CASE REPORT

Treatment of refractory Yao syndrome with canakinumab

Caroline J. Brailsford, MS, a Fatima Khamdan, MD, b and Dirk M. Elston, MD b

Key words: NOD2; NOD2 mutation; NOD2-associated autoinflammatory disease; nucleotide-binding oligomerization domain 2; Yao syndrome.

INTRODUCTION

Yao Syndrome (YAOS), formerly designated nucleotide-binding oligomerization domain 2 (NOD2)-associated autoinflammatory disease, consists of recurrent fever, rash, arthritis, distal extremity swelling, gastrointestinal symptoms, and sicca-like symptoms (YAOS; OMIM 617321). 1,2 YAOS is a genetically complex disorder involving multiple loci of the NOD2 gene, which encodes a pattern recognition receptor important in the innate immune response. 3 NOD2 gene variants have also been implicated in Blau Syndrome (BS) and Crohn’s Disease (CD). 2 Therefore, diagnosis relies on genetics in conjunction with clinical presentation and exclusion of other systemic autoinflammatory diseases. 4 Although YAOS can affect both the pediatric and adult populations, the onset of the disease is most common between 20 and 50 years with a female-to-male ratio of 2:1. 2 Autoinflammatory diseases may respond to oral glucocorticoids, dapsone, colchicine, and sulfasalazine. Biologic therapy with interleukin (IL)-1, IL-6, and tumor necrosis factor-alfa inhibitors is useful in some patients with refractory disease. 2,5,6 We report a 27-year-old male patient with YAOS refractory to prednisone, colchicine, dapsone, and anakinra with suppression of disease following treatment with canakinumab IL-1β inhibitor therapy.

CASE REPORT

A 27-year-old White man presented to the dermatology clinic with a history of episodic fever and recurrent tender erythematous rash with significant body involvement, especially of the trunk (Fig 1, A-D). The rash was reportedly triggered by psychologic stress and preceded by prodromal flu-like symptoms, low-grade fever, sore throat, and arthralgias. During these episodes, he experienced intermittent diarrhea and severe headache. Over time, flares worsened in severity, causing the patient to be bedbound during episodes. Symptoms persisted for 3 to 7 days before spontaneously resolving and recurred every 3 weeks.

Past medical history included seasonal allergic rhinitis with no family history of autoimmune disease. Skin biopsies performed by his previous dermatologist demonstrated perivascular neutrophilic infiltrate with no evidence of leukocytoclastic vasculitis (Fig 2, A-C). The patient trialed multiple antihistamines, prednisone, and more recently, monthly omalizumab 125-mg/mL injections with no relief. Further laboratory workup was notable for mildly decreased C4 (12.8 mg/mL; reference range 15-57) and negative for antinuclear antibodies, antineutrophil cytoplasmic antibodies, rheumatoid factor, and other complement disturbances. Thyroid hormones, C-reactive protein, and erythrocyte sedimentation rate were within normal limits. Antibodies to deamidated gliadin and transglutaminase were negative and serum levels, IgA, serotonin, chromogranin A, and tryptase were within normal limits. Screenings

From the College of Medicine, Medical University of South Carolina, Charleston, South Carolina; and Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina. a, b

Funding sources: None.

IRB approval status: Not applicable.

Correspondence to: Caroline J. Brailsford, MS, Medical University of South Carolina. E-mail: brailsfo@musc.edu.

JAAD Case Reports 2022;29:37-40.
2352-5126 © 2022 by the American Academy of Dermatology, Inc. Published by Elsevier, Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1016/j.jdcr.2022.08.035

37
for hepatitis, HIV, toxocara, and tuberculosis were negative. Urinary catecholamines, metanephrines, and 5-hydroxyindoleacetic acid were within normal limits. The chronic urticaria index was within normal limits. The patient was on omalizumab at the time laboratory studies were performed.

A gene assay for autoinflammatory syndromes was performed, revealing heterozygous c.3019dup (p.Leu1007Profs*2) found on exon 11 of the NOD2 gene, consistent with YAOS. A colonoscopy was performed with no evidence of inflammatory bowel disease. The patient was then initiated on trials of colchicine and sulfasalazine with only minor improvement. He was switched to daily anakinra 100 mg/0.67 mL injections but continued to suffer recalcitrant skin flares and debilitating arthritis. Anakinra was switched to IL-1β inhibitor canakinumab 150 mg/mL monthly injections. The patient reports both decreased frequency and severity of episodes and is satisfied with the results.

DISCUSSION

YAOS often presents with recurrent and remitting flu-like symptoms followed by fever and
CD has been associated with NOD2 loss of function mutations 1007fs, G908R, and R702W. These NOD2 variants, although present in <50% of patients with CD, overlap with variants identified in YAOS. The absence of bloody diarrhea may be more indicative of YAOS. However, an endoscopy examination is warranted to exclude CD if these gene variants are identified.2

Mutations IVS8+158 and R702W are the most frequently reported in YAOS, but other NOD2 variants of unknown significance have been identified, as seen in our patient.1 These are nearly all heterozygous and sporadically occurring, with 10% reporting positive family history.2 Interplay between genetics and environmental triggers is postulated to play a role in disease expression.8

Treatment in patients with mild disease may be achieved with short courses of oral glucocorticoids and daily sulfasalazine.1 In severe or refractory disease or patients with adverse reactions to first-line therapies, biologic therapy with IL-1 and IL-6 has been effective in controlling attacks.2,4 Colchicine has proved less effective in most patients although it is helpful in other autoinflammatory syndromes.4 Canakinumab and anakinra both function in the inhibition of the IL-1 pro-inflammatory cascade. Anakinra is an IL-1 receptor antagonist, competitively inhibiting the interaction with IL-1α and IL-1β and blocking downstream effects. Canakinumab is a fully humanized IgG1 monoclonal antibody to IL-1β which has been identified as an effective treatment option for inflammatory conditions in which anakinra has failed.11,12 We postulate that its longer duration of action plays a key role in its therapeutic benefit. Canakinumab has recently been identified as a treatment option in YAOS, administered subcutaneously in 150-mg injections every 4 to 8 weeks.5,6 Our patient presented with severe YAOS.
and responded to canakinumab after failure with multiple other agents.

Conflicts of interest
None disclosed.

REFERENCES
1. Yao Q, Zhou L, Cusumano P, et al. A new category of autoinflammatory disease associated with NOD2 gene mutations. *Arthritis Res Ther*. 2011;13(5):R148. https://doi.org/10.1186/ar3462
2. Yao Q, Kontzias A. Expansion of phenotypic and genotypic spectrum in Yao syndrome: a case series. *J Clin Rheumatol*. 2022;28(1):e156-e160. https://doi.org/10.1097/RHU.0000000000001655
3. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. *J Biol Chem*. 2001;276(7):4812-4818. https://doi.org/10.1074/jbc.M008072200
4. Yao Q, Li E, Shen B. Autoinflammatory disease with focus on NOD2-associated disease in the era of genomic medicine. *Autoimmunity*. 2019;52(2):48-56. https://doi.org/10.1080/08969342.2019.1613382
5. Yao Q, Shen B. A systematic analysis of treatment and outcomes of NOD2-associated autoinflammatory disease. *Am J Med*. 2017;130(3):365.e13-365.e18. https://doi.org/10.1016/j.amjmed.2016.09.028
6. Yao Q. Research letter: effectiveness of canakinumab for the treatment of Yao syndrome patients. *J Am Acad Dermatol*. 2019;80(10):1962(19):32754-32757. https://doi.org/10.1016/j.jaad.2019.09.020
7. Hua Y, Wu D, Shen M, Yu K, Zhang W, Zeng X. Phenotypes and genotypes of Chinese adult patients with systemic autoinflammatory diseases. *Semin Arthritis Rheum*. 2019;49(3):446-452. https://doi.org/10.1016/j.semarthrit.2019.05.002
8. Yang X, Wu D, Li J, Shen M, Zhang W. A Chinese case series of Yao syndrome and literature review. *Clin Rheumatol*. 2018;37(12):3449-3454. https://doi.org/10.1007/s10067-018-4274-0
9. Qin W, Wu D, Luo Y, et al. Neurological manifestations of autoinflammatory diseases in Chinese adult patients. *Semin Arthritis Rheum*. 2020;50(6):1500-1506. https://doi.org/10.1016/j.semarthrit.2019.12.003
10. Doria A, Zen M, Bettio S, et al. Autoinflammation and autoimmunity: bridging the divide. *Autoimmun Rev*. 2012;11(1):22-30. https://doi.org/10.1016/j.autrev.2012.07.018
11. Malcova H, Strizova Z, Milota T, et al. IL-1 inhibitors in the treatment of monogenic periodic fever syndromes: from the past to the future perspectives. *Front Immunol*. 2021;11:619257. https://doi.org/10.3389/fimmu.2020.619257
12. Kacar M, Savic S, van der Hilst JCH. The efficacy, safety and tolerability of canakinumab in the treatment of familial Mediterranean fever: a systematic review of the literature. *J Inflamm Res*. 2020;13:141-149. https://doi.org/10.2147/JIR.206204