Heat Transfer and Flow Characteristics of Pseudoplastic Nanomaterial Liquid Flowing over the Slender Cylinder with Variable Characteristics

Azad Hussain 1, Aysha Rehman 1,*, Naqash Ahmed 1, Ahmed S. El-Shafay 2,3,*, Sahar A. Najati 4, Abdurazak H. Almaliki 5 and El-Sayed M. Sherif 6

1 Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan; azad.hussain@uog.edu.pk (A.H.); naqashahmed0311@gmail.com (N.A.)
2 Department of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkhaji 16273, Saudi Arabia
3 Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
4 Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; s.najati@tu.edu.sa
5 Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; a.almaliki@tu.edu.sa
6 Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Al-Riyadh 11421, Saudi Arabia; esherif@ksu.edu.sa
* Correspondence: aysharehman1986@gmail.com (A.R.); a.abdou@psau.edu.sa (A.S.E.-S.)

Abstract: The present article investigates heat transfer and pseudoplastic nanomaterial liquid flow over a vertical thin cylinder. The Buongiorno model is used for this analysis. The problem gains more significance when temperature-dependent variable viscosity is taken into account. Using suitable similarity variables, nonlinear flow equations are first converted into ordinary differential equations. The generating structure is solved by the MATLAB BVP4C algorithm. Newly developed physical parameters are focused. It is observed that the heat transfer rate and the skin friction coefficient is increased remarkably because of mixing nano-particles in the base fluid by considering $\gamma_b = 1, 2, 3, 4$ and $\lambda = 1, 1.5, 2, 2.5, 3$. It is found that the temperature field increases by inclining the values of thermophoresis and Brownian motion parameters. It is also evaluated that the velocity field decreases by increasing the values of the curvature parameter, Weissenberg number and buoyancy ratio characteristics.

Keywords: pseudoplastic nanofluid; heat transfer; thermophoresis and Brownian motion features; slender cylinder; computational approach; variable viscosity

1. Introduction

A fluid that does not obey the viscosity law of Newton is known as a non-Newtonian fluid. Similar to many typically observed materials such as honey, starch, toothpaste and many salt solutions are non-Newtonian fluids. Non-Newtonian fluid drift has provided favourable results in fluid mechanics as it is common in the biological sciences and industry. Non-Newtonian fluids include polymer solutions, blood float, heavy lubrication oil and grease. The study of mass and heat transfer has important packages in various fields of engineering and technology such as milk production, engineering devices, blood oxygenators, dissolution processes, mixing mechanisms and many more. A nanomaterial liquid is a liquid that contains particles of nanometre size known as nanoparticles. The most impactful reason for adding nanoparticles to the base fluid reveals a remarkable increment of base fluid thermal properties. The nanoparticles that are usually used in nanofluids are carbides, metals, oxides and carbon nanotubes. Water and oil are common base fluids. Buongiorno model is utilized in the investigation of Brownian movement and thermophoresis impact.
on mass, flow, and transport of heat from the considered surface. The concept of nanofluids was initiated by Choi [1] similar to that of nanoparticles. The truth that nanofluids have higher thermal conductivity than ordinary fluids due to their nanostructure has fascinated many theoretical and engineering scientists. Kuznetsov et al. [2] introduced the influence of nanomaterials liquid on the flow of natural convection through a flat surface. They reveal that decreasing the Nusselt number is a reduction feature of each of the succeeding characteristics: Brownian motion characteristic and buoyancy ratio characteristic. In addition, Prasher et al. [3] confirmed that convection is a motive for increasing the thermal conductivity of nanomaterials liquid due to the Brownian motion of the nanoparticles. Wang et al. [4] confirmed that the thermal conductivity growth dependence could be very vulnerable due to Brownian motion. Lee et al. [5] later located that with the particle volume fraction, the thermal conductivity of the nanomaterial liquid would enhance linearly. The slender cylinder is a special type of cylinder upon which, due to its slimness, we can easily research the liquid’s boundary layer flow. Nadeem et al. [6] worked on cylinder and studied viscous nanofluid’s heat transport and flow analysis. In [7–13], researchers paid attention to the mass and heat transport investigation by assuming different geometries such as a vertical cone, stretching sheet, stretching cylinder and circular cylinder under the thermal radiations and magnetohydrodynamic effects. Analysis of nanofluid flow problems is presented in [14–29] under boundary layer effects.

From the above analysis and discussion, we conclude that this is an important area of fluid mechanics; therefore, we decided to study the Carreau-Yasuda nanofluid flow over a vertical slender cylinder. By using the boundary layer concept and equivalence transformations, the model equations are simplified. MATLAB BVP4C algorithm is used to find the solution. The Buongiorno model [30] is applied for this investigation. The Graphical behaviour and expressions for temperature, velocity and concentration are calculated. We obtained results for various parameters, i.e., curvature, Prandtl number, thermophoresis, buoyancy ratio, Weissenberg number, Brownian motion and Lewis number on flow.

2. Fluid Model

Carreau-Yasuda fluid’s Cauchy stress tensor is

\[T = -pI + \left[\mu_{\infty} - (\mu_0 - \mu_{\infty}) \right \{1 + (\Gamma \dot{\gamma})^{\frac{d}{2-n}}} \right \} A_1, \]

where \(\mu_{\infty} \) shows the infinite shear rate, \(\mu_0 \) shows the zero shear viscosity rate, \(d, n \) and \(\Gamma \) are fluid characteristics of Carreau-Yasuda and \(\dot{\gamma} \) is defined as

\[\dot{\gamma} = \sqrt{2 \ trace (D^2)} . \]

where

\[D = \frac{1}{2} [\text{grad } v + (\text{grad } v)^t]. \]

Here, we assume \(\mu_{\infty} = 0 \), Then

\[T = -pI + \mu_0 \left \{1 + (\Gamma \dot{\gamma})^{\frac{d}{2-n}}} \right \} A_1. \]

First Rivlin Erickson tensor \(A_1 \) is

\[A_1 = \nabla v + (\nabla v)^t. \]

3. Statement

We consider a nanofluid incompressible flow along with a vertical slender cylinder of radius \(r_o \). Coordinates \((x, r)\) will be used along the cylinder surface.
The equations of mass conservation, momentum, energy transfer and nanoparticles concentration are

\[\frac{w}{r} + w_r + u_z = 0, \quad (6) \]

\[wu_r + uu_x = -\frac{1}{\rho} p_x + v\left(\frac{u_x}{r} + u_{rr}\right) + v\left[\frac{u_x}{r} + (d + 1)u_r\right] \frac{\rho - 1}{\rho} \Gamma^4 u_r^2 + \left[(\rho^2 - \rho)(\varphi - \varphi_\infty) + (1 - \varphi_\infty)(T - T_\infty)\right] \beta_{th} g_y, \quad (7) \]

\[wT_r + uT_x = a \left(\frac{1}{r} T_r + T_{rr}\right) + \frac{\rho C_p b}{\rho C_p} \left(\frac{D_T}{T_\infty} T_r^2 + D_B \varphi_T T_r\right), \quad (8) \]

\[w\varphi_r + u\varphi_x = \left(\frac{1}{r} \varphi_r + \varphi_{rr}\right) D_B + \left(\frac{1}{r} T_r + T_{rr}\right) D_T \frac{T}{T_\infty}, \quad (9) \]

The boundary conditions for the problem are given below [31].

\[
\begin{align*}
 u(x, r_o) &= 0, \quad \text{as } r \to r_o, \\
 w(x, r_o) &= V_x, \quad \text{as } r \to r_o, \\
 T(x, r_o) &= T_w(x), \quad \text{as } r \to r_o, \\
 \varphi(x, r_o) &= \varphi_w(x), \quad \text{as } r \to r_o, \\
 u(x, r) &= U(x), \quad \text{as } r \to \infty, \\
 T(x, r) &= T_\infty, \quad \text{as } r \to \infty, \\
 \varphi(x, r) &= \varphi_\infty, \quad \text{as } r \to \infty.
\end{align*}
\]

where \(V \) is the constant velocity of injection (\(V > 0 \)) or suction (\(V < 0 \)). The similarity transformation is defined as follows:

\[u = \frac{U_\infty x}{l} F'(\eta), w = -\frac{r_o}{l} \left(\frac{v U_\infty}{l}\right)^{\frac{1}{2}} F(\eta), \quad (11) \]

\[\theta = \frac{T - T_\infty}{T_w - T_\infty}, \psi = \frac{\varphi - \varphi_\infty}{\varphi_w - \varphi_\infty}, \eta = \frac{r^2 - r_o^2}{2r_o^2} \left(\frac{U_\infty}{vl}\right)^{\frac{1}{2}}, \quad (12) \]

Here, \(U(x) = \left(\frac{l}{x}\right) U_\infty \) is the mainstream velocity, \(v \) is called the kinematic viscosity and is denoted as \(v = \left(\frac{\nu}{\rho}\right) \). Here, \(\rho \) denotes the fluid density. The temperature of the slender cylinder surface is \(T_w(x) \) with the form \(T_w - T_\infty = \Delta T \left(\frac{x}{l}\right) \) and concentration of the slender cylinder surface is \(\varphi_w(x) \) with the form \(\varphi_w - \varphi_\infty = \Delta \varphi \left(\frac{x}{l}\right) \), where \(l \) is a characteristic length, \(U_\infty \) is the characteristic velocity, the temperature characteristic is \(\Delta T \) and the nanoparticle concentration characteristic is \(\Delta \varphi \). Using the above transformations, Equation (6) is satisfied automatically and Equations (7)–(9) take the following form

\[(2\eta \gamma_\beta + 1) F'' + 2n - 1 W_e (2\eta \gamma_\beta + 1)^{\frac{3}{2}} F'' + 3(n - 1) W_e \gamma_\beta (2\eta \gamma_\beta + 1)^{\frac{3}{2}} F'' + 2 \gamma_\beta F'' + FF'' + Fr^2 + 1 + \lambda(1 - \varphi_\infty)(\theta + N_p \psi) = 0, \quad (13) \]

\[(2\eta \gamma_\beta + 1) \theta'' + 2 \gamma_\beta \theta'' - Pr(F'\theta - F\theta') + (2\eta \gamma_\beta + 1) \left(N_p \theta' + N_b \theta' \psi'\right) = 0, \quad (14) \]

\[(2\eta \gamma_\beta + 1) \psi'' + 2 \gamma_\beta \psi'' - Le Pr \left(F' \psi - F \psi'\right) + \frac{N_p}{N_b} \left[(2\eta \gamma_\beta + 1) \theta'' + 2 \gamma_\beta \theta''\right] = 0, \quad (15) \]

in which the \(N_p = \frac{\rho \gamma_\beta D_p (T_w - T_\infty)}{\rho C_p T_\infty} \) is the thermophoresis parameter, \(\gamma_\beta = \left(\frac{l}{U_\infty r_o}\right)^{\frac{1}{2}} \) is the curvature characteristic, \(\lambda = \frac{\varphi_\infty \Delta T}{U_\infty} \) is the buoyancy characteristic, \(N_b = \frac{\rho \gamma_\beta D_p (\varphi_w - \varphi_\infty)}{\rho \gamma_\beta D_p (\varphi_w - \varphi_\infty)} \) is the Brownian movement characteristic, \(Pr = \frac{l}{2} \) is the Prandtl number, \(N_r = \frac{\rho \gamma_\beta \gamma_\beta D_p (\varphi_w - \varphi_\infty)}{\rho \gamma_\beta D_p (\varphi_w - \varphi_\infty)} \) is the Lewis number.
The non-dimensional form of boundary conditions are
\[
\begin{align*}
F'(\infty) &= 1, \quad \text{as} \eta \to \infty \quad \text{and} \quad F(0) = c_o, \quad F'(0) = 0, \quad \text{as} \eta \to 0. \\
\theta(\infty) &= 0, \quad \psi(\infty) = 0, \quad \text{as} \eta \to \infty \quad \text{and} \quad \theta(0) = 1, \quad \psi(0) = 1, \quad \text{as} \eta \to 0.
\end{align*}
\] (16)
where \(c_o\) is any constant. The expression for the skin friction coefficient and the Nusselt number are defined as
\[
\frac{N_a}{K_e^{1/2}} = -\theta'(0), \quad \frac{1}{2} C_f R_e^{1/2} = F''(0) + (n - 1) W_e F''(0)
\] (17)

4. Numerical Solution

By using BVP4C, the non-linear differential Equations (12)–(14) are solved numerically. We assume
\[
\begin{align*}
y_1 &= F, \quad y_4 = \theta, \quad y_6 = \psi, \\
y_2 &= F', \quad y_5 = \theta', \quad y_7 = \psi', \\
y_3 &= F'', \quad y_5' = \theta'', \quad y_7' = \psi'', \\
y_3' &= F'''.
\end{align*}
\] (18)
The equivalent equations become
\[
y_5' = \frac{-\{3(n-1)W_e \gamma_b (2\eta^2 \gamma_b + 1)^{1/2} y_5^2 + 2 \gamma_b y_3 + y_1 y_3 - y_2^2 + 1 + \lambda (1 - \varphi_0) (\theta + N_t y_6)\}}{(2\eta^2 \gamma_b + 1) + 2(n - 1) W_e (2\eta^2 \gamma_b + 1)^{1/2} y_3},
\] (19)
\[
y_5' = \frac{-\{2 \gamma_b y_5 - Pr (y_2 y_4 - y_1 y_5) + (2 \eta^2 \gamma_b + 1) (N_t y_5 y_7 + N_t y_5^2)\}}{(2\eta^2 \gamma_b + 1)}
\] (20)
\[
y_7' = \frac{-\{2 \gamma_b y_7 - Pr Le (y_2 y_6 - y_1 y_7) + \frac{N_t}{N_e} (2 \eta^2 \gamma_b + 1) y_5^2 + 2 \gamma_b y_3\}}{(2\eta^2 \gamma_b + 1)},
\] (21)
with conditions
\[
\begin{align*}
y_1(0) &= c_o, \quad y_2(0) = 0, \quad y_2 \to 1 \quad \text{as} \eta \to \infty, \\
y_4(0) &= 1, \quad y_6(0) = 1, \quad y_4 \to 0, \quad y_6 \to 0 \quad \text{as} \eta \to \infty.
\end{align*}
\] (22)

5. Graphical Results and Discussion

The nonlinear partial differential equations of nanofluid heat transfer and the boundary layer flow over a vertical cylinder are shown. Figure 1 represents the geometry of the fluid flow problem. The governing equations are articulated by applying similarity transformations. Figures 2a–4a provide the behaviour of the velocity profile for the specific characteristic concerned. Figure 2a shows the behaviour of the curvature parameter \(\gamma\) on the field of velocity. It is shown that by increasing the values of the curvature parameter, the velocity field decreases. Figure 2b describes the behaviour of \(N_e\) on the field of velocity. The velocity profile declines by inclining the values of the buoyancy ratio. Figure 3a shows the influence of \(W_e\) on the velocity field. The Weissenberg number differentiates the elastic forces from the viscous forces and it is the ratio of specific processes of time and time relaxation of fluid; therefore, by enlarging the values of the Weissenberg number, the specific process time decreases, and the velocity distribution also decreases. Figure 3b exhibit the impact of Lewis number on velocity distribution. It is easily observed that velocity profile expands by enlarging the values of Lewis number. Figure 4a indicates the influence of \(N_t\) on the field of temperature. Temperature distribution rises through the growing amount of \(N_t\). Figure 4b shows the increasing result of temperature profile for \(N_t\). Figure 5a exhibits the behaviour of the Prandtl number towards temperature distribution. The increase in the Prandtl number is the main reason for the slow rate of thermal diffusion; therefore, it has been found that the field of temperature declines by enlarging values of \(Pr\). Figure 5b describes the impact of the Lewis number on the temperature field. The profile of temperature first decreases and it later increases by enlarging the values of the Lewis number. Figure 6a
express the behaviour of the Lewis number on the nanoparticle concentration profile. The Lewis number is the ratio between thermal and mass diffusivity, and results show that the concentration profile declines and it inclines by enhancing the values of the Lewis number. Figure 6b shows the impact of γ_b over $\frac{1}{2}C_f R_e^2$ against the buoyancy parameter λ. Therefore, skin friction coefficient has increasing levels of behaviour for these parameters. Figure 7 shows the impact of γ_b over $\frac{N_r}{R_e^2}$ against the values of λ. Therefore, the Nusselt number increases in magnitude by increasing the values of the buoyancy parameter. Table 1 expresses the value of the Nusselt number for distinct characteristics γ_b, L_e, Pr, N_b and N_t. The Nusselt number expands for γ_b but decrease for Le, N_b and N_t. Table 2 exhibits the values of the skin friction coefficient on distinct characteristics γ_b, We, n, λ, φ_{∞} and N_r. The skin friction coefficient expands by enlarging the amount of γ_b and λ, but declines for We, n, φ_{∞} and N_r. Table 3 displays the skin friction coefficient’s numerical values for different values of λ vs. γ_b. With an increase in these parameters, the skin friction coefficient inclines, whereas Table 4 expresses the Nusselt number’s numerical values for different values of λ vs. γ_b. Therefore, by increasing the values of γ_b and λ, the values of the Nusselt number also rise.

Figure 1. The configuration of the problem.

Figure 2. (a) Influence of γ_b over F_{∞}. (b) Effects of N_b over F_{∞}.

(a)
Figure 2. (a) Influence of γ_b over F'. (b) Effects of N_{f} over F'.

Figure 3. (a) Impact of We over F'. (b) Impact of Le over F'.

Figure 4. (a) Impact of N_{f} over θ. (b) Impact of N_{r} over θ.

Crystals 2021, 11, x FOR PEER REVIEW 7 of 12
Figure 3. (a) Impact of W_e over F_{∞}. (b) Impact of L_e over F_{∞}.

Figure 4. (a) Impact of N_τ over θ. (b) Impact of N_b over θ.

Figure 5. Cont.
Figure 5. (a) Impact of Pr over θ. (b) Impact of Pr over θ.

Figure 6. (a) Influence of Le over ψ. (b) Influence of γb over 1/2CfRe^1/2 against λ.
Figure 6. (a) Influence of L over ψ. (b) Influence of γ over ϕ. ψ against λ.

Figure 7. Influence of γ over $\frac{N_u}{R^2}$ against λ.

Table 1. The effect of different parameters on the Nusselt number.

Pr	Le	N_t	N_b	γ_b	$\frac{N_u}{R^2} = -\theta'(0)$
1	1	1	1	1	0.7774
2	1	1	1	1	1.3430
3	1	1	1	1	1.9899
1	2	1	1	1	0.7774
2	2	1	1	1	0.7205
3	2	1	1	1	0.6932
1	3	1	1	1	0.7774
2	3	1	1	1	0.4571
3	3	1	1	1	0.2927
1	1	2	1	1	0.7774
2	2	2	1	1	0.3671
3	3	2	1	1	0.1660
1	1	3	1	1	0.7774
2	2	3	1	1	0.8421
3	3	3	1	1	0.9184

Table 2. The impact of distinct characteristics on the coefficient of skin friction.

λ	N_r	γ_b	W_e	n	ϕ_{∞}	$F'(0) + (n - 1)W_eF'(0)$
1	1	1	0.2	2	0.05	2.1121
2	1	1	0.2	2	0.05	1.7856
3	1	1	0.2	3	0.05	1.6072
1	1	2	0.2	2	0.05	2.3202
2	1	2	0.2	2	0.05	2.6707
3	1	2	0.2	3	0.05	3.0244
1	1	3	0.2	2	0.05	2.6809
2	1	3	0.2	3	0.05	2.6975
3	1	3	0.2	4	0.05	3.6115
1	1	1	0.2	2	0.05	3.3132
2	1	1	0.2	3	0.05	3.3065
3	1	1	0.2	4	0.05	3.3098
Table 3. $\frac{1}{2}C_fR_e^2$ for λ versus γ_b.

γ_b	λ	1	2	3	4
1	3.1322	3.92376	4.53894	5.51579	
2	4.18662	4.71277	5.24436	5.7809	
3	5.11698	5.58784	6.06337	6.54327	
4	6.09744	6.52795	6.96226	7.40022	

Table 4. N_u/R_e^2 for λ versus γ_b.

γ_b	λ	1	2	3	4
1	0.777472	0.785111	0.79240	0.79939	
2	0.842123	0.84633	0.85043	0.85443	
3	0.918447	0.921069	0.92364	0.92618	
4	0.996596	0.998363	1.00011	1.00184	

6. Conclusions

The impact of significant parameters on mass and heat transport characteristics are examined. The analysis made in this article exhibits that the mass and heat transport rate was found to be improved in the flow of pseudoplastic non-Newtonian nanomaterial liquid. The pseudoplastic nanomaterial liquid is applicable in all electronic gadgets for increasing their cooling or heating rate. Furthermore, pseudoplastic nanomaterial liquids are also applicable in reducing the skin friction coefficient. The fundamental conclusions received from the above evaluation are indexed below.

1. The temperature distribution decreases through a rise in the amount of Pr.
2. The field of temperature inclines by increasing the values of N_t and N_b.
3. The velocity field decreases by enhancing the values of N_r, We and γ_b.
4. The temperature profile first decreases and it increases by enlarging the values of the Lewis number.
5. Profile of velocity increases by expanding the values of Lewis number.
6. The nanoparticle concentration distribution declines and it increases by increasing the values of Le.
7. The skin friction coefficient increases by expanding the amount of γ_b and λ.
8. The heat transfer rate increases by enlarging the amount of γ_b and λ.

Author Contributions: A.H.: Conceptualization, Supervision, Writing—review & editing, A.R.: Writing—original draft, Formal analysis, Validation, N.A.: Software, Resources, Validation, A.S.E.-S.: Data curation Investigation, Writing—review & editing, S.A.N.: Funding acquisition Writing—review & editing, Visualization, Resources, A.H.A.: Writing—review & editing, validation, Funding acquisition, E.-S.M.S.: Formal analysis, Writing—review & editing, Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by Taif University Researchers Supporting Project number (TURSP-2020/252), Taif University, Taif, Saudi Arabia. Also this work was supported by the Researchers Supporting Project Number (RSP-2021/33), King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Acknowledgments: The authors would like to acknowledge financial support from the Taif University Researchers Supporting Project number (TURSP-2020/252), Taif University, Taif, Saudi Arabia. Additionally, this work was supported by the Researchers Supporting Project Number (RSP-2021/33), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.
Nomenclature

c_p Specific heat \mu_o Zero shear rate
F Dimensionless velocity function \mu_\infty Infinity shear rate
P Pressure \eta Dynamic viscosity
A_1 Rivlin Erickson tensor \nu Kinematic viscosity
\gamma Curvature parameter \lambda Buoyancy parameter
\rho Density \theta Dimensionless temperature function
\gamma shear rate T Fluid temperature
Pr Prandtl number T_\infty Ambient temperature
r_0 Radius of cylinder N_l Thermophoresis parameter
\phi Concentration of nanoparticles N_b Brownian motion parameter
\Gamma n, d Fluid parameters L_e Lewis number
c_f Skin friction coefficient \psi Dimensionless concentration function
Nu Nusselt number x, r Coordinates
We Weissenberg number U_\infty Free stream velocity

References
1. Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; No. ANL/MSD/CP-84938; CONF-951135-29; Argonne National Lab.: Du Page County, IL, USA, 1995.
2. Kuznetsov, A.V.; Nield, D.A. Natural convective boundary-layer flow of a nano fluid past a vertical plate. Int. J. Therm. Sci. 2010, 49, 243–247. [CrossRef]
3. Prasher, R.; Bhattacharya, P.; Phelan, P.E. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 2005, 94, 025901. [CrossRef]
4. Wang, X.; Xu, X.; Choi, S.U. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 1999, 13, 474–480. [CrossRef]
5. Lee, J.H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.; Choi, C.J. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transfer 2008, 51, 2651–2656. [CrossRef]
6. Nadeem, S.; Rehman, A.; Ali, M.E. The boundary layer flow and heat transfer of a nano fluid over a vertical, slender cylinder. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2012, 226, 165–173. [CrossRef]
7. Sreedevi, P.; Reddy, P.S.; Rao, K.V.S.N.; Chamkha, A.J. Heat and Mass Transfer Flow Over a Vertical Cone Through Nanofluid Saturated Porous Medium Under Convective Boundary Condition Suction/Injection. J. Nanofluids 2017, 6, 478–486. [CrossRef]
8. Sreedevi, P.; Reddy, P.S.; Sheremet, M.A. Impact of homogeneous-heterogeneous reactions on heat and mass transfer flow of Au-Eg and Ag-Eg Maxwell nanofluid past a horizontal stretched cylinder. J. Therm. Anal. Calorim. 2020, 141, 533–546. [CrossRef]
9. Reddy, P.S.; Sreedevi, P. Effect of zero mass flux condition on heat and mass transfer analysis of nanofluid flow inside a cavity with magnetic field. Eur. Phys. J. Plus 2021, 136, 102. [CrossRef]
10. Sreedevi, P. Combined Influence of Brownian Motion and Thermophoresis on Maxwell Three-Dimensional Nanofluid Flow Over Stretching Sheet with Chemical Reaction and Thermal Radiation. J. Porous Media 2020, 23, 327–340. [CrossRef]
11. Reddy, P.S.; Chamkha, A.J. Heat and mass transfer characteristics of nanofluid over horizontal circular cylinder. Ain Shams Eng. J. 2018, 9, 707–716. [CrossRef]
12. Reddy, P.S.; Sreedevi, P. Buongiorno’s model nanofluid natural convection inside a square cavity with thermal radiation. Chin. J. Phys. 2021, 72, 327–344. [CrossRef]
13. Reddy, P.S.; Reddy, P.S. Heat and mass transfer analysis of MWCNT-kerosene nanofluid flow over a wedge with thermal radiation. Heat Transf. 2020, 50, 10–33. [CrossRef]
14. Reddy, P.S.; Sreedevi, P.; Chamkha, A.J. Heat and mass transfer analysis of nanofluid flow over swirling cylinder with Cattaneo-Christov heat flux. J. Therm. Anal. Calorim. 2021, 2021, 1–11. [CrossRef]
15. Reddy, P.S.; Sreedevi, P. Flow and heat transfer analysis of carbon nanotubes based nanofluid flow inside a cavity with modified Fourier heat flux. Phys. Scr. 2021, 96, 055215. [CrossRef]
16. Reddy, P.S.; Sreedevi, P.; Rao, K.V.S. Impact of heat generation/absorption on heat and mass transfer of nanofluid over rotating disk filled with carbon nanotubes. Int. J. Numer. Methods Heat Fluid Flow 2020, 31, 2962–2985. [CrossRef]
17. Sreedevi, P.; Reddy, P.S.; Chamkha, A.J. Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition. Int. J. Mech. Sci. 2018, 135, 646–655. [CrossRef]
18. Reddy, P.S.; Sreedevi, P.; Chamkha, A.J. MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction. Powder Technol. 2017, 307, 46–55. [CrossRef]
19. Hussain, A.; Hassan, A.; Arshad, M.; Rehman, A.; Matoog, R.T.; Abdeljawad, T. Numerical simulation and thermal enhancement of multi-based nanofluid over an embrittled cone. Case Stud. Therm. Eng. 2021, 28, 101614. [CrossRef]
20. Hussain, A.; Haider, Q.; Rehman, A.; Malik, M.Y.; Nadeem, S.; Hussain, S. Heat Transport Improvement and Three-Dimensional Rotating Cone Flow of Hybrid-Based Nanofluid. *Math. Probl. Eng.* 2021, *2021*, 6633468. [CrossRef]

21. Hussain, A.; Haider, Q.; Rehman, A.; Abdussattar, A.; Malik, M.Y. A New Heat Dissipation Model and Convective Two-Phase Nanofluid in Brittle Medium Flow over a Cone. *Math. Probl. Eng.* 2021, *2021*, 6688747. [CrossRef]

22. Hussain, A.; Hassan, A.; Arshad, M. Comsolc solution of an elliptic cylindrical compressible fluid flow. *Sci. Rep.* 2021, *11*, 1–12. [CrossRef]

23. Hussain, A.; Arshad, M.; Hassan, A.; Rehman, A.; Ahmad, H.; Baili, J.; Gia, T.N. Heat transport investigation of engine oil based rotating nanomaterial liquid flow in the existence of partial slip effect. *Case Stud. Therm. Eng.* 2021, *28*, 101500. [CrossRef]

24. Hussain, A.; Haider, Q.; Rehman, A.; Ahmad, H.; Baili, J.; Aljahdaly, N.H.; Hassan, A. A thermal conductivity model for hybrid heat and mass transfer investigation of single and multi-wall carbon nano-tubes flow induced by a spinning body. *Case Stud. Therm. Eng.* 2021, *28*, 101449. [CrossRef]

25. Hussain, A.; Arshad, M.; Rehman, A.; Hassan, A.; Elagan, S.K.; Ahmad, H.; Ishan, A. Three-dimensional water-based magneto-hydrodynamic rotating nanofluid flow over a linear extending sheet and heat transport analysis: A numerical approach. *Energies* 2021, *14*, 5133. [CrossRef]

26. Hussain, A.; Hassan, A.; Al Mdallal, Q.; Ahmad, H.; Rehman, A.; Altanji, M.; Arshad, M. Heat transport investigation of magneto-hydrodynamics (SWCNT-MWCNT) hybrid nanofluid under the thermal radiation regime. *Case Stud. Therm. Eng.* 2021, *27*, 101244. [CrossRef]

27. Hussain, A.; Elkotb, M.A.; Arshad, M.; Rehman, A.; Sooppy Nisar, K.; Hassan, A.; Saleel, C.A. Computational investigation of the combined impact of nonlinear radiation and magnetic field on three-dimensional rotational nanofluid flow across a stretchy surface. *Processes* 2021, *9*, 1453. [CrossRef]

28. Nisar, K.S.; Ciancio, A.; Ali, K.K.; Osman, M.S.; Cattani, C.; Baleanu, D.; Azeem, M. On beta-time fractional biological population model with abundant solitary wave structures. *Alex. Eng. J.* 2021, *61*, 1996–2008. [CrossRef]

29. Shoaib, M.; Tabassum, R.; Nisar, K.S.; Raja, M.A.Z.; Rafiq, A.; Khan, M.I.; Mahmoud, E.E. Entropy Optimized Second Grade Fluid with MHD and Marangoni Convection Impacts: An Intelligent Neuro-Computing Paradigm. *Coatings* 2021, *11*, 1492. [CrossRef]

30. Buongiorno, J. Convective transport in nanofluids. *ASME J. Heat Transf.* 2006, *128*, 240–250. [CrossRef]

31. Ishak, A.; Nazar, R.; Pop, I. The effects of transpiration on the boundary layer flow and heat transfer over a vertical slender cylinder. *Int. J. Non-Linear Mech.* 2007, *42*, 1010–1017. [CrossRef]