Comparison of Greenhouse Methods for Assessing Resistance to Bacterial Leaf Spot in Plum

B.L. Topp, W.B. Sherman, R.E. Stall, G.V. Minsavage, and C.J. Wilcox

Additional index words. Prunus salicina, Xanthomonas campestris pv. pruni, fruit breeding, inoculum, infiltration, disease screening, field evaluation

Abstract. Four greenhouse leaf inoculation methods for screening Japanese plum (Prunus salicina L. and hybrids) for resistance to Xanthomonas campestris pv. pruni (Smith) Dye were compared for repeatability, ability to differentiate among plant genotype responses, and correlations with field ratings. Clonally propagated trees were inoculated artificially in a greenhouse by immersing leaves in 2.5 × 10⁸ cfu/ml inoculum (DIP), rubbing the adaxial side of leaves with a slurry of 2.5 × 10⁸ cfu/ml inoculum and Carborundum powder (CARB), infiltrating leaves with 5 × 10⁸ cfu/ml inoculum using a needleless syringe (INF5), and infiltrating with 5 × 10⁸ cfu/ml inoculum (INF6). No greenhouse method was superior in all assessment categories. The CARB method was most repeatable (t = 0.78) but had a low Spearman’s correlation (rₛ = 0.29), indicating that greenhouse rankings did not correspond closely with field rankings. The INF6 method was unsuitable because it did not differentiate between plant genotypes. The DIP method appeared most suitable, having moderate repeatability (t = 0.46) for four observations per leaf and moderate Spearman’s correlation with field performance (rₛ = 0.56). The INF5 method may be appropriate for identifying bacterial spot resistance that is associated with resistance in the leaf mesophyll.

Field evaluation of fruit tree breeding germplasm is expensive due to large plant size and prolonged juvenility (Hansche, 1983). Therefore, selection methods that allow roguing of undesirable genotypes before field planting are beneficial. Resistance to bacterial diseases can be assessed in this manner, and many methods have been used on various crops. Greenhouse systems for Prunus have included immersing leaves under vacuum (Daines and Hough, 1951), infiltrating with high pressure sprays (Civerolo and Keil, 1976; Du Plessis, 1986), and infiltrating with needleless syringe (Du Plessis, 1988; Hammerschlag, 1988; Randhawa and Civerolo, 1985). The desirability of any one system of disease inoculation and assessment depends on its accuracy, precision, and correlation with field performance. Partitioning the total variance of random variables in experiments that compare plant genotypes allows determination of some of these factors (Campbell and Madden, 1990; Gomez and Gomez, 1984). The purpose of this study was to compare four greenhouse leaf inoculation and assessment systems for Xanthomonas campestris pv. pruni on Japanese-type plums for repeatability (precision), correlation with field performance (accuracy), and ability to differentiate among genotypes.

Materials and Methods

Plant material. Six plum genotypes were chosen at random from a large germplasm collection at Gainesville, Fla., and propagated by stem cuttings to produce from four to seven ramets per genotype. Two ramets per genotype were grown in a greenhouse in 5-liter containers of a commercial potting mix (Terra-Lite Metro-mix 200, Cambridge, Mass.) for 12 months before inoculation. The remaining rooted cuttings were field planted in a disease nursery. The disease nursery was a high-density planting (Sherman and Lyrene, 1983) with susceptible ‘Gulfruby’ spreader trees every 4 m along the interrow. Natural spread of bacterial spot was aided by artificial inoculation of spreader trees and overhead irrigation. No bactericides were applied to the disease nursery. Six additional genotypes were propagated in a similar manner for use in the correlation study, but only one potted tree of each was assessed in the greenhouse.

Inoculum preparation. A Florida isolate of X. campestris pv. pruni was grown overnight in Difco nutrient broth, pelleted by centrifugation, and resuspended in sterile tap water to obtain 5 × 10⁸ cfu/ml by photometrically standardizing to 0.3 A at 600-µm wavelength. These suspensions were diluted serially with sterile tap water to obtain the specified concentrations of inoculum.

Inoculation and assessment systems. All inoculations were performed in the greenhouse between 0700 and 0900 hr when the air was at ≈ 23°C. Temperatures during the fortnight of disease development ranged from 20 to 35°C. Methods were as follows:

1) DIP-The apical 10 leaves of a branch were immersed in 2.5 × 10⁸ cfu/ml inoculum and agitated for 5 sec to fully wet leaf surfaces. After 14 days, the number of lesions per square centimeter of leaf area was counted at four sites selected randomly on each of the three most severely affected leaves per branch.

2) CARB-The third, fourth, and fifth leaves from the growing tip were rubbed on the adaxial side with a slurry of Carborundum powder and 2.5 × 10⁸ cfu/ml inoculum. The number of lesions per square centimeter of leaf was counted at four sites selected randomly on each of the three leaves 14 days after inoculation.

3) INF5-The third, fourth, and fifth leaves from the growing tip were infiltrated with 5 × 10⁸ cfu/ml inoculum with a needleless syringe at four sites per leaf to produce infiltrated circles =2 cm in diameter. The infiltrated area was not visible 1 h after inoculation. Disease development was assessed 14 days after inoculation by estimating the percentage of watersoaking and necrosis at each site.

4) INF6-Leaves were inoculated as described for INF5 but with 5 × 10⁸ cfu/ml inoculum.

Experiment design and statistical analysis. In the greenhouse, all four methods were applied to each tree with one branch...
Table 1. Sources of variation, degrees of freedom (df) and expected mean squares (EMS) for analysis of the greenhouse assessment methods DIP, INF5, INF6, and CARB used to determine bacterial leaf spot resistance.

Source	df	EMS
Genotype	5	\(\sigma^2 + 12\sigma^2_{PD} + 24\sigma^2_o \)
Plant (G)	6	\(\sigma^2 + 12\sigma^2_{PD} \)
Leaf position (L)	2	\(\sigma^2 + 4\sigma^2_{PD} + 8\sigma^2_{GxL} + 4\sigma^2_{L} \)
G x L	10	\(\sigma^2 + 4\sigma^2_{PD} + 8\sigma^2_{GxL} + 4\sigma^2_{L} \)
P(G) x L	12	\(\sigma^2 + 4\sigma^2_{PD} + 8\sigma^2_{GxL} + 4\sigma^2_{L} \)
Error	130	\(\sigma^2_e \)

*Abbreviations for sources of variation are G = genotype, L = leaf, and P = plant.

Repeatability was estimated using Fisher’s intraclass correlation (Becker, 1984; Kempthorne, 1957), and standard errors of these variance ratios were derived as in Falconer (1989). Inspection of plots of residual vs. predicted values indicated that transformations would reduce the dependence of the variance on the mean. Data for DIP, INF5, and INF6 were transformed by log \((x + 1)\) and for CARB by square root \((x + 1)\) before analysis of variance.

The relationship of greenhouse methods to field ratings was obtained by Pearson’s interclass correlation and Spearman’s rank correlation via the SAS CORR and SAS FREQ procedures (SAS, 1987).

Repeatability was estimated using Fisher’s intraclass correlation (Becker, 1984; Kempthorne, 1957), and standard errors of these variance ratios were derived as in Falconer (1989). Inspection of plots of residual vs. predicted values indicated that transformations would reduce the dependence of the variance on the mean. Data for DIP, INF5, and INF6 were transformed by log \((x + 1)\) and for CARB by square root \((x + 1)\) before analysis of variance.

The relationship of greenhouse methods to field ratings was obtained by Pearson’s interclass correlation and Spearman’s rank correlation via the SAS CORR and SAS FREQ procedures (SAS, 1987). Field ratings were taken in Aug. 1991 in a disease nursery in which each tree was inoculated with X. campestris pv. pruni in June 1991, and disease spread was aided by the use of susceptible trees of ‘Gulfruby’ planted every 4 m between rows of test trees. The rating scale was a modification of the 0-5 scale used by the disease assessors. This type of resistance has been reported in tomato (Lycopersicon esculentum Mill.), where six times as many bacterial cells were required to produce a leaf pustule in bacterial spot-resistant relative to susceptible plants (McGuire et al., 1991).

Results and Discussion

Ability of the methods to detect differences among genotypes. Significant differences in mean response among the genotypes were detected by all methods except INF6, with the INF5 method providing the greatest differentiation among genotypes (Table 2). The INF6 method does not appear suitable, because it did not distinguish differences in susceptibility among the plum genotypes. INF6 resulted in >65% watersoaking in all genotypes (Table 2). This failure to detect differences may be related to the high (5 \times 10^6 cfu/ml) initial concentration of bacteria infiltrated into the leaf. At high inoculum concentration, differences in host response for susceptible and resistant genotypes can be reduced (Braun, 1982; Daub and Hagedorn, 1980). Daub and Hagedorn (1980) reported that there were almost no differences in bacterial growth rates and final bacterial populations in susceptible and resistant bean cultivars when inoculated with high concentrations of 10^7 and 10^6 cfu/ml of *Pseudomonas syringae* spp., and yet marked differences were obtained when the leaves were inoculated with 10^7 and 10^6 cfu/ml inoculum.

Bacterial populations were measured in ‘Blackamber’ and C333-1, after infiltration of 5 \times 10^6 cfu/ml inoculum into leaf mesophyll, and were found to reach high levels in both genotypes (Topp, 1992). The partial resistance found in C333-1 by the DIP, INF5 and CARB methods of disease assessment indicates that bacteria; spot symptom expression in C333-1 is low despite the high bacterial counts. This may be a form of partial resistance where an increased threshold of pathogens is required to cause infection in the host. This type of resistance has been reported in tomato (Lycopersicon esculentum Mill.), where six times as many bacterial cells were required to produce a leaf pustule in bacterial spot-resistant relative to susceptible plants (McGuire et al., 1991).

Repeatability of greenhouse methods. Repeatability partitions the total variability in the experiment into a portion that arises due to differences among the genotype groups and a portion that arises due to differences among members within each genotype group (i.e., into between group and within group components). Repeatability is a unitless variance ratio and so allows comparison of the four methods even though different units were used. Fruit breeders would like to use the inoculation and assessment system that differentiates among genotypes (maximizes \(\sigma^2_{G} \)) but minimizes the within-genotype variance. This will be the method with highest repeatability.

Table 2. Mean genotype disease response to infection with bacterial leaf spot for various greenhouse assessment methods.

Genotype	DIP (lesions per cm²)	INF5 (% water-soaked)	INF6 (% water-soaked)	CARB (lesions per cm²)
Gulfruby	6.38 a	28.13 a	85.42 a	17.50 a
Blackamber	5.54 a	22.63 ab	83.75 a	4.04 b
C109-6	3.04 ab	12.75 bcd	65.63 a	2.25 b
C333-2	1.67 b	13.83 bc	85.29 a	1.21 b
C113-5	0.79 b	4.29 cd	75.00 a	1.08 b
C333-1	0.38 b	1.54 d	78.18 a	0.96 b

*Values are means of 24 observations per genotype (4 sites/leaf x 3 leaves/plant x 2 plants), untransformed data.

*Mean separation within columns by Duncan’s multiple range test, \(P \leq 0.05 \).
The CARB method was most repeatable, followed by INF5 and DIP (Table 3). The INF6 method had a repeatability of zero, because no variation among genotypes was detected using this method. Increasing the number of observations per leaf from one to four is recommended for the DIP and INF5 methods because of the resultant increase in repeatability. The CARB method had only 26% of total variance attributable to error (Table 3), and so the improvement in repeatability by increasing the number of observations per leaf was small. The plant within genotype component of variance was <15% of total variance for three of the methods, indicating there would be little gain in increasing the number of ramets tested for each genotype (Table 3). This finding is of particular relevance as these methods eventually will be used to screen seedling populations for resistance to bacterial leaf spot, and replication of genotypes would add to the cost and time involved in testing.

Bacterial entry into the leaf by the DIP method depends on water congestion of intercellular spaces at the time of inoculation (Matthee and Daines, 1968) and on many environmental factors that influence bacterial longevity on the leaf surface (Hirano and Upper, 1983; Leben, 1974). In contrast, the infiltration methods place the bacteria into each leaf and so avoid these environmental variations. These may be reasons why DIP has a lower repeatability than INF5. However, the infiltration methods also may avoid some plant epidermal resistance mechanisms and so less closely resemble natural field infection.

Correlations of greenhouse methods with field ratings. Pearson’s correlation coefficients of greenhouse and field ratings were significant for DIP and CARB but not for INF5 and INF6 (Table 4, Fig. 1). Spearman’s correlation measures the correspondence of genotype rankings by the different methods, and coefficients were similar to Pearson’s correlation coefficient for DIP, INF5, and INF6, but much lower for CARB (Table 4). This difference indicates that, although the overall correspondence of CARB greenhouse ratings and field ratings were relatively high, the ranking of clones in the greenhouse by the CARB method did not correspond to the ranking of clones in the field (Fig. 1B).

The DIP method had the highest correlation with field determined resistance, but a correlation of 0.69 accounts for only 48% of the variation between field and greenhouse resistance measurements. The DIP method may be used as a preliminary screen when large populations are to be reduced in the greenhouse, but some resistant seedlings would be discarded. Field testing would be required, as susceptible seedlings will be included in the selected group. For example, if the threshold were set at four lesions per square centimeter in this experiment, then two clones that average ≈40% leaf infection in the field would be selected using the DIP method (Fig. 1A). These would need to be culled during field screening.

The low correlations of the infiltration methods with field

Source	DIP	INF5	INF6	CARB
Genotype	0.23 (25)	0.79 (39)	0	1.36 (63)
Plant (G)	0.13 (14)	0.14 (7)	0.02 (30)	0.02 (1)
G × L	0 (0)	0.13 (6)	0.00 (9)	0 (0)
P(G) × L	0 (0)	0.32 (16)	0 (0)	0.22 (10)
Error	0.58 (61)	0.66 (32)	0.04 (61)	0.56 (26)

1 Abbreviations for sources of variation are G = genotype, L = leaf, and P = plant. Estimates of variance are based on transformed data.

†Negative estimates of variance set to zero.

2 Repeatability for one observation per leaf =

\[\frac{\sigma^2_G}{\sigma^2_G + \sigma^2_{P(G)} + \sigma^2_{G \times L} + \sigma^2_{P(G) \times L} + \sigma^2_e} \]

3 Repeatability for four observations per leaf =

\[\frac{\sigma^2_G}{\sigma^2_G + \sigma^2_{P(G)} + \sigma^2_{G \times L} + \sigma^2_{P(G) \times L} + \sigma^2_e/4} \]

Table 3. Estimates of variance components, percentage of total variance (in parentheses), and repeatability for the various greenhouse assessment methods used to determine bacterial leaf spot resistance.

Table 4. Phenotypic correlations between genotype resistance ratings for bacterial leaf spot from greenhouse assessment methods and genotype resistance ratings from the field.

Greenhouse method	Pearson’s correlation coefficient (± SE)	Spearman’s correlation coefficient (± SE)
DIP	0.69 ± 0.10	0.56 ± 0.25
INF5	0.37 ± 0.34	0.44 ± 0.38
INF6	0.48 ± 0.13	0.47 ± 0.21
CARB	0.64 ± 0.18	0.29 ± 0.34

*Genotypes tested in greenhouse and field (country/state of origin in parentheses) were: ‘Blackamber’ (California), ‘Bruce’ (Texas), ‘Gulfruby’ (Florida), ‘Larry Pickstone’ (South Africa), ‘Laetitia’ (South Africa), ‘Wilson’ (Australia); two seedling selections from U.S. Dept. of Agriculture (USDA), Fresno, Calif., two seedling selections from Univ. of Florida, Gainesville, and two seedling selections from USDA, Byron, Ga.
ratings in this study are in contrast to the report of Randhawa and Civerolo (1983), who infiltrated detached peach *Prunus persica* (L.) Batsch leaves and reported a high degree of correspondence for 21 of the 22 peach genotypes tested, although no correlation was presented. Stall et al. (1982) noted a good correspondence between leaf infiltration and field ratings for citrus canker, but also noted that exceptions occurred. They considered these outliers the result of experimental technique, which could be overcome with improved uniformity of leaf age and with use of several inoculum doses for each plant genotype.

The sample of genotypes involved may partly explain the differences between studies. For example, if the outlier ‘Bruce’ in Fig. 1C is excluded from the analysis, the correlation for INF5 with field rating rises to 0.88 (*P* = 0.0004). Greenhouse methods that correlate to this extent with field ratings would be extremely useful.

How could ‘Bruce’ be resistant in the field and yet susceptible when infiltrated with *X. campestris* pv. *pruni* in the greenhouse? Leaf infiltrations on ‘Bruce’ clones in the field were repeated (data not presented) to eliminate the possibility of error such as genotype misidentification. The resistant trees in the field gave similar watering percentages to those obtained on clones in the greenhouse. Another possibility is that the field disease pressure was low enough to permit escapes; this may have been a possibility in a low bacterial spot year, such as 1990, but rainfall was above average in 1991, and all four ramets of ‘Bruce’ rated resistant despite very high levels of bacterial spot in the disease nursery. Also, ‘Bruce’ has been reported field resistant in Australia (Topp et al., 1989) and in the United States (Keil and Fogle, 1974). Two other possible explanations which seem more likely are: 1) ‘Bruce’ has some level of epidermal resistance that results in resistant reactions in field ratings (and DIP method) but susceptible reactions with infiltration methods; and 2) ‘Bruce’ is exhibiting a form of partial resistance where an increased pathogen threshold is required to cause leaf spot symptoms (McGuire et al., 1991), so despite development of high bacterial concentrations in the leaf, few leaf spot symptoms develop. This could be tested by regressing bacterial population size against leaf spot development for a range of plum clones, with deviants above the curve classed as partially resistant.

Conclusions. No greenhouse screening method was clearly superior in all categories of assessment. The CARB method,
although the most repeatable (precise), is unsatisfactory because it
did not rank genotypes as they performed in the field (Spearman’s
correlation of 0.29 ± 0.34). The INF6 method did not distinguish
differences among the genotypes, because all plants were suscep-
tible in the mesophyll when infiltrated with 5 × 10⁶ cfu/ml of
inoculum. The DIP method appears to be the most useful of the four
methods tested, with a repeatability of 0.46 for four observations
per leaf. The DIP method ranked the genotypes most closely with
field performance (Spearman’s correlation of 0.56 ± 0.25) and
detected differences among the genotypes. Field screening under
severe disease pressure provides the best measure of disease
resistance, but ideal test environments are not available at all
locations or in all years; they also suffer the problems of high cost
due to land and time commitments in assessment. For these
reasons, a greenhouse method needs to be used, and the DIP
method was the best of the four methods in this study. A green-
house system that is more repeatable and correlates more highly
with field results is required.

Literature Cited

Becker, W.A. 1984. Manual of quantitative genetics. 4th ed. Academic
Enterprises, Pullman, Wash.

Braun, E.J. 1982. Ultrastructural investigation of resistant and susceptible
maize inbreds infected with Erwinia stewartii. Phytopathology 72: 159-
166.

Campbell, C.L. and L.V. Madden. 1990. Introduction to plant disease
epidemiology. Wiley, New York.

Civerolo, E.L. and H.L. Keil. 1976. Evaluation of Prunus spp. resistance
to Xanthomonas pruni by artificial inoculation. Fruit Var. J. 30:17-18.

Daines, R.H. and L.F. Hough. 1951. Artificial inoculation of peach
seedlings with Xanthomonas pruni. Phytopathology 41:8-9. (Abstr.)

Daub, M.E. and D.J. Hagedorn. 1980. Growth kinetics and interactions of
Pseudomonas syringae with susceptible and resistant bean tissues.
Phytopathology 70:429-436.

Du Plessis, H.J. 1986. Systemic migration and establishment of
Xanthomonas campestris pv. pruni in plum leaves and twigs. J. Phyto-
pathology 116:221-227.

Du Plessis, H.J. 1988. Differential virulence of Xanthomonas campestris
pv. pruni to peach, plum, and apricot cultivars. Phytopathology 78:1312-
1315.

Falconer, D.S. 1989. Introduction to quantitative genetics. 3rd ed. Wiley,
New York.

Gomez, K.A. and A.A. Gomez. 1984. Statistical procedures for agricul-
tural research. 2nd ed. Wiley, New York.

Hammerschlag, F.A. 1988. Selection of peach cells for insensitivity to
culture filtrates of Xanthomonas campestris pv. pruni and regeneration
of resistant plants, Theor. Appl. Genet. 76:865-869.

Hirano, S.S. and C.D. Upper. 1983. Ecology and epidemiology of foliar
bacterial plant pathogens. Ann. Rev. Phytopathol. 21:243-269.

Keil, H.L. and H.W. Fogle. 1974. Orchard susceptibility of some apricot,
peach and plum cultivars and selections to Xanthomonas pruni. Fruit
Var. J. 28:16-19.

Kempthorne, O. 1957. An introduction to genetic statistics. Iowa State
Univ. Press, Ames.

Leben, C. 1974. Survival of plant pathogenic bacteria. Ohio Agr. Res. and
Dev. Ctr., Wooster, Ohio. Spec. Circ. 100.

Matthee, F.N. and R.H. Daines. 1968. Effects of soil types and substrate
aeration on stomatal activity, water diffusion pressure deficit, water
congestion, and bacterial infection of peach and pepper foliage. Phyto-
pathology 58:1298-1301.

McGuire, R.G., J.B. Jones and J.W. Scott. 1991. Epiphytic populations of
Xanthomonas campestris pv. vescatoria on tomato cultivars resistant and
susceptible to bacterial spot. Plant Dis. 75:606-609.

Randhawa, P.S. and E.L. Civerolo. 1985. A detached-leaf bioassay for
Xanthomonas campestris pv. pruni. Phytopathology 75: 1060-1063.

SAS Institute. 1987. SAS/STAT guide for personal computers, version 6
ed. SAS Inst., Cary, N.C.

Stall, R.E., G.M. Marco, and B.I. Canteros de Echenique. 1982. Impor-
tance of mesophyll in mature-leaf resistance to cancrosis of citrus.
Phytopathology 72: 1097-1100.

Topp, B.L. 1992. Inheritance of resistance to Xanthomonas campestris pv.
pruni in stems and leaves of Japanese-type plums from four breeding
populations. PhD Diss., Univ. of Florida, Gainesville.

Topp, B.L., J.B. Heaton, D.M. Russell, and R. Mayer. 1989. Field
susceptibility of Japanese-type plums to Xanthomonas campestris pv.
pruni. Austral. J. Expt. Agr. 29:905-909.

Werner, D.J., D.F. Ritchie, D.W. Cain, and E.I. Zehr. 1986. Susceptibility
of peaches and nectarines, plant introductions and other Prunus species
to bacterial spot. HortScience 21:127-130.