IoT Based Moisture Control and Temperature Monitoring In Smart Farming

P R Karthikeyan¹*, Gokul Chandrasekaran², Neelam Sanjeev Kumar³, Elango Sengottaiyan⁴, Prabu Mani⁴, D T Kalavathi⁵, and V Gowrishankar⁶
¹Department of Electronics and Communication Engineering, Saveetha School of Engineering, Chennai, Tamil Nadu, India
²Department of Electrical & Electronics Engineering, Velalar College of Engineering and Technology, Erode, Tamil Nadu, India
³Department of Electronics and Communication Engineering, Anna University Chennai, Tamil Nadu, India
⁴Department of Electrical & Electronics Engineering, Nandha Engineering College, Erode, Tamil Nadu, India
⁵Department of Electronics & Instrumentation Engineering, Kongu Engineering College, Erode, Tamil Nadu, India
⁶Department of Electronics & Communication Engineering, Velalar College of Engineering and Technology, Erode, Tamil Nadu, India

Email: *karthikeyanpr.sse@saveetha.com

Abstract. The Internet of Things (IoT) has made a revolution in all the fields of human life by making the work be smart and effective. The IoT devices like sensors, controller, Wi-Fi module and the cloud play a significant part in smart farming which acquires yield in the field of farming and lessens the wastage. The goal of this paper is to propose the IoT based framework for the farmers by analyzing the live information like (moisture, temperature) in the cloud. The agrarian device is equipped with Arduino innovation and can be received through web servers with different sensors and live information transmissions through Thingsspeak.com. The smart agriculture stick is proposed through this paper which is integrated with controller, sensor and live data that can be monitored through the cloud.

Keywords: IoT; Wi-Fi Module; Microcontroller; Agriculture; Sensors; Moisture; Temperature.

1. Introduction

A greenhouse is a building or a house for plant growth. The dimensions of this structure range from small sheds to industrial buildings, depending on the unit requirements. The heat sink is a miniature house or a mini greenhouse. The greenhouses offer better control over the growing climate of the plants due to their smaller size. They allow the user to change or use them for small research purposes. Adjustable key factors, depending on the technical specifications of the greenhouse, include temperature, sun, shade, intensity, drainage, fertilizer and soil, and humidity. Greenhouses are valuable for solving scarcity or low productivity due to crop characteristics which include limited growing seasons and poor light, thereby increasing peripheral food production and saving time. Cash management technology is rapidly demanding precise, accurate and reliably quantifiable details outlined with the advancement of greenhouse gardening. In some nations, cable contact was used in most of the current cash management schemes, and the management states were also in the process of replacing other cables. This included high costs as well as problems with installation and maintenance,
and this broken node could make the whole system unemployed. We can solve these types of problems and control them remotely by using wireless communication. Wireless communication does not require wires (it is sent and received at both ends), data or information is inexpensive and easy to handle and retrieve. The measurement node is also expanded or reduced arbitrarily.

Climate surveillance is very important today. Early monitoring of the climate is of great importance for agricultural purposes. However, in modern times, value has increased significantly in various fields, in particular industrial conditions control. Monitoring the environment helps us to understand various conditions, such as temperature, humidity, and light intensity. Temperature regulation or measures of temperature and humidity are mainly used in our country to evaluate patients, treat and diagnose them, manufacture food and drink, etc. The climate control system can be used to explain humidity and air temperature which can be wired or wireless. Wireless networking is more efficient and simpler to use than cable connectivity and does not involve the physical appearance of a person on the platform, thus increasing the value of wireless communication today.

2. Literature Survey

Telemedicine is tremendously increased in the process of improving access to high-quality medical care in rural and remote areas. We are deploying a groundbreaking telecommunications network with GSM features that delivers a robust architecture and design method that is introduced throughout development. The system was compared with the verification-calibrated medical devices and the results showed that the system worked on the calibrated medical equipment in accordance with the standards [1].

Intelligent management is must in the modern world, although energy supply systems tend to be regulated using traditional methods. It also involves workers tracking and collecting consumer data, which leads to human error. Using the interactive user interface, the latest GSM-based program incorporates automated energy meters installed in the consumer unit with energy service providers to track, evaluate and control the flow of energy. The GSM network uses this dual-way communication system to send SMS through the device interface and send information to user through SMS. Relay and LCD circuits are used to alter and display information such as current, devices, voltage and billing, or sudden GUI power outages for customers. The main issue on the energy market today is a water supply, which is taking place at various levels. In the event of a power supply voltage, our system may also send a warning to the energy supplier and automatically shut down the power supply until the power supply voltage has been corrected. This work provides insight into the overall philosophy of energy measurement and reflects our success in designing, implementing, managing energy theft and measuring energy efficiency systems [2].

Situational awareness is crucial for the allocation of resources to optimize their effectiveness and to help the vulnerable, including staff and services. Information on the Internet of Things (IoT) will greatly enhance this SA, particularly in an intelligent urban environment. This article discussed the potential of IoT technologies for military operations in smart cities, introducing the NATO IST147 "Military Internet of Things" category [3].

IoT technology has made it digital and interactive and has revolutionized all aspects of human life. IoT is a network of things that forms an autonomous network. The development of stand-alone, farm-based digital IoT equipment focuses not only on the improvement but also on profit and reduction of daily agricultural production. The method offers IoT-based smart farm stick that enables farmers to get streaming information’s to monitor the environment for smart farming and its overall yield and quality. Goods are extensible. Farmworkers are integrated into Arduino's technology in this position. The proposed product will be tested with high accuracy to feed data of more than 98% in vibrant agricultural fields [4].

An accurate and effective personal tracking system that provides a promising solution to the above requirements with regard to the development of current technologies. In this analysis, attempts have been made to combine GPS and GSM technologies to monitor the target position (humanity). In addition, GPS technology is tracking the fate of the care entrusted to it. The alternative GSM
application is enabled and information about this person is retrieved whenever the GPS system is unable to achieve the objective. The method hybrid tracking system is designed with a customized app [5].

Developing and executing an IEEE802.15.4-enabled RFID-GSM real-time vehicle recognition system with 2.4 GHz offers full automation of road scanning from the notification circle. Each RF-branded vehicle on the RF field carries out a plan to prevent collisions between two strategies within 80 meters of the reader when RFID readers send an RF "Auto Highway Scanning." First, the CC2530F256 MAC SoC address is used to set a fixed wait for a single label. The second strategy uses the pseudo-random tag generator CC2530F256 to add a modified meaning to the results of the first methods. Simulation results show that collisions can be avoided by using the carrying sensor feature, and the proposed system achieves 63% recognition efficiency that is better than traditional brand control systems such as ISO / IEC 18000-7, p-persistent CSMA, QT, CT, CSMA, and QWT. However, the results of the test show that the previous form is working correctly [6],[7].

Many developing countries also use traditional methods and recurring techniques in the agricultural sector. Little or much less technological development has significantly increased the efficiency of production. This article proposes a new approach to architecture to boost productivity [9]. Intelligent agriculture has created an Internet of Things (IoT). A remote-controlled vehicle is used in both the automatic and manual mode for various agricultural processes such as spraying, cutting, closing, etc. The control unit regulates the condition of temperature, moisture, and soil, and thus provides water for the field [8].

3. SYSTEM DESIGN

Intelligent smart IoT devices for agriculture are produced every day, which not only improves agricultural production but also makes it profitable and avoids waste. The purpose of this article is to propose a new agriculture stick based on Smart IoT to help farmers to collect live environmental data (temperature, soil moisture) to monitor smart agriculture and increase overall yield and product quality. The agricultural device is equipped with Arduino technology and can be accessed through online test boards with various sensors and live data transmissions through Thingsspeak.com. The proposed product has been tested in active fields and offers more than 98% accuracy in data feeding [10].

![Figure 1: Stick based on IoT contains the Arduino.](image)

The Smart Farming Stick dependent on IoT contains the Arduino Mega 2560 soil temperature and moistness checking framework and moves information to the cloud through the ESP8266 Wi-Fi
module. Figure 1 addresses the model of stick based IoT with Arduino [11] [12]. This IoT device computes 3 qualities: environment, soil moisture, and sunlight based board voltage that feed the whole framework. DS18B20 is optical temperature sensor utilizes the Proverb 1 driver bus protocol to send and get bytes of information and to help status parasites. The following comparison shows the temperature to be calculated.

\[
\text{Temperature} = (\text{LowByte} + (\text{HighByte}<< 8)) * 0.0625
\]

The sensor of soil moisture changes the resistance principle. It has two major pads for measuring ground humidity and serves as a resistance component [13]. The conductivity between the coils is lower where the water content on the floor is low and the resistance high. The conductivity between cushions and the resistance is low and the signal strength is better if the water level on the floor is high. The ESP8266 is an economical series for the Wi-Fi module that can be easily connected to the Arduino Mega 2560. The AT commands are integrated into the ESP8266 and support the entire TCP / UDP stack. Arduino is designed as a wireless DC voltmeter to measure solar voltage [14].

Analog pins up to 5V are used to control the Arduino Mega 2560. A diode is used between the solar panel and the solar battery to protect the battery against the current [15]. At present, almost the population drove their own vehicle, which sometimes caused terror in the parking lots. Car safety is vital for public vehicles. Carlock system is used to block motor vehicles.

4. RESULT AND DISCUSSIONS

Usually, our highest source is AC, but our controller requires DC, we will convert AC to DC Voltage. The Reduction Transformer is used for the conversion of 230V AC to 12 VAC. The bridge rectifier pulses from 12V AC to 12V DC. In this circuit, we use 1000 color micro condensers after conversion. The microcontroller uses a voltage control unit. The 5 V DC is continuously supplied to the microcontroller. PIC16f877A has 40 legs which details are given Figure 2.

![Figure 2: Prototype Model of IoT using Arduino](image)

Each screw controls the components used. All components are connected through microcontroller pins and are used to control the target.
The different components are the following: GPS, Power supply unit, ESP8266, soil moisture, and temperature sensor. Here, the controller is used to connect all the components connected to the microcontroller. This is a control device for the project. Performance can be easily displayed on the LCD screen. The variable resistance is used to adjust the contrast of the 16*2 LCD display. GSM technology is also being used in our work. The GPS module is used to gain the status of Android in our work. Figure 3, 4, and 5 represents the block diagram, circuit diagram and experimental setup of the proposed work.

From Figure 4, it is a circuit diagram for the proposed work which consist of power supply and voltage regulator to the system. And the sensors like temperature, soil moisture with cloud server. The data’s can be pushed to the app or webpage and can be viewed to the system.
The overall setup of the system can be viewed in Figure 5 it is basically runs under the prototype model. The major power circuit design can be using proper PCB model. The agricultural device is equipped with Arduino technology and can be accessed through online test boards with various sensors and live data transmissions through Thingsspeak.com. The sensors like temperature, soil moisture with cloud server.

5. CONCLUSION
Agriculture stick using IoT will be used to support the farmers to monitor the data like temperature and soil moisture, which results in an increase in food production. The wireless monitoring of the farm using a temperature sensors and humidity sensors will be used to schedule irrigation dates and reduce human power consumption. The system is implemented with a cloud which is used to allow end-users to monitor and control the farm. The GPS module is used to gain the status of Android in our work. The purpose of this article is to propose a new agriculture stick based on Smart IoT to help farmers to collect live environmental data (temperature, soil moisture) to monitor smart agriculture and increase overall yield and product quality. The agricultural device is equipped with Arduino technology and can be accessed through online test boards with various sensors and live data transmissions through Thingsspeak.com. The sensors like temperature, soil moisture with cloud server. The data’s can be pushed to the app or webpage and can be viewed to the system.

REFERENCES
1. Tshali, D., Sumbwanyambe, M., & Hlalele, T. S. (2018, April). Towards a GSM enabled remote monitoring medical system. In 2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC) (pp. 1-4). IEEE.
2. Khan, N., Naseer, Y., Alam, I., Abbas, T., & Iqbal, Y. (2018, March). Wireless controlled smart digital energy meter and theft control using GSM with GUI. In 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-6). IEEE.
3. Johnsen, F. T., Zieleński, Z., Wrona, K., Suri, N., Fuchs, C., Pradhan, M., ... & Krzysztoń, M. (2018, May). Application of IoT in military operations in a smart city. In 2018 International Conference on Military Communications and Information Systems (ICMCIS) (pp. 1-8). IEEE.

4. Nayyar, A., & Puri, V. (2016, September). Smart farming: IoT based smart sensors agriculture stick for live temperature and moisture monitoring using Arduino, cloud computing & solar technology. In Proc. of The International Conference on Communication and Computing Systems (ICCCS-2016) (pp. 9781315364094-121).

5. Padmanabhan, R., Pavithran, R., Rayyan, S. M., & Bhuvaneshwari, P. T. V. (2017, January). Real time implementation of hybrid personal tracking system for anomaly detection. In 2016 Eighth International Conference on Advanced Computing (ICOAC) (pp. 93-98). IEEE.

6. Vanchinathan, K., & Valluvan, K. R. (2018). A metaheuristic optimization approach for tuning of fractional-order PID controller for speed control of sensorless BLDC motor. Journal of circuits, systems and computers, 27(08), 1850123.

7. Chandrasekaran, G., Periyasamy, S., & Rajamanickam, K. P. (2019). Minimization of test time in system on chip using artificial intelligence-based test scheduling techniques. Neural Computing and Applications, 1-10.

8. Nafar, F., & Shamsi, H. (2018). Design and implementation of an RFID-GSM-based vehicle identification system on highways. IEEE Sensors Journal, 18(17), 7281-7293.

9. Chandrasekaran, G., Periyasamy, S., & Rajamanickam, K. P. (2019). Minimization of test time in system on chip using artificial intelligence-based test scheduling techniques. Neural Computing and Applications, 1-10.

10. Kumar, N. S., Vuayalakshmi, B., Prarthana, R. J., & Shankar, A. (2016, November). IOT based smart garbage alert system using Arduino UNO. In 2016 IEEE Region 10 Conference (TENCON) (pp. 1028-1034). IEEE.

11. Mageekumar, C. (2020, January). IOT Based Smart Farming. In 2020 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-6). IEEE.

12. Puri, V., Chandramouli, M., Van Le, C., & Hoa, T. H. (2020, March). Internet of Things and Fuzzy logic based hybrid approach for the Prediction of Smart Farming System. In 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA) (pp. 1-5). IEEE.

13. Kuchkorov, T., Atadjanova, N., & Sayfullaeva, N. (2019, November). Big data analysis for soil monitoring in Smart farming. In 2019 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.

14. Panigrahi, S. (2020). SMART FARMING: IOT Based Smart Sensor Agriculture Stick For Live Temperature And Humidity Monitoring. Available at SSRN 3651933.

15. Penchalaiah, N., Emmanuel, J. N., Kamal, S. S., & Narayana, C. L. (2021). IoT Based Smart Farming Using Thingspeak and MATLAB. In ICCCE 2020 (pp. 1273-1295). Springer, Singapore.