Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins

Regine Hengge

Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany

RH, 0000-0002-3969-8018

The bacterial second messenger c-di-GMP controls bacterial biofilm formation, motility, cell cycle progression, development and virulence. It is synthesized by diguanylate cyclases (with GGDEF domains), degraded by specific phosphodiesterases (PDEs, with EAL of HD-GYP domains) and sensed by a wide variety of c-di-GMP-binding effectors that control diverse targets. c-di-GMP-binding effectors can be riboswitches as well as proteins with highly diverse structures and functions. The latter include ‘degenerate’ GGDEF/EAL domain proteins that are enzymatically inactive but still able to bind c-di-GMP. Surprisingly, two enzymatically active ‘trigger PDEs’, the Escherichia coli proteins PdeR and PdeL, have recently been added to this list of c-di-GMP-sensing effectors. Mechanistically, trigger PDEs are multifunctional. They directly and specifically interact with a macromolecular target (e.g. with a transcription factor or directly with a promoter region), whose activity they control by their binding and degradation of c-di-GMP—their PDE activity thus represents the c-di-GMP sensor or effector function. In this process, c-di-GMP serves as a regulatory ligand, but in contrast to classical allosteric control, this ligand is also degraded. The resulting kinetics and circuitry of control are ideally suited for trigger PDEs to serve as key components in regulatory switches.

This article is part of the themed issue ‘The new bacteriology’.

1. The bacterial nucleotide second messenger c-di-GMP

Over the past decade, bis-(3',5')-cyclic di-guanosine-mono-phosphate (c-di-GMP) has emerged as a nearly ubiquitous bacterial nucleotide second messenger [1–5]. In many bacteria, c-di-GMP promotes biofilm formation, i.e. the synthesis of biofilm matrix components such as amyloid fibres or exopolysaccharides and the expression of adhesins and other biofilm-relevant functions. In many species, c-di-GMP also inhibits the expression and/or activity of flagella. However, the notion of c-di-GMP as a signal that inhibits the motile planktonic ‘lifestyle’ and induces the sessile biofilm ‘lifestyle’ is certainly an oversimplification. Thus, planktonic E. coli cells grown in liquid culture produce extracellular matrix components when they enter into stationary phase [6,7] and flagella are present and play an important role in E. coli biofilms, which contain cells in different physiological states in different zones [8,9]. In addition, c-di-GMP can also regulate virulence gene expression, cell-type differentiation and cell cycle progression in Caulobacter and bacterial development, e.g. in Myxococcus and Streptomyces [10–14].

c-di-GMP is synthesized from GTP by diguanylate cyclases (DGC) characterized by the GGDEF domain (this motif represents the conserved active site or A-site). Most, but not all DGCs also contain a secondary binding site for c-di-GMP (I-site), which allosterically slows down further c-di-GMP synthesis once elevated cellular levels have been reached. Degradation of c-di-GMP is mediated by specific phosphodiesterases (PDEs), which can feature either EAL or HD-GYP domains [15,16]. Many DGCs and PDEs actually feature GGDEF and EAL domains in the same protein, with usually one domain being enzymatically active and the other being degenerate and exerting a regulatory influence.

© 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
A majority of these enzymes harbour diverse N-terminal sensory input domains that control their activities in response to intra- or extracellular signals. These include two-component receiver, PAS, GAF, globin sensor, various light-sensing as well as distinct membrane-integral MASE, CHASE or GAPES domains [17–21].

c-di-GMP signalling has become a top research priority in the field of molecular microbiology since its function is of unprecedented complexity in bacterial second messenger signalling. In particular, two features have led to novel paradigms, i.e. (i) the multiplicity of DGCs and PDEs in single species [3] and (ii) the diversity of c-di-GMP-sensing effector or receptor components [22,23].

2. Multiplicity of DGCs and PDEs and ‘local’ c-di-GMP signalling

Genome sequencing has revealed a surprising abundance of GGDEF/EAL domain-encoding genes in the genomes of many bacterial species, in particular in gamma-proteobacteria [24]. For instance, the pangenome of *E. coli* (as known in 2015) includes 35 genes encoding GGDEF/EAL domains. Among the 29 such genes of the well-characterized laboratory strain *E. coli* K-12, 12 encode DGCs and 13 encode PDEs [21,25]. The multiplicity of DGCs and PDEs in single species as well as frequent observations that knocking out a particular DGC or PDE can lead to a clearcut phenotype—not observed with knock-out mutations in other such genes in the same species—has spurred hypotheses about ‘local signalling’ based on highly specific direct protein–protein interactions. This would allow distinct ‘c-di-GMP control modules’ to operate in parallel and generate different outputs. Even ‘local c-di-GMP pools’ separate from the overall cellular c-di-GMP pool have been considered, but experimental evidence for this possibility has been lacking so far [2,3,26].

Highly specific direct contacts between DGCs, PDEs and their effector and target components have been amply documented [10,27–32]. Within these complexes, protein–protein interactions can have a scaffolding function, i.e. serve to establish close proximity between a DGC, i.e. a local source of c-di-GMP, and the thereby preferentially served c-di-GMP-binding effector component. A recently reported example is the DGC GcbB in *Pseudomonas fluorescens*, which directly docks onto the membrane-integral c-di-GMP effector LapD, which promotes biofilm formation by inhibiting the proteolytic release of a surface adhesin [29]. In addition, protein–protein interactions within a c-di-GMP signalling module can assume regulatory functions, i.e. directly activate or inhibit molecular functions of the partner proteins. This principle is illustrated by the PdeR/DgcM/MlrA complex in *E. coli* [30], which at the same time has provided the paradigm for a c-di-GMP-sensing trigger PDE (PdeR) and is therefore described in detail in §4.

3. c-di-GMP-binding effectors

An intracellular second messenger such as c-di-GMP has to be sensed, i.e. bound by a specific effector component or receptor that interacts with a specific target to exert cellular effects. There is a striking diversity of c-di-GMP effectors and targets—as a consequence, virtually any kind of process in a bacterial cell can be controlled by c-di-GMP (figure 1).

In principle, c-di-GMP, which can adopt different monomeric and dimeric conformations [23], can interact with RNAs, i.e. riboswitches, or diverse classes of proteins. Riboswitches are usually located in the untranslated 5′ regions of mRNAs (5′-UTR) and can fold into different conformations depending on c-di-GMP binding, which can promote or inhibit transcriptional termination, translation or even self-splicing of the mRNA [51–53].

Among the highly diverse c-di-GMP-binding effector proteins, PilZ proteins have been most thoroughly studied [23,40–42,54,55]. The PilZ domain, which can bind monomers or dimers of c-di-GMP, serves as a flexible adaptor domain that couples c-di-GMP-sensing to a variety of proteins that, for instance, serve to inhibit flagellar rotation or are part of exopolysaccharide synthesis and extrusion systems [43–45,56,57]. Also several types of bacterial transcription factors (TF) directly use c-di-GMP as a ligand for allosteric regulation of their activity and thereby control genes involved in biofilm matrix production, flagella expression, development or virulence [33,36,37,58]. The c-di-GMP-binding YajQ protein directly interacts with a LysR-like TF and seems to represent another type of adaptor that couples c-di-GMP sensing to an output activity, i.e. transcription initiation [38]. Additional recently identified c-di-GMP-binding proteins with highly specific functions are the exopolysaccharide synthase and secretion pore PgaC/PgaD in *E. coli* [46], the flagellum component and export ATPase FliI, and the ribosomal modification protein RimK in plant-associated *Pseudomonas* species [47,59] and the protein kinase/phosphatase CckA, which acts as a master regulator of cell cycle progression in *C. crescentus* [60].

Furthermore, degenerate GGDEF or EAL domains that can bind c-di-GMP, but are enzymatically inactive, can serve as c-di-GMP effectors. Examples include the degenerate GGDEF domain protein PopA in *C. crescentus*, which binds c-di-GMP via its intact I-site and thereby controls proteolysis of the cell cycle inhibitor and global developmental regulator CtrA [48], or the degenerate EAL domain protein LapD, the transmembrane biofilm regulator in *P. fluorescence* already mentioned above [61].

4. Trigger PDEs as a novel class of c-di-GMP-sensing effector proteins

Quite unexpectedly, a particular class of enzymatically active EAL domain proteins has recently been added to the growing list of c-di-GMP-sensing effectors, with PdeR (formerly YciR) of *E. coli* as the prototype [30]. These c-di-GMP-sensing ‘trigger PDEs’ are more than simple PDEs and in fact combine a number of functions: they (i) control the activity of a macromolecular target (another protein or a promoter region on the DNA) by direct and specific interactions in a manner that is modulated by (ii) their binding and degradation of c-di-GMP (i.e. their PDE function), which therefore represents (iii) the c-di-GMP sensor or effector function. Thus, their primary function is the control of activity of another macromolecule by direct interaction, while their PDE activity is a secondary function that modulates the primary activity. Appreciating the full function of these proteins thus requires a change of perspective, as initially we recognize and classify them as carriers of intact EAL domains and therefore just PDEs.
The multifunctionality of these trigger PDEs is reminiscent of bifunctional ‘moonlighting’ enzymes already observed many years ago (more recently summarized in [62]) and, in particular, a subclass of these, for which the name ‘trigger enzymes’ was proposed because they act as regulatory factors that trigger transcriptional responses [63]. These bifunctional enzymes (and in some cases transport systems) control gene expression via direct protein–protein or protein–DNA/RNA interactions in response to the availability of the substrates for their enzymatic (or transport) activities, with the substrates being central metabolites as illustrated by the following examples: (i) the proline-degrading enzyme PutA directly binds to and controls the activity of promoter regions of target genes [64]; (ii) the apo-form of the iron–sulfur cluster enzyme aconitate binds to iron-responsive elements in mRNAs encoding other tricarboxylic acid cycle enzymes [65]; (iii) the esterase Aes and the βC-S lyase MalY control the transcription factor MalT by direct interaction [66–68]; and (iv) the phosphotransferase system involved in glucose uptake also binds and sequesters the transcription factor Mlc [69]. In all cases, the enzymatic activities of these trigger enzymes modulate their direct interactions with other macromolecules (TF, DNA promoter regions or RNA) which results in a control of gene expression.

The c-di-GMP-specific PDE PdeR in _E. coli_ seems the first trigger enzyme found to be involved in second messenger signalling, which makes it a ‘trigger PDE’ that acts as a novel type of c-di-GMP-sensing effector. In principle, its mode of operation is not so different from other effectors, which are allosterically controlled by c-di-GMP binding. The difference is the fact that a trigger PDE not only binds the ligand, but also degrades it, i.e. it possesses a mechanism to get rid of its ligand and even decrease its cellular concentration. Thus, a trigger PDE not only responds to c-di-GMP, but feeds back depending on the actual cellular concentration and specific activity of the trigger PDE. On the other hand, a trigger PDE can accelerate switching off even multiple downstream responses to c-di-GMP (mediated by itself as well as by

Figure 1. Diversity of c-di-GMP-binding effectors. Proteins (circles or ovals) that belong to a variety of different protein families as well as RNAs, i.e. 5′-untranslated regions of mRNAs (riboswitches; irregularly shaped star), can bind c-di-GMP with affinities ranging over three orders of magnitude. The array of c-di-GMP-responsive effector components is not exhaustive, but those mentioned here have been chosen to represent different families of proteins.
additional classical allosterically controlled effectors) when second messenger synthesis is reduced owing to changes in environmental or cellular conditions. If its direct control affects the activity of a key transcription factor, a trigger PDE is ideally suited to be the major switch component of a physiologically central signal transduction pathway or network.

With their direct and highly specific macromolecular interactions, trigger PDEs also represent a specific type of local c-di-GMP signalling in which a particular c-di-GMP-related enzyme generates a distinct individual output—without the need to postulate a ‘local c-di-GMP pool’ (see above). In this perspective paper, however, the focus is on their novel function as c-di-GMP-sensing effectors, which is described in detail in §§5 and 6 using the currently known two trigger PDEs that were both found in *E. coli*: (i) PdeR, which controls the activity of a protein target—a transcription factor—and whose analysis led to the trigger PDE concept as outlined above [30], and, more recently, (ii) PdeL, which binds to DNA and seems to control gene expression directly [50].

5. PdeR: a trigger PDE throws the switch to turn on biofilm matrix production

PdeR (formerly YciR) is the key player in the molecular switch that turns on biofilm matrix production in *E. coli*. The direct target of this c-di-GMP-mediated switch mechanism is the expression of the transcription factor CsgD, which is induced in planktonic culture as well as in biofilms when cells enter into stationary phase [6,7,30]. CsgD directly activates the transcription of *csgBA*C, i.e. the structural operon for amyloid curli fibre formation, and indirectly controls cellulose synthase activity by activating the expression of DgcC (formerly YaiC, or AdrA in *Salmonella*) [70].

The backbone of the regulation of CsgD expression is a feedforward transcription factor cascade that uses the stationary phase sigma factor RpoS (σS) as a master regulator and the MerR-like transcription factor MlrA as a highly specific activator of transcription initiation at the *csgD* promoter [6,7,30]. MlrA activity is supported by DgcM (YdaM), which—besides producing c-di-GMP—also acts as a direct transcriptional co-activator [30]. c-di-GMP has a regulatory impact at two positions of this hierarchically organized biofilm control network [3]: (i) it controls the activity of MlrA and thereby CsgD expression, which affects the production of both curli fibres and cellulose, and (ii) further downstream in the network, it activates cellulose synthase specifically via DgcC (this additional cellulose-specific control allows cells to vary their curli:cellulose production ratio, i.e. the local composition of the matrix within the biofilm).

The trigger PDE PdeR is the central component of the c-di-GMP switch that controls MlrA activity and thus CsgD expression. In response to the rising c-di-GMP level generated during transition into stationary phase by the RpoS-driven induction of the Dgc DgcE (YegE) [7], PdeR allows the equally RpoS-dependent DgcM and MlrA to jointly activate *csgD* transcription by an intriguing mechanism (figure 2): it initially inhibits both DgcM and MlrA by direct specific interactions, which are relieved when c-di-GMP levels get high enough for PdeR to efficiently bind and degrade c-di-GMP. Thus, PdeR combines three activities: it is (i) a direct antagonist for DgcM and MlrA, (ii) a PDE and (iii) a sensor of the rising cellular c-di-GMP level during entry into stationary phase [30]. A key experimental hallmark in delineating this trigger mechanism was the possibility to separate these activities of PdeR genetically: a point mutation in the EAL motif (generated in the natural chromosomal copy of *pdeR* in order not to disturb stoichiometries of interacting partner proteins) eliminates PDE activity but does not affect its direct interactions—it thus converts PdeR into a constitutive, i.e. no longer c-di-GMP-responsive, ‘super-inhibitor’ of DgcM and MlrA, which completely eliminates CsgD and curli expression. By contrast, in a *pdeR* null mutant, expression of CsgD and curli production are very high, yet are equally ‘blind’ to any variation in the cellular c-di-GMP level [30].

Mathematical modelling indicated that the DgcE/PdeR/DgcM/MlrA-mediated c-di-GMP control module can operate as a bistable switch [72]. The major ingredients generating such behaviour are two feedback loops that stabilize the OFF and ON states, respectively, in *csgD* transcription (figure 2): (i) PdeR degrades the inhibitor, i.e. c-di-GMP, of its own inhibition of DgcM and MlrA and (ii) once DgcM gets released from this direct inhibition by PdeR (by sufficient c-di-GMP initially produced by DgcE), it contributes to accumulate c-di-GMP and thus further prevents PdeR from taking over again, i.e. from resuming its inhibition of DgcM and MlrA. This bistable switch is likely to be involved in generating the pronounced heterogeneity of matrix production in slowly growing zones of *E. coli* macrocolony biofilms [8,9,73].

Overall, the trigger PDE PdeR is the crucial factor for the decision whether—and where in a biofilm—cells produce extracellular matrix, which in turn generates the elaborate supracellular matrix architecture and thereby sometimes rather spectacular morphology of macrocolony biofilms.

6. PdeL: a trigger PDE directly controls gene expression

The *E. coli* protein PdeL (formerly YahA), which was one of the first EAL domain proteins shown to be an active c-di-GMP-specific PDE [74], carries an N-terminal LuxR-like domain with a helix–turn–helix (HTH) motif linked to its EAL domain. It is most strongly expressed in growing cells at 37°C, suggesting it may be relevant for *E. coli* within the human host [75]. Binding of c-di-GMP stimulates dimerization of the purified PdeL-EAL domain with the dimer interface promoting the formation of an active catalytic centre [76].

The presence of the potentially DNA-binding LuxR domain in combination with the c-di-GMP-binding and degrading EAL domain suggested PdeL could be a gene expression-controlling trigger PDE. This possibility raised a number of obvious questions. What is the target gene(s) under control of PdeL? And with a target gene identified, is there an influence of variations in the cellular c-di-GMP level on its regulation of target gene expression that depends on a functionally intact EAL domain? Or, in practical terms, would a point mutation, which eliminates PDE activity but leaves structure and interactions of PdeL intact, result in c-di-GMP-insensitive expression of the target gene?

In a recent report [50], PdeL was found to activate its own expression. It binds directly to an imperfect palindromic region relatively far upstream in the *pdeL* promoter region, which further downstream also features a binding site for the
transcription factor Cra as noticed earlier [77]. Intriguingly, positive autoregulation by PdeL was observed only under conditions of low cellular c-di-GMP levels, i.e. was most pronounced in a strain with four DGCs knocked out, but still significant in a wild-type background, when cells were assayed before entry into stationary phase, where c-di-GMP levels increase [50,78]. These findings indicate that c-di-GMP binding and degradation somehow interfere with transcriptional activation by PdeL. This in turn may suggest that PdeL is able to oligomerize in two different configurations, i.e. a transcriptionally inactive dimer that is promoted by c-di-GMP-binding and an alternative dimer/oligomer that binds to DNA and promotes transcription as would be expected for a transcriptional regulator of the HTH family. This will have to be clarified in future structural investigations.

In regulatory terms, the negative effect of c-di-GMP on the expression of the c-di-GMP-degrading PdeL and the positive autoregulation of PdeL represents a combination of two positive feedback loops. This complex motif is likely to generate a steep OFF switch—when the c-di-GMP level decreases, PdeL can kick in and further accelerate the disappearance of c-di-GMP. Whether and when this is of physiological relevance has to be shown in further studies. Another interesting question is whether PdeL may regulate additional genes besides its own.

7. Conclusion and perspectives

A conceptual hallmark of the trigger PDE mechanism is the unexpected finding that certain enzymatically active EAL proteins can serve as a novel type of c-di-GMP-sensing effector protein. As a consequence, a potential trigger PDE and therefore effector function has to be considered for any PDE that is found to directly and specifically interact with some macromolecule, which can be a protein, DNA or RNA. In other words, the primary activity of such a PDE may be to control the function of the bound macromolecule in response to sensing—by binding and degrading—c-di-GMP.

There is no reason to believe that trigger PDEs should be restricted to signal transduction by c-di-GMP. Rather, they might occur also for other second messengers, in particular in species with multiple enzymes that produce and degrade a particular second messenger, as, for instance, observed for cAMP in alpha-proteobacteria or certain mycobacteria [79,80]. Such multiplicity seems to pave the way for the evolution of local signalling. First, simple scaffolding interactions with partner macromolecules can emerge, which may further evolve to have direct regulatory impact, which in turn may become the primary activity of a trigger PDE. The currently known trigger PDEs feature EAL domains, but HD-GYP domain proteins could possibly play a similar role. Another interesting question is whether also DGCs can act as trigger enzymes. Once activated, DGCs seem to operate under conditions of substrate saturation, since cellular levels of GTP are in the low millimolar range [81] and thus orders of magnitude higher than the usual K_m of DGCs (low micromolar). Thus, DGCs are unlikely to serve as GTP sensors, but it is conceivable that in some cases a control of the enzymatic reaction via the sensory input domain or c-di-GMP binding at the I-site of the GGDEF domain may also modulate a direct regulatory interaction with some target protein. In any case, it seems likely that the enzymes that make and break nucleotide second messengers will have more surprises in store for us.

Competing interests. The author declares that she has no competing interests.

Funding. Research in the laboratory of the author mentioned in this paper has been funded by the European Research Council under the auspices of the European Union’s Seventh Framework Programme (ERC-AdG 249780 to R.H.) and by the Deutsche Forschungsgemeinschaft (He 1556/13-2 and He 1556/17-1).

Acknowledgements. The author would like to thank Diego O. Serra and Natalia Tschowri for critically reading the manuscript.

Figure 2. Regulatory circuits of gene expression exerted by the trigger PDEs PdeR and PdeL of E. coli. (a) At low cellular c-di-GMP levels, PdeR inhibits DgcM and the transcription factor MlrA by direct interaction and, as a consequence, the biofilm regulator CsgD is not expressed. The fact that PdeR also inactivates the inhibitor—i.e. c-di-GMP—of its own inhibitory action on DgcM/MlrA, sets up a positive feedback loop that stabilizes the inhibition of DgcM/MlrA by PdeR (i.e. the CsgDON state). When c-di-GMP levels increase (e.g. during entry into stationary phase when the RpoS-dependent DgcE is induced, whereas PdeH is no longer expressed and its cellular level decreases), binding and cleavage of c-di-GMP by PdeR releases DgcM and MlrA. This allows DgcM to act as a direct co-activator for MlrA in the transcriptional activation of the csgDEF operon and to also produce c-di-GMP (representing a positive feedback loop that stabilizes the CsgDON state) [30]. As a transcription factor, CsgD directly activates the expression of the subunits of amyloid curli fibres and indirectly stimulates the production of the exopolysaccharide cellulose. CsgE, CsgF and CsgG are components of the curli secretion machinery [71]. (b) PdeL activates its own expression in a manner that is inhibited by high c-di-GMP levels. In this circuit, two nested positive feedback loops seem to accelerate a decrease of the cellular c-di-GMP levels below a certain threshold: (i) positive autoregulation of PdeL and (ii) as a PDE, PdeL inactivates its own inhibitor c-di-GMP. This circuit could allow rapid and highly efficient switching to low cellular c-di-GMP levels and therefore a rapid stop of expression or activity of biofilm-related functions [50]. For additional details, see §§5 and 6.
References

1. Romling U, Gomelsky M, Galperin MY. 2005 c-di-GMP: the dawn of a novel bacterial signalling system. Mol. Microbiol. 57, 629–639. (doi:10.1111/j.1365-2958.2005.04697.x)

2. Jenal U, Malone J. 2006 Mechanisms of cyclic-di-GMP signalling in bacteria. Annu. Rev. Genet. 40, 385–407. (doi:10.1146/annurev.genet.40.110405.090423)

3. Hengge R. 2009 Principles of cyclic-di-GMP signaling. Nat. Rev. Microbiol. 7, 263–273. (doi:10.1038/nrmicro2109)

4. Romling U, Galperin MY, Gomelsky M. 2013 Cyclic-di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52. (doi:10.1128/MMBR.00043-12)

5. Hengge R, Gründling A, Jenal U, Ryan RP, Yildiz FH. 2015 Bacterial signal transduction by c-di-GMP and other nucleotide second messengers. J. Bacteriol. 198, 15–26. (doi:10.1128/JB.00333-15)

6. Weber H, Pesavento C, Possling A, Tischendorf G, Buttner MJ. 2015 c-di-GMP signaling and the developmental transitions in Xanthomonas arboricola pv. citri. Nat. Rev. Microbiol. 13, 749–760. (doi:10.1038/nrmicro3546)

7. Schirmer T, Jenal U. 2009 Structural and mechanistic determinants of c-di-GMP signalling. Nat. Rev. Microbiol. 7, 724–735. (doi:10.1038/nrmicro2203)

8. Bellini D, Caly DL, Mccarthy Y, Bramm M, An S-Q, Dow JM, Ryan RP, Walsh MA. 2014 Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trimetallic catalytic iron centre. Mol. Microbiol. 91, 26–38. (doi:10.1111/j.1365-2958.2014.12227.x)

9. Nikolskaya AN, Mulikidjanian AV, Beech IB, Galperin MY. 2003 MASE1 and MASE2: two novel integral membrane sensor domains. J. Mol. Microbiol. Biotechnol. 5, 11–16. (doi:10.1559/000068720)

10. Tuckerman JR, Gonzalez G, Sousa EHS, Wan X, Saito JA, Alam M, Gilles-Gonzalez M-A. 2009 An oxygen-sensing diacylglycerol cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48, 9764–9774. (doi:10.1021/bi901409g)

11. Hengge R, Galperin MY, Ghigo J-M, Gomelsky M, Green J, Hughes KT, Jenal U, Landini P. 2015 Systematic nomenclature for GGDEF and EAL domain proteins mediate virulence in Pseudomonas aeruginosa. Nat. Commun. 6, 552–567. (doi:10.1038/ncomms11462-2920.2004.00633.x)

12. Tuckerman JR, Gonzalez G, Sousa EHS, Saito JA, Alam M, Gilles-Gonzalez M-A. 2009 An oxygen-sensing diacylglycerol cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48, 9764–9774. (doi:10.1021/bi901409g)

13. Klauck G, browsing A, Otto G, Mehlis A, Hengge R. 2008 Inverse regulatory motif of c-di-GMP signaling in microorganisms. Trends Biochem. Sci. 23, 497–500. (doi:10.1016/S0968-0004(08)22181-3)

14. Galperin MY. 2004 Bacterial signal transduction network in a genomic perspective. Environ. Microbiol. 6, 552–567. (doi:10.1111/j.1462-2920.2004.00633.x)

15. Tuckerman JR, Gonzalez G, Sousa EHS, Saito JA, Alam M, Gilles-Gonzalez M-A. 2009 An oxygen-sensing diacylglycerol cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48, 9764–9774. (doi:10.1021/bi901409g)

16. Hengge R, Galperin MY, Ghigo J-M, Gomelsky M, Green J, Hughes KT, Jenal U, Landini P. 2015 Systematic nomenclature for GGDEF and EAL domain-containing c-di-GMP turnover proteins of Escherichia coli. J. Bacteriol. 198, 7–11. (doi:10.1128/JB.00424-15)

17. Stovall PV, Galperin MY, Sondermann H. 2012 Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP: Protein Sci. 21, 929–948. (doi:10.1002/pro.2093)

18. Chou S-H, Galperin MY. 2016 Diversity of cyclic di-GMP binding proteins and mechanisms. J. Bacteriol. 198, 32–46. (doi:10.1128/JB.00333-15)

19. Galperin MY. 2005 A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 5, 35. (doi:10.1186/1471-2180-5-33)

20. Powell E, Hengge R. 2015 Genome-based comparison of c-di-GMP signalling in commensal and pathogenic Escherichia coli. J. Bacteriol. 198, 111–126. (doi:10.1128/JB.00520-15)

21. Ryan RP, Fossey Y, Lucey F, Dow JM. 2006 Cyclic di-GMP signalling in bacteria: recent advances and new puzzles. J. Bacteriol. 188, 8327–8334. (doi:10.1128/JB.01079-06)

22. Andrade MO, Alegria MC, Guzzo CR, Docena C, Pareda Rosa MC, Ramos CH, Farah CS. 2006 Xanthomonas arboricola pv. citri. Mol. Microbiol. 62, 537–551. (doi:10.1111/j.1365-2958.2006.05386.x)

23. Bobrov AV, Kirillina O, Forman S, Mack D, Perry RD. 2008 Insights into Xerophysicopsis pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ. Microbiol. 10, 1419–1432. (doi:10.1111/j.1462-2920.2007.01554.x)

24. Dahlstrom KM, Giglio KM, Collins AJ, Sondermann H, O’boole GA. 2015 Contribution of physical interactions to signalling specificity between a diacylglycerol cyclase and its effector. mBio 6, pe01978-15. (doi:10.1128/mBio.01978-15)

25. Tuckerman JR, Gonzalez G, Gilles-Gonzalez M-A. 2011 Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J. Mol. Biol. 407, 633–639. (doi:10.1016/j.jmb.2011.02.019)

26. Barquet C, Harwood CS. 2013 Cyclic di-guanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc. Natl. Acad. Sci. USA 107, 5989–5994. (doi:10.1073/pnas.0912839107)

27. Tuckerman JR, Gonzalez G, Gilles-Gonzalez M-A. 2011 Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J. Mol. Biol. 407, 633–639. (doi:10.1016/j.jmb.2011.02.019)

28. Whitney JC, Calvin KM, Marmont LS, Robinson H, Parch MK, Howell PL. 2012 Structure of the cytoplasmic region of PdEL, a degenerate diacylglycerol cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa. J. Biol. Chem. 287, 25 582–25 593. (doi:10.1074/jbc.M112.375378)

29. Chambers JR, Liao J, Scharf MJ, Sauer K. 2014 BiRs from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol. Microbiol. 92, 471–487. (doi:10.1111/mmi.12562)

30. Chin K-H et al. 2010 The CAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signalling to virulence gene expression in Xanthomonas campestris. J. Mol. Biol. 396, 646–662. (doi:10.1016/j.jmb.2009.11.076)

31. Tschorni N, Schmutterer MA, Schlimpert S, Chinnam N, Findlay KC, Brennan RG, Buttner MJ. 2014 Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158, 1136–1147. (doi:10.1016/j.cell.2014.07.022)

32. An S, Caly DL, Mccarthy Y, Murdoch SL, Ward J, Febrer M, Dow JM, Ryan RP. 2014 Novel cyclic di-
GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog. 10, e1004429. (doi:10.1371/journal.ppat.1004429).

39. Alim RA, Bodem A, Free PD, Mattick JS. 1996 Identification of a novel gene, pilz, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 178, 46 – 53.

40. Amikam D, Galperin MY. 2006 Pilz domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22, 3 – 6. (doi:10.1093/bioinformatics/bti739)

41. Benach J et al. 2007 The structural basis of cyclic di- guanylate signal transduction by Pilz domains. EMBO J. 26, 5153 – 5166. (doi:10.1038/sj.emboj.7601918)

42. Pratt JT, Tamayo R, Tischler AD, Camilli A. 2007 Pilz domain proteins bind cyclic di- guanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem. 282, 12 860 – 12 870. (doi:10.1074/jbc.M611593200)

43. Boehm A et al. 2010 Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141, 107 – 116. (doi:10.1016/j.cell.2010.01.018)

44. Fang X, Gomelsky M. 2010 A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol. Microbiol. 67, 1295 – 1306. (doi:10.1111/j.1365-2958.2009.06179.x)

45. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. 2010 Second messenger-mediated regulation of periplasmic protein degradation regulates bacterial cell cycle progression. Genes Dev. 23, 93 – 104. (doi:10.1101/gad.502409)

46. Newell PD, Mondes RD, O’Toole GA. 2009 LapD is a bis-‘3’-‘5’-cyclic digimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens PD-1. Proc. Natl Acad. Sci. USA 106, 3461 – 3466. (doi:10.1073/pnas.0808931106)

47. Reinders A, Hee C-S, Ozaki S, Mazur A, Boehm A, Schirmer T, Jenal U. 2016 Expression and genetic activation of cyclic di-GMP-specific phosphodiesterases in Escherichia coli. J. Bacteriol. 198, 448 – 462. (doi:10.1128/JB.00604-15)

48. Sudarsan N, Lee ER, Weinberg Z, Moyer RH, Kim JN, Link KH, Breaker RR. 2008 Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411 – 413. (doi:10.1126/science.1159519)

49. Link KH, Breaker RR. 2008 Riboswitches in bacteria sense the second messenger cyclic di-GMP. Science 327, 866 – 868. (doi:10.1126/science.1181185)

50. Little RH, Geng L, Saalbach G, Howat AM, Sondermann H. 2014 Mechanistic insight into the bacterial c-di-GMP binding protein. Nature 523, 236 – 239. (doi:10.1038/nature14473)

51. Chatterjee D, Goebel RG, Boyd CD, Melb RA, O’Toole GA, Sondermann H. 2014 Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP. Elife 3, e03650. (doi:10.7554/eLife.03650)

52. Huberts DH, Von Der Klei U. 2010 Moonlighting proteins: an intriguing mode of multitasking. Biochem. Biophys. Acta 1803, 520 – 525. (doi:10.1016/j.bbamcr.2010.01.022)

53. Commisschot FA, Stülke J. 2008 Trigger enzymes: bifunctional proteins active in metabolism and controlling gene expression. Mol. Microbiol. 67, 692 – 702. (doi:10.1111/j.1365-2958.2007.06071.x)

54. Ostrovsky S, Lauster R, Maloy S. 1993 PurA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc. Natl Acad. Sci. USA 90, 4295 – 4298. (doi:10.1073/pnas.90.9.4295)

55. Alén C, Sonenshein AL. 1999 Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl Acad. Sci. USA 96, 10 412 – 10 417. (doi:10.1073/pnas.96.18.10412)

56. Nyl J, Danot O, Schlegel A, Boos W, Richet E. 2002 The Aes protein directly controls the activity of MalT, the central transcriptional activator of the Escherichia coli maltose regulon. J. Biol. Chem. 277, 16 606 – 16 613. (doi:10.1074/jbc.M200999200)

57. Schreiber V, Steegborn C, Clausen T, Boos W, Richet E. 2000 A new mechanism for the control of a prokaryotic transcriptional regulator: antagonistic binding of positive and negative effectors. Mol. Microbiol. 35, 765 – 776. (doi:10.1046/j.1365-2958.2000.01747.x)

58. Zöch J, Riefler O, Reißl H, Boos W. 1995 MalT of Escherichia coli is an enzyme with the activity of a beta-C-lysy (cystathionine). J. Bacteriol. 177, 5035 – 5039.

59. Tanaka Y, Kimata K, Aiba H. 2000 A novel regulatory role of glucose transporter of Escherichia coli: membrane sequestration of a global repressor Mic. EMBO J. 19, 5344 – 5352. (doi:10.1093/emboj/19.20.5344)

60. Römling U, Sierralta WD, Eriksson K, Normark S. 1998 Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol. Microbiol. 28, 249 – 264. (doi:10.1111/j.1365-2958.1998.00791.x)

61. Evans ML, Chapman M. 2014 Curli biogenesis: order out of disorder. Biochim. Biophys. Acta 1843, 1551 – 1558. (doi:10.1016/j.bbamer.2013.09.010)

62. Yousel KP, Streck A, Schütte C, Siebert H, Hengge R, Von Kleist M. 2015 Logical-continuous modelling of post-translationally regulated bistability of curli fiber expression in Escherichia coli. BMC Bioinform. 9, 39.

63. Serra DO, Hengge R. 2014 Stress responses go three-dimensional - the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 16, 1455 – 1471. (doi:10.1111/1462-2920.12483)

64. Schmidt AJ, Rynenkov DA, Gomelsky M. 2005 The ubiquitous protein domain EAL is a cyclic di-guanosine-5′-triphosphate phosphodiesterase: enzymatically active and inactive EAL domains. J. Bacteriol. 187, 4774 – 4781. (doi:10.1128/JB.187.14.4774-4781.2005)

65. Sommerfeldt N, Possling A, Becker G, Pesavento C, Tschowri N, Hengge R. 2009 Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 155, 1318 – 1331. (doi:10.1099/mic.0.024257-0)

66. Sundriyal A, Massa C, Samoyar D, Zehender F, Sharpe T, Jenal U, Schirmer T. 2014 Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger cyclic di-GMP. J. Biol. Chem. 289, 6978 – 6990. (doi:10.1074/jbc.M113.516195)

67. Shimada T, Yamamoto K, Ishihama A. 2011 Novel members of the Eutu regulon involved in carbon metabolism in Escherichia coli. J. Bacteriol. 193, 649 – 659. (doi:10.1128/JB.01214-10)
78. Spangler C, Bühm A, Jenal U, Seifert R, Kaever V. 2010 A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic-di-guanosine monophosphat. J. Microbiol. Methods 81, 226 – 231. (doi:10.1016/j.mimet.2010.03.020)

80. Shenoy AR, Viswanath SS. 2006 New messages from old messengers: cAMP and mycobacteria. Trends Microbiol. 14, 543 – 550. (doi:10.1016/j.tim.2006.10.005)

81. Buckstein MH, He J, Rubin H. 2008 Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J. Bacteriol. 190, 718 – 726. (doi:10.1128/JB.01020-07)