Free-Surface Variational Principle for an Incompressible Fluid with Odd Viscosity

Alexander G. Abanov and Gustavo M. Monteiro

Phys. Rev. Lett. 122, 154501 — Published 16 April 2019
DOИ: 10.1103/PhysRevLett.122.154501
Free surface variational principle for an incompressible fluid with odd viscosity

Alexander G. Abanov
Simons Center for Geometry and Physics and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

Gustavo M. Monteiro
Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil

We present variational and Hamiltonian formulations of incompressible fluid dynamics with free surface and nonvanishing odd viscosity. We show that within the variational principle the odd viscosity contribution corresponds to geometric boundary terms. These boundary terms modify Zakharov’s Poisson brackets and lead to a new type of boundary dynamics. The modified boundary conditions have a natural geometric interpretation describing an additional pressure at the free surface proportional to the angular velocity of the surface itself. These boundary conditions are believed to be universal since the proposed hydrodynamic action is fully determined by the symmetries of the system.

Introduction. Variational principle in hydrodynamics have a long history. We refer to Refs. [1] [2] and references therein for an introduction to the topic. In particular, the Luke’s variational principle (LVP) is a variational principle of an inviscid and incompressible fluid with a free surface [3] [4]. LVP provides both bulk hydrodynamic equations for an irrotational flow as well as kinematic and dynamic boundary conditions at the free surface boundary [4]. Such principle was later extended to include surface tension and bulk vorticity (for a recent summary see [5]). In this letter, we present a further extension of LVP which accounts for the presence of odd viscosity in isotropic two-dimensional fluids with broken parity.

In three dimensions, parity odd terms in the viscosity tensor were known for a long time in the context of plasma in a magnetic field [6] and in hydrodynamic theories of superfluid He-3A [7], where the fluid anisotropy plays a major role. In two dimensions however the odd viscosity is compatible with isotropy of the fluid [8]. The odd viscosity is the parity violating non-dissipative part of the stress-strain rate response of a two-dimensional fluid. The recent interest in odd viscosity is motivated by the seminal paper by Avron, Seiler, and Zograf [9] where it was shown that, in general, quantum Hall states have non-vanishing odd viscosity. The role of odd viscosity (a.k.a. Hall viscosity) in the context of quantum Hall effect has been an active area of research [10] [33], but is out of the scope of this work.

In the Ref. [8], Avron has initiated the search for odd viscosity effects in classical 2D hydrodynamics. These effects are subtle in the case when the classical two-dimensional fluid is incompressible. Recent works have outlined some of observable consequences of the odd viscosity for incompressible flows [34] [39]. In particular, in Ref. [39] the equations governing the Hamiltonian dynamics of surface waves were derived in the case where bulk vorticity is absent.

Let us start by summarizing the main equations of an incompressible fluid dynamics with odd viscosity. In the following we assume that the fluid density is constant and take it as unity. We also neglect all thermal effects. Then, the hydrodynamic equations are the incompressibility condition and the Euler equation

$$\nabla \cdot v = 0, \hspace{1cm} (1)$$

$$\partial_t v + (v \cdot \nabla) v = \mathbf{V} \otimes T. \hspace{1cm} (2)$$

Here, $v(x, t)$ is a two-component velocity vector field and T is the stress tensor of the fluid. In components the r.h.s. of the Euler equation (2) reads $(\nabla \otimes T)_i = \nabla_j T_{ij}$. In flat space and in Cartesian coordinates, the stress tensor assumes the following form

$$T_{ij} = -\delta_{ij} p + \nu_o (\partial_i v_j^* + \partial_j^* v_i). \hspace{1cm} (3)$$

The first term of (3) is standard and describes the contribution to the stress from isotropic fluid pressure p. The second term, however, is quite different from the conventional dissipative shear viscosity $\nu_e (\partial_i v_j + \partial_j v_i)$ (here ν_e is shear or “even” viscosity coefficient). The last term of (3), instead, is the contribution of the odd viscosity, with ν_o being the kinematic odd viscosity coefficient. Differently from ν_e, we can assign either sign to the odd viscosity ν_o, since it multiplies a dissipationless term. In (3) and in the following we use the “star operation” so that the vector a^* is the vector a rotated 90° clockwise or in components $a_i^* \equiv \epsilon_{ij} a_j$. This operation explicitly breaks parity and a non-vanishing ν_o is only allowed in parity breaking fluids.

Euler equation (2) with the stress tensor (3) takes the form of the Navier-Stokes equation with odd viscosity term replacing the conventional viscosity term

$$\partial_t v + (v \cdot \nabla) v = -\nabla p + \nu_o \Delta v^*. \hspace{1cm} (4)$$

Bulk hydrodynamic equations (1) and (4) must be supplemented by boundary conditions. For a free surface we should use one kinematic and two dynamic boundary
conditions
\begin{align}
(\partial_t \Gamma)_n &= v_n \big|_\Gamma, \quad (5) \\
T_{ij} n_j \big|_\Gamma &= 0,
\end{align}
where \(n\) is the unit vector normal to the free 1d surface \(\Gamma = \partial M\) of the 2d fluid domain \(M\). The kinematic boundary condition (KBC), Eq. (5), states that the velocity of the free surface in its normal direction is equal to the normal component of the velocity flow taken at the surface. The set of two dynamical boundary conditions (DBC) given by (6) imposes that both components of stress force acting on the segment of the surface vanish. These conditions are appropriate for interfaces with vacuum or air, assuming that the latter cannot maintain non-vanishing forces on the surface of the fluid.

For a rather general class of fluid flows it is not possible to satisfy both DBC (6) with the stress tensor (3) by smooth velocity configurations. A singular boundary layer is formed. One can see it, for example, in a linear approximation [39] and the phenomenon is very similar to a formation of a boundary layer for fluid with infinitesimal shear viscosity [40]. A non-vanishing shear viscosity \(\nu_v\), or finite compressibility, characterized by a finite sound velocity \(v_s\), result in a finite thickness of the boundary layer proportional to \(\sqrt{\nu_v}\) or to \(1/v_s\), respectively. If one assumes that at least for finite times the boundary layer is stable and very thin, the motion of the fluid surface should be defined by effective boundary conditions imposed on the interior part of the fluid. Colloquially speaking, the latter boundary conditions can be obtained by “integrating out” boundary layer. As a result, instead of two independent DBC (6), one should consider a single effective normal dynamic boundary condition
\begin{align}
\tilde{\rho} \big|_\Gamma &= p - \nu_v \omega \big|_\Gamma = 2\nu_v \partial_n v_n, \quad (7)
\end{align}
where \(\partial_n v_n = -n^s \partial_t v_n\) is the derivative of normal velocity along the boundary and we introduced a notation \(\tilde{\rho}\) – pressure modified by vorticity \(\omega = \partial_t v_n^s\).

While the precise way in which the tangent stress part of DBC (6) is satisfied depends on the exact structure of the boundary layer, here we show that the effective normal stress boundary condition is universal and is given by (7). We obtain this universal statement by taking the variational principle for an ideal incompressible fluid and modifying it by adding a boundary term which is lowest order in gradient expansion, breaks parity but preserves other symmetries of the system. We show that this boundary term produces (7) justifying the expectation of universality.

Let us start by rewriting (4) as
\begin{align}
\partial_t v + (v \cdot \nabla) v &= -\nabla \tilde{\rho}, \quad (8)
\end{align}
using the incompressibility of the fluid (1). The equation (8) is indistinguishable from the conventional Euler equation [42]. Therefore, we can start from the Luke’s variational principle to produce the bulk hydro equations together with perfect fluid boundary conditions and look for boundary corrections to LVP to obtain the modified DBC on the fluid which are in agreement with (7).

In contrast with [39], here we do not use any expansions in \(\nu_v\) and our results do not rely on small surface angle approximations or on any assumption about the structure of the boundary layer.

Luke’s variational principle. Let us start from the simplest case of the incompressible potential fluid flow, that is, \(v = \nabla \theta\). Luke’s variational principle is written in terms of the velocity potential \(\theta\) as follows
\begin{align}
S_M = -\int dt \int_\mathcal{M} d^2x \left(\partial_t \theta + \frac{1}{2} (\partial_\theta \theta)^2 \right), \quad (9)
\end{align}
where \(\mathcal{M}\) is the 2D fluid domain with boundary \(\Gamma\). Variation over \(\theta\) in the bulk gives \(\Delta \theta = 0\) – the incompressibility condition. It is also straightforward to obtain (8) as an identity if the modified pressure is identified as
\begin{align}
\tilde{\rho} &= -\partial_t \theta - \frac{1}{2} (\partial_\theta \theta)^2. \quad (10)
\end{align}
Thus, the action (9) produces bulk equations (11) for a potential flow. The bulk vorticity of such flow vanishes identically \(\omega = 0\), implying \(\tilde{\rho} = p\). Let us now keep track of boundary terms and assume that the bulk equation of motion \(\Delta \theta = 0\) is satisfied. Hence, varying (9) over the velocity potential \(\theta\) and over shape of the fluid domain \(\mathcal{M}\), we obtain that all the non-trivial dynamics resides on the fluid boundary and the action variation becomes, for details see Supplemental Material (SM):
\begin{align}
\delta S_M = \int dt \int_\Gamma ds \left[\delta \theta \left((\partial_t \Gamma)_n - \partial_n \theta \right) + (\delta \Gamma)_n \tilde{\rho} \right],
\end{align}
Here \(\Gamma = \partial M\) is the spatial boundary of the fluid domain and \(s\) is the natural parameter along the boundary so that \(dx^2 + dy^2 = ds^2\). The variation over the boundary values of the potential \(\theta\), i.e., the first term in the integrand gives the KBC (5). The variation of the boundary, i.e., the second term in the integrand in (11), gives the vanishing pressure boundary condition \(\tilde{\rho} \big|_\Gamma = 0\) well known for ideal fluids. The latter is markedly different from the effective DBC (7) derived in [39]. Therefore, while the variational principle (9) produces all equations and boundary conditions for ideal fluid it does not account for the contributions from odd viscosity.

Boundary term. The main result of this work is that in order to obtain the effective DBC (7), the following boundary term should be added to LVP:
\begin{align}
S_\Gamma = \nu_o \int dt \int_\Gamma ds \left(\partial_\Gamma \right)_n \alpha,
\end{align}
where \(s\) is the natural parameter along the boundary and \(\alpha\) is the angle between the surface and some fixed
The obtained hydrodynamics describes incompressible potential flows of the fluid with odd viscosity. This is the main result of this work. We will remove the requirement of potentiality of the flow later in this paper.

Effective contour dynamics. In the case of an irrotational bulk flow, the full dynamics is completely determined by the boundary motion. One can express equations (18,19) purely in terms of boundary fields using (17). To do that we introduce the boundary field \(\hat{\theta} = \theta|_{\Gamma} \) or explicitly \(\hat{\theta}(s,t) = \theta(x(s,t), y(s,t), t) \) with boundary \(\Gamma \) given parametrically by functions of the natural parameter \(s \) along the boundary. We introduce the material derivative at the boundary \(D_t = \partial_t - \partial_s (\partial_s \Gamma) \partial_t s \) and use the identity

\[
D_t \hat{\theta} = \partial_t \hat{\theta}|_{\Gamma} + (\partial_n \hat{\theta}) (\partial_s \Gamma)_n
\]

in (19) together with (18) and obtain

\[
D_t \hat{\theta} + \frac{1}{2} (\partial_s \hat{\theta})^2 - \frac{1}{2} (\partial_t \hat{\theta})^2 = -2\nu o \partial_s (\partial_s \hat{\theta})_n .
\]

The equation (18) can also be expressed in terms of boundary fields using (17). It has a form

\[
(\partial_s \Gamma)_n = \overline{DN} \hat{\theta},
\]

where \(\overline{DN} \) is a Dirichlet to Neumann operator which depends on the shape of the domain and can be expressed in terms of the Dirichlet Green function of Laplace operator \(\overline{DN} \) (see SM) as:

\[
\overline{DN} \hat{\theta}(s) = \int_{\Gamma} ds' [\partial_n \partial_n G(x,x')] \hat{\theta}(s').
\]

Equations (21,22) fully determine boundary dynamics of the fluid domain. They can be considered as equations for fields \(\hat{\theta}(s,t), x(s,t) \) and \(y(s,t) \) specifying both the position of the boundary and the boundary value of the potential. The reparametrization invariance of (21,22) can be used to remove one of the degrees of freedom. For example when the domain is given by \(y \leq h(x,t) \) one can rewrite (21,22) in terms of two fields \(\hat{\theta}(x,t) \) and \(h(x,t) \). For this case one also can find \(\overline{DN} \) as an expansion in \(h \) and obtain \(\overline{DN} \)

\[
\overline{DN} \hat{\theta} = -\hat{\theta}^H_x - \left[h \hat{\theta}_x + (h^{H}_x)^H \right]_x + \ldots,
\]

where the Hilbert transform is defined as \(f^H(x) = \int \frac{dx' f(x')}{x-x'} \).
Equations (21,22) are exact expressions given by the action (16). The approximate versions of these equations using (24) can be found in Ref. [39]. It is even easier to derive the effective one-dimensional action corresponding to equations (21,22). We integrate (16) by parts and use the bulk incompressibility of the fluid $\Delta \theta = 0$ to obtain (for details see SM):

$$S_{1D} = \left[\int_{\Gamma} dt \left[\int_{\mathbb{R}} dx \, h_{i}(\dot{\theta} + \nu_{o} \alpha) - H \right] \right],$$

(25)

$$H = \frac{1}{2} \int_{\Gamma} ds \left(\partial_{\nu} \partial_{\alpha} \Gamma \right)_{\Gamma} = \frac{1}{2} \int_{\Gamma} ds \, \hat{\theta} \, \hat{D} \hat{N} \hat{\theta}.$$

(26)

The Hamiltonian (26) is nothing but the total kinetic energy of the fluid given by the second term of (9). The Hamiltonian structure of contour dynamics modifies the well-known Zakharov’s Poisson structure [50] when $\nu_{o} \neq 0$. Note that the Poisson structure reduces to the plane volume-form, that is, $dA = dx \wedge dy$. There is an ambiguity in the definition of A, since $A' = A + dA$ gives us $dA' = dA$. However, this gauge freedom does not affect the boundary action (31). [51]

As an example let us consider $A = -ydx$ for \mathcal{M} given by $y \leq h(x,t)$. Then, Eq. (31) reproduces (14). For the droplet case, \mathcal{M} is defined in polar coordinates by $r \leq R(\varphi,t)$. If we take $A = \frac{1}{2} r^{2} d\varphi$, we then obtain:

$$S_{\Gamma} = -\frac{\nu}{2} \int_{\mathbb{R} \times \Gamma} R^{2} \alpha_{i} dt \wedge d\varphi.$$

(32)

Conclusions. We presented a variational principle which accounts for odd viscosity effects in incompressible fluid dynamics. The boundary part of the proposed action is purely geometrical and fully determined by the symmetries of the system. Therefore, we expect the boundary condition (7) to be universal and independent on the exact structure of the boundary layer, given this boundary layer to be sufficiently thin. In particular, Eq. (7) reproduces the approximate equations obtained in Ref. [39], which were derived in the limit of very small, but nonvanishing shear viscosity. We also expect the same boundary conditions assuming the boundary layer structure to be determined by a finite compressibility of the fluid. If the fluid is compressible, the odd viscosity affects the flow of the fluid in the bulk as well. While it is relatively straightforward to construct a variational principle for the compressible fluid its connection to the incompressible limit is subtle and will be discussed elsewhere.

The variational principle [16,12] gives hydrodynamic equations for an incompressible fluid with odd viscosity under the assumption that the tangent stress free surface boundary conditions can be satisfied by a thin boundary layer. This is not the case for all fluid flows. For example, in the geometry of an expanding air bubble exact solutions show strong dependence of the bulk flow on shear viscosity [57]. Also, even if the assumption of a thin boundary layer is satisfied initially it might break at finite time [39]. The applicability of the thin boundary layer assumption is beyond the scope of this letter.

In the irrotational case, the degrees of freedom reside on the boundary and the effective dynamics is one-dimensional and Hamiltonian, albeit non-local. The derived Hamiltonian structure modifies the well-known Hamiltonian structure of incompressible ideal fluids [50].
While, for simplicity, we presented here only the irrotational case, the generalization to more general flows, with non-zero vorticity, is straightforward and requires the addition of more Clebsch variables, vide SM for more details.

Acknowledgements. We are grateful to Sriram Ganeshan and Paul Wiegmann for many fruitful discussions and suggestions related to this project. AGA’s work was supported by grant NSF DMR-1606591. GMM thanks Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support under grant 2016/13517-0.

Both authors contributed equally to this work.

[1] S. Mobbs. Variational principles for perfect and dissipative fluid flows. Proc. R. Soc. Lond. A, 381, 457–468 (1982).
[2] V. E. Zakharov and E. Kuznetsov. Hamiltonian formalism for nonlinear waves. Uspekhi Fiz. Nauk, 167, 1137–1167 (1997).
[3] K. Friedrichs. Über ein Minimumproblem für Potentialströmungen mit freiem Rande. Mathematische Annalen, 109, 60–82 (1934).
[4] J. Luke. A variational principle for a fluid with a free surface. Journal of Fluid Mechanics, 27, 395–397 (1967).
[5] B. Kolev and D. H. Sattinger. Variational principles for water waves. SIAM Journal on Mathematical Analysis, 38, 906–920 (2006).
[6] E. Lifshitz and L. Pitaevskii. Physical kinematics. Course of theoretical physics. Butterworth-Heinemann (1981).
[7] D. Vollhardt and P. Wölfle. The superfluid phases of helium 3. Courier Corporation (2013).
[8] J. Avron. Odd viscosity. Journal of statistical physics, 92, 543–557 (1998).
[9] J. Avron, R. Seiler, and P. G. Zograf. Viscosity of quantum Hall fluids. Physical review letters, 75, 697 (1995).
[10] I. Tokatly. Magnetoelasticity theory of incompressible quantum Hall liquids. Physical Review B, 73, 205340 (2006).
[11] I. Tokatly and G. Vignale. New collective mode in the fractional quantum Hall liquid. Physical review letters, 98, 026805 (2007).
[12] I. Tokatly and G. Vignale. Erratum: Lorentz shear modulus of a two-dimensional electron gas at high magnetic field [Phys. Rev. B 76, 161305 (R) (2007)]. Physical Review B, 79, 199903 (2009).
[13] N. Read. Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p x+ i p y paired superfluids. Physical Review B, 79, 045308 (2009).
[14] F. Haldane. Geometrical description of the fractional quantum Hall effect. Physical review letters, 107, 116801 (2011).
[15] F. Haldane. Self-duality and long-wavelength behavior of the Landau-level guiding-center structure function, and the shear modulus of fractional quantum Hall fluids. arXiv preprint arXiv:1112.0990 (2011).
[16] C. Hoyos and D. T. Son. Hall viscosity and electromagnetic response. Physical review letters, 108, 066805 (2012).
[17] B. Bradlyn, M. Goldstein, and N. Read. Kubo formulas for viscosity: Hall viscosity, Ward identities, and the relation with conductivity. Physical Review B, 86, 245309 (2012).
[18] B. Yang, Z. Papić, E. Rezayi, R. Bhatt, and F. Haldane. Band mass anisotropy and the intrinsic metric of fractional quantum Hall systems. Physical Review B, 85, 165318 (2012).
[19] A. G. Abanov. On the effective hydrodynamics of the fractional quantum Hall effect. Journal of Physics A: Mathematical and Theoretical, 46, 292001 (2013).
[20] T. L. Hughes, R. G. Leigh, and O. Parrikar. Topological anomalies, Hall viscosity, and bulk-boundary correspondence in topological states. Physical Review D, 88, 025040 (2013).
[21] C. Hoyos. Hall viscosity, topological states and effective theories. International Journal of Modern Physics B, 28, 1430007 (2014).
[22] M. Laskin, T. Can, and P. Wiegmann. Collective field theory for quantum Hall states. Physical Review B, 92, 235141 (2015).
[23] T. Can, M. Laskin, and P. Wiegmann. Fractional quantum Hall effect in a curved space: gravitational anomaly and electromagnetic response. Physical review letters, 113, 046803 (2014).
[24] T. Can, M. Laskin, and B. W. Wiegmann. Geometry of quantum Hall states: Gravitational anomaly and transport coefficients. Annals of Physics, 362, 752–794 (2015).
[25] S. Klevtsov and P. Wiegmann. Geometric adiabatic transport in quantum Hall states. Physical review letters, 115, 086801 (2015).
[26] S. Klevtsov, X. Ma, G. Marinescu, and P. Wiegmann. Quantum Hall effect and Quillen metric. Communications in Mathematical Physics, 349, 819–855 (2017).
[27] A. Gromov and A. G. Abanov. Density-curvature response and gravitational anomaly. Physical review letters, 113, 266802 (2014).
[28] A. Gromov, G. Y. Cho, Y. You, A. G. Abanov, and E. Fradkin. Framing anomaly in the effective theory of the fractional quantum hall effect. Physical review letters, 114, 016805 (2015).
[29] A. Gromov, K. Jensen, and A. G. Abanov. Boundary effective action for quantum Hall states. Physical review letters, 116, 126802 (2016).
[30] T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E. Moore. Hydrodynamic electron flow and Hall viscosity. Physical review letters, 118, 226601 (2017).
[31] L. V. Delacretaz and A. Gromov. Transport Signatures of the Hall Viscosity. Phys. Rev. Lett., 119, 226602 (2017).
[32] P. Alekseev. Negative magnetoresistance in viscous flow of two-dimensional electrons. Physical review letters, 117, 166601 (2016).
[33] P. M. Pellegrino, I. Torre, and M. Polini. Nonlocal transport and the Hall viscosity of two-dimensional hydrodynamic electron liquids. Physical Review B, 96, 195401 (2017).
[34] P. Wiegmann and A. G. Abanov. Anomalous hydrodynamics of two-dimensional vortex fluids. Physical review letters, 113, 034501 (2014).
[35] M. F. Lapa and T. L. Hughes. Swimming at low Reynolds number in fluids with odd, or Hall, viscosity. Physical Review E, 89, 043019 (2014).
[36] D. Banerjee, A. Souslov, A. G. Abanov, and V. Vitelli.
Odd viscosity in chiral active fluids. Nature Communications, 8, 1573 (2017).

[37] S. Ganeshan and A. G. Abanov. Odd viscosity in two-dimensional incompressible fluids. Physical Review Fluids, 2, 094101 (2017).

[38] A. Lucas and P. Surówka. Phenomenology of nonrelativistic parity-violating hydrodynamics in 2+ 1 dimensions. Physical Review E, 90, 063005 (2014).

[39] A. Abanov, T. Can, and S. Ganeshan. Odd surface waves in two-dimensional incompressible fluids. SciPost Physics, 5, 010 (2018).

[40] H. Lamb. Hydrodynamics. Cambridge university press (1932).

Remember that in incompressible fluids pressure p is not a thermodynamic variable, but, instead, is fully determined by the flow v. From this point of view $p \rightarrow \tilde{p}$ is just a change of notations.

[41] Abanov, Can, Ganeshan, Monteiro, to be published.

[42] Note that the first term in (9) is not trivial since the domain M is time dependent. This term should be integrated by parts using the Leibniz integral rule.

[43] This observation makes the term $h \alpha \tau$ very natural for representing odd viscosity. Remember that using (10) one can interpret (9) as a spacetime integral of modified pressure. The pressure is modified by $\nu_\omega \omega$ term and the vorticity ω is proportional to the angular velocity of local rotation of the fluid.

[44] Alternatively one can invert the equation (22) and write it as $\theta = S(\partial_t \Gamma)n$ using the Neumann operator (see SM).

[45] Assuming that the boundary action (12) is well defined (see the following sections) there is, actually, no need to repeat the calculations. Any surface can be locally parameterized as $y = h(x, t)$ and all variational calculations we perform are local. Nevertheless, we give explicit formulas for the droplet geometry in SM for future references.

[46] S. E. WARSCHAWSKI. On Hadamard’s Variation Formula for Green’s Function. Journal of Mathematics and Mechanics, 9, 497–511 (1960).

[47] J. Peetre. On Hadamard’s variational formula. Journal of Differential Equations, 36, 335 – 346 (1980).

[48] We use abbreviated notations $h = h(x)$, $h' = h(x')$ etc. For details of the derivation see SM.

[49] V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 9, 190–194 (1968).

[50] It is assumed here that Λ is single-valued. To allow for large gauge transformations one should include additional bulk terms involving spin connection. [29].