Differential Evolution-based Neural Network Training Incorporating a Centroid-based Strategy and Dynamic Opposition-based Learning

Seyed Jalaleddin Mousavirad
Department of Computer Engineering
Hakim Sabzevari University
Sabzevar, Iran

Diego Oliva, Salvador Hinojosa
Depto. de Ciencias Computacionales
Universidad de Guadalajara
Guadalajara, Mexico

Gerald Schaefer
Department of Computer Science
Loughborough University
Loughborough, U.K.

Abstract—Training multi-layer neural networks (MLNNs), a challenging task, involves finding appropriate weights and biases. MLNN training is important since the performance of MLNNs is mainly dependent on these network parameters. However, conventional algorithms such as gradient-based methods, while extensively used for MLNN training, suffer from drawbacks such as a tendency to getting stuck in local optima. Population-based metaheuristic algorithms can be used to overcome these problems. In this paper, we propose a novel MLNN training algorithm, CenDE-DOBL, that is based on differential evolution (DE), a centroid-based strategy (Cen-S), and dynamic opposition-based learning (DOBL). The Cen-S approach employs the centroid of the best individuals as a member of population, while other members are updated using standard crossover and mutation operators. This improves exploitation since the new member is obtained based on the best individuals, while the employed DOBL strategy, which uses the opposite of an individual, leads to enhanced exploration. Our extensive experiments compare CenDE-DOBL to 26 conventional and population-based algorithms and confirm it to provide excellent MLNN training performance.

Index Terms—neural network training, optimisation, differential evolution, center-based strategy, dynamic opposition-based learning.

I. INTRODUCTION

Artificial neural networks (ANNs) are popular pattern recognition techniques to deal with complicated classification and regression problems in various domains, including food quality [1], [2], medicine [3], [4], and business [5].

Multi-layer neural networks (MLNNs), which are extensively employed, generally have three types of layers, input, hidden, and output layers, while each connection has a specific weight that ascertains its strength. Training an MLNN means finding appropriate weights for the connections, and is a challenging and important task since the performance of an MLNN is directly related to these parameters [6].

Gradient-based approaches such as back-propagation are widely used for MLNN training, but have drawbacks such as being sensitive to the initial weights and a tendency to get stuck in local optima. Population-based metaheuristic (PBMH) algorithms such as particle swarm optimisation (PSO) [7], differential evolution [8], and human mental search (HMS) [9], [10] are capable of overcoming these problems. PBMHs are problem-independent optimisation algorithms that find an optimal solution using a population of candidate solutions and some specific operators. Nowadays, these algorithms are extensively employed for MLNN training due to their simplicity, flexibility, and ability to escape local optima. PBMH-based training algorithms have been introduced using particle swarm optimisation (PSO) [11]–[13], artificial bee colony (ABC) [14], imperialist competitive algorithm (ICA) [15]–[17], firefly algorithm (FA) [18], grey wolf optimiser (GWO) [19], [20], ant lion optimiser [21], dragonfly algorithm (DA) [22], sine cosine algorithm [23], whale optimisation algorithm (WOA) [24], grasshopper optimisation algorithm [25], and salp swarm algorithm (SSA) [26], among others.

Differential evolution (DE) [8] is an effective PBMH algorithm with demonstrated excellent performance in solving complex optimisation problems [27]–[29]. DE is based on mutation, crossover, and selection operators, where mutation is responsible for generating a mutant individual based on scaled differences among individuals, crossover combines the mutant individual with the parent one, and selection carries over the better individuals to the next population.

DE has shown satisfactory performance in finding optimal weights in MLNNs. [30] proposes a DE-based algorithm and compares it with gradient-based algorithms, indicating DE to achieve higher accuracy, while [31] employs a DE algorithm with multiple trial vectors for MLNN training. [32] proposes a novel training algorithm based on quasi-opposition-based learning, showing the improved DE to obtain better performance in classification problems. Recently, [33] introduces a region-based DE algorithm combined with quasi-opposition-based learning, RDE-OP, for MLNN training. RDE-OP benefits from a clustering algorithm to partition the current population so that each cluster centre acts as a crossover operator.

In this paper, we propose a novel DE-based training algorithm, CenDE-DOBL, that is based on a centroid-based strategy incorporating opposition-based learning. In our pro-
posed algorithm, a centroid individual is injected into the current population. Since the centroid individual is based on the best individuals, this improves the exploitation ability of the algorithm. On the other hand, dynamic opposition-based learning (DOBL) is incorporated to further enhance the exploration ability of the algorithm. We perform an extensive set of experiments, comparing CenDE-DOBL with 26 conventional and population-based algorithms and demonstrate it to give excellent MLNN training performance and to outperform the other methods.

The remainder of the paper is organised as follows. Section II describes some background on differential evolution and opposition-based learning. Section III then details our proposed CenDE-DOBL algorithm, while experimental results are presented in Section IV. Finally, Section V concludes the paper.

II. BACKGROUND

A. Differential Evolution

Differential evolution (DE) [8] is an effective PBMH algorithm which has shown remarkable performance in solving different complex optimisation problems [34]–[36]. DE commences with \(N_p \) individuals generated by a uniform distribution, and has three main operators: mutation, crossover, and selection. Mutation creates a vector, called mutant vector, as

\[
\tilde{x}_i = x_{r1} + F \cdot (x_{r2} - x_{r3}),
\]

where \(x_{r1}, x_{r2}, \) and \(x_{r3} \) are three distinct randomly selected individuals, and \(F \) is a scaling factor.

Crossover combines the mutant and target vectors. A popular crossover operator is binomial crossover, defined as

\[
u_{i,j} = \begin{cases} v_{i,j} & \text{rand}(0, 1) \leq CR \text{ or } j == j_{\text{rand}}, \\ x_{i,j} & \text{otherwise} \end{cases},
\]

where \(i = 1, ..., N_P, \) \(j = 1, ..., D, \) \(CR \) is the crossover rate, and \(j_{\text{rand}} \) is a random number in \([1; N_P]\).

Finally, the selection operator is responsible for choosing the better individual from the trial and target vectors.

B. Opposition-based Learning

Opposition-based learning (OBL) [37] aims to yield improved performance by employing opposition individuals. Assume that \(x = [x_1, x_2, ..., x_N] \) is a number in an \(N \)-dimensional space. The corresponding opposite number of \(x \) is then defined as

\[
\hat{x}_i = a_i + b_i - x_i,
\]

where \(a_i \) and \(b_i \) are the lower and upper bounds of the search space.

Dynamic quasi-opposition-based learning (DOBL) [38] is a variant of OBL employing quasi-opposition numbers, and is dynamic since the maximum and minimum values of the individuals are employed to create an opposite individual. [38] shows that in a black-box optimisation quasi-opposition numbers have a higher chance of getting closer to the optimum in comparison to opposite numbers. The quasi-opposite number of \(x \) is obtained as

\[
x_{i} = \text{rand}\left[\frac{(a_i + b_i)}{2}, (a_i + b_i - x_i)\right],
\]

where \(\text{rand}[m, n] \) is a uniform random number between \(m \) and \(n \).

III. CENDE-DOBL ALGORITHM

Neurons are the main components of MLNNs. While every neuron performs a minor task, their co-operation enables a neural network to handle complex pattern recognition tasks. In general, an MLNN has three types of layers, an input layer, hidden layers, and an output layer. Each connection between two neurons has a specific weight that determines the strength of each connection, while neurons also have bias terms. MLNN training means finding appropriate weights and biases and is a challenging task.

Our proposed CenDE-DOBL algorithm for MLNN training is based on a combination of a centroid-based strategy and a dynamic opposition-based learning strategy with the former improving exploitation and the latter exploration. In the following, we first describe the main components of CenDE-DOBL and then explain how these fit together to form the algorithm.

A. Centroid-based Strategy

Centre-based sampling is a concept based on the centroid of individuals to improve a metaheuristic algorithm [27]. [39], [40] shows that, based on Monte-Carlo simulation, the probability of individuals being closer to an unknown solution is higher towards the centre of the search space compared to randomly-located individuals.

Inspired by [41], CenDE-DOBL benefits from a centroid-based individual that is created based on the \(N \) best individuals. In our proposed algorithm, all individuals except one are updated based on standard operators, while the last individual is the centroid of the \(N \) best individuals, defined as

\[
x_{\text{center}} = \frac{x_{b1} + ... + x_{bN}}{N},
\]

where \(x_{bi} \) is the \(i \)-th best individual.

Fig. 1 visualises the concept for a 1-D problem with \(N_p = 6 \) where 5 individuals are created using the standard operators, and the three best individuals, \(\overline{x}_2, \overline{x}_3, \) and \(\overline{x}_5 \) with positions at \([3, 5, 8]\) are used to create the centroid-based individual \(x_{\text{center}} \) at 5.33.

It is worthwhile to mention that (1) the centroid-based individual does not require any additional function evaluations, and (2) the centroid-based individual is based on the best individuals and, therefore, enhances exploitation.

B. Opposition-based Strategy

CenDE-DOBL uses an OBL scheme in two ways, for initialisation and for generating jumps. Algorithm 1 shows the employed OBL strategy in form of pseudo-code.
Algorithm 1 Pseudo-code of OBL(D, N_P, Pop, L, U) algorithm

1: procedure OBL
2: // Variables: D: dimensionality, N_P: population size, Pop: initial population, L: lower bound, U: upper bound
3: for i from 0 to N_P do
4: for j from 0 to D do
5: $\hat{O}Pop(i, j) = \text{rand}[(L(i,j)+U(i,j))/2, (L_i,j+U_i,j-Pop(i,j))]$
6: end for
7: end for
8: Evaluate objective function value for each individual based on Eq. (8)
9: $Pop \leftarrow \text{Select} N_P \text{ best individuals from set } \{Pop, OPop\}$ as initial population
10: end procedure

After the initial population is generated, a quasi-opposition-based population ($OPop$) is generated using Eq. (4). We then select the N_P best individuals from the union of the initial population and the opposition-based population.

After generating new individuals using mutation and crossover operators, the proposed algorithm generates a quasi-opposition-based population based on a jumping rate J_r between 0 and 0.4 [38]. Then, a new population is generated based on the best individuals from the current population and the quasi-opposition-based population. The OBL strategy in this step is dynamic since the maximum and minimum values of the individuals are employed to create an opposite individual as

$$\hat{x}_{i,j} = \min_{j}^P + \max_{j}^P - x_{i,j} \text{ for } i = 1, 2, ..., N_P \text{ and } j = 1, 2, ..., D,$$

where \min_{j}^P and \max_{j}^P indicate the minimum and maximum of the population in the j-th dimension.

C. DE/local-to-best/1 Strategy

Instead of the standard mutation operator, we employ a DE/local-to-best/1 strategy in which the base vector is a combination of one randomly-selected individual and the best individual of the previous population as

$$v_i = x_i + F \ast (x_{best} - x_i) + F \ast (x_{r2} - x_{r3}),$$

where x_i and x_{best} are the i-th and the best member of the old population, x_{r1} and x_{r2} are two different randomly-selected individuals, and F is a scaling factor. This approach tries to strike a balance between robustness and fast convergence.

D. Encoding Strategy

CenDE-DOBL employs a real-valued encoding strategy to encode the connection weights and biases. Consequently, each individual’s length is equal to the total number of weights and bias terms. Fig. 2 illustrates the encoding strategy for a sample MLNN with one neuron in the single hidden layer.

E. Objective Function

We use an objective function based on classification error defined as

$$E = \frac{100}{P} \sum_{p=1}^{P} \xi(x_p),$$

with

$$\xi(x_p) = \begin{cases} 1 & \text{if } o_p \neq d_p \\ 0 & \text{otherwise} \end{cases},$$

where d_p and o_p are the desired and predicted output, respectively, of input x_p, the p-th of P test samples. The aim of CenDE-DOBL is to find weights and biases so as to minimise the classification error.

F. Algorithm

While OBL increases the exploration of the algorithm, the centroid-based strategy enhances its exploitation. Switching between these two schemes is based on a probability, meaning that in each iteration, only one of these is performed. The whole CenDE-DOBL algorithm is given in Algorithm 2 in the form of pseudo-code.

![Fig. 1. Visualisation of centroid-based candidate solution for a one-dimensional problem.](image1)

![Fig. 2. Illustration of encoding strategy. Top: network, bottom: resulting structure of individual.](image2)
Algorithm 2: Pseudo-code of CenDE-DOBL(D, MaxNFE, N_P, J_r, N, L, U) algorithm for MLNN training.

1. procedure CenDE-DOBL:
2. \hspace{0.5cm} // Variables: D: dimensionality, MaxNFE: maximum number of function evaluations, N_P: population size, J_r: jumping rate, N: number of best solutions, L: lower bound, U: upper bound
3. \hspace{0.5cm} Generate initial population Pop randomly based on the encoding strategy introduced in Section III-D
4. \hspace{0.5cm} Call OBL(D, N_P, Pop, L, U) algorithm for generating a new population based on DOBL strategy
5. \hspace{0.5cm} Calculate objective function value for each individual based on Eq. (8)
6. \hspace{0.5cm} while $\text{NFE} < \text{NFE}_{\text{max}}$ do
7. \hspace{1.0cm} Select three parents, x_{r1} and x_{r2}, randomly from the current population, with $x_{r1} \neq x_{r2}$
8. \hspace{1.0cm} \hspace{0.5cm} $v_i = x_i + F \cdot (x_{\text{best}} - x_i) + F \cdot (x_{r1} - x_{r2})$
9. \hspace{1.0cm} \hspace{0.5cm} for j from 0 to D do
10. \hspace{1.0cm} \hspace{1.0cm} \hspace{0.5cm} if $\text{rand}[0, 1] < C_R$ or $j == \text{rand}$ then
11. \hspace{1.0cm} \hspace{1.0cm} \hspace{1.0cm} \hspace{0.5cm} $u_{i,j} = v_{i,j}$
12. \hspace{1.0cm} \hspace{1.0cm} \hspace{0.5cm} else
13. \hspace{1.0cm} \hspace{1.0cm} \hspace{1.0cm} \hspace{0.5cm} $u_{i,j} = x_{i,j}$
14. \hspace{1.0cm} \hspace{1.0cm} end if
15. \hspace{1.0cm} end for
16. \hspace{1.0cm} Calculate objective function value of u_i based on Eq. (8)
17. \hspace{1.0cm} if $f(u_i) < f(x_i)$ then
18. \hspace{1.0cm} \hspace{0.5cm} $\bar{x} \leftarrow u_i$
19. \hspace{1.0cm} else
20. \hspace{1.0cm} \hspace{0.5cm} $\bar{x} \leftarrow x_i$
21. \hspace{1.0cm} end if
22. \hspace{1.0cm} end if
23. \hspace{1.0cm} if $\text{rand}(0, 1) < J_r$ then
24. \hspace{1.0cm} \hspace{0.5cm} $L_{\text{New}} = \text{minimum of all individuals}$
25. \hspace{1.0cm} \hspace{0.5cm} $U_{\text{New}} = \text{maximum of all individuals}$
26. \hspace{1.0cm} \hspace{0.5cm} Call OBL(D, N_P, Pop, L_{New}, U_{New}) algorithm
27. \hspace{1.0cm} else
28. \hspace{1.0cm} \hspace{0.5cm} Select N best individuals
29. \hspace{1.0cm} \hspace{0.5cm} $\text{Pop}(N_P) = \frac{x_{\text{best}} + x_{\text{rand}}}{N} + x_{\text{rand}}$
30. \hspace{1.0cm} end if
31. end while
32. $x^* \leftarrow \text{the best individual in the population}$
33. end procedure

IV. EXPERIMENTAL RESULTS

To assess our proposed CenDE-DOBL algorithm, we conduct a set of experiments with different datasets from different domains with diverse characteristics from the UCI machine learning repository\footnote{https://archive.ics.uci.edu/ml/index.php} namely

- **Iris**: this dataset is one of the most commonly used datasets in the literature. It includes 150 instances, 4 features, and 3 classes. One class is linearly separable from two others, while the latter are not linearly separable.
- **Breast Cancer**: this dataset contains 699 instances placed in 2 classes with 9 features such as menopause and tumour size.
- **Liver**: this clinical dataset from BUPA Medical Research Ltd. has 345 samples, 2 classes and 7 features.
- **Pima**: this binary classification dataset is a challenging problem with 768 instances and 8 features.
- **Seed**: this agricultural dataset includes seven geometrical properties of kernels such as compactness, perimeter, and area belonging to three distinct wheat classes with 210 instances.
- **Vertebral**: this clinical dataset includes biomechanical features such as pelvic incidence and pelvic tilt employed to classify orthopaedic patients into 3 classes, normal, disk hernia, and spondylolysis.

Since our paper does not focus on the best MLNN structure, we follow\cite{12, 17} and set the number of neurons in the hidden layer to $2D + 1$ where D is the number of input features. Therefore, the number of connection weights for Iris, Cancer, Liver, Pima, Seed, and Vertebral datasets are 43, 210, 105, 171, 136, and 105, respectively. We use k-fold cross-validation, with $k = 10$, for evaluation, where the dataset is divided into k folds, one fold for testing and the others for training. This process is repeated k times so that each fold is employed once as test data.

We compare CenDE-DOBL with an extensive set of algorithms including both conventional and population-based algorithms. The number of function evaluations for all population-based algorithms is set to 25,000, similar to the number of iterations for all conventional algorithms. The population size for all population-based algorithms is set to 50. For CenDE-DOBL, the crossover probability, scaling factor, number of best individuals, and jumping rate are set to 0.9, 0.5, 3, and 0.3, respectively. For the other algorithms, we employ default parameters values from the cited publications.

In the first experiment, we compare our algorithm with DE, QODE\cite{32}, and RDE-OP\cite{33}. We select DE since our proposed algorithm is based on DE, and QODE and RDE-OP because they are among the most recent DE-based training algorithms. Table I indicates the results in terms of mean and standard deviation as well as their ranking and the resulting average rank.

As we can see from there, CenDE-DOBL gives the best results for 5 of the 6 cases and is ranked second for the remaining one. On the Iris dataset, our algorithm obtains the first rank with a classification accuracy improvement of 2% or more compared to the other algorithms. On the Cancer dataset, RDE-OP gives slightly better results, by 0.14%, than CenDE-DOBL. CenDE-DOBL outperforms the other algorithms by over 1.9% on the Liver dataset, while for the Pima dataset, DE, QODE, and RDE-OP achieve accuracies of 76.94%, 67.62%, and 67.62%, respectively in comparison to 81.90% for CenDE-DOBL. An even greater improvement can be seen for the Seed dataset, where CenDE-DOBL obtains a mean accuracy of 90.95%, while the next-best algorithm (DE) yields only 70.00%. Finally, on the Vertebral dataset, CenDE-DOBL and QODE are tied to give the best results, however the standard deviation for CenDE-DOBL is smaller, indicating more robust performance.

In the next experiment, we compare CenDE-DOBL with 12 conventional algorithms, namely gradient descent with momentum backpropagation (GDM)\cite{42}, gradient descent with adaptive learning rate backpropagation (GDA)\cite{43}.

TABLE I

10CV classification accuracy for all datasets for DE, QODE, and RDE-OP in comparison to CenDE-DOBL.

	Iris	Cancer	Liver	Pima	Seed	Vertebral	avg. rank
DE	mean	92.00	97.36	67.81	76.94	70.00	85.16
	stddev	5.26	2.06	8.21	4.97	11.01	
	rank	4	4	4	2	4	3.67
QODE	mean	95.33	98.10	76.82	79.55	67.62	88.39
	stddev	6.32	0.99	9.46	4.95	3.01	
	rank	3	3	2	1.5	1.5	2.58
RDE-OP	mean	96.67	98.82	75.63	80.07	67.62	86.71
	stddev	6.48	1.67	6.45	5.73	4.92	
	rank	2.00	1.00	3.00	2.00	3.50	4.42
CenDE-DOBL	mean	98.67	98.68	78.79	81.90	90.95	88.39
	stddev	2.81	1.08	8.64	3.17	10.15	5.09
	rank	1	2	1	1	1	1.5

In this paper, we have proposed a novel differential evolution-based training algorithm, CenDE-DOBL, to find optimal weights in multi-layer neural networks. Our proposed algorithm benefits from a centroid-based strategy where a centroid individual is injected into the current population, and employs opposition-based learning in two ways, during initialisation and for generating jumps, while for further improvement a DE/local-to-best/1 strategy is used for mutation. Extensive experiments on diverse classification problems and in comparison to 26 conventional and population-based training algorithms, convincingly demonstrate CenDE-DOBL to yield excellent performance.

In future, we intend to extend our approach to other types of neural networks including deep belief networks (DBNNs). Since DBNNs have a plethora of weights, the algorithm will need to be adapted to tackle this. In addition, our algorithm can be extended to optimise both weights and network structure simultaneously.

REFERENCES

[1] S. Mousavirad, F. Akhlaghian, and K. Mollaazade, “Classification of rice varieties using optimal color and texture features and BP neural networks,” in 7th Iranian Conference on Machine Vision and Image Processing, 2011, pp. 1–5.

[2] S. J. MousaviRad, K. Rezaee, and K. Nasri, “A new method for identification of iranian rice kernel varieties using optimal morphological features and an ensemble classifier by image processing,” Majlesi Journal of Multimedia Processing, vol. 1, 2012.

[3] H. Khastavaneh and H. Ebrahimpour-Komleh, “Neural network-based learning kernel for automatic segmentation of multiple sclerosis lesions on magnetic resonance images,” Journal of Biomedical Physics & Engineering, vol. 7, no. 2, p. 155, 2017.

[4] Z. Xiang, M. Tang, H. Yang, and C. Tan, “Application of convolutional neural network algorithm in diagnosis of chronic cough and tongue in children with traditional chinese medicine,” Journal of Medical Imaging and Health Informatics, vol. 10, no. 2, pp. 401–409, 2020.

[5] W. Heo, J. M. Lee, N. Park, and J. E. Grable, “Using artificial neural network techniques to improve the description and prediction of household financial ratios,” Journal of Behavioral and Experimental Finance, p. 100273, 2020.

[6] S. J. Mousavirad, G. Schaefer, S. M. J. Jalali, and J. Korovin, “A benchmark of recent population-based metaheuristic algorithms for multi-layer neural network training,” in Genetic and Evolutionary Computation Conference Companion, 2020, pp. 1402–1408.

[7] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in IEEE International Conference on Evolutionary Computation, 1998, pp. 69–73.

[8] R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.
Algorithm	Iris	Cancer	Liver	Pima	Seed	Vertebral	avg. rank
GDM	92.00	92.99	59.47	67.98	47.62	76.13	12.17
	8.20	7.60	15.05	13.03	29.95	9.15	
	12	11	12	13	13	12	
GDA	94.67	95.90	38.24	75.91	82.38	80.65	10.25
	5.26	2.04	6.53	4.52	6.75	5.27	
	10	10	13	9	9.5	10	
GDMA	82.67	90.47	60.66	73.20	80.00	72.90	12.33
	16.98	5.94	13.99	6.74	16.47	17.62	
	13	13	11	12	12	13	
CG-FR	95.33	96.19	60.86	76.69	86.67	83.87	6.50
	4.50	1.72	8.29	6.20	9.73	7.60	
	7.5	7	10	5	5.5	4	
CG-PR	96.00	97.07	65.18	75.12	85.24	80.97	6.92
	6.44	1.39	8.47	3.57	9.90	4.92	
	4	2	8	11	8	5	
CG-PBR	94.00	96.49	67.18	76.04	88.10	82.90	5.92
	5.84	2.95	9.09	5.06	7.86	6.09	
	11	5	3	7	3.5	6	
BFGS	95.33	96.92	65.22	76.70	86.67	84.19	5.00
	4.50	1.28	7.06	3.11	9.73	5.98	
	7.5	3	7	4	5.5	3	
LM	96.67	96.04	65.55	76.04	88.10	83.55	5.58
	4.71	2.51	10.44	4.66	7.53	7.04	
	2	9	6	5	3.5	5	
OSS	95.33	96.34	64.89	76.38	86.67	80.97	7.33
	4.50	2.21	8.01	4.30	5.85	8.93	
	7.5	6	9	6	7	8	
RP	95.33	96.0526	65.82	76.83	80.48	78.39	7.58
	5.49	2.47	5.21	4.50	9.38	5.05	
	7.5	8	5	3	11	11	
SCG	96.00	96.03	66.97	78.32	82.38	82.26	5.08
	8.43	2.09	9.60	3.05	9.54	8.50	
	4	4	4	2	9.5	7	
BR	96.00	91.81	70.71	75.89	90.95	84.52	5.25
	7.17	3.82	6.93	5.37	7.60	6.94	
	4	12	2	10	1.5	2	
CenDE-DOBL	98.67	98.68	78.79	81.90	90.95	88.39	1.08
	2.81	1.08	8.64	3.17	10.15	5.09	
	1	1	1	1	1.5	1	

TABLE II
10CV classification accuracy for all datasets for conventional ANN training algorithms in comparison to CenDE-DOBL.
neural networks using the whale optimization algorithm,” *Soft Computing*, vol. 22, no. 1, pp. 1–15, 2018.

[25] A. A. Heidari, I. Faris, I. Aljarah, and S. Mirjalili, “An efficient hybrid multilayer perceptron neural network with grasshopper optimization,” *Soft Computing*, vol. 23, no. 17, pp. 7941–7958, 2019.

[26] A. A. Abusnaina, S. Ahmad, R. Jarrar, and M. Mafarja, “Training neural networks using salp swarm algorithm for pattern classification,” in *Proceedings of the 2nd International Conference on Future Networks and Distributed Systems*, 2018, pp. 1–6.

[27] S. J. Mousavirad, A. Asilian Bidgoli, and S. Rahnamayan, “Tackling deceptive optimization problems using opposition-based DE with center-based Latin hypercube initialization,” in *14th International Conference on Computer Science and Education*, 2019.

[28] Z. Cai, W. Gong, C. X. Ling, and H. Zhang, “A clustering-based differential evolution for global optimization,” *Applied Soft Computing*, vol. 11, no. 1, pp. 1363–1379, 2011.

[29] S. J. Mousavirad and S. Rahnamayan, “Differential evolution algorithm based on a competition scheme,” in *14th International Conference on Computer Science and Education*, 2019.

[30] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, “Differential evolution training algorithm for feed-forward neural networks,” *Neural Processing Letters*, vol. 17, no. 1, pp. 93–105, 2003.

[31] A. Slowik, “Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training,” *IEEE Transactions on Industrial Electronics*, vol. 58, no. 8, pp. 3160–3167, 2010.

[32] S. J. Mousavirad and S. Rahnamayan, “Evolving feedforward neural networks using a quasi-opposition-based differential evolution for data classification,” in *IEEE Symposium Series on Computational Intelligence*, 2020.

[33] S. J. Mousavirad, G. Schafer, I. Korovin, and D. Oliva, “RDE-OP: A region-based differential evolution algorithm incorporation opposition-based learning for optimising the learning process of multi-layer neural networks,” in *24th International Conference on the Applications of Evolutionary Computation*, 2021.

[34] S. Das and A. Konar, “Automatic image pixel clustering with an improved differential evolution,” *Applied Soft Computing*, vol. 9, no. 1, pp. 226–236, 2009.

[35] S. J. Mousavirad, G. Schafer, and H. Ebrahimpour-Komleh, “A benchmark of population-based metaheuristic algorithms for high-dimensional multi-level image thresholding,” in *IEEE Congress on Evolutionary Computation*, 2019, pp. 2394–2401.

[36] I. Fister, D. Fister, S. Deb, U. Mlakar, and J. Brest, “Post hoc analysis of sport performance with differential evolution,” *Neural Computing and Applications*, pp. 1–10, 2018.

[37] H. R. Tizhoosh, “Opposition-based learning: a new scheme for machine intelligence,” in *International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce*, vol. 1, 2005, pp. 695–701.

[38] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Quasi-oppositional differential evolution,” in *IEEE Congress on Evolutionary Computation*, 2007, pp. 2229–2236.

[39] S. J. Mousavirad and S. Rahnamayan, “Cenpsao: A novel center-based particle swarm optimization algorithm for large-scale optimization,” in *International Conference on Systems, Man, and Cybernetics*, 2020.

[40] S. Rahnamayan and G. G. Wang, “Center-based sampling for population-based algorithms,” in *IEEE Congress on Evolutionary Computation*, IEEE, 2009, pp. 933–938.

[41] S. J. Mousavirad and S. Rahnamayan, “A novel center-based differential evolution algorithm,” in *Congress on Evolutionary Computation*, IEEE, 2020.

TABLE III

Algorithm	Iris	Cancer	Liver	Pima	Seed	Vertebral	avg. rank
PO	mean	96.00	97.95	73.36	77.60	78.10	86.45
	stddev	5.62	1.72	6.28	5.24	11.92	8.02
	rank	6.75	5.84	1.83	7.01	5.40	7.03
ABC	mean	84.67	97.95	70.75	78.26	72.38	82.90
	stddev	9.45	1.03	6.47	4.45	8.03	5.70
	rank	12	5	7	5	8.5	7
ICA	mean	97.67	97.22	72.39	79.42	84.76	86.77
	stddev	4.71	1.46	11.99	5.77	10.24	4.67
	rank	4.00	10.00	5.00	2.00	2.00	2.00
FA	mean	92.00	97.66	73.55	78.90	72.38	85.81
	stddev	5.26	1.97	12.64	4.35	14.69	6.12
	rank	9	8	2	4	8.5	4.5
GWO	mean	93.33	98.10	73.01	67.45	78.10	81.94
	stddev	4.44	1.39	9.74	2.79	10.09	7.93
	rank	7	2	4	12	5	10.5
ALO	mean	94.67	98.10	71.06	78.12	80.48	85.48
	stddev	2.81	0.99	6.20	5.89	8.53	4.37
	rank	6	3	6	4	6	5.17
DA	mean	92.67	97.51	70.42	77.85	70.48	81.94
	stddev	5.84	1.83	7.01	5.40	7.03	5.31
	rank	8	9	9	7	11.5	10.5
SCA	mean	90.67	97.08	65.50	74.47	71.43	82.26
	stddev	7.83	1.82	5.96	4.20	8.98	10.67
	rank	10	11	11	11	10	9
WOA	mean	87.33	97.07	62.87	76.35	70.48	79.30
	stddev	8.58	1.96	6.40	3.65	8.92	10.99
	rank	11	12	12	10	11.5	12
GOA	mean	98.00	98.09	70.73	79.03	84.29	82.58
	stddev	3.22	1.84	6.45	3.72	12.10	6.49
	rank	2.5	4	8	3	3	8
SSA	mean	98.00	97.80	69.85	77.34	77.62	83.81
	stddev	3.22	2.42	7.78	6.50	9.27	7.16
	rank	2.5	7	10	9	10	4.5
CenDE-DOBL	mean	98.67	98.68	78.79	81.90	90.95	88.39
	stddev	2.81	1.08	8.64	3.17	10.15	5.09
	rank	1	1	1	1	1	1

avg. rank
V. Phansalkar and P. Sastry, “Analysis of the back-propagation algorithm with momentum,” *IEEE Transactions on Neural Networks*, vol. 5, no. 3, pp. 505–506, 1994.

H. D. Beale, H. B. Demuth, and M. Hagan, “Neural network design,” *Pws, Boston*, 1996.

L. Scales, *Introduction to non-linear optimization*. Macmillan International Higher Education, 1985.

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” *The Computer Journal*, vol. 7, no. 2, pp. 149–154, 1964.

G. H. Golub and Q. Ye, “Inexact preconditioned conjugate gradient method with inner-outer iteration,” *SIAM Journal on Scientific Computing*, vol. 21, no. 4, pp. 1305–1320, 1999.

Y. Notay, “Flexible conjugate gradients,” *SIAM Journal on Scientific Computing*, vol. 22, no. 4, pp. 1444–1460, 2000.

M. J. D. Powell, “Restart procedures for the conjugate gradient method,” *Mathematical Programming*, vol. 12, no. 1, pp. 241–254, 1977.

R. L. Watrous, “Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization,” 1988.

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” *Quarterly of Applied Mathematics*, vol. 2, no. 2, pp. 164–168, 1944.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” *Journal of the Society for Industrial and Applied Mathematics*, vol. 11, no. 2, pp. 431–441, 1963.

R. Battiti, “First-and second-order methods for learning: between steepest descent and newton’s method,” *Neural Computation*, vol. 4, no. 2, pp. 141–166, 1992.

M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation learning: The RPROP algorithm,” in *IEEE International Conference on Neural Networks*. IEEE, 1993, pp. 586–591.

M. F. Møller, A scaled conjugate gradient algorithm for fast supervised learning. Aarhus University, Computer Science Department, 1990.

F. D. Foresee and M. T. Hagan, “Gauss-newton approximation to bayesian learning,” in *International Conference on Neural Networks*, vol. 3, 1997, pp. 1930–1935.

D. Bairathi and D. Gopalani, “Salp swarm algorithm (SSA) for training feed-forward neural networks.” in *Soft Computing for Problem Solving*. Springer, 2019, pp. 521–534.