Abstract

Purpose: The purpose of this report is to present a case of bilateral HIV optic neuropathy.

Methods: We describe a case of completely loss of visual acuity in the left eye (LE) and partially in the right eye (RE) in a 25-year-old Woman with HIV infection without treatment.

Results: The patient presented with visual acuity of 20/200 in the RE and amaurosis in the LE. The optic nerves showed bilateral optic disc pallor and atrophic, with more pallor LE than RE. Magnetic resonance imaging scan (MRI) showed diffuse enhancement of the bilateral optic nerves post-contrast. There was no other ocular symptom, and no evidence of retinopathy. Serological tests were only positive for HIV.

Conclusions: Ophthalmologists have the opportunity to play a key role in the diagnosis and management of this disease, important for a good visual outcome. Human immunodeficiency virus infection should be considered in the differential diagnosis of optic neuritis.

Introduction

The human immunodeficiency virus (HIV) manifests in various ways in the eye. Several optic nerve disorders have been described, most commonly resulting from neoplasms, opportunistic infections, and inflammatory causes [1-4]. HIV itself may be a direct cause of optic neuropathy. It is an uncommon presentation and a diagnosis of exclusion, with only a few cases described in the literature [5-7].

Purpose

The purpose of this report is to present a case of bilateral retrobulbar optic neuropathy in an HIV-positive patient without treatment.

Case Report

The authors obtained written consent from the patient for the publication of her anonymised clinical data.

A 25-year-old woman presented bilateral visual loss. Past medical history was significant for HIV test in 2008 but no AIDS-defining illness. She declined antiretroviral therapy. Past ocular history was non-contributory, and results from previous eye exams were normal. She developed painful bilateral simultaneous progressive visual loss for the previous 3 months. Her best-corrected visual acuity was 20/200 OD and amaurosis OS. She saw 2/13 Ishihara plates OD and none OS. Visual field was constricted in the OD. The pupils were sluggishly reactive OU. Motility, slit lamp, and retinal exam results were normal. The optic nerves showing bilateral optic disc pallor and atrophic, with more pallor OS than OD (Figures 1, 2). An extensive evaluation for other infectious causes of her visual loss were negative. CD4+ cell count was 20/μL and serum HIV RNA level was 190,000 copies/mL. The full blood count showed leukocytosis (white cell count 13×10^9 /L) with neutrocytosis (78%). The erythrocyte sedimentation rate was increased at 65 mm/h, with the C-reactive protein level at 7.2 mg/l. Additional laboratory tests including ANA, p/c ANCA, anti-ds DNA-Ab, antiphospholipid Ab, vitamin B12, folic acid were performed without any pathological findings. The chest radiograph was normal. A CT scan of the brain with contrast showed mild atrophy, but a magnetic resonance imaging scan (MRI) showed diffuse enhancement of the bilateral optic nerves post-contrast (Figure 3). There were no periventricular plaques. Lumbar puncture disclosed an opening pressure of 20 cm H₂O and cerebrospinal fluid (CSF) chemistry and cytology were normal, including normal protein, glucose levels, and cell count. CSF cytology was negative for malignancy. Oligoclonal bands were negative. Results of a VDRL test, a Cryptococcus antigen test, an acid-fast stain, a Mycobacterium tuberculosis polymerase chain reaction (PCR) assay, and all cultures (bacteria, fungi, viruses, and mycobacteria) were negative.

Discussion

Optic neuritis is an inflammation of the optic nerve accompanied by impaired central or paracentral vision [8]. In a few cases, a primary demyelinating process in the optic nerve is not the cause of retrobulbar optic neuritis. The differential diagnosis of a bilateral optic
mediated optic neuropathy include direct or indirect neurotoxic effects of the HIV-1 infection on the optic nerve similar to that seen in the CNS [5-7]. Some patients with AIDS develop patchy and scattered degeneration of ganglion cell axons throughout the optic nerve by HIV itself suggest that AIDS-associated optic neuropathy is a distinct primary optic nerve degeneration that is unrelated to secondary retinal or optic nerve infections [9-11].

Conclusion

We describe a woman with advanced HIV infection with profound immunosuppression in whom bilateral retrobulbar optic neuritis developed as a result of HIV virus itself. We can exclude the possibility that our patients’ optic neuropathies were caused by another infection. The diagnosis of HIV retrobulbar optic neuritis was based on a normal anterior segment, pupillary defects, ocular pain progressing over days, appearance of optic nerve pallor late in the disease course, compatible MRI findings, and lack of evidence of alternative causes on the basis of comprehensive serum and CSF test results, and radiological findings.

Summary Statement

We report on an infrequent case of bilateral retrobulbar optic neuropathy as symptom of in an HIV-positive patient.

References

1. Vrabec TR (2004) Posterior segment manifestations of HIV/AIDS. SurvOphthalmol 49:131-157.
2. Goldsmith P, Jones RE, Ozuzu GE, Richardson J, Ong EL (2000) Optic neuropyathy as the presenting feature of HIV infection: Recovery of vision with highly active antiretroviral therapy. Br J Ophthalmol 84:551-553.
3. Mwanza JC, Nyamabo LK, Tylleskär T, Plant GT (2004) Neuro-phthalmological disorders in HIV infected subjects with neurological manifestations. Br J Ophthalmol 88:1455-1459.
4. Gordon PK (2005) Retroviruses and retroviral diseases. In: Miller NR, Newman NJ, eds. Walsh and Hoyt’s Clinical Neuro-Ophthalmology 6th edition. Lippincott Williamsand Wilkins 3323-3368.
5. Newman NJ, Lessel S (1992) Bilateral optic neuropathies with remission in two HIV-positive men. J ClinNeruoOphthalmol 12:1-5.
6. Sweeney BJ,Manji H, Gilson RJC, Harrison MJG (1993) Optic neuritis and HIV-1 infection. J NeurolNeurosurg Psychiatry 56:705-707.
7. Larsen M, ToftPB, Bernhard P, Herning M (1998) Bilateral optic neuritis in acute human immunodeficiency virus infection. ActaOphthalmolScand76:737-738.
8. Voss E, Raab P, Trebst C, Stangel M (2011) Clinical approach to optic neuritis: pitfalls, red flags and differential diagnosis. TherAdvNeurolDisord 4:123-134.
9. Tenhula WN, Shizao X, Madigan MC, Heller K, Freeman WR, et al. (1992) Morphometric Comparison of Optic Nerve Axon Loss in AcquiredImmunodeficiency Syndrome. Am J Ophthalmol 113:14-20.
10. Sadun AA, Papospe JS, Madigan MC, Laycock KA, Tenula WN, et al.(1995) AIDS-related optic neuropathy: a histological, virological and ultrastructural study. Graefes ArchClinExpOphthalmol 233:387-398.
11. Mahadevan A, Satishchandra P, Prachet KK, Sidappa NB, Ranga U, et al. (2006) Optic nerve axonal pathology is related to abnormal visual evoked responses in AIDS. ActaNeuropathol 112:461-469.