Dataset Inference: Ownership Resolution in Machine Learning

Pratyush Maini 1,2,3
Mohammad Yaghini 2,3
Nicolas Papernot 2,3
Overview

• Why is model privacy important?
 • Primer on Model Extraction and Membership Inference

• Model Stealing – Threat Models

• Dataset Inference
 • Train-Test Prediction Margin
 • Blind Walk
 • Confidence Regressor
 • Ownership Resolution
 • Results
Developing High-performing ML models is expensive

- Computational Cost
- Private Data
- Intellectual Contribution

Model Stealing Attacks are a realistic threat

Copying a model’s predictions with significantly lesser cost at the adversary’s end.
Model Extraction

• Using predictions from an ML API (victim) to train a surrogate model using some publicly available dataset.
Membership Inference

- Inferring the membership of a data-point in a model’s training set.

Image credits [Hisamoto et. al. 2020]
Model Stealing Attacks: How?

An adversary may gain varying degrees of access to your ‘Knowledge’.

Data Access: A_D
- Distillation
- Train on different architectures or hyperparameters

Query Access: A_Q
- Label Access
- Logit Access

Model Access: A_M
- Zero shot learning
- Fine tuning
Dataset Inference Exploits Train-Test Prediction Certainty

Prediction Margin if x was in Train set

Prediction Margin if x was in Test set
Analysis on a Linear Model

Binary Classification

$$y \sim \{-1, +1\};$$

$$x_1 = y \cdot u \in \mathbb{R}^K,$$

$$x_2 \sim \mathcal{N}(0, \sigma^2 I) \in \mathbb{R}^D$$

Linear Classifer

$$h(X) = w_1 \cdot x_1 + w_2 \cdot x_2$$

Linearly Separable

Gaussian Noise

Theorem 1 (Train-Test Margin) Given a linear classifier \(h(.) \) trained to classify inputs \((X, y) \in S \subseteq D \subseteq \mathbb{R}^{K+D}\), the difference in the expected prediction margin for \(X\) in \(S\) and \(D \setminus S\), given by

$$\mathbb{E}_{X \sim S} [y \cdot h(X)] - \mathbb{E}_{X \sim D \setminus S} [y \cdot h(X)] = D\sigma^2.$$
Dataset Inference Succeeds when Membership Inference Fails

Theorem 2 (Failure of MI) Given a linear classifier $h(.)$ trained on $S \subset D \subset \mathbb{R}^{D+K}$, the probability that an adversary M correctly predicts the membership of inputs randomly belonging to the training or test set, $\mathbb{P}_{X \sim R} [M(X, h(.)) = b] = 1 - \Phi \left(-\sqrt{\frac{D}{2m}} \right)$, and decreases with $|S| = m$. Moreover, $\lim_{m \to \infty} \mathbb{P}_{X \sim R} [M(X, h(.)) = b] = 0.5$.

Theorem 3 (Success of DI) Choose $b \leftarrow \{0, 1\}$ uniformly at random. Given an adversary’s linear classifier $h(.)$ trained on $D \setminus S \subset \mathbb{R}^{K+D}$, if $b = 0$, and on $S \subset D$ otherwise. The probability V correctly decides if an adversary stole its knowledge $\mathbb{P} [\psi(D, h(.)) = b] = 1 - \Phi \left(-\frac{\sqrt{D}}{2} \right)$. Moreover, $\lim_{D \to \infty} \mathbb{P} [\psi(D, h(.)) = b] = 1$.

How do you calculate the prediction certainty?

Blind Walk: Black-box method to estimate the prediction certainty

a. Sample Random Noise

b. Take Small Steps in that direction till you reach class boundary

c. Aggregate the distance over many noise directions to create a feature embedding.

\[
\text{emb}^i_{(x,y)}(f) = \min_{k \in \mathbb{N}} d(x, x + k\delta_i);
\]

\[
s.t. f(x + k\delta_i) = t; \quad t \neq y
\]
Training an Auxiliary Regressor
Ownership Resolution by aggregation of Confidence Scores

Step 1:
Sample inputs from the train & test set
Ownership Resolution by aggregation of Confidence Scores

Training Set

Test Set

Distance embedding for each input

Step 2: Generate embeddings for prediction margin

Distance embedding for each input
Ownership Resolution by aggregation of Confidence Scores

Training Set

Step 3:
Pass embeddings through auxiliary regressor

Test Set

Confidence Scores for each Embedding

Confidence Scores for each Embedding
Ownership Resolution by aggregation of Confidence Scores

Training Set

Aggregate Confidence Distribution

Step 4: One sided t-Test:

\[H_0: \mu_{test} \geq \mu_{train} \]

If stolen, \(H_0 \) would be rejected.

Test Set

Aggregate Confidence Distribution
DI is successful across CIFAR10, SVHN, CIFAR100 and ImageNet

Dataset Inference resolves ownership by revealing fewer than 60 private samples, with FPR < 1%

p-value against number of revealed samples (m)
Key Take-aways from Dataset Inference (DI)

1. Requires few private points to prove ownership.
2. Can be performed in less than 30,000 queries to the adversary.
3. White-box access is not essential to DI
4. Out-of-the-box solution that does not require overfitting or retraining.
5. Does not have a trade-off with task accuracy.