Magnetic resonance imaging after anterior cruciate ligament reconstruction: A practical guide

Alberto Grassi, James R Bailey, Cecilia Signorelli, Giuseppe Carbone, Andy Tchonang Wakam, Gian Andrea Lucidi, Stefano Zaffagnini

Anterior cruciate ligament (ACL) reconstruction is one of the most common orthopedic procedures performed worldwide. In this regard, magnetic resonance imaging (MRI) represents a useful pre-operative tool to confirm a disruption of the ACL and to assess for potential associated injuries. However, MRI is also valuable post-operatively, as it is able to identify, in a non-invasive way, a number of aspects and situations that could suggest potential problems to clinicians. Graft signal and integrity, correct tunnel placement, tunnel widening, and problems with fixation devices or the donor site could all compromise the surgical outcomes and potentially predict the failure of the ACL reconstruction. Furthermore, several anatomical features of the knee could be associated to worst outcomes or higher risk of failure. This review provides a practical guide for the clinician to evaluate the post-surgical ACL through MRI, and to analyze all the parameters and features directly or indirectly related to ACL reconstruction, in order to assess for normal or pathologic conditions.

Key words: Anterior cruciate ligament reconstruction; Magnetic resonance imaging; Graft; Tunnel; Failures; Complications; Anatomic

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

Anterior cruciate ligament (ACL) reconstruction is one of the most common orthopedic procedures performed worldwide. It is considered the standard of care for young active patients who wish to return to sport practice after ACL injury1. Despite the lack of clear evidence of its ability to reduce the onset and progression of knee osteoarthritis (OA), ACL reconstruction is expected to prevent further meniscal and cartilage lesions that could occur in the ACL-deficient knee2,3. Usually, ACL reconstruction is performed arthroscopically (occasionally combined with extra-articular plasty/augmentation) using autologous graft such as Gracilis and Semitendinosus tendons (HS), bone-patellar tendon bone (BPTB), and Quadriceps Tendon (QT), or allogenic grafts such as BPTB, Achilles Tendon, and Posterior or Anterior Tibialis tendons. Graft fixation is obtained through a wide range of fixation devices, different in function, shape, size, material, biomechanical proprieties and positioning. The outcomes of ACL reconstruction are generally good; however, graft rupture or clinical failure can occur in 6%-12% of the cases4.

In the field of ACL injury and reconstruction, magnetic resonance imaging (MRI) represents a useful pre-operative tool to confirm a disruption of the ACL and to assess for potential associated injuries. However, MRI is also valuable post-operatively to assess graft healing and maturation, to determine its position, and to evaluate potential complications or re-injury5-7. For example, a survey among expert surgeons of the German Arthroscopy Association (AGA) showed that MRI represents one of the decision-making criteria for return to sport activity in only 4% of those interviewed8.

The purpose of this review is to provide a practical guide for the clinician to evaluate the post-surgical ACL through MRI, and to analyze all the parameters and features directly or indirectly related to ACL reconstruction, in order to assess normal or pathologic conditions.

GRAFT SIGNAL

The signal evaluation of the neo-ligament, whose intensity is generally evaluated with a combined score (Table 1) or with software (Figure 1), represents a dynamic field of research.

General healing process

From the biological point of view, the intra-articular graft undergoes a maturation and remodeling process lasting even beyond 24 mo, and consists of 4 steps: The initial avascular necrosis, the revascularization, cellular proliferation, and final remodeling9. It is generally agreed that initially the graft undergoes necrosis, showing hypocellularity especially in its central part. Cytokines are released as a consequence of necrosis, which then trigger growth factors for cell migration, proliferation, extracellular matrix (ECM) synthesis, and revascularization10. Maximum cellularity is observed during the proliferation phase as the cell number surpasses that of the intact ACL in numerous animal models11. Cell numbers then regress towards the intact ACL cellularity at the end of the proliferation phase. The tissue remodeling phase is started with cell-mediated restructuring of the extracellular matrix as an adaptive response to mechanical loading on the...
tendon graft. This whole process from tendon graft toward the acquisition of histologic and biomechanical properties similar to the native ACL is known as "ligamentization".

This process could be indirectly monitored through MRI, as it has been proved that poor biomechanical properties and an incomplete graft maturation are related to a hyperintense graft signal on MRI[5-7]. Weiler et al[12] demonstrated in an animal model that a significantly elevated graft signal was present between the 6th and 12th weeks, and this condition was correlated to the lowest tensile stress of the graft (estimated around the 7%-16% of the initial values). However, from the 6th to the 24th month, the signal did not differ from that of the native ACL and the tensile stress increased, reaching around the 60% of the time-zero values. Furthermore, contrast-enhanced MRI with gadolinium showed the return to a graft signal similar to the native ACL by the 24th month, thus suggesting a late remodeling period. From the histological point of view, hyperintense signal was correlated to the presence of new hypervascular and hypercellular reparative tissue.

Despite the normal maturation process, it is important to know that an increase of signal intensity of the new-ACL, especially on the distal two-thirds, may also be due to graft impingement. This complication occurs when the grafts contacts the intercondylar notch during the extension of the knee. This has been implicated in the pathogenesis of the so-called "Cyclops lesion", which consist of a fibrous injury to the anterior side of the graft, close to the site of greatest friction within the notch[5,13].

BPTB autograft

The structural composition of the graft and the presence or absence of the bone plugs has been shown to present different maturation behaviors and presentations with MRI. When BPTB autograft tendons are used, in the first month the graft usually presents a low-intensity signal in T1 and T2 sequences, similar to the original patellar tendon, mirroring the relatively avascular nature of the donor structure. Subsequently, during the remodeling phase, the graft is wrapped by synovial tissue and vascularized (Figure 2), with the consequent increase of MRI signal up to 16-18 mo. After this period, the graft will shortly reach a signal very similar to original ACL[5-7].

HS autograft

When Gracilis and Semitendinosus autograft tendons are used, in the 1st month it is possible to not necessarily observe a hypointense signal as with the BPTB graft, because of the multiple layer configuration of the graft that could cause an accumulation of a thin liquid stratum (hyperintense at the MRI) between the individual layers. This finding, sometimes combined with small liquid deposits in the tunnel-graft interface, can remain in the first post-operative year. After that, the maturation process continues similarly to that of the patellar tendon[5-7]. However, in a recent study on 26 patients undergoing single-bundle ACL reconstruction, it has been shown that the Gracilis and Semitendinosus autograft demonstrated slower maturation at 6 mo compared to an autograft quadriceps tendon with bone block, when measured with the signal/noise quotient[14]. The authors proposed the possibility of needing to modify rehabilitation according to the extent of graft maturation to prevent re-injury and maximize patient function.

Allografts

Even allografts exhibit a similar behavior; however, it has been demonstrated that they have a much longer maturing process[15-17]. This has been confirmed by the persistence of a higher signal intensity compared to autografts for up to 2 years following ACL reconstruction[18].

In summary, the MRI evaluation of the neo-ligament signal indirectly allows us to obtain valuable information of the state of maturation, giving the clinician precious insight that can help guide rehabilitation and physical activity.

GRAFT INTEGRITY

Apart from incorrect tunnel placement, one of the most common causes of ACL reconstruction failure is a new injury. A new disruption of the reconstructed ligament appears on MRI as increased signal intensity in the T2 sequence within the graft body[7,19] (Figure 3). However, this should be combined with a concordant clinical examination and a clear medical history of a new trauma. In fact, the mere MRI evaluation could sometimes be misleading, because of the discordance between clinical examination and MRI evaluation. In a series of 50 revision ACL reconstructions with a graft lesion confirmed by arthroscopy and clinical examination, the graft was read intact on MRI evaluation in 24% of cases. The discordance between MRI and clinical evaluation,
causing extension deficit or a Cyclops lesion (Figure 3). A graft with the intercondylar notch increases, possibly the tunnel is too forward, the risk of impingement of the antero-posterior diameter, with the center at 46% between the 28% and 63% mark of the tibial plateau’s has been demonstrated that the native ACL is located from the anterior edge of the tibia should ideally be located around the 42% mark of the full extension (Figure 4A). The tibial tunnel center beyond the midpoint of the proximal tibia with the knee tangential to the intercondylar roof), without going beyond the midpoint of the proximal tibia with the knee should be localized behind a line that is tangential to the Blumensaat line (line b); (Figure 6B). Usually, the coronal position of the tibial tunnel entrance does not represent an issue in the MRI (Figure 4A). The tibial tunnel center should ideally be located around the 42% mark of the entire sagittal distance of the tibial plateau as measured from the anterior edge of the tibia (Figure 4A). It has been demonstrated that the native ACL is located between the 28% and 63% mark of the tibial plateau’s antero-posterior diameter, with the center at 46% (Figure 4A). If the tunnel is too forward, the risk of impingement of the graft with the intercondylar notch increases, possibly causing extension deficit or a Cyclops lesion (Figure 4B), while a tunnel too posterior could lead to a vertical graft (Figure 4) responsible of an incomplete control of knee antero-posterior and rotatory stability. A greater laxity could be linked to ACL reconstructions with sagittal graft inclination > 60° (Figure 5B).

TUNNEL POSITION

The correct positioning of the femoral and tibia tunnel represents a key technical step for the success of ACL reconstruction surgery. The MRI provides important information about those aspects, especially regarding the graft inclination.

Sagittal plane position

On the sagittal plane of the MRI the front border of the tibial tunnel should be localized behind a line that is tangential to the Blumensaat line (which is the line tangential to the intercondylar roof), without going beyond the midpoint of the proximal tibia with the knee in full extension (Figure 4A). The tibial tunnel center should ideally be located around the 42% mark of the total antero-posterior diameter of the tibial plateau (line c) is measured in the sagittal slice where the tibial entrance is better visualized. The location of the anterior margin of the tunnel is obtained dividing the distance from the anterior tibial plateau margin and the most anterior part of the tunnel entrance (point 1) for the total AP diameter (line c) and multiplying for 100. The location of the posterior margin of the tunnel is obtained dividing the distance from the posterior tibial plateau margin and the most posterior part of the tunnel entrance (point 3) and the center of the tunnel (point 2) are obtained similarly (A). Sagittal view with a tibial tunnel positioned anterior to the midpoint of the tibial plateau diameter, resulting in an increased risk of impingement (B). Sagittal view with a tibial tunnel positioned too posterior, resulting in a vertical graft (C). The native ACL is located between the 31% and 63% of the tibial plateau diameter, with its center at 48%. ACL Anterior cruciate ligament.

Coronal plane position

Similarly, on the coronal plane, the graft inclination should be less than 75° (Figure 6A), as an excessively vertical graft sub-optimally controls rotatory laxity compared with a more horizontally placed graft (Figure 6B). Usually, the coronal position of the tibial tunnel entrance does not represent an issue in the MRI evaluation after ACL reconstruction, as it is generally in the correct position under the femoral notch in the vast majority of the cases thanks to intra-operative anatomical landmarks; such as the anterior horn of lateral meniscus and the medial tibial eminence.
Tunnel inclination could therefore be correlated with success or failure of ACL reconstruction. Hosseini et al.\(^{[26]}\) reported a mean sagittal graft inclination of 69° in patients with failed ACL reconstruction scheduled for a revision procedure. Similarly, Mall et al.\(^{[24]}\) reported greater laxity in knees with sagittal graft inclination > 60° (Figure 5B); however, this did not affect general outcomes and the ability of these National Football League (NFL) athletes to return to high level sports practice. Furthermore, Fujimoto et al.\(^{[27]}\) found a mean coronal graft inclination of 79.5° in patients with grade 3 laxity after ACL reconstruction. Several factors could influence graft inclination, such as surgical experience, knee anatomy, and surgical technique. It has been demonstrated that trans-tibial (TT) femoral tunnel drilling tended to result in more vertical grafts in the sagittal plane compared to anteromedial portal (AMP) drilling (72° vs 53°)\(^{[28]}\) or other methods of independent femoral tunnel drilling.

TUNNEL ENLARGEMENT

Tunnel morphology and possible enlargement should be evaluated appropriately using radiographs, computed tomography (CT), or MRI\(^{[29]}\). It has been demonstrated that intra-observer kappa scores for CT, radiographic and MRI evaluation of tunnel enlargement were 0.66, 0.50 and 0.37 respectively, and inter-observer kappa scores were 0.65, 0.39 and 0.32 respectively. Thus, MRI is considered a sub-optimal and not reliable tool to evaluate the progression of tunnel enlargement, while the CT represents the most reliable one. A precise tunnel measurement is in fact mandatory, as it could represent an indication for a staged revision procedure (usually with a tunnel diameter > 15 mm). However, through MRI it is possible to identify liquid collection and cyst formation inside the tibial tunnel, responsible of potential tunnel widening (Figure 7). Usually in Gracilis and Semitendinosus ACL reconstruction, such situations could occur within the first post-operative year. A hyperintense signal due to liquid collection in the tendon-tunnel interface could be present; however, with the tendency for spontaneous resolution\(^{[5-7]}\). Usually, tunnel enlargement occurs within the first 3 month and tends to remain stable up to 2 years if no tunnel malpositioning or graft lack of healing is present.

The exact etiology of tunnel widening is unknown\(^{[30]}\), despite the fact that it has been related to several factors such as mechanical or biological mechanisms. Size mismatch between tunnel and graft dimension could allow sagittal micromotion at the graft-tunnel interface: This phenomenon, known as the "windshield wiper effect", has been indicated as a potential cause of tunnel enlargement especially in the tibia, proximal to the fixation site. Similarly, longitudinal elongation, known as the "bungee cord effect" could also play a role. The use of a Gracilis and Semitendinosus graft coupled with cortical devices, that produce a low stiffness construct with a long tunnel length, have been demonstrated to be subjected to this phenomenon, leading to tunnel enlargement in the femoral side\(^{[31]}\). Furthermore, tunnel malposition could generate abnormal stresses and motion of the graft, leading to tunnel lysis. As tunnel enlargement has been noted to stabilize after the first 3 month post-operative,
it is believed that the bone-to-bone or the tendon-to-bone healing within the tunnel could also influence the mechanical behavior of the graft. For the aforementioned reasons, early and aggressive rehabilitation, could potentially contribute to this phenomenon as well.

Regarding biological factors, it has been proposed that tunnel enlargement has been associated with allograft use secondary to a subclinical immunologic reaction\(^3\), and to the presence of inflammatory cytokines within synovial fluid between the bone-graft tunnel interfaces, because of their osteolytic activity. Finally, a 12% increase size of the graft due to swelling has been reported through MRI after ACL reconstruction, and the consequent increased pressure within the tunnel could be responsible for necrosis and further cytokine release.

Despite the fact that tunnel enlargement does not appear to adversely affect clinical outcomes in the short term, the long-term relationship with potential knee laxity or increased traumatic failure is unknown\(^3\). Moreover, large tunnels could seriously complicate the revision procedure, especially regarding graft placement and fixation, sometimes requiring a staged procedure.

FIXATION DEVICES

Fixation devices can be an issue in ACL post-operative MRI evaluation, because metallic devices could be responsible for disturbing artifacts (Figure 8). However, artifacts derived from metallic devices such as interference screws can be managed with software techniques to reduce metallic-hardware artifacts, reduction of slice thickness, and use of interecho spacing or short tau inversion recovery (STIR) techniques\(^3\). The use of bioabsorbable devices reduces the problems related to artifacts. However, despite possible artifacts due to fixation devices, their macroscopic mobilization, migration or rupture could be easily evidenced on MRI, and represent the cause of a potential reconstruction failure. Interference screws can migrate inside the joint damaging articular cartilage; suspensory extra-cortical systems can move inside the tunnel causing reduction of graft tensioning; cross pin fixation can migrate inside the soft tissues irritating muscles or tendons; while bioabsorbable materials can generate foreign-body inflammatory reaction. The latter circumstance could represent a severe event, due to an immune-mediate response. The production of inflammatory cytokine and the creation of a granuloma inside the bone around the screw or even in the surrounding soft-tissues, could possibly compromise the trabecular architecture weakening the bone\(^3\)\(^4\). Normally, bioabsorbable screws made in Poly-L-lactide (PLLA) or hydroxyapatite-PLLA have been reported to reabsorb slowly, necessitating up to 4 years to degrade\(^3\)\(^5\). Poly-D-L-lactide (PDLLA) screws have been reported clearly visible with MRI at 6-8 mo, show fragmentation and connective tissue ingrowth at 12-16 mo, and can be fully reabsorbed after 22 mo\(^3\)\(^6\). Differently, Polyglycolic Acid (PGA) screws have been shown to be completely reabsorbed even after 6-12 mo\(^3\)\(^7\).

DONOR SITE PATHOLOGY

The MRI could be considered a precious tool also to evaluate aspects not directly relating to the neo-ACL, but closely related to reconstruction surgery, as those deriving from graft harvesting.

BPTB autograft

For example, the patellar tendon after the harvesting of its middle third, could appear thickened with enhanced signal in T1 and T2 sequences\(^3\)\(^8\) (Figure 9). A gap between the medial and lateral third of the patellar tendon could be present, despite the fact it tends to disappear with time (Figure 10). In this regard, MRI studies have revealed the permanence of the tendon gap even after 10 years from reharvesting, and an increase of tendon thickness from 2 to 10 years, significantly higher compared to normal tendon\(^3\)\(^9\). Although rare, a patellar fracture, patellar tendon tears, bursitis or hematoma, especially after BPTB graft reharvesting, can be observed.
Sometimes, the Hoffa fat-pad could present an inflammatory reaction, highlighted by a hyperintense T2 signal at MRI fat-suppression sequences, due to hypertrophy and edema.

Another relatively frequent complication that can occur in the anterior knee compartment often related to graft harvesting is arthrofibrosis (Figure 11). Defined as a generic condition of post-operative stiffness (either extension or flexion), arthrofibrosis is believed to occur from ACL reconstruction being performed before post-traumatic inflammation has subsided or secondary to prolonged immobilization after ACL reconstruction. The arthrofibrosis can be diffuse or focal, and presents as an area of low-intermediate signal intensity extending anterior to the distal ACL [6], (Table 1).

Grassi A et al. MRI after ACL reconstruction

Figure 9 Anterior cruciate ligament reconstruction with bone-patellar tendon bone autograft in a 30-year-old male at 2 years of follow-up. Donor site pathology is displayed as a hyperintense signal (asterisk) in the proton-density fat saturation axial images surrounding the split patellar tendon (A). In the sagittal proton density weighted slice, the post-operative patellar tendinopathy is displayed as an increase of signal intensity within the tendon itself (asterisk), that resulted in an enlarged and swollen tendon (B).

Figure 10 Natural history of bone-patellar tendon bone harvesting in a 21-year-old male. It is possible to appreciate a bone defect (asterisk) on the anterior surface of the patella (A), the split hypointense patellar tendon (asterisk) (B), and another squared bone defect (asterisk) at the level of the central part of the anterior tibial tubercle (C).

Figure 11 Sagittal proton density weighted images of anterior cruciate ligament reconstruction with Gracilis and Semitendinosus Autograft in a 26-year-old male at 1.5 years follow-up. It is possible to appreciate a localized area of low to intermediate signal intensity extending anterior to the distal anterior cruciate ligament graft (black arrows) consistent with local arthrofibrosis.

Sometimes, the Hoffa fat-pad could present an inflammatory reaction, highlighted by a hyperintense T2 signal at MRI fat-suppression sequences, due to hypertrophy and edema.

Another relatively frequent complication that can occur in the anterior knee compartment often related to graft harvesting is arthrofibrosis (Figure 11). Defined as a generic condition of post-operative stiffness (either extension or flexion), arthrofibrosis is believed to occur from ACL reconstruction being performed before post-traumatic inflammation has subsided or secondary to prolonged immobilization after ACL reconstruction. The arthrofibrosis can be diffuse or focal, and presents as an area of low-intermediate signal intensity extending anterior to the distal ACL [6] (Table 1).

HS autograft

Regarding the “pes-anserinus”, it occasionally is subjected
to donor-site pathology. A light fluid collection along the donor site can be present in the first post-operative month, until its complete disappearance around 12-18 mo. Tendon regeneration has been documented to occur through the so-called “lizard’s tail effect”, even if the quality for reharvesting could be questioned[40]. A 2014 systematic review of 18 publications demonstrated a mean regeneration rate for the semitendinosus and gracilis tendons of 70% or higher[41]. However, more recent literature supports a complete regeneration of the Semitendinosus during the 3rd-6th month in 60% of the cases, while Gracilis regeneration has been reported to be present after its harvesting in 30% of the cases (Figure 12). Complete regeneration of the whole “pes anserinus” was only noted in 10% of the cases, often with an ectopic re-insertion 1-2 cm below the joint line at the level of Sartorius fascia or medial head of Gastrocnemius. In 15% of the cases, complete absence of both tendons was noted. An initial hypertrophy, followed by a progressive volume reduction was described along the first 2 post-operative years, accompanied by muscular atrophy, retraction and fatty infiltration in up to 90% of the cases[42].

Table 1 Figueroa’s score

Item	Points
Integration: Synovial fluid at tunnel-graft interface	1
Positive	1
Negative	2
Ligamentization: Graft signal pattern (> 50%)	3
Hypointense	2
Isointense	1
Hyperintense	1
Characterization of graft	2
Poor	2
Adequate	3-5

The Figueroa score is based on the sum of the points achieved in the 2 items: 2-points represents an insufficiently mature graft, while a score between 3 and 5 points represents a good ligamentization process and graft integration.

JOINT MORPHOLOGY AND ACL RECONSTRUCTION

Tibial slope

Christensen at al[43] evaluated the MRI of 35 patients with early ACL failure and 35 with no evidence of ACL graft failure, particularly medial (Figure 13A) and lateral (Figure 13B) tibial plateau sagittal slope. They found a higher lateral tibial plateau slope in patients that experienced graft failure (8.4° vs 6.5°). They estimated an odd ratio for graft failure of 1.6, 2.4 and 3.8 with a slope increase of 2°, 4° and 6° respectively. These findings were more evident in females. A similar conclusion was presented by Webb et al[44] using lateral radiographs. They described an incidence near 60% of graft re-rupture or contralateral ACL injury in patients with tibial slope > 12°. An increased tibial slope, especially the posterior slope of the lateral tibial plateau, is in fact a recognized risk factor for non-contact ACL injury[45]. However, there are some controversies in the literature, as some studies describing increased medial tibial plateau being the more important risk factor to ACL injury. Others believe the meniscal slope is a more accurate measure rather than the bony tibial plateau slope. Furthermore, different landmarks for measurement, knee or long-leg X-ray, use of MRI, and other features, increase the variability of the measurement and the absence of complete agreement regarding this issue. However, despite the controversy in the literature, it is well accepted that increasing the posteriorslope overall increases risk of ACL injury or graft failure.

Notch shape

Notch shape is also considered a risk factor for non-contact ACL injury. A narrow notch has been measured in ACL-deficient patients, probably accounting for a smaller and weaker ACL compared to healthy patients with a wider notch[46]. Furthermore, in the setting of ACL reconstruction, Fuji et al[13] found a smaller notch cross-sectional area (Figure 14) in patients that developed the “cyclops lesion” due to notch impingement compared to complication-free patients (251.7 mm² vs 335.6 mm²). The notch cross-sectional area was significantly smaller in patients with complication-free patients compared to those with a normal or high notch.

Anterior subluxation

Tanaka et al[47] reported an abnormal tibiofemoral relationship at MRI in patients with failed ACL reconstruction. An average of 5.7 mm of anterior tibial subluxation within the lateral compartment was reported, with a value greater than 15 mm in 12.5% of cases (Figure 15). The magnitude of anterior subluxation was 3.9 mm and 3.1 mm greater than the values of normal anterior subluxation in patients with failed ACL reconstruction.

Figure 12 Natural history of Gracilis and Semitendinosus harvesting. Two years after anterior cruciate ligament reconstruction in a 21-year-old male, it is possible to identify the Sartorius fascia (black asterisk) with a thin and hypotrophic Gracilis (red asterisk) and Semitendinosus (white asterisk) tendons (A). Conversely, seven years after anterior cruciate ligament reconstruction in a 35-year-old male, it is possible to identify the Sartorius fascia (black asterisk) with a thin and hypotrophic Gracilis (red asterisk) and Semitendinosus (white asterisk) tendons (B).
knees and knees with acute ACL tears, respectively. No noteworthy findings were reported for the medial compartment. This association between anterior displacement and failed ACL reconstruction may provide a mechanical explanation of suboptimal clinical results of ACL revision reconstruction.

Tibial plateau and femoral condyles geometry

In the ACL-deficient condition, Musahl et al.[48] noted a narrower lateral tibial plateau in patients with grade II pivot-shift compared to patients with grade I pivot-shift, (35.5 mm vs 30.3 mm) (Figure 16). However, this finding was significant only in female patients. No other anatomical parameters seemed to affect the pre-operative laxity. The authors suggested that bony anatomy contributes to the magnitude of knee laxity in the ACL-deficient knee; therefore, it could be argued that patients with specific anatomical features could represent patients with a higher risk of sub-optimal results of ACL reconstruction. In these cases of higher pre-operative laxity, the association of a lateral extra-articular plasty could be indicated[49] (Figure 17).

CONCLUSION

MRI represents an important tool for the post ACL reconstruction evaluation, due to its abilities to identify, in a non-invasive manner, a number of aspects and situations that could suggest potential problems to clinicians. Graft signal and integrity, correct tunnel placement or widening, and problems with fixation devices or donor site could all compromise the surgical outcomes and potentially determine the failure of the ACL reconstruction. However, this tool must not be used in isolation when assessing the post ACL reconstruction status. It should always
The lateral extra-articular plasty (asterisk) or delayed treatment.

Ma Y, Murawski CD, Rahmenn-Azar AA, Maldjian C, Lynch AD, Fu FH. Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 2015; 23: 1092-1099 [PMID: 24549261 DOI: 10.1007/s00167-014-2891-y]

Weiler A, Peters G, Mäurer J, Unterhauser FN, Südkamp NP. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med 2001; 29: 751-761 [PMID: 11734489]

Fujii M, Furumatsu T, Miyazawa S, Okada Y, Tanaka T, Ozaki T, Abe N. Intercondylar notch size influences cyclops formation after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2015; 23: 1092-1099 [PMID: 24549261 DOI: 10.1007/s00167-014-2891-y]

Ma Y, Murawski CD, Rahmenn-Azar AA, Maldjian C, Lynch AD, Fu FH. Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 2015; 23: 661-668 [PMID: 25223969 DOI: 10.1007/s00167-014-3302-0]

Amendola A, Stolley MP. What do we really know about allografts? Clin Sports Med 2009; 28: 215-222, vii-viii [PMID: 19306751 DOI: 10.1016/j.csm.2008.10.002]

Ekdahl M, Wang JH, Ronga M, Fu FH. Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2008; 16: 935-947 [PMID: 18633596 DOI: 10.1007/s00167-008-0584-0]

Gulotta LV, Rodeo SA. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med 2007; 26: 509-524 [PMID: 17920950 DOI: 10.1016/j.csm.2007.06.007]

Li H, Tao H, Chao S, Chen S, Yao Z, Chen S. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am J Sports Med 2012; 40: 1519-1526 [PMID: 22495290 DOI: 10.1177/0363546512443050]

Waltz RA, Solomon DJ, Provencer MT. A Radiographic Assessment

REFERENCES

1 Iraeezazadeh S, Kurowska M, Cohen M, Fu FH. Anterior cruciate ligament reconstruction. ISAKOS 2016; 1: 38-52 [DOI: 10.1136/jisakos-2015-000001]

2 Fabricant PD, Lakomkin N, Cruz A, Spitzer E, Lawrence JTR, Marx RG. Early ACL reconstruction in children leads to less meniscal and articular cartilage damage when compared with conservative or delayed treatment. ISAKOS 2016; 1: 10-15 [DOI: 10.1136/jisakos-2015-000012]

3 Fabricant PD, Lakomkin N, Cruz A, Spitzer E, Marx RG. ACL reconstruction in youth athletes results in an improved rate of return to athletic activity when compared with non-operative treatment: a systematic review of the literature. ISAKOS 2016; 1: 2059-7762 [DOI: 10.1136/jisakos-2015-000013]

4 Crawford SN, Waterman BR, Lubowizt JH. Long-term failure of anterior cruciate ligament reconstruction. Arthroscopy 2013; 29: 1566-1571 [PMID: 23820260 DOI: 10.1016/j.arthro.2013.04.014]

5 Gnaan R, Chhabra A, Theodoropoulos JS, Hodler J, Andreisek G. MR imaging of the postoperative knee. J Magn Reson Imaging 2011; 34: 1007-1021 [PMID: 22002752 DOI: 10.1002/jmri.22672]

6 Kulczycka P, Larbi A, Malghem J, Thienpont E, Vande Berg B, Lecouvet F. Imaging ACL reconstructions and their complications. Diagn Interv Imaging 2015; 96: 11-19 [PMID: 24910463 DOI: 10.1016/j.dii.2014.09.007]

7 Naraghi A, White L. MRI evaluation of the postoperative knee: special considerations and pitfalls. Clin Sports Med 2006; 25: 703-725 [PMID: 16962423 DOI: 10.1016/j.csm.2006.06.007]

8 Petersen W, Zantop T. Return to play following ACL reconstruction: survey among experienced arthroscopic surgeons (AGA instructors). Arch Orthop Trauma Surg 2013; 133: 969-977 [PMID: 23604790 DOI: 10.1007/s00402-013-1746-1]

9 Janssen RP, Scheller SU. Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2014; 22: 2102-2108 [PMID: 23982759 DOI: 10.1007/s00167-013-2634-5]

10 Lui PP, Lee YW, Mok TY, Cheuk YC, Chan KM. Alendronate reduced peri-tunnel bone loss and enhanced tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction. Eur Cell Mater 2013; 25: 78-96 [PMID: 23325540]

11 Unterhauser FN, Bail HJ, Höfer J, Haas NP, Weiler A. Endoligamentous revascularization of an anterior cruciate ligament graft. Clin Orthop Relat Res 2003; (414): 276-288 [PMID: 12966303 DOI: 10.1097/01.blo.0000079442.64912.51]

12 Weiler A, Peters G, Mäurer J, Unterhauser FN, Südkamp NP. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med 2001; 29: 751-761 [PMID: 11734489]

13 Fuji M, Furumatsu T, Miyazawa S, Okada Y, Tanaka T, Ozaki T, Abe N. Intercondylar notch size influences cyclops formation after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2015; 23: 1092-1099 [PMID: 24549261 DOI: 10.1007/s00167-014-2891-y]

14 Marx RG. Early ACL reconstruction in children leads to less meniscal and articular cartilage damage when compared with conservative or delayed treatment. ISAKOS 2016; 1: 38-52 [DOI: 10.1136/jisakos-2015-000001]

15 Ekdahl M, Wang JH, Ronga M, Fu FH. Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2008; 16: 935-947 [PMID: 18633596 DOI: 10.1007/s00167-008-0584-0]

16 Gulotta LV, Rodeo SA. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med 2007; 26: 509-524 [PMID: 17920950 DOI: 10.1016/j.csm.2007.06.007]

17 Li H, Tao H, Chao S, Chen S, Yao Z, Chen S. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am J Sports Med 2012; 40: 1519-1526 [PMID: 22495290 DOI: 10.1177/0363546512443050]
Grassi A et al. MRI after ACL reconstruction of Failed Anterior Cruciate Ligament Reconstruction: Can Magnetic Resonance Imaging Predict Graft Integrity? Am J Sports Med 2014; 42: 1652-1660 DOI: 10.1177/0363546513532335

Howell SM, Berns GS, Farley TE. Unimpinged and impinged anterior cruciate ligament grafts: MR signal intensity measurements. Radiology 1991; 179: 639-643 DOI: 10.1148/radiology.179.3.2027966

Frank RM, Seryo RT, Lewis PB, Bach BR, Verma NN. MRI analysis of tibial position of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2010; 18: 1607-1611 DOI: 10.1007/s00167-010-1192-3

Lee S, Kim H, Jang J, Seong SC, Lee MC. Intraoperative correlation analysis between tunnel position and translational and rotational stability in single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy 2012; 28: 1424-1436 DOI: 10.1016/j.arthro.2012.03.027

Tomczak RJ, Hehl G, Mergo PJ, Merkle E, Rieber A, Brambs HJ. Tunnel placement in anterior cruciate ligament reconstruction: MRI analysis as an important factor in the radiological report. Skeletal Radiol 1997; 26: 409-413 DOI: 10.1007/s002560050256

Tail NA, Matava MJ, Wright RW, Brophy RH. Relation between anterior cruciate ligament graft obliquity and knee laxity in elite athletes at the National Football League combine. Arthroscopy 2012; 28: 1104-1113 DOI: 10.1016/j.arthro.2011.12.018

Sauge N, White LM, Chiavaras MM, Essue J, Weller I, Kunz M, Hurtig M, Marks P. Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up--correlation with functional and clinical evaluation. Radiology 2008; 249: 581-590 DOI: 10.1148/radiol.2492071651

Hosseini A, Lodhia P, Van de Velde SK, Annis PD, Zarins B, Gill TJ, Li G. Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis. Int Orthop 2012; 36: 845-852 DOI: 10.1007/s00224-011-1133-3+4011-3334-3

Fujimoto E, Sumen Y, Deie M, Yasmoto M, Kobayashi K, Ochi M. Anterior cruciate ligament graft impingement against the posterior cruciate ligament: diagnosis using MRI plus three-dimensional reconstruction software. Magn Reson Imaging 2004; 22: 1125-1129 DOI: 10.1016/j.mri.2004.08.007

Hantes ME, Zachos VC, Liantisis A, Venouziou A, Karantanas AH, Malizos K. Differences in graft orientation using the transplantial and anteromedialportal technique in anterior cruciate ligament reconstruction: a magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc 2009; 17: 880-886 DOI: 10.1007/s00167-009-0738-8

Marchant MH, Willson SM, Vinson E, Pietrobon R, Garrett WE, Higgins LD. Comparison of plain radiography, computed tomography, and magnetic resonance imaging in the evaluation of bone tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2010; 18: 1059-1064 DOI: 10.1007/s00167-009-0942-0

Wilson TC, Kantaras A, Atay A, Johnson DL. Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 2004; 32: 543-549 DOI: 10.1177/0363546504263315

Clawthorpe PA, Boulouros C, Barsby CD, Bunting RJ. Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 1999; 7: 138-145 DOI: 10.1007/s00167-001-0069-0

Fahey M, Indelicato PA. Bone tunnel enlargement after anterior cruciate ligament replacement. Am J Sports Med 1994; 22: 410-414 DOI: 10.1177/036354659402206318

White LM, Poelker WA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol 2002; 6: 5-17 DOI: 10.1055/s-2002-23160

Konsan S, Haddad FS. Femoral fracture following knee ligament reconstruction surgery due to an unpredictable complication of bioabsorbable screw fixation: a case report and review of literature. J Orthop Traumatol 2010; 11: 51-55 DOI: 10.1007/s10195-009-0079-x

Ma CB, Francis K, Towers J, Irgang J, Fu FH, Harner CH. Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 2004; 20: 122-128 DOI: 10.1016/j.arthro.2003.11.007

Achtstein A, Forlak P, Metzloff S, Zanot T, Petersen W. Degradation of poly-D-Lactide (PDLLA) interference screws (Megasfix ®). Arch Orthop Trauma Surg 2014; 134: 1147-1153 DOI: 10.1007/s00020-014-193-9

Fink C, Benedetto KP, Hackl W, Hoser C, Freund MC, Rieger M. Bioabsorbable polyglyconate interference screw fixation in anterior cruciate ligament reconstruction: a prospective computed tomography-controlled study. Arthroscopy 2006; 16: 491-498 DOI: 10.10824/doi:10.1016/j.arthro.2000.06.003

Petersen RK, Shelton WR, Bomboy AL. Allograft versus autograft patellar tendon anterior cruciate ligament reconstruction: A 5-year follow-up. Arthroscopy 2001; 17: 9-13 DOI: 10.1016/s0363-5465(01)00110-7

Lidén M, Ejerhed L, Semert N, Bovaller A, Karlsson J, Kurtz J. The course of the patellar tendon after harvesting its central third for ACL revision surgery: a long-term clinical and radiographic study. Knee Surg Sports Traumatol Arthrosc 2006; 14: 1130-1138 DOI: 10.1007/s00167-006-0167-x

Yoshiya S, Matsui N, Matsumoto A, Kuroda R, Lee S, Kurosaka M. Revision anterior cruciate ligament reconstruction using the regenerated semitendinosus tendon: analysis of ultrastructure of the regenerated tendon. Arthroscopy 2004; 20: 532-535 DOI: 10.1016/j.arthro.2004.01.031

Suijkerbuijk MA, Reijman M, Lodewijks SJ, Punt J, Meuffels DE. Hamstring Tendon Regeneration After Harvesting: A Systematic Review. Am J Sports Med 2015; 43: 2591-2598 DOI: 10.1177/036354651562169

Tsiofountoudis I, Bishinas I, Kalaitzoglou I, Markopoulos G, Haritandi A, Dimitriadis A, Papastergiou S. The natural history of donor hamstrings unit after anterior cruciate ligament reconstruction: a prospective MRI scan assessment. Knee Surg Sports Traumatol Arthrosc 2015; 23: 2510-2514 DOI: 10.1007/s00167-014-3379-8

Kronenburg MA, Ketelslegers JM, van Dijk CN, de Bie RA. Prophylaxis after anterior cruciate ligament reconstruction surgery: a systemic review. Knee Surg Sports Traumatol Arthrosc 2014; 22: 2800-2804 DOI: 10.1007/s00167-015-3732-3

Ochel D, Jermann T, Stroh M, Guldbakke J, Bousquet F, Leppilahti J. Knee tunnel position and graft orientation after anterior cruciate ligament reconstruction: a clinical and imaging analysis. Knee Surg Sports Traumatol Arthrosc 2015; 23: 2510-2514 DOI: 10.1007/s00167-015-3732-3

Bisson LJ, Gurske-DePerio J. Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy 2010; 26: 901-906 DOI: 10.1016/j.arthro.2009.12.012

Sonney-Cottet B, Archbold P, Cucurullo T, Fayard JM, Borlottolo J, Thaunat M, Prost T, Chambat P. The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 2011; 93: 1475-1478 DOI: 10.1302/0301-620X.93B11-26095

Tanaka MJ, Jones KJ, Gargiulo AM, Delos D, Wickiewicz TL, Potter HG, Pearce AD. Passive anterior tibial subluxation in anterior cruciate ligament-deficient knees. Am J Sports Med 2013; 41: 2347-2352 DOI: 10.1177/0363546513489095

Musalh V, Ayeni OR, Citak M, Irgang JJ, Pearle AD, Wickiewicz TL. The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc 2010; 18: 1232-1238 DOI: 10.1007/s00167-010-1129-x

Marcacci M, Zaffagnini S, Marcheggiani Muccioli GM, Neri MP,
Bondi A, Nitti M, Bonanzinga T, Grassi A. Arthroscopic intra- and extra-articular anterior cruciate ligament reconstruction with gracilis and semitendinosus tendons: a review. *Curr Rev Musculoskelet Med* 2011; 4: 73-77 [PMID: 21594691 DOI: 10.1007/s12178-011-9075-x]

P- Reviewer: Fanter NJ, Seijas R **S- Editor:** Qiu S **L- Editor:** A
E- Editor: Lu YJ
