Parity Violating Bosonic Loops at Finite Temperature

V. S. Alvesa,b, Ashok Dasb, Gerald V. Dunnec and Silvana Pereza,b

a Departamento de Física, Universidade Federal do Pará, 66075-110 Belém, Brasil
b Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171, USA
c Department of Physics, University of Connecticut, Storrs, CT 06269-3046, USA

The finite temperature parity-violating contributions to the polarization tensor are computed at one loop in a system without fermions. The system studied is a Maxwell-Chern-Simons-Higgs system in the broken phase, for which the parity-violating terms are well known at zero temperature. At nonzero temperature the static and long-wavelength limits of the parity violating terms have very different structure, and involve non-analytic log terms depending on the various mass scales. At high temperature the boson loop contribution to the Chern-Simons term goes like T in the static limit and like $T \log T$ in the long-wavelength limit, in contrast to the fermion loop contribution which behaves like $1/T$ in the static limit and like $\log T/T$ in the long wavelength limit.

I. INTRODUCTION

The study of induced Chern-Simons terms in $2+1$ dimensional field theory at finite temperature has produced some interesting new insights into large gauge invariance and parity-violating effective actions at finite temperature \cite{1,2,3}. Almost all previous studies (with the exception of \cite{4}) have concentrated on the induced Chern-Simons term arising from fermion loop contributions to the gauge field self-energy in $2+1$ dimensions. In this paper we study finite temperature induced Chern-Simons terms in a bosonic theory. The induced Chern-Simons terms are generated in radiative loop corrections, due to the presence of a bare Chern-Simons term. Specifically, we consider a Maxwell-Chern-Simons-Higgs model in the spontaneously broken phase. At zero temperature, induced Chern-Simons terms in such models have been studied in great detail, revealing an intricate relation between spontaneous parity violation and spontaneous symmetry breaking \cite{7,8,9,10}. One motivation for this present paper is to understand how this generalizes to finite temperature.

The induced Chern-Simons coefficient is extracted from the zero-momentum limit of the parity violating part of this self-energy \cite{11}. At finite T, this procedure is not unique \cite{12} since Feynman diagrams are not analytic in external momenta at finite temperature \cite{13}, because the thermal heat bath breaks Lorentz invariance. In a static limit, with $q^0 = 0$ and $|\vec{q}| \to 0$, an induced Chern-Simons term is found with a temperature dependent coefficient \cite{14}. As first pointed out in \cite{6}, this result appears (when carried over to a non-Abelian theory) to violate large gauge invariance since the coefficient of the induced Chern-Simons term in a non-Abelian theory should take discrete values \cite{15}. This puzzle has been resolved for the fermion loop when the background has the character of a static Abelian magnetic field with integer flux Φ, because in this case the problem factorizes into Φ copies of an exactly solvable $0+1$-dimensional model \cite{1,2,3}. Then one finds that the finite temperature effective action has an infinite series of parity-violating terms (of which the Chern-Simons term is only the first), each of which has a T dependent coefficient at finite T. Nevertheless, the series is such that the full effective action changes under a large gauge transformation in a manner that is independent of T. These new parity-violating terms are non-extensive (i.e., they are not integrals of a density) and they explicitly vanish at zero temperature (as they must since the zero T effective action should be extensive). This issue of large gauge invariance of the finite temperature effective action is considerably more difficult to resolve in genuinely time-dependent and genuinely non-Abelian backgrounds, although much recent progress has been made in understanding the parity-violating parts of multi-leg amplitudes at finite temperature \cite{16}.

Another motivation for our study is the question of the analytic structure of the bosonic self-energy at finite temperature. This issue has been analyzed previously \cite{17} for massive gauge bosons in four dimensional space-time, where the Chern-Simons parity-violating issues are not relevant. In the four dimensional case it was found that in the broken phase the different bosonic masses appearing in the bosonic loop meant that the zero energy-momentum limit was actually analytic, despite the well-known physical difference between the Debye and plasmon masses, which can be defined through the static and long wavelength limits, respectively \cite{18,19}. In this current paper, we find that in three dimensional space-time, for a model with parity violation, the zero energy-momentum limit is not unique, even though the bosonic masses entering the one-loop calculation are different.

In Section II we define the bosonic model to be studied, and present the finite temperature propagators necessary for a perturbative analysis. In Section III we present the one loop results for the parity violating part of the finite
temperature self energy in both the static and long wavelength limits. Section IV contains our conclusions.

II. MAXWELL-CHERN-SIMONS-HIGGS MODEL

We consider an Abelian gauge field A_μ in $2 + 1$ dimensions with both a Maxwell and a Chern-Simons term in the Lagrangian, interacting with a charged scalar field Φ which has a symmetry breaking quartic potential:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa}{2} F^{\mu\nu} \lambda A_\mu A_\nu + \frac{m^2}{2} A_\mu A^\mu - \frac{1}{2\xi} (\partial_\mu A_\nu)^2 + \frac{1}{2} \partial_\mu A^\mu - \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi - \frac{1}{2} m_\chi^2 \chi^2$$

In the spontaneously broken phase, where Φ has a nonzero vacuum expectation value $\langle \Phi \rangle = v$, we expand the scalar field about this v.e.v. as $\Phi = v + \frac{1}{\sqrt{2}} (\sigma + i\chi)$ and obtain the following Lagrangian in the R_ξ gauge (ignoring the ghost Lagrangian which is not relevant to our calculations):

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa}{2} F^{\mu\nu} \lambda A_\mu A_\nu + \frac{m^2}{2} A_\mu A^\mu - \frac{1}{2\xi} (\partial_\mu A_\nu)^2 + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi - \frac{1}{2} m_\chi^2 \chi^2$$

Here the various mass parameters are

$$m^2 = 2\epsilon^2 v^2$$
$$m_\sigma^2 = \lambda \nu^2$$
$$m_\chi^2 = \xi m^2$$

As mentioned above in the Introduction, for the corresponding system without the Chern-Simons term (i.e. for $\kappa = 0$), the finite temperature behavior of the polarization tensor was studied in [10]. There, one of the key features was the difference between the bosonic masses appearing in the one-loop calculation. The model with a Chern-Simons term is more interesting for two reasons. First, the presence of the Chern-Simons term leads to a different mass generation mechanism for the gauge field, with it acquiring two (rather than one) massive modes in the broken phase [17]. Second, the Chern-Simons coupling leads to parity-violating contributions to the polarization tensor, whose finite temperature behavior is the subject of this paper. Both these differences can be seen clearly in the propagator structure of the model.

A. Zero Temperature Propagators

At zero temperature, the gauge field propagator is

$$D_{\mu\nu}(p) = \frac{-1}{(p^2 - m_\chi^2 + i\epsilon)(p^2 - m_\sigma^2 + i\epsilon)} \left[\eta_{\mu\nu}(p^2 - m^2) - p_\mu p_\nu \frac{(1 - \xi)(p^2 - m^2) + \xi \kappa^2}{p^2 - \xi m^2} + i\kappa \epsilon_{\mu\nu} p^\lambda \right]$$

where the two massive modes are identified by the poles at

$$m_\pm^2 = \frac{\kappa^2 + 2m^2 \pm \sqrt{\kappa^4 + 4m^4}}{2}$$

from which we deduce the (positive) masses

$$m_\pm = \frac{\kappa}{2} \left(\sqrt{1 + \frac{4m^2}{\kappa^2}} \pm 1 \right)$$

Note also the presence in $D_{\mu\nu}(p)$ of the term proportional to $\epsilon_{\mu\nu} p^\lambda$, which manifestly breaks parity. The scalar field σ has the standard bosonic propagator $D_\sigma(p) = 1/(p^2 - m_\sigma^2)$.

2
B. Finite Temperature Propagators

At finite T, propagators can be presented either in the imaginary-time or real-time formalism [18–20]. Here we record the propagators in both forms for the model in [3].

1. Imaginary time:

In the imaginary-time formalism, the gauge field propagator is ($\kappa \rightarrow i\kappa$ in the Euclidean space)

$$D^{(\beta)}_{\mu\nu}(p) = \frac{1}{(w_n^2 + p^2 + m^2_\perp)(w_n^2 + p^2 + m^2_{\perp-})} \left[\delta_{\mu\nu}(w_n^2 + p^2 + m^2) - p_{\mu}p_{\nu}(1 - \xi)(w_n^2 + p^2 + m^2 - \xi\kappa^2) + \kappa\epsilon_{\mu\nu\lambda}p_{\lambda} \right]$$

(7)

and the scalar σ field propagator is

$$D^{(\beta)}_{\sigma}(p) = \frac{1}{w_n^2 + p^2 + m^2_\sigma}$$

(8)

Here, $-ip^0 \rightarrow \omega_n = 2\pi n T$ are the usual bosonic Matsubara modes.

2. Real time:

In the real-time formalism, the degrees of freedom are doubled in the standard way [20] in order to account for the transfer of energy into and out of the thermal heat bath. The propagators thus acquire a 2×2 matrix structure, the components of which are listed below, in the closed time path formalism, for the MCHS system in the broken phase. For the gauge field,

$$D^{(\beta)++}_{\mu\nu}(p) = -\left[\eta_{\mu\nu}(p^2 - m^2) - p_{\mu}p_{\nu}\frac{(1 - \xi)(p^2 - m^2) + \xi\kappa^2}{p^2 - \xi m^2} + i\kappa\epsilon_{\mu\nu\lambda}p_{\lambda} \right]$$

$$\times \left[\frac{1}{(p^2 - m^2_\perp + i\epsilon)(p^2 - m^2_{\perp-} + i\epsilon)} - 2i\pi n_B(|p^0|)\delta((p^2 - m^2_\perp)(p^2 - m^2_{\perp-})) \right]$$

$$D^{(\beta)+-}_{\mu\nu}(p) = 2i\pi \left[\eta_{\mu\nu}(p^2 - m^2) - p_{\mu}p_{\nu}\frac{(1 - \xi)(p^2 - m^2) + \xi\kappa^2}{p^2 - \xi m^2} + i\kappa\epsilon_{\mu\nu\lambda}p_{\lambda} \right]$$

$$\times \left[\theta(-p^0) + n_B(|p^0|) \right] \delta((p^2 - m^2_\perp)(p^2 - m^2_{\perp-}))$$

$$D^{(\beta)-+}_{\mu\nu}(p) = 2i\pi \left[\eta_{\mu\nu}(p^2 - m^2) - p_{\mu}p_{\nu}\frac{(1 - \xi)(p^2 - m^2) + \xi\kappa^2}{p^2 - \xi m^2} + i\kappa\epsilon_{\mu\nu\lambda}p_{\lambda} \right]$$

$$\times \left[\theta(p^0) + n_B(|p^0|) \right] \delta((p^2 - m^2_\perp)(p^2 - m^2_{\perp-}))$$

$$D^{(\beta)--}_{\mu\nu}(p) = -\left[\eta_{\mu\nu}(p^2 - m^2) - p_{\mu}p_{\nu}\frac{(1 - \xi)(p^2 - m^2) + \xi\kappa^2}{p^2 - \xi m^2} + i\kappa\epsilon_{\mu\nu\lambda}p_{\lambda} \right]$$

$$\times \left[\frac{-1}{(p^2 - m^2_\perp - i\epsilon)(p^2 - m^2_{\perp-} - i\epsilon)} - 2i\pi n_B(|p^0|)\delta((p^2 - m^2_\perp)(p^2 - m^2_{\perp-})) \right]$$

For the scalar σ field,

$$D^{(\beta)++}_{\sigma}(p) = \frac{1}{p^2 - m^2_\sigma + i\epsilon} - 2i\pi n_B(|p^0|)\delta(p^2 - m^2_\sigma)$$

$$D^{(\beta)+-}_{\sigma}(p) = -2i\pi \left[\theta(-p^0) + n_B(|p^0|) \right] \delta(p^2 - m^2_\sigma)$$

$$D^{(\beta)-+}_{\sigma}(p) = -2i\pi \left[\theta(p^0) + n_B(|p^0|) \right] \delta(p^2 - m^2_\sigma)$$

$$D^{(\beta)--}_{\sigma}(p) = \frac{-1}{p^2 - m^2_\sigma - i\epsilon} - 2i\pi n_B(|p^0|)\delta(p^2 - m^2_\sigma)$$

3
III. ONE-LOOP RESULTS

In this Section we compute the parity-violating part, $\Pi^{(PV)}_{\mu\nu}$, of the polarization tensor $\Pi_{\mu\nu}$, as represented by the one-loop Feynman diagram in Fig. 1. The parity-violating contribution arises from the $\epsilon_{\mu\nu\lambda}k^\lambda$ part of the gauge propagator. We first review briefly the zero temperature result.

A. Zero temperature parity-violating part

The parity-violating part of the diagram in Fig. 1 is

$$\Pi^{(PV)}_{\mu\nu} = 8ie^4v^2\epsilon^{\mu\nu\lambda}\int\frac{d^3k}{(2\pi)^3}\frac{1}{((k+p)^2 - m_\sigma^2)(k^2 - m_+^2)(k^2 - m_-^2)}$$

where

$$\Pi(p^2) = 16ie^4v^2\int_0^1 d\alpha\int_0^{1-\alpha} d\beta\alpha(2\pi)^3\frac{1}{\alpha(k^2 + \alpha(1-\alpha)p^2 - \alpha m_\sigma^2 - \beta m_+^2 - \beta m_-^2 - (1-\alpha-\beta)m_\sigma^2)^3}$$

The induced Chern-Simons coefficient is deduced from the value of $\Pi(p^2 = 0)$:

$$\Pi(p^2 = 0) = 16ie^4v^2\int_0^1 d\alpha\int_0^{1-\alpha} d\beta\frac{1}{2\pi} \left\{ -m_\sigma(m_+ - m_-) + 2m_\sigma(m_+^3 - m_-^3)
- m_\sigma^3(m_+^4 - m_-^4) + 4m_\sigma^2(m_+^3m_2 - m_-^3m_2) + 3m_\sigma(m_+^4m_2 - m_-^4m_2) - 2(m_+^4m_3 - m_-^4m_3) \right\}$$

Notice that the dependence on the three different masses, m_σ, m_+ and m_-, is quite involved.

At this stage we pause to compare with some previous results corresponding to special cases of this result. In the pure Chern-Simons limit, in which the Maxwell term is removed from the Lagrangian, the corresponding result was computed in [7]. This limit can be obtained from our result by sending $e^2 \to \infty$ and $\kappa \to \infty$, in such a way that the ratio e^2/κ is kept finite. In terms of the masses, in this limit $m_+ \to \infty$, $m_- \to \frac{m_\sigma^2}{m_\sigma} = \frac{2e^2v^2}{\kappa}$ (finite), and m_σ is unaffected. In this limit, our result reduces to

$$\Pi(p^2 = 0) = \frac{2ie^2\kappa}{3\pi|\kappa|} \left(1 + \frac{1}{2} \frac{m_\sigma}{m_\sigma} \right) \left(1 + \frac{m_+}{m_-} \right)^2$$
which is in agreement with [7]. Furthermore, when the remaining masses, \(m_\sigma \) and \(m_- \), are equal, this gives
\[
\Pi(p^2 = 0) = \frac{ie^2 \kappa}{4\pi |\kappa|} \tag{14}
\]
This is exactly the mass relationship \((m_+ \to \infty \text{ and } m_\sigma = m_-) \) that arises in the N=2 supersymmetric Chern-Simons-Higgs system [21], and this result [14] agrees with the known result for this SUSY model [22]. The fact that (14) is equal in magnitude, but opposite in sign, to the fermion-loop contribution [11] to the parity-violating part of the polarization tensor, reflects the non-renormalization of the Chern-Simons coefficient in the N=2 SUSY model.

B. Finite temperature parity-violating part

We now consider the calculation of the finite temperature one-loop parity-violating part of the polarization tensor. Such a calculation can be performed either using the imaginary time or the real time formalism of finite temperature field theory. In this paper we record the imaginary time calculation; we have also done the calculation using the real time formalism (the appropriate amplitudes to compare are the retarded ones), and obtain exactly the same results.

In the imaginary-time formalism, the parity-violating part of \(\Pi_{\mu\nu} \) is
\[
\Pi_{\mu\nu}(PV) = 8ke^4v^2\epsilon_{\mu\nu\lambda} \frac{1}{\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^2k}{(2\pi)^2} \frac{k_\lambda}{((k^0 + p^0)^2 + (\vec{k} + \vec{p})^2 + m^2_\sigma)(k^2_0 + \vec{k}^2 + m^2_+)(k^2_0 + \vec{k}^2 + m^2_-)} \tag{15}
\]
where the Matsubara energies are \(k^0 = \frac{2\pi n}{\beta} \) and \(p^0 = \frac{2\pi l}{\beta} \), with \(n \) and \(l \) being integers.

1. **Static Limit**

At finite temperature there are different physical limits for the external energy-momentum \(p \), due to the preferred Lorentz frame of the heat bath. These different limits reflect different physical processes [21]. We first consider the static limit in which we first set \(p^0 = 0 \), and then take the limit \(|p| \to 0\). First, observe that in this static limit,
\[
\Pi_{ij}^{static(PV)} = 0 \tag{16}
\]
since the \(k^0 \) sum (i.e. the sum over \(n \)) clearly vanishes when the index \(\lambda = 0 \). The remaining parity-violating components are:
\[
\Pi_{\mu n}^{static(PV)} = 8ke^4v^2\epsilon_{ij} \frac{1}{\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^2k}{(2\pi)^2} \frac{k_j}{((k^0)^2 + (\vec{k} + \vec{p})^2 + m^2_\sigma)(k^2_0 + \vec{k}^2 + m^2_+)(k^2_0 + \vec{k}^2 + m^2_-)} \tag{17}
\]
The induced Chern-Simons coefficient is determined by the coefficient of \(\epsilon_{ij}p_j \) in the limit \(|\vec{p}| \to 0\), so we look for the term linear in the spatial momentum \(\vec{p} \). Thus, we expand
\[
\frac{1}{((k^0)^2 + (\vec{k} + \vec{p})^2 + m^2_\sigma)} = \frac{1}{((k^0)^2 + \vec{k}^2 + m^2_\sigma)} - \frac{2\vec{p} \cdot \vec{k}}{((k^0)^2 + \vec{k}^2 + m^2_\sigma)^2} + O(\vec{p}^2) \tag{18}
\]
The first term in this expansion contributes 0 when the spatial \(\vec{k} \) momentum integral is done in (17). However, the second term produces a term linear in \(\vec{p} \). Using symmetric integration, we replace \(k, k_j \to \frac{4}{3} \vec{k}^2 \delta_{ij} \), and obtain
\[
\Pi_{\mu n}^{static(PV)} = \epsilon_{ij}p_j \Pi_{static}(\vec{p}^2) \tag{19}
\]
where
\[
\Pi_{static}(\vec{p}^2 = 0) = -8ke^4v^2 \frac{1}{\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^2k}{(2\pi)^2} \frac{\vec{k}^2}{((k^0)^2 + \vec{k}^2 + m^2_\sigma)^2(k^2_0 + \vec{k}^2 + m^2_+)(k^2_0 + \vec{k}^2 + m^2_-)} = 8ke^4v^2 \frac{\partial}{\partial m^2_\sigma} \frac{1}{\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^2k}{(2\pi)^2} \frac{\vec{k}^2}{((k^0)^2 + \vec{k}^2 + m^2_\sigma)(k^2_0 + \vec{k}^2 + m^2_+)(k^2_0 + \vec{k}^2 + m^2_-)} \tag{20}
\]
It is convenient to perform the sum over Matsubara modes using the Sommerfeld-Watson transformation \(23, 20\) of the sum into a contour integral:

\[
\sum_{n=-\infty}^{\infty} f(n) = -\pi \sum_{\text{residues}} (f(z) \cot(\pi z))
\]

(21)

where the sum is over the residues at the poles of \(f(z)\). Thus, defining

\[
\omega_\sigma = \sqrt{k^2 + m^2_\sigma}, \quad \omega_+ = \sqrt{k^2 + m^2_+}, \quad \omega_- = \sqrt{k^2 + m^2_-}
\]

(22)

we find that

\[
\frac{1}{\beta} \sum_{n=-\infty}^{\infty} \frac{1}{(\frac{2\pi n}{\beta})^2 + \omega_\sigma^2} \frac{1}{(\frac{2\pi n}{\beta})^2 + \omega_+^2} \frac{1}{(\frac{2\pi n}{\beta})^2 + \omega_-^2} = \frac{1}{2} \left[\frac{1}{\omega_\sigma} \coth(\frac{\beta \omega_\sigma}{2}) - \frac{1}{\omega_+} \coth(\frac{\beta \omega_+}{2}) + \frac{1}{\omega_-} \coth(\frac{\beta \omega_-}{2}) \right]
\]

(23)

We can separate the zero temperature contribution from the finite temperature correction by using the simple identity

\[
\coth\left(\frac{x}{2}\right) = 1 + \frac{2}{e^x - 1}
\]

(24)

in which we recognize the Bose-Einstein distribution function \(n(x) = \frac{1}{2} e^{-x}\). Then the zero temperature contribution can be expressed as

\[
\Pi_{\text{static}}^{(T=0)} = 4\kappa e^4 v^2 \frac{d}{dm_\sigma^2} \int \frac{d^2 k}{(2\pi)^2} \frac{k^2}{(m_\sigma^2 - m_+^2)(m_\sigma^2 - m_-^2)} \left[\frac{1}{\omega_\sigma} \frac{1}{\omega_+} \frac{1}{\omega_-} \right]
\]

(25)

These integrals may be performed with a consistent UV regulator, yielding a finite result that agrees precisely with the zero temperature result quoted in \(12\). (It is worth noting here that the Chern-Simons coefficient in the Euclidean space is \(i\) times that of the Minkowski space).

The finite temperature correction to this zero temperature result is given by

\[
\Pi_{\text{static}}^{(\beta)} = 8\kappa e^4 v^2 \frac{d}{dm_\sigma^2} \int \frac{d^2 k}{(2\pi)^2} \frac{k^2}{(m_\sigma^2 - m_+^2)(m_\sigma^2 - m_-^2)} \left[\frac{1}{\omega_\sigma} \frac{1}{\omega_+} \frac{1}{\omega_-} \right] + \frac{1}{\omega_\sigma} e^{\beta \omega_\sigma} - 1 - \frac{1}{\omega_+} e^{\beta \omega_+} - 1
\]

(26)

Thus, we need to evaluate an integral of the form

\[
I = \int \frac{d^2 k}{(2\pi)^2} \frac{k^2}{\omega} \left[\frac{1}{e^{\beta \omega} - 1} \right] = \frac{1}{2\pi^2} \int_{m_\beta}^{\infty} dx \frac{(x^2 - (m\beta)^2)}{e^x - 1}
\]

(27)

where \(\omega = \sqrt{k^2 + m^2}\). We note that

\[
\int_{y}^{\infty} dx \frac{1}{e^x - 1} = -\log (1 - e^{-y})
\]

(28)

\[
\int_{y}^{\infty} dx \frac{x^2}{e^x - 1} = \int_{0}^{\infty} dx \frac{x^2}{e^x - 1} - \int_{0}^{y} dx \frac{x^2}{e^x - 1} = 2\zeta(3) - \sum_{n=0}^{\infty} \frac{B_n}{(n+2)n!} y^{n+2}
\]

(29)

where the \(B_n\) are the Bernoulli numbers. Therefore, the high temperature expansion of \(I\) is
It is very interesting to notice that the temperature dependence inside the logarithmic terms cancels out, leaving simplification:

Thus, in the static limit, at high temperature, the leading behavior is

\[\Pi^{(\beta)}_{\text{static}} = \frac{4\kappa e^4 v^2}{\pi \beta} F(m_+, m_-, m_\sigma) \]

where

\[F(m_+, m_-, m_\sigma) = \frac{m_+^2 \log(m_+/m_-)}{(m_+^2 - m_-^2)(m_+^2 - m_-^2)^2} + \frac{m_+^2 m_+^2 - m_\sigma^4}{(m_+^2 - m_-^2)^2(m_+^2 - m_-^2)^2} + \frac{1}{2(m_+^2 - m_-^2)(m_+^2 - m_-^2)} \]

\[= \frac{m_+^2 \log(m_+/m_-)}{(m_+^2 - m_-^2)(m_+^2 - m_-^2)^2} + \frac{m_+^2 m_+^2 - m_\sigma^4}{(m_+^2 - m_-^2)^2(m_+^2 - m_-^2)^2} + \frac{1}{2(m_+^2 - m_-^2)(m_+^2 - m_-^2)} \]

It is very interesting to notice that the temperature dependence inside the logarithmic terms cancels out, leaving logarithms only involving ratios of the masses \(m_+ \), \(m_- \) and \(m_\sigma \).

We now consider this result in the mass limits considered in Section III A. First, we take the pure Chern-Simons limit in which \(m_+ \sim |\kappa| \to \infty \), and \(m_- \to \frac{m_\sigma^2}{|\kappa|} \) = finite. From the above, in this limit the leading high temperature behavior is

\[\Pi^{(\beta)}_{\text{static}} \to -\frac{\kappa}{|\kappa|} \frac{e^2}{2\pi \beta m_-} \left[\frac{2m_-^2 \log(m_+/m_-) + m_\sigma^2 - m_-^2}{(m_\sigma^2 - m_-^2)^2} \right] \]

In the \(N = 2 \) SUSY limit where we further require that the two remaining masses are equal \(i.e. m_- = m_\sigma \), we find

\[\Pi^{(\beta)}_{\text{static}} \to -\frac{\kappa}{|\kappa|} \frac{e^2}{4\pi m_-} \]

Indeed, in this SUSY case we can keep the full temperature dependence. Returning to the expressions \([24]\) and \([23]\) which have the full temperature dependence, we can take the limit \(m_+ \to \infty \), and \(m_\sigma \to m_- \), to obtain a remarkable simplification:

\[\Pi_{\text{static}} \to -\frac{\kappa}{|\kappa|} \frac{e^2}{4\pi m_-} \coth \left(\frac{\beta m_-}{2} \right) \]

At zero temperature this reduces to the result in \([24]\). As mentioned before, at zero temperature, \([24]\) cancels against a fermion loop contribution of equal magnitude but opposite sign. But at finite temperature, the corresponding fermion loop contributes

\[\Pi_{\text{static}} = \frac{\kappa}{|\kappa|} \frac{e^2}{4\pi} \tanh \left(\frac{\beta m_-}{2} \right) \]

which does not cancel the bosonic loop contribution \([25]\), except at zero temperature. This is a reflection of the fact that the nonzero temperature breaks the supersymmetry of the system \([24]\).

2. Long Wavelength Limit

In this Section we consider the long wavelength limit at finite temperature. In this limit we set \(\vec{p} = 0 \), and consider \(p^0 \to 0 \). This must be done with care in the imaginary time formalism, because \(p^0 \) is discrete and must be analytically continued back to real time where it is a continuous variable. In the long wavelength limit, the parity violating part of the polarization tensor is
\[\Pi_{\mu \nu}^{\text{LW}(PV)} = 8 \kappa e^2 \epsilon_{\mu \nu \lambda} \frac{1}{\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^2k}{(2\pi)^2} \frac{k_\lambda}{(k^0 + p^0)^2 + k^2 + m_+^2 + (k^0)^2 + k^2 + m_-^2} \] (37)

By symmetry it is clear that
\[\Pi_{0i}^{\text{LW}(PV)} = 0 \] (38)
while \(\Pi_{ij}^{\text{LW}(PV)} \) is nonzero. This is the opposite of what was found above in the static limit, where \(\Pi_{ij}^{\text{static}(PV)} = 0 \) and \(\Pi_{0i}^{\text{static}(PV)} \neq 0 \). In fact,
\[\Pi_{ij}^{\text{LW}(PV)} = 8 \kappa e^2 \epsilon_{ij} \frac{1}{\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^2k}{(2\pi)^2} \frac{k_0}{(k^0 + p^0)^2 + k^2 + m_+^2 + (k^0)^2 + k^2 + m_-^2} \] (39)
The sum over Matsubara modes can be done, as before, using a contour integral representation
\[
\frac{1}{\beta} \sum_{n=-\infty}^{\infty} \frac{k_0}{(k^0 + p^0)^2 + k^2 + m_+^2 + (k^0)^2 + k^2 + m_-^2} = -\frac{\pi}{\beta} \left(\frac{\beta}{2\pi} \right)^5 \sum_{\text{residues}} \frac{z \cot(\pi z)}{(z + \frac{\beta \omega_n}{2\pi})^2 + \frac{(\beta \omega_n)^2}{2\pi} + \frac{(\beta \omega_n - \beta \omega_n - \pi)^2}{2\pi}} \]
\[
= \frac{1}{4} \left[\coth(\frac{\beta \omega_+}{2}) \frac{(-p^0 + i\omega_+)(p^0 + i\omega_-)}{(p^0 - i\omega_-)^2 + \omega_+^2}[\omega_+^2 - \omega_-^2] \right] \left[\coth(\frac{\beta \omega_-}{2}) \frac{(p^0 + i\omega_-)(p^0 - i\omega_+)}{(p^0 - i\omega_+)^2 + \omega_-^2}[\omega_+^2 - \omega_-^2] \right] \]
\[
+ \frac{\coth(\frac{\beta \omega_+}{2})}{(p^0 - i\omega_-)^2 + \omega_+^2}[\omega_+^2 - \omega_-^2] \left[\coth(\frac{\beta \omega_-}{2}) \frac{p^0 + i\omega_-}{(p^0 - i\omega_+)^2 + \omega_-^2}[\omega_+^2 - \omega_-^2] \right] \]
\[
\frac{1}{4} \left[\coth(\frac{\beta \omega_-}{2}) \frac{p^0 + i\omega_-}{(p^0 - i\omega_+)^2 + \omega_-^2}[\omega_+^2 - \omega_-^2] \right] \left[\coth(\frac{\beta \omega_+}{2}) \frac{(-p^0 + i\omega_+)(p^0 + i\omega_-)}{(p^0 - i\omega_-)^2 + \omega_+^2}[\omega_+^2 - \omega_-^2] \right] \]
\]
(40)
This expression can now be analytically continued in \(p^0 \), and then Taylor expanded to linear order in \(p^0 \), in order to determine the Chern-Simons coefficient. We write
\[
\Pi_{ij}^{\text{LW}(PV)} = \epsilon_{ij} p^0 \Pi_{\text{LW}}(p^0) \] (41)
where
\[
\Pi_{\text{LW}}(p^0 = 0) = -4 \kappa e^2 \int \frac{d^2k}{(2\pi)^2} \left\{ \frac{1}{\omega_+(m_+^2 - m_-^2)} - \frac{2\omega_+}{(m_+^2 - m_-^2)^2} \right\} \coth(\frac{\beta \omega_+}{2}) \]
\[
- \frac{2\omega_-}{(m_+^2 - m_-^2)^2} \coth(\frac{\beta \omega_-}{2}) \]
(42)
Once again, we separate the zero temperature piece from the finite temperature correction using the simple identity [24]. Then the zero temperature part of (42) is finite, with consistent UV regulators for the momentum integrals, and agrees precisely with the direct zero temperature result in (12).

The nonzero temperature contribution can be expressed as
\[
\Pi_{\text{LW}}^{(\beta)} = -\frac{4 \kappa e^2}{\pi \beta^3} \int_{\beta m_+}^{\infty} \frac{dx}{e^x - 1} \left[\beta^2 \frac{2x^2}{(m_+^2 - m_-^2)(m_-^2 - m_+^2)} - \frac{2x^2}{(m_+^2 - m_-^2)^2} \right] \]
\[
+ \int_{\beta m_-}^{\infty} \frac{dx}{e^x - 1} \left[\beta^2 \frac{2x^2}{(m_+^2 - m_-^2)(m_-^2 - m_+^2)} - \frac{2x^2}{(m_+^2 - m_-^2)^2} \right] \]
(43)
The dominant contribution at high temperature is easily computed using the integrals listed earlier in [28,29]. This dominant contribution in the long wave limit, at high temperature, gives
\[\Pi_{ij}^{\text{LW}}(\beta) = \frac{4\kappa e^4 v^2 \epsilon_{ij} \rho_0}{\beta \pi} \log(\beta m) \frac{1}{(m^2 - m_0^2)(m_0^2 - m^2)} \]

(44)

We note several things about this result. First, there is still a logarithmic dependence on the temperature. Second, the long wavelength limit gives a completely different result for the parity violating part of the self energy, as compared to the static limit. This is true even though the two masses in the bosonic loop are quite different. So, there is still a non-analyticity in the self-energy, contrary to what had been found earlier in a simpler model \[14\] without parity violation. For completeness, we note here that, at high temperature, the contribution due to a fermion loop to the Chern-Simons term goes as \(\sim \beta \) in the static limit and as \(\sim \beta \ln \beta \) in the long wave limit \[23\].

IV. CONCLUSIONS

To conclude, we emphasize that the induced Chern-Simons terms that appear from bosonic loops have a completely different temperature dependence from those induced by a fermion loop. For example, for the bosonic loops the static limit of the graph grows at high temperature, while the fermionic loop contribution vanishes at high temperature. This is most clearly seen by comparing the static limit results \((35)\) and \((36)\) in the model with mass parameters such that the zero temperature model has an N=2 supersymmetry. In fact, the contributions from the bosonic loop grows at high temperature both in the static as well as the long wavelength limits, as opposed to the contributions from the fermionic loop which goes down with temperature in both these limits \[25\].

In the model studied in this paper, the induced Chern-Simons terms arise in loop corrections because of the presence of a parity violating bare Chern-Simons term in the bare Lagrangian. This bare Chern-Simons term has a number of consequences. First, it gives the gauge field two massive modes in the spontaneously broken phase. Second, it introduces parity violating interactions. We have shown that the induced parity violating contributions to the self energy behave, at finite temperature, in a very different way from the parity preserving contributions studied previously in \[16\]. Specifically, the parity preserving terms have a unique zero momentum limit, even at finite temperature, while the parity violating terms have a non-unique limit at finite temperature. We have demonstrated this by computing the parity violating terms in both the static and long wavelength limit. The leading high temperature parts for these parity violating terms are given in \((31,32)\) and \((44)\), and they are clearly different. In the long wavelength limit there is a logarithmic dependence on the temperature, while in the static limit this cancels out leaving logarithmic dependence on mass ratios.

In addition, we have analyzed the limit in which the mass parameters are such that the zero temperature model has an N=2 supersymmetry, and have seen explicitly how the SUSY is broken at finite temperature in the form of a non-cancellation between bosonic loop and fermionic loop contributions. We understand \[26\] that M. Gomes and collaborators are analyzing a related model involving a pure Chern-Simons gauge Lagrangian coupled to a Higgs field with a sextic potential. It would be interesting to compare their results to ours in the appropriate limit.

Finally, the temperature dependent parity violating contributions to the self-energy mix with the temperature dependent parity conserving contributions in order to determine the physical masses in thermal equilibrium. This issue has been analyzed in \[4\] for the Chern-Simons-Yang-Mills system at finite temperature. A similar analysis for the Maxwell-Chern-Simons-Higgs system with symmetry breaking would be an interesting application of the results in this current paper.

Acknowledgement: GD thanks the DOE for support through grant DE-FG02-92ER40716.00, and AD thanks the DOE for support through grant DE-FG-02-91ER40685. VSA and SP are supported through CAPES, Brasil.

[1] G. Dunne, K. Lee and C. Lu, “Finite temperature Chern-Simons Coefficient”, Phys. Rev. Lett. 78 (1997) 3434.
[2] S. Deser, L. Griguolo and D. Seminara, “Gauge Invariance, Finite Temperature and Parity Anomaly in D=3”, Phys. Rev. Lett. 79 (1997) 1976; S. Deser, L. Griguolo and D. Seminara, “Effective QED Actions: Representations, Gauge Invariance, Anomalies and Mass Expansions”, Phys. Rev. D 57 (1998) 7444; S. Deser, L. Griguolo and D. Seminara, “Definition of Chern-Simons Terms in Thermal QED in Three-dimensions Revisited”, Commun. Math. Phys. 197 (1998) 443.
[3] C. Fosco, G. Rossini and F. Schaposnik, “Induced Parity Breaking Term at Finite Temperature”, Phys. Rev. Lett. 79 (1997) 1980, (Erratum), ibid 79 (1997) 4296; C. Fosco, G. Rossini and F. Schaposnik, “Abelian and Non-Abelian Induced
Parity Breaking Terms at Finite Temperature”, Phys. Rev. D 56 (1997) 6547; C. Fosco, G. Rossini and F. Schaposnik, “Induced Parity Breaking Term in Arbitrary Odd Dimensions at Finite Temperature”, Phys. Rev. D 59 (1999) 085012.

[4] For a review, see G. Dunne, “Aspects of Chern-Simons Theory”, 1998 Les Houches Lectures, in the Proceedings, Topological Aspects of Low Dimensional Systems, A.Comtet et al (Editors), (Springer-Verlag, 2000); hep-th/9902115.

[5] F. Brandt, A. Das and J. Frenkel, “Induced parity violating thermal effective action for (2+1)-dimensional fermions interacting with a non-Abelian background”, hep-th/0107120; F. Brandt, A. Das, J. Frenkel and J.C. Taylor, “Derivative expansion and the parity violating effective action for thermal (2+1)-dimensional QED at higher orders”, Phys. Rev. D 64 (2001) 065018; hep-th/0103221.

[6] R. Pisarski, “Topologically massive chromodynamics at finite temperature”, Phys. Rev. D 35 (1987) 664.

[7] S. Yu Khlebnikov, “Spontaneous parity violation in three-dimensional scalar electrodynamics”, JETP Lett. 51 (1990) 81; V. Spiridonov, “Quantum dynamics of the D=3 Abelian Higgs model and spontaneous breaking of parity”, Phys. Lett. B247 (1990) 337; S. Yu Khlebnikov and M. Shaposnikov, “Spontaneous symmetry breaking versus spontaneous parity violation”, Phys. Lett. B 254 (1991) 148.

[8] L. Chen, G. Dunne, K. Haller and E. Lim-Lombridas, “Integer quantization of the Chern-Simons coefficient in a broken phase”, Phys. Lett. B 348 (1995) 148.

[9] A. Khare, R. MacKenzie, P. Panigrahi and M. Paranjape, “Spontaneous symmetry breaking and the renormalization of the Chern-Simons term”, Phys. Lett. B 355 (1995) 236.

[10] A. Khare, R. MacKenzie and M. Paranjape, “On the Coleman-Hill Theorem”, Phys. Lett. B 343 (1995) 239; H.-C. Kao, “Generalizing the Coleman-Hill Theorem”, Mod. Phys. Lett. A 12 (1997) 763.

[11] A. N. Redlich, “Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions”, Phys. Rev. Lett. 52 (1984) 18, “Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three Dimensions”, Phys. Rev. D 29 (1984) 2366.

[12] Y-C. Kao and M-F. Yang, “Radiatively Induced Chern-Simons Terms at Finite Temperature”, Phys. Rev. D 47 (1993) 730.

[13] H. A. Weldon, “Mishaps with Feynman Parameterization at Finite Temperature”, Phys. Rev. D 47 (1993) 594; P. Bedaque and A. Das, “Feynman Parameterization and the Degenerate Electron Gas”, Phys. Rev. D 47 (1993) 601; A. Das and M. Hott, “Derivative Expansion at Finite Temperature”, Phys. Rev. D 50 (1994) 6655.

[14] K. Babu, A. Das and P. Panigrahi, “Derivative Expansion and the induced Chern-Simons term at finite temperature in 2 + 1 dimensions”, Phys. Rev. D 36 (1987) 3725; E. Poppitz, “Induced Chern-Simons terms at finite density”, Phys. Lett. B 252 (1990) 417; I. J. R. Aitchison, C. Fosco and J. Zuk, “On the temperature dependence of the induced Chern-Simons term in (2+1) dimensions”, Phys. Rev. D 48 (1993) 5895; I. J. R. Aitchison and J. Zuk, “The nonlocal odd parity $O(e^2)$ effective action of QED$_3$ at finite temperature”, Ann. Phys. 242 (1995) 77.

[15] S. Deser, R. Jackiw and S. Templeton, “Topologically massive gauge theories”, Ann. Phys. 140 (1982) 372.

[16] P. Arnold, S. Vokos, P. Bedaque and A. Das, “Analytic structure of the self-energy for massive bosons at finite temperature”, Phys. Rev. D 47 (1993) 4698.

[17] R. Pisarski and S. Rao, “Topologically Massive Chromodynamics in the Perturbative Regime”, Phys. Rev. D32 (1985) 2081.

[18] J. Kapusta, Finite Temperature Field Theory, (Cambridge University Press, 1989).

[19] M. Le Bellac, Thermal Field Theory, (Cambridge University Press, 1996).

[20] A. Das, Finite Temperature Field Theory (World Scientific, 1997).

[21] C. Lee, K. Lee and E. Weinberg, “Supersymmetry and Self-Dual Chern-Simons Systems”, Phys. Lett. B 243 (1990) 105.

[22] H-C. Kao, K. Lee, C. Lee and T. Lee, “The Chern-Simons Coefficient in the Higgs Phase”, Phys. Lett. B341 (1994) 181.

[23] J. Mathews and R. L. Walker, Mathematical Methods of Physics (2nd Ed), (Addison-Wesley, New York, 1970).

[24] A. Das and M. Kaku, Phys. Rev. D18 (1978) 4540; A. Das, Physica A158 (1989) 1.

[25] F. Brandt, A. Das and J. Frenkel, “Parity Violating Electromagnetic Interactions in QED$_3$ at Finite Temperature”, Phys. Rev. D62 (2000) 085012; hep-ph/0005150.

[26] M. Gomes et al, private communication.