Fractal multi-level organisation of human groups in a virtual world

Benedikt Fuchs¹, Didier Sornette² & Stefan Thurner¹,³,⁴

¹Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, A-1090, Austria
²Department of Management, Technology and Economics, ETH Zürich, Scheuchzerstrasse 7, CH-8092 Zurich, Switzerland
³Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
⁴International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria

Humans are fundamentally social. They have progressively dominated their environment by the strength and creativity provided by and within their grouping. It is well recognised that human groups are highly structured, and the anthropological literature has loosely classified them according to their size and function, such as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups and so on[1–3]. Recently, combining data on human grouping patterns in a comprehensive and systematic study, Zhou et al.[⁴] identified a quantitative discrete hierarchy of group sizes with a preferred scaling ratio close to 3, which was later confirmed for hunter-gatherer groups[⁵] and for other mammalian societies[⁶]. Using high precision large scale Internet-based social network data, we extend these early findings on a very large data set. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of a massive multiplayer online game for which we know all about the group memberships of every player. Remarkably, the online players exhibit the same type of structured hierarchical layers as the societies studied by anthropologists, where each of these layers is three to four times the size of the lower layer, as illustrated in Fig. 1. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

We analyse comprehensive data from a society, consisting of the players of the massive multiplayer online game (MMOG) Pardus[¹]. Such online platforms provide a new way of observing hundreds of thousands of interacting individuals who are engaged in social and economic activities, enabling quantitative socioeconomic research[⁷–¹⁴]. Complementing traditional methods of social science such as small-scale questionnaire-based approaches, MMOGs allow the study of complete societies, which are free of any interviewer bias or laboratory effects since users are not aware that their actions are logged during playing. Moreover, we have complete information about all players at any point in time.

Extensive studies on Pardus have shown remarkable similarities between this virtual world and real-world societies, in terms of network structure[⁹,¹¹], social behaviour[¹²,¹³], and mobility[¹].

¹www.pardus.at
Patterns. Players in Pardus control characters (avatars) who ‘live’ in a virtual, futuristic universe and interact with others in a multitude of ways to achieve their self-posed goals. Since the game went online in 2004, more than 400,000 people have played it. Pardus provides an internal one-to-one messaging system comparable to emails and players can express their sympathy toward other players by marking them as friend.

Players interact with each other in a multitude of ways, creating a social multiplex network. Next to small friendship and support groups, they can explicitly form social groups and register these as alliances, which grants tools to facilitate administration of the groups. Averaged over our whole data set (see Methods), alliances have an average size of 24.7. There is no upper bound for alliances sizes, however we find that the largest alliance has 136 members, which is remarkably close to Dunbar’s number. The largest type of registered groups in the game are ‘political’ factions, with about 2,000 members. The number of factions in the game is limited to three, their relative sizes and numbers of memberships are not fixed. Factions claim territories and can wage war against other factions. Each alliance may decide to belong to one of the three factions. Players may decide against membership in any of these groups. The average size at any time of the entire society is about $N = 7,065$ active players.

The possibility for diverse levels of organisation gives rise to a hierarchical society with a complex structure, which we quantify in two complementary ways, first using the Horton-Strahler measure of branching complexity, and second by studying directly the structure of the distribution of group sizes.

We construct the Horton-Strahler orders for all players (see Methods). Fig. 1 shows a part of the social network on Pardus where the different Horton orders are defined. The innermost layer, Horton order $h = 1$, is the trivial group consisting of one person, the ‘ego’. Layer 2 ($h = 2$) contains closest friends of the ego, defined by both a friendship marking and at least one communication event within the last 30 days. Layer 3 ($h = 3$) includes more casual relations, in particular all players that ego has marked as a friend, or by whom ego was marked as friend. Layer 4 ($h = 4$) contains the fellow alliance members of the ego. Layer 5 ($h = 5$), corresponding to the communication clusters, is obtained by applying a community detection algorithm (Louvain algorithm) to the communication network of the players (see Methods). We tested explicitly that layer 5 is an organisational layer in its own right, whose communities are predominantly subsets of the factions ($h = 6$) and superset of the alliances ($h = 4$, see Methods). Layer 6 ($h = 6$) contains the three factions, and layer 7 ($h = 7$) is the entire society.

Following Hill et al, we calculate the average group size at Horton order h, $\langle G^h \rangle$. Figure 2a shows that $\langle G^h \rangle \sim p^h$, with a scale ratio of $p = 4.4$.

A second independent way to affirm discrete scale invariant structure is obtained by directly analysing the distribution of group sizes, following the approach presented by Zhou et al. Using
a Gaussian kernel estimator of the probability density $f(s)$ (shown in Fig. 2b) of player group sizes in our data, we calculate the generalized (H, q)-derivative of $f(s)$, which generalises the q-derivative for multiple values of H and q, see Fig. 2c. The parameter H stands for the Hurst exponent used to rescale the derivative, while q controls the scale factor of the q-derivative. Coupled with the Lomb-periodogram, the (H, q)-derivative has been shown to be very efficient for identifying log-periodicity in signals, which is the observable signature of discrete scale invariance. As shown in Fig. 2d, the Lomb periodogram of the (H, q)-derivative of $f(s)$ gives a highly significant peak at the angular log-frequencies $\omega = 4.3$, corresponding to a scaling ratio $p = \exp(2\pi/\omega) = 4.3$. One can further clearly see the second and third harmonics, which gives additional support for the existence of log-periodicity, and therefore hierarchical, and discrete scale invariance.

Methods

Data. Pardus is partitioned into three independent games, called 'universes'. Here, we focus on one of them, the 'Artemis' universe. In the game, we have complete information on a multitude of temporal social networks, including the friendship-, communication-, and trading networks. Data are available over 1238 days. We take snapshots of the friendship- and communication network and of group affiliations on days 240, 480, 720, 960, and 1200, respectively. In more formal terms, we have a multiplex $\mathcal{M}^\alpha_{ij}(t)$, where α indicates the type of the link, here friendship and
Figure 2: Analysis of group size scaling: a Horton plot: average size of groups per order. b Estimated probability density of group sizes in Pardus, obtained as Gaussian kernel estimation with bandwidth $\sigma = 0.14$ acting on $\ln(s)$ (see Methods). c Generalized (H,q) derivative of $f(s)$ for $H = 0.5$ and $q = 0.8$ (see Methods). d Lomb periodogram of the (H,q)-derivative of $f(s)$ for different values of H and q (see Methods). Peaks at $\omega \approx 4.3$ (7.7) (marked with black vertical lines) correspond to scaling ratios $p = \exp(2\pi/\omega) \approx 4.3$ (2.3).
communication. \(M_{ij}^{\text{friend}}(t) = 1 \) if \(i \) has marked \(j \) as friend before \(t \) (and has not revoked this marking since) and zero otherwise. \(M_{ij}^{\text{comm}}(t) = 1 \) if \(i \) has sent a message to \(j \) in the time interval \([t-30d, t]\) and zero otherwise. Further, we consider the symmetrisation of the multiplex: \(\hat{M}_{ij}^\alpha = 1 \) if \(M_{ij}^\alpha = 1 \) or \(M_{ji}^\alpha = 1 \). Groups are defined at 6 layers, starting with the ego (\(h = 1 \)), where \(G_i^h \) is the group of layer \(h \) to which \(i \) belongs. Support cliques (\(h = 2 \)), are defined as the set of an individual’s friends with whom he has communicated at least once within the last month: \(G_2^i(t) = \{ j : \hat{M}_{ij}^{\text{friend}}(t) = \hat{M}_{ij}^{\text{comm}}(t) = 1 \} \). Sympathy groups (\(h = 3 \)) are defined as the set of an individual’s friends: \(G_3^i(t) = \{ j : \hat{M}_{ij}^{\text{friend}}(t) = 1 \} \). Layer 4 consists of the so-called ‘alliances’ (\(h = 4 \)), which are clubs that can be created in the game and where all memberships are known. The same is true for the ‘factions’ (\(h = 6 \)). An additional layer of grouping (\(h = 5 \)) is found by applying the Louvain algorithm\(^{15, 16}\) to \(\hat{M}_{ij}^{\text{comm}}(t) \). Note that the Louvain algorithm confirms the other lower layers (\(h = 1 \) to \(h = 4 \)). The last layer is the whole society (\(h = 7 \)). We consider only alliances with at least three members. \(G_i^h(t) \) might be empty for \(h > 1 \).

Layer 5: communication clusters. Layer 5 is obtained by applying a community detection algorithm (Louvain algorithm\(^{15, 16}\)) to the communication network of the players. We detect communities that contain 292 players each (ignoring communities with less than three members). Results for every day in our data set are obtained from averages over five runs of the algorithm. When comparing the layer 5 communities to the factions, we find that about 76% of the members of a layer 5 community are in the same faction. Comparing layer 5 communities to the alliances we find that about 84% of the members of an alliance are in the same layer 5 community on average. To further quantify the similarity between communities found by the Louvain algorithm and the factions and alliances, we calculate the Fowlkes-Mallows index\(^{25, 26}\) \(F \) (see below). \(F \) compares two results of community labelling (clusterings, partitions). For identical clusterings, \(F = 1 \), for totally unrelated clusterings, \(F \rightarrow 0 \), given the number of clusters is large. Here we compare layer 5 with the factions (layer 6) and the alliances (layer 4). As a null model we generate random communities of the same sizes as those found by the Louvain algorithm: each community labelling (as found in any of the five runs of the Louvain algorithm) is reshuffled ten times, and the respective Fowlkes-Mallows indices for layer 5 – factions and layer 5 – alliances are computed. \(F_{\text{shuffle}} \) is defined as the average over the five iterations of the Louvain algorithm, the ten shuffled versions, and the five days of observation. For layer 5 – factions, we find \(F = 0.50 \), with \(F_{\text{shuffle}} = 0.21 \), which suggests that the detected communities are predominantly subsets of the factions. For the layer 5 – alliances case we get \(F = 0.28 \), and \(F_{\text{shuffle}} = 0.041 \), implying that the layer 5 communities are also mainly supersets of the alliances. These results indicate that layer 5 is indeed an organisational layer in its own right, located between the factions (layer 6) and the alliances (layer 4).

Fowlkes-Mallows index \(F \). To validate the communities found by the Louvain algorithm, we compare them to the factions and alliances by means of the Fowlkes-Mallows index\(^{25, 26}\) \(F \), which is defined as:

\[
F = \frac{TP}{\sqrt{(TP + FP)(TP + FN)}}
\]
where TP is the number of pairs of elements that are in a common community in both compared clusterings, FP is the number of pairs that are in a common community in clustering 1, but belong to two different communities in clustering 2. FN is the number of pairs that are found in a common community in clustering 2, but belong to two different communities in clustering 1.

Gaussian kernel estimator. For a smooth estimation of $f(s)$ from our N data points s_i, we use the Gaussian kernel estimator $f(\ln(s)) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{N}(\ln(s) - \ln(s_i), \sigma)$, where $\mathcal{N}(0, \sigma)$ is a zero-mean Gaussian distribution with standard deviation $\sigma = 0.14$.

Generalized (H, q)-derivative. is defined as $D^H_q f(s) = \frac{f(s) - f(qs)}{[(1-q)s]^H}$. It allows for an adaptive de-trending and enhances possible discrete scale structures.

Lomb periodogram. For the frequency analysis, we use the Lomb periodogram which provides an ideal spectral analysis for unevenly sampled data, as occurs when using the logarithm of sizes. See Fig. 3 that illustrates the whole process of recovering the preferred scaling ratio using the Lomb periodogram applied to the (H, q)-derivative of the kernel estimation of the density distribution of a noisy log-periodic signal.

1. Dunbar, R. I. M. & Spoors, M. Social networks, support cliques, and kinship. *Hum. Nat.* 6, 273–290 (1995).
2. Hill, R. A. & Dunbar, R. I. M. Social network size in humans. *Hum. Nat.* 14, 53–72 (2003).
3. Dunbar, R. I. M. Co-evolution of neocortex size, group size and language in humans. *Behavi. and Brain Sci.* 16, 681–735 (1993).
4. Zhou, W.-X., Sornette, D., Hill, R. A. & Dunbar, R. I. M. Discrete hierarchical organisation of social group sizes. *Proc. R. Soc. B* 272, 439–444 (2005).
5. Hamilton, M. J., Milne, B. T., Walker, R. S., Burger, O. & Brown, J. H. The complex structure of hunter-gatherer social networks. *Proc. R. Soc. B* 274, 2195–2202 (2007).
6. Hill, R. A., Bentley, R. A. & Dunbar, R. I. Network scaling reveals consistent fractal pattern in hierarchical mammalian societies. *Biol. Lett.* 4, 748–751 (2008).
7. Bainbridge, W. S. The scientific research potential of virtual worlds. *Science* 317, 472 (2007).
8. Castronova, E. *Synthetic Worlds: The Business and Culture of Online Games* (University of Chicago Press, Chicago, 2005).
9. Szell, M. & Thurner, S. Measuring social dynamics in a massive multiplayer online game. *Soc. Networks* 32, 313–329 (2010).
10. Klimek, P. & Thurner, S. Triadic closure dynamics drives scaling laws in social multiplex networks. *New J. Phys.* 15, 063008 (2013).
Figure 3: Detection of log-periodicity (illustration): a Data points with factor three between each other (blue), log-periodic function $\cos(\omega_0 \ln(s))$ with $\omega_0 = \frac{2\pi}{\ln(3)} \approx 5.72$ (black). b Same as (a), but with logarithmic x-axis to visualise the log-periodicity. c $\ln(s)$ is perturbed, i.e. drawn from a (sum of) normal distribution(s) with mean $\ln(3)$ and variance 0.1 (blue). Black: Analytical probability density for the data. d Probability density as inferred from the data by Gaussian kernel estimation of $\ln(s)$ with bandwidth 0.1. e Generalized (H,q)-derivative of $f(s)$, with $q = 0.8$ and $H = 0.5$. f Lomb periodogram of $D^{H}_q f(s)$ as function of $\ln(f(s))$. The main peak is close to the expected value ω_0 (marked in black). Additionally, a peak close to the second harmonic $2\omega_0$ is visible.
11. Szell, M., Lambiotte, R. & Thurner, S. Multirelational organisation of large-scale social networks in an online world. *Proc. Natl. Acad. Sci. USA* **107**, 13636–13641 (2010).

12. Thurner, S., Szell, M. & Sinatra, R. Emergence of good conduct, scaling and Zipf laws in human behavioral sequences in an online world. *PLoS ONE* **7**, e29796 (2012).

13. Szell, M. & Thurner, S. How women organize social networks different from men. *Sci. Rep.* **3** (2013).

14. Szell, M., Sinatra, R., Petri, G., Thurner, S. & Latora, V. Understanding mobility in a social petri dish. *Sci. Rep.* **2** (2012).

15. Blondel, V., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. *J. Stat. Mech.* **2008**, P10008 (2008).

16. Rubinov, M., Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. *NeuroImage* **52**, 1059–1069 (2010).

17. Zhou, W.-X. & Sornette, D. Generalized q-Analysis of Log-Periodicity: Applications to Critical Ruptures. *Phys. Rev. E* **6604** 046111 (2002).

18. Zhou, W.-X. & Sornette, D. Non-Parametric Analyses of Log-Periodic Precursors to Financial Crashes. *Int. J. Mod. Phys. C* **14** 1107–1126 (2003).

19. Erzan, A. & Eckmann, J.-P. q-analysis of fractal sets. *Phys. Rev. Lett.* **78**, 3245–3248 (1997).

20. Erzan, A. Finite q-differences and the discrete renormalization group. *Phys. Lett. A* **225**, 235–238 (1997).

21. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. *Numerical Recipes* (Cambridge University Press, New York, 2007), 3rd edn.

22. Sornette, D. Discrete scale invariance and complex dimensions. *Phys. Rep.* **297**, 239–270 (1998).

23. Zhou, W.-X. & Sornette, D. Statistical Significance of Periodicity and Log-Periodicity with Heavy-Tailed Correlated Noise. *Int. J. Mod. Phys. C* **13**, 137–170 (2002).

24. Zhou, W.-X. & Sornette, D. Evidence of Intermittent Cascades from Discrete Hierarchical Dissipation in Turbulence. *Physica D* **165**, 94–125 (2002).

25. Fowlkes, E. B. & Mallows, C. L. A method for comparing two hierarchical clusterings. *J. Am. Stat. Assoc.* **78**, 553–569 (1983).

26. Halkidi, M., Batistakis, Y. & Vazirgiannis, M. On clustering validation techniques. *J. Intel. Inf. Syst.* **17**, 107–145 (2001).
Acknowledgements ST and BF acknowledge support from the Austrian Science Fund FWF P23378.

Author Contributions BF, DS, and ST devised the concept. BF analysed the data. BF, DS, and ST interpreted the results and wrote the manuscript.

Author Information The authors declare that they have no competing financial interests. Correspondence and requests for materials should be addressed to ST (stefan.thurner@meduniwien.ac.at).