Introduction

The puroindoline (PIN) proteins of wheat are unique in that, on the one hand, they determine one of the commercially most important characteristics of wheat, i.e., whether the grain texture is soft or hard, and on the other, they also exhibit the ability to kill bacterial and fungal cells. While seemingly unrelated, both properties appear to hinge on the unique biochemical properties of these proteins. PINA and PINB are small (pre-proteins: 148 amino acids; mature proteins: 119–120 amino acids), highly basic (pI 10.5), lipid-binding proteins. The proteins have ten highly conserved Cys residues, eight of which form a specific pattern known as the ‘eight-cysteine motif (8CM)’ [1], a tertiary structure of four α-helices held by five disulphide bonds, and a unique domain called the ‘tryptophan-rich domain’ (TRD). The TRD is composed of five Trp residues in PINA or three in PINB, interspersed with the basic residues Arg and/or Lys [2,3]. The dominant ‘soft’ grain texture of wheat (suitable for products such as cakes and cookies) requires both PINA and PINB to be present in their ‘wild-type’ form, and the lack of, or amino acid substitutions in, either PIN protein result in hard grain textures (suitable for products such as breads) [4]. The presence/absence of the PIN proteins in the wheat grain significantly influences the milling behaviour, mill settings, flour properties, as well as the quality and properties of the end-use products [5]. The Pin genes and the various ‘hardness’ alleles have been reviewed in Bhave and Morris [6].

Since their discovery, the PIN proteins have been suggested to be membranotoxins, with roles in seed or seedling defence against microbial pathogens [2]. The association of PINs with the starch granule surface [impacting the effects on grain texture] [6,7], the suggested in vivo defence roles, and observed in vitro antimicrobial properties all appear to be related to their tertiary structure and lipid-binding nature [8]. The in vivo defence roles in wheat seed are as yet unproven; however, the purified or expressed PINA and PINB proteins exhibit various degrees of antimicrobial activity against several Gram-positive and Gram-negative bacteria and/or fungi [9–11], including Staphylococcus epidermidis that causes skin infections [12]. There is also strong evidence from transgenic plant work that they indeed causatively impart antifungal defence to the host plant [13–15] and in vivo seed defence [16]. Synthetic peptides mimicking the TRDs of PINA and PINB also exhibit significant activity against both Gram-positive and Gram-negative bacteria.
diseases of wheat, which are pathogens of global concern [19]. We have also shown the peptides to be effective against the rust organism) and/or qualitative (in terms of susceptible species) levels. The antimicrobial activity was found to be associated with the TRD, and certain substitutions within it affected this activity at both quantitative (in terms of the minimum inhibitory concentration (MIC) of a peptide against an organism) and/or qualitative (in terms of susceptible species) levels. We have also shown the peptides to be effective against the rust diseases of wheat, which are pathogens of global concern [19].

The PIN-based peptides are a class of antimicrobial peptides (AMPs) called the cationic antimicrobial peptides (CAPs) [20] due to their preferential binding to negatively charged lipids in the lipopolysaccharides of Gram-negative bacteria and lipoteichoic acids of Gram-positive bacteria, it is widely accepted that this interaction is electrostatic and not receptor mediated [21]. After the attachment, several models have been proposed for the mechanism of activity of PIN proteins and/or peptides may be due to their TRD. While the reported natural and synthetic Trp-rich AMPs have some sequence variations and display a range of antitumor activities, they are highly conserved in the nature of the amino acid substitutions in relation to understanding the roles of PINs in influencing grain hardness and any in vivo roles in defence of the seed/plant from pathogens, as well as emerging applications of PIN-based synthetic peptides as antimicrobial peptides.

Table 1. Peptides investigated in this study.

Peptide	Gene encoding this TRD; GenBank accession/Reference	Peptide sequence a	Net charge, number of Trp residues	pH b	MW c
Indolicidin	Selted et al. [44] ILWKWPWPPWRR-NH2	+3; 5	12.01	1809.22	
PuroA	Pina-D1; DQ63911 FPVTWRWKKWKG-NH2	+3; 5	11.17	1862.23	
Pina-M	Pina-D1m; EF620907 FSVTWRWKKWKG-NH2	+3; 5	11.17	1852.19	
Pina-R39G	Earlier work [18] FPVTGWGKKWKG-NH2	+2; 5	10.00	1667.05	
Pina-W→F	Earlier work [18] FPVTWRFFPFGK-NH2	+3; 0	11.17	1763.10	
PuroB	Pina-D1; DQ63913 FPVTWPTKWWKG-NH2	+2; 3	10.00	1531.84	
Pina-B	Pina-D1b; DQ63914 FPVTWPTKWKG-NH2	+2; 3	10.00	1561.86	
Pina-D	Pina-D1d; Lillemo and Morris [29] FPVTWPTKWWKG-NH2	+3; 2	11.17	1501.81	
Pina-L	Pina-D1l; Pan et al. [30] FPVTWPTKWWEG-NH2	0; 3	6.00	1532.78	
Pina-Q	Pina-D1q; EF620909 FPVTWPTKWWKG-NH2	+2; 2	10.00	1458.78	
GSP-5D	Gsp-1-5D; C626934 MPLSWFFPRTWKR-NH2	+3; 2	12.01	1808.20	
Hina	Hina; AY644140 FPVTWRWVTWKG-NH2	+2; 5	11.00	1836.15	
Hinb1	Hinb-1; AJ276143 FPLTWTKWWKG-NH2	+2; 3	10.00	1545.86	
Hinb1a	Hinb-1; AY644058 FPLTCTPKWKG-NH2	+2; 2	9.31	1462.79	

1Peptides based on the TRD sequences of the wild-type PINA and PINB proteins are shown in bold. Amino acid substitutions in relation to these are shown in bold italics; molecular weights were determined by mass spectrometry (Biomatik, USA).
doi:10.1371/journal.pone.0075488.t001

Design of Peptides

Custom peptides PuroA and PuroB were modelled on the TRD of the PINs encoded by the wild-type alleles Pina-D1a and Pinb-D1b, respectively [2]. The peptide designated Pina-W→F was designed with all Trps substituted with Phe residues, and Pina-R39G had the Arg-39 substituted for Gly-39. Pina-M, Pinb-B, Pinb-D, Pinb-L and Pinb-Q were based on the TRD of the natural hard grain associated alleles Pina-D1m [27], Pinb-D1b [28], Pinb-D1d [29], Pinb-D1l [30] and Pinb-D1q [31], respectively (Table 1). All peptides were amidated at the C-terminus (NH2). The peptides were synthesised at 95% purity by Biomatik Corp (Ontario, CA) by solid-phase methods using N-(9-fluorenyl) methoxycarbonyl (Fmoc) chemistry. Peptide solutions prepared as detailed previously [18].

Materials and Methods

Design of PIN Peptides Form Pores in Microbial Membranes

A calcein leakage assay as previously described [17] was performed to determine the effects of PIN-based peptides on the permeability of synthetic large unilamellar vesicles (LUVs), designed to mimic bacterial and mammalian cell membranes.
The phospholipids used were DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), with zwitterionic head groups and DOPG (1,2-dioleoyl-sn-glycerol-3-[phosphor-rac-(1-glycerol)], with negatively charged headgroups (Avanti® Polar lipids, Alabaster, USA). These were used to make DOPC:DOPG (1:3) LUVs to mimic bacterial cell membranes, or DOPG only, to mimic mammalian cell membranes [17]. Calcein-entrapped LUVs were prepared by the extrusion method using an Avanti mini extrusion apparatus (Avanti® Polar Lipids, Alabaster, USA). The DOPC:DOPG (1:3 mixture) or DOPC were dissolved in chloroform (25 mg/mL) and aliquoted into glass test tubes to give a concentration of 2.6 mM when resuspended in 2 mL buffer. Chloroform was evaporated under a stream of N2 and the lipid films were dried overnight under vacuum. The films were then resuspended in 2.0 mL of 70 mM calcium buffer (in 10 mM Tris-HCl, pH 7.4) and incubated at room temperature for 30 minutes. To increase entrapment of the dye, five repeated freeze/thaw cycles were used by placing the vial in liquid N2 and then a warm water bath (37°C). The lipid mixture was then extruded through the mini-extruder 10 times through two stacked 0.1 μm pore-size filters. Free calcein was removed by centrifugation (10,000g, 10 min) three times and washing with 10 mM Tris, 100 mM NaCl buffer (pH 7.4) [32]. Standards of phosphorus (inorganic P; Pi) were prepared (0.05–1.5 mg/mL) using KH2PO4 and read at 820 nm to adjust the preparations to the required 10 μM phospholipid concentration prior to peptide treatment [17].

Dyed Leakage Experiments

The calcein-filled LUVs were diluted with 10 mM Tris, 100 mM NaCl buffer (pH 7.4) to a final phospholipid concentration of 10 μM. The experiments were performed in a Varian Cary Eclipse fluorescence spectrophotometer with excitation and emission wavelengths of 496 nm and 515 nm, slit widths of 20 nm and a PMT detector of 600 V. The peptides (PuroA, Pina-M, Pina-W→F and PuroB) were added to LUVs to a final peptide concentration of 8–125 μg/mL in 100 μL volumes and the fluorescence (F) monitored for 5 min at 60 s intervals. The total calcein fluorescence (F T) was determined by addition of 1.0% Triton X100. The dye leakage was calculated as % Leakage = (F – F0)/(F T – F0), F0 being fluorescence of each sample at T = 0.

Transmission Electron Microscopy (TEM) of LUVs

Suspensions of untreated and peptide-treated DOPC or DOPC:DOPG (1:3) LUVs (prepared as above with peptide concentrations of the respective MICs for Escherichia coli) were pipetted onto the surface of Formvar coated copper grids (ProSciTech, Thuringowa, Australia) and washed twice with distilled H2O. The grids were then stained with 0.5% uranyl acetate for approximately 2 seconds [35] and the excess stain removed by blotting on Whatman paper. The grids were then air-dried and inspected at La Trobe University with either a JEOL JEM-2010HC or a JEM-120ex STEM/TEM transmission electron microscope (Tokyo, Japan).

Minimum Inhibitory Concentrations (MIC) of the Peptides against Yeast Cells

Saccharomyces cerevisiae (ATCC 287) was grown in Potato Dextrose Broth (PDB) overnight at 30°C with shaking at 220 rpm [36]. The cultures were vortexed vigorously and the cell suspension adjusted to 1–5×106 cells/mL with PDB (McFarland standard 0.5) and then diluted 1:200 with PDB to a final concentration of 0.5–2×107 cells/mL [37]. The MIC assays were carried out in 96-well plates as described previously [18]. Peptides (PuroA, Pina-M, Pina-W→F and PuroB) in 25 μL volumes were added to the first empty well and a two-fold dilution was carried out across each row with a starting peptide concentration of 250 μg/mL and a final one of 2 μg/mL. Test wells were subsequently inoculated with 75 μL yeast cells (0.5–2×107 cells/mL) and incubated overnight at 30°C. Negative control (no peptide) and positive control (fungicide Mycobutanil) wells were also prepared. The MIC was defined as the lowest concentration of the peptide required to inhibit fungal growth [37], observed visually.

Propidium Iodide uptake by Yeast Cells

S. cerevisiae was grown overnight at 30°C in 100 mL PDB and the cells collected by centrifugation and resuspended in Phosphate Buffered Saline (PBS: 137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.46 mM KH2PO4; pH 7.4) to ~1.5x109 cells/mL (OD600 = 0.6–0.8) [36]. 75 μL of the suspension was incubated with 25 μL of stock solutions of PuroA, Pina-M, Pina-W→F, PuroB and indolicidin (to give a final peptide concentration of 64, 125, 250 or 500 μg/mL), or with PBS (for no-peptide controls) for 1 h at 30°C, followed by staining with propidium iodide (PI) as described [38]. PI stock solution (60 μg/mL) was prepared in MilliQ water and stored in dark at ~20°C. It was diluted to 12 μg/mL before use, mixed 1:1 with peptide-treated or untreated yeast cells (to final PI concentration 6 μg/mL), and the samples incubated in the dark for 5 min. A 10 μL aliquot of these was examined using a Nikon Eclipse 50 i fluorescence microscope with 561 nm excitation and 630/22 emission filter, at 400× magnification. The photomicrographs were taken under light and fluorescence for each field. Five randomly selected fields were recorded and scored for each sample.

Scanning Electron Microscopy (SEM) of Peptide-treated Yeast Cells

S. cerevisiae cultures were grown overnight in 5.0 mL of PDB 30°C, to OD600 = 1.2–1.8 (~5×107 cells/mL) [36]. 75 μL aliquots of the yeast cell suspension were incubated with 25 μL of PuroA, Pina-M, Pina-W→F or PuroB (at final concentrations of 0.5×, 1× or 2× of the respective MIC for S. cerevisiae; see results) for 1 h at 30°C. The cells were collected by centrifugation (1000xg, 5 min), the pellets washed three times in PBS (pH 7.4) and resuspended in 100 μL MilliQ (ultra-pure) water. A 25 μL aliquot of the cell suspension was spotted onto a glass slide, air-dried, then fixed and dehydrated as described previously [39]. In brief, the air-dried slides were fixed in 2.5% glutaraldehyde (in PBS, pH 7.4) overnight in a humid chamber, then washed with PBS pH 7.4 for 10 min, and dehydrated in an ethanol gradient of 50%, 60%, 70%, 80%, 90% and 100%. The slides were freeze-dried overnight and then coated in a Dynavac CS800 coating unit with carbon and gold, with double sided conducting carbon tape attached to the slides for better conductivity. The samples were
analysed using a ZEISS supra 10 VP field emission scanning electron microscope (Carl Zeiss Microscopy, NY, USA) at 3.0 kV.

Gel Retardation Assay for Testing in vitro DNA-binding Ability of Peptides

This test assesses any peptide-DNA-binding by noting the retardation of the rate of migration of DNA bands through agarose gels. A number of methods were tested. As per Hsu et al. [40], DNA of a plasmid (200 ng) or a commercial molecular weight marker (50 ng) was mixed with a peptide (to final concentrations of 32, 64, 125 or 250 μg/mL) in 15 μL of 10 mM Tris-1 mM EDTA buffer (pH 8.0), incubated at room temperature for 2 min, then electrophoresed in 0.3% or 1.0% agarose gels containing 0.3 μg/mL ethidium bromide (EtBr). Following Park et al. [41], 100 ng plasmid DNA was mixed with a peptide (to different concentrations) in 20 μL binding buffer (5% glycerol, 10 mM Tris-HCl [pH 8.0], 1 mM EDTA, 1 mM DTT, 20 mM KCl, 50 μg/mL BSA), held for 1 h at room temperature, then electrophoresed in EtBr-containing gels. Finally the protocols were modified to eliminate any interference of EtBr in the initial peptide-DNA-binding. Plasmid DNA (100 ng) was mixed with a peptide (to final concentrations of 16, 32, 64, 125 or 500 μg/mL) in 10 μL of MilliQ water, held at room temperature for 1 h and electrophoresed, followed by emersion of gels in EtBr solution (0.5 μg/mL) for 30 min before imaging.

E. coli Filamentation Assay for Testing in vivo Inhibition of DNA Synthesis by Peptides

The method as described [42] was used to assess if the PIN-based peptides cause filamentation of *E. coli* cells, indicative of inhibition of in vivo DNA synthesis. *E. coli* (ATCC 25922) grown to logarithmic phase (OD600 = 0.2) was diluted to OD600 of ~0.04. 75 μL of this culture was mixed with 25 μL of a peptide solution (to a final peptide concentration of 2–250 μg/mL) and incubated for 3 h at 37°C. 50 μL of the sample was spotted onto a glass slide, air dried, and stained with Crystal Violet for 1 min. Peptide mixed with water was used as negative control, and the Trp-rich AMP indolicidin (ILPWKWPWWPR-NH2) was used as a positive control due to its known filamentation effect [42]. All samples were tested in triplicate. The cells were observed by light microscopy (1000×magnification).

Results

Selective Permeabilisation of Negatively Charged Vesicles by PINA-based Peptides

The peptides PuroA (FPVTWRWWKWWKG-NH2) (designed based on the TRD of the wild-type PINA), Pina-M (FSVTWRWWKWWKG-NH2) (designed based on a natural hard wheat mutant), and Pina-W→F (FPVTTRFKKFKKG-NH2) (with all Trps substituted with Phe), were found to exhibit the strongest inhibitory activities against bacteria and phytopathogenic fungi amongst a number of peptides tested earlier [18]. The present work investigated whether these activities were due to membrane disruption, by studying the release of the fluorescent dye calcine from the LUVs made using a mixture (1:3) of DOPC (zwitterionic) and DOPG (negatively charged) phospholipids to mimic bacterial membranes, or DOPC only, to mimic mammalian membranes [17]. The phospholipid concentration of the extruded calcine-filled LUVs was calculated using a total phosphorus assay [33]. The no-peptide control LUVs in the PuroA experiments showed a background fluorescence of 28% (for DOPC:DOPG LUVs) and 30% (for DOPC LUVs), probably due to the free calcine and/or spontaneously lysed vesicles. PuroA induced 70–90% dye leakage from the DOPC:DOPG LUVs at 5 min incubation when used at concentrations equivalent to, or higher than, its MIC against *E. coli* cells (16 μg/mL) established earlier [10] (Table 2; Figure S2 in File S1). None of the tested concentrations were able to induce 100% leakage (i.e., complete lysis). When tested with the DOPC LUVs, PuroA (16 μg/mL) showed no additional impact as compared to the no-peptide negative control (30% leakage), and slightly higher leakage (42%) at the highest concentration tested (Figure S2 in File S1). The no-peptide controls of Pina-M assays showed a similar background fluorescence (28%, DOPC:DOPG; 26%, DOPC). Pina-M showed results similar to PuroA, i.e., 75% leakage when used at its MIC against *E. coli* (13 μg/mL) and a maximum of 85% with the DOPC:DOPG LUVs. With the DOPC LUVs, Pina-M had results similar to the control, and slightly higher % leakage at the highest concentration tested (Figure S2 in File S1). The non-antibacterial peptide PuroB showed levels of dye leakage from the DOPC:DOPG (bacteria-mimicking) LUVs exceeding those of no-peptide control only at its highest concentration tested (250 μg/mL, i.e., 15 or 30 times more than PuroA or Pina-M, respectively) (Table 2; Figure S2 in File S1), and had negligible effects on the DOPC LUVs. Further, the Trp to Phe substitution peptide Pina-W→F induced less dye leakage (64%) from the DOPC:DOPG LUVs at its MIC against *E. coli* (32 μg/mL) compared to PuroA, and no significant leakage from the DOPC LUVs, even at high concentration (Table 2; Figure S2 in File S1). The results indicate that the peptides disrupted the negatively charged phospholipid vesicles but did not cause complete lysis under the conditions used, and were ineffective against zwitterionic lipid vesicles.

The results were further investigated by visualising the LUVs by TEM. The untreated LUVs ranged from 100–200 nm in diameter and appeared spherical, with a smooth, defined border (Figure 1A). Treatment of the DOPC:DOPG LUVs with PuroA (at 16 μg/mL; its MIC against *E. coli*) resulted in a number of morphological changes, e.g., the surface (edge) appearing scalloped with protrusions, suggesting a loss of integrity, leakage of contents, and 2–4 times larger sized (300–400 nm) (Figure 1B, C) also suggesting membrane permeation and diffusion of water into the vesicles. A survey of five random fields did not indicate a decrease in the number of LUVs in the treated sample (data not shown), suggesting that a majority of vesicles were not lysed after 5 min incubation. The DOPC:DOPG LUVs treated with Pina-M (at 13 μg/mL; its MIC against *E. coli*) also showed similar changes (Figure 1D). Treatment of the DOPC LUVs with PuroA or Pina-M resulted in no observable changes to vesicle morphology, as compared to the untreated LUVs (data not shown). The results were consistent with the calcine dye leakage findings.

Permeabilisation of Membranes of Yeast Cells by PIN-based Peptides

The unicellular fungal cells (*S. cerevisiae*) are more readily visualised by light microscopy without oil immersion due to their larger size (10–12 μm), compared to the LUVs (100–200 nm) or bacterial cells (0.5–2 μm). *S. cerevisiae* membranes, like bacterial membranes, are highly electronegative due to phosphatidylserine lipids [22]. The peptides PuroA, Pina-M, Pina-W→F, PuroB (see above) and indolicidin were found to inhibit the growth of *S. cerevisiae* at MICs of 125 μg/mL, 125 μg/mL, 250 μg/mL, 250 μg/mL, and 125 μg/mL, respectively. The propidium iodide (PI) uptake assay was used to assess the effects of peptides on membrane integrity of yeast cells in vivo. PI fluoresces when bound to nucleic acids, but intact membranes are impermeable for it; hence it can be used to measure membrane permeability changes.
The untreated control cultures showed a small number of fluorescent cells (5.7%), possibly due to dead cells that had become permeable (Figure S3 in File S1; Table 3). Incubation with PuroA or Pina-M showed PI uptake by 100% of cells at 64 μg/mL, i.e., below its MIC against yeast. The peptide Pina-W_R led to 56–72% of cells becoming permeable to the dye at sub-MIC levels, and 100% of the cells at MIC levels and higher. PuroB led to no observable effects at sub-MIC levels, moderate uptake (29.4% cells) at MIC, and 100% of the cells being fluorescent at higher concentrations (Figure S3 in File S1).

In vitro DNA-binding Ability of PIN-based Peptides

Inhibition of DNA synthesis is the mode of action of some AMPs that inhibit bacterial growth without causing cell lysis [41,42]. Thus, in order to test whether PIN-based peptides (tested above) may use this mechanism (in addition to the cell leakage shown above); their in vitro DNA-binding ability was investigated by a gel retardation assay. Additionally, peptides based on the related barley hordoindolines (HIN) and the wheat Grain softness protein-1 (GSP-1) proteins, which had been previously found to have antimicrobial activities [18], were included. The methods described previously [40,41] were unsuccessful in detecting any retardation of movement of peptide-bound DNAs (results not shown), possibly due to the EtBr in the gels interfering with access of peptides to DNA. Adoption of post-electrophoresis EtBr staining led to significant results. The peptides PuroA, Pina-M, Pina-R39G, Pina-W_R F, HinA and GSP-5D, completely inhibited the migration of plasmid DNA through the gels at concentrations of 32 (Pina-M), 64 (PuroA, Pina-W_R F, GSP-5D, HinA, indolicidin), or 125 (Pina-R39G) μg/mL, showing a strong DNA binding ability (Figure 3; Figure S4 in File S1; Table 4). These peptides also exhibit a range of antimicrobial activities, as shown earlier [41]. Of the PINB-based peptides, PuroB completely inhibited the DNA migration at a higher concentration (250 μg/mL), and all other Pinb and Hinb peptides showed only partial inhibition at 500 μg/mL. In general, a majority of peptides that showed the highest affinity for DNA (as seen by gel retardation) under various conditions [38]. The untreated control cultures showed a small number of fluorescent cells (5.7%), possibly due to dead cells that had become permeable (Figure S3 in File S1; Table 3). Incubation with PuroA or Pina-M showed PI uptake by 100% of cells at 64 μg/mL, i.e., below its MIC against yeast. The peptide Pina-W→F led to 56–72% of cells becoming permeable to the dye at sub-MIC levels, and 100% of the cells at MIC levels and higher. PuroB led to no observable effects at sub-MIC levels, moderate uptake (29.4% cells) at MIC, and 100% of the cells being fluorescent at higher concentrations (Figure S3 in File S1).

| Table 2. Calcein dye leakage from large unilamellar vesicles treated with peptides. |
|-----------------------------------|-----------------------------------|
| **Sample** | **% Calcein leakage from DOPC:DOPG LUVs** | **% Calcein leakage from DOPC LUVs** |
| No-peptide (negative control) | 28.5 | 28.0 |
| Triton x100 (positive control) | 99.0 | 99.0 |
| PuroA 8 μg/mL | 31.0 | 30.1 |
| PuroA 16 μg/mL | 71.5 | 33.0 |
| PuroA 32 μg/mL | 79.5 | 34.5 |
| PuroA 64 μg/mL | 75.1 | 38.5 |
| PuroA 125 μg/mL | 91.0 | 46.0 |
| Pina-M 8 μg/mL | 59.0 | 31.0 |
| Pina-M 16 μg/mL | 74.5 | 30.0 |
| Pina-M 32 μg/mL | 84.5 | 33.5 |
| Pina-M 64 μg/mL | 81.5 | 44.0 |
| Pina-M 125 μg/mL | 88.5 | 54.5 |
| Pina-W→F 8 μg/mL | 29.2 | 28.0 |
| Pina-W→F 16 μg/mL | 32.0 | 27.0 |
| Pina-W→F 32 μg/mL | 64.0 | 27.0 |
| Pina-W→F 64 μg/mL | 78.0 | 31.0 |
| Pina-W→F 125 μg/mL | 81.0 | 36.0 |
| PuroB 16 μg/mL | 28.0 | 30.0 |
| PuroB 32 μg/mL | 29.0 | 30.0 |
| PuroB 64 μg/mL | 29.0 | 33.0 |
| PuroB 125 μg/mL | 35.0 | 32.1 |
| PuroB 250 μg/mL | 56.0 | 31.0 |

*average of duplicate experiments; the variation between the duplicate values was in the range of 0.7 to 2.8% for all experiments.

doi:10.1371/journal.pone.0075488.t002
also had the highest predicted net charge (+3), while those that were not able to effect gel retardation generally had a net charge of 0 to +2 (Table 1).

Inhibition of DNA Synthesis in vivo in E. coli by PIN-based Peptides

Certain drugs which inhibit DNA synthesis in E. coli induce filamentation, wherein rod-shaped cells continue to grow in size but cease to divide [43]. Indolicidin, a Trp-rich AMP with broad antimicrobial activity [44], has this effect [42]; hence this test was used to determine if the peptides used in the in vitro DNA-binding assay could also effect in vivo inhibition of DNA synthesis. E. coli cells were treated with a range of peptide concentrations (0–250 μg/mL) for 3 h and inspected by light microscopy, using a no-peptide negative control and indolicidin (32 μg/mL) as positive control. PuroA, Pina-M, Pina-R39G, HinA and GSP-5D induced filamentation at lower concentrations (8–64 μg/mL) compared to PuroB (Figure 4; Figure S5 in File S1; Table 4), while Pina-W→F was unable to affect this phenotype. Among the PINB-based peptides, only PuroB and Hinb peptides induced filaments at 250 μg/mL. All peptides with substitutions, i.e., Pinb-B (Gly46-Ser), Pinb-D (Trp44Arg), Pinb-L (Lys45Gln) and Pinb-Q (Trp44Leu) lacked this ability, agreeing with the results of the gel retardation test.

Discussion

A number of studies have established that PIN proteins, as well as synthetic peptides designed based on their TRD, have antibacterial and/or antifungal properties, leading to the transgenic use of Pin genes for testing the in vivo biotic defence capabilities of PIN proteins and contemplations of ectopic applications of the peptides for control of human infections [7]. However, the mechanism of membrane activity by these proteins and peptides is as yet unresolved. This is a significant factor for considering their applications in agriculture, food safety or health contexts. Hence the aims of the present work were to investigate the nature of interactions of PIN-based peptides with the membranes of bacterial and fungal cells. These were investigated through a number of methods: use of membrane-mimicking vesicles, transmission and scanning electron microscopy, tests for yeast cell permeabilisation, and assays for in vitro DNA-binding and in vivo blockage of DNA replication.

The broad range of antimicrobial activities and low haemolytic activity of PIN-based peptides noted earlier [17–19] showed a high selectivity towards microbial cells. The attribute is shared by other Trp-rich AMPs including LfcinB and Tritrpticin [45], making them attractive therapeutic agents. The selectivity stems from electrostatic interactions between the CAP (mainly its Lys/Arg residues) and the anionic head-groups of bacterial membrane lipids [46]. The peptides which earlier demonstrated the highest AMP activity, PuroA, Pina-M and Pina-W→F [18], showed strong preference for the negatively charged DOPG:DOPC vesicles over the zwitterionic DOPC (mammalian membrane-mimicking) vesicles in the present work. This is consistent with previous studies using model membranes with PuroA [17]: combi-1: [a synthetic hexapeptide RRWWRF-NH2; [47]] and synthetic CAPs rich in Lys, Phe and Trp (cationic, hydrophobic) [48]. The Trp residues of PuroA were found to bury deeper into DOPG than DOPC vesicles, and it was

Table 3. Propidium iodide uptake by yeast cells treated with peptides.

Peptide*	% fluorescent cells**
No-peptide (negative control)	5.7
Indolicidin (positive control) 125 μg/mL	100
PuroA 64 μg/mL	100
PuroA 125 μg/mL	100
PuroA 250 μg/mL	100
PuroA 500 μg/mL	100
Pina-M 64 μg/mL	100
Pina-M 125 μg/mL	100
Pina-M 250 μg/mL	100
Pina-M 500 μg/mL	100
Pina-W 64 μg/mL	56.5
Pina-W→F 64 μg/mL	72.3
Pina-W→F 125 μg/mL	100
Pina-W→F 250 μg/mL	100
Pina-W→F 500 μg/mL	100
PuroB 64 μg/mL	6.8
PuroB 125 μg/mL	7.2
PuroB 250 μg/mL	29.4
PuroB 500 μg/mL	100

*MICs of PuroA, Pina-M, Pina-W→F and PuroB for S. cerevisiae: 125 μg/mL, 125 μg/mL, 250 μg/mL and 250 μg/mL, respectively.

**Average value of 4 fields counted at 400 magnification, from each of two independent experiments. The value of 100% indicates all cells were fluorescent in the duplicate experiments with these peptides. For experiments that showed <100% fluorescent cells, the variation between the duplicates was in the range of 0.9 to 5.2%.

doi:10.1371/journal.pone.0075488.t003

doi:10.1371/journal.pone.0075488.g001
suggested that the cation-π interactions between Trp and an adjacent Arg (lacking in PuroB) may facilitate deeper insertion of PuroA into bacterial membranes [17]. Replacement of the Trps with Phe (Pina-W→F) decreased the membrane-perturbing ability of the TRD-based peptide towards the bacterial-mimicking membranes, while not significantly affecting the antimicrobial activity [18]. The reduced positive charge and fewer Trp residues are attributed to the lower potency of PuroB as compared to PuroA [17]. The anionic membrane charges may thus contribute to the selectivity of the basic PIN proteins [26] and peptides [17,18] towards bacterial membranes and lack of toxicity towards murine cells [26].

Lack of electrostatic attraction may not be the only relevant factor for neutral membranes, as some CAPs including indolicidin can disrupt such membranes [44]. PuroA and Pina-M both led to a small degree of calcine leakage from the DOPC LUVs at high concentrations (125 μg/mL), Pina-M showing stronger activity (54.5%) than PuroA (46%). The enhanced affinity of Pina-M to neutral membranes may be due to its Pro35Ser substitution; computer simulations with synthetic linear Lys- and Ser-rich bioactive peptides found that the OH group of Ser can form H-bonds with membrane phospholipids [49]. Interestingly, replacement of Trp residues with Phe in the PuroA-based peptide effectively abolished leakage from the DOPC LUVs, even at high concentrations (125 μg/mL). Such observations have also been reported for Triptocin (Trp-rich AMP), with the lack of permeability towards mammalian cell membranes important for potential therapeutic applications [32]. Other factors that influence permeabilisation of membranes with low surface charge include hydrophobic moment, oligomerization and the specific sequence/orientation of the peptide [46]. Such factors need to be investigated for both the PIN proteins and peptides, to obtain insights into (i) why mutations at residues other than the Trps (e.g., Pro35Ser; Pina-D1m, Gly46Ser; Pinb-D1b) or outside the TRD (e.g., Leu60Pro; Pinb-D1c) affect the affinity of the PIN proteins for the starch granule membranes in relation to wheat grain texture [6]; and (ii) whether such mutations can also affect the antimicrobial properties of the peptides and any in vivo activities of the proteins in biotic defence.

Membrane-active AMPs can be divided into those that permeabilise cell membranes resulting in cell lysis, and those that permeate the membranes without cell lysis to gain access to intracellular target(s) [21]. LUVs mimicking bacteria, when treated with PuroA and Pina-M, induced dye leakage but not complete lysis after 5 min treatment, confirmed by visualisation using TEM. The non-lysis seems shared with the Trp-rich AMP indolicidin, which can permeabilise both membranes of E. coli but does not cause lysis [50]. Visualisation of peptide-treated negatively charged LUVs using TEM indicated changes such as rough surface, swelling, and leakage of contents. To our
knowledge, this is the first report using TEM to provide direct proof of loss of membrane integrity caused by these peptides.

The unicellular fungal cells (S. cerevisiae) provided an ideal in vivo model to visualise the effect of peptides via uptake of PI, a dye for which intact membranes are normally impermeable to, since these cells also have negatively charged membranes, similar to bacteria [22]. A yeast complementation test showed that PINs can interact with the plasma membrane of S. cerevisiae via the TRD, with the Trp residues in PINA and Lys residues in PINB found to be the limiting factor in binding [51]. In our work, 100% of the S. cerevisiae cells became permeable to PI when treated with PuroA or Pina-M (both containing 5 Trp residues) at equal to, or greater than, their respective MIC values for yeast. Less permeabilisation was observed for the peptides with a decreased number of, or lack of, Trp residues (PuroB and Pina-W\textsubscript{RF}) at their MIC levels. The results thus establish that the Trp residue(s) is (are) important for membrane permeabilisation, and support the findings of Evrard et al. [51] for PuroA; however, the reduced permeation of the Lys-containing PuroB questions their findings on PINB. Differences in activity have been reported for the PIN proteins, with PINB showing more activity towards fungal pathogens than PINA [9], while the activity of both PINs against select bacterial species was the same [10]. However, the functionality of other candidate factors such as certain hydrophobic residues may also be relevant for any activities involving proteins compared to the much shorter peptides.

The peptide-treated S. cerevisiae cells support a non-lytic mechanism, showing intact cells with pore-like structures in the membranes. Peptide sequences and concentrations appear important for the amount of membrane penetration, as more pronounced pores were seen for peptides with a higher proportion of Trp residues and at higher peptide concentrations. Short CAPs (~20 residues) are generally considered unlikely to form stable pores, as they require membrane-spanning α-helices, but they may form transient pores [46]. There are two leading models for disruption of bacterial membranes by short AMPs; the ‘carpet model’ [52] and the ‘aggregate model’ [21]. The ‘carpet model’ does not depend upon a particular length or sequence conformity.

The unicellular fungal cells (S. cerevisiae) provided an ideal in vivo model to visualise the effect of peptides via uptake of PI, a dye for which intact membranes are normally impermeable to, since these cells also have negatively charged membranes, similar to bacteria [22]. A yeast complementation test showed that PINs can interact with the plasma membrane of S. cerevisiae via the TRD, with the Trp residues in PINA and Lys residues in PINB found to be the limiting factor in binding [51]. In our work, 100% of the S. cerevisiae cells became permeable to PI when treated with PuroA or Pina-M (both containing 5 Trp residues) at equal to, or greater than, their respective MIC values for yeast. Less permeabilisation was observed for the peptides with a decreased number of, or lack of, Trp residues (PuroB and Pina-W\textsubscript{RF}) at their MIC levels. The results thus establish that the Trp residue(s) is (are) important for membrane permeabilisation, and support the findings of Evrard et al. [51] for PuroA; however, the reduced permeation of the Lys-containing PuroB questions their findings on PINB. Differences in activity have been reported for the PIN proteins, with PINB showing more activity towards fungal pathogens than PINA [9], while the activity of both PINs against select bacterial species was the same [10]. However, the functionality of other candidate factors such as certain hydrophobic residues may also be relevant for any activities involving proteins compared to the much shorter peptides.

The peptide-treated S. cerevisiae cells support a non-lytic mechanism, showing intact cells with pore-like structures in the membranes. Peptide sequences and concentrations appear important for the amount of membrane penetration, as more pronounced pores were seen for peptides with a higher proportion of Trp residues and at higher peptide concentrations. Short CAPs (~20 residues) are generally considered unlikely to form stable pores, as they require membrane-spanning α-helices, but they may form transient pores [46]. There are two leading models for disruption of bacterial membranes by short AMPs; the ‘carpet model’ [52] and the ‘aggregate model’ [21]. The ‘carpet model’ does not depend upon a particular length or sequence conforma-

Table 4. Gel retardation and E. coli cell filamentation assays for peptide-DNA binding.

Peptide	Peptide concentration (µg/mL) inducing gel retardation\(^a\)	Minimum peptide concentration (µg/mL) inducing filamentation in E. coli	MIC (µg/mL) against E. coli cells\(^b\)		
	Partial	Full			
Indolicidin	32±0	64±0	32±0	32±0	
PuroA	32±0	64±0	16±0	16±0	
Pina-M	16±0	32±0	8±0	13±5	
Pina-R39G	64±0	125±0	64±0	64±0	
Pina-W→F	32±0	64±0	nf	32±0	
PuroB	125±0	250±0	250±0	>250	
Pinb-B	>500	>500	nf	>250	
Pinb-D	500±0	>500	nf	>250	
Pinb-L	>500	>500	nf	>250	
Pinb-Q	500±0	>500	nf	>250	
GSP-5D	32±0	64±0	64±0	64±0	
Hina	32±0	64±0	32±0	32±0	
Hinb1	500±0	>500	250±0	>250	
Hinb1a	500±0	>500	250±0	>250	

\(^a\)Values from triplicate assays; nf: no filamentation induced at the maximum final concentration of peptide tested, 250 µg/mL and \(^b\)data from previous work [18].

doi:10.1371/journal.pone.0075488.t004

Figure 4. Morphology of E. coli cells treated with peptides. The cells were incubated with peptides for 3 h at 37°C and observed using light microscopy at 1000× magnification under oil immersion. A. No peptide control; B. PuroA 32 µg/mL; C. Pina-M 8 µg/mL; D. Indolicidin 32 µg/mL.

doi:10.1371/journal.pone.0075488.g004
tion, and proposes a four-step mechanism wherein: i) the peptide binds to the negatively charged headgroups of membrane phospholipids via its basic residues, covering it like a carpet; ii) its hydrophobic regions align with lipids in the hydrophobic core; iii) more peptides bind until a threshold is reached that induces membrane curvature and formation of lipid micelle; iv) the micelle cause formation of pores, which allow entry of materials including peptides. Ghukhov et al. [46] confirmed this mechanism (the ‘grip and dip’ mechanism) for short (≈17 residue) Lys/Trp-rich AMPs. Importantly, Kosijiman et al. [23] also confirmed two types of interactions for PIN proteins: electrostatic interactions between the Arg/Lys in the TRD and the phosphate headgroups of lipids, and hydrophobic interactions between the Trps and lipid tails. The alternative ‘aggregate model’ proposes formation of lipid/peptide aggregates (‘micelle-like’ complexes) that form unstable bilayer spanning channels which collapse and translocate the peptides into the cytoplasm [21]. Jing et al. [17] showed that PuroA forms a well-defined amphiphatic structure in the presence of sodium dodecyl sulphate (SDS) by association of the positively charged side-chains to the polar face of the micelles, and suggested that it does not penetrate deeply to form stable channels/pores, but may perturb the membrane through inducing positive curvature. Our observations of non-lysis of yeast cells and induction of pore formation by TRD-based peptides support this theory, and are probably indicative of a ‘carpet model’ of membrane activity. Importantly, this model is proposed for the bactericidal TRD of PINs only. The protein has the potential for forming membrane spanning helices, that could form stable pores or channels, as previously reported [25,26].

Once a non-lytic AMP crosses the membrane, a number of intracellular targets are available to it, and the interactions can result in inhibitions of DNA, RNA, protein or cell wall syntheses, effects on protein folding, enzyme activities, or actions of certain peptides [21]. The well-studied Trp-rich AMP indolicidin does not induce cell lysis, instead accessing an intracellular target (DNA synthesis apparatus) [40,42]. Hence it was used as a ‘positive control’ for both DNA-binding related assays (gel retardation and E. coli filamentation) conducted here. Certain drugs which block cell division by inhibiting DNA synthesis in E. coli induce filamentation, including the antibiotic nalidixic acid [43], and the AMP indolicidin [42]. Filaments in bacteria result when rod-shaped cells cease to divide but continue to grow [53]. The PINA-based peptides showed strong gel retardation of plasmid DNA, and the results were complemented by the filamentation assay. The basic amino acids are likely to be responsible for nucleic acid binding. Studies with indolicidin showed that when 3 or 4 Trps were replaced with Lys, the peptides bound more strongly to DNA and increased the cellular uptake of the peptide [54]. In our study, high net positive charge for the peptides was found to be important for strong DNA binding ability. However, there were some exceptions; e.g., Pina-R39G had a net charge of +2 but a high DNA binding ability, while Pibn-D, which has a Trp to Arg replacement and a net charge to +6, did not show any notable binding. It thus appears that the number of Trp residues may also be relevant to DNA binding. Pina-R39G having five Trps but Pibn-D having only two. This observation supports the two-stage model proposed by [40] for CAPs, wherein the positively charged residues electrostatically bind to the phosphate groups of DNA, then can insert into DNA duplexes, with the Trps stacking between the sugars.

Some AMPs can bind to DNA to cause direct DNA damage, or alternatively, they can bind to the Holliday junctions (HJ; branched DNA intermediates), such as the Trp/Arg-rich hexapeptides designed by Gunderson & Segall [55] which have high affinity for HJs and cause a decrease in DNA synthesis due to interference with DNA repair and replication forks. Failure to resolve HJs induces the SOS response [53], leading to cell growth inhibition (seen as filamentation in E. coli) [53]. Investigations along these lines are required to further characterise the DNA-related inhibition mechanisms of the PIN peptides and proteins. Further, some AMPs contain short domains which are stand-alone ‘cell-penetrating peptides’ (CPPs), and often Arg, Trp and/or Lys rich [36]. Such CPPs are currently being developed for delivery of DNAs, oligonucleotides, proteins or other substances into cells, and some are under clinical trials [56]. It will thus be interesting to investigate whether the PuroA and PuroB peptides may contain shorter CPPs.

Supporting Information

File S1 Figure S1, A Standard curve for phosphate (P) concentration. The standard curve was prepared using H2PO4 prepared in MilliQ water, and the absorbance measured at 820 nm. Figure S2, Calcein dye release from LUVs by PuroA and Pina-M peptides. % Release of calcein dye from dye-filled LUVs over 5 minutes of incubation with a peptide at a range of final concentrations (8–125 μg/mL). A: Calcein release from DOPC-DOPG (1:3) LUVs by PuroA; B: Calcein release from DOPC LUVs by PuroA; C: Calcein release from DOPC:DOPG (1:3) LUVs by PuroA; D: Calcein release from DOPC LUVs by Pina-M; E: Calcein release from DOPC:DOPG (1:3) LUVs by Pina-W→F; F: Calcein release from DOPC:DOPG (1:3) LUVs by PuroB; H: Calcein release from DOPC LUVs by PuroB Positive control (+: LUVs treated with 1.0% Triton X-100; negative control (∅): untreated LUVs. Figure S3, a. Light and fluorescence microscopy of yeast cells (positive and negative controls). Untreated S. cerevisiae cells: A) Light microscopy; B) Fluorescence microscopy; S. cerevisiae cells treated with indolicidin (125 μg/mL, MIC level); C) Light microscopy; D) Fluorescence microscopy. Magnification 400×. b. Light and fluorescence microscopy of yeast cells treated with PuroA. S. cerevisiae cells treated with: PuroA 64 μg/mL: A) Light microscopy and B) Fluorescence microscopy; PuroA 125 μg/mL: C) Light microscopy and D) Fluorescence microscopy; PuroA 250 μg/mL: E) Light microscopy and F) Fluorescence microscopy; PuroA 500 μg/mL: G) Light microscopy and H) Fluorescence microscopy. Magnification 400×. MIC for PuroA against S. cerevisiae 125 μg/mL. c. Light and fluorescence microscopy of yeast cells treated with Pina-M. S. cerevisiae cells treated with: Pina-M 64 μg/mL: A) Light microscopy and B) Fluorescence microscopy; Pina-M 125 μg/mL: C) Light microscopy and D) Fluorescence microscopy; Pina-M 250 μg/mL: E) Light microscopy and F) Fluorescence microscopy; Pina-M 500 μg/mL: G) Light microscopy and H) Fluorescence microscopy. Magnification 400×. MIC for Pina-M against S. cerevisiae 250 μg/mL. d. Light and fluorescence microscopy of yeast cells treated with Pina-W→F 64 μg/mL: A) Light microscopy and B) Fluorescence microscopy; Pina-W→F 125 μg/mL: C) Light microscopy and D) Fluorescence microscopy; Pina-W→F 250 μg/mL: E) Light microscopy and F) Fluorescence microscopy; Pina-W→F 500 μg/mL: G) Light microscopy and H) Fluorescence microscopy. Magnification 400×. MIC for Pina-W→F against S. cerevisiae 250 μg/mL. e. Light and fluorescence microscopy of yeast cells treated with PuroB. S. cerevisiae cells treated with: PuroB 64 μg/mL: A) Light microscopy and B) Fluorescence microscopy; PuroB 125 μg/mL: C) Light microscopy and D) Fluorescence microscopy; PuroB 250 μg/mL: E) Light microscopy and F) Fluorescence microscopy;
PuroB 500 μg/mL; G) Light microscopy and H) Fluorescence microscopy. Magnification 400×. MIC for PuroB against S. cerevisiae 250 μg/mL, Figure S4, a. Interaction of PuroA, Pina-M, Pina-R39G, Pina-W→F, HinA and GSP-3D with plasmid DNA. Binding of peptide to DNA assessed by measuring the retardation of plasmid DNA (100 μg; pBluescript SK+) migration through an agarose gel. The peptide concentration indicated above each lane represents 0, 16, 32, 64, 125, 250 and 500 μg/mL. b. Interaction of PuroB, Pina-B, Pina-D, Pina-L, Pina-Q, HinB1, HinB1a and indolicidin with plasmid DNA. Binding of peptides to DNA assessed by measuring the retardation of plasmid DNA (100 μg; pBluescript SK+) migration through an agarose gel. The peptide concentration indicated above each lane represents 0, 16, 32, 64, 125, 250 and 500 μg/mL. Figure S5, Morphology of E. coli cells treated with peptides. The cells were incubated with peptides for 3 h at 37°C and observed using light microscopy at 1000× magnification under oil emersion.

References

1. Pauly A, Paretz B, Firenze E, Delcaux JA (2013) Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) Kernel Hardness: I. Current View on the Role of Puroindolines and Polar Lipids. Comprehensive Reviews in Food Science and Food Safety 12: 413–426.
2. Gautier M-F, Aleman M-E, Guirao A, Marion D, Jouahri P (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: DNA sequence analysis and developmental gene expression. Plant Molecular Biology 23: 45–57.
3. Marion D, Gautier M-F, Jouahri P, Puik M, Pézolt M, et al. (1994) Structure and function of wheat lipid binding proteins. In: Wheat: kernel proteins: molecular and functional aspects. Università degli Studi della Tuscia Consiglio Nazionale Delle Ricerche, Viterbo: 175–180.
4. Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the triadloid components puroindoline α and β. Proceedings in the National Academy of Sciences 95: 6262–6266.
5. Pauly A, Paretz B, Firenze E, Delcaux JA (2013) Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) Kernel Hardness: II. Implications for End-Product Quality and Role of Puroindolines Therein. Comprehensive Reviews in Food Science and Food Safety 12: 427–438.
6. Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Molecular Biology 66: 205–219.
7. Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Molecular Biology 66: 221–231.
8. Morris CF (2000) Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Molecular Biology 48: 633–647.
9. Dubreil I, Gaborit T, Bouchet B, Gallant DJ, Broekart WF, et al. (1998) Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non-specific lipid transfer protein (as LTP1) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Science 138: 121–135.
10. Capparelli R, Amoroso MG, Pahudon D, Iannaccone M, Faleri C, et al. (2005) Two plant puroindoline colocalize in wheat seed and are synergistically light against pathogens. Plant Molecular Biology 50: 857–864.
11. Miao Y, Chen L, Wang C, Wang Y, Zheng Q, et al. (2012) Expression, purification and antimicrobial activity of puroindoline A protein and its mutants. Amino Acids 1–9.
12. Capparelli R, Ventimiglia I, Pahudon D, Nicodemo D, Salvatore P, et al. (2007) Expression of recombinant puroindolines for the treatment of staphylococcal skin infections (Staphylococcus aureus). Journal of Biotechnology 128: 606–614.
13. Krishnamurthy K, Balconi C, Sherwood J, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Molecular Plant - Microbe Interactions 14: 1255–1260.
14. Faize M, Sours G, Dupuis F, Paris J, Gautier M-F, et al. (2004) Expression of wheat puroindolines reduces scab susceptibility in transgenic apple (Malus x domestica Borkh.). Plant Science 167: 347–354.
15. Luo L, Zhang J, Yang G, Li Y, Li K, et al. (2008) Expression of puroindoline a enhances leaf rust resistance in transgenic tetraploid wheat. Molecular Biology Reports 35: 195–200.
16. Kim KH, Feix L, Dyer AT, Grey W, Hogg AC, et al. (2012) Increased resistance to Puccinia recondita rostrata in transgenic wheat over-expressing puroindolines. Journal of Phytopathology 160: 245–247.
17. Jiang W, Demerec AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. Journal of Bacteriology 185: 4938–4947.
18. Phillips RL, Palombo EA, Panozzo JF, Bhave M (2011) Puroindolines, Pin alleles, hordeinlike and grain softness proteins are sources of bactericidal and fungicidal peptides. Journal of Cereal Science 53: 112–117.
19. Alfred RL, Palombo EA, Panozzo JF, Bariana H, Bhave M (2013) Stability of puroindoline peptides and effects on wheat rust. World Journal of Microbiology and Biotechnology 1–11.
20. Hancock REW, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends in Biotechnology 16: 82–88.
21. Jensen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clinical Microbiology Reviews 19: 491–511.
22. Tieleman V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Progress in Lipid Research 51: 149–177.
23. Kooijman M, Orsel R, Hamer RJ, Bekkers ACAPA (1998) The insertion behaviour of wheat puroindoline-a into dilauroylglycerylhydroxylamine. Journal of Cereal Science 28: 43–51.
24. Le Guernvé C, Seigneuret M, Marion D (1998) Interaction of the wheat endosperm lipid-binding protein puroindoline-a with phospholipids. Archives of Biochemistry and Biophysics 360: 179–186.
25. Charnet P, Molle G, Marion D, Rousset M, Lullien-Pellerin V (2003) Puroindolines form ion channels in biological membranes. Biophysical Journal 85: 2416–2426.
26. Llano A, Henriquez M, Minic J, Elmorjani K, Marion D, et al. (2006) Puroindoline-a and ω1-purothionin form ion channels in giant liposomes but exert different toxic actions on murine cells. FEBS Journal 273: 1710–1722.
27. Chen F, He ZH, Xia XC, Xia LQ, Zhang XY, et al. (2006) Molecular and biochemical characterisation of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theoretical and Applied Genetics 112: 400–409.
28. Giroux MJ, Morris CF (1997) A glycine to serine change in wheat puroindoline-a is associated with wheat grain hardness and low levels of starch-surface friabilin. Theoretical and Applied Genetics 95: 857–864.
29. Llamo F, Henriquez M, Minic J, Elmorjani K, Marion D, et al. (2006) Puroindoline-a and ω1-purothionin form ion channels in giant liposomes but exert different toxic actions on murine cells. FEBS Journal 273: 1710–1722.
30. Pan Z, Song W, Meng F, Xu L, Liu B, et al. (2004) Characterisation of genes encoding wheat grain hardness form Chinese cultivar GouCheng 8901. Cereal Chemistry 81: 287–289.
31. Chen F, He Z, Xia X, Llampo M, Morris CF (2000) A line to profline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theoretical and Applied Genetics 105: 857–864.
32. Schibli DJ, Nguyen LT, Kernaghan SD, Rekdal Ø, Vogel HJ (2006) Structure-function analysis of three protein potential relationships between antimicrobial activities, model membrane interactions, and their molecule-bound NMR structures. Biophysical Journal 91: 4413–4426.
33. Ames BN (1966) Assay of inorgan ic phosphate, total phosphate and phosphatases. In: Elizabeth F. Neufeld VG, editor. Methods in Enzymology: 1–11.
34. Bartlett GR (1959) Colorimetric Assay Methods for Free and Phosphorylated Glyceric Acids. Journal of Biological Chemistry 234: 469–471.

Acknowledgments

The authors are most grateful to A/Prof Jason Mackenzie (La Trobe University, Melbourne; present address University of Melbourne) for his help with imaging LUVs by TEM, and Dr James Wang (Swinburne University of Technology, Melbourne) for expert advice on imaging of yeast cells by SEM. We also thank the anonymous reviewers for their useful comments and suggestions.

Author Contributions

Conceived and designed the experiments: MB EP JP RA. Performed the experiments: RA. Analyzed the data: RA MB EP JP. Contributed reagents/materials/analysis tools: MB EP JP. Wrote the paper: MB RA EP JP.
35. Gonzalez CF, Provin EM, Zhu L, Ebbole DJ (2002) Independent and synergistic activity of synthetic peptides against thiabendazole-resistant *Fusarium sambucinum*. Phytopathology 92: 917–924.

36. Lundblad V, Struhl K (2008) Yeast. Current Protocols in Molecular Biology 13.0.1–13.0.4. In: Ausubel FM, editor. Michigan: Wiley Interscience.

37. Espinel-Ingroff A, Canton E (2007) Antifungal susceptibility testing of yeasts. In: Schwab R, editor. Antimicrobial Susceptibility Testing Protocols Hoboken: CRC, 173–207.

38. Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed *Saccharomyces cerevisiae* are permeable to propidium iodide. Environmental Microbiology 13: 163–171.

39. Chen P, Liu HH, Cui R, Zhang ZL, Pang DW, et al. (2008) Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol. Talanta 77: 262–266.

40. Hsu CH, Chen C, Jou ML, Yeh-Luen Lee A, Lin YC, et al. (2003) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Research 33: 4053–4064.

41. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Environmental Microbiology 13: 22–25.

42. Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEBS Microbiology Letters 160: 91–96.

43. Lukenhau J (1990) Regulation of cell division in *E. coli*. Trends in Genetics 6: 22–25.

44. Selsted ME, Novotny MJ, Morris WJ, Tang Y-Q, Smith W, et al. (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. The Journal of Biological Chemistry 267: 4292–4295.

45. Chou HT, Wen HW, Kuo TY, Lin CC, Chen WJ (2010) Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides 31: 1811–1820.

46. Falla TJ, Karunaratne DN, Hancock REW (1996) Mode of action of the antimicrobial peptide indolicidin. The Journal of Biological Chemistry 271: 19296–19303.

47. Evrard A, Lagarde V, Joudrier P, Guentier M-F (2008) Purindoline-a and purindoline-b interact with the *Saccharomyces cerevisiae* plasma membrane through different amino acids present in their tryptophan-rich domain. Journal of Cereal Science 48: 379–386.

48. Park CB, Kim HS, Kim SC (1998) Mechanism of antimicrobial action of indolicidin. FEBS Microbiology Letters 160: 91–96.

49. Donachie WD, Robinson AC (1987) Cell division: parameter values and the process. In: Neidhardt FC, editor. *Escherichia coli* and *Salmonella typhimurium* – Cellular and Molecular Biology. Washington, DC: American Society of Microbiology. 1578–1593.

50. Gunderson CW, Segall AM (2006) DNA repair, a novel antibacterial target: Holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. Molecular Microbiology 59: 1129–1148.

51. Fang B, Guo HY, Zhang M, Jiang L, Ren FZ (2013) The six amino acid antimicrobial peptide bLFcin6 penetrates cells and delivers siRNA. FEBS Journal 280: 1007–1017.
Author/s:
Alfred, RL; Palombo, EA; Panozzo, JF; Bhave, M

Title:
The Antimicrobial Domains of Wheat Puroindolines Are Cell-Penetrating Peptides with Possible Intracellular Mechanisms of Action

Date:
2013-10-02

Citation:
Alfred, R. L., Palombo, E. A., Panozzo, J. F. & Bhave, M. (2013). The Antimicrobial Domains of Wheat Puroindolines Are Cell-Penetrating Peptides with Possible Intracellular Mechanisms of Action. PLOS ONE, 8 (10), https://doi.org/10.1371/journal.pone.0075488.

Persistent Link:
http://hdl.handle.net/11343/244794

File Description:
published version

License:
CC BY