Revendo Ciências Básicas

Papel do sistema da fosfocreatina na homeostase energética das musculaturas esquelética e cardíaca
Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles

Lucas Guimarães-Ferreira

RESUMO
A adenosina trifosfato é a moeda corrente de energia no organismo, sendo utilizada em diversos processos celulares e indispensável para a manutenção da homeostase celular. Mecanismos de regeneração da adenosina trifosfato, a partir de seu produto de hidrólise – a adenosina difosfato – são, dessa forma, necessários. A fosfocreatina é conhecidamente sua fonte mais rápida de regeneração, por meio da enzima creatina quinase. Assim, a principal função desse sistema é atuar como um tampão temporal de energia. Entretanto, ao longo dos anos, diversas outras funções foram atribuídas à fosfocreatina. Isso ocorreu à medida que foram identificadas diversas isoformas da creatina quinase com localização subcelular distinta e acopladas de forma funcional aos sítios geradores e utilizadores de energia, na mitocôndria e citosol, respectivamente. O presente trabalho discutiu o papel central e complexo que o sistema da fosfocreatina desempenha na homeostase energética nas células musculares, bem como suas alterações em quadros patológicos.

Descritores: Fosfocreatina; Homeostase; Células musculares; Miócitos cardíacos

INTRODUÇÃO
A adenosina trifosfato (ATP) é a principal forma de energia química, sendo sua hidrólise altamente exergônica. A manutenção da homeostase celular depende de mecanismos que ajustem os processos de geração de ATP de acordo com a demanda energética. Assim, o funcionamento dos sistemas bioenergéticos celulares requer que a ATP produzida e encaminhada aos sítios de utilização – as ATPases – seja finamente acoplada à remoção dos produtos de sua hidrólise – adenosina difosfato (ADP), Pi e H⁺ – de forma a evitar a inibição das ATPases, possibilitando a continuidade dos processos biológicos.

A fosfocreatina (PCr) foi descoberta em 1927 no tecido muscular. A creatina livre (Cr) foi gerada a partir de sua quebra, durante a contração muscular.(1,2) Em 1962, Cain e Davies inibiram a enzima responsável pela transformação da PCr em Cr, a creatina quinase (CK), e verificaram que os níveis de ATP eram reduzidos rapidamente, até que as contrações musculares não mais podiam ocorrer.(3) Hoje, está claro que o sistema da PCr é fundamental na promoção da rápida ressíntese da ATP, por meio da ação da CK (Equação 1).

\[\text{MgADP} + \text{PCr}^2^- + \text{H}^+ \rightleftharpoons \text{MgATP}^2^- + \text{Cr} \] (Equação 1)

Uma vez que o sistema PCr/CK possui elevada taxa de geração de ATP, ele é particularmente importante...
em situações de alta demanda metabólica, como o exercício físico de alta intensidade, quando a taxa de utilização de ATP excede sua capacidade de geração por outras vias metabólicas.

O sistema de “lançadeira” de fosfocreatina

Em 1970, Gudbjarnason et al. verificaram que, no músculo esquelético submetido à isquemia, a atividade contrálté é interrompida quando a PCr encontrava-se exaurida, apesar de os níveis de ATP apresentarem-se reduzidos em somente cerca de 20%.(4) Os autores sugeriram que a ATP intracelular pode não estar homogeneamente distribuída nas células musculares ou ser capaz de se difundir de forma rápida e eficiente.

Foram identificadas quatro diferentes isoformas de CK com localizações subcelulares distintas: as isoformas citósicas CK-M e CK-B (de muscle e brain, devido aos tecidos em que foram identificadas primeiramente) e duas mitocondriais (CKmit sarcomérica, encontrada no músculo, e CKmit ubíqua, no restante dos tecidos). In vivo, as isoformas citósicas se combinam em dimers, formando a CK-BB, CK-MB e CK-MM, sendo essa última a predominante no músculo esquelético.(5) Esses achados, somados aos primeiros experimentos demonstrando que o suprimento com Cr promovia um estímulo à respiração mitocondrial, mostraram que os compartimentos mitocondriais e citoplasmáticos eram interconectados por um sistema organizado de transferência de energia, constituído de diferentes isoformas da CK. Assim, fundaram-se as bases da chamada teoria da “lançadeira” de PCr, proposta formalmente por Bessman, em 1972.(6)

No sistema de “lançadeira” de PCr (Figura 1), o fosfato de alta energia é transferido da ATP formada por meio da fosforilação oxidativa, na mitocôndria (sítio de produção), para a Cr, via ação da CKmit, gerando assim, PCr e ADP. A PCr se difunde para o citoplasma, no qual, via ação das isoformas citósicas de CK, gera ATP e Cr. A ATP é, então, utilizada pelas ATPases (sítios de utilização), enquanto a Cr retorna para o interior da mitocôndria. Esta atravessa mais facilmente a membrana mitocondrial que os nucleotídeos de adenina, além de estar presente em níveis mais altos no meio intracelular. Por meio desse sistema de “lançadeira”, a PCr desempenha outra importante função: ela participa da transferência do fosfato de alta energia, presente na ATP, da mitocôndria para o citosol.(7,8)

As principais reações químicas que utilizam ATP nos músculos esquelético e cardíaco, estão associadas ao acoplamento excitação-contração: a miosina ATPase, nas miofibrilas, e a Ca²⁺-ATPase, no retículo sarcoplasmático (SERCA). Além disso, boa parte da ATP é hidrolisada pela Na⁺/K⁺-ATPase no sarcolema. Foi demonstrado que a CK encontra-se localizada nesses sítios, acoplada, de forma funcional, às ATPases.(8) Assim, é possível notar que a localização das isoformas da CK é de fundamental importância para que o sistema funcione de forma adequada, ou seja, para que a ATP produzida na mitocôndria seja efetivamente utilizada pelas ATPases citósicas.

Função dos sistemas de acoplamento funcional para a homeostase energética celular

Conforme discutido, os dados apontavam para a existência de fatores limitantes para a difusão livre da ATP pelo citoplasma. Hoje, sabemos que a primeira barreira à difusão de moléculas no meio intracelular é a aglomeração macromolecular, que se refere às altas concentrações de macromoléculas no interior das células. A concentração de proteínas no citoplasma é de cerca de 200 a 300mg/mL, o que corresponde a 20 a 30% do volume intracelular.(9,10) Na mitocôndria, essa densidade é ainda maior, fazendo com que as proteínas mitocondriais ocupem cerca de 60% do volume da matriz.(11) Esse meio de alta viscosidade pode provocar uma diminuição do volume disponível para a difusão livre de substratos, determinando, assim, a atividade de muitos processos celulares.(12) É por essa razão que resultados de estudos enzimáticos que utilizam soluções diluídas com enzimas isoladas (sistemas cell free) podem não condizer com a condição da célula intacta.

Outra barreira à mobilidade de metabólitos no microambiente celular é a ligação destes a macromoléculas.(13) Szent-Györgyi e Prior(15) demonstraram que a maior parte da ADP permanece firmemente ligada a unidades de actina do citoesqueleto da célula, evidenciando, mais uma vez, a importância da rede de transfe-

Figura 1. Sistema de “lançadeira” de fosfocreatina

Adaptado de: Neubauer S. Influence of left ventricular pressures and heart rate on myocardial high-energy phosphate metabolism. Basic Res Cardiol. 1989;93 Suppl 1:102-7. Review.
rência de fosfato, já que a ADP citósólica não pode se mover até a mitocôndria, no qual exerce controle sobre a taxa de respiração mitocondrial. Esse problema é contornado pelo sistema de acoplamento funcional desempenhado pela “lançadeira” de PCr.

Cr e PCr são moléculas menores, que possuem nenhuma ou pequena carga negativa quando comparadas aos nucleotídeos de adenina. Experimentos com ressonância nuclear magnética demonstraram que a distância média de difusão (indicador da capacidade de difusão das moléculas) da PCr e Cr (57 e 37µm) é muito superior à da ADP e da ATP (1,8 e 22µm, respectivamente).(16) Fica claro que a ADP é, dentre esses metabolitos, a limitante, no que diz respeito ao potencial de difusão pelo citosol. Wallimann et al. reportam que esse potencial, apesar de baixo, ainda é suficiente para manter a capacidade metabólica em células pequenas ou quando a distância entre a mitocôndria e as ATPases citósolicas não é alta, o que não condiz com as propriedades dos músculos esquelético e cardíaco, tornando o sistema de transferência de energia pela CK importante nessas células.(18)

Enquanto que a aglomeração de macromoléculas parece ser o principal mecanismo de restrição da mobilidade de solutos de maior tamanho, a ligação pode ser o mecanismo mais importante no caso de solutos menores.(14) Uma vez que o sítio de produção de ATP no metabolismo oxidativo ocorre no interior da mitocôndria e que os sítios de utilização estão no citosol, os mecanismos de sobreposição das barreiras impostas pelos baixos coeficientes de difusão dos nucleotídeos de adenina e pela pequena disponibilidade de ADP livre são importantes. Obstáculos oriundos da ligação e da aglomeração macromoleculares podem ser superados graças a um mecanismo de controle e regulação finos do metabolismo, baseados na microcompartimentalização e no acoplamento funcional.(19)

O sistema de organização espacial, que permite a interação de enzimas, transportadores e de seus substratos de forma supramolecular, é denominado acoplamento funcional. Esse sistema é determinado por dois mecanismos que atuam de forma sinérgica no acúmulo e na transferência de metabolitos em pequenos espaços intracelulares, conferindo maior eficiência aos processos metabólicos: a canalização metabólica e a microcompartimentalização celular.

Por definição, compartimento é uma região subcelular em que reações bioquímicas são kineticamente isoladas umas das outras.(17) No interior das células, o metabolismo depende da organização estrutural das enzimas, formando microcompartimentos. Como as células contêm microambientes distintos, a mensuração da concentração de metabólitos nas células inteiras ou em determinados tecidos nos dá uma média da concentração celular, mas não da concentração do metabólito em questão que está efetivamente disponível no sítio ativo de determinada enzima. Assim, a compartimentalização celular pode prover um mecanismo adicional de controle da atividade de vias metabólicas.

Por sua vez, por meio da canalização metabólica, um intermediário é transferido entre enzimas adjacentes, dependendo menos da difusão pelo citosol. Por exemplo, foi verificado que a concentração média de oxaloacetato na matriz mitocondrial é muito inferior à necessária para sustentar o funcionamento do ciclo de Krebs. Entretanto, a alta concentração de oxaloacetato, no mesmo microambiente em que se localiza a enzima citrato sintase, permite a manutenção da velocidade desse ciclo.(13) Isso ilustra a importância da canalização metabólica e como o metabolismo celular depende da organização estrutural das enzimas e intermediários, formando microcompartimentos.

No sistema da PCr/CK, o acoplamento funcional atua de modo que as diferentes isoformas de CK agem em duas direções distintas. Enquanto que a CKmit atua na direção da síntese de PCr, as isoformas citósolicas da CK atuam na direção da formação local de ATP, nas intermediações das ATPases. Isso foi demonstrado primeiramente por cálculos matemáticos(18) e, então, confirmado experimentalmente por meio de técnicas de ressonância nuclear magnética com fósforo marcado radioativamente.(19)

Implicações de alterações no sistema fosfocreatina/creatina quinase

Alguns estudos demonstram que o comprometimento do sistema da PCr/CK está relacionado a algumas alterações funcionais, especialmente no miocárdio. Por exemplo, camundongos transgênicos que não expressam a enzima guanidinoacetato-N-metiltransferase (GAMT), necessária para a síntese de Cr, apresentaram reserva inotrópica reduzida e aumento da suscetibilidade de lesão por isquemia/reperfusão, em razão da deficiência de Cr e PCr.(20) Além disso, o miocárdio de camundongos knock-out para as isoformas CKmit e CK-M é incapaz de manter os níveis de ATP quando os animais são submetidos a um protocolo de exercício intenso, apesar dos níveis basais não se mostrarem modificados. Além disso, esses camundongos exibem valor de energia livre (ΔG) para a hidrólise da ATP significativamente diminuída durante o esforço.(21) Isso demonstra que, nesses animais, para o quais a atividade total da CK é quase nula, o aumento da carga imposta...
ao miocárdio torna mais custosa a geração de trabalho, reduzindo a energia livre disponível com a hidrólise da ATP. Entretanto, trabalhos recentes levantam questões quanto à importância do sistema PCr/CK no miocárdio em repouso ou durante exercício de intensidade leve a moderada. Por exemplo, Lygate et al.(22) demonstraram que camundongos knock-out para a GAMT não apresentaram declínio da atividade locomotora voluntária e da capacidade de se exercitar até a saturação cardiólica em repouso. É possível que a deficiência de PCr acarrete prejuízo contrátil somente em exercícios supramáximos, mas pesquisas adicionais são necessárias para elucidar essa questão.

Demonstrou-se também que quadros patológicos que levam à hipertrofia cardíaca, no homem e em modelos animais, são caracterizados pela diminuição das concentrações de Cr e PCr.(24-29) Em humanos, um estudo demonstrou que a magnitude da diminuição desse conteúdo está diretamente relacionada ao grau de insuficiência observado.(26) Dessa forma, o comprometimento do sistema da PCr parece preceder o desenvolvimento da disfunção contrátil, levando à redução das reservas energéticas disponíveis para regeneração da ATP e tornando o miocárdio mais propenso a desenvolver insuficiência.(30)

Os mecanismos que resultam na diminuição da concentração de PCr incluem a menor expressão do transportador de Cr(27) e modificações no padrão de expressão das isoformas de CK, que levam à redução dos níveis totais de Cr e da razão PCr/Cr.(21) Corroborando esses achados, Ye et al.,(31) utilizando um modelo de insuficiência cardíaca congestiva em porcos, verificaram diminuição da razão PCr/ATP e do fluxo através da CK com uma redução importante na expressão da CK-M e CKmit. Estes e outros estudos demonstram que o prejuízo do sistema PCr/CK parece preceder o desenvolvimento da disfunção contrátil, levando à diminuição da reserva energética.(32) A superexpressão do transportador de Cr resultou em aumento moderado nos níveis de Cr e glicogênio, e protegeu o miocárdio dos animais do infarto agudo do miocárdio, com redução de 27% da necrose do tecido, além de recuperação funcional melhorada após dano por isquemia/reperfusão.(33) De forma similar, a superexpressão da isoforma miofibrilar da CK (CK-M) resultou no aumento do fluxo de ATP pela CK e na função contrátil melhorada em modelo de insuficiência cardíaca.(34)

Animais suplementados com ácido β guanidil-propiónico (β-GPA, um competidor pelo transporte de Cr), que, portanto, apresentam depleção significativa da Cr no miocárdio, também exibem prejuízo na função cardíaca, especialmente em altas cargas de trabalho. Em animais tratados com β-GPA, o aumento da concentração de ADP livre torna o ΔG para hidrólise da ATP menos negativo, tornando essa reação menos eficiente em termos energéticos.(32) Uma vez que o sequestramento de cálcio depende de um ΔG altamente negativo e que a CK encontra-se no retículo sarcoplasmático funcionalmente acoplado à SERCA, a queda dos níveis de Cr no miocárdio parece explicar parte das alterações cardíacas observadas em indivíduos e animais que apresentam diminuição das reservas de Cr em condições patológicas ou experimentais.

Esse é o caso do hipertireoidismo, no qual observa-se uma queda acentuada nos estoques de Cr.(35) Sabe-se que, nessa condição, o coração apresenta uma limitação na capacidade máxima de trabalho, com acentuada redução nos níveis de ATP à medida que a demanda energética é aumentada.(36,37) Talvez a diminuição da oferta de Cr para o miocárdio seja responsável por essa limitação. Foi demonstrado que, em baixas e altas taxas de trabalho impostas ao coração (mensurada pela pressão sistólica de pico versus frequência cardíaca), o miocárdio de animais hipertireoides apresenta níveis diminuídos de ATP e níveis elevados de ADP livre,(35) o que sugere que o excesso de hormônios tireoideanos tenha afetado a capacidade de trabalho do coração, em parte em razão da diminuição do estoque de Cr no miocárdio, em paralelo à queda acentuada da expressão do transportador de Cr. Um estudo com ratos hipofisectomizados demonstrou que o hormônio tireoideano promove aumento dos níveis de PCr e da relação PCr/Cr no músculo esquelético, além de acelerar a regeneração da PCr após contrações musculares.(38)

Em contrapartida, na indução do estado hipotireoidismo em ratos por 3 semanas, Athéa et al.(39) verificaram que não afetou a atividade total da CK, bem como a expressão gênica e a atividade da CKmit. Entretanto, as mitocôndrias desses animais apresentaram diminuição da sensibilidade à ADP e à Cr, evidenciada pelo aumento da constante de Michaelis-Menten (KmADP de 189±12μM para 228±12μM e KmADP+Cr de 65±5μM para 101±8μM). Em termos fisiológicos, isso significa que mais ADP e Cr são necessárias, nessa condição experimental, para o estímulo da função mitocondrial. Esse efeito pode ter ocorrido pela diminuição do conteúdo de cardiolípina na membrana mitocondrial, cuja síntese é estimulada pelos hormônios tireoideanos.(40) Esse fosfolípido é importante para a ligação da CKmit à membrana mitocondrial.(41) Dessa forma, assume-se que, em condições de hipotireoidismo, o sistema de “lança-
deira” de PCr atua em menor ritmo que nas condições de eutireoidismo, o que resulta na menor disponibilidade da ATP gerada na mitocôndria para os sítios de utilização no citoplasma. Khushu et al. demonstram que, apesar de pacientes com hipotireoidismo apresentarem níveis intramusculares de PCr similares aos de indivíduos eutireoídeos, a ressíntese da PCr, após o exercício, é reduzida, indicando redução da capacidade oxidativa no músculo esquelético.

Estudo recente de nosso grupo demonstrou que a suplementação com Cr promove redução das espécies reativas de oxigênio (EROs) no músculo esquelético. O aumento da produção de EROs ocorre em diversas doenças metabólicas, neurológicas, endócrinas, dentre outras, e o tratamento com Cr tem se mostrado uma estratégia eficiente em boa parte destas doenças. Pesquisas adicionais determinarão o real potencial terapêutico da suplementação com Cr.

CONCLUSÃO
A compreensão do fenômeno de acoplamento funcional, envolvendo a microcompartimentalização celular e a canalização metabólica, pode ajudar na melhor compreensão da integração entre os diversos sistemas celulares de geração da adenosina trifosfato, que atuam de forma a manter a homeostasia das células musculares esqueléticas e cardíacas. Nesse sentido, evidenciamos aqui que a regulação do metabolismo energético celular está intimamente relacionada à organização estrutural dos componentes celulares. Tais evidências trazem à tona algumas funções, por vezes ignoradas, do sistema da fosfocreatina/creatina quinase, que contribuem para o melhor entendimento da fisiologia do músculo, bem como de aspectos clínicos relevantes. Além disso, apontam para questões relevantes que ainda merecem mais investigações multidisciplinares no campo da bioenergética celular.

REFERências
1. Fiske CH, Subbarow Y. The nature of the "inorganic phosphate" in voluntary muscle. Science. 1927;65(1686):401-3.
2. Eggleton P, Eggleton GP. The Inorganic Phosphate and a Labile Form of Organic Phosphate in the Gastronemius of the Frog. Biochem J. 1927;21(1):190-5.
3. Cain DF, Davies RE. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Commun. 1962;8:361-6.
4. Guidbjaminson S, Mathes P, Ravens KG. Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol. 1970;13(3):325-39.
5. Jacobs H, Heldt HW, Klingenberg M. High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem Biophys Res Commun. 1964;16(6):516-21.
6. Bessman SP. Hexokinase acceptor theory of insulin action. New evidence. Isr J Med Sci. 1972;8(3):344-52.
28. Nakae I, Mitsunami K, Omura T, Yabe T, Tsutamoto T, Matsu S, et al. Proton magnetic resonance spectroscopy can detect creatine depletion associated with the progression of heart failure in cardiomyopathy. J Am Coll Cardiol. 2003;42(9):1587-93.

29. Nakae I, Mitsunami K, Matsu S, Horie M. Creatine depletion and altered fatty acid metabolism in diseased human hearts: clinical investigation using 1H magnetic resonance spectroscopy and 123I BMIPP myocardial scintigraphy. Acta Radiol. 2007;48(4):436-43.

30. Horn M, Remkes H, Strömmer H, Dienesch C, Neubauer S. Chronic phosphocreatine depletion by the creatine analogue beta-guanidinopropionate is associated with increased mortality and loss of ATP in rats after myocardial infarction. Circulation. 2001;104(15):1844-9.

31. Ye Y, Gong G, Ochiai K, Liu J, Zhang J. High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation. 2001;103(11):1570-6.

32. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95(2):135-45. Review.

33. Lygate CA, Bohl S, ten Hove M, Faller KM, Ostrowski PJ, Zervou S, et al. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc Res. 2012;96(3):466-75.

34. Gupta A, Akki A, Wang Y, Leppo MK, Chacko VP, Foster DB, et al. Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J Clin Invest. 2012;122(1):291-302.

35. Queiroz MS, Shao Y, Berkich DA, Lanoue KF, Ismail-Beigi F. Thyroid hormone regulation of cardiac bioenergetics: role of intracellular creatine. Am J Physiol Heart Circ Physiol. 2002;283(6):H2527-33.

36. Brent GA. The molecular basis of thyroid hormone action. N Engl J Med. 1994;331(13):947-53. Review.

37. Polikar R, Burger AG, Scherrer U, Nicod P. The thyroid and the heart. Circulation. 1993;87(5):1435-41. Review.

38. Kaminsky P, Walker PM, Deibener J, Barbe F, Jeannesson E, Escanye JM, et al. Growth hormone potentiates thyroid hormone effects on post-exercise phosphocreatine recovery in skeletal muscle. Growth Horm IGF Res. 2012;22(6):240-4.

39. Athéa Y, Garnier A, Fortin D, Bahi L, Veksler V, Ventura-Clapier R. Mitochondrial and energetic cardiac phenotype in hypothyroid rat. Relevance to heart failure. Pflugers Arch. 2007;455(3):431-42.

40. Mutter T, Dolinsky VW, Ma BJ, Taylor WA, Hatch GM. Thyroxine regulation of monolyso-cardiolipin acyltransferase activity in rat heart. Biochem J. 2000;346 Pt 2:403-6.

41. Schlattner U, Wallimann T. Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J Biol Chem. 2000;275(23):17314-20.

42. Khushu S, Rana P, Sekhri T, Sripathy G, Tripathi RP. Bio-energetic impairment in human calf muscle in thyroid disorders: a 31P MRS study. Magn Reson Imaging. 2010;28(5):683-9.

43. Guimarães-Ferreira L, Pinheiro CH, Gerlinger-Romero F, Vitzel KF, Nachbar RT, Curi R, et al. Short-term creatine supplementation decreases reactive oxygen species content with no changes in expression and activity of antioxidant enzymes in skeletal muscle. Eur J Appl Physiol. 2012;112(11):3905-11.

44. Sestili P, Martinelli C, Colombo E, Barbieri E, Potenza L, Sartini S, et al. Creatine as an antioxidant. Amino Acids. 2011;40(5):1385-96.