On differential relations of 2-orthogonal polynomials

T. A. Mesquita∗

Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nam’Alvares, 4900-347, Viana do Castelo, Portugal, & Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

Abstract

A generic differential operator on the vectorial space of polynomial functions was presented in [17] and applied in the study of differential relations fulfilled by polynomial sequences either orthogonal or 2-orthogonal.

Using the techniques therein developed, we prove an identity fulfilled by different differential operators and apply it in a systematic approach to the problem of finding polynomial eigenfunctions, assuming that those polynomials constitute a 2-orthogonal polynomial sequence.

In particular, we analyse a third order differential operator that does not increase the degree of polynomials.

Keywords and phrases: d-orthogonal polynomials, differential operators, 2-orthogonal polynomials, Hahn’s property.

2010 Mathematics Subject Classification: 42C05 , 33C45 , 68W30 , 33-04 , 34L10

1 Notation and basic concepts

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}' be its topological dual space. We denote by $\langle u, p \rangle$ the action of the form or linear functional $u \in \mathcal{P}'$ on $p \in \mathcal{P}$. In particular, $\langle u, x^n \rangle := (u)_n, n \geq 0$ represent the moments of u. In the following, we will call polynomial sequence (PS) to any sequence $\{P_n\}_{n \geq 0}$ such that $\deg P_n = n$, $n \geq 0$, that is, for all non-negative integer. We will also call monic polynomial sequence (MPS) to a PS so that all polynomials have leading coefficient equal to one.

If $\{P_n\}_{n \geq 0}$ is a MPS, there exists a unique sequence $\{u_n\}_{n \geq 0}, u_n \in \mathcal{P}'$, called the dual sequence of $\{P_n\}_{n \geq 0}$, such that,

$$\langle u_n, P_m \rangle = \delta_{n,m}, \ n, m \geq 0. \quad (1.1)$$

∗Corresponding author (tauugusta.mesquita@gmail.com)
On the other hand, given a MPS \(\{ P_n \}_{n \geq 0} \), the expansion of \(xP_{n+1}(x) \), defines sequences in \(\mathbb{C} \), \(\{ \beta_n \}_{n \geq 0} \) and \(\{ \chi_{n,\nu} \}_{0 \leq \nu \leq n, n \geq 0} \), such that

\[
P_0(x) = 1, \quad P_1(x) = x - \beta_0, \tag{1.2}
\]

\[
xP_{n+1}(x) = P_{n+2}(x) + \beta_{n+1}P_{n+1}(x) + \sum_{\nu=0}^{n} \chi_{n,\nu}P_{\nu}(x). \tag{1.3}
\]

This relation is usually called the structure relation of \(\{ P_n \}_{n \geq 0} \), and \(\{ \beta_n \}_{n \geq 0} \) and \(\{ \chi_{n,\nu} \}_{0 \leq \nu \leq n, n \geq 0} \) are called the structure coefficients (SCs) \[11\]. Another useful presentation is the following.

\[
P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) + \sum_{\nu=0}^{n} \chi_{n,\nu}P_{\nu}(x),
\]

\[
P_0(x) = 1, \quad P_1(x) = x - \beta_0.
\]

When the structure coefficients fulfill \(\chi_{n,\nu} = 0 \), \(0 \leq \nu \leq n - 1 \), \(\chi_{n,n} \neq 0 \), identities (1.2), (1.3) refer to the well known three-term recurrence associated to an orthogonal MPS. More generally, identity (1.3) may furnish a recurrence relation for a higher order corresponding to the following notion of orthogonality with respect to \(d \) given functionals.

Definition 1.1. \[8, 13, 20\] Given \(\Gamma_1, \Gamma_2, \ldots, \Gamma_d \in \mathcal{P}' \), \(d \geq 1 \), the polynomial sequence \(\{ P_n \}_{n \geq 0} \) is called \(d \)-orthogonal polynomial sequence (d-OPS) with respect to \(\Gamma = (\Gamma_1, \ldots, \Gamma_d) \) if it fulfills

\[
\langle \Gamma^\alpha, P_mP_n \rangle = 0, \quad n \geq md + \alpha, \quad m \geq 0, \tag{1.4}
\]

\[
\langle \Gamma^\alpha, P_mP_{md+\alpha-1} \rangle \neq 0, \quad m \geq 0, \tag{1.5}
\]

for each integer \(\alpha = 1, \ldots, d \).

Lemma 1.2. \[12\] For each \(u \in \mathcal{P}' \) and each \(m \geq 1 \), the two following propositions are equivalent.

a) \(\langle u, P_{m-1} \rangle \neq 0, \quad \langle u, P_m \rangle = 0, \quad n \geq m. \)

b) \(\exists \lambda_\nu \in \mathbb{C}, \ 0 \leq \nu \leq m - 1, \ \lambda_{m-1} \neq 0 \) such that \(u = \sum_{\nu=0}^{m-1} \lambda_\nu u_\nu. \)

The conditions (1.4) are called the \(d \)-orthogonality conditions and the conditions (1.5) are called the regularity conditions. In this case, the functional \(\Gamma \), of dimension \(d \), is said regular.

The \(d \)-dimensional functional \(\Gamma \) is not unique. Nevertheless, from Lemma \[12\] we have:

\[
\Gamma^\alpha = \sum_{\nu=0}^{\alpha-1} \lambda_\nu^\alpha u_\nu, \quad \lambda_{\alpha-1}^\alpha \neq 0, \quad 1 \leq \alpha \leq d.
\]
Therefore, since $U = (u_0, \ldots, u_{d-1})$ is unique, we use to consider the canonical functional of dimension d, $U = (u_0, \ldots, u_{d-1})$, saying that $\{P_n\}_{n \geq 0}$ is d-orthogonal (for any positive integer d) with respect to $U = (u_0, \ldots, u_{d-1})$ if
\[
\langle u_\nu, P_mP_n \rangle = 0, \quad n \geq md + \nu + 1, \quad m \geq 0,
\]
\[
\langle u_\nu, P_mP_{md+\nu} \rangle \neq 0, \quad m \geq 0,
\]
for each integer $\nu = 0, 1, \ldots, d-1$.

Theorem 1.3. [13] Let $\{P_n\}_{n \geq 0}$ be a MPS. The following assertions are equivalent:

a) $\{P_n\}_{n \geq 0}$ is d-orthogonal with respect to $U = (u_0, \ldots, u_{d-1})$.

b) $\{P_n\}_{n \geq 0}$ satisfies a $(d + 1)$-order recurrence relation $(d \geq 1)$:
\[
P_{m+d+1}(x) = (x - \beta_{m+d})P_{m+d}(x) - \sum_{\nu=0}^{d-1} \gamma_{m+d-\nu}^{d-1-\nu} P_{m+d-1-\nu}(x), \quad m \geq 0,
\]
with initial conditions
\[
P_0(x) = 1, \quad P_1(x) = x - \beta_0 \quad \text{and if } d \geq 2:
\]
\[
P_n(x) = (x - \beta_{n-1})P_{n-1}(x) - \sum_{\nu=0}^{n-2} \gamma_{n-1-\nu}^{d-1-\nu} P_{n-2-\nu}(x), \quad 2 \leq n \leq d,
\]
and regularity conditions: $\gamma_{m+1}^0 = 0$, $m \geq 0$.

In this paper, we will focus on 2-orthogonal MPSs, thus fulfilling the recurrence relation
\[
P_{n+3}(x) = (x - \beta_{n+2})P_{n+2}(x) - \gamma_{n+2}^1 P_{n+1}(x) - \gamma_{n+1}^0 P_n(x),
\]
\[
P_0(x) = 1, \quad P_1(x) = x - \beta_0, \quad P_2(x) = (x - \beta_1)P_1(x) - \gamma_1^1, \quad n \geq 0.
\]
While working solely with 2-orthogonality it is usual to rename the gammas as follows (cf. [4])
\[
P_{n+3}(x) = (x - \beta_{n+2})P_{n+2}(x) - \alpha_{n+2} P_{n+1}(x) - \gamma_{n+1}^0 P_n(x), \quad (1.6)
\]
\[
P_0(x) = 1, \quad P_1(x) = x - \beta_0, \quad P_2(x) = (x - \beta_1)P_1(x) - \alpha_1, \quad n \geq 0. \quad (1.7)
\]

2 Differential operators on \mathcal{P} and technical identities

In this section, we list the main results indicated in [17] that will be applied along the text. Later on, we also prove new identities that are the fundamental utensils for the strategy pursued.

Given a sequence of polynomials $\{a_\nu(x)\}_{\nu \geq 0}$, let us consider the following linear mapping $J : \mathcal{P} \to \mathcal{P}$ (cf. [15], [19]).
\[
J = \sum_{\nu \geq 0} \frac{a_\nu(x)}{\nu!} D^\nu, \quad \deg a_\nu \leq \nu, \quad \nu \geq 0. \quad (2.1)
\]
Expanding \(a_\nu(x)\) as follows:

\[
a_\nu(x) = \sum_{i=0}^\nu a_{i}^{[\nu]} x^i,
\]

and recalling that \(D^\nu (\xi^n) (x) = \frac{n!}{(n-\nu)!} x^{n-\nu}\), we get the next identities about \(J\):

\[
J (\xi^n) (x) = \sum_{\nu=0}^n a_\nu(x) \binom{n}{\nu} x^{n-\nu}, \quad (2.2)
\]

\[
J (\xi^n) (x) = \sum_{\tau=0}^n \left(\sum_{\nu=0}^\tau \binom{\tau}{\nu} a_{[n-\nu]}^{[\tau-\nu]} \right) x^\tau, \quad n \geq 0. \quad (2.3)
\]

Most in particular, a linear mapping \(J\) is an isomorphism if and only if

\[
\text{deg} \left(J (\xi^n) (x) \right) = n, \quad n \geq 0, \quad \text{and} \quad J (1) (x) \neq 0. \quad (2.4)
\]

The next result establishes that any operator that does not increase the degree admits an expansion as (2.1) for certain polynomial coefficients.

Lemma 2.1. [17] For any linear mapping \(J\), not increasing the degree, there exists a unique sequence of polynomials \(\{a_n\}_{n \geq 0}\), with \(\text{deg} a_n \leq n\), so that \(J\) is read as in (2.1). Further, the linear mapping \(J\) is an isomorphism of \(P\) if and only if

\[
\sum_{\mu=0}^n \binom{n}{\mu} a_{[\mu]}^{[\mu]} \neq 0, \quad n \geq 0. \quad (2.5)
\]

The technique that we will implement in the next section require the knowledge about the \(J\)-image of the product of two polynomials \(fg\). The polynomial \(J (fg)\) is then given by a Leibniz-type development [17] as mentioned in the next Lemma.

Lemma 2.2. [17] For any \(f, g \in P\), we have:

\[
J (f(x)g(x)) (x) = \sum_{n \geq 0} J^{(n)} (f) (x) g^{(n)} (x) \frac{x^n}{n!} = \sum_{n \geq 0} J^{(n)} (g) (x) f^{(n)} (x) \frac{x^n}{n!}, \quad (2.6)
\]

where the operator \(J^{(m)}\), \(m \geq 0\), on \(P\) is defined by

\[
J^{(m)} = \sum_{n \geq 0} a_{n+m} x^n n! D^m. \quad (2.7)
\]

Let us suppose that \(J\) is an operator expressed as in (2.1), and acting as the derivative of order \(k\), for some non-negative integer \(k\), that is, it fulfils the following conditions.

\[
J (\xi^k) (x) = a_0^{[k]} \neq 0 \quad \text{and} \quad \text{deg} \left(J \left(\xi^{n+k} \right) (x) \right) = n, \quad n \geq 0; \quad (2.8)
\]

\[
J (\xi^i) (x) = 0, \quad 0 \leq i \leq k - 1, \quad \text{if} \ k \geq 1. \quad (2.9)
\]
Lemma 2.3. \[17\] An operator J fulfills \((2.8)-(2.9)\) if and only if the next set of conditions hold.

a) $a_0(x) = \cdots = a_{k-1}(x) = 0$, if $k \geq 1$;

b) $\deg (a_\nu(x)) \leq \nu - k$, $\nu \geq k$;

c)
\[
\lambda_{n+k}^{[k]} := \sum_{\nu=0}^{n} \binom{n+k}{n + k - \nu} a_{n+\nu}^{[n+k-\nu]} \neq 0, \quad n \geq 0. \tag{2.10}
\]

Remark 2.4. Note that in \((2.10)\) we find $\lambda_{k}^{[k]} = a_{k}^{[k]}$.

If $k = 0$, then it is assumed that $\lambda_{0}^{[0]} \neq 0, n \geq 0$, matching \((2.5)\), so that J is an isomorphism.

If $k = 1$, then J imitates the usual derivative and is commonly called a lowering operator (e.g. \([10, 16]\)).

Applying Lemma 2.2 to different pairs of polynomials, we obtain immediately the next identities.

\[
J(xp(x)) = xJ(p(x)) + J^{(1)}(p(x)) \tag{2.11}
\]

\[
J(x^2p(x)) = x^2J(p(x)) + 2xJ^{(1)}(p(x)) + J^{(2)}(p(x)) \tag{2.12}
\]

\[
J(x^3p(x)) = x^3J(p(x)) + 3x^2J^{(1)}(p(x)) + 3xJ^{(2)}(p(x)) + J^{(3)}(p(x)) \tag{2.13}
\]

Proposition 2.5. Given an operator J defined by \((2.1)\), and taking into account the definition of the operator $J^{(m)}$, $m \geq 0$:

\[
J^{(m)} = \sum_{n \geq 0} \frac{a_{n+m}(x)}{n!} D^n,
\]

the following identities hold.

\[
J^{(i)}(xp(x)) = J^{(i+1)}(p(x)) + xJ^{(i)}(p(x)) , \quad i = 0, 1, 2, \ldots. \tag{2.14}
\]

Proof. Reading $i = 0$ in \((2.14)\) we find the identity stated in \((2.11)\). Let us now consider \((2.11)\) with $p(x)$ filled by the product $xp(x)$:

\[
J(x^2p(x)) = x^2J(p(x)) + xJ(xp(x)). \tag{2.15}
\]

The last term $xJ(xp(x))$ can be rephrased taking into account \((2.11)\), yielding

\[
J(x^2p(x)) = x^2J(p(x)) + xJ^{(1)}(p(x)) + J^{(1)}(xp(x)). \tag{2.15}
\]

Confronting \((2.12)\) with \((2.15)\), we conclude \((2.14)\) with $i = 1$:

\[
J^{(1)}(xp(x)) = J^{(2)}(p(x)) + xJ^{(1)}(p(x)).
\]

Let us assume as induction hypotheses over $k \geq 2$ that

\[
J^{(i)}(xp(x)) = J^{(i+1)}(p(x)) + xJ^{(i)}(p(x)) , \quad i = 0, \ldots, k - 1.
\]
In view of Lemma 2.2, we learn that for any polynomial $p = p(x)$

$$J(x^{k+1}p) = \sum_{n \geq 0} J^{(n)}(p) \frac{(x^{k+1})^{(n)}}{n!};$$

and thus we may write:

$$J(x^{k+1}p) = \sum_{\mu = 0}^{k+1} J^{(\mu)}(p) \binom{k+1}{\mu} x^{k+1-\mu};$$

$$J(x^k p) = \sum_{\nu = 0}^{k} J^{(\nu)}(p) \binom{k}{\nu} x^{k-\nu}. \tag{2.17}$$

Let us now consider (2.17) with p filled by the product xp as follows:

$$J(x^{k+1}p) = \sum_{\nu = 0}^{k} J^{(\nu)}(xp) \binom{k}{\nu} x^{k-\nu}. \tag{2.18}$$

By means of the induction hypotheses, identity (2.18) asserts the following.

$$J(x^{k+1}p) = \sum_{\nu = 0}^{k-1} \left(J^{(\nu+1)}(p) + x J^{(\nu)}(p) \right) \binom{k}{\nu} x^{k-\nu} + J^{(k)}(xp)$$

$$= \sum_{\nu = 0}^{k-1} J^{(\nu+1)}(p) \binom{k}{\nu} x^{k-\nu} + \sum_{\nu = 1}^{k-1} J^{(\nu)}(p) \binom{k}{\nu} x^{k+1-\nu} + J^{(k)}(xp) + J(p)x^{k+1}$$

$$= \sum_{\nu = 0}^{k-2} J^{(\nu+1)}(p) \left(\binom{k}{\nu} + \binom{k}{\nu+1} \right) x^{k-\nu} + J^{(k)}(p) \binom{k}{k-1} x + J^{(k)}(xp) + J(p)x^{k+1}$$

$$= \sum_{\nu = 0}^{k-2} J^{(\nu+1)}(p) \binom{k+1}{\nu+1} x^{k-\nu} + J^{(k)}(p)kx + J^{(k)}(xp) + J(p)x^{k+1}$$

$$= \sum_{\nu = 0}^{k-1} J^{(\nu)}(p) \binom{k+1}{\nu} x^{k+1-\nu} + J^{(k)}(p)kx + J^{(k)}(xp)$$

In brief

$$J(x^{k+1}p) = \sum_{\nu = 0}^{k-1} J^{(\nu)}(p) \binom{k+1}{\nu} x^{k+1-\nu} + J^{(k)}(p)kx + J^{(k)}(xp). \tag{2.19}$$

Comparing (2.19) with (2.16), we get

$$J^{(k)}(p) \binom{k+1}{k} x^{k+1-k} + J^{(k+1)}(p) \binom{k+1}{k+1} = kx J^{(k)}(p) + J^{(k)}(xp)$$

hence $x J^{(k)}(p) + J^{(k+1)}(p) = J^{(k)}(xp),$

which ends the proof.
3 An isomorphism applied to a 2-orthogonal sequence

In the sequel, we consider that \(J \) is an isomorphism and \(a_\nu(x) = 0 \), \(\nu \geq 4 \), thus

\[
J = a_0(x)I + a_1(x)D + \frac{a_2(x)}{2}D^2 + \frac{a_3(x)}{3!}D^3,
\]

where

\[
a_0(x) = a_0^0, \quad a_1(x) = a_0^1 + a_1^1 x, \quad a_2(x) = a_0^2 + a_1^2 x + a_2^2 x^2,
\]

\[
a_3(x) = a_0^3 + a_1^3 x + a_2^3 x^2 + a_3^3 x^3,
\]

and we suppose that the MPS \(\{P_n\}_{n \geq 0} \) is 2-orthogonal and fulfills

\[
J(P_n(x)) = \lambda_n^0 P_n(x), \quad \text{with } \lambda_n^0 \neq 0, \quad n \geq 0.
\]

(3.2)

where

\[
\lambda_n^0 = a_0^0 + \binom{n}{1} a_1^1 + \binom{n}{2} a_2^2 + \binom{n}{3} a_3^3, \quad n \geq 0.
\]

In view of \(a_\nu(x) = 0 \), \(\nu \geq 4 \), the operators \(J^{(1)} \), \(J^{(2)} \) and \(J^{(3)} \) have the following definitions as indicated in (2.7).

\[
J^{(1)}(p) = \left(a_1(x)I + a_2(x)D + \frac{a_3(x)}{2}D^2 \right)(p)
\]

(3.3)

\[
J^{(2)}(p) = (a_2(x)I + a_3(x)D)(p)
\]

(3.4)

\[
J^{(3)}(p) = a_3(x)p
\]

(3.5)

\[
J^{(m)}(p) = 0, \quad m \geq 4.
\]

Broadly speaking, in this section we will intertwine the action of operators \(J^{(k)} \), for initial values of \(k \), with the simple multiplication by the monomial \(x \), herein called \(T_x \):

\[
T_x : p \mapsto xp,
\]

in order to obtain the expansions of polynomials \(J^{(1)}(P_n(x)) \), \(J^{(2)}(P_n(x)) \) and \(J^{(3)}(P_n(x)) \) in the basis formed by the 2-orthogonal MPS \(\{P_n(x)\}_{n \geq 0} \).

Most importantly, we review (1.6)-(1.7) by establishing the following definition, considering henceforth \(P_{-i}(x) = 0 \), \(i = 1, 2, \ldots \).

\[
T_x(P_n(x)) = P_{n+1}(x) + \beta_n P_n(x) + \alpha_n P_{n-1}(x) + \gamma_{n-1} P_{n-2}(x), \quad n \geq 0.
\]

(3.6)

Additionally, we can use the knowledge provided by Proposition 2.5, valid for all operators not decreasing the degree (2.7), that asserts

\[
J^{(i)}(T_x(p)) = J^{(i+1)}(p) + T_x\left(J^{(i)}(p)\right), \quad i = 0, 1, 2, \ldots.
\]

(3.7)
First step: applying J to the four-term recurrence

Let us apply the operator J to the recurrence relation (1.6), using both (3.7), with $i = 0$, and (3.2):

$$
\lambda_{n+2}^{[0]} T_x (P_{n+2}(x)) + J^{(1)} (P_{n+2}(x)) = \lambda_{n+3}^{[0]} P_{n+3}(x)
$$

$$
+ \beta_{n+2} \lambda_{n+1}^{[0]} P_{n+2}(x) + \alpha_{n+2} \lambda_{n+1}^{[0]} P_{n+1}(x) + \gamma_{n+1} \lambda_{n}^{[0]} P_{n}(x).
$$

Next, by (3.6) we get $J^{(1)} (P_{n+2}(x))$ in the basis $\{ P_n(x) \}_{n \geq 0}$:

$$
J^{(1)} (P_{n+2}(x)) = \left(\lambda_{n+3}^{[0]} - \lambda_{n+2}^{[0]} \right) P_{n+3}(x)
$$

$$
+ \alpha_{n+2} \left(\lambda_{n+1}^{[0]} - \lambda_{n+2}^{[0]} \right) P_{n+1}(x) + \gamma_{n+1} \left(\lambda_{n}^{[0]} - \lambda_{n+1}^{[0]} \right) P_{n}(x), \ n \geq 0.
$$

Taking into account the information retained in identities $J (P_0(x)) = \lambda_0^{[0]} P_0(x)$, $J (P_1(x)) = \lambda_1^{[0]} P_1(x)$, it is easy to verify that

$$
a_{1}(x) = J^{(1)} (P_{0}(x)) = \left(\lambda_{1}^{[0]} - \lambda_{0}^{[0]} \right) P_{1}(x),
$$

$$
a_{1}(x) P_{1}(x) + a_{2}(x) = J^{(1)} (P_{1}(x)) = \left(\lambda_{2}^{[0]} - \lambda_{1}^{[0]} \right) P_{2}(x) + \alpha_{1} \left(\lambda_{1}^{[0]} - \lambda_{1}^{[0]} \right) P_{0}(x),
$$

and thus we may define the image of every $P_n(x)$ through the operator $J^{(1)}$ as follows:

$$
J^{(1)} (P_{n}(x)) = \left(\lambda_{n+1}^{[0]} - \lambda_{n}^{[0]} \right) P_{n+1}(x)
$$

$$
+ \alpha_{n} \left(\lambda_{n}^{[0]} - \lambda_{n}^{[0]} \right) P_{n-1}(x) + \gamma_{n} \left(\lambda_{n}^{[0]} - \lambda_{n}^{[0]} \right) P_{n-2}(x), \ n \geq 0.
$$

Second step: applying $J^{(1)}$ to the four-term recurrence

Let us now apply operator $J^{(1)}$ to the recurrence relation (1.6) fulfilled by $\{ P_n(x) \}_{n \geq 0}$:

$$
J^{(1)} (T_x (P_{n+2}(x))) = J^{(1)} (P_{n+3}(x))
$$

$$
+ \beta_{n+2} J^{(1)} (P_{n+2}(x)) + \alpha_{n+2} J^{(1)} (P_{n+1}(x)) + \gamma_{n+1} J^{(1)} (P_{n}(x)).
$$

We may then perform the following transformations:

$$
G_1(n) : \ J^{(1)} (T_x (P_{n+2}(x))) \rightarrow J^{(2)} (P_{n+2}(x)) + T_x \left(J^{(1)} (P_{n+2}(x)) \right),
$$

$$
I_1(n) : \ J^{(1)} (P_{n}(x)) \rightarrow \left(\lambda_{n+1}^{[0]} - \lambda_{n}^{[0]} \right) P_{n+1}(x)
$$

$$
+ \alpha_{n} \left(\lambda_{n}^{[0]} - \lambda_{n}^{[0]} \right) P_{n-1}(x) + \gamma_{n} \left(\lambda_{n}^{[0]} - \lambda_{n}^{[0]} \right) P_{n-2}(x),
$$

$$
M(n) : \ T_x (P_{n}(x)) \rightarrow P_{n+1}(x) + \beta_{n} P_{n}(x) + \alpha_{n} P_{n-1}(x) + \gamma_{n-1} P_{n-2}(x).
$$

These transformations are defined in a suitable computer software, allowing a symbolic implementation that executes the adequate positive increments on the
variable n. In this manner, it is possible for us to obtain the expansion of the image of $P_{n+2}(x)$ by operator $J^{(2)}$, in the basis $\{P_n(x)\}_{n\geq 0}$.

As a result of these computations, (3.11) corresponds to the next identity.

$$J^{(2)} (P_{n+2}(x)) = A_{n+4} P_{n+4}(x) + B_{n+3} P_{n+3}(x) + C_{n+2} P_{n+2}(x) + D_{n+1} P_{n+1}(x) + F_{n} P_{n}(x) + G_{n-1} P_{n-1}(x) + H_{n-2} P_{n-2}(x),$$

(3.12)

where

$$A_n = \lambda_n^{[0]} - 2\lambda_{n-1}^{[0]} + \lambda_{n-2}^{[0]};$$

$$B_n = (\beta_{n-1} - \beta_n) \left(\lambda_n^{[0]} - \lambda_{n-1}^{[0]} \right);$$

$$C_n = 2\alpha_{n+1} \left(\lambda_n^{[0]} - \lambda_{n+1}^{[0]} \right) + 2\alpha_n \left(\lambda_n^{[0]} - \lambda_{n-1}^{[0]} \right);$$

$$D_n = \alpha_{n+1} (\beta_{n+1} - \beta_n) \left(\lambda_n^{[0]} - \lambda_{n+1}^{[0]} \right) + \gamma_{n+1} \left(\lambda_n^{[0]} - 2\lambda_{n+2}^{[0]} + \lambda_{n+1}^{[0]} \right) + \gamma_n \left(\lambda_n^{[0]} - 2\lambda_{n-1}^{[0]} + \lambda_{n+1}^{[0]} \right);$$

$$F_n = \alpha_{n+2} \alpha_{n+1} \left(\lambda_n^{[0]} - 2\lambda_{n+1}^{[0]} + \lambda_{n+2}^{[0]} \right) + \gamma_{n+1} (\beta_{n+2} - \beta_n) \left(\lambda_n^{[0]} - \lambda_{n+2}^{[0]} \right);$$

$$G_n = \alpha_{n+3} \gamma_{n+1} \left(\lambda_n^{[0]} - 2\lambda_{n+2}^{[0]} + \lambda_{n+3}^{[0]} \right) + \alpha_{n+1} \gamma_{n+2} \left(\lambda_n^{[0]} - 2\lambda_{n+1}^{[0]} + \lambda_{n+3}^{[0]} \right);$$

$$H_n = \gamma_{n+3} \gamma_{n+1} \left(\lambda_n^{[0]} - 2\lambda_{n+2}^{[0]} + \lambda_{n+4}^{[0]} \right).$$

Once more, taking into account that $J (P_i(x)) = \lambda_i^{[0]} P_i(x), i = 0, 1,$ and also (3.10) for $n = 0, 1, 2,$ we are able to confirm that the following initial identities hold:

$$J^{(2)} (P_0(x)) = A_2 P_2(x) + B_1 P_1(x) + C_0 P_0(x),$$

$$J^{(2)} (P_1(x)) = A_3 P_3(x) + B_2 P_2(x) + C_1 P_1(x) + D_0 P_0(x),$$

and, hence:

$$J^{(2)} (P_n(x)) = A_{n+2} P_{n+2}(x) + B_{n+1} P_{n+1}(x) + C_n P_n(x) + D_{n-1} P_{n-1}(x) + F_{n-2} P_{n-2}(x) + G_{n-3} P_{n-3}(x) + H_{n-4} P_{n-4}(x), n \geq 0.$$

(3.14)

Third step: applying $J^{(2)}$ to the four-term recurrence

Let us now apply operator $J^{(2)}$ to the recurrence relation (1.6) fulfilled by $\{P_n(x)\}_{n\geq 0}$:

$$J^{(2)} (T_x (P_{n+2}(x))) = J^{(2)} (P_{n+3}(x)),$$

$$\beta_{n+2} J^{(2)} (P_{n+2}(x)) + \alpha_{n+2} J^{(2)} (P_{n+1}(x)) + \gamma_{n+1} J^{(2)} (P_n(x)).$$

We may perform the following transformations:

$$G_2(n) : J^{(2)} (T_x (P_{n+2}(x))) \to J^{(3)} (P_{n+2}(x)) + T_x \left(J^{(2)} (P_{n+2}(x)) \right),$$

$$I_2(n) : J^{(2)} (P_n(x)) = A_{n+2} P_{n+2}(x) + B_{n+1} P_{n+1}(x) + C_n P_n(x) + D_{n-1} P_{n-1}(x) + F_{n-2} P_{n-2}(x) + G_{n-3} P_{n-3}(x) + H_{n-4} P_{n-4}(x),$$

$$M(n) : T_x (P_n(x)) \to P_{n+1}(x) + \beta_n P_n(x) + \alpha_{n-1} P_{n-1}(x) + \gamma_{n-1} P_{n-2}(x).$$
As before, these transformations and consequent simplifications, permit to express $J^{(3)} (P_{n+2}(x))$ as follows.

\[
J^{(3)} (P_{n+2}(x)) = a_3^{[3]} P_{n+5}(x) + (A_{n+4} \beta_{n+2} - A_{n+4} \beta_{n+4} - B_{n+3} + B_{n+4}) P_{n+4}(x) \\
+ (A_{n+3} \alpha_{n+2} - A_{n+4} \alpha_{n+4} + B_{n+3} \beta_{n+2} - B_{n+3} \beta_{n+4} - C_{n+2} + C_{n+3}) P_{n+3}(x) \\
+ (A_{n+2} \gamma_{n+1} - A_{n+4} \gamma_{n+3} + B_{n+2} \alpha_{n+2} - B_{n+3} \alpha_{n+3} - D_{n+1} + D_{n+2}) P_{n+2}(x) \\
+ (B_{n+1} \gamma_{n+1} - B_{n+3} \gamma_{n+2} + C_{n+1} \alpha_{n+2} - C_{n+2} \alpha_{n+2} \\
- D_{n+1} \beta_{n+1} + D_{n+1} \beta_{n+2} - F_n + F_{n+1}) P_{n+1}(x) \\
+ (C_{n} \gamma_{n+1} - C_{n+2} \gamma_{n+1} - D_{n+1} \alpha_{n+1} + D_{n} \alpha_{n+2} \\
- F_n \beta_n + F_n \beta_{n+2} - G_{n-1} + G_n) P_n(x) \\
+ (-D_{n+1} \gamma_n + D_{n-1} \gamma_{n+1} - F_n \alpha_n + F_{n-1} \alpha_{n+2} \\
- G_{n-1} \beta_{n-1} + G_{n-1} \beta_{n+2} - H_{n-2} + H_{n-1}) P_{n-1}(x) \\
+ (-F_n \gamma_{n-1} + F_{n-2} \gamma_{n+1} \\
- G_{n-1} \alpha_{n-1} + G_{n-2} \alpha_{n+2} - H_{n-2} \beta_{n-2} + H_{n-2} \beta_{n+2}) P_{n-2}(x) \\
+ (-G_{n-1} \gamma_{n-2} + G_{n-3} \gamma_{n+1} - H_{n-2} \alpha_{n-2} + H_{n-3} \alpha_{n+2}) P_{n-3}(x) \\
+ (H_{n-4} \gamma_{n+1} - H_{n-2} \gamma_{n-3}) P_{n-4}(x) , n \geq 0 ,
\]

with initial conditions:

\[
J^{(3)} (P_0(x)) = a_3^{[3]} P_3(x) + \left((\beta_0 + \beta_1 + \beta_2) a_1^{[3]} + a_2^{[3]} \right) P_2(x) \\
+ \left(a_3^{[3]} (a_1 + a_2 + \beta_1 + \beta_0 + \beta_2) + (\beta_0 + \beta_1) a_2^{[3]} + a_1^{[3]} \right) P_1(x) \\
+ \left(a_3^{[3]} (a_1 (2\beta_0 + \beta_1) + \beta_0 + \gamma_1) + a_1 a_2^{[3]} + \beta_0 (\beta_0 a_2^{[3]} + a_1^{[3]}) + a_1^{[3]} \right) ;
\]

\[
J^{(3)} (P_1(x)) = a_3^{[3]} P_4(x) + \left((\beta_1 + \beta_2 + \beta_3) a_1^{[3]} + a_2^{[3]} \right) P_3(x) \\
+ \left(a_3^{[3]} (a_1 + a_2 + a_3 + \beta_2 + \beta_1 + \beta_2) + (\beta_1 + \beta_2) a_2^{[3]} + a_1^{[3]} \right) P_2(x) \\
+ \left(a_3^{[3]} (2 (a_1 + a_2) \beta_1 + a_2 \beta_2 + \beta_1 + \gamma_1 + \gamma_2) + a_1 \beta_0 a_3^{[3]} + (a_1 + a_2) a_2^{[3]} \\
+ \beta_1 (\beta_1 a_2^{[3]} + a_1^{[3]}) + a_0^{[3]} \right) P_1(x) \\
+ \left(a_1 a_2^{[3]} (a_1 + a_2 + \beta_1 + \beta_2) + (\beta_0 + \beta_1) a_2^{[3]} + a_1^{[3]} \right) + a_1 a_2^{[3]} \\
+ \gamma_1 (\beta_0 + \beta_1 + \beta_2) a_1^{[3]} + a_2^{[3]} \right) .
\]

Recalling that $J^{(3)} (p) = a_3(x)p = \left(a_3^{[3]} x^3 + a_2^{[3]} x^2 + a_1^{[3]} x + a_0^{[3]} \right) p$, identity (3.15) enables the computation of the recurrence coefficients $(\beta_n)_{n \geq 0}$, $(\alpha_n)_{n \geq 1}$ and $(\gamma_n)_{n \geq 1}$ of a 2-orthogonal $\{P_n\}_{n \geq 0}$ that is the solution of $J (P_n) = \lambda_0^{[n]} P_n(x)$, $n \geq 0$, for a third-order J. We will pursue with such computations in the next section for particular cases.
4 Finding the 2-orthogonal solution of some third-order differential equations

Let us now assume that the 2-orthogonal MPS \(\{ P_n \}_{n \geq 0} \) fulfills \(J(P_n) = \lambda_n^{[0]} P_n(x) \), \(n \geq 0 \), where \(J \) is defined by (2.11) with \(a_\nu(x) = 0, \nu \geq 4 \).

Initially, we consider that \(\deg(a_3(x)) = 0 \), though \(a_3(x) \neq 0 \), \(\deg(a_2(x)) \leq 1 \) and \(\deg(a_1(x)) = 1 \). In other words:

\[
\begin{align*}
(a_0(x)I + a_1(x)D + \frac{a_2(x)}{2}D^2 + \frac{a_3(x)}{3!}D^3)(P_n(x)) &= \lambda_n^{[0]} P_n(x), \\
(a_0(x) = a_0^{[0]}, a_1(x) = a_1^{[1]} + a_1^{[2]}x, a_1^{[1]} \neq 0, \\
a_2(x) = a_2^{[2]} + a_2^{[3]}x, \\
a_3(x) = a_3^{[3]} \neq 0.
\end{align*}
\]

Consequently, \(\lambda_n^{[0]} = na_1^{[1]} + a_0^{[0]} \), which we are assuming as nonzero for all non-negative integer \(n \). Taking into account this set of hypotheses, identity (3.15) provides several difference equations due to the linear independence of \(\{ P_n \}_{n \geq 0} \).

In particular, the coefficient of \(P_{n+4}(x) \) on the right hand of (3.15) is expressed by

\[-a_1^{[1]} (\beta_{n+2} - 2\beta_{n+3} + \beta_{n+4}) \]

and thus we get the equation

\[\beta_{n+4} - 2\beta_{n+3} + \beta_{n+2} = 0, \quad n \geq 0. \] \((4.2) \)

Also, the coefficients of \(P_{n+3}(x) \) and \(P_{n+2}(x) \) on the right hand of (3.15) provide the following two identities

\[a_1^{[1]} (-2\alpha_{n+2} + 4\alpha_{n+3} - 2\alpha_{n+4} + (\beta_{n+2} - \beta_{n+3})^2) = 0, \] \((4.3) \)

\[-3a_1^{[1]} (\gamma_{n+1} - 2\gamma_{n+2} + \gamma_{n+3}) = a_0^{[3]} . \] \((4.4) \)

Taking into account the results presented in the previous sections 2 and 3, we have proved the following Proposition.

Proposition 4.1. Let us consider a 2-orthogonal polynomial sequence \(\{ P_n \}_{n \geq 0} \) fulfilling

\[J(P_n(x)) = \lambda_n^{[0]} P_n(x) \]

where \(J \) is defined by (2.11) with \(a_\nu(x) = 0, \nu \geq 4, \) and such that \(a_0(x) = a_0^{[0]}, a_1(x) = a_1^{[1]} + a_1^{[2]}x, a_1^{[1]} \neq 0, \ a_2(x) = a_0^{[2]} + a_2^{[3]}x, \ a_3(x) = a_0^{[3]} \neq 0. \)
Then the coefficient $a_1^{[2]}$ of polynomial $a_2(x)$ is zero and the recurrence coefficients of the sequence $\{P_n\}_{n \geq 0}$ are the following.

$$\beta_n = -\frac{a_0^{[1]}}{a_1^{[1]}}, \ n \geq 0, \quad (4.5)$$

$$\alpha_{n+1} = -\frac{a_0^{[2]}}{2a_1^{[2]}}(n+1), \ n \geq 0, \quad (4.6)$$

$$\gamma_{n+1} = -\frac{a_0^{[3]}}{a_1^{[3]}}\left(\frac{1}{3} + \frac{1}{2}n + \frac{1}{6}n^2\right) = -\frac{a_0^{[3]}}{6a_1^{[3]}}(n+1)(n+2), \ n \geq 0. \quad (4.7)$$

Conversely, the 2-orthogonal polynomial sequence $\{P_n\}_{n \geq 0}$ defined by the recurrence coefficients (4.5)-(4.7) fulfills the third order differential equation

$$J(P_n(x)) = \lambda_n^{[0]}P_n(x), \ n \geq 0,$$

where $a_0(x) = a_0^{[0]}$, $a_1(x) = a_0^{[1]} + a_1^{[1]}x$, $a_1^{[1]} \neq 0$, $a_2(x) = a_0^{[2]}$, $a_3(x) = a_0^{[3]} \neq 0$, and $\alpha_{\nu}(x) = 0$, $\nu \geq 4$.

Concerning the assumptions of this last Proposition, it is worth mention that, later on, it is clarified in Proposition 4.3 that if $\deg(a_3(x)) = 0$, though $a_3(x) \neq 0$, and $\deg(a_2(x)) = 0$, then $a_1^{[1]} \neq 0$.

It is also important to remark that the 2-orthogonal sequence described in Proposition 4.1 corresponds to a case, called E, of page 82 of [8]. We then conclude that the single 2-orthogonal polynomial sequence fulfilling the differential identity described in Proposition 4.1 is classical in Hahn’s sense, which means that the sequence of the derivatives $Q_n(x) := \frac{1}{n+1}DP_{n+1}(x)$, $n \geq 0$, is also a 2-orthogonal polynomial sequence. Furthermore, we read in [8] (p. 104) that this sequence is an Appell sequence, in other words, $Q_n(x) = P_n(x)$, $n \geq 0$. We review this detail while working with the intermediate relations (3.9) and (3.12) along the proof of Proposition 4.1 and based on those two identities we may indicate as corollary the following two differential identities.

Corollary 4.2. Let us consider the 2-orthogonal polynomial sequence $\{P_n\}_{n \geq 0}$ described in Proposition 4.1 that fulfills

$$J(P_n(x)) = \lambda_n^{[0]}P_n(x)$$

where J is defined by (2.1) with $\alpha_{\nu}(x) = 0$, $\nu \geq 4$, and such that $a_0(x) = a_0^{[0]}$, $a_1(x) = a_0^{[1]} + a_1^{[1]}x$, $a_1^{[1]} \neq 0$, $a_2(x) = a_0^{[2]}$, $a_3(x) = a_0^{[3]} \neq 0$. The sequence $\{P_n\}_{n \geq 0}$ also fulfills the following two identities

$$\left(a_1(x)I + a_0^{[2]}D + \frac{1}{2}a_0^{[3]}D^2\right)(P_n(x)) = a_1^{[1]}P_{n+1}(x)$$

$$+ \frac{1}{2}n a_0^{[2]}P_{n-1}(x) + \frac{1}{3}(n-1)n a_0^{[3]}P_{n-2}(x),$$

$$DP_n(x) = nP_{n-1}(x), \ n \geq 0, \ P_{-1}(x) = 0.$$
In the next proposition, we sum up a list of further conclusions pointed out by the application of the approach detailed in section 3.

Proposition 4.3. Let us consider a 2-orthogonal polynomial sequence \(\{P_n\}_{n \geq 0} \) fulfilling

\[
J(P_n(x)) = \lambda_n^0 P_n(x),
\]

where \(J \) is defined by (2.1) with \(a_\nu(x) = 0, \nu \geq 4 \).

a) If \(a_2(x) = a_0^2 \) (constant) and \(\deg(a_3(x)) \leq 2 \), though \(a_3(x) \neq 0 \), then \(a_1^1 \neq 0 \).

b) If \(a_2(x) = 0 \) and \(\deg(a_3(x)) = 1 \), then there isn’t a 2-orthogonal polynomial sequence \(\{P_n\}_{n \geq 0} \) such that \(J(P_n(x)) = \lambda_n^0 P_n(x), n \geq 0 \).

c) If \(a_3(x) = 0 \), then the only solution of \(J(P_n(x)) = \lambda_n^0 P_n(x) \) corresponds to \(J = a_0^1 D + a_0^0 I \).

Applying the identities shown in sections 2 and 3, we are able to prove the forthcoming results. In particular we bring to light the 2-orthogonal sequence defined in Corollary 4.5, as well as other differential identities fulfilled by a 2-orthogonal solution besides the prefixed one \(J(P_n(x)) = \lambda_n^0 P_n(x), n \geq 0 \).

In Theorem 4.4, we find the description of the 2-orthogonal sequence that is the solution of the problem posed with respect to the third order operator \(J \) defined by the conditions \(a_2(x) = 0 \) and \(\deg(a_3(x)) \leq 2 \). Taking into consideration Proposition 4.3 we have assured that \(\deg(a_1(x)) = 1 \), or \(a_1^1 \neq 0 \).

Theorem 4.4. Let us consider a 2-orthogonal polynomial sequence \(\{P_n\}_{n \geq 0} \) fulfilling

\[
J(P_n(x)) = \lambda_n^0 P_n(x), \quad n \geq 0,
\]

where \(J \) is defined by (2.1) with \(a_\nu(x) = 0, \nu \geq 4 \), and such that \(a_0(x) = a_0^0, \quad a_1(x) = a_0^1 + a_1^1 x, \quad a_1^1 \neq 0, \quad a_2(x) = 0, \quad a_3(x) = a_0^3 + a_1^3 x + a_2^3 x^2 \).

Then the recurrence coefficients of the sequence \(\{P_n\}_{n \geq 0} \) are the following and the coefficients of the polynomial \(a_3(x) = a_2^3 x^2 + a_1^3 x + a_0^3 \) fulfill

\[
(a_1^3)^2 - 4a_2^3 a_0^3 = 0.
\]
\[
\beta_n = -\frac{a_2^{[3]}}{2a_1^{[1]}}(n-1)n - \frac{a_0^{[1]}}{a_1^{[1]}}, \; n \geq 0, \quad (4.8)
\]

\[
\alpha_n = -\frac{a_2^{[3]}}{2a_1^{[1]}} + \frac{a_0^{[1]}a_2^{[3]}}{(a_1^{[1]})^2} + (n-2) \left(-\frac{3a_2^{[3]}}{4a_1^{[1]}} + \frac{a_2^{[3]}(9a_0^{[1]} + a_2^{[3]})}{6(a_1^{[1]})^2} \right) + (n-2)^2 \left(b_0 + b_1(n-2) + b_2(n-2)^2 \right), \; n \geq 1, \quad (4.9)
\]

\[
\gamma_n = -\frac{1}{3a_1^{[1]}} \left(a_0^{[4]} + \frac{a_1^{[1]}(-a_1^{[1]}a_1^{[3]} + a_0^{[1]}a_2^{[3]})}{(a_1^{[1]})^2} \right)
- (n-1) \left(\frac{(a_1^{[1]})^2a_0^{[3]} - a_0^{[1]}a_1^{[1]}a_1^{[3]} + (a_1^{[1]})^2a_2^{[3]}}{2(a_1^{[1]})^3} \right)
+ (n-1)^2 \left(f_0 + f_1(n-1) + f_2(n-1)^2 + f_3(n-1)^3 + f_4(n-1)^4 \right), \; n \geq 1;
\]

where

\[
f_0 = \frac{-18a_0^{[3]}(a_1^{[1]})^2 + 6a_1^{[3]}a_1^{[4]} + 3a_0^{[1]} + a_2^{[3]} + a_2^{[3]}(-18(a_1^{[1]})^2 - 12a_1^{[3]}a_0^{[1]} + (a_2^{[3]})^2)}{108(a_1^{[1]})^3},
\]

\[
f_1 = \frac{a_2^{[3]}(6a_1^{[3]}a_1^{[1]} + a_2^{[3]}(a_2^{[3]} - 12a_0^{[1]}))}{72(a_1^{[1]})^3},
\]

\[
f_2 = -\frac{a_2^{[3]}(a_2^{[3]}(12a_0^{[1]} + a_2^{[3]}) - 6a_1^{[1]}a_1^{[3]})}{216(a_1^{[1]})^3},
\]

\[
f_3 = -\frac{(a_2^{[3]})^3}{72(a_1^{[1]})^3},
\]

\[
f_4 = -\frac{(a_2^{[3]})^3}{216(a_1^{[1]})^3}.
\]

Conversely, the 2-orthogonal polynomial sequence \(\{P_n\}_{n \geq 0}\) defined by the recurrence coefficients (4.8) - (4.10), under the assumption \(\gamma_n \neq 0, \; n \geq 1\), fulfills the differential equation \(J(P_n(x)) = \lambda_n^{[0]}P_n(x), \; n \geq 0\), where \(a_0(x) = a_0^{[0]}, \; a_1(x) = a_0^{[1]} + a_1^{[1]}x, \; a_1^{[1]} \neq 0, \; a_0(x) = a_1(x) = a_3(x) = a_3^{[3]}x^2 + a_1^{[3]}x + a_0^{[3]}\) with \((a_1^{[3]})^2 - 4a_2^{[3]}a_0^{[3]} = 0\), and \(a_0(x) = 0, \; \nu \geq 4\).
The content of Theorem 4.4 provides an entire solution written in terms of the polynomial coefficients of the operator J. In the next Corollary we read a specific case endowed with Hahn’s property, as we may prove analytically using the functionals of the dual sequence.

Corollary 4.5. Let us consider the 2-orthogonal polynomial sequence $\{P_n\}_{n \geq 0}$ fulfilling

$$J(P_n(x)) = \lambda_n^{[0]} P_n(x), \quad n \geq 0,$$

where J is defined by (2.1) with $a_\nu(x) = 0$, $\nu \geq 4$, and such that $a_0(x) = a_0^{[0]}$, $a_1(x) = \frac{1}{24} x$, $a_2(x) = 0$, $a_3(x) = (x-1)^2$.

Then the recurrence coefficients of the sequence $\{P_n\}_{n \geq 0}$ are the following.

$$\beta_n = -12(n-1)n, \quad n \geq 0, \quad (4.11)$$

$$\alpha_n = 12(n-1)n(2n-3)^2, \quad n \geq 1, \quad (4.12)$$

$$\gamma_n = -4n(n+1)(2n-3)^2(2n-1)^2, \quad n \geq 1. \quad (4.13)$$

Conversely, the 2-orthogonal polynomial sequence $\{P_n\}_{n \geq 0}$ defined by the recurrence coefficients $\{4.11\}$-$\{4.13\}$ fulfils the differential equation

$$\left(\frac{1}{6}(x-1)^2D^3 + \frac{1}{24}xD + a_0^{[0]}I\right)(P_n(x)) = \lambda_n^{[0]} P_n(x), \quad n \geq 0,$$

where $\lambda_n^{[0]} = \frac{1}{24}n + a_0^{[0]}, \quad n \geq 0$.

Furthermore, we remark that the polynomial sequence $\{P_n\}_{n \geq 0}$ defined by $\{4.11\}$-$\{4.13\}$, fulfils the following two differential relations obtained by (3.9) and (3.12).

\[
\begin{align*}
\left(\frac{1}{24}xI + \frac{1}{2}(x-1)^2D^2\right)(P_n(x)) &= \frac{1}{24}P_{n+1}(x) \\
-\frac{1}{2}(3-2n)^2(n-1)nP_{n-1}(x) + \frac{1}{3}(n-1)n(15-16n+4n^2)^2P_{n-2}(x) \quad (4.14)
\end{align*}
\]

\[
\begin{align*}
(x-1)^2D(P_n(x)) &= nP_{n+1}(x) - 2n(5+4n(2n-3))P_n(x) \\
+ (3-2n)^2(n+24(n-2)n+25)P_{n-1}(x) - 8(5-2n)^2(n-1)n(2n-3)^3P_{n-2}(x) \\
+ 4(3-2n)^2(5-2n)^2(7-2n)(n-2)(n-1)nP_{n-3}(x), \quad n \geq 0, \quad P_{-1}(x) = 0.
\end{align*}
\]

Acknowledgements

This work was partially supported by CMUP (UIDB/00144/2020), which is funded by FCT (Portugal).
References

[1] S. Bochner, Über Sturm-Liouvilleische Polynomsysteme, Math. Zeit. vol. 29 (1929), 730-736.

[2] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.

[3] E. Coussement and W. Van Assche , Some classical multiple orthogonal polynomials J. Comput. Appl. Math. 127, No. 1-2, (2001), 317-347.

[4] J. Coussement and W. Van Assche, Differential equations for multiple orthogonal polynomials with respect to classical weights: raising and lowering operators J. Phys. A: Math. Gen. 39, No. 13 (2006), 3311-3318.

[5] K. Douak, On 2-orthogonal polynomials of Laguerre type, Int. J. Math. Math. Sci. Vol. 22, no.1 (1999), 29-48.

[6] K. Douak, The relation of the d-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math. 70(2) (1996), 279-295.

[7] K. Douak and P. Maroni, Une Caractérisation des polynômes d-orthogonaux "classiques", J. Approx. Theory 82 (1995), 177-204.

[8] K. Douak and P. Maroni, Les polynômes orthogonaux "classiques" de dimension deux, Analysis 12 (1992), 71-107.

[9] K. H. Kwon, D. W. Lee, L. L. Littlejohn, Differential equations having orthogonal polynomial solutions, J. Comput. Appl. Math. 80(1) (1997),1-16.

[10] H. M. Srivastava, Y. Ben Cheikh, Orthogonality of some polynomial sets via quasi-monomiality, Appl. Math. and Comput. 141 (2003), 415-425.

[11] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in : C. Brezinski et al., Eds., Orthogonal Polynomials and their Applications, in: IMACS Ann. Comput. Appl. Math. 9 (Baltzer, Basel, 1991), 95-130.

[12] P. Maroni, Variations around classical orthogonal polynomials. Connected problems, J. Comput. Appl. Math. 48 (1993), 133-155.

[13] P. Maroni, L’orthogonalité et les récurrences de polynômes d’ordre supérieur à deux , Ann. Fac. Sci. Toulouse, Math. (5) 10, No. 1 (1989), 105-139.

[14] P. Maroni, Two-dimensional orthogonal polynomials, their associated sets and co-recursive sets, Numer. Algorithms 3 (1992), 299-312.

[15] P. Maroni, New results about orthogonality preserving maps, J. Korean Math. Soc. 42, No.2 (2005), 243-254.
[16] P. Maroni and T. A. Mesquita, *Appell polynomial sequences with respect to some differential operators*, Period. Math. Hungar. 72, No.2 (2016), 200-217.

[17] T. Augusta Mesquita and P. Maroni, *Around operators not increasing the degree of polynomials*, Integral Transforms Spec. Funct. 30, No.5 (2019), 383-399.

[18] T. A. Mesquita, *On a 2-Orthogonal Polynomial Sequence via Quadratic Decomposition*, Math.Comput.Sci. 15 (2021), 15-31.

[19] S. Pincherle, *Mémoire sur le calcul fonctionnel distributif*, Mathematische Annalen 49 (1897), 325-382.

[20] J. Van Iseghem, *Vector orthogonal relations. Vector QD-algorithm*, J. Comput. Appl. Math. 19 (1987), 141-150.