Original Article

Transcriptional response of *Candida albicans* biofilms following exposure to 2-amino-nonyl-6-methoxyl-tetralin muriate

Rong-mei LIANG1,2, Yong-bing CAO1,*, You-jun ZHOU3, Yi XU1, Ping-hui GAO1, Bao-di DAI1, Feng YANG4, Hui TANG3, Yuan-ying JIANG1, *

1Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; 2Department of Pharmacy, General Hospital of Chengdu Military Command Region, Chengdu 610083, China; 3Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; 4Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China

Aim: To identify changes in the gene expression profile of *Candida albicans* (*C* albicans) biofilms following exposed to 2-amino-nonyl-6-methoxyl-tetralin muriate (10b) and clarify the mechanism of 10b against *C* albicans biofilms.

Methods: Anti-biofilm activity of 10b was assessed by tetrazolium (XTT) reduction assay and the action mechanism against biofilms was investigated by cDNA microarray analysis and real-time RT-PCR assay.

Results: Ten differentially expressed genes were directly linked to biofilm formation and filamentous or hyphal growth (*eg*, NRG1, ECE1 and CSA1). Decreased gene expression was involved in glycolysis (*eg*, HXK2 and PFK1) and antioxidant defense (*eg*, SOD5), while increased gene expression was associated with enzymes that specifically hydrolyzed β-1,3 glucan (XOG1), and with lipid, fatty acid and sterol metabolism (*eg*, SLD1, ERG6 and ERG2). Functional analysis indicated that addition of anti-oxidant ascorbic acid reduced inhibitory efficiency of 10b on mature biofilm.

Conclusion: Inhibition of 10b on biofilm formation possibly depends on impairing the ability of *C* albicans to change its morphology via altering the expression of biofilm formation genes. Mitochondrial aerobic respiration shift and endogenous ROS augmentation might be a major contribution to reduce mature biofilm metabolic activity. The data may be useful for the development of new strategies to reduce the incidence of device-associated infections.

Keywords: 2-amino-nonyl-6-methoxyl-tetralin muriate; anti-biofilm activity; action mechanism; microarray analysis; *Candida albicans*

Introduction

C albicans is a dimorphic species capable of changing its morphology from the yeast form to the hyphal form, an all-important process to form mature biofilms and a transition critical to its pathogenesis[1-3]. Biofilm structure impairs the action of phagocytic cells from the immune system and antimicrobial agents[4-8], which are notoriously difficult to eradicate as well as an important source of many recalcitrant infections.

Biofilm development occurs in three phases over a period of 24–48 h[7,9]. The initial phase begins with adherence of single cells to the substratum. Second, attached cells proliferate to form microcolonies and begin to deposit an extracellular matrix. Finally, once cells reach confluency, the network of yeast cells transits to filamentous (pseudohyphal and hyphal) forms, which become encased in the exopolymeric matrix. Baillie and Douglas[10, 11] reported that slow growth of microorganisms, presumably due to some form of nutrient limitation, may contribute to mature biofilm resistance.

Beta-1,3 glucan is thought to be the main component of the three-dimensional matrix surrounding biofilm cells and closely tied to biofilm formation[12]. Nett et al[13] showed that elevated beta-1,3 glucan levels were characteristic of biofilm cells as compared to planktonic free-living *C* albicans cells. A complex network of signaling pathways regulates yeast-hyphal morphogenesis. It is known that several signaling pathways, including Cph1-mediated mitogen-activated protein kinase and Efg1-mediated cyclic AMP/protein kinase A, participate in the regulation of morphological transition[14, 15]. These multiple pathways in conjunction with the pathway-
specific transcription factors regulate the expression of hypha-specific genes, including ECE1, HVPI, HYR1, AL51, ALS3, RBTL1, RBTL4, and HGCI1[18–21]. Hyphal development is negatively regulated by transcriptional repressors Tup1, Nrg1, Sfl1, and Rfg1[22–25]. Sfl1 has a dual function in filamentous growth of C. albicans: it acts as a repressor of hyphal development antagonizing activation of Flol but functions as an activator releasing from inhibition of Flol in the matrix at low temperature. Rfg1 is a second DNA-binding protein that targets Tup1 to promoters of hypha-specific genes. Tup1 functions with DNA binding proteins Nrg1 and Rfg1 as a transcription regulator to repress the expression of hypha-specific genes. Nrg1 is a zinc finger DNA-binding protein that represses hypha-specific genes in a Tup1-dependent manner, making a major contribution to the repression of hyphal development[26]. Biomaterial infections are an increasingly alarming problem. Given their intrinsic recalcitrance to conventional therapies, new methods of examining these infections and a new class of antifungal drugs must be explored. 2-Amino-nonyl-6-methoxyl-tetralin muriate (10b), a 2-aminotetralin derivate, was synthesized as a novel chemical structural antifungal agent (Figure 1). In our previous study, we found that 10b had antifungal activity. It has been demonstrated that farnesol was an extracellular quorum sensing molecule in the dimorphic fungus C. albicans[27], which inhibits the yeast to mycelium dimorphic transition and prevents biofilm formation[28]. Therefore, we selected farnesol as positive control to investigate the effect of 10b on C. albicans biofilms formation. The aim of the work presented here was to further investigate the mechanism of action of 10b against C. albicans biofilms at molecular level.

![Chemical structure of 2-amino-nonyl-6-methoxyl-tetralin muriate (10b).](image)

Materials and methods

Antifungal agents
Antifungal reagents used in the present experiment included farnesol (Alfa Aesar, A Johnson Matthey Co, Ward Hill, USA); miconazole (MCZ, Pfizer-Roerig Pharmaceuticals, New York, USA); 10b (Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China); and stock solutions of various concentrations in methanol (Sigma).

C. albicans strains and growth conditions

C. albicans SC5314 was used throughout this study. *C. albicans* cells were propagated in yeast-peptone-dextrose (YPD) medium (1% w/v yeast extract, 2% w/v peptone, 2% w/v dextrose). Blastospores were harvested and washed twice in 0.15 mol/L phosphate-buffered saline (PBS; pH 7.2). The cells were then suspended in RPMI-1640 medium (RPMI 1640 supplemented with L-glutamine and buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS)) and counted in a haemocytometer and adjusted to 1.0×10⁶ colony forming unit (CFU)/mL.

In vitro anti-biofilm activity assay

C. albicans biofilms metabolic activity was assessed using the XTT reduction assay as described previously[29]. The principle is based upon the reduction of tetrazolium to tetrazolium formazan by mitochondrially active yeasts in the presence of menadione, an electron-coupling agent. Briefly, XTT (Sigma Chemical Co) at 0.5 mg/mL was added with menadione (10 mmol/L in acetone) to a final concentration of 1 μmol/L in PBS. A 200 μL aliquot of XTT-menadione was added to each well and incubated in the dark at 37 °C for 2 h. Any colorimetric change (a direct reflection of metabolic activity of the biofilms) was measured in a microtitre plate reader (Multiskan MK3) at 492 nm.

Biofilms were formed in selected 96-microtitre plates. Following the initial 1 h adhesion, the medium was aspirated and then washed thoroughly twice with sterile PBS before the addition of fresh RPMI-1640 medium containing different concentrations of antifungal agents and incubated for another 48 h at 37 °C. A series of antifungal-free wells was also included as controls. Sessile MIC₅₀ were determined at 50% inhibition (SMIC₉₀) compared with drug-free control wells using XTT reduction assay.

To determine the effect of 10b on adhesion of planktonic cells, antifungal drugs were added to a standardized suspension at zero time (preincubation) before it was added to a 96-microtiter plate. The plate was incubated for 90 min at 37 °C. Knowing that adherent populations on the substratum do not form a structurally differentiated community (biofilm) during this period of time[30], we chose 90 min as the incubation time of the adhesion assay. To determine the effect of 10b on mature biofilms, mature biofilms (48 h) formed as above in the absence of antifungal drugs were added with fresh RPMI-1640 medium containing different concentrations of antifungal drugs. The plates were incubated at 37 °C for 3, 6, 12, and 24 h.

Confocal laser scanning microscopy

Confocal laser scanning microscopy (CLSM) was performed as described in the literature[31] to demonstrate the inhibitory effect of 10b on biofilm formation. Formation of *C. albicans* SC5314 biofilms was achieved by adding 4 mL standardized cell suspension to six-well plates containing plastic disks. Following 10b exposure and biofilm formation, the disks were removed and transferred to new six-well culture plates. Following 10b exposure and biofilm formation, the disks were removed and transferred to new six-well culture plates containing fluorescent stains FUN-1 (10 μmol/L; Molecular Probes, Eugene, Oreg) and concanavalin A-Alexa Fluor 488 conjugate (ConA; 25 μg/mL; Molecular Probes). FUN-1 (excitation wavelength, 543 nm; emission wavelength, 560 nm; long-pass filter) is converted to an orange-red cylindrical intravacuolar structure by metabolically active cells, while ConA (excitation...
wavelength, 488 nm; emission wavelength, 505 nm; long-pass filter) binds to glucose and mannose residues of cell wall polysaccharides and emits a green fluorescence. After incubation with the dyes, the disks were flipped and the stained biofilms were observed with a Leica TCS sp2 CLSM equipped with argon and HeNe lasers.

RNA isolation and microarray hybridization

For RNA isolation experiments, cells were added to 25 mL portions of RPMI-1640 medium in 75-cm² tissue culture flasks with vented caps. The flasks were incubated statically for 1 h to allow initial adherence of the cells, and then the medium was decanted and replaced with 25 mL portions of fresh RPMI-1640 medium containing 10 μmol/L 10b. We chose this 10b concentration because it still maintained an inhibitory effect on biofilm formation and allowed for recovery of a sufficient cellular mass for RNA extraction. The flasks were then incubated statically for 48 h at 37 °C. A 10b-free control was also included. Total RNA was isolated by the hot phenol method[32] and purified with a NucleoSpin® Extract II kit (Machery-Nagel Corp, Germany) following the manufacturer’s protocol. A 7925 C. albicans genome 70-mer oligonucleotide microarray was obtained from CapitalBio Corporation (Beijing, China). A 1-μg sample of total RNA was used for preparing fluorescent dye-labeled cDNA by the linear mRNA amplification procedure as described[35]. A DNA-DNA hybridization protocol was used to replace RNA-DNA hybridization in the present study for the sake of reducing cross-hybridization[34]. The labeled cDNAs were dissolved in 80 μL hybridization solution [3×SSC, 0.2% (w/v) SDS, 5× Denhardt’s solution, 25% (v/v) formamide] and denatured at 95 °C for 3 min before hybridization. A sample of the mixed hybridization buffer was placed onto a microarray slide and covered with a glass coverslip. Hybridization was done with a BioMixer™ II (CapitalBio Corp, China). After hybridization, the slides were washed with washing solution 1 (2×SSC, 0.2% SDS) and then with washing solution 2 (2×SSC) at 42 °C for 4 min. Self-hybridization of the control sample was used to evaluate the system noise.

The microarrays were scanned with a LuxScan™ 10KAs-canner (CapitalBio Corp, China) at two wavelengths to detect emissions from both Cy3 and Cy5. The image obtained was analyzed with LuxScan™ 3.0 software (CapitalBio Corp, China). Normalization was done on the basis of a Lowess program[35]. The ratio of Cy5 to Cy3 was calculated for each location on each microarray. To minimize artifacts that arose from low expression values, only genes with raw intensity values>800 counts for both Cy3 and Cy5 were chosen for analysis. A “one class” method for the analysis of microarray software (SAM) was used to identify significantly differentially expressed genes. Genes with a false discovery rate (FDR)<5%, q-value <1% and variation of at least 2-fold in SC5314 biofilms following 10b exposure were identified as significantly differentially expressed genes in two independent experiments. Differentially expressed genes were clustered hierarchically by Gene Cluster 3.0 (Stanford University). DNA sequences were annotated on the basis of the results of BlastN and BlastX searches using the sequencing database of Stanford University (Palo Alto, CA) (http://www-sequence.stanford.edu/group/candida/), GenBank (http://www.ncbi.nlm.nih.gov/BLAST/), and CandidaDB database (http://genolist.pasteur.fr/CandidaDB/).

The entire array data have been deposited in the NCBI gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov) and are accessible through GEO series accession number GSE19226.

Quantitative real-time RT-PCR assay

Real-time RT-PCR was used to confirm microarray results of gene expression changes. An aliquot of the RNA preparations used in the microarray experiments was saved for this follow-up study. Moreover, duplicate independent experiments were conducted to isolate RNA samples according to the protocol described above. First-strand cDNAs were synthesized from 1 μg total RNA in a 20 μL reaction volume using the cDNA synthesis kit for RT-PCR (TakaRa Biotechnology, Dalian, China) in accordance with the manufacturer’s instructions. Real-time PCR reactions were performed with SYBR Green I (TakaRa), using ABI 7500 Real-Time PCR system (Applied Biosystems Co, California, USA). Gene-specific primers were designed using Discovery Studio Gene software (Accelrys, Inc). The thermal cycling conditions comprised an initial step at 95 °C for 1 min, followed by 40 cycles at 95 °C for 10 s, 55 °C for 20 s, and 72 °C for 30 s. Change in SYBR Green I fluorescence in every cycle was monitored by the system software, and the threshold cycle (Ct) was measured. Using 18S rRNA as the internal control, gene expression of SC5314 biofilms treated by 10b relative to that without treatment was calculated using the formula 2△△Ct, where △Ct is the Ct value of genes of interest minus that of the internal control, and △△Ct is the mean △Ct value of SC5314 biofilms treated by 10b minus that without treatment. Primer sequences used in real-time RT-PCR assay are listed in Table 1.

Statistics

Experiments were performed at least three times. Data are presented as ‘mean±standard deviations’ and analyzed using the Student’s t test where indicated.

Results

In vitro anti-biofilm activity of 10b

10b had been reported to have great antifungal activity[36, 37], but its dramatic anti-biofilm activity was unexpected. CLSM showed that normal C. albicans biofilm exhibited a typical three-dimensional structure and composed mainly of true hyphae and pseudohyphae (Figure 2A). When cells were preincubated with 10 μmol/L farnesol at 0 h incubation time, biofilm development can not be prevented and still composed mainly of true hyphae and pseudohyphae (Figure 2B). However, after preincubation with 0.1 μmol/L 10b, the typical architecture of biofilms (intertwining mycelial structures and a basal layer of blastospores) was destructed although
Pseudohyphae and true hyphae were observed (Figure 2C). Moreover, the concentration was increased by 10-fold, the adherent yeast cells were successfully prevented from germination and resulted in scant or nonexistent biofilms (Figure 2D). Effect of 10b on biofilm formation was also assessed by XTT reduction assay as seen in Figure 3. Over 90% inhibition of biofilm formation was observed at 10b concentrations over 15.63 μmol/L. Lower concentrations (7.81 to 15.63 μmol/L) produced about 50% inhibition. Moreover, 10b used at 1.95 to 3.91 μmol/L was still able to reduce about 30%–40% metabolic activity (Figure 3A). Farnesol was also able to inhibit biofilm formation to some extent but the inhibitory effect was relatively poor (Figure 3B). Less than 55% inhibitory efficiency of biofilm formation was observed at farnesol concentrations over 15.63 μmol/L. No significant inhibition was observed at farnesol concentrations lower than 7.81 μmol/L. Furthermore, the SMIC_{50} value of 10b and farnesol were 7.05 μmol/L and 187.50 μmol/L, respectively, as determined by XTT reduction assay.

Next, mature (48 h) biofilms were added with fresh growth medium containing 10b and farnesol, and incubated for another 3 to 24 h. As seen in Table 2, 10b at 10 and 50 μmol/L were able to markedly inhibit the metabolic activity of mature biofilms whenever 10b was added. Moreover, 10b at 50 μmol/L was able to achieve 62.71% inhibitory efficiency after incubation for 24 h. However, only farnesol at 50 μmol/L was able to inhibit metabolic activity of mature biofilms significantly. It was worth mentioning that extension of the incubation time increased the efficiency of 10b and farnesol in inhibiting the metabolic activity of mature biofilms.

Table 1. List of primers used for real-time RT-PCR.

Target genes	Primer pairs (5′–3′)^a	Amplicon size (bp)
18s (F)	TCTTTCTTGATTTTGGTG	150
	(R) TCGTAGAGCCCTTAAGAAGT	
ECE1 (F)	TGACCAAGCACCCTAC	190
	(R) AGCAATGATACACAGCA	
NRG1 (F)	CACCTCAGAGGTCTAAT	139
	(R) TTTCCTGGGTTCTTG	
CSA1 (F)	TCTCAAGTCCCAAGA	267
	(R) GGTTAGGTTCCCTTAG	
ACE2 (F)	AGCTTTTCCCATCTAT	215
	(R) TAATCCCCATAAGTTTC	
BMT9 (F)	TGCTCTGGCAAGTCA	105
	(R) TCTCCCATCATAATCC	
FGR6-10 (F)	ACAGTTTCTCCTTGCG	157
	(R) TGTTGGTGCTCTTGG	
SFL1 (F)	CCCCTCAATGCTATAC	200
	(R) TGGAGTCCCAAAGTAG	
ADH1 (F)	ATCCCTGTCTTATCTTC	184
	(R) AACTGGGATATCTCTTAG	
HXXK2 (F)	CGGTTACATTGGGAGA	132
	(R) TTGGATGGAAGAGCC	
CDC19 (F)	CTGTCTGGCATCAACA	163
	(R) ATGGCTAGCAGCCTCTG	
PFK1 (F)	AGAAACTGCCCTCCA	177
	(R) CCAAATGCTTGTCG	
GPX2 (F)	ACTCAACATACAAAGTT	164
	(R) AAACGGGGAATCTCAC	
SOD5 (F)	ACATGGGCGGTGTTTC	185
	(R) ATTACCTGAGGAGCA	
SOD2 (F)	AACCTGGGCTCTTCTC	181
	(R) TATCAACTGATGCTTG	
XOG1 (F)	TCCAGGTCTGGCTAT	133
	(R) ACTGAAATGTCGTTG	
SLD1 (F)	AGATAAGGAGGACAAGA	224
	(R) GGAACAAAACCATACC	
DAG7 (F)	AAGGTAACTAATAGTTCC	119
	(R) GAAATGGGATGATG	
SFL2 (F)	TGGTTCTCATAAAGTGA	213
	(R) ATAGGCTGCTCAGATT	
GZF3 (F)	AGTCAAAAATATGGAGAGC	90
	(R) TTGGCTGATTGTCTTC	
ERG2 (F)	GCTAATGACCCAGTTGT	162
	(R) TCTTCTTGCGCTTGGCA	
ERG6 (F)	GCTACATCGCCTGCTCCA	164
	(R) CCATCCAGCATTCAA	
ERG11 (F)	GAATCCCTGAAACATAT	131
	(R) AGCAGAGTATCCACAT	
ERG24 (F)	GGTGACTAAGCTGGGTG	143
	(R) GGTAGGCGGAGATGTA	

^a F, forward; R, reverse.

References:

Figure 2. Morphology alteration of C albicans strain after treated with 10b. Confocal laser scanning microscopy of C albicans biofilms: (A) normal biofilm; (B) cells treated with 10 μmol/L farnesol at 0 h of the incubation time; (C) cells treated with 0.1 μmol/L 10b at 0 h of the incubation time; (D) cells treated with 1.0 μmol/L 10b at 0 h of the incubation time.
To reveal the mechanism of 10b against biofilms at the molecular level, *C. albicans* cDNA microarrays were used to identify changes in gene expression profiles of *C. albicans* SC5314 biofilms following 10b exposure in two independent experiments. To avoid dye-associated effects on cDNA synthesis, RNA from the 10b-treated group was labeled with Cy5 and Cy3 separately. In each hybridization experiment, duplicate spots were measured as usual. After statistical analysis of six individual comparisons, only the statistically significant (FDR<5%, q-value<1%) genes whose expression level changed by at least 2-fold in all data sets were selected. The data generated from these independent microarray experiments reflected a high level of reliability and reproducibility due to the presented ratios obtained from repeated assays of the same samples and of samples from the independent experiments.

A total of 149 differentially expressed genes were found upon exposure to 10b, of which 69 genes showed a decrease in expression, and 80 genes showed an increase in expression (Table 3 and 4). Ten differentially expressed genes were found to relate to biofilm formation, filamentous or hyphal growth. It was noticed that striking up-regulation of *NRG1* and marked down-regulation of *ECE1* directly related to the inhibition of biofilm formation. One gene related to specifically hydrolyzing beta-1,3 glucan (*XOG1*) was significantly increased. Ten down-regulated genes were involved in glycolysis (*eg*, *HXK2*), fermentation (*eg*, *ADH1*) and active oxygen scavenging (*eg*, *SOD5*). Fifteen overexpressed genes were related to the lipid metabolic process. Of them, 13 genes were directly linked to ergosterol biosynthesis, including *ERG2*, *ERG6* and *ERG11*. Ten genes related to translation were overexpressed following exposure to 10b. Of them, 2 genes involved in negative regulation of transcription were significantly up-regulated.

Validation of microarray data by real-time RT-PCR

To validate the expression of genes identified by microarray analysis, real-time RT-PCR was performed in 23 genes of interest selected on the basis of their roles in the specific action mechanism of 10b (*eg*, *ECE1*, *NRG1*, *CSA1*, *ACE2*, *BMT9*, *FGR6-10*, *SLF1*, *ADH1*, *HXK2*, *CDC19*, *PFK1*, *GPX2*, *SOD5*, *SOD2* and *XOG1*) and in the responses independent of mechanism of action (*eg*, *SLD1*, *DAG7*, *SFL2*, *GZF3*, *ERG2*, *ERG6*, *ERG11* and *ERG24*). Total RNA samples from cells treated or untreated with 10b were prepared in parallel for three separate experiments. Real-time RT-PCR reactions were performed in triplicate with independent RNA isolations. It was found that the expression of gene *PFK1* was down-regulated as shown by real-time RT-PCR in three independent experiments. In general, there was a good correlation between real-time RT-PCR

Table 2. Effects of 10b and farnesol incubated for different times on mature (48 h) biofilms.

Drugs incubation time (h)	XTT reduction (%) a) after further incubation in medium containing compounds at the concentration of:				
	100μmol/L	50μmol/L	10μmol/L	Farnesol	50μmol/L
3	76.68±4.52b	60.35±6.17b	108.13±6.34	79.14±6.70	
6	73.61±3.21b	51.43±7.81c	110.47±10.74	69.23±1.47b	
12	62.41±5.27c	47.06±6.37c	97.11±6.01	71.58±1.76b	
24	58.19±2.51c	37.29±3.18c	98.73±7.05	64.72±5.97c	

a) 10b and farnesol were added to mature (48 h) biofilms and incubation was continued for further 3 to 24 h at 37°C. XTT reduction is expressed as a percentage of that of control mature biofilms (48 h) further incubated for the same time period without the above drugs. The results are mean±standard deviations of three independent experiments. b) P<0.05, c) P<0.01 vs control.
Table 3. Genes down-regulated in 10b-grown biofilms compared to biofilms without treatment through two independent experiments.

Primary event	Gene name	S. cerevisiae homologue name	Function	Change in fold expression	
				Ratio1	Ratio2
Biofilm formation					
CAL0004191	ECE1	None	Extent of cell elongation	0.10	0.10
CAL0002846	CSA1	YIR019C	Candida Surface Antigen	0.39	0.23
CAL0005982	ACE2	YLR131C	Transcription activator activity	0.32	0.40
CAL0003176	ADH1	YOL086C	Alcohol dehydrogenase	0.35	0.45
Filamentous growth					
CAL0003785	BMT9	None	Wild-type filamentous growth	0.47	0.24
CAL0001036	GIN1	YCL061C	Regulation of DNA-damage-induced filamentous growth	0.41	0.43
CAL0002878	FGR6-10	YNR044W	Filamentous Growth Regulator	0.41	0.37
Cell budding					
CAL0001436	ATS1	YAL020C	Induced upon adherence to polystyrene	0.39	0.32
Generation energy					
CAL0003653	IFE2	YAL060W	(R,R)-butanediol dehydrogenase activity	0.29	0.25
Glycolysis					
CAL0000415	PKG1	YCR012W	Phosphoglycerate Kinase	0.38	0.46
CAL0005657	TDH3	YGR192C	Triose phosphate Dehydrogenase	0.42	0.37
CAL0002184	PGI1	YBR196C	Glucose-6-phosphate isomerase activity	0.33	0.39
CAL0003176	ADH1	YOL086C	Alcohol dehydrogenase	0.35	0.45
CAL0002618	SAD2	YOL086C	Alcohol dehydrogenase (NAD) activity	0.44	0.46
CAL0000198	HXK2	YGL253W	Hexokinase II	0.43	0.37
CAL0003055	PFK1	YGR240C	Alpha subunit of phosphofructokinase (PFK)	0.49	0.65*
Protein degradation					
CAL0006261	SAP5	YIL015W	Secreted aspartyl proteinase	0.23	0.29
CAL0001377	SAP4	YLR121C	Secreted aspartyl proteinase	0.30	0.32
Protein modification process					
CAL0005317	RAM2	YKL019W	Geranylgeranyltransferase and farnesyltransferase	0.37	0.29
Amino metabolic					
CAL0000320	PUT1	YLR142W	Proline dehydrogenase activity	0.33	0.26
CAL0004575	CBP1	YJL209W	Corticosteroid binding protein	0.47	0.23
CAL0001679	ARO10	YDR380W	Phenylpyruvate decarboxylase activity	0.38	0.23
CAL0001524	RNR1	YER070W	Ribonucleoside-diphosphate reductase activity	0.39	0.39
CAL0005223	PRI2	YKL045W	DNA replication initiation	0.45	0.48
CAL0002119	SIS1	YNL007C	Protein complex assembly	0.43	0.41
CAL0004541	UGA33	YDR207C	Predicted zinc-finger protein of unknown function	0.49	0.39
Transport					
CAL0001208	SSA2	YLL024C	HSP70 family chaperone	0.28	0.29
CAL0003217	OPT4	YPR194C	Oligopeptide transporter	0.22	0.04
CAL0001762	CDR4	YOR153W	ATP-binding cassette (ABC) superfamily	0.28	0.25
CAL0003136	MAL31	YBR298C	Sugar transmembrane transporter activity	0.35	0.27
CAL0004351	HG76	YDR343C	Glucose transmembrane transporter activity	0.34	0.37
CAL0005849	HG15	YOL103W	Glucose transmembrane transporter activity	0.31	0.40
CAL0002675	GIT2	YCR098C	Inorganic phosphate transmembrane transporter activity	0.46	0.33
CAL0002987	CFL2	YNR060W	Ferric-chelate reductase activity	0.24	0.33
CAL0002260	ARR3	YPR201W	Arsenite transmembrane transporter activity	0.50	0.33
CAL0003283	TNA12	YGR260W	Putative transporter	0.32	0.15
CAL0002083	DIP53	YPL265W	Amino acid transmembrane transporter activity	0.33	0.07
CAL0004943	ENT4	YLL038C	Endocytosis	0.35	0.29
CAL0002211	IPF17497.2	YDL058W	ER to Golgi vesicle-mediated transport	0.43	0.18
CAL0001603	TIF6	YPR016C	Ribosome export from nucleus	0.45	0.45
Cell stress					
CAL0001501	CDC1	YDR182W	Cellular metal ion homeostasis	0.48	0.35
CAL0004229	RPH1	None	DNA repair	0.45	0.28
CAL0002987	CFL2	YNR060W	Ferric-chelate reductase activity	0.24	0.33
CAL0002431	POL1	YNL102W	DNA-directed DNA polymerase activity	0.30	0.33
CAL0006305	MSH6	YDR097C	Involved in mismatch repair	0.41	0.35

(Continued)
Effects of ROS on *C. albicans* biofilms

According to Pasteur effect, the tricarboxylic acid cycling process might be enhanced because the expression of genes participating in glycolysis was decreased after exposure to 10b under aerobic circumstances. Besides, the expression of genes encoded superoxide dismutase (SOD) was also decreased. This might result in augmentation of ROS generation (Figure 5). To assess the role of endogenous ROS against *C. albicans* biofilms, XTT reduction assay was performed to investigate the effects of ROS scavenger, ascorbic acid (AA), on anti-biofilm activity of 10b with respect to planktonic cell adhesion, biofilm formation and mature biofilm (48 h) metabolic activity. Table 5 shows that 10b+AA or 10b alone had no effect on planktonic cell adhesion although 10b+AA notably increased metabolic activity of planktonic cells compared to 10b (P<0.01) (Table 6). 10b+AA significantly increased mature biofilm metabolic activity compared to 10b (P<0.05) (Table 6). These results indicated that endogenous ROS augmentation generated by 10b is a pivotal action mechanism to reduce mature biofilm metabolic activity, although elevated endogenous ROS have no impact upon biofilm formation and planktonic cell adhesion. To further verify above conclusion, XTT reduction assay was performed to investigate the effect of a well known ROS inducer MCZ on mature biofilm metabolic activity. As expected, MCZ at 10 μmol/L and 50 μmol/L markedly decreased mature biofilm metabolic activity and the inhibitory efficiency was 39.08% and 58.68%, respectively, after 6 h exposure (Figure 6). Our data further confirmed a direct correlation between endogenous ROS augmentation and inhibition of mature biofilm metabolic activity.

Discussion

10b is a novel chemical structural antifungal agent with high antifungal activity, a broad antifungal spectrum and potentially low toxicity,[26, 37] In this study, we found that 10b and microarray data (Figure 4).

#### Primary CGDID	Gene name (CandidaDB)	S cerevisiae homologue name	Function	Change in fold expression Ratio1	Ratio2
CAL0001410 | HSP104 | YLL026W | ATPase activity | 0.28 | 0.23
CAL0006314 | ZTA1 | YBR046C | Similar to quinone oxidoreductases | 0.32 | 0.19
CAL0004456 | SOD5 | None | Copper- and zinc-containing superoxide dismutase | 0.17 | 0.12
CAL0004253 | AHP1 | YLR109W | Putative alkyl hydroperoxide reductase | 0.36 | 0.49
CAL0009882 | FDH1 | YOR388C | Formate dehydrogenase activity | 0.36 | 0.08
CAL000562 | AYR2 | YIL124W | Acylglycerone-phosphate reductase activity | 0.46 | 0.45
CAL0001801 | SOU3 | YNL202W | 2,4-dienoyl-CoA reductase (NADPH) activity | 0.49 | 0.42
CAL0002332 | IFP21405.1 | YMR289W | Folic acid biosynthetic process | 0.40 | 0.48
CAL0004557 | DAK2 | YFL053W | Glycerone kinase activity | 0.34 | 0.43
CAL0002175 | IFP525.1 | YAL035W | Unknown | 0.19 | 0.13
CAF0006968 | IFP10241.3 | None | Unknown | 0.21 | 0.22
CAL0001404 | ALK1 | YDR402C | Unknown | 0.23 | 0.21
CAL0004116 | IFP27058.1 | None | Unknown | 0.32 | 0.36
CAL0003595 | IFP22624.1 | YAL049C | Unknown | 0.33 | 0.19
CAL0004079 | IFP19669.1 | None | Unknown | 0.35 | 0.29
CAF0007012 | IFP22833.1 | None | Unknown | 0.36 | 0.24
CAF0007044 | IFP21764.1 | None | Unknown | 0.38 | 0.20
CAL0004085 | IFP27036.1 | None | Unknown | 0.40 | 0.48
CAL0005268 | IFP21758.1 | None | Unknown | 0.40 | 0.18
CAL0004173 | IFP10394.1 | None | Unknown | 0.38 | 0.37

Real-time RT-PCR verified the expression of the gene down-regulation through three independent experiments.
Table 4. Genes up-regulated in 10b-grown biofilms compared to biofilms without treatment through two independent experiments.

Primary CGDID	Gene name	S cerevisiae homologue name	Function	Change in fold expression Ratio1	Ratio2
Translation					
CAL0004848	GAT2	YMR136W	Transcription factor activity	2.43	2.94
CAL0003471	TEF4	YKL081W	Putative translation elongation factor	3.93	2.14
CAL0004558	TEF2	YBR118W	Translation elongation factor activity	2.26	2.21
CAL0001367	SSB1	YDL229W	Putative heat shock protein	2.01	2.91
CAFO007000	RPL43A	YJR094W-A	Predicted ribosomal protein	3.19	2.33
CAL0003667	RPL20B	YMR242C	Predicted ribosomal protein	2.25	2.11
CAL0005037	RPL10A	YGL135W	Predicted ribosomal protein	2.92	2.53
CAL0003534	NAN1	YPL126W	Positive regulation of transcription	2.09	3.02
CAL0001506	UBI3	YLR167W	Structural constituent of ribosome	2.31	2.09
CAL0002014	SEN2	YLR105C	tRNA-intron endonuclease activity	3.07	3.57
CAL0003059	SFL2	YOR140W	Negative regulation of transcription	6.19	4.54
CAL0005136	GZF3	YJL110C	Negative regulation of transcription	3.83	20.63
DNA metabolic					
CAL0002072	POL5	YEL055C	DNA-directed DNA polymerase activity	3.10	6.48
RNA metabolic					
CAL0001635	GAR1	YHR089C	Box H/ACA snoRNA binding	2.32	2.75
CAL0001648	CBF5	YLR175W	Pseudouridylate synthase activity	2.42	2.69
CAL0001648	TRM3	YDL112W	tRNA (guanine) methyltransferase activity	2.34	2.72
CAL0002214	TSR1	YDL060W	RNA processing	2.26	3.16
CAL0005606	RRPS	YMR229C	Poly(U) RNA binding	2.23	6.85
Transport					
CAL0006337	MEP1	YPR138C	Ammonium transmembrane transporter activity	3.70	4.47
CAL0001711	VPS11	YMR231W	Vacuolar protein sorting	3.46	3.08
CAL0003818	HGT17	YNR072W	Putative glucose transporter	3.77	4.59
CAL0001467	HGT10	YDR536W	Glycerol permease	6.16	2.92
CAL0003382	DCR2	YOR153W	Multidrug transporter	4.64	3.24
CAL0006143	FEN2	YCR028C	Predicted membrane transporter,	3.86	3.45
Cell wall maintenance					
CAL0007153	XOG1	YLR300W	Exo-1,3-beta-glucanase, major exoglucanase	3.02	8.78
CAL0002214	MNT2	YDR483W	Alpha-1,2-mannosyl transferase	2.06	2.19
CAL0001642	SIM1	YKR042W	Cell wall organization	4.03	4.47
CAL0002002	PHR1	YMR307W	Glycosidase of cell surface	2.05	2.34
Hyphal or filamentous growth					
CAL0002995	NRG1	YPR015C	Transcriptional repressor, regulates hyphal genes	5.13	3.96
CAL0004265	FGR29	None	Filamentous growth regulator	2.51	3.10
CAL0002268	CZF1	YDR207C	C albicans Zinc Finger protein, hyphal growth regulator	2.89	4.33
Cell cycle					
CAL0004825	ULP1	YPL020C	G_2/M transition of mitotic cell cycle	2.37	2.61
Lipid metabolic process					
CAL0004027	SLD1	None	SphingoLipid delta-8 Desaturase	5.12	9.78
CAL0006277	FAD3	None	Omega-3 fatty acid desaturase activity	2.42	3.32
CAL0000316	ERG9	YHR190W	Farnesyl-diphosphate farnesyltransferase	9.40	9.17
CAL0006397	ERG6	YML008C	Sterol 24-C-methyltransferase	22.68	13.02
CAL0002665	ERG5	YMR015C	C-22 sterol desaturase	7.65	26.93
CAL0001905	ERG3	YLR056W	C-5 sterol desaturase	3.37	5.56
CAL0003306	ERG27	YLR100W	3-keto sterol reductase	2.98	5.53
CAL0005951	ERG26	YGL001C	C-3 sterol dehydrogenase (C-4 sterol decarboxylase)	5.45	10.31
CAL0003665	ERG251	YGR060W	C-4 methylsterol oxidase	10.11	16.52
CAL0001165	ERG25	YGR060W	C-4 methylsterol oxidase	6.03	9.31
CAL0005685	ERG24	YNL280C	Delta14-sterol reductase	6.08	6.95
CAL0005073	ERG2	YMR202W	C-8 sterol isomerase	31.41	18.07
CAL0004537	ERG13	YML126C	Hydroxymethylglutaryl-CoA synthase	3.52	11.90
CAL0003627	ERG11	YHR007C	Lanosterol 14-alpha-demethylase	7.74	16.75
CAL0005541	ERG1	YGR175C	Squalene epoxidase	5.21	5.14

(Continued)
had strong anti-biofilm activity. To further investigate the action mechanism, cDNA microarray study was performed in C. albicans SC5314 biofilms treated or untreated with 10b. The results of real-time RT-PCR showed that differentially expressed genes were involved in multiple biochemical functions. Our particular interest was the striking changes of biofilm formation related genes and energy-metabolism-related genes: glycolysis-related genes, fermentation-related genes and active oxygen scavenging-related genes.

It was found in this study that biofilm formation was directly related to striking down-regulation of ECE1 and marked up-regulation of NRG1. ECE1, a hypha-specific gene, is involved in the process of cell extension, the first morphological sign of which is the emergence of a germ tube approximately 90 min after induction[38]. Reports have confirmed that ECE1 is involved in the regulation of yeast-hyphal morphogenesis, and represses a subset of Tup1-regulated genes, including known hypha-specific genes and other virulence factors. Most of these genes contain an Nrg1p response element (NRE) in their promoter.

Primary	Gene name	S cerevisiae homologue name	Function	Change in fold expression
Amino acid metabolic	SHM2	YLR058C	Cytoplasmic serine hydroxymethyltransferase	2.37 2.92
	SAH1	YER043C	S-adenosyl-L-homocysteine hydrolase	3.95 4.90
	ILV3	YJR016C	Dihydroxy-acid dehydratase activity	2.52 2.09
	HIS3	YOR202W	Imidazolglycerol-phosphate dehydratase	2.19 5.21
	GDH3	YAL062W	Glutamate dehydrogenase (NADP+) activity	3.80 3.71
	GCC2	YMR189W	Glycine dehydrogenase (decarboxylating) activity	2.02 8.86
	GCV1	YDR019C	T subunit of glycine decarboxylase	2.25 9.99
	CDC60	YPL160W	Cytosolic leucyl tRNA synthetase	2.08 2.36
	SPE3	YPR069C	Spermidine synthase activity	2.48 2.11
	IPF25064.1	YJR070C	Deoxypyruvate monoxygenase activity	2.06 5.86
	HMT1	YBR034C	HnRNP Methyltransferase	2.20 3.48
Generation energy	ADH7	YCR105W	Similar to alcohol dehydrogenases	2.85 3.98
Protein modification process	SET3	YKR029C	NAD-dependent histone deacetylase activity	5.07 3.84
Carbohydrate metabolic process	RHD1	None	Putative beta-mannosyltransferase	6.04 3.70
Cell stress	PGA23	YFL067W	Putative GPI-anchored protein of unknown function	2.61 3.60
	DAG7	None	Response to drug	13.05 8.15
	IMH3	YML056C	Inosine monophosphate (IMP) dehydrogenase	2.44 3.41
	GDP2	YDL022W	Intracellular accumulation of glycerol	2.66 3.07
Cell adhesion	AAF1	YKL054C	Possible regulatory protein	3.63 2.27
Protein degradation	SAP10	YDR144C	Secreted aspartyl proteinase	2.92 2.25
Not classified	IPF26080.1	YGR111W	Regulation of cell size	2.09 3.24
	IPF17082.3	YNL176C	Fungal-type vacuole	2.06 3.77
Unknown	IPF7374.2	None	Unknown	15.24 10.30
	IPF26000.1	None	Unknown	13.89 13.02
	IPF26046.1	None	Unknown	8.75 5.53
	IPF19200.1	YNR018W	Unknown	6.14 5.01
	IPF2997.1	None	Unknown	6.02 2.44
	IPF27112.1	YPR013C	Unknown	5.77 15.00
	IPF22876.1	None	Unknown	4.03 2.42
	IPF20288.1	None	Unknown	3.41 4.38
	AM01	None	Unknown	3.12 3.47
	IPF9592.2	YFL043C	Unknown	3.11 3.35
Nrg1p interacts specifically with an NRE in vitro\cite{39}. Inactivation of Nrg1p in \textit{C. albicans} causes filamentous and invasive growth, derepresses hypha-specific genes and increases sensitivity to some stresses\cite{39–41}. Our data indicate that striking down-regulation of \textit{ECE1} and marked up-regulation of \textit{NRG1} induced by 10b might play a pivotal role during biofilm formation.

Another interesting result was the change of energy-metabolism-related genes after 10b treatment: global down-regulation of glycolysis-related genes, fermentation-related genes and antioxidant defense genes. According to Pasteur effect that aerobic oxidation could inhibit glycolysis (alcohol-facient fermentation) under aerobic circumstances, the tricarboxylic acid cycling process might be enhanced following exposure to 10b because expression of the genes participating in glycolysis especially encoding two rate-limiting enzymes genes, \textit{HXK2} and \textit{PFK1}, was markedly decreased. Besides, expression of the gene encoded superoxide dismutase (\textit{SOD5}) was also decreased. Together, endogenous ROS generation might be markedly augmented and experiment verified our deduce (data not shown). To determine whether endogenous ROS augmentation was the major mechanism of 10b against \textit{C. albicans} biofilms, we performed XTT reduction assay to investigate the effect of anti-oxidant \textit{AA} on the anti-biofilm activity of 10b and the effect of a well known ROS inducer \textit{MCZ} on mature biofilm metabolic activity. Taken together, our results suggest that the mechanism of 10b against mature biofilms is associated with the augmentation of endogenous ROS by affecting aerobic respiration in mitochondria.

Endogenous ROS, a natural byproduct of normal cellular metabolism, derives from mitochondrial respiratory chain electron leakage and plays important roles in cellular components damage and DNA cell signaling\cite{42, 43}. Reports have confirmed that increase of intracellular ROS production is involved in the mechanism of several antifungal agents\cite{44, 45}. Furthermore, it was found in our previous study that decreased endogenous ROS generation contributes to drug resistance of \textit{C. albicans}\cite{46}. However, the mechanisms by which \textit{Candida} biofilms resist the action of antifungal agents are not known. In our present study, we found that the augmentation of endogenous ROS generated by 10b significantly reduced mature biofilm metabolic activity, and when the augmentation endogenous ROS is scavenged after addition of anti-oxidant
AA, mature biofilm metabolic activity increased markedly. Our data indicate that ROS augmentation might be a major mechanism of 10b against \textit{C. albicans} mature biofilms. This was confirmed by a well known ROS inducer MCZ, which was able to markedly reduce mature biofilm metabolic activity at 10 μmol/L.

Drug binding assays and cell wall component modification studies suggest that cell wall changes may contribute to antifungal biofilm drug resistance\cite{13}. Beta-1,3-glucan is the major structural polysaccharide of the fungal cell wall and is thought to be the main component of the three-dimensional matrix surrounding biofilm cells and closely tied to biofilm formation\cite{47}. In our study, we found that expression of gene \textit{XOG1}, encoding exo-1,3-beta-glucanase enzyme, increased dramatically. This indicated that up-regulated \textit{XOG1} might be another pathway to inhibit biofilm formation because exo-1,3-beta-glucanase enzyme specifically hydrolyzes beta-1,3 glucan, resulting in destruction of the matrix of \textit{C. albicans} biofilms and cell wall\cite{48}.

In conclusion, the results of the present study show that 10b treatment altered the expression of biofilm formation-related genes, impaired the ability of \textit{C. albicans} to change its morphology, decreased beta-1,3 glucan levels in the biofilm matrix and cell wall, and ultimately blocked \textit{C. albicans} to form mature biofilms. In addition, mitochondrial aerobic respiration shift and endogenous ROS augmentation also contributed to reducing mature biofilm metabolic activity. This might provide useful information for the development of new strategies to reduce the incidence of device-associated infections.

\section*{Acknowledgements}
We thank Dr William A FONZI for kindly offering the isolate \textit{C. albicans} SC5314 in this study.

This work was supported by the National Natural Science Foundation of China (30825041, 30500628, and 30630071), National Basic Research Project (2005CB523105), National High Technology Research and Development Program 863 of China (2008AA02Z302).

\section*{Author contribution}
Yuan-ying JIANG and Yong-bing CAO designed research; Rong-mei LIANG performed the research and wrote the

\begin{table}[h]
\centering
\begin{tabular}{llllll}
\hline
Treatment with PBS & XTT reduction (%)a) in medium containing 10b and/or ascorbic acid at the concentration of: & & & & \\
None wash & 10b & 10b+AA (5 mmol/L) & 10b+AA (10 mmol/L) & AA (5 mmol/L) & AA (10 mmol/L) \\
Wash twice & & & & & \\
\hline
None wash & 51.61±2.41 & 81.29±4.81e & 116.67±8.76e & 124.85±8.65 & 184.94±23.96 \\
Wash twice & 92.54±2.82 & 93.53±2.55 & 108.46±5.04 & 118.11±2.80 & 122.10±10.86 \\
\hline
\end{tabular}
\textsuperscript{a) \textit{C. albicans} SC5314 planktonic cells containing 10b at 10 μmol/L combined 5, and/or 10 mmol/L ascorbic acid (AA) was incubated for 90 min at 37 °C. XTT reduction is expressed as a percentage of that of control. The results are mean±standard deviations of three independent experiments.} \\
eP<0.01 vs 10b alone. fP<0.05 vs AA alone.
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{llllll}
\hline
Growth situation & XTT reduction (%)a) in medium containing 10b and/or ascorbic acid at the concentration of: & & & & \\
\textit{C. albicans} biofilm formation & 10b & 10b+AA (5 mmol/L) & 10b+AA (10 mmol/L) & AA (5 mmol/L) & AA (10 mmol/L) \\
\textit{C. albicans} mature biofilm (48 h) & & & & & \\
\hline
\textit{C. albicans} biofilm formation b) & 48.35±2.67 & 52.61±3.28f & 51.19±4.20f & 94.33±5.26 & 103.36±3.24 \\
\textit{C. albicans} mature biofilm (48 h) c) & 72.47±5.04 & 84.41±4.05e & 86.22±3.28e & 101.07±5.90 & 98.03±2.86 \\
\hline
\end{tabular}
a) XTT reduction is expressed as a percentage of that of control biofilms. \\
b) 10b at 10 μmol/L combined 5 and/or 10 mmol/L AA were added to culture of yeasts following the initial 1 h adhesion and incubated for 48 h at 37 °C. \\
c) 10b at 10 μmol/L combined 5 and/or 10 mmol/L AA were added to mature (48 h) biofilms grown in the absence of the drugs, and incubation was continued for a further 6 h at 37 °C. The results are mean±standard deviations of three independent experiments. \\
fP<0.05 vs 10b alone; eP<0.05, fP<0.01 vs AA alone.
\end{table}
References

1. Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 2002; 68: 5459–63.

2. Sato T, Watanabe T, Mikami T, Matsumoto T. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull 2004; 27: 751–2.

3. Nett J, Ande D. Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 2006; 9: 340–5.

4. Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Vilela CL. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 2007; 43: 1–9.

5. Oliveira M, Nunes SF, Carneiro C, Bexiga R, Fernado V, Vilela CL. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol 2007; 124: 187–91.

6. Wang C, Li M, Dong D, Wang J, Ren J, Otto M, et al. Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect 2007; 9: 1376–83.

7. Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 1998; 42: 1900–5.

8. Baillie GS, Douglas LJ. Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob Agents Chemother 1998; 42: 2146–9.

9. Nobie1 CJ, Nett JE, Herndon AD, Homann OR, Deneault JS, Nantel A, et al. Biofilm matrix regulation by Candida albicans biofilms biofilms to antifungal agents. Antimicrob Agents Chemother 1998; 42: 1900–5.

10. Baillie GS, Douglas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chem 2000; 46: 397–403.

11. Andes D, Nett J, Oschel P, Albrect R, Marchikllo C, Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 2004; 72: 6023–31.

12. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghanmou MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001; 183: 5385–94.

13. Baillie GS, Douglas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chem 2000; 46: 397–403.

14. Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 1998; 42: 1900–5.

15. Baillie GS, Douglas LJ. Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob Agents Chemother 1998; 42: 2146–9.

16. Nobie1 CJ, Nett JE, Herndon AD, Homann OR, Deneault JS, Nantel A, et al. Biofilm matrix regulation by Candida albicans biofilms Zap1. PLoS Biol 2009; 7: e1000133.

17. Nett J, Lincoln L, Marchikllo C, Massey R, Holodyk L, Hoff B, et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 2007; 51: 510–20.

18. Liu H. Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 2001; 4: 728–35.

19. Liu H, Kohler J, Fink GR. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 1994; 266: 1723–6.

20. Staab JF, Bradway SD, Fidel PL, Sundstrom P. Adhesive and mammalian Transglutaminase substrate properties of Candida albicans Hwp1. Science 1999; 283: 1535–38.

21. Baillie GS, Douglas LJ. Biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 2006; 9: 340–5.

22. Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Vilela CL. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 2007; 43: 1–9.

23. Oliveira M, Nunes SF, Carneiro C, Bexiga R, Fernado V, Vilela CL. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol 2007; 124: 187–91.

24. Wang C, Li M, Dong D, Wang J, Ren J, Otto M, et al. Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect 2007; 9: 1376–83.

25. Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 1998; 42: 1900–5.

26. Baillie GS, Douglas LJ. Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob Agents Chemother 1998; 42: 2146–9.

27. Nobie1 CJ, Nett JE, Herndon AD, Homann OR, Deneault JS, Nantel A, et al. Biofilm matrix regulation by Candida albicans biofilms Zap1. PLoS Biol 2009; 7: e1000133.

28. Nett J, Lincoln L, Marchikllo C, Massey R, Holodyk L, Hoff B, et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 2007; 51: 510–20.

29. Liu H. Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 2001; 4: 728–35.

30. Liu H, Kohler J, Fink GR. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 1994; 266: 1723–6.

31. Staab JF, Bradway SD, Fidel PL, Sundstrom P. Adhesive and mammalian Transglutaminase substrate properties of Candida albicans Hwp1. Science 1999; 283: 1535–38.

32. Baillie GS, Douglas LJ. Biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 2006; 9: 340–5.
39 Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum DM, et al. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 2001; 20: 4742–52.

40 Braun BR, Kadosh D, Johnson AD. NRG1, a repressor of filamentous growth in Candida albicans, is down-regulated during filament induction. EMBO J 2001; 20: 4753–61.

41 Moran GP, MacCallum DM, Spiering MJ, Coleman DC, Sullivan DJ. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Mol Microbiol 2007; 66: 915–29.

42 Brookes PS, Darley-Usmar VM. Hypothesis: the mitochondrial NO signaling pathway and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome c oxidase. Free Radic Biol Med 2002; 32: 370–4.

43 Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM. Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 2002; 33: 755–64.

44 Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N, Yagihashi A, et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother 2002; 46: 3113–7.

45 Kontoyiannis DP. Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother 2000; 46: 191–7.

46 Yan L, Zhang JD, Cao YB, Gao PH, Jiang YY. Proteomic analysis reveals a metabolism shift in a laboratory fluconazole-resistant Candida albicans strain. J Proteome Res 2007; 6: 2248–56.

47 Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, et al. Biofilm matrix regulation by Candida albicans zap1. PLoS Biol 2009; 7: e1000133.

48 Humphreys AM, Gooday GW. Properties of chitinase activities from Mucor mucedo: evidence for a membrane-bound zymogenic form. J Gen Microbiol 1984; 130: 1359–66.