Monte Carlo simulations of electron transport in 4H-SiC using the DFT-calculated density of states

Janusz Wozny1 · Andrii Kovalchuk1,2 · Zbigniew Lisik1 · Jacek Podgorski1 · Piotr Bugalski1 · Andrzej Kubiak1 · Łukasz Ruta1

Received: 12 March 2020 / Accepted: 9 January 2021 / Published online: 6 February 2021
© The Author(s) 2021

Abstract
We carry out Monte Carlo simulations of electron transport in 4H-silicon carbide (4H-SiC) based on the numerically calculated density of states (DOS) to obtain the electron mobility at low electric fields. From the results, it can be concluded that a correct calculation of the DOS requires a very dense wavevector \(\mathbf{k} \)-mesh when low electron kinetic energies are considered. The crucial issue is the numerical efficiency of the DOS calculation. We investigate the scaling efficiency when different numbers of cores are used.

Keywords Monte Carlo · Density of states · Mobility · 4H-SiC

1 Introduction
Modern electronics requires simulation tools that can combine atomic-scale simulations and the continuous domain of semiconductor devices. We focus herein on 4H-SiC, a wide-bandgap semiconductor used to design power devices with increased efficiency [4]. The Monte Carlo method [13] takes into account scattering events and a band-structure model to investigate electron transport. The macroscopic mobility is then obtained by averaging the drift velocity with respect to an external electric field. As described in Ref. [13], the simplest approach considers analytical formulas for the energy band structure and the density of states. However, this approach is correct only for very low energies and ideal crystalline structures. To model the transport of electrons with even moderate energies above ca. 0.15 eV in 4H-SiC, one cannot use analytical equations for the DOS and the energy band-structure model. In Ref. [1], the authors suggested using simple equations for the scattering rates and to combine these formulas with the DOS calculated numerically, using the density functional theory (DFT) method. The DOS was calculated therein for surprisingly high energies (up to 10 eV), but no consideration was given to the low energy range. We propose to extend this approach and calculate the DOS very accurately for energies between 0 and 0.25 eV. We also suggest combining the Brooks–Herring (BH) and Conwell–Weisskopf (CW) models for scattering on ionized impurities to keep the Monte Carlo approach valid for the whole range of doping concentrations.

The work was supported by the National Science Centre, Poland, under research project “Application of computational physics to study the influence of structural defects on the properties of silicon carbide semiconductor devices”, no. 2013/09/B/ST7/04203.

Janusz Wozny
janusz.wozny@p.lodz.pl
Andrii Kovalchuk
anrikovalchuk@gmail.com
Zbigniew Lisik
zbigniew.lisik@p.lodz.pl
Jacek Podgorski
jacek.podgorski@p.lodz.pl
Andrzej Kubiak
andrzej.kubiak@p.lodz.pl
Łukasz Ruta
lukasz.ruta@p.lodz.pl

1 Department of Semiconductor and Optoelectronics Devices, Lodz University of Technology, Wolczanska 211/215, 90-924 Lodz, Poland
2 Corning Optical Communications Polska, Smolice 1e, Strykow, Poland
2 Monte Carlo method

In the Monte Carlo method, an electron is considered to be a point charge with an effective mass. The free flight of electrons is randomly interrupted by one of the scattering events considered during the simulation. The scattering phenomena are therefore an essential element of the Monte Carlo model. For the presented simulations of 4H-SiC, the following scattering models are included:

- Acoustic phonon scattering:

\[
\Gamma_{\text{ac}}(E) = \frac{\pi \varepsilon_{\text{ac}}^2 k_B T}{\hbar c_{\text{L}}} \text{DOS}(E) \tag{1}
\]

where \(T \) is the temperature, \(c_{\text{L}} = v_s^2 \rho \) with \(v_s \) is the speed of sound in 4H-SiC, \(\rho \) is the mass density, \(\varepsilon_{\text{ac}} \) is the acoustic phonon deformation potential, and \(E \) is the electron energy.

- Ionized impurity scattering:

- Brooks–Herring (BH) model [13]

\[
\Gamma_{\text{BH}}(E) = \frac{\pi N_1 Z^2 e^4}{e^2 \hbar^2 \pi^2 q_D^2 \left(\frac{4k^2 + q_D^2}{4k^2} \right)} \text{DOS}(E), \tag{2}
\]

where \(q_D = \sqrt{\frac{eN_1}{\varepsilon_s k_B T}} = \frac{1}{\lambda_D} \), \(N_1 \) is the density of ionized impurities, \(\varepsilon_s \) is the dielectric permittivity of 4H-SiC, \(Z = 1 \), \(e \) is the elementary charge, \(k \) is the wavevector, and \(\lambda_D \) is the Debye length, combined with

- Conwell–Weisskopf (CW) model

\[
\Gamma_{\text{CW}}(E) = \frac{2(h\pi)^3 N_1}{m^2 a(1 + aE)} \text{DOS}(E), \tag{3}
\]

where \(m \) is the effective mass of states and \(a \) is the nonparabolicity parameter of the band shape.

- Polar optical phonon scattering [1] for absorption and emission:

\[
\begin{align*}
\Gamma_{\text{op, pol}}^{\text{ab}}(E) &= \frac{h\omega_{\text{op}}}{2\hbar k^2 \pi \xi} \ln \left(\sqrt{\frac{E}{h\omega_{\text{op}}} + 1 + \frac{E}{h\omega_{\text{op}}}} \right) N(h\omega_{\text{op}}) \text{DOS}(E + h\omega_{\text{op}}) \text{DOS}(E - h\omega_{\text{op}}), \tag{4}
\end{align*}
\]

where \(h\omega_{\text{op}} \) is the polar optical phonon energy, \(N(h\omega_{\text{op}}) \) is the phonon number calculated from the Bose–Einstein distribution, and

\[
\frac{1}{\epsilon_p} = \frac{1}{\epsilon_{\text{inf}}} - \frac{1}{\epsilon_s} \tag{5}
\]

with \(\epsilon_s \) and \(\epsilon_{\text{inf}} \) being the low- and high-frequency dielectric constant, respectively.

- Nonpolar optical phonon scattering for absorption and emission [13]:

\[
\Gamma_{\text{op, pol}}^{\text{em}}(E) = \frac{h\omega_{\text{op}}^2}{2m^2 \hbar^2} \left(N(h\omega_{\text{op}}) + \frac{1}{2} + \frac{1}{2} \right) \text{DOS}(E) \text{DOS}(E \pm h\omega_{\text{op}}) \tag{6}
\]

where \(h\omega_{\text{op}} \) is the nonpolar optical phonon energy, \(Z_H = 3 \) for 4H-SiC, \(N(h\omega_{\text{op}}) \) is the phonon number calculated from the Bose–Einstein distribution, and \(D_H \) is the polar optical deformation potential.

The material parameters are summarized in Table 1.

Table 1 The values of the material parameters used in the simulations

Parameter	Value
Density, \(\rho \) (kg/m³)	3211
Sound velocity, \(v_\ell \) (m/s)	13730
High-frequency dielectric constant, \(e_f \) (1)	9.7
Low-frequency dielectric constant, \(e_s \) (1)	6.5
Nonpolar optical phonon energy, \(h\omega_{\text{op}} \) (eV)	0.0854
Polar optical deformation potential, \(h\omega_{\text{op}} \) (eV/m)	\(9 \times 10^{10} \)

3 The calculation of the DOS

3.1 Model selection

The DOS for 4H-SiC is calculated using MedeA VASP software [6, 8]. For the atomistic simulation, it is assumed that the elementary crystal cell has the following dimensions: \(a = b = 3.073 \) Å and \(c = 10.053 \) Å. To obtain the DOS, two approaches are compared. The first is the DFT method with generalized gradient approximation (GGA) PBEsol functionals [10]. The second algorithm uses MJLDA meta-GGA functionals [14]. For both methods, the plane-wave cutoff energy is set to 400 eV. The basic difference between these two approaches is that the first one, DFT with GGA, underestimates the energy gap \(E_g \) for semiconductors [12]. The DFT with GGA returned \(E_g = 1.99 \) eV, while for MJLDA with meta-GGA, we obtained \(E_g = 3.17 \) eV, which is very close to the value reported in literature \(E_g = 3.26 \) eV [3].
The most critical parameter for the DOS calculation is the \(k \)-mesh spacing of the Brillouin zone. In Ref. [1], the DOS was calculated for a wide range of energy. In our opinion, the range does not have to be so large; however, the more accurate calculation should be done for the low-kinetic-energy region. This is mainly important for the range of energies where a linear dependence between the drift velocity and electric field is expected. From our previous simulations, we can expect that the energy of electrons would not exceed 0.15 eV [15]. Several atomistic simulations are performed to find an appropriate \(k \) mesh for the DOS calculation. Example results are shown in Fig. 1. The DOS plots are shifted so that the zero energy on the \(x \)-axis corresponds to the bottom of the valence band. The values obtained from the analytical formula in Eq. (7) [13] for the DOS are also plotted to compare the results. The mesh parameters are summarized in Table 2.

The most critical parameter for the DOS calculation is the \(k \)-mesh spacing of the Brillouin zone. In Ref. [1], the DOS was calculated for a wide range of energy. In our opinion, the range does not have to be so large; however, the more accurate calculation should be done for the low-kinetic-energy region. This is mainly important for the range of energies where a linear dependence between the drift velocity and electric field is expected. From our previous simulations, we can expect that the energy of electrons would not exceed 0.15 eV [15]. Several atomistic simulations are performed to find an appropriate \(k \) mesh for the DOS calculation. Example results are shown in Fig. 1. The DOS plots are shifted so that the zero energy on the \(x \)-axis corresponds to the bottom of the valence band. The values obtained from the analytical formula in Eq. (7) [13] for the DOS are also plotted to compare the results. The mesh parameters are summarized in Table 2.

\[
\text{DOS}(E) = 2 \left(\frac{2m_0^*}{\hbar^2} \right)^{3/2} \frac{\sqrt{E(1 + \alpha E)}}{(1 + 2\alpha E)}, \tag{7}
\]

where \(m_0 = (m_1 m_2 m_3)^{1/3} \), \(\alpha = 0.323 \) [9], \(m_1 = 0.58 \), \(m_2 = 0.28 \), \(m_3 = 0.31 \) of the electron mass \(m_0 \) [7].

From the presented calculations, one can see that a very dense \(k \)-mesh with \(89 \times 89 \times 25 \) points is required to obtain a correct value of the DOS near the edge of the conduction band. One should also note that the analytical formula for the DOS in Eq. (7), which takes into account a single valley, is not valid above 0.15 eV. As shown in Fig. 2, although the correct value of \(E_g \) can be obtained from the MJLDA meta-GGA functional, it overestimates the value of the DOS.

Table 2 A summary of the \(k \)-mesh results for the DOS calculation

No. of atoms	\(k \)-Mesh points	\(k \)-Spacings (Å\(^{-1}\))
M1	8 \(25 \times 25 \times 25 \)	\(0.094 \times 0.094 \times 0.025 \)
M2	8 \(50 \times 50 \times 25 \)	\(0.047 \times 0.047 \times 0.025 \)
M3	8 \(89 \times 89 \times 25 \)	\(0.027 \times 0.027 \times 0.025 \)
3.2 The effect of variation in the DOS

The scattering rate is an increasing function of the DOS, as shown by Eqs. (1–6). Underestimating the DOS leads to lower scattering rates and higher values of the calculated mobility. The total scattering rate (T_{Tot}), i.e., the sum of scattering by all mechanisms calculated for different sets of DOS, is shown in Fig. 3. The MJLDA meta-GGA model overestimates the scattering rates for energies above ca. 0.15 eV, but underestimates the scattering for low energies. The accuracy of the electron mobility thus depends also on the external electric field applied. A histogram of the electron energies for an external field $E = 10^6$ V/m is shown in Fig. 3 (right y-axis). There are almost no particles with energies above 0.15 eV. For this value of the electrical field, the velocity and external field are proportional. For this range of energies, both the MJLDA meta-GGA model and the DFT with GGA-PBEsol with a coarse k-mesh underestimate the DOS. This leads to erroneous, too low values of the scattering rates.

3.3 The scalability of the calculations

All the calculations are performed on a Linux system with 128 GB RAM, 2x Intel Xeon CPU E5-2680 v3 (12 cores, corresponding to 24 logical cores each) using MedeA VASP 5.3 software. VASP 5.3, as described in the documentation [8], is compiled using the Intel Fortran compiler (IFORT v.14) and uses the Intel Math Kernel Library.

The most crucial parameter is the time of computing (ToC). The VASP calculations can benefit from parallel computing. The ToC is shown as a function of the number of logical cores used during the calculations in Fig. 4. The ToC is reported for a single core and for even numbers of cores from 2 to 36. Missing data mean that the calculation process failed and no DOS was returned.

The ToC to calculate the DOS by means of MJLDA meta-GGA is more than three times longer than when using the DFT GGA-PBEsol method. However, the optimal number of parallel cores is ca. 4–8 for the calculation for the eight-atom elementary cell of 4H-SiC is similar when using both approaches. Using more than eight cores does not affect the ToC. Moreover, for the MJLDA meta-GGA model, the ToC increases when more than 24 cores are used. The synchronization between so many threads delays the execution of the routines.

The DFT GGA-PBEsol calculation failed when more than 16 threads were requested. Since only logs can be accessed, one can conclude that the problem occurred inside one of the Intel MKL routines due to incorrect communication between different threads.
4 Simulation results

4.1 The scattering, Brooks–Herring, and Conwell–Weisskopf models applied

The essential quantities for the MC simulations are the scattering rates. The calculated scattering rates are shown in Fig. 5.

Two models (BH and CW) are used for the ionized doping scattering rates. The scattering rates for the BH and CW models are shown in Fig. 6.

The Monte Carlo simulations switch from BH to CW when the following condition is fulfilled:

\[
\sqrt{\frac{\pi e^2 k_B T}{e^2 N_i}} < b_{\text{max}},
\]

where

\[
b_{\text{max}} = \left(\frac{3}{4 \pi N_i} \right)^{\frac{1}{2}}.
\]

4.2 Incomplete ionization

Note that the results shown above assume full ionization of dopants. However, this assumption is not valid for wide-bandgap semiconductors. Consider nitrogen, the most popular \(n\)-type dopant for 4H-SiC. A nitrogen atom may be inserted at two different locations, which results in two different dopant ionization energies: \(\Delta E_{\text{Dh}} = 0.042\, \text{eV}\) and \(\Delta E_{\text{Dc}} = 0.083\, \text{eV}\) [2]. The total ionization rate \(I\) for a donor atom density of \(N_D\) is

\[
I = \frac{N_{\text{Dh}}^+ + N_{\text{Dc}}^+}{N_D},
\]

with [16]

\[
N_{\text{Dh}}^+ = \frac{N_{\text{Dh}}}{1 + g_D \frac{N_{\text{Dh}}}{N_C} \exp \left(\frac{\Delta E_{\text{Dh}}}{k_B T} \right)},
\]

\[
N_{\text{Dc}}^+ = \frac{N_{\text{Dc}}}{1 + g_D \frac{N_{\text{Dc}}}{N_C} \exp \left(\frac{\Delta E_{\text{Dc}}}{k_B T} \right)},
\]

where \(N_C\) is the effective density of states for electrons and \(g_D = 2\) is the degeneracy factor [16]. Assuming that \(N_{\text{Dh}} = N_{\text{Dc}} = 0.5N_D\) and an electron density of \(n = N_D^+\), the total ionized density can be expressed as

\[
N_D^+ = \frac{N_{\text{Dh}}}{1 + g_D \frac{N_{\text{Dh}}}{N_C} \exp \left(\frac{\Delta E_{\text{Dh}}}{k_B T} \right)} + \frac{N_{\text{Dc}}}{1 + g_D \frac{N_{\text{Dc}}}{N_C} \exp \left(\frac{\Delta E_{\text{Dc}}}{k_B T} \right)}.
\]

Equation (12) is a third-order polynomial in \(N_D^+\).

Figure 7 shows the ionization rate of nitrogen dopants at 300 K, 500 K, and 700 K. At 300 K, the ionization level is lower than 50% for a doping concentration of \(5 \times 10^{18}\, \text{cm}^{-3}\).

4.3 Electron mobility

The mobility values calculated using the full and incomplete ionization models are shown in Fig. 8. In both cases, the combination of the CW and BH ionized dopant scattering models is used, as described in Sect. 4.1. Using only the BH approach, which is appropriate for low and intermediate doping concentrations, leads to an incorrect increase of the mobility for high doping concentration levels. We show this effect in Ref. [5]. The mobility for the incomplete ionization
model is slightly higher. This is caused by the fact that the ionization scattering rate is less significant due to the smaller number of ionized atoms, and nonionized impurity scattering is not considered in these simulations.

5 Conclusions

It is shown that calculations of the DOS in the range up to 0.25 eV must be carried out using a dense mesh in the k-domain. We recommend using more than 50 k-points in directions parallel to the c-axis and 25 in the c-axis. The DFT GGA PBEsol approach is more efficient than the MJLDA meta-GGA model and also calculates the DOS more accurately. However, to properly report the E_g value, the MJLDA meta-GGA method must be used first to correct the DFT GGA PBEsol calculations of E_g. The optimal number of cores is from four to eight when the elementary cell of 4H-SiC is considered. One should not use more than 16 cores since this may lead to failure of the calculations. With the appropriate use of BH and CW, it is possible to obtain a correct value for the mobility over the entire range of doping concentrations. However, it is also vital to include the incomplete ionization model. The routine proposed in this article can be used for any semiconductor, including also crystals with defects. The current study demonstrates that utilizing DFT simulations and the Monte Carlo method enables the creation of a link between the world of atoms and the continuous domain of solid-state electronics.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akturk, A., Goldsman, N., Potbhare, S., Lelis, A.: High field density-functional-theory based Monte Carlo: 4H-SiC impact ionization and velocity saturation. J. Appl. Phys. 105(3), 033703 (2009)
2. Canino, M.: Phosphorus ion implantation in SiC: influence of the annealing conditions on dopant activation and defects. Ph.D. thesis, University of Bologna (2007)
3. Choyke, W.J., Matsunami, H., Pensl, G.: Silicon Carbide: Recent Major Advances. Springer, Berlin (2013)
4. Kimoto, T.: Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 54(4), 040103 (2015)
5. Kovalchuk, A., Wozny, J., Lisik, Z., Podgorski, J., Bugalski, P., Lobur, M., Kosobutsky, P.: Ensemble Monte Carlo simulation of 4H-SiC for electrons mobility calculation. In: 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), pp. 73–76. IEEE (2018)
6. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)
7. Lambrecht, W.R., Segall, B.: Band-structure analysis of the conduction-band mass anisotropy in 6H and 4H SiC. Phys. Rev. B 52(4), R2249 (1995)
8. Materials Design: Medea-vasp (2014)
9. Mickevičius, R., Zhao, J.H.: Monte Carlo study of electron transport in SiC. J. Appl. Phys. 83(6), 3161–3167 (1998)
10. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)
11. Schaffer, W.J., Negley, G., Irvine, K., Palmour, J.: Conductivity anisotropy in epitaxial 6H and 4H SiC. MRS Online Proc. Libr. Arch. 339, 595–600 (1994)
12. Shishkin, M., Kresse, G.: Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B 75(23), 235102 (2007)
13. Tomizawa, K.: Numerical Simulation of Submicron Semiconductor Devices. Artech House, Norwood (1993)
14. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)
15. Woźni, J., Lisik, Z., Podgórski, J.: Hall mobility maps for 4H-silicon carbide by Monte Carlo simulations. In: Journal of Physics: Conference Series, vol. 494, p. 012005. IOP Publishing (2014)
16. Zetterling, C.M.: Process Technology for Silicon Carbide Devices, vol. 2. IET, Stevenage (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.