The Generating Function of the Embedding Capacity for 4-dimensional Symplectic Ellipsoids

David Bauer

Abstract

Quite recently, McDuff showed that the existence of a symplectic embedding of one four-dimensional ellipsoid into another can be established by comparing their corresponding sequences of ECH capacities. In this note we show that these sequences can be encoded in a generating function, which gives several new equivalent formulations of McDuff’s theorem.

1. Embedding 4-dimensional Symplectic Ellipsoids. We consider ellipsoids

$$E(a, b) := \left\{ z \in \mathbb{C}^2 : \frac{|z_1|^2}{a} + \frac{|z_2|^2}{b} \leq 1 \right\}$$

equipped with the standard symplectic structure $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$ of Euclidean space \mathbb{R}^4. The embedding problem in symplectic geometry asks if for given integers $a, b, c, d > 0$ there exists a symplectic embedding $E(a, b) \hookrightarrow E(c, d)$. Since each such embedding preserves the volume, an immediate obstruction for existence is $ab \leq cd$.

There are further obstructions which have their origin in embedded contact homology. Namely, define $N(a, b)$ to be the sequence of numbers from the set

$$S(a, b) := \{ ka + lb : k, l \in \mathbb{Z} \text{ and } k, l \geq 0 \}$$
aranged in nondecreasing order with repetitions. For example, we have

$$N(2, 3) = (0, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, \ldots).$$

For sequences of numbers A and B define a partial ordering by saying $A \preceq B$ if, for all $n \geq 0$, the n-th entry of A is not larger than the n-th entry of B. Hutchings showed in [9] that an obstruction for the embedding problem is given by $N(a, b) \preceq N(c, d)$. Indeed, as conjectured by Hofer and recently proved by McDuff in [12], this is the only obstruction.

THEOREM 1. There is a symplectic embedding $E(a, b) \hookrightarrow E(c, d)$ if and only if

$$N(a, b) \preceq N(c, d).$$

Hence the embedding problem for symplectic ellipsoids can be reduced to studying the sequences $N(a, b)$. Define a new sequence $L(a, b)$ by

$$L_n(a, b) := \max \{ j : N_j(a, b) \leq n \} = \# \{ m \in S(a, b) : m \leq n \}.$$

From the definition it is clear, that

$$L(a, b) \geq L(c, d) \iff N(a, b) \preceq N(c, d). \quad (1.1)$$

Geometrically, $L_n(a, b)$ corresponds to the number of lattice points in the triangle $T_{a,b}^n$ bounded by $x = 0$, $y = 0$ and $ax + by = n$, including points on its boundary (Figure 1).

The aim of this note is to remark that the generating function of $L(a, b)$ is given by a surprisingly simple formula.

*Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany; dbauer@mis.mpg.de
Proposition 1. For $0 \leq z < 1$ we have the expansion
\[\frac{1}{(1-z)(1-z^a)(1-z^b)} = \sum_{n=0}^{\infty} \mathcal{L}_n(a, b) z^n. \] (1.2)

Proof: We have
\[
\frac{1}{(1-z)(1-z^a)(1-z^b)} = \left(\sum_{k=0}^{\infty} z^k \right) \left(\sum_{l=0}^{\infty} z^{al} \right) \left(\sum_{m=0}^{\infty} z^{bm} \right)
= \sum_{n=0}^{\infty} \left(\# \{ (k, l, m) \in \mathbb{Z}^3 : k, l, m \geq 0 \text{ and } k + al + bm = n \} \right) z^n
= \sum_{n=0}^{\infty} \left(\# \{ (l, m) \in \mathbb{Z}^2 : l, m \geq 0 \text{ and } al + bm \leq n \} \right) z^n = \sum_{n=0}^{\infty} \mathcal{L}_n(a, b) z^n.
\]

There is also a geometric interpretation behind this formula, which will be explained in the next section. Note that $\mathcal{L}_n(a, b)$ corresponds to the number of partitions of n into parts of size 1, a or b which is known as a denumerant problem. In this case one always obtains a rational generating function with poles that are roots of unity. Multiplying both sides of (1.2) by the denominator and comparing coefficients leads to the linear recurrence relation
\[\mathcal{L}_n(a, b) = \mathcal{L}_{n-1}(a, b) + \mathcal{L}_{n-a}(a, b) + \mathcal{L}_{n-b}(a, b) + \mathcal{L}_{n-a-b-1}(a, b) - \mathcal{L}_{n-a-1}(a, b) - \mathcal{L}_{n-b-1}(a, b) - \mathcal{L}_{n-a-b}(a, b) \]
for $n > 0$. To initiate we take $\mathcal{L}_0(a, b) = 1$ and set $\mathcal{L}_n(a, b) := 0$ for $n < 0$. The following relation can be proved in an elementary way (see [6], section 5.6).

Proposition 2. For $n > 0$ we have
\[\mathcal{L}_n(a, b) = \mathcal{L}_{n-1}(a, b) + \left\lfloor \frac{n}{ab} \right\rfloor + \varepsilon(n) \] (1.3)

where $\varepsilon(n)$ is either 0 or 1 and its value just depends on the remainder
\[[n] \in \mathbb{Z}_{ab\mathbb{Z}}. \]

In some sense the whole information of $\mathcal{L}(a, b)$ is therefore stored in its first ab terms. Moreover, one obtains the asymptotic behaviour
\[\mathcal{L}_n(a, b) \sim \frac{n^2}{2ab}. \]
In the following, we denote the generating function by

\[g_{a,b}(z) = \frac{1}{(1 - z)(1 - z^a)(1 - z^b)}. \]

Denote further by \(f^{(k)} \) the \(k \)-th derivative of a function \(f \). Via Cauchy’s integral formula we compute

\[\mathcal{L}_n(a,b) = \frac{g_{a,b}^{(n)}(0)}{n!} = \frac{1}{2\pi i} \int_\gamma \frac{g_{a,b}(\xi)}{\xi^{n+1}} = \frac{1}{2\pi i} \int_\gamma \frac{d\xi}{(1 - \xi)(1 - \xi^a)(1 - \xi^b)\xi^{n+1}}, \]

which might be useful for numerical purposes.

On the space \(C^\infty((-1,1), \mathbb{R}) \) consider the partial ordering by saying \(f \succeq g \) iff \(f^{(k)}(x) \leq g^{(k)}(x) \) for all \(k \geq 0 \) and \(x \in [0,1) \). Putting things together we obtain the following

Corollary 1. There is a symplectic embedding \(\text{int} E(a,b) \hookrightarrow E(c,d) \) if and only if one of the following equivalent conditions is fulfilled:

1. \(\mathcal{N}(a,b) \preceq \mathcal{N}(c,d) \)
2. \(\mathcal{L}(a,b) \succeq \mathcal{L}(c,d) \)
3. \(g_{a,b} \succeq g_{c,d} \)

Proof: The equivalence of (a) and (b) was already noticed in [1]. Now (b) implies for any integer \(k \geq 0 \) and \(z \in [0,1) \)

\[g_{a,b}^{(k)}(z) = \sum_{n=k}^{\infty} k! \binom{n}{k} \mathcal{L}_n(a,b) z^{n-k} \geq \sum_{n=k}^{\infty} k! \binom{n}{k} \mathcal{L}_n(c,d) z^{n-k} = g_{c,d}^{(k)}(z). \]

On the other hand (c) leads to

\[\mathcal{L}_k(a,b) = \frac{g_{a,b}^{(k)}(0)}{k!} \geq \frac{g_{c,d}^{(k)}(0)}{k!} = \mathcal{L}_k(c,d). \]

Thus the embedding question \(\text{int} E(a,b) \hookrightarrow E(c,d) \) relates to the problem if all coefficients of

\[G_{a,b,c,d}(z) := \frac{(1 - z^a)(1 - z^b) - (1 - z^a)(1 - z^b)}{(1 - z)(1 - z^a)(1 - z^b)(1 - z^d)} = g_{a,b}(z) - g_{c,d}(z) = \sum_{n=0}^{\infty} (\mathcal{L}_n(a,b) - \mathcal{L}_n(c,d)) z^n \]

are nonnegative. Since \(G_{a,b,c,d} \) is again a rational function, its coefficients satisfy a linear recurrence. In [3], Conjecture 2 it is conjectured that each rational function, whose dominating poles (i.e. the ones of maximal modulus) do not lie on \(\mathbb{R}_+ \), has infinitely many positive and infinitely many negative coefficients in its power series expansion. Of course, we cannot apply this to \(G_{a,b,c,d} \), since all of its poles have modulus 1 and 1 \(\in \mathbb{R}_+ \) occurs among them. One of the most celebrated results in the theory of linear recurrence sequences is the Skolem-Mahler-Lech theorem. It asserts that if a sequence \((a_n) \) satisfies a linear recurrence relation, then the zero set

\[\{ n \in \mathbb{N} : a_n = 0 \} \]

is the union of a finite set and finitely many arithmetic progressions.

Let us use the approach via generating functions to check algebraically that for each positive integer \(n \in \mathbb{N} \) there is a symplectic embedding

\[\text{int} E(1, n^2) \hookrightarrow B(n). \]

Here the latter denotes the ball \(B(n) := E(n,n) \) of radius \(n \). Geometrically, this corresponds to a filling of \(B(n) \) by \(n^2 \) equal symplectic balls (Proposition 2.2 in [10]). The possibility of such a filling can be quite easily observed via toric models. For details we refer the reader to the survey paper [10].
With the lattice count interpretation we have
\[L_k(n, n) = d\left(\left\lfloor \frac{k}{n} \right\rfloor \right), \]
where \(d(k) := \frac{1}{2}(k+1)(k+2) \) denotes the \(k \)-th triangle number. Consequently, by Proposition 1
\[g_{n,n}(z) = \frac{1}{(1-z)(1-z^n)^2} = \sum_{k=0}^{\infty} d\left(\left\lfloor \frac{k}{n} \right\rfloor \right) z^k. \]
For integers \(k \geq 0 \) set
\[c(k) = \begin{cases} 1 & \text{if } k \equiv 0 \pmod{n}, \\ -1 & \text{if } k \equiv 1 \pmod{n}, \\ 0 & \text{otherwise}. \end{cases} \]
Then
\[\frac{(1-z^n)^2}{(1-z)(1-z^{n^2})} = 1 - z^n \cdot (1-z^n) \sum_{k=0}^{\infty} z^{kn^2} = (1 + z + \ldots + z^{n-1}) \sum_{k=0}^{\infty} (z^{kn^2} - z^{(kn+1)n}) \]
\[= \sum_{k=0}^{\infty} c\left(\left\lfloor \frac{k}{n} \right\rfloor \right) z^k, \]
such that
\[g_{1,n}(z) = \frac{g_{1,n^2}(z)}{g_{n,n}(z)} : g_{n,n}(z) = \frac{(1-z^n)^2}{(1-z)(1-z^{n^2})}, g_{n,n}(z) = \left(\sum_{k=0}^{\infty} c\left(\left\lfloor \frac{k}{n} \right\rfloor \right) z^k \right) \left(\sum_{l=0}^{\infty} d\left(\left\lfloor \frac{l}{n} \right\rfloor \right) z^l \right). \]
In view of (1.2) it suffices to show for each nonnegative integer \(N \)
\[\sum_{k=0}^{N} c\left(\left\lfloor \frac{k}{n} \right\rfloor \right) d\left(\left\lfloor \frac{N-k}{n} \right\rfloor \right) \geq d\left(\left\lfloor \frac{N}{n} \right\rfloor \right). \] (1.4)
For given \(N \geq 0 \) we pick integers \(0 \leq p, q, r \) with \(q,r < n \) such that \(N = pn^2 + qn + r \). Setting \(d(-1) = d(-2) := 0 \), we obtain from the periodicity of \(c(k) \)
\[\sum_{k=0}^{p} c\left(\left\lfloor \frac{k}{n} \right\rfloor \right) d\left(\left\lfloor \frac{N-k}{n} \right\rfloor \right) = \sum_{j=0}^{p} ((r+1)d(jn+q) + (n-r-1)d(jn+q-1)) \]
\[- \sum_{j=0}^{p} ((r+1)d(jn+q-1) + (n-r-1)d(jn+q-2)) \]
\[= \sum_{j=0}^{p} ((r+1)(jn+q+1) + (n-r-1)(jn+q)) \]
\[= \frac{p(p+1)}{2}n^2 + (p+1)qn + (p+1)(r+1) = (p+1)(N+1) - \frac{p(p+1)}{2}n^2. \]
For \(q < n, n \geq 2 \) we have
\[\frac{3q}{2} + \frac{q^2}{2} = \frac{q(q+1)}{2} + q \leq \frac{nn}{2} + \frac{nn}{2}, \]
such that \(\frac{3p}{2} + \frac{p^2}{2} \leq qn \) holds for all nonnegative integers \(q < n \). One also easily checks that \(\frac{3pn}{2} \leq \frac{pm^2}{2} + p \) holds for all nonnegative integers \(p, n \). Thus
\[(p+1)(N+1) \geq (p+1)(pn^2 + qn + 1) = p^2n^2 + pn^2 + pqn + qn + p + 1 \]
\[\geq p^2n^2 + \frac{pm^2}{2} + \frac{3pn}{2} + pqn + \frac{q^2}{2} + \frac{3q}{2} + 1 = \frac{(pn + q + 1)(pn + q + 2)}{2} + \frac{p(p+1)}{2}n^2 \]
\[= d\left(\left\lfloor \frac{N}{n} \right\rfloor \right) + \frac{p(p+1)}{2}n^2. \]
shows that (1.4) is valid.

The symplectic capacity function \(c : [1, \infty) \to \mathbb{R} \) defined by
\[
c(a) := \inf \left\{ \mu : \text{int } E(1, a) \overset{\delta}{\to} B(\mu) \right\}
\]
is studied in detail in [11]. We just computed \(c(a^2) = a \) for positive integers \(a \). Indeed, \(c(a) = \sqrt{a} \) holds for \(a \in \mathbb{N} \) if \(a \) is 1, 4 or \(\geq 9 \). The other values for integral \(a \) are given by
\[
c(2) = c(3) = 2, \quad c(5) = c(6) = \frac{5}{2}, \quad c(7) = \frac{8}{3}, \quad c(8) = \frac{17}{6}.
\]
We finish this section by remarking that Theorem 1 does not hold in higher dimensions. Counterexamples are due to Guth [5] and Hind-Kerman [7]. Even worse, embedded contact homology only exists in dimension 4 and there is so far no good guess of what a criterion for embedding ellipsoids could be.

2. Counting Lattice Points in Polyhedra. Let \(P \subset \mathbb{R}^d \) be a polyhedron. In order to count the lattice points in \(P \) one associates the generating function
\[
\sum_{m \in P \cap \mathbb{Z}^d} x^m \quad \text{with} \quad x^m = x_1^{\mu_1} \cdots x_d^{\mu_d}
\]
for \(m = (\mu_1, \ldots, \mu_d) \). The total number of lattice points in \(P \) is then given by the value of the generating function at \(x = (1, \ldots, 1) \). The advantage of this approach is that these generating functions can still be computed for cones \(K \subset \mathbb{R}^d \), which actually contain an infinite number of lattice points. A cone is characterized by the property that \(0 \in K \) and for every \(x \in K \) and \(\lambda \geq 0 \) one has \(\lambda x \in K \). For example, the generating function of the non-negative orthant is given by
\[
\sum_{m \in (\mathbb{R}^d_+ \cap \mathbb{Z}^d) \times \mathbb{Z}^d} x^m = d \prod_{i=1}^d \frac{1}{1-x_i}.
\]
The generating function of a polyhedron \(P \) is calculated as the sum of generating functions of tangent cones at the vertices of \(P \), for details see [2].

Usually a cone \(K \) is given as a span of vectors \(u_1, \ldots, u_k \in \mathbb{R}^d \),
\[
K = \text{co}(u_1, \ldots, u_k),
\]
meaning that every vector \(v \in K \) can be written as a sum \(v = \sum \lambda_i v_i \) with \(\lambda_i \geq 0 \). A cone \(K \) is called unimodular, if it is spanned by \(u_1, \ldots, u_d \in \mathbb{Z}^d \) and these vectors form a basis of the lattice. Generating functions for unimodular cones are particularly easy to calculate. Unfortunately, all tangent cones of the triangle \(T^n_{a,b} \) are unimodular only if \(a = b \). Hence we cannot expect an easy formula for \(a \neq b \), also we have already seen that the number of lattice points in \(T^n_{a,a} \) is given by
\[
d \left(\left\lfloor \frac{n}{a} \right\rfloor \right).
\]
Instead consider \(T^n_{a,b} = \{ x, y \in \mathbb{R}^2_{\geq 0} : ax + by \leq n \} \) as lying in the hyperplane \(z \equiv n \) in \(\mathbb{R}^3 \). Then
\[
\bigcup_{n \geq 0} T^n_{a,b} \cap \mathbb{Z}^3 = \text{co} \left(\begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix} , \begin{pmatrix} 0 \\ 1 \\ b \end{pmatrix} , \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) \cap \mathbb{Z}^3.
\]
The latter cone is unimodular and has generating function
\[
f(x, y, z) = \frac{1}{(1-xz^n)(1-yz^n)(1-z)}.
\]
In particular, the number of lattice points in \(T^n_{a,b} \) corresponds to the coefficient of \(z^n \) of the expansion of \(f \) restricted to \(x = y = 1 \). This explains formula (1.2).
3. Scale Invariance. The condition in Theorem 1 is scale invariant, meaning that for each real \(\lambda > 0 \) one has

\[
N(a, b) \leq N(c, d) \iff N(\lambda a, \lambda b) \leq N(\lambda c, \lambda d).
\]

Unfortunately, this scale invariance does not descend to the generating functions. Thus \(g_{a,b} \geq g_{c,d} \) does not imply \(g_{\lambda a, \lambda b} \geq g_{\lambda c, \lambda d} \) and it does not make sense to extend our notion of generating functions to real parameters \(a, b \). For rational \(a, b, c, d \in \mathbb{Q} \), the best one could do is to choose \(N \in \mathbb{N} \) such that \(Na, Nb, Nc, Nd \) are integers and then compare the generating functions \(g_{Na,Nb} \) and \(g_{Nc,Nd} \).

The embedding condition \(g_{a,b} \geq g_{c,d} \) requires

\[
g_{a,b}(z) \geq g_{c,d}(z)
\]

for all \(z \in [0,1) \). But (3.1) is scale invariant, since it is equivalent to

\[
\frac{(1 - z^c)(1 - z^d)}{(1 - z^a)(1 - z^b)} \geq 1
\]

and one may substitute \(z = w^λ \) with \(w \in [0,1) \) on the left hand side. Therefore it corresponds to an embedding obstruction which extends to real parameters \(a, b \). The following lemma shows that at least in the case of embeddings into a ball this obstruction is the volume constraint.

Lemma 1. Let \(a, b, c, d \in \mathbb{R} \) be positive, such that \(b \leq \min(c,d) \). Then the inequality

\[
g_{a,b}(z) \geq g_{c,d}(z)
\]

holds for all \(z \in [0,1) \) if and only if \(a \) is chosen such that \(ab \leq cd \).

Proof: By scale invariance it suffices to show that under the assumption \(b \leq \min(1,c) \) the inequality

\[
(1 - z)(1 - z^c) \geq (1 - z^a)(1 - z^b)
\]

(3.2) holds for all \(z \in (0,1) \) if and only if \(a \leq \frac{b}{c} \).

We first consider the case \(a = \min(c,d) \), such that \(b \leq 1 \leq a \). Then we have

\[
ab \leq \min(a, ab + 1) \leq \max(a, ab + 1) \leq a + b.
\]

The function \(f(x) = x^z \) is convex and monotone decreasing for fixed \(z \in (0,1) \) and \(x \in (0,\infty) \). Hence the segment from \((ab, z^{ab})\) to \((a + b, z^{a+b})\) lies above the segment from \((a, z^a)\) to \((ab + 1, z^{ab+1})\). Comparing the heights of intersection of these segments with the horizontal line \(x = \frac{b(ab+1)+a}{b+1} \) yields the estimate

\[
\frac{b}{b+1}z^{ab+1} + \frac{1}{b+1}z^a \leq \frac{b}{b+1}z^{ab} + \frac{1}{b+1}z^{a+b}.
\]

Considering the function \(F : (1, \infty) \to \mathbb{R} \),

\[
F(a) = z^{ab+1} + z^a + z^b - z^{ab} - z^{a+b} - z
\]

for fixed \(z \in (0,1) \) and \(b \leq 1 \), the previous inequality implies that \(f \) is monotone increasing in \(a \). Consequently, \(F(a) \geq F(1) = 0 \). This tells us that (3.2) holds for all \(z \in (0,1) \) if \(c = ab \). Since increasing \(c \) only increases the left hand side of (3.2), we have shown that this inequality is satisfied for all \(z \in (0,1) \) if \(c \geq ab \).

Now we fix any \(0 < \lambda < 1 \) and consider the case \(c = \lambda ab \). Let

\[
C := \frac{\lambda^2 ab^2 + a + b}{\lambda b + 1} > \frac{1 + b}{\lambda b + 1} > 1.
\]

Choose \(\delta > 0 \) small enough, such that

\[
z^{(1-\delta)\lambda b} \geq \frac{(a + b)^2}{4(1-\lambda)b} \log z
\]
This shows that (3.2) is violated for \(c > z \) is monotone decreasing for \(1 \leq \tau \leq a \).

We now apply the inequality for \(1 \leq \mu \leq \tau \):

\[
\frac{\lambda b}{\lambda b + 1} z^{\lambda b + 1} + \frac{1}{\lambda b + 1} z^\tau \geq f \left(\frac{\lambda^2 \tau b^2 + \tau + \lambda b}{\lambda b + 1} \right) \geq f \left(\frac{\lambda^2 \tau b^2 + \tau + b}{\lambda b + 1} \right) - \frac{(1 - \lambda)b}{\lambda b + 1} f' \left(\frac{\lambda^2 \tau b^2 + \tau + b}{\lambda b + 1} \right).
\]

Consequently, the function \(f \) defined by

\[
\frac{\lambda b}{\lambda b + 1} z^{\lambda b + 1} + \frac{1}{\lambda b + 1} z^\tau \geq f (\mu(\lambda b) + (1 - \mu)(\tau + b)) + \frac{|\lambda b - (\tau + b)|^2}{8} \max_{\xi \in [\lambda b, \tau + b]} f''(\xi)
\]

for \(1 \leq \tau \leq a \) and \(z \in (1 - \delta, 1) \). Consequently, the function \(F_\lambda : [1, a] \rightarrow \mathbb{R} \) defined by

\[
F_\lambda(\tau) = z^{\lambda \tau b + 1} + z^\tau + z^b - z^{\lambda b} - z^{\tau + b} - z
\]

is monotone decreasing for \(z \in (1 - \delta, 1) \). Hence for these values of \(z \) we have

\[
F_\lambda(\tau) \leq F_\lambda(1) = (1 - z)(z^b - z^{ab}) < 0.
\]

This shows that (3.3) is violated for \(c = \lambda ab \) with \(0 < \lambda < 1 \).

Acknowledgements. I warmly thank Dusa McDuff for introducing me into the topic at Edifest 2010 and giving helpful comments. I also thank Felix Schlenk and Matthias Schwarz for making it possible for me to participate at this conference. Finally, I thank the Max Planck Institute for Mathematics in the Sciences for support and providing a pleasant environment to do this research.

References

[1] M. Aigner, A course in enumeration, Springer, 2007.
[2] A. Barvinok, Integer points in polyhedra, Zurich Lectures in Advanced Mathematics, EMS, Zürich 2008.
[3] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge University Press, 2009.
[4] S. Gerhold, Point lattices and oscillating recurrence sequences, arXiv:0502.288.
[5] L. Guth, Symplectic embeddings of polydiscs, Invent. Math. 172 (2008), 477-489.
[6] G. H. Hardy, Ramanujan, American Mathematical Society, 3rd Edition, New York 1978.
[7] R. Hind and E. Kerman, New obstructions to symplectic embeddings, arXiv:0906.4206.
[8] M. Hutchings, Recent progress on symplectic embedding problems in four dimensions, arXiv:1101.1069 to appear in PNAS.
[9] M. Hutchings, Quantitative embedded contact homology, arXiv:1005.2260, to appear in J. Differential Geometry.
[10] D. McDuff, *Symplectic embeddings and continued fractions: A survey*, arXiv:0908.4387, Journ. Jap. Math. Soc. 4 (2009), 121-139.

[11] D. McDuff and F. Schlenk, *The embedding capacity of 4-dimensional symplectic ellipsoids*, arXiv:0912.0532 v2.

[12] D. McDuff, *The Hofer conjecture on embedding symplectic ellipsoids*, arXiv:1008.1885, v2.