Evidence against pain specificity in the dorsal posterior insula

Karen D. Davis1-3, M. Catherine Bushnell4, Gian Domenico Iannetti5, Keith St. Lawrence6,7, Robert Coghill8

1Institute of Medical Science and Department of Surgery, University of Toronto, Toronto, ON, M5T 2S8, Canada
2Division of Brain Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, Toronto, ON, M5T 2S8, Canada
3Joint Department of Medical Imaging, University Health Network, Toronto, ON, M5T 2S8, Canada
4Pain and Integrative Neuroscience Branch, Division of Intramural Research, National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health, Bethesda, MD, 20892-1302, USA
5Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
6Lawson Health Research Institute, London, ON, N6A 4V2, Canada
7Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 4V2, Canada
8Department of Anesthesiology, Cincinnati Children's Hospital, Cincinnati, OH, 45229-3026, USA

Abstract
The search for a “pain centre” in the brain has long eluded neuroscientists. Although many regions of the brain have been shown to respond to painful stimuli, all of these regions also respond to other types of salient stimuli. In a recent paper, Segerdahl et al. (Nature Neuroscience, 2015) claims that the dorsal posterior insula (dpIns) is a pain-specific region based on the observation that the magnitude of regional cerebral blood flow (rCBF) fluctuations in the dpIns correlated with the magnitude of evoked pain. However, such a conclusion is, simply, not justified by the experimental evidence provided. Here we discuss three major factors that seriously question this claim.

Keywords
Pain, insula, brain imaging, ASL

Open Peer Review

Approval Status

	1	2	3
version 1	✔	✔	✔

1. David Borsook, Massachusetts General Hospital, Boston, USA
2. Apkar Vania Apkarian, Northwestern University, Chicago, USA
3. Joel D. Greenspan, University of Maryland, Baltimore, USA

Any reports and responses or comments on the article can be found at the end of the article.
Segerdahl AR, Mezue M, Okell TW et al. » The dorsal posterior insula is not an island in pain but subserves a fundamental role - Response to: "Evidence against pain specificity in the dorsal posterior insula" by Davis et al., F1000Research 2015, 4:1207 (https://doi.org/10.12688/f1000research.7287.1)

Corresponding author: Karen D. Davis (kdavis@uhnres.utoronto.ca)

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2015 Davis KD et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author(s) is/are employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The work may be protected under the copyright laws of other jurisdictions when used in those jurisdictions.

How to cite this article: Davis KD, Bushnell MC, Iannetti GD et al. Evidence against pain specificity in the dorsal posterior insula [version 1; peer review: 3 approved] F1000Research 2015, 4:362 https://doi.org/10.12688/f1000research.6833.1

First published: 24 Jul 2015, 4:362 https://doi.org/10.12688/f1000research.6833.1
There are three major factors that we feel negate the claims of the recent study by Segerdahl et al.\(^1\) that the dorsal posterior insula (dpIns) is a pain-specific area of the brain.

First, the evidence that the dpIns is specific is lacking based on the experimental design and data analysis employed. The methodological approach used by Segerdahl et al.\(^1\) was to induce an ongoing pain with capsaicin and then to correlate pain intensity ratings with brain perfusion changes using arterial spin labeling (ASL). ASL is an MRI-based perfusion method that can measure fluctuations in rCBF (akin to PET imaging) without the need for a stimulus, and so its application to study ongoing pain is promising. ASL has been previously used by others\(^2,3\) to identify acute and chronic pain-related changes in regional cerebral blood flow (rCBF) but the way Segerdahl et al.\(^1\) applied it has several shortcomings. The choice of Segerdahl et al.\(^1\) to collect multi-delay ASL data resulted in rCBF images sampled at infrequent intervals of ~45s, which represents a statistically challenging condition because of the small number of data collected. The control experiment using vibrotactile stimuli comprised a very short scan with even fewer data points in only seven subjects – a design that did not match the already low statistical power of the capsaicin experiment. Therefore, the analysis was underpowered and does not constitute a valid control for the pain experiment. This likely contributed to the minimal activation detected anywhere in the brain during the vibrotactile stimulation. The skin is richly innervated by rapidly adapting, low-threshold mechanoreceptors, so this absence of activation is of substantial concern. Even very early PET studies of regional cerebral blood flow (CBF) found robust vibrotactile activation of primary and secondary somatosensory cortex (S1, S2), and the adjacent posterior insula\(^4\). Most importantly, unlike previous investigations where CBF was directly and statistically compared between pain and innocuous stimulation to evaluate specificity of activation\(^5,6\), the Segerdahl et al.\(^1\) study performed no such key statistical comparison. Without this direct comparison, and in the absence of a control for vibration intensity, or for stimulus saliency, claims of specificity and pain intensity coding simply cannot be made. This comparison is crucial given the evidence of a vast predominance of low threshold mechanoreceptive neurons in the posterior insula\(^7\) and robust vibrotactile activation of the insula (e.g., see 4).

Second, the proposition of a very specific “spot” dedicated to pain is critically dependent on the ability of the methodology to localize findings precisely. However, it is challenging to derive an accurate, group-averaged localization of activation within the dpIns given 1) the large intersubject anatomical variability of the insula, in particular the posterior gyri\(^8\) and 2) the method of realignment and morphing of brain anatomy into a common space to produce group maps. Inspection of the reported dpIns peak coordinate in the Juelich histologic atlas reveals that this peak activation has a 63% probability of being in the parietal operculum (S2, OP2), and only a 31% probability of being in the insular cortex. These areas are in close approximation, but S2 has a well-documented involvement in both nociceptive and innocuous somatosensory processing (e.g., see 8). No additional procedures were performed to functionally distinguish these two regions.

Third, the interpretation of the findings and proposition of a specific pain center was made without taking into consideration a large body of scientific evidence addressing the brain mechanisms that contribute to pain. Theories of pain have been debated for centuries\(^9,10\), and we still do not know how pain is represented in the brain despite decades of searching for a pain specific brain center. This pursuit for a simple, single pain center however is no longer necessary given the enormity of human neuroimaging data indicating that there is no such dedicated center. Each and every brain area that contains nociceptive neurons also contains non-nociceptive neurons, and neuroimaging has shown that each brain area that responds to noxious stimuli can also respond to non-noxious stimuli\(^11\). Rather, multiple, converging lines of evidence strongly indicate that the experience of pain - as any other conscious experience - is constructed from highly distributed cortical processes\(^5,12\). For example, many brain regions exhibit activity related to pain intensity (e.g., \(^12,13\)). Furthermore, there are several clinical cases of preserved pain perception despite lesions of critical regions including the insula, anterior cingulate, and even the entire contralateral hemisphere\(^14,15\). Other studies have shown that interactions among multiple brain regions are critical for distinguishing a state of pain from other highly salient events\(^16\).

It is also useful to place the findings of Segerdahl et al.\(^1\) in context given the historical view of insular function. Morphological, physiological and imaging studies throughout the 1980s and 1990s, divided the insula into anterior agranular and posterior granular subregions, with pain-related function attributed to the anterior part, and a variety of other functions, including tactile recognition, attributed to the posterior part (e.g., see \(^8\)). Since that time, the anterior insula has been established to be part of a non-specific network related to attention and salience. In addition, there is anatomical and electrophysiological evidence for thermoreceptive processing in the dpIns via a spinal cord lamina 1 pathway\(^17\). Although neuroimaging has shown that the dpIns likely has a role in pain and intensity coding, it is critical to reiterate that intensity-coding has also been found for non-pain modalities in this region, including C-fiber mediated pleasant-touch\(^18-21\). The last decades have seen several theories of insula function being put forward\(^11\). This balanced view of potential dpIns functions is surprisingly absent from the discussion of Segerdahl et al.\(^1\). One important theory to consider, put forth by Apkarian’s group\(^22\), is that of the “how much” general magnitude-detector function of the insula. Another important theory developed by Craig and colleagues\(^1\), proposes the dpIns to be a center for interoceptive integration and awareness. Thus, there are several important issues\(^23\) that need to be considered to fully interpret the findings of Segerdahl et al.\(^1\). One assumption that drove the approach taken was that of the critical role of intensity-coding as being central to finding a “pain specific” center. We challenge this because although intensity certainly is one classic dimension of pain, there are many other dimensions including location, quality, and unpleasantness that together comprise the experience of pain. Furthermore, none of these dimensions are actually required for a fundamental feeling of pain (see the recent theory put forth by Davis et al.\(^23\)).
In conclusion, the extensive evidence about the role of the dpIns is not considered by Segerdahl et al. and we note that they do not refute this evidence in their claim to have identified a novel, specific pain center in the dpIns. Such simplistic notions of a specific pain center are incorrect, and therefore dangerous at both an intellectual as well as a clinical level. Here, we suggest an alternate concept of the function of the dpIns based on previous theories and a large body of data that strongly indicate that the dpIns likely is involved in pain but overall is a non-specific perceptual way-station, rather than a specific pain centre. Failure to recognize that many regions activated during nociceptive stimulation are engaging in computational processes related to many things other than pain, lead to interpretations that are fraught with reverse inference\(^1\), and they encourage neurosurgeons to pursue lesions for pain control, an approach that has largely been shown to be ineffective since the 1960’s\(^2\). Their promotion of the concept of a single spot in the brain for pain is even more surprising given the enormous amount of data emerging over the last decade showing the representation of brain function in functional networks, rather than “spots” and the newer view of a “dynamic pain connectome”\(^3\). Implications of their concept are far-reaching – from basic theories of pain, to development of “pain-o-meter” type diagnostic tests, to establishing a therapeutic target for clinical pain management\(^4,5\).

Author contributions

KDD and RC prepared the first draft of the manuscript. All authors (KDD, MCB, GI, KSL, and RC) were involved in the revision of the draft manuscript and have agreed to the final content.

Competing interests

No competing interests were disclosed.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

1. Segerdahl AR, Mezue M, Oktay TW, et al.: The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci. 2015; 18(4): 499–500. Published Abstract | Publisher Full Text
2. Owen DG, Clarke CF, Ganapathy S, et al.: Using perfusion MRI to measure the dynamic changes in neural activation associated with tonic muscular pain. Pain. 2010; 148(3): 375–86. Published Abstract | Publisher Full Text
3. Loggia ML, Kim J, Gollub RL, et al.: Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain. 2013; 154(1): 24–33. Published Abstract | Publisher Full Text | Free Full Text
4. Burton H, Videen TO, Raichle ME: Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with position emission tomography: mapping the second somatosensory area in humans. Somatosens Mot Res. 1993; 10(3): 297–308. Published Abstract | Publisher Full Text
5. Coghill RC, Talbot JD, Evans AC, et al.: Distributed processing of pain and vibration by the human brain. J Neurosci. 1994; 14(7): 4095–108. Published Abstract
6. Iadarola MJ, Berman KF, Zaffiro TA, et al.: Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain. 1998; 121(Pl 5): 931–47. Published Abstract
7. Potratz RA: Infering mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron. 2011; 72(5): 692–7. Published Abstract | Publisher Full Text | Free Full Text
8. Robinson CJ, Burton H: Somatic submodality distribution within the second somatosensory (SII), 7b, retrosplenial, postauditory, and granular insular cortical areas of M. fasciculatus. J Comp Neurol. 1980; 192(1): 93–108. Published Abstract | Publisher Full Text
9. Rosen A, Chen DD, Hayes DJ, et al.: A Neuroimaging Strategy for the Three-Dimensional in vivo Anatomical Visualization and Characterization of Insular Gyri. Stereotact Funct Neurosurg. 2015; 93(4): 255–64. Published Abstract | Publisher Full Text
10. Moayed M, Davis KD: Theories of pain: from specificity to gate control. J Neurophysiol. 2013; 109(1): 5–12. Published Abstract | Publisher Full Text
11. Iannetti GD, Salomons TV, Moayed M, et al.: Beyond metaphor: contrasting mechanisms of social and physical pain. Trends Cogn Sci. 2013; 17(8): 371–8. Published Abstract | Publisher Full Text
12. Coghill RC, Sang CN, Massog JM, et al.: Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol. 1999; 82(4): 1934–43. Published Abstract
13. Balsi MN, Geha PY, Apkarian AV: Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol. 2009; 101(2): 875–87. Published Abstract | Publisher Full Text | Free Full Text
14. Starr CJ, Sawaki L, Wittenberg GF, et al.: Roles of the insular cortex in the modulation of pain: insights from brain lesions. J Neurosci. 2009; 29(9): 2684–94. Published Abstract | Publisher Full Text | Free Full Text
15. Feinstein JS, Khalsa SS, Salomons TV, et al.: Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Struct Funct. 2015. Published Abstract | Publisher Full Text
16. Wager TD, Atlas LY, Lindquist MA, et al.: An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013; 368(15): 1388–97. Published Abstract | Publisher Full Text | Free Full Text
17. Craig AD: Interception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003; 13(4): 500–6. Published Abstract | Publisher Full Text
18. Olausson H, Lamarre Y, Backlund H, et al.: Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci. 2002; 5(9): 900–4. Published Abstract | Publisher Full Text
19. Apkarian AV, Bushnell MC, Treede RD, et al.: Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005; 9(4): 463–84. Published Abstract | Publisher Full Text
20. Seminowicz DA, Davis KD: Interactions of pain intensity and cognitive load: the brain stays on task. Cereb Cortex. 2007; 17(6): 1412–22. Published Abstract | Publisher Full Text
21. Moayed M, Weissman-Fogel I: Is the insula the “how much” intensity coder? J Neurophysiol. 2009; 102(3): 1345–7. Published Abstract | Publisher Full Text
22. Davis KD, Kucyi A, Moayed M: The Pain Switch: An “ouch” detector. Pain. 2015; in press.
23. Tasker RR: History of lesioning for pain. Stereotact Funct Neurosurg. 2001; 77(1–4): 163–5. Published Abstract
24. Kucyi A, Davis KD: The dynamic pain connectome. Trends Neurosci. 2015; 38(2): 86–95. Published Abstract | Publisher Full Text
25. Reardon S: Neuroscience in court: The painful truth. Nature. 2015; 518(7540): 474–6. Published Abstract | Publisher Full Text
26. Seminowicz D, Puthithik A, Rigg S, et al.: Panel 1: Legal and Neuroscientific Perspectives on Chronic Pain. J Health Care Law Policy. 2015; 18: 207–35. Reference Source
Open Peer Review

Current Peer Review Status: ✓ ✓ ✓

Version 1

Reviewer Report 12 October 2015

https://doi.org/10.5256/f1000research.7347.r9718

© 2015 Greenspan J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Joel D. Greenspan
Department of Pain and Neural Sciences, University of Maryland, Baltimore, MD, USA

The discussion initiated by Davis et al. 1, in their critical commentary of Segendahl et al.’s publication in Nature Neuroscience 2 should be recognized as a valuable contribution to our attempt to understand how brain function relates to pain perception. Davis et al., and following commentaries from Apkarian3 and Borsook4, make salient points regarding methodological and interpretive limitations of Segendahl et al.’s published work. One key point is how a weakly powered imaging study can lead to a limited result. In this case, finding that only the dpIns shows a significant relationship to evoked pain intensity is not enough to conclude that the dpIns is necessary and sufficient for pain intensity perception (aka, constituting a “pain center”). Davis et al. and Apkarian specifically decry the concept of a “pain center” in the brain, and I believe our field has rejected this concept as a useful construct. But, to be fair, the term “pain center” does not appear in the Segendahl et al. paper. Two statements in the concluding part of their article are as follows:

“Thus, a growing body of literature suggests that a subsection of the posterior insula is both anatomically and functionally well suited to serve a primary and fundamental role in pain processing.”

And: “… we were able to identify the dpIns as subserving a fundamental role in pain and the likely human homolog of the nociceptive region identified from animal studies.”

I don't find these unreasonable statements, although one could argue over what the meaning of “fundamental” is in this context. However, one unjustified claim appears in the abstract:

“We exploited arterial spin-labeling quantitative perfusion imaging and a newly developed procedure to identify a specific role for the dorsal posterior insula (dpIns) in pain.” As other commentators noted, Segendahl et al.’s work does not provide evidence of specificity of function, either in terms of the dpIns being the only brain region of consequence (note the statistical power issues raised by other referees), nor in terms of specificity of dpIns function (as evidenced by many papers showing non-pain protocol engagement of the region).
So, if we can agree to abandon the concept of “P1” (primary pain cortex), should we still consider the concept of “N1” – primary nociceptive cortex? We don't regard V1 or A1 as “centers” for sight or hearing. Rather, they are recognized as essential cerebral areas for early sensory processing leading to their respective perceptual experiences, functioning in concert with other cerebral regions. Is there a value in looking for an analogous cerebral cortical region for nociception, and if so, would the real estate identified by Segendahl et al. qualify? (I say this in full recognition that the cerebral region identified in their paper, as in nearly all imaging studies targeting this region, is not clearly distinguishable as either dorsal posterior insula vs. parietal operculum/S2.) One very critical difference between the nociceptive vs. visual or auditory systems is that there are multiple thalamo-cortical pathways for nociceptive signals to reach the cortex, as shown most directly in primate studies such as Dum et al. This begs the question of whether there is a “primary” nociceptive cortex. In 1999, Howard Fields noted that not everything unpleasant is painful, and that we should have “...a term for the psychophysical property of an unpleasant somatic sensation that allows us to identify it as pain.” He offered up the term “algosity”, and suggested that pain could be considered a combination of algosity and unpleasantness. One could also think of algosity as the perceptual consequence of recognizing nociceptor activation. If this concept has value, and I believe that many of us in the field do, should we be able to identify a “N1” cortex that has a fundamental or even an essential role in algosity?

References
1. Davis KD, Bushnell MC, Iannetii GD, St Lawrence K, et al.: Evidence against pain specificity in the dorsal posterior insula [version 1; referees: 2 approved]. F1000Research. 2015; 4: 362 PubMed Abstract | Free Full Text | Publisher Full Text | Reference Source
2. Segerdahl AR, Mezue M, Okell TW, Farrar JT, et al.: The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci. 2015; 18 (4): 499-500 PubMed Abstract | Publisher Full Text | Reference Source
3. Apkarian A: Referee Report For: Evidence against pain specificity in the dorsal posterior insula [version 1; referees: 2 approved]. F1000Research. 2015; 4: 362 Publisher Full Text | Reference Source
4. Borsook D: Referee Report For: Evidence against pain specificity in the dorsal posterior insula [version 1; referees: 2 approved]. F1000Research. 2015; 4: 362 Publisher Full Text | Reference Source
5. Dum RP, Levinthal DJ, Strick PL: The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci. 2009; 29: 14223-14235 PubMed Abstract | Free Full Text | Publisher Full Text
6. Fields HL: Pain: An unpleasant topic. Pain. 1999. 561-569 PubMed Abstract

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 07 September 2015

https://doi.org/10.5256/f1000research.7347.r9627
The correspondence by K. Davis and colleagues regarding the recently published study by Segerdahl et al. raises important and valid concerns regarding the conclusion of the paper. The issue is important as the report appeared in a high visibility journal, and the authors make the strong claim that they have identified a single "pain center" in the cortex. The latter has been a quest sought by many pain researchers since the advent of neuroimaging technology. Most importantly a lack of adequate statistical power and a proper control are the most obvious technical weaknesses pinpointed by Davis et al. Perhaps it would be informative to elaborate on this issue, specifically regarding how an underpowered study can lead into discovering a brain "specific center" for pain perception, the validity of which is doubted by senior scientists in the field.

Neuroimaging studies, whether based on BOLD or ASL, when attempting to identify brain activity relative to a task commonly first identify in each participant brain activity related to the task, average these patterns across all participants, and then use a set of statistical criteria to determine what brain areas are statistically significantly conveying information about the task. In the present study only one brain region passed the specific criteria used and thus we have a single brain area related to the task. Not surprisingly the area is the posterior insula. A brain region that 10 years ago was described to be most commonly observed activated area to any painful stimuli and currently in a PubMed term-based meta-analysis, neurosynth (www.neurosynth.org), it is identified (together with the secondary somatosensory cortex) as the region with highest reverse inference probability (z-score > 13.0) for association with the term “pain”, based on 420 publications. Thus, there is good evidence for this region being involved in pain related studies, and in an underpowered study where high thresholds becomes necessary to identify brain activity it is not surprising that only this one region is identified. Additionally one fully expects that with increased power most of the extended set of brain regions identified in neurosynth, whether called ‘neuromatrix’ or ‘pain connectome’, would also be observed independent of the neuroimaging technology used (tip of the iceberg phenomenon). A simple analogy can be derived from astronomy. Modern telescopes provide us with a picture of the sky full of millions of stars and galaxies. However, even today if we look at the sky by a telescope manufactured by Galileo, or having an equivalent resolution, we will still only observe the handful of stars that Galileo was describing 450 years ago.

The other important issue of the paper by Segerdahl et al. regards the conceptual implications, an issue that Davis et al. mention and again is important to elaborate. In the effort of proving that pain is in and of itself a unique sensory system, a large number of pain scientists have espoused the notion of dedicated real estate in the cortex for pain. Yet, isolation of such a single region has the strong implication that the conscious, subjective, and affective perception of pain is all captured in this one brain area. The latter implies the thought experiment of excising the region and placing it in a dish (perhaps also keeping all the tissue that connects it to the periphery), with which act we can claim to recapitulate pain consciousness in a dish, which seems absurd and
inconsistent with modern theories relating the brain to perception\(^2\).

Borsook’s commentary on the problems associated with Segerdahl \textit{et al.} publication is also very astute\(^3\). He points that the competition to publish in high end journals pushes the scientist into making more extravagant conclusions than even the author herself or himself actually does not trust. Yet ultimately responsibility rests on the peer review process, and the latter is not guaranteed to be full proof.

References

1. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK: Human brain mechanisms of pain perception and regulation in health and disease. \textit{Eur J Pain}. 2005; 9 (4): 463-484 PubMed Abstract | Publisher Full Text | Reference Source
2. Baliki MN, Apkarian AV: Nociception, Pain, Negative Moods, and Behavior Selection. \textit{Neuron}. 2015; 87 (3): 474-491 PubMed Abstract | Free Full Text | Publisher Full Text
3. Borsook D: Referee Report For: Evidence against pain specificity in the dorsal posterior insula [v1; ref status: approved 1, http://f1000r.es/5o3]. \textit{F1000Res}. 2015; 4: 362 Publisher Full Text | Reference Source

Competing Interests: No competing interests were disclosed.

\textbf{I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.}

© 2015 Borsook D. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Karen Davis and coauthors, including notable researchers in the pain imaging field, including Robert Coghill and Catherine Bushnell \(^1\), argue strongly against the concept reported in Nature Neuroscience by Segerdahl and colleagues \(^2\); a paper that has quickly proven to be highly controversial for many in the field. The Segerdahl report utilizes an MRI technique known as arterial spin labeling (ASL) to measure quantitative cerebral blood flow as a surrogate marker for neuronal activation \(^3\), which in this case, was combined with a model of capsaicin application to the skin to induce a hypersensitivity to heat stimuli in healthy patents \(^4,5\) as a surrogate model of allodynia in chronic pain.
Many of the arguments raised by Davis et al. relate to the validity of the Segerdahl report, and are of a technical nature. Hopefully, these technical problems can be easily addressed (e.g., in future experiments) or challenged by an understanding of the field and its limitations (as Davis et al so eloquently do - see First and Second Arguments in their paper). What is still unclear is why Segerdahl and colleagues, seem to have overlooked considerable prior work using ASL in experimental pain 6-8, post-surgical pain 9-11, and chronic pain 12-16. There is also a noticeable lack of consideration for the limitations of both the imaging technique and the experimental pain model 5, which itself in healthy volunteers, has some issues relating to reproducibility and its clinical relevance 4.

The concept of discovering or defining a pain specific area in pain patients has to be understood in terms of a long history searching for such an area to target with various therapeutic modalities, most notably, neurosurgery has led the charge. The evaluation of putative pain specific areas in acute pain models probably has little if any bearing on the clinical condition of chronic pain. More modern concepts of brain-wide integrative processes are now in vogue. Davis authors use the definition of "Pain-Connectome" 17 which while conceptually is not new, adds to the growing literature of Connectomics 18, and should help rid the often used and probably not useful concept or term ‘pain matrix’ from use, given the modern understanding of brain networks.

At best, the Segerdahal contribution has raised a vibrant discussion in the field, at is worst it is setting the field back not only because of its purported methodological inaccuracy (as evaluated by Davis et al.), lack of acknowledgement of what has come before, perhaps being too enthusiastic about the results and therefore pushing a notion that is unlikely to be true – finding a single brain area that is a pain specific region. Publications in high impact journals such as Nature Neuroscience (http://www.nature.com/neuro/index.html) carry a great responsibility, since they can (and usually) contribute to a field moving forward, or in a few cases the field becoming ‘stuck’ because of potentially false concepts that then take time for any field to undo. Hopefully this is not one of those issues relating to how high profile papers may occasionally be problematic as previously commented on, for example: “How journals like Nature, Cell and Science are damaging science” (http://www.theguardian.com/commentisfree/2013/dec/09/how-journals-nature-science-cell-damage-science). Having the finding being replicated in the context of chronic pain conditions will be interesting to observe; perhaps Segerdahl et al., have these in the planning stage. This is of particular importance since having reproducible data from chronic pain patients may provide important therapeutic opportunities.

What is still to be defined, through a more detailed connectomic understanding, is whether such brain areas may be important through integration of processes such as chronic pain with other brain regions, in remodeling or reconstituting normalization of brain circuits following treatment for chronic pain. Such a notion could perhaps be the real excitement of where the field is headed. A healthy discourse in science can only lead to further evolution in the field and should be open and honest. I believe Davis and colleagues have made such a contribution in their review of the Segerdahl paper.

References
1. Davis KD, Bushnell MC, Iannetti G, St Lawrence K, et al.: Evidence against pain specificity in the
dorsal posterior insula. v1; ref status: approved 1, http://f1000r.es/5o3. F1000Res. 2015; 4 (362).

2. Segerdahl AR, Mezue M, Okell TW, Farrar JT, et al.: The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci. 2015; 18 (4): 499-500 PubMed Abstract | Publisher Full Text | Reference Source

3. Buxton RB, Frank LR, Wong EC, Siewert B, et al.: A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998; 40 (3): 919-927 PubMed Abstract | Publisher Full Text | Reference Source

4. Cavallone LF, Frey K, Montana MC, Joyal J, et al.: Reproducibility of the heat/capsaicin skin sensitization model in healthy volunteers. J Pain Res. 2013; Nov 7 (6): 919-927 PubMed Abstract | Publisher Full Text | Reference Source

5. Dirks J, Petersen KL, Dahl JB: The heat/capsaicin sensitization model: a methodologic study. J Pain. 2003; 4 (3): 122-128 PubMed Abstract | Publisher Full Text | Reference Source

6. Owen DG, Thomas AW, Prato FS, St Lawrence KS: Quantification of pain-induced changes in cerebral blood flow by perfusion MRI. Pain. 2008; 136 (1-2): 85-96 PubMed Abstract | Publisher Full Text | Reference Source

7. Frölich MA, Deshpande H, Ness T, Deutsch G: Quantitative changes in regional cerebral blood flow induced by cold, heat and ischemic pain: a continuous arterial spin labeling study. Anesthesiology. 2012; 117 (4): 857-867 PubMed Abstract | Publisher Full Text | Reference Source

8. Maleki N, Brawn J, Barretttler G, Borsook D, et al.: Pain response measured with arterial spin labeling. NMR Biomed. 2013; 26 (6): 664-673 PubMed Abstract | Publisher Full Text | Reference Source

9. Howard MA, Krause K, Khawaja N, Massat N, et al.: Beyond patient reported pain: perfusion magnetic resonance imaging demonstrates reproducible cerebral representation of ongoing postsurgical pain. PLoS One. 2011; 6 (2): e17096 PubMed Abstract | Free Full Text | Publisher Full Text | Reference Source

10. Hodkinson DJ, Krause K, Khawaja N, Renton TF, et al.: Quantifying the test-retest reliability of cerebral blood flow measurements in a clinical model of on-going post-surgical pain: A study using pseudo-continuous arterial spin labelling. Neuroimage Clin. 2013; 3: 301-310 PubMed Abstract | Free Full Text | Publisher Full Text | Reference Source

11. O'Muircheartaigh J, Marquand A, Hodkinson DJ, Krause K, et al.: Multivariate decoding of cerebral blood flow measures in a clinical model of on-going postsurgical pain. Hum Brain Mapp. 2015; 36 (2): 633-642 PubMed Abstract | Free Full Text | Publisher Full Text | Reference Source

12. Wasan AD, Loggia ML, Chen LQ, Napadow V, et al.: Neural correlates of chronic low back pain measured by arterial spin labeling. Anesthesiology. 2011; 115 (2): 364-374 PubMed Abstract | Free Full Text | Publisher Full Text | Reference Source

13. Howard MA, Sanders D, Krause K, O'Muircheartaigh J, et al.: Alterations in resting-state regional cerebral blood flow demonstrate ongoing pain in osteoarthritis: An arterial spin-labeled magnetic resonance imaging study. Arthritis Rheum. 2012; 64 (12): 3936-3946 PubMed Abstract | Publisher Full Text | Reference Source

14. Liu J, Du M, Wang X, Zhang J, et al.: Quantitative cerebral blood flow mapping and functional connectivity of postherpetic neuralgia pain: a perfusion fMRI study. Pain. 2013; 154 (1): 110-118 PubMed Abstract | Publisher Full Text | Reference Source

15. Loggia ML, Kim J, Gollub RL, Vangel MG, et al.: Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain. 2013; 154 (1): 24-33 Free Full Text | Publisher Full Text | Reference Source

16. Youssef AM, Gustin SM, Nash PG, Reeves Jm, et al.: Differential brain activity in subjects with painful trigeminal neuropathy and painful temporomandibular disorder. Pain. 2014; 155 (3): 467-
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Comments on this article

Reader Comment 25 Jan 2016

André Mouraux, Université catholique de Louvain, Belgium

The brief communication by Segerdahl et al. (2015) on the role of the dorsal posterior insula (dPIns) in human pain triggered a lively and stimulating debate in the pain neuroscience community. On the one side, their findings were greeted with high enthusiasm, also favored by a press release by the University of Oxford claiming that, for the first time, an “ouch zone” had been identified in the brain (http://www.ox.ac.uk/news/2015-03-10-ouch-zone-brain-identified). On the other side, the study was strongly criticized relative to both the methodology and the interpretation of the results (Davis et al. 2015; Apkarian 2015; Borsook 2015).

Segerdahl and collaborators addressed some of the suggested shortcomings highlighted by Davis et al., such as the absence of a direct statistical comparison between cerebral blood flow (CBF) changes triggered by painful and tactile stimulation, and the precise anatomical localization of the dPIns.

While we agree with most of the criticisms raised by Davis et al., we find that they do not address the two most problematic issues of the paper, which we summarize in the following three points.

The first issue lies in the ambiguity of the term “fundamental”. Simply stating that the dPIns subserves a fundamental role in the perception of pain, as Segerdahl et al. do in the title of their brief communication and as they remark upon in their correspondence, does not per se imply specificity. Nevertheless, the Authors refer to the pain-specificity of the dPIns in multiple points of their brief communication (e.g., «To validate the pain-specificity of our dPIns results», p. 1; «specific to the tonic heat pain», Online Methods). These statements are toned down in the last part of the Author’s response to Davis et al., where the Authors state that the dPIns is just potentially responsive to only nociceptive inputs. Segerdahl et al. state this this point is simply “arguing semantics”. Instead, we believe that this is actually a pivotal point for the interpretation of the findings.
The assumption that the CBF changes triggered in the dpIns are pain-specific is based on reverse inference, and the likelihood of this inference being correct depends on the *exclusivity* of the relationship between these changes and the experience of pain. This consideration leads to the second issue, namely the fact that the experimental design used in the study cannot justify the claim that the dpIns is pain-specific. Precisely, the design does not allow ruling out the hypothesis that the changes in CBF in the dpIns may be related to the salience of the tonic pain stimulation, and not the the fact that it was painful (Legrain et al. 2011; Iannetti and Mouraux 2010). In other words, it is possible that any type of stimulation could trigger similar changes in CBF in the dpIns provided that it is sufficiently intense and/or salient, and regardless of whether the stimulation was nociceptive or painful (Liberati et al. 2016).

To counter this concern, Segerdahl et al. state that the salience of painful and innocuous stimuli was “closely matched”. However, this claim is not substantiated by any data, as there was no direct comparison of any measure of stimulus salience. Anyone who has been previously exposed to the effects of topical capsaicin will know that applying heat to the sensitized skin area is going to be a pretty intense, gruesome and attention-grabbing experience. The sensations generated by this procedure were thus obviously much more salient than the sensations generated by the gentle 1-2 Hz oscillations of the control mechanical stimulus. In fact, we were very surprised to find that the authors referred to this control stimulus as a *vibrotactile* stimulus, as the very low frequency used by Segerdahl et al. was way outside the preferred frequency range of rapidly-adapting mechanoreceptors involved in the perception of either flutter or vibration. Most importantly, considering the results of previous psychophysical studies in the field of touch, one can only expect that such a stimulus generated, at best, a very mild and evanescent tactile sensation. If it were possible for us to reproduce that stimulus[1], we would not be surprised to find out that participants are barely able to perceive such a stimulus applied to the foot. This would constitute a very straightforward explanation as to why the innocuous stimulation not only did not trigger changes of CBF in the dpIns, but also, did not trigger any measurable response in S1 or S2 (Burton et al. 1993; Coghill et al. 1994).

But this is probably not the most critical issue. To assess whether measured changes in CBF correlate with changes in intensity of perception, it is crucial for the intensity of perception (i.e. the explanatory variable) to vary over time. This was clearly the case when Segerdahl et al. applied capsaicin and heat: during the procedure, the intensity of pain perception varied between no pain or very little pain (“baseline”, “habitation”, and “relief” periods) and very high pain ratings (“onset”, “peak” and “rekindle” periods). In contrast, nothing is known about how much the intensity of the percept elicited by tactile stimulus *varied* over time. One can only guess that the variations in perception magnitude generated by applying a tactile stimulus oscillating between 1 and 2 Hz at pseudo-random intervals during 7 minutes were very slight, especially if these were compared to variations in the intensity of the perception elicited by capsaicin and heat. For this reason, it is not at all surprising that “no significant correlation was observed between absolute CBF and either the ongoing vibration intensity levels applied or with the ongoing perceived stimulus intensity levels reported by the subjects”.

In conclusion, the finding that CBF in the dpIns correlated with the variations in pain intensity generated by capsaicin and heat but did not correlate with the variations in the intensity of the sensation elicited by the tactile stimulus does not in any way constitute evidence for “a specific role
for the dorsal posterior insula in pain”. When Segerdahl et al. conclude that «the contralateral dpIns was the only region that was observed to track pain intensity», they do not take into account that “pain intensity” could as well be replaced by “salience” or “stimulation intensity”.

[1] We would be happy to confirm or infirm directly this claim by assessing the percept generated by the tactile stimulus. Unfortunately, this is not possible as it is not adequately described in the article. Indeed, the authors report the amplitude of the mechanical vibrations using an unrelated physical unit of electrical current intensity (mA).

André Mouraux & Giulia Liberati

Bibliography

Apkarian, V. 2015. Referee Report For: Evidence against pain specificity in the dorsal posterior insula [version 1; referees: 3 approved] F1000Research 2015, 4:362 (doi: 10.5256/f1000research.7347.r9627). F1000Research 4, p. 362.

Borsook, D. 2015. Referee Report For: Evidence against pain specificity in the dorsal posterior insula [version 1; referees: 3 approved] F1000Research 2015, 4:362 (doi: 10.5256/f1000research.7347.r9663). F1000Research.

Burton, H., Videen, T.O. and Raichle, M.E. 1993. Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosensory & motor research 10(3), pp. 297–308.

Coghill, R.C., Talbot, J.D., Evans, A.C., Meyer, E., Gjedde, A., Bushnell, M.C. and Duncan, G.H. 1994. Distributed processing of pain and vibration by the human brain. The Journal of Neuroscience 14(7), pp. 4095–4108.

Davis, K.D., Bushnell, M.C., Iannetti, G.D., St Lawrence, K. and Coghill, R. 2015. Evidence against pain specificity in the dorsal posterior insula. [version 1; referees: 3 approved]. F1000Research 4, p. 362.

Iannetti, G.D. and Mouraux, A. 2010. From the neuromatrix to the pain matrix (and back). Experimental Brain Research 205(1), pp. 1–12.

Legrain, V., Iannetti, G.D., Plaghki, L. and Mouraux, A. 2011. The pain matrix reloaded: a salience detection system for the body. Progress in Neurobiology 93(1), pp. 111–124.

Liberati, G., Klöcker, A., Safronova, M.M., Ferrão Santos, S., Ribeiro Vaz, J.G., Raftopoulos, C. and Mouraux, A. 2016. Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception. PloS Biology 14(1), p. e1002345.

Segerdahl, A.R., Mezue, M., Okell, T.W., Farrar, J.T. and Tracey, I. 2015. The dorsal posterior insula subserves a fundamental role in human pain. Nature Neuroscience 18(4), pp. 499–500.
Competing Interests: No competing interests were disclosed.

Reader Comment 04 Sep 2015

Petra Schweinhardt, Faculty of Dentistry and Department of Neurology and Neurosurgery, McGill University, Canada

Many things said in the Nature Neuroscience article by Segerdahl et al. are correct – a huge body of literature supports the view that the dorsal posterior insular cortex plays an important role in the processing of nociceptive information and possibly, in the processing of the conscious experience of pain. At the same time, the criticisms noted by Davis et al. are equally justified – methodologically, the Segerdahl et al. study was not in a position to test ‘a fundamental role [...] of the dorsal posterior insula’ in pain, as claimed by the title of the article. In my view, the Segerdahl et al. study is an imaging study that, like previous ones, provides support for the involvement of the dorsal posterior insula in the processing of nociceptive stimuli. As already mentioned, this is in line with existing literature, including evidence from methodologies that allow more direct conclusions than neuroimaging, such as intracerebral stimulation (Mazzola et al. Brain. 2012 Feb;135(Pt 2):631-40). Other experimental approaches are needed to meet the objective to establish ‘a fundamental role’ of the insula in the experience of pain. Because the parietal operculum (including the posterior insula and S2) is the only cortical region that has been found to provoke the sensation of pain when stimulated (Mazzola et al. Brain. 2012 Feb;135(Pt 2):631-40), a key question is whether activation of this area is sufficient for the sensation of pain or if subsequent activation of other brain areas, as discussed by Davis et al. with the concept of a ‘pain connectome’, is required. This could be tested with a combination of cerebral stimulation and inhibition.

I conclude that the Segerdahl et al. study presents supporting evidence for a role of the dorsal posterior insula in nociceptive processing but that the approach taken cannot provide evidence for one of its main claims. Given the interest that neuroimaging generates in the general public, often paired with high levels of faith for the method, researchers, reviewers, and journals have a responsibility to present balanced views that aspire to be as close to the underlying truth as possible.

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com