Comprehensive Analysis of LncRNAs Role in Tumorigenesis of Colon Adenocarcinoma

CURRENT STATUS: POSTED

Arash Poursheikhani
Mashhad University of Medical Sciences

Mohammad Reza Abbaszadegan
Mashhad University of Medical Sciences

Negin Nokhandani
Golestan University of Medical Sciences and Health Services

Mohammad Amin Kerachian
Mashhad University of Medical Sciences

Corresponding Author
amin.kerachian@mail.mcgill.ca
ORCiD: https://orcid.org/0000-0001-5016-2882

DOI:
10.21203/rs.2.20479/v1

SUBJECT AREAS
Epigenetics & Genomics

KEYWORDS
Colorectal cancer, Tumorigenesis, Long non-coding RNAs, MicroRNA
Abstract
Background Colon adenocarcinoma (COAD) is one of the most common gastrointestinal cancers globally. Molecular aberrations of tumor suppressors and/or oncogenes are the main contributors to its tumorigenesis. However, the exact underlying mechanisms of COAD pathogenesis are not clear yet. Thus, there is an urgent need to indicate promising potential diagnostic and prognostic biomarkers in COAD patients. In the current study, level 3 RNA-seq and miR-seq data and corresponding clinical data of colon adenocarcinoma (COAD) were retrieved from the TCGA database. The “limma” package in R software was utilized to indicate the differentially expressed genes. For in silico functional analysis, GO and KEGG signaling pathways were conducted. PPI network was constructed based on the STRING online database by Cytoscape 3.7.2. A ceRNA network was also constructed by “GDCRNATools” package in R software. Kaplan-Meier survival analysis (log-rank test) was used to indicate the relation between RNA expressions with patient’s survival time.

Results The differential expression data demonstrated that 1512 mRNAs, 188 IncRNAs, and 329 miRNAs were differentially expressed in COAD. The GO and KEGG pathway analysis indicated that the differentially expressed mRNAs were primarily enriched in canonical processes in cancer. The PPI network showed that the PPARGC1A, ADAMTS5, PTGS2, FGFR2, TBX1, TWIST1, KIT, BDNF and MET proteins were the critical hubs. The Kaplan-Meier analysis revealed that 128 mRNAs, 15 IncRNAs, and 39 miRNAs were associated with overall survival time in the patients. The ceRNA network data demonstrated that three IncRNA including MAGI2-AS3, NEAT1, and SNHG3 genes were involved in the development of COAD.

Conclusions Altogether, we integrated differentially expressed mRNAs, IncRNAs, and miRNAs in COAD bioinformatically. Our data suggested promising IncRNAs in the diagnosis and prognosis of patients with COAD.

Introduction
Colon adenocarcinoma (COAD) is one of the most common gastrointestinal (GI) cancers and is the second leading cause of cancer related death globally [1, 2]. It is demonstrated that COAD occurs in approximately 5% of overall population at any given time in the world [3]. Despite current screenings
and therapies such as endoscopic resection and radical surgery, near half of the patients are diagnosed as advanced cases of COAD, experiencing tumor recurrence and relapse [4]. The tumorigenesis of this cancer is a complicated multi-step process composed of epithelial cell proliferation, differentiation, apoptosis, survival, and invasion mechanisms [4]. Molecular aberrations of tumor suppressors and/or oncogenes are one of the main contributors in tumorigenesis [5]. However, the exact underlying pathogenesis of COAD are not clear yet. Thus, there is an urgent need to indicate promising diagnostic and prognostic biomarkers for COAD. Recent investigations have highlighted the role of non-coding RNAs in tumorigenesis in a variety of malignancies. Among different kinds of non-coding RNAs, long non-coding RNA (lncRNA) is a putative class of non-coding RNA with more than 200 nucleotides in length, without any open-reading-frame (ORF) to encode proteins [5]. A large body of evidence indicated that lncRNAs plays critical roles in a variety of biological processes including cell proliferation, cellular development and differentiation, carcinogenesis, and metastasis through modulating gene expression at chromatin remodeling, transcriptional and posttranscriptional levels [6, 7]. Aberrant expression of lncRNAs has been well-documented in different sorts of cancers [8]. Dysregulation of lncRNA HOTAIR, H19, MALAT1, SNHG7, GAS8-AS, and NEAT1 were extensively well-studied and have been demonstrated to contribute in tumorigenesis and poor prognosis [5, 8–12]. A mounting of investigations have shown that lncRNAs exert their function through competing for endogenous RNA (ceRNA) crosstalk [13]. For instance, it has been shown that lncRNA SCARNA2 was overexpressed in COAD tissues and it remarkably correlated to chemoresistance via targeting miR-342-3p to upregulate EGFR and BCL2 in COAD cells [13]. Furthermore, overexpression of lncRNA SNHG1 has been shown to modify epithelial-mesenchymal transition (EMT) by binding to miR-497/miR-195-5p in COAD cells [14]. Moreover, lncRNA BDNF-AS was downregulated in COAD patients and served as a tumor suppressor gene. Besides, ectopic expression of BDNF-AS suppressed the cell proliferation and migration via epigenetically downregulating GSK-3β expression through EZH2 [15]. Based on these and similar studies, many researchers have suggested the potency of lncRNAs as biomarkers in blood and serum. LncRNAs have been discovered in microvesicles and exosomes which have been protected and
stabilized in circulation [16]. In the current study, we comprehensively investigate lncRNAs, miRNAs, and mRNAs expressions from public database the Cancer Genome Atlas (TCGA) and we constructed a ceRNA network in COAD. Besides, we proposed novel potential biomarkers for COAD.

Materials And Methods

Sample and data collection

Clinical data of COAD were retrieved from the TCGA database (https://portal.gdc.cancer.gov/repository). The inclusion criteria were: (1) the histopathological diagnosis was COAD; (2) having complete demographic data including age, vital status, race, ethnicity, pathological stage, TNM classification, and overall survival time. Totally, 459 COAD were enrolled in this study. Two hundred and thirty participants had age > 68 years and 229 patients had age ≤ 68 and 243 and 216 patients were male and female, respectively. Among 459 patients, only 4 patients were Hispanic or Latino and 271 were not Hispanic or Latino. Two hundred and fourteen patients were white, 29 patients were Black or African American, 11 were Asian and 1 American Indian/Alaska Native. Pathological stages of I, II, III, and IV were 76, 178, 129 and 65 respectively. The clinical characteristics are summarized in table 1.

RNA-seq and miR-seq data analysis

RNA-seq and miR-seq Level 3 data were collected from the TCGA database. The raw count of reads of RNA-seq and miR-seq data were normalized by Voom and TMM normalization methods. All the analyses were conducted in R software. The “limma” package in R software was utilized to indicate the differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between normal solid tissues and primary tumors. The concluded data were filtered based on the $|\log_2 \text{fold change (FC)}| > 1$ for DEmRNA, DElncRNA, and DEmiRNA. P-value <0.05 and false discovery rate (FDR) <0.05 were considered as significant thresholds.

Functional enrichment analysis and protein-protein interaction (PPI) network

For in silico functional enrichment analysis, gene ontology (GO) in three domains including biological
processes, cellular components, and molecular functions, besides to Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways were conducted. The GO and KEGG outputs were visualized by R software (ggplot2 package). The PPI network was constructed based on the STRING online database by Cytoscape 3.7.2. Molecular Complex Detection (MCODE) was used to analyze and predict the interactions (score value >0.4).

LncRNA-miRNA-mRNA ceRNA network construction

LncRNA-miRNA-mRNA ceRNA network was constructed by “GDCRNATools” (http://bioconductor.org/packages/devel/bioc/html/GDCRNATools.html) package in R software based on starbase database [13]. The nodes and edges were virtualized by Cytoscape 3.7.2.

Statistical Analysis

All the differentially expressed data were analyzed by using R software (3.5.2) through the “GDCRNATools” package. Kaplan-Meier survival analysis (log-rank test) was used to indicate the relation between over or downregulation of RNA, based on median expression with patient’s survival time. P-value <0.05 was considered as a significant threshold.

Results

Differentially Expressed Genes

Our data demonstrated that 1512 mRNAs (433 up-regulated and 1079 down-regulated) were differentially expressed in COAD. Moreover, 188 IncRNAs (139 up-regulated and 49 down-regulated) were identified that were deferentially expressed in patients. Three hundred and twenty nine miRNAs (169 up-regulated and 160 down-regulated) have been found that were differentially expressed in the COAD samples. The data are presented in Figures 1 and 2 as well as Tables 2 and 3.

GO enrichment and KEGG pathway analysis

GO enrichment analysis demonstrated that the differentially expressed mRNAs were almost enriched
in biological processes such as neurogenesis, neuron differentiation, locomotion, biological adhesion and regulation of cell population proliferation. Furthermore, GO analysis in cellular component revealed that the differentially expressed mRNAs predominantly contributed to intrinsic component of plasma membrane, plasma membrane region, extracellular matrix, neuron part, and cell junction. GO molecular function domain indicated that the genes were mostly enriched in calcium ion binding, signaling receptor binding, molecular function regulator, protein dimerization activity, and identical protein binding. GO outputs are presented in Figure 3. In addition, KEGG pathway analysis showed that the differentially expressed genes in the COAD patients were remarkably participated in pathways in cancer, ECM receptor interaction, cell adhesion molecules (CAMs), calcium signaling pathway, WNT signaling pathway, and PPAR signaling pathway (Figure 4).

PPI network construction

The PPI network was constructed based on the STRING database to better understand the roles of the differentially expressed mRNAs. The data demonstrated that PPARGC1A, ADAMTS5, PTGS2, FGFR2, TBX1, TWIST1, KIT, BDNF and MET were the protein-protein interaction (PPI) critical hubs (Figure 5).

Kaplan-Meier survival analysis of differentially expressed genes

Kaplan-Meier survival analysis was used to indicate the association of differentially expressed mRNAs, lncRNAs, miRNA, and prognosis of COAD patients. The data showed that 128 mRNAs, 15 lncRNAs, and 39 miRNAs were associated with overall survival time in the patients. Top 10 the each group are presented in Table 4.

LncRNA-miRNA-mRNA ceRNA network construction

According to competing endogenous RNA (ceRNA) hypothesis, which implicates that lncRNAs regulate mRNA expression level by binding and controlling miRNAs in cells, a ceRNA network was built based on lncRNAs, mRNAs, and miRNAs expression in the samples based on starbase online tool in R software. The nodes and edges were drawn by Cytoscape 3.7.2. The ceRNA network data
demonstrated three important IncRNAs including MAGI2-AS3, NEAT1, and SNHG3 which have implied in development of COAD (Figure 6).

Discussion

LncRNAs regulate critical and canonical biological functions in different types of normal human cells and in a variety of tumor cells [17]. An escalating number of investigations reported IncRNAs function such as tumor proliferation, cell invasion and migration, chemotherapy resistance, and stemness capability in tumorigenesis and progression of COAD [18–20]. However, the exact underlying mechanisms of IncRNAs function in the progression of COAD are still unclear. Several different regulatory roles for IncRNAs have been proposed in biological processes. Some previous studies have demonstrated that IncRNAs regulate mRNA expression via binding and sponging miRNA in cells known as competing endogenous RNA (ceRNA) hypothesis that generate a new aspect in the IncRNA regulatory mechanism [21, 22]. To the best of our knowledge, only a few investigations have indicated ceRNA networks between IncRNAs and miRNAs in COAD so far. Thus, a clear image of IncRNAs-miRNAs links still remains uncharacterized. In this study, we studied the differentially expressed genes including IncRNAs, miRNAs, and mRNAs in the COAD patients based on TCGA database. Gene set enrichment by GO and KEGG signaling pathway mainly illustrated that the differentially expressed genes were significantly enriched in cell proliferation, differentiation, protein phosphorylation, and signaling pathways. Furthermore, KEGG signaling pathway analysis demonstrated several canonical signaling pathways including Wnt signaling pathways and PPAR signaling which have been shown to contribute in tumor progression [23, 24]. A mounting of evidence has emphasized on Wnt/ β-catenin signaling pathway that marvels actions in tumor growth, invasion and metastasis, and chemoresistance in COAD [25, 26]. For instance, it has been demonstrated that IncRNA H19 overexpression evoked Epithelial-Mesenchymal Transition (EMT) of colorectal cancer (CRC) cells by sponging miR-29b-3p in order to directly upregulate PGRN and activate Wnt axis [27]. Moreover, the up-regulation of IncRNA colorectal cancer-associated IncRNA (CCAL) promotes CRC progression through suppressing the activator protein 2α (AP-2α) to ignite Wnt/β-catenin signaling pathway in the cells [28]. In the present study, the KEGG analysis indicated peroxisome proliferator-
activated receptor (PPAR) pathway contribute with Wnt signaling. It has been discovered that the PPAR signaling pathway reduces cell proliferation and inhibits tumorigenesis in different types of cancer. Down-regulation of PPAR-α has been correlated to poor clinicopathological features of CRC that was remarkably higher in well to moderately differentiated adenocarcinoma than in mucinous adenocarcinoma [29]. In addition, IncRNA TINCR modulate PPAR signaling pathway through binding to miR-107 to up-regulate CD36 in CRC [30]. In a recent review article, the PPAR aberration expression and its important roles in gastrointestinal tract has been extensively reviewed [31]. Our ceRNA network data demonstrated three important IncRNA including MAGI2-AS3, NEAT1, and SNHG3 which have implied in the development of COAD. LncRNA MAGI2-AS3 have been discovered to play a crucial role as a tumor suppressor in breast cancer by targeting Fas/FasL in the tumor cells [32]. Moreover, MAGI2-AS3 hampers hepatocellular carcinoma cell growth and its invasion through sponging miR-374b-5p to up-regulate SMG1 axis [33]. On the other hand, overexpression of MAGI2-AS3 has been explained to straighten tumor progression by absorbing miR-141/200a and consequently, up-regulate ZEB1 in the gastric cancer cells [34]. In addition, MAGI2-AS3 up-regulation has been shown to exacerbated CRC proliferation and migration by modulating miR-3163 through upregulating TMEM106B [35]. LncRNA NEAT1 is a prominent IncRNA that has been described in a variety of cancers [36]. NEAT1 expression is associated with unfavorable overall survival and tumor recurrence in patients with COAD [37]. Besides, NEAT1 can activate Wnt/ β-catenin signaling pathway by decreasing miRNA-34a expression to upregulate SIRT1 axis in COAD [38]. Moreover, NEAT1 promote cell growth and cell migration via upregulating glial cell-derived neurotrophic factor (GDNF) through binding to miR-196a-5p in COAD [39]. IncRNA SNHG3 has been demonstrated to promote tumor progression and invasion and it have been associated with poor prognosis in a wide range of cancers [40–42]. A previous study showed that SNHG3 was remarkably upregulated in COAD cells. SNHG3 can promote tumorigenesis of COAD via sponging miR-182-5p to upregulate c-Myc in tumor cells [43]. According to the aforementioned data, the proposed IncRNAs can be considered as potential promising biomarkers that dive tumorigenesis through hijacking canonical signaling pathways in COAD.
Conclusions

Altogether, in our study, we demonstrated the differentially expressed mRNAs, lncRNAs, and miRNAs in COAD. GO and KEGG pathway analysis demonstrated canonical biological processes and signaling pathways, which have been well described previously in tumorogenesis. Moreover, our Kaplan-Meier analysis results suggested several prominent prognostic differentially expressed genes associated with poor overall survival in the patients. Last but not least, our ceRNA network presented important lncRNAs-miRNAs-mRNAs links between the differentially expressed genes. The data provided might pave the way for further investigation and clinical application in COPD patients.

Declarations

Acknowledgments

This study was part of a Ph.D. dissertation (AP).

Author’s contributions

AP, MRA, NN and MAK were all participated in study design, data analysis, and preparation of the drafted manuscript. All authors read and approved the final manuscript.

Funding

This study was supported financially by Mashhad University of Medical Sciences.

Availability of data and materials

The authors declare that the datasets on which the conclusions of this manuscript rely are deposited in publicly available repositories.

Ethics approval and consent to participate

The authors declare that there is no conflict of interest.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References

1. Luo K, Geng J, Zhang Q, Xu Y, Zhou X, Huang Z, et al. LncRNA CASC9 interacts with CPSF3 to regulate TGF-β signaling in colorectal cancer. Journal of Experimental & Clinical Cancer Research. 2019;38(1):249.

2. Kerachian MA, Poudineh A, Thiery JP. Cell Free Circulating Tumor Nucleic Acids, a Revolution in Personalized Cancer Medicine. Critical reviews in oncology/hematology. 2019:102827.

3. Soltani G, Poursheikhani A, Yassi M, Hayatbakhsh A, Kerachian M, Kerachian MA. Obesity, diabetes and the risk of colorectal adenoma and cancer. BMC endocrine disorders. 2019;19(1):113.

4. Yu HM, Wang C, Yuan Z, Chen GL, Ye T, Yang BW. LncRNA NEAT1 promotes the tumorigenesis of colorectal cancer by sponging miR-193a-3p. Cell proliferation. 2019;52(1):e12526.

5. Zhao Y, Chu Y, Sun J, Song R, Li Y, Xu F. LncRNA GAS8-AS inhibits colorectal cancer (CRC) cell proliferation by downregulating LncRNA AFAP1-AS1. Gene. 2019;710:140-4.

6. Bian Z, Jin L, Zhang J, Yin Y, Quan C, Hu Y, et al. LncRNA—UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Scientific reports. 2016;6:23892.

7. Xu M, Chen X, Lin K, Zeng K, Liu X, Xu X, et al. LncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. Journal of
hematology & oncology. 2019;12(1):3.

8. Zhang PF, Wu J, Wu Y, Huang W, Liu M, Dong ZR, et al. The IncRNA SCARNA2 mediates colorectal cancer chemoresistance through a conserved microRNA-342-3p target sequence. Journal of cellular physiology. 2019;234(7):10157-65.

9. Li C-f, Li Y-c, Wang Y, Sun L-b. The effect of LncRNA H19/miR-194-5p axis on the epithelial-mesenchymal transition of colorectal adenocarcinoma. Cellular Physiology and Biochemistry. 2018;50(1):196-213.

10. Xue D, Lu H, Xu HY, Zhou CX, He XZ. Long noncoding RNA MALAT 1 enhances the docetaxel resistance of prostate cancer cells via miR-145-5p-mediated regulation of AKAP 12. Journal of cellular and molecular medicine. 2018;22(6):3223-37.

11. Shan Y, Ma J, Pan Y, Hu J, Liu B, Jia L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell death & disease. 2018;9(7):722.

12. Zhang M, Weng W, Zhang Q, Wu Y, Ni S, Tan C, et al. The IncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. Journal of hematology & oncology. 2018;11(1):113.

13. Zhu Y, Bian Y, Zhang Q, Hu J, Li L, Yang M, et al. Construction and analysis of dysregulated IncRNA-associated ceRNA network in colorectal cancer. Journal of cellular biochemistry. 2019;120(6):9250-63.

14. Bai J, Xu J, Zhao J, Zhang R. IncRNA SNHG1 cooperated with miR-497/miR-195-5p to modify epithelial-mesenchymal transition underlying colorectal cancer exacerbation. Journal of cellular physiology. 2019.

15. Zhi H, Lian J. LncRNA BDNF-AS suppresses colorectal cancer cell proliferation and migration by epigenetically repressing GSK-3β expression. Cell biochemistry and function. 2019.
16. Xu W, Zhou G, Wang H, Liu Y, Chen B, Chen W, et al. Circulating IncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. International journal of cancer. 2019.

17. Chen X, Zeng K, Xu M, Hu X, Liu X, Xu T, et al. SP1-induced IncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell death & disease. 2018;9(10):982.

18. Xiao Z, Qu Z, Chen Z, Fang Z, Zhou K, Huang Z, et al. LncRNA HOTAIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via MiR-203a-3p-mediated Wnt/ss-catenin signaling pathway. Cellular Physiology and Biochemistry. 2018;46(3):1275-85.

19. Sun J, Hu J, Wang G, Yang Z, Zhao C, Zhang X, et al. LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. Journal of Experimental & Clinical Cancer Research. 2018;37(1):106.

20. Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal IncRNA H19. Theranostics. 2018;8(14):3932.

21. Jia Z, Peng J, Yang Z, Chen J, Liu L, Luo D, et al. Long non-coding RNA TP73-AS1 promotes colorectal cancer proliferation by acting as a ceRNA for miR-103 to regulate PTEN expression. Gene. 2019;685:222-9.

22. Ma S, Yang D, Liu Y, Wang Y, Lin T, Li Y, et al. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging (Albany NY). 2018;10(8):2062.

23. Ouyang S, Zheng X, Zhou X, Chen Z, Yang X, Xie M. LncRNA BCAR4 promotes colon cancer progression via activating Wnt/β-catenin signaling. Oncotarget.
24. Tong JL, Zhang CP, Nie F, Xu XT, Zhu MM, Xiao SD, et al. MicroRNA 506 regulates expression of PPAR alpha in hydroxycamptothecin-resistant human colon cancer cells. FEBS letters. 2011;585(22):3560-8.

25. Zhang Z, Zhou C, Chang Y, Zhang Z, Hu Y, Zhang F, et al. Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer letters. 2016;376(1):62-73.

26. Han P, Li J-w, Zhang B-m, Lv J-c, Li Y-m, Gu X-y, et al. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Molecular cancer. 2017;16(1):9.

27. Ding D, Li C, Zhao T, Li D, Yang L, Zhang B. LncRNA H19/miR-29b-3p/PGRN axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on Wnt signaling. Molecules and cells. 2018;41(5):423.

28. Ma Y, Yang Y, Wang F, Moyer M-P, Wei Q, Zhang P, et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut. 2016;65(9):1494-504.

29. Morinishi T, Tokuhara Y, Ohsaki H, Ibuki E, Kadota K, Hirakawa E. Activation and Expression of Peroxisome Proliferator-Activated Receptor Alpha Are Associated with Tumorigenesis in Colorectal Carcinoma. PPAR research. 2019;2019.

30. Zhang X, Yao J, Shi H, Gao B, Zhang L. LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. Biological chemistry. 2019;400(5):663-75.

31. Fucci A, Colangelo T, Votino C, Pancione M, Sabatino L, Colantuoni V. The role of peroxisome proliferator-activated receptors in the esophageal, gastric, and colorectal cancer. PPAR research. 2012;2012.
32. Yang Y, Yang H, Xu M, Zhang H, Sun M, Mu P, et al. Long non-coding RNA (lncRNA) MAGI2-AS3 inhibits breast cancer cell growth by targeting the Fas/FasL signalling pathway. Human cell. 2018;31(3):232-41.

33. Yin Z, Ma T, Yan J, Shi N, Zhang C, Lu X, et al. LncRNA MAGI2-AS3 inhibits hepatocellular carcinoma cell proliferation and migration by targeting the miR-374b-5p/SMG1 signaling pathway. Journal of cellular physiology. 2019.

34. Li D, Wang J, Zhang M, Hu X, She J, Qiu X, et al. LncRNA MAGI2-AS3, regulated by BRD4, is an independent prognostic marker and promotes gastric cancer progression via maintaining ZEB1 overexpression. Molecular Therapy-Nucleic Acids. 2019.

35. Ren H, Li Z, Tang Z, Li J, Lang X. Long noncoding MAGI2-AS3 promotes colorectal cancer progression through regulating miR-3163/TMEM106B axis. Journal of cellular physiology. 2019.

36. Peng W, Wang Z, Fan H. LncRNA NEAT1 impacts cell proliferation and apoptosis of colorectal cancer via regulation of Akt signaling. Pathology & Oncology Research. 2017;23(3):651-6.

37. Li Y, Li Y, Chen W, He F, Tan Z, Zheng J, et al. NEAT expression is associated with tumor recurrence and unfavorable prognosis in colorectal cancer. Oncotarget. 2015;6(29):27641.

38. Luo Y, Chen J-J, Lv Q, Qin J, Huang Y-Z, Yu M-H, et al. Long non-coding RNA NEAT1 promotes colorectal cancer progression by competitively binding miR-34a with SIRT1 and enhancing the Wnt/β-catenin signaling pathway. Cancer letters. 2019;440:11-22.

39. Zhong F, Zhang W, Cao Y, Wen Q, Cao Y, Lou B, et al. LncRNA NEAT1 promotes colorectal cancer cell proliferation and migration via regulating glial cell-derived neurotrophic factor by sponging miR-196a-5p. Acta biochimica et biophysica Sinica. 2018;50(12):1190-9.
40. Ma Q, Qi X, Lin X, Li L, Chen L, Hu W. LncRNA SNHG3 promotes cell proliferation and invasion through the miR-384/hepatoma-derived growth factor axis in breast cancer. Human cell. 2019:1-11.

41. Xuan Y, Wang Y. Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell death & disease. 2019;10(10):1-12.

42. Hong L, Chen W, Wu D, Wang Y. Upregulation of SNHG3 expression associated with poor prognosis and enhances malignant progression of ovarian cancer. Cancer Biomarkers. 2018;22(3):367-74.

43. Huang W, Tian Y, Dong S, Cha Y, Li J, Guo X, et al. The long non-coding RNA SNHG3 functions as a competing endogenous RNA to promote malignant development of colorectal cancer. Oncology reports. 2017;38(3):1402-10.

Tables
Table 1. Clinicopathological characteristics of COAD patients.
Characteristics	N	%
Age (year) (mean ± SD)	66.92 (13)	
Age > 68	230	50.1
Age ≤ 68	229	49.9
Sex		
Male	243	52.9
Female	216	47.1
Ethnicity		
Hispanic or Latino	4	0.9
Not Hispanic or Latino	271	59
NA	184	40.1
Race		
American Indian or Alaska Native	1	0.2
Asian	11	2.4
Black or African American	59	12.9
White	214	46.6
NA	174	37.9
Vital status		
Alive	357	77.8
Dead	102	22.2
Pathologic (stage)		
Stage I	76	16.5
Stage II	178	38.7
Stage III	129	28.1
Stage IV	65	14.1
Pathologic (T)		
T1	11	2.4
T2	78	17
T3	313	68.2
T4	56	12.2
Tis	1	0.2
Pathologic (M)		
M0	337	73.4
M1	65	14.2
MX	50	10.9
NA	7	1.5
Pathologic (N)		
N0	270	58.8
N1	106	23.1
N2	83	18

NA: Not Applicable.

Table 2. Top 20 upregulated mRNAs, lncRNAs, and miRNAs

Top 20 up-regulated mRNAs	symbol	logFC	AveExpr	t	PValue	FDR
ENSG00000144355	DLX1	5.79	3.61	8.31	0.00	0.00
ENSG00000119919	NKX2-3	4.89	-0.33	15.20	0.00	0.00
ENSG00000043355	ZIC2	4.85	0.17	10.80	0.00	0.00
ENSG0000015844	DLX2	4.50	0.25	13.01	0.00	0.00
ENSG00000164175	SLC45A2	4.34	0.67	10.33	0.00	0.00
Top 20 up-regulated IncRNAs

symbol	logFC	AveExpr	t	PValue	FDR
ENSG000000225937	4.68	6.65	7.31	0.00	0.00
ENSG000000223400	4.06	-0.07	11.33	0.00	0.00
ENSG000000260896	3.31	3.70	5.04	0.00	0.00
ENSG000000280623	3.11	6.84	7.96	0.00	0.00
ENSG000000260228	3.03	1.86	9.57	0.00	0.00
ENSG000000255545	3.00	2.91	7.88	0.00	0.00
ENSG000000231324	2.83	1.00	11.20	0.00	0.00
ENSG000000273179	2.81	2.42	6.71	0.00	0.00
ENSG000000231806	2.79	0.84	12.79	0.00	0.00
ENSG000000203635	2.78	0.00	8.26	0.00	0.00
ENSG000000228613	2.71	0.08	8.39	0.00	0.00
ENSG000000233056	2.66	1.19	6.01	0.00	0.00
ENSG000000259641	2.62	0.53	12.62	0.00	0.00
ENSG000000234949	2.50	1.38	11.40	0.00	0.00
ENSG000000253438	2.49	1.27	8.54	0.00	0.00
ENSG000000245750	2.39	4.14	9.26	0.00	0.00
ENSG000000261211	2.36	0.59	13.17	0.00	0.00
ENSG000000258314	2.29	-0.05	6.47	0.00	0.00
ENSG000000234753	2.25	0.14	13.59	0.00	0.00
ENSG000000259457	2.25	1.55	5.15	0.00	0.00

Top 20 up-regulated miRNAs

symbol	logFC	AveExpr	t	PValue	FDR
hsa-miR-374a-3p	7.69	9.55	15.73	0.00	0.00
hsa-miR-135b-5p	6.45	5.85	8.48	0.00	0.00
hsa-miR-21-5p	6.32	17.44	27.96	0.00	0.00
hsa-miR-19b-3p	6.31	7.48	13.27	0.00	0.00
hsa-miR-142-3p	6.20	10.81	11.47	0.00	0.00
hsa-miR-19a-3p	6.16	5.36	10.03	0.00	0.00
hsa-miR-424-5p	6.07	6.75	12.54	0.00	0.00
hsa-miR-142-5p	6.04	6.12	12.36	0.00	0.00
hsa-miR-542-3p	5.74	7.00	14.22	0.00	0.00
hsa-miR-577	5.59	5.62	5.91	0.00	0.00
hsa-miR-29b-3p	5.40	9.40	13.88	0.00	0.00
hsa-miR-126-5p	5.24	7.06	13.04	0.00	0.00
hsa-miR-32-5p	5.23	4.63	14.04	0.00	0.00
hsa-miR-33a-5p	5.13	5.14	7.48	0.00	0.00
hsa-miR-582-3p	5.08	8.28	11.93	0.00	0.00
hsa-miR-203b-3p	5.05	7.07	7.03	0.00	0.00
hsa-miR-101-3p	5.01	12.47	21.16	0.00	0.00
hsa-miR-18a-5p	4.99	4.50	9.33	0.00	0.00
hsa-miR-429	4.93	8.33	11.45	0.00	0.00
Table 3. Top 20 downregulated mRNAs, IncRNAs, and miRNAs

Top 20 down-regulated mRNAs	symbol	logFC	AveExpr	t	PValue	FDR
ENSG000000171401	KRT13	-3.36	1.73	-10.69	0.00	0.00
ENSG00000188488	SERPINAS5	-3.36	0.24	-16.46	0.00	0.00
ENSG000000159251	ACTC1	-3.36	2.91	-13.89	0.00	0.00
ENSG00000100884	CPNE6	-3.07	0.06	-12.83	0.00	0.00
ENSG00000157551	KCNJ15	-2.95	0.44	-16.90	0.00	0.00
ENSG00000176153	GPX2	-2.90	1.02	-16.22	0.00	0.00
ENSG00000147255	IGSF1	-2.88	0.01	-14.40	0.00	0.00
ENSG00000149021	SCGB1A1	-2.87	1.22	-8.98	0.00	0.00
ENSG00000161055	SCGB3A1	-2.84	0.26	-12.32	0.00	0.00
ENSG00000134184	GSTM1	-2.83	0.51	-7.55	0.00	0.00
ENSG00000133067	LGRI6	-2.82	1.13	-15.73	0.00	0.00
ENSG00000156076	WiFi1	-2.79	0.68	-11.96	0.00	0.00
ENSG00000181195	PENK	-2.77	0.70	-13.08	0.00	0.00
ENSG000000002726	AOC1	-2.75	1.93	-8.99	0.00	0.00
ENSG00000104879	CKM	-2.73	0.79	-9.58	0.00	0.00
ENSG00000140279	DUOX2	-2.71	0.85	-13.29	0.00	0.00
ENSG00000248485	PCP4L1	-2.69	0.86	-16.62	0.00	0.00
ENSG00000162989	KCNJ3	-2.68	0.86	-13.05	0.00	0.00
ENSG00000142973	CYP4B1	-2.68	2.62	-14.18	0.00	0.00
ENSG00000181778	TMEM252	-2.67	-0.21	-12.94	0.00	0.00

Top 20 down-regulated IncRNAs	symbol	logFC	AveExpr	t	PValue	FDR
ENSG00000241158	ADAMTS9-AS1	-2.57	1.21	-14.25	0.00	0.00
ENSG00000224958	PGM5-AS1	-2.49	1.59	-11.29	0.00	0.00
ENSG00000261116	AL049555.1	-2.36	-0.23	-11.49	0.00	0.00
ENSG00000267405	AC005180.1	-2.23	0.67	-12.93	0.00	0.00
ENSG00000230937	MIR205HG	-2.20	3.46	-7.39	0.00	0.00
ENSG00000267505	AC005180.2	-2.16	1.27	-13.55	0.00	0.00
ENSG00000250056	LINCO1018	-1.99	0.26	-11.06	0.00	0.00
ENSG00000226237	GAS1R	-1.99	-0.09	-13.18	0.00	0.00
ENSG00000250508	AP000808.1	-1.93	0.49	-8.29	0.00	0.00
ENSG00000232855	AF165147.1	-1.91	2.55	-11.10	0.00	0.00
ENSG00000254510	AP001107.5	-1.89	0.05	-10.82	0.00	0.00
ENSG00000237949	LINCO00844	-1.86	1.40	-8.27	0.00	0.00
ENSG00000241684	ADAMTS9-AS2	-1.83	0.48	-13.23	0.00	0.00
ENSG00000250786	SNHG18	-1.81	2.50	-11.70	0.00	0.00
ENSG00000174403	C20orf166-AS1	-1.72	0.61	-9.40	0.00	0.00
ENSG00000260265	LINCO2562	-1.68	0.12	-5.89	0.00	0.00
ENSG00000237989	LINCO1679	-1.66	0.00	-11.59	0.00	0.00
ENSG00000272143	FGF14-AS2	-1.59	0.03	-10.46	0.00	0.00
ENSG00000261616	AC036108.3	-1.57	0.58	-11.15	0.00	0.00
ENSG00000234456	MAGI2-AS3	-1.56	3.10	-14.43	0.00	0.00

Top 20 down-regulated miRNAs	symbol	logFC	AveExpr	t	PValue	FDR
hsa-miR-486-5p	-6.12	5.62	-14.35	0.00	0.00	
hsa-miR-139-3p	-6.10	1.99	-14.44	0.00	0.00	
hsa-miR-129-5p	-5.76	0.92	-13.35	0.00	0.00	
hsa-miR-328-3p	-5.63	3.77	-21.46	0.00	0.00	
hsa-miR-139-5p	-5.38	4.32	-17.29	0.00	0.00	
hsa-miR-6511b-3p	-5.37	0.31	-17.29	0.00	0.00	
hsa-miR-642a-5p	-5.07	1.39	-11.47	0.00	0.00	
miRNA	Fold Change	p-value	z-score	Survival Correlation	Hazard Ratio	
---------------	-------------	---------	---------	----------------------	-------------	
hsa-miR-197-3p	-4.97	0.00	-22.64	0.00	0.00	
hsa-miR-133a-3p	-4.59	0.00	-8.32	0.00	0.00	
hsa-miR-194-3p	-4.51	0.00	-13.59	0.00	0.00	
hsa-miR-766-3p	-4.50	0.00	-18.10	0.00	0.00	
hsa-miR-149-5p	-4.49	0.00	-13.05	0.00	0.00	
hsa-miR-1306-5p	-4.46	0.00	-17.48	0.00	0.00	
hsa-miR-1976	-4.44	0.00	-18.10	0.00	0.00	
hsa-miR-125a-5p	-4.39	0.00	-16.53	0.00	0.00	
hsa-let-7d-3p	-4.34	0.00	-18.59	0.00	0.00	
hsa-miR-671-3p	-4.28	0.00	-16.20	0.00	0.00	
hsa-miR-150-3p	-4.27	0.00	-9.24	0.00	0.00	
hsa-miR-1180-3p	-4.23	0.00	-11.14	0.00	0.00	
hsa-miR-378a-5p	-4.20	0.00	-15.80	0.00	0.00	

Table 4. Top 10 mRNAs, lncRNAs, and miRNAs that were associated with overall survival.
mRNA	symbol	HR	lower95	upper95	pValue
ENSG00000108852	MPP2	2.08	1.41	3.07	0.00
ENSG00000184988	TMEM106A	1.99	1.35	2.94	0.00
ENSG00000099822	HCN2	1.92	1.30	2.84	0.00
ENSG00000128714	HOXD13	1.90	1.28	2.81	0.00
ENSG00000157168	NRG1	0.51	0.35	0.76	0.00
ENSG00000198944	SOWAHA	0.53	0.36	0.78	0.00
ENSG00000137960	GIPC2	0.53	0.36	0.78	0.00
ENSG00000188818	ZDHHC11	1.89	1.28	2.79	0.00
ENSG00000087077	TRIP6	1.88	1.28	2.77	0.00
ENSG00000087253	LPCAT2	0.54	0.37	0.80	0.00

IncRNA	symbol	HR	lower95	upper95	pValue
ENSG00000227953	LINC01341	1.81	1.23	2.67	0.00
ENSG00000263272	AC004148.2	1.78	1.21	2.63	0.00
ENSG00000259793	AC013726.1	1.78	1.21	2.62	0.00
ENSG00000268388	FENDRR	0.60	0.41	0.88	0.01
ENSG00000226237	GAS1RR	1.61	1.09	2.38	0.01
ENSG00000206195	DUXAP8	1.58	1.07	2.33	0.02
ENSG00000272695	GAS6-AS2	1.57	1.07	2.32	0.02
ENSG00000260920	AL031985.3	0.64	0.44	0.95	0.03
ENSG00000228613	AC141930.1	1.54	1.04	2.27	0.03
ENSG000000258727	AL135999.1	1.52	1.03	2.24	0.04

miRNA	HR	lower95	upper95	pValue
hsa-miR-128-1-5p	0.40	0.27	0.60	0.00
hsa-miR-21-3p	0.51	0.35	0.76	0.00
hsa-miR-130a-3p	1.84	1.24	2.72	0.00
hsa-miR-210-3p	1.79	1.21	2.65	0.00
hsa-miR-3614-5p	0.56	0.38	0.82	0.00
hsa-miR-194-3p	0.57	0.38	0.84	0.00
hsa-miR-193a-3p	1.78	1.21	2.63	0.00
hsa-miR-200a-5p	0.57	0.39	0.85	0.00
hsa-miR-887-3p	1.76	1.19	2.59	0.01
hsa-miR-486-5p	0.58	0.39	0.86	0.01

Figures
Figure 1

Bar graph of differentially expressed genes in the COAD samples. TEC: To be Experimentally Confirmed; TR: T cell receptor; IG: Immunoglobulin
Volcano plot of differentially expressed genes and miRNAs. A. Volcano plot of differentially expressed IncRNAs and mRNAs. Overexpressed genes are demonstrated in red and down-regulated genes are demonstrated in green. B. Volcano plot of differentially expressed miRNA. Overexpressed and down-regulated genes are demonstrated in red and green, respectively.
Figure 3

GO enrichment analysis of the differentially expressed mRNAs in COAD (Top 20 GO enrichment are presented). A. Biological processes (BP), B. Cellular component (CC), C. Molecular function (MF).
Figure 4

KEGG signaling pathway analysis of differentially expressed mRNAs in COAD. (Top 20 KEGG terms are presented).

Figure 5

Protein-protein interaction (PPI) network of the differentially mRNAs in COAD (score > 0.4).
Figure 6

LncRNA-miRNA-mRNA ceRNA network construction of COAD differentially expressed genes.