Exposure to lead, cadmium, and mercury is known to be high in many arctic Inuit communities. These metals are emitted from industrial and urban sources, are distributed by long-range atmospheric transport to remote regions, and are found in Inuit country foods. Current community exposure to these metals can be measured in food, but feces and urine are also excellent indicators of total exposure from ingestion and inhalation because a high percentage of each metal is excreted. Bulk domestic sewage or its residue in a waste treatment system is a good substitute measure. Domestic waste treatment systems that accumulate metals in sediment provide an accurate historical record of changes in ingestion or inhalation. We collected sediment cores from an arctic lake used for facultative domestic sewage treatment to identify the history of community exposure to Pb, Cd, and Hg. Cores were dated and fluxes were measured for each metal. A nearby lake was sampled to measure combined background and atmospheric inputs, which were subtracted from sewage lake data. Pb, Cd, and Hg inputs from sewage grew rapidly after the onset of waste disposal in the late 1960s and exceeded the rate of population growth in the contributing community from 1970 to 1990. The daily per-person Pb input in 1990 (720,000 ng/person per day) exceeded the tolerable daily intake level. The Cd input (48,000 ng/person per day) and Hg input (19,000 ng/person per day) were below the respective TDI levels at the time.

Materials and Methods

Study site. The study site is the Hamlet of Sanikiluaq on the Belcher Islands in southeastern Hudson Bay, Canada (Figure 1). At the time of sampling, about 550 persons, mostly Inuit, lived in the hamlet. The community has a heavy reliance on country foods that are known to be a contaminant source (Wein et al. 1996). No industrial or agricultural sources of Pb, Cd, or Hg are known to exist on the islands. Local activities are not considered to be a source of anthropogenic Pb to the environment other than use of Pb shot for hunting.

We sampled sediment cores collected from two lakes near Sanikiluaq. Annak has been used for disposal of raw domestic waste from the community since about 1968; Imitavik is located 1.5 km to the southeast and is immediately south of the community (Figure 2). The whole-lake focus-corrected flux of Pb, Cd, and Hg in a given period to Annak in excess of that observed at Imitavik reflects the exposure of Sanikiluaq residents to metals in products ingested and inhaled, including food and cigarette smoke—two well-documented metals sources (Benedetti et al. 1992, 1994; Dietz et al. 1996; Gamborg and Scheuhammer 1994; Luoma et al. 1995; Rey et al. 1997; Rickert and Kaiserman 1994; Scheuhammer et al. 1998).

Address correspondence to M.H. Hermanson, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104-6323, USA. Telephone: (215) 573-8727. Fax: (215) 573-2112. E-mail: mhherm@sas.upenn.edu

Assistance in Sanikiluaq came from B. Fleming, J. Meeke Jr., M. Weesk, L. Kittosuk, and P. Kattuk. P. Kiry assisted with laboratory analysis.

This work was conducted under license 12419R from the Science Institute of the Northwest Territories. It was partially funded by the Hamlet of Sanikiluaq.

The authors declare they have no competing financial interests.

Received 1 February 2005; accepted 31 May 2005.
Annak is a small lake (2-ha surface area, 4.5-m maximum depth). Like all small lakes in the area, it is very well mixed by strong surface winds and never stratifies thermally. Nutrients from wastewater have made it eutrophic (openwater pH~10) and anaerobic under ice. Wastewater inputs are quickly dispersed throughout the lake during the open-water season. During winter, wastewater freezes on the eastern shore, entering the lake during thaw in May. Surface sediments, composed mostly of dead phytoplankton, are about 70% organic (Hermanson 1990, 1998). The treatment system is facultative—both aerobic and anaerobic—because of the diel photosynthetic cycle in summer. No engineering structures control its operation. It has no influent streams: its source water is seepage from a small drainage area (42 ha) and wastewater. The metals deposited into the lake come from background, atmosphere, and sewage. Because there are no local industrial or agricultural sources of Pb, Cd, or Hg, input to Annak is assumed to be associated with human waste.

Only human waste was discharged to Annak in “honey bags” until 1983. A community-wide remodeling project starting in 1983 transformed the system to tank collection of all household waste. Tanks are now pumped regularly, with the waste transferred to Annak. We assume that household wastes, including cleaning and personal care products, are not significant sources of Pb, Cd, or Hg. Table 1 shows that the estimated fraction of inputs of these products, based on literature values, is not >1.1% for all categories and each metal except Cd in laundry powder (8.9%).

Imitavik is a multiple basin lake (141-ha surface area, 17.5-km² drainage basin) fed by many small surface drainage catchments to the south. It is mesotrophic: surface sediments are approximately 25% organic matter and the water pH is approximately 6.5 all year.

Methods. In 1993 three sediment cores were collected each from Annak and Imitavik and composited to form one core from each lake. Annak cores were collected from maximum water depth in the lake. Imitavik cores were retrieved near the deepest part of the north basin in water approximately 5.5 m deep. The Imitavik collection area is isolated from most direct drainage basin inputs, so the observed Pb, Cd, and Hg inputs greater than natural fluxes are considered atmospheric in origin. The core collection areas in both lakes are near sites where cores were collected in previous lake sediment studies (Hermanson 1990, 1991, 1993).

Cores were sectioned at 1-cm intervals from the surfaces to a depth of 20 cm and at 2-cm intervals from there to the core bottoms, which exceeded a depth of 40 cm. Sections from a given depth in each of the three cores from a lake were combined to form the composite. Each composite section was analyzed for ℋp, ℌs, porosity, and loss on ignition—a surrogate measure for organic carbon. Dating and sedimentation rates were calculated from Pb-210 activity in sediment layers and the constant rate of supply model (Appleby and Oldfield 1978). These values have been reported previously (Hermanson 1998).

A 0.5-g sample of each composite section was digested using 50% nitric acid with microwave heating. Pb and Cd were analyzed from the digestate using graphite furnace atomic absorption spectrophotometry (AAS). Hg was analyzed by manual cold vapor AAS. Accuracy (recovery) from analysis of National Institute for Standards and Technology Standard Reference Material 2704 was 99.9% for Pb, 97.1% for Cd, and 95.0% for Hg. Precision (relative percent difference) was 1.7, 5.4, and 8.6%, respectively. Detection limits were 3.6, 0.16, and 23 ng/g. This digestion includes only those metals associated with organic matter in sediment and contains no mineral fractions.

Fluxes of Pb, Cd, and Hg to individual sections of cores (in nanograms per square centimeter per year) are products of particle deposition rates calculated from Pb-210 (in grams per square centimeter per year) and contaminant concentrations on those particles (in nanograms per gram). Calculating fluxes accounts for changes to sedimentation rates, a particular issue in Annak (Hermanson 1990, 1998). The calculations are converted to whole-lake deposition rates using factor (FFs) to correct for postdepositional sediment movement within the lake: the sedimentation rates and metals fluxes thus apply anywhere in the lake.

Table 1. Estimated personal care product contributions of Pb, Cd, and Hg to Annak [ng/person per day (% of individual community member contribution in 1990)].

Personal care products	Pb	Cd	Hg
Laundry powder	7,539	3,748	425
Cosmetics	753	527	87
Shampoo	210	10	45

*Assumes 0.25 g/person per day (Jenkins and Russell 1994). *Assumes 0.25 g/person per day (Demanz et al. 1984). *Assumes 50 mL/person per day (LeBlanc et al. 1998).
the lake. FFs are a comparison of observed Pb-210 inventory in the sediment core to the established focus corrected input of 0.25 becquerel/g (Hermanson 1990). FFs were 2.91 for Imitavik and 1.74 for Annak (Hermanson 1998).

Our goal was to estimate changes in the per-person daily excretion in the community over time and compare with tolerable daily intakes (TDIs) at the time of sampling. We calculated a 1-year input for each metal to Annak for 1970, 1980, and 1990 using the standard units of measure (nanograms per square centimeter per year), shown in Table 2. The background amounts from Imitavik for the same years were subtracted from the Annak values. The net amount for each metal is the total community human contribution to Annak resulting from urinary and fecal excretion. We calculated the average per-person daily contribution (excretion) by dividing these values for each of the 3 years by the community population at the time and number of days in the year.

Results and Discussion

Imitavik Lake. To understand the community exposure recorded in Annak, we need to identify historic atmospheric metal inputs to the area measured in Imitavik.

The input of Pb to Imitavik in the 1700s was about 50 ng/cm² per year (Figure 3) and grew exponentially during the Industrial Revolution from about 64 ng/cm² per year in 1880 to 325 ng/cm² per year in 1981. After 1981 the input stopped growing and appears to have declined slightly to about 300 ng/cm² per year in 1993. Analysis of stable Pb isotopes in the same Imitavik sediment core shows that the area has received a mix of U.S. and Canadian industrial and urban Pb via LRAT since the 1800s (Outridge et al. 2002).

Cd deposition to Imitavik was about 1.1 ng/cm² per year in the early 1700s and increased slowly until 1900, when the total deposition was about 1.8 ng/cm² per year (Figure 4). Soon after 1900 the annual rate of increase grew rapidly, reaching about 4 ng/cm² per year near the end of World War II. The Cd deposition growth rate was rapid enough that it doubled between 1900 and 1930, half the time required for doubling of Pb inputs. Unlike Pb, however, the Cd input had not doubled again as of 1993. In the 1940s Cd deposition appears to have stopped increasing until about 1952. From then until 1984, Cd inputs increased at an annual average rate similar to that of 1900–1940 until it reached 5.4 ng/cm² per year in 1984. Between 1984 and 1993, the Cd deposition appeared to decline approximately 5%.

Preindustrial Hg inputs were about 0.2 ng/cm² per year (Figure 5). Between 1800 and 1867, inputs increased about 2-fold, and then about 3-fold by 1980. Between 1980 and 1990 the input grew 44%. These growth factors are consistent with observations elsewhere in the Canadian Arctic (Lockhart et al. 1995). Input history of Hg to Imitavik has been previously reported (Hermanson 1998).

Annak Lake. Pb inputs to Annak were lower than those to Imitavik until about 1950 and then show a trend similar to those to Imitavik up to the 1960s (Figure 3). Annak data show accelerating Pb inputs beginning about 1970, shortly after the beginning of sewage disposal into the lake. Pb input was about 250 ng/cm² per year in 1970 and doubled within 12 years. It doubled again by about 1989, and peaked at 1,242 ng/cm² per year about 1991. The decline that appears in Pb and other metals from 1991 through 1993 is an indication that inputs have dropped. However, more recent cores need to be collected to identify longer term trends.

Cd inputs to Annak are identical to the Imitavik inputs until the 1950s (Figure 4). Although Cd deposition to Imitavik stopped growing between the 1940s and about 1952, the input to Annak was unchanged between about 1944 and 1948. By 1953 Cd input in Annak increased to about 5 ng/cm² per year.

Table 2. Background (Imitavik) and sewage-enriched (Annak) focus-corrected fluxes of Pb, Cd, and Hg from 1960 (presewage), 1970, 1980, and 1990 (ng/cm² per year), Belcher Islands.

	Imitavik	Annak	
Pb	1960	180	193
	1970	220	250
	1980	310	426
	1990	297	963
Cd	1960	4.1	6.8
	1970	4.5	7.1
	1980	5.1	13.4
	1990	5.1	51.2
Hg	1960	1.1	1.5
	1970	1.1	1.3
	1980	1.2	6.3
	1990	1.8	19.6

Figure 3. Pb inputs to Imitavik and Annak since the 1700s. CRS, constant rate of supply.

Figure 4. Cd inputs to Imitavik and Annak since the 1700s. CRS, constant rate of supply.

Figure 5. Hg inputs to Imitavik and Annak since the 1700s. CRS, constant rate of supply. Modified from Hermanson (1998).
and by 1960 increased to about 7 ng/cm² per year. The higher inputs from the 1960s, apparently before sewage inputs began, were also observed in an earlier investigation (Hermanson 1991). Cd is known to be released from sediments after deposition, so there is a possibility that some Cd migrated downward in the core from greater inputs after the 1970s. However, Cd release is unlikely in reducing conditions (Khalid 1980) that are characteristic of Annak bottom waters during all times of year. After sewage inputs began, Cd inputs doubled by 1980, again by 1988, and again by 1991.

Hg inputs to Annak track the Imitavik record closely from about 1880 to the 1940s. In the late 1940s the inputs to Annak appear to be slightly higher than those to Imitavik (Figure 5). Hg inputs to Annak grew faster than Pb or Cd input after the onset of sewage disposal and between 1975 and 1991 grew from 1.6 ng/cm² per year to 30 ng/cm² per year.

The results for both lakes agree with data from cores collected in 1983 and 1990 (Hermanson 1990, 1993). The Imitavik data show that the Belcher Islands region is affected by LRAT of contaminant trace metals.

The atmospheric Pb and Cd inputs to these lakes and to the Belcher Islands region stopped growing in the early 1980s and then appear to have declined. But the average human exposure as measured at Annak appears to have continued growing to 1990, suggesting the presence of other sources of Pb and Cd not related to LRAT. Pb exposure in some Inuit communities results from Pb shot ingested in country foods (Dewailly et al. 2001; Johansen et al. 2004; Scheuhammer et al. 1998) and inhaled in cigarette smoke (Dewailly et al. 2001; Rickert and Kaiserman 1994), neither of which is influenced by LRAT. The Pb deposition to Annak sediments after 1990 may be associated with an intended ban on Pb shot in Canada (Scheuhammer et al. 1998). For Cd, the exposure represented in Annak may be entirely from cigarette smoke, which is known to contain high amounts of Cd and which has contributed to high body burdens in other parts of the North (Benedetti et al. 1994; Rey et al. 1997). This is also unrelated to LRAT.

Changes in daily per-person deposition of Pb, Cd, and Hg to Annak sediments. The calculated values of person per day contribution to Annak sediment show that between 1970 and 1990 the average member of the community had growing excretion of—and apparent exposure to—all three metals, assuming that net metals deposition to Annak reflects intake and excretion.

The Pb value grew from 60,000 ng/person per day in 1970 to 162,000 ng/person per day in 1980 and 702,000 ng/person per day in 1990. A food study in five Canadian cities by Dabeka and McKenzie (1995) from 1986 through 1988 estimated Pb intake at 24,000 ng/person per day, considerably less than our Annak data estimate.

In a survey of Belgium, Malta, Mexico and Sweden, Claës-Thoreau et al. (1987) noted a high variability in Pb excreted in feces, depending on country and its typical diet, ranging from 22,000 to 361,000 ng/person per day. Bederka et al. (1985) found an average of 180,000 ng/person per day of Pb excreted in feces in an Illinois group in the early 1980s. The results from Sanikiluaq suggest that the community has higher exposures to Pb than other groups and are generally consistent with ingestion values observed by Hansen (1990) in Greenland Inuit, which range from 69,000 to 369,000 ng/person per day and vary with meat consumption. The World Health Organization (WHO) has established a provisional tolerable weekly intake (PTWI) that calculates to a TDI (50th percentile) for Pb of 214,000 ng/person (60-kg person) in 1990 (Dabeka et al. 2003). The recent reduction of the TDI level suggests that the community may be in the range of exposure values where ill effects may be experienced. However, the Annak values are lower than some food ingestion values in the Arctic. An Inuit food survey on Baffin Island by Chan et al. (1995) in the early 1990s showed 65,000 ng/person per day for women and 97,000 ng/person per day for men. Hg mean daily intake in Hansen’s (1990) study of four Greenland regions ranged from 25,000 to 128,000 ng/person per day and was related to meat consumption. Clearly, many Inuit Hg ingestion values exceed recent FAO/WHO limits.

Conclusions

Our results show that after sewage disposal to Annak began in the late 1960s, inputs of Pb, Cd, and Hg from domestic sewage grew rapidly and that the community has greater exposure to Pb than to either Cd or Hg.

Between 1970 and 1990 the average exposure to each community member to Pb increased > 10-fold, Cd about 8-fold, and Hg about 27-fold. Members of the Sanikiluaq community are exposed to Pb at levels that exceed TDI levels, and Hg intake is likely also above TDI levels, although those limits vary depending on the health agency that defines them. These increased exposures occurred up to 1990 despite efforts to reduce industrial and urban emissions in the mid latitudes.

Sources of metals to the community during 1970–1990 probably included the effects of LRAT, Pb from gunshot, and a considerable amount of Cd, some Pb, and Hg from tobacco smoke.
These results show that undisturbed sediments from sewage lakes can be used to estimate community exposure to contaminants if there are no agricultural or industrial inputs to the waste stream.

References

Allen RJ. 1996. Long Range Atmospheric Transport of Heavy Metals, Particularly Mercury, in Canada: Sources, Fate and Effects. Burlington, Ontario, Canada: National Water Research Institute Contribution, 96–80.

AMAP 1998. Heavy metals. In: AMAP Assessment Report. Arctic Pollution Issues. Oslo: Arctic Monitoring and Assessment Program, 373–453.

Appleby PG, Oldfield F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported lead-210 to the sediment. Catena 5:1–4.

Barzdziuk J, Urban J, Bardodziova E, Rejkova V. 1985. The measurement of mercury excretion in urine. J Hyg Microbiol Microelectron 20:263–268.

Bederka Jr JP, Lukem TM, Brudos S, Waters RS. 1985. Elemental balances in the human. Trace Subst Environ Health 19:304–313.

Benedetti JL, Dewalley E, Turcotte F, Lefebvre M. 1994. Unusually high blood cadmium associated with cigarette smoking among three subgroups of the general population. Quebec. Sci Total Environ 152:161–167.

Benedetti JL, Turcotte F, Lefebvre M, Thérien F, Weber JP. 1992. Blood and urinary cadmium level in Inuit living in Kuujjuaq, Canada. Sci Total Environ 127:167–172.

Chan HM, Kim C, Khoday K, Receveur D, Kuhnlein HV. 1995. Assessment of dietary exposure to trace metals in Baffin Inuit food. Environ Health Perspect 103:749–746.

Choudhury H, Harvey T, Lockwood TF, Stiteler WM, Choudhury H, Harvey T, Lockwood TF, Stiteler WM, Goodrum PE, et al. 2001. Urinary cadmium elimination as a biomarker of exposure for evaluating a cadmium exposure-biokinetics model. J Toxicol Environ Health 63A:321–353.

Clayes-Thoreau F, Thiessen L, Bruaux P, Ducotte G, Verduny G. 1987. Assessment and comparison of human exposure to lead between Belgium, Malta, Mexico and Sweden. Int Arch Occup Environ Health 59:31–41.

Dabeka RW, McKenzie AD. 1995. Survey of lead, cadmium, fluoro-ride, nickel, and cobalt in food composites and estimation of dietary intakes of these elements by Canadians in 1986–88. JNADAC Int 78:897–909.

Dabeka RW, McKenzie AD, Bradley P. 2003. Survey of total mercury in total diet food composites and an estimation of the dietary intake of mercury by adults and children from two Canadian cities, 1998–2000. Food Add Contam 20:629–638.

Demanze C, Rugroff L, Klessing A. 1984. Dosage des éléments métalliques dans les produits cosmétiques et d’hygiène corporels [in French]. Parfums Cosmétiques Arômes 58:69–77.

Dewalley E, Ayotte P, Brunese S, Lebel G, Levalois P, Weber JP. 2001. Exposure of the Inuit population of Nunavik (Arctic Québec) to lead and mercury. Arch Environ Health 56:350–359.

Dietz R, Riget F, Johansen P. 1996. Lead, cadmium and mercury levels in the marine environment of the Canadian Yukan and Northwest Territories. Sci Total Environ 143:221–234.

Hanscic H. 1990. Human exposure to metals through consumption of marine foods: a case study of exceptionally high intake among young Greenlanders. In: Heavy Metals in the Marine Environment (Furness RW, Rainbow PS, eds). Boca Raton, FL: CRC Press, 227–243.

Hermanson MH. 1998. 137Cs and 210Pb chronologies of sediments from small, shallow arctic lakes. Geochim Cosmochim Acta 54:1443–1451.

Hermanson MH. 1991. Chronology and sources of anthropogenic trace metals in sediments from small, shallow arctic lakes. Environ Sci Technol 25:2059–2064.

Hermanson MH. 1999. Historical accumulation of atmospherically derived pollutant trace metals in the Arctic as measured in dated sediment cores. Water Sci Technol 33:23–31.

Hermanson MH. 1998. Anthropogenic mercury deposition to arctic lake sediments. Water Air Soil Pollut 101:309–321.

IPCS-INCHEM (International Programme on Chemical Safety–INCHEM). 2004. Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives. Hamilton, Ontario, ON: Canadian Centre for Occupational Health and Safety. Available: http://www.inchem.org/documents/jecefa/jcevacl/jecl037.htm [accessed 11 May 2005].

Iwao S, Sugita M, Tsuchiya K. 1981. Some metabolic interrelationships among cadmium, lead, copper, zinc: results from a field survey in Cd-polluted areas in Japan. Part II: Fecal excretion of the heavy metals. Keio J Med 30:71–82.

Jenkins D, Russell LL. 1994. Heavy metals contribution of household washing products to municipal wastewater. Water Environ Res 66:805–813.

Johansen P, Asmund G, Riget F. 2004. High human exposure to lead through consumption of birds hunted with lead shot. Environ Pollut 127:125–129.

Kjellström T. 1979. Exposure and accumulation of cadmium in the human. Trace Subst Environ Health Part I: Ecological Cycling. (Nriagu JO, ed). New York: Wiley, 236–254.

Kjellström T. 1978. Exposure and accumulation of cadmium in populations from Japan, the United States, and Sweden. Environ Health Perspect 28:169–197.

Kjellström T, Borg K, Lind B. 1978. Cadmium in feces as an estimator of daily cadmium intake in Sweden. Environ Res 8:321–353.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

LeBlanc A, Dumas P, Lefebvre L. 1999. Trace element content of soil samples from the boreal forest in Canada. Canadian Centre for Occupational Health and Safety. Available: http://www.inchem.org/documents/jecefa/jcevacl/jecl037.htm [accessed 11 May 2005].

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.

Lauwerys RR, Bernard AM, Roels HA, Buchet J-P. 1994. Cadmium: exposure markers as predictors of nephrotoxic effects. Clin Chem 40:191–1934.