Foolish Crowds Support Benign Overfitting

Niladri S. Chatterji
Computer Science Department
Stanford University
niladri@cs.stanford.edu

Philip M. Long
Google
plong@google.com

March 21, 2022

Abstract

We prove a lower bound on the excess risk of sparse interpolating procedures for linear regression with Gaussian data in the overparameterized regime. We apply this result to obtain a lower bound for basis pursuit (the minimum ℓ_1-norm interpolant) that implies that its excess risk can converge at an exponentially slower rate than OLS (the minimum ℓ_2-norm interpolant), even when the ground truth is sparse. Our analysis exposes the benefit of an effect analogous to the “wisdom of the crowd”, except here the harm arising from fitting the noise is ameliorated by spreading it among many directions—the variance reduction arises from a foolish crowd.

1 Introduction

Recently, there has been a surge of interest in benign overfitting, where a learning algorithm generalizes well despite interpolating noisy data [see, e.g., Zha+21; Bel+19; Bar+20; Bel21]. Arguably the most basic setting in which this has been analyzed theoretically is linear regression with Gaussian data, where upper and nearly matching lower bounds have been obtained for the ordinary least squares (OLS) estimator, which chooses a parameter vector \(\hat{\theta} \) to minimize \(\|\hat{\theta}\|_2 \) from among interpolating models [Bar+20; NDR20; TB20]. Bounds have also been obtained for basis pursuit [CDS01], which minimizes \(\|\hat{\theta}\|_1 \) from among interpolating models [Mut+20; JLL20; CLv20; Koe+21].

The upper bounds for the OLS estimator show that it rapidly approaches the Bayes risk when the structure of the covariance matrix \(\Sigma \) of the inputs is favorable. Informally, the following are necessary and sufficient:

- the sum of all of the eigenvalues of \(\Sigma \) is not too big;
- after excluding a few of the largest eigenvalues, there are many small eigenvalues of roughly equal magnitude.

A canonical example of such a benign covariance matrix is \(\Sigma_{k,\varepsilon} := \text{diag}(1, \ldots, 1, \varepsilon, \ldots, \varepsilon) \). Consider a case where \(k \ll p \), the rows of \(X \) are \(n \) i.i.d. draws from \(\mathcal{N}(0, \Sigma_{k,\varepsilon}) \), and, for independent noise \(\xi \sim \mathcal{N}(0, I) \) and a unit-length \(\theta^\star \), \(y = X\theta^\star + \xi \). Then a high probability upper bound on the excess risk of the OLS is proportional to

\[
\frac{k}{n} + \varepsilon \frac{p}{n} + \frac{n}{p}.
\]
and a nearly matching lower bound is also known \cite{Bar+20; NDR20; TB20}. As an example, if \(p = n^2, \varepsilon = 1/n^2 \) and \(k \) is a constant, this is proportional to \(1/n \).

If, in addition, \(\theta_i^* = 0 \) for \(i > k \), upper bounds are also known for basis pursuit in this setting \cite{Koe+21}. On the other hand, they are much worse, scaling with \(p \) like \(1/\log p \), and requiring that \(p \) be an exponentially large function of \(n \) to converge.

In this paper, we prove a lower bound for basis pursuit in this setting that scales with \(p \) like \(1/\log^2 p \). Our lower bound requires that \(\sigma \geq c \| \theta^* \|_2 \) for an arbitrarily small positive constant \(c \), along with a few mild technical conditions, including that \(p > n \), so that interpolation is possible, and that \(n \gg k \) (see Theorem 3.2 for the details). Note that OLS converges much faster than basis pursuit in this setting despite the fact that \(\theta^* \) is sparse.

The lower bound is a special case of a more general bound, Theorem 3.1, which can be paraphrased as follows. Under the same conditions as Theorem 3.2, including \(\sigma \geq c \| \theta^* \|_2 \), any interpolating procedure that, with high probability, outputs an \(s \)-sparse model \(\hat{\theta} \), must suffer excess loss proportional to \(\sigma^2 n/\log^2 p \). We then get Theorem 3.2 by showing that, in this setting, basis pursuit almost surely outputs an \(n \)-sparse model.

This analysis sheds light on why the overfitting of OLS is so benign. Because OLS interpolates, we can think of the parameters of its output as storing the noise—OLS benefits from spreading the noise evenly among many parameters, where each small fragment of noise has a tiny effect. This phenomenon is akin to the reduction in variance arising from prediction using a weighted average of many covariates that is commonly referred to as the “wisdom of the crowd” \cite{Sur05}. Here, by spreading the harm arising from fitting the noise among many parameters, the algorithm benefits from a foolish crowd.

Additional related work. Muthukumar et al. \cite{Mut+20} established the same lower bound for basis pursuit in a setting with isotropic covariates [see also, JLL20] in the case that \(\theta^* = 0 \). Accommodating the possibility that \(\theta^* \neq 0 \) complicates the argument a bit, but our main contribution is to demonstrate slow convergence for basis pursuit in settings where OLS enjoys fast convergence. Chinot, Löffler, and van de Geer \cite{CLv20} proved an upper bound on the risk of basis pursuit, but, as pointed out by Koehler et al. \cite{Koe+21}, it does not imply a bound on the excess risk. Limitations of algorithms that output sparse linear classifiers have also been studied previously \cite{HL12}.

After a preliminary version of this work was posted on arXiv \cite{CL21}, some related work was published \cite{WDY21; LW21; Don+22} that established upper bounds on the excess risk of the minimum \(\ell_1 \)-norm interpolator. In particular, Wang, Donhauser, and Yang \cite{WDY21} showed an upper bound on the excess risk, that in the case with isotropic covariates scales as \(\sigma^2/\log p \), almost matching our lower bound.

2 Preliminaries

For \(p, n \in \mathbb{N} \), an example is a member of \(\mathbb{R}^p \times \mathbb{R} \), and a linear regression algorithm takes as input \(n \) examples, and outputs \(\hat{\theta} \in \mathbb{R}^p \). For a joint probability distribution \(P \) over \(\mathbb{R}^p \times \mathbb{R} \), the excess risk of \(\hat{\theta} \) with respect to \(P \) is

\[
R(\hat{\theta}) := \mathbb{E}_{(x,y) \sim P}[(\hat{\theta} \cdot x - y)^2] - \inf_{\theta^*} \mathbb{E}_{(x,y) \sim P}[(\theta^* \cdot x - y)^2].
\]

We refer to the following as the \((k, p, n, \varepsilon, \sigma)\)-scenario:
We are ready to present our main result, a high probability lower bound on the excess risk for any (s, δ)-sparse interpolator for P and $n \in \mathbb{N}$ if it satisfies the following: With probability $1 - \delta$ over the independent draw of the samples $(x_1, y_1), \ldots, (x_n, y_n) \sim P$, the output $\hat{\theta}$ of A satisfies

- interpolates the data (that is, satisfies $\hat{\theta} \cdot x_1 = y_1, \ldots, \hat{\theta} \cdot x_n = y_n$), and
- has at most s non-zero components.

Given $X \in \mathbb{R}^{n \times p}$ and $y \in \mathbb{R}^n$, the basis pursuit algorithm (minimum ℓ_1-norm interpolant) A_{BP} outputs

$$\arg\min_{\theta} \|\theta\|_1, \quad \text{s.t. } X\theta = y,$$

if there is such a θ, and otherwise behaves arbitrarily (say outputting 0).

Notation. For any $j \in \mathbb{N}$, we denote the set $\{1, \ldots, j\}$ by $[j]$. Given a vector v, let $\|v\|_2$ denote its Euclidean norm and $\|v\|_1$ denote its ℓ_1-norm. Given a matrix M, let $\|M\|_{op}$ denote its operator norm. For $z \in \mathbb{R}$, we denote $\max\{z, 0\}$ by $|z|_+.$

3 Main results

We are ready to present our main result, a high probability lower bound on the excess risk for any (s, δ)-sparse interpolator.

Theorem 3.1. For any $0 < c_1 \leq 1$, there are absolute positive constants c_2, c_3 such that the following holds. For any $0 \leq \delta \leq c_2$, for any $(k, p, n, \varepsilon, \sigma)$ such that $\sigma \geq c_1 \|\theta^*\|_2$, $p \geq n + k$, $n \geq \log^2(1/\delta) + k^{1+c_1}$, for any $n \leq s \leq p - k$, and any regression algorithm A that is an (s, δ)-sparse interpolator for the $(k, p, n, \varepsilon, \sigma)$-scenario P, with probability $1 - 4\delta$ over n random draws from P, the output $\hat{\theta}$ of A satisfies

$$R(\hat{\theta}) \geq \frac{c_3 \sigma^2 n}{s \log^2(3p/s)}.$$

This theorem shows that a sparse interpolating predictor suffers large excess risk. Intuitively, the proof follows since an s-sparse interpolating predictor needs to hide the “energy” of the noise, which roughly scales like $\sigma^2 n$, in just s coordinates. If it attempts to hide it in the first k coordinates, then it suffers from large bias. If it hides it in the tail, then it suffers large variance.

Next, we state our result for basis pursuit, the minimum ℓ_1-norm interpolator.

Theorem 3.2. For any $0 < c_1 \leq 1$, there are absolute positive constants c_2, c_3 such that the following holds. For any $0 \leq \delta \leq c_2$, for any $(k, p, n, \varepsilon, \sigma)$ such that $\sigma \geq c_1 \|\theta^*\|_2$, $p \geq n + k$, $n \geq \log^2(1/\delta) + k^{1+c_1}$, with probability $1 - 4\delta$ over n random draws from P, the output θ of A_{BP} satisfies

$$R(\hat{\theta}) \geq \frac{c_3 \sigma^2}{\log^2(3p/n)}.$$
This theorem is proved by showing that the output of basis pursuit is always \(n \)-sparse and then by simply invoking the previous general result. Theorem 3.2 implies that the excess risk of A\(_{BP} \) can be much worse than OLS. For example, if \(k = 5, p = n^2, \varepsilon = 1/n^2, \sigma^2 = \|\theta^*\|^2_2 = 1 \), then Theorem 3.2 implies an \(\Omega \left(\frac{1}{\log^2 n} \right) \) lower bound for A\(_{BP} \) where a \(O \left(\frac{1}{n^2} \right) \) upper bound holds for OLS [Bar+20; NDR20; TB20]. If instead, \(k = 5, p = n^2, \varepsilon = 1/n^2, \sigma^2 = \|\theta^*\|^2_2 = \log^2 n \), then the excess risk of OLS goes to zero at a \(O \left(\frac{\log^2 n}{n} \right) \) rate, but Theorem 3.2 implies that the excess risk of A\(_{BP} \) is bounded below by a constant.

When \(\varepsilon = 1 \), that is, when the covariates are isotropic, our lower bound coincides with the lower bound derived previously by Muthukumar et al. [Mut+20].

4 Proof of Theorem 3.1

This section is devoted to proving Theorem 3.1, so the assumptions of Theorem 3.1 are in scope throughout this section. Our proof proceeds through a series of lemmas.

Definition 4.1. For any \(v \in \mathbb{R}^p \) and any \(S \subseteq [p] \), let \(v_S \) be the vector obtained by selecting the components of \(S \) from \(v \) in order. For \(X \in \mathbb{R}^{n \times p} \), define \(X_S \) similarly, except selecting columns from \(X \). Let \(H := \{1, \ldots, k\} \) and \(T := \{k+1, \ldots, p\} \), so that \(v_H = (v_1, \ldots, v_k) \) and \(v_T = (v_{k+1}, \ldots, v_p) \).

The first step is to break up the excess risk into contributions from the “head” \(H \) and the “tail” \(T \).

Lemma 4.2. The excess risk of any parameter vector \(\hat{\theta} \) satisfies

\[
R(\hat{\theta}) = \|\theta^*_H - \hat{\theta}_H\|^2_2 + \varepsilon \|\hat{\theta}_T\|^2_2.
\]

Proof. By the projection lemma,

\[
R(\hat{\theta}) = E_{(x,y) \sim P}[(\hat{\theta} \cdot x - y)^2] - E_{(x,y) \sim P}[(\theta^* \cdot x - y)^2]
\]

\[
= E_{(x,y) \sim P}[(\hat{\theta} \cdot x - \theta^* \cdot x)^2] + \sigma^2 - \sigma^2
\]

\[
= \|\theta^*_H - \hat{\theta}_H\|^2_2 + \varepsilon \|\hat{\theta}_T\|^2_2,
\]

since \(\theta^*_T = 0 \) and the distribution of \(x \) has covariance \(\text{diag}(1, 1, \ldots, 1, \varepsilon, \ldots, \varepsilon) \).

Lemma 4.2 leads to the subproblem of establishing a lower bound on \(\|\hat{\theta}_T\|^2_2 \). The following lemma is an easy step in this direction.

Lemma 4.3. Given any estimator \(\hat{\theta} \) such that \(X \hat{\theta} = y \) we have

\[
\|X_T \hat{\theta}_T\|_2 = \|y - X_H \hat{\theta}_H\|_2.
\]

Proof. The lemma follows from the fact that \(y = X \hat{\theta} = X_H \hat{\theta}_H + X_T \hat{\theta}_T \).

Lemma 4.3 provides a means to establish a lower bound on \(\|X_T \hat{\theta}_T\|_2 \). This in turn can lead to a lower bound on \(\|\hat{\theta}_T\|_2 \) if we can show that the linear operator associated with \(X_T \) does not “blow up” \(\hat{\theta}_T \). It turns out, when \(\hat{\theta} \) (and thus \(\theta^*_T \)) is sparse, a random \(X_T \) is especially unlikely to “blow up” \(\hat{\theta}_T \), as reflected in the following lemma. It is an immediate consequence of [Ada+12, Theorem 4.2].
Lemma 4.4. There exists a constant c such that for any $t \geq 1$, we have
\[
\mathbb{P} \left[\max_{S \subseteq T, |S| \leq s} \|X_S\|_{op} \geq c \sqrt{\varepsilon} \left(\sqrt{s} \log (\frac{3(p-k)}{s}) + \sqrt{n} + t \right) \right] \leq e^{-t}.
\]

Lemma 4.4 implies a lower bound on $\|\theta_T\|_2$ for any s-sparse θ.

Lemma 4.5. There exists a constant c such that, with probability at least $1 - \delta$, any s-sparse θ has
\[
\|\theta_T\|_2 \geq \frac{\|X_T \theta_T\|_2}{c \sqrt{\varepsilon} \left(\sqrt{s} \log (\frac{3(p-k)}{s}) + \sqrt{n} + \log(1/\delta) \right)}.
\] (1)

Proof. For any s-sparse θ, if $S = T \cap \{i : \theta_i \neq 0\}$, we have $|S| \leq s$, so for any X, we have $\|X_T \theta_T\|_2 = \|X_S \theta_S\|_2$. Applying Lemma 4.4 with $t = \log(1/\delta)$, with probability at least $1 - \delta$, (1) holds for all such θ. \hfill \blacksquare

Since $\hat{\theta}$ is likely to be s-sparse, Lemma 4.5 implies a high-probability lower bound on $\|\hat{\theta}_T\|_2$, the contribution of the tail to the excess risk. This bound is in terms of $\|X_T \hat{\theta}_T\|_2 = \|y - X_H \hat{\theta}_H\|_2$. We will bound this by proving a high-probability lower bound on $\|y\|_2$, and a high-probability upper bound on $\|X_H \hat{\theta}_H\|_2$. We start with a lower bound on $\|y\|_2$.

Lemma 4.6. With probability $1 - \delta$,
\[
\|y\|_2^2 \geq \left(\sigma^2 + \|\theta^*\|_2^2 \right) n \left(1 - 2 \sqrt{\frac{\log(1/\delta)}{n}} \right).
\]

Proof. We have $y = X \theta^* + \xi$. That is, for each sample $i \in [n]$, $y_i = x_i \cdot \theta^* + \xi_i$.

Observe that $x_i \cdot \theta^* \sim \mathcal{N}(0, \|\theta^*\|_2^2)$, $\xi_i \sim \mathcal{N}(0, \sigma^2)$, and x_i and ξ_i are independent. Therefore, we have that $y_i \sim \mathcal{N}(0, \sigma^2 + \|\theta^*\|_2^2)$. Thus
\[
\|y\|_2^2 = \sum_{i=1}^n |y_i|^2 = \left(\sigma^2 + \|\theta^*\|_2^2 \right) q,
\] (2)

where q is a random variable with a $\chi^2(n)$ distribution. Applying Lemma 1 from [LM00], we have
\[
\mathbb{P} \left(q \geq n - 2 \sqrt{tn} \right) \geq 1 - \exp(-t).
\]

If we set $t = \log(1/\delta)$ then with probability at least $1 - \delta$,
\[
q \geq n \left(1 - 2 \sqrt{\frac{\log(1/\delta)}{n}} \right).
\]

This combined with (2) completes the proof. \hfill \blacksquare

Recall that we also want an upper bound on $\|X_H \hat{\theta}_H\|_2$; we will use a bound that is an immediate consequence of [Ver10, Corollary 5.35].

Lemma 4.7. With probability $1 - \delta$,
\[
\|X_H\|_{op} \leq \sqrt{n} + \sqrt{k} + \sqrt{2 \log(2/\delta)}.
\]
Armed with these lemmas, we can now prove Theorem 3.1.

Proof. of Theorem 3.1 With foresight, set $\zeta = \sqrt{\frac{c_4 \sigma^2 n}{s \log^\ast (3p/s)}}$ for a constant c_4 that will be determined by the analysis.

Case 1 ($\|\hat{\theta}_H\|_2 \geq \|\theta^\ast\|_2 + \zeta$). Recall that $\|\theta^\ast\|_2 = \|\theta^\ast_H\|_2$, since it is zero for all entries after the kth coordinate. By Lemma 4.2 we have

$$R(\hat{\theta}) \geq \|\hat{\theta}_H - \theta^\ast_H\|_2^2 \geq (\|\hat{\theta}_H\|_2 - \|\theta^\ast\|_2)^2 \geq \zeta^2 = \frac{c_4 \sigma^2 n}{s \log^2 (3p/s)}.$$

Case 2 ($\|\hat{\theta}_H\|_2 \leq \|\theta^\ast\|_2 + \zeta$). By Lemma 4.2, we have

$$R(\hat{\theta}) \geq \varepsilon \|\hat{\theta}_H\|_2^2.$$

The estimator $\hat{\theta}$ is s-sparse with probability at least $1 - \delta$. Hence, combining Lemmas 4.3 and 4.5, and taking a union bound we get that, for an absolute positive constant c, with probability $1 - 2\delta$,

$$R(\hat{\theta}) \geq c \frac{\|y - X_H \hat{\theta}_H\|_2^2}{s \log^2 \left(\frac{3(p-k)}{s}\right) + n + \log^2(1/\delta)} \geq c \frac{(\|y\|_2 - \|X_H \hat{\theta}_H\|_2)^2}{s \log^2 \left(\frac{3(p-k)}{s}\right) + n + \log^2(1/\delta)}.$$

Applying Lemma 4.6, we find that with probability at least $1 - 3\delta$,

$$R(\hat{\theta}) \geq c \frac{\left(\sigma^2 + \|\theta^\ast\|_2^2\right)n \left(1 - 2\sqrt{\frac{\log(1/\delta)}{n}}\right) - \|X_H \hat{\theta}_H\|_2^2}{s \log^2 \left(\frac{3(p-k)}{s}\right) + n + \log^2(1/\delta)}.$$

Next, by applying Lemma 4.7, with probability at least $1 - 4\delta$,

$$R(\hat{\theta}) \geq c \frac{\left(\sigma^2 + \|\theta^\ast\|_2^2\right)n \left(1 - 2\sqrt{\frac{\log(1/\delta)}{n}}\right) - \|X_H \hat{\theta}_H\|_2^2}{s \log^2 \left(\frac{3(p-k)}{s}\right) + n + \log^2(1/\delta)} + c \frac{\left(\sigma^2 + \|\theta^\ast\|_2^2\right)n \left(1 - 2\sqrt{\frac{\log(1/\delta)}{n}}\right) - \|X_H \hat{\theta}_H\|_2^2}{s \log^2 \left(\frac{3(p-k)}{s}\right) + n + \log^2(1/\delta)} + c \frac{\left(\sigma^2 + \|\theta^\ast\|_2^2\right)n \left(1 - 2\sqrt{\frac{\log(1/\delta)}{n}}\right) - \|X_H \hat{\theta}_H\|_2^2}{s \log^2 \left(\frac{3(p-k)}{s}\right) + n + \log^2(1/\delta)} + c \frac{\left(\sigma^2 + \|\theta^\ast\|_2^2\right)n \left(1 - 2\sqrt{\frac{\log(1/\delta)}{n}}\right) - \|X_H \hat{\theta}_H\|_2^2}{s \log^2 \left(\frac{3(p-k)}{s}\right) + n + \log^2(1/\delta)}.$$

By choosing $c_2 > 0$ to be small enough, we can choose n to be as large as desired. Recall that, as $n \to \infty$, both $k = o(n)$ and $\log(2/\delta) = o(n)$. Thus with probability at least $1 - 4\delta$, we have that

$$R(\hat{\theta}) \geq (c/2) \frac{\sqrt{\sigma^2 + \|\theta^\ast\|_2^2} - \left(1 + \frac{c_2^2}{8}\right) \left(1 + \sqrt{\frac{c_4 \sigma^2 n}{\|\theta^\ast\|_2^2 \log^\ast (3p/s)}}\right) \|\theta^\ast\|_2}{s \log^2 \left(\frac{3(p-k)}{s}\right) + n + \log^2(1/\delta)}.$$
Since $s \geq n$, we have
\[
R(\hat{\theta}) \geq c' \left[\frac{\sqrt{\sigma^2 + \|\theta^*\|^2} - \left(1 + \frac{c_1^2}{8}\right) \left(1 + \sqrt{\frac{c_4^2}{\|\theta^*\|^2 \log^2(3p/s)}}\right) \|\theta^*\|_2}{s \log^2(3p/s)} \right]^2 s + n
\]
\[
= c' \left[\frac{\sqrt{1 + \frac{\|\theta^*\|^2}{\sigma^2} - \left(1 + \frac{c_1^2}{8}\right) \left(1 + \sqrt{\frac{c_4^2}{\|\theta^*\|^2 \log^2(3p/s)}}\right) \|\theta^*\|_2}}{s \log^2(3p/s)} \right]^2 \sigma^2 n
\]
Defining $r := \frac{\|\theta^*\|}{\sigma}$ and simplifying, we have
\[
R(\hat{\theta}) \geq c' \left[\frac{\sqrt{1 + r^2} - \left(1 + \frac{c_1^2}{8}\right) r - \left(1 + \frac{c_1^2}{8}\right) \sqrt{\frac{c_4^2}{\log^2(3p/s)}}}{s \log^2(3p/s)} \right]^2 \sigma^2 n
\]
Since $\sqrt{1 + r^2} - \left(1 + \frac{c_1^2}{8}\right) r$ is a decreasing function of r, and, by assumption, $r = \frac{\|\theta^*\|}{\sigma} \leq 1/c_1$, we have
\[
R(\hat{\theta}) \geq c' \left[\frac{\sqrt{1 + \frac{1}{c_1^2}} - \frac{1}{c_1} - \frac{c_1^2}{8} - \left(1 + \frac{c_1^2}{8}\right) \sqrt{\frac{c_4^2}{\sigma^2 \log^2(3p/s)}}}{s \log^2(3p/s)} \right]^2 \sigma^2 n
\]
Since $s \leq p$, we have
\[
R(\hat{\theta}) \geq c' \left[\frac{\sqrt{1 + \frac{1}{c_1^2}} - \frac{1}{c_1} - \frac{c_1^2}{8} - \left(1 + \frac{c_1^2}{8}\right) \sqrt{c_4}}{s \log^2(3p/s)} \right]^2 \sigma^2 n
\]
Recall that $0 < c_1 \leq 1$, and choose
\[
c_3 = \min \left\{ c' \left[\sqrt{1 + \frac{1}{c_1^2}} - \frac{1}{c_1} - \frac{c_1^2}{8} - \left(1 + \frac{c_1^2}{8}\right) \sqrt{c_4} \right]^2, c_4 \right\}
\]
Thus, if c_4 is chosen to be a sufficiently small positive constant then
\[
c_3 \geq \min \left\{ c' \left[\sqrt{1 + \frac{1}{c_1^2}} - \frac{1}{c_1} - \frac{c_1^2}{4} \right]^2, c_4 \right\} > 0
\]
completing the proof.

\section{Proof of Theorem 3.2}

This section is devoted to proving Theorem 3.2, so the assumptions of Theorem 3.2 are in scope throughout this section. As in Section 4, our proof proceeds through a series of lemmas.

The first lemma is an immediate consequence of [ST20, Proposition 1].

\begin{lemma}
Almost surely, there is a unique minimizer of $\|\theta\|_1$ subject to $X\theta = y$.
\end{lemma}

The following lemma appears to be known [CDS01]; we included a proof in Appendix A because we did not find one that applies in our setting.

\begin{lemma}
Almost surely, the output $\hat{\theta}$ of ABP is n-sparse.
\end{lemma}

\begin{proof}[of Theorem 3.2]
By Lemma 5.2, for any $\delta > 0$, ABP is a (n, δ)-sparse interpolator for the $(k, p, n, \epsilon, \sigma)$-scenario P. Applying Theorem 3.1 with $s = n$ completes the proof.
\end{proof}
6 Discussion

We have demonstrated that for interpolating linear regression with Gaussian data, outputting a sparse parameter vector can be harmful, even when learning a sparse target.

Our proofs only use a few of the properties of Gaussian distributions, so in the case that the covariance is $\Sigma_{k,\epsilon}$, our results should generalize to sub-Gaussian and log-concave distributions. We chose to analyze $\Sigma_{k,\epsilon}$ because it is arguably the canonical case where OLS enjoys benign overfitting, and it leads to clean and interpretable bounds. Handling a wider variety of covariance matrices is another very natural future direction. A starting point would be to generalize [Ada+12, Theorem 4.2].

Recent research has shown that linear models parameterized by simple two-layer linear neural networks with diagonal weight matrices leads to implicit regularization that interpolates between the ℓ_1-norm used by basis pursuit and the ℓ_2-norm used by OLS [Woo+20; Azu+21]. The connection of this work to neural networks, together with the stark difference between ℓ_1 and ℓ_2 regularization in the context of benign overfitting highlighted in this paper, motivates the study of benign overfitting with these models. (We thank Olivier Bousquet for suggesting this last problem.)

References

[Ada+12] Radosław Adamczak, Rafał Latała, Alexander Litvak, Alain Pajor, and Nicole Tomczak-Jaegermann. “Chevet type inequality and norms of submatrices”. In: Studia Mathematica 210.1 (2012), pp. 35–56 (Cited on pages 4, 8).

[Azu+21] Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E. Woodworth, Nathan Srebro, Amir Globerson, and Daniel Soudry. “On the implicit bias of initialization shape: beyond infinitesimal mirror descent”. In: International Conference on Machine Learning, 2021, pp. 468–477 (Cited on page 8).

[Bar+20] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. “Benign overfitting in linear regression”. In: Proceedings of the National Academy of Sciences 117.48 (2020), pp. 30063–30070 (Cited on pages 1, 2, 4).

[Bel21] Mikhail Belkin. “Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation”. In: arXiv preprint arXiv:2105.14368 (2021) (Cited on page 1).

[Bel+19] Mikhail Belkin, Daniel J Hsu, Siyuan Ma, and Soumik Mandal. “Reconciling modern machine-learning practice and the classical bias–variance trade-off”. In: Proceedings of the National Academy of Sciences 116.32 (2019), pp. 15849–15854 (Cited on page 1).

[CL21] Niladri S Chatterji and Philip M Long. “Foolish Crowds Support Benign Overfitting”. In: arXiv preprint arXiv:2110.02914 (2021) (Cited on page 2).

[CDS01] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic decomposition by basis pursuit”. In: SIAM review 43.1 (2001), pp. 129–159 (Cited on pages 1, 7).

[CLv20] Geoffrey Chinot, Matthias Löffler, and Sara van de Geer. “On the robustness of minimum-norm interpolators”. In: arXiv preprint arXiv:2012.00807 (2020) (Cited on pages 1, 2).

[Don+22] Konstantin Donhauser, Nicolo Ruggeri, Stefan Stojanovic, and Fanny Yang. “Fast rates for noisy interpolation require rethinking the effects of inductive bias”. In: arXiv preprint arXiv:2203.03597 (2022) (Cited on page 2).
A Proof of Lemma 5.2

By Lemma 5.1, we may assume without loss of generality that there is a unique minimizer of $\|\theta\|_1$ subject to $X\theta = y$. Assume for the sake of contradiction that $\hat{\theta}$ has $\|\hat{\theta}\|_0 = s > n$.
Let
\[I := \{ i \in [p] : \hat{\theta}_i \neq 0 \}. \]

Since \(|I| > n\), the columns in \(\{ X_i : i \in I \} \) are linearly dependent. That is, there exists a set of weights \(\{ \lambda_i : i \in I \} \), at least one of which is nonzero, such that
\[
\sum_{i \in I} \lambda_i X_i = 0. \quad (3)
\]

Let the vector \(\lambda \in \mathbb{R}^p \) be obtained by filling in \(\lambda_i = 0 \) for \(i \notin I \).

From here, we will divide our analysis into cases.

Case 1 \(\sum_{i \in I} \lambda_i \text{sign}(\hat{\theta}_i) > 0 \). We will prove by contradiction that this case cannot happen. For an \(\eta > 0 \) to be set later, consider
\[
v = \hat{\theta} - \eta \sum_{i \in I} \lambda_i e_i = \hat{\theta} - \eta \lambda.
\]
First, note that
\[
Xv = X\hat{\theta} - \eta \sum_{i \in I} \lambda_i X_i = y - 0 = y.
\]
We will now prove the claim that, for a small enough \(\eta \), \(\|v\|_1 < \|\hat{\theta}\|_1 \). This will lead to the desired contradiction. To establish this claim, it suffices to prove that \(\lambda \) is a descent direction for \(\| \cdot \|_1 \) at \(\hat{\theta} \).

Toward this end, consider an arbitrary member \(z \) of the subgradient of \(\| \cdot \|_1 \) at \(\hat{\theta} \). Recalling that \(\lambda_i = 0 \) when \(\hat{\theta}_i = 0 \), we have
\[
\lambda \cdot z = \sum_{i \in I} \lambda_i \text{sign}(\hat{\theta}_i) > 0,
\]
by the assumption of this case. This implies that \(\frac{\lambda}{\|\lambda\|_2} \) is indeed a descent direction, so that, for a small enough \(\eta \), \(\|v\|_1 < \|\hat{\theta}\|_1 \). Recalling that \(Xv = y \) then yields a contradiction.

Case 2 \(\sum_{i \in I} \lambda_i \text{sign}(\hat{\theta}_i) < 0 \). This case leads to a contradiction symmetrically to the proof in Case 1, using
\[
v = \hat{\theta} + \eta \lambda.
\]

Case 3 \(\sum_{i \in I} \lambda_i \text{sign}(\hat{\theta}_i) = 0 \). Choose \(i_0 \) arbitrarily from among those \(i \in I \) such that \(\lambda_i \neq 0 \) with the minimum values of \(|\lambda_i| \), that is, \(i_0 \in \arg \min_{i \in [p]} \{|\lambda_i| : \lambda_i > 0\} \). As in the first case, suppose that \(\lambda_{i_0} > 0 \) (the other case can be handled symmetrically). Set \(\eta = \theta_{i_0}/\lambda_{i_0} \), and once again consider the vector
\[
v = \hat{\theta} - \eta \lambda.
\]
As before, for all \(\eta' \in [0, \eta] \), \(X(\hat{\theta} - \eta' \lambda) = y \). Furthermore, since \(i_0 \in \arg \min_{i \in [p]} \{|\lambda_i| : \lambda_i > 0\} \), for each such \(\eta' \), for all \(i \),
\[
\text{sign}((\hat{\theta} - \eta' \lambda)_i) = \text{sign}(\hat{\theta}_i).
\]
This means that along the path from \(\hat{\theta} \) to \(v \), any subgradient \(z \) of the \(\ell_1 \) norm satisfies
\[
z_i = \text{sign}(\hat{\theta}_i), \quad \text{for all } i \in I.
\]
But this means, throughout this path, \(\lambda \) is orthogonal to any subgradient, which in turn means that the \(\ell_1 \)-norm is unchanged. When \(\eta' = \eta \), we have an interpolator with the same \(\ell_1 \)-norm as \(\hat{\theta} \) but one fewer nonzero component, a contradiction.