Investigation of Anti-SARS, MERS, and COVID-19 Effect of Jinhua Qinggan Granules Based on a Network Pharmacology and Molecular Docking Approach

Ying Zhang¹, Yunfeng Yao¹, Yanfang Yang¹,², and Hezhen Wu¹,²

Abstract

Objective: Jinhua Qinggan Granules (JQGs) have achieved certain results in the prevention and treatment of COVID-19 in China during this coronavirus storm. In this study, we aimed to analyze the common mechanisms of JQG in the treatment of coronavirus-induced diseases, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and COVID-19 via network pharmacology and molecular docking. Methods: The active compounds of JQG were collected through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The common targets associated with these 3 diseases were screened from GeneCards database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of JQG’s core targets were analyzed using The Database for Annotation, Visualization, and Integrated Discovery and KOBAS 3.0 system. Further, the protein-protein interaction network was built using STRING database. The compound-target-signaling pathway network was constructed using Cytoscape 3.7.2. The core components of JQG were docked with core targets, COVID-19 coronavirus 3 Cl hydrolase, and angiotensin-converting enzyme 2 (ACE2) via Discovery Studio 2016 software. Results: A total of 139 active compounds, 50 core targets, and 122 signaling pathways were screened out. The results of molecular docking showed that arctiin and linarin had a higher docking score with 3 Cl, ACE2, and core targets of JQH for antiviral effect. Conclusion: The potential mechanism of action of JHQ in the treatment of MERS, SARS, and COVID-19 may be associated with the regulation of genes co-expressed with ACE2 and immune-related signaling pathways.

Keywords

coronavirus, network pharmacology, Jinhua Qinggan Granules, COVID-19, SARS, MERS, flavonoid

Received: April 5th, 2021; Accepted: May 4th, 2021.

CoVs are single-stranded RNA viruses which belong to the order Nidovirales, family Coronaviridae, and subfamily Coronavirinae. A CoV was first isolated from chickens in 1937, and then the first human CoV was isolated in 1965. CoVs are a large group of viruses that now exist widely in nature. Seven types of CoVs have been found that could infect humans, of which 4 mainly cause upper respiratory tract infection. From Severe Acute Respiratory Syndrome (SARS) in 2002, Middle East Respiratory Syndrome (MERS) in 2012, and then to the current novel CoV disease (COVID-19), CoVs have caused 3 outbreaks of viral infectious diseases around the world and have become a major threat to global public health. On comparing the 3, COVID-19 has to date caused the worst impact. According to statistics, as of December 13th, 2020, 71,683,406 individuals had been infected with SARS-CoV-2 worldwide, of which 1,628,823 have died; the data were from WHO, official reports and authoritative media reports of various countries. SARS, MERS, and COVID-19 are similar in epidemiology, biological characteristics and clinical symptoms, that is, the patients will show symptoms of fever, cough, and upper respiratory tract infection. At the time of the 3 outbreaks, China has vigorously used traditional Chinese medicine for disease prevention and treatment, and achieved certain
Chinese medicine has thus shown its unique advantages. In Chinese medicine, Jinhua Qinggan Granules (JQG) have been used for fever, sore throat, nasal congestion, runny nose, thirst, and cough. JQG were included in the treatment of COVID-induced pneumonia on January 27, 2020 by China’s National Health Commission and the State Administration of Traditional Chinese Medicine, and has achieved results. In fact, JQG had been previously included in the diagnosis and treatment plan for viral pneumonia and influenza several times in China. They were widely used for treatment of H1N1 influenza in 2009 in China. JQG consists of Menthae Herba (Bohe), Anemarrhenae Rhizoma (Zhimu), Fritillariae Thunbergii Bulbus (Zhebeimu), Artemisia annua (Qinghao), Arctium lappa (Niubangzi), Ephedra Herba (Mahuang), Forsythia suspensa (Lianqiao), Amygdalus communis (Kuxingren), Lonicerae Japonicae Flos (Jinyinhua), Scutellariae Radix (Huangqin), Licorice (Gancao), and Plaster (Shigao). According to TCM theory, the pathogenesis of COVID-induced pneumonia mainly indicates damp pathogens caused by cold and dampness outside the lungs and spleen, leading to Qi disorder and heat stagnation. Jinyinhua, Lianqiao, Qinghao, Bohe, and Huangqin in JQG have the functions of clearing heat, detoxifying dampness, and relieving asthma, respectively. In the clinical treatment of COVID-19 in China, JQG have also been used for treating critically ill patients, and the results show that it could have an anti-CoV effect and enhance immunity. However, the mechanism of JQG treatment for COVID-19 is unclear. Further, the efficacy of the main compound of each herb is not known.

Network pharmacology is the use of multiple technologies such as systems biology, high-throughput screening, network analysis, and network visualization to reveal the complex system of "disease-gene-target-drug" interactions, and analyze drug effects from a holistic and systematic perspective. Based on the similarities in the structure and efficacy of drugs, combined with the complex interaction relationships of the body's target molecules and biological effects, by constructing drug-drug, drug-target, and other networks, it can effectively predict the drug function or the drug corresponding to a specific function. Under the background of molecular network regulation, it has become a new trend to apply the ideas and methods of network biology to the study of the pharmacological action and mechanism of traditional Chinese medicine, and a series of new data, methods and results have been produced. Molecular docking technology achieves the purpose of assisting drug screening based on the combination of the three dimensional structure of the receptor macromolecule with the ligand compound and the calculation of physical and chemical parameters. It has been widely used in the study of active ingredients of traditional Chinese medicine and compound prescriptions based on specific targets.

In this study, we predicted the core compounds and core targets of JQG and the signaling pathways for treatment of SARS, MERS, and COVID-19 through network pharmacology and molecular docking, and the common effects and mechanisms of JQG in the treatment of these 3 kinds of CoV infection are discussed. The flow chart is shown in Figure 1.

Materials and Methods

Identification and Screening of Active Compounds

Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/) was used to authenticate all compounds of the 12 Chinese medicinal herbs in JQG. TCSMP provides information on 6511 drug molecules and 3987 targets, as well as the interactions between them. Oral bioavailability (OB) and drug-likeness (DL) are the most significant pharmacokinetic parameters. OB indicates the speed and degree at which the active components or active groups of an oral drug are absorbed into systemic circulation, and DL refers to the similarity of a compound with a known drug, and the potential of this class of compounds to become drugs. In this study, the names of herbs were used as the key words to retrieve all compounds, and the active compounds in JQG were selected according to the criterion of OB ≥30% and DL ≥0.18.

Identification of Protein Targets

The protein targets associated with active compounds were retrieved from the TCMP database. The targets, including the gene names and gene ID, were further extracted using UniProtKB (http://www.uniprot.org), which comprised 54,247,468 sequence items.
Predicting the Common Targets of SARS, MERS, and COVID-19

GeneCards (https://www.genecards.org/) was used to gather target information concerning SARS, MERS, and COVID-19, which is a comprehensive database of functions involving proteomics, genomics, and transcriptomics. The keywords “novel coronavirus pneumonia,” “cough,” “MERS” “SARS,” and “fever” were utilized to screen these 3 disease-associated targets. Then, we obtained the intersection of the 3 disease targets through Venny2.1.0 database.

Gene Ontology and KEGG Pathway Enrichment Analysis

The results of Gene Ontology (GO) enrichment analysis were processed and visualized through the Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov/). GO enrichment analysis included biological processes (BPs), molecular functions (MFs), and cellular components (CCs). Further, KOBAS3.0 system (http://kobas.cbi.pku.edu.cn/anno_iden.php) was used to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. All results were screened with \(P < .05\). The top 20 relevant results from the KEGG pathway and GO enrichment analysis were plotted using the Omicshare tool (http://www.omicshare.com) as bubble and enriched circle plots.

Construction of Protein-Protein Interactions (PPI) Network

Online SRING (https://string-db.org/cgi/input.pl) was used to build the PPI network interaction of the core targets of JQG for treating the 3CoVs. This database is mainly for predicting functional correlations between proteins. It is a pre-calculated global resource that can be used to browse and analyze these correlations, and it provides more than 2000 substances and their protein interaction relationships.

Construction of Compound-Target-Pathway Network

A visual compound-target-pathway network was built by the aforementioned data sets through Cytoscape3.7.2 (http://www.cytoscape.org/) to reflect the complex relationships between compounds, targets and pathways. At the same time, we have also established a network diagram of the top 10 compounds with degree value and their related targets in the same way; the 3D diagram of the compound was obtained from Pubchem (https://pubchem.ncbi.nlm.nih.gov/).

Molecular Docking

The core compounds selected from active compounds of JQG were docked with some core targets and Angiotensin-converting enzyme 2 (ACE2), which was confirmed to be closely related to SARS-CoV-2 in human cells. At the same time, these core compounds were also docked with Remdesivir as a positive control. The structures of the related proteins were downloaded from the RSCB PDB database (https://www.rcsb.org/). A LiDockscore \(\geq 90\) is generally believed to represent a strong binding ability when docking with the processed protein.

Results

Active Compounds of JQG

A total of 139 active compounds were collected with OB \(\geq 30\) and DL \(\geq 0.18\) from the TCMSP database of which 9 were from Menthave Herba, 5 from Anemarrhenae Rhizoma, 4 from Fritillariae Thunbgii Bulbus, 11 from Artemisia annua, 5 from Fructus Arctii, 7 from Ephedra Herba, 5 from Forsythiae Fructus, 14 from Amygdalus communis, 6 from Lonicerae Radix, 12 from Scutellariae Radix, and 61 from Lonicerae. Specific information of some active compounds is shown in Table 1.

The Core Targets of JQG for Treatment of the 3 Coronaviruses

A total of 1282 possible common targets of SARS, 1398 of MERS, and 259 of COVID-19 were screened through GeneCards. All targets of the 3 diseases were imported into Venny2.1.0 and 133 common targets were obtained, as shown in Figure 2(A). Among the 133 shared disease targets, there were 50 intersections with compound targets, and these were considered to be core targets of JQG for the 3 types of CoVs, as shown in Figure 2(B). Specific information of these 50 core targets is shown in Supplemental Table S1.

GO and KEGG Enrichment Analyze

GO functional enrichment analysis yielded 404 GO entries, including 298 (73.8\%) BPs, 44 (10.9\%) CCs, and 62 (15.3\%) MFs. The enriched circle plot was used to visualize the enrichment results of the top 20 GOs, as shown in Figure 3(A). The outermost circle shows the classification of GO enrichment, and the yellow represents BP, the blue MF, and the green CC. The second circle shows the \(P\) value, with the smaller the value, the darker the color. The third circle shows the total number of foreground genes. The fourth circle shows the RichFactor value of each classification. KEGG pathway enrichment was conducted to cluster the major effects that are associated with the JHQG. A total of 122 pathways were screened out; the top 20-ranking ones are shown in Figure 3(B). The main pathways included hepatitis B, HIF-1 signaling pathway, pathways in cancer, TNF signaling pathway, tuberculosis, and apoptosis, as well as some related to cancer. Among them, hepatitis B involved 17 genes, including transforming growth factor \(\beta1\) (TGF\(\beta1\)), BAD, tumor necrosis factor (TNF), PI3KCG, caspase (CASP)8, CASP3, mitogen-activated protein kinase (MAPK)1, and nuclear factor kappa B subunit (NF\(\kappa\)B). The TNF signaling pathway involved 15 genes, including epidermal growth factor receptor (EGFR), NF\(\kappa\)B1, MAPK1, interleukin (IL)6, and B
Herb Components	Herb	Components	OB%	DL	Pubchem CID	Molecule ID
Menthae Herba	Fortunellin	35.65	0.74		5317385	MOL011616
Linarin	39.84	0.71			5317025	MOL001790
Diosmetin	31.14	0.27			5281612	MOL002881
Naringenin	59.29	0.21			439246	MOL004328
Aloe-emodin	83.38	0.24			10207	MOL000471
Eriodictyol	71.79	0.24			440735	MOL005190
Genkwanin	37.13	0.24			5281617	MOL005573
Scutellariae Radix	Aacetin	34.97	0.24		5280442	MOL001689
Wogonin	30.68	0.23			5281703	MOL000173
Rivularin	37.94	0.37			13889022	MOL012266
Moslosooflavone	44.09	0.25			188316	MOL008206
Norwogonin	39.4	0.21			5281674	MOL000525
Lonicerae Japonicae Flos	Beta-carotene	37.18	0.58		5280489	MOL002773
ZINC03978781	43.83	0.76			11870462	MOL003036
Chryseriol	35.85	0.27			5280666	MOL003044
Mandenol	42	0.19			5282184	MOL001494
Ethyl linolenate	46.1	0.2			6371716	MOL001495
Amygdalus communis Vas	Gondoic acid	30.7	0.2		5282768	MOL005030
CLR	37.87	0.68			5997	MOL000953
Mairin	55.38	0.78			64971	MOL000211
(+)-Catechin	54.83	0.24			9064	MOL000492
Glycyrol	90.78	0.67			5320083	MOL002311
Ephedra Herba	Herbacetin	36.07	0.27		5280544	MOL002823
Resivit	30.84	0.27			440833	MOL0010489
Kaempferol	41.88	0.24			5280863	MOL000422
Taxifolin	57.84	0.27			439533	MOL004576
Fructus Arctii	Cynarin(e)	31.76	0.68		5281769	MOL007326
Areapillin	48.96	0.41			158311	MOL004609
Artemisia annua L.	Artemetin	49.55	0.48		5320351	MOL005229
Luteolin	36.16	0.25			5280445	MOL000006
Peimisine	57.4	0.81			161294	MOL004440
Fritillariae Thunbergii Bulbus	Chaksine	65.63	0.66		120699	MOL004450
Anhydroicaritin	45.41	0.44			5318980	MOL004373
Coumaroyl-tyramine	112.9	0.2			13939145	MOL000631
Glabranin	52.9	0.31			124049	MOL004910
Licorice	Isoglycyrol	44.7	0.84		124050	MOL004948
Vestitol	74.66	0.21			177149	MOL000500
Isohavachin	36.57	0.32			193679	MOL004945
Glyuranolide	34.32	0.55			195396	MOL004905
Shinflavanone	31.79	0.72			197678	MOL004805
MLS001049043	38.92	0.26			268208	MOL004991
Medicarpin	49.22	0.34			336327	MOL002565
Glypallichalcone	61.6	0.19			5317766	MOL004835
Glyzaglabrin	61.07	0.35			5317777	MOL004907
Inflacoumarin A	39.71	0.33			5318437	MOL004980
Isolicoflavonol	45.17	0.42			5318585	MOL004949
Isotrifolol	31.94	0.42			5318679	MOL004814
Jaranol	50.83	0.29			5318869	MOL000239
Forsythiae Fructus	Isolariciresinol 66.51	0.39			160521	MOL003283
ACon1_001697	85.12	0.57			21722915	MOL003306
cell lymphoma (BCL)2. Pathways in cancer involved 22 genes, including TGFβ1, EGFR, PIK3CG, NFκB1, IL6, MAPK8, CASP8, and BCL2. We predicted that some compounds of JHQG could act on TNF, NFκB1, IL6, MAPK, and other genes to regulate the inflammation pathway, apoptosis, and other signaling pathway, to achieve an anti-CoV effect. Specific information of gene degree is shown in Supplemental Table S1.

PPI Network

The PPI network of 50 core targets is shown in Figure 4. We found that IL6, CASP 6, BCL2, EGFR, and NFκB1 have the most associations with other genes. This suggested that the mechanism of action of JQG in the treatment of the 3 CoV diseases may be related to the regulation of those genes.

Topology Analysis Network

The compound-target-pathway network is shown in Figure 5(A), including 209 nodes (139 compound nodes, 50 target nodes, 20 pathway nodes), and 1061 edges. The orange color represents the pathways, green the targets, and blue the active compounds. According to the degree analysis, the top 10 compounds in PubChem CID were 392442 (glyasperin F), 5317385 (fortunellin), 100528 (arctiin), 195396 (glyuranolide), 5317025 (linarin), 21722915 (pinoresinol monomethyl ether), 392443 (licoisoflavanone), 10026486 (asperglaucide), 161294 (peimisine), and 441298 (hyperforin). Figure 5(B) showed the 3D structure of the compound and the relationship of compounds and targets. We have discovered a phenomenon in which different compounds interact with the same target, reflecting the mechanism of interaction between multiple components in traditional Chinese medicine and multiple targets. This is mutually corroborated with the multi-target therapeutic mechanism of Chinese medicine.
Through topological analysis results and literature review, we selected arctiin and linarin to be docked with the top 3 targets (EGFR, NFκB1, and IL6) mentioned in the PPI network. Further, the 2 compounds were docked with SARS-CoV-2 3Cl protein and ACE2 protein. Compared with other targets, the docking score of NFκB1 with the core compounds was not too high. In addition, via molecular docking, linarin had a higher docking score than arctiin, with 5 targets. This suggested that linarin was more likely to be an important compound in JQG. The docking scores of Remdesivir with the 5 targets were greater than 130, which implied that our molecular docking data were accurate and true. From the 2D diagram, it could be found that van der Waals, conventional hydrogen bonds, and carbon hydrogen bonds were the most important chemical bonds in the docking of the compounds with the targets. The details of docking are shown in Figures 6–8, and Table 2.

Discussion

In this study, the potential mechanism of JQG for treatment of CoV infection was studied by network pharmacology and molecular docking, and 139 active compounds, 50 core targets, and 122 signaling pathways were screened out. Glyasperin F, fortunellin, arctiin, glyuranolide, and linarin were found to be the main active compounds in JQG for treatment of CoV infection. Based on known literature, we chose arctiin and linarin for molecular docking with 3Cl and ACE2; both showed strong affinity. Arctiin is the main active lignan in *Arctium lappa* L, which has anti-inflammatory, antiviral, and anti-oxidative activities. The docking results suggested that arctiin and linarin could be potential targets for CoV infection.
antidiabetic and antitumor activities, in addition to other pharmacological properties. At present, controlling the expression of inflammatory factors to improve the body’s immunity is considered to be an important method for treatment of viral pneumonia. As previously reported, arctiin exhibited potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Li et al. have reported that arctiin exhibits potent anti-inflammatory and anti-allergic activities via down-regulating the activation of MAPKs and AKT pathways. In addition, Kyoko Hayashi et al. found that arctiin had a direct antiviral property, with a therapeutic effect in immunocompetent and immunocompromised mice infected with influenza A virus. Linarin, a flavonoid, is a constituent of various plants and has antibacterial, anti-aging, anti-axoxia, anti-adverse irritation, anti-fatigue and other pharmacological effects. Xiang et al. found that linarin could prevent LPS-induced acute lung injury by suppressing oxidative stress and inflammation by inhibition of TXNIP/NLRP3 and NF-κB pathways. Bomi Kim found that linarin had an anti-inflammatory effect, in part through the suppression of phagocytosis, cytokine production, and antigen presentation in macrophages. Therefore, arctiin and linarin may be effective against CoV infection-induced pneumonia through their anti-inflammatory or antiviral pharmacological effects.

The HIF-1 signaling pathway, pathways in cancer, TNF signaling pathway and apoptosis were screened to be the main pathways of JQG for treatment of the 3 CoV diseases. KEGG enrichment results showed that the core targets included TGFβ1, EGFR, PIK3CG, NFκB1, IL6, MAPK8, CASP8, and BCL2, among others. Based on the network pharmacology and molecular docking results, we predicted that JQG could treat CoV-induced diseases by regulating NFκB1, IL6, and EGFR in the following ways. NFκB1 is a nuclear transcription factor that exists in a variety of cells and has a multi-directional regulatory function. Once the human body is infected with the coronavirus, the inhibitory factor κB of NFκB1 is phosphorylated, which leads to the ubiquitination of κB and proteasome-mediated degradation, which releases NFκB1 from the cytoplasm, causing inflammation storms in the body and accelerating viral cells transfer in the patient, and finally aggravates the patient’s infection. Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. IL-6 in the NLRP3 inflammasome was considered an important marker in the sera correlated with COVID-19 severity. The core compounds in JQG may play an antiviral role by regulating factors in inflammatory pathways such as NFκB1 and IL6.

Table 2. Results of Molecular Docking.

Gene	PDB(ID)	Compound	LiDockScore	Amino acid residue	Chemical bond
EGFR	6DUK	linarin	142.794	METB:1007	Pi-Anion
		arctiin	138.398	ALA:1000	Pi-Alkyl
		remdesivir	158.207	CYSB:775	Pi-Sulfur
ACE2	7K3Q	linarin	162.676	LYSL:105	Unfavorable Donor-Donor
		arctiin	137.043	SERH:142	Conventional Hydrogen Bond
		remdesivir	163.336	GLNH:43	Conventional Hydrogen Bond
3 Cl	6M2N	linarin	149.187	THRD:225	Conventional Hydrogen Bond
		arctiin	139.483	ASPC:229	Salt Bridge
		remdesivir	149.594	THRD:24	Conventional Hydrogen Bond
NFKB	1MY7	linarin	118.067	ALAB:192	Pi-Alkyl
		arctiin	99.9392	LYSB:218	Conventional Hydrogen Bond
		remdesivir	137.587	THRB:191	Pi-Sigma
IL6	6MG1	linarin	183.239	ARG:A289	Unfavorable Donor-Donor
		arctiin	155.988	ARG:B286	Unfavorable Donor-Donor
		remdesivir	187.253	DGC:7	Pi-Sigma

Figure 8. Results of molecular docking of each targets with remdesivir. (A) EGFR; (B) ACE2; (C) 3 Cl; (D) NFκB1; (E) IL6.
EGFR is a member of the type I tyrosine kinase receptor gene family, which is mainly involved in cell signal transduction. Once activated, it leads to cell differentiation, proliferation, infiltration, and angiogenesis; inhibits the high-expression CASP3 protein in virus-infected cells; and achieves an antiviral effect.

However, there are several limitations in our study. First, a more comprehensive TCM target genes database is needed, which would make the results of network pharmacology analysis more reliable. Second, even if the results of network pharmacology and molecular docking were combined, we still could not completely understand the accurate therapeutic mechanism of JQG. At present, some docking software still has false positive results, and, therefore, there may be inaccuracies in our docking results. In further research, pharmacodynamics and pharmacokinetics are necessary to understand the mechanism of JQG for treating CoV-induced diseases.

Conclusion

In this study, network pharmacology showed that the main active compounds of JQG, particularly arctiin and linarin, could act on multiple targets, such as EGFR, IL6, and NFkB1. JQG had an effect on the treatment of CoV mainly through the TNF signaling and HIF-1 signaling pathways, and pathways in cancer. Molecular docking showed that arctiin and linarin were the top 2 compounds, which indicated that they might play an important role in the treatment of CoV-induced diseases.

Acknowledgments

The authors would like to thank all the colleagues and students who contributed to this study.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by the National Natural Science Foundation of China (No.31570343), and the Hubei University of Chinese Medicine Funding Project on COVID-19 Emergency Science and Technology Research.

ORCID IDs

Ying Zhang https://orcid.org/0000-0002-4243-0960
Yunfeng Yao https://orcid.org/0000-0003-0372-0815

Supplemental Material

Supplemental material for this article is available online.
on molecular properties and structural fingerprints. *Mol Pharm.* 2011;8(3):841-851. doi:10.1021/mp100444g

16. Zhong P, Song L, Gao M, et al. Network pharmacology-based strategy for predicting active ingredients and potential targets of Gegen Qilin decoction for rotavirus enteritis. *Evid Based Complement Alternat Med.* 2020;2020:1-12. doi:10.1155/2020/2957567

17. Yi P, Zhang Z, Huang S, Huang J, Peng W, Yang J. Integrated meta-analysis, network pharmacology, and molecular docking to investigate the efficacy and potential pharmacological mechanism of Kai-Xin-San on Alzheimer’s disease. *Pharm Biol.* 2020;58(1):932-943. doi:10.1080/13880209.2020.1817103

18. Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. *J Cheminform.* 2014;6:13. doi:10.1186/1758-2946-6-13

19. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* 2003;13(11):2498-2504. doi:10.1101/gr.1239303

20. Huang B, Xiong J, Zhao X, Zheng Y, Zhu N. Network pharmacology-based analysis of the pharmacological mechanisms of aloperine on cardiovascular disease. *Evid Based Complement Alternat Med.* 2020;2020:1-8. doi:10.1155/2020/5180716

21. Ge Q, Chen L, Tang M, et al. Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. *Eur J Pharmocol.* 2018;833:50-62. doi:10.1016/j.ejphar.2018.05.021

22. Zhou M, Li G, Zhu L, Zhou H, Lu L. Arctiin attenuates high glucose-induced human retinal capillary endothelial cell proliferation by regulating ROCK1/PTEN/PI3K/Akt/VEGF pathway in vitro. *J Cell Mol Med.* 2020;24(10):5695-5706. doi:10.1111/jcmm.15232

23. Gao Q, Yang M, Zuo Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctin from *Arctium lappa* L. *Acta Pharmacol Sin.* 2018;39(5):787-801. doi:10.1038/aps.2018.32

24. Li J, Yuan Y-P, Xu S-C, et al. Arctiin protects against cardiac hypertrophy through inhibiting MAPKs and AKT signaling pathways. *J Pharmal Sci.* 2017;135(3):97-104. doi:10.1016/j.jphs.2017.05.012

25. Hayashi K, Narutaki K, Nagaoka Y, Hayashi T, Uesato S. Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza A virus. *Biol Pharm Bull.* 2010;33(7):1199-1205. doi:10.1248/bph.33.1199

26. Han X, Wu Y-C, Meng M, Sun Q-S, Gao S-M, Sun H. Linarin prevents LPS-induced acute lung injury by suppressing oxidative stress and inflammation via inhibition of TXNIP/NLRP3 and NF-κB pathways. *Int J Mol Med.* 2018;42(3):1460-1472. doi:10.3892/ijmm.2018.3710

27. Kim B, Lee JH, Seo M-J, Eom SH, Kim W. Linarin down-regulates phagocytosis, pro-inflammatory cytokine production, and activation marker expression in RAW264.7 macrophages. *Food Sci Biotechnol.* 2016;25(5):1437-1442. doi:10.1007/s10068-016-0223-3

28. Rodrigues TS, de Sá KSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. *J Exp Med.* 2021;218(3). doi:10.1084/jem.20201707

29. Low HB, Zhang Y. Regulatory roles of MAPK phosphatases in cancer. *Immune Netw.* 2016;16(2):85-98. doi:10.4110/in.2016.16.2.85