Implementing TOPbase/Iron Project: Continuous Absorption from Fe\n
Charles R. Cowley1* and Manuel Bautista2†
1Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1090, USA
2IVIC, Laboratorio de Fisica Computacional, Apdo 21827, Caracas 1020A, Venezuela

Accepted

ABSTRACT

We discuss implementation of TOPbase and Iron Project opacities for stellar spectral codes. We use a technique employed by Peach, where a Boltzmann-averaged cross section is calculated for selected temperatures, and the opacity obtained from double interpolation in temperature and wavelength. It is straightforward to include all levels for which cross sections have been calculated. Boltzmann-averaged cross sections for Feii show a local maximum between 1700 and 2000\AA. We suggest this feature arises from 3d54snl \rightarrow 3d54pnl transitions within Feii. IUE spectra of iron-rich CP stars show local minima in this region. Theoretical calculations of a representative stellar continuum demonstrate that Feii photoionization contributes significantly to the observed minima.

Key words: atomic data; atomic processes; stars – atmospheres; stars – chemically peculiar

1 INTRODUCTION AND RATIONALE

State of the art Photoionization cross sections have been available from The Opacity Project (Seaton 1994, The Opacity Project Team, 1995) for more than a decade. Nevertheless, stellar atmospheres codes have been slow to fully incorporate these results. Surely, one reason for the delay in adopting these calculations is that metal opacities are not particularly important for many stellar atmospheres. The well-known opacities from hydrogen, bound-free, and H−, usually dominate other sources.

But it is also tedious to incorporate the detailed TOPbase results into workable subroutines with typical algorithms, which treat levels individually, or in groups. This technique is difficult for complex atoms, where no simple parameterization can describe all of the cross sections adequately. In this paper, we propose adoption of the method used by Peach (1967), which provides a practical solution to this problem. We then discuss an example of stellar continuum calculations that uses TOPbase/Iron Project cross sections along with her algorithm. We first outline the general problem of dealing with the TOPbase/Iron Project material.

Photoionization cross sections in TOPbase are given for typically hundreds of levels. For each level, the cross sections may be given several hundred to a thousand photon energies. The cross sections include large deviations from the smooth hydrogenic functions, that are possible in multi-electron systems. The resulting features may be quite sharp, being essentially spectral lines, or they can be broader, when there is strong interaction between bound and continuum states. Not only do Fano profiles appear, but also broad, deep absorption minima (Cooper minima), which result from nodes in the radial wave functions. These are especially apparent in transitions involving s-electrons, as in Na I. Broad absorption maxima can result from photoexcitation of core electrons (PEC), essentially bound-bound transitions of inner electrons. These maxima can appear in the cross sections of numerous levels.

A consensus has emerged that it is permissible to smooth over the resonances of photoionization cross sections (cf. Bautista, Romano, and Pradhan 1998, Prieto et al. 2002). This smoothing affects the sharp features which we shall call high-frequency components, but leaves broader ones, such as Cooper minima or PEC. Prieto has published a number of resonance-smoothed photoionization cross sections (RSP) on his website:

http://hebe.as.utexas.edu/at/at.cgi

Our current opacity routines use the Prieto RSP’s for all atoms and ions with the exception of Fe I and II. Specifically, the following atoms and atomic ions are included: Li I, Be I and II, B I and II, C I, Na I, Mg I and II, Al I, Si I and II, S I, and Ca I and II.

For Fe I, we have sampled each 100\AA material discussed by Bautista (1997). The Fe II cross sections are

* E-mail: cowley@umich.edu
\† E-mail: mbautist@ivic.ve
from a web site of Dr. Nahar
http://www-astronomy.mps.ohio-state.edu/~nahar/

While the RSP’s omit some of the higher TOPbase levels, they may still contain several hundred levels (e.g. Si i), with several hundred data points for each level. If all of this information were included in a standard FORTRAN data statement, the result would be thousands of records long. However, for practical calculations, the individual cross sections are not necessary. We need only their appropriately weighted sums.

2 ALGORITHM AND CALCULATIONS

The continuous opacity due to a given atom or atomic ion is the weighted sum of the cross sections over a number of levels. We define the K-factor:

\[K_{\text{fact}} = \sum \frac{g_n \cdot \exp[-(\chi_n/kT)] \cdot \sigma_n(\lambda)}{u_i(T)} \]

(1)

Here, \(g_n \) is the statistical weight of the level \(n \), \(\chi_n/kT \) the appropriate Boltzmann factor, and \(\sigma_n(\lambda) \) is the photoionization cross section.

Consider the opacity due to photoionizations from level \(n \) of an atom or atomic ion in the \(i \)th ionization stage. Write the corresponding number density as \(N_{n,i} \). Put \(N_{i,t} \) for the sum of the \(N_{n,i} \)’s in the \(i \)th stage of ionization. We have

\[N_{n,i} = N_{i,t} \cdot \frac{g_n}{u_i(T)} \cdot \exp(-\chi_n/kT), \]

(2)

where \(u_i(T) \) is the partition function for the \(i \)th ionization stage. The opacity due to all levels \textit{from this ion} is thus

\[\chi_i(\lambda) = N_{i,t} \cdot \frac{1}{u_i(T)} \cdot K_{\text{fact}}. \]

(3)

In LTE, this K-factor is a function only of the temperature and wavelength. Since it is a sum over cross sections, some of the high-frequency structure for individual levels will be smoothed. One sees primarily, the absorption edges, and the most pronounced structure, for example, the PEC. The algorithm consists of computing this K-factor over the wavelengths likely to be or relevance, say from 500 to 8000Å, for a relatively small number of temperatures. It is straightforward to include all of the levels in TOPbase, or the RSP’s.

The opacities for any given atom or atomic ion are then found from bilinear interpolations in this temperature-wavelength grid.

We have calculated the K-factor at 20Å intervals, for all species except for Fe i.

With 20Å sampling, K-factors were first obtained for 376 points \([5000-50000)/20 + 1\]. Then, unnecessary points were eliminated wherever “interior” data could be fit by linear interpolations from bounding points to within 2%. For example, if the data at λ4020 could be fit by interpolation between the points at λλ4000 and 4040, the point at λ4020 was dropped. This technique resulted in considerable shortening of the data statements, especially for lower temperatures.

The current routines for Fe i and II are considered provisional, because they have not been resonance smoothed. The Nahar Fe II photoionization file is some 33 megabytes in size, and contains cross sections for 745 states (or “LS-multiplets”). We computed K-factor’s every 20Å \((\lambda\lambda500-8000)\) for 8 temperatures (2000 - 16000K). The adopted cross section at each of the grid wavelengths is an average of the nearest four TOPbase points. We have postponed improving this algorithm until smoothed cross sections are available. The current Fe II subroutine is some 360 FORTRAN statements, including data statements, comments, and commented diagnostics. Comparisons between the K-factors for smoothed and unsmoothed cross sections for lighter species show differences in detail, but not major trends, extending over tens of angstroms. The feature discussed below is relatively broad.

Fig. 1 shows plots of the K-factors for Fe II at 7000 and 12000K, based on the Nahar data file. The dotted line shows the resulting “H-factors,” that is, where the photoionization cross sections are all assumed hydrogenic (Cowan 1981, Eq. 18.47). The feature between about 1700 and 2000Å is notable. We suggest that it arises from core photoexcitations \(3d^54snl \rightarrow 3d^54pnl\) within Fe II. It is important to notice that in these sort of transitions the outer \(nl\) electron acts as spectator and has only little effect on the wavelengths and radiative rates of the core transitions. The related \(3d^54s \rightarrow 3d^54p\) transitions in Fe III give rise to the strong lines in UV Multiplets 34, 50, 51, and 52. We have made a further investigation of the nature of the \(3d^54snl \rightarrow 3d^54pnl\) transitions in Fe II using the atomic structure code AUTOSTRUCTURE (Badnell 1986, 1997; Badnell & Pindzola 1989). This code is an extension of the atomic structure program SUPERSTRUCTURE by (Eissner et al. 1974). It allows for the calcu-
Implementing TOPbase/Iron Project: Continuous Absorption from Fe II

Figure 3. Intensity factors for Fe II lines subject to autoionization. The ordinate, log(g_f) − 0.5 · χ, is roughly proportional to the logarithm of the strength of an absorption line if saturation did not occur. The logarithmic Boltzmann factor, corresponds to $\theta = 5040 / T = 0.5$ or 1080K.

Fe II 3d5 4snl --> 3d5 4pnl

![Figure 3](image)

Figure 5. Calculated continuum fluxes for $T_e = 11600K$, and log(g) = 3. The plots, from upper to lower show results for iron and silicon 0.1–, 1.0–, and 10.0–times solar abundances.

3 OBSERVATIONS

IUE spectra of iron-rich stars show significant depressions in the wavelength range from roughly 1700-1800 Å, as is shown in the top 4 panels of Fig. 4. These spectra were downloaded from the url http://archive.stsci.edu/iue/. Because of the high noise level of the spectra, we have chosen to plot only the maxima within 10Å regions. Complete spectra may be seen at the url cited in the figure. Smith and Dworetsky (1993) report high iron abundances in 112 Her, and HR 6000. The magnetic Ap star α2 CVn has long been known to be iron rich (cf. Cohen 1970), while Muthsam and Cowley (1984) showed HR 6870 (HD 168733) to be quite iron rich. The stars 87 Psc and 53 Tau are iron poor (see Smith and Dworetsky 1993), and their spectra lack the strong minima seen in the other four stars.

Lanz, et al. (1996) discuss the region on the short wavelength side of 1600 Å. The interpretation is not straightforward, though the figures shown here are clearly relevant for any interpretation. Note that HR 6000, notorious for its lack of strong Si II lines in ground-based photographic spectra, also lacks the depression short of λ1600 (cf. Andersen, et al. 1984).

4 APPLICATION TO Fe II

Fig. 5 shows calculated spectra in the wavelength region under consideration. The model was based on the adopted parameters of Kochukhov et al. (2002), an effective temperature of 11600K and log(g) = 3.0. We also followed these authors in using crude abundances to set the model. We took abundances 0.1 SAD (Grevesse and Sauval 1998) for elements helium through neon, and 10 SAD for all heavier elements. This was only for the determination of the temperature-pressure structure. A flux-constant model was derived from an Atlas 9 model (Kurucz 1993), but the depth dependence was recalculated using Michigan routines as described in earlier papers (cf. Cowley 1996), except that our opacity routines now incorporate TOPbase data for the species enumerated above.

The three curves were all based on the same $T(\tau)$, though a new pressure structure was calculated based on the
The calculations show clearly that the FeII continuum is significant in this region. Of the three calculated minima, the one at the shortest wavelength (about λ1640) is not well matched to the observations. It is certainly FeII and not Si, as a separate calculation (not shown) has revealed. There is a possibly corresponding feature to be seen in the spectra of α2CVn and HR 6000, though much weaker than in the calculations. This region deserves further study.

The two longer-wavelength minima, at approximately $\lambda\lambda$1700 and 1740 fit the observations of the iron-rich spectra reasonably well. There is a small discrepancy in the wavelengths; the calculated minima are some 20 to 30\AA\ short of the stellar minima. But these discrepancies are 2\% or less, well within the accuracy with which energy levels in FeII were calculated (cf. Nahar and Pradhan, op. cit. Table 1).

5 CONCLUSIONS

Some of the absorption in the region $\lambda\lambda$1700–2000 of the spectra shown in Fig. 2 will result from the strong transitions in FeII as well as the multiplets mentioned above in FeIII. But we show here that a measurable contribution to the depression must be due to the specific shapes of the FeII photoionization cross sections. Note that the lowest of the levels shown in Fig. 2 at 9.38eV is the 76th level above ground. Any attempt to treat higher levels in FeII by a hy-
Figure 4. The top four panels are IUE spectra of iron-rich stars. The lower two panels show stars with iron deficiencies. Only the highest points within 10Å intervals are plotted. The original spectra are available on line at the site: http://archive.stsci.edu/iue/.

drogenic approximation or simple parameterization would miss the relevant structure.

A number of loose ends need to be tidied before our metal opacity routines can be considered satisfactory. We need smoothed cross sections for Fe I and II, as well as other heavy species, such as Mn I and II or Co I and II that can be relevant for special stars. It is also necessary to make sure that the partition functions used with the TOPbase/Iron Project cross sections are compatible with those levels. Provisional, spot checks for a few spectra show that this is not likely to be a serious problem, as the calculated levels are usually within a few per cent of the laboratory values. Line opacity was not relevant for the current calculations. Eventually, we must consider the overlap between the TOPbase “resonances” and predicted lines in the Kurucz data base.

These are matters for future contributions.
ACKNOWLEDGMENTS

We thank D. J. Bord, F. Castelli, R. D. Cowan, R. L. Kurucz, S. Johansson, L. L. Lohr, S. Nahar, A. K. Pradhan, and M. J. Seaton for various comments and advice. We join many astronomers grateful to the workers at the IUE Project and Space Telescope Multimission-Archive for providing observational material in such convenient and useful forms. Apologies are surely due to others whose names were inadvertently omitted.

REFERENCES

Andersen, J., Jaschek, M., Cowley, C. R. 1984, Astron. Astrophys., 132, 354.
Badnell, N. R. 1986, J. Phys. B: Atom. Mol. Opt. Phys., 19, 3827
Badnell, N. R. 1997, J. Phys. B: Atom. Mol. Opt. Phys., 30, 1
Badnell, N. R., Pindzola, M. S. 1989, Phys. Rev. A, 39, 1685
Bautista, M. A. 1997, Astron. Astrophys. Suppl., 122, 167.
Bautista, M. A., Romano, P., Pradhan, A. K., 1998, Ap. J. Suppl., 118, 259.
Cowan, R. D., 1998, The Theory of Atomic Structure and Spectra, U. Calif. Press, Ap.J, 245, 208
Cohen, J. G. 1970, Ap. J., 159, 473.
Cowley, C. R., 1996, in Proceedings of the 5th Vienna International Workshop on Stellar Atmospheres and Spectral Synthesis, ASP Conf. Ser., No. 108, p. 170.
Eissner W, Jones M., Nussbaumer, H. 1974, Comput. Phys. Commun., 8, 270.
Eissner, W., Nussbaumer, H. 1969, J. Phys. B, 2, 1028
Grevesse, N., Sauval, A. J., 1998, Sp. Sci. Rev., 85, 161.
Kochukhov, O., Piskunov, N., Ilyin, I., Ilyina, S., Tuominen, I. 2002, Astron. Astrophys., 389, 420.
Kurucz, R. L., 1993, CD-ROM 13, Smithsonian Ap. Obs. Lanz, T. Artru M.-C., Le Dourneuf, M., Hubeny, I. 1996, Astron. Astrophys., 309, 218.
Muthsam, H., Cowley, C. R. 1984, Astron. Astrophys., 130, 348.
Nahar, S. N., Pradhan, 1994, A. K., J. Phys. B., 27.
Peach, G., 1967 Mem. R. A. S., 71, 29.
Prieto, C. A., Hubeny, I, Lambert, D. L., Lanz, T. 2002, in Modelling of Stellar Atmospheres, IAU Symp., 210, ASP Conf. Ser. (in press).
Seaton, M. J., 1994, MNRAS, 266, 805.
Smith, K. C., Dworetsky, M. M. 1993, Astron. Astroph., 274, 335.
The Opacity Project Team, 1995, The Opacity Project, Vol. 1.