A *Helitron* transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes

Ivana Grabundzija1,2, Simon A. Messing2, Jainy Thomas3,*, Rachel L. Cosby3,*, Ilija Bilić1, Csaba Miskey4, Andreas Gogol-Döring5,6, Vladimir Kapitonov7, Tanja Diem4, Anna Dalda1, Jerzy Jurka7, Ellen J. Pritham3,**, Fred Dyda2,**, Zsuzsanna Izsvák1,** & Zoltán Ivics4,**

Helitron transposons capture and mobilize gene fragments in eukaryotes, but experimental evidence for their transposition is lacking in the absence of an isolated active element. Here we reconstruct *Helraiser*, an ancient element from the bat genome, and use this transposon as an experimental tool to unravel the mechanism of *Helitron* transposition. A hairpin close to the 3′-end of the transposon functions as a transposition terminator. However, the 3′-end can be bypassed by the transposase, resulting in transduction of flanking sequences to new genomic locations. *Helraiser* transposition generates covalently closed circular intermediates, suggestive of a replicative transposition mechanism, which provides a powerful means to disseminate captured transcriptional regulatory signals across the genome. Indeed, we document the generation of novel transcripts by *Helitron* promoter capture both experimentally and by transcriptome analysis in bats. Our results provide mechanistic insight into *Helitron* transposition, and its impact on diversification of gene function by genome shuffling.
Due to their numbers and mobility, transposable elements are important players in genome evolution. Transposable elements can amplify to high copy numbers despite control by silencing mechanisms. However, accumulation of disabling mutations in their sequences leads to transpositional inactivation and subsequent extinction. Thus, ancient transposable elements can often be discovered and annotated only by bioinformatic means. Helitrons, a novel group of DNA transposons widespread throughout eukaryotes, were discovered by in silico genome-sequence analysis (reviewed in refs 1,2).

Helitron transposition displays a number of features unusual for DNA transposons, such as lack of target site duplications (reviewed in refs 1,2). Furthermore, putative Helitron transposases do not contain an RNase-H-like catalytic domain3, but encode a ‘RepHel’ motif made up by a replication initiator (Rep) and a DNA helicase (Hel) domain1,2,4. Rep is a nuclease domain of the HUH superfamily of nucleases involved in catalytic reactions for endonucleolytic cleavage, DNA transfer and ligation5,6. HUH nucleases cleave exclusively single-stranded DNA (ssDNA), and have a key role in the initiation of ‘rolling-circle replication’ of certain bacteriophages such as ϕX174 (ref. 7), ssDNA viruses and bacterial plasmids (reviewed in ref. 8), as well as in ‘rolling-circle’ transposition of IS91 family bacterial transposons9–11.

The key elements of the proposed rolling-circle transposition mechanism12 involve two tyrosine (Tyr) residues in the active site of IS91’s HUH transposase9. Briefly, the model proposes a site-specific nick at the 5’-end of the transposon, with the transposase forming a 5’-phosphotyrosine intermediate. The 3’-OH at the nick serves to initiate DNA synthesis while one transposon DNA strand peels off. The nick generated in the target DNA possibly by the second active site Tyr leads to the resolution of the 5’-phosphotyrosine. Once the entire transposon has been replicated, the transposase catalyses a second strand-transfer event by nicking the 3’-end of the transposon and joining it to the 5’-end of the target site1,8,11. It has been suggested that Helitrons are the first eukaryotic rolling-circle transposons4, although definite information involving their transposition mechanism remains elusive due to the lack of an active element isolated from any species.

The only Helitron transposons found in sequenced mammalian genomes are from vespertilionid bats13–15. In contrast to other DNA transposons, the Helibat family was active throughout the diversification of vespertilionid bats from 30 to 36 myr ago as recently as 1.8–6 myr ago14. Helibats comprise ~6% of the little brown bat (Myotis lucifugus) genome14, where the autonomous Helibat1 elements and multiple non-autonomous subfamilies including HelibatN1, HelibatN2 and HelibatN3 have been amplified to >100,000 copies13,14. The predicted transposase encoded by bat Helitrons contains the typical ‘RepHel’ motif, the elements are characterized by 5′-TC and CTRR-3′ termini that do not contain inverted repeats but have a short palindromic motif located upstream of the 3′-terminus, and insertions occurred precisely between 5′-A and 3′-T nucleotides at host AT target sites15. Although the vast majority of Helitron families harbour short palindromic sequences in their 3′-termini4,16–19, the role of these sequences in Helitron transposition is unclear.

Genomic data suggest that Helitron transposition is often associated with the capture and mobilization of host genomic fragments, resulting in the dissemination of genomic regulatory elements13,14, gene fragment duplications20, the generation of chimeric transcripts14,20 and the creation of putative microRNA-binding sites14. This process appears to have been particularly frequent in the maize (Zea mays) genome, where some Helitrons have been shown to carry exons transduced from as many as 12 genes21. These observations imply a significantly higher impact on genomes by Helitrons than by other DNA transposons. Although prokaryotic IS91-like elements have been implicated in co-mobilization of adjacent bacterial genes, including antibiotic resistance genes, evidence for a transduction mechanism remains circumstantial22,23. Likewise, although several mechanisms have been proposed to explain Helitron gene capture1,2,6,12,16,21,24–26, due to the lack of direct experimental data, both the process and regulation of Helitron transposition has remained enigmatic.

Everything that is known to date about Helitron biology derives from in silico or genetic analysis, because no active Helitron transposon has been isolated. Here we reconstruct an active copy of the autonomous Helibat1 transposon, designated ‘Helraiser’, and characterize its transposition in vitro and in human cells ex vivo. We provide experimental insight into the transposition of Helitrons by addressing the molecular requirements of transposition, target site selection properties, and gene capture in cell culture and in bats in vivo.

Results

Structural hallmarks of the resurrected Helraiser transposon. To build a model of an autonomous Helibat element, the M. lucifugus genome was subjected to bioinformatic analysis (Supplementary Notes). The resulting 5,296-bp Helraiser consensus sequence (Supplementary Fig. 1) contains all of the known hallmarks of an autonomous Helitron element (reviewed in refs 1,2). The 1,496-amino-acid (aa)-long coding sequence of the Helraiser transposase is flanked by left and right terminal sequences of the transposon, designated LTS and RTS, respectively (Fig. 1a; Supplementary Fig. 1), that terminate with the conserved 5′-TC/CTAG-3′ motifs characteristic of the Helibat1 family13. A 19-bp-long palindromic sequence with the potential to form a hairpin structure is located 11 nucleotides upstream of the RTS end (Fig. 1a; Supplementary Fig. 1).

The Helraiser transposase contains a putative, N-terminal nuclear localization signal and a zinc-finger-like motif, followed by a RepHel enzymatic core4,13. RepHel consists of a ~300-aa-long Rep nuclease domain, characterized by the conserved HUH motif and two active site Tyr residues, and a ~600-aa helicase domain containing the eight conserved motifs characteristic of the SF1 superfamily of DNA helicases (Fig. 1a; Supplementary Figs 2A and 3A).

Helraiser transposition in human cells. We synthesized the functional components of the transposon (that is, the transposase as well as the LTS and RTS sequences), and generated a bicomponent transposition system consisting of a puromycin gene (puro)-tagged transposon (designated pHelR) and a transposase-expressing helper plasmid (designated pFHelR; Fig. 1b). As shown in Fig. 1b, transfection of the Helraiser system into human HeLa cells generated, on average, ~3,400 puro-resistant colonies per plate versus ~100 colonies per plate in the absence of transposase. Thus, the Helraiser transposition system appears to contain all of the determinants required for transposition activity in human cells.

Sequence analysis of 10 independent Helraiser insertions revealed direct canonical junctions of the transposon 5′-TC motif to an A nucleotide, and of the RTS CTAG-3′ motif to a T nucleotide (Fig. 1c). Thus, Helitron transposition into an AT dinucleotide target site was faithfuly recapitulated by Helraiser. To evaluate the relative transposition efficiency of Helraiser, we directly compared it with a hyperactive variant of Sleeping Beauty (SB100X), one of the most active vertebrate cut-and-paste transposons27. Helraiser demonstrated only about twofold lower colony-forming activity than SB100X in human HeLa cells.
(Fig. 1d), indicating a relatively high transposition activity even without optimization.

To test the ability of the Helraiser transposase to cross-mobilize the non-autonomous transposons HelibatN1, HelibatN2 and HelibatN3, their consensus LTS and RTS sequences were synthesized and tagged with neomycin (neo) or puro antibiotic resistance genes, and their transposition activities assayed as described above. HelibatN1 was the most active (~28% of the activity of the wild-type Helraiser transposase); HelibatN3 displayed detectable activity (~2%), whereas HelibatN2 was apparently inactive under these experimental conditions (Fig. 1e). These data indicate that Helraiser represents an ancient Helibat1 transposase that was probably responsible for mobilizing and propagating at least some of the most abundant non-autonomous Helitron subfamilies in the M. lucifugus genome.

Figure 1 | Features of Helraiser transposition in human HeLa cells. (a) Schematic representation of the Helraiser transposon. LTS and RTS terminal sequences are in uppercase, and flanking A and T host target site sequences are in lowercase. White, yellow and green rectangles represent N-terminal, non-autonomous subfamilies HelibatN1, HelibatN2 and HelibatN3. White rectangle in RTS: hairpin; black arrow: promoter driving transposase expression, black circle: polyA signal; these annotations are used consistently in all the figures. Data are represented as mean ± s.e.m., n = 7 biological replicates. (b) Helraiser colony-forming efficiency. Shown are tissue culture plates containing stained puro-resistant HeLa cell colonies. Helraiser donor (pHeIR) and helper (pFHeIR) plasmids. White rectangle in RTS: hairpin; black arrow: promoter driving transposase expression, black circle: polyA signal; these annotations are used consistently in all the figures. Data are represented as mean ± s.e.m., n = 7 biological replicates. (c) Helraiser transposase generates canonical insertions. Helraiser LTS- or RTS-to-genome juctions are shown for 10 independent transposon insertions. Helraiser sequence is shown in uppercase with the conserved 5' and 3'-terminal sequences in a black background and flanking host genomic sequence is in lowercase. The flanking pHeIR plasmid sequence (upper line) is in italic. (d) Relative transposition efficiencies of Helraiser and Sleeping Beauty measured by colony formation in HeLa cells. Data are represented as mean ± s.e.m., n = 3 biological replicates. (e) Relative transposition efficiencies of Helibat1 and the non-autonomous subfamilies HelibatN1, HelibatN2 and HelibatN3. Data are represented as mean ± s.e.m., n = 5 biological replicates.

Functional analysis of transposase domains. To determine the functional significance of some of the conserved amino acids of the Helraiser transposase, we mutated both H593 and H595 and the putative catalytic Y727 and Y731 residues (both individually and together) in the HUH nuclease domain, as well as K1068 of the Walker A motif and the arginine finger R1457 residue located in motif VI of the helicase domain (Fig. 2a). Each of these mutations resulted in loss of transposition activity in HeLa cells (Fig. 2a), suggesting that both nuclease and helicase activities are required for transposition.

In vitro assays using purified Helraiser transposase demonstrated cleavage of ssDNA (representing 40 bases of the Helraiser LTS and RTS plus 10 bases of flanking DNA; Fig. 2b), but not double-stranded DNA (dsDNA; data not shown). Sequencing of the most prominent cleavage products (labelled 1–4, Supplementary Fig. 3B) revealed cleavage between flanking DNA and the Helraiser 5'-TC dinucleotide on the top LTS strand (lane 2), between an internal AT dinucleotide on the bottom strand of the LTS (lane 4) and precisely at the transposon end on both strands of the RTS (lanes 6 and 8). These results indicate that the transposon sequence determinants for precise cleavage of the transposon ends are located within the terminal 40 bp on each end.

As expected from an HUH nuclease, cleavage activity required a divalent metal ion (compare lanes 2 and 3, Fig. 2b), but was more efficient with Mn²⁺ than with Mg²⁺ (compare lanes 3 (1 h at 37°C) and 11 (overnight at 37°C)). We did not detect ssDNA cleavage on the LTS top strand with either the His–>Ala mutant of the HUH motif (lane 4) or when both Tyr residues were simultaneously mutated (lane 5). We observed a marked difference when the two Tyr residues were individually mutated: mutation of the first Tyr (Y727F) had no effect on cleavage (lane 6), whereas...
mutation of the second Tyr (Y731F) led to loss of cleavage activity (lane 7). The K1068Q mutation in the helicase domain had no effect on ssDNA cleavage (lane 8). Collectively, these results show that conserved residues of the HUH domain are important for cleavage of ssDNA, and that the two Tyr residues of the active site have distinct roles in Helitron transposition.

Limited proteolysis on purified Helraiser transposase resulted in three stable fragments corresponding to the N-terminal, the nuclease and the helicase domains (Supplementary Fig. 2B). We used these experimentally determined domain boundaries to design truncated transposase fragments lacking the N-terminal domain and used these experimentally determined domain boundaries to examine the importance of terminal sequences on Helitron transposition. To investigate the role of the RTS further, we created a transposon vector, pHelRAHP, where the 19-bp palindromic sequence predicted to form a hairpin (‘HP’) structure was deleted. As shown in Fig. 3a, pHelRAHP yielded ~35% of the transposon colony-forming activity of the intact transposon. Notably, this is comparable to the number of colonies generated with pHelRARTS, in which the entire RTS was deleted. Sequence analysis of transposon insertion sites from 51 HeLa clones obtained with the wild-type Helraiser transposon indicated an average copy number of 4, with a range between 1 and 10 transposon insertions per clone (Fig. 3b). The same

Role of terminal sequences and 3′-hairpin structure. To examine the importance of Helitron’s terminal sequences on transposition, we created mutants of the transposon vector, pHelRALTs and pHelRARTS, by deleting either the LTS or the RTS sequences. The presence of the LTS was essential as its deletion abolished Helitron transposition (Fig. 3a). Surprisingly, the presence of the RTS was not essential, although its removal resulted in a decrease of colony-forming activity to ~24% of the intact transposon (Fig. 3a).

To investigate the role of the RTS further, we created a transposon vector, pHelRAHP, where the 19-bp palindromic sequence predicted to form a hairpin (‘HP’) structure was deleted. As shown in Fig. 3a, pHelRAHP yielded ~35% of the transposon colony-forming activity of the intact transposon. Notably, this is comparable to the number of colonies generated with pHelRARTS, in which the entire RTS was deleted. Sequence analysis of transposon insertion sites from 51 HeLa clones obtained with the wild-type Helraiser transposon indicated an average copy number of 4, with a range between 1 and 10 transposon insertions per clone (Fig. 3b). The same
analysis of 16 clones generated with pHelRAHP, and 15 generated with pHelRARTS revealed that both mutant transposons generated, on average, a single insertion per clone (Fig. 3b). Hence, the corrected transposition efficiency of the HelRAHP and HelRARTS transposon mutants are 8.8% and 6% of the transposition efficiency obtained with the wild-type transposon, respectively (inset, Fig. 3b).

To investigate the role of Helraiser’s RTS hairpin in more depth, we generated three modified transposon donor vectors (pHelRATH, pHelRStemX and pHelRLoopX), in which the hairpin sequence was mutated in different ways (Fig. 3c). In pHelRATH, the Helraiser hairpin sequence was replaced with that of the Helitron1 transposon family in Arabidopsis thaliana. In pHelRStemX retained the Helraiser hairpin loop, whereas the stem sequence was exchanged with that of the A. thaliana hairpin. In pHelRLoopX, the stem sequence of the Helraiser hairpin was retained but the ATT nucleotides in the loop were changed to A–A.

Both pHelRATH and pHelRLoopX showed transposition activities similar to pHelRAHP where the complete palindromic tetranucleotide of the LTS is directly and precisely joined to the CTAG-3’ tetranucleotide of the RTS) (Fig. 4a). These data suggested the formation of circular intermediates in Helraiser transposition.

To confirm that transposon circles were generated during transposition, we constructed a plasmid-rescue Helraiser donor vector, pHelRCD (‘CD’: circle donor), in which the transposon ends (the 5’-TC dinucleotide of the LTS is directly and precisely joined to the CTAG-3’ tetranucleotide of the RTS) (Fig. 4a). After co-transfection of HEK293 cells with pHelRCD and transposase helper plasmids, low-molecular-weight DNA was isolated and electroporated into E. coli cells that were subjected to kan selection. One of the 50 E. coli colonies contained a Helraiser-derived Helitron circle (designated ‘pHelRC’) consisting of the complete transposon sequence and a perfect head-to-tail-junction of the Helraiser LTS and RTS (Fig. 4a). Double-stranded Helitron circles are transpositionally active; transposition of pHelRC generated, on average ~360 colonies per plate, which constitutes ~51% of the colony-forming efficiency of the plasmid-based pHelRCD Helitron circle donor vector (Fig. 4b).

The palindrome in the Helraiser RTS is not required for Helitron circle formation, because the pHelRAHP and pHelRMutHP vectors, where the palindrome has been completely or partially deleted, were proficient in generating circles in the presence of Helraiser transposase (Fig. 4c). Interestingly, deletion of the palindrome did not have the same detrimental effect on transposition of Helitron circles as with plasmid donors, as

Helitron transposition generates transposon circles. During Helraiser insertion site analysis using inverse PCR, we often observed prominent PCR products containing precise head-to-tail junctions of the Helraiser transposon ends (the 5’-TC dinucleotide of the LTS is directly and precisely joined to the CTAG-3’ tetranucleotide of the RTS) (Fig. 4a). These data suggested the formation of circular intermediates in Helraiser transposition.
evidenced by similar colony numbers obtained with pHelRCpuro and pHelRΔHPpuro in the presence of transposase (Fig. 4d). This result suggests that in the context of transposon circles with joined ends only one nick in the donor DNA has to be made, and thus there is no need to signal the 3'-end of the transposon. In sum, the results indicate the generation of transposon circles as intermediates of Helraiser transposition.

Genome-wide analysis of Helraiser insertions. Although patterns of Helitron insertions have been extensively analysed in the genomes of many eukaryotic species2,13,14,16,17,20,21,29–31, these patterns are shaped at least in part by natural selection and genetic drift at the level of the host species. By contrast, de novo transposition events recovered in cultured cells are subject to hardly any selection or drift (except some possible effects of antibiotic selection), and thus more directly reflect the transposon's integration preferences. To characterize antibiotic selection), and thus more directly reflect the transposon's hardy any selection or drift (except some possible effects of transposition events recovered in cultured cells are subject to de novo drift at the level of the host species. By contrast, de novo

\[\text{Relative transposition efficiencies of pHelRCpuro and pHelRC} \]

Figure 4 | Helitron circles. (a) Helitron circle donor plasmid (pHeI RCD) and Helraiser transposase-generated Helitron circle (pHeI RC). White arrow, Kan/5V40 promoter; white circle, polyA signal. (b) Transposition of Helitron circles. Data are represented as mean ± s.e.m., n = 3 biological replicates. (c) PCR detection of Helitron circles generated with HeI R, HeI RMuTHP and HeI RΔHP transposons. HeI RMuTHP, transposon with a deletion of the last 9 nt of the palindrome; H₂O, no template control. (d) Relative transposition efficiencies of pHeI RCpuro and pHeI RΔHPpuro. Data are represented as mean ± s.e.m., n = 4 biological replicates.
gene expression) peaks, 7.1-fold enrichment), chromosomal regions enriched for the histone modifications H3K27ac (enhancer, 5.6-fold), H3K4me1 (enhancer, 3.8-fold), H3K4me3 (active promoter, 3.4-fold), H3K36me3 (transcribed gene body, 2.1-fold) and open chromatin regions as defined by DNsase1 footprinting, FAIRE (formaldehyde-assisted isolation of regulatory elements) and chromatin immunoprecipitation sequencing experiments (regions taken from the UCSC (University of California, Santa Cruz) Open Chrom Synth track, 14.2-fold). On the other hand, we detected a clear lack of preference for transposition into chromosomal regions characterized by the heterochromatin marks H3K9me3 or H3K27me3 and a significant, 2.2-fold underrepresentation of insertions into lamina-associated domains (Fig. 5b). Finally, there was no correlation between transposon insertion site enrichment and gene density (Fig. 5c).

We have analysed the genomic distribution of inactive transposon insertion site enrichment and gene density (Fig. 5c). Top genes are the 500 genes with highest expression level. Integration frequencies into promoter regions of silent genes and H3K9me3 regions were not significantly different from controls; all other differences were statistically significant (Fisher’s exact test P value ≤ 0.05). (c) Fold enrichment of relative integration frequencies per chromosome compared with random genomic sites (yellow) and control sites imitating the base composition characteristics of Helraiser integration sites (blue). Blue arrows represent the positions of the original chromosomal donor sites.

To test whether Helraiser exhibits preference for mobilization into cis-linked loci when transposition is initiated from genomic donor sites (often seen with many ‘cut-and-paste’ transposons and termed ‘local hopping’35–38), we employed a transposon donor cell line containing three identified chromosomal Helitrons donor sites, and retransformed these cells with a transposase helper plasmid to drive secondary transposition events to new chromosomal sites. Analysis of 701 retransposition insertion sites revealed no clustering of the new transposon insertions around the original donor sites (Fig. 5d).

Gene capture by Helraiser. Our results presented in Fig. 3a demonstrated that some transposition could take place even if the entire RTS was missing. This raises the question of what sequence determinants define the 3′-end of the mobilized DNA segment.

DNA sequencing of insertion sites generated by pHelR, pHelRHP and pHelRARTS revealed canonical junctions of the LTS 5′-TC sequence to A nucleotides at genomic target sites for all three transposons, indicating that these integrants were indeed Helraiser transposase-mediated products. Sequence analysis of the RTS–genome junction revealed the canonical CTAG-3′ sequence flanked by a T nucleotide for pHelR (Fig. 6a; insertion ‘H1-2′). In contrast, some insertions generated by the pHelRHP and pHelRARTS vectors ended with a CTTG-3′ tetranucleotide (also seen with maize Helitrons21) inserted immediately adjacent to a T nucleotide at three different genomic target sites (Fig. 6a; shown in red). These transposon insertions represented truncation of the original transposon sequence, since the novel transposon end was situated internally, 6-bp downstream from the start of the SV40 poly A sequence. In addition, two insertions generated by HelRHP and HelRARTS ended with CTAC-3′ and AATT-3′, respectively (Fig. 6a; shown in green). These events could be considered 3′-transduction events, in which a unique, external sequence representing an alternative transposon RTS has been utilized for transposition. In both cases, the last two nucleotides in the transposon RTS overlapped with the first two nucleotides at the genomic HeLa target site (also seen with one-ended transposition of the IS91 element11), making precise identification of the actual RTSs impossible. None of the five sequences representing the novel RTSs contained an identifiable palindrome within the last 30 bp (data not shown), in line with previous observations29.

To further investigate the frequency and extent of 3′-transduction events generated during Helraiser transposition, we introduced an SV40-neo-polyA selection cassette immediately downstream of the transposon RTS into the pHelR and pHelRHP vectors (renamed ‘pHelRpn’ and ‘pHelRAHPpn’ for puro and neo, respectively; Fig. 6b). In this way, read-through
events that capture the entire neo cassette can be quantified. As shown in Fig. 6b, the intact Helraiser transposon is likely to capture flanking DNA sequence in ~11.7% of the transposition events. In contrast, although the overall frequency of transposition is lower, at least 36% of the transposition events generated with pHeIRHp% resulted in the transfer of the entire 1.6-kb neo cassette downstream of the transposon. This experimental set-up probably gave an underestimate of the frequency of 3′-transduction as it required the capture of the entire 1.6-kb neo cassette.

Diversification of Heltron 3′-ends in Myotis genomes. The above experiments demonstrated that premature truncation and read-through events generated through palindrome or RTS deletion leads to the generation of novel 3′-ends. To investigate whether such events have also occurred in vivo, we analysed 395 copies of the recently active HelibatN541, HelibatN542 and HelibatN580 subfamilies (26, 339 and 30 copies, respectively), and found 39 exemplars that have de novo 3′-ends (>20% diverged over the last 30 bp of the consensus; Supplementary Table 2). These exemplars were likely generated by (1) insertion adjacent to pre-existing 5′-truncated Helitrons (Supplementary Fig. 4A), (2) insertion right next to another Heliton where the 5′-end of one Heliton abuts the 3′-end of the other (Supplementary Fig. 4B) and (3) deletion or mutation within the last 30 bp of the 3′-end (Supplementary Fig. 4C). Empty site evidence suggests that these are indeed bona fide insertion events (Supplementary Fig. 4D). Most interestingly, similar to insertion #2 of the pHeIR HP transposon (Fig. 6a), we identified one exemplar (Supplementary Fig. 4E), where the de novo 3′-end was generated through bypass of the CTAG-3′ sequence in the RTS lacking a palindrome. Thus, bypassing the 3′-end and resulting emergence of de novo transposon ends in Helraiser transposition (Fig. 6a,b) faithfully recapitulates a natural process.

Generation of chimeric transcripts by HelibatN3. In the M. lucifugus genome, promoter sequences from 15 different genes were captured and amplified to 4,690 copies by Helitrons14. For example, the HelibatN3 subfamily evolved out of a gene capture event, in which a transposing element picked up a fragment of the NUBPL (nucleotide-binding protein-like) gene containing the promoter, coding sequence for six amino acids of the NUBPL N terminus and a splice donor sequence (Fig. 6c)13. Thus, if a HelibatN3 element was to jump into an intron of a gene in the correct orientation, it would have the capacity to ectopically express an N-terminally truncated derivative of that gene by
splicing between the splice donor sequence in the transposon and the nearest downstream splice acceptor (Fig. 6c).

To demonstrate transcriptional exon-trapping events, we inserted a selectable puro antibiotic resistance gene between the NUBPL promoter and the splice donor (Fig. 6c), and mobilized this transposon by the Helraiser transposase into the HeLa cell genome. Sequence analysis of complementary DNAs prepared from puro-resistant cells revealed splicing between the transposon-contained splice donor and splice acceptor sites present in human transcripts. These data indicated the capture of exonic sequence downstream of the transposon insertion (Fig. 6c). Furthermore, we also recovered chimeric transcripts, in which the splice donor was apparently spliced to cryptic splice sites in noncoding RNA, resulting in exonization of noncoding genetic information (Fig. 6c).

NUBPL-driven transcripts and their genes in M. brandtii. The above data suggest that HelibatN3 elements act as potent exon traps when mobilized experimentally in HeLa cells. To document the capacity of endogenous Helitron transposition to generate novel transcripts in vivo, we annotated Helitron-captured NUBPL promoter-driven transcripts in the bat, Myotis brandtii. We found that a Helitron-captured NUBPL promoter insertion is present within 1-kb upstream of at least one annotated TSS for 23 annotated genes; these insertions are predicted to drive a total of 46 transcripts (FPKM (fractions per kilobase of exon per million fragments mapped) > 0.5), three of which have TSS supplied by the insertion (Supplementary Table 3). The majority of these transcripts (43) are predicted to be coding and, in contrast to their parent genes, 35 of the 46 transcripts show some tissue specificity in the tissues examined (FPKM > 0.5 in only that tissue; Supplementary Table 3).

Those candidate NUBPL-driven transcripts, for which the predicted TSS overlapped with the Helitron insertion were considered to be bona fide NUBPL-driven transcripts. Three transcripts met this criterion, and belonged to the genes RINT1 (Supplementary Fig. 5A), ARMC9 (Supplementary Fig. 5B) and RNFI0 (Supplementary Fig. 5C). Of these, the RINT1 (kidney) and RNFI0 (constitutively expressed in the tissues examined) transcripts are predicted to be coding (an open reading frame encoding > 100 aa is present), and ARMC9 (brain) noncoding (Supplementary Table 3). In sum, Helitrons impact genetic novelty at the transcription level, and Helraiser can faithfully recapitulate this biological phenomenon.

Discussion

We have resurrected an active Helitron transposon from the genome of the bat M. lucifugus, and used this novel transposon, Helraiser, to explore the mechanism and genomic impact of Helitron transposition. Consistent with the known properties of other HUH nuclease domains, we detected nuclease activity only on ssDNA fragments derived from Helitron’s LTS and RTS in vitro. This may indicate that Helraiser relies on some cellular process to make ssDNA available for cleavage. For instance, transposition of IS608, a well-characterized prokaryotic transposase that encodes an HUH nuclease, is dependent on lagging strand DNA replication to generate ssDNA. Alternatively, the ssDNA necessary for the initial steps of Helitron transposition could become available through negative supercoiling shown to induce local melting of dsDNA in AT-rich regions and in eukaryotic cells, negative supercoiling of DNA occurs upstream of the transcription complex, and could generate ssDNA patches required for Helitron transposition. Furthermore, as AT-rich regions can facilitate local DNA melting; perhaps it is not a coincidence that the concensus LTS contains an AT-rich region close to the cleavage site (Supplementary Fig. 1). Both the homology between the Helitron helicase domain and PirI (Supplementary Fig. 3A) and the critical requirement of helicase function for transposition (Fig. 2) support a model, in which the role of the helicase domain is to unwind DNA at ssDNA–dsDNA junctions, once ssDNA has been generated at the transposon ends.

Our data suggesting that Helitron transposition proceeds through a circular intermediate defines a crucial distinction when compared with other known eukaryotic DNA transposons. Whether Helitron transposition is mechanistically related to some ssDNA-based prokaryotic transposition systems or to certain ssDNA virus replication processes remains to be investigated. The lack of local hopping and random distribution of transposon insertions when transposition was initiated from genomic donor loci (Fig. 5) strongly support the idea of episomal transposition intermediates.

The following observations are consistent with a modified rolling-circle model of Helitron transposition: (1) Helitron transposition requires the LTS, while the RTS is not strictly necessary (Fig. 3); (2) the hairpin appears to be the most important component of the RTS as its deletion or of the whole RTS have similar effects on transposition (Fig. 3); and (3) both transposon truncations and transduction of sequences adjacent to the RTS occur ex vivo, and the frequency of these non-canonical transposition events is significantly increased when the hairpin is deleted (Fig. 6). Collectively, the data suggest that the hairpin structure in the RTS plays an important regulatory role in Helitron transposition by serving as a transposition termination signal. Our observations support a ‘read-through’ model of capturing DNA sequences flanking the transposon: when the hairpin is missing from the RTS or is not recognized by the transposition machinery, the transposase bypasses the 3′-end of the transposon and finds an alternative transposition terminator sequence further downstream, resulting in transduction of the flanking host sequence (Fig. 7).

The relatively loose functional definition of the RTS is most likely the core reason why Helitrons can efficiently transduce downstream host genomic sequences. Gene capture may contribute to the emergence and diversification of novel Helitron families and to the generation of novel cellular transcripts. For example, the captured NUBPL gene fragment, when mobilized by the Helraiser transposase into the genome of human cells, gives rise to novel coding and noncoding transcripts by imposed transcription and splicing (Fig. 6c). We identified several HelibatN3 insertions that drive transcription of cellular genes (Supplementary Table 3), and identified transcripts that initiate within the NUBPL insertion. All of these bona fide NUBPL-driven transcripts were N-terminally truncated and had exonized noncoding sequence, most often resulting in a novel 5′-UTR (Supplementary Fig. 5; Supplementary Table 3), as seen with some of the Helraiser-catalysed insertions ex vivo (Fig. 6c).

Transposable elements have been shaping genome structure and function for millions of years, and have exerted a strong influence on the evolutionary trajectory of their hosts (reviewed in ref. 48). The most prominent agents documented to provide alternative promoters, enhancer elements, polyadenylation signals and splice sites are retrotransposons. In addition, it has been shown that ~1,000 cellular gene fragments had been captured by cut-and-paste Pack-MULE DNA transposons in the rice genome, suggesting that these transposons might have played a role in the evolution of genes in plants. It appears that Helitrons also have a profound potential to generate genome variation. Indeed, ~60% of maize Helitrons were found to carry captured gene fragments, adding up to tens of thousands of gene fragments disseminated across the maize genome by
Helitron transposition\(^{31}\). Although most captured gene fragments are apparently undergoing random drift in maize, \(\sim 4\%\) of them are estimated to be under purifying selection, suggesting beneficial effects for the host. Thus, the molecular mechanism of 3’-transduction and subsequent, genome-wide dissemination of captured gene fragments or entire genes by copy-and-paste transposition uniquely positions Helitrons as powerful genome shuffling agents with wide-reaching biological consequences.

Methods

Constructs and PCRs. Detailed cloning procedures of transposon and transposase expression vectors as well as primer sequences for PCRs are provided in Supplementary Notes and Supplementary Table 4.

Cells and transfection. HeLa cells (2 \(\times 10^6\), American Type Culture Collection) were seeded onto six-well plates 1 day before transfection. Two microlitres of jetPRIME transfection reagent (Polyplus Transfection) and 200 \(\mu l\) of jetPRIME buffer were used to transfect 1 \(\mu g\) of DNA (each transfection reaction contained 500 ng transposon donor and 500 ng transposase helper or pBluescript vector (Stratagene). Forty-eight hours after transfection, a fraction of the transfected cells were seeded onto six-well plates 1 day before transfection. Two microlitres of jetPRIME transfection reagent (Polyplus Transfection) and 200 \(\mu l\) of jetPRIME buffer were used to transfect 1 \(\mu g\) of DNA (each transfection reaction contained 500 ng transposon donor and 500 ng transposase helper or pBluescript vector (Stratagene). After 2–3 weeks of selection, colonies were either picked or fixed in 4% paraformaldehyde in PBS and stained with methylene blue in PBS for colony counting and analysis.

Insertion site and copy-number analysis by splinkerette PCR. Transposon copy numbers were determined by splinkerette PCR as detailed in Supplementary Notes.

Circle detection assay. Low-molecular-weight DNA was isolated from transfected HeLa cells and used in a modified inverse PCR protocol to detect Helitron circles. Further details are provided in Supplementary Notes.

Helitron retransposition in HeLa cells. Cells expressing the Helitron transposase were enriched by repeatedly transfecting the HeLa-derived transposon donor H1 cell line containing three unambiguously mapped Helitron insertions with the pCHelR and pHelR. One microlitre of pCHelR helper plasmid and sorting green fluorescent protein-positive cells. We then subjected the pooled DNA of the enriched cell population to high-throughput sequencing of transposition insertion sites. Further details are provided in Supplementary Notes.

Genome-wide insertion site analysis. HeLa cells were transfected as previously described with pCHelR and pHelR. Three weeks post transfection, puro-resistant colonies were pooled and genomic DNA isolated. DNA sequences flanking the transposon end were mapped against the human genome (hg19) with Bowtie\(^{50}\) allowing up to one mismatch. Only uniquely mapped reads matching to the genome without error were kept. Redundant reads mapping to the same genomic location were merged together. We discarded all integrations into genomic loci matching to the last four bases of the transposon end, because these sites could also be mispriming artifacts. Further details are provided in Supplementary Notes.
Protein expression and purification. Point mutations were made using the QuickChange site-directed mutagenesis method (Agilent). Baculovirus production and protein expression were performed by the Protein Expression Laboratory at the National Cancer Institute as detailed in Supplementary Notes.

Cleavage assay and sequencing of cleavage products. DNA cleavage was measured using 6-FAM-labelled oligonucleotides (BioTeZ Berlin-Buch GMBH). Reactions generally consisted of 500 nM DNA substrate and 500 nM protein in buffer (50 mM Tris pH 7.5, 100 mM NaCl, 10 mM MgCl2, 0.5 mM EDTA, 1 mM TCEP) with or without 5 mM MnCl2. Further details are provided in Supplementary Notes.

Electrophoretic mobility shift assay (EMSA). Binding of the Helitron transposase to various DNA oligonucleotides was measured by EMSA using 6% TBE gels (Invitrogen). Purified protein at 15–250 nM was incubated for 30 min at room temperature in binding buffer (50 mM Tris pH 7.5, 100 mM NaCl, 10 mM MgCl2, 0.5 mM EDTA, 1 mM TCEP) with 50 nM 6-FAM-labelled oligonucleotides. To test whether the addition of a nonhydrolyzable ATP analogue could lock Helitron helicase domain into an active conformation and facilitate DNA binding, 1 mM AMP–PNP was added to some of the binding reactions. After addition of DNA gel loading solution (Quality Biological, INC), samples were run on 6% TBE gels and visualized.

References

1. Kapitonov, V. V. & Jurka, J. Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet. 23, 521–529 (2007).
2. Thomas, J. & Pritham, E. J. Helitrons, the eukaryotic rolling-circle transposable elements. Microbiol. Spectr. 3, 893–926 (2015).
3. Dyda, F. et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981–1986 (1994).
4. Kapitonov, V. V. & Jurka, J. Rolling-circle transposons in eukaryotes. Nat. Rev. Genet. 9, 874–871 (2001).
5. Ilyina, T. V. & Koonin, E. V. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaeabacteria. Nucleic Acids Res. 20, 3279–3283 (1992).
6. Koonin, E. V. & Ilyina, T. V. Computer-assisted dissection of rolling circle DNA replication. Biosystems 30, 241–268 (1993).
7. van Mansfeld, A. D., van Teeffelen, H. A., Baas, P. D. & Jansz, H. S. Two classes of single-strand DNA replication proteins of the pUB110 family of plasmids. Nucleic Acids Res. 20, 525–538 (2013).
8. del Pilar Garcillan-Barcia, M., Bernales, I., Mendiola, M. V. & de la Cruz, F. Massive amplification of rolling-circle transposases in plants. J. Mol. Biol. 474, 5991–5997 (1992).
9. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).
10. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
11. Coplen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).
12. Carlson, C. M. et al. Transposon mutagenesis of the mouse germine. Genetics 165, 243–256 (2003).
13. Fischer, S. E., Wiensholds, E. & Plasterk, R. H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl Acad. Sci. USA 98, 6759–6764 (2001).
14. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 95, 10769–10773 (1998).
15. Tower, J., Karpen, G. H., Craig, N. & Spradling, A. C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133, 347–359 (1993).
16. Ron-Hoang, B. et al. Transposition of ISH608, member of an unusual family of bacterial insertion sequences. EMBO J. 24, 3325–3338 (2005).
17. Ron-Hoang, B. et al. Single-stranded DNA transposition is coupled to host replication. Cell 142, 398–408 (2010).
18. Dayn, A., Malkhosyan, S. & Mirkin, S. M. Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res. 20, 5991–5997 (1992).
19. Krasilnikov, A. S., Podtelezhnikov, A., Vologodskii, A. & Mirkin, S. M. Large-scale effects of transcriptional DNA supercoiling in vivo. J. Mol. Biol. 292, 1149–1160 (1999).
20. Strick, T. R., Allemand, J. F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998).
21. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).
22. Rahmouni, A. R. & Wells, R. D. Direct evidence for the effect of transcription on local DNA supercoiling in vivo. J. Mol. Biol. 223, 131–144 (1992).
23. Harvey, R. et al. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis. PLoS Genet. 8, e1002518 (2012).
24. Furet, Z., Dory, D., Grassland, B. & Jestin, A. Replication of porcine circoviruses. Virol. J. 6, 60 (2009).
25. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).
26. Jiang, N., Bao, Z., Zhang, X., Eddy, S. R. & Wessler, S. R. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431, 569–573 (2004).
27. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
28. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

Acknowledgements

We are grateful to T. Rasko´ and A. Szvetnik for their technical assistance in some of the experiments, A. Hickman for invaluable advice and help in writing the manuscript, and C. Feschotte and L. Hurst for critically reading the manuscript. This research was supported in part by the National Cancer Institute as detailed in Supplementary Notes.
partially funded by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, USA.

Author contributions

I.G. did most of the experimental work and wrote the paper; S.A.M. did the in vitro DNA-binding and cleavage assays; J.T. did bioinformatic analysis on Myotis genomes to annotate novel transposon ends; R.L.C. did bioinformatic analysis on the *M. brandti* transcriptome to annotate novel Helitron-generated transcripts; I.B. cloned some of the transposon vectors and tested them in cell culture; C.M. generated PCR libraries representing transposon insertions; A.G.-D. bioinformatically analysed de novo insertions; V.K. used bioinformatics to predict the sequence of Helraiser; T.D. tested non-autonomous transposons for activity and generated NUBPL-promoter-captured transcripts in cell culture; A.D. carried out transposition assays in cell culture; J.J. contributed to Helraiser sequence prediction; E.J.P. supervised bioinformatic work on the *M. brandti* genome and transcriptome, and wrote the paper; F.D. supervised in vitro work with purified transposase and wrote the paper; Z.Iz. supervised some of the cell culture-based work and wrote the paper; Z.Iv. conceived the study, designed some of the transposon vectors, supervised most of the experimental work and wrote the paper.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Grabundzija, I. *et al.* A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. *Nat. Commun.* 7:10716 doi: 10.1038/ncomms10716 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/