The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis

David CF Sealey1, Aleksandar D Kostic1,3, Catherine LeBel1,4, Fiona Pryde2 and Lea Harrington1,2,5*

Abstract

Background: The first telomerase-associated protein (Est1) was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD), telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively), the molecular determinants of these interactions have not been elaborated fully.

Results: To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat), was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb in vivo function (NAAIRS92, NAAIRS122) did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking EST1, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres.

Conclusions: These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of S. cerevisiae Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.

Background

In S. cerevisiae, telomeres are usually maintained by telomerase or RAD52-dependent recombination. The ‘ever shorter telomere’ genes EST1, EST2 (the telomerase reverse transcriptase, TERT), EST3, and TLC1 (the telomerase RNA) are essential for telomerase function because loss of any one gene results in progressive telomere shortening and senescence [1,2]. Mutation of CDC13 - an essential gene - elicits similar consequences [2,3]. Rare “survivors” can bypass this senescence by maintaining telomeres through recombination. The homologous recombination factor Rad52 is important for the generation of telomerase-independent Type I and Type II survivors in which telomeres are maintained by amplification of Y' elements or telomeric repeats, respectively; more rarely, survival can occur without Rad52 [4-10].

Cdc13 and Est1 are critical for the recruitment of the telomerase core complex (Est2-Tlc1) to telomeres in S phase [reviewed in [11-14]]. Cdc13 binds to single-stranded telomeric DNA [15,16] and associates with telomeres throughout the cell cycle, with a peak in association during S phase [17,18]. Est1 also binds to single-stranded telomeric DNA [19] and associates with telomeres in S phase [17,18,20]. Cdc13 and Est1 interact physically [21] and genetically, as evidenced by the unlinked complementation of cdc13-2 and est1-60 alleles, each of which affects telomere maintenance and viability [15,17,22,23]. Several findings suggest that Est1...
recruits Est2 to the telomere in S phase by acting as an intermediary between Cdc13 and TLC1. For example, the telomere shortening and senescence that occur in the absence of EST1 are rescued by expression of a Cdc13-Est2 fusion protein [22]. Est1 binds to TLC1 [24-28], and the telomeric localization of Est2 in S phase is reduced when the region of TLC1 responsible for the Est1 interaction is deleted, or when EST1 is deleted [29].

In other organisms, Est1 homologs similarly associate with telomerase and regulate telomere length and stability, although in some instances their precise contributions to telomere function are still being uncovered. S. pombe Est1 associates with active telomerase in cell extracts, and est1- cells exhibit telomere shortening, senescence, and defects in chromosome end protection [30]. In C. albicans, telomere length in est1Δ cells fluctuates over serial passages, suggesting that Est1 may repress homologous recombination at telomeres [31]. In humans, three Est1 homologs, hEST1A/SMG6, hEST1B/SMG5 and hEST1C/SMG7 (hereafter referred to as hEST1A, hEST1B and hEST1C) interact with chromatin and bind preferentially at telomeres [32-34]. Human EST1A and EST1B associate with active telomerase in cell lysates and in vitro cells fluctuate over serial passages, suggesting that Est1 may repress homologous recombination at telomeres [31]. In humans, three Est1 homologs, hEST1A/SMG6, hEST1B/SMG5 and hEST1C/SMG7 (hereafter referred to as hEST1A, hEST1B and hEST1C) interact with chromatin and bind preferentially at telomeres [32-34]. Human EST1A and EST1B associate with active telomerase in cell lysates and in vitro cells fluctuate over serial passages, suggesting that Est1 may repress homologous recombination at telomeres [31]. In humans, three Est1 homologs, hEST1A/SMG6, hEST1B/SMG5 and hEST1C/SMG7 (hereafter referred to as hEST1A, hEST1B and hEST1C) interact with chromatin and bind preferentially at telomeres [32-34].

Results
Mapping the interactions between hEST1A and hTERT
Although it was known that hEST1A interacts with hTERT in vitro independently of hTR [33], and that TPRs typically mediate protein-protein interactions [45], it was unknown whether the TPR was sufficient for the interaction between hEST1A and hTERT. Fragments of hEST1A spanning all or part of the TPR (502-824, 334-824, 114-749, 114-780) proved unsuitable for in vitro interaction analysis as they precipitated non-specifically (Figure 1C, and data not shown). An hEST1A fragment spanning a.a. 114-631 did not exhibit non-specific precipitation but failed to exhibit a significant interaction with hTERT fragments (Figure 1A, B). Increasing the C-terminal boundary to fully encompass the minimal TPR domain spanning a.a. 695-761 (to a.a. 824) resulted in a reproducible enrichment of hEST1A(114-824) onto anti-FLAG agarose in the presence ofFLAG-hTERT fragments spanning amino acids 1-200, 1-350, 201-560, 601-1132, but not fragments spanning 201-350 or 350-560, a control protein (Akt), or mock translation reactions containing no input cDNA (Figure 1A-C). The hTERT-hEST1A interactions were not perturbed by micrococcal nuclease, indicating that they did not require nucleic acids (Figure 1A, B). Taken together, these data identify at least...
one interaction interface within hTERT(1-350) that includes residues beyond a.a. 200 that are important (but insufficient in the context of a.a. 201-350) for an interaction with hEST1A(114-824).

To further refine the hTERT protein interaction interface within the hEST1A TPR, we introduced various mutations within a.a. 551-785 of hEST1A(114-824) that we predicted to lie on the protein surface (see below).
and tested these fragments for an hTERT-independent interaction with hTERT(1-350) or hTERT(601-1132) (Additional file 1, Figure S2). None of the 22 introduced mutations, including the 17 residues mutated between hEST1A a.a. 631 and 824, perturbed the interaction of hEST1A(114-824) with either hTERT fragment (data not shown) [51]. In addition, removal of a sequence in hEST1A (a.a. 708-724) corresponding to a putative disorder loop in hEST1C [46] did not disrupt the hEST1A-hTERT interaction (Figure 1C). Thus, despite the existence of a putative hTERT interaction interface in hEST1A (631-824) that includes a TPR domain (695-761), we were unable to identify residues within the TPR essential for this interaction.

We also tested the effect of mutations within the hTERT N-terminus on the interaction with hEST1A (114-824). Two DAT mutations ("dissociates activities of telomerase") regions in hTERT, when substituted for six amino acids (NAAIRS) beginning at codons 92 or 122 [52-58], also proved dispensable for the interaction with hEST1A (114-824) (Figure 1D). DAT mutations have subtle effects on telomerase catalysis in vitro but dramatic deficits in telomere elongation and lifespan extension in vivo that can be partially rescued by fusion of hTERT-DAT to POT1 or TRF2 [52-58]. Our data suggest this in vivo deficit is not the result of a perturbed interaction with hEST1A.

Non-conservation of EST1 TPR function between species

Recent data establish that hEST1C, of which the closest S. cerevisiae homolog is Ebs1, plays a similar role as Ebs1 in NMD [42]. Thus, we wished to determine if hEST1A or hEST1B might display functional similarity with ScEst1. Despite various strategies, we were unable to observe expression of full-length hEST1A, B, C in S. cerevisiae, which precluded analysis of whether human Est1 homologs might, alone or in combination, complement the senescence phenotype of strains lacking EST1.

An alternate strategy was to test whether a region of Est1 containing the TPR could be "swapped" between species. Using an in vivo gap-repair cloning strategy in S. cerevisiae [59], the TPR of ScEst1 was replaced with the TPR of hEST1A, hEST1B or hEST1C or GFP(S65T) (the latter representing a similarly-sized domain as the TPR) (Additional file 1, Figure S3). The boundaries of the TPR were estimated according to the structure-based sequence alignment of EST1 homologs [32,33,46]. Specifically, the first nine alpha helices of hEST1C, or the corresponding region of hEST1A or hEST1B, were integrated into the corresponding region of ScEst1.

We first verified that est1A and est1A rad52Δ haploid strains generated from a diploid strain (S288C EST1/est1A::NAT RAD52/rad52Δ::KAN) underwent senescence as expected [1,8]. Next, we tested the ability of low-copy (pRS316) or high-copy (pRS426) hybrid Est1 expression plasmids (introduced into the EST1/est1A RAD52/ rad52Δ strain prior to haploid selection) to rescue senescence in two separately isolated est1Δ rad52Δ haploid spores (Figure 2). Although the resultant TPR hybrid proteins were expressed (Figure 2B), neither the GFP(S65T)-Est1 hybrid nor any of the human TPR-Est1 hybrids proved sufficient to rescue senescence or maintain telomere length when spores were passaged every two days (Figure 2A, 3A, Additional file 1, Figure S4). Extension of the time between colony propagation from two days to four days, which promotes the rare survival (approximately 4-8%) of populations lacking telomerase and RAD52 [6], also failed to permit complementation with the Est1 TPR hybrid proteins (Additional file 1, Figure S4). The TPR hybrids also failed to exert a dominant interfering effect on cell viability or telomere length maintenance in an EST1 rad52Δ strain (Figure 2A, C, Figure 3B, Additional file 1, Figure S4). Therefore, replacement of the cognate TPR of ScEst1 with the TPR of hEST1A, B, C neither complemented nor interfered with wild-type ScEst1.

Dissection of Est1 TPR function by mutagenesis

Since the TPRs of hEST1A, B, C were unable to function in place of the TPR of ScEst1, we mutated residues within and just outside the ScEst1 TPR domain and assessed effects on function in vivo. Selected residues that we predicted to be exposed to the concave surface of the putative protein-protein interaction interface (according to the alignment of the ScEst1 sequence to the hEST1C TPR structure) were changed to alanine [46] (Additional file 1, Figure S2); all mutants complemented the viability of est1Δ rad52Δ strains over multiple generations and did not interfere with viability in rad52Δ strains (Figure 4A, B, Additional file 1, Figure S5). The average telomere length of cell populations expressing wild-type FLAG-tagged Est1 were compared with those expressing FLAG-tagged Est1 point mutants including Est1(F511S) - a mutant which confers viability in the absence of endogenous Est1 but maintains shorter-than-wild-type telomere lengths [19,60] (Figure 4C, lanes 13-15, 28-30). Like cells expressing Est1(F511S), cells expressing Est1(K84A/W87A/Q89A)-FLAG exhibited slightly shorter telomeres (Figure 4C, lanes 19-21, 31-33). Unexpectedly, est1Δ rad52Δ cells containing certain Est1-FLAG mutants - namely E92A/Q96A/W97A, R193A/N197A, S200A/F203A/Y204A, F243A/Q244A/K247A, N277A/N278A, or D281A/T285A - exhibited longer telomeres than cells containing wild-type Est1-FLAG (Figure 4C). Telomere lengths appeared to slightly increase upon successive passages with certain mutants such as N277A/N278A, E92A/Q96A/W97A and S200A/F203A/Y204A (Figure 4C,
lanes 7-9, 22-24 or 35-36, and 25-27, respectively). The elongation phenotype was not due to overexpression of Est1, since telomere lengths in cells overexpressing wild-type Est1 (tagged or untagged) did not differ from strains lacking high-copy Est1 (Figure 5B). The differences in telomere lengths relative to wild-type Est1 and to each other were reproducible with different strain isolates (data not shown). Although we did not test the
protein expression levels of all point mutants, larger perturbations in Est1 (e.g., the TPR ‘swaps’ d i dn o t a l l e v e l s r e l a t i v e t o w i l d-t y p e E s t 1 - F L A G (F i g u r e 2B). Thus, the different effects of TPR mutations on telomere length suggest that distinct residues in the vicinity or within the TPR domain function in telomere length maintenance, while other residues may function to limit telomere elongation.

The Est1-FLAG mutants were also tested for their effect on telomere length homeostasis in an EST1 rad52Δ strain (Figure 4D, Additional file 1, Figure S5). Est1(K84A/W87A/Q89A), which elicited shorter telomeres in an est1Δ rad52Δ background, did not elicit telomere attrition in the presence of wild-type Est1 (Figure 4D, lanes 17-19, 30-31). Expression of the Est1-FLAG mutants (R193A/N197A, F243A/Q244A/K247A, N277A/N278A, D281A/T285A, E92A/Q96A/W97A, or S200A/F203A/Y204A) in a rad52Δ background resulted in slightly longer telomeres that persisted for five passages (Figure 4D). Thus, these mutants may interfere with an ability of wild-type Est1 to inhibit telomere elongation. Est1(F511S) led to shorter telomeres in a rad52Δ background similar to the effect observed in a rad52 Δ est1 Δ strain (Figure 4D, lanes 25-27), suggesting an ability of this mutation to interfere with wtEst1 function. The FLAG tag itself did not interfere with Est1 function, since telomeres in strains overexpressing Est1-FLAG (in either a rad52Δ or an est1 Δ rad52Δ background) or untagged Est1 were maintained at a similar length as strains expressing only endogenous Est1 (Figure 4D, compare lane 13 with lanes 14-16 and Figure 4C, lanes 13-15, Figure 5B). Collectively, these data suggest that mutations within the Est1 TPR permitted complementation of est1Δ cells; in some instances, concomitant telomere shortening or elongation was observed that suggested both positive and negative regulatory roles for the TPR in telomere length homeostasis.

Recruitment of Est1 point mutants to telomeric chromatin

To test whether mutation of the Est1 TPR affected recruitment to the telomere, we performed chromatin immunoprecipitations (ChIP) experiments. Yeast lysates were subjected to crosslinking and sonication to obtain chromatin fragments approximately 500 bp in length, followed by immunoprecipitation onto anti-FLAG M2 resin. PCR analysis was performed using primers designed to amplify a single-copy genomic locus (ARS607) or the subtelomeric region of the right arm of chromosome X (tel XR). After normalization to both input genomic DNA and the ARS607 amplification signal, wild-type Est1-FLAG (Figure 5A, lanes 3, 6) exhibited a significant fold-enrichment at telomeric chromatin relative to same strain lacking ScEst1-FLAG (Figure 5A, lanes 1, 4). We next tested three FLAG-tagged Est1 mutants (K84A/W87A/Q89A, N277A/N278A, F511S) for enrichment at telomeric chromatin in the est1Δ rad52Δ background. All three mutants exhibited telomeric enrichment similar to Est1-FLAG (Figure 5A). Notably, mutants associated with telomere elongation (N277A/N278A) or shortening (F511S, K84A/W87A/Q89A) exhibited equivalent enrichment. The similar levels of enrichment also suggest that fluctuations in telomere length are not simply due to changes in the level of Est1 protein recruited to telomeric heterochromatin (Figure 5B). These data suggest
Figure 4 Mutation of the Est1 TPR does not compromise viability in S. cerevisiae but alters telomere length homeostasis. Heterozygous diploid est1Δ rad52Δ yeast were transformed with pRS426(URA3) plasmids expressing ScEst1-FLAG wild-type or indicated TPR mutants. Haploid est1Δ rad52Δ (A) and rad52Δ (B) spores were isolated and passaged every two days on plates containing synthetic dropout media lacking uracil. Refer to Additional file 1, Figure S5 for summary of spore growth. Telomere DNA Southern blots in haploid est1Δ rad52Δ (C) and rad52Δ (D) strains expressing empty vector (pRS426; vector), ScEst1-FLAG TPR mutants or wild-type Est1-FLAG, as indicated. Genomic DNA isolated from cells at the indicated passages (P; represented in A, B) was digested with XhoI. Telomeres were analyzed by Southern blotting using a (CACACCCA)2CC DNA probe. In (C), two blots are represented by lanes 1-18, and 19-36; in (D), two blots are represented by lanes 1-16, and 17-31. Gaps represent removal of redundant samples, or slight changes between contrast enhancement. DNA ladders are shown (kbp) at right.
that the effects on telomere length equilibrium conferred by the Est1 TPR mutants may involve steps downstream of recruitment to the telomere.

Discussion
Species-specific differences in the TERT-EST1 interaction
Our observation that N- and C-terminal regions of hTERT can interact with hEST1A (114-824) independently of hTR extends previous findings [33,47]. Redon et al. showed that an hTR-dependent interaction occurs between hTERT(147-311) and hEST1A(212-381), and that hTERT(147-311) may interact with hEST1A fragments beyond a.a. 212-502 independently of hTR [47] (Additional file 1, Figure S6). Collectively, our results suggest that hTERT forms protein-protein contacts with the TPR of hEST1A. As yet, the specific amino acids responsible for these interactions have not been identified. That the hEST1A TPR exhibits multiple contacts with discrete hTERT fragments is not without precedent; the hTERT amino-terminus (hTEN) also exhibits specific interactions with itself and the hTERT C-terminus, suggesting that an hEST1A interaction could be bridged by intramolecular hTERT interactions in vivo [56,61-63]. In addition, hTEN exhibits specific interactions with telomeric DNA and TPP1 that stimulate repeat addition processivity [64-68]. Taken together, these data underscore that multiple protein-protein and protein-DNA interaction interfaces serve to regulate hTERT function in vivo.

Like the interaction between hEST1A and hTERT, the interaction between Est1 and Est2 may involve both protein-protein and protein-RNA contacts. Est1 and Est2 interact with separate regions of Tlc1 [26-28,69], and Est1 does not co-purify with Est2 in a tlc1Δ strain, suggesting that Tlc1 is required to assemble the telomerase complex [60]. However, recent findings suggest that recombinant ScEst1 stimulates telomerase activity even when the Tlc1-Est1 interaction is compromised, and that Tlc1 stimulates but is not required for an Est1-Est2 interaction in RRL [70]. These results suggest that Est1 and telomerase may also interact through protein contacts.
The TPR of ScEst1 may be involved in binding Tlc1. Mutations at residues that we predicted to reside on the convex surface of the domain (118/122/123 and 222/223/226) elicit telomere shortening and perturb association with Tlc1 [60]. None of the mutations that we introduced into the putative concave surface of the TPR of hEST1A reduced the interaction with hTERT. Mutagenesis of the convex surface of hEST1A TPR may yet identify an hTERT interaction interface. The TPRs within hEST1C(1-497) and hEST1A(545-785) bind a phosphopeptide within UPF1; these interactions are reduced by K66E/R163E and R625E/R706E mutations (on the concave surface), respectively, or by phosphatase treatment [46]. In our studies, the R625E/R706E or D703/R706/Y707/Y724 mutations in hEST1A (114-824) did not disrupt the interactions with hTERT (1-350) or (601-1132). Since hTERT is phosphorylated by Akt and c-Abl (1-350) or (601-1132). Since hTERT is phosphorylated by Akt and c-Abl in vivo [71,72], hEST1A may bind an as yet unmapped phosphomotif in hTERT. Alternatively, UPF1 and hTERT may interact with distinct interfaces of the hEST1A TPR. By analogy, in S. cerevisiae, components of the anaphase-promoting complex (Cdc16, Cdc23, and Cdc27) each contain multiple TPR repeats. Mutation of one TPR within Cdc27 impairs its interaction with Cdc23, but does not appreciably affect binding to Cdc16, or Cdc27 self-association [73].

A role for the ScEst1 TPR in curtailing telomere elongation downstream of telomere binding

We found that mutations within the ScEst1 TPR that affected telomere length equilibrium did not reduce the association of Est1 with telomeric heterochromatin in asynchronous cultures. Since Est1 recruitment to telomeres peaks in S phase [17,18,20], further experiments in synchronized cultures may reveal further nuances of the influence of these mutations on the temporal regulation of telomere recruitment. The fact that the mutants showed a comparable enrichment to that of wild-type Est1 suggests that these ScEst1 TPR residues are nonetheless dispensable for an interaction with Cdc13, and is consistent with the notion that the perturbation of telomere length reflects a defect downstream of telomere recruitment.

While certain mutations predicted to disrupt the concave surface of the Est1 TPR elicited telomere shortening, other similarly predicted mutations elicited telomere elongation. The concave surface of the Est1 TPR may negatively regulate telomere length through an interaction with les3 - a component of the INO80 chromatin remodeling complex [74]. As demonstrated by yeast two-hybrid and co-immunoprecipitation experiments, Est1 and Les3 interact, and deletion of Les3 results in telomere lengthening [74]. Mutation of three amino acids within the TPR of Est1 (G199A/P236A/N278A) abolishes the ies3 interaction [74]. This triple mutation impairs Tlc1 binding and elicits telomere shortening, thus precluding a direct assessment of the ies3-Est1 interaction in telomere length regulation [74]. In contrast, we observed that alanine replacement of N277/N278 in Est1 led to telomere elongation. Thus, it is possible that the N277A/N278A mutation might disrupt interaction with Les3 without perturbing Tlc1 association, which would support a direct role for the les3-Est1 interaction in the negative regulation of telomere length by the INO80 complex [74]. Our results indicate that the TPR-containing region within ScEst1 positively and negatively regulates telomere length, and that the concave surface of the TPR domain appears important for Est1 function.

Functional specialization of key cellular processes within and between species

We observed that the TPRs of human EST1 proteins could not substitute for the ScEst1 TPR. Functional differences in other telomere-associated proteins have been noted across species. Two related 5’-3’ helicases in S. cerevisiae, Pif1 and Rrm3, perform non-overlapping functions in inhibiting telomerase recruitment and promoting DNA fork progression, respectively [75], and both contribute to mitochondrial DNA stability in distinct ways [76,77]. In S. pombe, the single Pif1/Rrm3 ortholog Pfh1 is essential; some, but not all, of its diverse roles in mitochondrial, nuclear and telomere DNA replication are complemented by ScRrm3 [78-81]. In mammals, although the Pif1/Rrm3 ortholog interacts with telomerase, it is dispensable for viability, telomere length maintenance, and chromosome healing [82-84]. Similarly, Rif1 plays a critical regulatory role in telomere homeostasis in yeasts [reviewed in [14,85-89], while in mammals Rif1 modulates genome stability in response to DNA damage and appears dispensable for telomere length regulation [90-93].

In S. cerevisiae, the NMD-related function of EST1 homologs may have been delegated primarily to Ebs1, which shares the most sequence similarity (particularly in the TPR) with hEST1C [42]. Strains lacking EBS1 possess short telomeres [26] and, unlike est1Δ strains, exhibit a defect in NMD [37,42]. Over-expression of hEST1C or Ebs1 in S. cerevisiae disrupts NMD [42]. In A. thaliana, EST1C/SMG7 is an essential gene with a role in NMD and meiotic cell cycle progression, but possesses no apparent role in telomere integrity or length regulation [94]. It will be interesting to determine whether mutations exist within the hEST1A TPR that selectively affect NMD or an interaction with hTERT. If a telomerase-specific interaction interface within hEST1A exists, it may represent an attractive target for telomerase inhibition in cancer since its short-term
perturbation might spare other essential functions of EST1 related to telomere end protection or NMD.

Conclusions

A fragment of hEST1A of approximately 700 a.a. and encompassing the tetractipeptide repeat (TPR, a.a. 695-761) was sufficient for nucleic acid-independent interactions with the N-terminus of hTERT (a.a. 1-350). The TPR of ScEst1 could not be complemented genetically by TPRs of the human Est1 homologs hEST1A, hEST1B, or hEST1C, suggesting that the former has evolved species-specific interactions that cannot be substituted by human EST1 TPRs. Mutagenesis within and just outside the ScEst1 TPR identified residues important for telomere length homeostasis but not recruitment to telomeric heterochromatin. Collectively, these data identify species-specific roles of the Est1 TPR domain in the recognition of hTERT and regulation of telomere length.

Methods

Co-immunoprecipitation of hTERT and hEST1A fragments and micrococcal nuclease treatment

pCR3-FLAG-hTERT-FLAG and pcDNA3.1-HA2-hEST1A constructs were expressed in rabbit reticulocyte lysates (RRL) according to the manufacturer's instructions (Promega Corp.) in the absence of hTR. The inclusion of hTR RNA in hTERT translation reactions did not affect interactions with hEST1A (data not shown). Mock reactions contained no cDNA. Reactions were incubated separately for 90 min at 30°C. Fifteen to 20 μL of each reaction was mixed in a total volume of 500 μL with cold CHAPS buffer (0.5% w/v CHAPS, 10 mM Tris-Cl pH 7.5, 10% v/v glycerol, 100 mM NaCl, 1 mM MgCl2, 1 mM DTT, Roche EDTA-free Complete protease inhibitor cocktail) and agitated gently for 1 hr at 4°C. FLAG-tagged complexes were immunoprecipitated with pre-equilibrated anti-FLAG M2 agarose resin (Sigma). Anti-c-Myc agarose (BD Biosciences) was employed as a negative control resin. For micrococcal nuclease digestions, immunoprecipitates were washed twice with cold CHAPS buffer and treated with 40 U/μL micrococcal nuclease (New England Biolabs) at 30°C for 45 min in buffer containing 50 mM Tris-Cl pH 7.9, 5 mM CaCl2 and 1 mg/mL bovine serum albumin, or mock-treated in buffer without micrococcal nuclease. Reactions were terminated by the addition of excess EGTA, and immunoprecipitates were washed twice in cold CHAPS buffer. For experiments not involving micrococcal nuclease, immunoprecipitates were washed three times in cold CHAPS buffer.

Immunoprecipitates were boiled in SDS-PAGE loading dye. Proteins were resolved through 4-20% w/v Tris-Glycine Novex gels (Invitrogen), transferred to PVDF membranes (Invitrogen), and subjected to immunoblotting with anti-HA-HRP (3F10; Roche). Where indicated, antibodies were removed by incubation in stripping buffer (100 mM β-mercaptoethanol, 62.5 mM Tris-Cl pH 6.8, 2% w/v SDS) for 10 min at 50°C. Membranes were washed in 1X TBS containing 0.05% v/v tween20 (BioRad), and re-blotted with mouse anti-FLAG M2 (Sigma) and sheep anti-mouse IgG-HRP (GE Healthcare), or anti- hTERT (RT domain) [95] and donkey anti-rabbit IgG-HRP (GE Healthcare). Blots were developed with ECL Plus (GE Healthcare) and exposed to film (Kodak) or captured using a Typhoon Trio variable mode imager.

In Figure 1B, immunoprecipitation data from four independent replicates of the experiment shown in Figure 1A were quantified as follows. Firstly, the raw intensity of each hEST1A fragment (114-824 or 114-631) immunoprecipitated onto anti-FLAG resin was divided by the average intensity (n = 4) of the fragment in the mock immunoprecipitation lane (no added TERT). Secondly, the raw intensity of each hTERT fragment precipitated onto anti-FLAG resin was expressed as a ratio relative to the average intensity value of the same hTERT fragment (n = 4). The normalized hEST1A value was divided by the normalized hTERT fragment value in each experiment, and the mean and standard deviation of these ratios is illustrated in Figure 1B. Statistical significance was determined by ANOVA analysis of the normalized ratios, assuming non-paired samples, and applying the Tukey post-hoc test for pairwise comparisons where confidence levels exceeded 95%.

Generation of yeast strains

The diploid S288C est1Δ::KAN/EST1 strain (MATα/α his3Δ ura3Δ leu2Δ met15Δ lys2Δ trp1Δ) was a gift from Brenda Andrews (University of Toronto). The diploid was sporulated to obtain a haploid S288C est1Δ::KAN strain (MATa). The KAN gene replacement cassette was substituted with a NAT cassette by transformation and appropriate selection to obtain S288C est1Δ::NAT. This strain was crossed with a haploid S288C strain (MATα) of the same genetic background to create a diploid S288C est1Δ::NAT/EST1 strain. RADS2 was deleted by transformation with a KAN gene replacement cassette followed by appropriate selection to obtain S288C est1Δ::NAT/EST1 rads2Δ::KAN/RAD52. Gene deletions were verified by PCR and restriction enzyme digestion.

Yeast expression vectors

Open reading frames for hEST1A/SMG6 [GenBank: NM_001170957; hereafter referred to as hEST1A], hEST1B/SMG5 [GenBank:AY168922; hEST1B] and hEST1C/SMG7 variant 2 [GenBank:NM_201568; hEST1C]
were cloned into low-copy (1-2 copies per cell) pRS316 (CEN6, ARS4, URA3) and high-copy (~50 copies per cell) pRS426 (2 μ ori, REP3, FRT, URA3) expression plasmids [96,97]. pRS316 and pRS426 plasmids were obtained from Raymund Wellinger (University of Sherbrooke).

Generation of yeast/human EST1 TPR hybrids

The boundaries of the TPR were selected according to the structure-based alignment of EST1 sequences [32,33,46] (Additional file 1, Figure S3A). Plasmids encoding hybrid EST1 proteins in which the TPR of ScEst1 was replaced with the TPR of hEST1A, hEST1B, or hEST1C were generated by the in vivo gap-repair cloning method [59]. In the first step, pRS316(URA3)-Est1-FLAG was digested with NruI and PflMI which cleaved the TPR coding sequence at unique restriction sites in the plasmid (Additional file 1, Figure S3B). In parallel, the sequence encoding the TPR of hEST1 was amplified by PCR using hybrid primers. The 5' ends of the forward primers contained 45 nt of sequence identical to sense strand immediately upstream of ScEst1 codon 14 (the TPR sequence starts at codon 14). The 3' ends of the primers contained 30 nt of sequence identical to the sense strand of the TPR coding sequence of hEST1A (starting at codon 551), hEST1B (codon 25), or hEST1C (codon 2). GFP(S65T) (amino acids 1-237) was inserted in place of the TPR of ScEst1 as a control for disruption of the domain. The forward primers were as follows: Est1p13/hEST1A551, 5’-(PO4)-GGCTTAAATGGATAATGAAAGATTAACGGAA-GAATGTATGAGATTACGGGCTGTGGTGGAGGCTG CATCCATGCCATGTGTAAT-3’; Est1p13/hEST1B25, 5’-(PO4)-TTTTGACACAAGAATTGCATATTCTATCATACAGCCTCTTCTTCCGCTTT-3’; Est1p290/hEST1C236, 5’-(PO4)-TTTTGACACAAGAATTGCATATTCTATCATACAGCCTCTTCTTCCGCTTT-3’. Primers were obtained from Invitrogen. The gel-purified linearized plasmid DNA and PCR products were transformed into S. cerevisiae (haploid S288C est1Δ::NAT RAD52) and grown on solid SD media containing clonNAT (nourseothricin) (Werner BioAgents, Germany) to select for the est1Δ genotype. The media also lacked uracil in order to select for gap repair of the linearized Est1 plasmid. The resultant plasmids were recovered using the Zymoprep II Yeast Plasmid Miniprep kit (Zymo Research) and amplified in E. coli via transformation and maxiprep (Qiagen). The coding sequences of the hybrid genes, including the junctions between human and yeast EST1 sequences, were verified by DNA sequencing. To create a set of pRS426 vectors, NotI/Sall fragments from the pRS316 vectors were ligated into the NotI/Sall sites of pRS426. The following hybrid genes were constructed: Est1(1-13)/hEST1A(551-785)/Est1(290-699)-FLAG; Est1(1-13)/hEST1B(25-262)/Est1(290-699)-FLAG; Est1(1-13)/hEST1C(2-236)/Est1(290-699)-FLAG; and Est1(1-13)/GFP(S65T)/Est1(290-699)-FLAG.

Manipulation and propagation of yeast on solid media

Diploid yeast cultures were transformed according to a high-efficiency transformation protocol [98]. Diploids were sporulated on solid media, asci were digested with zymolyase, and haploid spores were dissected under a microscope using a microneedle (Singer, UK). Haploid spores of the desired genotype were streaked onto plates containing synthetic dropout media lacking uracil (SD-URA) to select for maintenance of plasmids expressing the URA3 gene. After two or four days of growth at 30°C (P1, passage 1 or approximately 20 generations), a single colony was re-streaked onto a second plate and incubated as described above (P2). Meanwhile, the P1 plate was stored at 4°C. This scheme was continued until P4 or P5 plates were obtained. To demonstrate growth from P1-6, one colony from each “passage” plate stored at 4°C (including the starting haploid spore from the tetrad dissection plate) was re-streaked onto a sector of a “summary plate” which was then incubated at 30°C for a final two or four days. Plates were imaged on a Bio-Rad Molecular Imager Gel Doc XR System under white light. Images were captured below the point of signal saturation.

Yeast protein extraction and western blotting

Protein extracts were prepared as described [98]. Proteins were boiled in SDS-PAGE buffer, resolved through
5% w/v 29:1 acrylamide-bisacrylamide gels, transferred to PVDF membranes, and subjected to western blotting using mouse anti-FLAG M2 antibody (Sigma). Sheep anti-mouse IgG-HRP (GE Healthcare) was employed as secondary antibody. Blots were developed with ECL Plus reagents, and fluorescent signals were captured using a Typhoon Trio variable mode imager (GE Healthcare).

Telomere length analysis by Southern blot
A single colony growing on solid media was inoculated into 5 mL SD-URA and grown overnight at 26°C. Cells and genomic DNA was extracted and purified as described [99]. Genomic DNA (5 μg) was digested with XhoI overnight at 37°C. Restriction fragments were resolved through 0.7% w/v agarose gels at 45 V (2 V/cm). DNA was denatured in-gel by incubation with 0.5 M NaOH and 1.5 mM NaCl, and neutralized in buffer containing 1.5 M NaCl and 0.5 mM Tris-Cl pH 7.5. DNA was transferred to Hybond-N+ membranes in 20X SSC. Following transfer, membranes were rinsed in 2X SSC. Telomeric DNA was hybridized to a 32P-end-labeled (CACACCCA)2CC probe in Church buffer (0.5 M NaPO4 pH 7.2, 1% w/v BSA, 7% w/v SDS, 1 mM EDTA), then washed with 1X SSC/0.1% w/v SDS. Membranes were exposed to a phosphorimaginer screen and scanned using a Typhoon Trio variable mode imager.

Mutagenesis of hEST1A and ScEst1 TPRs
The structure-based sequence alignment of the TPR-like/TPR of hEST1C/SMG7 and EST1 homologs [32,33,46] was used as a guide to select residues in hEST1A(551-785) and ScEst1(14-289) that may be sur-

Chromatin immunoprecipitation
Yeast cells were grown to logarithmic phase in liquid culture to an optical density (O.D. 600 nm) of 1.0. Fifty mL of each culture was adjusted to 1% v/v formaldehyde (Sigma) and incubated at room temperature for 45 min. The crosslinking reaction was terminated by addition of glycine to a final concentration of 135 mM. Samples were washed three times in ice cold PBS at 4°C, and resuspended in 500 μL FA buffer (50 mM Hesperes PhD pH 7.6, 140 mM NaCl, 1 mM EDTA, 1% v/v Triton X-100, 0.1% v/v Na-deoxycholate, Roche EDTA-free Complete protease inhibitor cocktail) per 50 O.D.600 cells. Samples were sonicated for four cycles of 10 s followed by 30 s on ice, using a 3.2 mm microtip (VWR). Sonication resulted in fragmentation of chromatin to an average size of 500 bp (range 300-800 bp) as determined by agarose gel electrophoresis. Two hundred μL sonicated lysate was incubated overnight at 4°C with anti-FLAG-M2 agarose resin (Sigma). After extensive washing with FA buffer, complexes were eluted from beads using 300 μg/mL FLAG peptide (Sigma). Cross-linked DNA was released by the addition of reverse cross-linking buffer (10 mM Tris pH 8, 4 mM EDTA, 100 mM NaCl) and incubation at 65°C for 16 hr. Samples were then incubated for 3 hr at 56°C after the addition of Proteinase K (0.3 mg/mL) and glycogen (0.5 mg/mL). DNA was extracted and PCR amplification was performed on approximately 10 ng template DNA using primers specific to a unique subtelomeric sequence of chromosome XR (XR F: 5’-TACCCGTCCCATTTCTATTACC-3’, XR R: 5’-TACAACTGCAATGATGGCGAT-3’) or to an internal non-telomeric region at ARS607 (ARS607 F: 5’-GTGGTGGATATAAAAACACTACATCCG-3’, ARS607 R: 5’-GCTTTCTGACTCTGATGCGCGC-3’). PCR products were separated on a 6% w/v polyacrylamide gel in 1X TBE. The relative intensity of the subtelomere-specific PCR product was calculated using ImageQuant software (GE Healthcare). A region of interest containing each PCR product was defined, and the local average background signal was subtracted. The resultant subtelomere-specific values were then divided by a value for the corresponding internal loading control (ARS607), and expressed as a percentage of the signal generated from input DNA. In Figure 5, the ANOVA analysis was performed on sample values normalized to the values for the vector control strain within each experiment to enable between-experiment comparisons. By varying the concentration of DNA (in separate experiments), PCR reactions for ChIP samples and input DNA were determined to be in the linear range of amplification. Statistical analysis was carried out using GraphPad Prism 5.0, employing one-way ANOVA and Tukey’s post-hoc test.

Additional material

Additional file 1: Supplementary Figures
Figure S1. Schematic representation of human and S. cerevisiae EST1 homologs. Figure S2. Comparative sequence analysis of EST1 at positions selected for mutation. Figure S3: Schematic representation of yeast/human Est1 hybrid proteins. Figure S4: Schematic representation of colony growth in Figure 2. Figure S5: Schematic representation of colony growth in Figure 4. Figure S6: Summary of hTERT/hEST1A co-IP experiments.

List of abbreviations
CHAPS: 3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonate; ChIP: chromatin immunoprecipitation; EST: ever shorter telomeres; NMD: nonsense-mediated mRNA decay; P: passage; PIN: PilT N-terminal domain; PTC: premature termination codon; TERT: telomerase reverse transcriptase;
TR: human telomerase RNA; Tct1: telomerase RNA; Sc: Saccharomyces cerevisiae; TBS: Tris-buffered saline; TPR: tetraspactipeptide repeat; SDS: sodium dodecyl sulphate.

Acknowledgements
We thank Drs. Brenda Andrews and Raymund Wellinger for strains and plasmids, and Dawn Edmonds for assistance with strain construction. This work was supported by grants to LH from the Wellcome Trust (84637) and the Medical Research Council (G0800081). We thank T.W. Mak for transitional funding from the Campbell Family Institute for Breast Cancer Research. Members of the Harrington laboratory are thanked for critical discussion and comments on the manuscript.

Author details
1Department of Medical Biophysics, University of Toronto; Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada. 2Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK. 3Department of Pathology, Harvard Medical School, Boston, MA, USA. 4Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. 5Université de Montréal, Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada.

Authors’ contributions
DCFS, CL and LH designed the experiments. ADK, DCFS, CL and FP performed the experiments. All authors analyzed the data. DCFS and LH wrote the manuscript. All authors read and approved the final manuscript.

Received: 7 June 2011 Accepted: 18 October 2011 Published: 18 October 2011

References
1. Lundblad V, Stuuljak JW: A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 1989, 57(4):633-643.
2. Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V: Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 1996, 144(4):1399-1412.
3. Weinert TA, Hartwell LH: Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 1993, 134(1):63-80.
4. Grandin N, Charbonneau M: Telomerase- and Rad52-independent immortalization of budding yeast by an inherited-longer-telomere pathway of telomeric repeat amplification. Mol Cell Biol 2009, 29(4):965-985.
5. Le S, Moore JK, Haber JE, Greider CW: RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 1999, 152(1):143-152.
6. Lebel C, Roosina E, Sealey DC, Pryde F, Lydall D, Maringele L, Harrington LA: Telomere maintenance and survival in saccharomyces cerevisiae in the absence of telomerase and RAD52. Genetics 2009, 182(3):671-684.
7. Lee JY, Mogen JL, Chavez A, Johnson FB: Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination. J Biol Chem 2008, 283(44):29847-29858.
8. Lundblad V, Blackburn EH: An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 1993, 73(2):347-360.
9. Maringele L, Lydall D: Telomerase- and recombination-independent immortalization of budding yeast. Genetics 2004, 168(2):683-694.
10. Teng SC, Zakan VA: Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 1999, 19(12):8083-8093.
11. Evans SK, Lundblad V: Positive and negative regulation of telomerase access to the telomere. J Cell Sci 2000, 113(19):3537-3546.
12. Vega LR, Mateyak MK, Zakan VA: Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 2003, 4(12):948-959.
13. Taggart AK, Zakan VA: Telomerase: what are the Est proteins doing? Curr Opin Cell Biol 2003, 15(3):275-280.
14. Smogorzewska A, de Lange T: Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004, 73:177-208.
15. Nugent CI, Hughes TR, Lue NF, Lundblad V: Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 1996, 274(5285):249-252.
16. Li J, Zakan VA: The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci USA 1996, 93(24):13760-13765.
17. Taggart AK, Teng SC, Zakan VA: Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 2002, 297(5583):1023-1026.
18. Fisher TS, Taggart AK, Zakan VA: Cell cycle-dependent regulation of yeast telomerase by K. Nat Struct Mol Biol 2004, 11(12):1198-1205.
19. Virta-Pearlman V, Morris DK, Lundblad V: Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev 1996, 10(24):3094-3104.
20. Schramke V, Luciano P, Brevet V, Guillo S, Corda Y, Longheuse MF, Gilson E, Gell V: RPA regulates telomerase activity by providing Est1p access to chromosomal end. Nat Genet 2004, 36(1):46-54.
21. Qi H, Zakan VA: The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 2000, 14(14):1777-1788.
22. Evans SK, Lundblad V: Est1 and Cdc13 as comodulators of telomerase access. Science 1999, 286(5437):117-120.
23. Pinnock E, Buckley K, Lundblad V: Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 2001, 104(3):387-396.
24. Li J, Zakan VA: An in vitro assay for Saccharomyces telomerase requires Est1. Cell 1995, 81(7):1127-1135.
25. Steiner BR, Hidaka K, Fuchter B: Association of the Est1 protein with telomerase activity in yeast. Proc Natl Acad Sci USA 1996, 93(7):2817-2821.
26. Zou J, Hidaka K, Fuchter B: The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol Cell Biol 2000, 20(6):1947-1955.
27. Livengood AJ, Zaug AI, Cech TR: Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol Cell Biol 2002, 22(1):2366-2374.
28. Seta AG, Livengood AJ, Tafati V, Blackburn EH, Cech TR: A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev 2003, 16(2):2800-2812.
29. Chan A, Boule JB, Zakan VA: Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genet 2008, 4(10):e1000236.
30. Beemink HT, Miller K, Deshpande A, Bucher P, Hooper JP: Telomere maintenance in fission yeast requires an est1 ortholog. Curr Biol 2003, 13(7):575-580.
31. Singh SM, Steinberg-Niefach O, Mian IS, Lue NF: Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot Cell 2002, 1(6):967-977.
32. Reichenbach CM, Nobaholz M, Bucher P, Lingner J: A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr Biol 2003, 13(7):568-574.
33. Snow SE, Eidmann N, Guckshank J, Goldman H, Gill RM, Robinson MO, Harrington L: Functional conservation of the telomerase protein Est1p in humans. Curr Biol 2003, 13(8):698-704.
34. Azzalin CM, Reichenbach CM, Khorauia L, Giulotto E, Lingner J: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007, 318(5851):799-801.
35. Chiu SY, Serin G, Ohara D, Macquat LE: Characterization of human Smg5/S7: a protein with similarities to Caenorhabditis elegans Smgs and Smg7 that functions in the desphosphorylation of Upf1. RNA 2003, 9(11):77-87.
36. Clissold PM, Ponsting CP: PIN domains in nonsense-mediated miRNA decay and RNAi. Curr Biol 2000, 10(24):R888-R890.
37. Gatfield D, Unterholzner L, Ciccarelli FD, Bork P, Izaurralde E: Nonsense-mediated miRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J 2003, 22(15):3960-3970.
38. Osnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S: Phosphorylation of HUF1 induces formation of miRNA surveillance complexes containing hSmg5 and hSmg7. Nat Cell Biol 2003, 15(5):1187-1200.
39. Macquat LE: Nonsense-mediated miRNA decay: splicing, translation and miRNP dynamics. Nat Rev Mol Cell Biol 2004, 5(2):89-99.
degrades mRNAs with nonsense codons. *FEBS Lett* 2007, 581(11):2845-2853.

41. Palluison A, Hirsch N, Vallan C, Azzalin CM, Muhrmann O: A GFP-based reporter system to monitor nonsense-mediated mRNA decay. *Nucleic Acids Res* 2005, 33(6):e54.

42. Luke B, Azzalin CM, Hug N, Deplazes A, Peter M, Lingner J. Saccharomyces cerevisiae Eps1p is a putative ortholog of human Smg7 and promotes nonsense-mediated mRNA decay. *Nucleic Acids Res* 2007, 35(22):7686-7697.

43. Luke B, Lingner J. *TERRA: telomeric repeat-containing RNA*. *EMBO J* 2009, 28(17):2505-2510.

44. Dahanleid JN, Lew-Smith J, Lelivelt MJ, Enomoto S, Ford A, Desruisseaux M, McClellan M, Lue N, Culbertson MR, Berman J. mRNAs encoding telomere components and regulators are controlled by UBF genes in Saccharomyces cerevisiae. *Eukaryot Cell* 2003, 2(1):134-142.

45. Biatch GL, Baste M. The tetrapod-specific repeat: a structural motif mediating protein-protein interactions. *Bioessays* 1999, 21(11):932-939.

46. Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E. TERRA: telomeric repeat-containing RNA. *EMBO J* 2006, 25(21):5117-5125.

47. Eberle AB, Lykke-Andersen S, Muhrmann O, Jensen TH. Smg6 promotes endonuclease cleavage of nonsense mRNA in human cells. *Nucleic Acids Res* 2009, 37(20):7011-7022.

48. Lundblad V. Telomere replication: an est feast. *Curr Biol* 2003, 13(11):R439-441.

49. Glavan F, Behm-Ansmant I, Izaurralde E, Conti E. Structures of the PIN domains of Smg6 and Smg7 reveal a nucleosome within the mRNA surveillance complex. *EMBO J* 2006, 25(21):5117-5125.

50. Lee SR, Wong JM, Collins K. Human telomerase reverse transcriptase subunit. *Nucleic Acids Res* 2001, 29(11):2845-2853.

51. Bank S, Leshin C, Lu R, Zhou JQ, Qi H, Schulz VP, Mateyak MK, Monson EK, Zakian VA. The Schizosaccharomyces pombe Pfh1p helicase associates with telomerase. *Biol Cell* 2002, 94(10):5117-5125.

52. Armbruster BN, Banik SS, Guo C, Smith AC, Counter CM. The Est1 subunit of *Saccharomyces cerevisiae* Targeting, Disruption, Replacement, and Allele Rescue: A functional role in regulating telomerase. *Mol Biol Cell* 2007, 18(10):4728-4739.

53. Yu EY, Steinberg-Neifach O, Dandjinou AT, Kang F, Morrison AJ, Shen X, Lue NF. Regulation of telomere structure and functions by subunits of the INO80 chromatin remodeling complex. *Mol Cell Biol* 2007, 27(16):5639-5649.

54. Chong Y, Qin Y, Ivesa AS. Loss of mitochondrial DNA under genotoxic stress conditions in the absence of the yeast DNA helicase Pif1p occurs independently of the DNA helicase Rrm3p. *Mol Genet Genomics* 2009, 281(6):635-645.

55. Barlow PA, Zhou JQ, Qi H, Schulz VP, Mateyak MK, Monson EK, Zakian VA. The Schizosaccharomyces pombe Pfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA. *Mol Cell Biol* 2008, 28(21):6594-6608.

56. Ryu GH, Tanaka H, Kim DH, Bae SH, Kwon YN, Rheo JS, Machilli SA, Seo YS. Genetic and biochemical analyses of Pfn1 DNA helicase function in fission yeast. *Nucleic Acids Res* 2004, 32(14):4205-4216.

57. Tanaka H, Ryu GH, Seo YS, Tanaka K, Okayama H, Machilli SA, Yusa Y. The fission yeast pfn1(+)-gene encodes an essential 5’-to-3’ DNA helicase required for the completion of S-phase. *Nucleic Acids Res* 2002, 30(21):4728-4739.

58. Zhou JQ, Qi H, Schulz VP, Mateyak MK, Monson EK, Zakian VA. Schizosaccharomyces pombe pfn1+ encodes an essential 5’-to-3’ DNA helicase that is a member of the PIF1 subfamily of DNA helicases. *Mol Biol Cell* 2002, 13(6):1769-1780.

59. Reynolds GE, Gao Q, Miller D, Snow BE, Harrington LA, Munroane. Human PIF1 interacts with telomerase and is dispensable for telomere function in vivo. *Mol Cell Biol* 2007, 27(10):4107-4126.

60. Farmer PI. PIF1 disruption or NSB1 hypomorphism does not affect chromosome healing or fusion resulting from double-strand breaks near telomeres in murine embryonic stem cells. *DNA Repair (Amst)* 2011.
85. Kanoh J, Ishikawa F: spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. *Curr Biol* 2001, 11(20):1624-1630.

86. Levy DL, Blackburn EH: Counting of Rif1p and Rif2p on *Saccharomyces cerevisiae* telomeres regulates telomere length. *Mol Cell Biol* 2004, 24(24):10857-10867.

87. Texeira MT, Americ M, Sperisen P, Lingner J: Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. *Cell* 2004, 117(3):323-335.

88. Miller KM, Ferrera MG, Cooper JP: Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. *Embo J* 2005, 24(17):3128-3135.

89. Castano I, Pan SJ, Zupancic M, Henequen C, Dujon B, Cormack BP: Telomere length control and transcriptional regulation of subtelomeric adhesins in *Candida glabrata*. *Mol Microbiol* 2005, 55(4):1246-1258.

90. Adams IR, McLaren A: Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. *Dev Dyn* 2004, 229(4):733-744.

91. Buonomo SB, Wu Y, Ferguson D, de Lange T: Mammalian Rif1 contributes to replication stress survival and homology-directed repair. *J Cell Biol* 2009, 187(3):385-398.

92. Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T: Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. *Genes Dev* 2004, 18(17):2108-2119.

93. Xu L, Blackburn EH: Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules. *J Cell Biol* 2004, 167(5):819-830.

94. Riehs N, Akinccheva S, Puzina J, Bulankova P, Idol RA, Siroky J, Schleiffer A, Schweizer D, Shippen DE, Riha K: Arabidopsis SMG7 protein is required for exit from meiosis. *J Cell Sci* 2008, 121(Pt 13):2208-2216.

95. Oulton R, Harrington L: A human telomerase-associated nuclease. *Mol Biol Cell* 2004, 15(7):3244-3256.

96. Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Mol Cells* 1992, 3(1):119-122.

97. Amberg D, Burke D: Methods in Yeast Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2005.

98. Evans PM, Liu C: SiteFind: a software tool for introducing a restriction site as a marker for successful site-directed mutagenesis. *BMC Mol Biol* 2005, 6:22.

Cite this article as: Sealey et al. The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis. *BMC Molecular Biology* 2011 12:45.