New inequalities for sector matrices applying Garg–Aujla inequalities

Leila Nasiri1 · Shigeru Furuichi2

Received: 15 August 2021 / Accepted: 10 November 2021 / Published online: 19 January 2022
© Tusi Mathematical Research Group (TMRG) 2022

Abstract
In this paper, we give new singular value inequalities and determinant inequalities including the inverse of \(A, B, \) and \(A + B \) for sector matrices. We also give the matrix inequalities for sector matrices with a positive multilinear map. Our obtained results give generalizations for the known results.

Keywords Sector matrix · Accretive matrix · Singular value inequality · Determinant inequality · Kantorovich constant · Positive linear/multilinear map

Mathematics Subject Classification 15A45 · 15A15

1 Introduction and preliminaries
Let \(M_n \) and \(M_n^+ \) denote the set of all \(n \times n \) matrices and the set of all \(n \times n \) positive semi-definite matrices with entries in \(\mathbb{C} \), respectively. \(A \geq 0 \) means \(A \in M_n^+ \). \(A > 0 \) also means \(A \in M_n^+ \) and \(A \) is invertible. For \(A \in M_n \), the famous Cartesian decomposition of \(A \) is presented as

Communicated by Qingxiang Xu.

This work was partially supported by JSPS KAKENHI Grant Numbers 16K05257 and 21K03341.

Leila Nasiri
leilanasiri468@gmail.com

Shigeru Furuichi
furuichi.shigeru@nihon-u.ac.jp

1 Department of Mathematics and Computer Science, Faculty of Science, Lorestan University, Khorramabad, Iran

2 Department of Information Science, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
$A = RA + i\mathcal{I}A,$

where the matrices $RA = \frac{A + A^*}{2}$ and $\mathcal{I}A = \frac{A - A^*}{2i}$ are the real and imaginary parts of A, respectively. The matrix $A \in \mathbb{M}_n$ is called an accretive, if RA is a positive definite. The matrix $A \in \mathbb{M}_n$ is called an accretive-dissipative, if both RA and $i\mathcal{I}A$ are positive definite. For $\alpha \in \left[0, \frac{\pi}{2}\right]$, define a sector as follows:

$$S_\alpha = \{ z \in \mathbb{C} : Rez > 0, |Imz| \leq \tan \alpha(Rez) \}.$$

Here, we recall that the numerical range of $A \in \mathbb{M}_n$ is defined by

$$W(A) = \{ x^*Ax : x \in \mathbb{C}^n, x^*x = 1 \}.$$

The matrix $A \in \mathbb{M}_n$ is called a sector, if the numerical range of A is contained in a sector S_α. In other words, $W(A) \subset S_\alpha$ for some $\alpha \in \left[0, \frac{\pi}{2}\right]$. Clearly, any sector matrix is accretive with extra information about the angle α. The sector matrix can be regarded as a kind of generalizations of the positive definite matrix, in the sense that a sector matrix becomes a positive definite matrix when $\alpha = 0$.

In this paper, we study singular value inequalities and determinant inequalities for sector matrices. We also study the inequalities for a positive linear and multilinear map.

In the paper [9], Garg and Aujla obtained the following inequalities, where the symbol $s_j(X)$ for $j = 1, \ldots, n$, represents jth largest singular value of $X \in \mathbb{M}_n$.

For $k = 1, \ldots, n$ and $1 \leq r \leq 2$

$$\prod_{j=1}^k s_j(|A + B|^r) \leq \prod_{j=1}^k s_j(|I_n + |A|^r|) \prod_{j=1}^k s_j(|I_n + |B|^r|),$$

(1.1)

and

$$\prod_{j=1}^k s_j(I_n + f(|A + B|)) \leq \prod_{j=1}^k s_j(I_n + f(|A|)) \prod_{j=1}^k s_j(I_n + f(|B|),$$

(1.2)

where $A, B \in \mathbb{M}_n$ and $f : [0, \infty) \to [0, \infty)$ is an operator concave function. By taking $A, B \geq 0$, $r = 1$ and $f(t) = t$ in the inequalities (1.1) and (1.2), we have for $k = 1, \ldots, n$

$$\prod_{j=1}^k s_j(A + B) \leq \prod_{j=1}^k s_j(I_n + A) \prod_{j=1}^k s_j(I_n + B),$$

(1.3)

$$\prod_{j=1}^k s_j(I_n + A + B) \leq \prod_{j=1}^k s_j(I_n + A) \prod_{j=1}^k s_j(I_n + B).$$

(1.4)

Before we state our results, we here summarize some lemmas which will be necessary to prove our results in this paper. We should note that the expression $s_j(RA)$
may be replaced by \(\lambda_j(RA) \), where \(\lambda_j(X) \) represents the \(j \)th largest eigenvalue of \(X \in M_n \), in Lemmas 1.1 and 1.2. Also, we may replace \(s_j(\cdot) \) by \(\lambda_j(\cdot) \) in (1.3) and (1.4). Throughout this paper, we use the symbol \(s_j(\cdot) \) even when we can use \(\lambda_j(\cdot) \), since we think that it is better outlook to read this paper.

Lemma 1.1 ([3, Proposition III.5.1]) For \(A \in M_n \), we have \(s_j(RA) \leq s_j(A) \). Thus, we have \(\det(RA) \leq |\det A| \) for an accretive matrix \(A \in M_n \).

Lemma 1.2 ([7, Theorem 3.1], [14, Lemma 2.6]) Let \(A \in M_n \) with \(W(A) \subset S_2 \). We have \(s_j(A) \leq \sec^2(\alpha) s_j(R(A)) \) and \(|\det A| \leq \sec^o(\alpha) |\det RA| \).

We should note that \(|\det A| \leq \sec^2(\alpha) |\det RA| \) holds from \(s_j(A) \leq \sec^2(\alpha) s_j(R(A)) \) consequently. However, Lin proved the better bound as above. We give the proof of \(|\det A| \leq \sec^o(\alpha) |\det RA| \) along to [14, Lemma 2.6] for the convenience to the readers. It is stated in [14, Lemma 2.2] and proved in [22, Theorem 2.1] that a sector matrix \(A \) has a decomposition such as \(A = XZ + X^* \) with an invertible matrix \(X \) and the diagonal matrix \(Z = \text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_n}) \) with \(|\theta_j| \leq \alpha \) for all \(j = 1, \ldots, n \) and \(\alpha \in [0, \pi/2] \). We first found that \(|\det Z| = |e^{i\theta_1} \cdots e^{i\theta_n}| \leq 1 \) and

\[
\sec(\alpha) \det(Z) = \text{diag}\left(\frac{\cos \theta_1}{\cos \alpha}, \ldots, \frac{\cos \theta_n}{\cos \alpha}\right)
\]

which implies \(\sec(\alpha) \det(R(Z)) \geq 1 \), since

\[
\cos \theta_j \geq \cos \alpha \quad \text{for} \quad |\theta_j| \leq \alpha \quad \text{and} \quad \alpha \in [0, \pi/2].
\]

Thus, we have \(\sec^o(\alpha) \det(R(Z)) \cdot |\det(XX^*)| \geq |\det(XX^*)| \geq |\det Z| \cdot |\det(XX^*)| = |\det(ZXX^*)| = |\det A| \) which shows \(\sec^o(\alpha) \det(RA) \geq |\det A| \), since

\[
\det(R(Z)) \cdot |\det(XX^*)| = |\det(X(R(Z)X^*))| = |\det(R(A))| = |\det RA|.
\]

Lemma 1.3 ([15, Lemma 2, Lemma 3]) Let \(A \in M_n \) with \(W(A) \subset S_2 \). Then, we have \(\mathfrak{R}(A^{-1}) \leq \mathfrak{R}^{-1}(A) \leq \sec^2(\alpha) \mathfrak{R}(A^{-1}) \). The first inequality holds for an accretive matrix \(A \in M_n \).

Lemma 1.4 ([5, Theorem 1], [1, Corollary 1], [2, Lemma 2.3]) Let \(A, B \in M_n \) be positive definite and \(r > 0 \). Then, we have the following:

(i) \(\|AB\| \leq \frac{1}{4}\|A + B\|^2 \),

(ii) \(\|A^r + B^r\| \leq \|(A + B)^r\| \) for \(r \geq 1 \),

(iii) \(A \leq rB \Leftrightarrow \|A^\frac{1}{r}B^{-\frac{1}{r}}\| \leq r^2 \).

Lemma 1.5 ([13, Lemma 2.9]) Let \(X \in M_n \) and \(r > 0 \). Then

\[
|X| \leq rI_n \Leftrightarrow \|X\| \leq r \Leftrightarrow \begin{bmatrix} rI_n & X \\ X^* & rI_n \end{bmatrix} \geq 0.
\]
Throughout this paper, we use the famous Kantorovich constant $K(h) := \frac{(h + 1)^2}{4h}$ for $h > 0$. The constant with $h := M/m$ was originally appeared in [10, p.142] as the so-called Kantorovich inequality.

2 Singular value and determinant inequalities

We first review the Tan-Xie inequality for sector matrices $A, B \in M_n$ and $v \in [0, 1]$ given in [19, Theorem 2.4]

$$\cos^2(x)\Re(A!_v B) \leq \Re(A^\sharp_v B) \leq \sec^2(x)\Re(A\nabla_v B), \tag{2.1}$$

where $A!_v B = ((1 - v)A^{-1} + vB^{-1})^{-1}$, $A^\sharp_v B = \frac{\sin v\pi}{\pi} \int_0^\infty t^{v-1}(A^{-1} + tB^{-1})^{-1}dt$, $A\nabla_v B = (1 - v)A + vB$ are the weighted operator harmonic mean, geometric mean, and arithmetic mean, respectively. The weighted geometric mean for accretive operators A, B in the above was introduced in [18, Definition 2.1] which coincides with $A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$ when A, B are strictly positive operators. It also becomes $A^\sharp_v B := \frac{2}{\pi} \int_0^\infty \left(tA^{-1} + t^{-1}B^{-1} \right)^{-1}dt$ for $v = 1/2$, which was introduced in [6]. We use the symbols $!, \sharp$ and ∇ instead of $!_{1/2}, \sharp_{1/2}$ and $\nabla_{1/2}$, respectively, for simplicity. The above double inequality (2.1) can be regarded as a generalization of the operator Young inequality

$$A!_v B \leq A^\sharp_v B \leq A\nabla_v B, \quad (A, B \geq 0, \quad 0 \leq v \leq 1).$$

From (2.1), we easily find that

$$\Re(A + B)^{-1} \leq \frac{\sec^4(x)}{4} \Re(A^{-1} + B^{-1}) \tag{2.2}$$

by putting $v = \frac{1}{2}$, $A^{-1} := A$ and $B^{-1} := B$.

However, we can improve the inequality (2.2) by the following lemma.

Lemma 2.1 Let $A, B \in M_n$ with $W(A), W(B) \subset S_2$, and $0 \leq v \leq 1$. Then

$$\Re(A\nabla_v B)^{-1} \leq \sec^2(x)\Re(A^{-1}\nabla_v B^{-1}). \tag{2.3}$$

Proof The calculations show that
\[\Re((1-v)A + vB)^{-1} \leq (\Re((1-v)A + vB))^{-1}\]
\[= ((1-v)\Re A + v\Re B)^{-1}\]
\[\leq (1-v)\Re^{-1}A + v\Re^{-1}B\]
\[\leq \sec^2(x)((1-v)\Re^{-1}A + v\Re^{-1}B)\]
\[= \sec^2(x)\Re(1-v)A^{-1} + vB^{-1}).\]

The first and the third inequality are due to Lemma 1.3. The second inequality is due to the operator convexity of \(t^{-1}\) on \((0, \infty)\).

Taking \(v = \frac{1}{2}\) in (2.3), we have
\[\Re(A + B)^{-1} \leq \frac{\sec^2(x)}{4} \Re(A^{-1} + B^{-1}),\] (2.4)

which improves the inequality (2.2). We use the inequality (2.4) to prove the following Theorems 2.2 and 2.6. From the process of the proof in [19, Theorem 2.4], we have for \(A, B \in \mathbb{M}_n\) with \(W(A), W(B) \subseteq S_x\)
\[\Re(A^+_x, B) \leq \sec^2(x)(\Re(A)_x^+, \Re(B)).\] (2.5)

For the convenience to the readers, we give the proof of (2.5). Indeed, we have
\[\Re(A^+_x, B) = \frac{\sin v\pi}{\pi} \int_0^{\infty} t^{v-1} \Re^{-1}(A^{-1} + tB^{-1}) dt\]
\[\leq \frac{\sin v\pi}{\pi} \int_0^{\infty} t^{v-1} \sec^2(x)(\Re^{-1}(A) + t\Re^{-1}(B))^{-1} dt\]
\[= \sec^2(x)\Re(A)_x^+, \Re(B).\]

The above inequality can be proven by the use of Lemma 1.3. Actually, we have the following from the second inequality in Lemma 1.3:
\[\Re(A^{-1}) + t\Re(B^{-1}) \geq \cos^2(x)(\Re^{-1}(A) + t\Re^{-1}(B)),\]

which implies that
\[(\Re(A^{-1}) + t\Re(B^{-1}))^{-1} \leq \sec^2(x)(\Re^{-1}(A) + t\Re^{-1}(B))^{-1}.\]

Thus, we reach to
\[\Re^{-1}(A^{-1} + tB^{-1}) \leq \sec^2(x)(\Re^{-1}(A) + t\Re^{-1}(B))^{-1},\]
since for any \(t \geq 0\)
\[\Re^{-1}(A^{-1} + tB^{-1}) = (\Re(A^{-1}) + t\Re(B^{-1}))^{-1}.\]

On the other hand, by [12, Corollary 3.1], we have
\[\Re(A)^v \leq \Re(A) \nabla_v \Re(B) - 2r_{\min}(\Re(A \nabla B) - \Re(A)^v \Re(B)) \]

for \(r_{\min} := \min\{1 - v, v\} \) with \(v \in [0, 1] \). Thus

\[
\Re(A)^v \leq \sec^2(\beta)(\Re(A) \nabla_v \Re(B)) - 2r_{\min} \sec^2(\beta)(\Re(A \nabla B) - \Re(A)^v \Re(B)) \tag{2.6}
\]

which shows that (2.6) is a refinement of the second inequality of (2.1). From now on, we study some singular value inequalities. By a consequence of (2.3) with Lemma 1.1 and 1.2, we also see the inequalities

\[
\prod_{j=1}^{k} s_j(A,!v,B) \leq \sec^{2k}(\beta) \prod_{j=1}^{k} s_j(\Re(A,!v,B)) \leq \sec^{4k}(\beta) \prod_{j=1}^{k} s_j(\Re(A \nabla_v B)) \\
\leq \sec^{4k}(\beta) \prod_{j=1}^{k} s_j(A \nabla_v B).
\]

We aim to obtain the singular value inequalities including the inverse of \(A, B, \) and \(A + B \).

Theorem 2.2 Let \(A, B \in M_n \) with \(W(A), W(B) \subset S_\beta \). Then, we have for \(k = 1, \ldots, n \)

\[
\prod_{j=1}^{k} s_j(A + B)^{-1} \leq \frac{\sec^{4k}(\beta)}{4k} \prod_{j=1}^{k} s_j(I_n + A^{-1}) \prod_{j=1}^{k} s_j(I_n + B^{-1}), \tag{2.7}
\]

\[
\prod_{j=1}^{k} s_j(I_n + (A + B)^{-1}) \\
\leq \sec^{2k}(\beta) \prod_{j=1}^{k} s_j(I_n + \frac{\sec^2(\beta)}{4} A^{-1}) \prod_{j=1}^{k} s_j(I_n + \frac{\sec^2(\beta)}{4} B^{-1}). \tag{2.8}
\]

Proof Since sum of two sector matrices and inverse of every sector matrix are also sector, \((A + B)^{-1} \) is a sector matrix. On the other hand, every sector matrix is an accretive. Thus, we calculate the following chain of inequalities:
\[
\prod_{j=1}^{k} s_j(A + B)^{-1} \leq \sec^{2k}(x) \prod_{j=1}^{k} s_j(\Re(A + B)^{-1}) \quad \text{(by Lemma 1.2)}
\]

\[
\leq \frac{\sec^{4k}(x)}{4^k} \prod_{j=1}^{k} s_j(\Re(A^{-1} + B^{-1})) \quad \text{(by (2.4))}
\]

\[
= \frac{\sec^{4k}(x)}{4^k} \prod_{j=1}^{k} s_j(\Re(A^{-1}) + \Re(B^{-1}))
\]

\[
\leq \frac{\sec^{4k}(x)}{4^k} \prod_{j=1}^{k} s_j(I_n + \Re(A^{-1})) \prod_{j=1}^{k} s_j(I_n + \Re(B^{-1})) \quad \text{(by (1.3))}
\]

\[
= \frac{\sec^{4k}(x)}{4^k} \prod_{j=1}^{k} s_j(I_n + A^{-1}) \prod_{j=1}^{k} s_j(I_n + B^{-1})
\]

\[
\leq \frac{\sec^{4k}(x)}{4^k} \prod_{j=1}^{k} s_j(I_n + A^{-1}) \prod_{j=1}^{k} s_j(I_n + B^{-1}) \quad \text{(by Lemma 1.1).}
\]

Similarly, we have

\[
\prod_{j=1}^{k} s_j(I_n + (A + B)^{-1})
\]

\[
\leq \sec^{2k}(x) \prod_{j=1}^{k} s_j(\Re(I_n + (A + B)^{-1})) \quad \text{(by Lemma 1.2)}
\]

\[
\leq \sec^{2k}(x) \prod_{j=1}^{k} s_j \left(I_n + \frac{\sec^{2}(x)}{4} \Re(A^{-1} + B^{-1}) \right) \quad \text{(by (2.4))}
\]

\[
= \sec^{2k}(x) \prod_{j=1}^{k} s_j \left(I_n + \frac{\sec^{2}(x)}{4} \Re(A^{-1}) + \frac{\sec^{2}(x)}{4} \Re(B^{-1}) \right)
\]

\[
\leq \sec^{2k}(x) \prod_{j=1}^{k} s_j \left(I_n + \frac{\sec^{2}(x)}{4} \Re(A^{-1}) \right) \prod_{j=1}^{k} s_j \left(I_n + \frac{\sec^{2}(x)}{4} \Re(B^{-1}) \right)
\]

(by (1.4))

\[
= \sec^{2k}(x) \prod_{j=1}^{k} s_j \left(\Re(I_n + \frac{\sec^{2}(x)}{4} A^{-1}) \right) \prod_{j=1}^{k} s_j \left(\Re(I_n + \frac{\sec^{2}(x)}{4} B^{-1}) \right)
\]

\[
\leq \sec^{2k}(x) \prod_{j=1}^{k} s_j \left(I_n + \frac{\sec^{2}(x)}{4} A^{-1} \right) \prod_{j=1}^{k} s_j \left(I_n + \frac{\sec^{2}(x)}{4} B^{-1} \right)
\]

(by Lemma 1.1).
Remark 2.3 We may claim that Theorem 2.2 is a non-trivial result, since the inequality (1.4) is true whenever \(f \) is an operator concave function. However, inequalities (2.7) and (2.8) with \(\alpha = 0 \) are true, although the function \(f(t) = t^{-1} \) for \(t > 0 \) is not an operator concave. Therefore, we found the upper bound \(\prod_{j=1}^{k} s_j(I_n + (A + B)^{-1}) \) without using (1.2).

We also note that we can obtain the inequality (2.7) for the special case \(A, B > 0 \) from (1.3) in the following. Since \(A!B \leq A \nabla B \)

\[
\prod_{j=1}^{k} 2s_j(A!B) \leq \prod_{j=1}^{k} 2s_j(A \nabla B) \leq \prod_{j=1}^{n} s_j(I_n + A) \prod_{j=1}^{n} s_j(I_n + B).
\]

If we put \(A := A^{-1} \) and \(B := B^{-1} \), then we get (2.7) for \(\alpha = 0 \).

Note that the following proposition has already been proven in [17, Eq.(15)].

Proposition 2.4 ([17]) Let \(A, B \in \mathbb{M}_n \) with \(W(A), W(B) \subset S_{2\alpha} \). Then, we have for \(k = 1, \ldots, n \)

\[
\prod_{j=1}^{k} s_j(A + B) \leq \prod_{j=1}^{k} s_j(I_n + \sec^2(\alpha)A) \prod_{j=1}^{k} s_j(I_n + \sec^2(\alpha)B). \quad (2.9)
\]

Next, we study some determinant inequalities in the rest of this section. On the determinant inequality, the following is well known [23, Theorem 7.7]

\[
\det(A + B) \geq \det A + \det B, \quad (A, B \geq 0). \quad (2.10)
\]

With this, we have the following inequality for sector matrices \(A \) and \(B \):

\[
|\det(A + B)| \geq \det(\Re(A + B)) \quad \text{(by Lemma 1.1)}
\]

\[
= \det(\Re(A) + \Re(B)) \geq \det(\Re(A)) + \det(\Re(B)) \quad \text{(by (2.10))}
\]

\[
\geq \cos^n(\alpha)(|\det(A)| + |\det(B)|) \quad \text{(by Lemma 1.2).}
\]

If \(A, B \geq 0 \), that is, \(\alpha = 0 \), then (2.11) becomes (2.10). Also, (2.11) is a reverse of [21, Eq.(13)]. Of course, (2.11) is trivial for \(A, B \geq 0 \), since \(\cos(\alpha) \leq 1 \) for \(\alpha \in \left[0, \frac{\pi}{2}\right] \).

For further inequalities on determinant, we give the following remark.

Remark 2.5

(i) For \(A, B \in \mathbb{M}_n \) with \(W(A), W(B) \subset S_{\alpha} \), we have
\[|\det(A)||\det(B)| \leq \sec^n(z)(\det(\mathcal{R}(A))! \det(\mathcal{R}(B))) \quad \text{(by Lemma 1.2)} \]
\[\leq \sec^n(z)(\det(\mathcal{R}(A))\nabla \det(\mathcal{R}(B))) \]
\[\leq \sec^n(z)(|\det(A)|\nabla |\det(B)|) \quad \text{(by Lemma 1.1)}. \]

(2.12)

(ii) For \(A, B \in \mathbb{M}_n \) with \(W(A), W(B) \subset S_\pi \), such that \(0 < ml_n \leq \mathcal{R}(A), \mathcal{R}(B) \leq MI_n \), we have
\[|\det(A)||\det(B)| \geq \det(\mathcal{R}(A))! \det(\mathcal{R}(B)) \quad \text{(by Lemma 1.1)} \]
\[\geq K^{-2}(h)(\det(\mathcal{R}(A))\nabla \det(\mathcal{R}(B))) \]
\[\geq K^{-2}(h)\cos^n(z)(|\det(A)|\nabla |\det(B)|) \quad \text{(by Lemma 1.2)}. \]

In the second inequality, we used the scalar inequality \(a\nabla b \leq K^2(h)a!b \) for \(0 < m \leq a, b \leq M \) with \(h := M/m \).

We here aim to obtain the determinant inequalities including the inverse of \(A, B \), and \(A + B \) as shown in Theorem 2.2.

Theorem 2.6 Let \(A, B \in \mathbb{M}_n \) with \(W(A), W(B) \subset S_\pi \). Then
\[|\det(A + B)^{-1}| \leq \frac{\sec^3(z)}{4^n} |\det(I_n + A^{-1})| \cdot |\det(I_n + B^{-1})| \quad \text{(2.14)} \]
and
\[|\det(I_n + (A + B)^{-1})| \leq \sec^n(z)\left|\det\left(I_n + \frac{\sec^2(z)}{4}A^{-1}\right)\right| \cdot \left|\det\left(I_n + \frac{\sec^2(z)}{4}B^{-1}\right)\right|. \quad \text{(2.15)} \]

Proof The following direct calculations imply the results, since \((A + B)^{-1} \) and \(A^{-1} + B^{-1} \) are sector:
\[|\det(A + B)^{-1}| \leq \sec^n(x) \det(\Re(A + B)) \quad \text{(by Lemma 1.2)} \]
\[\leq \frac{\sec^n(x)}{4^n} \det(\Re(A^{-1} + B^{-1})) \quad \text{(by (2.4))} \]
\[= \frac{\sec^n(x)}{4^n} \det(\Re(A^{-1}) + \Re(B^{-1})) \]
\[\leq \frac{\sec^n(x)}{4^n} \det(I_n + \Re(A^{-1})) \det(I_n + \Re(B^{-1})) \quad \text{(by } k = n \text{ in (1.3))} \]
\[= \frac{\sec^n(x)}{4^n} \det(\Re(I_n + A^{-1})) \det(\Re(I_n + B^{-1})) \]
\[\leq \frac{\sec^n(x)}{4^n} |\det(I_n + A^{-1})||\det(I_n + B^{-1})| \quad \text{(by Lemma 1.1).} \]

Similarly
\[|\det(I_n + (A + B)^{-1})| \]
\[\leq \sec^n(x) \det(\Re(I_n + (A + B))^{-1}) \quad \text{(by Lemma 1.2)} \]
\[= \sec^n(x) \det(I_n + \Re(A + B)^{-1}) \]
\[\leq \sec^n(x) \det\left(I_n + \frac{\sec^2(x)}{4} \Re(A^{-1} + B^{-1})\right) \quad \text{(by (2.4))} \]
\[= \sec^n(x) \det\left(I_n + \frac{\sec^2(x)}{4} \Re(A^{-1}) + \frac{\sec^2(x)}{4} \Re(B^{-1})\right) \]
\[\leq \sec^n(x) \det\left(I_n + \frac{\sec^2(x)}{4} \Re(A^{-1})\right) \det\left(I_n + \frac{\sec^2(x)}{4} \Re(B^{-1})\right) \quad \text{(by } k = n \text{ in (1.4))} \]
\[= \sec^n(x) \det\left(\Re\left(I_n + \frac{\sec^2(x)}{4} A^{-1}\right)\right) \det\left(\Re\left(I_n + \frac{\sec^2(x)}{4} B^{-1}\right)\right) \]
\[\leq \sec^n(x) \left|\det\left(I_n + \frac{\sec^2(x)}{4} A^{-1}\right)\right| \cdot \left|\det\left(I_n + \frac{\sec^2(x)}{4} B^{-1}\right)\right| \quad \text{(by Lemma 1.1).} \]

\[\square \]

Remark 2.7 Under the special assumption, such that \(A, B > 0 \), the inequalities (2.14) and (2.15) are trivially derived from the inequalities (1.3) and (1.4) with \(k = n \), respectively. Indeed, from (1.3) and \(A!B \leq A \nabla B \), we have
\[2^n \det(A!B) \leq 2^n \det(A \nabla B) \leq \det(I_n + A) \cdot \det(I_n + B). \]
By putting \(A := A^{-1}, B := B^{-1} \) in the above inequality, we have
\[2^n \det(A^{-1}!B^{-1}) \leq \det(I_n + A^{-1}) \cdot \det(I_n + B^{-1}), \]
which is equivalent to the inequality (2.14) for \(x = 0 \), taking an absolute value in
both sides.

Similarly, we have
\[
\det(I_n + 2A \! B) \leq \det(I_n + 2A \nabla B) \leq \det(I_n + A) \cdot \det(I_n + B)
\]
from (1.4), and \(A \! B \leq A \nabla B \). By putting \(A := \frac{1}{4} A^{-1}, \ B := \frac{1}{4} B^{-1} \) above, we have
\[
\det\left(I_n + (A + B)^{-1}\right) \leq \det \left(I_n + \frac{1}{4} A^{-1} \right) \cdot \det \left(I_n + \frac{1}{4} B^{-1} \right),
\]
which is equivalent to the inequality (2.15) for \(\alpha = 0 \), taking an absolute value in both sides.

However, we have to state that the above derivations are true for the case \(A, B \geq 0 \) and would like to emphasize that Theorem 2.6 is valid for sector matrices \(A, B \) which are more general condition than \(A, B > 0 \).

It is quite natural to consider the lower bound. We give a result for this question.

Proposition 2.8 Let \(A, B \in \mathbb{M}_n \) with \(W(A), W(B) \subset S_\alpha \). If we have \(0 < m \mathbb{R} \mathbb{R}(A^{-1}) \leq \mathbb{R}(B^{-1}) \leq M \mathbb{R} \mathbb{R}(A^{-1}) \), then
\[
|\det(A \! B)| \geq \frac{\cos^{3n}(x) \kappa^{-n}}{2^n} (|\det A| + |\det B|), \tag{2.16}
\]
where \(\kappa := \max\{K^2(m), K^2(M)\} \) and \(K(x) := \frac{(x + 1)^2}{4x} \) for \(x > 0 \).

Proof Since \(K(x) \geq 1 \) for \(x > 0 \), we have the scalar inequality \(\frac{1 + x}{2} \leq K^2(x) \frac{2x}{x + 1} \) for \(x > 0 \). By the standard functional calculus, we have
\[
\mathbb{R}(A^{-1}) \nabla \mathbb{R}(B^{-1}) \leq \kappa \ \mathbb{R}(A^{-1}) \! \mathbb{R}(B^{-1}), \tag{2.17}
\]
under the assumption \(0 < m \mathbb{R} \leq \mathbb{R}(A^{-1})^{-1/2} \mathbb{R}(B^{-1}) \mathbb{R}(A^{-1})^{-1/2} \leq M \mathbb{R} \mathbb{R} \). The inequality (2.17) implies
\[
\mathbb{R}^{-1}(A + B) \geq \frac{\kappa^{-1}}{4} \left(\mathbb{R}^{-1}(A) + \mathbb{R}^{-1}(B) \right), \tag{2.18}
\]
putting \(A^{-1} =: A \) and \(B^{-1} =: B \). Thus, we have the following calculations:
\[|\text{det}(A + B)^{-1}| \geq \text{det}(\Re(A + B)^{-1}) \quad \text{(by Lemma 1.1)} \]
\[\geq \cos^{2n}(z) \text{det}(\Re^{-1}(A + B)) \quad \text{(by Lemma 1.3)} \]
\[\geq \frac{\cos^{2n}(z)\kappa^{-n}}{4^n} \text{det}(\Re^{-1}(A) + \Re^{-1}(B)) \quad \text{(by (2.18))} \]
\[\geq \frac{\cos^{2n}(z)\kappa^{-n}}{4^n} \text{det}(\Re^{-1}(A) + \Re^{-1}(B^{-1})) \quad \text{(by Lemma 1.3)} \]
\[\geq \frac{\cos^{2n}(z)\kappa^{-n}}{4^n} \left(|\text{det}(A^{-1})| + |\text{det}(B^{-1})| \right) \quad \text{(by (2.10))} \]
\[\geq \frac{\cos^{3n}(z)\kappa^{-n}}{4^n} \quad \text{(by Lemma 1.2)}, \]

which implies (2.16) by putting \(A^{-1} := A \) and \(B^{-1} := B \). \(\square \)

Closing this section, we give a few comments on our results, Theorem 2.2. For the special case, \(\alpha = 0 \) in Theorem 2.2, then we have \(A, B > 0 \). Then, two inequalities (2.7) and (2.8) give upper bounds for any \(k = 1, 2, \ldots, n \) respectively

\[\prod_{j=1}^{k} \lambda_j(A + B)^{-1} \leq \prod_{j=1}^{k} \hat{\lambda}_j \left(I_n + A^{-1} \right) \prod_{j=1}^{k} \hat{\lambda}_j \left(I_n + B^{-1} \right) \]

and

\[\prod_{j=1}^{k} \lambda_j(I_n + (A + B)^{-1}) \leq \prod_{j=1}^{k} \lambda_j \left(I_n + \frac{1}{4}A^{-1} \right) \prod_{j=1}^{k} \hat{\lambda}_j \left(I_n + \frac{1}{4}B^{-1} \right) \]

since \(A^{-1}, B^{-1} > 0 \) and \((A + B)^{-1} > 0 \).

Therefore, it is of interest to consider the following singular value inequalities hold or not for any non-singular \(A, B, A + B \in \mathbb{M}_n \) and any \(k = 1, \ldots, n \):

\[\prod_{j=1}^{k} s_j(A + B)^{-1} \leq \prod_{j=1}^{k} s_j(I_n + A^{-1}) \prod_{j=1}^{k} s_j(I_n + B^{-1}) \]

and

\[\prod_{j=1}^{k} s_j \left(I_n + (A + B)^{-1} \right) \leq \prod_{j=1}^{k} s_j(I_n + A^{-1}) \prod_{j=1}^{k} s_j(I_n + B^{-1}). \]

However, the above inequalities do not hold in general. We give counter-examples. First, take \(k = 1 \) and
\[
A := \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 3 \\ 1 & 3 & 20 \end{pmatrix}, \quad B := \begin{pmatrix} 100 & 2 & -3 \\ 2 & 1 & 4 \\ -3 & 4 & 1 \end{pmatrix}.
\]

By the numerical computations, we have
\[
s_1(A + B)^{-1} \simeq 3.07774, \quad s_1\left(I_3 + (A + B)^{-1}\right) \simeq 2.07774, \quad s_1(I_3 + A^{-1})s_1(I_3 + B^{-1}) \simeq 1.82851.
\]

Thus, the following norm inequality does not hold in general:
\[
\min \left\{ \| (A + B)^{-1} \|, \| I_n + (A + B)^{-1} \| \right\} \leq \| I_n + A^{-1} \| \cdot \| I_n + B^{-1} \|
\]
for any non-singular hermitian \(A, B, A + B \in \mathbb{M}_n \).

Second, we can show that the following determinantal inequality:
\[
\min \left\{ | \det((A + B)^{-1})|, | \det(I_n + (A + B)^{-1})| \right\} \leq | \det(I_n + A^{-1})| \cdot | \det(I_n + B^{-1})|
\]
also does not hold in general for any non-singular hermitian \(A, B, A + B \in \mathbb{M}_n \). Indeed, we take a counter-example for the above inequality as
\[
A := \begin{pmatrix} 1 & -1 & 2.5 \\ -1 & 2 & -2 \\ 2.5 & -2 & 1 \end{pmatrix}, \quad B := \begin{pmatrix} -1 & 1 & -3 \\ 1 & -1 & 1 \\ -3 & 1 & -1 \end{pmatrix}.
\]

Then, we have
\[
| \det((A + B)^{-1})| = 4, \quad | \det(I_3 + (A + B)^{-1})| = 2, \quad | \det(I_3 + A^{-1})| \cdot | \det(I_3 + B^{-1})| \simeq 1.84091
\]
by the numerical computations.

3 Matrix inequalities for positive multilinear maps

In the paper [16], the authors obtained the following result for two accretive operators \(A, B \) on a Hilbert space:
\[
\Re(A) \not\subset \Re(B) \leq \Re(A \# B).
\]

The authors extended the above inequality as follows [18]:
\[
\Re(A) \not\subset \Re(B) \leq \Re(A \#_{\nu} B), \quad (3.1)
\]
where \(0 \leq \nu \leq 1 \).

A linear map \(\Phi : \mathbb{M}_n \to \mathbb{M}_l \) is said to be a positive if \(\Phi(A) \succeq 0 \) whenever \(A \succeq 0 \) and \(\Phi \) is called a normalized if \(\Phi(I_n) = I_l \).
A \leq B \Rightarrow A^2 \leq B^2 \text{ is not true in general. However, we have the following useful fact.}

Lemma 3.1 \((8, \text{Theorem 6})\) If \(A, B \in \mathbb{M}_n\) satisfy \(0 \leq A \leq B\) and \(0 < mI_n \leq A \leq MI_n\) with \(h := M/m\), then we have \(A^2 \leq K(h)B^2\).

We have the following squared inequalities for (2.5), (3.1) and the second inequality in Lemma 1.3 by a direct consequence of Lemma 3.1, with \(K(1/h) = K(h)\).

Proposition 3.2 \(\text{Let } 0 \leq v \leq 1.\)

(i) Let \(A, B \in \mathbb{M}_n\) with \(W(A), W(B) \subset S_2\), such that \(0 < mI_n \leq \mathcal{R}(A), \mathcal{R}(B) \leq MI_n\) with \(h := M/m\). Then, we have

\[
\mathcal{R}^2(A_{\#v}B) \leq \sec^4(z)K(h)(\mathcal{R}(A_{\#v}B))^2.
\]

(ii) Let \(A, B \in \mathbb{M}_n\) be accretive, such that \(0 < mI_n \leq \mathcal{R}(A), \mathcal{R}(B) \leq MI_n\) with \(h := M/m\). Then, we have

\[
(\mathcal{R}(A_{\#v})^2 \mathcal{R}(B))^2 \leq K(h)\mathcal{R}^2(A_{\#v}B).
\]

(iii) Let \(A \in \mathbb{M}_n\) with \(W(A) \subset S_2\), such that \(0 < mI_n \leq \mathcal{R}(A) \leq MI_n\) with \(h := M/m\). Then, for every normalized positive linear map \(\Phi\)

\[
\Phi^2(\mathcal{R}^{-1}(A)) \leq \sec^4(z)K(h)\Phi^2(\mathcal{R}^{-1}(A)).
\]

Corollary 3.3 \(\text{Let } A \in \mathbb{M}_n\) with \(W(A) \subset S_2\), such that \(0 < mI_n \leq \mathcal{R}(A) \leq MI_n\) with \(h := M/m\). Then, for every normalized positive linear map \(\Phi\)

\[
|\Phi(\mathcal{R}^{-1}(A))\Phi^{-1}(\mathcal{R}(A^{-1})) + \Phi^{-1}(\mathcal{R}(A^{-1}))\Phi(\mathcal{R}^{-1}(A))| \leq 2 \sec^2(z)K^{1/2}(h).
\]

Proof By the use of Lemma 1.4 (iii) with Proposition 3.2 (iii), we have

\[
\|\Phi(\mathcal{R}^{-1}(A)\Phi^{-1}(\mathcal{R}(A^{-1})))\| \leq \sec^2(z)K^{1/2}(h).
\]

Using Lemma 1.5 with (3.6), we have

\[
\begin{bmatrix}
K^{1/2}(h) \sec^2(z) & \Phi(\mathcal{R}^{-1}(A))\Phi^{-1}(\mathcal{R}(A^{-1})) \\
(\Phi(\mathcal{R}^{-1}(A))\Phi^{-1}(\mathcal{R}(A^{-1})))^* & K^{1/2}(h) \sec^2(z)
\end{bmatrix} \geq 0
\]

and

\[
\begin{bmatrix}
K^{1/2}(h) \sec^2(z) & \Phi^{-1}(\mathcal{R}(A^{-1}))\Phi(\mathcal{R}^{-1}(A)) \\
(\Phi^{-1}(\mathcal{R}(A^{-1}))\Phi(\mathcal{R}^{-1}(A)))^* & K^{1/2}(h) \sec^2(z)
\end{bmatrix} \geq 0.
\]

Summing up above two matrices, and then dividing by 2 and using Lemma 1.5, we get the desired result. \(\square\)
A map $\Phi : \mathbb{M}_n^k := \mathbb{M}_n \times \cdots \times \mathbb{M}_n \to \mathbb{M}_l$ is said to be a multilinear whenever it is linear in each of its variable and also is called a positive if $A_i \geq 0$ for $i = 1, \ldots, k$ implies that $\Phi(A_1, \ldots, A_k) \geq 0$. Moreover, Φ is called a normalized if $\Phi(I_n, \ldots, I_n) = I_l$.

Lemma 3.4 ([11]) Let $A_i \in \mathbb{M}_n(1 \leq i \leq k)$, such that $0 < mI_n \leq A_i \leq MI_n$ with $h := M/m$. Then, for every positive multilinear map Φ

$$\Phi(A_1 \ldots, A_k^{-1}) \leq K(h^k)\Phi(A_1, \ldots, A_k)^{-1}. \quad (3.7)$$

Let $A_i \in \mathbb{M}_n(1 \leq i \leq k)$ be accretive such that $0 < mI_n \leq \Re(A_i) \leq MI_n$. Then, by (3.7) and Lemma 1.3, we get

$$\Phi(\Re(A_1^{-1}), \ldots, \Re(A_k^{-1})) \leq K(h^k)\Phi(\Re A_1, \ldots, \Re A_k)^{-1}, \quad (3.8)$$

where Φ is a positive multilinear map. In the following, we present a square of (3.8).

Theorem 3.5 Let $A_i \in \mathbb{M}_n(1 \leq i \leq k)$ be accretive such that $0 < mI_n \leq \Re(A_i) \leq MI_n$ with $h := M/m$. Then, for every positive multilinear map Φ

$$\Phi^2(\Re(A_1^{-1}), \ldots, \Re(A_k^{-1})) \leq K^2(h^k)\Phi^{-2}(\Re A_1, \ldots, \Re A_k). \quad (3.9)$$

Proof If we apply [11, Lemma 2.5] with $r = -1$, then we have

$$M^k m^k \Phi(\Re^{-1}(A_1), \ldots, \Re^{-1}(A_k)) + \Phi(\Re A_1, \ldots, \Re A_k) \leq M^k + m^k. \quad (3.10)$$

On the other hand, we have $\Re^{-1}(A_i) - \Re(A_i^{-1}) \geq 0$ by Lemma 1.3; therefore, we have

$$\Phi(\Re^{-1}(A_1), \ldots, \Re^{-1}(A_k)) \geq \Phi(\Re(A_1^{-1}), \ldots, \Re(A_k^{-1})). \quad (3.11)$$

From (3.10) and (3.11), we obtain

$$M^k m^k \Phi(\Re(A_1^{-1}), \ldots, \Re(A_k^{-1})) + \Phi(\Re A_1, \ldots, \Re A_k) \leq M^k + m^k. \quad (3.12)$$

By applying Lemma 1.4 (i) and (3.12), respectively, it follows that:

$$M^k m^k \|\Phi(\Re(A_1^{-1}), \ldots, \Re(A_k^{-1}))\Phi(\Re(A_1), \ldots, \Re(A_k))\|$$

$$\leq \frac{1}{4} \|M^k m^k \Phi(\Re(A_1^{-1}), \ldots, \Re(A_k^{-1})) + \Phi(\Re(A_1), \ldots, \Re(A_k))\|^2 \quad (3.13)$$

$$\leq \frac{1}{4} (M^k + m^k)^2.$$

This completes the proof, by Lemma 1.4 (iii).

Remark 3.6 Theorem 3.5 gives a general result in the following sense.

(i) If we put $k = 1$, then Theorem 3.5 recovers [20, Theorem 2.9].
For a special case, such that $A_i \geq 0$ $(1 \leq i \leq k)$, Theorem 3.5 recovers [11, Theorem 2.6].

Remark 3.7 Let $A_i \in M_n(1 \leq i \leq k)$ be accretive such that $0 < ml_n \leq \Re(A_i) \leq Ml_n$. If $0 \leq p \leq 2$, then $0 \leq \frac{p}{2} \leq 1$. By Theorem 3.5 and the Löwner–Heinz inequality (see, e.g., [23, Theorem 7.10]), we have

$$\Phi^p(\Re(A_1^{-1}), \ldots, \Re(A_k^{-1})) \leq K^p(h^k)\Phi^{-p}(\Re A_1, \ldots, \Re A_k).$$ (3.14)

for every positive normalized multilinear map $\Phi : M_n^k \to M_l$ and Kantorovich constant $K(h)$ with $h = \frac{M}{m}$. If $p > 2$, then using a similar method in Theorem 3.5 and using Lemma 1.4 (ii), we get

$$\Phi^p(\Re(A_1^{-1}), \ldots, \Re(A_k^{-1})) \leq K^p(h^k)\Phi^{-p}(\Re A_1, \ldots, \Re A_k).$$ (3.15)

Acknowledgements The authors would like to thank the referees for their careful and insightful comments to improve our manuscript.

References

1. Ando, T., Zhan, X.: Norm inequalities related to operator monoton functions. Math. Ann. 315, 771–780 (1999)
2. Bakherad, M.: Refinements of a reversed AM-GM operator inequality. Linear Multilinear Algebra 64(9), 1687–1695 (2016)
3. Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)
4. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)
5. Bhatia, R., Kittaneh, F.: Notes on matrix arithmetic–geometric mean inequalities. Linear Algebra Appl. 308, 203–211 (2000)
6. Drury, S.: Principal powers of matrices with positive definite real part. Linear Multilinear Algebra 63, 296–301 (2015)
7. Drury, S., Lin, M.: Singular value inequalities for matrices with numerical ranges in a sector. Oper. Matrices 8, 1143–1148 (2014)
8. Fujii, M., Izmíno, S., Nakamoto, R., Šeo, Y.: Operator inequalities related to Cauchy–Schwarz and Hölder–McCarthy inequalities. Nihonkai Math. J. 8, 117–122 (1997)
9. Garg, I., Aujla, J.: Some singular value inequalities. Linear Multilinear Algebra 66, 776–784 (2018)
10. Kantorovich, L.V.: Functional analysis and applied mathematics (in Russian). Uspekhi Mat. Nauk. 3(6), 89–185 (1948)
11. Kian, M., Dehghani, M.: Extension of the Kantorovich inequality for positive multilinear mappings. Filomat 31(20), 6473–6481 (2017)
12. Kittaneh, F., Manasrah, Y.: Reverses Young and Heinz inequalities for matrices. Linear Multilinear Algebra 59(9), 1031–1037 (2011)
13. Lin, M.: On an operator Kantorovich inequality for positive linear maps. J. Math. Anal. Appl. 402, 127–132 (2013)
14. Lin, M.: Extension of a result of Haynsworth and Hartfiel. Arch. Math. 104, 93–100 (2015)
15. Lin, M.: Some inequalities for sector matrices. Oper. Matrices 10, 915–921 (2016)
16. Lin, M., Sun, F.: A property of the geometric mean of accretive operators. Linear Multilinear Algebra 65, 433–437 (2017)
17. Lin, S., Fu, X.: Extensions of inequalities for sector matrices. J. Inequal. Appl. 2019, Art. 118 (2019)
18. Raissouli, M., Moslehian, M.S., Furuichi, S.: Relative entropy and tsallis entropy of two accretive operators. C. R. Acad. Sci. Paris Ser. I(355), 687–693 (2017)
19. Tan, F., Xie, A.: An Extension of the AM-GM-HM Inequality. Bulletin of the Iranian Mathematical Society, Tehran (2019)
20. Yang, C., Gao, Y., Lu, F.: Some reverse mean inequalities for operators and matrices. J. Inequal. Appl. 2019, Art. 115 (2019)
21. Yang, C., Lu, F.: Some generalizations of inequalities for sector matrices. J. Inequal. Appl. 2018, Art. 183 (2018)
22. Zhang, F.: A matrix decomposition and its applications. Linear Multilinear Algebra 63(10), 2033–2042 (2015)
23. Zhang, F.: Matrix Theory, 2nd edn. Springer, New York (2011)