On a conjecture by Haipeng Qu

Marius Tărnăuceanu

November 19, 2018

Abstract

In this note, we prove that $D_8 \times C_2^{n-3}$ is the non-elementary abelian 2-group of order 2^n, $n \geq 3$, whose number of subgroups of possible orders is maximal. This solves a conjecture by Haipeng Qu [7]. A formula for counting the subgroups of an (almost) extraspecial 2-group is also presented.

MSC2000: Primary 20D30; Secondary 20D60, 20D99.

Key words: subgroup lattice, (elementary) abelian 2-group, (almost/generalized) extraspecial 2-group, Goursat’s lemma, central product.

1 Introduction

Let G be a finite p-group of order p^n. For $k = 0, 1, ..., n$, we denote by $s_k(G)$ the number of subgroups of order p^k of G. The starting point for our discussion is given by Theorem 1.4 of [7] which proves that if p is odd and G is non-elementary abelian then

$$s_k(G) \leq s_k(M_p \times C_p^{m-3}), \forall 0 \leq k \leq n,$$

where $M_p = \langle a, b | a^p = b^p = c^p = 1, [a, b] = c, [c, a] = [c, b] = 1 \rangle$ is the non-abelian group of order p^3 and exponent p. Moreover, in [7] it is conjectured that the inequalities (1) also hold for $p = 2$. Note that in this case there is no direct analogue of M_p, as a group of exponent 2 is abelian.
But the dihedral group of order 8 is close, as it is at least generated by elements of order 2.

In the current note we prove the inequalities (1) for \(p = 2 \) by replacing \(M_p \) with \(D_8 \). This completes the work of Haipeng Qu. We also give a formula for the number of subgroups of an (almost) extraspecial 2-group depending on the number of elementary abelian subgroups of possible orders. Our main result is the following.

Theorem 1.1. Let \(G \) be a finite non-elementary abelian 2-group of order \(2^n \), \(n \geq 3 \). Then

\[
s_k(G) \leq s_k(D_8 \times C_2^{n-3}), \forall 0 \leq k \leq n.
\]

Throughout this paper, we will use \(A \ast B \) to denote the (amalgamated) central product of the groups \(A \) and \(B \) having isomorphic centres, and \(X^{sr} \) to denote the central product of \(r \) copies of the group \(X \). Also, we will denote by \(\binom{n}{k}_p \) the number of subgroups of order \(p^k \) in an elementary abelian \(p \)-group of order \(p^n \).

We recall several basic definitions and results on 2-groups that will be useful to us. A finite 2-group is called:

- *extraspecial* if \(Z(G) = G' = \Phi(G) \) has order 2;
- *almost extraspecial* if \(G' = \Phi(G) \) has order 2 and \(Z(G) \cong C_4 \);
- *generalized extraspecial* if \(G' = \Phi(G) \) has order 2 and \(G' \subseteq Z(G) \).

The structure of these groups is well-known (see e.g. Theorem 2.3 of \[2\] and Lemma 3.2 of \[8\]):

Lemma 1.2. Let \(G \) be a finite 2-group.

a) If \(G \) is extraspecial, then \(|G| = 2^{2r+1} \) for some positive integer \(r \) and either \(G \cong D_8^{sr} \) or \(G \cong Q_8 \ast D_8^s(r-1) \).

b) If \(G \) is almost extraspecial, then \(|G| = 2^{2r+2} \) for some positive integer \(r \) and \(G \cong D_8^{sr} \ast C_4 \).

c) If \(G \) is generalized extraspecial, then either \(G \cong E \times A \) or \(G \cong (E \ast C_4) \times A \), where \(E \) is an extraspecial 2-group and \(A \) is an elementary abelian 2-group.

The key result of \[7\] is Theorem 1.3. For \(p = 2 \), it states the following.
Lemma 1.3. Let G be a finite 2-group of order 2^n and M be a normal subgroup of order 2 of G. Then

$$s_k(G) \leq s_k(G/M \times C_2), \forall 0 \leq k \leq n.$$

We also present a result that follows from Corollary 2 of [3].

Lemma 1.4. Let G be a finite non-elementary abelian 2-group of order 2^n, $n \geq 3$, and $L_1(G)$ be the set of cyclic subgroups of G. Then

$$|L_1(G)| \leq 7 \cdot 2^{n-3} = |L_1(D_8 \times C_2^{n-3})|.$$

2 Proofs of the main results

First of all, we recall the well-known Goursats lemma (see e.g. (4.19) of [9], I) that will be intensively used in our proofs.

Theorem 2.1. Let A and B be two finite groups. Then every subgroup H of the direct product $A \times B$ is completely determined by a quintuple $(A_1, A_2, B_1, B_2, \varphi)$, where $A_1 \leq A_2 \leq A$, $B_1 \leq B_2 \leq B$ and $\varphi : A_2/A_1 \rightarrow B_2/B_1$ is an isomorphism, more exactly $H = \{(a, b) \in A_2 \times B_2 \mid \varphi(aA_1) = bB_1\}$. Moreover, we have $|H| = |A_1||B_2| = |A_2||B_1|$.

Next we remark that Lemma 1.3 can be easily generalized in the following way.

Lemma 2.2. Let G be a finite 2-group of order 2^n and M be a normal subgroup of order 2^r of G. Then

$$s_k(G) \leq s_k(G/M \times C_2^r), \forall 0 \leq k \leq n.$$

Proof. Take a chief series of G containing M and use induction on r. \qed

The following lemma shows that the inequalities (2) hold for finite abelian 2-groups.

Lemma 2.3. Let G be a finite abelian 2-group of order 2^n, $n \geq 3$. If G is non-elementary abelian, then

$$s_k(G) \leq s_k(D_8 \times C_2^{n-3}), \forall 0 \leq k \leq n.$$
Proof. Since \(G \) is not elementary abelian, we infer that it has a subgroup \(M \) of order \(2^{n-2} \) such that \(G/M \cong C_4 \). Then Lemma 2.2 leads to
\[
s_k(G) \leq s_k(C_4 \times C_2^{m-2}), \forall 0 \leq k \leq n,
\]
and so it suffices to prove that
\[
s_k(G_1 \times C_2^{m-3}) \leq s_k(D_8 \times C_2^{m-3}), \forall 0 \leq k \leq n,
\]
where \(G_1 = C_4 \times C_2 \). By Theorem 2.1, we know that a subgroup of order \(2^k \) of \(G_1 \times C_2^{m-3} \) is completely determined by a quintuple \((A_1, A_2, B_1, B_2, \varphi) \), where \(A_1 \trianglelefteq A_2 \leq G_1, B_1 \trianglelefteq B_2 \leq C_2^{m-3}, \varphi : A_2/A_1 \longrightarrow B_2/B_1 \) is an isomorphism, and \(|A_2||B_1| = 2^k \). Note that \(\varphi \) can be chosen in a unique way for the elementary abelian sections of orders 1 and 2 of \(G_1 \), and in \(6 = |\text{Aut}(C_2^2)| \) ways for the elementary abelian sections of order 4 of \(G_1 \). We distinguish the following cases:

a) \(A_2 = 1 \).

Then \(A_1 = 1 \) and \(B_1 = B_2 \) is one of the \(\binom{n-3}{k} \) subgroups of order \(2^k \) of \(C_2^{m-3} \). Clearly, these determine \(\binom{n-3}{k} \) distinct subgroups of \(G_1 \times C_2^{m-3} \).

b) \(A_2 \) is one of the three subgroups of order 2 of \(G_1 \).

Then \(B_1 \) is of order \(2^{k-1} \) and can be chosen in \(\binom{n-3}{k-1} \) ways. If \(A_1 = A_2 \) then \(B_2 = B_1 \), while if \(A_1 = 1 \) then \(B_2 \) is one of the \(2^{n-k-2} - 1 \) subgroups of order \(2^k \) of \(C_2^{m-3} \) containing \(B_1 \). So, in this case we have
\[
3 \cdot \frac{(n-3)!}{(k-1)!} + 3 \cdot (2^{n-k-2} - 1) \binom{n-3}{k-1} = 3 \cdot 2^{n-k} \binom{n-3}{k-1}
\]
distinct subgroups of \(G_1 \times C_2^{m-3} \).

c) \(A_2 \) is one of the two cyclic subgroups of order 4 of \(G_1 \).

Then \(B_1 \) is of order \(2^{k-2} \) and can be chosen in \(\binom{n-3}{k-2} \) ways. If \(A_1 = A_2 \) then \(B_2 = B_1 \), while if \(|A_1| = 2 \) then \(B_2 \) is one of the \(2^{n-k-1} - 1 \) subgroups of order \(2^{k-1} \) of \(C_2^{m-3} \) containing \(B_1 \). So, in this case we have
\[
2 \cdot \frac{(n-3)!}{(k-2)!} + 2 \cdot (2^{n-k-1} - 1) \binom{n-3}{k-2} = 2^{n-k} \binom{n-3}{k-2}
\]
distinct subgroups of \(G_1 \times C_2^{m-3} \).
d) A_2 is the unique subgroup isomorphic to C_2^2 of G_1. Again, B_1 is of order 2^{k-2} and can be chosen in $\binom{n-3}{k-2}$ ways. If $A_1 = A_2$ then $B_2 = B_1$; if $|A_1| = 2$ then B_2 is one of the $2^{n-k-1} - 1$ subgroups of order 2^{k-1} of C_2^{n-3} containing B_1; if $A_1 = 1$ then B_2 is one of the $\binom{n-k}{2}$ subgroups of order 2^k of C_2^{n-3} containing B_1. One obtains

$$\left(\frac{n-3}{k-2}\right)_2 + 3(2^{n-k-1} - 1)\binom{n-3}{k-2} + 6\binom{n-3}{2}\left(\frac{n-1}{k-2}\right)_2 = 2^{2n-2k-2}\binom{n-3}{k-2}$$

distinct subgroups of $G_1 \times C_2^{n-3}$.

e) $A_2 = G_1$.

In this case B_1 is of order 2^{k-3} and can be chosen in $\binom{n-3}{k-3}$ ways. If $A_1 = A_2$ then $B_2 = B_1$; if $|A_1| = 4$ then B_2 is one of the $2^{n-k} - 1$ subgroups of order 2^{k-2} of C_2^{n-3} containing B_1; if A_1 is the unique subgroup of order 2 of G_1 such that $A_2/A_1 \cong C_2^2$ then B_2 is one of the $\binom{n-k}{2}$ subgroups of order 2^{k-1} of C_2^{n-3} containing B_1. One obtains

$$\left(\frac{n-3}{k-3}\right)_2 + 3(2^{n-k} - 1)\binom{n-3}{k-3} + 6\binom{n-3}{2}\left(\frac{n-2}{k-3}\right)_2 = 2^{2n-2k}\binom{n-3}{k-3}$$

distinct subgroups of $G_1 \times C_2^{n-3}$.

By summing all above quantities, we get

$$s_k(G_1 \times C_2^{n-3}) = \left(\frac{n-3}{k}\right)_2 + 3 \cdot 2^{n-k-2}\left(\frac{n-3}{k-1}\right)_2 + 2^{n-k}(2^{n-k-2} + 1)\left(\frac{n-3}{k-2}\right)_2 + 2^{2n-2k}\left(\frac{n-3}{k-3}\right)_2.$$

A similar computation leads to

$$s_k(D_8 \times C_2^{n-3}) = \left(\frac{n-3}{k}\right)_2 + 5 \cdot 2^{n-k-2}\left(\frac{n-3}{k-1}\right)_2 + 2^{n-k-1}(2^{n-k} + 1)\left(\frac{n-3}{k-2}\right)_2 + 2^{2n-2k}\left(\frac{n-3}{k-3}\right)_2.$$

It is now clear that the inequalities (3) are true, completing the proof. □
In what follows we will focus on describing the subgroup lattice of an (almost) extraspecial 2-group G. This can be easily made by using Lemma 2.6 of [2].

Lemma 2.4. If G is an (almost) extraspecial 2-group, then $L(G)$ consists of:

a) the trivial subgroup;

b) all subgroups containing $\Phi(G)$; moreover, these are the normal non-trivial subgroups of G;

c) all complements of $\Phi(G)$ in the elementary abelian subgroups of order ≥ 4 containing $\Phi(G)$; moreover,

- $\Phi(G)$ has 2^i complements in an elementary abelian subgroup of order 2^{i+1} containing $\Phi(G)$;

- two non-normal subgroups H and K of G are conjugate if and only if $H\Phi(G) = K\Phi(G)$;

- given two non-normal subgroups H and K of G, if $H^x \subseteq K$ for some $x \in [G/N_G(H)]$, then x is the unique element of $[G/N_G(H)]$ with this property.

It is well-known that the order of maximal elementary abelian subgroups of an extraspecial 2-group of order 2^{2r+1} or of an almost extraspecial 2-group of order 2^{2r+2} is 2^{r+1}. Let us denote by $e_i(G)$ the number of elementary abelian subgroups of order 2^i containing $\Phi(G)$, $i = 2, 3, ..., r+1$. Under this notation, a formula for the number of subgroups of G can be inferred from Lemma 2.4.

Corollary 2.5. If G is an extraspecial 2-group of order 2^{2r+1}, then

$$|L(G)| = 1 + \sum_{i=0}^{2r} \binom{2r}{i} + \sum_{i=1}^{r} e_{i+1}(G)2^i, \quad (4)$$

while if G is an almost extraspecial 2-group of order 2^{2r+2}, then

$$|L(G)| = 1 + \sum_{i=0}^{2r+1} \binom{2r+1}{i} + \sum_{i=1}^{r} e_{i+1}(G)2^i. \quad (5)$$
In the particular cases \(r = 2 \) and \(r = 1 \) the equalities (4) and (5), respectively, lead to some known results (see e.g. Chapter 3.3 of [5] and Example 4.5 of [6]).

Examples.

a) For \(G = D_8 \ast D_8 \) we obtain \(e_2(G) = 9 \) and \(e_3(G) = 6 \), implying that

\[
|L(G)| = 1 + \sum_{i=0}^{4} \binom{4}{i} \cdot 2^i 9 + 4 \cdot 6 = 110.
\]

b) For \(G = Q_8 \ast D_8 \) we obtain \(e_2(G) = 5 \) and \(e_3(G) = 0 \), implying that

\[
|L(G)| = 1 + \sum_{i=0}^{4} \binom{4}{i} \cdot 2^i 5 = 78.
\]

c) For \(G = D_8 \ast C_4 \) we obtain \(e_2(G) = 3 \), and so

\[
|L(G)| = 1 + \sum_{i=0}^{3} \binom{3}{i} \cdot 2^i 3 = 23.
\]

Remark. As we have seen above, the subgroup structure of an (almost) extraspecial 2-group \(G \) depends on its elementary abelian subgroups containing \(\Phi(G) = \langle x \rangle \). We remark that these are the totally singular subspaces of \(G/\Phi(G) \) with respect to the quadratic form \(q : G/\Phi(G) \rightarrow \mathbb{F}_2 \), where \(q(\bar{v}) \) is the element \(a \in \mathbb{F}_2 \) such that \(v^2 = x^a, \forall \bar{v} \in G/\Phi(G) \).

Next we will compare the subgroup lattices of an (almost) extraspecial 2-group \(G \) of order \(2^n \), \(n \geq 3 \), and of \(D_8 \times C_2^{n-3} \). Since \(\Phi(D_8 \times C_2^{n-3}) \) is of order 2, \(D_8 \times C_2^{n-3}/\Phi(D_8 \times C_2^{n-3}) \) and \(G/\Phi(G) \) have the same dimension over \(\mathbb{F}_2 \), namely \(n - 1 \). Also, we note that the order of maximal elementary abelian subgroups of \(D_8 \times C_2^{n-3} \) is \(2^{n-1} \), which is greater or equal to the order of maximal elementary abelian subgroups of \(G \). We infer that

\[
|L(D_8 \times C_2^{m-3})| = 1 + \sum_{i=0}^{n-1} \binom{n-1}{i} \cdot 2^i + \sum_{i=1}^{n-2} \epsilon_{i+1}(D_8 \times C_2^{m-3}) 2^i.
\]

The following lemma will be crucial in our proof.
Lemma 2.6. Under the above notation, we have $e_2(G) \leq e_2(D_8 \times C_2^{n-3})$.

Proof. By Lemma 1.4, we know that

$$|L_1(G)| \leq |L_1(D_8 \times C_2^{n-3})|.$$

Let $c_i(G)$ be the number of cyclic subgroups of order 2^i of G. Since both G and $D_8 \times C_2^{n-3}$ are of exponent 4, the above inequality can be rewritten as

$$1 + c_2(G) + c_4(G) \leq 1 + c_2(D_8 \times C_2^{n-3}) + c_4(D_8 \times C_2^{n-3}).$$

On the other hand, we have

$$2^n = 1 + c_2(G) + 2c_4(G) = 1 + c_2(D_8 \times C_2^{n-3}) + 2c_4(D_8 \times C_2^{n-3})$$

and consequently

$$2^n - c_4(G) \leq 2^n - c_4(D_8 \times C_2^{n-3}),$$

i.e.

$$c_4(D_8 \times C_2^{n-3}) \leq c_4(G).$$

(6)

It is clear that the cyclic subgroups of order 4 of these groups contain the Frattini subgroup. Thus (6) leads to

$$e_2(G) \leq e_2(D_8 \times C_2^{n-3}),$$

as desired. \qed

Since any elementary abelian subgroup of G containing $\Phi(G)$ is a direct sum of elementary abelian subgroups of order 4, from Lemma 2.6 we infer that

$$e_i(G) \leq e_i(D_8 \times C_2^{n-3}), \text{ for all } i.$$

An immediate consequence of this fact is that the inequalities (2) also hold for (almost) extraspecial 2-groups.

Corollary 2.7. If G is an (almost) extraspecial 2-group of order 2^n, $n \geq 3$, then

$$s_k(G) \leq s_k(D_8 \times C_2^{n-3}), \forall 0 \leq k \leq n.$$

A similar thing can be said about elementary abelian sections of G and of $D_8 \times C_2^{n-3}$.

8
Corollary 2.8. Given a 2-group G, we denote by $S_{(\alpha,\beta)}(G)$ the set of all elementary abelian sections $H_2/H_1 \cong C_2^n$ of G with $|H_1| = 2^\beta$. If G is (almost) extraspecial of order 2^n, then

$$|S_{(\alpha,\beta)}(G)| \leq |S_{(\alpha,\beta)}(D_8 \times C_2^{m-3})|, \text{ for all } \alpha \text{ and } \beta.$$

Proof. Write

$$S_{(\alpha,\beta)}(G) = S_{(\alpha,\beta)}^1(G) \cup S_{(\alpha,\beta)}^2(G) \cup S_{(\alpha,\beta)}^3(G) \cup S_{(\alpha,\beta)}^4(G),$$

where

- $S_{(\alpha,\beta)}^1(G) = \{H_2/H_1 \in S_{(\alpha,\beta)}(G) \mid \Phi(G) \subseteq H_1\}$,
- $S_{(\alpha,\beta)}^2(G) = \{H_2/H_1 \in S_{(\alpha,\beta)}(G) \mid H_1 = 1\}$,
- $S_{(\alpha,\beta)}^3(G) = \{H_2/H_1 \in S_{(\alpha,\beta)}(G) \mid \Phi(G) \nsubseteq H_2, H_1 \neq 1\}$,
- $S_{(\alpha,\beta)}^4(G) = \{H_2/H_1 \in S_{(\alpha,\beta)}(G) \mid \Phi(G) \subseteq H_2, \Phi(G) \nsubseteq H_1, H_1 \neq 1\}$.

Since $G/\Phi(G) \cong D_8 \times C_2^{m-3}/\Phi(D_8 \times C_2^{m-3})$, we have

$$|S_{(\alpha,\beta)}^1(G)| = |S_{(\alpha,\beta)}^1(D_8 \times C_2^{m-3})|. \quad (7)$$

Clearly, $S_{(\alpha,\beta)}^2(G) = S_{(\alpha,0)}(G)$ is the number of elementary abelian subgroups of order 2^α of G, and so

$$|S_{(\alpha,\beta)}^2(G)| = e_\alpha(G) + e_{\alpha+1}(G)2^\alpha,$$

implying that

$$|S_{(\alpha,\beta)}^2(G)| \leq |S_{(\alpha,\beta)}^2(D_8 \times C_2^{m-3})|. \quad (8)$$

We observe that every section $H_2/H_1 \in S_{(\alpha,\beta)}^3(G)$ determines a section $H_2\Phi(G)/H_1\Phi(G) \in S_{(\alpha,\beta+1)}^1(G)$ with $H_2\Phi(G) \cong C_2^{\alpha+\beta+1}$ and $H_1\Phi(G) \cong C_2^{\beta+1}$. Conversely, every section $A/B \in S_{(\alpha,\beta+1)}^1(G)$ with $A \cong C_2^{\alpha+\beta+1}$ and $B \cong C_2^{\beta+1}$ determines 2^β sections $H_2/H_1 \in S_{(\alpha,\beta)}^3(G)$. Since there are $e_{\alpha+\beta+1}(G)(\alpha+\beta+1)\beta+1$ such sections $A/B \in S_{(\alpha,\beta+1)}^1(G)$, we infer that

$$|S_{(\alpha,\beta)}^3(G)| = e_{\alpha+\beta+1}(G)\left(\frac{\alpha + \beta + 1}{\beta + 1}\right)2^\beta \leq |S_{(\alpha,\beta)}^3(D_8 \times C_2^{m-3})|. \quad (9)$$
Let $H_2/H_1 \in S_{(\alpha,\beta)}^1(G)$. Then $\Phi(H_2) \subseteq H_1$. On the other hand, we have $\Phi(H_2) \subseteq \Phi(G)$ because H_2 is normal in G. Thus $\Phi(H_2) = 1$, i.e. H_2 is elementary abelian, and it can be chosen in $e_{\alpha+\beta}(G)$ ways. Also, H_1 is a complement of $\Phi(G)$ in one of the $\binom{\alpha+\beta}{\beta+1}2^\beta$ subgroups of order $2^{\beta+1}$ of H_2, and it can be chosen in $\binom{\alpha+\beta}{\beta+1}2^\beta$ ways. Hence

$$|S_{(\alpha,\beta)}^1(G)| = e_{\alpha+\beta}(G)\binom{\alpha + \beta}{\beta + 1}2^\beta \leq |S_{(\alpha,\beta)}^1(D_8 \times C_2^{m-3})|. \quad (10)$$

Obviously, the relations (7), (8), (9) and (10) lead to

$$|S_{(\alpha,\beta)}(G)| \leq |S_{(\alpha,\beta)}(D_8 \times C_2^{m-3})|,$$

as desired. \qed

We are now able to prove our main result.

Proof of Theorem 1.1. Let $|G'| = 2^m$. If $m = 0$, then G is abelian and the conclusion follows from Lemma 2.3. Assume that $m \geq 1$.

If G/G' is not elementary abelian, then

$$s_k(G) \leq s_k(G/G' \times C_2^m) \leq s_k(D_8 \times C_2^{m-3}), \forall 0 \leq k \leq n,$$

where the first inequality is obtained by Lemma 2.2, while the second one by Lemma 2.3.

If G/G' is elementary abelian, then $G' = \Phi(G)$. Let M be a normal subgroup of G such that $M \subseteq G'$ and $[G': M] = 2$. Then

$$s_k(G) \leq s_k(G_1 \times C_2^{m-1}), \forall 0 \leq k \leq n,$$

where $G_1 = G/M$ satisfies the conditions

$$G_1' = \Phi(G_1), |G_1'| = 2 \text{ and } G_1' \subseteq Z(G_1),$$

i.e. it is a generalized extraspecial 2-group. Then either

$$G_1 \cong E \times A \text{ or } G_1 \cong (E \ast C_4) \times A,$$

where E is an extraspecial 2-group and A is an elementary abelian 2-group, by Lemma 1.2. In other words, G_1 is a direct product of an (almost) extraspecial
2-group and an elementary abelian 2-group. So, it suffices to prove that if \(G_2 \) is an (almost) extraspecial 2-group of order \(2^q \), then

\[
s_k(G_2 \times C_2^{n-q}) \leq s_k((D_8 \times C_2^{q-3}) \times C_2^{n-q}), \forall 0 \leq k \leq n.
\]

(11)

Let \(A \) be one of the groups \(G_2 \) or \(D_8 \times C_2^{q-3} \). From Theorem 2.1 it follows that a subgroup \(H \leq A \times C_2^{n-q} \) of order \(2^k \) is completely determined by a quintuple \((A_1, A_2, B_1, B_2, \varphi)\), where \(A_1 \leq A_2 \leq A \), \(B_1 \leq B_2 \leq C_2^{n-q} \), \(\varphi : A_2/A_1 \rightarrow B_2/B_1 \) is an isomorphism, and \(|A_2||B_1| = 2^k\). By fixing the section \(B_2/B_1 \) of \(C_2^{n-q} \) and \(\varphi \in \text{Aut}(B_2/B_1) \), we infer that \(H \) depends only on the choice of the section \(A_2/A_1 \in \mathcal{S}_{(\alpha,\beta)}(A) \), where \((\alpha,\beta) \in \{(i,j) \mid i = 0, 1, ..., k, j = 0, 1, ..., k - i\}\). So, to prove the inequalities (11) it suffices to compare the numbers of elementary abelian sections \(A_2/A_1 \) of the two groups \(G_2 \) and \(D_8 \times C_2^{q-3} \), where \(|A_1|\) and \(|A_2|\) are arbitrary. It is now clear that the conclusion follows from Corollary 2.8, completing the proof. \(\square \)

Finally, we mention that a result similar with Lemma 1.4 can be obtained from Theorem 1.1.

Corollary 2.9. Let \(G \) be a finite non-elementary abelian 2-group of order \(2^n \), \(n \geq 3 \). Then

\[
|L(G)| \leq |L(D_8 \times C_2^{n-3})|.
\]

Acknowledgements. The author is grateful to the reviewer for its remarks which improve the previous version of the paper.

References

[1] Y. Berkovich, *Groups of prime power order*, vol. 1, de Gruyter, Berlin, 2008.

[2] S. Bouc and N. Mazza, *The Dade group of (almost) extraspecial p-groups*, J. Pure Appl. Algebra 192 (2004), 21-51.

[3] M. Garonzi and I. Lima, *On the number of cyclic subgroups of a finite group*, Bull. Brazil. Math. Soc. 49 (2018), 515-530.

[4] I.M. Isaacs, *Finite group theory*, Amer. Math. Soc., Providence, R.I., 2008.
[5] D. Lewis, *Containment of subgroups in a direct product of groups*, Ph.D. Dissertation, Binghamton University, 2011.

[6] D. Lewis, A. Almousa and E. Elert, *Embedding properties in central products*, [arXiv:1408.0076](https://arxiv.org/abs/1408.0076).

[7] H. Qu, *Finite non-elementary abelian p-groups whose number of subgroups is maximal*, Israel J. Math. 195 (2013), 773-781.

[8] R. Stancu, *Almost all generalized extraspecial p-groups are resistant*, J. Algebra 249 (2002), 120-126.

[9] M. Suzuki, *Group theory*, I, II, Springer Verlag, Berlin, 1982, 1986.

Marius Tărnăuceanu
Faculty of Mathematics
“Al.I. Cuza” University
Iaşi, Romania
e-mail: tarnauc@uaic.ro