New code upper bounds for the folded n-cube

Lihang Hou1 Bo Hou1 Suogang Gao1∗ Wei-Hsuan Yu2

1 College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
2 Institute for Computational and Experimental Research in Mathematics, Brown University, Providence, RI, 02903, USA

Abstract

Let Γ denote a distance-regular graph. The maximum size of codewords with minimum distance at least d is denoted by $A(\Gamma, d)$. Let \square_n denote the folded n-cube $H(n, 2)$. We give an upper bound on $A(\square_n, d)$ based on block-diagonalizing the Terwilliger algebra of \square_n and on semidefinite programming. The technique of this paper is an extension of the approach taken by A. Schrijver [8] on the study of $A(H(n, 2), d)$.

Key words: Code; Upper bounds; Terwilliger algebra; Semidefinite programming

2010 MSC: 05C50, 94B65

1 Introduction

Let Γ denote a distance-regular graph with vertex set $V(\Gamma)$, path-length distance function ∂ and diameter D. We call any nonempty subset C of $V(\Gamma)$ a code in Γ. For $1 < |C| < |V(\Gamma)|$, the minimum distance of C is defined as $d := \min\{\partial(x, y) | x, y \in C, x \neq y\}$. The maximum size of C with minimum distance at least d is denoted by $A(\Gamma, d)$. In general, the problem of determining $A(\Gamma, d)$ is difficult and hence any improved upper bounds are interesting enough for the researchers in this area. In [8], A. Schrijver introduced a new method based on block-diagonalizing the Terwilliger algebra of $H(n, 2)$ and on semidefinite programming to give an upper bound on $A(H(n, 2), d)$. This method can be seen as a refinement of Delsarte’s linear programming approach [5] and the obtained new bound is stronger than the Delsarte bound. In [7] these results were extended to the q-Hamming scheme with $q \geq 3$. We refer the reader to [6] for more details on this method.

Motivated by above works, in this paper we will consider the folded n-cube $H(n, 2)$ which is denoted by \square_n. We first determine the Terwilliger algebra of \square_n with respect to a fixed vertex. Then based on block-diagonalizing the Terwilliger algebra of \square_n and on semidefinite programming, we give a new upper bound on $A(\square_n, d)$. This bound strengthens the Delsarte bound and can be calculated in time polynomial in n using semidefinite programming.

We now recall the definition of \square_n. Let $S = \{1, 2, \ldots, n\}$ with integer $n \geq 6$. It is known that each subset of S is called the support of a vertex of $H(n, 2)$ and hence we can identify all vertices of $H(n, 2)$ with their support. Then the Hamming distance of $u, v \subseteq S$ is equal to $|u \triangle v|$, where $u \triangle v = u \cup v - u \cap v$. Denote by X the set of all unordered pairs (u, u'), where $u, u' \subseteq S$, $u \cap u' = \emptyset$, $u \cup u' = S$. \square_n can be described as the graph whose vertex set is X, two vertices, say $z := (z_1, z_2), w := (w_1, w_2)$, are adjacent whenever $\min\{|z_i \triangle w_j| : i, j = 1, 2\} = 1$. Thus the path-length distance of $x := (x_1, x_2)$ and $y := (y_1, y_2)$ is given by

$$\partial(x, y) = \min\{|x_i \triangle y_j| : i, j = 1, 2\}.$$
Observe that $|x_1 \triangle y_1| = |x_2 \triangle y_2|$, $|x_1 \triangle y_1| = |x_2 \triangle y_1|$, and $|x_1 \triangle y_1| + |x_1 \triangle y_2| = n$. Then it follows that $\partial(x, y) = \min\{ |x_1 \triangle y_1|, |x_1 \triangle y_2| \}$ and $0 \leq \partial(x, y) \leq \left\lfloor \frac{n}{2} \right\rfloor$, where $|a|$ denotes the maximal integer less than or equal to a. It is well-known that \Box_n is a bipartite (an almost-bipartite) distance-regular graph with diameter $\left\lfloor \frac{n}{2} \right\rfloor$ for even n (odd n).

The paper is organized as follows. In Section 2, we recall some definitions and facts concerning the distance-regular graph and its Terwilliger algebra. In Section 3, we give a basis of the Terwilliger algebra of \Box_n by considering the action of automorphism group of \Box_n on $X \times X \times X$. In Section 4, we study a block-diagonalization of the Terwilliger algebra via the obtained basis. In Section 5, we estimate an upper bound on $A(\Box_n, d)$ by semidefinite programming involving the block-diagonalization of the Terwilliger algebra. Moreover, we offer several concrete upper bounds on $A(\Box_n, d)$ for $8 \leq n \leq 13$.

2 Preliminaries

Let Γ denote a distance-regular graph with vertex set V, path-length distance function ∂, and diameter D. Let $V = \mathbb{C}^{VT}$ denote the \mathbb{C}-space of column vectors with coordinates indexed by VT, and let $\text{Mat}_{VT}(\mathbb{C})$ denote the \mathbb{C}-algebra of matrices with rows and columns indexed by VT.

For $0 \leq i \leq D$ let $A_i \in \text{Mat}_{VT}(\mathbb{C})$ denote the ith distance matrix of Γ: A_i has (x, y)-entry equal to 1 if $\partial(x, y) = i$ and 0 otherwise. It is known that A_0, A_1, \ldots, A_D span a commutative subalgebra of $\text{Mat}_{VT}(\mathbb{C})$, denoted by \mathcal{M}. It turns out that \mathcal{M} can be generated by A_1. We call \mathcal{M} the Bose-Mesner algebra of Γ. Fix a vertex $x \in VT$. For $0 \leq i \leq D$ let diagonal matrix $E_i^* = E_i^*(x)$ denote ith dual idempotent of Γ: E_i^* has (y, y)-entry equal to 1 if $\partial(x, y) = i$ and 0 otherwise. It is known that $E_0^*, E_1^*, \ldots, E_D^*$ span a commutative subalgebra of $\text{Mat}_X(\mathbb{C})$, denoted by \mathcal{M}^*. We call \mathcal{M}^* the dual Bose-Mesner algebra of Γ with respect to x.

Let $T = T(x)$ denote the subalgebra of $\text{Mat}_{VT}(\mathbb{C})$ generated by \mathcal{M} and \mathcal{M}^*, and T is called the Terwilliger algebra of Γ with respect to x. It is known that T is semisimple and finite dimensional. In what follows, we recall some terms about T-modules. A subspace $W \subseteq V$ is called T-module if $YW \subseteq W$ for all $Y \in T$. W is said to be irreducible whenever $W \neq 0$ and W contains no T-modules besides 0 and W. Assume W is an irreducible T-module. By the endpoint of W (resp. diameter of W), we mean $\min\{ |i| : 0 \leq i \leq D, E_i^*W \neq 0 \}$ (resp. $\min\{ |i| : 0 \leq i \leq D, E_i^*W \neq 0 \} - 1 \}$. W is said to be thin whenever $\text{dim}(E_i^*W) \leq 1$ for all $0 \leq i \leq D$. Note that the standard module V is an orthogonal direct sum of irreducible T-modules. By the multiplicity with which W appears in V, we mean the number of irreducible T-modules in this sum which are isomorphic to W. See [3, 4, 9, 10] for more information on the Terwilliger algebra.

Lemma 2.1. ([9 Lemma 3.9]) Let W denote an irreducible T-module with endpoint r and diameter d^*. Then the following (i)–(iii) hold.

(i) $A_i E_i^*W \subseteq E_{i-1}^*W + E_i^*W + E_{i+1}^*W$ ($0 \leq i \leq D$).

(ii) $E_i^*W \neq 0$ if and only if $r \leq i \leq r + d^*$.

(iii) $E_j^* A_i E_i^*W \neq 0$ if $|j - i| = 1$ ($r \leq i, j \leq d^*$).

Lemma 2.2. Let W denote a thin irreducible T-module with endpoint r and diameter d^*. Pick a nonzero vector $\xi_0 \in E_r^*W$, and let $\xi_i = E_{r+i}^* A_i E_{r+i-1}^* A_{r+i-2} \cdots E_{r+1}^* A_1 E_r^* \xi_0$ ($1 \leq i \leq d^*$). Then we have $\xi_i \in E_{r+i}^*W$ and ξ_i is nonzero. Moreover, $\xi_0, \xi_1, \ldots, \xi_{d^*}$ span W.

Proof. It is easy to see that $\xi_i \in E_{r+i}^*W$. Since W is thin, we have $\text{dim}(E_r^*W) = 1$ for $r \leq i \leq r + d^*$ by Lemma 2.1(ii). Then use Lemma 2.1(iii) to induct on i. We can have that...
each ξ_i ($1 \leq i \leq d^*$) is nonzero and hence $\xi_0, \xi_1, \ldots, \xi_{d^*}$ are linearly independent. It follows from $\dim(W) = d^* + 1$ that $W = \text{span}\{\xi_0, \xi_1, \ldots, \xi_{d^*}\}$. \hfill \square

At end of this section, we recall some facts from number theory which are useful later.

Lemma 2.3. The following (i)--(iii) hold.

(i) The number of nonnegative integer solutions to the equation $x_1 + x_2 + \cdots + x_m = n$ is \(\binom{n+m-1}{m-1}\).

(ii) $\sum_{k=0}^{n} (-1)^{k-m} \binom{k}{m} \binom{n}{k} = \delta_{m,n}$.

(iii) $\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \binom{n-2m+k}{n-i} = \binom{n-2m}{i-m}$.

3 The Terwilliger algebra of \square_n

In this section, we give a basis of the Terwilliger algebra of \square_n with $n \geq 6$. We treat two cases of n even and odd separately.

3.1 The Terwilliger algebra of \square_{2D}

Recall the definition of vertex set X for $n = 2D$ and we can view X as the set consisting of all ordered pairs (u, u') with $|u| < |u'|$ and all unordered pairs (u, u') with $|u| = |u'|$. We give the following notation. To each ordered triple $(x, y, z) \in X \times X \times X$, where $x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2)$, we associate the integers three-tuple (i, j, t):

$$\partial(x, y, z) := (i, j, t), \quad \text{where } i := \partial(x, y), \quad j := \partial(x, z),$$

without loss of generality, let $|x_1 \triangle y_1| = i$ and $|x_1 \triangle z_1| = j$. Then

for $0 \leq i, j \leq D - 1$, $t := |(x_1 \triangle y_1) \cap (x_1 \triangle z_1)|$,

for $i = D, 0 \leq j \leq D - 1$, $t := \max\{|(x_1 \triangle y_1) \cap (x_1 \triangle z_1)|, |(x_1 \triangle y_2) \cap (x_1 \triangle z_1)|\}$,

for $0 \leq i \leq D - 1, j = D$, $t := \max\{|(x_1 \triangle y_1) \cap (x_1 \triangle z_1)|, |(x_1 \triangle y_1) \cap (x_1 \triangle z_2)|\}$,

for $i = j = D$, $t := \max\{|(x_1 \triangle y_1) \cap (x_1 \triangle z_1)|, |(x_1 \triangle y_1) \cap (x_1 \triangle z_2)|, |(x_1 \triangle y_2) \cap (x_1 \triangle z_1)|, |(x_1 \triangle y_2) \cap (x_1 \triangle z_2)|\}$

= $\max\{|(x_1 \triangle y_1) \cap (x_1 \triangle z_1)|, |(x_1 \triangle y_1) \cap (x_1 \triangle z_2)|\}$.

Observe that $0 \leq t \leq i, j \leq D$, $t \geq \left\lceil \frac{i+1}{2} \right\rceil$ for $i = D$, and $t \geq \left\lceil \frac{i+1}{2} \right\rceil$ for $j = D$. Note that $\partial(y, z) = \min\{|y_1 \triangle z_1|, |y_2 \triangle z_2|, |y_2 \triangle z_1|\}$. Then by simple calculation, we have that $\partial(y, z) = \min\{i + j - 2t, 2D - (i + j - 2t)\}$ for $0 \leq i, j \leq D - 1$ and $\partial(y, z) = i + j - 2t$ for $i = D$ or $j = D$. The set of three-tuples (i, j, t) that occur as $\partial(x, y, z) = (i, j, t)$ for some $x, y, z \in X$ is given by

$$\mathcal{I} := \{(i, j, t) | 0 \leq t \leq i, j \leq D, i + j - t \leq 2D - 1, t \geq \left\lceil \frac{j+1}{2} \right\rceil \text{ if } i = D \text{ and } t \geq \left\lceil \frac{i+1}{2} \right\rceil \text{ if } j = D\}. \quad \text{(1)}$$

Proposition 3.1. We have

$$|\mathcal{I}| = \frac{(D + 1)(D^2 + 2D + 3)}{3}.$$
Proof. Let

\[i + j - t = l \quad (0 \leq t \leq i, j \leq D, \ 0 \leq l \leq 2D - 2). \tag{2} \]

We divide the proof into three cases.

(i) the case: \(0 \leq l \leq D\). Substitute \(i' := i - t\) and \(j' := i - t\). Then the integer solutions of (2) are in bijection with the integer solutions of

\[0 \leq i', j', t \leq D, \ i' + j' + t = l. \tag{3} \]

By Lemma 2.3(i) the number of integer solutions of (3) is \(\binom{l + 2}{2}\) and these solutions satisfy (1).

(ii) the case: \(D + 1 \leq l \leq D + \lfloor \frac{D}{2} \rfloor\). Substitute \(i' := D - i, j' := D - j\) and \(l' := 2D - l\). Then the integer solutions of (2) are in bijection with the integer solutions of

\[0 \leq i', j', t \leq D, \ i' + j' + t = l'. \tag{4} \]

The number of integer solutions of (4) is \(\binom{D - l}{2} = \binom{2D - l + 2}{2}\). One easily verifies that when \(i = D\) or \(j = D\) in (2) there are total \(2(l - D)\) integer solutions satisfying (4) but not satisfying (1).

(iii) the case: \(D + \lfloor \frac{D}{2} \rfloor + 1 \leq l \leq 2D - 2\). By the argument similar to the discussion of case (ii), we have that the number of integer solutions satisfying (1) is \(\binom{2D - l + 2}{2} - 2(2D - l) - 1 = \binom{2D - 1}{2}\). Note that when \(i = D\) or \(j = D\) in (2) there are total \(2(2D - l) + 1\) integer solutions not satisfying (1).

Therefore,

\[
|I| = \sum_{l=0}^{D} \binom{l + 2}{2} + \sum_{l=D+1}^{D+\lfloor \frac{D}{2} \rfloor} \left(\binom{2D - l + 2}{2} - 2(l - D) \right) + \sum_{l=D+\lfloor \frac{D}{2} \rfloor + 1}^{2D-2} \binom{2D - l}{2} \\
= \frac{(D + 1)(D + 2)(D + 3)}{6} + \frac{D(D + 1)(D + 2)}{6} - \frac{(D - \lfloor \frac{D}{2} \rfloor)(D - \lfloor \frac{D}{2} \rfloor + 1)(D - \lfloor \frac{D}{2} \rfloor + 2)}{6} \\
- \frac{1}{2}\left(D - \lfloor \frac{D}{2} \rfloor \right)(D - \lfloor \frac{D}{2} \rfloor + 1) + \frac{(D - \lfloor \frac{D}{2} \rfloor - 2)(D - \lfloor \frac{D}{2} \rfloor - 1)(D - \lfloor \frac{D}{2} \rfloor)}{6} \\
= \frac{(D + 1)(D^2 + 2D + 3)}{3}.
\]

\[\square \]

For each \(i, j, t \in I\), we define

\[X_{i,j,t} := \{(x, y, z) \in \{X \times X \times X|\partial(x, y, z) = (i, j, t)\}. \tag{5} \]

Denote by \(\text{Aut}(X)\) the automorphism group of \(\square_{2D}\) and \(\text{Aut}_0(X)\) the stabilizer of vertex \(0 := (\emptyset, S)\) in \(\text{Aut}(X)\). The following proposition gives the meaning of \(X_{i,j,t}\), \((i, j, t) \in I\).

Proposition 3.2. The sets \(X_{i,j,t}\), \((i, j, t) \in I\) are the orbits of \(X \times X \times X\) under the action of \(\text{Aut}(X)\).

Proof. By \([2, p. 265]\) the \(\text{Aut}(X)\) is \(2^{2D-1}.\text{sym}(2D)\). Let \(x, y, z \in X\) and let \(\partial(x, y, z) = (i, j, t)\). By the definitions of \(i, j, t\), one easily verifies that \(i, j, t\) are unchanged under any action of \(\sigma \in \text{Aut}(X)\), that is \(\partial(\sigma x, \sigma y, \sigma z) = (i, j, t)\).

To show that \(\text{Aut}(X)\) acts transitively on \(X_{i,j,t}\) for each \((i, j, t) \in I\), it suffices to show that for fixed \(\partial(x', y', z') = (i, j, t)\) if \(\sigma \in \text{Aut}(X)\) ranges over \(\text{Aut}(X)\) then \(\partial(\sigma x', \sigma y', \sigma z')\) ranges over \(X_{i,j,t}\). By permuting on \(X\), we may assume that \(x' = 0\). Then \(\partial(0, y', z') = (i, j, t)\). Since \(\text{Aut}_0(X) = \text{sym}(2D)\), we have that if \(\psi \in \text{Aut}_0(X)\) ranges over the \(\text{Aut}_0(X)\) then \(\partial(\psi y', \psi z')\) ranges over the set \(\{(y, z) \in X \times X|\partial(0, y, z) = (i, j, t)\}\). \[\square\]
The action of Aut(X) on $X \times X \times X$ induces an action of Aut$_0$(X) on $\{0\} \times X \times X$. Thus we define

$$X^0_{i,j,t} := \{(x, y) \in X \times X | \partial(0, x, y) = (i, j, t)\}.$$

Observe that $(x, y) \in X^0_{i,j,t}$ is equivalent to $|x_1| = i, |y_1| = j$ and $t = |x_1 \cap y_1|$ when $0 \leq i, j \leq D - 1$, $t = \max\{|x_1 \cap y_1|, |x_2 \cap y_1|\}$ when $i = D, 0 \leq j \leq D - 1$, $t = \max\{|x_1 \cap y_1|, |x_1 \cap y_2|\}$ when $0 \leq i \leq D - 1, j = D$, $t = \max\{|x_1 \cap y_1|, |x_1 \cap y_2|, |x_2 \cap y_1|\}$ when $i = j = D$.

Proposition 3.3. The sets $X^0_{i,j,t}$, $(i, j, t) \in I$ are the orbits of $X \times X$ under the action of Aut$_0$(X).

Proof. Immediate from Proposition 3.2. \qed

Definition 3.4. For each $(i, j, t) \in I$, define the matrix $M^t_{i,j} \in \text{Mat}_X(\mathbb{C})$ by

$$ (M^t_{i,j})_{xy} = \begin{cases} 1 & \text{if } (x, y) \in X^0_{i,j,t}, \\ 0 & \text{otherwise} \end{cases} \quad (x, y \in X).$$

Note that the transpose of $M^t_{i,j}$ is $M^t_{j,i}$. Let \mathcal{A} be the linear space spanned by the matrices $M^t_{i,j}$, $(i, j, t) \in I$. It is easy to check that \mathcal{A} is closed under addition, scalar, taking the adjoint and matrix multiplication which is implied by Proposition 3.3. Therefore \mathcal{A} is a matrix \mathbb{C}-algebra with the basis $M^t_{i,j}$. Next, we show that \mathcal{A} coincides with T, where $T := T(0)$ is the Terwilliger algebra of $\square_2 D$. To do this, we need the following propositions. Let A_1 and $E^*_i = E^*_i(0)$ $(0 \leq i \leq D)$ denote the adjacency matrix and the ith dual idempotent, respectively.

Proposition 3.5. With Definition 3.4, we have

(i) $M^t_{i,i} = E^*_i(0) \quad (0 \leq i \leq D)$;

(ii) $M^{-1}_{i-1,i} = E^*_{i-1} A_1 E^*_i$, $M^{-1}_{i,i-1} = E^*_i A_1 E^*_{i-1} \quad (0 \leq i \leq D)$.

Proof. (i) It follows from that the (x, y)-entry of $M^t_{i,i}$ is 1 if $x = y$, $|x_1| = i$ and 0 otherwise.

(ii) Consider the (x, y)-entry of both $M^{-1}_{i-1,i}$ and $E^*_{i-1} A_1 E^*_i$. For $0 \leq i \leq D - 1$, we have $(M^{-1}_{i-1,i})_{xy} = (E^*_{i-1} A_1 E^*_i)_{xy} = 1$ if $|x_1| = i - 1, |y_1| = i, |x_1 \cap y_1| = i - 1$ and 0 otherwise. For $i = D$, we have $(M^{-1}_{i-1,i})_{xy} = (E^*_{i-1} A_1 E^*_i)_{xy} = 1$ if $|x_1| = D - 1, |y_1| = |y_2| = D$, $\max\{|x_1 \cap y_1|, |x_1 \cap y_2|\} = D - 1$ and 0 otherwise. \qed

Proposition 3.6. With Definition 3.4, we have

(i) $M^k_{k+i,k} = \frac{1}{n} M^k_{k+i+i, k+i-1} \cdots M^k_{k+2,k+1} M^k_{k+1,k} \quad (k \neq 0, i \geq 0) \text{ or } (k = 0, 1 \leq i \leq D - 1)$;

(ii) $M^0_{D,0} = \frac{1}{2D^2} M^{D-1}_{D,D-1} \cdots M^1_{2,1} M^0_{1,0}$;

(iii) $M^k_{k+i,k} = \frac{n}{n} M^k_{k+i-i, k+i+i, k+i-1} \cdots M^k_{k+1,k} \quad (1 \leq i < k \leq D) \text{ or } (1 \leq i = k \leq D - 1)$.

Proof. (i) It is easy to verify $M^k_{k+i, k+i+1} M^k_{k+i+1, k+1} = 2M^k_{k+i, k+i+1}$ since the entry of this matrix in position (x, y), with $|x_1| = k + 2$ and $|y_1| = k$, is equal to $|z_1| = k + 1, y_1 \subseteq z_1 \subseteq x_1|$ if $k + 2 < D$ or $|z_1| = k + 1, y_1 \subseteq z_1 \subseteq x_1$ or $y_1 \subseteq z_1 \subseteq x_2$ if $k + 2 = D$. Then by induction on i ($(k \neq 0, i \geq 1)$ or $(k = 0, 1 \leq i \leq D - 1)$) we can obtain the desired result.

(ii) By use of (i), we first have $M^{D-2}_{D,D-2} \cdots M^0_{1,0} = (D - 1)! M^{D-1}_{D-1,0}$. Then we have $M^{D-1}_{D,D-1} M^0_{D,0} = 2D M^0_{D,0}$ since the entry of this matrix in position (x, y), with $|x_1| = |x_2| = D$ and $|y_1| = 0$, is equal to $|z_1| = D - 1, z_1 \subseteq x_1$ or $z_1 \subseteq x_2$ $|z_1| = 2D$.

(iii) By taking transpose of both sides of (i) and replacing k by $k - i$, we can obtain the desired result. \qed
Proposition 3.7. With Definition 3.4, we have

(i) for $0 \leq i, j \leq D - 1$,
$$M^t_{i,j} = \sum_{k=0}^{D-1} (-1)^{k-t} \binom{k}{t} M^k_{i,k} M^k_{k,j};$$

(ii) for $i = D, 0 \leq j \leq D - 1$ and $t \geq \left\lfloor \frac{j}{2} \right\rfloor + 1$,
$$M^t_{D,j} = \sum_{k=\left\lfloor \frac{j}{2} \right\rfloor + 1}^{D-1} (-1)^{k-t} \binom{k}{t} M^k_{D,k} M^k_{k,j};$$

(iii) for $i = D, 0 \leq j \leq D - 1$ and $t = \frac{j}{2}$ (j even),
$$M^\frac{j}{2}_{D,j} = \frac{1}{2} \sum_{k=\frac{j}{2}}^{D-1} (-1)^{k-\frac{j}{2}} \binom{k}{\frac{j}{2}} M^k_{D,k} M^k_{k,j};$$

(iv) for $0 \leq i \leq D - 1, j = D$ and $t \geq \left\lfloor \frac{D}{2} \right\rfloor + 1$,
$$M^t_{i,D} = \sum_{k=\left\lfloor \frac{D}{2} \right\rfloor + 1}^{D-1} (-1)^{k-t} \binom{k}{t} M^k_{i,k} M^k_{k,D};$$

(v) for $0 \leq i \leq D - 1, j = D$ and $t = \frac{D}{2}$ (i even),
$$M^\frac{D}{2}_{i,D} = \frac{1}{2} \sum_{k=\frac{D}{2}}^{D-1} (-1)^{k-\frac{D}{2}} \binom{k}{\frac{D}{2}} M^k_{i,k} M^k_{k,D};$$

(vi) for $i = j = D$ and $t \geq \left\lfloor \frac{D}{2} \right\rfloor + 1$,
$$M^t_{D,D} = \frac{1}{2} \left(\sum_{k=\left\lfloor \frac{D}{2} \right\rfloor + 1}^{D} (-1)^{k-t} \binom{k}{t} M^k_{D,k} M^k_{k,D} + (-1)^{D-t} \binom{D}{t} M^D_{D,D} \right);$$

(vii) for $i = j = D$ and $t = \frac{D}{2}$ (D even),
$$M^{\frac{D}{2}}_{D,D} = \frac{1}{4} \left(\sum_{k=\frac{D}{2}}^{D} (-1)^{k-\frac{D}{2}} \binom{k}{\frac{D}{2}} M^k_{D,k} M^k_{k,D} + (-1)^{D-t} \binom{D}{\frac{D}{2}} M^D_{D,D} \right).$$

Proof. (i) For $0 \leq i, j \leq D - 1$, we have $M^k_{i,k} M^k_{k,j} = \sum_{l=0}^{D-1} \binom{l}{k} M^l_{ij}$, since the entry of this matrix in position (x, y), with $|x_1| = i$ and $|y_1| = j$, is equal to $|\{z \in X||z_1| = k, z_1 \subseteq (x_1 \cap y_1)\}|$. It follows from Lemma 2.3(ii) that
$$\sum_{k=0}^{D-1} (-1)^{k-t} \binom{k}{t} M^k_{i,k} M^k_{k,j} = \sum_{k=0}^{D-1} (-1)^{k-t} \binom{k}{t} \sum_{l=0}^{D-1} \binom{l}{k} M^l_{ij},$$
$$= \sum_{l=0}^{D-1} \delta_{t,t} M^l_{ij},$$
$$= M^t_{i,j}.$$
For cases (ii)-(vii), the proofs are similar to that of (i). Note that for \(0 \leq j \leq D - 1\), \(M_{D,k}^j M_{k,D}^j = \sum_{d=0}^{D-1} \left(\binom{d}{i} + \binom{D-i}{k} \right) M_{D,j}^d (l \geq \frac{D+j}{2})\) since the entry of this matrix in position \((x,y)\), with \(|x_1| = |x_2| = D\) and \(|y_1| = j\), is equal to \(|\{ z \in X | z_1 = k, z_1 \subseteq (x_1 \cap y_1) \text{ or } z_1 \subseteq (x_2 \cap y_1) \}|\); for \(1 \leq k \leq D\), \(M_{D,k}^j M_{k,D}^j = \sum_{d=0}^{D-1} \left(\binom{d}{i} + \binom{D-i}{k} \right) M_{D,D}^d (l \geq \frac{D+j+1}{2})\) since the entry of this matrix in position \((x,y)\), with \(|x_1| = |x_2| = D\) and \(|y_1| = |y_2| = D\), is equal to \(|\{ z \in X | z_1 = k, z_1 \subseteq (x_1 \cap y_1) \text{ or } z_1 \subseteq (x_2 \cap y_1) \}|\).

Theorem 3.8. For \(\Box_{2D}\), the algebras \(A\) and \(T\) coincide.

Proof. On the one hand, we have \(T \subseteq A\) since \(A_1 = \sum_{i=1}^{D} (M_{i,i-1}^{-1} + M_{i-1,i}^{-1})\) and \(E_i^* = M_{i,i}^{-1}\) \((0 \leq i \leq D)\) by Proposition 3.9, 3.7. On the other hand, by Propositions 3.9, 3.7 we have \(A \subseteq T\) since each \(M_{ij}^* \in T\) for \((i,j,t) \in T\). So the algebras \(A\) and \(T\) coincide.

3.2 The Terwilliger algebra of \(\Box_{2D+1}\)

Recall the definition of \(X\) for \(n = 2D + 1\) and we view \(X\) as the set consisting of all ordered pairs \((u,u')\) with \(|u| < |u'|\). To each ordered triple \((x,y,z) \in X \times X \times X\), we define \(\partial(x,y,z) = (i,j,t)\) where \(i = \partial(x,y), j = \partial(y,z)\), without loss of generality, let \(|x_1 \cap y_1| = i\) and \(|x_1 \cap z_1| = j\). Then \(t = ||(x_1 \cap y_1) \cap (x_1 \cap z_1)|\).

Observe that \(0 \leq t \leq i,j \leq D\) and \(\partial(y,z) = \min\{i + j - 2t, 2D + 1 - (i + j - 2t)\}\). The set of such tuples \((i,j,t)\), that occur as \(\partial(x,y,z) = (i,j,t)\) for some \(x,y,z \in X\), is given by \(T' := \{(i,j,t)|0 \leq t \leq i,j \leq D, i + j - t \leq 2D\}\).

Proposition 3.9. We have \(|T'| = \frac{(D+1)(D+2)(2D+3)}{6}\).

Proof. Similar to the proof of Proposition 3.1(i), (ii): \(|T'| = \sum_{i=0}^{D} \binom{i+2}{2} + \sum_{i=D+1}^{2D} \binom{2D-i+2}{2}\).

For each \((i,j,t) \in T'\), define the sets \(X_{i,j,t}\) and \(X_{i,j,t}^0\) as in Subsection 3.1. Note that \(X_{i,j,t}^0 = \{(x,y) \in X \times X | x_1 = i, |y_1| = j, |x_1 \cap y_1| = t\}\). Similar to the proof of Proposition 3.2 we have the following proposition.

Proposition 3.10. The sets \(X_{i,j,t}\) \((i,j,t) \in T'\) are the orbits of \(X \times X \times X\) under the action of \(\text{Aut}(X)\), where \(\text{Aut}(X)\) is the automorphism group of \(\Box_{2D+1}\). The sets \(X_{i,j,t}^0\) \((i,j,t) \in T'\) are the orbits of \(X \times X\) under the action of \(\text{Aut}_0(X)\), where \(\text{Aut}_0(X)\) is the stabilizer of vertex 0 in \(\text{Aut}(X)\).

Definition 3.11. For each \((i,j,t) \in T'\), define the matrix \(M_{i,j}^t \in \text{Mat}_X(C)\) by

\[
(M_{i,j}^t)_{xy} = \begin{cases}
1 & \text{ if } (x,y) \in X_{i,j,t}^0, \\
0 & \text{ otherwise, } (x,y) \in X.
\end{cases}
\]

Let \(A'\) be the linear space spanned by the matrices \(M_{i,j}^t\) \((i,j,t) \in T'\). It is easy to check that \(A'\) is a matrix \(C^*\)-algebra with the basis \(M_{i,j}^t\), \((i,j,t) \in T'\). We next show \(A'\) coincides with \(T\), where \(T := T(0)\) is the Terwilliger algebra of \(\Box_{2D+1}\). Let \(A_1\) and \(E_i^* = E_i^*(0)\) be the adjacency matrix and the ith dual idempotent of \(\Box_{2D+1}\), respectively.

Proposition 3.12. With Definition 3.11 we have

(i) \(M_{i,i}^t = E_i^*\) \((0 \leq i \leq D)\);

(ii) \(M_{i-1,i}^{-1} = E_{i-1}^* A_i E_i^*\), \(M_{i,i-1}^{-1} = E_i^* A_i E_{i-1}^*\) \((0 \leq i \leq D)\);

(iii) \(M_{k+i,k}^k = \frac{1}{D} M_{k+i,k+i-1} M_{k+i-1,k+i-2} \cdots M_{k+1,k} (1 \leq i \leq D - k)\).
(iv) $M_{k-i,k}^i = \frac{1}{n} M_{k,i+1,k-1}^{i+1} M_{k-1,k-1,k-2}^{i+1} \cdots M_{k-1,k-1}^1 (1 \leq i \leq k)$;

(v) $M_{i,j}^k = \sum_{k=0}^{D} (-1)^{k-t} \binom{k}{t} M_{i,k} M_{k,j}^D$.

Proof. Similar to the proofs of Propositions 3.5, 3.6 and 3.7(i).

Theorem 3.13. For \Box_{2D+1}, the algebras \mathcal{A} and T coincide.

Proof. Similar to the proof of Theorem 3.8. Note that $A_1 = \sum_{i=1}^{D} (M_{i,i-1}^{-1} + M_{i-1,i}^{-1}) + M_{D,D}^0$.

4 Block diagonalization of T of \Box_n

In this section, we study a block-diagonalization of T of \Box_n by using the theory of irreducible T-modules together with the obtained basis in Section 3. We treat two cases of n even and odd separately.

4.1 Block diagonalization of T of \Box_{2D}

Proposition 4.1. For \Box_{2D}, let W denote an irreducible T-module with endpoint r and diameter d^* ($0 \leq r, d^* \leq D$). Then W is thin, $r + d^* = D$ (even) or $r + d^* = D - 1$ (odd), and the isomorphism class of W is determined only by r.

Proof. See [3] Lemma 9.2, Theorem 13.1 and [10] pp. 204–205]. Note that the endpoint here is denoted by dual endpoint in \Box_n.

Based on Definition 3.3 and Proposition 4.1 for $r = 0, 1, \ldots, D$ define the linear vector space L_r as follows.

$$L_r := \{ \xi \in V := \mathbb{C}^X | M_{r-r}^{-1} \xi = 0, \xi(x_1,x_2) = 0 \text{ if } |x_1| \neq r \}.$$

The space L_r is in fact connected to the irreducible T-modules. For discusional convenience, denote by W_r ($0 \leq r \leq D$) the T-module spanned by all the irreducible T-modules with endpoint r, and define $W_r := 0$ if there does not exist such irreducible T-module.

Proposition 4.2. For \Box_{2D}, let W denote an irreducible T-module with endpoint r, diameter d^* ($0 \leq r, d^* \leq D$) and let W_r be defined as above. Then the following (i)–(iv) hold.

(i) $L_r = E_r^r W_r$.

(ii) Up to isomorphism, W_r is $(\frac{2D}{r}) - (\frac{2D}{r-1})$ copies of W for $0 \leq r \leq D - 1$; W_D is $\frac{1}{2} (\frac{2D}{D}) - \frac{D-1}{2D} (\frac{2D}{D-1})$ copies of W for $r = D$ (D even); $W_D = 0$ for $r = D$ (D odd).

(iii) Pick any $0 \neq \xi \in L_r$, then $0 \neq M_{r+i,r}^i \xi \in E_{r+i}^r W_r$ for $0 \leq i \leq d^*$.

(iv) Pick any $0 \neq \xi \in L_r$, then $M_{r-i,r}^{-i} \xi = 0$ for $1 \leq i \leq r$.

Proof. (i) We suppose $L_r \neq 0$ and $W_r \neq 0$. It is easy to see that $0 \neq \xi \in L_r$ if and only if $E_r^r \xi \neq 0, E_r^r \xi = 0 (i \neq r)$ and $E_{r-1}^r A_1 E_r^r \xi = 0$. Pick any $0 \neq \xi' \in E_r^r W_r$. We have $\xi' \in L_r$ since $E_r^r \xi' \neq 0, E_r^r \xi' = 0 (i \neq r)$ and $E_{r-1}^r A_1 E_r^r \xi' \in E_{r-1}^r (E_{r-1}^r W_r + E_r^r W_r + E_{r+1}^r W_r) = 0$, which is from Lemma 2.1(i),(ii). Thus $E_r^r W_r \subseteq L_r$. Conversely, pick any $0 \neq \xi \in L_r$. By $E_r^r \xi' \neq 0$ and $E_r^r \xi' = 0 (i \neq r)$, we have $\xi' \in E_r^r V$. Then by $E_{r-1}^r A_1 E_r^r \xi' = 0$ and Lemma 2.1(i),(iii), we have $\xi' \in E_r^r W_r$ since V is the orthogonal direct sum of $W_0 + W_1 + \cdots + W_D$. Thus $L_r \subseteq E_r^r W_r$.

(ii) To prove this claim, it suffices to give the multiplicity of W since the isomorphism class
Applying E^*_r $(0 \leq r \leq D)$ to the both sides of (6), we obtain $\dim(E^*_r V) = \sum_{h=0}^n \dim(E^*_h W_h)$.

(ii) For $0 \leq r \leq D-1$, by Proposition 4.1 we know that for each h $(0 \leq h \leq n)$, $\dim(E^*_h W_h) = 1$ if the endpoint of W_h is at most r, and $\dim(E^*_h W_h) = 0$ if the endpoint of W_h is greater than r. Moreover, for every ρ $(0 \leq \rho \leq D)$, there exist exactly $m(\rho, d_\rho)$ modules in (6) with endpoint ρ and diameter d_ρ, where $m(\rho, d_\rho)$ denotes the multiplicity of the module with endpoint ρ and diameter d_ρ. Thus we have

$$\dim(E^*_r V) = \sum_{\rho \leq r} m(\rho, d_\rho),$$

which implies

$$m(r, d^*) = \dim(E^*_r V) - \dim(E^*_{r-1} V) = \binom{2D}{r} - \binom{2D}{r-1}. \quad \text{(by [2, p. 264] and [1, p. 195])}$$

(iib) For $r = D$, it is easy to see $m(D, 0) = 0$ if D is odd. Now, we suppose that D is even. Similar to obtaining (7), we have $\dim(E^*_D V) = \sum_{\rho \in \text{even}} m(\rho, D-\rho)$. So

$$m(D, 0) = \dim(E^*_D V) - (m(0, D) + m(2, D-2) + \cdots + m(D-2, 2)) = \frac{1}{2} \binom{2D}{D} - \frac{D-1}{2D} \binom{2D}{D-1}.$$

(iii) Immediate from above (i), Proposition 3.6(ii) and Lemma 2.1(ii).

(iv) Immediate from above (i), Proposition 4.1(ii) and Lemma 2.2(ii).

Corollary 4.3. For \square_{2D}, the following (i), (ii) hold.

(i) For $0 \leq r \leq D-1$, $\dim(L_r) = \binom{2D}{r} - \binom{2D}{r-1}$.

(ii) For $r = D$, $\dim(L_D) = \left\{ \begin{array}{ll} \frac{1}{2} \binom{2D}{D} - \frac{D-1}{2D} \binom{2D}{D-1} & \text{if } D \text{ is even} \\ 0 & \text{if } D \text{ is odd} \end{array} \right.$

Proof. Immediate from Proposition 4.2(ii), (i). □

Propositions 4.1, 4.2 and Corollary 4.3 imply the block sizes and block multiplicity of T. To describe this block diagonalization, we need consider the action of matrices $M^t_{i,j}$, $(i, j, t) \in I$ on $M^r_{j, r, \xi}$, where $0 \neq \xi \in \mathcal{L}_r$ $(0 \leq r \leq D)$.

Proposition 4.4. For all $(i, j, t) \in I$, $r \in \{0, 1, \ldots, D\}$ and for $\xi \in \mathcal{L}_r$, we have

(i) for $0 \leq i, j \leq D-1$,

$$\binom{2D-2r}{i-r} M^t_{i,j} M^r_{j, r, \xi} = \beta^r_{i,j,t} M^r_{i, r, \xi},$$

where $\beta^r_{i,j,t} = \binom{2D-2r}{i-r} \sum_{l=0}^{D-1} (-1)^{r-l} \binom{r-l}{i-l} (2D-2r+l)$;
(ii) For \(i = D, 0 \leq j \leq D - 1 \),

\[
2 \left(\frac{2D - 2r}{D - r} \right) M_{D,j}^r \xi = \beta_{D,i}^r M_{D,j}^r \xi,
\]

where \(\beta_{D,i}^r = 2 \left(\frac{2D - 2r}{D - r} \right) \left(\sum_{l=0}^{D-1} (-1)^{r-l} \binom{l}{i} \left(\binom{D-r}{i} \right) \left(\binom{D-r+i}{j} \right) + \left(\binom{D-r}{i} \right) \left(\binom{D-r+i}{j} \right) \right) \).

(iii) For \(0 \leq i \leq D - 1, j = D \),

\[
2 \left(\frac{2D - 2r}{D - r} \right) M_{i,D}^r \xi = \beta_{i,D}^r M_{i,D}^r \xi,
\]

where \(\beta_{i,D}^r = 2 \left(\frac{2D - 2r}{D - r} \right) \left(\sum_{i=0}^{D-1} (-1)^{r-l} \binom{l}{i} \left(\binom{2D-r-i+l}{D} \right) \right) \) + 2(-1)^r \delta \binom{D-r+i}{j} \).

(iv) For \(i = j = D \) and \(0 \leq r \leq D - 1, \)

\[
2 \left(\frac{2D - 2r}{D - r} \right) M_{D,D}^r \xi = \beta_{D,D}^r M_{D,D}^r \xi,
\]

where \(\beta_{D,D}^r = 2 \left(\frac{2D - 2r}{D - r} \right) \left(\sum_{i=0}^{D-1} (-1)^{r-l} \binom{l}{i} \left(\binom{D-r-i+l}{D} \right) \right) \) + 2(-1)^r \delta \binom{D-r+i}{j} \).

(v) For \(i = j = D \) and \(r = D \) (\(D \) is even),

\[
M_{D,D}^r \xi = \beta_{D,D}^r \xi,
\]

where \(\beta_{D,D}^r = (-1)^{r-l} \binom{D}{i} \) if \(t \geq \frac{D}{2} + 1 \) and \(\beta_{D,D}^r = \frac{1}{2}(-1)^{l} \binom{D}{l} \) if \(t = \frac{D}{2} \).

Proof. (i) For \(0 \leq i, j \leq D - 1 \), we first have \(M_{i,j}^r \xi = \sum_{l=0}^{D-1} (-1)^{r-l} \binom{l}{i} \binom{2D-r-i+l}{j} M_{i,D}^r \xi \). Then by Propositions 3.7(i) and 4.2(iv), we have \(M_{i,r}^r \xi = (-1)^{r-l} \binom{l}{i} M_{i,r}^r \xi \). So

\[
M_{i,j}^r \xi = \sum_{l=0}^{D-1} (-1)^{r-l} \binom{l}{i} \binom{2D-r-i+l}{j} M_{i,D}^r \xi.
\]

For cases (ii)–(iv), by the argument similar to proof of case (i) we can obtain the desired results. (v) is immediate from Proposition 3.7(vi), (vii). Note that \(M_{D,D}^D \xi = \xi \). □

In the following, we describe a block-diagonalization of \(T \) of \(\square_{2D} \). We first consider the case \(D \) even.

4.1.1 Block diagonalization of \(T \) of \(\square_{2D} \) with even \(D \)

In this subsection, we suppose \(D > 3 \) is even. Based on Propositions 4.1, 4.2 and Corollary 4.3 for each \(r = 0, 1, \ldots, D \) denote by \(B_r \) the set of an orthonormal basis of \(\mathcal{L}_r \) and let

\[
\mathcal{B}_1 \{ (r, \xi, i) | r = 0, 1, \ldots, D, \xi \in B_r, i = r, r + 1, \ldots, D \text{ for even } r \}
\]

\[
i = r, r + 1, \ldots, D - 1 \text{ for odd } r \}.
\]

It is not difficult to calculate

\[
|\mathcal{B}_1| = \sum_{r=0}^{D-2} (D - r + 1) \left(\binom{2D}{r} - \binom{2D}{r-1} \right) + \frac{1}{2} \binom{2D}{D} - \frac{D-1}{2D} \binom{2D}{D-1}
\]

\[
+ \sum_{r=1}^{D-1} (D-r) \left(\binom{2D}{r} - \binom{2D}{r-1} \right) = 2^{2D-1}.
\]

(8)
For each \((r, \xi, i) \in B_1\), define the vector \(u_{r,\xi,i} \in V\) by

\[
\begin{align*}
\forall & \leq i \leq D - 1, \\
\end{align*}
\]

\[
\begin{align*}
u_{r,\xi,i} := \left(2D - 2r\right)^{-\frac{1}{2}} M_{r,i}^r \xi \quad (r \leq i \leq D - 1),
\end{align*}
\]

\[
\begin{align*}
u_{r,\xi,D} := \sqrt{2} \left(2D - 2r\right)^{-\frac{1}{2}} M_{r,D}^r \xi \quad (i = D \text{ and } 0 \leq r < D \text{ even}),
\end{align*}
\]

\[
\begin{align*}
u_{D,\xi,D} := \xi \quad (i = r = D).
\end{align*}
\]

Proposition 4.5. The vectors \(u_{r,\xi,i}, (r, \xi, i) \in B_1\) form an orthonormal basis of the standard module \(V\).

Proof. For \(r \leq i \leq D - 1\),

\[
\begin{align*}
\xi^T M_{r,i}^r M_{r,i}^r \xi &= \sum_{l=0}^{r} \left(2D - 2r + l\right)^{\frac{1}{2}} \left(i - 2r + l\right)^{-\frac{1}{2}} \xi^T M_{r,i}^r \xi \\
&= \sum_{l=0}^{r} \left(2D - 2r + l\right)(-1)^{r-l} \left(i\right)^{\frac{1}{2}} \xi^T \xi \quad \text{(by Propositions 3.7(i) and 4.2(iv))} \\
&= \left(2D - 2r\right)^{-\frac{1}{2}} \xi^T \xi; \quad \text{(by Lemma 2.3(iii))}
\end{align*}
\]

For \(i = D\),

\[
\begin{align*}
\xi^T M_{r,D}^r M_{r,D}^r \xi &= \sum_{l=0}^{r} \left(2D - 2r + l\right)^{\frac{1}{2}} \left(D - 2r + l\right)^{-\frac{1}{2}} \xi^T M_{r,D}^r \xi + \left(2D - 2r\right)^{\frac{1}{2}} \xi^T M_{r,D}^r \xi \\
&= 2 \left(2D - 2r\right)^{-\frac{1}{2}} \xi^T \xi. \quad \text{(by Propositions 3.7(i), 4.2(iv), Lemma 2.3(iii))}
\end{align*}
\]

It follows that \(u_{r,\xi,i}, (r, \xi, i) \in B_1\) are normal. Next, we show that \(u_{r,\xi,i}\) is pairwise orthogonal. By Proposition 4.2(i), (iii), the vectors \(u_{r,\xi,i}\) and \(u_{r',\xi,j'}\) are orthogonal if \(r \neq r'\) or \(i \neq i'\). One can easily verify that \(u_{r,\xi,i}\) and \(u_{r',\xi,j'}\) are also orthogonal if \(r = r', i = i', \xi \neq \xi'\) by the argument similar to the proof of normality since \(\xi^T \xi' = 0\).

Let \(U_1\) be the \(X \times B_1\) matrix with \(u_{r,\xi,i}\) as the \((r, \xi, i)\)-th column. For each triple \((i, j, t) \in I\), define the matrix \(M_{i,j} := U_1^T M_{i,j} U_1\). The following proposition shows that \(M_{i,j}\) is in block diagonal form.

Proposition 4.6. For \((i, j, t) \in I\) and \((r, \xi, i')\), \((r', \xi', j') \in B_1\), the following (i)–(iv) hold.

(i) For \(0 \leq i, j \leq D - 1\),

\[
\begin{align*}
\left(M_{i,j}_{r,\xi,i''),(r',\xi',j'')\right) &= \left\{
\begin{align*}
\left(2D - 2r\right)^{-\frac{1}{2}} \left(2D - 2r\right)^{-\frac{1}{2}} \beta_{i,j,t}' & \text{if } r = r', \xi = \xi', i = i', j = j', \\
0 & \text{otherwise}.
\end{align*}
\right.
\end{align*}
\]

(ii) For \(i = D, 0 \leq j \leq D - 1\),

\[
\begin{align*}
\left(M_{D,j}_{r,\xi,i''),(r',\xi',j'')\right) &= \left\{
\begin{align*}
\sqrt{2} \left(2D - 2r\right)^{-\frac{1}{2}} \left(2D - 2r\right)^{-\frac{1}{2}} \beta_{D,j,t}' & \text{if } r = r', \xi = \xi', i = D, j = j', \\
0 & \text{otherwise}.
\end{align*}
\right.
\end{align*}
\]

(iii) For \(0 \leq i \leq D - 1, j = D\),

\[
\begin{align*}
\left(M_{i,D}_{r,\xi,i''),(r',\xi',j'')\right) &= \left\{
\begin{align*}
\sqrt{2} \left(2D - 2r\right)^{-\frac{1}{2}} \left(2D - 2r\right)^{-\frac{1}{2}} \beta_{i,D,t}' & \text{if } r = r', \xi = \xi', i = i', j' = D, \\
0 & \text{otherwise}.
\end{align*}
\right.
\end{align*}
\]

11
(iv) For \(i = j = D \) and \(0 \leq r \leq D - 1 \),
\[
(\widetilde{M}_{D,D}^t)_{(r,\xi,j),(r',\xi',j')} = \begin{cases} \frac{1}{2}(2D-2r)^{-1} \beta_{D,D,t} \beta_{D,D,t}^{-1} & \text{if } r = r', \xi = \xi', i' = j' = D, \\ 0 & \text{otherwise.} \end{cases}
\]

(v) For \(i = j = D \) and \(r = D \),
\[
(\widetilde{M}_{D,D}^t)_{(r,\xi,j),(r',\xi',j')} = \begin{cases} \beta_{D,D,t} & \text{if } r = r' = D, \xi = \xi', i' = j' = D, \\ 0 & \text{otherwise.} \end{cases}
\]

Note that the numbers \(\beta_{i,j,t} \) are from Proposition 4.4 and \(r \) is even in (ii)–(v).

Proof. (i) For \(0 \leq i, j \leq D - 1 \), it is clear that \((\widetilde{M}_{i,j}^t)_{(r,\xi,j),(r',\xi',j')} = u_{r,j,i}^\top M_{i,j}^t u_{r',\xi,j'} \). By (ii), we have
\[
M_{i,j}^t u_{r',\xi,j'} = \left(2D - 2r' \right)^{-\frac{1}{2}} M_{i,j}^t M_{r',r}^t
\]
\[
= \delta_{j,j'}\left(2D - 2r' \right)^{-\frac{1}{2}} \left(2D - 2r' \right)^{-1} \beta_{i,j,t} \beta_{i,j,t}^{-1} \quad \text{(by Proposition 4.3(1))}
\]
\[
= \delta_{j,j'}\left(2D - 2r' \right)^{-\frac{1}{2}} \left(2D - 2r' \right)^{-\frac{1}{2}} \beta_{i,j,t} u_{r',\xi,j'}
\]
from which (i) follows.

The proofs of (ii)–(v) are similar to that of (i).

Proposition 4.6 implies that each matrix \(\widetilde{M}_{i,j}^t \), \((i,j,t) \in I \) has a block diagonal form: for each even \(0 \leq r \leq D - 1 \) there are \((2D) - (\frac{2D}{r-1}) \) copies of a \((D + 1 - r) \times (D + 1 - r) \) block on the diagonal; for each odd \(0 \leq r \leq D - 1 \) there are \((\frac{2D}{r}) - (\frac{2D}{r-1}) \) copies of a \((D - r) \times (D - r) \) block on the diagonal; for \(r = D \) there are \(\frac{2D}{2(r-1)} \) copies of a \(1 \times 1 \) block on the diagonal. For each \(r \) the copies are indexed by the elements of \(B_r \), and in each copy the rows and columns are indexed by the integers \(i \in \{ r, r + 1, \ldots, D \} \) (even) or \(i \in \{ r, r + 1, \ldots, D - 1 \} \) (odd). Thus by deleting copies of blocks and using the identity
\[
\sum_{r=0}^{D-1} (D - r + 1)^2 + \sum_{r=1}^{D-1} (D - r)^2 = \frac{(D+1)(D^2+2D+3)}{3}
\]
we have the following theorem.

Theorem 4.7. For \(\square_{2D} \) with even \(D > 3 \), the above matrix \(U_1 \) gives a block-diagonalization of \(T \) and \(T \) is isomorphic to \(\mathbb{C}^{D+1 \times N_r} \) where \(N_r := \{ r, r + 1, \ldots, D \} \) (even) or \(N_r := \{ r, r + 1, \ldots, D - 1 \} \) (odd).

4.1.2 Block diagonalization of \(T \) of \(\square_{2D} \) with odd \(D \)

In this subsection, we suppose \(D \geq 3 \) is odd. Based on Propositions 4.1 and 4.2 and Corollary 4.3, for each \(r = 0, 1, \ldots, D - 1 \), denote by \(B_r \) the set of an orthonormal basis of \(L_r \) and let
\[
B_2 = \{ (r, \xi, i) | r = 0, 1, \ldots, D - 1, \xi \in B_r, i = r, r + 1, \ldots, D \} \text{ for even } r
\]
\[
i = r, r + 1, \ldots, D - 1 \text{ for odd } r \}
\]
It is not difficult to calculate
\[
|B_2| = \sum_{\substack{r=0 \text{ even} \atop r=1 \text{ odd}}}^{D-1} (D - r + 1) \left(\frac{2D}{r} \right) - \left(\frac{2D}{r-1} \right) + \sum_{r=1}^{D-2} (D - r) \left(\frac{2D}{r} \right) - \left(\frac{2D}{r-1} \right)
\]
\[
= 2^{2D-1}.
\]
For each \((r, \xi, i) \in \mathcal{B}_2\), define the vector \(u_{r, \xi, i} \in V\) by the forms of (9) and (10). One can easily verify that the vectors \(u_{r, \xi, i}\), \((r, \xi, i) \in \mathcal{B}\) form an orthonormal basis of the standard module \(V\). Let \(U_2\) be the \(X \times \mathcal{B}_2\) matrix with \(u_{r, \xi, i}\) as the \((r, \xi, i)\)-th column. It follows from Proposition 4.14(i)–(iv) that for each triple \((i, j, t) \in \mathcal{I}\) the matrix \(M_{i,j}^t := U_2^T M_{i,j}^t U_2\) is in block diagonal form: for each even \(0 \leq r \leq D - 1\) there are \((2^D) - (2^D)\) copies of a \((D + 1 - r) \times (D + 1 - r)\) block on the diagonal; for each odd \(0 \leq r \leq D - 1\) there are \((2^D) - (2^D)\) copies of a \((D - r) \times (D - r)\) block on the diagonal. By deleting copies of blocks and using the identity
\[
\sum_{r=0}^{D-1} (D - r + 1)^2 + \sum_{r=0}^{D-1} (D - r)^2 = \frac{(D+1)(D^2+2D+3)}{3},
\]
we have the following theorem.

Theorem 4.8. For \(\square_{2D}\) with odd \(D \geq 3\), the above matrix \(U_2\) gives a block diagonalization of \(T\) and \(T\) is isomorphic to \(\bigoplus_{r=0}^{D-1} \mathbb{C}^{N_r} \times N_r\), where \(N_r := \{r, r + 1, \ldots, D\}\) (\(r\) even) or \(N_r := \{r, r + 1, \ldots, D - 1\}\) (\(r\) odd).

4.2 Block diagonalization of \(T\) of \(\square_{2D+1}\)

Proposition 4.9. For \(\square_{2D+1}\) with \(D \geq 2\), let \(W\) denote an irreducible \(T\)-module with endpoint \(r\) and diameter \(d^*\) \((0 \leq r, d^* \leq D)\). Then \(W\) is thin, \(r + d^* = D\) and the isomorphism class of \(W\) is determined only by \(r\).

Proof. From [4] we know that \(W\) is thin, \(r + d^* = D\) and the isomorphism class of \(W\) is determined by its dual endpoint and \(d^*\). By [11] pp. 305-306 and [10] p. 196 we have that \(\square_{2D+1}\) is isomorphic to \(\frac{4}{4} H(2D + 1, 2)^{n^*}\). Then it follows from [9] p. 204 that both \(W\)'s dual endpoint and \(d^*\) can be determined by \(r\). \(\Box\)

Based on Definition 3.11 and Proposition 4.9, for \(r = 0, 1, \ldots, D\), define the linear vector space \(\mathcal{L}'_r\) as follows.

\[
\mathcal{L}'_r := \{\xi \in V | M^{-1}_{r+1,i}\xi = 0, \xi(x_1, x_2) = 0 \text{ if } |x_1| \neq r\}.
\]

Proposition 4.10. For \(\square_{2D+1}\) with \(D \geq 2\), let \(W\) denote an irreducible \(T\)-module with endpoint \(r\), diameter \(d^*\) \((0 \leq r, d^* \leq D)\) and let \(W_r\) be defined as in Subsection 4.1. Then the following (i)–(iv) hold.

(i) \(\mathcal{L}'_r = E^*_r W_r\).

(ii) Up to isomorphism, \(W_r\) is \((2^D) - (2^D)\) copies of \(W\) for \(0 \leq r \leq D\).

(iii) Pick any \(0 \neq \xi \in \mathcal{L}'_r\), then \(0 \neq M_{r+i,r}\xi \in E^*_r W_r\) for \(0 \leq i \leq d^*\).

(iv) Pick any \(0 \neq \xi \in \mathcal{L}'_r\), then \(M_{r-i,r}\xi = 0\) for \(1 \leq i \leq r\).

Proof. Similar to the proof of Proposition 1.2 \(\Box\)

Corollary 4.11. We have \(\dim(\mathcal{L}'_r) = \binom{2D+1}{r} - \binom{2D+1}{r-1}\) for \(0 \leq r \leq D\).

Proposition 4.12. For all \((i, j, t) \in \mathcal{I}'\), \(r \in \{0, 1, \ldots, D\}\) and for \(\xi \in \mathcal{L}'_r\), we have

\[
\binom{2D + 1 - 2r}{i-r} M_{i,j}^t \xi = \beta^r_{i,j,t} M_{i,r}^t \xi,
\]

where \(\beta^r_{i,j,t} = \binom{2D+1-2r}{i-r} \sum_{l=0}^{D} (-1)^{r-l} \binom{r}{l} \binom{2D+1+1-r}{l} \binom{2D+1+1-r+l}{D}\).

Proof. Similar to the proof of Proposition 4.1(i). \(\Box\)
Based on Propositions 4.9, 4.10 and Corollary 4.11 for each \(r = 0, 1, \ldots, D \), denote by \(B'_r \) the set of an orthonormal basis of \(L'_r \) and let \(B' = \{(r, \xi, i)| r = 0, 1, \ldots, D, \xi \in B'_r, i = r, r + 1, \ldots, D\} \). Then it is not difficult to calculate

\[
|B'| = \sum_{r=0}^{D} (D - r + 1) \left(\begin{pmatrix} 2D + 1 \\ r \end{pmatrix} - \begin{pmatrix} 2D + 1 \\ r - 1 \end{pmatrix} \right)
= 2^{2D}. \tag{13}
\]

For each \((r, \xi, i) \in B'\), define the vector \(u_{r, \xi, i} \in \mathbb{C}^X \) by

\[
u_{r, \xi, i} := \left(\begin{pmatrix} 2D + 1 - 2r \\ i - r \end{pmatrix} \right)^{-\frac{1}{2}} M'_{r, i, \xi} \tag{14}\]

The form of \(u_{r, \xi, i} \) is from \(\xi^T M'_{r, i, \xi} = \begin{pmatrix} 2D + 1 - 2r \end{pmatrix}^{\frac{1}{2}} \xi^T \).

By the argument similar to proof of Proposition 4.6, we can easily prove that the vectors \(u_{r, \xi, i}, (r, \xi, i) \in B' \) form an orthonormal basis of the standmodule \(V \). Let \(U' \) be the \(X \times B' \) matrix with \(u_{r, \xi, i} \) as the \((r, \xi, i)\)-th column. For each triple \((i, j, \xi, i') \in I'\) define the martices \(M'_{i, j} := U'^T M'_{i, j} U' \).

Proposition 4.13. For \((i, j, \xi, i') \in I'\), \((r, \xi, i) \in B'\),

\[
(M'_{i, j})^{\xi, i'} = \begin{cases} \left(\begin{pmatrix} 2D + 1 - 2r \\ i - r \end{pmatrix} \right)^{-\frac{1}{2}} \left(\begin{pmatrix} 2D + 1 - 2r \\ j - r \end{pmatrix} \right)^{-\frac{1}{2}} \beta_{i, j}^{r, \xi, i'} & \text{if } r = r', \xi = \xi', i = i', j = j', \\ 0 & \text{otherwise}, \end{cases}
\]

where the numbers \(\beta_{i, j}^{r, \xi, i'} \) are from Proposition 4.12.

Proof. Similar to the proof of Proposition 4.11. \(\square \)

Theorem 4.14. For \(\square_{2D+1} \) with \(D \geq 3 \), the above matrix \(U' \) gives a block-diagonalization of \(T \) and \(T \) is isomorphic to \(\bigoplus_{r=0}^{D} \mathbb{C}^{N_r \times N_r} \), where \(N_r = \{r, r + 1, \ldots, D\} \).

5 Semidefinite programming bound on \(A(\square_n, d) \)

In this section, we give an upper bound on \(A(\square_n, d) \) by semidefinite programming involving the block-diagonalization of \(T \). We treat two cases of \(n \) even and odd separately.

5.1 Semidefinite programming bound on \(A(\square_{2D}, d) \)

Given code \(C \), for each \((i, j, t) \in I\) define the numbers \(\gamma_{i, j}^t := |(C \times C \times C) \cap X_{i, j, t}| \) and numbers \(x_{i, j}^t := |(C \gamma_{i, j}^t)|^{-1} \gamma_{i, j}^t \), where \(\gamma_{i, j}^t \) denotes the number of nonzero entries of \(M'_{i, j} \). Observe that

\[
|C| = \sum_{i=0}^{D} \sum_{j=0}^{D} x_{i, 0} x_{0, j}^t. \tag{15}\]
Define the matrix \(M_C \in \text{Mat}_X(\mathbb{C}) \) by
\[
(M_C)_{xy} = \begin{cases}
1 & \text{if } x, y \in C, \\
0 & \text{otherwise}.
\end{cases}
\]
Observe that \(M_C = \chi_c\chi_c^T \) is positive semidefinite, where \(\chi_c \) is the characteristic column vector of \(C \). In the following, we define two important matrices by

\[
M' := \frac{1}{|C| |\text{Aut}_0(X)|} \sum_{\sigma \in \text{Aut}(X)} M_{\sigma C}, \quad M'' := \frac{1}{(|X| - |C|) |\text{Aut}_0(X)|} \sum_{\sigma \in \text{Aut}(X)} M_{\sigma C}.
\]

Observe that the matrices \(M' \) and \(M'' \) are positive semidefinite and invariant under any permutation of \(\text{Aut}_0(X) \) of rows and columns, and hence they are in \(T \) by Proposition 3.3.

Proposition 5.1. With above notation, we have

(i) \(M' = \sum_{(i,j,t) \in I} x_{i,j} M_{i,j}^t \).

(ii) \(M'' = \sum_{(i,j,t) \in I} (x_{i,j}^0 - x_{i,j}^t) M_{i,j}^t \), where \(\zeta = \min\{i + j - 2t, 2D - (i + j - 2t)\} \).

Proof. (i) Let \(\Phi = \{\sigma \in \text{Aut}(X) | \mathbf{0} \in \sigma C\} \). Let \(x, y, z \in C \) and let \((x, y, z) \in X_{i,j,t} \). Then there exists \(\sigma' \in \Phi \) that map \(x \) to \(\mathbf{0} \) and hence \((\sigma' y, \sigma' z) \in X_{i,j,t}^0 \). If \(\psi \in \text{Aut}_0(X) \) ranges over the \(\text{Aut}_0(X) \), then \((\psi \sigma' y, \psi \sigma' z) \) ranges over \(X_{i,j,t}^0 \). Note that the set \(\{\psi \sigma' | \psi \in \text{Aut}_0(X)\} \) consists of all automorphisms in \(\Phi \) that map \(x \) to \(\mathbf{0} \). Hence by \(M' \in T \) we have

\[
M' = \frac{1}{|C| |\text{Aut}_0(X)|} \sum_{(i,j,t) \in I} M_{\sigma C}^t,
\]

\[
= \sum_{(i,j,t) \in I} x_{i,j} M_{i,j}^t.
\]

(ii) Let \(M = |C| M' + (|X| - |C|) M'' \), that is \(M = \frac{1}{|\text{Aut}_0|} \sum_{\sigma \in \text{Aut}(X)} M_{\sigma C} \). Note that the matrix \(M \) is \(\text{Aut}(X) \)-invariant and hence an element of the Bose-Mesner algebra of \(\Box_{2D} \), and we write \(M = \sum_{k=0}^D \alpha_k A_k \). Then for any \(x \in X \) with \(\partial(x, \mathbf{0}) = k \), we have \(\alpha_k = (M)_{x,0} = (|C|M')_{x,0} = |C|x_{x,0}^0 \). So

\[
M'' = \frac{1}{|X| - |C|} (M - |C|M')
\]

\[
= \frac{1}{|X| - |C|} \left(\sum_{k=0}^D |C|x_{x,0}^0 A_k - |C| \sum_{(i,j,t) \in I} x_{i,j} M_{i,j}^t \right)
\]

\[
= \frac{|C|}{|X| - |C|} \sum_{(i,j,t) \in I} (x_{x,0}^0 - x_{i,j}^t) M_{i,j}^t,
\]

where \(\zeta = \min\{i + j - 2t, 2D - (i + j - 2t)\} \). \(\square \)

Proposition 5.2. \(x_{i,j}^t, (i,j,t) \in I \) satisfy the following linear constraints, where (v) holds
if C has minimum distance at least d:

(i) $x_{0,0}^0 = 1$.

(ii) $0 \leq x_{i,j}^t \leq x_{i,j}^0$.

(iii) For $0 \leq i, j \leq D$, $0 \leq i + j - 2t \leq D$, $x_{i,j}^t = x_{i',j'}^t$, if $(i', j', i + j - 2t')$ is a permutation of $(i, j, i + j - 2t)$.

(iv) For $0 \leq i, j \leq D$, $D + 1 \leq i + j - 2t \leq 2D - 2$, $x_{i,j}^t = x_{i',j'}^t$, if $(i', j', 2D - (i' + j' - 2t'))$ is a permutation of $(i, j, 2D - (i + j - 2t))$.

(v) $x_{i,j}^t = 0$ if $\{i, j, i + j + 2t, 2D - (i + j + 2t)\} \cap \{1, 2, \ldots, d - 1\} \neq \emptyset$.

Proof. It is easy to see that the above constraints (i), (iii)–(v) follow directly from the definition of $x_{i,j}^t$. We now consider constraint (ii). Let $\Phi = \{\sigma \in \text{Aut}(X) | 0 \in \sigma C\}$. For any fixed $(i, j, t) \in T$, let $y, z \in X$ and let $(0, y, z) \in X_0^{i,j,t}$. Then by the definition of the matrix M' and Proposition 5.1, we have that $x_{i,j}^t = \frac{1}{|C||\text{Aut}(X)|} \left| \{\sigma \in \Phi | y, z \in \sigma C\} \right| \leq x_{i,j}^0 = \frac{1}{|C||\text{Aut}(X)|} \left| \{\sigma \in \Phi | y \in \sigma C, 0 \in \sigma C\} \right|$. □

5.1.1 Semidefinite programming bound on $A(\square_{2D}, d)$ with even $D \geq 2$

Based on Proposition 4.6, Theorem 4.7 and Proposition 5.1, the positive semidefiniteness of M' is equivalent to

for each even $r = 0, 2, \ldots, D$, the matrices

$$\left(\sum_t \beta_{i,j,t}^r x_{i,j}^t \right)_i^D$$

and for each odd $r = 1, 3, \ldots, D - 1$, the matrices

$$\left(\sum_t \beta_{i,j,t}^r x_{i,j}^t \right)_{i,j=0}^{D-1}$$

are positive semidefinite, and M'' is equivalent to

for each even $r = 0, 2, \ldots, D$, the matrices

$$\left(\sum_t \beta_{i,j,t}^r (x_{i,j}^0 - x_{i,j}^t) \right)_i^D$$

and for each odd $r = 1, 3, \ldots, D - 1$, the matrices

$$\left(\sum_t \beta_{i,j,t}^r (x_{i,j}^0 - x_{i,j}^t) \right)_{i,j=0}^{D-1}$$

are positive semidefinite, where $\zeta = \min \{i + j - 2t, 2D - (i + j - 2t)\}$.

Note that (i) we have deleted the factors $(\frac{2D-2r}{1})^{-\frac{r}{4}}(\frac{2D-2r}{j-r})^{-\frac{r}{4}}$, $(\frac{2D-2r}{D-r})^{-\frac{r}{2}}(\frac{2D-2r}{j-r})^{-\frac{r}{2}}$ as they make the coefficients integer, while the positive semidefiniteness is maintained; (ii) in (17) and (19), $t \geq \left[\frac{j+1}{2} \right]$ for $i = D$ and $t \geq \left[\frac{i+1}{2} \right]$ for $j = D$.

Theorem 5.3. For \square_{2D} with even $D \geq 2$, the semidefinite programming problem: maximize $\sum_{i=0}^{D-1} \left(\frac{2D}{i} \right) x_{i,0}^t + \frac{1}{2} \left(\frac{2D}{D} \right) x_{D,0}^t$ subject to conditions (16)–(20) is an upper bound on $A(\square_{2D}, d)$.

Proof. Let C be a code with minimum distance d and we view $x_{i,j}^t$ as variables. Then $x_{i,j}^t$ subject to conditions (16)–(20) yields a feasible solutions with objective value $|C|$.
5.1.2 Semidefinite programming bound on $A(\Box_{2D}, d)$ with odd $D \geq 3$

Based on Proposition 4.6, Theorem 4.8 and Proposition 5.1, the positive semidefiniteness of M' is equivalent to

for each even $r = 0, 2, \ldots, D - 1$, the matrices

$$
\left(\sum_t \beta^r_{i,j,t} x^t_{i,j} \right)^D_{i,j=r}
$$

and for each odd $r = 1, 3, \ldots, D - 2$, the matrices

$$
\left(\sum_t \beta^r_{i,j,t} x^t_{i,j} \right)^{D-1}_{i,j=r}
$$

are positive semidefinite, and M'' is equivalent to

for each even $r = 0, 2, \ldots, D - 1$, the matrices

$$
\left(\sum_t \beta^r_{i,j,t} (x^0_{\zeta,0} - x^t_{i,j}) \right)^D_{i,j=r}
$$

and for each odd $r = 1, 3, \ldots, D - 2$, the matrices

$$
\left(\sum_t \beta^r_{i,j,t} (x^0_{\zeta,0} - x^t_{i,j}) \right)^{D-1}_{i,j=r}
$$

are positive semidefinite, where $\zeta = \min\{i + j - 2t, 2D - 1 , (i + j - 2t)\}$.

Theorem 5.4. For \Box_{2D} with odd $D \geq 3$, the semidefinite programming problem: maximize $\sum_{i=0}^{D-1} (2D)x^0_{i,0} + \frac{1}{2}(2D)x^0_{D,0}$ subject to conditions (16) and (21)–(24) is an upper bound on $A(\Box_{2D}, d)$.

Proof. Similar to the proof of Theorem 5.3. \(\square\)

5.2 Semidefinite programming bound on $A(\Box_{2D+1}, d)$

In this subsection, we give an upper bound on $A(\Box_{2D+1}, d)$. Given a code C of \Box_{2D+1}, for each $(i,j,t) \in \mathcal{I}'$ define the numbers $\lambda^t_{i,j} := \left|(C \times C \times C) \cap X_{i,j,t}\right|$ and numbers $x^t_{i,j} := \left|(C \times \gamma^t_{i,j})^{-1} \lambda^t_{i,j}\right|$, where $\gamma^t_{i,j}$ denotes the number of nonzero entries of $M^t_{i,j}$.

Recall the matrices M' and M'' defined as in Subsection 5.1. By the argument similar to proofs of Propositions 5.4 and 5.5 we can obtain the following propositions.

Proposition 5.5. We have

$$
M' = \sum_{(i,j,t) \in \mathcal{I}'} x^t_{i,j} M^t_{i,j}, \quad M'' = \frac{|C|}{|X| - |C|} \sum_{(i,j,t) \in \mathcal{I}'} (x^0_{v,0} - x^t_{i,j}) M^t_{i,j},
$$

where $\nu = \min\{i + j - 2t, 2D + 1 - (i + j - 2t)\}$.

Proposition 5.6. $x^t_{i,j}, (i,j,t) \in \mathcal{I}'$ satisfy the following linear constraints, where (v) holds
if C has minimum distance at least d:

(i) $x_{0,0}^t = 1$.
(ii) $0 \leq x_{i,j}^t \leq x_{i,0}^0$.
(iii) For $0 \leq i, j \leq D$, $0 \leq i + j - 2t \leq D$, $x_{i,j}^t = x_{i',j'}^t$ if $(i', j', i' + j' - 2t')$ is a permutation of $(i, j, i + j - 2t)$.
(iv) For $0 \leq i, j \leq D$, $D + 1 \leq i + j - 2t \leq 2D$, $x_{i,j}^t = x_{i',j'}^t$ if $(i', j', 2D + 1 - (i' + j' - 2t'))$ is a permutation of $(i, j, 2D + 1 - (i + j - 2t))$.
(v) $x_{i,j}^t = 0$ if $\{i, j, i + j - 2t, 2D + 1 - (i + j - 2t)\} \cap \{1, 2, \ldots, d - 1\} = \emptyset$.

Based on Proposition 4.13, Theorem 4.14 and Proposition 5.5, the positive semidefiniteness of M' and M'' is equivalent to

$$\sum_{i,j,t} \beta_{i,j,t}^r x_{i,j}^t$$

subject to conditions (25) is an upper bound on $A(\Box_{2D+1}, d)$.

Theorem 5.7. For \Box_{2D+1}, the semidefinite programming problem: maximize $\sum_{i=0}^D (2D+1)_i x_{i,0}^0$ subject to conditions (25) is an upper bound on $A(\Box_{2D+1}, d)$.

Proof. Similar to the proof of Theorem 5.3.

We remark that the above semidefinite programming problems in Theorems 5.3, 5.4 and 5.7 with $O(n^3)$ variables can be solved in time polynomial in n. The obtained new bound is at least as strong as the Delsarte’s linear programming bound [3]. Indeed, diagonalizing the Bose-Mesner algebra of \Box_n yields the Delsarte bound, which is equal to the maximum of $\sum_{i=0}^D \sum_{x_{i,0}^0} x_{i,0}^0$ subject to the conditions $x_{0,0}^0 = 1$, $x_{1,0}^0 = \cdots = x_{d-1,0}^0$, $x_{d,0}^0 = x_{d+1,0}^0 = \cdots = x_{d+\frac{d}{2},0}^0 \geq 0$ and

$$\sum_{i=0}^D x_{i,0}^0 A_i$$

is positive semidefinite, (28)

where A_i is the ith distance matrix of \Box_n. Note that condition (28) can be implied by the condition that M' and M'' is positive semidefinite.

5.3 Computational results

In this subsection we give, in the range $8 \leq n \leq 13$, several concrete semidefinite programming bounds and Delsarte’s linear programming bounds on $A(\Box_n, d)$, respectively. The latter involves the second eigenmatrix of \Box_n.

Lemma 5.8. Let $\bar{q}_j(i)$ ($0 \leq i, j \leq \lfloor \frac{n}{2} \rfloor$) be the (i, j)-entry of this eigenmatrix. Then we have

$$\bar{q}_j(i) = \sum_{k=0}^j (-1)^k \binom{j}{k} \binom{n-1-j}{\frac{n-j}{2}}$$.
Proof. We first recall the following fact. Let Γ denote a distance-regular graph with diameter D and intersection numbers c_i, a_i, b_i ($0 \leq i \leq D$). Without loss of generality, we assume its eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_D$. Let $q_j(i)$ ($0 \leq i, j \leq D$) be the (i,j)-entry of the second eigenmatrix of Γ. Then we have $c_i q_j(i - 1) + a_i q_j(i) + b_i q_j(i + 1) = \theta_j q_j(i)$ ($0 \leq j \leq D$) by [2, p. 128].

When Γ is $H(n, 2)$, it is known that $q_j(i) = \sum_{k=0}^i (-1)^k \binom{i}{k} \binom{n-i}{j-k} (0 \leq i, j \leq n)$ is the (i, j)-entry of the second eigenmatrix of $H(n, 2)$. Then by comparing the above identity for $H(n, 2)$ with that for \square_n, one can easily finds that $\bar{q}_j(i) = q_{2j}(i)$ ($0 \leq i, j \leq \lfloor \frac{n}{2} \rfloor$).

The followings are our computational resuls.

New upper bounds on $A(\square_{2D}, d)$	New upper bounds on $A(\square_{2D+1}, d)$				
D d	New bound	Delsarte bound	D d	New bound	Delsarte bound
4 2 28	64	4 2 93	112		
5 2 256	256	6 2 1348	1877		
5 3 24	32	5 3 85	85		
6 3 87	128	6 3 213	213		
5 4 16	16	5 4 20	27		
6 4 54	85	6 4 111	120		

Acknowledgement

This work was supported by the NSF of China (No. 11471097) and the NSF of Hebei Province (No. A2017403010).

References

[1] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, The Benjamin-Cummings Lecture Notes Ser. vol. 58, Benjamin-Cummings, Menlo Park, 1984.

[2] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer, Berlin, 1989.

[3] J.S. Caughman, The Terwilliger algebra of bipartite P- and Q-Polynomial schemes, Discrete Math. 196 (1999) 65–95.

[4] J.S. Caughman, M.S. MacLean, P. Terwilliger, The Terwilliger algebra of almost bipartite P- and Q-Polynomial schemes, Discrete Math. 292 (2005) 17–44.

[5] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Repts. Suppl., no. 10, 1973.

[6] D. Gijswijt, Matrix algebras and semidefinite programming techniques for codes, Ph.D. thesis, arxiv.1007.0906.

[7] D. Gijswijt, A. Schrijver, H. Tanaka, New upper bounds for nonbinary codes, J. Combin. Theory Ser. A 13 (2006) 1719–1731.

[8] A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (2005) 2859–2866.

[9] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992) 363–388.
[10] P. Terwilliger, The subconstituent algebra of an association scheme III, J. Algebraic Combin. 2 (1993) 177–210.