Decision Theory-Based COI-SNP Tagging Approach for 126 Scombriformes Species Tagging

Cheng-Hong Yang1,2, Kuo-Chuan Wu1,3, Li-Yeh Chuang4* and Hsueh-Wei Chang5,6,7*

1 Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 2 Biomedical Engineering, Kaohsiung Medical University, Kaohsiung, Taiwan, 3 Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 4 Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan, 5 Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan, 6 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, 7 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan

The mitochondrial gene cytochrome c oxidase I (COI) is commonly used for DNA barcoding in animals. However, most of the COI barcode nucleotides are conserved and sequences longer than about 650 base pairs increase the computational burden for species identification. To solve this problem, we propose a decision theory-based COI SNP tagging (DCST) approach that focuses on the discrimination of species using single nucleotide polymorphisms (SNPs) as the variable nucleotides of the sequences of a group of species. Using the example of 126 teleost mackerel fish species (order: Scombriformes), we identified 281 SNPs by alignment and trimming of their COI sequences. After decision rule making, 49 SNPs in 126 fish species were determined using the scoring system of the DCST approach. These COI-SNP barcodes were finally transformed into one-dimensional barcode images. Our proposed DCST approach simplifies the computational complexity and identifies the most effective and fewest SNPs to resolve or discriminate species for species tagging.

Keywords: decision theory, DCST, single nucleotide polymorphism (SNP), barcoding, COI, teleost fish, species identification

INTRODUCTION

The original concept of DNA barcoding was proposed to identify and discriminate a given species by a unique DNA sequence (Hebert et al., 2003). Such a DNA sequence aims at tagging species like a barcode. It is designed to identify a species from known DNA barcode sequences in a database. The commonly used DNA barcode of animal species is the mitochondrial gene cytochrome c oxidase I (COI) with a length of about 650 base pairs (bps). Meanwhile, COI sequences are also used for evolutionary and ecological studies (Hebert et al., 2003; DasGupta et al., 2005; Meier et al., 2006; Austerlitz et al., 2009; Kress et al., 2015; Park et al., 2018).

However, most nucleotides of the COI gene are conserved among different species except a minor proportion representing single nucleotide polymorphisms (SNPs). Several disease studies have used specific SNP to predict the predisposition for disease and the effects of therapeutic approaches. This concept has rarely been used for tagging species or improving the information content of DNA barcode sequences. The major benefit of using SNPs is the reduction of computational burden by removing the more abundant, non-informative, identical homologous nucleotides.
As an example, the tagging of fish species is not optimized as yet with respect to informative DNA barcoding. Some fish species have very similar morphology and it is difficult to distinguish those similar species, especially for marketing, conservation, and forensic purposes. Seafood mislabeling or fraud is a common societal and legal problem in fish trading (Sarmiento-Camacho and Valdez-Moreno, 2018) and the seafood economy (Vandamme et al., 2016; Willette et al., 2017). Currently, DNA barcoding is a reliable system for species identification and authentication and it is necessary to apply barcoding to many fish species (Liu et al., 2013; Vandamme et al., 2016; Willette et al., 2017; Sarmiento-Camacho and Valdez-Moreno, 2018). However, the COI sequences (~650 bp) are largely uninformative and too long for an optimized application for the above purposes.

In the present study, we follow the original concept of DNA barcoding to develop a decision theory-based COI SNP tagging (DCST) approach where only the variable nucleotides (SNPs) of a given COI barcode sequence are applied for the tagging of fish species. The Fish Barcode of Life Initiative (FISH-BOL) (Ward et al., 2009) provides a public database for DNA barcode sequences with images, and geospatial information for almost 10,000 fish species (Becker et al., 2011).

We use the idea of decision theory (Quinlan, 1986; Berger, 2013; Fernandez Slezak et al., 2018) to determine which sites (nucleotides) of DNA sequences are selected to discriminate between species. These are used to generate the unique DNA tags for classification. Using the DCST approach, SNPs are extracted from COI sequences to generate a SNP-based COI pattern. Finally, the SNP-COI pattern is transformed into a one-dimensional sequence barcode.

The major aim of our proposed DCST approach is to provide an effective identification tool by generating a SNP-based COI barcode. Here we apply this to the example of 126 scombriform fishes.

MATERIALS AND METHODS

Sampling and Data Pre-processing

We retrieved the COI sequences from 126 species of the bony fish (Teleostei) order Scombriformes that include representatives of the following families: Ariommatidae, Arripidae, Bramidae, Caristiidae, Centropomidae, Chiasmodontidae, Gempylidae, Icosteidae, Nomeidae, Pomatomidae, Scombrinae, Scombrolabracidae, Scombropidae, Stromateidae, Tetragonuridae, and Trichiuridae. The sequence data, ranging from 648 to 685 base pairs (bp) in lengths, were obtained from GenBank. Details of the family name, species name, sequence length, and accession number are shown in Table 1. COI sequences (n = 126) from these scombriform fishes were aligned using the ClustalW tool in MEGA 7 software (Kumar et al., 2016). Subsequently, the 5’ and 3’ protruding sequences were trimmed to gain the same length of COI sequences.

Decision-Based COI SNP Tagging (DCST)

Decision theory (Berger, 2013) improves a decision-maker's choice among a set of alternatives that need to be considered. Most of decision theory is normative, prescriptive and descriptive that provides a decision that is completely rational, has perfect accuracy and easy understanding. Possible alternatives and outcomes are considered as follows: Step (1) clearly define the given problem, step (2) organize all the possible alternatives, step (3) be aware of all possible outcomes, step (4) consider the benefits of each alternative and outcome, step (5) create a mathematical decision theory rule model, and step (6) make a decision by evaluating the models.

Based on such understood decision making, we propose here an approach for DNA barcoding that generates shorter DNA barcodes. We here call a decision theory-based COI-SNP tagging (DCST) approach. Given an $N \times M$ matrix of sequence data, S is described as:

$$ S = \begin{bmatrix} s_{1,1} & s_{1,2} & s_{1,3} & \cdots & s_{1,M} \\ s_{2,1} & s_{2,2} & s_{2,3} & \cdots & s_{2,M} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ s_{N,1} & s_{N,2} & s_{N,3} & \cdots & s_{N,M} \end{bmatrix} $$

(1)

where N is the number of sequences from each species and M is the nucleotide length. There are four nucleotide types A, T, G, and C in the matrix S. Then the nucleotide frequency of distribution F is obtained in each position $p \in [1, M]$. The frequency distribution matrix F is represented by:

$$ F = \begin{bmatrix} f_{1,1} & f_{1,2} & f_{1,3} & \cdots & f_{1,M} \\ f_{2,1} & f_{2,2} & f_{2,3} & \cdots & f_{2,M} \\ f_{3,1} & f_{3,2} & f_{3,3} & \cdots & f_{3,M} \\ f_{M,1} & f_{M,2} & f_{M,3} & \cdots & f_{M,M} \end{bmatrix} $$

(2)

where each frequency is calculated as follows:

$$ f_{p,i} = \sum_{k}^{N} (x_{k,p} | i) $$

(3)

The decision rules are created to distinguish species and divide them with each step into two subgroups based on the score of each position of sequences. The calculation of score in each position is represented by:

$$ \text{SCORE} = \begin{bmatrix} \text{score}_{1} & \text{score}_{2} & \text{score}_{3} & \cdots & \text{score}_{M} \end{bmatrix} $$

(4)

where the estimated value at the position p, namely score_{p} is calculated as:

$$ \text{score}_{p} = \frac{\text{mid}_{p} - \text{diff}_{p}}{\text{mid}_{p}} + \text{weight}_{p} $$

(5)

where mid_{p} indicates the middle integer, i.e., the integer value of half of the number of sequence data (species number) in each subgroup,

$$ \text{mid}_{p} = \left\lfloor \frac{\text{number of data set in node}}{2} \right\rfloor $$

(6)

and diff_{p} is a parameter which balances the data for generating approximately equally sized subgroups. Therefore, biallelic loci...
Family	Genus	Species name	bp	Accession no.	Family	Genus	Species name	bp	Accession no.
Ariommatidae	Ariomma	bondi	654	KT883659.1	Scombrinae	Euthynnus	aequatus	652	DQ107685.1
Ariommatidae	Ariomma	indica	655	DQ107593.1	Scombrinae	Grammatorcynus	bicarinus	655	DQ107676.1
Arripidae	Arripis	georgianus	655	EF609289.1	Scombrinae	Grammatorcynus	bimeatus	685	KF009597.1
Arripidae	Arripis	trutta	655	EF609290.1	Scombrinae	Gymnosarda	unicolor	652	JF493572.1
Arripidae	Arripis	truttacus	655	KJ663933.1	Scombrinae	Gasterochisma	melampus	652	DQ107687.1
Bramidae	Bramac	brama	655	EF609300.1	Scombrinae	Katawonus	pelamis	652	DQ107668.1
Bramidae	Bramac	dussumeri	655	KF461140.1	Scombrinae	Lepidopus	caudatus	652	EU869824.1
Bramidae	Bramac	orcini	652	KF489508.1	Scombrinae	Rastrelliger	brachysoma	655	KJ590069.1
Bramidae	Pterycombus	brama	652	KR086894.1	Scombrinae	Rastrelliger	faughi	655	EF606957.1
Bramidae	Taractes	asper	652	GU440550.1	Scombrinae	Scomber	australiacus	652	DQ107706.1
Bramidae	Taractictylys	longinennis	655	EF609467.1	Scombrinae	Scomber	colias	652	JQ774715.1
Bramidae	Taractictylys	steindachneri	655	EF609477.1	Scombrinae	Scomber	scombrus	652	DQ107718.1
Bramidae	Xenobrama	microllepis	655	EF609495.1	Scombrinae	Scomberomorus	brasiliensis	652	GU702063.1
Caristiidae	Caristus	fasciatus	652	KU176441.1	Scombrinae	Scomberomorus	cavailla	652	GU22568.1
Caristiidae	Caristus	maropus	652	GU440263.1	Scombrinae	Scomberomorus	commerson	652	DQ107670.1
Centrolophidae	Centrolophus	niger	655	EF609317.1	Scombrinae	Scomberomorus	ghattus	652	EF607533.1
Centrolophidae	Hyperoglyphe	antarctica	655	DQ107611.1	Scombrinae	Scomberomorus	maculatus	655	KF461233.1
Centrolophidae	Hyperoglyphe	bythis	655	KF461189.1	Scombrinae	Scomberomorus	muenri	652	DQ107660.1
Centrolophidae	Hyperoglyphe	japonica	652	JF652759.1	Scombrinae	Scomberomorus	pinnatolius	648	JF494457.1
Centrolophidae	Hyperoglyphe	moseli	652	DQ107609.1	Scombrinae	Scomberomorus	queenlandicus	652	DQ107653.1
Centrolophidae	Hyperoglyphe	perriformis	652	KC015488.1	Scombrinae	Scomberomorus	semilasciatus	655	DQ107654.1
Centrolophidae	Hyperoglyphe	pringlei	652	HQ949585.1	Scombrinae	Scomberomorus	sierra	652	GU440514.1
Centrolophidae	Ichthysis	lockingtoni	652	GU440358.1	Scombrinae	Sarda	australis	652	DQ107712.1
Centrolophidae	Lepidocephys	flavobrunneum	652	EU752105.1	Scombrinae	Sarda	orientalis	655	EF609690.1
Centrolophidae	Schedophilus	laburniticus	655	EF609543.1	Scombrinae	Sarda	sarda	655	JO622978.1
Centrolophidae	Schedophilus	maculatus	655	DQ107619.1	Scombrinae	Thunnus	alangua	652	DQ107645.1
Centrolophidae	Sarda	chilensis	652	EU751278.1	Scombrinae	Thunnus	obesus	655	DQ107629.1
Centrolophidae	Seriola	brama	655	EF609461.1	Scombrolobrachia	Scombrolobrax	heterolepis	652	KF768303.1
Centrolophidae	Seriola	caerulea	655	EF609462.1	Scombrolobrachia	Scombrolops	hoops	652	HG949516.1
Centrolophidae	Seriola	punctata	655	EF609463.1	Stromateidae	Kali	indica	651	EU148217.1
Centrolophidae	Stromateus	brasilensis	652	EU074612.1	Stromateidae	Pampus	argentius	655	DQ107596.1
Chiasmodontidae	Chiasmodon	niger	652	KY033950.1	Stromateidae	Pampus	chinesis	655	DQ107595.1
Chiasmodontidae	Kali	normani	652	GU440362.1	Stromateidae	Pampus	cineaus	652	EF607461.1
Chiasmodontidae	Psenopis	anomala	652	EUJ695250.1	Stromateidae	Pampus	echinorhagia	652	JN424665.1
Chiasmodontidae	Psenopis	cyanee	655	EU091904.1	Stromateidae	Pampus	punctatissimus	652	JN424734.1
Chiasmodontidae	Pseudocopepus	astronesthidens	652	KY033744.1	Stromateidae	Pepilus	crenatus	652	KU201549.1

(Continued)
Family	Genus	Species name	bp	Accession no.	Family	Genus	Species name	bp	Accession no.
Chiasmodontidae	Pseudoscopelus	lavenbergi	652	MF957014.1	Stromateidae	Peprilus	medius	652	MF956931.1
Gempylidae	Diplospinus	multistriatus	652	KR098682.1	Stromateidae	Peprilus	paru	652	GU702367.1
Gempylidae	Gempylus	serpens	655	KF461182.1	Stromateidae	Peprilus	similimus	652	GU440543.1
Gempylidae	Neolatus	tripes	652	KY033695.1	Stromateidae	Peprilus	snyderi	652	MF956937.1
Gempylidae	Neopolineus	orientalis	652	GU804966.1	Peprilus	triacanthus			
Gempylidae	Nesarchus	nasutus	652	KR098687.1	Stromateidae	Peprilus	stellatus	651	KY572905.1
Gempylidae	Promethichthys	prometheus	662	KP244064.1	Stromateidae	Peprilus			
Gempylidae	Paradiplospinus	antarcticus	652	KF930222.1	Tetragonuridae	Tetragnorus	cuvieri	655	DQ107601.1
Gempylidae	Rexea	solandri	649	LN907526.1	Trichiuridae	Aphanopus	carbo	652	KC015198.1
Gempylidae	Scomber	japonicus	652	EU752183.1	Trichiuridae	Assurger	anzac	652	GU40420.1
Gempylidae	Thrysites	atun	652	JF494694.1	Trichiuridae	Benthodesmus	simonyi	652	JQ774573.1
Icosteidae	Icosteus	aenigmaticus	652	GU440395.1	Trichiuridae	Benthodesmus	tenua	652	KF929659.1
Nemeidae	Cubiceps	baxteri	652	JF952712.1	Trichiuridae	Evoxymetopon	poeyi	651	JN990664.1
Nemeidae	Cubiceps	gracilis	652	KC015307.1	Trichiuridae	Evoxymetopon	taeniatus	651	JN990843.1
Nemeidae	Cubiceps	pauciradiatus	655	KJ968014.1	Trichiuridae	Euthynmus	alletteratus	652	GU255603.1
Nemeidae	Cubiceps	whiteleggi	655	DQ107602.1	Trichiuridae	Kali	macura	651	EU148218.1
Nemeidae	Nomeus	gronovi	652	JF493993.1	Trichiuridae	Leptocaraus	alfrons	652	KC015503.1
Nemeidae	Psenes	arafuransis	652	KT423112.1	Trichiuridae	Leptocaraus	roelandti	651	JN990647.1
Nemeidae	Psenes	maculatus	652	KC015845.1	Trichiuridae	Leptocaraus	savala	651	EF606945.1
Nemeidae	Psenes	pellucidus	655	DQ107607.1	Trichiuridae	Scomberomorus	niphonius	652	FJ238036.1
Nemeidae	Psenes	sio	652	MF957000.1	Trichiuridae	Trichiurus	auriga	669	KF105923.1
Pomatomidae	Pomatomus	saltatrix	655	DQ885110.1	Trichiuridae	Trichiurus	brevis	651	JN990852.1
Scombrinae	Acanthocybium	solandri	652	DQ107692.1	Trichiuridae	Trichiurus	japonicus	651	JN990688.1
Scombrinae	Allotomus	falla	652	DQ107703.1	Trichiuridae	Trichiurus	lepturus	652	EF607600.1
Scombrinae	Brama	japonica	652	FJ164426.1	Trichiuridae	Trichiurus	niterus	655	MF957079.1
Scombrinae	Cybicosarda	elegans	652	DQ107695.1	Trichiuridae	Tentoricaps	cristatus	651	JN990844.1
with almost equal frequency for each allele get the highest scores and are selected to divide the data into 2 subgroups. The \(\text{mid}_p \) value is used to distribute all sequence data into two subgroups. For the equation for \(\text{diff}_p \) (formula 7), our proposed methodology selects the first appearing SNP starting from the lowest to the highest order of nucleotide position although SNPs at different positions may have the same score. For example, there are four sequences in a given subgroup and the best case is that two data are assigned into the left subgroup and others are assigned to right subgroup. Accordingly, \(\text{diff}_p \) is calculated as (min denotes the minimum value):

\[
\text{diff}_p = \min_{r \in \{A, C, G, T\}} \{ |\text{mid}_p - f_p| \} \quad (7)
\]

Moreover, two different nucleotide types make it easier to sort the sequences into two subgroups for tree construction. Three or four nucleotide types are complex and require more tree lineages. Accordingly, the logic of the weighting system (formula 8) of the DCST method emphasizes the two nucleotide types and assigns the highest score among them. Non-polymorphic loci are not considered in this method, and hence they are given a score of 0. The \(\text{weight}_p \) is defined by:

\[
\text{weight}_p = \begin{cases}
0, & \text{if the number of identified nucleotide type is } 1 \\
1, & \text{if the number of identified nucleotide types is } 2 \\
0.66, & \text{if the number of identified nucleotide types is } 3 \\
0.33, & \text{if the number of identified nucleotide types is } 4
\end{cases} \quad (8)
\]

The species can be separated into two subgroups according to the score estimation for each \(\text{score}_p \). The remaining subgroups at different levels are separated in the same way, and all the species are assigned a unique tag. The above step generates a pseudocode (Figure 1).

The flowchart of the DCST approach is shown in Figure 2. For example, the “data” contain 8 sequences (species) with the length for 13 nucleotides. The frequency distribution \(F \) is counted from “data” (see formula 2 and 3) and the \(\text{SCORE} \) \((\text{score}_p) \) are
FIGURE 2 | Flowchart of the DCST approach. This is an example to show how DCST approach operates. S1–S8 indicates eight sequences from eight species. In each level, the sequences are subgrouped according to the score system of DCSF approach, i.e., the nucleotides with the highest score are divided into two parts. Sometimes, the nucleotides at the same position may be chosen several times depending on the score performance.

calculated (see formula 4∼8). The positions p_1 and p_8 at the first group has 8 sequences (species), therefore, the mid_1 and mid_8 are $\left\lfloor \frac{8}{2} \right\rfloor = 4$ (formula 6) and the $diff_1$ and $diff_8$ are calculated as follows (formula 7):

$$diff_1 = \min \begin{cases} f_{A1} = |4 - 0| = 4 \\ f_{C1} = |4 - 4| = 0 \\ f_{G1} = |4 - 0| = 4 \\ f_{T1} = |4 - 4| = 0 \end{cases}$$

and

$$diff_8 = \min \begin{cases} f_{A8} = |4 - 6| = 2 \\ f_{C8} = |4 - 1| = 3 \\ f_{G8} = |4 - 1| = 3 \\ f_{T8} = |4 - 0| = 4 \end{cases}$$

where there are two types in p_1 (C and T) and three types in p_8, (A, C, and G) hence $weight_1$ is 1 and $weight_8$ is 0.66 (formula 8). The scores are calculated as follows (formula 5):

$$score_1 = \frac{4 - 0}{4} + 1 = 2.0$$

and

$$scores = \frac{4 - 2}{4} + 0.66 \approx 1.2$$

This way we can get all scores of positions p_1∼p_8, shown in Figure 2, and the maximum score in position p_1 is calculated in the first group. All sequences are divided into subgroups with “up” and “down” sides as branches related to nucleotides (e.g., C and T). Then, the sub-group follows the same procedure as mentioned above until the end (i.e., 7th group). This way the positions p_1, p_2, p_3, p_4, and p_7 are found. In this example, the positions, p_3 and p_4, are chosen twice, i.e., 2nd group/6th group and 3rd group/5th group. Therefore, much shorter informative barcode sequences become available using DCST.

Unique tags are generated when each species gets separated. Here, we use the code 128 (standard) of one dimensional barcodes to display each tag which is generated from a one dimension barcode image creator package called python-barcode 0.8.1. The standard code 128 in a one dimension barcode is an alphanumerical or numerical-only tool to generate barcode images.

RESULTS

Retrieval of COI Sequences

In this study, we retrieved 126 COI sequences of the fish order Scombriformes from GenBank. The 126 original COI sequences are shown in Figure 3 (the full original data set is available at http://shorturl.at/ayEJ2).

Alignment of COI Sequences

After performing multiple sequence alignments using the clustalW method in MEGA 7 software (Kumar et al., 2016), the resulting 126 aligned COI sequences are shown in Figure 4 (the full aligned data set is available at http://shorturl.at/tBMVW).
FIGURE 3 | Original COI sequences ($n = 126$) of the fish order Scombriformes (Teleostei). This is an example of a group of species and sequences that shows 1st to 10th, 117th to 126th species and 1st to 50th, 640th to 668th position, respectively. The full original sequences for all species are available from http://shorturl.at/tBMVW.

FIGURE 4 | 126 aligned COI sequences of the fish order Scombriformes (Teleostei). This is an example of a group of species and sequences that shows 1st to 10th, 117th to 126th species and 1st to 50th, 640th to 668th position, respectively. The full original sequences for all species are available from http://140.127.112.213/DNA_barcode/download/Scombriformes_COI_aligned.tar.

Trimming of COI Sequences
The position 1 to 35 and 673 to 696 of 126 aligned COI sequences are trimmed (i.e., protruding the 5' and 3' ends of sequence) that is shown as Figure 5 (the fully trimmed data set is available at http://shorturl.at/tTU04). Counting from the trimmed sequences, 281 SNPs were identified.

Decision Process of COI Sequences
The decision process was created according to the decision rule, and each unique tag was generated from each selected position (shown in Figure 6). Figure 6 shows the position of nucleotides in each node, and all tags were collected and arranged from each node. Consequently, the original data of COI sequences with 636 bp length were curtailed into specific COI-SNP of only 49 bp length. Accordingly, our proposed DCST approach can effectively obtain shorter tags from COI sequences.

Species-Tag Barcode Generation of COI Sequences
One-dimensional barcodes were generated from these unique tags (shown as Figure 7, the full tags of one-dimensional barcodes for 126 scombrid species are available at http://shorturl.at/szJL1). These one-dimension barcode images of tags allow information retrieval with a barcode scanner for technical and scientific applications.

DISCUSSION
The original concept of “DNA barcoding” was thought to identify and discriminate between species by different genetic tags or markers. After a longer search for a most informative gene sequence, the mitochondrial COI gene was found to be most informative in animals at the species level. Besides for taxonomic identification purposes, it is commonly used recently in evolutionary and ecological studies (Hebert et al., 2003;
Figure 5 | Trimmed COI sequences (n = 126) of the fish order Scombriformes (Teleostei). This is an ellipse of part of species and sequences that shows 1st to 10th, 117th to 126th species and 1st to 50th, 580th to 636th position, respectively. The reference sequence listed at the top of this figure is the 8th position of KT883659.1 for A. bondi. The full original sequences for all species are available from http://140.127.112.213/DNA_barcode/download/Scombriformes_COI_trimmed.tar.
FIGURE 6 | Tree-like structure outcome. This figure shows the selected position number and information of nucleotides for tagging SNP in 126 scombriform fishes. On the left side, the number of position within parentheses refers to the position of the reference sequence (Ariomma bondi; KT883659.1). For example, CT(243) indicates the nucleotide at the 243th position being selected as a node to separate two subgroups. It also shows the shorter tags from DNA COI sequences for each species on the right side. On the right side, the 1st nucleotide of the driftfish A. bondi has the 8th position in the original sequence KT883659.1 of A. bondi.
for fungi and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and maturase K (matK) (Dong et al., 2014) for plants. Moreover, the DCST approach can be applied to the sequence data retrieved by Next Generation Sequencing (NGS). NGS offers high-throughput nucleotide sequencing for DNA/RNA molecules (Metzker, 2010). Recently, NGS has been applied to metagenomics (Roumpeka et al., 2017). NGS-profiling metagenomics may identify all species existing in a given environment. Using our proposed DCST approach, species-specific sequences may be processed to generate species-specific SNP barcodes for tagging species in metagenomics. Suitable SNPs from different positions are selected for species tagging in our proposed DCST system. However, the DCST system does not consider the distances between the selected SNPs. Therefore, the DCST system fails to calculate the evolutionary distance and is unsuitable for phylogenetic analysis. The tree generated in Figure 6 was just to demonstrate that the species in the collected data set have very close relationships with very similar sequences.

The practical application of this DCST system in a laboratory situation is to provide a platform for SNP arrays which allows fast and specific SNP genotyping. Here, SNPs belonging to COI-SNP based species-tags can be genotyped individually and simultaneously. These allow species identification by comparison with DCST-generated COI-SNP based species-tags. For example, Arrayed Primer Extension (APEX) is an array-based detection and can analyze thousands of SNPs in candidate region (Pullat and Metspalu, 2008). After processing to array scanner, the SNP pattern is generated and the species may be recognized immediately by checking the species-specific SNP pattern. In contrast, single gene PCR followed by sequencing needs a DNA sequencing machine and perform bioinformatics BLAST searching. Although both full sequence of a single locus and can analyze thousands of SNPs in candidate region (Pullat and Metspalu, 2008). After processing to array scanner, the SNP pattern is generated and the species may be recognized immediately by checking the species-specific SNP pattern. In contrast, single gene PCR followed by sequencing needs a DNA sequencing machine and perform bioinformatics BLAST searching. Although both full sequence of a single locus and array assay of DCST-generated SNP can identify a species, DCST-generated SNP barcode is more suitable for species tagging in our proposed DCST system. However, the DCST system does not consider the distances between the selected SNPs. Therefore, the DCST system fails to calculate the evolutionary distance and is unsuitable for phylogenetic analysis. The tree generated in Figure 6 was just to demonstrate that the species in the collected data set have very close relationships with very similar sequences.

The practical application of this DCST system in a laboratory situation is to provide a platform for SNP arrays which allows fast and specific SNP genotyping. Here, SNPs belonging to COI-SNP based species-tags can be genotyped individually and simultaneously. These allow species identification by comparison with DCST-generated COI-SNP based species-tags. For example, Arrayed Primer Extension (APEX) is an array-based detection and can analyze thousands of SNPs in candidate region (Pullat and Metspalu, 2008). After processing to array scanner, the SNP pattern is generated and the species may be recognized immediately by checking the species-specific SNP pattern. In contrast, single gene PCR followed by sequencing needs a DNA sequencing machine and perform bioinformatics BLAST searching. Although both full sequence of a single locus and array assay of DCST-generated SNP can identify a species, DCST-generated SNP barcode is more suitable for species tagging in our proposed DCST system. However, the DCST system does not consider the distances between the selected SNPs. Therefore, the DCST system fails to calculate the evolutionary distance and is unsuitable for phylogenetic analysis. The tree generated in Figure 6 was just to demonstrate that the species in the collected data set have very close relationships with very similar sequences.

The practical application of this DCST system in a laboratory situation is to provide a platform for SNP arrays which allows fast and specific SNP genotyping. Here, SNPs belonging to COI-SNP based species-tags can be genotyped individually and simultaneously. These allow species identification by comparison with DCST-generated COI-SNP based species-tags. For example, Arrayed Primer Extension (APEX) is an array-based detection and can analyze thousands of SNPs in candidate region (Pullat and Metspalu, 2008). After processing to array scanner, the SNP pattern is generated and the species may be recognized immediately by checking the species-specific SNP pattern. In contrast, single gene PCR followed by sequencing needs a DNA sequencing machine and perform bioinformatics BLAST searching. Although both full sequence of a single locus and array assay of DCST-generated SNP can identify a species, DCST-generated SNP barcode is more suitable for species tagging in our proposed DCST system. However, the DCST system does not consider the distances between the selected SNPs. Therefore, the DCST system fails to calculate the evolutionary distance and is unsuitable for phylogenetic analysis. The tree generated in Figure 6 was just to demonstrate that the species in the collected data set have very close relationships with very similar sequences.

The practical application of this DCST system in a laboratory situation is to provide a platform for SNP arrays which allows fast and specific SNP genotyping. Here, SNPs belonging to COI-SNP based species-tags can be genotyped individually and simultaneously. These allow species identification by comparison with DCST-generated COI-SNP based species-tags. For example, Arrayed Primer Extension (APEX) is an array-based detection and can analyze thousands of SNPs in candidate region (Pullat and Metspalu, 2008). After processing to array scanner, the SNP pattern is generated and the species may be recognized immediately by checking the species-specific SNP pattern. In contrast, single gene PCR followed by sequencing needs a DNA sequencing machine and perform bioinformatics BLAST searching. Although both full sequence of a single locus and array assay of DCST-generated SNP can identify a species, DCST-generated SNP barcode is more suitable for species tagging in our proposed DCST system. However, the DCST system does not consider the distances between the selected SNPs. Therefore, the DCST system fails to calculate the evolutionary distance and is unsuitable for phylogenetic analysis. The tree generated in Figure 6 was just to demonstrate that the species in the collected data set have very close relationships with very similar sequences.

The practical application of this DCST system in a laboratory situation is to provide a platform for SNP arrays which allows fast and specific SNP genotyping. Here, SNPs belonging to COI-SNP based species-tags can be genotyped individually and simultaneously. These allow species identification by comparison with DCST-generated COI-SNP based species-tags. For example, Arrayed Primer Extension (APEX) is an array-based detection and can analyze thousands of SNPs in candidate region (Pullat and Metspalu, 2008). After processing to array scanner, the SNP pattern is generated and the species may be recognized immediately by checking the species-specific SNP pattern. In contrast, single gene PCR followed by sequencing needs a DNA sequencing machine and perform bioinformatics BLAST searching. Although both full sequence of a single locus and array assay of DCST-generated SNP can identify a species, DCST-generated SNP barcode is more suitable for species tagging in our proposed DCST system. However, the DCST system does not consider the distances between the selected SNPs. Therefore, the DCST system fails to calculate the evolutionary distance and is unsuitable for phylogenetic analysis. The tree generated in Figure 6 was just to demonstrate that the species in the collected data set have very close relationships with very similar sequences.

CONCLUSION

The COI sequence with full length provides commonly accepted information for phylogenetic and evolutionary studies. However, the full length sequence contains mostly non-variable nucleotides and only a few SNPs. Our for the first time proposed DCST approach ignores the non-variable nucleotides by a scoring system and provides a format for the arrangement of SNP pattern for the identification of different fish species. This way we provide a decision-based COI SNP tagging (DCST) approach where the COI nucleotide sequence (~650 bp) is effectively reduced to a shorter COI-SNP barcode (49 bp) for the most informative discrimination of 126 scombriform fish species.

AUTHOR CONTRIBUTIONS

L-YC and H-WC conceived and designed the research and wrote the paper. C-HY and H-WC also contributed to sequence retrieval. C-HY and H-WC revised the paper. All authors read and approved the final manuscript.

FUNDING

This work was supported by funds of the Ministry of Science and Technology, Taiwan (MOST 106-2221-E-214-043, MOST 106-2221-E-151-009-MY2, MOST 105-2221-E-151-053-MY2, and MOST 107-2320-B-037-016).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2019.00259/full#supplementary-material

Figure S1 | Sequential searching for SNP is designed to subgroup the COI sequences at each level. In this case (case I), sequential searching is designed to find the diastolic type of SNP at each homologous position and perform subgrouping based on alternative nucleotides at this SNP. However, this case does not consider the nucleotide distribution compared to our proposed DCST method. For example, we found the nucleotide at the first position (nt 1) was a SNP and these sequences were separated into two subgroups based on this SNP (T/C) at 1-level, i.e., S1, S2, S4 (T) are allocated to the top side and S3, S5, S6, S7 (C) are allocated to the bottom side. In the top side of 2-level, the second nucleotide (nt 2) is not a SNP and is skipped. Then, the third nucleotide (nt 3) is a SNP and these sequences were separated into two subgroups based on this SNP (C/T) at 2-level, i.e., S2 (C) are allocated to the top side and S1 and S4 (C) are allocated to the bottom side. Subgrouping for the other levels follows the same rule as mentioned above.

Figure S2 | Unique searching for SNP is designed to subgroup the COI sequences at each level. In this case (case II), unique searching is designed to find the SNP with only unique nucleotide for one unique subgroup and the other
sequences are processed for next unique searching. For example, the first nucleotide (nt 1) does not show one unique nucleotide, i.e., 3 T and 5 C. Subsequently, the unique searching goes to the second nucleotide. We found the second position (nt 2) of S3 (T) is unique compared to others (C) at the 1-level, i.e., S3 (T) is allocated to the top side and others (C) are allocated to the bottom side. Subgrouping for the other levels follows the same rule as mentioned above.

REFERENCES

Austerlitz, F., David, O., Schaeffer, B., Bleakley, K., Olteanu, M., Leblois, R., et al. (2009). DNA barcode analysis: a comparison of phylogenetic and statistical classification methods. BMC Bioinform. 10(Suppl. 14):S10. doi: 10.1186/1471-2105-10-S14-S10

Becker, S., Hanner, R., and Steinke, D. (2011). Five years of FISH-BOL: brief status report. Mitochondr. DNA 22(Suppl. 1), 3–9. doi: 10.3109/19401736.2010.535528

Berger, J. O. (2013). Statistical Decision Theory and Bayesian Analysis (2nd Edn) (Berlin; Heidelberg: Springer).

DasGupta, B., Konwar, K. M., Mandoiu, I. I., and Shvartsman, A. A. (2005). DNA-BAR: distinguisher selection for DNA barcoding. Bioinformatics. 21, 3424–3426. doi: 10.1093/bioinformatics/bti547

Dong, W., Cheng, T., Li, C., Xu, C., Long, P., Chen, C., et al. (2014). Discriminating plants using the DNA barcode rbcLb as an appraisal based on a large data set. Mol. Ecol. Resour. 14, 336–343. doi: 10.1111/1755-0998.12185

Fleischer, R. (1996). A simple balanced search tree with O(1) worst-case update.

Hebert, P. D., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proc. Biol. Sci. 267, 313–321. doi: 10.1098/rspb.2002.2218

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. doi: 10.1093/molbev/msw194

Li, S. Y., Chan, C. L., Lin, O., Hu, C. S., and Chen, C. A. (2013). DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan. PLoS ONE 8:e79373. doi: 10.1371/journal.pone.0079373

Meier, R., Shiyyah, K., Vaidya, G., and Ng, P. K. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55, 715–728. doi: 10.1080/10635150600968964

Metzker, M. L. (2010). Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46. doi: 10.1038/nrg2626

Mitsura, H., and Tama, I. (2014). MEGAB: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. doi: 10.1093/molbev/msw194

Park, M. H., Jung, J. H., Jo, E., Park, K. M., Baek, Y. S., Kim, S. J., et al. (2018). Utility of mitochondrial CO1 sequences for species discrimination of Spirotricha ciliates (Protozoa, Ciliophora). Mitochondr. DNA A DNA Mapp. Seq. Anal. 30, 148–155. doi: 10.1080/24701394.2018.1464563

Purcell, J., and Metsalu, A. (2008). Arrayed primer extension reaction for genotyping on oligonucleotide microarray. Methods Mol. Biol. 444, 161–167. doi: 10.1007/978-1-59745-066-9_12

Quinlan, J. R. (1986). Induction of decision trees. Machine Learn. 1, 81–106. doi: 10.1007/BF00116251

Roumpoka, D. D., Wallace, R. J., Escalettes, F., Fotheringham, I., and Watson, M. (2017). A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front. Genet. 8:23. doi: 10.3389/fgene.2017.00023

Sarmiento-Camacho, S., and Valdez-Moreno, M. (2018). DNA barcoding identification of commercial fish sold in Mexican markets. Genome. 61, 457–466. doi: 10.1139/gen-2017-0222

Schoch, C. L., Seiffert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U.S.A. 109, 6241–6246. doi: 10.1073/pnas.1117018109

Seiffert, K. A. (2009). Progress towards DNA barcoding of fungi. Mol. Ecol. Resour. 9(Suppl. 1), 83–89. doi: 10.1111/j.1755-0998.2009.02635.x

Vandamme, S. G., Griffiths, A. M., Taylor, S. A., Di Muri, C., Hankard, E. A., Towne, J. A., et al. (2016). Sushi barcoding in the UK: another kettle of fish. Peer. 4:e1891. doi: 10.7717/peerj.1891

Weitschek, E., Fiscon, G., and Felici, G. (2014). Supervised DNA Barcodes species classification: analysis, comparisons and results. BioData Min. 7:4. doi: 10.1186/1756-0381-7-4

Weitschek, E., Van Velzen, R., Felici, G., and Bertolazzi, P. (2013). BLOG 2.0: a software system for character-based species classification with DNA Barcode sequences. What it does, how to use it. Mol. Ecol. Resour. 13, 1043–1046. doi: 10.1111/j.1755-0998.12073

Willette, D. A., Simmonds, S. E., Cheng, S. H., Esteves, S., Kane, T. L., Nuetzel, H., et al. (2017). Using DNA barcoding to track seafood mislabeling in Los Angeles restaurants. Conserv. Biol. 31, 1076–1085. doi: 10.1111/cobi.12888

Zhang, A. B., and Savolainen, P. (2009). BPSI2.0: a C/C++ interface program for species identification via DNA barcoding with a BP-neural network by calling the Matlab engine. Mol. Ecol. Resour. 9, 104–106. doi: 10.1111/j.1755-0998.2008.02572.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.