Counting Berg partitions

Artur Siemaszko and Maciej P Wojtkowski

Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn,
˙Zołnierska 14A, 10-561 Olsztyn, Poland

E-mail: artur@uwm.edu.pl and wojtkowski@matman.uwm.edu.pl

Received 9 December 2010, in final form 27 May 2011
Published 14 July 2011
Online at stacks.iop.org/Non/24/2383

Abstract

We call a Markov partition of a two-dimensional hyperbolic toral automorphism a Berg partition if it contains just two rectangles. We describe all Berg partitions for a given hyperbolic toral automorphism. In particular, there are exactly \((k + n + l + m)/2\) nonequivalent Berg partitions with the same connectivity matrix \((k, l, m, n)\).

Mathematics Subject Classification: 37D

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Markov partitions play an important role in the theory of dynamical systems. They were introduced by Adler and Weiss in the seminal paper [A-W], in the context of toral automorphisms. The notion was further developed by Sinai [Si1, Si2] and Bowen [Bo], becoming a principal scenario for deterministic systems with stochastic behaviour.

In this paper we go back to the original setting of Adler and Weiss, of a two-dimensional toral automorphism, and consider Markov partitions with two parallelograms. Such partitions are not generating, but they can be routinely refined to a generating partition, and there are distinctive advantages to working with partitions of just two elements.

We propose to call such partitions Berg partitions based on the following historical comment by Roy Adler: '(Kenneth) Berg in his Ph.D. thesis [Be] was the first to discover a Markov partition of a smooth domain under the action of a smooth invertible map: namely, he constructed Markov partitions for hyperbolic automorphisms acting on the two dimensional torus.' [Ad].

Our goal is to find and classify all such partitions for a given toral automorphism \(\mathcal{D}\). The Berg partitions differ by shapes and their placement in the torus. The shapes are shared by all hyperbolic automorphisms in the centralizer of \(\mathcal{D}\) in \(GL(2, \mathbb{Z})\). Their number \(N\) is related to
the period of the continued fraction expansion of the slope of the eigenvector of \tilde{D}. Each Berg partition comes with the connectivity matrix C with nonnegative entries and $\det C = \pm 1$. There are exactly N different connectivity matrices for a given automorphism \tilde{D}.

We call two Berg partitions equivalent if there is a homeomorphism commuting with \tilde{D} which takes one into the other. A Berg partition can be translated into another, nonequivalent Berg partition. We prove (theorem 5.2) that the number of such translations is equal to one half the sum of entries of the connectivity matrix. It is surprising that the number is the same for \tilde{D} and $-\tilde{D}$ (they have the same connectivity matrices). Although \tilde{D} and $-\tilde{D}$ have a common factor (under $-I$) they are not topologically conjugate. In particular, they have different number of fixed points. In our proof it looks like a coincidence. It would be interesting to find a geometric explanation for it.

In the last section we describe symmetries of Berg partitions. They are present for reversible toral automorphisms. The full symmetry group of a toral automorphism was studied by Baake and Roberts [B-R].

Let us describe the results that preceded our work. Rykken [R] constructed new types of Markov partitions. Snavely studied in [Sn] the connectivity matrices of Markov partitions for hyperbolic automorphisms of \mathbb{T}^2. He found that for Berg partitions the connectivity matrices are conjugated to the dynamics. He also found a way to list all such matrices and hence to classify the shapes of Berg partitions. He relied on the result of Adler [Ad] that such partitions are indeed present for any toral automorphism. Manning gave a powerful generalization of this to \mathbb{T}^n [M].

After we presented our work at the November 2009 conference Progress in Dynamics at IHP in Paris we learned from Pascal Hubert about the work of Anosov, Klimenko and Kolutsky [A-K-K, K], which pursues similar goals. While our paper has intersections with all the previous works, we give an independent presentation.

2. Bi-partitions of the torus

We reserve the term rectangle to rectangles $R \subset \mathbb{R}^2$ with horizontal and vertical sides.

Let us consider two rectangles $R_1, R_2 \subset \mathbb{R}^2$ in the position shown in figure 1. Let the lengths of their horizontal sides be u, v, and of their vertical sides p, q.

![Figure 1. A bi-partition and its tiling.](image)
We consider the lattice of translations \(L \) generated by the two vectors \([v, p]\) and \([-u, q]\), figure 1.

Dividing the plane by the action of the group of translations gives us the torus \(\mathbb{R}^2 = \mathbb{R}^2 / L \) and the natural projection \(\pi : \mathbb{R}^2 \to \mathbb{R}^2 / L = \mathbb{T}^2 \).

Translations of \(R_1 \) and \(R_2 \) by the vectors from \(L \) tile the plane. The union \(R_1 \cup R_2 \) is the fundamental domain of the torus.

Definition 2.1. The partition \(\{R_1, R_2\} \) is called a bi-partition of the torus. A rectangle \(R_1 \) of a bi-partition \(\{R_1, R_2\} \) is called an isolated rectangle if it projects \(1 - 1 \) under the projection \(\pi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 / L = \mathbb{T}^2 \). Otherwise it is called a connected rectangle.

At least one of the rectangles in a bi-partition is connected. The \((u, p)\) rectangle is isolated iff \(u < v, \ p < q \). A bi-partition is called connected if both of its rectangles are connected, otherwise it is called isolated. A bi-partition is isolated iff \((u - v)(p - q) > 0\).

Definition 2.2. For a given bi-partition the union of the horizontal sides, \(J^h \subset \mathbb{T}^2 \), of the rectangles is called the horizontal spine, the union of the vertical sides, \(J^v \subset \mathbb{T}^2 \), is called the vertical spine.

The horizontal and the vertical spines are intervals in \(\mathbb{T}^2 \) which intersect in four points \(J^h \cap J^v \), figure 1.

Let us now reverse the question, given two transversal irrational directions in the torus, let us find all bi-partitions with the sides of the rectangles having these directions. In other words, let \(\mathbb{L} \subset \mathbb{R}^2 \) be a lattice of translations isomorphic to \(\mathbb{Z}^2 \), and with no horizontal or vertical translations, i.e. the lattice \(\mathbb{L} \) has no nonzero elements in the coordinate axes. We are looking for two rectangles \(R_1, R_2 \), that form the bi-partition of the torus \(\mathbb{R}^2 / \mathbb{L} \). It is clear from the above construction that such bi-partitions are, one-to-one, associated with bases \((e, f)\) of the lattice \(\mathbb{L} \), such that \(e \) belongs to the first, and \(f \) belongs to the second quadrant. Indeed, if \(e = [v, p] \) and \(f = [-u, q] \), then the rectangles \(R_1, R_2 \), with horizontal sides equal to, respectively, \(u \) and \(v \), and vertical sides equal to \(p \) and \(q \), figure 1, give us the bi-partition.

Let us consider the family \(\mathcal{F} \) of such bases of \(\mathbb{L} \). \(\mathcal{F} \) is always nonempty. Indeed, let \((a, b)\) be a basis in \(\mathbb{L} \). For the whole of the paper we adopt the convention that the ordered pair \((a, b)\) denotes an ordered (oriented) basis of \(\mathbb{L} \) and the set \([a, b]\) denotes the basis with the positive (counterclockwise) orientation.

One of the four bases \([\pm a, \pm b]\) has the property that the first element, with respect to the positive orientation, is in the right, and the second element in the left half-plane. Let us denote such a basis by \((a_0, b_0)\). Now we construct inductively a sequence of such bases of \(\mathbb{L} \) by the following cutting algorithm, which is reminiscent of the coding from the paper of Series [Se]. Given the basis \((a_0, b_0)\), we consider \(c_n = a_n + b_n \). If \(c_n \) is in the right half-plane then \(a_{n+1} = c_n, b_{n+1} = b_n \), and if \(c_n \) is in the left half-plane then \(a_{n+1} = a_n, b_{n+1} = c_n \). The cutting algorithm must deliver a basis in \(\mathcal{F} \), since the directions of \(a_n \) and \(b_n \), converge to the vertical. To prove this let us pass to the coordinate system with the basis \((a_0, b_0)\). All vectors \(a_n \) and \(b_n, n = 0, 1, 2, \ldots \), belong now to \(\mathbb{Z}^2 \) and the vertical becomes a line \(P \) with positive irrational slope. It is straightforward that the lengths of \(a_n \) and \(b_n \) grow unboundedly as \(n \to \infty \). At the same time the area of the parallelogram spanned by \(a_n \) and \(b_n \) remains constant. Hence the angle between \(a_n \) and \(b_n \) goes to zero. Since the line \(P \) is always enclosed by \(a_n \) and \(b_n \) their directions must converge to the direction of \(P \). Finally, going back to the original coordinates, if \(a_n \) and \(b_n \) converge to the negative vertical we replace the starting basis \((a_0, b_0)\) with \((-b_0, -a_0)\).
Given a basis \((e_0, f_0) \in \mathcal{F}\) we construct the sequence of bases \((e_n, f_n) \in \mathcal{F}, n = 0, 1, 2, \ldots\) by the cutting algorithm. Moreover, we can run the algorithm backwards, i.e. for a basis \((e_n, f_n) \in \mathcal{F}\), we consider the elements of \(L\): \(e_n - f_n\) and \(f_n - e_n\). One, and only one of them, is in the upper half-plane, let us denote it by \(g_n\). If \(g_n\) is in the second quadrant then the basis \((e_{n-1}, f_{n-1}) \in \mathcal{F}\), where \(e_{n-1} = e_n, f_{n-1} = g_n\). If \(g_n\) is in the first quadrant then we put \(e_{n-1} = g_n, f_{n-1} = f_n\), and still get a basis in \(\mathcal{F}\). In figure 2 the basis \((e_0, f_0)\) is shown with its successor and predecessor, and also with its associated bi-partition.

Let us summarize our construction: given a basis \((e_0, f_0) \in \mathcal{F}\) we obtained a series of bases \((e_n, f_n) \in \mathcal{F}, n = 0, \pm 1, \pm 2, \ldots\). We claim that \(\mathcal{F}\) contains exactly the sequence, and nothing else. To prove that let us introduce a partial ordering in the family of all bases of \(L\).

Definition 2.3. A basis \([\hat{a}, \hat{b}]\) of \(L\) succeeds another basis \([a, b]\), which we denote by \([\hat{a}, \hat{b}] > [a, b]\), if \(\hat{a}, \hat{b}\) are linear combinations of \(a, b\), with nonnegative coefficients.

We will also need

Lemma 2.1. Let \([a, b]\) be the standard basis in \(\mathbb{Z}^2\), and let \([\hat{a}, \hat{b}]\) be another basis. If \(\hat{a}\) has both positive coordinates (i.e. it lies strictly in the first quadrant), then \(\hat{b}\) lies either in the first or third quadrant.

It follows from this lemma that the ordering of \(\mathcal{F}\) is linear. Indeed for any two bases \((e, f), (\hat{e}, \hat{f}) \in \mathcal{F}\), if \(\hat{e}\), or \(\hat{f}\), is a linear combination of \(e\) and \(f\) with positive coefficients then \((\hat{e}, \hat{f}) > (e, f)\).

To show that \(\mathcal{F}\) is exhausted by the cutting algorithm let \((e, f) > (e_0, f_0)\) be two bases in \(\mathcal{F}\). We will show that the cutting algorithm started at \((e_0, f_0)\) will by necessity reach \((e, f)\). Indeed, let us consider the first \(n\) such that \((e, f) > (e_n, f_n)\), but \((e, f)\) is not a successor of \((e_{n+1}, f_{n+1})\). Using lemma 2.1 we arrive at the conclusion that by necessity \(e_n = e\) and \(f_n = f\). In the following we will call \(\mathcal{F}\) a *fan of bi-partitions*, or a *bi-fan*.

With a fixed basis \((e_0, f_0) \in \mathcal{F}\) the bi-fan is completely described by the cutting sequence \([s_n]\) defined as follows: for \(n \in \mathbb{Z}\)

\[
s_n = 0 \quad \text{if} \quad e_{n+1} = e_n, \quad s_n = 1 \quad \text{if} \quad f_{n+1} = f_n.
\]
The bi-fan \mathcal{F} can be recovered from the basis (e_0, f_0) and the cutting sequence by the following formula: for any $k < n$

$$[e_n, f_n] = [e_k, f_k] \begin{bmatrix} 1 & 1 - s_k \\ s_k & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & 1 - s_{n-1} \\ s_{n-1} & 1 \end{bmatrix}$$

where $[e_n, f_n]$ is understood as the matrix with columns equal to e_n, f_n, respectively.

Definition 2.4. A basis $(e_n, f_n) \in \mathcal{F}$ is called a reduced basis of the bi-fan if $s_{n-1} \neq s_n$. Otherwise it is called intermediate.

The terms reduced and intermediate are motivated by the connection of the cutting sequence and continued fractions (cf [Se, S-W]).

Proposition 2.2. A basis $(e_n, f_n) \in \mathcal{F}$ is reduced if and only if the corresponding bi-partition is isolated.

Proof. Let $e_n = [v, p]$ and $f_n = [-u, q]$. We have $s_n = 0$ if and only if $e_n + f_n$ is in the left half-plane, i.e. $v - u < 0$. Further $s_{n-1} = 1$ if and only if the vector $e_n - f_n$ is in the upper half-plane, i.e. $p - q > 0$. This gives us the condition $(u - v)(p - q) > 0$. The case $s_n = 1, s_{n-1} = 0$ is characterized by the same inequality. \square

The ordering of the bases in the bi-fan gives rise to the respective ordering of bi-partitions (or rather their shapes), which was used by Snavelly [Sn]. This ordering is geometrically transparent; in figure 3 a bi-partition is shown with its successor and predecessor.

3. Hyperbolic toral automorphism and its bi-fan

Let us consider a hyperbolic toral automorphism D. It has stable and unstable directions. We choose them as the horizontal axis and the vertical axis, respectively. With such a choice of coordinates our automorphism is described by a diagonal matrix D

$$D = \begin{bmatrix} \mu & 0 \\ 0 & \lambda \end{bmatrix} \quad |\lambda| > 1, |\mu| = \frac{1}{|\lambda|} < 1. \quad (2)$$

We denote the lattice of deck translations by $L \subset \mathbb{R}^2$.

Stable and unstable lines have irrational directions with respect to the lattice L, i.e. the lattice contains no horizontal or vertical translations. In section 2 we associated with such a pair of lines the bi-fan \mathcal{F} of bases in L with vectors lying in the first and the second quadrant, respectively. Each such basis gives rise to a bi-partition of the torus $\mathbb{T}^2 = \mathbb{R}^2 / L$.
Proposition 3.1. For any automorphism \(\mathcal{B} \) of the torus which preserves the vertical axis and the horizontal axis, we have that \(\pm \mathcal{B}(\mathcal{F}) = \mathcal{F} \), where the sign is the same as the sign of the eigenvalue of \(\mathcal{B} \) associated with the vertical eigenvector. Moreover, there is an integer \(K \) such that for any \(\{e_n, f_n\} \in \mathcal{F}, \pm \mathcal{B}(\{e_n, f_n\}) = \{e_{n+K}, f_{n+K}\} \), and for the cutting sequence we get \(s_{n+K} = s_n \) if \(\mathcal{B} \) is orientation preserving, and \(s_{n+K} = 1 - s_n \) if it is orientation reversing.

Proof. The automorphism \(\pm \mathcal{B} \) maps the vertical line into itself, preserving its orientation. Hence it either maps the first and the second quadrants into themselves if \(\mathcal{B} \) is orientation preserving, or exchanges them if it reverses the orientation. In either case a basis from the bi-fan \(\mathcal{F} \) is mapped into another basis from \(\mathcal{F} \). The mapping is 1–1, and moreover the order in \(\mathcal{F} \) has to be preserved. It follows that there must be an integer \(K \) such that \(\pm \mathcal{B}(e_n) = e_{n+K}, \pm \mathcal{B}(f_n) = f_{n+K} \) if \(\mathcal{B} \) is orientation preserving, and \(\pm \mathcal{B}(e_n) = f_{n+K}, \pm \mathcal{B}(f_n) = e_{n+K} \) if it is orientation reversing. The last property follows immediately.

Note that unless \(\mathcal{B} = \pm I \) it must be a hyperbolic toral automorphism. Further the integer \(K \) is negative if the vertical line is stable for \(\mathcal{B} \).

The above proposition shows that the cutting sequence of our pair of lines must be periodic. We need a more general definition.

Definition 3.1. A natural number \(N \) is called a period (semi-period) of the cutting sequence if for every \(k \)

\[
 s_{k+N} = s_k \quad (s_{k+N} = 1 - s_k).
\]

The sequence is called periodic (semi-periodic) if it has a period (semi-period).

Clearly, if \(N \) is a semi-period of a sequence then \(2N \) is a period. However, periodic sequences in general are not semi-periodic. As usual, we consider the smallest (semi-)period and call it the basic (semi-)period.

It turns out that the (semi-)periodicity of the cutting sequence characterizes the stable and unstable lines of hyperbolic automorphisms, among all pairs of irrational directions. It is a consequence of the following converse of proposition 3.1.

Let us consider the basic semi-period \(N \) of the cutting sequence, or the basic period, if a semi-period is not present.

Theorem 3.2. The toral automorphism \(\mathcal{G} \) defined by \(\mathcal{G}(e_0) = f_N, \mathcal{G}(f_0) = e_N \) in the case of the semi-period, and \(\mathcal{G}(e_0) = e_N, \mathcal{G}(f_0) = f_N \) in the case of the period, preserves the vertical and the horizontal axes, and there is a natural \(K \) such that \(\mathcal{G}^K = \pm \mathcal{D} \).

Moreover the centralizer of the hyperbolic toral automorphism \(\mathcal{D} \) in \(GL(2, \mathbb{Z}) \) is equal to \(\{\pm \mathcal{G}^k | k \in \mathbb{Z} \} \).

Proof. The first observation is the following. Let \((a, b) \) be a basis in the lattice \(L \). For any irrational line between \(a \) and \(b \) we define the infinite one sided forward cutting sequence by the cutting algorithm. Two different irrational lines must have different forward sequences.

In the case of periodicity the forward cutting sequences of the vertical line with respect to the bases \((e_0, f_0) \) and \((e_N, f_N) \) are the same. In the case of semi-periodicity the forward cutting sequences with respect to \((e_0, f_0) \) and \((e_N, f_N) \) differ by the exchanging of 0 and 1.

It follows that \(\mathcal{G} \) takes the vertical line into vertical line. Further, any basis \((e_n, f_n) \in \mathcal{F}, n \geq 0 \) is mapped by \(\mathcal{G} \) into another basis from the bi-fan, with the preservation of the order in \(\mathcal{F} \). Hence \(\mathcal{G}(e_n, f_n) = (e_{n+K}, f_{n+K}) \) for \(n \geq 0 \), and for the natural \(K \) such that \(\pm \mathcal{D}(e_0, f_0) = (e_{K+K}, f_{K+K}) \) we get \(\mathcal{G}^K = \pm \mathcal{D} \). By necessity the mapping \(\mathcal{G} \) is a hyperbolic toral automorphism with horizontal stable direction, and vertical unstable direction.
Any toral automorphism A commuting with D preserves the horizontal and the vertical directions, and hence by proposition 3.1 it shifts the bases in the fan F by M where $M = sN$ for some integer s, and N the basic (semi-)period of the cutting sequence. We conclude that $A = \pm \sigma^s$. The sign of s depends on the automorphism A having vertical stable, or unstable direction. □

In the following we will refer to the mapping G as the \textit{generator} of D.

It follows from (1) that in the basis (e_k, f_k) the generator G is represented by the following matrix with nonnegative entries:

\[
\begin{bmatrix}
1 & 1 - s_k \\
0 & 1 \\
... & ... \\
1 & 1 - s_{k+N-1} \\
0 & 1 \\
\end{bmatrix}
\]

(3)

where $a = 1$ if N is the basic semi-period, and $a = 0$ if N is the basic period. If we change the order of elements in the basis the representation will change by the conjugation by $\sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

\textbf{Lemma 3.3.} \textit{If an automorphism A is represented in two bases (a, b) and (\hat{a}, \hat{b}) of L by the same matrix then the automorphism B such that $B(a) = \hat{a}, B(b) = \hat{b}$ commutes with σ.}

It follows from this lemma that we get $2N$ different matrices with nonnegative entries conjugate to our toral automorphism D. It turns out that there are no other such matrices.

\textbf{Proposition 3.4.} \textit{If the automorphism D (or its generator G) is represented in a basis (a, b) of L by a matrix with all nonnegative elements (when $\text{tr} \, D > 0$), or all nonpositive elements (when $\text{tr} \, D < 0$), then either $\{a, b\} \in F$ or $\{-a, -b\} \in F$.}

\textbf{Proof.} A hyperbolic toral automorphism defined by a matrix with all nonnegative, or all nonpositive elements, has the unstable direction with a positive slope, and the stable direction with a negative slope. This means that the vectors of the standard basis lie on different sides of the unstable line, and on the same side of the stable line. Hence the standard basis belongs to the bi-fan. □

The factorization (3) appears explicitly in the paper of Appelgate and Onishi [A-O]; see also [S-W].

The automorphism D and its generator have special representation in a reduced basis.

\textbf{Proposition 3.5.} \textit{A basis in the bi-fan is reduced if and only if the automorphism D (or its generator G) is represented in this basis by a matrix $\begin{bmatrix} k & m \\ l & n \end{bmatrix}$ such that $|l - m| < |n - k|$.}

\textbf{Proof.} Without loss of generality we can assume that $\text{tr} \, D > 0$, and that the cutting sequence starting at a reduced basis (e_0, f_0) has $s_{-1} = 0, s_0 = 1$, or equivalently $f_{-1} = f_0 - e_0, e_1 = e_0 + f_0$. The automorphism D is represented in the bases of the fan by matrices with all nonnegative elements. In particular, the representations in the bases (e_{-1}, f_{-1}) and (e_1, f_1) are respectively

\[
\begin{bmatrix}
1 & 0 \\
-1 & 1 \\
\end{bmatrix}
\begin{bmatrix} k & m \\ l & n \end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix} =
\begin{bmatrix}
k + m \\
l - k + n - m \\
\end{bmatrix}
\begin{bmatrix} m \\ n - m \end{bmatrix}
\]

(4)

and

\[
\begin{bmatrix}
1 & 1 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix} k & m \\ l & n \end{bmatrix}
\begin{bmatrix}
1 & -1 \\
0 & 1 \\
\end{bmatrix} =
\begin{bmatrix}
k + l \\
l - n - l \end{bmatrix}
\begin{bmatrix} m + n - k - l \\ l \end{bmatrix}.
\]
Since \((e_1, f_1)\) and \((e_{-1}, f_{-1})\) have to be in the bi-fan, see figure 2, the above representations have all nonnegative elements, and the off-diagonal elements cannot vanish. Hence we obtain that \(n - k > |l - m|\).

Conversely, if \(n - k > |l - m|\) then the matrices in (4) have positive off-diagonal elements. The diagonal elements have to be nonnegative as well. Indeed, should, say, \(n - l \leq -1\) then the determinant of the matrix would be less than or equal to \(-2\). Hence in the bases \((e_0, f_0 - e_0)\) and \((e_0 + f_0, f_0)\) the automorphism \(D\) is represented by matrices with nonnegative elements. It follows by proposition 3.4 that these bases belong to the bi-fan, and hence give the change in the cutting sequence \(s_{-1} = 0, s_0 = 1\), i.e. the basis \((e_0, f_0)\) is reduced. □

Classically, a matrix with nonnegative entries was called reduced if \(|l - m| < n - k\) [A-O].

4. Berg partitions of hyperbolic toral automorphisms

We now turn to Markov partitions of \(D\) with two rectangular elements, which are hence bi-partitions.

Definition 4.1. A bi-partition \(\{R_1, R_2\}\) with the spines \(J^t\) and \(J^u\) is a Berg partition of the hyperbolic toral automorphism \(D : \mathbb{R}^2/L \to \mathbb{R}^2/L\) if

\[
D(J^t) \subset J^t, \quad D(J^u) \supset J^u.
\]

It follows from this definition that the spines have stable and unstable directions, and contain fixed points of \(D\).

The discussion in section 2 leads to the conclusion that for each Berg partition \(\{R_1, R_2\}\) there is an element \((e_0, f_0)\) of the bi-fan \(\mathcal{F}\) associated with it as in figure 1.

Every Berg partition comes with the connectivity matrix

\[
C = \begin{bmatrix}
 k & l \\
 m & n
\end{bmatrix}, \quad k, l, m, n \in \mathbb{Z}^+.
\]

The element \(c_{ij}\) in \(i\)th row and \(j\)th column of the connectivity matrix \(C\) is the number of translates of \(R_j\) in the plane \(\mathbb{R}^2\), intersected by the image \(D R_i\), lifted to the plane.

Adler [Ad] and Manning [M] showed that if a hyperbolic toral automorphism is conjugate to \(\pm C^T\), for a matrix \(C\) with nonnegative entries, then it has a 2-element Markov partition with the connectivity matrix \(C\). One of the by-products of our approach is a simple proof of this fact. We begin with a converse theorem.

Theorem 4.1. For a Berg partition \(\{R_1, R_2\}\) of \(D\) with connectivity matrix \(C\), the automorphism \(D\) is represented in the basis \(e_0 = [v, p], f_0 = [-u, q]\) by the matrix \(\pm C^T\), where the sign is equal to the sign of the trace of \(D\) (i.e. it is plus if \(\lambda > 1\), and minus, if \(\lambda < -1\)).

Proof. The eigenvalues of \(D\) are \(\lambda\) and \(\mu\). The images of the rectangles \(R_1, R_2\) are stretched vertically by the factor \(|\lambda| > 1\), and contracted horizontally by the factor \(|\mu| < 1\). These images intersect completely (i.e. from top to bottom) certain rectangles in the tiling. This gives us the following 'covering conditions'

\[
|\lambda| p = kp + lq \\
|\lambda| q = mp + nq
\]

for some nonnegative integers \(k, l, m, n\). Further the translates of these images fill exactly both \(R_1\) and \(R_2\) (or any element of the tiling). Hence we get the following 'packing conditions':

\[
u = k|\mu|u + m|\mu|v \\
v = l|\mu|u + n|\mu|v.
\]
We conclude that $|\lambda|$ is the Perron–Frobenius eigenvalue of C, and the vector (p, q) is the respective column eigenvector. Since $|\mu| = 1/|\lambda|$, the vector (u, v) is the row eigenvector of C with the same eigenvalue.

Let ν denote the other eigenvalue of C. It is straightforward that the vector $(v, -u)$ is the column eigenvector of C with eigenvalue ν (and the vector $(q, -p)$ is the respective row eigenvector). We can put this together into

$$\begin{bmatrix} v & 0 \\ 0 & |\lambda| \end{bmatrix} \begin{bmatrix} v & -u \\ p & q \end{bmatrix} = \begin{bmatrix} v & -u \\ p & q \end{bmatrix} C^T. \quad (5)$$

The automorphism D is represented in the basis (e_0, f_0) by an integer matrix $F \in GL(2, \mathbb{Z})$ which translates into

$$\begin{bmatrix} \mu & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} v & -u \\ p & q \end{bmatrix} = \begin{bmatrix} v & -u \\ p & q \end{bmatrix} F. \quad (6)$$

Comparing (5) and (6) we conclude that the 2×2 integer matrices F and C^T have the same row eigenvectors (equal to $(v, -u)$ and (p, q)). Hence also the integer matrix $F^{-1}C^T$ has the same eigenvectors, and its eigenvalues are $|\lambda|/\lambda = \pm 1$ and ν/μ. Should these eigenvalues be different, the two eigenvectors of $F^{-1}C^T$ would have rational slopes. Hence $\nu/\mu = |\lambda|/\lambda = \pm 1$ and we obtain $F = \pm C^T$. □

In general a bi-partition is not a Berg partition. However, every bi-partition with sides parallel to stable and unstable directions of D is a translate of a Berg partition. Indeed a bi-partition can be translated so that one of the four intersection points of the horizontal and vertical spines is a fixed point. Such a bi-partition is then by necessity a Berg partition in the case of both positive eigenvalues.

More generally in the case of both positive eigenvalues λ, μ, if the horizontal and vertical spines of a bi-partition contain fixed points then it is a Berg partition. In the case of a negative eigenvalue it is not so, because if the fixed point is too close to the endpoint of the respective spine, then the condition from definition 4.1 is not satisfied. This leads us to

Definition 4.2. For any $\beta > 1$ the β-middle $m(J)$ of a segment J is the middle sub-segment with length $|m(J)| = \beta^{-1} \beta^{-1} |J|$. Thus the β-middle $m(J)$ of a segment J is the set of all points x such that the homothety with centre at x and ratio $-\frac{1}{\beta}$ maps J into itself.

It can be checked by direct calculation (and it will be done in section 5) that all the four common points of the horizontal and vertical spines of a bi-partition of a hyperbolic toral automorphism with eigenvalues λ, ν are either endpoints of a spine, or lie in the $|\lambda|$-middle of the spine.

Let us now consider a hyperbolic toral automorphism D, and a bi-partition with stable and unstable directions of the spines. In view of the preceding discussion we get

Theorem 4.2. If the spines J' and J'', or their $|\lambda|$-middles $m(J')$ and $m(J'')$, contain fixed points of D, depending on the sign of the eigenvalues λ, μ, then the bi-partition is a Berg partition for D.

Except for the case of both negative eigenvalues, it follows from theorem 4.2 that every hyperbolic automorphism has Berg partitions. Indeed in every other case we can place a fixed point of D in one of the four intersection points of the horizontal and vertical spines, and not at the endpoint of the spine, if the respective eigenvalue is negative. Since the common point is guaranteed to be in the $|\lambda|$-middle of the respective spine, the conditions of theorem 4.2 are satisfied.
If both eigenvalues are negative, we need to use two different fixed points. It turns out that every pair of different fixed points can be used. In the next section we will count the number of nonequivalent Berg partitions with a given connectivity matrix. It will deliver the existence of such partitions also in the negative case.

Let us note that the theorem of Adler and Manning will follow from our discussion. Indeed if the automorphism D is represented in a certain basis by $\pm C^T$, for a matrix C with nonnegative entries, then by proposition 3.4 the basis (or its equivalent) must belong to the bi-fan. The corresponding bi-partition can be then translated into a Berg partition. By theorem 4.1 the connectivity matrix of this partition must be equal to C.

5. Berg partitions with a fixed connectivity matrix C

We are going to count the number of different Berg partitions with the fixed connectivity matrix C, for a fixed toral automorphism D, conjugate to C^T or $-C^T$.

Definition 5.1. The centralizer $Z(D)$ is the group of homeomorphisms of the torus commuting with D.

It was proved by Arov [Ar], and Adler and Palais [A-P] that the centralizer $Z(D)$ contains only affine maps. By theorem 3.2 all the toral automorphisms in $Z(D)$ have the form $\pm G_k$ for the generator G and some integer k. The centralizer $Z(D)$ is generated by these, and the translations which take zero to other fixed points of D.

Definition 5.2. Two Berg partitions are equivalent if there is a mapping in $Z(D)$ which takes one partition into the other, without regard to the ordering of the rectangles.

We want to find the number of equivalence classes of Berg partitions for a given toral automorphism D.

With each Berg partition we associated in section 4 a basis in the respective bi-fan \mathcal{F}. It is enough to consider Berg partitions associated with N consecutive bases of \mathcal{F}, $(e_1, f_1), \ldots, (e_N, f_N)$, where N is the (semi-)period of the cutting sequence. By theorem 4.1 a basis in \mathcal{F} determines the connectivity matrix of the respective Berg partition. In particular, as it was proved in section 3, the connectivity matrices for the N consecutive bases are all different.

Let us note that for a given basis in \mathcal{F} we get two different connectivity matrices C and $\sigma C \sigma$ where $\sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. However, this does not lead to nonequivalent Berg partitions since such a change in the connectivity matrix is effected by merely reordering the elements of the Berg partition.

Berg partitions that have connectivity matrices differing by more than the conjugation by σ are nonequivalent.

Hence we get N nonequivalent shapes of Berg partitions. Moreover every Berg partition is equivalent to one of those, which is the content of the following

Theorem 5.1. If $\{R_1, R_2\}$ and $\{R'_1, R'_2\}$ are two Berg partitions with the same connectivity matrix then there is a translation \mathcal{F} of \mathbb{T}^2 such that $\mathcal{F}(R_1)$, $\mathcal{F}(R_2)$ is equivalent to $\{R'_1, R'_2\}$.

Proof. Without loss of generality we can assume that $(e_0, f_0) \in \mathcal{F}$ is the basis associated with the bi-partition $\{R_1, R_2\}$, and $(e_m, f_m) \in \mathcal{F}$, $m \geq 1$, is associated with $\{R'_1, R'_2\}$. Since the two bi-partitions have the same connectivity matrices, it follows that there is a natural k such that $m = kN$. Further G^k takes one basis into the other, and hence the bi-partitions $\{G^{-k}(R'_1), G^{-k}(R'_2)\}$ and $\{R_1, R_2\}$ have the same basis $(e_0, f_0) \in \mathcal{F}$ associated with them.
But that means that the rectangles in the bi-partitions are isometric, and so they differ by a translation.

Let us remark that while translations of a Berg partition may give us other, nonequivalent, Berg partitions, the reflection in the vertical axis never delivers one. More precisely, let E be the reflection in the vertical axis of \mathcal{F} associated with $\{R_1, R_2\}$. If $\{R_1, R_2\}$ is a bi-partition then $\{E(R_1), E(R_2)\}$ is not a bi-partition of the same torus. To see this let us consider the basis $(e, f) \in \mathcal{F}$ associated with $\{R_1, R_2\}$. Should $\{E(R_1), E(R_2)\}$ be a bi-partition then $\{E(e), E(f)\}$ would also be a basis in \mathcal{F}, which is impossible because it cannot be either earlier or later than (e, f) in the ordering of \mathcal{F}, and the case $E(e) = f, E(f) = e$ is ruled out by rationality argument.

By theorem 5.1, to count the number of nonequivalent Berg partitions of D with the same connectivity matrix we need to choose a respective bi-partition and then translate it around the torus. Each time the horizontal and vertical spines, or their $|\lambda|$- middles if needed by theorem 4.2, contain fixed points we get a Berg partition. And all Berg partitions are equivalent to the one obtained in such a way. To accomplish our task we need to describe the set of fixed points.

Let \hat{L} be the super-lattice $\hat{L} = (D - I)^{-1}L$, where D denotes the diagonal matrix (2) which defines the toral automorphism \mathcal{D}. The group $G = \hat{L}/L$ is isomorphic to the subgroup of translations in the centralizer $Z(D)$.

$G = \hat{L}/L$ acts freely and transitively on the set of fixed points of A. In particular, the number of fixed points of D is equal to

$$|\det(D - I)| = \begin{cases} |\text{tr } D - 2| & \text{if } \det D = 1 \\ |\text{tr } D| & \text{if } \det D = -1. \end{cases}$$

Any fixed point can be translated into any other fixed point by an element from $Z(D)$. We place one of the fixed points, p_1, into the horizontal spine J^h. To get a Berg partition we now translate the bi-partition by horizontal vectors, keeping p_1 in J^h. Each time the vertical spine J^v hits a fixed point p_2 we get a Berg partition, at least if both eigenvalues are positive. In general, by theorem 4.2 the spines need to be replaced by their $|\lambda|$- middles, according to the signs of the eigenvalues of D.

At the same time two such partitions may be equivalent. Indeed let us consider the mapping \mathcal{Z}, the rotation by π around p_1. Any Berg partition is mapped by \mathcal{Z} into an equivalent Berg partition, which is also a translation by a horizontal vector, see figure 1. It is the same bi-partition if and only if both p_1 and p_2 are at the centres of the spines. It happens if and only if the diagonal entries, and the off-diagonal entries of the connectivity matrix C have the same parity. Indeed, the translation from the centre of the horizontal spine to the centre of the vertical spine is equal to $\frac{1}{2}(e + f)$, and this vector belongs to the super-lattice \hat{L} if and only if $(D - I)(e + f) \in 2L$. Since by theorem 4.1 the automorphism \mathcal{D} is represented in the basis (e, f) by $\pm C^T$, we conclude that the latter is equivalent to the sum of the columns of C^T having both odd entries. Finally, using $\det C = \pm 1$ we get the required claim.

Let the connectivity matrix be equal to $C = \begin{bmatrix} k \\ m \\ l \\ n \end{bmatrix}$. As it was established in section 4, the matrix C is an element in $GL(2, \mathbb{Z})$.

Theorem 5.2. There are exactly

$$\left\lfloor \frac{k + l + m + n}{2} \right\rfloor$$

nonequivalent Berg partitions with the connectivity matrix C, where $\lfloor \cdot \rfloor$ denotes the integer part of a real number.
In the proof we will distinguish three cases:

Case 1. $\det C = 1, \tr \mathcal{D} > 0$.

Case 2. $\det C = -1, \tr \mathcal{D} < 0$.

Case 3. $\det C = 1, \tr \mathcal{D} < 0$.

The reason that we do not need to consider the fourth case, $\det C = -1, \tr \mathcal{D} > 0$, is the following

Lemma 5.3. A Berg partition for a hyperbolic toral automorphism \mathcal{D} with the connectivity matrix C is also a Berg partition for \mathcal{D}^{-1} with the connectivity matrix C^T.

It follows from this lemma that if $\det C = -1, \tr \mathcal{D} > 0$, then the number of Berg partitions for \mathcal{D} with the connectivity matrix C is equal to the number of Berg partitions for \mathcal{D}^{-1} with the connectivity matrix C^T. This gives us the second case: $\det C^T = -1$ and $\tr \mathcal{D}^{-1} < 0$.

Proof. Let $\Gamma : J^s \times J^u \to \mathbb{R}^2$ be the map defined by $\Gamma(p_1, p_2) = p_2 - p_1$.

We need to count the number of ways in which two fixed points can be placed into the horizontal and vertical spines. This number is equal to the number of elements in $\Gamma^{-1}(L)$, which is the same as the number of elements in $\Gamma(J^s \times J^u) \cap \hat{L}$.

In our coordinates the image $\Gamma(J^s \times J^u)$ is the box $P = [-u, v] \times [0, p+q]$. The generators of \hat{L} are given by $e' = (D - I)^{-1} e$, $f' = (D - I)^{-1} f$, where $e = [v, p]$, $f = [-u, q]$. The position of e', f' with respect to the box P is different in the three cases. The problem in counting the number of elements of the lattice \hat{L} in P is that the vertexes of P do not belong to L. To get the number we replace the box P by an appropriate polygon Q with the vertexes in \hat{L}, and such that the number of elements of \hat{L} in Q is the same as in P, except for the vertexes. In each of the three cases the modified box has a different geometry.

Once we have a polygon with vertexes from our lattice it is easy to establish the number of elements from \hat{L}. For that purpose we will use a special case of the Pick formula.

Lemma 5.4. For a closed parallelogram in \mathbb{R}^2 with vertexes in \mathbb{Z}^2, its area is equal to the number of points from \mathbb{Z}^2 in the interior, plus one half of their number on the boundary excluding vertexes, plus 1.

Further we choose to depict P and Q in coordinates in which \hat{L} becomes \mathbb{Z}^2. This is easily accomplished based on the formula derived from (5)

$$((D - I)^{-1} \begin{bmatrix} v & -u \\ p & q \end{bmatrix} (\pm C^T - I) = \begin{bmatrix} v & -u \\ p & q \end{bmatrix}. \quad (7)$$

Indeed (5) says that if e', f' are the basic vectors then e, f become the columns of $\pm C^T - I$.

Let us denote by $\lambda > 1$ the eigenvalue of the incidence matrix C. The unstable eigenvalue of \mathcal{D} is then equal to $\pm \lambda$ depending on the sign of the trace of \mathcal{D}.

In case 1 we have $e' = [\frac{-u}{\lambda+1} v, \frac{-u}{\lambda+1} p]$, $f' = [\frac{u}{\lambda+1} u, \frac{-u}{\lambda+1} q]$ and their position with respect to the box P, and the modified box Q are shown in figure 4(a). In order to establish that Q has no more points from \hat{L} than P (except for the four vertexes) we pass to the coordinate system with the basis (f', e'). The result is depicted in figure 4(b). This figure is done for the matrix $C = \begin{bmatrix} 3 & 0 \\ 5 & 2 \end{bmatrix}$, and in figures 4(a) and (b) we use the same colour for the respective lines.

The crucial feature is that in view of (7) the box P is now obtained by the following construction. We take the parallelogram Y spanned by the columns of C^T (green vectors in figure 4(b)). There are no integer points in its interior. The unstable direction is enclosed between the sides of the parallelogram. We modify the sides to be the columns of $C^T - I$ and get a wider parallelogram which is inscribed in the box P. The box P has sides with stable
and unstable directions. By inspection we can convince ourselves that the modified box \(Q \) has only vertexes added to the family of integer points in it, compared with \(P \). Indeed it follows from the fact that the parallelogram \(Y \) has no integer points in its interior, and the difference between \(P \) and \(Q \) is covered by four parallelograms that are translations of \(Y \) and four open stripes of width one (two vertical open stripes on horizontal edges of \(Q \) and two horizontal stripes on vertical edges), thus the only integer points to consider are the vertexes of these shifted parallelograms. The number of integer points in \(P \) can be now established to be equal to \(k + n + l + m - 1 \). Each of these integer points gives us a Berg partition. And two such Berg partitions are equivalent if and only if the respective integer points are symmetric with respect to the centre of the box \(P \). The centre of the box is an integer point if and only if two fixed points can be placed into the centres of both spines, as it was explained above.

To get the number of nonequivalent Berg partitions we need to divide the number of integer points by 2, excepting the centre of the box if it is an integer point. In both cases the result is \(\left\lfloor \frac{k + l + m + n}{2} \right\rfloor \), where \(\lfloor \cdot \rfloor \) denotes the integer part of a real number.

In case 2 we have \(e' = [-\frac{1}{\lambda - 1}v, -\frac{1}{\lambda - 1}p] \), \(f' = [\frac{1}{\lambda - 1}u, -\frac{1}{\lambda - 1}q] \) and their positions with respect to the box \(P \), and the modified box \(Q \), are shown in figure 5(a). Further we pass to the coordinate system with the basis \((-f', -e')\). The result is depicted in figure 5(b), for the matrix \(C = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \). This time we modify the parallelogram \(Y \) spanned by the columns of \(C^T \).
to the parallelogram with sides equal to the columns of $C^T + I$ and get a wider parallelogram which is inscribed in the box P. Again using the fact that the parallelogram Y has no integer points in its interior, we can establish that Q adds only the vertexes to the count of integer points. The result is that the number of integer points in P is equal to $k + n + l + m + 1$.

However, we need to exclude the points which are too close to the stable boundary of P. It is straightforward that $\pm(e' + f')$ give us one of the fixed points on the boundary of the $[\lambda]$-middle of the vertical spine. It follows that we need to exclude only two integer points (on the stable sides of P), and the resulting number of admissible integer points is again $k + n + l + m - 1$.

Finally in case 3 we have $e' = [\lambda v, -\frac{1}{\lambda} p], f' = [\lambda u, -\frac{1}{\lambda} q]$ and their position with respect to the box P, and the modified box Q, are shown in figure 6(a). In this case we pass to the coordinate system with the basis $\{-e', -f', e, f\}$. The result is depicted in figure 6(b), for the matrix $C = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$. This time the number of integer points in P is equal to $k + n + l + m + 7$.

But we need to exclude the points which are too close to the boundary of P. These are the eight vertices of Q, namely $0, e, f, e + f, -e', -f', e + f + e', e + f + f'$. The resulting number of admissible integer points is yet again $k + n + l + m - 1$. To prove it we can argue that by inspection of figure 6(b) there are no more integer points in P which correspond to a fixed point outside of the $[\lambda]$-middle of the vertical spine. We still need to check that there are no other integer points in Q which correspond to a fixed point outside of the $[\lambda]$-middle of the horizontal spine. This can be accomplished by invoking the symmetry used above, that a Berg partition for \mathcal{D} with the connectivity matrix C is also a Berg partition for \mathcal{D}^{-1} with the connectivity matrix C^T. In this symmetry the role of stable and unstable boundaries of the Berg partition are exchanged. □
The above proof of theorem 5.2 can be developed into a detailed examination of different Berg partitions with the same connectivity matrix, and thus with the same shape (cf theorem 5.1). If two partitions of the same shape (i.e. translates of each other) are nonequivalent it is because they have nonequivalent pairs of fixed points in the respective skeletons, or because the fixed points are placed differently in the skeletons. The first observation is that any pair of fixed points of D can be used to build a Berg partition, with the exception of one fixed point in the case of both negative eigenvalues (case 3). Indeed, every pair of fixed points gets its representation in the parallelogram $\Sigma \subset P$ spanned by $[e, f]$.

We say that a family of Berg partitions differing by translations is hinged if all of them contain the same fixed points in their skeletons, or that the family is hinged on the fixed points. Two translations of the same bi-partition are hinged Berg partitions if they are represented by two points in the box P differing by a multiple of vectors e, or f.

A family of equivalence classes of Berg partitions is said to be hinged on a pair of fixed points if they contain representatives with these fixed points in their skeletons.

Proposition 5.5. A Berg partition with the connectivity matrix $C = \begin{bmatrix} k & l \\ m & n \end{bmatrix}$ is isolated if and only if $|n - k| < |l - m|$.

For an isolated bi-partition there can be at most two translates which are hinged Berg partitions. More precisely among the $\left\lfloor \frac{k + l + m + n}{2} \right\rfloor$ equivalence classes of isolated Berg partitions there are exactly $\left\lfloor \frac{k}{2} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor$ hinged pairs.
For a connected bi-partition with \(l \geq m \) there can be no more than

\[
\left\lfloor \sqrt{\frac{l}{m} + \frac{(n-k)^2}{2m}} - \frac{|n-k|}{2m} \right\rfloor + 2
\]

translates which are hinged Berg partitions. This estimate is sharp, for example for matrices of the form

\[
C = \begin{bmatrix}
 n-1 & n^2 - n - 1 \\
 1 & n
\end{bmatrix},
\]

for which there are \(n \) hinged Berg partitions.

Proof. The first claim follows directly proposition 3.5, if we recall that a bi-partition is isolated if and only if the respective basis in the bi-fan is reduced (proposition 2.2). We could also obtain it by direct, and cumbersome, calculation using the expressions for the eigenvectors of \(C \)

\[
u = \frac{|\lambda| - k}{m}, \quad p = \frac{l}{|\lambda| - n}, \quad q = \frac{l}{|\lambda| - k} = \frac{|\lambda| - n}{m}.
\]

(8)

To count the number of hinged Berg partitions we need to inspect the number of lattice points from \(\hat{L} \cap P \) which differ by translations by \(e \), or by \(f \). For an isolated bi-partition each point outside of the parallelogram \(\Sigma \subset P \) spanned by \(e, f \) is translated into \(\Sigma \) by \(e \) or by \(f \), figure 7. Second application of the same translation takes the point outside of \(P \). Hence the number of hinged pairs is equal to the number of points outside of \(\Sigma \), with the additional identification of centrally symmetric points, which correspond to partitions equivalent by the rotation by \(\pi \). In this way we get the formula for the number of hinged pairs. Let us note that special attention has to be paid to points in \(P \) which have order two as elements of the group \(L/L \). Such points lying in the centres of the sides of the parallelogram \(\Sigma \) do not give us a hinged pair because their translates produce a centrally symmetric pair of points.
To obtain \(s \) hinged Berg partitions we need to find a point in \(\hat{L} \cap P \) such that \(s - 1 \) of its translates by, say, \(f \) are also in \(P \). This implies

\[
(s - 1)u < u + v, \quad (s - 1)q < p + q, \quad s - 2 < \min \left\{ \frac{v}{u}, \frac{p}{q} \right\},
\]

which gives us the required estimate if we use (8).

To show that the estimate is sharp, consider a matrix \(C \) with \(\det C = 1 \), \(\text{tr} C > 0 \) (case 1 in the proof of theorem 5.2). We have that the vertex \(-e' \) of \(Q \) enters the box \(P \) under the translation by \(f \). To get a matrix \(C \) with \(s \) hinged partitions we postulate that this corner is translated in \(s + 1 \) steps into the point \(e + f + e' + f' \), that is \(e = sf - 2e' - f' \). (Note that putting the endpoint of this string of points into the centrally symmetric corner \(e + f + e' \) would produce half as many hinged partitions, since there would be equivalent pairs.) Using (7) we get the expression of \(e, f \) in terms of \(e', f' \) as \(e = (k - 1)e' + lf' \), \(f = me' + (n - 1)f' \). It follows that \(k = sm - 1, l = s(n - 1) - 1 \). The requirement that \(\det C = 1 \) leaves two free parameters \(m(s + 1) = n + 1 \) and \(C^T = \begin{pmatrix} m(s + 1)m - 2m - 1 & s \vspace*{1pt} m - 1 \\ (s + 1)m - 1 & m \end{pmatrix} \). For such matrices we get \(s \) hinged Berg partitions. Putting \(m = 1 \) we get the matrix above for which the estimate is sharp. For \(m \geq 2 \) the estimate may be off by 1.

In particular we arrive at the conclusion that there is no universal bound on the number of hinged Berg partitions.

Combining proposition 3.4, theorem 4.1 and the formula in theorem 5.2 we can count the total number of nonequivalent Berg partitions for a given automorphism, at least for simple cutting sequences.

If the cutting sequence has the semi-period \(N \) with all the same elements, say equal to 1, and \(\mathcal{D} \) is equal to its generator then the connectivity matrices are equal to \(C = \begin{pmatrix} s & 1 \\ s(N - s) + 1 & N - s \end{pmatrix} \), for \(s = 0, 1, \ldots, N - 1 \). We obtain that the number of all Berg partitions for \(\mathcal{D} \) equals

\[
\frac{N}{2} \begin{cases} N(N^2 + 6N + 5) & : \ N \text{ is odd} \\
\frac{N}{2}N(N^2 + 6N + 8) & : \ N \text{ is even.} \end{cases}
\]

Similarly if the cutting sequence has the period \(N \) with \(n_1 \) consecutive 1 and \(n_2 \) consecutive 0, then the total number of nonequivalent Berg partitions is equal to

\[
W(n_1, n_2) = \begin{cases} n_1 + n_2 & : \ n_1 + n_2 \text{ is even} \\
W(n_1, n_2) + \frac{1}{2}n_i & : \ n_1 + n_2 \text{ is odd and } n_i \text{ is even } i = 1, 2 \end{cases}
\]

where \(W(x, y) = \frac{1}{4}[(x^2 + y^2)(xy + 6) + 6(x + y)(xy + 1) + 10xy] \).

6. Symmetries of bi-partitions

Let us consider two irrational lines in the torus, as in section 2, and the corresponding family \(\mathcal{P} \) of bi-partitions, i.e. the family of all bi-partitions with the sides of the rectangles parallel to the two irrational lines. The shapes of these bi-partitions are determined by the bi-fan \(\mathcal{F} \) associated with the two irrational lines. Let \(H \) be the subgroup of \(GL(2, \mathbb{Z}) \) which preserves the family \(\mathcal{P} \), in the sense that every element of \(H \) takes every bi-partition in \(\mathcal{P} \) into another bi-partition in \(\mathcal{P} \). We call \(H \) the complete symmetry group of the pair of irrational lines.

From the results in sections 2, 3 and 4 it follows that in the generic case the complete symmetry group \(H = \{ \pm I \} \), i.e. in general nonsymmetric case the complete symmetry group is trivial. The complete symmetry group is nontrivial for two different reasons. One was already explored: if the irrational lines are the invariant lines of a hyperbolic toral automorphism \(A \).
with matrix A, then H contains the centralizer $Z(A) \subset GL(2, \mathbb{Z})$, and the structure of the centralizer was described in theorem 3.2. There is another possibility: if a toral automorphism \mathcal{S} with matrix $S \in GL(2, \mathbb{Z})$ exchanges the two irrational lines then such an \mathcal{S} belongs to the complete symmetry group H. It turns out that such a symmetry is present if and only if the cutting sequence is palindromic. Moreover, the respective elements $S \in GL(2, \mathbb{Z})$ can have only orders 2 and 4. The discussion of this phenomenon is the goal of this section.

The construction of the bi-fan $\mathcal{F} = \{(e_n, f_n)|n \in \mathbb{Z}\}$, and the respective sequence of bi-partitions depends not only on the two irrational lines, but also on the designation of the ‘horizontal’ line. When we exchange the roles of horizontal and vertical lines, we obtain another bi-fan $\hat{\mathcal{F}} = \{(\hat{e}_n, \hat{f}_n)|n \in \mathbb{Z}\}$, where $\hat{e}_n = - f_{-n}$, $\hat{f}_n = e_{-n}$, $n \in \mathbb{Z}$. The bi-partitions associated with these bases are exactly the same, but their ordering is reversed. Let $\{s_n\}$ and $\{\hat{s}_n\}$ be the respective cutting sequences. We have $\hat{s}_n = 1 - s_{-n-1}$. It follows from the uniqueness of the cutting sequence that

Proposition 6.1. There is a toral automorphism (nonhyperbolic) which exchanges the two irrational lines if and only if the sequences $\{s_n\}$ and $\{\hat{s}_n\}$, or $\{1 - s_n\}$, differ by a translation. In the former case the symmetry is of order 4, and in the latter it is an involution (of order 2).

Proof. If a toral automorphism \mathcal{S} exchanges the two irrational lines then it takes the ‘vertical’ bi-fan \mathcal{F} into the ‘horizontal’ bi-fan $\pm \hat{\mathcal{F}}$. It follows that the respective cutting sequences $\{s_n\}$ and $\{\hat{s}_n\}$ can differ only by a translation, and possibly the exchange of zeros and ones. By shifting the index appropriately we can assume that one of the three possibilities takes place. Firstly, $s_n = s_{-n-1} = 1 - \hat{s}_n$, $n \in \mathbb{Z}$, secondly $s_n = s_{-n} = 1 - \hat{s}_{n-1}$, $n \in \mathbb{Z}$, and thirdly $s_n = 1 - s_{n-1} = \hat{s}_n$, $n \in \mathbb{Z}$.

In the first case the mapping which takes (e_0, f_0) into $(\hat{e}_0, \hat{f}_0) = (e_0, -f_0)$ exchanges the two lines, and it has order 2.

In the second case the mapping which takes (e_0, f_0) into $(\hat{e}_{-1}, \hat{f}_{-1})$ is the desired automorphism. We have either $(\hat{e}_{-1}, \hat{f}_{-1}) = (-f_0, e_0 - f_0)$, if $s_{-1} = 1$, or $(\hat{e}_{-1}, \hat{f}_{-1}) = (e_0 - f_0, e_0)$, if $s_{-1} = 0$. In both cases we get an automorphism of order 2, nonconjugate to the symmetry in the first case.

In the third case the mapping which takes (e_0, f_0) into $(\hat{e}_0, \hat{f}_0) = (-f_0, e_0)$ exchanges the two lines, and it has order 4. □

There are two distinct cases of the symmetry of order 2, just as there are two nonconjugate elements of order 2 in $GL(2, \mathbb{Z})$. We will call the first type *simple order 2 symmetry*, and the second type *shift order 2 symmetry*. The geometric difference is that a simple order 2 symmetry takes the class of bi-partitions associated with (e_0, f_0) to itself, and pairs the other classes. However, no bi-partition in the invariant class is taken to itself. With the shift order 2 symmetry no bi-partition is taken to its translate, all classes of bi-partitions are paired. Note also that the order of elements in a bi-partition is always reversed by a symmetry of order 2, both simple and shift.

For the symmetry \mathcal{S} of order 4 the class of bi-partitions associated with (e_0, f_0) is mapped to itself, and the other classes of bi-partitions are paired. The invariant class contains exactly one bi-partition which stays put under the symmetry; it happens when the two fixed points of \mathcal{S} coincide with the centres of the rectangles. For any bi-partition the order of elements is preserved under the symmetry.

In the case of symmetries of order 2, both simple and shift, we can scale the coordinates so that the symmetry becomes the Euclidean reflection in the diagonal.

In the case of a simple order 2 symmetry we then get that $e_0 = (v, v)$, $f_0 = (-u, u)$. The respective bi-partition is taken to itself with the exchange of the rectangles, which are of
sizes \(u \) by \(v \) and \(v \) by \(u \). This bi-partition is automatically connected. The vectors in the first quadrant from the bi-fan \(F \) are symmetric with respect to the diagonal, and the vectors in the second quadrant are symmetric with respect to the anti-diagonal.

In the case of shift order 2 symmetry we get either \(e_0 = (v, u + v), f_0 = (-u, u) \) or \(e_0 = (v, v), f_0 = (-u, u + v) \). Again the vectors in \(F \) are symmetric with respect to the diagonal, and the anti-diagonal.

For the symmetry of order 4, we can scale the coordinates so that the symmetry becomes the rotation by \(\frac{\pi}{2} \). We then get \(e_0 = (v, u), f_0 = (-u, v) \), and the respective bi-partition contains two squares, with sides \(u \) and \(v \), respectively. This bi-partition is by necessity isolated. If the symmetry fixes the centre of one of the squares then it fixes the other centre as well, and both squares are mapped to themselves.

7. Symmetries of toral automorphisms

Let us now consider a hyperbolic toral automorphism \(D \) with the generator \(J \) and a symmetry \(S \) of the type discussed in section 6, which exchanges the stable and unstable lines. It follows from the discussion there that \(S^2 = I \) in the case of order 2, and \(S^2 = -I \) in the case of order 4. In both cases we get hence \(S^{-1} = -\det S \).

It is straightforward that \(S \circ J \circ S^{-1} = \det J \circ S^{-1} \) and \(S \circ D \circ S^{-1} = \det D \circ D^{-1} \). Hence the automorphism \(D \) is \(S \)-reversible, if \(\det D = 1 \). Let us recall that a dynamical system is called \(S \)-reversible if it is conjugate to its inverse by an involution \(S \).

In general we can consider the factors of toral automorphisms by the symmetry \(-I \), and such a factor of \(D \) will be \(S \)-reversible independent of the sign of \(\det D \).

Moreover it follows that \(S \) takes Berg partitions of \(D \) into Berg partitions of \(\det D \circ D^{-1} \). Note that Berg partitions of \(\pm D \) and \(\pm D^{-1} \) have the same shapes. However, Berg partitions of \(D \) and \(-D \) are not the same.

If \(S \) is such a symmetry then \(S^2 \circ S \) is also a symmetry, namely \((S^2 \circ S) \circ J \circ (S^{-1} \circ S^{-1}) = \det J \circ S^{-1} \). We have that \(S^2 \circ S \) is always conjugate to \(\pm S \). Indeed \(S^{-1} \circ (S^2 \circ S) \circ J = \det J \circ S \).

However, as we will see below, \(S \circ J \) may or may not be conjugate to \(S \).

Let the connectivity matrix for the automorphism \(D \) and a Berg partition associated with \((e_n, f_n) \) be equal to \(C_n \) for \(n \in \mathbb{Z} \). Then the connectivity matrix for \(D^{-1} \) and the Berg partition associated with \((e_n, f_n) \) is equal to \(C_n^T \).

For a \(2 \times 2 \) matrix \(A \) we define \(A^T = \sigma A^T \sigma \), i.e. \(A^T \) is obtained from \(A \) by the exchange of diagonal elements. We say that \(A \) is \(J \)-symmetric if \(A^T = A \), i.e. when \(A \) has equal elements on the diagonal.

We get that in the presence of a symmetry \(S \) the connectivity matrices for two Berg partitions taken into one another by \(S \) are \(C \) and \(C^T \) in the case of symmetry of order 2, and \(C \) and \(C^T \) in the case of symmetry of order 4.

For a simple order 2 symmetry \(S \) there is a Berg partition which is taken to its translate by \(S \). For such a Berg partition the connectivity matrix is \(J \)-symmetric. For the symmetry of order 4 there is also a Berg partition which is taken to its translate, but its connectivity matrix is symmetric.

Let us note that conversely the presence of the simple order 2 symmetry is characterized by the \(J \)-symmetry of a connectivity matrix, and the presence of a symmetry of order 4 is characterized by the symmetry of a connectivity matrix.

As shown in section 6 the special Berg partitions which are taken into their translates by a symmetry have special shapes. In the case of a simple order 2 symmetry by a choice of a flat metric in the torus they can be made into two rectangles with sides \(u \) by \(v \) and \(v \) by \(u \). In the case of a symmetry of order 4 they can be made into two squares.
There are six types of possible symmetries for hyperbolic automorphisms.

I. \(\hat{S} \) is a simple order 2 symmetry, the cutting sequence has the period \(N = 2k \).

In this case \(\hat{S} \) takes \((e_n, f_n)\) into \((\hat{f}_n, \hat{e}_n) = (e_{-n}, -f_{-n})\) for every \(n \in \mathbb{Z} \). In particular it takes \((e_k, f_k)\) into \((\hat{f}_k, \hat{e}_k) = (e_{-k}, -f_{-k})\). The respective bi-partitions are equivalent by the generator \(\hat{J} \) of \(\mathcal{D} \). This means that two equivalence classes of Berg partitions, those associated with \((e_0, f_0)\) and \((e_k, f_k)\) are fixed by \(\hat{S} \) and the others are paired.

The symmetry \(\hat{J} \circ \hat{S} \) takes \((e_k, f_k)\) into \((e_{-k}, -f_{-k})\) hence it is also a simple order 2 symmetry.

The symmetry \(\hat{S} \) forces \(C_n = C_{-n,n}, n \in \mathbb{Z} \). In particular, the two matrices \(C_0 \) and \(C_k \), and only them are \(J \)-symmetric. Indeed, if \(C_m \) is \(J \)-symmetric then \(C_{-m} = C_m \), and that tell us that \(2m \) is a period.

The shortest period of the cutting sequence with this type of symmetry is \(N = 6 \), for instance \((110011)\).

Finally, the sequence of \(N = 2k \) different connectivity matrices for the different Berg partitions of \(\mathcal{D} \) is

\[
C_0 = C_0^J, C_1, \ldots, C_{k-1}, C_k = C_k^J, C_{k-1}^J, \ldots, C_1^J.
\]

II. \(S \) is a simple order 2 symmetry, the cutting sequence has the period \(N = 2k - 1 \).

Now there is also a shift order 2 symmetry equal to \(\hat{J} \circ \hat{S} \). More generally, \(\hat{J} \circ S \) is a simple order 2 symmetry for even \(n \) and a shift order 2 symmetry for odd \(n \).

The shortest period of the cutting sequence with this type of symmetry has \(N = 3 \), for instance \((101)\). The sequence of \(2k - 1 \) different connectivity matrices is

\[
C_0 = C_0^J, C_1, \ldots, C_{k-1}, C_k = C_k^J, C_{k-1}^J, \ldots, C_1^J.
\]

III. \(S \) is a shift order 2 symmetry, the cutting sequence has the period \(N = 2k \).

In this case \(\hat{J} \circ \hat{S} \) is another shift order 2 symmetry. There are no \(J \)-symmetric, or symmetric, connectivity matrices.

The shortest period of the cutting sequence with this type of symmetry is \(N = 4 \), for instance \((1101)\). The sequence of \(2k \) different connectivity matrices is

\[
C_0, C_1, \ldots, C_{k-1}, C_k = C_k^J, C_{k-1}^J, \ldots, C_1^J.
\]

IV. \(S \) is a symmetry of order 4, the cutting sequence is periodic, and the period \(N \) is by necessity even \(N = 2k \).

In this case \(\hat{J} \circ \hat{S} \) is another symmetry of order 4. The shortest period of the cutting sequence with this type of symmetry is \(N = 6 \), for instance \((110100)\). The sequence of \(2k \) different connectivity matrices is

\[
C_0 = C_0^T, C_1, \ldots, C_{k-1}, C_k = C_k^T, C_{k-1}^T, \ldots, C_1^T.
\]

V. \(S \) is a symmetry of order 4, the cutting sequence has the semi-period \(N = 2k - 1 \).

In this case \(\hat{J} \circ \hat{S} \) is a shift order 2 symmetry.

The sequence of \(N = 2k - 1 \) different connectivity matrices is

\[
C_0 = C_0^T, C_1, \ldots, C_{k-1}, C_k = C_k^T, C_{k-1}^T, \ldots, C_1^T.
\]

If \(N = 1 \) and the semi-period is \((1) \) then in the basis \((e_0, f_0)\) we have

\[
\mathcal{G} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad \mathcal{S} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{and} \quad \mathcal{G} \circ \mathcal{S} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}.
\]

VI. \(S \) is a symmetry of order 4, the cutting sequence has the semi-period \(N = 2k \).

In this case \(\mathcal{J} \circ \mathcal{S} \) is a simple order 2 symmetry.

The sequence of \(N = 2k \) different connectivity matrices is

\[
C_0 = C_0^T, C_1, \ldots, C_{k-1}, C_k = C_k^T, C_{k-1}^T, \ldots, C_1^T.
\]
If \(N = 2 \) and the semi-period is equal to (11) then in the basis \((e_0, f_0)\) we have \(\mathcal{D} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \)
and \(\mathcal{S} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \). If \(\mathcal{D} = \mathcal{G} \) then the connectivity matrices are
\[
C_0 = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}, \quad C_1 = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.
\]

Let us finally observe that the symmetries \(\mathcal{S} \) and \(\mathcal{G} \circ \mathcal{S} \) can be of one of three types. If we take into account that they play the same role (i.e. their order is insignificant) then we get six different ways of assigning the types, and all six are realized as shown above.

At the same time, from the algebraic point of view, there are only three different full symmetry groups for hyperbolic toral automorphisms. For details we refer to [B-R], or the forthcoming paper [S-W].

Acknowledgments

The first author was partially supported by the Polish Ministry of Science and Higher Education grant N201 384834, and the second author was partially supported by the grant N201 270535.

We are grateful to the anonymous referee who provided us with multiple suggestions to improve the text.

References

[Ad] Adler R L 1998 Symbolic dynamics and Markov partitions Bull. Am. Math. Soc. 35 1–56
[A-P] Adler R L and Palais R 1965 Homeomorphic conjugacy of automorphisms on the torus Proc. Am. Math. Soc. 16 1222–5
[A-W] Adler R L and Weiss B 1970 Similarity of Automorphisms of the Torus (Memoirs of the American Mathematical Society vol 98) (Providence, RI: American Mathematical Society)
[A-K-K] Anosov D V, Klimenko A V and Kolutsky G 2008 On the hyperbolic automorphisms of the 2-torus and their Markov partitions arXiv:0810.5269
[A-O] Appellgate H and Onishi H 1981 Continued fractions and the conjugacy problem in \(\text{SL}_2(\mathbb{Z}) \) Commun. Algebra 9 1121–30
[Ar] Arov D Z 1963 Topological similitude of automorphisms of compact commutative groups Usp. Mat. Nauk 18 133–8 (in Russian)
[B-R] Baake M and Roberts A G 1997 Reversing symmetry group of \(\text{GL}(2, \mathbb{Z}) \) and \(\text{PGL}(2, \mathbb{Z}) \) matrices with connections to cat maps and trace maps J. Phys. A: Math. Gen. 30 1549–73
[Be] Berg K 1967 On the conjugacy problem for \(K \)-systems PhD Thesis University of Minnesota
[Bo] Bowen R 1970 Markov partitions for axiom A diffeomorphisms Am. J. Math. 92 725–47
[K] Klimenko A V 2009 On the number of classes of Markov partitions for a hyperbolic automorphism of the 2-torus Mat. Sb. 200 147–60 (in Russian)
[M] Manning A 2002 A Markov partition that reflects the geometry of a hyperbolic toral automorphism Trans. Am. Math. Soc. 354 2849–63 (electronic)
[R] Rykken E 1998 Markov partitions for hyperbolic toral automorphisms of \(T^2 \) Rocky Mountain J. Math. 28 1103–24
[Se] Series C 1985 The modular surface and continued fractions J. Lond. Math. Soc. (2) 31 69–80
[Si1] Sinai Ya G 1968 Markov partitions and \(c \)-diffeomorphisms Funct. Anal. Appl. 2 61–82
[Si2] Sinai Ya G 1968 Construction of Markov partitions Funct. Anal. Appl. 2 245–53 (MR 40:3591)
[S-W] Siemaszko A and Wojtkowski M P Geometry of \(\text{GL}(2, \mathbb{Z}) \) and toral endomorphisms, in preparation
[Sn] Snayle M R 1991 Markov partitions for the two-dimensional torus Proc. Am. Math. Soc. 113 517–27