Transit timing variation and activity in the WASP-10 planetary system

G. Maciejewski, D. Dimitrov, R. Neuhäuser, N. Tetzlaff, A. Niedzielski, St. Raetz, W. P. Chen, F. Walter, C. Marka, S. Baar, T. Krejcová, J. Budaj, V. Krushevska, K. Tachihara, H. Takahashi and M. Mugrauer

1 Astrophysikalisches Institut und Universitäts-Sternwarte, Schillergässchen 2–3, D–07745 Jena, Germany
2 Toruń Centre for Astronomy, N. Copernicus University, Gagarina 11, PL–87100 Toruń, Poland
3 Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
4 Institute of Astronomy, National Central University, 300 Jhongda Rd., Jhongli 32001, Taiwan
5 Department of Physics and Astronomy, SUNY, Stony Brook, NY 11794–3800, USA
6 Masaryk University, Department of Theoretical Physics and Astrophysics, 602 00 Brno, Czech Republic
7 Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranská Lomnica, Slovak Republic
8 Main Astronomical Observatory of National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680 Kyiv, Ukraine
9 National Astronomical Observatory of Japan, ALMA project office, 2-21-1 Osawa Mitaka Tokyo 181-8588 Japan
10 Gunma Astronomical Observatory, 6860-86 Nakayama, Takayama-mura, Agatsuma-gun, Gunma 377-0702 Japan

1 INTRODUCTION

Analysing transit timing variations (TTV) of exoplanets is expected to be an efficient method to discover additional low-mass planets (Miralda-Escude 2002; Schneider 2004; Holman & Murray 2005; Agol et al. 2005; Steffen et al. 2007). Many studies have been performed to detect TTV signals but they resulted only in constraints on the parameters of hypothetical second planets (e.g. Gibson et al. 2009). Recently, Maciejewski et al. (2010) detected variation in the transit timing of WASP-3b. They found that a configuration with a hypothetical second planet of mass of $\sim 15 M_\oplus$, located close to an outer 2:1 mean motion resonance (MMR) may reproduce the observed TTV signal. Lendl et al. (2010) found some indications for the TTV for OGLE2-TR-L9b but no preliminary solution was proposed.

WASP-10b is an exoplanet discovered by Christian et al. (2009). The mass and radius of the
Table 1. List of telescopes: FoV is the field of view of the instrument and N_{tr} is the number of observed transits.

ID	Telescope	Observatory Location	Detector	CCD size	N_{tr}	Field of view
1	0.6-m Cassegrain	Astronomical Observatory, N.Copernicus University	SBIG STL-1001	1024 × 1024, 24 μm	1	11.8 × 11.8
2	0.6-m Schmidt*	University Observatory Jena,	CCD-imager STK	2048 × 2048, 13.5 μm	4	52.8 × 52.8
3	0.6-m Cassegrain	National Astronomical Observatory	FLI PL09000	3056 × 3056, 12μm	17.3 × 17.3	
4	2-m Ritchey-Chrétien	National Astronomical Observatory	PI VersArray:1300B	1340 × 1300, 20μm	5.8 × 5.6	
5	0.8-m Tenagra II	Tenagra Observatories, Arizona, USA	STTe	1024 × 1024, 24μm	14.8 × 14.8	
6	1.5-m Ritchey-Chrétien	Gunma Astronomical Observatory, Takayama, Japan	Andor DW432	1250 × 1152, 24μm	12.5 × 11.5	

* see Mugrauer & Berthold (2010) for details
** no scientific output due to bad weather conditions

planet were found to be $2.96^{+0.22}_{-0.17} M_J$ and $1.28^{+0.08}_{-0.09} R_J$, respectively, larger than interior models of irradiated giant planets predict. The planet orbits its host star in \sim3.09 d at an orbital semi-major axis of $0.0369^{+0.0012}_{-0.0014}$ au. The eccentricity of the orbit was reported to be $0.059^{+0.014}_{-0.004}$ – a large value for a close-in planet. In the discovery paper Christian et al. (2009) determined transit depth and duration to be 29 mmag and 2.36 h, respectively.

Johnson et al. (2009) and Johnson et al. (2010) determined the planet’s parameters with a high-precision light curve using the University of Hawaii 2.2-m telescope with a photometric precision of 4.7×10^{-4} and the mid-transit time error of 7 s. The mass of the planet was found to be 3.15$^{+0.13}_{-0.11} M_J$ and the planetary radius turned out to be noticeably smaller, i.e. 1.08$^{+0.02}_{-0.02} R_J$. The latter result was not confirmed by the studies of Krejčová, Budai & Krushevski (2010) or Dittmann et al. (2010). The first team found the radius of WASP-10b to be in excellent agreement with the value obtained by Christian et al. (2009), and a similar conclusion was reached by Dittmann et al. (2010) with no TTV signature detected.

The host star (V = 12.7 mag) is a K5 dwarf with effective temperature of 4675 ± 100 K, located 90 ± 20 pc from the Sun (Christian et al. 2009). Smith et al. (2001) confirmed previous evidences that the light curve of WASP-10 exhibits a rotational photometric variability caused by star spots. The stellar rotation period was found to be 11.91 ± 0.05 d – in agreement with \sim12 d reported by Christian et al. (2009).

The presence of an additional small planet was suggested to pump the eccentricity of WASP-10b (Christian et al. 2009). This system was therefore a good target for TTV studies.

2 OBSERVATIONS AND DATA REDUCTION

We collected 9 light curves of 8 transits of WASP-10b during a dedicated international observing campaign involving telescopes spread worldwide at different longitudes (listed in Table 1 and 2). The transit on July 31, 2009 was observed with two instruments in different observatories. The telescope diameters of 0.6 to 2.0 m allowed us to collect photometric data with 1.1 – 2.7 mmag precision. Observations generally started \sim1 hour before the expected beginning of a transit and ended \sim1 hour after the event. However, weather conditions and schedule constraints meant that we were not always able to follow this scheme.

Standard IDL procedures (adapted from DAOPHOT) were used for the reduction of the photometric data collected at the National Astronomical Observatory at Rozhen, Bulgaria, and computing the differential aperture photometry. Using the method of Everett & Howell (2001) several stars (4 to 6) with photometric precision better than 5 mmag were selected to create an artificial standard star used for differential photometry. Data from the remaining telescopes were reduced with the software pipeline developed for the Semi-Automatic Variability Search sky survey (Niedzielski, Maciejewski & Czarnecki 2002). To generate an artificial comparison star, 30–50 per cent of the stars with the lowest light-curve scatter were selected iteratively from the field stars brighter than 3 mag below the saturation level. To measure instrumental magnitudes, various aperture radii were used. The aperture which was found to produce light curves with the smallest scatter was used to generate a final light curve.

3 RESULTS

3.1 Light curve analysis

A model-fitting algorithm available via the Exoplanet Transit Database (Podzvouný, Brát & Peicha 2010) was used to derive transit parameters: duration, depth and mid-transit time. The procedure employs the OCCULTSMALL routine of Mandel & Agol (2002) and the Levenberg–Marquardt nonlinear least squares fitting algorithm which also provides uncertainties. As our research was focused on determining
Figure 1. Light curves of WASP-10b transits in individual runs. The best-fitting models are shown as continuous lines. The transit on 31 July was observed simultaneously by two observatories.

Figure 2. The observation minus calculation \((O-C)\) diagram for WASP-10b generated for linear ephemeris based on literature data (continuous line). Open circles denote literature data taken from \cite{Christian+2009}, \cite{Johnson+2010} and \cite{Dittmann+2010}. Open squares are based on reanalysed photometry from \cite{Krejcová+2010}. Filled symbols denote results from our campaign. A significantly better fit may be obtained for the new ephemeris given by Eq. 1 (dashed line). 3σ error bars were taken for mid-transit time reported by \cite{Dittmann+2010}. Their light curve was not corrected for a linear trend which is well visible in out-of-transit phases (J. Dittmann 2010, priv. comm.). Our tests showed that this effect significantly affected the accuracy of the mid-transit time.
mid-transit times, the number of parameters to be fitted could be reduced. An impact parameter \(b = a \cos i / R_\star = 0.299 \pm 0.043 \) where \(a \) is semi-major axis, \(i \) is inclination and \(R_\star \) is host-star radius, was taken from Johnson et al. (2009) and was fixed during the fitting procedure. We used the linear limb-darkening law by Van Hamme (1993) with the limb-darkening coefficient linearly interpolated for the host star in a given filter. A first- or second-order polynomial was used to remove trends in magnitude or flux. The mid-transit times were corrected from UTC to Terrestrial Dynamical Time (TT) and then transformed into BJD (Eastman, Siverd & Gaudi 2010). Light curves with best-fitting models and residuals are shown in Fig. 1 and derived parameters are collected in Table 3.

Krejčová et al. (2010) also published observations and \(R \)-band light curves of four complete transit events of WASP-10b. In their analysis they focussed mainly on the determination of the planet radius and did not study the mid-transit times, \(O - C \) diagram or TTV. We determine 4 mid-transit times for these observations and placed them into the context of our data to create a larger sample for TTV analysis. We used the same method to determine the mid-transit times from their light curves as for all other observations presented here. Corresponding, mid-transit times are presented in Table 3.

Across all data sets, two transits on epochs 222 and 232 were observed simultaneously by two different telescopes. The data were reduced with different pipelines and by different teams. The transit on epoch 222 was observed with 60-cm telescopes in Jena and at Rozhen. The difference in mid-transit times was found to be \(\sim 11 \) s. The transit on epoch 232 was covered by observations in Jena and the 50-cm telescope in Stará Lesná in Slovakia (Krejčová et al. 2010). In this case the discrepancy of timing was found to be \(\sim 18 \) s. Timing differences are well within error bars of individual determinations for both transits. This practical test strengthens the reliability of our mid-transit time determinations.

3.2 Detection of a TTV

While determining new linear ephemeris, we noted that a linear fit of the epoch \(E \) and orbital period \(P_\text{b} \) of WASP-10b resulted in reduced \(\chi^2_{\text{red}} = 13.8 \). Individual mid-transit errors were taken as weights in the fitting procedure. Such a high value of \(\chi^2_{\text{red}} \) suggests the existence of additional signal in the \(O - C \) diagram (Fig. 2). The Lomb-Scargle periodogram (Lomb 1976; Scargle 1982) of the residuals revealed the existence of 2 peaks of similar significance and frequencies of 0.175 and 0.183 cycle \(P_\text{b}^{-1} \) (Fig. 3). For each frequency, an ephemeris was refitted with the linear trend plus a sinusoidal variation in the form:

\[
T_b = T_0 + E \times P_\text{b} + A_{\text{ttv}} \sin \left(2\pi \frac{E - E_{\text{ttv}}}{P_{\text{ttv}}} \right)
\]

where \(T_0 \) is the mid-transit time for initial epoch (\(E = 0 \)). \(A_{\text{ttv}} \) is the semi-amplitude of detected transit timing variation, \(E_{\text{ttv}} \) is the epoch offset of the TTV signal and \(P_{\text{ttv}} \) is its period. The minimal \(\chi^2_{\text{red}} = 3.2 \) was obtained for \(f_{\text{ttv}} = 0.183 \) cycle \(P_\text{b}^{-1} \) and resulted in \(T_0 = 2454357.86011 \pm 0.00047 \) BJD TT, \(P_\text{b} = 3.0927183 \pm 0.0000221 \) d, \(A_{\text{ttv}} = 0.00120 \pm 0.00036 \) d, \(E_{\text{ttv}} = 1.8 \pm 0.4 \) and \(P_{\text{ttv}} = 5.473 \pm 0.012 \) \(P_\text{b} \).

The procedure run for \(f_{\text{ttv}} = 0.175 \) cycle \(P_\text{b}^{-1} \) gave \(\chi^2_{\text{red}} = 4.1 \). \(f_{\text{ttv}} = 5.7172 \pm 0.0082 \) \(P_\text{b} \) and similar values of \(T_0 \) and \(P_\text{b} \). In this case the fit turned out to be poorer, thus the ephemeris was based on parameters obtained for \(f_{\text{ttv}} = 0.183 \) cycle \(P_\text{b}^{-1} \).

The ephemeris calculated according to Eq. 1 and \(P_{\text{ttv}} \) is plotted in Fig. 2 with a dashed line. The \(O - C \) values which are used in further analysis were calculated according to the linear part of Eq. 1.

To check if a random distribution of data points in the \(O - C \) diagram may favour the detected frequencies, \(10^5 \) fake data sets were generated. The original residuals were replaced with random values with a white-noise distribution of the amplitude. Then, the Lomb-Scargle algorithm was run to find a dominant frequency in each fake diagram. The histogram of these frequencies, with the number of bins equal to the square root of the number of data points in the sample, is presented in Fig. 5. Detected TTV frequencies, \(f_{\text{ttv}} \), are not associated with any significant peak in the histogram.

Kipping & Bakos (2010a) pointed out that the transit phasing which is the time difference between the expected mid-transit moment and the nearest data point in a light curve may generate a spurious TTV signal. For example, for a light curve of 60-s cadence time difference is expected to be \(\pm 30 \) s (Kipping & Bakos 2010b). Cadences of our individual light curves are in a wide range between 19 and 143 s (see Table 3) with the median value of 63 s. This value is \(\sim 3 \) times smaller than the amplitude of the detected TTV signal. As it is shown in Fig. 5 no correlation between individual residuals and cadences was detected. A formal least-square fit to this data set resulted in the correlation coefficient \(R = -0.36 \) which clearly reveals no correlation at the relevant level. The checks discussed above strengthen the detection of the TTV signal in our data set.

4 TWO-PLANETARY MODEL

The possible non-zero eccentricity postulated by Christian et al. (2009) might potentially have resulted from confusion with a two-planet system in which both planets orbit their host star in circular orbits in an inner 2:1 resonance (Anglada-Escude et al. 2010). Although we argue later that eccentricity of WASP-10b is indistinguishable from zero, the case of an inner perturber was considered...
its apparent eccentricity e (Kipping 2009), was detected in our data.

and coplanar orbits were assumed for both planets. The planet. Parameters of the transiting planet and its host

WASP-10b. To check this scenario, we generated synthetic

turbations which should be visible as the TTV of

for completeness of our analysis. Assuming circular orbits,

the mass of the perturbing planet M_c depends on

the mass of the outer, more massive transiting planet M_b and

its apparent eccentricity e_b (Anglada-Escude et al. 2010).

This results in $M_c \approx 0.14 M_J$ in the WASP-10 system.

Such a planet is expected to produce strong gravitational perturbations which should be visible as the TTV of

WASP-10b. To check this scenario, we generated synthetic $O - C$ diagrams for WASP-10b in systems with a second

planet. Parameters of the transiting planet and its host

star were taken from Johnson et al. (2009). Initial circular

and coplanar orbits were assumed for both planets. The perturbing planet was put in an orbit with the semi-major

axis between 0.0218 and 0.0257 au (± 0.0020 au away from

the 2:1 orbital resonance). Calculations were performed using

the MERCURY package (Chambers 1999) employing the

Bulirsch–Stoer integrator. Simulations covered 270 periods

of WASP-10b, i.e. the time span covered by observations.

No configuration was found to reproduce periodicity close

to P_{1}^{ttv} and P_{2}^{ttv}. The procedure was repeated for inner

3:1 and 3:2 MMRs but these cases also brought negative results.

To search for configurations with an outer perturber re-

producing P_{1}^{ttv} and P_{2}^{ttv}, synthetic $O - C$ diagrams were

generated with the PTMET code which is based on perturbation

theory (Nesvorný & Morbidelli 2008, Nesvorný 2009). Both

planets were put in initial circular orbits. The semi-major axis a_c of the perturber varied between 0.0500 and 0.3000 au

for our analysis. Assuming circular orbits, the mass of the perturbing planet M_c depends on the mass of the outer, more massive transiting planet M_b and its apparent eccentricity e_b (Anglada-Escude et al. 2010). This results in $M_c \approx 0.14 M_J$ in the WASP-10 system. Such a planet is expected to produce strong gravitational perturbations which should be visible as the TTV of WASP-10b. To check this scenario, we generated synthetic $O - C$ diagrams for WASP-10b in systems with a second planet. Parameters of the transiting planet and its host star were taken from Johnson et al. (2009). Initial circular and coplanar orbits were assumed for both planets. The perturbing planet was put in an orbit with the semi-major axis between 0.0218 and 0.0257 au (± 0.0020 au away from the 2:1 orbital resonance). Calculations were performed using the MERCURY package (Chambers 1999) employing the Bulirsch–Stoer integrator. Simulations covered 270 periods of WASP-10b, i.e. the time span covered by observations. No configuration was found to reproduce periodicity close to P_{1}^{ttv} and P_{2}^{ttv}. The procedure was repeated for inner 3:1 and 3:2 MMRs but these cases also brought negative results.

To search for configurations with an outer perturber reproducing P_{1}^{ttv} and P_{2}^{ttv}, synthetic $O - C$ diagrams were generated with the PTMET code which is based on perturbation theory (Nesvorný & Morbidelli 2008, Nesvorný 2009). Both planets were put in initial circular orbits. The semi-major axis a_c of the perturber varied between 0.0500 and 0.3000 au.

Table 3. Parameters of transit light-curve modelling. T_0 denotes the mid-transit time, T_d – transit time duration, δ – depth, σ – averaged standard deviation of the fit and E – epoch. $O - C$ values were calculated according to the linear part of Eq. (1) and the best-fitting parameters. $O - C$ values are given both in days and in units of multiples of the uncertainty of the mid-transit times. t_{cad} is the mean cadence of a light curve. Results of reanalysed data from Krejcová et al. (2010) are collected below the horizontal line. BJD times are based on Terrestrial Dynamical Time (TT).

Run	T_0 (BJD$_{TT} - 2450500$)	T_d (min)	δ (mmag)	σ (mmag)	E (d)	$O - C$ (T$_0$ errors)	t_{cad} (s)
1	4837.23116 ± 0.00037	128.9 ± 1.4	34.1 ± 0.8	2.7	155	+0.00030	56
2	5044.44427 ± 0.00032	128.9 ± 1.2	33.5 ± 1.1	1.7	222	+0.00069	87
3	5044.44415 ± 0.00040	129.1 ± 1.5	33.1 ± 0.7	2.6	222	+0.00057	130
4	5047.53696 ± 0.00028	129.4 ± 1.0	32.4 ± 0.5	2.0	223	+0.00066	103
5	5072.27861 ± 0.00053	131.1 ± 2.1	35.2 ± 0.8	2.5	231	+0.00056	102
6	5075.37129 ± 0.00024	129.2 ± 0.8	33.0 ± 0.7	2.0	232	+0.00053	63
7	5078.46854 ± 0.00044	130.4 ± 1.5	34.5 ± 1.1	2.5	233	+0.00137	102
8	5106.29681 ± 0.00021	129.8 ± 0.7	34.4 ± 0.7	1.1	242	+0.00015	19
9	5152.68923 ± 0.00039	128.8 ± 1.3	33.3 ± 2.4	2.1	257	+0.00051	143
4775.37834 ± 0.00042	135	+0.00125	+2.9	35			
5075.37150 ± 0.00034	232	+0.00073	+2.2	26			
5109.39135 ± 0.00052	243	+0.00068	+1.3	36			
5112.48528 ± 0.00035	244	+0.00189	+5.4	36			

Figure 3. The Lomb–Scargle periodogram generated for timing residuals plotted in Fig. 2 showing the existence of a periodic signal. The most significant peaks are indicated. The upper limit of the periodogram is determined by the Nyquist frequency for the data set. The vertical dashed line marks the rotational period of the host star (see Section 5).

Figure 4. The distribution of dominant frequencies for 10^5 fake $O - C$ diagrams with observed data points replaced by the white noise. The number of bins is equal to the square root of the number of data points in the sample and the width of individual bins is 0.001 cycl P_b^{-1}. Detected TTV frequencies, f_1^{ttv} and f_2^{ttv}, are indicated. No significant peak is associated with any of them what indicates that a spectral window is not a source of detected periodicities.
No correlation between both quantities was found.

Table 4. Outer-perturber solutions which reproduce the observed $O-C$ variation. P_{ttv} indicates which periodicity in the $O-C$ diagram (P_{ttv}^1 or P_{ttv}^2) is reproduced by a solution, a_c denotes the semi-major axis of the perturbing planet, M_c is its mass, P_c is its orbital period, K_c is the expected semi-amplitude of the radial-velocity variation and χ^2_{red} is the lowest value of reduced chi-square for direct model fitting.

No.	P_{ttv}	a_c (au)	M_c (M_J)	P_c (d)	K_c (m s$^{-1}$)	χ^2_{red}
1	1	0.0536	0.10	5.2293	14.2	1.5
2	2	0.0539	0.10	5.2647	14.1	2.5
3	2	0.0682	0.55	7.4962	69.1	2.8
4	1	0.0686	0.55	7.5677	68.9	2.8

in steps of 0.0001 and 0.0002 au for $a_c \leq 0.1$ and $a_c > 0.1$ au, respectively. The amplitude of the TTV signal scales nearly linearly with the perturber’s mass (Nesvorný & Morbidelli 2008), thus M_c was fixed and set equal to 0.3 M_J for the preliminary identification. Each simulation covered 270 periods of WASP-10b. Periodic signals reproducing P_{ttv}^1 and P_{ttv}^2 were identified close to 5:3 and 5:2 MMRs for perturber masses of \sim0.1 and \sim0.5 M_J, respectively.

To refine parameters of a perturbing body, the synthetic $O-C$ diagrams were calculated with the MERCURY code and the Bulirsch–Stoer integrator. The initial parameters of planet c were taken from previous simulations and then refined with the mass varying in steps of 0.05 M_J. Each simulation covered 31000 days (i.e. ~10000 periods of WASP-10b). The synthetic $O-C$ diagrams were directly fitted to observed data by shifting along the time axis and adjusting to the time span covered by observations. The best-fitting solutions are collected in Table 4. The chi-square test favours solution 1 which reproduces P_{ttv}^1 with minimal $\chi^2_{\text{red}} = 1.5$. This value is significantly smaller than χ^2_{red} obtained in an analogous way for remaining configurations. The $O-C$ diagram with solution 1 is presented in Fig. 6 where the residuals are also plotted.

Figure 5. Absolute values of individual residuals in transit timing vs. cadence. Symbols denote the same data sets as in Fig. 2. No

Figure 7. The Lomb–Scargle periodogram for the radial velocity residuals after removing the transiting planet in a circular orbit. A peak corresponding to the stellar rotation is marked.

5 SPECTROSCOPIC REANALYSIS AND STELLAR ACTIVITY

To re-assess the possible solutions, we reanalysed radial velocity (RV) data published by Christian et al. (2009). We used the SYSTEMIC CONSOLE software (Meschiari et al. 2007). The host star is known to be variable due to stellar rotation and starspots (Smith et al. 2009). It was shown that this effect may generate the RV variations up to a few hundred m s$^{-1}$ (Hatzes 2002) and mimic a planetary companion on a Keplerian orbit (Desort et al. 2007). We reanalysed RV data assuming WASP-10b has a circular orbit. This resulted in a best-fitting model with $\chi^2_{\text{red}} = 3.9$ and $rms = 49.6$ m s$^{-1}$. The periodogram of the residuals (Fig. 6) reveals a periodicity of \sim11.84 d – a value close to the period of stellar rotation $P_{\text{rot}} = 11.91 \pm 0.05$ d determined by Smith et al. (2009). The fitting procedure was repeated with an additional sinusoidal signal of period P_{rot} and a floating phase and amplitude. The eccentricity of WASP-10b, e_c, was also allowed to vary. This resulted in a significantly improved model with $\chi^2_{\text{red}} = 2.5$ and $rms = 31.4$ m s$^{-1}$. The eccentricity was found to be $e_c = 0.013 \pm 0.063$ and it is statistically indistinguishable from zero. Therefore, we adopted $e_c = 0.0$ in further analysis. This result is not surprising as tidal interactions with the host star are expected to circularise the orbit of the planet (Zahn 1977).

To check if the perturbing planet may be hidden in the RV residuals of the model composed of the planet b and starspots, the second planet with physical and orbital parameters as in solutions 1–4 was put into the system. A circular Keplerian orbit of the second planet and coplanarity were assumed for simplicity. We noted that only solutions 1 and 2 significantly decrease the rms of the RV model to 24.7 and 22.5 m s$^{-1}$, respectively. Combining results of the TTV and RV analysis, we found solution 1 the most likely. The RV curves are plotted in Fig. 6 for individual components, i.e. WASP-10b, WASP-10c and the starspots effect.

The RV semi-amplitude generated by stellar rotation was found to be \sim65 m s$^{-1}$. RV observations by Christian et al. (2009) span from August 2007 to February 2008 and are partially covered by photometric observations from the SuperWASP survey (Pollacco et al. 2006). Smith et al. (2009) determined the amplitude of photomet-
TTV and activity in the WASP-10 planetary system

Figure 6. The O – C diagram for WASP-10b with the best-fitting model (solution 1 in Table 4). The mass of the perturber is 0.10 M_J and its orbital period is \(\sim 5.23 \) d. Symbols are the same as in Fig. 2. Residuals are plotted in the bottom panel.

Figure 8. Radial-velocity curves after removing remaining 2 components for a) WASP-10b, b) WASP-10c and c) starspots effect. Data were taken from Christian et al. (2009). Two points with large error bars were obtained in poor weather conditions and may exhibit systematic errors due to scattered moonlight (see e.g. Latham et al. 2010).

Stellar spots may affect the transit depth (e.g. Czesla et al. 2009). We found in our data that transit depth variation is smaller than the level of 3σ for individual transits which is thus insignificant. If stellar spots are located along a planet’s path projected onto a stellar disk, the shape of the transit may be deformed. This effect may have an influence on determining mid-transit times and result in a spurious periodic TTV signal (e.g. Alonso et al. 2009). Visual inspection of photometric residuals (Fig. 1) does not reveal features which could be related to stellar inhomogeneities rather than to red noise. In particular, there are no deviations visible in light-curve residuals during ingress or egress. Such deformations caused by occulting spots located close to a limb of the stellar disk are expected to generate significant TTV amplitude, even greater than a minute (Miller–Ricci et al. 2008b). Furthermore, no peak close to the rotational period of the star was found in the periodogram of the O – C diagram (Fig. 3) and \(f_{\text{TTV}} ^1 \) is not an alias of the rotational frequency of the host star (Alonso et al. 2009).

The proposed model of the WASP-10 system (solution 1) was found to be dynamically stable. Simulations were performed with the SYSTEMIC CONSOLE employing Bulirsch–Stoer integrator and covered 10^6 yr with a maximal time step of 10^{-4} yr. The eccentricity of WASP-10b was found...
to be close to zero, while eccentricity of WASP-10c did not exceed 0.05 with a median value of 0.024.

6 AGE OF THE SYSTEM

Given the relatively short rotation period of ~ 12 days of WASP-10, gyrochronology (Barnes 2007) can roughly yield the age of the star: For a K5 dwarf with $(B-V) = 1.15$ mag (Schmidt-Kaler 1982), we get 270 ± 80 Myr only, suggesting that the star (and the planetary system) is quite young. Christian et al. (2009) estimated the rotational age to be between 600 Myr and 1 Gyr by comparing the spin period of WASP-10 to stars in Hyades (Terndrup et al. 2000). However, one must note that according to Fig. 7 and 8 in studies of similar stars, the rotational age is \sim10, we investigated its kinematic properties. The method shows that Pleiades-like young age or an age intermediate between Pleiades and Hyades is possible for W ASP-10. To confirm the relative young age of WASP-10, we investigated its kinematic properties. The proper motion of WASP-10 is $\mu_\alpha \cos \delta, \mu_\delta = (21.4 \pm 2.0, -28.9 \pm 1.0)$ mas yr$^{-1}$ (Zacharias et al. 2003) and its radial velocity is -11.44 ± 0.03 km s$^{-1}$ (Christian et al. 2009) yielding a heliocentric velocity of $(U,V,W) = (-0.3 \pm 0.9, -17.3 \pm 1.7, -8.1 \pm 3.2)$ km s$^{-1}$. First, we compared the star’s spatial velocity with those of known nearby moving groups including the Pleiades and Hyades (Antoja et al. 2008, e.g. their Figure 5, Table 3; Zhao et al. 2009, e.g. their Figure 2, Table 1). We found that WASP-10 cannot be associated with any of the moving groups. In fact, it lies in an area in the U-V plane where the star density is rather low, which may indicate that this star was either formed in isolation (very rare) or was ejected from its parent association.

If WASP-10 was ejected recently, then it might be possible to identify its parent cluster. As stars are ejected most likely soon after cluster formation (due to a supernova event in a binary system, e.g. Blaauw 1961 or via dynamical interactions in a dense cluster, e.g. Poveda et al. 1967), the age of WASP-10 should be its kinematic age, i.e. it left its parent cluster some hundred million years ago. For such a long time, it is hardly possible to reconstruct the past trajectory of the system as well as the past trajectory for a potential parent cluster because both, the star and the cluster, have experienced a complete cycle (or even more) around the Galactic centre. Considering a time span up to 1 Gyr, even periodic appearances of close encounters between the star and a cluster could occur. Moreover, it is not unlikely that WASP-10 experienced some perturbations of its path. For those reasons, the parent cluster of WASP-10 might remain unidentified if the star was ejected relatively soon after formation. If, for some reason, WASP-10 was ejected recently, finding its parent cluster could be possible. The system’s peculiar spatial velocity is 10 ± 2 km s$^{-1}$ (the heliocentric velocity was corrected for Solar motion and Galactic rotation applying the LSR from Tetzlaff et al. 2010b) and a value of $V_{\odot,\text{rot}} = 225$ km s$^{-1}$). Considering a typical cluster radius of a few parsecs, the parent cluster of WASP-10 is well identifiable if the star system was ejected not earlier than some million years ago. During 20 million years, the star travelled about 200 pc. Taking into account the current distance to the Sun of about 100 pc and considering also previous age constraints, we selected open clusters within 300 pc from the Sun having ages between 100 and 800 Myr (corresponding to the ages of the Pleiades and Hyades, respectively) from the Dias et al. (2010) database for open clusters with full kinematics available with the catalogue as well as the Hyades cluster (WEBDA; Mermilliod & Paunzen 2010). 14 clusters in total. We calculated the past orbits of WASP-10 and each cluster using the epicycle approximation (Lindblad 1959; Wielen 1982). Then, we performed a Monte-Carlo simulation varying the distance, proper motion and radial velocity within their confidence intervals to account for their uncertainties. The goal was to find close encounters between WASP-10 and any cluster in the past. Two clusters for which close encounters with WASP-10 were found (within three times the cluster radius corresponding to approximately 3σ), are listed in Table 5. The cluster radius, the time of the encounter and the age of the clusters are given. If WASP-10 really originated from either Platais 2 or ASCC 123, the star is about 260 to 400 Myr old, in agreement with our age estimate of 270 \pm 80 Myr. It is, of course, more likely that the star is ejected early in the life of a cluster. It is generally not possible to trace WASP-10 backwards reliably for the estimated age of the system.

The young age of the host star may explain the large radius of its planet, WASP-10b. The non-irradiated models by Baraffe et al. (2003), interpolated for such a young 3 M_\odot planet, results in a radius of $\sim 1.2 R_\oplus$. Irradiation may increase the planetary radius by ~ 10 per cent, compared to non-irradiated models (Baraffe et al. 2003). An analogous procedure based on irradiated planetary models by Fortney, Marley & Barnes (2007) and Baraffe, Chabrier & Bertmann (2008) also gives a radius of $\sim 1.2 R_\oplus$ for a 300 Myr old giant planet. This estimate is consistent with the radius of WASP-10b reported by Christian et al. (2009), Dittmann et al. (2010), and Krejcová et al. (2010).

7 CONCLUSIONS

Our investigation indicates that transit timing of WASP-10b cannot be explained by a constant period of the exoplanet.

Table 5. Open clusters for which close encounters with WASP-10 were found some million years in the past. The first column gives the cluster designation, the second and third columns indicate the separation d between WASP-10 and the cluster centre and the radius R of the cluster. Column four states the time τ of the encounter (time before present) and column five quotes the cluster age as given in Dias et al. (2010). d was derived from 3D Gaussian distributions that can explain the slope of the d distribution, see Tetzlaff et al. (2010a).

Cluster	d (pc)	R (pc)	τ (Myr)	age (Myr)
Platais 2	0 \pm 6	10	13	400
ASCC 123	0 \pm 12	6	11	260

2 http://www.univie.ac.at/webda/webda.html
The distribution of data points in the $O-C$ diagram reveals the existence of a periodic signal. We constructed a provisional hypothesis assuming the presence of the third body in the system. Combining results of 3-body simulations and RV measurements the most likely explanation of the observations is given by a model with a second planet of mass of $0.1 M_J$ and orbital period of 5.23 d.

The reanalysis of RV data shows that WASP-10b orbits its active host star in a circular orbit. The signature of stellar rotation was found in RV measurements. This effect was misinterpreted in previous studies as a non-zero eccentricity of the transiting planet. The second planet would generate wobbling of the host star with the semi-amplitude of ~ 14 m s$^{-1}$—much less than the RV variation caused by the stellar rotation. Although we managed to distill this weak signal, we emphasis that further simultaneous spectroscopic and photometric observations are needed to study the activity of WASP-10 and verify the existence of the planet WASP-10c.

WASP-10 was found to be a relatively young star. Assuming that this finding, which is based on the stellar gyrochronology, is correct, then the observed radius of WASP-10b is consistent with theoretical models and no tidal heating is required to match its radius. If planetary gas giants form by gravitational contraction, then young planets should be larger than older ones. If the planets of WASP-10 formed at larger separation than their present location, then migration must have taken place within the young age of the star.

The existence of WASP-10c could be independently confirmed if it is a transiter. Assuming that its radius is $0.4 R_J$, i.e. similar to exoplanets of the similar mass like HAT-P-11b (Bakos et al. 2010) or Kepler-4b (Borucki et al. 2011), the expected flux drop during a transit would be 0.3 per cent or even greater if we consider the young age of the system. This could be observable with a large ground-based telescope.

In the proposed model the ratio of orbital periods of the planets $P_2/P_3 = 1.69$ is very close to 5:3 orbital resonance. A significant fraction of known multi-planet systems are in MMRs, mainly in low-order ones. Two planets in wide orbits and trapped in a 3:2 MMR were found around HD 45364 by RV measurements (Correia et al. 2009). Planets in the 4-planetary system around GJ 581 (Mayor et al. 2009) are very close to 5:2 (GJ 581b and c) and 5:3 (GJ 581e and b) MMRs (Papaloizou & Terquem 2010). Therefore, we conclude that the architecture of the WASP-10 system would not be completely unusual.

ACKNOWLEDGMENTS

We are grateful to the anonymous referee for remarks and inspiring us to study kinematic membership. We thank J.Dittmann for providing the original photometric data. We also thank G.Nowak and T.Eisenbeiss for discussions about stellar spots and gyrochronology. GM acknowledges support from the EU in the FP6 MC ToK project MTKD-CT-2006-042514. DD acknowledges support from the project DO 02-362 of the Bulgarian Scientific Foundation. RN would like to acknowledge general support from DFG. GM, RN and AN acknowledge support from the DAAD PPP–MNiSW project 50724260-2010/20011 Eclipsing binaries in young clusters and planet transit time variations. AN was also supported by the Polish Ministry of Science and Higher Education grant NN 203 510598. NT acknowledges financial support from Carl-Zeiss-Stiftung, SR and CM acknowledge support from DFG in programs NE 515/32-1 and SCHR 665/7-1, respectively. TK, JB and VK acknowledge support from the Marie Curie International Reintegration Grant FP7-200297, grant GA CR GD205/08/H005, the National scholarship programme of Slovak Republic and partly from VEGA 2/0078/10, VEGA 2/0074/09. A part of this paper is a result of PAN/BAN exchange and joint research project Spectral and photometric studies of variable stars. We have used Exoplanet Transit Database, http://var.astro.cz/ETD and data from the WASP public archive in this research. The WASP consortium comprises of the University of Cambridge, Keele University, University of Leicester, The Open University, The Queens University Belfast, St. Andrews University and the Isaac Newton Group. Funding for WASP comes from the consortium universities and from the UKs Science and Technology Facilities Council.

REFERENCES

Agol E., Steffen J., Sari R., Clarkson W., 2005, MNRAS, 359, 567

Alonso R., Aigrain S., Pont F. Mazeh T., CoRoT Exoplanet Science Team, 2009, in Transiting Planets, Proceedings of the International Astronomical Union, eds. F.Pont et al., IAU Symposium, Vol. 253, p. 91

Anglada–Escude G., L´ opez–Morales M., Chambers J.E., 2010, ApJ, 709, 168

Antoja T., Figueras F., Fernández D., Torra J., 2008, A&A, 490, 135

Bakos G.Á., Torres G., Pál A. et al., 2010, ApJ, 710, 1724

Baraffe I., Chabrier G., Barman T.S., Allard F., Hauschildt P.H., 2003, A&A, 402, 701

Baraffe I., Chabrier G., Barman T.S., 2008, A&A, 482, 315

Barnes S.A., 2007, ApJ, 669, 1167

Blauw A., 1961, BAN, 15, 265

Borucki W.J., Koch D.G., Brown T.M. et al., 2010, ApJ, 713, 126

Chambers J.E., 1999, MNRAS, 304, 793

Christian D.J., Gibson N.P., Simpson E.K. et al., 2009, MNRAS, 392, 1358

Correia A.C.M., Udry S., Mayor M. et al., 2009, A&A, 496, 521

Czesla A., Huber K.F, Wolter U., Schröter S., Schmitt J.H.M.M., 2009, A&A, 505, 1277

Dias W.S., Alessi B.S., Moitinho A., Lepine J.R.D., 2010, Optically visible open clusters and Candidates, VizieR On-line Data Catalog

Dittmann J.A., Close L.M., Scuderi L.J. Morris M.D., 2010, ApJ, 717, 235

Desort M., Lagrange A.-M., Galland F., Udry S., Mayor M, 2007, A&A, 473, 983

Eastman J., Siverd R., Gaudi B.S., 2010, preprint (astro-ph/1005.4415)

Everett M.E., Howell S.B., 2001, PASP, 113, 1428
Fortney J.J., Marley M.S., Barnes J.W., 2007, ApJ, 659, 1661
Gibson N.P., Pollacco D., Simpson E.K. et al., 2009, ApJ, 700, 1078
Hatzes A.P., 2002, Astron. Notes, 323, 392
Holman M.J., Murray N.W., 2005, Sci, 307, 1288
Johnson J.A., Winn J.N., Cabrera N.E., Carter J.A., 2009, ApJ, 692, L100
Johnson J.A., Winn J.N., Cabrera N.E., Carter J.A., 2010, ApJ, 712, L122
Kipping D.M., 2009, MNRAS, 392, 181
Kipping D.M., Bakos G.A., 2010a, preprint (astro-ph/1004.3538)
Kipping D.M., Bakos G.A., 2010b, preprint (astro-ph/1006.5680)
Krejcová T., Budaj J., Krushevská V., 2010, preprint (astro-ph/1003.1301)
Latham D.W., Borucki W.J., Koch D.G. et al., 2010, ApJL, 713, L140
Lendl M., Afonso C., Koppenhoefer J., Nikolov N., Henning Th., Swain M., Greiner J., 2010, preprint (astro-ph/1007.0589)
Lindblad B., 1959, Handbuch der Physik
Lomb N.R., 1976, Ap&SS, 39, 447
Maciejewski G., Dimitrov D., Neuhäuser R. et al., 2010, MNRAS, in press, preprint (astro-ph/1006.1348)
Mandel K., Agol E., 2002, ApJ, 580, 171
Mayor M., Bonfils X., Forveille T. et al., 2009, A&A, 507, 487
Mermilliod J.-C., Paunzen E., 2003, A&A, 410, 511
Meschiari S., Wolf A.S., Rivera E., Laughlin G., Vogt S., Butler P., 2009, PASP, 121, 1016
Miller–Ricci E., Rowe J.F., Sasselov D. et al., 2008b, ApJ, 682, 593
Miralda–Escudé J., 2002, ApJ, 564, 1019
Mugrauer M., Berthold T., 2010, Astron. Notes, 331, 449
Nesvorný D., Morbidelli A., 2008, ApJ, 688, 636
Nesvorný D., 2009, ApJ, 701, 1116
Niedzielski A., Maciejewski G., Czart K., 2003, Acta Astronomica, 53, 281
Papaloizou J.C.B., Terquem C., 2010, MNRAS, 405, 573
Poddaný S., Bráš L., Pejcha O., 2010, New Astron., 15, 297
Pollacco D., Skillen I., Collier Cameron A. et al., 2006, PASP, 118, 1407
Poveda A., Ruiz J., Allen C., 1967, Boletin de los Observatorios Tonantzintla y Tucubaya, 4, 86
Scargle J.D., 1982, ApJ, 263, 835
Schmidt–Kaler T., 1982, in Landolt–Bornstein: Numerical Data and Functional Relationships in Science and Technology, ed. K. Schaifers, H. H. Voigt & H. Landolt, Springer, p. 19
Smith A.M.S., Hebb L., Collier Cameron A. et al., 2009, MNRAS, 398, 1827
Schneider J., 2004, in Second Eddington Workshop: Stellar Structure and Habitable Planet Finding, eds. F.Favata, S.Aigrain, & A.Wilson, ESA SP-538, p. 407
Steffen J.H., Gaudi B.S, Ford E.B., Agol E., Holman M.J., 2007, preprint (astro-ph/0704.0632)
Schwarzenberg–Czerny A., 1996, ApJ, 460, 107
Terndrup D.M., Stauffer J.R., Pinsonneault M.H., Sills A., Yuan Y., Jones B.F., Fischer D., Krishnamurthi A., 2000, AJ, 119, 1303

This paper has been typeset from a TeX/\LaTeX file prepared by the author.