Transition states and the critical parameters of central potentials

Evgeny Z Liverts and Nir Barnea

Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
E-mail: liverts@phys.huji.ac.il

Received 18 May 2011, in final form 27 July 2011
Published 23 August 2011
Online at stacks.iop.org/JPhysA/44/375303

Abstract
Transition states or quantum states of zero energy appear at the boundary between the discrete part of the spectrum of negative energies and the continuum part of positive energy states. As such, transition states can be regarded as a limiting case of a bound state with vanishing binding energy, emerging for a particular set of critical potential parameters. In this work, we study the properties of these critical parameters for short-range central potentials. To this end, we develop two exact methods and also utilize the first- and second-order WKB approximations. Using these methods, we have calculated the critical parameters for several widely used central potentials. The general analytic expressions for the asymptotic representations of the critical parameters were derived for cases where either the orbital quantum number l or the number n of bound states approaches infinity. The above mathematical models enable us to answer the following physical (quantum mechanical) questions. (i) What is the number of bound states for a given central potential and given orbital quantum number l? (ii) What is the maximum value of l which can provide a bound state for the given central potential? (iii) What is the order of energy levels for the given form of the central potential? It is revealed that the ordering of energy levels depends on the potential singularity at the origin.

PACS numbers: 03.65.Ge, 03.65.Sq, 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is generally agreed that estimating the number of bound states of the Schrödinger equation is a problem of great practical importance. A substantial effort was devoted to evaluating the upper and lower limits on the number of bound states for a given central potential. Bargmann [1] and Schwinger [2] seem to be the first who tackled this problem. Since then many authors...
have contributed to the study of this problem. Among them we would like to refer to the works [3–7] and to emphasize particularly the contribution of Calogero and Brau [8–12].

The purpose of the current contribution is to present a systematic approach to the investigation of quantum states with zero energy. These transition states appear between the discrete part of the spectrum of negative energies and the continuum part of positive energies. We study transition states by solving the proper Schrödinger equation for short-range central potentials possessing specific sets of critical parameters. To this end, we develop two exact methods for solving the zero-energy Schrödinger equation, and for obtaining the values of the associated critical parameters. We apply these methods to find the critical parameters of an important class of central potentials including among others the Gaussian and the Yukawa interactions. A few examples of potentials admitting the analytic solutions for the transition states are exhibited and the associated critical parameters are presented in analytic form. We provide numerical results in the form of tables of the critical parameters. These results enable one to obtain the exact number of bound states for these potentials without any additional computations.

Analyzing our results we have observed the following universal properties of the solutions of the Schrödinger equation with central potentials. (a) For a given orbital angular momentum quantum number \(l\), the \(n\)th critical value of the universal parameter \(\beta_{n,l}\) of any potential behaves as \(n^2\) for large \(n\). (b) For a given number \(n\) of bound states, the critical parameter \(\beta_{n,l}\) grows as \(l^2\) with increasing \(l\). Both results can be explained with the help of the WKB approximation. (c) The ordering of the energy levels with various \([n, l]\) depends on the potential singularity at the origin.

The paper is organized as follows. In section 2, we briefly discuss the Schrödinger equation and the properties of short-range potentials. The asymptotic behavior of the solution at the origin and at infinity is discussed in sections 3 and 4, respectively. In section 5, we introduce a phase-kind equation for the transition states, and in section 6, we describe the WKB approximations for the calculation of the critical parameters. The analytic asymptotic expressions for the critical parameters are presented in section 7. Numerical results and conclusions then follow in sections 8 and 9.

2. Short-range potentials

Let us start this section with a quotation from section 18 in the Landau and Lifshitz textbook on quantum mechanics [13]: 'If the field diminishes as \(-1/r^s\) at infinity, with \(s > 2\), then there are no levels of arbitrarily small negative energy. The discrete spectrum terminates at a level with a non-zero absolute value, so that the total number of levels is finite'.

The results of this paper enable us to doubt in the universal character of the statement expounded in the first sentence of the above quotation. The conclusion made in the second sentence proves to be true.

Therefore, we shall consider the central potentials \(V(r)\) satisfying the corresponding boundary condition at infinity:

\[
\lim_{r \to \infty} r^2 V(r) = 0. \tag{1}
\]

Near the origin, the boundary condition for an attractive potential can be written in a similar form

\[
\lim_{r \to 0} r^2 V(r) = 0, \tag{2}
\]

to avoid fall of a particle to the center [13] (sections 18 and 35).
We shall consider the class of potentials which can be presented in the form
\[V(r, r_0) = -\frac{g}{r^s} f\left(\frac{r}{r_0}\right) \quad (g > 0, r_0 > 0), \]
(3)
where \(g \) is the coupling constant which determines the strength of the interaction. Note that according to condition (2), the power \(s \) must satisfy the inequality
\[q = s + p < 2, \]
(4)
where \(p \) corresponds to the leading term in series expansion of function \(f(r) \) near the origin
\[f(r) \sim \frac{\tilde{g}}{r^p}. \]
(5)
It should be realized that definition (3) describes a wide class of potentials such as, e.g., square well, exponential, Hulthen, Gaussian, Yukawa, Woods–Saxon and many others.

The radial part of the Schrödinger equation for a single particle moving in a central potential field takes the form [13](section 32)
\[\frac{d^2 \chi}{dr^2} + \left\{ \frac{2m}{\hbar^2} E - V(r) - \frac{l(l+1)}{r^2} \right\} \chi = 0, \]
(6)
where \(m \) is the reduced mass and \(\chi \equiv \chi_l(r) \) is the reduced radial part of the wavefunction for a stationary state with angular momentum \(l \) and energy \(E \).

Changing the potential parameters, the appearance of a new bound state is accompanied with a new solution of equation (6) for \(E = 0 \). As we limit our discussion to potentials of the form (3), we rewrite equation (6) for zero energy in the form
\[\frac{d^2 \tilde{\chi}}{dx^2} = \left[-\frac{2m}{\hbar^2} \frac{g}{r^s} f\left(\frac{r}{r_0}\right) + \frac{l(l+1)}{x^2} \right] \tilde{\chi}(x). \]
(7)

The scale transformation \(x = r/r_0 \) leads to the equation
\[\frac{d^2 \tilde{x}}{dx^2} = \left[-\frac{2m}{\hbar^2} \frac{g}{r_0^{2-s}} f(x) + \frac{l(l+1)}{x^2} \right] \tilde{x}(x). \]
(8)

It is seen that the potentials \(V(r, r_0) \) and \(r_0^{2-s}V(r, 1) \) have equivalent solutions of equation (6). Thus, we are interested in solving the equation
\[\chi''(r) = U(r)\chi(r), \]
(9)
where
\[U(r) = -\beta v(r) + \frac{l(l+1)}{r^2}, \]
(10)
\[v(r) = f(r)r^{-s}. \]
(11)
Now our choice of the form (3) for central potentials becomes clear. The solutions of equation (9) for a given angular momentum quantum number \(l \) depend effectively, (see, e.g., [14]) only on one parameter
\[\beta = \frac{2mg}{\hbar^2 r_0^{2-s}}. \]
(12)
Equation (9) is a differential equation of second order. In order to solve it both analytically and numerically, one needs to know the behavior of its solution near the origin and at infinity.
3. The solution near the origin

At first, let us consider the solution of equation (9) near the origin. Expanding the potential into a power series and keeping only the leading term, we obtain

\[\chi''(r) = \left[-\frac{\lambda}{r^q} + \frac{l(l+1)}{r^2} \right] \chi(r), \]

(13)

where

\[\lambda = \beta \tilde{g}, \]

(14)

and \(q \) is defined by equation (4). The particular solution of equation (13), satisfying the boundary condition

\[\chi(0) = 0, \]

(15)

has the form

\[\chi(r) = A \sqrt{r} J_{2l+1} \left(\frac{2\sqrt{\lambda}}{2-q} r^{1-q/2} \right), \]

(16)

where \(J_n(z) \) is the Bessel function of the first kind and \(A \) is an arbitrary constant. Keeping the first two terms in the series expansion of the function (16), one obtains

\[\chi(r) \approx A r^{l+1} \left[\frac{2\sqrt{\lambda}}{2-q} r^{1-q/2} \right]. \]

(17)

In general, for integer and half-integer \(q \), the solution of equation (9) satisfying the boundary condition (15) can be presented by the following infinite series:

\[\chi(r) = A r^{l+1} \left[1 + \sum_{i=1}^{\infty} r^i (b_i + r^{1-q} c_i) \right]. \]

(18)

For integer \(q \), all of the \(b \)-coefficients should be zero. It follows from equation (17) that

\[c_1 = -\frac{\lambda}{(2-q)(2l+3-q)}. \]

(19)

Substituting representation (18) into equation (9), and then equating the expansion coefficients of the same powers of \(r \) for the left-hand (lhs) and right-hand sides (rhs) of equation (9), one can calculate any finite number of the subsequent coefficients \(c_i \) and \(b_i \) with \(i \geq 1 \).

4. The asymptotic behavior of transition states

For an eigenfunction \(\Psi \) belonging to the discrete part of the spectrum, the integral \(\int |\Psi|^2 dV \), taken over all space, is finite. This certainly means that \(|\Psi|^2 \) decreases quite rapidly, becoming zero at infinity. ‘The system executes a finite motion, and is said to be in a bound state’ [13] (section 10). For wavefunctions belonging to the continuous part of the spectrum, the integral \(\int |\Psi|^2 dV \) diverges due to the fact that \(|\Psi|^2 \) does not become zero at infinity (or becomes zero insufficiently rapidly).

On the other hand [13] (section 18), the spectrum of negative eigenvalues of the energy is discrete, i.e. all states with \(E < 0 \) in the field which vanishes at infinity are bound states. The positive eigenvalues \(E > 0 \), on the other hand, form a continuous spectrum.

In other words, for the bound states, the eigenvalues of the energy \(E < 0 \) and the eigenfunctions must satisfy the boundary condition

\[\lim_{r \to \infty} |\Psi|^2 = 0. \]

(20)
In contrary, for a free state that belongs to the continuous spectrum, the energy eigenvalues $E > 0$ and $|\Psi|^2$ does not become zero at infinity (or becomes zero insufficiently rapidly).

For the transition states with $E = 0$, the asymptotic behavior ($r \to \infty$) of the eigenfunctions remains unclear.

The important step is to realize that the boundary condition (20) must be valid for the transition states ($E = 0$) as well. Thus, for these states, $|\Psi|^2$ achieves zero at infinity. However, we note that it may tend to zero too slowly to ensure the convergence of the integral $\int |\Psi|^2dV$.

In the following we shall rely on the boundary condition (20) for the transition states.

For $l > 0$, the asymptotic boundary condition (1) enables us to neglect the potential $V(r) = -\beta v(r)$ in equations (9)–(11) at large enough r. The general solution of the resulting equation has a form

$$\chi_l(r) = C_1r^{l+1} + C_2r^{-l},$$

where C_1 and C_2 are arbitrary constants. As $\Psi \sim R(r) = \chi_l(r)/r$, one should put $C_1 = 0$ in order to satisfy the asymptotic condition (20). Thus, we obtain

$$\chi_l(r) \xrightarrow{r \to \infty} C_2r^{-l}. \quad (22)$$

Expressing the latter equation in the form $r^l\chi_l(r) \xrightarrow{r \to \infty} \text{const}$, we obtain the following condition for the first derivative:

$$\lim_{r \to \infty} \frac{d}{dr}[r^l\chi_l(r)] = \lim_{r \to \infty} [lr^{l-1}\chi_l(r) + rl^{l-1}\chi'_l(r)] = 0. \quad (23)$$

It is clear that the asymptotic behavior of the solution $\chi_l(r)$ of equation (9) depends on the parameter β of the effective potential (10). Thus, according to equation (23), the solution χ_l of equation (9) fulfills the asymptotic condition

$$F_l(\beta_n) = \lim_{r \to \infty} \left[l r^{-l} \chi_l(r) + \chi'_l(r) \right] = 0 \quad (24)$$

for the critical parameters β_n. Here n is a number of zeros of the function $F_l(\beta)$ for the given potential (10). Hence, by definition, if for a given l the potential $V(r)$ is characterized by the parameters meeting $\beta_{n+1} \geq \beta > \beta_n$, then the proper number of bound states equals n.

The asymptotic condition (24) was derived assuming that the orbital quantum number $l > 0$. However, it is easy to show that equation (24) preserves its validity also for $l = 0$. A typical graph of the function $F_l(\beta)$ is presented in figure 1.

The straightforward solution of the second-order differential equation (9) with the boundary conditions (17) and (24) presents our first method for calculating the critical parameters β_n of a given attractive potential (3) satisfying the boundary conditions (1) and (2). This method is especially effective and accurate for small values of l. For a few potentials, such as the exponential, the Hulthen and the Woods–Saxon, one can derive analytical expressions for the critical parameters using this method (see the appendix). However, this is possible only for S-states ($l = 0$), when equation (9) with the potentials mentioned above has a general analytical solution. We are familiar with only one form of central potential which admits an analytical solution of equation (9) for $l \geq 0$. It is a cut-off potential (described in the appendix) for which the finite square well potential presents its particular case.

Let us add one important comment. We refer to equation (24) as the asymptotic behavior condition. However, solution (21), and therefore—condition (24), correspond to the assumption that the potential $V(r)$ is negligible in comparison with the centrifugal term $l(l + 1)/r^2$. Therefore, condition (24) is applicable at a distance r when the condition

$$|V(r)| \ll \frac{l(l + 1)}{r^2} \quad (25)$$

is satisfied.
Figure 1. Function $F_0(\beta) = \lim_{r \to \infty} \chi_0'(r)$ for the Yukawa potential ($l = 0$). Zeros of $F_0(\beta)$ present critical parameters β_n.

5. Equation of the phase kind

It was mentioned in the preceding section that the straightforward method for calculating the critical parameters of central potentials loses its accuracy with increasing angular momentum quantum number l. In this section, we propose another method for calculating these parameters. This method is based on the logarithmic derivative $y(r) = \chi'(r)/\chi(r)$ of the reduced radial wavefunction introduced earlier. The final equations are close to but differ from the so-called phase equations presented in [10, 12].

Let us start with the trivial identity
\[
\left(\frac{\chi'}{\chi} \right)' = \frac{\chi''}{\chi} - \left(\frac{\chi'}{\chi} \right)^2, \tag{26}
\]
and transform the radial Schrödinger equation (9) into a Riccati-type equation for the corresponding logarithmic derivative $y(r) \equiv y_l(r)$:
\[
y'(r) + \gamma^2(r) = U(r). \tag{27}
\]
The asymptotic behavior of the logarithmic derivative for $l > 0$
\[
y_l(r) \overset{r \to \infty}{\sim} \frac{l}{r} \quad (l > 0) \tag{28}
\]
follows from the asymptotic representation (22).

To deduce the asymptotic behavior of the logarithmic derivative for the transition S-states ($l = 0$), let us start with the fact that for this case the rhs of equation (27) equals $V(r)$. Let us then consider central potentials with the asymptotic behavior
\[
V(r) \overset{r \to \infty}{\sim} -\frac{\beta}{r^\mu} \quad (\beta > 0), \tag{29}
\]
where $\mu > 2$ according to the boundary condition (1). The general solution of the proper Schrödinger equation (9) has a form
\[
\chi(r) = \sqrt{7} [C_2 J_\nu(2\sqrt{\beta r}) + C_3 J_{-\nu}(2\sqrt{\beta r})], \tag{30}
\]
with
\[v \equiv \frac{1}{2 - \mu} < 0 \quad (\mu > 2). \tag{31} \]

It is seen that for \(\mu > 2 \), the argument of the Bessel function goes to zero as \(r \to \infty \). Thus, using series expansion for the Bessel functions, it is easy to show that one should put \(C_2 = 0 \) in order to satisfy the boundary condition \((20) \). Taking then the logarithmic derivative for the resulting \(\chi (r) \), and once more using a series expansion for the Bessel functions, one obtains
\[y_0(r) \approx \frac{\beta}{r^{1-\mu}}. \tag{32} \]

It is clear that the asymptotic solution \((32) \) of the Riccati equation \((27) \) for \(l = 0 \) satisfies the following inequality:
\[y_0(r) \ll \beta \text{e}^{-r}. \tag{33} \]

The asymptotic solution of the Schrödinger equation \((9) \) with the exponential potential is presented in the appendix (see equation \((A.20) \)) for \(l = 0 \). The corresponding logarithmic derivative
\[y_0^{\text{exp}}(r) \approx \beta \text{e}^{-r} \tag{34} \]
satisfies inequality \((33) \). It is easy to show that the asymptotic representation \((r \to \infty) \) of the Hulthen and the Woods–Saxon potentials reduces to the exponential forms \(-\beta \text{e}^{-r} \) and \(-\beta x_0^{-1} \text{e}^{-r} \), respectively. Hence, the asymptotic solution of the corresponding equation \((27) \) can be presented by the rhs of equation \((34) \) for the Hulthen potential, and by \(\beta x_0^{-1} \text{e}^{-r} \) for the Woods–Saxon potential. The latter logarithmic derivatives certainly obey inequality \((33) \) as well.

It is reasonable to suggest that inequality \((33) \) is valid for all the short-range potentials (may be excluding only the cut-off potentials). In this case, one can neglect the square of the logarithmic derivative in the lhs of equation \((27) \). The solution of the latter equation with \(l = 0 \) can be obtained then in the explicit form
\[y_0(r) \approx \beta \int_r^\infty v(r) \, dr. \tag{35} \]

For potentials with the asymptotic behavior \((29) \), formula \((35) \) gives the asymptotic representation \((32) \). For the exponential potential, the rhs of equation \((35) \) leads to \((34) \).

For the Yukawa and Gaussian potentials, equation \((35) \) yields
\[y_0^{\text{Yuk}}(r) \approx \beta \text{e}^{-r}, \quad y_0^{\text{Gau}}(r) \approx \frac{\beta}{2} \text{e}^{-r}. \tag{36} \]

For deriving the latter expressions, we used the leading terms of the asymptotic expansions of the incomplete gamma function \(\Gamma(0, r) \) and the complementary error function \(\text{erfc}(r) \) obtained as the results of integration in equation \((35) \).

It is easy to check that the asymptotic logarithmic derivatives \((36) \) satisfy inequality \((33) \). The substitution
\[y_0(r) = K(r) \cot \eta(r) \tag{37} \]
enables us to transform equation \((27) \) into the following equation for the phase function \(\eta(r) \):
\[\eta'(r) = \frac{K'(r)}{2K(r)} \sin 2\eta(r) + K(r) \cos^2 \eta(r) = \frac{U(r)}{K(r)} \sin^2 \eta(r). \tag{38} \]
The stabilizing function K_r can be chosen in a sufficiently arbitrary manner. The simplest choice is $K_r = 1$. In this case, the boundary conditions (28) and (35) define the following asymptotic condition for $\eta(r)$:

$$\eta(\infty) = -\pi/2 + n\pi \quad (n = 1, 2, \ldots).$$ \hfill (39)

Any function K_r that preserves the limit, $\lim_{r \to \infty} [y(r)/K(r)] = 0$, provides the asymptotic behavior (39). It was established (at least numerically) that the more precise results are provided by stabilizing functions of the form

$$K_r = \sqrt{U_l(r)},$$ \hfill (40)

where $U_l(r)$ governs the behavior of $U(r)$ both near the origin and at infinity, that is,

$$U_l(r) =
\begin{cases}
\beta v(r), & l = 0 \\
\beta u(l(r) + 1)r^{-2}, & l > 0.
\end{cases}$$ \hfill (41)

Use of the stabilizing functions (40) and (41) enables us to replace equation (38) with two simpler equations:

$$\eta'(r) = \frac{U'_l(r)}{4U_l(r)} \sin 2\eta(r) + \sqrt{U_0(r)} \quad (l = 0),$$ \hfill (42)

$$\eta'(r) = \frac{1}{r} \left[\sqrt{l(l+1)} \cos 2\eta(r) - \frac{1}{2} \sin 2\eta(r) \right] + \frac{rU_0(r)}{\sqrt{l(l+1)}} \sin^2 \eta(r) \quad (l > 0).$$ \hfill (43)

Substituting expressions (40) and (41) for $l > 0$ into definition (37) with the asymptotic form (28), one obtains $\cot \eta(\infty) = -\sqrt{l/(l+1)}$. Thus, the critical parameters β_n must provide the following asymptotic behavior for the function $\eta(r)$:

$$F_l(\beta_n) \equiv \eta(\infty)|_{\beta=\beta_n} = \delta_l - \frac{\pi}{2} + n\pi \quad (n = 1, 2, \ldots),$$ \hfill (44)

with

$$\delta_l = \arctan \left[\sqrt{l/(l+1)} \right].$$ \hfill (45)

Equation (44) was derived for $l > 0$. It describes the asymptotic behavior of the solutions of equation (43). However, it is clear that the stabilizing function $K_0(r) = \sqrt{U_0(r)}$ preserves the correctness of the asymptotic formula (39) for the logarithmic derivatives $y_0(r)$ with the asymptotic behavior defined by equation (35). Therefore, condition (44), (45) with $l = 0$ can also be used for the asymptotic approximation of solutions of equation (42).

It is seen from equation (42) that the stabilizing function $K_0(r) = \sqrt{U_0(r)}$ can be applicable only in the case of its nodeless character; otherwise the simplest choice is $K_0(r) = 1$.

The technique described above in this section is sufficient for the presentation of the second method for calculating the critical parameters of central potentials of the from (3). However, we would like to make some additional remarks that can be useful.

Equations (42) and (43), along with the boundary condition (44), (45), provide a stable and accurate solution to the problem of critical potentials for both small and large values of l.

A typical graph of function $t = F_l(\beta)$ has a staircase form. It is presented in figure 2. The abscissas of the points of the staircase function intersections with lines $t = \delta_l - \pi/2 + n\pi$ give the desired critical parameters $\beta = \beta_n$.

As an additional useful information, it can be shown that

$$F_l(0) = \delta_l.$$ \hfill (46)
Figure 2. Function $\tilde{F}_7(\beta) = \lim_{r \to \infty} \eta(r)$ for the Gaussian potential ($l = 7$). The abscissas of the points of intersection of $t = \tilde{F}_7(\beta)$ with lines $t = \delta_l - \pi/2 + \pi n$ give the desired critical parameters $\beta = \beta_n$.

This is because of the following. Setting $\beta = 0$, the second term disappears from the rhs of equation (42). The analytic solution to the resultant equation has a form

$$\eta(r) = \arctan(C \sqrt{U_0(r)}).$$

(47)

Condition (1) thus provides $\eta(\infty) = 0$ for $\beta = 0$ and $l = 0$ according to equation (47).

Putting $\beta = 0$ in equation (43), the latter loses the term with $U_0(r)$. The resultant equation has an analytic solution of the form

$$\eta(r) = \arctan \left(\frac{2l + 1}{2} \tanh \left(\frac{(2l+1)}{2} \ln r + C \right) - 1 \right).$$

(48)

For arbitrary finite real C, tanh presented in equation (48) approaches 1 as $r \to \infty$. The resultant expression thus reduces to δ_l.

6. The first- and second-order WKB approximations

In this section, we apply the first-order and the second-order WKB approaches to calculating the critical parameters of central potentials. Unlike the exact methods presented earlier, these methods are certainly approximate but they are also much simpler.

Langer correction was not applied, because it was pointed out by several authors (see, e.g., [19]) that Langer’s replacement of $l(l+1)$ by $(l+1/2)^2$ is not valid for the second- and higher-order WKB approximations.

Specific modification of the first-order WKB approach presented below cannot provide results of high precision. However, its accuracy grows rapidly with increasing the number n of bound states. It is important to note that this method can be formally applied to transition states with any orbital quantum number $l \geq 0$.

The accuracy of the second-order WKB method grows with increasing l. For example, the relative error for $l > 10$ can be less than 10^{-5}. This enables one to test the results obtained
by the phase-kind method (section 5) for large l. On the other hand, the second-order WKB calculations can be formally performed for small values of l too. The corresponding relative error was less than 50% even for $l = 1$. Thus, one can conclude that the WKB approximation can be used if very high accuracy is not needed. The disadvantage of this method is its inapplicability for the transition S-states ($l = 0$).

For $E = 0$, the presence of the centrifugal term in the effective potential $U(r)$ ensures the existence of two turning points for attractive potentials of the form (3). In the second-order approximation [16], the WKB quantization condition [17–19], as applied to our consideration, can be written as

$$S_0 + S_2 = \left(n - \frac{1}{2} \right) \pi \quad (n = 1, 2, \ldots),$$

where n is the number of bound states as in the previous sections. The term

$$S_0 = \int_{r_1}^{r_2} \sqrt{-U(r)} \, dr \quad (50)$$

together with the term $S_1 = -\pi/2$ corresponds to the first-order WKB approximation (for two turning points). The turning points r_1 and r_2 are the roots of the equation

$$\frac{1}{l(l+1)} \frac{r_i}{r_i^2} = \beta v(r_i) \quad (i = 1, 2),$$

where the function $v(r)$ is defined by equations (3) and (11). The second-order correction takes the form [16, 18]

$$S_2 = \lim_{\mu \to +0} \left(\frac{1}{48} \int_{r_i}^{r_2 - \mu} \frac{U''(r)}{(-U(r))^{1/2}} \, dr - \frac{1}{12\sqrt{\mu}} (b_1|a_1|^{-3/2} + b_2|a_2|^{-3/2}) \right),$$

where a_1, b_1, a_2 and b_2 are the expansion coefficients of the effective potential $U(r)$ in the neighborhood of the turning points. That is,

$$U(r_i + \delta r) = a_0 \delta r + b_0 (\delta r)^2 + \cdots,$$

where from equation (51) it can be seen that

$$a_i = -\beta \left[\frac{2}{r_i} v(r_i) + v'(r_i) \right],$$

$$b_i = \frac{1}{2} \beta \left[\frac{6}{r_i^2} v(r_i) - v''(r_i) \right].$$

Note that in [16], the power affecting the potential $-U(r)$ in equation (52) was presented to be 2/3 by mistake. The correct power 3/2 can be found in [18].

One should emphasize that the small magnitude of the second-order correction (52) results from the difference of two large terms. Therefore, both these terms must be calculated with high accuracy. Nevertheless, we would like to stress that this correction increases the accuracy of the WKB approximation by two to three orders of magnitude.

A modification of the first-order WKB method, where the centrifugal potential is excluded from the quasiclassical momentum [28], can be applied for calculating the critical parameters under consideration. According to this approach, the quantization condition for the transition states ($E = 0$) reduces to

$$\int_0^\infty \sqrt{\beta v(r)} \, dr = \pi (n + \gamma_{l,q}),$$

where

$$\gamma_{l,q} = \begin{cases}
\frac{2l - 1}{4}, & q \leq 0 \\
\frac{2l - 1 + q}{2(2 - q)}, & 0 < q < 2.
\end{cases}$$

(56)
In accordance with its definition (4), the parameter q is ruled by the behavior of the central potential near the origin. The cut-off potential (A.1) presents an exclusion. The exact analytic solution for this case is presented in the appendix.

7. The critical parameter asymptotics

It was shown in the previous sections that in general the critical parameters for central potentials can be calculated numerically. For a few special cases, presented in the appendix, one can deduce the analytical results.

In this section, it will be shown that it is possible to derive the analytical expressions for the asymptotic form of the critical parameters $\beta_{\nu} \equiv \beta_{\nu,l}$. In doing so, asymptotic implies a situation where either the number of bound states n approaches infinity for a given finite l, or the orbital angular momentum quantum number l goes to infinity for a given finite n.

It is well known that the accuracy of the WKB method increases for higher excitations (large n). It follows from section 49 of [13] that the first-order WKB approximation is almost perfectly suitable for considering the limit case of $l \to \infty$, as well. Thus, the first-order WKB approach is applied to solve the problem of $\beta_{\nu,l}$-asymptotics.

First, let us consider the case of finite n where $l \to \infty$.

Numerical calculations demonstrate that the distance between turning points $|r_1 - r_2|$ reaches zero as l approaches infinity. This result can be explained and supported by the following arguments. According to equations (49) and (50), the standard Bohr–Sommerfeld quantization condition for the transition states reads

$$\int_{r_1}^{r_2} \sqrt{-U(r)} \, dr = \left(n - \frac{1}{2} \right) \pi. \quad (57)$$

This means that the effective potential $U(r)$ must be negative in the range $[r_1, r_2]$. Hence, according to equation (10), the critical parameter β must tend to infinity as l^2 or faster for $l \to \infty$. The latter in turn implies that the integrand in the lhs of equation (57) approaches infinity as $l \to \infty$, whereas the rhs of equation (57) remains finite. The above contradiction can be eliminated only by setting $r_1 = r_2$ for the limits of integration, which proves the statement.

It is clear that the point R_m of minimum of the effective potential $U(r)$ is localized in the region $[r_1, r_2]$, that is,

$$r_1 \leq R_m \leq r_2. \quad (58)$$

Therefore, when l approaches infinity, R_m tends to the point where the turning points r_1 and r_2 merge. Hence, in order to calculate $r_m = \lim_{l \to \infty} R_m$, it is enough to solve the following set of equations:

$$\begin{cases} U(r_m) = 0 \\ U'(r_m) = 0. \end{cases} \quad (59)$$

Substituting the explicit form (10) into (59) and eliminating β and l, one obtains the following simple equation for r_m:

$$2v(r_m) + r_m v'(r_m) = 0. \quad (60)$$

Now, any of the two equations (59) gives the required asymptotic expression

$$\beta_{\nu,l} \simeq \frac{d_l}{2} (l + 1). \quad (61)$$

with

$$d_l = \frac{2}{r_m^2 v(r_m)}. \quad (62)$$
presented in Table 1 along with the values of $\frac{d\beta_{n,l}}{d\gamma_{l,q}}$. The numerical results for $\Delta_{n,l} = \beta_{n,l+1} - 2\beta_{n,l} + \beta_{n,l-1}$ and $\Delta_{n,l} = 2\beta_{n,l-1} - 2\beta_{n,l} + \beta_{n,l+1}$ are presented for comparison.

Potential	Exponential	Hulthen	Yukawa	Gaussian	WS $(\lambda_0 = 1)$	WS $(\lambda_0 = 0.001)$
$v(r)$	e^{-r}	$\left((e^r - 1)^{-1} e^{-r}/r\right)$	e^{-r^2}	$(1 + x_0 e^r)^{-1} (1 + x_0 e^r)^{-1}$		
r_m	2	1.59362	1	1	2.21772	6.17241
d_0	$\frac{2}{3} / 3.69453 / 5.3865 / 7.5469 / (x_0 - 1)^2$	$2e / 5.43656 / 5.43656 / 4.14202 / 0.077658$	4.14202	0.077658		
$\Delta_{1,19}$	5.69449	3.08828	2.64386	5.43639	4.14471	0.077846
$\Delta_{3,19}$	3.69674	3.08845	5.43698	5.4385	4.14471	0.077846
$\Delta_{5,19}$	4.88254	1.98432	3.11141	12.5151	6.29585	0.286015
$\Delta_{9,19}$	4.9300	1.9982	3.138	12.561	6.347	0.2868

The second derivatives $d_l = d^2\beta_{n,l}/dl^2$ of the asymptotic critical parameters (61) are presented in Table 1 along with the values of $\Delta_{n,l} = \beta_{n,l+1} - 2\beta_{n,l} + \beta_{n,l-1}$ which approximate the general second derivative $d^2\beta_{n,l}/dl^2$ numerically. It is seen from this table that the values of d_l are very close to the values of $\Delta_{1,19}$ for the lowest (nodeless) energy states ($n = 1$) and $l = 19$. It is worth noting that even though the Yukawa and Gaussian potentials are very different, their asymptotic behaviors are coincident ($d_l = 2e$).

Note that a set of equations (59) for calculating r_m cannot be applied to the cut-off potential (A.1). The correct result (A.24) can be obtained by setting $r_m = 1$, that is, by equating the merging point r_m and the matching point $r = 1$.

Now let us consider the case of $n \to \infty$ (l is finite). To this end, one can successfully employ the modified WKB method [28] presented in the previous section. According to the authors of [28], their method is "exact in the asymptotic limit $n_r \to \infty \neq \Delta_{n_r} \to \infty", where $n_r = n - 1$. Our numerical results confirm this assertion. Thus, using directly the quantization condition (55), one obtains

$$\beta_{n,l} \sim \frac{d_n}{n} (n + \gamma_{l,q})^2, \quad \text{(63)}$$

where

$$d_n = 2 \left(\frac{\pi}{\int_0^\infty \sqrt{v(r)} dr} \right)^2, \quad \text{(64)}$$

and the parameter $\gamma_{l,q}$ is defined in equation (56).

For the FSW-like potential, equation (64) gives $d_n = 2\pi^2 \left(\frac{\gamma_{l,q}}{\beta_{n,l}} \right)^2$, which certainly coincides with the analytic solution presented in the first section of the appendix. In general, it is easy to check that the asymptotic expressions for the analytic solutions presented in the appendix coincide with the results of this section.

It is clear that formula (64) is correct only for a function $v(r)$ of constant (positive) sign that yields only two turning points. All the potentials considered in this work possess this property.
Table 2. Critical parameters $\beta = 2m\gamma^2\hbar^2$ of the exponential potential $V(r) = -g \exp(-r/r_0)$.

n	0	1	2	3	4	5	6	7	8
1	1.4457965	7.0490613	16.312928	29.258323	45.892427	66.218077	90.236557	117.94852	149.35431
2	7.6178156	16.921126	29.879667	46.518231	68.345880	92.323660	120.00486	151.38676	185.24507
3	18.7215258	48.076670	68.345880	92.323660	120.00486	151.38676	185.24507	225.24507	259.90357
4	34.760071	50.947660	71.002111	94.837734	122.41832	153.72542	188.74853	227.48127	269.91954
5	55.730706	75.226301	98.713352	126.05709	157.19351	192.08825	230.72116	273.07970	319.15566
6	81.640838	104.38402	131.24653	162.04738	196.69590	235.14112	277.35218	323.30940	372.99967
7	112.48338	138.43438	168.62580	202.83958	240.96044	282.92106	328.67953	378.20847	431.48931
8	148.26072	177.38629	210.86809	248.45649	290.01388	335.45733	384.73391	437.80834	494.65627
9	188.97285	221.24597	257.98574	298.91536	343.87710	392.77335	445.54045	502.13521	588.50907
10	234.61978	270.01793	309.98801	354.22957	402.56672	454.88817	511.11996	588.50907	683.54571
11	285.20151	323.70558	366.88206	414.40969	466.09616	521.81745	583.45711	646.14392	712.48338
12	340.17804	382.31153	428.67350	479.46420	534.47640	597.63396	664.93438	735.20847	812.48338
13	401.16937	445.83785	495.36688	549.40007	603.45793	664.93438	735.20847	812.48338	897.20847
14	466.55550	514.28624	566.88206	624.40969	686.09616	748.46420	810.63396	882.48338	967.20847
15	536.87643	587.65804	649.36688	713.40007	776.45793	838.46420	900.43438	972.48338	1057.20847
16	612.13217	672.36339	731.70558	801.40007	876.45793	948.46420	1019.63396	1092.48338	1177.20847

8. Numerical results

The second derivatives $d_n = d^2\beta_n/dn^2$ of the asymptotic critical parameters (63) are presented in table 1 along with the values of $\Lambda_n,l = \beta_{n+1,l} - 2\beta_{n,l} + \beta_{n-1,l}$ which approximate the general second derivative $d^2\beta_n/dn^2$ numerically. It is seen that for the numerical second derivative Δ_n,l, the speed u_l of a convergence to the asymptotic value $d_l (l \to \infty)$ depends on the number of bound states n. The fastest convergence corresponds to the smallest $n = 1$. A similar situation is observed for the speed u_n of the convergence of Λ_n,l to $d_e (n \to \infty)$. In this case, the fastest convergence corresponds to the smallest $l = 0$.

Using the first and second methods described in sections 4 and 5, respectively, we have computed the critical parameters for a few widely used central potentials included in the nonrelativistic Schrödinger equation. The results for the exponential, Hulthen, Yukawa and Gaussian potentials are presented in tables 2–5, respectively. The critical parameters for the Woods–Saxon potential with $x_0 = 1$ and $x_0 = 0.001$ are exhibited in tables 6 and 7, respectively. The first value of the parameter x_0 presents the minimal value of the parameter $R = 0$ (see appendix A.4). By contrast, the second value of the parameter x_0 corresponds to the case of a large value of R/r_0 corresponding, e.g., to the optical-model calculations [20].
Table 3. Critical parameters $\beta = 2mg^2h^{-2}$ of the Hulthen potential $V(r) = -g \exp(-r/r_0)/(1 - \exp(-r/r_0))$.

n \(\lambda\)	0	1	2	3	4	5	6	7	8
1	1	5.3059406	12.685368	23.146783	36.693671	53.327421	73.048651	95.857670	121.75465
2	4	10.724673	20.499398	33.348492	49.279726	68.296123	90.399036	115.58915	143.86682
3	9	18.100968	30.253614	45.480804	63.790287	85.185101	109.66659	137.23540	167.89189
4	16	27.448026	41.962702	59.557425	80.237830	104.90568	130.86162	160.80588	193.83855
5	25	38.775435	55.636363	75.588244	98.631880	124.76686	153.99258	186.30851	221.71423
6	36	52.086245	71.281353	93.580632	118.97988	147.47591	179.06647	213.74998	251.52532
7	49	67.384298	88.902568	113.54024	141.28775	172.13879	206.08916	243.13540	283.27733
8	64	84.671878	108.50368	135.47149	165.56029	198.76046	235.06562	274.47149	316.97510
9	81	103.95066	130.08753	159.37792	191.80146	227.34506	266.00010	307.70072	
10	100	125.22192	153.65633	185.26240	220.01452	257.86913	298.89626	346.51175	
11	121	148.48665	179.21189	213.12731	250.20224	290.41668	336.48500	392.39168	
12	144	173.74563	206.75567	242.97402	282.36996	346.46731	391.79385	460.20943	
13	169	200.99951	236.28888	274.80601	325.85339	391.46707	469.16916	559.95964	
14	196	230.24882	267.81254	316.49349	381.39765	457.89073	546.46863	651.63620	
15	225	261.49399	318.83000	381.37422	457.85666	547.22711	657.65669	775.23229	
16	256	292.74418	351.98731	422.61373	507.23666	607.97145	727.81284	860.73696	

The critical parameters for the exponential, Hulthen and Woods–Saxon potentials appearing in the Schrödinger equation with the orbital angular momentum quantum number $l = 0$ (S-states) can be calculated analytically. For the exponential and Woods–Saxon potentials, the requested solutions ($l = 0$) are proportional to the squares of zeros of the corresponding special functions (see the appendix). It is worth noting that the critical parameters for the Hulthen potential ($l = 0$) have an especially simple form. They are equal to n^2 where the number of bound states equals n. All these parameters are displayed in tables 2, 3, 6 and 7 for convenient comparison with the cases of $l > 0$. Note that the relative difference between the results obtained by the first method and the analytical ones is less than 10^{-14}.

The critical parameters for the cut-off potential of the form (A.1) are not numerically presented here, because there is no problem to provide the proper calculations according to equation (A.7) for any orbital quantum number l and parameter s. However, we have performed the corresponding computations in order to test both the first and second methods. The relative difference was less than 10^{-12} for the second method (section 5) for $l \leqslant 20$. The first method provides the same accuracy only for small values of $l \leqslant 3$, whereas for large l this accuracy can be provided only for $l + n \leqslant 20$. One should note that all computations were performed...
Table 4. Critical parameters $\beta = 2m g r_0 \hbar^{-2}$ of the Yukawa potential $V(r) = -g \exp(-r/r_0)/r$.

$n \setminus l$	0	1	2	3	4	5	6	7	8
1	1.6798078	9.0819590	21.891984	40.135552	63.808976	92.917164	127.46092	167.44064	212.85654
2	6.4472603	17.745576	34.240144	56.511114	84.036777	116.99234	155.38248	199.20797	248.46926
3	14.342028	29.461426	49.969576	75.899394	107.20637	144.05569	186.28566	233.95349	287.05673
4	25.371660	44.261254	68.571467	98.317925	133.50366	174.12875	220.19272	271.69505	328.63535
5	39.538442	62.160193	90.245270	123.78892	162.78498	207.22876	257.11705	312.44769	373.21919
6	56.84486	83.168247	115.60434	152.32675	195.11871	243.36968	297.07295	356.22417	420.82039
7	77.290455	107.29208	142.85836	183.94242	230.51632	282.56299	340.07168	403.03541	471.44949
8	100.87607	134.53636	173.81459	218.64457	268.97811	324.81824	386.12280	452.89086	525.11571
9	127.60202	164.90453	207.87862	256.44012	310.53874	370.13447	435.23449	505.79870	
10	157.46853	198.39917	245.05485	297.33466	355.77058	418.45450	487.41381	545.31066	
11	190.47575	235.02231	285.34681	341.33284	402.90900	470.03018	566.34038	609.8596	
12	226.62381	274.77554	328.75740	388.43851	453.73757	528.17003	511.08099	439.40354	
13	265.91281	317.66016	375.28899	438.65494	504.47915	573.08136	458.82871	491.01331	
14	308.34282	363.67724	424.94360	493.12021	553.83444	478.98522	408.57254	345.59639	
15	353.91391	412.82768	485.19765	567.31664	670.89760	549.86991	493.30010	393.16658	
16	402.62614	482.98698	599.51605	521.48163	448.88371	381.72227	319.99729	263.70873	

by means of the simplest Mathematica-7 codes using the standard (default) working precision. It is possible, of course, to enhance the calculation accuracy using, e.g., the better working precision.

Due to the lack of space, we have restricted the results in our tables to eight significant figures and values of $l + n \leq 16$.

The Yukawa potential is the only one for which we have revealed some earlier results on critical parameters [21]. They are presented there as the critical screening length for the one-electron eigenstates which were obtained in the frame of standard energy calculations. Those results are limited by five significant figures and $l + n \leq 9$, and coincide practically with those exhibited here in table 4.

For the Gaussian potential, we have found only the results of the binding energy calculations (see, e.g., [22–25]). These energies were computed for $l + n \leq 8$ and were completely consistent with the critical parameters presented here in table 5.

9. Conclusions

In conclusion, we would like to emphasize that the critical parameters are not of some particular character.
First, they present some universal characteristics of central potentials which possess the properties presented in equations (1)–(3).

Second, using the tables of these parameters, one can answer the following questions:

(1) What is the number n of bound states for the given central potential and given orbital quantum number l?

(2) What is the maximum value of l which can provide a bound state for the given central potential, or vice versa, what is the minimum critical parameter which can provide a bound state with a given l for the given central potential?

(3) What is the mutual arrangement (order) of the energy levels $E_{n,l}$ (characterized by the quantum numbers n and l) for the given form of central potential?

It is clear that the binding energy $E_{n,l}$ rises as the number n of bound states or the orbital angular momentum quantum number l increases. Tables 2–7 show that the critical parameters $\beta_{n,l}$ exhibit the same properties with respect to the numbers \{n, l\}. It is important to realize that for any two sets \{n₁, l₁\} and \{n₂, l₂\}, it follows from the inequality

$$\beta_{n₁,l₁} > \beta_{n₂,l₂}$$

for the given central potential that

$$E_{n₁,l₁} > E_{n₂,l₂}.$$
Table 6. Critical parameters $\beta = 2mg^2\alpha^2\hbar^{-2}$ of the Woods–Saxon potential $V(r) = -g/[1 + \exp(r/r_0)]$.

n\l	0	1	2	3	4	5	6	7	8
1	1.7205730	8.2135317	18.813940	33.542490	52.406813	75.410024	102.553558	133.83814	169.26419
2	9.6742198	20.755782	35.931282	55.231021	78.65326	106.23821	137.951407	242.396888	271.32232
3	23.969284	39.431300	59.073131	82.876856	109.83541	142.94481	179.2025315	219.60692	264.15685
4	44.615717	64.332441	88.346797	116.58590	149.01715	185.62315	226.3936688	271.32232	320.40492
5	71.64405	95.502170	123.81377	156.42640	193.28014	234.34169	279.5910515	329.01551	382.60663
6	104.96555	132.96409	165.51246	202.44471	243.67452	289.15197	338.8462258	392.73727	450.81159
7	144.66921	176.73264	213.46842	254.67366	300.23751	350.09364	404.2000074	462.52874	525.06071
8	190.72542	226.81735	267.69958	313.13737	362.99747	417.19781	475.6851818	538.42365	605.38815
9	243.13418	283.22488	328.21898	377.85407	431.97649	490.48934	553.3285074	620.44998	691.78238
10	301.89551	345.96008	395.03646	448.83786	507.19210	569.98836	637.1520405	591.78238	7
11	367.00940	415.02662	468.15961	526.09990	588.65845	655.71141	725.49305	558.22885	6
12	438.47587	490.42734	547.59441	609.64918	676.38713	750.26737	833.7000406	646.52874	7
13	516.29490	572.16450	633.34572	709.49305	758.22885	825.55183	914.21400	737.92737	8
14	600.46650	660.23992	723.41749	798.79929	872.67311	965.69043	1065.90181	834.2365	9
15	690.90668	754.65510	824.75901	905.91083	993.24081	1091.64093	1200.39154	932.85154	10
16	787.86743	853.21997	926.80068	1008.52232	1106.38667	1217.39154	1338.31914	1043.81394	11

Therefore, from the presented tables we can deduce the following important properties of the discrete energy spectrum of the considered central potentials:

$E_{n,l} > E_{n+1,l-1}$ for the Hulthen and Yukawa potentials,

$E_{n,l} < E_{n+1,l-1}$ for the exponential, Gaussian and Woods–Saxon potentials.

This probably relates to the fact that the Hulthen and the Yukawa potentials are singular at the origin.

It was established that the leading terms of the asymptotic expansions of the critical parameters $\beta_{n,l}$ have the following forms:

$$\beta_{n,l} \simeq \begin{cases} a_l l^2 & l \to \infty \\ a_n n^2 & n \to \infty \end{cases},$$

where the general analytic expressions for the factors $a_l \equiv d_l/2$ and $a_n \equiv d_n/2$ are presented in section 7. The first of relationships (68) is valid for a finite number n of bound states, whereas the second one is valid for a finite orbital angular momentum quantum number l. It is important to note that according to equations (61)–(64), both a_l and a_n are functions of the potential only (they do not depend on l or n). The subscripts l and n in a_l and a_n reflect the only fact that a_l corresponds to the coefficient of l^2 ($l \to \infty$), whereas a_n corresponds to the coefficient of n^2 ($n \to \infty$).
Table 7. Critical parameters $\beta = 2mg^2R^2\hbar^{-2}$ of the Woods–Saxon potential $V(r) = -g/[1 + 0.001 \exp(r/R)]$

n/	0	1	2	3	4	5	6	7	8
1	0.0514391	0.2136959	0.45411555	0.77426459	1.1724439	1.6484948	2.2023382	2.8339302	3.5432443
2	0.4052507	0.7463148	1.16530509	1.66173344	2.2359950	2.8880871	3.6179882	4.4256753	5.3111276
3	1.0529125	1.5655339	2.15833822	2.8284741	3.5768555	4.4034793	5.3081665	6.2908725	7.3515353
4	1.9863174	2.6709161	3.4345909	4.2773825	5.1986738	6.1987162	7.272089	8.4340224	9.6690512
5	3.206640	4.0606118	4.9951932	6.0094520	7.103599	8.2753888	9.5272608	10.857441	12.266128
6	4.7125157	5.7361307	6.8408115	8.0259370	9.290171	10.635665	12.059576	13.562505	15.144255
7	6.5057952	7.6977523	8.9718549	10.327215	11.763171	13.279221	14.874975	16.550125	18.304425
8	8.5859457	9.9456459	11.388595	12.913644	14.519959	16.206914	17.974033	19.829942	21.747345
9	10.95285	12.479924	14.091224	15.785486	17.561701	19.419123	21.357183	23.375440	25.523478
10	13.60692	15.300668	17.079885	18.942937	20.888645	22.916139	25.024758	27.137676	29.403429
11	16.547758	18.407936	20.354690	22.386154	24.509987	26.698194	28.97559	31.383051	33.884056
12	19.775499	21.801777	23.915725	26.115262	28.398884	30.962114	33.618555	36.458804	39.488932
13	23.290146	25.482228	27.763062	30.130362	32.589823	35.182647	37.834271	40.642209	43.514326
14	27.091699	29.449318	31.896761	34.487777	37.27904	40.090819	43.065447	46.190460	49.398006
15	31.180159	33.703074	36.256127	38.904356	41.630284	44.391655	47.215216	50.129872	53.125861
16	35.555527	38.087331	40.606340	43.252072	45.975311	48.737346	51.549761	54.430263	57.384776

Summing up, we would like to stress that the highest excited bound state of a potential with critical parameter β_c is a transition state. The parameter β_c presents an exact numerical value, and the transition state corresponds to a fictitious (threshold) state with energy $E(\beta_c) = 0$. In practice, it is impossible to calculate β_c to absolute accuracy, and the transition state can be seen as emerging from the limit bound state with an arbitrarily small binding energy.

The physical significance of the transition states is not limited to the questions addressed in this work. It is easy to show that infinite scattering lengths correspond to transition S-states. The so-called Fano–Feshbach resonance, for example, as well as many other physical effects, are characterized, in turn, by such infinite scattering length (see, e.g., [29] and references therein).

Acknowledgments

This work was supported by the Israel Science Foundation (grant no 954/09). The authors would like to thank Nir Nevo Dinur for useful comments and suggestions.
Appendix

A.1. Finite square well-like potential

Let us examine potential of the form

\[V(r) = \begin{cases} \frac{g}{r^s}, & r \leq r_0 \\ 0, & r > r_0 \end{cases} \quad (s < 2). \quad (A.1) \]

For \(s = 0 \), one obtains the potential which is widely known as the finite square well. Equation (9) with the potential (A.1) reduces to the form

\[\chi''(r) = \left[-\frac{\beta}{r^s} H(1 - r) + \frac{l(l+1)}{r^2} \right] \chi(r), \quad (A.2) \]

where \(H(x) \) is the Heaviside step function. The parameter \(\beta \) is defined by equation (12). A particular solution satisfying the asymptotic condition (20) and vanishing at the origin has a form

\[\chi(r) = \begin{cases} A \sqrt{r} J_\alpha \left(\frac{\sqrt{\beta}}{r} \right), & r \leq 1 \\ Br^{-l}, & r > 1 \end{cases} \quad (A.3) \]

with \(\nu = \frac{2 - s}{2}, \quad \alpha = \frac{2l + 1}{2 - s}. \quad (A.4) \)

Here \(J_\nu(z) \) is the Bessel function of the first kind, whereas \(A \) and \(B \) are arbitrary constants.

Matching the logarithmic derivatives of solutions (A.3) at the point \(r = 1 \), one obtains the following equation for \(\beta \):

\[\sqrt{\beta} \left[(l+1)J_{\nu-1} \left(\frac{\sqrt{\beta}}{\nu} \right) - \nu J_{\nu+1} \left(\frac{\sqrt{\beta}}{\nu} \right) \right] = -l(2l+1)J_{\nu} \left(\frac{\sqrt{\beta}}{\nu} \right). \quad (A.5) \]

Using the properties of the Bessel functions [15], one can reduce equation (A.5) to the following simplest equation:

\[J_{2\nu+1} \left(\frac{2\sqrt{\beta}}{2-s} \right) = 0. \quad (A.6) \]

The explicit solution of equation (A.6) has a form

\[\beta_n \equiv \left[\frac{2-s}{2} j_{2\nu+n} \right]^2 \quad (n = 1, 2, \ldots), \quad (A.7) \]

where \(j_{\mu,n} \) presents the \(n \)th positive zero of the Bessel function \(J_\mu(z) \).

From expansion (9.5.12) [15] for large zeros, one has

\[j_{\nu,n} \simeq \left(n + \frac{\nu}{2} - \frac{1}{4} \right) \pi - \frac{4\nu^2 - 1}{8 (n + \nu - \frac{1}{2}) \pi} = \frac{4(4\nu^2 - 1)(28\nu^2 - 31)}{192 (n + \nu - \frac{1}{2})^3 \pi^3} - \cdots . \quad (A.8) \]

Putting \(\nu \equiv \nu_{\nu,s} = \frac{2}{2-s} - \frac{1-s}{2-s} \),

\[\beta_n \sim (\frac{2-s}{2})^2 \pi^2 n^2. \quad (A.9) \]
This yields, in particular,
\[\frac{d^2}{dn^2} \beta_n(s = 0) \simeq \frac{2\pi^2}{2n^2}, \quad \frac{d^2}{dn^2} \beta_n(s = 1) \simeq \frac{\pi^2}{2n^2}. \]
(A.11)

From expansion for zeros of the Bessel functions of large order [26] (see, also (9.5.14) [15]), one has
\[j_{\nu, n} = \nu \left(1 + \sum_{k=1}^{\infty} \alpha_{k,n} \nu^{-\frac{2}{p}} \right). \]
(A.12)

The first coefficients \(\alpha_{k,n} \) for \(\{k, n\} \leq 5 \) can be found in [26]. Thus, using equation (A.9), one obtains for large enough \(l \)
\[\beta_n \equiv \beta_{n,l} = \left(l - \frac{1 - s}{2} \right)^2 \left[1 + \sum_{k=1}^{\infty} \alpha_{k,n} \left(\frac{2l - 1 + s}{2 - s} \right)^{-\frac{2}{p}} \right]^2. \]
(A.13)

It is seen that the leading term of the asymptotic \((l \to \infty) \) expansion of the critical parameter is given by
\[\beta_{n,l} \to \frac{l^2}{\infty}. \]
(A.14)

A.2. Exponential potential

The exponential potential has a form
\[V(r) = -g \exp \left(-\frac{r}{r_0} \right). \]
(A.15)

Equation (9) with the potential (A.15) reads
\[\chi''(r) = \left[-\beta \exp(-r) + \frac{l(l+1)}{r^2} \right] \chi(r). \]
(A.16)

The parameter \(\beta \) is defined here by equation (12) with \(s = 0 \). Equation (A.16) has an analytical solution only for the case of \(l = 0 \). Such a particular solution satisfying the boundary condition (15) has a form
\[\chi(r) = A \left[J_0(q)Y_0(q e^{-r}) - Y_0(q)J_0(q e^{-r}) \right], \]
(A.17)

where \(q = 2\sqrt{\beta} \), whereas \(J_0(z) \) and \(Y_0(z) \) are the Bessel functions of the first and second kind, respectively. The argument of the Bessel functions in equation (A.17) achieves zero as \(r \to \infty \). Therefore, using series expansion for the Bessel functions [15]
\[J_0(q e^{-r}) \simeq \frac{q^2}{4} e^{-r}, \quad Y_0(q e^{-r}) \simeq -\frac{r}{\pi}, \]
(A.18)

one should put
\[J_0(q) = 0, \]
(A.19)

in order that solution (A.17) satisfies the asymptotic boundary condition (20). Taking into account condition (A.19) for the transition state, and the first of expansions (A.18), one can write for the asymptotic behavior of the solution (A.17)
\[\chi(r) \simeq -\frac{r}{\pi} J_0(2\sqrt{\beta})(1 - \beta e^{-r}). \]
(A.20)

From equation (A.19), one obtains for the critical parameters
\[\beta_n = \frac{j_{0,n}^2}{4}, \quad (n = 1, 2, \ldots), \]
(A.21)

where \(j_{0,n} \) presents the \(n \)th positive zero of the Bessel function \(J_0(z) \).
Putting $\nu = 0$ in expansion (A.8) for large zeros, one obtains
\[j_{0,n} \simeq \left(n - \frac{1}{4} \right) \pi + \frac{1}{2(4n - 1)\pi} - \frac{124}{3(4n - 1)^3\pi^3} + \cdots. \] (A.22)

This yields
\[\beta_n \simeq \frac{\pi^2}{4} \left(n - \frac{1}{4} \right)^2. \] (A.23)

The value of second derivative $\lim_{n \to \infty} \frac{d^2 \beta_n}{dn^2} = \pi^2/2$ coincides with the corresponding value (A.11) for the FSW-like potential with $s = 1$.

A.3. Hulthen potential

For the Hulthen potential
\[V(r) = -g e^{-r/r_0} - e^{-r/r_0}, \] (A.24)
equation (9) becomes
\[\chi''(r) = \left[-\frac{\beta}{e^r - 1} + \frac{l(l+1)}{r^2} \right] \chi(r). \] (A.25)

For this differential equation, one can obtain a general analytic solution of the form
\[\chi(r) \equiv \phi(x) = Ax^{-\alpha} {}_2F_1(-\alpha, -\alpha; 1 - 2\alpha; x) + Bx^\alpha {}_2F_1(\alpha, \alpha; 1 + 2\alpha; x) \] (A.26)
with
\[\alpha = \sqrt{\beta}, \quad x = e^r, \] (A.27)
only for S-states ($l = 0$). Here $_2F_1(a; b; c; z)$ is the Gauss hypergeometric function, and A and B are arbitrary constants.

Formulas (15.1.20) and (6.1.18) [15] yield
\[_2F_1(a; a; 1 + 2a; 1) = \frac{4^{\alpha} \Gamma(a + 1/2)}{\sqrt{\pi} \Gamma(a + 1)}, \] (A.28)

where $\Gamma(z)$ denotes Euler’s gamma function. The latter representation enables us to obtain the vanishing at the origin ($r \to 0 \Rightarrow x \to 1$) solution in the form
\[\chi(r) \equiv \varphi(x) = C \left[\left(\frac{x}{4} \right)^{\alpha} \Gamma(1 - \alpha) \Gamma \left(\frac{1}{2} + \alpha \right) {}_2F_1(-\alpha, -\alpha; 1 - 2\alpha; x) - \left(\frac{x}{4} \right)^{-\alpha} \Gamma(1 + \alpha) \Gamma \left(\frac{1}{2} - \alpha \right) {}_2F_1(\alpha, \alpha; 1 + 2\alpha; x) \right], \] (A.29)
with arbitrary constant C. For the examination of the asymptotic behavior of solution (A.29), one can use formula (15.3.13)[15], which yields
\[(-x)^a _2F_1(a, a; 1 + 2a; x) \simeq \frac{2 \Gamma(2a)}{\Gamma^2(a)} \ln(-x). \] (A.30)

Inserting the asymptotic representation (A.30) for $a = \alpha$ and $a = -\alpha$ into the rhs of equation (A.29), one obtains after some transformations
\[\chi(r) \simeq -2Ca \sqrt{\pi} (\pi r + r) \] (A.31)
on the other hand, the series expansion of solution (A.29) near $x = 1$ ($r \to 0$) yields
\[\chi(r) \simeq -2Ca^2 \pi^{3/2} \csc(\pi \alpha) r. \] (A.32)
Putting
\[C = - [2\alpha^2 \pi^{3/2} \csc(\pi \alpha)]^{-1}, \]
(A.33)
one can get rid of \(\alpha \)-dependence for the leading term of the \(\chi (r) \) series expansion. Substituting
expression (A.33) into the asymptotic representation (A.31), one finally obtains
\[\chi (r) \simeq \frac{\sin(\pi \alpha)}{\pi \alpha} (i\pi + r). \]
(A.34)
Thus, in order to satisfy asymptotic condition (20), one should put
\[\sin(\pi \alpha) = 0 \quad (\alpha \neq 0). \]
(A.35)
The roots of equation (A.35) are the integers, that is, \(\alpha_n = n \). Thus, from definition (A.27), one obtains that the critical parameters for the Hulthen potential can be determined from the simplest relation
\[\frac{2mgy_0^2}{\hbar^2} = n^2 \quad (n = 1, 2, \ldots), \]
(A.36)
where \(n \) is a number of \(S \)-bound states.

A.4. Woods–Saxon potential
Finally, let us examine the Woods–Saxon potential
\[V (r) = - \frac{g}{1 + \exp \left(\frac{r - R}{r_0} \right)} \quad (R > 0), \]
(A.37)
which is the most complicated one. For this case, equation (9) takes a form
\[\chi''(r) = \left[-\frac{\beta}{1 + x_0 e^r} + \frac{l(l + 1)}{r^2} \right] \chi (r), \]
(A.38)
where \(\beta \) is defined by equation (12) with \(s = 0 \), whereas \(x_0 = \exp(-R/r_0) \). Equation (A.38) admits the analytical solution only for the case of \(l = 0 \). Introducing a new variable \(x = x_0 e^r \) and a new parameter \(\alpha = \sqrt{\beta} \), one obtains a new differential equation
\[x^2 \psi''(x) + x \psi'(x) + \frac{\alpha^2}{1 + x} \psi(x) = 0 \]
(A.39)
for the function \(\psi(x) \equiv \chi (r) \). The vanishing at the origin solution of equation (A.39) has a form
\[\psi(x) = C \left[F(-\alpha, x_0) F(\alpha, x) - F(\alpha, x_0) F(-\alpha, x) \right], \]
(A.40)
where
\[F(\alpha, x) = x^\alpha \mathbb{F}_1(i\alpha, i\alpha; 1 + 2i\alpha; -x). \]
(A.41)
Here \(\mathbb{F}_1(a, b; c; z) \) is the Gauss hypergeometric function and \(C \) is arbitrary constant. For the considered case, formula (15.3.13) \[15\] yields
\[(x)^b \mathbb{F}_1(b, b + 1; -x) \simeq \frac{2\Gamma(2b)}{\Gamma^2(b)} \ln(x). \]
(A.42)
Inserting the latter representation into solution (A.40) and returning to the initial variable \(r \), one obtains
\[\chi (r) \simeq 2C(r + \ln x_0) \left[\frac{F(-\alpha, x_0) \Gamma(2i\alpha)}{\Gamma^2(i\alpha)} - \frac{F(\alpha, x_0) \Gamma(-2i\alpha)}{\Gamma^2(-i\alpha)} \right] \]
\[= 2C(r + \ln x_0) i\alpha \mathbb{F}_1 \left(-i\alpha, i\alpha; 1; -\frac{1}{x_0} \right). \]
(A.43)
Thus, to satisfy condition (20) for the transitional states, one should put

$$2F_1 \left(-i\alpha, i\alpha; 1; -\frac{1}{x_0} \right) = 0.$$ \hspace{1cm} (A.44)

The roots $\beta_n = \alpha_n^2$ of the latter transcendental equation present the desired critical parameters for a given x_0. It is worth noting that equation (A.44) can be simplified if one uses the following relationships between the Gauss hypergeometric functions, the Jacobi functions $P_{\nu}^{(a,b)}$ and the Legendre functions P_{ν}:

$$2F_1 \left(-i\alpha, i\alpha; 1; -z \right) = P_{\nu}^{(0,-1)} (2z + 1) = (1 + z) P_{\nu}^{(0,1)} (2z + 1) = \text{Re} \left[P_{\nu} (2z + 1) \right]$$

$(\alpha > 0, \ z > 0)$.

(A.45)

According to the asymptotic expansion for the Legendre function of imaginary degree (see equation (3.2), [27]), one has

$$\text{Re} \left[P_{\nu} (\cosh t) \right] \simeq \frac{1}{\sqrt{2}} \sum_{k=0}^{N} (2k - 1)!a_k(t) \left(-\frac{t}{\alpha} \right)^k J_k(\alpha t) + O(\alpha^{-N-1}),$$

where

$$a_0(t) = \sqrt{t \coth \left(\frac{t}{2} \right)}, \quad a_1(t) = \frac{a_0(t)}{8t} \left(\frac{\cosh t - 2}{\sinh t} + \frac{1}{t} \right).$$ \hspace{1cm} (A.47)

In zero approximation for large enough α, one can put $N = 0$, whence

$$\text{Re} \left[P_{\nu} (\cosh t) \right] \underset{\alpha \to \infty}{\simeq} \frac{1}{\sqrt{2}} \sqrt{t \coth \left(\frac{t}{2} \right)} J_0(\alpha t).$$ \hspace{1cm} (A.48)

Thus, roots of equation (A.44) for large enough $\alpha = \sqrt{\beta}$ are very close to zeros of the Bessel function $J_0(\alpha t)$, where

$$t = \arccosh \left(\frac{2}{x_0} + 1 \right) = 2 \arcsinh \left(\frac{1}{\sqrt{x_0}} \right) = 2 \ln \left(\frac{1 + \sqrt{x_0} + 1}{\sqrt{x_0}} \right).$$

(A.49)

In terms of zeros $j_{0,n}$ of the Bessel functions, one can then write down

$$j_{0,n} \simeq 2 \sqrt{\beta} \ln \left(\frac{1 + \sqrt{x_0} + 1}{\sqrt{x_0}} \right).$$

(A.50)

Taking into account expansion (A.22), one finally obtains

$$\beta_n \underset{n \to \infty}{\simeq} \frac{\pi^2}{4 \ln^2 \left(\frac{1 + \sqrt{x_0} + 1}{\sqrt{x_0}} \right)} \left(n - \frac{1}{4} \right)^2.$$ \hspace{1cm} (A.51)

References

[1] Bargmann V 1952 Proc. Natl Acad. Sci. USA 38 961
[2] Schwinger J 1961 Proc. Natl Acad. Sci. USA 47 122
[3] Barnsley M F 1978 J. Phys. A: Math. Gen. 11 55
[4] Subramanian R and Bhagwat K V 1987 J. Phys. A: Math. Gen. 20 69
[5] Fernandez F M, Ogilvie J F and Tipping R H 1986 Phys. Lett. 116 407
[6] Fernandez F M 1991 Int. J. Quantum Chem. 25 95
[7] Dai S 2010 J. Math. Phys. 51 083523
[8] Calogero F 1965 Commun. Math. Phys. 1 80
[9] Brau F 2004 Phys. Rev. A 70 062112
[10] Brau F and Calogero F 2003 J. Phys. A: Math. Gen. 36 12021
Brau F and Calogero F 2003 J. Math. Phys. 44 1554
[11] Brau F and Calogero F 2004 Phys. Lett. A 321 225
[12] Calogero F 1967 Variable Phase Approach to Potential Scattering (New York: Academic)
[13] Landau L D and Lifshitz E M 1977 Quantum Mechanics. Non-Relativistic Theory 3rd edn (Oxford: Pergamon)
[14] Patil S H 1981 Phys. Rev. A 24 3038
[15] Abramowitz M and Stegun I 1979 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Moscow: Nauka)
[16] Nishigori T 1994 Chem. Phys. Lett. 221 492
[17] Bender C M, Olaussen K and Wang P S 1977 Phys. Rev. D 16 1740
[18] Bender C M and Orszag S A 1999 Advanced Mathematical Methods for Scientists and Engineers (New York: Springer)
[19] Adhikari R, Dutt R, Khare A and Sukhatme U P 1988 Phys. Rev. A 38 1679
[20] Jeukenne J P, Lejeune A and Mahaux C 1974 Phys. Rev. C 10 1391
Jaminon M, Jeukenne J P and Mahaux C 1986 Phys. Rev. C 34 468
[21] Rogers F J, Graboske H C Jr and Harwood D J 1970 Phys. Rev. A 1 1577
[22] Chatterjee A 1985 J. Phys. A: Math. Gen. 18 2403
[23] Lai C S 1983 J. Phys. A: Math. Gen. 16 L181
[24] Crandall R E 1983 J. Phys. A: Math. Gen. 16 L395
[25] Bessis N, Bessis G and Joulakian B 1982 J. Phys. A: Math. Gen. 15 3679
[26] Oliver F W J 1951 Proc. Camb. Phil. Soc. 47 699
[27] Malits P 2003 J. Math. Anal. Appl. 281 205
[28] Karnakov B M, Mur V D and Popov V S 1999 J. Exp. Theor. Phys. 89 271
[29] Greene C H 2010 Phys. Today 63 40