Ab initio engineering of materials with stacked hexagonal tin frameworks

Junping Shao*, Clément Beaufils* & Aleksey N. Kolmogorov

The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn₂, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn₂, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn₂ should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z² invariants, the predicted NaSn₂ may display topologically non-trivial behavior and the known BaSn₂ could be a strong topological insulator.

The morphology of a crystal structure reflects the underlying bonding mechanism and gives indications about material’s potential applications. For instance, the high atomic density and symmetry of the sp³-connected framework make the diamond polymorph of carbon the hardest known bulk substance. The pronounced anisotropy of graphite arising from the weak van der Waals interlayer binding allows for material’s intercalation with different metals and creation of excellent alkali-ion battery electrodes. The rigid, naturally hole-doped sp² boron backbone in magnesium diboride is responsible for the material’s record critical temperature in the class of ambient-pressure phonon-mediated superconductors. The reduced dimensionality of free-standing sp² frameworks of carbon determines an array of unique properties, from exceptionally high carrier mobilities to the quantum Hall effect at room temperature. Making ‘carbon’ copies of such Nature’s best structural motifs can be an effective strategy in the search for materials with even more appealing properties.

Group-IV elements are a natural choice for creating novel (meta)stable covalent networks due to the automatic fulfillment of the 8-electron rule in structures with well-defined bonding and anti-bonding states. The ability of carbon to form extended sp² nanostructures is credited to the additional π-bonding which strengthens the hexagonal sheets. For all other tetravalent elements the diamond configuration is favored over the layered morphology. Moreover, the favorability of the sp² or sp³ hybrid bonding diminishes with the element’s number due to the reduction of bond integrals. Consequently, tin readily transforms from the semiconducting diamond α-phase to the metallic higher-coordinated β-phase near room temperature while lead adopts the typical metallic fcc structure.

Reflective of this stability trend within group IV, graphene was the first material to be produced as a free-standing atom-thick sheet, with silicene and germanene synthesized later as single layers deposited on metallic surfaces. Zhu et al. have just reported on the first successful synthesis of stanene via molecular beam epitaxy on a Bi₂Te₃ substrate. The present effort to produce free-standing stanene has been inspired, in part, by the prediction of the material’s behavior as a large-gap quantum spin Hall insulator induced by a strong spin-orbit coupling (SOC). Due to an unwanted influence of the substrate on the material’s electronic properties and evident thermodynamic instability of 2D tin relative to the bulk phases (see Fig. 1), alternative synthesis routes need to be explored to produce desired free-standing tin-based polymorphs. Halogenation has been proposed as a possible pathway to creating stable variants of stanene while preserving its exotic electronic features, but 2D tin sheets are still a required precursor. Recalling that exfoliation of graphite was the original route to graphene and that sheets of germanane have been obtained through topochemical deintercalation of CaGe₂ with HCl, we have carried out an ab initio search for new synthesizable bulk compounds comprised of hexagonal tin.
layers. In addition to being possible precursors, such compounds may display topologically non-trivial electronic properties or superconductivity observed previously in related materials comprising graphene-like layers3,16,17 or belonging to the Zintl family18.

\textit{Ab initio} structure prediction has been playing an increasingly important role in materials development and already led to discovery of new materials19–21. Successful computational strategies for identifying new synthetizable materials range from automated screening with high-throughput22,23 or machine learning24 techniques to targeted search with unconstrained optimization19,25,26 or rational design27 methods. The exploration of a large configurational space of structures and compositions in this study has been driven primarily by the latter, physics-based \textit{ab initio} material engineering approach. Having established beneficial features for stability of the desired structural motif, we homed in on the Na-Sn binary system in which a new NaSn\textsubscript{2} phase is predicted to form under compressions as low as a few GPa as discussed on page 5, remain (meta)stable under ambient conditions, and, to the best of our knowledge, feature the first all-tin stacking of flat hexagonal layers.

A great variety of stable hexagonal layered structures - differing in the number or valence of the constituent elements as well as in the layer morphology or stacking order (see Fig. 1) - have been observed or predicted in previous studies. The AlB\textsubscript{2} prototype (hP3 in the Pearson notation, Fig. 2a) is the basic recurring 3-atom structure from which all the other layered variants can be derived. For example, metal diborides have been observed to have not only flat but also buckled B layers19. The known hP3-LiBC28 has hexagonal nets based on B and C, the predicted29 and recently observed30 hP8-Li\textsubscript{2}B\textsubscript{2} has an extra close-packed Li layer inserted between the B sheets, while the recently discovered hP8-Na\textsubscript{2}MgSn has a composite Mg-Sn hexagonal layer and an extra Na layer31. BaSn\textsubscript{2} appears to be the only synthesized compound with zigzag Sn layers32.

Computational Methods

All our calculations were performed at the density functional theory (DFT) level with the VASP code33,34. We used projector-augmented potentials35 with the 4\textit{d} electrons of Sn and 2\textit{p} electrons of Na treated as semi-core. We chose a high energy cut-off of 500 eV and fine \textit{k}-meshes to ensure numerical convergence of relative energies to within 1–2 meV/atom. The final results were obtained with the exchange-correlation functional parameterized by Perdew, Burke, and Ernzerhof36 within the generalized gradient approximation (GGA) but we checked the sensitivity of our results to systematic errors by performing additional calculations within the local density approximation (LDA)37 and the non-local van der Waals density functional optB86b38. We found that SOC had an insignificant effect on relative stability. The vibrational energy contribution to the Gibbs energy calculated within the frozen phonon method39–41, on the other hand, was shown to be an noticeable stabilization factor for the proposed phase. The parity analysis was carried out with QUANTUM ESPRESSO package42. Further technical details can be found in the Supplementary Information.

Results and Discussion

The primary goal of this study was to determine whether stable Sn-based compounds could form in the simplest hP3 configuration. As the first step, we calculated the formation energy of hP3-MA\textsubscript{2} compounds where A was C, Si, Ge, Sn, or Pb and M was one of 41 common metals (see Supplementary Information). According to the results of the systematic scan in Fig. S1, all the C-based compounds have positive formation energy, i.e., the smallest-size C networks do not benefit from the insertion of a metal layer. The larger tetravalent elements are seen to have islands of stability for metals with up to 5 electrons in the outer shells. For MSn\textsubscript{2}, they are Li, Na, K, Mg, Ca, Sr, Ba, Sc, Y, La, and Zr, as seen in Fig. 3a. The negative formation energy with respect to the ground state elemental structures is a necessary but not sufficient condition for compounds’ thermodynamic stability. The required construction of the convex hull under select (\textit{P}, \textit{T}) conditions involves a considerable effort for systems rich in complex phases. In order to narrow down our search, our next step was to analyze the importance of the electron count and the size of the added metal on the compound’s stability.
Figure 4 shows the evolution of the band structure and DOS as a binary compound is assembled from single flat Sn2D sheets by stacking the layers up into a Sn3D framework and then intercalating it with a metal layer. The Dirac-type crossings of the p_z states at the K and H points (in blue) serve as a good marker for the relative position and population of s-p-derived bands. In an ideal case of degenerate s and p starting atomic orbitals ($\Delta E_{sp} = 0$ eV), the valence sp^2-hybridized σ bands would have the 1:2 ratio of s and p_{xy} characters and be separated from the corresponding conduction set by a large gap. The remaining electrons would fill all the bonding π states ensuring the placement of the Dirac point exactly at the Fermi level. Even though ΔE_{sp} in all tetravalent elements is considerable (7.5 ± 1 eV7), the model gives an adequate description of graphene.

The orbital hybridization mechanism in Sn2D is quite different. The bands in the (\sim9.6, \sim7.4) eV and the (\sim3.3, \sim1.1) eV ranges show little mixing and can be considered as bonding s+p_{xy} and p_{xy}, respectively. The antibonding s^- states are now high enough in energy to hybridize partially with the second set of the p_{xy} states, as was discussed for stanene by Xu et al.14. The resulting bonding s-p_{xy} hybrid states extend from \sim7.4 to just above \sim1.8 eV while the antibonding ones begin at \sim1.1 eV. The partial occupation of the latter drains electrons from the bonding p_z states and leaves the Dirac crossings about 0.4 eV above the Fermi level.

The relative band positions change considerably once the sheets are AA-stacked. The appearance of two additional neighbors only 3.11 Å away along the c-axis disperses the p_z band along the Γ–A direction by nearly 10 eV. Interpretation of the band structure becomes more difficult because the s-p states get involved in the formation of the s-p_z-σ bonds as well (the comparable strengths of the covalent bonding within and between the layers can be seen from the charge density distribution in Fig. 2a.) The outcome of the change in bands' position and degree of mixing is the appearance of a new key feature: a deep DOS minimum at 1.3 eV above E_{Fermi}. The amount of charge

Figure 2. Predicted (a) and known (b,c) binary compounds of Na (large yellow) and Sn (small grey). The charge density isosurface in (a) illustrates comparable intra- and interlayer overlaps of Sn orbitals. The 4 yellow-white spheres in (c) are Na sites with 0.5 occupancy.

Figure 3. (a) Calculated formation energies for AlB\textsubscript{2}-type MSn\textsubscript{2} compounds grouped by M's electron count. (b,c) Variation of the a and c lattice constants in the AlB\textsubscript{2}-type monovalent metal stannides as a function of the alkali metal nearest neighbor distance in fcc.
in the checkered area needed to fill up the bonding states is close to 0.5 electron (or 1.0 e for 2 Sn atoms). Based on this analysis, monovalent metals should be particularly good candidates to stabilize the Sn\(^{10}\) structure.

Figure 4c shows that addition of Na indeed moves the Fermi level near the bottom of the DOS minimum. The charge transfer from the Na 5s states 5 eV above \(E_{\text{Fermi}}\) does not follow the rigid band approximation. The positive potential of Na\(^+\) downshifts the energy of the states derived from s and \(p_x\) the most because they extend farthest towards the metal site. Hence, the charge is transferred primarily onto the bonding \(s-p_{xy}\) hybrid states.

In order to see which of the alkali metals has the best chance of stabilizing the structure we examined the importance of the metal size factor. Figure 3c shows that the steady increase of the MS\(_n\) cell volume in the Li-Cs series masks an important irregularity occurring between K and Rb. For the larger Rb, the in-plane Sn-Sn distance shrinks but only because of the considerable expansion of the c-axis (see Fig. 2a). The interlayer \(\sigma\) bonds are effectively severed when the larger alkali atoms push the layers apart to above 5.5 Å. The loss of a major part of the 0.4-eV/atom covalent interlayer binding can be partly compensated by the layer buckling. However, a calculation of the MS\(_n\) relative stability with respect to the known alkali metal stannides indicated that only Na has a chance to be thermodinamically stable under near-ambient conditions.

Our next set of calculations was dedicated to the stability of hP3-NaSn\(_2\), relative to the known ambient-pressure compounds in this binary system. The existence of mS48-NaSn\(_2\), a direct reference point at the 1:2 composition (Fig. 2b), simplified the task. However, we also calculated the formation energy of relevant known structures in this binary system. The existence of mS48-NaSn\(_2\), a direct reference point at the 1:2 composition (Fig. 2b), simplified the task. However, we also calculated the formation energy of relevant known structures in the Na-Sn binary system has been shown to have complex compounds some of which have been discovered in recent years\(^{44-46}\). On the Na-rich side, the oS52-NaSn\(_2\) phase with isolated Sn polyanions and cI76-Na\(_{30}\)Sn\(_{8}\) phase with isolated tin atoms are correctly reproduced as low-temperature ground states. The phases with \(x \leq 0.5\) include f64-NaSn, tP12-NaSn\(_8\), and oS288-Na\(_{40}\)Sn\(_{104}\) phases with complex 3D Sn frameworks. The last two compounds are 7 meV and 23 meV above the tie-line indicating their possible metastability.

The most relevant for the present study compounds are located at or near the 1:2 composition and covered by the Zintl rule\(^{46}\). The compound with the mP78 configuration (Fig. 2c) comprises of polyanion layers stacked up along the c-axis 9.0 Å apart\(^{47}\). Each layer in mP78 consists of 3- or 4-fold coordinated Sn atoms, arranged in 5-member rings covalently bonded along the b direction to form empty channels across the a direction. The 4-fold coordinated Sn atoms form the backbone of the layer while the lone pairs of the 3-coordinated Sn are stabilized by their proximity to the Na cations. Partial occupation of some of the Na sites in mP78 leads to an unusual Na\(_{1.17}\)Sn\(_2\) stoichiometry and was indeed found in our study (see Supplementary Information) to be beneficial for compound's stability: Fig. 5b shows ground states at two compositions near mP78. Removal of certain Na atoms generates mS48-NaSn\(_2\), (Fig. 2b). This 1:2 phase is slightly metastable in our calculations at 0 K and its formation could in reality be determined by a kinetic route starting from the closely related Na\(_{1.2}\)Sn\(_2\).

Zero point energy (ZPE) alone makes it virtually degenerate with mS48 in Gibrss energy at 0 K while the vibrational entropy corrections at elevated temperatures or the PV enthalpic term at relatively low pressures make it the true ground state (Figs 5a,c,d and S2). The accuracy of the DFT approximations does not allow us to reliably define the \((P, T)\) boundaries of the hP3 stability region. In the LDA, which tends to overstabilize denser structures, hP3 \(V_{\text{GGA}} = 27.1\) Å/atom is already more stable than mS48 \(V_{\text{GGA}} = 30.3\) Å/atom) at 0 K (no ZPE) by 18 meV/atom. Dispersive interactions can be a factor defining the ground state not only in covalent graphitic structures\(^{48}\) but also in ionic-covalent materials\(^{19}\). In the case of hP3 the Sn-Sn interlayer spacing is considerably smaller...
compared to that in mS48 and the optB86b non-local functional indeed favors the former by 5.6 meV/atom. Similar trends in relative stability are expected with respect to the closely related, more complex mP78* phases: pressure, in particular, destabilizes the whole set uniformly (see Fig. S2). Our phonon calculations show absence of imaginary modes in hP3 (see Supplementary Information).

While alkali metals appear to be the preferred intercalants for the stacked flat layers of Sn, more electron-rich metals may stabilize buckled layers. Stable structures with zigzagged Sn and Ge layers have indeed been observed in BaSn232 and CaGe215, both of the EuGe2 type (space group number 164), which makes the closest chemical analog. SrSn3, a promising candidate. According to our calculations, SrSn3 misses stability by only 11 meV/atom (Fig. S3) with respect to the known hR48-SrSn3 and oS32-Sr3Sn550. Bandstructure plots for the stable BaSn2 and the metastable SrSn2 phases (Figs 6 and S5), reveal that layer buckling is an alternative route to place the Fermi level near the bottom of a DOS minimum. Since the large Ba and Sr atoms push the Sn layers far apart (so that they assume the most stable single-layer zigzag configuration) it might be possible to disassemble the compounds into 2D networks completely by means of electrochemical deintercalation, thermal degassing, or other methods15,51,52.

In order to investigate the potential of these bulk Sn-based materials to exhibit topologically non-trivial behavior we examined the effect of spin-orbit coupling (SOC) on their electronic features, using well-established methods for materials with inversion symmetry53,54. In NaSn2, the splitting due to this relativistic effect does separate electronic bands into two groups, albeit by only a 0.1 eV gap (see Fig. 6). Evaluating the parity eigenvalues for the valence bands in the bulk NaSn2 structure at time-reversal invariant momenta (see Supplementary Information), we find that the Z2 invariants are 0 for (001) which indicates that the compound is ‘weakly’ topological55. However, preliminary slab calculations reveal that creation of either Na- or Sn-terminated 001 surfaces does not result in bridging the gap with just the desired surface states: breaking the interlayer Sn-Sn bond brings additional p_z bands to the Fermi level. In BaSn2, the SOC splits the band crossing between H and A points by 0.18 eV. The parity calculation demonstrates that this metal distannide has Z2 invariants $\nu = (0)$ for (001). Even though the band structure plot in Fig. 7 shows a zero indirect band gap the compound is not necessarily a semi-metal due to limitations of the standard DFT approximations. A non-zero bulk band gap could be observed in more accurate treatment of the excited states or obtained via doping in future studies. If a true band gap can be achieved the material will be the first strong topological insulator based on a layered Sn material.

Conclusions
Our ab initio calculations show that hP3-NaSn2 should be at least metastable under ambient conditions and synthesizable in multi-anvil cells under relatively low pressures. The origin of the hP3-NaSn2 stability can be traced to the appearance of a deep minimum in the DOS of the Sn3D layered framework. Na has the suitable size and the right valence to fit into the framework and fill some of the available bonding s' p_{xz} hybrid states. The 0.4-eV

Figure 5. Calculated stability of Na-Sn compounds. (a) Formation energies calculated at 0 GPa and 0 K. (b) Relative formation enthalpies of Sn-rich compounds with respect to Sn and NaSn. The solid blue circles in (a,b) correspond to previously reported compounds found to be thermodynamically stable in our calculations. (c,d) Gibbs energy difference as a function of (P, T) illustrating stabilization of the predicted hP3-NaSn2 over the known mS48-NaSn3; Fig. S2 shows hP3-NaSn2 to be thermodynamically stable with respect to all considered compounds at 10 GPa. Zero point energy (ZPE) is taken account only in (c,d). All energy units in the figure are eV/atom.
covalent interlayer bonding is essential for stabilization of the compound but will make it difficult to exfoliate the material. The relative position of electronic bands, defined by the c/a ratio and the presence of Na$^+$ cations, is difficult to predict beforehand. The final band structure has the p_z Dirac points far away from E_{Fermi}, -2.6 eV below and 5.8 eV above it. However, the successful identification of a synthesizable compound with hexagonal Sn layers gives grounds for optimism that related stable materials with different compositions, stacking orders, etc., could be derived in future studies. Based on an ab initio examination of bulk electronic states, the known BaSn$_2$ material has the potential to be a strong topological insulator. A previous systematic search for superconducting features in C, Si, Ge-based AlB$_2$-type compounds revealed a number of candidate materials with critical temperatures of about 10 K5_6. The large gradient of the DOS near E_{Fermi} in the metallic hP3-NaSn$_2$ prohibits us from making a reliable estimate of the material’s T_c. The widely used methods for calculating the electron-phonon coupling assume a constant DOS near E_{Fermi} which would lead to dramatic errors in this case. However, the DOS value 1.2 exactly at E_{Fermi} is higher than 1.0 state/(eV u.c. spin) in β-Sn and it would not be surprising if synthesized hP3-NaSn$_2$ displayed comparable superconducting properties.

References
1. Zhu, Q., Oganov, A. R., Salvadó, M. A., Perttierra, P. & Lyakhov, A. O. Denser than diamond: Ab initio search for superdense carbon allotropes. Phys. Rev. B 83, 193410 (2011).
2. Ohzuku, T., Iwakoshi, Y. & Sawai, K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. Journal of The Electrochemical Society 140, 2490–2498 (1993).
3. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).
4. Novoselov, K. S. et al. A review on silicene–new candidate for electronics. Surface Science Reports 67, 1–18 (2012).
5. Gärtner, S. & Korber, N. Polyanions of group 14 and group 15 elements in alkali and alkaline earth metal solid state compounds and solvate structures. In Fässler, T. & Armatas, G. S. (eds) Zintl ions: principles and recent developments (Springer, Heidelberg, 2011).
10. Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A. & Lay, G. L. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. *New Journal of Physics* **16**, 095002 (2014).
11. Zhu, F.-F. et al. Epitaxial growth of two-dimensional stanene. *Nat Mater* **14**, 1020–1025 (2015).
12. Liu, C.-C., Jiang, H. & Yao, Y. Low-energy effective hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. *Phys. Rev. B* **84**, 195430 (2011).
13. Ma, Y., Dai, Y., Guo, M., Niu, C. & Huang, B. Intriguing behavior of halogenated two-dimensional tin. *The Journal of Physical Chemistry C* **116**, 12977–12981 (2012).
14. Xu, Y. et al. Large-gap quantum spin hall insulators in tin films. *Phys. Rev. Lett.* **111**, 136804 (2013).
15. Bianco, E. et al. Stability and exfoliation of germanane: A germanium graphene analogue. *ACS Nano* **7**, 4414–4421 (2013).
16. Kasche, B. et al. Stacked topological insulator built from bismuth-based graphene sheet analogues. *Nat Mater* **12**, 422–425 (2013).
17. Shaidu, Y. & Akin-Ojo, O. First principles predictions of superconductivity in doped stanene. *ArXiv e-prints* (2015). http://arxiv.org/abs/1506.07114.
18. Sun, Y. et al. Strain-driven onset of nontrivial topological insulating states in Zintl SrX compounds (X = Pb, Sn). *Physical Review B* **84**, 165127– (2011).
19. Kolmogorov, A. N. et al. New superconducting and semiconducting Fe-B compounds predicted with an *ab initio* evolutionary search. *Phys. Rev. Lett.* **105**, 217903 (2010).
20. Curtarolo, S. et al. The high-throughput highway to computational materials design. *Nat Mater* **12**, 191–201 (2013).
21. Hautier, G., Jain, A. & Ong, S. From the computer to the laboratory: materials discovery and design using first-principles calculations. *Journal of Materials Science* **47**, 7317–7340 (2012).
22. Curtarolo, S., Morgan, D. & Ceder, G. Accuracy of *ab initio* methods in predicting the crystal structures of metals: A review of 80 binary alloys. *Calphad* **29**, 163–211 (2005).
23. Van Der Geest, A. G. & Kolmogorov, A. N. Stability of 41 metal-boron systems at 0 GPa and 30 GPa from first principles. *Phys. Rev. B* **84**, 045302 (2011).
24. Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature's missing ternary oxide compounds using machine learning and density functional theory. *Chemistry of Materials* **22**, 3762–3767 (2010).
25. Oganov, A. R. & Glass, C. W. Crystal structure prediction using *ab initio* evolutionary techniques: Principles and applications. *The Journal of Chemical Physics* **124**, 244704 (2006).
26. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Calypso: A method for crystal structure prediction. *Computer Physics Communications* **183**, 2063–2070 (2012).
27. Kolmogorov, A. N., Calandra, M. & Curtarolo, S. Thermodynamic stabilities of ternary metal borides: An *ab initio* guide for synthesizing layered superconductors. *Physical Review B* **79**, 094520– (2009).
28. Rosner, H., Kitaiigorodsky, A. & Pickett, W. E. Prediction of high Tc superconductivity in hole-doped LiBC. *Phys. Rev. Lett.* **88**, 127001 (2002).
29. Kolmogorov, A. N. & Curtarolo, S. Prediction of different crystal structure phases in metal borides: A lithium monoboride analog to MgB2. *Physical Review B* **73**, 180501– (2006).
30. Kolmogorov, A. N., Hajnazar, S., Angyal, C., Kuznetsov, V.L. & Jephcoat, A.P. Synthesis of a predicted layered LiB via cold compression. *Phys. Rev. B* **92**, 144110 (2015).
31. Yamada, T., Deringer, V. L., Drönosowski, R. & Yamane, H. Synthesis, crystal structure, chemical bonding, and physical properties of the ternary Na/Mg stannide Na2MgSn. *Inorganic Chemistry* **51**, 4810–4816 (2012). PMID: 22452644.
32. Sung-Jin, K. & F. T. Crystal structure of barium distannide, BaSn2. *Zeitschrift für Kristallographie - New Crystal Structures* **223**, 325 (2008).
33. Kresse, G. & Hafner, J. *Ab initio* molecular dynamics for liquid metals. *Phys. Rev. B* **47**, 558–561 (1993).
34. Kresse, G. & Furthmüller, J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169–11186 (1996).
35. Blochl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953–17979 (1994).
36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
37. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. *Phys. Rev. B* **23**, 5048–5079 (1981).
38. Klimel, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. *Journal of Physics: Condensed Matter* **22**, 022201 (2010).
39. Martin, R. M. & Kunc, K. Direct method of calculation of dynamic effective charges: Application to GaAs. *Phys. Rev. B* **24**, 2081–2088 (1981).
40. Yin, M. T. & Cohen, M. L. Theory of lattice-dynamical properties of solids: Application to Si and Ge. *Phys. Rev. B* **26**, 3259–3272 (1982).
41. Allè, D. Phon: A program to calculate phonons using the small displacement method. *Computer Physics Communications* **180**, 2622–2633 (2009).
42. Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. *Journal of Physics: Condensed Matter* **21**, 395502 (20pp) (2009).
43. Dubois, F., Schreyer, M. & Fassler, T. F. NaSn: A novel binary Zintl phase with 2D polyanions of Realgar-type units [Sn4]2−. *Inorganic Chemistry* **44**, 477–479 (2005).
44. Fassler, T. F. & Kronseder, C. NaSn2: An intermetallic compound with covalent α-tin and metallic β-tin structure motifs. *Angewandte Chemie International Edition* **37**, 1571–1575 (1998).
45. Sangster, J. & Bale, C. The Na-Sn (sodium-tin) system. *Journal of Phase Equilibria and Diffusion* **19**, 76–81 (1998).
46. Fassler, T. F. Structure motifs of sodalite stannides on the tin-rich side of the phase diagram. *Zeitschrift für anorganische und allgemeine Chemie* **632**, 1125–1129 (2006).
47. Fassler, T. F. & Hoffmann, S. NaSn2: A binary Zintl phase with a two-dimensional covalently bonded tin framework. *Inorganic Chemistry* **42**, 5474–5476 (2003).
48. Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. *Phys. Rev. B* **71**, 235415 (2005).
49. Bil, A. et al. van der Waals interactions in the ground state of Mg(BH4)2 from density functional theory. *Phys. Rev. B* **83**, 224103 (2011).
50. Okamoto, H. Sn-Sr (tin-strontium). *Journal of Phase Equilibria and Diffusion* **27**, 205–206 (2006).
51. Kim, D. Y., Stefanko, S., Kurakevych, O. O. & Strobel, T. A. Synthesis of an open-framework allotrope of silicon. *Nat Mater* **14**, 169–173 (2015).
52. Brandt, M. S., Vogg, G. & Stutzmann, M. Silicon- and Germanium-Based Sheet Polymers and Zintl Phases 194–213 (Wiley-VCH Verlag GmbH & Co. KGaA, 2007).
53. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. *Physical Review B* **76**, 045302 (2007).
54. Feng, W., Wen, J., Zhou, J., Xiao, D. & Yao, Y. First-principles calculation of topological invariants within the FP-LAPW formalism. *Computer Physics Communications* **183**, 1849–1859 (2012).
55. Sakano, M. et al. Topologically protected surface states in a centrosymmetric superconductor β-PbB2. *Nat Commun* **6**, 8595, doi: 10.1038/ncomms8595 (2015).
56. Flores-Livas, J. A. & Sanna, A. Superconductivity in intercalated group-IV honeycomb structures. *Phys. Rev. B* **91**, 054508 (2015).
Acknowledgements
A.N.K. and J.S. gratefully acknowledge the NSF support (Award No. DMR-1410514).

Author Contributions
A.N.K. conceived the project. J.S., C.B. and A.N.K. carried out calculations and interpreted results. J.S. and A.N.K. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Shao, J. et al. Ab initio engineering of materials with stacked hexagonal tin frameworks. Sci. Rep. 6, 28369; doi: 10.1038/srep28369 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/