The *Capsella rubella* genome and the genomic consequences of rapid mating system evolution

Tanja Slote1-2, Khaled M Hazzouri1,4, J Arvid Ågren1, Daniel Koenig5, Florian Maumus6, Ya-Long Guo7, Kim Steige2, Adrian E Platts8, Juan S Escobar1, L Killian Newman1, Wei Wang1, Terezie Mandáková9, Emilio Vello8, Lisa M Smith5, Stefan R Henz5, Joshua Steffen10,11, Shohei Takuno12,13, Yaniv Brandvain14, Graham Coop14, Peter Andolfatto15,16, Tina T Hu15,16, Mathieu Blanchette17, Richard M Clark10, Hadi Quesneville8, Magnus Nordborg18, Brandon S Gaut12, Martin A Lysak3, Jerry Jenkins19, Jane Grimwood19, Jarrod Chapman20, Simon Prochnik20, Shengqiang Shu20, Daniel Rokhsar20,21, Jeremy Schmutz19,20, Detlef Weigel5 & Stephen I Wright1,2

The shift from outcrossing to selfing is common in flowering plants1,2, but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by *Capsella rubella*, which became self compatible <200,000 years ago. We report a *C. rubella* reference genome sequence and compare RNA expression and polymorphism patterns between *C. rubella* and its outcrossing progenitor *Capsella grandiflora*. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in *Arabidopsis*, in which self fertilization evolved about 1 million years ago. Comparisons of the two *Capsella* species showed evidence of rapid genome-wide relaxation of purifying selection in *C. rubella* without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.

The switch from obligatory outcrossing to predominant self fertilization in plants is one of the most striking and repeated examples of convergent evolution1,2. Selfing is thought to be favored because of its inherent transmission advantage, as well as the advantage of assured reproduction when mates, pollinators or both are scarce. Selfing should evolve whenever these advantages outweigh the costs associated with inbreeding depression1. In contrast to the immediate benefits of selfing, reduced effective recombination rates, greater population subdivision and more frequent genetic bottlenecks may incur longer-term costs as a result of reductions in effective population size and selective interference among linked sites4, all of which are potential contributors to the high rates of extinction of selfing lineages5. A key problem in understanding the causes and consequences of the evolution of selfing has been partitioning the changes that occurred after the mating system evolution, as many species diverged before the evolution of selfing. As an example, *Arabidopsis thaliana* probably became selfing only several million years after it was established as a separate species6,7.

A unique opportunity to understand the evolution of selfing is offered by the genus *Capsella*, which is from the same family as *Arabidopsis*. The highly selfing species *C. rubella*, found throughout much of southern and western Europe, separated less than 200,000 years ago from the self-incompatible, obligate outcrosser *C. grandiflora*, which is restricted primarily to the northwest of Greece8,9. In contrast to *Arabidopsis*, the breakdown of self incompatibility in *Capsella* was concurrent with species divergence8-10.

We shotgun sequenced the genome of the *C. rubella* reference line Monte Gargano (Italy) to 22× coverage using a combination of platforms (Online Methods, Supplementary Table 1 and Supplementary Note). For the final assembly of 134.8 Mb, covering all eight chromosomes, we used a genetic map with 768 markers11.

1Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada. 2Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. 3Science for Life Laboratory, Uppsala University, Uppsala, Sweden. 4Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. 5Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany. 6Unité de Recherche en Génomique-Info, Institut Scientifique de Recherche Agronomique (INRA) Centre de Versailles-Grignon, Versailles, France. 7State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China. 8Department of Biology, McGill University, Montreal, Quebec, Canada. 9Laboratory of Plant Cytogenetics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic. 10Department of Biology, University of Utah, Salt Lake City, Utah, USA. 11Department of Natural Sciences, Colby-Sawyer College, New London, New Hampshire, USA. 12Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA. 13Department of Plant Sciences, University of California Davis, Davis, California, USA. 14Department of Ecology and Evolution, University of California Davis, Davis, California, USA. 15Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA. 16The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA. 17School of Computer Science, McGill University, Montreal, Quebec, Canada. 18Gregor Mendel Institute, Austrian Academy of Science, Vienna, Austria. 19HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, USA. 20US Department of Energy (DoE), Joint Genome Institute (JGI), Walnut Creek, California, USA. 21The Center for Integrative Genomics, University of California Berkeley, Berkeley, California, USA. 22Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada. Correspondence should be addressed to D.W. (weigel@tue.mpg.de) or S.I.W. (stephen.wright@utoronto.ca).
Table 1 Annotation results

Description	Value
Primary protein coding loci (n)	26,521
Alternatively spliced gene models (n)	1,926
Average number of exons	5.4
Median exon length (bp)	150
Median intron length (bp)	103
microRNA genes (n)	86

(Supplementary Figs. 1 and 2, Supplementary Tables 2–5 and Supplementary Note). *Arabidopsis lyrata* syntenies (Supplementary Fig. 3) and BAC and fosmid paired-end link support (Supplementary Note and Supplementary Fig. 4). We predicted 28,447 transcripts from 26,521 protein-coding genes and 86 microRNA loci (Table 1 and Online Methods). We also conducted de novo genome assemblies from Illumina libraries for an outbred *C. grandiflora* accession and the close outgroup species *Neslia paniculata* (Supplementary Note, Supplementary Fig. 5 and Supplementary Tables 6–9).

Although the *C. rubella* genome assembly is ~40% shorter than the nuclear DNA content estimated from flow cytometry, 219-Mb, km-mer analysis and remapping of Illumina reads indicated that the assembly encompasses most of the euchromatin (Supplementary Note, Supplementary Table 10 and Supplementary Fig. 6). Almost half of the 219-Mb genome seems to be repetitive, including centromeric satellite repeats (Supplementary Fig. 7). Apart from the centromeres, fluorescence in situ hybridization (FISH) identified the 45S ribosomal DNA (rDNA) arrays on chromosomes 2, 3 and 7, the 5S rDNA locus on chromosome 5 and an interstitial telomeric sequence in the pericentromeric region of chromosome 7 as notable genomic locations of repeats (Fig. 1a,b, Supplementary Note and Supplementary Fig. 8).

Consistent with previous findings, we found that the large-scale synteny between *C. rubella* and *A. lyrata* is almost complete (Fig. 1c and Supplementary Note). Comparisons with *Schrenkia parvula* (Supplementary Fig. 9) indicated that all three major differences between *C. rubella* and *A. lyrata* are either specific to the *A. lyrata* genome or errors in the *A. lyrata* assembly (Supplementary Note). Further comparisons delimited the breakpoints of major rearrangements in *A. thaliana* (Fig. 1d). Overall, we conclude that *C. rubella*, despite having gone through an extreme genetic bottleneck, retains a largely ancestral genome structure.

To investigate the functional consequences of the mating system change, we compared flower transcriptomes from four *C. rubella* and four *C. grandiflora* accessions. Many *C. rubella* alleles are found in *C. grandiflora*; thus, DNA sequence variation should not confound RNA sequencing (RNA-seq) comparisons. RNA expression levels were more highly correlated within (average Pearson correlation coefficients,
We identified 246 genes that were expressed more strongly in selfers and outcrossers, which is consistent with changes in reproductive organ size and development between species (Table 12). The set was enriched for Gene Ontology terms related to floral development and growth functions, which is consistent with changes in reproductive behavior relative to that expected by chance. For example, of 373 genes that were expressed more weakly relative to A. lyrata, 46 orthologs were also expressed more weakly in A. thaliana, whereas only 12 showed lower expression in A. lyrata (Fisher's exact test \(P < 1 \times 10^{-13} \); Fig. 2). These results suggest that parallel floral evolution in selfers may be associated with parallel changes in gene expression. A caveat is that some of these changes could reflect the altered abundance of specific tissue types because of changes in flower morphology.

Population genetic theory predicts that selfers should accumulate only deleterious mutations because of a reduced effective population size. To test this hypothesis, we characterized genome-wide patterns of coding sequence polymorphisms discovered in RNA-seq data from five outbred C. grandiflora (ten haploid chromosomes) and six C. rubella individuals (Supplementary Note and Supplementary Table 14). We identified 48,518 high-quality SNPs in 4,225 genes. The vast majority (81%) segregated only in C. grandiflora. Of the remainder, 7% segregated in both species, 8% segregated only in C. rubella and only 4% were fixed between the two species. On average, diversity at synonymous sites was 0.02 in C. grandiflora, whereas it was sixfold lower (0.003) in C. rubella (Fig. 3a), which is similar to previously documented differences in smaller gene sets.

To test for a change in the efficiency of selection, we examined the ratios of nonsynonymous to synonymous polymorphisms. The ratio was much higher for C. rubella-specific (0.68) than C. grandiflora–specific SNPs (0.35; two-tailed Fisher's exact test \(P < 0.0001 \)). This was true for all site frequency classes when subsampling the data to equivalent haploid sample sizes (Fig. 3b), suggesting that relaxed selection is not simply due to rare variants in C. rubella having experienced less purifying selection after the recent genetic bottleneck that purged the majority of variation. In contrast, fixed SNPs behaved similarly to C. grandiflora–only SNPs, with a nonsynonymous-to-synonymous ratio of 0.38, whereas SNPs segregating in both species had the lowest ratio (0.22), consistent with these being the oldest on average and thus having experienced the most selection.

There are at least three potential explanations for the elevated nonsynonymous-to-synonymous ratio in C. rubella. The first is experimental error: because diversity is generally lower in C. rubella, SNP errors relative to true polymorphisms may inflate the relative measure of nonsynonymous variation. However, dideoxy sequencing indicated that the false positive rate was less than \(2 \times 10^{-3} \) per SNP, which is much lower than the C. rubella polymorphism density (Supplementary Note). Another explanation could be that the distribution of selection coefficients is altered because the evolution of selfing in C. rubella is associated with changes in morphology, life

Figure 2: Evolution of gene expression in selfing and outcrossing Capsella and comparisons to Arabidopsis. Distribution of fold changes in gene expression in C. grandiflora relative to C. rubella (x axis) and A. lyrata relative to A. thaliana (y axis) at genes showing significant downregulation or significant upregulation in C. rubella.

Figure 3: Polymorphism comparisons in C. rubella and C. grandiflora. (a) Average pairwise differences (\(\delta \)) at nonsynonymous (nonsyn) and synonymous (syn) sites. Error bars indicate standard errors across all loci. Cr, C. rubella; Cg, C. grandiflora. (b) Ratio of nonsynonymous to synonymous polymorphisms at each derived frequency class using data subsampled to six chromosomes per species. N. paniculata was used as an outgroup to infer derived status. (c) Proportion of synonymous and nonsynonymous polymorphisms specific to each species, as well as shared and fixed differences. Simulated (sim) values are from forward computer simulations using the inferred demographic model and strength of selection on nonsynonymous sites (see main text). Obs, observed.
retrotransposons estimated using the rate of substitution between LTRs of individual insertions and assuming a substitution rate of 7×10^{-9} per bp per generation. **A. thaliana**

Several features related to transposable element frequency and density may also be due to a reduced efficacy of purifying selection caused by the transition to selfing 17,18. In agreement, many transposable element classes have different regions, with **C. rubella** having a compact euchromatic region comparable to **A. thaliana**, whereas **A. lyrata** has experienced greater recent transposable element activity near genes.

Given that the structure of gene-rich regions in the **C. rubella** genome is similar to that in **A. thaliana**, we tested whether the shift to selfing was associated with a rapid loss of transposable element abundance, activity or both. The age distribution of long terminal repeat (LTR) retrotransposons in **C. rubella** seemed to be similar to that in **A. thaliana**, with no evidence for the high rate of recent transposition seen in **A. lyrata** (Fig. 4d). Only 5% of the full-length LTR retrotransposons seemed to be younger than 100,000 years, which is close to the estimated speciation time (Supplementary Table 10), suggesting that the vast majority of transposition occurred before the shift to selfing. However, identification of transposable element insertions using paired-end genomic Illumina sequencing revealed no clear evidence for consistent copy number differences between **C. rubella** and **C. grandiflora** (Fig. 5a and Supplementary Note). Similarly, although expression comparisons indicate a possible higher variance in transposable element expression in **C. rubella**, there is no evidence for consistently higher transposable element expression in **C. grandiflora** (Wilcoxon rank sum test $P = 0.4857$; Fig. 5b). In addition, transposable element density along the chromosomes is very similar in the two species (Fig. 5c). Given that species divergence is low relative to the coalescent history of **C. grandiflora** (that is, most of the **C. rubella** alleles are shared with **C. grandiflora**), it is probable that

Figure 5 Estimates of transposable element copy number and expression in **C. rubella** and **C. grandiflora**. (a) Numbers of insertion sites identified using read mapping of paired-end Illumina genomic data (using Popoolation TE) in two **C. rubella** accessions and two **C. grandiflora** accessions. SINE/LINE, SINE and LINE. (b) Mean and standard error of the proportion of RNA-seq transcripts mapping to transposable elements. (c) Distribution of transposable element insertions along chromosome 1 in two **C. rubella** accessions and two **C. grandiflora** accessions.
longer timescales are required for transposable element copy number to diverge noticeably. Thus, our analyses suggest little evidence for large-scale changes in transposable element abundance, as the evolution of selfing in Capsella occurred about 100,000 years ago, and imply that transposable element activity may be specifically elevated in A. lyrata.

C. rubella is a young species with an origin that is probably associated with a severe founder event and a shift to a highly selfing mating system. These recent and correlated events have had genome-wide consequences that range from divergence in gene expression for a suite of reproductively related genes to a genome-wide decline in the efficacy of natural selection on amino acid polymorphisms. Moreover, our comparisons among three closely related species, A. thaliana, A. lyrata and C. rubella, highlight the fluidity of large-scale genome structure, typified by differential expansion of centromeric repeats and changes in transposable element activity. The factors driving such contrasting modes of genome expansion and shrinkage are far from resolved, and it will be important to broaden future comparisons to larger phylogenetic scales to better understand the processes driving genome structure evolution.

METHODS

Methods and any associated references are available in the online version of the paper.

Accession codes. The assembly and annotation (Entrez BioProject ID PRJNA13878) are available from GenBank (accession number ANNY00000000) and from the JGI PHYOZOME portal (see URLs). RNA-seq data sets are available from GenBank (GEO SuperSeries GSE45687 and SRA accession PRJNA194469). Seeds from the reference C. rubella strain Monte Gargano are available from the Arabidopsis Biological Resource Center (ABRC) under accession number CS22697 and the Nottingham Arabidopsis Stock Centre (NASC) under accession number N9609.

Note: Supplementary information is available in the online version of the paper.

ACKNOWLEDGMENTS

The work conducted by the DoE JGI is supported by the Office of Science of the DoE under contract number DE-AC02-05CH11231. We thank J. Bergelson, J. Borevitz, A. Hall, C. Langley, K. Mayer, J. Nasrallah, B. Neuffer, Y. Van de Peer and O. Savolainen for contributing to the initial sequencing proposal submitted to the Community Sequencing Program at JGI. We also thank T. Bureau, D. Schoen, P. Harrison, J. Stinchcombe, A. Moses and E. Harmsen for their contributions to the value-directed Evolutionary Genomics Initiative (VEGI) grant (Genome Quebec/Genome Canada), which funded C. grandiflora genomic and mRNA sequencing, and G. Coupland (Max Planck Institute for Plant Breeding Research) and colleagues for information on Arabis alpina repeats. The work was supported by the Max Planck Society (D.W.), the Genome Quebec and Genome Canada VEGI grant (S.I.W. and M.B.), the Natural Sciences and Engineering Research Council of Canada (NSERC) (S.I.W.), the Swedish Research Council (T.S.), the Carl Trygger and Erik Philip-Sörensens foundations (T.S.), National Science Foundation (NSF) grant 0929262 (J. Steffen and R.M.C.), the French National Research Agency (ANR-08-KBBE-012-02 to H.Q.), the Czech Science Foundation (excellence cluster p501/12/G090 to M.A.L.) and the European Regional Development Fund (CZ.1.05/1.1.00/02.0068 to M.A.L.). D.K. was supported by a Human Frontiers in Science Program Long-Term Fellowship, and G.C. was supported by the Alfred P. Sloan Foundation. Population genetics analyses were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) through the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under project b2012122. L.M.S. was supported by a European Community FP7 Marie Curie Fellowship (PIEF-GA-2008-221553) and an EMBO Long-Term fellowship.

AUTHOR CONTRIBUTIONS

B.S.G., M.N., J. Schmutz, T.S., D.R., D.W. and S.I.W. conceived and designed the study. Y.-L.G., K.M.H., D.K., J. Steffen and T.S. prepared samples for sequencing. J.J. and J. Schmutz conducted de novo assembly of C. rubella. Y.-L.G., S.R.H., S.P., D.R. and S.B. performed genome annotation. J.G. led the data collection of BAC-end and clone sequencing. P.A., K.M.H., T.T.H., T.S. and S.I.W. conducted genetic mapping analysis. I.A.A., Y.-L.G., D.K., F.M., H.Q. and W.W. performed the transposon analysis. Y.B., G.C., J.S.E., K.M.H., L.K.N., K.S., T.S. and S.I.W. conducted population genetic analysis. R.M.C., J. Steffen, L.M.S., K.M.H. and A.E.P. conducted the RNA sequence and expression analysis. M.B. and A.E.P. conducted de novo assembly of N. panicalata and whole-genome alignments. J.C. led the de novo assembly of C. grandiflora. A.E.P., S.T. and E.V. conducted comparative genomic analysis. T.M. and M.A.L. conducted FISH and chromosome painting. B.S.G., M.N., T.S., D.W. and S.I.W. wrote the paper with contributions from all authors.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.

1. Barrett, S.C.H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).
2. Stebbins, G.L. Self fertilization and population variability in the higher plants. Am. Nat. 91, 337–354 (1957).
3. Charlesworth, D. & Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).
4. Charlesworth, D. & Wright, S.I. Breeding systems and genome evolution. Cur. Opin. Genet. Dev. 11, 685–690 (2001).
5. Lynch, M., Conery, J. & Burger, R. Mutational meltdown in sexual populations. Evolution 49, 1067–1080 (1995).
6. Osowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).
7. Tang, C. et al. The evolution of selfing in Arabidopsis thaliana. Science 317, 1070–1072 (2007).
8. Guo, Y.L. et al. Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. Proc. Natl. Acad. Sci. USA 106, 5246–5251 (2009).
9. Foxe, J.P. et al. Recent speciation associated with the evolution of selfing in Capsella. Proc. Natl. Acad. Sci. USA 106, 5241–5245 (2009).
10. St Onge, K.R., Kallman, T., Slotte, T., Lascoux, M. & Palme, A.E. Contrastng demographic history and population structure in Capsella rubella and Capsella grandiflora, two closely related species with different mating systems. Mol. Ecol. 20, 3306–3320 (2011).
11. Slotte, T., Hazzouri, K.M., Stern, D., Andolfatto, P. & Wright, S.I. Genetic architecture and adaptive significance of the selfing syndrome in Capsella. Evolution 66, 1360–1374 (2012).
12. Schranz, M.E., Lysak, M.A. & Mitchell-Olds, T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 11, 535–542 (2006).
13. Ye, Q. et al. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc. Natl. Acad. Sci. USA 107, 6100–6105 (2010).
14. Escobar, J.S. et al. An integrative test of the dead-end hypothesis of selfing evolution in Triticaceae (Poaceae). Evolution 64, 2855–2872 (2010).
15. Haudry, A. et al. Mating system and recombination affect molecular evolution in four Triticaceae species. Genet. Res. (Camb.) 90, 97–109 (2008).
16. Wright, S.I., Lauga, B. & Charlesworth, D. Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol. Biol. Evol. 19, 1407–1420 (2002).
17. Wright, S.I. & Schoen, D.J. Transposon dynamics and the breeding system. Genetica 107, 139–148 (1999).
18. Charlesworth, B. & Langley, C.H. The evolution of self-regulated transposition of transposable elements. Genetics 112, 359–383 (1986).
19. Hu, T.T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476–481 (2011).
20. Hollister, J.D. et al. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl. Acad. Sci. USA 108, 2322–2327 (2011).
ONLINE METHODS

Genome assembly and annotation. Sequencing. Whole-genome shotgun sequencing of *C. rubella* was conducted using the Monte Gargano (Italy) reference strain. The majority of the sequencing reads were collected with standard Sanger sequencing protocols and Roche 454 XLR and Illumina GAIIx machines at the DoE JGI (in Walnut Creek, California (JGI sequencing protocols; see URLs). One linear Roche 454 library (ten runs, 2.78 Gb), three 2.5-kb insert size paired libraries (three runs, 713.1 Mb), two 4-kb insert size paired libraries (four runs, 434.5 Mb), one 8-kb insert size library (three runs, 935.4 Mb) and one 10-kb insert size library (two runs, 515.4 Mb) were sequenced with standard XLR protocols.

Genome assembly and construction of pseudomolecule chromosomes. The sequence reads were assembled using our modified version of Arachne v.20071016 (ref. 21). This produced 1,859 scaffold sequences, with a scaffold L50 value of 6.7 Mb, 71 scaffolds larger than 100 kb and a total genome size of 137.1 Mb. Scaffolds were screened against bacterial proteins, organelle sequences and the GenBank nucleotide repository (nr) and removed if they were found to be contaminants. Additional scaffolds were removed if they (i) consisted of >95% 24-mers that occurred four other times in scaffolds larger than 50 kb, (ii) contained only unanchored RNA sequences or (iii) were less than 1 kb in length.

The combination of 768 markers in an Illumina-based genetic map (**Supplementary Note**), *A. lyrata* synteny derived from whole-genome alignments (Online Methods) and BAC and fosmid paired-end link support was used to identify misjoins in the assembly. Scaffolds were broken if they contained syntenic and linkage group contiguity coincident with an area of low BAC and fosmid coverage. To avoid bias, contiguity on the basis of synteny alone was not deemed sufficient for breaking scaffolds. A total of 16 breaks were executed, and 45 broken scaffolds were oriented, ordered and joined using 37 joins to form the final assembly containing eight pseudomolecule chromosomes. The final assembly contained 853 scaffolds (9,675 contigs) that covered 134.8 Mb of the genome with a contig L50 value of 134.1 kb and a scaffold L50 value of 15.1 Mb. Except for a single potential misplacement of a small chromosome 7 contig on chromosome 4, the assembly was supported by an independent map with 999 markers within *C. rubella*, with 194 F2 individuals from the cross of 1408 and Monte Gargano22.

Completeness of the euchromatic portion of the genome assembly was assessed using 1,167 full-length cDNAs from *C. rubella* along with an 108-bp Illumina EST library from *C. grandiflora* leaf material (plants grown at the University of Toronto and library construction and sequencing conducted at the Genome Quebec Innovation Centre in Montreal). The aim of this analysis was to obtain a measure of the completeness of the assembly rather than a comprehensive examination of gene space. The screened alignments indicated that 1,166 of 1,167 (99.74%) of the full-length cDNAs aligned to the assembly, and 27,876 of 32,766 (86.29%) of the Illumina ESTs aligned. The ESTs that did not align were checked against the NCBI nr, and a large fraction was found to be prokaryotic rDNA.

Annotation. Protein-coding genes were predicted with a pipeline that combines ESTs, homology and de novo prediction methods23. Three-hundred twenty-nine million 108-bp-long single-ended Illumina reads from ten libraries of *C. grandiflora* cDNAs were assembled with tophat 1.3.0 and cufflinks 1.0.3, nine million 108-bp-long single-ended Illumina reads from ten libraries of individuals from the cross of 1408 and Monte Gargano 22.

To generate three species whole-genome alignments, LASTZ25 alignments and orthologous chaining31 were conducted using *Capsella* as the reference, retaining only a single chain per species per region. Version 0.62-1 of the circo software32 was used to create the circular plots. For comparative mapping in the circo plots, orthologous chains were filtered to a minimum length of 100 kb.

Genomic resequencing and analysis. Genomic extraction of leaf material was conducted for two *C. grandiflora* accessions and three *C. rubella* accessions, as well as one accession of *N. paniculata*, using a modified CTAB protocol; 108-bp paired-end genomic sequencing was conducted at the Genome Quebec Innovation Centre, and 150-bp sequencing was performed at the Max Planck Institute for Developmental Biology. To infer the ancestral state of segregating polymorphisms in *Capsella*, we mapped *Neslia* Illumina reads onto the *Capsella* reference genome using Stampy35, which is optimized for mapping divergent sequences. Additionally, we conducted 5 kb-insert mate-pair sequencing of one of the *C. grandiflora* accessions and the *N. paniculata* accession and produced Illumina-only de novo assemblies as described in the **Supplementary Note**.

Transposable element annotation. The TDenovo pipeline from the REPET v2.0 package28 was used for de novo identification of repeated sequences in the following genomes: *A. thaliana* (ecotypes Col, Ler, Kro, Bur and C24 from the 1001 Arabidopsis genomes project; see URLs), *A. lyrata*, *A. alpina* (courtesy of G. Coupland), *Brassica napus*, *C. rubella*, *Eutrema halophila* and *S. parvula*. The selected sequences from all species were combined into the Brassicaceae repeat library, to which we also appended the *A. thaliana* repeat library from the Repbase database. TDenovo from the REPET v2.0 package was run against the *C. rubella*, *A. thaliana* and *A. lyrata* genomes using the Brassicaceae library.

LTR retrotransposons were identified de novo for each genome using LTRharvest from the Genome Tools v1.3.9 package37 with default parameters. MUSCLE v3.8.31 (ref. 38) was used to align LTRs from annotated elements,
alignment ends were trimmed at each end to have three consecutive matching nucleotides, and the Kimura two-parameter distance was calculated for each alignment using the EMBOSS v6.4.0 dismat function. Insertion time was then calculated using the methods described in Hu et al.19.

FISH and comparative chromosome painting. Cytogenetic analyses were conducted using meiotic chromosomes at the stage of pachytene or diakinesis prepared from young flower buds. See Supplementary Figure 8 for details of rDNA and telomere repeat probes and A. thaliana BAC contigs used as chromosome-specific probes for comparative chromosome painting in C. rubella. All DNA probes were labeled with biotin–deoxyuridine triphosphate (dUTP), digoxigenin-dUTP or Cy3-dUTP by nick translation and hybridized to suitable chromosome spreads. Fluorescence signals were analyzed with an Olympus BX-61 epifluorescence microscope and a CoolCube camera (MetaSystems) and pseudocolored using Adobe Photoshop CS2 software (Adobe Systems). See Supplementary Figure 8 and ref. 40 for a detailed description of all protocols used.

21. Jaffe, D.B. et al. Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res. 13, 91–96 (2003).
22. Guo, Y.L., Todesco, M., Hagnann, J., Das, S. & Weigel, D. Independent FLC mutations as causes of flowering time variation in Arabidopsis thaliana and Capsella rubella. Genetics 192, 729–739 (2012).
23. Goodstein, D.M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).
24. Haas, B.J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
25. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
26. Solovyev, V., Kosarev, P., Seledsov, I. & Vorobyev, D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7 (suppl. 1), S10.1–S10.12 (2006).
27. Slater, G.S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 301 (2005).
28. Yeh, R.F., Lim, L.P. & Burge, C.B. Computational inference of homologous gene structures in the human genome. Genome Res. 11, 803–816 (2001).
29. Lyons, E. & Freeling, M. How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J. 53, 661–673 (2008).
30. Harris, R.S. Improved Pairwise Alignment of Genomic DNA. PhD thesis, Penn. State Univ. (2007).
31. Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 100, 11484–11489 (2003).
32. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
33. Gan, X. et al. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477, 419–423 (2011).
34. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
35. Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011).
36. Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6, e16526 (2011).
37. Ellinghaus, D., Kurtz, S. & Willhoft, U. LTRharvest, an efficient and flexible tool for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).
38. Edgar, R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).
39. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
40. Lysak, M.A. & Mandáková, T. Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol. Biol. 990, 13–24 (2013).