Does Capture Fisheries In The Vicinity of Tin Mining Area Sustainable? : A case study in Bangka Island, Indonesia

T Ramadona*1, P Rengi1, TWarningsih1, F Septya2, S M Ngести3, A Purnomo4
1Faculty of Fisheries and Marine, Universitas Riau
2Faculty of Agriculture, Universitas Riau
3Faculty of Engineering, Universitas Bung Karno
4Department of Health Analyst, Politeknik Kesehatan Tanjung Karang
*Corresponding author: tomi.r@lecturer.unri.ac.id

Abstract. The purpose of this research was to determine capture fisheries status in a sustainability perspective based on ecology, economy, social, technology and ethic dimensions. A data analysis method which used was Multidimensional Scaling with RAPFISH technique. All dimensions in this study were based on FAO’s attribute and was modified based on fisheries condition in research location. Score multidimensional analysis is 45,69. These results indicate that the multidimensional sustainability status of capture fisheries on Bangka Island is in a less sustainable status. The result showed that ecology was the dimension which has the lowest score in order to support captured fisheries sustainability in Bangka Island. The result also formulated sensitive attribute in every condition and gave management recommendations for the sustainability of captured fisheries based on that attribute. This study showed the importance of dimension integration and stakeholder’s teamwork multisectoral in order to manage the sustainability of captured fisheries.

1. Introduction
Both fisheries and minning are basis sectors Bangka Belitung Island. So, those sectors has significant influence on regional economy [1]. Tin minning activity is local economic activity since hundreds years ago and gave positive contribution for their household economic. On the other hand, tin minning activity that done continously make tin deposits in water flow. That decreasing water quality as fish living habitat and also decrease marine biotal diversity [2]. There was a problem, when tin minner got profit by their economic activity, fisheries sector have got lost. That was decreasing of fisheries captured and also uncertainty of fisheries amount. It would make horizontal conflict or social / stakeholder problem.

Based on economic potention of tin minning, Bangka Belitung goverment expanded IUP. So more than a half from its area. The Regional Government of Bangka Belitung expands Mining Business Permit (IUP), so that three-quarters of the Bangka Belitung archipelago operates a mining business. The rest of the land is used by the forestry industry and a small portion is used as a living space for the community, including fishermen. If tin mining exploitation continues, mining on land destroys forests and mining in the sea damages coastal ecosystems and fisheries resources. The impact will be felt by 45,000 traditional fishermen who rely on life from the sea and the coast.

The basic concept of sustainability is not only ecological, but also related to socio-economic, community and institutional [3]. Tin minning in Bangka island is potential of economic activity. But, in some case there was occured tin minning of exploitation in capture fisheries area. Based on these problems, this study aims to analyze the sustainability status of capture fisheries around tin mining on Bangka Island.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
2. Methods

2.1 Sources of Information
This research was held in Bangka Island, Bangka Belitung Province. Focus location at capture fisheries point: Mentok, Sungai Liat, Koba dan Tobo Ali. That location also offshore tin mining area (Fig 1). This research was held on March until June 2019. Collected data was primary and secondary data. Primary data was obtained from key informant (14 person Fishery experts from the region and the authors’ personal experience). Secondary data was obtained from published papers, fishery statistics reports, government agency literature. Some data and information for ecological attributes were collected from FishBase [4], and some socio-economic information was obtained from the CIA World Factbook [4].

![Fig. 1. Potency Mapping of Mining in Bangka Islands](image)

2.2. Rapfish Analysis
Data analysis using the RAPFISH technique [5]. Aspects of the study consist of Ecological, Economic, Social, Technological and Ethical [6]. The list of attributes used in RAPFISH analysis (51 attributes) refers to FAO Fisheries Circular No. 947 (1999) [7]. Rapfish includes a “good” capture fishery (defined as 100% sustainability score), consisting of the best possible scores for all the attributes in the respective evaluation fields, and a “bad” or “worst” fishery (defined as 0% sustainability score), which has the worst scores [6]. A more detailed account is given in Tesfamichael and [6], [7], [8], [9].

In order to determine which attributes have proportionally larger influence on the results, each attribute was sequentially dropped from the MDS analysis for each evaluation field, providing a value for the percentage influence of each attribute on the overall ordination (“leverage”) [6]. Further analysis was carried out by combining the capture fishery scores to enable overall comparisons among aspects using a kite diagram [6].

3. Result and Discussion
Sustainability status prediction of capture fisheries in tin mining area was described by 51 attributes that consist of 11 ecological attributes, 10 economic attributes, 9 social attributes, 12 technological attributes, and 9 social attributes. Rapfish analysis can determine sustainability status in every dimension. That status has important role in monitoring, analysing, ecosystem condition description, social activity affect and policy effectivity in order to fullfilled management goals (Rice dan Rochet, 2005) [10]. Rapfish analysis result is showed in Picture 2.
Fig. 2 shows plots for the status results from the MDS ordinations. The capture fisheries are distributed on the X-axis according to their sustainability in the specified evaluation field. Sustainability status in all aspects less than 50 that’s mean less sustainable. Ecological aspect score was 44.60; aspek ekonomi 45.02; social aspect was 46.79; technological aspects 48.89; and ethic aspect was 45.78. Ecologycal aspect has the lowest score. Most of fisheries analysis before, this aspect was less than the others aspects(e.g., [7]; [11]; [6]).

Sustainability status in every dimension can’t describe the whole of sustainability status. Nilai indeks setiap dimensi perlu digabungkan untuk menentukan nilai status keberlanjutan multidimensi. Indeks score of every dimensions need to combined to determine multidimension sustainability status score. That is done by multiplying indeks score of existing condition with weight of every dimension. Overall, score of sustainability indeks was 45.69 (Table 1) that indicated sustainability status of capture fisheries in Bangka Island was less sustainable.

Table 1. Sustainability index status

Aspects	Weighting	Sustainability Scores	Amount
Ecological	0.429	44.60	19,121
Economic	0.230	45.02	10,340
Social	0.071	46.79	3,301
Technological	0.168	48.89	8,201
Ethic	0.103	45.78	4,729
Total	**1.000**	**45.692**	

That the attribute ‘number of migration ranges’ has an influence (S.E. around 3.31%) in ecological aspects. That is greater than the others in the position of ordination of fisheries on the axis of sustainability. The next biggest attribute is ‘trophic level change’ with S.E. around 2.99%. Number of migration ranges and trophic level change also affected by tin mining activities in Coast Bangka.

Key factor in economic aspect based on Rapfish analysis was marketable right and sector employment. That marketing fish problems in bangka are distribution and marketing chains, but it’s tin mining still become interesting working fields. Employment sector crisis in Bangka need employment creation and enterprise development. Most of household income and income generating was fisheries sector. On the other hand, business development that sustainable is supporting system of job creators [12].

Conflict status and environmental knowledge was the biggest resistant factor in social aspect. Conflict of interest in coastal area between fishermen and tin minner was main issu. There was a problem between minning activity and capture fisheries. Environmental knowledge of coastal
community was low. That is signed by a lot of land damage in coastal area because of social economic activity.

Technologically, these Bangka Island fisheries use relatively more selective and passive gears, while the industrial fisheries use active, non-selective gears, which are more destructive to the ecosystem. Pre sale processing of fisheries commodity in Bangka was not optimal. Generally, fishermen sold fisheries commodity without added value process. They only processing their commodity into simple product such as salted fish, fish cips, fish ball and simple others.

Just management and adjacency and reliance was sensitive factor in ethic aspect. Management by multisectoral policy is needed to solve this coastal area problem. [13] said that policy formulation and resources management goals that participative approach produced adaptive strategic in independence, capacity and knowledge utilization of resources user so can increase sustainability of social resources utilization.

Figure 3. Attribute leverage analysis of RAPFISH ordination for capture fisheries.

4. Conclusion
Score multidimensional analysis is 45.69. These results indicate that the multidimensional sustainability status of capture fisheries on Bangka Island is in a less sustainable status. To improve the sustainability status comprehensively, structuring various influential attributes is needed. This status need monitoring, assessing and understanding ecosystem conditions, the impact of human activities, and the effectiveness of policies to achieve management goals. Strategy based on integrated
approach to all dominant factors (key factors) that influence capture fisheries in Bangka Island is making improvements and programs in key factors. This study showed the importance of dimension integration and stakeholder’s teamwork multisectoral in order to manage the sustainability of captured fisheries.

Acknowledgements
Acknowledgements be delivered to PT. RBA Group who has given CSR fund for this research. The many fisheries experts in the Bangka Island are thanked for their cooperation.

References
[1] Yulianti, A. 2019. Potentials of Leading Sectors In Bangka Belitung Island Province On 2013-2017. Jurnal Ekonomi Pembangunan. 17(01): 32-39.
[2] Nurtjahya, E., Jennifer, F., Umroh, Fournita, A. 2017. The Impact of Tin Mining in Bangka Belitung and its Reclamation Studies. MATEC Web Conferences 101. 04010. DOI: 10.1051/matecconf/201710104010.
[3] Charles, A.T., 2001. Sustainable Fishery System. Blackwell Science Ltd, Oxford. 370 p.
[4] CIA, 2004. World Factbook. http://www.odci.gov/cia/publications/factbook/ (Access date September 10, 2019).
[5] Pitcher, T.J., 1999. Rapfish: a rapid appraisal technique for fisheries, and its application to the code of conduct for responsible fisheries. FAO Fisheries Circular No. 947, 47 pp.
[6] Tesfamichael D, Pitcher TJ. 2006. Multidisciplinary evaluation of the sustainability of red sea fisheries using Rapfish. Journal Fisheries Research. 78(3):227-235.
[7] Pitcher, T.J. and D, Preikshot. 2001. RAPFISH: a rapid appraisal technique to evaluate the sustainability status of fisheries. Journal Fisheries Research 49 (2001) 255-270.
[8] Clarke, K.R., Warwick, R.M., 1997. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, UK.
[9] Alder, J., Pitcher, T.J., Preikshot, D., Kaschner, K., Ferriss, B., 2000. How good is good? A rapid appraisal technique for evaluation of the sustainability status of fisheries of the North Atlantic. Fisheries Centre Research Report, vol. 8, no. 2. University of British Columbia, Vancouver, pp. 136–182.
[10] Rice JC, Rochet MJ. 2005. A framework for selecting a suite of indicators for fisheries management. ICES. Journal of Marine Science 62:516-527.
[11] Baeta, F., Pinheiro, A., Corte-Real, M., Costa, J.L., de Almeida, P.R., Cabral, H., Costa, M.J., 2005. Are the fisheries in the Tagus estuary sustainable? Fish. Res. 76 (2), 243–251.
[12] FAO. 2016. Scoping study on decent work and employment in fisheries and aquaculture: Issues and actions for discussion and programming. United Nations. 108 p.
[13] Berkes F. 2003. Alternatives to conventional management: lessons from smallscale fisheries. Journal Environments 31(1):1-19.