Preservation of Trees by semidirect Products

Gabriel Zapata

Abstract

We show that the semidirect product of a group C by $A * D B$ is isomorphic to the free product of $A \rtimes C$ and $B \rtimes C$ amalgamated at $D \rtimes C$, where A, B and C are arbitrary groups. Moreover, we apply this theorem to prove that any group G that acts without inversion on a tree T that possesses a segment Γ for its quotient graph, such that, if the stabilizers of the vertex set $\{ P, Q \}$ and edge y of a lift of Γ in T are of the form $G_P \rtimes H$, $G_Q \rtimes H$ and $G_y \rtimes H$, then G is isomorphic to the semidirect product of H by $(G_P \ast G_y, G_Q)$.

Using our results we conclude with a non-standard verification of the isomorphism between $\text{GL}_2(\mathbb{Z})$ and the free product of the dihedral groups D_4 and D_6 amalgamated at their Klein-four group.

Contents

1 Introduction 1
2 An Exact Sequence for a Tree 2
3 A Preservation of a Tree by a Semidirect Product 5
4 A Quick Application to $\text{GL}_2(\mathbb{Z})$ 7

1 Introduction

In this paper we provide an analysis of an interplay between semidirect products and free products with amalgamation (i.e., tree products.) That is, we show that given any groups A, B and C, the semidirect product of a group C by $A * D B$ is isomorphic to the free product of the $A \rtimes C$ and $B \rtimes C$ amalgamated at $D \rtimes C$, i.e.,

$$(A * B) \rtimes C \simeq (A \rtimes C) *_{D \rtimes C} (B \rtimes C) .$$

Intuitively, in the category of groups, the semidirect product of a group distributes (or, it is preserved) on the right over free products with amalgamation. Moreover, we show that a group G that acts without inversion on a tree Γ such that if $G_P \rtimes H$, $G_Q \rtimes H$ and
$G_y \rtimes H$ are the stabilizers of the vertex set $\{P, Q\}$ and edge y of a lift of its segment Γ in the quotient graph $\tilde{\Gamma}$, then

$$G \simeq (G_P *_{G_y} G_Q) \rtimes H.$$

We then give an example of the isomorphism $\text{GL}_2(\mathbb{Z}) \simeq D_4 * D_2 D_6$ using these results.

2 An Exact Sequence for a Tree

Lemma 1 If A, B, C and D are groups, then there is an exact sequence of form

$$1 \longrightarrow A * B \xleftarrow{\nu} (A \rtimes C) *_{D \rtimes C} (B \rtimes C) \xrightarrow{\mu} C \longrightarrow 1. \quad (1)$$

Proof. Let $G = (A * B)$ and $\tilde{G} = (A \rtimes C) *_{D \rtimes C} (B \rtimes C)$ be pushouts of the diagrams

$$
\begin{array}{ccc}
D & \xrightarrow{\iota_A} & A \\
\downarrow{\iota_B} & & \downarrow{\alpha} \\
B & \xrightarrow{\beta} & G
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
D \rtimes C & \xrightarrow{\iota_A} & A \rtimes C \\
\downarrow{\iota_B} & & \downarrow{\bar{\alpha}} \\
B \rtimes C & \xrightarrow{\bar{\beta}} & G,
\end{array}
$$

where its homomorphisms are injective. In particular, ι_A and $\bar{\alpha}$ are the embeddings induced from embedding i_A and the natural embedding α, i.e.,

$$\iota_A : d \cdot c \longmapsto (\nu_A(d \cdot c)) \quad \text{and} \quad \bar{\alpha} : a \cdot c \longmapsto (a \cdot c) \tilde{N},$$

where $\tilde{N} \triangleleft \tilde{G}$ is of the form $\tilde{N} := \text{Ncl} \{ \iota_A(d \cdot c) \iota_B((d \cdot c)^{-1}) \mid d \cdot c \in D \rtimes C \}$, and $a \cdot c \in A \rtimes C$. The embeddings $\bar{\beta}$ and ι_B are defined in the same manner. Now the semidirect products $A \rtimes C$ and $B \rtimes C$ are described by the split extensions

$$
\begin{array}{ccc}
A & \xrightarrow{\nu_A} & A \rtimes C \\
& & \xrightarrow{\mu_A} C \quad \text{and} \quad
B & \xrightarrow{\nu_B} & B \rtimes C \xrightarrow{\mu_B} C,
\end{array}
$$

where ν_A is the natural embedding of A into $A \rtimes C$, μ_A is the projective homomorphism defined by

$$\mu_A : A \times C \longrightarrow (A \times C)/A \simeq C \quad \text{such that} \quad \mu_A : a \cdot c \longmapsto Ac \longmapsto c$$

2
The homomorphisms ν_B and μ_B and defined in the similar manner. Then, putting the data of diagrams (2) and (3), we get the commutative diagram

\[
\begin{array}{ccc}
 D & \xrightarrow{\iota_A} & A \\
 \downarrow{\alpha} & & \downarrow{\tilde{\alpha}} \\
 G & \xrightarrow{\iota_A(d)} & G \\
 \downarrow{\beta} & & \downarrow{\tilde{\beta}} \\
 B & \xrightarrow{\iota_B} & B \\
\end{array}
\]

where d, $\iota_A(d) = \iota_B(d) = \iota_A(d) \cdot 1_C = \iota_B(d) \cdot 1_C$, i.e., the diagram commutes. In addition, since G is a pushout through D by ι_A and ι_B, there is a unique $\nu: G \rightarrow \tilde{G}$ such that the diagram

\[
\begin{array}{ccc}
 D & \xrightarrow{\iota_A} & A \\
 \downarrow{\alpha} & & \downarrow{\tilde{\alpha}} \\
 G & \xrightarrow{\nu} & \tilde{G} \\
 \downarrow{\beta} & & \downarrow{\tilde{\beta}} \\
 B & \xrightarrow{\iota_B} & B \\
\end{array}
\]

commutes. In particular, let g be a word in G. Then g has a unique normal form

\[g = a_1 b_1 \cdots a_n b_n N \]

where each $a_i \in A$, $b_i \in B$ and $N := \text{Ncl} \{ \iota_A(d) \iota_B(d^{-1}) \mid d \in D \}$. Then defining

\[\nu(g) := a_1 \tilde{\alpha} \circ \iota_A A_1 \tilde{\beta} \circ \iota_B \cdots a_n \tilde{\alpha} \circ \iota_A A_n \tilde{\beta} \circ \iota_B N = (a_1 \cdot 1_C)(b_1 \cdot 1_C) \cdots (a_n \cdot 1_C)(b_n \cdot 1_C)N = a_1 b_1 \cdots a_n b_n N, \]

give us a well-defined embedding, by definition and the uniqueness of normal forms for free products with amalgamation. Moreover, given $a \in A$, we can naturally check that

\[\nu \circ \alpha(a) := a \tilde{N} = \tilde{\alpha} \circ \iota_A (a \cdot c) \quad \text{and} \quad \nu \circ \beta(b) := b \tilde{N} = \tilde{\alpha} \circ \iota_A (b \cdot c), \]

i.e., $\nu \circ \alpha = \tilde{\alpha} \circ \iota_A$ and $\nu \circ \beta = \tilde{\beta} \circ \iota_B$. Therefore ν is a monomorphism its image is of the form

\[\text{Im} \nu = \{ a_1 b_1 \cdots a_n b_n N \mid a_i \in A \wedge b_i \in B \} = G. \]

Now we would like to extend this sequence to an exact sequence. To do this we use the
diagrams (2) and (3) again to get the commutative diagram

\[D \times C \quad \xymatrix{ A \times C \ar[r]^{\mu_A} \ar[d]_{\alpha} & A \times C/A \ar[d]^{l} & \mu_A \ar@{|->}[d] \ar[d]^{l} \\
G \ar[r]_{\iota} & C \ar[r]_{\iota} & \iota_A(d) \cdot c \ar[r]^{\mu_A} & Ac \ar[d]^{l} \\
B \times C \ar[r]_{\mu_B} \ar[u]_{\beta} & B \times C/B \ar[u]_{l} & \iota_B(d) \cdot c \ar[r]_{\mu_B} \ar[u]_{\beta} & Bc \ar[u]_{l}
} \]

where \(d \cdot c = \iota_B(d) \cdot c = c = c \).

Also, since \(\tilde{G} \) is a pushout through \(D \times C \) by \(\iota_A \) and \(\iota_B \), then there exists a unique \(\mu : \tilde{G} \longrightarrow C \) such that the diagram

\[D \times C \quad \xymatrix{ A \times C \ar[r]^{\mu_A} \ar[d]_{\alpha} & A \times C/A \ar[d]^{l} \\
G \ar[r]_{\iota} & C \ar[r]_{\iota} & \iota_A(d) \cdot c \ar[r]^{\mu_A} & Ac \ar[d]^{l} \\
B \times C \ar[r]_{\mu_B} \ar[u]_{\beta} & B \times C/B \ar[u]_{l} & \iota_B(d) \cdot c \ar[r]_{\mu_B} \ar[u]_{\beta} & Bc \ar[u]_{l}
} \]

commutes. In particular, if \(g \) is a word in \(G \), then \(\tilde{g} \) has a unique normal form

\[
\tilde{g} := (a_1 \cdot c_1)(b_1' \cdot c_1') \cdots (a_n \cdot c_n)(b_n' \cdot c_n') \tilde{N}
= a_1 b_1' c_1 a_2 b_2' c_1 c_2 \cdots a_n b_n' c_1 c_2 \cdots c_{n-1} c_n' \cdot (c_1 c_1' \cdots c_n c_n') \tilde{N}
= a_1 b_1 \cdots a_n b_n \cdot c \tilde{N}
\]

where \(a_i \cdot c_i \in A \times C \), \(b_i' \cdot c_i' \in B \times C \) and \(b_i \in B \). Hence

\[
\mu(g) := a_1^{\mu_A} b_1^{\mu_B} a_2^{\mu_A} b_2^{\mu_B} \cdots a_n^{\mu_A} b_n^{\mu_B} \cdot c
\]

which is clearly a well-defined epimorphism (again, by definition and the uniqueness of normal forms for free products with amalgamation.) The kernel of \(\mu \) has the form

\[
\text{Ker} \mu = \{ a_1 b_1 \cdots a_n b_n N \mid a_i \in A \land b_i \in B \} = G.
\]

Therefore, \(\text{Ker} \mu = \text{Im} \nu \). Moreover, given \(a \in A \), we can check that \(\mu \circ \tilde{\alpha} = \alpha \circ \mu_A \) and \(\mu \circ \tilde{\beta} = \alpha \circ \mu_B \). Therefore we get the diagram

\[
1 \longrightarrow A \ast B \xrightarrow{\nu} (A \times C) \ast (B \times C) \xrightarrow{\mu} C \longrightarrow 1,
\]

which is an exact sequence. \(\square \)
3 A Preservation of a Tree by a Semidirect Product

Proposition 1 Let Grp be the category of groups, let C be a group and let

$$\text{Grp}_{\times C} : \text{Grp} \to \text{Grp}$$

be the assignment defined as follows:

- $\text{Grp}_{\times C} : G \mapsto G \times C$ for any group G.
- $\text{Grp}_{\times C} : \psi \mapsto \psi \times 1_C$ for any $\psi \in \text{Hom}(G, H)$ such that 1_C is the identity automorphism of C and

$$\psi \times 1_C : G \times C \to H \times C$$

is defined by $\psi \times 1_C : g \cdot c \mapsto g^\psi \cdot c$,

where $g \in G$ and $c \in C$.

Then $\text{Grp}_{\times C}$ is a functor.

Proof. By definition, the map is well-defined on the class of groups and homomorphisms. Let G and H be groups, and let $\psi : G \mapsto H$ be a homomorphism. Suppose $g \in G$ and $c \in C$, then $\text{Grp}_{\times C}(\psi)(g \cdot c) := \psi \times 1_C(g \cdot c) = g^\psi \cdot c$. Therefore

$$G \xrightarrow{\psi} H$$

$$(G \times C) \xrightarrow{\psi \times 1_C} (H \times C).$$

In particular, if ψ is the identity automorphims $1_C : G \mapsto G$, then $\text{Grp}_{\times C}(1_G)$ is equal to $1_G \times 1_C$. Now $1_G \times 1_C(g \cdot c) = g \cdot c = 1_{G \times C}(g \cdot c)$ and therefore

$$\text{Grp}_{\times C}(1_G) = 1_{G \times C}.$$

Also, if $\varphi : H \mapsto K$, where K is a group, then

$$\text{Grp}_{\times C}(\varphi \circ \psi)(g \cdot c) = g^{\psi \circ \varphi} \cdot c = \text{Grp}_{\times C}(\varphi)(g^\psi \cdot c) = \text{Grp}_{\times C}(\varphi)\left(\text{Grp}_{\times C}(\psi)(g \cdot c)\right)$$

i.e., $\text{Grp}_{\times C}(\varphi \circ \psi) = \text{Grp}_{\times C}(\varphi) \circ \text{Grp}_{\times C}(\psi)$. Therefore $\text{Grp}_{\times C}$ is a functor.

Theorem 1 For any group C the functor $\text{Grp}_{\times C} : \text{Grp} \to \text{Grp}$ preserves free products with amalgamation, i.e.,

$$(A \ast B) \ast C \simeq (A \times C) \ast (B \times C)$$

given any group A, B and D.

5
Proof. Let $G = (A * B) \rtimes C$ and let $\tilde{G} = (A \rtimes C) *_{D \rtimes C} (B \rtimes C)$. By lemma 1

$$A * B \xrightarrow{\nu} (A \rtimes C) *_{D \rtimes C} (B \rtimes C) \xrightarrow{\mu} C$$

is exact; hence, it suffices to show that this sequence is also a split extension. The colimit of the diagrams

$$\begin{array}{cc}
D & A \xrightarrow{i_A} A \\
\downarrow{i_B} & \downarrow{\alpha} \\
B & G
\end{array} \quad \text{and} \quad \begin{array}{cc}
D \rtimes C & A \rtimes C \xrightarrow{i_A} A \\
\downarrow{i_B} & \downarrow{\alpha} \\
B \rtimes C & G
\end{array}$$

are the tree products G and \tilde{G}, respectively. These groups are described by its commutative diagrams, where i_A and $\tilde{\alpha}$ are the embeddings induced from embedding i_A and the natural embedding α (as described in the proof of lemma 1). The embeddings $\tilde{\beta}$ and \tilde{i}_B are defined in the same manner. Now the semidirect products $A \rtimes C$ and $B \rtimes C$ are described by the split extensions

$$\begin{array}{ccc}
A & \xrightarrow{\nu_A} & A \rtimes C \xrightarrow{\mu_A} C \\
\downarrow{\tau_A} & & \downarrow{\tau_A} \\
B \rtimes C & \xleftarrow{\tau_B} & C
\end{array} \quad \text{and} \quad \begin{array}{ccc}
B & \xrightarrow{\nu_B} & B \rtimes C \xleftarrow{\mu_B} C \\
\downarrow{\tau_B} & & \downarrow{\tau_B} \\
A \rtimes C & \xleftarrow{\tau_A} & C
\end{array}$$

where ν_A is the natural embedding, μ_A is the projective homomorphism and τ_A is the transversal homomorphism of the split extension. In particular, for any $g \in A \rtimes C$ there are unique $a \in A$ and $c \in C$ such that $g = a \cdot c$. Then $Ag = A(a \cdot c) = Ac$ and

$$\tau_A : C \simeq (A \rtimes C)/A \longrightarrow A \rtimes C$$

is defined by $\tau_A : c \simeq Ag \longmapsto 1_A \cdot c$,

which satisfies $\mu_A \circ \tau_A = 1_A$. The homomorphisms ν_B, μ_B and τ_B are defined in the similar manner, as before. Let us define a homomorphism $\tau : C \longrightarrow \tilde{G}$ by the natural embedding $\tau : c \longrightarrow c\tilde{N}$. Then, putting the data of the diagrams (2) and (3), we get the commutative diagram

$$\begin{array}{ccc}
C & \xrightarrow{\tau} & \tilde{G} \\
\downarrow{\tau_B} & & \downarrow{\tau_B} \\
B \rtimes C & \xleftarrow{\tau_A} & A \rtimes C
\end{array}$$

In particular, given $c \in C$, then $\mu \circ \tau(c) := \mu(c\tilde{N}) = c$, i.e., $\mu \circ \tau = 1_c$. Therefore, τ is a transversal homomorphism of the extension represented by diagram (7). Hence,

$$1 \longrightarrow A * B \xrightarrow{\nu} (A \rtimes C) *_{D \rtimes C} (B \rtimes C) \xrightarrow{\mu} C \longrightarrow 1$$

(10)
is a split extension; consequently \((A \ast B) \times C \simeq (A \times C) \ast (B \times C)\). \(\square\)

Theorem 2 Let \(G\) act without inversion on a tree \(\tilde{\Gamma}\) and let \(\Gamma = G \setminus \tilde{\Gamma}\) denote its factor graph. If \(\Gamma\) is a segment such that \(G_P \rtimes H, G_Q \rtimes H\) and \(G_y \rtimes H\) are the stabilizers of the vertex set \(\{P, Q\}\) and edge \(y\) of a lift of \(\Gamma\) in \(\tilde{\Gamma}\), then

\[G \simeq (G_P \ast_{G_y} G_Q) \rtimes H. \]

Proof. The canonical homomorphism

\[\varphi : (G_P \rtimes H) \ast_{G_y} (G_Q \rtimes H) \longrightarrow G \]

is an isomorphism, *a priori*. Therefore \(G \simeq (G_P \ast_{G_y} G_Q) \rtimes H\) by theorem 1. \(\square\)

4 A Quick Application to \(\text{GL}_2(\mathbb{Z})\)

The *general linear group* \(\text{GL}_n(R)\) over a commutative \(R\)-module \(M\) consists of the set of invertible linear operators over \(M\). We are particularly interested in the group \(\text{GL}_2(\mathbb{Z})\), which has a representation

\[\text{GL}_2(\mathbb{Z}) := \{ A \in M_{2 \times 2} \mid \det A = \pm 1 \} \]

since any invertible matrix \(A \in M_{2 \times 2}\) is the form \(A^{-1} = \left(\frac{1}{\det A}\right) \text{adj} A\), where \(\text{adj} A\) is the *classical adjoint* of \(A\) and \(\det A\) is the *determinant* of \(A\). The *special linear group* of \(2 \times 2\) matrices, denoted by \(\text{SL}_2(\mathbb{Z})\), is a subgroup \(\text{GL}_2(\mathbb{Z})\) with representation \(\text{SL}_2(\mathbb{Z}) := \{ A \in M_{2 \times 2} \mid \det A = 1 \}\). The theory of group actions on trees tells us that

\[\text{SL}_2(\mathbb{Z}) \simeq \mathbb{Z}_4 \ast \mathbb{Z}_2 \mathbb{Z}_6. \]

We now use the above result to relate \(\text{GL}_2(\mathbb{Z})\) with \(\text{SL}_2(\mathbb{Z})\) by way of theorem 1.

Theorem 3 \(\text{GL}_2(\mathbb{Z}) \simeq D_4 \ast_{D_2} D_6\).

Proof. The sequence of groups

\[
1 \longrightarrow \text{SL}_2(\mathbb{Z}) \longleftarrow \text{GL}_2(\mathbb{Z}) \overset{\det}{\longrightarrow} \mathbb{Z}_2 \longrightarrow 1 \tag{11}
\]

is exact, since \(\text{SL}_2(\mathbb{Z}) = \text{Ker} (\det)\). The map

\[\tau : \mathbb{Z}_2 \longrightarrow \text{GL}_2(\mathbb{Z}) \text{ defined by } \tau : -1 \longmapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]

7
is clearly a well-defined homomorphism. In particular, since the \((\det \circ \tau) = 1 A\), the extension in diagram is a split extension; hence \(\text{GL}_2(\mathbb{Z}) \simeq \text{SL}_2(\mathbb{Z}) \times \mathbb{Z}_2\). Thus

\[
\text{SL}_2(\mathbb{Z}) \rtimes \mathbb{Z}_2 \simeq (\mathbb{Z}_4 \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_2 \quad — \text{a priori;}
\]

\[
\simeq (\mathbb{Z}_4 \rtimes \mathbb{Z}_2) \rtimes (\mathbb{Z}_6 \rtimes \mathbb{Z}_2) \quad — \text{by theorem and}
\]

\[
\simeq D_4 \rtimes D_6.
\]

Therefore \(\text{GL}_2(\mathbb{Z}) \simeq D_4 \rtimes D_6\).

References

[1] R. C. Lyndon and P. E. Schupp, *Combinatorial Group Theory*, Ergebnisse der Mathematik, band 89, Springer 1977. Reprinted in the Springer Classics in Mathematics series, 2000.

[2] J. J. Rotman, *An introduction to the theory of groups* (4th edition), Springer Graduate Texts in Mathematics 148, Springer-Verlag, Berlin- Heidelberg-New York, 1995.

[3] W. Magnus, A. Karrass and D. Solitar, *Combinatorial Group Theory*, Wiley, New York, 1966 (also corrected Dover reprint 1976)

[4] Mac Lane, S. (1971) *Categories for the Working Mathematician*, Springer, 2nd ed. 1998.