Dataset describing the growth pattern, amino acid and fatty acid profile of five indigenous marine microalgae species of Bangladesh

Jakia Hasana,*, Zahidul Islama, Ahmad Fazley Rabbya, Saima Sultana Soniaa, Md. Aktaruzzamana, Turabur Rahmana, Shafiqur Rahmana, Yahia Mahmudb

a Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
b Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 27 July 2022
Revised 6 September 2022
Accepted 23 September 2022
Available online 28 September 2022

Dataset link: Dataset describing the growth pattern, amino acid and fatty acid profile of five indigenous marine microalgae species of Bangladesh (Original data)

\textbf{Keywords:}
Indigenous microalgae
Growth pattern
Essential amino acid
Fatty acid
Polyunsaturated fatty acid
Bangladesh

\textbf{A B S T R A C T}

This paper presents the data on the growth pattern, amino acid, and fatty acid profile of five (5) selected indigenous marine microalgae (Chaetoceros sp.; Isochrysis sp.; Skeletonema sp.; Nannochloropsis sp.; and Tetraselmis sp.) of Bay of Bengal, Bangladesh. The microalgae species were cultured in f/2 Guil-lard’s medium with maintaining standard physico-chemical parameters. The growth pattern was determined for all the microalgae as a prerequisite for further necessary experimental works. All the species were mass cultured using the same culture medium and harvested (centrifuging method), and dried (60 °C for 12 h) at their stationary phase. Finally, the amino acid and fatty acid analyses were performed. In many contexts, the amino acid and fatty acid data showed significant differences ($p < 0.05$) among these experimental species. However, by understanding these experimental species’ nutritional profiles, one can easily choose the desired one that is most appropriate for their intended application.

© 2022 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Agricultural Sciences, Aquatic Science
More specific subject area	Microalgae, Algal-biodiversity, Nutrition science
Type of data	Table, chart, and figure
How data were acquired	Growth pattern was observed through cell count and biomass measurement. Morphological traits were identified using a computer based light microscope. Amino acid analysis was done through SYKAM amino acid analyzer. Fatty acid analysis was done through gas chromatographic mass spectrophotometry (GCMS).
Data format	Raw and analyzed primary data
Description of data collection	For morphological trait: Microscopic observation For growth pattern: cell count and biomass. For water quality: temperature, pH, salinity, dissolve oxygen, total ammonia nitrogen, nitrite nitrogen, and soluble reactive phosphorus. For amino acid: SYKAM amino acid analysis of aliquot HCl extract from microalgae. For fatty acid: GCMS analysis of extracted oil from microalgae.
Data source location	Live Feed Laboratory, Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox’s Bazar-4700, Bangladesh
Data accessibility	Data are available with this article and also at https://doi.org/10.17632/6YHWWT57YP.2

Value of the Data

- Providing the presence and its percentages in the amount of amino acid and fatty acid content in the selected five indigenous microalgae species with mentioning essential and non-essential classifications.
- Providing a basis in complete understanding of the nutritional profiles (amino acid, fatty acid) of these selected commercially important microalgae species of Bay of Bengal, Bangladesh.
- Understanding the differences in growth pattern, amino acid, and fatty acid among the commercially important different microalgae species which will help in choosing the best-suited microalgae species for a definite use.
- Fatty acid data and amino acid data will be useful to select suitable microalgae species as biofuel production raw material as well as to select suitable microalgae species as animal feedstuff.

1. Data Description

The raw data on growth pattern, amino acid and fatty acid profile of five indigenous marine microalgae species of Bangladesh are as in [1]. Microalgae have recently attracted considerable interest worldwide due to their potential applications in renewable energy, biopharmaceuticals, and nutraceuticals. Fig. 1 shows the experimental indigenous marine microalgae species

![Fig. 1. Experimental microalgae species. (a) Chaetoceros sp. (b) Isochrysis sp. (c) Skeletonema sp. (d) Nannochloropsis sp. (e) Tetraselmis sp.](image-url)
collected from previously preserved samples at Marine Fisheries and Technology Station (MFTS), Bangladesh Fisheries Research Institute (BFRI), Cox’s Bazar, Bangladesh.

Among the five (5) selected species, Chaetoceros sp., Isochrysis sp., and Skeletonema sp., were brown microalgae whereas Nannochloropsis sp., and Tetraselmis sp. were green microalgae. All of the species were identically distinct from one another in terms of their physical characteristics (Table 1).

Growth phases of the selected microalgae in F/2 Guillard’s culture medium are shown in this data (Fig. 2). The stationary and death phases of the selected species started at different distinct times (6–11 days).

This data shows Skeletonema sp. had significantly ($p < 0.05$) higher growth rates and biomass production ability, whereas Nannochloropsis sp. had significantly ($p < 0.05$) higher cell density compared to all other species (Table 2).

Physico-chemical parameters such as temperature, light intensity, salinity, pH, and total ammonium nitrogen, nitrite-nitrogen, and soluble reactive phosphorus data of the culture medium during the experimental period are shown in Table 3. In this case, dissolve oxygen, pH, total ammonium nitrogen, and soluble reactive phosphorus showed some significant ($p < 0.05$) differences among some cultures, whereas the rest of the parameters didn’t differ significantly ($p > 0.05$) during the experimental period.
Table 2
Growth dynamics of the selected microalgae species.

Species	Growth rates (µ/day)	Maximum cell density (<10^6 cells/mL)	Biomass (g/L/day)
Chaetoceros sp.	0.41 ± 0.07a	4.92 ± 0.15c	0.024 ± 0.006
Isochrysis sp.	0.34 ± 0.04b	4.55 ± 0.22c	0.029 ± 0.002
Skeletonema sp.	0.49 ± 0.03a	5.13 ± 0.19b	0.036 ± 0.004
Nannochloropsis sp.	0.22 ± 0.03c	7.66 ± 0.36a	0.019 ± 0.006
Tetraselmis sp.	0.53 ± 0.09a	4.91 ± 0.61bc	0.025 ± 0.00b

Values are mean ± standard error of triplicate measurements; Different letters used in each column demonstrate the significant difference (p < 0.05).

Table 3
Physico-chemical parameters of the cultured medium during culture period (up to stationary phase).

Species	Temperature °C	Light intensity µEm-2s^-1	Salinity Ppt	Dissolve oxygen mg/L	pH	Total ammonia nitrogen mg/L	Nitrite nitrogen mg/L	Soluble reactive phosphorus mg/L
Chaetoceros sp.	26.60 ± 0.49a	150.0 ± 0.00b	29.33 ± 0.33ab	6.70 ± 0.12abc	8.25 ± 0.06b	0.71 ± 0.01ab	0.65 ± 0.01a	0.17 ± 0.00ab
Isochrysis sp.	26.73 ± 0.52a	150.0 ± 0.00b	28.33 ± 0.33b	6.53 ± 0.03b	8.54 ± 0.07b	0.67 ± 0.01b	0.62 ± 0.01a	0.13 ± 0.00b
Skeletonema sp.	26.73 ± 0.52a	150.0 ± 0.00b	30.67 ± 0.33c	6.60 ± 0.06bc	8.34 ± 0.07b	0.63 ± 0.00b	0.62 ± 0.00a	0.15 ± 0.00b
Nannochloropsis sp.	26.80 ± 0.55a	150.0 ± 0.00b	30.00 ± 0.58a	6.43 ± 0.08c	8.29 ± 0.05b	0.61 ± 0.00b	0.63 ± 0.00a	0.15 ± 0.00b
Tetraselmis sp.	26.60 ± 0.49a	150.0 ± 0.00b	29.67 ± 0.67a	6.43 ± 0.07c	8.30 ± 0.09b	0.57 ± 0.00b	0.60 ± 0.00a	0.13 ± 0.00b

Values are mean ± standard error of triplicate measurements; Different letters used in each column demonstrate the significant difference (p < 0.05).

Table 4
Amino acid content (% amino acid) in the cultured microalgae species.

Species	Histidine HIS	Isoleucine ILE	Leucine LEU	Lysine LYS	Methionine MET	Phenylalanine PHE	Threonine THR	Tyroline TYR	Valine VAL	Alanine ALA	Arginine ARG	Aspartic acid ASP	Glutamic acid GLU	Glycine GLY	Cysteine CYE	Seronine SER	Proline PRO
Types	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA	EAA
Code name	3.40 ± 0.04	6.97 ± 0.15	10.35 ± 0.34	3.64 ± 0.01	9.68 ± 0.06	5.80 ± 0.22	3.76 ± 0.28	6.28 ± 0.26	8.20 ± 0.35	6.46 ± 0.17	3.94 ± 0.21	9.00 ± 0.10	8.87 ± 0.01	5.16 ± 0.29	1.94 ± 0.08	4.03 ± 0.09	2.53 ± 0.04
Values	3.59 ± 0.12	3.75 ± 0.02	7.95 ± 0.05	5.80 ± 0.08	2.28 ± 0.02	5.49 ± 0.01	5.69 ± 0.03	2.51 ± 0.00	6.51 ± 0.04	7.78 ± 0.23	4.81 ± 0.08	11.63 ± 0.06	15.20 ± 0.26	6.13 ± 0.10	1.60 ± 0.00	5.92 ± 0.25	3.35 ± 0.07

Values are means ± standard error of duplicate measurements. EAA: Essential Amino Acid, NEAA: Non-Essential Amino Acid, ND: Not detected.
Fig. 3. Heat-map presentation of amino acid content in the cultured microalgae species. (EAA: Essential Amino Acid, NEAA: Non-Essential Amino Acid, Chaeto: Chaetoceros sp., Iso: Isochrysis sp., Sk: Skeletonema sp., Nanno: Nanochloropsis sp., Tetra: Tetraselmis sp.).

This data shows the amino acid content of these selected microalgae species (Table 4, Figs. 3–5). The chromatogram for all the analyzed microalgae species are shown in Fig. 9.

Finally, this data shows the fatty acid content of these selected microalgae species (Table 5, Figs. 6–8). The chromatogram for all the analyzed microalgae species are shown in Fig. 10.

2. Materials and Methods

2.1. Standard F/2 Guillard’s Medium Preparation

Guillard’s medium contains different micronutrients, trace elements and vitamins (Table 6). Initially seawater was collected from the Cox’s Bazar coast of Bay of Bengal, Bangladesh to prepare pure medium for culturing the selected microalgae. Then the collected seawater was stabilized, filtered and autoclaved (15 lbs./inch² for 15 min). To prepare 1 L medium 2 mL of solution A and B (in case of diatoms), 1 mL of solution C and D were added into the previously sterilized 28–30 ppt seawater (Table 6).

2.2. Collection of Selected Microalgae

These five (5) commercially important marine microalgae (Chaetoceros sp.; Isochrysis sp.; Skeletonema sp.; Nanochloropsis sp.; and Tetraselmis sp.) were collected from previously isolated and stocked samples of the Live feed laboratory of Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox’s Bazar, Bangladesh. These collected stocks were
Carbon	Fatty acid	Types	Chaetoceros sp.	Isochrysis sp.	Skeletonema sp.	Nannochloropsis sp.	Tetraselmis sp.
C8:0	Octanoic acid	SAFA	0.09 ± 0.00	0.18 ± 0.00	2.12 ± 0.10	1.45 ± 0.12	0.47 ± 0.00
C10:0	Decanoic acid	SAFA	0.12 ± 0.00	0.36 ± 0.02	0.34 ± 0.04	0.42 ± 0.01	0.37 ± 0.01
C12:0	Lauric acid	SAFA	0.05 ± 0.00	0.31 ± 0.24	0.50 ± 0.06	0.77 ± 0.01	0.38 ± 0.01
C13:0	Tridecanoic acid	SAFA	0.06 ± 0.00	0.55 ± 0.04	1.89 ± 0.70	0.38 ± 0.08	0.28 ± 0.01
C14:0	Myristic acid	SAFA	2.51 ± 0.00	0.86 ± 0.08	7.68 ± 0.06	2.35 ± 0.34	0.19 ± 0.03
C16:0	Palmitic acid	SAFA	16.27 ± 0.11	3.61 ± 0.01	3.00 ± 0.06	13.26 ± 0.72	6.45 ± 0.22
C18:0	Stearic acid	SAFA	4.01 ± 0.42	27.13 ± 1.10	1.15 ± 0.27	4.17 ± 0.25	6.03 ± 0.70
C20:0	Arachidic acid	SAFA	12.15 ± 1.79	0.11 ± 0.00	1.12 ± 0.71	38.28 ± 4.39	7.14 ± 4.18
C17:0	Heptadecanoic acid	SAFA	0.30 ± 0.00	0.31 ± 0.16	ND	0.67 ± 0.44	1.85 ± 0.14
C21:0	Heneicosanoic acid	SAFA	10.18 ± 0.42	37.99 ± 1.10	0.89 ± 0.35	2.84 ± 1.27	12.43 ± 0.81
C22:0	Behenic acid	SAFA	0.06 ± 0.06	0.84 ± 0.63	ND	0.24 ± 0.24	0.49 ± 0.04
C23:0	Tricosanoic acid	SAFA	ND	0.31 ± 0.12	ND	ND	0.35 ± 0.02
C24:0	Lignoceric acid	SAFA	ND	ND	ND	ND	1.25 ± 0.34
C16:1	Palmitoleic acid	MUFA	21.26 ± 0.60	2.17 ± 0.07	73.80 ± 1.52	0.63 ± 0.26	34.64 ± 1.24
C18:1	Oleic acid	MUFA	0.37 ± 0.01	1.51 ± 0.10	0.20 ± 0.20	2.19 ± 0.52	0.32 ± 0.01
C20:1	cis-11-Eicosenoic acid	MUFA	1.60 ± 0.09	0.03 ± 0.03	0.04 ± 0.02	1.59 ± 1.11	1.95 ± 0.12
C22:1	Erucic acid	MUFA	17.09 ± 0.21	3.22 ± 0.13	0.28 ± 0.20	1.33 ± 0.83	10.42 ± 0.64
C24:1	Nervonic acid	MUFA	0.02 ± 0.01	0.34 ± 0.05	0.06 ± 0.01	0.09 ± 0.05	0.72 ± 0.22
C18:2n-6	Linoleic acid	n6-PUFA	0.62 ± 0.04	7.33 ± 0.19	3.06 ± 0.00	14.88 ± 10.38	1.39 ± 0.05
C20:3n-6	Eicosatrienoic acid	n6-PUFA	1.42 ± 0.18	6.44 ± 0.16	1.56 ± 0.44	5.32 ± 3.26	2.56 ± 0.18
C18:3n-3	Linolenic acid	n3-PUFA	9.83 ± 0.16	4.96 ± 0.20	2.05 ± 1.37	0.20 ± 0.01	7.22 ± 0.34
C20:5n-3	Eicosapentaenoic acid	n3-PUFA	0.04 ± 0.02	0.30 ± 0.18	0.08 ± 0.05	0.02 ± 0.00	0.04 ± 0.02
C22:5n-3	Docosapentaenoic acid	n3-PUFA	0.01 ± 0.00	0.15 ± 0.01	0.04 ± 0.01	0.09 ± 0.07	1.47 ± 0.09
C22:6n-3	Docosahexaenoic acid	PUFA	0.65 ± 0.02	0.63 ± 0.03	ND	0.14 ± 0.01	0.13 ± 0.03

Values are mean ± standard error of duplicate measurements. SAFA: Saturated Fatty Acids, MUFA: Mono Unsaturated Fatty Acids, PUFA: Poly Unsaturated Fatty Acids.
cultured and maintained at a standard temperature range (25 ± 2 °C) at 150 μEm⁻²S⁻¹ light intensity for 24 h with continuous sterile aeration [2,3].

2.3. Determination of the Morphological Traits

All the species were observed under a microscope using optimum magnification and fining. The morphological traits (color, shape, length, flagella, motility, and chain formation) were determined using a computerized light microscope Leica DM1000.
2.4. Determination of Growth Dynamics

All the collected species were cultured in F/2 Guillard’s medium (triplicate replications), maintaining optimum standard parameters according to Islam et al. [3]. Cell density and biomass were measured to understand the growth pattern. Cell density was measured in everyday at a fix time. Haemocytometer (Hawksley AC1000, UK) was used to determine the cell density with following the method described by Lavens and Sorgeloos [4]. To determine dried biomass, initially 1 mL aliquot culture for each flask was filtered using a pre-weighted GF/C glass fibre filter paper and dried at 100 °C for 4 h. Then, the filter paper was cooled for 15 min in a desiccator and reweighted. Finally, the dried biomass was calculated from the weight differences.

In addition, growth rates were determined according to the following equation,

\[K' = \ln \frac{N_2}{N_1} / (T_2 - T_1) \]

where, \(N_2 \) and \(N_1 = \) Cell density at time \(T_1 \) and \(T_2 \), respectively.
2.5. Determination of the Physico-Chemical Parameters of the Cultured Medium

The physico-chemical parameters of the culture medium were determined at every alternate day from day 0 to stationary phase for every species separately. Temperature, light intensity, salinity, dissolve oxygen, and pH of the culture medium were measured using glass thermometer, lux meter, refractometer, DO meter and pH meter respectively. Total ammonium nitrogen (TAN), and soluble reactive phosphorus (SRP) were measured according to the method suggested...
Fig. 9. Chromatogram of amino acid analysis of all samples. Standard (H-G INJ1) (a) Chaetoceros sp. (b) Isochrysis sp. (c) Skeltonema sp. (d) Nannochloropsis sp. (e) Tetraselmis sp. (f).

Fig. 10. Chromatogram of fatty acid analysis of all samples. Chaetoceros sp. (a) Isochrysis sp. (b) Skeltonema sp. (c) Nannochloropsis sp. (d) Tetraselmis sp. (e).
Table 6
Constituents of F/2 Guillard’s culture medium stock solution.

Name of the Chemicals	Quantity
(A) Main mineral solution	
NaNO₃	84.15 g
Na₂MoO₄·2H₂O	6.0 g
FeCl₃·6H₂O	2.90 g
Na₂EDTA·2H₂O	10.0 g
Dissolving in deionized/distilled water and make the volume 1 L.	
(B) Silicate solution	
Na₂SiO₃·9H₂O	33.0 g
Dissolving in deionized/distilled water and make the volume 1 L.	
(C) Trace metal solution	
CuSO₄·5H₂O	1.96 g
ZnSO₄·7H₂O	4.40 g
Mg₂MnO₄·2H₂O	1.26 g
MnCl₂·4H₂O	36.0 g
CoCl₂·6H₂O	2.0 g
Dissolving in deionized/distilled water and make the volume 1 L.	
(D) Vitamin solution	
B₁	0.4 g
B₁₂	0.002 mg
Biotin	0.1 mg
Dissolving in deionized/distilled water and make the volume 1 L.	

by Parsons et al. [5]. In contrast, Nitrite nitrogen (NO₂-N₂) was determined according to the method suggested by Kitamura et al. [6]. Observe sure all of the equipment was calibrated before usage.

2.6. Mass Culture of Microalgae

For biomass preparation mass culture was done for all the species in a larger scale in a 20 L transparent food grade plastic jar using F/2 Guillard’s medium. The cultures were scaled up gradually from a 10 mL test tube to 20 L plastic jar with following the protocol described by Amira et al. [7]. Each species was harvested at their stationary phase through centrifugation and oven dried at 60 °C temperature for 12 h. Later the species were preserved at 4 °C in normal refrigerated conditions for further analysis.

2.7. Amino Acid Determination

Amino acids were determined according to Moore and Stein [8] method with slight modification. Initially, 1 g dried biomass of each microalga was hydrolyzed in 25 mL previously prepared acidic hydrolysis (6 M HCl + 0.1% phenol) solution at 110 ± 2 °C temperature for 24 h. After cooling, the samples were stabilized using little amount of SDB/Na (Sample Dilution Buffer). Then the pH of the samples was adjusted in between 2.1 and 2.3 with using basic neutralization agent. Finally, the hydrolysates were transferred into the injection vials through filtration and diluted using SDB/Na.

The analysis was done using SYKAM S 433 amino acid analyzer equipped with UV detector. Nitrogen gas was used as carrier gas with maintaining 0.5 mL/minute flow rate at 60 °C temperature, where the reproducibility was 3%. AA-S-18 Sigma-Aldrich, Germany standard wease used for amino acids concentration determination. The amino acids contents were expressed as mg/g, which were finally converted in % of total amino acids.
2.8. Fatty Acid Determination

Fatty acids were determined according to Prato et al. [9]. Initially, lipid was extracted from all the dried biomasses using Soxhlet apparatus. The sample were placed in a thimble paper for running the cycle. Acetone was used as solvent. Standard temperature 60 °C was maintained during lipid extraction. The extracted lipid was collected after complete extraction. Then fatty acids of methyl esters (FAMEs) were prepared for gas chromatography. The gas chromatography mass spectrophotometry analysis was run using a GCMS-QP2020 (Shimadzu, Japan), equipped with flame ionization detector. The 30 m long capillary column with 0.25 mm diameter and 0.15 μm thickness was used for FAMEs separation. Helium gas was used as carrier gas with maintaining 1.42 mL/minute flow rate at 180–280 °C temperature at 5 °C/ minute. FAME mix C8-C24; Sigma-Aldrich, Germany standard were used for FAMEs identification with comparing the retention time. The fatty acids content were expressed as μg/g which were finally converted in % of total fatty acids.

2.9. Statistical Analysis

Mean, standard error of mean (SE = σ /√n) of the data were calculated using MS excel (v. 2016). One-way multivariate analysis was performed to determine whether there is any significance difference among the species. The post hoc test was performed at 5% significance using IBM SPSS (v. 26.0).

Ethics Statement

These data were collected complying ARRIVE guidelines. Authors skipped obtaining legal authority's ethical consent before beginning the data collection process because microalgae are not protected by any regulations or laws in Bangladesh.

Declaration of Competing Interest

None.

Data Availability

Dataset describing the growth pattern, amino acid and fatty acid profile of five indigenous marine microalgae species of Bangladesh (Original data) (Mendeley Data).

CRediT Author Statement

Jakia Hasan: Conceptualization, Investigation, Supervision, Methodology, Writing – review & editing; Zahidul Islam: Conceptualization, Investigation, Methodology, Data curation, Writing – original draft, Writing – review & editing; Ahmad Fazley Rabby: Methodology, Writing – review & editing; Saima Sultana Sonia: Methodology, Writing – review & editing; Md. Aktaruzzaman: Methodology, Writing – review & editing; Turabur Rahman: Methodology, Writing – review & editing; Shafiqur Rahman: Supervision, Funding acquisition, Writing – review & editing; Yahia Mahmud: Supervision, Funding acquisition, Writing – review & editing.
Acknowledgment

This study was supported by the research grant funded by Bangladesh Fisheries Research Institute (BFRI).

References

[1] J. Hasan, Z. Islam, A.F. Rabby, S.S. Sonia, M. Aktaruzzaman, T. Rahman, S. Rahman, Y. Mahmud, Dataset describing the growth pattern, amino acid and fatty acid profile of five indigenous marine microalgae species of Bangladesh, Mendeley Data V1 (2022), doi:10.17632/6YHWWT57YP.2.

[2] E.S. Salama, H.C. Kim, R.I. Abou-Shanab, M.K. Ji, Y.K. Oh, S.H. Kim, B.H. Jeon, Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress, Bioprocess Biosyst. Eng. 36 (2013) 827–833, doi:10.1007/s00449-013-0919-1.

[3] Z. Islam, H. Khatoon, M.R. Rahman, S.K. Barman, S. Hossain, S.Z. Usha, S.J. Hasan, J. Hasan, Growth, productivity and proximate profiling of indigenous marine microalgae from southern coast of Bangladesh as potential feedstuff for animal feed, Bioreour. Technol. Rep. 18 (2022) 101025, doi:10.1016/j.biteb.2022.101025.

[4] P. Lavens, P. Sorgeloos, Manual on the Production and Use of Live Food for Aquaculture (No. 361), Food and Agriculture Organization (FAO), 1996.

[5] T.R. Parsons, Y. Maita, C.M. Lalli, A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press, Oxford, 1984.

[6] H. Kitamura, H. Ishitani, Y. Kuge, M. Nakamata, Determination of nitrate freshwater and sea water by a hydrazine reduction method, Jpn. J. Wat. Pollut. Res. 5 (1982) 35–42.

[7] K.I. Amira, M.R. Rahman, S. Sikder, H. Khatoon, J. Afruj, M.E. Haque, T.M. Minhaz, Data on growth, survivability, water quality and hemato-biochemical indices of Nile Tilapia (Oreochromis niloticus) fry fed with selected marine microalgae, Data. Br. 38 (2021) 107422.

[8] S. Moore, W.H. Stein, Chromatography of amino acids on sulphonated polystyrene resins, J. Biol. Chem. 192 (1951) 663–681.

[9] E. Prato, M. Chiantore, M. Kelly, A. Hughes, P. James, M. Ferranti, F. Biandolino, I. Parlapiano, B. Sicuro, G. Fanelli, Effect of formulated diets on the proximate composition and fatty acid profiles of sea Urchin Paracentrotus lividus Gonad, Aqua. Int. 26 (2017) 1–18.