Trends of leprosy in children under fifteen years in Rondonópolis-MT (2007 to 2016)

Abstract

Leprosy is a notifiable disease and should be controlled because it is considered a public health problem. The trend analysis is relevant for contributing to concrete actions of epidemiological surveillance, in order to interrupt the transmission chain. Therefore, it is possible that there is an increasing tendency of these cases in hyperendemic regions. The objective of this study was to analyze the trends of leprosy variables in children under 15 in Rondonópolis (MT) from 2007 to 2016. This was an epidemiological study of the ecological type, with a quantitative and descriptive approach. The data are from the secondary source, the Notification System of Reported Diseases (SINAN). The variables studied were sociodemographic and clinical. For analysis, polynomial regression models were used for the time series. The trends were considered statistically significant when the models presented a p-value <0.05. The Shapiro-Wilk test (S-W) was applied to verify normality of the model-adjusted residuals. To explain the percentage (%) of the variability, the coefficient of determination (R²) was presented and software R. The results indicate a total of 139 cases, with a decreasing tendency for males (R²: 0.40, S-W:0.95) and for the operational class an increasing tendency for multibacillary cases (R²: 0.35: S-W:0.95). Despite the high number of cases, most of the trends were statistically stable and decreasing, indicating that the actions of leprosy surveillance in the municipality are being effective in controlling the disease in this age group.

Palavras-chave: Leprosy. Child. Adolescent. Epidemiology.

INTRODUCTION

Known for the manifestation of dermatoneurological signs and symptoms and for lesions on the skin with the loss of sensation, leprosy is caused by Hansen bacillus (*Mycobacterium leprae*), transmitted through the elimination of the respiratory bacillus from an untreated person with the disease in the infecting form, through prolonged contact frequently in the home environment. In a few days after the beginning of the use of medication, the person is no longer transmitting this pathology, therefore, early diagnosis is essential for the treatment to be started immediately, since it is curable in all cases, avoiding thus physical disabilities.

Leprosy has an incubation period of 2 to 7 years, and can even last up to 10 years, and therefore it is less common to reach children under 15 years of age. The detection of these pediatric cases indicates that, still, there are individuals that were not detected and,

DOI: 10.15343/0104-7809.2018420410321049
consequently, the active transmission of the pathology occurs. Therefore, the occurrence of new cases in children under fifteen is one of the main epidemiological indicators of leprosy control.

The main signs and symptoms are whitish, brownish or reddish spots, tingling, bumps and cramps in the arms and legs that progress to numbness and changes in and/or loss of sensitivity. This last change is a characteristic that differentiates leprosy from other dermatological diseases.

In 2014, 213,899 cases of leprosy were reported in the regions of Africa, the Americas, the Eastern Mediterranean, Southeast Asia and the Western Pacific, of which 18,869 cases were in children under 15 years of age. In Brazil, leprosy is hyperendemic in some states, such as Mato Grosso, which in the period from 2001 to 2013 presented a total of 2,455 cases in children under 15 years of age. In Brazil, leprosy is hyperendemic in some states, such as Mato Grosso, which in the period from 2001 to 2013 presented a total of 2,455 cases in children under 15 years of age. In 2015, there were 93 new cases/100 thousand inhabitants and 21.3 new cases/100 thousand inhabitants in this age group.

Some studies have addressed the trend of leprosy in children under 15 years of age, demonstrating the importance of the epidemiological study to propose actions aimed at preventing and reducing cases of this pathology.

Hence, the problem addressed was: what is the trend in leprosy cases in children under fifteen years of age in Rondonópolis (MT) from 2007 to 2016. The analysis of the trend of leprosy in this age group is relevant, since this study may contribute so that the interprofessional team and the epidemiological surveillance of leprosy in the municipality may adopt measures for a more effective control, interrupting the transmission chain of the pathology.

In this context, this study aims to analyze the temporal trends of leprosy cases in children under fifteen years of age in Rondonópolis (MT) from 2007 to 2016.

METHODS

This was an ecological type epidemiological study with a quantitative and descriptive approach. The study was set in the municipality of Rondonópolis, Mato Grosso (MT), from January 2007 to December 2016, encompassing for ten years of study, which can be considered as a robust analysis of the data referring to the disease. This municipality has an area of 4,686.622 km², a population density of 47.00 hab/km², has a GDP per capita of R$ 36102.58 and a municipal human development index of 0.755. In the last census conducted in 2010, the municipality had a total population of 195,476 people. However, in 2017, it had an estimated 222,316 inhabitants, according to data from the Brazilian Institute of Geography and Statistics (IBGE). It currently has 36 family health strategy units registered, according to data from the National Register of Health Establishments (CNES).

The data are from a secondary source, related to the monthly data series of the required notification disease, leprosy, in children under 15 years, available in the Notification System of Reported Diseases (SINAN). All the data from the reported cases of leprosy in this age group of the years under study were included. Those excluded from the analysis, were those who ignored and/or were left blank, those who had a diagnostic error in the database, had transferred to another state or country, were duplicates and/or were inconsistent data. These records consist of a form standardized by the Ministry of Health (MS) that have socio-demographic and clinical information, which must be filled out by health professionals.

The analysis variables studied on leprosy included temporal characteristics (years), socio-demographic (sex: male and female and age range: <1 year, between 1-4 years, between 5-9 and 10-14 years) and clinical variables (physical disability at the time of diagnosis: grade zero, grade I, grade II, not evaluated, left blank; operational classification: paucibacillary (PB) and multibacillary (MB); mode of detection: referral, spontaneous demand, collective examination, contact exams, undetermined, tuberculoid, Virchowian, and the therapeutic regimen (MDT/PB/06 doses and MDT/MB/12 doses).

For descriptive analysis, we selected the variables according to case records per year in the city under study. For the analysis of the leprosy trend, polynomial regression models were used for the time series. The regression equation
applied best described the relationship between the dependent variable Y (sociodemographic and clinical) and the independent variable X (year of study). In order to avoid autocorrelation between the terms of the regression equation, we used the strategy of centralizing the variable year, turning it into a calendar year, with the years 2007 and 2016 as the midpoint of the series.

The first model tested was the simple linear regression (log Y = β0 + β1X1) and, later, the higher order models: second degree or parabolic (log Y = β0 + β1X1 + β2X1²) and third degree (log Y = β0 + β1X1 + β2X1² + β3X1³).

The trends were considered statistically significant when the models presented a p-value <0.05. When the rate was positive, the time series was considered increasing; when negative, it was considered decreasing; and stationary when there was no significant difference between its value and zero.

The model that presented significance in all the parameters added was considered the best one. Afterwards, the Shapiro-Wilk test (S-W) was applied to verify the normality of the model-adjusted residuals. To explain the percentage (%) of the variability described by the model adjusted to the data, the coefficient of determination (R²) was presented. When two models were statistically similar to the same locality, the simpler model was chosen, that is, of smaller order.

The data were analyzed using the R software (R Core Team 2017).

Population data from the Census (2010) were used to calculate the detection coefficient in the population from 0 to 14 years old due to the lack of population data in the IBGE of those under 15 years of age in the remaining years.

The number of new cases of leprosy in children under 15 residing in the municipality of Rondonópolis in 2010 was divided by the population in the same period and place and multiplied by 1,000, resulting in the calculated mean detection coefficient of the disease.

Although it is secondary data of a public domain, this research was submitted to the Research Ethics Committee and approved by registration CAAE 54226316.1.0000.5541 and opinion number 1.571.782, thus respecting the ethical aspects of research with human beings, in accordance with Resolution No. 466/2012.

RESULTS

In the municipality of Rondonópolis (state of Mato Grosso do Sul), the prevalence of cases of leprosy in children younger than 15 years of age reported and registered in SINAN between 2007 and 2016 was 139, with the highest number of cases in 2008 and 2011 (n = 19; 13.66%) and in 2016 the lowest register (n = 5; 3.5%). The mean was 13.9 cases per year (FIGURE 1). The mean coefficient of incidence of the disease in this age group was 30.02/100 thousand inhabitants in the period of 2010.

Regarding the trend of leprosy variables in children under 15 in Rondonópolis (MT), (Table 3) refers to the stability of the cases according to the female sex; stability for all age groups except for those less than one year in which the model was not adjusted; decreasing trend towards zero degree of physical disability and increasing trend of multibacillary cases; stability in detection modes; decreasing tendency in the tuberculoid clinical form and there was no significant adjustment for the therapeutic regimen variable.
Figure 1 – Distribution of leprosy cases among children under 15, 2007 to 2016, Rondonópolis, Mato Grosso, Brazil, 2018.

Table 1 – Prevalence of leprosy cases in children under 15 according to temporal characters. Rondonópolis, MT, Brazil, 2007-2016.

VARIABLES	TOTAL	2007-2011	2012-2016	
Year				
2007	18	12.94	83	59.71
	56	40.29	139	100

Trends of leprosy in children under fifteen years...
Table 2 – Relationship between the presence of dyslipidemia and hypertension in patients with DM2, Teresina, Piauí, Brazil, 2016.

VARIABLES	TOTAL	2007-2011	2012-2016			
	N	%	N	%		
Sex						
Male	64	46.04	38	45.78	26	46.43
Female	75	53.96	45	54.22	30	53.57
Less than 1 year	-	-	-	-	-	-
Age Group						
01 to 04 years	14	10.07	13	15.66	1	1.78
05 to 09 years	57	41.01	33	39.76	24	42.86
10 to 14 years	68	48.92	37	44.58	31	55.36
Degree of physical disability						
Grau zero	102	73.38	76	91.57	26	46.43
Grau I	6	4.32	1	1.2	5	8.93
Grau II	3	2.16	-	-	3	5.36
Not Evaluated	19	13.67	6	7.23	13	23.21
Blank	9	6.47	-	-	9	16.07
Operational class						
Multibacillary	62	44.6	21	25.3	41	73.21
Paucibacilar	77	55.4	62	74.7	15	26.79
Forwarding	33	23.74	22	26.51	11	19.64
Spontaneous demand	39	28.06	25	30.12	14	25
Detection Mode						
Collective Examination	16	11.51	7	8.43	9	16.07
Contact examination	38	27.34	29	34.94	9	16.07
Blank	12	8.63	-	-	12	21.43
Other Modes	1	0.72	-	-	1	1.79
Dimorphic	52	37.41	21	25.3	31	55.35
Clinical Form						
Undetermined	12	8.63	9	10.84	3	5.37
Tuberculoid	70	50.36	53	63.86	17	30.35
Virchowian	5	3.6	-	-	5	8.93
Therapeutic scheme						
MDT/MB 12 doses	63	45.32	22	26.5	41	73.21
MDT/PB 6 doses	74	53.24	60	72.29	14	25
Ignored	1	0.72	-	-	1	1.79
Other alternative regimens	1	0.72	1	1.21	-	-
Table 3 – Trend of leprosy variables in children under 15 years old in Rondonópolis (MT), Brazil, 2007-2016.

Variables	Model	**R2**	**P-value**	Tendency	S-W(P-Value)
Sex					
Male	y=6.40-0.57x	0.40	0.0447	Decreasing	0.95 (0.55)
Female	y=7.50-0.31x	0.14	0.2740	Stable	0.96 (0.76)
Age Group					
Less than 1 year	-	-	-	-	-
01 to 4 years	y=1.40-0.36x	0.36	0.0672	Stable	0.92 (0.3647)
5 to 9 years	y=5.70-0.19x	0.03	0.6110	Stable	0.93 (0.4934)
10 to 14 years	y=6.80-0.43x	0.10	0.3614	Stable	0.93 (0.4826)
Degree of physical disability					
Grade zero	y=10.20-1.71x	0.69	0.0031	Decreasing	0.92 (0.3971)
Grade I	-	-	-	-	-
Grade II	-	-	-	-	-
Not Evaluated	y=1.90+0.32x	0.24	0.1468	Stable	0.94 (0.5528)
Blank	-	-	-	-	-
Operational class					
Multbacillary	y=6.20+0.67x	0.35	0.04983	Increasing	0.95 (0.7002)
Paucibacilar	y=7.70-1.64x	0.88	0.0004	Decreasing	0.92 (0.3305)
Forwarding	y=3.30-0.27x	0.22	0.1732	Stable	0.93 (0.4150)
Spontaneous demand	y=3.90-0.42x	0.24	0.1458	Stable	0.84 (0.0518)
Clinical Form					
Collective Examination	y=1.60+0.05x	0.01	0.8285	Stable	0.85 (0.0592)
Contact examination	y=3.80-0.75x	0.23	0.1619	Stable	0.90 (0.2379)
Blank	y=1.20-0.37x	0.46	0.0305	Decreasing	0.95 (0.7276)
Other Modes	-	-	-	-	-
Dimorphic	y=5.20+0.30x	0.16	0.2530	Stable	0.88 (0.1497)
Forma Clínica					
Undetermined	y=1.20-0.19x	0.23	0.1626	Stable	0.97 (0.8973)
Tuberculoid	y=7.00-1.25x	0.64	0.0053	Decreasing	0.96 (0.8212)
Virchowian	y=0.50+0.16x	0.21	0.1820	Stable	0.88 (0.1311)

Modelo y: Indicadores epidemiológicos da hanseníase para o município de Rondonópolis (MT) no período de 2007 a 2016. Modelo não ajustado para menores de um ano. R2: Coeficiente de determinação.
In Rondonópolis-MT during the studied period, there were more cases of leprosy in children under 15 years of age in 2008 and 2011. A study conducted by Monteiro et al. also stated that in 2008 there were more recorded cases of leprosy in this age group in the state of Tocantins. On the other hand, in Arcoverde (PE) in 2008, during the 2005 to 2014 period, there was only 1 reported case and no cases in 2011.

The mean annual number of cases in this age group was 13.9 in the city under study. It should be noted that in order to achieve the elimination of leprosy, the WHO recommends less than one case of leprosy for every 10,000/inhab. Therefore, Rondonópolis (MT) is still somewhat distant from this goal, but through public policies, campaigns and health education through interdisciplinary action, this goal can be achieved. The annual detection rate for the population aged 0 to 15 years in the municipality of Rondonópolis-MT in the period of 2010 was 30.02/100 thousand, being characterized as hyperendemic according to the parameters of the Ministry of Health that characterizes hyperendemic as ≥10.00 per 100 thousand inhabitants.

In the present study, of the 139 cases of leprosy in children under 15, there was a prevalence observed among females (53.96%) and in the 10 to 14 year old age group (48.92%), thus corroborating studies carried out in the municipality of Juazeiro (BA) in the period from 2001 to 2010, and also in the municipality of Arcoverde (PE) from 2005 to 2014, where there was also a prevalence among females (55.86%, 60.9%) and the 10 to 14 year old age group (58.62%, 44.9%), respectively.

On the other hand, studies carried out in Itajubá (MG) between 2005 and 2013 and in Campo Grande (MS) from 1994 to 2005, report that during this period there were no cases of leprosy in children under fifteen years of age, thus indicating no transmission of this disease. In Manaus (AM) between 1998 and 2005 there was a low prevalence among the 10 to 14-year age group (10.4%), thus confirming the findings of this study.

Studies conducted in the city of Paracatu (MG) between 1994 and 2001 show results similar to the ones in the present study, regarding the 10 and 14-year old age group (75.5%) and different results regarding sex, being predominantly males (53%)

Regarding the clinical form in Rondonópolis (MT), the tuberculoid form predominated (50.36%), thus corroborating a study carried out in Belém (PA) from 2003 to 2013, which was also predominantly reported the tuberculoid form in 38.6% of cases. These results deviate from the results in Belo Horizonte (MG) from 1992 to 1999, whose predominant form was Virchowian in 72.6% of cases in children under 15 years.

In addition, there was a predominance of the paucibacillary operational classification (55.4%) and the therapeutic regimen of 6 doses of MDT/PB (53.24%) in Rondonópolis (MT), corroborating studies in Juazeiro (BA) where the paucibacillary type predominated (77%) and from 2003 to 2013 in Igarapé-Açu (PA), where the prevalence was also paucibacillary (44.8%) and 6 doses of MDT/PB (69%) were given.

Regarding the degree of physical disability, the prevalence of leprosy cases in Rondonópolis (MT) was zero (73.38%), differing from studies carried out in Fortaleza (CE) in 2005 and in Imperatriz (MA) between the years of 2004 and 2010, whose prevalence of physical disability was grade II, 25% and 21.1%, respectively.

In the Jequitinhonha Valley (MG) between 1998 and 2006, the degree of physical disability that prevailed was grade II in 4.4% of leprosy cases in children younger than 15 years of age, however the finding they resemble was the spontaneous demand in 66.9% of cases, thus corroborating this study whose spontaneous demand prevailed in (28.06%) of the cases.

In the municipality of Rondonópolis (MT), in the period studied, there was a decreasing trend for males and a stable trend for females. A study conducted in Imperatriz (MA) between 2004 and 2010 indicates that, as for sex, it was observed that the trend was not statistically significant (p-value=0.39).

As for the operational classification in Rondonópolis (MT), the paucibacillary class showed a decreasing tendency and the multibacillary an increasing tendency (R²: 0.35; S-W: 0.95), thus corroborating a study carried out in Mato Grosso from 2001 to 2013, whose tendencies regarding operational classification were decreasing for paucibacillary cases (APC
CONCLUSION

In Rondonópolis (MT) in the period studied, it is observed that the trend of leprosy cases in children under 15 years old was only increased for the variable multibacillary clinical form, thus indicating a late diagnosis of the disease, since most of the cases were reported through spontaneous demand. Therefore, it is suggested that these cases were notified by the health service without an early diagnosis. On the other hand, regarding grade II physical disability, there were no reported cases, thus indicating better care provided by the health services.

Considering that the trend was stable and decreasing for most variables, it is pointed out that the health surveillance of leprosy in the municipality has obtained a satisfactory result regarding the interruption of the disease transmission chain. It is recommended that the number of active searches for cases indicate an increasing trend, thus contributing to a diagnosis and treatment as early as possible, thus avoiding high transmissibility.

REFERENCES

1. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Diretrizes para vigilância, atenção e eliminação da Hanseníase como problema de saúde pública: manual técnico-operacional. Brasília Ministério da Saúde; 2016.
2. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Guia prático sobre a hanseníase. Brasília Ministério da Saúde; 2017a.
3. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. Guia de Vigilância em Saúde. Brasília: Ministério da Saúde; 2017b.
4. Oms. Organização Mundial da Saúde. Estratégia mundial de eliminação da lepra 2016-2020: Acelerar a ação para um mundo sem lepra. OMS; 2016. Disponível em: http://apps.who.int/iris/bitstream/10665/208824/17/9789290225201-pt.pdf. Acesso em 12 dez. 2017.
5. Matos EVM, Ferreira AMR, Palmeira IP, Santos WNS, Silva RAR. Hanseníase em menores de quinze anos: revisão integrativa. Revista Prevenção de Infecção e Saúde 2015; 11(4):63-72.
6. Freitas BHBM, Cortela DCB, Ferreira SMB. Tendência da hanseníase em menores de 15 anos em Mato Grosso (Brasil), 2001-2013. Revista de Saúde Pública 2017; 51(28):1-10.
7. Araújo KMA, Leano HAM, Rodrigues RN, Bueno IC, Lana FC. Epidemiological trends of leprosy in an endemic state. Revista Rene 2017; 18(6):771-8.
8. Freitas LRS, Duarte EC, Garcia LP. Trends of main indicators of leprosy in Brazilian municipalities with high risk of leprosy transmission, 2001-2012. BMC Infectious Diseases 2016; 16(472):1-10.
9. Monteiro LD, Melo FRM, Brito AL, Lima MS, Alencar CH, Heukelbach J. Tendências da hanseníase no Tocantins, um estado hiperendêmico do Norte do Brasil, 2001-2012. Caderno de Saúde Pública 2015; 31(5):971-80.
10. Sousa MWG, Silva DC, Carneiro LR, Brito Almino MLB, Costa ALF. Epidemiological Profile of Leprosy in the Brazilian state of Piauí between 2003 and 2008. Anais Brasileiros de Dermatologia 2012; 87(3):389-95.

11. Brasil. Portaria nº 466/2012 de outubro de 2012. Dispõe sobre diretrizes e normas regulamentadoras de pesquisa com seres humanos. Brasília (DF): Conselho Nacional de Saúde; 2012. Publicada no Diário Oficial da União de 13 de junho de 2013, Seção 1, p.59.

12. Menezes MLN, Figueiroa MN, Monteiro EM LM, Beserra AA, Fernandes MJSS, Santana ADS. Leprosy in Subjects under 15 Years: Epidemiological Analysis in Brazil. International Medical Society 2017; 10:225:1-10.

13. Luna ICF, Moura LTR, Vieira MCA. Perfil clínico-epidemiológico da hanseníase em menores de 15 anos no município de Juazeiro-BA. Rev. Bras Promoc Saúde 2013; 26(2):208-15.

14. Longo JDM, Cunha RV. Perfil clínico-epidemiológico dos casos de hanseníase atendidos no hospital universitário em Campo Grande, Mato Grosso do Sul, de janeiro de 1994 a julho de 2005. Hansenologia Internationalis, 2006; 31(1):9-14.

15. Peneluppi LS, Moreira MAM, Bellato HR, Olivato CB, Ribeiro CSC. Perfil epidemiológico da hanseníase em uma cidade do sul de Minas Gerais no período de nove anos: estudo retrospectivo. Revista Ciências em saúde 2015; 5(4):1-7.

16. Imbiriba EB, Guerreiro JCH, Carmelo L, Levino A, Cunha MC, Pedroza V. Perfil epidemiológico da hanseníase em menores de quinze anos de idade, Manaus (AM), 1998-2005. Revista de Saúde Pública 2008;42(6):1021-6.

17. Ferreira IN, Alvarenga RRA. Hanseníase em menores de quinze anos no município de Paracatu, MG (1994 a 2001). Revista Brasileira de Epidemiologia, 2005;8(1):41-9.

18. Matos EVM, Ferreira AMR, Palmeira IP, Carneiro DF. Conjuntura epidemiológica da hanseníase em menores de quinze anos, no período 2003 a 2013, Belém-PA. Hansenologia Internationalis. 2015; 40(2):17-23.

19. Araújo MG, Lana FCF, Fonseca PTS, Lanza FM. Detecção da hanseníase na faixa etária de 0 a 14 anos em Belo Horizonte no período 1992-1999: implicações para o controle. Rev Med Minas Gerais 2003; 14(2):78-83.

20. Moura LTR, Fernandes TRMO, Bastos LDM, Luna ICF, Machado LB. Hanseníase em menores de 15 anos na cidade de Juazeiro-BA. Hansenologia Internationalis 2012; 37(1):45-50.

21. Franco MCA, Macedo GM, Menezes BQ, Jucá Neto FOM, Franco ACA, Xavier MB. Perfil de casos e fatores de risco para hanseníase, em menores de 15 anos, em município hiperendêmico da região norte do Brasil. Revista Paraense de Medicina 2014; 28(4):29-40.

22. Alencar CHM, Barbosa JC, Ramos Júnior NA, Alencar MJF, Pontes RJS, Castro CGJ, Heukelbach J. Hanseníase no município de Fortaleza, CE, Brasil: aspectos epidemiológicos e operacionais em menores de 15 anos (995-2006). Rev Bras Enferm. 2008; 61(esp):694-700.

23. Gordon ASA, Gomes JMS, Costa ACP, Serra MAAO, Santos Neto MS, Xavier MB. Incidência da hanseníase em menores de 15 anos acompanhados no município de Imperatriz, Maranhão entre 2004 e 2010. Arq. Cienc. Saúde UNIPAR 2017; 21(1):19-24.

24. Lana FCF, Amaral EP, Lanza FM, Lima PL, Carvalho AC, Diniz LG. Hanseníase em menores de 15 anos no Vale do Jequitinhonha. Minas Gerais, Brasil. Revista Brasileira de Enfermagem 2007; 60(6):696-700.

25. Sasidharanpillai S, Biniitha MP, Riyaz N, Ambooken B, Maniath OK, George B, et al. Children leprosy: a retrospective descriptive study from Government Medical College, Kozhikode, Kerala, India. Leptr Rev 2014; 85:100-10.

26. Leano HAM, Araújo KMFA, Rodrigues RN, Bueno IC, Lana FCF. Indicadores relacionados a incapacidade física e diagnóstico da hanseníase. Revista Rene 2017; 18(6):832-9.

27. Theme Filha MM, Daumas RP, Alves LC, Leimann BCQ, Engstrom EM. Análise da tuberculose em uma unidade de Atenção Primária à Saúde na cidade do Rio de Janeiro: perfil clínico, resultado de tratamento e qualidade dos registros. Caderno de Saúde Coletiva 2012; 20(2):169-76.
Resumo

A hanseníase é uma doença de notificação compulsória devendo ser controlada por ser considerada como problema de saúde pública. A análise de tendência é relevante para contribuir com ações concretas de vigilância epidemiológica, a fim de interromper a cadeia de transmissão. Neste sentido, é possível que haja uma tendência crescente destes casos em regiões hiperendêmicas. O objetivo deste estudo foi analisar as tendências das variáveis da hanseníase em menores de 15 anos em Rondonópolis (MT) de 2007 a 2016. Estudo epidemiológico do tipo ecológico, com abordagem quantitativa e descritiva. Os dados são de fonte secundária do Sistema de Informação de Notificação de Agravos de Notificação. As variáveis estudadas foram sociodemográficas e clínicas. Para análise foram utilizados modelos de regressão polinomial para as séries temporais. As tendências foram consideradas estatisticamente significativas quando os modelos apresentaram valor de p<0,05. Foi aplicado o teste de Shapiro-Wilk (S-W) para verificar normalidade dos resíduos do modelo ajustado aos dados. Para explicar a porcentagem (%) da variabilidade, foi apresentado o coeficiente de determinação (R2) e utilizou-se o software R. Os resultados apontam o total de 139 casos, sendo que quanto a variável sexo houve tendência decrescente para o sexo masculino (R²:0,40; S-W:0,95) e para a classe operacional uma tendência crescente para os casos multibacilares (R²:0,35; S-W:0,95). Apesar do número elevado de casos, a maioria das tendências foram estatisticamente estáveis e decrescente, indicando que as ações de vigilância da hanseníase no município estão sendo eficazes quanto ao controle da doença nesta faixa etária.

Palavras-chave: Hanseníase. Criança. Adolescente. Epidemiologia.

INTRODUÇÃO

Conhecida pela manifestação de sinais e sintomas dermatoneurológicos e por lesões na pele com perca da sensibilidade, a hanseníase é causada pelo bacilo de Hansen (*Mycobacterium leprae*), sendo transmitida através da eliminação do bacilo por via respiratória de uma pessoa com a doença na forma infectante sem tratamento, através de um contato prolongado frequentemente no ambiente domiciliar. Em poucos dias após o início do uso de medicamentos, a pessoa já deixa de ser transmissora desta patologia, por isso, o diagnóstico precoce é essencial para o tratamento ser iniciado imediatamente, visto que a mesma é passível de cura na totalidade dos casos, evitando assim incapacidades físicas.

A hanseníase possui período de incubação de 2 a 7 anos, podendo chegar até 10 anos, e por isso, é menos habitual acometer menores de 15 anos de idade. A detecção destes casos pediátricos indica que, ainda, há indivíduos que não foram detectados e, consequentemente, ocorre a transmissão ativa da patologia. Desta forma, a ocorrência de casos novos em menores de quinze anos é um dos principais indicadores epidemiológicos do controle da hanseníase. Os principais sinais e sintomas são manchas esbranquiçadas, acastanhadas ou avermelhadas, formigamentos, choques e cãibras nos braços e pernas que evoluem para dormência e alterações e/ou perca da
sensibilidade. Esta última alteração é uma característica que permite diferenciar a hanseníase de outras doenças dermatológicas.

Em 2014 nas regiões da África, Américas, Mediterrâneo Oriental, Asia Sul-Oriental e Pacífico Ocidental houve a notificação de 213.899 casos de hanseníase, destes 18.869 casos eram em menores de 15 anos. No Brasil, a hanseníase é hiperendêmica em alguns estados, como Mato Grosso, que no período de 2001 a 2013, apresentou o total de 2.455 casos em menores de 15 anos, tendo em média 188,8 casos por ano e apresentando um coeficiente de incidência de 22,7/100 mil habitantes. Em 2015, foram 93 casos novos/100 mil habitantes e 21,3 casos novos/100 mil habitantes nesta faixa etária.

Alguns estudos abordaram sobre a tendência da hanseníase em menores de 15 anos, demonstrando a importância do estudo epidemiológico para proposição de ações voltadas a prevenção e redução dos casos desta patologia. Assim teve-se como problemática: qual a tendência dos casos de hanseníase em menores de quinze anos em Rondonópolis (MT) no período de 2007 a 2016. Logo, a análise da tendência da hanseníase nesta faixa etária é relevante, pois este estudo poderá contribuir para que a equipe interprofissional e a vigilância epidemiológica da hanseníase no município adotem medidas para um controle mais efetivo, interrompendo a cadeia de transmissão da patologia.

Diante deste contexto, este estudo tem como objetivo analisar as tendências temporais dos casos de hanseníase em menores de quinze anos em Rondonópolis (MT) de 2007 a 2016.

MÉTODOS

Trata-se de um estudo epidemiológico do tipo ecológico de abordagem quantitativa e descritiva.

O cenário do estudo foi o município de Rondonópolis, Mato Grosso (MT), no período de janeiro de 2007 a dezembro de 2016, equivalente há dez anos de estudo, o que pode ser considerado como uma análise robusta dos dados referente à doença. Este município possui uma área de 4.686,622 km², densidade demográfica de 47,00 hab/km², possui PIB per capita de R$ 36102,58 e um índice de desenvolvimento humano municipal de 0,755. No último censo realizado no ano de 2010, o município possuía uma população total de 195.476 pessoas, entretanto em 2017, apresentava uma estimativa de, aproximadamente, 222.316 habitantes, segundo dados do Instituto Brasileiro de Geografia e Estatística (IBGE). Atualmente dispõe de 36 unidades de estratégia de saúde da família cadastradas, segundo os dados do Cadastro Nacional de Estabelecimento de Saúde (CNES).

Os dados são de fonte secundária, relativos às séries de dados mensais da doença de notificação compulsória, disponíveis no Sistema de Informação de Notificação de Agravos de Notificação (SINAN), hanseníase em menores de 15 anos. Foram inclusos todos os dados dos casos notificados de hanseníase nesta faixa etária dos anos em estudo, sendo excluídos da análise, aqueles ignorados e/ou em branco, com erro diagnóstico no banco de dados, com transferência para outro estado ou país, duplicidade e/ou inconsistência dos dados. Estas fichas consistem em formulário padronizado pelo Ministério da Saúde (MS) que possuem informações sociodemográficas e clínicas, que devem ser preenchidas por profissionais de saúde.

As variáveis de análise estudadas sobre a hanseníase incluíram os caracteres temporais (anos), as sociodemográficas (sexo: masculino e feminino e a idade estratificada: <1ano; entre 1-4 anos; entre 5-9 e 10-14 anos) e as clínicas (incapacidade física no momento do diagnóstico: grau zero, grau I, grau II, não avaliado, em branco; classificação operacional: paucibacilar e multibacilar; modo de detecção: encaminhamento, demanda espontânea, exame coletividade, exames contatos; forma clínica: dimorfa, indeterminada, tuberculóide, virchowiana, e o esquema terapêutico (PQT/PB/06 doses e PQT/MB/12 doses).

Para análise descritiva, foram selecionadas as variáveis segundo registros de casos por ano no município em estudo. Para a análise da tendência da hanseníase foram utilizados modelos de regressão polinomial para as séries
temporais. A equação de regressão aplicada foi a que melhor descreveu a relação existente entre a variável dependente Y (sociodemográficas e clínicas) e a variável independente X (ano de estudo). Para evitar autocorrelação entre os termos da equação da regressão, foi utilizado o artifício de centralizar a variável ano, transformando-a em ano calendário, com ponto médio da série os anos de 2007 e 2016.

O primeiro modelo testado foi o de regressão linear simples (log Y = β₀ + β₁X₁) e, posteriormente, os modelos de ordem maior: segundo grau ou parabólico (log Y = β₀ + β₁X₁ + β₂X₁²) e terceiro grau (log Y = β₀ + β₁X₁ + β₂X₁² + β₃X₁³). As tendências foram consideradas estatisticamente significativas quando os modelos apresentaram valor de p<0,05. Quando a taxa foi positiva, a série temporal foi considerada crescente; quando negativa, foi considerada decrescente; e estacionária quando não houve diferença significante entre o seu valor e o zero. Foi considerado como melhor modelo aquele que apresentou significância em todos os parâmetros adicionados. Na sequência, foi aplicado o teste de Shapiro-Wilk (S-W) para verificar a normalidade dos resíduos do modelo ajustado aos dados. Para explicar a porcentagem (%) da variabilidade explicada pelo modelo ajustado aos dados, foi apresentado o coeficiente de determinação (R²).

Quando dois modelos foram semelhantes estatisticamente para a mesma localidade, optou-se pelo modelo mais simples, ou seja, de menor ordem. Os dados foram analisados utilizando-se o software R (R Core Team 2017).

Para o cálculo do coeficiente de detecção na população de 0 a 14 anos utilizou-se dados populacionais do Censo (2010) devido à falta de dados populacionais no IBGE dos menores de 15 anos nos demais anos. Utilizou-se o número de casos novos da hanseníase em menores de 15 anos residentes no município de Rondonópolis no ano de 2010 dividido pela população no mesmo período e local e multiplicou-se por 1.000, resultando, assim, no cálculo do coeficiente médio de detecção da doença.

Apesar de se tratar de dados secundários de domínio público, esta pesquisa foi submetida ao Comitê de Ética em Pesquisa e aprovada com registro CAAE 54226316.1.0000.5541 e número do parecer 1.571.782, sendo assim, foram respeitados os aspectos éticos de pesquisa com seres humanos, de acordo com a Resolução nº 466/2012.

RESULTADOS

No município de Rondonópolis (MT) a prevalência dos casos de hanseníase em menores de 15 anos notificados e registrados no SINAN entre os anos de 2007 a 2016 foi de 139 casos, sendo que o maior número de casos foi em 2008 e 2011 (n=19; 13,66%) e em 2016 o menor registro (n=5; 3,5%). A média foi de 13,9 casos por ano (FIGURA 1). O coeficiente médio da incidência da doença nessa faixa etária foi de 30,02/ 100 mil habitantes no período de 2010.

Neste estudo, predominaram os casos de indivíduos do sexo feminino (n=75; 53,96%); faixa etária entre 10 a 14 anos (n=68; 48,92%), sendo que em menores de um ano, não houveram notificações. Em relação às variáveis clínicas predominaram: grau zero de incapacidade física (n=102; 73,38%); classificação operacional paucibacilar (n=77; 55,4%); forma clínica tuberculóide (n=70; 50,36%); modo de detecção através da demanda espontânea e exames de contatos com (n=39; 28,06%) e (n=38; 27,33%) casos, respectivamente; esquema terapêutico PQT/PB/06 doses (n=74; 53,2%) (Tabelas 1 e 2).

No que diz respeito a tendência das variáveis da hanseníase em menores de 15 anos em Rondonópolis (MT), a tabela 3 refere-se a estabilidade dos casos de acordo com o sexo feminino; estabilidade para todas faixas etárias exceto menores de um ano em que o modelo não foi ajustado; tendência decrescente para o grau zero de incapacidade física e crescente aos casos multibacilar; estabilidade nos modos de detecção; tendência decrescente na forma clínica tuberculóide e não houve ajustado significativo para a variável esquema terapêutico.
Figura 1 – Distribuição dos casos de hanseníase em menores de 15 anos, 2007 a 2016, Rondonópolis, Mato Grosso, Brasil, 2018.

Tabela 1 – Prevalência dos casos de hanseníase em menores de 15 anos segundo os caracteres temporais. Rondonópolis, MT, Brasil, 2007-2016.

Variáveis	TOTAL	2007-2011	2012-2016			
	N	%	N	%	N	%
Anos						
2007	18	12,94	83	59,71	56	40,29
2008	19	13,66				
2009	10	7				
2010	17	12,23				
2011	19	13,66				
2012	10	7,19				
2013	8	6				
2014	15	10,79				
2015	5	3,59				
2016	139	100				
Total						
VARIÁVEIS	TOTAL	2007-2011	2012-2016			
-------------------------------	---------	-----------	-----------			
	N	%	N	%	N	%
Sexo						
Masculino	64	46,04	38	45,78	26	46,43
Feminino	75	53,96	45	54,22	30	53,57
Menores de 1 ano	-	-	-	-	-	-
Faixa Etária						
01 a 4 anos	14	10,07	13	15,66	1	1,78
5 a 9 anos	57	41,01	33	39,76	24	42,86
10 a 14 anos	68	48,92	37	44,58	31	55,36
Grau de incapacidade física						
Grau zero	102	73,38	76	91,57	26	46,43
Grau I	6	4,32	1	1,2	5	8,93
Grau II	3	2,16	-	-	3	5,36
Não avaliado	19	13,67	6	7,23	13	23,21
Em branco	9	6,47	-	-	9	16,07
Classe operacional						
Multibacilar	62	44,6	21	25,3	41	73,21
Paucibacilar	77	55,4	62	74,7	15	26,79
Encaminhamento	33	23,74	22	26,51	11	19,64
Demanda espontânea	39	28,06	25	30,12	14	25
Modo de detecção						
Exame de coletividade	16	11,51	7	8,43	9	16,07
Exame de contatos	38	27,34	29	34,94	9	16,07
Em branco	12	8,63	-	-	12	21,43
Outros Modos	1	0,72	-	-	1	1,79
Dimorfa	52	37,41	21	25,3	31	55,35
Forma Clínica						
Indeterminada	12	8,63	9	10,84	3	5,37
Tuberculóide	70	50,36	53	63,86	17	30,35
Virchowiana	5	3,6	-	-	5	8,93
Esquema terapêutico						
PQT/MB 12 doses	63	45,32	22	26,5	41	73,21
PQT/PB 6 doses	74	53,24	60	72,29	14	25
Ignorado	1	0,72	-	-	1	1,79
Outros esquemas alternativos	1	0,72	1	1,21	-	-
Tabela 3 – Tendência das variáveis da hanseníase em menores de 15 anos em Rondonópolis (MT), Brasil, 2007-2016.

VARIÁVEIS	Modelo	*R2	**Valor-p	Tendência	S-W(Valor-p)
Sexo					
Masculino	y=6,40-0,57x	0,40	0,0447	Decrescente	0,95 (0,55)
Feminino	y=7,50-0,31x	0,14	0,2740	Estabilidade	0,96 (0,76)
Faixa Etária					
Menores de 1 ano	-	-	-	-	-
01 a 4 anos	y=4,40-0,36x	0,36	0,0672	Estabilidade	0,92 (0,3647)
5 a 9 anos	y=5,70-0,19x	0,03	0,6110	Estabilidade	0,93 (0,4934)
10 a 14 anos	y=6,80-0,43x	0,10	0,3614	Estabilidade	0,93 (0,4826)
Grau de Incapacidade física					
Grau zero	y=10,20-1,71x	0,69	0,0031	Decrescente	0,92 (0,3971)
Grau I	-	-	-	-	-
Grau II	-	-	-	-	-
Não avaliado	y=1,90+0,32x	0,24	0,1468	Estabilidade	0,94 (0,5528)
Em branco	-	-	-	-	-
Classe operacional					
Multibacilar	y=6,20+0,67x	0,35	0,04983	Crescente	0,95 (0,7002)
Paucibacilar	y=7,70-1,64x	0,88	0,0004	Decrescente	0,92 (0,3305)
Encaminhamento	y=3,30-0,27x	0,22	0,1732	Estabilidade	0,93 (0,4150)
Demanda espontânea	y=3,90-0,42x	0,24	0,1458	Estabilidade	0,84 (0,0518)
Modo de detecção					
Exame de coletividade	y=1,60+0,05x	0,01	0,8285	Estabilidade	0,85 (0,0592)
Exame de contatos	y=3,80-0,75x	0,23	0,1619	Estabilidade	0,90 (0,2379)
Em branco	y=1,20-0,37x	0,46	0,0305	Decrescente	0,95 (0,7276)
Outros Modos	-	-	-	-	-
Dimorfa	y=5,20+0,30x	0,16	0,2530	Estabilidade	0,88 (0,1497)
Forma Clínica					
Indeterminada	y=1,20-0,19x	0,23	0,1626	Estabilidade	0,97 (0,8973)
Tuberculóide	y=7,00-1,25x	0,64	0,0053	Decrescente	0,96 (0,8212)
Virchowiana	y=0,50+0,16x	0,21	0,1820	Estabilidade	0,88 (0,1311)

 Modelo y: Indicadores epidemiológicos da hanseníase para o município de Rondonópolis (MT) no período de 2007 a 2016. Modelo não ajustado para menores de um ano. R2: Coeficiente de determinação.
DISCUSSÃO

Em Rondonópolis-MT no período estudado houve uma maior quantidade dos casos de hanseníase em menores de 15 anos em 2008 e 2011. Estudo realizado por Monteiro et al.9 também afirma que em 2008 houve maior número de casos registrados de hanseníase nesta faixa etária no estado de Tocantins. Por outro lado, em Arcoverde (PE) no período de 2005 a 2014, no ano de 2008 houve apenas 1 caso notificado e 2011 nenhum caso12.

A média anual de casos nesta faixa etária foi de 13,9 no município em estudo. Cabe ressaltar que para alcançar a eliminação da hanseníase, a OMS preconiza menos de um caso de hanseníase para cada 10.000/hab.4. Neste sentido, Rondonópolis (MT) ainda está um tanto distante de tal meta, todavia através de políticas públicas, campanhas e educação em saúde por meio de atuação interdisciplinar, esta meta poderá ser alcançada. A taxa de detecção anual para a população de 0 a 15 anos no município de Rondonópolis-MT no período de 2010 foi de 30,02/100, caracterizando-se como hiperendêmico de acordo com os parâmetros do Ministério da Saúde que caracteriza como sendo hiperendêmico ≥10,00 por 100 mil habitantes1.

Neste estudo, dos 139 casos de hanseníase em menores de 15 anos, houve uma prevalência no sexo feminino (53,96%) e faixa etária de 10 a 14 anos (48,92%), corroborando assim com estudos realizados no município de Juazeiro (BA) no período de 2001 a 2010 e, também, no município de Arcoverde (PE) no período de 2005 a 2014, onde houve também prevalência do sexo feminino (55,86%;60,9%) e faixa etária de 10 a 14 anos (58,62%;44,9%) respectivamente13,12.

Em contrapartida estudos realizados em Itajubá (MG) no período de 2005 a 2013 e em Campo Grande (MS) no período de 1994 a 2005, informam que durante este período não houveram casos de hanseníase em menores de quinze anos, indicando assim não haver transmissão ativa desta doença14,15. Em Manaus (AM) entre os anos de 1998 a 2005 houve baixa prevalência da faixa etária de 10 a 14 anos (10,4%), confirmando assim os achados deste estudo16.

Já estudos realizados no município de Paracatu (MG) no período de 1994 a 2001 apontam resultados semelhantes ao deste estudo quanto a faixa etária entre 10 a 14 anos (75,5%) e resultados diferentes quanto ao sexo, sendo o sexo masculino (53%) predominante17.

Quanto à forma clínica em Rondonópolis (MT) houve predominio da forma tuberculóide (50,36%), corroborando assim com estudo realizado em Belém (PA) no período de 2003 a 2013, cujo predomínio também foi a forma tuberculóide em 38,6% dos casos18. Divergindo assim dos resultados em Belo Horizonte (MG) de 1992 a 1999, cuja forma predominante foi virchowiana em 72,6% dos casos em menores de 15 anos19.

Em Rondonópolis (MT) houve ainda predominio da classificação operacional paucibacilar (55,4%) e esquema terapêutico PQT/PB 6 doses (53,24%), corroborando com estudos realizados em 2010 em Juazeiro (BA) onde predominou tipo paucibacilar (77%) e de 2003 a 2013 em Igarapé-Açu (PA), onde a prevalência também foi paucibacilar (44,8%) e PQT/PB 6 doses (69%)20.

Quanto ao grau de incapacidade física a prevalência dos casos de hanseníase em Rondonópolis (MT) foi grau zero (73,38%), diferindo assim de estudos realizados em Fortaleza (CE) em 2005 e em Imperatriz (MA) entre os anos de 2004 e 2010, cujo predomínio da incapacidade física foi o grau II, 25% e 21,1% respectivamente22,23.

No Vale do Jequitinhonha (MG) entre 1998 a 2006, o grau de incapacidade física que prevaleceu foi o grau II em 4,4% dos casos de hanseníase em menores de 15 anos, porém assemelham-se nos achados, a forma de detecção da doença, sendo esta a demanda espontânea em (66,9%) dos casos, corroborando assim com este estudo cuja demanda espontânea prevaleceu em (28,06%) dos casos24.

No município de Rondonópolis (MT) no período estudado quanto a variável sexo houve tendência decrescente para o sexo masculino e estável para o sexo feminino, já estudo
realizado em Imperatriz (MA) entre 2004 e 2010 aponta que quanto ao sexo, observou-se que a tendência não foi significante estatisticamente (p-valor=0,39). Quanto a classe operacional em Rondonópolis (MT), a classe paucibacilar apresentou tendência decrescente e a multibacilar crescente (R²: 0,35; S-W: 0,95), corroborando assim com estudo realizado no Mato Grosso no período de 2001 a 2013, cujas tendências quanto a classificação operacional foram decrescente para os casos paucibacilares (APC -4,3%; IC95% -7,1- -1,5) e crescentes para os multibacilares (APC 6,7%; IC95% 2,7-10,8). Em Kerala, na Índia, destacou-se que, entre 2004 e 2014, houve uma diminuição insignificante dos casos novos de hanseníase em menores de 15 anos. No entanto, houve um aumento dos casos que necessitavam de tratamento multibacilar e um declínio dos que necessitavam de tratamento paucibacilar.

Em relação ao grau de incapacidade física não houve tendência estatisticamente quanto ao grau 2 no momento do diagnóstico, visto que não houveram casos notificados. Por outro lado, nos estados do Nordeste do Brasil, em Sergipe (p=0,044) e Maranhão (p=0,031) observou-se uma tendência crescente da proporção deste grau de incapacidade física. Entretanto, nas regiões do Tocantins, Augustinópolis (R²: 0,497), Palmas (R²:0,254) e Paraíso (R²:0,657), a tendência encontrada quanto a detecção de casos com grau 2 de incapacidade física manteve-se estável.

É possível que uma das limitações do estudo seja o fato que o estudo é realizado com dados secundários, o que infere em possibilidade de subnotificações dos casos. Neste sentido, a baixa qualidade das informações compromete a adequada avaliação dos processos e dos resultados do programa de controle da doença. Assim, sugere-se que novos estudos sejam realizados a fim de análise dos indicadores da doença no município.

CONCLUSÃO

Em Rondonópolis (MT) no período estudado, observa-se que a tendência dos casos de hanseníase em menores de 15 anos foi crescente apenas para a variável forma clinicabacilar, indicando assim um diagnóstico tardio da doença, visto que a maioria dos casos foram notificados através da demanda espontânea. Neste sentido, sugere-se que estes casos foram notificados pelo serviço de saúde sem um diagnóstico precoce. Por outro lado, em relação ao grau II de incapacidade física, não houveram casos notificados, indicando, assim, uma melhor assistência prestada pelos serviços de saúde. Considerando que a tendência foi estável e decrescente para a maioria das variáveis, aponta-se que a vigilância em saúde da hanseníase no município tem obtido resultado satisfatório no que se refere a interrupção da cadeia de transmissão da doença. Recomenda-se que o número de busca ativa dos casos aponte uma tendência crescente, contribuindo assim para um diagnóstico e um tratamento o mais precoce possível, evitando assim alta transmissibilidade.

REFERÊNCIAS

1. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Diretrizes para vigilância, atenção e eliminação da Hanseníase como problema de saúde pública: manual técnico-operacional. Brasília Ministério da Saúde; 2016.
2. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Guia prático sobre a hanseníase. Brasília Ministério da Saúde; 2017a.
1. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. Guia de Vigilância em Saúde. Brasília: Ministério da Saúde; 2017b.

2. Oms. Organização Mundial da Saúde. Estratégia mundial de eliminação da lepra 2016-2020: Acelerar a ação para um mundo sem lepra. OMS; 2016. Disponível em: http://apps.who.int/iris/bitstream/10665/208824/17/97892900225201-pt.pdf. Acesso em 12 dez. 2017.

3. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. Guia de Vigilância em Saúde. Brasília: Ministério da Saúde; 2017b.

4. Oms. Organização Mundial da Saúde. Estratégia mundial de eliminação da lepra 2016-2020: Acelerar a ação para um mundo sem lepra. OMS; 2016. Disponível em: http://apps.who.int/iris/bitstream/10665/208824/17/97892900225201-pt.pdf. Acesso em 12 dez. 2017.

5. Matos EVM, Ferreira AMR, Palmeira IP, Santos WNS, Silva RAR. Hanseníase em menores de quinze anos: revisão integrativa. Revista Prevenção de Infecção e Saúde 2015; 1(4):63-72.

6. Freitas BHBM, Cortela DCB, Ferreira SMB. Tendência da hanseníase em menores de 15 anos em Mato Grosso (Brasil), 2001-2013. Revista de Saúde Pública 2017; 51(28):1-10.

7. Araújo KMA, Leano HAM, Rodrigues RN, Bueno IC, Lana FC. Epidemiological trends of leprosy in an endemic state. Revista Rene 2017; 18(6):771-8.

8. Freitas LKS, Duarte EC, García LP. Trends of main indicators of leprosy in Brazilian municipalities with high risk of leprosy transmission, 2001-2012. BMC Infectious Diseases 2016; 16(472):1-10.

9. Monteiro LD, Melo FRM, Brito AL, Lima MS, Alencar CH, Heukelbach J. Tendências da hanseníase no Tocantins, um estado hiperendêmico do Norte do Brasil, 2001-2012. Caderno de Saúde Pública 2015; 31(5):971-80.

10. Sousa MWG, Silva DC, Carneiro LR, Brito Almino MLB, Costa ALF. Epidemiological Profile of Leprosy in the Brazilian state of Piauí between 2003 and 2008. Anais Brasileiros de Dermatologia 2012; 87(3):389-95.

11. Brasil. Portaria nº 466/2012 de outubro de 2012. Dispõe sobre diretrizes e normas regulamentadoras de pesquisa com seres humanos. Brasília (DF): Conselho Nacional de Saúde; 2012. Publicada no Diário Oficial da União de 13 de junho de 2013, Seção 1, p.59.

12. Menezes MLN, Figueiroa MN, Monteiro EMLM, Beserra AA, Fernandes MJJS, Santana ADS. Leprosy in Subjects under 15 Years: Epidemiological Analysis in Brazil. International Medical Society 2017; 10(225):1-10.

13. Luna ICF, Moura LTR, Vieira MCA. Perfil clínico-epidemiológico da hanseníase em menores de 15 anos no município de Juazeiro-BA. Rev. Bras Promoc Saúde 2013; 26(2):208-15.

14. Longo JDM, Cunha RV, Perfil clínico-epidemiológico dos casos de hanseníase atendidos no hospital universitário em Campo Grande, Mato Grosso do Sul, de janeiro de 1994 a julho de 2005. Hansenologia Internacional 2006; 31(1):9-14.

15. Peneluppi LS, Moreira MAM, Bellato HR, Olivato GB, Ribeiro CSC. Perfil epidemiológico da hanseníase em uma cidade do Sul de Minas Gerais no período de nove anos: estudo retrospectivo. Revista Ciências em saúde 2015; 5(4):1-7.

16. Imbiriba EB, Guerrero JCH, Carnelo L, Levinio A, Cunha MC, Pedroza V. Perfil epidemiológico da hanseníase em menores de quinze anos de idade, Manaus (AM), 1998-2005. Revista de Saúde Pública 2008;42(6):1021-6.

17. Ferreira IN, Alvarez RRA. Hanseníase em menores de quinze anos no município de Paracatu, MG (1994 a 2001). Revista Brasileira de Epidemiologia. 2005;8(1):41-9.

18. Matos EVM, Ferreira AMR, Palmeira IP, Carneiro DF. Conjuntura epidemiológica da hanseníase em menores de quinze anos, no período 2003 a 2013, Belém-PA. Hansenologia Internacional 2015; 40(2):17-23.

19. Araújo MG, Lana FCF, Fonseca PTS, Lanza FM. Detecção da hanseníase na faixa etária de 0 a 14 anos em Belo Horizonte no período 1992-1999: implicações para o controle. Rev Med Minas Gerais 2003; 14(2):78-83.

20. Moura LTR, Fernandes TRMO, Bastos LDM, Luna ICF, Machado LB. Hanseníase em menores de 15 anos na cidade de Juazeiro-BA. Hansenologia Internacional 2012; 37(1):45-50.

21. Franco MCA, Macedo GMM, Menezes BQ, Jucá Neto FOM, Franco ACA, Xavier MB. Perfil de casos e fatores de risco para hanseníase, em menores de 15 anos, em município hiperendêmico da região norte do Brasil. Revista Paraense de Medicina 2014; 28(4):29-40.

22. Alencar CHM, Barbosa JC, Ramos Júnior NA, Alencar MJF, Pontes RJS, Castro CGJ, Heukelbach J. Hanseníase no município de Fortaleza, CE, Brasil: aspectos epidemiológicos e operacionais em menores de 15 anos (995-2006). Rev Bras Enferm. 2008; 61(esp):694-700.

23. Gordon AS, Gomes JMS, Costa ACPI, Serra MAAO, Santos Neto MS, Xavier MB. Incidência da hanseníase em menores de 15 anos acompanhados no município de Imperatriz, Maranhão entre 2004 e 2010, Arq. Cienc. Saúde UNIPAR 2017; 21(1):19-24.

24. Lanka FCF, Amaral EP, Lanza FM, Lima PL, Carvalho AC, Diniz LG. Hanseníase em menores de 15 anos no Vale do Jequitinhonha. Minas Gerais, Brasil. Revista Brasileira de Enfermagem 2007; 60(6):696-700.

25. Sasidharanpillai S, Binita MP, Riyaz N, Ambooken B, Mariyath OK, George B, et al. Children leprosy: a retrospective descriptive study from Government Medical College, Kozhikode, Kerala, India. Lepr Rev 2014; 85:100-10.

26. Leano HAM, Araújo KMFA, Rodrigues RN, Bueno IC, Lana FCF. Indicadores relacionados a incapacidade física e diagnóstico da hanseníase. Revista Rene 2017; 18(6):832-9.

27. Theme Filha MM, Daumans RP, Alves LC, Leimann BCO, Engelstrom EM. Análise da tuberculose em uma unidade de Atenção Primária à Saúde na cidade do Rio de Janeiro: perfil clínico, resultado de tratamento e qualidade dos registros. Caderno de Saúde Coletiva 2012; 20(2):169-76.