INTEGRABILITY PROPERTIES OF SOME EQUATIONS
OBTAINED BY SYMMETRY REDUCTIONS

H. BARAN, I.S. KRASIL’SHCHIK, O.I. MOROZOV, AND P. VOJČÁK

Abstract. In our recent paper [1], we gave a complete description of symmetry reduction of four Lax-integrable (i.e., possessing a zero-curvature representation with a non-removable parameter) 3-dimensional equations. Here we study the behavior of the integrability features of the initial equations under the reduction procedure. We show that the ZCRs are transformed to nonlinear differential coverings of the resulting 2D-systems similar to the one found for the Gibbons-Tsarev equation in [12]. Using these coverings we construct infinite series of (nonlocal) conservation laws and prove their nontriviality. We also show that the recursion operators are not preserved under reductions.

Contents

Introduction 2
1. Reduction of the Lax pairs 2
1.1. Equation (1) 2
1.2. Equation (2) 3
1.3. Equation (3) 4
2. Local symmetries and cosymmetries of the reduction equations 5
2.1. Equation (1) 5
2.2. Equation (2) 5
2.3. Equation (3) 6
3. Hierarchies of nonlocal conservation laws 6
3.1. A general construction 6
3.2. Equation (1) 7
3.3. Equation (2) 10
3.4. Equation (3) 11
3.5. Proof of nontriviality 11
4. On reductions of the recursion operators 12
4.1. A general construction 12
4.2. Recursion operators for symmetries of 3D systems 13
4.3. The negative result 14
5. Discussion 14
6. Appendix: Conservation laws 15
Acknowledgements 18
References 18

Date: December 22, 2014.

2010 Mathematics Subject Classification. 35B06.
Key words and phrases. Partial differential equations, symmetry reductions, solutions, the Gibbons-Tsarev equation, Lax-integrable equations.

1
In [1] we gave a complete description of symmetry reductions for four three-dimensional systems: the universal hierarchy equation, the 3D rdDym equation, the modified Veronese web equation, and Pavlov’s equation. The result comprised more than 30 equations, but the majority of them were either exactly solvable or linearized by the generalized Legendre transformations. Nevertheless, there were 10 ‘interesting’ reductions, among which two well-known equations, i.e., the Liouville and Gibbons-Tsarev equations. [3, 4]. The rest eight can be divided in two groups by their symmetry properties: five equations admit infinite-dimensional Lie algebras of contact symmetries (with functional parameters) and three others possess finite-dimensional symmetry algebras. These are

\[u_y u_{xy} - u_x u_{yy} = e^y u_{xx} \]

(reduction of the universal hierarchy equation),

\[u_{yy} = (u_x + x)u_{xy} - u_y(u_{xx} + 2) \]

(reduction of the 3D rdDym equation), and

\[u_{xx} = (x - u_y)u_{xy} + (2y + u_x)u_{yy} - u_y \]

(reduction of the Pavlov equation). These equations are pair-wise inequivalent (see Section 5).

We deal with this three equations below and study how the integrability properties of the initial 3D systems behave under reduction. More precisely, we construct (Section 1) the reductions of the zero-curvature representations for Equations (1)–(2) and show that they result in differential coverings of the form

\[w_x = \frac{a_2 w^2 + a_1 w + a_0}{w^2 + c_1 w + c_0}, \quad w_y = \frac{b_2 w^2 + b_1 w + b_0}{w^2 + c_1 w + c_0}, \]

where \(a_i, b_i, c_i\) are functions in \(x, y, u, u_x,\) and \(u_y\). These coverings are similar to the one found in [12] for the Gibbons-Tsarev equation and this resemblance, by all means, reflects the relations between generalized Gibbons-Tsarev equations and integrable 3D-systems [13]. In Section 3 for every nonlinear covering we construct an infinite series of conservation laws and prove their nontriviality.

We also study the behavior of the recursion operators for symmetries of three-dimensional systems and show that these operators do not survive under reduction (Section 4).

In Section 2 local symmetries and cosymmetries of the reduction equations are described. The corresponding conservation laws are presented in the Appendix.

Throughout the text the notion of (differential) covering is understood in the sense of [7].

1. Reduction of the Lax pairs

Using Lax representations of the 3D equations, whose reductions are the equations at hand, we construct here nonlinear coverings of Equations (1)–(2).

1.1. Equation (1). This equation is obtained as the reduction of the universal hierarchy equation:

\[u_{yy} = u_z u_{xy} - u_y u_{xz} \]
with respect to the symmetry
\[\varphi = u_z + u_x + yu_y + u. \] (5)
Equivalently, this reduction may be written in the form
\[u_{yy} = yu_{xx} - (u_x + u)u_{xy} + u_x u_y \] (6)
and Equation (11) transforms to (6) by the change of variables \(x \mapsto y, \ y \mapsto x, \ u \mapsto -e^y u. \)

Equation (4) admits the following Lax representation
\[\begin{align*}
w_x &= (wu_x - u_y)w^{-2}w_x, \\
w_y &= uyw^{-1}w_x. \end{align*} \] (7)
The symmetry \(\varphi \) can be extended to a symmetry \(\Phi = (\varphi, \chi) \) of (7), where
\[\chi = w_z + w_x + yw_y + w \]
and the corresponding reduction leads to the covering
\[\begin{align*}
w_x &= \frac{w^3}{w^2 - (u_x + u)w - u_y}, \\
w_y &= \frac{uyw^2}{w^2 - (u_x + u)w - u_y}. \end{align*} \] (8)
of Equation (6).

Remark 1. Equation (1) can be written in the potential form
\[\left(\frac{uy}{ux} \right)_y = \left(\frac{e^y}{ux} \right)_x, \]
the corresponding Abelian covering being
\[v_x = \frac{uy}{ux}, \quad v_y = \frac{e^y}{ux}. \] (9)
Then \(v \) enjoys the equation
\[v_y - v_{yy} = v_y v_{xx} - v_x v_{xy}, \] (10)
which also admits the rational covering
\[\begin{align*}
w_x &= \frac{wv_x - xv_y}{w^2 + (-2x + v_x)w + x^2 - xv_x + v_y}, \\
w_y &= \frac{wv_y - xv_x}{w^2 + (-2x + v_x)w + x^2 - xv_x + v_y}. \end{align*} \]
of the same type. \(\square \)

1.2. Equation (2). This equation was obtained as the reduction of the 3D rdDym equation
\[u_{xy} = u_x u_{xy} - u_y u_{xx} \] (11)
with respect to the symmetry
\[\varphi = u_t - xu_x - u_y + 2u. \] (12)
The Lax representation for Equation (11) is
\[\begin{align*}
w_x &= (u_x + w)w_x, \\
w_y &= -uyw^{-1}w_x. \end{align*} \] (13)
The symmetry \(\varphi \) extends to the one of (13): \(\Phi = (\varphi, \chi) \), where
\[\chi = w_t - xu_x - w_y + u. \]
Reduction of the covering (13) with respect to \(\Phi \) leads to the covering
\[
\begin{align*}
 w_x &= \frac{-w^2 + (u_x - x)w + uy}{uyw}, \\
 w_y &= \frac{w^2 + (u_x - x)w + uy}{w^2 + (u_x - x)w + uy},
\end{align*}
\] (14)
over Equation (2).

1.3. Equation (3). Finally, Equation (3) is the reduction of the Pavlov equation
\[
 u_{yy} = u_{tx} + uy u_{xx} - u_x u_{xy}
\] (15)
with respect to the symmetry
\[
 \varphi = u_t - 2xu_x - yu_y + 3u.
\] (16)
The Pavlov equation possesses the Lax pair
\[
\begin{align*}
 w_t &= (w^2 - wu_x - uy)w, \\
 w_y &= (w - uy)w.
\end{align*}
\] (17)
The symmetry \(\varphi \) lifts to the symmetry \(\Phi = (\varphi, \chi) \) of (17), where
\[
 \chi = w_t - 2xw_x - yw_y + w.
\]
Reduction of the covering (17) with respect to this symmetry results in the nonlinear covering
\[
\begin{align*}
 w_x &= -\frac{w(w - uy)}{w^2 - (u_y + x)w + xuy - u_x - 2y}, \\
 w_y &= -\frac{w}{w^2 - (u_y + x)w + xuy - u_x - 2y},
\end{align*}
\] (18)
of Equation (3).
Remark 2. Equation (3) has a close relative. Namely, if we accomplish reduction of the Pavlov equation using another symmetry
\[
 \varphi' = u_t - yu_x + 2x
\]
the resulting equation will be
\[
 u_{yy} = (u_y + y)u_{xx} - u_x u_{xy} - 2.
\] (19)
The symmetry \(\varphi' \) can also be lifted to (17) by \(\Phi' = (\varphi', \chi') \), where
\[
 \chi' = w_t - yw_y + 1,
\]
and the reduction of (17) will be
\[
\begin{align*}
 w_x &= -\frac{1}{w^2 - u_x w - uy - y}, \\
 w_y &= -\frac{w - u_x}{w^2 - u_x w - uy - y},
\end{align*}
\] (20)
By the change of variables \(u \mapsto u - y^2/2 \), Equation (19) transforms to the Gibbons-Tsarev equation
\[
 u_{yy} = uy u_{xx} - u_x u_{xy} - 1,
\]
while (18) becomes
\[
\begin{align*}
 w_x &= -\frac{1}{w^2 - u_x w - uy}, \\
 w_y &= -\frac{w - u_x}{w^2 - u_x w - uy},
\end{align*}
\]
cf. [12].
2. Local symmetries and cosymmetries of the reduction equations

We present here computational results on classical symmetries and cosymmetries of Equations (1)–(3), i.e., solutions of the equations
\[\ell_\varphi(\varphi) = 0 \]
and
\[\ell_\varphi(\psi) = 0, \]
where \(\ell_\varphi \) is the linearization of the equation at hand and \(\ell_\varphi \) is its formally adjoint and \(\varphi \) and \(\psi \) depend on \(x, y, u, u_x, u_y \) (see, e.g., [6]). The conservation laws corresponding to classical cosymmetries are presented in the Appendix below. The spaces of solutions are denoted by \(\text{sym}_c \) and \(\text{cosym}_c \), respectively.

All the equations under consideration happen to possess a scaling symmetry and thus admit weights (which we denote by \(|\cdot| \)) with respect to which they become homogeneous.

2.1. Equation (1). We consider this equation in the form (3), i.e.,
\[u_{yy} = u_y u_{xx} - (u_x + u) u_{xy} + u_x y. \]
The weights are
\[|x| = 0, \quad |y| = 1, \quad |u| = -1, \quad |u_x| = -1, \quad |u_y| = -2. \]

Symmetries. The defining equation for symmetries is
\[D_x^2(\varphi) = u_y D_x^2(\varphi) - (u_x + u) D_x D_y(\varphi) + (u_y - u_{xy}) D_x(\varphi) + (u_{xx} + u_x) D_y(\varphi) - u_{xy} \varphi. \]
The space \(\text{sym}_c(\varphi) \) spans the symmetries
\[\varphi_{-1} = u_y, \quad \varphi_0 = y u_y + u, \quad \varphi'_0 = u_x, \quad \varphi_1 = e^{-x}, \]
where the subscripts coincide with the weight\(^3\).

Cosymmetries. The defining equation for cosymmetries of Equation (1) is
\[D_y^2(\psi) = u_y D_y^2(\psi) - (u_x + u) D_x D_y(\psi) + 2(u_{xy} + u_y) D_y(\psi) - 2(u_{xx} + u_x) D_y(\psi) - 3u_{xy} \psi. \]
The space \(\text{cosym}_c(\psi) \) is 6-dimensional and spans the following cosymmetries:
\[\psi_{-3} = e^{3x} (3u_x^2 + 8u^2 + 10uu_x + 2u_y), \quad \psi_{-2} = e^{3x} (3u + 2u_x), \quad \psi_{-1} = e^{2x} \]
and
\[\psi_3 = \frac{1}{u_y^3}, \quad \psi_4 = \frac{2u_x - y u_y + 2u}{u_y^3}, \quad \psi_5 = \frac{-4u_x y u_y + 6u u_x + 3u_x^2 - 4y u u_y + 3u^2 + 2u_y + y^2 u_y^2}{u_y^4}, \]
where superscript coincides with the weight\(^4\).

2.2. Equation (2). The weights are
\[|x| = 1, \quad |y| = 0, \quad |u| = 2, \quad |u_x| = 1, \quad |u_y| = 2. \]

Symmetries. The linearized equation is
\[D_y^2(\varphi) = (u_x + x) D_x D_y(\varphi) - u_y D_x^2(\varphi) + u_{xy} D_x(\varphi) - (u_{xx} + 2) D_y(\varphi). \]
The space \(\text{sym}_c(\varphi) \) is generated by the symmetries
\[\varphi_{-2} = 1, \quad \varphi_{-1} = u_x + x, \quad \varphi_0 = u - \frac{1}{2} x u_x, \quad \varphi'_0 = u_y. \]

\(^3\)Here and below \(D_x \) and \(D_y \) denote the total derivatives with respect to \(x \) and \(y \).

\(^4\)To a symmetry \(\varphi \) we assign the weight of the corresponding evolutionary vector field \(E_{\varphi} \).

\(^5\)To every cosymmetry we assign the weight of the corresponding variational form, see [3].
Cosymmetries. The defining equation for cosymmetries reads
\[D^2_0(\psi) = (u_x + x)D_x D_y(\psi) - u_y D_x^2(\psi) - 2u_{xy} D_x(\psi) + (2u_{xx} + 3)D_y(\psi). \]
The space cosym(\(\mathcal{E}\)) is generated by the cosymmetries
\[\psi_{-3} = \frac{e^{-2y(u_x + x)}}{u_y^3}, \quad \psi_2 = 1, \]
\[\psi_{-2} = \frac{e^{-y}}{u_y^5}, \quad \psi_3 = u_x + 2x. \]

2.3. Equation \([11]\). The weights of variables are
\[|x| = 1, \quad |y| = 2, \quad |u| = 3, \quad |u_x| = 2, \quad |u_y| = 1. \]
in this case.

Symmetries. The symmetries are defined by the equation
\[D^2_0(\varphi) = (x - u_y)D_x D_y(\varphi) + (2y + u_x)D_y^2(\varphi) - D_y(\varphi) \]
and the space sym(\(\mathcal{E}\)) spans the symmetries
\[\varphi_0 = -\frac{1}{3}xu_x - \frac{2}{3}yu_y + u, \quad \varphi_{-1} = u_x - xu_y + y - \frac{1}{2}x^2, \]
\[\varphi_{-2} = u_y + 2x, \quad \varphi_{-3} = 1. \]

Cosymmetries. The defining equation for cosymmetries is of the form
\[D^2_0(\psi) = (x - u_y)D_x D_y(\psi) + (2y + u_x)D_y^2 - u_y D_x + 3(2 - u_{xy})D_y. \]
The space cosym(\(\mathcal{E}\)) is 6-dimensional and spans the elements
\[\psi_7 = \frac{54}{5}xu_x u_y + \frac{164}{5}x u_y y + \frac{256}{5}x^2 y + 2xu + 45u - \frac{12}{5}u_y u_x + 4y u_x + \frac{36}{5}u_y^2 y \]
\[+ \frac{82}{5}x^2 u_x + \frac{512}{5}u_x u_y + \frac{32}{5}x^3 u_y + \frac{96}{5}x^2 u_y^2 + \frac{32}{5}y^2 + \frac{512}{5}u_y^3 + \frac{4}{4}u_x^4 + \frac{4}{4}u_y^4, \]
\[\psi_6 = \frac{49}{4}xy + 4xu_x + \frac{3}{2}u_x u_x + \frac{9}{2}u_y y + \frac{49}{4}x^2 u_y + \frac{21}{4}x u_x^2 + \frac{333}{4}x^3 + \frac{1}{4}u + u_y^3, \]
\[\psi_5 = 4xu_y + 6x^2 + 2y + \frac{2}{3}u_x + u_y^2, \]
\[\psi_4 = \frac{5}{2}x + u_y, \]
\[\psi_3 = 1, \]
\[\psi_{-1} = \frac{1}{(-x u_y + u_x + 2y)^2}. \]

3. Hierarchies of nonlocal conservation laws

Using the nonlinear coverings presented in Section \([11]\) we construct here infinite hierarchies of nonlocal conservation laws for Equations \([11]\)–\([11]\).

3.1. A general construction. The initial step of the construction is the so-called Pavlov reversing, \([14]\) (see \([5]\) for the invariant geometrical interpretation). Let \(\mathcal{E}\) be an equation in two independent variables \(x\) and \(y\) and unknown function \(u\) and
\[w_x = X(x, y, [u], w), \quad w_y = Y(x, y, [u], w) \]
be a differential covering over \(\mathcal{E}\), where \([u]\) denotes \(u\) itself and a collection of its derivatives up to some finite order. Then the system
\[\psi_x = -X(x, y, [u], \lambda)\psi_\lambda, \quad \psi_y = -Y(x, y, [u], \lambda)\psi_\lambda \]
(21)
is also compatible modulo \mathcal{E} (thus, the nonlocal variable w turns into a formal parameter in the new setting).

Assume now that
\[
X = X_{-1}^\lambda + X_0 + \frac{X_1}{\lambda} + \cdots + \frac{X_i}{\lambda^i} + \cdots,
\]
\[
Y = Y_{-1}^\lambda + Y_0 + \frac{Y_1}{\lambda} + \cdots + \frac{Y_i}{\lambda^i} + \cdots,
\]
where $X_i, Y_i, i \geq -1,$ are functions in x, y and $[u]$, and also expand ψ in formal Laurent series
\[
\psi = \psi_{-1}^\lambda + \psi_0 + \frac{\psi_1}{\lambda} + \cdots + \frac{\psi_i}{\lambda^i} + \cdots
\]
Then (21) implies
\[
\psi_{i,x} = -\sum_{j+k=i+1} kX_j\psi_k, \quad \psi_{i,y} = -\sum_{j+k=i+1} kY_j\psi_k,
\]
or
\[
\psi'_{-1,x} = -X_{-1}\psi_{-1}, \quad \psi'_{-1,y} = -Y_{-1}\psi_{-1};
\]
\[
\psi_{0,x} = -X_0\psi_{-1}, \quad \psi_{0,y} = -Y_0\psi_{-1};
\]
\[
\psi_{1,x} = X_{-1} - X_1\psi_{-1}, \quad \psi_{1,y} = Y_{-1} - Y_1\psi_{-1};
\]
\[
\psi_{2,x} = 2X_{-1}\psi_2 + X_0\psi_1 - X_2\psi_{-1}, \quad \psi_{2,y} = 2Y_{-1}\psi_2 + Y_0\psi_1 - Y_2\psi_{-1};
\]
\[
\psi_{3,x} = 2X_1\psi_2 + X_0\psi_1 - X_3, \quad \psi_{3,y} = 2Y_1\psi_2 + Y_0\psi_1 - Y_3;
\]
\[
\psi_{4,x} = 2X_1\psi_2 + X_0\psi_1 - X_4, \quad \psi_{4,y} = 2Y_1\psi_2 + Y_0\psi_1 - Y_4;
\]
\[
\psi_{k,x} = kX_{-1}\psi_k + (k-1)X_0\psi_{k-1} + \cdots + X_{k-2}\psi_1 - X_k\psi_{-1},
\]
\[
\psi_{k,y} = kY_{-1}\psi_k + (k-1)Y_0\psi_{k-1} + \cdots + Y_{k-2}\psi_1 - Y_k\psi_{-1}
\]
for all $k > 2$.

In general, this system defines an infinite-dimensional non-Abelian covering (which may be trivial generally) over the base equation \mathcal{E}, but in the particular case $X_{-1} = Y_{-1} = 0$ the covering becomes Abelian, i.e., transforms to an infinite series of (nonlocal) conservation laws. Indeed, the first pair of equations reads
\[
\psi_{-1,x} = 0, \quad \psi_{-1,y} = 0
\]
in this case and without loss of generality we may set $\psi_{-1} = 1$. The rest equations read
\[
\psi_{0,x} = -X_0, \quad \psi_{0,y} = -Y_0;
\]
\[
\psi_{1,x} = -X_1, \quad \psi_{1,y} = -Y_1;
\]
\[
\psi_{2,x} = X_0\psi_1 - X_2, \quad \psi_{2,y} = Y_0\psi_1 - Y_2;
\]
\[
\psi_{3,x} = 2X_0\psi_2 + X_1\psi_1 - X_3, \quad \psi_{3,y} = 2Y_0\psi_2 + Y_1\psi_1 - Y_3;
\]
\[
\psi_{4,x} = 2X_1\psi_2 + X_0\psi_1 - X_4, \quad \psi_{4,y} = 2Y_1\psi_2 + Y_0\psi_1 - Y_4;
\]
\[
\psi_{k,x} = (k-1)X_0\psi_{k-1} + (k-2)X_1\psi_{k-2} + \cdots + X_{k-2}\psi_1 - X_k, \quad \psi_{k,y} = (k-1)Y_0\psi_{k-1} + (k-2)Y_1\psi_{k-2} + \cdots + Y_{k-2}\psi_1 - Y_k
\]
for all $k > 3$.

Remark 3. The first two pairs of equations define local conservation laws (probably, trivial) and the potential ψ_0 does not enter the other equations. This means that the obtained covering is the Whitney product of the one-dimensional Abelian covering τ_0 associated to ψ_0 and the infinite-dimensional $\tau_* \equiv \psi_1, \psi_2, \ldots$. We shall deal with τ_* below. \hfill \Box
We now confine ourselves to the case
\[X = \frac{a_2w^2 + a_1w + a_0}{w^2 + c_1w + c_0}, \quad Y = \frac{b_2w^2 + b_1w + b_0}{w^2 + c_1w + c_0}, \quad \text{(23)} \]
where \(a_i, b_i, \) and \(c_i \) are functions in \(x, y, \) and \([u],\) and deduce the needed Laurent expansions. One has
\[
\frac{a_2\lambda^2 + a_1\lambda + a_0}{\lambda^2 + c_1\lambda + c_0} = \left(a_2 + \frac{a_1}{\lambda} + \frac{a_0}{\lambda^2} \right) \cdot \left(\frac{1}{1 + \frac{c_1\lambda + c_0}{\lambda^2}} \right) = \left(a_2 + \frac{a_1}{\lambda} + \frac{a_0}{\lambda^2} \right) \cdot \sum_{i \geq 0} \left(-\frac{c_1\lambda + c_0}{\lambda^2} \right)^i.
\]

Let us present temporally the second factor in the form
\[\sum_{i \geq 0} \left(-\frac{c_1\lambda + c_0}{\lambda^2} \right)^i = \sum_{i \geq 0} d_i \lambda^{-i}.
\]

Then
\[
\frac{a_2\lambda^2 + a_1\lambda + a_0}{\lambda^2 + c_1\lambda + c_0} = \left(a_2 + \frac{a_1}{\lambda} + \frac{a_0}{\lambda^2} \right) \cdot \sum_{i \geq 0} d_i \lambda^{-i}
\]
\[= a_2d_0 + \frac{a_2d_1 + a_1d_0}{\lambda} + \frac{a_2d_2 + a_1d_1 + a_0d_0}{\lambda^2} + \ldots + \frac{a_2d_i + a_1d_{i-1} + a_0d_{i-2}}{\lambda^i} + \ldots
\]
Compute the coefficients \(d_i \) now. One has
\[
\left(-\frac{c_1\lambda + c_0}{\lambda^2} \right)^i = (-1)^i \sum_{j=0}^{i} \binom{i}{j} \frac{c_1^j c_0^{i-j}}{\lambda^{2i-2j}},
\]
from where it follows that
\[d_0 = 1, \quad d_1 = -c_1 \]
and
\[
d_i = \begin{cases} \sum_{j=0}^{k} (-1)^{k-j} \binom{k+j}{2j} c_1^{k-j} c_0^{2j} & \text{if } i = 2k, \\ \sum_{j=0}^{k} (-1)^{k-j+1} \binom{k+j+1}{2j+1} c_1^{k-j} c_0^{2j+1} & \text{if } i = 2k + 1 \end{cases}
\]
\[\text{(24)}\]
for \(i > 1, \) Or, in shorter notation
\[d_i = \sum_{j=0}^{\lfloor i/2 \rfloor} (-1)^{\lfloor i/2 \rfloor - j + p(i)} \binom{\lfloor i/2 \rfloor + j + p(i)}{2j + p(i)} \cdot c_0^{\lfloor i/2 \rfloor - j} c_1^{2j + p(i)}, \]
\[\text{(25)}\]
where \(p(i) = i \mod 2 \) is the parity of \(i \) and \(\lfloor k/2 \rfloor \) is the integer part.
Gathering together the results of the above computations, one obtains that in the case of coverings \[\text{(23)}\] we have \(X_{-1} = Y_{-1} = 0, \) while other coefficients are
\[
X_0 = a_2, \quad Y_0 = b_2;
X_1 = a_1 - a_2c_1, \quad Y_1 = b_1 - b_2c_1;
X_2 = a_0 - a_1c_1 + a_2(c_1^2 - c_0), \quad Y_2 = b_0 - b_1c_1 + b_2(c_1^2 - c_0);
\ldots
X_i = a_0d_{i-2} + a_1d_{i-1} + a_2d_i, \quad Y_i = b_0d_{i-2} + b_1d_{i-1} + b_2d_i;
\ldots
\]
where the functions \(d_i \) are given by \[\text{(24)}\].
Let us now show how these general constructions look like in the particular cases of the equations under consideration.

3.2. Equation (11). Note first that the covering (8) is not of the form (23). Nevertheless, it can be transformed to the needed form by the gauge transformation $w \mapsto we^{-x}$. Then (8) acquires the form

$$w_x = \frac{(u_x + u)e^x w^2 - u_y e^{2x} w}{w^2 - (u_x + u)e^x w - u_y e^{2x}}, \quad w_y = -\frac{u_y e^x w^2}{w^2 - (u_x + u)e^x w - u_y e^{2x}}.$$

We have $|w| = -1$.

Thus,

$$a_0 = 0, \quad a_1 = -u_y e^{2x}, \quad a_2 = (u_x + u)e^x, \quad b_0 = 0, \quad b_1 = 0, \quad b_2 = -u_y e^x, \quad c_0 = -u_y e^{2x}, \quad c_1 = -(u_x + u)e^x.$$

Let us compute the coefficients d_i. By (21), we have

$$d_{2k} = \sum_{j=0}^{k} (-1)^{k-j} \left(\frac{k + j}{2j} \right) (-u_y e^{2x})^{k-j} (-1)^{2j} (u_x + u)^{2j}$$

$$= \epsilon^{2k} \sum_{j=0}^{k} \left(\frac{k + j}{2j} \right) u_y^{k-j} (u_x + u)^{2j},$$

and

$$d_{2k+1} = \sum_{j=0}^{k} (-1)^{k-j+1} \left(\frac{k + j + 1}{2j + 1} \right) (-u_y e^{2x})^{k-j} (-1)^{2j+1} (u_x + u)^{2j+1}$$

$$= \epsilon^{(2k+1)} \sum_{j=0}^{k} \left(\frac{k + j + 1}{2j + 1} \right) u_y^{k-j} (u_x + u)^{2j+1},$$

or

$$d_i = \epsilon x \sum_{j=0}^{\lfloor i/2 \rfloor} \left(\frac{\lfloor i/2 \rfloor + j + p(i)}{2j + p(i)} \right) u_y^{i/2-j} (u_x + u)^{2j+p(i)}. \quad (26)$$

Hence,

$$X_0 = (u_x + u)e^x, \quad Y_0 = -u_y e^x; \quad X_1 = ((u_x + u)^2 - u_y) e^{2x}, \quad Y_1 = (u_x + u)u_y e^{2x}$$

and

$$X_i = \epsilon^{(i+1)x} \left((u_x + u)^{i+1} + \sum_{j=1}^{\lfloor (i+1)/2 \rfloor} \left(\frac{i-j}{i-2j} \right) (u_x + u)^{i-2j+1} \right),$$

$$Y_i = -\epsilon^{(i+1)x} \sum_{j=0}^{\lfloor i/2 \rfloor} \left(\frac{\lfloor i/2 \rfloor + j + p(i)}{2j + p(i)} \right) u_y^{\lfloor i/2 \rfloor - j+1} (u_x + u)^{2j+p(i)}$$

for $i > 1$ (we assume $\sum_{a} \leq 0$ for $\beta < 0$). Obviously,

$$|X_i| = -i - 1, \quad |Y_i| = -i - 2.$$

The functions X_i, Y_i define, by Equations (22), the infinite number of nonlocal variables ψ_i for Equation (11) with

$$|\psi_i| = -i - 1.$$
The corresponding conservation laws have the same weights and the first three of them coincide (up to equivalence) with the local conservation laws \(\omega_{\cdot 2}, \omega_{\cdot 3}, \omega_{\cdot 4} \) described in Section 2.1. The first essentially nonlocal one is associated to \(\psi_3 \).

3.3. Equation (2)

Due to Equations (14), one has

\[
\begin{align*}
 a_0 &= 0, & a_1 &= 0, & a_2 &= -1, \\
 b_0 &= 0, & b_1 &= u_y, & b_2 &= 0, \\
 c_0 &= u_y, & c_1 &= u_x - x.
\end{align*}
\]

Hence,

\[
\begin{align*}
 X_0 &= -1, & Y_0 &= 0; \\
 X_1 &= u_x - x, & Y_1 &= u_y; \\
 X_2 &= -(u_x - x)^2 + u_y, & Y_2 &= -u_y(u_x - x)
\end{align*}
\]

and

\[
\begin{align*}
 X_i &= -d_i = \sum_{j=0}^{[i/2]} (-1)^{[i/2]-j+p(i)+1} \left(\left[\frac{i}{2} \right] + j + p(i) \right) u_y^{[i/2]-j}(u_x - x)^{2j+p(i)}, \\
 Y_i &= u_y d_{i-1} = \sum_{j=0}^{[(i-1)/2]} (-1)^{[(i-1)/2]-j+p(i-1)} \times \\
 &\quad \times \left(\left[\frac{(i-1)}{2} \right] + j + p(i-1) \right) u_y^{(i-1)/2-j+1}(u_x - x)^{2j+p(i-1)}
\end{align*}
\]

for \(i > 2 \). Consequently,

\[
\begin{align*}
 \psi_{0,x} &= -X_0 = 1, & \psi_{0,y} &= -Y_0 = 0; \\
 \psi_{1,x} &= -X_1 = -u_x + x, & \psi_{1,y} &= -Y_1 = -u_y
\end{align*}
\]

and one may set

\[
\psi_0 = x, \quad \psi_1 = -u + \frac{u^2}{2},
\]

while

\[
\psi_{2,x} = (u_x - x)^2 + u_y + u - \frac{u^2}{2}, \quad \psi_{2,y} = (u_x - x)u_y
\]

and for \(i > 2 \)

\[
\begin{align*}
 \psi_{i,x} &= -(i-1)\psi_{i-1} + (i-2)X_1\psi_{i-2} + \cdots + X_{i-3}\psi_2 + \left(\frac{x^2}{2} - u \right) X_{i-2} - X_i, \\
 \psi_{i,y} &= (i-2)Y_1\psi_{i-2} + \cdots + Y_{i-3}\psi_2 + \left(\frac{x^2}{2} - u \right) Y_{i-2} - Y_i,
\end{align*}
\]

where \(X_k, Y_k \) are given by the above formulas.

One has

\[
|X_i| = i, \quad |Y_i| = i + 1, \quad |\psi_i| = i + 1.
\]

The conservation law corresponding to \(\psi_i \) is of the weight \(i + 1 \) and the first two ones, up to equivalence coincide with those described in Section 2.2, while all the others are essentially nonlocal.
3.4. **Equation (3)**. By Equation (18), we have

\[
\begin{align*}
a_0 &= 0, & a_1 &= u_y, & a_2 &= -1, \\
b_0 &= 0, & b_1 &= -1, & b_2 &= 0, \\
c_0 &= xu_y - u_x - 2y, & c_1 &= -(u_y + x).
\end{align*}
\]

Consequently,

\[
\begin{align*}
X_0 &= -1; & Y_0 &= 0; \\
X_1 &= -x; & Y_1 &= -1; \\
X_2 &= -u_x - x^2 - 2y; & Y_2 &= -u_y - x
\end{align*}
\]

and

\[
\begin{align*}
X_i &= u_y d_{i-1} - d_i; & Y_i &= -d_{i-1}
\end{align*}
\]

for \(i > 2 \), where

\[
d_i = \sum_{j=0}^{[i/2]} (-1)^{[i/2] - j} \binom{[i/2]}{2j + p(i)} (xu_y - u_x - 2y)^{[i/2] - j} (u_y + x)^{2j + p(i)}.
\]

One has

\[
|X_i| = i, \quad |Y_i| = i - 1.
\]

Thus we have

\[
\begin{align*}
\psi_{1,x} &= x, & \psi_{1,y} &= 1; \\
\psi_{2,x} &= u_x + \frac{x^2}{2} + y, & \psi_{2,y} &= u_y + x \quad \text{and we may set}
\end{align*}
\]

\[
\psi_1 = \frac{x^2}{2} + y, \quad \psi_2 = u + xy + \frac{x^3}{6}.
\]

Then the other potentials are defined by

\[
\begin{align*}
\psi_{i,x} &= -(i-1)\psi_{i-1} - (i-2)\psi_{i-2}(i-3)X_2\psi_{i-3} + \ldots \\
&\quad \ldots + 3X_{i-4}\psi_3 + \left(2u + 2xy + \frac{x^3}{3}\right)X_{i-3} + \left(\frac{x^2}{2} + y\right)X_{i-2} - X_i, \\
\psi_{i,y} &= -(i-2)\psi_{i-2}(i-3)Y_2\psi_{i-3} + \ldots \\
&\quad \ldots + 3Y_{i-4}\psi_3 + \left(2u + 2xy + \frac{x^3}{3}\right)Y_{i-3} + \left(\frac{x^2}{2} + y\right)Y_{i-2} - Y_i,
\end{align*}
\]

\(i > 2 \). We have

\[
|\psi_i| = i + 1.
\]

The conservation laws associated with \(\psi_3, \ldots, \psi_7 \) are equivalent to \(\omega_4, \ldots, \omega_8 \) introduced in Section 2.3. The first essentially nonlocal conservation law corresponds to \(\psi_8 \).

3.5. **Proof of nontriviality.** We shall now prove that the above constructed conservation laws are nontrivial. To this end, introduce the notation \(\mathcal{E}_\alpha \), \(\alpha = 1, 2, 3 \), for Equations (1), (2) and (3), respectively, and

\[
\tau_{i,\alpha}: \mathcal{E}_{i,\alpha} \to \mathcal{E}_\alpha
\]

for the coverings defined by the nonlocal variables \(\psi_{\alpha}, \ldots, \psi_i \). Let

\[
D_{x,\alpha}^i, \quad D_{y,\alpha}^i
\]

be the total derivatives on \(\mathcal{E}_{i,\alpha} \).
Proposition 1. For all \(i \geq \alpha \), the only solutions of the system
\[
D_x^{i,\alpha}(f) = 0, \quad D_y^{i,\alpha}(f) = 0
\] (27)
are constants.

Proof. Let us present the total derivatives in the form
\[
D_x^{i,\alpha} = D_x^\alpha + X^{i,\alpha}, \quad D_y^{i,\alpha} = D_y^\alpha + Y^{i,\alpha},
\]
where \(D_x^\alpha, D_y^\alpha \) are the total derivatives on \(\mathcal{E}_\alpha \) and \(X^{i,\alpha}, Y^{i,\alpha} \) are the ‘nonlocal tails’:
\[
X^{i,\alpha} = \sum_{j=\alpha}^{i} X_{j}^{i,\alpha} \frac{\partial}{\partial \psi_j}, \quad Y^{i,\alpha} = \sum_{j=\alpha}^{i} Y_{j}^{i,\alpha} \frac{\partial}{\partial \psi_j},
\]
\(X_{j}^{i,\alpha}, Y_{j}^{i,\alpha} \) being the right-hand sides of the defining equations (22) for the potentials \(\psi \).

From the constructions of Sections 3.2–3.4 one readily sees that the quantities \(X_{j}^{i,\alpha} \) and \(Y_{j}^{i,\alpha} \) are polynomials in \(u_x \) and \(u_y \) and, moreover,
\[
X^{i,1} = \pm e^{(i+1)x} u_x^{i+1} \frac{\partial}{\partial \psi_1} + o, \quad Y^{i,1} = \pm e^{(i+1)x} u_y u_x \frac{\partial}{\partial \psi_1} + o;
\]
\[
X^{i,2} = \pm u_x^{i} \frac{\partial}{\partial \psi_1} + o; \quad Y^{i,2} = \pm u_y^{i-1} \frac{\partial}{\partial \psi_1} + o;
\]
\[
X^{i,3} = \pm u_y^{i-2} u_x \frac{\partial}{\partial \psi_1} + o; \quad Y^{i,3} = \pm u_x^{i-1} \frac{\partial}{\partial \psi_1} + o,
\]
where \(o \) denotes terms of lower degree.

Now, the proof goes by induction. For small \(i \)’s the result follows from the fact that the cosymmetries corresponding to the local conservation laws do not vanish and these conservation laws are of different weights. Assume now that the statement is valid for all \(k < i \) and consider Equation (27). Then from the above estimates it follows that \(\partial f / \partial \psi_i = 0 \). □

Evidently, nontriviality of the constructed conservation laws is a direct consequence of the Proposition 1.

4. On reductions of the recursion operators

We show here that symmetry reductions of Equations (4), (11), and (15) are incompatible with their recursion operators and thus the latter are not inherited by Equations (1), (2), and (3), respectively.

4.1. A general construction. We treat here recursion operators for symmetries as Bäcklund transformations of the tangent coverings, cf. [9]. More precisely, let \(\mathcal{E} \) be a differential equation given by the system
\[
\mathcal{E} = \{ F = 0 \}, \quad F = (F^1(x, y, [u]), \ldots, F^s(x, y, [u])),
\]
\(F^j \) being functions on some jet space, [6]. Here, as above, \([u] \) denotes the collection of \(u \) and its derivatives. The tangent covering \(t = t_{\mathcal{E}}: \mathcal{T} \mathcal{E} \to \mathcal{E} \) is the projection \((x, y, [u], [q]) \mapsto (x, y, [u]) \) of the system
\[
\mathcal{T} \mathcal{E} = \{ F(x, y, [u]) = 0, \quad t_F(x, y, [u], [q]) = 0 \}
\] to \(\mathcal{E} \). The characteristic property of \(t \) is that its sections that preserve the Cartan (higher contact) distribution are identified with symmetries of \(\mathcal{E} \).
A Bäcklund transformation between equations \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) is a diagram

\[
\begin{array}{c}
\tau_1 \\
\mathcal{B} \\
\tau_2
\end{array}
\begin{array}{c}
\mathcal{E}_1 \\
\downarrow \\
\mathcal{E}_2
\end{array}
\]

where \(\tau_1 \) and \(\tau_2 \) are coverings. It relates solutions of \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) to each other. A recursion operator between symmetries of \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) is a Bäcklund transformation of the form

\[
\begin{array}{c}
\tau_1 \\
\mathcal{T} \mathcal{E}_1 \\
\tau_2
\end{array}
\begin{array}{c}
\mathcal{E}_1 \\
\downarrow \rightarrow \\
\mathcal{E}_2
\end{array}
\]

In particular, if \(\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} \) it relates symmetries of \(\mathcal{E} \) to each other. Then \(\mathcal{B} \) may be considered as an equation

\[\mathcal{B} \subset \mathcal{T} \mathcal{E} \otimes_\mathcal{E} \mathcal{T} \mathcal{E} \]

in the Whitney product of \(\mathcal{T} \mathcal{E} \) with itself.

Any symmetry \(\varphi = \varphi(x, y, [u]) \) of \(\mathcal{E} \) admits a natural lift \(\Phi = (\varphi, \varphi') \) to \(\mathcal{T} \mathcal{E} \). To this end, it suffices to set

\[\varphi' = \frac{\partial \varphi}{\partial u} q + \cdots + \frac{\partial \varphi}{\partial u^r} q^r + \cdots \]

Choose a symmetry \(\varphi \) of \(\mathcal{E} \) and denote by \(r_\varphi: \mathcal{E} \rightarrow \mathcal{E}_\varphi \) the corresponding reduction map. Then the diagram

\[
\begin{array}{c}
\mathcal{T} \mathcal{E} \\
\downarrow \rightarrow \\
\mathcal{E}
\end{array}
\begin{array}{c}
\mathcal{T} \mathcal{E}_\varphi \\
\downarrow \rightarrow \\
\mathcal{E}_\varphi
\end{array}
\]

is commutative. An immediate consequence of this fact is

Proposition 2. Let \(\mathcal{R} \subset \mathcal{T} \mathcal{E} \otimes_\mathcal{E} \mathcal{T} \mathcal{E} \) be a recursion operator for symmetries of equation \(\mathcal{E} \) and \(\varphi \) be a symmetry of \(\mathcal{E} \). If \(\mathcal{R} \) is invariant with respect to \(\varphi \) then \(\mathcal{R}_\varphi \) is a recursion operator for symmetries of \(\mathcal{E}_\varphi \).

4.2. **Recursion operators for symmetries of 3D systems.** We briefly recall here the results on recursion operators for symmetries of Equation (4), (11), and (15) obtained in [10][11]

The universal hierarchy equation. Equation (4) admits the following recursion operator

\[
\begin{align*}
D_y(\tilde{\varphi}) &= u_y D_x(\varphi) - u_{xy} \varphi, \\
D_z(\tilde{\varphi}) &= u_z D_y(\varphi) - D_y(\varphi) - u_{xz} \varphi
\end{align*}
\]

(28)

that acts on its symmetries.

The 3DrDym equation. The Bäcklund transformation

\[
\begin{align*}
D_x(\tilde{\varphi}) &= u_x D_x(\varphi) - D_x(\varphi) - u_{xx} \varphi, \\
D_y(\tilde{\varphi}) &= u_y D_x(\varphi) - u_{xy} \varphi
\end{align*}
\]

(29)

is a recursion operator for symmetries of Equation (11).
The Pavlov equation. The relations
\begin{align*}
 D_x(\tilde{\phi}) &= u_x D_x(\phi) + D_y(\phi) - u_{xx} \phi, \\
 D_y(\tilde{\phi}) &= D_t(\phi) + u_y D_x(\phi) - u_{xy} \phi.
\end{align*}
(30)
are a recursion operator for symmetries of Equation (15).

4.3. The negative result. Here we show that the general construction of Section 4.1 produces no recursion operator for the reduced equations under consideration.

Proposition 3. Recursion operators (28), (29) and (30) are not invariant with respect to the natural lifts of the symmetries (5), (12), and (16), respectively.

Proof. By direct check. □

Remark 4. The same fact holds for the reduction of the Pavlov equation that leads to the Gibbons-Tsarev equation.

5. Discussion

Let us first establish the following fact:

Proposition 4. Equations (1), (2), and (3) are pair-wise inequivalent.

Proof. Let us first compare dimensions (see Table 1). Consequently, only Equations (1) and (3) may be equivalent. Now, the Lie algebra structure of \(\text{sym}_{\mathcal{E}}(\mathcal{E}) \) for Eq. (1)

\[
\begin{array}{ccc}
\varphi_0 & \varphi_0 & \varphi_1 \\
\varphi_{-1} & 0 & 0 \\
\varphi_{0} & * & 0 \\
\varphi'_{0} & * & * \\
\end{array}
\]

and \(\text{sym}_{\mathcal{E}}(\mathcal{E}) \) for Eq. (3)

\[
\begin{array}{ccc}
\varphi_{-2} & \varphi_{-1} & \varphi_0 \\
\varphi_{-3} & 0 & 0 \\
\varphi_{-2} & * & \varphi_{-3} \\
\varphi_{-1} & * & * \\
\end{array}
\]

is presented in Table 2. One can see that dimension of the commutant in the first case is 2, while in the second case it equals 3. Thus, the algebras are not isomorphic. □

Remark 5. The equations under consideration are not equivalent to the Gibbons-Tsarev equation, because the symmetry algebra of the latter is five-dimensional.

Nevertheless, as we saw, all these equations have several common features. In particular, we would like to indicate how local cosymmetries of our equations are distributed with respect to weights (see Figure 1). In all three cases, they fit into two disjoint groups with certain gaps between them: the first one consist of cosymmetries whose corresponding conservation laws are members of infinite series (these are underlined by arrows, and the arrow itself indicates the direction to which the sequence of conservation laws goes). The second group includes ‘standing-alone’ cosymmetries.
Remark 6. A similar picture is observed in the case of the Gibbons-Tsarev equation. It also possesses a ‘standing-alone’ cosymmetry of order three.

A natural question arises: does there exist a construction, similar to the one of Section 3, that allows to embed the conservation laws corresponding to the ‘standing-alone’ cosymmetries into other infinite hierarchies?

Another question relates to the algebras of nonlocal symmetries in the infinite-dimensional coverings constructed above. It seems that such an algebra for Equation (3) should be similar (or isomorphic to that of the Gibbons-Tsarev equation), while the algebras for Equations (1) and (2) are different: all these Lie algebras are graded, but in the first two cases all homogeneous components are one-dimensional and for other equations this is not the case.

Finally, it is interesting to study the structure of symmetries and cosymmetries of the reductions that admit symmetry algebras with functional parameters (see the Introduction) and compare them with the results described here.

All these problems are subject to future research.

6. Appendix: Conservation laws

We present here the conservation laws that correspond to the cosymmetries described above. Everywhere below $|\omega_i| = i$. We also use the notation $\psi_\omega \in \text{cosym}(\delta')$ for the generating function of a conservation law ω.

Equation (1). The space of corresponding conservation laws is 6-dimensional and spans the following elements $\omega_i = P_i \, dx + Q_i \, dy$:

- $P_{-4} = e^{4x}(u_{x}^2u_{y} + 8u_{x}^3 + 2u_{y}^3 + 2u_{x}u_{y} + u_{x}u_{y} + 13u_{x}^2u_{y} + 2u_{x}u_{y} + 2u_{x}u_{y} - 3u_{x}u_{y} + 2u_{x}u_{y} - 2u_{x}u_{y})$,
- $Q_{-4} = ue^{4x}(-2u_{x}u_{y} + 8u_{x}u_{y} + 2u_{x}u_{y} + 2u_{x}u_{y} + 4u_{y}^2 - 2u_{y}u_{y})$;
- $P_{-3} = e^{3x}(-u_{x}u_{x} + u_{x}u_{y} + 3u_{x}^2u_{y} + 2u_{x}u_{y} - 2u_{x}u_{y})$,
- $Q_{-3} = ue^{3x}(-u_{y}u_{x}u_{y} + u_{x}u_{y} + 2u_{x}u_{y})$;
- $P_{-2} = e^{2x}(-u_{y} + u_{x} + u_{x}u_{y})$,
- $Q_{-2} = -ue^{-2x}u_{x}u_{y}$;
- $P_{2} = -\frac{1}{u_{y}}$;
- $Q_{2} = \frac{1}{u_{y}}(u_{x} + u)$;
- $P_{3} = \frac{1}{u_{y}}(u_{x}^2u_{y} + 2u_{x}u_{y} - u_{x}u_{y} - 2u_{x}u_{y})$,
- $Q_{3} = -\frac{1}{u_{y}}(u_{x}^2u_{y} + u_{x}u_{y}^2 + 2u_{x}u_{y} - u_{x}u_{y} + 2u_{x}u_{y} - 4u_{x}u_{y} - 2u_{x}u_{y})$.

Figure 1. Distribution of cosymmetries
\[P_4 = \frac{1}{u_y^9}(-u_x^3 u^2 y^2 - 4u u_x y u_y y + 2u u_x^2 y + 4u u_x u_y^2 y - u_x u_y + 6u u_x u_y)
- 2u u_x y - 2u u_x u_y - 3u_x^2 u_y - u_x^2), \]
\[Q_4 = \frac{1}{u_y^9}(u_x y^2 u + u_x u_y^3 y^2 + 4u_x u_y y - 2u_x^2 u_y y + 4u u_x u_y y u_y y
- 8u x u u_x u_x u_y - 2u_x^2 u_x y - u_x^3 u_y - 6u_x u_x u_y + 3u_x u_x y
- 6u_x^2 u_x y + 9u_u u_x u_y + u_x^2 u_y - 2u u_x u_y + 4u u_x u_y^2). \]

Here \(|\psi_\omega| = |\omega| + 1\).

Equation (2). The space of conservation laws is 4-dimensional and is generated by \(\omega_1 = P_1 dx + Q_1 dy\) of the form
\[P_{-2} = \frac{1}{2}(2u u_x y - 2u x u_y - u_y x) e^{-2y} \]
\[Q_{-2} = \frac{1}{2}(2u u_x u_y - 2u u_x u_y + 2u u_x x - u_x^2 u_y - 2u u_y x - u_y^2 - 2u u_y) e^{-2y} \]
\[P_{-1} = e^{-y} \]
\[Q_{-1} = -(u_x + x) e^{-y} \]
\[P_3 = u u_x x + 3u + u_y, \]
\[Q_3 = u u_x y + u_y x; \]
\[P_4 = \frac{1}{2} u u_x x + u_x y + \frac{5}{2} u x u_x x + u u_x u_x x + 8u x + \frac{1}{2} u_x, \]
\[Q_4 = 2u x^2 + \frac{1}{2} u u_x x x + 2u u_x y x + \frac{1}{2} u u_x u_x y + \frac{1}{2} u u_x u_y + u_y. \]

Again, \(|\psi_\omega| = |\omega| - 1\).

Equation (3). The space of conservation laws is 6-dimensional; elements \(\omega_1 = P_1 dx + Q_1 dy\) of a basis are
\[P_5 = u_x^3 u_y u_y u + \frac{1}{5} u x u_x^3 u_y + \frac{116}{5} u x^2 u_x u_y y + \frac{162}{5} u x u_x u_y + \frac{229}{15} u x^3 u_y u_x y
+ \frac{25}{3} u x^2 u_x^2 u_y + \frac{3}{5} u x^2 u_x u_y u + \frac{379}{5} u x u_y u_y u x^2 + \frac{758}{15} u y u_y u_y^3 u_x y
+ \frac{8}{3} u y u_y u y u x^2 + \frac{345}{5} u x^2 y u_y y + \frac{48}{5} u y u_y u_y^2 u_x y
+ \frac{12}{5} u y u_y u y u + 80 u x u y u y + \frac{36}{5} u x u y u_x y - \frac{164}{5} x^2 u_x u_x y^2
- \frac{16}{5} u x^2 u_x u_y y^2 + \frac{48}{5} u y u_y u_x y
+ \frac{18}{5} u x u_y u_y u + \frac{6}{5} u x u_y u_x y - \frac{164}{5} x^2 u_x u_x y^2
- \frac{8}{5} x^3 u_x u_x u_y^2
- \frac{1024}{15} x^3 u_x u_y y + 43 u x^3 u_x y^2 + \frac{48}{5} u y u_y u_x^2 + \frac{18}{5} u x u_y u_x^2
+ \frac{164}{5} x^2 u_x y u_x^2 y^2
+ \frac{52}{5} u y u_y u_x y + \frac{14}{5} u x^2 u_x u_y - \frac{64}{5} x^2 u_y y^2 + \frac{2048}{5} u x^2 y + 2u y u_x^2 u_y + \frac{16}{5} u x u_y^3
+ \frac{82}{5} u y u_x + \frac{32}{5} u x^2 u_y u_y u x + \frac{64}{5} u^2 u_y u_y u_x y + 24 u y u_x u_x u_y x + \frac{132}{5} u x u_y u_x u_y x
+ 12 u u_x u_x u_y u y + \frac{96}{5} u_x u_y u_y u x^2 + \frac{192}{5} u_y u_y u x^2 y + \frac{56}{5} u x u_x u_y u_x y + \frac{1}{5} u_x^2 u_y^3
+ \frac{3}{5} u_x^3 u_y + \frac{256}{5} u y^2 + \frac{4096}{15} u x^2 - \frac{241}{5} u^2 x + \frac{2}{5} u u_y - \frac{24}{5} u y^2 u_x - \frac{64}{5} y^3 u_y - \frac{2}{5} y u_5.
\[
\begin{align*}
Q_8 &= -36 y u x y u y y - \frac{72}{5} x y u x y u y + \frac{42}{5} u y u y u y y + \frac{92}{5} u x y u x y + \frac{32}{5} u x u^2 y u x y + 4 u x u x u x y \\
&+ \frac{256}{15} u x^2 y u x y + \frac{12}{5} u x u y u y y u + \frac{64}{3} u x^3 u y u y y + \frac{72}{5} u x^2 u^2 y u x y + \frac{36}{5} u y u y u x y \\
&+ \frac{28}{5} u x u y u y y + \frac{96}{5} u x^2 u x y y + 3 u^2 y u x u y y u + \frac{52}{5} u^2 y^2 u y y \\
&+ \frac{6}{5} u x u y u u y y u + u^4 y y u y + \frac{256}{15} u x^4 u y y y + \frac{32}{5} x y^2 u y u y + \frac{94}{5} u y u y u x y + \frac{379}{15} u x^3 u x y \\
&- \frac{256}{15} u x^2 y u x y + \frac{82}{5} u x u x + 16 u x y u - \frac{17}{5} x u^2 u x y + u^3 y u x u x y + \frac{12}{5} u u x u x y \\
&+ \frac{133}{15} u x^3 u x y + \frac{256}{15} u x^3 u y u y + \frac{512}{5} u x y x u y y + \frac{176}{5} u x y u u y y + \frac{64}{5} u x u x u y u y + \frac{12}{5} u u^3 y u x \\
&+ \frac{2048}{15} u x^3 - \frac{512}{15} u x^3 - 2 u y u - \frac{32}{5} y^2 u x - \frac{41}{5} x^2 u x - \frac{512}{15} u x^4 - \frac{1}{5} u^3 x^3; \\
\end{align*}
\]

\[
\begin{align*}
P_7 &= \frac{13}{8} u x y u y y - \frac{25}{4} x y u x y u + 2 u y u^2 y u y y + \frac{65}{4} u x y u u y + \frac{5}{4} u x u^2 u x y + \frac{23}{4} u x u x u x y \\
&+ \frac{65}{4} u x^2 y u x y + \frac{1}{2} u x u y u x y u + \frac{13}{4} u y u u y u y + \frac{65}{8} u x^2 u u y y + \frac{47}{8} u x^2 u y u x y \\
&+ u^2 y u u u y + \frac{9}{2} u^2 u y u y u - \frac{1}{2} u^2 u y u u u - \frac{45}{2} u x y^2 u y + \frac{45}{4} u y u y + \frac{391}{24} u x^3 u u x y + 2 u x u x \\
&+ \frac{7}{2} u u u y + \frac{5}{4} u x u y u + \frac{9}{2} u x u x y - \frac{49}{8} u^2 x u x y - \frac{434}{12} u^3 y y u + \frac{343}{4} \frac{1}{4} u x u^3 y y \\
&+ y u x y y + \frac{21}{2} u u x u y u y + \frac{21}{4} u x u x u u y y + \frac{1}{2} u^3 y + \frac{3}{2} u x^3 u x \\
&+ \frac{9}{2} y^2 u^2 y + \frac{1}{4} u x^2 u^2 y - \frac{1}{2} u y^4 + \frac{53}{8} u x^3 - \frac{7}{2} u y^2 u - \frac{49}{4} u x^2 u y^2 - \frac{7}{4} u x^2 u u y^2 + \frac{131}{8} u x^2 u y \\
&+ u y^2 u u y + \frac{3}{2} u u u y + \frac{35}{4} u x^2 u u y y + \frac{9}{2} u x u^2 u u y \\
&+ 2 u y u y u y u + \frac{49}{4} x y u x + \frac{343}{8} u x^2 + \frac{49}{4} u y + 2 u x^2 - \frac{1}{2} u^2 x y - \frac{343}{24} \frac{1}{4} u x^3 u x \\
&+ 2 u x + \frac{343}{24} \frac{1}{4} u x^3 u y + \frac{5}{2} u^2 x u x y + \frac{49}{4} u x^2 u y y + \frac{49}{4} \frac{1}{4} u x^3 u u y + \frac{65}{8} \frac{1}{4} u x^2 u x y \\
&- \frac{9}{4} y u x y + \frac{9}{4} u x y y - \frac{33}{8} \frac{1}{4} x^2 u x y + \frac{u^3 y u y y u + u^2 y^2 u x y u; \\
\end{align*}
\]

\[
\begin{align*}
P_6 &= 12 y u + \frac{2}{3} u y u + 36 u x^2 + \frac{1}{3} u x^2 y - \frac{2}{3} y u y + \frac{7}{3} u x u x u y y + \frac{14}{3} u y u y u u y + \frac{14}{3} u x y u x y \\
&+ 2 u y u y u y + \frac{17}{3} u x u y + 2 u x u u u x y - \frac{2}{3} u y u x + \frac{8}{3} u y u x y + u x u u y + \frac{19}{3} u x^2 u y y \\
&- 12 y^2 u y u - 2 x u x u y - 4 u x y u - \frac{1}{3} x u y u^2 - 4 y^2 u y - \frac{1}{3} u x u, \\
\end{align*}
\]

\[
\begin{align*}
Q_6 &= 12 x u - 6 x^2 u x - 2 y u x + 6 x^3 u y - \frac{1}{3} u x^2 + \frac{10}{3} u x u y u y - \frac{5}{3} x u y + 4 u x^2 u y y \\
&+ u^2 y u y + \frac{7}{3} u x u x + \frac{8}{3} u y u y + u x u y y u + u x y u y y + 2 u x y; \\
\end{align*}
\]

\[
\begin{align*}
P_5 &= -5 x u y y - \frac{5}{2} x u x u y - u^2 y - \frac{1}{2} u^2 y u x + \frac{25}{2} x u + \frac{1}{2} u x u u y + u y u y + \frac{1}{2} u x y u y u u \\
&+ \frac{1}{2} u x u x y - \frac{1}{2} u x u y, \\
\end{align*}
\]
\[
Q_5 = \frac{1}{2} uu_{xy} + \frac{5}{2} u - \frac{5}{2} xu_x - \frac{1}{2} u_y u_x + \frac{5}{2} x^2 uu_y - 2 xu_y^2 - \frac{1}{2} u^3;
\]
\[
P_4 = -u_y u_x - 2u_y y + 4u,
\]
\[
Q_4 = -u_y^2 + xu_y - u_x;
\]
\[
P_0 = \frac{u_y}{xu_y - u_x - 2y},
\]
\[
Q_0 = \frac{1}{xu_y - u_x - 2y}.
\]
Here \(|\psi_\omega| = |\omega| - 1\).

Acknowledgements

The authors are grateful to E. Ferapontov for remarks and discussion. The 2nd author is grateful to the Mathematical Institute of the Silesian University in Opava for support and comfortable working condition. Computations of symmetry algebras were fulfilled using the Jets software. [2].

References

[1] H. Baran, I.S. Krasil’shchik, O.I. Morozov, P. Vojčák, Symmetry reductions and exact solutions of Lax integrable 3-dimensional systems, Journal of Nonlinear Mathematical Physics, Vol. 21, No. 4 (December 2014), 643–671; [arXiv:1407.0246 [nlin.SI]], DOI: 10.1080/14029251.2014.975532, http://www.tandfonline.com/doi/abs/10.1080/14029251.2014.975532#.VE4v8Bbim_k.

[2] H. Baran, M. Marvan, Jets. A software for differential calculus on jet spaces and diffeoteties. http://jets.math.slu.cz.

[3] F. Calogero, A. Degasperis, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. New York: North-Holland, p. 60, 1982.

[4] J. Gibbons, S.P. Tsarev, Reductions of the Benney equations, Phys. Lett. A 211 (1996) 19–24.

[5] I.S. Krasil’shchik, A natural geometric construction underlying a class of Lax pairs, Lobachevskii Journal of Mathematics, 2015 (to appear).

[6] I.S. Krasil’shchik, V.V. Lychagin, A.M. Vinogradov, Geometry of Jet Spaces and Nonlinear Differential Equations, Adv. Stud. Contemp. Math. 1, Gordon and Breach, New York, London, 1986.

[7] I.S. Krasil’shchik, A.M. Vinogradov. Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws, and Bäcklund transformations. Acta Applicandae Mathematica, 15 (1989) no. 1-2, pp. 161–209.

[8] I.S. Krasil’shchik, A.M. Verbovetsky, Geometry of jet spaces and integrable systems: Journal of Geometry and Physics, 61 (2011) Issue 9, 1633–1674, [arXiv:1002.0077 [math.DG]](http://arxiv.org/abs/1002.0077).

[9] M. Marvan, Another look on recursion operators, in: Differential Geometry and Applications, Proc. Conf. Brno, 1995 (Masaryk University, Brno, 1996) 393–402.

[10] O.I. Morozov, Recursion Operators and Nonlocal Symmetries for Integrable rmdKP and rldDyn Equations, arXiv:1202.2308, 2012.

[11] O.I. Morozov, A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence, Central European Journal of Mathematics, 12 (2), 2014, 271–283.

[12] A.V. Odesskii, V.V. Sokolov, Non-homogeneous systems of hydrodynamic type possessing Lax representations, arXiv:1206.1230, 2006.

[13] A.V. Odesskii, V.V. Sokolov, Systems of Gibbons-Tsarev type and integrable 3-dimensional models, arXiv:0906.3509, 2009.

[14] M.V. Pavlov, Jen Hsu Chang, Yu Tung Chen, Integrability of the Manakov-Santini hierarchy, arXiv:0910.2400, 2009.
Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic
E-mail address: Hynek.Baran@math.slu.cz

Independent University of Moscow, B. Vlasevsky 11, 119002 Moscow, Russia & Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic
E-mail address: josephkra@gmail.com

Faculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, Kraków 30-059, Poland
E-mail address: morozov@agh.edu.pl

Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic
E-mail address: Petr.Vojcak@math.slu.cz