Electromagnetic form factors in the J/ψ mass region: The case in favor of additional resonances.

N. N. Achasov * and A. A. Kozhevnikov †

Laboratory of Theoretical Physics,
S.L. Sobolev Institute for Mathematics,
630090, Novosibirsk 90, Russian Federation
(October 17, 2018)

Abstract

Using the results of our recent analysis of e^+e^- annihilation, we plot the curves for the diagonal and transition form factors of light hadrons in the time-like region up to the production threshold of an open charm quantum number. The comparison with existing data on the decays of J/ψ into such hadrons shows that some new resonance structures may be present in the mass range between 2 GeV and the J/ψ mass. Searching them may help in a better understanding of the mass spectrum in both the simple and a more sophisticated quark models, and in revealing the details of the three-gluon mechanism of the OZI rule breaking in $K\bar{K}$ channel.

PACS numbers: 13.25.Gv, 13.40.Gp, 14.40.Cs, 14.40.Gx
There are intentions to study the energy range of e^+e^- annihilation in the interval of the center-of-mass energy from $2E = 1.5$ GeV up to $m_{J/\psi}$ using the collider VEPP-4M [1]. The BEPC e^+e^- collider team has also a plan to study some exclusive channels in the energy range from 2 to 5 GeV [2]. This raises the question of comparison of the results of existing analysis of the diagonal and transition form factors of light hadrons in the energy range between 1 and 2 GeV [3,4] with the data now existing at the J/ψ mass. Here we perform this task, in order to uncover possible surprises that might be revealed in future experiments. We use the following formulas expressing the cross sections through corresponding form factors.

If $h = \pi$ or K, then

$$\sigma(e^+e^- \to h^+h^-) = \frac{8\pi\alpha^2}{3s^{5/2}} |F_h(s)|^2 p_h^3,$$

(1)

where p_h is the modulus of the 3-momentum of the hadron h in the center-of-mass system of e^+e^- beams, whose total energy is \sqrt{s}. The cross section for $\pi^+\pi^-$ is given by Eq. (2.1) of the paper [3]. The cross section for K^+K^- is given by Eq. (2.1) of the paper [4]. If the final state is VP, where $V, P = \omega, \pi^0(\rho^0, \eta)$, then

$$\sigma(e^+e^- \to VP) = \frac{4\pi\alpha^2}{3s^{3/2}} |F_{VP}(s)|^2 p_{VP}^3,$$

(2)

where p_{VP} is the modulus of the 3-momentum of the hadron V (or P) in the center-of-mass system of e^+e^- beams. The cross section for VP final state is given by Eq. (2.1) of the paper [3]. If the final state is $2\pi^+2\pi^-$, then

$$\sigma(e^+e^- \to 2\pi^+2\pi^-) = \frac{4\pi\alpha^2}{s^{3/2}} |F_{\rho^0\pi^+\pi^-}(s)|^2 W_{\pi^+\pi^-}(s),$$

(3)

where cross section for the production of $2\pi^+2\pi^-$ is given by Eq. (2.8) of Ref. [3], and $W_{\pi^+\pi^-}(s)$ is given by Eq. (2.10) of Ref. [3].

The Okubo-Zweig-Iizuka (OZI) rule violating decays of the $c\bar{c}$ quarkonia into the light hadrons are divided into two very different classes. The isovector states $\pi^+\pi^-$, $\omega\pi^0$, $\rho\eta$ and $\rho^0\pi^+\pi^-$ are produced predominantly via the one photon (γ) intermediate state. The three-gluon (ggg) contribution which violates the conservation of isospin should be suppressed. Indeed, in the $\pi^+\pi^-$ channel, the ratio of the coupling constant due to three gluons to that due to one photon is estimated as

$$\frac{|a_{ggg}(\pi)|}{|a_{\gamma}(\pi)|} \sim \frac{m_d - m_u}{Q} \left(\frac{\alpha_s}{\pi}\right)^3 \frac{f_{J/\psi}}{4\pi\alpha|F_{\pi}(m_{J/\psi}^2)|},$$

(4)

where $\alpha = 1/137$, $\alpha_s \simeq 0.2$ is the QCD coupling constant, and $f_{J/\psi}$ enters the expression for the leptonic width of the J/ψ in a usual way:

$$\Gamma_{J/\psi \to e^+e^-} = \frac{4\pi\alpha^2}{3f_{J/\psi}^2} m_{J/\psi},$$

(5)

Inserting $m_d - m_u \simeq 3$ MeV, choosing conservatively $Q \sim m_{\pi}$, and taking the vector dominance model (VDM) expression
\[F^{(\text{VDM})}_{\pi}(s) = \frac{m_{\rho}^2}{m_{\rho}^2 - s} \]

for the pion form factor, one gets the figure of 10^{-2} for above ratio. Similar estimate holds for other isovector channels cited above. The amplitude with $gg\gamma$ in intermediate state is also expected to be suppressed $[5]$. The production amplitude of the isoscalar states includes the superposition of the one photon and ggg amplitudes. The production amplitude of strange mesons includes the superposition of both the isovector and isoscalar amplitudes.

First we will compare the data on the J/ψ decays with the predictions of the corresponding VDM expression assuming the zero-width approximation and then to more sophisticated amplitudes which incorporate the complex mixing of mesons from the ground state nonet with the heavier primed resonances $[3][4]$.

Let us present our findings first for the decay channels with the pair of pseudoscalar mesons. The modulus squared of the pion form factor expressed through the ratio of partial widths,

\[|F_{\pi}(m_{J/\psi})|^2 = 4 \frac{\Gamma(J/\psi \to \pi^+\pi^-)}{\Gamma(J/\psi \to e^+e^-)} \]

is $(11.9 \pm 1.5 \pm 0.9) \times 10^{-3}$ $[3]$ [or slightly lower figure of $(9.8 \pm 1.5) \times 10^{-3}$, according to the averaged value of the $\pi^+\pi^-$ branching ratio found in $[7]$] and was already mentioned to be remarkably large $[3]$. The VDM estimate according to Eq. (6) (see the dashed curved in Fig. 1) amounts to a figure of 4.3×10^{-3}. In the case of $\psi(2S)$ the pion form factor can be evaluated with the formula similar to Eq. (7) and gives, using the earlier DASP data $[8]$, the figure of $|F_{\pi}(m_{\psi(2S)})|^2 = (36 \pm 23) \times 10^{-3}$. This is especially surprising since shows, guided by the central figure, the rise of the form factor with the energy increase, but, certainly, experimental error is too large. Using a more realistic amplitude which includes the $\rho_{1,2}$ resonances with the parameters obtained recently $[3]$, we plot the corresponding curve with the dotted line in Fig. 1. In this case the curve goes four times as low as compared to the experimental value at the J/ψ mass. This is puzzling, since the one photon contribution is the only way to explain the decay $J/\psi \to \pi^+\pi^-$.

The above theoretical inconsistencies of the $\pi^+\pi^-$ channel strongly suggest that something new may happen at the energies between 2 GeV and the mass of J/ψ, where the data are almost absent. As an illustration, we add the resonance $\rho(2150)$ with the quantum numbers $I^G(J^{PC}) = 1^+(1^{--})$ documented in the full listings of Review of Particle Physics (RPP) $[7]$, ignoring, for nothing is better, the possible energy dependence of its partial widths and the mixing with other ρ-like resonances. Taking the mass $m_{\rho'_{3}} = 2010$ MeV, the width $\Gamma_{\rho'_{3}} = 260$ MeV, the ratio of coupling constants $g_{\rho'_{3}\pi}\pi / f_{\rho'_{3}} = 0.08$, and slightly varying, within the error bars, the parameters of the $\rho'_{1,2}$ resonances found in Ref. $[3]$, one obtains the curve shown with the solid line in Fig. 1. One can see that the knowledge of the spectrum of still unknown isovector resonances (if any) above 2 GeV is crucial for both the understanding of the behavior of the pion form factor (and some other form factors, too, see below) and for establishing the limits to applicability of the generalized VDM.

In general, the $K\bar{K}$ coupling of a C-odd quarkonium $J/\psi = c\bar{c}$ is represented in the form

\[g_{J/\psi K\bar{K}} = a_{K}^{(ggg)} \frac{4\pi\alpha}{f_{J/\psi}} (\pm F_{K}^{(1)} + F_{K}^{(0)}) \]
where \(a_{K}^{(ggg)} \) being, in general, a complex number, represents the pure isoscalar contribution of the three gluons; \(F_{K}^{(I)} \equiv F_{K}^{(I)}(m_{J/\psi}^{2}) \) is the kaon electromagnetic form factor with the given isospin \(I = 0, 1 \) taken at the \(J/\psi \) mass \([9]\). The leptonic coupling constant \(f_{J/\psi} \) is expressed through leptonic partial width by the expression Eq. (5). The \(K^+K^- \) and \(K_LK_S \) decay rates are distinguished by the sign of isovector contribution, so that the ratio of \(|F_{K}^{(1)}(m_{J/\psi}^{2})|\) extracted from the data \([6]\), to the VDM estimate

\[
|F_{K}^{(1)(VDM)}(m_{J/\psi}^{2})| = \frac{1}{2} \frac{m_{\rho}^{2}}{(m_{J/\psi}^{2} - m_{\rho}^{2})} = 0.033
\]

is found to be 2, 1, 2/3 for the relative phase of the \(I = 0 \) and \(I = 1 \) contributions \(\theta = 62^\circ, 22^\circ, 0^\circ \), respectively. Note that the latter case gives the lower bound to the isovector contribution. However, the simple VDM amplitude fails to describe the data on the reaction \(e^+e^- \rightarrow K^+K^- \) in the energy range \(2E = 1.1 - 2 \) GeV; see Fig. 2. On the other hand, the isovector part of the kaon form factor extracted from the fit which includes the contributions of heavier resonances \(\rho_{1,2}', \omega_{1,2}', \varphi_{1,2}' \) with the parameters found in Ref. [4], can be matched with isovector contribution extracted from the \(J/\psi \) data, provided the relative phase is \(\theta = 22^\circ \). Accidently, at the \(J/\psi \) mass, the absolute values of the isovector kaon form factor in the simple VDM and in our fit [4] turn out to be coincident. In the meantime, the phase relations in the above models are completely different. Specifically, one has

\[
F_{K}^{(0)}(m_{J/\psi}^{2}) = (6.5 - 6.3i) \times 10^{-3},
\]

\[
F_{K}^{(1)}(m_{J/\psi}^{2}) = (3.1 - 1.3i) \times 10^{-2},
\]

with the set of parameters found in Ref. [4]. Note that the modulus of the three-gluon coupling constant satisfies the relation \(|a_{K}^{(ggg)}| \geq 0.9 |g_0|\) regardless the relative phase between the three-gluon contribution and isoscalar part of the one photon one. Here the numerical factor of 0.9 comes from the numerical value of the isoscalar kaon form factor given in Eq. (10), and \(g_0 \) is the coupling constant of \(J/\psi \) to \(K\bar{K} \) in the \(I = 0 \) state. Since one can hardly imagine the mechanism of enhancement of the isoscalar form factor by an order of magnitude in comparison with that given in Eq. (10), we see that the greater part of the isoscalar coupling constant is due to the three-gluon contribution. There are no reasons to neglect the latter and attribute all the \(K\bar{K} \) branching ratio of the \(J/\psi \) solely to the one photon mechanism, as it was assumed in Ref. [3].

Now turn to the vector and pseudoscalar final states \([10,12]\). The ratio of the absolute values of the \(\omega \pi^0 \) form factors is expressed through the measured branching ratios as \([10,11]\)

\[
\frac{|F_{\omega\pi^0}(m_{J/\psi}^{2})|}{|F_{\omega\pi^0}(0)|} = \left[\frac{\alpha}{3} \left(\frac{q_{\gamma\pi^0}}{q_{\omega\pi^0}} \right)^3 \right. \\
\times \frac{m_{J/\psi} \Gamma(J/\psi \rightarrow \omega\pi^0)}{\Gamma(\omega \rightarrow \gamma\pi^0) \Gamma(J/\psi \rightarrow \mu^+\mu^-)} \right]^{1/2}.
\]

The VDM evaluation of the above ratio gives a figure of 0.0659 which is by a factor of two greater than the experimentally measured figure of 0.0335 \(\pm 0.0059 \) \([11]\). On the other hand, the inclusion of the \(\rho'_{1,2} \) resonances \([3]\) interfering destructively with the \(\rho(770) \) tail at
energies above 2 GeV results in the calculated figure to be twice as low as experimentally measured. See the curve in Fig. [3]. The result of the calculation of an analogous ratio for the \(\rho \eta \) final state is shown in Fig. [4]. Finally, the form factor of the \(\rho^0 \pi^+\pi^- \) final state which enters the partial width of the \(J/\psi \) as

\[
\Gamma(J/\psi \rightarrow \rho^0 \pi^+\pi^-) = 12\pi a \frac{\Gamma(J/\psi \rightarrow \mu^+\mu^-)}{m_{J/\psi}} \times |F_{\rho^0 \pi^+\pi^-}(m_{J/\psi}^2)|^2 \times W_{\pi^+\pi^-\pi^+\pi^-}(m_{J/\psi}^2)
\]

where \(W_{\pi^+\pi^-\pi^+\pi^-} \) is the phase space volume of the \(2\pi^+2\pi^- \) state given in [3], analogously for the \(\psi(2S) \), is plotted in Fig. [5]. The VDM estimate in this case is

\[
F_{\rho^0 \pi^+\pi^-}(s) = \frac{2g_{\rho\pi\pi}m_{\rho}^2}{m_{\rho}^2 - s},
\]

where the relation among the coupling constants \(g_{\rho\rho\rho\pi^+\pi^-} = 2g_{\rho\pi\pi} \) resulting from the vector current conservation is taken into account, together with the neglect of the bremsstrahlung-type diagrams. See Ref. [3] for some details of approximations made for the \(\rho\pi\pi \) coupling. Both curves go far below the \(J/\psi \) and \(\psi(2S) \) data. Note that the \(\rho^0 \pi^+\pi^- \) contribution was not isolated in the total \(\pi^+\pi^-\pi^+\pi^- \) data sample at the \(J/\psi \) mass [13]. However, such an isolation was implemented at the \(\psi(2S) \) mass, and the \(\rho^0 \pi^+\pi^- \) contribution was found to be 93% [14] of the total number of \(\pi^+\pi^-\pi^+\pi^- \) events. Since one cannot foresee any reason why the situation, in this respect, at the \(J/\psi \) could differ from the \(\psi(2S) \), we simply insert \(B(J/\psi \rightarrow \pi^+\pi^-\pi^+\pi^-) \) in place of \(B(J/\psi \rightarrow \rho^0 \pi^+\pi^-) \), in order to find the \(\rho^0 \pi^+\pi^- \) transition form factor at the \(J/\psi \) mass.

Since in almost all cases the curves in Fig. [1]–[5] go well below the \(J/\psi \) data points, one can see that some isovector resonance structures with the masses above 2 GeV interfering strongly with those already included are likely to be present. The example of the \(\pi^+\pi^- \) channel shows that the fit of the data with the \(J/\psi \) data point included is improved with the \(\rho'_2 \) resonance being taken into account [13]. Their isoscalar partners are also rather probable. They could manifest themselves in the channels of \(e^+e^- \) annihilation into \(\omega\eta, \omega\eta', \rho\pi, \omega\pi^+\pi^- \) etc and in the decay channels which include strange particles. All this suggests that the energy region above 2 GeV of \(e^+e^- \) annihilation is interesting from the point of view of elucidating the spectrum of states with the masses in this range and for establishing the detailed form (modulus and phase) of the three-gluon coupling with different states including its dependence on energy. To gain an impression of what the typical cross section magnitudes might be, we give the calculated figures at the energy \(\sqrt{s} = 2.5 \) GeV. In the case of the final states \(\pi^+\pi^-, K^+K^-, \omega\pi^0, \rho^0 \eta(\pi^+\pi^- \eta), \) and \(\pi^+\pi^-\pi^+\pi^- \) they are, respectively, 0.03, 0.02, 0.04, 0.04, and 0.6 nanobarns.

ACKNOWLEDGMENTS

The present work was supported in part by the grant INTAS-94-3986.
REFERENCES

[1] L. M. Kurdadze, private communication.
[2] Xu Gou-fa, private communication.
[3] N. N. Achasov and A. A. Kozhevnikov, Phys. Rev. D55, 2663 (1997); hep-ph/9609216.
[4] N. N. Achasov and A. A. Kozhevnikov, Phys. Rev. D57, 4334 (1998); hep-ph/9703397.
[5] J. Milana, S. Nussinov and M. G. Olsson, Phys. Rev. Lett., 71, 2533 (1993).
[6] R. M. Baltrusaitis et al., Phys. Rev. D32, 566 (1985).
[7] R. M. Barnett et al. (Particle Data Group), Phys. Rev. D54, 1 (1996).
[8] R. Brandelik et al., Z. Phys. C1, 233 (1979).
[9] The arguments in favor of neglecting the one-photon coupling to the neutral kaon pair put forward in Ref. 3 would be fulfilled only in the case of exact degeneracy of the \(\rho(770) \), \(\omega(782) \), and \(\phi(1020) \) masses. In reality, however, one obtains the ratio \(|F_{K^+}(m^2_{J/\psi})|/|F_{K^0}(m^2_{J/\psi})| \) equal to 4.5 and 1.7 in the simple VDM and in the VDM with inclusion of heavier resonances 4, respectively.
[10] R. M. Baltrusaitis et al., Phys. Rev. D32, 2883 (1985).
[11] D. Coffman et al., Phys. Rev. D38, 2695 (1988).
[12] J. Jousset et al., Phys. Rev. D41, 1389 (1990).
[13] B. Jean-Marie et al., Phys. Rev. Lett., 36, 291 (1976).
[14] W. Tanenbaum et al. Phys. Rev. D17, 1731 (1978).
[15] Because of the lack of data above 2 GeV, the coupling constants of the \(\rho_3 \) resonance with specific channels are unknown, so we do not include it in other channels except the \(\pi^+\pi^- \) one. The procedure of extracting the \(\rho_3 \) couplings, with the only \(J/\psi \) data points at hand, would appear to be speculative, since the \(\chi^2 \) criterion determined in that case essentially by the low energy data points, would not put any serious restrictions on magnitudes of these couplings.
[16] L. M. Barkov et al., Nucl. Phys. B256, 365 (1985).
[17] DM2 Collaboration, D. Bisello et al., Phys. Lett. B220, 321 (1989).
[18] P. M. Ivanov et al. Phys. Lett 107B, 297 (1981).
[19] DM2 Collaboration, D. Bisello et al. Z. Phys. C39, 13 (1988).
[20] S. I. Dolinsky et al., Phys. Rep. 202, 99 (1991).
[21] L. Stanco, in Hadron 91, Proceedings of the International Conference on Hadron Spectroscopy, College Park, Maryland, edited by S. Oneda and D. C. Peaslee (World Scientific, Singapore, 1992) p. 84.
[22] DM2 Collaboration, A. Antonelli et al., Phys. Lett. B212, 133 (1988).
[23] L. M. Barkov et al. Yad. Fiz. 47, 393 (1988).
[24] L. M. Kurdadze et al., Pis’ma Zh. Eksp. Teor. Fiz. 47, 432 (1988).
FIGURES

FIG. 1. The pion form factor. The data are from Barkov et al. [16], DM2 [17], MARKIII [18], DASP [19].

FIG. 2. The charged kaon form factor. The experimental point at the J/ψ mass is given by the authors of Ref. [18] upon neglecting the three-gluon contribution. The data are from OLYA [18], DM2 [19], MARKIII [18]. The solid curve is drawn upon taking into account the contributions of higher mass resonances $(\rho_1' + \omega_1' + \varphi_1') + (\rho_2' + \omega_2' + \varphi_2')$, with the parameters found in [3,4].

FIG. 3. The $\omega\pi^0$ form factor. The data are recalculated from the cross section data of ND [20] and DM2 [21].

FIG. 4. The $\rho\eta$ form factor. The DM2 data are recalculated from the cross section data of [22], PDG [7].

FIG. 5. The $\rho\pi^+\pi^-$ form factor. The data are recalculated from the cross section data of CMD [23], ND [20], OLYA [24], DM2 [21]; MARKI [13,14].
Fig. 1
Fig. 4
Fig. 5