Recognizing Antiophidian Plants Using the Neuromuscular Junction Apparatus

Abstract

Here we expressed our opinion in respect to an important research area of study, the neuromuscular junction, which historically has been helped the pharmacology with numerous discoveries related to the mechanisms of action of several substances. Venomous animals, toxins, plants and other bioactive compounds can be studied using neuromuscular preparations from mammalian, avian and other species. The kind of information which is possible to extract from the data interpretation is relevant and stickling to this field of study and the teaching of new researchers should be encouraged. In the last twenty years our group has employed neuromuscular preparations for confirming the antiophidian potential of ethnobotanical plant-extracts used in folk medicine, which need scientific validation. In this view, representatives of Brazilian venomous snakes of Crotalus and Bothrops genera, Crotalus durissus terrificus and Bothrops jararacussu, respectively, have been the protagonists for these studies. Besides, other studies are of notorious importance which includes those with Ophiophagus hannah (King cobra) and Phylodrius olfersi, an ophiphyloglyphous colubrid. Ethnobotanical plants such as Casearia sylvestris ("guacatonga"), Casearia gossypiosperma ("pau-de-espeto"), Curcuma zedoaroides ("Wan-Paya-Ngo-Tua-Mia"), Camellia sinensis (tea); Diptryx alata ("baru"), Hypericum brasiliense, Jatropha elliptica ("bata-de-teiú"), Mikania laevigata ("guaco"), Platyhymenia reticulata ("vinhático"), and Vellozia flavicans ("canela-de-ema") had their antiophidian properties confirmed using the neuromuscular junction as biological preparations. In a literatures survey, the majority of studies found in on line data bank, after crossing the words "antiophidian plants and neuromuscular junction" as themes, involves the use of in vitro mouse/ rat phrenic nerve-diaphragm (PND), chick biventer cervicis (BC) or the in vivo rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparations, respectively. Such biological methods were chosen probably because the robustness and sensitivity of the neuromuscular junction to the deleterious effect of snake venoms. In the case of chick BC it has a unique value to the experiment, because the inherent sensitivity to the exogenous application of agonists such as acetylcholine and potassium chloride, which induce a contracture as a response. When the potential for clinical applications are desired, in vivo experiments such as those of EPSTA are relevant, in respect to the involvement of the neuromuscular system in the pharmacological response. In conclusion, this text reflects the potential of an indispensable physiological preparation named neuromuscular junction, which is outstanding to recognize and validate antiophidian ethnobotanical compounds. In this context, Diptryx alata is a plant that has been studied by our group for a long time, in which neuromuscular preparations were chosen as efficient biological models.

Keywords: Antiophidian ethnobotanical plants; Biventer cervicis; External popliteal/ sciatic nerve-tibialis anterior; Phrenic nerve-diaphragm; Snake venoms

Abstract

Volume 5 Issue 5 - 2017

Yoko Oshima-Franco1* and Cháriston André Dal Belo2

1 Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Brazil
2 Laboratory of Neurobiology and Toxicology, Federal University of Pampa, Brazil

*Corresponding author: Y. Oshima-Franco, Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba, UNISO, Rodovia Raposo Tavares, km 92.5, Zip code 18023-000, Sorocaba, SP, Brazil, Tel: +55 15 2101-7197; Fax: +55 15 21-1-7112; Email: yokofranco@prof.uniso.br

Received: February 19, 2017 | Published: February 21, 2017

Introduction

The snake accidents are a relevant issue due the number of victims affected worldwide and the severe clinical condition that the venom develops. In fact, the World Health Organization added snakebite to the list of Neglected Tropical Diseases in 2009 [1]. Harrison et al. [2] described the accidents as a disease of poverty, since the most affected people usually live in poor rural communities with few or no medical resources.

Paradoxically, contrarily to other diseases, a highly effective treatment already exists, and corresponds to the timely administration of a specific antiserum [2]. However, in the latest years, the production of antiser has declined by the public-sector manufacturers or by some private producers, as appointed by The Lancet’s editorial [3]. Plants are an important source of drugs [4]. The literature is vast in the study of antiophidian plants such as those against lethal and myotoxic effects [5-9], phospholipase A2 [10-12] or hemorrhagic activities, antinucleolytic or other antiophidian properties as seen with Pentaclethra macroloba [13,14].

However, there are few researchers in the world using...
neuromuscular junction as biological assay for studying the potential of medicinal antiophidian plants. Thus, the rationale for this matter is the involvement of mainly the lower or upper limbs in local snake bites, the majority affecting neuromuscular junctions. In folk medicine plants are used to counteract edema and hemorrhage caused by the envenomation, simply by applying the extract on the local of the bite or even by chewing the leaves or barks aiming to neutralize the venom in the blood [15,16]. No matter how much the population believes in the popular knowledge, scientific validation is necessary for confirming the medicinal property of a given plant. Table 1 shows chronologically the studies found using neuromuscular preparations for recognizing antiophidian plants [11,17-35].

Table 1: Ethnobotanical plants with antiophidian potential under the neuromuscular junction parameter.

Snake Venom/Toxin	Plant	Neuromuscular Preparation	Authors
Bothropstoxin-I (BthTX-I) from Bothrops jararacussu	Casearia sylvestris Sw. (HE/leaves)	Mouse PND	Oshima-Franco et al [17]
Crototoxin from C. durissus terrificus, Bothropstoxin-I from B. jararacussu, Piratoxin-I from B. pireja, Myotoxin-II from B. moojeni	Casearia sylvestris Sw. (aqueous extract/leaves)	Mouse PND	Cavalcante et al. [11]
Bothrops jararacussu; Crotalus durissus terrificus	Mikania laevigata; HE/leaves Plathymenia reticulata. HE/barks	Mouse PND	Melo et al [18]
Bothrops jararacussu	Dipteryx alata Vogel (HE/barks)	Mouse PND	Puebla et al. [19]
Crotalus durissus terrificus	Camellia sinensis (HE/leaves)	Mouse PND	Rosa et al. [20]
Ophiophagus hannah (King cobra)	Curcuma zedoaroides A. Chaveirach & T. Tanee Isolated compound [2-(5,5,8a-trimethyl-2-methylene-decahydro-naphthalen-1-yl)-ethylidene]-sucinaldehyde	Rat PND	Latmann et al. [21]
Bothrops jararacussu; Crotalus durissus terrificus	Dipteryx alata Vogel (hexane, dichloromethane, ethyl acetate and methanol) extracts/barks	Mouse PND	Nazato et al. [22]
Bothrops jararacussu	Casearia gossypiosperma Briquet (HE/leaves)	Mouse PND	Camargo et al. [23]
Crotamine, crotoxin, C. d. terrificus; Bothropstoxin-I, B. jararacussu	Galactia glaucescens (Kuntl) (Leguminosae) (HE/leaves)	Mouse PND	Colares et al. [24]
Philodryas olfersii	Mikania laevigata Sch. Bip. ex Baker (ME/leaves)	Mouse PND	Collaço et al. [25]
Bothrops jararacussu	Plathymenia reticulata Benth. (hexane, dichloromethane, ethyl acetate and methanol) extracts/barks	Mouse PND	Farrapo et al. [26]
Bothrops jararacussu	Dipteryx alata Vogel Isolated lupane triterpenoids	Mouse PND	Ferraz et al. [27]
Bothropstoxin-I; Bothrops jararacussu	Camellia sinensis L. (HE/leaves)	Mouse PND	Oshima-Franco et al. [28]
Philodryas olfersii	Mikania laevigata Sch. Bip. ex Baker (HE/leaves)	Mouse PND Chick BC	Collaço et al. [29]
Crotamin, crotoxin, Crotalus durissus terrificus	Hypericum brasiliense Choisy (HE/leaves)	Mouse PND	Dal Belo et al. [30]
Bothrops jararacussu	Dipteryx alata Vogel Isolated compound 7,8,3’-trihydroxy-4’-methoxyisoflavone	Mouse PND	Ferraz et al. [31]
These antiophidian plants were found by using isolated neuromuscular preparations which provided a rapid screening against the neurotoxic and/or myotoxic ability. It is known that at the neuromuscular junction, snake venoms induce an *in vitro* irreversible inhibition of the muscle strength by different mechanisms of action and sensitivity. In addition, it is possible to assess biochemical parameters such as phospholipase A₂, creatine kinase and other enzymatic activities by collecting samples from the bath media.

The concomitant use of mammalian (as phrenic nerve-diaphragm, PND) and avian isolated preparations (as biventer cervicis, BC) is a precious apparatus for studying the pharmacological effects and mechanisms of action of snake venoms, toxins [36] and other bioactive compounds, including plant extracts. For example, in absence of electrical stimulation, chick BC are generally used to distinguish pre- or post-synaptic activity of venoms, by means of an exogenous application of acetylcholine chlorhydrate, while the addition of potassium chloride, unmasks an activity upon the sarcolemmal region [36-38]. In the end of each experiment, the resulting preparations can still provide an important material for assessing myotoxicity, unveiling the activity of plant-extracts to counteract the snake deleterious activity. Such effects can be identified in detail by using different techniques like light microscopy, immunohistochemistry, or other available resources.

Finally, our studies using *Dipteryx alata* Vogel, are classical representatives, that demonstrate the usefulness of the *in vitro* mouse PND [22] and the *in vivo* rat external popliteal/sciotic nerve-tibialis anterior (EPSTA) [34] assays, to validate the antiophidian potential of betulin, a novel anti-snake venom isolated compound devoided of mutagenicity, demonstrated by Salmonella/Microsome assays [39].

Conclusion

We conclude that the neuromuscular junction is still an important tool for studying any bioactive substance, especially neurotoxic compounds such as venoms and their isolated toxins, but also all antivenin compounds in which medicinal plants are a classical illustration.

Acknowledgement

We would like to thank all students and collaborators mentioned in all manuscripts; to University of Sorocaba, and also to FAPESP for financial support (2004/09705-8; 07/53883-6; 08/52643-4; 12/0871-0).

References

1. http://www.who.int/neglected_diseases/diseases/snakebites/en/index.html
2. Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Laloo DD (2009) Snake envenoming: a disease of poverty. PLoS Negl Trop Dis 3(12):e569.
3. (2015) Snake bite- the neglected tropical disease. Lancet 386(9999): 1110.
4. Rates SM (2001) Plants as source of drugs. Toxicon 39(5): 603-613.
5. Mors WB, do Nascimento MC, Parente JP, da Silva MH, Mello PA, et al. (1989) Neutralization of lethal and myotoxic activities of South American rattlesnake venom by extracts and constituents of the plant *Eclipta prostrata* (Asteraceae). Toxicon 27(9): 1003-1009.
6. Assuú Íuí, Harvey AL (2003) The antivenin venom activities of *Parkia biglobosa* (Mimosaceae) stem bark extract. Toxicon 42(7): 763-768.
7. Soares AM, Tičí FK, Marcusei S, Lourenço MV, Januário AH, et al. (2005) Medicinal plants with inhibitory properties against snake venoms. Curr Med Chem 12(22): 2625-2641.
8. De Paula RC, Sanchez EF, Costa TR, Martins CHG, Pereira PS, et al. (2010) Antiophidian properties of plant extracts against *Lachesis muta* venom. J Venom Anim Toxins incl Trop Dis 16(2): 311-323.
9. Binorkar SV, Jani DK (2012) Profile of medicinal plants with antiophidian activity. JPSI 1(5): 13-20.
10. Machiah DK, Gowda TV (2006) Purification of a post-synaptic neurotoxic phospholipase A₂ from *Naja naja* venom and its inhibition by a glycoprotein from *Whitania somnifera*. Biochimie 88(6): 701-710.
11. Cavalcante WLG, Campos TO, Dal Pai-Silva M, Pereira OS, Oliveira CZ, et al. (2007) Neutralization of snake venom phospholipase A₂ toxins by aqueous extract of *Casearia sylvestris* (Flacourtiaceae) in mouse neuromuscular preparation. J Ethnopharmacol 112(3): 490-497.
12. Hage-Melih LI, Sampaio SV, Taft CA, Silva CH (2013) Phospholipase A₂ inhibitors isolated from medicinal plants: alternative treatment against snakebites. Mini Rev Med Chem 13(9): 1348-1356.
13. da Silva JG, Coppeol JS, Fernandes VC, Sant’ana CD, Tičí FK, et al. (2005) Antihemorrhagic, antinucleolytic and other antiphidian properties of the aqueous extract from *Pentaclethra macroloba*. J Ethnopharmacol 101(1-2): 145-152.

Citation: Oshima-Franco Y, Dal Belo CA (2017) Recognizing Antiophidian Plants Using the Neuromuscular Junction Apparatus. Int J Complement Alt Med 5(5): 00165. DOI: 10.15406/ijcam.2017.05.00165
Recognizing Antiophidian Plants Using the Neuromuscular Junction Apparatus

14. da Silva JG, Fernandes RS, Tiéki FK, Oliveira CZ, Mazzi MV, et al. (2007) Triterpenoid saponins, new metalloprotease snake venom inhibitors isolated from *Pentaclethra macroloba*. Toxicon 50(2): 283-291.

15. Oliveira LS, Muzitan MF, Coutinho MAS, Melo GO, Costa SS (2011) Plantas medicinais comooidal terapêutico em comunidade do entorno da reserva biológica do Tinguá, RJ, Brasil-metabolitos secundários e aspectos farmacológicos. Rev Cient Int 4(17): 54-74.

16. Ferreira PM1, Costa-Lotufo LV, Moraes MO, Barros FW, Martins AM, et al. (2011) Folk uses and pharmacological properties of *Cassia sylvestris*: a medicinal review. An Acad Bras Cienc 83(4): 1373-1384.

17. Oshima-Franco Y, Alves CMV, Andrééo Filho N, Geninuti M, Cintra ACO, et al. (2005) Neutralization of the neuromuscular activity of bothrops toxin-I, a myotoxin from *Bothrops jararacussu* snake venom, by a hydroalcoholic extract of *Cassia sylvestris Sw.* (guacatonga). J Venom Anim Toxins IncTrop Dis 11(4): 465-478.

18. Melo RS, Farrapo NM, Rocha DS, Silva MG, Cogo JC, et al. (2009) Chapter 8/ Antiophidian mechanisms of medicinal plants. In: Keller RB (Ed.). Flavonoids: Biosynthesis, Biological Effects and Dietary Sources. Nova Science Publishers, Inc., New York, USA, pp. 249-262.

19. Puebla P, Oshima-Franco Y, Franco LM, Santos MG, Silva RV, et al. (2010) Chemical constituents of the bark of *Dipterix alata* vogel, an active species against *Bothrops jararacussu* venom. Molecules 15(11): 8193-8204.

20. Rosa LJR, Silva GA, Amaral Filho J, Silva MG, Cogo JC, et al. (2010) The inhibitory effect of *Camellia sinensis* extract on the neuromuscular blockade of *Crotalus durissus terrificus* venom. J Venom Res 1: 1-7.

21. Lattmann E, Sattayasai J, Sattayasai N, Staaf A, Phimmasone S, et al. (2010). *Microtome* and bothrops toxin-I, and prevents venom-induced myonecrosis. Molecules 15(9): 5956-5970.

22. Nazato VS, Rubem-Mauro L, Vieira NA, Rocha-Junior DS, Silva MG, et al. (2010) In vitro antiophidian properties of *Dipterix alata* Vogel bark extracts. Molecules 15(9): 5956-5970.

23. Camargo TM, Nazato VS, Silva MG, Cogo JC, Groppo FC, et al. (2010) *Bothrops jararacussu* venom-induced neuromuscular blockade inhibited by *Casearia gossypiosperma* Briquet hydroalcoholic extract. J Venom Anim Toxins IncTrop Dis 16(3): 257-262.

24. Colares AV, Santos MG, Corrado AP, Sampaio SV, Cintra ACO, et al. (2010) The anti-ophidian effects of the hydroalcoholic extract from the leaves of *Galactia glaucescens* (Kunth) (Leguminosae). Ann Natl Acad Med 180(2): 163-169.

25. Collazo RCO, Rocha Junior DS, Silva MG, Cogo JC, Oshima-Franco Y, et al. (2010) Propriedad antioxidativa do extrato petroliaco de *Mikania laevigata* sobre as atividades biológicas induzidos pelo veneno de *Philodrosys offrsii* na junção neuromuscular. REU 36(2): 105-113.

26. Farrapo NM, Silva GAA, Costa KN, Silva MG, Dal Belo CA, et al. (2011) Inhibition of *Bothrops jararacussu* venom activities by *Platymenia reticulata* Benth extracts. J Venom Res 2: 52-58.

27. Ferraz MC, Parrilha LAC, Moraes MSD, Amaral Filho J, Cogo JC, et al. (2012) The effect of liripan terpenoids (*Dipterix alata* Vogel) in the in vitro neuromuscular blockade and myotoxicity of two snake venoms. Curr Org Chem 16(22): 2717-2723.

28. http://www.intechopen.com/books/pharmacology/antioxidant-action-of-camellia-sinensis-extract-against-neuromuscular-blockade-of-bothrops-jararacussu

29. Collazo R de C, Cogo JC, Rodrigues-Simioni L, Rocha T, Oshima-Franco Y, et al. (2012) Protection by *Mikania laevigata* (guaçu) extract against the toxicity of *Philodrosys offrsii* snake venom. Toxicon 60(4): 614-622.

30. Dal Belo CA, Lucho AP, Vinadé L, Rocha L, Seibert França H, et al. (2013) *In vitro* antiophidian mechanisms of *Hypericum brasiliense* Choisy standardized extract: quercetin-dependent neuroprotection. Biomed Res Int 2013: 943520.

31. Ferraz MC, Yoshida EH, Tavares RV, Cogo JC, Cintra AC, et al. (2014) An isoﬂavone from *Dipterix alata* Vogel is active against the *in vitro* neuromuscular paralysis of *Bothrops jararacussu* snake venom and bothropsin-I, and prevents venom-induced myonecrosis. Molecules 19(5): 5790-5805.

32. Soares-Silva JO, Oliveira JL, Cogo JC, TavaresWS, Oshima-Franco Y (2014) Pharmacological evaluation of hexane fraction of *Casearia gossypiosperma* Briquet: antivenom potentiality. J Life Sci 8(4): 306-315.

33. Tribuliani N, Silva AM, Ferraz MC, Silva MG, Bentes APG, et al. (2014) Vellozia flavicans Mart. ex Schult. Hydroalcoholic extract inhibits the neuromuscular blockade induced by *Bothrops jararacussu* venom. BMC Complement Altern Med 14: 48.

34. Ferraz MC, de Oliveira JL, de Oliveira Junior JR, Cogo JC, dos Santos MG, et al. (2015) The triterpenoid betulin protects against the neuromuscular effects of *Bothrops jararacussu* snake venom *in vivo*. Evid Based Complement Alternat Med 2015: 939523.

35. Ferreira-Rodrigues SC, Rodrigues CM, Dos Santos MG, Gauthuz-JAA, Silva MG, et al. (2016) Anti-inflammatory and antibiotic properties of *Jatropha elliptica*, a plant from Brazilian cerrado biome. Adv Pharm Bull 6(4): 573-579.

36. Harvey AL, Barfaraz A, Thomson E, Raiz A, Preston S, et al. (1994) Screening of snake venoms for neurotoxic and myotoxic effects using simple *in vitro* preparations from rodents and chicks. Toxicon 32(3): 257-265.

37. Barfaraz A, Harvey AL. (1994) The use of the chick biventer cervicis preparation to assess the protective activity of six international reference antivenoms on the neuromuscular effects of snake venoms *in vitro*. Toxicon 32(3): 267-272.

38. Vatanpour H (2003) Effects of black scorpion *Androctonus crasicuda* venom on striated muscle preparation *in vitro*. Ir J Pharm Res 2(1): 17-22.

39. Yoshida EH, Tribuliani N, Sabadim G, Neto Moreno DA, Varanda EA, et al. (2016) Evaluation of betulin mutagenicity by *Salmonella* / Microsome Test Adv Pharm Bull 6(3): 443-447.