Mass Spectra of D, D_s Mesons using Dirac formalism with martin-like confinement potential

Manan Shah\(^1\), Bhavin Patel\(^2\)\(^\ast\) and P C Vinodkumar\(^\dagger\)

\(^1\)Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120, INDIA and
\(^2\)P. D. Patel Institute of Applied Sciences, CHARUSAT, Changa-388421, INDIA

Introduction

Remarkable progress at the experimental side, with various high energy machines such as BaBar, BELLE, B-factories, Tevatron, ARGUS collaborations, CLEO, CDF, DO etc., for the study of hadrons has opened up new challenges in the theoretical understanding of light-heavy flavour hadrons. The existing results on excited heavy-light mesons are partially inconclusive, and even contradictory in several cases. The predictions of masses of heavy-light system for low-lying $1S$ and $1P_J$ states of D and D_s mesons were known from experiment \(^1\) and few from the theory \(^2\)–\(^4\). Here we study the mass spectra of D and D_s mesons in a relativistic framework.

Theoretical Framework

The bound constituent quark and antiquark inside the meson are in definite energy states having no definite momenta. However one can find out the momentum distribution amplitude for the constituent quark and antiquark inside the meson immediately before their annihilation to a lepton pair. Though the colour confinement of quarks are understood in terms of multigluon exchanging at the non-perturbative regime of the hadronic size, it is not feasible to compute theoretically from the QCD first principles. Thus one assumes various confinement mechanism to study the hadronic properties. In the present study, we assume that the constituent quarks in a meson core is independently confined by an average Martin-like potential of the form\(^5\)

$$V(r) = \frac{1}{2}(1 + \gamma_0)(\lambda r^{0.1} + V_0)$$

(1)

To a first approximation, the confining part of the interaction is believed to provide the zeroth-order quark dynamics inside the meson core through the quark Lagrangian density

$$L_0^q(x) = \bar{\psi}_q(x) \left[\frac{i}{2} \gamma^\mu \partial_\mu - V(r) - m_q \right] \psi_q(x).$$

(2)

nL State	Present	Experiment
$1S^1S_1$	2013.3	D^* (2010)
$1S^0_0$	1874.0	D^* (2010)
$2S^2S_1$	2581.0	D^* (2600)
$2S^0_0$	2501.7	D (2550)
$3S^3S_1$	3088.9	-
$3S^0_0$	3031.5	-
$4S^4S_1$	3567.8	-
$4S^0_0$	3521.6	-
$1P^1P_1$	2455.1	D^*_1 (2460)
$1P^0_0$	2348.0	-
$1P^1P_2$	2276.6	D^*_2 (2400)
$1P^0_0$	2317.3	D_1 (2420)
$2P^2P_2$	2907.0	-
$2P^1P_2$	2834.4	-
$2P^0_0$	2786.0	-
$2P^1P_1$	2812.3	-

*Electronic address: mnshah09@gmail.com
†Electronic address: azadpatel2003@yahoo.co.in
‡Electronic address: p.c.vinodkumar@gmail.com
The normalized quark wave functions \(\psi(\vec{r}) \) obtained from Eqn (2) satisfies the Dirac equation given by

\[
[i\gamma^0 E_q - \gamma^i \vec{P}_i - m_q - V(r)] \psi_q(\vec{r}) = 0. \tag{3}
\]

The two component solution of Dirac equation can be written as

\[
\psi_{nlj}(\vec{r}) = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}
\]

where the positive and negative energy solutions are written as

\[
\psi_A^{(\pm)}(\vec{r}) = N_{nlj} \left(\begin{pmatrix} i g(\vec{r}) \\ i [\sigma \cdot \hat{r} f(\vec{r})] \end{pmatrix} \right) \gamma_{ljm}(\vec{r}) \tag{5}
\]

\[
\psi_B^{(-)}(\vec{r}) = N_{nlj} \left(\begin{pmatrix} i g(\vec{r}) \\ g(\vec{r}) \end{pmatrix} \right) (-1)^{j+m_j} \gamma_{ljm}(\vec{r}) \tag{6}
\]

and \(N_{nlj} \) is the overall normalization constant. The radial solutions \(f(r) \) and \(g(r) \) is obtained numerically to yield the energy eigen values. The parameters are fixed to get the ground state masses of \(D \) and \(D_s \) mesons. The meson radial wave function for \(qq \) combination is constructed with the respective quark and anti-quark wave functions given by Eqn. (5) and (6). The quark mass parameters \(m_c, m_{u,d} \) and \(m_s \) are taken as 1.27 GeV, 0.37 GeV and 0.4 GeV respectively.

Results and Discussion

The predicted S-wave masses of \(D \) and \(D_s \) mesons are in very good agreement with experimental results as given in Table III and II respectively. The predicted results of P-wave \(D \) meson states, \(1^3P_2 \) (2455.1 MeV) and \(1^3P_0 \) (2276.6 MeV) are in good agreement with experimental results of 2462.6 \(\pm \) 0.7 MeV and 2318 \(\pm \) 29 MeV respectively. The predicted results of P-wave \(D_s \) meson states \(1^3P_2 \) (2572.3 MeV), \(1^3P_1 \) (2433.7 MeV) and \(1^3P_0 \) (2341.3 MeV) are also good found in good agreement with experimental results 2571.9 \(\pm \) 0.8 MeV, 2459.6 \(\pm \) 0.6 MeV and 2317.8 \(\pm \) 0.6 MeV respectively.

Acknowledgments

The work is part of Major research project NO. F. 40-457/2011(SR) funded by UGC. One of the author (BP) acknowledges the support through Fast Track project funded by DST (SR/FTP/PS-52/2011).

References

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, (2012) 010001.
[2] S Godfrey and R Kokoski, Phys. Rev. D 43, (1991) 1679.
[3] E J Eichen, C T Hill and C Quigg, Phys. Rev. Lett. 71, (1993) 4116.
[4] D Ebert, R N Faustov and V O Galkin, Phys. Rev. D 57, (1998) 014027.
[5] N. Barik, B. K. Dash, and M. Das, Phys. Rev. D 86, (2012) 014006.
[6] A. M. Badalian, B. L. G. Bakker, Phys. Rev. D 84, (2011) 034006.

TABLE II: S-wave \(D_s \) \((c\bar{s})\) spectrum (in MeV).

State	Present Meson	Mass [1]	[6]	[7]
1S	\(1^S_0 \)	2112.3	2112.3 \(\pm \) 0.5	-111
1S	\(1^S_1 \)	1970.6	1968.49 \(\pm \) 0.32	-169
2S	\(2^S_0 \)	2684.4	2710 \(\pm \) 0.12	2728 \(\pm \) 371
2S	\(2^S_1 \)	2603.9	2638	2565 \(\pm \) 0.088
3S	\(3^S_0 \)	3195.1	-	3200 \(\pm \) 0.024
3S	\(3^S_1 \)	3136.9	-	3140 \(\pm \) 0.019
4S	\(4^S_0 \)	3676.0	-	3669
4S	\(4^S_1 \)	3629.3	-	3652
1P	\(1^P_0 \)	2572.3	2571 \(\pm \) 0.8	-2571
1P	\(1^P_1 \)	2433.7	2459 \(\pm \) 0.6	-2574
1P	\(1^P_2 \)	2341.3	2317 \(\pm \) 0.6	-2509
1P	\(1^P_3 \)	2240.4	2533 \(\pm \) 0.12	-2536
2P	\(2^P_0 \)	3023.2	-	3045 \(\pm \) 0.124
2P	\(2^P_1 \)	2927.7	-	3020 \(\pm \) 0.154
2P	\(2^P_2 \)	2864.1	-	2970 \(\pm \) 0.054
2P	\(2^P_3 \)	2905.4	-	3049 \(\pm \) 0.054

[7] D. Ebert, R. N. Faustov and V. O. Galkin, Eur. Phys. J. C 66 (2010) 197.
[8] P. Del A. Sanchez et al. (BABAR Collaboration), Phys. Rev. D 82, (2010) 111101.
[9] A.V. Evdokimov et al. (SELEX Collaboration), Phys. Rev. Lett. 93 (2004) 242001.