Of mice and men: Considerations on adipose tissue physiology in animal models of obesity and human studies

Ioannis G. Lempesis a,b,*, Dimitrios Tsilingiris c, Junli Liu d, Maria Dalamaga e

a Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
b Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre e, Maastricht, The Netherlands, Maastricht, the Netherlands
c First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 17 St Thomas street, 11527, Athens, Greece
d Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University Affiliated 6th People’s Hospital, Shanghai Diabetes Institute, Shanghai, China
e Department of Biologic Chemistry, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 115 27, Athens, Greece

ARTICLE INFO

Keywords:
Adipose tissue
Animal models
Hypoxia
Mice
Obesity
Oxygenation
Preclinical studies
Rodent
Translational research

ABSTRACT

The ever-increasing burden of obesity demands a better pathophysiological understanding, especially regarding adipose tissue pathophysiology. Animal models of obesity are of great importance in investigating potential mechanisms and implications of obesity. Many issues should be considered while interpreting the preclinical results as anatomical and pathophysiological differences exist among species. Importantly, the natural history of obesity development differs considerably. An important aspect of conflicting results among preclinical models and human physiological studies is that of adipose tissue oxygenation, where rodent models almost unanimously have shown the presence of hypoxia in the adipose tissue of obese animals while human studies have yielded conflicting results to date. Other issues which require further clarification before generalizing preclinical data in humans include adipose tissue browning, endocrine function and fibrosis. The aim of this mini-review is to synopsize similarities and differences between rodent models and humans, which should be taken into consideration in obesity studies.

Obesity has increased substantially in the last few decades, becoming an important worldwide public health problem that impacts on the risk and prognosis of several disease states, including cardiovascular disease, metabolic syndrome, Type 2 diabetes mellitus (T2DM), COVID-19 and cancer [1–10]. Obesity is a complex, multifactorial chronic disease, defined by a body mass index (BMI) of 30 kg/m² or above, and is characterised by an excessive increase of white adipose tissue (AT) mass [11]. The pathophysiological background of obesity and its complications are not only determined by the AT mass, but are also influenced by AT dysfunction, body fat distribution, and disease stage [11–15]. Rodent models are the most used animal models at the preclinical level to investigate human obesity [16–20]. However, confirmation of important similarities and differences between rodent models and humans are necessary and should be taken into consideration in obesity studies (see Fig. 1).

Dissimilar to humans who have two main subcutaneous depots located in the abdominal and gluteofemoral region, rodent adipose tissue has two main subcutaneous pads located anteriorly and posteriorly [16]. Visceral adipose tissue in humans surrounds mainly intra-abdominal organs while in rodents it surrounds primarily the perigonadal region, epididymal in males and periovarian in females [16, 21]. Adipocytes in these depots display genetic and metabolic heterogeneity and are intrinsically different within and amongst species [16, 22, 23].

An important aspect of AT physiology concerns the so-called “browning” of WAT. Brown AT (BAT) constitutes a distinct functional AT component exhibiting a high degree of vascularization and density of mitochondria, which partake in futile respiratory cycles promoting thermogenesis [24]. Evidence from rodent models has suggested that WAT browning may exert protective effects against weight gain and
related dysmetabolism, rendering this pathway also an attractive candidate for the prevention and treatment of human obesity [25,26]. Despite accumulating evidence from preclinical models, there is a long way ahead before their clinical application in humans, whereby the relevance of BAT in obesity and metabolism is still unsatisfactory understood. The finding of opposite trends between mice and humans with respect to the expression of browning genes in the subcutaneous and visceral WAT depot further highlight the imperativeness of this task [24].

Another issue relevant to inter-species differences concerns the function of AT as an endocrine organ. The discovery of leptin, the first adipokine in 1994, was followed by the identification of a remarkable variety of AT-derived hormones, some with well-characterized and conserved across species functions (i.e. adiponectin) [7,27–32], and others less so [33–38]. Although several important similarities between rodents and humans exist, the common cellular origin [39], systemic metabolic actions [40–43] or interactions with other hormonal systems [44] is not a given. As the role of several adipokines is becoming increasingly clear, this is particularly important before generalising mechanistic findings from rodent obesity models in humans.

Outside of the strict frame of pathophysiological mechanisms, the pathogenesis of human obesity is shaped through complex interactions between biological, environmental, and behavioural factors which are unique to our species. A striking paradigm is the gradual development and indolent progression of obesity in most humans over several years, which comes in stark contrast with the rapid and massive gain in adipose tissue mass observed in rodent models, either genotype- or diet-related [45–49]. Diet-induced obesity (DIO) animal models reproduce with greater reliability human obesity in comparison with genetic models, usually utilizing high-fat diets (HFD) with elevated concentrations of saturated fatty acids [23,50]. The most frequently used animal models through diet are mice, with isogenic or inbred strains, such as C57BL/6, C57BL/6J, AKR/J, and A/J [23]. Further considerations that should be taken into account is that rats and mice respond differently to diet; and, to a lesser degree, energy expenditure through environmental, saturated fatty acids [23,50]. The most frequently used animal models through diet are mice, with isogenic or inbred strains, such as C57BL/6, C57BL/6J, AKR/J, and A/J [23]. Further considerations that should be taken into account is that rats and mice respond differently to diet; and, to a lesser degree, energy expenditure through environmental, saturated fatty acids [23,50]. The most frequently used animal models through diet are mice, with isogenic or inbred strains, such as C57BL/6, C57BL/6J, AKR/J, and A/J [23]. Further considerations that should be taken into account is that rats and mice respond differently to diet; and, to a lesser degree, energy expenditure through environmental, saturated fatty acids [23,50].

Besides, another unique feature of human obesity which cannot be readily replicated in animal models, is the modification of caloric intake and, to a lesser degree, energy expenditure through environmental, behavioural and body image-related factors. An overly simplified example of this notion concerns the question on why humans become obese and strive for unhealthy, highly caloric diets and overall lifestyles, even though being aware of the unavoidable consequences. Obviously, this feature is usually not dependent upon the quantity or quality of available dietary resources, as is the case in most animal models [51]. To further complicate the matters, data from animal models with respect to the relative contribution of isolated hormonal appetite and satiety signals cannot be directly applied in human research and clinical practice. For example, even though leptin-deficient rodents have been frequently used in various studies to investigate obesity, leptin or leptin receptor mutations are rare in humans and the drivers for the behavioural traits of the vast majority of cases of human obesity are complex and yet to be elucidated [51–53].

Many animals have been examined and provided valuable mechanistic insights in adipose tissue physiopathology in obesity, partly characterised by chronic low-grade inflammation [54,55]. It has been postulated that the chronic low-grade inflammation present in adipose tissue in individuals or animals with obesity is triggered partly by hypoxia, caused by the decreased capillary density, and blunted adipose tissue blood flow [55–57]. The presence of hypoxia in obese adipose tissue was originally shown in murine models of obesity [14,58]. Direct measurements of pO2 using needle-type O2 electrodes showed that WAT oxygenation is lower in ob/ob, KKAY and DIO mice as compared to lean controls [14,45–48,59]. In line with these findings, gene expression of several hypoxia-related genes, including hypoxia-inducible factor-1 alpha (HIF-1α), was also increased. Moreover, using pimonidazole hydrochloride, which stains hypoxic areas, it has been demonstrated that hypoxic areas were more prevalent in the WAT of obese rodents [14,45–48,59]. However, the presence of hypoxia in adipose tissue in human obesity was shown to be present at least in participants with severe obesity and co-exists with type 2 diabetes, being challenged by recent studies in humans [55,60–63]. This example if further replicated and confirmed in further research studies, may show a potential interspecies difference which it could be partly attributed to the acutely induced obesity in these models. AT fibrosis constitutes another partly hypoxia-related event observed in rodents and humans with consequences regarding AT-function and systemic metabolism [64]. Since this phenomenon seems to also exert an impact on bariatric surgery-related outcomes, it is of capital importance for the generalizability of findings from animal studies to humans to be further clarified.

In conclusion, animal models of obesity are valuable means of examining various mechanisms of obesity and related comorbidities in preclinical status. However, caution should be given with respect to the potential limitations and applicability to humans, especially regarding the issue of hypoxia and other potentially important aspects of rodent AT physiology, whose role in human obesity remains elusive.

---

Fig. 1. Features of adipose tissue and its role in obesity which differ between rodent models and humans.
Declaration of competing interest
None.

Funding information
None.

References
[1] Kassi E, Dalamaga M, Favio E, et al. Circulating oxidized LDL levels, current smoking and obesity in postmenopausal women. Atherosclerosis 2009;205(1): 279-83. https://doi.org/10.1016/j.atherosclerosis.2008.03.012.
[2] Friebbe C, Busetto L, Dicker D, et al. The ABCD of obesity: an EASO position statement on a diagnostic term with clinical and scientific implications. Obes facts 2019;12(2):131-6. https://doi.org/10.1159/000494745.
[3] Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 2008;94(2):206-18. https://doi.org/10.1016/j.physbeh.2007.10.010.
[4] Blüher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab 2013;27(2):163-77. https://doi.org/10.1016/j.beem.2013.02.005.
[5] Goossens GH, Blaak EE. Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol (Lausanne) 2015;6. https://doi.org/10.3389/fendo.2015.00055.
[6] Goossens GH. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obesity facts 2017;10(3):207–15. https://doi.org/10.1159/000471480.
[7] Visscher DL, Wang DX, Hsu P, et al. Gene expression differences between visceral and subcutaneous fat in humans. Nat Genet 2001;27(6):589-95. https://doi.org/10.1038/ng714.
[8] Barzilai N, Wang J, Massilon D, Vuguin P, Hawkins M, Rossetti L. Leptin selectively decreases visceral adiposity and enhances insulin action. J Clin Invest 1997;100 (12):3105-10. https://doi.org/10.1172/JCI119865.
[9] Zheng Y, Feng Z, Gao J, et al. A genome-wide association study identifies novel loci and common variants with small effects for human body fat distribution. Nat Genet 2015;47(11):1441-8. https://doi.org/10.1038/ng.3415.
[10] Wuest A, Mummert T, Hock T, et al. A polymorphism of the human PPARα gene is associated with reduced risk of metabolic syndrome. J Clin Endocrinol Metab 2005;90(7):4112-7. https://doi.org/10.1210/jc.2005-0306.
[11] Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is associated with reduced sensitivity to leptin. Am J Physiol Regul Integr Comp Physiol 2007;293(1):R86-4. https://doi.org/10.1152/ajpregu.00372.2006.
[12] Björntorp P, Bagger B, Stauden H, et al. Adipocytokines at the intersection of inflammation, chemotaxis, coagulation, fibrinolysis and metabolism: a review. Expert Opin. Ther. Targets 2005;9(12):1575-85. https://doi.org/10.1517/14728222.9.12.1575.
[13] Raffa RB, Finley D, Stachler G, et al. Elevated plasma inflammatory cytokine levels and immune activation in obesity. Cancer Res 2003;63(16):4983-90. https://doi.org/10.1158/0008-5472.CAN-02-2101.
[14] Christodoulatos GS, Antonakos G, Karampela I, et al. Circulating omentin-1 as a biomarker of obesity and adiposopathy to hematologic malignancies. Horm Mol Biol Clin Invest 2015;21(3):20. https://doi.org/10.1515/hmbci-2015-0016.
[15] Sioulas K, Gerasimou E, Christodoulatos GS, Karampela I, Vallianou N, Apovian CM. Understanding the co-epidemic of obesity and COVID-19: current evidence, comparison with previous epidemics, mechanisms, and preventive and therapeutic perspectives. Current obesity reports 2021;10(3):214-34. https://doi.org/10.1007/s13679-021-00436-y.
[16] Karampela I, Christodoulatos GS, Anto, et al. Chemerin as a biomarker at the intersection of obesity and cancer: diagnostic and therapeutic perspectives. Current obesity reports 2021;10(3):214-34. https://doi.org/10.1007/s13679-021-00437-x.
[17] 40. Arner P. Resistin: yet another adipokine tells us that men are not mice. Proc Natl Acad Sci USA 2006;103(15):5427-32. https://doi.org/10.1073/pnas.0601824103.
[18] 41. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: relationship to obesity and insulin resistance in Zucker fatty rats and intact obese Zucker rats. J Biol Chem 1993;268(3):991-7. https://doi.org/10.1074/jbc.268.3.991.
[19] 42. Paquot N, Castillo MJ, Lefebvre PC. Adipocytes as a source of tumor necrosis factor-α in human subcutaneous adipose tissue. J Clin Endocrinol Metab 2007;92(8):3105-10. https://doi.org/10.1210/jc.2007-0232.
[20] 43. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is associated with reduced sensitivity to leptin. Am J Physiol Regul Integr Comp Physiol 2007;293(1):R86-4. https://doi.org/10.1152/ajpregu.00372.2006.
[21] 44. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is associated with reduced sensitivity to leptin. Am J Physiol Regul Integr Comp Physiol 2007;293(1):R86-4. https://doi.org/10.1152/ajpregu.00372.2006.
Physiol Endocrinol Metab 2007;293(4):E1118–28. https://doi.org/10.1152/ajpendo.00435.2007.

[47] Yin J, Gao Z, He Q, Zhou D, Guo Z, Ye J. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab 2009;296(2):E333–42. https://doi.org/10.1152/ajpendo.90740.2008.

[48] Horogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007;56. https://doi.org/10.2337/db06-0911.

[49] Goossens GH, Blaak EE. Adipose tissue oxygen tension: implications for chronic metabolic and inflammatory diseases. Curr Opin Clin Nutr Metab Care 2012;15(6):S39–46. https://doi.org/10.1097/MCO.0b013e328358fa97.

[50] Geiger B, Pothos E. Translating animal models of obesity and diabetes to the clinic. In: Handbook of behavioral neuroscience, vol. 29. Elsevier; 2019. p. 1–16.

[51] Kanasaki K, Koya D. Biology of obesity: lessons from animal models of obesity. J Biomed Biotechnol 2011;2011. https://doi.org/10.1155/2011/197636.

[52] Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392(6674):398–401. https://doi.org/10.1038/32911.

[53] Matsusaka N, Ogawa Y, Hosoda K, et al. Human leptin receptor gene in obese Japanese subjects: evidence against either obesity-causing mutations or association of sequence variants with obesity. Diabetologia 1997;40(10):1204–10. https://doi.org/10.1007/s001250050808.

[54] Martins T, Castro-Ribeiro C, Lemos S, et al. Murine models of obesity. Obesities 2022;2(2):127–47. https://doi.org/10.3390/obesities2020012.

[55] Lempesis IG, van Meijel RLJ, Manolopoulos KN, Goossens GH. Oxygenation of adipose tissue: a human perspective. Acta Physiol 2020;228(1):e13298. https://doi.org/10.1111/apha.13298.

[56] Lempesis IG, Goossens GH, Manolopoulos KN. Measurement of human abdominal and femoral intravascular adipose tissue blood flow using percutaneous Doppler ultrasound. Adipocyte 2021;10(1):119–23. https://doi.org/10.1080/21623945.2021.1888471.

[57] Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004;92(3):347–55. https://doi.org/10.1079/bjn20041213.

[58] Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 2013;93(1):1–21. https://doi.org/10.1152/physrev.00017.2012.

[59] Lempesis IG, Goossens GH, Manolopoulos KN. Measurement of human abdominal and femoral intravascular adipose tissue blood flow using percutaneous Doppler ultrasound. Adipocyte 2021;10(1):119–23. https://doi.org/10.1080/21623945.2021.1888471.

[60] Goossens GH, Blaak EE. Adipose tissue oxygen tension: implications for chronic metabolic and inflammatory diseases. Curr Opin Clin Nutr Metab Care 2012;15(6):S39–46. https://doi.org/10.1097/MCO.0b013e328358fa97.

[61] Geiger B, Pothos E. Translating animal models of obesity and diabetes to the clinic. In: Handbook of behavioral neuroscience, vol. 29. Elsevier; 2019. p. 1–16.

[62] Kanasaki K, Koya D. Biology of obesity: lessons from animal models of obesity. J Biomed Biotechnol 2011;2011. https://doi.org/10.1155/2011/197636.

[63] Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392(6674):398–401. https://doi.org/10.1038/32911.

[64] Matsusaka N, Ogawa Y, Hosoda K, et al. Human leptin receptor gene in obese Japanese subjects: evidence against either obesity-causing mutations or association of sequence variants with obesity. Diabetologia 1997;40(10):1204–10. https://doi.org/10.1007/s001250050808.

[65] Martins T, Castro-Ribeiro C, Lemos S, et al. Murine models of obesity. Obesities 2022;2(2):127–47. https://doi.org/10.3390/obesities2020012.

[66] Lempesis IG, van Meijel RLJ, Manolopoulos KN, Goossens GH. Oxygenation of adipose tissue: a human perspective. Acta Physiol 2020;228(1):e13298. https://doi.org/10.1111/apha.13298.