Title
Diversity, differentiation, and linkage disequilibrium: prospects for association mapping in the malaria vector Anopheles arabiensis.

Permalink
https://escholarship.org/uc/item/0734p0n3

Journal
G3 (Bethesda, Md.), 4(1)

ISSN
2160-1836

Authors
Marsden, Clare Diana
Lee, Yoosook
Kreppel, Katharina
et al.

Publication Date
2014-01-10

DOI
10.1534/g3.113.008326

Peer reviewed
Diversity, Differentiation, and Linkage Disequilibrium: Prospects for Association Mapping in the Malaria Vector *Anopheles arabiensis*

Clare Diana Marsden,* Yoosook Lee,* Katharina Kreppel,* Allison Weakley,* Anthony Cornel,* Heather M. Ferguson,† Eleazar Eskin,** and Gregory C. Lanzaro*,1

*Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, and †Department of Entomology, University of California-Davis, California 95616, ‡Ifakara Health Institute, Off Mlabani Passage, Ifakara, United Republic of Tanzania, †Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ, UK, and **Department of Computer Science, University of California Los Angeles, California 90095

ABSTRACT

Association mapping is a widely applied method for elucidating the genetic basis of phenotypic traits. However, factors such as linkage disequilibrium and levels of genetic diversity influence the power and resolution of this approach. Moreover, the presence of population subdivision among samples can result in spurious associations if not accounted for. As such, it is useful to have a detailed understanding of these factors before conducting association mapping experiments. Here we conducted whole-genome sequencing on 24 specimens of the malaria mosquito vector, *Anopheles arabiensis*, to further understanding of patterns of genetic diversity, population subdivision and linkage disequilibrium in this species. We found high levels of genetic diversity within the *An. arabiensis* genome, with ~800,000 high-confidence, single-nucleotide polymorphisms detected. However, levels of nucleotide diversity varied significantly both within and between chromosomes. We observed lower diversity on the X chromosome, within some inversions, and near centromeres. Population structure was absent at the local scale (Kilombero Valley, Tanzania) but detected between distant populations (Cameroon vs. Tanzania) where differentiation was largely restricted to certain autosomal chromosomal inversions such as 2Rb. Overall, linkage disequilibrium within *An. arabiensis* decayed very rapidly (within 200 bp) across all chromosomes. However, elevated linkage disequilibrium was observed within some inversions, suggesting that recombination is reduced in those regions. The overall low levels of linkage disequilibrium suggests that association studies in this taxon will be very challenging for all but variants of large effect, and will require large sample sizes.

KEYWORDS

Anopheles arabiensis linkage disequilibrium association mapping malaria vector inversion

ABSTRACT

Association mapping is a widely applied method for elucidating the genetic basis of phenotypic traits. However, factors such as linkage disequilibrium and levels of genetic diversity influence the power and resolution of this approach. Moreover, the presence of population subdivision among samples can result in spurious associations if not accounted for. As such, it is useful to have a detailed understanding of these factors before conducting association mapping experiments. Here we conducted whole-genome sequencing on 24 specimens of the malaria mosquito vector, *Anopheles arabiensis*, to further understanding of patterns of genetic diversity, population subdivision and linkage disequilibrium in this species. We found high levels of genetic diversity within the *An. arabiensis* genome, with ~800,000 high-confidence, single-nucleotide polymorphisms detected. However, levels of nucleotide diversity varied significantly both within and between chromosomes. We observed lower diversity on the X chromosome, within some inversions, and near centromeres. Population structure was absent at the local scale (Kilombero Valley, Tanzania) but detected between distant populations (Cameroon vs. Tanzania) where differentiation was largely restricted to certain autosomal chromosomal inversions such as 2Rb. Overall, linkage disequilibrium within *An. arabiensis* decayed very rapidly (within 200 bp) across all chromosomes. However, elevated linkage disequilibrium was observed within some inversions, suggesting that recombination is reduced in those regions. The overall low levels of linkage disequilibrium suggests that association studies in this taxon will be very challenging for all but variants of large effect, and will require large sample sizes.

KEYWORDS

Anopheles arabiensis linkage disequilibrium association mapping malaria vector inversion

Genome-wide association studies have become a widely used and successful approach for identifying the genetic basis of traits in humans and model plant and animal species (Hindorff et al. 2013). As the price of genome sequencing decreases and genomic resources become available for a wider range of taxa, it is becoming increasingly possible to apply these approaches to nonmodel species. Association mapping tests for an association between a set of genome-wide single-nucleotide polymorphisms (SNPs) and a specified phenotype, with the expectation that one or more of these SNPs may be linked to the causal variant(s). As such, the level of genetic diversity and linkage disequilibrium (LD) in a species’ genome greatly influences the suitability and power of this approach (Gordon and Finch 2005; Hall et al. 2010).

LD describes the nonrandom association of alleles at different loci within a population and is influenced by many factors, including recombination rates, mutation rates, breeding systems, demography,
other traits of medical importance. Although successful in many association mapping to understand the genetic basis of these as well as under genetic control. This has led to considerable interest in applying pophilic, nocturnal and endophagous feeder, 2012; Russell false associations and/or in ture may cause spurious LD between unlinked markers, resulting in tween subpopulations. Unless controlled for, such population struc-

population structure, which results in allele frequency differences be-

LD must be taken into consideration during association analyses (Ersoz et al. 2001; Gentile et al. 2001), five chromosomal forms (Coluzzi et al. 1979, 1985), and a new cryptic subpopulation [Goundry (Riehle et al. 2011)] reported. Less information, however, is available for An. arabiensis. Here we conducted whole-genome sequencing on the vector An. arabiensis to assess ge-

nomic patterns of diversity, genetic differentiation, and LD.

MATERIALS AND METHODS

Samples, DNA extraction, and library preparation

Adult female An. gambiae s.l. mosquitoes were collected by aspiration from the villages of Lupiro (-8.38000, 36.66912), Sagamanganga (-8.06781, 36.80207), and Minepa (-8.25700, 36.68163) in the Kilo-
mbero Valley, Tanzania in 2012, and Ourodoukoudje (9.09957, 13.72292) in Cameroon in 2005. Samples were preserved in 80% ethanol. The head and thorax of each specimen was subsequently dissected and used for DNA extraction, which was performed with the QIAGEN Biosprint 96 system using QIAGEN blood and tissue kits (QIAGEN, Valencia, CA). Anopheles arabiensis samples were distin-

guished from other An. gambiae s.l. species complex members with the Scott polymerase chain reaction assay (Scott et al. 1993) and their DNA content quanti-

ed using the Quibit 2.0 Fluorometer (Life technologies, Grand Island, NY). Selecting samples with >80 ng of DNA, we prepared 24 individually barcoded Illumina paired-end sequencing libraries with insert sizes of 320–400 bp by using NEXTflex Sequenc-

ing kits and barcodes (Bioo Scientific, Austin, TX); 20 from Tanzania and four from Cameroon. The 24 samples were submitted to the Beijing Genomics Institute at the University of California-Davis for 100-bp paired end sequencing using the Illumina HiSeq2000. All 24 samples were sequenced at low coverage, with 12 samples per lane. In addition, three samples (2012ULUP059; 2012MIN001; 2005OKJ042) were selected to be sequenced together at greater coverage in a single lane. These were used to create a reference of high confidence variant sites for subsequent SNP detection in the lower coverage samples.

Inversions

A number of polymorphic inversions have been identified among the species of An. gambiae s.l. species complex through karyotype analysis of ovarian nurse cells. There was insufficient material to karyotype the samples that were sequenced in this study as the abdomen was dissec-

ted for blood meal analysis. Therefore we conducted karyotyping on a sample of 37 indoor resting An. arabiensis collected in 2011 from the village of Lupiro, Tanzania. Ovaries were extracted from half gravid females, fixed in Carnoy’s solution, and banding patterns examined using a phase contrast microscope (Hunt 1973). Inversions were scored following Toure (1998) and are referred to following standard convention; the ‘+’ symbol followed by the letter by which the inver-

sion is known refers to the standard arrangement (e.g., 2R+a), whereas the inverted arrangement is indicated by the letter alone (e.g., 2Rb).
Data processing and variant detection
At the time of analysis (January 2013), the only *An. arabiensis* genome available was a transcriptome sequence. Therefore, we used the *An. gambiae* s.s. genome build AgamP3_15 as our reference. The *An. gambiae* s.s. genome was derived from the PEST strain that was fixed for the standard arrangement for all inversions polymorphic in *An. gambiae* s.s.

Before the alignment and mapping of our sequences, we removed adaptor sequences using SCYTHE (https://github.com/vsbuffalo/scythe) and conducted quality trimming using SICKLE (quality...
We detected variants through a two-step process. First, to identify a set of high confidence reference variant sites, we combined the three high coverage samples and called SNPs using Unified Genotyper in GATK. After excluding indels (which are difficult to call reliably in the absence of very high, >100×, coverage), and apparent multiallelic SNPs (which may arise from errors in aligning reads to the genome and must be removed for many analysis programs), we filtered SNPs as per the Broad Institute’s (2012) Genome Analysis Toolkit (i.e., GATK) hard filter recommendations (QD < 2.0; MQ < 40; FS > 60; HaploTypScore > 13; MQRankSum < -12.5; ReadPosRankSum < -8.0), in addition to a quality score of >30 and combined depth of coverage >30×. The remaining biallelic SNPs constituted our high confidence SNP set. We then repeated this process on a combined file of the 24 low-coverage samples, with the exception that the quality score threshold was reduced to 4 (Broad Institute 2012), and depth of coverage filter removed. We then excluded any SNP from this low-coverage data set if: (1) the site was not called in all samples; (2) it was not present in the high-confidence reference SNP set; (3) if the minor allele was not detected in at least five individuals; and (4) any multi-allelic SNPs. The resulting SNP set derived from the 24 low-coverage samples was used in all subsequent analyses.

Coverage, LD, and genetic diversity analyses

Coverage across chromosomes was calculated with the depth of coverage tool in GATK. We used PLINK 1.07 (Purcell et al. 2007; Purcell 2009) to calculate pairwise LD as the genotyping correlation coefficient, r2. This analysis was not affected by phasing ambiguities because we calculated r2 directly from the genotypes rather than phased data (e.g., Boyko et al. 2010). However, it is noteworthy, that r2 estimates from genotype data will not be identical to haplotype phased data (GATK). After excluding indels (which are difficult to filter recommendations (QD < 2.0; MQ < 40; FS > 60; HaploTypScore > 13; MQRankSum < -12.5; ReadPosRankSum < -8.0), in addition to a quality score of >30 and combined depth of coverage >30×. The remaining biallelic SNPs constituted our high confidence SNP set. We then repeated this process on a combined file of the 24 low-coverage samples, with the exception that the quality score threshold was reduced to 4 (Broad Institute 2012), and depth of coverage filter removed. We then excluded any SNP from this low-coverage data set if: (1) the site was not called in all samples; (2) it was not present in the high-confidence reference SNP set; (3) if the minor allele was not detected in at least five individuals; and (4) any multi-allelic SNPs. The resulting SNP set derived from the 24 low-coverage samples was used in all subsequent analyses.

Following the revelation to the reference, we assessed coverage after excluding duplicate, low-quality, and poorly mapping reads. On the autosomes, coverage was high with 73–80% of bases exhibiting ≥30× coverage for the three high coverage samples, with 97–99% of the genome showing coverage overall (Table 1; Figure 1). On the X chromosome, coverage was lower, with only 38% of the genome exhibiting a combined coverage ≥30× for the three high coverage samples, and ~12% of the X chromosome showing no coverage (Table 1 and Supporting information, Figure S1). Similar findings were observed for the low-coverage samples (data not shown). Lower coverage on the X chromosome was particularly associated with the Xag inversion (which is absent in An. arabiensis), whereas An. arabiensis is fixed for Xbcd which represents a complex of three fixed autapomorphic compound inversion arrangements. Furthermore, the 2La inversion which is fixed for the inverted arrangement in An. arabiensis (2La) is polymorphic in An. gambiae s.s. (2La/a+a) and fixed for the standard arrangement (2La/a+a) in the An. gambiae s.s. strain that was sequenced and used as a reference here.

Following alignment to the reference, we assessed coverage after excluding duplicate, low-quality, and poorly mapping reads. On the autosomes, coverage was high with 73–80% of bases exhibiting ≥30× coverage for the three high coverage samples, with 97–99% of the genome showing coverage overall (Table 1; Figure 1). On the X chromosome, coverage was lower, with only 38% of the genome exhibiting a combined coverage ≥30× for the three high coverage samples, and ~12% of the X chromosome showing no coverage (Table 1 and Supporting information, Figure S1). Similar findings were observed for the low-coverage samples (data not shown). Lower coverage on the X chromosome was particularly associated with the Xag inversion (Table 1, Figure 1, and Figure S1). Coverage also decreased proximal to the centromere on all chromosomes.

An. arabiensis is polymorphic for a number of inversions on the 2R and 3R chromosomes. To assess the inversions present in the Kilombero Valley of Tanzania we conducted karyotyping on ovarian nurse cells extracted from 37 blood fed An. arabiensis females collected from Lupiro in 2011, as ovarian nurse cells were not available for the Tanzanian samples sequenced here (see the section Materials and Methods). This revealed polymorphism for the 2Rb inversion (2Rb/b = 2, 2Rb/b = 15, 2Rb/b = 20), and 3Ra inversions (3Ra/a/a = 15, 3Ra/a/a = 21) which is consistent with other studies of An. arabiensis in Tanzania (Petrarca et al. 2000).

Table 2 Number of SNPs, SNP frequency, and nucleotide diversity (π) by chromosomal arm for 24 low-coverage samples

X	2L	2R	3L	3R	
No. SNPs	6308	126305	229666	150246	200380
SNP / × bases	32558	318	227	226	221
π	0.00021	0.00202	0.00293	0.00282	0.00294

SNP, single-nucleotide polymorphism.

RESULTS

To assess nucleotide diversity, population structure and LD, in An. arabiensis, we conducted Illumina 100-bp paired end whole-genome sequencing on 24 samples at low coverage; 20 from three villages in Tanzania and four from a single village in Cameroon. In addition, three of these samples (one from Cameroon, two from Tanzania) were sequenced at greater coverage to create a reference of high-confidence SNP sites. The number of reads generated per sample varied between 8 and 19 million reads for the low-coverage sequencing and 47 and 62 million reads for the high coverage sequencing.
SNPs, which includes SNPs biallelic within *An. arabiensis* but for two non-reference alleles (excluded a final 80,115 SNPs). Of the 712,707 SNPs in our final data set, we found these to be predominately in intergenic (34%) or intronic (21%) regions or ±5 kb of a gene (38%), with only 6% occurring in coding regions.

In comparison with the autosomes, diversity was an order of magnitude lower on the X chromosome (X density 1/2365 bp, $\pi = 0.000213$, autosomes $\pi = 0.00202$; Table 2). Among the autosomes, SNP diversity was very similar for the 2R, 3L, and 3R arms (density $= 1/221–1/227$ bp, $\pi = 0.00282–0.00294$) but

Figure 2 Sliding window analysis (bin 100 kb, step 100 kb) of diversity (π) by chromosome for the 24 low-coverage samples. Boxes depict approximate location of telomeric (T) and centromeric (C) regions (gray), and known inversions (black) based on *An. gambiae*.

slightly lower on the 2L (density = 1/318 bp, $\pi = 0.00202$). Diversity was highly variable across chromosomal arms. On the X chromosome, diversity was lower in the telo/centromeric regions and within the Xag inversion, but higher outside of these regions (Figure 2). For the autosomes, lower diversity was associated with the centromeres as well as the $2La$ inversion, but not the other inversions.

Population differentiation

Our set of genome wide SNP markers did not detect population structure among the three villages in Tanzania, which are located 14–57 km apart ($F_{ST} = 0$, Table S1). It is noteworthy though, that during filtering we excluded all multiallelic SNPs (see Materials and Methods), including SNPs where samples were biallelic for two non-reference alleles. As we had aligned our sequences to the *An. gambiae* s.s. genome, these biallelic non-reference SNPs were likely the most informative for identifying divergence within *An. arabiensis*. As such, we cannot exclude the possibility that some genetic sub-structuring exists between these locations, but on a finer scale than could be detected here with our conservative SNP dataset. Nonetheless, we did detect population structure between the Tanzania and Cameroonian sites ($F_{ST} = 0.057$, Table S1), which is consistent with expectations for restricted gene flow between populations separated by great distances (>3000 km here, e.g., Donnelly and Townson 2000). However, it is important also to note that the Tanzanian and Cameroonian samples were collected in different years (2005 and 2012), which means temporal genetic changes also may have contributed to apparent geographical differentiation. To identify the genomic regions contributing the most to divergence between the Tanzanian and Cameroonian samples, we estimated F_{ST} independently for each chromosomal arm. These analyses highlighted that divergence on the 3R ($F_{ST} = 0.092–0.130$) was higher in comparison to the other chromosome arms ($F_{ST} = 0.016–0.051$). Sliding window analyses showed that in contrast to other regions, divergence was elevated across most of the $3Ra$ inversion (mean $3Ra F_{ST} = 0.144$), as well as on the $2Rc$ inversion (mean $2Rc F_{ST} = 0.131$, Figure 3). An 8-Mb region up and downstream of the chromosome 3 centromere also showed elevated F_{ST} (Figure 3). SNP density was too low on the X chromosome for sliding window analysis.
Linkage disequilibrium

We assessed linkage among the 20 Tanzanian samples. The four Cameroonian samples were excluded from this analysis to limit bias due to the confounding effects of population structure. The decrease in LD (r^2) with physical distance for these samples is shown in Figure 4. These data show that average LD (r^2) decayed rapidly to less than 0.2 within 200 bp in *An. arabiensis* (Figure 4), and this rate of decrease was very similar across all of the chromosomes.

To assess genomic patterns of LD, we plotted LD for all SNPs separated by 1–10 kbp by genomic location (Figure 5). This showed that although LD was generally low along the chromosome, it was increased around the centromeres and some inversions. Specifically, LD was elevated across the 2Rb and c2 inversions and particularly at the proximal (nearer to centromere) 2Rb breakpoint, as well as the proximal breakpoint of the 3Ra inversion (Figure 5). Otherwise, elevated LD was limited to small sporadic regions. Elevated LD at the location of the 2Rc inversion was unexpected because this inversion was not recorded in the small subset of samples from Lupiro in 2011 assessed here or in other studies from Tanzania (reviewed in, Petrarca et al. 2000). However, the number of samples and sites assessed in these studies was low, and therefore the inversion may have been missed. We did not find LD to be increased across the 2La inversion, but this inversion is not polymorphic within *An. arabiensis* (only *An. gambiae* s.s.). SNP density on the X chromosome was too low for sliding window analyses.

DISCUSSION

Genetic diversity

Consistent with expectations for an outbreeding species with large population sizes, we found high levels of polymorphism in *An. arabiensis*. Diversity estimates (Table 2) were slightly lower than reported for *An. gambiae* s.s. [density 1/35-250bp, π = 0.006—0.0208, Ensemble (Cohuet et al. 2008; Lavniczak et al. 2010; Morlais et al. 2004; Wilding et al. 2009)]. However, direct comparisons should be treated with caution, given the sampling differences between studies and the fact that the aforementioned estimates were derived from detailed studies of candidate genes or select loci (8660) rather than low-coverage, whole-genome sequencing. Moreover, it is very likely that the stringent SNP calling thresholds we applied, combined with alignment to a sister genome, under estimated the true diversity levels in *An. arabiensis*.

Genomic diversity in *An. arabiensis* fluctuated across the genome; a pattern also seen in *An. gambiae* s.s. (Cheng et al. 2012; Cohuet et al. 2008; Holt et al. 2002; Wilding et al. 2009). Specifically, lower diversity was associated with the X chromosome, 2La inversion, and telomeric and centromeric regions (Figure 2). The X chromosome plays a major role in postzygotic isolation between *An. gambiae* s.s. and *An. arabiensis* (Slotman et al. 2004, 2005), and is more diverged between these taxa than the autosomes (e.g., Besansky et al. 2003; Cohuet et al. 2008; Neafsey et al. 2010). In particular, *An. gambiae* s.s. (reference genome) and *An. arabiensis* are fixed for alternative arrangements of the Xag inversion which covers ~60% of the X chromosome (Cohuet et al. 2008; Neafsey et al. 2010). Consequently, reduced X-chromosome diversity may reflect poorer alignment or mapping to the *An. gambiae* s.s. genome. However, reduced X diversity has also been seen in *An. gambiae* s.s. (Cohuet et al. 2008; Holt et al. 2002; Wilding et al. 2009), which indicates that additional biological factors, such as reduced introgression on the X chromosome, may be involved (Cohuet et al. 2008; Holt et al. 2002; Slotman et al. 2004, 2005).

Lower coverage attributable to mapping difficulties likely also explains the reduced diversity in the centro/telo-meres, which are highly repetitive regions and the 2La inversion, which exhibits high divergence (Figure 1 and Figure 2). Specifically, the *An. gambiae* s.s. reference was derived from specimens fixed for the standard arrangement (2Lc^d/a^d), which is highly diverged from the inverted arrangement (2La) which is fixed in *An. arabiensis* (Cheng et al. 2012; Neafsey et al. 2010). Indeed, Cheng et al. (2012) reported lower levels of coverage in *An. gambiae* s.s. specimens with the inverted 2La arrangement. Finally, reduced diversity in the 2La inversion may relate to the fact that this inversion is fixed in *An. arabiensis*, whereas the other inversions which did not exhibit reduced diversity are polymorphic and thus gene flux may contribute to diversity between arrangements (Cheng et al. 2012).

Population structure

Cryptic population structure can result in spurious associations if not accounted for (Kang et al. 2008). Complex population structure has been found within *An. gambiae* s.s. (e.g., Coluzzi et al. 1985; Favia et al. 2001; Lanzaro et al. 1998; Riehle et al. 2011) but fewer data are available for *An. arabiensis* (e.g., Donnelly et al. 1999; Ng’habi et al. 2011). We found average *F*ST between Tanzanian and Cameroonian *An. arabiensis* populations (*F*ST = 0.057) to be lower than between Cameroonian populations of *An. gambiae* s.s. (*F*ST = 0.129, whole-genome sequence data, Cheng et al. 2012) which is consistent with suggestions that population structure is weaker in *An. arabiensis* than *An. gambiae* (e.g., Kamau et al. 1999). Our findings are also consistent with studies showing little local population structure in *An. arabiensis* within East Africa (e.g., Czever et al. 2010; Lee et al. 2012; Nyamjum et al. 2003) but strong population structure at greater distances (i.e., Cameroon and Tanzania) (Donnelly and Townsend 2000). However, these data contrast with Ng’habi et al. (2011), who found significant *F*ST values of 0.08–0.1 between villages within the Kilombero Valley Tanzania (20–50 km apart), and detected two subpopulations. Given that our studies did not assess the same sites (except Lupiro), this may reflect sampling. Alternatively, as mentioned previously, our stringent filtering of variants was biased toward removing the SNPs most likely able to detect fine scale structure. Assessments involving larger sample sizes and more study sites would be useful in clarifying local population structure.

Our analyses detected great variability in differentiation across the genome, with greater levels found on the 3R, particularly the 3Ra inversion, as well as the 2Rc inversion (Figure 3). Few studies have
assessed inversions in *An. arabiensis* (Petrarca et al. 2000), but extensive research in *An. gambiae* s.s. indicates they are important for adaptation (e.g., 2La and 2Rb with aridity) and are under strong selection (Cheng et al. 2012; Lee et al. 2009; Powell et al. 1999; Touré et al. 1998; White et al. 2007a). Moreover, partial reproductive isolation and niche differentiation has been detected between population subgroupings (chromosomal forms) with specific combinations of inversions (Coluzzi et al. 1977; Manoukis et al. 2008; Taylor et al. 2001). Our data suggest recombination and gene flow is restricted between standard and inverted arrangements of some inversions in *An. arabiensis*. Elevated divergence for specific inversions (2La $F_{ST} = 0.247$, 2Rb $F_{ST} = 0.149$) among low overall genomic divergence ($F_{ST} = 0.129$) has also been reported in *An. gambiae* s.s. (Cheng et al. 2012) as well as *Drosophila* (e.g., Corbett-Detig and Hartl 2012). The values here for the *An. arabiensis* inversions with elevated F_{ST} (mean $F_{ST} 2Rc = 0.13108$, 3Ra = 0.14345) were slightly lower than those reported for *An. gambiae* s.s. (above), but this could result from unbalanced representation of the inversions among our samples; something that we could not control or test for as our samples could not be karyotyped prior to sequencing (see Materials and Methods). If as suggested by our data, chromosomal inversions contribute to population structure in *An. arabiensis*, it will be critical for this to be accounted for in association studies particularly given the potential for the inversions to cosegregate with the trait of interest (Weetman et al. 2010).

Linkage disequilibrium

The extent of LD in a genome is a key factor influencing the feasibility of association mapping studies (Lewis and Knight 2012). Overall, we found that LD decays rapidly within 200 bp in *An. arabiensis* (Figure 4), but we also detected elevated LD in regions of reduced recombination such as near centro/telo-meres (Figure 5). In particular, elevated LD extended ~8 Mb from the 3L centromere, as also observed in *A. gambiae* s.s. (~6 Mb, Weetman et al. 2010). Similarly, we observed elevated LD for the chromosomal inversions (Figure 5), which exhibit suppressed recombination due to a lack of crossing over in heterokaryotypes (Kirkpatrick 2010; Navarro et al. 1997). We found greater LD associated across the smaller 2Rb and 2Rc inversions and particularly at the proximal 2Rb breakpoint, whereas LD was only elevated at the proximal breakpoint of the larger ~24Mb 3Ra inversion (Figure 5). This pattern is indicative of gene flux, whereby double cross-over events or gene conversion results in recombination between arrangements near the center of large inversions, despite recombination rates.
near the breakpoints remaining near zero (Andolfatto et al. 2001; Navarro et al. 2000; Navarro et al. 1997).

The rapid decay of LD in *An. arabiensis* is broadly consistent with the short LD reported for *An. gambiae* s.s. immunity genes (<1 kb, Harris et al. 2010; Weetman et al. 2010) but is shorter than genome wide LD estimates of *An. gambiae* s.s. (<3 kb, Neafsey et al. 2010). The difference with the latter study may be explained by the larger number and density of markers here, which allowed for greater resolution of LD in *An. arabiensis* than in *An. gambiae* s.s. (average spacing of SNPs ~3 kb, Neafsey et al. 2010). Such short LD contrasts with the LD structure of humans (>10 kb, Hinds et al. 2003; Pe'er et al. 2006), and many domesticated or selling plants (~10 kb Arabidopsis thaliana and >100 kb in rice, Orzya sativa; Huang et al. 2010; Kim et al. 2007) but is consistent with findings for flies (Drosophila melanogaster, <30 bp; Mackay et al. 2012) and many outbreeding taxa for example the grapevine (300 bp, Vitis vinifera, Lijavetzky et al. 2007) and Norway spruce (100-bp Picea abies; Heuertz et al. 2006). Moreover, our results fit with expectations for wild species with high diversity, large outbreeding populations and recent population growth (Ardlie et al. 2002; Gaut and Long 2003; Lewis and Knight 2012). Nonetheless, the rapid LD decay presents considerable challenges for association mapping experiments as the number of markers and samples needed for there to be sufficient power to identify causal variants, would be prohibitive in most cases, except perhaps where causal variants are located in genomic regions with elevated LD (e.g., regions with selective sweeps, Weetman et al. 2010). Similar limitations inhibited attempts to utilize association mapping in wild populations of Drosophila which also exhibit very rapid LD decay. In this case, resources such as the Drosophila melanogaster Genetic Reference Panel (Mackay et al. 2012) and Drosophila Synthetic Population Resource (King et al. 2012) have been produced in order to artificially create LD through the formation of a population of inbred recombinant lines that can be used for whole genome association mapping of traits. The future of association mapping in *An. arabiensis* likely rests on the production of a similar type of resource which could be used to disentangle the genetic basis of traits that can be phenotyped in a laboratory setting.

ACKNOWLEDGMENTS

We are grateful to Anicet Kihonda, Masoud Kilalangongo, Noeby Makungwa, Isaya Matanila, Tokosha Sanga, Robert Kasubiri, and Morsad Nywage of the Ifakara Health Institute for assistance with field collections in Tanzania; Travis Collier and Bradley Main for help with python scripts; and Michelle Sanford for assistance during the earlier stages of this project. This work was funded by National Institutes of Health grant R01AI085175-03. Tanzanian ethical approval for this research was granted by ethics clearance certificate number Institutional Research Board/Ifakara Health Institute/No:16-2013. Samples were exported from Tanzania under permit MTA 2013-252M and imported into the United States under Centers for Disease Control and Prevention permit 2011-06-040.

LITERATURE CITED

Andolfatto, P., F. Depaulis, and A. Navarro, 2001 Inversion polymorphisms and nucleotide variability in Drosophila. Genet. Res. 77: 1–8.

Ardlie, K. G., L. Kruglyak, and M. Seielstad, 2002 Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3: 299–309.

Besansky, N. J., J. Krzywinski, T. Lehmann, F. Simard, M. Kern et al., 2003 Semipermeable species boundaries between *Anopheles gambiae* and *Anopheles arabiensis*: evidence from multilocus DNA sequence variation. Proc. Natl. Acad. Sci. USA 100: 10818–10823.

Boyko, A. R., P. Quignon, L. Li, J. J. Schoenebeck, J. D. Degenhardt et al., 2010 A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 8: e1000451.

Cheng, C., B. J. White, C. Kamdem, K. Mockaitis, C. Costantini et al., 2012 Molecular genomics of *Anopheles gambiae* along a latitudinal cline in Cameroon: a population resequencing approach. Genetics 190: 1417–1432.

Cingolani, P., A. Platts, L. L. Wang, M. Coon, T. Nguyen et al., 2012 A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster. Fly (Austin) 6: 80–92.

Cohuet, A., S. Krishnakumar, F. Simard, I. Morlais, A. Koutsos et al., 2008 SNP discovery and molecular evolution in *Anopheles gambiae*, with special emphasis on innate immune system. BMC Genomics 9: 227.

Coluzzi, M., A. Sabatini, V. Petrarca, and M. A. Dideco, 1977 Behavioral divergences between mosquitoes with different inversion karyotypes in polymorphic populations of *Anopheles gambiae* complex. Nature 266: 832–833.

Coluzzi, M., A. Sabatini, V. Petrarca, and M. Di Deco, 1979 Chromosomal differentiation and adaptation to human environments in the *Anopheles gambiae* complex. Trans. R. Soc. Trop. Med. Hyg. 73: 483–497.

Coluzzi, M., V. Petrarca, and M. Di Deco, 1985 Chromosomal inversion intergradation in incipient speciation in *Anopheles gambiae* species complex. Science 298: 1415–1418.

Corbett-Detig, R. B., and D. L. Hartl, 2012 Population genomics of inversion polymorphisms in *Drosophila melanogaster*. PLoS Genet. 8: e1003056.

Czech, C., R. Labbo, G. Vieville, I. Arzika, H. Bogreau et al., 2010 Population genetic structure of *Anopheles arabiensis* and *Anopheles gambiae* in Niger. J. Med. Entomol. 47: 355–366.

Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks et al., 2011 The variant call format and VCFtools. Bioinformatics 27: 2156–2158.

Derua, Y., M. Alifrangis, K. Hosea, D. Meyrowitsch, S. Magefa et al., 2012 Change in composition of the *Anopheles gambiae* complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malar. J. 11: 188.

Donnelly, M. J., and H. Townsend, 2000 Evidence for extensive genetic differentiation among populations of the malaria vector *Anopheles arabiensis* in Eastern Africa. Insect Mol. Biol. 9: 357–367.

Donnelly, M., N. Cuamba, J. Charlwood, F. Collins, and H. Townsend, 1999 Population structure in the malaria vector, *Anopheles arabiensis* Patton, in East Africa. Heredity 83: 408–417.

Ersoz, E., J. Yu, and E. Buckler, 2009 Applications of linkage disequilibrium and association mapping in maize, pp. 173–195 in *Molecular Genetic Approaches to Maize Improvement*, edited by A. Kriz, and B. Larkins. Springer, Berlin, Heidelberg, Germany.

Favia, G., A. Lanfrancotti, L. Spanos, I. Siden-Kiamos, and C. Louis, 2001 Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of *Anopheles gambiae* s.s. Insect Mol. Biol. 10: 19–23.

Broad Institute, 2012 GATK Best practices variant detection with the GATK. Available at: http://www.broadinstitute.org/gatk/guide/best-practices. Accessed November 25, 2013.

Gaut, B. S., and A. D. Long, 2003 The lowdown on linkage disequilibrium. Plant Cell 15: 1502–1506.

Gentile, G., M. Slotman, V. Ketmaier, J. Powell, and A. Caccone, 2001 Attempts to molecularly distinguish cryptic taxa in *Anopheles gambiae* s.s. Insect Mol. Biol. 10: 25–32.

Gordon, D., and S. J. Finch, 2005 Factors affecting statistical power in the detection of genetic association. J. Clin. Invest. 115: 1408–1418.

Gore, M. A., J.-M. Chia, R. J. Elshire, Q. Sun, E. S. Ersoz et al., 2009 A first-generation haplotype map of maize. Science 326: 1115–1117.

Hall, D., C. Tegström, and P. K. Ingvarsson, 2010 Using association mapping to dissect the genetic basis of complex traits in plants. Brief. Funct. Genomics 9: 157–165.
Weetman, D., C. S. Wilding, K. Steen, J. C. Morgan, F. Simard et al., 2010 Association mapping of insecticide resistance in wild Anopheles gambiae populations: Major variants identified in a low-linkage disequilibrium genome. PLoS ONE 5: e13140.

White, B. J., M. W. Hahn, M. Pombi, B. J. Cassone, N. F. Lobo et al., 2007a Localization of candidate regions maintaining a common polymorphic inversion (2La) in Anopheles gambiae. PLoS Genet. 3: e217.

White, B. J., C. Cheng, D. Sangare, N. F. Lobo, F. Collins et al., 2007b Population genomics of trans-specific inversions in Anopheles gambiae. Genetics 183: 275–288.

White, G. B., S. A. Magayuka, and R. F. L. Boreham, 1972 Comparative studies on sibling species of the Anopheles gambiae Giles complex (Dipt., Culicidae): binomics and vectorial activity of species A and species B at Segera, Tanzania. Bull. Entomol. Res. 62: 295–317.

Wilding, C., D. Weetman, K. Steen, and M. Donnelly, 2009 High, clustered, nucleotide diversity in the genome of Anopheles gambiae revealed through pooled-template sequencing: implications for high-throughput genotyping protocols. BMC Genomics 10: 320.

Communicating editor: J. M. Comeron