The use of social features in mobile health interventions to promote physical activity: a systematic review

Huong Ly Tong¹ and Liliana Laranjo¹

INTRODUCTION

Regular physical activity (PA) is associated with many physical and mental health benefits. Previous studies have demonstrated that PA can be effective in the prevention and treatment of a wide range of diseases, such as hypertension, stroke, type 2 diabetes, several types of cancer, depression, and anxiety.¹⁻³ The World Health Organization recommends that adults should do at least 150 min of moderate intensity or 75 min of vigorous intensity PA, throughout 1 week.⁴ Notably, there is a dose-response relationship between PA and cardiovascular outcomes, with higher levels of PA leading to greater health benefits.⁵ Despite the importance of PA, a third of adults and four-fifths of adolescents worldwide fail to meet the recommended levels of PA.⁶ This highlights the importance of finding effective ways to promote PA to reduce morbidity and mortality, as well as health care costs.

The growing availability of mobile health (mHealth) technologies, such as activity trackers or mobile applications (apps) has given rise to new opportunities to influence PA behavior. Specifically, they can be used by individuals at any time and in any environment, enabling the collection of objective, reliable data on PA measures.⁷⁻⁸ mHealth technology is increasingly being used in PA interventions, with encouraging results.⁹ However, so far, these interventions have not been adopted by large number of users and often have high attrition rates.¹⁰ A meta-analysis has found that online social networks (OSNs) can improve intervention retention rates, as well as have a significant positive effect on health behavior change.¹¹ Thus, integrating some social features from OSNs (e.g., social support, social comparison) into mHealth technologies could help engage users and result in positive health outcomes.

Several systematic reviews examined the use of mHealth technologies to promote PA, but they were often limited to a single mode of mHealth technology, or a specific setting.¹²⁻¹⁸ No systematic review has examined the use of social features across mobile apps or wearable PA trackers, which limits the ability of researchers and developers to assess the impact of such features on efficacy and user engagement. Thus, the aim of this study was to characterize the use of social features in mobile health (mHealth) interventions to promote physical activity, as well as their effectiveness and impact on users’ preferences and engagement. Specifically, our research questions were:

1. What are the characteristics and effectiveness of mobile health interventions with social features in promoting PA, for both patients and healthy consumers?
2. What are the experimental studies’ retention rates, and what is the extent of users’ engagement and satisfaction with these interventions?
3. What are users’ perspectives on the use of social features in mHealth interventions to promote PA?

RESULTS

The database search retrieved 1393 citations (Fig. 1); 200 duplicates were removed. After title and abstract screening, 1161 articles were excluded. Full-text screening was conducted for
The use of social features in mobile health interventions to promote physical activity: A systematic review
HL Tong and L Laranjo

Mobile apps were the most utilized technology. In experimental studies, mobile apps were used either in isolation, 22,26,28,32,33,27 or as part of a more complex intervention with other components (e.g., wearable PA trackers). 21,23–25,29,31 In two non-experimental studies, mobile apps were examined in isolation. 36,38 Authors of seven studies developed their own apps, 21,23,26,27,32,33,38 while the rest used the Fitbit app. 21,24,25

Five experimental studies used wearable activity trackers as part of a multi-component intervention. 20,21,23,24,25,29 Fitbit devices, such as the Fitbit Flex and Zip, were the most mentioned wearable PA trackers. 21,24,25,30 Additionally, three non-experimental studies examined the use of wearable PA trackers. 37,39,40

Social features
In the included studies, social features were often delivered via OSNs. Specifically, four studies used Facebook, 21,24,29,31 one used Twitter, 25 one used WhatsApp, 28 and one used a health-specific OSN (i.e., JWell). 23 One study examined a fitness OSN—Strava. 36 Social features were primarily used to deliver social support 20–22,24,25,27–32,38 and provide social comparison. 22,25–27,32,33,38,23

Interestingly, OSNs were also frequently used to deliver non-specific rewards (e.g., badges for PA achievements) if there has been progress in PA performance. 26,27,29,31

In two experimental studies, participants mentioned that other users did not actively make use of the social features in OSNs (e.g., several users viewed posts but did not comment) and that they would like to see more engagement and contribution from others in Facebook groups. 21,29 Other social media platforms (e.g., Snapchat, Instagram) were suggested by some younger participants as a replacement for Facebook, because they were not frequent users of the latter. 21,24

Users’ perspectives on social features were mixed. Participants in several studies reportedly felt more motivated from social support and social comparison because they perceived a sense of membership and belonging in the group 29,32 or because they liked the competition aspects. 27,29,33,38–40 Meanwhile, some users said that they did not like social comparison for many reasons: (1) they were only interested in their own progress, 27,32 (2) they thought competition might promote an unhealthy desire to win and have detrimental effects on the users’ emoti0ns if they lose, 38 (3) they were concerned about privacy issues. 27 Chatroom features in mobile apps were seen as redundant in one study because the users already had other preferred communication platforms. 27 However, they were deemed important by other participants, as they liked to have a direct way to message their friends from the app. 23

Behavior change techniques (BCTs) and theories
Our review found that overall, 20 of 93 possible BCTs were observed in the interventions. All interventions incorporated between 2 and 14 BCTs, 20,21 with a median of five BCTs per intervention. In experimental studies, self-monitoring of PA behavior was the most popular BCT, facilitated via wearable PA trackers. 20,21,23–27,29–33 Social support was delivered in all interventions, except for two. 26,33 Goal setting was used in six interventions. 20,24,26,30–32 Intervention components other than the mobile technology (e.g., emails) were also used to review PA goals with participants, based on previous performance. 20,21,24 Three experimental studies used interviews to examine which features were preferable from participants’ perspectives. The findings included goal setting, reward for progress in performing PA 24,27 and personalized feedback. 27,30 A complete classification of BCTs is provided in Supplement 3 (experimental studies) and Supplement 4 (non-experimental studies).

The theory of reasoned action/planned behavior was the most mentioned in the included studies, 31–33,39 followed by self-determination theory. 20,21,36 Social networks were mentioned twice. 20,28 Most studies used solely one behavior change theory to inform the intervention design. 20,22,23,25–28,31–33,38 Two non-experimental studies used behavior change theories to analyze the results. 36,39

Usage and acceptability
The lowest retention rate in experimental studies was 46.7% over 2.5 months. 28 Other studies had retention rates between 68% (6-month period) and 100% (2-week period). Four studies did not report retention rates. 24–26,29 In order to encourage participants to comply with study procedures, six studies provided incentives ranging from $10 to $25. 20,23,26,27 three studies reported incentives of more than $50 (Table 1). 24,30,32 Two studies did not provide any incentives, 25,28 and three studies did not report whether they provided any incentives to participants. 29,31,33 Chung et al. did not provide incentives for study compliance,

npj Digital Medicine (2018) 43

Published in partnership with the Scripps Translational Science Institute
First author, year, location	Study type	Study duration	Participants N (I; C); N women; other characteristics	Intervention/study arms description	Description of social features and associated BCTs	Outcomes* (denotes significant results)	Theories and models of behavior change	Retention rates I; C N (%)	Incentives for study compliance	
Ashton, 2017, Australia*	RCT	3 Months	50 (26; 24); 0; Young men	2 arms: Website + Jawbone wearable tracker + app + Facebook group + face-to-face sessions + healthy lifestyle materials C: no intervention	Facebook group Social support	• Steps/day	Social cognitive theory, Self-determination theory	24 (92.3%) 23 (95.8%)	Control participants received incentives for returning to the follow-up session (e.g., $10 voucher to cover travel expenses)	
Mendoza, 2017, US*	RCT + interviews	2.5 Months	59 (29; 30; 35; childhood cancer survivors)	2 arms: Fitbit Flex tracker + Fitbit app + Facebook group + SMS C: no intervention	Facebook group Social support	• MVPA	Self-determination theory	29 (100%) 30 (100%)	Gift cards of "modest value" were provided to participants for completing the assessments	
King, 2016, US*	RCT	2 Months	95 (8; 22 for analytic app, 24 for affect app, 22 for social app: C271): 67; Inactive older adults	4 arms: I: Analytic app, Affect app, Social app C: diet-tracker app	Social app Social support Social comparison	• MVPA*	Operant conditioning principle + Gamification, Social app: Social influence	Analytic app: 21 (95.5%), Affect app: 22 (91.7%), Social app: 22 (100%) Control: 24 (88.9%)	"Participants received a $20 gift card for participating"	
Greene, 2012, US*	RCT	6 Months	513 (265; 248); NR	2 arms: I: iWell OSN + wireless accelerometer + wireless scale; C: printed educational materials	iWell OSN Social support Social comparison	• Leisure time walking*	Social network	186 (68%); 169 (68%)	Participants were compensated with a cookbook at their 3-month follow-up and a $25 Amazon.com gift card at the 6-month follow-up	
Muntaner-Mas, 2017, Spain*	Quasi-experimental	2.5 Months	48 (8; 20 for training group: 15 for mobile group: C: 13); NR; Older adults	3 arms: Training group: in-person exercise program, Mobile group: WhatsApp-delivered exercise program + Chat group: C: no intervention	Mobile group: WhatsApp Social support	• Self-reported PA levels*	Training group: 16 (80%); Mobile group: 7 (46.7%); Control: 9 (69.2%)	None	Participants received incentives of $5/week for each online survey completed (2 per week) and $20 for the post-study interview — totaling up to $60 for adolescent and $20 for parents	
Schoenfelder, 2017, US*	Quasi-experimental	1 Month	11 (n/a); 6: Adolescents with ADHD	1 arm: Fitbit Flex tracker + Fitbit app + Facebook group + daily text messages	Facebook group Social support	• Step counts*	NR	NR	Participants received incentives of $5/week for each online survey completed (2 per week) and $20 for the post-study interview — totaling up to $60 for adolescent and $20 for parents	
Chung, 2016, US*	Quasi-experimental	2 Months	12 (n/a); NR: BMI = 22 = 35 kg/m²	1 arm: Fitbit Zip tracker + Fitbit app + Twitter	Twitter Social support Fitbit app Social comparison	• Step counts	Gamification	NR	None	
Paul, 2016, UK*	Quasi-experimental	1.5 Months	23; 12; Stroke survivors							
First author, year, location	Study type	Study duration	Participants N (I; C); N women; other characteristics	Intervention/study arms description	Outcomes*	Theories and models of behavior change	Retention rates I; C N (%)	Incentives for study compliance		
-----------------------------	------------	----------------	---	-----------------------------------	-----------	--------------------------------------	-------------------------	-------------------------------		
Rosenberg, 2016, US³⁰	Quasi-experimental + Interviews	1 week	31; 0; Prostate cancer patients	2 arms I: Starfish app; C: no intervention 1 arm: Fitbit Zip tracker	Starfish mobile app Social comparison Wearable activity trackers, i.e., Fitbit Zip Social support Upright time and walking time Gait speed[†] Acceptability		26 (83.9%)	Participants kept their Fitbit and were paid $10 for completing the study		
Middelweerd, 2015, Netherlands²⁷	Quasi-experimental + Focus group	3 weeks	30 (n/a); 20; Dutch university students	1 arm: Nexercise app	Nexercise app Social support Social comparison Preferences, attitudes Acceptability		NR	The incentive for completing the focus groups was either an arm holder for a smartphone or voucher for free entrance to the university sports center		
Pumper, 2015, US³⁹	Quasi-experimental + Interviews	1 month	30 (n/a); 18; Adolescents	2 arms Group 1: Facebook group + Fitbit Flex tracker (n = 17) Group 2: Fitbit Flex tracker (n = 13)	Facebook group Social support Self-reported walking[†]; MVPA[†] Feasibility Usability Engagement Step count and distance Usability, usefulness, feasibility, willingness to use Accuracy	Theory of planned behavior, Fun theory	25 (86.2%)	NR		
Kernot, 2014, Australia³¹	Quasi-experimental	1 month	29; 29; Women with young children	1 arm: Facebook group + pedometer	Facebook group Social support PersonA mobile app Social support Social comparison	10 theories[‡]	13 (92.9%)	“Participants were compensated $50 for participating”		
Al Ayubi, 2014, US⁴⁰	Quasi-experimental + Interviews	1 month	14 (n/a); NR; BMI = 18.3–43 kg/m²	1 arm: Persuasive Social Network for Physical Activity (PersonA) mobile app 1st week: PersonA 2nd–4th week: PersonA + social menu	PersonA mobile app Social support Social comparison		8 (100%)	NR		
Khalil, 2013, United Arab Emirates⁴²	Quasi-experimental + Survey	2 weeks	8; 8; Pre-existing social connections	1 arm 1st week: Step up app 2nd week: Step up app + social component Step up app Social comparison	13 (92.9%)	Theory of reasoned action	8 (100%)	NR		

¹intervention, C control, BCTs behavior change techniques, RCT randomized control trial, app application, MVPA moderate to vigorous physical activity, SMS short message service, PA physical activity, EMA ecological momentary assessment, NR not reported, OSN online social network, n/a not applicable, ADHD attention deficit hyperactivity disorder, BMI body mass index (kg/m²)

²Outcomes reported include PA-related outcomes (e.g., steps, cognitive or psychological outcomes such as intention to exercise), engagement, acceptability, and satisfaction with the intervention. For other outcomes, see Supplement 4.³As reported by the authors in the papers. Measured by: ⁴Godin Leisure-Time Exercise Questionnaire, ⁵Behavioral Regulation in Exercise Questionnaire-2, ⁶Physical Activity Enjoyment Scale, ⁷International Physical Activity Questionnaire (IPAQ), ⁸Client Satisfaction Questionnaire (CSQ-8), ⁹Ten-Meter Walking Test (10MWT), Active Australia Survey. ¹⁰pre-intervention survey was developed by the authors; no validation study was published; ¹¹theories: The Health Belief Model, the theory of reasoned action/theory of planned behavior, the Elaboration Likelihood Model, the social cognitive theory, the social support and health link theory, the uses and gratifications theory, the common bond and common identity theory, the Technology Acceptance Model, the Unified Theory of Acceptance and Use of Technology, and the Fogg Behavioral Model.
but provided material incentives and rewards as BCTs to encourage PA behavior (i.e., complete a step challenge to get a water bottle).25

Measures of engagement with intervention components differed between studies, including OSN usage (e.g., liking a post on a Facebook group, sharing PA data),21,23,24,31 and duration of use of wearable PA trackers.22,25,31 Two studies found that the Fitbit tracker was worn for at least 70% of the time.24,25 Interestingly, Chung et al. noted that overweight participants tended to wear the Fitbit tracker 99% of the time, while normal weight participants only wore it 73% of the time (p-value not reported).25

Two non-experimental studies examined factors that influence long-term use of mHealth interventions. One study compared novice and experienced users of Strava and found that social support and social comparison were the main drivers of long-term use of the application.36 Another study interviewed long-term users of wearable PA trackers, and found that goal setting, reward systems, and self-monitoring were the major drivers for engagement and use.37 One study reported technical issues as a perceived barrier to long-term usage.30

User acceptability was examined in four experimental studies21,24,27,33 and in one non-experimental study.38 Even though all studies reported high levels of acceptability, only one study used a validated questionnaire;24 the others used interviews or surveys designed by the authors.

Study outcomes and meta-analysis
In most studies, PA outcomes were objectively measured by a wearable tracker/pedometer21,23,24,25,29–31 or smartphone built-in accelerometers.22,26,27,32,33 PA outcomes were self-reported in two studies using validated questionnaires.26,31 One study used a pedometer to objectively measure steps per day, and used a validated questionnaire to measure self-reported moderate-to-vigorous physical activity.20 Six studies reported physiological outcomes (e.g., weight, Body Mass Index, blood pressure) other than PA levels (Supplement 3); one study reported cognitive and psychological outcomes (e.g., motivation for PA, enjoyment of PA).21

Amongst quasi-experimental studies, four reported significant increase in PA24–26,31 one reported non-significant increase.28 Two studies also reported an increase in PA, but it was not reported if the change was statistically significant32,33.

We included four RCTs in the meta-analysis, all with continuous outcomes.20–23 There was no statistically significant effect of mHealth interventions with social features on PA outcomes [standardized difference in means = 0.957 (95% confidence interval –1.09 to 3.00)] (Fig. 2). Heterogeneity was high (I² 99.6%).

Risk of bias assessment
Out of four included RCTs, two studies were deemed as having the lowest risk of bias according to Cochrane’s tool (low risk of bias in five out of six categories,20 and four out of six categories22) (Supplement 5). All studies had a low risk of bias for random sequence allocation, and a high risk of bias for blinding of participants and personnel. Two studies lacked sufficient information for risk assessment in allocation concealment21,23 and blinding of outcome assessment.21 Even though all four studies mentioned trial registration, one failed to provide the registration identification number,23 and another had very limited information on the registration,21 which made it difficult to assess “selective reporting”. Included studies other than RCTs had a higher risk of bias; detailed assessment was not possible due to the quality of reporting.

DISCUSSION
Main findings
The integration of social features in mHealth for PA promotion appears to be in an early stage of development due to the recent timing of publication of included studies (all published after 2010), and the predominance of quasi-experimental studies. Social features were often delivered via OSNs and used to provide social support or comparison. From users’ perspectives, preferences and use of social features were mixed: some users felt more motivated because of social support and competition aspects, while others expressed concerns about engaging in social comparison.

Comparisons with existing literature
Our systematic review focuses on the integration of social features in mHealth technology to promote PA. Several systematic reviews examined the use of mHealth technology to promote PA12–18 however, none has focused on social features. Two recent systematic reviews have looked at the effectiveness of OSNs on health behavior change,11,35 and found modest effects on health outcomes. These two systematic reviews differ from our study in several ways. Firstly, this study focuses solely on PA, while other studies looked at a range of health behaviors. Secondly, instead of examining OSNs (which can be web-based or delivered as a software application), we examined social features providing BCTs (e.g., social support, social comparison) in mHealth. Thirdly, rather than including only experimental studies, our review also included non-experimental studies such as surveys and interviews to capture users’ perspectives on the use of social features. Notably, even potentially efficacious interventions can fail to have an impact if users do not adopt the technology or use it over a long period of time. Thus, it is important to understand users’ perspectives on engagement with mHealth to inform intervention development and implementation.

The use of social features and BCTs in mHealth
Our study found that social features were most often used to deliver social support and social comparison. We also observed that self-monitoring of behavior was the most commonly used BCT in the included studies, which is in line with findings from previous literature.12,13,15 Self-monitoring of behavior can be seen as an important starting point to provide other BCTs,13 such as social comparison, or provision of feedback. A previous meta-analysis has shown that PA interventions that included self-monitoring and at least another self-regulatory technique (e.g., goal setting, feedback, on behavior) were significantly more effective than other interventions.41 While these findings shed light into the common use of BCTs in health interventions, due to the quasi-experimental nature of most studies, it remains unclear whether specific bundles of BCTs are more effective than others. An interesting hypothesis (which remains untested) is that different BCTs might be effective in different stages of behavior change,42 indicating the promises of adaptive interventions, tailored to individual progress.

Additionally, from users’ perspectives, preferences for social features were mixed amongst the participants in several included studies,27,29,32,33,37,38,40 which could be linked to differences in individual characteristics. For example, some participants acknowledged that they liked social comparison because of their own competitive nature.38 In contrast, other users showed interest in self-comparison only, preferring to follow their own goals and plans, and seeing little benefit in comparing themselves with other people.32 This indicates that while some BCTs (e.g., self-monitoring) might be suitable for most users, others (e.g., social comparison) might be more controversial, and thus, users’ preferences and characteristics should be taken into account.
First author, year, location	Methods	Participants N; N women; other characteristics	Aims	Description of mHealth technology	Theories and model of behavior change mentioned	Main findings
Maher, 2017, Australia⁵⁶	Survey	237; 168; Former (n = 37) and current (n = 200) wearable tracker users	Explore users’ experience of activity trackers, including usage patterns, sharing of data to social media, perceived behavior change, and technical issues	Wearable trackers	NR	65% of participants said they did not use social features and 77% did not share their activity data on a social media platform. The prime motivation for using social features was reportedly “to compete with friends”
Zhu, 2017, US⁵⁹	Survey	238; 67; Wearable trackers users	Explore the association between social competing & sharing, and intention to exercise	Wearable PA trackers	Theory of planned behavior	Social sharing and competing can directly influence attitudes towards exercise, subjective norms, and perceived behavioral control, which in turn influence intention to exercise
Stragier, 2016, Belgium⁶⁰	Survey	394; 43; Strava (a fitness OSN) users	Test whether users’ self-regulatory motives, social motives, or enjoyment motives for fitness OSN use will predict perceived usefulness, and habitual use	Fitness OSN i.e., Strava Social support	Self-determination theory	Self-regulatory motives both directly and indirectly predicted habitual use. Social motives directly predicted habitual use, while enjoyment indirectly predicted habitual use. The study also found that for new users, self-regulatory motives are the main drivers of using Strava; for experienced users, social motives and enjoyment are the main drivers
Fritz, 2014, Switzerland⁶¹	Interviews	30; 16; Wearable tracker users for at least 3 months	Explore factors that influence long-term use of wearable activity trackers	Wearable PA trackers	NR	Some participants used the social features of the system but struggled to find the right community to share data with. Most users expressed the desire to share data with someone who had similar goals or interests, rather than existing social connections
Bartlett, 2017, UK⁶²	Convergent mixed methods: Interviews + Survey	Interviews 28; 16; People with COPD, carers & HCPs; Survey 87; 59; People with COPD	Develop 3 prototypes of mobile apps (i.e., virtual coach system, music and maps system, online community system) and test how acceptable and persuasive each prototype is in increasing PA amongst people with COPD	Online community app Social support	Persuasive System Design	Interviews: Opinions on social features varied between users. Some participants liked social features because of the competitiveness and communication with others who had similar experiences, while others viewed competition as unhealthy. HCPs stated that online community would be best for immobile people, but the approach would only work if the users chose it themselves. Survey: The virtual coach system was rated as most persuasive, while the online community system was rated as least persuasive. The most useful feature was instruction on how to perform behavior; while the least useful features were prompts/cues, non-specific reward and social comparison

BCTs behavior change techniques, PA physical activity, NR not reported, OSN online social network, COPD chronic obstructive pulmonary disease, HCPs health care providers

All surveys were developed by the authors; no validation studies were published. *Total number of participants, †behavior change techniques were classified where applicable; ‡as reported by the authors
User engagement and retention

Retention rates of included studies were generally high. Specifically, four studies reported a 100% retention rate,21,22,27,33 and four studies reported at least 80%.20,30 The only exception is the Muntaner-Mas study with a retention rate of <50%.28 The use of social features in the Muntaner-Mas was considerably limited (i.e., only the chat function of WhatsApp was used), and no incentives for study completion were provided, which might explain the lower retention rate.

The high retention observed in most included studies suggests that integrating social features into mHealth interventions could potentially increase user engagement and retention, addressing the common attrition problem in health informatics studies.43 Other systematic reviews have reported high retention rates for behavioral informatics interventions that incorporated general OSNs (e.g., Facebook).11,35 A recent longitudinal study has examined a large dataset of six million users over 5 years to determine whether social networking features influence user engagement, or change behavior within the application, as well as in real life. By comparing social network users to matched control non-users, the study observed a 17% increase in user retention for social network users, with the long-lasting effect of over 1 year.44

Another aspect worth considering is the use of incentives and rewards. It is important to draw the distinction between incentives for study compliance (e.g., compensation of $10 for traveling to the research center) and incentives used as BCTs, targeting a particular behavior (e.g., offering a prize when a certain number of steps is achieved).45 In terms of incentives for study compliance, research has shown that these can influence retention rates.46,47 In this review, due to the multi-component nature of the included interventions and the study designs used, it is not possible to distinguish between the different impact of social features and compliance incentives on retention rates. In terms of incentives targeting behavior, several studies have demonstrated their potential effectiveness.38–50 However, researchers have questioned whether providing material incentives may undermine the development of intrinsic motivation and impact autonomy in decision-making51–53—factors which are strongly predictive of engagement retention rates.43 In terms of incentives for study compliance, research has shown that these can influence retention rates.46,47

In this review, due to the multi-component nature of the included interventions and the study designs used, it is not possible to distinguish between the different impact of social features and compliance incentives on retention rates. In terms of incentives targeting behavior, several studies have demonstrated their potential effectiveness.38–50 However, researchers have questioned whether providing material incentives may undermine the development of intrinsic motivation and impact autonomy in decision-making51–53—factors which are strongly predictive of long-term exercise adherence.54 Questions have also been raised about the scalability and sustainability of material incentives, highlighting the need to explore sustainable incentive procedures in future research.55

Implications for research

Our study highlights several important implications on potential research areas and study design. Firstly, our findings suggest that self-monitoring of behavior seems to be prevalent and relevant in PA interventions. While social features appear to be important to user engagement and retention, due to the limited number of RCTs and the multi-component nature of the interventions, it was difficult to ascertain their impact on retention, or their effectiveness on PA outcomes. It is important to note that material incentives could also contribute to high retention or be used as a BCT. However, questions about the sustainability of material incentives remain, suggesting the need to explore other kinds of incentives (e.g., social, verbal encouragement or virtual prizes).55 Users’ mixed preferences regarding social features and BCTs suggest that a one-size-fits-all approach might be inadequate, highlighting the need to personalize interventions based on individual characteristics and preferences.

To develop and assess personalized interventions with multiple components and BCTs (e.g., incentives, social features), future studies should consider using factorial and adaptive study designs. The Multiphase Optimization Strategy and the Sequential Multiple Assignment Randomized Trial may be particularly useful to determine which intervention components or combinations are most effective, what is the optimal sequence for delivering these components, and which tailoring variables should be used.56
Furthermore, authors are urged to follow the Consolidated Standards of Reporting Trials for electronic and mobile health applications and online telehealth (CONSORT-EHEALTH), and the Transparent Reporting of Evaluations with Nonrandomized Designs (TREND) statement when reporting their findings, in order to increase evidence quality and facilitate future reviews and meta-analyses.

METHODS

For the purpose of this systematic review, we defined social features within mHealth PA interventions as those that enable the interaction of an individual with other people (e.g., OSNs), and/or the delivery of social BCTs (e.g., social support, social comparison). As the domain of mHealth is broad, we specifically focused on the use of mobile apps and wearable PA trackers.

Search strategy

A systematic search of the literature was performed in January 2018, and updated in April 2018, using PubMed, Embase, and PsycInfo. Search strings included several terms related to mobile health and social features (a complete search strategy is provided in Supplement 6). No restrictions were placed in the search according to the year of publication. We also searched the reference lists of relevant articles and gray literature (e.g., dissertations, theses, conference proceedings). Authors were contacted when additional information about the studies was needed.

Study selection criteria

We included any primary research studies that involved patients or healthy consumers who used or were exposed to a mobile health intervention with social features, where the primary aim was to promote PA (e.g., increase step counts, intention to exercise). As we wished to examine both intervention effectiveness and users’ perspectives on mHealth interventions with social features, we included both quantitative and qualitative studies.

Studies were excluded if they: (1) did not incorporate social features in the mHealth component of the intervention; (2) involved only short message service (SMS) web (i.e., applications that are solely web-based), telephone, telemonitoring or telemedicine, or static pedometers (i.e., not able to transmit data to a consumer interface); (3) only reported PA as a secondary outcome or did not mention PA at all; (4) were not in English.

Screening, data extraction, and synthesis

Two investigators piloted the screening procedure and independently conducted two-phase screening: (1) title and abstract; (2) full-paper screening. Cohen’s kappa was used to measure inter-coder agreement in each screening phase. Disagreements were resolved through discussion and consensus.

One investigator extracted information from the included studies into a standardized form; another investigator examined the form for consistency. The following data were collected for each study: first author, year of publication, location, study duration, type of mHealth technology, social features, intervention components and characteristics, participants and setting information, reported outcomes, incentives for study compliance, conflicts of interest and funding sources. For each intervention component, BCTs were coded according to the BCT Taxonomy v1 and reviewed by two researchers with coding competency. Decisions on coding were made based on the authors’ description of the interventions. Though there is a specific CALO-RE taxonomy on physical activity and healthy eating, we chose the BCT Taxonomy v1 as it is the most comprehensive and up-to-date classification. For randomized controlled trials (RCTs), study quality was assessed using Cochrane’s risk of bias tool.

We conducted a narrative synthesis of results for all studies, and a meta-analysis for RCTs. We transformed all effect sizes to a common metric comparable across studies—the bias-corrected standardized difference in means—and classified it as positive when in favor of the intervention and negative when in favor of the control. We used a random effects model to combine the results in a more conservative way. As suggested in the literature, we did not avoid conducting a meta-analysis based on heterogeneity. Instead, we assessed the presence of heterogeneity using I² statistics and cautioned readers in the interpretation of the results. Due to the small number of included RCTs, a subgroup analysis was not conducted. Comprehensive Meta-Analysis V.2.2 was used for computations.

The study protocol was registered with PROSPERO (International prospective register of systematic reviews) with number CRD42018086067. This systematic review is compliant with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

CONCLUSION

The integration of social features in mHealth interventions for PA is a new field of research that has potential to increase user engagement and physical activity. Future research should adopt innovative research designs to develop and evaluate multi-component personalized interventions for PA promotion.

DATA AVAILABILITY

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files.

ACKNOWLEDGEMENTS

The authors would like to thank Ms. Paige Martin for her contribution to the development of the definition for social features, and Dr William Tong for his advices on the meta-analysis. HLT is supported by the International Macquarie University Research Training Pathway Master of Research (iMQRTPMRES) Scholarship (2016302). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS

HLT conceptualized the study, carried out the search, screened the studies, conducted data analysis, and wrote the first draft of the manuscript. L.L. assisted with the study design, screened the studies, provided guidance on data analysis, and critical feedback on the manuscript.

ADDITIONAL INFORMATION

Supplementary information accompanies the paper on the npj Digital Medicine website (https://doi.org/10.1038/s41746-018-0051-3).

Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

1. Janssen, I. & LeBlanc, A. G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 7, 40 (2010).
2. Kesaniemi, Y. A. et al. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med. Sci. Sports Exerc. 33, 5351–5358 (2001).
3. Warburton, D. E., Nicol, C. W. & Bredin, S. S. Health benefits of physical activity: the evidence. Can. Med. Assoc. J. 174, 801–809 (2006).
4. World Health Organisation. Global recommendations on physical activity for health, http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/ (2010).
5. Sattelmair, J. et al. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 124, 789–795 (2011).
6. Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012).
7. Roomon, T. J. et al. Reliability and validity of ten consumer activity trackers. BMC Sports Sci. Med. Rehabil. 7, 24 (2015).
8. Eapen, Z. J & Peterson, E. D. Can mobile health applications facilitate meaningful behavior change?: time for answers. JAMA 314, 1236–1237 (2015).
9. Fanning, J., Mullen, S. P. & McAuley, E. Increasing physical activity with mobile devices: a meta-analysis. J. Med. Internet Res. 14(6), e161, https://doi.org/10.2196/jmir.2371 (2012).
10. Flores Mateo, G., Granado-Font, E., Ferré-Grau, C. & Montaña-Carreras, X. Mobile phone apps to promote weight loss and increase physical activity: a systematic review and meta-analysis. J. Med. Internet Res. 17, e253 (2015).
11. Laranjo, L. et al. The influence of social networking sites on health behavior change: a systematic review and meta-analysis. J. Am. Med. Inform. Assoc. 22, 243–256 (2014).
12. Lyons, E. J., Lewis, Z. H., Mayrsohn, B. G. & Rowland, J. L. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis. J. Med. Internet Res. 16, e192 (2014).
13. Duncan, M. et al. Activity trackers implement different behavior change techniques for activity, sleep, and sedentary behaviors. Interact. J. Med. Res. 6(2), e13, https://doi.org/10.2196/jmir.6685 (2017).
14. Lewis, Z. H., Lyons, E. J., Jarvis, J. M. & Baillargeon, J. Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health 15, 585 (2015).
15. Yang, C. H., Maher, J. P. & Conroy, D. E. Implementation of behavior change techniques and preliminary efficacy in mobile applications promoting physical activity. Am. J. Prev. Med. 48, 452–455 (2015).
16. Bort-Rojo, J., Gilson, N. D., Puig-Ribera, A., Contreras, R. S. & Trost, S. G. Measuring and influencing physical activity with smartphone technology: a systematic review. Sports Med. 44, 671–686 (2014).
17. Matthews, J., Win, K. T., Oinas-Kukkonen, H. & Freeman, M. Persuasive technology and preliminary effectiveness in mobile applications promoting physical activity: a systematic review. J. Med. Syst. 40, 1–13 (2016).
18. Muller, A. M., Alley, S., Schoepe, S. B. & Vandelanotte, C. The effectiveness of e-behavioral mHealth interventions to promote physical activity and healthy diets in developing countries: a systematic review. Int. J. Behav. Nutr. Phys. Act. 13, 109 (2016).
19. Higgins, J. P. & Green, S. Cochrane Handbook for Systematic Reviews of Interventions. Vol. 4 (John Wiley & Sons, Chichester, UK 2011).
20. Ashton, L. M., Morgan, P. J., Hutchesson, M. J., Rollo, M. E. & Collins, C. E. Feasibility and preliminary efficacy of the ‘HEYMAN’ healthy lifestyle program for young men: a pilot randomised controlled trial. Nutr. J. 16, 1–17 (2017).
21. Mendoza, J. A. et al. A fitbit and facebook mHealth intervention for promoting physical activity among adolescent and young adult childhood cancer survivors: a pilot study. Pediatr. Blood Cancer 64(12), p.e26660, https://doi.org/10.1002/ pbc.26660 (2017).
22. King, A. C. et al. Effects of three motivationally targeted mobile device applications on physical activity and sedentary behavior change in middle and older adults: a randomized trial. PLoS One 11, e0156370 (2016).
23. Greene, J., Sacks, R., Piniewski, B., Kil, D. & Hahn, J. S. The impact of an online social network with wireless monitoring devices on physical activity and weight loss. J. Prim. Care Community Health 4, 189–194 (2012).
24. Schoenfelder, E., Moreno, M., Wilher, M., Whitlock, K. B. & Mendoza, J. A. Piloting a mobile health intervention to increase physical activity for adolescents with ADHD. Prev. Med. Rep. 6, 210–213 (2017).
25. Chung, A. E., Skinner, S. C., Hasty, S. E. & Perrin, E. M. Tweeting to health: a novel mHealth application for physical activity: a feasibility and usability study. JMIR mHealth UHealth 2, e25 (2014).
26. Khalil, A. & Abballah, S. Harnessing social dynamics through persuasive technology to promote healthier lifestyle. Comput. Human. Behav. 29, 2674–2681 (2013).
27. Zhu, J., Ebert, L., Xue, Z., Shen, Q. & Chan, S. W. Development of a mobile application of Breast Cancer e-Support program for women with breast cancer undergoing chemotherapy. Technol. Health Care 25, 377–382 (2017).
28. Maher, C. A. et al. Are health behavior change interventions that use online social networks effective? A systematic review. J. Med. Internet Res 16(2), e40, https://doi.org/10.2196/jmir.2952 (2014).
29. Strager, J., Vanden Abeele, M., Mechan, P. & De Marez, L. Understanding persistence in the use of online fitness communities: comparing novice and experienced users. Comput. Human. Behav. 64, 34–42 (2016).
30. Fritz, T., Huang, E. M., Murphy, G. C. & Zimmermann, T. Persuasive technology in the real world: a study of long-term use of activity sensing devices for fitness in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 487–496 (ACM, Toronto, Canada, 2014).
31. Bartlett, Y. K., Webb, T. L. & Hawley, M. S. Using persuasive technology to increase physical activity in people with chronic obstructive pulmonary disease by encouraging regular walking: a mixed-methods study exploring preferences and experiences. J. Med. Internet Res. 19, e124 (2017).
32. Zhu, Y., Dailey, S. L., Kreitzberg, D. & Bernardt, J. “Social Networking”: connecting social features of wearable fitness trackers with physical exercise. J. Health Commun. 22, 974–980 (2017).
33. Maher, C., Ryan, J., Ambrosi, C. & Edney, S. Users’ experiences of wearable activity trackers: a cross-sectional study. BMC Public Health 17, 880 (2017).
34. Michie, S., Abraham, C., Whittington, C., McAteer, J. & Gupta, S. Effective techniques in healthy eating and physical activity interventions: a meta-regression. Health Psychol. 28, 690 (2009).
35. Greaves, C. J. et al. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health 11, 119 (2011).
36. Eysenbach, G. The law of attrition. J. Med. Internet Res 7(1), e11, https://doi.org/10.2196/jmir.7.1.e11 (2005).
37. Althoff, T., Jindal, P. & Leskovec, J. Online actions with offline impact: How online social networks influence online and offline user behavior in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. 537–546 (ACM, Cambridge, UK, 2017).
38. Michie, S. et al. The behaviour change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behaviour change interventions. Ann. Behav. Med. 46, 81–95 (2013).
39. Brueton, V., et al. Strategies to improve retention in randomised trials: a Cochrane systematic review of studies exploring opinions and preferences. J. Med. Internet Res. 19, e194 (2017).
40. Patel, M. S. et al. A randomized trial of social comparison feedback and incentives to increase physical activity in people with chronic obstructive pulmonary disease undergoing chemotherapy. J. Prim. Care Community Health 4, 191–199 (2013).
41. Althoff, T., Jindal, P. & Leskovec, J. Online actions with offline impact: How online social networks influence online and offline user behavior in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. 537–546 (ACM, Cambridge, UK, 2017).
42. Schmidt, F. et al. Loss‐frame financial incentives and personalized goal-setting to increase physical activity among ischemic heart disease patients using wearable devices: the ACTIVE REWARD Randomized Trial. J. Am. Heart Assoc. 7, e009173 (2018).
43. Finkelstein, E. A. et al. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. 4, 983–995 (2016).
44. Patel, M. S. et al. A randomized trial of social comparison feedback and financial incentives to increase physical activity. Am. J. Health Promot. 30, 416–424 (2016).
45. Green, N. J., Meier, S. & Rey-Biel, P. When and why incentives (don’t) work to modify behavior. J. Econ. Perspect. 25, 191–210 (2011).
46. Marteau, T. M., Ashcroft, R. E. & Oliver, A. Using financial incentives to achieve healthy behaviour. BMJ 338, b1415 (2009).
47. Deci, E. L., Koestner, R. & Ryan, R. M. A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychol. Bull. 125, 627 (1999).
48. Fortier, M. S., Sweet, S. N., O’Sullivan, T. L. & Williams, G. C. A self-determination process model of physical activity adoption in the context of a randomized controlled trial. Psychol. Sport. Exerc. 8, 741–757 (2007).
55. Strohacker, K., Galarraga, O. & Williams, D. M. The impact of incentives on exercise behavior: a systematic review of randomized controlled trials. *Ann. Behav. Med.* 48, 92–99 (2013).

56. Collins, L. M., Murphy, S. A. & Strecher, V. The multiphase optimization strategy (MOST) and the sequential multiple assignment randomized trial (SMART): new methods for more potent eHealth interventions. *Am. J. Prev. Med.* 32, S112–S118 (2007).

57. Eysenbach, G. & CONSORT-EHEALTH Group. CONSORT-EHEALTH: improving and standardizing evaluation reports of web-based and mobile health interventions. *J. Med. Internet Res.* 13(4): e126. 10.2196/jmir (2011).

58. Des Jarlais, D. C., Lyles, C., Crepaz, N. & Group, T. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. *Am. J. Public Health* 94, 361–366 (2004).

59. Michie, S. et al. A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: the CALO-RE taxonomy. *Psychol. Health* 26, 1479–1498 (2011).

60. Ioannidis, J. P., Patsopoulos, N. A. & Rothstein, H. R. Research methodology: reasons or excuses for avoiding meta-analysis in forest plots. *BMJ* 336, 1413 (2008).

61. Borenstein, M., Hedges, L. V., Higgins, J. & Rothstein, H. R. *Introduction to Meta-analysis* (Wiley Online Library, 2009).

62. Higgins, J. P., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. *BMJ* 327, 557 (2003).

63. Liberati, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *PloS Med.* 6, e1000100 (2009).