Substrate Depth Influences Sedum Plant Community on a Green Roof

Kristin L. Getter1,3 and D. Bradley Rowe2

Department of Horticulture, Michigan State University, A228 Plant and Soil Sciences Department, East Lansing, MI 48824

Additional index words. vegetated roof, stonecrop, eco-roof

Abstract. Because the waterproofing membrane beneath green roofs is estimated to last at least 45 years, long-term plant performance beyond initial establishment is critical. Plants that survive initially on a green roof may not exist in the long term because of variability in climate and other factors. This study evaluated the effect of green roof substrate depth on substrate moisture, plant stress as measured by chlorophyll fluorescence, and plant community development and survival of 12 Sedum species over 4 years in a midwestern U.S. climate during 4 years of growth. Plugs of 12 species of Sedum were planted on 8 June 2005 and evaluated biweekly for absolute cover (AC). Most species exhibited greater growth and coverage at a substrate depth of 7.0 cm and 10.0 cm relative to 4.0 cm. For the species evaluated, substrate depths of at least 7.0 cm are highly recommended. AC of Sedum was significantly greater at this substrate depth than at 4.0 cm. Mean volumetric moisture content of the three substrate depths followed the same pattern as AC. When averaged over time, the 4.0-cm substrate depth held less moisture than depths of 7.0 or 10.0 cm, whereas the 7.0- and 10.0-cm substrate depths were statistically the same. Species exhibiting the greatest AC at all substrate depths were S. floriferum, S. sexangulare, S. spurium ‘John Creech’, and S. stefco. In general, species that are less suitable at these substrate depths are S. ‘Angelina’, S. cauticola ‘Lidakense’, S. eversii, S. ochroleucum, and S. reflexum ‘Blue Spruce’.

In 2007, 223,666 m² (2,407,525 ft²) of green roofs, or vegetated roofs, were installed in North America representing a 30% increase over 2006 (Green Roofs for Healthy Cities, 2008). By placing plants on rooftops, the vegetated footprint that was previously destroyed during building construction is at least partially replaced. Increased adoption of this roofing technology may be the result of the many benefits they provide such as improved stormwater management (Carter and Jackson, 2007; Getter et al., 2007; Hilten et al., 2008, Jarrett and Berghage, 2008), energy conservation (Sailor, 2008; Santamouris et al., 2007), mitigation of the urban heat island effect (Takebayashi and Moriyama, 2007), increased longevity of roofing membranes (Kosareo and Ries, 2007), a better return on investment than traditional roofs (Clark et al., 2008), reduced noise and air pollution (Van Renterghem and Botteldooren, 2008; Yang et al., 2008), increased urban biodiversity (Baumann, 2006; Brenneisen, 2006) as well as providing a more aesthetically pleasing environment to experience (Getter and Rowe, 2006; Oberndorfer et al., 2007).

For green roofs to be successful as well as to meet client expectations, plant selection is critical. Species selected must survive extremes in roof microclimate. Green roofs are likely to experience drought and severe fluctuations in root zone temperatures as a result of shallow substrates as well as high temperatures and windy conditions. These conditions combined with heat radiating from the building will likely alter hardness zones and soil moisture content, thus impacting which species are able to survive.

Successful candidate species for extensive green roofs [i.e., green roofs with substrate depths of 10.0 cm (3.93 in) or less] must exhibit characteristics such as easy propagation, rapid establishment, and high groundcover density (Dunnell and Kingsbury, 2004; Getter and Rowe, 2006; Snodgrass and Snodgrass, 2006). Low-growing plants that spread and cover the substrate in a short period of time reduce potential erosion problems, inhibit weeds, and provide improved aesthetics. Although rapid coverage is important, the ability of plant species to self-sustaining reduces the need for future replanting and maintenance. Species that are long-lived, that reseed themselves, or spread vegetatively should continue to provide ample coverage [60% or greater, as defined by FLL guidelines (FLL, 1995)] as long as environmental conditions are favorable.

The genus Sedum is a popular choice among extensive green roofing projects as a result of its tolerance for drought (Durham et al., 2006; Wolf and Lundholm, 2008), shallow substrate adaptability (Durham et al., 2007; Emillson, 2008), persistence (Köhler, 2006; Monterusso et al., 2005; Rowe et al., 2006), and ability to limit transpiration (Kluge, 1977; Lee and Kim, 1994), and store water (Gravatt, 2003; Teeri et al., 1986). However, even for such a well-suited genus, substrate depth can influence the rate of substrate coverage and subsequent plant growth (Durham et al., 2007; Getter and Rowe, 2008; Rowe et al., 2006). Deeper substrates are beneficial for both increased waterholding capacity (VanWoert et al., 2005a, 2005b) and as a buffer in fluctuating winter temperatures (Boivin et al., 2001). Despite the cultural limitations of shallow substrate depths, they are often desirable because of lighter roof loads.

Plant stress resulting from shallow substrate and other conditions on a roof can be recorded by measuring chlorophyll fluorescence. This technique is used to quantify the efficiency of the photosynthetic apparatus (Maxwell and Johnson, 2000). Photon energy absorbed by a chlorophyll molecule can be used to fuel photosynthesis, dissipated as heat, or re-emitted as fluorescence. Measurement of the latter is used to indicate how efficient the former two processes are proceeding. Fluometers are used to measure this value, usually reporting the ratio (Fv/Fm) of variable fluorescence (Fv) to maximum fluorescence (Fm) that typically ranges from 0.70 to 0.83 with values less than 0.60 indicating photosynthetic stress (Ritchie, 2006).

Many studies for plant survival on green roofs collect data for 1 to 2 years (Durham et al., 2007; Emillson and Rolf, 2005; Kircher, 2004; MacDonagh et al., 2006; Nagase and Dunnett, 2008). Because the waterproofing membrane beneath green roofs is estimated to last 45 years or longer (Kosareo and Ries, 2007), long-term plant performance beyond the first few years’ growth is important. Plants that survive initially on a green roof may not exist there in the long term because of variability in climate and other factors. Therefore, the objective of this study was to evaluate the effect of substrate depth on substrate moisture, plant stress as measured by chlorophyll fluorescence, and plant community development and survival of 12 Sedum species over a period of 4 years.

Materials and Methods

Green roof platforms. Three roof platforms with dimensions of 2.44 m × 2.44 m (8.0 ft × 8.0 ft) were used at the Michigan State University Horticulture Teaching and Research Center (East Lansing, MI). Each platform was situated at ground level and replicated a commercial extensive green roof, including insulation, protective and waterproofing membrane layers. Construction details are outlined in VanWoert et al. (2005a).

The wood-frame platforms included sides that extend 20.3 cm (8.0 in) above the platform deck. Each platform was divided into three equal sections measuring 0.77 m × 2.40 m (2.53 ft × 7.87 ft) using wood dividers. The platform sides and dividers were also covered with waterproofing membrane. Each platform was set at a 2% slope and was placed...
with the low end of the slope facing south to maximize sun exposure.

DRAINAGE SYSTEM AND VEGETATION CARRIER. Each platform was constructed with a Xero Flor XF108 drainage mat (Wolfgang Behrens Systementwicklung, GmbH, Groß Ippener, Germany) installed over the waterproofing system, which allows excess water to flow off the roof. For additional waterproofing capacity, a 0.75-cm (0.26-in) thick moisture retention fabric (Xero Flor XF159) capable of retaining 5.92 kg·m⁻² of water was placed over the drainage layer followed by the vegetation carrier (Xero Flor XF301). Growing substrate was placed on the vegetation carrier at three different depths [4.0 cm, 7.0 cm, or 10.0 cm (1.6, 2.8, and 3.9 in)]. Initially, the substrate consisted of 86% sand, 10% silt, and 4% clay and had a bulk density of 1.37 g·cm⁻³ and a waterholding capacity at 0.01 MPa of 16.05%. Further details of the initial physical and chemical properties of the substrate are detailed in Getter and Rowe (2008).

Plant species. The 12 species tested included Sedum ‘Angelina’ (crooked stonecrop), Sedum cauticola ‘Lidakensle’ (stonecrop), Sedum eversii (stonecrop), Sedum floriferum (kamtschatka stonecrop), Sedum hispanicum (Spanish stonecrop), Sedum ochroleucum (European stonecrop), Sedum reflexum ‘Blue Spruce’ (crooked stonecrop), Sedum sarmentosum (stringy stonecrop), Sedum sediforme (pale stonecrop), Sedum sexangulare (tasteless stonecrop), Sedum spurium ‘John Creech’ (creeping sedum), and Sedum stefco (stonecrop). Plants were obtained from Emory Knoll Farms (Street, MD) as plugs (120 cm²; 72 flat) that were established in a standard propagation mix of peat, perlite, and vermiculite (Super-Fine Germination Media; Farfard, Inc., Agawam, MA). Plugs were planted on 8 June 2005 with four plants in 12 rows. Each species was planted four times randomly in each section resulting in plugs spaced 17.0 cm (6.7 in) apart from each other and platform wells. All plots were fertilized [Nitrlicte controlled-release fertilizer 18N–6P–8K type 120 (Agrivert, Webster, TX) at 100.0 g·m⁻²] and watered to field capacity by hand on the day of planting. No further irrigation was provided.

Table 1. Mean absolute cover ± SDs of 12 Sedum species cultivated at three substrate depths (4.0, 7.0, and 10.0 cm) at the end of four growing seasons (2005 to 2008).

Species	Week 15	Week 67	Week 120	Week 172
S. Angelina	0.0052 ± 0.0045 a ABC	0.0182 ± 0.0045 B BC	0.0104 ± 0.0119 ab AB	0.0002 ± 0.0045 a AB
S. cauticola	0.0000 ± 0.0000 A a			
S. eversii	0.0000 ± 0.0000 A a	0.0130 ± 0.0026 A AB	0.0104 ± 0.0180 a AB	0.0104 ± 0.0045 a AB
S. floriferum	0.0013 ± 0.0016 BC	0.1016 ± 0.0035 BC	0.0104 ± 0.0180 a AB	0.0052 ± 0.0045 a AB
S. hispanicum	0.0000 ± 0.0000 a A	0.0469 ± 0.0028 A CD	0.0234 ± 0.0027 a B	0.0104 ± 0.0045 a AB
S. ochroleucum	0.0026 ± 0.0045 ab AB	0.0078 ± 0.0078 AB	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A
S. reflexum Blue Spruce	0.0000 ± 0.0000 A a	0.2016 ± 0.0018 B BC	0.0234 ± 0.0027 a B	0.0104 ± 0.0045 a AB
S. sarmentosum	0.0729 ± 0.0163 ab C	0.0130 ± 0.0119 a AB	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A
S. sediforme	0.0052 ± 0.0045 ABC	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A
S. sexangulare	0.0104 ± 0.0119 a BC	0.1120 ± 0.0296 B DE	0.2214 ± 0.0813 b C	0.2301 ± 0.0979 b C
S. spurium John Creech	0.0182 ± 0.0119 a CD	0.1172 ± 0.0413 B DE	0.1719 ± 0.0668 b C	0.2138 ± 0.0592 b C
S. stefco	0.0130 ± 0.0045 a C	0.2292 ± 0.0627 B D	0.3698 ± 0.0325 b C	0.3984 ± 0.0547 b C

Species	Week 15	Week 67	Week 120	Week 172
S. Angelina	0.0078 ± 0.0078 a AB	0.0599 ± 0.0239 B BC	0.0339 ± 0.0197 B B	0.0104 ± 0.0119 B A
S. cauticola	0.0052 ± 0.0045 a AB	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A
S. eversii	0.0156 ± 0.0156 ab BC	0.0312 ± 0.0207 BC	0.0130 ± 0.0119 B	0.0104 ± 0.0045 a AB
S. floriferum	0.0443 ± 0.0090 a DE	0.1536 ± 0.0180 b EF	0.3880 ± 0.0226 b D	0.3880 ± 0.0226 b D
S. hispanicum	0.0156 ± 0.0156 ab BC	0.0156 ± 0.0078 BC	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A
S. ochroleucum	0.0026 ± 0.0045 a AB	0.0182 ± 0.0045 a BCD	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A
S. reflexum Blue Spruce	0.0026 ± 0.0045 a AB	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A	0.0000 ± 0.0000 a A
S. sarmentosum	0.0164 ± 0.0156 ab DE	0.1120 ± 0.0296 B DE	0.2214 ± 0.0813 b C	0.2301 ± 0.0979 b C
S. sexangulare	0.0026 ± 0.0045 ab CD	0.1745 ± 0.0430 B EF	0.3823 ± 0.0512 b D	0.3823 ± 0.0512 b D
S. spurium John Creech	0.0260 ± 0.0119 a CD	0.1458 ± 0.0197 B EF	0.3385 ± 0.0180 b C	0.3802 ± 0.0251 b D
S. stefco	0.0260 ± 0.0197 a CD	0.2161 ± 0.0722 B EF	0.2552 ± 0.0705 b C	0.2396 ± 0.0759 b C

Cover reported in weeks, in which Week 15 = 23 Sept 2005; Week 67 = 19 Sept 2006; Week 120 = 24 Sept 2007; Week 172 = 25 Sept 2008. Absolute cover was calculated for each species at each substrate depth as the total number of point frame contacts divided by the number of data collection points. Mean separation in rows and columns for each species by least significant difference (P = 0.05). Lowercase letters in rows denote differences over time within individual substrate depths and species (n = 12). Uppercase letters in columns denote differences among species (n = 12). SE was ± 0.0975 and ± 0.1757 for rows and columns, respectively.
This planting arrangement resulted in a split-plot design that was arranged in randomized complete blocks with two factors replicated three times. The main plot was substrate depth [4.0, 7.0, and 10.0 cm (1.6, 2.8, and 3.9 in)] and the subplot factor was plant species, which had 12 treatments, each replicated four times within a subplot for a total of 48 plants per subplot depth per plot.

Data collection and analysis. A transect (a stainless steel point frame) was used every 2 weeks during the first three growing seasons and monthly in the fourth growing season to measure community composition and change (Waite, 2000). The point frame had internal measurements of 0.77 m × 1.2 m (2.5 ft × 3.9 ft) and had eight strings (50 pound Berkley Gorilla Super Braid Fishing Line; Berkley, Spirit Lake, IA) vertically and eight strings horizontally to create 64 measurement points. The point frame sat directly on top of the platform sides secured by finishing nails that allowed the frame to be positioned in the exact same spot every time. A stainless steel skewer was placed vertically at each measuring point and each species the skewer contacted was recorded up to three canopy layers. Substrate moisture and chlorophyll fluorescence data were collected throughout the last two growing seasons. Substrate moisture measurements were monitored by inserting a theta probe (ML2x; Delta-T Devices, Ltd., Cambridge, U.K.) with 6.0-cm (2.4-in) rods into the media until they were completely buried. Measurements were collected at random times each week in triplicate in each subplot. Chlorophyll fluorescence measurements were collected at six different times (21 May 2007, 18 June 2007, 2 Aug. 2007, 29 May 2008, and 20 Aug. 2008) using a Hansatech plant efficiency analyzer (PEA; Hansatech Instruments, Ltd., Norfolk, U.K.). These measurement dates were selected to cover a wide range of environmental conditions, including active growth and drought stress during the growing season. Leaves from each plant were dark-adapted for 20 min before measurement. Maximum quantum efficiency of photosystem II was recorded (Fv/Fm). Three single leaf blades of each surviving species were randomly selected in each subplot and excised from the plant to be dark-adapted and measured. This was necessary because the PEA clips were not secure on the leaf of most species while still attached to the whole plant.

Data analysis. Absolute cover (AC) was calculated for each species at each substrate depth as the total number of contacts recorded divided by the number of data collection points. Data were then analyzed as mean AC using repeated measures. Although original means are presented, all AC values were transformed before analysis using a log transformation to stabilize the variance and normalize the data set (Underwood, 1998). Significant differences between treatments were determined using multiple comparisons (PROC MIXED, SAS Version 8.02; SAS Institute). Chlorophyll fluorescence data were analyzed by PROC MIXED, least significant differences (SAS Version 8.02; SAS Institute).

Results and Discussion

Four points in time (Weeks 15, 67, 120, and 172) were chosen for comparing growth that represent the end of each growing season (before first frost). At a substrate depth of 4.0 cm, four species exhibited no significant growth between the end of the first and fourth growing seasons (‘Angelina’, ‘Caouticola Lidakense’, ‘Ewersii’, and ‘Ochroleucum’), whereas at 7.0 cm, five species (‘Angelina’, ‘Caouticola Lidakense’, ‘Ewersii’, ‘Ochroleucum’, and ‘Rutifolium’) fit this category (Table 1; Fig. 1). At the 10.0-cm substrate depth, there were six such species (‘Angelina’, ‘Caouticola Lidakense’, ‘Ewersii’, ‘Ochroleucum’, ‘Rutifolium’, and ‘Sediforme’). As a result, at their respective substrate depths, all of these species have zero or near zero AC by Week 172. At each substrate depth, there were also species that decreased in AC across the four growing seasons, also resulting in zero AC by Week 172 (Table 1; Fig. 1). At substrate depths of 4.0 cm (‘Sarmentosum and ‘Sediforme’) and 10.0 cm (‘Hispanicum and ‘Sediforme’).
S. sarmentosum had three species (S. cauticola ‘Angelina’, S. hispanicum ‘Blue Spruce’, and S. stefco) with the 4.0-cm substrate depth having an additional two species (S. hispanicum and S. reflexum ‘Blue Spruce’). For all species, the increase in AC was only significant between the first and second growing seasons. This perhaps indicates that by the end of the second growing season, the plant community had reached a mature or stable state.

Results for the first growing season, as previously published, demonstrated that by the end of the first growing season (Week 19) at all three substrate depths, S. sarmentosum exhibited a much higher AC than all other species (Getter and Rowe, 2008; Fig. 1). However, subsequent growing seasons produced very different results, highlighting the importance of long-term studies. For the 4.0-cm substrate depth, this species remained at near zero AC for the remaining growing seasons. At the 7.0-cm and 10.0-cm substrate depths, however, this species represents more than half of the coverage by the end of the second growing season, has a slow recovery in the third growing season to represent nearly 20% of coverage, but then falls to near zero AC at the end of the fourth growing season.

It is possible that the reason for S. sarmentosum’s eventual failure at all three substrate depths is the result of incorrect hardiness zone classification for this species. Minimum air temperatures were lower during the second winter (–22.0°C) and had a longer duration of extreme cold (33 d less than –10°C) as compared with the first winter (–19.9°C; 20 d less than –10°C) in which this species successfully recovered (Fig. 2). East Lansing, MI, is classified as Zone 5 on the USDA plant-hardiness map, a value corresponding to an average minimum temperature between –26 and –29°C (–20 to –10°F) (Cathey, 1990). Plants that are classified with hardiness zones less than or equal to a geographical area should in theory survive in that climate (assuming all other plant requirements are met). Sedum sarmentosum is categorized as a Zone 5 species (Snodgrass and Snodgrass, 2006), but typically species are assigned a hardiness zone based on observation only or based on how related species have performed in the past. Hardiness zones are also meant for plants growing at ground level. Although initial work with this species indicated that it was able to overwinter successfully when given enough establishment time before first frost (Getter and Rowe, 2007), this current study shows that S. sarmentosum is likely unsuitable for this climate. In climates with warmer winters, it is possible that this species may cover a majority of the roof, as suggested by first-year data here. However, this situation poses a threat in that an unusual cold spell may completely wipe out S. sarmentosum resulting in many bare spots on the roof.

Differences in growth as measured by AC across the sampled substrate depths and time may be partially explained by the habit of the species themselves. Some species such as S. ‘Angelina’, S. cauticola ‘Lidakense’, S. sarmentosum, S. sexangular, S. spurium ‘John Creech’, and S. stefco with the 4.0-cm substrate depth having an additional two species (S. hispanicum and S. reflexum ‘Blue Spruce’). For all species, the increase in AC was only significant between the first and second growing seasons. This perhaps indicates that by the end of the second growing season, the plant community had reached a mature or stable state.

Table 2. Mean absolute cover ± SDs of 12 Sedum species cultivated at three substrate depths (4.0, 7.0, and 10.0 cm) reported on Week 172 (25 Sept. 2008).a

Species	4.0 cm	7.0 cm	10.0 cm
S. Angelina	0.0052 ± 0.0045 a	0.0104 ± 0.0119 a	0.0104 ± 0.0119 a
S. cauticola ‘Lidakense’	0.0000 ± 0.0000 a	0.0000 ± 0.0000 a	0.0000 ± 0.0000 a
S. eversii	0.0182 ± 0.0316 a	0.0130 ± 0.0119 a	0.0078 ± 0.0135 a
S. floriferum	0.2891 ± 0.0639 a	0.3880 ± 0.0296 b	0.5599 ± 0.0502 c
S. hispanicum	0.0391 ± 0.0435 a	0.0000 ± 0.0000 a	0.0000 ± 0.0000 a
S. ochroleucum	0.0000 ± 0.0000 a	0.0000 ± 0.0000 a	0.0000 ± 0.0000 a
S. reflexum ‘Blue Spruce’	0.0104 ± 0.0045 a	0.0000 ± 0.0000 a	0.0000 ± 0.0000 a
S. sarmentosum	0.0000 ± 0.0000 a	0.0443 ± 0.0325 a	0.0521 ± 0.0709 a
S. sediforme	0.0000 ± 0.0000 a	0.0000 ± 0.0000 a	0.0000 ± 0.0000 a
S. sexangular	0.2031 ± 0.0979 a	0.2839 ± 0.0163 b	0.1901 ± 0.0554 a
S. spurium ‘John Creech’	0.2318 ± 0.0592 a	0.3802 ± 0.0251 b	0.3333 ± 0.0726 b
S. stefco	0.3984 ± 0.0547 b	0.3896 ± 0.0759 a	0.1875 ± 0.1447 a

*aAbsolute cover was calculated for each species at each substrate depth as the total number of point frame contacts divided by the number of data collection points. Mean separation in rows for each species by least significant difference (P ≥ 0.05). Lowercase letters denote comparisons within the same row (n = 12) with se ± 0.0146.

sarmentosum), there were two such species. The 7.0-cm substrate depth had three species (S. cauticola ‘Lidakense’, S. hispanicum, and S. sarmentosum).
abundant followed by *Creech*’, and *S. sexangulare* followed by most abundant at the 4.0-cm substrate depth. However, relative abundance differed between substrate depths. For example, *S. spurium* tentatively exhibited the greatest AC (Table 2).

Substrate volumetric moisture content (m3/m3) ± SEs for three substrate depths (4.0, 7.0, and 10.0 cm) averaged over two growing seasons (2007 and 2008). Uppercase letters represent mean separation by least significant difference ($P \leq 0.05$). Lowercase letters denote comparisons over time within individual substrate depths ($n = 12$). Uppercase letters in columns denote differences among depths ($n = 12$).

These same four species are also the only four species that were influenced by substrate depth at the end of four growing seasons (Week 172; Table 2). *Sedum floriferum* is the only species exhibiting significant differences in AC at all three substrate depths. The remaining three species primarily see the difference between 4.0 cm and 7.0 cm, but not between 7.0 cm and 10.0 cm.

When AC is averaged over species, all depths demonstrated a statistically significant increase in AC across time (Table 3). AC for the 4.0-cm substrate depth increased from 0.1406 at Week 15 to 1.1953 at Week 172, whereas AC for the 10.0-cm substrate depth increased from 0.4036 to 1.3411. With the exception of Week 15, the other times all showed significant substrate depth effects within sampled times, but only between 4.0 cm and 7.0 cm, not between 7.0 cm and 10.0 cm. This indicates that for the surviving and most abundant species, substrate depths greater than 7.0 cm gain no benefit in terms of abundance as measured with a point frame. However, at deeper substrate depths, these plants would likely be healthier, contain greater biomass, and be less susceptible to adverse environmental conditions.

Mean volumetric moisture content of the three substrate depths follows the same pattern as AC (Fig. 3). Although extremely variable, when averaged over time, the 4.0-cm substrate depth held less moisture than the 7.0- or 10.0-cm depths. The 7.0- and 10.0-cm substrate depths were statistically the same. The observation that deeper extensive green roof substrates consistently had higher moisture content than shallower substrates is consistent with similar studies (Liesecke, 1998; VanWoert et al., 2005a, 2005b). In addition, it appears that initially after a rain event, the 4.0-cm substrate depth dries out faster than either the 7.0- or the 10.0-cm depths (Fig. 4). This greater water availability at the deeper substrate depths may explain why the 7.0-cm and 10.0-cm substrate depths had higher AC than the 4.0-cm depth. Another factor may be the result of substrate temperature differences. Boivin et al. (2001) found that shallower extensive green roof substrates experienced much more severe temperature fluctuations than deeper substrates. During the growing season, shallower substrates will likely experience higher soil temperatures, which in turn will influence plant growth (Bouma et al., 1997; Prasad et al., 2000). This is exacerbated by the fact that lower AC of the 4.0-cm substrate depth exposes more substrate to direct sun resulting in higher substrate temperatures. In addition, some species are more suited for these temperature or water fluctuations than others. Durham et al. (2007) found that *S. album* was the only species of 25 that exceeded 1.5 cm3 of growth per day at a substrate depth of 2.5 cm (1.0 in). At a substrate depth of 5.0 cm (2.0 in) and 7.5 cm (3.0 in), this increased to three species and eight species, respectively.

Chlorophyll fluorescence data did not follow the same pattern as AC and substrate moisture content. Mean F_i/F_m values were not significantly different at 0.795, 0.779, and 0.781 for substrate depths of 4.0 cm, 7.0 cm, and 10 cm, respectively. There were also very few differences between species within the same depth (data not shown). This may be because measurements for chlorophyll fluorescence occurred during the third and fourth growing seasons only, whereby three (*Sedum cauticola* ‘Lidakense’, *Sedum ochroleucum*, and *Sedum sediforme*) of the 12 initial species had zero AC (i.e., no plants to take measurements on). Had chlorophyll fluorescence data been taken during the first growing season, perhaps noticeable differences would have been detected between species that ultimately survived the 4-year study and those that did not. In addition, at individual measuring

Table 3. Mean absolute cover ± SDs averaged over species cultivated at three substrate depths (4.0, 7.0, and 10.0 cm) over the 2005 to 2008 growing seasons. *^a^*

Depth	Week 15	Week 67	Week 120	Week 172
4.0 cm	0.1406 ± 0.0282 a A	0.6797 ± 0.2115 a A	1.0286 ± 0.1864 b A	1.1953 ± 0.1151 c A
7.0 cm	0.3333 ± 0.0119 a A	1.3912 ± 0.0722 bc B	1.4479 ± 0.0798 b B	1.3594 ± 0.0078 c B
10.0 cm	0.4036 ± 0.0508 a A	1.4557 ± 0.0607 b B	1.4661 ± 0.0369 b B	1.3411 ± 0.0430 c B

*^a^*Cover reported in weeks, in which Week 15 = 23 Sept. 2005; Week 67 = 19 Sept. 2006; Week 120 = 24 Sept. 2007; Week 172 = 25 Sept. 2008. Absolute cover was calculated for each species at each substrate depth as the total number of point frame contacts divided by the number of data collection points. Mean separation in rows for each depth by least significant difference ($P \leq 0.05$). Lowercase letters denote comparisons over time within individual substrate depths ($n = 12$). Uppercase letters in columns denote differences among depths ($n = 12$). se was ± 0.0251 and ± 0.0904 for rows and columns, respectively.
times, which represent the driest portions of the growing season (18 June 2007, 2 Aug. 2007, and 20 Aug. 2008), mean chlorophyll fluorescence values of individual species never fell below 0.60, indicating very little, if any, stress to the photosynthetic system (Ritchie, 2006). Other research has established the same trend for many species in this genus. In a controlled greenhouse watering study, Durman et al. (2006) found that three Sedum species maintained active photosynthetic capacity for at least 88 d without water. This may at least partially explain why Sedum species are such good candidates for extensive green roofs.

These results show the importance of substrate depth on plant performance as well as long-term evaluation of species. Of the substrate depths and species evaluated in this article, substrate depths of at least 7.0 cm are highly recommended. AC was significantly greater at this substrate depth relative to the shallower depth of 4.0 cm. Species exhibiting the greatest AC at all substrate depths were S. floriferum, S. sexangulare, S. spurium ‘John Creech’, and S. stefco. In general, species that are less suitable are S. ‘Angelina’, S. cauticola ‘Lidakense’, S. eversii, S. ochroleucum, and S. reflexum ‘Blue Spruce’.

Literature Cited

Baumann, N. 2006. Ground-nesting birds on green roofs in Switzerland. Preliminary observations. Urban Habitats 4:37–50.

Boivin, M., M. Lamy, A. Gosselin, and B. Dansereau. 2004. Planting green roofs and living walls. Timber Press, Inc., Portland, OR.

Bunno, N.A. 2006. Space for urban wildlife: Designing green roofs as habitats in Switzerland. Urban Habitats 4:27–36.

Cathey, H.M. 1990. USDA plant hardiness zone map. USDA Agric. Res. Serv. Misc. Publ. 1475.

Carter, T. and C.R. Jackson. 2007. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 80:84–94.

Clark, C., P. Adriaens, and F.B. Talbot. 2008. Green roof valuation: A probabilistic economic analysis of environmental benefits. Environ. Sci. Technol. 42:2155–2161.

Dunnett, N. and N. Kingsbury. 2004. Plants growing roofs and living walls. Timber Press, Inc., Portland, OR.

Durman, A.K., D.B. Rowe, and C.L. Rugh. 2006. Effect of watering regimen on chlorophyll fluorescence and growth of selected green roof plant taxa. HortScience 41:1623–1628.

Emilsson, T., A.K. Durman, and C.L. Rugh. 2007. Effect of substrate depth on initial coverage, and survival of 25 succulent green roof plant taxa. HortScience 42:588–595.

Emilsson, T. 2008. Vegetation development on extensive vegetated green roofs. Influence of substrate composition, establishment method and species mix. Ecol. Eng. 33:265–277.

Emilsson, T. and K. Rolf. 2005. Comparison of establishment methods for extensive green roofs in southern Sweden. Urban Forestry & Urban Greening 3:103–111.

FLL, E. (Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau), 1995. Guidelines for the planning, execution and upkeep of green-roof sites. Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau, Bonn, Germany.

Getter, K.L. and D.B. Rowe. 2006. The role of extensive green roofs in sustainable development. HortScience 41:1276–1285.

Getter, K.L. and D.B. Rowe. 2007. Effect of substrate depth and planting season on sedum plug survival on green roofs. J. Environ. Hort. 25:95–99.

Getter, K.L. and D.B. Rowe. 2008. Media depth influences Sedum green roof establishment. Urban Ecosyst. 11:361–372.

Hilten, R.N., T.M. Lawrence, and E.W. Tollner. 2008. Vegetation development on two extensive green roofs in Berlin. Urban Forestry & Urban Greening 3:103–111.

Jarrett, A.R. and R.D. Berghage. 2008. Annual and individual green roof stormwater response models. In: Proc. of 6th North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Baltimore, MD30 April–2 May 2008. The Cardinal Group, Toronto, Canada.

Kluge, M. 1977. Is Sedum 10-15? P-43. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO.

Lee, K.S. and J. Kim. 1994. Changes in crassulacean acid metabolism to prolonged drought in Sedum spp. and native taxa for green roof applications. HortScience 40:391–396.

Mihalakakou, A. Synnefa, A. Hatzibiros, and P. Patargias. 2007. Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece. Energy 32:1781–1788.

Snodgrass, E. and L. Snodgrass. 2006. Green roof design = Bedrock bluff prairie greenroofs. J. Sound Vibrat. 317:781–799.

Stephenson, R. 2002. Sedum: Cultivated stonecrop. Timber Press, Inc., Portland, OR.

Takebayashi, H. and M. Moriyama. 2007. Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ. 42:2971–2979.

Teeri, J.A., M. Turner, and J. Gurevitch. 1986. The response of leaf water potential and crassulacean acid metabolism to prolonged drought in Sedum rubrotinctum. Plant Physiol. 81:678–680.

Underwood, A.J. 1998. Experiments in ecology: Their logical design and interpretation using analysis of variance. University Press, Cambridge, UK.

Van Renterghem, T. and D. Botteldooren. 2008. Numerical evaluation of sound propagating over green roofs. J. Sound Vibrat. 317:781–799.
VanWoert, N.D., D.B. Rowe, J.A. Andresen, C.L. Rugh, R.T. Fernandez, and L. Xiao. 2005a. Green roof stormwater retention: Effects of roof surface, slope, and media depth. J. Environ. Qual. 34:1036–1044.
VanWoert, N.D., D.B. Rowe, J.A. Andresen, C.L. Rugh, and L. Xiao. 2005b. Watering regime and green roof substrate design affect Sedum plant growth. HortScience 40:659–664.
Waite, S. 2000. Statistical ecology in practice: A guide to analyzing environmental and ecological field data. Prentice Hall, Harlow, UK.
Wilson, W.J. 1960. Inclined point quadrats. New Phytol. 59:1–8.
Wolf, D. and J.T. Lundholm. 2008. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecol. Eng. 33:179–186.
Yang, J., Q. Yu, and P. Gong. 2008. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 42:7266–7273.