Search for Theta(++) Pentaquarks in the Exclusive Reaction $\gamma p \rightarrow K^+K^-p$

V Kubarovsky
M Battaglieri
R De Vita
J Goett
L Guo, et al.
Search for Θ^{++} Pentaquarks in the Exclusive Reaction $\gamma p \rightarrow K^+ K^- p$

V. Kubarovsky,1,2 M. Battaglieri,3 R. De Vita,3 J. Goett,1 L. Guo,6 G. S. Mutchler,6 P. Stoler,1 D. P. Weygand,2 P. Ambrozewicz,16 M. Anghinolfi,3 G. Asryan,39 H. Avakian,18 B. L. Berman,18 A. S. Biselli,5 S. Bouchigny,22 S. Boiarinov,2 R. Bradford,5 D. Branford,15 W. J. Briscoe,18 W. K. Brooks,2 S. Bültmann,33 V. D. Burkert,2 C. Butuceanu,38 J. R. Calarco,30 S. S. Careccia,33 D. S. Carman,32 S. Chen,7 H. Crannell,12 V. Crede,17 J. P. Cummings,1 R. De Masi,13 D. Dale,40 E. De Sanctis,21 P. V. Degtyarenko,2 A. Deur,2 K. V. Dharmawardane,33 C. Djalali,4 G. E. Dodge,33 J. Donnelly,19 D. Doughty,14,2 M. Dugger,9 O. P. Dzyubak,4 H. Egiyan,2,* K. S. Egiyan,39 L. Elouadrhiri,2 P. Eugenio,17 G. Fedotov,29 H. Funsten,38 M. Y. Gabrielyan,40 L. Gan,41 M. Garçon,13 A. Gasparian,47 G. Gavalian,30,33 G. P. Gilfoyle,34 K. L. Giovanetti,25 F. X. Girod,13 O. Glamazdin,26 J. T. Goetz,10 E. Golovach,29 A. Gonenc,19 C. I. O. Gordon,19 R. W. Gothe,4 K. A. Griffith,38 M. Guidal,22 N. Guler,33 V. Gyurjyan,2 C. Hadjidakis,22 K. Hafidi,8 R. S. Hakobyan,12 J. Hardie,14,2 M. Hicks,32 I. Hleiqawi,32 M. Holtrop,30 C. E. Hyde-Wright,33 Y. Ilieva,18 D. G. Ireland,19 B. S. Ishkhanov,29 E. J. Isupov,29 M. M. Ito,2 D. Jenkins,36 H. S. Jo,22 K. Joo,7 H. G. Juengst,18,4 J. D. Kelbie,19 M. Khandaker,31 W. Kim,27 A. Klein,33 F. J. Klein,12 A. V. Klimenko,33 M. Kossov,24 L. H. Kramer,16,2 J. Kuhn,5 S. E. Kuhn,33 S. V. Kuleshov,24 J. Lachnit,5,33 J. M. Laget,13,2 J. Langheinrich,4 D. Lawrence,28 T. Lee,30 Li J, K. Livingstone,19 H. Lu,5 MacMordich,22 N. Markov,2 B. McKinnon,19 B. A. Meeck,2 J. J. Melone,19 M. D. Mestayer,2 C. A. Meyer,5 T. Mibe,32 K. Mikhailov,24 R. Minehart,37 M. Mirazita,21 R. Miskimen,28 V. Mochalov,3 V. Mokeevo,29 L. Morand,13 S. A. Morrow,22,13 M. Moteabbed,16 P. Nadel-Turonski,18 J. Nakagawa,43 R. Nasseripour,16,4 S. Nicolai,22 G. Niculescu,25 I. Niculescu,25 B. B. Niczyporuk,2 M. R. Niroula,33 R. A. Niyyazov,2 M. Nozar,2 M. Osipenko,32,39 A. I. Ostrovidov,17 K. Park,27 E. Pasyuk,9 C. Paterson,14,19 J. Pierce,37 N. Pivnyuk,24 D. Pocanic,37 O. Pogorelo,24 S. Pozdniakov,24 J. W. Price,10,11 Y. Prok,37 D. Protopopescu,19 B. A. Raue,16,2 G. Riccardi,17 G. Ricco,3 M. Ripani,3 B. G. Ritchie,8 F. Ronchetti,21 G. Rosner,19 P. Rossi,21 F. Sabatié,13 C. Salgado,31 J. P. Santoro,12,2 V. Sapunenko,2 R. A. Schumacher,5 V. S. Serov,24 Y. G. Sharabian,2 V. N. Shvedunov,29 E. S. Smith,2 L. C. Smith,37 D. I. Sober,12 A. Stavinsky,24 S. S. Stepanyan,27 S. Stepanyan,27 B. E. Stokes,17 I. I. Strakovsky,18 S. Strauch,18,3 M. Taiuti,3 D. J. Tedeschi,4 A. Teymurazyan,40 U. Thoma,21 A. Tkabladze,18 S. Tkachenko,33 L. Tudor,34 C. Tur,4 M. Ungaro,7 M. F. Vineyard,35 A. V. Vlassov,24 L. B. Weinstein,33 M. Williams,5 E. Wolin,2 M. H. Wood,43 A. Yegevian,2 L. Zana,30 J. Zhang,33 and B. Zhao7

(The CLAS Collaboration)

1Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
3Istituto Nazionale di Fisica Nucleare, Sezione di Genova, and Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
4University of South Carolina, Columbia, South Carolina 29208, USA
5Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6Rice University, Houston, Texas 77005-1892, USA
7University of Connecticut, Storrs, Connecticut 06269, USA
8Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA
9Arizona State University, Tempe, Arizona 85287-1504, USA
10University of California at Los Angeles, Los Angeles, California 90095-1547, USA
11California State University, Dominguez Hills, California 90747-0005, USA
12Catholic University of America, Washington, D.C. 20064, USA
13CEA-Saclay, Service de Physique Nucléaire, F91191 GIF-sur-Yvette, France
14Christopher Newport University, Newport News, Virginia 23606, USA
15Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
16Florida International University, Miami, Florida 33199, USA
17Florida State University, Tallahassee, Florida 32306, USA
18The George Washington University, Washington, D.C. 20052, USA
19University of Glasgow, Glasgow G12 8QQ, United Kingdom
20Idaho State University, Pocatello, Idaho 83209, USA
21INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
22Instituto de Física Nuclear ORSAY, Orsay, France
23Institute for High Energy Physics, Protvino, 142281, Russia

0031-9007/06/97(10)/102001(5) 102001-1 © 2006 The American Physical Society
The reaction $\gamma p \rightarrow pK^+K^-$ was studied at Jefferson Lab with photon energies from 1.8 to 3.8 GeV using a tagged photon beam. The goal was to search for a Θ^{++} pentaquark, a narrow, doubly charged baryon state having strangeness $S = +1$ and isospin $I = 1$, in the pK^+ invariant mass spectrum. No statistically significant evidence of a Θ^{++} was found. Upper limits on the total and differential cross section for the reaction $\gamma p \rightarrow K^-\Theta^{++}$ were obtained in the mass range from 1.5 to 2.0 GeV/c^2, with an upper limit for a narrow resonance with a mass $M_{\Theta^{++}} = 1.54$ GeV/c^2 of about 0.15 nb, 95% C.L.. This result places a stringent upper limit on the Θ^{++} width $\Gamma_{\Theta^{++}} < 0.1$ MeV/c^2.

Since the first reports of possible observations of Θ^+ pentaquarks, there has been a great deal of speculation about its isospin structure [1–9]. If it were an isovector ($I = 1$), one might expect to observe its isospin partners, in particular Θ^0 and Θ^{++}. On the experimental side, the existence of a Θ^{++} has not been resolved. Gibbs [10], analyzing K^+p total cross sections [11,12], finds no evidence for an isovector resonance. In other experiments involving electromagnetic probes, CLAS [13,14], ZEUS [15], SAPHIR [16], and HERMES [17] reported that no statistically significant Θ^{++} decaying to pK^+ were observed, even though each reported positive observations for candidate Θ^+ peaks. On the other hand, a recent report by the STAR collaboration [18] finds a positive signal for a candidate Θ^{++}.

All previous experiments suffered from low statistics and did not report any quantitative limits on either the production cross section or width of the Θ^{++} baryon. The Θ^{++} and Θ^+ would be expected to have similar widths if they belong to an isovector triplet. Evaluations of the Θ^+ width from existing data is consistent with a width in the range 0.6–1 MeV/c^2 [19–22]. Even a Θ^+ width as small as 1 MeV/c^2 is a challenge for any theoretical model [23,24]. This Letter reports the result of a high statistics experiment, which yields about $1 \times 10^6 \Lambda(1520)$s, in search of the production of the Θ^{++} state in the reaction $\gamma p \rightarrow K^-\Theta^{++}$, with $\Theta^{++} \rightarrow pK^+$. The upper limit of the cross section is obtained, from which a quantitative estimate of the upper limit of the width an order of magnitude smaller than 1 MeV is made. This makes it likely that if the $\Theta^+(1540)$ exists, it is an isosinglet. In addition, the experiment searched for other members of the expected 27 multiplet in a wide mass range, with negative results.

The experiment was performed at the Jefferson Lab—CLAS facility. Details of the design and operation of the CLAS spectrometer and its components may be found in Ref. [25] and references within. Reference [26] discusses the experimental setup used in the present study in greater detail. An energy tagged bremsstrahlung beam produced by a continuous 60 nA electron beam of energy $E_0 = 4.02$ GeV, impinging on a gold radiator of thickness 8×10^{-5} radiation lengths, yielded incident photons in the energy range 1.8 to 3.8 GeV. The photon energy for each event was determined by means of a tagger placed upstream of the CLAS spectrometer. The photon energy resolution was approximately $0.1\% \times E_0$. The reaction target consisted of liquid hydrogen contained in a cylindrical mylar cell of length 40 cm.

Charged particles were detected by the CLAS spectrometer. Particle tracking utilized multwire drift chambers and a toroidal magnetic field. Particle identification was primarily obtained by comparing the particle momentum with that calculated from the track length and flight.
time between scintillator detectors around the target and scintillator detectors surrounding the CLAS spectrometer. The CLAS momentum resolution is of the order of 0.5–1% (σ) depending on the kinematics. The detector’s geometrical acceptance for positively charged particles in the relevant kinematic region is about 40%, and several times smaller for low energy negative hadrons, which can be lost at forward angles because they are bent out of the acceptance by the toroidal field. For example, the number of K− events at forward angles because they are bent out of the acceptance in the angular range of 15° is about 40%, and several times smaller.

In the first (Method 1), a Gaussian peak was constructed in the spectrum to eliminate the contribution of the background. The dominant peak due to the pK−K+ reaction is the prominent peak seen at the top of Fig. 1. The lower panel displays the peak mass spectra after all cuts were applied are almost an order of magnitude greater. The background is somewhat higher than in Case 1, but the statistics in the exclusive pK−K+ final state are almost an order of magnitude greater.

Figure 1 shows the invariant masses of the K+K− and pK− pairs for the events, in which only proton and K− were detected by CLAS. The K− momentum was calculated from the missing momentum of the pK+ pair and its energy as $E_{K^-} = \sqrt{p_{\text{missing}}^2 + m_{K^+}^2}$. The φ peak is clearly seen at the top of Fig. 1. The lower panel displays the pK− invariant mass spectrum. The most notable feature in the spectrum is the prominent peak due to the Λ(1520). There are nearly 1×10^6 events corresponding to the Λ(1520) peak for Case 2 and an order of magnitude fewer in Case 1. In addition to greater statistics, Case 2 has the advantage that the undetected K− can be emitted at any value of $\cos\theta_{\text{CM}}$, where θ_{CM} is the angle between the electron beam direction and pK+ system in the center-of-mass system, so that the acceptance is significant in the entire range of $\cos\theta_{\text{CM}}$, from −1 to +1, and t-channel processes are not suppressed. On the other hand, in Case 1, the acceptance in $\cos\theta_{\text{CM}}$ for detecting the K− becomes smaller near $\cos\theta_{\text{CM}} = -1$, so that t-channel processes are suppressed. The trade-off for selection of Case 2 is that the additional background due to pion contamination is significantly greater than for Case 1.

In all further analysis, cuts were applied in the pK− and K+K− mass spectra to eliminate the contribution of the Λ(1520) and φ(1020), respectively, (indicated in Fig. 1 by vertical arrows).

The pK+ mass spectra after all cuts were applied are shown for Case 1 and Case 2, in the upper and lower panels of Fig. 2. In neither case is there any visual evidence for any narrow structures which could be interpreted as due to a ϑ++ peak. The insets show expanded views in the region where one might expect a φ(1020) partner of an isovector ϑ++ located near $M = 1.54$ GeV/c². The pK+ mass resolution $\sigma(M_{\phi^{++}})$ varies as a function of the mass from 2 MeV/c² at $M_{\phi^{++}} = 1.5$ GeV/c², up to 5.5 MeV/c² at $M_{\phi^{++}} = 2.0$ GeV/c².

As for the Λ(1520), the acceptance of the undetected K− is significant at all center-of-mass angles. Thus, invariant mass spectra for pK+ pairs were also obtained for discrete intervals of the center-of-mass angles of the emitted K− (or pK+ pairs) covering the entire angular range. No indication of a ϑ+++ peak is observed in any angular region.

Since no positive signal was observed, upper limits for the cross sections were determined for Case 2. Case 2 was chosen rather that Case 1 since there are no gaps in the acceptance, and statistics are much higher. Two methods were employed. In the first (Method 1), a Gaussian peak corresponding to $N_{\phi^{++}}$ and a polynomial background were fit to the pK− spectrum for an assumed ϑ+++ mass, $M_{\phi^{++}}$. Then a Feldman-Cousins [28] algorithm was applied to the number under the fit peak and background in a ±3σ interval to obtain an upper limit of Θ^{++} events ($N_{\Theta^{++}}$) at the 95% confidence level ($C.L.$). This was repeated as a function of $M_{\Theta^{++}}$. In the second method (Method 2), the

![Figure 1](image-url)
\[\sigma_{\Theta^{++}}^{95\%} = \frac{N_{\Theta^{++}}^{95\%}}{L(M_{\Theta^{++}}) \epsilon(M_{\Theta^{++}}) \text{BR}(\Theta^{++} \rightarrow pK^+)} \]

where \(L(M_{\Theta^{++}}) \) is the integrated luminosity for photons in the energy range from threshold for a given mass to 3.8 GeV, \(\epsilon(M_{\Theta^{++}}) \) is the \(pK^+ \) acceptance, and \(\text{BR}(\Theta^{++} \rightarrow pK^+) \) is the branching ratio for \(\Theta^{++} \rightarrow pK^+ \), which is assumed to equal 1 for an isovector \(\Theta^{++} \).

This procedure was repeated as a function of \(M_{\Theta^{++}} \) and as a function of \(\cos \theta_{\text{CM}} \) at \(M_{\Theta^{++}} = 1.54 \text{ GeV}/c^2 \). The upper limits obtained in Method 1 and Method 2 were found to be consistent. Since the mass resolution \(\sigma(M_{\Theta^{++}}) \) varies approximately linearly, increasing with \(M_{\Theta^{++}} \), the variation in \(\sigma(M_{\Theta^{++}}) \) and the acceptance \(\epsilon(M_{\Theta^{++}}) \) as a function of \(M_{\Theta^{++}} \) were taken into account in determining the cross section upper limit \(\sigma_{\Theta^{++}}^{95\%} \). The CLAS acceptance, \(\epsilon(M_{\Theta^{++}}) \) for the detection of the \(\Theta^{++} \), was obtained by means of a detailed Monte Carlo simulation. The simulation assumed \(t \)-channel dominance in which the \(K^- \) is mainly produced at forward angles in the center-of-mass system. Assuming that the properties of the \(t \)-channel \(K^- \) would be similar to that of the \(K^+ \) in \(\Lambda(1520) \) production, the energy dependence and the \(t \)-slope were taken from the experimental \(\Lambda(1520) \) photoproduction reaction. The Monte Carlo study showed that the acceptance was almost flat over the full range of \(\cos \theta_{\text{CM}} \). Thus, even for extremely different event generators, \(r \)-channel, and \(u \)-channel \(\Theta^{++} \) photoproduction, the calculated acceptance differ by less than 10%. The \(u \)-exchange distribution was generated the same way as \(r \)-channel exchange except that the center-of-mass angles of the \(K^- \) and \(\Theta^{++} \) were interchanged. The result of the simulation is that the CLAS acceptance with all the applied analysis cuts varied from 6% at \(M_{\Theta^{++}} = 1.5 \text{ GeV}/c^2 \), up to 16% at \(M_{\Theta^{++}} = 2.0 \text{ GeV}/c^2 \).

The estimated systematic errors in acceptance were combined with those of the detector inefficiencies, photon flux normalization, and \(\Theta^{++} \) mass resolution to give an overall estimated 15% systematic error in the resulting upper limit. This error was not included in the estimation of the upper limit.

The resulting upper limit of the scans in \(M_{\Theta^{++}} \) and \(\cos \theta_{\text{CM}} \) for Case 2 using Method 1 is shown in Fig. 3. For both methods, we find the average upper limit in the mass region where an isospin partner of a \(\Theta^+ \) is expected, near 1.54 GeV/c^2, at approximately 0.15 nb, and not much different for masses from 1.5 to 2.0 GeV/c^2, the range of photon energies accessed in this experiment.
The upper limit of the ratio $\Theta^{++}/\Lambda(1520)$ was also obtained from the data. The average cross section for $\Lambda(1520)$ photoproduction was calculated from the number of $\Lambda(1520)$ events in a manner similar to that described for $\sigma_{\Theta^{++}}^{95\%}$ above. The result is $\sigma_{\Theta^{++}}/\sigma_{\Lambda(1520)} < 2.3 \times 10^{-4}$ at 95% C.L. averaged over the photon energy range of this experiment.

The Θ^{++} production cross section may be directly connected with the Θ^{++} width $\Gamma_{\Theta^{++}} \sim \Gamma_{\Theta^{--}}$ (see, for example, Ref. [5]). Such a small cross section implies a very narrow resonance width. However, an upper limit on the width would be highly model dependent, differing by as much as an order of magnitude for existing approaches [5,29–32]. For example, for an isovector pentaquark of $J^P = 1/2^+$, the upper limit on the width implied by the present result for the Regge approach [29] would be $\Gamma_{\Theta^{++}} < 0.1$ MeV/c^2, while for the effective Lagrangian approach [5], $\Gamma_{\Theta^{++}} < 0.01$ MeV/c^2.

In conclusion, the present experiment finds no evidence of the formation of a doubly charged pentaquark in the exclusive channel $\gamma p \rightarrow K^- \Theta^{++} \rightarrow K^- K^+ p$. An upper limit on the cross section was obtained over a mass range from 1.5 to 2.0 GeV/c^2, with a value of about 0.15 nb at 95% C.L. near 1.54 GeV/c^2 where a Θ^{++} isovector partner of the Θ^{--} might be expected. A conservative estimate of the upper limit on the width is $\Gamma_{\Theta^{++}} < 0.1$ MeV/c^2. The comparison of this limit with the evaluation from existing data of the Θ^{++} width (~1 MeV/c^2) makes it likely that the Θ^+ baryon (if it exists) has no isotopic partner and thus is an isovector singlet state. Although the present experiment does put very strong limits on the mechanisms which would be required to produce an isovector pentaquark, we point out that it does not access a reaction in which a pentaquark may be produced in association with an additional pion, as in Ref. [14].

We would like to thank W. Roberts and Ya. I. Azimov for valuable communications. We would like to acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at JLab that made this experiment possible. This work was supported in part by the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique and the Commissariat à l’Energie Atomique, the U.S. Department of Energy, the National Science Foundation, and the Korea Research Foundation. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC05-84ER40150.

*a*Present address: University of NH, Durham, NH 03824-3568, USA

*b*Present address: Old Dominion University, Norfolk, VA 23529, USA

1. H. Walliser and V. B. Kopeliovich, Zh. Eksp. Teor. Fiz. 124, 483 (2003) (JETP 97, 433 (2003)).
2. S. Capstick, P. R. Page, and W. Roberts, Phys. Lett. B 570, 185 (2003).
3. Bin Wu and Bo-Qiang Ma, Phys. Rev. D 69, 077501 (2004).
4. J. Ellis, M. Karliner, and M. Praszalowicz, J. High Energy Phys. 05 (2004) 002.
5. W. Roberts, Phys. Rev. C 70, 065201 (2004).
6. V. B. Kopeliovich, Usp. Fiz. Nauk 174, 323 (2004) [Phys. Usp. 47, 309 (2004)].
7. Shi-Lin Zhu, Phys. Rev. Lett. 91, 232002 (2003).
8. T. Nishikawa et al., Phys. Rev. D 71, 016001 (2005).
9. Ya. I. Azimov et al., Eur. Phys. J. A 26, 79 (2005).
10. W. Roberts, Phys. Lett. B 70, 045208 (2004).
11. T. Bowen et al., Phys. Rev. D 2, 2599 (1970).
12. A. S. Carroll et al., Phys. Lett. B 45, 531 (1973).
13. H. G. Juengst (CLAS Collaboration), Nucl. Phys. A 754, 265 (2005).
14. V. Kubarovsky et al. (CLAS), Phys. Rev. Lett. 92, 032001 (2004).
15. S. Chekanov et al. (ZEUS), Phys. Lett. B 591, 7 (2004).
16. J. Barth et al. (SAPHIR Collaboration), Phys. Lett. B 572, 127 (2003).
17. A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 585, 213 (2004).
18. Huan Z. Huang (STAR Collaboration), Int. J. Mod. Phys. A 21, 825 (2006), to appear in proceedings of International Conference on QCD and Hadron Physics at Beijing, China, June 16-20, 2005.
19. R. A. Arndt, I. I. Strakovsky, and R. L. Workman, Phys. Rev. C 68, 042201 (2003).
20. R. N. Cahn and G. H. Trilling, Phys. Rev. D 70, 045208 (2004).
21. A. Sibirtsev et al., Phys. Lett. B 599, 230 (2004).
22. K. Abe et al., Phys. Lett. B 632, 173 (2006).
23. B. L. Ioffe and A. G. Oganesian, JETP Lett. 80, 386 (2004).
24. R. L. Jaffe and A. Jain, Phys. Rev. D 71, 034012 (2005).
25. B. A. Mecking et al. (CLAS Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 503, 513 (2003).
26. R. De Vita et al. (CLAS Collaboration), Phys. Rev. D 74, 032001 (2006).
27. Y. G. Shkarabian et al., Nucl. Instrum. Methods Phys. Res., Sect. A 556, 246 (2006).
28. G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
29. H. Kwee et al., Phys. Rev. D 72, 054012 (2005).
30. C. M. Ko and W. Liu, nucl-th/0410068.
31. Y. Oh et al., Phys. Rep. 423, 49 (2006).
32. S. Nam et al., Phys. Lett. B 633, 483 (2006).