \setminus H\) to \(G^{(0)}\) respectively. Moreover both the \(G\) and \(H\) actions are free and proper.

Recall that a left \(G\)-action on a space \(Z\) is said to be
(1) free if $\gamma z = z$ for $\gamma \in \mathcal{G}$ and $z \in Z$ then $\gamma \in \mathcal{G}^{(0)}$.

(2) proper if the map $\mathcal{G} \ast Z \ni (\gamma, z) \to (\gamma z, z) \in Z \times Z$ is proper.

Remark 7.1 We will denote the range and source maps of all the groupoids and the spaces which implement equivalences between them by r and s itself.

Let Z be a $(\mathcal{G}, \mathcal{H})$-equivalence and let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a groupoid dynamical system. Define

$$r^*(A) := \{(z, a) \in Z \times A : a \in A_{r(z)}\}.$$

The $r^*(A)$ is an upper semi-continuous bundle over Z with $r^*(A) \ni (z, a) \to z \in Z$ being the open surjection. The groupoid \mathcal{G} acts on $r^*(A)$ as

$$\gamma.(z, a) := (\gamma z, \alpha_{\gamma}(a))$$

if $s(\gamma) = r(z)$.

Denote the quotient $\mathcal{G}\backslash r^*(A)$ by A_Z. The map $A_Z \ni [(z, a)] \to s(z) \in \mathcal{H}^{(0)}$ is well-defined and makes A_Z into an upper semi-continuous bundle over $\mathcal{H}^{(0)}$. Moreover the groupoid \mathcal{H} acts on A_Z on the left by

$$\beta_{\eta}[(z, a)] := [(z\eta^{-1}, a)]$$

if $s(\eta) = s(z)$. The triple $(A_Z, \mathcal{H}, \beta)$ is a groupoid dynamical system. The construction of the dynamical system $(A_Z, \mathcal{H}, \beta)$ is called the basic construction in [MW08]. This construction had earlier appeared in [KMRW98] for continuous bundles.

If \mathcal{A} has enough sections (i.e. given $x \in \mathcal{G}^{(0)}$ and $a \in A_x$, there exists $f \in \Gamma_c(\mathcal{G}^{(0)}, \mathcal{A})$ such that $f(x) = a$) then A_Z has enough sections. Even though this fact is probably known to experts the author is not able to find a proper reference and hence the following proposition is included in this paper. Observe that if $f : Z \to \mathcal{A}$ is continuous, $f(z) \in A_{r(z)}$ and $f(\gamma z) = \alpha_{\gamma}(f(z))$ if $r(z) = s(\gamma)$ then the map

$$\mathcal{H}^{(0)} \ni s(z) \to [(z, f(z))] \in A_Z$$

is a well-defined continuous section. Thus, with the foregoing notation, it suffices to prove the following proposition.

Proposition 7.2 Let $z_0 \in Z$ and $a \in A_{r(z_0)}$ be given. Given $\epsilon > 0$, there exists a continuous function $f : Z \to \mathcal{A}$ such that

(1) for $z \in Z$, $f(z) \in A_{r(z)}$,
(2) For \((\gamma, z) \in \mathcal{G} \times Z\), \(f(\gamma \cdot z) = \alpha_{\gamma}(f(z))\), and

\[||f(z_0) - a|| \leq \epsilon. \]

Proof. Let \(A := \{ (\gamma, z) : r(\gamma) = r(z) \} \subset \mathcal{G} \times Z\) and \(B := \{ (z, w) : s(z) = s(w) \} \subset Z \times Z\). Note that the map \(A \ni (\gamma, z) \mapsto (\gamma^{-1} z, z) \in B\), which we denote by \(\Phi\), is a homeomorphism. Choose a continuous section \(\phi : \mathcal{G}^{(0)} \to A\) such that \(\phi(r(z_0)) = a\). The map \(\mathcal{G} : \gamma \mapsto \alpha_{\gamma}(\phi(s(\gamma))) \in A\) is continuous and its value for \(\gamma = r(z_0)\) is \(a\). Hence there exists an open set \(U\) in \(\mathcal{G}\) containing \(r(z_0)\) with compact closure such that

\[||\alpha_{\gamma}(\phi(s(\gamma))) - a|| < \epsilon \text{ if } \gamma \in U \text{ and } r(\gamma) = r(z_0). \]

Let \(V \subset Z\) be open with compact closure containing \(z_0\). Let \(W\) be the image of \((U \times V) \cap A\) under \(\Phi\). Then \(W\) is an open subset of \(B\) whose closure is compact and contains \((z_0, z_0)\). Choose \(F \in C_c(B)\) such that \(F \geq 0\), \(F(z_0, z_0) > 0\) and \(\text{supp}(F) \subset W\). Note that \(M := \int F(\gamma^{-1} z_0, z_0) d\lambda^r(z_0)(\gamma) > 0\). By replacing \(F\) by \(\frac{F}{M}\), we can assume that the integral \(\int F(\gamma^{-1} z_0, z_0) d\lambda^r(z_0)(\gamma) = 1\).

Choose an extension \(K \in C_c(Z \times Z)\) of \(F\). Define \(f : Z \to A\) by

\[f(z) := \int K(\gamma^{-1} z, z_0) \alpha_{\gamma}(\phi(s(\gamma))) d\lambda^r(z)(\gamma). \]

We leave it to the reader to verify that \(f\) is continuous and (1) and (2) are satisfied. Condition (2) is equivalent to the fact that if \((\gamma, z) \in A\), \(f(\gamma^{-1} z) = \alpha_{\gamma}^{-1} f(z)\). Now calculate as follows to find that

\[
\begin{align*}
||f(z_0) - a|| &= || \int F(\gamma^{-1} z_0, z_0) (\alpha_{\gamma}(\phi(s(\gamma))) - a) d\lambda^r(z_0) || \\
&\leq \int_{\gamma \in U} F(\gamma^{-1} z_0, z_0) ||\alpha_{\gamma}(\phi(s(\gamma))) - a|| d\lambda^r(z_0) \\
&\leq \epsilon \int F(\gamma^{-1} z_0, z_0) d\lambda^r(z_0) \\
&\leq \epsilon
\end{align*}
\]

This completes the proof. \(\square\)

We need the following theorem from [SW13] [See Corollary 19, Section 6]. The full version of it is proved in [MW05] [See Theorem 5.5 and Section 9.2].

Proposition 7.3 ([SW13]) Let \(Z\) be a \((\mathcal{G}, \mathcal{H})\)-equivalence and \((\mathcal{A}, \mathcal{G}, \alpha)\) be a groupoid dynamical system. Then the reduced crossed products \(\mathcal{A} \rtimes_{\text{red}} \mathcal{G}\) and \(\mathcal{A}_Z \rtimes_{\text{red}} \mathcal{H}\) are Morita-equivalent.
We recall a few more preliminaries about upper semi-continuous bundle. In particular, we need the following proposition to which the author claims no originality. We omit the proof as it follows easily from Proposition C.20, Page 361 of [Wil07]. Let us start with a definition.

Definition 7.4 Let \(p : A \rightarrow X \) and \(q : B \rightarrow Y \) be upper semi-continuous bundles. A pair \((\Phi, \phi)\) of maps where \(\Phi : A \rightarrow B \) and \(\phi : X \rightarrow Y \) is called a bundle map if

1. the maps \(\Phi \) and \(\phi \) are continuous,
2. For \(x \in X \), \(\Phi \) maps the fibre \(A_x \) into \(B_x \) i.e. \(q \circ \Phi = \phi \circ p \), and
3. For \(x \in X \), the restriction \(\Phi : A_x \rightarrow B_x \) is a \(*\)-algebra homomorphism.

Proposition 7.5 Let \(p : A \rightarrow X \) and \(q : B \rightarrow Y \) be upper semi-continuous bundles. Let \((\Phi, \phi) : (A, X) \rightarrow (B, Y)\) be a bundle map. Suppose that \(\phi \) is a homeomorphism and for every \(x \), the restriction \(\Phi : A_x \rightarrow B_x \) is an isomorphism then \(\Phi \) is a homeomorphism.

If \(p : A \rightarrow F \) is an upper semi-continuous bundle over \(X \) and if \(F \subset X \) then \(p^{-1}(F) \) is an upper semi-continuous bundle over \(F \) and called the restriction of \(A \) over \(F \). We denote the restriction of \(A \) over \(F \) by \(A|_F \). If \(A \) has enough sections then \(A|_F \) also has enough sections.

In what follows, Let \(G := \Omega \rtimes P \) be the Wiener-Hopf groupoid. Recall that \(\Omega \) is the closure of \(\{P^{-1}a : a \in P\} \) in the space of closed subsets of \(G \) when the latter is endowed with the Vietoris topology. From Lemma 3.3, the Wiener-Hopf groupoid \(G \) is equivalent to \(\tilde{\Omega} \times G \) where \(\tilde{\Omega} := \bigcup_{a \in P} \Omega a^{-1} \). The equivalence between \(G \) and \(\tilde{\Omega} \times P \) is implemented by the space \(Z := \Omega \times G \) where the left action of \(G \) on \(Z \) is given by

\[(X, g), (Y, h) := (X, gh) \text{ if } Xg = Y\]

and the right action of \(\tilde{\Omega} \times G \) on \(Z \) is given by

\[(Y, h), (Y', g) := (Y', hg) \text{ if } Yh = Y'.\]

The range \(r : Z \rightarrow \Omega \) and the source \(s : Z \rightarrow \tilde{\Omega} \) maps are given by

\[r(X, g) := X\]
\[s(X, g) := X.g\]

for \((X, g) \in Z \).
Let \((p : \mathcal{A} \to \Omega, \mathcal{G}, \alpha)\) be a groupoid dynamical system and let \((\mathcal{A}_Z, \tilde{\Omega} \rtimes G, \beta)\) be the dynamical system obtained from the basic construction where \(Z := \Omega \times G\) is the space implementing the equivalence between \(\mathcal{G}\) and \(\tilde{\Omega} \rtimes G\). Let \(\tilde{\beta}\) be the action of \(G\) on \(\Gamma_0(\tilde{\Omega}, \mathcal{A}_Z)\) given by the formula: For \(f \in \Gamma_0(\tilde{\Omega}, \mathcal{A}_Z)\), \(g \in G\) and \(X \in \tilde{\Omega}\),

\[
\tilde{\beta}_g f(X) := \beta_{(X,g)} f(X.g).
\]

For \(a \in P\), let the map \(\Omega \ni X \to Xa^{-1} \in \tilde{\Omega}\) be denoted by \(j_a\) and let \(\Phi_a : \mathcal{A} \to \mathcal{A}_Z\) be defined by \(\Phi_a(x) := ((X, a^{-1}, x))\) where \(X := p(x)\). Then, for every \(a \in P\), \((\Phi_a, j_a) : (\mathcal{A}, \Omega) \to (\mathcal{A}_Z|_{\Omega a^{-1}}, \Omega a^{-1})\) is a bundle map.

Proposition 7.6 With the foregoing notations, we have the following.

1. For every \(a \in A\), the bundle map \((\Phi_a, j_a) : (\mathcal{A}, \Omega) \to (\mathcal{A}_Z|_{\Omega a^{-1}}, \Omega a^{-1})\) is a homeomorphism.

2. The reduced crossed product \(\mathcal{A} \rtimes_{red} \mathcal{G}\) is Morita-equivalent to the crossed product \(\Gamma_0(\tilde{\Omega}, \mathcal{A}_Z) \rtimes_{red} G\).

Proof. Let \(a \in P\) be given. Clearly \(\Phi_a\) is continuous. It is enough to show that \(\Phi_a\) is an isomorphism fibrewise. Let \(X \in \Omega\) be given. Since the the left action of \(\mathcal{G}\) on \(Z\) is free, it follows that \(\Phi_a\) is 1-1. Now let \([(Y, g, y)] \in \mathcal{A}_Z|_{\Omega a^{-1}}\) be such that \(Yg = Xa^{-1}\). Then \((X, a^{-1}g^{-1}) \in \mathcal{G}\) as \(Y \in \Omega\). Now \((X, a^{-1}g^{-1}).(Y, g, y) = (X, a^{-1}, \alpha_{(X, a^{-1}g^{-1})}(y))\). Thus \([(Y, g, y)] : = \Phi_a(x)\) where \(x := \alpha_{(X, a^{-1}g^{-1})}(y)\). By Proposition 7.3 it follows that \(\Phi_a\) is a homeomorphism. Statement (2) follows from Proposition 7.3 and Remark 2.4. This completes the proof. \(\square\)

Now we apply the above to the reduced crossed product \(\mathcal{A} \rtimes_{red} P\). Let \(A\) be a \(C^*\)-algebra and \(\alpha : P \to \text{End}(A)\) be a strongly continuous semigroup homomorphism. Assume one of the following holds.

1. The algebra \(A\) is unital and the action \(\alpha\) is injective, or

2. The action \(\alpha\) is surjective.

In both the cases, we denote the groupoid dynamical system constructed in Section 5 and 6 by \((\mathcal{A}, \mathcal{G}, \alpha)\) i.e. \((\mathcal{A}, \mathcal{G}, \alpha)\) stands for the dynamical system constructed in Section 5 (Section 6) if \(\alpha\) is injective (surjective). Denote by \((\mathcal{A}_Z, \tilde{\Omega} \rtimes G, \beta)\) the groupoid dynamical system constructed by applying the basic construction to \((\mathcal{A}, \mathcal{G}, \alpha)\).

Corollary 7.7 With the above assumptions and notations, the reduced crossed product \(\mathcal{A} \rtimes_{red} P\) is Morita-equivalent to \(\Gamma_0(\tilde{\Omega}, \mathcal{A}_Z) \rtimes_{red} G\).
The above Morita-equivalence can be used to compute the K-groups of $A \rtimes_{\text{red}} P$ and the rest of this paper is devoted to obtain K-theoretic results.

8 K-group computations

We say that a locally compact group H has the Connes-Thom isomorphism property with period n if whenever A is a C^*-algebra and $\alpha : H \to \text{Aut}(A)$ is a strongly continuous action then $K_{i+n}(A \rtimes_{\text{red,} \alpha} H) \cong K_i(A)$.

For the rest of this paper, we assume that the semigroup P is connected and the group G has the **Connes-Thom isomorphism** property with period n. Since $G = PP^{-1}$, it follows that G is connected. Let $G := \Omega \times P$ be the Wiener-Hopf groupoid and let (A, G, α) be a groupoid dynamical system.

Denote by $(A_Z, \widetilde{\Omega} \times G, \beta)$ the groupoid dynamical system constructed by applying the basic construction to (A, G, α) where $Z := \Omega \times G$ and $\widetilde{\Omega} := \bigcup_{a \in P} \Omega a^{-1} = \bigcup_{a \in \text{Int}(P)} \Omega_0 a^{-1}$ where $\Omega_0 = \Omega \text{Int}(P)$.

If \widetilde{A} is an upper semicontinuous bundle over a locally compact space Y and if $U \subset Y$ is open, we denote the the space of sections of the bundle $\widetilde{A} \to Y$ vanishing outside U by $\Gamma_0(U, \widetilde{A})$. Note that $\Gamma_0(U, \widetilde{A})$ is the closure of $\{ s \in \Gamma_c(Y, \widetilde{A}) : \text{supp}(s) \subset U \}$.

Theorem 8.1 With the foregoing notations and assumptions, we have that the K-group $K_i(A \rtimes_{\text{red}} G)$ is isomorphic to $K_{i+n}(\Gamma_0(\Omega_0, A))$ for $i = 0, 1$.

Proof. By Proposition 7.6 and from the fact that G satisfies the Connes-Thom isomorphism property with period n, it follows that $K_i(A \rtimes_{\text{red}} G) \cong K_{i+n}(\Gamma_0(\widetilde{\Omega}, A_Z))$.

Recall that the action $\widetilde{\beta}$ of G on $\Gamma_0(\widetilde{\Omega}, A_Z)$ is given by: for $g \in G$ and $f \in \Gamma_0(\widetilde{\Omega}, A_Z)$, $\widetilde{\beta}_g(f)(X) := \beta_{(X,g)} f(Xg)$. By Proposition 7.3 we can view $\Gamma_0(\Omega_0, A)$ as a $*$-subalgebra of $\Gamma_0(\widetilde{\Omega}, A_Z)$ via the bundle map (Φ_e, ι_e). Moreover for $a \in P$, $\widetilde{\beta}_a^{-1}$ leaves $\Gamma_0(\Omega_0, A)$ invariant.

But (P, \leq) is directed, if $a \leq b$ with $a, b \in P$, $\Omega_0 a^{-1} \subset \Omega_0 b^{-1}$, and $\widetilde{\Omega} := \bigcup_{a \in P} \Omega_0 a^{-1}$. Thus $\Gamma_0(\widetilde{\Omega}, A_Z)$ is the inductive limit of $\Gamma_0(\Omega_0 a^{-1}, A_Z|_{\Omega_0 a^{-1}})$ where if $a \leq b$ with $a, b \in P$, the connecting map from $\Gamma_0(\Omega_0 a^{-1}, A_Z|_{\Omega_0 a^{-1}}) \to \Gamma_0(\Omega_0 b^{-1}, A_Z|_{\Omega_0 b^{-1}})$ is given by the inclusion map and we denote it by $i_{b,a}$.

By Proposition 7.6 for $a \in P$, we can identify $\Gamma_0(\Omega_0 a^{-1}, A_Z|_{\Omega_0 a^{-1}})$ with $\Gamma_0(\Omega_0, A)$. After this identification, the connecting map $i_{b,a}$ is just the restriction of $\widetilde{\beta}_b^{-1}$ to $\Gamma_0(\Omega_0, A)$. Thus to complete the proof, it is enough to show that for $a \in P$, $\widetilde{\beta}_a^{-1}$ induces the identity map at the level of K-theory of $\Gamma_0(\Omega_0, A)$.
Let \(a \in P \) be given and let \(\phi_t(a) \) be a path in \(P \) connecting \(a \) to the identity element \(e \). Then the restriction of \(\tilde{\beta}_{\phi_t(a)}^{-1} \) to \(\Gamma_0(\Omega_0, \mathcal{A}) \) is a homotopy connecting \(\tilde{\beta}_{a^{-1}} \) to the identity map. Now the theorem follows from the fact that \(K \)-theory preserves inductive limits. This completes the proof. \(\square \)

Let us denote the set \(\Omega \setminus \Omega_0 \) by \(\partial \Omega \). We say that the semigroup \(P \) satisfies condition \((A) \) if there exists a homotopy of continuous maps \((\phi_t)_{t \in [0,1]} : \Omega \to \Omega \) such that

1. For \(t \in [0,1] \), \(\phi_t \) leaves \(\partial \Omega \) invariant,
2. For \(X \in \Omega \) and \(t \in [0,1] \), \(\phi_t(X) \subset X \),
3. \(\phi_0 = id_\Omega \), and \(\phi_1(\Omega) \subset \partial \Omega \).

Proposition 8.2 Let \(A \) be a unital \(C^* \)-algebra and \(\alpha : P \to \text{End}(A) \) be an unital injective action. If the semigroup \(P \) satisfies condition \((A) \) then \(K_i(A \rtimes_{\text{red,} \alpha} P) = 0 \) for \(i = 0, 1 \).

Proof. Let \((\mathcal{A}, \mathcal{G}, \alpha)\) be the groupoid dynamical system constructed in Section 5. Note that if \(X \subset Y \) with \(X, Y \in \Omega \) then \(A_X \subset A_Y \). Also observe that

\[
\Gamma(\Omega, \mathcal{A}) := \{ f : \Omega \to B : f \text{ is continuous and } f(X) \in A_X \text{ for } X \in \Omega \}.
\]

Then \(\Gamma_0(\Omega_0, \mathcal{A}) \) is the subalgebra of sections which vanish on \(\partial \Omega \). By Theorem 8.1 to complete the proof, it suffices to prove that \(\Gamma_0(\Omega_0, \mathcal{A}) \) has trivial \(K \)-theory.

Let \((\phi_t)_{[0,1]} \) be a homotopy given by condition \((A) \). For \(t \in [0,1] \), define \(\pi_t : \Gamma(\Omega, \mathcal{A}) \to \Gamma(\Omega, \mathcal{A}) \) by the equation \(\pi_t(f)(X) := f(\phi_t(X)) \) for \(f \in \Gamma(\Omega, \mathcal{A}) \). By (2) of condition \((A) \), \(\pi_t(f) \in \Gamma(\Omega, \mathcal{A}) \) for \(f \in \Gamma(\Omega, \mathcal{A}) \). Moreover (1) of condition \((A) \) implies that \(\pi_t \) leaves \(\Gamma_0(\Omega_0, \mathcal{A}) \) invariant. Now, by (3) of condition \((A) \), \((\pi_t)_{t \in [0,1]} \) restricted to \(\Gamma_0(\Omega_0, \mathcal{A}) \) is a homotopy of \(* \)-algebra homomorphisms connecting the identity map with the zero map. Hence \(\Gamma_0(\Omega_0, \mathcal{A}) \) has trivial \(K \)-theory. This completes the proof. \(\square \)

Let \(\tau : P \to \Omega \) be the map given by \(\tau(a) = P^{-1}a \). We say that the semigroup \(P \) satisfies condition \((B) \) if if there exists a homotopy of continuous maps \((\phi_t)_{t \in [0,1]} : \Omega \to \Omega \) such that

1. For \(t \in [0,1] \), \(\phi_t \) leaves \(\partial \Omega \) invariant,
2. For \(X \in \Omega \) and \(t \in (0,1] \), \(\phi_t(X) \in \tau(P) \) for \(t \in (0,1] \) and \(\phi_t(X) \subset X \),
3. \(\phi_0 = id_\Omega \), and \(\phi_1(\Omega) \subset \partial \Omega \).
Now let A be a C^*-algebra and $\alpha : P \to \text{End}(A)$ be a surjective action. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be the dynamical system constructed in Section 6. Recall that for $X \in \Omega$ the fibre of \mathcal{A} at X is given by the quotient $A_X := A/I_X$ where the ideal I_X is given by

$$I_X := \{ x \in A : P^{-1}a_n \to X \Rightarrow \alpha_{an}(x) \to 0 \}.$$

We claim that for $X \in \Omega$ and $a \in X$, $I_{P^{-1}a} \subset I_X$. Suppose $a \in X$ and let $x \in I_{P^{-1}a}$ be given i.e. $\alpha_a(x) = 0$. Let $(P^{-1}b_n)_n$ be a sequence converging to X. Fix $s \in \text{Int}(P)$ and write $x = \alpha_s(y)$. Then $P^{-1}b_n \to Xs$. Since $as \in X$, it follows that there exists $c_n \in P$ such that $c_n^{-1}b_n \to as$. Since $as \in \text{Int}(P)$, it follows that $d_n := c_n^{-1}b_n \in \text{Int}(P)$ eventually. Then $b_n s = c_n d_n$. Now

$$||\alpha_{b_n}(x)|| = ||\alpha_{b_n}(y)|| = ||\alpha_{c_n d_n}(y)|| \leq ||\alpha_{d_n}(y)|| \to ||\alpha_{as}(y)|| = ||\alpha_a(x)|| \to 0$$

Thus $I_{P^{-1}a} \subset I_X$ if $a \in X$ or equivalently if $P^{-1}a \subset X$. If $P^{-1}a \subset X$, denote the map $A/I_{P^{-1}a} \cong x + I_{P^{-1}a} \to x + I_X \in A/I_X$ be denoted by $\pi_{x, P^{-1}a}$.

Proposition 8.3 Let A be a C^*-algebra and $\alpha : P \to \text{End}(A)$ be a surjective action. If the semigroup P satisfies condition (B) then $K_i(A \rtimes_{\text{red}, \alpha} P) = 0$ for $i = 0, 1$.

Proof. Again by Theorem 8.1 it is enough to prove that $\Gamma_0(\Omega_0, \mathcal{A})$ has trivial K-theory where \mathcal{A} is the bundle defined in Section 6. Let $(\phi_t)|_{[0,1]}$ be a homotopy given by condition (B).

Let $t \in [0, 1]$ be fixed. For $f \in \Gamma(\Omega, \mathcal{A})$ and $t \in [0, 1]$, let $\pi_t(f)$ be the section defined by $\pi_t(f)(X) := \pi_{X, \phi_t(X)}(f(\phi_t(X)))$. We claim that $\pi_t(f)$ is continuous if $f \in \Gamma(\Omega, \mathcal{A})$. The claim is clear when f is of the form $f(X) := (a + I_X)\psi(X)$ where $a \in A$ and $\psi \in C(\Omega)$. But then the linear span of functions of the above form are dense in $\Gamma(\Omega, \mathcal{A})$ and π_t is contractive. This proves the claim.

Thus we obtain a homotopy of $*$-algebra homomorphisms $(\pi_t)|_{[0,1]} : \Gamma(\Omega, \mathcal{A}) \to \Gamma(\Omega, \mathcal{A})$. Now (1) of Condition (B) implies that π_t leaves $\Gamma_0(\Omega_0, \mathcal{A})$ invariant for every t. By (3) of Condition (B), the restrictions of $(\pi_t)|_{[0,1]}$ to $\Gamma_0(\Omega_0, \mathcal{A})$ is a homotopy of $*$-algebra homomorphisms connecting the identity map with the zero map. Thus the K-theory of $\Gamma_0(\Omega_0, \mathcal{A})$ vanishes. This completes the proof. \qed
Remark 8.4 The vanishing of K-groups when $P := [0, \infty)$ and $G := \mathbb{R}$ is proved in complete generality in [KS97]. We remark that P satisfies condition (A) and (B). In this case, the unit space Ω of the Wiener-Hopf groupoid can be identified with $[0, \infty)$, the one-point compactification of $[0, \infty)$. The map $[0, \infty] \ni x \to (-\infty, x]$ is a homeomorphism. Moreover the right action of P on $[0, \infty]$ is by translation with the understanding that $\infty + x = \infty$ for $x \in P$. For $t \in [0, 1]$, let $\phi_t : [0, \infty] \to [0, \infty]$ be defined by

$$\phi_t(x) := \frac{(1-t)x}{\sqrt{(1-(1-t)^2)x^2 + 1}}.$$

Then $(\phi_t)_{t \in [0, 1]}$ is a homotopy satisfying the conditions of (A) and (B).

9 The semigroup of positive matrices

The aim of this section is to show that the semigroup of positive elements associated to a special Jordan algebra satisfies conditions (A) and (B). Thus the K-theory of the Toeplitz algebras associated to surjective or injective actions vanishes. We need a few preliminaries regarding the action of the self-adjoint matrices on the unitary group. The Wiener-Hopf groupoid associated to such cones were described in [MR82]. However we obtain a pleasant picture of the unit space in terms of unitary matrices which is helpful for the homotopy considerations.

9.1 Cayley transform and the Mobius action

In what follows, let \mathcal{H} be a finite dimensional complex Hilbert space. Denote the algebra of linear operators on \mathcal{H} by $B(\mathcal{H})$. If $A, B \in B(\mathcal{H})$ are self-adjoint, we write $A \geq B$ if $A - B$ is positive. We write $A > B$ if $A - B$ is strictly positive i.e. positive and invertible. Also for $A \in B(\mathcal{H})$, let $\sigma(A)$ be its spectrum. Let

$$S := \{A \in B(\mathcal{H}) : A \text{ is self-adjoint}\}$$

$$P := \{A \in S : A \text{ is positive}\}$$

Then S is a real vector subspace of $B(\mathcal{H})$ and P is a closed convex cone in S. Also note that $P - P = S$. It is easily verifiable that

$$\text{Int}(P) := \{A \in S : A > 0\}.$$

Also observe that $\text{Int}(P)$ is dense in P. Let $\mathcal{U}(\mathcal{H})$ be the set of unitaries on \mathcal{H}. The Cayley transform

$$S \ni A \to \frac{A + i}{A - i} \in \mathcal{U}(\mathcal{H})$$

43
is a one-one map. The image of \mathcal{S} under the Cayley transform is \(\{ U \in \mathcal{U}(\mathcal{H}) : 1 \notin \sigma(U) \} \). Thus the image of \mathcal{S} is dense in $\mathcal{U}(\mathcal{H})$.

Let $\mathbb{T}_+ := \{ z \in \mathbb{T} : \text{Im}(z) \geq 0 \}$. It is easy to check that the image of P, under the Cayley transform, is \(\{ U \in \mathcal{U}(\mathcal{H}) : \sigma(U) \subset \mathbb{T}_+ \setminus \{ 1 \} \} \). Denote the closure of P in $\mathcal{U}(\mathcal{H})$ by X. Then

$$
X = \{ U \in \mathcal{U}(\mathcal{H}) : \sigma(U) \subset \mathbb{T}_+ \}.
$$

The following lemma is useful in proving this and we leave its proof to the reader.

Lemma 9.1 Let K be a compact subset of \mathbb{C}. Suppose U_n is a sequence in $\mathcal{U}(\mathcal{H})$ such that U_n converges to U. If $\sigma(U_n) \subset K$ then $\sigma(U) \subset K$.

Our aim is to show that the action of \mathcal{S} on itself by addition extends to an action on $\mathcal{U}(\mathcal{H})$. We start with a lemma.

Lemma 9.2 Let $U \in \mathcal{U}(\mathcal{H})$ and $B \in \mathcal{S}$. Then $BU + 2i - B$ is invertible.

Proof. By taking adjoints, it is enough to show that $UB - 2i - B$ is invertible. Suppose $\xi \in \mathcal{H}$ be such that $(UB - 2i - B)\xi = 0$. Then $(U - 1)B\xi = 2i\xi$. Let $\eta = B\xi$ and let $U = \sum_{k=1}^{\ell} \lambda_k E_k$ be the spectral decomposition of U. Since B is self-adjoint, it follows, from the equality $\langle (U - 1)\eta, \eta \rangle = 2i \langle \xi, B\xi \rangle$, that $Re(\langle (U - 1)\eta, \eta \rangle) = 0$. Now

$$
Re(\langle (U - 1)\eta, \eta \rangle) = \sum_{k=1}^{\ell} Re(\lambda_k - 1) < E_k \eta, \eta >.
$$

Since $\lambda_k \in \mathbb{T}$, it follows that for every k, $Re(\lambda_k - 1) \leq 0$. Also if $\lambda_k \neq 1$, $Re(\lambda_k - 1) < 0$. Hence $E_k \eta = 0$ if $\lambda_k \neq 1$. This shows that $(U - 1)\eta = 0$. Since $(U - 1)\eta = 2i\xi$, it follows that $\xi = 0$. Thus $UB - 2i - B$ is one-one and hence invertible. \(\square \)

For $U \in \mathcal{U}(\mathcal{H})$ and $B \in \mathcal{S}$, let

$$
U \boxplus B := ((2i + B)U - B)(BU + 2i - B)^{-1}.
$$

If $A \in \mathcal{S}$, let $U_A = (A + i)(A - i)^{-1}$. It is easy to check that $U_A \boxplus B = U_{A + B}$. It then follows that, by the density of \mathcal{S} in $\mathcal{U}(\mathcal{H})$, $U \boxplus B \in \mathcal{U}(\mathcal{H})$ for $U \in \mathcal{U}(\mathcal{H})$ and $B \in \mathcal{S}$. This way, one obtains a right action of \mathcal{S} on $\mathcal{U}(\mathcal{H})$.

Remark 9.3 For $B \in \mathcal{S}$, the action of B on $\mathcal{U}(\mathcal{H})$ is via the Mobius transformation

$$
\begin{pmatrix}
2i + B & -B \\
B & 2i - B
\end{pmatrix}
$$

44
9.2 Special Jordan algebras

Let V be a special formally real special Jordan algebra. Formally real special Jordan algebras can be embedded into the set of self-adjoint operators on a finite dimensional Hilbert space. We fix such an embedding. Thus, for our purposes, V is a real vector subspace of $B(\mathcal{H})$ for some finite dimensional Hilbert space \mathcal{H} such that

1. For $a, b \in V$, $a \circ b = \frac{1}{2}(ab + ba) \in V$,
2. The identity $1 \in V$, and
3. If $a \in V$ then a is self-adjoint.

Let $Q := \{a \in V : a \geq 0\}$. Note the real algebra generated by $\{1, a\} \subset V$ for every $a \in V$. Hence we have functional calculus at our disposal i.e. for $a \in V$ and $f \in C_0(\mathbb{R})$ is a real-valued function then $f(a) \in V$. Thus $V = Q - Q$. Also note that $Int(Q)$, in V, is $\{a \in Q : a > 0\}$. Moreover $V \cong \mathbb{R}^n$ for some n and hence V satisfies the Connes-Thom isomorphism property with period n.

Embed Q in $U(H)$ via the Cayley transform and let Z be the closure of Q. Then $\{U \in U(H) : \sigma(U) \subset T_+\}$ contains Z. We provide Z with the subspace topology inherited from the norm topology on $U(H)$. Then Z is compact. We need the following lemma.

Lemma 9.4 If $f : T \to \mathbb{R}$ is continuous and $U \in Z$ then $f(U) \in V$. Similarly if $g : \mathbb{R} \to T_+$ be continuous and $A \in Q$. Then $g(A) \in Z$.

Proof. Let $f : T \to \mathbb{R}$ be continuous. Since Q is dense in Z, it is to show that $f(U)) \in V$ where $U = \frac{A + i}{A - i}$ for some $A \in Q$. Fix such an U. Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) := f(\frac{x + i}{x - i})$. Then $f(U) = g(A)$. Since the real algebra generated by $\{1, A\}$ is contained in V, it follows that $g(A) \in V$ and thus $f(U) \in V$.

Now let $g : \mathbb{R} \to T_+$ be continous. Consider an element $A \in Q$. Let $A := \sum_{i=1}^{n} \lambda_k E_k$ be the spectral decomposition of A. Since E_k is a polynomial in A with real co-efficients, it follows that $E_k \in V$ for every k. Now $g(\lambda_k) \in T_+$ for every k and $T_+ \setminus \{1\}$ is dense in T_+. For every k, choose a sequence $(\lambda_k^{(n)})$ of positive real numbers such that $\frac{\lambda_k^{(n)} + i}{\lambda_k^{(n)} - i}$ converges to $g(\lambda_k)$. Set $A^{(n)} := \sum_k \lambda_k^{(n)} E_k$ and let $U^{(n)}$ be its Cayley transform. Then $A^{(n)} \in Q$ and $U^{(n)}$ converges to $g(A)$. Since Z is closed, it follows that $g(A) \in Z$. This completes the proof. \[\Box\]
Since Q is dense in Z and the Mobius action of Q on $U(H)$ leaves Q invariant, it follows that Q leaves Z invariant i.e. $U \boxplus A \in Z$ for $U \in Z$ and $A \in Q$. Let

$$Z_0 := \{U \boxplus A : U \in Z, A \in \text{Int}(Q)\}.$$

We claim that the map $Z \times \text{Int}(Q) \ni (U, A) \to U \boxplus A \in Z$ is open. By Theorem 4.3 in [RS14] and the remark following it, it is enough to show that for every $B \in \text{Int}(Q)$, $Z_0 \boxplus B$ is open in Z.

Remark 9.5 Observe that if $a, b \in \mathbb{R}$ are non-negative then $a > b$ if and only if $\text{Re}(\frac{a+i}{a-i}) > \text{Re}(\frac{b+i}{b-i})$.

First we need the following lemma.

Lemma 9.6 We have $Z_0 = \{U \in Z : -1 \notin \sigma(U)\}$. Also the set Z_0 is open in Z.

Proof. Let $U \in Z$ and $-1 \notin \sigma(U)$. Let $U = \sum_k \lambda_k E_k$ be the spectral decomposition. By Lemma 9.3 it follows that $E_k \in Q$ for every k. For every k, $\lambda_k \neq -1$. Choose $a > 0$ such that $\text{Re}(\lambda_k) > \frac{a^2}{a^2+1} = \text{Re}(\frac{a+i}{a-i})$ for every k. For every k, choose a sequence $(\lambda_k^{(n)}) \in \mathbb{T}_+ \setminus \{1\}$ such that $\text{Re}(\lambda_k^{(n)}) > \text{Re}(\frac{a+i}{a-i})$, and $(\lambda_k^{(n)})$ converges to λ_k. Write $\lambda_k^{(n)} = \frac{\mu_k^{(n)}+i}{\mu_k^{(n)}-i}$. Set $A^{(n)} := \sum_k \mu_k^{(n)} E_k$ and $U^{(n)}$ be its Cayley transform. Then $A^{(n)} \in Q$ and $A^{(n)} - a \in Q$. Thus $U^{(n)} \boxplus (-a) \in Z$ and hence its limit $V := U \boxplus (-a) \in Z$. Thus $U = V \boxplus a$. This proves that $U \in Z_0$.

Let $U \in Z_0$. Let $U = \tilde{U} \boxplus B$ with $V \in Z$ and $B \in \text{Int}(Q)$. Choose a sequence $A_n \in Q$ such that its Cayley transform U_n converges to \tilde{U}. Let b be the smallest eigen value of B. Since B is invertible, $b > 0$. Then $\sigma(A_n + B) \subset [b, \infty)$. Hence $\sigma(U_n \boxplus B) \subset \{z \in \mathbb{T}_+ : \text{Re}(z) \geq \text{Re}(\frac{b+i}{b-i})\}$. By Lemma 9.1 it follows that $\sigma(\tilde{U} \boxplus B) \subset \{z \in \mathbb{T}_+ : \text{Re}(z) \geq \text{Re}(\frac{b+i}{b-i})\}$. Hence $-1 \notin \sigma(U)$.

The openness of Z_0 in Z is now clear. This completes the proof. \[\square\]

We can identify $\mathbb{T}_+ \setminus \{-1\}$ with $[0, \infty)$ via the map $[0, \infty) \ni x \to \frac{x+i}{x+i}$. Thus we can identify Z_0 with Q homeomorphically. Let $\psi : Q \to Z_0$ be the map defined by

$$\psi(A) = \frac{-A+i}{A+i}.$$

Then ψ is a bijection. Its inverse is given by $\psi^{-1}(U) = i(1-U)(1+U)^{-1}$ for $U \in Z_0$. Note that the image of $\psi(A) \in Z$ by Lemma 9.4 Thus ψ is well defined. Again by Lemma 9.4 ψ^{-1} is well defined.
By direct verification, it follows that for $A \in Q$, $B \in Q$,

$$
\psi^{-1}(\psi(A \boxplus B)) = A(BA + 1)^{-1}.
$$

Let $B \in \text{Int}(Q)$. Since Z_0 is open in Z, $Z_0 \boxplus B$ is open in Z if and only if $Z_0 \boxplus B$ is open in Z_0. It is thus enough to show that the range of the map $Q \ni A \to A(BA + 1)^{-1} \in Q$ is open in Q.

Lemma 9.7 Let $B \in \text{Int}(Q)$ be given. Then the range of the map $Q \ni A \to A(BA+1)^{-1}$ is $\{C \in Q : C < B^{-1}\}$. Moreover $\{C \in Q : C < B^{-1}\}$ is open in Q.

Proof. Let $A \in Q$ be given and let $C = A(1 + BA)^{-1}$. Observe that

$$
B^{-1} - C = B^{-1} - A(1 + BA)^{-1}
$$

$$
= B^{-1}((1 + BA) - BA)(1 + BA)^{-1}
$$

$$
= B^{-1}(1 + BA)^{-1}
$$

Now since $(1 + BA)B = B + BAB > 0$, it follows that $B^{-1}(1 + BA)^{-1} > 0$. Hence $B^{-1} - C > 0$.

Now let $C \in Q$ be such that $C < B^{-1}$. Let $D \in \text{Int}(Q)$ be such that $B^{-1} - C = D$. Now $1 - CB = DB$ and hence $1 - CB$ is invertible. Set $A = (1 - CB)^{-1}C$. Note that A is positive, for $A = B^{-1}D^{-1}C = (C + D)D^{-1}C = C + CD^{-1}C \geq 0$.

Next we show that $A \in Q$. First we prove that $A \in Q$ if C is invertible. The equality $A = C(1 + BA)$, together with the assumption that C is invertible, implies that $C^{-1} = (1 + BA)A^{-1} = A^{-1} + B$. Since $C^{-1}, B \in Q$, it follows that $A^{-1} \in Q - Q$ and hence $A \in Q - Q$. We have already shown that A is positive. Thus $A \in Q$.

Now let $C \in Q$ be such that $C < B^{-1}$ and write $B^{-1} = C + D$. Since D is invertible, $D - \frac{1}{n} > 0$ eventually. Set $C_n = C + \frac{1}{n}$. Then C_n is invertible and converges to C. Also note that $B^{-1} - C_n = D - \frac{1}{n} > 0$. Thus $(1 - C_nB)^{-1}C_n \in Q$. Now the closedness of Q and the convergence of $(1 - C_nB)^{-1}C_n$ to $A := (1 - CB)^{-1}C$ implies that $A \in Q$. The equality $C(1 + BA) = A$ implies $C = A(1 + BA)^{-1}$.

Now we show that $\{C \in Q : C < B^{-1}\}$ is open in Q. Let $C \in Q$ be such that $C < B^{-1}$ and write $B^{-1} = C + D$. Then $D > 0$. Thus there exists $\epsilon > 0$ such that $< D\xi, \xi > \geq \epsilon$ if $||\xi|| = 1$. Now the ball of radius $\frac{\epsilon}{2}$ and with centre C is contained in $\{C \in Q : C < B^{-1}\}$. This completes the proof. \hfill \Box

For $U \in Z$, let

$$
Q_U := \{A \in V : U \boxplus A \in Z\}.
$$

Now we verify the following conditions.
(A1) The Q-orbit of $-1 \in Z$ is dense in Z,

(A2) $Q_{-1} = Q$, and

(A3) For $U, V \in Z$, if $Q_U = Q_V$ then $U = V$.

These are exactly the conditions considered in [RS14]. (A1) is just the definition of Z. To prove this, we use another description of Z, the one used in [MR82].

Let U be a unitary on H. Let E be the projection onto the eigen space $Ker(U - 1)$. On $E^⊥$, $U - 1$ is invertible. Thus $\left|\begin{array}{c} E \\ A \end{array}\right|$ comes from a self-adjoint operator on $1 - E$, via the Cayley transform. Thus U can be described by a pair (E, A) where E is a projection and A is a self-adjoint operator on H such that $(1 - E)A(1 - E) = A$.

Let

$$\tilde{Z} := \{(E, A) : E \text{ is a projection in } Q, A \in Q \text{ such that } (1 - E)A(1 - E) = A\}.$$

For $(E, A) \in \tilde{Z}$, let $U_{(E, A)} = E + (1 - E)\left(\frac{A + i}{A - i}\right)(1 - E)$. By functional calculus (Lemma [9.3]), it follows that $U_{(E, A)} \in Z$. Moreover $\tilde{Z} \subset (E, A) \rightarrow U_{(E, A)} \in Z$ is a bijection. Also if $(E, A) \in \tilde{Z}$ and $B \in V$ then

$$U_{(E, A)} \boxplus B = U_{(E, A + (1 - E)B(1 - E))}.$$

We leave these verification to the reader. To prove the final assertion, decompose H as $E \oplus (1 - E)$ and write B as a 2×2 matrix with respect to this decomposition.

For $(E, A) \in Z$, we simply write $Q_{(E, A)}$ instead of $Q_{U_{(E, A)}}$. From this it follows quite easily that for $(E, A) \in \tilde{Z}$,

$$Q_{(E, A)} = \{B \in V : A + (1 - E)B(1 - E) \geq 0\}.$$

Now $Q_{-1} = Q_{(0, 0)} = \{B \in V : B \geq 0\} = Q$. This proves (A1).

Let $(E, A), (F, B) \in Z$ be such that $Q_{(E, A)} = Q_{(F, B)}$. First observe that $\alpha E \in Q_{(E, A)}$ for every $\alpha \in \mathbb{R}$. Hence $\alpha E \in Q_{(F, B)}$ for $\alpha \in \mathbb{R}$. Thus $B + \alpha(1 - F)E(1 - F) \geq 0$ for $\alpha \in \mathbb{R}$. This implies that $\xi \in Ker(F)$, $\langle B\xi, \xi \rangle + \alpha \langle E\xi, \xi \rangle \geq 0$ for every $\alpha \in \mathbb{R}$. Hence $\langle E\xi, \xi \rangle = 0$ or in other words $(1 - E)\xi = \xi$. Hence $1 - F \leq 1 - E$ or $E \leq F$. Similarly $F \leq E$. Thus $E = F$.

Now observe that $-A \in Q_{(E, A)}$. Hence $-A \in Q_{(F, B)}$ which implies that $B - A \geq 0$. Thus $A \leq B$. Similarly $B \leq A$. Hence $A = B$. This proves (A3).

Now we prove our main theorem. Let Ω be the unit space of the Wiener-Hopf groupoid associated to the semigroup Q. Then by Proposition 5.1 of [RS14], it follows that the map $Z \ni U \rightarrow Q_U^{-1} \in \Omega$ is a Q-equivariant homeomorphism. Via this identification, we can identify the boundary $\partial \Omega$, also denoted ∂Z, with $\{U \in Z : -1 \in \sigma(U)\}$.

48
Remark 9.8 We identify Q with a subset of Z via the Cayley transform $A \rightarrow \frac{A + i}{A - i}$. Let $U \in Z$. Then

(1) $U \in Q$ if and only if $1 \notin \sigma(U)$.

(2) Let $U := \sum_{i=1}^{k} \lambda_i E_i$ be the spectral decomposition and let $V := \sum_{i=1}^{k} \mu_i E_i \in Z$. Then $V \in Q$ if and only if $\mu_k \neq 1$ for every k. Moreover if we write $V := \frac{A + i}{A - i}$ with A self-adjoint then $A \in Q_U^{-1}$ if and only if $\Re(\mu_k) \leq \Re(\lambda_k)$ for every k. We leave this verification to the reader.

Theorem 9.9 The semigroup Q satisfies conditions (A) and (B).

Proof. Let g be the inverse of the map $[0, \pi] \ni t \rightarrow e^{it} \in T_+$. For $t \in [0, 1]$, let $\phi_t : Z \rightarrow Z$ be defined by $\phi_t(U) := e^{i(1-t)g(U)+it\pi}$. Clearly if $U \in \partial Z$ then $\phi_t(U) \in \partial Z$. Moreover $\phi_0 := id_Z$ and $\phi_1(U) = -1 \in \partial Z$ for $U \in Z$.

We leave it to the reader to verify using Remark 9.8 that for $t \in (0, 1]$, $\phi_t(U) \in Q$ and $U \in Z$ and if we write $\phi_t(U) := \frac{A_{t,U} + i}{A_{t,U} - i}$ with $A_{t,U}$ self-adjoint then $A_{t,U} \in Q_U^{-1}$. The fact that $A_{t,U} \in Q_{U}^{-1}$ follows from Remark 9.8 and the fact that cosine is decreasing on $[0, \pi]$. Thus $(\phi_t)_{t \in [0,1]}$ is the desired homotopy for the semigroup Q to satisfy conditions (A) and (B).

References

[Cun08] Joachim Cuntz, C^*-algebras associated with the $ax + b$-semigroup over \mathbb{N}, K-theory and noncommutative geometry, EMS Ser. Congr. Rep., 2008, pp. 201–215.

[HN95a] Joachim Hilgert and Karl-Hermann Neeb, Groupoid C^*-algebras of order compactified symmetric spaces, Japan. J. Math. (N.S.), no. 1. (1995).

[HN95b] , Wiener-Hopf operators on ordered homogeneous spaces. I, J. Funct. Anal. 132 (1995), no. 1, 86–118.

[KMRW98] Alexander Kumjian, Paul S. Muhly, Jean N. Renault, and Dana P. Williams, The Brauer group of a locally compact groupoid, Amer. J. Math. 120 (1998), no. 5, 901–954.

[KS97] M. Khoshkam and G. Skandalis, Toeplitz algebras associated with endomorphisms and Pimsner-Voiculescu exact sequences, Pacific J. Math. 181 (1997), no. 2, 315–331.
Mahmood Khoshkam and Georges Skandalis, *Crossed products of C^*-algebras by groupoids and inverse semigroups*, J. Operator Theory 51 (2004), no. 2, 255–279.

Marcelo Laca, *From endomorphisms to automorphisms and back: dilations and full corners*, J. London Math. Soc. (2) 61 (2000), no. 3, 893–904.

Xin Li, *Semigroup C^*-algebras and amenability of semigroups*, J. Funct. Anal. 262 (2012), no. 10, 4302–4340.

______, *Nuclearity of semigroup C^*-algebras and the connection to amenability*, Adv. Math. 244 (2013), 626–662.

Paul S. Muhly and Jean N. Renault, *C^*-algebras of multivariable Wiener-Hopf operators*, Trans. Amer. Math. Soc. 274 (1982), no. 1, 1–44.

Paul S. Muhly, Jean N. Renault, and Dana P. Williams, *Equivalence and isomorphism for groupoid C^*-algebras*, J. Operator Theory 17 (1987), no. 1, 3–22.

Gerard J. Murphy, *Crossed products of C^*-algebras by semigroups of automorphisms*, Proc. London Math. Soc. (3) 68 (1994), no. 2, 423–448.

______, *Crossed products of C^*-algebras by endomorphisms*, Integral Equations Operator Theory 24 (1996), no. 3, 298–319.

Paul S. Muhly and Dana P. Williams, *Renault’s equivalence theorem for groupoid crossed products*, NYJM Monographs, vol. 3, State University of New York, University at Albany, Albany, NY, 2008.

Alexandru Nica, *Some remarks on the groupoid approach to Wiener-Hopf operators*, J. Operator Theory 18 (1987), no. 1, 163–198.

______, *Wiener-Hopf operators on the positive semigroup of a Heisenberg group*, Linear operators in function spaces (Timişoara, 1988), Oper. Theory Adv. Appl., vol. 43, Birkhäuser, Basel, 1990, pp. 263–278.

______, *C^*-algebras generated by isometries and Wiener-Hopf operators*, J. Operator Theory 27 (1992), no. 1, 17–52.
Jean Renault and S. Sundar, *Groupoids associated to semigroup actions*, arxiv:math.OA/1402.2762, to appear in J. Operator Theory, 2014.

Aidan Sims and Dana P. Williams, *An equivalence theorem for reduced Fell bundle C^*-algebras*, New York J. Math. **19** (2013), 159–178.

Dana P. Williams, *Crossed products of C^*-algebras*, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007.

S. Sundar *(sundarsobers@gmail.com)*

Chennai Mathematical Institute, H1 Sipcot IT Park,
Siruseri, Padur, 603103, Tamilnadu, INDIA.