Rodentolepis microstoma isolated from different species of Sigmodontinae rodents (Rodentia: Cricetidae) in the Cuenca del Plata, Argentina: Morphological aspects and molecular characterization

Natalia Beatriz Guerreiro Martins a,*, María del Rosario Robles a,1, Marcelo Knoff b, Graciela Teresa Navone a, Rocío Callejón c

a Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Bv 120 e/ 60 y 64, (1900). CCT- CONICET- La Plata, Universidad Nacional de La Plata, Buenos Aires, Argentina
b Laboratório de Helmíntos Parasitos de Vertebrados, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Mangueirão, Rio de Janeiro, Brazil
c Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain

ABSTRACT

The purpose of this paper was to study specimens of the genus Rodentolepis isolated from eight species of Sigmodontinae rodents (Rodentia: Cricetidae) from six provinces in the Cuenca del Plata, Argentina, based on morphological, morphometric and molecular characteristics (ITS1 rDNA and cox1 mtDNA). The genetic distances among studied specimens and other Hymenolepididae from rodents available in the GenBank were analyzed and phylogenetic inferences were provided. A total of 955 specimens of Sigmodontinae rodents were examined from seven localities of six provinces in the Cuenca del Plata region in Argentina. Tapeworms were removed from the rodents’ small intestines. Conventional studies were used for the morphological and molecular analysis. Specimens of R. microstoma were identified. An amended diagnosis and detailed morphological description of this species is provided. The molecular analyses showed that the specimens studied form the same clade as that of R. microstoma previously studied from other hosts and regions. The genetic polymorphisms of R. microstoma observed corresponded to different groups of species hosts and regions. Moreover, eight species of sigmodontine rodents and 33 localities from the Cuenca del Plata region in Argentina constitute new host and geographical records. This study shows the importance of using integrative taxonomic approaches that combine morphological and molecular characters to understand biological diversity. Moreover, the discovery of R. microstoma in humans suggests the importance of further studies on this zoonotic cestode. This study provides important data on the taxonomy and distribution of R. microstoma to advance knowledge of the transmission dynamics of this parasite.

Keywords: Hymenolepididae, Rodentolepis, Rodents, Argentina, Taxonomy

1. Introduction

The Hymenolepididae (Cyclophyllidea) are the family with the highest species richness recorded among the Cestoda, with more than 920 valid species (Czapinski and Vaucher, 1994; Mariaux et al., 2017). This family includes tapeworms that parasitize mostly birds and mammals. Among mammals, most of the genera and species occur in Soricomorpha, Chiroptera, and Rodentia (e.g., Vaucher, 1971; Czapinski and Vaucher, 1994; Georgiev et al., 2006; Mariaux et al., 2017). Among rodents, the families with the most frequently recorded host species of Hymenolepididae are Muridae, Geomyidae, Sciuridae, Cricetidae, and Spalacidae (Gardner and Schmidt, 1988; Makarikov and Tkach, 2013; Makarikov et al., 2013, 2015; Gardner et al., 2014). Phylogenetic hypotheses on Cyclophyllidea have been proposed based on partial genes of mitochondrial DNA (cox1) and on regions of nuclear ribosomal DNA (12S, 18S, and ITS2) (Von Nickisch-Rosenegk et al., 1999; Foronda et al., 2004; Tandon et al., 2011; Sharma et al., 2016). Also, morphological and molecular analyses have been provided for various genera and species of Hymenolepididae (e.g., Hoberg et al., 2001; Olson et al., 2001; Georgiev et al., 2006; Haukisalmi et al., 2010). In addition, a hypothesis about the relationship of mammalian hymenolepidids based on partial 28S rDNA sequencing showed a pronounced morphological variation

* Corresponding author.
E-mail address: natalia_gmartins@cepave.edu.ar (N.B. Guerreiro Martins).
1 María del Rosario Robles and NBGM contributed equally to this paper and should be considered as co-first authors.

https://doi.org/10.1016/j.ijppaw.2022.07.002
Received 23 May 2022; Received in revised form 8 July 2022; Accepted 9 July 2022
Available online 11 August 2022
2213-2244/© 2022 Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
among parasites infecting unrelated hosts which form a monophyletic group (Haukisalmi et al., 2010).

Some species of hymenolepidids are important for public health, particularly the species that parasitize rodents, such as *Hymenolepis diminuta* (Rudolphi, 1819), *Rodentolepis nana* (Von Siebold, 1852), and *Rodentolepis microstoma* (Dujardin, 1845), capable of infecting humans (Macnish et al., 2003; Marangi et al., 2003; Nkouawa et al., 2016). Around six hymenolepidid genera from rodents have been reported in North and South America (e.g., *Arostrilepis* Mas-Coma and Tenora, 1997, *Hobergia* Gardner, Dursahinham, Campbell and Racz, 2020, *Hymenandra* Smith, 1954, *Hymenolepis* Weiland, 1858, *Monozygoteus* Czapinski and Vaucher, 1994, *Rodentolepis* Spasski, 1954), of which 17 species of the genus *Rodentolepis* have been reported parasitizing *Cricetidae*, two from South America, and only one from Argentina (Barker, 1915; Rider and Macy, 1947; Neiland and Senger, 1952; Schiller, 1952; North and South America (e.g., Redford and Eisenberg, 1992; Patton et al., 2015; Wilson et al., 1997). Later, specimens assigned to *Rodentolepis* have also been recorded for different sigmodontine rodents (Cricetidae) in Brazil: *Akodon cursor* (Winge, 1887), *Akodon montensis* Thomas, 1913 and *Necromys lasiurus* (Lund, 1840) (e.g., Rego, 1967; Simões et al., 2011; Costa et al., 2019).

Sigmodontine rodents are endemic to the American continent, with a wide environmental and geographical distribution and a great diversity of diets (Redford and Eisenberg, 1992; Patton et al., 2015; Wilson et al., 2017). This group of rodents includes around 110 species grouped in 40 genera in Argentina (Gallari et al., 1996; Pardiñas et al., 2009; Panisse et al., 2017). The species with the widest geographic and host range are *R. nigrovittatus* and *R. microstoma*, parasitizing several genera of Muridae and Cricetidae, such as *Apodemus*, *Arvicachus*, *Mastomys*, *Mesocricetus*, *Microtus*, *Mus*, *Rattus*, and *Sigmodon* (e.g., Litchfield, 1963; Cunningham and Olson, 2010; Gomez-Puerta and Valdivia-Carrera, 2018). *Rodentolepis akodontis* Rege (1967) and *R. srivastavai* Rege (1970) have also been recorded for different sigmodontine rodents (Cricetidae) in Brazil: *Akodon cursor* (Winge, 1887), *Akodon montensis* Thomas, 1913 and *Necromys lasiurus* (Lund, 1840) (e.g., Rego, 1967; Simões et al., 2011; Costa et al., 2019).

The purpose of this paper was to study specimens of the genus *Rodentolepis* isolated from eight species of Sigmodontinae rodents (Rodentia: Cricetidae) from six provinces included in the Cuenca del Plata region, Argentina, based on morphological and molecular characteristics. For the molecular characterization, nuclear Internal Transcribed Spacer 1 (ITS1) and mitochondrial partial gene cytochrome c oxidase 1 (cox1) sequences were used. The genetic distances among the specimens studied and other Hymenolepididae from rodents available in the GenBank were analyzed and phylogenetic inferences were provided.

2. Materials and methods

2.1. Study area and host sampling

A total of 955 Sigmodontinae rodents were examined: 251 specimens of *Akodon azarae* (Fischer, 1829) from 18 localities, 16 specimens of *Akodon dolores* Thomas, 1916 from one locality, 259 specimens of *Akodon montensis* from six localities, 15 specimens of *Akodon philipli* Pardiñas, D’Elia, Cirigoli y Suarez, 2005 from one locality, 112 specimens of *Necromys lasiurus* from nine localities, 10 specimens of *Oxymycterus mitionalis* Sanborn, 1931 from two localities, 260 specimens of *Oxymycterus rufus* from 17 localities, and 32 specimens of *Thaptomys nigrita* (Lichtenstein, 1829) from seven localities, of six provinces in the Cuenca del Plata region in Argentina (Table 1). Rodents were obtained and identified by several collaborators between 1994 and 2018 (see Acknowledgments).

Province	Locality	Latitude (S)	Longitude (W)
Buenos Aires	Arana	35° 00′25.00″	57° 54′34.00″
Buenos Aires	Laguna de Chacócomis	35° 32′38.52″	58° 04′46.47″
Buenos Aires	Arroyo de las Brusquitas	38° 14′05.97″	57° 46′49.98″
Buenos Aires	Cerro de la Gloria	36° 01′00.00″	57° 26′00.00″
Buenos Aires	La Bandalera	34° 55′45.47″	57° 42′58.39″
Buenos Aires	Olavarría	36° 58′34.00″	60° 14′13.00″
Buenos Aires	Parque Provincial Ernesto	38° 04′45.55″	62° 00′19.04″
Buenos Aires	Pergamino	35° 50′14.00″	58° 05′23.00″
Buenos Aires	Punta Indio	35° 16′00.00″	57° 15′00.00″
Buenos Aires	Reserva Natural de Hudson	34° 44′00.00″	58° 12′00.00″
Buenos Aires	Reserva Selva Marginal de Punta	34° 47′30.00″	58° 00′05.00″
Buenos Aires	Estancia San Juan Porrial	27° 42′00.00″	57° 12′14.00″
Buenos Aires	Estación Biológica Corrientes (ex Caprím)	27° 33′00.62″	58° 40′52.33″
Buenos Aires	Finca La Adelaida, Laguna Paíva	27° 28′41.76″	58° 44′11.41″
Buenos Aires	Reserve Santo Domingo 20 km al N de Paso de los Libres	29° 36′14.27″	58° 56′50.63″
Buenos Aires	Estancia El Cimarrón, RP 118, km 169	27° 41′10.73″	57° 12′41.91″
Entre Ríos	Arroyo Feliciano	30° 58′21.00″	59° 41′49.00″
Entre Ríos	Arroyo Caraballo	32° 05′06.00″	58° 10′30.00″
Entre Ríos	Estancia Santa Ana de Carpichorí	30° 47′39.25″	58° 38′51.10″
Entre Ríos	Villa Elisa	32° 09′14.73″	58° 20′10.40″
Formosa	Estación de Animales Silvestres Guaycoles, Ruta Nacional 11, km 1201	25° 58′57.80″	58° 10′04.00″
Formosa	Reserva El Bagual	26° 18′21.96″	58° 49′53.34″
Formosa	Río Bermejo	26° 19′45.00″	59° 06′43.00″
Misiones	2 km abajo desembocadura Paranaí Guazú	26° 40′39.30″	54° 50′08.20″
Misiones	Campo Anexo M. Belgrano, INTA, San Antonio	26° 02′54.21″	53° 46′32.40″
Misiones	Cuna Pirú	27° 05′17.00″	54° 57′09.00″
Misiones	Estancia Santa Inés	27° 31′53.69″	55° 52′30.48″
Misiones	Parque Provincial Piriaito	26° 25′40.07″	53° 50′38.26″
Misiones	Parque Provincial Uruguá-i	25° 51′25.58″	54° 09′59.87″
Misiones	Refugio Moconá	27° 08′29.04″	53° 55′40.40″
Misiones	Reserva de Vida Silvestre Uruguá-i, Fundación Vida Silvestre	25° 58′32.29″	54° 07′00.08″
Santa Fe	Olivos	32° 34′00.00″	60° 51′00.00″

2.2. Ethics statement

The research was conducted according to Argentine laws. Sample collection was carried out during fieldwork under official permission. This study was conducted in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institute of Health. Rodent specimens were collected following the procedures and protocols approved by national laws (National Animal Protection law 14.346 and references in the provincial permits), and the ethical recommendations for Research on Laboratory Animals, Farm and Obtained from Nature of the National Council of Scientific and Technical Research (CONICET), and subsequently approved by the National Agency for the Promotion of Science and Technology of Argentina (ANPCYT). No endangered species were involved in this study.
Rodent specimens were deposited in the Mammalogy Collection of the Centro Nacional Patagónico (CNP), Puerto Madryn, Chubut, and in the Mammalogy Collection of the Museo de La Plata (MLP), La Plata, Buenos Aires.

2.3. Morphological analysis

Viscera were studied under a stereomicroscope (Olympus SZ61-TR). Cestode specimens were removed from the rodent’s small intestines, fixed in 10% formalin and preserved in 70% ethanol. Some specimens were stained with hydrochloric carmine, dehydrated in a graded ethanol series, cleared in eugenol, and mounted in natural Canada balsam. In addition, serial histological sections of two specimens were made for a complete study of the internal morphology. One specimen was dried using the critical point method, examined and photographed by scanning electron microscopy (SEM) (JEOL, JSM 6360 LV). Specimens were studied and photographed using a polarized light microscope (Olympus BX51®), and drawings were made with the aid of a drawing tube.

Types of Rodentolepis akodontis (CHIOC 29.316a-b, 29.317, 29.318a-c, 29.319, 29.320) were studied with a Carl Zeiss Axiophot light microscope equipped with a Canon Power Shot S80 camera at the Coleção Helmintológica do Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.

The specimens identified as Rodentolepis cf. akodontis from previous surveys such as Guerreiro Martins et al. (2014) and Panisse et al. (2017) were restudied.

Table 2 shows measurements of specimens of Rodentolepis microstoma and other species of Rodentolepis recorded in Sigmodontinae roidents (R. srivastavai and R. akodontis) as follows: mean, standard deviation, and range in parentheses. All measurements are given in millimeters (mm) unless otherwise indicated. The scales of Figs. 1 and 2 are given in micrometers (μm).

Voucher specimens were deposited in the Helminthological Collection of Museo de La Plata (MLP-He), La Plata, Buenos Aires province.

2.4. Molecular analysis

2.4.1. DNA extraction, amplification, and sequencing

Fourteen specimens studied morphologically from six rodent species were stored in 96% ethanol until used for DNA extraction: A. azarae (n = 2), A. montensis (n = 4), N. lasiurus (n = 3), O. misionalis (n = 1), O. rufus (n = 3), and T. nigrita (n = 1).

Genomic DNA from individual Hymenolepididae was extracted and purified using the Wizard® Genomic DNA Purification Kit (Promega), according to the manufacturer’s protocol for tissues. Quality of extraction was assessed using 0.8% agarose gel electrophoresis and ethidium bromide staining.

The ITS1 rDNA region was PCR-amplified using the forward F3 (5’-GGCGAAGGATCATCATTACACCGTTC 3’) and the reverse R3 (5’-GCTCGACTCTTCTGATCCAGCAG 3’) (Macnish et al., 2002), and the cox1 mtDNA partial gene region was PCR-amplified using the forward pr-a (5’-TGTTTTTTTGACATCTTGGTTTTTTA 3’) and the reverse pr-b (5’-AGAAGAAGGATGATAAGGGCAGCAG 3’) (Okamoto et al., 1997). The amplification conditions were: 95 °C for 15 min (initial denaturation), 35 amplification cycles (95 °C for 30 s, 57 °C for 25 s, 72 °C for 1 min), followed by final extension at 72 °C for 7 min for ITS1 region and 94 °C for 3 min (initial denaturation), 30 amplification cycles (94 °C for 50 s, 42 °C for 1 min 30 s, 72 °C for 1 min 30 s), followed by final extension at 72 °C for 7 min for cox1. The PCR was performed in a Multigene Labnet Internation, Inc. thermocycler and the products were checked on ethidium bromide-stained 1.5% Tris-Borate-EDTA (TBE) using 0.8% agarose gels electrophoresis and examined by UV transillumination. All PCR products were purified and sequenced in both directions using amplifying primers (Macrogen, Seoul, Korea).

2.4.2. Sequence alignment

Molecular analyses were performed on the rDNA (ITS1) and mtDNA (cox1) sequences and aligned using the MUSCLE alignment method included in MEGA, version 7.0 (Kumar et al., 2016). Additional Hymenolepididae species sequences from the National Centre for Biotechnology Information (NCBI) GenBank database were incorporated into the alignments (Table 3).

The nucleotide sequences of the protein-coding genes (cox1) were first translated into amino acids to confirm that they lacked internal stop codons and to predict cestode protein. To assess the similarity among the marker sequences of specimens analyzed in the present study and other Hymenolepididae species, the number of base differences per sequence with respect to those under investigation was assessed using the number of differences method of the MEGA 7 program version 7.0 (Kumar et al., 2016).

2.4.3. Comparative sequences analyses and phylogenetic inferences

Since we were looking to measure the diversity and conservancy between a set of sequences, considering that rDNA (ITS1) dataset sequences present a substantial length variation which compromises inferences of positional homology, an unrooted tree is proposed. Nevertheless, we propose a rooted tree for the mtDNA (cox1) dataset, using Hymenolepis diminuta, Arostripletis horrida, Coronacanthus spp. and Staphylocystoides spp. as outgroups (Table 3).

Phylogenetic inferences were performed by Maximum Likelihood (ML) using the PHYML package from Guindon and Gascuel (2003) and Bayesian inferences (BI) were generated by MrBayes, version 3.2.6 (Ronquist and Huelsenbeck, 2003). Each dataset was analyzed separately, and both mitochondrial and ribosomal datasets were combined into a total evidence dataset. Modeltest was employed to compute the best partitioning scheme, as well as the best nucleotide substitution models for each partition (Posada, 2008). Models of evolution were chosen for subsequent analysis according to the Akaika Information Criterion (Posada and Buckley, 2004).

For the study of the dataset containing the concatenation of two markers (ITS1 and cox1), analyses based on BI were partitioned by gene, and models for individual genes within partitions were those selected by the MrBayesTest. For ML inference, best-fit nucleotide substitution models included the general time-reversible model with gamma-distributed rate GTR + G (ITS1), the general time-reversible model with gamma-distributed rate variation, and a proportion of invariable sites GTR + I + G (cox1 mtDNA) and general time-reversible models with gamma-distributed rate GTR + +G (concatenated markers). Support for the topology was examined using bootstrapping (heuristic option) (Felsenstein, 1985) over 1000 replications to assess the relative reliability of clades. The commands used in MrBayes for BI were nst = 6 with gamma rates (ITS1), nst = 6 with invgamma rates (cox1) and nst = mixed (concatenated phylogenetic trees).

Bayesian posterior probabilities (BPP) comprise the percentage converted for BI. The standard deviation of split frequencies was used to determine whether the number of generations completed was sufficient. Each analysis was run for 10 million generations, and the tree was sampled every 500 generation. Trees from the first million generations were discarded based on an assessment of convergence. Burn-in was determined empirically by examination of the log likelihood values of the chains. After eliminating the first million trees as “burn-in”, we constructed a 50% majority-rule consensus tree, with nodal values representing the probability (posterior probability) that the recovered clades exist, given the aligned sequence data. We accepted a clade in the Bayesian tree at around 70% posterior probability.

3. Results

3.1. Morphological analysis

Specimens of R. microstoma based on morphological characteristics were identified from the eight species of sigmodontine rodents, being the first records for these host species (number of recovery cestodes of
Table 2
Morphometrical characteristics of *Rodentolepis microstoma* and of the species of *Rodentolepis* recorded in Sigmodontinae rodents.

Reference	Rodentolepis akodontis	Rodentolepis srivastavai	Rodentolepis microstoma
Host	Akodon cursor	Necromys lasiurus	Mus musculus
	(–A. arviculoides)	(=Zygodontomys pixuna)	(natural host)
Countries	Brazil	Brazil	Spain and France
Site of Infection	Small intestine	Small intestine	Bile duct and small intestine
Number of	24	25-29	25 (23-29)
specimens		25 (22-26)	24-26
Rostellum length	0.15	0.05	0.05-0.07
	(0.36-0.86)	(0.04-0.06)	(0.05-0.07)
Rostellum width	0.07	0.05	0.02-0.05
	(0.04-0.05)	(0.05-0.09)	(0.03-0.05)
Scolex length	0.30	0.25	0.11-0.15
Scolex width	0.36	0.21	0.20-0.28
	(0.07-0.23)	(0.12-0.30)	(0.13-0.30)
Sucker maximum	0.08	0.07	0.08-0.13
diameter	(0.05-0.11)	(0.05-0.08)	(0.08-0.11)
Sucker minimum	0.08	0.07	0.07-0.11
diameter	(0.03-0.09)	(0.04-0.08)	(0.05-0.08)
Number of	24	26-30	25 (23-29)
rostellar hooks	0.018	0.015-0.017	0.013
	(0.015-0.020)	(0.010-0.023)	(0.014-0.016)
Length of testes	0.11	0.10	0.06-0.11
	(0.04-0.12)	(0.04-0.12)	(0.12-0.18)
Width of testes	0.09	0.08	0.05-0.11
	(0.02-0.06)	(0.02-0.06)	(0.02-0.06)
Length of cirrus	0.10	0.12	0.09-0.30
sac	(0.05-0.17)	(0.04-0.17)	(0.08-0.16)
Width of cirrus	0.03	0.05	0.04-0.09
sac	(0.02-0.05)	(0.02-0.05)	(0.03-0.04)
Eggs length	0.05	0.07	0.02-0.09
	(0.02-0.04)	(0.02-0.05)	(0.03-0.09)
Eggs width	0.05	0.06	0.05-0.07
	(0.02-0.03)	(0.02-0.03)	(0.06-0.087)
Oncosphera length	0.026	0.028	0.027-0.047
Oncosphera width	0.026	0.028	0.029-0.054

Specimens previously studied from Guerreiro Martins et al. (2014) and Panisse et al. (2017) were included. Measurements are given in millimeters.
each species host: *A. azarae*, n = 63; *A. dolores*, n = 3; *A. montensis*, n = 171; *A. philipynyi*, n = 8; *N. lasiurus*, n = 62; *T. nigrita*, n = 1; *O. misionalis*, n = 1; *O. rufus*, n = 173). Moreover, 33 localities from the Cuenca del Plata region in Argentina constitute new geographical records for the species (see Table 1).

3.1.1. *Rodentolepis microstoma* (Figs. 1 and 2)

Amended diagnosis: Cyclophyllidea, Hymenolepididae. Strobila long, craspedote, with proglottids wider than long, and in gradual maturation. Scolex with four muscular suckers. Rostellum armed with a single crown of hooks of the cricetoid type (N° = 22–31), retractable into contractile rostellar pouch. Entire worm covered with acicular filitriches (sensu Chervy, 2009). Young proglottids contain only primordia of testes. Mature proglottids containing three spherical to oval testes, arranged one poral and two aporal, are disposed aligned or in a triangle; vas deferens form an external seminal vesicle; cirrus sac ovoid, does not touch or extends beyond osmoregulatory canals, enclosing cirrus smooth and internal seminal vesicle; lobated ovary, located in the medial zone; vitelline gland compact, lobated, median; vagina located below the cirrus sac; well-developed seminal receptacle, visible even in gravid proglottids; common genital pore unilateral, dextral, near the midpoint of the margin. In gravid segments, the uterus occupies almost the entire proglottid, and contains numerous eggs. Eggs are ovoid, enclosing embryophore with polar filaments (difficult to observe) and oncosphere with embryonic hooks.

3.1.2. Taxonomic summary

Rodent hosts: *Mus musculus* Linnaeus, 1758, *Apodemus* spp. Kaup, 1829, *Mastomys* spp. Thomas, 1915, *Mus musculus* Linnaeus, 1758, *Rattus norvegicus*, *R. rattus*, *Meriones* spp. Illiger, 1811 (Muridae); *Dendromus* spp. Smith, 1829 (Nesomyidae); *Mesocricetus auratus* (Waterhouse, 1839), *Microtus* spp. Schrank, 1798, *Akodon azarae*, *A. dolores*,

![Fig. 1. Morphological features of Rodentolepis microstoma: (A, D, G, J) scolex and rostellar hooks; (B, E, H, K) mature proglottids; (C, F, I, L) egg from different host species, (A–C) Akodon; (D–F) Necromys; (G–I) Thaptomys; (J–L) Oxymycterus.](image-url)
A. montensis, A. philipmyersi, Necromys lasiurus, Thaptomys nigrita, Oxymycterus misionalis, O. rufus (Cricetidae) (Hughes, 1940; Dvorak et al., 1961; Litchford, 1963; Cunningham and Olson, 2010; Guerreiro Martins et al., 2014; Panisse et al., 2017; Panti-May et al., 2018).

New localities: see Table 1.

Voucher specimens: MLP-He 6804, 6806, 6810, 6811, 7592-7622.

Remarks: The specimens here studied show diagnostic morphological features of genus Rodentolepis and the parasitic species of American rodents are compared below (Czaplinski and Vaucher, 1994).

Rodentolepis microstoma can be separated from R. evaginata (Barker and Andrews, 1915), R. johnsoni (Schiler, 1952), R. octocoronata (Von Linstow, 1879) and R. oregonensis (Neiland and Senger, 1952) by the number of rostellar hooks (22–31 vs. 10, 10, 8, 10, respectively). The specimens of R. microstoma studied have scolex smaller than R. nana (Von Siebold, 1852) and R. octocoronata (0.07–0.23 vs. 0.30–0.40, 0.39, respectively). Moreover, R. microstoma has the cirrus sac longer than R. nana and R. johnsoni (0.04–0.17 x 0.02–0.05 vs. 0.05–0.07 x 0.02–0.025, 0.11 x 0.04, respectively), and is smaller than R. octocoronata (0.04–0.17 x 0.02–0.05 vs. 0.30 x 0.37). Rodentolepis microstoma can be separated from R. evaginata, R. nana, R. octocoronata, R. oregonensis and R. srivastavai (Rego, 1970) by the size of the eggs (Barker, 1915; Neiland and Senger, 1952; Schiller, 1952; Wardle and McLeod, 1952; Rego, 1970; Sutton, 1974).

Although some features, e.g., cirrus sac, size of eggs, length and shape of hooks, may separate R. microstoma and R. srivastavai, these should be reviewed in detail, (Rego, 1970). In addition, R. microstoma and R. akodontis show a similar morphology of scolex, length and shape of hooks, number of rostellar hooks, size of suckers, size of cirrus sac and eggs (e.g., Rego, 1967; Casanova et al., 2001; Cunningham and Olson, 2010; Gomez-Puerta and Valdivia-Carrera, 2018).

3.2. Molecular analysis

Nucleotide sequence data of the ITS1 rDNA fragment and cox1 partial sequences of mtDNA from R. microstoma are reported and are available in GenBank (GenBank accession number) (Table 3).

The ITS1 rDNA region revealed 13 haplotypes (ON005424–ON005435): these sequences were 350 base pairs (bp) (exclusive of the primers) and their G + C content was 50.9–52.8%. The multiple alignment of 38 ITS1 sequences (including sequences of species representing members of the genus Rodentolepis from rodents and H. sapiens, and H. diminuta from Rattus spp. and Lemur catta available in GenBank, Table 3) shows a dataset of 559 characters.

The intra-specific similarity observed in ITS1 sequences of R. microstoma from Argentina ranged from 94.91 to 99.74% (Table 4). Similar values of intra-specificity are found among other species of hymenolepidids. For the genus Rodentolepis, the minimum values of inter-specific similarity were observed between R. microstoma (T. nigrita) and R. nana (80.28%) and the maximum between R. microstoma (O. rufus) and R. nana (81.44%). Between different genera, the minimum and maximum values of inter-specific similarity were observed in H. diminuta vs. R. microstoma (N. temchuki) (53.59%) and H. diminuta vs. R. microstoma (A. azarae) (55.20%), respectively (Table 4).

cox1 mtDNA encoding gene revealed 12 haplotypes (ON005424–ON005435): these sequences were 350 base pairs (bp) (exclusive of the primers) and their G + C content was 32–33.5%. The multiple alignment of 43 cox1 partial sequences (including sequences of species representing members of the genus Rodentolepis and H. diminuta from Rattus spp. and H. sapiens and other outgroups available in GenBank (Table 3)) yields a dataset of 350 characters.

The intra-specific similarity observed in cox1 sequences of R. microstoma from Argentina ranged from 88 to 99.74% (Table 5). Similar values of intra-specificity are found among other species of hymenolepidids. For the genus Rodentolepis, the minimum values of inter-specific similarity were observed between R. microstoma (A. montensis) and R. nana (81.10%) and the maximum between R. microstoma (Australia, Portugal, Spain) and R. nana (85.45%). Between different genera, the minimum and maximum values of inter-specific similarity were observed in H. diminuta vs. R. microstoma (A. montensis) (77.97%) and H. diminuta vs. R. nana (82.41%), respectively (Table 5).

Phylogenetic trees based on ITS1 rDNA provided robust phylogenetic resolution among Hymenolepididae taxa studied, regardless of the inference method (ML and BPP). The topology showed the existence of two main clades within genus Rodentolepis: Clade 1 including R. microstoma, with three subclades, and Clade 2 including R. nana and...
Table 3
Sequences of Rodentolepis from rodents and other Hymenolepididae species used for phylogenetic analyses (GenBank Accession numbers).

Species	Host species/Geographical origin	Code	Gene/Region	GenBank Accession numbers
Rodentolepis microstoma This paper				
Akodon montensis/		RmC18	ITS1	ON000414
Miones		RmC19		ON000413
Thaptomyus nigrita/Miones		RmC41		ON000411
Oxymycterus misionalis/Miones		RmC57		ON000410
Necromys		RmC70		ON000407
lasiuras		RmC73		ON000408
Miones		RmC74		ON000409
Akodon azarae/		RmC76		ON000405
Buenos Aires		RmC77		ON000406
Oxymycterus		RmC79		ON000402
rufus/Buenos Aires		RmC80		ON000403
Aires		RmC82		ON000404
Rodentolepis microstoma	Homo sapiens/Australia			
		Rm1		AY221156
		Rm2		AY221158
		Rm3		AY221160
		Rm4		AY221161
		Rm5		AY221162
		Rm6		AY221163
		Rm7		AY221164
		Rm8		AY221167
		Rm10		AY221155
		Mus musculus/	Rm9	JN258040
		Canary Islands	Rm11	JN258040
		Mus spretus/	Rm12	AY221165
Rodentolepis nana	Homo sapiens/Asia			
		Rn1		MI629970
		Rn2		MI629973
		Rn3		AF611124
		Rn4		KJ917784
		Rn5		HM447238
		Rn6		MI629972
		Rn7		MI629969
		Rn8		MI629968
		Rn9		MI629967
Rodentolepis fraterna	Rattus rattus/Spain			
		Rf		JN258041
Rodentolepis microstoma This paper	Akodon montensis/	RmC18	Car1	ON005434
	Miones	RmC34		ON005433
	Thaptomyus nigrita/Miones	RmC41		ON005432
	Oxymycterus misionalis/Miones	RmC57		ON005431
	Miones	RmC70		ON005430
	lasiuras	RmC73		ON005429
	Miones	RmC74		ON005425
	Akodon azarae/	RmC76		ON005424
	Buenos Aires	RmC77		ON005435
	Oxymycterus	RmC79		ON005428
	rufus/Buenos Aires	RmC80		ON005426
	Aires	RmC82		ON005427
	Mus musculus/Peru	Rm1		MG570384
	Mus musculus/China	Rm2		LO63188
	Mus musculus/Japan	Rm3		AB494473
	Rodentolepis microstoma	Rn1		AB494471
		Rn2		AB494472
		Rn3		HM447234
		Rn4		HM447235

Table 3 (continued)

Species	Host species/Geographical origin	Code	Gene/Region	GenBank Accession numbers
Homo sapiens/Mexico				
Mus sp./Mexico		Rn5		HM447238
Mus musculus/China		Rn6		LO63187
Rattus rattus/India		Rn7		KU821727
Rattus norvégicus/China		Rn8		KY079336
Rattus sp./Egypt		Rn9		GU431302
Rattus sp./Egypt		Rn10		GU431303
Homo sapiens/Mexico		Rn11		GU431304
Rodentolepis fraternal	Rattus rattus, Mus musculus/Spain			
		Rf		JN258053

Outgroups

Hymenolepis diminuta	Rattus norvégicus/South Africa	Hd1	ITSI	MG322245
Hymenolepis diminuta	Rattus norvégicus/United State	Hd2		MG322244
Hymenolepis diminuta	Rattus norvégicus/Poland	Hd3		MG322240
Hymenolepis diminuta	Rattus norvégicus/China	Hd4		MG322241
Acrostrigelis hortensis	Clethrionomys glosaeus/sus/	Ah1		DQ340976
Coronacanthus magnithamatus	Clethrionomys glosaeus/Lithuania	Ah2		DQ340977
Coronacanthus vasculiferi	Neomys fodiens/Bulgaria	Cv		KJ710328
Coronacanthus integrus	Staphylocystoides guloeri	Ci		KJ710329
Staphylocystoides parissima	Sorex monticolus/USA	Sp		KC789840

R. fraterna with strong support of branches (100% ML bootstrap values BV and Bayesian posterior probability BPP). Furthermore, within Clade 1 were observed: subclade 1a including 12 haplotypes from H. sapiens from Australia, Mus musculus from Canary Islands and Mus spretus from Portugal (100% ML BV and BPP), subclade 1b including haplotypes of O. rufus from Buenos Aires province and O. misionalis from Misiones province (99% ML BV and BPP) and subclade 1c with a polytomy of three branches (100% ML BV and 100% BPP) including haplotypes of A. montensis from Misiones province (100% ML BV and 73% BPP), haplotypes of N. lastiara and T. nigrita from Misiones province (100% ML BV and BPP), and haplotypes of A. azarae from Buenos Aires province (99% ML BV and 85% BPP). Subclades including R. microstoma from Argentina (b and c) form a group separate from subclade 1a including those of other geographical origin (100% ML BV and 84% BPP). In addition, a separate group is observed formed by H. diminuta as an outgroup (100% ML BV and 100% BPP) [Fig. 3].
Table 4
Intra-specific and inter-specific similarity observed in ITS1 partial sequences in *Rodentolepis* and *Hymenolepis* species isolated from different host species and geographical origin.

Rodentolepis microstoma (Oxymycterus rufus)	Rodentolepis microstoma (Oxymycterus misionalis)	Rodentolepis microstoma (Akodon azarae)	Rodentolepis microstoma (Akodon montensis)	Rodentolepis microstoma (Necromys temchuki)	Rodentolepis microstoma (Thaptomys nigrita)	Rodentolepis nana	Hymenolepis diminuta		
Rodentolepis microstoma (Oxymycterus rufus)	98.71%								
Rodentolepis microstoma (Oxymycterus misionalis)	98.77%								
Rodentolepis microstoma (Akodon azarae)	94.91%	95.09%	97.58%						
Rodentolepis microstoma (Akodon montensis)	96.89%	97.34%	97.02%	99.61%					
Rodentolepis microstoma (Necromys temchuki)	96.05%	96.37%	96.89%	97.93%	99.74%				
Rodentolepis microstoma (Thaptomys nigrita)	95.40%	95.73%	95.05%	97.09%	98.89%	–			
Rodentolepis nana	81.44%	80.86%	80.77%	80.47%	80.54%	80.28%	80.58%	99.78%	
Hymenolepis diminuta	53.63%	53.98%	55.20%	54.20%	53.59%	54.56%	54.05%	54.75%	98.95%

Table 5
Intra-specific and inter-specific similarity observed in cox1 partial sequences in *Rodentolepis* and *Hymenolepis* species isolated from different host species.

Rodentolepis microstoma (Oxymycterus rufus)	Rodentolepis microstoma (Oxymycterus misionalis)	Rodentolepis microstoma (Akodon azarae)	Rodentolepis microstoma (Akodon montensis)	Rodentolepis microstoma (Necromys temchuki)	Rodentolepis microstoma (Thaptomys nigrita)	Rodentolepis nana	Hymenolepis diminuta	
Rodentolepis microstoma (Oxymycterus rufus)	98.71%							
Rodentolepis microstoma (Oxymycterus misionalis)	94.29%							
Rodentolepis microstoma (Akodon azarae)	89.61%	90.29%	97.58%					
Rodentolepis microstoma (Akodon montensis)	88.29%	89.86%	88%	99.61%				
Rodentolepis microstoma (Necromys temchuki)	92.57%	91.33%	89.05%	88%	99.74%			
Rodentolepis microstoma (Thaptomys nigrita)	92.47%	92.86%	89.43%	88.29%	96.86%	–		
Rodentolepis nana	89.81%	88.86%	89.23%	86.67%	90.35%	91.43%	99.62%	
Hymenolepis diminuta	82.36%	82.60%	83.48%	81.10%	83.65%	84.10%	85.45%	98.65%
The analysis of the dataset based on cox1 mtDNA showed partial congruence with respect to the phylogenetic relationships between *Rodentolepis* spp. based on dataset ITS1. Phylogenetic analysis provided robust phylogenetic resolution among Hymenolepididae taxa, regardless of the inference method (ML and BPP). The topology showed the existence of two main clades within genus *Rodentolepis*: Clade 1 including *R. microstoma*, with five subclades, and Clade 2 including *R. nana* with strong support of branches (100% ML bootstrap values BV and Bayesian posterior probability BPP). Furthermore, within Clade 1 were observed: subclade 1a including 3 haplotypes from *M. musculus* from Peru, China, and Japan (100% ML BV and BPP); subclade 1b including haplotypes of *O. rufus* from Buenos Aires province and *O. misionalis* from Misiones province (80% ML BV), and 1c with a polytomy of three branches including a haplotype of *A. montensis* from the province of Misiones (100% ML BV and BPP); haplotypes of *A. azarae* from the province of Buenos Aires and *A. montensis* from the province of Misiones (100% ML BV and BPP); and haplotypes of *N. lasiurus* and *T. nigrita* from the province of Misiones. Subclades including *R. microstoma* from Argentina (b y c) form a separate group of subclade 1a including those of other geographical origin (100% ML BV and BPP). In addition, a separate group is formed including *H. diminuta* and other Hymenolepidids as an outgroup (100% ML BV and BPP) (Fig. 4).

The concatenated dataset of ribosomal (ITS1) and mitochondrial (cox1) gene sequences included 931 aligned sites and only 22 taxa (outgroups not included for phylogenetic analysis). Phylogenetic analyses of this dataset yielded a tree with branches that were strongly supported (100% ML BV and 92–100% BPP). Phylogenetic inferences match the phylogenetic results based on separate markers. Thus, two main clades were observed: Clade 1 including *R. microstoma* and Clade 2 including *R. nana*. Clade 1 includes the same clades as shown in ITS1 and the cox1 trees, but the relation among them is slightly different, since subclade 1b forms a sister group with a part of subclade 1c (100% ML bootstrap values BV and BPP) (Fig. 5).

4. Discussion

Rodentolepis microstoma was first described as *Taenia microstoma* by Dujardin (1845) from bile ducts of mice, and was later transferred to the genus *Hymenolepis* Weinland, 1858 (Blanchard, 1891). Later, Spasskii (1954) in a revision of the Hymenolepididae family, transferred *H. microstoma* again to the genus *Rodentolepis*. Since Schmidt (1986) considered *Rodentolepis* as synonymous with *Vampirolepis* Spasskii, 1954 genus, a new combination, *Vampirolepis microstoma*, was proposed. In the last taxonomic revision of the Hymenolepididae family, Czaplinski and Vaucher (1994) considered the genus *Rodentolepis* as valid.

Rodentolepis microstoma is recorded in America, Africa, Europe, and Asia from a wide range of rodent genera (e.g., *Apodemus*, *Arvicanthis*, *Dendromys*, *Leggada*, *Mastomys*, *Meriones*, *Mesocricetus*, *Microtus*, *Mus*, *Promomys*, *Rattus*, and *Sigmoidon*) (Dvorak et al., 1961; Litchford, 1963; Hickman, 1964; Casanova et al., 2001). *Rodentolepis microstoma* infection in humans feces in Australia suggests the possibility of a potential zoonosis (Macnish et al., 2003).

Mature tapeworms occur in the small intestine; however,
R. microstoma was recorded on several occasions in the bile duct of the mammalian host (e.g., Cunningham and Olson, 2010; Gomez-Puerta and Valdivia-Carrera, 2018). Litchford (1963) showed that this species can also parasitize the mouse, hamster, and rat duodenum. In the present study, specimens of host species were found in the small intestine, mainly in the duodenum.

The morphometric characters of *R. microstoma* provided by different studies agree with the specimens examined in this study (e.g., scolex size, suckers, proglottids, testes, cirrus sac, eggs). The range of number of rostellar hooks was wider in the present survey at 22–31 than the ranges recorded previously of 23–29 by Casanova et al. (2001), 22–26 by Cunningham et al. (2010), 24–26 by Gomez-Puerta and Valdivia-Carrera (2018). On the other hand, some morphologically close species, such as *R. srivastavai* and *R. akodontis*, show overlapping hook number ranges (26–30 and 24, respectively) (Rágo, 1967, 1970). This data must be reviewed due to the frequent loss of hooks during recovery and study of the specimens, which may indicate a greater or complete overlap of those ranges.

In addition, some minimum variations in size and arrangement of testes were observed among the specimens of *R. microstoma* from different host genera, as well as the size of the eggs and cirrus sac (crossing or not crossing excretory canals). Thus, the disposition of the testes can be presented as a polymorphic character, as is suggested in the present paper.

These observations show phenotype plasticity since *R. microstoma* occurs in a wide range of host species and areas. Particularly, in this study, morphological variations are observed in *R. microstoma* among the eight species of Sigmodontinae rodents and 33 localities of Argentina, expanding their host and geographic distribution, and morphometrical features from previous studies (Table 2).

Originally, the surveys of Guerreiro Martins et al. (2014) and Panisse et al. (2017) assigned the same specimens studied in the present paper to *Rodentolepis cf. akodontis*. However, the morphological revision of these specimens and several others indicated the presence of phenotypic variability and their identification as *R. microstoma*. In addition, the type specimens of *R. akodontis* were also reviewed and these could not be separated from *R. microstoma* either (see Rágo, 1967; Casanova et al., 2001; Cunningham and Olson, 2010; Gomez-Puerta and Valdivia-Carrera, 2018). Consequently, the validity of *R. akodontis* as a full species is questioned, and a full review should be made. Nevertheless, considering the poor state of conservation of type specimens, neotypes should be designed, and the species *R. akodontis* treated as inquirenda.

The molecular analyses showed that the specimens studied form a same clade with *R. microstoma* previously studied from other hosts and regions (ITS: *H. sapiens* form Australia, *Mus* spp. from Canary Islands and Portugal; cox1: *Mus* spp. from Peru, China, and Japan). The specimens form 3 subclades (Clade 1a-c) which correspond to different group of species hosts and regions. Specimens of *R. microstoma* from humans and Muridae distributed outside American continent form a subclade 1a, separate from the rest, and subclade 1b is the sister group of subclade 1c (ITS and cox1). Specimens of subclade 1b are parasites of *Oxymycterus* spp., and are a clade separate from the rest of Akodontini, such as the genera Akodon, Necromys and Thaptomys. Therefore, the genetic polymorphism observed of *R. microstoma* corresponds with some of the phylogenetic proposals of the hosts (D’Elía, 2003; Salazar-Bravo et al.,...
Each subclade from the ITS1 and cox1 phylogenetic trees shows percentages of robustness. The phylogenetic tree based on concatenated ITS1 and cox1 shows different relationships among some of the subclades from Argentinian specimens. This study shows the importance of using integrative taxonomic approaches that combine morphological and molecular characters to understand biological diversity. Thus, when it comes to morphologically very similar specimens, where subtle differences are observed, it can be defined whether they are part of the intraspecific variability of the species or indicate different taxa.

In addition, the discovery of *R. microstoma* in humans (Macnish et al., 2003) suggests the importance of further studies on this zoonotic cestode. This study provides significant data on the taxonomy and distribution of *R. microstoma* to advance knowledge of the transmission dynamics of this parasite.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgements

We thank Carlos Galliari, Ulyses Pardiñas, Marcela Lareschi, Juliana Notarnicola, Pablo Teta, Juliana Sanchez, Ekaterina Savchenko, Mara Urquidi, Martín de los Reyes, Agustín Abba and other collaborators for their cooperation in host collections; to Carlos Galliari and Ulyses Pardiñas for the identification of the hosts; to Micaela Rojas for collaborating with the parasitological examination. This study was funded by grants from Agencia Nacional de Promoción Científica y Tecnológica (CONICET) and Universidad Nacional de La Plata.

References

Barker, P.D., 1915. Parasites of the American muskrat (*Fiber zibethicus*). J. Parasitol. 1, 184-197.

Blanchard, R., 1891. Histoire Zoologique et Médicale des Téniaudes du genre *Hymenolepis* Weiland. Société d’éditions scientifiques, Paris.

Casanova, J.C., Santalla, F., Durand, P., Vacher, C., Felis, C., Renaud, F., 2001. Morphological and genetic differentiation of *Rodentolepis straminea* (goeze, 1752) and *Rodentolepis microstoma* (Dujardin, 1845) (*Hymenolepididae*). Parasitol. Res. 87, 439-444.

Cota, N.V., dos Santos Cardoso, T., da Costa Neto, S.F., Jánior, A.M., Gentile, R., 2019. Metacommunity structure of helminths of *Micromys minutus* (Rodentia: Sigmodontinae) in different land use areas in the Brazilian Cerrado. J. Parasitol. 105 (2), 271–282.

Cunningham, L.J., Olson, P.D., 2010. Description of *Hymenolepis microstoma* (Nottingham strain): a classical tapeworm model for research in the genomic era. Parasites Vectors 3 (1), 1-9.

Czaplinski, B., Vacher, C., 1994. Family *Hymenolepididae ariola*, 1899. In: Khalil, L.F., Jones, A., Bray, R.A. (Eds.), *Keys to the Cestode Parasites of Vertebrates*. CAB International, Wallingford, pp. 595-663.

D’Elia, G., 2003. Phylogenetics of *Sigmodontinae* (Rodentia, Muroidea, Cricetidae), with special reference to the akodont group, and with additional comments on historical biogeography. Cladistics 19 (4), 307-323.

Dujardin, M.F., 1845. *Histoire Naturelle des Helminthes ou vers intestinaux*. Roret, Paris.

Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 (4), 783-791.

Foronda, P., Casanova, J.C., Valladares, B., Martinez, E., Felis, C., 2004. Molecular systematic of several cyclophyllid families (Cestoda) based on the analysis of 18S ribosomal DNA gene sequences. Parasitol. Res. 93, 279–282.

Galliari, C., Pardiñas, U., Goin, F., 1996. Lista comentada de los mamíferos de Argentina. Núcleo de faunismo, Instituto de Zoología, CENARD, Buenos Aires.

Gardner, S.L., Luedders, B.A., Duszynski, D.W., 2014. *Hymenolepis robustus* n. sp. from grasshopper mice *Onychomys* spp. in New Mexico and Nebraska, U.S.A. Occas. Pap. Mus. Texas Tech. Univ. 322, 1–10.

Gardner, S.L., Schmidt, G.D., 1988. Cestodes of the genus *Hymenolepis* Weiland, 1858 genus *strico* from pocket gophers *Geomys* and *Thomomys* spp. (Rodentia: Geomyidae)
in Colorado and Oregon, with a discriminant analysis of four species of Hymenolepis. Can. J. Zool. 66, 96–100.

Georgiev, B.B., Bray, R.A., Timothy, D., Littlewood, J., 2006. Cestodes of small mammals: taxonomy and life cycles. In: Morand, S., Krasnov, B.R., Poulin, R. (Eds.), Micronoanomalous and Macroparasites. Springer, Tokyo, pp. 29–62.

Gomez-Puerta, L.A., Valdivia-Carrera, C.A., 2018. Hymenolepis microstoma (Cestoda: Hymenolepidae) en ratones caseros (Mus musculus) de Lima. Peru. Rev. Peru. Biol. 25 (3), 311–314.

Guerrero Martin, N.B., Robles, M.D.R., Navone, G.T., Notarnicola, J., Navone, G.T., 2013. Two new species of Hymenolepis nana (Cestoda: Hymenolepidae) from Muridae rodents in the Venezuelan Amazon. Zool. Scripta 39 (6), 631–641.

Hickman, J.L., 1964. The biology of Hymenolepis microstoma (Dujardin). J. Proc. R. Soc. Tasman. 98, 73–77.

Hoberg, E.P., Marialux, J., Brooks, D.R., 2001. Pylogeny among the orders of the Eucestoda (Cercomeromorphae): Integrating morphology, molecules and total evidence. In: Littlewood, D.T.J., Bray, R.A. (Eds.), Interrelationships of the Hymenolepididae) from Spalacidae and Muridae (Rodentia) from eastern Palearctic. DNA sequences. Parasitology 115, 661–671.

Hickman, J.L., 2004. Phylogeny of a new species of Hymenolepis (Cestoda). J. Clin. Microbiol. 41 (8), 243–253.

Hoberg, E.P., Mariaux, J., Brooks, D.R., 2001. Pylogeny among the orders of the Eucestoda (Cercomeromorphae): Integrating morphology, molecules and total evidence. In: Littlewood, D.T.J., Bray, R.A. (Eds.), Interrelationships of the Hymenolepididae) from Spalacidae and Muridae (Rodentia) from eastern Palearctic. DNA sequences. Parasitology 115, 661–671.

Hickman, J.L., 1964. The biology of Hymenolepis microstoma (Dujardin). J. Proc. R. Soc. Tasman. 98, 73–77.

Hoberg, E.P., Marialux, J., Brooks, D.R., 2001. Pylogeny among the orders of the Eucestoda (Cercomeromorphae): Integrating morphology, molecules and total evidence. In: Littlewood, D.T.J., Bray, R.A. (Eds.), Interrelationships of the Hymenolepididae) from Spalacidae and Muridae (Rodentia) from eastern Palearctic. DNA sequences. Parasitology 115, 661–671.

Hickman, J.L., 1964. The biology of Hymenolepis microstoma (Dujardin). J. Proc. R. Soc. Tasman. 98, 73–77.