Genetic associations in type I interferon related pathways with autoimmunity

Angélica M Delgado-Vega1, Marta E Alarcón-Riquelme1,2,3 and Sergey V Kozyrev*1

Abstract
Type I interferons play an outstanding role in innate and adaptive immunity by enhancing functions of dendritic cells, inducing differentiation of monocytes, promoting immunoglobulin class switching in B cells and stimulating effector functions of T cells. The increased production of IFNα/β by plasmacytoid dendritic cells could be responsible for not only efficient antiviral defence, but it also may be a pathological factor in the development of various autoimmune disorders. The first evidence of a genetic link between type I interferons and autoimmune diseases was the observation that elevated IFNα activity is frequently detected in the sera of patients with systemic lupus erythematosus, and that this trait shows high heritability and familial aggregation in their first-degree healthy relatives. To date, a number of genes involved in interferon signalling have been associated with various autoimmune diseases. Patients with systemic lupus erythematosus, Sjögren’s syndrome, dermatomyositis, psoriasis, and a fraction of patients with rheumatoid arthritis display a specific expression pattern of interferon-dependent genes in their leukocytes, termed the interferon signature. Here, in an attempt to understand the role of type I interferons in the pathogenesis of autoimmunity, we review the recent advances in the genetics of autoimmune diseases focusing on the association of genes involved in type I interferon pathways.

Introduction
Type I interferons comprise a large group of structurally similar cytokines that includes 13 subtypes of IFNα and unique IFNβ, IFNε, IFNκ and IFNω in humans, which exert similar but not identical effects due to their different binding affinities to a common cognate receptor [1,2]. Genes coding for the type I interferons are clustered on human chromosome 9q22 and apparently originated from a duplication of a single gene [3]. Both the number of genes and their intronless structure point to the vital role of interferons in host defence against viruses. During a viral infection, type I interferons activate innate immune responses and exert anti-proliferative and cytotoxic effects on cells. Type I interferons also induce survival, maturation and activation of different subsets of dendritic cells, thereby enhancing their antigen-presenting abilities. Activated dendritic cells upregulate expression of human leucocyte antigen and other co-stimulatory molecules, such as CD40, CD80, CD83 and CD86 [4-6], and initiate the production of cytokines such as TNFα, IL-6, IL-10, IL-12, IL-15, IL-18, IL-23 [7-10], B-cell activating factor [11,12], and the chemokines CCL3, CCL4, CCL5, and CXCL10 [13-17], which in turn exert co-stimulatory effects on all other immune cells.

Type I interferons link together both innate and adaptive immune systems. Their effects in adaptive immunity are mediated through activated dendritic cells and also by direct binding to interferon receptors on B cells, T cells, neutrophils and natural killer (NK) cells. They promote immunoglobulin class switching and antibody production in B cells, promote T-cell effector activity and promote synthesis of IFNγ by T cells and NK cells, and they protect both B cells and T cells from apoptosis [18-32].

Type I interferons can also promote pathologic autoimmunity; IFNα is able to break self-tolerance by activating antigen-presenting cells after uptake of self material [33]. The first genetic link between type I interferons and autoimmune diseases was provided by the observation of an elevated IFNα level in the sera of patients with systemic lupus erythematosus (SLE), and the familial aggregation of this trait in healthy relatives [34-37]. This observation suggested that the alteration of the interferon pathway is a primary event in SLE pathogenesis, rather than a consequence of the disease phenotype. The levels of IFNα activity in patients with SLE are positively correlated with both clinical and serological
markers of disease activity [34,35,37,38]. Increased levels of IFNα were also observed in patients with rheumatoid arthritis (RA), scleroderma and primary Sjögren’s syndrome (pSS) [34]. Moreover, about 20% of patients with long-term treatment of haematological malignancies and viral hepatitis infections with recombinant IFNα develop lupus or other autoimmune diseases, such as type 1 diabetes, psoriasis, inflammatory arthritis and pSS, or show symptoms resembling autoimmune diseases [39,40]. These results together further substantiate the involvement of IFNα in the development of various autoimmune disorders.

SLE patients display another important feature of an active interferon-mediated signalling: an overexpression of genes regulated by type I interferon, termed the interferon signature, which is more prominent in patients with severe disease [41]. In agreement with the idea of a shared genetic basis of autoimmune diseases [42], the interferon signature has also been demonstrated for pSS, dermatomyositis, psoriasis and some RA patients [43].

In the present review we will give a brief overview of the type I interferon signalling, with the main focus on the genetic linkage between type I interferon-mediated pathways and autoimmune diseases. True functional variants for the majority of associated genes have not yet been found, and for that reason the biology behind them is largely unknown. Owing to the space constraints, we shall examine in detail only a few genes with either strong or consistent evidence of association with autoimmune diseases for which functional variants have been described or, at least, proposed. A more complete list of associated genes involved in interferon-related pathways is presented in Table 1.

Genetic linkages to the pathways inducing production of type I interferons

Although all nucleated cells can produce type I interferons in response to viral infections, there is a group of professional cells producing extremely high amounts: the plasmacytoid dendritic cells (pDCs) [44,45]. The bulk yield of interferons may reach 3 to 10 pg/cell, which is estimated to be about 1,000 times more than in cells of any other type. The ability of cells to sense infections is linked to the special sensors localized on the membrane and in the cytosol (Figure 1). The first group consists of the Toll-like receptors (TLRs), of which TLR3, TLR4, TLR7/8 and TLR9 transmit the signal resulting in the induction of interferon genes after ligation with dsRNA, bacterial lipopolysaccharides, single-stranded RNA and unmethylated CpG-rich DNA, respectively [46]. Unlike cells of other types, pDCs express only TLR7 and TLR9, giving these two receptors a paramount importance in type I interferon production [47-51]. Another group of ubiquitous sensors, the RNA helicases retinoic acid-inducible gene 1 and melanoma differentiation-associated gene 5, reside in the cytoplasm and recognize dsRNA and viral replicating intermediates [52,53]. The presence of viral RNA in the cytoplasm may activate the ultimate weapons of the antiviral defence – dsRNA-dependent serine-threonine kinase [54] and 2′,5′-oligoadenylate synthetase [55] – resulting in complete stalling of the cellular transcription and translation in the infected cell and, eventually, apoptosis. It was shown recently that cytoplasmic dsDNA could be recognized by two cytosolic dsDNA sensors: DNA-dependent activator of interferon regulatory factors (IRFs), and absent in melanoma 2 – both signal through TBK1 and IRF3, and induce genes for IFNβ and proinflammatory cytokines [56]. The binding of absent in melanoma 2 to dsDNA leads to activation of caspase 1 and caspase 3, which cleaves and releases IL-1β and IL-18 [57-61].

Interestingly, autophagy – an autonomous process of re-utilization of cellular organelles – has been also implicated in the induction of innate immune responses and production of type I interferons [62]. Viral RNA could be engulfed by a forming autophagosome and, after fusing it with an endosome, could be detected by TLR7. Mouse pDCs lacking the autophagy-related 5 (yeast) (Atg5) gene showed a decreased IFNα response and were unable to respond to vesicular stomatitis virus infection [62].

It is important to note that the activation of a particular pathway depends upon the cell type, the nature of the pathogen and the cytokines present in the milieu. All of these factors determine the pattern of induced genes, which could vary from the induction of IFNα/β genes in pDCs in response to certain viral infections to the induction of genes for other proinflammatory cytokines in another cell type.

Transcription factors at the knots of the signalling cascades

IRF5 belongs to the family of IRFs and plays an essential role in many aspects of cellular responses to interferons, including antiviral defence, cell growth regulation and apoptosis [63-67]. The IRF5 gene was associated first with SLE [68,69], and since then its association has been established with many other autoimmune diseases, including RA [70], Sjögren’s syndrome [71], inflammatory bowel disease [72], and multiple sclerosis [73]. The genetics of IRF5 is very well studied to date, and finds support in the functional analysis of the associated causative variants. Several functional polymorphisms are believed to play a major role in determining the gene function in the pathogenesis, including: the promoter CCGGG insertion/deletion, which strengthens the binding site for the Sp1 transcription factor and thus affects the expression of the gene [74]; the SNP rs20046460, which creates an alternative 5′-donor splice site leading to the splicing of the alternative 5′-UTR exon 1B; the in-frame
Table 1. Genetic associations involving molecules of the type I interferon pathway

Chromosome	Gene	Associated polymorphisms	Disease/trait (if demonstrated)	Functional effect (if demonstrated)	References
Genes with strong evidence of association and/or good replication studies					
1q21-24	FCGR2A	rs1801274 (R313H)	SLE, PAPS	R131 has lower affinity to IgG₂, which may affect the clearance of immune complexes	[85,105,106]
2q24.3	IFIH1 (MDA-5)	rs1990760 (T946A), rs3747517 (R434H)	T1D, RA, MS, GD		[183-186]
		rs35337543 (G>C), rs35667974 (G253V), rs35744605 (G627X), rs35732034 (G>A)	T1D	E627X and I923V are loss of function mutations. E627X results in deletion of the C-terminal region necessary for dsRNA binding activity. I923V alters a conserved residue, which might impair the signalling	[10,187]
7q32	IRF5	CCGGGG promoter insertion/deletion, rs2004640, exon 6 insertion/deletion rs10954213	RA, T1D, SLE, IBD, pSS	CCGGGG and rs10954213 risk alleles enhance expression levels of IRF5. SNP rs2004640 and exon 6 insertion/deletion determine alternative splice isoforms	[68,70,72,74,75,78,188]
2q32.2	STAT4	rs7574865, rs7568275, rs3821236, rs10168266	RA, SLE, pSS, psoriasis, PAPS	Risk haplotype associated with high levels of expression and greater sensitivity to IFNα	[144,146-150,164,169,189,190]
9p13.2	TYK2	rs2304256, rs12720270, rs34536443	SLE, MS	rs12720270 located in an intron/exon boundary might be involved in alternative splicing	[69,141-143,149]
8p23-p22	BLK	rs13277113, rs2736340	SLE, PAPS	Promoter SNPs associated with reduced expression of BLK	[145,149,169]
4q24	BANK1	rs10516487 (R61H), rs17266594, rs3733197 (A383T)	SLE, RA	rs17266594 determines the transcription ratio between the full-length and delta 2 isoforms	[149,166,171-173]
Good evidence					
1q21-24	FCGR3B	NA1/NA2, CNV of the whole gene	SLE, mPA, WG	NA1-homozygous has stronger FcγR-mediated phagocytic response. Increased risk for SLE with <2 gene copies	[107]
4q21-q25	SPP1	rs1126616, rs1126772, rs9138, rs7687316	3'-UTR polymorphisms associated with high amounts of osteopontin and IFNα in sera of patients with SLE. Evidence of rs9138–gender interaction	[130,131,136,137]	
5q32-q33.1	TNIP1	rs10036748, rs7708392	SLE	No functional polymorphism yet identified. TNIP1 is the A20-binding inhibitor of NF-κB activation and together with A-20 serves as brake for interferon production induced via TLR	[86,163,191]
16p13.3	DNASEI	rs17728338	Psoriasis	V89M and K5X are associated with lower enzymatic activity. Haplotype rs179982-rs1030874-rs1059857 defines isoforms of DNaseI	[179,192-194]
3p21.31	TREX1 (DNASEII)	R141H, I58V, P212fs, G227S, R240S, A247, P272fs, P290L, Y305C, G306A	SLE, pSS	R141H associated with decreased exonuclease activity. Frameshift mutations D272fs and P212fs alter subcellular localization of the protein	[180,181]
Good evidence but more replication studies are required					
2p13-p12	REL	rs13031237, rs13017599	RA		[93]
3q13.11	CBLB	F328L	T1D		[195]
1q21-24	FCGR3A	rs396991, V176F	Lupus nephritis		[105]
1q21-24	FCGR2B	I232T	SLE		[105]
8q13	LYV	rs983130	SLE		[85,176]
5q31.1	IRF1	rs2070721	MS, JIA		[161,196]
2q36	IR5	rs1801278, G972R	T1D		[197]
16q24.1	IRF8	rs17445836	MS		[90]
2q32.2	STAT1	rs2066802, rs1547550	MS		[161]
11q24.2	TIRAP	rs8177374, S180L	SLE, IBD		[198,199]

Continued overleaf
insertion/deletion of the repetitive sequence in exon 6, which makes two families of the alternative IRF5 transcripts [75] (the exon 6 insertion/deletion is located in the putative PEST domain of the protein, but its function at present remains unknown); and, finally, the SNP rs10954213, which alters the polyadenylation signal. The presence of the G allele results in a longer 3’-UTR with two AU-rich elements rendering the transcript for rapid degradation, while the A allele generates mRNA with a short and stable 3’-UTR [76]. It has been shown that only the promoter insertion/deletion and the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defined and is predicted to give rise to transcripts expressing exon 1B isoforms (rs2004640-T), to carry the exon 6 insertion, and to be overexpressed because of the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defined and is predicted to give rise to transcripts expressing exon 1B isoforms (rs2004640-T), to carry the exon 6 insertion, and to be overexpressed because of the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defined and is predicted to give rise to transcripts expressing exon 1B isoforms (rs2004640-T), to carry the exon 6 insertion, and to be overexpressed because of the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defined and is predicted to give rise to transcripts expressing exon 1B isoforms (rs2004640-T), to carry the exon 6 insertion, and to be overexpressed because of the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defined and is predicted to give rise to transcripts expressing exon 1B isoforms (rs2004640-T), to carry the exon 6 insertion, and to be overexpressed because of the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defined and is predicted to give rise to transcripts expressing exon 1B isoforms (rs2004640-T), to carry the exon 6 insertion, and to be overexpressed because of the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defined and is predicted to give rise to transcripts expressing exon 1B isoforms (rs2004640-T), to carry the exon 6 insertion, and to be overexpressed because of the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defined and is predicted to give rise to transcripts expressing exon 1B isoforms (rs2004640-T), to carry the exon 6 insertion, and to be overexpressed because of the poly(A) SNP alter the gene expression levels [77]. The level of the alternative transcripts caused by the T allele of rs2004640 is very low, and it encodes for essentially the same protein isoforms as the transcripts with the major exon 1A.
Figure 1. Pathways leading to the type I interferon production. Among the family of Toll-like receptors (TLRs), TLR3, TLR4, TLR7/8 and TLR9 are known to induce production of type I interferons in various cells. Surface TLR4 recognizes lipopolysaccharides (LPS) from bacterial cell walls and transmits the signal downstream via MyD88-dependent or MyD88-independent pathways resulting in phosphorylation, dimerization and nuclear translocation of IRF5 and IRF3, and activation of NF-κB and mitogen-activated protein kinase (MAPK) pathways. Intracellular TLR3, TLR7/8 and TLR9 residing in the endosomes are activated by viral double-stranded (ds)RNA, single-stranded RNA and unmethylated dsDNA, respectively. TLR3 signals via adaptor TRIF and activates IRF3, NF-κB and MAPK pathways. TLR7/8 and TLR9 transmit the signal via the adaptor molecule MyD88. The intracellular form of osteopontin 1 (SPP1) binds to MyD88 upon ligation of TLR9 with unmethylated CpG oligonucleotides and promotes induction of IFNα genes in mouse plasmacytoid dendritic cells (pDCs). TLR7 and TLR9 are the only receptors expressed in pDCs, while other cells contain other TLRs as well. Detection of nucleic acids by TLRs in intracellular endosomes prevents immune responses to the host self-DNA. Normally, nucleic acids released by dying necrotic or apoptotic cells undergoing rapid degradation by nucleases, DNase I and DNase III (TREX1), while bacterial or viral nucleic acids are protected by the cell wall or viral capsid and could be detected by TLRs only after penetrating the cell. Breach of tolerance to self-DNA and activation of pDCs could happen if self-DNA remains undegraded due to defective function of the nucleases and meet endosomal TLR9. Cationic antimicrobial peptide LL37 and high-mobility group box 1 protein (HMGB1) released by damaged or infected cells, mainly keratinocytes and neutrophils, bind DNA making it resistant to degradation and facilitate endocytosis of DNA through the lipid rafts and receptor for advanced glycation end-products (RAGE), delivering it to the cytoplasm and translocation to the endosomes containing TLR9. Viral DNAs residing in the cytoplasm could be detected by two cytoplasmic DNA sensors, DNA-dependent activator of interferon regulatory factors (DAI) and absent in melanoma 2 (AIM2), which trigger induction of type I interferon genes through TBK1-mediated and IRF3-mediated signalling. AIM2 also activates caspases 1 and 3 by recruiting adaptor ASC (apoptosis-associated speck-like protein containing a CARD) and forming an inflammasome that promotes release of IL-1β and IL-18. Two RNA helicases, retinoic acid-inducible gene 1 (RIG-1) and melanoma differentiation-associated gene 5 (MDA-5), detect viral RNAs in the cytoplasm. Activated RIG-1 and MDA-5 interact with adaptor protein MAVS anchored by its C-terminal domain to a mitochondrion. This interaction triggers signalling through TRAF3 and TRAF6 adaptors and results in activation of IRF3, IRF7 and NF-κB pathway. Autophagosomes can engulf the replicating viral RNAs and, after fusion with endosomes, present it to the TLR7/8. Viral RNAs can induce a common antiviral defence mechanism aimed at blocking viral replication through total inhibition of cellular transcription and translation. Thus, dsRNAs activate 2′,5′-oligoadenylate synthase (OAS) producing 2′,5′-oligoadénylates, which in turn activate the latent nuclease RNase L, resulting in the degradation of all cytoplasmic RNAs. Another pathway targets protein synthesis machinery by protein kinase dsRNA-dependent serine–threonine kinase (PKR), which inactivates the alpha subunit of initiation factor eIF2, resulting in rapid inhibition of protein translation. The latter two pathways may induce apoptosis of the infected cell. Yellow stars, genes with strong evidence for association with autoimmune diseases; black stars, genes with inconsistent association. ISG, interferon stimulated genes; PI3K, phosphoinositide 3-kinase.
Selective pressure on Mexican Indians carrying risk alleles, and hence high expression of IRF5 and interferons, which gave them survival advantages against certain viral infections brought from the Old World. At the same time, the side effect of this survival might be leading to a more severe SLE in Mexican patients, characterized by the earlier onset and frequent renal and other organ damage [84].

Remarkably, neither IRF3 nor IRF7 seem to be reliably associated with autoimmunity. Although a SNP (rs4963128) in PHRF1 (previously known as KIAA1542) has been convincingly associated with SLE [85,86], and this association is believed to be due to linkage disequilibrium (LD) with IRF7, no study has yet directly tested IRF7. The PHRF1 and IRF7 genes are localized on chromosome 11p15 in a tail-to-tail mode. The haplotype structure of the HapMap-CEU population (data Release 27) [87] shows that both loci are located within the same haplotype block together with the mucin-like proteocdonerin MUPCDH. The associated PHRF1 variant is 23 kb downstream of IRF7 and is in rather moderate LD with two SNPs in IRF7: rs12805435 ($r^2 = 0.475$) and rs10902178 ($r^2 = 0.475$). Thus, even though IRF7 is the most plausible candidate in this region given its function in IFNα production, its role as a susceptibility gene for SLE remains to be verified.

A promoter polymorphism in the IRF3 gene conferring higher expression of IRF3 was associated with SLE in one Japanese study [88]; however, the association was not corroborated on a larger set of Spanish patients [89]. Of note, IRF3 is constitutively expressed at high levels in all cells, while low levels of IRF7 are present in cells of lymphoid origin. This contrasts to an even more restricted pattern of expression of the IRF5 gene, as mentioned above.

The SNP rs17445836 located 61 kb downstream of the IRF8 gene has been recently associated with multiple sclerosis [90]. Although the authors concluded that the most likely susceptibility gene was IRF8, the block where the SNP is located is separated from IRF8 by three recombination hot spots [90]. Interestingly, the presence of the risk allele G of rs17445836 was positively correlated with expression levels of the IRF7 and IFI1H1 genes, but not with IRF8 itself or interferon genes.

The transcription factor NF-κB is a central regulator of immune responses and inflammation, and is present virtually in all cell types. It is composed of homodimers or heterodimers formed by the members of the NF-κB family, which include RelA (p65), RelB, c-Rel, NF-κB1 (p50) and NF-κB2 (p52) [91]. Single and double knockout mouse models for these genes display survival and phenotypic differences, suggesting that, despite some overlapping functions, they all have unique roles in the immune system (reviewed in [92]). Recently, the gene coding for c-Rel (REL) was identified as a susceptibility locus for RA [93]. c-Rel expression is restricted to haematopoietic cells and lymphocytes, and mainly to T cells and B cells. In contrast, RelA, NF-κB1 and NF-κB2 are widely expressed in various cell types and constitute the major classic NF-κB factor, residing in its inactive form in the cytoplasm. Stimulation of cells activates NF-κB, which translocates into the nucleus and induces the expression of a great number of genes. Interestingly, constitutively active nuclear heterodimer p50/c-Rel is found in mature B cells also co-expressing the cytoplasmic heterodimer p50/p65, suggesting a specific function for c-Rel in B-cell stimulation [94]. Mice deficient for c-Rel develop normally and display only unresponsiveness of B cells and T cells to certain mitogenic stimuli [95]. B cells lacking c-Rel show increased sensitivity to B-cell receptor-mediated apoptotic signals [96]. c-Rel is indispensable for expression of IL-12 and IL-23 subunits in mouse dendritic cells [97,98].

With exception for one more member of the family, NF-κB5 – which has been inconsistently associated with genetic susceptibility to some of the autoimmune diseases [99-101] – no other factors were found to be linked with autoimmunity. Remarkably, NF-κB knockout mice – unlike knockout mice for RelA, RelB, or NF-κB5 – have only minor defects in lymphocyte activation, and particularly in B-cell responses [102].

Genes involved in clearance of immune complexes – Fc gamma receptors

SLE patients display an increased rate of apoptosis of peripheral mononuclear cells and decreased clearance of the circulating immune complexes (ICs), which together may lead to the accumulation of high titres of ICs and cause organ damage [103,104]. The Fc gamma receptors (FcyR) are low-affinity receptors for the Fc portion of IgG and play a critical role in the clearance of ICs. Several polymorphisms for FcγRIIa, FcγRIIb, FcγRIIa and FcγRIIB genes located in a tight cluster on chromosome 1q23 have been associated with SLE, lupus nephritis and primary anti-phospholipid syndrome [85,105-107]. The most consistent association, replicated in various populations of diverse ethnic groups, is the missense variation of FCGR2A (Arg131His) located in the ligand binding domain of the receptor [106]. Arginine coded by the susceptibility allele significantly reduces the affinity of binding to circulating IgG2. This, in turn, results in impaired FcγR-mediated phagocytosis and poor clearance of ICs.

Receptor ligation leads to the activation and maturation of dendritic cells and enhances their ability to stimulate T cells via cross-presentation of antigens and enhanced secretion of inflammatory cytokines. Interestingly, pDCs express FcγRIIa containing the activation ITAM domain,
but not FcyRIIb with the inhibitory ITIM domain [108]. It was shown also that ligation of FcyRIIa triggers IFNα production by pDCs [108]. In this regard, it is unclear how to reconcile the stimulatory function of the receptor on the interferon genes and the association with the risk allele that impairs this function. It might be that the primary effect is cell-type specific and unrelated to interferon production, and is rather the result of impaired internalization of immune complexes. Since FcyRIIa is present also on the surface of neutrophils, monocytes, macrophages, and platelets, its dysfunction on these cells could yield to the greater amount of circulating ICs. It has also been suggested that FcyRIIa might have dual ability to deliver both activating and inhibiting signals depending on the cell type and the milieu [108]. Another as yet unproven hypothesis suggests that variations in FcyRIIa, FcyRIIb and FcyRIIIa affect risk in a compound heterozygote fashion, and cause disbalance in stimulatory and inhibitory signals [109].

Other genes required for type I interferon production
A new function in the TLR9-mediated induction of IFNα genes in pDCs has been recently described for the intracellular form of murine osteopontin 1 (early T-lymphotoyte activation protein 1,Eta-1, or SPP1) [110,111]. The majority of osteopontin 1 is secreted from activated T cells, NK cells and dendritic cells, and plays a key role in bone morphogenesis [112,113]. Its immune functions include activation of T cells, T-helper type 1 cell differentiation, and activation of B cells and macrophages [114-116]. TLR9 activation by CpG-rich DNA causes rapid association of intracellular osteopontin with the adaptor MyD88 and leads to the induction of interferon genes in an IRF7-dependent manner [111]. Although these data have been obtained from mouse dendritic cells, several lines of evidence suggest the existence of a similar pathway in humans. First, elevated levels of serum osteopontin were detected before and during relapses of different autoimmune diseases, including multiple sclerosis, SLE, RA and inflammatory bowel disease, in humans and their relevant mouse models [117-128]. Second, polymorphisms associated with autoimmunity and high levels of osteopontin were found in both species [119,129-133]. In mice IRF7 plays a major role in induction of IFNα/β genes in pDCs, while in humans IRF5 is more important than IRF7 – although both factors are able to induce type I interferons [65,82,83,134,135]. Whether or not human osteopontin 1 is also able to activate IRF5 in human pDCs is unknown at present.

Interestingly, polymorphisms located in the 3′-UTR region (rs1126616T and rs9138C) of the human SPP1 gene show much stronger association with SLE in men than in women [136,137]. The haplotype rs1126616T-rs1126772A-rs9138C, however, is also associated with SLE in general [136]. Moreover, rs9138C is associated with high amounts of serum osteopontin and IFNα in men and young women [137]. Of note, gender-related differences in SPP1 expression were observed also in rats [138,139]. Bioinformatic analysis of the associated SNPs located in the 3′-UTR suggested that they might disrupt micro-RNA target sites, and thus affect the gene expression [136]. More detailed analysis is required, however, to verify this hypothesis. SNPs located in the 5′ region of the gene (rs11730582 and rs28357094) were associated with anti-RNP antibodies in African-Americans, while in European-Americans and Hispanic-Americans only a nonsignificant trend toward association was observed [137]. The study was suggested to be underpowered because of the much lower frequency of individuals carrying anti-RNP antibodies in these two populations.

Genetic linkages to the signalling pathways induced by type I interferons
Type I interferons bind to a common ubiquitous receptor composed of the two chains IFNA-R1 and IFNA-R2, coded by two distinct genes located on chromosome 21q22 [140]. The IFNA-R2 subunit is believed to have generally higher affinity to interferons, although it has been reported that various types and subtypes of type I interferon have different affinities and kinetics of binding to the receptor subunits, which may lead to differential downstream signalling [2]. The antiviral activity of interferons correlates with their binding affinities to IFNA-R2, while anti-proliferative activity depends rather on the affinity to IFNA-R1 [2]. Ligand binding causes receptor dimerization and phosphorylation of two associated protein tyrosine kinases, Tyk2 and Jak1, followed by direct activation of multiple redundant signalling pathways. The biological activities of interferons are context specific and depend upon the interferon subtype, the cell type (pDCs, T cells, B cells, NK cells, cytotoxic lymphocytes, other tissue-specific cells), concomitant signals such as cytokines present in the surrounding environment, and activation of other co-receptors (B-cell receptor/T-cell receptor, and so forth). Alternative splicing of IFNA-R2 produces two transmembrane isoforms differing in the cytoplasmic domains, and one soluble isoform may contribute to the differential signalling as well. Three major pathways transmit the signal from IFNA-R: the Jak/STAT, mitogen-activated protein kinase and phosphoinositide 3-kinase pathways (summarized in Figure 2). All of the pathways may overlap to some extent. Downstream signalling results in the induction of hundreds of genes necessary for antiviral defence, which together establish the specific pattern of genes – termed the interferon signature.
Association with molecules providing direct downstream signalling from the interferon receptor

The **TYK2** gene was reported as associated with SLE in the same study that revealed the association for **IRF5** [69]. Unlike **IRF5**, the first replication attempts were controversial [141], but to date many more studies have confirmed **TYK2** as a susceptibility locus for SLE and it has also been incriminated in multiple sclerosis susceptibility [86,142,143]. Furthermore, a recent study in Finnish patients with SLE found significant evidence for interaction between rs2304256 in **TYK2** and rs10954213 in **IRF5** [142]. No functional polymorphism in **TYK2**, however, has yet been described.

Among the STAT genes, only **STAT4** is reported to be associated with several autoimmune disorders in Caucasian populations [144-150], Hispanic populations...
Moreover, the disease-associated alleles for STAT4 is expressed mainly in T cells, NK cells, activated monocytes and dendritic cells [156], where it resides in the cytoplasm in its inactive form. Upon cell activation with IL-12, IL-23 or IFNα/β, STAT4 becomes phosphorylated by tyrosine kinases, forms homodimers and translocates into the nucleus, where it induces expression of IFNγ [157]. STAT4 is essential for differentiation of naïve CD4+ T cells into T-helper type 1 cells [158-160]. STAT4 maps to human chromosome 2q32.2 next to STAT1 in a head-to-tail mode with moderate LD between them, which could account for the weak association signal for STAT1 detected in multiple sclerosis [161] and SLE [144]. STAT3 was recently reported to be associated with Crohn’s disease [162].

Currently, the strongest and more replicated association signal within STAT4 is located in the third intron of the gene [144,147,148,152]. We reported an independent association with a haplotype covering the region from exons 6 to 16, which represents the strongest effect within STAT4 for Argentineans and Spanish patients with SLE, while the intron 3 variants have the strongest effect in Italians and Germans [144]. This population-specific haplotype effect was independently confirmed by a study in SLE patients of Hispanic and African-American origin. This study revealed differences in the haplotype structure of STAT4 between populations: the LD between the two associated haplotype blocks (the intron 3 haplotype and the exon 6 to 16 haplotype) is lower in non-European populations compared with European-derived populations [146]. The frequency of this haplotype is much higher in Hispanics compared with Europeans [144,146]. It has been demonstrated that the intron 3 association is particularly stronger in patients with anti-dsDNA autoantibodies, nephritis and early disease onset [148,152,163]. The reported allelic heterogeneity of STAT4 might thus either be reflecting true population differences or these two haplotypes could be important in different clinical and/or serological subsets of patients.

The STAT4 haplotype risk correlates with higher levels of STAT4 expression, which seems to be cell specific [144,148]. Besides, the tissue-specific alternative promoters identified for STAT4 suggest a more complex regulation of the gene, which poses an additional obstacle in the search for the causative variants and their effects. One recent study reported a striking correlation between the risk allele of SNP rs7574865 and increased expression of interferon-induced genes in the absence of high amounts of interferon [164]. This increased expression may lead to a lower threshold for disease initiation. Moreover, the disease-associated alleles for IRF5 and STAT4 variants have an additive effect on the risk for SLE [144,148]. Interestingly, STAT4 expression – unlike any other STAT genes – is restricted mainly to T cells and NK cells, and in this respect it is reminiscent of the very limited expression pattern for IRF5 [165]. Further re-sequencing of STAT4 might be necessary in order to identify the true functional variants.

Associations with genes modulated by type I interferons

Although some genes and their products may not directly participate in the signalling from the interferon type I receptors, they still may be regulated by interferons and comprise a large group of genes included in the interferon signature pattern. We will focus on two genes/proteins modulated by type I interferon, Src-family tyrosine kinase BLK and adaptor protein BANK1, because they are confirmed SLE susceptibility loci as identified by genome-wide association studies, both are specific for B cells and their expression in B cells is modulated by type I interferons [145,166]. To date, the association of BLK with SLE has been replicated in European [149], Japanese [167] and Chinese [155] populations, and it has also been implicated in RA [168] and primary anti-phospholipid syndrome [169]. The risk allele of the SNP rs13277113, located in the promoter region of BLK, is negatively correlated with the levels of BLK. It has also been shown that treatment with IFNα rapidly downregulates expression of BLK and, moreover, its expression is negatively regulated by infection with Epstein–Barr virus, which has been suggested as one of the environmental triggers for autoimmune diseases [170]. Low levels of BLK, determined by the risk allele, exposure to high amounts of interferon, and infection with Epstein–Barr virus altogether might therefore exert a cumulative effect on risk through negative regulation of BLK in B cells.

BANK1 association was identified in Scandinavian patients with SLE [166] and further replicated in European Americans [86,149,171] and Chinese populations [172]. It has also been incriminated in RA, although with a less strong effect size [173]. Three disease-associated variants have been described: rs10516487 (R61H) located in exon 2; rs17266594, which is in strong LD with rs10516487 (r² = 0.90) and is located in intron 2, where it alters the branch-point site; and an independent signal in exon 7 coding for an ankyrin domain (rs3733197, A383T) [166]. The variation at the branch-point site alters the efficiency of splicing of exon 2. The risk allele of rs17266594 correlates with high levels of the full-length isoform and low levels of the alternative isoform lacking the entire exon 2, which codes for a putative binding domain for inositol 1,4,5-triphosphate receptor type 2 (IP3R2), known to associate with BANK1 upon B-cell activation [174].

We have observed that polymorphisms of BANK1, BLK and ITPR2 genes display statistical genetic interaction, increasing substantially the risk to develop SLE (Castillejo-Lopez C, Delgado-Vega AM, Wojcik J, et al.,...
submitted data) [175]. Interestingly, LYN – another B-cell-specific tyrosine kinase recently associated with SLE [85,176] – may activate BANK1 through phosphorylation, leading to further stimulation of its interaction with IP3R2. Reduced levels of LYN were also detected in B cells of lupus patients [177]. Of note, expression of BANK1 in B cells is upregulated by type I interferons and, together with decreased levels of either of the kinases LYN or BLK, may significantly distort the signalling and lead to increased production of autoantibodies – although the precise role for the adaptor protein BANK1 in B cells is awaiting elucidation.

Conclusion

Autoimmune diseases are caused by the breakdown of self-tolerance and are characterized by persistent activation of immune cells, leading to histopathological damage in the absence of an ongoing infection or other discernible cause [178]. These diseases have complex genetic heritability with many genes giving modest contributions to the disease initiation and perpetuation. Given the role of type I interferons in autoimmunity, the associated genetic variants that have been reviewed in the present article are believed to lead either to the excessive production of interferons and further amplification of the deleterious interferon-mediated signalling, or to impaired negative regulation of the interferon pathways, or to abnormal response to interferons caused by the increased sensitivity of cells. Remarkably, the most strongly associated genes, such as IRF5 and STAT4, are not only replicated in many populations, but also predispose to various autoimmune diseases. On the other hand, genes with weaker signals are rather associated with specific clinical manifestations; that is, they affect only specific subsets of patients with particular disease, and as such may be considered disease modifiers rather than true susceptibility genes.

Based on the two most studied examples – IRF5 and STAT4 – it is tempting to speculate that common shared genes are located in the major knots of the signalling cascades. The current lack of data on association of a particular gene, already found to be associated with a specific disease, with other autoimmune diseases, however, does not mean a lack of association per se. Given the generally low prevalence of autoimmune diseases, it is often a challenging task to collect a large enough number of patients with another autoimmune disease from the same population. It is possible also that complex epistatic interactions hinder genetic associations, and thus will require more detailed analysis of an individual’s genotypes for various genes.

Another complication was recently highlighted by the finding that rare mutations or copy number variations may lead to the development of autoimmune diseases.

Rare nonsense mutations have been detected in the DNASE1 gene in two Japanese SLE patients [179]. A number of rare mutations associated with SLE and Sjogren’s syndrome were identified recently for another nuclease, TREX1 [180,181]. Likewise, protection against type 1 diabetes was associated with four rare variants in the IFIH1 gene [10]. This highlights the challenge of gene re-sequencing and the importance of projects like the 1000 genomes [182] in order to find noncommon variants with highly penetrant effects in autoimmune diseases.

Despite the fact that interferons are linked to many diseases, the exact role of different types of interferons in various autoimmune diseases may be different, or even opposite. While treatment with recombinant interferons is known to ameliorate multiple sclerosis, it triggers the development of SLE, type 1 diabetes, psoriasis, inflammatory arthritis and pSS [39,40]. The genes and alleles associated with distinct diseases in connection with interferon-mediated pathways could therefore obviously be different.

Abbreviations

anti-RNP = anti-RNA-binding proteins; dsRNA = double-stranded RNA; FcγRI = Fc gamma receptor; IC = immune complex; IFN = interferon; IL = interleukin; IRF = interferon regulatory factor; NF = nuclear factor; NK = natural killer; LD = linkage disequilibrium; pDC = plasmacytoid dendritic cell; pSS = primary Sjogren’s syndrome; RA = rheumatoid arthritis; SLE = systemic lupus erythematosus; SNP = single nucleotide polymorphism; STAT = signal transducer and activator of transcription; TLR = Toll-like receptor; TNF = tumour necrosis factor; UTR = untranslated region.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The present project was supported in part by the Clas Groschinsky foundation, the Swedish Association Against Rheumatism to SWK and MEA-R, the Torsten and Ragnar Söderbergs Foundation, the Swedish Research Council, and the Gustaf Vth, 80th Jubilee to MEA-R. The authors would like to acknowledge also the support from National Institutes of Health grants RR020143, AI083194, CA141700 and AR058621 to MEA-R.

This article is part of *Arthritis Research & Therapy* Volume 12 Supplement 1: The role of IFN alpha in autoimmune disease. The full contents of the supplement are available online at http://arthritis-research.com/supplements/12/S1. Publication of the supplement has been supported with funding from Medimmune, LLC.

Author details

1. Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds vág 20, 751 85 Uppsala, Sweden. 2. Arthritis and Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA. 3. Andalucian Center for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, Parque Tecnologico Ciencias de la Salud, Avda. Conocimiento S/N, 18100 Armilla, Granada, Spain.

Published: 14 April 2010

References

1. Pestka S, Krause CD, Walter MR: Interferons, interferon-like cytokines, and their receptors. *Immunol Rev* 2004, 202:8-32.

2. Jaks E, Gavutis M, Uze G, Martal J, Piehler J: Differential receptor subunit affinities of type I interferons govern differential signal activation. *J Mol Biol* 2007, 366:525-539.
3. Diaz MO, Pornykala HM, Boehlander SK, Maltepe E, Malik K, Brownstein B, Olopaide O. Structure of the human type I interferon gene cluster determined from a YAC clone contig. Genomics 1994, 22:540-552.

4. Luft T, Panj KC, Thomas E, Hertzog P, Hart DN, Tranapi J, Cebon J. Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 1998, 161:1947-1952.

5. Gallicci S, Loikema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999, 5:1249-1255.

6. Montoya M, Schiavoni G, Matter F, Gresser I, Belardelli F, Borovjagin P. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 2002, 99:3263-3271.

7. Ito T, Arikawa R, Inaba M, Ikebana S, Inaba K, Fukuhara S. Differential regulation of human blood dendritic cell subsets by IFNs. J Immunol 2001, 166:2961-2969.

8. Ito T, Kanzler H, Duramad O, Cao W, Liu YJ. Specialization, kinetics, and repertoire of type I interferon responses by human plasmacytoid dendritic cells. Blood 2006, 107:2433-2437.

9. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003, 19:225-234.

10. Nejentsev S, Walker N, Riches D, Eghami M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 2009, 324:387-391.

11. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Fung P, Sopott D, Charters M, Genta R, Pelleire D, Liu YL, Caliparina O, Giri J, Roschke V, Naldini B, Carell J, Soosnovska S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM. BLYS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999, 285:260-263.

12. Litinsky MB, Naldelli B, Hilbert DM, He B, Schaffer A, Casali P, Gerutti A. DCs induce CD40-independent immunoglobulin class switching through BLYS and APRIL. Nat Immunol 2002, 3:622-629.

13. Decalf J, Fernandes S, Longman R, Athioully M, Audat F, Leviere F, Rice CM, Pol S, Albert ML. Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV infection. J Immunol 2002, 168:5393-5401.

14. Engelmann H, Endres S, Krieg AM, Hartmann G. Interferon-inducible gene expression signature in peripheral blood cells of patients with systemic lupus erythematosus: presence in human serum of an unusual acid-labile leucocyte interferon. Science 1982, 216:249-260.

15. Bitton LB, Black RJ, Friedman BM, Rippl E, Wick C. Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leucocyte interferon. Science 1982, 216:249-260.

16. Gisler RH, Lindahl P, Gresser I. Interferon-induced cytolytic T cell activity via induction of interferon-alpha/beta. J Immunol 1998, 160:5717-5724.

17. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001, 294:1540-1543.

18. Ferrandez NC, Lazer A, Fairment C, Ricciardi-Castagnoli P, Bellet S, Mutter S, Perinacutie M, Tusz K, Maraskowsky E, Zitvogel L. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999, 5:405-411.

19. Fersich G, Bobbi A, Zorzi P, Burg S, Briere F, Carra G, Trinchieri G. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 2005, 175:6589-6597.

20. Lee CK, Rao DT, Gertner R, Gimenzo R, Frey AB, Levy DE. Distinct requirements for IFNs and STAT1 in NK cell function. J Immunol 2000, 165:3571-3577.

21. Kamath AT, Sheasby CE, Tough DF. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma. J Immunol 2005, 174:767-776.

22. Fernandez NC, Lazer A, Fairment C, Ricciardi-Castagnoli P, Bellet S, Mutter S, Perinacutie M, Tusz K, Maraskowsky E, Zitvogel L. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999, 5:405-411.

23. Fersich G, Bobbi A, Zorzi P, Burg S, Briere F, Carra G, Trinchieri G. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 2005, 175:6589-6597.

24. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001, 294:1540-1543.

25. hooks JJ, Moutopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 1979, 301:5-8.

26. Preble OT, Black RJ, Friedman BM, Rippl E, Wick C. Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leucocyte interferon. Science 1982, 216:249-260.

27. Ittberg SR, Schnitzer TJ. Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum 1982, 25:401-406.

28. Niewold TB, Hua J, Lehman TJ, Harley JM, Crow MK. High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun 2003, 4:492-502.

29. Hooks JJ, Jordan GW, Cupps T, Moutopoulos HM, Fauci AS, Notkins AL. Multiple interferons in the circulation of patients with systemic lupus erythematosus and vasculitis. Arthritis Rheum 1982, 25:396-400.

30. Gota C, Calabrese L. Induction of clinical autoimmune disease by therapeutic interferon-alpha. Autoimmunity 2003, 36:511-519.

31. Roncalli LE, Alm GV, Oberk G. Autoimmunity after alpha-interferon therapy for malignant carcinoid tumors. Ann Intern Med 1991, 115:178-183.

32. Baechler EC, Batillavola FM, Karapis G, Gaffney PM, Ortmann WA, Eske J, Shark KB, Grande WD, Hughes WM, Kapur V, Gregersen PK, Behrens TW. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003, 100:2610-2615.

33. Alarcón-Segovia D. Shared autoimmunity: a concept for which the time has come. Autoimmunity 2005, 38:201-205.

34. Baechler EC, Batillavola FM, Reed AM, Peterson EJ, Gaffney PM, Moser KL, Gregersen PK, Behrens TW. Gene expression profiling in human autoimmunity. Immunol Rev 2006, 210:120-137.

35. Siegel GP, Kadokawa N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999, 284:1835-1837.

36. Cell M, Jamossy D, Facchetti F, Aleardi G, Nakajima H, Lanzavecchia A, Colonna M. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Proc Natl Acad Sci U S A 2003, 100:2610-2615.

37. Baechler EC, Batillavola FM, Reed AM, Peterson EJ, Gaffney PM, Moser KL, Gregersen PK, Behrens TW. Gene expression profiling in human autoimmunity. Immunol Rev 2006, 210:120-137.

38. Siel GP, Kadokawa N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999, 284:1835-1837.
Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. *J Exp Med* 2001, 194:863-869.

50. Birmacho W, Gleason RM, Bulbulian BJ, Riter CL, Vasiliakos JP, Lipson KE, Nikolov Y: Transcriptional networks in plasmacytoid dendritic cells stimulated with synthetic TLR 7 agonists. *SMC Immunol* 2007, 8:26.

51. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S: Unresponsiveness of MyD88-deficient mice to endotoxin. *Immunity* 1999, 11:15-122.

52. Yoneyama M, Kikuchi M, Natsukawa T, Miyagishi M, Taira K, Akira S, Fujita T: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. *Nat Immunol* 2004, 5:730-737.

53. Kang DC, Gopalakrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB: mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ADP-ribosylation activity and melanoma growth-suppressive properties. *Proc Natl Acad Sci U S A* 2002, 99:5637-642.

54. Garcia MA, Meurs EF, Esteban M: The dsRNA kinase protein PKR: virus and cell control. *Biochimie* 2007, 89:799-811.

55. Hovanessian AG, Jesuthen J: The human 2-5' oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2'-5' instead of 3'-5' phosphodiester bond formation. *Biochimie* 2007, 89:779-788.

56. Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T, Uematsu S, Taira K, Akira S, Takaoka A: TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA viruses. *Nature* 2008, 451:275-279.

57. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. *Nature* 2009, 458:509-513.

58. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey M, Roberts TL, Idris A, Dunn JA, Kelly GM, Burtt N, Coldman AJ, Hodgson S, Hardy LL, Cunninghame Graham DS, Manku H, Wagner S, Reid J, Timms K, Gutin A, Iwasaki A: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. *Nature* 2009, 458:314-318.

59. Roberts TL, Kikuchi M, Darby J, Kelly GM, Dunn JA, Petri M, Baeumner IA, Korvatska O, Reid J, Timms K, Gutin A, Iwasaki A: AIM2 regulates innate and adaptive immune responses to DNA viruses. *Science* 2009, 323:1057-1060.

60. Burckstummer T, Baumann C, Blum S, Dixit V, Uemura M, Jang J, Hahn H, Planavsky V, Biberfeld P, Colinge J, Bennett KL, Superti-Furga G: An orthogonal proteome-genomic screen identifies AIM2 as a novel cytosolic DNA sensor for the inflammasome. *Nat Immunol* 2009, 10:266-272.

61. Muruve DA, Peotrilli V, Zais AK, White LR, Clark SA, Ross PJ, Park RJ, Tschopp J: The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. *Nature* 2008, 452:103-107.

62. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. *Nature* 2008, 451:275-279.

63. Barnes BJ, Field AE, Pitha-Rowe PM: Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome and is associated with increased risk of systemic lupus erythematosus. *Arthritis Rheum* 2007, 56:2202-2210.

64. Sigurdsson S, Padyukov L, Kurreeman FA, Liljedahl U, Wiman AC, Alfredsson L, Toes R, Ronnfeldt J, Klareskog L, Huizinga TW, Alm G, Syvanen AC, Ronnblom L: Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. *Arthritis Rheum* 2007, 56:2202-2210.

65. Miceli-Richard C, Comets E, Loiseau P, Puechel X, Hackhulla E, Mariette X: Association of an IRF5 gene functional polymorphism with Sjogren's syndrome. *Arthritis Rheum* 2007, 56:3989-3994.

66. Dideberg Y, Kristjansdottir G, Milani L, Lioubov C, Sigurdsson S, Lous E, Wiman AC, Verniere S, Rutgeerts P, Belaiche J, Franchimont D, Van Gossum A, Bours V, Syvanen AC: An insertion-deletion polymorphism in the interferon regulatory factor 5 (IRF5) gene confers risk of systemic lupus erythematosus. *Hum Mol Genet* 2007, 16:3008-3016.

67. Sigurdsson G, Sandling J, Bennett A, Roos IM, Milani L, Wang C, Iwakura Y, Maruyama A, Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Akira S: The interferon regulatory factor, IRF5, is a common haplotype of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus. *Arthritis Rheum* 2008, 59:1728-1739.

68. Kozyrev SV, Alarcon-Riquelme ME: The genetics and biology of IRF5-mediated signaling in lupus. *Autoimmunity* 2007, 40:591-601.

69. Cunningham-Graham DS, Manuk H, Wagner S, Reid J, Timms K, Gutin A, Lanchbury JS, Vyse TJ: Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. *Hum Mol Genet* 2007, 16:579-591.

70. Löfgren S, Yin H, Delgado-Vega AM, Sanchez E, Lewéns S, Pons-Ente E, Witte T, Alarcon RS, Ontingo C, Nair S, Martin J, Alarcon-Riquelme ME, Kozyrev SV: Promoter insertion/deletion in the IRF5 gene is highly associated with susceptibility to SLE in distinct populations but exerts a modest effect on gene expression in PBMCs. *J Rheumatol* 2010, 37:3.

71. Graham RR, Kyogoku C, Sigurdsson S, Yasovia IA, Davies LR, Baechler EC, Pfenge RM, Koehn T, Ottmann WA, Hor M, Gauer JW, Gillet C, Burt N, Cunningham-Graham DS, Onofoh R, Pett M, Gunnarsen I, Svenungsson E, Ronnblom L, Nordmark G, Gershenen PK, Moger K, Gaffney PM, Criswell LA, Vyse TJ, Alarcon AC, Bohjanen PN, Dali MJ, Behrens TW, Attutmuller O: Three functional variants of IFN regulatory factor 5 (IFN5) define risk and protective haplotypes for human lupus. *Proc Natl Acad Sci U S A* 2007, 104:6758-6763.

72. Niewold TB, Kelly JA, Fleisch MH, Espinoza LR, Harley JB, Crow MK: Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. *Arthritis Rheum* 2008, 58:2461-2467.

73. Reddy MV, Valenzuela-Cruz R, Barca V, Lima G, Granados J, Orozco L, Alarcon-Riquelme ME, Genetifc association of IRF5 with SLE in Mexicans: higher frequency of the risk haplotype and its homozygosity than Europeans. *Hum Genet* 2007, 121:721-727.

74. Kawai T, Akira S: TLR signaling. *Cell Death Differ* 2006, 13:816-825.

75. Schoenemeyer A, Barnes BJ, Manci ME, Lutz E, Goutagny P, Pitha PM, Fitzgerald KA, Golenbock DT: The interferon regulatory factor, IRF5, is a central mediator of Toll-like receptor 7 signaling. *J Biol Chem* 2005, 280:17005-17012.

76. Takaoka A, Yanai H, Konido S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Obara Y, Mak TW, Taniguchi T: Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. *Nature* 2005, 434:242-249.

77. Callon-Aiken J, Reville JD, Rodriguez-Vespucci L, Shawn Garcia G, Jr, Baethge BA, Friedman AW, Alarcon GS: Clinical, immunogenetic and outcome features of Hispanic systemic lupus erythematosus patients of different ethnic ancestry. *Lupus* 2003, 12:377-385.

78. Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CD, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefield CD, Nash SK, Guthrie JM, Cobbs BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Namjoo E, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Taylor KE, Fernando M, Zidovetzki R, Arthritis Research & Therapy 2010, 12(Suppl 1):S2.
Gaffney PM, Edberg JC, Rioux JD, O'Quinn JO, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PAX5, KIAA1542 and other loci. *Nat Genet* 2008, 40:204–210.

86. Gateva V, Sandling JK, Horn G, Taylor KE, Chung SA, Sun X, Ortmann W, Kosoy R, Ferreira RC, Nordmark G, Gunnarsdottir S, Svenningson L, Padyukov L, Sturfelt G, Jonsen A, Bengtsson AA, Rantanapai-Dahlqvist S, Baeuchl EC, Brown EE, Alcaron GS, Edberg JC, Ramsay-Goldman R, McHugh J G, Revell JDE, Vila LM, Kimberly RP, Manzi S, Petri MA, Lee A, Gregersen PK, Alarcon GS, Edberg JC, Ramsey-Goldman R, McGwin G, Jr, Reveille JD, Vila LM, Kimberly RP, Manzi S, Petri MA, Lee A, Gregersen PK, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. *Nat Genet* 2009, 41:1228–1233.

87. International HapMap Project. http://hapmap.ncbi.nlm.nih.gov/

88. Akahoshi M, Nakashima H, Sadanaga A, Miyake K, Obara K, Tamaru M, Hirota T, Matsuda A, Shirakawa T. Promoter polymorphisms in the IRF3 gene confer protection against systemic lupus erythematosus. *Lupus* 2008, 17:568–574.

89. Sanchez E, Gonzalez-Cay MA, Callejas-Rubio JR, Ortego-Centeno N, Sabio JM, Jimenez-Alonia J, Mico L, Suarez A, Gutierrez C, de Ramon E, Camps M, Garcia-Pontes R, Tolosa C, Lopez-Nevo MA, Sanchez-Roman J, Hernandez FJ, Gonzalez-Escribano MF, Martin J. No evidence for genetic association of interferon regulatory factor 3 in systemic lupus erythematosus. *Lupus* 2008, 17:230–234.

90. De Dager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Picllo L, Raychaudhuri S, Tran D, Aubin C, Brisken R, Romano A, Baranini SE, Maclay JL, Pencak-Vance MA, Haines JL, Gibson RA, Naeqlyn Y, Uddehaga B, Matthews PM, Kappos L, Polman C, McArdle WJ, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer SJ, Weimer HL, et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. *Nat Genet* 2009, 41:776–782.

91. Bakthwai AS, Jr. The NF-kappa B and Rel family proteins: new discoveries and insights. *Arthritis Res Ther* 1996, 14:649–661.

92. Li Q, Verma IM. NF-κB regulation in the immune system. *Nat Rev Immunol* 2002, 2:735–744.

93. Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, Kastner DL, Seldin MF, Criswell LA, Plenge RM, Holers VM, Mikuls TR, Sokka T, Moreland LW, Bridges MJ, Compston A, Sawcer SJ, Weiner HL, et al. The NFKB1 promoter polymorphism that increases risk for ulcerative colitis. *Nat Genet* 2001, 27:496–502.

94. Liou HC, Sha WC, Tuomanen EI, Baltimore D. Defects of the Fc gamma receptor II on human monocytes. *Eur J Immunol* 1991, 21:1911–1916.

95. Fanciulli M, Norsworthy PJ, Perretto E, Dong R, Harper L, Kamesh L, Heward JM, Gough SC, de Smith A, Blakemore AI, Fugroel P, Owen CJ, Pearce SH, Teixeira L, Guilloven L, Graham DS, Pusey CD, Cook HT, Vyse TJ, Atman TJ. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. *Nat Genet* 2007, 39:721–723.

96. Bave U, Magnusson M, Eloranta ML, Perers A, Alm GV, Ronnlund BM. Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. *J Immunol* 2003, 171:3396–3402.

97. Magnusson V, Johansson B, Lima G, Odeberg J, Alarcon-Segovia D, Alarcón-Riquelme ME. Both risk alleles for Fc gamma RIIA and RIIIA are susceptibility loci for SLE: a unifying hypothesis. *Genes Immun* 2004, 5:130–137.

98. Zohar R, Lee W, Arora P, Cheifetz S, McCulloch C, Sodek J. Single cell analysis of intracellular osteopontin in osteogenic cultures of fetal rat calvarial cells. *J Cell Physiol* 1997, 170:89–100.

99. Shinohara ML, Lu L, Lu J, Wernick MB, Kobayashi KS, Glimcher LH, Cantor H. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. *Nat Immunol* 2006, 7:496–506.

100. Denhardt DT, Noda M. Osteopontin expression and function: role in bone remodeling. *J Cell Biochem Suppl* 1998, 30:92–102.

101. Pollack SB, Linnebjerg PA, Gill S. Induction of osteopontin mRNA expression during activation of murine NK cells. *J Leukoc Biol* 1994, 55:398–400.

102. Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Fukuda K, Kanai H, Nakashima H, Otsuka T, Hirakata H. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. *Arthritis Rheum* 2001, 44:2097–2106.
123. Ohshima S, Yamaguchi N, Nishioka K, Mima T, Ishii T, Umeshita-Sasai M, Kobayashi H, Shimizu M, Kataya Y, Wakisaka S, Murata N, Nomura S, Matsuno H, Katayama R, Koi S, Inobe M, Uede T, Kawase I, Sasaki Y: Enhanced local production of osteopontin in rheumatoid joints. *J Rheumatol* 2002, 29:2061-2067.

124. Sato T, Nakajima T, Tanaka T, Nohara K, Matsuoka S, Sakuraba A, Fukushiba T, Uede T, Hibi T: Osteopontin-Eta-1 upregulated in Crohn's disease regulates the TH1 immune response. *Gut* 2005, 54:1254-1262.

125. Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittting SR, Denhardt DT, Sobel RA, Lock C, Karpjuk P, Pedotti R, Heller R, Oksenberg JR, Steinman L: The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. *Science* 2001, 294:1791-1793.

126. Hur EM, Yousuf S, Haws ME, Zhang SY, Sobel RA, Steinman L: Osteopontin-induced relapse and propagation of autoimmune brain disease through enhanced survival of activated T cells. *Nat Immunol* 2007, 8:74-83.

127. Hansson AC, Petri MA, Goldman D, Sullivan KE: Attenuated experimental autoimmune encephalomyelitis in eta-1/ osteopontin-deficient mice. *J Immunol* 2002, 168:2096-2099.

128. Vogt MH, Flors S, Killestein J, Kool DL, Smets M, Barkhof F, Polman CH, Nelkenkerken L: Osteopontin levels and increased disease activity in relapsing–remitting multiple sclerosis patients. *J Neuroimmunol* 2005, 155:55-160.

129. Miyazaki T, Ono M, Qu WM, Zhang MC, Mori S, Nakatsuru S, Nakamura Y, Sasaki T, Endo Y: Bone implantation of alelic polymorphism of osteopontin on the development of lupus nephritis in NZB/Npr mice. *Eur J Immunol* 2005, 35:1510-1520.

130. Feron MA, Petri MA, Goldman D, Sullivan KE: An osteopontin (SPP1) polymorphism is associated with systemic lupus erythematosus. *Hum Mutat* 2002, 19:459.

131. D’Alfonso S, Barizzone N, Giordano M, Chiocchetti A, Migliaresi S, Bigliardo B, Sabbadini MG, Baldissera E, Galeazzi M, Sebastiani P: Allelic polymorphism of 324-hydroxylase: implications for differing renal expression and increased disease activity in SLE. *Arthritis Res Ther* 2009, 11:139.

132. Berglund L, Panelius J, Hasan T, Julkunen H, D’Amato M, Saarialho-Kere U, Kere J: Evidence for genetic association and interaction between the TYK2 and IRF5 genes in systemic lupus erythematosus. *J Rheumatol* 2009, 36:1651-1638.

133. Ban M, Goris A, Lorenzetti AR, Baker A, Mihalova T, Ingram G, Booth DR, Heard RN, Stewart GJ, Boogaert E, Dubois B, Harbo HF, Cellius EG, Spurkland A, Strange R, Hawkins C, Robertson NP, Duddridge F, Wason J, De Jager PL, Hoffman D, Roux JD, Ivinson AJ, McCauley JL, Pincak-Vance M, Oksenberg JR, Hauser SL, Renton ED, Haines J, Sawyer S: Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. *Eur J Hum Genet* 2009, 17:139-143.

134. Abelson AK, Delgado-Vega AM, Koyez EV, Sanchez E, Velazquez-Cruz R, Eriksson N, Wojcik J, Linga Reddy MW, Lim G, D’Alfonso S, Migliaresi S, Baca V, Orozco L, Witte T, Ortego-Centeno N, Abderrahim H, Pons-ESTA B, Gutierrez C, Suarez A, Gonzalez-Escobar MF, Martin J, Alarcón-Riquelme ME: STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act in cooperation with IRF5 to increase risk. *Ann Rheum Dis* 2009, 68:1746-1753.

135. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garner S, Lee AT, Chung SA, Ferreira RC, Pant PV, Ballinger DG, Kosor R, Demirci F, Kamboh MI, Kao AH, Tian C, Gunnarsson I, Bengtsson AA, Rantapaa-Dahlqvist S, Petri M, Manzi S, Seldin MF, Ronnblom L, Syvanen AC, Criswell LA, Gregersen PK, Behrens TW: Association of systemic lupus erythematosus with C2orf13-BLK and IL18R1. *Nat Genet* 2008, 40:880-900.

136. Namjou B, Deshmukh H, Bruner G, Espinoza LR, Gilkeson GS, Harley JB, James SA, Tingari B, Migliaresi S, Gomez-Reino JJ, Gonzalez A: Replication of recently identified systemic lupus erythematosus genetic associations: a case–control study. *Arthritis Res Ther* 2009, 11:1969.

137. Korman BD, Alba MJ, Lee JM, Alfizzoz I, Smith JA, Nikolov NP, Kastner DL, Remmers EF, Ileii GG: Variant form of STAT4 is associated with primary Sjögren’s syndrome. *Genes Immun* 2008, 9:267-270.

138. Palomino-Morales RJ, Rosas-Villarraga A, Gonzalez CI, Ramirez G, Anaya JM, Martin J: STAT4 but not Traf1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. *Genes Immun* 2008, 9:136-137.

139. Kawasaki A, Ito H, Hikami K, Ohashi J, Hayashi T, Goto D, Matsumoto I, Ito S, Tsutsui A, Koga M, Inamata T, Graham RR, Hom G, Takasaki Y, Hashimoto H, Behrens TW, Sumida T, Tsujiya N: Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case–control association study of the STAT1–STAT4 region. *Arthritis Res Ther* 2008, 10:R113.

140. Kobayashi S, Ikari K, Hikami K, Kochi Y, Yamamoto K, Shimane K, Nakamura Y, Toyama Y, Mochizuki T, Tsukahara S, Kagawachi Y, Tera C, Hara M, Tomatsu T, Yamanaka H, Horisuci T, Tae K, Yasutomo K, Hamada D, Yasui N, Inoue H, Itaka M, Okamoto H, Kaminari N, Mohmora S: Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. *Arthritis Res Ther* 2008, 10:1940-1946.

141. Lee HS, Remmers EF, Lee JM, Kastner DL, Bae SC, Gregersen PK: Association of...
STAT4 with rheumatoid arthritis in the Korean population. Mol Med 2007, 14:455-460.

155. Yang W, Ng P, Zhao M, Hirankarn N, Lau CS, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN, Avihingsanon Y, Lee TL, Ho MH, Lee PP, Wong WH, Lau YL. Population differences in SL3 susceptibility genes: STATA and BLK, but not PAX5, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 2009, 10:219-226.

156. Frucht DM, Aringer M, Galon J, Danning C, Brown M, Fan S, Centeno M, Wu CY, Yamada N, El Gabalawy H, O'Shea JJ. Stat4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J Immunol 2000, 164:4659-4664.

157. Kaplan MH. STAT4: a critical regulator of inflammation in vivo. Immunol Rev 2005, 212:231-242.

158. Nishikomori R, Chang HC, Zisoulis DG, Stritesky GL, Yu Q, O'Malley JT, Kapur R, Levy DE, Kansas GS, Kaplan MH. STAT3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 2007, 178:4901-4907.

159. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Zhang Y, Borghi MO, Delgado-Vega AM, Tincani A, Meroni PL, Alarcon-Riquelme ME. Polymorphisms in interferon pathway genes. Ann Rheum Dis 2007, 66:1123-1127.

160. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Zhang Y, Borghi MO, Delgado-Vega AM, Tincani A, Meroni PL, Alarcon-Riquelme ME. Polymorphisms in interferon pathway genes. Ann Rheum Dis 2007, 66:1123-1127.

161. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.

162. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.

163. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.

164. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.

165. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.

166. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.

167. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.

168. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.

169. Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto M, Tatsuno A, Ohori H, Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA: Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Exp Med 2009, 206:2893-2898.
to Graves’ disease susceptibility. J Clin Endocrinol Metab 2007, 92:3338-3341.

187. Shigemoto T, Kageyama M, Hirai R, Zheng J, Yoneyama M, Fujita T: Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type 1 diabetes. J Biol Chem 2009, 284:13348-13354.

188. Miceli-Richard C, Gesteumann N, Itah M, Comets E, Loiseau P, Puechach X, Hachulla E, Gottenberg JE, Lebou P, Becquemont L, Mariette X. The CUGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjogren’s syndrome. Arthritis Rheum 2009, 60:1991-1997.

189. Orozco G, Alzadeh BZ, Delgado-Vega AM, Gonzalez-Gay MA, Balasa A, Pascual-Rojo J, Conde C: IRS1 is associated with type 1 diabetes in families from the US and UK. Arthritis Rheum 2009, 60:291-294.

190. Boume DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, et al: Association of STAT4 with rheumatoid arthritis: a replication study in three European populations. Arthritis Rheum 2008, 58:1974-1980.

191. Zervou MI, Goulielmos GN, Castro-Giner F, Tosca AD, Krueger-Krasagakis S: A functional variant of the DNASE1 gene is related with protein instability and decreased enzyme activity in thyroid autoimmunity. J Autoimmun 2009, 33:134-140.

192. Hirankarn N, Tangwattanachuleeporn M, Wongpiyabovorn J, Wongchinsri J, Hachulla E, Gottenberg JE, Lebon P, Becquemont L, Mariette X: The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. J Rheumatol 2009, 36:1501-1506.

193. Hatanakorn, Tangwattanachuleeporn M, Wongpiyabovorn J, Wongchinsri J, Avhingsansong Y: Genetic association of interferon-alpha subtypes 1, 2 and 5 in systemic lupus erythematosus. Tissue Antigens 2008, 72:588-592.

194. Mitesers B, Jacekli S, Epplen J, Pohlau D, Hardt C: The interferon gene cluster: a candidate region for M5 predisposition? Multiple Sclerosis Study Group. Genes Immun 1999, 1:27-44.

195. Leyva L, Fernandez O, Fedetz M, Blanco E, Fernandez VE, Oliver B, Leon A, Curiel E: Genetic variations in Toll-like receptor 9 predispose to systemic lupus erythematosus in Japanese population. Ann Rheum Dis 2007, 66:905-909.

196. Delgado-Vega et al: Arthritis Research & Therapy 2010, 12(Suppl 1):S2

Cite this article as: Delgado-Vega AM, et al: Genetic associations in type I interferon related pathways with autoimmunity. Arthritis Research & Therapy 2010, 12(Suppl 1):S2.

http://arthritis-research.com/content/12/S1/S2

doi:10.1186/ar2883