A hybrid integrated dual-microcomb source

Nikita Dmitriev
 Russian Quantum Center

Sergey Koptyaev
 Samsung Research Center in Russia

Andrey Voloshin
 EPFL

Nikita Kondratiev
 Russian Quantum Center
 https://orcid.org/0000-0002-5261-5926

Valery Lobanov
 Russian Quantum Center
 https://orcid.org/0000-0002-0350-9465

Kirill Min'kov
 Russian Quantum Center

Maksim Riabko
 Samsung R&D Institute Russia

Stanislav Polonsky
 Samsung R&D Institute Russia

Igor Bilenko (✉ igorbilenko@gmail.com)
 Moscow State University

Article

Keywords:

Posted Date: January 14th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1180955/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
A hybrid integrated dual-microcomb source

Nikita Yu. Dmitriev,1,2,* Sergey N. Koptyaev,3,* Andrey S. Voloshin,4,* Nikita M. Kondratiev,1,* Valery E. Lobanov,1,* Kirill N. Min’kov,1 Maxim V. Ryablo,3 Stanislav V. Polonsky,3 and Igor A. Bilenko1,5

1Russian Quantum Center, Moscow, 143026, Russia
2Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, 141701, Russia
3Samsung R&D Institute Russia, SAIT-Russia Laboratory, Moscow, 127018, Russia
4Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
5Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia

ABSTRACT

Dual-comb interferometry is based on self-heterodyning two optical frequency combs, with corresponding mapping of the optical spectrum into the radio-frequency domain. The dual-comb enables diverse applications, including metrology, fast high-precision spectroscopy with high signal-to-noise ratio, distance ranging, and coherent optical communications. However, current dual-frequency-comb systems are designed for research applications and typically rely on scientific equipment and bulky mode-locked lasers. Here we demonstrate for the first time a fully integrated power-efficient dual-microcomb source that is electrically driven and allows turnkey operation. Our implementation uses commercially available components, including distributed-feedback and Fabry–Perot laser diodes, and silicon nitride photonic circuits with microresonators fabricated in commercial multi-project wafer runs. Our devices are therefore unique in terms of size, weight, power consumption, and cost. Laser-diode self-injection locking relaxes the requirements on microresonator spectral purity and Q-factor, so that we can generate soliton microcombs resilient to thermal frequency drift and with pump-to-comb sideband efficiency of up to 40% at mW power levels. We demonstrate down-conversion of the optical spectrum from 1400 nm to 1700 nm into the radio-frequency domain, which is valuable for fast wide-band Fourier spectroscopy, which was previously not available with chip-scale devices. Our findings pave the way for further integration of miniature microcomb-based sensors and devices for high-volume applications, thus opening up the prospect of innovative products that redefine the market of industrial and consumer mobile and wearable devices and sensors.

I. INTRODUCTION

Over the past few decades, optical frequency combs have become a versatile tool for addressing scientific and technical challenges [1–3]. One of the most promising and widely employed applications is the use of a double (or, dual) optical combs for the efficient transfer of signals from the optical domain into the radio frequency (RF) range, thus greatly simplifying data acquisition and subsequent processing. For instance, dual-comb spectroscopy is a remarkable form of spectral bandwidth with ultra-fast measurement of broadband optical absorption spectra that provide fingerprints of specific materials or their quantity in the sample using a single photodetector, without the need for moving components, and only a few basic optical components [4–9]. The basic idea of the dual-comb technique is to combine two coherent optical frequency combs with shifted pump lines \((f_1, f_2)\) and slightly different line spacing in the frequency domain \((\delta f)\) (Fig. 1(a)). Thereby, the optical spectrum of the combs transmitted through the matter is down-converted at the photodetector into the RF band for measurement. The resulting signal is a RF frequency comb with \(\delta = |f_1 - f_2|\) line spacing, a central line located at \(\Delta = |f_1 - f_2|\), and line amplitudes uniquely defined by the corresponding lines of the optical combs. These characteristics make dual-comb techniques highly attractive for myriad practical applications, such as ultra-broadband near-IR spectroscopy [10, 11], near-field microscopy for sub-wavelength spatial resolution [12, 13], precision metrology of molecular-line center frequencies [14], greenhouse-gas monitoring [15–17], combustion diagnosis [18], and distance ranging (LIDAR) [19–23].

There exist a number of rapidly developing approaches for implementing dual-comb techniques. Various dual-comb systems are based on conventional fibre mode-locked lasers (MLLs) [24–27]. The use of mode-locked integrated external-cavity surface emitting lasers (MIXSELs) potentially allows dual-comb signal generation with a single cavity, exploiting different polarisation states [28, 29]. Hybrid THz dual-comb spectrometers based on quantum cascade lasers (QCLs) [30] and coherently averaged dual-comb spectrometers [31] demonstrated fast and high-accuracy spectroscopy measurements in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) ranges. These results have been obtained in laboratory settings, which means that many of these dual-comb systems are only partially integrated and rather bulky and complicated, requiring a range of auxiliary equipment and technical expertise. As a consequence, they are not suitable for industrial and consumer applications, despite outstanding performance...
in laboratory environments. Therefore, integration and device miniaturisation are pressing issues that need to be addressed before any of the approaches can be utilized in industrial-grade device. Fully integrated dual-comb systems hold the promise to unlock major applications, including airborne and spaceborne sensors, distance ranging with unprecedented speed and resolution, and compact spectroscopy sensors. In turn, such devices could become a core technology for consumer and wearable applications, including non-invasive spectroscopic sensors.

The most promising platform for a fully integrated dual-comb source is silicon-based integrated photonics. In recent years, this platform has experienced major advances and reached considerable maturity [32–34]. Today, the performance of low-loss silicon-based photonic systems has become comparable with that of free-space optic systems. In addition, high-level compatibility with CMOS fabrication processes [35–37] and also with the III–V semiconductor platform [38–40] have been demonstrated. Recent progress in silicon photonics, combined with the self-injection locking (SIL) effect [41–49], enabled optical microcomb generation using semiconductor laser diodes (LDs) instead of bulky narrow-linewidth lasers, thereby greatly simplifying the process of microcomb generation and paving the way for the development of fully integrated chip-scale single microcomb sources based on high-Q microresonators (MRs) [38, 39, 50–52]. Proof-of-concept experiments based on passive high-Q MRs achieved broadband optical spectrum down-conversion to the RF range, generating ultra-wide frequency combs with widely variable (from GHz to THz) line spacing in the near-infrared (NIR), SWIR, and visible-wavelength ranges in bulk and on-chip structures [53–63]. Also, the recently demonstrated scanning dual-comb spectroscopy (SDCS) technique allows additionally to increase the resolution of spectroscopic systems based on high-Q MRs [58].

Here, we report a feasibility study of dual-comb integration and introduce the first hybrid integrated dual-microcomb source for the SWIR range based on commercially available low-cost components (Fig. 1(b)). With the assembled prototype we have successfully down-converted a 300-nm wide optical spectrum to a 600-MHz wide RF signal. Our findings establish that electrically driven soliton microcombs comprising integrated SiN high-Q MRs combined with SIL semiconductor LDs (Fig. 1(a)) are a promising technology platform for highly integrated energy-efficient dual-comb sources covering wide spectral ranges. Specifically, we demonstrate that SIL provides up to 40% pump-to-comb sideband conversion efficiency (η_{p→c}) for bright solitons. In the light of such a high conversion value we consider in detail the η_{p→c} efficiency of SIL-enabled generation of bright dissipative Kerr solitons in photonic chip-based microresonators, and its dependence on key parameters. In this way we found that SIL relaxes the requirements on MR properties such as Q-factor, spectral purity, the number of mode crossings, the width of a so-called 'soliton step', making it possible to generate microcombs with the majority of commercial photonic chip-based MRs featuring moderate Q-factors. SIL greatly facilitates tuning to the soliton regime, due to the compensation of the thermal effects inevitable in systems where a free-running laser is used as a pump source. Consequently, SIL enables soliton microcomb generation in cases where it is otherwise not possible with optically isolated external-cavity diode lasers (ECDLs).

The here-presented prototype of the integrated dual-microcomb source, based on laser diode self-injection locked to a microresonator, allows to combine all the benefits of Fourier-transform infrared broadband spectroscopy in a chip-scale spectroscopic sensor and looks promising as a platform for future mobile and wearable devices. The demonstrated versatile approach to dual-microcomb source integration provides various design options (Fig. 1(d)), offering interesting perspectives in terms of device miniaturization and performance, in particular with a view to broadband infrared dual-comb sensors for high-volume applications. With further integration, there is a clear route to satisfying the so-called SWaP-C (Size, Weight, Power and Cost) requirements that are of central importance for industrial, airborne, space, and consumer applications.

II. RESULTS

A. Hybrid integrated platform for optical dual-microcomb source

Our hybrid integrated dual-microcomb source comprises specially matched (see Methods and Supplementary Note 1) microcomb sources. Each consists of a thermally stabilized SiN photonic chip with a high-Q MR, a butt-coupled semiconductor LD, and an output lensed fiber (Fig. 1(a,b)). This versatile approach enables fast prototyping by testing different photonic-chip designs and various types of LDs.

The MRs based on CMOS-compatible SiN photonic chips that we used in our experiments were fabricated in commercial multi-project wafer (MPW) runs. We use two sets of chips with MRs of two diameters, corresponding to ~150 GHz and to ~1 THz free spectral range (FSR) with integrated microheaters enabling grid matching of the eigenfrequencies of different MRs by tuning their FSR (spacing between fundamental modes in the frequency domain). Also, each chip has edge waveguide couplers, ensuring insertion losses as low as -1.1 dB on both sides of a chip for coupling light in and out.

Fabry–Perot (FP) and distributed feedback (DFB) laser diodes have been used for experiments and were compared in terms of performance for microcomb generation (see Methods and Supplementary Note 2). FP diodes have a single spatial mode, 35-GHz longitudinal mode spacing, 1535-nm central wavelength, and ~ 200 nW optical power at 500 mA of injection current. DFB
Figure 1. Principle of the hybrid integrated dual-microcomb source. a. Sketch of the experimental setup illustrating integrated dual-comb signal generation based on the two separate soliton microcomb sources (marked with green and blue rectangles): LD – semiconductor laser diode; SiN – photonic chip with high-Q silicon nitride microresonator; TC and CC – temperature and current controllers; FPD – fast photo detector; OSA – optical spectrum analyzer; ESA – electrical spectrum analyzer. b. Photograph of the portable turnkey dual-comb source comprising two standalone matched integrated soliton microcomb sources. c. Evolution of the experimentally observed dual-comb signal based on two matched soliton microcombs during the search for the operating point. Demonstration of the dual-comb signal transition from a noisy (Area I) to a soliton state (Area II) by fine-tuning the LD current. d. Various concepts of dual-comb spectrometers: two separate microcomb-generating photonic chips pumped with two LDs; single photonic chip generating two microcombs pumped with two LDs; and single photonic chip generating two microcombs pumped with a single LD. FPGA is a field-programmable gate array.

During the experiment we simultaneously monitored the optical spectra of the microcombs and the resulting RF dual-comb signal using an optical spectrum analyzer (OSA) and an electrical spectrum analyzer (ESA). Owing to the SIL effect, the assembled microcomb sources offer turnkey operation. This kind of turnkey operation was described in [50] and also demonstrated in [64]. The spectrogram presented in Fig. 1(c) shows dual-comb signal evolution while selecting the turnkey operating point by slow manual tuning of the LD injection current. Away from the operating point, the optical spectrum consists of one coherent soliton microcomb and one chaotic non-coherent microcomb (MI state). The heterodyne beatnote signal of this state is noisy (regime I in Fig. 1(c)). When the LD-current value reaches the operating point, the system locks to the state with both soliton microcombs, featuring high mutual coherence and low-noise RF beatnotes of the optical components (regime II in Fig. 1(c)). The SIL mechanism compensates thermal effects and the microcomb sources lock to the comb states without additional manipulations, which are inevitable when pumping with a free-running laser. At the operating point, our dual-microcomb source quickly transits to a coherent state. However, it should be noted that due to the independent thermal stabilization of the two photonic chips, a relative thermal drift of the RF beat frequencies arises for observation periods exceeding several minutes.

B. Highly efficient soliton microcombs for dual-microcomb source

Current technology used in the fabrication of high-Q silicon nitride MRs, especially for commercially available runs, does not guarantee Q-factors higher than one million and a spectral purity of MRs sufficient high for
Figure 2. Soliton microcomb generation using self-injection-locked laser-diode pumping in the case of an inaccessible conventional soliton step. a. Photograph of the silicon nitride photonic chip used in the experiment. b. Nonlinear-resonance shape for the different pump powers of the external optically isolated laser, demonstrating inaccessibility of the conventional soliton step. The measured nonlinear threshold of this microresonator is approximately 13 mW. c. Photograph of the assembled prototype of the microcomb source, based on the same photonic chip pumped with a butt-coupled Fabry–Perot laser diode. Inset: Inside view of the prototype. d. Nonlinear-resonance shape for 35-mW pump power for the same resonance shown in (b) for the case of the self-injection locking effect (laser diode pumping). The area where the soliton exists is highlighted in green colour. e. Output of the microcomb source (blue line) and theoretically predicted envelope of the single soliton state microcomb spectrum (green line) based on the measured microresonator parameters (see Supplementary Note 4). Left inset: RF spectrum of the output signal. Right inset: Beatnote signal of the generated microcomb line and a Topica CTL-1550 tunable laser recorded (green line) based on the measured microresonator parameters (see Supplementary Note 4). Left inset: RF spectrum of the output signal. Right inset: Beatnote signal of the generated microcomb line and a Topica CTL-1550 tunable laser recorded (green line) based on the measured microresonator parameters (see Supplementary Note 4). Left inset: RF spectrum of the output signal. Right inset: Beatnote signal of the generated microcomb line and a Topica CTL-1550 tunable laser recorded (green line) based on the measured microresonator parameters (see Supplementary Note 4).

Sustainable soliton microcomb generation using external pumping with single-frequency narrow-linewidth lasers. The procedure of soliton comb excitation by means of an external pump using ECDL requires accessible soliton steps and is complicated by the need for additional equipment to achieve a high tuning rate and to overcome thermal instabilities [65]. We note that in our experiments only high-FSR MRs (FSR=1 THz) provide easily accessible soliton steps and support soliton generation using ECDL.

We have not been able to observe soliton generation with 150 GHz MRs using the external amplified ECDL providing more than 150 mW of in-chip pump power. This power level is more than ten times higher than the parametric instability threshold, corresponding to the normalized pump amplitude $f = \sqrt{P_{\text{pump}}/P_{\text{th}}} > 3$, where P_{pump} is the optical power of the amplified ECDL reduced by losses for the butt-coupling of the lensed fiber with the chip (power in the bus waveguide) and P_{th} is the nonlinearity threshold power [65]. Apparently, the influence of thermal processes, high-order dispersion (Fig. 3(a)) and avoided mode crossing points shortens a soliton step and makes it inaccessible (see Fig. 2(b)), [66–70].

However, the fully integrated SIL scheme (Fig. 2(c)) provides outstanding turnkey operation without any additional equipment. The same MR pumped by the self-injection locked LD allows to clearly observe a soliton step in the locked state, even for $f \sim 1.6$ (Fig. 2(d,e)). Indeed, most of the thermal effects are suppressed as the laser frequency is locked to the MR and the laser–microresonator detuning ζ_{eff} is fixed. If the MR frequency fluctuates due to the thermal effects, the generation frequency also changes, keeping the comb-generation regime stable [71]. In the SIL regime the laser–microresonator detuning becomes fixed to the value $\zeta_{\text{eff}} \approx -3(f/2)^{1/3} + (f^2/2)^{-1/3}$ (for small backscattering and $f > 1$), which lies inside the soliton-generation region $\zeta_{\text{eff}} \in [-3(f/2)^{1/3} + (f^2/4)^{-1/3}/4; -\pi^2 f^2/8]$ (see Supplementary Note 3).

In addition, the detuning control is much more robust in the SIL regime as the effective detuning does not change while the LD is tuned within the locking range. More precisely, the speed of the laser-frequency tuning is effectively reduced by the factor of the stabilization coefficient K_0 (see Supplementary Note 3).

The assembled prototype works as a turnkey device, and thereby greatly simplifies the process of comb generation and significantly improves its stability. Once calibrated to define the operating point, this device can generate microcombs immediately after being turned on.

Microcomb spectra and the microresonator parameters are shown in Fig. 3. Notably, there were no optical elements filtering the pump line. Despite the moderate Q-factor ($\sim 10^6$), the generated combs are broadband.
The spectrum width of the microcombs with 1-THz line spacing reaches 500 nm, with 20 lines of power > -20 dBm. The width of the 150-GHz microcomb spectrum exceeds 200 nm, with 30 lines of power > -20 dBm. The generated microcombs also feature high optical power per line and therefore a high signal-to-noise ratio, and demonstrates high pump-to-comb sideband power conversion efficiency (ηp2c). The latter can be expressed as ηp2c = (Pcomb − Ppump line)/Ppump, where Pcomb is the total generated microcomb power in the output fiber, Ppump line is the power of the microcomb central line (pump line) in the output fibre, and Ppump is the optical power of the free-running laser diode for the same injection current value reduced by the coupling losses (power in the bus waveguide). For the 150-GHz microcomb, Pcomb ≈ 20 mW, Ppump line ≈ 11 mW, and Ppump ≈ 35 mW; for the 1-THz microcomb, Pcomb ≈ 20 mW, Ppump line ≈ 3 mW, and Ppump ≈ 40 mW. Evaluated ηp2c efficiency values for the 150-GHz and 1-THz FSR microcombs are 25% and 40%, respectively. Before this work, comparable efficiency has been demonstrated for the generation of dark microcombs only [72, 73]. The high efficiencies obtained are in a good agreement with our estimates (see Supplementary Note 4) and are compatible with [74].

C. Spectral characteristics of dual-microcomb source

Combined microcomb optical spectra and the resulting RF dual-microcomb signals are shown in Figs 4 (a,d,g) and in 4(b,c,e,f,h,i), respectively. Insets in the bottom row give information about the linewidth of the lines of the generated dual-microcomb signal, estimated with Voigt-profile fits (Wd is the Lorentzian linewidth and Wg, the Gaussian linewidth). With 1-THz FSR microresonators we successfully down-converted ~300-nm-wide optical spectra to 600-MHz-wide spectra in the RF range (Fig. 4 (a–f)); with 150-GHz FSR microresonators we achieved down-conversion from ~100 nm to 800 MHz (Fig. 4(g–i)).

By applying voltage to the microheaters we can adjust the microresonator temperature and thereby control the microcomb line spacing. One optical microcomb can be shifted relatively to the other to control the dual-microcomb signal, changing its central line position Δ and repetition rate δ. This capability is illustrated in Fig. 4(a–f). These two dual-microcomb signals were observed for the same pair of MRs, and using microheaters we changed the central-frequency difference Δ from 7.93 GHz to 1.70 GHz.

Verification of the measurement data is conducted by...
Figure 4. Dual-microcomb signals.

Top row: Optical spectra of the generated microcombs that were combined for dual-microcomb signal generation. Inset: Zoom-in on the central line area, with the distance between them (\(\Delta\)) indicated. Bottom row: The dual-microcomb signal is an RF comb with central line at \(\Delta\) and repetition rate \(\delta = |f_{\text{rep}1} - f_{\text{rep}2}|\), where \(\text{FSR}_i\) are the repetition rates of the combined optical combs. The top full-span spectrum (from 0 to 15 GHz) demonstrates the absence of low-frequency noise, showing a strong dual-microcomb signal. The bottom spectrum is a zoom-in on the central (Frequency - \(\Delta\)) dual-microcomb signal area. The red line is the experimentally observed signal and the grey line the predicted signal based on the optical spectra above. Inset: estimation of the RF-comb linewidth from a Voigt-profile fit.

a,b,c. Dual-comb signal obtained by combining two optical frequency combs with \(f_{\text{rep}1} \sim f_{\text{rep}2} \sim 1\) THz and \(\delta = |f_{\text{rep}1} - f_{\text{rep}2}| \approx 20\) MHz. The distance between the pump lines of the optical microcombs is \(\Delta = 7.93\) GHz.

d,e,f. Dual-microcomb signal obtained by combining two optical frequency combs with repetition rates \(f_{\text{rep}1} \sim 1\) THz, \(f_{\text{rep}2} \sim 2\) THz and \(\delta = |2f_{\text{rep}1} - f_{\text{rep}2}| \approx 95\) MHz. The distance between the pump lines of the optical microcombs is \(\Delta = 1.70\) GHz.

g,h,i. Dual-microcomb signal obtained by combining two optical frequency combs with \(f_{\text{rep}1} \sim f_{\text{rep}2} \sim 150\) GHz and \(\delta = |f_{\text{rep}1} - f_{\text{rep}2}| \approx 18\) MHz. The distance between the pump lines of the optical microcombs is \(\Delta = 14.06\) GHz.

comparing the experimental data with the theoretically predicted beatnote signal of the two combined optical microcombs. Knowing the MR parameters, including dispersion profile, and with the measured optical frequency combs, we can calculate the expected dual-comb spectrum profile in the RF domain. These simulated dual-microcomb spectra are shown as grey lines in Fig. 4(c,f,i).

III. DISCUSSION

We found that SIL relaxes the requirements on the microresonator Q-factor and its spectral purity, and makes widely available microresonators commercially fabricated in MPW runs suitable for being used in on-chip dual-microcomb sources. Note that soliton-comb excitation with such microresonators pumped by a tunable optically isolated ECDL (not SIL) was unsuccessful, because of the required soliton steps could not be accessed (Fig. 2(b)). We connect this failure with the influence of the thermal processes, high-order dispersion effects, and avoided mode crossing points, which makes the soliton step shorter and therefore inaccessible. When exploring the SIL effect, the frequencies of the laser diode and the microresonator are connected and fluctuate in a correlated manner, resulting in microcomb generation with higher tolerance to thermal drift (Fig. 2(d)).

The demonstrated pump-to-comb sideband conversion
efficiency of up to 40% can be explained by the matching between Q-factor and pump power, taking into account the following considerations. First, the comb power does not depend directly on the pump power (see Supplementary Note 4). Although both the maximal and the locked detunings do depend on the pump power, these dependencies are weaker, and the pump-to-soliton (and pump-to-comb sideband) power conversion efficiency decreases with it. This creates the illusion that using a low-power laser and reducing the threshold we can make a highly energy-efficient device. However, the second point is that the comb power does depend on the threshold power of the parametric instability. Therefore, using the strategy described above, we end up with a negligible output signal. This brings us to the rather counter-intuitive conclusion that for best performance, the threshold power should be increased (meaning lower Q-factors or less non-linearity, for example) and matched with the used laser pump power. This immediately brings up a trade-off problem, as the lower Q-factor means less stabilization and wider beatnote or even the self-injection locking regime cannot be reached at all. Another way to increase the pump-to-comb sideband power conversion efficiency is increasing the second-order dispersion coefficient. This presents, however, a trade-off problem for the comb width, which should be solved separately for the desired application.

We also can see an additional mechanism to increase the comb power (and subsequently the power efficiency). In our system, multi-soliton states can emerge; however, the number of solitons has a maximum for a given dispersion value \[\frac{c_3}{n_2}\alpha^2\] and the pump-to-comb sideband conversion efficiency \[\eta_p-c\alpha^2\] also saturates with it (see Supplementary Note 4). The multi-soliton option was realized for the 1-THz microresonator (see Fig. 3d), where we found good correspondence of the measured spectrum with the theoretical prediction for 3-soliton states (the soliton positions were optimized to fit the data) for the experimentally estimated parameters \(f, D_2,\kappa\) and SIL detuning value \(\Delta_{\text{det}}\). We note that while the form of the spectrum is highly dependent on the intersoliton distances, the total comb power (and the conversion efficiency) does not. For the 150-GHz comb we saw a slightly different picture. By increasing the number of solitons we were able to match the total comb output power, but the comb envelope at the sides show much smoother behaviour than the multi-soliton state can provide (see green curve in Fig. 3b). At the same time, the comb power is too high for a single-soliton state (see purple curve in Fig. 3d). Such comb enhancement can be attributed to the comb-line amplification inside the active medium of the laser or so-far unexplored effects of the multi-frequency locking, while the non-smooth envelope near the pump – to the dispersion distortions from the mode-crossings [66].

A comparison of the semiconductor FP and DFB laser diodes highlights the benefits of DFB in terms of predictable wavelength of locking and more convenient matching of two combs, while the FP is much more powerful and cheaper, and hence more promising with a view to practical applications.

The early integrated dual-microcomb source prototype presented here is still affected by the relative thermal drift of the microresonators on the two separate photonic chips. Various design options (Fig. 1d) could help to overcome the drift, paving the way to more compact devices. A first improvement could be the combination of the two microresonators on the same photonic chip positioned on a common temperature-stabilized substrate with two pumping laser diodes. This option would simplify comb matching owing to small fabrication errors for the two microresonators at close distance, thus enhancing the stability of the dual-comb beatnotes. The next improvement for higher stability and smaller size is using the same microresonator for the generation of two soliton combs propagating in the same or opposite directions along the ring. Two laser diodes self-injection locked into the same microresonator provide the highest mutual coherence and generated microcombs would lead to dual-comb beatnotes with the lowest phase noise. To reduce the number of components that need to be aligned during the integration, keeping small size and high stability, the design option with just one laser diode and one photonic chip with two microresonator could be considered. A laser diode locked to one of the microresonators would provide the first microcomb and the second resonator tuned relative to the frequency of the locked laser would provide the second one. The discussed design options based on the microcomb generation using self-injection locking should improve the performance of the integrated dual-microcomb source, and will be explored in future research.

Taking into account recent advances of III–V heterogeneous integration with silicon nitride photonic waveguides [38], deeper integration of the proposed dual-microcomb source can lead to reaching tiny chip-scale sizes. Also, the demonstrated possibility to use FP laser diodes might allow using just a gain section without an additional laser cavity in future generations of the chip-based dual-comb sources.

In conclusion, obtained results demonstrate that SIL Kerr microcombs based on silicon photonics can successfully compete with other on-chip optical-comb sources and outperform them owing to the unique combination of power efficiency with mWs comb power, a wider spectrum, and low phase noise.

Methods

Silicon nitride chips characterisation: The SiN photonic chip-based microresonators used in our experiments were fabricated by Ligentec SA, Switzerland. The pumped microresonator resonance is measured using an external tunable laser Toptica CTL1550, and fitted taking backscattering into account [76] to obtain the intrinsic loss \(\kappa_0\), the coupling rate \(\kappa_c\), and the backward-wave coupling rate \(\gamma\) (mode splitting). Based on these data, we evaluated the full resonance linewidth \(\kappa = \kappa_0 + \kappa_c\), the pump coupling efficiency \(\eta = \kappa_c/\kappa\), and the normalized backscattering coefficient \(\beta = \gamma/\kappa\).
For nonlinearity-threshold estimation the experimental setup with the external laser Topica CTL1550 and a booster NKT Photonics Kefaer Boostik HP E15 was used. Gradually increasing the pump power, we simultaneously monitor the optical spectrum and the resonance shape using an OSA (Yokogawa AQ6370D) and an oscilloscope (Keysight DSO-X 3024A). First, we reach the thermal nonlinearity threshold \(P_{\text{th}}^{\text{thermal}} \), where the resonance shape becomes triangular. By further increasing the pump power, we reach the parametric-instability threshold \(P_{\text{th}} \), accompanied by sideband generation.

Dispersion characteristics of microresonators were measured using the original experimental setup based on the tunable laser Topica CTL1550 and a calibrated fibre Mach—Zehnder interferometer (MZI) with a FSR of 102 MHz. The results obtained for the 150-GHz and 1-THz FSR microresonators, respectively, were as follows: \(\kappa_0/2\pi = 106 \) and 188 MHz, \(\kappa_0/\gamma/2\pi = 54 \) and 331 MHz, \(\eta = 0.42 \) and 0.59, Q-factor = \(1.8 \times 10^6 \) and \(1 \times 10^6 \), \(P_{\text{th}} = 14 \) and 11 mW, \(P_{\text{th}}^{\text{thermal}} = 3.7 \) and 2.5 mW, \(D_0/2\pi = 143.6 \) and 999.8 GHz, and \(D_0/\gamma/2\pi = 1.38 \) and 14.3 MHz.

Microcomb source: After chip characterisation we have successfully generated microcombs with all available chips and compared the reproducibility of their parameters (see Supplementary Note 1). As a result, we have matched photonic chips for RF dual-microcomb signal generation and defined the operating points for all laser diodes and photonic chip pairs, which were used for the assembly process. The operating point is defined by the following parameters: laser-diode temperature, injection current, and micro-heater voltage.

In addition, we have compared two types of laser diodes, DFB and FP (SempexCorp., USA), in terms of their suitability for being used for microcomb generation (see Supplementary Note 2).

We have also estimated the linewidth of the microcomb components using the heterodyne technique. The beatnote signal between the external laser and the microcomb line is presented in the inset of Fig. 3(e, f). The Lorentzian width of the beatnote signal (estimated using a Voigt-profile fit) is 0.5 kHz. The Gaussian width is about 68 kHz, which can be improved by further reduction of the technical noises.

Funding Information: This work was supported by the Russian Science Foundation (grant 20-12-00344).

Acknowledgments: V.E.L. acknowledges personal support from the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS.” A.S.V. is supported by the EU H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101033663 (RaMSoM). N.Yu.D. was partially supported by the Samsung Research Center in Moscow. The authors thank H.-S. Lee and Y.-G. Roh from the Samsung Advanced Institute of Technologies for help in establishing the project and its further support. Authors express special thanks to Alexander Gorodnitskiy, graduate student of MIPT and Sofya Agafonova, student of MIPT for assistance at an early stage of experiments.

Author contribution: A.S.V., S.N.K., N.Yu.D. conducted the experiment. N.M.K., V.E.L. developed a theoretical model and performed numerical simulations. All authors analyzed the data and prepared the manuscript. I.A.B., M.V.R. and S.V.P. initiated the collaboration and supervised the project.

Data Availability Statement: Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Competing interests: S.N.K., A.S.V., E.L., M.V.R., S.V.P. and I.A.B. are listed as co-authors in joint Samsung Electronics and Russian Quantum Center US patent no. US10224688B2, which is related to the technology reported in this article. The authors declare no competing interests.

* These authors contributed equally to this work.

[1] T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[2] T. Fortier and E. Baumann, Communications Physics 2, 153 (2019).
[3] S. A. Diddams, K. Vahala, and T. Udem, Science 369, eaay3676 (2020).
[4] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, Science 354, 600 (2016).
[5] I. Coddington, N. Newbury, and W. Swann, Optica 3, 414 (2016).
[6] T. Ideguchi, Opt. Photon. News 28, 32 (2017).
[7] N. Picqué and T. W. Hänsch, Nature Photonics 13, 146 (2019).
[8] E. Baumann, E. V. Hoenig, E. F. Perez, G. M. Colacion, F. R. Giorgetta, K. C. Cossel, G. Ycas, D. R. Carlson, D. D. Hickstein, K. Srinivasan, et al., Optics express 27, 11869 (2019).
[9] S. N. Koptevaev, G. V. Lihachev, N. G. Pavlov, A. A. Shchechin, I. A. Bilenko, M. V. Riabko, M. L. Gorodetsky, S. V. Polonsky, A. S. Voloshin, A. D. Lantsov, et al., “Optical dual-comb source apparatuses including optical microresonator,” (2019), uS Patent 10,224,688.
[10] S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, in CLEO: 2014 (Optical Society of America, 2014) p. STThN.6.
[11] S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, Applied Physics Express 8, 082402 (2015).
[12] M. Brehm, A. Schiesser, and F. Keilmann, Opt. Express 14, 11222 (2006).
[13] H.-G. von Ribbeck, M. Brehm, D. van der Weide, S. Wanner, O. Drachenko, M. Helm, and F. Keilmann, Opt. Express 16, 3430 (2008).
[14] A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, Journal of Quantitative Spectroscopy and Radiative Transfer 118, 26 (2013).
[15] E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[16] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Koller, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, Optica 1, 290 (2014).
[17] F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Aman, and H. A. Schuessler, 12, 095701 (2015).
[18] P. Schroeder, R. Wright, S. Coburn, B. Sodergren, K. Cossel, S. Droste, G. Truong, E. Baumann, F. Giorgetta, I. Coddington, N. Newbury, and G. Rieker, Proceedings of the Combustion Institute 36, 4565 (2017).
[19] I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nature Photonics 3, 351 (2009).
[20] M.-G. Suh and K. J. Vahala, Science 359, 884 (2018).
[21] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kords, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Radel, W. Freude, T. J. Kippenberg, and C. Koos, Science 359, 887 (2018).
[66] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Li-hachev, M. L. Gorodetsky, and T. J. Kippenberg, *Phys. Rev. Lett.* **113**, 123901 (2014).

[67] C. Kim, K. Yvind, and M. Pu, *Opt. Lett.* **46**, 3508 (2021).

[68] Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, *Opt. Lett.* **4**, 193 (2017).

[69] C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, *Opt. Lett.* **41**, 2565 (2016).

[70] N. Kuse, T. Tetsumoto, G. Navickaite, M. Geiselmann, and M. E. Fermann, *Opt. Lett.* **45**, 927 (2020).

[71] N. M. Kondratiev, R. R. Galiev, and V. E. Lobanov, in *Nonlinear Optics and Applications XII*, Vol. 11770, edited by M. Bertolotti, A. V. Zayats, and A. M. Zheltikov, International Society for Optics and Photonics (SPIE, 2021) pp. 53 – 58.

[72] X. Xue, P.-H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, *Laser & Photonics Reviews* **11**, 1600276 (2017).

[73] B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, *Opt. Lett.* **44**, 4475 (2019).

[74] J. K. Jang, Y. Okawachi, Y. Zhao, X. Ji, C. Joshi, M. Lipson, and A. L. Gaeta, *Opt. Lett.* **46**, 3657 (2021).

[75] M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, *Nature Physics* **15**, 1071 (2019).

[76] M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, *J. Opt. Soc. Am. B* **17**, 1051 (2000).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SuppAhybridintegrateddualmicrocombsource.pdf