Impact of WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of breast cancer

Yan Wang, MDa, Shi-Hui Yang, MDb, Ping-Wen Hsu, MDb, Szu-Yu Chien, PhDc, Chao-Qun Wang, MDc, Chen-Ming Su, PhDd,1, Xia-Fang Dong, MDb, Yong-Ming Zhao, MDc, Chih-Hsin Tang, PhDb,1,9.*

Abstract
Breast cancer is the most common diagnosed malignancy in women. This study genotyped blood samples from 236 Han Chinese women with breast cancer and 128 healthy controls for single nucleotide polymorphisms (SNPs) rs2977537, rs2929970, rs2929973, rs2977530, and rs62514004, to determine whether these WNT1-inducible signaling pathway protein 1 (WISP-1) genetic polymorphisms increase the risk of developing breast cancer. Compared with wild-type (AA) carriers, those carrying the WISP1 rs62514004 AG + GG genetic variants had a greater risk of developing breast cancer. In an evaluation of the association between clinicopathological aspects and the WISP1 SNP rs62514004 in the breast cancer cohort, patients with the GG genotype were less likely than those with the AA genotype to develop stage III/IV disease. Patients carrying the WISP1 rs2929973 GG + TT variant were almost twice as likely as those carrying the GT genotype to have estrogen receptor (ER)- and progesterone receptor (PR)-positive tumors, while those with the WISP1 rs62514004 AG + GG genetic variants were around twice as likely as those with the AA genotype to have HER2-positive tumors. This study details risk associations between WISP1 SNPs and breast cancer susceptibility in women of Han Chinese ethnicity.

Abbreviations: AOR = adjusted odds ratio, CI = confidence intervals, ER = estrogen receptor, FSCN1 = fascin-1, HCC = hepatocellular carcinoma, HER2 = human epidermal growth factor receptor type 2, HMGB1 = high-mobility group box protein 1, HWE = Hardy-Weinberg equilibrium, OR = odds ratios, PCR = polymerase chain reaction, PR = progesterone receptor, SNP = single nucleotide polymorphisms, WISP-1 = WNT1-inducible signaling pathway protein-1.

Keywords: breast cancer, single nucleotide polymorphism, WISP-1

1. Introduction
Global cancer estimates for 2018 document breast cancer as the most commonly diagnosed malignancy in women, accounting for around 11.6% of the total cancer incidence burden worldwide.\cite{1} The risk of developing breast cancer is modified by various factors including age, reproductive and gynecological factors, physical activity, consumption of alcohol and tobacco, as well as family history \cite{2} and by gynecological diseases such as adenomyosis and polycystic ovary syndrome.\cite{3,4}

Genetic testing and mammography screening have limited specificity and sensitivity for evaluating an individual’s level of risk for breast cancer.\cite{2,3} Instead, single nucleotide polymorphism (SNP) genotyping might better predict an individual’s risk for breast cancer and guide disease management.\cite{5-7} Certain SNPs influence the susceptibility to breast cancer.\cite{8} The risk of breast cancer is higher in those carrying BRCA gene mutations\cite{9} and the genetic polymorphisms, high-mobility group box protein 1 (HMGB1) and fascin-1 (FSCN1).\cite{10,11}

WNT1 inducible signaling pathway protein-1 (WISP-1), also known as CCN4, is a cysteine-rich protein that belongs to the CCN superfamily.\cite{12} WISP-1 is a Wnt-1 and β-catenin responsive gene that contains 5 exons and four introns and maps to human chromosome 8q24.1-8q24.3.\cite{13,14} WISP-1 is expressed during the processes of embryonic development and tissue repair.\cite{15} Aberrant WISP-1 expression is seen in various pathological conditions such as arthritis, fibrosis, and malignancy\cite{16} and
promotes the development of various cancers, including chondrosarcoma and oral squamous cell carcinoma.17–19 WISP1 genetic polymorphisms are associated with the susceptibility to platinum-based chemotherapy responses as well as platinum-based chemotherapy toxicity in patients with lung cancer.20,21 WISP1 SNPs also predict an individual’s susceptibility to uterine cervical cancer and hepatocellular carcinoma.22–24 Up until now, no association has been observed between WISP1 gene polymorphisms as biomarkers or prognostic factors for breast cancer. This case-control study examined the involvement of five WISP1 SNPs and clinicopathological features in the susceptibility to breast cancer in a cohort of Han Chinese women.

2. Materials and methods

2.1. Participants

This study enrolled 236 Han Chinese women with breast cancer (cases) presenting to Dongyang People’s Hospital (Dongyang, Zhejiang, China) and 128 healthy, community-dwelling women without cancer (controls) between 2014 and 2018; all participants provided one blood sample each at study entry. Tumors were graded by the Scarff-Bloom-Richardson grading system, while the World Health Organization breast tumor classification criteria were used for pathohistological diagnoses.25 Immunohistochemical evaluations scored all tumors for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor type 2 (HER2) and Ki-67 expression and subtyped them as Luminal A (ER-positive [+] and/or PR+, HER2-negative [-]), Ki-67 <14%), Luminal B (ER+ and/or PR+, HER2-, Ki-67 >14%), ER+ and/or PR+, HER2-), HER2-enriched (ER-, PR+, HER2+), or as triple-negative breast cancer (TNBC; ER-, PR-, HER2-).25,26 Clinicopathological information was collected from electronic medical records and from a standardized questionnaire providing sociodemographic data completed by all study participants at study entry. The study protocol was approved by the Dongyang People’s Hospital Ethics Committee and all study procedures complied with guidelines and regulations. All study participants provided written informed consent at the time of study entry.

2.2. Genotype determination

Following the manufacturer’s instructions, we used QIAamp DNA blood mini kits (Qiagen, Valencia, CA) to isolate total genomic DNA from whole blood specimens. TE buffer (10 mM Tris, 1 mM EDTA, pH 7.8) was used to dissolve DNA, which was stored at <67°C for 1 minute, then 40 amplification cycles at 95°C for 15 seconds and 60°C for 1 minute.19,31

2.3. Statistical analysis

Between-group differences were treated as significant when P values were less than .05. The SNP genotype distributions were subjected to Chi-square analysis for determining Hardy-Weinberg equilibrium. Demographic comparisons between cases and controls were analyzed using the Mann-Whitney U test and the Fisher exact test. Multiple logistic regression models adjusted for confounding variables estimated adjusted odds ratios (AORs) and 95% confidence intervals (CIs) for associations between genotype frequencies and the risk of breast cancer or clinicopathological characteristics. All data were analyzed using the software program Statistical Product and Service Solutions (SPSS) version 19 and are reported as the sample mean ± the standard deviation (SD).

Table 1

Demographical characteristic in 128 controls and 236 patients with breast cancer.

Variable	Control N=128(%)	Patients N=236(%)	P value
Ages (yr)	37.96 ± 16.10	53.67 ± 11.58	<.001
Alcohol			
NO	123 (96.09)	222 (94.06)	
YES	5 (3.91)	14 (5.94)	
Smoke			
NO	122 (95.31)	236 (100.00)	
YES	6 (4.69)	0 (0.00)	
Tumor size (T)			
≤T2	224 (94.91)	128 (96.09)	
>T2	12 (5.09)		
Lymph node status (N)			
N0 + N1	186 (78.81)		
N2 + N3	50 (21.19)		
Distal metastasis (M)			
MO	229 (97.03)		
M1	7 (2.97)		
clinical stage			
I/II	183 (77.54)		
III/IV	53 (22.46)		
Histological grade			
G1 + G2	168 (71.19)		
G3 + G4	68 (28.81)		
ER Status			
Negative	73 (30.93)		
Positive	163 (69.07)		
PR Status			
Negative	108 (45.76)		
Positive	128 (54.24)		
HER2 Status			
Negative	148 (62.71)		
Positive	88 (37.29)		

Mann-Whitney, U test or Fisher exact test was used between healthy controls and patients with Breast Cancer. *P value < .05 as statistically significant. T2 = The tumor is larger than 20 mm but not larger than 50 mm; N0 = There’s no cancer be found in the lymph nodes or Only areas of cancer smaller than 0.2 mm are in the lymph nodes.; N1 = cancer has spread to 1-3 lymph node(s); N2 = 4-9 lymph nodes; N3 = ≥10 positive lymph nodes; MD = minimvasive cancer; M1 = cancer has metastasized to organs or lymph nodes away from the breast; G1 = well differentiated (low grade); G2 = moderately differentiated (intermediate grade); G3 = poorly differentiated (high grade); G4 = undifferentiated (high grade); ER = estrogen receptor, HER2 = human epidermal growth factor receptor 2; PR = progesterone receptor.
Table 2
Odds ratio (OR) and 95% confidence interval (CI) of Breast Cancer associated with WISP1 genotype frequencies.

Genotype	Control N = 128 (%)	Patients N = 236 (%)	OR (95% CI) AOR (95% CI)	
rs2977537				
AG	46 (10.1)	44 (44.49)	1.00 (reference)	1.00 (reference)
AA	35 (27.34)	33 (33.27)	1.00 (reference)	1.00 (reference)
GG	34 (26.56)	23 (22.46)	1.00 (reference)	1.00 (reference)
AA + GG	69 (53.90)	53 (55.51)	1.164 (0.811-1.670)	1.042 (0.620-1.751)
rs2929970				
AG	46 (10.1)	43 (42.23)	1.00 (reference)	1.00 (reference)
AA	40 (32.19)	42 (42.37)	1.356 (0.910-2.026)	1.605 (0.822-2.921)
GG	29 (22.65)	24 (24.14)	0.713 (0.427-1.190)	0.589 (0.286-1.190)
AA + GG	69 (53.90)	65 (65.78)	1.106 (0.770-1.589)	1.147 (0.680-1.935)
rs2929973				
GT	45 (36.53)	45 (45.49)	1.00 (reference)	1.00 (reference)
GG	41 (33.03)	26 (26.36)	1.089 (0.719-1.651)	0.911 (0.503-1.651)
GG + TT	54 (42.19)	50 (50.69)	1.225 (0.853-1.760)	1.222 (0.725-2.060)
rs2977530				
AG	45 (36.53)	41 (41.61)	1.00 (reference)	1.00 (reference)
AA	42 (33.03)	31 (31.36)	0.713 (0.427-1.190)	0.589 (0.286-1.190)
GG	30 (23.44)	23 (23.14)	1.131 (0.708-1.806)	0.927 (0.474-1.816)
AA + GG	71 (55.47)	67 (67.20)	1.106 (0.771-1.586)	0.918 (0.546-1.542)
rs62514004				
AG	70 (54.69)	70 (70.59)	1.106 (0.770-1.589)	1.147 (0.680-1.935)
AA + GG	69 (53.90)	66 (66.78)	1.106 (0.770-1.589)	1.147 (0.680-1.935)
rs62514004				
AG	30 (23.44)	29 (29.03)	1.106 (0.770-1.589)	1.147 (0.680-1.935)
AG + GG	30 (23.44)	29 (29.03)	1.106 (0.770-1.589)	1.147 (0.680-1.935)

Table 2 depicts polymorphism frequencies. All genotypes were in Hardy-Weinberg equilibrium (P > .05). Of all study participants, most of those with the rs2977537, rs2929970, and rs2977530 SNPs were heterozygous for the AG genotype, most of those with the rs2929973 SNP were heterozygous for the GT genotype, and most of those with the rs62514004 SNP were homozygous for AA (Table 2). In analyses that adjusted for confounders, study participants with the AG or the AG + GG genotype of the WISP1 rs62514004 polymorphism were around twice as likely to develop breast cancer as compared with those who were AA homozygous (AOR: 2.003; 95% CI: 1.022-3.924 and 1.910; 1.101-3.314, respectively; P < .05 for both comparisons), while those carrying the WISP1 rs62514004 AG + GG genotype were likely as those with the AA genotype to develop HER2 positive status (AOR: 1.881; 95% CI: 1.137-3.211) (Table 4). However, the other genotypes did not have significant difference (data not shown).

4. Discussion

The prognosis of breast cancer patients depends on the clinical or pathological stage at diagnosis. Thus, individuals with hereditary breast cancer could benefit from epigenetic screening for early diagnosis and treatment that prevents the disease from developing. WISP1 polymorphisms have been identified in various cancers, including uterine cervical cancer and hepatocellular carcinoma,[22–24] but data are scant as to the involvement of WISP1 polymorphisms in breast cancer. As far as we are aware, our study is the first to investigate the distributions of the rs2977537, rs2929970, rs2929973, rs2977530, and rs62514004 SNPs and their associations with the development and progression of breast cancer in Chinese Han women. Here, we found that women carrying the AG or the AG + GG genotype of the WISP1 rs62514004 polymorphism were more likely than those with AA homozygotes to develop breast cancer. This evidence implicates critical roles for WISP1 polymorphisms in breast cancer.
Between 2010 and 2014, 5-year relative survival rates for breast cancer were \(\sim 90.2\%\) in the USA \[32\] and \(\sim 80\%\) in China.\[33\] As the prognosis of breast cancer patients depends on their clinical and pathological status at diagnosis, early diagnosis is essential and is becoming ever more possible with improvements in screening strategies and the wider availability of epigenetic strategies.\[34\] We investigated possible associations between WISP1 polymorphisms, clinical and pathological markers, and susceptibility to breast cancer. We found that individuals carrying the GG genotype at the rs62514004 WISP1 polymorphism were more or less to develop stage III/IV disease. In addition, patients with the WISP1 rs2929973 GG + TT genotype were likely to develop ER and PR positive status. Furthermore, WISP1 rs62514004 AG + GG genotype were likely as those with the AA genotype to develop HER2 positive status. Our findings contribute to data concerning the correlation between WISP1 and pathological markers and susceptibility of breast cancer.

The WISP-1 SNPs has been implicated with cancer progression and susceptibility. WISP1 SNPs rs16893344, rs2977530, rs2977537 and rs62514004 were significantly associated with susceptibility for lung cancer, while marked correlations were found between the following WISP1 SNPs and response to platinum-based chemotherapy in the lung cancer cohort.\[21\] In addition, the WISP-1 SNPs has been investigated to correlate with the risk of developing hepatocellular carcinoma (HCC). The study authors therefore suggested that WISP1 SNPs may serve as markers or therapeutic targets for HCC.\[24\] Furthermore, Lin et al, have suggested the predictive capacity of WISP1 SNPs for cervical cancer.\[22\] Our result also supports previous finding that WISP1 SNPs is plays critical role with cancer development and susceptibility.

Table 3

Genotype	Patients N\(=236\) (%)	OR (95% CI)	AOR (95% CI)
	Clinical stage I/II III/IV		
rs62514004	AA 99 (41.95) 34 (14.41)	1.00 (reference)	1.00 (reference)
	AG 47 (19.92) 15 (6.36)	0.929 (0.462-1.871)	0.941 (0.466-1.898)
	GG 37 (15.68) 4 (1.69)	\(0.315 \) (0.104-0.948)	\(0.315 \) (0.105-0.949)
	AG + GG 84 (35.59) 19 (8.05)	0.659 (0.350-1.239)	0.661 (0.351-1.245)
Tumor size (T) \(\leq T2\)			
rs62514004	AA 123 (52.12) 10 (4.24)	1.00 (reference)	1.00 (reference)
	AG 62 (26.27) 0 (0.00)	0.925 (0.881-0.971)	0.931 (0.454-1.909)
	GG 39 (16.53) 2 (0.85)	0.631 (0.133-3.003)	0.629 (0.132-2.997)
	AG + GG 101 (42.80) 12 (5.08)	0.244 (0.052-1.137)	0.243 (0.052-1.133)
Lymph node status (N) \(N0 + N1\)			
rs62514004	AA 101 (42.80) 32 (13.56)	1.00 (reference)	1.00 (reference)
	AG 48 (20.34) 14 (5.93)	0.921 (0.450-1.884)	0.931 (0.454-1.909)
	GG 39 (16.53) 4 (1.69)	0.341 (0.113-1.031)	0.341 (0.113-1.031)
	AG + GG 85 (36.02) 18 (7.63)	0.668 (0.350-1.275)	0.671 (0.352-1.280)
Distant metastasis (M) \(M0\)			
rs62514004	AA 130 (55.08) 3 (1.27)	1.00 (reference)	1.00 (reference)
	AG 59 (25.00) 3 (1.27)	2.203 (0.432-11.241)	2.241 (0.432-11.630)
	GG 40 (16.95) 1 (0.42)	1.083 (0.110-10.706)	1.070 (0.107-10.684)
	AG + GG 99 (41.95) 4 (1.69)	1.751 (0.383-8.002)	1.773 (0.381-8.249)
Histological grade \(G1 + G2\)			
rs62514004	AA 99 (41.95) 34 (14.41)	1.00 (reference)	1.00 (reference)
	AG 41 (17.37) 21 (8.90)	0.491 (0.775-2.870)	1.481 (0.768-2.855)
	GG 28 (11.86) 13 (5.51)	1.352 (0.629-2.904)	1.349 (0.626-2.903)
	AG + GG 69 (29.24) 34 (14.41)	1.435 (0.815-2.527)	1.428 (0.809-2.518)

The odds ratios (ORs) with their 95% confidence intervals (CIs) were estimated by logistic regression analysis. *\(P\) value < .05 as statically significant. The adjusted ORs (AORs) with their 95% CIs were estimated by multiple logistic regression analysis that controlled for tobacco smoking, sex, and age.
Author contributions

Data curation: Yan Wang, Szu-Yu Chien, Chen-Ming Su.
Formal analysis: Szu-Yu Chien.
Investigation: Xiao-Fang Dong, Yong-Ming Zhao.
Methodology: Shi-Hui Yang, Ping-Wen Hsu.
Resources: Yan Wang, Chao-Qun Wang.
Software: Chen-Ming Su.
Supervision: Chen-Ming Su, Chih-Hsin Tang.
Writing – original draft: Chih-Hsin Tang.
Writing – review & editing: Chen-Ming Su, Chih-Hsin Tang.

Chih-Hsin Tang orcid: 0000-0002-7113-8352.

References

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.

[2] Amir E, Freedman OC, Seruga B, et al. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 2010;102:680–91.

[3] Shen CC, Yang AC, Hung JH, et al. A nationwide population-based retrospective cohort study of the risk of uterine, ovarian and breast cancer in women with polycystic ovary syndrome. Oncologist 2015;20:45–9.

[4] Deng Y, Xu H, Zeng X. Induced abortion and breast cancer: an updated meta-analysis. Medicine 2018;97:e9613.

[5] Chang WS, Liu LC, Hsiao CL, et al. The contributions of the tissue inhibitor of metalloproteinase-1 genotypes to triple negative breast cancer risk. BioMedicine 2016;6:4.

[6] Hu GN, Tzeng HE, Chen PC, et al. Correlation between CCL4 gene polymorphisms and clinical aspects of breast cancer. Int J Med Sci 2018;15:1179–86.

[7] Du Y, Lin Y, Yin K, et al. Single nucleotide polymorphisms of let-7-related genes increase susceptibility to breast cancer. Am J Translat Res 2019;11:1748–59.

[8] Chang YS, Lin CY, Yang SF, et al. Analysing the mutational status of adenomatous polyposis coli (APC) gene in breast cancer. Cancer Cell Int 2016;16:23.

[9] Antoniou AC, Pharoah PD, Narod S, et al. Breast and ovarian cancer risks to carriers of the BRCA1 5382insC and 185delAG and BRCA2 6174delT mutations: a combined analysis of 22 population based studies. J Med Genet 2005;42:601–9.

[10] Wang CQ, Tang CH, Wang Y, et al. FSCN1 gene polymorphisms: biomarkers for the development and progression of breast cancer. Sci Rep 2017;7:15887.

Table 4
Odds ratio (OR) and 95% confidence interval (CI) of a clinical status associated with genotypic frequencies of WISP1 in 236 Breast Cancer patients.

Genotype	Patients	OR (95% CI)	AOR (95% CI)	
rs2929973				
ER Status	N = 236 (%)			
Negative	40 (16.95)	61 (25.85)	1.00 (reference)	1.00 (reference)
Positive	8 (3.39)	18 (7.63)	1.475 (0.586-3.715)	1.505 (0.593-3.822)
rs62514004				
AA	38 (16.10)	95 (40.25)	1.00 (reference)	1.00 (reference)
AG	24 (10.17)	38 (16.10)	0.633 (0.336-1.195)	0.638 (0.337-1.208)
GG	11 (4.66)	30 (12.71)	1.091 (0.497-2.396)	1.093 (0.498-2.403)
GG + TT	33 (13.98)	102 (43.22)	1.077 (0.446-1.353)	0.782 (0.448-1.366)
rs2929973				
PR Status	N = 236 (%)			
Negative	9 (3.81)	17 (7.20)	2.531 (0.957-5.771)	2.481 (0.989-6.224)
Positive	43 (18.22)	66 (27.97)	1.910 (1.103-3.308)	1.829 (1.040-3.219)
rs62514004				
AA	57 (24.15)	76 (32.20)	1.091 (0.497-2.396)	1.093 (0.498-2.403)
AG	33 (13.98)	29 (12.29)	0.659 (0.360-1.208)	0.666 (0.359-1.236)
GG	18 (7.63)	23 (9.75)	1.176 (0.672-2.058)	1.189 (0.678-2.086)
AG + GG	51 (21.61)	52 (22.03)	1.091 (0.497-2.396)	1.093 (0.498-2.403)
rs2929973				
HER2 Status	N = 236 (%)			
Negative	56 (23.73)	45 (19.07)	1.00 (reference)	1.00 (reference)
Positive	43 (18.22)	66 (27.97)	1.910 (1.103-3.308)	1.829 (1.040-3.219)
rs62514004				
AA	92 (38.38)	41 (17.37)	1.176 (0.672-2.058)	1.189 (0.678-2.086)
AG	35 (14.83)	27 (11.44)	1.176 (0.672-2.058)	1.189 (0.678-2.086)
GG	21 (8.90)	20 (8.47)	1.176 (0.672-2.058)	1.189 (0.678-2.086)

The odds ratios (ORs) with their 95% confidence intervals (CIs) were estimated by logistic regression analysis. *P value < .05 as significant. The adjusted ORs (AORs) with their 95% CIs were estimated by multiple logistic regression analysis that controlled for tobacco smoking, sex and age.
[11] Huang BF, Tzeng HE, Chen PC, et al. HMGB1 genetic polymorphisms are biomarkers for the development and progression of breast cancer. Int J Med Sci 2018;15:580–6.

[12] Maiese K. WISP1: Clinical insights for a proliferative and restorative member of the CCN family. Curr Neurovasc Res 2014;11:378–89.

[13] Davies SR, Watkins G, Mansel RE, et al. Differential expression and prognostic implications of the CCN family members WISP-1, WISP-2, and WISP-3 in human breast cancer. Ann Surg Oncol 2007;14:1909–18.

[14] Xu L, Corcoran RB, Welsh JW, et al. WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene. Genes Dev 2000;14:585–95.

[15] Chen PC, Cheng HC, Yang SF, et al. family proteins: modulators of bone development and novel targets in bone-associated tumors. Biomed Res Int 2014;2014:437096.

[16] Gurbuz I, Chiquet-Ehrismann R. CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its role in cancer. Int J Biochem Cell Biol 2015;62:142–6.

[17] Wang CQ, Huang YW, Wang SW, et al. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCdelta pathway. Cancer Lett 2017;385:261–70.

[18] Chuang JY, Chen PC, Tsao CW, et al. WISP-1 a novel angiogenic regulator of the CCN family promotes oral squamous cell carcinoma angiogenesis through VEGF-A expression. Oncotarget 2015;6:4239–52.

[19] Lin CC, Chen PC, Lein MY, et al. WISP-1 promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-300 in human oral squamous cell carcinoma cells. Oncotarget 2016;7:9993–10005.

[20] Chen J, Yin J, Li X, et al. WISP1 polymorphisms contribute to platinum-based chemotherapy toxicity in lung cancer patients. Int J Mol Sci 2014;15:21011–27.

[21] Chen J, Yin J, Li XP, et al. Association of Wnt-inducible signaling pathway protein 1 Genetic polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response. Clin Lung Cancer 2015;16:298-304 e1-2.

[22] Lin YH, Hsiao YH, Yang SF, et al. Association between genetic polymorphisms of WNT1 inducible signaling pathway protein 1 and uterine cervical cancer. Reprod Sci 2018;25:1549–56.

[23] Urano T, Narasawa K, Shiraishi M, et al. Association of a single nucleotide polymorphism in the WISP1 gene with spinal osteoarthritis in postmenopausal Japanese women. J Bone Miner Metab 2007;25:233–8.

[24] Chen CT, Lee HL, Chiou HL, et al. Impacts of WNT1-inducible signaling pathway protein 1 polymorphism on hepatocellular carcinoma development. PLoS One 2018;13:e019847.

[25] Wang CQ, Li Y, Huang BF, et al. EGFR conjunct FSCN1 as a novel therapeutic strategy in triple-negative breast cancer. Sci Rep 2017;7:13634.

[26] Wang CQ, Tang CH, Chang HT, et al. Fascin-1 as a novel diagnostic marker of triple-negative breast cancer. Cancer Med 2016;5:1983–8.

[27] Lui HK, Wu ER, Chen MK, et al. Effect of genetic variation in microRNA binding site in WNT1-inducible signaling pathway protein 1 gene on oral squamous cell carcinoma susceptibility. PLoS One 2017;12:e0176246.

[28] Wang B, Hsu CJ, Lee HL, et al. Impact of matrix metalloproteinase-11 gene polymorphisms upon the development and progression of hepatocellular carcinoma. Int J Med Sci 2018;15:635–8.

[29] Li TC, Li CI, Liao LN, et al. Associations of EDNRA and EDN1 polymorphisms with carotid intima media thickness through interactions with gender, regular exercise, and obesity in subjects in Taiwan: Taichung Community Health Study (TCHS). BioMedicine 2015;5:8.

[30] Sun SC, Tsai CH, Wu TY, et al. Soya-cerebroside reduces IL-1 beta-induced MMP-1 production in chondrocytes and inhibits cartilage degradation: implications for the treatment of osteoarthritis. Food Agr Immunol 2019;30:620–32.

[31] Lee HP, Chen PC, Wang SW, et al. Plumbagin suppresses endothelial progenitor cell-related angiogenesis in vitro and in vivo. J Funct Foods 2019;52:537–44.

[32] Allemane C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018;391:1023–75.

[33] Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence. Breast Cancer Res Treat 2016;159:395–406.

[34] Moyer VA, Force USPST. Medications to decrease the risk for breast cancer in women: recommendations from the U.S. Preventive Services Task Force recommendation statement. Ann Inter Med 2013;159:698–708.