ABSTRACT

Objective: The main objective was to find out the in vitro comparative anticancer activity of various methanolic extract.

Methods: Plants samples such as Mikania micrantha, Allium hookeri, Eryngium foetidium, and Alpinia galanga were collected, identified and authenticated. By using Trypan blue test Human cervical cancer (Hela) cells were counted. The Human cervical cancer (Hela) cells were treated with methanolic extract of Mikania micrantha, Allium hookeri, Eryngium foetidium and Alpinia galanga. 20 µl of MTT (5 mg/ml) solution was added to cells per well, and the plate was moved to a cell incubator. Measurement was performed using a Spectramax M2 Microplate Reader (Molecular Diagnostic, Inc.) at a wavelength of 570 nm.

Results: The Cytotoxicity of studied medicinal plants of Mizoram such as Mikania micrantha, Allium hookeri, Eryngium foetidium and Alpinia galanga exhibited cytotoxicity in an increased manner with increase concentration against Hela cells. Their IC50 values were 49.02, 138.5, 199.7 and 209.4 µg/ml-1 respectively. The IC50 of doxorubicin was found to be 3.305±µg/ml-1. The anticancer activity of the leaves related to their content of flavonoids. This study validates the traditional use of plants in the management of cancer.

Conclusion: The Cytotoxicity of studied medicinal plants of Mizoram such as Mikania micrantha, Allium hookeri, Eryngium foetidium and Alpinia galanga exhibited cytotoxicity in an increased manner with increase concentration against Hela cells.

Keywords: Trypan blue test, Cytotoxicity, Human cervical cancer cell (Hela cell), Anti-cancer

INTRODUCTION

Cancer now a day is very widely spread and prevalent disease. Cancer is the third leading cause of death worldwide, preceded by cardiovascular and infectious diseases. It is becoming very common to every age group. It is very serious as its curability is very less due to unawareness for the symptoms and also the proper medication still not available. It is a major concern in the health care perspective [1]. Cervical cancer is one now becoming common in the northeastern region. These are the main perspective to get through this research work in regards of helping the society. Cancer is one of the most life-threatening diseases in which deregulated proliferation of abnormal cells invades and disrupts surrounding tissues. There has been the success of using clinical therapies such as radiation, chemotherapy, immunomodulation and surgery in the treatment of cancer but these are limited. So, there is a need of alternative strategies in the management of cancer disease. Natural products can play a significant role as secondary metabolites present in them such as terpenoids, phenolic acids, flavonoids, alkaloids, etc. exhibit antioxidant properties which is significant in the role of cancer treatment. Thus, medicinal plants have become a focal point to improve future health needs against cancer with a lesser harmful effect [2]. The methanol extract of the plant like Mikania micrantha, Allium hookeri, Alpinia galanga, Eryngium foetidium was also carried out for anticancer activity studies, which includes the study of cytotoxicity by an MTT assay and cell viability determination by Trypan blue exclusion assay. These two studies will give information on how the plant plays a role in fighting cancer cells. The main principle of cytotoxicity of cells by MTT Assay is that the yellow tetrazolium MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) is reduced by metabolically active cells, in part by the action of dehydrogenase enzymes, to generate reducing equivalents such as NADH and NADPH. The resulting intracellular purple formazan can be solubilized and by spectrophotometric means [3].

MATERIALS AND METHODS

Plant materials

Plants samples such as Mikania micrantha, Allium hookeri, Eryngium foetidium, and Alpinia galanga were collected from Mizoram. The plant specimens were authenticated by Dr. A. A. Mao (Scientist-F and H) Botanical Survey of India, Shillong. A voucher specimen of these plants has been deposited in the Department of Pharmacy, with Reference no: BSI/ERC/TECH/2017/589 for future reference. Then samples were subjected for hot methanol extraction. The plant’s extract was dried at room temperature until semi-solid or dryness is obtained. The extract was dissolved in 0.01% methanol in distilled water and filtered through 0.22µ. Doxorubicin was used as a positive control with concentration of 1, 2, 4, 8 µg/ml [5].

Cell lines and culture medium

A Hela (Human cervical cancer) cell line was procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were cultured in Dulbecco modified eagle media (DMEM) supplemented with 10% inactivated Fetal Bovine Serum (FBS), penicillin (100 IU/ml), streptomycin (100 µg/ml) and amphotericin B (5 µg/ml) in a humidified atmosphere of 5% CO2 at 37 °C until confluent. The cells were dissociated with trypsin solution (0.2% trypsin, 0.02% EDTA, 0.05% glucose in PBS). The stock cultures were grown in 25 cm2 culture flasks, and all experiments were carried out in 96 microtitre plates (Tarsons India Pvt. Ltd., India).

Sterility test

It was done to check the extract from the contamination. 35 mm culture disc was plated with Hela in 2 ml of DMEM media and allow the cell to adhere. The crude plant extract was added in the microtitre plate and incubate at CO2 incubator (5%) for 24 h.

Conclusion:

The methanolic extract of the plants like Mikania micrantha, Allium hookeri, Eryngium foetidium and Alpinia galanga was tested in vitro for cytotoxicity against Hela cells. The methanolic extract of Mikania micrantha, Allium hookeri, Eryngium foetidium and Alpinia galanga exhibited cytotoxicity in an increased manner with increase concentration against Hela cells. Their IC50 values were 49.02, 138.5, 199.7 and 209.4 µg/ml-1 respectively. The IC50 of doxorubicin was found to be 3.305±µg/ml-1. The anticancer activity of the leaves related to their content of flavonoids. This study validates the traditional use of plants in the management of cancer.
Cell viability

The cytotoxic effects of the various plants were investigated using the MTT (Sigma, USA) on HeLa cells. The cells were seeded in 96-well plates at a density of 2 x 10⁴ cells per well. After incubation for 20–24 h, the cells with 70–80% confluency were treated with the extracts at different concentrations (5, 25, 50, 100 and 200 µg ml⁻¹) and incubated for 24 h. Then, 20 µl of MTT (5 mg/ml) solution was added to cells per well, and the plate was moved to a cell incubator for another 4 h. The medium was removed, and 150 µl of DMSO was added to the cells. The plate was gently shaken for 15 min to dissolve the formazan crystals generated by proliferating cells, and the measurement was performed using a Spectramax M2 Microplate Reader (Molecular Diagnostic, Inc.) at a wavelength of 570 nm. Relative viability was calculated taking wells with non-treated cells as 100% control [6, 7].

Test for cellular proliferation (MTT assay protocol)

Seeded the HeLa at 3 x 10⁵ cells/well in a 96 well plate. Cells may be seeded at different densities. At least three wells were left without cells. These wells serve as a control for the minimum absorbance. The plate was incubated overnight at 37 °C in a humidified incubator, 5% CO₂. The MTT assay results for 24 h and 48 h incubation of crude drug at the concentrations of 5, 25, 50, 100, and 200 µg/ml showed anti-cancer activity (MTT assay) in vitro anti-cancer activity (MTT assay)

The MTT assay results for 24 h and 48 h incubation of crude drug at the concentrations of 5, 25, 50, 100, and 200 µg/ml showed increased HeLa cell viability as the concentration got diluted. To observe the morphological changes of the cells an inverted phase contrast microscope was used. Cells were inoculated at 3 x 10⁵ cell/well in 24 well-micro plates and treated mentioned manner. Other culture wells were treated by H₂O₂ (100 µm) as a positive control of apoptosis and necrosis, respectively, as negative control some culture wells were prepared without any treatment. After being cultured for 16h, the culture media removed and cells fixed and stained by the standard hematoxylin-eosin method. The prepared samples were photographed at × 100.

Table 1: The percentage cell viability of HeLa cell lines against plants extract, the data present as mean±SD, n=3

Conc. (µg/ml)	Doxorubicin	Mikania micrantha	Allium hookeri	Alpinia galanga	Eryngium foetidium
5(0)	0.00	10.83	1.09	5.08	1.17
25(1)	6.07	25.07	11.7	19.94	2.00
50(2)	34.11	49.80	1.80	26.22	0.67
100(4)	50.00	78.79	0.25	49.50	1.66
200(8)	80.72	81.54	0.72	54.35	1.51
IC₅₀	3.31	49.02	138.50	199.70	209.40

Morphological staining

Morphological study of cell shape changes was performed by direct microscopy, hematoxylin and eosin staining, using an inverted phase-contrast microscope (400X), it was found that the untreated cells exhibited normal shapes, with clear outline. Although the growth of the Methanolic-extract-treated cells was obviously inhibited. The extract treated cells were round, proliferation was inhibited and slowed.

Morphological staining
After 48h of treated cells but before addition of MTT

Control Doxorubicin (4µg/ml) Mikania Micrantha

Alpania galangal Eryngium foetidium Allium hookeri

After 48h of Treated cells incubated with MTT for 3 h

Fig. 2: Represents various plants extracts treated HeLa with 100µg/ml. above lane 48hr treated and below represents 48 h treated followed by incubation with MTT. The purple crystal formation indicated viable cells. Lesser purple crystal formed, more cell dead
CONCLUSION
The Cytotoxicity of studied medicinal plants of Mizoram such as Mikania micrantha, Allium hookeri, Eryngium foetidium and Alpinia galanga exhibited cytotoxicity in an increased manner with increase concentration against HeLa cells. Their IC_{50} values were 49.02, 138.5, 199.7 and 209.4 µg ml^{-1} respectively. The IC_{50} of doxorubicin was 3.305 µg ml^{-1}.

ACKNOWLEDGMENT
The author sincerely thanks Dr. Biswajit Das M. Pharm, Ph. D., Girijananda Chowdhury Institute of Pharmaceutical Science for his constant support and valuable suggestions in completing this manuscript.

AUTHORS CONTRIBUTIONS
All the author have contributed equally

CONFLICT OF INTERESTS
Declare none

REFERENCES
1. Kiranmayi Gali, G Ramakrishnan, R Kothai, B Jaykar. In vitro anticancer activity of methanolic extract of leaves of argemone mexicana. Int J PharmTech Res 2011;3:1329-33.
2. Tagne RS, Telefo BP, Nyemb JN, Yemele DM, Njina SN, Goka SMCG, et al. Anticancer and antioxidant activities of methanol extracts and fractions of some cameroonian medicinal plants. Asian Pacific J Trop Med 2014;7:442-7.
3. Mosamann T. Rapid colorimetric assay for cellular growth and survival, application to proliferation and cytotoxicity assay. J Immunol Methods 1983;65:55-63.
4. Sakinehsalehi, Saber Z, Seyed MR. Cytotoxic effect of Prangos Pabularia extracts on HELA cell line a medicinal plant. Int J Med Res Health Sci 2016;5:547-52.
5. Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anti Cancer Agents 2005;5:29-46.
6. Plumb JA. Cell sensitivity assays: the MTT assay. Methods Mol Med 2004;88:165-9.
7. Denecker G, Vercammen D, Declercq W, Vandenabeele P. Apoptotic and necrotic cell death induced by death domain receptors. Cellular Mol Life Sci 2001;58:356-70.