The Galaxies and the Dark Matter

José Luís Pereira Rebelo Fernandes*
Independent Researcher since 2005, Engineer, graduated from the University of Porto
*Corresponding author: rebelofernandes@sapo.pt

Received November 13, 2020; Revised December 14, 2020; Accepted December 21, 2020

Abstract To understand the rotation of galaxies, the idea of the existence of dark matter was created. Through a better observation of reality, analyzing the distribution of matter, we conclude that this distribution is very close to that proportional to the radius cube, thus remembering the spherical distribution. With the appearance of the accretion disk, it retained a large part of the matter that gravitated the gravitational sphere of the galaxy, maintaining its distribution proportional to the cube of the radius, part of the total matter will be contained in the Accretion Disc and the rest will continue to gravitate to the galaxy. Given the large size of the galaxy, the latter may be practically printable given its dispersion in the total volume of the galaxy. We conclude that the idea of the existence of dark matter is not necessary to justify the rotation of the galaxy.

Keywords: universe, gravitation, potential, gravity, velocity, mass, physics, variable

Cite This Article: José Luís Pereira Rebelo Fernandes, “The Galaxies and the Dark Matter.” International Journal of Physics, vol. 9, no. 1 (2021): 36-41. doi: 10.12691/ijp-9-1-4.

1. Introduction

1.1. Dark Matter Concept

In cosmology, dark matter is a speculative type of matter that interacts only gravitationally and, therefore, its presence can be inferred from gravitational effects on visible matter, such as galaxies. Although not directly observable, scientists believe that dark matter exists due to its consequences on gravitational effects, as visible matter moves and distributes itself in space, explaining the rotation curves of galaxies.

![Figure 1. Rotation curve of a typical spiral galaxy: predicted (A) and observed (B). Dark matter can explain the ‘flat’ appearance of the velocity curve out to a large radius. Dark matter - Wikipedia](image)

2. Study Method

2.1. Galactic structure analysis

Four arms were drawn, the outer arm in orange, the Scutum-Centaurus arm in yellow, the Sagittarius arm in blue and the Perseus arm in red.

We divided the plane of the galaxy into eight quadrants, 0.125 turns, to study the radius value of each arm between each quadrant.

We consider that there is a symmetry at the moment of the galaxy's initial creation and, therefore, we measure what the gravitational radius is for an initial exterior location and which gravitational radii for the locations located in multiple positions of +0.125 turn, that is, in the locations of n + 0.125, n + 0.25, n + 0.375, etc.

![Figure 2. Milk Way, Marking of arms and 8 quadrants from Milky Way - Wikipedia](image)
2.2. Motion Analysis

We take for granted the information that the Sun is 26000 ly (light years) from the center of the galaxy and that it has a rotation speed of 220,000 m·s⁻¹ within the galaxy. We were thus able to define the number of turns taken at each point in the galaxy.

For this purpose, we must not forget that the galaxy is expanding, "Ref. [2]", "Ref. [3]" and "Ref. [4]" and as such we should consider the average translation perimeter of the Sun, for calculations.

The average perimeter.
Being:

- \(L \) - Total distance traveled by the Sun in its translation movement.
- \(P_m \) - Average translation perimeter of the Sun.
- \(I \) - Age of the universe, 15 224 021 588 years, ["Ref. [4]"]
- \(V_{Sun} \) - Sun's translation speed.
- \(C \) - Speed of Light

\[
L = I \times 365.2564 \times 24 \times 3600 \times V_{Sun} \quad (1.2)
\]

\[
L = 1,05697 \times 10^23 \text{ m} \quad (2.2)
\]

\[
P_m = \frac{2 \times \pi \times 26000 \times 365.2564 \times 24 \times 3600 \times C}{2} \quad (3.2)
\]

\[
P_m = 7,72779 \times 10^{-20} \text{ m} \quad (4.2)
\]

\[
N^\circ \text{ Laps} = \frac{L}{P_m} = 136,7754488 \quad (5.2)
\]

Table 1. Radius and nº of laps

Orange	Radius (ly)	Nº of laps
62 570	n	0,125
55 880	n	0,125
45 960	n	0,125
40 510	n	0,125
34 230	n	0,125
29 000	n	0,125
22 930	n	0,125
19 750	n	0,125
14 960	n	0,125
12 390	N+1,125	

Table 2. Radius, Average Perimeter and Rotation Velocity (E->10^4)

Blue	Radius (ly)	Nº of laps
50 570	n	0,125
42 730	n	0,125
35 520	n	0,125
29 800	n	0,125
25 600	n	0,125
21 200	n	0,125
17 550	n	0,125
13 890	n	0,125
10 940	N+1,125	

Table 3. Radius, Travelled distance, nº of laps and Mass (E->10^4)

Red	Radius (ly)	Nº of laps
50 000	n	0,125
45 900	n	0,125
39 900	n	0,125
30 420	n	0,125
25 810	n	0,125
20 230	n	0,125
17 450	n	0,125
15 090	n	0,125
10 000	N+1,125	

It can be seen that the masses located at the same distance from the center of the Galaxy made about the same number of turns. So we can consider the largest radius in which matter is, 62570 ly and make the calculations for every tenth of that radius.

For this purpose, we must not forget that the galaxy is expanding, "Ref. [2]", "Ref. [3]", "Ref. [4]" and as such we should consider the average translation perimeter of the Sun, for calculations.
2.3. Analysis of the Quantity of Matter and Its Distribution

![Figure 3](Image)

Figure 3. Speed measured from the Solar System (Blue), speed calculated based on the visible masses (orange). Milky Way - Wikipedia

For the calculation of the material necessary to bring about the balance of the previous table, we will consider that only the material inside the calculation radius participates in the calculation of its potential.

\[M = \frac{R V_{\text{Sun}}^2}{G} \]

(6.2)

When considering the measured masses, from Figure 3, we will have an external speed of 183000 m/s for a radius of 51500 ly which will imply a quantity of matter of 2.445×10^{41} Kg.

If we take into account the speeds measured by man, from Figure 3, we will have a speed of 238000 m/s, for a radius of 51800 ly which will imply a quantity of matter of 4.159×10^{41} Kg.

As we see the calculation we did, it gives us a quantity of matter of 2.509×10^{42} kg for a speed of 531867 m/s in a radius of 62,570 ly, which is 5 and 10 times more than we imagined.

Thus, most of the matter continues to gravitate out of the Accretion Disc.

The distribution of matter necessary to obtain the results we can see, is practically a density of constant, in volume proportion, distributed in the Accretion Disc. There is a variation in density from the periphery to the central zone of +1.90%.

This distribution did not seem unreal to us because the galaxy, before presenting a significant accretion disk, started like all other structures in its spherical shape and the accretion disk captured much of the matter in the respective gravity ray, that is, it maintained the position now associated with the accretion disk. The existence of Dark Matter does not seem necessary to explain the movement in galaxies.

Perhaps some feel that there is a flaw in the number of stars in the periphery, but if we take into account that considering 5 ly of the disk thickness, we can have between a maximum density around 6.9126×10^{-17}kgm\(^{-3}\) and a minimum of less than 4.7441×10^{-18}kgm\(^{-3}\). If we discount the star material then this density drops significantly. As the largest amount of this gas will undoubtedly be hydrogen and helium, they would be very dispersed. Much of that gas and others elements, will continue to belong to the initial spherical surface. If the material is hydrogen, we would have a maximum part in volume of 6.014×10^{-25}. In the case of being helium we would have a maximum part in volume of 9.797×10^{-26}, which seems to be undetectable.

Today it is news that the solar system is going through material from a supernova and in reality nothing tells us that it is not residual material that gravitates our galaxy.

2.4. Values Measured from the Solar System.

The values measured from the Solar System regarding the rotation of the galaxy are apparently at odds with the proposal previously made.

2.4.1. Regarding Speeds

Let us now analyze these measured values from Figure 3.

Radius (al)	Speed (m/s)	Apparent speed (m/s)	Theoretical speed (m/s)
1.496	250 000		
6.157	205 900		
8.557	196 070		
10.393	199 150		
13.002	213 680		
17.598	225 310		
22.397	227 070		
26.000	221 550		
30.455	209 760		
40.011	233 570		
46.104	237 190		
51.747	237 820		

What will be equivalent for the radius considered previously to:

Radius (al)	Speed (m/s)
6.257	205 492
12.514	210 963
18.771	214 110
25.028	224 044
31.285	211 828
37.542	227 418
43.799	235 821
50.056	237 631
56.313	238 330

Let us compare the two speeds obtained, the apparent measured from the Solar System, the theoretical and the differential between them.

Radius (al)	Apparent speed (m/s)	Theoretical speed (m/s)	Differential Speeds (m/s)
6.257	205 492	53 313	152 179
12.514	210 963	106 394	104 569
18.771	214 110	159 244	54 866
25.028	224 044	221 862	12 182
31.285	211 828	264 249	-52 421
37.542	227 418	316 40	-88 986
43.799	235 821	368 328	-132 507
50.056	237 631	420 020	-182 388
56.313	238 330	471 480	-233 150
Let see its graphic representation.

Figure 4. Radius, V Apparent Med, V theoretical and differential centered on the Solar System.

Now, we see that the Solar System rotates about itself in the same direction as the Milky Way.

Discounting the translation speed of the solar system, we will have:

Table 8. Differential of speeds and respective rotation

Radius	Diff. Theor. Vel.	Diff. Theor. Vel.	Difference
	m/s	m/s	m/s
-14 508	-166 687	152 179	
-9 037	-113 606	104 569	
-5 890	-60 756	54 866	
4 044	-8 138	12 182	
-8 172	44 249	-52 421	
7 418	96 404	-88 986	
15 821	148 328	-132 507	
17 631	200 020	-182 388	
18 330	251 480	-233 130	
Rotation (m/s/ly)	0.73485	8.44285	-7.708

Let’s see its graphic representation.

Figure 5. Radius, V Apparent Med, V theoretical and differential centered on the Solar System.

As it turns out, Milk Way has an apparent rotation of 0.73485 m s^{-1} ly, theoretical of 8.44285 m s^{-1} ly, t follows that the solar system has a same rotation to the Milk Way of more 7.7080 m s^{-1} ly. This rotation is what causes the discrepancy between measured and actual values.

3. Verification, Pinwheel Galaxy

We are going to look at another galaxy in order to verify if the theory pointed out is verifiable in other galaxies with Accretion Discs and arms.

For this purpose, we chose the Pinwheel galaxy, with a diameter of 170000 ly.

Pinwheel Galaxy has a rotation speed of 241000 m / s on its periphery

Figure 6. Pinwheel Galaxy, Marking of arms and 8quadrants

Table 9. Radius and number of laps

Green	Radius	Laps
	29 530	n0+0.375
	47 770	n0+0.250
	67 830	n0+0.125
	85 000	n0
Yellow	Radius	Laps
	20 340	n1+0.75
	24 660	n1+0.625
	29 560	n1+0.500
	34 530	n1+0.375
	39 450	n1+0.250
	43 830	n1+0.125
	49 200	n1
	n1=n0+0.24109	
Red	Radius	Laps
	25 420	n2+0.25
	42 000	n2+0.125
	60 000	n2
	n2+n0+0.17379	
Blue	Radius	Laps
	19720	n3+0.375
	24290	n3+0.250
	31410	n3+0.125
	38730	n3
	n3+n0+0.43795	
Magenta	Radius	Laps
	12000	n4+0.375
	19720	n4+0.250
	32740	n4+0.125
	64370	n4
3.1. Motion Analysis

We take for granted the information that it has a rotation speed of 241,000 m\(^{-1}\) at the outer edge of the galaxy. We were thus able to define the number of turns taken at each point in the galaxy.

For that purpose we must not forget that the galaxy is expanding, "Ref. [2]", "Ref. [3]", and "Ref. [4]" as such we should consider the average perimeter for the calculations.

Being:
- \(L\) - Total distance traveled by the stars at the outer edge of the galaxy.
- \(P_m\) - Average translation perimeter.
- \(I\) - Age of the universe 15,224,021,588 years.
- \(V_{Sun}\) - Speed of light.

\[L = I \times 365.2564 \times 24 \times 3600 \times V_{Sun}\]
(1.3)

\[L = 1,1579 \times 10^6 + 23 \text{ m}\]
(2.3)

\[P_m = \frac{2 \times \pi \times 85000 \times 365.2564 \times 24 \times 3600 \times C}{2}\]
(3.3)

\[P_m = \frac{2,5264 \times 10^6 + 21 \text{ m}}{2}\]
(4.3)

\[N^\circ \text{ laps} = \frac{L}{P_m} = 45,83075\]
(5.3)

Table 10. Radius, Average Perimeter and Rotation Velocity (E->10^6)

Radius	Perimeter	Average Perim.	Velocity
ly	m	m	m/s
8,500	5.0528E+20	2,5264E+20	23 556
17,000	1.0106E+21	5.0528E+20	47 232
25,500	1.5158E+21	7.5792E+20	71 030
34,000	2.0211E+21	1.0106E+21	94 948
42,500	2.5264E+21	1.2624E+21	118 988
51,000	3.0317E+21	1.5158E+21	143 148
59,500	3.5370E+21	1.7685E+21	167 430
68,000	4.0422E+21	2.0211E+21	191 832
76,500	4.5475E+21	2.2738E+21	216 356
85,000	5.0528E+21	2.5264E+21	241 000

3.2. Analysis of the Quantity of Matter and Its Distribution

Analysis of the quantity of matter and its distribution.

\[M = \frac{R \times V_{Sun}^2}{G}\]
(6.3)

Once again we verify that the mass distribution is very close to the proportionality to the radius cube and that its density is practically constant throughout the radius. In this galaxy we find that this density decreases from the periphery to the center by -4.47%.

The distribution of matter necessary to obtain the results we can see, is practically a density of constant, in volume proportion, distributed in the Accretion Disc and all spherical gravitational field.

Table 11. Radius, Travelled distance, n° of laps and Mass (E->10^6)

Radius	Travelled dist.	Nº of laps	Mass
ly	n m	Kg	
8,500	1,1317E+22	44,7952	6,6856E+38
17,000	2,2692E+22	44,91055	5,3760E+39
25,500	3,4126E+22	45,02557	1,8237E+40
34,000	4,5617E+22	45,14060	3,4750E+40
42,500	5,7167E+22	45,25562	8,5290E+40
51,000	6,8774E+22	45,37065	1,4814E+41
59,500	8,0440E+22	45,48567	2,3644E+41
68,000	9,2164E+22	45,60070	3,5472E+41
76,500	1,0395E+23	45,71572	5,0761E+41
85,000	1,1579E+23	45,83075	6,9982E+41

Table 12. Radius, Mass variation, Volume density, Density Accretion Disc with 5 ly thickness (E->10^6)

| Radius | Mass var. | M/(4/3πR^3) | M/(πR^2*(5ly)) |
|--------|-----------|-------------|----------------|----------------|
| ly | kg | Kg/m^3 | Kg/m^3 |
| 8,500 | 6,6856E+38| 3,0690E-22 | 3,4782E-18 |
| 17,000 | 4,7074E+39| 3,0848E-22 | 3,6922E-18 |
| 25,500 | 1,2861E+40| 3,1066E-22 | 1,0542E-17 |
| 34,000 | 2,5213E+40| 3,1165E-22 | 1,4128E-17 |
| 42,500 | 4,1846E+40| 3,1324E-22 | 1,7570E-17 |
| 51,000 | 6,2845E+40| 3,1483E-22 | 2,1408E-17 |
| 59,500 | 8,8296E+40| 3,1643E-22 | 2,5103E-17 |
| 68,000 | 1,1828E+41| 3,1803E-22 | 2,8835E-17 |
| 76,500 | 1,5289E+41| 3,1964E-22 | 3,2603E-17 |
| 85,000 | 1,9221E+41| 3,2125E-22 | 3,6408E-17 |

References

[1] José Luis Pereira Rebelo Fernandes, The Relativity of the Time with the Universal Density of Potential Energy at Different Stationary Reference Frames, International Journal of Physics. 2020, 8(1), 11-13.

[2] José Luis Pereira Rebelo Fernandes, The Universal Gravitational Variable, International Journal of Physics. 2020, 8(1), 35-38.

[3] José Luis Pereira Rebelo Fernandes, The Real Removal of the Moon from the Earth. The Age of the Universe, International Journal of Physics. 2020, 8(3), 114-119.

[4] José Luis Pereira Rebelo Fernandes, The Variation of the Atomic Radius with the Universal Density of Potential Energy, International Journal of Physics. 2020, 8(4), 127-133.

[5] Boehle, A.; Ghez, A. M.; Schödel, R.; Meyer, L.; Yelda, S.; Albers, S.; Martínez, G. D.; Becklin, E. E.; Do, T.; Lu, J. R.; Matthews, K.; Morris, M. R.; Sitarski, B.; Witze, G. (October 3, 2016). “An Improved Distance and Mass Estimate for SGR A* from a Multistar Orbit Analysis” (PDF). The Astrophysical Journal. 830 (1): 17.

[6] David Freeman (May 25, 2018). “The Milky Way galaxy may be much bigger than we thought” (Press release). CNBC. Archived from the original on August 13, 2018. Retrieved August 13, 2018.

[7] Staff (July 27, 2017). “Milky Way's origins are not what they seem”. Phys.org. Archived from the original on July 27, 2017. Retrieved July 27, 2017.

[8] Yin, J.; Hou, J.L; Prantzos, N.; Boissier, S.; et al. (2009). “Milky Way versus Andromeda: a tale of two disks”. Astronomy and Astrophysics. 505 (2): 497-508.

[9] Gillessen, Stefan; Plewa, Philipp; Eisenhauer, Frank; Sari, Re'em; Waisberg, Idel; Habibi, Maryam; Pfuhl, Oliver; George, Elizabeth; Dexter, Jason; von Fellenberg, Sebastiano; Ott, Thomas; Genzel,
Reinhard (November 28, 2016). “An Update on Monitoring Stellar Orbits in the Galactic Center”. The Astrophysical Journal. 837 (1): 30.

[10] Croswell, Ken (March 23, 2020). “Astronomers have found the edge of the Milky Way at last”. ScienceNews. Archived from the original on March 24, 2020. Retrieved March 27, 2020.

[11] Taylor, J.H., “Binary Pulsars and Relativistic Gravity”, Rev. Mod. Phys., 66, 711-719, (1994).

[12] Shappee, Benjamin; Stanek, Kris (June 2011). “A New Cepheid Distance to the Giant Spiral M101 Based on Image Subtraction of Hubble Space Telescope/Advanced Camera for Surveys Observations”. Astrophysical Journal. 733 (2): 124.

[13] Armando, Gil de Paz; Boissier; Madore; Seibert; et al. (2007). “The GALEX Ultraviolet Atlas of Nearby Galaxies”. Astrophysical Journal Supplement. 173 (2): 185-255.

[14] Francis, Matthew (22 March 2013). “First Planck results: the Universe is still weird and interesting”. Ars Technica.

[15] Kuijken, K.; Gilmore, G. (July 1989). “The Mass Distribution in the Galactic Disc - Part III - the Local Volume Mass Density” (PDF). Monthly Notices of the Royal Astronomical Society. 239 (2): 651-664.

[16] Babcock, Horace W. (1939). “The rotation of the Andromeda Nebula”. Lick Observatory Bulletin. 19: 41-51.

[17] Stonebraker, Alan (3 January 2014). “Synopsis: Dark-Matter Wind Sways through the Seasons”. Physics - Synopses. American Physical Society.

© The Author(s) 2021. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).