Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d'avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
THREE NEW SPECIES OF TETRANYCHIDAE (ACARI, PROSTIGMATA) FROM THE FRENCH ALPS (SOUTH-EASTERN FRANCE)

Philippe AUGER* and Alain MIGEON

(Received 30 July 2013; accepted 30 September 2013; published online 28 March 2014)

Institut National de la Recherche Agronomique, UMR CBGP (INRA / IRD / CIRAD / Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex, France. auger@supagro.inra.fr (* Corresponding author), migeon@supagro.inra.fr

ABSTRACT — Collection efforts in the framework of the European All Taxa Biodiversity Inventory conducted in the Mercantour national Park located in the Alps mountain range of southern France disclosed three new species of Tetranychid mites. The species described in the current paper are: Bryobia cinereae n. sp., Bryobia mercantourensis n. sp. and Eotetranychus quercicola n. sp.. Both Bryobia species were collected on Genista cinerea and E. quercicola on Quercus pubescens. A new combination is also proposed for Bryobia longisetis, previously placed in Pseudobryobia by Wainstein (1960).

KEYWORDS — Acari; Tetranychidae; Bryobia cinereae n. sp.; Bryobia mercantourensis n. sp.; Eotetranychus quercicola n. sp.; Bryobia longisetis comb. nov.; ATBI; France

INTRODUCTION

All Taxa Biodiversity Inventories (ATBIs) are promoted to increase the knowledge about the biodiversity of particular areas. Samplings are carried out to achieve a baseline biodiversity assessment of fauna and flora and to provide ecological information on the distribution, abundance and biology of the species recorded. Within the framework of the second ATBI Mercantour-Alpi marittime (De Biaggi et al., 2010), promoted by the European Distributed Institute of Taxonomy (EDIT), the Mercantour National Park and the Muséum National d’Histoire Naturelle (MNHN), that took place in the Mercantour National Park located in the French Alps, in south-east of France, we have collected three new species of tetranychid mites. Among the forty-four species of Tetranychidae recorded from France only 6 are endemic from this country (Migeon and Dorkeld, 2006-2013). Four of them belong to the genus Bryobia Koch, 1836, one to the genus Schizonobia Womersley, 1940 and one to the genus Eotetranychus Oudemans, 1931. In the present work we report the description of two new species of Bryobia and a new Eotetranychus. According to the examination of morphological key-characters, Bryobia longisetis Reck, 1947 is a new combination provided for the taxon previously known as Pseudobryobia longisetis.

MATERIALS AND METHODS

Mites were collected directly from field samples in 70 % ethyl alcohol. Following clearing in lactic acid (50 %) for 24 to 48 hours they were mounted in Hoyer’s medium. The specimens were examined using a Leica DMLB phase contrast microscope and
illustrated with the aid of a camera lucida. Measurements were performed using the imaging software Perfect Image® (Clara Vision) coupled with Progress® Capture Pro 2.6 software for image acquisition. The setal nomenclature used in the description follows Lindquist (1985). Legs setal count is given in the order: coxa, trochanter, femur, genu, tibia and tarsus. Numbers of setae refer to tactile setae, solenidia are given in parentheses and alternative counts are given in brackets. All measurements are given in micrometers and correspond to the holotype followed, in parentheses, by minimum and maximum values from paratypes. Setae are measured from their bases to their tips.

TAXONOMY

Family Tetranychidae Donnadieu, 1875

Subfamily Bryobiinae Berlese, 1913

Tribe Bryobiini Reck, 1952

Genus Bryobia Koch, 1836

Bryobia Koch, 1836:8-9; Pritchard and Baker, 1955:14; Wainstein, 1960:94; Tuttle and Baker, 1968:4; Meyer, 1974:13.

Type-species: Bryobia praetiosa Koch.

B. longisetis Reck, 1947, comb. nov.

Bryobia longisetis Reck, 1947, *Soobshcheniya Akademii Nauk Gruzinskoi SSR*, 8: 655

Type-species: female, Georgia (Gruziya), from Salvia nemorosa and Salvia sp. (Labiatae). *Pseudobryobia longisetis* (Reck, 1947), new combination. Wainstein, 1960, Trudy Nauchno-Issled. Inst. Zashchita Rastenii Kazakh., 5: 113

Since the reinstatement of the genus *Pseudobryobia* by Livshits and Mitrofanov (1972) and by Baker and Tuttle (1972), the main diagnostic characters that are listed in the diagnosis of this genus are the following: i) prodorsum without anterior projections over gnathosoma, ii) hysterosomal dorsocentral setae in the normal longitudinal dorsal position (*f*₁ setae in normal position, more or less aligned with first 3 pairs, not marginal), iii) coxal setal formula: 2-2-1-1.

According to the literature compiled we came to the conclusion that this species should not belong to the genus *Pseudobryobia*. First, the absence of prodorsal lobe over the gnathosoma can be questioned. In its original description, Reck (1947) reported that the outer prodorsal lobes are small but inners are cone-shaped almost fully fused. In the drawings of this species by Bagdasarian (1957), Reck (1959), Wainstein (1960) and Livshits and Mitrofanov (1966), inner and outer prodorsal lobes are similar to those previously described by Reck (1947): outer lobes are actually reduced to small tubercles but inner ones are coalescent into a tall cone with a small incision at the apex. Second, the dorsal pattern observed in this species does not correspond to that typical of the genus. Members of the fourth pair of hysterosomal dorsocentral setae (*f*₁) are never more or less in line with other dorsocentral setae. In the drawings of Bagdasarian (1957) and Reck (1959), *f*₁ setae are clearly located in marginal position, close (but not contiguous) to *f*₂. In Wainstein (1960) and Livshits and Mitrofanov (1971), *f*₁ setae are almost in marginal position, they are not in the normal longitudinal dorsal position and the distance between them is superior to that between *f*₂ setae. Finally, the coxal chaetotaxy does not fit with that of species belonging to the genus *Pseudobryobia*. In the descriptions of this species given by Wainstein (1960) and by Livshits and Mitrofanov (1971), *f*₁ setae are almost in marginal position, they are not in the normal longitudinal dorsal position and the distance between them is superior to that between *f*₂ setae. Thus it is different to that of the genus *Pseudobryobia* and corresponds to that observed in the genus *Bryobia*. Although we did not had an opportunity to examine the holotype (or types), given the morphological characters cited above we consider that this species belongs to the genus *Bryobia*.

Bryobia cinereae n. sp.

(Figures 1-3)

Type-specimens — Holotype (female), 3 female paratypes on 4 microscopic preparations from *Genista cinerea* (Vill.) DC. (Leguminosae), cime de Braus (43.875°N 7.394°E, alt. 1040 m), Lucéram,
FIGURE 1: *Bryobia cinereae* n. sp., female: A – dorsal aspect; B – dorsal h_1 seta.
Diagnosis — Limited anterior dorsal propodosomal projections over the gnathosoma, prodorsal lobes scarcely developed, ventral setae (v₁ and v₂) inserted in tubercle-like structures. Dorsal setae elongated, quite stout, serrate, inserted on tubercles and subequal in length on hysterosoma. Empodia provided with two rows of tenent hairs.

Description:

Female: Holotype 495 μm long (excluding gnathosoma) gnathosoma 94 μm long (measured to the tip of palps), width 315 μm. Three paratypes measured, 452 – 498 μm long, gnathosoma 94 μm long, width 305 μm.

**Dorsum — Prodorsum with four pairs of setae and with weakly developed anterior lobes (Figs. 1A, 3A). Outer propodosomal lobes small, about 10 μm, more or less similar in length to dorsal tubercles; inner lobes smaller about 5 μm (measured from the bottom of the incision between the inner lobes). Propodosomal lobes with basal width about 67 μm, distance between v₁ setae insertions about 13 μm. Incision between median lobes shallow. First pair of propodosomal setae (v₁) less than half the size of the second pair (v₂). A horizontal line joining tip of v₁ setae located on the inner lobes crosses v₂ setae about their three-quarters. Dorsal body setae not spatulate, elongated, moderately stout, serrate, inserted on tubercles, subequal in length with the exception of v₁ setae far smaller (Figs. 1A, 1B). Dorsocentral setae (c₁, d₁ and e₁) shorter than distances between consecutive setae (length of holotype and variations of three paratypes): v₁ 17 (14 – 15); v₂ 40 (38 – 42); sc₁ 50 (48 – 52); sc₂ 50 (50 – 58); c₁ 53 (56 – 58); c₁ 51 (53 – 54); c₁ 46 (47 – 51); d₁ 50 (51 – 55); d₂ 58 (61 – 63); d₃ 64 (63 – 71); e₁ 50 (54 – 58); e₂ 61 (60 – 71); e₃ 63 (64 – 67); f₁ 60 (63 – 66); f₂ 61 (58 – 66); h₁ 47 (53 – 55). Distances between setae: c₁-c₁ 52 (54 – 55), d₁-d₁ 33 (31 – 32), c₁-e₁ 17 (20 – 24), c₁-d₁ 85 (87 – 99), d₁-c₁ 60 (64 – 66). Saccular setae (f₁ and f₂) in marginal position and contiguous. Dorsal surface wrinkled, on propodosoma irregular medi ally and mostly longitudinal laterally, transverse on hysterosoma, more or less arched in the distal part comprised between c₁ and h₁ setae. Area immediately anterior to h₁ setae with fine arched longitudinal reticulation.

**Gnathosoma — Stylophore rounded, slightly indented (slightly emarginate anteriorly), longer than wide. Tibial claw of palpus bidentate (Fig 3B). Palptarsus slightly elongated, about 18.5 (19.2) long with six setae and one solenidion. Eupathidia ul′ζ, ul″ζ slightly shorter than suζ, solenidion short. Peritreme anastomosed distally in a relatively long and slender enlargement: length 33 (26 – 28), width 8.5 (9 – 10) (Fig. 3C).

**Venter — Striation transverse between 1st (1a) and 2nd (3a) pairs of setae becoming irregularly longitudinal (broken medially) between 2nd and 3rd (4a) pairs of setae and transverse between 3rd and aggenital (ag) pairs of setae. Area immediately anterior to genital flap with irregular longitudinal striation, V-shaped between ag setae (Fig. 3D). Sacculus of spermatheca oblong (shape variations due to mounting) (Fig. 3E). Three anal and two para-anal setae.

**Legs — Length inferior to body length. Leg I 308 (299 – 312) μm long (length of holotype and variations of three paratypes, measured from trochanter to tarsus), leg II 222 (220 – 227), leg III 219 (212 – 219), leg IV 250 (240 – 250). Length of segments of leg I as follows: trochanter 21 (22 – 24), femur 99 (90 – 96), genu 49 (49 – 53), tibia 61 (62 – 66), tarsus 75 (75 – 79). Leg setal count as follows (Figs. 2A-D): II 1 - 1 - 5 - 4 - 3 [5] - 14[13] + (2) + 1 duplex; III 1 - 1 - 4 [3] - 2 [3] - 4 [5] - 12[11] + 1 duplex; IV 1 - 1 - 4 [3] - 2 - 4 [3-5] - 13[12-14] + (1).

Tarsus III associated setae serrate and approximate with solenidion forming duplex, the tactile member slightly longer and proximal (Fig. 2E); tarsus IV with solenidion well-separated from tactile, proximal, about one third the length of tactile (Fig. 2F). True claws uncinate, with one pair of tenent hairs, empodial pads each bearing two rows of tenent hairs (Fig. 2G).

Male: Unknown
FIGURE 2: *Bryobia cinereae* n. sp., female: A – tarsus and tibia I; B – genu and femur I; C – tarsus and tibia II; D – genu and femur II; E – duplex setae on tarsus III; F – solenidion and associated tactile seta on tarsus IV; G – empodia I-IV.
Figure 3: *Bryobia cinereae* n. sp., female: A – prodorsal lobes; B – Palpal tibia and tarsus; C – peritremal distal anastomosis; D – anterogenital striation; E – spermatheca (variations between preparations).
Etymology — The specific epithet *cinereae* refers to the species name of the host plant on which mites were collected.

Remarks — The combination of prodorsal lobes poorly developed and dorsal setae not spatulate but elongate with dorso central setae inferior in length to the distance between consecutive setae brings this species close to *B. sarothamni* Geijskes, (1939), *B. longisetis* Reck, (1947), *B. artemisiae* Bagdasarian (1951), *B. variabilis* Manson, (1967) and *B. serifiotica* Hatzinikolis, Papadoulis and Kapaxidi (2007). It can be distinguished from *B. sarothamni* by the dorsal hysterosomal setae which are lanceolate, shorter, variable in length (h_1 the largest) versus elongate and subequal in length in *B. cinereae*. *Bryobia longisetis* can be separated from *B. cinereae* by the prodosomal inner projection which is more developed, by medial lobes which are almost fused, by f_1 and f_2 dorsal setae which are not contiguous and by a different leg chaetotaxy. In *B. variabilis* (the form bearing long, slender and serrate dorsal setae) the leg setal formula is different and dorsal setae are slender, variable in length (c_2, c_3, d_1 and d_2 being much smaller) whereas quite stout and subequal in length in *B. cinereae*. *Bryobia serifiotica* differs from *B. cinereae* by the dorso hysterosomal setae larger in the latter, by the difference in size of the vertical setae (v_1 slightly inferior to v_2 in *B. serifiotica* vs. v_1 up to three times smaller than v_2 in *B. cinereae*), by the position of f_1 setae (more or less in normal position and well separated in *B. serifiotica* whereas f_1 and f_2 are in marginal position and contiguous in *B. cinereae*) and by the solenidion of the tarsus IV (associated with a tactile setae but well separated and proximal in *B. serifiotica* and *B. cinereae* respectively). Depending on the literature referred, *B. artemisiae* is more or less close to *B. cinereae*. In the original description by Bagdasarian (1951), prodorsal lobes are similar in the two species but vertical setae (v_1 and v_2) are subapatulate to spatulate (elongate in *B. cinereae*) and dorsal hysterosomal setae are short and fan-shaped (elongate in *B. cinereae*). According to Reck (1959), dorsal setae of *B. artemisiae* vary from short spatulate to slightly elongate and, in his drawing, v_1 and v_2 setae are elongate and lanceolate (only elongate in *B. cinereae*). Wainstein (1960) mentions that dorsal setae are narrowly spatulate and almost elongated. In Livshitz and Mitrofanov (1971) and Mitrofanov et al. (1987) the drawing of *B. artemisiae in habitus* resembles to *B. cinereae*: prodorsal lobes are small, v_2 are longer than v_1, dorso hysterosomal setae are elongate and inserted on tubercles. However, v_1 and v_2 setae are spatulate and subapatulate (narrow in *B. cinereae*), dorso central setae (c_1, d_1, e_1) are longer to dorso lateral (similar in length in *B. cinereae*) and the leg setal count is different.

Bryobia mercantourensis n. sp.
(Figures 4-7)

Type-specimens — Holotype (female), 15 female 7 deutonymhs, 4 protonymphs and 7 larva paratypes on 30 microscopic preparations from *Genista cinerea* (Vill.) DC. (Leguminosae), cime de Braus (43.875°N 7.394°E, alt. 1040 m), Lucéram, France, 23-VII-2009, leg. P. Auger. All the material deposited in the INRA collection of the CBGP, coll. Auger-Migeon N° 1758 for holotype, 1759-1787 for paratypes.

Other material examined — Ten females on 8 microscopic preparations from *G. cinerea*, Pont du commun (43.985°N 7.547°E, alt. 450 m), Saorge, France, 21-VII-2009, leg. P. Auger, coll. Auger-Migeon N° 1700-1707.

Diagnosis — With four long setae present on the interior dorsal row of femur I this species belongs to the *berlesei*-group (Eyndhoven, 1957; Eyndhoven and Vacante, 1985). Empodial pad of leg I with a pair of tenent hairs others with two rows of tenent hairs, inner prodosomal lobes are well separated and more or less cone-shaped with large fused base, outer lobes smaller and cone shaped, dorsal setae inserted in small tubercles, spatulate with sacral and clonal setae slightly longer.

Description:

Female: Holotype 600 µm long (excluding gnathosoma, from the tip of v_1 to the tip of h_1), width 350 µm. Ten paratypes measured, 540 – 595 µm long, width 310 – 360 µm.

Dorsum — Prodorsum with four pairs of setae and with developed anterior lobes (Figs. 4A, 6A). Outer prodosomal lobes rather low, conical, not extending beyond medial of inner lobes.
Figure 4: Bryobia mercantourensis n. sp., female: A – dorsal aspect; B – dorsal c₁ seta.
FIGURE 5: *Bryobia mercantourensis* n. sp., female: A – tarsus and tibia I; B – genu and femur I; C – tarsus, tibia, genu and femur II; D – duplex setae on tarsus III; E – solenidion and associated tactile seta on tarsus IV; F – empodium I; G – empodia II-IV.
Figure 6: *Bryobia mercantuensis* n. sp., female: A – variations in prodorsal lobes; B – Palpal tibia and tarsus; C – peritremal enlargement; D – spermatheca (variations between preparations).
Medial projection well expanded, inner lobes well separated in their distal part with variable obvious incision, 13 (7 – 13) µm in depth (measured from the bottom of the incision between the inner lobes). A horizontal line joining tip of v2 setae located on the outer lobes crosses v1 setae about their base, v1 about two-thirds the size of v2. Dorsal body setae spatulate, inserted on tubercles, subequal in length with the exception of v1 setae far smaller, sacrals (f1, f2) and clunals (h1) somewhat longer (Figs. 4A, B). Dorsocentral setae (c1, d1 and e1) shorter than distances between consecutive setae (length of holotype and variations of ten paratypes): v1 22 (18 – 21); v2 33 (29 – 32); sc1 32 (26 – 31); sc2 26 (22 – 27); c1 30 (25 – 31); c2 30 (23 – 29); c3 27 (22 – 28); d1 26 (22 – 27); d2 28 (21 – 28); d3 26 (23 – 30); e1 25 (21 – 27); e2 29 (25 – 29); e3 34 (25 – 31); f1 37 (25 – 37); f2 40 (29 – 41); h1 36 (27 – 40). Distances between setae: c1 – c1 62 (58 – 66), d1 – d1 48 (47 – 52), e1 – e1 31 (24 – 34), c1 – d1 85 (81 – 97), d1 – e1 72 (62 – 70). Sacral setae (f1 and f2) in marginal position. Dorsal integument on propodosoma with irregular reticulated granulated pattern medially, folds more or less inclined laterally. Large transverse folds with fibrous appearance on hysterosoma, more or less arched in the distal part comprised between e3 and h1 setae. Three pairs of oval-shaped areas present between c1 – c2, d1 – d3, and e1 – e3 setae and a triangularly rounded one present posteriorly.

Gnathosoma — Stylophore longer than wide. Tibial claw of palpus bidentate. Palptarsus elongated, about 24 (20.5 – 25) long with three tactile setae, three eupathidia and one solenidion (Fig. 6B). Eupathidia ul’ζ, ul’ζ slightly inferior to suζ in length, solenidion shorter. Peritreme anastomosed distally in a relatively long and slender enlargement (Fig. 6C): length 33 (31 – 40), width 8 (6.5 – 8.5).

Venter — Striation transverse between 1st (1a) and 2nd (3a) pairs of setae, absent (rare irregularly folds may be present) between 2nd and 3rd (4a) longitudinal between members of 4a setae and transverse between 3rd and aggenital (ag) pairs of setae. Area immediately anterior to genital flap with irregular longitudinal striation. Sacculus of spermatheca oval shaped (Fig. 6D). Three anal and two para-anal setae present.

Legs — Length (femur-genu-tibia-tarsus) inferior to body length, leg 1 419 (390 – 410) µm long and (length of holotype and variations of ten paratypes), leg II 235 (215 – 230), leg III 240 (220 – 240), leg IV 260 (250 – 280). Length of segments of leg I as follows: femur 155 (135 – 150), genu 70 (65 – 70), tibia 100 (84 – 105), tarsus 93 (85 – 99). Leg setal count as follows (Figs. 5A, B, C):

I 2 – 1 - 14[3] - 8[7] - 13 + (1) - 19 + (5) + 2 duplexes;
II 1 - 1 - 9[8] - 5 - 9 - 15 + (2) + 1 duplex;
III 1 - 1 - 7[6] - 7[6] - 9 - 13 + 1 duplex;
IV 1 - 1 - 5 - 6 - 9 - 14 + (1).

Internal dorsal row on femur I with four long setae (from proximal to distal setae) and one normal setae: 43 (41 – 47), 51 (47 – 53), 41 (39 – 46) and 42 (38 – 41) µm in length. Tarsus III associated setae serrate and approximate with solenidion forming duplex, the tactile member longer and proximal (Fig. 5D) – length of solenidion 14 (12.5 – 15), length of tactile 20 (16 – 20); tarsus IV with solenidion well-separated from tactile, short and proximal (Fig. 5E) – length of solenidion 9 (8 – 9.5), distance between solenidion and tactile 6.5 (4.5 – 6.5). True claws uncinate, claw and empodium I with one pair of tenent hairs, other claws with two pairs and other empodial pads each provided with two rows of tenent hairs (Figs. 5F, G).

Deutonymph (Figs. 7A, B):

Dorsum — Prodorsal lobes developed, conical in shape, inner lobes less separated as in female, prodorsal setae v1 and v2 spatulate and serrate, v2 the largest almost twice the length of v1 setae; a horizontal line joining the tips of v2 setae also nearly passes the tips of v1 setae. Dorsal body setae inserted on tubercles (stronger in posterior area), spatulate excepted the third pair of dorsolateral setae (e3), sacrals (f1, f2) and clunals (h1), gradually longer, narrower and pectinate. Dorsocentral setae, c1, d1 and e1, shorter than distances between consecutive setae. Lengths of dorsal setae (variations of 3 deutonymphs): v1 15 – 17; v2 25 – 29; sc1 26 – 31; sc2 21.5 – 23; c1 22 – 25; c2 23 – 24.5; c3 23 – 24.5; d1 21.5 – 22.5; d2 20 – 22; d3 23.5 – 24; e1 21 – 21.5; e2 26.5 – 30; e3 32 – 34.5; f1 36.5 – 40; f2 39 – 40; h1 35 – 38. Setae f1 and f2 in marginal position.

Legs — Length inferior to body length. Internal
FIGURE 7: *Bryobia mercantourensis* n. sp.: A – deutonymphal prodorsal lobes; B – deutonymphal dorsal hysterosomal distal part; C – protonymphal prodorsal lobes; D – protonymphal dorsal hysterosomal distal part; E – larval prodorsal anterior part; F – larval dorsal hysterosomal distal part.
of 4 larvae): pro-

ten nymphal setae (variations of 4 protonymphs): v1 19 – 24; c1 24 – 29; sc1 24 – 29.

tion of dorsal row on femur I with two long setae and one normal seta. Leg setal count as follows:

I 2 - 1 - 8 - 4 - 9 + (1) - 14 + (1) + 2 duplexes;
II 1 - 1 - 6 [5] - 4 - 5 - 11 + 1 duplex;
III 1 - 1 - 2 - 3 - 5 - 10 + (1);
IV 1 - 0 - 2 - 3 - 5 - 10.

True claws uncinate with one pair of tenent hairs, empodia provided with two rows of tenent hairs, empodial pad of empodium I shorter.

Protonymph (Figs. 7C, D):

Dorsum — Prodorsal lobes weakly developed, tubercle like, v1 very short, spatulate and serrate with spiky appearance, v2 larger, spatulate and serrate. Other dorsal body setae spatulate with the exception of c2 sub-spatulate and the following (e3, f1, f2 and h1) elongate, serrate and larger. Lengths of dorsal setae (variations of 4 protonymphs): v1 7 – 11; v2 23 – 28; sc1 22.5 – 25.5; sc2 18.5 – 20.5; c1 18 – 21; c2 17 – 18.5; c3 16 – 18.5; d1 16 – 18.5; d2 20 – 23; d3 21 – 31; e1 18 – 22; e2 27 – 31; e3 33 – 36; f1 32 – 36; f2 34 – 37; h1 35 – 37. Setae f1 and f2 in marginal position.

Legs — Length inferior to body length. Internal dorsal row on femur I with one long seta and one normal seta. Leg setal count as follows:

I 2 - 1 - 3 - 4 - 5 + (1) - 10 + (2) + 2 duplexes;
II 1 - 0 - 3 - 4 - 5 - 9 + 1 duplex;
III 1 - 0 - 2 - 2 - 5 - 8;
IV 0 - 0 - 2 - 2 - 5 - 6.

True claws uncinate with one pair of tenent hairs, empodia with two rows of tenent hairs.

Larvae (Figs. 7E, F):

Dorsum — Prodorsal lobes absent, v1 very short and rod like, v2 long, serrate, inserted on small tubercles. Dorsal body setae elongate, serrate, setae c3 to h1 the largest. Lengths of dorsal setae (variations of 4 larvae): v1 5 – 7; v2 23 – 25; sc1 18 – 22; sc2 18 – 20; c1 19 – 24; c2 17 – 19; c3 13 – 16; d1 19 – 24; d2 18 – 22; d3 24 – 29; e1 23 – 28; e2 25 – 31; e3 32 – 36; f1 35 – 39; f2 35 – 40; h1 35 – 37. Seta f1 in normal position.

Legs — Length inferior to body length. Internal dorsal row on femur I with one long seta and one normal seta. Leg setal count as follows:

I 1 - 0 - 3 - 4 - 5 + (1) - 7 + 1 duplex;
II 0 - 0 - 3 - 4 - 5 - 7 + 1 duplex;
III 0 - 0 - 2 - 2 - 5 - 6.

True claws uncinate with one pair of tenent hairs, empodia with two rows of tenent hairs.

Remarks — In addition to the four long setae present on the interior dorsal row of femur I, as this species bears one pair of tenent hairs on the empodium I, *B. mercantourensis* is close to *B. provincialis* (Eyndhoven and Vacante, 1985) and *B. dikmenensis* Eyndhoven and Vacante, 1985 that belong to the berleset-group (Eyndhoven, 1957; Eyndhoven and Vacante, 1985). This species is clearly smaller in length and width than *B. provincialis* and the first leg is also obviously longer in the latter. Conversely, *B. mercantourensis* is slightly longer and obviously broader than *B. dikmenensis* and the second, third and fourth pairs of legs are shorter in the latter. It is mainly distinctive from *B. provincialis* and *B. dikmenensis* by the shape of the propodosomal lobes: mammelliform with inner lobes largely fused in the latter whereas conical and well separated in *B. mercantourensis*. The latter can also be separated from *B. provincialis* by differences in shape of deutonymph’s dorsohysterosomal setae e3 and f1, subspatulate vs. elongate and narrow in *B. provincialis* and *B. mercantourensis* respectively. Legs chaetotaxy also clearly differs between the deutonymphs of these two species. *Bryobia dikmenensis* can be distinguished from *B. mercantourensis* and from *B. provincialis* by the reduced size of its second and third pairs of dorsocentral setae (d1 and e1) in comparison with other dorsohysterosomal setae. Several characters found in juveniles of *B. dikmenensis* and of *B. mercantourensis* can also be used to separate them: the ratio between larval v1 and v2 setae is two-fold higher (4 vs. 2) in *B. mercantourensis*; protonymphal prodorsal lobes in *B. dikmenensis* resemble that of female whereas they are almost absent (weakly developed) in *B. mercantourensis*.

Etymology — The species designation *mercantourensis* is named after the location where the speci-

imens were found: in the Mercantour French National Park.
Subfamily Tetranychinae Berlese, 1913
Tribe Tetranychini Reck, 1950
Genus Eotetranychus Oudemans, 1931

Eotetranychus Oudemans, 1931:224; Pritchard and Baker, 1955:138; Gutierrez, 1967:370; Tuttle and Baker, 1968:85; Meyer, 1974:189; Tuttle, Baker and Abatiello, 1976:37; Meyer, 1987:110. Schizotetranychus (Eotetranychus), Wainstein, 1958:195; Abatiello, 1976:37; Meyer, 1987:110. Genus Trombidium Quercicola n. sp.

(Figures 8-13)

Type-specimens — Holotype (male), 7 male, 20 females and one deutonymph paratypes on 26 preparations from Quercus pubescens Willd., (Fagaceae), cime de Braus (43.875°N 7.394°E, alt. 1040 m), Lucéram, France, 23-VII-2009, leg. P. Auger. All the material housed in the INRA collection of the CBGP, Coll. Auger-Migeon N° 1807 for holotype and 1788-1814 for paratypes.

Description — Dorsohysterosomal setae longer than the intervals between their bases, genital area provided with a genital flap and the area anterior to it bearing a transverse striation design. End of peritreme straight, bulbous, posteriorly enlarged. Male aedeagus long and slender, flagellate and undulate near the middle.

Male: Holotype 338 μm long (without gnathosoma), gnathosoma 92 μm long. Seven paratypes measured, 325 – 361 μm long, gnathosoma 84 – 91 μm long.

Dorsum — Dorsal body setae long, linear lanceolate, well surpassing in length distance between consecutive bases (length of holotype and variations of seven paratypes): t1 49 (44 – 49); sc1 (79 – 84); sc2 55 (50 – 55); c1 70 (66 – 72); c2 68 (68 – 72); cs 60 (57 – 61); d1 60 (60 – 63); d2 73 (64 – 74); e1 52 (53 – 59); e2 66 (64 – 72); f1 47 (47 – 51); f2 30 (28 – 39); h1 26 (23 – 26). Dorsal striation with rounded lobes on propodosoma and hysterosoma up to third row of dorsal setae.

Gnathosoma — Palptarsus terminal sensillum about 3 – 3.5 as long as broad (length of holotype and variations of four paratypes): 5.6 (5 – 5.6) long 1.6 (1.6 – 1.7) wide, solenidion 3.7 (3.8 – 4) μm long, lateral eupathidia asymmetrical, ul’ζ longer than ul’; 8.7 (8.4 – 9.1) μm and 5 (4.5 – 5) μm respectively (Fig. 10B). Peritreme straight, bulbous distally. Distal enlargement asymmetrical, more developed posteriorly, club-shaped, varying in size and shape among and between specimens (Fig. 10A).

Venter — Ventral striae without lobe.

Legs — Length inferior to body length, leg I 165 (165 – 169) μm long (from trochanter to tarsus), holotype and variations of seven paratypes), leg II 148 (140 – 146), leg III 150 (142 – 154), leg IV 170 (169 – 175). Length of segments of leg I as follows (Figs. 9A, B): trochanter 18 (18 – 21), femur 50 (48 – 52), genu 22 (22 – 25), tibia 29 (30 – 31), tarsus 46 (42 – 45). Leg setal count as follows (Figs. 9A,B):

I 2 - 1 - 10 - 5 - 9 + (4) - 13 + (3) + 2 duplexes;
II 2 - 1 - 7 - 5 - 8 - 13 + (1) + 1 duplex;
III 1 - 1 - 4 - 4 - 8 - 10 + (1);
IV 1 - 1 - 4 - 4 - 7 - 10 + (1).

Tarsus I with distal duplex solenidion longer than that of proximal duplex: 49 – 56 μm and 33 – 36 μm respectively. Tactile members of distal and proximal duplexes subequal in length 10 – 12 μm and 11 – 13 μm respectively. Tarsus II sensory member of duplex 26 – 30 μm long and tactile 10 – 12 μm. Tarsus II with dorsal proximal solenidion slightly longer 13 (13.5 – 15 μm) than distance with duplex setae 12 (12 – 13 μm). Solenidia of tarsi III and IV shorter than distances to distal tactiles: length of solenidia III and IV 13.5 – 15.5 and 15 – 16 μm — distance between solenidia and tactiles 14.5 – 20 and 18 – 20 μm. Empodium I bifid each side composed of three digits, medial digit the stoutest, strong, ventral and dorsal digits slender and shorter (Fig. 9C). Empodia II–IV split into three pairs of hairs with proximoven tal pair stronger and with ancillary setae (Fig. 9D). No dorsomedian spur observed.

Aedeagus — Long, slender, acutely tapering and strongly undulate near the middle, 32 (29 – 32.5) μm in length (Fig. 10C).

Female: 15 females measured.

Idiosoma — length 352 – 405 μm, gnathosoma 99 –
FIGURE 8: Eotetranychus quercicola n. sp., female: A – dorsal aspect; B – lobes on dorsal striation.
Auger P. and Migeon A.

Figure 9: *Eotetranychus quercicola* n. sp., male: A – tarsus and tibia I; B – tarsus and tibia II; C – empodium I; D – empodia II-IV.
A B
C

106 µm long, width 186 – 210 µm.

Dorsum — Dorsal body setae lanceolate, longer than distances between bases of consecutive setae (Fig. 8A) (variations of 15 paratypes): \(v_2 \) 50 – 61; \(s_{c1} \) 97 – 109; \(s_{c2} \) 60 – 68; \(c_1 \) 84 – 91; \(c_2 \) 87 – 92; \(c_3 \) 72 – 79; \(d_1 \) 82 – 91; \(d_2 \) 87 – 95; \(e_1 \) 78 – 87; \(e_2 \) 83 – 96; \(f_1 \) 75 – 81; \(f_2 \) 62 – 67; \(h_1 \) 40 – 55. Distances between setae: \(c_1 - c_1 \) 56 – 60, \(d_1 - d_1 \) 59 – 64, \(e_1 - e_1 \) 40 – 44, \(c_1 - d_1 \) 43 – 51, \(d_1 - c_1 \) 44 – 51. Hysterosomal striation transverse, dorsal hysterosomal striae with small lobes mostly broader than tall, rounded to triangularly rounded without oblong lobes (Fig. 8B). Prodorsal lobes on striation rounded and broader than tall.

Gnathosoma — Palptarsus terminal sensillum about 2 – 2.3 as long as broad, 6.6 – 6.9 µm long 3.1 – 3.3 µm wide (variations of six paratypes), solenidion 3.7 – 4.2 µm long, lateral eupathidia asymmetrical, \(ul''c \) longer than \(ul'c \): 9 – 9.6 µm and 5.2 – 6.2 µm respectively (Fig. 12B). Peritreme as in male (Fig. 12C).

Venter — Area immediately anterior to genital flap with transverse striae, genital flap with transverse slightly arched striae typical of *willamettei*-group (Pritchard and Baker, 1955) (Fig. 12D). Lobes on ventral striation present laterally between third pair of ventral setae (\(4a \)) and aggenital pair (\(ag \)), rare poorly developed lobes may be present between members of \(4a \), anteriorly and posteriorly. Two pair of para-anal and two pairs of anal setae.

Legs — Length inferior to body length, leg I 203 – 210 µm long (from trochanter to tarsus, variations of seven paratypes), leg II 165 – 173, leg III 175 – 190, leg IV 201 – 213. Length of segments of leg I as follows: trochanter 12 – 16, femur 60 – 65, genu 25 – 31, tibia 36 – 40, tarsus 60 – 64. Leg setal count as follows (Figs. 11A, B):

\[
\begin{align*}
\text{I:} & \quad 2 - 1 - 10 - 5 - 9 + (1) - 14 + (1) + 2 \text{ duplexes;} \\
\text{II:} & \quad 2 - 1 - 7 - 5 - 8 - 13 + (1) + 1 \text{ duplex;}
\end{align*}
\]
Figure 11: Eotetranychus quercicola n. sp., female: A – tarsus and tibia I; B – tarsus and tibia II.
FIGURE 12: *Eotetranychus quercicola* n. sp., female: A – empodia I-IV; B – palptarsus; C – distal part of the peritreme (variations between individuals); D – flap and anterogenital area.

III 1 - 1 - 4 - 4 - 6 - 10 + (1); IV 1 - 1 - 4 - 4 - 7 - 10 + (1).

Tarsus I with distal duplex solenidion longer than that of proximal duplex: 64 – 70 µm and 40 – 45 µm respectively. Tactile members of distal and proximal duplexes equal in length 13 – 15 µm. Lateral solenidion and five tactile setae proximal to proximal duplex. Tarsus II sensory member of duplex 32 – 36 µm long and tactile 11 – 14 µm. Tarsus II with proximal solenidion dorsal, longer (18 – 23 µm) than distance with duplex setae (15 – 17 µm). Tarsi III and IV solenidia subequal in length (length
TABLE 1: Comparison between some morphological characters of *Eotetranychus colurnae* and *Eotetranychus quercicola* n. sp. (lengths are given in micrometers).

	E. colurnae	*E. quercicola*
Females		
Dorsal seta c₁ Length	77	84-94
Dorsal seta d₁ Length	70	82-91
Dorsal seta e₁ Length	60	77-87
Distance between c₁	48	56-60
Distance between d₁	51	59-64
Distance between e₁	34	40-44
Distance between c₁-d₁	44	43-51
Distance between d₁-e₁	40	44-51
Leg I length	185	203-210
Tarsus I length	50	60-66
Tibia I length	35	37-40
Genu I length	29	25-31
Femur+trochanter length	71	73-80
Leg II length	147	167-173
Leg III length	157	175-190
Leg IV length	176	195-213
Distal duplex of tarsus I solenidion length	56	64-70
Spinneret length x width (ratio)	6.6 x 2.2 (3)	6.6-6.9 x 3.1-3.3 (2.2-1.1)
Palptarsus solenidion length	5	3.7-4.3
Eupathidia ul'ζ length	5.5	5.2-6.2
Eupathidia ul''ζ length	7.7	9-9.6
Males		
Aedeagus length	35	29-32
Spinneret length x width (ratio)	6.6 x 1.6 (4)	5-5.6 x 1.5-1.7 (3.1-3.7)
Palptarsus solenidion length	4.4-2	3.7-4
Eupathidia ul'ζ length	similar to ul''ζ	4.5-5.2
Eupathidia ul''ζ length	similar to ul'ζ	8-9
Tarsus II duplex solenidion length	25	32-36
Tarsus II duplex tactile length	8.8	11-13.2

* After Mitrofanov (1978)

of solenidia III and IV 19 – 22 and 16 – 23 µm respectively), slightly shorter than distances between their bases and those of distal tactile setae: distance between solenidia III and IV and tactile setae 21 – 26 and 21 – 27 µm respectively. Empodia I-IV split into three pairs of hairs with proximoventral pair stronger and with ancillary setae. No dorsomedian spur observed (Fig. 12A).

Remarks — With dorsal setae longer than the intervals between them and eight tactile setae on tibia II this species is assigned into the *tiliarium* group (Pritchard and Baker, 1955), its genital area pattern corresponds to the *willametttii* species group (Tuttle *et al.*, 1976; Baker and Tuttle, 1994) and because
of the shape of its aedeagus this species belongs to the carpini-species group (Pritchard and Baker, 1955; Ehara, 1970; Baker and Tuttle, 1994). Among members of Eotetranychus from this group it can be easily distinguished by the shape of the distal peritremal enlargement: neither bent nor hooked but straight and bulbous, asymmetrical and posteriorly enlarged. Eotetranychus quercicola shares this character with only one species belonging to the carpini group: E. columnae Mitrofanov, 1978. However, E. quercicola can be separated from this species by several obvious characters: for example dorsal setae, duplex solenidia, legs and distances between dorsocentral setae insertions are shorter in E. columnae (see Table I). The aedeagus is longer in E. columnae and male eupathidia ul′ζ and ul′′ζ are asymmetrical in male of E. quercicola only. Eotetranychus querci Reeves, 1963, that also belongs to the carpini-species group can be found on oak and birch in the USA (Reeves, 1963) and on Tilia japonica (Miq.) Simonk. in Japan (Ehara, 1970). It can be easily separated from E. quercicola by the shape of its peritreme (slightly bent to almost U-shaped) and by its aedeagus which is weakly undulate near the middle.

Etymology — the species designation, quercicola, refers to the host plant on which mites were collected meaning inhabits oak.

Biological observations — Adults of this species are yellowish green in colour (Fig. 13). This species lives on the under surface of the leaves, produces webbing that delimits small colonies more or less oval-shaped.
ACKNOWLEDGEMENTS

The study was founded by the European Distributed Institute of Taxonomy (EDIT) with the collaboration and financial support of the Mercantour National Park. We are grateful to M.-F. Leccia (ATBI Mercantour Project Manager) and O. Gargominy (Muséum National d’Histoire Naturelle, Paris) who initiated and promoted this project. Dr Tea Arabulii (Agrarian University of Georgia) is also deeply acknowledged for providing the translation of the species description of *E. colurnae* (in Russian).

REFERENCES

Bagdasarian A.T. 1951 — Contributions to the fauna of spider mites (fam. Tetranychidae) of Yerevan and its environs — Akad. Nauk. S.S.R. Izv. Biol. S.Kh. Nauk, 4: 368-374.

Baker E.W., Tuttle D.M. 1994 — A guide to the spider mites (Tetranychidae) of the United States — West Bloomfield, USA: Indira Publishing House. pp. 347.

Berlese A. 1913 — Acarotheca Italica — Firenze. pp. 221.

De Biaggi M., Leccia M.-F., Kroupa A., Monje J.C. 2010 — Creating a biodiversity inventory in protected areas to increase knowledge of their natural heritage and to improve land management — Eco Mont-Journal on Protected Mountain Areas Research and Management, 2: 49-52.

Donnadieu A.L. 1875 — Recherches pour servir à l’histoire des Tétranyques — Ann. de la Soc. Linnéenne de Lyon (n. sér.), 22: 29-136.

Ehara S. 1970 — Four Species of the *carpini* Complex of *Eotetranychus* in Japan (Acarina : Tetranychidae) — The Journal of the Faculty of Education, Tottori University, Natural Science, 21: 132-141.

Eyndhoven G.L.v. 1957 — L’interprétation de *Bryobia speciosa* Berl. (non Koch) — Notulae ad Tetranychidas 4 — Entomol. Berich., Amsterdam, 17: 43-44.

Eyndhoven G.L.v., Vacante V. 1985 — The berlesei-Group of the genus *Bryobia* Koch (Acari, Tetranychidae) — Redia, 68: 377-437.

Geijskes D.C. 1939 — Beiträge zur Kenntnis der europäischen Spinnilben (Acari, Tetranychidae) mit besonderer Berücksichtigung der niederländischen Arten — Mededelingen van de Landbouwboogeschool, Wageningen, 42: 1-68.

Gutiérrez J. 1967 — Huit nouvelles espèces du genre *Eotetranychus* Oudemans (Acariens : Tetranychidae) de Madagascar — Acarologia, 9: 370-394.

Hatzinikolis E.N., Papadoulis G.T., Kapaxidi E.V. 2007 — *Bryobia seriphotica* n. sp. (Acari: Tetranychidae: Bryobiinae) from Greece — Internat. J. of Acarol., 33: 29-33. doi:10.1080/01647950708684497

Koch C.L. 1836 — Deutsche Crustacea, Myriapoda, Arachnida —.

Lindquist E.E. 1985 — External anatomy — In: Helle W., Sabelis M.W., (Eds). Spider mites. Their Biology, natural enemies and control. Amsterdam: Elsevier Science Publishing. p. 3-28.

Livshits I.Z., Mitrofanov V.I. 1971 — The mites of the genus *Bryobia* C.L. Koch, 1836 (Acariformes, Bryobiidae) — Trudy Gosudarstvennogo Nikitskogo Botanicheskogo Sada, 51: 1-112.

Manson D.C.M. 1967 — The spider mite family Tetranychidae in New Zealand. I. The genus *Bryobia* — Acarologia, 9: 76-123.

Meyer M.K.P.S. 1974 — A revision of the Tetranychidae of Africa (Acari) with a key to the genera of the world — Entomology Memoir, Department of Agricultural Technical Services, Republic of South Africa: 1-291.

Meyer M.K.P.S. 1987 — African Tetranychidae (Acari: Prostigmata) — with reference to the world genera — Entomology Memoir, Department of Agriculture and Water Supply, Republic of South Africa, 69: 1-175.

Migeon A., Dorkeld F. 2006-2013 — Spider Mites Web: a comprehensive database for the Tetranychidae. http://www1.montpellier.inra.fr/CBGP/spmweb

Mitrofanov V.I. 1978 — New species of *Schizotetranychus* mites (Acarina, Tetranychidae) from the Crimea — Nauch. Dokl. Vyssh. Shk. Biol. Nauki, 6: 44-47.

Mitrofanov V.I., Strunkova Z.I., Livshits L.Z. 1987 — Keys to the tetranychid mites (Tetranychidae, Bryobiidae) fauna of the USSR and adjacent countries — Dushanbe: Donish. pp. 224.

Oudemans A.C. 1931 — Acarologische Aantekeningen CVII — Entomol. Berich., Amsterdam, 8: 221-236.

Pritchard A.E., Baker E.W. 1955 — A revision of the spider mite family Tetranychidae — San Francisco: Pacific Coast Entomological Society, Memoir Series 2. pp. 472.

Reck G.F. 1947 — Genus *Bryobia* Koch (Tetranychidae) described on the data material from Georgia — Soobshcheniya Akad. Nauk Gruzinskoi SSR, 8: 653-660.

Reck G.F. 1950 — Spider mite fauna from Georgia (Tetranychidae: Acarina) — Trudy Zoologicheskogo Institutu Akademia Nauk Gruz.S.S.R., 9: 117-134.

Reck G.F. 1952 — Some fundamentals of the classification of the tetranychid mites — Soobshcheniya Akad. Nauk Gruzinskoi SSR, 13: 419-425.

Reck G.F. 1959 — A key to the tetranychid mites — Tbilissi: Akad. Nauk Gruzinskoi SSR. pp. 152.
Reeves, R.M. 1963 — Tetranychidae infesting woody plants in New York State, and a life history study of the elm mite *Eotetranychus matthyssei* n. sp. — Cornell University Agricultural Station Mem. No. 380.

Tuttle, D.M., Baker, E.W. 1968 — Spider mites of southwestern United States and a revision of the family Tetranychidae — Tucson, USA: The University of Arizona Press. pp. 143.

Tuttle, D.M., Baker, E.W., Abbatiello, M. 1976 — Spider mites of Mexico (Acarina: Tetranychidae) — Internat. J. of Acarol., 2: 1-102. doi:10.1080/01647957608683760

Wainstein, B.A. 1960 — Tetranychoid mites of Kazakhstan (with revision of the family) — Trudy Nauchno-Issled. Inst. Zashchita Rastenii Kazakh., 5: 1-276.

COPYRIGHT

Auger, P. and Migeon, A. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.