Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis

Mohammad Ziaul Islam Chowdhury1,2,3, Iffat Naeem1, Hude Quan1, Alexander A. Leung1,4, Khokan C. Sikdar5, Maeve O’Beirne2, Tanvir C. Turin1,2*

1 Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 2 Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 3 Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 4 Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 5 Health Status Assessment, Surveillance, and Reporting, Public Health Surveillance and Infrastructure, Population, Public and Indigenous Health, Alberta Health Services, Calgary, Alberta, Canada

* chowdhut@ucalgary.ca

Abstract

Objective
We aimed to identify existing hypertension risk prediction models developed using traditional regression-based or machine learning approaches and compare their predictive performance.

Methods
We systematically searched MEDLINE, EMBASE, Web of Science, Scopus, and the grey literature for studies predicting the risk of hypertension among the general adult population. Summary statistics from the individual studies were the C-statistic, and a random-effects meta-analysis was used to obtain pooled estimates. The predictive performance of pooled estimates was compared between traditional regression-based models and machine learning-based models. The potential sources of heterogeneity were assessed using meta-regression, and study quality was assessed using the PROBAST (Prediction model Risk Of Bias ASeessment Tool) checklist.

Results
Of 14,778 articles, 52 articles were selected for systematic review and 32 for meta-analysis. The overall pooled C-statistics was 0.75 [0.73–0.77] for the traditional regression-based models and 0.76 [0.72–0.79] for the machine learning-based models. High heterogeneity in C-statistic was observed. The age (p = 0.011), and sex (p = 0.044) of the participants and the number of risk factors considered in the model (p = 0.001) were identified as a source of heterogeneity in traditional regression-based models.
Conclusion

We attempted to provide a comprehensive evaluation of hypertension risk prediction models. Many models with acceptable-to-good predictive performance were identified. Only a few models were externally validated, and the risk of bias and applicability was a concern in many studies. Overall discrimination was similar between models derived from traditional regression analysis and machine learning methods. More external validation and impact studies to implement the hypertension risk prediction model in clinical practice are required.

Introduction

Hypertension is a common medical condition affecting about 1 in 4 people [1] and is a significant risk factor for heart attack, stroke, kidney disease, and mortality [2]. Hypertension has been linked to 13% of deaths globally [3] and is a significant health burden that affects all population segments. Considering the high prevalence and global burden, hypertension prevention, and control strategies need to be a top priority. Hypertension can be prevented by applying strategies that target the general population or individuals and groups at higher risk for hypertension [4]. The need for early identification of at-risk individuals who could benefit from preventive interventions has led to a growing interest in hypertension risk prediction.

Predicting the risk of developing hypertension through modeling can help identify important risk factors contributing to hypertension, provide reasonable estimates about future hypertension risk [5], and help identify high-risk individuals targeted for healthy behavioral changes and medical treatment to prevent hypertension [6–8]. Many prediction models have been developed to predict the risk of hypertension in the general population over the years. Models were developed using either a traditional regression-based approach or a modern machine learning approach. Although machine learning approaches are known to produce better predictive performance, their performance often varies, and it is not clear if they perform better than the traditional regression-based models in predicting hypertension. Through a systematic review and subsequent meta-analysis, a pooled synthesis of performance measures of different models produced in multiple studies can be compared and measured [9]. This methodology provides an overview of these models' predictive ability and allows the models' performance measures based on the reported data to be explored quantitatively [9]. Two prior studies systematically analyzed hypertension risk prediction models in adults [10, 11]. Both studies performed a narrative synthesis of the evidence to summarize hypertension prediction models’ existing knowledge, and one study also performed a meta-analysis without assessing heterogeneity. None of the prior studies stratified models according to how they were developed. This stratification is important because there are inherent differences in these two types of models’ developmental methods in computation, complexity, interpretability, and accuracy.

A formal assessment of study quality was also absent in prior studies. In addition to these two prior reviews, a systematic review was also carried out on prediction models to classify children at an elevated risk of developing hypertension [12].

With this in mind, we aimed to 1) systematically review the literature to identify hypertension risk prediction models that have been applied to the general adult population and the risk factors that were considered in those models; 2) characterize the study populations in which these models were derived and validated, 3) compare the predictive performance of traditionally developed regression-based models and machine learning models, and 4) assess the quality of these prediction models to better inform the selection of models for clinical implementation.
Materials and methods

Data sources and searches
We conducted a systematic review and meta-analysis to identify existing hypertension risk prediction models and associated risk factors and evaluated the models’ predictive performance. We searched MEDLINE, EMBASE, Web of Science, and Scopus (each from inception to December 2020) to identify studies predicting the risk of incident hypertension in the general adult population. Google Scholar and ProQuest (theses and dissertations) were searched for grey literature. Additionally, we explored the reference lists of all relevant articles. The search strategy focused on two key concepts: hypertension and risk prediction. We used proper free-text words and Medical Subject Headings (MeSH) terms to identify relevant studies for each key concept. Certain text words were truncated, or wildcards were used when required. The Boolean operators “AND”, “OR”, and “NOT” were used to combine the words and MeSH terms. A detailed search strategy for MEDLINE is provided in S1 Table.

Eligibility criteria
Although risk prediction models are generally developed using a cohort-based study design with follow-up information, we considered all types of study designs, anticipating that machine learning-based models may use other types of study design. Only original studies were included in this review: this excluded reviews, editorials, commentaries, and letters to the editor. Studies written in languages other than English and French were also excluded. The Population, Prognostic Factors (or models of interest), and Outcome [13] framework was used to outline eligibility criteria.

Population. The study population consisted of people free of hypertension at baseline and those around which hypertension risk prediction models were developed. No restrictions were imposed on the geographic region, time, or gender of the study participants. Nevertheless, only models developed on the adult population were considered, as outcome essential hypertension is expected in adults.

Prognostic factors (or models of interest). We considered studies where risk prediction models for hypertension in the general adult population were developed. Studies that focused solely on the added predictive value of new risk factors to an existing prediction model, studies presenting a prediction model developed in patients with previous hypertension, or studies that derived risk prediction tools other than score-type tools (e.g., risk charts) were not considered. Further, we did not consider studies that only assessed bivariate association between predictors and hypertension. Instead, we focused on those studies where risk prediction models for hypertension were built incorporating risk factors that demonstrated significant prognostic contribution in predicting incident hypertension. When a model was assessed on more than one external population, information from all reported models was considered. However, when the model was presented both in a derivation and validation cohort, only data from the validation cohort were considered for meta-analysis.

Outcome. Our outcome of interest was hypertension, and we considered all definitions of hypertension to capture the maximum number of studies.

Study selection
Two reviewers (MC and IN) independently identified eligible articles using a two-step process. First, the title and abstracts of non-duplicated records were screened by two reviewers. Studies retained (based on eligibility criteria) during this stage of screening went to a full-text screening. Full-text articles were further screened for eligibility by the same two reviewers.
independently. Lastly, articles containing extractable data on hypertension prediction models and hypertension risk factors were selected for data extraction. Inter-rater reliability (Kappa coefficient) was estimated to measure agreement between the independent reviewers. Any disagreement between reviewers was resolved through consensus.

Data extraction

Two reviewers (MC and IN) independently extracted data from each study using standardized forms. We classified the identified models into two categories: models developed using a traditional regression-based approach and models developed using machine learning algorithms. Separate data extraction sheets were used for each model type and included study name, the location where the model was developed/location of data used for the model developed and participants’ ethnicity, study design used, sample size, age, and gender of the study participants, risk factors included in the model, number of events and total participants, an outcome considered, the definition used for hypertension, duration of follow-up, modeling method used, measures of discrimination and calibration of the prediction model, and the validation of the prediction model. In a separate form, information about the externally validated hypertension risk prediction models was extracted, including study name/model validated, the total number of validation studies, location of the validation study, follow-up period, number of events, and total participants, the definition of outcome and discrimination and calibration of the model. We also extracted information about risk factors, particularly how many times a specific risk factor was considered in the models. Each reviewer assessed study quality according to the Prediction model Risk Of Bias ASsessment Tool (PROBAST) checklist [14, 15]. The PROBAST is designed to evaluate the risk of bias and concerns regarding diagnostic and prognostic prediction model studies’ applicability. The PROBAST contains 20 questions under four domains: participants, predictors, outcome, and analysis, facilitating judgment of risk of bias and applicability. The overall risk of bias of the prediction models was judged as “low”, “high”, or “unclear,” and overall applicability of the prediction models was considered as “low concern”, “high concern”, and “unclear” according to the PROBAST checklist [14, 15].

Data analysis

We summarized the number of studies identified and those included and excluded (with the reason for exclusion) from the systematic review and subsequent meta-analysis using the PRISMA flow diagram [16]. In data synthesis, we performed a meta-analysis on the performance measure of the traditional regression type’s prediction modeling (e.g., logistic regression model and Cox proportional hazard regression model) and a more complicated modeling strategy (e.g., machine learning tools). Discrimination and calibration are the two most common statistical measures of predictive performance. Discrimination is commonly quantified by the concordance (C) statistic. In this review, we performed a meta-analysis on the C-statistic or AUC (area under the receiver operating characteristic curve) to evaluate the models’ predictive performance and provided a comprehensive summary of the models’ predictive ability. We did not undertake a meta-analysis of the calibration due to the unavailability of relevant data.

We logit transformed the C-statistics before pooling as per recommendation [17, 18] and then back-transformed the results to the original scale for interpretation. We used a random-effects meta-analysis with REML estimation and Hartung-Knapp-Sidik-Jonkman (HKSJ) confidence interval (CI) to obtain the pooled weighted average of the logit C-statistic [19]. Forest plots were generated to show the pooled C-statistic together with the 95% CI, 95% approximate prediction interval (indicates an expected performance range of the considered models
Results

Study identification and selection

We identified 14,730 articles through our electronic database search and an additional 48 articles through our grey literature search. After removing duplicates, titles, and abstracts screening and full-text screening 52 articles were finally selected for the systematic review. Within the chosen final studies, 32 studies provided sufficient information for synthesis through a meta-analysis. The detailed study selection process is summarized in Fig 1. Agreement between reviewers on the initial screening and final articles eligible for inclusion in the systematic review was good (κ = 0.81, and κ = 0.89, respectively). A total of 117 models were identified from the finally selected articles predicting the risk of hypertension in the general adult population, of which 75 were developed using traditional regression-based modeling and 42 using machine learning tools.

Study characteristics of traditional regression-based models

Study characteristics of traditional regression-based models are presented in Tables 1 and 2. A total of 573,268 participants were used to develop 75 traditional models in 34 studies. Models mainly were developed either in white Caucasian or Asian populations. There was no model derived from African populations and only one [21] from Latin American populations. Two studies considered only male participants, one study considered only female participants, and the remaining studies considered both to develop the models. The number of risk factors considered to create the models ranged from 1 to 19, with a median of 7 risk factors per model. Age was the most common risk factor considered in 61 models, followed by body mass index (BMI) (32 models), diastolic blood pressure (DBP) (28 models), systolic blood pressure (SBP) (27 models), and sex (21 models). The distribution of the conventional risk factors considered in the different models is presented in Fig 2A. Duration of follow-up time (mean/median/total) considered to develop the models varied between 1.6 years to 30 years. The age of the study participants ranged from 15 to 90 years. SBP ≥ 140 mm Hg, DBP ≥ 90 mm Hg, or use of antihypertensive medication was the standard definition used to define hypertension in almost all the studies, except one study where SBP ≥ 130 mm Hg, DBP ≥ 80 mm Hg, or use of
any antihypertensive drug was used. Logistic regression was the most used methodology to develop the model (15 studies), followed by Cox proportional-hazards regression (11 studies) and Weibull regression (6 studies). Calibration of the prediction model was not reported by most of the studies (19 studies). Studies those reported calibration measures (15 studies) were mainly using the Hosmer-Lemeshow test. Discrimination was assessed using the C-statistic (or AUC) and reported by almost all studies with values ranging from 0.57 to 0.97. Only one model was externally validated by the same study when they developed the model. Only eight models [22–29] were converted into a risk score after model development.

Meta-analysis of traditional regression-based models

The overall pooled C-statistics of the traditional regression-based models was 0.75 [0.73–0.77] with high heterogeneity in the discriminative performance of these models ($I^2 = 99.3$, Cochran Q-statistic $p < 0.001$) (Fig 3). Stratified pooled results by modeling type showed pooled C-
Table 1. Characteristics of included studies that describe traditional regression-based hypertension prediction models.

Study	Location Model Developed/ Ethnicity	Study Design	Age	Gender	Events (n)/Total Participants (N)	Definition of Outcome Predicted/ Hypertension	Duration of Follow-up
Pearson et al. [41] 1990	USA/Mixed, mainly Whites	Prospective cohort	≤ 25 years	Male only	114/1130	Self-reported use of blood pressure-lowering medications	30 years
Parikh et al. [22] 2008	USA/ Mainly Whites	Prospective cohort	20–69 years	Both	796/1717	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or use of BP-lowering medications	Median 3.8 years
Paynter et al. [42] 2009	USA/ Whites and Blacks	Prospective cohort	45–64 years	Female only	Derivation cohort: 1935/9427 Validation cohort: 1068/5395	Self-report or SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or use of BP-lowering medications	8 years
Kivimäki et al. [43] 2009	England/ Mainly Whites	Prospective cohort	35–68 years	Both	1258/8207	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or use of BP-lowering medications	Median 5.6 years
Kivimäki et al. [44] 2010	England/ Mainly Whites	Prospective cohort	36–68 years	Both	Derivation cohort: 614/4135 Validation cohort: 438/2785	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or use of antihypertensive medications	Median 5.8 years
Kshirsagar et al. [45] 2010	USA/Mixed but mainly Whites	Prospective cohort	45–64 years	Both	3795/11,407 (7610 for derivation sample and 3692 for the validation sample)	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or reported use of BP-lowering medications	Up to 9 years
Bozorgmanesh et al., [25] 2011	Iran/ Asians	Prospective cohort	≥ 20 years	Both	805/4656	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or reported use of BP-lowering medications	6 years
Chien et al. [24] 2011	Taiwan/Chinese	Prospective cohort	≥ 35 years	Both	1029/2506	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or reported use of BP-lowering medications	Median 6.15 years
Fava et al. [46] 2013	Sweden/ Whites	Prospective cohort	Middle-aged	Both	NR/10,781	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or reported use of BP-lowering medications	Over average 23-years
Lim et al. [30] 2013	Korea/ Asians	Prospective cohort	40–69 years	Both	819/4747. Derivation cohort: 483/2840 Validation cohort: 336/1907	SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or reported use of BP-lowering medications	4 years
Choi et al. [47] 2014	USA/Mexicans	Prospective cohort	NR	Both	NR/443	SBP > 140 mm Hg, DBP > 90 mm Hg, or use of antihypertensive medication	NR
Lim et al. [48] 2015	Korean/ Asians	Prospective cohort	40–69 years	Both	NR/5632	SBP > 140 mm Hg or DBP > 90 mm Hg or use of antihypertensive medication	4-year
Otsuka et al. [23] 2015	Japan/ Asians	Prospective cohort	19–63 years	Male only	1633/15,025	SBP > 140 mm Hg or DBP > 90 mm Hg or use of antihypertensive medication	Median 4 years
Asgari et al. [49] 2015	Iran/ Asians	Prospective cohort	≥ 20 years	Both	ISH: 235/4574 IDH: 470/4809	ISH: SBP > 140 mmHg and DBP < 90 mmHg IDH: SBP < 140 mmHg and DBP ≥ 90 mmHg	ISH: Median 9.57 years, IDH: Median 9.62 years
Sathish et al. [29] 2016	India/ Asians	Prospective cohort	15–64 years	Both	70/297	SBP > 140 mm Hg or DBP > 90 mm Hg or use of antihypertensive medication	Mean 7.1 years
Lee et al. [50] 2015	Korea/ Asians	Prospective cohort	40–69 years	Both	Men: 384/2128 Women: 374/2326	SBP > 140 mm Hg or DBP > 90 mm Hg or use of antihypertensive medication	4 years
Lee et al. [51] 2014	Korea/ Asians Cross-sectional		21–85 years	Both	NR/12,789	SBP > 140 mmHg and/or DBP > 90 mm Hg or physician-diagnosed hypertension	NR

(Continued)
Study	Location Model Developed/ Ethnicity	Study Design	Age	Gender	Events (n)/Total Participants (N)	Definition of Outcome Predicted/ Hypertension	Duration of Follow-up
Kanegae et al. [32] 2018	Japan/Asians	Prospective cohort	18–83 years	Both	7402/63,495	SBP/DBP ≥ 140/90 mm Hg and/or the initiation of antihypertensive medications with self-reported hypertension	Mean 3.4 years
Chen et al. [52] 2016	China/Asians	Prospective cohort	Average age 41.73 years (men), 39.49 years (women)	Both	2021 (men), 764 (women) 7537 (men), 4960 (women)	First occurrence at any follow-up medical check-up of SBP > 140 mm Hg or DBP > 90 mm Hg or of the person taking antihypertensive medication	Median 4.0 years
Diaz-Gutierrez et al. [28] 2019	Spain/ Spanish	Prospective cohort	Age presented according to the number of healthy lifestyle factors	Both	1406/14057	SBP ≥ 130 mmHg, DBP ≥ 80 mmHg, or use of any antihypertensive drug	Median 10.2 years
Wang et al. [53] 2018	China/Asians	Longitudinal	18–90 years	Both	882/5265 (derivation) NR/1597 (validation)	Taking antihypertensive drugs or SBP at least 140 mmHg or DBP at least 90 mmHg	Average follow-up of 8.05 ± 5.27 years
Niiranen et al. [54] 2016	Finland/Whites	Prospective cohort	≥ 30 years	Both	NR/2045	BP ≥ 140/90 mm Hg and/or antihypertensive medication	11 years
Yeh et al. [55] 2001	Taiwan/Chinese	Prospective cohort	≥ 20 years	Both	88/2374	SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg	Average 3.23 years
Sylos et al. [21] 2020	Brazil/South Americans	Prospective cohort	35–74 years	Both	1088/8027; Derivation: 4825 Validation: 3202	SBP ≥ 140 mm Hg, DBP ≥ 90 mm Hg or the use of blood pressure-lowering medications	4 years
Wang et al. [27] 2020	China/Asians	Prospective cohort	≥ 18 years	Both	1658/9034	SBP ≥ 140 mm Hg, DBP ≥ 90 mm Hg or the use of blood pressure-lowering medications	Median 6 years
Xu et al. [56] 2019	China/Asians	Prospective cohort	35–74 years	Both	1036/4796 (Training)	SBP ≥ 140 mm Hg and/or DBP ≥ 90 mm Hg, and/or a diagnosis of hypertension by a physician and currently receiving anti-hypertension treatment	6 years
Kadomatsu et al. [26] 2019	Japan/ Asians	Prospective cohort	Mean age 51.3 years	Both	324/3936	SBP ≥ 140 mm Hg, DBP ≥ 90 mm Hg, or use of antihypertensive medication	Median 5 years
Wang et al. [57] 2015	USA/Multi-ethnic	Telephone-based health survey	≥ 18 years	Both	NR/308,711	NR	NR
Muntner et al. [58] 2010	USA/ Multi-ethnic (Whites, Blacks, Hispanics, and Asians)	NR	45–84 years	Both	849/3013	The first study visit, subsequent to baseline, at which SBP ≥ 140 mm Hg and/or DBP ≥ 90 mm Hg and/or the initiation of antihypertensive medication	Median of 1.6 years and 4.8 years
Ture et al. [59] 2005	Turkey/ Europeans	Retrospective	Average 48.2 years (hypertension) 46.5 (control)	Both	694 (452 patients with hypertension and 242 controls)	Average of 3 or more DBP measurements on at least 3 subsequent visits is ≥ 90 mmHg or when the average of multiple SBP readings on 3 or more subsequent visits is consistently ≥ 140 mmHg	NR
Yamakado et al. [60] 2015	Japan/Asians	Prospective cohort	≥ 20 years	Both	424/2637	SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg or use of antihypertensive medication	4 years
Qi et al. [61] 2014	China/Asians	Case-control	Case: 64.48 ± 8.53 years; Control: 64.23 ± 10.13 years	Both	Patients: NR/1009 Controls = NR/756	SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg or use of antihypertensive medication	NR

(Continued)
statistics were 0.73 [0.69–0.77], 0.77 [0.74–0.81], 0.73 [0.69–0.78], and 0.77 [0.75–0.79] for Cox, logistic, repeated Poisson, and Weibull respectively (Fig 3). The heterogeneity was still observed to be high within the different types of models (Fig 3). The 95% approximate prediction interval for the overall C-statistics was from 0.63 to 0.84.

To explore possible sources of heterogeneity in the overall pooled C-statistics, we performed a meta-regression. We initially considered the following potential sources of heterogeneity: the definition of hypertension used (the cut-off level used to define hypertension), sex of the participants in included studies (categorized as female-only, male-only, and both male and female), age of the participants (study participants below average age versus above average age), number of risk factors considered in the model (below median versus above median), sample size considered in the model (below median versus above median), and ethnicity of the study participants (Whites versus Asians). However, we excluded the definition of hypertension as a heterogeneity source, as all studies except one used the same definition for hypertension. Meta-regression identified the participants’ sex, that is, being male compared to female (p = 0.044), participants’ age (p = 0.011), and the number of risk factors considered in the model (p = 0.001) as potential sources of high heterogeneity in the C-statistic. Sex of the participants’ when both male and female compared to female-only (p = 0.351), sample size considered in the model (p = 0.395), and ethnicity of the study participants (p = 0.899) were not identified as a statistically significant source of observed heterogeneity in the C-statistic of these models.

Critical appraisal of traditional regression-based models

We assessed study quality using the PROBAST checklist. A detailed assessment of the risk of bias (ROB) and applicability is presented in S2 Table and Fig 4. Overall, ROB was “low” in 19 studies, “high” in 5 studies, and “unclear” in 10 studies. Overall applicability was “low concern” in 12 studies, “high concern” in 21 studies, and “unclear concern” in 1 study. Within the ROB domains, the “low” risk of bias was observed in most of the domains except the “analysis” domain, where a large portion of studies (more than 30%) was “unclear” (Fig 4). Similarly, within the applicability domains, the “participants” domain seems to be a concern, as a large portion of studies (more than 30%) were at “high concern” or “unclear concern” (Fig 4). We also presented the different PROBAST signaling questions’ distribution of responses by the various studies in S1 and S2 Figs.

Study characteristics of machine learning-based models

Study characteristics of machine learning-based models are presented in Table 3. A total of 1,211,093 participants were used to develop 42 machine learning-based models in 20 studies.
Table 2. The features of hypertension prediction models developed using a traditional regression-based modeling approach.

Study	Risk Factors Included	Modeling Method	Discrimination	Calibration	Model Validation: Internal or External
Pearson et al.	Age, SBP at baseline, paternal history of hypertension, and BMI	Cox regression	NR	NR	NR
[41] 1990					
Parikh et al.	Age, sex, SBP, DBP, BMI, parental hypertension, and cigarette smoking	Weibull regression	C-statistic = 0.788 [0.733–0.803]	HL Chi-square = 4.35 (p = 0.88)	Internal, apparent
[22] 2008					
Paynter et al.	Inclusive Model: Age, ethnicity, BMI, total grain intake, SBP, DBP, apolipoprotein B, lipoprotein (a), and C-reactive protein. Simplified Model with Lipids: Age, BMI, SBP, DBP, ethnicity, and total to HDL-cholesterol ratio Simplified Model: Age, BMI, ethnicity, SBP, and DBP	Logistic regression	Inclusive Model: C-statistic = 0.705; Simplified Model with Lipids: C-statistic = 0.705; Simplified Model: C-statistic = 0.703	Inclusive Model: HL Chi-square = 24.6 (p = 0.002), Simplified Model with Lipids: HL Chi-square = 20.7 (p = 0.008), Simplified Model: HL Chi-square = 12.3 (p = 0.140)	Internal, split-sample 2:1
[42] 2009					
Kivimäki et al.	Age, sex, SBP, DBP, BMI, parental hypertension, and cigarette smoking	Weibull regression	C-statistic = 0.804	HL Chi-square = 14.3 (p = 0.88)	Internal, split-sample 6:4
[43] 2009					
Kivimäki et al.	Repeat Measure BP Model: Age, sex, BMI, parental hypertension, repeat measures of BP, and cigarette smoking Average BP Model: Age, sex, BMI, parental hypertension, average BP, and cigarette smoking	Weibull regression	Repeat Measure BP Model: C-statistic = 0.799; Average BP Model: C-statistic = 0.794	Repeat Measure BP Model: HL Chi-square = 6.5; Average BP Model: NR	Internal, split-sample 6:4
[44] 2010					
Kshirsagar et al.	Age, level of SBP or DBP, smoking, family history of hypertension, diabetes mellitus, BMI, female sex, and lack of exercise	Logistic regression	AUC = 0.742 (3 years), 0.750 (6 years), 0.791 (9 years), and 0.775 (ever)	NR	Internal, split-sample 2:1
[45] 2010					
Bozorgmannesh et al., [25] 2011	For Women: age, waist circumference, DBP, SBP, and family history of premature CVD For Men: age, DBP, SBP, and smoking	Weibull regression	C-statistic = 0.731 [0.706–0.755] for women, C-statistic = 0.741 [0.719–0.763] for men	HL Chi-square = 7.8 (p = 0.554) for women; HL Chi-square = 8.8 (p = 0.452) for men	NR
Chien et al.	Clinical Model: Age, gender, BMI, SBP, and DBP Biochemical Model: Age, gender, BMI, SBP, DBP, white blood count, fasting glucose, uric acid	Weibull regression	Clinical Model: AUC = 0.732 [0.712–0.752] (point based), AUC = 0.737 (coefficient based); Biochemical Model: AUC = 0.735 [0.715–0.755] (point based), AUC = 0.74 (coefficient based)	Clinical Model: HL Chi-square = 8.3, p = 0.40 (point based), 10.9, p = 0.21 (coefficient based); Biochemical Model: HL Chi-square = 13.2, p = 0.11 (point based), 6.4, p = 0.60 (coefficient based)	Internal, fivefold cross-validation
[24] 2011					
Fava et al.	Age, sex, sex times age, heart rate, obesity, diabetes, hypertriglyceridemia, prehypertension, family history of hypertension, sedentary in spare time, problematic alcohol behavior, married or living as a couple, high-level non-manual work, smoking	Logistic regression	AUC = 0.662 [0.651–0.672]	NR	NR
[46] 2013					
Lim et al.	Age, sex, smoking, SBP, DBP, parental hypertension, BMI	Weibull regression	AROC = 0.791 [0.766–0.817]	HL Chi-square = 4.17 (p = 0.8415)	Internal, split-sample 6:4
[30] 2013					

(Continued)
Study	Risk Factors Included	Modeling Method	Discrimination	Calibration	Model Validation: Internal or External
Choi et al. [47] 2014	Age, gender, smoke, age x gender, Rs10510257 (AA), Rs10510257 (AG), Rs1047115 (GT)	GEE for marginal model and logistic random effect model for conditional model	Marginal model: AUC = 0.839 (with SNPs), 0.826 (without SNPs) Conditional model: AUC = 0.973 (with SNPs), 0.973 (without SNPs)	NR	NR
Lim et al. [48] 2015	Traditional variables: age, gender, SBP, current smoking status, family history of hypertension, BMI, and one genetic variable (cGRS or wGRS derived from the 4 SNPs): rs995322, rs17249754, rs1378942, rs12945290	Logistic regression	Derivation cohort: C-statistic = 0.810 [0.796–0.824] (model without wGRS), C-statistic = 0.811 [0.797–0.825] (model with wGRS); Validation cohort: Mean C-statistic = 0.811 [0.809–0.816]	HL Chi-square = 6.916 (model without wGRS), HL Chi-square = 5.711 (model with wGRS)	Internal validation, fivefold cross-validation
Otsuka et al. [23] 2015	Age, BMI, SBP and DBP, current smoking status, excessive alcohol intake, parental history of hypertension	Cox regression	Validation cohort: C-statistic = 0.861 [0.844–0.877] (model), C-statistic = 0.858 [0.840–0.876] (score)	Validation cohort: HL Chi-square = 15.2 (p = 0.085) (model), HL Chi-square = 9.30 (p = 0.41) (score)	Internal validation, split sample 4:1
Asgari et al. [49] 2016	ISH: Age, SBP, BMI, 2 hours post-challenge plasma glucose IDH: Age, DBP, waist circumference, marital status, gender, HDL-C	Cox regression	ISH: C-statistic = 0.91, IDH: C-statistic = 0.76	NR	NR
Sathish et al. [29] 2016	Age, sex, years of schooling, daily intake of fruits or vegetables, current smoking, alcohol use, BP, prehypertension, central obesity, history of high blood glucose	Logistic regression	AUC = 0.802 [0.748–0.856]	Hosmer-Lemeshow p = 0.940	NR
Lee et al. [50] 2015	BMI, waist circumference, waist-to-hip ratio, waist-to-height ratio	Cox regression	Men: AROC = 0.58 [0.56–0.60] (BMI), 0.62 [0.60–0.64] (WC, WHR, WHtR) Women: AROC = 0.57 [0.55–0.59] (BMI), 0.66 [0.64–0.68] (WC), 0.68 [0.66–0.70] (WHR, WHtR)	NR	NR
Lee et al. [51] 2014	Women: Height, age, neckC, axillaryC, ribC, waistC, pelvicC, rib_hip, waist_hip, pelvis_hip, rib_pelvic, axillary_rib, chest_rib, axillary_chest, forehead_neck (CFS), height, weight, BMI, age, chestC, forehead_hip, waist_hip, chest_pelvic, waist_pelvic, axillary_waist, forehead_rib, neck_axillary (LR-wrapper) Men: Age, foreheadC, neckC, axillaryC, chestC, ribC, waistC, pelvicC, hipC, rib_hip, waist_hip, rib_pelvic, waist_pelvic, chest_waist, forehead_rib, chest_rib, axillary_chest, forehead_neck (CFS), height, foreheadC, neckC, axillaryC, ribC, pelvicC, forehead_hip, chest_hip, rib_hip, pelvic_hip, forehead_waist, axillary_waist, rib_waist, neck_rib, axillary_rib, chest_rib, forehead_axillary, forehead_neck, WHtR (LR-wrapper)	Logistic regression	Women: AUC = 0.713 (LR-CFS), 0.721 (LR-wrapper) Men: AUC = 0.637 (LR-CFS), 0.652 (LR-wrapper)	NR	Internal, 10-fold cross-validation

(Continued)
Study	Risk Factors Included	Modeling Method	Discrimination	Calibration	Model Validation: Internal or External
Kanegae et al. [32] 2018	Age, sex, BMI, SBP, DBP, low-density lipoprotein, cholesterol, uric acid, proteinuria, current smoking, alcohol intake, eating rate, DBP by age, and BMI by age	Cox regression	C-statistic = 0.885 [0.865–0.903]	Greenwood-Nam-D’Agostino χ^2 statistic = 13.6	External validation
Chen et al. [52] 2016	Men: Age, BMI, SBP, DBP, gamma-glutamyl transferase, fasting blood glucose, drinking, age x BMI, age x DBP	Cox regression	Derivation: AUC = 0.761 [0.752–0.771] (men), 0.753 [0.741–0.765] (women)	Validation: AUC = 0.760 [0.751–0.770] (men), 0.749 [0.737–0.761] (women)	NR
	Women: Age, BMI, SBP, DBP, fasting blood glucose, total cholesterol, neutrophil granulocyte, drinking, smoking				Internal, 10-fold cross-validation
Diaz-Gutierrez et al. [28] 2019	No smoking, moderate-to-high physical activity, Mediterranean diet adherence, healthy BMI, moderate alcohol intake, and no binge drinking	Cox regression	NR	NR	NR
Wang et al. [53] 2018	Age, sex, education, marriage, smoking, drinking, BMI, energy, carbo, fat, protein	Multistate Markov model	NR	NR	Temporal validation
Niiranen et al. [54] 2016	Model 1: GRS Model 2: Model 1 + age + sex Model 3: Model 2 + smoking, diabetes, education, hyper-cholesterolemia, leisure-time exercise, and BMI	Multiple linear and logistic regression	C-index = 0.731 (Model 1)	C-index = 0.733 (Model 3)	NR
Yeh et al. [55] 2001	Age, DM, and fibrinogen concentration (Men)	Cox regression	NR	NR	NR
Sylos et al. [21] 2020	Age, sex, educational level, parental history of hypertension, leisure-time physical activity, BMI, neck circumference, smoking, SBP, DBP	Logistic regression	AUC = 0.830 [0.810–0.849]	H–L Chi-square = 8.22, p = 0.41	Internal, split sample 6:4 ratio
Wang et al. [27] 2020	Age, parental hypertension, SBP, DBP, BMI, and age by BMI	Logistic regression	C-index = 0.795 [0.7733–0.810] (Training set), C-index = 0.7914 [0.773–0.809] (Testing set)	H–L Chi-square = 7.747, P = 0.459 (Training set) H–L Chi-square = 14.366, P = 0.073 (Testing set)	Internal, Bootstrap validation
Xu et al. [56] 2019	M1 Model: Age, SBP, DBP, hypertension parental history, WC, interaction item of age with WC, and interaction item of age with DBP W1 Model: Age, SBP, DBP, WC, fruit and vegetable intake, hypertension parental history, interaction item of age with WC, and interaction of age with DBP were included in W1 model	Cox regression	Testing Set Men: AUC = 0.771 [0.750–0.791] (M1) Testing Set Women: AUC = 0.765 [0.746–0.783] (W1), 0.764 [0.746–0.783] (W2)	Testing Set Men: Modified Nam-D’Agostino test Chi-square = 6.305, p = 0.708 (M1) Testing Set women: Modified Nam-D’Agostino test Chi-square = 6.783, p = 0.147 (W1); 7.404, p = 0.115 (W2)	Internal, 10-fold cross-validation in training data and external in the testing data
Kadomatsu et al. [26] 2019	Age, sex, BMI, current smoking habit, ethanol consumption, presence of DM, parental hypertension history, SBP, DBP	Logistic regression	AUC = 0.826 [0.804–0.848] (Entire cohort validation) Median AUC = 0.83 [0.828–0.832] (Cross-validation)	H–L Chi-square = 7.06, p = 0.53 (Entire cohort validation); H–L Chi-square = 12.2 (Cross-validation)	Internal, split-sample cross-validation 6:4 ratio
Study	Risk Factors Included	Modeling Method	Discrimination	Calibration	Model Validation: Internal or External
-----------------------	--	---	---	------------------------------	---------------------------------------
Wang et al. [57] 2015	Exercise, diabetes, hyperlipemia, age, marriage, education, income, weight, height, sex, smoke, drink	Logistic regression	Accuracy, sensitivity, specificity, and AUC. AUC = 0.74±0.001 (logistic). Accuracy = 71.96% (logistic)	NR	Internal, split sample 7:3 ratio
Muntner et al. [58] 2010	SBP-alone model (7 SBP categories) Age-specific categories of DBP model (20 categories)	Repeated-measures Poisson regression model	SBP model: C-statistic = 0.768 [0.751–0.785] (1.6 years follow-up), 0.773 [0.775–0.791] (4.8 years follow-up); Age-specific DBP Model: C-statistic = 0.699 [0.681–0.717] (1.6 years follow-up), 0.691 [0.671–0.711] (4.8 years follow-up)	NR	NR
Ture et al. [59] 2005	Age, sex, family history of hypertension, smoking habits, lipoprotein (a), triglyceride, uric acid, total cholesterol, and BMI	Logistic regression, Flexible discriminant analysis, multivariate additive regression splines (degree 1), multivariate additive regression splines (degree 2)	Sensitivity, specificity, and predictive rate (PR)	NR	Internal, split sample 3:1 ratio
Yamakado et al. [60] 2015	PFAA Index 1: Leucine, alanine, tyrosine, asparagine, tryptophan, and glycine; PFAA Index 2: Isoleucine, alanine, tyrosine, phenylalanine, methionine, and histidine	Logistic regression	NR	NR	Internal, LOOCV and validation in a cohort dataset
Qi et al. [61] 2014	rs17030613, rs16849225, rs1173766, rs11066280, rs35444, rs880315, rs16998073, rs11191548, rs17249754	Logistic regression	NR	NR	NR
Lu et al. [62] 2015	Model1: GRS+ (age, sex, and BMI); Model2: GRS + Model1 + smoking, drinking, pulse rate, and education; Model3: GRS + Model2 + SBP and DBP	Logistic regression and Cox regression	Model1: C-statistic = 0.650 [0.637–0.663] (without GRS), 0.655 [0.642–0.668] (with GRS) Model2: C-statistic = 0.683 [0.670–0.695] (without GRS), 0.687 [0.675–0.700] (with GRS) Model 3: C-statistic = 0.774 [0.763–0.785] (without GRS), 0.777 [0.766–0.787] (with GRS)	NR	NR
Zhang et al. [63] 2015	Five latent factors extracted from 11 biomarkers (BMI, SBP, DBP, FBG, TG, HDL-C, Hb, HCT, WBC, LC, NGC): inflammatory factor, blood viscosity factor, insulin resistance factor, blood pressure factor, lipid resistance factor, and age	Cox regression	Derivation cohort: AUC = 0.755 [0.746–0.763] (men), AUC = 0.801 [0.792–0.810] (women) Validation cohort: AUC = 0.755 [0.746–0.763] (men), AUC = 0.800 [0.791–0.810] (women)	NR	Internal, 10-fold cross-validation

NR, not reported; SBP, systolic blood pressure; DBP, diastolic blood pressure; BP, blood pressure; BMI, body mass index; CVD, cardiovascular disease; HDL, high-density lipoprotein; WC, waist circumference; DM, diabetes mellitus; WHR, waist to hip ratio; WTHR, waist to height ratio; ISH, isolated systolic hypertension; IDH, isolated diastolic hypertension; AUC, area under the curve; AROC, area under the receiver operating characteristic curve; LR, logistic regression; GEE, Generalized estimating equations; LOOCV, leave-one-out cross-validation; HL, Hosmer Lemeshow; GRS, genetic risk score; SNP, single-nucleotide polymorphism; CFS, correlation-based feature subset selection; FBG, fasting blood glucose; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; Hb, hemoglobin; HCT, hematocrit; WBC, white blood cell count; LC, lymphocyte count; NGC, neutrophil granulocyte count

https://doi.org/10.1371/journal.pone.0266334.t002
Models were primarily developed either in white Caucasian or Asian populations. The number of risk factors/features considered to create the model ranged from 2 to 169, with a median of 7 risk factors per model. Age was the most common risk factor considered in 25 models, followed by sex/gender (8 models), BMI (7 models), DBP (6 models), smoking (6 models), and parental history of hypertension (6 models). The distribution of the conventional risk factors

Fig 2. Conventional risk factors considered by traditional regression-based models (A) and by machine learning-based models (B).

https://doi.org/10.1371/journal.pone.0266334.g002
Study	C-statistic with 95% CI	Weight (%)
Cox	0.96 (0.84, 0.99)	1.99
Aqar et al., 2014 (SHM)	0.91 (0.90, 0.93)	1.78
Aqar et al., 2015 (SHM)	0.78 (0.73, 0.79)	1.44
Lee et al., 2015 (Men-MP)	0.58 (0.56, 0.60)	1.99
Lee et al., 2015 (Men-MC)	0.52 (0.49, 0.55)	1.94
Lee et al., 2016 (Men-MW)	0.52 (0.48, 0.56)	1.98
Lee et al., 2016 (Women-MP)	0.57 (0.55, 0.60)	1.99
Lee et al., 2016 (Women-MC)	0.59 (0.56, 0.62)	1.99
Lee et al., 2016 (Women-MW)	0.58 (0.56, 0.60)	1.98
Kengne et al., 2017	0.58 (0.56, 0.60)	1.96
Chen et al., 2016 (Men)	0.78 (0.75, 0.81)	2.00
Chen et al., 2016 (Women)	0.73 (0.70, 0.76)	1.99
Xu et al., 2016 (Men office-based)	0.77 (0.75, 0.79)	1.98
Xu et al., 2016 (Women office-based)	0.78 (0.76, 0.80)	1.97
Xu et al., 2016 (Women laboratory-based)	0.78 (0.76, 0.79)	1.97
Huang et al., 2016	0.78 (0.76, 0.80)	1.97
Lu et al., 2016 (Model 1_Without GRS)	0.88 (0.84, 0.92)	2.00
Lu et al., 2016 (Model 1_With GRS)	0.88 (0.84, 0.92)	2.00
Lu et al., 2016 (Model 2_Without GRS)	0.87 (0.83, 0.91)	2.00
Lu et al., 2016 (Model 2_With GRS)	0.87 (0.83, 0.91)	2.00
Lu et al., 2015 (Model 3_Without GRS)	0.77 (0.75, 0.79)	1.99
Lu et al., 2015 (Model 3_With GRS)	0.77 (0.75, 0.79)	1.99
Zhang et al., 2016 (Men)	0.78 (0.76, 0.80)	2.00
Zhang et al., 2016 (Women)	0.80 (0.78, 0.82)	2.00

Heterogeneity: $I^2 = 93.37\%$, $Q = 150.13$

Test of 9 vs. $Q(25) = 2125.73, p = 0.00$

Logistic

Study	C-statistic	Weight (%)
Paynter et al., 2009 (Inclusive Model)	0.76 (0.69, 0.81)	1.98
Paynter et al., 2009 (TypeUpdated Model with Lp)	0.76 (0.69, 0.81)	1.98
Paynter et al., 2009 (TypeUpdated Model with Lp)	0.76 (0.69, 0.81)	1.98
Kheirabadi et al., 2010	0.77 (0.73, 0.81)	2.00
Fara et al., 2013	0.86 (0.83, 0.89)	2.00
Lin et al., 2015 (with GRS)	0.80 (0.75, 0.84)	1.99
Sathirathai et al., 2019	0.80 (0.75, 0.84)	1.99
Spiliopoulou et al., 2020	0.78 (0.76, 0.80)	1.99
Wang et al., 2020	0.78 (0.76, 0.80)	1.99
Kadambari et al., 2019 (Entire Cohort)	0.80 (0.78, 0.82)	1.99
Kadambari et al., 2019 (Cox Validation)	0.80 (0.78, 0.82)	1.99
Lin et al., 2015 (without GRS)	0.81 (0.78, 0.84)	1.99

Heterogeneity: $I^2 = 99.45\%$, $Q = 158.69$

Test of 9 vs. $Q(11) = 1924.44, p = 0.00$

Repeated Polysomnography

Study	C-statistic	Weight (%)
Muthner et al., 2010 (DBP Model_1.6 years follow-up)	0.77 (0.74, 0.80)	1.98
Muthner et al., 2010 (DBP Model_4.8 years follow-up)	0.77 (0.74, 0.80)	1.98
Muthner et al., 2010 (Age-specific BP model_1.6 years follow-up)	0.77 (0.74, 0.80)	1.98
Muthner et al., 2010 (Age-specific BP model_4.8 years follow-up)	0.77 (0.74, 0.80)	1.98

Heterogeneity: $I^2 = 98.62\%$, $Q = 33.13$

Test of 9 vs. $Q(6) = 105.93, p = 0.00$

Wellcome

Study	C-statistic	Weight (%)
Pinh et al., 2009	0.78 (0.75, 0.81)	1.87
Klimiak et al., 2009	0.80 (0.79, 0.82)	1.94
Klimiak et al., 2010 (Repeat Measure BP Model)	0.80 (0.77, 0.82)	1.93
Klimiak et al., 2010 (Average BP Model)	0.78 (0.75, 0.82)	1.93
Bezzegmane et al., 2011 (Men)	0.78 (0.75, 0.79)	1.98
Bezzegmane et al., 2011 (Men)	0.78 (0.75, 0.79)	1.98
Chen et al., 2011 (Clinical Model)	0.78 (0.76, 0.79)	1.97
Chen et al., 2011 (Biochemical Model)	0.78 (0.76, 0.79)	1.97
Lin et al., 2013	0.78 (0.76, 0.79)	1.93

Heterogeneity: $I^2 = 97.06\%$, $Q = 8.11$

Test of 9 vs. $Q(6) = 71.23, p = 0.00$

Overall

Study	C-statistic	Weight (%)
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	
0.78 (0.75, 0.81)	1.98	

Test of group differences: $Q(10) = 5.16, p = 0.14$

Random-effects REML model

https://doi.org/10.1371/journal.pone.0266334.g003
Hypertension was predominantly defined using SBP ≥ 140 mm Hg, DBP ≥ 90 mm Hg, or antihypertensive medication. Artificial neural network (ANN) was the most common method used to develop the models. Different studies reported different performance measures, and accuracy and AUC/C-statistic were the two most commonly reported measures. Most of the studies did not report calibration measures. In studies that reported discrimination, the AUC (or C-statistic) values range from 0.64 to 0.93.

Meta-analysis of machine learning-based models

The overall pooled C-statistics of the machine learning-based models was 0.76 [0.72–0.79] with high heterogeneity in the discriminative performance of these models ($I^2 = 99.9$, Cochran
Table 3. Information about existing hypertension prediction models developed using machine learning algorithms from selected studies.

Study	Data Location	Sample Size	Risk Factors Included	Outcome Considered	Definition of Outcome Predicted	Modeling Method Used	Performance Measure
Falk CT [64]	USA	300 records each for training and validating	Seven input values: sex; age; total cholesterol; fasting glucose; fasting HDL; fasting triglycerides; body mass index (BMI)	High blood pressure	SBP > 140 mm Hg or DBP > 90 mm Hg	Two neural network programs: NNdriver and SNNS	Classification success rate. Training: 91%-98%, (Strategy 1), 70%-87% (Strategy 2); Validation: 59% (Strategy 1), 63% (Strategy 2)
Farran et al. [65] 2013	Kuwait	10,632 (6759 hypertensive and 3873 non-hypertensive)	BMI, age, ethnicity, and diagnosis for diabetes	Incident hypertension, type 2 diabetes, and comorbidity	NR	Logistic regression (LR), k-nearest neighbors, support vector machines, and multifactor dimensionality reduction (MDR)	Classification accuracy: 90% (hypertension)
Huang et al. [35] 2010	China	Training: 2438, Validation: 616	High educational level, predominantly sedentary work, positive family history of HTN, overweight, dysarteriopathy, alcohol intake, salty diet, more vegetable and fruit intake, meat consumption, and regular physical exercise	Hypertension	Average SBP or DBP > 139 mmHg or > 89 mmHg, respectively	Logistic regression model (LRM) and artificial neural network (ANN) model (back-propagated delta rule networks)	AUC: 0.900 ± 0.014 (ANN model) AUC: 0.732 ± 0.026 (LRM)
Kwong et al. [66] 2018	NR	498	Age, BMI, exercise level, alcohol consumption level, smoking status, stress level, and salt intake level	Systolic blood pressure (SBP)	BP readings > 140 mmHg	Two artificial neural networks (ANN): Back-propagation (BP) neural network and radial basis function (RBF) neural network validate the prediction system	Average Accuracy, BP ANN: 94.28% (male), 93.74% (female) RBF ANN: 91.06% (male), 90.44% (female)
Polak et al. [67] 2008	USA	159,989 records	High blood cholesterol, number of cigarettes smoked now, age, weight, height, sex	Hypertension	NR	Artificial neural network (ANN): Around 250 architectures of backpropagation (BP) and fuzzy networks	Classification rate and AUROC, different values for different Nets architecture
Priyadarshini et al. [68] 2018	USA	NR	SBP, DBP, total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), plasma glucose concentration (PGC), and heart rate (HR)	Hypertension attack	DBP or SBP > 90 mm Hg or > 120 mm Hg, respectively, for at least two measuring instances	Deep neural network model	Confusion/performance matrix formed out of four evaluating parameters: accuracy 88%, precision 92%, recall 82%, and F1 score 76% (average value over 20 iterations)

(Continued)
Table 3. (Continued)

Study	Data Location	Sample Size	Risk Factors Included	Outcome Considered	Definition of Outcome Predicted	Modeling Method Used	Performance Measure
Sakr et al. [36] 2018	USA	23,095	Age, METS, resting systolic blood pressure, peak diastolic blood pressure, resting diastolic blood pressure, HX coronary artery disease, the reason for the test, history of diabetes, percentage HR achieved, race, history of hyperlipidemia, Aspirin use, hypertension response	Hypertension	Six machine learning techniques: LogitBoost (LB), Bayesian network classifier (BN), locally weighted naive Bayes (LWB), artificial neural network (ANN), support vector machine (SVM), and random tree forest (RTF)	AUC, F-Score, Sensitivity, Specificity, Precision, and RMSE (86.70%), Sensitivity (69.96%) and Specificity (91.71%) for RTF model in 10-fold cross-validation AUC (0.88), Sensitivity (74.30%), Precision (73.50%), and F-Score (73.90%) for RTF model in holdout method	
Tayefi et al. [69] 2017	Iran	9078	Age, gender, BMI, marital status, level of education, occupation status, depression and anxiety status, physical activity level, smoking status, LDL, triglyceride, total cholesterol, fasting blood glucose, uric acid, and hs-CRP in Model 1 Age, gender, white blood cell, red blood cell, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, platelets, red cell distribution width and platelet distribution width in Model 2	Hypertension	SBP of 140 mm Hg, DBP of 90 mm Hg, and/or current use of antihypertensive drugs	Decision tree	Accuracy, sensitivity, specificity, and area under the ROC curve (AUC): For Model 1, the values are 73%, 63%, 77% and 0.72, respectively, and for Model 2 were 70%, 61%, 74% and 0.68, respectively
Wu et al. [70] 2015	USA	75 females and 165 males	Age, gender, serum cholesterol, fasting blood sugar and electrocardiographic signal, heart rate	Systolic blood pressure	SBP and DBP > 140 mm Hg and 90 mm Hg, respectively	Two neural network algorithms: back-propagation neural network and radial basis function network	The absolute difference (error) between the real value and predicted values
Wu et al. [71] 2016	NR	498	Age, BMI, gender, exercise level, alcohol consumption, stress level, salt intake level, smoke status, cholesterol, and blood glucose	Systolic blood pressure	SBP > 140 mm Hg	Two artificial neural networks: back-propagation neural network and radial basis function neural network	The average prediction errors (absolute difference between the predicted value and measured value): 51.9% for men and 52.5% for women (backpropagation neural network) 51.8% for men and 49.9% for women (radial basis function network)
Ye et al. [37] 2018	USA	823,627 (training cohort/retrospective cohort), 680,810 (validation cohort/prospective cohort)	Total 169 features: 2 demographic features, 14 socioeconomic characteristics, 30 diagnostic diseases, 6 laboratory tests, 98 medication prescriptions, and 19 clinical utilization measures	Incident essential hypertension	ICD, 9th Revision, Clinical Modification (ICD-9-CM) diagnosis codes from category 401	A supervised machine learning and data mining tool, XGBoost	AUC = 0.917 (retrospective cohort), AUC = 0.870 (prospective cohort)

(Continued)
Study	Data Location	Sample Size	Risk Factors Included	Outcome Considered	Definition of Outcome Predicted	Modeling Method Used	Performance Measure
Zhang et al. [72] 2018	NR	A total of 15,628,501 sets of valid characteristic attributes data	Seven input features: right atrium (AVR), left atrium (AVL), anterior atrium (AVF), photoplethysmography (PPG), oxygen saturation (SPO2), pulse transit time (PTT), heart rate (HR)	Blood pressure	NR	CART (classification and regression tree) model	Four evaluation indexes: accuracy rate, root mean square error (RMSE), deviation rate, and the Theil inequality coefficient (TIC)
Völzke et al. [31] 2013	Germany	Training set: 803 Validation set: 802 External validation cohort: 2887	Age, mean arterial pressure, rs16998073, serum glucose, and urinary albumin concentrations, the interaction between age and serum glucose, interaction between rs16998073 and urinary albumin concentrations	Incident hypertension	SBP \geq 140 mmHg and DBP \geq 90 mmHg	Bayesian network	Training set: AUC = 0.78 [0.74–0.82], Validation set: AUC = 0.79 [0.75–0.83], External validation set: AUC = 0.77 [0.74–0.80]; Training set: HL Chi-square = 11.82 ($p = 0.16$), Validation set: HL Chi-square = 11.65 ($p = 0.17$), External validation set: H-L Chi-square = 40.6 ($p < 0.01$)
Lee et al. [51] 2014	Korea	12,789	Women: Height, age, neckC, axillaryC, ribC, waistC, pelvicC, rib pelvic, axillary rib, chest rib, axillary chest, forehead neck (CFS), height, age, foreheadC, neckC, hipC, axillary hip, axillary pelvic, chest pelvic, chest rib (NB-wrapper) Men: Age, foreheadC, neckC, axillaryC, chestC, RibC, waistC, pelvicC, hipC, rib hip, waist hip, rib pelvic, waist pelvic, chest waist, forehead rib, chest rib, axillary chest, forehead neck (CFS), height, age, foreheadC, neckC, axillaryC, hipC, rib hip, pelvic hip, neck pelvic, waist pelvic, chest waist, chest rib, neck chest, forehead neck (NB-wrapper)	Hypertension and hypotension	SBP \geq 140 mmHg and/or DBP \geq 90 mmHg or physician-diagnosed hypertension	Naive Bayes algorithm (NB)	Women: AUC = 0.696 (NB-CFS), 0.713 (NB-wrapper) Men: AUC = 0.64 (NB-CFS), 0.646 (NB-wrapper)

(Continued)
Table 3. (Continued)

Study	Data Location	Sample Size	Risk Factors Included	Outcome Considered	Definition of Outcome Predicted	Modeling Method Used	Performance Measure
Xu et al. [56]	China	4796	M1 Model: Age, SBP, DBP, hypertension parental history, WC, interaction item of age with WC, and interaction item of age with DBP	Hypertension	SBP ≥ 140 mm Hg and/or DBP ≥ 90 mm Hg and/or a diagnosis of hypertension by a physician and currently receiving anti-hypertension treatment	Artificial neural network (ANN), naive Bayes classifier (NBC), and classification and regression tree (CART)	Testing Set Men: AUC = 0.773 [0.752–0.793] (ANN), 0.760 [0.738–0.781] (NBC), 0.722 [0.699–0.743] (CART)
Testing Set Women: AUC = 0.756 [0.737–0.775] (ANN), 0.761 [0.742–0.779] (NBC), 0.698 [0.677–0.717] (CART)							
			W1 Model: Age, SBP, DBP, WC, fruit and vegetable intake, hypertension parental history, interaction item of age with WC, and interaction of age with DBP				Testing Set Men: Modified Nam-D’Agostino test Chi-square = 29.274, p = 0.0006 (ANN); 82.269, p < 0.0001 (NBC); 5.249, p = 0.072 (CART)
Testing Set women: Modified Nam-D’Agostino test Chi-square = 4.744, p = 0.314 (ANN); 189.754, p < 0.00001 (NBC); 19.733, p = 0.00005 (CART)							
Wang et al.	USA	308,711	Exercise, diabetes, hyperlipemia, age, marriage, education, income, weight, height, sex, smoke, drink	Hypertension	NR	Multi-layer perception neural network	Accuracy, specificity, and AUC. Average AUC = 0.77 with h vary from 8 to 11 (neural network); Accuracy = 72% (neural network)
[57] 2015							Sensitivity, specificity, and predictive rate (PR). Values not reported.
Ture et al.	Turkey	694	Age, sex, family history of hypertension, smoking habits, lipoprotein (a), triglyceride, uric acid, total cholesterol, and BMI	Essential hypertension	The average of 3 or more DBP measurements on at least 3 subsequent visits is ≥ 90 mmHg, or when the average of multiple SBP readings on 3 or more subsequent visits is consistently ≥ 140 mmHg	Three decision trees (Chi-squared automatic interaction detector. Classification and regression tree, quick, unbiased, efficient statistical tree); two neural networks (multi-layer perceptron, radial basis function)	
[59] 2005							
Zhao et al.	China/	Total: 4759	MDR Model: 4-locus model consisted of the SNP KCNMB1-rs11739136, RGS2-rs34717272, PRKG1-rs1881597, and MYLK-rs36025624; CART Model: RGS2, PRKG1, KCNMB1, and MYLK	Hypertension CHECK	Average SBP ≥ 150 mm Hg, an average DBP ≥ 95 mm Hg, or current use of antihypertensive medication	Multifactor-dimensionality reduction (MDR) and classification and regression trees (CART)	
[73] 2008	Asians						

(Continued)
Q-statistic \(p < 0.001 \) (Fig 5). Like traditional regression-based models, we did not perform stratified pooled results by modeling type due to diversity in the modeling method. The 95% approximate prediction interval for the overall C-statistics was from 0.63 to 0.84 (Fig 5).

We explored possible sources of heterogeneity in the overall pooled C-statistics through meta-regression as before. However, meta-regression did not identify any of age of the participants (\(p = 0.358 \)), the number of risk factors considered in the model (\(p = 0.812 \)), sex of the participants, that is being male compared to female (\(p = 0.886 \)) and both male and female compared to female-only (\(p = 0.787 \)), sample size considered in the model (\(p = 0.577 \)), or ethnicity of the study participants (\(p = 0.326 \)) as the potential source of high heterogeneity in the C-statistic.

Study characteristics of externally validated models

Only four models [22, 30–32] were found to be externally validated in a different population. Detailed characteristics of the studies that validated these four models are presented in Table 3. The Framingham hypertension risk model (FHRS) is the only validated model in more than one external population. The FHRS [22] model was validated by eight different studies in diverse populations of 122,348 participants. Study participants had an age range of 18 to 84 years with follow-up time (mean/median/total) from 1.6 years to 25 years. Almost all studies reported performance measures of the FHRS. The Hosmer-Lemeshow test was used to report calibration, while the C-statistic (or AUC) was used to report discrimination. The values of the reported C-statistic ranged from 0.54 to 0.84. Models by Lim et al. [30], Völzke et al. [31], and Kanegae et al. [32] were validated only once in an external population by the same authors. Within these three models, performances were best for the model by Kanegae et al. [32], with a C-statistic of 0.85 [0.76–0.91].

Meta-analysis of externally validated models

The pooled C-statistic of the FHRS [22] model was 0.75 [0.68–0.80] with high heterogeneity in the discriminative performance of this model (\(I^2 = 99.6, \text{Cochran Q-statistic } p < 0.001 \) (S3 Fig)). The 95% approximate prediction interval for the C-statistic in the FHRS [22] was from 0.47 to 0.91 (S3 Fig). As the other three models were externally validated only once, pooling their performance measure was irrelevant.
We explored possible sources of heterogeneity in the pooled C-statistics through meta-regression, and only the ethnicity (Whites versus Asians) of the study participants ($p = 0.044$) was identified as a source of high heterogeneity in the C-statistic of the FHRS model [22].
Models developed using genetic risk factors/biomarkers

Genetic risk factors/biomarkers often contribute significantly to developing hypertension, and models were developed considering both conventional risk factors and biomarkers. In addition, there were models where biomarkers were used primarily in model building. Information about models developed using biomarkers (e.g., genetic risk scores) is presented in S4 Table. There were 11 studies where genetic risk factors/biomarkers were used in model building. Biomarkers are often considered very important for increasing the predictive performance of models. However, the pooled predictive performance (C-statistic) of the models that considered biomarkers primarily was 0.76 [0.71–0.80] (S4 Fig) and did not show an overall improvement in the models’ predictive performance. Including genetic factors/biomarkers in the model has some drawbacks. Because information on those biomarkers is frequently unavailable and interpreting the models becomes difficult, the models become less suitable for daily clinical practice.

Discussion

Many hypertension risk prediction models with reasonable predictive performance were identified in this systematic review, but only a few had external validation. Bias and applicability were noted as major concerns in many studies. Overall, there was little difference in the predictive performance of traditional statistical and machine learning models. Our findings are expanded on in the sections that follow.

The models were developed mostly in Caucasian or Asian populations. Because certain ethnic groups are more prone to hypertension (e.g., people of African descent [33]), research should include a diverse range of patients to create hypertension risk prediction models. Most of the traditionally developed models considered conventional risk factors for hypertension, which are readily available in clinical practice. Some models also used genetic risk factors, although the inclusion of genetic risk factors into the model did not improve the overall predictive performance of the models. The pooled analysis identified the overall predictive performance of the traditional regression-based models was good but with high heterogeneity. Stratified analysis by modeling methodology (e.g., logistic, Cox) within traditional regression-based models did not show much difference in predictive performance, and heterogeneity was still observed within the modeling methodology. The traditional models we identified in our search were mostly internally validated, often considered not enough for models’ generalizability [34]. The FHRS [22] was the only model that had multiple external validations and good/acceptable pooled predictive performance. However, because the FHRS [22] showed high heterogeneity in its predictive performance, with ethnicity serving as a source of heterogeneity, and the model was built predominantly in a White population, we must proceed with caution when applying it to a completely different population. Models that have only single, or no validation need external validation, preferably by a different group of investigators, to guarantee the model’s generalizability to a different population. Only a few traditional models were converted into risk score after their development. Presenting the risk derived from the model through scoring instead of a complex mathematical formula may facilitate the use of prediction models and subsequently improve the uptake of prediction models in clinical practice. The risk of bias (ROB) was “high” or “unclear” in a large portion of traditional model studies. This is primarily because many studies failed to meet the criteria in the “analysis” domain of ROB. In many studies, the applicability of the models was rated as “high concern” or “unclear concern” due to a failure to properly fulfil the “participants” criteria. Several models were developed in a specific population, making the models less applicable to the general adult population.
Since machine learning tools are more recent, advanced, and have a reputation for producing more accurate predictive performance, we assumed that models developed with these tools would outperform traditional regression-based models. However, we did not notice much difference in predictive performance between these two types of models. A few machine learning-based models (e.g., models by Huang et al. [35], Sakr et al. [36], and Ye et al. [37]) showed excellent discriminative performance; however, none of these models has ever been externally validated in an entirely different new population. In fact, none of the machine learning-based models have been externally validated. Consequently, the performance of those models in a new setting/population is quite uncertain. We also noticed high heterogeneity in the predictive performance (C-statistic) of machine learning models. Meta-regression using potential sources of heterogeneity failed to identify the real source of heterogeneity. One possible explanation is a difference in the methodology used to develop the machine learning-based models. Due to the various methods considered in different models, we were unable to investigate this potential source. We did not notice higher expected variability in machine learning-based models’ future predictive performance compared to traditional regression-based models, as the 95% prediction interval for machine learning-based models was similar to traditional regression-based models.

We did not find any studies in this review that assessed the impact of adopting hypertension risk prediction models in clinical settings. Ideally, a prediction model, regardless of its development, should have an impact study to assess whether it improves clinical decision-making and patient health outcomes [5, 38].

There were two previous reviews on a similar topic where hypertension risk prediction models were identified through a systematic search and described their characteristics. Our review is different from previous studies and contributes to information on the prediction of hypertension risk and the identification of associated risk factors in the following ways: 1) we synthesized performance of the prediction models through meta-analysis and explored potential sources of heterogeneity; 2) we compared the performance of the prediction models developed using traditional statistical regression-based models and more recent machine learning-based models; 3) we provided a thorough evaluation of the quality of the studies among traditionally developed regression-based models; and 4) we described several additional models that have recently been derived.

One of our study’s strengths is the extent of the systematic search, which includes four different databases, grey literature, and extensive use of the reference lists of the identified studies. To the best of our knowledge, this is the first study where a meta-analysis of predictive performance, together with assessment of heterogeneity, comparison of the predictive performance of traditional regression based-models and machine learning-based models, and a detailed critical appraisal of studies in hypertension risk prediction models has been performed. Nevertheless, our study also has limitations. We excluded non-English and non-French publications. While it is widely perceived that the English language is the primary language of science, the choice of scientific results in a particular language can incorporate language bias and may lead to incorrect conclusions [39]. We were only able to use C-statistics to compare the model performance, which could be insensitive to distinguish a model’s ability to correctly stratify patients into clinically relevant risk groups [39, 40]. Calibration was quantified by different measures, and different studies often reported different calibration measures. This led to difficulty in synthesizing calibration measures through meta-analysis. A meta-analysis of calibration measures (e.g., O/E ratio) along with C-statistics could provide a comprehensive summary of the performance of these models [19]. Failing to assess publication bias amongst the studies is another potential limitation of this study. Recent guidelines [19] did not emphasize the need to assess publication bias for prediction model performance, which encouraged
us not to do so. Although studies have considered publication bias in a similar scenario before, we believe existing traditional publication bias assessment tools (e.g., funnel plot, Egger’s test, Begg’s test) are more appropriate for studies assessing statistically significant results (e.g., randomized controlled trial (RCT)) than studies assessing predictive performance (e.g., C-statistic) of the prognostic models. Instead, we assessed ROB using the PROBAST checklist. We also could not appraise studies that use machine learning algorithms to predict hypertension. Although most of the PROBAST signaling questions also apply to appraise machine learning algorithms, additional signaling questions are recommended to add due to differences in data analysis methods for machine learning algorithms and regression-based models [14, 15]. Machine learning algorithms use different variable selection strategies, different estimation techniques for variable–outcome estimations, and different ways to adjust for overfitting [14, 15]. When additional questions are added to the PROBAST, these questions need to be appropriately phrased, and specific guidance on assessing these signaling questions also needs to be provided [14, 15]. Considering these additional works, we refrain from appraising studies considered machine learning algorithms. Finally, despite our attempt to capture potential sources of heterogeneity in our study, we asked readers to be cautious while interpreting our findings as there may be a potential bias in our findings due to a limited number of studies included in the analysis and the study’s failure to incorporate additional potential sources of bias in the analysis.

In summary, we attempted to provide a comprehensive evaluation of hypertension risk prediction models. We identified many models with acceptable-to-good predictive performance. We did not notice significant differences in the predictive performance of traditional regression-based models and machine learning-based models. Including genetic risk factors/biomarkers also did not show much improvement in the models’ predictive performance. The quality of the studies was reasonable, with areas where further improvement is needed. Only a few of the multiple models developed had been externally validated, which is a concern. Also, there is a lack of impact studies. Models with external validation and impact studies are required to implement a prediction model in a clinical practice guideline. A model with accurate prediction is not beneficial if it is not generalizable to a different population or improves clinical decision-making and patient health outcomes.

Supporting information

S1 Checklist. PRISMA 2020 checklist.
(DOCX)

S1 Fig. The number of PROBAST criteria satisfied by different studies.
(DOC)

S2 Fig. Response to different signaling questions by the number of studies.
(DOC)

S3 Fig. Forest plot of externally validated models with 95% prediction interval.
(DOC)

S4 Fig. Forest plot of models primarily developed using genetic risk factors/biomarkers with a 95% prediction interval.
(DOC)

S1 Table. Keywords used to search in MEDLINE.
(DOC)
S2 Table. Study quality assessment using PROBAST.

S3 Table. Information about external validation studies of existing traditional hypertension prediction models from selected studies.

S4 Table. Information about existing hypertension prediction models developed using biomarkers (genetic risk score) from the selected studies.

Author Contributions

Conceptualization: Mohammad Ziaul Islam Chowdhury.

Data curation: Mohammad Ziaul Islam Chowdhury, Iffat Naeem.

Formal analysis: Mohammad Ziaul Islam Chowdhury.

Investigation: Mohammad Ziaul Islam Chowdhury, Iffat Naeem, Hude Quan, Alexander A. Leung, Khokan C. Sikdar, Maeve O’Beirne.

Methodology: Mohammad Ziaul Islam Chowdhury, Hude Quan, Alexander A. Leung, Tanvir C. Turin.

Software: Mohammad Ziaul Islam Chowdhury.

Supervision: Hude Quan, Alexander A. Leung, Khokan C. Sikdar, Maeve O’Beirne, Tanvir C. Turin.

Validation: Mohammad Ziaul Islam Chowdhury, Iffat Naeem.

Visualization: Mohammad Ziaul Islam Chowdhury.

Writing – original draft: Mohammad Ziaul Islam Chowdhury.

Writing – review & editing: Mohammad Ziaul Islam Chowdhury, Alexander A. Leung.

References

1. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation Published Online First: 2016. https://doi.org/10.1161/CIRCULATIONAHA.115.018912 PMID: 27502908

2. CDC. High Blood Pressure Fact Sheet. Div Hear Dis Stroke Prev 2016. https://doi.org/10.1111/jch.12894 PMID: 27515460

3. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. World Heal Organ 2011.

4. Health N I of. Primary Prevention of Hypertension: Clinical and Public Health Advisory from the National H E A LT H AND SERVICES. Rev Bras Ciência e Mov 2002; 10:49–54.

5. Chowdhury MZI, Turin TC. Precision health through prediction modelling: Factors to consider before implementing a prediction model in clinical practice. J Prim Health Care 2020; 12:3–9. https://doi.org/10.1071/HC19087 PMID: 32223844

6. Usher-Smith JA, Silarova B, Schuit E, Moons KGM, Griffin SJ. Impact of provision of cardiovascular disease risk estimates to healthcare professionals and patients: a systematic review. BMJ Open. 2015. https://doi.org/10.1136/bmjopen-2015-008717 PMID: 26503388

7. Lopez-Gonzalez AA, Aguilo A, Frontera M, Bennasar-Veny M, Campos I, Vicente-Herrero T, et al. Effectiveness of the Heart Age tool for improving modifiable cardiovascular risk factors in a Southern European population: A randomized trial. Eur J Prev Cardiol Published Online First: 2015. https://doi.org/10.1177/2047487315518479 PMID: 24491403
8. Chowdhury MZI, Naem I, Quan H, Leung AA, Sikdar KC, O’Beirne M, et al. Summarising and synthesising regression coefficients through systematic review and meta-analysis for improving hypertension prediction using metamodelling: Protocol. BMJ Open 2020; 10. https://doi.org/10.1136/bmjopen-2019-036386 PMID: 32276958

9. Chowdhury MZI, Yeasin F, Rabi DM, Ronksley PE, Turin TC. Prognostic tools for cardiovascular disease in patients with type 2 diabetes: A systematic review and meta-analysis of C-statistics. J Diabetes Complications 2019; 33:98–111. https://doi.org/10.1016/j.jdiacomp.2019.03.001 PMID: 30446478

10. Echouffo-Tcheugui JB, Batty GD, Kivimäki M, Kengne AP. Risk Models to Predict Hypertension: A Systematic Review. PLoS One 2013; 8. https://doi.org/10.1371/journal.pone.0067370 PMID: 23861760

11. Sun D, Liu J, Xiao L, Liu Y, Wang Z, Li C, et al. Recent development of risk-prediction models for incident hypertension: An updated systematic review. PLoS One 2017; 12:1–19.

12. Hamoen M, De Kroon MLA, Welten M, Raat H, Twisk JWR, Heymans MW, et al. Childhood prediction models for hypertension later in life: A systematic review. J Hypertens 2019; 37:665–777. https://doi.org/10.1097/HJH.0000000000001970 PMID: 30362985

13. Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med. Res. Methodol. 2018. https://doi.org/10.1186/s12874-017-0468-4 PMID: 29316881

14. Moons KGM, Wolf R, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration. Ann. Intern. Med. 2019. https://doi.org/10.7326/M18-1377 PMID: 30598876

15. Wolf R, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med Published Online First: 2019. https://doi.org/10.7326/M18-1376 PMID: 30598775

16. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009. https://doi.org/10.1371/journal.pmed.1000100 PMID: 19621070

17. Snell KIE, Enos J, Debray TPA, Moons KGM, Riley RD. Meta-analysis of prediction model performance across multiple studies: Which scale helps ensure between-study normality for the C-statistic and calibration measures? Stat Methods Med Res 2018; 27:3505–3522. https://doi.org/10.1177/0962280217705678 PMID: 28480827

18. Debray TPA, Damen JAAG, Riley RD, Snell K, Reitsma JB, Hooft L, et al. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. Stat Methods Med Res 2019; 28:2768–2786. https://doi.org/10.1177/096228021875504 PMID: 30332705

19. Debray TPA, Damen JAAG, Snell KIE, Enos J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017. https://doi.org/10.1136/bmj.i6460 PMID: 28057641

20. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br. Med. J. 2003. https://doi.org/10.1136/bmj.327.7414.557 PMID: 12958120

21. Syllos DH, Calsavara VF, Benzenson IM, Lotufo PA. Validating the Framingham Hypertension Risk Score: A 4-year follow-up from the Brazilian Longitudinal Study of the Adult Health (ELSA-Brasil). J Clin Hypertens 2020; 22:850–856. https://doi.org/10.1111/jch.13855 PMID: 32304277

22. Parikh NJ, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, et al. A risk score for predicting near-term incidence of hypertension: The Framingham Heart Study. Ann Intern Med Published Online First: 2008. https://doi.org/10.7326/0003-4819-148-2-20080115-00005 PMID: 18195335

23. Otsuka T, Kachi Y, Takada H, Kato K, Kodani E, Ibuki C, et al. Development of a risk prediction model for incident hypertension in a working-age Japanese male population. Hypertens Res 2015; 38:419–425. https://doi.org/10.1038/hr.2014.159 PMID: 25391458

24. Chien KL, Hsu HC, Su TC, Chang WT, Sung FC, Chen MF, et al. Prediction models for the risk of new-onset hypertension in ethnic Chinese in Taiwan. J Hum Hypertens 2011; 25:294–303. https://doi.org/10.1038/jhh.2010.63 PMID: 20613783

25. Bozorgmanesh M, Hadaegh F, Mehrabi Y, Azizi F. A point-score system superior to blood pressure measures alone for predicting incident hypertension: Tehran Lipid and Glucose Study. J Hypertens 2011; 29:1486–1493. https://doi.org/10.1097/HJH.0b013e32834f8db2 PMID: 21720268

26. Kadomatsu Y, Tsukamoto M, Sasakabe T, Kawai S, Naito M, Kubo Y, et al. A risk score predicting new incidence of hypertension in Japan. J Hum Hypertens 2019; 33:748–755. https://doi.org/10.1038/s41371-019-0226-7 PMID: 31431683
27. Wang B, Liu Y, Sun X, Yin Z, Li H, Ren Y, et al. Prediction model and assessment of probability of incident hypertension: the Rural Chinese Cohort Study. J Hum Hypertens Published Online First: 2020. https://doi.org/10.1038/s41371-020-0314-8 PMID: 32107452
28. Díaz-Gutiérrez J, Ruiz-Estigarribia L, Bes-Rastrollo M, Ruiz-Canela M, Martín-Moreno JM, Martínez-González MA. The role of lifestyle behaviour on the risk of hypertension in the SUN cohort: The hypertension preventive score. Prev Med (Baltim) 2019; 123:171–178. https://doi.org/10.1016/j.ypmed.2019.03.026 PMID: 30902699
29. Sathish T, Kannan S, Sarma PS, Razum O, Thrift AG, Thankappan KR. A Risk Score to Predict Hypertension in Primary Care Settings in Rural India. Asia-Pacific J Public Health 2016; 28:26S–31S. https://doi.org/10.1177/1010539515604701 PMID: 26354334
30. Lim NK, Son KH, Lee KS, Park HY, Cho MC. Predicting the Risk of Incident Hypertension in a Korean Middle-Aged Population: Korean Genome and Epidemiology Study. J Clin Hypertens 2013; 15:344–349.
31. Völzke H, Fung G, Ittermann T, Yu S, Baumeister SE, Dörr M, et al. A new, accurate predictive model for incident hypertension. J Hypertens 2013; 31:2142–2150. https://doi.org/10.1097/HJH.0b013e328364a16d PMID: 24077244
32. Kanegae H, Oikawa T, Suzuki K, Okawara Y, Kario K. Developing and validating a new precise risk-prediction model for new-onset hypertension: The Jichi Genki hypertension prediction model (JG model). J Clin Hypertens 2018; 20:880–890. https://doi.org/10.1111/jch.13270 PMID: 29604170
33. Lackland DT. Racial differences in hypertension: Implications for high blood pressure management. Am J Med Sci 2014; 348:135–138. https://doi.org/10.1097/MAJ.00000000000000308 PMID: 24983758
34. Chowdhury MZI, Turin TC. Validating Prediction Models for use in Clinical Practice: Concept, Steps, and Procedures Focusing on Hypertension Risk Prediction. Hypertens J 2021; 7:54–62.
35. Huang S, Xu Y, Yue L, Wei S, Liu L, Gan X, et al. Evaluating the risk of hypertension using an artificial neural network method in rural residents over the age of 35 years in a Chinese area. Hypertens Res 2010; 33:722–728. https://doi.org/10.1088/hr.2010.73 PMID: 20505678
36. Sakr S, Elshawi R, Ahmed A, Qureshi WT, Brawner C, Ketyjian S, et al. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford exercise testing (FIT) Project. PLoS One 2018; 13:1–18.
37. Ye C, Fu T, Hao S, Zhang Y, Wang O, Jin B, et al. Prediction of incident hypertension within the next year: Prospective study using statewide electronic health records and machine learning. J Med Internet Res 2018; 20. https://doi.org/10.2196/jmir.9268 PMID: 29382633
38. Kappen TH, van Klei WA, van Wolswinkel L, Kaikman CJ, Vergouwe Y, Moons KGM. Evaluating the impact of prediction models: lessons learned, challenges, and recommendations. Diagnostic Progn Res Published Online First: 2018. https://doi.org/10.1186/s41512-018-0033-6 PMID: 31093561
39. Chowdhury MZI, Yeasmin F, Rabi DM, Ronksley PE, Turin TC. Predicting the risk of stroke among patients with type 2 diabetes: A systematic review and meta-analysis of C-statistics. BMJ Open 2019; 9:1–22. https://doi.org/10.1136/bmjopen-2019-030833 PMID: 31273011
40. Cook NR, Ridker PM. Advances in measuring the effect of individual predictors of cardiovascular risk: The role of reclassification measures. Ann Intern Med Published Online First: 2009. https://doi.org/10.7326/0003-4819-150-11-200906020-00007 PMID: 19487714
41. Pearson TA, LaCroix AZ, Mead LA, Liang KY. The prediction of midlife coronary heart disease and hypertension in young adults: The Johns Hopkins multiple risk equations. Am J Prev Med 1990; 6:23–28. PMID: 2383409
42. Paynter NP, Cook NR, Everett BM, Sesso HD, Buring JE, Ridker PM. Prediction of Incident Hypertension Risk in Women with Currently Normal Blood Pressure. Am J Med 2009; 122:464–471. https://doi.org/10.1016/j.amjmed.2008.10.034 PMID: 19375556
43. Kvímkář M, Batty GD, Singh-Manoux A, Ferrie JE, Tabak AG, Jokela M, et al. Validating the framingham hypertension risk score: Results from the whitehall II study. Hypertension 2009; 54:496–501. https://doi.org/10.1161/HYPERTENSIONAHA.109.132373 PMID: 19597041
44. Kvímkář M, Tabak AG, Batty GD, Ferrie JE, Nabi H, Marmot MG, et al. Incremental predictive value of adding past blood pressure measurements to the framingham hypertension risk equation: The whitehall II study. Hypertension 2010; 55:1058–1062. https://doi.org/10.1161/HYPERTENSIONAHA.109.144220 PMID: 20157053
45. Kshirsagar A V., Chiu Y Ylin, Bomback AS, August PA, Viera AJ, Colindres RE, et al. A hypertension risk score for middle-aged and older adults. J Clin Hypertens 2010; 12:800–808. https://doi.org/10.1111/j.1751-7176.2010.00343.x PMID: 21029343
46. Fava C, Sjögren M, Montagnana M, Dangren E, Almgren P, Engström G, et al. Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in swedes. *Hypertension* 2013; 61:319–326. https://doi.org/10.1161/HYPERTENSIONAHA.112.202655 PMID: 23232644

47. Choi YH, Chowdhury R, Swanathan B. Prediction of hypertension based on the genetic analysis of longitudinal phenotypes: A comparison of different modeling approaches for the binary trait of hypertension. *BMC Proc* 2014; 8:8–13. https://doi.org/10.1186/1753-6561-8-S1-S78 PMID: 25519406

48. Lim NK, Lee JY, Lee JY, Park SH, Park HY. Anthropometric indices as predictors of hypertension in the Korean population: Korean genome and epidemiology study. *PLoS One* 2015; 10:1–11. https://doi.org/10.1371/journal.pone.0131603 PMID: 26110887

49. Asgari S, Khalili D, Mehrabi Y, Kazempour-Ardebili S, Azizi F, Hadaegh F. Incidence of hypertensive disorder in pregnancy among women aged 40–69 years in the Korean population: The Korean Genome and Epidemiology Study. *BMC Public Health* 2015; 15:1–7. https://doi.org/10.1186/1471-2458-15-1 PMID: 25563658

50. Lee BJ, Kim JY. A comparison of the predictive power of anthropometric indices for hypertension among men and women aged 40–69 years in the Korean population: The Korean Genome and Epidemiology Study. *BMC Public Health* 2015; 15:1–7. https://doi.org/10.1186/1471-2458-15-1 PMID: 25563658

51. Lee BJ, Kim JY. A comparison of the predictive power of anthropometric indices for hypertension and hypertension risk. *PLoS One* 2014; 9. https://doi.org/10.1371/journal.pone.0084897 PMID: 24465449

52. Chen Y, Wang C, Liu Y, Yuan Z, Zhang W, Li X, et al. Incidence of systolic and diastolic hypertension: A 10 year follow-up of the Tehran Lipids and Glucose Study. *Blood Press* 2016; 25:177–183. https://doi.org/10.3109/08037051.2015.116221 PMID: 26643588

53. Wang Y, Ma Z, Xu C, Wang Z, Yang X. A comparison of the predictive power of anthropometric indices for hypertension among men and women aged 40–69 years in the Korean population: The Korean Genome and Epidemiology Study. *BMC Public Health* 2015; 15:1–7. https://doi.org/10.1186/1471-2458-15-1 PMID: 25563658

54. Lee JW, Lim NK, Baek TH, Park SH, Park HY. Anthropometric indices as predictors of hypertension in the Korean population: Korean genome and epidemiology study. *BMC Public Health* 2015; 15:1–7. https://doi.org/10.1186/1471-2458-15-1 PMID: 25563658

55. Lim NK, Lee JY, Lee JY, Park HY, Cho MC. The role of genetic risk score in predicting the risk of hypertension. *BMC Public Health* 2015; 15:1–7. https://doi.org/10.1186/1471-2458-15-1 PMID: 25563658

56. Lim NK, Lee JY, Lee JY, Park HY, Cho MC. The role of genetic risk score in predicting the risk of hypertension. *BMC Public Health* 2015; 15:1–7. https://doi.org/10.1186/1471-2458-15-1 PMID: 25563658

57. Fava C, Sjögren M, Montagnana M, Dangren E, Almgren P, Engström G, et al. Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in swedes. *Hypertension* 2013; 61:319–326. https://doi.org/10.1161/HYPERTENSIONAHA.112.202655 PMID: 23232644

58. Choi YH, Chowdhury R, Swanathan B. Prediction of hypertension based on the genetic analysis of longitudinal phenotypes: A comparison of different modeling approaches for the binary trait of hypertension. *BMC Proc* 2014; 8:8–13. https://doi.org/10.1186/1753-6561-8-S1-S78 PMID: 25519406

59. Asgari S, Khalili D, Mehrabi Y, Kazempour-Ardebili S, Azizi F, Hadaegh F. Incidence of hypertensive disorder in pregnancy among women aged 40–69 years in the Korean population: The Korean Genome and Epidemiology Study. *BMC Public Health* 2015; 15:1–7. https://doi.org/10.1186/1471-2458-15-1 PMID: 25563658

60. Chen Y, Wang C, Liu Y, Yuan Z, Zhang W, Li X, et al. Incidence of systolic and diastolic hypertension: A 10 year follow-up of the Tehran Lipids and Glucose Study. *Blood Press* 2016; 25:177–183. https://doi.org/10.3109/08037051.2015.116221 PMID: 26643588

61. Wang Y, Ma Z, Xu C, Wang Z, Yang X. Prediction of transfer among multiple states of blood pressure based on Markov model: An 18-year cohort study. *J Hypertens* 2018; 36:1506–1513. https://doi.org/10.1097/HJH.0000000000001722 PMID: 29771738

62. Niiranen TJ, Havulinna AS, Langén VL, Salomaa V, Jula AM. Prediction of Blood Pressure and Blood Pressure Change With a Genetic Risk Score. *J Clin Hypertens* 2016; 18:181–186. https://doi.org/10.1002/jch.12702 PMID: 26435379

63. Yeh CJ, Pan WH, Jong YS, Kuo YY, Lo CH. Incidence and predictors of isolated systolic hypertension and isolated diastolic hypertension in Taiwan. *J Formos Med Assoc* 2001; 100:668–675. PMID: 11760372

64. Xu F, Zhu J, Sun N, Wang L, Xie C, Tang Q, et al. Development and validation of prediction models for hypertension risks in rural Chinese populations. *J Glob Health* 2019; 9. https://doi.org/10.7189/jogh.09.020601 PMID: 31788232

65. Wang A, An N, Chen G, Li L, Alterovitz G. Predicting hypertension without measurement: A non-invasive, questionnaire-based approach. *Expert Syst Appl* 2015; 42:7601–7609.

66. Muntner P, Woodward M, Mann DM, Shimbo D, Michos ED, Blumenthal RS, et al. Comparison of the Framingham heart study hypertension model with blood pressure alone in the prediction of risk of hypertension: The multi-ethnic study of atherosclerosis. *Hypertension* 2010; 55:1339–1345. https://doi.org/10.1161/HYPER TENSIONAHA.109.149609 PMID: 20439822

67. Ture M, Kurt I, Turhan Kurum A, Ozdamar K. Comparing classification techniques for predicting essential hypertension. *Expert Syst Appl* 2005; 29:583–588.

68. Yamakado M, Nagao K, Imaizumi A, Tani M, Toda A, Tanaka T, et al. Plasma Free Amino Acid Profiles Among and Isolated Systolic and Diastolic Hypertension: A 10 Year Follow-up of the Tehran Lipids and Glucose Study. *BMC Proc* 2014; 8:8–13. https://doi.org/10.1186/1753-6561-8-S1-S78 PMID: 25519406

69. Cheung YF, Leitch EM, D’Souza G, Macpherson P, Baines J, Lawlor DA, et al. Identification of hypertension predictors and application to hypertension prediction in an urban Han Chinese population: A longitudinal study, 2005–2010. *Prev Chronic Dis* 2015; 12:1–10.

70. Falk CT. Risk factors for coronary artery disease and the use of neural networks to predict the presence or absence of high blood pressure. *BMC Genet* 2003; 4 Suppl 1:1–6. https://doi.org/10.1186/1471-2156-4-S1-S67 PMID: 14975135
65. Farran B, Channanath AM, Behbehani K, Thanaraj TA. Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from Kuwait-a cohort study. *BMJ Open* 2013; 3:1–10.

66. Kwong EWY, Wu H, Pang GKH. A prediction model of blood pressure for telemedicine. *Health Informatics J* 2018; 24:227–244. https://doi.org/10.1177/1460458216630325 PMID: 27496863

67. Polak S, Mendyk A. Artificial neural networks based Internet hypertension prediction tool development and validation. *Appl Soft Comput J* 2008; 8:734–739.

68. Priyadarshini R, Barik RK, Dubey H. DeepFog: Fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks. *Computation* 2018; 6. https://doi.org/10.3390/computation6040062

69. Tayefi M, Esmaeili H, Saberi Karimian M, Amirabadi Zadeh A, Ebrahimi M, Safarian M, et al. The application of a decision tree to establish the parameters associated with hypertension. *Comput Methods Programs Biomed* 2017; 139:83–91. https://doi.org/10.1016/j.cmpb.2016.10.020 PMID: 28187897

70. Wu TH, Pang GKH, Kwong EWY. Predicting systolic blood pressure using machine learning. *2014 7th Int Conf Inf Autom Sustain “Sharpening Futur with Sustain Technol” ICIAfS 2014* 2014;: 1–6.

71. Wu TH, Kwong EMY, Pang GKH. Bio-medical application on predicting systolic blood pressure using neural networks. *Proc—2015 IEEE 1st Int Conf Big Data Comput Serv Appl BigDataService 2015* 2015;: 456–461.

72. Zhang B, Wei Z, Ren J, Cheng Y, Zheng Z. An Empirical Study on Predicting Blood Pressure Using Classification and Regression Trees. *IEEE Access* 2018; 6:21758–21768.

73. Zhao Q, Wang L, Yang W, Chen S, Huang J, Fan Z, et al. Interactions among genetic variants from contractile pathway of vascular smooth muscle cell in essential hypertension susceptibility of Chinese Han population. *Pharmacogenet Genomics* 2008; 18:459–466. https://doi.org/10.1097/FPC.0b013e3282f97bb2 PMID: 18496125

74. Zhao H, Qi Y, Wang Y, Wang Y, Lu C, Xiao Y, et al. Interactive contribution of serine/threonine kinase 39 gene multiple polymorphisms to hypertension among northeastern Han Chinese. *Sci Rep* 2014; 4:1–7. https://doi.org/10.1038/srep05116 PMID: 24873805