The Partial Differential Problem

Chii-Huei Yu¹*, Bing-Huei Chen²

¹Department of Management and Information, Nan Jeon University of Science and Technology, Tainan City, 73746, Taiwan
²Department of Electrical Engineering, Nan Jeon University of Science and Technology, Tainan City, 73746, Taiwan
*Corresponding Author: chiihuei@mail.njtc.edu.tw

Abstract In calculus and engineering mathematics courses, the evaluation of the partial derivatives of multivariable functions is important. This paper takes the mathematical software Maple as the auxiliary tool to study the partial differential problem of two types of multivariable functions. We can obtain the infinite series forms of any order partial derivatives of these two types of multivariable functions by using differentiation term by term theorem, and hence greatly reduce the difficulty of calculating their higher order partial derivative values. On the other hand, we provide two examples to do calculation practically. The research methods adopted in this study involved finding solutions through manual calculations and verifying these solutions by using Maple. This type of research method not only allows the discovery of calculation errors, but also helps modify the original directions of thinking from manual and Maple calculations. For this reason, Maple provides insights and guidance regarding problem-solving methods.

Keywords Partial Derivatives, Infinite Series Forms, Differentiation Term By Term Theorem, Maple

1. Introduction

The computer algebra system (CAS) has been widely employed in mathematical and scientific studies. The rapid computations and the visually appealing graphical interface of the program render creative research possible. Maple possesses significance among mathematical calculation systems and can be considered a leading tool in the CAS field. The superiority of Maple lies in its simple instructions and ease of use, which enable beginners to learn the operating techniques in a short period. In addition, through the numerical and symbolic computations performed by Maple, the logic of thinking can be converted into a series of instructions. The computation results of Maple can be used to modify our previous thinking directions, thereby forming direct and constructive feedback that can aid in improving understanding of problems and cultivating research interests. Inquiring through an online support system provided by Maple or browsing the Maple website (www.maplesoft.com) can facilitate further understanding of Maple and might provide unexpected insights. As for the instructions and operations of Maple, we can refer to [1-7].

In calculus and engineering mathematics curricula, the evaluation and numerical calculation of the partial derivatives of multivariable functions are important. For example, Laplace equation, wave equation, as well as some other important physical equations are involved the partial derivatives. On the other hand, evaluating the m-th order partial derivative value of a multivariable function at some point, in general, needs to go through two procedures: firstly determining the m-th order partial derivative of this function, and then taking the point into this m-th order partial derivative. These two procedures will make us face with increasingly complex calculations when calculating their higher order partial derivative values (i.e. m is large), and hence to obtain the answers by manual calculations is not easy. In this paper, we study the partial differential problem of the following two types of n-variables functions

\[f(x_1, x_2, \cdots, x_n) = \prod_{k=1}^{n} x_k^{a_k} \cdot \tan^{-1}\left(\prod_{k=1}^{n} x_k^{b_k} \right) \] \hspace{1cm} (1)

\[g(x_1, x_2, \cdots, x_n) = \prod_{k=1}^{n} x_k^{a_k} \cdot \cot^{-1}\left(\prod_{k=1}^{n} x_k^{b_k} \right) \] \hspace{1cm} (2)

Where n is a positive integer, a_k, b_k are real numbers for all $k = 1, \ldots, n$. We can obtain the infinite series forms of any order partial derivatives of these two types of n-variables functions by using differentiation term by term theorem; these are the major results of this study (i.e., Theorems 1 and 2), and hence greatly reduce the difficulty of calculating their higher order partial derivative values. For the study of related partial differential problems can refer to [8-19]. In addition, we propose two examples to do calculation practically. The research methods adopted in this study involved finding solutions through manual calculations and verifying these solutions by using Maple. This type of research method not only allows the discovery of calculation errors, but also helps modify the original directions of thinking from manual and Maple calculations. Therefore, Maple provides insights and guidance regarding
2. Main Results

Firstly, we introduce some notations and formulas used in this paper.

2.1. Notations

2.1.1. Suppose \(\prod_{k=1}^{n} a_{k} = a_{1} \times a_{2} \times \cdots \times a_{n} \), where \(n \) is a positive integer, \(a_{k} \) are real numbers for all \(k = 1, \ldots, n \).

2.1.2. Suppose \(r \) is any real number, \(m \) is any positive integer. Define \((r)_m = r(r-1) \cdots (r-m+1) \), and \((r)_0 = 1 \).

2.1.3. Suppose \(n \) is a positive integer, \(f_{k} \) are non-negative integers for all \(k = 1, \ldots, n \). For the function \(f(x_{1}, x_{2}, \cdots, x_{n}) \), its \(j_{k} \)-times partial derivative with respect to \(x_{k} \) for all \(k = 1, \ldots, n \), forms a \(j_{1} + j_{2} + \cdots + j_{n} \)-th order partial derivative, and denoted by \(\frac{\partial^{j_{1}+j_{2}+\cdots+j_{n}}}{\partial x_{1}^{j_{1}} \partial x_{2}^{j_{2}} \cdots \partial x_{n}^{j_{n}}} f(x_{1}, x_{2}, \cdots, x_{n}) \).

2.2. Formulas ([20])

2.2.1. Suppose \(\gamma \) is a Real Number, the Inverse Tangent Function

\[
\tan^{-1} \gamma = \begin{cases}
\frac{\pi}{2} - \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \gamma^{2p+1} & \text{if } |\gamma| < 1 \\
\frac{\pi}{2} - \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \gamma^{-2p+1} & \text{if } \gamma > 1 \\
\pi - \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \gamma^{-2p+1} & \text{if } \gamma < -1
\end{cases}
\]

2.2.2. Suppose \(\gamma \) is a Real Number, the Inverse Cotangent Function

\[
\cot^{-1} \gamma = \begin{cases}
\frac{\pi}{2} - \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \gamma^{2p+1} & \text{if } |\gamma| < 1 \\
\frac{\pi}{2} + \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \gamma^{-2p+1} & \text{if } \gamma > 1 \\
\pi + \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \gamma^{-2p+1} & \text{if } \gamma < -1
\end{cases}
\]

Next, we introduce an important theorem used in this study.

2.3. Differentiation Term by Term Theorem([21])

For all non-negative integer \(k \), if the functions \(g_{k} : (a, b) \rightarrow R \) satisfy the following three conditions: (i) there exists a point \(x_{0} \in (a, b) \) such that \(\sum_{k=0}^{\infty} g_{k}(x_{0}) \) is convergent, (ii) all functions \(g_{k}(x) \) are differentiable on open interval \((a, b) \), (iii) \(\sum_{k=0}^{\infty} \frac{d}{dx} g_{k}(x) \) is uniformly convergent on \((a, b) \). Then \(\sum_{k=0}^{\infty} \frac{d}{dx} g_{k}(x) \) is uniformly convergent and differentiable on \((a, b) \). Moreover, its derivative \(\frac{d}{dx} \sum_{k=0}^{\infty} g_{k}(x) = \sum_{k=0}^{\infty} \frac{d}{dx} g_{k}(x) \).

The following is the first result in this study, we determine the infinite series forms of any order partial derivatives of the multivariable function (1).

2.4. Theorem 1

Suppose \(n \) is a Positive Integer, \(a_{k} \cdot b_{k} \) Are Real Numbers, and \(j_{k} \) are Non-Negative Integers For All \(k = 1, \ldots, n \). If the \(n \)-Variables Function

\[
f(x_{1}, x_{2}, \cdots, x_{n}) = \sum_{k=1}^{n} x_{k} a_{k} \cdot \tan^{-1} \left(\prod_{k=1}^{n} x_{k} b_{k} \right)
\]

satisfies \(x_{k} a_{k} \cdot x_{k} b_{k} \) exist, \(x_{k} \neq 0 \) for all \(k = 1, \ldots, n \), and

\[
\prod_{k=1}^{n} x_{k} b_{k} \neq 1.
\]

Case (A). If \(\prod_{k=1}^{n} x_{k} b_{k} < 1 \), then the \(j_{1} + j_{2} + \cdots + j_{n} \)-th order partial derivative of \(f(x_{1}, x_{2}, \cdots, x_{n}) \),

\[
\frac{\partial^{j_{1}+j_{2}+\cdots+j_{n}}}{\partial x_{1}^{j_{1}} \partial x_{2}^{j_{2}} \cdots \partial x_{n}^{j_{n}}} f(x_{1}, x_{2}, \cdots, x_{n})
\]

\[
= \sum_{p=0}^{\infty} \prod_{p=0}^{n} ((2p+1)b_{k} + a_{k}) j_{k} \prod_{k=1}^{n} x_{k}^{(2p+1)b_{k} + a_{k} - j_{k}}
\]

(9)

Case (B). If \(\prod_{k=1}^{n} x_{k} b_{k} > 1 \), then

\[
\frac{\partial^{j_{1}+j_{2}+\cdots+j_{n}}}{\partial x_{1}^{j_{1}} \partial x_{2}^{j_{2}} \cdots \partial x_{n}^{j_{n}}} f(x_{1}, x_{2}, \cdots, x_{n})
\]

\[
= \frac{\pi}{2} \prod_{k=1}^{n} (a_{k}) j_{k} \prod_{k=1}^{n} x_{k}^{a_{k} - j_{k}}
\]

\[- \sum_{p=0}^{\infty} \prod_{p=0}^{n} (- (2p+1)b_{k} + a_{k}) j_{k} \prod_{k=1}^{n} x_{k}^{(2p+1)b_{k} + a_{k} - j_{k}}
\]

(10)

Case (C). If \(\prod_{k=1}^{n} x_{k} b_{k} < -1 \), then...
Because \(j_k \) times with respect to \(x_k \) \((k = 1, \ldots, n)\) on both sides of \(\partial^nf \)

(12)

Case (B). If \(\prod_{k=1}^n x_k^{b_k} < 1 \). Because

\[
\prod_{k=1}^n x_k^{a_k} \cdot \tan^{-1}\left(\prod_{k=1}^n x_k^{b_k}\right)
\]

Using differentiation term by term theorem, differentiating \(j_k \)-times with respect to \(x_k \) \((k = 1, \ldots, n)\) on both sides of (12), we obtain the \(j_1 + j_2 + \cdots + j_n \)-th order partial derivative of \(f(x_1, x_2, \cdots, x_n) \),

\[
\frac{\partial^{j_1+j_2+\cdots+j_n} f}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}} (x_1, x_2, \cdots, x_n) = \frac{n}{2} \cdot \prod_{k=1}^n (a_k)_{j_k} \prod_{k=1}^n x_k^{a_k-j_k} - \sum_{p=0}^\infty \frac{(1-p)^n}{2p+1} \prod_{k=1}^n (-2p+1)^{b_k} + a_k x_k^{-(2p+1)b_k+a_k-j_k}
\]

Using differentiation term by term theorem, differentiating \(j_k \)-times with respect to \(x_k \) \((k = 1, \ldots, n)\) on both sides of (14), we obtain

\[
\frac{\partial^{j_1+j_2+\cdots+j_n} f}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}} (x_1, x_2, \cdots, x_n)
\]

Case (C). If \(\prod_{k=1}^n x_k^{b_k} > 1 \). Because

\[
\prod_{k=1}^n x_k^{a_k} \cdot \tan^{-1}\left(\prod_{k=1}^n x_k^{b_k}\right)
\]

Using differentiation term by term theorem, differentiating \(j_k \)-times with respect to \(x_k \) \((k = 1, \ldots, n)\) on both sides of (13), we have

\[
\frac{\partial^{j_1+j_2+\cdots+j_n} f}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}} (x_1, x_2, \cdots, x_n)
\]

2.5. Theorem 2 Let the Assumptions be the Same as Theorem 1. Suppose the \(n \)-Variables Function

\[
g(x_1, x_2, \cdots, x_n) = \prod_{k=1}^n x_k^{a_k} \cdot \cot^{-1}\left(\prod_{k=1}^n x_k^{b_k}\right)
\]

satisfies \(x_k^{a_k}, x_k^{b_k} \) exist, \(x_k \neq 0 \) for all \(k = 1, \ldots, n \), and

\[
\prod_{k=1}^n x_k^{b_k} \neq 1
\]

Case (A). If \(\prod_{k=1}^n x_k^{b_k} < 1 \), then the \(j_1 + j_2 + \cdots + j_n \)-th order partial derivative of \(g(x_1, x_2, \cdots, x_n) \),

\[
\frac{\partial^{j_1+j_2+\cdots+j_n} g}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}} (x_1, x_2, \cdots, x_n)
\]
\[
\frac{\partial^{l_1 + l_2 + \cdots + l_n} g}{\partial x_n^{l_n} \cdots \partial x_2^{l_2} \partial x_1^{l_1}}(x_1, x_2, \ldots, x_n)
\]

2.5.1. ProofCase (A). If \[\prod_{k=1}^{n} x_k^{b_k} \] < 1. Because
\[
g(x_1, x_2, \ldots, x_n) = \prod_{k=1}^{n} x_k^{a_k} \cdot \cot^{-1} \left(\prod_{k=1}^{n} x_k^{b_k} \right)
\]
\[
= \prod_{k=1}^{n} x_k^{a_k} \left[\frac{\pi}{2} - \frac{(-1)^{p}}{2p+1} \left(\prod_{k=1}^{n} x_k^{b_k} \right)^{2p+1} \right] \quad \text{(Using (6))}
\]
\[
= \frac{\pi}{2} \prod_{k=1}^{n} x_k^{a_k} - \frac{(-1)^{p}}{2p+1} \prod_{k=1}^{n} x_k^{(2p+1)b_k + a_k}
\]

Using differentiation term by term theorem, differentiating \(j_k \)-times with respect to \(x_k \) (\(k = 1, \ldots, n \)) on both sides of (18), we obtain
\[
\frac{\partial^{l_1 + l_2 + \cdots + l_n} g}{\partial x_n^{l_n} \cdots \partial x_2^{l_2} \partial x_1^{l_1}}(x_1, x_2, \ldots, x_n)
\]
\[
= \frac{\pi}{2} \prod_{k=1}^{n} (a_k)_{j_k} \prod_{k=1}^{n} x_k^{a_k - j_k}
\]
\[
- \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \prod_{k=1}^{n} ((2p+1)b_k + a_k)_{j_k} \prod_{k=1}^{n} x_k^{(2p+1)b_k + a_k - j_k}
\]

(19)

Case (B). If \[\prod_{k=1}^{n} x_k^{b_k} > 1 \]. Because
\[
g(x_1, x_2, \ldots, x_n) = \prod_{k=1}^{n} x_k^{a_k} \cdot \cot^{-1} \left(\prod_{k=1}^{n} x_k^{b_k} \right)
\]
\[
= \prod_{k=1}^{n} x_k^{a_k} \cdot \frac{\pi}{2} + \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \left(\prod_{k=1}^{n} x_k^{b_k} \right)^{2p+1} \quad \text{(By (7))}
\]

\[
= \prod_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \prod_{k=1}^{n} x_k^{-(2p+1)b_k + a_k}
\]

(20)

By differentiation term by term theorem, differentiating \(j_k \)-times with respect to \(x_k \) (\(k = 1, \ldots, n \)) on both sides of (20), we have
\[
\frac{\partial^{l_1 + l_2 + \cdots + l_n} g}{\partial x_n^{l_n} \cdots \partial x_2^{l_2} \partial x_1^{l_1}}(x_1, x_2, \ldots, x_n)
\]
\[
= \frac{\pi}{2} \prod_{k=1}^{n} (a_k)_{j_k} \prod_{k=1}^{n} x_k^{a_k - j_k}
\]
\[
+ \sum_{p=0}^{\infty} \frac{(-1)^{p}}{2p+1} \prod_{k=1}^{n} (-(2p+1)b_k + a_k)_{j_k} \prod_{k=1}^{n} x_k^{-(2p+1)b_k + a_k - j_k}
\]

(21)

Case (C). If \[\prod_{k=1}^{n} x_k^{b_k} < -1 \]. Because
\[
g(x_1, x_2, \ldots, x_n) = \prod_{k=1}^{n} x_k^{a_k} \cdot \cot^{-1} \left(\prod_{k=1}^{n} x_k^{b_k} \right)
\]
\[
= \prod_{k=1}^{n} x_k^{a_k} \left[\frac{\pi}{2} - \frac{(-1)^{p}}{2p+1} \left(\prod_{k=1}^{n} x_k^{b_k} \right)^{2p+1} \right] \quad \text{(Using (6))}
\]
\[
= \frac{\pi}{2} \prod_{k=1}^{n} x_k^{a_k} - \frac{(-1)^{p}}{2p+1} \prod_{k=1}^{n} x_k^{(2p+1)b_k + a_k}
\]

Using differentiation term by term theorem, differentiating \(j_k \)-times with respect to \(x_k \) (\(k = 1, \ldots, n \)) on both sides of (18), we obtain
\[
\frac{\partial^{l_1 + l_2 + \cdots + l_n} g}{\partial x_n^{l_n} \cdots \partial x_2^{l_2} \partial x_1^{l_1}}(x_1, x_2, \ldots, x_n)
\]
\[
= \frac{\pi}{2} \prod_{k=1}^{n} (a_k)_{j_k} \prod_{k=1}^{n} x_k^{a_k - j_k}
\]
\[+ \sum_{p=0}^{\infty} \frac{(-1)^p}{2^p + 1} \prod_{k=1}^{n} \left((2p + 1)b_k + a_k \right)_{j_k} \cdot \prod_{k=1}^{n} x_k^{-(2p+1)b_k + a_k - j_k} \]

3. Examples

In the following, for the partial differential problem of the two types of multivariable functions in this study, we provide two examples and use Theorems 1 and 2 to determine the infinite series forms of any order partial derivatives and some higher order partial derivative values of these functions. On the other hand, we employ Maple to calculate the approximations of these higher order partial derivative values and their solutions for verifying our answers.

3.1. Example 1 If The Domain of the Two-Variables Function

\[f(x_1, x_2) = x_1^3 x_2^{-12/5} \tan^{-1}(x_1^{-7} x_2^{3/2}) \] \hspace{1cm} (22)

Is

\[\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 \neq 0, x_2 > 0 \} \]

Case (1). If \(|x_1^{-7} x_2^{3/2}| < 1 \). By Case (A) of Theorem 1, we obtain any \(j_1 + j_2 \)-th order partial derivative of \(f(x_1, x_2) \),

\[\frac{\partial^{j_1+j_2} f}{\partial x_2^{j_2} \partial x_1^{j_1}}(x_1, x_2) \]

\[= \sum_{p=0}^{\infty} \frac{(-1)^p}{2^p + 1} (14p - 4)_{j_1} \left(3p - \frac{9}{10} \right)_{j_2} x_1^{-14p-4+j_1} x_2^{3p-\frac{9}{10}-j_2} \] \hspace{1cm} (23)

For all \(x_1 \neq 0, x_2 > 0, x_1^{-7} x_2^{3/2} < 1 \). Hence, we can evaluate the 15-th order partial derivative value of \(f(x_1, x_2) \) at \(\left(2, \frac{11}{3} \right) \),

\[\frac{\partial^{15} f}{\partial x_2^6 \partial x_1^9} \left(2, \frac{11}{3} \right) \]

\[= \sum_{p=0}^{\infty} \frac{(-1)^p}{2^p + 1} (14p - 4)_{9} \left(3p - \frac{9}{10} \right)_{6} 2^{-14p-13} \left(\frac{11}{3} \right)^{3p-\frac{69}{10}} \] \hspace{1cm} (24)

We use Maple to verify the correctness of (24) as follows:

\[\text{evalf}(f(x_1, x_2) \rightarrow f(x_1^3 x_2^{-12/5} \arctan(x_1^{-7}) x_2^{3/2}); \]

\[\text{evalf}(D[1,2][f](2,11/3); 18); \]

\[1077.05802477880989 \]

Case (2). If \(x_1^{-7} x_2^{3/2} > 1 \). By Case (B) of Theorem 1, we obtain any \(j_1 + j_2 \)-th order partial derivative of \(f(x_1, x_2) \),

\[\frac{\partial^{j_1+j_2} f}{\partial x_2^{j_2} \partial x_1^{j_1}}(x_1, x_2) \]

\[= \frac{\pi}{2} (3)_j \left(\frac{12}{5} \right)_{j_2} x_1^{-3j_1} x_2^{12j_2} - \frac{\pi}{2} (3)_j \sum_{p=0}^{\infty} \left(\frac{-1}{2} \right)^{14p+10-j_1} \left(3p-\frac{39}{10} \right)_{j_2} x_1^{14p+10-j_1} x_2^{-3p-\frac{39}{10}-j_2} \] \hspace{1cm} (25)

For all \(x_1 \neq 0, x_2 > 0, x_1^{-7} x_2^{3/2} > 1 \). Thus, we can determine the 17-th order partial derivative value of \(f(x_1, x_2) \) at \(\left(1, \frac{3}{5} \right) \),

\[\frac{\partial^{17} f}{\partial x_2^{10} \partial x_1^7} \left(1, \frac{3}{5} \right) \]

\[= \frac{\pi}{2} (3)_7 \left(\frac{12}{5} \right)_{10} \left(\frac{1}{2} \right)^{-4} \left(\frac{3}{5} \right)^{\frac{62}{5}} - \sum_{p=0}^{\infty} \left(\frac{-1}{2} \right)^{14p+3-j_1} \left(\frac{3}{5} \right)^{-3p-\frac{139}{10}} \] \hspace{1cm} (26)

Using Maple to verify the correctness of (26) as follows:

\[\text{evalf}(D[15,17][f](1/2,3/5);28); \]

\[5.2868818839554935870000444256 \cdot 10^{-17} \]

\[\text{evalf}(P(2)\text{product}(3-t=0..6)\text{product}(125-w,w=0.9)\text{product}(1/2)\text{sum}(-1)^p(3-p-9/10-r,r=0..5)\text{product}(14^p+10\cdot j_1=0.6)\text{product}(3-p-39/10\cdot r,r=0..9)\text{sum}(1/2)\text{product}(14^p+3)\text{sum}(3/5)^{-3-p-139/10})\text{sum}(0..\text{infinity});28); \]

5.2868818839554935870000444256 \cdot 10^{-17}
Case (3). If $x_1^{-7}x_2^{3/2} < -1$. By Case (C) of Theorem 1, we can determine any $j_1 + j_2$-th order partial derivative of $f(x_1, x_2)$.

$$\frac{\partial^{j_1 + j_2} f}{\partial x_1^{j_1} \partial x_2^{j_2}} (x_1, x_2) = -\frac{\pi}{2} (3)^j \left(-\frac{12}{5} \right)^{j_2} \cdot x_1^{3 - j_1} \cdot x_2^{12 - j_2}/2 \cdot x_1^{14p + 10 - j_1} \cdot x_2^{-3p + 39/10} / 2$$

(27)

For all $x_1 \neq 0, x_2 > 0, x_1^{-7}x_2^{3/2} < -1$. Thus, we can evaluate the 13-th order partial derivative value of $f(x_1, x_2)$

$$\frac{\partial^{13} f}{\partial x_2^8 \partial x_1^5} \left(-\frac{1}{5}, \frac{5}{4} \right)$$

(28)

Also, we use Maple to verify the correctness of (28).

> evalf[D[1$5,2$8]](f)(-1/3,5/4,14);

5.161042936955 \times 10^{-7}

> evalf(-Pi/2*product(3-t,t=0..4)*product(-12/5-w,w=0..7)*(-1/3)*(-2)*(5/4)*(-52/5)-sum((-1)^p/(2*p+1)*product(14*p + 10-j=0..4)*product(3*p-39/10-r=0..7)*(-1/3)^p*(14*p+5)*(5/4)^r*(-3*p-119/10),p=0..infinity),14);

5.161042936955 \times 10^{-7}

3.2. Example 2 Let the Domain of the Three-Variables Function

$$g(x_1, x_2, x_3) = x_1^{-3/4} x_2^6 x_3^{-7/2} \cot^{-1} (x_1^{11/3} x_2^{-5} x_3^{8/9})$$

(29)

be $\{x_1, x_2, x_3\} \in \mathbb{R}^3 | x_1 > 0, x_2 \neq 0, x_3 > 0\}$. By Case (A) of Theorem 2, we obtain any $j_1 + j_2 + j_3$-th order partial derivative of $g(x_1, x_2, x_3)$.

$$\frac{\partial^{j_1 + j_2 + j_3} g}{\partial x_3^{j_1} \partial x_2^{j_2} \partial x_1^{j_3}} (x_1, x_2, x_3) = \frac{\pi}{2} \left(-\frac{3}{4} \right)^{j_1} \left(-\frac{7}{2} \right)^{j_3} \cdot x_1^{3 - j_1} \cdot x_2^{6 - j_2} \cdot x_3^{7 - j_3}/3$$

(27)

For all $x_1 > 0, x_2 > 0, x_3 > 0, x_1^{11/3} x_2^{-5} x_3^{8/9} < 1$. Hence, we can evaluate the 16-th order partial derivative value of $g(x_1, x_2, x_3)$ of $(3 5 7 9)$,

$$\frac{\partial^{16} g}{\partial x_3^7 \partial x_2^5 \partial x_1^4} \left(\frac{3}{4}, \frac{5}{4}, \frac{7}{9} \right)$$

(28)

Verifying the correctness of (31) as follows:

> g := (x1,x2,x3) -> x1^(-3/4)*x2^6*x3^(-7/2)*arccot(x1^((11/3)*x2^(-5)*x3^(8/9)));

> evalf[D[1$4,2$5,3$7]](g)(3/4,5/2,7/9,18);

7.16292131888003098 \times 10^{-11}

> evalf(-Pi/2*product(-3/4-t,t=0..4)*product(-12/5-w,w=0..7)*(-1/3)*(-2)*(5/4)*(-52/5)-sum((-1)^p/(2*p+1)*product(14*p + 10-j=0..4)*product(3*p-39/10-r=0..7)*(-1/3)^p*(14*p+5)*(5/4)^r*(-3*p-119/10),p=0..infinity),14);

7.16292131888003094 \times 10^{-11}

Case (1). If $x_1^{11/3} x_2^{-5} x_3^{8/9} < 1$. By Case (A) of Example 2, the Domain of the Three-Variables Function

$$g(x_1, x_2, x_3) = x_1^{-3/4} x_2^6 x_3^{-7/2} \cot^{-1} (x_1^{11/3} x_2^{-5} x_3^{8/9})$$

(29)

Case (2). If $x_1^{11/3} x_2^{-5} x_3^{8/9} > 1$. Using Case (B) of Example 2, the Domain of the Three-Variables Function

$$g(x_1, x_2, x_3) = x_1^{-3/4} x_2^6 x_3^{-7/2} \cot^{-1} (x_1^{11/3} x_2^{-5} x_3^{8/9})$$

(29)
Thus, we can evaluate the 21-th order partial derivative value of $g(x_1, x_2, x_3)$ at $\left(\frac{11}{2}, -\frac{5}{8}, \frac{10}{3}\right)$.

$$\frac{\partial^{21} g}{\partial x_3^7 \partial x_2^5 \partial x_1^9}(\frac{11}{2}, -\frac{5}{8}, \frac{10}{3}) = \pi \cdot \left(\frac{3}{4}\right)_9 \left(\frac{-7}{2}\right)_7 \left(\frac{39}{4}\right) \left(-\frac{5}{8}\right) \left(\frac{10}{3}\right)_{21/2} \times \left(\frac{11}{2}\right)_{\frac{22}{15}} \left(\frac{-5}{8}\right)^{10p+6} \left(\frac{16}{9}\right)^{205/18}$$

Using Maple to verify the correctness of (35).

Case (3). If $x_1^{11/3}x_2^{-5}x_3^{8/9} < -1$. By Case (C) of Theorem 2, we obtain any $j_1 + j_2 + j_3$-th order partial derivative of $g(x_1, x_2, x_3)$,

$$\frac{\partial^{j_1+j_2+j_3} g}{\partial x_3^{j_3} \partial x_2^{j_2} \partial x_1^{j_1}}(x_1, x_2, x_3)$$

$$= \pi \cdot \left(\frac{3}{4}\right)_{j_1} (6)^{j_2} \left(-\frac{7}{2}\right)_{j_3} x_1^{3-j_1/4} \cdot x_2^{6-j_2/2} \cdot x_3^{7-2j_3/3}$$

$$+ \sum_{p=0}^{\infty} \frac{(-1)^p}{2p+1} \left(\frac{22}{3} \frac{-p}{p-53/12}\right)_{j_1} (10p+11)^{j_2} \left(-\frac{16}{9}\frac{p}{p-79/18}\right)_{j_3} x_1^{22/3} x_2^{10p+11-j_2} x_3^{16/p}$$

For all $x_1 > 0, x_2 \neq 0, x_3 > 0, x_1^{11/3}x_2^{-5}x_3^{8/9} < -1$.

4. Conclusion

As mentioned, the evaluation of the partial derivatives of multivariable functions is important. In this study, we propose a new technique to evaluate any order partial derivatives of two types of multivariable functions, and we hope this method can be applied to another multivariable functions. Simultaneously, we know the differentiation term by term theorem plays a significant role in the theoretical inferences of this study. In fact, the application of this theorem is extensive, and can be used to easily solve many difficult problems; we endeavor to conduct further studies on related applications. On the other hand, Maple also plays a vital assistive role in problem-solving. In the future, we will extend the research topic to other calculus and engineering mathematics problems and solve these problems by using Maple. These results will be used as teaching materials for Maple on education and research to enhance the connotations of calculus and engineering mathematics.

REFERENCES

[1] D. Richards, Advanced Mathematical Methods with Maple,
[2] F. Garvan, The Maple Book, London: Chapman & Hall/CRC, 2001.

[3] J. S. Robertson, Engineering Mathematics with Maple, New York: McGraw-Hill, 1996.

[4] C. T. J. Dodson and E. A. Gonzalez, Experiments in Mathematics Using Maple, New York: Springer-Verlag, 1995.

[5] M. L. Abell and J. P. Braselton, Maple by Example, 3rd ed., New York: Elsevier Academic Press, 2005.

[6] R. J. Stroeker and J. F. Kaashoek, Discovering Mathematics with Maple: An Interactive Exploration for Mathematicians, Engineers and Econometricians, Basel: Birkhauser Verlag, 1999.

[7] C. Tocci and S. G. Adams, Applied Maple for Engineers and Scientists, Boston: Artech House, 1996.

[8] D. N. Richard, An efficient method for the numerical evaluation of partial derivatives of arbitrary order, ACM Transactions on Mathematical Software, Vol. 18, No. 2, pp. 159-173, 1992.

[9] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd ed., SIAM, Philadelphia, 2008.

[10] T-W, Ma, Higher chain formula proved by combinatorics, The Electronic Journal of Combinatorics, Vol. 16, #N21, 2009.

[11] L. E. Fraenkel, Formulae for high derivatives of composite functions, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 83, pp. 159-165, 1978.

[12] C. H., Bischof, G. Corliss, and A. Griewank, Structured second and higher-order derivatives through univariate Taylor series, Optimization Methods and Software, Vol. 2, pp. 211-232, 1993.

[13] C. -H. Yu, Evaluating partial derivatives of two-variables functions by using Maple, Proceedings of the 6th IEEE/International Conference on Advanced Infocomm Technology, Taiwan, No. 00295, 2013.

[14] C. -H. Yu, Partial derivatives of some types of two-variables functions, Pure and Applied Mathematics Journal, Vol. 2, No. 2, pp. 56-61, 2013.

[15] C. -H. Yu, Using Maple to evaluate the partial derivatives of two-variables functions, International Journal of Computer Science and Mobile Computing, Vol. 2, Issue 6, pp. 225-232, 2013.

[16] C.-H. Yu, Application of Maple on the partial differential problem of four types of two-variables functions, Proceedings of the International Conference on Advanced Information Technologies, Taiwan, No.87, 2013.

[17] C.-H. Yu, Using Maple to study the partial differential problems, Applied Mechanics and Materials, in press.

[18] C.-H. Yu, Application of Maple: taking the partial differential problem of some types of two-variables functions as an example, Proceedings of the International Conference on e-Learning, Taiwan, pp. 337-345, 2013.

[19] C.-H., Yu, Application of Maple: taking the partial differential problem of two-variables functions as an example, Proceedings of 2013 Business Innovation and Development Symposium, Taiwan, B20130113001, 2013.

[20] Taylor series expansions of inverse trigonometric functions, online available from http://www.efunda.com/math/taylor_series/inverse_trig.cfm

[21] T. M. Apostol, Mathematical Analysis, 2nd ed., Boston: Addison-Wesley, p230, 1975.