EMBEDDINGS BETWEEN WEIGHTED TANDORI AND CESÀRO FUNCTION SPACES

TUĞÇE ÜNVER

Abstract. We give the characterization of the embeddings between weighted Tandori and Cesàro function spaces using the combination of duality arguments for weighted Lebesgue spaces and weighted Tandori spaces with estimates for the iterated integral operators.

1. Introduction

Given two function spaces X, Y and an operator T, a standard problem is characterizing the conditions for which T maps X into Y. If X and Y are (quasi) Banach spaces of measurable functions, a bounded operator $T : X \to Y$ satisfies the inequality $\|Tf\|_Y \leq c\|f\|_X$ for all $f \in X$ where $c \in (0, \infty)$. When T is the identity operator I, we say that X is embedded into Y and write $X \hookrightarrow Y$. The least constant c in the embedding $X \hookrightarrow Y$ is $\|I\|_{X \to Y}$.

In this paper, we find the optimal constants in the embedding between weighted Tandori and Cesàro function spaces. We shall begin with the definitions of the function spaces considered in this paper.

Given a measurable function f on E, we set

$$\|f\|_{p,E} := \left(\int_E |f(x)|^p \, dx \right)^{1/p}, \quad 1 \leq p < \infty$$

and

$$\|f\|_{\infty,E} := \operatorname{ess sup}_{x \in E} |f(x)|, \quad p = \infty.$$

If w is a weight on E, that is, measurable, positive and finite a.e. on E, then we denote by $L_{p,w}(E)$ the weighted Lebesgue space, the set of measurable functions satisfying $\|f\|_{p,w,E} := \|fw\|_{p,E} < \infty$.

Let $0 < p, q \leq \infty$, u be a non-negative measurable function and v be a weight, the weighted Cesàro space $\text{Ces}_{p,q}(u,v)$ is the set of all measurable functions such that $\|f\|_{\text{Ces}_{p,q}(u,v)} < \infty$, where

$$\|f\|_{\text{Ces}_{p,q}(u,v)} = \left\|\|f\|_{p,v,(0,x)}\|_{q,u,(0,\infty)}\right\|_q,$$

and the weighted Copson space $\text{Cop}_{p,q}(u,v)$ is the set of all measurable functions such that $\|f\|_{\text{Cop}_{p,q}(u,v)} < \infty$, where

$$\|f\|_{\text{Cop}_{p,q}(u,v)} = \left\|\|f\|_{p,v,(x,\infty)}\|_{q,u,(0,\infty)}\right\|_q.$$
We do not aim to give a thorough set of references on the history of these spaces. Instead, we refer the reader to survey paper by Astashkin and Maligranda [1] and the references therein, where the comprehensive exposition of history on the structure of Cesàro and Copson function spaces are given.

In this paper our primary focus is the following inequality

\begin{equation}
\| f \|_{\text{Ces}_{p_1,q_1}(u_1,v_1)} \leq c \| f \|_{\text{Cop}_{p_2,q_2}(u_2,v_2)} \tag{1.1}
\end{equation}

for all measurable functions where \(0 < p_i, q_i \leq \infty, i = 1, 2 \). There is more than one motivation to study inclusion between Cesàro and Copson spaces. First of all when \(p_1 = q_1 \) or \(p_2 = q_2 \), weighted Cesàro and Copson function spaces coincide with some weighted Lebesgue spaces (see [5] Lemmas 3.4-3.5), thus inequality (1.1) is a generalization of the well-known weighted direct and reverse Hardy-type inequalities (e.g. [10], [4], [14]). Another justification is to give (see [5, Lemmas 3.4-3.5]), thus inequality (1.1) is a generalization of the well-known weighted Cesàro and Copson function spaces coincide with some weighted Lebesgue spaces. Moreover, using these results, in [7] pointwise multipliers between Cesàro and Copson function spaces is given for some ranges of parameters.

Furthermore, in 2015, Lesnik and Maligranda ([11], [12]) began studying these spaces within an abstract framework, where they replaced the role of weighted Lebesgue spaces with a more general function space \(X \). For a Banach space \(X \), they defined Cesàro space \(CX \), Copson space \(C^*X \) and Tandori space \(\tilde{X} \) as the set of all measurable functions, respectively, with the following norms:

\[
\| f \|_{CX} = \left\| \frac{1}{x} \int_{0}^{x} |f(t)| dt \right\|_{X} < \infty,
\]

\[
\| f \|_{C^*X} = \left\| \int_{x}^{\infty} \frac{|f(t)|}{t} dt \right\|_{X} < \infty,
\]

\[
\| f \|_{\tilde{X}} = \left\| \text{ess sup}_{t \in (x, \infty)} |f(t)| \right\|_{X} < \infty.
\]

In [13], they named \(\tilde{X} \) as the generalized Tandori spaces in honour of Tandori who provided dual spaces to the spaces \(CL_{\infty}[0, 1] \) in [15]. Their definition is related to our definition in the following way:

\[
CL_{p,w} = \text{Ces}_{1,p}(x^{-1}w(x), 1), \quad C^*L_{p,w} = \text{Cop}_{1,p}(w, x^{-1}), \quad \tilde{L}_{p,w} = \text{Cop}_{\infty,p}(w, 1).
\]
We should note that recently in [9] multipliers between \(CL_p \) and \(CL_q \) are given when \(1 < q \leq p \leq \infty \).

We want to continue this research. In this paper, we will consider the embeddings between weighted Tandori and weighted Cesàro function spaces, namely, we will give the characterization of the following inequality,

\[
\| f \|_{\text{Ces}_p,q(u,v)} \leq c \| f \|_{\tilde{L}_{r,w}}
\]

(1.2)

for all measurable functions where \(p, q, r \in (0, \infty) \) with \(p < q \). The restriction on the parameters arises from the duality argument. The key ingredient of the proof is combining characterizations of the associate spaces of Tandori spaces, namely, the reverse Hardy-type inequality for supremal operators which was given in [14] with the characterizations of some iterated Hardy-type inequalities.

Throughout the paper, expressions of the form \(0 \cdot \infty \) or \(\infty \cdot 0 \) are taken as zero. For \(p \in (1, \infty) \), we define \(p' = \frac{p}{p-1} \). We write \(A \approx B \) if there exist positive constants \(\alpha, \beta \) independent of relevant quantities appearing in expressions \(A \) and \(B \) such that

\[
\alpha \leq \frac{A}{B} \leq \beta
\]

holds.

The symbol \(\mathcal{M} \) will stand for the set of all measurable functions on \((0, \infty)\), and we denote the class of non-negative elements of \(\mathcal{M} \) by \(\mathcal{M}^+ \).

We sometimes omit the differential element \(dx \) to make the formulas simpler when the expressions are too long.

The paper is structured as follows. In Section 2, we formulate the main results of this paper. In Section 3, we collect some properties and necessary background material. Finally, in the last section, we give the proofs of our main results.

2. Main Results

It is convenient to start this section by recalling some properties of the weighted Cesàro and Copson spaces. Let \(0 < p, q \leq \infty \). Assume that \(u \) is a non-negative measurable function and \(v \) is a weight. We will always assume that \(\| u \|_{q,(t,\infty)} < \infty \) for all \(t > 0 \) and \(\| u \|_{q,(0,t)} < \infty \) for all \(t > 0 \), when considering weighted Cesàro and Copson function spaces, respectively. Otherwise, these spaces consist only of functions equivalent to zero (see, [5, Lemmas 3.1-3.2]).

In this section, we will formulate the least constant in the embedding

\[
\tilde{L}_{r,w} \hookrightarrow \text{Ces}_{p,q}(u,v).
\]

(2.1)

Remark 2.1. Observe that,

\[
\| I \|_{\text{Cop}_p,q(u,v_1) \to \text{Ces}_{p,q}(u,v_2)} = \| I \|_{\tilde{L}_{r,w} \to \text{Ces}_{p,q}(u,v_2)}
\]

holds. Therefore, it is enough to consider the three weighted case (2.1).

Remark 2.2. Note that, when \(p = q \) or \(r = \infty \), this problem is not interesting since it reduces to the characterizations of Hardy-type inequalities and can be found in [5], therefore we will consider the cases when \(r < \infty \). On the other hand, we have the restriction \(p < q \), which arises from the duality argument.

Now we are in position to formulate the results of this paper. We begin with the cases where \(q = \infty \).
Theorem 2.3. Let \(0 < p, r < \infty \). Assume that \(v \) is a weight, \(w \in \mathcal{M}^+ \) such that \(\|w\|_{r,(0,t)} < \infty \) for all \(t \in (0,\infty) \) and \(w \not\equiv 0 \) a.e. on \((0,\infty) \), and \(u \in \mathcal{M}^+ \) such that \(\|u\|_{q,(t,\infty)} < \infty \) for all \(t \in (0,\infty) \).

(i) If \(r \leq p \), then
\[
\|I\|_{L_{r,w} \to \text{Ces}_{p,\infty}(u,v)} \approx I_1,
\]
where
\[
I_1 := \text{ess sup}_{x \in (0,\infty)} u(x) \sup_{t \in (0,x)} \left(\int_0^t v^p \right) \frac{1}{p} \left(\int_0^t w^r \right) - \frac{1}{p} < \infty.
\]

(ii) If \(p < r \), then
\[
\|I\|_{L_{r,w} \to \text{Ces}_{p,\infty}(u,v)} \approx I_2 + I_3 + I_4
\]
where
\[
I_2 := \text{ess sup}_{x \in (0,\infty)} u(x) \left(\int_0^x \left(\int_0^t v^p \right) \frac{1}{p} \left(\int_0^t w^r \right) - \frac{1}{p} w(t)^{r/p} dt \right)^{r/p} < \infty,
\]
\[
I_3 := \text{ess sup}_{x \in (0,\infty)} u(x) \left(\int_x^\infty \left(\int_0^t w^r \right) - \frac{r}{r-p} w(t)^{r/p} dt \right)^{r/p} \left(\int_0^x v^p \right) - \frac{1}{p} < \infty,
\]
and
\[
I_4 := \left(\int_0^\infty w^r \right) - \frac{1}{p} \text{ess sup}_{x \in (0,\infty)} u(x) \left(\int_0^x v^p \right) - \frac{1}{p} < \infty.
\]

Theorem 2.4. Let \(0 < r \leq p < q < \infty \). Assume that \(v \in \mathcal{M}^+ \), \(w \in \mathcal{M}^+ \) such that \(\|w\|_{r,(0,t)} < \infty \) for all \(t \in (0,\infty) \) and \(w \not\equiv 0 \) a.e. on \((0,\infty) \), and \(u \in \mathcal{M}^+ \) such that \(\|u\|_{q,(t,\infty)} < \infty \) for all \(t \in (0,\infty) \). Then
\[
\|I\|_{L_{r,w} \to \text{Ces}_{p,q}(u,v)} \approx I_5 + I_6,
\]
where
\[
I_5 := \sup_{t \in (0,\infty)} \left(\int_0^t w(s)^r ds \right) - \frac{1}{r} \left(\int_0^t \left(\int_0^s v(y)^p dy \right) \frac{1}{p} u(s)^q ds \right) - \frac{1}{q} < \infty,
\]
and
\[
I_6 := \sup_{t \in (0,\infty)} \left(\int_0^t w(s)^r ds \right) - \frac{1}{r} \left(\int_0^t u(s)^q ds \right) - \frac{1}{q} < \infty.
\]

Theorem 2.5. Let \(0 < p < r < \infty \) and \(0 < p < q < \infty \). Assume that \(v \in \mathcal{M}^+ \), such that \(v > 0 \), \(\|v\|_{p,(0,t)} < \infty \) for all \(t \in (0,\infty) \) and \(\|v\|_{p,(0,\infty)} = \infty \). Suppose that \(w \in \mathcal{M}^+ \) such that \(\|w\|_{r,(0,t)} < \infty \) for all \(t \in (0,\infty) \) and \(w \not\equiv 0 \) a.e. on \((0,\infty) \), and \(u \in \mathcal{M}^+ \) such that \(\|u\|_{q,(t,\infty)} < \infty \) for all \(t \in (0,\infty) \). Let
\[
\int_0^t \left(\int_0^s v^p \right) \frac{1}{p} \left(\int_0^s w^r \right) - \frac{r}{r-p} w(s)^r ds < \infty \text{ for all } t \in (0,\infty),
\]
\[
\int_0^1 \left(\int_0^s w^r \right) - \frac{r}{r-p} w(s)^r ds = \infty,
\]
\[
\int_0^\infty \left(\int_0^s w^r \right) - \frac{r}{r-p} w(s)^r ds < \infty \text{ for all } t \in (0,\infty),
\]
\begin{align*}
\bullet \int_1^\infty (\int_0^s v^p)^{-\frac{r}{p}} \left(\int_0^s w^r \right)^{-\frac{r}{p}} w(s)^r \, ds &= \infty
\end{align*}
hold.

(i) If \(r \leq q \), then
\[
\| I \|_{\mathcal{L}_{r,w} \to \mathcal{C}_{p,q}(u,v)} \approx I_7 + I_8 + I_9,
\]
where
\[
I_7 := \left(\int_0^\infty w^r \right)^{-\frac{1}{r}} \left(\int_0^\infty \left(\int_0^y v(s)^p \, ds \right)^{\frac{q}{p}} u(y)^q \, dy \right)^{\frac{1}{q}} < \infty, \tag{2.2}
\]
\[
I_8 := \sup_{x \in (0,\infty)} \left(\int_x^\infty \left(\int_0^t v^p \right)^{\frac{r}{p}} \left(\int_0^t w^r \right)^{-\frac{r}{p}} w(t)^r \, dt \right)^{\frac{r-p}{rq}} \left(\int_x^\infty w^q \right)^{\frac{1}{q}} < \infty,
\]
and
\[
I_9 := \sup_{x \in (0,\infty)} \left(\int_x^\infty \left(\int_0^t v^p \right)^{\frac{r}{p}} \left(\int_0^t w^r \right)^{-\frac{r}{p}} w(t)^r \, dt \right)^{\frac{r-p}{rq}} \left(\int_x^\infty u^q \right)^{\frac{1}{q}} < \infty.
\]

(ii) If \(q < r \), then
\[
\| I \|_{\mathcal{L}_{r,w} \to \mathcal{C}_{p,q}(u,v)} \approx I_7 + I_{10} + I_{11},
\]
where \(I_7 \) is defined in (2.2),
\[
I_{10} := \left(\int_0^\infty \left(\int_x^\infty u^q \right)^{\frac{r}{r-q}} \left(\int_0^x \left(\int_0^t v^p \right)^{\frac{r}{p}} \left(\int_0^t w^r \right)^{-\frac{r}{p}} w(t)^r \, dt \right)^{\frac{r-p}{pq}} \, ds \right)^{\frac{r-q}{pq}} < \infty,
\]
and
\[
I_{11} := \left(\int_0^\infty \left(\int_0^x \left(\int_0^t v^p \right)^{\frac{q}{p}} u(t)^q \, dt \right)^{\frac{r}{r-q}} \left(\int_0^\infty \left(\int_0^t w^r \right)^{-\frac{r}{p}} w(t)^r \, dt \right)^{\frac{r-p}{pq}} \, dx \right)^{\frac{r-q}{pq}} < \infty.
\]

3. Background Material

In this section we quote some known results. Let us start with the characterization of the reverse Hardy-type inequality for supremal operator, that is,
\[
\left(\int_0^\infty f(t)^p u(t)^q \, dt \right)^{\frac{1}{p}} \leq C \left(\int_0^\infty w(t)^q \left(\text{ess sup}_{s \in (t,\infty)} f(s) \right)^q \, dt \right)^{\frac{1}{q}} \tag{3.1}
\]
for all non-negative measurable functions \(f \) on \((0, \infty)\) where \(0 < p, q < \infty \).

Theorem 3.1. [14] Theorem 3.4 \[Let 0 < p, q < \infty. Assume that \(u \in \mathcal{M}^+ \) and \(w \in \mathcal{M}^+ \) such that \(\int_0^t w^q \, dt < \infty \) for all \(t \in (0, \infty) \) and \(w \neq 0 \) a.e. on \((0, \infty)\). \]
(i) If \(q \leq p \), then inequality (3.1) holds for all non-negative measurable functions \(f \) on \((0, \infty)\) if and only if \(A_1 < \infty \), where
\[
A_1 := \sup_{t \in (0, \infty)} \left(\int_0^t u^p \right)^{\frac{1}{p}} \left(\int_0^t w^q \right)^{-\frac{1}{q}}.
\] (3.2)
Moreover, the least possible constant \(C \) in (3.1) satisfies \(C \approx A_1 \).

(ii) If \(p < q \), then inequality (3.1) holds for all non-negative measurable functions \(f \) on \((0, \infty)\) if and only if \(A_2 < \infty \) and \(A_3 < \infty \), where
\[
A_2 := \left(\int_0^\infty \left(\int_0^t u^p \right)^{\frac{q}{q-p}} \left(\int_0^t w^q \right)^{-\frac{q}{q-p}} w(t)^q dt \right)^{\frac{q-p}{pq}},
\] (3.3)
and
\[
A_3 := \left(\int_0^\infty u^p \right)^{\frac{1}{p}} \left(\int_0^\infty w^q \right)^{-\frac{1}{q}}.
\] (3.4)
Moreover, the least possible constant \(C \) in (3.1) satisfies \(C \approx A_2 + A_3 \).

We next recall the characterization of the weighted iterated inequality involving Hardy and Copson operators, that is,
\[
\left(\int_0^\infty \left(\int_0^t \left(\int_s^\infty g \right) \nu(s) ds \right)^q \nu(t)^q dt \right)^{\frac{1}{q}} \leq C \left(\int_0^\infty g(t)^p \nu(t)^p dt \right)^{\frac{1}{p}}.
\] (3.5)
Note that the characterization of inequality (3.5) is given in [6]. In the next theorem, we provide a modified version of [6, Theorem 3.1], using the gluing lemmas presented in the recent paper [7]. Denote by
\[\mathcal{V}(t) := \int_0^t \nu(s) ds, \ t > 0.\]

Theorem 3.2. Let \(1 < p < \infty \) and \(0 < q < \infty \). Assume that \(u \in \mathcal{M}^+ \) and \(\nu, w \in \mathcal{M}^+ \) such that

- \(\nu(t) > 0, \mathcal{V}(t) < \infty \) for all \(t \in (0, \infty) \) and \(\lim_{t \to \infty} \mathcal{V}(t) = \infty \),
- \(\int_0^1 \mathcal{V}(s)^q \nu(s)^q ds < \infty \) for all \(t \in (0, \infty) \) and \(\int_1^\infty \mathcal{V}(s)^q \nu(s)^q ds = \infty \),
- \(\int_0^\infty \nu(s)^q ds < \infty \) for all \(t \in (0, \infty) \) and \(\int_0^1 \nu(s)^q ds = \infty \).

(i) If \(p \leq q \), then (3.5) holds for all non-negative measurable functions \(f \) on \((0, \infty)\) if and only if \(B_1 < \infty \) and \(B_2 < \infty \), where
\[
B_1 := \sup_{x \in (0, \infty)} \left(\int_0^x \mathcal{V}(t)^q \nu(t)^q dt \right)^{\frac{1}{q}} \left(\int_x^\infty u(t)^{-\frac{q}{q-1}} dt \right)^{\frac{q-1}{p}},
\] and
\[
B_2 := \sup_{x \in (0, \infty)} \left(\int_x^\infty w(t)^q dt \right)^{\frac{1}{q}} \left(\int_0^x \mathcal{V}(t)^{-\frac{q}{q-1}} u(t)^{-\frac{q}{q-1}} dt \right)^{\frac{q-1}{p}}.
\]
Moreover, the least possible constant \(C \) in (3.5) satisfies \(C \approx B_1 + B_2 \).
(ii) If $q < p$, then (3.5) holds for all non-negative measurable functions f on $(0, \infty)$ if and only if $B_3 < \infty$ and $B_4 < \infty$, where

$$B_3 := \left(\int_0^\infty \left(\int_x^\infty u(t)^{-\frac{p}{p-q}} dt \right)^{\frac{q(p-1)}{p-q}} \left(\int_0^x \mathcal{V}(t)^q w(t)^q dt \right)^{\frac{q}{p-q}} \mathcal{V}(x)^q w(x)^q dx \right)^{\frac{p-q}{pq}} ;$$

and

$$B_4 := \left(\int_0^\infty \left(\int_x^\infty w(t)^q dt \right)^{\frac{q(p-1)}{p-q}} \left(\int_0^x \mathcal{V}(t)^{p-1} u(t)^{-\frac{p}{p-1}} dt \right)^{\frac{q-1}{p-q}} w(x)^q dx \right)^{\frac{p-q}{pq}} .$$

Moreover, the least possible constant C in (3.5) satisfies $C \approx B_3 + B_4$.

Proof. The proof is the combination of [6, Theorem 3.1, (iii)] and [7, Lemma 2.7] for the first case and [6, Theorem 3.1, (iv)] and [7, Lemma 2.8] for the second case. □

4. PROOFS

Proof of Theorem 2.3 Let $0 < p, r < \infty$. We have

$$C = \sup_{f \in \mathbb{M}} \frac{\|f\|_{\text{Ces}_{p,q}(u,v)}}{\|f\|_{\tilde{L}_{r,w}}} = \sup_{x \in (0,\infty)} \frac{\text{ess sup } u(x)}{\|f\|_{\text{Ces}_{p,v}(0,x)}} .$$

Fix $x \in (0, \infty)$ and denote by

$$\mathcal{R} := \sup_{f \in \mathbb{M}^+} \frac{\|f \chi_{(0,x)}\|_{\text{Ces}_{p,v}(0,\infty)}}{\text{ess sup } f(s)} .$$

Observe that, interchanging supremum gives

$$C = \text{ess sup } u(x) \mathcal{R} .$$

Thus, the problem reduced to the characterization of reverse Hardy-type inequalities for supremal operator. It remains to apply [Theorem 3.1 (i)] when $r \leq p$ and [Theorem 3.1 (ii)] when $p < r$. □

Proof of Theorem 2.4 Let $0 < r \leq p < q < \infty$. We have

$$C = \sup_{f \in \mathbb{M}} \frac{\|f\|_{\text{Ces}_{p,q}(u,v)}}{\|f\|_{\tilde{L}_{r,w}}} .$$

Since $q/p \in (1, \infty)$, by the duality in weighted Lebesgue spaces, we have

$$\|f\|_{\text{Ces}_{p,q}(u,v)}^p = \sup_{g \in \mathbb{M}^+} \left(\int_0^\infty \left(\int_0^t f(s)^p v(s)^p ds \right) g(t) dt \right)^{\frac{1}{p}} .$$
Interchanging supremum and Fubini’s Theorem gives that
\[
C = \sup_{g \in \mathcal{M}^+} \frac{1}{\left(\int_0^\infty g(t)^{\frac{q}{q-p}} u(t)^{-\frac{q p}{q-p}} dt \right)^{\frac{q-p}{q}}} \left(\int_0^\infty f(s)^p v(s)^p \int_s^\infty g(t) dt \, ds \right)^{\frac{1}{p}}
\]
\[
=: \sup_{g \in \mathcal{M}^+} \frac{\mathcal{R}(g)}{\|g\|^{\frac{1}{p}}}
\]
where,
\[
\|g\| := \left(\int_0^\infty g(t)^{\frac{q}{q-p}} u(t)^{-\frac{q p}{q-p}} dt \right)^{\frac{q-p}{q}}
\]
and \(\mathcal{R}(g) \) is the best constant in the inequality for every fixed \(g \in \mathcal{M}^+ \),
\[
\left(\int_0^\infty h(s)^p v(s)^p \int_s^\infty g(t) dt \, ds \right)^{\frac{1}{p}} \leq c \left(\int_0^\infty \left(\text{ess sup}_{s \in (t, \infty)} h(s) \right)^r w(t)^r dt \right)^{\frac{1}{r}} , \ h \in \mathcal{M}^+ .
\]
Now, we can apply Theorem 3.1 by taking the parameters \(p, r \), and weights
\[
\omega(s) = w(s) \quad u(s) = v(s) \left(\int_s^\infty g \right)^{\frac{1}{p}} , \ s > 0 .
\]
Since \(r \leq p \), according to the first case in Theorem 3.1
\[
\mathcal{R}(g) \approx \sup_{t \in (0, \infty)} \left(\int_0^t v(s)^p \left(\int_s^\infty g \right) \, ds \right)^{\frac{1}{p}} \left(\int_0^t w(s)^r \, ds \right)^{-\frac{1}{r}}
\]
holds. Thus,
\[
C \approx \sup_{g \in \mathcal{M}^+} \frac{\sup_{t \in (0, \infty)} \left(\int_0^t v(s)^p \left(\int_s^\infty g \right) \, ds \right)^{\frac{1}{p}} \left(\int_0^t w(s)^r \, ds \right)^{-\frac{1}{r}}}{\|g\|^{\frac{1}{p}}}
\]
Interchanging suprema yields that
\[
C \approx \sup_{t \in (0, \infty)} \left(\int_0^t w(s)^r \, ds \right)^{-\frac{1}{r}} \sup_{g \in \mathcal{M}^+} \left(\int_0^\infty v(s)^p \left(\int_s^\infty g \right) \chi_{(0,t)}(s) \, ds \right)^{\frac{1}{p}} \sup_{g \in \mathcal{M}^+} \frac{\left(\int_0^\infty g(y)^{\frac{q}{q-p}} u(y)^{-\frac{q p}{q-p}} \, dy \right)^{\frac{q-p}{q}}} {\left(\int_0^\infty g(y)^{\frac{q}{q-p}} u(y)^{-\frac{q p}{q-p}} \, dy \right)^{\frac{q-p}{q}}} .
\]
From Fubini’s Theorem and duality in weighted Lebesgue spaces with \(q/p \in (1, \infty) \) again, it follows that
\[
C = \sup_{t \in (0, \infty)} \left(\int_0^t w(s)^r \, ds \right)^{-\frac{1}{r}} \sup_{g \in \mathcal{M}^+} \left(\int_0^\infty g(y)^{\frac{q}{q-p}} u(y)^{-\frac{q p}{q-p}} \, dy \right)^{\frac{q-p}{q}} \left(\int_0^\infty v(s)^p \chi_{(0,t)}(s) \, ds \right)^{\frac{1}{p}} \left(\int_0^\infty u(y)^q \, dy \right)^{\frac{1}{q}} ,
\]
\[
\approx \sup_{t \in (0, \infty)} \left(\int_0^t \left(\int_0^y v(s)^p \chi_{(0,t)}(s) \, ds \right)^{\frac{2}{p}} u(y)^q \, dy \right)^{\frac{1}{p}} .
\]
Observe that,
\[
\int_{0}^{\infty} \left(\int_{0}^{t} v(s)^p \chi_{(0,t)}(s) ds \right)^{\frac{q}{p}} u(y)^q dy = \int_{0}^{t} \left(\int_{0}^{y} v(s)^p ds \right)^{\frac{q}{p}} u(y)^q dy + \left(\int_{0}^{t} v(s)^p ds \right)^{\frac{q}{p}} \left(\int_{t}^{\infty} u(y)^q dy \right).
\]
Thus we arrive at \(C \approx I_5 + I_6 \).

Proof of Theorem 2.5 Let \(0 < p < r < \infty \) and \(0 < p < q < \infty \). Using the steps identical to the preceding proof, which relies on \(q/p \in (1, \infty) \), duality in weighted Lebesgue spaces, and Fubini’s Theorem one can see that (4.1) holds. Since \(p < r \), applying the second case of Theorem 3.1, we obtain that
\[
R(g) \approx \left(\int_{0}^{\infty} \left(\int_{0}^{t} v(s)^p \left(\int_{s}^{\infty} g(y) dy \right) ds \right)^{\frac{r}{r-p}} \left(\int_{0}^{t} w(t)^r dt \right)^{\frac{r}{r-p}} \right) \left(\int_{0}^{\infty} w(s)^r ds \right)^{-\frac{1}{r}}.
\]
Then, \(C \approx C_1 + C_2 \), where
\[
C_1 := \sup_{g \in M} \left(\int_{0}^{\infty} \left(\int_{0}^{t} v(s)^p \left(\int_{s}^{\infty} g(y) dy \right) ds \right)^{\frac{r}{r-p}} \left(\int_{0}^{t} w(t)^r dt \right)^{\frac{r}{r-p}} \right)^{\frac{1}{p}}
\]
and
\[
C_2 := \left(\int_{0}^{\infty} w(s)^r \right)^{-\frac{1}{r}} \sup_{g \in M} \left(\int_{0}^{\infty} v(s)^p \left(\int_{s}^{\infty} g(y) dy \right) ds \right)^{\frac{1}{p}}.
\]
First observe that, using duality principle again we have
\[
C_2 \approx \left(\int_{0}^{\infty} w(s)^r \right)^{-\frac{1}{r}} \left(\int_{0}^{\infty} \left(\int_{0}^{y} v(s)^p ds \right)^{\frac{q}{p}} u(y)^q dy \right)^{\frac{1}{q}},
\]
and \(C_1^p \) is the best constant in the inequality (3.5) with parameters \(p = \frac{q}{q-p} \) and \(q = \frac{r}{r-p} \), and weights
\[
u(s) = u(s)^{-p}, \quad v(s) = v(s)^p, \quad w(s) = \left(\int_{0}^{s} w(r)^{-1} w(s)^{-r} ds \right), \quad s > 0.
\]
It remains to apply Theorem 3.2. To this end we should again split this case into two parts.

(i) If \(r \leq q \), then applying the first case in Theorem 3.2 we obtain that \(C_1 \approx I_8 + I_9 \) and the result follows.

(ii) If \(q < r \), then applying the second case in Theorem 3.2 we obtain that \(C_1 \approx I_{10} + I_{11} \) and the result follows.
References

[1] Astashkin, S. V., Maligranda, L., Structure of Cesàro function spaces: a survey, In Function spaces X, Vol. 102 of Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2014, pp. 13–40.

[2] Boas, Jr., R. P., Some integral inequalities related to Hardy’s inequality, J. Analyse Math., 23 (1970), 53–63.

[3] Carro, M., Gogatishvili, A., Martín, J., Pick, L., Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces, J. Operator Theory, 59 (2) (2008), 309–332.

[4] Evans, W. D., Gogatishvili, A., Opic, B., The reverse Hardy inequality with measures, Math. Inequal. Appl., 11 (1) (2008), 43–74.

[5] Gogatishvili, A., Mustafayev, R. C., Ünver, T., Embeddings between weighted Copson and Cesàro function spaces, Czechoslovak Math. J., 67 (142) (4) (2017), 1105–1132.

[6] Gogatishvili, A., Mustafayev, R. C., Persson, L.-E., Some new iterated Hardy-type inequalities, J. Funct. Spaces Appl. (2012), Art. ID 734194, 30.

[7] Gogatishvili, A., Mustafayev, R. C., Ünver, T., Pointwise multipliers between weighted Copson and Cesàro function spaces, Math. Slovaca, 69 (6) (2019), 1303–1328.

[8] Grosse-Erdmann, K.-G., The blocking technique, weighted mean operators and Hardy’s inequality, Vol. 1679 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998.

[9] Kołwicz, P., Leśnik, K., Maligranda, L., Symmetrization, factorization and arithmetic of quasi-Banach function spaces, J. Math. Anal. Appl., 470 (2) (2019), 1136–1166.

[10] Kufner, A., Persson, L.-E., Samko, N., Weighted inequalities of Hardy type, second ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

[11] Leśnik, K., Maligranda, L., Abstract Cesàro spaces. Duality, J. Math. Anal. Appl., 424 (2) (2015), 932–951.

[12] Leśnik, K., Maligranda, L., Abstract Cesàro spaces. Optimal range, Integral Equations Operator Theory, 81 (2) (2015), 227–235.

[13] Leśnik, K., Maligranda, L., Interpolation of abstract Cesàro, Copson and Tandori spaces, Indag. Math. (N.S.), 27 (3) (2016), 764–785.

[14] Mustafayev, R. C., Ünver, T., Reverse Hardy-type inequalities for supremal operators with measures, Math. Inequal. Appl., 18 (4) (2015), 1295–1311.

[15] Tandori, K., Über einen speziellen Banachschen Raum, Publ. Math. Debrecen, 3 (1954), 263–268 (1955).

Email address, T. Ünver: tugceunver@kku.edu.tr
ORCID: 0000-0003-0414-8400

Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yarışhan, Kirikkale, Turkey