Postponing the dynamical transition density using competing interactions

Patrick Charbonneau1,2 · Joyjit Kundu2

Received: 19 April 2019 / Published online: 11 May 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Systems of dense spheres interacting through very short-ranged attraction are known from theory, simulations and colloidal experiments to exhibit dynamical reentrance. Their liquid state can thus be fluidized at higher densities than possible in systems with pure repulsion or with long-ranged attraction. A recent mean-field, infinite-dimensional calculation predicts that the dynamical arrest of the fluid can be further delayed by adding a longer-ranged repulsive contribution to the short-ranged attraction. We examine this proposal by performing extensive numerical simulations in a three-dimensional system. We first find the short-ranged attraction parameters necessary to achieve the densest liquid state, and then explore the parameter space for an additional longer-ranged repulsion that could further enhance reentrance. In the family of systems studied, no significant (within numerical accuracy) delay of the dynamical arrest is observed beyond what is already achieved by the short-ranged attraction. Possible explanations are discussed.

Keywords Disorder systems · Glass · Dynamical transition · Square-well · Square-shoulder · Dynamical criticality

1 Introduction

Particles with short-ranged attractive and long-ranged repulsive (SALR) interactions can form fairly elaborate structures [1–9]. Despite the spherical symmetry of their pair interaction potential, at low temperatures these models assemble into exotic ordered and disordered mesophases, and their structural richness has clear dynamical consequences, even in the disordered phase at low and intermediate densities [10–12]. A recent theoretical proposal suggests that certain SALR models exhibit unusual dynamical features in the very dense fluid regime as well [13]. Maimbourg et al. [13]’s extension of a high-dimensional treatment of the glass transition [14–16] suggests that certain SALR models should display a very pronounced dynamical reentrance upon changing temperature. More precisely, their theoretical analysis suggests that a carefully chosen high-density SALR system that is glassy at low temperature should, upon heating, first melt and then become dynamically arrested once again, all while remaining completely disordered, i.e., without crystallizing.

On its own, such reentrance is not exceptional. The phase behavior of systems with square-well or with square shoulder interaction were first shown to exhibit multiple dynamically arrested phases leading to high-order singularities. These dynamical anomalies were proposed by mode-coupling theory [17–21], and verified by both experiments [21–26] and numerical simulations [27–34]. Dynamical quantities, such as the density-density correlator, then exhibit a logarithmic decay instead of a typical two-step relaxation, and the mean-squared displacement grows sub-diffusively instead of plateauing at intermediate times. A common physical interpretation of this effect is that introducing short-ranged attraction leads to an interplay between two localization mechanisms: caging from the hard-core repulsion and interparticle bonding. As a result liquids with a higher packing fraction than is possible from either mechanism can be stabilized [35]. The role of an additional longer-ranged repulsion is understood...
to effectively deepen the well created by the short-ranged attraction that leads to a slightly more efficient packing of neighboring spheres in the liquid state [13]. In the mean-field, $d \to \infty$ description, the nonergodicity transition to a glass phase is then pushed to densities about 3% higher [13].

If the scale of this enhancement persists in finite dimensional systems, it should be numerically distinguishable even if this mean-field transition is but a crossover away from the $d \to \infty$ limit [14].

In this article, we attempt to test this prediction in three dimensions via extensive numerical simulations. First, we tune the attraction range of a system of particles interacting via a hard core followed by a short-ranged square-well attraction (SW) to maximize the high-density extension of the liquid phase. We then optimize the interaction parameters of a system with an additional longer-ranged square-shoulder repulsion (SW + SS) in an attempt to push the dynamical arrest to even higher densities. The plan for the rest of this article is as follows. In Sect. 2 we describe the model, the simulation method and the observables of interest. In Sect. 3, we present the simulation results, and we briefly conclude in Sect. 4.

2 Models and simulation method

We study 50–50% binary (A–B) mixtures of $N = 1000$ spherical particles interacting via two potentials: (1) a simple square-well (SW) interaction, and (2) a SALR, square-well plus square-shoulder repulsion (SW + SS) interaction. In the dynamical regime considered the dynamical observables are found to be insensitive to the system size for $N \gtrsim 1000$. The hard core diameter ratio of the two particle types, $\sigma_A/\sigma_B = 1.2$, with an additive hard-core interaction, i.e., $\sigma_{ij} = (\sigma_i + \sigma_j)/2 \forall ij$, is chosen so as to strongly suppress crystallization. The interaction potential can then be generically expressed as

$$
V_{ij} = \begin{cases}
\infty & r_{ij} \leq \sigma_{ij} \\
-U_0 & \sigma_{ij} < r_{ij} < \sigma_{ij} + \Delta_0^0 \\
U_1 & \sigma_{ij} + \Delta_0^0 < r_{ij} < \sigma_{ij} + \Delta_0^0 + x \Delta_1^1 \\
0 & \sigma_{ij} + \Delta_0^0 + x \Delta_1^1 < r_{ij}
\end{cases}
$$

where $\Delta_0^0 = \lambda_0 \sigma_{ij}$ and U_0 are the width and depth, respectively, of the square well, and $\Delta_1^1 = \lambda_1 \sigma_{ij}$ and U_1 are the corresponding parameters for the square shoulder. Model (1) has $x = 0$, while model (2) has $x = 1$, and in both cases temperature, T, is expressed in reduced units of U_0 with Boltzmann constant, k_B, set to unity. Hence, model (1) has a single tuning parameter, λ_0, while model (2) has three: λ_0, λ_1, and U_1. We consider the dynamics of these systems at constant N, volume V and T using a Monte Carlo dynamics that consists of attempting N single-particle translations per unit time that are accepted with the standard Metropolis criterion. These translations are taken along a vector randomly drawn within a three-dimensional cube of side $\delta \epsilon$, chosen such that the relaxation time is minimum at a packing fraction close to the dynamical transition. The results of such Monte Carlo dynamics are known to be similar to those of other local dynamics in the dense fluid regime, of interest in this work [36–38].

Equilibration of the initial system is ensured by running Monte Carlo dynamics for at least ten structural relaxation times, τ_s, defined from the characteristic decay, $Q(\tau_s) \equiv e^{-1}$, of the self-part of the particle-scale overlap function

$$Q(t) = \frac{1}{N} \sum_{i=0}^{N} \Theta(a - |r_i(t) - r_i(0)|),$$

where Θ is a step function and $a = 0.3 \sigma_B$ is a microscopic length chosen to be close to the typical particle cage size. This function therefore represents the fraction of particles having moved a distance smaller than a by time t. In addition, we monitor structural quantities, including the pair correlation function and the structure factor, to ensure that the system has not crystallized or fractionated. As reference, note that the systems closest to the dynamical transition are simulated for about 170 CPU hours on a single CPU core.

The equilibrium $Q(t)$ for the liquid is averaged over the trajectory that begins after equilibration. Typical plots for the relaxation time as a function of the packing fraction are shown in Fig. 1 for different temperatures. At fixed T, $\tau_s(\rho; T)$ is used to estimate the (avoided) dynamical transition density, $\rho_d(T)$, by fitting to the critical scaling form, $\tau_s(\rho; T) = A(\rho_d(T) - \rho)^{-\gamma}$—see Fig. 1. Because of the presence of activated processes in finite dimensions, this power-law scaling persists for at most a couple of decades [14], but this range suffices to estimate ρ_d with ±1% accuracy. The resulting $\rho_d(T)$ provides the dynamical diagram in the $T - \rho$ plane.

3 Results and discussion

We first tune the interaction range of the simple SW system in order to maximize the depth of the fluid pocket. To the best of our knowledge this optimization had not been previously attempted in simulations. Most previous studies only considered models with $\lambda_0 = 0.03$, following the MCT prediction for the existence of an anomalous glassy regime for that interaction range. The dynamical diagrams for different λ_0 around 0.03 are shown in Fig. 2; the dynamical reentrance of the liquid is clearly visible. The maximum accessible liquid density, ρ_d^\ast, is however, not attained with $\lambda_0 = 0.03$, but rather with $\lambda_0^\ast = 0.019(2)$. Although our result
Fig. 1 Relaxation time τ_α as a function of the packing fraction φ at different temperatures for the SW–SS model. Results here are given for a model with $\lambda_0 = 0.019$, $\lambda_1 = 2.5$, $U_1 = 0.10$. Inset: dynamical transition densities, $\varphi_d(T)$, estimated by fitting the structural relaxation times to a power-law $\tau_\alpha(\varphi;T) = A(\varphi_d(T) - \varphi)^{-\lambda}$. Deviations from the power-law as $\varphi \to \varphi_d$ are associated with activated processes. For visual clarity (inset), the vertical scale for $T = 0.800, 0.604, 0.524, 0.440$ and 0.368 has been multiplied by $10^0, 10^1, 10^2, 10^3$, and 10^4, respectively.

Fig. 2 Dynamical diagram, $\varphi(T)$, for spheres interacting via a square-well attraction of different well widths λ_0. Inset: maximum fluid packing fraction, φ^*_d, accessible from the liquid side for different λ_0. The value of φ_d when $\lambda_0 = 0$ is taken from Ref. [39]. Lines are only guides for the eye.

for λ_0^* is in the vicinity of the infinite-dimensional theoretical prediction of $\lambda_0^* = 0.029/d$ which for $d = 3$ gives $\lambda_0^* = 0.010$ [13], it is nonetheless significantly different from it. Because the intricate liquid structure of finite-dimensional systems is neglected in the mean-field study---$g(r)$ is then simply $= \exp(-\beta V_d(r))$---this discrepancy is not particularly surprising. In three-dimensional liquids, the nearest-neighbor shell structure is indeed much more pronounced than the above form suggests (see Fig. 3).

We next explore whether adding a suitably tuned repulsive force to the potential can further delay the dynamical arrest. In this case, three parameters are to be optimized: λ_0, λ_1, and U_1. We expect the three-dimensional parameter space $(\lambda_0, \lambda_1, U_1)$ for the SW + SS system to be simple with a single minimum (corresponding to the densest liquid configuration) connected to the minimum of the SW system ($U_1 = 0, \lambda_1 = 0$) through a path without large barriers. To nonetheless ensure that our optimization does not miss its target, we explore a wide range of parameter values. We search for an optimum over $\lambda_0 \in (0.010, 0.060)$, $\lambda_1 \in (0.5, 5.0)$, and $U_1 \in (0.0, 0.40)$ by gridding the parameter space, and compute φ_d for a few temperatures around the reentrance regime in the dynamical diagram for each grid point to estimate φ^*_d. From this scheme we identified the set of parameters that pushes the dynamical transition furthest as $\lambda_0^* = 0.019(3), U_1^* \leq 0.10$, and $0.8 \leq \lambda_1^* \leq 3.0$. All directions away from this optimum lead to lower or comparable values of φ^*_d. The optimal parameters identified are in qualitative agreement with the theoretical prediction that the repulsion should be much weaker and longer ranged than the attraction and that the attraction range does not markedly broaden in going from a SW to a SW + SS model. In particular, our estimates of λ_0^* and λ_1^* are quite close to the infinite dimensional prediction---$\lambda_0^* = 0.0536/d (= 0.018$ for $d = 3$) and $\lambda_1^* = 2.29/d (= 0.76$ for $d = 3$) [13]. In our case, however, the attraction range barely changes from the SW case.

Fig. 3 Partial pair correlation function $g_{AA}(r)$. The liquid shell structure is much stronger in $d = 3$ than in the mean-field limit. Inset: the evolution of τ_α with φ is quite insensitive to the choice of λ_1. Very small deviations can nonetheless be seen for $\lambda_1 > 2.5$.
while the theoretical calculation predicts that λ_0^* increases from 0.010 to 0.018. Here again, the tightness of the finite-dimensional neighbor shell likely explains the discrepancy.

A more significant difference is that while the dynamics (and thus $\varphi_0(T)$) is somewhat sensitive to the repulsion strength U_1, its dependence on the repulsion range λ_1 is much weaker over the parameter window considered. The dynamics of all models with $\lambda_1 \in [0.5, 2.5]$ indeed roughly coincides (see Fig. 3 inset). Once more, the pronounced shell structure of three-dimensional dense fluid is likely at play. While in the $d \to \infty$ limit self-solvation can be strongly impacted by the interaction potential in the absence of intricate structure, in three dimensions the influence of the hard core-repulsion is felt much more strongly (see Fig. 3). As a result, adding a weak repulsive contribution to the interaction potential has a much weaker structural impact. For a repulsion range that falls within the intershell depletion regime, no notable effect on the dynamics are thus observed.

Given the relative insensitivity of the optimization to λ_1, we can concentrate on the two-dimensional parameter space, $\lambda_0 - U_1$, for identifying φ_0^*. Figure 4 shows the maximum fluid packing fraction φ_0^* in the space of U_0 and λ_1 where $\lambda_1 = 2.5$. Interestingly, the optimization landscape is relatively flat along U_1. The SW optimum is therefore connected by a fairly soft mode to the SW + SS optimum. Along λ_0, by contrast, φ_0^* changes much more rapidly. This landscape projection is therefore consistent with the above discussion.

The resulting dynamical diagrams for the SW and the SW + SS optima are compared in Fig. 5. The results show that the corresponding $\varphi_0(T)$ values are not significantly different (within numerical uncertainty) from one another. If any enhancement of the reentrance pocket is present, it is therefore much smaller than the 3% predicted by the $d = \infty$ calculation.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{Maximal fluid packing fraction φ_0^* for the SW + SS system in the parameter space of U_1 and λ_0 for $\lambda_1 = 2.5$. The line $U_1 = 0$ corresponds to the SW system. This plot reveals that longer-ranged repulsion does not significantly push φ_0^* to higher densities in three dimensions, but nonetheless gives rise to a parameter pocket of enhanced reentrance around $\lambda_0 = 0.019(2)$, away from the $U_1 = 0$ axis.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5.png}
\caption{Dynamical diagram for the SW system with $\lambda_0 = 0.019$ and the SW + SS system with optimized parameters ($\lambda_0 = 0.019$, $\lambda_1 = 2.5$, $U_1 = 0.10$). Adding longer-ranged repulsion does not significantly push φ_0^* to higher densities in these models.}
\end{figure}

\section{4 Conclusion}

Motivated by a recent mean-field, ($d \to \infty$) prediction that the dynamically sluggish fluid regime for models with SALR interactions can be pushed to higher densities than for models with purely short-ranged attraction, we have performed extensive Monte Carlo simulations of a family of SW and SW + SS models. We first identified that SW models with an attraction range of about 1.9% exhibit a maximally extended reentrance pocket. Interestingly, this optimum may be verified experimentally using, for instance, PMMA particles with short-range attraction induced by a polymer coating of polystyrene whose size and concentration controls the range and depth of the interaction [35]. However, our exploration of parameters for the SW + SS model did not identify (within numerical uncertainty) any SALR model that pushes the dynamical transition significantly beyond the densest fluid achievable by short-ranged attraction alone. We did, however, identify a branch of parameters over which the optimum extends. This nontrivial feature could be a finite dimensional echo of the $d \to \infty$ prediction. The theoretical prediction that further tuning the interaction potential could engender additional (smaller) gains in φ_0^* [13] is however, unlikely to have any detectable impact on three-dimensional systems.

Data associated with this work are available from the Duke Digital Repository at https://doi.org/10.7924/r4xd0wb95.

\textbf{Acknowledgements} This paper is dedicated to the late Bob Behringer, who has always been warm, wise and supportive to this junior colleague (PC). He will be sorely missed. We acknowledge funding from the Simons Foundation (Grant # 454937 to PC) and computer time of...
Duke Compute Cluster (DCC) and Extreme Science and Engineering Discovery Environment (XSEDE), supported by National Science Foundation Grant No. ACI-1548562.

Compliance with ethical standards

Conflict of interest We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

1. Stradner, A., Sedgwick, H., Cardinaux, F., Poon, W.C.K., Egelhaaf, S.U., Schurtenberger, P.: Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432, 492 (2004)

2. Mani, E., Lechner, W., Kegeld, W.K., Bolhuis, P.G.: Equilibrium and non-equilibrium cluster phases in colloids with competing interactions. Soft Matter 10, 4479 (2014)

3. Zhuang, Y., Charbonneau, P.: Equilibrium phase behavior of the square-well linear microphase-forming model. J. Phys. Chem. B 120, 6178 (2016)

4. Ciach, A., Pekalski, J., Gozdz, W.T.: Origin of similarity of phase diagrams in amphiphilic and colloidal systems with competing interactions. Soft Matter 9, 6301 (2013)

5. Lindquist, B.A., Jadrich, R.B., Milliron, D.J., Truskett, T.M.: On the formation of equilibrium gels via a macroscopic bond limitation. J. Chem. Phys. 145, 074906 (2016)

6. Bollinger, J.A., Truskett, T.M.: Fluids with competing interactions. I. Decoding the structure factor to detect and characterize self-limited clustering. J. Chem. Phys. 145, 064902 (2016)

7. Bollinger, J.A., Truskett, T.M.: Fluids with competing interactions. II. Validating a free energy model for equilibrium cluster size. J. Chem. Phys. 145, 064903 (2016)

8. Jadrich, R.B., Lindquist, B.A., Truskett, T.M.: Probabilistic inverse design for self-assembling materials. J. Chem. Phys. 146, 184103 (2017)

9. Cao, C., Huang, X., Roth, C.B., Weeks, E.R.: Aging near rough and smooth boundaries in colloidal glasses. J. Chem. Phys. 147(22), 224505 (2017)

10. Zhuang, Y., Charbonneau, P.: Microphase equilibrium and assembly dynamics. J. Chem. Phys. 147, 091102 (2017)

11. Coniglio, A., Arcangelis, L.D., Gado, E.D., Fierro, A., Sator, N.: Percolation, gelation and dynamical behaviour in colloids. J. Phys.: Condens. Matter 16, S4831 (2004)

12. Abete, T., de Candia, A., Gado, E.D., Fierro, A., Coniglio, A.: Static and dynamic heterogeneities in a model for irreversible gelation. Phys. Rev. Lett. 98, 088301 (2007)

13. Mainbourg, T., Sellitto, M., Semerjian, G., Zamponi, F.: Generating dense packings of hard spheres by soft interaction design. SciPost Phys. 4, 039 (2018)

14. Charbonneau, P., Kurchan, J., Parisi, G., Urban, P., Zamponi, F.: Glass and jamming transitions: from exact results to finite-dimensional descriptions. Annu. Rev. Condens. Matter Phys. 8, 265 (2017)

15. Sellitto, M., Zamponi, F.: Packing hard spheres with short-range attraction in infinite dimension: phase structure and algorithmic implications. J. Phys.: Conf. Ser. 473, 012020 (2013)

16. Sellitto, M., Zamponi, F.: A thermodynamic description of colloidal glasses. Eur. Phys. Lett. 103, 46005 (2013)

17. Fabbian, L., Götte, W., Sciortino, F., Tartaglia, P., Thiery, F.: Ideal glass–glass transitions and logarithmic decay of correlations in a simple system. Phys. Rev. E 59, R1347 (1999)

18. Bergenholtz, J., Fuchs, M.: Nonequidocility transitions in colloidal suspensions with attractive interactions. Phys. Rev. E 59, 5706 (1999)

19. Dawson, K., Foffi, G., Fuchs, M., Götte, W., Sciortino, F., Sperl, M., Tartaglia, P., Voigtman, T., Zaccarelli, E.: Higher-order glass-transition singularities in colloidal systems with attractive interactions. Phys. Rev. E 63, 011401 (2000)

20. Götte, W., Sperl, M.: Logarithmic relaxation in glass-forming systems. Phys. Rev. E 66, 011405 (2002)

21. Cha, X., Lagi, M., Mamontov, E., Fratini, E., Baglioni, P., Chen, S.-H.: Experimental evidence of logarithmic relaxation in single-particle dynamics of hydrated protein molecules. Soft Matter 6, 2623 (2010)

22. Pham, K.N., Puertas, A.M., Bergenholtz, J., Egelhaaf, S.U., Moussaïd, A., Pusey, P.N., Schofield, A.B., Cates, M.E., Fuchs, M., Poon, W.C.K.: Multiple glassy states in a simple model system. Science 296, 104 (2002)

23. Chen, S.-H., Chen, W.-R., Mallamace, F.: The glass-to-glass transition and its end point in a copolymer micellar system. Science 300, 619 (2003)

24. Eckert, T., Bartsch, E.: Re-entrant glass transition in a colloid–polymer mixture with depletion attractions. Phys. Rev. Lett. 89, 125701 (2002)

25. Mallamace, F., Gambaduro, P., Micala, N., Tartaglia, P., Liao, C., Chen, S.-H.: Kinetic glass transition in a micellar system with short-range attractive interaction. Phys. Rev. Lett. 84, 5431 (2000)

26. Lu, X., Mochrie, S.G.J., Narayanan, S., Sandy, A.R., Sprung, M.: How a liquid becomes a glass both on cooling and on heating. Phys. Rev. Lett. 100, 045701 (2008)

27. Gnan, N., Das, G., Sperl, M., Sciortino, F., Zaccarelli, E.: Multiple glass singularities and isodynamics in a core-softerned model for glass-forming systems. Phys. Rev. Lett. 113, 258302 (2014)

28. Sciortino, F., Tartaglia, P., Zaccarelli, E.: Evidence of a higher-order singularity in dense short-ranged attractive colloids. Phys. Rev. Lett. 91, 268301 (2003)

29. Zaccarelli, E., Foffi, G., Dawson, K.A., Buldyrev, S.V., Sciortino, F., Tartaglia, P.: Confirmation of anomalous dynamical arrest in attractive colloids: a molecular dynamics study. Phys. Rev. E 66, 041402 (2002)

30. Moreno, A.J., Colmenero, J.: Is there a higher-order mode coupling transition in polymer blends? J. Chem. Phys. 124, 184906 (2006)

31. Moreno, A.J., Colmenero, J.: Tests of mode coupling theory in a simple model for two-component miscible polymer blends. J. Phys.: Condens. Matter 19, 466112 (2007)

32. Foffi, G., Dawson, K.A., Buldyrev, S.V., Sciortino, F., Tartaglia, P.: Evidence for an unusual dynamical-arrest scenario in short-ranged colloidal systems. Phys. Rev. E 65, 050802(R) (2002)

33. Puertas, A.M., Fuchs, M., Cates, M.E.: Comparative simulation study of colloidal gels and glasses. Phys. Rev. Lett. 88, 098301 (2002)

34. Sciortino, F., Reichman, D.R.: Dynamical heterogeneity and nonlinear susceptibility in supercooled liquids with short-range attraction. Phys. Rev. Lett. 99, 135701 (2007)

35. Sciortino, F.: Disordered materials—one liquid, two glasses. Nat. Mater. 1(3), 145–146 (2002)

36. Berthier, L.: Revisiting the slow dynamics of a silica melt using monte carlo simulations. Phys. Rev. E 76, 011507 (2007)

37. Berthier, L., Kob, W.: The Monte Carlo dynamics of a binary lennardjones glass-forming mixture. J. Phys.: Condens. Matter 19, 205130 (2007)
38. Rutkai, G., Kristóf, T.: Dynamic Monte Carlo simulation in mixtures. J. Chem. Phys. 132, 104107 (2010)
39. Foffi, G., Gotze, W., Sciortino, F., Tartaglia, P., Voigtmann, T.: α-Relaxation processes in binary hard-sphere mixtures. Phys. Rev. E 69, 011505 (2004)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.