LIE ALGEBROIDS AND POISSON-NIJENHUIS STRUCTURES

Janusz Grabowski¹ and Paweł Urbański²

¹ Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
e-mail: jagrab@mimuw.edu.pl

² Department of Mathematical Methods in Physics, University of Warsaw, Hoża 74, 00-682 Warszawa, Poland.
e-mail: urbanski@fuw.edu.pl

Abstract

Poisson-Nijenhuis structures for an arbitrary Lie algebroid are defined and studied by means of complete lifts of tensor fields.

1. INTRODUCTION

In our previous paper [4], certain definitions and constructions of graded Lie brackets and lifts of tensor fields over a manifold were generalized to arbitrary Lie algebroids. Since Poisson-Nijenhuis structures seem to fit very well to the Lie algebroid language and, as it was recently shown by Kosmann-Schwarzbach in [5], they give examples of Lie bialgebroid structures in the sense of Mackenzie and Xu [9], we would like to present in this note a Lie algebroid approach to Poisson-Nijenhuis structures.

We start with the definition of a pseudo-Lie algebroid structure on a vector bundle \(E \), as a slight generalization of the notion of a Lie algebroid and we show that such structures are determined by special tensor fields \(\Lambda \) on the dual bundle \(E^* \).

Then, we define the complete lift \(d^\Lambda_T(P) \), which reduces to the classical tangent lift \(d_T \) in the case of the tangent bundle \(E = TM \). We prove that, when we start from \(P \in \Gamma(M, \wedge^2 E) \), the complete lift \(d^\Lambda_T(P) \) corresponds to a bracket on sections of \(E^* \), which, in the classical case, is the Fuchssteiner-Koszul bracket on 1-forms. In the case of a Lie algebroid over a single point, \(d^\Lambda_T(P) \) is closely related to the modified Yang-Baxter equation. Deforming the Lie algebroid bracket by a \((1,1)\) tensor \(N \), we find the corresponding bivector field \(\Lambda_N \) on \(E^* \). Assuming some compatibility conditions for \(N \) and \(P \), we can define a Poisson-Nijenhuis structure for a Lie algebroid which provides a whole list of Lie bialgebroid structures.

This unified approach to Poisson and Nijenhuis structures, including the classical case as well, as the case of a real Lie algebra, makes possible to understand common aspects of the theory, which were previously seen separately for different models.

2. TANGENT LIFTS FOR PRE-LIE ALGEBROIDS

Let \(M \) be a manifold and let \(\tau: E \to M \) be a vector bundle. By \(\Phi(\tau) \) we denote the graded exterior algebra generated by sections of \(\tau \): \(\Phi(\tau) = \bigoplus_{k \in \mathbb{Z}} \Phi^k(\tau) \), where \(\Phi^k(\tau) = \Gamma(M, \wedge^k E) \) for \(k \geq 0 \) and \(\Phi^k(\tau) = \{0\} \) for \(k < 0 \). Elements of \(\Phi^0(\tau) \) are functions on \(M \), i.e., sections of the bundle \(\wedge^0 E = M \times \mathbb{R} \). Similarly, by \(\otimes(\tau) \) we denote the tensor algebra \(\otimes(\tau) = \bigoplus_{k \in \mathbb{Z}} \otimes^k(\tau) \), where \(\otimes^k(\tau) = \Gamma(M, \otimes^k_M E) \). The

¹Supported by KBN, grant No 2 PO3A 074 10
dual vector bundle we denote by \(\pi: E^* \to M \). For the tangent bundle \(\tau_M : TM \to M, \Phi(\tau_M) \) is the exterior algebra of multivector fields, and for the cotangent bundle \(\varpi_M : T^* M \to M \), we get \(\Phi(\varpi_M) \), the exterior algebra of differential forms on \(M \).

The cotangent bundle is endowed with the canonical symplectic form \(\omega_M \) and the corresponding canonical Poisson tensor \(\Lambda_M \).

Definition 2.1 A pseudo-Lie algebroid structure on a vector bundle \(\tau : E \to M \) is a bracket (bilinear operation) \([\cdot, \cdot]\) on the space \(\Phi^1(\tau) = \Gamma(M, E) \) of sections of \(\tau \) and vector bundle morphisms \(\alpha_1, \alpha_r : E \to TM \) (called the left- and right-anchor, respectively), such that

\[
[fX, gY] = f\alpha_1(X)(g)Y - g\alpha_r(Y)(f)X + fg[X, Y] \quad (2.1)
\]

for all \(X, Y \in \Gamma(E) \) and \(f, g \in C^\infty(M) \).

A pseudo-Lie algebroid, with a skew-symmetric bracket \([\cdot, \cdot]\) (in this case the left and right anchors coincide), is called a pre-Lie algebroid.

A pre-Lie algebroid is called a Lie algebroid if the bracket \([\cdot, \cdot]\) satisfies the Jacobi identity, i.e., if it provides \(\Phi^1(\tau) \) with a Lie algebra structure.

In the following, we establish a correspondence between pseudo-Lie algebroid structures on \(E \) and 2-contravariant tensor fields on the bundle manifold \(E^* \) of the dual vector bundle \(\pi : E^* \to M \). Let \(X \in \Phi^1(\tau) \). We define a function \(\iota_{E^*}X \) on \(E^* \) by the formula

\[
E^* \ni a \mapsto \iota_{E^*}X(a) = \langle X(\pi(a)), a \rangle,
\]

where \(\langle \cdot, \cdot \rangle \) is the canonical pairing between \(E \) and \(E^* \).

Let \(\Lambda \in \Gamma(E, TE \otimes E \otimes E) \) be a 2-contravariant tensor field on \(E \). We say that \(\Lambda \) is linear if, for each pair \((\mu, \nu)\) of sections of \(\pi \), the function \(\Lambda(\mu, \nu)(a) \), defined on \(E \), is linear.

For each 2-contravariant tensor \(\Lambda \), we define a bracket \(\{\cdot, \cdot\}_\Lambda \) of functions by the formula

\[
\{f, g\}_\Lambda = \Lambda(df, dg).
\]

Theorem 2.1 For every pseudo-Lie algebroid structure on \(\tau : E \to M \), with the bracket \([\cdot, \cdot]\) and anchors \(\alpha_1, \alpha_r \), there is a unique 2-contravariant linear tensor field \(\Lambda \) on \(E^* \) such that

\[
\iota_{E^*}X = \{\iota_{E^*}X, \iota_{E^*}Y\}_\Lambda \quad (2.2)
\]

and

\[
\pi^* (\alpha_1(X)(f)) = \{\iota_{E^*}X, \pi^* f\}_\Lambda, \quad \pi^* (\alpha_r(X)(f)) = \{\pi^* f, \iota_{E^*}X\}_\Lambda, \quad (2.3)
\]

for all \(X, Y \in \Phi^1(\tau) \) and \(f \in C^\infty(M) \).

Conversely, every 2-contravariant linear tensor field \(\Lambda \) on \(E^* \) defines a pseudo-Lie algebroid on \(E \) by the formulae \(2.2\) and \(2.3\).

The pseudo-Lie algebroid structure on \(E \) is a pre-Lie algebroid structure (resp. a Lie algebroid structure) if and only if the tensor \(\Lambda \) is skew-symmetric (resp. \(\Lambda \) is a Poisson tensor).

Proof. We shall use local coordinates. Let \((x^a)\) be a local coordinate system on \(M \) and let \(e_1, \ldots, e_n \) be a basis of local sections of \(E \). We denote by \(e^1, \ldots, e^n \) the dual basis of local sections of \(E^* \) and by \((x^a, y^i)\) (resp. \((x^a, \xi_i)\)) the corresponding coordinate system on \(E \) (resp. \(E^* \)), i.e., \(\iota_{E^*}e_i = \xi_i \) and \(\iota_{E^*}x^a = y^i \).

It is easy to see that every linear 2-contravariant tensor \(\Lambda \) on \(E^* \) is of the form

\[
\Lambda = c^k_{ij} \xi_k \partial_{\xi_i} \otimes \partial_{\xi_j} + \delta_i^a \partial_{\xi_i} \otimes \partial_{x^a} - \sigma_i^a \partial_{x^a} \otimes \partial_{\xi_i}, \quad (2.4)
\]

where \(c^k_{ij}, \delta_i^a \) and \(\sigma_i^a \) are functions of \(x^a \). The correspondence between \(\Lambda \) and a pseudo-Lie algebroid structure is given by the formulae

\[
\begin{align}
[e_i, e_j] &= [e_i, e_j]^\Lambda = c^k_{ij} e_k \\
\alpha_i^L(e_i) &= \delta_i^a \partial_{x^a} \\
\alpha_i^R(e_i) &= \sigma_i^a \partial_{x^a}
\end{align} \quad (2.5)
\]
Theorem 2.2 Let $\tau_i : E_i \to M$, $i = 1, 2$, be vector bundles over M and let $\Psi : E_1 \to E_2$ be a vector bundle morphism over the identity on M. Let Λ_i be a linear, 2-contravariant tensor on E_1^*, $i = 1, 2$. Then
$$[\Psi(X), \Psi(Y)]^{\Lambda_2} = \Psi([X, Y]^{\Lambda_1})$$
if and only if Λ_2 and Λ_1 are Ψ^*-related, where $\Psi^* : E_2^* \to E_1^*$ is the dual morphism.

Proof. The equality $[\Psi(X), \Psi(Y)]^{\Lambda_2} = \Psi([X, Y]^{\Lambda_1})$ is equivalent to the equality
$$\{(\iota_{E_1^*} X) \circ \Psi^*, (\iota_{E_1^*} Y) \circ \Psi^*\}_{\Lambda_2} = \{\iota_{E_1^*} \Psi(X), \iota_{E_1^*} \Psi(Y)\}_{\Lambda_1} = \{\iota_{E_1^*} X, \iota_{E_1^*} Y\}_{\Lambda_1} \circ \Psi^*. \tag{2.6}$$

Since the exterior derivatives of functions $\iota_{E_1^*} X$ generate $T^* E_1^*$ over an open-dense subset (E_1^* minus the zero section), the equality (2.6) holds if and only if the tensors Λ_1, Λ_2 are Ψ^*-related.

To the end of this section we assume that Λ is skew-symmetric, i.e., we consider pre-Lie algebroid structures only.

In this case, the bracket $[,]^{\Lambda}$, related to Λ, defined on sections of τ can be extended in a standard way (cf. [3, 4]) to the graded bracket on $\Phi(\tau)$. We refer to this bracket as the Schouten-Nijenhuis bracket and we denote it also by $[,]^{\Lambda}$.

Moreover, we can define the ‘exterior derivative’ d^{Λ} on $\Phi(\pi)$ and the Lie derivative $L^\Lambda_X : \Phi(\pi) \to \Phi(\pi)$ along a section $X \in \Gamma(M, E)$. Also the Nijenhuis-Richardson bracket and the Frölicher-Nijenhuis bracket can be defined on $\Phi^* \pi (\pi) = \odot_{n \in \mathbb{Z}} \Phi^* \pi (\pi)$, where $\Phi^* \pi (\pi) = \Gamma(M, E \otimes \wedge^n E^*)$. The definitions of these objects are analogous to the definitions in the classical case (cf. [3]).

The bracket $[,]^{\Lambda}$ is a Lie bracket (or, equivalently, $(d^{\Lambda})^2 = 0$) if and only if Λ defines a Lie algebroid structure, i.e., if and only if Λ is a Poisson tensor. In this case, all classical formulae of differential geometry, like $L^\Lambda_X \circ i_Y - i_Y L^\Lambda_X = i_{[X,Y]}^\Lambda$ etc., remain valid. We should also mention the vertical tangent lift
$$v_\tau : \Gamma(M, \otimes_M^k E) \to \Gamma(E, \otimes^E_\tau T E)$$
given, in local coordinates, by
$$v_\tau(f(x)e_{i_1} \otimes \cdots \otimes e_{i_k}) = f(x)\partial_{y_{i_1}} \otimes \cdots \otimes \partial_{y_{i_k}}.$$
In particular, $v_\tau(X \otimes Y) = v_\tau(X) \otimes v_\tau(Y)$ (3). In the case of the tangent bundle, $E = TM$, the vertical lift was denoted by v_T in (3). An analog of the complete tangent lift d_T, studied for the tangent bundle in [3], can be defined as follows.

Theorem 2.3 Let Λ be a linear bivector field on E^*, which defines a pre-Lie algebroid structure on a vector bundle $\tau : E \to M$. Then, there exists a unique v_τ-derivation of order 0
$$d^{\Lambda}_\tau : \otimes (\tau) \to \otimes (\tau_E),$$
which satisfies
$$d^{\Lambda}_\tau (f) = \iota_E d^{\Lambda} f \quad \text{for } f \in C^\infty(M), \tag{2.7}$$
and
$$\iota_{T^\tau E} (d^{\Lambda}_\tau X) \circ R = \iota_{T^\tau E} ([\Lambda, \iota_{E^*} X]) \quad \text{for } X \in \Phi(\tau), \tag{2.8}$$
where $[,]$ is the Schouten bracket of multivector fields on E and $R : T^E E^* \to T^E E$ is the canonical isomorphism of double vector bundles(see [3, [4]]). Moreover, d^{Λ}_τ is a homomorphism of the Schouten-Nijenhuis brackets:
$$d^{\Lambda}_\tau ([X, Y]^\Lambda) = [d^{\Lambda}_\tau X, d^{\Lambda}_\tau Y], \tag{2.9}$$
if and only if Λ is a Poisson tensor.
SKETCH OF THE PROOF. Let us take $X \in \Phi^1(\tau)$. The Hamiltonian vector field $G^\Lambda(X) = -[\Lambda, \iota_E X]$ is linear with respect to the tangent vector bundle structure $T \tau : TM \to TM$ \(\square\). Hence, the function $\iota_{T^*E} [\Lambda, \iota_E X]$ is linear with respect to both vector bundle structures on T^*E: over E and over E^*. It follows that there exists a unique (linear) vector field d^1_X on E, such that $\iota_{T^*E} G^\Lambda(X) = -(\iota_{T^*E} d^1_X) \circ R$. We have the formula
\[
d^1_X(fX) = d^1_X(f) v_\tau(X) + v_\tau(f) d^1_X(X)
\]
and, consequently, we can extend d^1_X to a v_τ-derivation on $\otimes(\tau)$. Finally, since R is an anti-Poisson isomorphism, d^1_X is a homomorphism of Schouten-Nijenhuis bracket if and only if
\[
[G^\Lambda(X), G^\Lambda(Y)] = G^\Lambda([X, Y]^\Lambda)
\]
for all $X, Y \in \Phi^1(\tau)$, or, equivalently, if and only if Λ is a Poisson tensor. \hfill \blacksquare

Remark. Let us define a mapping
\[
\mathcal{J}_E : \Phi^1(\pi) \to \Phi^1(\tau_E)
\]
by
\[
\mathcal{J}_E(\mu \otimes X) = -\iota_E(\mu) \cdot v_\tau(X).
\]
It has been shown in \cite{4} that \mathcal{J}_E is a homomorphism of the Nijenhuis-Richardson bracket into the Schouten bracket. We have also a mapping
\[
G^\Lambda : \Phi^1(\pi) \to \Phi^1(\tau_E^*) : K \mapsto G^\Lambda(K) = [\Lambda, \mathcal{J}_E^*(K)],
\]
which is, in the case of a Lie algebroid structure, a homomorphism of the Frölicher-Nijenhuis bracket $[\cdot, \cdot]_{\mathcal{F}_N}$, associated to Λ, into the Schouten bracket \(\square\). The bracket $[\cdot, \cdot]_{\mathcal{F}_N}$ is given by the formula
\[
[X, Y]_\Lambda = [\mu \wedge \nu \otimes [X, Y]^\Lambda + \mu \wedge \mathcal{L}_X^X \nu \otimes Y + \mathcal{L}_Y^X \mu \wedge \nu \otimes X + (-1)^{\mu}(d^\Lambda \mu \wedge \nu \otimes Y + i_Y \mu \wedge d^\Lambda \nu \otimes X).
\] \hfill (2.10)

In local coordinates
\[
\Lambda = \frac{1}{2} c^i_{jkl} \partial_x^i \partial_x^j \partial_x^k.
\] \hfill (2.11)

Then,
\[
d^\Lambda_X(f) = \frac{\partial f}{\partial x^a} \delta^a_j y^j
\] \hfill (2.12)

and
\[
d^\Lambda_X(X^i e_i) = X^i \delta^a_j \partial_x^a + (X^i c^k_{ji} + \frac{\partial X^k}{\partial x^a} \delta^a_j) y^i \partial_y^j.
\] \hfill (2.13)

It follows that, for $P = \frac{1}{2} P^{ij}_{a} e_i \wedge e_j$, we have
\[
d^\Lambda_X(P) = P^{ij} \delta^a_j \partial_y^i \wedge \partial_x^a + (P^{ij} c^k_{ji} + \frac{1}{2} \frac{\partial P^{ij}}{\partial x^a} \delta^a_j) y^i \partial_y^j \wedge \partial_y^j.
\] \hfill (2.14)

Remark. For an arbitrary pseudo-Lie algebroid, we can define the right and the left complete lifts with the use of the right and the left Hamiltonian vector fields instead of $[\Lambda, \iota_E X]$.

The following theorem describes the complete lifts in terms of Lie derivatives and contractions.

Theorem 2.4 Given a vector bundle $\tau : E \to M$ and a linear bivector field Λ on E^*, we have
\[(a) \quad v_\tau(X)(\iota_{E\mu}) = v_\tau(\iota_{ix} \mu) = \tau^b(X, \mu),
\]
\[(b) \quad d^1_X(\iota_{E\mu}) = \iota_{E}(\mathcal{L}_X^\Lambda\mu),
\]
where $X \in \Phi^1(\tau)$ and $\mu \in \Phi^1(\pi)$.
Poisson structure Λ on g. Kirillov-Souriau tensor in (linear) coordinate system ξ where we used Theorem 2.4. Now, we have

\[\alpha = \text{Theorem 2.5} \]

Proof. The part (a) has been proved in $[4]$, Theorem 15 c). The part (b) follows from the following sequence of identities:

\[
\begin{align*}
\pi^*_E(d^\Lambda_L(X)(\iota_E\mu)) \circ \mathcal{R} &= \{ \iota_{T^*E}(d^\Lambda_LX), \pi^*_E(\iota_E\mu) \}_\Lambda \circ \mathcal{R} \\
&= \{ \iota_{T^*E}(\iota_E\mu), \iota_{T^*E}([\Lambda, \iota_E\mu]) \}_\Lambda \circ \mathcal{R}, \\
&= \iota_{T^*E}([\iota_E\mu, [\Lambda, \iota_E\mu]]) = \iota_{T^*E}[\mathcal{G}^L(X), \iota_E\mu] \\
&= \iota_{T^*E}([\iota_E\mu, \mathcal{L}^\Lambda(\mu)]) = \pi^*_E(\iota_E(\mathcal{L}^\Lambda_{\mu})) \circ \mathcal{R},
\end{align*}
\]

where we used the equalities $[\mathcal{G}^L(X), \iota_E\mu] = \iota_E(\mathcal{L}^\Lambda_{\mu})$ (see $[4]$, Theorem 15 e)) and $\iota_{T^*E} \iota_E\mu = \pi^*_E(\iota_E(\mathcal{L}^\Lambda_{\mu})) \circ \mathcal{R}$.

Theorem 2.5 If $P \in \Phi^2(\tau)$, then $d_P(P)$ defines a pre-Lie algebroid structure on E^* with the bracket

\[
[\mu, \nu]^{d_P(P)} = E^\mu - E^\nu - d_P(\mu, \nu),
\]

where $P_\mu = \iota_\mu P$, and the anchor is given by

\[\alpha^{d_P(P)}(\mu) = \alpha^L(P_\mu). \]

Proof. It is sufficient to consider $P = X \wedge Y, X, Y \in \Phi^1(\tau)$. Let us denote $d_P(X)$ and $d_P(Y)$ by \bar{X} and \bar{Y}, $\iota_E(\mu)$ by \bar{Y}, $\iota_E(\mu)$ by \bar{X} and $\bar{Y}, \mu^L(\mu) = d^L(\mu)$ by \bar{X} and \bar{d}. Then, we have

\[
\begin{align*}
\{ \iota_E\mu, \iota_E\nu \}^{d_P(P)} &= X(\iota_E\mu)Y(\iota_E\nu) - X(\iota_E\nu)Y(\iota_E\mu) - \bar{X}(\iota_E\mu)Y(\iota_E\nu) + \bar{X}(\iota_E\nu)Y(\iota_E\mu) \\
&= \iota_E(Y(\mu)\mathcal{L}_X(\nu) - Y(\mu)\mathcal{L}_X(\nu) - (X, \nu)\mathcal{L}_Y(\mu) + (X, \mu)\mathcal{L}_Y(\nu)) \\
&= \iota_E(\mathcal{L}_P(\mu) - \mathcal{L}_P(\nu) - d(\mu, \nu)).
\end{align*}
\]

where we used Theorem 2.4. Now, we have

\[
[\mu, \nu]^{d_P(P)} = E^\mu - E^\nu - d_P(\mu, \nu) = f[\mu, \nu]^{d_P(P)} + (E_P\mu)\nu,
\]

so that $\alpha^{d_P(P)}(\mu) = E^\mu(f) = \alpha^L(P_\mu)(f)$.

In the case of the canonical Poisson structure on the tangent bundle $\tau_M: TM \to M$, associated with the canonical Poisson tensor Λ^L on T^*M, our definition of $d_P(P)$ gives the standard tangent complete lift d_P. Moreover, the bracket \mathcal{F}^L of 1-forms is the bracket introduced independently in $[2, 8, 10]$ and corresponding to the lift d_P (cf. $[2, 8, 10]$).

Example. Let us consider a Lie algebroid over a point, i.e., a real Lie algebra \mathfrak{g} with a basis e_1, \ldots, e_m, and its dual space \mathfrak{g}^* with the dual basis e^1, \ldots, e^m. We have also the corresponding linear coordinate system ξ_1, \ldots, ξ_m on \mathfrak{g}^* and the coordinate system y^1, \ldots, y^m on \mathfrak{g}. The linear Poisson structure Λ on \mathfrak{g}^*, associated with the Lie bracket $[,]^L$ on \mathfrak{g}, is the well-known Kostant-Kirillov-Souriau tensor

\[
\Lambda = \frac{1}{2}c^k_{ij}\xi_k \wedge \partial_{\xi_i}.
\]

Here c^k_{ij} are the structure constants with respect to the chosen basis. The exterior derivative $d^L: \Lambda \mathfrak{g}^* \to \Lambda \mathfrak{g}^*$ is the dual mapping to the Lie bracket:

\[
d^L(\mu)(X, Y) = (\mu, [Y, X])^L,
\]

i.e., d^L is the Chevalley cohomology operator. For $X \in \Phi^1(\tau) = \mathfrak{g}$, the tangent complete lift $d_P(x)$ is the fundamental vector field of the adjoint representation, corresponding to x:

\[
d_P(e_i) = c^k_{ij}y^j \partial_{y^k}.
\]
3. NIJENHUIS TENSORS AND POISSON-NIJENHUIS STRUCTURES FOR LIE ALGEBROIDS

Let a vector bundle \(\tau: E \to M \) be given a pseudo-Lie algebroid structure, associated with a tensor field \(\Lambda \) on \(E^* \), and let \(N: E \to E \) be a vector bundle morphism over the identity. We can represent \(N \), as well as its dual \(N^* \), by a tensor field \(N \in \Phi^1(\tau) \). This tensor field defines operations in \(\Phi^1(\tau) \) and \(\Phi^1(\pi) \), which we denote by the same symbol \(i_N \). If \(N = X_i \otimes \mu^i \), \(X_i \in \Phi^1(\tau) \), \(\mu^i \in \Phi^1(\pi) \), the operation \(i_N \) is given by the formulae

\[
i_N X = (X, \mu^i)X_i \quad \text{and} \quad i_N \mu = (X, \mu^i)\mu^i,
\]

where \(X \in \Phi^1(\tau), \mu \in \Phi^1(\pi) \). In the notation of \(\mathbb{3} \), \(i_N X = NX \) and \(i_N \mu = t_N \mu \). It is obvious that we can extend \(i_N \) to a derivation of the tensor algebra, putting

\[
i_N (A \otimes B) = (i_N A) \otimes B + A \otimes (i_N B).
\]

Using \(N \), we can deform the bracket \([,]\) to a bracket \([,]\) on \(\Phi^1(\tau) \) by the formula

\[
[X, Y] = [NX, Y] + [X, NY] - N[X, Y].
\]

Theorem 3.1 The deformed bracket \([,] \) defines on \(E \) a pseudo-Lie algebroid structure, with the anchors \((\alpha^N)_L = \alpha^L \circ N \) and \((\alpha^N)_R = \alpha^R \circ N \). The associated tensor field is given by

\[
\Lambda_N = \mathcal{L}_{\tau^E^*}(N) \Lambda,
\]

where \(\mathcal{L}_{\tau^E^*}(N) \) is the standard Lie derivative along the vector field \(\tau^E^* (N) \).

If \(\Lambda \) is skew-symmetric, then \(\Lambda_N \) is also skew-symmetric and the Schouten-Nijenhuis bracket, induced by \(\Lambda_N \), can be written in the form, similar to \(\mathbb{3} \),

\[
[X, Y] = [NX, Y] + [X, NY] - N[X, Y]
\]

for \(X, Y \in \Phi(\tau) \). Moreover,

\[
d\Lambda_N = i_N \circ d\Lambda - d\Lambda \circ i_N.
\]

The proof is based on the following Lemma.

Lemma 3.1 For \(X \in \Phi^1(\tau) \), we have

\[
\iota_{E^*}(NX) = -\mathcal{L}_{\tau^E^*}(N)(\iota_{E^*})
\]

and

\[
\mathcal{L}_{\tau^E^*}(N) \nu_\pi(\mu) = \nu_\pi(i_N \mu)
\]

for \(X \in \Phi^1(\tau), \mu \in \Phi^1(\pi) \).

Proof. Let \(N = X_i \otimes \mu^i \), \(X_i \in \Phi^1(\tau) \) and \(\mu^i \in \Phi^1(\pi) \). We have

\[
\iota_{E^*}(NX) = \iota_{E^*}((X, \mu^i)X_i) = \pi^*((X, \mu^i))\iota_{E^*}(X_i)
\]

\[
= \nu_\pi((X, \mu^i))\iota_{E^*}(X_i).
\]

On the other hand,

\[
\mathcal{L}_{\tau^E^*}(N)(\iota_{E^*}X) = (\iota_{E^*}(X_i)\nu_\pi(\mu^i))\iota_{E^*}X = \iota_{E^*}(X_i)\nu_\pi(\mu^i)\iota_{E^*}X
\]

\[
= \iota_{E^*}(X_i)\nu_\pi((X, \mu^i)),
\]

according to Theorem 15 c) in \(\mathbb{3} \).
Similarly,
\[[\mathcal{J}_{E^*}(N), v_\pi(\mu)] = [\iota_{E^*}(X_i), v_\pi(\mu_i), v_\pi(\mu)] \]
\[= -v_\pi(\mu_i) \wedge [\iota_{E^*}(X_i), v_\pi(\mu)], \]
since the vertical vector fields commute. Following Theorem 15 c) in \[4\], we get
\[[\iota_{E^*}(X_i), v_\pi(\mu)] = -v_\pi(i_X, \mu) \]
and, consequently,
\[[\mathcal{J}_{E^*}(N), v_\pi(\mu)] = v_\pi(\mu_i \wedge i_X, \mu) = v_\pi(i_N \mu). \]

Proof of Theorem 3.1. Using Lemma and properties of the Lie derivative, we get
\[\iota_{E^*}([X, Y]^A) = \iota_{E^*}([X, Y]^A + [X, NY]^A - N[X, Y]^A) \]
\[= \{-\mathcal{L}_{\mathcal{J}_{E^*}(N)}(\iota_{E^*}X), \iota_{E^*}Y\}_A + \{\iota_{E^*}X, \mathcal{L}_{\mathcal{J}_{E^*}(N)}(\iota_{E^*}Y)\}_A + \mathcal{L}_{\mathcal{J}_{E^*}(N)}\{\iota_{E^*}X, \iota_{E^*}Y\}_A \]
\[= \{\iota_{E^*}X, \iota_{E^*}Y\}_E \mathcal{J}_{E^*} \mathcal{N} \Lambda. \]
The general form of the corresponding Schouten bracket follows inductively from the Leibniz rule for the Schouten bracket \([,] \Lambda\) and from \[3.2\].

In order to prove \[3.4\], we, again, use Lemma and \[\text{Theorem } 15 \text{ d:} \]
\[v_\pi(d^{A_N} \mu) = [\Lambda, v_\pi \mu] = [[\mathcal{J}_{E^*} N, A], v_\pi \mu] \]
\[= [\mathcal{J}_{E^*} N, [A, v_\pi \mu]] - [A, [\mathcal{J}_{E^*} N, v_\pi \mu]] \]
\[= [\mathcal{J}_{E^*} N, v_\pi(d\Lambda_N)] - [A, v_\pi(i_N \mu)] = v_\pi(i_N d\Lambda - d\Lambda i_N \mu). \]

In local coordinates, we have
\[N = N^l e_i \otimes e^j, \]
\[\Lambda = c_i^j \xi_k \partial_{\xi_i} \otimes \partial_{\xi_j} + \delta_i^j \partial_{\xi_i} \otimes \partial_{x^a} - \sigma_i^a \partial_{x^a} \otimes \partial_{\xi_i}, \]
\[\mathcal{J}_{E^*} N = N^l_k \xi_i \partial_{\xi_k}, \]
and
\[\Lambda_N = \left(c_i^j N^l + c_i^k N^l_j - c_i^j N^l_k + \delta_i^j \frac{\partial N^l_k}{\partial x^a} - \sigma_i^a \frac{\partial N^l_k}{\partial x^a} \right) \xi_k \partial_{\xi_i} \otimes \partial_{\xi_j} \]
\[+ N^l_k \delta_i^j \partial_{\xi_i} \otimes \partial_{x^a} - N^l_k \sigma_i^a \partial_{x^a} \otimes \partial_{\xi_i}. \]

Theorem 3.2 For \(X \in \otimes(\tau) \) and skew-symmetric \(\Lambda \), we have
\[d^{\Lambda_N}(X) = d^{\Lambda}(i_N X) - \mathcal{L}_{\mathcal{J}_{E}(N)} d^{\Lambda}(X). \]

Proof. Since \(d^{\Lambda_N} \) and \(d^\Lambda \) are \(v_\tau \)-derivations of order 0 on \(\otimes(\tau) \) and \(\mathcal{L}_{\mathcal{J}_{E}(N)} v_\tau(X) = 0 \) \((\mathcal{J}_{E}(N) \) is vertical), it is enough to consider the case \(X \in \Phi^1(\tau) \). For such \(X \)
\[\iota_{T^*E} \left(d_T^{\Lambda_N}(X) \right) \circ R = \iota_{T^*E}[\Lambda, \iota_{E^*} X] = \iota_{T^*E}[\mathcal{L}_{\mathcal{J}_{E^*}(N)} \Lambda, \iota_{E^*} X] \]
\[= \iota_{T^*E} \left(\mathcal{L}_{\mathcal{J}_{E^*}(N)}[\Lambda, \iota_{E^*} X] - \iota_{T^*E}[\Lambda, \mathcal{L}_{\mathcal{J}_{E^*}(N)}(\iota_{E^*} X)] \right). \]

Since \(\mathcal{L}_{\mathcal{J}_{E^*}(N)} = -\iota_{E^*}(NX) \) \[3.3\], then
\[-\iota_{T^*E}[\Lambda, \mathcal{L}_{\mathcal{J}_{E^*}(N)}(\iota_{E^*} X)] = \iota_{T^*E}[\Lambda, \iota_{E^*}(NX)] = \iota_{E^*} \left(d_T^{\Lambda}(NX) \right) \circ R. \]
On the other hand,
\[\iota_{T^*E^*}(\mathcal{L}_{\mathcal{J}_E^*(N)}[\Lambda, \iota_{E^*X}]) = \{\iota_{T^*E^*}, (\mathcal{J}_E^*(N)), \iota_{T^*E^*}[\Lambda, \iota_{E^*X}]\}_{\Lambda^*} \]
\[= \{\iota_{T^*E^*}(\mathcal{J}_E^N) \circ \mathcal{R}, \iota_{T^*E^*}(d\delta(X)) \circ \mathcal{R}\}_{\Lambda^*} \]
\[= -\{\iota_{T^*E^*}(\mathcal{J}_E^N), \iota_{T^*E^*}(d\delta(X))\}_{\Lambda^*} \circ \mathcal{R} \]
\[= -\iota_{T^*E^*}(\mathcal{L}_{\mathcal{J}_E^N}(d\delta(X))), \]
where we used the equality \(\iota_{T^*E^*}(\mathcal{J}_E^N) = \iota_{T^*E^*}(\mathcal{J}_E^*(N))\). Since \(\mathcal{R}\) is an isomorphism and \(\iota_{T^*E^*}\) is injective, the theorem follows.

In local coordinates, for \(\Lambda\) as in \[\[\text{3.1}\]\], we have
\[d^\Lambda_N(X^i e_i) = X^i N^k_i \delta^a_k \partial_x^a + \]
\[+ \left(X^i (N^k_j c^a_{ki} + N^k_i c^a_{jk}) - \delta^a_i \frac{\partial N^a}{\partial x^a} - \delta^a_i \frac{\partial N^a}{\partial x^a} N^k_j \delta^a_k \right) y_j y^g. \quad (3.8) \]

Remark. If we treat the Schouten brackets \(B^\Lambda = [\cdot, \cdot]^\Lambda\) and \(B^\Lambda_N = [\cdot, \cdot]^\Lambda_N\) as bilinear operators on \(\Phi(\tau)\), then formula \[\[\text{3.2}\]\] means
\[B^\Lambda_N = [i_N, B^\Lambda]_{N-R}, \quad (3.9) \]
where \([\cdot, \cdot]_{N-R}\) is the Nijenhuis-Richardson bracket of multilinear graded operators of a graded space in the sense of \[\[\text{3.4}\]\]. Similarly, \[\[\text{3.4}\]\] means that
\[d^\Lambda_{\iota_X} = [i_N, d^\Lambda_{\iota_X}]_{N-R}. \quad (3.10) \]

This interpretation will be used later, together with the Jacobi identity for the \([\cdot, \cdot]_{N-R}\).

Definition 3.1 A tensor \(N \in \Gamma(M, E \otimes E^*)\) is called a Nijenhuis tensor for \(\Lambda\) (or, for a Lie algebroid structure defined by \(\Lambda\)), if the Nijenhuis torsion
\[T^\Lambda_N(X, Y) = 1\frac{d}{\delta X^a}[N[X, Y]]^\Lambda_N - [NX, NY]^\Lambda \]
vanishes for all \(X, Y \in \Gamma(E)\).

The classical version of the following is well known (cf. \[\[\text{3.1}\]\]).

Theorem 3.3

(a) \(N\) is a Nijenhuis tensor for \(\Lambda\) if and only if \(\Lambda\) and \(\Lambda_N = \mathcal{L}_{\mathcal{J}_E^*(N)}\Lambda\) are \(N^*\)-related.

(b) The Nijenhuis torsion corresponds to the Frölicher-Nijenhuis bracket:
\[T^\Lambda_N(X, Y) = \frac{1}{2}[N, N]^\Lambda_{F-N}(X, Y). \]

(c) \[[B^\Lambda, i_N]_{R-N}, i_N]_{N-R} = 2T^\Lambda_N + [B^\Lambda, i_N^2]_{N-R}, \]
where \((X_i \otimes \mu^i)^2 = (X_i, \mu^i) \mu^i \otimes X_j, \]

(d) If \(N\) is a Nijenhuis tensor, then \(\Lambda_N\) is a Poisson tensor.

Proof.

(a) Since \(\Lambda_N = \mathcal{L}_{\mathcal{J}_E^*(N)}\Lambda\) induces the deformed bracket \(B^\Lambda_N = [\cdot, \cdot]^\Lambda_N\), this part follows from Theorem \[\[\text{2.2}\]\].

(b) Let \(N = X_i \otimes \mu^i\), then
\[[NX, NY]^\Lambda = (X, \mu^i) (Y, \mu^j)[X_i, X_j]^\Lambda + (X, \mu^i) \mathcal{L}_X^\Lambda((Y, \mu^j)) X_j - (Y, \mu^j) \mathcal{L}_Y^\Lambda((X, \mu^i)) X_i \]
and

\[
N[X,Y]_N^A = N ([X,\mu^i][X_i,Y]^A - L_X^B ((X,\mu^i))X_i + (Y,\mu^i)[X,X_j]
\]
\[
+ L_X^B ((Y,\mu^i))X_j - \langle [X,Y]^A,\mu^i \rangle X_i
\]
\[
= \langle X,\mu^i \rangle ([X_i,Y]^A,\mu^i)X_j - L_X^B ((X,\mu^i))X_i
\]
\[
+ (Y,\mu^i) ([X,X_j]^A,\mu^i)X_i + L_X^B ((Y,\mu^i))X_j - \langle [X,Y]^A,\mu^i \rangle (X_i,\mu^i)X_j. \quad (3.12)
\]

Hence, using properties of Lie derivatives, we get

\[
T_N^A (X,Y) = \langle X,\mu^i \rangle (Y,\mu^i) [X_i, X_j]^A + \langle X,\mu^i \rangle (Y,\mu^i) L_X^B (X_i,\mu^i)X_j
\]
\[
- (Y,\mu^i) (X,\mu^i) L_X^B (X_i,\mu^i)X_j + d\mu^i (X,Y) (X_i,\mu^i)X_j
\]
\[
= \left(\frac{1}{2} \mu^i \otimes [X_i, X_j]^A + \mu_i \wedge L_X^B \mu^i \otimes X_j + d\mu^i \otimes i_X, \mu^j \otimes X_j \right) (X,Y)
\]
\[
= \frac{1}{2} [N, N]^A_{P-N} (X,Y).
\]

(c)

\[
[[B^A, i_N]_{N-R}, i_N]_{N-R} (X,Y) =
\]
\[
= ([N^2 X, Y]^A + [N X, N Y]^A - N [N X, Y]^A) + ([N X, N Y]^A + [X, N^2 Y]^A - N [X, N Y]^A)
\]
\[
- (N [N X, Y]^A + N [N X, Y]^A - N^2 [X,Y]^A)
\]
\[
= 2 ([N X, N Y]^A - N ([N X, Y]^A + [X, N Y]^A - N [X, Y]^A))
\]
\[
+ [N^2 X, Y]^A + [X, N^2 Y]^A - N^2 [X,Y]^A = 2T_N^A (X,Y) + [B^A, i_N]_{N-R} (X,Y). \quad (3.13)
\]

(d) The Schouten bracket induced by \(\Lambda_X \) is given by \([i_N, B^A]_{N-R}\) and it is known from general theory \(\ref{fn:3.3}\), that it defines a graded Lie algebra structure if and only if its Nijenhuis-Richardson square vanishes. Using the graded Jacobi identity for \([\,,\,]_{N-R} \), we get

\[
[[i_N, B^A]_{N-R}, [i_N, B^A]_{N-R}]_{N-R} = [[i_N, B^A]_{N-R}, i_N]_{N-R} - B^A]_{N-R}
\]
\[
= -2 [T_N^A, B^A]_{N-R} + [[i_N, B^A]_{N-R}, B^A]_{N-R} = 0,
\]

since \(T_N^A = 0\) and \([B^A, B^A]_{N-R} = 0\) (\([\,,\,]^A\) is a Lie bracket) implies that \((a a_{B^A}^{-R})^2 = 0\).

The following theorem is, essentially, due to Mackenzie and Xu \(\ref{fn:3.3}\).

Theorem 3.4 Let \(\Lambda \) be a Poisson tensor on \(E^* \) and let \(P \in \Phi^2(\tau) \). Then

(a) \(d_\Lambda^A (P) \) induces a pre-Lie algebroid structure on \(E^* \), with the bracket and the anchor described in Theorem \(\ref{th:3.2}\). The exterior derivative, induced by \(d_\Lambda^A (P) \), is given by

\[
d^{\Phi_\Lambda} (P) (X) = [P, X]^A. \quad (3.14)
\]

Moreover,

\[
\frac{1}{2} [P, P]^A (\mu, \nu, \gamma) = \langle \vec{P} ([\mu, \nu]^{d_\Lambda^A (P)}) - [P_\mu, P_\nu]^A, \gamma \rangle \quad (3.15)
\]

for all \(\mu, \nu, \gamma \in \Phi^1(\pi) \) and \(P \) is a Poisson tensor for \(\Lambda \) (i.e., \([P, P]^A = 0\)) if and only if \(\Lambda \) and \(d_\Lambda^A (P) \) are \(\vec{P} \)-related, where \(\vec{P} (\mu) = P_\mu = i_{\mu} P \).

(b) If \(P \) is, in addition, a Poisson tensor for \(\Lambda \), then \(d_\Lambda^A (P) \) is a Poisson tensor and Poisson tensors \(\Lambda, d_\Lambda^A (P) \) induce a Lie bialgebroid structure on bundles \(E \) and \(E^* \), i.e.,

\[
d_\Lambda \left([\mu, \nu]^{d_\Lambda^A (P)} \right) = [d_\Lambda \mu, \nu]^{d_\Lambda^A (P)} + (-1)^{\mu+1} [\mu, d_\Lambda \nu]^{d_\Lambda^A (P)}. \quad (3.16)
\]
PROOF. The proof of (3.13) is completely analogous to the proof in the classical case (see [3]). The remaining part of (a) follows from Theorem 2.2. Part (b) is proved in [3].

Remark. Due to the result of Kosmann-Schwarzbach ([3], 3.16) is equivalent to
\[[P, [X, Y]^\Lambda]^\Lambda = [[P, X]^\Lambda, Y]^\Lambda + (-1)^2 [X, [P, Y]^\Lambda]^\Lambda, \tag{3.17} \]
which is a special case of the graded Jacobi identity for the bracket \([\cdot, \cdot]^\Lambda\).

The fact that \(d\Lambda^P(P)\) is a Poisson tensor, if \([P, P]^\Lambda = 0\), is a direct consequence of 2.11. The converse to this is not true, in general, as shows the following example.

Example 2. For a Lie algebroid over a point, i.e., for a Lie algebra \(g\) with the bracket \([\cdot, \cdot]^\Lambda\), corresponding to a Kirillov-Kostant-Souriau tensor \(\Lambda\) on \(g^*\), \(P \in \wedge^2 g\) is a Poisson tensor for \(\Lambda\) if and only if \(P\) is an \(r\)-matrix satisfying the classical Yang-Baxter equation \([P, P]^\Lambda = 0\).

On the other hand, \(d\Lambda^P(P)\) is a Poisson tensor if and only if \(d\Lambda^P([P, P]^\Lambda) = 0\) which means, that \(\text{ad}_\xi[P, P]^\Lambda = 0\) for all \(\xi \in g\), i.e., the equation \(d\Lambda^P([P, P]^\Lambda) = 0\) is the modified Yang-Baxter equation.

Definition 3.2. Let \(P \in \Phi^2(\tau)\) be a Poisson tensor with respect to a Lie algebroid structure on \(E\), associated to a Poisson tensor \(\Lambda\) on \(E^*\), and let \(N \in \Phi^1(\tau)\) be a Nijenhuis tensor for \(\Lambda\). We call the pair \((P, N)\) a Poisson-Nijenhuis structure for \(\Lambda\) if the following two conditions are satisfied:

1. \(NP = PN^*\), where \(NP(\mu, \nu) = P(\mu, i_N \nu)\) and \(PN^*(\mu, \nu) = P(i_N \mu, \nu)\),
2. \(d\Lambda^N(P) = (d\Lambda^P(P))_N\).

Remark. Since \(NP + PN^* = i_N P\) and, according to Theorems 3.1 and 2.2,
\[(d\Lambda^P(P))_N = \mathcal{L}_{\mathcal{J}_E(N)} d\Lambda^P(P), \]
\[d\Lambda^N(P) = d\Lambda^P(i_N P) - \mathcal{L}_{\mathcal{J}_E(N)} d\Lambda^P(P), \]
the condition (2) can be replaced by
\[(2') \mathcal{L}_{\mathcal{J}_E(N)} d\Lambda^P(P) = (d\Lambda^P(P))_N = d\Lambda^P(NP). \]

Theorem 3.5 If \((P, N)\) is a Poisson-Nijenhuis structure for \(\Lambda\) then \(NP\) is a Poisson tensor for \(\Lambda\) and we have the following commutative diagram of Poisson mappings between Poisson manifolds.

\[
\begin{array}{ccc}
(E^*, \Lambda) & \xrightarrow{-\mathcal{P}} & (E, d\Lambda^P(P)) \\
\downarrow \mathcal{N}^* & & \downarrow \mathcal{N} \\
(E^*, \mathcal{L}_E(N) \Lambda) & \xrightarrow{-\mathcal{P}} & (E, d\Lambda^P(NP) = (d\Lambda^P(P))_N)
\end{array}
\]

where \(\Lambda_N = \mathcal{L}_{\mathcal{J}_E(N)} \Lambda\) and \((d\Lambda^P(P))_N = \mathcal{L}_{\mathcal{J}_E(N)} d\Lambda^P(P)\). Moreover, every structure from the left-hand side of this diagram constitutes a Lie bialgebroid structure with every right-hand side structure.

Proof. The tensors \(\Lambda_N\) and \(d\Lambda^P(P)\) are Poisson. The mappings \(-\mathcal{P}: (E^*, \Lambda) \rightarrow (E, d\Lambda^P(P))\) and \(\mathcal{N}^*: (E, \Lambda) \rightarrow (E^*, \mathcal{L}_E(N) \Lambda)\) are Poisson, in view of Theorems 3.3 and 3.4. The assumption \(NP = PN^*\) implies that the diagram is commutative. To show that the mapping \(-\mathcal{P}: (E^*, \mathcal{L}_E(N) \Lambda) \rightarrow (E, (d\Lambda^P(P))_N)\) is Poisson, it is enough to check that, under the assumption \(NP = PN^*\), the vector fields \(\mathcal{J}_E(N)\) and \(\mathcal{J}_E(N)\) are \(-\mathcal{P}\)-related. One can do it easily. Since \(\Lambda\) and \(d\Lambda^P(P)\) are \(-\mathcal{P}\)-related, also \(\Lambda_N = [\mathcal{J}_E(N), \Lambda]\) and \((d\Lambda^P(P))_N = [\mathcal{J}_E(N), d\Lambda^P(P)]\) are \(-\mathcal{P}\)-related. Hence, the equality \((d\Lambda^P(P))_N = d\Lambda^N(P)\) implies that \(\Lambda\) and \(d\Lambda^N(P)\) are \(-NP\)-related and, according to Theorem 3.4 (a), \(NP\) is a Poisson tensor for \(\Lambda\).

The fact that the mapping \(\mathcal{N}: (E, d\Lambda^P(P)) \rightarrow (E, (d\Lambda^P(P))_N)\) is Poisson follows from the identity
\[
\langle X, [N, N][d\Lambda^P(P)](\alpha, \beta) \rangle = \langle [N, N][d\Lambda^P(P)](X, P\beta), \alpha \rangle \]
\[+ 2\langle X, C^\Lambda(P, N)(i_N \alpha, \beta) \rangle - 2\langle NX, C^\Lambda(P, N)(\alpha, \beta) \rangle, \tag{3.18} \]
where $C^\Lambda(P, N)(\alpha, \beta) = [\alpha, \beta]d^\Lambda_{\{NP\}} - [\alpha, \beta]^\Lambda_{\{NP\}}$. This is a generalization of an analogous identity in [3], with a completely parallel proof.

The pairs $(\Lambda, d^\Lambda_{\{P\}})$ and $(\Lambda, d^\Lambda_{\{NP\}})$ constitute Lie bialgebroids by Theorem [3, b), since P and NP are Poisson tensors for Λ.

Similarly, $(\Lambda_N, d^\Lambda_{\{NP\}}) = d^\Lambda_{\{NP\}}(P)$ constitute a Lie bialgebroid, since P is a Poisson tensor for Λ_N (Λ_N and $d^\Lambda_{\{NP\}}$ are $-\tilde{P}$-related).

To show that the pair $(\Lambda_N, d^\Lambda_{\{NP\}}(P))$ forms a Lie bialgebroid, we have to prove that $d^\Lambda_{\{NP\}} = d^\Lambda_{\{NP\}}$ is a derivation of the Schouten bracket $B = [\cdot, \cdot]d^\Lambda_{\{NP\}}$, i.e., $[d^\Lambda_{\{NP\}}, B]_{N-R} = 0$. Since, due to [3, 3],

$$[d^\Lambda_{\{NP\}}, B]_{N-R} = [i_N, d^\Lambda_{\{NP\}}(P)]_{N-R} = [i_N, [d^\Lambda_{\{NP\}}, B]_{N-R}]_{N-R}$$

+ $[d^\Lambda_{\{NP\}}, i_N, B]_{N-R} = [d^\Lambda_{\{NP\}}, B]_{N-R} = 0$, (3.19)

in view of the fact that $[i_N, B]_{N-R}$ is the bracket associated to $(d^\Lambda_{\{NP\}}(P))_{N}$, for which d^Λ is a derivation.

\[\square\]

Remark. The above diagram is a dualization of a similar diagram in [1].

In the case of the canonical Lie algebroid on $E = TM$, the fact that $((\Lambda_M), d^\Lambda_{\{TP\}})$ constitutes a Lie bialgebroid is equivalent to the fact that (P, N) is a Poisson-Nijenhuis structure, as it was recently shown in [3]. This is due to the formulae

$$A(f, g) = \langle(NP - PN^*)d^\Lambda_{\{NP\}} g, d^\Lambda_{\{NP\}} f\rangle, \quad \text{(3.20)}$$

$$A(d^\Lambda_{\{NP\}} f, g) = C^\Lambda(P, N)(d^\Lambda_{\{NP\}} f, d^\Lambda_{\{NP\}} g) + d^\Lambda A(f, g), \quad \text{(3.21)}$$

where $A = [d^\Lambda_{\{NP\}}, B_{d^\Lambda_{\{NP\}}}]_{N-R}$, and the fact that A satisfies a Leibniz rule and $d^\Lambda f$ generate T^*M, for $\Lambda = \Lambda_M$.

In general, this is not true and we can have $((\Lambda)_{\{NP\}}, d^\Lambda_{\{TP\}})$ being a Lie bialgebroid with (P, N) not being Poisson-Nijenhuis structure for Λ, even if we assume the equality $NP = PN^*$, as shows the following example.

Example. As a Lie algebroid over a single point, let us take a Lie algebra \mathfrak{g} spanned by $\xi_1, \xi_2, \xi_3, \xi_4$ with the bracket defined by $\Lambda = \xi_3 \partial_{\xi_1} \wedge \partial_{\xi_2}$. The tensor $P = \partial_{\xi_2} \wedge \partial_{\xi_4}$ is a Poisson tensor with $d^\Lambda_{\{TP\}} P = y_1 \partial_{y_1} \wedge \partial_{y_4}$.

The tensor

$$N = -\xi_1 \otimes y_1 + \sum_{i=2}^4 \xi_i \otimes y_i$$

is a Nijenhuis tensor for Λ and $\Lambda_{\{NP\}} = -\Lambda$. Moreover, $NP = PN^* = P$, so that $(\Lambda, d^\Lambda_{\{NP\}})$ constitutes a Lie bialgebroid. In this case, however, $d^\Lambda_{\{NP\}} P = -d^\Lambda_{\{NP\}} P = -d^\Lambda_{\{NP\}} P$ and (PN) is not a Poisson-Nijenhuis structure.

It is easy to see that, as in the classical case, a Poisson-Nijenhuis structure for a Lie algebroid induces a whole hierarchy of compatible Poisson structures and Nijenhuis tensors (see [3]). Since this theory goes quite parallel to the classical case, we will not present details here.

References

[1] T. Courant, *J. Phys. A* 23, 5153, (1990)

[2] B. Fuchssteiner, *Prog. Theor. Phys.* 68, 1082, (1982)

[3] J. Grabowski, P. Urbański, *J. Phys. A* 28, 6743, (1995)

[4] J. Grabowski, P. Urbański, “Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids”, to appear in *Ann. Global Anal. Appl.*

[5] Y. Kosmann-Schwarzbach, *Lett. Math. Phys.* 38, 421, (1996)

[6] Y. Kosmann-Schwarzbach, F. Magri, *Ann. Inst. H. Poincaré* 53,35, (1990)

[7] J.-L. Koszul, “Crochet de Schouten-Nijenhuis et cohomologie”, in: “Elie Cartan et les mathématiques d’aujourd’hui, Astérisque hors série” (1985)
[8] P. Lecomte, P. Michor and H. Schickentanz, *J. Pure Appl. Algebra* 77, 87, (1992)

[9] K. Mackenzie, P. Xu, *Duke Math. Journal* 73(2), 415, (1994)

[10] K. Konieczna, P. Urbański, “Double vector bundles and duality”, *to appear*