Contributions of T-type calcium channel isoforms to neuronal firing

Stuart M. Cain and Terrance P. Snutch*

Michael Smith Laboratories; University of British Columbia; Vancouver, BC Canada

Key words: burst firing, epilepsy, low threshold, thalamocortical, tonic firing

Abbreviations: Ca\textsubscript{v}, voltage-gated calcium channel; HVA, high voltage-activated; LVA, low voltage-activated; DRG, dorsal root ganglion; LTS, low threshold spike; CICR, calcium-induced calcium release; RTN, reticular thalamic nucleus

Low voltage-activated (LVA) T-type calcium channels play critical roles in the excitability of many cell types and are a focus of research aimed both at understanding the physiological basis of calcium channel-dependent signaling and the underlying pathophysiology associated with hyperexcitability disorders such as epilepsy. These channels play a critical role in neuronal firing in both conducting calcium ions during action potentials and also in switching neurons between distinct modes of firing. In this review the properties of the CaV3.1, CaV3.2 and CaV3.3 T-type channel isoforms are discussed in relation to their individual contributions to action potentials during burst and tonic firing states as well their roles in switching between firing states.

Introduction

T-type calcium channels are uniquely both “first responders” to depolarization and also contribute to regulating intracellular calcium levels near the resting potential of many cells.1,2 The low voltage threshold for activation of T-type channels drives their opening in response to relatively small positive changes in membrane potential. Further, an overlap in the membrane potentials at which T-type channels open, close and inactivate endows them with a particular property known as a “window current” whereby a basal inward flux of calcium ions can occur near the resting potential (Fig. 1).3,4 Window currents are thought to contribute to distinct neuronal firing patterns, resulting in varied network rhythms.5,6 In some neurons, the rapid activation of T-type channels at low voltages is also essential for the generation of low-threshold spikes (LTS) which underlie both pro-epileptic and sleep-related “burst-firing” patterns (Fig. 1).7 In native systems difficulties occur in determination of the individual roles of T-type channel subtypes (CaV3.1, CaV3.2 and CaV3.3) largely due to a combination of their distinct subcellular localizations, the lack of subtype specific pharmacological tools and contamination by other calcium currents such as those carried by high voltage-activated (HVA) calcium channels and TRP channels.8 More recently, the individual contributions of specific T-type calcium channel isoforms to neuronal excitability has been investigated using a variety of electrophysiological and computer modeling approaches combined with subtypes-specific molecular biological manipulations. These studies have revealed complex roles for T-type channels in modulating neuronal firing, with individual subtypes displaying unique contributions.

Biophysical Properties of T-type Calcium Channels

The unique biophysical properties of T-type calcium channels determine how they respond during particular types of neuronal firing. The rates and voltage-dependencies of channel activation, inactivation, deactivation and recovery from inactivation are the primary properties that determine how the individual T-type isoforms conduct calcium (Fig. 2). In exogenous systems the CaV3.1 and CaV3.2 T-types generally open and close at approximately similar membrane potentials, while CaV3.3 channels open and close at about +10 mV more depolarized potentials.9 Similarly, CaV3.1 and CaV3.2 channels inactivate (as determined at steady-state) around 5 mV more hyperpolarized than CaV3.3 channels and, therefore, require more hyperpolarized potentials to become available for subsequent opening via de-inactivation. CaV3.1 channels display the fastest activation and inactivation kinetics, marginally faster than CaV3.2, and both of which are significantly faster than for CaV3.3 channels.9,10 Therefore, CaV3.1 and CaV3.2 and CaV3.3 channels open fastest in response to depolarization when compared to CaV3.3, but are also quickest to inactivate during depolarization. Conversely, CaV3.3 channels display the fastest deactivation kinetics, far faster than CaV3.1, which is marginally faster than CaV3.2 and, therefore, upon repolarization CaV3.3 channels are the quickest to close when the membrane potential begins to repolarize. With respect to the rate at which the T-subtypes recover from inactivation, CaV3.1 channels display the fastest rate of recovery, followed by CaV3.3 and with CaV3.2 being the slowest. Following depolarization CaV3.1 channels tend to de-inactivate quickly upon repolarization and are therefore likely to conduct more calcium on subsequent depolarizations than the other T-subtypes. Overall, it is the combination of these biophysical factors, each distinctly sensitive to membrane potentials achieved during physiological firing processes that likely determines how each T-type calcium channel subtype conducts.

*Correspondence to: Terrance P. Snutch; Email: snutch@msl.ubc.ca
Submitted: 10/29/10; Revised: 11/01/10; Accepted: 11/01/10
DOI: 10.4161/chan.4.6.14106

www.landesbioscience.com Channels 475

REVIEW
calcium passively and during tonic or burst action potential firing. Many experiments examining the biophysical properties of T-type channels and their activity during different firing modes in vitro have been undertaken at room temperature. Of note, at more physiological temperatures some of the described kinetic and voltage-dependent parameters can be affected to varying degrees depending upon the nature of the T-type isoform.11

Figure 1. T-type activity control over neuronal firing patterns. Recordings from reticular thalamic (A and B) and thalamic lateral geniculate (C) neurons displaying altered firing properties depending on the level of contribution from T-type currents. (A) Neurons with a depolarized membrane potential (and therefore inactivated T-type channels) or neurons that have a low level of expression of T-type channels are more likely to fire single or tonic action potentials. T-type channels will conduct calcium during single or tonic action potentials if the firing occurs from a sufficiently hyperpolarized membrane potential and if the expression density is too low to induce burst firing. (B) Burst firing will occur if a high density of T-type channels are present and the neuron is held at a hyperpolarized membrane potential to ensure T-type channels are not inactivated. (C) Slow oscillations occur as a result of bistability of particular neurons depending on whether the window current is “on” or “off”, however this is also highly dependent on leak potassium and the non-specific cationic conductances I, and ICAN.

T-type Channel Activity during Action Potential Firing

During a prototypical neuronal action potential the activation of T-type channels occurs during the initial depolarization phase (should the initial membrane potential have been hyperpolarized sufficiently for T-type channels to be in the closed but not inactivated state). However, the majority of calcium conductance through T-type channels occurs during the repolarization phase as the cell rapidly hyperpolarizes back to its resting membrane potential through the activation of voltage-gated potassium channels.12,13 This likely results from the fact that T-type channel activation, inactivation and deactivation kinetics are relatively slow compared to the action potential itself and thus many T-type channels remain open as the action potential transitions through its repolarization phase (Fig. 3). During repolarization the driving force on calcium increases as the cell moves further away from the equilibrium potential for calcium (~+10 to +40 mV in general, but varying with specific conditions) thereby increasing calcium conductance during what is known as a “tail current”, which then deactivates. An early study examining the responses of T-type (primarily CaV3.2) and HVA channels expressed in dorsal root ganglion (DRG) neurons found that a square pulse resulted in a relatively small T-type current in comparison to that generated by HVA channels.13 Contrastingly, upon exposure to an action potential waveform T-type channels generated a disproportionately large calcium current when compared to HVA channels.13 This is due in part to the lower threshold of activation of T-type channels, which will open earlier in the action potential (where the driving force is stronger) and therefore stay above their opening threshold for longer, but primarily because T-type channels deactivate more slowly than HVA channels promoting more prominent tail currents. Calcium entry during action potential repolarization is sensitive to the repolarization rate, with a slower repolarization allowing longer for channels to activate (although these also then inactivate) and faster repolarization inducing a rapid increase in driving force and strong tail current (although this quickly deactivates). Overall, the authors found that for the DRG CaV3.2-like current the calcium entry increases with longer repolarization rates, although this eventually plateaus, whereas with HVA channels this continues to increase exponentially with repolarization rate.

The different biophysical properties of the individual T-subtypes also appear to generate specific responses to action potentials (Fig. 3). Experiments utilizing mock action potentials demonstrated that the CaV3.1 and CaV3.2 channels display similar amplitude currents in response to a single action potential, while due to the slower activation kinetics of CaV3.3 channels the resulting currents are significantly smaller.10 Of note however, the amplitude of CaV3.3 currents increases with slowed rate of repolarization whereas the amplitudes of CaV3.1 and CaV3.2 currents generally decrease in response to a slower repolarization phase. This is likely the result of a longer repolarization phase providing the slower activating CaV3.3 channels with more time to open, whereas CaV3.1 and CaV3.2 channels quickly activate and inactivate. Despite these differences, with a slowed repolarization rate the calcium charge transference increases for all three T-subtypes albeit with CaV3.1 and CaV3.2 channels reaching a plateau and CaV3.3 channels increasing linearly.10

The individual characteristics of the T-type isoforms become even more apparent in response to a series of multiple action potentials, as might be observed in neurons firing in a tonic pattern
The relative rates of repolarization also play an important role during repetitive action potential firing, wherein faster repolarization appears to induce an increased attenuation across a series of action potentials for CaV3.2 channels compared to the CaV3.1 and CaV3.3 isoforms. A further interesting facet concerning the activity of T-type channels during repetitive action potential firing concerns their relative sensitivity to rate of recovery from inactivation. It is well established that T-type channels display sensitivity to both membrane potential and the amount of time that conditioning pre-pulses are applied for prior to a test pulse. Of note, the different T-subtypes also display individual characteristics in response to whether the pre-pulse is accompanied by action potential firing. For example, CaV3.1 channels exhibit sensitivity to the duration of a series of action potentials applied on the crest of a mild (~55 mV) conditioning depolarizing step, with longer periods of firing inducing a slower rate of recovery from inactivation. Contrastingly, both the CaV3.2 and CaV3.3 isoforms.

At low frequency firing (~1 Hz) the three T-subtypes display biophysical responses similar to those described for single action potentials, since all seem to be fairly resistant to accumulating inactivation at this frequency. Contrasting, at higher frequencies (e.g., at or above 10 Hz) the differing accumulated inactivation the T-type isoforms results in altered attenuation of calcium influx as the series of action potentials progresses. CaV3.1-mediated currents attenuate fastest, whereas CaV3.2 currents attenuate at a slower rate and CaV3.3 channels require high frequencies (>50 Hz) to exhibit any significant attenuation. Furthermore, at high frequencies (50–100 Hz) CaV3.3-mediated currents appear to show a facilitation of current amplitude over the first few action potentials, likely due to their slower activation and inactivation kinetics which results in greater current responses to action potentials that are further into the series. It should be noted that CaV3.2-mediated currents also display facilitation at very high frequencies (250 Hz).

Tau Act (ms)	CaV3.1	CaV3.2	CaV3.3
0.8 ± 0.1	1.34 ± 0.1	7.2 ± 0.8	
Tau Inact (ms)	18.8 ± 1.6	23.4 ± 0.3	122 ± 5
Tau Deact (ms)	2.6 ± 0.2	3.6 ± 0.4	1.12 ± 0.1
Tau Recovery (ms)	137 ± 5	448 ± 36	260 ± 30

Figure 2. Basic biophysical properties of T-type calcium channels. (A) Representative currents, (B) conductance and inactivation profiles, (C) representative deactivating currents and (D) recovery from inactivation properties of cloned CaV3.1, CaV3.2 and CaV3.3 T-type channels exogenously expressed in HEK293 cells. (E) Table summarizing mean kinetic properties of the three T-subtypes at representative voltages. Redrawn with permission: Chemin et al. J Physiol 2002; 540:3–14.
Figure 3. T-type calcium channel conductance during action potentials. (A) Response of Ca_{3.1}, Ca_{3.2} and Ca_{3.3} T-type channels to mock action potentials at varying holding potentials. (B) Response of T-subtypes to mock action potentials with altered repolarization rates summarized with respect to current amplitude and charge transference. (C, left parts) Response of T-subtypes to action potential waveforms recorded from Purkinje neurons during repetitive tonic firing. (C, right parts) Summarized mean data from (C, left part) with respect calcium entry and maximum amplitude of T-current during tonic action potential firing. All figures display results from cloned T-type channels expressed in HEK293 cells. (A and B) Redrawn with permission: Kozlov et al. Eur J Neurosci 1999; 11:4149–58. (C) Redrawn with permission: Chemin et al. J Physiol 2002; 540:3–14.
isomers appear insensitive to similar pre-conditioning stimuli, yet still display sensitivity to a continuous mild depolarization in the absence of action potentials.

T-type Channel Activity during Bursting

The involvement of T-type calcium channels in burst firing has been extensively investigated in a number of neuronal cell types and disease models, and their importance in this firing mode is well established. In short, depolarization activates T-type channels, which further depolarizes the membrane potential. If the density of T-type calcium channels is sufficient, the depolarization will occur in a cascade manner producing a sharp positive shift in the membrane potential to approximately -40 mV. This in turn can activate sodium channels and action potentials that are then able to fire at high frequency on the crest of the depolarization in a “burst” until small conductance calcium-activated potassium (sK) channels repolarize the neuron. The non-action potential portion of this process is known as a “low threshold spike” (LTS) and is critical for low threshold burst firing and wherein the longer magnitude and duration of the LTS correlates with action potential number. Each of the individual T-type isoforms is capable of generating an LTS, although a combination of T-type channels is likely often responsible. For example, in thalamocortical neurons the majority of the LTS is generated by CaV3.1 channels, whereas in hippocampal CA1 neurons subjected to pilocarpine treatment to induce status epilepticus the majority of the LTS is generated by CaV3.2 channels. In neurons of the reticular thalamic nucleus (RTN), the LTS appears to be generated by a combination of CaV3.2 and CaV3.3 channels, and in centromedial thalamic neurons is thought to be carried by both CaV3.1 and CaV3.3 channels. Overall, the individual biophysical properties of T-type calcium channel isoforms likely determines the rate of depolarization and the duration of the LTS and the specific combinations of T-type isoforms is predicted to be crucial to burst physiology in vivo.

An elegant study combining cloned T-type channels expressed exogenously in HEK293 cells and action potential waveforms recorded from cerebellar Purkinje and thalamocortical and RTN neurons with dynamic clamp and computer modeling, examined the contribution of individual T-type isoforms to different types of bursts and correlated this with the predicted expression of T-type channels in each type of neuron. It was found that similar to tonic firing, CaV3.1-mediated currents attenuated quickest over the duration of a burst, closely followed by CaV3.2 currents, whereas CaV3.3 currents display very slow attenuation. Also similar to the responses recorded for tonic firing, CaV3.3 currents displayed a marked facilitation in the first few action potentials of a burst, reflecting the high frequency nature of burst firing. The burst firing in modeled Purkinje neurons and thalamocortical neurons closely followed the calcium conductance generated from CaV3.1 channels where these channels are predicted to generate the majority of the LTS. Computer modeling was also used to remove the contribution of native T-type channels from model thalamocortical and RTN neuronal bursts and to replace these with properties recorded from exogenously expressed T-type channels (Fig. 4). With this approach the thalamocortical burst closely resembled that generated by CaV3.1 channels, producing a short and fast burst as seen in thalamocortical neurons. Contrastingly, the CaV3.2 and CaV3.3 subtype properties produced bursts of much longer duration, with the longest duration burst produced by CaV3.3 channels. Using the same method to examine RTN properties, it was shown that CaV3.3-mediated currents generated bursts that most closely correlated with the typical RTN burst. However, CaV3.2 channels are also expressed in the RTN and CaV3.2-like currents are observed in these neurons. In this regard, the fast activation kinetics and lower threshold for activation CaV3.2 channels may play a critical role in the initiation of bursts as well as make important physiological contributions that become apparent during a series of multiple bursts. A number of studies have examined the involvement of calcium-induced calcium-release (CICR) from the sarcoplasmic reticulum in shaping multiple burst firing. CICR-mediated inhibition of burst firing has been proposed to occur via inhibition of T-type channels in RTN neurons. However, it is alternately suggested that this occurs due to CICR-mediated inhibition of the sK channels necessary for after-hyperpolarization, as opposed to direct inhibition of T-type channels. Thus, under a series of multiple bursts, such as during neuronal oscillations, a progressive inhibition of sK channels may prevent adequate hyperpolarization required for T-type channel de-inactivation. Overall, this topic remains to be fully explained and highlights the necessity to assess burst firing patterns as a multiple series and at different frequencies in order to truly elucidate the contributions of T-type channels to burst firing. Furthermore, how these bursts contribute to calcium influx in dendrites is a topic of intense research at present, with synaptic induction of burst firing seen as a potential encoder of spatial neuronal function.

T-type Channel Window Currents and Neuronal Firing

The overlap between the activation, inactivation and deactivation voltage thresholds of T-type channels at certain membrane potentials results in a fraction of channels that are open at the resting potential, although the entire population constantly transitions between the open, closed and inactivated states (Fig. 4). The physiological roles of window currents has been difficult to ascertain since these are quite small (by calculation rarely more than 5% of the peak T-type current), however, a steady influx of calcium has been long predicted to make important contributions towards neuronal physiology. In particular, the window current has been implicated in the generation of slow (<1 Hz) sleep oscillations as a result of intrinsic “bistability” of thalamic neurons. In thalamic neurons, brief injections of positive or negative current have been shown to induce lasting depolarization or hyperpolarization of the steady resting membrane potential (~15–20 mV), respectively, although only when the “hyperpolarization-activated mixed sodium/potassium conductance” (Ih) is blocked to prevent switching between the two states. This is believed to arise from the complex interplay of the T-type window and leak potassium conductances, which can
be balanced at distinct membrane potentials to create two stable voltages where the neuron rests (Fig. 4). If the leak conductance is too large or the T-type conductance too small then only a single point of balance is created and therefore only one resting stable membrane potential exists. During slow oscillations in thalamocortical neurons additional depolarizing influences are provided by I_h and the “calcium-activated non-selective cation conductance” (I_{CANS}). I_h depolarizes the membrane potential from

Figure 4. T-type calcium channel conductance during burst firing and slow oscillations. (A) In a computer generated model of a thalamocortical neuron the native T-type current was replaced with biophysical parameters of each of the cloned Ca$_{\text{3.1}}$, Ca$_{\text{3.2}}$ and Ca$_{\text{3.3}}$ T-type currents determined from experiments in HEK293 cells. Ca$_{\text{3.1}}$ generated short bursts, Ca$_{\text{3.2}}$ slightly longer bursts and Ca$_{\text{3.3}}$ very long sustained bursts (A, upper parts), each correlating with the current generated by the particular subtypes (A, bottom parts). (B, top left part) Schematic of typical T-type activation and inactivation graphs with window current highlighted in grey. (B, bottom left part) Diagram representing the bistable neuronal membrane potential as a result of the interplay between leak potassium conductances and the T-type window calcium conductance. (B, right parts) Schematics describing the activity of the hyperpolarization-activated sodium/potassium conductances (I_h), the calcium-activated non-specific cation conductance (I_{CANS}) and T-type window calcium conductance during slow oscillations. (A) Redrawn with permission: Chemin et al. J Physiol 2002; 540:3–14. (B) Redrawn with permission: Crunelli et al. J Physiol 2005; 62:121–9.
a hyperpolarized voltage or “down state” where the window current is “off”, to a point where the T-type channels activate, generating a burst of action potentials (discussed above). While the majority of T-type channels then inactivate, the T-type window conductance remains on and together with I_{CAN}, prolongs the low-threshold depolarization (“up state”) upon which tonic action potential firing can occur. This process continues until the repolarizing leak potassium conductances in combination with the decaying I_{CAN} result in hyperpolarization to a level outside the T-type channel window range and the window current fully inactivates (reviewed in ref. 42). Taken together, even the relatively small calcium conductance generated by the T-type channel window current can significantly influence neuronal firing patterns. High-threshold bursting has also been proposed to occur in thalamic neurons leading to generation of alpha and theta rhythms, although the true nature of this particular firing pattern is still somewhat unclear.5,46-47 These bursts occur at membrane potentials that are too depolarized to be generated by typical T-type currents, however it is predicted that high threshold bursting may in part result from calcium conductance through a small population of non-inactivated (i.e., window current) T-type channels. This may also occur via activation of mid-threshold (such as R-type) or HVA calcium channels, or may arise simply from poor space clamp wherein burst-firing in dendrites might relay a false reading of membrane potential at the location of recording.

Conclusions

The unique biophysical properties of T-type calcium channels bestow particularly important attributes with respect to neuronal firing rates and patterns. Their response to brief depolarization and the calcium they conduct during action potentials not only provides a distinct charge transference compared to HVA calcium channels, but also allows for the fine tuning of conductance depending upon the nature of the T-type channel isoforms. The specific responses to action potentials can be extended to activity of the T-type channels during burst firing, wherein the expression of individual or multiple T-subtypes can result in a variety of differing burst patterns. This becomes more complicated when variable amounts of T-subtypes are co-expressed and even more so when T-type channel splice variants are considered. Indeed, T-type channel splice variants with distinct biophysical properties are known to be expressed temporally and spatially.48,51 To perhaps further complicate matters, splice variation also appears to play an important role in disease pathology and it is becoming apparent that mutations associated with certain pathophysiological disorders have different functional effects in distinct variants.52-54 Taken together, the variety of responses that T-type calcium channels may contribute to particular firing patterns will likely vary considerably depending upon a combination of splice variant, developmental stage and disease state. Finally, the “passive” role played by T-type channel window currents in slow oscillations reveals another significant factor to be considered in the involvement of these channels in neuronal firing and their importance in physiological and pathophysiological processes.

Acknowledgements

The work was supported by an operating grant from the Canadian Institutes of Health Research and a Canada Research Chair in Biotechnology and Genomics-Neurobiology (to Terrance P. Snutch).

References

1. Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003; 83:117-61.
2. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57:411-25.
3. Williams SR, Toth TJ, Turner JP, Hughes SW, Cruellini V. The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol 1997; 505:689-705.
4. Dreyfus FM, Tischerer A, Errington AC, Renger JJ, Shin HS, Uebbe VN, et al. Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological importance of T(W)window. J Neurosci 2010; 30:99-109.
5. Cruellini V, Cope DW, Hughes SW. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 2006; 40:175-90.
6. Destexhe, A & Sejnowski TJ. Interactions between membrane conductances underlying thalamocortical slow wave oscillations. Physiol Rev 2003; 83:1401-53.
7. Contreras D. The role of T-channels in the generation of thalamocortical rhythms. CNS Neurol Drug Disc Targets 2006; 5:571-85.
8. Snutch TP, Peloquin J, Mathews E, McRory JE. Molecular properties of voltage-gated calcium channels. In: Zamponi G, Ed. Voltage-Gated Calcium Channels. Austin, TX: Springer. Landes Bioscience 2005; 61-94.
9. Chemin J, Montet A, Perez-Reyes E, Bourinet E, Nargeot J, Lory P. Specific contribution of human T-type calcium channel isotypes (n1G, n1H) to neuronal excitability. J Physiol 2002; 540:3-14.
10. Kodow AS, McKenna F, Lee JH, Cribbs IL, Perez-Reyes E, Feltz A, Lambert RC. Distinct kinetics of cloned T-type Ca2+ channels lead to differential Ca2+ entry and frequency-dependence during mock action potentials. Eur J Neurosci 1999; 11:4149-58.
11. Hirsch M, McKay BE, Snutch TP, McRory JE, Turner RW, Zamponi GW. Temperature dependence of T-type calcium channel gating. Neurochemistry 2006; 142:1031-42.
12. Llinas R, Steinberg Iz, Walton K. Presynaptic calcium currents in squid giant synapse. Biophys J 1981; 33:289-321.
13. Moghaddas DP, Beams KG. Action potential waveform voltage-clamp commands reveal striking differences in calcium entry via low and high voltage-activated calcium channels. Neuron 1991; 7:119-27.
14. Urbach M, Schaub C, Perez-Reyes E, Beck H. T-type Ca2+ channels encode prior neuronal activity as modulated recovery rates. J Physiol 2006; 571:519-36.
15. Borchert T, Kanyshkova T, Muehl P, Pape HC, Buddle T. Correlation of T-channel coding gene expression, IT and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 2008; 39:384-99.
16. Becker AJ, Fisch J, Sochwik D, Opitz T, Staniek M, Chen CC, et al. Transcriptional upregulation of Ca,3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci 2008; 28:13341-53.
17. Chevalier M, Lory P, Mironneau C, Macrez N, Quignard JF. T-type Ca,3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations. Eur J Neurosci 2006; 23:3231-9.
18. Destexhe A, Neubig M, Ulrich D, Huguenard J. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 1998; 18:3574-88.
19. Destexhe A, Sejnowski TJ. The initiation of bursts in thalamic neurons and the cortical control of thalamic sensitivity. Philos Trans R Soc Lond B Biol Sci 2002; 357:1649-57.
20. Graef JD, Nordskog BK, Wiggins WF, Godwin DW. An acquired channelopathy involving thalamic T-type Ca2+ channels after status epilepticus. J Neurosci 2009; 29:4438-41.
21. Huguenard JR, Prince DA. A novel T-type current underlies prolonged Ca2+-dependent burst firing in GABergic neurons of rat thalamic reticular nucleus. J Neurosci 1992; 12:3804-17.
22. Kim D, Song I, Kuehn S, Lee T, Jeong MJ, Kim SS, et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking n1G T-type Ca2+ channels. Neuron 2001; 31:35-45.
23. Molinex ML, McRory JE, McKay BE, Hamid J, Mehaloff WH, Rehak R, et al. Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebral nuclear neurons. Proc Natl Acad Sci USA 2006; 103:5555-60.
24. Llinas R, Jahnsen H. Electrophysiology of mammalian thalamic neurones in vitro: Nature 1982; 297:406-8.
25. Choeve T, Manor Y, Yaron Y. Density is destiny—On the relation between quantity of T-type Ca\(^{2+}\) channels and neuronal electrical behavior. CNS Neurol Disord Drug Targets 2006; 5:653-62.

26. Crunelli V, Lightowler S, Pollard CE. A T-type Ca\(^{2+}\) current underlies low-threshold Ca\(^{2+}\) potentials in cells of the cat and rat lateral geniculate nucleus. J Physiol 1989; 413:543-61.

27. Zhan XJ, Cox CL, Rinzel J, Sherman SM. Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat’s lateral geniculate nucleus. J Neurophysiol 1999; 81:2360-73.

28. Zhan XJ, Cox CL, Sherman SM. Dendritic depolarization efficiently attenuates low-threshold calcium spikes in thalamic relay cells. J Neurosci 2000; 20:3909-14.

29. Ernst WI, Zhang Y, Yoo JW, Ernst SJ, Neebels JL. Genetic enhancement of thalamocortical network activity by elevating \(\alpha\)1G-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 2009; 29:1615-25.

30. Broicher T, Kanyshkova T, Landgraf P, Rankovic V, Meuth I, Meuth SG, et al. Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons. Mol Cell Neurosci 2007; 36:132-45.

31. Su H, Sochivko D, Becker A, Chen J, Jiang Y, Yaari Y, Beck H. Upregulation of a T-type Ca\(^{2+}\) channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 2002; 22:3645-55.

32. Joksimovic PM, Bayliss DA, Todorovic SM. Different kinetic properties of two T-type Ca\(^{2+}\) currents of rat reticular thalamic neurones and their modulation by enflurane. J Physiol 2005; 564:125-42.

33. Talley EM, Gibbs LII, Lee JH, David A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low-voltage-activated (T-type) calcium channels. J Neurosci 1999; 19:895-911.

34. Joksimovic PM, Nelson MT, Jevovic-Todorovic V, Patel MK, Perez-Reyes E, Campbell KD, et al. Ca\(^{2+}\),3.2 is the major molecular substrate for redox regulation of T-type Ca\(^{2+}\) channels in the rat and mouse thalami. J Physiol 2006; 574:415-30.

35. Coulon P, Herr D, Kanyshkova T, Meuth P, Budde T, Pape HC. Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 2009; 46:333-46.

36. Cueni L, Canepari M, Luján R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Luthi A. T-type Ca\(^{2+}\) channels, \(\alpha\)1G channels and SERCA2a gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 2008; 11:668-692.

37. Ezington AC, Renger JJ, Uebele VN, Crunelli V. State-dependent firing determines intrinsic dendritic Ca\(^{2+}\) signaling in thalamocortical neurones. J Neurosci 2010; 30:14843-53.

38. Crandall SR, Govindiaah G, Cox CL. Low-threshold Ca\(^{2+}\) current amplifies distal dendritic signaling in thalamic reticular neurones. J Neurosci 2010; 30:15419-29.

39. Johnston J, Delaney KR. Synaptic activation of T-type Ca\(^{2+}\) channels via mGlur activation in the primary dendrite of mitral cells. Journal of Neurophysiology 2010; 103:2577-2580.

40. Goulter DA, Huguenard JR, Prince DA. Calcium currents in rat thalamic reticular relay neurones: kinetic properties of the transient, low-threshold current. J Physiol 1989; 414:587-604.

41. Carbene E, Lux HD. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 1984; 310:501-2.

42. Crunelli V, Toth TI, Cope DW, Bleyhn K, Hughes SW. The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 2005; 562:1211-9.

43. Hughes SW, Cope DW, Toth TI, Williams SR, Crunelli V. All thalamic reticular neurones possess a T-type Ca\(^{2+}\) ‘window’ current that enables the expression of bistability-mediated activities. J Physiol 1999; 517:805-15.

44. Bleyhn KL, Hughes SW, Toth TI, Cope DW, Crunelli V. Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J Neurosci 2006; 26:2474-86.

45. Destexhe A, Hughes SW, Rudolph M, Crunelli V. Are corticothalamic ‘up’ states fragments of wakefulness? Trends Neurosci 2007; 30:334-42.

46. Hughes SW, Letinaiz M, Carpe DW, Bleyhn KL, Eckels KA, Paré HR, et al. Synchronized oscillations at \(\alpha\) and \(\tau\) frequencies in the lateral geniculate nucleus. Neuron 2004; 42:253-68.

47. Hughes SW, Crunelli V. Thalamic mechanisms of EEG a rhythms and their pathological implications. Neuroscientist 2005; 11:357-72.

48. Emerick MC, Stein R, Kanze R, McNulty MM, Regan MR, Hanck DA, Agnew WS. Profiling the array of Ca\(^{2+}\),3.1 variants from the human T-type calcium channel gene CACNA1H: alternative structures, developmental expression and biophysical variations. Proteins 2006; 64:320-42.

49. Zhong X, Liu JR, Kyte JW, Hanck DA, Agnew WS. A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet 2006; 15:1497-512.

50. David LS, Garcia E, Cain SM, Thau EM, Tyson JR, Snutch TP. Splice variant changes of the Ca\(^{2+}\),3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin) 2010; 4: 375-89; PMID: 20699644.

51. Chemin J, Monteil A, Bourinet E, Nargeot J, Luty P. Alternatively spliced \(\alpha\)1G (Ca\(^{2+}\),3.1) intracellular loops promote specific T-type Ca\(^{2+}\) channel gating properties. Biophys J 2001; 80:1238-50.

52. Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, et al. A Ca\(^{2+}\),3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 2009; 29:371-80.

53. Adams PJ, Garcia E, David LS, Mulatcz KJ, Spacey SD, Snutch TP. Ca\(^{2+}\),2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations: implications for calcium channelopathies. Channels (Austin) 2009; 3:110-21.

54. Adams PJ, Rungtia RL, Garcia E, van den Maagdenberg AM, Macvicar BA, Snutch TP. Contribution of calcium-dependent facilitation to synaptic plasticity revealed by migraine mutations in the P/Q-type calcium channel. Proc Natl Acad Sci USA 2010; 107:18694-9.