Molecular and morphological evidence for three species of Diplostomum (Digenea: Diplostomidae), parasites of fishes and fish-eating birds in Spain

Ana Pérez-del-Olmo1†, Simona Georgieva2,3†, Héctor J Pula4 and Aneta Kostadinova2

Abstract

Background: Recent molecular studies have revealed high species diversity of Diplostomum in central and northern Europe. However, our knowledge of the distribution of Diplostomum spp. in the southern distributional range in Europe of the snail intermediate hosts (Lymnaea stagnalis and Radix spp.) is rather limited. This study aims to fill this gap in our knowledge using molecular and morphological evidence.

Methods: Nineteen fish species and six fish-eating bird species were sampled opportunistically in three regions (Catalonia, Extremadura and Aragon) in Spain. All isolates of Diplostomum spp. were characterised morphologically and molecularly. Partial sequences of the barcode region of the cox1 mitochondrial gene and complete sequences of the ribosomal ITS1-5.8S-ITS2 gene cluster were used for molecular identification of the isolates.

Results: Integrated morphological and molecular analyses demonstrated the presence of three species among the larval and adult isolates of Diplostomum spp. sampled in Spain: Diplostomum spathaceum (in fish and birds), D. pseudospathaceum (in birds) and Diplostomum sp. (in fish) referred to as Clade Q sensu Georgieva et al. (Int J Parasitol, 43:57–72, 2013). We detected ten cox1 haplotypes among the isolates of D. spathaceum with only one haplotype shared with adult isolates from central and northern Europe. No specific geographic pattern of the distribution of the novel haplotypes was found.

Conclusion: This first molecular exploration of the diversity of Diplostomum spp. in southern Europe indicates much lower species richness compared with the northern regions of Europe.

Keywords: Diplostomum spathaceum, Diplostomum pseudospathaceum, Lens metacercariae, Freshwater fish, Gulls, Spain, Cox1, ITS1-5.8S-ITS2

Background

Diplostomum von Nordmann, 1832 is a relatively large genus of widely distributed digeneans with three-host life-cycles involving lymnaeid snails and fish as intermediate hosts and fish-eating birds (predominantly gulls) as definitive hosts. There are 41 nominal species described within the Palaearctic, mainly from Europe (see [1] for details). However, treatment of the data on the geographic and host ranges of Diplostomum spp. have long been hindered by taxonomic and identification problems concerning all life-cycle stages.

The use of molecular markers has proved to be valuable and more efficient than experimental approaches in elucidating parasite life-cycles by linking larvae with adults, e.g. [1-5]. The mitochondrial cytochrome c oxidase subunit 1 (cox1) barcode region was found to be suitable for this goal as well as for the identification and recognition of cryptic species diversity within Diplostomum [1,6,7].

Recent molecular studies linking cox1 and ITS1-5.8S-ITS2 sequences for larval and adult isolates, which were identified based on parasite morphology, have revealed high species diversity of Diplostomum in central and northern Europe [1,7]. However, our knowledge of the distribution of Diplostomum spp. in the southern
distributional range in Europe of the snail intermediate hosts (*Lymnaea stagnalis* and *Radix* spp.) is rather limited. Virtually no data exist for infections with *Diplostomum* spp. in the intermediate and definitive hosts in southern Europe. In Spain, two species have been recorded in populations of the gull definitive hosts. *Diplostomum spathaceum* was reported in four out of 324 yellow-legged gulls referred to as “*Larus cachinnans*” [8] and “*Larus michahellis*” [9] in Galicia and *D. pseudospathaceum* was recorded in one of 122 “*L. cachinnans*” from Medes Islands [10,11]. Similarly, there is a lack of data from the intermediate fish hosts; only unidentified metacercariae of *Diplostomum* spp. were reported in *Anguilla anguilla* in the Rivers Ulla and Tea in Galicia [12].

In this study, we used the molecular framework and the recently generated genetic datasets for Nearctic and Palearctic species of the genus [1,6,13] to investigate species diversity of *Diplostomum* in birds and fishes sampled opportunistically in three regions in the northern and southern Spain. We provide the first molecular evidence associated with descriptions of the hologenophores sensu Pleijel et al. [14] for three species of *Diplostomum*.

Methods

Sample collection and processing

An opportunistic sampling strategy was adopted for this study, which was focused on examination of a diverse array of hosts rather than large samples of a single host species. Table 1 provides a list of the fish hosts and localities in different regions in Spain. Fish were obtained in collaboration with the regional governments of Extremadura, Aragón and Catalunya. A total of 230 fish belonging to 19 species and 10 families was examined in 2012 for the presence of eye dwelling metacercariae. The samples of 10 families was examined in 2012 for the presence of eye dwelling metacercariae. The samples of *Pleijel et al.* [16] were obtained by polymerase chain reaction (PCR) amplifications using Ready-To-Go PCR beads (GE Healthcare, UK) and the diplostomid-specific PCR primers Plat-diploCOX1F (5′-CGT TTR AAT TAT ACG GAT CC-3′) and Plat-diploCOX1R (5′-AGC ATA GTG CAA GCA GC-3′) designed by Moszczynska et al. [16] (see [1] for details). PCR amplifications of the ITS1-5.8S-ITS2 gene cluster were performed as above using the primers D1 (forward: 5′-AGG AAT TCC TGG GTA ATM GCA GCA GC-3′) and D2 (reverse: 5′-CGT TAC TGA GGG AAT CCT GGT-3′) and thermocycling conditions of Galasso et al. [17].

PCR amplicons were purified using a QIAquick PCR purification kit (Qiagen Ltd, UK) and sequenced directly from both strands using the PCR primers (cox1) and the primers from [18]: BD1 (forward: 5′-GTC GTA ACA AGG TTT CCG TA-3′) and BD2: (reverse: 5′-TAT GCT GAT TTA ATT CAG CGG GT-3′) (ITS1-5.8S-ITS2) with ABI BigDye chemistry (ABI Perkin-Elmer, UK), alcohol-precipitated, and run on an ABI Prism 3130 x 1 automated sequencer. Contiguous sequences were assembled with MEGA v5 [19].

A total of 31 fish eating birds were obtained from bird recovery centres in Catalunya (Spain) in 2012 in order to obtain adult specimens of *Diplostomum* (Table 2). Six species of birds of four families were examined: (i) Laridae [*Larus ridibundus* L., *Larus argentatus michahellis* Naumann]; (ii) Sternaidae [*Sterna sandvicensis* Latham]; (iii) Ardeidae [*Ardea cinerea* L. and *Ixobrychus minutus* (L.)]; (iv) Phalacrocoracidae [*Phalacrocorax aristotelis* (L.)]. The largest number of birds was obtained from the Ebro Delta.

All metacercariae were dissected out from fresh fish, fixed in hot saline solution and preserved in molecular biology grade ethanol whereas all adult worms were collected from birds found dead and frozen until necropsy; these were also preserved in molecular grade ethanol. The morphology of the larval and adult stages of *Diplostomum* spp. was studied on live and fixed material from series of photomicrographs made for each isolate with a digital camera of an Olympus BX51 microscope prior to sequencing; measurements were taken from the digital images with the aid of Quick Photo Camera 2.3 image analysis software. The structure of the secondary excretory system was reconstructed from serial photomicrographs and the number of excretory concretions was counted. All measurements in the descriptions and tables are in micrometres and are presented as the range followed by the mean in parentheses.

Sequence generation

Total genomic DNA was isolated from single ethanol-fixed adult individuals using the Chelex method (see [15] for details). Partial fragments of the barcode region of the cox1 mitochondrial gene [16] were obtained by polymerase chain reaction (PCR) amplifications using Ready-To-Go PCR beads (GE Healthcare, UK) and the diplostomid-specific PCR primers Plat-diploCOX1F (5′-CGT TTR AAT TAT ACG GAT CAT CC-3′) and Plat-diploCOX1R (5′-AGC ATA GTG CAA GCA GCA GC-3′) designed by Moszczynska et al. [16] (see [1] for details). PCR amplifications of the ITS1-5.8S-ITS2 gene cluster were performed as above using the primers D1 (forward: 5′-AGG AAT TCC TGG GTA ATM GCA GCA GC-3′) and D2 (reverse: 5′-CGT TAC TGA GGG AAT CCT GGT-3′) and thermocycling conditions of Galasso et al. [17].

PCR amplicons were purified using a QIAquick PCR purification kit (Qiagen Ltd, UK) and sequenced directly from both strands using the PCR primers (cox1) and the primers from [18]: BD1 (forward: 5′-GTC GTA ACA AGG TTT CCG TA-3′) and BD2: (reverse: 5′-TAT GCT GAT TTA ATT CAG CGG GT-3′) (ITS1-5.8S-ITS2) with ABI BigDye chemistry (ABI Perkin-Elmer, UK), alcohol-precipitated, and run on an ABI Prism 3130 x 1 automated sequencer. Contiguous sequences were assembled with MEGA v5 [19].
Alignments and data analysis

The newly-generated and published sequences were aligned together with MUSCLE implemented in MEGA v5; cox1 sequences were aligned with reference to the amino acid translation, using the echinoderm and flatworm mitochondrial code [20]. The cox1 alignment (410 nt; 46 sequences) comprised the 18 newly-generated (Table 3) and 28 published sequences, the latter including 1 – 5 representative sequences per species/lineage identified in previous studies in Europe [1,13]; see Table 4 for details. The ITS1-5.8S-ITS2 alignment (997 nt; 35 sequences) comprised seven new sequences for Spanish isolates sub-sampled within the cox1-derived clades and 29 published sequences, representative for the species/lineages sequenced in Europe [1,13] and Canada [6,17] (for details see Table 4). Sequences for Tylodelphys clavata were used as outgroups.

Distance-based [neighbour-joining (NJ)] and model-based [maximum likelihood (ML) and Bayesian inference (BI)] algorithms were used for tree reconstruction. Prior to analyses the best-fit nucleotide substitution models were selected in jModelTest 2.1.1 [21,22] using the Akaike Information Criterion (AIC). These were the Hasegawa-Kishino-Yano model including estimates of invariant sites and submitted to GenBank (details and accession numbers are shown in Table 3).

Table 1 Summary data for the fish species examined/infected with Diplostomum spp.

Fish species	Fish family	Locality	Date of collection	No. examined (infected)	Total length (range, mm)
Carassius auratus (L.)	Cyprinidae	Ebro Delta	18.ii.2012	2	121 – 248
*Cyprinus carpio L.	Cyprinidae		13 (1)	209 – 379	
*Silurus glanis L.	Siluridae		2	440 – 460	
*Pseudoraspbora parva (Termminck & Schlegel)	Cyprinidae		15	45 – 103	
*Lepomis gibelouis (L.)	Centrarchidae		1	52	
Liza ramada (Risso) juv.	Mugilidae		10	90 – 183	
*Misgurnus anguillicaudatus (Cantor)	Cobitidae		15 (1)	50 – 128	
Anguilla anguilla (L.)	Anguillidae	Ebro Delta*	17.v.2012	5	158 – 255
Atherina boyeri Risso	Atherinidae		10	34 – 44	
*Cyprinus carpio L.	Cyprinidae		1	192	
*Gambusia holbrooki Girard	Poeciliidae		18	24 – 50	
Liza ramada (Risso) juv.	Mugilidae		1	58	
*Lepomis gibelouis (L.)	Centrarchidae		14	43 – 65	
*Misgurnus anguillicaudatus (Cantor)	Cobitidae		16 (2)	52 – 122	
Pomatachistus microps (Kreyer)	Gobiidae		1	32	
*Pseudoraspbora parva (Termminck & Schlegel)	Cyprinidae		17.v.2012	5	158 – 255
*Silurus glanis L.	Siluridae		1 (1)	409	
Tropidopaxiellus albomoides (Steindachner)	Cyprinidae	River Albarragena*b	21.ii.2012	4	57 – 89
Tropidopaxiellus albomoides (Steindachner)	Cyprinidae	River Albarragena*b	21.ii.2012	4	57 – 89
Pseudochondrostoma willkommii (Steindachner)	Cyprinidae	Villafranco del Guadiana*b	06.ii.2012	10 (10)	235 – 262
Salmo trutta L.	Salmonidae	Jerte*c	07.iii.2012	3	262 – 291
Parachondrostoma migiei (Steindachner)	Cyprinidae	River Piedrä*d	24.jx.2012	5	139 – 177
Oncorhyncus mykiss (Walbaum)	Salmonidae		2	170 – 195	
Squalius pyrenaicus (Günther)	Cyprinidae		10	84 – 135	
Salmo trutta L.	Salmonidae	Lake Espejo*d	24.jx.2012	2	490 – 497
Luciobarbus graelisi (Steindachner)	Cyprinidae		3	236 – 405	
Oncorhyncus mykiss (Walbaum)	Salmonidae		1	441	
Salmo trutta L.	Salmonidae	River Aragon*d	25.jx.2012	12	70 – 188
Salmo trutta L.	Salmonidae	River Ara*a	25.jx.2012	12	68 – 146
Gobio lozanoi Doadrio & Madeire	Cyprinidae	River Cinca*e	25.jx.2012	1	53
*Gambusia holbrooki Girard	Poeciliidae		5	21 – 29	

*Invasive species are marked with a star; *Tarragona; *Badajoz; *Caceres; *Zaragoza; *Huesca.
and among-site rate heterogeneity (HKY + I + G) for the cox1 dataset and the Hasegawa-Kishino-Yano model including estimates of among-site rate heterogeneity (HKY + G) for the ITS dataset. ML analyses were performed in PhyML 3.0 [23] with a non-parametric bootstrap validation based on 1,000 replicates. BI analyses were carried out in MrBayes 3.2 [24] using Markov Chain Monte Carlo (MCMC) searches on two simultaneous runs of four chains during 10^7 generations, sampling trees every 10^3 generations. The first 25% of the sampled trees were discarded as “burn-in” for each data set and the consensus tree topology and the nodal support were estimated from the remaining samples as posterior probability values [25]. Distance matrices (p-distance model, i.e. the percentage of pairwise character differences with pairwise deletion of gaps) were also calculated and explored with MEGA v5.

Results

Diplostomum spp. infections in fish and birds

Of the 230 fish of 19 species studied, only 15 were infected with *Diplostomum* spp.: one *Cyprinus carpio* (Cyprinidae), one *Silurus glanis* (Siluridae), three *Misgurnus anguillicaudatus* (Cobitidae) and ten *Pseudochondrostoma willkommi* (Cyprinidae). All infected fishes were collected in the Ebro Delta (Tarragona, Spain) with the exception of *P. willkommi* originating from the aquaculture centre of Villafranco del Guadiana (Badajoz, Spain) (Table 1). It is worth noting that infections with metacercariae of *Diplostomum* spp. were detected in some (*C. carpio* and *M. anguillicaudatus*) and not in other relatively well-sampled species (*Pseudorasbora parva*, *Gambusia holbrooki* and *Lepomis gibbosus*) in the Ebro Delta but also in one of the three *S. glanis* sampled in this locality. All infections with *Diplostomum* spp. in the fish from Ebro Delta were of low intensity (1 to 4 metacercariae).

All *P. willkommi* (n = 10) examined from the aquaculture centre in Villafranco de Guadiana were infected with 95–139 metacercariae. Due to the high parasite load, infections were detectable by visual examination especially in older mature fish (Figure 1B,C). The overall prevalence of infection is estimated as 60–65% with a trend of increase with fish age: 0–25% in fish during the
first year; 25–50% during the second year; 50–75% during the third year; up to 90% during the fourth year.

A total of 31 fish-eating birds belonging to six species was examined (Table 2). Of these, only six gulls were infected with *Diplostomum* spp.: two *Larushargentatus michaellis* and three *L. ridibundus* originating from the Ebro Delta (Tarragona) and one *L. ridibundus* from Cunit (Tarragona). Representative adult specimens of the two *Diplostomum* spp. identified in the material from gulls based on morphology, i.e. *D. spathaceum* and *D. pseudospathaceum*, and all metacercariae recovered from fish were selected for sequencing.

Molecular identification

Partial cox1 sequences were obtained for seven adult isolates collected from two gull hosts (*Larush ridibundus* and *L. cachinnans*) and 11 metacercarial isolates collected from the lenses of four fish hosts (*Cyprinus carpio*, *Misgurnus anguillicaudatus*, *Pseudochondrostoma willkommii* and *Silius glanis*). Similar to a previous study on *Diplostomum* spp. in Europe [1], phylogenetic analyses of the cox1 dataset (410 nt) recovered eight species/lineages comprising *D. spathaceum*, *D. pseudospathaceum*, *D. spathaceum*varviventosum referred to as Clade Q sensu Georgieva et al. [1], ‘*D. mergi*’ complex (including three putative species) and ‘*D. baeri*’ complex (representing two sibling species) (Figure 2). The analyses provided robust evidence that most of the isolates are conspecific with *D. spathaceum sensu* Georgieva et al. [1] (Figure 2). These represented five adult isolates ex *L. ridibundus* and *L. argentatus michaellis* from the Ebro Delta, one adult isolate ex *L. ridibundus* from Cunit, seven metacercarial isolates ex *P. willkommii* from Villafranco del Guadiana, two metacercarial isolates ex *M. anguillicaudatus* and a single isolate ex *S. glanis*, the last two fish species both collected from the Ebro Delta.

The intraspecific divergence within the *D. spathaceum* clade ranged between 0 and 1.5%, i.e. within the known range of intraspecific variation for *Diplostomum* spp. [1]. The material collected in Spain was represented by a total of 10 haplotypes (Table 3) with only one haplotype shared with adult isolates from central and northern Europe (haplotype 2, isolate ex *M. anguillicaudatus* and JX986892). There was no specific geographic pattern of the distribution of the novel haplotypes. Thus isolates from *Pseudochondrostoma willkommii* from the population of Villafranco del Guadiana were represented by six haplotypes with only one shared and there were shared haplotypes among isolates from geographically distant host samples, e.g. among larval isolates from Villafranco del Guadiana and adult isolates from the Ebro Delta and Cunit (haplotypes 1, 3 and 4) (see Table 3 for details).

Numerous attempts were made to obtain sequences for isolates of adult *D. pseudospathaceum* identified based on morphology but only one was successful; this may be due to the fact that the infected birds were collected long after their death. The sequence for the single isolate ex *L. ridibundus* clustered within the strongly supported clade (Figure 2) representing sequences for adult isolates of *D. pseudospathaceum* identified based on morphology [1]. The Spanish isolate was represented by a unique haplotype which differed by 1.2-1.7% from the remaining three haplotypes within the *D. pseudospathaceum* clade.

Finally, a sequence from a single metacercariae ex *Cyprinus carpio* from the Ebro Delta clustered together with sequences for one cercarial isolate ex *Radix auricularia* (RA97) and two metacercarial isolates ex *Rutilus rutilus* (RR43 and RR45) from Lake Constance, all reported as *D. spathaceum* [13] but labelled as *D. mergi* in GenBank (see Clade Q in Figure 2).

A total of seven ITS1-5.8S-ITS2 sequences was generated after a selective sub-sampling of the Spanish isolates within the three cox1 clades of *Diplostomum* spp. The analysis of the ITS data (997 nt positions) resulted in molecular identification of these isolates concordant with that based on the cox1 gene trees with strong support (Figure 3). The intraspecific divergence within the *D. spathaceum* clade ranged between 0 and 0.4%. The five representative isolates from the cox1 dataset corresponded to four genotypes (with one genotype shared

Table 2 Summary data for the bird species examined/infected with *Diplostomum* spp.

Bird species	Collection site	No. examined (infected)	
Larushargentatus	Ebro Delta (Tarragona)	6 (2)	
michaellis Naumann			
Larushargentatus	Barcelona	2	
michaellis Naumann			
Larushargentatus	Alella (Barcelona)	1	
michaellis Naumann			
Larushargentatus	Sabadell (Barcelona)	1	
michaellis Naumann			
Larushargentatus	Empuria Brava (Girona)	1	
michaellis Naumann			
Larushargentatus	Figueres (Girona)	1	
michaellis Naumann			
Larushargentatus	Roses (Girona)	2	
michaellis Naumann			
Larushargentatus	Tarragona	1	
michaellis Naumann			
Larushargentatus	Cambrils (Tarragona)	1	
michaellis Naumann			
Larushridibundus L.	Ebro Delta (Tarragona)	5 (3)	
Larushridibundus L.	Cunit (Tarragona)	1 (1)	
Sterna sandvicensis	Roda de Bará (Tarragona)	1	
(Latham)			
Phalacrocorax aristoletis (L.)	Tarragona	1	
Ardea cinerea L.	Ebro Delta (Tarragona)	5	
Ichthyurus minutus (L.)	Ebro Delta (Tarragona)	2	
Table 3 Summary data for the isolates of Diplostomum spp. from fishes and birds collected in Spain and used for generation of the cox1 and ITS1-5.8S-ITS2 sequences

Species	Life-cycle stage^a	Isolate	Haplotype	Host	Locality	GenBank accession numbers
Diplostomum sp. (Clade Q)	M	CCED		Cyprinus carpio	Ebro Delta	KP025770 KP025788
Diplostomum pseudospathaceum	A	LRED1		Larus ridibundus	Ebro Delta	KP025771 JX986854^b
Diplostomum spathaceum	A	LCED1	1	Larus argentatus michahellis	Ebro Delta	KP025772
Diplostomum spathaceum	A	LCED2	6	Larus argentatus michahellis	Ebro Delta	KP025773
Diplostomum spathaceum	A	LCED3	4	Larus argentatus michahellis	Ebro Delta	KP025774
Diplostomum spathaceum	A	LRC	3	Larus ridibundus	Cunit	KP025775 KP025789
Diplostomum spathaceum	A	LRED2	10	Larus ridibundus	Ebro Delta	KP025776
Diplostomum spathaceum	A	LRED3	8	Larus ridibundus	Ebro Delta	KP025777
Diplostomum spathaceum	M	MAED1		Misgurnus anguillicaudatus	Ebro Delta	KP025778 KP025790
Diplostomum spathaceum	M	MAED2	2	Misgurnus anguillicaudatus	Ebro Delta	KP025779 KP025791
Diplostomum spathaceum	M	PWVG1	5	Pseudochondrostoma willkommii	Villafranco del Guadiana	KP025780
Diplostomum spathaceum	M	PWVG2	4	Pseudochondrostoma willkommii	Villafranco del Guadiana	KP025781 KP025792
Diplostomum spathaceum	M	PWVG3	7	Pseudochondrostoma willkommii	Villafranco del Guadiana	KP025782 KP025793
Diplostomum spathaceum	M	PWVG4	1	Pseudochondrostoma willkommii	Villafranco del Guadiana	KP025783
Diplostomum spathaceum	M	PWVG5	9	Pseudochondrostoma willkommii	Villafranco del Guadiana	KP025784
Diplostomum spathaceum	M	PWVG6	3	Pseudochondrostoma willkommii	Villafranco del Guadiana	KP025785
Diplostomum spathaceum	M	PWVG7	7	Pseudochondrostoma willkommii	Villafranco del Guadiana	KP025786
Diplostomum spathaceum	M	SGED	6	Silurus glanis	Ebro Delta	KP025787

^aM, metacercaria, A, adult; ^bITS sequence identical with JX986854 of Georgieva et al. [1].

The sequence from the single adult isolate identified as D. pseudospathaceum based on morphology and cox1 phylogeny was identical with six sequences of Georgieva et al. [1] based on larval and adult isolates from the Czech Republic and Germany and one sequence of Berhrmann-Gold [13]; all these sequences formed a strongly supported clade representing D. pseudospathaceum (Figure 3) which also included Diplostomum sp. 3 of Locke et al. [6] as in previous studies [1,7].

As in the cox1 solution, the sequence for the metacercarial isolate ex C. carpio clustered together with a sequence labelled in GenBank as “D. mergi” for a cercarial isolate (RA97) ex Radix auricularia from Lake Constance [13] within the Clade Q sensu Georgieva et al. [1]. The divergence between the two sequences was 0.8%.

Descriptions of the molecular voucher material

Diplostomum spathaceum (Rudolphi, 1819) (adult)

Hosts: Larus argentatus michahellis Naumann; L. ridibundus L.

Localities: Ebro Delta, Cunit (Tarragona, Spain).

Site in host: Small intestine.

[Based on five frozen specimens (hologenophores) preserved in ethanol (molecular biology grade)]. Body 1,971 – 2,189 (2,085) long (Figure 4). Forebody oval, dorso-ventrally flattened, 782 – 1,155 long [40 – 43 (42)% of total body length], with maximum width 504 – 726 (592) at level of holdfast organ. Hindbody, elongate-oval, narrower anteriorly, 1,252 – 1,368 (1,285) long, with maximum width 387 – 575 (477) at level of anterior testis.

Oral sucker ventro-subterminal, subspherical, 71 – 93 x 70 – 92 (81 x 78). Pseudosuckers well developed, 109 – 155 x 44 – 62 (139 x 56). Ventral sucker subglobular, 65 – 95 x 80 – 99 (83 x 89), similar in size to oral sucker, located just anterior to mid-forebody. Holdfast organ large, subglobular, 150 – 236 x 202 – 288 (215 x 224), fairly close to or contiguous with ventral sucker. Prepharynx short or absent; pharynx elongate-oval, 55 – 89 x 45 – 59 (73 x 52); oesophagus indistinct; caeca narrow.

Testes 2, large, in posterior half of hindbody; anterior testis transversely elongate, asymmetrical, 171 – 203 x 154 – 224 (183 x 191); posterior testis transversely elongate, symmetrical, horseshoe-shaped, 190 – 317 x 240 – 399 (247 x 334). Seminal vesicle voluminous. Genital pore dorso-subterminal. Ovary small, dextral, pretesticular, subglobular, 87 x 83, contiguous with anterior testis.
Table 4 Summary data for the isolates of Diplostomum spp. retrieved from GenBank

Trematode species	Isolate	Life-cycle stage	Host species	Locality	Accession No. (cox1)	Accession No. (ITS1-5.8S-ITS2)	Reference
Diplostomum baeri	STR3	M	Salmo trutta fario	Germany: River Ruhr (Henne)	JX986862	JX986837	Georgieva et al. [1]
Diplostomum baeri	STL1	M	Salmo trutta fario	Germany: River Lenne	JX986863	-	Georgieva et al. [1]
Diplostomum baeri	STR4	M	Salmo trutta fario	Germany: River Ruhr (Henne)	JX986864	-	Georgieva et al. [1]
Diplostomum baeri	STL2	M	Salmo trutta fario	Germany: River Lenne	JX986865	-	Georgieva et al. [1]
Diplostomum baeri	STR7	M	Salmo trutta fario	Germany: River Ruhr (Henne)	JX986869	-	Georgieva et al. [1]
Diplostomum baeri	PF5D3	M	Perca fluviatilis	Germany: Lake Constance	JQ639195	-	Behrmann-Godel [13]
Diplostomum baeri	PF15D9	M	Perca fluviatilis	Germany: Lake Constance	JQ639193	-	Behrmann-Godel [13]
Diplostomum baeri	PF15D4	M	Perca fluviatilis	Germany: Lake Constance	JQ639187	-	Behrmann-Godel [13]
Diplostomum baeri	PF8D7	M	Perca fluviatilis	Germany: Lake Constance	JQ639191	-	Behrmann-Godel [13]
Diplostomum baeri	PF6D3	M	Perca fluviatilis	Germany: Lake Constance	JQ639189	-	Behrmann-Godel [13]
Diplostomum baeri	–	A	Larus delawarensis (exp.)	Canada	-	AY123042	Galazzo et al. [17]
Diplostomum huronense	D.LL.IVT.Cc.3 F.1	M	Catostomus commersoni	Canada	-	GQ292513	Locke et al. [6]
Diplostomum indistinctum	D.RL.D.Cc.1.2	M	Catostomus commersoni	Canada	-	GQ292508	Locke et al. [6]
Diplostomum mergi	RAH1	C	Radix auricularia	Germany: Hengsteysee	JX986873	JX986838	Georgieva et al. [1]
Diplostomum mergi	RAH2	C	Radix auricularia	Germany: Hengsteysee	JX986874	-	Georgieva et al. [1]
Diplostomum mergi	RAH3	C	Radix auricularia	Germany: Hengsteysee	JX986875	JX986839	Georgieva et al. [1]
Diplostomum mergi	RAH4	C	Radix auricularia	Germany: Hengsteysee	JX986876	-	Georgieva et al. [1]
Diplostomum mergi	GGR2	M	Gobio gobio	Germany: River Ruhr (Henne)	JX986877	JX986840	Georgieva et al. [1]
Diplostomum mergi	STR10	M	Salmo trutta fario	Germany: River Ruhr (Henne)	JX986878	JX986841	Georgieva et al. [1]
Diplostomum mergi	STR11	M	Salmo trutta fario	Germany: River Ruhr (Henne)	JX986879	-	Georgieva et al. [1]
Diplostomum mergi	STR12	M	Salmo trutta fario	Germany: River Ruhr (Henne)	JX986880	-	Georgieva et al. [1]
Diplostomum mergi	GGR3	M	Gobio gobio	Germany: River Ruhr (Henne)	JX986880	-	Georgieva et al. [1]
Diplostomum mergi	GGR4	M	Gobio gobio	Germany: River Ruhr (Henne)	JX986882	-	Georgieva et al. [1]
Diplostomum mergi	STR15	M	Salmo trutta fario	Germany: River Ruhr (Henne)	JX986886	-	Georgieva et al. [1]
Diplostomum mergi	RR45	M	Rutilus rutilus	Germany: Lake Constance	JQ639178	-	Behrmann-Godel [13]
Diplostomum mergi	RR43	M	Rutilus rutilus	Germany: Lake Constance	JQ639177	-	Behrmann-Godel [13]
Diplostomum mergi	RA97	C	Radix auricularia	Germany: Lake Constance	JQ639179	JQ665458	Behrmann-Godel [13]
Diplostomum paracaudum	CL100	M	Coregonus lavaretus	Germany: Lake Constance	-	JQ665457	Behrmann-Godel [13]
Diplostomum pseudospathaceum	LCT3	A	Larus cachinnans	Czech Republic: near Tovačov	JX986896	JX986849	Georgieva et al. [1]
Diplostomum pseudospathaceum	LSB2	C	Lymnaea stagnalis	Germany: Baldeneysee	-	JX986850	Georgieva et al. [1]
Diplostomum pseudospathaceum	LSH1	C	Lymnaea stagnalis	Germany: Harkortsee	-	JX986851	Georgieva et al. [1]
Table 4 Summary data for the isolates of *Diplostomum* spp. retrieved from GenBank (Continued)

Species	Accession	Host	Location	Genetic Distance	Reference
Diplostomum pseudospathaceum	GAH6	*Gasterosteus aculeatus*	Germany: Hengsteysee	-	JX986852 Georgieva et al. [1]
Diplostomum pseudospathaceum	LAG2	*Larus argentatus*	Poland: near Gdańsk	JX986904	JX986853 Georgieva et al. [1]
Diplostomum pseudospathaceum	LCT4	*Larus cachinnans*	Czech Republic: near Tovačov	JX986905	JX986854 Georgieva et al. [1]
Diplostomum pseudospathaceum	GC87	*Gymnocephalus cernuus*	Germany: Lake Constance	-	JQ665456 Behrmann-Godel [13]
Diplostomum spathaceum	LCT1	*Larus cachinnans*	Czech Republic: near Tovačov	JX986887	JX986844 Georgieva et al. [1]
Diplostomum spathaceum	RAH6	*Radix auricularia*	Germany: Hengsteysee	-	JX986846 Georgieva et al. [1]
Diplostomum spathaceum	RAH5	*Radix auricularia*	Germany: Hengsteysee	-	JX986845 Georgieva et al. [1]
Diplostomum spathaceum	LAG1	*Larus argentatus*	Poland: near Gdańsk	JX986892	JX986847 Georgieva et al. [1]
Diplostomum spathaceum	LCT2	*Larus cachinnans*	Czech Republic: near Tovačov	JX986895	JX986848 Georgieva et al. [1]
Diplostomum sp. 1 SAL-2008	D.IN.SS.1D.2 F.6	*Larus delawarensis* (exp.)b	Canada	-	GG292519 Locke et al. [6]
Diplostomum sp. 2 SAL-2008	D.BR.S.B.20.1 M	*Pimephales notatus*	Canada	-	GG292505 Locke et al. [6]
Diplostomum sp. 3 SAL-2008	D.RL.B08.Ms.1 F.1 M	*Micropterus salmoides*	Canada	-	GG292511 Locke et al. [6]
Diplostomum sp. 4 SAL-2008	D.IN.SS.1D.2 F.10 A	*Larus delawarensis*	Canada	-	GG292520 Locke et al. [6]
Tylodelphys clavata	PFL1	*Perca fluviatilis*	Germany: River Lippe	JX986909	- Georgieva et al. [1]
Tylodelphys clavata	CL91	*Coregonus lavaretus*	Germany: Lake Constance	-	JQ665459 Behrmann-Godel [13]

a, cercaria; M, metacercaria; A, adult; b, raised in experimental infection.
Vitellarium follicular, follicles numerous, small, arranged in four lateral bands surrounding holdfast organ in forebody; bands reach to mid-level of holdfast organ, converge close to posterior margin of forebody, posteriorly to holdfast organ; vitelline follicles in hindbody in two wide, not well-delimited lateral bands, converging medially at level of testes, reaching fairly close to posterior extremity of body. Eggs few, 89 – 99 × 61 – 66 (95 × 63).

Diplostomum spathaceum (Rudolphi, 1819) (metacercaria)

Hosts: *Pseudochondrostoma willkommii* (Steindachner); *Misgurnus anguillicaudatus* (Cantor); *Silurus glanis* L.

Localities: Villafranco del Guadiana (*P. willkommii*) and Ebro Delta (*M. anguillicaudatus* and *S. glanis*), Spain.

Site in host: Eye lens.

[Diplostomum spathaceum (Rudolphi, 1819) (metacercaria)]

[Based on 10 metacercariae (hologenophores) fixed in hot saline solution and preserved in ethanol (molecular biology grade)]. Body elongate-oval, flattened, 277 – 453 × 198 – 295 (376 × 248); primordial hindbody 10 – 26 (16) long (Figure 5). Oral sucker elongate-oval, 40 – 57 × 36 – 41 (45 × 39). Ventral sucker transversely oval, 30 – 43 × 33 – 48 (38 × 43). Two contractile lappets (pseudosuckers) present on each side of oral sucker, 44 – 55 (48) long, with maximum width 22 – 30 (26). Prepharynx very short; pharynx elongate-oval, 29 – 43 × 19 – 26 (37 × 23); oesophagus short; caeca long, wide, reach posterior to holdfast organ. Holdfast organ large, elongate-oval, 63 – 89 × 59 – 90 (75 × 80). Reserve excretory system with numerous, relatively large excretory granules (170 – 184 in number), distributed in a median and two lateral fields.

Diplostomum pseudospathaceum Niewiadomska, 1984 (adult)

Host: *Larus ridibundus* L.

Locality: Ebro Delta (Tarragona, Spain).

Site in host: Small intestine.
Based on a single frozen specimen (hologenophore) preserved in ethanol (molecular biology grade). Body 2,884 long (Figure 6). Forebody elongate-oval, narrow, dorso-ventrally flattened, tapering anteriorly, 1,075 long (37% of total body length), with maximum width at level of ventral sucker, 526. Hindbody, elongate, sub-cylindrical, narrower anterior to ovary, 1,891 long, with maximum width at level of posterior testis, 163.

Oral sucker ventro-subterminal, subspherical, 69 × 73. Pseudosuckers well developed, 128 × 49. Ventral sucker transversely oval, 67 × 85, slightly larger than oral sucker, located just posterior to mid-forebody. Holdfast organ subglobular, 126 × 118, located well posterior to ventral sucker (at a distance >2 ventral sucker diameters). Prepharynx fairly short; pharynx elongate-oval, 53 × 35; oesophagus short; caeca narrow.

Testes 2, large, in posterior half of hindbody; anterior testis transversely elongate, asymmetrical, 132 × 75; posterior testis larger, transversely elongate, symmetrical, horseshoe-shaped, 237 × 315. Seminal vesicle voluminous. Gentital pore dorso-subterminal. Ovary small, submedian, pretesticular, subglobular, 79 × 78, nearly contiguous with anterior testis. Vitellarian follicular, follicles numerous, small, arranged in two median inter-caecal and four lateral extra-caecal bands in forebody, reaching to the posterior margin of ventral sucker anteriorly; bands, converge close to posterior margin of forebody, posteriorly to holdfast organ; vitelline follicles in hindbody in two wide, dense lateral bands, converging medially at level of gonads, reach fairly close to posterior extremity of body. Eggs few, 96 − 110 × 58 − 63.

Figure 3 Neighbour-joining (NJ) phylogram reconstructed using the newly-generated and retrieved from GenBank ITS1-5.8S-ITS2 sequences for *Diplostomum* spp. Nodal support from Maximum Likelihood (ML) and Bayesian Inference (BI) analyses indicated as NJ/ML/BI. Outgroup: *Tylodelphys clavata*. The scale-bar indicates the expected number of substitutions per site. Isolates from Spain are coded as in Table 3; stars indicate adult isolates from gulls.

Diplostomum sp. (metacercaria)

Host: *Cyprinus carpio* L.

Locality: Ebro Delta (Tarragona, Spain).

Site in host: Eye lens.

[Based on a single metacercaria (hologenophore) fixed and preserved in ethanol (molecular biology grade).]
Body elongate-oval, flattened, 229 × 180; primordial hindbody not evident (Figure 7). Oral sucker spherical, 29 × 29. Ventral sucker subspherical, 37 × 42. Two small contractile lappets (pseudosuckers) present on each side of oral sucker, 31 − 32 long, with maximum width 15 − 16. Prepharynx absent; pharynx subspherical, 24 × 23; oesophagus very short; caeca long, narrow, reach posterior to holdfast organ. Holdfast organ large, transversely elongate, 50 × 84. Reserve excretory system with numerous, dispersed, relatively large excretory granules (c. 215 in number).

Discussion

This first molecular exploration of the diversity of *Diplostomum* spp. in southern Europe indicates much lower species richness compared with the northern regions of Europe (3 vs 12 species). Of the six species of fish-eating birds studied in the north of Spain only two gull species were found to host adult *Diplostomum* spp.; however, sample sizes were rather small. The detection of metacercariae in fish also might have been influenced by the differential sample sizes. However, we found infections in an under-sampled fish host as well in some but not in other hosts with relatively large sample sizes. Notably, metacercariae of *Diplostomum* spp. were recovered in three out of the seven invasive fish species examined (*C. carpio*, *M. anguillicaudatus* and *S. glanis*; Table 1) thus indicating that these hosts may have a considerable contribution to the transmission of *Diplostomum* spp. in the Ebro Delta and elsewhere. *M. anguillicaudatus* and *S. glanis* are new host records for *D. spathaceum*.

Another important finding is the high prevalence and abundance of infection with *D. spathaceum* in *P. willkommii*,
a native vulnerable species [26] with distribution restricted to the southern Iberian Peninsula in Spain and Portugal. The high levels of infections in the aquaculture centre in Villafranco de Guadiana, where mature breeders from natural populations are being added yearly to the cultured population, reveal a further threat upon this fish species in both natural and fish farming conditions. The shallow, open nature of the pools probably contributes significantly to the establishment of a focus of infection with *D. spathaceum*.

To the best of our knowledge, this study is the first to provide detailed morphometric data and morphological description of the isolates of *Diplostomum* spp. in association with the molecular data used for identification. The morphology of the adult specimens of *D. spathaceum* and *D. pseudospathaceum* used for sequence generation agrees well with the descriptions of *D. spathaceum* sensu stricto and *D. pseudospathaceum* of Niewiadomska [27], respectively. The material of *D. spathaceum* ex *Larus* spp. from Ebro Delta is characterised by lower values (outside the lower range for the material ex *Larus fuscus* L. and *L. ridibundus* from Poland studied by Niewiadomska [27] for the size of the hindbody, holdfast organ, ovary and testes (Table 5). Similarly, the specimen of *D. pseudospathaceum* ex *L. ridibundus* from Ebro Delta had smaller holdfast organ, ovary and testes and much narrower hindbody and longer pseudosuckers compared with the
Table 5 Comparative metrical data for adults of Diplostomum spathaceum and D. pseudospathaceum

| Species | Host | Locality | Source | Forebody length (FBL) | Forebody width (FBW) | Pharynx length (PHW) | Anterior testis length (ATL) | Posterior testis length (PTL) | Posterior testis width (PTW) | Anterior testis width (ATW) | Hindbody width (HBL) | Hindbody length (HBL) | Oral sucker length (OSL) | Oral sucker width (OSW) | Ventral sucker length (VSL) | Ventral sucker width (VSW) | Forebody as a percentage of body length (FO/BL) | Oral sucker as a percentage of forebody length (OVL) | Oral sucker as a percentage of body length (OVW) | Egg-length | Egg-width |
|------------------------------|---------------------------|-------------------|-------------------------|-----------------------|----------------------|----------------------|---------------------------|-----------------------------|---------------------------|------------------------|---------------------|------------------------|--------------------------|--------------------------|---------------------------|-----------------------------------|---|---|----------------------|-----------|
| Diplostomum spathaceum | Larus fuscus L.; Larus ridibundus L. | Lake Mamry (Poland) | Niewiadomska [27] | Present study | 1,791 – 2,189 | 1,252 – 1,368 | 240 – 720 | 782 – 1,155 | 504 – 726 | 625 – 893 | 71 – 93 | 68 – 95 | 1,560 – 1,971 | 238 – 78 | 102 – 153 | 34–54 | 31 – 48 | 40 – 43 | 89 – 99 | – | 61 – 66 |
| Diplostomum pseudospathaceum | Larus ridibundus L. | Ebro Delta (Spain) | Niewiadomska [27] | Present study | 1,971 – 2,189 | 1,252 – 1,368 | 240 – 720 | 782 – 1,155 | 504 – 726 | 625 – 893 | 71 – 93 | 68 – 95 | 1,560 – 1,971 | 238 – 78 | 102 – 153 | 34–54 | 31 – 48 | 40 – 43 | 89 – 99 | – | 61 – 66 |

Abbreviations: TL: total body length, FBL: forebody length, FBW: forebody width, HBL: hindbody length, Pharynx length, Anterior testis length, Posterior testis length, Posterior testis width, Anterior testis width, Hindbody width, Oral sucker length, Oral sucker width, Ventral sucker length, Ventral sucker width, Oral sucker as a percentage of forebody length, Oral sucker as a percentage of body length.

specimens from the same host studied in Poland (Table 5). These data indicate much higher geographic variation in the morphometric features in both Diplostomum spp.

The dimensions of the metacercariae from the three fish hosts identified molecularly as D. spathaceum varied within the range provided by Niewiadomska [28] for the metacercariae of this species raised experimentally in C. carpio. However, the mean values for the length of body and the size of suckers were lower in the specimens obtained in Spain (Table 6). The metacercaria of Diplostomum sp. that was found to be conspecific with the isolates of Clade Q sensu Georgieva et al. [1] had distinctly smaller oral sucker and shorter holdfast organ compared with both Spanish and Polish isolates of D. spathaceum (Table 6). Finally, the metacercariae of both Diplostomum spp. examined in Spain had distinctly lower number of excretory granules in the secondary excretory system than the experimentally raised metacercariae ex C. carpio (see [28]; Table 6).

Although the molecular and morphological identification of the larval and adult isolates of D. spathaceum and D. pseudospathaceum were straightforward, we failed to identify one isolate recovered in C. carpio. The analysis of both cox1 and ITS1-5.8S-ITS2 sequences placed this isolate within the Clade Q (i.e. questionable), a label used by Georgieva et al. [1] to indicate five identical ITS1 sequences from Europe: two for cercariae ex R. ovata identified as D. spathaceum and one for cercariae ex R. ovata identified as D. parviventosum by Niewiadomska & Laskowski [29] in Poland; one for a metacercaria ex
Table 6 Comparative metrical data for the metacercariae of *Diplostomum spathaceum* and *Diplostomum* sp. (Clade Q)

Species	*Diplostomum spathaceum*	*Diplostomum* sp. (Clade Q)			
Host	*Cyprinus carpio* L.	*Cyprinus carpio*			
Locality	Experimental infection	Present study			
Source	Niewiadomska [28]	Present study			
Range	**Mean**	**Mean**			
BL	340 – 451	398	277 – 453	376	229
BW	170 – 296	217	198 – 295	248	180
HL	–	–	10 – 26	16	0
OSL	42 – 54	48	40 – 57	45	29
OSW	42 – 52	45	36 – 41	39	29
PSL	–	–	44 – 55	48	31 – 32
PSW	–	–	22 – 30	26	15 – 16
VSL	39 – 56	46	30 – 43	38	37
VSW	42 – 59	53	33 – 48	43	42
PHL	25 – 39	31	29 – 43	37	24
PHW	12 – 25	20	19 – 26	23	23
HOL	68 – 93	77	63 – 89	75	50
HOW	62 – 102	85	59 – 90	80	84
No. of excretory granules	c. 300	–	170 – 184	178	c. 215

Abbreviations: BL body length, BW body width, HL primordial hindbody length, OSL oral sucker length, OSW oral sucker width, PSL pseudosucker length, PSW pseudosucker width, VSL ventral sucker length, VSW ventral sucker width, HOL holdfast organ length, HOW holdfast organ width, PHL pharynx length, PHW pharynx width.

R. rutilus from Finland submitted to GenBank as *D. parviventosum/spathaceum* by Rellstab *et al.* [30]; and one for cercariae ex *R. auricularia* (isolate RA97) from Lake Constance [13]; the latter was designated as *D. spathaceum* but submitted to GenBank as *D. mergi*. Using the sequences of Behrmann-Godel [13] for both *cox1* and ITS1-5.8S-ITS2, we found that this clade, incorporating our sequence for the metacercaria ex *C. carpio*, is strongly supported and reconstructed as sister to the species-level lineages of the ’*Diplostomum mergi*’ species complex sensu Georgieva *et al.* [1]. Unfortunately, no identification to the species level can be attempted for the isolates within this clade since all represent larval stages for which, with the exception of the present data, no morphological evidence has been provided. The congruent morphological and molecular identification of the adult isolates of *D. spathaceum* achieved here, supports the suggestion of Georgieva *et al.* [1] that isolates in Clade Q may represent *D. parviventosum*. Further molecular and morphological evidence is required, preferably based on adult isolates, in order to solve the species-level identification of this clade.

Conclusion

This first molecular exploration of the diversity of *Diplostomum* spp. in southern Europe indicates much lower species richness compared with the northern regions of Europe.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

APO conceived and designed the study, obtained the samples, undertook the morphological characterisation and helped draft the MS. HJP obtained samples, discussed the results and took part in the preparation of the MS and figures. SG carried out the sequencing and phylogenetic analyses, took part in the morphological assessment, and prepared the first draft of the MS and figures. AK coordinated the project and helped draft the MS. All authors read and approved the final manuscript.

Acknowledgements

This study was partially funded by the Czech Science Foundation (ECIP P505/12/G112). We thank Nati Franch (Parc Natural Delta de l’Ebre), Emilio Valbuena-Ureña (Centre de Recuperació de Fauna Salvatge de Torreferrussa), Imanol Ruiz, Ignacio de Blas and Tania Pérez (University of Zaragoza) for their help with the fish and bird sampling.

Author details

1. Unidad de Zoología Marina, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Científic, Universitat de València, PO Box 22085, Valencia 46071, Spain. 2. Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Braníčkovská 31, 370 05 České Budějovice, Czech Republic. 3. Faculty of Science, University of South Bohemia, Braníčkovská 31, 370 05 České Budějovice, Czech Republic. 4. Piscifactoría Vegas del Guadiana, Gobierno de Extremadura, Antigua Ctra. N-V, km. 391, 7 s/n, C.P. 06195, Vilafranco del Guadiana, Badajoz, Spain.

Received: 27 September 2014 Accepted: 25 October 2014 Published online: 12 November 2014

References

1. Georgieva S, Soldánová M, Pérez-del-Olmo A, Dangel RD, Sitko J, Sures B, Kostadinova A: Molecular prospecting for European *Diplostomum*
et al. Parasites & Vectors 2014, 7:502
http://www.parasitesandvectors.com/content/7/1/502

7. Rudolphi (Digenea: Diplostomidae), The IUCN Red List of threatened species. Nordmann, 1832 (Digenea) based on morphological and molecular and morphological identification of larval opecoelids (Digenea: Opecoelidae) parasitising prosobranch snails in a Western Mediterranean lagoon. Parasitol Int 2012, 61:450–460.

5. Alcántar-Escalera FJ, Garcia-Varela M, Vázquez-Dominguez E, Pérez-Ponce de León G. Using DNA barcoding to link cystacanths and adults of the ancanthocephalan Polymorphus brevis in central Mexico. Mol Ecol Resour 2013, 13:1116–1124.

Locke SA, McLaughlin JD, Dayanandan S, Marcoglieste DJ. Diversity, specificity and evidence of hybridization in Diplostomum spp. metacercariae in freshwater fishes is revealed by DNA barcodes and ITS sequences. Int J Parasitol 2010, 40:333–343.

Blasco-Costa I, Faltýnková A, Georgieva S, Skírnisson K, Scholz T, Kostadinova A: Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: Diphyllobothriidae) in Iceland. Int J Parasitol 2014, 44:703–715.

Sammartini ML, Cordeiro JA, Álvarez MF, Leiro JM. Helminth fauna of the yellow-legged gull Larus cachinnans in Galicia, north-west Spain. J Helminth 2005, 79:361–371.

Álvarez MF, Cordeiro JA, Leiro JM, Sammartini ML: Influence of host age and sex on the helminth fauna of the yellowlegged gull (Larus michahellis) in Galicia (Northwestern Spain). J Parasitol 2005, 91:454–458.

Ribas J, Miquel J, Torres J. New record of Diplostomum pseudospathaceum (Szádai, 1924) Niewiadomska, 1984 in Spain. Rev Rev Parasiol 1999, 59:19–21.

Bosch M, Torres J, Figuerola J: A helminth community in breeding yellow-legged gulls (Larus cachinnans): pattern of association and its effect on host fitness. Can J Zool 2000, 78:777–786.

Agullar A, Álvarez MF, Leiro JM, Sammartini ML: Parasite populations of the European eel (Anguilla anguilla L) in the Rivers Ulla and Tea (Galicia, northwest Spain). Aquaculture 2005, 249:85–94.

Behrmann-Gedel J: parasite identification, succession and infection pathways in perch fry (Perca fluviatilis): new insights through a combined morphological and genetic approach. Parasitology 2013, 140:509–520.

Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M: Algorithms and methods to estimate maximum-likelihood phylogenies: new heuristics and parallel computing. Nat Methods 2012, 9:772.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307–321.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61:539–542.

Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP: Bayesian Inference of phylogeny and its impact on evolutionary biology. Science 2001, 294:1310–1314.

Anonymous: The IUCN Red List of threatened species. http://www.iucnredlist.org/details/4785/0. Accessed on 10 July 2014.

Niewiadomska K: Present status of Diplostomum spathaceum (Rudolphi, 1819) and differentiation of Diplostomum pseudospathaceum nom. nov. (Trematoda: Diplostomatidae). Syst Parasitol 1984, 8:81–86.

Niewiadomska K: Verification of the life-cycles of Diplostomum spathaceum (Rudolphi, 1819) and D. pseudospathaceum Niewiadomska, 1984 (Trematoda: Diplostomatidae). Syst Parasitol 1986, 8:23–31.

Niewiadomska K, Laskowski Z: Systematic relationships among six species of Diplostomum Nordm, 1832 (Digenea) based on morphological and molecular data. Acta Parasitol 2002, 47:20–28.

Reilletab C, Louna K-R, Kavonen A, Jokela J: Analysis of trematode parasite communities in fish eye lenses by pyrosequencing of naturally pooled DNA. Infect Genet Evol 2011, 11:1276–1286.

Mol Biochem Parasitol 2011, 177:508–527.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

DOI: 10.1186/s13071-014-0502-x

Cite this article as: Pérez-del-Olmo et al.: Molecular and morphological evidence for three species of Diplostomum (Digenea: Diplostomatidae), parasites of fishes and fish-eating birds in Spain. Parasites & Vectors 2014, 7:502.