J Wave on the electrocardiogram (ECG) has been traditionally regarded as a marker of “good health” and is in fact more prevalent in the young and in healthy athletes. However, the prognostic significance of the J wave with/without ST-segment elevation has recently become controversial. Although a meta-analysis of prospective studies suggested that the early repolarization pattern is associated with increased risk for arrhythmia death, the absolute incidence rate was low to intermediate (70 cases per 100,000 person-years for arrhythmia death). Those results shift our approach to distinguishing “malignant” J waves from “benign” J waves through detailed analysis of clinical characteristics (eg, male sex, history of familial sudden death) and ECG features (eg, J wave amplitude, J wave distribution, pattern of early repolarization). Obviously, focusing on syncope, a common clinical characteristic, has become a relevant issue. A crucial step for putting the J wave of syncope subjects in the right clinical perspective is to establish their actual prevalence and their relations. The study by Chiba et al in this issue of the Journal provides an insight to the issue.

J Waves in the General Population and Syncope

The prevalence of the J wave in the general population reportedly ranges from 1.0% to 24.8% (Table). The variation in estimates can be caused by differences in trait definition, population age, and study sample demographics. On the other hand, in the limited evidence of the prevalence in the syncope population, the prevalence of the J wave among syncope subjects is remarkably high in comparison with other studies of the general population (Table). Chiba et al report that 37% of patients with syncope had a J wave. This is high compared with the 3.5% in the general Japanese population. Although the prevalence is comparable to that reported in a previous study from Poland (31%), in the Framingham Heart Study it was only 61.1% and another recent report showed about half that among syncope subjects. The J wave may show circadian changes and be present intermittently. Further research is needed under an agreed definition and standardized measurements.

J Waves and Reflex Syncope

Reflex (neurally mediated) syncpe is the most frequent cause of syncpe in any setting. Patients in whom structural or electrical heart disease has been excluded and are affected by reflex syncpe have an excellent prognosis. Many poor outcomes seem to be related to the severity of the “underlying condition” rather than to syncpe per se. Recent studies suggest that the J wave is a marker of increased dispersion of repolarization, suggesting the J wave could be an “underlying condition” in subjects with syncope. Considering early repolarization syndrome and Brugada syndrome can be a common clinical entity under the term of J-wave syndromes, the association between the J wave and reflex syncpe has now become even more important.

Chiba et al show that a J-wave pattern in the inferior or lateral leads was associated with reflex syncpe. However, Löbe et al reported a completely different result that J waves in the inferior leads are less frequently found in subjects with vasovagal syncpe than in those with unexplained syncpe. To date, J waves in the inferolateral leads can be an important diagnostic sign of a high-risk person with a history of syncpe. Until we have further evidence from syncpe subjects, we are left with the observation that in subjects with J waves in the inferolateral leads and any type of syncpe, arrhythmic events may occur.

References

1. Viskin S, Rosso R, Halkin A. Making sense of early repolarization. Heart Rhythm 2012; 9: 566–569.
2. Wu SH, Lin XX, Cheng YJ, Qiang CC, Zhang J. Early repolarization pattern and risk for arrhythmia death: A meta-analysis. J Am Coll Cardiol 2013; 61: 645–650.
3. Ross R, Adler A, Halkin A, Viskin S. Risk of sudden death among young individuals with J waves and early repolarization: Putting the evidence into perspective. Heart Rhythm 2011; 8: 923–929.
4. Chiba Y, Minoura Y, Onishi Y, Inokuchi K, Ochi A, Kawasaki S, et al. J-wave in patients with syncope. Circ J 2015 August 7, doi: 10.1253/circj.CJ-15-0340 [Epub ahead of print].
5. Heng SJ, Clark EN, Macfarlane PW. End QRS notching or slurring in the electrocardiogram: Influence on the definition of “early repolarization.” J Am Coll Cardiol 2012; 60: 947–948.
6. Ilkhanoff F, Soliman EZ, Primeau RJ, Walsh JA 3rd, Ning H, Liu K, et al. Clinical characteristics and outcomes associated with the natural history of early repolarization in a young, biracial cohort followed to middle age: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Circ Arrhythm Electrophysiol 2014; 7: 392–399.
7. Hisamatsu T, Okubu T, Miura K, Yamamoto T, Fujiyoshi A, Miyagawa N, et al. Association between J-point elevation and death from coronary artery disease. Circ J 2013; 77: 1260–1266.
8. Bartczak A, Lelonek M. Early repolarization variant in syncopal patients referred to tilt testing. Pacing Clin Electrophysiol 2013; 36: 456–461.
9. Noseworthy PA, Tikkanen JT, Porthan K, Oikarinen L, Pietilä A, Hisamatsu T, et al. J-wave in patients with syncope.
13. Soteriades ES, Evans JC, Larson MG, Chen MH, Chen L, Benjamin EJ, et al. Incidence and prognosis of syncope. *N Engl J Med* 2002; 347: 878–885.
14. Obeyesekere MN, Klein GJ, Nattel S, Leong-Sit P, Gula LJ, Skanes AC, et al. A clinical approach to early repolarization. *Circulation* 2013; 127: 1620–1629.
15. Antzelevitch C, Yan GX. J wave syndromes. *Heart Rhythm* 2010; 7: 549–558.
16. Murakoshi N, Aonuma K. Epidemiology of arrhythmias and sudden cardiac death in Asia. *Circ J* 2013; 77: 2419–2431.
17. Löbe S, Komej J, Araya A, Hindricks G, Bollmann A, Husser D. J wave pattern in unexplained syncope. *J Electrocardiol* 2015 July 7, doi:10.1016/j.jelectrocard.2015.07.003.

Table. J Wave/Early Repolarization Pattern in the General Population as Recently Published

Study*	n	Age (years)	Men	Race or population	Definition	Prevalence
Mansi, 2001	597	15–60	58.5%	58.6% Saudi Arabian, 6.5% Filipino, 15.9% Indian, 2.8% Sri Lankan, and 9.5% Caucasian	ST segment elevation with upward concavity, notching on QRS, and large symmetrical T wave	3.5%
Klatsky, 2003	73,088	Adults	43.8%	55% White, 31% Black, 10% Asian, 4% Hispanic	J point amplitude of ≥0.05 mV for ≥0.03 s in inferior or right/left precordial leads	0.9%
Kui, 2007	1,817	18–91	62.2%	Chinese	J point amplitude of ≥0.1 mV in ≥2 adjacent leads with slurring or notching morphology	7.3%
Tikkanen, 2009	10,864	Adults	52.4%	Finnish	J point amplitude of ≥0.1 mV in ≥2 leads in the inferior or lateral territory, or both	5.8%
Sinner, 2010 (MONICA/KORA)	6,213	35–74	48.9%	German	J point amplitude of ≥0.1 mV in any lead	13.1%
Nosek, 2011 (FHS, H2K)	3,995	18–80	46.1%	From Framingham Heart Study	J point amplitude of ≥0.1 mV in ≥2 leads with slurring or notching morphology	6.1%
Olson, 2011 (ARIC study)	5,489	18–80	44.2%	Finnish	J point amplitude of ≥0.1 mV in ≥2 leads in the inferior or lateral territory, or both	3.3%
Reinhard, 2011	5,839	18–60	50.2%	British from GRAPHIC study	J point amplitude of ≥0.1 mV in at least 2 adjacent leads in inferior or anterolateral leads	7.7%
Perez, 2012	29,281 (mean age of 55)	87.2%	13.3% African-American, 88.7% non-African American	J point amplitude of ≥0.1 mV in ≥2 leads in the inferior or lateral territory, or both	23.3%	
Rollin, 2012	1,161	35–64	51.6%	Subjects living in southwestern France	J point amplitude of ≥0.1 mV in ≥2 leads in the inferior or lateral territory, or both	13.7%
Hisamatsu, 2013 (NIPPON DATA80)	4,348	30–95	100%	Japanese	J point amplitude of ≥0.1 mV in the inferior and lateral leads, V5 lead; ≥0.2 mV in V1–V4	7.8%
Hisamatsu, 2013 (NIPPON DATA90)	7,630	30–95	40.7%	Japanese	J point amplitude of ≥0.1 mV	3.5%
Aagaard, 2014	211,920	18–75	52%	African American, non-Hispanic White, Hispanic	Software determined early repolarization	1.5%
Ilkahannoff, 2014 (CARDIA study)	5,039	25 (year 0)	54.5%	48.4% White, 51.6% Black	J point amplitude of ≥0.1 mV in ≥2 leads in the inferior or lateral territory; ≥0.1 mm ST elevation in the inferior and/or lateral leads	2.3%
Ilkahannoff, 2014 (CARDIA study)	3,653	32 (year 7)	54.2%	45.8% White, 54.2% Black	J point amplitude of ≥0.1 mV in ≥2 leads in the inferior or lateral territory; ≥0.1 mm ST elevation in the inferior and/or lateral leads	13.7%
Ilkahannoff, 2014 (CARDIA study)	2,491	45 (year 20)	56.8%	55.5% White, 44.5% Black	J point amplitude of ≥0.1 mV in ≥2 contiguous inferior or lateral leads	6.6%
Shulman, 2015	33,944	>18	36.3%	Hispanic	J point amplitude of ≥0.1 mV in any 2 contiguous inferior or lateral leads	1.6%

PMID: Mansi, 11698997; Klatsky, 12935822; Kui, 18164970; Tikkanen, 19117913; Sinner, 20668657; Noseworthy, 21600720; Olson, 21785106; Reinhard, 21282333; Perez, 22094072; Rollin, 22819431; Hisamatsu, 2366393 and 23358431; Aagaard, 25360428; Ilkahannoff, 24759868; Shulman, 2620160.