AFFINE MANIFOLDS AND SOLVABLE GROUPS

BY D. FRIED, W. GOLDMAN AND M. W. HIRSCH

Let M be a compact affine manifold. Thus M has a distinguished atlas whose coordinate changes are locally in $\text{Aff}(E)$, the group of affine automorphisms of Euclidean n-space E. Assume M is connected and without boundary.

The universal covering \tilde{M} of M has an affine immersion $D: \tilde{M} \rightarrow E$ which is unique up to composition with elements of $\text{Aff}(E)$. Corresponding to D there is a homomorphism $\alpha: \pi \rightarrow \text{Aff}(E)$, where π is the group of deck transformations of \tilde{M}, such that D is equivariant for α. Set $\alpha(\pi) = \Gamma$. Let $L: \text{Aff}(E) \rightarrow \text{GL}(E)$ be the natural map.

Theorem 1. If Γ is nilpotent the following are equivalent:

(a) M is complete, i.e. $D: \tilde{M} \rightarrow E$ is bijective;
(b) D is surjective;
(c) no proper affine subspace of E is invariant under Γ;
(d) $L(\Gamma)$ is unipotent;
(e) M has parallel volume, i.e. $L(\Gamma) \subset \text{SL}(E)$;
(f) M is affinely isomorphic to $\Gamma \backslash G$ where G is a connected Lie group with a left-invariant affine structure and $\Gamma \subset G$ is a discrete subgroup;
(g) each de Rham cohomology class of M is represented by a differential form whose components in affine charts are polynomials.

For abelian Γ the equivalence of (a), (d), and (e) is due to J. Smillie. We conjecture that (a), (b), (e), and (g) are equivalent even without nilpotence (if M is orientable). In general (a) \Rightarrow (c) and (e) \Rightarrow (c); but (c) $\not\Rightarrow$ (a) even for Γ solvable and M three-dimensional.

Theorem 2. The following are equivalent:

(i) M is finitely covered by a complete affine nilmanifold M_1 (i.e. conditions (a) through (g) of Theorem 1 hold for M_1);
(ii) all eigenvalues of elements of $L(\Gamma)$ have norm 1;
(iii) M has a Riemannian metric whose coefficients in affine charts are polynomials.

L. Auslander has conjectured that if M is complete then $\pi = \Gamma = \pi_1(M)$ is virtually solvable (i.e. contains a solvable subgroup of finite index); see [M] for discussion. This conjecture is true in dimension three (see [FG]).
THEOREM 3. If \(\pi \) is virtually solvable and \(M \) is complete then (e), (f), (g) of Theorem 1 hold. If \(\alpha: \pi \to \Gamma \) factors through a virtually polycyclic group of rank \(\leq \dim M \) and \(M \) has parallel volume, then \(M \) is complete. In particular if \(M \) is finitely covered by a manifold homeomorphic to a solvmanifold then parallel volume is equivalent to completeness.

We briefly indicate the proof of Theorem 1.

(a) \(\Rightarrow \) (c). This holds for any compact complete \(M \). If \(F \subset E \) is a \(\Gamma \)-invariant affine subspace then both \(E/\Gamma \) and \(F/\Gamma \) are Eilenberg-Mac Lane spaces of type \(K(\pi, 1) \). Since they are compact manifolds their dimensions are equal; thus \(F = E \).

(e) \(\Rightarrow \) (c). This holds for all compact \(M \). The linear holonomy \(\rho = L \circ \alpha: \pi \to GL(E) \) determines a \(\pi \)-module \(E_\rho \). Let \(u: \pi \to E \) send \(g \in \pi \) into the translational part of \(\alpha(g) \). Then \(u \) is a crossed homomorphism whose cohomology class \(c_M \in H^1(\pi; E_\rho) \) depends only on \(M \). The \(n \)-th exterior power \(\Lambda^n c_M \) comes from \(H^1(\pi; \Lambda^n F) \).

From now on assume \(\Gamma \) is nilpotent.

(c) \(\Rightarrow \) (d). Let \(E_U \subset E \) be the maximal unipotent submodule. Then \(H^0(\pi; E/E_U) = 0 \), and nilpotent implies \(H^1(\pi; E/E_U) = 0 \) (Hirsch [H]). This means some coset of \(E_U \) is \(\Gamma \)-invariant.

(b) \(\Rightarrow \) (d). Suppose \(E_U \neq E \). Some coset of \(E_U \) is \(\Gamma \)-invariant; we may assume \(E_U \) is \(\Gamma \)-invariant. There is a unique \(L(\Gamma) \)-invariant splitting \(E = E_U \oplus F \). Let \(M_1 = p(D^{-1}E_U) \) where \(p: \tilde{M} \to M \) is the projection. Then \(M_1 \) is a compact affine manifold with unipotent holonomy, hence complete. Let \(Y \) be the vector field on \(\tilde{M} \) which is \(D \)-related to the vector field \((x, y) \mapsto (0, y) \) on \(E_U \oplus F \). Then \(Y \) covers a vector field on \(M \), so \(Y \) is completely integrable. Every component of \(p^{-1}M_1 \) is a repellor for \(Y \). One uses these facts to prove that \(M \) is complete; but this implies (c), and hence (d).

(d) \(\Rightarrow \) (a). When \(L(\Gamma) \) is unipotent there is a flag \(E = E_n \supset \cdots \supset E_0 = \{0\} \) of \(L(\Gamma) \)-invariant linear subspaces with \(L(\Gamma) \) acting trivially on each \(E_i/E_{i-1} \).

There are nested foliations \(Z_2, \ldots, Z_0 \) on \(M \) covered by foliations \(\tilde{Z}_i \) on \(\tilde{M} \) such that \(D \) relates \(\tilde{Z}_i \) to the linear foliation \(E_i \) of \(E \) whose leaves are cosets of \(E_i \).

For each \(i \) there is a closed 1-form \(\omega_i \) on \(\tilde{Z}_i \) which vanishes on \(\tilde{Z}_{i-1} \) related by \(D \) to a constant 1-form on \(E \) vanishing on \(E_{i-1} \). There are completely integrable vector fields \(X_i \) in \(\tilde{Z}_i \) with \(\langle X_i, \omega_i \rangle = 1 \). Given any \(p \in \tilde{M}, x \in E \) one shows that the trajectory of \(X_n \) through \(p \) meets a point \(p_1 \) such that \(D(p_1) \) is the leaf of \(E_{n-1} \) through \(x \).

The trajectory of \(X_{n-1} \) through \(p_1 \) stays in a leaf of \(\tilde{Z}_{n-1} \) and eventually meets a \(p_2 \) such that \(D(p_2) \) is the leaf of \(E_{n-2} \) through \(x \), etc. In this
way one proves that $D(\tilde{M})$ contains a path from $D(p)$ to x. Hence D is surjective. Injectivity is proved similarly.

(e) \Rightarrow (d). If $E_U \neq E$ let $F \subset E$ be a complementary submodule to E_U. One shows that some element of $L(\Gamma)$ expands F, contradicting parallel volume.

(a) \Rightarrow (b) and (d) \Rightarrow (e) are obvious.

(a) \Rightarrow (f). G is the algebraic hull of Γ in $\text{Aff}(E)$.

(f) \Rightarrow (g). By Nomizu's theorem [N] the cohomology of M is represented by invariant forms on G; these turn out to be polynomial.

(g) \Rightarrow (e). If $L(\Gamma)$ is not unipotent then one proves there is no polynomial volume form.

REFERENCES

[F] D. Fried, Polynomials on affine manifolds (to appear).

[FG] D. Fried and W. Goldman, Three-dimensional affine crystallographic groups (in preparation).

[FGH] D. Fried, W. Goldman and M. Hirsch, Affine manifolds with nilpotent holonomy (to appear).

[G] W. Goldman, Two examples of affine manifolds, Pacific J. Math. (to appear).

[GH1] W. Goldman and M. Hirsch, Parallel characteristic classes of affine manifolds (in preparation).

[GH2] ———, A generalization of Bieberbach's theorem (to appear).

[GH3] ———, Polynomial forms on affine manifolds (in preparation).

[H] M. Hirsch, Flat manifolds and the cohomology of groups, Algebraic and Geometric Topology, Lecture Notes in Math., vol. 664, Springer-Verlag, Berlin and New York, 1977.

[M] J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. in Math. 25 (1977), 178–187.

[N] K. Nomizu, On the cohomology ring of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531–538.

[S] J. Smillie, Affinely flat manifolds, Doctoral dissertation, Univ. of Chicago, 1977.
