ON SINGULAR SOLUTIONS FOR SECOND ORDER DELAYED DIFFERENTIAL EQUATIONS

MIROSLAV BARTUŠEK

Abstract. Asymptotic properties and estimate of singular solutions (either defined on a finite interval only or trivial in a neighbourhood of \(\infty \)) of the second order delay differential equation with \(p \)-Laplacian are investigated.

1. Introduction

In this paper, we consider the second order nonlinear delay differential equation

\[
(a(t)|y'|^{p-1}y')' + r(t)|y(\varphi(t))|^{\lambda} \text{sgn} \, y(\varphi(t)) = 0
\]

where \(p > 0, \lambda > 0, a \in C^0(\mathbb{R}_+), r \in C^0(\mathbb{R}_+), \varphi \in C^0(\mathbb{R}_+), a(t) > 0, r(t) > 0, \varphi(t) \leq t \) on \(\mathbb{R}_+ \) and \(\lim_{t \to \infty} \varphi(t) = \infty \).

If \(p = \lambda \), it is known as the half-linear equation, while if \(\lambda > p \), we say that equation \((1) \) is of the super-half-linear type, and if \(\lambda < p \), we will say that it is of the sub-half-linear type.

We begin by defining what is mean by a solution of equation \((1) \) as well as some basic properties of solutions.

Definition 1. Let \(T \in (0, \infty], \varphi_0 = \inf_{t \in \mathbb{R}_+} \varphi(t), \phi \in C^0[\varphi_0, 0], \) and \(y'_0 \in \mathbb{R} \). We say that a function \(y \) is a solution of \((1) \) on \([0, T)\) (with the initial conditions \((\phi, y'_0)\)) if \(y \in C^0[\varphi_0, T), y \in C^1[0, T), a|y'|^{p-1}y' \in C^1[0, T), (1) \) holds on \([0, T), y(t) = \phi(t)\) on \([\varphi_0, 0)\), and \(y'_0(0) = y'_0 \).

We assume that solutions are defined on their maximal interval of existence to the right.

Equation \((1) \) can be written as the equivalent system

\[
\begin{align*}
\dot{y}_1 &= a^{-\frac{1}{p}}(t)|y_2|^{\frac{1}{p}} \text{sgn} \, y_2, \\
\dot{y}_2 &= -r(t)|y(\varphi(t))|^{\lambda} \text{sgn} \, y(\varphi(t)).
\end{align*}
\]

The relationship between a solution \(y \) of \((1) \) and a solution \((y_1, y_2)\) of the system \((2) \) is

\[
(3) \quad y_1(t) = y(t) \quad \text{and} \quad y_2(t) = a(t)|y'(t)|^{p-1}y'(t),
\]

and when discussing a solution \(y \) of \((1) \), we will often use \((3) \) without mention.

1991 Mathematics Subject Classification. 34C10, 34C15, 34D05.
Key words and phrases. singular solutions, noncontinuable solutions, second order equations, \(p \)-Laplacian, delay.
Definition 2. Let \(y \) be a solution of (1) defined on \([0, T), T \leq \infty\). It is called singular of the 1st kind if \(T = \infty, \tau \in (0, \infty) \) exists such that \(y \equiv 0 \) on \([\tau, \infty)\) and \(y \) is nontrivial in any left neighbourhood of \(\tau \). Solution \(y \) is called singular of the 2nd kind if \(T < \infty \) and put \(\tau = T \). It is called proper if \(T = \infty \) and it is nontrivial in any neighbourhood of \(\infty \). Singular solutions of either 1st or 2nd kind are called singular.

Note, that a solution of (1) is either proper, or singular or trivial on \((\varphi_0, \infty)\).

Remark 1. If \(y \) is a singular solution of (1) of the 2nd kind, then it is defined on \([0, \tau), \tau < \infty\) and it cannot be defined at \(t = \tau \); so, \(\limsup_{t \to \tau} |y_1(t)| + |y_2(t)| = \infty \).

From this and from (2)

\[
\limsup_{t \to \tau} |y_2(t)| = \infty.
\]

Definition 3. Let \(y \) be a singular solution of (1) of the 1st kind (of the 2nd kind). Then it is called oscillatory if there exists a sequence of its zeros tending to \(\tau \) and it is called nonoscillatory otherwise.

Singular solutions of (1) without delay, i.e. of

\[
(a(t)|y'|^{p-1}y')' + r(t)|y|^{\lambda} \text{sgn} y = 0,
\]

have been studied by many authors, see e.g. [1, 5], [9]–[16] and the references therein. Note, that the first existence results are obtained in [12] for \(p = 1, a = 1 \) and \(r \leq 0 \). In the monography of Kiguradze and Chanturia [13] it is a good overview of results for \(p = 1 \) and \(a = 1 \).

Eq. (5) may have singular solutions. Heidel [11] (Coffman, Ulrich [9]) proved the existence of an equation of type (5), \(a \equiv 1, p = 1 \) with singular solutions of the 1st kind (of the 2nd kind) in case \(\lambda < p (\lambda > p) \); in this case \(r \) is continuous but not of locally bounded variation. If \(a \) and \(r \) are smooth enough, then singular solutions of (5) do not exist (see Theorem A below). As concerns to Eq. (1), the existence of singular solutions of the second kind are investigated in [4] in case \(r \leq 0 \). The existence and properties of singular solutions of either the first kind or of the second kind in case \(r \geq 0 \) seem not to be studied at all.

The following theorem sums up results concerning to Eq. (5).

Theorem A. Let \(r \in C^0(\mathbb{R}_+) \) and \(r(t) > 0 \) on \(\mathbb{R}_+ \).

(i) If \(\lambda \geq p \), then there exists no singular solution of (5) of the 1st kind.
(ii) If \(\lambda \leq p \), then there exists no singular solution of (5) of the 2nd kind.
(iii) If \(a^{1/r} \in C^1(\mathbb{R}_+) \), then all solutions of (5) are proper.

Proof. (i), (ii): See Theorems 1.1 and 1.2 in [15]. (iii): It follows from Theorem 2 in [5].

Note that estimates of such kind of solutions are proved by Kvinikadze, see references in [13]. In [1] (for \(p = 1, a = 1, r \leq 0 \)) precise asymptotic formulas of all
solutions are obtained for differential equations of the third and fourth orders, see also [3]. About uniform estimates of solutions of quasi-linear ordinary differential equations see [2]. In [16] estimates of singular solutions of the second kind of a system of second order differential equations (of the form (5)) are derived.

Theorem B ([16], Theorem 2). Let \(r \in C^0(\mathbb{R}_+) \) and \(r(t) > 0 \) on \(\mathbb{R}_+ \). Let \(\lambda > p \), \(y \) be a singular solution of (5) of the second kind, \(T \in [0, \tau) \), \(\tau - T \leq 1 \), \(r_0 = \max_{T \leq s \leq \tau} r(s) \), \(C_0 = 2^{\lambda + 2} \) in case \(p > 1 \) and \(C_0 = 2^{2\lambda + 1} \) in case \(p \leq 1 \). Then a positive constant \(C = C(p, \lambda, \tau, r_0) \) exists such that

\[
|y_2(t)| + C_0 r_0 |y(t)|^\lambda \geq C(\tau - t)^{-\frac{p+1}{p(\lambda + 1)}}, \quad t \in [T, \tau).
\]

It is important to study the existence of proper/singular solutions. When studying solutions of (1) and (5), some authors sometimes investigate properties of solutions that are defined on \(\mathbb{R}_+ \) only without proving the existence of them. Moreover, sometimes, proper solutions have crucial role in a definition of some problems, see e.g. the limit-point/limit-circle problem in [6], [8]. Furthermore, noncontinuable solutions appear e.g. in water flow problems (flood waves, a flow in sewerage systems), see e.g. [4].

Our goal is to study properties of singular solutions and to extend Theorems A and B to (1).

For convenience, we define the constants and the function

\[
\delta = \frac{p + 1}{p}, \quad \gamma = \frac{p + 1}{p(\lambda + 1)}, \quad R(t) = a^\frac{1}{p}(t) r(t), \quad t \in \mathbb{R}_+.
\]

If \(y \) is a solution of (1), then we set on its interval of existence

\[
F(t) = R^{-1}(t)|y_2(t)|^\delta + |y(t)|^{\lambda + 1}.
\]

Notice that \(F(t) \geq 0 \) for every solution of (1) and

\[
F'(t) = -\frac{R'(t)}{R^2(t)}|y_2(t)|^\delta + \delta y'(t) e(t)
\]

with

\[
e(t) \overset{\text{def}}{=} \left| y(t) \right|^{\lambda} \text{sgn} y(t) - \left| y(\varphi(t)) \right|^{\lambda} \text{sgn} y(\varphi(t)).
\]

From (6)

\[
|y_2(t)| \leq \left(\gamma^{-1} F(t) \right)^\frac{1}{\lambda + 1}, \quad |y_2(t)| \leq \left[R(t) F(t) \right]^\frac{1}{\lambda + 1},
\]

\[
|y'(t)| \leq a^{-\frac{1}{p}}(t) R^{\frac{1}{1-\frac{1}{p}}} F^{\frac{1}{1-\frac{1}{p}}}(t).
\]

2. Singular solutions of the 2nd kind

The following theorem shows that such solutions do not exist in case \(\lambda \leq p \).

Theorem 1. If \(\lambda \leq p \), then all solutions of (1) are defined on \(\mathbb{R}_+ \).

Proof. It is proved in Lemma 7 in [6] for \(r < 0 \), for arbitrary \(r \) the proof is the same, it is necessary to replace \(r \) by \(|r|\). \(\square \)

EJQTDE, 2012 No. 3, p. 3
The following theorem gives us basic properties.

Theorem 2. Let y be a singular solution of (1) of the second kind. Then it is oscillatory and $\phi(\tau) = \tau$. If, moreover, $R \in C^1(\mathbb{R}_+)$, then $\phi(t) \not\equiv t$ in any left neighbourhood of τ.

Proof. Suppose, contrarily, that $\phi(\tau) < \tau$. Then an interval $I = [\tau_1, \tau)$ exists such that $\tau_1 < \tau$ and $\sup_{t \in I} |\phi(t)| = r(t)|y(\phi(t))|^\lambda \leq \sup_{t \in I} r(t)|y(\phi(t))|^\lambda < \infty$. Hence, y_2 is bounded on I that contradicts (4). Hence, $\phi(\tau) = \tau$.

Let y be nonoscillatory. Suppose, for the simplicity, that y is positive in a left neighbourhood of τ. Then, with respect to $\phi(\tau) = \tau$, $\tau_1 < \tau$ exists such that (10)

$$y(\phi(t)) > 0 \quad \text{on} \quad I \overset{\text{def}}{=} [\tau_1, \tau).$$

As according to (2) and (10), y_2 is decreasing on I and (4) implies

$$\lim_{t \to \tau^-} y_2(t) = -\infty.$$

From this $\tau_2 \in I$ exists such that (12)

$$y'(t) < 0 \quad \text{on} \quad [\tau_2, \tau)$$

and the integration of (1) and (11)

$$\int_{\tau_2}^{\tau} r(t)y^\lambda(\phi(t)) \, dt = y_2(\tau_2) - \lim_{t \to \tau^-} y_2(t) = \infty.$$

Hence, $\limsup_{t \to \tau^-} y(t) = \infty$ that contradicts (12) and y is oscillatory.

Let y be a singular solution of (1) and $\phi(t) \equiv t$ on a left neighbourhood J on τ. Then y is a singular solution of (5) on J. A contradiction with Theorem A(iii) proves that $\phi(t) \not\equiv t$ in any left neighbourhood of τ. \hfill \Box

Remark 2. According to Theorem 1 there exists no singular solution of (1) of the second kind in case $\phi(t) < t$ on \mathbb{R}_+; all solutions are defined on \mathbb{R}_+. This fact was used by many authors for special types of (1), see e.g. [10], [4] ($r < 0$).

The following two lemmas serve us for estimate of solutions.

Lemma 1. Let $\omega > 1$, $t_0 \in \mathbb{R}_+$, $K > 0$, Q be a continuous nonnegative function on $[t_0, \infty)$ and u be continuous and nonnegative on $[t_0, \infty)$ satisfying

$$u(t) \leq K + \int_{t_0}^{t} Q(s) u^\omega(s) \, ds \quad \text{on} \quad [t_0, T), T \leq \infty.$$

If

$$(\omega - 1)K^{\omega - 1} \int_{t_0}^{\infty} Q(s) \, ds < 1$$

then

$$u(t) \leq K\left[1 - (\omega - 1)K^{\omega - 1} \int_{t_0}^{t} Q(s) \, ds\right]^{1/(1-\omega)}, \quad t \in [t_0, T).$$

EJQTDE, 2012 No. 3, p. 4
Proof. It is proved in Lemma 2.1 in [14] for \(m = \omega \) and \(p = 1 \). □

Lemma 2. Let \(\lambda > p \), \(\int_0^{\infty} r(s) \left(\int_0^s a^{-\frac{\phi}{p}}(\sigma) \, d\sigma \right)^\lambda \, ds < \infty \), \(y \) be a solution of (1) defined on \([0, T] \), \(T \leq \infty \) and let \(t_0 \in [0, T] \). If \(y_* = \max_{\varphi(t_0) \leq s \leq t_0} |y(s)| \) and

\[
(16) \quad |y_2(t_0)| + 2^\lambda y_*^\lambda \int_{t_0}^{\infty} r(s) \, ds \left(\int_{t_0}^{s} a^{-\frac{\phi}{p}}(\sigma) \, d\sigma \right)^\lambda \, ds < 2^{-\lambda} \frac{p}{\lambda - p}.
\]

Then \(T = \infty \) and \(y \) is defined on \(\mathbb{R}_+ \).

Proof. Suppose, contrarily, that \(y \) is singular of the 2nd kind. Then \(T = \tau < \infty \) and denote by

\[
v(t) = \sup_{t_0 \leq s \leq t} |y_2(s)| \quad \text{for} \quad t \in I \overset{\text{def}}{=} [t_0, T).
\]

It follows from (2) that

\[
|y_2(t)| \leq |y_2(t_0)| + \int_{t_0}^{t} r(s) |y(\varphi(s))|^{\lambda} \, ds
\]

and

\[
|y(t)| \leq |y(t_0)| + \int_{t_0}^{t} a^{-\frac{\phi}{p}}(s) |y_2(s)|^{\frac{\lambda}{p}} \, ds, \quad t \in I.
\]

Hence, for \(t_0 \leq s \leq t < T \) we have

\[
|y_2(s)| \leq |y_2(t_0)| + \int_{t_0}^{s} r(z) \left[y_* + v^{\frac{\phi}{p}}(z) \int_{t_0}^{z} a^{-\frac{\phi}{p}}(\sigma) \, d\sigma \right]^{\lambda} \, dz
\]

\[
\leq |y_2(t_0)| + 2^\lambda y_*^\lambda \int_{t_0}^{\infty} r(\sigma) \, d\sigma + 2^\lambda \int_{t_0}^{t} r(z) \left(\int_{t_0}^{z} a^{-\frac{\phi}{p}}(\sigma) \, d\sigma \right)^{\lambda} v^{\frac{\phi}{p}}(z) \, dz.
\]

From this

\[
(17) \quad v(t) \leq |y_2(t_0)| + 2^\lambda y_*^\lambda \int_{t_0}^{\infty} r(\sigma) \, d\sigma + 2^\lambda \int_{t_0}^{t} r(z) \left(\int_{t_0}^{z} a^{-\frac{\phi}{p}}(\sigma) \, d\sigma \right)^{\lambda} v^{\frac{\phi}{p}}(z) \, dz.
\]

Put \(\omega = \frac{\lambda}{p} > 1 \), \(u = v \), \(K = |y_2(t_0)| + 2^\lambda y_*^\lambda \int_{t_0}^{\infty} r(s) \, ds \)

and \(Q(t) = 2^\lambda r(t) \left(\int_{t_0}^{t} a^{-\frac{\phi}{p}}(\sigma) \, d\sigma \right)^{\lambda} \).

Then (16) and (17) imply (13) and (14), and according to Lemma 1, (15) is valid. As \(T < \infty \), \(y_2 \) is bounded on \(J \). A contradiction with (4) proves the statement. □

Remark 3. Note that Lemma 2 is valid even if we suppose \(r \geq 0 \) instead of \(r > 0 \) on \(\mathbb{R}_+ \).

Remark 4. The idea of the proof is due to Medved and Pekárková [14] (with \(\varphi(t) \equiv t \)); it is used also in [7] for (1) with \(t - \varphi(t) \leq \text{const.} \) on \(\mathbb{R}_+ \).

The next theorem derives an estimate from below of a singular solution of the second kind.

EJQTDE, 2012 No. 3, p. 5
Theorem 3. Let $\lambda > p$ and let y be a singular solution of (1) of the 2nd kind. Let $T \in [0, \tau)$, $a_* = \min_{T \leq s \leq \tau} a(s)$, $r_* = \max_{T \leq s \leq \tau} r(s)$ and $y_*(t) = \max_{\varphi(t) \leq s \leq \tau} |y(s)|$ on $[T, \tau)$.

Then
\begin{equation}
|y_2(t)| + 2^{\lambda+1} y_*^{\lambda} r_*(\tau - t) \geq K(\tau - t)^{-\frac{2(\lambda+1)}{\lambda - p}}\tag{18}
\end{equation}
on $[T, \tau)$ with $K = (2^{-2\lambda-1}(\lambda+1)p \frac{\lambda}{\lambda-p} a_*, r_*)^{-\frac{1}{\lambda - p}}$. Especially, a left neighbourhood I of τ exists such that
\begin{equation}
2^{\lambda+1} y_*^{\lambda} r_*(\tau - t) \geq K_1(\tau - t)^{-\frac{2(\lambda+1)}{\lambda - p}}\tag{19}
on I$ with $K_1 = (2^{-2\lambda-3-\frac{2}{p}(\lambda+1)p} a_*, r_*)^{-\frac{1}{\lambda - p}}$.

Proof. Let y be a singular solution of (1) of the 2nd kind defined on $[0, \tau)$. Let $t \in [T, \tau)$ be fixed. Define

\begin{align*}
\bar{r}(t) &= r(t) \\
\bar{a}(t) &= a(t) \quad \text{for} \quad t \in [0, \tau], \\
\bar{r}(t) &= \frac{r(\tau)}{\tau - t} (-t + 2\tau - \bar{t}), \quad \bar{a}(t) = \frac{a(\tau)}{\tau - t} (-t + 2\tau - \bar{t}) \quad \text{for} \quad t \in (\tau, 2\tau - \bar{t}) \\
\bar{r}(t) &= 0, \quad \bar{a}(t) = 0 \quad \text{for} \quad t > 2\tau - \bar{t}.
\end{align*}

note that \bar{r} and \bar{a} are continuous on \mathbb{R}_+ and are linear on $[\tau, 2\tau - \bar{t}]$. Furthermore, we have
\begin{equation}
\int_t^\infty \bar{r}(s) \left(\int_t^s \bar{a}^{-\frac{1}{\lambda}}(\sigma) d\sigma \right)^{\lambda} ds \leq r_* \int_t^\infty \frac{\bar{a}^{-\frac{1}{\lambda}}}{r_*} (s - \bar{t})^{\lambda+1} ds \leq \frac{2^{\lambda+1}}{r_*} \int_t^\infty \frac{\bar{a}^{-\frac{1}{\lambda}}}{r_*} (s - \bar{t})^{\lambda+1} ds
\end{equation}
and
\begin{equation}
\int_t^\infty \bar{r}(s) ds \leq \int_t^{2\tau - \bar{t}} r_* ds = 2r_*(\tau - \bar{t}).
\end{equation}

Consider an auxiliary equation
\begin{equation}
(\bar{a}(t)|y'|^{p-1}z') + \bar{r}(t)|z|^{\lambda} \text{sgn } z(\varphi) = 0.
\end{equation}

Then $z = y$ is the singular solution of (22) of the second kind defined on $[0, \tau)$. Suppose that (18) is not valid for $t = \bar{t}$, i.e.
\begin{equation}
\left[|y_2(\bar{t})| + 2^{\lambda+1} y_*^{\lambda} r_*(\tau - \bar{t}) \right]^{\lambda} < 2^{-2\lambda-1}(\lambda+1)p \frac{\lambda}{\lambda-p} a_*^{-\frac{1}{\lambda-1}} r_*^{-1}(\tau - \bar{t})^{-\lambda-1}\tag{23}
\end{equation}
holds. We apply Lemma 2 and Remark 3 with $T = \tau$ and $t_0 = \bar{t}$. Then it follows from (20), (21) and (23) that all assumptions of Lemma 2 are valid. Hence, z is defined on \mathbb{R}_+ and the contradiction with z to be singular proves that (18) is valid. Furthermore, a left neighbourhood I of $t = \tau$ exists such that

\begin{align*}
2r_{} &\leq r(\tau) \\
\frac{a(\tau)}{2} &\leq a_* \leq 2a(\tau)
\end{align*}
and (20) follows from this and from (18).
Theorem 4. Let \(\tau \) oscillatory and \(\phi \) then a left neighbourhood \(\tau \) unbounded. Hence, an increasing sequence \(\tau \) such that \(\lim_{k \to \infty} t_k = \tau \) and

\[
\left| y(t_k) \right| \geq M(\tau - t_k)^{\frac{\lambda}{\lambda - 1}}, \quad k = 1, 2, \ldots
\]

Proof. Let \(y \) be a singular solution of the 2nd kind. Then according to Lemma 2 and Corollary 2 it is oscillatory and unbounded. Hence, an increasing sequence \(\{t_k\}_{k=1}^{\infty} \) exists such that \(t_k \to \infty \) and \(y \) has the local extreme at \(t_k \) and

\[
\left| y(t_k) \right| \geq |y(t)| \quad \text{for} \quad t \in [\varphi_0, t_k], \quad k = 1, 2, \ldots
\]

Then \(y'(t_k) = 0, \quad \max_{\varphi(t_k) \leq s \leq t_k} |y(s)| = |y(t_k)| \), and the statement follows from (19). \(\square \)

3. Singular solution of the 1st kind

This paragraph begins with some basic properties

Theorem 4. Let \(y \) be a singular solution of (1) of the first kind. Then it is oscillatory and \(\varphi(\tau) = \tau \). Moreover,

(i) if \(R \in C^1(\mathbb{R}_+) \), then \(\varphi(t) \neq t \) in any left neighbourhood of \(\tau \);

(ii) if \(R \in C^1(\mathbb{R}_+) \), \(\lambda \geq p \) and \(\varphi \) is nondecreasing in a left neighbourhood \(J \) of \(\tau \), then a left neighbourhood \(J_1 \) of \(\tau \) exists such that \(\varphi(t) < t \) on \(J_1 \).

Proof. Let \(y \) be a singular solution of (1) of the first kind. Then

(24) \(y(t) = 0 \quad \text{for} \quad t \geq \tau \)

and

(25) \(y(t) \neq 0 \quad \text{in any left neighbourhood of} \quad \tau \).

Suppose, contrarily, that \(\varphi(\tau) < \tau \). Then \(\lim_{t \to \infty} \varphi(t) = \infty \) implies the existence of \(\tau_1 \) such that \(\tau_1 > \tau \) and \(\varphi(t) > \tau \) for \(t \geq \tau_1 \). Denote \(I = [\tau, \tau_1] \). Then according to (1) and (24)

(26) \(y(\varphi(t)) = -r^{\frac{1}{\lambda}}(t) \left| a(t) |y'(t)|^{p-1} y'(t) \right|^{1/\lambda} \text{sgn} \left(a(t) |y'(t)|^{p-1} y'(t) \right) = 0 \)

for \(t \in I \). As \(\varphi(\tau_1) > \tau \) we have

\[[\varphi(\tau), \tau] \subset [\varphi(\tau), \varphi(\tau_1)] \subset \{ \varphi(t) : t \in I \} \]

From this and from (26), \(y(t) = 0 \) on \([\varphi(\tau), \tau] \) that contradicts (25). Hence, \(\varphi(\tau) = \tau \).

EJQTDE, 2012 No. 3, p. 7
We prove that \(y \) is oscillatory. Suppose, contrarily, that \(y(t) > 0 \) in a left neighbourhood of \(\tau \); case \(y(t) < 0 \) can be studied similarly. From this and from
\[
\varphi(\tau) = y \quad \text{an interval} \quad I_1 = [\tau_2, \tau], \quad \tau_2 < \tau \text{ exists such}
\]
(27)
\[
y(\varphi(t)) > 0 \quad \text{for} \quad t \in I_1.
\]
As, according to (2), \(y_2 \) is decreasing on \(I_1 \) and (24) implies \(y_2(\tau) = 0 \) we have
\(y_2 > 0 \) on \(I_1 \); hence, \(y' > 0 \) on \(I_1 \). The contradiction with (27) and (24) proves that
\(y \) is oscillatory.
Case (i). The proof follows from Theorem A(iii) by the same way as in the proof of Theorem 1.
Case (ii). Let \(\lambda \geq p \) and \(R \in C^1(\mathbb{R}_+) \). Then (i) implies \(\varphi \) is nontrivial in any
left neighbourhood of \(\tau \). Suppose that an increasing sequence \(\{\tau_k\}_{k=1}^{\infty} \) exists such that
\[
\lim_{k \to \infty} \tau_k = \tau \quad \text{and} \quad \varphi(\tau_k) = \tau_k.
\]
As \(\varphi \) is nondecreasing in \(J \), \(\{\tau_k\} \) may be choosen such that
(28)
\[
\varphi(t) \in [\tau_k, \tau] \quad \text{for} \quad t \in [\tau_k, \tau] .
\]
It follows from (24) and (25) that \(y_2(\tau) = 0 \) and \(F(\tau) = 0 \). Denote \(\tilde{F}_k = \max_{\tau_k \leq s \leq \tau} F(s) \). Then (28), (7) and (9) imply
\[
F(s) = -\int_{\tau_k}^{\tau} F'(\sigma) \, d\sigma \leq \tilde{F}_k \int_{\tau_k}^{\tau} \frac{R'(\sigma)}{R(\sigma)} \, d\sigma
\]
\[
+ 2\delta \gamma^{-\lambda} \tilde{F}_k \int_{\tau_k}^{\tau} a^{-\frac{1}{p+1}}(\sigma) R^{\frac{1}{p+1}}(\sigma) \, d\sigma
\]
for \(s \in [\tau_k, \tau] \) where \(\omega = \frac{1}{p+1} + \frac{\lambda}{\gamma+1} \geq 1 \) due to \(\lambda \geq p \). Hence,
(29)
\[
\tilde{F}_k \leq \tilde{F}_k \int_{\tau_k}^{\tau} \frac{R'(\sigma)}{R(\sigma)} \, d\sigma + 2\delta \gamma^{-\lambda} \tilde{F}_k \int_{\tau_k}^{\tau} a^{-\frac{1}{p+1}}(\sigma) R^{\frac{1}{p+1}}(\sigma) \, d\sigma
\]
k = 1, 2, \ldots. As \(\lim_{k \to \infty} \tilde{F}_k = F(\tau) = 0 \) and
\[
\lim_{k \to \infty} \int_{\tau_k}^{\tau} \frac{R'(\sigma)}{R(\sigma)} \, d\sigma = 0, \quad \lim_{k \to \infty} \int_{\tau_k}^{\tau} a^{-\frac{1}{p+1}}(\sigma) R^{\frac{1}{p+1}}(\sigma) \, d\sigma = 0
\]
we obtain the contradiction in (29) for large \(k \). Hence, \(\{\tau_k\} \) does not exists and the
statement holds in this case. \(\square \)

The following result is a consequence of Theorem 2 and Theorem 4.

Theorem 5. If \(\varphi(t) < 0 \) on \(\mathbb{R}_+ \), then all solutions of (1) are proper.

Lemma 3. Let \(y \) be a singular solution of the 1st kind, let \(T \in [0, \tau] \) be such that
(30)
\[
\int_{T}^{\tau} R^{-1}(t)|R'(t)| \, dt \leq \frac{1}{2} ,
\]
\(I = [T, \tau], \ K > 0, \ \omega \geq 0 \) and \(|\epsilon(t)| \leq K(\tau - t)^{\omega} \) on \(I \). Then
\[
F(t) \leq K_1(\tau - t)^{\delta(\omega + 1)} , \quad t \in I
\]
where \(K_1 = \left[2\delta(\omega + 1)^{-1} K \max_{0 \leq \sigma \leq \tau} a^{-\frac{1}{p+1}}(\sigma) R^{\frac{1}{p+1}}(\sigma) \right]^{\delta} .
\]

EJQTE, 2012 No. 3, p. 8
Proof. Let y be a singular solution of the 1st kind. Then (9) implies

$$R^{-1}(t)|y_2(t)|^{\frac{\delta}{2}} \leq F(t), \quad |y'(t)| \leq CF^{-1/\omega}(t)$$
onI with $C = \max_{t \in I} a^{-\frac{1}{\omega}}(t)R^{-1/\omega}(t) > 0$. Define $	ilde{F}(t) = \max_{s \in [t, \tau]} F(s)$ for $t \in I$. From this and from (7), (8) and (30)

$$F(s) = -\int_t^\tau F'(\sigma) d\sigma \leq \int_t^\tau R^{-1}(\sigma)|R'(\sigma)|F(\sigma) d\sigma + \delta \int_t^\tau |y'(\sigma)e(\sigma)| d\sigma$$

$$\leq \tilde{F}(t) \int_t^\tau R^{-1}(\sigma)|R'(\sigma)|F(\sigma) d\sigma + C_1 \int_t^\tau F^{-1/\omega}(\sigma)(\tau - \sigma)^{\omega} d\sigma$$

$$\leq \frac{\tilde{F}(t)}{2} + \frac{C_1}{\omega + 1} \tilde{F}^{1/\omega}(t)(\tau - t)^{\omega + 1}$$

for $t \in I$ and $t \leq s \leq \tau$ where $C_1 = \delta KC$. Hence,

$$\tilde{F}(t) \leq \frac{\tilde{F}(t)}{2} + \frac{C_1}{\omega + 1} \tilde{F}^{1/\omega}(t)(\tau - t)^{\omega + 1}$$

or

$$F(t) \leq \tilde{F}(t) \leq K_1(\tau - t)^{\delta(\omega + 1)} \quad \text{on } I.$$

The following theorem gives us an estimate from above of singular solutions of the 1st kind.

Theorem 6. Let y be a singular solution of (1) of the 1st kind and $M > 0$ be such that $\varphi'(t) \leq M$ in a left neighbourhood S of τ.

(i) Let $\lambda \geq p$ and $m > 0$. Then a positive constant K and a left neighbourhood J of τ exist such that

$$|y(t)| \leq K(\tau - t)^m, \quad |y_2(t)| \leq K(\tau - t)^{\frac{(\lambda + 1)m}{p + 1}} \quad \text{on } J.$$

(ii) Let $\lambda < p$ and $\varepsilon > 0$. Then a positive constant K and a left neighbourhood J of τ exist such that

$$|y(t)| \leq K(\tau - t)^{\frac{p + 1}{p + 1 - \varepsilon}}, \quad |y_2(t)| \leq K(\tau - t)^{\frac{p(\lambda + 1)}{p - \varepsilon}} \quad \text{on } J.$$

Proof. Let y be a singular solution of the 1st kind. According to Theorem 4 $\varphi(\tau) = \tau$. Moreover, $\lim_{t \to \tau^-} y(t) = \lim_{t \to \tau^-} y_2(t) = 0$ and an interval $I = [T, \tau] \subset S, 0 \leq T_1 < T$ exists such that (30) and

$$|y(t)|^{\lambda} \leq \frac{1}{2}, \quad |y(\varphi(t))|^\lambda \leq \frac{1}{2} \quad \text{for } t \in I.$$

Hence, (8) implies $|e(t)| \leq 1$ on I and it follows from Lemma 3 (with $I = I, K = 1, \omega = 0$)

$$F(t) \leq K(T - t)^{\delta}, \quad t \in I$$

with

$$K = \left[2\delta \max_{0 \leq \sigma \leq T} a^{-\frac{1}{\omega}}(\sigma)R^{-1/\omega}(\sigma)\right]^{\delta}.$$
Let \(\{ I_n \}_{n=1}^\infty \) be such that \(I_1 = I, I_n = [T_n, \tau], T_n < T_{n+1} < \tau \) and \(\varphi(t) \in I_n \) for \(t \in I_{n+1}, n = 1, 2, \ldots \); this sequence exists due to \(\varphi(t) \leq t \) and \(\varphi(\tau) = \tau \).

We prove the estimate

\[
F(t) \leq K_n(\tau - t)^\omega \quad \text{on } I_n
\]

by the mathematical induction, where

\[
\omega_1 = \delta, \quad \omega_{n+1} = \delta \left[\frac{\lambda}{\lambda + 1} \omega_n + 1 \right], \quad n = 1, 2, \ldots
\]

and

\[
K_1 = K, \quad K_{n+1} = K \left[\gamma^{1/\lambda+1} \left(1 + \frac{\lambda}{\lambda + 1} \omega_n \right)^{-1} \left(1 + M^{\omega} \right) \right] K^{1/\lambda+1} \delta^\omega, \quad n = 1, 2, \ldots
\]

For \(n = 1 \) (33) follows from (31) and (32). Suppose the validity of (33) for \(n \). Then (6) and (33) imply

\[
|y(t)|^\lambda \leq (\gamma^{-1} F(t))^{1/\lambda} \leq \gamma^{-1/\lambda+1} K^{1/\lambda+1} \delta \omega_n, \quad t \in I_n
\]

and

\[
|y(\varphi(t))|^\lambda \leq \gamma^{-1/\lambda+1} K^{1/\lambda+1} M \delta \omega_n (\tau - t)^{\omega}, \quad t \in I_{n+1}
\]

as

\[
0 \leq \tau - \varphi(t) = \varphi(\tau) - \varphi(t) = \varphi'(\xi)(\tau - t) \leq M(\tau - t), \quad \xi \in [t, \tau].
\]

From this and from (8)

\[
|e(t)| \leq \gamma^{-1/\lambda+1} \left[1 + M^{\omega} \delta \omega_n \right] (\tau - t)^{\omega} = L_n(\tau - t)^{\omega},
\]

where

\[
w_n = \frac{\lambda}{\lambda + 1} \omega_n \quad \text{and} \quad L_n = \gamma^{-1/\lambda+1} K^{1/\lambda+1} \delta \omega_n.
\]

Now, we use Lemma 3 with \(I = I_{n+1}, K = L_n \) and \(\omega = w_n \) and we obtain

\[
F(t) \leq K_{n+1}(\tau - t)^{\omega_{n+1}}.
\]

Hence, (33) holds for all \(n = 1, 2, \ldots \). Denote by

\[
\lambda = \frac{(p+1)}{(\lambda + 1)p},
\]

We prove that

\[
\omega_n \leq \frac{1 - z^n}{1 - z}, \quad n = 1, 2, \ldots \quad \text{for } z \neq 1
\]

\[
\omega_n = \delta n \quad \text{for } z = 1.
\]

If \(v_n = \frac{\omega_n}{z} \), then (34) implies \(v_1 = 1, v_{n+1} = zv_n + 1, n = 1, \ldots \). Hence, \(v_n = 1 + z + z^2 + \ldots + z^{n-1} = \frac{z^n - 1}{z - 1} \) in case \(z \neq 1 \) and \(v_n = n \) in case \(z = 1 \). Now, (36) follows from this.

We have from (35) that

\[
z > 1 \Leftrightarrow \lambda > p, \quad z = 1 \Leftrightarrow \lambda = p, \quad z < 1 \Leftrightarrow \lambda < p.
\]

Furthermore, from this and from (36) \(\lim_{n \to \infty} \omega_n = \infty \) in case \(\lambda \geq p \) and \(\lim_{n \to \infty} \omega_n = \frac{\delta}{1 - \frac{p+1}{p \lambda}} \) in case \(\lambda < p \). Hence, the statement follows from (33) and (6). □

EJQTDE, 2012 No. 3, p. 10
Acknowledgement. The research was supported by the Grant 201/11/0768 of the Grant Agency of the Czech Republic.

REFERENCES

[1] I. V. Astashova, Asymptotic behaviour of solutions of some nonlinear differential equations, Dokl. Raz. Zas. Sem. Inst. Prikl. Mat. Tbilisi Univ., 1 (1985), 1–11.
[2] V. I. Astashova, Uniform estimates for positive solutions of quasi-linear ordinary differential equations (English. Russian original) Izv. Math. 72 No. 6, 1141–1160 (2008); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 72, No. 6, 85–104 (2008).
[3] V. I. Astashova, Application of dynamical systems to the study of solutions to nonlinear higher-order differential equations, J. Math. Sci. (New York) 126, No. 5, 1361–1391 (2005); translation from Sovrem. Mat. Prilozh. 8 (2003), 3–33.
[4] M. Bartušek, On noncontinuable solutions of differential equations with delay, EJQTDE, Spec. Ed. I, 2009, No. 6 (2009), 1-16.
[5] M. Bartušek, Singular solutions for the differential equations with p-Laplacian, Arch. Math. (Brno) 41 (2005), 123–128.
[6] M. Bartušek, J. R. Graef, Strong nonlinear limit-point/limit-circle properties for second order differential equations with delay, PanAmer. Math. J. 20 (2010), 31–49.
[7] M. Bartušek, M. Medved, Existence of global solutions for systems of second-order functional-differential equations with p-Laplacian, EJDE 2008, No. 40 (2008), 1–8.
[8] M. Bartušek, J. R. Graef, Limit-point/limit-circle problem II, PanAmer. Math. J., to appear.
[9] C. V. Cofmann, D. F. Ulrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math. B71 (1967), 385–392.
[10] J. Hale, Theory of functional differential equations, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
[11] J. W. Heidel, Uniqueness, continuation and nonoscillation for a second order differential equation, Pacific J. Math. 32 (1970), 715–721.
[12] I. T. Kiguradze, Asymptotic properties of solutions of a nonlinear differential equation of Emden-Fowler type, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 965–986.
[13] I. Kiguradze, T. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer, Dordrecht–Boston–London 1993.
[14] M. Medved, E. Pekárková, Existence of noncontinuable solutions of second order differential equations with p-Laplacian, EJDE 2007, No. 136 (2007), 1–9.
[15] D. Mirzov, Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations, Folia Fac. Sci. Natur. Univ. Masaryk. Brun., Math 14, 2004.
[16] E. Pekárková, Estimations of noncontinuable solutions of second order differential equations with p-Laplacian, Arch. Math. (Brno) 46 (2010), No. 2, 135–144.

(Received September 20, 2011)

Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, The Czech Republic
E-mail address: bartusek@math.muni.cz

EJQTDE, 2012 No. 3, p. 11