Germination performance of *Coffea arabica* L. genotypes from different altitude, precipitation and temperature of seeds producing farms in Sumatera Utara of Indonesia

S Malau¹, A Siagian², B Sirait³ and H Ambarita⁴

¹Department of Agroecotechnology, Faculty of Agriculture, Universitas HKBP Nomensen, Medan, Indonesia.
²Faculty of Public Health, Universitas Sumatera Utara, Medan, Indonesia
³Faculty of Agriculture, Universitas Darma Agung, Medan, Indonesia
⁴Faculty of Engineering, Universitas Sumatera Utara, Medan, Indonesia
e-mail: sabam.malau@uhn.ac.id

Abstract. Genotypes of Arabica coffee could perform different ability in seed germination. Biochemical contents of seeds could influence germination ability of seeds. Many studies reported that environment of seed producing site such as altitude, precipitation and temperature could affect amount of biochemical contents of seeds. However, germination ability of seeds of arabica coffee growing in different altitude and different climate zones of Sumatera Utara was not yet investigated. This research tested the effect of genotypes and these factors. Seven genotypes from seven different climate zones in seven districts of Sumatera Utara were tested for germination ability using randomized complete block design. The result showed that genotypes were significantly (α = 0.05) and highly significantly different (α = 0.01) in number of days to reach 80 % germination, percentage of germination, height of cotyledon, and height of the first leaf. Number of days to reach 80 % germination showed a significant negative correlation (r = -0.930**) with percentage of germination but a significant positive correlation (r = 0.759*) with altitude of farms. It could be concluded that Arabica coffee genotypes affected seed germination ability. Seed germination ability was more affected by elevation of seed producing location rather than by precipitation and temperature.

1. Introduction
Phenotype of plants depends on genotype (G), environment (E) and their interaction (GxE). Coffee genotype and environment such as altitude, precipitation, temperature, year, and location during bean development affect chemical contents of seed of coffee, bean weight, bean size, and taste quality [1-10]. The biochemical contents include caffeine, trigonelline, fat, sucrose, chlorogenic acids, ketones, aldehydes, phenolic compounds, norisoprenoids, pyrazines, and terpenes. Genotypes might produce different amount of the same chemicals at different location or at different year (Y) due to GxE or GxExY interaction [9]. The more the altitude is, the higher the content of sucrose in the seeds [11].

In North Sumatra Province of Indonesia, Arabica coffee were planted in Districts of Humbang Hasundutan, Simalungun, Pakpak Bharat, Samosir, Dairi, Tapanuli Utara, Toba Samosir, Karo, Mandailing Natal and Deli Serdang. In these provinces, coffee farms of arabica coffee located at various altitudes (700-1800m asl) and various climate zones (A1, B1, C1, D1, D2, E1, E2 dan E3).
Based on it, seeds of Arabica coffee may have different amounts of biochemical substances. Since biochemical substances of seeds must be changed into energy, amino acids, fat, and enzymes during germination process [12], differences in amount of biochemical substances in coffee seeds may cause different germination ability. However, information on germination ability of seeds of Arabica coffee growing in different altitude and different climate zones of Sumatra Utara was not yet available. The goal of this research was to determine seed germination ability of arabica coffee found at coffee growing areas in Sumatra Utara. The hypotheses were that genotypes could be significantly different in germination abilities as well as that germination parameters could perform significant correlation with altitude, precipitation and temperature of the seed producing farm.

2. Materials and Methods

Seven districts were chosen based on level of coffee production level and accessibility. Data of length of the rainy season and the precipitation of the climate zones are presented in Table 1.

Climate zone	Length of rainy season (month)	Minimum precipitation (mm/year)	Maximum precipitation (mm/year)	Average precipitation (mm/year)
A1	10 (March - December)	3108	4388	3822
B1	8 (May - December)	2595	3104	2933
C1	5 (August - December)	1750	3957	2729
D1	4 (August - December)	1705	3085	2274
D2	3 (September - November)	1749	2409	1911
E1	2 (September - October)	1615	2145	1922
E2	2 (September - October)	1172	2233	1685

Table 1. The length of rainy season and precipitation of the climate zones [13].

Then, one coffee farm in each district was selected based on the climate zones map of Sumatera Utara [13]. Data of the altitude of the selected farms of coffee was recorded by using Garmin GPS MAP 78s while data of the temperature of the selected farms were collected from districts statistics [14] (Table 2). In each selected farm, 200-400 coffee plants with age of 6-7 years were producing ripe fruits, having harvest frequency of once in two weeks, and performing shoot of bronze-colored leaves. Coffee plants of selected farms were growing without shade. According to information of the owner of the coffee farm, parental plant originated from the same climate zone. In each farm, all red riped fruits of ten best plants were harvested separately for germination test. Normal flat seeds were used for germination test [15]. Randomized complete block design with three replication was used [16]. Germination test was conducted in 2014-2015 in the green house of Agriculture Faculty of Universitas HKBP Nommensen, Medan. Parameters were: number of days after sowing to reach 80% germination (day), percentage of germination (%), height of cotyledon (cm), and height of the first leaf as it opened (cm). Germination percentage, cotyledon height, and the first leaf height were recorded at age of 90 days after sowing. Comparison between treatment means was conducted by using Fisher’s LSD test. Besides, analysis of simple correlation coefficient and determination coefficient were also carried out.
Table 2. Districts, climate zone, genotype, altitude and temperature of selected coffee farms

Districts	Climate zone of selected coffee farms	Selected genotypes	Altitude of selected coffee farms (m)	Average temperature of selected coffee farms (°C)
Humbang Hasundutan	A1	HuA1	1122	23.3
Simalungun	B1	SiB1	1061	23.1
Pakpak Bharat	C1	PbC1	897	22.9
Samosir	D1	SaD1	1323	22.5
Dairi	D2	DaD2	1603	21.8
Tapanuli Utara	E1	TaE1	1221	23.6
Toba Samosir	E2	ToE2	956	23.6

3. Result and Discussion

The genotypes were significantly different (α = 0.05) in number of days to reach 80% germination (Table 1). The genotypes performed highly significantly different (α = 0.01) in percentage of germination, height of cotyledon, and height of the first leaf. Genotype TaE1 reached 80% germination in 59.00 days while DaD2 reached 80 % germination in 65.00 days (Table 2). The highest percentage of germination (98.00 %) was shown by PbC1 while the lowest one (87.33) was performed by DaD2. HuA1 had the highest cotyledon (6.40 cm) while SaD1 showed the lowest one (5.37 cm). The highest first leaf (12.6 cm) was perfomed by SiB1. SaD1 showed the lowest first leaf (9.67 cm). Number of days to reach 80 % germination had a significant negative correlation (r = -0.930**) with percentage of germination as well as a significant positive correlation (r = 0.759*) with elevation of farm of seed source (Table 5). Percentage of germination and height of cotyledon significantly and negatively correlated with elevation of farm of seed source.

Table 3. Mean square of number of days to reach 80% germination, percentage of germination, height of cotyledon, and height of the first leaf.

Parameter	Replication (df = 2)	Genotype (df = 6)	Error (df = 12)	Coefficient of variation (%)
Number of days to reach 80% germination (day)	0.3333	15.7143*	3.6667	3.11
Percentage of germination (%)	4.6190	36.7143**	5.2857	2.48
Height of cotyledon (cm)	0.0186	0.5408**	0.0891	5.02
Height of the first leaf (cm)	0.1600	2.8727**	0.5522	6.71
F_{0.05}	3.00			
F_{0.01}	4.82			

f = degree of freedom, MS = mean of square, ns = not significant, * = significant at α = 0.05; ** = significant at α = 0.01.; F_{0.05} = value of F tabular at α = 0.05; F_{0.01} = value of F tabular at α = 0.01.
Table 4. Number of days to reach 80% germination, percentage of germination, height of cotyledon, and height of the first leaf.

Climate zone of selected farms	District of selected farms	Selected genotype	N80 (day)	PGe (%)	HCo (cm)	HFL (cm)
A1	Humbang	HuA1	63.00 a-c	91.00 b-c	6.40 a	10.03 d-f
B1	Simalung	SiB1	60.67 b-d	94.33 a-c	6.20 a-c	12.60 a
C1	Pakpak Bharat	PbC1	59.33 d-f	98.00 a	6.33 ab	11.50 ab
D1	Samosir	SaD1	63.67 ab	90.33 c-f	5.37 e-g	9.67 fg
D2	Dairi	DaD2	65.00 a	87.33 e-g	5.47 ef	11.47 c
E1	Tapanuli Utara	TaE1	59.00 d-g	95.00 ab	5.70 c-e	11.20 b-d
E2	Toba Samosir	ToE2	60.67 b-e	92.33 b-d	6.13 a-d	11.03 b-e

LSD_{0.05} = 3.41, 4.09, 0.53, 1.32

N80 = number of days to reach 80% germination (day), PGe = percentage of germination (%), HCo = height of cotyledon (cm), HFL = height of the first leaf opened (cm). LSD_{0.05} = least significant difference at α = 0.05, the means in the same column which followed by common letters were not significantly different at α = 0.05 level based on Fisher’s LSD test.

Table 5. Simple correlation coefficient (r, above) and coefficient of determination (r^2, below) among seedling parameters, precipitation, altitude and temperature.

	PGe (%)	HCo (cm)	HFL (cm)	AvP (mm)	MiP (mm)	MaP (mm)	Ele (m asl)	AvT (°C)	
N80 (day)	-0.930**	-0.485ns	-0.424ns	0.070ns	0.207ns	0.065ns	0.004	0.576	-0.751ns
PGe (%)	x 0.865	0.235	0.180	0.005	0.043	0.065ns	0.576	0.564	
HCo (mm)	x 0.314	0.560ns	0.391ns	0.148ns	-0.057ns	0.231ns	-0.798*	0.581ns	
HFL (mm)	x 0.070	0.314	0.153	0.022	0.003	0.053	0.637	0.338	

n = 7, * = significant at α 0.05 = 0.754, ** significant at α 0.01 = 0.874; ns = not significant; N80 = number of days to reach 80% germination (day), PGe = percentage of germination (%), HCo = height of cotyledon (cm), HFL = height of the first leaf as opened (cm), AvP = average precipitation at farms (mm), MiP = minimum precipitation at farms (mm), MaP = maximum precipitation at farms (mm), Ele = elevation of farms (m asl), AvT = Average temperature at farms.

This research revealed that genotypes were significantly different in germination ability in reaching 80% germination (Table 1). This result agreed with [6]. The significant difference of genotypes in germination percentage (Table 1) was in contrary with [6]. Germination ability in reaching 80% germination negatively affected percentage of germination but did not affect cotyledon height and the first leaf height (Table 5).

Elevation positively affected germination ability in reaching 80% germination (Table 5). The higher the seed producing site was, the less the number of days. The cause might be the sucrose amount in the seeds as sucrose was converted into energy during germination. Amount of sucrose in the seed increased as elevation of seed producing farm increased [11]. Germination of coffee seed is indicated by radicle protrusion. It had been proven that both embryo growth and weakening of the endosperm cap controlled radicle protrusion [17]. However, no research findings were reported that...
embryo development and endosperm cap are affected by elevation of seed producing farm. Hence, in the future it has to be researched.

No research findings can be found that could explain why the elevation is negatively correlated with cotyledon height and first leaf height. The cause might be the content of sucrose. As the faster the germination took place, the more the sucrose was used, the less the sucrose amounts was available to increase height of cotyledon and height of the first leaf. Consequently, elevation was negatively correlated with cotyledon height and first leaf height.

Precipitation at farms did not correlate with seed germination paramaters (Table 5). The precipitation level (Tabel 1) could have provided the minimum and maximum need of water for seed development [18] so that all seeds had the same germination ability. In contrary to the formation of germination ability of seed, however, the optimal precipitation for seed production were 1500-2000 mm/year [19].

Temperatures of the seed producing farms did not correlate with seed germination parameters (Table 5). It might be because all genotypes grew at the range of the optimum temperatures (20-25 °C; Table 2) [15, 19-20] which could cause the same development of seed. Temperature at above 25°C had a large inhibitory effect by reducing photosynthesis [21].

For coffee breeding, the result of this research could has an implication. Elevation of seed producing site must be considered in selecting the best genotypes in seedling performance. However, because this research was conducted with nonfactorial experiment, GxE interaction was not able to be calculated. Hence, factorial experiment must be carried out in future research to evaluate GxE interaction.

4. Conclusion
This research revealed that genotypes affected germination ability of coffee seed. In comparison to precipitation and temperature of seed producing site, elevation had more effect on seed germination ability. Interaction of genotype and environmental factors was not investigated by this research. In the future, research is needed to study this interaction.

5. References
[1] Avelino J, Barboza B, Araya JC, Fonseca C, Davrieux F, Guyot B and Cilas C 2005 Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa Mar’ia de Dota. J Sci Food Agric 85:1869–1876.
[2] Joët T, Bertrand B and Dussert S 2015 Environmental effects on coffee seed biochemical composition and quality attributes: a genomic perspective. In : Proceedings of the 25th International Conference on Coffee Science. ASIC. Paris : ASIC, pp. 42-49. https://www.researchgate.net/publication/280527787
[3] Leonel LE and Philippe V 2007 Effect of altitude, shade, yield and fertilization on coffee quality (Coffea Arabica L. var. Caturra) produced in agroforestry systems of the Northern Central Zones of Nicaragua. In: 2nd International Symposium on Multi-Strata Agroforestry Systems with Perrennial Crops. Costa Rica. DOI: 10.13140/RG.2.1.4689.1289.
[4] Malau S, Siagian A, Sirait B, Pandiangan S 2017 Performance of coffee origin and genotype in organoleptic and physical quality of Arabica coffee in North Sumatra Province of Indonesia. 1st Nommensen International Conference on Technology and Engineering. IOP Conf. Series: Materials Science and Engineering 237 (2017) 012035 doi:10.1088/1755-899X/237/1/012035.
[5] Ribeiro DE, Borem FM, Cirillo MA, Prado MVB, Ferraz VP, Alves HMR and Taveira JHDS 2016 Interaction of genotype, environment and processing in the chemical composition expression and sensorial quality of Arabica coffee. Afr. J. Agric. Res. 11(27):2412-2422. DOI: 10.5897/AJAR2016.10832
[6] Saefudin and Wardiana E 2013 Pengaruh varietas dan tingkat kematangan buah terhadap perkecambahan dan fisik benih kopi arabika. Buletin RISTRI 4 (3): 245-256. (Indonesian).
[7] Tolessa K, D’heer J, Duchateau L and Boeckx P 2016 Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J Sci Food Agric. (wileyonlinelibrary.com) DOI 10.1002/jsfa.8114

[8] Tran HTM, Vargas CAC, Lee LS, Furtado A, Smyth H and Henry R 2017 Variation in bean morphology and biochemical composition measured in different genetic groups of arabica coffee (Coffea arabica L.). Tree Genetics & Genomes (2017) 13:54. DOI 10.1007/s11295-017-1138-8.

[9] Villarreal D, Laffargue A, Posada H, Bertrand B, Lashermes P and Dussert S 2009 Genotypic and environmental effects on coffee (Coffea arabica L.) bean fatty acid profile: impact on variety and origin chemometric determination. J. Agric. Food Chem. 2009, 57, 11321–11327. DOI:10.1021/jf902441n.

[10] Woldemeskel AL 2017 Genotype x environment interaction and stability analysis of some promising Iluababora coffee (Coffea arabica L.), genotypes for yield and yield related traits in Southwestern Ethiopia. MSc Thesis. Jimma University, Ethiopia.

[11] Worku M, De Meulenaer B, Duchateau L, Boeckx P 2018 Effect of altitude on biochemical composition and quality of green Arabica coffee beans can be affected by shade and postharvest processing method. Food Research International 105:278–285.

[12] Shimizu MM and Mazzafera P 2000 Compositional Changes of Proteins and Amino Acids in Germinating Coffee Seeds. Braz. arch. biol. technol. vol.43 no.3. http://dx.doi.org/10.1590/S151689132000000300003 http://www.scielo.br/pdf/babt/v43n3/v43n3a03.pdf

[13] Sudrajat A 2009 Pemetaan klasifikasi iklim Oldeman dan Schmidt-Fergusson sebagai upaya pemanfaatan sumberdaya iklim dalam pengelolaan sumberdaya alam di Sumatera Utara. Master Thesis, North Sumatra University, Medan. (Indonesian). http://repository.usu.ac.id/bitstream/123456789/6498/1/10E00148.pdf

[14] BMKG (2017): Prakiraan cuaca Sumatra Utara. http://www.bmkg.go.id/cuaca/prakiraan-cuaca-indonesia.bmkg?Prov=34&NamaProv=Sumatera%20Utara. (Indonesian).

[15] Wahyudi T, Pujiyanto and Misnawi 2016 Kopi : sejarah, botani, proses produksi, pengolahan, produksi hilir, dan sistem kemitraan. Gama Press. Yogya. 890p. (Indonesian).

[16] Gomez AK and Gomez AA 1984 Statistical procedures for agricultural research. John Wiley & Sons. NY. http://pdf.usaid.gov/pdf_docs/PNAAR208.pdf.

[17] DuSilva EAA 2002 Coffee (Coffea arabica cv. Rubi) seed germination: mechanism and regulation. Doctor Dissertation. Wageningen University.

[18] Eira MTS, Da Silva EAA, De Castro RD, Dussert S, Walters C, Bewley JD and Hilhorst HW 2006 Coffee seed physiology. Braz. J. Plant Physiol., 18(1):149-163.

[19] Winston E, de Laak JO, Marsh T, Lempke H, Chapman K (2005): Arabica coffee manual for Lao-PDR. FAO. http://www.fao.org/docrep/008/ae939e/ae939e00.htm#Contents

[20] DaMatta FM and Ramalho JDC 2006 Impacts of drought and temperature stress on coffee physiology and production: a review. Braz. J. Plant Physiol. 18:55-81.

[21] Nunes MA, Bierhuizen JF and Ploegman C 1968 Studies on productivity of coffee. I. Effect of light, temperature and CO₂ concentration on photosynthesis of Coffea arabica. Acta Bat. Neerl. 17(2): 93-102.

Acknowledgements
The authors thank the Ministry Ministry of Research, Technology and Higher Education for funding this research with grant number 0100/E5.1/PE/2015 dated 19 January 2015.