Cognitive-Targeted versus Magnetic Resonance Imaging-Guided Prostate Biopsy in Prostate Cancer Detection

Daniël F. Osses Joost J. van Asten Jasper D. Tijsterman
Department of Urology, Haga Teaching Hospital, The Hague, The Netherlands

Introduction:
Purpose of this study is to evaluate the detection rates of prostate cancer (PCa) for cognitive-targeted biopsy (CTB) in comparison with magnetic resonance imaging (MRI)-guided biopsy (MRGB) related to prostate imaging reporting and data system (PI-RADS) score, lesion location and lesion volume. Furthermore, the addition of systematic transrectal ultrasound-guided biopsy (TRUS-GB) to CTB is evaluated.

Materials and Methods: We included all patients with cancer-suspicious lesions on 3-Tesla multiparametric MRI who underwent either CTB and additional TRUS-GB or only MRGB (in-bore) in Haga Teaching Hospital between January 2013 and January 2015.

Results: In total 219 patients were included: 64 CTB + TRUS-GB and 155 MRGB. In 32 (50%) men with CTB was positive for PCa. PI-RADS 3-, 4- and 5-lesions were in 17, 69 and 95% positive, respectively. In 100 men (65%) with MRGB was positive for PCa. Detection rates for PI-RADS 3-, 4- and 5-lesions were 10, 77 and 89%, respectively. CTB missed 4 (11%) low-grade tumors detected by TRUS-GB. In lesions between 0–1.5 ml PCa were significantly more often detected with MRGB than with CTB (69 vs. 39%).

Conclusion: CTB has a high detection rate of PCa in men with cancer-suspicious lesions on MRI. Correction for lesion volume shows that in lesions < 1.5 ml MRGB is more accurate than CTB. The addition of TRUS-GB to CTB can safely be avoided without missing any high grade PCa.

Key Words
Detection rate • Prostate cancer • Targeted prostate biopsy • Multiparametric magnetic resonance imaging

Original Paper
Curr Urol 2017;11:182–188
DOI: 10.1159/000447216

Received: June 27, 2017
Accepted: August 25, 2017
Published online: March 30, 2018
MRI-guided prostate biopsy [MRGB (in-bore)] improves the quality of a biopsy after a diagnostic MRI [3, 12–15]. However, MRGB is not available in every hospital and requires more time and resources in comparison with TRUS-GB. Besides, patients experience MRGB as less comfortable because of the required position. For these reasons there is a need for assessing the capabilities of other targeted biopsy techniques.

A clinically used method for targeted prostate biopsy is the targeted TRUS-guided biopsy of CSL on prostate MRI, also known as the cognitive-targeted biopsy (CTB) or visually-registered targeted biopsy. CTB is a fast and relatively simple technique: an existing TRUS facility, knowledge of the target location on MRI and familiarity with prostate anatomy on ultrasonography are sufficient. Recent studies show promising results for cognitive targeting of CSL [16–21].

In this study, we aim to assess the detection rates of PCa of CSL on 3-Tesla mp-MRI for CTB in comparison with MRGB (in-bore) related to PI-RADS score, lesion location and lesion volume in men analyzed for PCa diagnosis to identify those CSL in which CTB could replace MRGB. Furthermore, we compared biopsy outcomes of CTB and TRUS-GB with the aim to identify the percentage of men in whom TRUS-GB could have been safely avoided after CTB without missing any PCs.

Materials and Methods

Patient Selection

This retrospective study was approved by our institutional review board. It was determined that informed patient consent was not needed. For comparison of the CTB versus MRGB detection rates we used a MRGB patient cohort from a previous publication of our research group [15]. A copyright license was provided by Springer to reuse these data.

A diagnostic prostate mp-MRI in Haga Teaching Hospital [used as 1; primary diagnostic tool, 2; after previous negative (TRUS) biopsy or MRI and 3; for further staging in case of positive biopsy] was performed in patients with (persistent) suspected PCa based on elevated prostate specific antigen (PSA) level and/or abnormal digital rectal examination, for follow-up of (benign) PI-RADS 3-, 4- and 5-lesions and in patients with PCa on active surveillance and suspicion of (more) significant disease. The treating urologist decided to perform either MRGB or CTB with TRUS-GB in case of CSL (normally PI-RADS ≥ 3; some PI-RADS 2-lesions were also targeted because of the high clinical suspicion). In this study, we included all the patients analyzed for PCa with CSL on 3-Tesla prostate mp-MRI who underwent either CTB in addition to TRUS-GB or only MRGB (in-bore) in Haga Teaching Hospital in the Netherlands between January 2013 and January 2015.

CTB versus MRGB in Prostate Cancer Detection

Results

In total 664 patients analyzed for PCa diagnosis underwent a prostate mp-MRI between January 2013 and January 2015. Total 219 patients underwent a targeted biopsy procedure. CTB and TRUS-GB was performed in 64 patients, MRGB in 155 patients. Patient characteristics are presented in table 1. CTB was performed in significantly larger lesions than MRGB and more biopsy cores were taken on average during a CTB + TRUS-GB session. The other characteristics are similar.
In both CTB + TRUS-GB and MRGB patients, the majority of suspected lesions (52 and 65%) were located in the peripheral zone of the prostate. There was no difference in distribution of the 3 zones between both groups. In both groups PCa was not significantly more often anterior located than negative lesions (CTB + TRUS-GB: 53 vs. 39% and MRGB: 64 vs. 55%). Between CTB + TRUS-GB and MRGB group there was no difference in distribution of lesion location (table 2).

In 36 of 64 (56%) men PCa was detected with CTB and TRUS-GB together. PI-RADS 2-, 3- and 4-lesions were in 19, 17 and 69% PCa positive, respectively. Biopsies of PI-RADS 5-lesions were positive in 95% of the cases. PCa detection rate of CTB + TRUS-GB for PI-RADS 4- and 5-lesions together was 83%. In 100 of 155 (65%) men PCa was detected with MRGB. None of the biopsied PI-RADS 2-lesions were positive. PI-RADS 3- and 4-lesions were in 10 and 77% positive for PCa, respectively. Biopsies of PI-RADS 5-lesions were in 89% of the cases positive. MRGB of PI-RADS 4- and 5-lesions combined was positive in 81%. CTB + TRUS-GB and MRGB rates are statistically similar (table 2).

Cross tabulation of CTB outcomes versus TRUS-GB outcomes in men in the CTB + TRUS-GB group is shown in table 3. The percentage of missed PCa by CTB but detected with TRUS-GB is 11% (4/36). All these men

Table 1. Patient characteristics

Characteristics	Patients CTB + TRUS-GB (n = 64)	Patients MRGB only (n = 155)	p
Age, year, mean (range)	68 (48–83)	68 (48–83)	0.991
PSA level, ng/ml, mean (range)	14.3 (1.9–135)	11.1 (2–56)	0.957
Prostate volume on MRI, ml, mean (range)	55 (16–164)	61 (19–260)	0.795
Lesion volume on MRI, ml, mean (range)	3.9 (0–22)	2.2 (0–22)	0.001**
Biopsy cores, n, mean (range)	8 (1–12)**	3 (1–6)	0.001**

P-values were calculated using an unpaired t-test for numeric parametric data and a Mann-Whitney U test for non-parametric data. **p < 0.05 was considered statistically significant. ***number of targeted cores (= 1–5) and number of systematic cores (= 4–12).

Table 2. Distribution of lesion zone and lesion location; detection rates of CTB + TRUS-GB and MRGB related to PI-RADS score (lower part of table)

Characteristics	Patients CTB + TRUS-GB, n (%)	PCa, n (%)	Negative biopsy n (%)	Patients MRGB, n (%)	PCa, n (%)	Negative biopsy n (%)	p
Lesion zone							
Peripheral zone	33 (52)	25 (69)	8 (29)	101 (65)	76 (76)	25 (45)	0.06
Transitional zone	31 (48)	11 (31)	20 (71)	52 (34)	23 (23)	29 (53)	0.039**
Central zone	0 (0)	–	–	2 (1)	1 (1)	1 (2)	1.0
Lesion location							
Anterior	30 (47)	19 (53)	11 (39)	94 (61)	64 (64)	30 (55)	0.061
Posterior	34 (53)	17 (47)	17 (61)	61 (39)	36 (36)	25 (45)	0.061
Total	64 (100)	36 (100)	28 (100)	155 (100)	100 (100)	55 (100)	
PI-RADS score							
1	0 (0)	–	0 (0)	1 (1)	3 (10)	0.407	
2	21	4 (19)	6 (0)	0 (0)	3 (10)	0.407	
3	6	1 (17)	29 (10)	3 (10)	0.459		
4	16	11 (69)	84 (57)	65 (77)	0.414		
5	21	20 (95)	36 (19)	32 (89)	0.414		
Total	64 (100)	36 (56)	28 (44)	155 (100)	100 (65)	55 (35)	0.251

P-values were calculated using a Pearson chi-square test for differences in proportions; in case of small numbers the Fischer’s exact test was used. p < 0.05 was considered statistically significant.
had a PI-RADS 2-lesion on MRI and Gleason 6 PCa was detected in TRUS-GB. No high-grade PCa was missed by CTB. Excluding TRUS-GB results, in 32 of 64 (50%) men PCa was detected with CTB. The detection rates for PI-RADS 2-, 3-, 4- and 5-lesions were 0, 17, 69 and 95%, respectively. This remains statistically similar with the MRGB rates (p = 0.101). In both CTB- and MRGB-patients the majority of detected cancers (63 vs. 63%) were GS ≥ 7, this number increases to 85% (17 of 20) for CTB versus 75% (24 of 32) for MRGB in positive PI-RADS 5-lesions.

Patients, lesion characteristics (zone, location) and detection rates of PCa for both cohorts (with and without including TRUS-GB results) were in all but one aspect similar. CTB was performed in significantly larger lesions than MRGB (3.9 vs. 2.2 ml; p = 0.001). After correction for lesion volume, PCa was significantly more often detected with MRGB than with CTB in lesions between 0 and 1.5 ml. In lesions between 1.5 and 3 ml and lesions ≥ 3 ml the detection rates of CTB and MRGB were similar (table 4).

Follow-Up

CTB of PI-RADS 5-lesions was benign in 1 case (5%). Because of persistent clinical suspicion MRGB was performed, this resulted in a Gleason 7 tumor. Biopsies of PI-RADS 4-lesions were benign in 31% (n = 5) of the cases. Two men underwent MRGB after CTB and TRUS-GB, resulting in a Gleason 7 and Gleason 8 tumor. The others were followed-up including PSA measurements every 3–6 months, without PCa diagnosis after average follow-up of 2.5 years.

MRGB of PI-RADS 5-lesions was in 11% (n = 4) of the cases benign. Two patients were previously diagnosed with Gleason 6 PCa and treated accordingly. One patient was diagnosed with prostatitis and the remaining patient was followed-up. Men with negative PI-RADS 4-lesions (n = 19) after MRGB were also followed-up. In case of persistent PCa suspicion mp-MRI or TRUS-GB was repeated. In 2 cases this resulted in Gleason 6 PCa after average follow-up of 2.5 years.

Discussion

In the present study the detection rates of PCa for CTB (with and without concomitant TRUS-GB) related to PI-RADS score, lesion location and lesion volume in patients with suspected PCa on 3-Tesla prostate mp-MRI have been evaluated and compared with those of MRGB (in-bore). Excluding TRUS-GB results, CTB of CSL on mp-MRI resulted in 50% of the cases in PCa, predominantly clinically significant. The detection rate of PCa for CTB increases with the PI-RADS score, to 83% when only PI-RADS 4- and 5-lesions will be biopsied. The MRGB detection rates (65% overall rate; 81% in PI-RADS 4- and 5-lesions combined) are slightly better but statistically similar to CTB rates [15]. It is known that systematic TRUS-GB has a detection rate of PCa ranging from 27 to 40%, with a low detection of clinically significant cancers [5]. Compared to these rates targeted biopsy after mp-MRI, either CTB or MRGB, is a more accurate and efficient procedure for the detection of clinically significant PCa. Overall CTB (without TRUS-GB results) seems nearly as good as MRGB. But after stratification on lesion volume, PCa was significantly more often detected with MRGB than with CTB in lesions between 0 and 1.5 ml. From 1.5 ml and up the detection rates of CTB and MRGB were similar. In an era of increased need for targeted biopsies we prefer CTB in the larger

| Table 3. Cross tabulation of biopsy outcomes CTB versus TRUS-GB |
|------------------|------------------|------------------|------------------|------------------|
MRI + CTB, PI-RADS ≥ 2	No PCa	GS 3 + 3 PCa	GS ≥ 3 + 4 PCa	Total
TRUS-GB No PCa	28	10	13	51
GS 3 + 3 PCa	4	2	0	6
GS ≥ 3 + 4 PCa	0	0	7	7
Total	32	12	20	64

| Table 4. Detection rates of CTB (without TRUS-GB) and MRGB related to lesion volume |
|------------------|------------------|------------------|------------------|------------------|
Lesion volume (ml)	n	CTB PCa n (%)	n	MRGB PCa n (%)	p
0–1.5	23	9 (39)	92	63 (69)	0.009**
1.5–3	18	9 (50)	27	15 (56)	0.384
≥ 3	23	14 (61)	36	22 (61)	0.303
Total	64	32 (50)	155	100 (65)	0.101

P-values were calculated using a Pearson chi-square test for differences in proportions; in case of small numbers the Fischer’s exact test was used. *p < 0.05 was considered statistically significant.
lesions in context of time, resources and patient comfort. The present study shows that CTB missed 11% of all cancers in the CTB + TRUS-GB subgroup of our cohort without missing any high-grade PCa. Furthermore, three additional patients were diagnosed with significant PCa after a previous negative CTB + TRUS-GB session during follow-up because of high clinical suspicion. As we were used in the recent past after negative TRUS-GB, one should always repeat analysis in case of persistent clinical suspicion of PCa.

CTB allows the adaptation of targeted biopsy without costs for new equipment. Several publications analyzed the value of cognitively performed targeted biopsy [16, 17, 20, 21]. Our overall detection rate for CTB without concomitant TRUS-GB is 50% and with concomitant TRUS-GB is 56%. Peuch et al. [16] found that MRI prior to biopsy improved detection rate to 47% by CTB. Kasivisvanathan et al. [20] detected in 57% of the cases PCa. Labanaris et al. [21] evaluated 260 patients who had a prior negative biopsy. They show a PCa detection rate of 56%. Haffner et al. [17] compared results of CTB with those of 12 random biopsies in 555 patients. They detected in 67% PCa with CTB. Our result is in agreement with these publications and significant higher than the detection rate (≤ 18%) of repeated TRUS-GB sessions [23]. Using our definition for clinical significance (GS ≥ 7) 63% of all detected cancers (both CTB and MRGB) are clinically significant. The previous studies describe rates between 43 and 62%. Comparison of these rates should be done with caution due to the use of different definitions for clinically significant PCa. However, apart from the definition used the clinical significance rate for MRI based targeted biopsy (either CTB or MRGB) is high compared to TRUS-GB.

Several publications investigated the detection accuracy of targeted biopsy and standard biopsy alone or in combination [24–27]. Only a few studies have compared the detection rates of PCa between different targeting techniques. We compared CTB and MRGB in two statistical similar patient groups and found nearly similar detection rates of PCa for CTB and MRGB related to PI-RADS score and lesion location. However, correction shows that in lesions < 1.5 ml MRGB is more accurate. Other studies concern mainly a comparison of CTB with MRI/TRUS-fusion biopsy (MTFGB) and the results are controversial [16, 19, 28, 29]. Delongchamps et al. [19] and Wysock et al. [28] reported that MTFGB was slightly better than CTB (PCa detection rates ranging from 32 to 61% versus 27 to 42%). Peuch et al. [16] and Lee et al. [29] found no evidence of a significant difference in the detection of any grade PCa between CTB and MTFGB. A recent review shows superior overall PCa detection for MRGB (in-bore) and MTFGB compared to CTB [30]. In none of the just described studies the detection rates related to lesion volume has been mentioned.

In contrast to the literature, we showed no significant added value for a TRUS-GB procedure after a cognitively targeted biopsy procedure in men analyzed for PCa diagnosis, i.e. CTB missed 11% of all cancers detected by TRUS-GB but no high-grade PCa was missed by CTB in our cohort. One could question the benefit of concomitant TRUS-GB during a CTB session. In an era of active surveillance for insignificant PCa, we doubt this missed insignificant PCa would cause any harm to these patients. In this perspective, the addition of TRUS-GB to CTB could safely be avoided according to our results. Two studies evaluated the performance of MTFGB versus TRUS-GB using START recommendations [31, 32]. Both studies show that a targeted biopsy protocol improves clinically significant PCa detection rate compared to a systematic biopsy protocol, with an added value for targeted biopsies of 36–42%. However, limiting prostate biopsy to a targeted biopsy protocol without TRUS-GB missed 1–4% of high-grade tumors. Our finding of safely avoiding concomitant TRUS-GB during CTB is not reproduced in these MTFGB studies. Apart from the different technique of targeted biopsies, this difference with our findings could be due to variations in patient population, quality of MRI imaging, experience of the radiologist interpreting the MRI images and the experience of the urologist performing the biopsies.

This study represents the true clinical setting, but has some limitations due to its retrospective design. Although both patient groups were statistically similar in all relevant aspects, the groups differed in size. Population size of the CTB group may have been underpowered to show a statistically significant difference between CTB and MRGB techniques. Because of the retrospective character we could not exclude a selection bias. Furthermore no concomitant TRUS-GB has been performed in the MRGB group. Although concomitant TRUS-GB did not diagnose any significant PCa in the CTB group, data about missed PCa by MRGB detected with concomitant TRUS-GB are lacking. Finally, our follow-up is limited to median 2.5 years. Though significant tumors ought to be detected within this period, a longer follow-up period could stronger endorse these study conclusions. However, despite these limitations, due to the comparability of both groups we believe the results of this study are very useful in clinical practice.
Conclusion

This study shows that prostate mp-MRI followed by either CTB (with or without additional TRUS-GB) or MRGB of CSL in patients with suspected PCa results in a high detection rate and clinical significance of diagnosed tumors. These results confirm that MRI based diagnosis and subsequent targeted biopsies fulfill an important role in increasing detection rate and accuracy in the diagnosis of PCa. With different biopsy techniques available a strategy where the choice for a biopsy modality is based on lesion characteristics on MRI can provide an adequate, individual and more cost effective diagnostic algorithm. According to our results, we suggest to use MRGB for small lesions < 1.5 ml and the relatively simple and cost-effective technique of CTB for the majority of larger lesions ≥ 1.5 ml. Furthermore this study shows that in our cohort we could have safely avoided TRUS-GB in all men undergoing CTB without missing any significant PCa. These results suggest to perform CTB without additional TRUS-GB in men analyzed for PCa diagnosis. Prospective studies with longer oncologic follow-up and standardization of both MRI parameters, MRI interpretation and biopsy procedures will need to confirm these 2 strategies in the future.

Abbreviations

CSL = cancer-suspicious lesion(s)
CTB = cognitive-targeted biopsy
GS = Gleason score
mp-MRI = multiparametric magnetic resonance imaging
MRGB = magnetic resonance imaging-guided prostate biopsy
MRI = magnetic resonance imaging
MTFGB = MRI/TRUS-fusion biopsy
PCa = prostate cancer
PI-RADS = prostate imaging reporting and data system
PSA = prostate specific antigen
TRUS = transrectal ultrasonography
TRUS-GB = transrectal ultrasound-guided prostate biopsy

References

1 Mottet N, Bellmunt J, Briers E, Briers I, Bolla M, Cornford P, De Santis M, Henry A, Joniau S, Lam T, Mason MD, Matveev V, van der Poel H, van der Kwast TH, Rouviere O, Wiegel T: Guidelines on Prostate Cancer. European Association of Urology 2016, pp14-26.
2 Noguchi M, Stamey TA, McNeal JE, Yemoto CM: Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol 2001;166:104-109.
3 Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, Scheenen T, Fütterer J, Bouwense S, van Oort I, Schröder F, Huisman H, Barentsz J: Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol 2012; 61:177-184.
4 Kväle R, Möller B, Wahlinqvist R, Fossa SD, Berner A, Busch C, Kyrdalen AE, Svindland A, Viset T, Halvorsen OJ: Concordance between Gleason score of needle biopsies and radical prostatectomy specimens: a population-based study. BJU Int 2009;103:1647–1654.
5 Serefoglu EC, Altinova S, Ugras NS, Akin-cigol E, Asil E, Balbay MD: How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can Urol Assoc J 2013;7:293–298.
6 Hoeks CM, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SW, Scheenen TW, Vos PC, Huisman H, van Oort IM, Witjes JA, Heerschap A, Fütterer JJ: Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 2011;261:46-66.
7 Kim CK, Park BK: Update of prostate magnetic resonance imaging at 3 T. J Comput Assist Tomogr 2008;32:163–172.
8 Kim CK: Magnetic resonance imaging-guided prostate biopsy: present and future. Korean J Radiol 2015;16:90–98.
9 Bjurlin MA, Meng X, Le Nobin J, Wysock JS, Lepor H, Rosenkrantz AB, Taneja SS: Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and rise assessment. J Urol 2014;192:648–658.
10 Barentsz JO, Richenberg J, Clemens R, Choyke P, Verma S, Villeirs G, Rouviere O, Logager V, Fütterer JJ: ESUR prostate MR guidelines 2012. Eur Radiol 2012;22:746–757.
11 Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Sttern F, Tempany CM, Thoeny HC, Verma S: PI-RADS prostate imaging - reporting and data system: 2015, Version 2. Eur Urol 2016;69:16–40.
12 Franjel T, Stephan C, Erbersdobler A, Dietz E, Maxeiner A, Hell N, Huppertz A, Miller K, Streeker R, Hamm B: Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding–multiparametric MR imaging for detection and biopsy planning. Radiology 2011;259:162–172.
13 Hambrock T, Somford DM, Hoeks C, Bouwense SA, Huisman H, Yakar D, van Oort IM, Witjes JA, Fütterer JJ, Barentsz JO: Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol 2010;183:520–527.
14 Hoeks CM, Schouten MG, Bomers JG, Hoogendoorn SP, Hulsbergen-van de Kaa CA, Hambrock T, Vergunst H, Sedelaar JP, Fütterer JJ, Barentsz JO: Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol 2012;62:902–909.
15 Osses DF, van Asten JJ, Kieft GJ, Tijsterman JD: Prostate cancer detection rates of magnetic resonance imaging-guided prostate biopsy related to Prostate Imaging Reporting and Data System score. World J Urol 2017;35:207–212.

16 Puech P, Rouviere O, Renard-Penna R, Villers A, Devos P, Colombel M, Bitker MO, Leroy X, Mège-Lechevallier F, Comperat E, Ouzzane A, Lemaire L: Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy—prospective multicenter study. Radiology 2013;268: 461–469.

17 Haffner J, Lemaître L, Puech P, Haber GP, Leroy X, Jones JS, Villers A: Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int 2011;108(8 Pt 2):E171–178.

18 Park BK, Park JW, Park SY, Kim CK, Lee HM, Jeon SS, Seo SI, Jeong BC, Choi HY: Prospective evaluation of 3-T MRI performed before initial transrectal ultrasound-guided prostate biopsy in patients with high prostate-specific antigen and no previous biopsy. AJR Am J Roentgenol 2011; 197:W876–881.

19 Delongchamps NB, Peyromaure M, Schull A, Beuvon F, Bouazza N, Flam T, Zeribb M, Muradayn N, Legman F, Cornud F: Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol 2013;189:493–499.

20 Kasivisvanathan V, Dufour R, Moore CM, Ahmed HU, Abd-Alazeez M, Charman SC, Freeman A, Allen C, Kirkham A, van der Meulen J, Emberton M: Transperineal magnetic resonance image targeted prostate biopsy versus transperineal template prostate biopsy in the detection of clinically significant prostate cancer. J Urol 2013;189:860–866.

21 Labanaris AP, Engelhard K, Zugor V, Nützel R, Kühn R: Prostate cancer detection using an extended prostate biopsy schema in combination with additional targeted cores from suspicious images in conventional and functional endorectal magnetic resonance imaging of the prostate. Prostate Cancer Prostatic Dis 2010;13:65–70.

22 Röthke M, Blondin D, Schlemmer HP, Frazier T: PI-RADS classification: structured reporting for MRI of the prostate. Rofo 2013;185:253–261.

23 Campos-Fernandes JL, Bastien L, Nicolaiew N, Robert G, Terry S, Vacherot F, Salenon L, Allory Y, Vordos D, Hoznek A, Yiou R, Patard JJ, Abbou CC, de la Taille A: Prostate cancer detection rate in patients with repeated extended 21-sample needle biopsy. Eur Urol 2009;55:600–609.

24 Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N, Okoro C, Raskolnikov D, Parnes HL, Linehan WM, Merino MJ, Simon RM, Choyke PL, Wood BJ, Pinto PA: Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015;313:390–397.

25 Radtke JP, Teber D, Hohenfellner M, Hadaschik BA: The current and future role of magnetic resonance imaging in prostate cancer detection and management. Transl Androl Urol 2015;4:326–341.

26 Brown AM, Elbuluk O, Mertan F, Sankinieni S, Margolis DJ, Wood BJ, Pinto PA, Choyke PL, Turkbey B: Recent advances in image-guided targeted prostate biopsy. Abdom Imaging 2015;40:1788–1799.

27 Le JD, Huang J, Marks LS: Targeted prostate biopsy: value of multiparametric magnetic resonance imaging in detection of localized cancer. Asian J Androl 2014;16:522–529.

28 Wysock JS, Rosenkranz AB, Huang WC, Stifelman MD, Lepor H, Deng FM, Melamed J, Taneja SS: A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol 2014;66:343–351.

29 Lee DJ, Recabal P, Sjoberg DD, Thong A, Lee JK, Eastham JA, Scardino PT, Vargas HA, Coleman J, Ehdaise B: Comparative effectiveness of targeted prostate biopsy using magnetic resonance imaging ultrasound fusion software and visual targeting: a prospective study. J Urol 2016;196:697–702.

30 Wegelin O, van Melick HH, Hoof L, Bosch JLR, Reitsma HB, Barentsz JO, Somfod DM: Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur Urol 2017;71:517–531.

31 Peltier A, Aoun F, Lemort M, Kwizera F, Paesmans M, Van Velthoven R: MRI-targeted biopsies versus systematic transrectal ultrasound guided biopsies for the diagnosis of localized prostate cancer in biopsy naïve men. Biomed Res Int 2015;2015:571708.

32 Salami SS, Ben-Levi E, Yaskov I, Ryniker L, Turkbey B, Kavoussi LR, Villani R, Rastinehad AR: In patients with a previous negative prostate biopsy and a suspicious lesion on magnetic resonance imaging, is a 12-core biopsy still necessary in addition to a targeted biopsy? BJU Int 2015;115:562–570.

33 Moore CM, Kasivisvanathan V, Eggener S, Emberton M, Füttner JJ, Gill IS, Grubb Ili RL, Hadaschik B, Klotz L, Margolis DJ, Marks LS, Melamed J, Otto A, Palmer SL, Pinto P, Puech P, Punwani S, Rosenkranz AB, Schoots IG, Simon R, Taneja SS, Turkbey B, Ukimura O, van der Meulen J, Villers A, Watanabe Y: Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an International Working Group. Eur Urol 2013;64:544–552.