Application of artificial neural network to predict permeability value of the reservoir rock

G Yasmaniar*, S Prakoso and R Sitaresmi
Petroleum Engineering Department, Faculty of Earth Technology and Energy, Universitas Trisakti, Jalan Kyai Tapa No.1 Grogol, Jakarta Barat 11440, Indonesia

*ghanimayasmaniar@gmail.com

Abstract. Permeability is an important reservoir property but it is difficult to predict. An accurate measurement of permeability values can be obtained from core data analysis. However, this analysis is not possible to do at all interval wells in the field, so that permeability information becomes incomplete. Then, the use of artificial neural network method can be an alternative to predict the incomplete permeability values. This study used 191 of sandstone core samples from Upper Cibulakan Formation in the North West Java Basin. These core data were used to determine hydraulic flow unit (HFU) from the reservoir, and to obtain a relationship between porosity and permeability for each HFU. The application of artificial neural network method is done by building a database of flow zone indicator (FZI) based on its relationship with log data. From this FZI value, the HFU class can be known. Afterward, the permeability value can be obtained according to the equation of the relationship between porosity and permeability at each HFU that had been generated. Artificial neural network was applied on G-19 and G-11 Well that had 51 of core data. Based on this study, the result of permeability value is not much different from core data at the same depth, so that this method can be applied to obtain the permeability in uncored intervals.

1. Introduction
Permeability is one of the important of reservoir properties because it is related to the ability of a rock to flow the reservoir fluid. An accurate measurement of permeability values can be obtained from core data analysis. However, not all well intervals in the field can be analyzed of core data so that the permeability information becomes incomplete. Then, the probabilistic method becomes an alternative that can be used for the process of calculating permeability values [1-3]. This probabilistic method is used to predict parameters at uncored intervals. The selection of this method is based on the unavailable secondary data which is log data that explicitly shows a direct relationship with the pore attributes [4,5].

The purpose of this study is to predict the permeability value of uncored intervals by applying artificial neural network method using software. The application of artificial neural network is done by building a database of Flow Zone Indicator (FZI) based on its relationships with the log data. From this FZI value, the Hydraulic Flow Unit (HFU) can be known for all depth interval of the well. Afterward, the permeability value can be determined based on the equation of the relationship between porosity and permeability that has been generated for each HFU.
2. Methodology
This study used 191 of sandstone core samples from Upper Cibulakan Formation in the North West Java Basin. These core samples had had porosity and permeability value from core analysis in the laboratory. These core data were used to determine hydraulic flow unit (HFU) [4,6,7], from the reservoir using Kozeny-Carman’s approach [8,9]. In general, the Kozeny-Carman equation can be written as:

\[
k = \frac{\phi_z^3}{(1 - \phi_e)^2} \left[ \frac{1}{F_s \tau^2 S_{gv}} \right]
\]  

Then, new parameter is generated that expressed in the following equation:

\[
RQI = \sqrt{\frac{k}{\phi_e}}
\]

\[
\phi_z = \left( \frac{\phi_e}{1 - \phi_e} \right)
\]

From Equations (2) and (3) then a new parameter is generated, namely FZI (Flow Zone Indicator) which can be expressed in the following equation:

\[
FZI = \left[ \frac{1}{\sqrt{F_s \tau S_{gv}}} \right] = \frac{RQI}{\phi_z}
\]

Then, to grouping the data based on the flow unit, the following equation is used:

\[
FZI_{\text{discrete}} = \text{ROUND} \left( 2 \times \ln(FZI) + 10.6 \right)
\]

After determining HFU class using Kozeny-Carman’s approach, the relationship between porosity and permeability was obtained for each HFU. Afterward, the application of artificial neural network is used by building a database of FZI models based on its relationships with the log data. Artificial neural network was applied on G-19 and G-11 Well that had 51 of core data. After obtaining FZI value for all depth interval of the well, the class of HFU can be determined. Then, the permeability value can be obtained according to the equation of the relationship between porosity and permeability for each HFU class that had been generated.

3. Results and discussion
Determination of HFU was carried out by applying Kozeny-Carman’s approach using 191 of sandstone core samples. From the results of this calculation, it is known that the analyzed reservoir consists of eight different HFUs. The relationship between porosity and permeability of each HFU can be seen in Figure 1.
Figure 1. Porosity vs. permeability relationship for each HFU.

From the relationship of porosity and permeability, the empirical equations generated by each HFU can be seen in Table 1, where x is porosity and y is permeability.

Table 1. Empirical equations of porosity and permeability relationship for each HFU.

| HFU | Empirical Equation          |
|-----|-----------------------------|
| 1   | $y = 1E+07x^{8.394}$       |
| 2   | $y = 19.8170x^{4.879}$     |
| 3   | $y = 15.918x^{3.481}$      |
| 4   | $y = 5.064.7x^{3.479}$     |
| 5   | $y = 1.759.9x^{3.316}$     |
| 6   | $y = 840.51x^{3.552}$      |
| 7   | $y = 450.54x^{3.718}$      |
| 8   | $y = 87.244x^{3.325}$      |

Then, to estimate the permeability value of uncored intervals, the calculations was carried out by applying artificial neural network using software. The artificial neural network was applied on G-19 and G-11 Well, G Field that located in the North West Java Basin.

This method is obtained by building a database of FZI model based on its relationships with the existing log data, such as Vshale, SP log, and porosity using the software. After obtaining the FZI value, then the HFU class owned by the G-19 and G-11 Well can be determined.

After that, the permeability value can be calculated using the equations from the relationship between porosity and permeability in each HFU that listed in the table 1. The results of the calculations can be seen in figure 2 and 3.
Figure 2. Log section of permeability calculation using artificial neural network on G-19 well.

Figure 3. Log section of permeability calculation using artificial neural network on G-11 well.
To test the accuracy of the results of permeability value, it was also carried out the comparison between permeability values obtained from the artificial neural network process with the value of the core data at the same depth that can be seen in figure 3.

![Figure 3: Comparison between permeability values from artificial neural network and core data.](image)

**Figure 3.** Comparison between permeability values from artificial neural network and core data.

Permeability values are on a logarithmic scale, therefore the deviation of resulting permeability from this study is obtained by looking at the cycle differences. The number of available core data in G-11 and G-19 Wells are 51, thus the deviation of permeability values from the artificial neural network and core data can be seen in table 2.

| Cycle differences | Number of data | Percentage |
|-------------------|----------------|------------|
| Same Cycle        | 34             | 66.67%     |
| 1 Cycle           | 14             | 27.45%     |
| >1 Cycle          | 3              | 5.88%      |

From these results, it can be seen that the deviation from artificial neural network is not much different, because most of the results are in the same cycle with the core data, and only a small portion of the data has a difference more than 1 cycle.

4. Conclusion
The results of this study show that artificial neural network can be used to predict permeability value of the reservoir rock, and the results of permeability calculations using artificial neural networks are not much different from core data, because most of the results are in the same cycle with core data. Permeability prediction at uncored intervals using artificial neural network method can provide benefits to the company because permeability values can be determined without coring and its analysis, so it can reduce the expenses of the company.

References
[1] Aminian K, Ameri S, Oyerokun A and Thomas B 2003 Prediction of Flow Units and Permeability Using Artificial Neural Networks SPE 83586
[2] Mortensen J, Engstrom F and Lind I 1998 The Relation Among Porosity, Permeability, and Specific Surface of Chalk From the GormFielis, Danish North Sea SPE 1(2) 245-251
[3] Wibowo A S and Permadi P A 2013 Type Curve for Carbonates Rock Typing *IPTC*

[4] Abbaszadeh M, Fuji H and Fujimoto F 1996 Permeability Prediction by Hydraulic Flow Units – Theory and Applications *SPE*

[5] Kohli A and Arora P 2014 Application of Artificial Neural Networks for Well Logs *IPTC*

[6] Gomes J S, Ribeiro M T, Strohmenger C J, Negahban S and Kalam M Z 2008 Carbonate Reservoir Rock Typing – The Link Between Geology and SCAL *SPE*

[7] Michel R and Bruno L 2014 Rock Typing in Carbonates: A Critical Review of Clustering Methods *SPE*

[8] Amaefule J O and Altunbay M 1993 Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells *SPE*

[9] Yasmaniar G, Sitaesmi R and Prakoso S 2018 Determination of Rock Type Using Hydraulic Flow Unit Concept to Predict Permeability with Artificial Neural Network *Journal of Earth Science, Engineering, and Technology* 1(2)