Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells

Qian Liu, Bingfeng Liu, Wei Li, Xin Zhao, Wenjing Zuo and Defeng Xing

State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, China

The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 µM facilitated MFC start-up compared to 150 µM, 200 µM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter, which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.

Keywords: microbial fuel cell, ferrous iron, electricity generation, microbial community, high throughput sequencing

INTRODUCTION

Microbial electrochemical cell (MEC) has been admired as a versatile device that can be used for alternative energy generation, electrosynthesis, biosensor, and waste treatment (Hou et al., 2016; Liu et al., 2016a; Huang et al., 2017). However, practical implementation of microbial fuel cells (MFCs) remains restricted by reasons of low electron transfer efficiency and high material costs (Logan et al., 2006). For the past few years, researchers studied electrode materials, exoelectrogenic bacteria, reactor configuration and operational conditions of MFCs (Watson and Logan, 2010; Yong et al., 2011; Janicek, 2015), and pointed out that microbial biofilm was the most direct and key element that affect current generation (Mohan et al., 2008). However, microbial biofilm and its community structure of MFCs can be influenced by temperature, pH, carbon source, inoculum, and metal ion (Lu et al., 2011, 2012; Patil et al., 2011; Wu et al., 2013). The diverse populations developed in the biofilms in MECs have been widely analyzed (Mei et al., 2015). Geobacter as a typical dissimilatory metal-reducing bacterium (DMRB) is commonly identified in MFCs (Mohan et al., 2014; Zhu et al., 2014; Kumar et al., 2016). Hence, to understand and optimize ecological conditions that facilitate exoelectrogens enrichment and electron transfer are essential for MEC application.

Iron plays a central role in the development and maintenance of biofilm of Pseudomonas (Hunter et al., 2013). Although ferric iron has been identified as an important parameter
Due to its high redox activity, the Fe of microorganisms or the activity of enzymes (Lu et al., 2015) can affect the performance of MECs by influencing the metabolism of microorganisms or the activity of enzymes (Cvetkovic et al., 2010). The reactive metal ions may have the phenomenon of redox reaction, catalysis, or precipitation, etc. and thus directly affect the performance of MECs by influencing the metabolism of microorganisms or the activity of enzymes (Lu et al., 2015). A comparison of results with and without ferrous iron as a cathodic reactant also revealed that the addition of ferrous iron enhanced power generation in batch MFC (Wang et al., 2011). However, the knowledge related to the effects of ferrous iron on performances of MFCs and microbial communities of electrode biofilms is less known. To reveal the response of microbial community of the electrode biofilm to ferrous iron, in this study, electrochemical performances of MFCs supplemented with different concentrations of ferrous iron were investigated. Meanwhile, microbial community structures of the anodes and cathodes biofilms in MFCs were analyzed using Illumina Hiseq sequencing of 16S rRNA gene amplicons.

MATERIALS AND METHODS

MFC Configuration and Operation

Single-chamber MFCs with volume of 14 mL were constructed as previously described (Xing et al., 2008). Anodes were made of carbon paper (Toray TGP-H-090, Japan), while cathodes were stainless steel mesh by rolling activated carbon and polytetrafluoroethylene (PTFE) (Dong et al., 2012) (the area of anode and cathode were both 7 cm²). Domestic wastewater was used as inoculum in the first 5 days. Nutrient solutions were consisted of 1 g/L sodium acetate, 5 mL/L vitamins, 12.5 mL/L minerals, 100 mM phosphate buffer saline (PBS, pH of 6) and FeSO₄ with different concentrations. The final pH value of nutrient solution was 6.2 ± 0.1. The final concentrations of FeSO₄ in MFCs were 32 (control), 100, 150, and 200 µM.

Voltages across the external resistor (1000 Ω) of MFCs were measured using Keithley 2700 multimeter/data acquisition system. All MFCs were operated at 35°C and each Fe²⁺ concentration have three replicates. Cyclic voltammetry (CV) measurements of MFCs at the 15th day were performed on Autolab potentiostat (Metrohm, Netherlands) with scan rate of 0.01 V/s.

RESULTS AND DISCUSSION

Electricity Generation and Electrochemical Activity of MFCs

Cyclic voltammetry curves showed that MFCs supplemented with 100 µM ferrous ion (Fe²⁺) obtained the highest current peak on the 15th day (Figure 1). The results suggested that low concentration of Fe²⁺ could obviously improve electrochemical activity of MFCs in the start-up period. During another 15 days of operation, MFCs with 100 µM ferrous ion showed the best electrochemical characteristics compared to MFCs with 150 and 200 µM Fe²⁺, and MFCs without additional Fe²⁺ supplement (Figure 2). The maximum voltage of 0.55 V was monitored in MFCs fed with 100 µM Fe²⁺, and then following the order control (0.54 V), 150 µM Fe²⁺ (0.52 V) and 200 µM Fe²⁺ (0.47 V). After all MFCs were operated for 30 days, MFCs of
with an average of 710 OTUs (Table 1). The anode biofilms in MFCs supplemented with ferrous iron showed slightly lower population diversity than that in control MFCs without ferrous iron supplement. Shannon indices were 3.72, 4.71, and 5.21 for the anodes biofilms with 100, 200 µM Fe²⁺, and without Fe²⁺, respectively. By contrast, Fe²⁺ increased the population diversities of the cathode biofilms, Shannon indices increased from 4.3 (control) to 5.02 (100 µM Fe²⁺) and 5.54 (200 µM Fe²⁺), suggesting that Fe²⁺ affected microbial community structure of the electrode biofilms in MFCs. Principal component analysis based on OTUs showed three clusters, the anode biofilms of MFC without Fe²⁺ was separated from the anode biofilms of MFC supplemented with Fe²⁺ of 100 and 200 µM Fe²⁺ and the cathode biofilms (control, 100, and 200 µM Fe²⁺; Figure 3).

Bacterial Composition of the Anode and Cathode Biofilms

The bacterial communities of the anode biofilms were substantially shifted when additional Fe²⁺ was supplemented in MFCs. *Proteobacteria* were the most dominant phylum observed both in the anode (71–75%, relative abundance) and cathode biofilms (41–78%) (Figure 4A). *Chlorobi* (11–14%) and *Bacteroidetes* (4–8%) were also predominant phyla in the anode biofilms. The relative abundances of *Lentisphaerae* in the cathode biofilms, were much higher than that in the anode biofilms, reached to 31% (100 µM Fe²⁺), 22% (200 µM Fe²⁺), and 4% (control). *Deltaproteobacteria*, *Ignavibacteria*, and *Betaproteobacteria* were the most predominant classes in the anode biofilms and accounted for 75% more or less, of which, the abundance of *Deltaproteobacteria* in the anode of MFCs with 100 µM reached to 50%, speculating that *Deltaproteobacteria* were the dominant class since MFC start-up period (Figure 4B). By contrast, microbial community structures of cathodes were different from anodes. *Alphaproteobacteria*, *Gammaproteobacteria*, *Bacteroidia*, and *Lentisphaeria* were the predominant classes on the cathodes. Cathodes of MFCs with additional Fe²⁺ had similar communities that were much different with control group.

The predominant genera varied significantly among all anodes and cathodes biofilms (Figure 5). The majority of predominant populations in the control MFCs were affiliated with *Geobacter* spp. (30.7%) and *Legionella* spp. (50.3%). *Geobacter* was also the predominant genus in the anode of MFC supplemented with 100 and 200 µM Fe²⁺, the relative abundance of which population reached up to 49.3 and 24.4%. Another predominant genus in the anode biofilms of MFC (200 µM Fe²⁺) was affiliated to *Rhodanobacter* (19%). In the cathode biofilms of MFCs with 100 and 200 µM Fe²⁺, higher relative abundance of predominant genera belonged to *Legionella* spp. (2 and 6%), and no absolutely predominant populations were present. Hierarchical cluster analysis of microbial communities based on genus taxonomy revealed that the relative abundance of *Sphaerochaeta*, *Dechloromonas*, *Paracoccus*, *Thermomonas*, and *Rhodanobacter* increased in the anode biofilms of MFCs supplemented with 200 µM Fe²⁺ (Figure 6). Meanwhile, the
only with the biofilm, demonstrating that microbial biofilms increasing redox potential at the biofilm electrode was associated that the pH is not always a limiting factor in a biofilm. Meanwhile, biofilms, pH decreased through different growth phases, showing electrochemical systems (BESs) (Lu et al., 2015). In mature anode transfer and redox reaction to affect the performance of bio-

redox active sites in the enzymes which catalyze the electron biofilm formation at the early stage. The metal ions may act as negative effect (Wei et al., 2013), presumably the Fe

2

µ

with 100

µ

and

Desulfovibrio

and

Thauera

µ

2

30 days of operation and higher concentration of Fe

2

M Fe

2

stimulated electrochemical activity of MFCs during the start-up period, but Fe

2

M) was lower than control and 100 µM Fe

2

during MFC steady operation. Rhodanobacter accounted for a large proportion (19%) in MFCs with Fe

2

concentration of 200 µM. To date, the function of Rhodanobacter was mostly investigated on denitrifying (Green et al., 2012) and thiosulfate-oxidizing (Lee et al., 2007), but little is reported about Fe

2

oxidation especially mediated by C-type cytochromes (Croal et al., 2007; Bird et al., 2011). Whether it participates in interspecies interaction with Geobacter should be further proved. Other exoelectrogenic bacteria also formed a certain proportion in different anode biofilms, such as Pseudomonas (1–6%) and Arcobacter (3–7%) (Fedorovich et al., 2009; Yong et al., 2011). Pseudomonas has a positive role to benefit other exoelectrogens in anode biofilm under a high concentration of salt addition (Liu et al., 2016b). Arcobacter can be selectively enriched in an acetate-fed MFC and rapidly generates a strong electronegative potential (Fedorovich et al., 2009). It indicated that additional ions, like Fe

2

, will take part in biofilm metabolism or microbial communication, which resulted in community structure changes.

The microbial communities on the cathodes clearly differed from the anodes biofilms in all MFCs. The most predominant genera in the cathode biofilms of MFCs without additional ferrous iron came from Legionella spp. (50.3% of relative abundance). However, the relative abundance of Legionella on the cathode biofilms declined to 2–6% with Fe

2

addition, suggesting that Legionella was inhibited by high concentration of Fe

2

. The abundance of Fe(II)-oxidizing bacteria, Janthinobacterium (Geissler et al., 2011), in the cathode biofilms of MFC with 200 µM Fe

2

were relatively higher than other groups

Sample name	Effective tags	OTUs	Shannon	Chao1	Simpson	ACE	Good’s coverage
Anode (control)	53,807	824	5.21	908.307	0.884	900.018	0.997
Anode (100 µM)	53,136	630	3.716	691.84	0.733	703.657	0.998
Anode (200 µM)	54,932	679	4.706	786.135	0.886	796.327	0.997
Cathode (control)	51,054	692	4.3	755.5	0.748	773.924	0.997
Cathode (100 µM)	54,592	679	5.021	757.026	0.879	771.527	0.998
Cathode (200 µM)	50,373	741	5.542	810.327	0.927	813.045	0.997

Effect of Fe

2

on Predominant Populations in the Electrode Biofilms
ferrous iron with appropriate concentration (100 µM) stimulated electrochemical activity of MFCs during the start-up period, but Fe

2

cannot enhance power output after 30 days of operation and higher concentration of Fe

2

had the negative effect (Wei et al., 2013), presumably the Fe

2

facilitated biofilm formation at the early stage. The metal ions may act as redox active sites in the enzymes which catalyze the electron transfer and redox reaction to affect the performance of biocatalyst (Croal et al., 2004). Recent studies effects on the performance of BESs by inhibiting the activity of microorganisms (Jiang et al., 2011). The relative abundance of Geobacter increased from 30.7 to 49.3% in MFCs with 100 µM Fe

2

but decreased to 24.4% in MFCs with 200 µM Fe

2

, implying higher Fe

2

concentration could not further enrich Geobacter. As a result, the power output of MFC with higher Fe

2

concentration (200 µM) was lower than control and 100 µM Fe

2

during MFC steady operation. Rhodanobacter accounted for a large proportion (19%) in MFCs with Fe

2

concentration of 200 µM. To date, the function of Rhodanobacter was mostly investigated on denitrifying (Green et al., 2012) and thiosulfate-oxidizing (Lee et al., 2007), but little is reported about Fe

2

oxidation especially mediated by C-type cytochromes (Croal et al., 2007; Bird et al., 2011). Whether it participates in interspecies interaction with Geobacter should be further proved. Other exoelectrogenic bacteria also formed a certain proportion in different anode biofilms, such as Pseudomonas (1–6%) and Arcobacter (3–7%) (Fedorovich et al., 2009; Yong et al., 2011). Pseudomonas has a positive role to benefit other exoelectrogens in anode biofilm under a high concentration of salt addition (Liu et al., 2016b). Arcobacter can be selectively enriched in an acetate-fed MFC and rapidly generates a strong electronegative potential (Fedorovich et al., 2009). It indicated that additional ions, like Fe

2

, will take part in biofilm metabolism or microbial communication, which resulted in community structure changes.

The microbial communities on the cathodes clearly differed from the anodes biofilms in all MFCs. The most predominant genera in the cathode biofilms of MFCs without additional ferrous iron came from Legionella spp. (50.3% of relative abundance). However, the relative abundance of Legionella on the cathode biofilms declined to 2–6% with Fe

2

addition, suggesting that Legionella was inhibited by high concentration of Fe

2

. The abundance of Fe(II)-oxidizing bacteria, Janthinobacterium (Geissler et al., 2011), in the cathode biofilms of MFC with 200 µM Fe

2

were relatively higher than other groups
FIGURE 4 | Microbial community taxonomic wind-rose plots based on relative abundance of 16S rRNA sequences of the anode and cathode biofilms in MFCs at the phylum (A) and class levels (B).
FIGURE 5 | Relative abundance of predominant genera in the anode and cathode biofilms in MFCs supplemented with different concentrations of ferrous iron.
Effect of Environmental Factors on MFC Performances

Some environmental factors, such as nutrients, pH, and temperature, influence the performances of MFCs by changing microbial activity and community structure. Our study indicated...
that ferrous iron changed microbial community structures of electrode biofilms of MFCs. Other metals (e.g., Ca, Mg, Pt, Au, Pd, Fe, V, Mn) and metal-nanomaterials affected current generation of MECS by changing the metabolism and enzyme activity of microorganisms (Lu et al., 2015). These studies have analyzed effect of single metal on electricity generation by MFCs, however, the effect of combined metals on microbial community structure and performance of MFCs should be further investigated.

Neutral pH is considered as the optimal condition for current generation by MFCs (Gil et al., 2003; Jadhav and Ghangrekar, 2009). However, a higher pH has been demonstrated to enhance the electrochemical activity of riboflavin which is a metabolite responsible for extracellular electron transfer in some species (Yuan et al., 2011; Yong et al., 2013). By contrast, MFCs have been operated at pH less than 4.0 and produced high current densities by acidophilic bacterium (Malki et al., 2008; Liu et al., 2016). Previous studies proved that temperate substantially affected the performances of MECS or MFCs by shaping microbial community (Lu et al., 2011, 2012). Synergistic effect of metals, pH and temperature on performances of MECS and correlation analysis of these environmental factors should be further investigated in the future.

AUTHOR CONTRIBUTIONS

DX designed the experiment. QL performed specific experiments. QL, BL, and DX contributed to analyze the experiment data. QL, WL, WZ, XZ, and DX wrote the manuscript. All authors were involved in revision of the manuscript and approved its final version.

FUNDING

This study was supported by National Natural Science Foundation of China (Nos. 51422805, 31270004), the Science Fund for Distinguished Young Scholars of Heilongjiang Province (Grant No. JC201407), the State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (No. 2016DX10).

REFERENCES

Babauta, J. T., Nguyen, H. D., Harrington, T. D., Renslow, R., and Beyenal, H. (2012). pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnol. Bioeng. 109, 2651–2662. doi: 10.1002/bit.24538

Banin, E., Vasil, M. L., and Greenberg, E. P. (2005). Iron and Pseudomonas aeruginosa biofilm formation. P. Natl. Acad. Sci. U.S.A. 102, 11076–11081. doi: 10.1073/pnas.0504266102

Bird, L. J., Bonnefoy, V., and Newman, D. K. (2011). Bioenergetic challenges of microbial iron metabolism. Trends. Microbiol. 19, 330–340. doi: 10.1016/j.tim.2011.05.001

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittering, K., Bushman, F. D., Costello, E. K., et al. (2011). QIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. doi: 10.1038/nmeth.f.303

Chakraborty, A., Roden, E. E., Schieber, J., and Picardal, F. (2011). Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Appl. Environ. Microbiol. 77, 8548–8556. doi: 10.1128/aem.02614-11

Cheng, S., Dempsey, B. A., and Logan, B. E. (2007). Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ. Sci. Technol. 41, 8149–8153. doi: 10.1021/es0712221

Croal, L. R., Grahnall, J. A., Malasarn, D., and Newman, D. K. (2004). The genetics of geochemistry. Annu. Rev. Genet. 38, 175–202. doi: 10.1146/annurev.genet.38.072702.091138

Croal, L. R., Iiao, Y., and Newman, D. K. (2007). The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J. Bacteriol. 189, 1774–1782. doi: 10.1128/JB.01395-06

Cvetkovic, A., Menon, A. L., Thorgersen, M. P., Scott, J. W., Poole, F. L. III, and Jenney, F. E. Jr. (2010). Microbial metalloproteomes are largely uncharacterized. Nature 466, 779–782. doi: 10.1038/nature09265

Dantas, T. Z., Hugenholz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072. doi: 10.1128/AEM.03006-05

Dong, H., Yu, H., Wang, X., Zhou, Q., and Feng, J. (2012). A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Wat. Res. 46, 5777–5787. doi: 10.1016/j.watres.2012.08.005

Fedorovich, V., Knighton, M. C., Pagaling, E., Ward, F. B., Free, A., and Goryanin, I. (2009). Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Appl. Environ. Microbiol. 75, 7326–7334. doi: 10.1128/AEM.01345-09

Geissler, A., Law, G. T. W., Boothman, C., Morris, K., Burke, I. T., Livens, F. R., et al. (2011). Microbial communities associated with the oxidation of iron and technetium in bioreduced sediments. Geomicrobiol. J. 28, 507–518. doi: 10.1080/01490451.2010.515287

Gil, G.-C., Chang, I.-S., Kim, B. H., Kim, M., Jang, J.-K., Park, H. S., et al. (2003). Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18, 327–334. doi: 10.1016/s0956-5663(02)00110-0

Green, S. J., Prakash, O., Jasrotia, P., Overholt, W. A., Cardenas, E., Hubbard, D., et al. (2012). Denitrifying bacteria from the genus Rhodobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl. Environ. Microbiol. 78, 1039–1047. doi: 10.1128/AEM.06435-11

Hou, D., Lu, L., and Ren, Z. J. (2016). Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production. Wat. Res. 98, 183–189. doi: 10.1016/j.watres.2016.04.017

Huang, Z., Lu, L., Jiang, D., Xing, D., and Ren, Z. J. (2017). Electrocatalytic hydride production for renewable energy storage and biogas upgrading. Appl. Energ. 187, 595–600. doi: 10.1016/j.apenergy.2016.11.099

Hunter, R. C., Assour, F., Dingemans, J., Osuna, B. L., Samad, T., Malroot, A., et al. (2013). Ferrous iron is a significant component of bioavailable iron in cystic fibrosis sputums. mBio 4:e00557-13. doi: 10.1128/mBio.00557-13

Jadhav, G. S., and Ghangrekar, M. M. (2009). Performance of microbial fuel cells. Biosens. Bioelectron. 18, 791–798. doi: 10.1016/j.bios.2008.04.054

Jenney, F. E. Jr. (2010). Microbial metalloproteomes are largely uncharacterized. Int. J. Hydrogen. Energy 35, 876–884. doi: 10.1016/j.ijhydene.2010.08.074

Janické, A. M. (2015) Cathode Development and Reactor Design for Scaling-Up Microbial Fuel Cells. dissertation’s thesis, Oregon State University, Corvallis, OR.

Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., et al. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int. J. Hydrogen. Energy 36, 876–884. doi: 10.1016/j.ijhydene.2010.08.074

Kumar, R., Singh, L., and Zularisam, A. W. (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sustain. Energy Rev. 56, 1322–1336. doi: 10.1016/j.rser.2015.12.029
Lee, C. S., Kim, K. K., Aslam, Z., and Lee, S. T. (2007). *Rhodanobacter thiooxydans* sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. *Int. J. Syst. Evol. Microbiol.* 57, 1775–1779. doi: 10.1099/ijs.0.65086-0

Liu, Q., Ren, Z. J., Huang, C., Liu, B., Ren, N., and Xing, D. (2016a). Multiple syntrophic interactions drive bioethane production from waste sludge in microbial electrolysis cells. *Biotechnol. Biofuels*. 9:162. doi: 10.1186/s13068-016-0579-x

Liu, W., He, Z., Yang, C., Zhou, A., Guo, Z., Liang, B., et al. (2016b). Bacterial bacterium in the presence of oxygen. *Appl. Environ. Microbiol.* 74, 4472–4476. doi: 10.1128/AEM.00209-08

Mohan, S. V., Velvizhi, G., Modestra, J. A., and Srikanth, S. (2014). Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. *Renew. Sustain. Energy Rev.* 40, 779–797. doi: 10.1016/j.rser.2014.07.109

Muehe, E. M., Gerhardt, S., Schink, B., and Kappler, A. (2009). Ecophysiology and the energetic benefit of mixotrophic *Fe(II)* oxidation by various strains of nitrate-reducing bacteria. *FEBS Microbiol. Ecol.* 70, 335–343. doi: 10.1111/j.1574-6941.2009.00755.x

Patil, S. A., Harinisch, F., Koch, C., Hubschmann, T., Fetzer, I., Carmona-Martinez, A. A., et al. (2011). Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. *Bioreourc. Technol.* 102, 9683–9690. doi: 10.1016/j.biortech.2011.07.087

Ter Heijne, A., Hamelers, H. V., and Buisman, C. J. (2007). Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. *Environ. Sci. Technol.* 41, 4130–4134. doi: 10.1021/es0702824

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl. Environ. Microbiol.* 73, 5261–5267. doi: 10.1128/AEM.00602-07

Watson, V. J., and Logan, B. E. (2010). Power production in MFCs inoculated with *Shewanella oneidensis* MR-1 or mixed cultures. *Biotechnol. Bioeng.* 105, 489–498. doi: 10.1002/bit.22556

Wei, L., Han, H., and Shen, J. (2013). Effects of temperature and ferrous sulfate concentrations on the performance of microbial fuel cell. *Int. J. Hydrogen Energy* 38, 11110–11116. doi: 10.1016/j.ijhydene.2013.01.019

Winfield, J., Greenman, J., Dennis, J., and Leropoulos, I. (2016). Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride. *J. Chem. Technol. Biotechnol.* 91, 138–143. doi: 10.1002/jctb.4552

Wu, D., Xing, D., Lu, L., Wei, M., Liu, B., and Ren, N. (2013). Ferric iron enhances electricity generation by *Shewanella oneidensis* MR-1 in MFCs. *Bioresour. Technol.* 135, 630–634. doi: 10.1016/j.biortech.2012.09.106

Xing, D., Zuo, Y., Cheng, S., Regan, J. M., and Logan, B. E. (2008). Electricity generation by *Rhodopseudomonas palustris* DX-1. *Environ. Sci. Technol.* 42, 4146–4151. doi: 10.1021/es800312v

Yong, Y. C., Cai, Z., Yu, Y. Y., Chen, P., Jiang, R., Cao, B., et al. (2013). Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of *Shewanella* in alkaline microbial fuel cells. *Bioresour. Technol.* 130, 763–768. doi: 10.1016/j.biortech.2012.11.145

Yong, Y. C., Yu, Y. Y., Li, C. M., Zhong, J. J., and Song, H. (2011). Bioelectricity enhancement via overexpression of quorum sensing system in *Pseudomonas aeruginosa*-inoculated microbial fuel cells. *Biosens. Bioelectron.* 30, 87–92. doi: 10.1016/j.bios.2011.08.032

Yuan, Y., Zhao, B., Zhou, S., Zhong, S., and Zhuang, L. (2011). Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. *Bioresour. Technol.* 102, 6887–6891. doi: 10.1016/j.biortech.2011.04.008

Zhu, X., Yates, M. D., Hatzeall, M. C., Ananda Rao, H., Saikaly, P. E., and Logan, B. E. (2014). Microbial community composition is unaffected by anode potential. *Environ. Sci. Technol.* 48, 1352–1358. doi: 10.1021/es404690q

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Liu, Liu, Li, Zhao, Xing and Xing. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.