Discrimination of soil aggregates using micro-focus X-ray computed tomography in a five-year-old no-till natural fallow and conventional tillage in South Africa

M.E. Malobane a,b, A.D. Nciizah a, F.N. Mudau b, I.I.C. Wakindiki b,c,*

a Agricultural Research Council, Institute of Soil, Climate and Water, P. Bag X79, Pretoria, 001, South Africa
b University of South Africa, Department of Agriculture and Animal Health, Private Bag X6, Florida, 1710, South Africa
c School of Agriculture, University of Venda P. Bag X5050, Thohoyandou, 0950, South Africa

ARTICLE INFO

Keyword:
Agriculture

ABSTRACT

Soil use and management effect on soil microstructure was quantified. Soil aggregates ~10 mm diameter were collected from two fields: a five-year-old No-till natural fallow management (NTNF) and continuous cultivation (CC). The aggregate microstructure was determined with X-ray micro-focus computed tomography (X-ray μCT) and image analysis was done using VGstudio MAX 3.0. Aggregate stability was higher in NTNF by ~5.7%. Micro-aggregates constituted ≥80% of the aggregates in both treatments. Total porosity, microstructural pore properties (pore distribution, pore shape proportion) and visualization were similar in NTNF and CC. Despite the similarities, aggregates under NTNF had higher total number of pores. Therefore, managing soil through NTNF improve porosity even when the effect on the overall soil aggregation is not obvious. The study showed that aggregate stability is significantly linked to aggregate microstructure.

1. Introduction

Soil is a complex multi-component system with hierarchical organization and quality that can be explained by studying each component at a spatial configuration [1]. For instance, the effect of different soil use and management practices on soil behavior can be revealed by studying the spatial configuration of soil aggregates [2, 3, 4]. Aggregate stability tests commonly measured by methods such as that by Le Bissonnais [5] do not describe the status of aggregate architecture or give details on aggregation process [6]. Aggregate size, stability and pore size distribution within the aggregates are important characteristics of soil structure that influence the ultimate soil functions and behaviour. The microstructure of soil aggregates governs both soil stability and soil quality [7]. Consequently, examining the microstructure of soil aggregates, helps to understand the measured aggregation stability [7].

X-ray computed tomography (X-ray CT) is an excellent tool for studying the nature of soil components at a spatial configuration [8, 9]. Data obtained from X-ray CT can be used to relate soil components to soil behavior, processes and development [1]. X-ray CT offers a non-destructive way to characterize soil structure over a range of scales at high resolution [10]. The traditional methods like soil–water retention method, which are commonly used around the world to study the macro porosity and pore-size distribution of soils, cannot offer details on distribution of pores larger than 300 μm in diameter [11]. Computed tomography methods offer resolution of measurement even on a millimetre to micrometre-scale [12]. Thus, X-ray CT is a valuable tool for characterising pore-space from the macro-to the micro-scale [11]. In addition, X-ray CT offers suitable means of recording the three-dimensional form of soil structure [13], which allows complete visualization of many soil components and their arrangement [14]. Taina et al [1] and Kumi et al [9] previously summarized principles of X-ray CT.

X-ray CT was used to study soil structure attributes such as pore size, shape, pore distribution, pore connectivity and surface area both at macro- and micro-space [12]. In this experiment, agroforestry and grass buffers were established under rotational grazing and continuous grazing. The authors found macroporosity to be 13-times higher in buffers than pasture treatment. The increased macroporosity most likely increased soil water infiltration and reduced runoff, and increased gas exchange [12]. Vegetation restoration was found to enhance microstructure by significantly increasing total porosity, macro-porosity, and fraction of elongated pores, which are all essential to reduction in soil erosion and improvement of soil quality [7].

* Corresponding author.
E-mail address: isaiha.wakindiki@univen.ac.za (I.I.C. Wakindiki).

https://doi.org/10.1016/j.heliyon.2019.e01819
Received 17 October 2018; Received in revised form 31 January 2019; Accepted 22 May 2019
2405-8440/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Tillage effect on microstructure was discriminated using X-ray CT e.g. by Gantzer and Anderson [15], Ferro [16] and Pires [17]. Using X-ray μCT, the application of no-till (NT) was found to have a better pore connectivity than conventional tillage (CnT) [17]. In addition, the use of CnT disrupts macropore structure, promoting pore class in the range 54–250 μm equivalent diameter and soil erosion [16]. Conversely, Gantzer and Anderson [15] found CnT to have twice the number of macropores, > 500 μm, than in the no-till treatment. The different results in the two studies might be due to site-specific conditions and management except tillage. Effect of compaction on microstructure was investigated using X-ray CT [18]. Authors found compaction to decrease porosity and macroporosity by 64%, number of pores by 71%, macropores by 69% and mesopores by 75% compared to non-compacted soil. The application of X-ray CT in soil science is in line with the statement made by editors of the Journal of Hydrology that "A new era of soils research calls for "structure-focused" efforts that is beyond the classical "texture-focused" stage" [19]. Numerous efforts have been made on studying the effects of land use and management on soil structure however most of these studies have been restricted to a specific scale and data of the responses of soil structure at different scales is lacking [20].

Fallow management ensures recovery of soil fertility after continuous cropping [21, 22]. According to Jou and Lal [23], fallow practice can maintain soil physical properties and soil organic carbon (SOC) while CnT system leads to decline in SOC. Change in SOC has an impact on soil quality because SOC determines many soil characteristics such as nutrient mineralization, aggregate stability and water uptake [24]. Increases in soil microbial biomass and SOC, which are important driving features for aggregate stability [25, 26], were reported after implementation of fallow management compared to continual tillage [27]. Improvement in aggregate stability was reported after fallow management [27, 28] while a decline in aggregate stability was reported under continual tillage [29, 30, 31]. The effectiveness of fallow on soil quality and soil water status is determined by many factors ranging from weed control, fallow period and the type of fallow practice [32, 33]. The common fallow practice types include natural fallow and mulch fallow system [21] while weed control during fallow can be done with herbicides, tillage [33] or not controlled. Thus, variation in soil quality compared to continuous tillage system is expected from one fallow management to another. However, the effect of weedy or natural fallow management on soil microstructure is currently not well understood. CT scanning can, therefore, assist in clarifying soil structure dynamics under different degrees of plant presence i.e. weedy fallow and bare surface under continuous tillage (CC). It was, therefore, hypothesized that no-tillage natural fallow (NTNF) affects soil aggregation thereby altering soil microstructure and porosity. The objective of this study was to determine the effect of CC and NTNF on aggregate stability and the resulting soil microstructure and porosity using X-ray μCT and image analysis.

2. Materials and methods

2.1. Soil use and management prior to sampling

In order to study the effect of post treatments of on soil aggregation like previous research [7, 34, 35], soil samples were randomly collected from two adjacent fields, of approximately 71 m × 23.6 m area each, at the University of Fort Hare experimental farm (latitude 32° 46′ S and longitude 26° 50′ E at an altitude of 535 m). The farm receives an average annual rain of 575 mm and has a warm temperate climate with mean annual temperature of 18.1 °C [36]. The dominant soil type in the farm is of alluvial origin, classified as haplic Cambisol [37]. One field was under continuous tillage (CC) with maize while the other field was on No-till natural fallow (NTNF). Each treatment had been applied for at least five years prior to sampling. Under CC, moldboard plow tillage was applied at about 0.2 m depth followed by disking at summer maize season. Hand hoes were used to prepared seedbed in CC. Weeds were not controlled in NTNF but under CC, weeds were controlled with atrazine herbicide and hand hoes during the growing season and with granoxme herbicide (Paraquat as active ingredient) at 4 L/ha after harvesting. In the CC plot, fertilizer was applied at 90 N kg/ha. A third of the Nitrogen (N) fertilizer was applied at planting as a compound fertilizer (2:3:4 (30)) and the rest as limestone ammonium nitrate at 6 weeks after planting. Plant residues were removed after harvesting. Selected soil properties from both treatments are presented in Table 1.

2.2. Soil sampling and preparation

Soil samples were randomly collected from the top 0.1 m using a flat spade from each treatment and combined into five representative samples. Soil samples were transported to the laboratory in rigid containers to avoid breaking soil aggregates [38]. In the laboratory, the samples were spread on benches and air dried before analysis.

Soil chemical properties were determined using standard methods from air dried samples that passed through 2 mm sieve. Soil pH and soil electrical conductive (EC) were measured in 1:25 soil:water ratio using pH and EC electrode meter, respectively. Particle size distribution was determined using hydrometer method after oxidation of SOM with hydrogen peroxide (H2O2) as outlined by Gee and Or [39]. Walkley-Black method was used to determine SOC.

2.3. Aggregate stability

Aggregate stability was estimated by calculating mean weight diameter (MWD) using the fast wetting method described by Le Bissonnais [5]. Briefly, 3–5 mm air dried aggregates obtained by sieving soil aggregates through 5 mm mesh sieve, which was placed on top of 3 mm mesh sieve were oven dried at 40 °C for 24 h to bring them to a constant matric potential. A 5 g sample of aggregates was immersed in 50 ml deionized water for 10 min. A pipette was used to suck off the water. The soil material was then transferred gently to a 53 μm sieve that was previously immersed in ethanol. The sieve was gently moved up and down in ethanol five times to separate the <53 μm fragments from those which are >53 μm. The remaining aggregates were collected on a 53 μm sieve, dried in an oven at 105 °C, and their size distribution was measured by dry sieving with sieves with 2000, 1000, 500, 212, 106 and 53 μm apertures to create seven aggregate classes namely: 2000–5000 μm, 1000–2000 μm, 500–1000 μm, 212–500 μm, 106–212 μm, 53–106 μm and <53 μm. The mass of the <53 μm fraction was calculated as the difference between the initial mass and the sum of the mass of the six other fractions. The aggregate stability was expressed as the MWD of the seven classes as follows: Eq. (1)

\[
\text{MWD} = \sum_{i=1}^{7} W_i X_i
\]

where \(W_i \) is the mass fraction of aggregate in the size class \(i \) with a diameter \(X \) [5].

Table 1
Basic soil properties from continuous cultivation (CC) and No-till natural follow (NTNF) site.

	CC	NTNF
Sand (%)	64.0 ±0.18	62.0 ±0.18
Silt (%)	12.0 ±0.08	16.0 ±0.09
Clay (%)	24.0 ±0.10	22.0 ±0.09
Soil organic carbon (%)	0.97 ±0.02	1.15a ±0.03
pH (H2O)	7.27 ±0.08	6.98 ±0.08
EC (mS m⁻¹)	44b ±1.00	62a ±1.24

Note: Values followed by the different letter within a row are significantly different at 0.05 level, Standard deviation (STD): [].
Table 2
Aggregate stability from continuous cultivation (CC) and No-till natural follow (NTNF) site.

	MWD	Stability class
CC	0.40a±0.08	Unstable
NTNF	0.42a±0.05	Unstable

Note: Values followed by the same letter within a row are not significantly different at 0.05 level, Standard deviation (STD): [].

2.4. CT scanning and image analysis

Five soil aggregates of approximately 10 mm diameter from each representative sample were scanned with XµCT at MIXRAD facility section of The South African Nuclear Energy Corporation SOC Limited (Necca). Thus, a total number of 25 aggregates were scanned per treatment. The samples were scanned using a Nikon XTH 225L micro-focus CT X-ray unit (Nikon Metrology, Leuven, Belgium), located at the MIXRAD laboratory at the South African Nuclear Energy Corporation, Pelindaba. Scanning parameters were set to 90keV/90µA to optimise penetration of X-rays through the soil aggregates. The scanning resolution was set at 18.9 µm in order to visualise the soil microstructure. An aluminium filter was used to approximate a homogeneous X-ray beam spectrum of high X-ray photons by removing the lower energy photons that contributes to noise. The X-ray machine acquires a shading correction image that is used to calibrate the background of the acquired radiographs. The samples were securely mounted in a polystyrene mould to avoid any movement during each scan. The mounted specimens were then placed on to a rotating sample manipulator, which facilitated scanning at 360°. One thousand projection images were obtained in the 360° at 2 sec exposure time for each projection. The scans were then reconstructed using Nikon CTPro software® (Nikon Metrology, Leuven, Belgium) and further analysed using VGStudio Max V3.0® (Volume Graphics GmbH, Heidelberg, Germany).

To avoid the edge effects, a region of interest of 52 ± 0.1 mm³ volume was selected at the middle of the 3D aggregates. Equivalent diameter was used to express pore sizes from the 3D aggregate. The pores were classified into seven classes: < 50, 50–100, 100–200, 200–300, 300–400, 400–500 and > 500 µm [7]. Sphericity (S) was used to classify pores into three pore shape classes: regular pores (5 ≥ 0.5), irregular pores (0.2 < S < 0.5) and elongated pores (S ≤ 0.2) [7]. The 3D sphericity was defined as the ratio of surface area of a sphere having the same volume as the object to the actual surface area of the object [40]. 3D total porosity was defined as the total number of pore voxels divided by the total number of volume voxels [16].

2.5. Statistical analysis

Analysis of variance (ANOVA) was performed using JMP® 13 [41]. Mean separations were done using the least significant difference method at P ≤ 0.05.

3. Results

At the time of sampling, some soil properties in CC and NTNF fields were similar but others significantly different (Table 1). Soil texture was sandy clay loam and pH was neutral. Soil organic carbon and EC were significantly lower in CC compared to NTNF treatments.

3.1. Aggregate stability

Aggregate stability was not significantly influenced (P > 0.05) by the two soil use and management practices (Table 2) except the distribution of aggregate size classes 1000 - 500 µm and 212-106 µm (Table 3). According to the Le Bissonnais [5] aggregates from both systems were unstable.

3.2. Soil aggregates visualization and pore size distribution

Indistinct soil aggregates microstructure morphologies were observed for both NTNF and CC aggregates (Fig. 1). Pore size distribution followed a similar pattern in aggregates from both treatments (Figs. 2 and 3). Aggregates from both treatments were mainly dominated by pore size class with a diameter of less than 50 µm followed by pore sizes class diameter between 50 and 100 µm, with pore size class of diameter greater than 500 µm being the least dominant pore size class (Fig. 2). The NTNF aggregates, generally had more pores in each pore size classes. The NTNF pore frequency in pore size class of less than 50 µm was almost double that of CC in the same pore class (Fig. 2).

Total porosity and fractions of pore shapes were statistically not different Pore class with diameter ≥ 500 µm, accounted for more than 90% of the total porosity. The least porosity was for 400–500 µm pore size class. Aggregate from both treatments were dominated by the fraction of regular pores, which accounted more than 95% of pore shapes while fraction of elongated pores formed less than 0.1% of pore shapes in both the treatments (Table 4).

4. Discussion

Soil use and management affects soil aggregation thereby influencing carbon sequestration and soil behaviour [42]. The effect of a five years no-till natural fallow (NTNF) and continuous cultivation (CC) on soil aggregation was studied. Aggregate stability is related to MWD [43]. The higher the MWD the more the aggregates are stable [5]. Accordingly, aggregate stability can be classified into five classes namely: MWD is > 2.0 mm, very stable; 1.3–2.0 mm, stable; 0.8–1.3 mm, medium; 0.4–0.8 mm, unstable and < 0.4 mm, very unstable. Thus, the results from both sites suggest that aggregates were unstable (Table 2), although aggregates under NTNF had significantly higher SOC. At the same site, Nciizah and Wakindiki [38] observed that the effect of soil organic matter was directed by the soil texture and clay mineralogy because their intricate association. Resultantly, both treatments were dominated by micro-aggregates.

Conventional tillage mechanically breaks down macro-aggregates into micro-aggregates [44]. It also disrupts the binding agents such as roots, fungal hyphae, and by-products of microbial synthesis and decay [45, 46]. So, the dominance of micro-aggregates under NTNF could be due to reduced amounts of binding agents as a result of diminished root activities in the rhizosphere [42]. Since it is generally agreed that macro-aggregates are formed and stabilized by biological factors, such as roots, fungal hyphae [45], in this study, the amount of weedy biomass in the NTNT was insufficient to cause significant input of binding agents into the soil. The findings from this study, however contradict that showed significant increases in MWD due to fallow management practice.

Table 3
Aggregate size distribution from continuous cultivation (CC) and No-till natural follow (NTNF) site.

Aggregate classes (%)							
	5000-2000 µm	2000-1000 µm	1000-500 µm	500-212 µm	212-106 µm	106-53 µm	<53 µm
CC	4.87a	2.79a	4.18a	24.65a	32.14a	11.20a	20.16a
NTNF	4.82a	2.94a	7.37b	26.66b	26.13a	11.77a	20.32a

Note: CC aggregate classes STD range: ±0.04 to ±0.09, NTNF aggregate classes STD range: ±0.02 to ±0.08.
Nonetheless, benefits of fallow management are usually observed over long periods of time unlike in the short fallow period of 5 years in this study. In a study of the impact of natural fallow duration on top soils characteristics of a Ferralsol in Cameroon [47], concluded that it took a minimum of 10 years for the soil under natural fallow to recover its optimum equilibrium inclining towards conditions under the virgin forest.

The visualization of 3D aggregate supported the MWD results by revealing few differences in aggregates from both treatments showing that the application of no-till natural fallow didn’t have much impact on aggregates microstructure. The quantity analysis of aggregate pore system (e.g. total porosity, pore size distribution and frequency) treatment showed that NTNF aggregates had a more porous structural system. The slightly higher macro-porosity (>500 μm porosity), which allows for easier movement of water, solutes and nutrient [48]. The slightly higher total porosity under NTNF might be attributed to the proliferation in roots associated with permanent vegetation [49, 50] during the fallow period. The root growth and activity of permanent vegetation under NTNF mighty also attribute to the higher number of pores [51] compared to CC site. Thus, better transportation is expected under NTNF compared to CC site. The 3D aggregate and distribution of pores show that soil structure from both sites is closely related. Regarding pore shapes, the fractions of elongated pores, which are crucial for soil water and gas transport [7, 52], were found to be less than 0.1% under both treatments. The less fraction of elongated pores show that there is high potential of soil erosion from both treatments. This is also supported by low aggregate stability from both treatments.

Table 4
	CC	NTNF
Total porosity (%)	20.74a [±1.61]	22.34a [±0.92]
Fraction of regular pores (%)	96.31a [±0.72]	96.85a [±0.51]
Fraction of irregular pores (%)	3.68a [±0.71]	3.13a [±0.49]
Fraction of elongated pores (%)	0.01a [±0.01]	0.02a [±0.01]

Note: Values followed by the same letter within a row are not significantly different at 0.05 level of significance, Standard deviation (STD): [].

5. Conclusion

X-ray CT and digital image analysis successfully provided insight on the microstructure of soil aggregates. It allowed for investigation of the effect of NTNF and CC on soil aggregation processes in its early stages. Whereas the overall aggregate stability may not respond to NTNF and CC within a five year period, NTNF can significantly alter soil porosity. The study also demonstrated the link between aggregate stability and
aggregate microstructure.

Declarations

Author contribution statement

M.E. Malobane: Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

A.D. Nciizah, I.I.C. Wakindiki: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

F.N. Mudau: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper.

Funding statement

This work was supported by the National Research Foundation [grant number 98690].

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors thank The South African Nuclear Energy Corporation SOC Limited (Necsa) (MIXRAD facility) for providing the x-ray μCT scanner.

References

[1] L.A. Taina, R.J. Heck, T.R. Elliott, Application of X-ray computed tomography to soil science: a literature review, Can. J. Soil Sci. 88 (1) (2008) 1–19.

[2] G.S. Saroa, R. Lal, Soil restorative effects of mulching on aggregation and carbon sequestration in a Maizian soil in central Ohio, Land Degrad. Dev. 14 (5) (2003) 481–493.

[3] H. Blanco-Canqui, R. Lal, Crop residue removal impacts on soil productivity and environmental quality, Crit. Rev. Plant Sci. 28 (3) (2009) 139–163.

[4] C. Thierfelder, P.C. Wall, Effects of conservation agriculture on soil quality and productivity in contrasting agro-ecological environments of Zimbabwe, Soil Ute Manag. 28 (2) (2012) 209–220.

[5] Y.L. Bissonnais, Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology, Eur. J. Soil Sci. 47 (4) (1996) 425–437.

[6] L.M. Young, J.W. Crawford, C. Rappoldt, New methods and models for characterising structural heterogeneity of soil, Soil Tillage Res. 61 (1-2) (2001) 33–45.

[7] H. Zhou, X. Peng, S. Peth, T.Q. Xiao, Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography, Soil Tillage Res. 124 (2012) 17–23.

[8] S. Sleutel, V. Crumde, B. Marschale, J. Vlassenbroek, M. Dierick, L. Van Hoorebeke, P. Jacobs, S. De Neve, Comparison of different nano-and micro-focus X-ray computed tomography set-ups for the visualisation of the soil microstructure and soil organic matter, Comput. Geosci. 34 (8) (2008) 931–938.

[9] F. Kumi, M. Hanping, H. Jianping, I. Ullah, Review of applying X-ray computed tomography set-ups for the visualization of the soil microstructure and soil aggregate microstructure quantified with synchrotron-based micro-computed tomography, Soil Tillage Res. 124 (2012) 17–23.

[10] C.J. Gantzer, S.H. Anderson, Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds, Soil Tillage Res. 64 (1-2) (2002) 101–111.

[11] N. Dal Ferro, L. Sartori, G. Simonetti, A. Berti, F. Morari, Soil macro-and microstructure as affected by different tillage systems and their effects on maize root growth, Soil Tillage Res. 140 (2014) 55–65.

[12] L.P. Fites, J.A. Borges, J.A. Rosa, M. Cooper, R.J. Heck, S. Passoni, W.L. Roque, Soil structure changes induced by tillage systems, Soil Tillage Res. 165 (2016) 67–79.

[13] H. Kim, S.H. Anderson, P.P. Motavalli, C.J. Gantzer, Compaction effects on soil macrostructure geometry and related parameters for an arable field, Geoderma 160 (2) (2010) 244–251.

[14] H. Lin, H. Flühler, W. Otten, H.J. Vogel, Soil architecture and preferential flow across scales, J. Hydrol. 393 (2010) 1–2.

[15] H. Zhou, H. Fang, S.J. Mooney, X. Peng. Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies, Geoderma 266 (2016) 66–74.

[16] E. Barrios, J.G. Cobo, I.M. Rao, R.J. Thomas, E. Amézquita, J.J. Jiménez, M.A. Rondón, Fallow management for soil fertility recovery in tropical Andean agroecosystems in Colombia, Agric. Ecosyst. Environ. 110 (1-2) (2005) 29–42.

[17] N. Jones, J. Graaff, F. Duarte, J. Rodrigo, A. Pooringa, Farming systems in two less favoured areas in Portugal: their development from 1989 to 2009 and the implications for sustainable land management, Land Degrad. Dev. 25 (1) (2014) 29–44.

[18] A.S. Jiao, R. Lal, The effect of fallow and continuous cultivation on the chemical and physical properties of an Alfisol in western Nigeria, Plant Soil 47 (3) (1977) 567–584.

[19] J.W. Doran, E.T. Elliott, K. Paustian, Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management, Soil Tillage Res. 49 (1-2) (1998) 5–18.

[20] J. Six, H. Bossuyt, S. Degroeve, K. Denef, A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics, Soil Tillage Res. 79 (1) (2004) 7–31.

[21] S. Zhang, G. Li, X. Zhang, K. Wei, L. Chen, W. Liang, Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China, Soil Tillage Res. 124 (2012) 196–202.

[22] G. Nyamadzawo, J. Nyamangara, P. Nyamugafata, A. Murzulu, Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe, Soil Tillage Res. 102 (1) (2009) 151–157.

[23] G. Nyamadzawo, R. Chikowo, P. Nyamugafata, K.E. Giller, Improved legume tree fallows and tillage effects on structural stability and infiltration rates of a kalsilicic sandy soil from central Zimbabwe, Soil Tillage Res. 96 (1-2) (2007) 182–194.

[24] Y. Ashargie, W. Zech, G. Guggenberger, T. Mamo, Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia, Soil Tillage Res. 94 (1) (2007) 101–106.

[25] G. Curagueo, J.M. Barre, E. Acredo, R. Rubio, P. Cornejo, F. Borie, Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central Chile, Soil Tillage Res. 113 (1) (2011) 11–18.

[26] G. Wei, Z. Zhou, Y. Guo, Y. Dong, H. Dang, Y. Wang, J. Ma, Long-term effects of tillage on soil aggregates and the distribution of soil organic carbon, total nitrogen, and other nutrients in aggregates on the semi-arid loess plateau, China, Arid Land Res. Manag. 28 (3) (2014) 291–310.

[27] K. Verburg, W.J. Bond, J.R. Hunt, Fallow management in dryland agriculture: explaining soil water accumulation using a pulse paradigm, Field Crop. Res. 130 (2012) 68–79.

[28] S. Marshall, K. Flower, Soil water conservation and nitrous oxide emissions from different crop sequences and fallow under Mediterranean conditions, Soil Tillage Res. 143 (2014) 123–129.

[29] D. Zhao, M. Xu, G. Liu, L. Ma, S. Zhang, T. Xiao, G. Peng, Effect of vegetation type on microstructure of soil aggregates on the Loess Plateau, China, Agric. Ecosyst. Environ. 242 (2017) 1–8.

[30] D. Zhao, M. Xu, G. Liu, X. Yao, D. Tuo, R. Zhang, T. Xiao, G. Peng, Quantification of soil aggregate microstructure on abandoned cropland during vegetative succession using synchrotron radiation-based micro-computed tomography, Soil Tillage Res. 165 (2017) 239–246.

[31] E. Dube, C. Chiduza, P. Muchonyorwa, Conservation agriculture effects on soil organic matter on a Haplic Cambisol after four years of maize–out and maize-grazing vetch rotations in South Africa, Soil Tillage Res. 132 (2012) 21–29.

[32] IUSU Working Group WRB, World Reference Base for Soil Resources, World Soil Resources Reports No. 103, second ed., FAO, Rome, 2006.

[33] A.D. Nciizah, I.C. Wakindiki, Particulate organic matter, soil texture and mineralogy relations in some Eastern Cape ecotopes in South Africa, S. Afr. J. Plant Soil 29 (1) (2012) 39–46.

[34] G.W. Gee, D. Or, 2. Particle-size analysis, Methods soil anal. 4 4 (598) (2002) 255–292.

[35] H. Wadell, Volume, shape, and roundness of rock particles, J. Geol. 40 (5) (1932) 443–451.

[36] SAS Institute, JMP®, Version 13, Cary, NC, 2016.

[37] E.K. Barto, F. Alt, Y. Oelmann, W. Wilcke, M.C. Rillig, Contributions of biotic and abiotic factors to soil aggregation across a land use gradient, Soil Biol. Biochem. 42 (2010) 328–332.

[38] G.W. Gee, D. Or, 2. Particle-size analysis, Methods soil anal. 4 4 (598) (2002) 255–292.

[39] H. Wadell, Volume, shape, and roundness of rock particles, J. Geol. 40 (5) (1932) 443–451.
[44] J. Six, K. Paustian, E.T. Elliot, C. Combrink, Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon, Soil Sci. Soc. Am. J. 64 (2000) 681–689.

[45] Z. Kabir, I.P. O’Halloran, J.W. Fyles, C. Hamel, Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization, Plant Soil 192 (1997) 285–293.

[46] J.D. Jatsrow, R.M. Miller, J. Lussenhop, Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie, Soil Biol. Biochem. 30 (1998) 905–916.

[47] L. Nounamo, M. Yemefack, M. Tchienkoua, R. Njomgang, Impacts of natural fallow duration on topsoils characteristics of a Ferralsol in southern Cameroon, Nigerian J. Soil Res. 3 (1) (2002) 52–57.

[48] H. Zhou, X. Peng, E. Perfect, T. Xiao, G. Peng, Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography, Geoderma 195–196 (2013) 23–30.

[49] S. Gryze, L. Jassogne, J. Six, H. Bossuyt, M. Wevers, R. Merckx, Pore structure change during decomposition of fresh residue: X-ray tomography analyses, Geoderma 134 (2006) 82–96.

[50] P. Jiang, S.H. Anderson, N.R. Kitchen, E.J. Sadler, K.A. Sudduth, Landscape and conservation management effects on hydraulic properties on a claypan-soil toposquence, Soil Sci. Soc. Am. J. 71 (2007) 803–811.

[51] R.P. Udawatta, S.H. Anderson, C.J. Gantzer, H.E. Garrett, Agroforestry and grass buffer influence on macropore characteristics: a computed tomography analysis, Soil Sci. Soc. Am. J. 70 (2006) 1763–1773.

[52] R. Ma, C. Cai, Z. Li, J. Wang, T. Xiao, G. Peng, W. Yang, Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography, Soil Tillage Res. 149 (2015) 1–11.